

Beacon + BLE

leejunwoo@gmail.com

Trends

그 많던 싱아는 누가 다 먹었을까?

- * Apple에서 iBeacon 발표 이후에 관심 집중
 - iOS nativ로 지원함으로 많은 가능성 제시
 - Apple Store, MLB 등 사례 제시
 - Estimote 등에서 iBeacon 지원 비콘 공급
- * 2014년 상반기부터 국내에서도 많은 관심
 - SKT에서 자사의 비콘과 LBS 서비스 사업화
 - 스타트업을 중심으로 비콘을 활용하는 다양한 시도
 - O2O 트렌드와 함께 많은 가능성 제시
- * 그러나, 체감할 수 있는 서비스는 보이지 않음
 - SKP의 Syrup 서비스 정도가 가시화
 - 스타트업의 많은 시도 또한 결과가 보이지 않음

Game Change

스마트폰(mobility)과 위치와 결합

Facebook 'Place Tips'

Enrich POI based on social relation

- SKP Syrup 서비스
- Apple's retail store: 250+ US
- Airport Premium Service
- Starwood hotel
- Nivea's StickNFind App

Trends

점점 더 일상의 자연스러움으로 진화

Standalone(Mobility)

Networked(Cloud)

Convenient(wearable)

Ambient(loT)

How to?

비콘을 활용하는 전형적인 프로세스

Beacon은 식별 정보를 Broadcasting(Advertisement)으로 전달

[정보를 수신하였는지 여부는 확인할 수 없음]

About iBeacon

BLE를 이용한 애플의 자체 규격

- * '비콘(beacon)' 자체는 식별 정보를 주기적으로 발산하는 의미
 - 애플의 iBeacon 발표 이전에도 통신 분야에서 사용되는 개념
- * 'iBeacon' Apple WWDC 2013
 - iOS7의 새로운 기능으로 발표
 - Bluetooth 4.0 표준에 포함되어 있는 BLE(Bluetooth Low Energy) 활용
 - Bluetooth 4.0 = Bluetooth Classic + Bluetooth Smart(BLE)

Bluetooth 4.0

저전력을 소모하는 규격을 포함하는 특징

- * Bluetooth Classic
 - Wireless devices, streaming rich content like video and audio
 - 충분한 데이터를 전달할 수 있는 통신 방식
- * Bluetooth Smart
 - Sensor devices, sending small bits of data
 - BLE를 이용하여 저전력으로 짧은 데이터를 전달하는 규격
- * Bluetooth Smart Ready
 - Devices that connect with both

고속 전송과 저전력 소모로 구분

Feature	basic rate/enhanced rate (Classic)	Low Energy (Smart)	Notes		
RF channels	79	40	2MHz spacing in LE		
Modulation	GFSK	GFSK	Simple and effective		
Max Tx power	+20dBm (class 1) +4dBm (class 2)	+10dBm	No 'class' structure. +10dBm regulatory limit		
Range (typical)	30m	50m	Modulation Index, increased power for class 2		
Packet format	6 (BR/EDR)	2 (LE)	ID, FHS, DM, DH, 2-DH, 3-DH - advertising/data		
Ack packet length	126µs	80µs	37% shorter		
Max packet size	2875µs = 1021byte	328µs = 27byte	LE very short		
Max data rate	2178.1kbit/s	305kbit/s	EDR much faster		
Time to transfer 1Mbyte	me to transfer 1Mbyte DH1 = 18.2s, DH5 = 8.8s, 3-DH5 = 2.9s		LE less efficient for large packets		
Encryption	Safer+	AES-128	LE stronger, but not with unique key		

