Bài 3. ĐƯỜNG TIỆM CẬN CỦA ĐỒ THỊ HÀM SỐ

A. LÝ THUYẾT CẦN NHỚ

1. Đường tiêm cân ngang (TCN):

 \bigcirc Định nghĩa: Đường thẳng y=m được gọi là một đường tiệm cận ngang (hay tiệm cận ngang) của đồ thị hàm số y=f(x) nếu

$$\lim_{x \to -\infty} f(x) = m \text{ hoặc } \lim_{x \to +\infty} f(x) = m.$$

Đường thẳng y=m là tiệm cận ngang của đồ thị hàm số y=f(x) được minh hoạn hư hình bên dưới

Các bước tìm TCN:

- ① Tính $\lim_{x \to +\infty} f(x)$ và $\lim_{x \to -\infty} f(x)$.
- ② Xem ở "vị trí" nào ra kết quả hữu hạn thì ta kết luận có tiệm cận ngang ở "vị trí" đó.

2. Đường tiệm cận đứng (TCĐ)

 \bigcirc Định nghĩa: Đường thẳng x=a được gọi là một đường tiệm cận đứng (hay tiệm cận đứng) của đồ thị hàm số y=f(x) nếu ít nhất một trong các điều kiện sau thoả mãn:

$$\lim_{x\to a^-}f(x)=+\infty,\ \lim_{x\to a^+}f(x)=+\infty,\ \lim_{x\to a^-}f(x)=-\infty,\ \lim_{x\to a^+}f(x)=-\infty.$$

Đường thẳng x=a là tiệm cận đứng của đồ thị hàm số y=f(x) được minh hoạ như hình bên dưới.

Các bước tìm TCĐ:

ĐIỂM:

"It's not how much time you have, it's how you use it."

QUICK NOTE

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	Ì

•	•	•	•	•	•	٠	٠	٠	٠	٠	•	•	•	•	•	٠	•	٠	٠	•	•	٠	٠	٠	٠	٠	•	•	•	•	•	•	
•			•	•	•	•	•	•	•	•	•	•	•	•	•		•			•	•	•	•	•	•	•	•	•	•	•	•	•	

IICK	NIC	V-1
	- IXIC	,,,,,

① Tìm nghiệm của mẫu, giả sử nghiệm đó là $x = x_0$.

2 Tính giới hạn một bên tại x_0 . Nếu xảy ra $\lim_{x\to x_0^-} f(x) = \infty$ hoặc $\lim_{x\to x_0^+} f(x) = \infty$ ∞ thì ta kết luận $x = x_0$ là đường tiệm cận đứng.

3. Đường tiêm cân xiên

 \bigcirc Định nghĩa: Đường thẳng y = ax + b, $a \neq 0$, được gọi là **đường tiệm cận xiên** (hay **tiệm cận xiên**) của đồ thị hàm số y = f(x) nếu

$$\lim_{x \to -\infty} [f(x) - (ax+b)] = 0 \text{ hoặc } \lim_{x \to +\infty} [f(x) - (ax+b)] = 0.$$

Đường thẳng y = ax + b là tiệm cận xiên của đồ thị hàm số y = f(x) được minh hoạ như hình bên dưới:

Các bước tìm TCX y = ax + b: Ta xác định hệ số của a và b trong 2 trường hợp sau:

① Tính
$$a = \lim_{x \to +\infty} \frac{f(x)}{x}$$
, $b = \lim_{x \to +\infty} [f(x) - ax]$.

$$\text{ \em 2 Tinh } a = \lim_{x \to -\infty} \frac{f(x)}{x}, \, b = \lim_{x \to -\infty} [f(x) - ax].$$

B. PHÂN LOAI VÀ PHƯƠNG PHÁP GIẢI TOÁN

Dạng 1. Bài toán tìm tiệm cận đứng và tiệm cận ngang của đồ thị hàm số

Cho hàm số y = f(x). Để tìm tiệm cận đứng và tiệm cận ngang, ta làm như sau:

⊘ Các bước tìm tiệm cận đứng:

① Tìm nghiệm của mẫu, giả sử nghiệm đó là $x = x_0$.

② Tính giới hạn một bên tại x_0 . Nếu xảy ra $\lim_{x \to x_0^-} f(x) = \infty$ hoặc $\lim_{x \to x_0^+} f(x) = \infty$ ∞ thì ta kết luận $x=x_0$ là đường tiệm cận đứng.

⊘ Các bước tìm tiệm cận ngang:

① Tính $\lim_{x \to +\infty} f(x)$ và $\lim_{x \to -\infty} f(x)$.

2 Xem ở "vị trí" nào ra kết quả hữu hạn thì ta kết luận có tiệm cận ngang ở

V Lưu ý: Đồ thị hàm số $y = \frac{ax+b}{cx+d}$ luôn có TCĐ $x = -\frac{d}{c}$ và TCN: $y = \frac{a}{c}$.

BÀI TẬP TỰ LUẬN

VÍ DU 1. Xác định tiệm cận đứng và tiệm cận ngang của đồ thị hàm số cho bởi công thức

a)
$$y = \frac{2x-1}{x+1}$$
;

b)
$$y = \frac{2x-3}{1-2x}$$

a)
$$y = \frac{2x-1}{x+1}$$
; b) $y = \frac{2x-3}{1-2x}$; c) $y = \frac{x^2-5x+4}{x^2-1}$; d) $y = \frac{2x-1}{x^2-3x+2}$

BÀI TẬP TRẮC NGHIỆM

PHÂN I. Câu trắc nghiệm nhiều phương án lựa chọn. Mỗi câu hỏi học sinh chỉ chọn một phương án.

CÂU 1. Đường tiệm cận ngang của đồ thị hàm số $y = \frac{2x-4}{x+2}$ là

$$\bigcirc x = 2.$$

$$\mathbf{C}$$
 $x = -2$.

$$\mathbf{D}y = -2.$$

CÂU 2. Tìm tiệm cận ngang của đồ thị hàm số $y = \frac{2x+1}{x+1}$.

$$\mathbf{A}y = -2.$$

$$\mathbf{B}$$
 $x = -2$.

$$\bigcirc y = 2$$

$$\mathbf{D}$$
 $x = 1.$

CÂU 3. Đường thẳng y=3 là tiệm cận ngang của đồ thị hàm số nào sau đây?

$$= \mathbf{C}y = \frac{1+3x}{1+x}.$$

CÂU 4. Hàm số nào có đồ thị nhận đường thẳng x=2 làm đường tiệm cận đứng?

$$\bigcirc y = \frac{2}{x+2}.$$

$$\mathbf{B} y = \frac{1}{x+1}.$$

$$\mathbf{D} y = \frac{5x}{2-x}.$$

CÂU 5. Đường tiệm cận đứng của đồ thị hàm số $y = \frac{3x+1}{x-2}$ là đường thẳng

$$\mathbf{A}x = -2.$$

$$\bigcirc y = 3.$$

CÂU 6. Đường tiệm cận đứng của đồ thị hàm số $y = \frac{x+1}{x^2+4x-5}$ có phương trình là

$$\mathbf{A}x = -1.$$

B
$$y = 1; y = -5$$

B
$$y = 1; y = -5.$$
 C $x = 1; x = -5.$ **D** $x = \pm 5.$

CÂU 7. Tìm số đường tiệm cận của đồ thị hàm số $y = \frac{x^2 - 3x + 2}{x^2 - 4}$.

(A)1.

$$\mathbf{C}$$
2.

CÂU 8. Số đường tiệm cận của đồ thị hàm số $y = \frac{3}{x-2}$ là

(A)1.

(B)2.

CÂU 9. Cho hàm số y = f(x) có đồ thị là đường cong (C) và các giới hạn $\lim_{x \to a} f(x) = 1$,

 $\lim_{x\to 2^-} f(x)=1$, $\lim_{x\to +\infty} f(x)=2$, $\lim_{x\to -\infty} f(x)=2$. Hỏi mệnh đề nào sau đây đúng?

- (A) Đường thẳng y=2 là tiệm cận ngang của (C).
- (**B**) Đường thẳng y = 1 là tiệm cận ngang của (C).
- (**C**) Đường thẳng x=2 là tiệm cận ngang của (C).
- \bigcirc Đường thẳng x=2 là tiệm cận đứng của (C).

CÂU 10. Số tiệm cận đứng của đồ thị hàm số $y = \frac{\sqrt{x+9-3}}{x^2+x}$ là

(A) 3.

CÂU 11.

Cho hàm số y = f(x) xác định trên $\mathbb{R} \setminus \{\pm 1\}$ liên tục trên mỗi khoảng xác định và có bảng biến thiên như hình vẽ. Số đường tiệm cận của đồ thị hàm số là

- **(A)** 1.
- $(\mathbf{B})2.$
- **(C**)3. $(\mathbf{D})4.$

x	$-\infty$ –	-1	0	$1 + \infty$
y'	_	_	0 +	+
y	-2 $-\infty$	+∞	$+\infty$ 1	-2 $-\infty$

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

VNPmath - 0962940819
QUICK NOTE
SOICK NOIE

CÂU 12.

Cho hàm số y=f(x) xác định trên $\mathbb{R}\setminus\{0\}$, liên tục trên mỗi khoảng xác định và có bảng biến thiên như hình bên. Chọn khẳng định đúng.

- A Đồ thị hàm số có đúng một tiệm cận ngang.
- **B** Đồ thị hàm số có hai tiệm cận ngang.
- C Đồ thị hàm số có đúng một tiệm cận đứng.
- Dồ thị hàm số không có tiệm đứng và tiệm cận ngang.

CÂU 13.

Cho hàm số y=f(x) có bảng biến thiên như hình bên. Hỏi đồ thị hàm số đã cho có bao nhiêu đường tiệm cận?

PHẦN II. Câu trắc nghiệm đúng sai. Trong mỗi ý a), b), c), d) ở mỗi câu, học sinh chọn đúng hoặc sai.

CÂU 14. Cho hàm số y = f(x) có bảng biến thiên như hình bên. Xét tính đúng, sai của các khẳng định sau:

x	$-\infty$ ()	2	$+\infty$
y'	_	_	0 +	
y	2	$+\infty$		+∞

Mệnh đề	Ð	S
a) $f(-5) < f(4)$.		
b) Hàm số có giá trị nhỏ nhất bằng 2.		
c) Đồ thị hàm số có tiệm cận đứng $x = 0$.		
d) Đồ thị hàm số không có tiệm cận ngang.		

CÂU 15. Cho hàm số hàm số $y=\frac{-4x+5}{2x+3}$ có đồ thị (C). Xét tính đúng sai của các khẳng định sau:

Mệnh đề	Ð	S
a) Hàm số không có cực trị.		
b) Đồ thị hàm số có tiệm cận đứng $x = -3$.		
c) Đồ thị hàm số có tiệm cận ngang $y = -2$.		
d) Các đường tiệm cận của đồ thị tạo với hai trục toạ độ một hình chữ nhật có diện tích bằng 3.		

QUICK NOTE

🖶 Dạng 2. Bài toán tìm tiệm cận đứng và tiệm cận xiên của đồ thị hàm số

- **© Các bước tìm TCX y = ax + b:** Ta xác định hệ số của a và b trong 2
 - ① Tính $a = \lim_{x \to +\infty} \frac{f(x)}{x}$, $b = \lim_{x \to +\infty} [f(x) ax]$.
 - ② Tính $a = \lim_{x \to -\infty} \frac{f(x)}{x}$, $b = \lim_{x \to -\infty} [f(x) ax]$.
- Lưu ý:
 - ① Nếu a = 0 thì tiệm cận xiên chính là tiệm cận ngang.
 - ② Đối với hàm số phân thức $f(x) = \frac{ax^2 + bx + c}{mx + n}$, ta có thể chia đa thức, biến đổi về dang

 $f(x) = a'x + b' + \frac{e}{mx + n}$, với $e \neq 0$

Suy ra y = a'x + b' là đường tiệm cận xiên của đồ thị hàm số.

BÀI TẬP TƯ LUÂN

VÍ DU 1. Tìm các tiệm cận đứng và tiệm cận xiên của đồ thị hàm số sau:

a)
$$y = \frac{x^2 + 2}{2x - 4}$$
;

b)
$$y = \frac{2x^2 - 3x - 6}{x + 2}$$

b)
$$y = \frac{2x^2 - 3x - 6}{x + 2}$$
; c) $y = \frac{2x^2 + 9x + 11}{2x + 5}$.

BÀI TẬP TRẮC NGHIỆM

PHẨN I. Câu trắc nghiệm nhiều phương án lựa chọn. Mỗi câu hỏi học sinh chỉ chọn một phương án.

CÂU 1. Đường tiệm cận xiên của đồ thị hàm số $y = f(x) = 2x - 1 - \frac{1}{x+1}$ có phương trình

$$\bigcirc y = x - 1.$$

(B)
$$y = 2x - 1$$
. **(C)** $y = x - 1$. **(D)** $y = 2x + 1$.

