Solar Energy Potential Analysis

Loading the dataset

```
In [15]: # Install required packages if not installed
!pip install pandas numpy matplotlib seaborn scikit-learn openpyxl

# Import Libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.preprocessing import MinMaxScaler
```

```
Requirement already satisfied: pandas in c:\users\reshm\anaconda3\lib\site-packages (2.2.3)
Requirement already satisfied: numpy in c:\users\reshm\anaconda3\lib\site-packages (1.26.4)
Requirement already satisfied: matplotlib in c:\users\reshm\anaconda3\lib\site-packages (3.7.1)
Requirement already satisfied: seaborn in c:\users\reshm\anaconda3\lib\site-packages (0.12.2)
Requirement already satisfied: scikit-learn in c:\users\reshm\anaconda3\lib\site-packages (1.5.2)
Requirement already satisfied: openpyxl in c:\users\reshm\anaconda3\lib\site-packages (3.1.5)
Requirement already satisfied: python-dateutil>=2.8.2 in c:\users\reshm\anaconda3\lib\site-packages (from pa
ndas) (2.8.2)
Requirement already satisfied: pytz>=2020.1 in c:\users\reshm\anaconda3\lib\site-packages (from pandas) (202
2.7)
Requirement already satisfied: tzdata>=2022.7 in c:\users\reshm\anaconda3\lib\site-packages (from pandas) (2
024.2)
Requirement already satisfied: contourpy>=1.0.1 in c:\users\reshm\anaconda3\lib\site-packages (from matplotl
ib) (1.0.5)
Requirement already satisfied: cycler>=0.10 in c:\users\reshm\anaconda3\lib\site-packages (from matplotlib)
(0.11.0)
Requirement already satisfied: fonttools>=4.22.0 in c:\users\reshm\anaconda3\lib\site-packages (from matplot
lib) (4.25.0)
Requirement already satisfied: kiwisolver>=1.0.1 in c:\users\reshm\anaconda3\lib\site-packages (from matplot
lib) (1.4.4)
Requirement already satisfied: packaging>=20.0 in c:\users\reshm\anaconda3\lib\site-packages (from matplotli
b) (23.0)
Requirement already satisfied: pillow>=6.2.0 in c:\users\reshm\anaconda3\lib\site-packages (from matplotlib)
(9.4.0)
Requirement already satisfied: pyparsing>=2.3.1 in c:\users\reshm\anaconda3\lib\site-packages (from matplotl
ib) (3.0.9)
Requirement already satisfied: scipy>=1.6.0 in c:\users\reshm\anaconda3\lib\site-packages (from scikit-lear
n) (1.10.1)
Requirement already satisfied: ioblib>=1.2.0 in c:\users\reshm\anaconda3\lib\site-packages (from scikit-lear
n) (1.2.0)
Requirement already satisfied: threadpoolctl>=3.1.0 in c:\users\reshm\anaconda3\lib\site-packages (from scik
it-learn) (3.5.0)
Requirement already satisfied: et-xmlfile in c:\users\reshm\anaconda3\lib\site-packages (from openpyxl) (1.
1.0)
Requirement already satisfied: six>=1.5 in c:\users\reshm\anaconda3\lib\site-packages (from python-dateutil>
=2.8.2 - \text{pandas}) (1.16.0)
```

In [28]: # Load the dataset
file_path = "D:/Capstone_2025/data/solardata_addis.xlsx" # Update with your actual path
df = pd.read_excel(file_path, sheet_name='Sheet1')
df

Out[28]:

	Year	Month	Day	Hour	Minute	Clearsky DHI	Clearsky DNI	Temperature	Clearsky GHI	cloud fill flag		DNI	Fill Flag	GHI	Relative Humidity	Solar Zenith Angle	Surfa Albe
0	2006	1	1	0	30	0	0	6.9	0	0		0	0	0	80.78	137.73	0
1	2006	1	1	1	30	0	0	6.5	0	0	•••	0	0	0	85.35	124.08	0
2	2006	1	1	2	30	0	0	6.2	0	0		0	0	0	89.38	110.30	0
3	2006	1	1	3	30	0	0	7.0	0	0		0	0	0	86.64	96.54	0
4	2006	1	1	4	30	36	484	10.8	96	1		0	1	39	68.50	82.85	0
17515	2022	1	31	19	30	0	0	13.7	0	0		0	0	0	64.84	144.22	0
17516	2022	1	31	20	30	0	0	13.6	0	0		0	0	0	63.55	158.14	0
17517	2022	1	31	21	30	0	0	13.3	0	0		0	0	0	64.07	170.03	0
17518	2022	1	31	22	30	0	0	12.8	0	0	•••	0	0	0	63.95	167.90	0
17519	2022	1	31	23	30	0	0	12.1	0	0		0	0	0	65.48	155.12	0

