

디지털논리회로 [Digital Logic Circuits]

2 강.

논리게이트와 부울대수 (1)

컴퓨터과학과 강지훈교수

제3장 | 논리게이트와 부울대수

학습 목차 2 강

01 논리 연산

- 논리연산의 개요
- 논리집합과 논리연산

02 논리게이트

- 기본 논리게이트
- NAND 게이트와 NOR 게이트
- XOR 게이트와 XNOR 게이트

부울대수

- 부울대수의 개요
- 기본 공식
- 부울함수의 대수적 간소화
- 부울함수의 보수

지3장. 논리게이트와 부울대수

3.1 논리연산과 논리게이트

3.1.1 논리연산

• 2진 디지털 시스템에서 입출력 관계를 표현하는 방법

• 그래프와 진리표(Truth Table)

입력	출력
Χ	F
0	1
1	0

• 논리 함수

- 입력에 따라 출력이 어떻게 변하는가를 나타내는 함수로 표현
- $F = \overline{X}$, F = XY 등 논리 함수를 통해 나타냄

3.1.1 논리연산

- 논리연산(부울 연산)
 - 부울 대수(Boolean Algebra)에 기반하여 참(True) 또는 거짓(False)을 처리하는 연산
 - 두 개의 이산값인 O과 1에 적용되는 연산
- 논리집합(부울 집합)
 - O(거짓)과 1(참)로만 구성된 집합 {O, 1}
- 논리 집합 {O, 1} 에 대한 논리 연산
 - 0과 1을 입력으로 받아 규칙에 따라 특정 값을 출력함
 - AND, OR, NOT 등의 논리 연산이 존재함

[3.1.2] 논리 게이트

- 논리회로란 입력 신호의 논리 연산을 통해 출력 신호를 생성하는 회로
- · 입력 및 출력 신호는 0 또는 1과 같이 2진 신호를 사용함
- 컴퓨터에서는 여러가지 논리회로를 조합하여 산술 연산과 같은 복잡한 연산을 수행함
- 논리회로는 여러 논리게이트를 조합하여 구성

- AND 게이트 논리곱(Conjunction)
 - 모든 입력이 1(참)이면 1(참)을 출력

$$F = X \cdot Y$$
$$F = XY$$

입력		출력
X	Y	F
0	0	0
0	1	0
1	0	0
1	1	1

- OR 게이트 논리합(Disjunction)
 - 입력 중 하나라도 1(참)이면 1(참)을 출력

$$F = X + Y$$

입력		출력
X	Y	F
0	0	0
0	1	1
1	0	1
1	1	1

- NOT 게이트 부정(Negation)
 - 입력을 반전(부정)하여 출력

r.		$\overline{oldsymbol{v}}$
ť	=	Χ

입력	출력
X	F
0	1
1	0

• NAND 게이트 - NOT AND

• AND 게이트의 결과를 반전(부정)하여 출력

$$F = \overline{X \cdot Y}$$
$$F = \overline{XY}$$

입력		출력
X	Y	F
0	0	1
0	1	1
1	0	1
1	1	0

- NOR 게이트 NOT OR
 - OR 게이트의 결과를 반전(부정)하여 출력

$$F = \overline{X + Y}$$

입력		출력
X	Y	F
0	0	1
0	1	0
1	0	0
1	1	0

- XOR 게이트 배타적 논리합(Exclusive OR)
 - 입력이 서로 다를 때만 1(참)을 출력
 - 논리적으로 서로 다른 것을 선택하는 연산

$$F = X \oplus Y$$

입력		출력
X	Y	F
0	0	0
0	1	1
1	0	1
1	1	0

• XNOR 게이트 - Exclusive NOR

- XOR 게이트의 결과를 반전(부정)하여 출력
- 논리적으로 서로 같은 것을 선택하는 연산

$$F = \overline{X \oplus Y}$$

입력		출력
X	Y	F
0	0	1
0	1	0
1	0	0
1	1	1

• 논리합(OR)과 배타적 논리합(XOR)

💙 둘 중 하나라도 참이라면 OK

•입력이 서로 다를 때만 참

서로 배타적일 때만 OK

3.2 부울대수

- 부울대수(Boolean Algebra)
 - 0과 1의 값을 갖는 논리변수와 논리연산을 다루는 대수
 - 이진 논리(binary logic)를 기반으로 한 수학적 체계
 - 모든 값을 참(1)과 거짓(0)으로 나타내며, 이를 논리 연산으로 조작하는 이론