CÂU 2. Đường tiệm cận xiên của đồ thị hàm số $y = f(x) = x + 3 + \frac{1}{2x+1}$ có phương trình

$$\mathbf{A}y = 2x + 1.$$

$$\bigcirc y = x - 3$$

$$\mathbf{C}$$
 $y = x + 3.$

$$(A) y = 2x + 1.$$
 $(B) y = x - 3.$ $(C) y = x + 3.$ $(D) y = 2x - 1.$

CÂU 3. Tìm tiệm cận xiên của đồ thị hàm số $y=f(x)=\frac{x^2+3x}{x-2}$

B
$$y = x - 2$$
. **C** $y = x + 5$. **D** $y = x - 5$.

$$\bigcirc y = x + 5.$$

$$\bigcirc y = x - 5$$

$$\bigcirc$$
 $y = 1.$

$$\bigcirc y = x + 2.$$

$$\bigcirc y = x$$

 $\textbf{CÂU 5.} \ \text{Tìm tiệm cận xiên của đồ thị hàm số } f(x) = \frac{x^2-3x+1}{x-2}.$

$$\mathbf{B})y = -3x + 1.$$

$$\bigcirc y = x - 2$$

$$\mathbf{D}y = x - 1.$$

CÂU 6. Đường tiệm cận xiên của đồ thị hàm số $y = \frac{2x^2 - 3x}{x + 5}$ đi qua điểm nào sau đây?

$$(B)(-4:-5).$$

$$(\mathbf{C})(6;-1).$$

$$\bigcirc$$
 (2; -10).

CÂU 7. Giao điểm của đường tiệm cận đứng và đường tiệm cận xiên của đồ thị hàm số

$$(\mathbf{C})(1;-1).$$

\bigcirc I	IICV	NOTE
SJ.	ш . к	

PHẦN II. Câu trắc nghiệm đúng sai. Trong mỗi ý a), b), c), d) ở mỗi câu, học sinh chọn đúng hoặc sai.

CÂU 8

Cho hàm số $y = f(x) = \frac{ax^2 + bx + c}{dx + e}$ có đồ thị như hình bên.

Mệnh đề	Ð	S
a) Tập xác định của hàm số là \mathbb{R} .		
b) Hàm số có hai điểm cực trị.		
c) Đồ thị hàm số có đường tiệm cận đứng là $x=0$.		
d) Đồ thị hàm số có đường tiệm cận xiên là $y = x + 1$.		

CÂU 9.

Cho đồ thị của hàm số $y=f(x)=\frac{2x^2}{x^2-1}$. Xét tính đúng sai của các khẳng định sau:

Mệnh đề	Đ	S
a) Đồ thị hàm số có 3 điểm cực trị.		
b) $\lim_{x \to -\infty} f(x) = 2$; $\lim_{x \to 1^{-}} f(x) = -\infty$.		
c) Đồ thị hàm số có 3 đường tiệm cận đứng $x = -1$, $x = 0$, $x = 1$.		
d) Đồ thị hàm số có hai đường tiệm cận ngang $y = 2$ và $y = 0$.		

Dạng 3. Bài toán về đường tiệm cận có chứa tham số

BÀI TẬP TỰ LUẬN

VÍ DỤ 1. Tìm tham số m để đồ thị hàm số

a)
$$y = \frac{3x-1}{x-m}$$
 có đường tiệm cận đứng là $x = 5$.

b)
$$y = \frac{(m+1)x - 5m}{2x - m}$$
 có tiệm cận ngang là đường thẳng $y = 1$.

VÍ DU 2. Tìm m để đồ thi hàm số

a)
$$y = \frac{x-2}{x^2 - mx + 1}$$
 có hai đường tiệm cận đứng.

b)
$$y = \frac{2x^2 - 3x + m}{x - m}$$
 có đường tiệm cận xiên.

BÀI TẬP TRẮC NGHIỆM

PHẨN I. Câu trắc nghiệm nhiều phương án lựa chọn. Mỗi câu hỏi học sinh chỉ chọn một phương án.

CÂU 1. Tìm tất cả các giá trị của m để đồ thị hàm số $y=\frac{mx+2}{r-5}$ có đường tiệm cận ngang đi qua điểm A(1;3).

$$(\mathbf{B})m=1.$$

$$(c)m = -1.$$

$$(\mathbf{D})m = 3$$

CÂU 2. Tìm tham số thực m để đồ thị hàm số $y=\frac{mx+3}{x-m}$ có tiệm cận đứng là đường x = 1, tiệm cận ngang là đường y = 1.

$$\bigcirc m = 1.$$

$$\mathbf{B}$$
 $m=2.$

$$(c)m = -1.$$

$$(\mathbf{D})m = 3$$

CÂU 3. Biết rằng hai đường tiệm cận của đồ thị hàm số $y = \frac{2x+1}{x-m}$ (với m là tham số) tạo với hai trục tọa độ một hình chữ nhật có diện tích bằng 2. Giá trị của m là

$$(\mathbf{B})m = -1.$$

$$(\mathbf{C})m=2.$$

$$(\mathbf{D})m = \pm 1.$$

CÂU 4. Tìm giá trị của m để đồ thị hàm số $y=\frac{2x^2-5x+m}{x-m}$ có tiệm cận đứng.

$$\mathbf{B}m \neq 0.$$

$$\bigcirc m \neq 2$$

$$\bigcirc \begin{cases} m \neq 0 \\ m \neq 2 \end{cases}$$

hai đường tiệm cận đứng?

$$\bigcirc$$
 \mathbf{B} $m \neq 5$.

$$(\mathbf{C})$$
 $m \in (-\infty; -4) \cup (4; +\infty) \setminus \{5\}.$

$$(\mathbf{D})m \in (-\infty; -4) \cup (4; +\infty).$$

CÂU 6. Cho hàm số $y = \frac{2x^2 - 3x + m}{x - m}$ có đồ thị (C). Tìm tất cả các giá trị của tham số m để (C) không có tiệm cận đứng

$$\mathbf{A}m = 0$$
 hoặc $m = 1$.

$$\bigcirc$$
 $m=2.$

$$\bigcirc m = 1.$$

$$(\mathbf{D})m = 0$$

CÂU 7. Tìm tất cả các giá trị của tham số thực m để đồ thị hàm số $y = \frac{x-2}{x^2 - mx + 1}$ có đúng 3 đường tiệm cận.

$$\bigcirc \left[\begin{array}{c} m > 2 \\ m < -2 \end{array} \right].$$

D
$$-2 < m < 2$$
.

CÂU 8. Cho hàm số $y = \frac{ax+1}{bx-2}$, xác định a và b để đồ thị của hàm số trên nhận đường

$$\bigcirc \begin{cases} a = 2 \\ b = 2 \end{cases}.$$

$$\bigcirc \begin{cases} a = 2 \\ b = -2 \end{cases}$$

CÂU 9. Cho hàm số $y=\frac{mx+1}{x+3n+1}$. Đồ thị hàm số nhận trực hoành và trực tung làm

$$\bigcirc m + n = \frac{2}{3}$$

$$\bigcirc m + n = 0$$

CÂU 10. Đồ thị hàm số $y=\frac{(4a-b)x^2+ax+1}{x^2+ax+b-12}$ nhận trục hoành và trục tung làm hai tiêm cận. Tính giá trị của a + b.

\bigcirc $a + b$	b = 10.
--------------------	---------

B)
$$a + b = 12$$
.

$$(c)a + b = 18.$$

$$\mathbf{D}a + b = 15$$

PHÂN II. Câu trắc nghiệm đúng sai. Trong mỗi ý a), b), c), d) ở mỗi câu, học sinh chọn đúng hoặc sai.

CÂU 11. Cho hàm số $y = \frac{mx^2 + 6x - 2}{x + 2}$, với m là tham số.

Mệnh đề	Ð	S
a) Tập xác định của hàm số là $\mathbb{R}\setminus\{-2\}$.		

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
٠	٠	٠	٠	٠	٠						•	•	•	•	•	٠		٠		٠							•	•	•		•	٠	

٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

•	٠	٠	٠	•	•	•		•	•	•	•	•				•	•	•	•	•	•	•	•	•	•	٠	

٠.																

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

\sim 1		I/ D		•
	ш	K I	VII —	

b) Đồ thị hàm số có tiệm cận ngang khi m > 0.

- c) Đồ thị hàm số có tiệm cận đứng khi $m \neq 0$.
- **d)** Tập hợp tất cả giá trị của m đề đồ thị có hai đường tiệm cận là $\mathbb{R}\setminus$

ե Dạng 4. Tìm các đường tiệm cận đồ thị hàm ấn

VÍ DỤ 1. Cho hàm số y = f(x) có bảng biến thiên như hình vẽ sau

Tìm TCĐ, TCN của đồ thị hàm số

a)
$$y = \frac{2}{f(x) - 3}$$

d) $y = \frac{x+1}{f(x)-4}$

b)
$$y = \frac{-3}{f(x) + 2}$$

e)
$$y = \frac{2}{f(x^2) + 3}$$

c)
$$y = \frac{x-2}{f(x)+5}$$

f)
$$y = \frac{4f(x) - 5}{3f(x) + 1}$$

VÍ DU 2.

Cho hàm bậc ba y = f(x) có đồ thị như hình vẽ. Tìm số tiệm cận đứng của đồ thị hàm số

a)
$$y = \frac{\sqrt{x+3}}{(x-1)f(x)}$$

b)
$$g(x)$$
 = $\frac{(x^2 + 4x + 3)\sqrt{x^2 + x}}{x[f^2(x) - 2f(x)]}$

BÀI TẬP TRẮC NGHIỆM

CÂU 1. Cho hàm số y = f(x) có bảng biến thiên như hình bên. Đồ thị hàm số $y = \frac{-5}{f(x) + 4}$ có bao nhiêu tiệm cận đứng?

x	$-\infty$	1		2		$+\infty$
y'	+		_		+	
y	-4	✓ ³ ✓		-5		$+\infty$

CÂU 2. Cho hàm số y = f(x) có bảng biến thiên như hình bên. Đồ thị hàm số y = $\frac{x+2}{2f(x)-1}$ có bao nhiều tiệm cận đứng?

x	$-\infty$		-1		0		1		$+\infty$
y'		+	0	_	0	+	0	_	
y	$-\infty$, 0 -		$-\frac{5}{3}$		· 0 ·		$-\infty$

QUICK NOTE

(A) 1.

B3.

C2.

 $\bigcirc 0.$

CÂU 3. Cho hàm số y=f(x) có bảng biến thiên như hình bên. Đồ thị hàm số y=f(x) $\frac{1}{2f(x)-3}$ có bao nhiều tiệm cận đứng?

x	$-\infty$		0		1		$+\infty$
y'		+	0	_	0	+	
y	$-\infty$		× ⁵ \		-1		+∞

A1.

CÂU 4. Cho hàm số y = f(x) có bảng biến thiên như hình bên. Đồ thị hàm số $y = \frac{x}{f(x) - 3}$ có bao nhiêu tiệm cận đứng?

x	$-\infty$		-1		0		1		$+\infty$
y'		_	0	+	0	_	0	+	
y	$+\infty$		~ ₀ /		× ³ \		· 0 /		$+\infty$

(A) 1.

B3.

 \mathbf{C} 2.

D4.

CÂU 5. Cho hàm số y = f(x) có bảng biến thiên như hình bên. Đồ thị hàm số $y = \frac{4}{f(x) + 1}$ có tiệm cận ngang là đường thẳng

x	$-\infty$		-1		2		$+\infty$
y'		+	0	_	0	+	
y	1		4		_5		1

B y = -5. **C** y = 2.

 $\mathbf{D}y = 4.$

CÂU 6. Cho hàm số y = f(x) có bảng biến thiên như hình bên. Đồ thị hàm số $y = \frac{2 - f(x)}{f(x) + 3}$ có tiệm cận ngang là đường thẳng

x	$-\infty$		0		2		$+\infty$
y'		_	0	+	0	_	
y	$+\infty$		· 1		, ⁵ \		$-\infty$

 $\mathbf{C}y=2.$

CÂU 7. Cho hàm số y = f(x) có bảng biến thiên như hình bên. Đồ thị hàm số y = f(x) $\frac{\mathbf{1}}{f^2(x)-4f(x)+4}$ có bao nhiều tiệm cận đứng?

x	$-\infty$		2		$+\infty$
y'		_	0	+	
y	1		-3		, 1

 $(\mathbf{C})_{2}$.

 $(\mathbf{D})0.$

QUICK NOTE

CÂU 8. Cho hàm số y=f(x) có bảng biến thiên như hình bên. Đồ thị hàm số $y=\frac{1}{f(3-x)-2}$ có bao nhiêu tiệm cận đứng?

x	$-\infty$		-2		2		$+\infty$
y'		+	0	_	0	+	
y	$-\infty$		× 3 <		~ ₀ /		$+\infty$

- **A**1.
- **B**3.
- \bigcirc 2.
- $\bigcirc 0$.

CÂU 9. Cho hàm số y = f(x) có bảng biến thiên như hình bên. Đồ thị hàm số $y = \frac{4}{f(x^2) - 2}$ có bao nhiều tiệm cận đứng?

x	$-\infty$	0		$+\infty$
y'	-	- 0	+	_
y	8	1		4

- **A** 5.
- **B**3.
- \mathbf{C} 2.
- \bigcirc 4.

CÂU 10. Cho hàm số y=f(x) có bảng biến thiên như hình bên. Đồ thị hàm số $y=\frac{2}{f(|x|)-3}$ có bao nhiêu tiệm cận ngang?

x	$-\infty$		0		2		$+\infty$
y'		+	0	_	0	+	
y	$-\infty$		× ³ \		-1		+∞

- **A**)4.
- **B**3.
- **C** 5.
- **D**6.

CÂU 11.

Cho hàm số bậc ba $f(x)=ax^3+bx^2+cx+d$ có đồ thị như hình vẽ bên. Đồ thị hàm số $g(x)=\dfrac{\sqrt{x+1}}{(x-3)\cdot f(x)}$ có bao nhiêu đường tiệm cận đứng?

- (A) 5.
- **B**)2.
- **(C**)4.
- **(D**)3.

CÂU 12.

