AMENDMENTS TO THE CLAIMS

Docket No.: 5000-0103PUS1

17. (currently amended) A process for the preparation of the 3-heterocyclyl-substituted benzoyl compound of formula I defined in claim 28, which comprises acylating a pyrazole of the formula II

$$\begin{array}{c}
\mathbb{R}^{18} \\
\mathbb{N} \\
\mathbb{N$$

with an activated carboxylic acid IIIα or with carboxylic acid IIIβ

where wherein L^1 is a nucleophilically displaceable leaving group group, and subjecting the acylation product to a rearrangement reaction to give the compound I.

18. (currently amended) A 3-heterocyclyl-substituted benzoic acid compound of the formula III,

Docket No.: 5000-0103PUS1

$$R^{19}$$
 R^{1}
 R^{1}
 R^{5}
 R^{2}
III

where wherein

R¹⁹ is hydroxyl or a radical which can be removed by hydrolysis,

R¹ is C₁-C₂-alkyl, methoxy or methylsulfonyl;

R² is nitro, halogen, C₁-C₆-alkyl, C₁-C₆-haloalkyl, C₁-C₆-alkylthio, C₁-C₆-alkylsulfinyl, C₁-C₆-alkylsulfonyl or C₁-C₆-haloalkylsulfonyl;

R³ is hydrogen, halogen or C₁-C₆-alkyl;

R⁴ is hydrogen or methyl, and R⁵ is hydrogen;

X is O;

Y is $CR^{13}R^{14}$;

R¹³, R¹⁴ are hydrogen, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxycarbonyl, C₁-C₄-haloalkoxycarbonyl or CONR⁷R⁸;

R⁷ is hydrogen or C₁-C₄-alkyl; and

 R^8 is C_1 - C_4 -alkyl.

19. (cancelled)

- 20. (previously presented) The 3-heterocyclyl-substituted benzoic acid compound of the formula III defined in claim 18, where R¹⁹ is halogen, hydroxyl or C₁-C₆-alkoxy.
- 21. (previously presented) A composition comprising a herbicidally active amount of at least one 3-heterocyclyl-substituted benzoyl compound of the formula I or of the agriculturally useful salt of I defined in claim 28, and auxiliaries conventionally used for the formulation of crop

protection products.

- 22. (previously presented) A process for the preparation of the composition defined in claim 21, which comprises mixing a herbicidally active amount of at least one 3-heterocyclyl-substituted benzoyl compound of the formula I or of the agriculturally useful salt of I and auxiliaries conventionally used for the formulation of crop protection products.
- 23. (previously presented) A method of controlling undesirable vegetation, which comprises allowing a herbicidally active amount of at least one 3-heterocyclyl-substituted benzoyl compound of the formula I or of the agriculturally useful salt of I defined in claim 28 to act on plants, their environment and/or on seeds.

24. - 27. (cancelled)

28. (previously presented) A 3-heterocyclyl-substituted benzoyl compound of the formula I

wherein

X is O;

 R^1 is C_1 - C_2 -alkyl, methoxy or methylsulfonyl;

R² is nitro, halogen, C₁-C₆-alkyl, C₁-C₆-haloalkyl, C₁-C₆-alkylsulfinyl, C₁-C₆-alkylsulfonyl or C₁-C₆-haloalkylsulfonyl;

R³ is hydrogen, halogen or C₁-C₆-alkyl;

R⁴ is hydrogen or methyl, and R⁵ is hydrogen;

Y is $CR^{13}R^{14}$;

4 ADM/mao

Docket No.: 5000-0103PUS1

Docket No.: 5000-0103PUS1

 R^{13} , R^{14} are hydrogen, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxycarbonyl, C_1 - C_4 -haloalkoxycarbonyl or $CONR^7R^8$;

R⁷ is hydrogen or C₁-C₄-alkyl;

 R^8 is C_1 - C_4 -alkyl;

R¹⁵ is a pyrazole of the formula II which is linked in the 4-position

$$\mathbb{R}^{18}$$
 \mathbb{N}
 $\mathbb{$

wherein

 R^{16} is C_1 - C_6 -alkyl;

Z is H; and

R¹⁸ is hydrogen or methyl.