Bluetooth 4.0

고속 전송과 저전력으로 구분

Technical Specification	Classic Bluetooth technology	Bluetooth low energy technology
Distance/Range	100 m (330 ft)	50 m (160 ft)
Over the air data rate	1-3 Mbit/s	1 Mbit/s
Application throughput	0.7-2.1 Mbit/s	0.27 Mbit/s
Active slaves	7	Not defined; implementation dependent
Security	56/128-bit and application layer user defined	128-bit AES with Counter Mode CBC-MAC and application layer user defined
Robustness	Adaptive fast frequency hopping, FEC, fast ACK	Adaptive frequency hopping, Lazy Acknowledgement, 24-bit CRC, 32-bit Message Integrity Check
Latency (from a non connected state)	Typically 100 ms	6 ms
Total time to send data (det.battery life)	100 ms	3 ms ^[citation needed] , <3 ms ^[56]
Voice capable	Yes	No
Network topology	Scatternet	Star-bus Star-bus
Power consumption	1 as the reference	0.01 to 0.5 (depending on use case)
Peak current consumption	<30 mA	<20 mA
Service discovery	Yes	Yes
Profile concept	Yes	Yes
Primary use cases	Mobile phones, gaming, headsets, stereo audio streaming, automotive, PCs, security, proximity, healthcare, sports & fitness, etc.	Mobile phones, gaming, PCs, watches, sports and fitness, healthcare, security & proximity, automotive, home electronics, automation, Industrial, etc.

Figure 4: Technical comparison of classic Bluetooth and BLE

* More info: http://developer.bluetooth.org

About BLE

배터리로 동작이 가능한 저전력 규격

- * 저전력 > 데이터 레이트
 - 전력 소모량을 줄여 배터리로도 장시간 동작이 가능
 - 소형화, 유연성과 편리함을 제공
 - 경쟁 기술: ANT(ANT+), Zigbee, NFC

- * 소비 전력 계산
 - avg. ~ 100 μ Ah per day \rightarrow up to 4 year from a coin cell battery
 - BLE Power consumption = $49\mu A(20 \text{ bytes payload}) \times 3V = 0.147 \text{mW}$
 - Coin Cell Battery(CR2032, 225mAh) = 225mAh / 49μA = 191 days

		Broadcasting power					
		-30 dBm [low]	-4 dBm	+4 dBm [high]			
	2000 ms [long]	3.3 years	3 years	2.3 years			
nterval	1000 ms	1.9 years	1.7 years	1.3 years			
Advertising interval	600 ms	1.2 years	1 year	300 days			
Advert	200 ms	160 days	140 days	104 days			
	50 ms [short]	40 days	35 days	26 days			

Estimote, CR2450(3V, 620mAh)

About BLE

구조의 단순화로 비용 또한 감소

* 저비용의 디바이스 개발이 가능

Component	Quantity	Cost (\$)	
Battery	1	0.325	_
Antenna	1	0 (Printed Antenna)	
EEPROM	1	0.89	960PCZN S NA OLI IZ Z LCCOOS Z A POCOLSNO (C)
Decoupling Cap	6	0.002	THE PROSPINE OF
Signal Cap	5	0.002	PRI THE
Resistor	4	0.0001	
Crystal	2	0.243	
Bluetooth Low Energy IC	1	Approx \$1	
Total		\$2.72	

About BLE

Bluetooth Classic과 구분되는 규격

- * Radio Frequency
 - Bluetooth use unlicensed 2.4GHz ISM(Industrial Scientific Medical) band
 - Bluetooth has built-in AFH(Adaptive Frequency Hopping) feature
 - Bluetooth Classic uses 79 one MHz channel
 - BLE uses only 40 two MHz wide channel(3 advertising channel)
- * Bluetooth Smart: 1 Packet type 2 PDU types
 - Advertising Channel : iBeacon, BLE devices
 - Data Channel: BLE devices
- * BLE advertising: one-way broadcasting
 - packet can be up to 47 bytes in length(80 ~ 376 bits)
 - 1 byte preamble
 - 4 bytes access address(0x8E89BED6) fixed
 - 2~39 PDU
 - 3 bytes CRC

Packet Structure

BLE packet structure

iBeacon

iBeacon은 BLE 패킷의 한 종류로 규격화

- * iBeacon message: 30 bytes
 - iBeacon prefix(9 bytes): 0x0201061AFF4C000215
 - proximity UUID(16 bytes)
 - Major (2 bytes)
 - Minor (2 bytes)
 - TX power (1 byte)