Đường cong ở hình bên là đồ thị của hàm số $y=ax^3+bx^2+cx+d$. Đồ thị hàm số $y=\frac{(2x+1)\sqrt{x-1}}{x\cdot f(x-2)}$ có tất cả bao nhiêu tiêm cân đứng?

- **A**1.
- **B**3.
- **(C**)4.
- **D**2.

CÂU 13.

Cho hàm số y=f(x) có đồ thị cắt trực hoành tại đúng 3 điểm như hình bên. Đồ thị hàm số $y=\frac{(x+2)\sqrt{3-x}}{f(|x|)}$ có tất cả bao nhiêu tiệm cận đứng?

A1.

B3.

(C)4.

 \bigcirc 2.

CÂU 14.

Đường cong ở hình bên là đồ thị của hàm số $y=ax^3+bx^2+cx+d$. Đồ thị hàm số $y=\frac{(2x+1)\sqrt{1-x}}{f(|x|)}$ có tất cả bao nhiều tiệm cận đứng?

A1.

 $(\mathbf{B})_3.$

 \bigcirc 4.

 \bigcirc 2

CÂU 15.

Cho đồ thị hàm số y=f(x) và trục hoành có đúng 2 điểm chung như hình bên. Đồ thị hàm số $y=\frac{(x-1)\sqrt{3-x}}{f(x^2)}$ có tất cả bao nhiêu tiệm cận đứng?

A1.

B3.

C

 \bigcirc 2.

CÂU 16. Cho hàm số $y=ax^3+bx^2+cx+d$ có đồ thị như hình vẽ. Đồ thị của hàm số $g(x)=\frac{x^2-x}{f^2(x)-2f(x)}$ có bao nhiêu đường tiệm cận đứng?

 \bigcirc 2.

B3.

C)4.

D)5.

CÂU 17.

Cho hàm số y=f(x) có đạo hàm liên tục trên \mathbb{R} . Đồ thị hàm f(x) như hình vẽ. Số đường tiệm cận đứng của đồ thị hàm số

 $y = \frac{x^2 - 1}{f^2(x) - 4f(x)}$ bằng

(A) 3.

B)1.

 \bigcirc 2.

 \bigcirc 4.

٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	

QUICK NOTE

CÂU 18.

Cho hàm số f(x) có đồ thị như hình bên. Số đường tiệm cận đứng của đồ thị hàm số $y=\frac{(x^2-4)(x^2+2x)}{[f(x)]^2+2f(x)-3}$ là

CÂU 19.

Cho hàm số $f(x)=(x+3)(x+1)^2(x-1)(x-3)$ có đồ thị như hình vẽ. Đồ thị hàm số $g(x)=\frac{\sqrt{x-1}}{f^2(x)-9f(x)}$ có bao nhiều tiệm cận đứng và tiệm cận ngang?

(A)3.

 $(\mathbf{D})8.$

CÂU 20.

Cho hàm số $y = f(x) = ax^3 + bx^2 + cx + d$, có đồ thị như hình vẽ. Số đường tiệm cận đứng của đồ thị hàm số $y = \frac{x^2 + x - 2}{f^2(x) - f(x)}$ là

(A) 3.

CÂU 21.

Cho hàm số bậc ba $f(x) = ax^3 + bx^2 + cx + d$ có đồ thị như hình vẽ bên dưới. Hỏi đồ thị hàm số g(x) = $\frac{(x^2-3x+2)\sqrt{x-1}}{x[f^2(x)-f(x)]}$ có bao nhiều tiệm cận đứng?

(A) 5.

B)6.

(C)3.

(**D**)4.

CÂU 22.

Cho hàm số $f(x) = (x+3)(x+1)^2(x-1)(x-3)$ có đồ thị như hình vẽ. Đồ thị hàm số g(x) =

 $\frac{\sqrt{x-1}}{f^2(x) - 9f(x)}$ có bao nhiêu tiệm cận đứng và tiệm cận ngang?

(**A**) 3.

(B)4.

(C)9.

CÂU 23.

Cho hàm số bậc ba y=f(x) có đồ thị như hình vẽ bên. Đồ thị hàm số $g(x)=\frac{x\sqrt{x+1}}{f(x)\left[f^2(x)-16\right]}$ có bao nhiều tiệm cận đứng?

umg!
(A) 4.

B5.

(c)6.

 \bigcirc 7.

CÂU 24.

Cho y=f(x) là hàm số đa thức có đồ thị như hình vẽ bên. Đặt $g(x)=\frac{\sqrt{x-1}}{\left|f(x)\right|^2-2f(x)}$ có bao nhiều đường tiệm cận đứng?

A 5.

B)3.

C4.

D2.

CÂU 25.

Cho hàm số f(x) có đồ thị như hình bên. Số đường tiệm cận đứng của đồ thị hàm số $y=(x^2-4)(x^2+2x)$

 $[f(x)]^2 - 4f(x) + 3$

A4.

B 5.

(C)3.

 \bigcirc 2.

QUICK NOTE

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

•	•	٠	٠	٠	٠	٠	•	•	•	•	•	•	•	•	•	•	•	٠	٠	٠	٠	٠	•	•	•	•	•	•	•

LỜI GIẢI CHI TIẾT

Bài 3. ĐƯỜNG TIỆM CẬN CỦA ĐỔ THỊ HÀM SỐ

A. LÝ THUYẾT CẦN NHỚ

1. Đường tiệm cận ngang (TCN):

 \bigcirc Định nghĩa: Đường thẳng y = m được gọi là một **đường tiệm cận ngang** (hay **tiệm cận ngang**) của đồ thị hàm số y = f(x) nếu

$$\lim_{x \to -\infty} f(x) = m \text{ hoặc } \lim_{x \to +\infty} f(x) = m.$$

Đường thẳng y = m là tiệm cận ngang của đồ thị hàm số y = f(x) được minh hoạ như hình bên dưới

Các bước tìm TCN:

- ① Tính $\lim_{x \to +\infty} f(x)$ và $\lim_{x \to -\infty} f(x)$.
- 2 Xem ở "vị trí" nào ra kết quả hữu hạn thì ta kết luận có tiệm cận ngang ở "vị trí" đó.

2. Đường tiệm cận đứng (TCĐ)

 \bigcirc Định nghĩa: Đường thẳng x = a được gọi là một **đường tiệm cận đứng** (hay **tiệm cận đứng**) của đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau thoả mãn:

$$\lim_{x \to a^{-}} f(x) = +\infty, \ \lim_{x \to a^{+}} f(x) = +\infty, \ \lim_{x \to a^{-}} f(x) = -\infty, \ \lim_{x \to a^{+}} f(x) = -\infty.$$

Đường thẳng x=a là tiệm cận đứng của đồ thị hàm số y=f(x) được minh hoạ như hình bên dưới.

Các bước tìm TCĐ:

- ① Tìm nghiệm của mẫu, giả sử nghiệm đó là $x = x_0$.
- ② Tính giới hạn một bên tại x_0 . Nếu xảy ra $\lim_{x \to x_0^-} f(x) = \infty$ hoặc $\lim_{x \to x_0^+} f(x) = \infty$ thì ta kết luận $x = x_0$ là đường tiệm cận đứng.

3. Đường tiêm cân xiên

 \bigcirc Định nghĩa: Đường thẳng y = ax + b, $a \neq 0$, được gọi là **đường tiệm cận xiên** (hay **tiệm cận xiên**) của đồ thị hàm số y = f(x) nếu

$$\lim_{x\to -\infty} [f(x)-(ax+b)]=0 \text{ hoặc } \lim_{x\to +\infty} [f(x)-(ax+b)]=0.$$

Đường thẳng y = ax + b là tiệm cân xiên của đồ thị hàm số y = f(x) được minh hoạ như hình bên dưới:

 \bigcirc Các bước tìm TCX y = ax + b: Ta xác định hệ số của a và b trong 2 trường hợp sau:

① Tính
$$a = \lim_{x \to +\infty} \frac{f(x)}{x}$$
, $b = \lim_{x \to +\infty} [f(x) - ax]$.

② Tính
$$a = \lim_{x \to -\infty} \frac{f(x)}{x}$$
, $b = \lim_{x \to -\infty} [f(x) - ax]$.

B. PHÂN LOẠI VÀ PHƯƠNG PHÁP GIẢI TOÁN

Dạng 1. Bài toán tìm tiệm cận đứng và tiệm cận ngang của đồ thị hàm số

Cho hàm số y = f(x). Để tìm tiệm cận đứng và tiệm cận ngang, ta làm như sau:

- ▼ Các bước tìm tiệm cận đứng:
 - ① Tìm nghiệm của mẫu, giả sử nghiệm đó là $x = x_0$.
 -

 Tính giới hạn một bên tại x_0 . Nếu xảy ra $\lim_{x\to x_0^-}f(x)=\infty$ hoặc $\lim_{x\to x_0^+}f(x)=\infty$ thì ta kết luận $x=x_0$ là đường tiệm cận đứng.
- **⊘** Các bước tìm tiệm cận ngang:
 - ① Tính $\lim_{x \to +\infty} f(x)$ và $\lim_{x \to -\infty} f(x)$.
 - 2 Xem ở "vị trí" nào ra kết quả hữu hạn thì ta kết luận có tiệm cận ngang ở "vị trí" đó.
- **\bigcirc Lưu ý:** Đồ thị hàm số $y = \frac{ax+b}{cx+d}$ luôn có TCĐ $x = -\frac{d}{c}$ và TCN: $y = \frac{a}{c}$.

BÀI TẬP TƯ LUÂN

VÍ DU 1. Xác định tiệm cận đứng và tiệm cận ngang của đồ thị hàm số cho bởi công thức sau:

a)
$$y = \frac{2x-1}{x+1}$$
;

b)
$$y = \frac{2x-3}{1-2x}$$
;

c)
$$y = \frac{x^2 - 5x + 4}{x^2 - 1}$$
; d) $y = \frac{2x - 1}{x^2 - 3x + 2}$

d)
$$y = \frac{2x-1}{x^2-3x+2}$$
.

Lời giải.

- a) Xét $\lim_{x \to -1^+} \frac{2x-1}{x+1} = -\infty$ (hoặc $\lim_{x \to -1^-} \frac{2x-1}{x+1} = +\infty$) nên đường thẳng x = -1 là tiệm cận đứng. $\frac{2x-1}{x+1}=2$ nên đường thẳng y=2 là tiệm cận ngang.
- b) Ta có
 - Θ $\lim_{x\to\pm\infty}y=\lim_{x\to\pm\infty}\frac{2x-3}{1-2x}=-1$ suy ra y=-1 là tiệm cận ngang.
- c) Điều kiện xác định: $\begin{cases} x \neq -1 \\ x \neq 1. \end{cases}$
 - $\bigcirc \lim_{x \to +\infty} \frac{x^2 5x + 4}{x^2 1} = 1$

 - $\bigcirc \lim_{x \to 1} \frac{x^2 5x + 4}{x^2 1} = -\frac{3}{2}$

Vậy đồ thị hàm số có một tiệm cận ngang y=1 và một tiệm cận đứng x=-1.

- d) Tập xác định $\mathcal{D} = \mathbb{R} \setminus \{1, 2\}.$ Ta có

BÀI TẬP TRẮC NGHIỆM

Câu trắc nghiệm nhiều phương án lựa chọn. Mỗi câu hỏi học sinh chỉ chọn một phương án.

CÂU 1. Đường tiệm cận ngang của đồ thị hàm số $y = \frac{2x-4}{x+2}$ là

$$\mathbf{B}$$
 $x=2$

$$(\mathbf{c})x = -2$$

$$\mathbf{D}y = -2.$$

 $\lim_{x\to -\infty}\frac{\bar{2x}-4}{x+2}=2 \text{ và }\lim_{x\to +\infty}\frac{2x-4}{x+2}=2 \text{ nên hàm số có tiệm cận ngang là }y=2.$

$$\bigcirc x = 1.$$

Ta có $\lim_{x \to \pm \infty} \frac{2x+1}{-x+1} = -2.$

Chon đáp án (A

$$B y = \frac{x^2 + 3x + 2}{x - 2}$$

$$\bigcirc y = \frac{1+3x}{1+x}.$$

$$\mathbf{D}y = \frac{3x^2 + 2}{2 - x}.$$

Ta có $\lim_{x \to \pm \infty} \frac{1+3x}{1+x} = 3$ nên y = 3 là tiệm cận ngang của đồ thị hàm số $y = \frac{1+3x}{1+x}$.

CÂU 4. Hàm số nào có đồ thị nhận đường thẳng x=2 làm đường tiệm cận đứng?

(A)
$$y = x - 2 + \frac{1}{x+1}$$
. **(B)** $y = \frac{1}{x+1}$.

$$\bigcirc y = \frac{2}{x+2}.$$

$$\bigcirc y = \frac{5x}{2-x}.$$

🗩 Lời giải.

Xét hàm số $y = \frac{5x}{2-x}$

Ta có $\lim_{x \to 2^+} 5x = 10 > 0$; $\lim_{x \to 2^+} (2 - x)$ và x - 2 < 0 khi x > 2 suy ra $\lim_{x \to 2^+} \frac{5x}{2 - x} = -\infty$.

Vậy đồ thị hàm số $y = \frac{x \to 2^+}{2 - x}$ nhận đường thẳng x = 2 làm tiệm cận đứng.

CÂU 5. Đường tiệm cận đứng của đồ thị hàm số $y = \frac{3x+1}{x-2}$ là đường thẳng

$$\mathbf{B}$$
 $x=2.$

$$\mathbf{C}y = 3.$$

$$\bigcirc y = -\frac{1}{2}.$$

Dèi giải.

