Team Meeting 2/14/20 - 1.5 Wks til PDR: Feb 24

Meeting Agenda

- Review progress
- Deliverables for Monday

Current Tasks (Critical items)

Top Level

- Tabulate mdot values for potential chamber pressures Jeff DONE 2/10
 - Current top-level parameters (150psi chamber) documented HERE
- Sponsorships
 - 3D systems paper abstract submission DONE 2/11
 - o 3D systems is willing to print stuff for us
 - Want us to do casting, but we can't afford
 - Get updated sponsorship agreement with only 3D printing (and finish machining?)
 - Protolabs wants CAD

Prop Feed

- P&ID
 - Update P&ID with Greg feedback DONE, <u>REV 06</u> tentative final
 - Redo interactive P&ID as MATLAB script
 - Cryo Ox stream Rishav
 - Gas streams Jeff
- BOM
 - Find actual part numbers for flow controls
 - Fill in relief valve/solenoid valves Alec
 - Catalog existing hardware in lab & update BOM
 - Found several ball valves, hoses, solenoid valves, check valves, regulators, press transducers - still need to catalog
 - Look for actuators for cryo ball valves Alec
 - Find high-flow, high-pressure regulator for CH4 stream DONE
 - Swagelok KPF series Cv=1.0, quoted \$1291
 - Tescom 26-2000 series in Cantwell lab Cv 0.3
 - Compile fitting list for each prop stream (see BOM) Alec DONE 2/12
 - Get propellant/fluid quotes Rishav
 - Add insulation to BOM
- Design/sketch dip tube fitting for scuba tank DONE
 - o Check material compatibility at P, T, flow vel Jeff

Nozzle/Chamber

- CAD of nozzle & chamber
 - o Move bolts towards edge of flange to create clearance for nuts/wrench -DONE
 - o Define injector plate interface with chamber
 - Drop throat diameter to 1"
 - Area ratio = 2.18
- Nozzle bolt notch design
 - Prelim can we test before PDR?
 - Look into v-groove notch (based on whatever turning tools are in PRL)

BOM

Injector/Igniter

- CAD
 - o Injector element design
 - Sizing Rough pass done (Rishav, Jeff)
 - Need spreadsheet for quicker design updates (Walker)

- Injector manifolding
 - Design retaining flange & sealing interfaces Wouter needs for test stand design
- o Igniter design
- SEND DESIGN DRAFT TO GREG BEFORE PDR FOR REVIEW
- BOM

Test

- Test plan drafts
 - Subsystem tests
 - Full system test ops
 - O What hardware is needed?
 - O What data are needed?
- CAD
 - o Test stand prelim design : DONE
 - Define where the test stand attaches to the rocket
- BOM: DONE

Avionics

- Avionics diagram
 - Set power requirements for flow controls & instrumentation
 - Solenoid valves 24V DC
 - PT 5V DC
- Look into networking for data transfer & control signaling between arduino & computer over ethernet
- BOM

Notes

- PDR is finished design deadline, esp. for all parts required for igniter test
- PDR Notes (From class on Weds 2/12)
 - o Feb 24th
 - o Show spreadsheets used, but don't have to go through everything
 - Show & state that design is final
 - o Show key components
 - Need full CAD models & ideally drawings
 - Show all **sealing** & mechanical interfaces
 - Talk through P&ID
 - Explain key decisions
 - Send cross-section of MCC before PDR to get Greg review & pointers
 - Show plumbing and valves, should all be selected but don't have to discuss all
 - Show critical parts on main slides, keep others for backup

- Talk about limiting factors & problems
 - Specific to sections
 - For P&ID talk about parts costly and hard to find
- o Injector will be main object of concern for our team
 - More detail on this
- Machining
 - Always mention student status when asking for quotes
 - Always meet machinist and talk through drawing
 - Always mark critical & non-critical dimensions
 - What features are important about part?
 - Human element (incentivize good outcome)
 - Give quick line of contact to get info during machining if needed
 - Try AC Mfg. before A-1 Jay's for quotes (smaller shop, cheaper)
- Propellant System Modeling
 - Identify all pressure-affecting features
 - Friction
 - Changes in area
 - Identify inlet & outlet pressures
 - o Remember gravity head in LOx tank model
 - Use equations in Greg's prop system slides to convert Cv to useful coefficient
 - Add diagram/other accounting for pressure edge cases due to blowdown
 - Model Cavitating venturi as simple dP when doing pressure ladder
 - Keep Ox velocity below ~30 m/s
 - o Fox & McDonald Intro to Fluid Mechanics, Wiley 8th ed 2011