Simple SPI Master–Slave Interface

RTL Design and Verification with SVA, UVM, and COCOTB

--- Top-level design Wrapper ---

--- UVM Testbench Architecture ---

Design Specifications

1.Master Specs

Port	Direction	Function
data_in	input	Parallel input vector from the wrapper representing a read/write transaction. This
		data is serialized and transmitted to the slave via the MOSI line.
start	input	Initiates an SPI transaction when asserted.
busy	output	Indicates an ongoing SPI transfer. When busy is high, new transactions via start
		are ignored until the current transfer completes.
data_out	output	Parallel output data received via MISO, valid after transfer completes.
done	output	Asserted for one cycle when the current SPI transaction (read/write) finishes.
ss_n	output	Active-low signal used to select the slave device. When asserted, the master
		initiates transmission by sending the data_in starting with the MSB on the next
		clock cycle on MOSI
MOSI	output	Serial data line for transmitting bits to the slave, sending the data_in vector
		serially starting from the most significant bit (MSB)
sready	input	Indicates the slave is ready to receive the next transaction. The master waits until
		this signal is asserted, which occurs after the slave completes the current
		transaction.
valid_MISO	input	Indicates valid data is present on the MISO line.
MISO	input	Serial data line to receive bits from the slave.

2.Slave Specs

2.1.Slave FSM Specs

Port	Direction	Function
sclk	input	Serial clock signal driven by the master. The slave uses this clock to sample
		incoming data on MOSI and shift out data on MISO.
ss_n	input	Active-low slave select. When asserted low by the master, the slave is activated
		and starts data reception/transmission on the next sclk edge.
MOSI	input	Serial data line carrying bits from the master to the slave. Data is typically shifted
		in MSB first.
sready	output	Indicates the slave is ready to accept a new transaction. Asserted after
		completing the current read/write operation.
valid_MISO	output	Asserted when the slave has valid data available on the MISO line for the master
		to read.
MISO	output	Serial data line carrying bits from the slave to the master, shifted out in sync with
		sclk.

2.2.Slave RAM Specs

Port	Direction	Function
rx_valid	input	Asserted by the FSM when a complete 10-bit command has been received via
		MOSI. Indicates valid data for processing.
rx_data	input	The 10-bit vector received from MOSI, containing the command (e.g., read/write)
		and address/data
tx_valid	output	Asserted by the FSM during a read transaction to indicate valid tx_data is
		available for transmission.
tx_data	output	The 8-bit data read from memory, which will be serialized and sent to the master
		via MISO

2.2.1.Slave RAM operations

din[9:8]	command	description
00	Write	hold din[7:0] as write address
01	write	Write din[7:0] in the memory with the write
		address held previously
10	read	Hold din[7:0] as read address
11	read	Read the memory with the read address
		held previously.

Mahmoud Abdo

Slave Operations Summary

When the SPI slave is selected, it receives and assembles a 10-bit serial input from MOSI, starting with the MSB first. These 10 bits are then combined into a 10-bit vector and sent to the RAM unit. The RAM interprets the two most significant bits (MSBs) as control bits to determine whether to store or retrieve data:

- 2'b00: Stores the remaining 8 bits as a write address.
- 2'b01: Stores the remaining 8 bits as data at the previously stored write address.
- 2'b10: Stores the remaining 8 bits as a read address.
- 2'b11: Retrieves the data from the previously stored read address.

Once data is retrieved, the FSM (Finite State Machine) processes the 8-bit output, serializes it on MISO, and asserts the MISO valid signal. This cycle continues accordingly.

SLAVE FSM

Master FSM

* TESTING & VERIFYING

1.Cocotb Results

```
mahmoud_abdo_001@DESKTOP-877H80L: /mnt/d/DDVPs/SPI/Python_testing
                                                                                                                                                                • • •
                                                                  Running tests with cocotb v1.9.2 from /home/mahmoud_abdo_001/myenv/lib/python3.12/site-pac
     0.00ns INFO
                        cocotb
 ages/cocotb
      0.00ns INFO
                                                                  Seeding Python random module with 1749986432
                                                                 Found test wrapper_tb.test_spi_write
Found test wrapper_tb.test_spi_read
Found test wrapper_tb.test_spi_read_write
running test_spi_write (1/3)
Test 1000 randomized write operations
     0.00ns INFO
                        cocotb.regression
     0.00ns INFO
                        cocotb.regression
     0.00ns INFO
                        cocotb.regression
     0.00ns INFO
                        cocotb.regression
                                                                  test_spi_write pas
640120.00ns INFO
                        cocotb.regression
                                                                    unning test_spi_read (2/3)
Test 1000 randomized write+read operations with verification
640120.00ns INFO
                        cocotb.regression
2160240.00ns INFO
                         cocotb.regression
                                                                   test_spi_read pa
                                                                   rest_spi_read passed
running test_spi_read_write (3/3)
Test 500 write followed immediately by read
test_spi_read_write passed
2160240.00ns INFO
                         cocotb.regression
2920360.00ns INFO
                          cocotb.regression
2920360.00ns INFO
                          cocotb.regression
                                                                   ** TEST STATUS SIM TIME (ns) REAL TIME (s) RATIO (ns/s) **
                                                                   ** wrapper_tb.test_spi_write PASS 640120.00 17.36 36878.25 **

** wrapper_tb.test_spi_read PASS 1520120.00 25.45 59728.29 **

** wrapper_tb.test_spi_read_write PASS 760120.00 17.24 44095.77 **
                                                                   ** TESTS=3 PASS=3 FAIL=0 SKIP=0
                                                                                                                        2920360.00
                                                                                                                                                             48141.00 **
```

