25

ź._

5

発明の名称

光通信システム及び信号チャンネル割当方法

発明の背景

発明の分野

この発明は、光伝送路上の所定位置に配置されかつ所定チャネルの信号を該光伝送路にアドするノードに対してアドすべき信号チャネルを割当てていく信号チャネル割当方法と、それぞれがこの割当方法により割当てられたチャネルの信号を光伝送路にアドするノードを備えた光通信システムに関するものである。

関連する背景技術

互いに波長が異なる信号を伝送する波長分割多重(WDM: Wavelength Division Multiplexing)光通信システムでは、光伝送路上に設けられたノードにおいて、所定波長(所定チャネル)の信号がドロップ(そのノードで受信され、下流の光伝送路へは送出されない)されたり、所定チャネルの信号がアド(そのノードから送出され、下流の光伝送路へは送出されない)される場合がある。ノードから所定チャネルの信号を光伝送路中にアドする光通信システムとしては、例えば、特開平10-13356号公報、特開平9-172449号公報等に開示されている。

発明の概要

発明者らは、上述の従来技術を検討した結果、以下のような課題を発見した。すなわち、一般的に光伝送路の分散には波長依存性があり、アドされる信号波長によっては、受信端での累積分散

25

5

特に、伝送速度の高速化により累積分散の影響の波長間差異(チャネル間差異)はより顕著になる。これを補償するために、アドされた信号に対して個別に分散を補償するための分散補償器が導入されると、当該光通信システムの製造コストが増大するとともに装置の大型化につながってしまう。

が伝送特性に悪影響を及ぼすレベルに達してしまう場合がある。

この発明は、上述の課題を解決するためになされたものであり、各ノードから光伝送路中にアドされる信号の伝送特性の劣化を抑制しつつ製造コストを低く抑えることが可能な構造を備えた光通信システム及び信号チャンネル割当方法を提供することを目的としている。

この発明に係る光通信システムは、複数チャネルの信号を伝搬させるべく送信端と受信端との間に配置された光伝送路と、それぞれが該光伝送路の所定位置に配置されかつ所定チャネルの信号を該光伝送路中にアドする1又はそれ以上のノードとを備える。また、この発明に係る信号チャネル割当方法は、該1又はそれ以上のノードにそれぞれ最適な信号チャネルを予めあるいは動的に割当てる。具体的にノードそれぞれには、光伝送路中にアドすることが可能な信号チャンネルのうち、当該ノードから受信端までの累積分散の絶対値が最も小さくなる信号チャンネルが予めあるいは動的に割当てられる。特に、複数のノードが光伝送路上に配置されている場合、予めノードそれぞれについて受信端までの累積分散の波長依存性を算出し、該累積分散の絶対値が大きいノードから順に最適な信号チャネルを予めあるいは動的に割当てていくのが好ましい。

以上のように最適信号チャネルが割当てられた、当該光通信シ

20

25

ステムにおける光伝送路上のノードそれぞれは、該光伝送路中に アドすることが可能な信号チャンネルのうち、当該ノードから前 記受信端までの累積分散の絶対値が最も小さくなる信号を光伝送 路中にアドすることが可能になる。したがって、当該光通信シス テム及び信号チャンネル割当方法によれば、各ノードでアドされ る 信 号 の 伝 送 特 性 は 、 他 の 信 号 チ ャ ン ネ ル が 選 択 さ れ た 場 合 と 比 べて優れている。

なお、信号の伝搬経路が固定されている光伝送路では、予め割 当てられたチャネルの信号を出力する信号源(光源)をそれぞれ 対 応 す る ノ ー ド に 設 け る こ と に よ り 所 望 の 光 通 信 シ ス テ ム が 実 現 されるが、信号チャネルごとに伝搬経路が異なる場合も考えられ る。後者の場合、各ノードに波長可変光源、互いに異なる波長を 出力する複数の光源、あるいは複数チャネルの信号を1台で同時 に出力する光源を予め用意しておいて、該各ノードそれぞれに、 最適信号チャネルを動的に割当てていく必要がある。

このように、各ノードごとに動的に最適信号チャネルを割当て る場合、該各ノードは、光伝送路中にアドすることが可能な信号 チャンネルをまず特定し、これら特定された信号チャネルのうち、 当該ノードから前記受信端までの累積分散の絶対値が最も小さく なる信号チャンネルを当該ノードに割当てるノード制御系を備え るのが好ましい。

一方、各ノードそれぞれに所定順序で動的に最適信号チャネル が割当てる場合、当該光通信システムは、各ノードそれぞれにつ いて、受信端までの累積分散の波長依存性を算出し、該累積分散 の絶対値が大きいノードから順に最適な信号チャネルを割当てて いく集中制御系を備えるのが好ましい。なお、この集中制御系は、

25

5

この発明に係る信号チャネル割当方法として、所定順序で選択されたノードごとに、前記光伝送路中にアドすることが可能な信号チャンネルを特定し、これら特定された信号チャンネルのうち、該選択されたノードから受信端までの累積分散の絶対値が最も小さくなる信号チャンネルを該選択されたノードに割当てていく。

