Historic, Archive Document

Do not assume content reflects current scientific knowledge, policies, or practices.

QTD224 WZ W37

Resources Conservation Service

United States Department of Agriculture

• NRCS Washington Water Supply Outlook Report June 1, 2003

Water Supply Outlook Reports and Federal - State - Private Cooperative Snow Surveys

For more water supply and resource management information, contact:

Local Natural Resources Conservation Service Field Office

or Scott Pattee Water Supply Specialist Natural Resources Conservation Service 2021 E. College Way, Suite 214 Mt. Vernon, WA 98273-2873 (360) 428-7684 or Betty Schmitt Public Affairs Specialist Natural Resources Conservation Service 316 W. Boone Ave., Suite 450 Spokane, WA 99201-2348 (509) 323-2912

How forecasts are made

Most of the annual streamflow in the western United States originates as snowfall that has accumulated in the mountains during the winter and early spring. As the snowpack accumulates, hydrologists estimate the runoff that will occur when it melts. Measurements of snow water equivalent at selected manual snow courses and automated SNOTEL sites, along with precipitation, antecedent streamflow, and indices of the El Niño / Southern Oscillation are used in computerized statistical and simulation models to prepare runoff forecasts. These forecasts are coordinated between hydrologists in the Natural Resources Conservation Service and the National Weather Service. Unless otherwise specified, all forecasts are for flows that would occur naturally without any upstream influences.

Forecasts of any kind, of course, are not perfect. Streamflow forecast uncertainty arises from three primary sources: (1) uncertain knowledge of future weather conditions, (2) uncertainty in the forecasting procedure, and (3) errors in the data. The forecast, therefore, must be interpreted not as a single value but rather as a range of values with specific probabilities of occurrence. The middle of the range is expressed by the 50% exceedance probability forecast, for which there is a 50% chance that the actual flow will be above, and a 50% chance that the actual flow will be below, this value. To describe the expected range around this 50% value, four other forecasts are provided, two smaller values (90% and 70% exceedance probability) and two larger values (30%, and 10% exceedance probability). For example, there is a 90% chance that the actual flow will be more than the 90% exceedance probability forecast. The others can be interpreted similarly.

The wider the spread among these values, the more uncertain the forecast. As the season progresses, forecasts become more accurate, primarily because a greater portion of the future weather conditions become known; this is reflected by a narrowing of the range around the 50% exceedance probability forecast. Users should take this uncertainty into consideration when making operational decisions by selecting forecasts corresponding to the level of risk they are willing to assume about the amount of water to be expected. If users anticipate receiving a lesser supply of water, or if they wish to increase their chances of having an adequate supply of water for their operations, they may want to base their decisions on the 90% or 70% exceedance probability forecasts, or something in between. On the other hand, if users are concerned about receiving too much water (for example, threat of flooding), they may want to base their decisions on the 30% or 10% exceedance probability forecasts, or something in between. Regardless of the forecast value users choose for operations, they should be prepared to deal with either more or less water. (Users should remember that even if the 90% exceedance probability forecast is used, there is still a 10% chance of receiving less than this amount.) By using the exceedance probability information, users can easily determine the chances of receiving more or less water.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all of its programs and activities on the basis of race, color, national origin, gender, religion, age, disability, political beliefs, sexual orientation, and marital or family status. (Not all prohibited bases apply to all programs.) Persons with disabilities who require an alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at 202-720-2600 (voice and TDD).

To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, Room 326W, Whitten Building, 14th and Independence Avenue SW, Washington DC 20250-9410 or call (202) 720-5964 (voice or TDD). USDA is an Equal Opportunity provider and employer.

Washington Water Supply Outlook

June 2003

General Outlook

The month of May progressed with near normal melt-out of mountain snowpack. 43% of the 58 Washington SNOTEL sites reported some snow remaining on June 1st. However with above average temperatures the first week of the month, most sites are loosing 1-2 inches of snow-water-content and up to 5 inches of snow depth per day. An aerial survey conducted early in the month indicated that the current snow line is at an approximate elevation of 4500 feet and rising fast. According to the National Weather Service "warm episode (El Nino) conditions rapidly dissipated in the tropical pacific during March and April, 2003". However based on current conditions and recent observed trends it appears that cold episode (La Nina) conditions will develop in the tropical pacific during the next several months. Therefore, long term skill in forecasting is diminished during an ENSO transition.

Snowpack

The June 1 statewide SNOTEL readings remain below average at 74%. Out of the basins that have snowpack remaining, the Skykomish River Basin reported the lowest readings at 40% of average. SNOTEL sites in the White River Basin reported the highest at 120% of average. Westside averages from SNOTEL, and June 1 snow surveys, included the North Puget Sound river basins with 84% of average, the Central Puget river basins with 44%, and the Lewis-Cowlitz basins with 70% of average. Snowpack along the east slopes of the Cascade Mountains included the Yakima area with 74% and the Wenatchee area with 79%. Snowpack in the Spokane River Basin was at 48% and the Pend Orielle River Basin had 92% of average. Readers should be cautious of using percent of normal as a true indicator of current conditions. The most important factor is the calculation of snow water content as contributing to runoff.

BASIN	PERCENT	OF LAST	YEAR	PERCENT OF	AVERAGE
BASIN Spokane Newman Lake Pend Oreille Okanogan Methow Similkameen Wenatchee Chelan Upper Yakima Lower Yakima		42 39 81 67 41 62 45	YEAR		58 47 89 72 76 53 72 83 63 83
Ahtanum Creek Walla Walla					91 79
Lower Snake		86			91 81
Lewis		43		• • • • • • • • •	72 89
Green	• • • • • • •	36		• • • • • • • • •	58 57
Snoqualmie					64 67
Skagit					75 87
Nooksack					48 75

Precipitation

During the month of May, the National Weather Service and Natural Resources Conservation Service climate stations reported near to much below average precipitation totals throughout most of Washington river basins. The highest percent of average in the state was at Mt Adams Ranger Station, which reported 173% of average for a total of 2.6 inches. The average for this site is 1.5 inches for May. The wettest spot in the state was reported at June Lake SNOTEL with a May accumulation of 4.5 inches, only 54% of the 30-year average for the site. Averages for the water-year held steady in most basins, regardless of below average rain fall. The Lower Snake River Basin reported the highest water-year average at 102%. The Upper Yakima River Basin reported the lowest at 83% of average and remained the same as last month with only 76% of average May accumulations.

RIVER	MA	Y	WATER YEAR
BASIN	PERCENT	OF AVERAGE	PERCENT OF AVERAGE
Spokane		86	91
Colville-Pend Oreille		82	94
Okanogan-Methow		42	94
Wenatchee-Chelan		47	88
Upper Yakima		76	83
Lower Yakima		74	96
Walla Walla		84	
Lower Snake		99	102
Cowlitz-Lewis		58	91
White-Green-Puyallup .		65	84
Central Puget Sound		65	84
North Puget Sound		60	85
Olympic Peninsula		60	93

Reservoir

Seasonal reservoir levels in Washington vary greatly due to specific watershed management practices required in preparation for irrigation season, fisheries management, power generation and flood control. Reservoir storage in the Yakima Basin was 733,700-acre feet, 101% of average for the Upper Reaches and 232,400-acre feet, 114% of average for Rimrock and Bumping lakes. Storage at the Okanogan reservoirs was 60% of average for June 1. The power generation reservoirs included the following: Coeur d'Alene Lake, 216,500 acre feet, 80% of average and 91% of capacity; Chelan Lake 452,600-acre feet, 96% of average and 67% of capacity; and Ross Lake on the Skagit River at 115% of average and 85% of capacity.

