Chapter 1

Compactness

Definition 1 (Cover and C-compactness). Let $\langle \mathcal{F}(X), \delta \rangle$ be a fuzzy topological space and $A \in \mathcal{F}(X)$. Then, $A \subseteq \mathcal{F}(X)$ is called a cover of A if $A \subseteq \vee A$.

- $\langle \mathcal{F}(X), \delta \rangle$ is called C-compact if every open cover of $\langle \mathcal{F}(X), \delta \rangle$ has a finite subcover.
- \mathcal{A} is called an open cover of A, if $\mathcal{A} \subseteq \delta$ and if \mathcal{A} is a cover of A.
- $\mathcal{B} \subseteq \mathcal{A}$ is called a subcover if \mathcal{B} is still a cover of A.

In particularly, \mathcal{A} is a cover of $\langle \mathcal{F}(X), \delta \rangle$ if \mathcal{A} is a cover of 1.

Definition 2 (α -cover and α -compactness). Let $\langle \mathcal{F}(X), \delta \rangle$ be a fuzzy topological space and $\alpha \in [0, 1)$. Then a family $\mathcal{A} \subseteq \mathcal{F}(X)$ is called an α -cover, if for very $x \in X \exists A \in \mathcal{A} \ni A(x) > \alpha$.

• ft is called an α -compact, if for every open α -cover of $\langle \mathcal{F}(X), \delta \rangle$ has a finite sub- α -cover where $\alpha \in [0, 1)$.

Definition 3 (Strong Compact). A fuzzy topological space $\langle \mathcal{F}(X), \delta \rangle$ is called strongly compact if it is α -compact for every $\alpha \in [0, 1)$.

Definition 4 (α^* -cover and α^* -compactness). Let $\langle \mathcal{F}(X), \delta \rangle$ be a fuzzy topological space and $\alpha \in [0, 1)$. Then a family $\mathcal{A} \subseteq \mathcal{F}(X)$ is called an α^* -cover, if for every $x \in X$, there exists $A \in \mathcal{A}$ such that, $A(x) \geq \alpha$.

• For $\alpha \in [0,1)$, $\langle \mathcal{F}(X), \delta \rangle$ is called an α^* -compact, if for every open α^* -cover of $\langle \mathcal{F}(X), \delta \rangle$ has a finite sub α^* -cover.

Example. Given $X = \{a, b, c\}, A = \{A, B, C\}, \alpha \in [0, 1), \delta = \{\underline{0}, \underline{1}, A, B, C\}$ where,

$$A: a \mapsto 0.2, b \mapsto 0.4, c \mapsto 0.6;$$

 $B: a \mapsto 0.4, b \mapsto 0.6, c \mapsto 0.8;$
 $C: a \mapsto 0.6, b \mapsto 0.8, c \mapsto 0.9;$

Check whether \mathcal{A} is α -compact or, α^* -compact corresponding to the given value of α .

Solution.

- 1. Let $\alpha=0.7$ $a\in X: \alpha=0.7>A(a), B(a), C(a).$ Hence, for $\alpha=0.7, \mathcal{A}$ is not an $\alpha-$ cover.
- 2. Let $\alpha = 0.3$ $a \in X : \alpha = 0.3 < C(a) = 0.6$, B(a) = 0.4 $b \in X : \alpha = 0.3 < A(b) = 0.4$, B(b) = 0.6, C(b) = 0.8 $c \in X : \alpha = 0.3 < A(c) = 0.6$, B(c) = 0.8, C(c) = 0.9 $A : \alpha = 0.3$.
- 3. Let $\alpha = 0.6$ For, $a \in X : \alpha = 0.6 = C(a)$ For, $b \in X : \alpha = 0.6 = B(b)$, $\alpha = 0.6 < C(b) = 0.8$ For, $c \in X : \alpha = 0.6 = A(c) = 0.6$, $\alpha = 0.6 < B(c) = 0.8$, C(c) = 0.9 $\therefore A$ is an α^* -compact space for a = 0.6.

Definition 5 (Q-cover). Let $\langle \mathcal{F}(X), \delta \rangle$ be a fuzzy topological space and $A \in \mathcal{F}(X)$. Then a collection $\mathcal{A} \subseteq \mathcal{F}(X)$ is called a Q-cover of A if for every $x \in Supp(A)$, there exists $U \in \mathcal{A}$ such that $x_{A(x)} \propto U$.

Definition 6 (Q-compact). A fuzzy set A is called Q-compact if every open Q-cover of A has a finite sub Q-cover. A fuzzy topological space $\langle \mathcal{F}(X), \delta \rangle$ is called Q-compact if $\underline{1}$ is Q-compact.

