Minimalizace KA - Úvod

- Tyto dva KA A1,A2 jsou jazykově ekvivalentní, tzn. že rozpoznávají tentýž jazyk.
 L(A1) = L(A2)
- Názorně lze vidět, že automat A2 má menší počet stavů než A1, tudíž našim cílem bude ukázat jakými způsoby lze zmenšit počet stavů KA a tak dospět k automatu s nejmenším počtem stavů.

Minimalizace KA - Úvod

Zredukování počtu stavů KA sestává ze dvou kroků:

Eliminace nedosažitelných stavů

Minimalizace KA - Úvod

Zredukování počtu stavů KA sestává ze dvou kroků:

- Eliminace nedosažitelných stavů
- Sjednocení ekvivalentních stavů

- Automat příjímá jazyk $L = \{w \in 0, 1^* | w \text{ obsahuje podslovo } 01\}$
- Pro žádnou posloupnost vstupních symbolů se automat nedostane do stavů q_2, q_3 nebo q_4 .

- Automat příjímá jazyk $L = \{w \in 0, 1^* | w \text{ obsahuje podslovo } 01\}$
- Pro žádnou posloupnost vstupních symbolů se automat nedostane do stavů q_2, q_3 nebo q_4 .
- Pokud tyto stavy odstraníme, automat pořád přijímá stejný jazyk L = {w ∈ 0, 1*|w obsahuje podslovo 01}

Nyní si ukážeme na příkladu, jak lze odstranit z automatu nedosažitelné stavy.

- Princip spočívá v tom, že procházíme graf a tak určujeme dosažitelné stavy.
- Z toho plyne, že které nejsou dosažitelné, jsou nedosažitelné a můžeme je vynechat, aniž by se změnil jazyk přijímaný automatem.

Nyní začneme procházet automat. Počáteční stav q_0 je označen jako dosažitelný. Jakmile probereme všechny jeho výstupní šipky, kterými se dostáváme do dalších stavů, označíme jej jako "vyřízený" (zpracovaný).

Dosažitelné stavy = [q_0 ,

Vyřízené stavy = [

Nyní se z počátečního stavu q_0 dostaneme slovem 0 do stavu q_1 . Označíme jej tedy jako dosažitelný.

Dosažitelné stavy = $[q_0, q_1,$

Vyřízené stavy = [

Nyní ze stavu q_0 přejdeme slovem 1 do dalšího stavu. Vidíme, že tímto slovem se dostáváme do stavu q_0 . Ten je již označen jako dosažitelný. Stav q_0 označíme jako vyřízený, protože jsme probrali všechny jeho výstupní šipky.

Dosažitelné stavy = $[q_0, q_1,$

 $Vyřízené stavy = [q_0,$

Nyní budeme přecházet ze stavu, který je označen jako dosažitelný, ale není přitom označen jako vyřízený, a to je stav q_1 .

Přejdeme tedy z tohoto stavu slovem 0 do dalšího stavu.

Vidíme, že tímto slovem se dostáváme do stavu q_1 .

Dosažitelné stavy = $[q_0, q_1,$

 $Vyřízené stavy = [q_0,$

Nyní ze stavu q_1 přejdeme slovem 1 do dalšího stavu. Je zřejmé, že tímto slovem se dostáváme do stavu q_5 . Tento stav označíme jako dosažitelný. Zároveň jsme vyřídili stav q_1 a je tedy označen jako vyřízený.

Dosažitelné stavy = $[q_0, q_1, q_5]$

 $Vyřízené stavy = [q_0, q_1,$

Nyní budeme vycházet ze stavu, který je zařazen mezi dosažitelné stavy, ale zároveň ještě není označen jako vyřízený. A to je stav q_5 .

Z tohoto stavu přejdeme slovem 0 do dalšího stavu.

Z toho plyne, že tímto slovem se dostáváme do stavu q₅.

