6.2 EM algorithm for noisy-OR

Consider the belief network on the right, with binary random variables $X \in \{0, 1\}^n$ and $Y \in \{0, 1\}$ and a noisy-OR conditional probability table (CPT). The noisy-OR CPT is given by:

$$P(Y = 1|X) = 1 - \prod_{i=1}^{n} (1 - p_i)^{X_i},$$

which is expressed in terms of the noisy-OR parameters $p_i \in [0, 1]$.

In this problem, you will derive and implement an EM algorithm for estimating the noisy-OR parameters p_i . It may seem that the EM algorithm is not suited to this problem, in which all the nodes are observed, and the CPT has a parameterized form. In fact, the EM algorithm can be applied, but first we must express the model in a different but equivalent form.

Consider the belief network shown to the right. In this network, a binary random variable $Z_i \in \{0, 1\}$ intercedes between each pair of nodes X_i and Y. Suppose that:

$$P(Z_i=1|X_i=0) = 0,$$

 $P(Z_i=1|X_i=1) = p_i.$

Also, let the node Y be *determined* by the logical-OR of Z_i . In other words:

$$P(Y\!=\!1|Z) \;=\; \left\{ \begin{array}{l} 1 \text{ if } Z_i\!=\!1 \text{ for any } i, \\ 0 \text{ if } Z_i\!=\!0 \text{ for all } i. \end{array} \right.$$

(a) Show that this "extended" belief network defines the same conditional distribution P(Y|X) as the original one. In particular, starting from

$$P(Y\!=\!1|X) \; = \! \sum_{Z \in \{0,1\}^n} \!\! P(Y\!=\!1,Z|X),$$

show that the right hand side of this equation reduces to the noisy-OR CPT with parameters p_i . To perform this marginalization, you will need to exploit various conditional independence relations.

perform this marginalization, you will need to exploit various conditional independence relations.

$$P(J=1|X) = \sum_{z \in Z_0,13^n} P(J=1|z|X) = \sum_{z \in Z_0,13^n} P(J=1|z|X) + \sum_{z \in Z_0,13$$

-~~~

1- # (1-P;)Xi

Since we have:
$$P(Y=1|Z) = \begin{cases} 1 \text{ if } Z_i = 1 \text{ for any } i, \\ 0 \text{ if } Z_i = 0 \text{ for all } i. \end{cases}$$
So we can write:
$$P(Y=1|Z) = |I-I_{i} I_{i} I_{i} - 2i)$$
So
$$P(Y=1|X) = \sum_{z \in I_{i} \setminus I_{i}} P(Z|X) = \sum_{z \in I_{i} \setminus I_{i}} (I-2i) P(Z|X)$$

$$\sum_{z \in I_{i} \setminus I_{i}} P(Z|X) - \sum_{z \in I_{i} \setminus I_{i}} P(Z|X) \prod_{z \in I_{i} \setminus I_{i}} P(Z|X)$$
Since Y of separates
$$P(Z|X) - \sum_{z \in I_{i} \setminus I_{i}} P(Z|X) \prod_{z \in I_{i} \setminus I_{i}} P(Z|X) \prod_{z \in I_{i} \setminus I_{i}} P(Z|X)$$

$$P(Z|X) - \sum_{z \in I_{i} \setminus I_{i}} P(Z|X) \prod_{z \in I_{i} \setminus I_{i}} P(Z|X) \prod_{z \in I_{i}}$$

Homework 6 Pag

(b) Consider estimating the noisy-OR parameters p_i to maximize the (conditional) likelihood of the observed data. The (normalized) log-likelihood in this case is given by:

$$\mathcal{L} = \frac{1}{T} \sum_{t=1}^{T} \log P(Y = y^{(t)} | X = \vec{x}^{(t)}),$$

3

where $(\vec{x}^{(t)}, y^{(t)})$ is the tth joint observation of X and Y, and where for convenience we have divided the overall log-likelihood by the number of examples T. From your result in part (a), it follows that we can estimate the parameters p_i in either the original network or the extended one (since in both networks they would be maximizing the same equation for the log-likelihood).

Notice that in the extended network, we can view X and Y as observed nodes and Z as hidden nodes. Thus in this network, we can use the EM algorithm to estimate each parameter p_i , which simply defines one row of the "look-up" CPT for the node Z_i .

