Inatel

C209 – Computação Gráfica e Multimídia EC215 – Multimídia

> Sistema de TV Digital Parte 1: Introdução

Marcelo Vinícius Cysneiros Aragão marcelovca90@inatel.br

• 1941: a Comissão Federal de Comunicações Norte-Americana (FCC – *Federal Communications Commission*) autorizou o funcionamento das duas primeiras estações de TV em preto-e-branco nos EUA.

- 1945: existiam nove estações de televisão autorizadas naquele país, sendo que seis já estavam em funcionamento.
- 1952: inauguração da primeira estação de TV em preto-e-branco, em São Paulo/SP.
 - O Brasil adotou o mesmo padrão que os EUA (Padrão M).
- 1954: foi definida a versão final do sistema norte-americano de TV em cores, o NTSC (National Television System Commitee).
 - Inicialmente, as transmissões de TV colorida apresentavam problemas de fidelidade das cores. Por este motivo, os países europeus criaram outros sistemas para tentar resolver este problema.
 - Na França, surgiu o sistema Secam (Sequential Coleur Avec Mémoire).
 - Na Alemanha, foi criado o sistema PAL (Phase Alternation Line).

- 1974: o Brasil adotou o sistema PAL de TV em cores, porém compatível com o sistema de TV preto-e-branco já existente (Padrão M).
- 1998: surgiram as primeiras transmissões de TV digital terrestre (propagação pelo ar).
 - Os EUA adotaram o sistema Advanced Television Systems Committee (ATSC);
 - Os europeus adotaram o sistema Digital Video Broadcasting-Terrestrial (DVB-D);
 - No Japão, foi criado o sistema Integrated System Digital Broadcasting-Terrestrial (ISDB-T), que somente entrou em operação comercial a partir de 2003.

Aspecto	NTSC	PAL	SECAM
Taxa de atualização	60 Hz	50 Hz	50 Hz
Número de linhas	525	625	625
Requer controle de matiz nos televisores	Sim	Não	Não
Tipo de modulação	QAM	QAM	FM
Envio de cores	Sinais R e B enviados simultaneamente	Sinais R e B enviados simultaneamente	Sinais R e B enviados alternadamente

- Durante o tempo de varredura da esquerda para a direita, é enviado o sinal de luminância, que pode excursionar entre 10% (que corresponde ao branco) até 75% (que corresponde ao preto).
- Durante o tempo de retorno horizontal, ocorre o "apagamento (blanking) horizontal", ou seja, o sinal fica "mais preto do que preto".
 - Durante o intervalo de "apagamento horizontal", a estação envia um sinal conhecido como "pulso de sincronismo horizontal" cuja função é a sincronização horizontal entre o receptor e a estação.
- Durante o retorno vertical, ocorre o "apagamento (blanking) vertical", dentro do qual é feito o "sincronismo vertical" entre o receptor e a estação.

- No padrão M, estabeleceu-se para cada canal de transmissão uma banda de 6MHz.
 - VHF (*Very High Frequency*): faixa de radiofrequências de 30 até 300 MHz.
 - UHF (*Ultra High Frequency*): faixa de radiofrequências de 300 MHz até 3 GHz.

VHF UHF

Freqüência Canal		Canal	Freqüência	Canal	Freqüência
	Banda, MHz		Banda, MHz		Banda, MHz
2	54-60	25	536-542	48	674-680
3	60-66	26	542-548	49	680-686
4	66-72	27	548-554	50	686-692
5	76-82	28	554-560	51	692-698
6	82-88	29	560-566	52	698-704
7	174-180	30	566-572	53	704-710
8	180-186	31	572-578	54	710-716
9	186-192	32	578-584	55	716-722
10	192-198	33	584-590	56	722-728
11	198-204	34	590-596	57	728-734
12	204-210	35	596-602	58	734-740
13	210-216	36	602-608	59	740-746
14	470-476	37	608-614	60	746-752
15	476-482	38	614-620	61	752-758
16	482-488	39	620-626	62	758-764
17	488-494	40	626-632	63	764-770
18	494-500	41	632-638	64	770-776
19	500-506	42	638-644	65	776-782
20	506-512	43	644-650	66	782-788
21	512-518	44	650-656	67	788-794
22	518-524	45	656-662	68	794-800
23	524-530	46	662-668		
24	530-536	47	668-674		

- O sinal de vídeo modula em AM (amplitude modulada) uma portadora de vídeo localizada a 1,25MHz do início do canal.
- Para a transmissão do sinal de áudio, utiliza-se uma portadora localizada 4,5MHz acima da portadora de vídeo.