Example. Consider, $X = \{a, b, c\}, \delta = \{\underline{0}, \underline{1}, U, V, W\}$ where

 $U: a \mapsto 0.3, b \mapsto 0.5, c \mapsto 0.7;$ $V: a \mapsto 0.4, b \mapsto 0.6, c \mapsto 0.8;$ $W: a \mapsto 0.6, b \mapsto 0.8, c \mapsto 0.9;$

Consider $\mathcal{A} = \{U, V\} \subseteq \delta$ and let, $A: a \mapsto 0.1, b \mapsto 0.2, c \mapsto 0.3$. Then, find the Q-cover of A.

Solution. Here, $Supp(A) = \{a, b, c\}$

For, x = a, $a_{A(a)} = a_{0.1} = 0.1$

For, x = b, $b_{A(b)} = b_{0.2} = 0.2$

For, x = c, $c_{A(c)} = c_{0.3} = 0.3$

For x = a, we have U_a : 0.3 + 0.1 < 1, $V_a = 0.4 + 0.1 < 1$. Hence \mathcal{A} is not a Q-cover of A.

If $A: a \mapsto 0.7, b \mapsto 0.6, c \mapsto 0.5$.

Then, For x = a, $a_{A(a)} = a_{0.7} = 0.7$

For, x = b, $b_{A(b)} = b_{0.6} = 0.6$

For, x = c, $c_{A(c)} = c_{0.5} = 0.5$

For, $x = a, 0.3 + 0.7 \ge 1, 0.4 + 0.7 > 1$

For, x = b, 0.5 + 0.6 > 1, 0.6 + 0.6 > 1

For, x = c, 0.7 + 0.5 > 1, 0.8 + 0.5 > 1

Hence, for every $x \in Supp(A)$, $x_{A(x)} \propto U$.

 \therefore \mathcal{A} is a Q-cover of A.

Definition 7 $(\alpha - Q - \text{cover})$. Let $\langle \mathcal{F}(X), \delta \rangle$ be a fuzzy topological space and $A \in \mathcal{F}(X)$. Then a collection $\Phi \subseteq \mathcal{F}(X)$ is called an $\alpha - Q - \text{cover}$ of A, if for every $x_a \subseteq A$, there exists $U \in \Phi$ such that $x_a \propto U$. It is denoted by $\vee \Phi \hat{q} A(\alpha)$.

Definition 8 $(\bar{\alpha} - Q - \text{cover})$. Let $\langle \mathcal{F}(X), \delta \rangle$ be a fuzzy topological space and $A \in \mathcal{F}(X)$. Then a collection $\Phi \subseteq \mathcal{F}(X)$ is called an $\bar{\alpha} - Q - \text{cover}$ of A, if there exists $\gamma \in B^*(\alpha)$ such that γ is a $\gamma - Q - \text{cover}$ of A.

- $B(b) = \{a \in L : a \propto b\}$, where the binary relation ∞ is defined as, for $a, b \in L$, $a \propto b \Leftrightarrow$ for every subset $D \subset L$, b < Sup D implies the existence of $d \in D$ with a <
- $B^*(b) = B(b) \cap M(L)$, where, M(L) = (0, 1].

Definition 9. Let $\langle \mathcal{F}(X), \delta \rangle$ be a fuzzy topological space, $A \in \mathcal{F}(X)$. A is called N-compact if for every $\alpha \in (0,1] - M([0,1])$, every open $\alpha - Q$ -cover of A has a finite subfamily which is an $\bar{\alpha} - Q$ -cover of A. $\langle \mathcal{F}(X), \delta \rangle$ is called N-compact, if $\underline{1}$ is compact.

Theorem 1.0.1. Let $\langle \mathcal{F}(X), \delta \rangle$ be a fuzzy topological space, $A \in \mathcal{F}(X)$. Then A is N-compact iff the following conditionds hold:

- (a) For every $\alpha \in (0,1]$, every open αQ -cover of A has a finite sub αQ -cover.
- (b) For every $\alpha \in (0,1]$, every open αQ -cover of A which consists of just one subset is an $\bar{\alpha} Q$ -cover of A.
- *Proof.* (a) Let, A be N-compact, $\alpha \in (0,1]$ and φ is an open αQ -cover of A. By the definition of N-compact, φ has a finite subfamily ψ such that, ψ is an $\bar{\alpha} Q$ -cover of A. Hence, $\vee \psi \hat{q} A(\alpha)$ i.e., ψ is an αQ -cover of A.
- (b) Suppose, $U \in \delta$ and $\varphi = \{U\}$ is an open αQ -cover of A. Then, by the N-compactness of A, φ has a subfamily ψ such that ψ is an $\bar{\alpha} Q$ -cover of A. But, clearly, $\varphi = \psi$. Hence, ψ is an open αQ -cover of A.