Dosažitelné stavy = $[q_0, q_1, q_5]$

 $Vyřízené stavy = [q_0, q_1,$

Nyní ze stavu q_5 přejdeme slovem 1 do dalšího stavu. Je zřejmé, že tímto slovem se dostáváme do stavu q_5 . V tomto stavu jsme probrali všechny výstupní šipky, tudíž jej označíme jako vyřízený.

Dosažitelné stavy = $[q_0, q_1, q_5]$

 $Vyřízené stavy = [q_0, q_1, q_5]$

Všechny stavy, které byly označeny jako dosažitelné, jsou nyní označeny i jako vyřízené. Tím algoritmus končí.

Dosažitelné stavy = [q_0 , q_1 , q_5]

 $Vyřízené stavy = [q_0, q_1, q_5]$

Nyní stavy, které nejsou označené jako dosažitelné, označíme jako nedosažitelné a můžeme je z automatu vypustit, aniž by se změnil jazyk přijímaný tímto automatem.

Dosažitelné stavy = $[q_0, q_1, q_5]$

 $Vyřízené stavy = [q_0, q_1, q_5]$

Nedosažitelné stavy = [q_2 , q_3 , q_4]

Automat již neobsahuje nedosažitelné stavy.

Dosažitelné stavy = $[q_0, q_1, q_5]$

 $Vyřízené stavy = [q_0, q_1, q_5]$

Nedosažitelné stavy = [q_2, q_3, q_4]

Algoritmus pro eliminaci nedosažitelných stavů

Vstup: Konečný automat $M = (Q, \Sigma, \delta, q_0, F)$ **Výstup**: Ekvivalentní automat M' bez nedosažitelných stavů

- i = 0
- \circ $S_i = 0$
- $\bullet \text{ repeat } S_{i+1} := S_i \cup \{q_0\} \cup \{q | \exists p \in S_i, a \in \Sigma : \delta(p, a) = q\}$
- i := i + 1
- until $S_i = S_{i-1}$
- $Q := S_i$
- $M' := (Q', \Sigma, \delta/Q', q_0, F \cap Q')$

Eliminace nedosažitelných stavů - Shrnutí

Definice

Nechť $M=(Q,\Sigma,\delta,q_0,F)$ je konečný automat. Stav $q\in Q$ nazveme dosažitelný, pokud existuje $w\in \Sigma^*$ takové, že $\hat{\delta}(q_0,w)=q$. Stav ie nedosažitelný, pokud není dosažitelný.

 Do nedosažitelných stavů nevede v grafu automatu žádná orientovaná cesta z počátečního stavu.

Eliminace nedosažitelných stavů - Shrnutí

Definice

Nechť $M=(Q,\Sigma,\delta,q_0,F)$ je konečný automat. Stav $q\in Q$ nazveme dosažitelný, pokud existuje $w\in \Sigma^*$ takové, že $\hat{\delta}(q_0,w)=q$. Stav ie nedosažitelný, pokud není dosažitelný.

- Do nedosažitelných stavů nevede v grafu automatu žádná orientovaná cesta z počátečního stavu.
- Nedosažitelné stavy můžeme z automatu odstranit se všemi přechody vedoucími z nich. Jazyk příjímaný automatem se nezmění.

- Jeden automat lze prezentovat mnoha různými způsoby, proto nás zajímá nějaká jednoznačná prezentace.
- Automat je v normovaném tvaru, jestliže jeho stavy jsou očíslované 1,2,...,n v abecedním pořadí nejmenších slov, kterými tyto stavy dosáhneme.

- Postup je stejný jako u hledání dosažitelných stavů. Rozdíl je v tom, že stavy neznačíme (q₀, q₁,...q_n) jak byly zadány, ale značíme jej čísly (1,2,3....n).
- Postup:
 - Počáteční stav označíme 1.
 - Dále např. v případě abecedy {a,b} zjistíme stav q, do něhož automat přejde ze stavu 1 symbolem a. Pokud q není označen, označíme jej 2.
 - Pak zjistíme stav q , do něhož automat přejde ze stavu 1 symbolem b .
 Pokud stav q není dosud označen, označíme jej nejmenším dosud nepoužitým číslem.
 - Takto pokračujeme dále, dokud nezískáme všechny dosažitelné stavy.

