(I)

Amendments to the Claims

(currently amended) A compound of Formula (I):

Current Docket No. NC10002

or a pharmaceutically acceptable salt or N-oxide thereof, wherein:

one of A^1 , A^2 , A^3 , A^4 and A^5 is N, another of them is C-R 5 , another of them is C-R 6 , and the other two are independently either N or CH;

Q is a C₃₋₈cycloalkyl, a 5- or 6-membered heteroaryl, or a 4-8-membered heteroeyelie ring;

T together with the -N=C- to which it is attached forms a heteroaryl ring, or a heteroaryle ring where the N=C bond is the only site of unsaturation:

 R^1 and R^2 each independently are hydrogen, halogen, hydroxy, cyano, nitro, vinyl, ethynyl, methoxy, OCF_nH_{3-n} , $-N(C_{0.4}alkyl)(C_{0.4}alkyl)$, CHO, or $C_{1.2}alkyl$ optionally substituted with 1-5 independent halogen, hydroxy, cyano, methoxy, $-N(C_{0.2}alkyl)(C_{0.2}alkyl)$, $SOCH_3$, or SO_2CH_3 substituents; or R^1 and R^2 together form a carbocyclic-or-heteroeyelie ring; or R^1 and R^2 may be taken together to represent an oxygen atom attached to the ring via a double bond:

 R^3 and R^4 each independently are hydrogen, halogen, OCF_nH_{3-n} , methoxy, CO_2R^{77} , cyano, nitro, CHO, $CONR^{99}R^{100}$, $CON(OCH_3)CH_3$, or C_{1-2} alkyl, heteroarylor C_{3-7} cycloalkyl optionally substituted with 1-5 independent halogen, hydroxy, cyano, methoxy, $-NHCO_2CH_3$, or $-N(C_{0-2}$ alkyl)(C_{0-2} alkyl) substituents; or R^3 and R^4 together form a 5-8-membered aromatic, heteroaromatic, or carbocyclic, or heteroeyelie ring;

 R^5 and R^6 each independently are hydrogen, hydroxy, halogen, cyano, nitro, CO_2R^7 , CHO, COR^8 , $C(OH)R^7R^8$, $C(=NOR^7)R^8$, $CONR^9R^{10}$, SR^7 , SOR^8 , SO_2R^8 , $SO_2NR^9R^{10}$, $CH_2NR^9R^{10}$, NR^9R^{10} , $N(C_{0-4}alky1)SO_2R^8$, $NHCOR^7$, or $C_{1-4}alky1$ group, $C_{2-4}alk$ eny1 group, $C_{2-4}alk$ eny1 group, $C_{1-4}alk$ eny1 group, $C_{1-4}alk$ eny1 group, $C_{1-2}alk$ eny1 group, $C_{1-2}alk$ eny1 group, $C_{1-2}alk$ eny1, $C_{$

Current Docket No. NC10002

 $N(C_0,2alkyl)(C_0,2alkyl)$, $C_1,2alkyl$, $CF_nH_{3.m}$, aryl, heteroaryl, $-COC_1,2alkyl$, $-CON(C_0,2alkyl)$, SCH_3 , SO_2CH_3 , or $-SO_2N(C_0,2alkyl)$ $(C_0,2alkyl)$ substituents; or R^S and R^S together form a 5-8-membered carbocyclic or heteroeyelie-ring:

 R^7 and R^{77} each independently are hydrogen, or $C_{1.4}$ alkyl group, $C_{2.4}$ alkenyl group, $C_{2.4}$ alkynyl group, $C_{3.7}$ cycloalkyl group, <u>or</u> aryl group, heteroaryl group, or 4.7 membered heterocyclic group, wherein any group optionally is substituted with 1-6 independent halogen, cyano, nitro, hydroxy, $C_{1.2}$ alkyny, $-N(C_{0.2}$ alkyl), $(C_{0.2}$ alkyl), $C_{1.2}$ alkyl, $(C_{3.7}$ cycloalkyl, $(C_{3.7}$ cycloalkyl, $(C_{3.7}$ cycloalkyl), $(C_{3.7}$ cycloalkyl)