BASIN	PERCENT OF	CAPACITY	CURRENT	STORAGE AS
			PERCENT	OF AVERAGE
Spokane		91		80
Colville-Pend Oreill				
Okanogan-Methow		54		60
Wenatchee-Chelan		67		96
Upper Yakima		88		101
Lower Yakima		100		114
North Puget Sound		85		115

Streamflow

June forecasts vary from 116% of average for Icicle Creek near Leavenworth to 66% of average for Mill Creek at Walla Walla. June-September forecasts for some Western Washington streams include the Cedar River near Cedar Falls, 88%; Green River, 86%; and Skagit River, 87%. Some Eastern Washington streams include the Yakima River near Parker, 98%: Wenatchee River at Plain, 94%; and Spokane River near Post Falls, 75%. Volumetric forecasts are developed using current, historic and average snowpack, precipitation and streamflow data collected and coordinated by organizations cooperating with NRCS.

Statewide May streamflows varied considerably depending on local climate and reservoir operations. The Snake River below Ice Harbor Dam had the highest reported flows with 99% of average. The Okanogan River at Tonasket with 53% of average was the lowest in the state. Other streamflows were the following percentage of average: the Cowlitz, 72%; the Spokane at Spokane, 54%; the Columbia below Rock Island Dam, 77%; and the Cle Elum near Roslyn, 77%.

BASIN	PERCENT OF AVERAGE MOST PROBABLE FORECAST (50 PERCENT CHANCE OF EXCEEDENCE)
Spokane Colville-Pend Oreille Okanogan-Methow Wenatchee-Chelan Upper Yakima Lower Yakima Walla Walla Lower Snake Cowlitz-Lewis White-Green-Puyallup Central Puget Sound North Puget Sound Olympic Peninsula	75-100
STREAM	PERCENT OF AVERAGE MAY STREAMFLOWS
Pend Oreille Below Box Canyon Kettle at Laurier Columbia at Birchbank Spokane at Long Lake Similkameen at Nighthawk Okanogan at Tonasket Methow at Pateros Chelan at Chelan Wenatchee at Pashastin Yakima at Cle Elum Yakima at Parker Naches at Naches Grande Ronde at Troy Snake below Lower Granite Dam SF Walla Walla near Milton Freewat Columbia River at The Dalles Lewis at Ariel Cowlitz below Mayfield Dam Skagit at Concrete	77 79 56 57 53 65 81 79 72 79 84 83 83 83 83 77 72 77

BASIN SUMMARY OF SNOW COURSE DATA

JUNE 2003

SNOW COURSE	ELEVATIO	N DATE	SNOW DEPTH	WATER CONTENT	LAST YEAR	AVERAGE 1971-00	SNOW COURSE	EL	EVATION	DATE	SNOW DEPTH	WATER CONTENT	LAST YEAR	AVERAGE 1971-00
ABERDEEN LAKE	CAN. 4000	6/01/03		.0E			MOSES MTN	SNOTEL	4800	6/01/03		.0	.0	.1
ALPINE MEADOWS	3500	6/01/03		11.0E	37.0		MOSQUITO RDG	SNOTEL	5200	6/01/03		4.3	21.2	11.0
ALPINE MEADOWS S		6/01/03		12.8		31.4	MOUNT BLUM	AM	5800	6/01/03		52.0E	90.0	
BADGER PASS SNOT	EL 6900	6/01/03	32	16.6	37.8	22.9	MOUNT CRAG	SNOTEL	4050	6/01/03	8	4.0	19.9	7.8
BARKER LAKES SNO		6/01/03	30	11.5	7.2	9.5	MT. KOBAU	CAN.	5500	5/30/03	10	5.0	9.0	5.2
BASIN CREEK SNOT		6/01/03		. 0	.0	4.1	MOUNT GARDNER		2860	6/01/03	0	.0	.0	.0
BEAVER CREEK TRA: BEAVER PASS	IL 2200 3680	5/29/03 5/29/03	0 10	.0 5.5	22.8		N.F. ELK CR S NEW HOZOMEEN		6250 2800	6/01/03 5/29/03	0	.0	.0	. 6
	CAN. 5510	6/03/03	11	4.9	10.6	8.0	NEZ PERCE CMP		5650	6/01/03		.0	.0	.3
BLACK PINE SNOTE		6/01/03	-0	.0	.0	1.9	NOISY BASIN S		6040	6/01/03	46	22.9	33.6	30.1
BLEWETT PASS#2SNO		6/01/03	0	.0	.0	.0	NORTH FORK JO		6330	6/01/03	37	18.1	37.7	
BRENDA MINE	CAN. 4450	6/01/03		.0		2.7	OLALLIE MDWS	SNOTEL	3960	6/01/03		18.9	55.5	31.8
BROWN TOP	AM 6000	5/29/03	88	44.2	73.6		OLALLIE MEADO	WS	3630	6/01/03		6.0E		
BUMPING RIDGE SNO BUNCEGRASS MDWSNO		6/01/03 6/01/03		4.6	10.6	11.6	OPHIR PARK PARADISE PARK	CNIOMIST	7150	5/26/03	19	8.4	.9	61.6
CAYUSE PASS	OTEL 5000 5300	6/01/03		14.4 60.5E	14.5	9.7	PARK CK RIDGE		5500 4600	6/01/03 6/01/03	9	51.6 3.9	84.6 30.8	61.6 11.5
CHICKEN CREEK	4060	5/30/03	0	.0	.0	. 0	PETERSON MDW		7200	6/01/03		6.8	1.1	2.7
COMBINATION SNOT		6/01/03		.0	.0	.0		SNOTEL	5900	6/01/03	84	42.0	45.0	39.9
COPPER BOTTOM SNO	OTEL 5200	6/01/03	0	.0	.0	.0	PIKE CREEK SN	OTEL	5930	6/01/03	0	.0	15.6	7.3
	OTEL 6000	6/01/03		25.2	36.5	23.1	POPE RIDGE	SNOTEL	3540	6/01/03	0	.0	.0	.0
	OTEL 3200	6/01/03	0	.0	11.3	1.5	POTATO HILL	SNOTEL	4500	6/01/03		. 6	7.9	2.7
DALY CREEK SNOTES DEVILS PARK	L 5780 5900	6/01/03 5/30/03	0 58	.0 30.0	.0 56.4	.0	QUARTZ PEAK RAINY PASS	SNOTEL	4700 4780	6/01/03 6/01/03		.0 19.6	.0 35.5	.0 24.3
DISCOVERY BASIN	7050	5/28/03	18	8.2	1.0	2.4	REX RIVER	SNOTEL	, 1900	6/01/03	0	.0	22.3	6.1
DOCK BUTTE	AM 3800	6/01/03		35.0E	67.0	4.4	ROCKER PEAK S		8000	6/01/03	26	11.4	10.2	11.7
EASY PASS	AM 5200	6/01/03		60.0E	95.0		SADDLE MTN SN		7900	6/01/03	43	15.9	15.8	16.3
ELBOW LAKE SNO	OTEL 3200	6/01/03	0	.0	23.9	19.8	SALMON MDWS	SNOTEL	4500	6/01/03	0	.0	.0	.0
EMERY CREEK SNOTE		6/01/03		.0	. 0	.0	SASSE RIDGE	SNOTEL	4200	6/01/03	0	.0	18.9	5.9
	CAN. 5800	5/31/03	72	35.0	47.6	37.8	SAVAGE PASS	SNOTEL	6170	6/01/03	30	13.1	17.6	10.4
ESPERON CK. UP (CAN. 5050 OTEL 3370	6/01/03 6/01/03	0	.0	7.6	3.6 7.5	SAWMILL RIDGE SCHREIBERS MD		4700 3400	5/30/03 6/01/03		.0 33.0E	25.0 58.0	
FLATTOP MTN SNOTE		6/01/03	70	33.6	49.1	36.5	SHEEP CANYON	SNOTEL	4050	6/01/03		.0	28.7	13.7
FREEZEOUT CK. TRA		5/29/03	ō	.0	.0		SHERWIN	SNOTEL	3200	6/01/03		.0	.0	. 0
FROHNER MDWS SNOT	TEL 6480	6/01/03	0	.0	.0	.7	SILVER STAR M	TN CAN.	5600	5/28/03	44	20.8	33.3	18.4
GRASS MOUNTAIN #2		5/30/03	0	.0	.0		SKALKAHO SNOT		7260	6/01/03	38	17.9	13.8	14.6
GRAVE CRK SNOTEL	4300	6/01/03		.0	.0	.0	SKOOKUM CREEK		3920	6/01/03		.0	28.7	1.5
GREEN LAKE GREEN LAKE SNO	6000 TEL 6000	6/01/03 6/01/03	17	16.0E	6.4	6.6	SOURDOUGH GUL	SNOTEL	4000 3400	6/01/03 6/01/03		.0	.0 12.8	3.0
	TEL 5380	6/01/03	0	6.3	.0	.2	SPENCER MDW SPIRIT LAKE	SNOTEL	3100	6/01/03		.0	.0	
HAND CREEK SNOTE		6/01/03	ŏ	.0	.0	. 0	SOURDOUGH GUL		4000	6/01/03	0	.0	.0	
HARTS PASS SNO	OTEL 6500	6/01/03	54	27.0E	39.1	29.2	STAHL PEAK SN	OTEL	6030	6/01/03		28.7	43.5	28.0
HELL ROARING DIVI		5/27/03	31	14.1	18.9	10.8	STAMPEDE PASS		3860	6/01/03		12.2	41.2	18.6
HERRIG JUNCTION	4850	5/30/03	19	6.8	19.1	5.4		SNOTEL	4070	6/01/03	5	3.3	24.2	9.0
HIGH RIDGE SNO	OTEL 4980 FEL 6050	6/01/03 6/01/03	57	.0 28.0	.0 51.2	1.2 28.4	STEVENS PASS STRYKER BASIN	SAND SD	3700 6180	6/01/03 5/30/03	45	.0E 21.8	33.8	19.4
HUMBOLDT GLCE SNO		6/01/03		.0	.9	.0	SUNSET	SNOTEL	5540	6/01/03		.0	14.8	13.5
	OTEL 3200	6/01/03		.0	32.3	10.1	SURPRISE LKS	SNOTEL	4250	6/01/03		19.4	37.3	19.0
KRAFT CREEK SNOTE	KL 4750	6/01/03		.0	.0	.0	THUNDER BASIN		4200	6/01/03		9.0E	22.6	
LESTER CREEK	3100	5/30/03	0	.0	15.6		TINKHAM CREEK	SNOTEL	3000	6/01/03		.0	18.3	2.9
	OTEL 5240	6/01/03	11	2.9	13.1	4.9	TOUCHET	SNOTEL	5530	6/01/03	0	.0	5.8	2.5
	OTEL 3800 OTEL 5140	6/01/03		13.5	41.8	18.4	TROUGH #2	SNOTEL	5310 6800	6/01/03		.0	.0 8.2	.0
	OTEL 5000	6/01/03 6/01/03	0	.0	27.7	8.0	TV MOUNTAIN TWELVEMILE SN	OTEL	5600	6/01/03 6/01/03	0	.0	.0	. 4
	OTEL 6110	6/01/03		31.0	65.7	41.5	TWIN LAKES		2700	5/30/03	Ö	. 0		
LUBRECHT SNOTEL	4680	6/01/03	0	.0	.0	.0	TWIN LAKES SN	OTEL	6400	6/01/03	41	23.3	30.6	22.3
LYMAN LAKE SNO	OTEL 5900	6/01/03		49.1	76.9	50.8	UPPER WHEELER	SNOTEL	4400	6/01/03	0	.0	.0	.0
LYNN LAKE	4000	5/30/03	0	.0	24.0			SNOTEL	7800	6/01/03		22.5	16.9	17.0
MEADOWS CABIN	1900	5/30/03	0	.0	.0		WATSON LAKES	AM	4500	6/01/03		55.0E	75.0	
MEADOWS PASS SNO MICA CREEK SNO	OTEL 3240 OTEL 4750	6/01/03 6/01/03		.0	12.3 9.1	.9	WELLS CREEK WHITE PASS ES	SNOTEL	4200 4500	6/01/03 6/01/03	1 0	4.1	18.9 8.2	5.6
MORRISSEY RIDGE (6/01/03		9.6			WHITE ROCKS M		7200	5/30/03	0	.0	15.4	7.4
	TEL 5400	6/01/03		43.0	33.4	33.6				0,00,00				
										,				