- A TV em cores só foi possível porque o olho humano possui sensores (cones) predominantes para as três cores primárias: vermelho (R), verde (G) e azul (B).
 As demais cores provém de excitações proporcionais das três cores primárias.
- Baseada nesse princípio, a estação utiliza uma câmera tricromática com filtros especiais que analisam a imagem e cria três sinais R, G e B com faixa de 4 MHz.
- No receptor utiliza-se uma tela luminescente com três feixes que, ao receberem os sinais R, G e B, excitam proporcionalmente as cores vermelha, verde e azul, reproduzindo assim a imagem original.

- A TV em cores foi implantada após cerca de 10 anos de existência da TV em preto-e-branco, ou seja, já existiam milhões de receptores em preto-e-branco no mercado.
- No início da implantação, os receptores de TV em cores eram muito caros, e a pequena quantidade de receptores não justificaria a criação de programas em cores exclusivos.

 Assim sendo, chegou-se à conclusão de que a melhor solução seria tornar os dois sistemas compatíveis entre si, ou seja, os receptores em cores deveriam funcionar corretamente em preto e branco e vice-versa.

• Para satisfazer os receptores em preto-e-branco, a estação em cores deve transmitir o sinal de luminância (Y), obtido pela combinação dos sinais R, G e B que saem da câmera tricromátrica conforme os respectivos pesos no brilho da imagem obtidos a partir da curva de luminosidade.

• Y = 0.30R + 0.59G + 0.11B

- Além de Y, são enviados os sinais "diferença de cor" (R Y) e (B Y).
- Estudos do comportamento da visão humana mostraram que a sensibilidade do olho humano para cores é inferior à do brilho.
- Portanto, apesar de o sinal Y conter frequências de até 4 MHz, os sinais "diferença de cor" não precisariam de frequências acima de 1,3 MHz.
- Para transmitir (B-Y) e (R-Y), a estação de TV em cores cria dois sinais, U=0.493(B-Y) e V=0.877(R-Y), constituindo sistema YUV.
- Os sinais U e V são os mesmos nos EUA (NTSC) e no Brasil (PAL-M).

- Como se pode observar, durante a varredura horizontal, a estação de TV em cores envia uma informação conhecida como "sincronismo de cor" ou "color burst".
- Sua finalidade é sincronizar o oscilador necessário no receptor para recuperar corretamente os sinais *U* e *V*.

- Hoje, praticamente todos os procedimentos de estúdio já são digitais.
- Até mesmo os receptores de TV analógica recorrem a técnicas de digitalização para execução de funções mais sofisticadas, como inserção de relógio e textos, memorização e função PIP ("picture in picture").
- Geralmente se digitalizam os sinais Y, R, G e B (faixa de 4,2 MHz) e (B-Y), (R-Y), U e V (faixa de 1,3 MHz).
- Também foram padronizados outros dois sinais "diferença de cor" $P_B = 0.564(B-Y)$ e $P_R = 0.713(R-Y)$ (com faixa de 1,3 MHz), também conhecidos como Cb e Cr (espaço de cor YCbCr).

- A teoria, através do teorema de Nyquist, mostra que o valor da frequência de amostragem (f_A) deve ter pelo menos o dobro do valor da máxima frequência do sinal amostrado.
- Embora no início não existisse um valor específico para a frequência de amostragem, atualmente a recomendação conhecida como ITUR601 padronizou como unidade fundamental de amostragem o valor $f_{UF}=3,375\ MHz$.
 - Este valor foi escolhido pois é um número múltiplo da frequência de deflexão horizontal tanto para o padrão M (525 linhas @ 59,94 Hz) como para o padrão utilizado na Europa (625 linhas @ 50 Hz).
 - Para os sinais Y, R, G e B, $f_A = 4f_{UF} = 13,5MHz$.
 - Para os sinais (B-Y), (R-Y), U, V, P_B e P_R , emprega-se $f_A=1f_{UF}=3.375~MHz$ ou $f_A=2f_{UF}=6.75MHz$ ou $f_A=4f_{UF}=13.5MHz$.

