Rozwiązywanie Równań Różniczkowych Zwyczajnych

Metody numeryczne

Równanie I-go rzędu

• Równanie

$$y' = f(x, y)$$

• Rozwiązanie y(x)

$$y'(x) = f(x, y(x))$$

$$y(x_0) = y_0$$

Równanie II-rzędu

Równoważność

$$\begin{aligned} y_1' &= y_2 & y_1(x_0) &= y_0 \\ y_2' &= f(x,y_1,y_2) & y_2(x_0) &= y_0'. \end{aligned}$$

Równania I rzędu ogólnie

W ogólnym przypadku

$$y' = f(x, y)$$
$$y(x_0) = y_0$$
$$x \in R^n$$

Istnienie i jednoznaczność

 Równanie różniczkowe ma rozwiązanie, i jest ono jednoznaczne wtedy i tylko wtedy, gdy funkcja f spełnia warunek Lipshitza

$$|f(x,z) - f(x,y)| \le L|z - y|$$

Rozwinięcie rozwiązania w szereg Taylora

$$y(x - x_0) = y_0 + (x - x_0)y'(x_0) + \dots = y_0 + (x - x_0)f(x_0, y_0) + \dots$$

Metoda prostokątów Eulera (1768)

Szukamy rozwiązania problemu na przedziale całkowania

$$y' = f(x, y),$$
 $y(x_0) = y_0,$ $y(X) = ?$ $x_0, x_1, \dots, x_{n-1}, x_n = X$

Na każdym podprzedziale stosujemy pierwszy wyraz szeregu Taylora

$$\begin{aligned} y_1 - y_0 &= (x_1 - x_0) f(x_0, y_0) \\ y_2 - y_1 &= (x_2 - x_1) f(x_1, y_1) \\ & \cdots \\ y_n - y_{n-1} &= (x_n - x_{n-1}) f(x_{n-1}, y_{n-1}). \\ h &= (h_0, h_1, \dots, h_{n-1}) \qquad h_i = x_{i+1} - x_i \end{aligned}$$

Łamana Eulera

• Połączenie punktów y_1, y_2, y_3, \dots prostymi

$$y_h(x) = y_i + (x-x_i)f(x_i,y_i) \qquad \text{ for } \quad x_i \leq x \leq x_{i+1}.$$

Zbieżność metody Eulera

- Niech $|h| := \max_{i=0,\dots,n-1} h_i \to 0$,
- Tw. Niech f, będzie ciągła, ograniczona przez A i spełnia warunek Lipschitza na zbiorze

$$D = \Big\{ (x,y) \mid x_0 \le x \le X, \ |y-y_0| \le b \Big\}.$$

- Dla $X x_0 \le b/A$, mamy:
 - Dla |h| o 0 łamana Eulera zmierza jednostajnie do ciągłej funkcji $\phi(x)$
 - $\phi(x)$ jest ciągle różniczkowalnym rozwiązaniem równania na przedziale $x_0 \le x \le X$
 - Nie istnieją inne rozwiązania równania na tym przedziale

Błąd metody Eulera

Niech w otoczeniu rozwiązania

$$|f| \le A, \qquad \left| \frac{\partial f}{\partial y} \right| \le L, \qquad \left| \frac{\partial f}{\partial x} \right| \le M$$

• Wtedy dla dostatecznie małych |h|

$$\left|y(x)-y_h(x)\right| \leq \frac{M+AL}{L} \Big(e^{L(x-x_0)}-1\Big) \cdot |h|,$$

Konsekwencje błędu metody Eulera

- Całkowity (globalny) błąd metody Eulera jest proporcjonalny do maksymalnej długości kroku.
- Czyli:
 - Dla dokładności 3 miejsc po przecinku potrzeba tysiąc kroków
 - Dla dokładności 6 miejsc po przecinku potrzeba milion kroków

Brak warunku Lipschitza

$$y' = 4\left(\operatorname{sign}(y)\sqrt{|y|} + \max\left(0, x - \frac{|y|}{x}\right) \cdot \cos\left(\frac{\pi \log x}{\log 2}\right)\right)$$