- 29. (previously presented) The 3-heterocyclyl-substituted benzoyl compound of the formula I defined in claim 28, wherein R¹ is methyl, R² is methylsulfonyl, R³ is hydrogen, R¹⁶ is methyl and R¹⁸ is hydrogen.
- 30. (previously presented) 4-[2-Methyl-3-(4,5-dihydroisoxazol-3-yl)-4-methylsulfonylben-zoyl]-1-methyl-5-hydroxy-1H-pyrazole.
- 31. (previously presented) The 3-heterocyclyl-substituted benzoyl compound of the formula I defined in claim 28, wherein R¹ is methyl, R² is methyl-sulfonyl, R³ is hydrogen, R¹⁶ is ethyl and R¹⁸ is hydrogen.

32.-33. (cancelled)

34. (previously presented) The 3-heterocyclyl-substituted benzoyl compound of the formula

I defined in claim 28, wherein R¹ is methyl, R² is methylsulfonyl, R³ is hydrogen, R¹⁶ is methyl and R¹⁸ is methyl.

Docket No.: 5000-0103PUSI

- 35. (previously presented) The 3-heterocyclyl-substituted benzoyl compound of the formula I defined in claim 28, wherein R⁴ denotes hydrogen.
- 36. (previously presented) The 3-heterocyclyl-substituted benzoyl compound of the formula I defined in claim 28, wherein R¹ is methyl.
- 37. (previously presented) The 3-heterocyclyl-substituted benzoyl compound of the formula I defined in claim 35, wherein R¹ is methyl.
- 38. (previously presented) The 3-heterocyclyl-substituted benzoyl compound of the formula I defined in claim 35, wherein R¹ is methyl, R² is methylsulfonyl, R³ is hydrogen, R¹⁶ is ethyl and R¹⁸ is hydrogen.
- 39. (previously presented) The 3-heterocyclyl-substituted benzoyl compound of the formula I defined in claim 35, wherein R¹ is methyl, R² is methylsulfonyl, R³ is hydrogen, R¹⁶ is methyl and R¹⁸ is methyl.
- 40. (previously presented) The 3-heterocyclyl-substituted benzoic acid compound of the formula III defined in claim 18, wherein R⁴ denotes hydrogen.
- 41. (previously presented) The 3-heterocyclyl-substituted benzoic acid compound of the formula III defined in claim 18, wherein R¹ is methyl.
- 42. (previously presented) The 3-heterocyclyl-substituted benzoic acid compound of the formula III defined in claim 40, wherein R¹ is methyl.

43. (previously presented) The 3-heterocyclyl-substituted benzoic acid compound of the formula III defined in claim 20, wherein R⁴ denotes hydrogen.

Docket No.: 5000-0103PUS1

- 44. (previously presented) The 3-heterocyclyl-substituted benzoic acid compound of the formula III defined in claim 20, wherein R¹ is methyl.
- 45. (previously presented) The 3-heterocyclyl-substituted benzoic acid compound of the formula III defined in claim 43, wherein R¹ is methyl.
- 46. (previously presented) The 3-heterocyclyl-substituted benzoic acid compound of the formula III defined in claim 45, wherein R² is methylsulfonyl and R³ is hydrogen.
- 47. (previously presented) The 3-heterocyclyl- substituted benzoyl compound of the formula I defined in claim 28, wherein

```
X is O;
```

 R^1 is C_1 - C_2 -alkyl;

R² is C₁-C₆-alkylthio or C₁-C₆-alkylsulfonyl;

R³ is hydrogen;

Y is $CR^{13}R^{14}$; and

 R^{13} , R^{14} are hydrogen or C_1 - C_4 -alkyl.

