Examen E1 (temes 2 i 3)

- Duració de l'examen: 1 hora 15 minuts
- La solució de cada exercici cal fer-la en l'espai reservat en el mateix enunciat
- No podeu usar calculadora, mòbil, apunts, etc
- La solució de l'examen es publicarà en Atenea per la tarda, les notes el 6 Octubre

Exercici 1 (Objectiu 2.4) (1,5 punts)

Cada fila de la tabla tiene 3 columnas con: el vector X de 8 bits, X expresado en hexadecimal y el valor en decimal, Xu, que representa X interpretado como un número natural codificado en binario. Completa todas las casillas vacías.

X	X (hexa)	Xu
11110000	F0	240
11001101	CD	205
01010101	55	85
01111011	7B	123

Criteri de correcció: cada error resta 0,5

Exercici 2 (Objectius 2.1 i 2.2) (0,5 punts)

Escribid la fórmula que da el valor del número natural Wu en función de los n dígitos que lo representan en el sistema convencional en base b: w_{n-1} , ..., w_1 , w_0 y el rango de los números naturales que se pueden representar.

$$W = \sum_{i=0..n-1} w_i b^i \quad 0 \le w_i \le b-1 \quad Rang de W = [0..b^n-1]$$

Criteri de correcció: binari: 0 o 0,5

Exercici 3 (Objectius 3.5 i 3.13) (3 punts)

Dado el esquema del siguiente circuito (incluida la tabla de verdad del bloque B), completad la tabla de verdad de la salida F y escribid el camino crítico (o uno de ellos si hay varios) y el tiempo de propagación de cada entrada a la salida. Se dan los tiempos de propagación de B en la tabla y los de cada puerta son: Tp(Not) = 10, Tp(And) = 30, Tp(Or) = 20 y Tp(Xor) = 50 u.t. Un camino se debe especificar como por ejemplo: $x_1 - e - f - Xor - And - Not - And - F$. **Criteri de correcció: resta 0,5 taula, 0,5 camí crític, 0,5 temps de propagació, cada apartat, binari**

Camino crítico de x2 a F: x2 - Or - And - Not - And

Camino crítico de x₁ a F: x₁ - e - f -Xor - And - Not - And

Camino crítico de x_0 a F: x_0 – g – f- Xor – And – Not – And

 $Tp(x_2-F): 90 ut$

 $Tp(x_1-F)$: 130 ut

 $Tp(x_0-F)$: 140 ut

X2	X 1	L	X()	F
0	0		0		0
0	0		1		1
0	1		0		0
0	1		1 0		0
1	0		0		0
1	0		1		1
1	1		0		0
1	1		1		0
	E	3			
е	g	f	:	h	
0	<u>g</u>	C)	0	
0	1	1	-	1	
1	()	1	-	0	
1	T_p		f	1	h
	е		10		30
	g		20		20

 X_0

h

Cognoms i Nom:DNI:......DNI:

Exercici 4 (Objectius 3.6 3.8 3.11) (2 punts)

Per sintetitzar amb una única ROM el circuit que implementa les funcions lògiques descrites per la següent taula de veritat:

Quants senyals d'entrada ha de tenir la ROM ?: 3

Quants bits guardem en cada paraula de la ROM ?: 3

Criteri de correcció: resta 0,5 (binari)

ona i expressio logica de g com a suma de minterms.			0		
riteri de correcció: resta 0,5 (binari)	1	0	1	0	
	1	1	0	1	
	1	1	1	1	

$$m1 = !x_2 x_1 x_0 \quad m_4 = x_2 !x_1 !x_0 \qquad g = !x_2 x_1 x_0 + x_2 !x_1 !x_0$$

Criteri de correcció: resta 0,5 (binari)

Sintetitza només la funció *f* amb una única ROM.

Sintetitza la funció *h* amb un decodificador i un nombre mínim de portes OR.

Criteri de correcció: resta 0,5 (binari). Si enllacen diferents nivells de portes OR de 2 entrades, també esta bé.

Exercici 5 (Objectiu 3.11) (1,5 punts)

Dibujad el mapa de Karnaugh dibujando las agrupaciones de unos adecuadas para obtener la expresión mínima en suma de productos de la función \boldsymbol{w} cuya tabla de verdad se da. Escribe la expresión mínima en suma de productos de \boldsymbol{w} .

X ₁ X ₀	00	01	11	10
$X_3 X_2$				
00	1	1	1	
01	1	D	0	I
11 —	A	/1	0	٩
10 /	1	$\langle 1 \rangle$	0	$\langle 1 \rangle$
	,			

$$W = !x_3 !x_2 + !x_3 !x_0 + !x_2 !x_0 + x_3 !x_1 x_0$$

Criteri de correcció: resta 0,5 per grup d'1's incorrecte

Exercici 6 (Objectiu 3.12) (1,5 punts)

Completad el siguiente cronograma de las señales del esquema lógico sabiendo que los tiempos de propagación de las puertas son: Tp(Not) = 10, Tp(And) = 20, Tp(Or) = 20.

Criteri de correcció: resta 0,5 per cada fila del cronograma (binari)

