Locally PSD Matrices and Hyperbolic Polynomials

Grigoriy Blekherman, Santanu Dey, Kevin Shu * , Shengding Sun March 17, 2022

Georgia Institute of Technology

Part 1: Conic Optimization and Semidefinite Programming

Overview

- Powerful toolbox for solving problems in engineering and computer science.
- Related to convex optimization and linear programming.
- Semidefinite programming is a special kind of conic optimization that is very useful.

Definition

A **convex cone** is a subset C of \mathbb{R}^n with 2 properties:

- If $x \in C$, and $\lambda \in \mathbb{R}$ with $\lambda \geq 0$, then $\lambda x \in C$.
- If $x, y \in C$, then $x + y \in C$.

Definition

A **convex cone** is a subset C of \mathbb{R}^n with 2 properties:

- If $x \in C$, and $\lambda \in \mathbb{R}$ with $\lambda \geq 0$, then $\lambda x \in C$.
- If $x, y \in C$, then $x + y \in C$.

Examples

- Nonnegative Orthant: $\{x \in \mathbb{R}^n : \forall i, x_i \geq 0\}$.
- Second Order Cone: $\{x \in \mathbb{R}^n : 0 \le x_1 \le \sqrt{\sum_{i=2}^n x_i^2}\}$.
- Positive Semidefinite Cone

Definition

Given a convex cone C, a **conic optimization problem** over C an optimization problem of the form

minimize
$$h^{\mathsf{T}} x$$
 such that $Ax = b$ $x \in C$

where $h \in \mathbb{R}^n$, $b \in \mathbb{R}^k$ and $A \in \mathbb{R}^{n \times k}$.

7

Figure 2: A convex cone C.

Figure 3: A linear subspace that intersects *C*.

Figure 4: The intersection of a linear subspace and C

Figure 5: The optimal solution for an objective function.

When C is the nonnegative orthant, conic optimization problems over C are called **linear programming**.

When C is the nonnegative orthant, conic optimization problems over C are called **linear programming**.

Applications

- Approximating hard combinatorial problems like finding the maximum clique of a graph or finding a coloring of a graph.
- Used in economics and engineering to solve resource allocation problems.
- Used in machine learning for certain regression problems.

The more complicated C is, the more expressive the conic optimization problem is, and the more difficult they are to solve.

Meta-theorem

If you can efficiently determine whether or not a given point x is in C, then you can efficiently solve conic optimization problems over C.

Semidefinite Programming

Definition

An $n \times n$ matrix A where $A^{T} = A$ is PSD if all of its eigenvalues are nonnegative.

Equivalent Conditions

- $X = \sum_{i} x_i x_i^{\mathsf{T}}$ where $x_i \in \mathbb{R}^n$.
- The determinants of all principal submatrices of A are nonnegative.
- A can be factored as $V^{T}V$.

$$\begin{pmatrix}
1 & 2 & 3 & 4 \\
2 & 3 & 4 & 5 \\
3 & 4 & 5 & 6 \\
4 & 5 & 6 & 7
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 2 & 3 & 4 \\
2 & 3 & 4 & 5 \\
3 & 4 & 5 & 6 \\
4 & 5 & 6 & 7
\end{pmatrix}$$

This is PSD: it can be factored

$$\begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 & 1 \end{pmatrix}.$$

$$\begin{pmatrix}
1 & 2 & 3 & 4 \\
2 & 3 & 4 & 5 \\
3 & 4 & 5 & 6 \\
4 & 5 & 6 & 7
\end{pmatrix}$$

This is PSD: it can be factored This is not PSD, the submatrix

$$\begin{pmatrix} 1\\1\\1\\1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 & 1 \end{pmatrix}.$$

$$\begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix}$$

has determinant -1.

The PSD Cone If X and Y are PSD, then X + Y is PSD.

If X is PSD, then λX is PSD for $\lambda \geq 0$.

This makes the set of all PSD matrices a convex cone.

Semidefinite Programming

minimize
$$\langle B^0,X
angle$$
 such that $\langle B^\ell,X
angle=b_\ell$ for $\ell\in\{1,\ldots,k\}$ $X\succ 0$

- $X \succeq 0$ means that X is an $n \times n$ positive semidefinite matrix.
- A matrix is positive semidefinite if it is symmetric and all of its eigenvalues are nonnegative.
- The B^i are all $n \times n$ symmetric matrices.