Na jednoduchém příkladu si znázorníme postup převodu do normovaného tvaru.

Nejprve počáteční stav označíme číslem 1.

Nyní z počátečního stavu přejdeme slovem 0 do dalšího stavu. Pokud tento stav již není označen žádným číslem, označíme jej číslem 2.

Nyní z počátečního stavu přejdeme slovem 1 do dalšího stavu.

Vidíme, že tímto slovem se dostáváme do stavu q_1 , který není označen číslem. Označíme jej tedy číslem 3.

Z počátečního stavu jsme přešli všemi výstupními hranami do stavů, které jsou dosažitelné. Tudíž začneme procházet graf z následujícího stavu a to ze stavu označeného číslem 2.

Nyní tedy přejdeme ze stavu, který je označen číslem 2, slovem 0 do dalšího stavu. Z toho vyplývá, že tímto slovem se dostáváme do stavu q_4 . Označíme jej číslem 4.

Nyní tedy přejdeme ze stavu, který je označen číslem 2, slovem 1 do dalšího stavu. Vidíme, že tímto slovem se dostáváme do stavu q_5 . Označíme jej číslem 5. Opět jsme prošli všechny výstupní hrany ze stavu označeného číslem 2. Začneme tedy procházet graf ze stavu označeného číslem 3.

Nyní tedy přejdeme ze stavu, který je označen číslem 3, slovem 0 do dalšího stavu. Je zřejmé, že tímto slovem se dostáváme do stavu, který je označen číslem 4.

Nyní tedy přejdeme ze stavu, který je označen číslem 3, slovem 1 do dalšího stavu. Tímto slovem se dostáváme do stavu, který je již označen číslem 2. Opět jsme prošli všechny výstupní hrany ze stavu označeného číslem 3. Začneme tedy procházet graf ze stavu označeného číslem 4.

Nyní tedy přejdeme ze stavu, který je označen číslem 4, slovem 0 do dalšího stavu. Vidíme, že tímto slovem se dostáváme do stavu q_3 , který není označen, označíme ho tedy číslem 6.

Nyní tedy přejdeme ze stavu, který je označen číslem 4, slovem 1 do dalšího stavu. Z toho plyne, že tímto slovem se dostáváme do stavu, který není označen, označíme ho tedy číslem 5.

Nyní vidíme, že všechny stavy jsou očíslovány {1,2,3...,n}. Automat je tedy převeden do normovaného tvaru.

Sjednocení ekvivalentních stavů

Definice

Pro každý stav q automatu $M=(Q,\Sigma,\delta,q_0,F)$ definuje $L(q)=L(M_q)$, kde $M_q=(Q,\Sigma,\delta,q,F)$

Definice

Stavy q_1, q_2 automatu $M = (Q, \Sigma, \delta, q_0, F)$ nazýváme jazykově ekvivalentní nebo zkráceně ekvivalentní, jestliže $L(q_1) = L(q_2)$

- Jsou-li dva stavy q₁, q₂ automatu ekvivalentní, můžeme jeden vypustit. Všechny šipky, které do něj směřují, musíme přesměrovat do druhého.
- Pokud byl vypouštěný stav počáteční, bude počáteční ten druhý.

Sjednocení ekvivalentních stavů

Stavy q_1 a q_2 jsou ekvivalentní, můžeme tedy jeden z nich vypustit a všechny šipky do něj směřující přesměrovat do stavu druhého.

Sjednocení ekvivalentních stavů

Vynecháme-li tedy stav q₁, který je počáteční, stane se počátečním stavem stav q₂.

- Vynecháme-li tedy stav q₁, který je počáteční, stane se počátečním stavem stav q₂.
- Hrany směřující do stavu q₁ přesměrujeme do stavu, který ponecháváme tedy do q₂.

- Vynecháme-li tedy stav q₁, který je počáteční, stane se počátečním stavem stav q₂.
- Hrany směřující do stavu q₁ přesměrujeme do stavu, který ponecháváme tedy do q₂.