また、この発明に係る光通信システムは、光伝送路上の所定位置に設けられた分散補償器を備えてもよい。分散補償器が設けられることで、受信端から比較的遠いノードでアドされる信号は、受信端に到達するまでにパワーがある程度低下してしまうが、該受信端までの累積分散の絶対値が小さいので、十分な受信マージンを確保することができる。逆に、受信端から比較的近いノードでアドされる信号は、受信端に到達した時点でも十分なパワーを有するため、、該受信端までの累積分散の絶対値が比較的大きくても、やはり、十分な受信マージンを確保することができる。

図面の簡単な説明

図1は、この発明に係る光通信システムの第1実施形態の構成を示す図である。

図 2 は、この発明に係る信号チャネル割当方法の第 1 実施形態 を説明するためのフローチャートである。

図3は、第1実施形態に係る信号チャネル割当方法を補足説明 するためのグラフである。

図4A及び図4Bは、各ノードの他の構成例を示す図である。 図5は、この発明に係る光通信システムの第2実施形態の構成 を示す図である。

図6は、この発明に係る信号チャネル割当方法の第2実施形態

25

5

を説明するためのフローチャートである。

図7は、第2実施形態に係る信号チャネル割当方法を補足説明 するためのグラフである。

図8は、図6に示された第2実施形態に係る光通信システムの他の構成例を示す図である。

図9は、この発明に係る光通信システムの第3実施形態の構成を示す図である。

図10は、第3実施形態に係る光通信システムにおける信号チャンネル割当方法を補足説明するためのグラフである。

図11は、累積分散の絶対値が小さい場合と大きい場合それぞれについて、ビットエラーレートと必要受信パワーとの関係を示すグラフである。

好適な実施例の詳細説明

以下、この発明に係る光通信システム及び信号チャネル割当方法の各実施形態を、図1~3、4A、4B、及び5~11を用いて説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。

(光通信システム及び信号チャネル割当方法の第1実施形態)

図1は、この発明に係る光通信システムの第1実施形態の構成を示す図であり、この図1に示された構成では、信号の伝搬経路が固定されており、光伝送路中に所定チャネルの信号をアドする各ノードA及びBには予め最適な信号チャネルが割当てられる。

第1実施形態に係る光通信システム1は、送信器10と受信器 20との間に設けられた光伝送路上にノードA、Bが配置されて いる。ノードAは、ADM (Add Drop Multiplexer) 31と、該

25

5

A D M 3 1 を介して予め割当てられた最適チャネルの信号を光伝 送路中に送出するための光源11を備える。同様に、ノードBは、 ADM32と、該ADM32を介して予め割当てられた最適チャ ネルの信号を光伝送路中に送出するための光源12を備える。送 信器 1 0 と A D M 3 1 との間には光ファイバ 5 1 、 A D M 3 1 と A D M 3 2 との間には光ファイバ 5 2 、A D M 3 2 と 受信器 2 0 との間には光ファイバ53が設けられ、これら光ファイバ51~ 5 3 により送信器 1 0 から受信器 2 0 へ到る光伝送路が構成され ている。また、光源11とADM31との間には光ファイバ61 が設けられ、光源12とADM32との間に光ファイバ62が設 けられている。

この第1実施形態に係る光通信システム1では、送信器10か ら 出 力 さ れ た 信 号 は 、 光 フ ァ イ バ 5 1 ~ 5 3 を 順 に 伝 搬 し て 受 信 器20に到達する。あるいは、送信器10から出力された信号は、 A D M 3 1 あるいは A D M 3 2 によりドロップされ、受信器 (図 示せず)により受信される場合もある。ノードAでは、光源11 から出力された信号が光ファイバ61を伝搬してADM31に到 達し、該ADM31から光ファイバ52ヘアドされる。そして、 光源11からの信号は、光ファイバ52、53を順に伝搬して受 信器20に到達する。一方、ノードBでは、光源12から出力さ れた信号は光ファイバ62を伝搬してADM32に到達し、該A DM32から光ファイバ53ヘアドされる。そして、光源12か らの信号は光ファイバ53を伝搬して受信器20に到達する。

光ファイバ51~53それぞれは、波長1.3 μ m付近に零分 散波長を有するシングルモード光ファイバ、このシングルモード 光ファイバの波長 1 . 5 5 μ m 帯の波長分散を補償する分散補償

光ファイバ、波長1.55 μ m付近に零分散波長を有する分散シフト光ファイバ等が適用可能である。送信器10や光源11、12それぞれは、これら石英系光ファイバが最も低い損失で伝搬させることができる点、及び光増幅器による損失補償が容易である点から、波長1.55 μ m帯の信号を出力するのが好ましい。