Ta có: $\lim_{x \to 2^+} \frac{3x+1}{x-2} = +\infty.$

CÂU 6. Đường tiệm cận đứng của đồ thị hàm số $y = \frac{x+1}{x^2+4x-5}$ có phương trình là

$$\mathbf{A}x = -1.$$

B
$$y = 1; y = -5.$$

$$\mathbf{C}$$
 $x = 1; x = -5.$

$$\mathbf{D}$$
 $x = \pm 5.$

🗩 Lời giải.

 $\mathrm{Ta}\ \mathrm{c\acute{o}}\ \lim_{x\to 1^+}y=+\infty,\, \lim_{x\to 1^-}y=-\infty,\, \lim_{x\to 5^+}y=+\infty,\, \lim_{x\to 5^-}y=-\infty.$

Vậy đồ thị hàm số có hai đường tiệm cận đứng là x=1 và x=-5.

CÂU 7. Tìm số đường tiệm cận của đồ thị hàm số $y = \frac{x^2 - 3x + 2}{x^2 + 4}$.

(**A**) 1.

(D)3.

🗩 Lời giải.

Tập xác định: $\mathcal{D} = \mathbb{R} \setminus \{\pm 2\}$.

Ta có $\lim_{x \to +\infty} y = 1 \Rightarrow$ đồ thị hàm số có 1 tiệm cận ngang là y = 1.

Ta lại có $\lim_{x \to 2} y = \lim_{x \to 2} \frac{x-1}{x+2} = \frac{1}{4}$ và $\lim_{x \to -2^+} y = \lim_{x \to -2^+} \frac{x-1}{x+2} = -\infty$ nên đồ thị hàm số có 1 tiệm cận đứng là x = -2.

Vậy đồ thị hàm số đã cho có 2 đường tiệm cận.

Chọn đáp án (C)......

CÂU 8. Số đường tiệm cận của đồ thị hàm số $y = \frac{3}{x-2}$ là

(**A**) 1.

 $(\mathbf{C})0.$

(**D**)3.

🗩 Lời giải.

Tiệm cân đứng x=2.

Tiệm cận ngang y = 0.

Chọn đáp án (B).....

CÂU 9. Cho hàm số y = f(x) có đồ thị là đường cong (C) và các giới hạn $\lim_{x \to 2^+} f(x) = 1$, $\lim_{x \to 2^-} f(x) = 1$, $\lim_{x \to +\infty} f(x) = 2$,

 $\lim_{x \to -\infty} f(x) = 2$. Hỏi mệnh đề nào sau đây đúng?

(**B**) Đường thẳng y=1 là tiệm cận ngang của (C).

(A) Đường thẳng y=2 là tiệm cận ngang của (C). (**C**) Đường thẳng x=2 là tiệm cận ngang của (C).

(**D**) Đường thẳng x=2 là tiệm cận đứng của (C).

Lời giải.

Ta có $\lim_{x \to +\infty} f(x) = 2$, $\lim_{x \to -\infty} f(x) = 2 \Rightarrow y = 2$ là tiệm cận ngang của (C).

CÂU 10. Số tiệm cận đứng của đồ thị hàm số $y = \frac{\sqrt{x+9-3}}{x^2+x}$ là

(**A**) 3.

 $(\mathbf{D})1.$

🗩 Lời giải.

Tập xác định $\mathcal{D} = [-9; +\infty) \setminus \{-1; 0\}.$

Tập xác định
$$\mathscr{D} = [-9; +\infty) \setminus \{-1; 0\}.$$
Ta có
$$\begin{cases} \lim_{x \to -1^+} \frac{\sqrt{x+9}-3}{x^2+x} = +\infty \\ \lim_{x \to -1^-} \frac{\sqrt{x+9}-3}{x^2+x} = -\infty \end{cases} \Rightarrow x = -1 \text{ là tiệm cận đứng.}$$

Ngoài ra $\lim_{x\to 0} \frac{\sqrt{x+9}-3}{x^2+x} = \frac{1}{6}$ nên x=0 không thể là một tiệm cận được.

Chon đáp án (D)...

CÂU 11.

Cho hàm số y = f(x) xác định trên $\mathbb{R} \setminus \{\pm 1\}$ liên tục trên mỗi khoảng xác định và có bảng biến thiên như hình vẽ. Số đường tiệm cận của đồ thị hàm số là

(**A**) 1.

(B)2.

x	$-\infty$ -	-1	0	1 +∞
y'	_	_	0 +	+
y	-2 $-\infty$	$+\infty$	1	$\begin{bmatrix} -2 \\ -\infty \end{bmatrix}$

🗩 Lời giải.

Dựa vào bảng biến thiên ta có:

$$\lim_{x \to -1^{\pm}} f(x) = \pm \infty. \lim_{x \to 1^{\pm}} f(x) = \mp \infty.$$

Do đó x=1 và x=-1 là các đường tiệm cận đứng của đồ thị hàm số.

Lại có $\lim_{x \to +\infty} f(x) = -2$. Do đó y = -2 là tiệm cận ngang của đồ thị hàm số.

Vậy đồ thị hàm số có 3 đường tiệm cận.

Chọn đáp án \bigcirc

CÂU 12.

Cho hàm số y = f(x) xác định trên $\mathbb{R} \setminus \{0\}$, liên tục trên mỗi khoảng xác định và có bảng biến thiên như hình bên. Chọn khẳng định đúng.

- (A) Đồ thị hàm số có đúng một tiệm cận ngang.
- (B)Đồ thị hàm số có hai tiệm cận ngang.
- (C)Đồ thị hàm số có đúng một tiệm cận đứng.
- (D)Đồ thị hàm số không có tiệm đứng và tiệm cận ngang.

x	$-\infty$	$1 + \infty$
y'	_	+ 0 -
y	+∞ -1	$-\infty$ 2 $-\infty$

Dèi giải.

Do $\lim_{x\to +\infty}y=-\infty$ và $\lim_{x\to -\infty}y=+\infty$ nên đồ thị hàm số không có tiệm cận ngang.

Do $\lim_{x \to \infty} y = +\infty$ suy ra x = 0 là tiệm cận đứng của đồ thị hàm số.

Chọn đáp án $\overline{\mathbb{C}}$

CÂU 13.

Cho hàm số y = f(x) có bảng biến thiên như hình bên. Hỏi đồ thị hàm số đã cho có bao nhiều đường tiệm cận?

 $(\mathbf{A})2.$

(B)3.

(**D**)1.

Lời giải.

Dựa vào bảng biến thiên của hàm số, suy ra

- \bigodot $\lim_{x\to +\infty} f(x) = 0$, đồ thị hàm số có tiệm cận ngang là y=0.
- $\lim_{x\to (-2)^+} f(x) = -\infty, \text{ đồ thị hàm số có tiệm cận đứng là } x = -2. \text{ Vậy đồ thị hàm số đã cho có 2 đường tiệm cận.}$

PHẦN II. Câu trắc nghiệm đúng sai. Trong mỗi ý a), b), c), d) ở mỗi câu, học sinh chọn đúng hoặc sai.

CÂU 14. Cho hàm số y = f(x) có bảng biến thiên như hình bên. Xét tính đúng, sai của các khẳng định sau:

x	$-\infty$ ()	2	$+\infty$
y'	_	_	0	+
y	$\begin{array}{c c} 2 \\ \hline -\infty \end{array}$	$+\infty$	2	+∞

Mệnh đề	Đ	S
a) $f(-5) < f(4)$.	X	
b) Hàm số có giá trị nhỏ nhất bằng 2.		X

Mệnh đề	Ð	S
c) Đồ thị hàm số có tiệm cận đứng $x = 0$.	X	
d) Đồ thị hàm số không có tiệm cận ngang.		X

🗩 Lời giải.

- a) Từ bảng biến thiên ta thấy f(-5) < 2 và f(4) > 2 nên f(-5) < f(4).
- b) Do $\lim_{x\to 0^-}y=-\infty$ nên hàm số không có giá trị nhỏ nhất.
- c) Do $\lim_{x\to 0^-}y=-\infty$ nên đồ thị hàm số có tiệm cận đứng x=0.
- d) Do $\lim_{x \to -\infty} y = 2y$ nên đồ thị hàm số có tiệm cận ngang y = 2.

Chọn đáp án a đúng b sai c đúng d sai

CÂU 15. Cho hàm số hàm số $y = \frac{-4x+5}{2x+3}$ có đồ thị (C). Xét tính đúng sai của các khẳng định sau:

Mệnh đề	Đ	S
a) Hàm số không có cực trị.	X	
b) Đồ thị hàm số có tiệm cận đứng $x = -3$.		X
c) Đồ thị hàm số có tiệm cận ngang $y = -2$.		X
d) Các đường tiệm cận của đồ thị tạo với hai trục toạ độ một hình chữ nhật có diện tích bằng 3.	X	

🗩 Lời giải.

Tập xác định $\mathscr{D} = \mathbb{R} \setminus \left\{ -\frac{3}{2} \right\}$

 $\lim_{x\to\left(-\frac{3}{2}\right)^+}y=+\infty;\ \lim_{x\to\left(-\frac{3}{2}\right)^-}y=-\infty \ \text{nên đồ thị hàm số có tiệm cận đứng } x=-\frac{3}{2}$

 $\lim_{x\to -\infty}y=-2,\ \lim_{x\to +\infty}y=-2$ nên đồ thị hàm số có một tiệm cận ngang là y=-2

Diện tích hình chữ nhật cần tìm là $S = \left| -\frac{3}{2} \right| \cdot |-2| = 3$

Chọn đáp án a đúng b sai c sai d đúng

Dạng 2. Bài toán tìm tiệm cận đứng và tiệm cận xiên của đồ thị hàm số

- lackloss Các bước tìm TCX y = ax + b: Ta xác định hệ số của a và b trong 2 trường hợp sau:
 - ① Tính $a = \lim_{x \to +\infty} \frac{f(x)}{x}$, $b = \lim_{x \to +\infty} [f(x) ax]$.
 - $\text{ 2 Tinh } a = \lim_{x \to -\infty} \frac{f(x)}{x}, \ b = \lim_{x \to -\infty} [f(x) ax].$
- 🗸 Lưu ý:
 - ① Nếu a = 0 thì tiêm cân xiên chính là tiêm cân ngang.

2 Đối với hàm số phân thức $f(x) = \frac{ax^2 + bx + c}{mx + n}$, ta có thể chia đa thức, biến đổi về dạng

$$f(x) = a'x + b' + \frac{e}{mx + n}$$
, với $e \neq 0$

Suy ra y = a'x + b' là đường tiệm cận xiên của đồ thị hàm số.

BÀI TẬP TƯ LUÂN

VÌ DỤ 1. Tìm các tiệm cận đứng và tiệm cận xiên của đồ thị hàm số sau:

a)
$$y = \frac{x^2 + 2}{2x - 4}$$
;

b)
$$y = \frac{2x^2 - 3x - 6}{x + 2}$$
;

c)
$$y = \frac{2x^2 + 9x + 11}{2x + 5}$$
.

P Lời giải.

a) Hàm số
$$y = f(x) = \frac{x^2 + 2}{2x - 4}$$
 có tập xác định $\mathcal{D} = \mathbb{R} \setminus \{2\}.$

Do đó, đồ thị hàm số có tiệm cận xiên là đường thẳng $y = \frac{1}{2}x + 1$.

b) Hàm số
$$y = f(x) = \frac{2x^2 - 3x - 6}{x + 2}$$
 có tập xác định $\mathscr{D} = \mathbb{R} \setminus \{-2\}.$

Suy ra đường thẳng x=-2 là một tiệm cận đứng của đồ thị hàm số.

Do đó, đồ thị hàm số có tiệm cận xiên là đường thẳng y = 2x - 7.

c) Hàm số
$$y = f(x) = \frac{2x^2 + 9x + 11}{2x + 5}$$
 có tập xác định $\mathscr{D} = \mathbb{R} \setminus \left\{-\frac{5}{2}\right\}$.

Suy ra đường thẳng $x=-\frac{5}{2}$ là một tiệm cận đứng của đồ thị hàm số.

To co
$$a = \lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \frac{2x+9+\frac{11}{x}}{2x+5} = 1;$$

$$b = \lim_{x \to +\infty} [f(x) - ax] = \lim_{x \to +\infty} \left(\frac{2x^2+9x+11}{2x+5} - x\right) = \lim_{x \to +\infty} \frac{4x+11}{2x+5} = 2.$$
The formula $f(x)$ is the first point $f(x)$ in $f(x)$ and $f(x)$ is $f(x)$.

Ta cũng có $\lim_{x \to -\infty} \frac{f(x)}{x} = 1$; $\lim_{x \to -\infty} [f(x) - x] = 2$.

Do đó, đồ thị hàm số có tiệm cận xiên là đường thẳng y = x + 2.

BÀI TẬP TRẮC NGHIÊM

PHẨN I. Câu trắc nghiệm nhiều phương án lựa chọn. Mỗi câu hỏi học sinh chỉ chọn một phương án.

CÂU 1. Đường tiệm cận xiên của đồ thị hàm số $y = f(x) = 2x - 1 - \frac{1}{x+1}$ có phương trình là

$$\bigcirc y = x - 1.$$

Dòi aiải.

Do $\lim_{x\to +\infty} [f(x)-(2x-1)] = \lim_{x\to +\infty} \frac{-1}{x+1} = 0$ nên đường thẳng y=2x-1 là tiệm cận xiên của đồ thị hàm số đã cho.

CÂU 2. Đường tiệm cận xiên của đồ thị hàm số $y = f(x) = x + 3 + \frac{1}{2x+1}$ có phương trình là

$$\mathbf{B}$$
 $y = x - 3$.

$$\bigcirc y = x + 3.$$

$$\mathbf{D}y = 2x - 1$$

Dèi giải.