Compute the posterior probability that appears in the E-step of this EM algorithm. In particular, for joint observations $x \in \{0, 1\}^n$ and $y \in \{0, 1\}$, use Bayes rule to show that:

And: The posterior probabilities:
$$P(Z_i=1,X_i=1|X=x,Y=y) = \frac{yx_ip_i}{1-\prod_j(1-p_j)^{x_j}}$$

$$P(X_i=x_i \mid Y=yt), X=x^{t}) = I(x_i,x_i^{t})$$

$$P(X_i=x_i \mid Y=yt), X=x^{t}) = I(y_i,y_t^{t})$$

$$P(X_i=x_i \mid Y=y_t^{t}), X=x^{t}) = I(y_i,y_t^{t})$$

$$P(X_i=x_i \mid Y=x_i^{t}) = I(y_i,y_t^{t})$$

$$P(X_i=x_i \mid Y=x_i^{t}) = I(y_i,y_t^{t})$$

$$P(X_i=x_i^{t}) = I(y_i,y_t^{t})$$

P(2=1/X=x) I(1,xi) P(Y=y/Zi=1,X=x) P(Y=4/x=x) Now f(y=1/z)=0 if all 2is=0 & f(y=1/z)=1 otherwise. $P(J=y|x=x, 2i=1) = {\begin{cases} 1 & \text{if } y=1 \\ 0 & \text{if } y=1 \end{cases}} = I(J,y) = y$ P(Zi= 1, Xi=1/Y=y, X=x) = yI(I, xi) P(X=y|X=x) Where P(1=4/x=x)=+th (J-Pi)xi (given) P(Zi=1, Xi=1 | Y=y, X=x) = yI(I, xi) P(Zi=1 | Xi=xi) 1- it (-1) % on 2; =2013, 21 = 2 y2; P(2i=1)Xi=xi)
1-17(1-Pi)xi $P(2i=1|Xi=xi) = \begin{cases} 0 & \text{if } x_i=0 \\ p_i & \text{if } x_i=1 \end{cases} = I(x_i, 1) p_i$ P(2i=1, xi=1) = y, x=x) = yxi xip; $\frac{1-in(1-p_i)x_i}{1-in(1-p_i)x_i} = \frac{yxip;}{x_i \in 10:13} = \frac{y$

I conditional indep from BN above

(c) For the data set $\{\vec{x}^{(t)}, y^{(t)}\}_{t=1}^T$, show that the EM update for the parameters p_i is given by:

$$p_i \; \leftarrow \; \frac{1}{T_i} \sum_{t} P\left(Z_i \! = \! 1, X_i \! = \! 1 | X \! = \! x^{(t)}, Y \! = \! y^{(t)}\right),$$

where T_i is the number of examples in which $X_i = 1$. (You should derive this update as a special case of the general form presented in lecture.)

from betwee, in Em update for nodes with

Powerits, we have: $P(x_i=x|Pa_i=\pi) \leftarrow \frac{2}{2}P(x_i=x_i, ta_i=\pi)v_i=v_j}$ We have, $P_i = P(2i=1|x_i=1)$, so the EM uplate for P_c is: $P(2i=1|x_i=1) = P(2i=1|x_i=v_j)$ $P(2i=1|x_i=v_j) = P(2i=1|x_i=v_j)$ $P(2i=1|x_i=v_j) = P(2i=1|x_i=v_j)$ $P(2i=1|x_i=v_j) = P(2i=1|x_i=v_j)$ $P(2i=1|x_i=v_j) = P(2i=1|x_i=v_j)$ Therefore $P(2i=1|x_i=v_j) = P(2i=1|x_i=v_j)$ The sum the samples = $P(2i=1|x_i=v_j)$ The sum the samples is the sum of the sum of the samples is the sum of the samples in the samples in the samples is the samples in the

