Homework 1

Definition. Let Σ be a subset of (X, d). We say Σ is **bounded** if there exists $x_0 \in X$ and $0 < r < \infty$ such that $\Sigma \subset B_r(x_0)$.

1. Prove that Σ is bounded if and only if there exists L>0 such that

$$d(x, x') \le L$$

for any $x, x' \in \Sigma$.

Proof (\Longrightarrow) Suppose Σ is bounded by $B_r(x_0)$. Then for any $x, x' \in \Sigma$, we know $d(x, x_0) < r$ and $d(x', x_0) < r$ since $\Sigma \subset B_r(x_0)$. Thus, by triangle inequality, d(x, x') < 2r, so we let L = 2r and we are done.

(\iff) Suppose there exists L > 0 such that $d(x, x') \leq L$ for any $x, x' \in \Sigma$. Then fix any $x_0 \in \Sigma$, and Σ is bounded by $B_L(x_0)$, since for any $x \in \Sigma$, we have $d(x, x_0) \leq L$.

- **2.** Suppose Σ is bounded and $A \subset \Sigma$.
 - (a) Prove that A is bounded.

Proof Obvious.[†]

Definition. Define diam $(\Sigma) = \sup_{\delta, \delta' \in \Sigma} d(\delta, \delta')$.

(b) Prove that diam $(A) \leq \operatorname{diam}(\Sigma)$.

Proof For any $x, x' \in A$, we also know $x, x' \in \Sigma$, so $d(x, x') \leq \operatorname{diam}(\Sigma)$. Since $\operatorname{diam}(\Sigma)$ is an upper bound for $d|_{A \times A}$, then $\operatorname{diam}(A) = \sup_{\delta, \delta' \in A} d(\delta, \delta') \leq \operatorname{diam}(\Sigma)$.

3. Let (X, d) be a metric space, and let

$$d_p((x,y),(x',y')) = d(x,x') + d(y,y').$$

(a) Show that d_p is a metric on X^2 .

Proof

• Since (x, y) = (x', y') iff both x = x' and y = y', and since d is a metric, then

$$d_p((x,y),(x',y')) = 0 \iff d(x,x') = 0 \text{ and } d(y,y') = 0$$

 $\iff x = x' \text{ and } y = y',$

so d_p is positive-definite.

[†]I can't write "obvious" on a homework problem? All right. Observe that $A \subset \Sigma \subset B_r(x_0)$, so $A \subset B_r(x_0)$.

• To see that d_p is symmetric, observe that d is symmetric, so

$$d_p((x,y),(x',y')) = d(x,x') + d(y,y')$$

= $d(x',x) + d(y',y)$
= $d_p((x',y'),(x,y)).$

• Now we show that the triangle inequality holds.

$$d_p((x_1, x_2), (y_1, y_2)) + d_p((y_1, y_2), (z_1, z_2)) = d(x_1, y_1) + d(x_2, y_2) + d(y_1, z_1) + d(y_2, z_2)$$

$$= d(x_1, y_1) + d(y_1, z_1) + d(x_2, y_2) + d(y_2, z_2)$$

$$\geq d(x_1, z_1) + d(x_2, z_2)$$

Thus d_p is positive-definite, symmetric, and has the triangle inequality, so it is a metric on X^2 .

(b) Prove that $d: X \times X \to (\mathbb{R}, MKM)$ is continuous.

Proof Let $r \in \mathbb{R}$, be given. Then choose $x, y \in X$ such that $d(x, y) \leq r$. Let $\epsilon > 0$. Observe that for any $(x', y') \in B_{\frac{\epsilon}{2}}((x, y))$,

$$d(x, x') + d(y, y') = d_p((x', y'), (x, y)) < \frac{\epsilon}{2},$$

so $d(x,x')<\frac{\epsilon}{2}$ and $d(y,y')<\frac{\epsilon}{2}$. Now by the triangle inequality,

$$d(x', y') \le d(x', x) + d(x, y) + d(y, y') = r + \epsilon$$

and

$$d(x', y') \ge d(x, y) - d(x', x) - d(y, y') = r - \epsilon,$$

so $d(x', y') \in B_{\epsilon}(r)$, which means that d is continuous by the δ - ϵ definition.

4. Give examples to show that if $B_r(x) = B_s(y)$, it need not be true that r = s or x = y.

Proof Consider $(\mathbb{R}, d_{\epsilon})$, where $d_{\epsilon}(x, y) = \min(|x - y|, 1)$. Then $B_0(100) = B_1(50) = \mathbb{R}$.