Do $\lim_{x\to\pm\infty}[f(x)-(x+3)]=\lim_{x\to\pm\infty}\frac{1}{2x+1}=0$ nên đường thẳng y=x+3 là tiệm cận xiên của đồ thị hàm số đã cho.

CÂU 3. Tìm tiệm cận xiên của đồ thị hàm số $y = f(x) = \frac{x^2 + 3x}{x - 2}$.

$$\bigcirc y = x + 5.$$

$$\mathbf{D}y = x - 5.$$

🗩 Lời giải.

Ta có

Vậy đường thẳng y = x + 5 là tiệm cận xiên của đồ thị hàm số đã cho (khi $x \to +\infty$).

Tương tự, do $\lim_{x \to -\infty} \frac{f(x)}{x} = 1$ và $\lim_{x \to -\infty} [f(x) - x] = 5$ nên đường thẳng y = x + 5 cũng là tiệm cận xiên của đồ thị hàm số đã cho (khi $x \to -\infty$).

CÂU 4. Tiệm cận xiên của đồ thị hàm số $y = \frac{x^2 + 2x - 2}{x + 2}$ là

$$\bigcirc y = x + 2.$$

$$\mathbf{D}$$
 $y = x$

🗩 Lời giải.

Ta có
$$y = \frac{x^2 + 2x - 2}{x + 2} = \frac{x(x + 2) - 2}{x + 2} = x - \frac{2}{x + 2}.$$

Ta có
$$y = \frac{x^2 + 2x - 2}{x + 2} = \frac{x(x + 2) - 2}{x + 2} = x - \frac{2}{x + 2}.$$

$$\lim_{x \to +\infty} [y - x] = \lim_{x \to +\infty} \frac{-2}{x + 2} = 0 \text{ và } \lim_{x \to -\infty} [y - x] = \lim_{x \to -\infty} \frac{-2}{x + 2} = 0.$$
Vên đề thị hàm số số tiếm sốn viên là được thến thến thiên thiê

Vậy đồ thị hàm số có tiệm cận xiên là đường thẳng y = x.

CÂU 5. Tìm tiệm cận xiên của đồ thị hàm số $f(x) = \frac{x^2 - 3x + 1}{x - 2}$.

$$\bigcirc y = x - 2.$$

$$\bigcirc y = x - 1.$$

🗩 Lời giải.

Tập xác định: $\mathscr{D} = \mathbb{R} \setminus \{2\}$

Ta có
$$a = \lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \frac{x^2 - 3x + 1}{x^2 - 2x} = 1;$$

$$b = \lim_{x \to +\infty} [f(x) - ax] = \lim_{x \to +\infty} \left(\frac{x^2 - 3x + 1}{x - 2} - x \right) = \lim_{x \to +\infty} \frac{-x + 1}{x - 2} = -1.$$

Ta cũng có $\lim_{x \to -\infty} \frac{f(x)}{x} = 1$; $\lim_{x \to -\infty} [f(x) - x] = -1$.

Do đó, đồ thị hàm số có tiệm cận xiên là đường thẳng y = x - 1.

CÂU 6. Đường tiệm cận xiên của đồ thị hàm số $y = \frac{2x^2 - 3x}{x + 5}$ đi qua điểm nào sau đây? (5; 3). (C)(6; -1).

$$(-4; -5)$$

$$(6;-1)$$

$$(\mathbf{D})(2;-10).$$

🗩 Lời giải.

Tập xác định: $\mathcal{D} = \mathbb{R} \setminus \{-5\}.$

Ta có
$$a = \lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \frac{2x^2 - 3x}{x^2 + 5x} = 2;$$

$$b = \lim_{x \to +\infty} [f(x) - ax] = \lim_{x \to +\infty} \left(\frac{2x^2 - 3x}{x + 5} - 2x \right) = \lim_{x \to +\infty} \frac{-13x}{x + 5} = -13.$$

Ta cũng có
$$\lim_{x \to -\infty} \frac{f(x)}{x} = 2$$
; $\lim_{x \to -\infty} [f(x) - x] = -13$.

Do đó, đồ thị hàm số có tiệm cận xiên là đường thẳng y = 2x - 13. Đường thẳng này qua (6; -1).

$$(\mathbf{C})(1;-1).$$

D Lời giải.

Ta viết lại
$$y = \frac{2x^2 - 3x + 2}{x - 1} = 2x - 1 + \frac{1}{x - 1}$$
. Suy ra

- Tiệm cận đứng x = 1;
- Tiệm cận ngang y = 2x 1.

Xét hệ
$$\begin{cases} x = 1 \\ y = 2x - 1 \end{cases} \Leftrightarrow \begin{cases} x = 1 \\ y = 1 \end{cases}$$

PHẨN II. Câu trắc nghiệm đúng sai. Trong mỗi ý a), b), c), d) ở mỗi câu, học sinh chọn đúng hoặc sai.

CÂU 8.

Cho hàm số $y = f(x) = \frac{ax^2 + bx + c}{dx + e}$ có đồ thị như hình bên.

Mệnh đề					
a) Tập xác định của hàm số là \mathbb{R} .		X			
b) Hàm số có hai điểm cực trị.	X				
c) Đồ thị hàm số có đường tiệm cận đứng là $x=0$.		X			
d) Đồ thị hàm số có đường tiệm cận xiên là $y = x + 1$.		X			

CÂU 9.

Cho đồ thị của hàm số $y = f(x) = \frac{2x^2}{x^2 - 1}$. Xét tính đúng sai của các khẳng định sau:

Mệnh đề	Đ	S
a) Đồ thị hàm số có 3 điểm cực trị.		X
b) $\lim_{x \to -\infty} f(x) = 2$; $\lim_{x \to 1^{-}} f(x) = -\infty$.		X
c) Đồ thị hàm số có 3 đường tiệm cận đứng $x=-1,x=0,x=1.$		X
d) Đồ thị hàm số có hai đường tiệm cận ngang $y=2$ và $y=0$.		X

🗩 Lời giải.

- a) Đồ thị hàm số có một điểm cực trị (0;0).
- b) Theo hình vẽ thì $\lim_{x\to -\infty} f(x) = 2$; $\lim_{x\to 1^-} f(x) = -\infty$.
- c) Đồ thị hàm số có 2 đường tiệm cận đứng $x=\pm 1$.
- d) Đồ thị hàm số có 1 đường tiệm cận ngang y = 2.

Chọn đáp án a sai b sai c sai d sai

🖶 Dạng 3. Bài toán về đường tiệm cận có chứa tham số

BÀI TẬP TỰ LUẬN

VÍ DỤ 1. Tìm tham số m để đồ thị hàm số

- a) $y = \frac{3x-1}{x-m}$ có đường tiệm cận đứng là x = 5.
- b) $y = \frac{(m+1)x 5m}{2x m}$ có tiệm cận ngang là đường thẳng y = 1.

🗩 Lời giải.

- a) Điều kiện để đồ thị hàm số có tiệm cận đứng là $-3m+1 \neq 0 \Leftrightarrow m \neq \frac{1}{3}$. Đồ thị hàm số có tiệm cận đứng x=m. Theo đề bài ta có m=5 (thoả mãn).
- b) Điều kiện để đồ thị hàm số có tiệm cận ngang là $-m(m+1)+10m\neq 0$. Tiệm cận ngang là $y=\frac{a}{c}=\frac{m+1}{2}$. Theo đề bài ta có $\frac{m+1}{2}=1\Leftrightarrow m+1=2\Leftrightarrow m=1$ (thoả mãn).

VÍ DỤ 2. Tìm m để đồ thị hàm số

- a) $y = \frac{x-2}{x^2 mx + 1}$ có hai đường tiệm cận đứng.
- b) $y = \frac{2x^2 3x + m}{x m}$ có đường tiệm cận xiên.

🗩 Lời giải.

a) Đồ thị hàm số có hai tiệm cận đứng \Leftrightarrow phương trình $g(x)=x^2-mx+1=0$ có hai nghiệm phân biệt khác 2.

$$\Leftrightarrow \begin{cases} a = 1 \neq 0 \text{ (LD)} \\ \Delta = m^2 - 4 > 0 \\ g(2) = 2^2 - 2m + 1 \neq 0 \end{cases} \Leftrightarrow \begin{cases} \begin{bmatrix} m < -2 \\ m > 2 \end{bmatrix} \\ m \neq \frac{5}{2} \end{cases}.$$

Vậy $m \in (-\infty; -2) \cup (2; +\infty) \setminus \left\{\frac{5}{2}\right\}$.

b) Đồ thị hàm số có đường tiệm cận xiên khi và chỉ khi phương trình $g(x) = 2x^2 - 3x + m = 0$ không có nghiệm x = m. Tức là:

$$g(m) \neq 0 \Leftrightarrow 2m^2 - 2m \neq 0 \Leftrightarrow \begin{cases} m \neq 0 \\ n \neq 1 \end{cases}$$
.

Vậy $m \in \mathbb{R} \setminus \{0; 1\}$ là các giá trị cần tìm.

BÀI TẬP TRẮC NGHIỆM

PHẨN I. Câu trắc nghiệm nhiều phương án lựa chọn. Mỗi câu hỏi học sinh chỉ chọn một phương án.

CÂU 1. Tìm tất cả các giá trị của m để đồ thị hàm số $y=1$	$=\frac{mx+2}{x-5}$ có đường tiệm cận ngang đi qua điểm $A(1;3)$.
---	--

$$\bigcirc m = -3.$$

$$(\mathbf{B})m=1.$$

$$(c)m = -1.$$

$$(\mathbf{D})m = 3.$$

🗩 Lời giải.

Tiệm cận ngang y = m đi qua điểm A(1;3) nên m = 3.

Chọn đáp án (D).....

CÂU 2. Tìm tham số thực m để đồ thị hàm số $y = \frac{mx+3}{x-m}$ có tiệm cận đứng là đường x = 1, tiệm cận ngang là đường y = 1.

$$\bigcirc M = 1.$$

$$\mathbf{B}$$
 $m=2.$

$$(c)m = -1.$$

$$(\mathbf{D})m=3.$$

Dùi giải.

- \odot Điều kiện để đồ thị hàm số có tiệm cận là $-m^2-3\neq 0 \ \forall m$
- Θ Phương trình đường tiêm cân đứng là x=m nên có m=1
- $\ensuremath{ \bigodot}$ Phương trình đường tiệm cận ngang là y=mnên có m=1 Vậy m=1.

Chọn đáp án (A).....

CÂU 3. Biết rằng hai đường tiệm cận của đồ thị hàm số $y = \frac{2x+1}{x-m}$ (với m là tham số) tạo với hai trực tọa độ một hình chữ nhật có diện tích bằng 2. Giá trị của m là

$$(\mathbf{A})m = \pm 2.$$

B
$$m = -1$$
.

$$\bigcirc m = 2.$$

$$\mathbf{D}m = \pm 1.$$

D Lời giải.

Điều kiện $m \neq -\frac{1}{2}$

Ta có $\lim_{x \to +\infty} \frac{2x+1}{x-m} = 2$ và $\lim_{x \to -\infty} \frac{2x+1}{x-m} = 2 \Rightarrow y = 2$ là tiệm cận ngang của đồ thị hàm số.

- igotimes Xét $m<-rac{1}{2}$, ta có $\lim_{x o m^+} rac{2x+1}{x-m} = -\infty$, $\lim_{x o m^-} rac{2x+1}{x-m} = +\infty \Rightarrow x=m$ là tiệm cận đứng của đồ thị hàm số.

Diện tích hình chữ nhật là $|2m| = 2 \Rightarrow m = \pm 1$ (thỏa mãn).

Chọn đáp án (D)......

CÂU 4. Tìm giá trị của m để đồ thị hàm số $y = \frac{2x^2 - 5x + m}{x - m}$ có tiệm cận đứng.

$$\bigcap_{m=2}^{m=0} m = 0$$

$$\mathbf{B}m \neq 0$$

$$\bigcirc m \neq 2$$

$$\bigcirc \begin{cases} m \neq 0 \\ m \neq 2 \end{cases}.$$

D Lời giải.

Ta có $x - m = 0 \Leftrightarrow x = m$.

Để đồ thị hàm số có tiệm cận đứng thì $2(m)^2 - 5(m) + m \neq 0 \Leftrightarrow 2m^2 - 4m \neq 0 \Leftrightarrow \begin{cases} m \neq 0 \\ m \neq 2 \end{cases}$

Chọn đáp án D

CÂU 5. Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số $y = \frac{x-4}{x^2 - mx + 4}$ có hai đường tiệm cận đứng?

$$(\mathbf{B})m \neq 5.$$

Dèi giải.

Đồ thị hàm số có hai tiệm cận đứng khi phương trình $x^2 - mx + 4 = 0$ có hai nghiệm phân biệt khác $4 \Leftrightarrow \begin{cases} m^2 - 16 > 0 \\ 16 - 4m + 4 \neq 0 \end{cases} \Leftrightarrow m \in (-\infty; -4) \cup (4; +\infty) \setminus \{5\}$

Chọn đáp án C

CÂU 6. Cho hàm số $y = \frac{2x^2 - 3x + m}{x - m}$ có đồ thị (C). Tìm tất cả các giá trị của tham số m để (C) không có tiệm cận đứng.

$$\mathbf{A}m = 0$$
 hoặc $m = 1$.

$$\bigcirc m = 2.$$

$$\bigcirc m = 1.$$

$$\mathbf{D}m=0.$$

🗭 Lời giải.

