Advanced Machine Learning

Support Vector Machines

 $Support\ Vector\ Machines,\ maximum\ margins$

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

https://ecs-vlc.github.io/comp6208/

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

https://ecs-vlc.github.io/comp6208/

Support Vector Machines

- Support vector machines, when used right, often have the best generalisation results!
- They are typically used on numerical data, but can and have been adapted to text, sequences, etc.
- Although not as trendy as deep learning, they will often be the method of choice on small data sets!
- They subtly regularise themselves, choosing a solution that generalises well from a host of different solutions!

Outline

- 2. Maximum Margins
- 3. Duality
- 4. Practice

• SVMs classify linearly separable data

Linear Separation of Data

• Finds maximum-margin separating plane

Extended Feature Space

• To increase the likelihood of linear-separability we often use a high-dimensional mapping

$$\boldsymbol{x} = (x_1, x_2, \dots, x_p)^\mathsf{T} \to \boldsymbol{\phi}(\boldsymbol{x}) = (\phi_1(\boldsymbol{x}), \phi_2(\boldsymbol{x}), \dots, \phi_r(\boldsymbol{x}))^\mathsf{T}$$
$$r \gg p \blacksquare$$

- Finding the maximum margin hyper-plane is time consuming in "primal" form if r is large
- We can work in the "dual" space of patterns, then we only need to compute inner-products

$$\langle \boldsymbol{\phi}(\boldsymbol{x}_i), \boldsymbol{\phi}(\boldsymbol{x}_j) \rangle = \boldsymbol{\phi}(\boldsymbol{x}_i)^\mathsf{T} \boldsymbol{\phi}(\boldsymbol{x}_j) \mathbb{I} = \sum_{k=1}^r \phi_k(\boldsymbol{x}_i) \phi_k(\boldsymbol{x}_j) \mathbb{I}$$

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

https://ecs-vlc.github.io/comp6208/

Kernel Functions

- Kernel functions are symmetric functions of two variable
- Strong restriction: positive semi-definite
- Examples

Quadratic kernel:
$$K(oldsymbol{x}_1, oldsymbol{x}_2) = oldsymbol{\left(x_1^\mathsf{T} oldsymbol{x}_2\right)}^2$$

Gaussian (RBF) kernel:
$$K(oldsymbol{x}_1, oldsymbol{x}_2) = \mathrm{e}^{-\gamma \|oldsymbol{x}_1 - oldsymbol{x}_2\|^2}$$

Consider the mapping

$$m{x}_i = egin{pmatrix} x_i \ y_i \end{pmatrix}
ightarrow m{\phi}(m{x}_i) = egin{pmatrix} x_i^2 \ y_i^2 \ \sqrt{2}x_iy_i \end{pmatrix}$$

Kernel Trick

• If we choose a **positive semi-definite** kernel function K(x,y)then there exists functions $\phi(x) = (\phi_k(x)|k=1,2,...,r)$, such that

$$K(\boldsymbol{x}_i, \boldsymbol{x}_j) = \langle \boldsymbol{\phi}(\boldsymbol{x}_i), \boldsymbol{\phi}(\boldsymbol{x}_j) \rangle$$

(like an eigenvector decomposition of a matrix)

- Never need to compute $\phi_k(x_i)$ explicitly as we only need the inner-product $\langle \phi(x_i), \phi(x_i) \rangle = K(x_i, x_i)$ to compute maximum margin separating hyper-plane
- Sometimes $\phi(x_i)$ is an infinite dimensional vector so it is good we don't have to compute all the elements!

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

https://ecs-vlc.github.io/comp6208/

Non-linear Separation of Data

$$K(\boldsymbol{x}_1,\boldsymbol{x}_2) = \begin{pmatrix} x_1^2 & y_1^2 & \sqrt{2}x_1y_1 \end{pmatrix} \begin{pmatrix} x_2^2 \\ y_2^2 \\ \sqrt{2}x_2y_2 \end{pmatrix} = x_1^2x_2^2 + y_1^2y_2^2 + 2x_1y_1x_2y_2$$

$$= (x_1 x_2 + y_1 y_2)^2 = (x_1^T x_2)^2$$

Outline

- 1. The Big Picture
- 2. Maximum Margins
- 3. Duality
- 4. Practice

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

https://ecs-vlc.github.io/comp6208/

Maximise Margin

- Consider a linearly separable set of data
 - $\star \mathcal{D} = \{(\boldsymbol{x}_k, y_k)\}_{k=1}^m$
 - $\star y_k \in \{-1,1\}$
- ullet Our task is to find a separating plane defined by the orthogonal vector $oldsymbol{w}$ and a threshold b such that