- * RSSI(Received Signal Strength Indicator)
 - TX power is the strength of the signal measured at 1 meter from the device
- * Typical Distance Calculation(Calibration required)

```
double getDistance(int rssi, int txPower) {
    /*
    * RSSI = TxPower - 10 * n * lg(d)
    * n = 2 (in free space)
    * d = 10 ^ ((TxPower - RSSI) / (10 * n))
    */
    return Math.pow(10d, ((double) txPower - rssi) / (10 * 2));
}
```

BLE Packet

iBeacon 패킷 구성

d6 be 89 8e 40 24 05 a2 17 6e 3d 71 **02 01 1a 1a ff 4c 00 02 15 e2 c5 6d b5 df fb 48 d2 b0 60 d0 f5** a**7 10 96 e0 00 00 00 c5** 52 ab 8d 38 a5

BLE Packet

iBeacon 패킷 구성

iBeacon information						
RSSI	Measured by receiver					
MAC	From BLE header					
Proximity UUID	(can be) company reference					
Major, Minor	Integer values identifying the tag and/or zone					
Measured Tx Pwr	Calibrated power at 1m from the iBeacon (dBm)					

Protocol Stacks

Bluetooth Smart(BLE) 프로토콜 구조

- LL(Link Layer): 무선 링크를 설정하고 콘트롤 하는 레이어
- HCI(Hardware Controller Interface): 콘트롤러와 호스트간의 통신 레이어
- L2CAP(Logical Link Control to Adaptation layer Protocol)): 상위레벨로 데이터 서비스를 제공하고 콘트롤러로 보낼 패킷을 쪼개거나 조합하는 레이어
- SM(Security Manager): AES-128bit 암호화
- ATT(Attribute Profile): 서비스 제어 레이어
- GATT(Generic Attribute Profile): ATT를 이용하여 프로파일과 서비스를 주고 받을 것인지를 제어
- GAP(Generic Access Profile): 장치간 연결제어(Advertising and Connections)

Radio Frequency

Bluetooth Smart 주파수 규격

- * BLE uses 2.4GHz ISM (unlicensed) band
 - 2MHz wide channel 40 channel
 - Advertising channel: 3 channel(37, 38, 39)

Figure 1: BLE uses 40 channels in the 2.4GHz ISM band. Channels in green are used for advertising.

ISM band 를 사용하는 다양한 무선 규격

- * Unlicensed Radio Frequency
 - Wi-Fi(802.11b/g/n/ax)
 - Bluetooth
 - ZigBee(802.15.4)
 - ANT(ANT+)
 - Wireless Etherernet
 - Wireless USB

Avoid Interference

채널 간섭을 줄일 수 있는 설정

- * 2.4GHz Wi-Fi 채널을 1, 6, 11로 설정
 - 채널간 간섭의 확률을 줄일 수 있음
 - Wi-Fi: CSMA(Carrier Sense Multiple Access) / CA(Collision Avoidance)

Interference

무선 주파수에 영향을 미칠 수 있는 요인

- * Interference Types
 - Physical objects: 800Mhz, 1800MHz, 2100Mhz,,,
 - Radio interference: Many wireless technologies use an RF range of 2.4GHz

 Devices can cause noise and weaken the signal
 - Electrical interference: Computer, Oven, Motorized devices
 - Environmental factors: Lighting, weather, even human

iBeacon

결론적으로 advertising 패킷을 broadcasting

* iBeacon은 단방향의 메시지만 송신

Proximity

근접도를 측정할 수 있는 정보 포함

- * 단방향의 식별 정보만을 전송하지만,
 - RSSI를 이용하여 근접 정도의 계산이 가능
- * iOS Region Monitoring
 - If listening device crosses monitored region boundary
 - In case of entry, iOS will send notification within ~ 1 second

- In case of exit, iOS wait about 20 seconds before exit notification is reported

(In order to avoid fake notifications)

* iOS monitoring mode and range mode

- When the phone is not active,
 iOS goes into a low-power mode
 Region enter/exit events are detected
- When the phone and app are active,
 iOS goes into range mode
 Detect the signal strength and
 estimate the distance more precisely

