

Proposed Muon Alignment Constants

Muon Alignment Group

6 August, 2010

Outline

- Not a polished version of the Muon DPG talk for Monday!
- Just a list of what we plan to show (our internal sign-off)

Basic statement

- ▶ Proposing DT hardware alignment (what was signed-off May 12)
 - there are systematic discrepancies between track-based (TB) and hardware (HW) geometries
 - we do not have a compelling argument that either is more correct or trustworthy than the other
 - we therefore provide the HW-TB difference as a systematic uncertainty
- ▶ Proposing CSC track-based alignment plus HW for ϕ_X and Z (what was signed-off May 19 with some Z updates from HW)
 - ▶ HW—TB comparisons are not at the same level as in the barrel
 - ▶ but TB-PG (photogrammetry) are ~0.6 mm
- Proposing Sasha's global position for all systems (good agreement between Sasha's method, TB, and HW)

- ► First: it's important to emphasize that TB and HW agree with each other much better than either does with ideal geometry
- ► Two independent techniques have "found" the muon chambers
- ▶ Now we're working on the 4 mm-scale differences. . .

N.B. in this picture, displacements and angle differences have been exaggerated by $200\times$

HW-TB comparison

Primary differences:

- ▶ 5-chamber groups from wheel -2 to wheel +2 seem to be coherently rotated: about 4 mm end-to-end
- barrel compressed in z by about 4 mm end-to-end
- ► O(1.3 mm) individual-chamber variations after that

- DT wheel -2 $\delta x = (1.7 \pm 2.0)$ mm
- DT wheel -1 $\delta x = (0.3 \pm 1.2)$ mm
- DT wheel 0 $\delta x = (-1.0 \pm 1.3)$ mm
- DT wheel +1 $\delta x = (-2.2 \pm 1.3)$ mm
- DT wheel +2 $\delta x = (-2.5 \pm 2.1)$

Primary differences:

- ► 5-chamber groups from wheel −2 to wheel +2 seem to be coherently rotated: about 4 mm end-to-end
- barrel compressed in z by about 4 mm end-to-end
- ► O(1.3 mm) individual-chamber variations after that

Same for all stations

- Also seen at the level of residuals: these are $r\phi$ residuals vs. z in each 5-chamber group; dashed lines are boundaries between chambers
- Smooth transitions between chambers could be due to a coherent rotation in HW or a tracking bias in TB

N.B. Vertical scales are +15 mm

▶ If the effect were due to a bias in input tracks, e.g. a global distortion of the tracker leading to z-dependent $\Delta\phi$ errors, then its magnitude would scale from distance from the tracker

- ► Test: fit each 5-chamber group of residuals to a straight line (50 in all) and make histograms of the resulting slopes
- Result: strongly peaked at the same slope in all four stations

- ▶ If the trend were a weak mode of the HW alignment procedure, it would be present in 0 T data as well
- Photogrammetry (PG) data are available for 0 T, with x mm for inside-of-wheel resolutions and y mm for between-wheel resolutions
- \blacktriangleright No evidence of 4 mm systematic trend from wheel -2 to wheel +2

N.B. Vertical scales are ± 10 mm except wheel -1, which is -5 to 3 mm.

Tiltmeter test

- Each MAB is equipped with a tiltmeter which measures the angle wrt gravity:
 - One can combine PG orientation of YB2 wheels with tiltmeter variation between OT and 3.8T:

Δphi_Z Tilt (μrad)	MAB195	MAB255	MAB315	MAB15	MAB75	MAB135
YB+2	+48.8	+78.6	-69.9	-57.8	-56.5	
YB-2		100.3	12.8	-40.3	-57.3	

Phi_Z Angle (µrad)	УВ+2	YB-2
Absolute PG	227	169
Δphi_Z from tilts compatible with 0	0±100*	0±100*
Total = PG + Δ from OT to 3,8T	227±100	169±100
Link Fit @ 3.8T	349	244

PG+Tilt is compatible with lasers (lasers more precise)

- * VERY conservative uncertainty
- ► Link system between barrel and endcap connects to end of barrel hardware alignment devices (MAB) 4.5 m from the beamline
- ▶ Constraint from gravity direction + PG: $110 \pm 140~\mu \text{rad} \rightarrow 0.47 \pm 0.63~\text{mm}$ at barrel ends, in contraction with TB's 4 mm
- ▶ Independent of barrel alignment (Does it assume that the MABs are rigid and ideal? I still don't understand the comment in HyperNews)

- Several different sources of information:
 - tilting (ϕ_x) and motion toward magnet: straight line monitors (HW)
 - chambers-within-disks $(r\phi, \phi_z)$: beam-halo tracks and PG, weighted to prefer tracks where available
 - b disks-relative-to-tracker (global x, y, ϕ_z): cosmic $p_T > 100 \text{ GeV}/c \text{ tracks}^*$
 - final z positions: transfer lines (HW)
- ➤ All are unaffected by RPC-bias or GPR-removal bugs, except *, which was re-run: see browser

Beam-halo vs. PG:

Disk position from cosmic GlobalMuons (before alignment):

- Several different sources of information:
 - \blacktriangleright tilting (ϕ_x) and motion toward magnet: straight line monitors (HW)
 - chambers-within-disks $(r\phi, \phi_z)$: beam-halo tracks and PG, weighted to prefer tracks where available
 - disks-relative-to-tracker (global x, y, ϕ_z): cosmic $p_T > 100 \text{ GeV}/c \text{ tracks}^*$
 - final z positions: transfer lines (HW)
- All are unaffected by RPC-bias or GPR-removal bugs, except *, which was re-run: see browser

Beam-halo vs. PG:

Disk position from cosmic GlobalMuons (after alignment):

- ► Still need to be applied
- ▶ Is this the latest distribution? Why does it have this pattern?
- Shouldn't it be approximately
 - ▶ 14 mm for ME1/1 (inward)
 - ▶ 7 mm for all other stations (same global direction)

Locations of constants

- ▶ DT HW alignment: ?
- ▶ CSC HW ϕ_x + beam-halo + cosmics-disk:

/afs/cern.ch/user/p/pivarski/public/JUN5_CSC_beamhalo-PG-diskXYphiZ.db Updated cosmics-disk plots in browser:

http://hepr8.physics.tamu.edu/mual/browser/ "ring_data_gprsasha"

- ▶ CSC HW ϕ_{x} + beam-halo + cosmics-disk + HW Z: needs to be created from the above + the latest HW SQLite file
- Sasha's GlobalPositionRcd: ?