- Em um televisão, a quantização utilizando com 8 ou 10 bits é suficiente.
- Existem vários formatos de digitalização, definidos pelo número de unidades de f_{UF} utilizado na amostragem:

Favorata	Como ombónio	Componente			
Formato	Comentário	Y	P_B	P_R	
4:4:4	Usado para teleproduções de altíssima qualidade	$4f_{UF}$	$4f_{UF}$	$4f_{UF}$	
4:2:2	É o mais utilizado, com qualidade de imagem muito boa.	$4f_{UF}$	$2f_{UF}$	$2f_{UF}$	
4:1:1	Só era aceitável para aplicações de baixa qualidade.	$4f_{UF}$	$1f_{UF}$	$1f_{UF}$	
4:2:0	 O sinal de uma linha é amostrado com 4:2:2 e o da linha seguinte com 4:0:0, ou seja, sem P_B e sem P_R. Isso é possível porque o olho humano tem menor sensibilidade para as cores do que para a luminância. A vantagem desse formato é a economia na taxa de bits resultante. 				

• A figura a seguir mostra detalhes da estrutura do formato 4:2:2.

AMOSTRA	ÍMPAR	_	_	_	ÍMPAR	PAR	IMPAR	PAR
CAMPO ÍMPAR	\odot	\bigcirc	\odot	\bigcirc	\odot	\bigcirc	\odot	()
CAMPO PAR	ledow	\bigcirc	ledow	\bigcirc	\odot	\bigcirc	ledow	\bigcirc
CAMPO ÍMPAR	\odot	\bigcirc	\odot	\bigcirc	\odot	\bigcirc	\odot	\bigcirc
CAMPO PAR	\odot	\bigcirc	\odot	\bigcirc	ledow	\bigcirc	\odot	\bigcirc
	\bigcirc	AMOSTRAS DE Y						
	•	AMOSTRAS DE PB E PR AMOSTRAS DE Y, PB E PR						

• A taxa de bits do formato 4:2:2 de 10 bits pode ser calculada desta forma:

```
(Taxa de bits) = [(4x3,375 + 2x3,375 + 2x3,375) (Mega amostras)/s] x 10Bit/amostra ou (Taxa de bits) = 270MBit/s = 270Mbps
```

 Note-se que o valor da taxa de bits é bastante alto e que tal informação não poderia ser transmitida por métodos convencionais através da banda de 6MHz dos canais de TV.

- A TV analógica tradicional se baseou no antigo cinema de 16mm.
- Entretanto, o cinema evoluiu: a resolução melhorou e as imagens ficaram mais largas, aumentando o campo de visão.
- Desde 1980 foram feitas várias experiências de transmissão de TV de alta definição, tais como o sistema japonês NHK e o sistema europeu Eureka.
- Entretanto, a transmissão de HDTV através dos canais aéreos de TV só foi possível após a implantação da TV Digital.

- A razão de aspecto empregada nos padrões de HDTV é 16:9.
- Nos Estados Unidos existem dois formatos para HDTV:
 - Sistema de 1125 linhas por quadro entrelaçadas, com 60 campos por segundo, ou senha, 30 quadros por segundo. O número de linhas ativas por quadro é 1080. Esse sistema também é chamado de 1080i.
 - Sistema de 750 linhas por quadro com varredura progressiva, com 60 quadros por segundo. O número de linhas ativas por quadro é 720. Esse sistema também é conhecido como 720p.
- O valor máximo da frequência do sinal de vídeo analógico resultaria em um número superior a 20MHz para ambos os sistemas, ou seja, seria impossível transmitir este sinal através da banda de 6MHz dos canais de TV já existentes.

- Como já foi visto anteriormente, os sinais "diferença de cor" foram criados para compatibilizar a TV em cores analógica com a TV em preto-e-branco.
- No caso da TV digital, para a transmissão do sinal de HDTV, poderiam ter sido usadas outras soluções. Entretanto, chegou-se à conclusão de que a melhor solução seria continuar usando os sinais Y, P_B e P_R .
- Para HDTV, a norma SMPTE 240M padronizou os três sinais desta forma:

$$Y = 0212R+0,701G+0,087B$$

 $P_B = 0,548(B-Y)$
 $P_R = 0,635(R-Y)$

• Sistema de 1125 linhas/quadro, com varredura entrelaçada e 30 quadros/s

Este sistema possui 1080 linhas ativas por quadro, ou seja, 1080 pixels na vertical.