Accuracy

거리 측정에 오차 감안 필요

- * External factors which influence the Bluetooth radio frequency
 - absorption, interference, multipath fading, multipath propagation, diffraction
 - RSSI might fluctuate heavily
- * Experimental Results
 - Distance of 20cm: deviation is 5~6cm
 - Distance of 1m: deviation is 15cm
 - Distance greater than 10m: deviation is 2~3m

iBeacon RSSI (dBm) vs distance (m), line of sight

iBeacon Tx power 0dBm 'measured power' -61dBm @ 1 m

Accuracy

수신기에 따른 측정 신호 차이

- * Wireless signal fluctuation을 고려
 - device 별 신호 수신에 따른 경향성 존재
 - moving avg / 칼만필터 / CDF 등 오차의 보정 필요

iBeacon RSSI (dBm) vs distance (m), line of sight (RSSI averaged over 5 readings)

Indoor positioning

실내에서의 측위 가능

- * If receiver detects three different beacon's advertising packet, Relative position can be deduced
 - Beacon's physical location should be supplied (via inquiry online service)
 - At least, Three different beacon's RSSIs should be detected
- * But,
 - Bluetooth radio wave may be fluctuated
 - Each beacon's transmitting time can not be synchronized

LBS ≠ **Positioning**

UUID hierachy

Identifier of iBeacon

Store Location		San Francisco	Paris	London		
	UUID	D9B9EC1F-3925-43D0-80A9-1E39D4CEA95C				
	Major	1	2	3		
	Clothing	10	10	10		
Minor	Housewares	20	20	20		
	Automotive	30	30	30		

* UUID: nationwide retail store identifier

* Major: identifier of store location

* Minor: identifier of department

- * For security reason, UUID generation by *uuidgen* is recommended
 - create a new universally unique identifier (128-bit)
 - new UUID can reasonable be considered unique among all UUIDs
 - unique on the local system
 - unique on other system in the past and in the future

RSSI Fingerprinting

RSSI를 이용한 실내 측위 방법

- * Bluetooth, Wi-Fi, Magnetic 등을 측정하여 공간에 대한 라디오맵 구성
 - 크라우드소싱으로 정보를 수집하여 구축 비용 절감
 - 구축된 라디오맵을 바탕으로 실내외 위치, 네비게이션 정보를 제공
 - Skyhook Wireless
 - CISCO LBS
 - KAILOS (https://kailos.io)

BLE GATT Profile

저전력을 이용하는 다양한 BLE 서비스

- * Bluetooth Smart GATT
 - BLE 장치간에 서비스에 대한 데이터 송수신 방법을 정의
 - BLE를 활용하는 다양한 서비스는 프로파일로 정의(Bluetooth SIG)
 - https://developer.Bluetooth.org/TechnologyOverview/Pages/Profiles.aspx

BLE GATT Profile

Profile 종류

Profile	Description
Alert Notification	(ANP) 경보 통지 프로파일
Blood Pressure	(BLP) 혈압을 측정 프로파일
Cycling Power	(CPP) 자전거의 크랭크에 전달되는 파워 정보 프로파일
Cycling Speed and Cadence	(CSCP) 자전거의 속도와 케이던스 정보 프로파일
Find Me	(FMP) 연결된 디바이스를 찾는 프로파일
Glucose	(GLP) 혈당을 측정하는 프로파일
Health Thermometer	(HTP) 체온을 측정하는 프로파일
Heart Rate	(HRP) 심장 박동수를 측정하는 프로파일
HID OVER GATT	(HOGP) GATT 프로파일 상의 휴먼 인터페이스 디바이스
Location and Navigation	(LNP) 위치정보와 네비게이션 정보 프로파일
Phone Alert Status	(PASP) 전화 경포 통지 정보 프로파일
Proximity	(PXP) 근접 정보 프로파일
Running Speed and Cadence	(RSCP) 러닝 스피드와 회전수의 측정 프로파일
Time	(TIP) 시간 동기화를 위한 정보를 전달
Weight Scale Profile	(WSP) 체중 측정 프로파일

