

РАСШИРЕНИЕ ВОЗМОЖНОСТЕЙ ЧИСЛЕННЫХ МОДЕЛЕЙ ANSYS FLUENT ДЛЯ РЕШЕНИЯ ЗАДАЧ АЭРОФИЗИКИ ГИПЕРЗВУКОВЫХ ЛЕТАТЕЛЬНЫХ АППАРАТОВ

Д.Р. Исмагилов, Г.Ф. Костин, Лепихов А.В.

Отдел теплообмена и аэрогидродинамики государственного ракетного центра им. В.П. Макеева

Докладчик:

Лепихов Андрей Валерьевич

Двадцатая Международная конференция по Вычислительной механике и современным прикладным программным системам (ВМСППС'2017)

24 - 31 мая 2017 г., ОУЦ МАИ «Алушта»

Причины

- Геометрически сложные формы
- Наличие отрывных зон
- Перенос наземного эксперимента на условия натурного эксперимента
- Обработка летных экспериментов
- Неизученные физические эффекты

Моделирование летных условий

Условия:

$$M_{\infty} = 6 - 30$$
 $Re_{\infty} = 1e5 - 1e8$
 $I0_{\infty} = 1.6 - 30$ МДж/кг

Модели:

- Равновесное течение
- Неравновесное течение
- Изменение внешнего контура ЛА
- Вдув продуктов разрушения теплозащитного покрытия в пограничный слой

Модель равновесного течения

- Поток моделируется одним компонентом
- Газодинамические и термодинамические параметры газа зависят от давления и температуры
- Базовые свойства газа задаются в табличном виде*

Зависимость времени расчета модельной CFD-задачи от количества реагирующих компонент. t0 — время расчета одной итерации для задачи с одним эффективным компонентом

*Gupta R.N., Lee K-P., Thompson R.A., Yos J.M. Calculations and Curve Fits of Thermodynamic and Transport Properties for Equilibrium Air to 30 000 K // NASA Reference Publication 1260, October 1991.

Модель равновесного течения

(продолжение)

$$\begin{split} &\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \vec{v}) = S_m \\ &\frac{\partial}{\partial t} (\rho \vec{v}) + \nabla \cdot (\rho \vec{v} \vec{v}) = -\nabla p + \nabla \cdot (\bar{\tau}) \\ &\frac{\partial}{\partial t} (\rho H) + \nabla \cdot (\vec{v} (\rho H + p)) = \nabla \cdot (\lambda_{eff} \nabla T + (\bar{\tau}_{eff} \cdot \vec{v})) + S_h \end{split}$$

Замыкание системы уравнений:

$$p = \rho RT \cdot Z(p, T)$$

$$H(p, T) = \int_{T_{ref}}^{T} C_{p} dT \qquad s = \frac{R_{eq}}{\gamma_{eq} - 1} \cdot \log \left(\frac{p}{\rho^{\gamma_{eq}}}\right)$$

$$C_{p} = F_{1}(p, T) \qquad \frac{\partial H}{\partial T} = \frac{H(p, T + \Delta T) - H(p, T - \Delta T)}{2\Delta T}$$

$$\mu = F_{2}(p, T) \qquad \frac{\partial H}{\partial p} = \frac{H(p + \Delta p, T) - H(p - \Delta p, T)}{2\Delta p}$$

$$\lambda_{eff} = F_{3}(p, T) \qquad \frac{\partial \rho}{\partial t} = -\frac{\rho}{Z} \cdot \left(\frac{1}{T} + \frac{dZ}{dT}\right) \qquad \frac{\partial \rho}{\partial p} = \frac{1}{R_{eq} \cdot T} - \frac{\rho}{Z} \cdot \frac{dZ}{dp}$$

Проверка равновесной модели

(взаимодействие скачков уплотнения)

Условия эксперимента:

№ Эксп.	I ₀ , МДж/кг	\mathbf{M}_{∞}	Р' ₀ , кПа	\mathbf{V}_{∞} , m/c	T_{∞} , K
1	5.07	11.3	5.9	3123	189
2	10.43	12.6	9.7	4497	318
4	15.54	11.5	64.0	5470	569
5	21.85	13.2	39.0	6515	618

- Осесимметричная постановка
- Density-based solver
- 2 млн. ячеек (Hexa)

Сравнение с экспериментом

Распределение давления (а) и теплового потока (б) по наветренной поверхности уступа вдоль образующей, расположенной в плоскости симметрии уступа.

