

Machine Learning

Session 18 - T

Support Vector Machines – Part 2

Ciência de Dados Aplicada 2023/2024

SVMs - Recap

$$\min_{w,b} ||w||^2$$

such that

$$y^{(i)}(w^Tx^{(i)}+b) \ge 1$$
, for all i

SVMs - Slack Variables

Margin =

$$\xi_i \geq 0$$

 For 0 < ξ ≤ 1 point is inside the margin but on the correct side of the hyperplate. This is a margin violation;

• For $\xi > 1$ point is **misclassified**. Support Vector

 ξ allows margin violations or misclassified points, but with a **penalty**!

Misclassified •

SVMs - Soft Margin Solution

• The optimization problem becomes

$$\min_{\mathbf{w} \in \mathbb{R}^d, \xi_i \in \mathbb{R}^+} ||\mathbf{w}||^2 + C \sum_{i=1}^N \xi_i$$

such that
$$y_i(\mathbf{w}^{\top}\mathbf{x}_i + b) \geq 1 - \xi_i$$
 for $i = 1 \dots N$

• Every constraint can be satisfied if ξ_i is sufficiently large.

- C is a regularization parameter:
 - Small C allows constraints to be easily ignores → large margin
 - Large C makes constraints hard to ignore → narrow margin

• C = ∞ enforces all constraints → hard margin

SVMs - C

C = Infinity hard margin

SVMs - C

C = 10 soft margin

SVMs - Optimization

• Learning an SVM has been formulated as a **constrained** optimization problem over w and ξ

$$\min_{\mathbf{w} \in \mathbb{R}^d, \xi_i \in \mathbb{R}^+} ||\mathbf{w}||^2 + C \sum_i^N \xi_i \text{ subject to } y_i \left(\mathbf{w}^\top \mathbf{x}_i + b \right) \ge 1 - \xi_i \text{ for } i = 1 \dots N$$

• The constraint $y_i(\mathbf{w}^{\top}\mathbf{x}_i + b) \ge 1 - \xi_i$, can be written more concisely as:

$$y_i f(\mathbf{x}_i) \geq 1 - \xi_i$$

which, together with $\xi_i \geq 0$, is equivalent to:

$$\xi_i = \max(0, 1 - y_i f(\mathbf{x}_i))$$

SVMs - Optimization

 Hence, the learning problem is equivalent to the unconstrained optimization problem over w:

$$\min_{\mathbf{w} \in \mathbb{R}^d} ||\mathbf{w}||^2 + C \sum_{i}^{N} \max(0, 1 - y_i f(\mathbf{x}_i))$$
regularization loss function

- Point is outside the margin. No contribution to the loss.
- If $y_i f(x_i) = 1$:

• If $y_i f(x_i) > 1$:

- Point is on the margin. No contribution to the loss.
- If yif(xi) < 1:
 - Point violates the margin constraint. Contributes to the loss.

SVMs - Hinge Loss

• SVMs uses the **Hinge Loss** \rightarrow max(0, 1 – y_if(x_i))

Variation of the 0-1 loss.

• The previous quadratic optimization problem is known as the **primal** problem.

Instead, the SVM can be formulated to learn a linear classifier:

$$f(\mathbf{x}) = \sum_{i}^{N} \alpha_{i} y_{i}(\mathbf{x}_{i}^{\top} \mathbf{x}) + b$$

by solving a n optimization problem over α_i .

This is known as the dual problem!

• The <u>Representer Theorem</u> states that the solution w can always be written as a linear combination of the training data:

$$\mathbf{w} = \sum_{j=1}^{N} \alpha_j y_j \mathbf{x}_j$$

• If we substitute w in $f(x) = w^Tx + b$

$$f(x) = \left(\sum_{j=1}^{N} \alpha_j y_j \mathbf{x}_j\right)^{\top} \mathbf{x} + b = \sum_{j=1}^{N} \alpha_j y_j \left(\mathbf{x}_j^{\top} \mathbf{x}\right) + b$$