IoT over BLE

IoT 환경에서 주요하게 활용될 것으로 기대

(from CSR presentation)

- A new radio, new protocol stack, new profile architecture and a new qualification regime
- It's designed to run from coin cells and support an Apps Store model
- It is a radio standard for a new decade, enabling the Internet of Things
- Feature
 - Mostly new PHY; some parts derived from the Basic Rate (BR) radio
 - New advertising mechanism, for easy of discovery & connection
 - Asynchronous connection-less MAC: used for low latency, fast transactions (e.g. 3ms from start to finish)
 - New Generic Attribute Profile to simplify devices and the software that uses them
 - Asynchronous Client / Server architecture
- Designed to be LOWEST cost and EASY to implement

Bluetooth 4.2

인터넷 접속 지원

- * Bluetooth 4.2 Standard (2014-12-04)
 - 2.5x faster (huge packet)
 - privacy improvement
 - access the internet

Sync data quickly and reliably. In 4.2, Bluetooth Smart is up to 2.5x faster with a huge packet capacity increase – nearly 10x more versus previous versions.

- * Update to 4.2
 - Privacy features may be available via firmware update
 - increased speed and packet size feature will require a hardware update
- * ISIP(Internet Protocol Support Profile): Adopted (2014-12-16)
 - Support of exchanging IPv6 packets between devices over the Bluetooth Low Energy transport
 - IPv6 / 6LoWPAN

Bluetooth 4.2

Internet Protocol Stack

- * ISIP Router: used for devices that can route IPv6 packets
 - Access Point(such as home router, mobile phone)
- * ISIP Node: devices that can only originate or consume IPv6 application packets
 - IPSS(Internet Protocol Support Service): discovery over GATT

Compare with other technologies

A standard can only offer IP protection for the parts it own.

BLE

Compare with other technologies

	BLE	ANT	ANT+	RF4CE	ZigBee	Wi-Fi	Nike+	IrDA	NFC
Remote Control	٧	Х	Х	٧	Х	٧	Х	٧	Х
Security	٧	Х	Х	Х	٧	٧	Х	Х	٧
Health and Fitness	٧	٧	٧	Х	Х	Х	٧	Х	Х
Smart Meters	٧	Х	Х	Х	٧	٧	Х	Х	Х
Cell Phones	٧	Х	٧	Х	Х	٧	Х	٧	٧
Automotive	٧	Х	Х	Х	Х	٧	Х	Х	٧
Heart Rate	٧	Х	٧	Х	Х	X	Х	X	Х
Blood Glucose	٧	Х	٧	Х	Х	Х	Х	X	X
Positioning	٧	Х	Х	Х	٧	٧	Х	X	Х
Tracking	٧	Х	Х	Х	٧	Х	Х	X	٧
Payment	Х	X	X	X	X	X	X	X	٧
Gaming	٧	Х	Х	Х	Х	X	Х	٧	Х
Key Fobs	٧	х	Х	٧	X	X	Х	٧	٧
3D TV	٧	х	Х	Х	X	X	Х	٧	Х
Smart Applications	٧	х	Х	X	٧	X	Х	Х	Х
Intelligent Transport Systems	٧	٧	٧	Х	٧	X	Х	Х	Х
PCs	٧	х	Х	Х	X	٧	Х	٧	٧
TVs	٧	х	Х	٧	Х	٧	Х	٧	Х
Animal Tagging	٧	Х	Х	Х	٧	X	Х	X	٧
Assisted Living	٧	٧	٧	Х	Х	Х	Х	X	٧

Table: Low-power wireless technology target markets (Digikey)

Pros and Cons

BLE와iBeacon의 장점

* Pros

- 저전력 기반으로 유연성과 환경 구성에 적합(배선 구성 불필요)
- mobility 제공으로 다양한 분야에서 활용 가능
- (iBeacon) 신호를 전달하는 용량(capacity)에 제약이 없음(단방향)

