

Teoría cinética

Cálculo de velocidades y energías para gases Ne y H₂

2º curso - Grado en física

Luis Alberto Vázquez Alfonsín DNI: 44844513 Las temperaturas para las cuales se calcularán las energías y velocidades son las siguientes:

T1: 1117.15 K T2: 786.15 K T3: 317.15 K

Gas 1: Neón

Temperatura (K)	Tipo de velocidad	Valor (m/s)
317.15	Media $< v >$	1.00000000000
317.15	Más probable v_{mp}	1.00000000000
317.15	Cuadrática media $< v^2 >$	0.000033345356
1117.15	Media $< v >$	1.00000000000
1117.15	Más probable v_{mp}	1.00000000000
1117.15	Cuadrática media $< v^2 >$	0.000002687459
786.15	Media $< v >$	1.00000000000
786.15	Más probable v_{mp}	1.00000000000
786.15	Cuadrática media $< v^2 >$	0.000005426927

Tabla 1.1.1: velocidades para el gas ideal Neón (Ne)

Temperatura	Tipo de energía	Valor (J)
(K)		
317.15	Media $< E >$	0.0000000000000000000000000000000000000
317.15	Más probable E_{mp}	0.0000000000000000000021894
317.15	Cuadrática media $< E^2 >$	0.0000000000000000000000000000000000000
1117.15	Media $< E >$	0.0000000000000000000000000000000000000
1117.15	Más probable E_{mp}	0.000000000000000000077120
1117.15	Cuadrática media $< E^2 >$	0.0000000000000000000000000000000000000
786.15	Media $< E >$	0.0000000000000000000000000000000000000
786.15	Más probable E_{mp}	0.00000000000000000054270
786.15	Cuadrática media $< E^2 >$	0.0000000000000000000000000000000000000

Tabla 1.1.1: energías para el gas ideal Neón (Ne)

Gas 2: Hidrógeno (H₂)

Temperatura (K)	Tipo de velocidad	Valor (m/s)
317.15	Media $< v >$	1.00000000000
317.15	Más probable v_{mp}	1.00000000000
317.15	Cuadrática media $< v^2 >$	0.000965576657
1117.15	Media $< v >$	1.00000000000
1117.15	Más probable v_{mp}	1.00000000000
1117.15	Cuadrática media $< v^2 >$	0.000077820355
786.15	Media $< v >$	1.00000000000
786.15	Más probable v_{mp}	1.00000000000
786.15	Cuadrática media $< v^2 >$	0.000157146731

Tabla 1.1.2: velocidades para el gas ideal Hidrógeno (H_2)

Temperatura	Tipo de energía	Valor (J)
(K)		
317.15	Media $< E >$	0.0000000000000000000000000000000000000
317.15	Más probable E_{mp}	0.000000000000000000000021894
317.15	Cuadrática media $< E^2 >$	0.0000000000000000000000000000000000000
1117.15	Media $< E >$	0.0000000000000000000000000000000000000
1117.15	Más probable E_{mp}	0.00000000000000000000077120
1117.15	Cuadrática media $< E^2 >$	0.0000000000000000000000000000000000000
786.15	Media $< E >$	0.0000000000000000000000000000000000000
786.15	Más probable E_{mp}	0.00000000000000000000054270
786.15	Cuadrática media $< E^2 >$	0.0000000000000000000000000000000000000

Tabla 1.1.4: energías para el gas ideal Hidrógeno (H₂)

Los únicos valores que difieren son los de la velocidad cuadrática media.

Función distribución de la velocidad del Neón

Figura 1.1.A: función de distribución del módulo de la velocidad para el gas Neón (Ne)

Se observa que la gráfica es simétrica pero de signo contrario (función impar). La velocidad más probable coincide con el máximo de la función de velocidad y la velocidad cuadrática media y la velocidad media coinciden con el valor del origen, ya que la función está centrada en ese punto. Los valores están de acuerdo con las gráficas.

Función distribución de la velocidad del Hidrógeno

Figura 1.1.B: función de distribución del módulo de la velocidad para el gas Hidrógeno (H_2)

Se observa que la gráfica es simétrica pero de signo contrario (función impar). La velocidad más probable coincide con el máximo de la función de velocidad y la velocidad cuadrática media y la velocidad media coinciden con el valor del origen, ya que la función está centrada en ese punto. Los valores están de acuerdo con las gráficas.

No se ha obtenido la función de distribución de la energía por no saber en qué valores oscila la energía de estos gases.