Распределение давления в окрестности уступа: а) химически активный воздух; б) модель равновесного воздуха

- Газодинамический расчет гиперзвуковых течений с моделированием равновесных и неравновесных процессов
- 1D и 2D -моделирование тепломассопереноса и пиролиза при термодеструкции материалов
- Инженерные методики для моделирования рецессии поверхности

Тепловая модель (декартова сетка)

ГД/ТР Сопряжение

Схема программы сквозного траекторного расчета

Схема параллельного выполнения одной итерации

Термически неравновесные течения

ГРЦ

(мотивация)

• Малые кромки и притупления R<40 мм в разреженных слоях атмосферы (H>30 км)

• Взаимодействие ударных волн на элементах управления (М>20, Н>30 км)

• Радиосвязь и радиолокация в гиперзвуковом потоке

Реализация неравновесной модели

$$\frac{\partial}{\partial t}(\rho E) + \nabla \cdot \left(\vec{v}(\rho E + p)\right) = \nabla \cdot \left(\lambda_{eff} \nabla T + \left(\bar{\bar{\tau}}_{eff} \cdot \vec{v}\right) - \sum_{i} h_{i} \vec{J}_{i}\right) - \sum_{i} \frac{h_{i}^{0}}{M_{w}^{i}} R_{i} + \mathbf{S}_{h}$$

$$S_h = -\dot{e}_{v,s}$$

$$\frac{\partial}{\partial t} (Y_S e_{v,S}) + \nabla \cdot (Y_S \rho \vec{v} e_{v,S} + \mu_S \nabla e_{v,S}) = -\nabla \cdot (e_{v,S} \vec{J}_S) + \dot{e}_{v,S}$$

$$\dot{e}_{v,s} = \rho_{i(s)} \frac{e_{v,s}^0 - e_{v,s}}{\tau_s}$$

$$T_{v,s} = \frac{\theta_s}{ln\left(\frac{R_{i(s)}\theta_s}{e_{v,s}} + 1\right)}$$

S	$\Theta_{\rm s}$, K
N_2	3396
O_2	2275
NO	2742

Реализация неравновесной модели

(продолжение)

$$R_{i(s)} = \frac{R_0}{M_i(s)}$$

Химические реакции

N2, O2, NO, N, O, NO, NO⁺, e⁻

Кинетическая схема диссоциации воздуха. k_f = $A \cdot T^B \cdot e^{-E/RT}$, $T = \sqrt{T_{tr} \cdot T_v}$

№ п/п	Реакция	A	В	E
11/11		0.5005E 10	0.5	4.0065 00
1	$O_2 + M < = >2O + M$	2.5005E+13	-0.5	4.9365e+08
2	$N_2+O<=>NO+N$	6.8027E+10	0.0	3.1395e+08
3	$NO+O \le >O_2+N$	3.1999E+06	1.0	1.6365e+08
4	$N_2 + M <=> 2N + M$	2.0004E+18	-1.5	9.4177e+08
5	NO+M<=>N+O+M	5.5042E+17	-1.5	6.2782e+08
6	$N+O <=> NO^+ + e^-$	6.3989e+17	0.5	2.6935e+08

Примечание: Эффективность M составляет 2.5 для компонента H_2 , 16 для H_2 O и 1 для остальных компонент. Размерность принята в джоулях, молях* 10^{-3} , м³, секундах.

Тестирование: Модель «ELECTRE»

$$R=35 \text{ mm}$$

 $\Theta=4.6^{\circ}$
 $L=400 \text{ mm}$

$$V_{\infty} = 5919 \text{ M/c}$$

 $P_{\infty} = 430 \text{ \Pia}$
 $T_{\infty} = 790 \text{ K}$

Рис. 2. Распределение удельного ламинарного теплового потока по сферическому притуплению аппарата Electre (с учетом термической и химической неравновесностей): Модель 1 - 7 компонентов смеси и 6 хим. реакций; Модель 2 - 11 компонентов смеси и 15 хим. реакций.

Рис. 1. Распределение удельного ламинарного теплового потока по всей поверхности тела с формой аппарата Electre (с учетом термической и химической неравновесностей): Модель 1 - 7 компонентов смеси и 6 хим. реакций; Модель 2 - 11 компонентов смеси и 15 хим. реакций.

Заключение

- Выполнена реализация модели равновесного воздуха для диапазона температур до 30000 К и давлений до 100 атм. https://drive.google.com/file/d/0B3ZrCnpdlHYxaFVBMW5WenRXbkE/view?usp=sharing
- Разработана модель абляции поверхности ЛА в высокоэнтальпийном потоке https://drive.google.com/file/d/0B3ZrCnpdlHYxMW01dVc3a1o0U2c/view?usp=sharing
- Реализована модель термически неравновесного воздуха (11 компонент, вибрационные моды для компонентов N_2 , O_2 , NO)
- Выполнено тестирование моделей, показана адекватность получаемых результатов экспериментальным данным

Спасибо за внимание!