Explaining the ATMOSTSEQCARD constraint

Mohamed Siala, Christian Artigues, and Emmanuel Hebrard

Uppsala, Sweden

Mohamed SIALA September 2013 CP-DP'13 1 / 14

Outline

Hybrid CP/SAT Solving

The ATMOSTSEQCARD constraint

Explaining ATMOSTSEQCARD

Experimental results

Conclusion & Future research

Context

SAT & CP: Can we get the best from both approaches?

→A key concept : explaining constraints

An explanation is a set of assignments/prunings triggering a failure/pruning.

example

Cardinality Constraint : $\sum_{i=1}^{n} x_i \le k$; $D(x_i) = \{0, 1\}$.

 $x_i \leftarrow 1$ is pruned if we already have k appearances of the value 1.

$$\{x_i \leftarrow 1 | D(x_i) = \{1\}\} \rightarrow x_i \not\leftarrow 1$$
.

Mohamed SIALA September 2013 CP-DP'13 3 / 14

Context

SAT & CP : Can we get the best from both approaches?

→A key concept : explaining constraints

An explanation is a set of assignments/prunings triggering a failure/pruning.

example

Cardinality Constraint : $\sum_{i=1}^{n} x_i \le k$; $D(x_i) = \{0, 1\}$. $x_i \leftarrow 1$ is pruned if we already have k appearances of the value 1.

$$\{x_j \leftarrow 1 | D(x_j) = \{1\}\} \longrightarrow x_i \not\leftarrow 1$$
.

Mohamed SIALA September 2013 CP-DP'13 3 / 14

Definition

Definition

$$AtMostSeqCard(u, q, d, [x_1, ..., x_n]) \Leftrightarrow$$

$$\bigwedge_{i=0}^{n-q} \left(\sum_{l=1}^{q} x_{i+l} \leq u\right) \wedge \left(\sum_{i=1}^{n} x_{i} = d\right)$$

Definition

Definition

 $ATMOSTSEQCARD(u, q, d, [x_1, ..., x_n]) \Leftrightarrow$

$$\bigwedge_{i=0}^{n-q} \left(\sum_{l=1}^{q} x_{i+l} \leq u\right) \wedge \left(\sum_{i=1}^{n} x_{i} = d\right)$$

Example ATMOSTSEQCARD(2, 4, 4, $[x_1, ..., x_7]$)

$$\frac{1}{2} = \frac{1}{2} = \frac{0}{2} = \frac{1}{2} = \frac{0}{2}$$

Mohamed SIALA September 2013 CP-DP'13 4 / 14

The propagator

- leftmost: computes an assignment w maximizing the cardinality of the sequence with respect to the ATMOST constraints.
- Let max(i) be the maximum cardinality of the q subsequences involving x_i when computing leftmost[i].

```
involving x_i when computing x_i of x_i when computing x_i and x_i of x_
```

- $Left[i] = \sum_{j=1}^{j=i} leftmost[j]$.
- Right[i]: same as Left but in the reverse sense, i.e. $[x_n,..,x_1]$.
- Example : with ATMOST(2,5):

Domain consistency

- DC on each ATMOST: $(\sum_{l=1}^{q} x_{i+l} \leq u)$
- DC on $\sum_{i=1}^{n} x_i = d$
- If Left[n] < d Then fail
- If Left[n] = d and $Left[i] + Right[n i + 1] \le d$ Then $\mathcal{D}(x_i) \leftarrow \{0\}$
- If Left[n] = d and Left[i-1] + Right[n-i] < d Then $\mathcal{D}(x_i) \leftarrow \{1\}$

Explaining ATMOSTSEQCARD: the key idea

Explaining Failure

- 1 If a failure is triggered by a cardinality constraint (i.e. $(\sum_{l=1}^{q} x_{i+l} \le u)$ or $\sum_{i=1}^{n} x_i = d$), then it is easy to generate an explanation.
- 2 If a failure triggered by Left[n] < d, a naive explanation would be the set of all assignments in the sequence.

Theorem

Theorem

Let S be the set of all assignments, $S^* = S \setminus (\{x_i \leftarrow 0 \mid max(i) = u\} \cup \{x_i \leftarrow 1 \mid max(i) \neq u\})$, then S^* is a valid explanation.

 \rightarrow runs in O(n) since we call leftmost_count once.

Example: ATMOSTSEQCARD(2, 5, 8, $[x_1, ...x_{22}]$)

The final explanation size $|S^{*}|$ is 9 while the naive one (|S|) is 20.

Car-sequencing

Constraints

- Each class c is associated with a demand D_c .
- For each option j, each sub-sequence of size q_j must contain at most u_j cars requiring the option j.

Configuration

- Mistral as a hybrid CP/SAT solver
 - hybrid (VSIDS) uses VSIDS;
 - 2 hybrid (Slot) uses a cp heuristic based on the usage rate.
 - **3** hybrid (Slot \rightarrow VSIDS) first uses hybrid (Slot) then switches after 100 non-improving restarts to VSIDS.
 - 4 hybrid (VSIDS \rightarrow Slot) uses VSIDS and switches after 100 non-improving restarts to hybrid (Slot).
- *pure-CP*: Mistral without clause learning using the *Slot* branching.

Table: Experimental Evaluation

IVIETNOG I	sat[easy] (74×5)			sat[hard] (7 × 5)			unsat (28×5)		
	#suc	avg fails	time	#suc	avg fails	time	#suc	avg fails	time
hybrid (VSIDS)	370	903	0.23	16	207211	286.32	35	177806	224.78
hybrid (VSIDS \rightarrow Slot)	370	739	0.23	35	76256	64.52	37	204858	248.24
hybrid (Slot → VSIDS)	370	132	0.04	34	4568	2.50	37	234800	287.61
hybrid (Slot)	370	132	0.04	35	6304	3.75	23	174097	299.24
pure-CP	370	43.06	0.03	35	57966	16.25	0	-	-

Conclusion & Future research

Contributions & Analysis

- A linear time explanation for the ATMOSTSEQCARD constraint
- The experimental results emphasize the importance of using a hybrid approach instead of pure-CP!

Future research

- Can we generate optimal explanations?
- Is it worthy to use a 'sophisticated' [explanation + propagator] instead of decomposing to simpler constraints?
- To encode into SAT or to propagate?

Mohamed SIALA September 2013 CP-DP'13 14 / 14

Thank you!

Questions?

Mohamed SIALA September 2013 CP-DP'13 15 / 14