Đồ thị (C) không có tiệm cận đứng khi m là nghiệm của $2x^2 - 3x + m$

$$\Leftrightarrow 2m^2 - 3m + m = 0 \Leftrightarrow \begin{bmatrix} m = 0 \\ m = 1. \end{bmatrix}$$

CÂU 7. Tìm tất cả các giá trị của tham số thực m để đồ thị hàm số $y = \frac{x-2}{x^2 - mx + 1}$ có đúng 3 đường tiệm cận.

$$\bigcirc \begin{bmatrix} m > 2 \\ m < -2 \end{bmatrix}.$$

$$\bigcirc$$
 -2 < m < 2.

DKXĐ : $x^2 - mx + 1 \neq 0$ Ta có $\lim_{x \to \pm \infty} y = \lim_{x \to \pm \infty} \frac{x - 2}{x^2 - mx + 1} = 0 \Rightarrow y = 0$ là tiệm cận ngang.

Do đó đồ thị hàm số $y = \frac{x - 2}{x^2 - mx + 1}$ có đúng 3 đường tiệm cận khi và chỉ khi phương trình $x^2 - mx + 1 = 0$ có hai nghiệm

$$\Leftrightarrow \begin{cases} \Delta = m^2 - 4 > 0 \\ 2^2 - 2m + 1 \neq 0 \end{cases} \Leftrightarrow \begin{cases} \begin{bmatrix} m > 2 \\ m < -2 \end{bmatrix} \\ m \neq \frac{5}{2} \end{cases}.$$

Chọn đáp án (A).....

CÂU 8. Cho hàm số $y = \frac{ax+1}{bx-2}$, xác định a và b để đồ thị của hàm số trên nhận đường thẳng x=1 làm tiệm cận đứng và đường thẳng $y = \frac{1}{2}$ làm tiệm cận ngang.

$$\bigcirc \begin{cases} a=2\\ b=2 \end{cases}.$$

$$\bigcirc \begin{cases} a=2 \\ b=-2 \end{cases}.$$

Yêu cầu bài toán $\Leftrightarrow \begin{cases} \frac{a}{b} = \frac{1}{2} \\ \frac{2}{a} = 1 \end{cases} \Leftrightarrow \begin{cases} b = 2 \\ a = 1 \end{cases}$

Chon đáp án (B).....

CÂU 9. Cho hàm số $y = \frac{mx+1}{x+3n+1}$. Đồ thị hàm số nhận trục hoành và trục tung làm tiệm cận ngang và tiệm cận đứng.

Tính m+n.

$$\bigcirc m + n = \frac{2}{3}.$$

$$\bigcirc m + n = 0$$

Dòi giải.

- Θ Điều kiện để đồ thị hàm số có tiệm cận là $m(3n+1) \neq 0$
- \odot Phương trình đường tiệm cận đứng là x=-3n-1 nên có $n=-\frac{1}{2}$
- $\ensuremath{ \bigodot}$ Phương trình đường tiệm cận ngang là y=mnên có m=0 $V_{ay} m + n = -\frac{1}{3}.$

Chọn đáp án (A).....

CÂU 10. Đồ thị hàm số $y = \frac{(4a-b)x^2 + ax + 1}{x^2 + ax + b - 12}$ nhận trục hoành và trục tung làm hai tiệm cận. Tính giá trị của a+b.

Dòi giải. Tiệm cận đứng $x = 0 \Rightarrow 0^2 + a.0 + b - 12 = 0 \Leftrightarrow b = 12$.

Tiệm cận ngang $y = 0 \Rightarrow 4a - b = 0 \Leftrightarrow 4a - 12 = 0 \Leftrightarrow a = 3$.

Kết luận: a+b=15.

PHÂN II. Câu trắc nghiệm đúng sai. Trong mỗi ý a), b), c), d) ở mỗi câu, học sinh chọn đúng hoặc sai.

CÂU 11. Cho hàm số $y = \frac{mx^2 + 6x - 2}{x + 2}$, với m là tham số.

Mệnh đề	Ð	S
a) Tập xác định của hàm số là $\mathbb{R}\setminus\{-2\}$.	X	
b) Đồ thị hàm số có tiệm cận ngang khi $m > 0$.		X
c) Đồ thị hàm số có tiệm cận đứng khi $m \neq 0$.		X
d) Tập hợp tất cả giá trị của m đề đồ thị có hai đường tiệm cận là $\mathbb{R} \setminus \left\{\frac{7}{2}\right\}$.	X	

🗩 Lời giải.

- a) Điều kiện $x+2\neq 0 \Leftrightarrow x\neq -2$. Vậy Tập xác định là $\mathbb{R}\setminus\{-2\}$
- b) Đồ thị hàm số có tiệm cận ngang khi hệ số của x^2 trên tử số phải bằng 0. Suy ra m=0.
- c) Đồ thị hàm số có tiệm cận đứng khi x=-2 không là nghiệm của tam thức $g(x)=mx^2+6x-2$. Suy ra

$$g(-2) \neq 0 \Leftrightarrow m \neq \frac{7}{2}$$

d) Đồ thị hàm số chắc chắn có 1 tiệm cận xiên (hoặc ngang). Suy ra, để đồ thị có hai đường tiệm cận thì nó phải có 1 tiệm cận đứng. Điều này tương đương với $m \neq \frac{7}{2}$.

Chọn đáp án a đúng b sai c sai d đúng

Dạng 4. Tìm các đường tiệm cận đồ thị hàm ẩn

VÍ DỤ 1. Cho hàm số y = f(x) có bảng biến thiên như hình vẽ sau

Tìm TCĐ, TCN của đồ thị hàm số

a)
$$y = \frac{2}{f(x) - 3}$$

b)
$$y = \frac{-3}{f(x) + 2}$$

c)
$$y = \frac{x-2}{f(x)+5}$$

d)
$$y = \frac{x+1}{f(x)-4}$$

e)
$$y = \frac{2}{f(x^2) + 3}$$

f)
$$y = \frac{4f(x) - 5}{3f(x) + 1}$$

p Lời giải.

VÍ DU 2.

Cho hàm bậc ba y = f(x) có đồ thị như hình vẽ. Tìm số tiệm cận đứng của đồ thị hàm số

a)
$$y = \frac{\sqrt{x+3}}{(x-1)f(x)}$$

b)
$$g(x) = \frac{(x^2 + 4x + 3)\sqrt{x^2 + x}}{x[f^2(x) - 2f(x)]}$$
.

$$g(x)=\frac{(x^2+4x+3)\sqrt{x^2+x}}{x\left[f^2(x)-2f(x)\right]}=\frac{(x+1)(x+3)\sqrt{x(x+1)}}{x\left[f^2(x)-2f(x)\right]}.$$
 Diều kiện của căn là $x\leq -1; x\geq 0.$

Dựa vào đồ thị ta có

$$x\left[f^2(x)-2f(x)\right]=0 \Leftrightarrow \begin{bmatrix} x=0\\f(x)=0 \Leftrightarrow \\f(x)=2 \end{bmatrix} \begin{bmatrix} x=0 \text{ (nhận)}\\x=-3 \text{ (nhận)}; \ x=a \text{ (loại)}\\x=-1 \text{ (nhận)}; \ x=b \text{ (nhận)}; \ x=c \text{ (nhận)} \end{bmatrix}$$

Số TCĐ lúc này chính là số nghiệm không bị rút gọn của mẫu, vậy có bốn TCĐ là x=0; x=-3; x=b; x=c.

BÀI TẬP TRẮC NGHIỆM

CÂU 1. Cho hàm số y = f(x) có bảng biến thiên như hình bên. Đồ thị hàm số $y = \frac{-5}{f(x) + 4}$ có bao nhiêu tiệm cận đứng?

(A) 1.

(B)3.

(B)3.

 $(\mathbf{D})4.$

 $(\mathbf{D})0.$

🗩 Lời giải.

Dựa vào bảng biến thiên suy ra $f(x)+4=0 \Leftrightarrow f(x)=-4$, phương trình này có 2 nghiệm phân biệt nên đồ thị hàm số $y=\frac{-5}{f(x)+4}$ có 2 tiệm cận đứng.

CÂU 2. Cho hàm số y = f(x) có bảng biến thiên như hình bên. Đồ thị hàm số $y = \frac{x+2}{2f(x)-1}$ có bao nhiêu tiệm cận đứng?

	$-\infty$		-1		0		1		$+\infty$
y'		+	0	_	0	+	0	_	
y	$-\infty$		0		$-\frac{5}{3}$		0	<u></u>	$-\infty$

(**A**) 1.

🗭 Lời giải.

Dựa vào bảng biến thiên suy ra $2f(x) - 1 = 0 \Leftrightarrow f(x) = \frac{1}{2}$, phương trình này có 0 nghiệm nên đồ thị hàm số $y = \frac{x+2}{2f(x)-1}$ không có tiệm cân đứng.

 $(\mathbf{C})_2.$

Chọn đáp án (D).....

CÂU 3. Cho hàm số y = f(x) có bảng biến thiên như hình bên. Đồ thị hàm số $y = \frac{1}{2f(x) - 3}$ có bao nhiêu tiệm cận đứng?

x	$-\infty$		0		1		$+\infty$
y'		+	0	_	0	+	
y	$-\infty$, ⁵ \		-1		+∞

(**A**) 1.

(B)3.

 $(\mathbf{C})2.$

 $(\mathbf{D})0.$

🗭 Lời giải.

Dựa vào bảng biến thiên suy ra $2f(x) - 3 = 0 \Leftrightarrow f(x) = -\frac{3}{2}$, phương trình này có 3 nghiệm phân biệt nên đồ thị hàm số $y = \frac{1}{2f(x) - 3}$ có ba tiệm cận đứng.

CÂU 4. Cho hàm số y = f(x) có bảng biến thiên như hình bên. Đồ thị hàm số $y = \frac{x}{f(x) - 3}$ có bao nhiêu tiệm cận đứng?

x	$-\infty$		-1		0		1		$+\infty$
y'		_	0	+	0	_	0	+	
y	$+\infty$ \setminus				× ³ <		~ ₀ /		+∞

(A) 1.

(B)3.

 $(\mathbf{C})2.$

(**D**)4.

🗩 Lời giải.

Dựa vào bảng biến thiên suy ra $f(x) - 3 = 0 \Leftrightarrow f(x) = 3$, phương trình này có 2 nghiệm phân biệt khác 0 và một nghiệm bội chẵn x = 0 nên đồ thị hàm số $y = \frac{x}{f(x) - 3}$ có ba tiệm cận đứng.

CÂU 5. Cho hàm số y = f(x) có bảng biến thiên như hình bên. Đồ thị hàm số $y = \frac{4}{f(x) + 1}$ có tiệm cận ngang là đường thẳng

x	$-\infty$		-1		2		$+\infty$
y'		+	0	_	0	+	
y	1		× 4 \		-5		1

By = -5.

 $\mathbf{C}y=2.$

 $\mathbf{D}y = 4.$

🗭 Lời giải.

Dựa vào bảng biến thiên suy ra $\lim_{x \to \pm \infty} f(x) = 1 \Leftrightarrow \lim_{x \to \pm \infty} \frac{4}{f(x) + 1} = 2$ nên đồ thị hàm số đã cho có tiệm cận ngang là y = 2.

CÂU 6. Cho hàm số y = f(x) có bảng biến thiên như hình bên. Đồ thị hàm số $y = \frac{2 - f(x)}{f(x) + 3}$ có tiệm cận ngang là đường thẳng

x	$-\infty$		0		2		$+\infty$
y'		_	0	+	0	_	
y	+∞ (× 1 /		× ⁵ \		$-\infty$

(A) y = 1. 🗩 Lời giải. **(B)** y = -3.

(c)y = 2.

 $(\mathbf{D})y = -1.$

Dựa vào bảng biến thiên suy ra $\lim_{x \to \pm \infty} f(x) = \pm \infty \Leftrightarrow \lim_{x \to \pm \infty} \frac{2 - f(x)}{f(x) + 3} = -1$ nên đồ thị hàm số $y = \frac{2 - f(x)}{f(x) + 3}$ có tiệm cận ngang là y = -1.

Chọn đáp án (D).....

CÂU 7. Cho hàm số y = f(x) có bảng biến thiên như hình bên. Đồ thị hàm số $y = \frac{1}{f^2(x) - 4f(x) + 4}$ có bao nhiêu tiệm cận đứng?

A 1.

B)3.

 \mathbf{C} 2.

 $\bigcirc 0.$

∞ Lời giải.

Dựa vào bảng biến thiên suy ra $f^2(x) - 4f(x) + 4 = 0 \Leftrightarrow f(x) = 2$, phương trình f(x) = 2 vô nghiệm nên đồ thị hàm số đã cho không có tiệm cận đứng.

CÂU 8. Cho hàm số y = f(x) có bảng biến thiên như hình bên. Đồ thị hàm số $y = \frac{1}{f(3-x)-2}$ có bao nhiêu tiệm cận đứng?

A1.

B3.

 $(\mathbf{C})2.$

 $\bigcirc 0$.

D Lời giải.

Dựa vào bảng biến thiên suy ra $f(3-x)-2=0 \Leftrightarrow f(3-x)=2$, phương trình này có 3 nghiệm phân biệt nên đồ thị hàm số đã cho có 3 tiệm cận đứng.

Chọn đáp án $oxed{B}$

CÂU 9. Cho hàm số y = f(x) có bảng biến thiên như hình bên. Đồ thị hàm số $y = \frac{4}{f(x^2) - 2}$ có bao nhiều tiệm cận đứng?

x	$-\infty$		0		3		$+\infty$
y'		_	0	+		_	
y	8		1		4 \		× 2

(A) 5.