$$y_k \left(\frac{\langle \boldsymbol{w}, \boldsymbol{x}_k \rangle}{\|\boldsymbol{w}\|} - b \right) \ge \Delta$$

where Δ is the margin

Inner Product

ullet Recall the inner or dot product in \mathbb{R}^n

$$\langle \boldsymbol{x}, \boldsymbol{y} \rangle = \boldsymbol{x} \cdot \boldsymbol{y} = \boldsymbol{x}^{\mathsf{T}} \boldsymbol{y} = \sum_{i=1}^{n} x_{i} y_{i} = \|\boldsymbol{x}\| \|\boldsymbol{y}\| \cos(\theta)$$

• If $\| \boldsymbol{w} \| = 1$ then $\langle \boldsymbol{x}, \boldsymbol{w} \rangle = \| \boldsymbol{x} \| \cos(\theta) \|$

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

https://ecs-vlc.github.io/comp6208/

10

Distance to hyperplanes

Constrained Optimisation

• Wish to find w and b to maximise Δ subject to constraints

$$y_k\left(rac{\langle m{w},m{x}_k
angle}{\|m{w}\|}-b
ight) \geq \Delta \quad ext{for all } k=1,2,...,m$$

• If we divide through by Δ

$$y_k\left(rac{\langle oldsymbol{w}, oldsymbol{x}_k
angle}{\Delta \|oldsymbol{w}\|} - rac{b}{\Delta}
ight) \geq 1 \quad ext{for all } k = 1, 2, \dots, m$$

• Define $\hat{\boldsymbol{w}} = \boldsymbol{w}/(\Delta \|\boldsymbol{w}\|)$ and $\hat{b} = b/\Delta$

$$y_k\left(\langle \hat{m{w}}, m{x}_k
angle - \hat{b}
ight) \geq 1$$

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

https://ecs-vlc.github.io/comp6208/

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

Quadratic Programming in SVMs

Quadratic Programming Problem

• Note that as $\hat{\boldsymbol{w}} = \boldsymbol{w}/(\Delta \|\boldsymbol{w}\|)$

$$\|\hat{oldsymbol{w}}\| = \left\|rac{oldsymbol{w}}{\Delta\|oldsymbol{w}\|}
ight\| = rac{1}{\Delta\|oldsymbol{w}\|}\|oldsymbol{w}\| = rac{1}{\Delta}oldsymbol{w}$$

- Minimising $\|\hat{\boldsymbol{w}}\|^2$ is equivalent to maximising the margin Δ
- Can write the optimisation problem as a quadratic programming problem

$$\min_{\hat{\boldsymbol{w}},\hat{b}} \frac{\|\hat{\boldsymbol{w}}\|^2}{2} \quad \text{subject to } y_k \left(\langle \hat{\boldsymbol{w}}, \boldsymbol{x}_k \rangle - \hat{b} \right) \geq 1 \text{ for all } k = 1, 2, \dots, m \text{ } \text{ }$$

https://ecs-vlc.github.io/comp6208/

Quadratic Programming

- We have a quadratic programming problem for the weights $\hat{\boldsymbol{w}} = (\hat{w}_1, \hat{w}_2, \dots, \hat{w}_n)$ and bias \hat{b} and m constraints
- This is a classic but fiddly optimisation problems
- It can be solved in $O(p^3)$ time (it involves inverting matrices) (phew it is not NP-complete!)
- We will see that there is an equivalent dual problem which allows us to use the kernel trick with time complexity $O(m^3)$

Outline

- 1. The Big Picture
- 2. Maximum Margins
- 3. Duality
- 4. Practice

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

https://ecs-vlc.github.io/comp6208/

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

Lagrangian

• In the extended feature space we can find a separating plane (given by w and b) with maximum margine by solving the problem

$$\min_{{\boldsymbol w},b} \frac{\|{\boldsymbol w}\|^2}{2} \quad \text{subject to } y_k(\langle {\boldsymbol w}, {\boldsymbol \phi}({\boldsymbol x}_k) \rangle - b) \geq 1 \text{ for all } k = 1,2,...,m \text{ }$$