- Vynecháme-li tedy stav q₁, který je počáteční, stane se počátečním stavem stav q₂.
- Hrany směřující do stavu q₁ přesměrujeme do stavu, který ponecháváme tedy do q₂.
- Nyní tedy odstraníme stav q a hrany z něj vycházející.

 Dvojice vzájemně ekvivalentních stavů lze hledat rychlým algoritmem.

- Dvojice vzájemně ekvivalentních stavů lze hledat rychlým algoritmem.
- Postupujeme tak, že rozkládáme množinu všech stavů automatu na neekvivalentní podmnožiny. Pokračujeme v jednotlivých krocích tak dlouho, dokud ještě dochází k dalšímu rozložení.

- Dvojice vzájemně ekvivalentních stavů lze hledat rychlým algoritmem.
- Postupujeme tak, že rozkládáme množinu všech stavů automatu na neekvivalentní podmnožiny. Pokračujeme v jednotlivých krocích tak dlouho, dokud ještě dochází k dalšímu rozložení.
- Po ukončení procedury jsou podmnožiny nerozlišitelných stavů sloučeny do jednotlivých stavů.

Nejprve množinu všech stavů rozdělíme na dvě skupiny. První skupina bude obsahovat stavy přijímací. Druhá skupina bude obsahovat stavy nepřijímací.

Ī	0	1
$\rightarrow q_1$	q_3	q_2
$\leftarrow q_2$	q_4	q_2
$\leftarrow q_3$	q_4	q_3
q_4	q_4	q_4

Ī	0	1
$I \rightarrow q_1$	q_3	q_2
q_4	q_4	q_4
$II \leftarrow q_2$	q_4	q_2
$\leftarrow q_3$	q_4	q_3

Do tabulky si místo přechodů do konkrétních stavů vyznačíme skupinu, do které přecházíme.

	0	1
$\rightarrow q_1$	q_3	q_2
$\leftarrow q_2$	q_4	q_2
$\leftarrow q_3$	q_4	q_3
q_4	q_4	q_4

	0	1		0	1
$I \rightarrow q_1$	q_3	q_2	$I \rightarrow 0$	q_1 II	11
q_4	q_4	q_4	q_4	1	1
$II \leftarrow q_2$	q ₄ q ₄	q_2	←	$q_2 \mid I$	\parallel
$\leftarrow q_3$	q_4	q_3	← q	q ₂ I I ₃ I	11

- Z tabulky vyplývá, že se skupina I rozpadá na dvě další.
- Stav q₁ se liší od q₄, protože se dostává slovem 0 nebo 1 do skupiny, která následně přijímá slovo. Ze stavu q₄ přejdeme slovy 0 nebo 1 do skupiny, která následně nepřijímá prázdné slovo a tudíž nemohou být ekvivalentní.

	0	1
$\rightarrow q_1$	q_3	q_2
$\leftarrow q_2$	q_4	q_2
$\leftarrow q_3$	q_4	q_3
q_4	q_4	q_4

	0	1			0	1
$I \rightarrow q_1$	q_3	q_2	$I \rightarrow$	q_1	Ш	II
q_4	q_4	q_4	q_4	.	1	1
$II \leftarrow q_2$	q_4	q_2	←	q_2	1	11
$\leftarrow q_3$	q_4	q_3	← (73	1	II

Znovu vyplníme tabulku, protože se změnily skupiny.

]	0	1
$\rightarrow q_1$	q_3	q_2
$\leftarrow q_2$	q_4	q_2
$\leftarrow q_3$	q_4	q_3
q_4	q_4	q_4

	0	1	I	0	1
$I \rightarrow q_1$	q_3	q_2	$I \rightarrow q_1$	11	11
q_4	q ₃ q ₄	q_4	q_4	1	1
$II \leftarrow q_2$	q_4	q_2	$II \leftarrow q_2$	1	11
$\leftarrow q_3$	q_4	q_3	$\leftarrow q_3$	i	11

1	0	1
$I \rightarrow q_1$	III	III
$II q_4$	11	II
$III \leftarrow q_2$		III
$\leftarrow q_3$	₄II_	

- Nyní se už žádná skupina nerozpadá, algoritmus tedy končí.
- Stavy, které jsou v jedné skupině, jsou ekvivalentní, tudíž můžeme stavy sloučit.