Applications

- Approximates the NP-hard MAXCUT problem to a factor of 0.86.
- Computes clique numbers and chromatic numbers for perfect graphs.
- Approximates arbitrary polynomial optimization problems.
- Applications to learning mixtures of Gaussians.
- Many other engineering applications.

Linear Regression

Given a set of input variables $a_1, \ldots, a_k \in \mathbb{R}^n$, and a set of output variables $b_1, \ldots, b_k \in \mathbb{R}$, find $x \in \mathbb{R}^n$ that minimizes

$$\sum_{i=1}^k (x^{\mathsf{T}} a_i - b_i)^2$$

Linear Regression

Given a set of input variables $a_1, \ldots, a_k \in \mathbb{R}^n$, and a set of output variables $b_1, \ldots, b_k \in \mathbb{R}$, find $x \in \mathbb{R}^n$ that minimizes

$$\sum_{i=1}^k (x^{\mathsf{T}} a_i - b_i)^2$$

•
$$A = \begin{pmatrix} a_1 & a_2 & \dots & a_k \end{pmatrix}$$

$$\begin{pmatrix} b_1 \\ b_n \end{pmatrix}$$

$$\bullet \ \ b = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_k \end{pmatrix}$$

• Linear regression objective is

$$\min_{x \in \mathbb{R}^n} \|A^{\mathsf{T}}x - b\|^2.$$

Problem: In conic optimization, the objective is supposed to be linear, but this is quadratic.

Solution: Introduce a new variable that absorbs the quadratic term.

$$||A^{\mathsf{T}}x - b||^2 = (A^{\mathsf{T}}x - b)^{\mathsf{T}}(A^{\mathsf{T}}x - b)$$

$$= x^{\mathsf{T}}AA^{\mathsf{T}}x - 2b^{\mathsf{T}}A^{\mathsf{T}}x + ||b||^2$$

$$= \operatorname{tr}(AA^{\mathsf{T}}xx^{\mathsf{T}}) - 2b^{\mathsf{T}}A^{\mathsf{T}}x + ||b||^2$$

$$||A^{\mathsf{T}}x - b||^{2} = (A^{\mathsf{T}}x - b)^{\mathsf{T}}(A^{\mathsf{T}}x - b)$$

$$= x^{\mathsf{T}}AA^{\mathsf{T}}x - 2b^{\mathsf{T}}A^{\mathsf{T}}x + ||b||^{2}$$

$$= \operatorname{tr}(AA^{\mathsf{T}}\mathbf{x}\mathbf{x}^{\mathsf{T}}) - 2b^{\mathsf{T}}A^{\mathsf{T}}x + ||b||^{2}$$

$$||A^{\mathsf{T}}x - b||^{2} = (A^{\mathsf{T}}x - b)^{\mathsf{T}}(A^{\mathsf{T}}x - b)$$

$$= x^{\mathsf{T}}AA^{\mathsf{T}}x - 2b^{\mathsf{T}}A^{\mathsf{T}}x + ||b||^{2}$$

$$= \operatorname{tr}(AA^{\mathsf{T}}\mathbf{x}\mathbf{x}^{\mathsf{T}}) - 2b^{\mathsf{T}}A^{\mathsf{T}}x + ||b||^{2}$$

Notice that the matrix xx^{T} is PSD, so let's make $X = xx^{T}$.

$$\min_{\mathbf{x} \in \mathbb{R}^n} \|A^\mathsf{T} \mathbf{x} - b\|^2 = \min_{X = \mathbf{x} \mathsf{T}} \mathsf{tr} (AA^\mathsf{T} X) - 2b^\mathsf{T} A^\mathsf{T} \mathbf{x} + \|b\|^2$$

The right hand side is almost a semidefinite program. A little massaging let's us rewrite this as a semidefinite program.

It turns out that the solution to the semidefinite program

minimize
$$\|b\|^2 - \operatorname{tr}(XA^{\mathsf{T}}bb^{\mathsf{T}}A)$$
 such that $\operatorname{tr}(AA^{\mathsf{T}}X) = 1$ $X \succeq 0$

is of the form αxx^{T} , where α is a scalar.

Part 2: The Locally PSD Cone and Its Relatives

Motivating Question

Sparse Linear Regression

Given a set of input variables $a_1, \ldots, a_k \in \mathbb{R}^n$, and a set of output variables $b_1, \ldots, b_k \in \mathbb{R}$, find $x \in \mathbb{R}^n$ that minimizes

$$\sum_{i=1}^k (x^{\mathsf{T}} a_i - b_i)^2,$$

and x has at most k nonzero entries.