• We can write this as a Lagrange problem

$$\min_{\boldsymbol{w},b} \max_{\boldsymbol{\alpha} > \mathbf{0}} \mathcal{L}(\boldsymbol{w},b,\boldsymbol{\alpha})$$

where

$$\mathcal{L}(\boldsymbol{w}, b, \boldsymbol{\alpha}) = \frac{\|\boldsymbol{w}\|^2}{2} - \sum_{k=1}^{m} \alpha_k \left(y_k \left(\langle \boldsymbol{w}, \boldsymbol{\phi}(\boldsymbol{x}_k) \rangle - b \right) - 1 \right)$$

subject to $\alpha_k \geq 0$

Extended Feature Space

• We can generalise the SVM if we map all our features vectors to an extended feature space

$$oldsymbol{x} o oldsymbol{\phi}(oldsymbol{x})$$

- The components of $\phi(x)$ will typically be (non-linear) functions of x (e.g. $\phi_1(x) = x_1^2, \phi_2(x) = x_2^2, \phi_3(x) = \sqrt{2}x_1x_2$)
- We are free to choose whatever mappings we like
- There may be many more components of $\phi(x)$ than of x making it easier to find a linear separation of the two classes
- But in the extended feature space (involving $\phi(x) = (\phi_1(x), \phi_2(x), \dots, \phi_r(x))$ the time complexity is $O(r^3)$

https://ecs-vlc.github.io/comp6208/

Obtaining the Dual Form of the Problem

ullet Differentiating the Lagrangian with respect to w

$$\mathcal{L}(\boldsymbol{w}, b, \boldsymbol{\alpha}) = \frac{1}{2} \|\boldsymbol{w}\|^2 - \sum_{k=1}^{m} \alpha_k \left(y_k \left(\langle \boldsymbol{w}, \boldsymbol{\phi}(\boldsymbol{x}_k) \rangle - b \right) - 1 \right) \|$$

- $\nabla_{w}\mathcal{L} = w \sum_{k=1}^{m} \alpha_k y_k \phi(x_k) = 0$ implies that $oldsymbol{w}^* = \sum_{k=1}^m lpha_k y_k oldsymbol{\phi}(oldsymbol{x}_k)$
- $\frac{\partial \mathcal{L}}{\partial b} = \sum_{k=1}^{m} \alpha_k y_k = 0$ implies $\sum_{k=1}^{m} \alpha_k y_k = 0$
- Substituting back into the Lagrangian

$$\max_{\alpha \geq 0} \sum_{k=1}^{m} \alpha_k - \frac{1}{2} \sum_{k,l=1}^{m} \alpha_k \alpha_l y_k y_l \langle \phi(\boldsymbol{x}_k), \phi(\boldsymbol{x}_l) \rangle \mathbf{I}$$

The Dual Problem

• The dual problem is now to find α_k 's that maximise

$$\mathcal{L}(\boldsymbol{\alpha}) = \sum_{k=1}^{m} \alpha_k - \frac{1}{2} \sum_{k,l=1}^{m} \alpha_k \alpha_l y_k y_l \langle \boldsymbol{\phi}(\boldsymbol{x}_k), \boldsymbol{\phi}(\boldsymbol{x}_l) \rangle \mathbf{I}$$

• subject to constraints

$$\sum_{k=1}^{m} \alpha_k y_k = 0 \qquad \forall k = 1, 2, \dots, m \quad \alpha_k \ge 0$$

• The Hessian of $\mathcal{L}(\alpha)$ has elements $H_{kl} = -y_k y_l \langle \phi(x_k), \phi(x_l) \rangle$ so $v^\mathsf{T} \mathsf{H} v = -\|\sum_k v_k y_k \phi_k(x_k)\|^2 \leq 0$ (note this is negative semi-definite so there is a unique maximum)

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

https://ecs-vlc.github.io/comp6208/

Sequential Minimal Optimisation

- One of the most efficient techniques for training SVMs is Sequential Minimal Optimisation or SMO
- This takes two Lagrange multipliers α_i and α_j and adjusts them to maximise the dual objective function
- This is very quick as it can be done in closed form
- Note that because $\sum\limits_{k=1}^{m}y_{k}\alpha_{k}=0$ we have to change at least two variables at the same timel
- A heuristic is used to choose good pairs of α 's to optimise
- Run until close to the optimum

Kernel Trick

• We will show in the next lecture that if K(x,y) is a positive semi-definite function then it can always be written as

$$K(\boldsymbol{x}, \boldsymbol{y}) = \langle \boldsymbol{\phi}(\boldsymbol{x}), \boldsymbol{\phi}(\boldsymbol{y}) \rangle$$