Spokane River Basin

*Based on selected stations

The June 1 forecasts for summer runoff within the Spokane River Basin are 75% of average near Post Falls and 80% at Long Lake. The forecast is based on a basin snowpack that is 48% of average and precipitation that is 91% of average for the water year. Precipitation for May was near normal at 86% of average. Streamflow on the Spokane River at Long Lake, was 56% of average for May. June 1 storage in Coeur d'Alene Lake, was 216,500-acre feet, 80% of average and 91% of capacity. Snowpack at Quartz Peak SNOTEL site meted out May 15th, two weeks early. Average temperatures in the Spokane basin were 1 degree below normal for May and 1 degree above for the water year.

Spokane River Basin

SPOKANE RIVER BASIN Streamflow Forecasts - June 1, 2003

Bourset Brist	Dawner			== Future Co			. ====>>	
Forecast Point	Forecast Period	90% (1000AF)	70% (1000AF)	= Chance Of I 50% (Most (1000AF)		30% (1000AF)	10% (1000AF)	30-Yr Avg. (1000AF)
SPOKANE near Post Falls (2)	JUN-SEP	365	495	580	75	665	795	773
	JUN-JUL	295	415	500	74	585	705	676
SPOKANE at Long Lake (2)	JUN-JUL	425	560	650	77	740	875	840
	JUN-SEP	605	750	845	80	940	1085	1061

Reservoir Sto	SPOKANE RIVER BASIN rage (1000 AF) - End				SPOKANE RIVER BASIN Watershed Snowpack Analysis - June 1, 2003				
Reservoir	Usable Capacity	*** Usa This Year	ble Stora Last Year	ge ***	Watershed	Number of Data Sites		ar as % of ======= Average	
COEUR D'ALENE	238.5	216.5	437.0	270.4	SPOKANE RIVER NEWMAN LAKE	8 1	25 0	48	

^{* 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual volume will exceed the volumes in the table.

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.
(2) - The value is natural volume - actual volume may be affected by upstream water management.

Colville - Pend Oreille River Basins

*Based on selected stations

The June – September average forecast for the Kettle River streamflow is 89%, Colville at Kettle Falls is 75%, and Priest River near the Town of Priest River is 78%. May streamflow was 78% of average on the Pend Oreille River, 79% on the Columbia at Birchbank and 77% on the Kettle River. June 1 snow cover was 84% of average in the Pend Oreille Basin River Basin. Bunchgrass Meadows SNOTEL site had 14.4 inches of snow water on the snow pillow. Normally Bunchgrass would have 9.7 inches on June 1. Precipitation during May was 111% of average, bringing the year-to-date precipitation to 94% of average. Reservoir storage in Roosevelt Lake was reported to be 123% of average and 74% of capacity on June 1. Average temperatures were 1-2 degrees below normal for May and 1 degree above for the water year.