Logo: número de pixels na horizontal = $1080 \times (16/9) = 1920$

Então, tem-se: (1080 x 1920) pixel/quadro = 2,07 Mpixel/quadro

Ou, tem-se: $(2,07 \text{ MPixel/quadro}) \times (30 \text{ quadros/s}) = 62,1 \text{ Mpixel/s}$

Finalmente, fazendo amostragem total para Y, amostrando os sinais "diferença de cor" a cada dois pixels e supondo um sistema de 10 bits, tem-se:

(taxa mínima de bits) = [62,1 x 10 + (62,1/2) x 10 + (62,1/2) x 10] Mbps = 1,24 Gbps

• Sistema de 750 linhas/quadro, com varredura progressiva e 60 quadros/s

Este sistema possui 720 linhas ativas por quadro, ou seja, 720 pixels na vertical.

Logo: número de pixels na horizontal = 720 x (16/9) = 1280

Então, tem-se: (720 x 1280) pixel/quadro = 0,92 Mpixel/quadro

Ou, tem-se: (0,92 MPixel/quadro) x (60 quadros/s) = 55,3 Mpixel/s

Finalmente, fazendo amostragem total para Y, amostrando os sinais "diferença de cor" a cada dois pixels e supondo um sistema de 10 bits, tem-se:

(taxa mínima de bits) = [55,3 x 10 + (55,3/2) x 10 + (55,3/2) x 10] Mbps = 1,1Gbps

• Enquanto existia apenas a TV analógica de 525 linhas/quadro e razão de aspecto 4:3, o tradicional cinescópio à válvula, conhecido como "tubo de raios catódicos" (CRT – Cathode Ray Tube), foi sempre considerado como a melhor solução para a reprodução da imagem na tela.

 Estudos mostram que, para evitar que sejam notadas deficiências na imagem da TV de 525 linhas entrelaçadas, o telespectador deve se localizar a uma distância equivalente a 7 vezes a altura da tela. Isso significa que, para uma tela de 29 polegadas (medida da diagonal), o usuário deve se localizar a 4 metros de distância do receptor.

- Para aproveitar toda a qualidade da HDTV, os estudos mostram que o telespectador deve se localizar a uma distância equivalente a apenas 3 vezes a altura da tela da imagem.
- Em outras palavras, um receptor de HDTV, com tela de 40 polegadas (valor da diagonal) e razão de aspecto de 16:9 deve ser assistido a uma distância de apenas 1,5 metro.

- Como se pode observar, o advento da HDTV está revolucionando o mercado de monitores de TV, pois receptores com tela de tamanho grande poderão ser utilizados em salas de pequenas dimensões.
- Outra observação importante é que a profundidade do CRT é relativamente grande (ex.: um receptor de HDTV com CRT de 40 polegadas possui cerca de 80 centímetros de profundidade).

Referências & Links Interessantes

• YAMADA, F.; SUKYS, F.; BEDICKS JR., G.; AKAMINE, C.; RAUNHEITTE, L. T. M.; DANTAS, C. E. Parte I - SISTEMAS DE TV DIGITAL. Revista Mackenzie de Engenharia e Computação, v. 5, n. 5, 17 mar. 2010.

Referências & Links Interessantes

- AZEVEDO, Eduardo; CONCI, Aura, Computação gráfica volume 1: geração de imagens. Rio de Janeiro, RJ. Editora Campus, 2003, 353 p. ISBN 85-352-1252-3.
- AZEVEDO, Eduardo; CONCI, Aura; LETA, Fabiana R. Computação gráfica volume 2: teoria e prática. Rio de Janeiro, RJ: Editora Elsevier, 2007, 384 p. ISBN 85-352-2329-0.
- PAULA FILHO, Wilson de Pádua, Multimídia: Conceitos e aplicações. Rio de Janeiro, RJ: LTC, 2000, 321 p. ISBN 978-85-216-1222-3.