Chomsky Classification of Grammars

According to Noam Chomosky, there are four types of grammars — Type 0, Type 1, Type 2, and Type 3. The following table shows how they differ from each other —

Grammar Type	Grammar Accepted	Language Accepted	Automaton
Type 0	Unrestricted grammar	Recursively enumerable language	Turing Machine
Type 1	Context-sensitive grammar	Context-sensitive language	Linear-bounded automaton
Type 2	Context-free grammar	Context-free language	Pushdown automaton
Type 3	Regular grammar	Regular language	Finite state automaton

Take a look at the following illustration. It shows the scope of each type of grammar –

Type - 3 Grammar

Type-3 grammars generate regular languages. Type-3 grammars must have a single non-terminal on the left-hand side and a right-hand side consisting of a single terminal or single terminal followed by a single non-terminal.

The productions must be in the form $X \rightarrow a$ or $X \rightarrow aY$

where $X, Y \in N$ (Non terminal)

and $\mathbf{a} \in \mathbf{T}$ (Terminal)

The rule $S \to \epsilon$ is allowed if S does not appear on the right side of any rule.

Example

$$X \to \epsilon$$
 $X \to a \mid aY$
 $Y \to b$

Type - 2 Grammar

Type-2 grammars generate context-free languages.

The productions must be in the form $\mathbf{A} \rightarrow \mathbf{\gamma}$

where $\mathbf{A} \in \mathbf{N}$ (Non terminal)

and $\gamma \in (T \cup N)^*$ (String of terminals and non-terminals).

These languages generated by these grammars are be recognized by a non-deterministic pushdown automaton.

Example

 $S \rightarrow X a$ $X \rightarrow a$

 $\mathsf{X} \to \mathsf{a} \mathsf{X}$

 $X \rightarrow abc$

 $X \to \epsilon$

Explore our **latest online courses** and learn new skills at your own pace. Enroll and become a certified expert to boost your career.

Type - 1 Grammar

Type-1 grammars generate context-sensitive languages. The productions must be in the form

$$\alpha \ A \ \beta \to \alpha \ \gamma \ \beta$$

where $A \in N$ (Non-terminal)

and α , β , $\gamma \in (T \cup N)^*$ (Strings of terminals and non-terminals)

The strings \mathbf{a} and $\mathbf{\beta}$ may be empty, but \mathbf{y} must be non-empty.

The rule $\mathbf{S} \to \mathbf{\epsilon}$ is allowed if S does not appear on the right side of any rule. The languages generated by these grammars are recognized by a linear bounded automaton.

Example

```
AB \rightarrow AbBc
A \rightarrow bcA
B \rightarrow b
```

Type - 0 Grammar

Type-0 grammars generate recursively enumerable languages. The productions have no restrictions. They are any phase structure grammar including all formal grammars.

They generate the languages that are recognized by a Turing machine.

The productions can be in the form of $\mathbf{a} \to \mathbf{\beta}$ where \mathbf{a} is a string of terminals and nonterminals with at least one non-terminal and \mathbf{a} cannot be null. $\mathbf{\beta}$ is a string of terminals and non-terminals.

Example

 $\mathsf{S} \to \mathsf{ACaB}$

 $Bc \rightarrow acB$ $CB \rightarrow DB$

 $aD \to Db$