Test Report : results.xml

wrapper_tb

- test spi write
- test spi read
- test spi read write

Test Suite: all

Package: all

Results

Duration	0.0 sec
Tests	3
Failures	0

Tests

wrapper_tb

Test case:	test_spi_write
Outcome:	Passed
Duration:	17.358 sec
Test case:	test_spi_read
Outcome:	Passed
Duration:	25.451 sec
Test case:	test_spi_read_write
Outcome:	Passed

2- SVA Results

94.44%

100%

97.22%

3- agents coverage collectors Results

assert inst

3.1. Wrapper Coverage Collector & coverage summery


```
*****
                                               Opcode Commands: 100.00%
uvm_test_top.env.w_cov [COV_REPORT]
                                      *****
                                               Start Signal: 100.00%
uvm test top.env.w cov [COV_REPORT]
                                      *****
uvm test top.env.w cov [COV REPORT]
                                               Done Signal: 100.00%
uvm_test_top.env.w_cov [COV REPORT]
                                      *****
                                               Busy Signal: 100.00%
uvm test top.env.w cov [COV REPORT]
                                       *****
                                               Input Data Patterns: 100.00%
                                       *****
uvm_test_top.env.w_cov [COV_REPORT]
                                               Output Data Patterns: 100.00%
                                      *****
uvm_test_top.env.w_cov [COV_REPORT]
                                               Opcode/Start Cross: 100.00%
                                      *****
uvm test top.env.w cov [COV REPORT]
                                               Dout/Done Cross: 100.00%
```

3.2. Master Coverage Collector & coverage summery

3.3. Slave FSM Coverage Collector & coverage summery

3.4. Slave RAM Coverage Collector & coverage summery

4.Scoreboard Results

4.1. Wrapper Scoreboard Results

4.2. Master Scoreboard Results

```
******** SPI Master Scoreboard Results
uvm test top.env.master sb [SB REPORT]
                                         ****
uvm test top.env.master sb [SB REPORT]
                                                 Total Transactions: 920006
uvm_test_top.env.master_sb [SB_REPORT]
                                         ****
                                                Write Transactions: 480006
                                         ****
uvm test top.env.master sb [SB REPORT]
                                                 Read Transactions: 439999
                                         ****
uvm test top.env.master sb [SB REPORT]
                                                 Errors Detected: 0
                                         ****
                                                 SPI Master Scoreboard: ALL TESTS PASSED
uvm test top.env.master sb [SB REPORT]
```

4.3. Slave FSM Scoreboard Results

```
******* SPI Slave FSM Scoreboard Results
uvm test top.env.fsm sb [SB REPORT]
                                   ****
uvm test top.env.fsm sb [SB REPORT]
                                           Total Transactions: 920000
                                    ****
uvm_test_top.env.fsm_sb [SB_REPORT]
                                           Write Operations: 30000
                                    ****
                                           Read Operations: 20000
uvm_test_top.env.fsm_sb [SB_REPORT]
                                    ****
uvm_test_top.env.fsm_sb [SB_REPORT]
                                           Protocol Errors: 0
                                    ****
uvm test top.env.fsm sb [SB REPORT]
                                           FSM PROTOCOL: ALL CHECKS PASSED
```

4.4. Slave RAM Scoreboard Results

```
********* SLAVE RAM RESULTS
uvm test top.env.ram sb [report phase]
                                       ****
                                               total write address transactions: 15000
uvm_test_top.env.ram_sb [report_phase]
uvm test top.env.ram sb [report phase]
                                       ****
                                               total write data transactions: 15000
                                       ****
uvm_test_top.env.ram_sb [report_phase]
                                               total read address transactions: 10000
                                       ****
uvm test top.env.ram sb [report phase]
                                               total read data transactions: 10000
                                       ****
uvm test top.env.ram sb [report phase]
                                               total successful ram transactions: 10000
                                       ****
uvm_test_top.env.ram_sb [report_phase]
                                               total failed ram transactions: 0
```