(d) Download the data files on the course web site, and use the EM algorithm to estimate the parameters p_i . The data set¹ has T=267 examples over n=23 inputs. To check your solution, initialize all $p_i=0.05$ and perform 256 iterations of the EM algorithm. At each iteration, compute the log-likelihood shown in part (b). (If you have implemented the EM algorithm correctly, this log-likelihood will always increase from one iteration to the next.) Also compute the number of mistakes $M \leq T$ made by the model at each iteration; a mistake occurs either when $y_t=0$ and $P(y_t=1|\vec{x}_t) \geq 0.5$ (indicating a false positive) or when $y_t=1$ and $P(y_t=1|\vec{x}_t) \leq 0.5$ (indicating a false negative). The number of mistakes should generally decrease as the model is trained, though it is not guaranteed to do so at each iteration. Complete the following table:

iteration	number of mistakes M	\log -likelihood $\mathcal L$
0	175	-0.95809
1	56	
2		-0.40822
4		
8		
16		
32		
64	37	
128		
256		-0.31016

You may use the already completed entries of this table to check your work.

Ano: My completes table books like:

iteration	number of mistakes M	log-likelihood ${\cal L}$
0	175	-0.9580854082157914
1	56	-0.49591639407753635
2	43	-0.40822081705839114
4	42	-0.3646149825001877.
8	44	-0.34750061620878253
16	40	-0.33461704895854844
32	37	-0.32258140316749784
64	37	-0.3148266983628559
128	36	-0.3111558472151897
256	36	-0.310161353474076

(e) Turn in your source code. As always, you may program in the language of your choice.

Am: Please find the source code in the following:

¹For those interested, more information about this data set is available at http://archive.ics.uci.edu/ml/datasets/SPECT+Heart. However, be sure to use the data files provided on Canvas, as they have been specially assembled for this assignment.

Homework 6 Problem 2

November 5, 2022

1 Source Code and outputs for Problem 6.2(d)_Hw6_CSE 250A Fall 2022

```
[5]: import numpy as np
    import matplotlib.pyplot as plt
    import copy
    def intlistconvert(strlist): #function to convert a character list to an⊔
     ⇔integer list, if applicable
        intlist=[int(stringel) for stringel in strlist]
        return intlist
    ###########reading X.txt and Y.txt
     xdatalist=[]
    with open('x.txt') as f:
        for line in f:
            xdatalist.append(list(line.strip().replace(" ", "")))
                     # no. of trials
    T=len(xdatalist)
    xdatalist=[intlistconvert(el) for el in xdatalist]
    xdata=np.array(xdatalist) # first index here will store trial number and
     ⇒second index will store index 'i' of 'x i'
    n=len(xdata[0,:]) # no. of variables X_i s
    ydatalist=[]
    with open('y.txt') as f:
        for line in f:
            ydatalist.append(line.strip())
    ydatalist=intlistconvert(ydatalist)
    ydata=np.array(ydatalist)
    # forming the T_i s
    Tis=np.zeros(n, dtype=int)
```

```
for i in range(n):
   Tis[i]=np.count_nonzero(xdata[:,i]) # counts no. of nonzero (or 1) entries_
 \hookrightarrow for each X_i in the training data
######### start iterations for EM algorithm
 ################################### defining relevant functions for the iterations
def prod(t,problist):
   pro=1
   for i in range(n):
       pro=pro*np.power((1-problist[i]),xdata[t,i])
   return pro
def loglikelihood(problist):
   T.=()
   for t in range(T):
       pro=prod(t,problist)
       if ydata[t]==1:
           L=L+np.log(1-pro)
       else:
           L=L+np.log(pro)
   return L/T
def mistakes(problist):
   mist=0
   for t in range(T):
       pro=prod(t,problist)
       py1x=1-pro
       if (ydata[t]==0 \text{ and } py1x>=0.5) or (ydata[t]==1 \text{ and } py1x<=0.5):
           mist=mist+1
   return mist
# the main iteration for EM algorithm
Loglik=[] #stores log likelihood for each iteration
             # stores number of mistakes for each iteration
M = []
for itera in range(257):
   if itera==0:
       p=np.full(n, 0.05) # first array of probabilities p_is
   else:
       f=copy.deepcopy(p)
       for i in range(n):
           sum=0
           for t in range(T):
               sum=sum+(ydata[t]*xdata[t,i]*f[i])/(1-prod(t,f))
```

```
p[i]=sum/Tis[i]
    m=mistakes(p)
    logp=loglikelihood(p)
    if itera in [0,1,2,4,8,16,32,64,128,256]:
        print(f"For iteration {itera},")
        print(f"no. of mistakes is {m} and")
        print(f"(normalized)log likelihood is {logp}.\n\n")
              # creates the list of mistakes as iteration goes
    Loglik=Loglik+[logp] # creates the log likelihood (normalized) list as □
  ⇔iteration goes
For iteration 0,
no. of mistakes is 175 and
(normalized)log likelihood is -0.9580854082157914.
For iteration 1,
no. of mistakes is 56 and
(normalized)log likelihood is -0.49591639407753635.
For iteration 2,
no. of mistakes is 43 and
(normalized)log likelihood is -0.40822081705839114.
For iteration 4,
no. of mistakes is 42 and
(normalized)log likelihood is -0.3646149825001877.
For iteration 8,
no. of mistakes is 44 and
(normalized)log likelihood is -0.34750061620878253.
For iteration 16,
no. of mistakes is 40 and
(normalized)log likelihood is -0.33461704895854844.
For iteration 32,
no. of mistakes is 37 and
(normalized)log likelihood is -0.32258140316749784.
```

