Reference-Based Transcriptome Assembly

Mingfu Shao

Computational Biology Department, Carnegie Mellon University

April 2, 2016

Formulation

■ **Input:** fully connected directed acyclic graph G = (V, E) with source s and sink t, and flow vector f.

■ Output: $P \subset R(M)$ and vector s such that $f = s \cdot P$ and that |R(P)| is minimized.

Facts

Let $\Delta = |E| - |V| + 2$. Let (P^*, s^*) be any optimal solution.

- Fact 1: $rank(M) = \Delta$.
- **Fact 2:** $rank(P^*) = |R(P^*)|$.
- Fact 3: $|R(P^*)| \le \Delta$.
- Fact 4: If $|R(M)| = \Delta$, then the solution is unique: (M,s), where s is determined by $f = s \cdot M$. [trivial cases]
- Fact 5: If $|R(P^*)| = \Delta$, then greedy algorithm is guarenteed to give optimal solution. [easy cases]
- Degenerated cases: $|R(P^*)| < \Delta$. [hard cases]

Degeneration Theorem

Theorem: there exist $k = \Delta - |R(P^*)|$ linearly independent non-trivial vectors q_1, \dots, q_k satisfying $f \cdot q_i = 0, 1 \le i \le k$.

- Consider the **null space** of P^* , i.e., $N(P^*) = \{q | P^* \cdot q = 0\}$.
- For any $q \in N(P^*)$, we have $f \cdot q = s \cdot P \cdot q = 0$.
- $dim(N(P^*)) = |E| rank(P^*) = |E| |R(P^*)|.$

Identifying Equations

- **Conjecture:** $q_i \in \{+1, -1, 0\}$.
- Only consider two simple forms of equations in the current implementation:

$$f_i = f_{i_1} + f_{i_2} + \dots + f_{i_k}$$
 (a)

$$f_i + f_j = f_{i_1} + f_{i_2} + \dots + f_{i_k}$$
 (b)

- **Algorithm:** Use the existing pseudo-polynomial-time algorithm for the subset-sum problem.
- For equation of form (a): split e_i into k edges, each with flow value of f_{i_k} ; record these k pairs of edges with equal flow.
- For equation of form (b): use heuristics to split both sides into identical set of edges; record these pairs with equal flow.

Merge Adjacent Edges with Equal Flow

■ Algorithm: merge them directly.

Merge Distant Edges with Equal Flow

■ **Algorithm: inverse** and **swap** subgraphs based on the its (partial) **nested** structure.

Algorithm

- 1. Iterate until no change is made to the splice graph. [core]
 - a. Decompose trivial vertices
 - b. Identify type (a) equation and split it
 - c. Merge equal edges that can be made adjacent
 - d. Merge equal edges that can not be made adjacent (*)
 - e. Identify type (b) equation and split it (*)
- 2. Arbitrarily decompose the remaining graph using greedy algorithm (but optimal solution is not unique).
- **0.** For cases that the estimated flow value are not perfect, we can use LP to correct them when identify equations.

Simulation Results

- Use iGenome annotation (gtf file) of Human genome.
- Use Flux Simulator to only simulate expression.
- Average over 100 independent 100 instances.

	genes	trivial	easy	hard	greedy	scallop
average	11374	8203	129	3036	99.3	7.8
ratio(%)	100	72.2	1.1	26.7	3.3	0.26

Table: Capability of returning minimized number of paths.

algorithm	g	gene-level		transcript-level			
	correct	predicted	ratio	correct	predicted	ratio	
core	2623	2725	95.6	6763	7029	96.2	
scallop	2683	3035	88.4	7608	8924	85.2	
greedy	2617	3035	86.2	7304	9037	80.8	

Table: Accuracy of predicted transcripts.

Next Steps

- Prove/disprove the conjecture.
- Design better algorithms to use type (b) and even more complicated equations.
- Work on generating high quality splice graph (identify exons and estimate flow values) from sequence data.
- Think about applying this algorithm to othe problems, for example, to help the EM-step of the quantification algorithm.