R⁸ is C₁₋₄alkyl group, C₂₋₄alkenyl group, C₂₋₄alkynyl group, C₃-7cycloalkyl group, or aryl group, heteroaryl group, or 4.7 membered heterocyclic group, wherein any group optionally is substituted with 1-6 independent halogen, cyano, nitro, hydroxy, C₁₋₂alkoy, -N(C₀₋₂alkyl)(C₀₋₂alky), C₁₋₂alkyl, C₃-7cycloalkyl, 4-7 membered heterocyclic ring, CF_nH_{3-n}, aryl, heteroaryl, CO₂H, -COC₁₋₂alkyl, -CON(C₀₋₂alkyl)(C₀₋₂alkyl), SOCH₃, SO₂CH₃, or -SO₂N(C₀₋₂alkyl)(C₀₋₂alkyl) substituents;

 $R^9,\,R^{10},\,R^{99},\,$ and R^{100} each independently are hydrogen, or C_{1-4} alkyl group, C_{3-} ccycloalkyl group, or aryl group, heteroaryl group, or 4.7 membered heterocyclic group, wherein any group optionally is substituted with 1-6 independent halogen, cyano, nitro, hydroxy, C_{1-2} alkyl, C_{1-2} alkyl, C_{3-7} cycloalkyl, 4.7 membered heterocyclic ring, CF_0H_{3-n} , aryl, heteroaryl, $-COC_{1-2}$ alkyl, $-CON(C_{0-2}$ alkyl), C_{0-2} alkyl), SOCH₃, SO₂CH₃, or -SO₂N(C₀₋₂alkyl)(C₀₋₂ alkyl) substituents; or R^9 and R^{10} or R^{00} and R^{100} together form a 6-8-membered heterobicyclic ring system or a 4-8-membered heterocyclic ring which optionally is substituted with 1-2 independent C_{4-2} alkyl, CH_3OCH_{3+} COC_{0-2} alkyl, hydroxy, or SO₃CH₃ substitutents;

```
n is 1, 2 or 3;
m is 0 or 1;
```

the dotted line together with the solid line forms an optional double bond, and Δ indicates that the double bond has the (E)-configuration; and

with the proviso that Formula (I) does not represent 3-cyclopentyl-2-pyridin-4-yl-N-thiazol-2-ylpropionamide.

 (original) A compound according to claim 1, or a pharmaceutically acceptable salt or

N-oxide thereof wherein Current Docket No. NC10002

the dotted line together with the solid line forms a double bond:

- 3, 4. (canceled)
- (original) A compound according to claim 1, or a pharmaceutically acceptable salt or N-oxide thereof, wherein

the dotted line together with the solid line forms a double bond:

- (original) A compound according to claim 5, or a pharmaceutically acceptable salt or N-oxide thereof, wherein O is a C_{3.5}evcloalkyl ring.
- (original) A compound according to claim 1, or a pharmaceutically acceptable salt or N-oxide thereof, wherein

the dotted line together with the solid line forms a single bond;

- 8, 9, (canceled)
- (currently amended) A compound according to claim 1, or a pharmaceutically acceptable salt or N-oxide thereof, wherein Q is cyclopentyl₁ or cyclohexyl₁ tetrahydropyranyl, tetrahydrothiopyranyl or 1,1 dioxotetrahydrothiopyranyl.
- 11. (original) A compound according to claim 1, or a pharmaceutically acceptable salt or N-oxide thereof, wherein the group of formula

is 2-pyridyl, 2-pyrazinyl, 2-pyrimidinyl, 4-pyrimidinyl, 3-(1*H*-pyrazolyl), 2-(1*H*-imidazolyl), 5-[1,2,4]thiadiazolyl, 2-[1,3,4]thiadiazolyl, 2-(4,5-dihydrothiazolyl), 3-isoxazolyl, 2-oxazolyl, or 2-thiazolyl.