図3に示されたように、光通信システム1では、信号波長帯域(波長入1~入2)において、適切な波長分散特性を有する光ファイバが光伝送路を構成する光ファイバ51~53として適用される。これにより、送信器10から受信器20に至る光伝送路の累積分散の絶対値が小さくなり、また、該送信器10から受信器20に至る信号の伝送特性の劣化も効果的に抑制される。しかしながら、光源11からADM31を経て受信器20に至る光伝送路における累積分散の絶対値は必ずしも小さくなく、光源12からADM32を経て受信器20に至る光伝送路における累積分散の絶対値は必ずしも小さくなく、光源12からADM32を経て受信器20に至る光伝送路における累積分散の絶対値も必ずしも小さくない。

20

25

5

そこで、この第1実施形態では、光源11から出力されADM 31を介して光伝送路ヘアドされる信号のチャンネルがノードA に、そして、光源12から出力されADM32を介して光伝送路 ヘアドされる信号のチャンネルがノードBに、図2に示されたフ ローチャートに従って予め割当てられる。

まず、ノードAに対する信号チャネルの割当てでは、光源11から出力されADM31を介して光伝送路へアドされる信号のチャンネルとして、まずADM31でアドすることが可能な信号チャンネルが特定される必要がある(ステップST1)。続いて、これら特定された候補について点Aから受信器20までの累積分散がそれぞれ算出され(ステップST2)、該算出された累積分散の絶対値の最も小さい信号チャンネル(波長入 $_{\rm A}$)が当該ノードAからアドされる信号チャネルとして選択される(ステップST3)。例えば、図3に示されたように、信号波長帯域において、点Aから受信器20までの累積分散及び分散スロープがともに正であれば、光源11から出力されADM31を介して光伝送路へアドされる信号のチャンネル(波長入 $_{\rm A}$)として、ADM31でアドされる信号のチャンネルのうちで最短波長のチャネルが割当てられる。信号波長帯域の下限波長入 $_{\rm L}$ の信号がADM31を介してアドされることが可能であれば入 $_{\rm A}$ =入 $_{\rm L}$ である。

同様にして、ノードBに対する信号チャネルの割当てでも、まず、光源12から出力されADM32を介して光伝送路ヘアドされる信号のチャンネルとして、ADM32を介してアドすることが可能な信号チャンネルが特定される(ステップST)。そして、これら特定された候補について点Bから受信器20までの累積分散がそれぞれ算出され(ステップST2)、該算出された累積分

25

5

散の絶対値の最も小さい信号チャンネル(波長 λ_B)が当該ノード Bからアドされる信号チャネルとして選択される(ステップST3)。例えば図3に示されたように、信号波長帯域において、点 Bから受信器20までの累積分散が負であって分散スロープが正であれば、光源12から出力されADM32を介して光伝送路へアドされる信号のチャンネル(波長 λ_B)として、ADM32でアドすることが可能なチャンネルのうち最も長波長の信号チャネルが割当られる。信号波長帯域の上限波長 λ_2 の信号をADM32でアドすることが可能であれば $\lambda_B = \lambda_2$ である。

以上のような最適信号チャネルの割当てが全てのノードに対して行われる(ステップST4)。上述の信号チャネルの割当てでは、光伝送路上の各ノードごとに、光源から出力されADMから光伝送路へアドされる信号のチャンネルとして、アドすることが可能な信号チャンネルのうち、そのノードから受信器20までの累積分散の絶対値が最も小さい信号チャンネルが予め割当てられる。これにより、各ノードA、Bにおける光源11、12それぞれから出力され受信器20により受信される信号の伝送特性は他の信号チャネルが選択された場合と比較して優れている。

なお、この第1実施形態に関し、上述の信号チャネル割当てでは、信号の伝搬経路が固定されている場合を想定しているが、信号チャネルごとに伝搬経路が異なる場合も考えられる。後者の場合、各ノードでは最適信号チャネルを動的に割当てる必要がある。図4A及び4Bは、各ノードごとに動的に最適信号チャネルを割当てるための構造が示されている。なお、これらの図ではノードAの構造のみ示されているが、ノードBも該ノードAと同様の構造を備える。

25

ľÔ

5

図4Aに示されたような第1構造では、ノードAは、ADM3 1 と、互いに異なる波長の信号を出力する複数の光源110と、 該 ADM31と該複数の光源110とを1対多接続するための合 波器111と、当該ノードAにとって最適な信号チャネルを選択 するノード制御系112とを備える。ノード制御系112は、図 2 に示されたように、光ファイバ 5 1 を伝搬してADM31に到 達した信号から当該ノードAからアド可能な信号チャネルを特定 し(ステップST1)、これら特定された信号チャネルについて 当該ノードAから受信器20までの累積分散の絶対値を算出する (ステップST2)。続いて、ノード制御系112は、算出され た 累 積 分 散 の 絶 対 値 が 最 も 小 さ い 信 号 チャ ネ ル を 選 択 し (ステッ プST3)、該選択された信号チャネルに相当する波長の信号を 出力する光源を駆動制御する。なお、上述の割当て動作はノード Bについても同様である。