	0	1
$\rightarrow q_1$	q_3	q_2
$\leftarrow q_2$	q_4	q_2
$\leftarrow q_3$	q_4	q_3
q_4	q_4	q_4

	0	1		0	ĺ
$I \rightarrow q_1$	q_3	q_2	$I \rightarrow q_1$	11	
q_4	q_4	q_4	q_4	1	
$II \leftarrow q_2$	q_4	q_2	$II \leftarrow q_2$	1	
$\leftarrow q_3$	q_4	q_3	$\leftarrow q_3$	1	

	0	1
$I \rightarrow q_1$	III	III
$II q_4$	11	II
$III \leftarrow q_2$	11	III
$\leftarrow q_3$	_II_	III

	0	1
$\rightarrow I$	III	III
II	11	II
← <i>III</i>	ll.	111
₹ > 	- ₹	990

Algoritmus pro sjednocení ekvivalentních stavů

Vstup: Konečný automat $M=(Q,\Sigma,\delta,q_0,F)$ bez nedosažitelných stavů s totální přechodovou funkcí.

Výstup: Redukt *M*/_≡

- i := 0
- $\bullet \equiv_0 := (p,q)|p \in F \Leftrightarrow p \in F$
- repeat
- $\bullet \equiv_{i+1} := \{ (p,q) | p \equiv_i q \land \exists a \in \Sigma : \delta(p,a) \equiv_i \delta(q,a) \}$
- i := i + 1
- until $\equiv_i = \equiv_{i-1}$
- ≡:=≡_i
- $M/ \equiv := (Q/ \equiv, \Sigma, \eta, [q_0], F/ \equiv)$

 Nechť M = (Q, Σ, δ, q₀, F) je konečný automat bez nedosažitelných stavů.

 Nechť M = (Q, Σ, δ, q₀, F) je konečný automat bez nedosažitelných stavů.

Definice

Stavy p,q nazveme jazykově ekvivalentní, psáno $p\equiv q$, pokud $(p\equiv q\Leftrightarrow \forall x\in \Sigma^*: (\hat{\delta}(p,x)\in F\Leftrightarrow \hat{\delta}(q,x)\in F))$

Definice

Reduktem automatu M nazveme konečný automat $M/_{\equiv}=(Q/_{\equiv},\Sigma,\eta,[q_0],F/_{\equiv},)$ tj. automat, kde

Definice

Reduktem automatu M nazveme konečný automat $M/_{\equiv}=(Q/_{\equiv},\Sigma,\eta,[q_0],F/_{\equiv},)$ tj. automat, kde

Stavy jsou třídy rozkladu Q/_≡

Definice

Reduktem automatu M nazveme konečný automat $M/_{\equiv}=(Q/_{\equiv},\Sigma,\eta,[q_0],F/_{\equiv},)$ tj. automat, kde

- Stavy jsou třídy rozkladu Q/_≡
- Přechodová funkce η je nejmenší funkce splňující: $\forall (p, q \in Q), \forall a \in \Sigma : \delta(q, a) = p \Rightarrow \eta([q], a) = [p]$

Definice

Reduktem automatu M nazveme konečný automat $M/_{\equiv}=(Q/_{\equiv},\Sigma,\eta,[q_0],F/_{\equiv},)$ tj. automat, kde

- Stavy jsou třídy rozkladu Q/_≡
- Přechodová funkce η je nejmenší funkce splňující: $\forall (p, q \in Q), \forall a \in \Sigma : \delta(q, a) = p \Rightarrow \eta([q], a) = [p]$
- Stavy jsou třídy rozkladu Q/_≡

Definice

Reduktem automatu M nazveme konečný automat $M/_{\equiv} = (Q/_{\equiv}, \Sigma, \eta, [q_0], F/_{\equiv},)$ tj. automat, kde

- Stavy jsou třídy rozkladu Q/_≡
- Přechodová funkce η je nejmenší funkce splňující: $\forall (p, q \in Q), \forall a \in \Sigma : \delta(q, a) = p \Rightarrow \eta([q], a) = [p]$
- ullet Stavy jsou třídy rozkladu $Q/_{\equiv}$
- Počáteční stav je třída rozkladu Q/_≡ obsahující q₀.