- 12. (original) A compound according to claim 1, or a pharmaceutically acceptable salt or N-oxide thereof, wherein the dotted line together with the solid line forms a single bond, and the absolute configuration at the asymmetric centre α to the amide carbonyl carbon is (R).
- 13. (original) A compound according to claim I wherein \mathbb{R}^3 is hydrogen, halogen, $C_{1,2}$ alkyl, or trifluoromethyl; and \mathbb{R}^4 is hydrogen or methyl.
 - 14. (currently amended) A compound selected from:
 - 2-(6-Chloropyridin-3-yl)-3-cyclopentyl-N-thiazol-2-ylpropionamide;
 - 3-Cyclopentyl-2-(6-phenylpyridin-3-yl)-N-thiazol-2-ylpropionamide;
 - 3 Cyclopentyl N thiazol 2 yl 2 (6 thiophen 3 ylpyridin 3 yl)propionamide;
 - 3-Cyclopentyl-2-pyridin-3-yl-N-thiazol-2-ylpropionamide:
 - (E)-3-Cyclopentyl-2-(6-methylsulfanylpyridin-3-yl)-N-thiazol-2-ylacrylamide;
- (E)-N-(5-Chlorothiazol-2-yl)-3-cyclopentyl-2-(6-methylsulfanylpyridin 3-yl)acrylamide;
 - (E)-3-Cyclopentyl-2-(6-ethylsulfanylpyridin-3-yl)-N-thiazol-2-ylacrylamide;
- $\label{eq:condition} (E)\text{-}N\text{-}(5\text{-}Chlorothiazol-2-yl)-3-cyclopentyl-2-(6-ethylsulfanylpyridin-3-yl)acrylamide};$
- (E) 3 Cyclopentyl 2 [6 (5-methyltetrazol 1-yl)pyridin 3-yl] N-thiazol 2-ylaerylamide:
 - $(E) \hbox{--3-Cyclopentyl-N-thiazol-2-yl-2-(6-[1,2,4]triazol-1-ylpyridin-3-yl)aerylamide;}$
- (E) N·(5-Chlorothiazol 2-yl)-3-eyelopentyl-2-(6-[1,2,4]triazol-1-ylpyridin-3-ylacrylamide:
 - (E)-3-Cyclopentyl-2-(5-methylsulfanylpyridin-2-yl)-N-thiazol-2-ylacrylamide;
- $\label{eq:continuous} (E)-N-(5-Chlorothiazol-2-yl)-3-cyclopentyl-2-(5-methylsulfanylpyridin-2-yl)acrylamide;$
 - 3-Cyclopentyl-2-(6-fluoropyridin-3-yl)-N-thiazol-2-ylpropionamide;
 - (E)-3-Cyclopentyl-2-(2-propylsulfanylpyrimidin-5-yl)-N-thiazol-2-ylacrylamide;
- $(E) \ 3 \ (4 \ Tetrahydropyranyl) \ 2 \ (6 \ methanesulfanylpyridin \ 3 \ y \ l) \ N \ thiazol \ 2 \ ylacrylamide:$
- $\label{eq:N-2-local-prop} N-(5-\text{Chloropyridin-2-yl})-3-\text{cyclopentyl-2-}(6-\text{cyclopropanesulfonyl}) propionamide; \\$

- $\label{eq:continuous} 3-Cyclopentyl-2-(6-cyclopropanesulfonylpyridin-3-yl)-N-[1,2,4] thiadiazol-5-ylpropionamide;$
- 3 Cyclopentyl 2 (6 cyclopropanesulfonylpyridin 3 yl) N (5 furan 2 yl-[1,3,4]thiadiazol 2 yl)propionamide;
- 3-Cyclopentyl-2-(6-cyclopropanesulfonylpyridin-3-yl)-N-[1,3,4]thiadiazol-2-ylpropionamide;
- 3-Cyclopentyl-2-(6-cyclopropanesulfonylpyridin-3-yl)-N-pyrimidin-2-ylpropionamide;
- 3-Cyclopentyl-2-(6-cyclopropanesulfonylpyridin-3-yl)-N-(4-methyloxazol-2-yl)propionamide;
- $\label{lem:condition} 3-Cyclopentyl-2-(\textbf{6-cyclopropanesulfonylpyridin-3-yl})-N-(\textbf{4-methylpyridin-2-yl}) propionamide;$
- 3-Cyclopentyl-2-(6-cyclopropanesulfonylpyridin-3-yl)-N-(6-methylpyridin-2-yl)propionamide;
 - 3-Cyclopentyl-2-(6-cyclopropanesulfonylpyridin-3-yl)-N-isoxazol-3-ylpropionamide;
- 3-Cyclopentyl-2-(6-cyclopropanesulfonylpyridin-3-yl)-N-(5-fluoropyridin-2-yl)propionamide:
- 3-Cyclopentyl-2-(6-cyclopropanesulfonylpyridin-3-yl)-N-(1-methyl-1H-pyrazol-3-yl)propionamide;
- 3-Cyclopentyl-2-(6-cyclopropanesulfonylpyridin-3-yl)-N-(5-methylpyridin-2-yl)propionamide;
- 3-Cyclopentyl-2-(6-cyclopropanesulfonylpyridin-3-yl)-*N*-pyridin-2-ylpropionamide:
- $\label{eq:N-Benzothiazol-2-yl-3-cyclopentyl-2-(6-cyclopropanesulfonylpyridin-3-yl)propionamide;} N-Benzothiazol-2-yl-3-cyclopentyl-2-(6-cyclopropanesulfonylpyridin-3-yl)propionamide;}$
 - $3-Cyclopentyl-2-(6-cyclopropanesul fonyl pyridin-3-yl)-{\it N-pyrazin-2-yl propionamide};$
- N-(6-Chloropyrazin-2-yl)-3-cyclopentyl-2-(6-cyclopropanesulfonylpyridin-3-yl)propionamide:
- 3-Cyclopentyl-2-(6-cyclopropanesulfonylpyridin-3-yl)-N-pyrimidin-4ylpropionamide;
- 3-Cyclopentyl-2-(6-cyclopropanesulfonylpyridin-3-yl)-*N*-(3-methyl-[1.2.4]thiadiazol-5-yl)propionamide;
 - $(E)\hbox{-3-Cyclopentyl-2-} (6-methane sulfonyl pyridin-3-yl)-N-thiazol-2-ylacrylamide;$