Colville - Pend Oreille River Basins

Streamflow Forecasts - June 1, 2003 <<===== Drier ===== Future Conditions ====== Wetter ====>> Forecast Point Forecast ======== Chance Of Exceeding * Period 90% 70% 50% (Most Probable) 30% 10% 30-Yr Avg. (1000AF) (1000AF) (1000AF) (% AVG.) (1000AF) (1000AF) (1000AF) JUN-JUL 5080 PEND OREILLE Lake Inflow (2) 3820 4570 83 5590 6340 6120 JUN-SEP 6150 4760 5590 84 6710 7540 7290 PRIEST near Priest River (1,2) JUN-JUL 142 195 220 76 245 300 291 JUN-SEP 180 270 78 300 240 360 345 JUN-JUL 4500 5150 5800 6760 6190 PEND OREILLE bl Box Canyon (2) JUN-SEP 7840 5580 6230 7370 CHAMOKANE CREEK near Long Lake JUL-AUG 3.10 3.40 3.50 100 3.60 3.90 3.51 COLVILLE at Kettle Falls JUN-SEP 18.8 29 36 53 48 JUN-JUL 12.3 21 27 77 33 42 35 KETTLE near Laurier JUN-SEP 585 705 785 89 865 985 880 JUN-JUL 590 685 750 96 815 910 782 20100 21075 COLUMBIA at Birchbank (1.2) JUN-JUL 16979 19125 23220 22910 88 JUN-SEP 23824 26558 27800 88 29040 31780 31580 COLUMBIA at Grand Coulee Dm (1,2) JUN-SEP 30425 34259 36000 86 37740 41570 41706 JUN-JUL 28530 22525 25671 27100 86 31680 31400 COLVILLE - PEND OREILLE RIVER BASINS COLVILLE - PEND OREILLE RIVER BASINS Reservoir Storage (1000 AF) - End of May Watershed Snowpack Analysis - June 1, 2003 Usable *** Usable Storage *** Number This Year as % of Capacity Reservoir This Last of Year Year Data Sites Last Yr Average ROOSEVELT 5232.0 3758.4 2963.7 2973.0 COLVILLE RIVER 0 0 0 BANKS 715.0 659.9 682.1 605.7 PEND OREILLE RIVER 8 32 60 KETTLE RIVER 1 46 61

^{* 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual volume will exceed the volumes in the table.

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.

^{(2) -} The value is natural volume - actual volume may be affected by upstream water management.

Okanogan - Methow River Basins

*Based on selected stations

Summer runoff average forecast for the Okanogan River is 69%, Similkameen River is 74%, Methow River is 85%, Salmon Creek is 78% and Beaver Creek is 110%. June 1 snow cover on the Okanogan was 84% of average and Methow was 87%. May precipitation in the Okanogan-Methow was 42% of average, with precipitation for the water year at 94% of average. May streamflow for the Methow River was 65% of average, 53% for the Okanogan River and 57% for the Similkameen. Snow-water content at Salmon Meadows SNOTEL melted out close to May 1st. Combined storage in the Conconully Reservoirs was 12,700-acre feet, which is 54% of capacity and 60% of the June 1 average. Temperatures were 2 degrees below normal for the past month and 2 degrees above normal for the water year.

Okanogan - Methow River Basins

Streamflow Forecasts - June 1, 2003

Forecast Point	Forecast			= Chance Of E	:xceeding * =:			
rorcoast rorne	Period	90% (1000AF)	70% (1000AF)	50% (Most (1000AF)	Probable) (% AVG.)	30% (1000AF)	10% (1000AF)	30-Yr Avg (1000AF
EIMILKAMEEN near Nighthawk (1)	JUN-JUL	300	470	550	75	630	800	734
	JUN-SEP	365	540	620	74	700	875	835
KANOGAN near Tonasket (1)	JUN-JUL	296	512	610	71	708	924	861
	JUN-SEP	363	608	720	69	833	1078	1048
ALMON CREEK near Conconully	JUN-JUL	1.81	4.96	7.10	76	9.90	14.10	9.30
	JUN-SEP	2.0	5.5	7.9	78	11.0	15.6	10.2
EAVER CREEK below SF near Twisp	JUN-SEP	3.90	5.70	6.90	110	8.10	9.90	6.30
	JUN-JUL	3.00	4.70	5.90	111	7.10	8.80	5.30
ETHOW RIVER near Pateros	JUN-SEP	355	425	475	85	525	595	562
	JUN-JUL	310	370	410	84	450	510	488

OKANOGAN - M Reservoir Storage (10	ETHOW RIVER BA				OKANOGAN - METHOW RIVER BASINS Watershed Snowpack Analysis - June 1, 2003					
Reservoir	Usable Capacity	*** Usable Storage This Last Year Year		ge *** Avg	Watershed	Number of Data Sites	This Year as % o Last Yr Averag			
SALMON LAKE	10.5	4.5	4.2	9.7	OKANOGAN RIVER	7	61	86		
CONCONULLY RESERVOIR	13.0	8.2	5.4	11.4	OMAK CREEK	1	0	0		
					SANPOIL RIVER	0	0	0		
					SIMILKAMEEN RIVER	0	0	0		
					TOATS COULEE CREEK	0	0	0		
					CONCONULLY LAKE	1	0	0		
					METHOW DIVED	2	62	97		

^{* 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual volume will exceed the volumes in the table.

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.
(2) - The value is natural volume - actual volume may be affected by upstream water management.

Wenatchee - Chelan River Basins

*Based on selected stations

Precipitation during May was 47% of average in the basin and 88% for the year-to-date. Runoff for Entiat River is forecast to be 91% of average for the summer. The June-September average forecast for Chelan River is 86%, Wenatchee River at Plain is 94%, Stehekin River is 87%, Icicle Creek near Leavenworth is 116% and Stemilt Creek is 68%. May average streamflows on the Chelan River were 81% and on the Wenatchee River 79%. June 1 snowpack in the Wenatchee River Basin was 78% of average; and the Chelan, 80%. Sites on the Entiat, Stemilt Creek, and Colockum Creek all reported no snow. Reservoir storage in Lake Chelan was 452,600-acre feet, 96% of June 1 average and 67% of capacity. Lyman Lake SNOTEL had the most snow water with 49.1 inches of water. This site would normally have 50.8 inches on June 1. Temperatures were 1-2 degrees below normal for May and 2-3 degrees above normal for the water year.

Wenatchee - Chelan River Basins

Streamflow Forecasts - June 1, 2003

		<<=====	Drier ====	== Future Co	nditions ===	==== Wetter	====>>	
Forecast Point	Forecast Period	90% (1000AF)	70% (1000AF)	= Chance Of E 50% (Most (1000AF)	xceeding * == Probable) (% AVG.)	30% (1000AF)	10% (1000AF)	30-Yr Avg. (1000AF)
CHELAN RIVER near Chelan	JUN-SEP JUN-JUL	465 370	560 455	625	86 87	690 565	785 650	728 589
STEHEKIN near STEHEKIN	JUN-SEP	355	420	465	87	510	575	535
	JUN-JUL	260	315	350	86	385	440	408
ENTIAT RIVER near Ardenvoir	JUN-JUL	89	105	115	91	125	141	127
	JUN-SEP	109	124	135	91	146	161	149
WENATCHEE at Plain	JUN-JUL	430	495	540	94	585	650	574
	JUN-SEP	510	595	650	94	705	790	694
STEMILT nr Wenatchee (miners in)	MAY-SEP	49	76	94	68	112	139	138
ICICLE CREEK near Leavenworth	JUN-SEP	190	215	230	116	245	270	199
	JUN-JUL	167	190	205	119	220	245	172
COLUMBIA R. bl Rock Island Dam (2)	JUN-SEP	33364	36720	39000	86	41280	44640	45171
	JUN-JUL	24064	27420	29700	86	31980	35340	34423

	NATCHEE - CHELAN RIVER I Storage (1000 AF) - End				WENATCHEE - CHELAN RIVER BASINS Watershed Snowpack Analysis - June 1, 2003					
Reservoir	Usable Capacity	*** Usa This Year	able Stora Last Year	ge *** Avg	Watershed	Number of Data Sites		ar as % of Average		
CHELAN LAKE	676.1	452.6	373.8	473.0	CHELAN LAKE BASIN	4	51	80		
					ENTIAT RIVER	1	0	0		
					WENATCHEE RIVER	6	48	78		
					SQUILCHUCK CREEK	0	0	0		
					STEMILT CREEK	1	0	0		
					COLOCKUM CREEK	1	0	0		

^{* 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual volume will exceed the volumes in the table.