Motivating Question

Sparse Linear Regression

Given a set of input variables $a_1, \ldots, a_k \in \mathbb{R}^n$, and a set of output variables $b_1, \ldots, b_k \in \mathbb{R}$, find $x \in \mathbb{R}^n$ that minimizes

$$\sum_{i=1}^k (x^{\mathsf{T}} a_i - b_i)^2,$$

and x has at most k nonzero entries.

NP-hard for some values of k.

Can use our earlier reformulation for linear regression to turn this into a conic optimization problem.

Conical Optimization for Sparse Linear Regression

Let

$$\mathcal{FW}_n^k = \{X \in \mathbb{R}^{n \times n} : X = \sum_i x_i x_i^\mathsf{T}, \|x_i\|_0 \le k\}.$$

Here, $||x||_0$ is the number of nonzero entries of x.

minimize
$$\|b\|^2 - \operatorname{tr}(XA^\intercal bb^\intercal A)$$
 such that $\operatorname{tr}(AA^\intercal X) = 1$ $X \in \mathcal{FW}^k_n$

is equivalent to sparse linear regression.

How can we approximate solutions to conical programs over \mathcal{FW}_n^k ?

Two aspects:

- It is clear that nonsparse linear regression will result in a better objective. How much better can it be?
- Can we produce a solution to this program that is close to the optimal solution?

How can we approximate solutions to conical programs over \mathcal{FW}_n^k ?

Two aspects:

- It is clear that nonsparse linear regression will result in a better objective. How much better can it be?
- Can we produce a solution to this program that is close to the optimal solution?

We will focus on the dual cone of \mathcal{FW}_n^k , which we call the k-locally PSD cone.

Locally PSD Matrices

k-Locally Positive Semidefinite Cones

For $S \subseteq [n]$, denote by X_S the submatrix of X indexed by elements of S.

A matrix $M \in \mathbb{R}^{n \times n}$ is k-locally PSD if every $k \times k$ submatrix of M is PSD.

$$S^{n,k} = \{M : M \text{ is } k\text{-locally PSD}\}$$

is a convex cone.

E.g. the following 4×4 matrix is 2-locally PSD:

k-Locally Positive Semidefinite Cones

For $S \subseteq [n]$, denote by X_S the principle submatrix of X indexed by elements of S.

A matrix $M \in \mathbb{R}^{n \times n}$ is k-locally PSD if every $k \times k$ submatrix of M is PSD. The k-locally PSD matrices form a convex cone: $\mathcal{S}^{n,k}$.

E.g. the following 4×4 matrix is 2-locally PSD:

All 2×2 matrices are rank 1 PSD.

The whole matrix has eigenvalues

k-Locally Positive Semidefinite Cones

NP hard to optimize over $S^{n,k}$ if k is an input.

These are connected to 'Restricted Isometry Matrices', which are norm preserving transformations for sparse vectors.

Comparison Between These Cones

If X is a PSD matrix, then any submatrix of X is PSD.

The k-locally PSD matrices form a chain under inclusion:

$$\mathcal{S}^{n,2} \supseteq \mathcal{S}^{n,3} \supseteq \cdots \supseteq \mathcal{S}^{n,n} = \Sigma_n$$

We can think of these as being successive relaxations of the PSD cone Σ_n , and we might ask **how far away from** Σ_n **is** $\mathcal{S}^{n,k}$?

We can formulate this eigenvalue question as an optimization problem.

Minimize
$$\lambda_1(X)$$
 subject to $X \in S^{n,k}$ $\operatorname{tr}(X) = 1$

 $\lambda_1(X)$, the minimum eigenvalue of X, is a **concave function** in X.

We can formulate this eigenvalue question as an optimization problem.

Minimize
$$\lambda_1(X)$$
 subject to $X \in S^{n,k}$ $\operatorname{tr}(X) = 1$

 $\lambda_1(X)$, the minimum eigenvalue of X, is a **concave function** in X.

Concave minimization is hard!

Theorem

If $X \in S^{n,k}$, then $\lambda_1(X) \ge \frac{k-n}{(k-1)n} \operatorname{tr}(X)$. This bound is tight.

