

EIGENVALUES AND DEFINITENESS

Why

Can we characterize positive (semi-)definite matrices in terms of their eigenvalues?

Main Result

Using eigenvalue decompositions, we can answer in the affirmative.

Proposition 1. Suppose $A \in \mathbf{S}^d$ has smallest eigenvalue $\lambda_{\min}(A)$. Then

$$A \in \mathbf{S}_{+}^{d} \quad \& \longleftrightarrow \quad \lambda_{\min}(A) \ge 0$$

$$\& \longleftrightarrow \quad \operatorname{tr} AB \ge 0 \text{ for all } B \in \mathbf{S}_{+}^{d}.$$

and

$$A \in \mathbf{S}_{++}^{d} \quad \& \longleftrightarrow \quad \lambda_{\min}(A) > 0$$

$$\& \longleftrightarrow \quad \operatorname{tr} AB > 0 \text{ for all nonzero } B \in \mathbf{S}_{++}^{d}.$$