특징	내용
값의 범위	각 변수 및 표현식이 0 또는 1의 값을 가짐
논리 연산	AND, OR 등의 논리 연산자에 의해 정의됨
이진 논리	0과 1 두개의 값만 처리하여 이진수와 직접적 연관이 있음

- 부울함수(Boolean Function)
 - 부울대수를 기반으로 입력 값의 조합에 따라 참 또는 거짓을 출력하는 함수
 - 하나 이상의 부울연산 조합으로 구성
 - 논리 변수의 상호 관계를 나타내기 위한 대수적 표현
 - 부울변수(O or 1), 부울연산기호, 괄호, 등호 등으로 나타냄

특징	내용
입력	하나 이상의 부울변수, 각 변수는 0 또는 1의 값을 가짐
출력	논리 연산에 따라 결정, 항상 0 또는 1 중 하나
논리 연산	AND, OR 등의 논리 연산을 사용해 표현

부울함수의 예시: $F = X \cdot \overline{Y} + X \cdot Y \cdot Z + \overline{X} \cdot Y \cdot Z$

• 부울함수와 논리회로도

• 부울함수는 논리 게이트로 구성되는 논리회로도로 작성할 수 있음

$$F = X \cdot \overline{Y} + X \cdot Y \cdot Z + \overline{X} \cdot Y \cdot Z$$
의 논리회로도

• 부울함수에 따른 논리회로의 작동 흐름

$$F = X \cdot \overline{Y} + X \cdot Y \cdot Z + \overline{X} \cdot Y \cdot Z$$
$$= (X \cdot \overline{Y}) + (X \cdot Y \cdot Z) + (\overline{X} \cdot Y \cdot Z)$$

우선순위	논리연산	
1	() 괄호	
2	NOT	
3	AND, NAND	
4	OR, NOR	
5	XOR, XNOR	

• 부울함수와 진리표

$$F = X \cdot \overline{Y} + X \cdot Y \cdot Z + \overline{X} \cdot Y \cdot Z$$

부울함수 $F = X \cdot \overline{Y} + X \cdot Y \cdot Z + \overline{X} \cdot Y \cdot Z$ 의 진리표

입력	X	0	0	0	0	1	1	1	1
	Y	0	0	1	1	0	0	1	1
	Z	0	1	0	1	0	1	0	1
출력	F	0	0	0	1	1	1	0	1

- 부울함수와 진리표와의 관계
 - 어떠한 부울함수에 대한 진리표는 하나
 - 부울함수의 형태에 따라 여러 부울함수가 동일한 진리표를 공유할 수 있음
 - 따라서, 단일 진리표에 대한 논리회로도는 여러 개가 될 수 있음

• 부울함수와 진리표와의 관계

- 부울함수를 구성하는 부울연산과 부울변수의 개수는 게이트 및 각 게이트의 입력 개수와 직접적인 관계가 있음
 - 동일한 결과를 출력하는데 게이트와 입력의 수가 많아질 수록 복잡 해지며, 비효율적
 - 비용도 증가하고, 물리적인 면적을 더 많이 사용
- 부울함수가 간단해질 수록 논리게이트의 복잡도는 낮아짐
- 이에 따라, 부울함수의 간소화가 필수적임

• 부울함수의 간소화 필요성

$$F = X \cdot \overline{Y} + X \cdot Y \cdot Z + \overline{X} \cdot Y \cdot Z$$

$$= X \cdot \overline{Y} + Y \cdot Z$$

• 부울함수의 간소화 방법

- 대수적인 방법
- 도표를 이용한 방법
- 테이블을 이용한 방법

3.2.2 기본공식

• 부울대수의 기본 공식

$$X + 0 = X$$

$$X \cdot 1 = X$$

$$X + 1 = 1$$

$$X \cdot 0 = 0$$

$$X + X = X$$

$$X \cdot X = X$$

$$X + \bar{X} = 1$$

$$X \cdot \bar{X} = 0$$

$$\bar{\bar{X}} = X$$

• 부울대수의 기본 공식

$$X + Y = Y + X$$
 $X \cdot Y = Y \cdot X$ 교환법칙

$$X \cdot Y = Y \cdot X$$

$$X + (Y + Z) = (X + Y) + Z$$
 $X \cdot (Y \cdot Z) = (X \cdot Y) \cdot Z$ 결합법칙

$$X \cdot (Y \cdot Z) = (X \cdot Y) \cdot Z$$

$$X \cdot (Y + Z) = X \cdot Y + X \cdot Z$$

$$X \cdot (Y + Z) = X \cdot Y + X \cdot Z$$
 $X + Y \cdot Z = (X + Y) \cdot (X + Z)$ 분배법칙