一方、図4Bに示されたような第2構成では、ノードAは、A D M 3 1 と、波長可変光源113と、当該ノードAにとって最適 な信号チャネルを選択するノード制御系112とを備える。この 第 2 構成においてもノード制御部 1 1 2 は上述のような割当動作 を 行 い 、 選 択 さ れ た 信 号 チ ャ ネ ル に 相 当 す る 波 長 の 信 号 を 出 力 す るよう波長可変光源113を制御する(ノードBについても同 様)。なお、光源113は、複数チャネルの信号(互いに異なる 波長を有する)を1台で同時に出力する光源であってもよい。

以上のように、図4A及び4Bに示されたような構造を備えた ノードを光伝送路上の所定位置にそれぞれ配置することにより、 各 ノ ー ド で 動 的 に 最 適 信 号 チ ャ ネ ル を 割 当 て る 光 通 信 シ ス テ ム が 実現される。

25

5

(光通信システム及び信号チャネル割当方法の第2実施形態)

次に、この発明に係る光通信システム及び信号チャンネル割当 方法の第2実施形態について説明する。

図5は、この発明に係る光通信システムの第2実施形態の構造を示す図であり、この図5に示された構成でも、信号の伝搬経路が固定されており、光伝送路中に所定チャネルの信号をアドする各ノードA、B及びCには予め最適な信号チャネルが割当てられる。

第2実施形態に係る光通信システム2は、送信器10と受信器 20の間に設けられた光伝送路上にノードA、B、Cが配置され ている。ノードAは、ADM31と、該ADM31を介して予め 割 り 当 て ら れ た 最 適 チ ャ ネ ル の 信 号 を 光 伝 送 路 中 に 送 出 す る た め の光源11を備える。ノードBは、ADM32と、該ADM32 を介して予め割り当てられた最適チャネルの信号を光伝送路中に 送 出 す る た め の 光 源 1 2 を 備 え る 。 ま た 、 ノ ー ド C は 、 A D M 3 3 と、該ADM33を介して予め割り当てられた最適チャネルの 信号を光伝送路中に送出するための光源13を備える。送信器1 0 と A D M 3 1 との間には光ファイバ 5 1、 A D M 3 1 と A D M 3 2 との間には光ファイバ 5 2 、 A D M 3 2 と A D M 3 3 との間 に は 光 フ ァ イ バ 5 3 、 A D M 3 3 と 受 信 器 2 0 と の 間 に は 光 フ ァ イバ54が設けられ、これら光ファイバ51~54により送信器 1 0 から受信器 2 0 に至る光伝送路が構成されている。また、光 源 1 1 と A D M 3 1 と の 間 に は 光 フ ァ イ バ 6 1 、 光 源 1 2 と A D M 3 2 との間には光ファイバ 6 2 、光源 1 3 と A D M 3 3 との間 には光ファイバ63が設けられている。

この第2実施形態に係る光通信システム2では、送信器10か

TU

20

25

ら出力された信号は、光ファイバ51~54を順に伝搬して受信 器 2 0 に 到 達 す る 。 あ る い は 、 送 信 器 1 0 か ら 出 力 さ れ た 信 号 は 、 A D M 3 1 ~ 3 3 の 何 れ か に よ り ド ロ ッ プ さ れ 、 受 信 器 (図 示 せ ず)により受信される場合もある。ノードAでは、光源11から 出力された信号が光ファイバ 6 1 を伝搬して A D M 3 1 に到達し、 該ADM31から光ファイバ52ヘアドされる。そして、光源1 1 からの信号は、光ファイバ52~54を順に伝搬して受信器2 0 に到達する。一方、ノードBでは、光源12から出力された信 号は、光ファイバ62を伝搬してADM32に到達し、該ADM 32から光ファイバ53ヘアドされる。そして、光源12からの 信号は光ファイバ53、54を順に伝搬して受信器20に到達す る。さらに、ノードCでは、光源13から出力された信号は、光 ファイバ 6 3 を 伝 搬 して ADM 3 3 に 到 達 し、 該 ADM 3 3 から 光ファイバ54ヘアドされる。そして、光源13からの信号は光 ファイバ54を伝搬して受信器20に到達する。

光ファイバ 5 1 ~ 5 4 それぞれは、波長 1 . 3 μ m 付 近に零分 散波長を有するシングルモード光ファイバ、このシングルモード 光ファイバの波長1.55μm帯の波長分散を補償する分散補償 光ファイバ、波長1.55μm付近に零分散波長を有する分散シ フト光ファイバ等が適用可能である。送信器10や光源11~1 3 それぞれは、これら石英系の光ファイバが最も低い損失で伝搬 させることができる点、及び光増幅器による損失補償が容易であ る点から、 波 長 1 . 5 5 μ m 帯 の 信 号 を 出 力 す る の が 好 ま し い 。

なお、図 5 中、 点 A は A D M 3 1 における出力端の位置、点 B はADM32における出力端の位置、点CはADM33における 出力端の位置をそれぞれ示す。また、図6及び図7は、第2実施