B3.

C2

D)4.

Dèi giải.

Dựa vào bảng biến thiên suy ra $f(x^2) - 2 = 0 \Leftrightarrow f(x^2) = 2$. Kẻ đường thẳng y = 2 ta thấy đường thẳng cắt đồ thị hàm số tại hai điểm phân biệt. Suy ra

$$\begin{bmatrix} x^2 = a \ (a < 0) \\ x^2 = b \ (b > 0) \end{bmatrix} \Rightarrow x = \pm \sqrt{b}.$$

Do đó đồ thị hàm số đã cho có 2 tiệm cận đứng.

Chọn đáp án C

CÂU 10. Cho hàm số y = f(x) có bảng biến thiên như hình bên. Đồ thị hàm số $y = \frac{2}{f(|x|) - 3}$ có bao nhiêu tiệm cận ngang?

x	$-\infty$		0		2		$+\infty$
y'		+	0	_	0	+	
y	$-\infty$, ³ \		- 1		+∞

♦ VNPmath - 0962940819

(**A**) 4.

B3.

 $(\mathbf{C})_{5.}$

 $(\mathbf{D})6.$

🗩 Lời giải.

Dựa vào bảng biến thiên suy ra $f(|x|) - 3 = 0 \Leftrightarrow f(|x|) = 3$. Bảng biến thiên hàm số y = f(|x|) như sau

x	$-\infty$		-2		0		2		$+\infty$
y'		_	0	+	0	_	0	+	
y	+∞		-1		× ³ \		-1		+∞

Dựa vào bảng biến thiên hàm số y = f(|x|), phương trình f(|x|) = 3 có ba nghiệm phân biệt, do đó đồ thị hàm số $y=\frac{2}{f(|x|)-3}$ có 3 tiệm cận đứng.

Chọn đáp án (B).....

CÂU 11.

Cho hàm số bậc ba $f(x) = ax^3 + bx^2 + cx + d$ có đồ thị như hình vẽ bên. Đồ thị hàm số g(x) = $\frac{{\color{blue}\mathbf{v}}^{{\color{blue}\boldsymbol{\omega}}-{\color{blue}\mathbf{1}}^{{\color{blue}\boldsymbol{\omega}}}}{(x-3)\cdot f(x)}$ có bao nhiều đường tiệm cận đứng?

🗩 Lời giải.

* Điều kiện:
$$\begin{cases} x \neq 3 \\ f(x) \neq 0 \\ x \geq -1. \end{cases}$$

 $\begin{cases} x \geq -1. \\ \text{Nhìn hình vẽ ta thấy } f(x) = 0 \Leftrightarrow \begin{bmatrix} x = -1 & \text{(nghiệm kép)} \\ x = 2 & \text{(nghiệm đơn)}. \end{cases}$ Vây $g(x) = \frac{\sqrt{x+1}}{(x-3) \cdot a(x+1)^2(x-2)}.$

Đồ thị hàm số g(x) có 3 đường tiệm cận đứng.

Chọn đáp án $\stackrel{\textstyle (D)}{\scriptstyle \dots}$

CÂU 12.

Đường cong ở hình bên là đồ thị của hàm số $y = ax^3 + bx^2 + cx + d$. Đồ thị hàm số $y = ax^3 + bx^2 + cx + d$. $\frac{(2x+1)\sqrt{x-1}}{x\cdot f(x-2)}$ có tất cả bao nhiều tiệm cận đứng?

(A) 1.

(B)3.

 $(\mathbf{D})2.$

* Điều kiện:
$$\begin{cases} x \neq 0 \\ f(x-2) \neq 0 \\ x \geq 1. \end{cases}$$

 $(x \ge 1).$ Nhìn hình vẽ ta thấy $f(x-2) = 0 \Leftrightarrow \begin{bmatrix} x-2=-2 \\ x-2=0 \\ x-2=2 \end{bmatrix} \Leftrightarrow \begin{bmatrix} x=0 \pmod{không thỏa mãn} \\ x=2 \pmod{knông thỏa mãn} \\ x=4 \pmod{knông thỏa mãn}$ Vây $g(x) = \frac{(2x+1)\sqrt{x-1}}{x \cdot f(x-2)} = \frac{(x-1)\sqrt{x+2}}{x \cdot ax(x-2)(x-4)}$.

Đồ thi hàm số q(x) có 2 đường tiêm cân đứng.

Chọn đáp án (D).

CÂU 13.

Cho hàm số y = f(x) có đồ thị cắt trực hoành tại đúng 3 điểm như hình bên. Đồ thị hàm số $y = \frac{(x+2)\sqrt{3-x}}{f(|x|)}$ có tất cả bao nhiều tiệm cận đứng?

 $(\mathbf{D})2.$

🗩 Lời giải.

* Điều kiện:
$$\begin{cases} f(|x|) \neq 0 \\ x \leq 3. \end{cases}$$

Nhìn hình vẽ ta thấy
$$f(|x|)=0\Leftrightarrow \begin{bmatrix} |x|=-1\\ |x|=2\\ |x|=4 \end{bmatrix} \begin{cases} x=\pm 2 & \text{(nghiệm đơn)}\\ x=-4 & \text{(nghiệm đơn)}\\ x=4 & \text{(không thỏa mãn)}. \end{cases}$$
 Vây $y=\frac{(x+2)\sqrt{3-x}}{a(x-2)(x+2)(x+4)(x-4)}$

Vây
$$y = \frac{(x+2)\sqrt{3-x}}{a(x-2)(x+2)(x+4)(x-4)}$$

Đồ thị hàm số có 2 đường tiệm cận đứng.

Chọn đáp án (D).....

CÂU 14.

Đường cong ở hình bên là đồ thị của hàm số $y = ax^3 + bx^2 + cx + d$. Đồ thị hàm số $y = \frac{(2x+1)\sqrt{1-x}}{f(|x|)}$

có tất cả bao nhiều tiệm cận đứng?

(**A**) 1.

 $(\mathbf{C})4.$

🗩 Lời giải.

* Điều kiện:
$$\begin{cases} f(|x|) \neq 0 \\ x \leq 1. \end{cases}$$

Nhìn hình vẽ ta thấy
$$f(|x|) = 0 \Leftrightarrow \begin{bmatrix} |x| = -\frac{1}{2} \\ |x| = \frac{1}{2} \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = \pm \frac{1}{2} \\ x = -x_1 \end{bmatrix}$$
 (hai nghiệm đơn)
$$x = -x_1$$
 (nghiệm đơn)
$$x = x_1$$
 (không thỏa mãn). Vây $y = \frac{(2x+1)\sqrt{1-x}}{f(|x|)} = \frac{(2x+1)\sqrt{1-x}}{a\left(x-\frac{1}{2}\right)\left(x+\frac{1}{2}\right)(x+x_1)(x-x_1)}$

Vây
$$y = \frac{(2x+1)\sqrt{1-x}}{f(|x|)} = \frac{(2x+1)\sqrt{1-x}}{a\left(x-\frac{1}{2}\right)\left(x+\frac{1}{2}\right)(x+x_1)(x-x_1)}$$

Đồ thị hàm số có 2 đường tiệm cận đứng

Chọn đáp án (D).....

CÂU 15.

Cho đồ thị hàm số y=f(x) và trực hoành có đúng 2 điểm chung như hình bên. Đồ thị hàm số $y = \frac{(x-1)\sqrt{3-x}}{f(x^2)}$ có tất cả bao nhiều tiệm cận đứng?

 $(\mathbf{A})1.$

 $(\mathbf{D})2.$

* Điều kiện: $\begin{cases} f(x^2) \neq 0 \\ x < 3. \end{cases}$

Nhìn hình vẽ ta thấy $f(x^2) = 0 \Leftrightarrow \begin{bmatrix} x^2 = -1 \\ x^2 = 1 \end{bmatrix} \Leftrightarrow x = \pm 1$ (nghiệm kép).

Vậy
$$y = \frac{(x-1)\sqrt{3-x}}{f(x^2)} = \frac{(x-1)\sqrt{3-x}}{(x-1)^2(x+1)^2}$$

Đồ thị bàm số có 2 đường tiêm cập đứng

Đồ thị hàm số có 2 đường tiệm cận đứn

Chọn đáp án (D).....

CÂU 16. Cho hàm số $y = ax^3 + bx^2 + cx + d$ có đồ thị như hình vẽ. Đồ thị của hàm số $g(x) = \frac{x^2 - x}{f^2(x) - 2f(x)}$ có bao nhiêu đường tiệm cận đứng?

 $(\mathbf{A})2.$

🗭 Lời giải.

Xét phương trình $f^2(x) - 2f(x) = 0 \Leftrightarrow \begin{bmatrix} f(x) = 0 \\ f(x) = 2 \end{bmatrix} \Leftrightarrow \begin{vmatrix} x = -2 \text{ (nghiệm đơn khác nghiệm của tử)} \\ x = a \in (-2; -1) \\ x = 0 \text{ (nghiệm đơn trùng nghiệm ở tử)} \end{vmatrix}$

 $\bar{x} = 1 \text{ (nghiệm kép trùng nghiệm đơn ở tử số)}$ $Lx = b \in (1;2)$

Kết luận: Đồ thị hàm số có 4 đường tiệm cận đứng.

Chọn đáp án (C)......

CÂU 17.

Cho hàm số y = f(x) có đạo hàm liên tục trên \mathbb{R} . Đồ thị hàm f(x) như hình vẽ. Số đường tiệm cận đứng của đồ thị hàm số $y = \frac{x^2 - 1}{f^2(x) - 4f(x)}$ bằng

(A) 3.

 $(\mathbf{D})4.$

Dòi giải.

Xét
$$f^2(x) - 4f(x) = 0 \Leftrightarrow \begin{bmatrix} f(x) = 0 \\ f(x) = 4. \end{bmatrix}$$

Xét f(x) = 0 có hai nghiệm, nghiệm $x_1 \neq \pm 1$ và nghiệm $x_2 = 1$ là nghiệm bội (do đồ thị tiếp xúc với trục hoành tại x = 1. Trường hợp này có 2 tiệm cận đứng.

Xét f(x) = 4 có hai nghiệm, nghiệm $x_3 \neq \pm 1$ và nghiệm $x_4 = -1$ là nghiệm bội (do đồ thị tiếp xúc với đường thẳng y = 4tại x = -1. Trường hợp này có 2 tiệm cận đứng.

Vây đồ thi có 4 tiệm cân đứng.

Chọn đáp án (D).....

CÂU 18.

Cho hàm số f(x) có đồ thị như hình bên. Số đường tiệm cận đứng của đồ thị hàm số

$$y = \frac{(x^2 - 4)(x^2 + 2x)}{[f(x)]^2 + 2f(x) - 3}$$
 là

 $(\mathbf{C})_{3.}$

Dèi giải.

Ta có $y = \frac{(x^2 - 4)(x^2 + 2x)}{[f(x)]^2 + 2f(x) - 3}$ có các nghiệm ở tử là x = 0 (bội 1), x = 2 (bội 1), x = -2 (bội 2).

Mặt khác, từ đồ thị f(x) ta thấy hàm số $y=\frac{(x^2-4)(x^2+2x)}{[f(x)]^2+2f(x)-3}$ có các nghiệm ở mẫu là $f^2(x)+2f(x)-3=0\Leftrightarrow \begin{bmatrix} f(x)=1\\ f(x)=-3 \\ \end{bmatrix} \Leftrightarrow \begin{bmatrix} x=0, x=x_1, x=x_2\\ x=-2, x=2 \\ \end{bmatrix}$

$$\begin{bmatrix} f(x) = 1 \\ f(x) = -3 \end{cases} \Leftrightarrow \begin{bmatrix} x = 0, x = x_1, x = x_2 \\ x = -2, x = 2. \end{bmatrix}$$

Trong đó nghiệm x = 0, x = -2, x = 2 đều có bội 2 và x_1 , x_2 khác các nghiệm của tử.

So sánh bội nghiệm ở mẫu và bội nghiệm ở tử thì thấy đồ thị có các tiệm cận đứng là x = 0, x = 2; $x = x_1$; $x = x_2$.

Chon đáp án (A).

CÂU 19.

Cho hàm số $f(x) = (x+3)(x+1)^2(x-1)(x-3)$ có đồ thị như hình vẽ. Đồ thị hàm số $g(x) = \frac{\sqrt{x-1}}{f^2(x) - 9f(x)}$

có bao nhiều tiệm cận đứng và tiệm cận ngang?

(B)4.

🗩 Lời giải.

Diều kiện xác định của hàm số g(x) là $\begin{cases} x \geq 1 \\ f^2(x) - 9f(x) \neq 0. \end{cases}$ Từ $f^2(x) - 9f(x) = 0 \Leftrightarrow \begin{bmatrix} f(x) = 0 \\ f(x) = 9. \end{bmatrix}$

Từ
$$f^2(x) - 9f(x) = 0 \Leftrightarrow \begin{bmatrix} f(x) = 0 \\ f(x) = 9 \end{bmatrix}$$

Với f(x) = 0 có nghiệm là $x = \pm 1, x = \pm 3$.

Dựa vào đồ thị ta thấy nghiệm của phương trình f(x) = 9 là hoành độ giao điểm của đường thắng y = 9 với đồ thị hàm số y = f(x) nên có nghiệm là $-3 < x_3 < x_2 < -1 < 0 < x_1 < 1 < 3 < x_0$.

Do đó tập xác định của hàm số y = g(x) là $\mathcal{D} = [1; +\infty) \setminus \{1; 3; x_0\}$.