- $\label{eq:continuous} (E)-N-(5-\text{Chlorothiazol-}2-\text{yl})-3-\text{cyclopentyl-}2-(6-\text{methanesulfonylpyridin-}3-\text{ylacrylamide:}$
 - (E)-3-Cyclopentyl-2-(6-ethanesulfonylpyridin-3-yl)-N-thiazol-2-ylacrylamide;
- (E)-N-(5-Chlorothiazol-2-yl)-3-cyclopentyl-2-(6-ethanesulfonylpyridin-3-yl)acrylamide;
 - (E)-3-Cyclopentyl-2-(5-methanesulfonylpyridin-2-yl)-N-thiazol-2-ylacrylamide;
- (E)-N-(5-Bromothiazol-2-yl)-3-cyclopentyl-2-(6-methanesulfonylpyridin-3-yl)acrylamide:
 - (E)-3-Cyclopentyl-2-(6-cyclopropanesulfonylpyridin-3-yl)-N-thiazol-2-ylacrylamide;
- (E)-N-(5-Chlorothiazol-2-yl)-3-cyclopentyl-2-(6-cyclopropanesulfonylpyridin-3-yl)acrylamide;
- (E)-3-Cyclopentyl-2-(6-cyclopropanesulfonylpyridin-3-yl)-N-(5-fluorothiazol-2-yl)acrylamide:
- (E)-2-[3-Cyclopentyl-2-(6-cyclopropanesulfonylpyridin-3-yl)acryloylamino]-thiazole-5-carboxylic acid methylamide;
- (E)-N-(5-Chlorothiazol-2-yl)-3-cyclopentyl-2-(5-methanesulfonylpyridin-2-yl)acrylamide;
- (E)-N-(5-Chlorothiazol-2-yl)-3-cyclopentyl-2-(5-methanesulfinylpyridin-2-yl)acrylamide:
- $\label{eq:condition} \begin{tabular}{ll} (E)-2-[5-Chloro-6-(propane-1-sulfonyl)pyridin-3-yl]-3-cyclopentyl-N-thiazol-2-ylacrylamide; \end{tabular}$
- (E)-2-[5-Chloro-6-(propane-1-sulfinyl)pyridin-3-yl]-3-cyclopentyl-N-thiazol-2-vlacrylamide:
- $\label{eq:condition} (E)\hbox{-}2-(5-\text{Chloro-}6-\text{methane} \text{sulfonylpyridin-}3-\text{yl})\hbox{-}3-\text{cyclopentyl-}N\text{-}\text{thiazol-}2-\text{ylacrylamide};$
- $\label{eq:condition} \ensuremath{\textit{(E)-2-(5-Chloro-6-methanesulfinylpyridin-3-yl)-3-cyclopentyl-N-thiazol-2-ylacrylamide;}$
- $\label{eq:continuous} (E)\mbox{-}2-(5-Chloro-6-methane sulfonylpyridin-3-yl)-$N-(5-chlorothiazol-2-yl)-3-cyclopentylacrylamide;$
- $\label{eq:continuous} (E)\mbox{-}2\mbox{-}(5\mbox{-}chloro-6-methane sulfinylpyridin-3-yl)-} N\mbox{-}(5\mbox{-}chlorothiazol-2-yl)\mbox{-}3-yl)\mbox{-}N\mbox{-}(5\mbox{-}chlorothiazol-2-yl)\mbox{-}3-yl)\mbox{-}N\mbox{-}(5\mbox{-}chlorothiazol-2-yl)\mbox{-}3-yl)\mbox{-}N\mbox{-}(5\mbox{-}chlorothiazol-2-yl)\mbox{-}3-yl)\mbox{-}N\mbox{-}(5\mbox{-}chlorothiazol-2-yl)\mbox{-}3-yl)\mbox{-}N\mbox{-}(5\mbox{-}chlorothiazol-2-yl)\mbox{-}3-yl)\mbox{-}N\mbox{-}(5\mbox{-}chlorothiazol-2-yl)\mbox{-}3-yl)\mbox{-}N\mbox{-}(5\mbox{-}chlorothiazol-2-yl)\mbox{-}3-yl)\mbox{-}N\mbox{-}(5\mbox{-}chlorothiazol-2-yl)\mbox{-}3-yl)\mbox{-}N\mbox{-}(5\mbox{-}chlorothiazol-2-yl)\mbox{-}3-yl)\mbox{-}N\mbox{-}(5\mbox{-}chlorothiazol-2-yl)\mbox{-}3-yl)\mbox{-}N\mbox{-}(5\mbox{-}chlorothiazol-2-yl)\mbox{-}3-yl)\mb$
- (E)-3-Cyclopentyl-N-(5-fluorothiazol-2-yl)-2-(6-methanesulfonylpyridin-3-yl)acrylamide;