20

25

形態に係る光通信システム2における信号チャンネル割当方法 (この発明に係る信号チャネル割当方法の第2実施形態)を説明 するためのフローチャート及びグラフである。特に、図7に示さ れたグラフにおいて、使用され得る信号チャンネルの波長帯域 (波長入1~入2) であり、曲線G210は点Aから受信器20に 至るまでの累積分散の波長依存性、点、曲線G220は点Bから 受信器20に至るまでの累積分散の波長依存性、曲線G230は 点Cから受信器20に至るまでの累積分散の波長依存性をそれぞ れ示している。

図7に示されたように、光通信システム2では、信号波長帯域 (波長入, ~ 入。)において、適切な波長分散特性を有する光ファ イバが送信器 1 0 から受信器 2 0 までの光伝送路を構成する光フ アイバ51~54として適用される。これにより、送信器10か ら受信器20に至る累積分散の絶対値は小さくなり、また、該送 信器10から受信器20に至る信号の伝送特性の劣化も効果的に 抑制される。しかしながら、光源11からADM31を経て受信 器20に至る光伝送路における累積分散の絶対値は必ずしも小さ くなく、 光 源 1 2 か ら A D M 3 2 を 経 て 受 信 器 2 0 に 至 る 光 伝 送 路における累積分散の絶対値も必ずしも小さくなく、また、光源 1 3 から A D M 3 3 を経て受信器 2 0 に至る光伝送路における累 積分散の絶対値も必ずしも小さくない。

そこで、この第2実施形態では、光源11から出力されADM 31を介して光伝送路ヘアドされる信号のチャンネルがノードA に、 光 源 1 2 か ら 出 力 さ れ A D M 3 2 を 介 し て 光 伝 送 路 ヘ ア ド さ れる信号のチャンネルがノードBに、そして、光源13から出力 されADM33を介して光伝送路へアドされる信号のチャンネル

25

5

まず、ノードA~Cに対する信号チャネルの割当てに先だって、 点A、点B及び点Cそれぞれから受信器20までの累積分散の波 長依存性が算出される(ステップST5、ST6)。この算出さ れた累積分散の波長依存性に基づいて、受信器20までの累積分 散の絶対値が最も大きいノードから順に、信号チャネルの割当て が行われる(ステップST7)。

以下の説明では、図7に示されたように、信号波長帯域において、点A、点B及び点Cそれぞれから受信器20までの累積分散及び分散スロープがともに正であって、点Aから受信器20までの累積分散の絶対値が最も大きく、点Bから受信器20までの累積分散の絶対値、点Cから受信器20までの累積分散の絶対値の順で小さくなっているものとする。この場合、ノードA、ノードB、ノードCの順で信号チャネルの割当てが行われる。

フードAに対する信号チャネルの割当てでは、光源11から出力されADM31を介して光伝送路ヘアドされる信号のチャンネルとして、まずADM31でアドすることが可能な信号チャンネルが特定される(ステップST8)。続いて、これら特定された候補から、点Aから受信器20までの累積分散がの絶対値が最も小さい信号チャンネル(波長入A)が当該ノードAからアドされる信号チャネルとして選択される(ステップST9)。例えば図7に示されたように、信号波長帯域において、点Aから受信器20までの累積分散及び分散スロープがともに正であれば、光源11から出力されADM31を介して光伝送路ヘアドされる信号のチャンネル(波長入A)として、ADM31でアドすることが可能な

25

5

チャンネルのうちで最も短波長のチャネルが割当てられる。信号 波長帯域の下限波長 λ_1 の信号がADM31を介してアドされることが可能であれば $\lambda_\Delta = \lambda_1$ である。

次いで、ノードBに対する信号チャネルの割当てでは、光源12から出力されADM32を介して光伝送路ヘアドされる信号のチャンネルとして、ADM32を介してアドすることが可能なチャンネルが特定される(ステップST8)。そして、これら特定された候補から、点Bから受信器20までの累積分散の絶対値が最も小さいチャンネル(波長 λ_B)が当該ノードBからアドされる信号チャネルとして選択される(ステップST9)。なお、波長 λ_A は、点Aでアドされる信号チャンネルとして既にノードAに割当てられているので、点Bでアドされる信号チャンネルとして既にノードAに割該ノードBに割当てることはできない。

最後に、ノードCに対する信号チャネルの割当てにおいても、 光源13から出力されADM33を介して光伝送路ヘアドされる 信号のチャンネルとして、ADM33でアドすることが可能なチャンネルまず特定される(ステップST8)。そして、点C点から受信器20までの累積分散の絶対値が最も小さいチャンネル (波長入c)が当該ノードCからアドされる信号チャネルとして選

択される(ステップST9)。なお、このノードCに対する信号 チャネルの割当てにおいても、波長 λ_A 及び λ_B は、いずれも、点 A、点Bでアドされる信号チャンネルとして既にノードA、ノー ドBに割当てられているので、点Cでアドされる信号チャンネル としてノードCに割当てることができない。