• As $\langle \phi(x_k), \phi(x_l) \rangle$ appears in the dual problem we can express the dual problem as finding α_k 's that maximise

$$\mathcal{L}(\boldsymbol{\alpha}) = \sum_{k=1}^{m} \alpha_k - \frac{1}{2} \sum_{k,l=1}^{m} \alpha_k \alpha_l y_k y_l K(\boldsymbol{x}_k, \boldsymbol{x}_l) \mathbf{I}$$

• We therefore never have to compute $\phi(x)$

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

https://ecs-vlc.github.io/comp6208/

Soft Margins

• We can relax the margin constraints by introducing slack variables, $s_k \ge 0$

- Minimise $\frac{\|\mathbf{w}\|^2}{2} + C \sum_{k=1}^n s_k$
- Larger C punishes slack variables more

Dual Problem with Slack Variables

• The Lagrangian with slack variables is

$$\mathcal{L} = \frac{1}{2} \| \boldsymbol{w} \|^2 + C \sum_{k=1}^{m} s_k - \sum_{k=1}^{m} \alpha_k \left(y_k \left(\langle \boldsymbol{w}, \boldsymbol{\phi}(\boldsymbol{x}_k) \rangle - b \right) - 1 + s_k \right) - \sum_{k=1}^{m} \beta_k s_k$$

where β_k are Lagrange multipliers that ensure $s_k \geq 0$ (note that $\beta_k \geq 0$ —this is the KKT condition)

• Now minimising with respect to s_i

$$\frac{\partial \mathcal{L}}{\partial s_i} = C - \alpha_i - \beta_i = 0$$

• Or $\alpha_i = C - \beta_i$. Since $\beta_i \ge 0$ the constraint is $\alpha_i \le C$ (recall also $\alpha_i \ge 0$)

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

https://ecs-vlc.github.io/comp6208/

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

https://ecs-vlc.github.io/comp6208/

Getting SVMs to Work Well

- SVMs rely on distances between data points
- These will change relative to each other if we rescale some features but not other—giving different maximum-margin hyper-planes

• If we don't know what features are important (most often the case), then it is worth scaling each feature (for example, so their range is between 0 and 1 or their variance is 1)

Outline

- 1. The Big Picture
- 2. Maximum Margins
- 3. Duality
- 4. Practice

Optimising C

- Recall that we can introduce soft-margins using slack variables where we minimise $\frac{\|\hat{\boldsymbol{w}}\|^2}{2} + C\sum_{k=1}^m s_k$ subject to constraints
- \bullet In practice it can make a huge difference to the performance if we change $C \ensuremath{\mathsf{I}}$
- \bullet Optimal C values changes by many orders of magnitude e.g. $2^{-5} 2^{15} \blacksquare$
- Typically optimised by a grid search (start from 2^{-5} say and double until you reach 2^{15})
- Measure performance on a validation set

Choosing the Right Kernel Function

- There are kernels design for particular data types (e.g. string kernels for text or biological sequences)
- For numerical data, people tend to look at using no kernel (linear SVM), a radial basis function (Gaussian) kernel or polynomial kernels
- Kernels often come with parameters, e.g. the popular radial basis function kernel

$$K(\boldsymbol{x}, \boldsymbol{y}) = \mathrm{e}^{-\gamma \|\boldsymbol{x} - \boldsymbol{y}\|^2}$$

• Optimal γ values range over 2^{-15} – 2^3

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

https://ecs-vlc.github.io/comp6208/

COMP6208 Advanced Machine Learning

https://ecs-vlc.github.io/comp6208/

SVM Libraries

- Although SVMs have unique solutions, they require very well written optimisers
- If you have a large data set they can be very slow
- There are good libraries out there: symlib, sym-lite, (now old), scikit-learn, etc.
- These will often automate normalisation of data and grid search for parameters

Multi-Class Problems

- By construction SVMs separate only two classes
- If we have a multi-class problem we have to use multiple SVMs
- There are two major ways practitioners do this

One-versus-all: for each class, train a separate classify to determine that class versus all others

All-pairs: train a classify for all pairs of classes

- In both cases choose the class which the classifier is most certain. about
- Beware SVMs don't like imbalanced datasets

Adam Prügel-Bennett

Conclusions

- We've seen how SVMs work
- We've learnt how to use them.
- We've seen that we can find the maximum margin hyper-plane by solving a quadratic programming problem (with a unique solution)
- This is a convex optimisation problem with a unique optimum
- The dual problem of an SVM is particularly simple, especially if we use a positive semi-definite kernel (we explore these in the next lecture)