DATA SCIENCE COURSE OVERVIEW

AGENDA

- Course Philosophy
- What to Expect
- Course Tools
- Installfest!

COURSE PHILOSOPHY

TEACHING PHILOSOPHY

- · Solve problems using coding-oriented (Python) techniques.
- · Use hands-on learning alongside lecture.
- · Apply concepts leave each class with a new skill.
- · Embrace what diverse backgrounds can bring.
- · Success is not a grade.

COURSE CONTENT PHILOSOPHY

 Data science is not programming, mathematics, or statistics. It has its own fundamental principles, workflow, and techniques.

Prefer repetition and building upon fundamentals.

- **Practice is necessary** to learn skills pre-lesson materials, homework, and a course project are necessary for success.
- Communication is key we want to hear your feedback!

HOW TO SUCCEED

- Be relentlessly curious in exploring data AND materials!
- Be patient with yourself and keep trying. Effort > pre-knowledge.
- Coding > watching videos and/or reading.

- · Study pre-lesson materials, do homework. Start the project early.
- Ask questions! Contact us on Slack at any time, even if we appear offline, and we will get back with you when we log in.
- Help classmates.

PHILOSOPHY

LOGISTICS

- Start and end class on time
- Missed classes
- Slack is preferred over email
- GitHub used for course content and homework
- Google+ community used for class recordings, discussions
- Office hours

THE DATA SCIENCE COMMUNITY

A community is people sharing with other people. Even if you are new, you have things to share!

- · Write blog articles on your data science experiences.
- · Put your data science projects on your website.
- Contribute to related open-source projects (e.g. on GitHub).
- Answer questions on Stack Overflow/Hacker News/etc.
- Give talks at local meetups.
- Get on Twitter and communicate with Python people.
- Go to local meetups.

http://datascience.la/

WHAT TO EXPECT

Core skills practiced daily:

- Python
- Python Data Science Libraries matplotlib, scikit-learn, pandas
- Understanding, Selecting, and Validating Models

Survey of:

- Specific models neural networks, clustering, dim. reduction, etc.
- Mathematical techniques/foundations
- Additional programming techniques and libraries

15. Feature Selection & Dimensionality Reduction

16. Text Data: Natural Language Processing

18. Recommendation Systems from Scratch

19. Deep Learning: Neural Networks III

20. Decision Trees & Random Forests

17. Text Data: Naive Bayes

21. Big Data & Course Review

22. Project Presentations

PRELIMINARY SYLLABUS

1. Intro	12. Neural Networks I
2. Command-Line Tools	13. Complete Data Science Example
3. Python	14. Image Data: Neural Networks II

- 4. Git & Python Problem Solving
- 5. APIs & Web Scraping 6. Statistics & k-NN from Scratch
- 7. NumPy & Linear Regression from Scratch
- 8. Data Exploration with Pandas
- 9. scikit-learn & k-Means Clustering
- 10. Linear Regression II & Data Distributions
- 11. Logistic Regression & AUC

NEW TO CODING?

· Expect to spend significant additional time learning Python.

Take advantage of office hours and Slack.

- As you read, type in and execute the code. Do not copy and paste.
- Solve daily programming problems:
 - https://brilliant.org/, http://coderbyte.com/
 - https://www.hackerrank.com/, https://projecteuler.net/

NEW TO CODING?

- If you are stuck, start with code you know works. Challenge yourself to add small things to it.
- Students without coding experience often struggle translating ideas into code, which may mean less data analysis is ultimately done.
- At the end of the course, you will likely be a better programmer but likely will still feel you have much more to learn. However, this is a natural part of learning how to program even experts frequently feel they could have done better.

DATA SCIENCE

COURSE TOOLS

WHAT IS ANACONDA?

Anaconda – package manager for scientific software. Includes:

- **Python 3.4.3** latest version of the Python interpreter
- IPython improved interactive Python shell
- Spyder data science Python IDE
- Jupyter "lab notebook" for coding (formerly IPython Notebook)

Recommended Supplemental Books (free online)

"Learn Python the Hard Way" http://learnpythonthehardway.org/book/ ← Note: Python 2 "Dive into Python 3" http://www.diveintopython3.net/

WHAT IS ANACONDA?

Anaconda – package manager for scientific software. We will use:

- conda python package manager, for installing new packages
- numpy ndarray, multi-dimensional array processing
- pandas Series and DataFrame
- matplotlib –plotting, in the style of MATLAB
- nltk –Natural Language ToolKit
- scikit-learn tools for modeling

Also:

scipy,

statsmodels,

theanos/keras, (and more)

Recommended Supplemental Book

"Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython" by Wes McKinney, the creator of Pandas.

GIT AND GITHUB

Git is a version control system widely used in industry.

- Retrieve latest versions of course materials.
- View exact changes made to course materials.

GitHub is a web-based Git repository hosting service.

Recommended Supplemental Book (free online)

"Pro Git"

http://git-scm.com/book/en/v2

QUESTIONS?

INSTALLFEST!

- 1. Install latest Anaconda PYTHON 3.4! http://continuum.io/downloads
- 2. Install **Sublime Text 3** (or other text editor): http://www.sublimetext.com/3
- 3. Install **PyCharm Community Edition** (or other IDE):
- https://www.jetbrains.com/pycharm/download/
- 4. Install Git: http://git-scm.com/book/en/v2/Getting-Started-Installing-Git
- 5. Create a **GitHub** account: https://github.com/
- 6. Using Windows? Install latest **Gow** (GNU command-line tools):

https://github.com/bmatzelle/gow/releases