- (E)-3-Cyclopentyl-N-(5-fluorothiazol-2-yl)-2-(6-methanesulfinylpyridin-3-yl)acrylamide;
 - (E)-3-Cyclopentyl-2-(6-methanesulfinylpyridin-3-yl)-N-thiazol-2-ylacrylamide;
 - (E)-3-Cyclopentyl-2-(6-ethanesulfinylpyridin-3-yl)-N-thiazol-2-ylacrylamide;
- (E)-N-(5-Chlorothiazol-2-yl)-3-cyclopentyl-2-(6-ethanesulfinylpyridin-3-ylacrylamide:
 - (E)-3-Cyclopentyl-2-(5-methanesulfinylpyridin-2-yl)-N-thiazol-2-ylacrylamide;
- $\label{eq:condition} \ensuremath{(E)$-3-Cyclopentyl-2-[2-(propane-1-sulfinyl)pyrimidin-5-yl]-N-thiazol-2-ylarrylamide;}$
- (E)-3-Cyclopentyl-2-(6-ethanesulfinylpyridin-3-yl)-N-(5-fluorothiazol-2-yl)acrylamide;
 - (E)-3-Cyclopentyl-2-(6-cyclopropanesulfinylpyridin-3-yl)-N-thiazol-2-ylacrylamide;
- (E)-N-(5-Chlorothiazol-2-yl)-3-cyclopentyl-2-(6-cyclopropanesulfinylpyridin-3-yl)acrylamide;
- (E)-3-Cyclopentyl-2-(6-cyclopropanesulfinylpyridin-3-yl)-N-(5-fluorothiazol-2-yl)acrylamide;
- (E)-3-Cyclopentyl-2-(6-methanesulfinylpyridin-3-yl)-N-(5-chlorothiazol-2-yl)acrylamide;
 - 3-Cyclopentyl-2-(6-methanesulfonylpyridin-3-yl)-N-thiazol-2-ylpropionamide:
 - 3-Cyclopentyl-2-(6-mercaptopyridin-3-yl)-N-thiazol-2-ylpropionamide;
 - 3-Cyclopentyl-2-(6-methanesulfinylpyridin-3-yl)-N-thiazol-2-ylpropionamide;
- 3-Cyclopentyl-2-(6-methoxymethanesulfinylpyridin-3-yl)-N-thiazol-2vlpropionamide:
 - 3-Cyclopentyl-2-[6-(propane-2-sulfinyl)pyridin-3-yl]-N-thiazol-2-ylpropionamide;
- 3-{5-[2-Cyclopentyl-1-(thiazol-2-ylcarbamoyl)ethyl]pyridin-2-ylsulfanyl}propionic acid;
- 3-{5-[2-Cyclopentyl-1-(thiazol-2-ylcarbamoyl)ethyl]pyridine-2-sulfonyl}propionic
 - {5-[2-Cyclopentyl-1-(thiazol-2-ylcarbamoyl)ethyl]pyridin-2-ylsulfanyl}acetic acid;
 - {5-[2-Cyclopentyl-1-(thiazol-2-ylcarbamoyl)ethyl]pyridine-2-sulfonyl}acetic acid;
 - $\{5\hbox{-}[2\hbox{-}Cyclopentyl\hbox{-}1\hbox{-}(thiazol\hbox{-}2\hbox{-}ylcarbamoyl)ethyl]pyridine\hbox{-}2\hbox{-}sulfinyl\} acetic acid;$
 - (E)-2-(6-Aminopyridin-3-yl)-N-(5-chlorothiazol-2-yl)-3-cyclopentylacrylamide;
 - (E)-2-(6-Aminopyridin-3-yl)-3-cyclopentyl-N-thiazol-2-ylacrylamide;
 - $(E)\hbox{-}3-Cyclopentyl-2-(6-methylaminopyridin-3-yl)-} N-thiazol-2-ylacrylamide;$