17520 rows × 23 columns

```
In [29]: # Display dataset structure
print(df.info())
print(df.head())
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 17520 entries, 0 to 17519
Data columns (total 23 columns):

paca #	Column (total 23 C	Non-Null Coun	t Dtype		
0	Year	17520 non-nul			
1	Month	17520 non-nul			
2	Day	17520 non-nul			
3	Hour	17520 non-nul	l int64		
4	Minute	17520 non-nul	l int64		
5	Clearsky DHI	17520 non-nul	l int64		
6	Clearsky DNI	17520 non-nul	l int64		
7	Temperature	17520 non-nul	l float64		
8	Clearsky GHI	17520 non-nul	l int64		
9	cloud fill flag	17520 non-nul	l int64		
10	Cloud Type	17520 non-nul	l int64		
11	Dew Point	17520 non-nul	l float64		
12	DHI	17520 non-nul	l int64		
13	DNI	17520 non-nul	l int64		
14	Fill Flag	17520 non-nul	l int64		
15	GHI	17520 non-nul	l int64		
16	Relative Humidity	17520 non-nul	l float64		
17	Solar Zenith Angle	17520 non-nul	l float64		
18	Surface Albedo	17520 non-nul	l float64		
19	Pressure	17520 non-nul	l int64		
20	Precipitable Water	17520 non-nul	l float64		
21	Wind Direction	17520 non-nul	l int64		
22	Wind Speed	17520 non-nul	l float64		
dtyp	es: float64(7), int6	4(16)			
memo	ry usage: 3.1 MB				
None					
Y	ear Month Day Hou	r Minute Cle	arsky DHI	Clearsky DNI	Temperature
0 2	006 1 1	o 30	0	0	6.9
1 2	006 1 1	1 30	0	0	6.5

	Clearsky GHI	cloud fill flag	g	DNI	Fill Flag	GHI	Relative Humidity	\
0	0	(ð	. 0	0	0	80.78	
1	0	(ð	. 0	0	0	85.35	
2	0	(ð	. 0	0	0	89.38	
3	0	(ð	. 0	0	0	86.64	

2 2006

4 2006

\

6.2

7.0

10.8

4	96	1	0	1 39	68.50
0 1 2 3	Solar Zenith Angle 137.73 124.08 110.30 96.54	Surface Albedo 0.15 0.15 0.15 0.15	Pressure 778 779 779 780	Precipitable Water 0.9 1.0 1.0 1.0	\
4	82.85	0.15	780	1.0	
0 1 2 3 4	Wind Direction Wir 85 89 92 94 97	nd Speed 1.7 1.7 1.7 2.1 3.5			

[5 rows x 23 columns]

```
In [30]: #handling missing values
         # Check for missing values
         print("Missing Values:\n", df.isnull().sum())
         Missing Values:
          Year
                                 0
         Month
                                0
                                0
         Day
                                0
         Hour
         Minute
                                0
         Clearsky DHI
                                0
         Clearsky DNI
                                0
         Temperature
                                0
         Clearsky GHI
         cloud fill flag
                                0
         Cloud Type
                                0
         Dew Point
                                0
         DHI
         DNI
                                0
         Fill Flag
                                0
         GHI
         Relative Humidity
         Solar Zenith Angle
                                0
         Surface Albedo
         Pressure
                                0
         Precipitable Water
                                0
         Wind Direction
                                0
         Wind Speed
```