The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.
 The value is natural volume - actual volume may be affected by upstream water management.

Upper Yakima River Basin

*Based on selected stations

June 1 reservoir storage for the Upper Yakima reservoirs was 733,700-acre feet, 101% of average. Forecasts for the Yakima River at Cle Elum are 100% of average and the Teanaway River near Cle Elum is at 68%. Lake inflows are all forecasted to near normal this summer. May streamflows within the basin were Yakima near Cle Elum at 72% and Cle Elum River near Roslyn at 77%. June 1 snowpack was 49% based upon 6 SNOTEL readings within the Upper Yakima Basin. Precipitation was 76% of average for May and 83% year-to-date for water. Volume forecasts for the Yakima Basin are for natural flow. As such, they June differ from the U.S. Bureau of Reclamation's forecast for the total water supply available, which includes irrigation return flow.

Upper Yakima River Basin

Streamflow Forecasts - June 1, 2003

		>>>	Drier ====	== Future Co	onditions ==	===== Wetter	. ====>>	.========
Forecast Point	Forecast Period	90% (1000AF)	70% (1000AF)	= Chance Of I 50% (Most (1000AF)		30% (1000AF)	10% (1000AF)	30-Yr Avg. (1000AF)
KEECHELUS LAKE INFLOW	JUN-JUL	35	44	50	106	56	65	47
	JUN-SEP	44	55	62	105	69	80	59
KACHESS LAKE INFLOW	JUN-JUL	27	34	39	91	44	51	43
	JUN-SEP	31	39	45	88	51	59	51
CLE ELUM LAKE INFLOW	JUN-JUL	145	169	186	97	205	225	192
	JUN-SEP	176	205	225	97	245	275	232
YAKIMA at Cle Elum	JUN-JUL	255	305	340	100	375	425	341
	JUN-SEP	320	380	420	100	460	520	421
TEANAWAY near Cle Elum	JUN-JUL JUN-SEP	7.7 10.1	18.0	25 27	68 68	32 34	42 44	37 40

	UPPER YAKIMA RIVER BAS: torage (1000 AF) - End				UPPER YAKIMA RIVER BASIN Watershed Snowpack Analysis - June 1, 2003					
Reservoir	Usable Capacity	*** Usa This Year	ble Stora Last Year	ge *** Avg	Watershed	Number of Data Sites		ear as % of Average		
KEECHELUS	157.8	86.6	137.3	140.5	UPPER YAKIMA RIVER	6	25	49		
KACHESS	239.0	227.9	197.9	207.6						
CLE ELUM	436.9	419.2	407.0	379.3						
*****************				=======				========		

^{* 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual volume will exceed the volumes in the table.

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.
(2) - The value is natural volume - actual volume may be affected by upstream water management.

Lower Yakima River Basin

*Based on selected stations

May average streamflows within the basin were: Yakima River near Parker, 79%; Naches River near Naches, 84%; and Yakima River at Kiona, 67%. June 1 reservoir storage for Bumping and Rimrock reservoirs was 232,400-acre feet, 114% of average. Forecast averages for Yakima River near Parker are 98%; American River near Nile, 91%; Ahtanum Creek, 113%; and Klickitat River near Glenwood, 83%. June 1 snowpack was 98% based upon 5 SNOTEL readings within the Lower Yakima Basin and 93% of average in the Ahtanum Creek Basin. Precipitation was 74% of average for May and 96% year-to-date for water. Temperatures were 1 degree below normal for the month and 2 degrees above average for the water year. Volume forecasts for Yakima Basin are for natural flow. As such, they June differ from the U.S. Bureau of Reclamation's forecast for the total water supply available, which includes irrigation return flow.

Lower Yakima River Basin

Streamflow Forecasts - June 1, 2003

Forecast Point	Forecast			- Chance Of E	xceeding * =			
rolecast roint	Period	90% (1000AF)	70% (1000AF)	50% (Most (1000AF)		30% (1000AF)	10% (1000AF)	30-Yr Avg (1000AF)
BUMPING LAKE INFLOW	JUN-SEP	47	60	69	97		91	71
	JUN-JUL	39	51	59	97	67	79	61
AMERICAN RIVER near Nile	JUN-SEP	45	52	57	91	62	69	63
	JUN-JUL	37	44	49	91	54	61	54
RIMROCK LAKE INFLOW	JUN-SEP	112	126	136	94	146	160	144
	JUN-JUL	81	92	100	95	108	119	105
NACHES near Naches	JUN-SEP	305	360	400	98	440	495	410
	JUN-JUL	240	290	320	97	350	400	331
AHTANUM CREEK nr Tampico (2)	MAY-SEP	34	40	43	113	46	52	38
	MAY-JUL	30	35	38	112	41	46	34
MAKIMA near Parker	JUN-SEP	645	785	880	98	970	1110	901
	JUN-JUL	505	620	700	98	780	895	713
CLICKITAT near Glenwood	JUN-JUN	25	31	35	80	39	45	44
	JUN-SEP	48	58	65	83	72	82	78

	OWER YAKIMA RIVER BAS: orage (1000 AF) - End				LOWER YAKIMA RIVER BASIN Watershed Snowpack Analysis - June 1, 2003				
Reservoir	Usable Capacity	*** Usa This Year	ble Stora Last Year	ge *** Avg	Watershed	Number of Data Sites	This Year as % of		
BUMPING LAKE	33.7	34.4	33.7	30.4					
RIMROCK	198.0	198.0	193.0	173.5					

^{* 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual volume will exceed the volumes in the table.

The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.
 The value is natural volume - actual volume may be affected by upstream water management.

Walla Walla River Basin

*Based on selected stations

May precipitation was 84% of average, maintaining the year-to-date precipitation at 101% of average. Both SNOTEL sites in the basin melted out before the first of the month. Streamflow forecasts are 86% of average for Mill Creek and 84% for the SF Walla Walla near Milton-Freewater. May streamflow was 93% of average for the Walla Walla River. Average temperatures were 2 degrees below normal for May and near average for the water year.

Walla Walla River Basin

Streamflow Forecasts - June 1, 2003

Forecast Point	Forecast		<pre><<===== Drier ===== Future Conditions ====== Wetter ====>> ======== Chance Of Exceeding * ===================================</pre>							
Torcouse Torne	Period	90% (1000AF)	70% (1000AF)		Probable) (% AVG.)	30% (1000AF)	10% (1000AF)	30-Yr Avg. (1000AF)		
MILL CREEK at Walla Walla	MAY-SEP MAY-JUL	2.70 2.50	4.60	5.90 5.70	66 64	7.20 7.00	9.10 8.90	9.00 8.90		
SF WALLA WALLA near Milton-Freewater	JUN-JUL JUN-SEP	10.9 21	13.7 24	15.6 27	81 84	17.1 30	20 33	19.3 32		

	WALLA WALL Reservoir Storage (100	A RIVER BAS: 0 AF) - End			WALLA WALLA RIVER BASIN Watershed Snowpack Analysis - June 1, 2003				
Reservoir		Usable Capacity	e Storage Last Year	*** Avg	Watershed	Number of Data Sites	This Yea		
			 	=====	WALLA WALLA RIVER	2	0	0	

^{* 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual volume will exceed the volumes in the table.

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.
(2) - The value is natural volume - actual volume may be affected by upstream water management.

Lower Snake River Basin

*Based on selected stations

The June - September forecast is for 113% for Clearwater River at Spalding. The Snake and Grande Ronde rivers can expect summer flows to be about 82% and 90% of normal respectively. May precipitation was 99% of average, bringing the year-to-date precipitation to 102% of average. June 1 snowpack readings averaged 94% of normal. May streamflow was 83% of average for Snake River below Lower Granite Dam and 83% for Grande Ronde River near Troy. Average temperatures were 1 degree below normal for May and near normal for the water year.