• Zmiana kroku $h=2^{-i}$ prowadzi do innych rozwiązań po parzystych i nieparzystych

Dokładność jest problemem

Jak usprawnić Eulera – Metody Rungego-Kutty

Zacznijmy od metody punktu środkowego

$$y' = f(x), \qquad y(x_0) = y_0$$

$$\begin{split} y(x_0 + h_0) &\approx y_1 = y_0 + h_0 f \Big(x_0 + \frac{h_0}{2} \Big) \\ y(x_1 + h_1) &\approx y_2 = y_1 + h_1 f \Big(x_1 + \frac{h_1}{2} \Big) \end{split}$$

$$y(X) = y_0 + \int_{x_0}^X f(x) dx.$$

. . .

$$y(X) \approx Y = y_{n-1} + h_{n-1} f\left(x_{n-1} + \frac{h_{n-1}}{2}\right)$$

• Błąd globalny metody punktu środkowego to Ch^2 (dla 3 miejsc po przecinku dokladnosci – 1000 x szybciej niż Euler)

Jak by wyglądała metoda?

W idealnym przypadku

$$y(x_0 + h) \approx y_0 + hf\left(x_0 + \frac{h}{2}, y\left(x_0 + \frac{h}{2}\right)\right)$$

- Skąd wziąć wartość $y(x_0 + h/2)$?
- Odpowiedź: mały krok Eulerem

$$\begin{split} k_1 &= f(x_0, y_0) \\ k_2 &= f\Big(x_0 + \frac{h}{2}, y_0 + \frac{h}{2}k_1\Big) \\ y_1 &= y_0 + hk_2. \end{split}$$

Analiza błędu – szereg Taylora

Szereg Taylora rozwiązania numerycznego

$$\begin{split} y_1 &= y_0 + hf\Big(x_0 + \frac{h}{2}, y_0 + \frac{h}{2}f_0\Big) \\ &= y_0 + hf\big(x_0, y_0\big) + \frac{h^2}{2}\left(f_x + f_y f\right)(x_0, y_0) \\ &\quad + \frac{h^3}{8}\Big(f_{xx} + 2f_{xy}f + f_{yy}f^2\Big)(x_0, y_0) + \ldots. \end{split}$$

Analiza błędu – szereg Taylora cd..

Szereg Taylora rozwiązania analitycznego

$$y(x_0 + h) = y_0 + hf(x_0, y_0) + \frac{h^2}{2} \left(f_x + f_y f \right)(x_0, y_0)$$

$$+ \frac{h^3}{6} \left(f_{xx} + 2f_{xy}f + f_{yy}f^2 + f_y f_x + f_y^2 f \right)(x_0, y_0) + \dots$$

Różnica szeregów

$$y(x_0+h)-y_1=\frac{h^3}{24}\Big(f_{xx}+2f_{xy}f+f_{yy}f^2+4(f_yf_x+f_y^2f)\Big)(x_0,y_0)+\dots$$

$$\|y(x_0+h)-y_1\| \leq Kh^3$$

Metody Rungego-Kutty

 Niech s będzie liczbą etapów, s-etapowa otwarta metoda RK ma postać

$$\begin{aligned} k_1 &= f(x_0, y_0) \\ k_2 &= f(x_0 + c_2 h, y_0 + h a_{21} k_1) \\ k_3 &= f\left(x_0 + c_3 h, y_0 + h\left(a_{31} k_1 + a_{32} k_2\right)\right) \\ & \cdots \\ k_s &= f\left(x_0 + c_s h, y_0 + h\left(a_{s1} k_1 + \ldots + a_{s,s-1} k_{s-1}\right)\right) \\ y_1 &= y_0 + h\left(b_1 k_1 + \ldots + b_s k_s\right) \end{aligned}$$

$$c_i = \sum_{j=1}^{i-1} a_{ij}.$$

Rząd metody Rungego Kutty

 Metoda Rungego-Kutty ma rząd p, jeśli dla odpowiednio gładkich problemów zachodzi

$$||y(x_0+h)-y_1|| \le Kh^{p+1}$$

Tablice Butchera

0					
c_2	a_{21}				
c_3	a_{31}	a_{32}			
÷	:	:	٠.		
c_s	a_{s1}	a_{s2}		$a_{s,s-1}$	
	b_1	b_2		b_{s-1}	b_s