For iteration 64, no. of mistakes is 37 and (normalized)log likelihood is -0.3148266983628559. For iteration 128, no. of mistakes is 36 and (normalized)log likelihood is -0.3111558472151897. For iteration 256, no. of mistakes is 36 and (normalized)log likelihood is -0.310161353474076. [7]: print(f"the list of mistakes (with iterations) is: {M} \n\n") print(f"the list of normalized Log-likelihoods (with iterations) is: {Loglik}") the list of mistakes (with iterations) is: [175, 56, 43, 40, 42, 44, 44, 44, 44, 44, 42, 42, 41, 39, 39, 40, 40, 40, 39, 39, 39, 38, 38, 38, 38, 38, 38, 38, 36, 36, 36, 36, 36, 36, 36, 36] the list of normalized Log-likelihoods (with iterations) is: [-0.9580854082157914, -0.49591639407753635, -0.40822081705839114,-0.3779406836061008, -0.3646149825001877, -0.35757532996649616, -0.3531842166828877, -0.3500255657709249, -0.34750061620878253, -0.3453400990924291, -0.3434159529651389, -0.3416634501406622, -0.34004737198005874, -0.3385467585599132, -0.3371478191245712, -0.33584054521650464, -0.33461704895854844, -0.33347072395698485, -0.33239580702080124, -0.3313871394626801, -0.3304400301620283, -0.3295501719703101, -0.32871358703290604, -0.32792658843810424, -0.3271857515339723, -0.32648789127539796, -0.325830043534388,