- $\label{eq:condition} \begin{tabular}{ll} (E)-$N-(5-Chlorothiazol-2-yl)-3-cyclopentyl-2-(6-methanesulfonylaminopyridin-3-yl) acrylamide: \end{tabular}$
- (E)-3-Cyclopentyl-2-(6-methanesulfonylaminopyridin-3-yl)-N-thiazol-2-ylacrylamide:
- (E)-3-Cyclopentyl-2-[6-(methanesulfonylmethylamino)pyridin-3-yl]-N-thiazol-2-ylacrylamide;

or a pharmaceutically acceptable salt or N-oxide thereof.

- 15. (original) A pharmaceutical composition comprising a compound according to claim 1, or a pharmaceutically acceptable salt or N-oxide thereof, and a pharmaceutically acceptable carrier.
- 16. (withdrawn) A method of prophylactic or therapeutic treatment of hyperglycemia or diabetes comprising a step of administering an effective amount of the compound according to claim 1, or a pharmaceutically acceptable salt or N-oxide thereof.
- 17. (withdrawn) A method of prevention of diabetes in a human demonstrating prediabetic hyperglycemia or impaired glucose tolerance comprising a step of administering an effective prophylactic amount of the compound according to claim 1, or a pharmaceutically acceptable salt or N-oxide thereof.
 - 18. (withdrawn) A process for the preparation of a compound of Formula (Ia):

$$(CH_2)_m$$

$$A_{A_1}^2 A_1^3 D D N$$

$$A_{A_2}^3 A_3^4 A_5 D N$$

$$(Ia)$$

said process comprising a step of the condensation of a compound of Formula (IV):

$$\begin{array}{c|c} R^{1} & R^{2} \\ \hline Q \\ (CH_{2})_{m} \\ A^{2} & A^{4} & O \\ A^{3} & A^{4} & A^{5} \\ \hline IV \\ \end{array}$$

with a compound of Formula (V):

wherein A^1 - A^5 , Q, T, R^1 - R^4 , m and Δ are as defined in claim 1.

19. (withdrawn) A process for the preparation of a compound of Formula (Ib):

$$(CH_2)_m$$

$$A_{A_A}^{2}A_{A}^{1}$$

$$A_{A_A}^{3}$$

$$A_{A_A}^$$

said process comprising a step of the condensation of a compound of Formula (VIII):

$$R^1$$
 R^2
 $(CH_2)_m$
 $(CH_2)_m$
 A^4
 A^5
 OH
 $(VIII)$

with a compound of Formula (V):

wherein A1-A5, Q, T, R1--R4 and m are as defined in claim 1.

20. (original) A compound of Formula (IV):

wherein $A^1\text{-}A^5,$ Q, $R^1,$ $R^2,$ m and Δ are as defined in claim 1.

21. (original) A compound of Formula (VIII):

wherein $A^1\text{-}A^5$, Q, R^1 , R^2 and m are as defined in claim 1.