* Cons

- (iBeacon) 주기적 신호를 발생(advertising)시키는 단방향 통신구조
 - : 밀집지역에 정보를 전달하기에 적합한 유형
 - : 그러나, 비콘을 활용하는 서비스는 용량에 제약을 받을 수 있음
- 1초 간격(1Hz)의 신호를 인식하기 위해서는 1초를 기다려야 함
 - : 신호 발생 주기 단축 시, 배터리 동작시간은 단축
- 정확한 위치 식별을 위해서는 필요한 조건이 만족되어야 함
 - : triangulation 측량을 위해서는 3개의 비콘 신호 수신 필요
 - : 각 비콘의 물리적 위치를 알아야 함
 - : 오차를 줄이기 위해서는 복잡한 구성 필요

Security Issue

Apple rejects manual input of UUIDs

- * 비콘(region)의 식별 정보인 proximityUUID / Major / Minor 취약점
 - proximityUUID / Major / Minor를 임의의 값으로 설정 가능
 - region 기반의 서비스의 오류를 야기시킬 수 있음
 - → 신뢰도가 요구되는 서비스에서 비콘 정보만 의존하는 것은 위험
- * iOS는 비콘의 안전성 확보를 위한 최소한의 조치
 - 와일드카드로 비콘을 감지하는 것은 불가능(proximityUUID 설정 필요)
 - (android는 OS에서 비콘을 지원하지 않으므로 임의의 비콘 스캔 가능)
 - world-wide beacon map: www.wikibeacon.org by Radius Network
 - "Apple Slowly Locking Down iBeacon?"
 - proximityUUID를 직접 설정하는 어플리케이션의 등록 거부
 - → 신뢰도가 요구되는 서비스에서 비콘 정보만 의존하는 것은 위험

Battery Drain issue

블루투스 활용으로 배터리 소모는 증가

	Baseline	0 beacons	7 beacons	10 beacons
Nexus 4	-1.05%	-2.14%	-2.63%	N/A
Nexus 5	-0.57%	-1.43%	-2.23%	-5.18%
Moto G	-0.76%	-1.20%	-1.44%	-1.79%
Source: aislelabs.com				งังจั Aislelabs

- * 블루투스 활용에 따라 배터리 소모가 증가하지만,
 - 스마트폰 활용에 치명(?)적일 만큼 배터리 소모가 증가하지는 않으며,
 - 최신 단말의 경우에 블루투스의 배터리 소모 효율이 나아지고 있음
 - 블루투스 활용(이어폰, 웨어러블 등)도가 향상됨에 따라 보편화 전망
- * 비콘이 배터리 소모에 미치는 영향
 - 감지 범위내 비콘의 개수가 배터리 소모에 미치는 영향이 큼
 - 비콘 감지 주기가 배터리 소모에 미치는 영향이 큼(iOS: 1 sec)
 - 비콘의 신호 발생 간격이 짧으면 배터리 소모량이 증가함
- → 비콘의 배치와 주기 설정이 사용자에게 미치는 영향고려 필요

Battery Drain issue

iOS is worse than Android (experimental)

- → Android가 iOS에 비해 배터리 소모 영향이 적음
- → iOS는 감지 공간내 비콘의 개수에 덜 영향 받음
- → Android는 커스터마이징에 유리한 반면, iOS는 최적화된 결과를 제공
- → 실질적인 응용에서의 배터리 소모는 1% 수준으로 예측(1일)

Scan Interval

스캔의 지속시간과 스캔의 간격

- * Android는 블루투스 제어를 통해 설정이 가능
 - https://github.com/AltBeacon/android-beacon-library
- * In iOS, 설정은 알 수 없으나, 배터리 소모를 감안하여 동작
 - Region Monitoring: foreground / background (1 second)
 - : unknown / inside / outside
 - Ranging : only works in foreground
 - : immediate(0.5m) / near(2m) / far(30m) / unknown
 - only 20 region can be registered

Management Issue

Beacon is not connected to the Network

- * 비콘 관리의 어려움
 - 비콘의 정상적인 동작 여부를 원격에서 파악하기 어려움
 - 비콘의 설정 변경 또한 용이하지 않음
 - 음영지역, 신호발생 주기, 전원 공급 상태는 모두 서비스의 품질에 영향
 - 배터리 교체에 대한 관리 부담(Estimote Beacon Sticker)