-0.32520944914451916, -0.32462353991248716, -0.32406992609548135, -0.3235463850039954, -0.3230508504922716, -0.32258140316749784,

```
-0.3221362611969939, -0.321713771627242, -0.32131240215379475,
-0.3209307332995044, -0.32056745097177336, -0.32022133937891256,
-0.31989127429209774, -0.3195762166435478, -0.3192752064539766,
-0.3189873570835853, -0.318711849801137, -0.3184479286653898,
-0.31819489571249177, -0.3179521064420621, -0.3177189655937281,
-0.3174949232049489, -0.3172794709400749, -0.31707213867983924,
-0.31687249135984846, -0.3166801260461732, -0.31649466923581027,
-0.31631577436960484, -0.31614311954518837, -0.315976405417543,
-0.315815353275018, -0.3156597032788655, -0.31550921285474215,
-0.3153636552250264, -0.3152228180712771, -0.3150865023166463,
-0.3149545210186029, -0.3148266983628559, -0.31470286874992826,
-0.31458287596635803, -0.3144665724330886, -0.3143538185240861,
-0.3142444819487898, -0.31413843719245704, -0.3140355650089582,
-0.3139357519610217, -0.3138388900033446, -0.3137448761044012,
-0.3136536119031339, -0.3135650033970719, -0.31347896065874054,
-0.313395397577522, -0.3133142316243978, -0.3132353836372618,
-0.3131587776247182, -0.31308434058648726, -0.3130120023487362,
-0.3129416954128236, -0.312873354816102, -0.31280691800356786,
-0.3127423247092746, -0.3126795168465325, -0.3126184384060433,
-0.3125590353611786, -0.31250125557972824, -0.3124450487414865,
-0.31239036626114686, -0.3123371612159933, -0.3122853882779676,
-0.3122350036497119, -0.3121859650042474, -0.3121382314279689,
-0.312091763366685, -0.3120465225744507, -0.31200247206497295,
-0.31195957606538566, -0.31191779997222696, -0.3118771103094398,
-0.31183747468827366, -0.31179886176893457, -0.3117612412238927,
-0.3117245837027161, -0.31168886079835223, -0.31165404501476557,
-0.3116201097358512, -0.31158702919555464, -0.31155477844912954,
-0.3115233333454816, -0.3114926705005294, -0.31146276727155037,
-0.31143360173244494, -0.3114051526498949, -0.3113773994603619,
-0.3113503222478989, -0.311323901722733, -0.3112981192005923,
-0.31127295658274245, -0.31124839633671136, -0.3112244214776655,
-0.3112010155504241, -0.3111781626120766, -0.3111558472151897,
-0.31113405439157726, -0.311112769636615, -0.3110919788940804,
-0.311071668541499, -0.3110518253759788, -0.31103243660051827,
-0.31101348981077237, -0.31099497298225065, -0.31097687445795386,
-0.31095918293640706, -0.3109418874601061, -0.3109249774043339,
-0.31090844246635696, -0.31089227265498004, -0.3108764582804418,
-0.31086098994465666, -0.31084585853177255, -0.31083105519904464,
-0.31081657136801477, -0.31080239871598325, -0.31078852916776445,
-0.3107749548877154, -0.3107616682720315, -0.3107486619412973,
-0.310735928733289, -0.31072346169601117, -0.3107112540809679,
-0.3106992993366611, -0.3106875911022997, -0.3106761232017224,
-0.31066488963752287, -0.3106538845853671, -0.31064310238850557,
-0.31063253755246156, -0.31062218473990305, -0.3106120387656786,
-0.3106020945920245, -0.31059234732392826, -0.3105827922046445,
-0.3105734246113628, -0.3105642400510203, -0.31055523415624847,
-0.31054640268145983, -0.3105377414990593, -0.31052924659578574,
-0.3105209140691715, -0.3105127401241193, -0.3105047210695927,
```

```
-0.3104968533154193, -0.3104891333691902, -0.31048155783327147,
-0.3104741234019089, -0.3104668268584282, -0.31045966507252853,
-0.31045263499766307, -0.31044573366850803, -0.3104389581985099,
-0.3104323057775186, -0.31042577366949387, -0.3104193592102844,
-0.31041305980548733, -0.31040687292836827, -0.310400796117854,
-0.31039482697658777, -0.3103889631690495, -0.3103832024197347,
-0.31037754251139255, -0.3103719812833227, -0.3103665166297214,
-0.31036114649808794, -0.3103558688876776, -0.31035068184800063,
-0.3103455834773792, -0.3103405719215384, -0.31033564537225294,
-0.3103308020660252, -0.31032604028281824, -0.3103213583448151,
-0.3103167546152284, -0.31031222749714044, -0.3103077754323836,
-0.3103033969004513, -0.31029909041744813, -0.3102948545350699,
-0.31029068783961455, -0.3102865889510251, -0.3102825565219626,
-0.3102785892369052, -0.3102746858112801, -0.310270844990613,
-0.3102670655497151, -0.31026334629188623, -0.31025968604814375,
-0.31025608367647944, -0.31025253806113273, -0.31024904811189,
-0.31024561276340445, -0.3102422309745347, -0.3102389017277037,
-0.310235624028279, -0.3102323969039693, -0.31022921940423753,
-0.31022609059973755, -0.3102230095817572, -0.31021997546169,
-0.3102169873705118, -0.31021404445827894, -0.31021114589363935,
-0.31020829086335683, -0.3102054785718503, -0.3102027082407487,
-0.31019997910845154, -0.3101972904297116, -0.31019464147522097,
-0.31019203153121605, -0.3101894598990883, -0.3101869258950096,
-0.31018442884956626, -0.3101819681074054, -0.3101795430268867,
-0.31017715297975196, -0.31017479735079545, -0.3101724755375489,
-0.31017018694997317, -0.31016793101015816, -0.31016570715203423,
-0.31016351482108506, -0.310161353474076]
```