CORRELATION & REGRESSION

Tutorial #5

A RECAP ON P-VALUES

➤ MrNystrom - What is a P Value? What does it tell us? https://www.youtube.com/watch?v=-MKT3yLDkqk

THE CORRELATION

- Describes the relationship of two variables
- \triangleright can be written as: $y \sim x$ (y is explained by x)
- requires (ordinal)/interval/ratio data
- result: the so-called correlation coefficient, can be between -1 and 1

SOME CORRELATION VOCABULARY

A plot with lots of points is called a scatterplot.

Interpretation sentence: the **higher** the temperature the **higher** the ozone level.

strong correlation

SOME CORRELATION VOCABULARY

-0.78 strong <u>negative</u> correlation

-0.21 weak <u>negative</u> correlation

Interpretation sentence: the higher the gas consumption the lower the horsepowers.

WHAT WOULD MY DATA LOOK LIKE IF I HAD R=1 OR R=0?

-0.06 not correlated

Weight and height in women is ridiculously highly correlated

0.995 very strong correlation

LET'S PLAY A GAME!

guessthecorrelation.com/

TESTING YOUR CORRELATION

- > Sometimes, you might have too much variance or too few data
- ➤ Sometimes, your correlation can be due to some randomness
- ➤ That's why we test whether a correlation is significant.

Test	Data type	Purpose	Null Hypothesis	Alternative Hypothesis
t-test	Interval/Ratio	2 samples significantly different?	The two samples means are not different.	The two samples means are different.
correlation	Interval/Ratio	Is there a correlation?	No correlation.	There is a correlation.

CORRELATIONS IN R

Relationship of Ozone and Solar radiation

H0: Correlation is equal to 0.

H1: Correlation is not equal to 0 (= my variables are correlated).

CORRELATIONS IN R

weak negative correlation

```
H0: Correlation is equal to 0.
```

H1: Correlation is not equal to 0 (= my variables are correlated).

REGRESSION

WHAT'S A MODEL?

Of course it's not a precise model. A model is always an abstraction of the world.

X

*

of items *

done something with it

some number

=

price

WHAT'S A LINEAR MODEL?

- \triangleright number of items * m + b = Price
- > predict the continuous target variable with another one
 - $\rightarrow mx + b = y$
 - > -> explain the *price* by the *amount* you bought

WHAT'S A LINEAR MODEL?

- \triangleright number of items * m + b = Price
- > predict the continuous target variable with another one

LET'S LOOK AT DATA(WOMEN).

•	height ‡	weight ‡
1	58	115
2	59	117
3	60	120
4	61	123
5	62	126
6	63	129
7	64	132
8	65	135
9	66	139
10	67	142

THE LINEAR MODEL

The **linear model** is the line that describes the data the best.

Let's say I am 143lbs (65kg).

Then, according to my model, I am 66.8001 in (170cm) tall.

Anyone else?

THE RESIDUALS OF THE LINEAR MODEL

Distribution of residuals for Im(women)

17

- Anna weighs approx. 132lbs (60kg).
- \rightarrow mx + b = y

- Anna weighs approx. 132lbs (60kg).
- \rightarrow mx + b = y

> 0.2872

- Anna weighs approx. 132lbs (60kg).
- \rightarrow mx + b = y
- \rightarrow 0.2872 * x + 25.723

- Anna weighs approx. 132lbs (60kg).
- $\rightarrow mx + b = y$
- ightharpoonup 0.2872 * 132 + 25.723 = 63.63
- ➤ I must be 63.63 in (1,62m).

LET'S LOOK AT THE R OUTPUT

*	height ‡	weight ‡
1	58	115
2	59	117
3	60	120
4	61	123
5	62	126
6	63	129
7	64	132
8	65	135
9	66	139
10	67	142

$$mx + b = y$$

something * weight + something = height

PRACTICE

23

LAST BUT NOT LEAST: A WORD OF CAUTION

➤ Don't **extrapolate** out of the range of your data.

MY HOBBY: EXTRAPOLATING

THOUGH THERE IS A THING CALLED INTERPOLATING.

➤ Though I don't have data for a person that is 130 lbs, my model still gives me an estimate.

Next time: Analysis of variance!

See you there!

SOURCES

- grid by Flatart from the Noun Project
- ➤ banana by miracle from the Noun Project
- ➤ Apple by Lyhn from the Noun Project
- ➤ Bread by zidney from the Noun Project