• And for w in the cost function $\min_{w} ||w||^2$ subject to $y_i(w^Tx_i + b) \ge 1$

$$||\mathbf{w}||^2 = \left\{ \sum_j \alpha_j y_j \mathbf{x}_j \right\}^{\top} \left\{ \sum_k \alpha_k y_k \mathbf{x}_k \right\} = \sum_{jk} \alpha_j \alpha_k y_j y_k (\mathbf{x}_j^{\top} \mathbf{x}_k)$$

• Hence, a equivalent optimization problem over α_j

$$\min_{\alpha_j} \sum_{jk} \alpha_j \alpha_k y_j y_k(\mathbf{x}_j^\top \mathbf{x}_k) \quad \text{subject to } y_i \left(\sum_{j=1}^N \alpha_j y_j(\mathbf{x}_j^\top \mathbf{x}_i) + b \right) \geq 1, \forall i$$

- Advantage of dual over primal form:
 - Dual form only involves $(x_j^Tx_k)$ which requires the training data points! However, many of α_i are 0 (the non support vectors).

SVMs - Handling non linear data

Introduce slack variables

Linear classifier not appropriate

SVMs - Solution 1

Using polar coordinates

- Data is linearly separable in polar coordinates
- Acts non linearly in original space

$$\Phi: \left(\begin{array}{c} x_1 \\ x_2 \end{array}\right) \to \left(\begin{array}{c} r \\ \theta \end{array}\right) \quad \mathbb{R}^2 \to \mathbb{R}^2$$

SVMs - Solution 2

Map data to a higher dimension

$$\Phi: \left(\begin{array}{c} x_1 \\ x_2 \end{array}\right) \to \left(\begin{array}{c} x_1^2 \\ x_2^2 \\ \sqrt{2}x_1x_2 \end{array}\right) \quad \mathbb{R}^2 \to \mathbb{R}^3$$

- Data is linearly separable in 3D.
- This means that the problem can still be solved by a linear classifier.

SVMs - Transformed Feature Space

BRAGA

• Learn a linear classifier in w for \mathbb{R}^D $\Phi(\mathbf{x})$ is a **feature map**

$$f(\mathbf{x}) = \mathbf{w}^{\top} \mathbf{\Phi}(\mathbf{x}) + b$$

Primal Classifier - Transformed Feature Space

• Classifier, with $\mathbf{w} \in \mathbb{R}^{D}$:

$$f(\mathbf{x}) = \mathbf{w}^{\top} \mathbf{\Phi}(\mathbf{x}) + b$$

• Learning, for $\mathbf{w} \in \mathbb{R}^{D}$

$$\min_{\mathbf{w} \in \mathbb{R}^{D}} ||\mathbf{w}||^{2} + C \sum_{i}^{N} \max(0, 1 - y_{i} f(\mathbf{x}_{i}))$$

• Map x to $\Phi(x)$ where data is linearly separable

Solve for w in high dimensional space

Dual Classifier - Transformed Feature Space

• Classifier:

$$f(\mathbf{x}) = \sum_{i}^{N} \alpha_{i} y_{i} \mathbf{x}_{i}^{\top} \mathbf{x} + b$$

$$\to f(\mathbf{x}) = \sum_{i}^{N} \alpha_{i} y_{i} \Phi(\mathbf{x}_{i})^{\top} \Phi(\mathbf{x}) + b$$

• Learning:

$$\max_{\alpha_i \ge 0} \sum_i \alpha_i - \frac{1}{2} \sum_{jk} \alpha_j \alpha_k y_j y_k \mathbf{x}_j^{\mathsf{T}} \mathbf{x}_k$$

$$\rightarrow \max_{\alpha_i \geq 0} \sum_i \alpha_i - \frac{1}{2} \sum_{jk} \alpha_j \alpha_k y_j y_k \Phi(\mathbf{x}_j)^\top \Phi(\mathbf{x}_k)$$

subject to

$$0 \le \alpha_i \le C$$
 for $\forall i$, and $\sum_i \alpha_i y_i = 0$

Dual Classifier - Transformed Feature Space

- Note that $\Phi(\mathbf{x})$ only occurs in pairs $\Phi(\mathbf{x}_j)^{\top}\Phi(\mathbf{x}_i)$
- Once the scalar products are computed, only the N dimensional vector α needs to be learnt; it is not necessary to learn in the D dimensional space, as it is for the primal
- Write $k(\mathbf{x}_j, \mathbf{x}_i) = \Phi(\mathbf{x}_j)^{\top} \Phi(\mathbf{x}_i)$. This is known as a **Kernel**