- * 효과적인 비콘 관리 방법?
 - 핸드핼드 스캐너(Application)를 이용한 관리 방법
 - 서비스와 결합된 크라우드소싱 관리 방법
- → 서비스의 구성에서는 설정과 관리의 어려움 고려 필요
- → Bluetooth 4.2 에서는 Internet connectivity 제공으로 관리에 이점 (IPv6 deployment 이슈)

Conclusion

iBeacon is useful because ,,, but,

Simple and Convenient

Bluetooth 4.0 Standard

Capacity Free

As an Interface

Use of Radio Frequency

Disconnected

Security Issues

Localized Target

→ 어플리케이션의 활용성이 물리적 공간과 결합하여 광범위하게 확대

박물관 활용 사례

- * Antwerp museum
 - Estimote 비콘을 이용하여 박물관내 서비스
 - Push Notification / In-door Positioning
- * Why?
 - 공간을 해치지 않으면서 정보 제공 필요
 - : 속성상 부수적인 정보 제공의 필요성
 - 박물관내 관람객의 이동 행태
 - : 비콘을 인식하는데 까지 소요되는 시간
 - : 통상적인 보행 속도 등 적합
 - 박물관내 형상이 빈번하게 변경되지 않음
 - : 공간의 형상 변경 등이 빈번하지 않음
 - : 실내 측위 등에 이점

Airport Premium Service

- * 공항 내 프리미엄 서비스 예시
 - Virgin Atlantic London Heathrow
 - Use of Estimote's beacon
 - 보안 검색대 이동 시 항공권 팝업
 - 환전 시 환전 수수료 할인 쿠폰 발행
 - Airport map information
 - Thermometer / accelerometer
 - Luggage tracking(accelerometer) future
 - Temperature change
- * Why?
 - 다수의 이용객이 밀집되는 공간에 효과적
 - 사용자에 대한 편의제공과 더불어 관리 효과
 - 공항 공간의 특성상 환경 영향이 미미함

Door Key – personalized check-in

- * 호텔 등에서 check-in으로 활용
 - Starwood / Marriott / James / Hilton
 - Location-based suggestion
 - Check-in / Check-out

- * Automatic + iBeacon
 - OBD(On-Board Diagonostic)에 비콘 기능을 추가
 - 차량을 이동하는 비콘으로,,,
 - 주차시간 / 주차비 계산 / 출입 개폐기 작동
 - 톨게이트, 주차장, 세차장, 주유소 등에서 사용
 - Bluetooth 3.0 + 4.0
 - OBD-II(K1962 standard)

- * Why?
 - 비콘 신호를 송신함으로써의 서비스 모델
 - 고정 형태가 아닌 이동형으로의 서비스 모델
 - 보안 이슈에 대해서는 고려 필요

비콘 활용 Gamification

- * 위치와 결합한 Gamification
 - http://beaconcrawl.com
 - Pub 연계를 통한 Gamification
 - 스마트폰을 이용한 메뉴 주문
 - 1차, 2차, 3차 목적지 미션을 통해 쿠폰 발행
- * Why?
 - 오프라인 서비스와의 결합
 - 비콘을 활용한 다양한 게임 시나리오 적용

Scenario

고려할점

→ 목적으로 사용하기보다는 수단으로 활용해야,

- * 시나리오에서는 비콘의 특성과 영향이 반드시 고려되어야,
 - 비콘 신호 발생 주기와 측정 간격을 고려한 사용
 - : 개발 시점의 환경보다는 실 환경에서의 사용자 행위를 고려
 - : 1초 이상 지연될 수 있는 상황에 적합한가?
 - 박물관과 같은 환경에서의 적합성
 - : 특정한 환경에서의 사용자 양상 분석 필요
 - : notification active / passive
 - 신뢰도가 요구되는 서비스 모델에서의 적용 위험성
 - : 쿠폰과 마일리지의 차이점
 - : 물리 환경에서 비콘의 관리와 통제의 어려움