What is claimed is:

A method for preparing a resiniferatoxin derivative compound of Formula
 (I):

$$R^{1}$$
 O HO CH_{3} $H_{2}C$ CH_{3} $H_{2}C$ CH_{3}

Formula (I)

5 wherein

R¹ is a substituent selected from the group consisting of hydrogen,

C₁₋₄alkylcarbonyl and formyl;

R² is iodine; and,

R³ is a substituent selected from the group consisting of C1-4alkoxy and

10 hydroxy;

comprising,

iodinating the ortho position on the phenyl ring of a homovanillic acid derivative compound of Formula (II);

$$R^{1}$$
 OHO

Formula (II)

to form an intermediate compound of Formula (III); and,

$$R^{1}$$
 O OH

Formula (III)

coupling the intermediate compound of Formula (III) with a resiniferonal orthophenylacetate alcohol compound of Formula (IV);

to form the compound of Formula (I).

- 5 2. The method of claim 1 wherein R¹ is acetyl and R³ is methoxy.
 - 3. The method of claim 1 wherein R² is ¹²⁷iodine.
- The method of claim 1 wherein R² is selected from the group consisting
 of ¹²⁵iodine and ¹³¹iodine.
 - 5. A method for preparing a labeled resiniferatoxin derivative compound of Formula (V):

Formula (V)

wherein

 R^1 is a substituent selected from the group consisting of hydrogen, C_{1-4} alkylcarbonyl and formyl; and,

R³ is C₁₋₄alkoxy;

5 comprising,

protecting the carboxylic acid of an intermediate compound of Formula (VI);

$$R^{1}$$
 O OH

Formula (VI)

wherein the hydroxyl group of the compound of Formula (VI) is esterified with C_{1-5} alkyl to form an esterified intermediate compound of Formula (VII);

$$R^{1}$$
 O C_{1-5} alky

Formula (VII)

stannylating the compound of Formula (VII) to form a stannylated intermediate compound of Formula (VIII);

$$R^{1}$$
 O C_{1-5} alkyl C_{1-5}

Formula (VIII)

iodinating the compound of Formula (VIII) to form a labeled intermediate compound of Formula (IX);

Formula (IX)

deprotecting the compound of Formula (IX) to form a labeled intermediate compound of Formula (X); and,

Formula (X)

5 coupling the labeled intermediate compound of Formula (X) with a resiniferonal orthophenylacetate alcohol compound of Formula (IV);

5

HO
$$H_2$$
C CH_3
 H_2 C CH_3
Formula (IV)

to form the compound of Formula (V).

- 6. The method of claim 5 wherein C₁₋₅alkyl is selected from the group consisting of *i*-propyl, *i*-butyl and *t*-butyl.
- 7. The method of claim 6 wherein C_{1-5} alkyl is t-butyl, R^1 is acetyl and R^3 is methoxy.
- 8. A resiniferatoxin derivative compound of Formula (I)

$$R^{1}$$
 O O CH_{3} $CH_$

Formula (I)

10 wherein

R¹ is a substituent selected from the group consisting of hydrogen,

C₁₋₄alkylcarbonyl and formyl;

R² is iodine; and,

 R^3 is a substituent selected from the group consisting of C_{1-4} alkoxy and

5

15

hydroxy.

- 9. The compound of claim 8 wherein R¹ is a substituent selected from the group consisting of hydrogen, formyl, acetyl, ethylcarbonyl and propylcarbonyl.
- 10. The compound of claim 9 wherein R¹ is a substituent selected from the group consisting of hydrogen, formyl and acetyl.
- 10 11. The compound of claim 10 wherein R¹ is a substituent selected from the group consisting of hydrogen and acetyl.
 - 12. The compound of claim 8 wherein R² is a substituent selected from the group consisting of ¹²⁵iodine, ¹²⁷iodine and ¹³¹iodine.
 - 13. The compound of claim 12 wherein R² is ¹²⁷iodine.
 - 14. The compound of claim 12 wherein R² is ¹²⁵iodine.
- 20 15. The compound of claim 8 wherein R³ is a substituent selected from methoxy, ethoxy, propoxy and butoxy.
 - 16. The compound of claim 15 wherein R³ is methoxy.
- 25 17. The compound of claim 8 selected from the group consisting of those of the formula:

wherein R¹ and R² are selected from

R'	R ²	
C(O)CH ₃	l;	
Н	l;	
C(O)CH ₃	¹²⁵ iodine;	
Н	¹²⁵ iodine;	
C(O)CH ₃	¹³¹ iodine; or,	
Н	¹³¹ iodine.	

18. A method for use of a resiniferatoxin derivative compound of Formula (I)

$$R^{1}$$
 O HO CH_{3} $H_{2}C$ CH_{3} $H_{2}C$ CH_{3}

Formula (I)

wherein

5 R¹ is a substituent selected from the group consisting of hydrogen,

C₁₋₄alkylcarbonyl and formyl;

R² is iodine; and,

- R³ is a substituent selected from the group consisting of C₁₄alkoxy and hydroxy;
- 5 comprising incubating said compound with a membrane at about 37°C for about 60 minutes.
 - 19. The method of claim 18 wherein the membrane is selected from the group consisting of a cell membrane and a tissue membrane.

10