Lower Snake River Basin

Streamflow Forecasts - June 1, 2003

Forecast Point	Forecast		Drier ====:	== Future Co = Chance Of E		===== Wetter	====>>	
Torcoast roine	Period	90% (1000AF)	70% (1000AF)	50% (Most (1000AF)		30% (1000AF)	10% (1000AF)	30-Yr Avg. (1000AF)
GRANDE RONDE at Troy (1)	JUN-JUL	294	384	425	91	466	555	466
	JUN-SEP	353	461	510	90	559	667	564
CLEARWATER at Spalding (1,2)	JUN-JUL	2200	2990	3350	113	3710	4500	2959
	JUN-SEP	2560	3410	3800	113	4190	5040	3374
SNAKE blw Lower Granite Dam (1,2)	JUN-JUL	6453	7565	8070	83	8575	9690	9678
	JUN-SEP	8147	9559	10200	82	10840	12250	12390
LOWER SNAF	E RIVER BASI	 :N		 ====================================	LOV	VER SNAKE RIVE	R BASIN	

	LOWER S Reservoir Storage (NAKE RIVER BAS: 1000 AF) - End				R SNAKE RIVER BA wpack Analysis -		003
Reservoir		Usable Capacity	ble Storag Last Year	ge *** Avg	Watershed	Number of Data Sites	This Yea: ======= Last Yr	r as % of ======= Average
=======	.============		 		LOWER SNAKE, GRANI	E RONDE 8	67	94

^{* 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual volume will exceed the volumes in the table.

The average is computed for the 1971-2000 base period.

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.
(2) - The value is natural volume - actual volume may be affected by upstream water management.

Cowlitz - Lewis River Basins

*Based on selected stations

Forecasts for June – September streamflows within the basin are Lewis River at Ariel, 85% and Cowlitz River at Castle Rock, 76% of average. May average streamflow for Cowlitz River was 70% and 72% for Lewis River. The Columbia River at The Dalles was 77% of average. May precipitation was 58% of average and the water-year average was 91%. June 1 snow cover for Cowlitz River was 76%, and Lewis River was 65% of average. Average temperatures were near normal during May and have averaged 1 degree above throughout the water year.

Cowlitz - Lewis River Basins

Streamflow Forecasts - June 1, 2003

=======================================			 Drier ====	== Future Co	onditions ==	===== Wetter	=====>>	
Forecast Point	Forecast Period	======= 90% (1000AF)	70% (1000AF)	50% (Most (1000AF)	Probable) (% AVG.)	30% (1000AF)	10% (1000AF)	30-Yr Avg. (1000AF)
LEWIS at Ariel (2)	JUN-JUL JUN-SEP	209 324	251 375	280 410	83 85	309 445	351 496	338 483
COWLITZ R. bl Mayfield Dam (2)	JUN-SEP	9.0	424	740	79	1056	1520	938
COWLITZ R. at Castle Rock (2)	JUN-SEP	36	557	960	76	1363	1957	1259
KLICKITAT near Glenwood	JUN-JUN JUN-SEP	25 48	31 58	35 65	80 83	39 72	45 82	44 78
COLUMBIA R. at The Dalles (2)	JUN-SEP JUN-JUL	36345 26544	43166 32234	47800 36100	80	52430 39970	59250 45660	59652 45431
COWLITZ - Li Reservoir Storage (10	EWIS RIVER BAS					Z - LEWIS RIV Owpack Analys		., 2003
Reservoir	Usable Capacity	*** Usabl This	e Storage ** Last	* Water	shed	======================================		Year as % of

Reservoir	Usable Capacity	*** Usable Stor This Last Year Year		e *** Avg	Watershed	Number of Data Sites		r as % of ======= Average
	=======================================			======	LEWIS RIVER	4	26	65
					COWLITZ RIVER	5	54	76

^{* 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual volume will exceed the volumes in the table.

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.
(2) - The value is natural volume - actual volume may be affected by upstream water management.

White - Green River Basins

*Based on selected stations

Summer runoff is forecast to be 86% of normal for the Green River below Howard Hanson Dam and 88% for the White River near Buckley. June 1 snowpack was 120% of average in both White River and Puyallup River basins and 61% in Green River Basin. Water content on June 1 at Corral Pass SNOTEL, at an elevation of 6,000 feet, was 25.2 inches. This site has a June 1 average of 23.1 inches. May precipitation was 65% of average, bringing the water year-to-date to 84% of average for the basins. Average temperatures in the area were 1 degree below normal last month and near normal for the water-year.

White - Green - Puyallup River Basins

Streamflow Forecasts - June 1, 2003

		<<======	Drier ====	== Future C	onditions =	===== Wetter	====>>	
Forecast Point	Forecast Period	90% (1000AF)	70% (1000AF)	Chance Of : 50% (Most (1000AF)	Exceeding * Probable) (% AVG.)	30% (1000AF)	10% (1000AF)	30-Yr Avg. (1000AF)
WHITE near Buckley (1,2)	JUN-JUL	141	175	190	86	205	239	220
	JUN-SEP	212	255	275	88	295	338	313
GREEN below Howard Hanson (1,2)	JUN-JUL	33	53	62	85	71	91	73
	JUN-SEP	52	75	85	86	96	119	99

	- GREEN - PUYALLUP RIVE corage (1000 AF) - End				WHITE - GRE Watershed Snow			
Reservoir	Usable Capacity	*** Usa This Year	ble Storage Last Year	*** Avg	Watershed	Number of Data Sites		ar as % of
	.======================================		========	=====	WHITE RIVER	2	98	120
					GREEN RIVER	2	10	61
					PUYALLUP RIVER	2	98	120

^{* 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual volume will exceed the volumes in the table.

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.
(2) - The value is natural volume - actual volume may be affected by upstream water management.

Central Puget Sound River Basins

*Based on selected stations

Forecast for spring and summer flows are: 88% for Cedar River near Cedar Falls; 90% for Rex River; 94% for South Fork of the Tolt River; and 86% for Cedar River at Cedar Falls. Basin-wide precipitation for May was 65% of average, bringing water-year-to-date to 84% of average. June 1 snow cover in Cedar River Basin was all melted out. The Tolt River Basin was 39% of average; Snoqualmie River Basin was 53%, and Skykomish River Basin was 40%. Olallie Meadows SNOTEL site at 3960 feet, had 18.9 inches of water content. Average June 1 water content is 31.8 inches at Olallie Meadows. May temperatures were 1 degree below average for the past month and 1 degree above normal for the water-year.

Central Puget Sound River Basins

Streamflow Forecasts - June 1, 2003

		<<=====	Drier ====	== Future Co	onditions ==	===== Wetter	====>>	
Forecast Point	Forecast Period	90% (1000AF)	70% (1000AF)	= Chance Of E 50% (Most (1000AF)		30% (1000AF)	10% (1000AF)	30-Yr Avg. (1000AF)
CEDAR near Cedar Falls	JUN-JUL	13.2	19.6	24	89	28	35	27
	JUN-SEP	16.8	25	30	88	35	43	34
REX near Cedar Falls	JUN-JUL	2.52	5.43	7.40	90	9.37	12.28	8.20
	JUN-SEP	3.7	7.3	9.7	90	12.1	15.7	10.8
CEDAR RIVER at Cedar Falls	JUN-JUL	7.1	11.8	15.0	82	18.2	23	18.2
	JUN-SEP	10.1	13.0	15.0	86	17.0	19.9	17.5
COUTH FORK TOLT near Index	JUN-JUL JUN-SEP	3.81 5.99	4.82	5.50 7.80	90 94	6.18 8.53	7.19 9.61	6.10 8.30

CENTRAL PUGET SOUND RIVER BASINS Reservoir Storage (1000 AF) - End of May			CENTRAL PUGET SOUND RIVER BASINS Watershed Snowpack Analysis - June 1, 2003				
Usable Capacity	*** Usa This Year	ble Storag Last Year	e *** Avg	Watershed	Number of Data Sites		ar as % of Average
		=======		CEDAR RIVER	4	0	0
				TOLT RIVER	2	17	39
				SNOQUALMIE RIVER	4	26	53
				SKYKOMISH RIVER	2	23	40
	rage (1000 AF) - End 	rage (1000 AF) - End of May 	rage (1000 AF) - End of May Usable *** Usable Storage Capacity This Last	rage (1000 AF) - End of May Usable *** Usable Storage *** Capacity This Last	Usable *** Usable Storage *** Capacity This Last Watershed Year Year Avg CEDAR RIVER TOLT RIVER SNOQUALMIE RIVER	Usable	Usable *** Usable Storage *** Capacity This Last Watershed Snowpack Analysis - June 1, 2 Year Year Avg

^{* 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual volume will exceed the volumes in the table.