Definice

Reduktem automatu M nazveme konečný automat $M/_{\equiv}=(Q/_{\equiv},\Sigma,\eta,[q_0],F/_{\equiv},)$ tj. automat, kde

- Stavy jsou třídy rozkladu Q/_≡
- Přechodová funkce η je nejmenší funkce splňující: $\forall (p, q \in Q), \forall a \in \Sigma : \delta(q, a) = p \Rightarrow \eta([q], a) = [p]$
- Stavy jsou třídy rozkladu Q/_≡
- Počáteční stav je třída rozkladu $Q/_{\equiv}$ obsahující q_0 .
- Koncové stavy jsou právě ty třídy rozkladu Q/_≡, které obsahují alespoň jeden koncový stav.

 Pro libovolné dva redukované konečné automaty jsou následující tvrzení ekvivalentní:

- Pro libovolné dva redukované konečné automaty jsou následující tvrzení ekvivalentní:
 - automaty jsou ekvivalentní

- Pro libovolné dva redukované konečné automaty jsou následující tvrzení ekvivalentní:
 - automaty jsou ekvivalentní
 - automaty jsou isomorfní

- Pro libovolné dva redukované konečné automaty jsou následující tvrzení ekvivalentní:
 - automaty jsou ekvivalentní
 - automaty jsou isomorfní

Důsledky

Dva redukty libovolných dvou ekvivalentních konečných automatů se shodují až na isomorfismus.

Pro každý KA je jeho redukt určen až na isomorfismus jednoznačně.

A nyní si vše předešlé názorně ukážeme na jednoduchém příkladu.

	0	1
$\rightarrow q_0$	q_1	q_0
<i>q</i> ₁	q_2	q_1
$\leftarrow q_2$	q_3	q_2
q_3	q_4	q_3
q_4	q_2	q_4

Nyní začneme minimalizaci.

	0	1
$\rightarrow q_0$	q_1	q_0
q_1	q_2	<i>q</i> ₁
$\leftarrow q_2$	q_3	q_2
q_3	q_4	q_3
q_4	q_2	q_4

V prvním kroku odstraníme nedosažitelné stavy pomocí algoritmu, který byl zmíněn výše.

Zjistíme, že stavy q_5 , q_6 , q_7 , q_8 jsou nedosažitelné a můžeme je vypustit.

	0	1
$\rightarrow q_0$	q_1	q_0
q_1	q_2	q_1
$\leftarrow q_2$	q_3	q_2
q_3	q_4	q_3
q_4	q_2	q_4

Nyní máme automat již bez nedosažitelných stavů. Můžeme tedy nalézt množiny vzájemně ekvivalentních stavů.

	0	1
$\rightarrow q_0$	q_1	q_0
q_1	q_2	q_1
$\leftarrow q_2$	q_3	q_2
q_3	q_4	q_3
q_4	q_2	q_4

 $I: (q_0, q_1, q_3, q_4), II: (q_2)$

Stavy automatu rozdělíme na dvě množiny, jedna množina $l=(q_0,q_1,q_3,q_4)$ obsahuje stavy, které nejsou přijímací. Množina druhá $l=(q_2)$ obsahuje stavy přijímací.

イロトイプトイミトイミト ミ かくぐ

	0	1
$\rightarrow q_0$	q_1	q_0
q_1	q_2	q_1
$\leftarrow q_2$	q_3	q_2
q_3	q_4	q_3
q_4	q_2	q_4

$$I: (q_0, q_1, q_3, q_4), II: (q_2)$$

	0	1
q_0	- 1	
q_1	=	
q_3	- 1	_
q_4	Ш	_
q_2		Ш

Nyní vyplníme přechodovou tabulku symboly množiny ekvivalence.