以上のような最適信号チャネルの割当てが全てのノードに対して行われる(ステップST10)。上述の信号チャネルの割当て

25

ľŪ "M **!,**;] ľU

5

で は 、 光 伝 送 路 上 の 各 ノ ー ド か ら 受 信 器 2 0 ま で の 累 積 分 散 の 波 長依存性を予め算出しておき、この累積分散の波長依存性に基づ いて、受信器20までの累積分散の絶対値が最も大きいノードか ら順に最適信号チャネルの割当てが行われる。これにより、各ノ ードA~Cにおける光源11~13それぞれから出力され受信器 2 0 に到達する信号の伝送特性は、他の信号チャンネルの組み合 わせが選択された場合と比較して優れている。

なお、この第2実施形態に関し、上述の信号チャネル割当てで は、信号の伝搬経路が固定されている場合を想定しているが、信 号チャネルごとに伝搬経路が異なる場合も考えられる。後者の場 合、 各 ノ ー ド で は 最 適 信 号 チ ャ ネ ル を 動 的 に 割 当 て る 必 要 が あ り 、 上 述 の 第 1 実 施 形 態 と 同 様 に 、 ノ ー ド A ~ C そ れ ぞ れ の 構 造 を 図 4 A 及び 4 B に示された構造とすることにより、最適信号チャネ ルの動的割当てが各ノードごとに行える。また、この第2実施形 態 に お け る 信 号 チ ャ ネ ル の 動 的 割 当 て は 、 集 中 し て 行 う こ と も 可 能である。図8は、第2実施形態に係る光通信システム2におい て 、 各 ノ ー ド へ の 最 適 信 号 チ ャ ネ ル の 動 的 割 当 て を 集 中 し て 行 う ための構成を示す図である。

図8に示された光通信システム2において、ノードAは、図4 B に示されたように A D M 3 1 と 波 長 可 変 光 源 1 1 3 (図 4 A に 示されたように、互いに異なる波長の信号を出力する複数の光源 を備えてもよい)を備える。ノードBは、図4Bに示されたよう に ADM32と 波 長 可 変 光 源 114 (図 4Aに 示 さ れ た よ う に 、 互いに異なる波長の信号を出力する複数の光源を備えてもよい) を備える。さらに、ノードCは、図4Bに示されたようにADM 3 3 と 波 長 可 変 光 源 1 1 5 (図 4 A に 示 さ れ た よ う に 、 互 い に 異

25

5

ijŌ 15≟ なる波長の信号を出力する複数の光源を備えてもよい)を備える。 そして、当該光通信システム2は、これらノードA~Cへの最適 信 号 チャネルを動的に割当てるための集中制御系116を備える。 この集中制御系116も、図7に示されたように、ノードA~C について信号チャネルの割当て順序を決定し(ステップST5~ S T 7) 、決定された順序で各ノードへの最適信号チャネルの割 当てを行っていく(ステップST8~ST10)。

(光通信システムの第3実施形態)

次に、この発明に係る光通信システム第3実施形態について説 明する。図9はこの発明に係る光通信システムの第3実施形態の 構成を示す図である。なお、この第3実施形態に係る光通信シス テム3では、上述の第1及び第2実施形態に係る信号チャネル割 当方法のいずれも実施してもよい。

第 3 実施形態に係る光通信システム 3 は、送信器 1 0 と受信器 2 0 との間に設けられた光伝送路上にノードA、ノードB及び分 散補償器40が配置されている。ノードAは、ADM31と、該 ADM31を介して予め割当てられた最適チャネルの信号を光伝 送路中に送出するための光源11を備える。同様に、ノードBは、 A D M 3 2 と、該 A D M 3 2 を介して予め割当てられた最適チャ ネルの信号を光伝送路に送出する光源12を備える。送信器10 と A D M 3 1 と の 間 に は 光 フ ァ イ バ 5 1 、 A D M 3 1 と A D M 3 2 との間には光ファイバ 5 2 、 A D M 3 2 と 受信器 2 0 との間に は 光 フ ァ イ バ 5 3 及 び 分 散 補 償 器 4 0 が そ れ ぞ れ 設 け ら れ 、 こ れ ら 光 フ ァ イ バ 5 1 ~ 5 3 に よ り 送 信 器 1 0 か ら 受 信 器 2 0 へ 至 る 光 伝 送 路 が 構 成 さ れ て い る 。 ま た 、 光 源 1 1 と A D M 3 1 と の 間 には光ファイバ61、光源12とADM32との間には光ファイ

バ62が設けられている。

この第3実施形態に係る光通信システム3では、送信器10から出力された信号は、光ファイバ51~53及び分散補償器40を順に伝搬して受信器20に到達する。あるいは、送信器10から出力された信号は、ADM31あるいはADM32によりドロップされ、受信器(図示せず)により受信される場合もある。ノードAでは、光源11から出力された信号は、光ファイバ61を伝搬してADM31に到達し、該ADM31から光ファイバ52へアドされる。そして、光源11からの信号は、光ファイバ52、53、分散補償器40を順に伝搬して受信器20に到達する。一方、ノードBでは、光源12から出力された信号は、光ファイバ62を伝搬してADM32に到達し、該ADM32から光ファイバ53へアドされる。そして、光源12からの信号は光ファイバ53、分散補償器40を順に伝搬して受信器20に到達する。