This implies that if $k = \alpha n$, then $\lambda_1(X) \geq \frac{\alpha' \operatorname{tr}(X)}{n}$.

Hyperbolicity Cones

Hyperbolic Polynomials

We say that a polynomial $f \in \mathbb{R}[x_1, \dots, x_n]$ is *hyperbolic* with respect to a vector v if for each $x \in \mathbb{R}^n$, the univariate polynomial

$$g(t) = f(x + tv)$$

is **real rooted**, in the sense that all complex roots of g are in fact real.

Example of Hyperbolic Polynomial:

$$f(x, y, z) = x^2 + y^2 - z^2$$

This is a quadratic polynomial, which is hyperbolic in the direction (0,0,1).

Figure 8: The zeros of a hyperbolic polynomial.

Example of Hyperbolic Polynomial (Cont): If we pick the line through (1,1,0) going in the (0,0,1) direction, we see it hits the zero set of f in 2 places, the right number for a quadratic.

Hyperbolicity Polynomials

Example: $f(x) = \prod_{i=1}^{n} x_i$, and the all ones vector v = (1, ..., 1).

For any fixed $x \in \mathbb{R}^n$, look at

$$g(t) = f(x + tv) = (x_1 - t)(x_2 - t) \dots (x_n - t)$$

The roots of this polynomial are exactly x_1, \ldots, x_n , and are therefore real.

Example: The **spectral theorem** says that if X is a Hermitian matrix, then X has real eigenvalues.

The eigenvalues of X are exactly the roots of det(X + tI), so the determinant on symmetric matrices is a hyperbolic polynomial in $\binom{n+1}{2}$ variables with respect to the vector I.

Hyperbolicity Cones

If f is a hyperbolic polynomial which is hyperbolic with respect to a vector v, we can associate a convex cone called its **hyperbolicity** cone, $\Lambda_{f,v}$.

Hyperbolicity cones can be defined in a number of different ways:

- 1. $\Lambda_{f,v}$ is the set of $x \in \mathbb{R}^n$ so that $f(x+tv) \geq 0$ for all $t \geq 0$.
- 2. Let \mathcal{V}_f be the set of zeros of f as a subset of \mathbb{R}^n . $\Lambda_{f,v}$ is the connected component of $\mathbb{R}^n \mathcal{V}_f$ containing v.
- 3. $\Lambda_{f,v}$ is the set of $x \in \mathbb{R}^n$ so that all roots of f(x+tv) are nonnegative.

Hyperbolicity Cones

Examples: If f is the polynomial $\prod_{i=1}^{n} x_i$, then f is hyperbolic with respect to the all ones vector, and $\Lambda_{f,v}$ is the nonnegative orthant in \mathbb{R}^n .

If f is the determinant, then f is hyperbolic with respect to the identity, and $\Lambda_{f,v}$ is the PSD cone.

Derivative Relaxations

Lemma

If f is hyperbolic with respect to v, then the directional derivative $D_v f$ is hyperbolic with respect to v. Also, $\Lambda_{f,v} \subseteq \Lambda_{D_v f,v}$.

Examples:

$$e_{n,k} = \sum_{S \subset [n], |S| = k} \prod_{i \in S} x_i$$

Let $L^{n,k}$ be the hyperbolicity cone of $e_{n,k}$.

Examples:

$$c_{n,k}(X) = \sum_{S \subseteq [n], |S| = k} \det(X_S)$$

Let $H^{n,k}$ be the hyperbolicity cone of $c_{n,k}$.

Connecting Things Together

Connection between $L^{n,k}$ and $H^{n,k}$

Connections between Cones

 $c_{n,k}$ is basis invariant!

If X is any symmetric matrix, and λ is any ordering of the eigenvalues of X, then

$$c_{n,k}(X) = e_{n,k}(\lambda)$$

So, $H^{n,k}$ is basis invariant, and is exactly those matrices whose eigenvalues are in $L^{n,k}$.

Connection between $H^{n,k}$ and $S^{n,k}$

 $c_{n,k}(X)$ is the sum of $k \times k$ minors of X, so it is nonnegative on $\mathcal{S}^{n,k}$. That implies that

Theorem

$$S^{n,k} \subseteq H^{n,k}$$

Theorem

If $X \in H^{n,k}$, then $\lambda_1(X) \ge \frac{k-n}{(k-1)n} \operatorname{tr}(X)$. This bound is tight.