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.
(2) - The value is natural volume - actual volume may be affected by upstream water management.

North Puget Sound River Basins

*Based on selected stations

Forecast for Skagit River streamflow at Newhalem is 87% of average for the spring and summer period. May streamflow in Skagit River was 73% of average. Other forecast points included Baker River at 85% and Thunder Creek at 90% of average. Basin-wide precipitation for May was 60% of average, bringing water-year-to-date to 85% of average. June 1 average snow cover in Skagit River Basin was 87% and Baker River Basin was 80%. Rainy Pass SNOTEL, at 4,780 feet, had 19.6 inches of water content. Average June 1 water content is 24.3 inches at Rainy Pass. June 1 Skagit River reservoir storage was 115% of average and 85% of capacity. Average May temperatures were 1 degree below normal for the basin and 1 degree above average for the water year.

North Puget Sound River Basins

Streamflow Forecasts - June 1, 2003

		<======	Drier ====	=== Future Co	onditions ==	===== Wetter	=====>>	
Forecast Point	Forecast Period	====== 90% (1000AF)	70% (1000AF)	== Chance Of I 50% (Most (1000AF)		======================================	10% (1000AF)	30-Yr Avg. (1000AF)
THUNDER CREEK near Newhalem	JUN-JUL JUN-SEP	118 201	131 218	140	89 90	149 242	162 259	158 257
SKAGIT at Newhalem (2)	JUN-JUL JUN-SEP	757 1043	851 1149	915 1220	87 87	979 1291	1073 1397	1054 1407
BAKER RIVER near Concrete	JUN-JUL JUN-SEP	343 558	371 574	390	84 85	409 596	437 612	465 687

NORTI Reservoir Sto	NORTH PUGET SOUND RIVER BASINS Watershed Snowpack Analysis - June 1, 2003							
Reservoir	Usable Capacity		able Stora Last Year	age *** Avg	Watershed	Number of Data Sites		ar as % of Average
ROSS	1404.1	1188.8	834.5	1031.4	SKAGIT RIVER	2	. 57	87
DIABLO RESERVOIR		NO REPO	ORT		BAKER RIVER	0	61	0
GORGE RESERVOIR		NO REPO	ORT		NOOKSACK RIVER	1	10	0

^{* 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual volume will exceed the volumes in the table.

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.(2) - The value is natural volume - actual volume may be affected by upstream water management.

Olympic Peninsula River Basins

*Based on selected stations

Forecasted average runoff for streamflow for both the Dungeness River and Elwha River basins is 87%. Big Quilcene River should expect slightly below average runoff this summer also. May precipitation was 60% of average. Precipitation has accumulated at 93% of average for the water year. May precipitation at Quillayute was one-half of normal at 0.57 inches. The thirty-year average for May is 1.09 inches. Mt. Crag SNOTEL, on the East slope, reported 51% of average snow water content on June 1. Temperatures were 1-2 degrees below average for the month and near normal for the water year.

Olympic Peninsula River Basins

<<===== Drier ===== Future Conditions ====== Wetter ====>> Forecast Point Forecast ======= Chance Of Exceeding * 30-Yr Avg. Period 90% 70% 50% (Most Probable) 30% 10% (1000AF) (% AVG.) (1000AF) (1000AF) (1000AF) (1000AF) (1000AF) ------DUNGENESS near Sequim 74 86 JUN-SEP 81 87 91 98 99 71 TITE-MIT. 53 61 86 64 58 69 ELWHA near Port Angeles 230 251 265 279 300 JUN-SEP 306 195 88 JUN-JUL 168 184 222 222 OLYMPIC PENINSULA RIVER BASINS OLYMPIC PENINSULA RIVER BASINS Reservoir Storage (1000 AF) - End of May Watershed Snowpack Analysis - June 1, 2003

Streamflow Forecasts - June 1, 2003

Usable Capacity			Number	This Year as % of			
capacity	Year	Year	Avg	Waddibilea	Data Sites	Last Yr	Average
		=======		OLYMPIC PENINSULA	1	20	51
				ELWHA RIVER	0	0	0
				MORSE CREEK	o	0	0
				DUNGENESS RIVER	0	0	0
				QUILCENE RIVER	1	20	51
				WYNOOCHEE RIVER	0	0	0
	Usable Capacity 	Capacity This	Capacity This Last	Capacity This Last	Capacity This Last Watershed Year Year Avg OLYMPIC PENINSULA ELWHA RIVER MORSE CREEK DUNGENESS RIVER QUILCENE RIVER	Capacity This Last Year Avg Watershed of Data Sites OLYMPIC PENINSULA 1 ELWHA RIVER 0 MORSE CREEK 0 DUNGENESS RIVER 0 QUILCENE RIVER 1	Capacity This Last Year Avg Data Sites Last Yr OLYMPIC PENINSULA 1 20 ELWHA RIVER 0 0 MORSE CREEK 0 0 DUNGENESS RIVER 0 0 QUILCENE RIVER 1 20

^{* 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual volume will exceed the volumes in the table.

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.

^{(2) -} The value is natural volume - actual volume may be affected by upstream water management.

GLACIER PAGE 2003

North Cascades National Park Glacier Monitoring Program

The National Park Service began monitoring glaciers in North Cascades National Park in 1993 and Mount Rainier glaciers in 2002 (see the Mount Rainier Glacier Page). Goals for this program and additional data can be found at North Cascades National Park home page at http://www.nps.gov/noca/massbalance.htm or contact Jon_Riedel@nps.gov or Rob Burrows@nps.gov.

The four glaciers monitored are located at the headwaters of four watersheds, each with large hydroelectric operations (Figure 1). The glaciers represent a range in elevation from 8800 to 5600 feet, and a range in climatic conditions from maritime to continental. Methods include three visits annually to each glacier to measure winter accumulation and summer melt. Measurements are taken at a series of points down the centerline of each glacier (Table 1), then integrated across the entire glacier surface to determine mass balance for the entire glacier. Glaciers east of the hydrologic crest of the park (Silver and Sandalee) have recently had more positive mass balances than the west-side glaciers (Noisy, North Klawatti, South Cascade) due to their higher elevations, and north aspects (Figure 2). In addition to the accumulation

Figure 1. Glaciers monitored in North Cascades N.P.S. Complex.