なお、図 9 中、点 X は送信器 1 0 における出力端の位置、点 A は A D M 3 1 における出力端の位置、点 B は A D M 3 2 における出力端の位置をそれぞれ示す。また、図 1 0 は、この第 3 実施形態に係る光通信システム 3 における信号チャンネル割当方法の補

20

25

5

足説明するための図である。図10のグラフにおいて、使用され得る信号チャンネルの波長帯域は入1~入2であり、グラフG300は点 X から受信器20までの累積分散の波長依存性、グラフG310は点 A から受信器20までの累積分散の波長依存性、グラフG320は点 B から受信器20までの累積分散の波長依存性をそれぞれ示している。

図10に示されたように、光通信システム3では、信号波長帯域(波長 $\lambda_1 \sim \lambda_2$)において、適切な波長分散特性を有する光ファイバが光伝送路を構成する光ファイバ51~53及び分散補償器40として適用される。これにより、送信器10から受信器20に至る光伝送路における累積分散の絶対値が小さくなり、また、送信器10から受信器20に至る信号光の伝送特性も効果的に劣化を抑制される。しかしながら、光源11からADM31を経て受信器20に至る光伝送路における累積分散の絶対値は必ずしも小さくなく、光源12からADM32を経て受信器20に至る光伝送路における累積分散の絶対値は必ずしも小さくない。

そこで、この第3実施形態では、光源11から出力されADM 31を介して光伝送路ヘアドされる信号のチャンネルをノードA に、及び光源12から出力されADM32を介して光伝送路ヘア ドされる信号のチャンネルをノードBに、以下のように割当てる。 なお、以下の説明では上述の第2実施形態に係る信号チャネル割 当方法(図6)に従って、各ノードA、Bに予め最適信号チャネ ルを割当てる動作を示す。

すなわち、ノードA、Bに対する信号チャネルの割当てに先だって、点A、点Bそれぞれから受信器20までの累積分散の波長依存性が算出される(ステップST5、ST6)。この算出され

25

5

た累積分散の波長依存性に基づいて、受信器 2 0 までの累積分散の絶対値が最も大きいノードから順に、信号チャネルの割当てが行われる(ステップST7)。以下の説明では、図10 に示されたように、信号波長帯域において、点A及び点B それぞれから受信器 2 0 までの累積分散スロープがともに負であって、点Aから受信器 2 0 までの累積分散の絶対値の方が、点Bから受信器 2 0 までの累積分散の絶対値の方が、点Bから受信器 2 0 までの累積分散の絶対値よりも小さくなっているものとする。この場合、ノードB、ノードAの順で信号チャネルの割当てが行われる。

まずノードBに対する信号チャネルの割当てでは、光源12から出力されADM32を介して光伝送路へアドされる信号のチャンネルとして、まずADM32でアドすることが可能な信号チャンネルが特定される(ステップST8)。続いて、これら特定された候補から、点Bから受信器20までの累積分散がの絶対値が最も小さい信号チャンネル(波長入 $_{\rm B}$)が当該ノードBからアドされる信号チャネルとして選択される(ステップST9)。例えば図10に示されたように、信号波長帯域において、点Bから受信器20までの累積分散及び分散スロープがともに負であれば、光源12から出力されADM32を介して光伝送路へアドされる信号のチャンネル(波長入 $_{\rm B}$)として、ADM32でアドすることが可能なチャンネルのうちで最も短波長のチャネルが割当てられる。信号波長帯域の下限波長入 $_{\rm I}$ の信号がADM32を介してアドされることが可能であれば入 $_{\rm B}$ =入 $_{\rm I}$ である。

次いで、ノードAに対する信号チャネルの割当てでは、光源1 1から出力されADM31を介して光伝送路へアドされる信号の チャンネルとして、ADM31を介してアドすることが可能なチ

25

5

ャンネルが特定される(ステップST8)。そして、これら特定された候補から、点Aから受信器20までの累積分散の絶対値が最も小さいチャンネル(波長 λ_A)が当該ノードAからアドされる信号チャネルとして選択される(ステップST9)。なお、波長 λ_B は、点Bでアドされる信号チャンネルとして既にノードBに割当てられているので、点Aでアドされる信号チャンネルとして当該ノードAに割当てることはできない。

以上のような最適信号チャネルの割当てが全てのノードに対して行われる(ステップST10)。上述の信号チャネルの割当てでは、光伝送路上の各ノードから受信器20までの累積分散の波長依存性を予め算出しておき、この累積分散の波長依存性に基づいて、受信器20までの累積分散の絶対値が最も大きいノードから順に最適信号チャネルの割当てが行われる。これにより、各ノードA、Bにおける光源11、12それぞれから出力され受信器20に到達する信号の伝送特性は、他の信号チャンネルの組み合わせが選択された場合と比較して優れている。