```
In [31]: # Fill missing values using forward and backward fill
df.fillna(method='ffill', inplace=True)
df.fillna(method='bfill', inplace=True)
```

dtype: int64

C:\Users\reshm\AppData\Local\Temp\ipykernel_27192\212673031.py:2: FutureWarning: DataFrame.fillna with 'meth
od' is deprecated and will raise in a future version. Use obj.ffill() or obj.bfill() instead.
 df.fillna(method='ffill', inplace=True)
C:\Users\reshm\AppData\Local\Temp\ipykernel_27192\212673031.py:3: FutureWarning: DataFrame.fillna with 'meth
od' is deprecated and will raise in a future version. Use obj.ffill() or obj.bfill() instead.
 df.fillna(method='bfill', inplace=True)

In [32]: # Verify no missing values remain print("Missing Values after filling:\n", df.isnull().sum())

Missing Values after filling: Year 0 Month 0 0 Day 0 Hour Minute 0 Clearsky DHI 0 Clearsky DNI 0 Temperature 0 Clearsky GHI cloud fill flag 0 Cloud Type 0 Dew Point 0 DHI DNI 0 Fill Flag 0 GHI 0 Relative Humidity 0 Solar Zenith Angle 0 Surface Albedo 0 Pressure Precipitable Water 0 Wind Direction 0 Wind Speed 0 dtype: int64

In [34]: # Display updated dataset
df.head()

Out[34]:

	Year	Month	Day	Hour	Clearsky DHI	Clearsky DNI	Temperature	Clearsky GHI	cloud fill flag	Cloud Type	 Relative Humidity	Solar Zenith Angle	Surface Albedo	Pressure
Datetime														
2006-01- 01 00:00:00	2006	1	1	0	0	0	6.9	0	0	0	 80.78	137.73	0.15	778
2006-01- 01 01:00:00	2006	1	1	1	0	0	6.5	0	0	0	 85.35	124.08	0.15	779
2006-01- 01 02:00:00	2006	1	1	2	0	0	6.2	0	0	0	 89.38	110.30	0.15	779
2006-01- 01 03:00:00	2006	1	1	3	0	0	7.0	0	0	0	 86.64	96.54	0.15	780
2006-01- 01 04:00:00	2006	1	1	4	36	484	10.8	96	1	3	 68.50	82.85	0.15	780

5 rows × 25 columns


```
In [35]: #Estimate Solar Power Output (Simplified)
# Assuming 20% efficiency of solar panels
df['Estimated_Solar_Power_kW'] = df['GHI'] * 0.2 / 1000 # Convert W/m² to kW/m²
```

```
In [36]: # Adjust Wind Speed for Power Estimation
    # Wind Power Estimation using P = 0.5 * air_density * A * v³
    air_density = 1.225 # kg/m³ (sea level standard)
    turbine_swept_area = 50 # Assumed 50m² (adjust as needed)

df['Estimated_Wind_Power_kW'] = 0.5 * air_density * turbine_swept_area * (df['Wind Speed'] ** 3) / 1000
```

Outlier detection and removal

```
In [37]: # Function to remove outliers using IQR method

def remove_outliers(df, column):
    Q1 = df[column].quantile(0.25)
    Q3 = df[column].quantile(0.75)
    IQR = Q3 - Q1
    lower_bound = Q1 - 1.5 * IQR
    upper_bound = Q3 + 1.5 * IQR
    return df[(df[column] >= lower_bound) & (df[column] <= upper_bound)]</pre>
```

```
In [39]: # Apply to key columns
    df = remove_outliers(df, 'GHI')
    df = remove_outliers(df, 'DNI')
    df = remove_outliers(df, 'Wind Speed')

# Display updated dataset
    df.describe()
```

Out[39]:

	Year	Month	Day	Hour	Clearsky DHI	Clearsky DNI	Temperature	Clearsky GHI	cloud fill flag
count	13436.000000	13436.000000	13436.000000	13436.000000	13436.000000	13436.000000	13436.000000	13436.000000	13436.000000
mean	2012.765630	6.624367	15.694850	12.288255	41.885457	205.874963	14.919024	180.394686	0.582167
std	5.696955	3.247457	8.800264	7.568925	71.409216	328.229953	4.384039	324.124282	1.934050
min	2005.000000	1.000000	1.000000	0.000000	0.000000	0.000000	4.000000	0.000000	0.000000
25%	2007.000000	4.000000	8.000000	4.000000	0.000000	0.000000	12.100000	0.000000	0.000000
50%	2013.000000	7.000000	16.000000	14.000000	0.000000	0.000000	14.400000	0.000000	0.000000
75%	2018.000000	9.000000	23.000000	19.000000	76.000000	447.000000	17.800000	197.000000	0.000000
max	2022.000000	12.000000	31.000000	23.000000	452.000000	1032.000000	30.700000	1114.000000	8.000000

8 rows × 26 columns