• Classifier:
$$f(\mathbf{x}) = \sum_{i}^{N} \alpha_i y_i \, k(\mathbf{x}_i, \mathbf{x}) + b$$

• Learning:
$$\max_{\alpha_i \geq 0} \sum_i \alpha_i - \frac{1}{2} \sum_{jk} \alpha_j \alpha_k y_j y_k \frac{k(\mathbf{x}_j, \mathbf{x}_k)}{k(\mathbf{x}_j, \mathbf{x}_k)}$$

subject to
$$0 \le \alpha_i \le C$$
 for $\forall i$, and $\sum_i \alpha_i y_i = 0$

SVMs - Kernel Trick

$$\Phi: \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \to \begin{pmatrix} x_1^2 \\ x_2^2 \\ \sqrt{2}x_1x_2 \end{pmatrix} \quad \mathbb{R}^2 \to \mathbb{R}^3$$

$$\Phi(\mathbf{x})^{\top} \Phi(\mathbf{z}) = \begin{pmatrix} x_1^2, x_2^2, \sqrt{2}x_1 x_2 \end{pmatrix} \begin{pmatrix} z_1^2 \\ z_2^2 \\ \sqrt{2}z_1 z_2 \end{pmatrix} \\
= x_1^2 z_1^2 + x_2^2 z_2^2 + 2x_1 x_2 z_1 z_2 \\
= (x_1 z_1 + x_2 z_2)^2 \\
= (\mathbf{x}^{\top} \mathbf{z})^2$$

Kernel Trick

• Classifier can be learnt and applied without explicitly computing $\Phi(x)$

• All that is required is the kernel $k(\mathbf{x}, \mathbf{z}) = (\mathbf{x}^{\top} \mathbf{z})^2$

SVMs - Example Kernels

• Linear kernels $k(\mathbf{x}, \mathbf{x}') = \mathbf{x}^{\top} \mathbf{x}'$

- Polynomial kernels $k(\mathbf{x}, \mathbf{x}') = \left(1 + \mathbf{x}^{\top} \mathbf{x}'\right)^{d}$ for any d > 0
 - Contains all polynomials terms up to degree d

• Gaussian kernels $k(\mathbf{x}, \mathbf{x}') = \exp\left(-||\mathbf{x} - \mathbf{x}'||^2/2\sigma^2\right)$ for $\sigma > 0$

Infinite dimensional feature space

SVM Classifer with Gaussian Kernel

N = size of training data

$$f(\mathbf{x}) = \sum_{i}^{N} \alpha_{i} y_{i} k(\mathbf{x}_{i}, \mathbf{x}) + b$$
weight (may be zero)

Gaussian kernel
$$k(\mathbf{x}, \mathbf{x}') = \exp(-||\mathbf{x} - \mathbf{x}'||^2/2\sigma^2)$$

Radial Basis Function (RBF) SVM

$$f(\mathbf{x}) = \sum_{i}^{N} \alpha_{i} y_{i} \exp\left(-||\mathbf{x} - \mathbf{x}_{i}||^{2}/2\sigma^{2}\right) + b$$

• Data is not linearly separable in the original feature space

$$\sigma = 1.0$$
 $C = \infty$

$$f(\mathbf{x}) = \sum_{i}^{N} \alpha_{i} y_{i} \exp\left(-||\mathbf{x} - \mathbf{x}_{i}||^{2}/2\sigma^{2}\right) + b$$

Session 18 Support Vector Machines

• Decrease C, gives wider (soft) margin.

$$\sigma = 1.0$$
 $C = 100$

$$\sigma = 1.0$$
 $C = 10$

$$\sigma = 1.0$$
 $C = \infty$

• Decrease sigma, moves towards nearest neighbour classifier

$$\sigma = 0.25$$
 $C = \infty$

$$\sigma = 0.1$$
 $C = \infty$

Resources

https://www.youtube.com/watch?v=efR1C6CvhmE

https://www.youtube.com/watch?v=Toet3EiSFcM

https://www.youtube.com/watch?v=Qc5lyLW_hns&t=1s