Question 1 (ca. 14 marks)

Decide whether the following statements are true or false, and justify your answers.

- a) There exists a solution y(t) of $y' = y^2 2$ satisfying y(0) = 1 and y(1) = 2.
- b) The maximal solution of the initial value problem $y' = y^2 \cos t$, y(0) = 1 exists at time t = 2.
- c) Every solution y(t) of $t^2y'' ty' + y = 0$, t > 0, satisfies $\lim_{t \downarrow 0} y(t) = 0$.
- d) The initial value problem $(\cos x)y'' + (\sin x)y' + y = 0$, y(0) = y'(0) = 1 has a power series solution $y(x) = \sum_{n=0}^{\infty} a_n x^n$ which is defined at x = 1.
- e) If $\mathbf{A} \in \mathbb{R}^{n \times n}$ satisfies $\mathbf{A}^2 = \mathbf{I}_n$ (the $n \times n$ identity matrix) then $e^{\mathbf{A}t} = (\cosh t)\mathbf{I}_n + (\sinh t)\mathbf{A}$.
- f) Every solution $\mathbf{y}(t)$ of the system $\mathbf{y}' = \begin{pmatrix} 0 & 1 \\ -2 & -2 \end{pmatrix} \mathbf{y}$ satisfies $\lim_{t \to \infty} \mathbf{y}(t) = (0,0)^{\mathsf{T}}$.
- g) There exist real numbers b_1, b_2, b_3, \ldots such that $x x^2 = \sum_{k=1}^{\infty} b_k \sin(k\pi x)$ for all $x \in [0, 1]$.

Question 2 (ca. 7 marks)

Consider the differential equation

$$(x-1)^2y'' + 2(x^2-1)y' - 4y = 0.$$
 (DE)

- a) Show that $x_0 = 1$ is a regular singular point of (DE).
- b) Determine the general solution of (DE) on $(1, \infty)$. Hint: It turns out that $r_1 - r_2 \in \mathbb{Z}$, but the more complicated machinery developed in the lecture/textbook for this case is not needed.
- c) Using the result of b), discuss the general solution of (DE) on $(-\infty, 1)$ and on \mathbb{R} .

Question 3 (ca. 5 marks)

Consider the ODE

$$y' = t^3 + \frac{2}{t}y - \frac{1}{t}y^2, \qquad t > 0.$$
 (R)

- a) Show that there exists a solution $y_1(t)$ of the form $y_1(t) = t^r$.
- b) Show that the substitution $y = y_1 + 1/z$ transforms (R) into a first-order linear ODE, and explain the precise correspondence between solutions of (R) and solutions of the linear ODE.
- c) Solve the linear ODE in b) and use the result to determine the general solution of (R).

Question 4 (ca. 9 marks)

Consider
$$\mathbf{A} = \begin{pmatrix} 1 & -2 & -2 \\ -4 & -1 & 2 \\ 0 & 0 & -3 \end{pmatrix}$$
 and $\mathbf{b} = \begin{pmatrix} 0 \\ 0 \\ 3 \end{pmatrix}$.

- a) Determine a fundamental system of solutions of the system y' = Ay.
- b) Solve the initial value problem $\mathbf{y}' = \mathbf{A}\mathbf{y} + \mathbf{b}, \ \mathbf{y}(0) = (0, 0, 0)^{\mathsf{T}}.$

Question 5 (ca. 6 marks)

Consider the differential equation

$$(3xy + 2y^2) dx + (3x^2 + 6xy + 3y^2) dy = 0.$$
 (DF)

- a) Show that (0,0) is the only singular point of (DF).
- b) Transform (DF) into an exact equation and determine the general solution in implicit form.
- c) Is every point of \mathbb{R}^2 on a unique integral curve of (DF)?

Question 6 (ca. 7 marks)

Determine all real solutions y(t) of

$$2y^{(5)} - y''' + y'' = 1 + t - 2\sin t.$$