```
In [40]: #Normalise the data
scaler = MinMaxScaler()
features = ['GHI', 'DNI', 'DHI', 'Temperature', 'Relative Humidity', 'Wind Speed', 'Estimated_Solar_Power_kW'

df[features] = scaler.fit_transform(df[features])

# Display final dataset
df.head()
```

Out[40]:

	Year	Month	Day	Hour	Clearsky DHI	Clearsky DNI	Temperature	Clearsky GHI	cloud fill flag	Cloud Type	 Surface Albedo	Pressure	Precipitable Water	W Direc
Datetime														
2006-01- 01 00:00:00	2006	1	1	0	0	0	0.108614	0	0	0	 0.15	778	0.9	
2006-01- 01 01:00:00	2006	1	1	1	0	0	0.093633	0	0	0	 0.15	779	1.0	
2006-01- 01 02:00:00	2006	1	1	2	0	0	0.082397	0	0	0	 0.15	779	1.0	
2006-01- 01 03:00:00	2006	1	1	3	0	0	0.112360	0	0	0	 0.15	780	1.0	
2006-01- 01 04:00:00	2006	1	1	4	36	484	0.254682	96	1	3	 0.15	780	1.0	

5 rows × 27 columns

Exploratory Data Analysis (EDA)

```
In [41]: #Visualizing Hourly Solar Energy Trends
# Aggregate hourly mean values
hourly_avg = df.groupby(df.index.hour)[['GHI', 'DNI', 'DHI']].mean()

# Plot hourly variations
plt.figure(figsize=(12, 5))
hourly_avg.plot(marker='o', linestyle='-')
plt.title("Hourly Solar Radiation (GHI, DNI, DHI)")
plt.xlabel("Hour of the Day")
plt.ylabel("Solar Radiation (W/m²)")
plt.grid(True)
plt.legend()
plt.show()
```

<Figure size 1200x500 with 0 Axes>


```
In [42]: # Monthly Solar Energy Potential
# Aggregate monthly mean values
monthly_avg = df.groupby(df.index.month)[['GHI', 'DNI', 'DHI']].mean()

# Plot monthly variations
plt.figure(figsize=(12, 5))
monthly_avg.plot(marker='o', linestyle='-')
plt.title("Monthly Solar Radiation (GHI, DNI, DHI)")
plt.xlabel("Month")
plt.ylabel("Solar Radiation (W/m²)")
plt.grid(True)
plt.legend()
plt.show()
```

<Figure size 1200x500 with 0 Axes>


```
In [43]: #Correlation Analysis
# Compute correlation matrix
correlation_matrix = df[['GHI', 'DNI', 'DHI', 'Temperature', 'Relative Humidity', 'Wind Speed']].corr()

# Plot heatmap
plt.figure(figsize=(8, 6))
sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', linewidths=0.5)
plt.title("Correlation Between Solar Radiation & Weather Factors")
plt.show()
```



```
In [44]: # Identify Seasonal Variations
         # Define seasons based on the Northern Hemisphere
         df['Season'] = df.index.month.map(lambda m: 'Winter' if m in [12, 1, 2] else
                                            'Spring' if m in [3, 4, 5] else
                                            'Summer' if m in [6, 7, 8] else 'Autumn')
         # Compute seasonal average values
         seasonal avg = df.groupby('Season')[['GHI', 'DNI', 'DHI']].mean()
         # Plot seasonal variations
         plt.figure(figsize=(8, 5))
         seasonal avg.plot(kind='bar', colormap='coolwarm')
         plt.title("Seasonal Average Solar Radiation (GHI, DNI, DHI)")
         plt.xlabel("Season")
         plt.ylabel("Solar Radiation (W/m²)")
         plt.xticks(rotation=45)
         plt.grid(True)
         plt.legend()
         plt.show()
```

<Figure size 800x500 with 0 Axes>

Preprocessed data saved as CSV: preprocessed_data.csv

```
In [ ]:
```