Metody 4-go rzędu

- Najbardziej znane
- Analityczne obliczenia bardzo uciążliwe i pracochłonne

0					0				
1/2	1/2				1/3	1/3			
1/2	0	1/2			2/3	-1/3	1		
1	0	0	1		1	1	-1	1	
	1/6	2/6	2/6	1/6		1/8	3/8	3/8	1/8
"The" Runge-Kutta method					3/8-Rule				

Rząd metody ma znaczenie

Wyznaczanie nowych metod

Korzysta się z teorii grafów do wyznaczania warunków na rząd

order p	1	2	3	4	5	6	7	8	9	10
no. of conditions	1	2	4	8	17	37	85	200	486	1205

Błąd globalny metod RK

• Dla układów z ograniczonymi pochodnymi (ew. warunkiem Lipszyca)

$$\|E\| \le h^p \, \frac{C'}{L} \Big(\exp \big(L(X-x_0)\big) - 1 \Big)$$

• Oznacza to, że błąd globalny jest rzędu Kh^p ze stalą zależną od długości przedziału.

Dobór długości kroku

- Jeżeli nie znamy rozwiązania analitycznego, to jak sprawdzić czy rozwiązanie jest dobre?
- Najstarszy sposób zrobić obliczenia z krokiem o połowę mniejszym te cyfry rozwiązania, które się nie zmieniły powinny być poprawne (bardzo niewydajna metoda)
- Lepsze metody estymacji błędu.

Wbudowane metody Rungego-Kutty

Dwie metody za cenę jednej

• Porównanie dwóch rozwiązań da nam estymatę błędu

Automatyczna kontrola długości kroku

Chcemy zapewnić tolerancję

$$|y_{1i} - \widehat{y}_{1i}| \le sc_i, \qquad sc_i = Atol_i + \max(|y_{0i}|, |y_{1i}|) \cdot Rtol_i$$

Całkowita miara błędu

$$\textit{err} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} \left(\frac{y_{1i} - \widehat{y}_{1i}}{\textit{sc}_i} \right)^2} \qquad \qquad \textit{err} \approx C \cdot h^{q+1}$$

• Porównujemy err do 1.

$$h_{\text{opt}} = h \cdot (1/err)^{1/(q+1)}$$

Lokalna ekstrapolacja

 Zamiast brać konserwatywne rozwiązanie rzędu niższego bierze się ekstrapolacyjne rozwiązanie rzędu wyższego

Uzysk zmiennego kroku

Bariery Butchera

- Nie istnieją metody p etapowe rzędu p dla p większego od 4
- Nie istnieją metody p+1 etapowe rzędu p dla p większego od 6
- Nie istnieją metody p+2 etapowe rzędu p dla p większego od 7

Metoda Dormanda-Prince'a 5(4)

0											
$\frac{1}{5}$	$\frac{1}{5}$										
$\frac{3}{10}$	$\frac{3}{40}$	$\frac{9}{40}$									
$\frac{4}{5}$	$\frac{44}{45}$	$-\frac{56}{15}$	$\frac{32}{9}$								
$\frac{8}{9}$	$\frac{19372}{6561}$	$-\frac{25360}{2187}$	$\frac{64448}{6561}$	$-\frac{212}{729}$							
1	$\frac{9017}{3168}$	$-\frac{355}{33}$	$\frac{46732}{5247}$	$\frac{49}{176}$	$-\frac{5103}{18656}$						
1	$\frac{35}{384}$	0	$\frac{500}{1113}$	$\frac{125}{192}$	$-\frac{2187}{6784}$	$\frac{11}{84}$					
y_1	$\frac{35}{384}$	0	$\frac{500}{1113}$	$\frac{125}{192}$	$-\frac{2187}{6784}$	$\frac{11}{84}$	0				
\widehat{y}_1	5179 57600	0	$\frac{7571}{16695}$	393 640	$-\frac{92097}{339200}$	$\frac{187}{2100}$	$\frac{1}{40}$				