特に、この第3実施形態では、分散補償器40が点Bと受信器20との間に設けられているので、送信器10(点X)から受信器20までの累積分散の絶対値を小さくするだけでなく、光源11(点A)から受信器20までの累積分散の絶対値をも小さくしている。図11は、累積分散の絶対値が小さい場合(曲線G400で示される)及び大きい場合(曲線G410で示される)それぞれについて、ビットエラーレート(BER)と必要受信パワーとの関係を示すグラフである。このグラフに示されたように、受信器20から比較的遠いノードでアドされる信号は受信器20までの累積分散の絶対値が小さいので、光伝送路を伝搬する際にあ

5

る程度損失が増加し、受信器20における受信信号パワーが小さ くなったとしても、受信マージンが十分確保される。一方、受信 器 2 0 から比較的近いノードでアドされる信号光は、受信器 2 0 における受信信号パワーが十分大きいので、受信器20までの累 積分散の絶対値が大きくても、やはり、受信マージンが十分確保 される。

なお、上述の信号チャネル割当方法は、信号の伝搬経路が固定 された場合であって、各ノードに最適信号チャネルを予め割当て た場合について説明したが、この第3実施形態においても各ノー ドに対して最適信号チャネルを動的に割当ててもよい。後者の場 合、各ノードは、図4A及び図4Bに示されたように、各ノード に設けられたノード制御系により個別に最適信号チャネルを割当 てるようにすることも、また、図8に示されたように、集中制御 系により、各ノードに最適信号チャネルを割当てるようにするこ とも可能である。

以上のようにこの発明によれば、ノードごとにアドすることが 可能な信号チャンネルのうち受信端までの累積分散の絶対値が最 も小さい信号チャンネルが割当てられるので、アドされた信号の 伝送特性を、他のチャンネルを選択した場合と比較して効果的に 改善することが可能となる。

25

5

<u>クレーム:</u>

1. 複数チャネルの信号を伝搬させるべく送信端と受信端との間に配置された光伝送路と、それぞれが該光伝送路の所定位置に配置されかつ所定チャネルの信号を該光伝送路中にアドする1 又はそれ以上のノードとを備えた光通信システムであって、

前記ノードそれぞれは、前記光伝送路中にアドすることが可能な信号チャンネルのうち、当該ノードから予め求められた前記受信端までの累積分散の絶対値が最も小さくなる信号チャンネルの信号を前記光伝送路中にアドすることを特徴とする光通信システム。

2. クレーム1の光通信システムにおいて、

前記ノードそれぞれは、前記光伝送路中にアドすることが可能な信号チャンネルを特定し、これら特定された信号チャネルのうち、当該ノードから前記受信端までの累積分散の絶対値が最も小さくなる信号チャンネルを当該ノードに割当てるノード制御系を備える。

3. クレーム1の光通信システムは、さらに、

前記ノードそれぞれについて、前記受信端までの累積分散の波 長依存性を算出し、該累積分散の絶対値が大きいノードから順に 最適な信号チャネルを割当てていく集中制御系を備え、

この集中制御系は、割当対象として選択されたノードごとに、 前記光伝送路中にアドすることが可能な信号チャンネルを特定し、 これら特定された信号チャンネルのうち、該選択されたノードか ら前記受信端までの累積分散の絶対値が最も小さくなる信号チャ ンネルを該選択されたノードに割当てていく。

5

5. 複数チャネルの信号を伝搬させるべく送信端と受信端との間に配置された光伝送路と、それぞれが該光伝送路の所定位置に配置されかつ所定チャネルの信号を該光伝送路中にアドする1 又はそれ以上のノードとを備えた光通信システムにおいて、該ノードそれぞれに該光伝送路中にアドすべき所定の信号チャネルを割当てる信号チャネル割当方法であって、

前記ノードそれぞれに、前記光伝送路中にアドすることが可能な信号チャンネルのうち、当該ノードから予め求められた前記受信端までの累積分散の絶対値が最も小さくなる信号チャンネルを割当てることを特徴とする信号チャネルの割当方法。

6. クレーム 5 の信号チャネル割当方法において、

前記ノードそれぞれについて、前記受信端までの累積分散の波 長依存性を算出して該累積分散の絶対値が大きいノードから順に 割当対象として選択し、

前記割当対象として選択されたノードごとに、前記光伝送路中にアドすることが可能な信号チャンネルを特定し、これら特定された信号チャネルのうち、該選択されたノードから前記受信端までの累積分散の絶対値が最も小さくなる信号チャンネルを該選択されたノードに割当てていく。

開示内容の要約

この発明は、光伝送路中に配置された各ノードでアドされる信号の伝送特性の劣化を抑制する構造を備えた光通信システム及び信号チャンネル割当方法に関する。当該光通信システムは、送信器と受信器との間に複数チャネルの信号を伝送するための光伝送路を備え、該光伝送路の所定位置には1又はそれ以上のノードが配置されている。各ノードは、光伝送路中に所定チャネルの信号をアドするADMを備えており、該各ノードにはアド可能な信号チャネルのうち受信器までの累積分散の絶対値が最も小さくなる信号チャンネルが予めあるいは動的に割当てられる。