$$\overline{X+Y} = \overline{X} \cdot \overline{Y}$$

$$\overline{X \cdot Y} = \overline{X} + \overline{Y}$$

 $\overline{X \cdot Y} = \overline{X} + \overline{Y}$ 드모르간의 법칙

$$X + X \cdot Y = X$$

$$X \cdot (X + Y) = X$$
 흡수정리

- 부울대수의 쌍대성 원리(principle of duality)
 - 어떤 식이 성립하면, 그것의 쌍대(Dual) 형태도 항상 성립하는 원리
 - 특정 변환을 적용해도 동일한 연산 성질이 유지되는 것
 - 논리학에서 OR과 AND, 참(1)과 거짓(0)을 바꿔도 연산 성질이 성립됨

$$X + 0 = X \longleftrightarrow X \cdot 1 = X$$

• 쌍대형태

$$X + 0 = X$$

$$X + 1 = 1$$

$$X + X = X$$

$$X + X = X$$

$$X + X = X$$

$$X + X = 0$$

$$X + Y = Y + X$$

$$X + Y = Y + X$$

$$X + (Y + Z) = (X + Y) + Z$$

$$X \cdot (Y \cdot Z) = (X \cdot Y) \cdot Z$$

$$X \cdot (Y + Z) = X \cdot Y + X \cdot Z$$

$$X + Y \cdot Z = (X + Y) \cdot (X + Z)$$

$$\overline{X + Y} = \overline{X} \cdot \overline{Y}$$

$$X \cdot (X + Y) = X$$

3.2.3 부물함수의 대수적 간소화

• 항 결합

$$F = X \cdot \overline{Y} + X \cdot Y \cdot Z + \overline{X} \cdot Y \cdot Z$$

$$= X\overline{Y} + (X + \overline{X})YZ$$

$$= X\overline{Y} + 1 \cdot YZ$$

$$= X\overline{Y} + YZ$$

•문자 소거

$$X + \overline{X}Y = (X + \overline{X})(X + Y) = 1 \cdot (X + Y) = X + Y$$
$$X(\overline{X} + Y) = X\overline{X} + XY = 0 + XY = XY$$

3.2.3 부물함수의 대수적 간소화

• 간소화 예시

$$F = (X + XY + Y)(X + \overline{X}YZ)$$

$$= ((X + XY) + Y)(X + \overline{X}YZ)$$

$$= (X + Y)(X + \overline{X}YZ)$$

$$= (X + Y)(X + \overline{X})(X + YZ)$$

$$= (X + Y)(X + YZ)$$

$$= (X + Y)(X + YZ)$$

$$= X + YYZ + XY + YYZ$$

$$= X + XY + YYZ$$

$$= X + YZ$$

3.2.4 부물함수의 보수

• 부울함수 F의 보수는 \overline{F}

$$F = \overline{X}Y\overline{Z} + \overline{X}\overline{Y}Z$$

$$\overline{F} = \overline{(\overline{X}Y\overline{Z} + \overline{X}\overline{Y}Z)} = \overline{\overline{X}Y\overline{Z}} \cdot \overline{\overline{X}}\overline{Y}Z$$

$$= (X + \overline{Y} + Z) \cdot (X + Y + \overline{Z})$$

• 쌍대성을 활용

$$F$$
의 쌍대: $(\bar{X} + Y + \bar{Z}) \cdot (\bar{X} + \bar{Y} + Z)$

$$\bar{F} = (X + \bar{Y} + Z) \cdot (X + Y + \bar{Z})$$
 각 변수의 보수화

Summary

2강 | 논리게이트와 부울대수 (1)

디 지 털 + 논리회로

- 01 논리연산과 논리게이트
- 02 부울대수
- 03 부울함수와 논리회로도
- 04 부울함수의 간소화

디지털놀리회로 [Digital Logic Circuits]

3강 논리게이트와 부율대수 (2)