48. (previously presented) The composition defined in claim 21, comprising a herbicidally active amount of at least one 3-heterocyclyl-substituted benzoyl compound of the formula I or of the agriculturally useful salt of I, wherein

X is O;

 R^1 is C_1 - C_2 -alkyl;

 R^2 is C_1 - C_6 -alkylthio or C_1 - C_6 -alkylsulfonyl;

R³ is hydrogen;

Y is $CR^{13}R^{14}$; and

- R^{13} , R^{14} are hydrogen or C_1 - C_4 -alkyl.
- 49. (previously presented) The 3-heterocyclyl-substituted benzoic acid compound of the formula III defined in claim 18, wherein
- X is O;
- R^1 is C_1 - C_2 -alkyl;
- R^2 is C_1 - C_6 -alkylthio or C_1 - C_6 -alkylsulfonyl;
- R³ is hydrogen;
- Y is $CR^{13}R^{14}$; and
- R^{13} , R^{14} are hydrogen or C_1 - C_4 -alkyl.
- 50. (currently amended) A compound represented by formula I

wherein

- R^1 is C_1 - C_6 -alkyl;
- R^2 is C_1 - C_6 -alkylthio or C_1 - C_6 -alkylsulfonyl;
- R³ is hydrogen;
- R^4 and R^5 are hydrogen or C_1 - C_4 -alkyl;
- X is oxygen CR¹⁰R¹¹, wherein R¹⁰ and R¹¹ are hydrogen or C₁-C₄-alkyl;
- Y is CR¹⁰R¹¹, wherein R¹⁰ and R¹¹ are hydrogen or C₁-C₄-alkyl; oxygen, and
- R¹⁵ is a pyrazole of formula II

8 ADM/mao

Docket No.: 5000-0103PUS1

$$\begin{array}{c}
R^{18} \\
 & 4 \\
 & O-Z
\end{array}$$

$$\begin{array}{c}
 & II \\
 & R^{16}
\end{array}$$

Docket No.: 5000-0103PUS1

which is linked in the 4-position, wherein

 R^{16} is C_1 - C_6 -alkyl;

Z is hydrogen or SO₂R¹⁷, wherein

 R^{17} is phenyl or phenyl which is partially or fully halogenated and/or has attached to it one to three of the following groups: C_1 - C_4 -alkyl and C_1 - C_4 -alkoxy; and

 R^{18} is hydrogen or C_1 - C_6 -alkyl.

51. (new) A herbicide characterized by containing one or more compounds represented by formula I

wherein

R¹ is C₁-C₆-alkyl;

 R^2 is C_1 - C_6 -alkylthio or C_1 - C_6 -alkylsulfonyl;

R³ is hydrogen;

 R^4 and R^5 are hydrogen or C_1 - C_4 -alkyl;

X is oxygen CR¹⁰R¹¹, wherein R¹⁰ and R¹¹ are hydrogen or C₁-C₄-alkyl;

Y is <u>CR¹⁰R¹¹</u>, wherein R¹⁰ and R¹¹ are hydrogen or C₁-C₄-alkyl; oxygen, and

R¹⁵ is a pyrazole of formula II

which is linked in the 4-position, wherein

 R^{16} is C_1 - C_6 -alkyl;

Z is hydrogen or SO₂R¹⁷, wherein

 R^{17} is phenyl or phenyl which is partially or fully halogenated and/or has attached to it one to three of the following groups: C_1 - C_4 -alkyl and C_1 - C_4 -alkoxy; and

 $R^{18} \quad \ \ is \ hydrogen \ or \ C_1\text{-}C_6\text{-}alkyl,$

as active ingredients.

52. (currently amended) A compound represented by formula III

wherein

 R^{19} is hydroxyl or C_1 - C_6 -alkoxy;

 R^1 is C_1 - C_6 -alkyl;

R² is C₁-C₆-alkylthio or C₁-C₆-alkylsulfonyl;

R³ is hydrogen;

 R^4 and R^5 are hydrogen or C_1 - C_4 -alkyl;

X is oxygen $CR^{10}R^{11}$, wherein R^{10} and R^{11} are hydrogen or C_4 - C_4 -alkyl; and

Y is $CR^{10}R^{11}$, wherein R^{10} and R^{11} are hydrogen or C_1 - C_4 -alkyl exygen.

10 ADM/mao

Docket No.: 5000-0103PUS1