	0	1
$\rightarrow q_0$	<i>q</i> ₁	q_0
q_1	q_2	q_1
$\leftarrow q_2$	q_3	q_2
q_3	q_4	q_3
q_4	q_2	q_4

$$I:(q_0,q_1,q_3,q_4),II:(q_2)$$

	0	1
q_0		
<i>q</i> ₁	Ш	_
q_3	- 1	_
q_4	- II	_
q_2		Ш

Z přechodové tabulky vyplývá, že se skupina $I=(q_0,a_1,q_3,q_4)$ rozkládá na dvě podmnožiny 1-ekvivalentních stavů a to na (q_0,q_3) a (q_1,q_4)

	0	1
$\rightarrow q_0$	q_1	q_0
q_1	q_2	q_1
$\leftarrow q_2$	q_3	q_2
q_3	q_4	q_3
q_4	q_2	q_4

$$I:(q_0,q_1,q_3,q_4),II:(q_2)$$

	0	1
q_0		- 1
q_1	- II	-
q_3	- 1	- 1
q_4	- II	_
92		=

$$I:(q_0,q_3),II:(q_1,q_4),III:(q_2)$$

Nyní máme tři množiny 1-ekvivalentních stavů. Stavy v těchto množinách jsou vzájemně rozlišitelné slovy délky nejvýše 1.

	0	1
$\rightarrow q_0$	q_1	q_0
q_1	q_2	q_1
$\leftarrow q_2$	q_3	q_2
q_3	q_4	q_3
q_4	q_2	q_4

$$I: (q_0, q_1, q_3, q_4), II: (q_2)$$

	0	1
q_0	- 1	
q_1	Ш	_
q_3	-1	- 1
q_4	- II	_
q_2		

$$I: (q_0, q_3), II: (q_1, q_4), III: (q_2)$$

	0	1
q 0	=	
q_3	Ш	- 1
91	Ξ	- II
q_4	Ш	- II
q_2		III

Nyní vyplníme přechodovou tabulku symboly množiny ekvivalence.

	0	1
$\rightarrow q_0$	q_1	q_0
q_1	q_2	q_1
$\leftarrow q_2$	q_3	q_2
q_3	q_4	q_3
q_4	q_2	q_4

$$I: (q_0, q_1, q_3, q_4), II: (q_2)$$

	0	1
q_0	- 1	_
q_1	- II	_
q_3		
q_4	- II	
C)	-	=

$$I: (q_0, q_3), II: (q_1, q_4), III: (q_2)$$

0	1
U	
- 11	
111	- 11
- 111	- 11
- 11	iii
	0

Žádná z těchto množin se již dále nerozkládá. Tj. stavy v nich jsou vzájemně 2-ekvivalentní.

	0	1
$\rightarrow q_0$	q_1	q_0
q_1	q_2	q_1
$\leftarrow q_2$	q_3	q_2
q_3	q_4	q_3
q_4	q_2	q_4

	0	1
9 0	-	- 1
q_3	- II	
<i>q</i> ₁	III	ll .
9 4	III	- II
q_2	- 1	III

$$I:(q_0,q_3),II:(q_1,q_4),III:(q_2)$$

Nyní každou množinu ekvivalentních stavů nahradíme stavem jediným.

	0	1
$\rightarrow q_0$	<i>q</i> ₁	q_0
q_1	q_2	q_1
$\leftarrow q_2$	q_3	q_2
q_3	q_4	q_3
q_4	q_2	q_4

A nyní vytvoříme automat podle přechodové tabulky.

	0	1
$\rightarrow q_0$	<i>q</i> ₁	q_0
q_1	q_2	q_1
$\leftarrow q_2$	q_3	q_2
q_3	q_4	q_3
q_4	q_2	q_4

	0	1
<i>→ I</i>	II	
II	III	=
<i>← III</i>		III

Daný minimalizovaný automat je jediný až na isomorfismus, tzn. různé pojmenování stavů. Toto můžeme odstranit převodem do normovaného tvaru.