Connection between $H^{n,k}$ and $S^{n,k}$

We can relax the program above

$$\begin{array}{ccc} \text{Minimize } \lambda_1(X) & \text{Minimize } \lambda_1(X) \\ \text{subject to } X \in \mathcal{S}^{n,k} & \Rightarrow & \text{subject to } X \in H^{n,k} \\ & tr(X) = 1 & tr(X) = 1 \end{array}$$

Connection between $H^{n,k}$ and $L^{n,k}$

Questions about eigenvalues of matrices in $H^{n,k}$ descend to questions about $L^{n,k}$, so our program becomes.

$$\begin{array}{c} \text{Minimize } \lambda_1(X) \\ \text{subject to } X \in \mathcal{S}^{n,k} \\ tr(X) = 1 \end{array} \Rightarrow \begin{array}{c} \text{Minimize } \lambda_1 \\ \text{subject to } \lambda \in L^{n,k} \\ \sum_{i=1}^n \lambda_i = 1 \end{array}$$

This is now a linear conical optimization problem!

Connection between $S^{n,k}$ and $L^{n,k}$

Using symmetry, this last program reduces to a $1\ \mathrm{dimensional}$ convex optimization problem that we can exactly solve.

$$\mathsf{OPT} = \frac{k-n}{(k-1)n}$$

It happens that this is also the minimum eigenvalue of the matrix

$$G(n,k) = \begin{pmatrix} \alpha & \beta & \beta & \beta & \dots \\ \beta & \alpha & \beta & \beta & \dots \\ \beta & \beta & \alpha & \beta & \dots \\ \beta & \beta & \beta & \alpha & \dots \\ & & \ddots & & \end{pmatrix},$$

where $\alpha = \frac{1}{n}$ and $\beta = -\frac{1}{(k-1)n}$. This is in $S^{n,k}$.

Approximation Guarantees

Approximation Guarantees

We learned that $\Sigma_n \subseteq S^{n,k} \subseteq H_n^k$.

Moreover, for any $X \in H_n^k$, $X + \frac{n-k}{(k-1)n} \operatorname{tr}(X)I \in \Sigma_n$.

Dually, $\Sigma_n \supseteq \mathcal{FW}^{n,k} \supseteq (H_n^k)^*$.

Moreover, for any $X \in \Sigma_n$, $X + \frac{n-k}{(k-1)n} \operatorname{tr}(X)I \in (H_n^k)^*$.

Consider the conical optimization problem

minimize
$$\|b\|^2 - \operatorname{tr}(XA^\intercal bb^\intercal A)$$
 such that $\operatorname{tr}(AA^\intercal X) = 1$ $X \in \mathcal{C}$

Let α be the value of this program for when $C = \mathcal{FW}^{n,k}$; let α_{ℓ} be the value of this program when $C = \Sigma_n$, and α_H be the value when $C = (H_n^k)^*$.

We know $\alpha_{\ell} \leq \alpha \leq \alpha_{H}$, but also that if X is the optimal solution when $C = \Sigma_{n}$, then

$$\frac{(k-1)n}{(k-1)n+(n-k)\operatorname{tr}(AA^{\mathsf{T}})\operatorname{tr}(X)}\left(X+\frac{(n-k)\operatorname{tr}(X)}{(k-1)n}I\right)$$

is a feasible point when $C = \mathcal{F} \mathcal{W}_n^k$.

Plugging this into the program, we get

$$\alpha_{\ell} \geq \frac{(k-1)n}{(k-1)n + (n-k)\operatorname{tr}(AA^{\mathsf{T}})\operatorname{tr}(X)} \alpha + \frac{(k-1)n\operatorname{tr}(A^{\mathsf{T}}bb^{\mathsf{T}}A))}{(k-1)n + (n-k)\operatorname{tr}(AA^{\mathsf{T}})}$$

This can be lower bounded* by

$$\alpha_{\ell} \geq \frac{(k-1)n}{(k-1)n + (n-k)\chi(AA^{\mathsf{T}})}\alpha$$

where $\chi(AA^{T})$ is the condition number of AA^{T} (this has not been checked for correctness).

Similarly, we get that

$$\alpha \ge \frac{(k-1)n}{(k-1)n + (n-k)\chi(AA^{\intercal})}\alpha_H$$

where $\chi(AA^{\mathsf{T}})$ is the condition number of AA^{T} (this has not been checked for correctness).

Details of the proof can be found at https://arxiv.org/abs/2012.04031.