Table 1.		Average	2003	2003
	Elevation	Accumulation	Accumulation	Percent of
Glacier:	(feet)	(inches W.E.)	(inches W.E.)	Average
Noisy	Entire Glacier	129	119	93
Creek	6061	132	143	108
Density=	6038	135	130	96
0.50	5900	125	109	87
@ 5900 ft	5760	116	103	89
5/13/03	5630	116	104	90
Silver	Entire Glacier	97	73	76
Density=	8550	120	90*	75*
0.41	8050	103	72	70
@ 7544 ft	7544	121	74*	61*
5/13/03	7050	65	61	94
N.Klawatti	Entire Glacier	120	100	83
Density=	7665	125	103	83
0.47@7700	7300	127	104	82
0.51@6080	6900	127	103	81
5/19/03	6390	109	91	84
	6080	99	88	88
Sandalee	Entire Glacier	125	91	73
Density=	7360	117	86	73
0.45	7157	131	88	67
@ 7157 ft	6900	118	88	75
5/15/03	6780	139	97	70

and ablation measurements each glacier was remapped in 2002 to quantify terminus and surface elevation changes. A 10-year data summary will be published this year.

Table 1 presents this spring's provisional winter accumulation data, along with average values and percent of the 11-year average. The 2003 snow depths were measured between May 9 and 19 on the four glaciers. Ice layers and cold temperatures within the snowpack made probing difficult on the upper Silver Glacier. These data are extremely tentative (marked with *) and will be revised after a July visit. We measured snow densities at the midpoint of three glaciers and at the top and bottom of N. Klawatti. Densities are in fraction of water density.

Estimates of glacial contribution to runoff for three watersheds are based on the mass balance measurements and GIS analyses to determine glacier area within 165 ft elevation bands (Table 2). Glaciers reduce the variation of flow in these watersheds by providing meltwater from ice in dry/warm years, and by storing water in wet/cool years. Glacial contribution to streamflow in these watersheds varies by as much as 100% annually. Magnitude of glacial contribution to streamflow is large, but varies by the amount of glacial cover in each watershed. Thunder Creek is 13% glacierized, while Baker River and Stehekin River are 6% and 3% glacierized, respectively (Post and others, 1971; Granshaw, 2002).

Relative importance of glacial contribution to streamflow increases from west to east. For example, glaciers annually contribute a higher percentage of meltwater to streamflow in the Stehekin watershed than in the Baker, despite the fact that the Baker is more glaciated. This is due to lower snowfall east of the hydrologic crest of the North Cascades. In this below average accumulation year we anticipate that glacier contribution to summer runoff will be above average, particularly because of below average snowpack at elevations below the glaciers.

	Mean	Range	of Glacial	Percen	t Glacial	
	Glacial	Ru	noff	Runoff to Total		
	Runoff			Summe	er Runoff	
		Minimum	Maximum	Minimum	Maximum	
Noisy Creek Glacier	1.4	1.1	1.9			
Baker River Watershed	66	48	94	5	12	
North Klawatti Glacier	3.9	2.8	4.8			
Thunder Creek Watershed	105	76	159	22	45	
Sandalee Glacier	0.5	0.4	0.6			
Stehekin River Watershed	70	50	106	6	16	
Silver Glacier	0.9	0.7	1.0			
Ross Lake Watershed	64	46	96	N/A	N/A	

Table 2. Glacial contribution to summer stream flow (May 1 to Sept. 30) for three watersheds. Runoff units are thousands of acre-feet. Data from 1993-2002 except the Sandalee Glacier and Stehekin River Watershed (1995-2002).

MOUNT RAINIER GLACIER PAGE 2003

This year the National Park Service continues to collect data and develop methods for monitoring mass balance annually on Mount Rainier glaciers. This program is a cooperative venture between Mount Rainier National Park, the US Geological Survey, and North Cascades National Park. The program includes field measurements on Nisqually Glacier and Emmons Glacier, annual air photography, and 10-year remapping of the glaciers below 10,000 feet.

Between April 1 and May 1 we measured bulk density of the snowpack, probed snow depths, and placed ablation stakes on the lower Nisqually (April 22 & 23) and Emmons (April 1, May 1) glaciers below 10,000 feet. Accumulation on the south side of the mountain (Muir Snowfield and Nisqually Glacier) shows an increasing trend with elevation to ~7400 feet and decreasing trend above (Table 1). A similar trend may exist on the Emmons this year but data gaps prevent definite conclusions. Maximum accumulation most likely occurred in mid/late May, later than the measurement dates. Nearby SNOTEL sites (Morse Lake, Corral Pass, and Paradise) indicate that snow water equivalent increased by 3-7 inches during this interim period, perhaps slightly more on the glaciers. Ablation stakes were placed at 7400 and 6150 feet on Nisqually Glacier, at 9920 and 9170 feet on the Muir Snowfield, and at 9450, 8990, 6360, and 5750 feet on Emmons Glacier. We will return in mid June to check ablation and

Figure 1. Glacier cover of Mount Rainier, monitored glaciers, and measurement locations on Muir Snowfield, Emmons, and Nisqually Glaciers

place an additional stake near the terminus of each glacier. In addition we will probe snow depth higher on the mountain. On a fall visit (late September/early October) we will record final ablation measurements from the stakes. Last year over 23 feet (275 inches) water equivalent of surface melt occurred on the lower glaciers!

For more information contact Jon_Riedel @nps.gov or Rob_Burrows@nps.gov

Table 1	Elevation	Accumulation	Std Dev.	N
	feet	inches w.e.	inches w.e.	
	9450	56	14	11
	8990	53	7	13
	6360	63	11	11
Emmons	6050	60	12	11
Glacier	5820	50	18	11
	5750	59	7	11
	5610	52	31	10
	5050	24	10	8
	9920	71	2	10
	9170	90	8	4
Muir	7400	125	13	9
Snowfield	6190	108	6	9
and	6185	115	14	10
Nisqually	6150	106	8	11
Glacier	6150	100	12	10
	5740	109	24	11
	5180	68	22	12
	5120	59	Paradise SNOT	ΓEL

Table 1. Accumulation on Mount Rainier Glaciers, Spring 2003. Determined from probing snow depth on each elevation contour at "N" points. Standard deviation represents the variation in snow depths from changes in the underlying ice surface topography and wind drifting.

Table 2 Glacier	Snow Density	Altitude (ft)	Snow Depth (inches)	Date
Emmons	0.45	6360	63	4/1/03
Emmons	0.35	9450	56	5/1/03
Nisqually	0.46	7380	125	4/22/03

Table 2. Snow density was measured at three different points at three different times on Mt. Rainier this spring. Although the density was measured a month apart on the upper and lower Emmons Glacier we believe this represents the density at near maximum snow accumulation at each point.

Issued by

Released by

Bruce Knight

Chief

Natural Resources Conservation Service

U.S. Department of Agriculture

R.L. "Gus" Hughbanks State Conservationist

Natural Resources Conservation Service

Spokane, Washington

The Following Organizations Cooperate with the Natural Resources Conservation Service in Snow Survey Work*:

Canada Ministry of Sustainable Resources

Snow Survey, River Forecast Centre, Victoria, British Columbia

State Washington State Department of Ecology

Washington State Department of Natural Resources

Federal Department of the Army

Corps of Engineers

U.S. Department of Agriculture

Forest Service

U.S. Department of Commerce

NOAA, National Weather Service

U.S. Department of Interior

Bonneville Power Administration

Bureau of Reclamation Geological Survey National Park Service Bureau of Indian Affairs

Local City of Tacoma

City of Seattle

Chelan County P.U.D.

Pacific Power and Light Company

Puget Sound Power and Light Company
Washington Water Power Company

Washington Water Power Company

Snohomish County P.U.D. Colville Confederated Tribes

Spokane County Yakama Indian Nation Whatcom County Pierce County

Private Okanogan Irrigation District

Wenatchee Heights Irrigation District Newman Lake Homeowners Association

Whitestone Reclamation District

Washington Snow Survey Office 2021 E. College Way, Suite 214 Mount Vernon, WA 98273-2873

FOR OFFICIAL USE ONLY

J. S. DEPT. OF AGRICULTURE VATIONAL AGRICUL. LIBRARY CURRENT SERIAL RECORDS ROOM 002 3ELTSVILLE, MD 20705-2351

Washington Water Supply Outlook Report

Natural Resources Conservation Service Spokane, WA