Khi đó ta có

- x=1 là tiệm cận đứng
- x=3 là tiệm cận đứng
- $x = x_0$ là tiệm cận đứng

Và $\lim_{x\to +\infty} g(x) = \lim_{x\to +\infty} \frac{\sqrt{x-1}}{f(x)\left(f(x)-9\right)} = 0$ (vì bậc ở mẫu của y=g(x) là 10 và bậc tử của nó là $\frac{1}{2}$). Do vậy đồ thị hàm số y = g(x) có một tiệm cận ngang là đường thẳng y = 0.

Vậy đồ thị hàm số y = g(x) có bốn tiệm cận ngang và đứng.

Chon đáp án (B).....

CÂU 20.

Cho hàm số $y = f(x) = ax^3 + bx^2 + cx + d$, có đồ thị như hình vẽ. Số đường tiệm cận đứng của đồ thị

 $(\mathbf{C})4.$

🗩 Lời giải.

$$x^2 + x - 2 = (x - 1)(x + 2).$$

$$\odot$$
 Do đó $y = \frac{(x-1)(x+2)}{a^2(x+2)(x-1)^2(x-x_1)(x-x_2)(x-x_3)}$.

Suy ra đồ thị có các đườn tiệm cận đứng x = 1, $x = x_1$, $x = x_2$, $x = x_3$.

Chọn đáp án $\overline{\mathbb{C}}$

CÂU 21.

Cho hàm số bậc ba $f(x)=ax^3+bx^2+cx+d$ có đồ thị như hình vẽ bên dưới. Hỏi đồ thị hàm số $g(x)=\dfrac{(x^2-3x+2)\sqrt{x-1}}{x[f^2(x)-f(x)]}$ có bao nhiều tiệm cận đứng?

Lời giải.

Điều kiện
$$\begin{cases} x \ge 1 \\ x \ne 0 \\ f^2(x) - f(x) \ne 0 \end{cases} \Leftrightarrow \begin{cases} x \ge 1 \\ f(x) \ne 0 \\ f(x) \ne 1. \end{cases}$$

Dựa vào đồ thị hàm số y = f(x), ta thấy f(x) = 0 có hai nghiệm, một nghiệm $x_1 < 1$ và một nghiệm kép bằng 2. Do đó ta biểu diễn được f(x) dưới dạng

$$f(x) = a(x - x_1)(x - 2)^2$$
.

Dựa vào đồ thị hàm số y = f(x), ta thấy phương trình f(x) = 1 có ba nghiệm $1, x_2, x_3$, với $1 < x_2 < 2 < x_3$. Do đó ta biểu diễn được f(x) - 1 dưới dạng

$$f(x) - 1 = a(x - 1)(x - x_2)(x - x_3).$$

Lúc này điều kiện được viết lại như sau $\begin{cases} x>1\\ x\neq x_2, x\neq 2, x\neq x_3. \end{cases}$ Với điều kiện đó thì cách thu cách thì cách th

Với điều kiện đó thì g(x) được viết lại là

$$g(x) = \frac{\sqrt{x-1}}{a^2x(x-x_1)(x-x_2)(x-2)(x-x_3)}.$$

Ta có

$$\lim_{x \to 1^+} g(x) = \lim_{x \to 1^+} \frac{\sqrt{x-1}}{a^2 x (x-x_1)(x-x_2)(x-2)(x-x_3)} = 0,$$

(x = 1 không là tiệm cân đứng)

$$\lim_{x \to x_2^+} g(x) = \lim_{x \to x_2^+} \frac{\sqrt{x-1}}{a^2 x (x-x_1)(x-x_2)(x-2)(x-x_3)} = +\infty,$$

 $(x = x_2 \text{ là tiệm cận đứng})$

$$\lim_{x \to 2^+} g(x) = \lim_{x \to 2^+} \frac{\sqrt{x-1}}{a^2 x (x-x_1)(x-x_2)(x-2)(x-x_3)} = -\infty,$$

(x = 2 là tiệm cận đứng)

$$\lim_{x \to x_3^+} g(x) = \lim_{x \to x_3^+} \frac{\sqrt{x-1}}{a^2 x (x-x_1)(x-x_2)(x-2)(x-x_3)} = +\infty,$$

 $(x = x_3 \text{ là tiệm cân đứng})$

Vậy đồ thị hàm số g(x) có tất cả 3 tiệm cận đứng.

Chọn đáp án (C).....

CÂU 22.

Cho hàm số $f(x) = (x+3)(x+1)^2(x-1)(x-3)$ có đồ thị như hình vẽ. Đồ thị hàm số $g(x) = \frac{\sqrt{x-1}}{f^2(x) - 9f(x)}$ có bao nhiều tiệm cận đứng và tiệm cận ngang?

🗩 Lời giải.

Cho hàm số đa thức y = f(x) có đồ thị (C). Tìm số đường tiệm cận của đồ thị hàm số $g(x) = \frac{\sqrt{ax+b}}{P(f(x))}$, trong đó P(f(x))là một đa thức của f(x). Nếu a > 0 thì $\lim_{x \to +\infty} g(x) = 0$.

Nếu a < 0 thì $\lim_{x \to -\infty} g(x) = 0$.

Do đó đồ thị hàm số y = g(x) luôn có duy nhất một đường tiệm cận ngang là y = 0.

Gọi $x=x_0$ là một nghiệm của phương trình $P\left(f(x)\right)=0$ thỏa mãn điều kiện $ax+b\geq 0$. Rõ ràng khi đó $\lim_{x\to 0}g(x)=+\infty$

hoặc $\lim_{x \to x_0^+} g(x) = -\infty$.

Bởi vậy, số đường tiệm cận đứng của đồ thị hàm số y = g(x) chính là số nghiệm của phương trình P(f(x)) = 0 thỏa mãn

Ta có $f^2(x) - 9f(x) = 0 \Leftrightarrow \begin{bmatrix} f(x) = 0 \\ f(x) = 9 \end{bmatrix}$

- Θ f(x) = 0 có các nghiệm thuộc $[1; +\infty)$ là x = 1 và x = 3.
- Θ Đường thẳng y=9 cắt đồ thị hàm số y=f(x) tại duy nhất một điểm có hoành độ thuộc $[1; +\infty)$ là x = a > 3.

Bởi vậy, hàm số $g(x) = \frac{\sqrt{x-1}}{f^2(x) - 9f(x)}$ có tập xác định là $\mathscr{D} = [1;3) \cup (3;a) \cup (a;+\infty)$.

Khi đó ta có

 Θ $\lim_{x \to \infty} g(x) = 0$ nên đồ thị hàm số y = g(x) có một đường tiệm cận ngang là đường thẳng y = 0.

$$\lim_{x \to 1^{+}} g(x) = \lim_{x \to 1^{+}} \frac{\sqrt{x - 1}}{f(x) [f(x) - 9]} = +\infty;$$

$$\lim_{x \to 3^{+}} g(x) = \lim_{x \to 3^{+}} \frac{\sqrt{x - 1}}{f(x) [f(x) - 9]} = -\infty;$$

$$\lim_{x \to a^{+}} g(x) = \lim_{x \to a^{+}} \frac{\sqrt{x - 1}}{f(x) [f(x) - 9]} = +\infty.$$
Do dó nôn đổ thị hàm số $x = g(x)$ có 3 đ.

Do đó nên đồ thị hàm số y = g(x) có 3 đường tiệm cận đứng là các đường thẳng x = 1, x = 3 và x = a.

Như vậy, đồ thị hàm số y = g(x) có 4 đường tiệm cận, trong đó có 1 đường tiệm cận ngang và 3 đường tiệm cận đứng. Chọn đáp án (B).....

CÂU 23.

Cho hàm số bậc ba y = f(x) có đồ thị như hình vẽ bên. Đồ thị hàm số $g(x) = \frac{x\sqrt{x+1}}{f(x)[f^2(x)-16]}$ có bao nhiêu tiệm cận đứng?

🗩 Lời giải.

Xét phương trình $f(x)[f^2(x) - 16] = 0$ (*), với điều kiện $x \in [-1; +\infty)$.

Xet phương trình
$$f(x) [f^2(x) - 16] = 0$$
 (*), v
Ta có $f(x) [f^2(x) - 16] = 0 \Leftrightarrow \begin{bmatrix} f(x) = 0 \\ f(x) = 4 \\ f(x) = -4. \end{bmatrix}$

- Θ Phương trình f(x) = 0 có hai nghiệm $x \in [-1; +\infty)$ là x = 1 và x = 3.
- Θ Phương trình f(x) = 4 có không có nghiệm $x \in [-1; +\infty)$.
- \odot Phương trình f(x) = -4 có hai nghiệm $x \in [-1; +\infty)$ là $-1 < x_1 < 0$ và $x_2 > 3$.

Rõ ràng $\lim_{x \to x_0^+} g(x) = +\infty$ hoặc $\lim_{x \to x_0^+} g(x) = -\infty$, trong đó $x = x_0$ là nghiệm thuộc $[-1; +\infty)$ của phương trình (*). Do đó đường thẳng $x=x_0$ là tiệm cận đứng của đồ thị hàm số y=g(x).

Từ đó suy ra đồ thị hàm số $g(x) = \frac{x\sqrt{x+1}}{f(x)\left[f^2(x) - 16\right]}$ có 4 tiệm cận đứng.

Chọn đáp án A.....

CÂU 24.

Cho y = f(x) là hàm số đa thức có đồ thị như hình vẽ bên. Đặt $g(x) = \frac{\sqrt{x-1}}{[f(x)]^2 - 2f(x)}$ có bao nhiêu đường tiệm cận đứng?

🗩 Lời giải.

Xét phương trình $[f(x)]^2 - 2f(x) = 0$ (*), với điều kiện $x \in [1; +\infty)$. Ta có $[f(x)]^2 - 2f(x) = 0 \Leftrightarrow \begin{bmatrix} f(x) = 0 \\ f(x) = 2 \end{bmatrix}$.

- Θ Phương trình f(x) = 0 có một nghiệm $x \in [1; +\infty)$ là x = 1.
- Θ Phương trình f(x) = 2 có một nghiệm $x \in [1; +\infty)$ là $x = x_1 > 1$.

Rõ ràng $\lim_{x \to x_0^+} g(x) = +\infty$ hoặc $\lim_{x \to x_0^+} g(x) = -\infty$, trong đó $x = x_0$ là nghiệm thuộc $[1; +\infty)$ của phương trình (*). Do đó

đường thẳng $x=x_0$ là tiệm cận đứng của đồ thị hàm số y=g(x).

Từ đó suy ra đồ thị hàm số $g(x) = \frac{\sqrt{x-1}}{\left[f(x)\right]^2 - 2f(x)}$ có 2 tiệm cận đứng.

Chọn đáp án \bigcirc

CÂU 25.

Cho hàm số f(x) có đồ thị như hình bên. Số đường tiệm cận đứng của đồ thị hàm số

$$y = \frac{(x^2 - 4)(x^2 + 2x)}{[f(x)]^2 - 4f(x) + 3}$$
 là

🗩 Lời giải.

Xét hàm số
$$y = g(x) = \frac{(x^2 - 4)(x^2 + 2x)}{[f(x)]^2 - 4f(x) + 3}$$
. Giải phương trình $(x^2 - 4)(x^2 + 2x) = 0$
$$\Leftrightarrow \begin{bmatrix} x^2 - 4 = 0 \\ x^2 + 2x = 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = \pm 2 \\ x = 0.$$

$$\Leftrightarrow \begin{bmatrix} x^2 - 4 = 0 \\ x^2 + 2x = 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = \pm 2 \\ x = 0. \end{bmatrix}$$

Giải phương trình $[f(x)]^2 - 4f(x) + 3 = 0$

với -3 < a < -2 < b < c < 2 < d < 3.

Trong điều kiện xác định của hàm số y = g(x) ta có thể viết

$$y = g(x) = \frac{x(x-2)(x+2)^2}{(x-a)(x-b)(x-c)(x-d)(x-2)^2(x+2)^2} = \frac{x}{(x-a)(x-b)(x-c)(x-d)(x-2)}$$

Vậy số tiệm cận đứng của đồ thị hàm số y = g(x) bằng 5.

Chọn đáp án (B).....

Bài 3.	ĐƯỜNG TIỆM CẬN CỦA ĐỒ THỊ HÀM SỐ	1
A	LÝ THUYẾT CẦN NHỚ	1
B	PHÂN LOẠI VÀ PHƯƠNG PHÁP GIẢI TOÁN	2
	Dạng 1.Bài toán tìm tiệm cận đứng và tiệm cận ngang của đồ thị hàm số	2
	Dạng 2.Bài toán tìm tiệm cận đứng và tiệm cận xiên của đồ thị hàm số	5
	Dạng 3.Bài toán về đường tiệm cận có chứa tham số	6
	Dạng 4.Tìm các đường tiệm cận đồ thị hàm ẩn	8
L <mark>ỜI GIẢI CHI TI</mark> ẾT		14
Bài 3.	ĐƯỜNG TIỆM CẬN CỦA ĐỒ THỊ HÀM SỐ	14
A	LÝ THUYẾT CẦN NHỚ	14
B	PHÂN LOẠI VÀ PHƯƠNG PHÁP GIẢI TOÁN	15
	Dạng 1.Bài toán tìm tiệm cận đứng và tiệm cận ngang của đồ thị hàm số	15
	Dạng 2.Bài toán tìm tiệm cận đứng và tiệm cận xiên của đồ thị hàm số	19
	Dạng 3.Bài toán về đường tiệm cận có chứa tham số	23
	► Dạng 4.Tìm các đường tiệm cận đồ thị hàm ẩn	26