Conversely, suppose (a) and (b) holds.

Let $\alpha \in (0,1]$ and φ is an open $\alpha - Q$ -cover of A.

By (a), φ has a finite sub $\alpha - Q$ -cover ψ of A. Take $U = \vee \psi$. Then $\{U\}$ is an $\alpha - Q$ -cover of A.

By (b), $\{U\}$ is also an $\bar{\alpha} - Q$ -cover of A. By the definition of $\bar{\alpha} - Q$ -cover, there exists $\gamma \in B^*(\alpha)$ such that x_{γ} is a quasi-coincident with U for every $x_{\gamma} \subseteq A$. Hence, $\gamma + U(x) > 1 \Rightarrow \gamma > 1 - U(x)$

i.e., $\gamma \leq (U(x))' \Rightarrow \gamma \not\leq (U\psi(x))' = \wedge \{(W(x))' | W \in \psi\}$

i.e., $W \in Q_{\gamma}(x_{\gamma})$. So, ψ is an $\bar{\alpha} - Q$ -cover of A. Hence, A is N-compact.

Theorem 1.0.2. Continuous image of an N-compact space is N-compact.

Proof. Let $f^{\to}: \langle \mathcal{F}(X), \delta \rangle \to \langle \mathcal{F}(Y), \mu \rangle$ be a continuous fuzzy mapping and A be a N-compact fuzzy set in $\mathcal{F}(X)$. For $\alpha \in (0,1]$, let \mathcal{A} be an open $\alpha - Q$ -cover of $f^{\to}(A)$. Then for every $x_{\alpha} \leq A$, $f^{\to}(x_{\alpha}) = f(x)_{\alpha} \leq f^{\to}(A)$, there exists $U \in \mathcal{A}$ such that $f(x)_{\alpha} \propto U \Rightarrow f(x)_{\alpha} \not\propto U^{c} \Rightarrow \alpha \not\leq U^{c}(f(x)) \Rightarrow \alpha \not\leq f^{\leftarrow}(U^{c})(x) = f^{\leftarrow}(U)^{c}(x)$. That is $x_{\alpha} \propto f^{\leftarrow}(U)$. Since, f^{\to} is continuous, $f^{\leftarrow}(U) \in \delta$ and hence $f^{\leftarrow}(U) \in Q(x_{\alpha})$. Thus, $f^{\leftarrow}(A)$ is an open $\alpha - Q$ -cover of A.

Since A is N-compact, \mathcal{A} has a finite subfamily $\mathcal{A}_n = \{U_i : 1 \leq i \leq n\}$ such that $f^{\leftarrow}(\mathcal{A}_n)$ is an $\bar{\alpha} - Q$ -cover of A.

Now, we show that, \mathcal{A}_n is an $\bar{\alpha} - Q$ -cover of $f^{\rightarrow}(A)$. Since, $f^{\leftarrow}(\mathcal{A})_n$ is an open $\bar{\alpha} - Q$ -cover of A, there exists $\gamma \in \mathcal{B}(\alpha)$ such that $f^{\leftarrow}(\mathcal{A}_{\setminus})$ is $\gamma - Q$ -cover of A. This implies, $\gamma \sqsubseteq a$ and hence $\exists \lambda \in (0,1]$ such that $\gamma \sqsubseteq \lambda \sqsubseteq \alpha$. So, $\lambda \in \mathcal{B}(\alpha)$ and hence we have, $\lambda \leq f^{\leftarrow}(A)(y) = \vee \{A(x) : x \in X, f(x) = y\}$. Now, $\gamma \sqsubseteq \lambda$ implies, $\gamma \not \leq (f^{\leftarrow}(U_i))^c(x) = f^{\leftarrow}(U_i^c)(x) = U_i^x(f(x)) = U_i^c(y)$, for some $1 \leq i \leq n$ such that $x_{\gamma} \propto f^{\leftarrow}(U_i)$. By $\gamma \sqsubseteq \lambda$ and hence $\gamma \leq \lambda$, we have $\lambda \not\leq U_i^c(y)$. Thus $y_{\lambda} \propto U_i$ for some $1 \leq i \leq n$. So, \mathcal{A}_n is an open $\lambda - Q$ -cover of $f^{\rightarrow}(A)$ and hence \mathcal{A}_n is an $\bar{\alpha} - Q$ -cover of $f^{\leftarrow}(A)$.

Therefore, $f^{\rightarrow}(A)$ is an N-compact.

Definition 10 (Net in X). Let X be a non-empty ordinary set and D be a directed set then every mapping $S:D\to X$ is called a net in X and D is called the index set of S.

Theorem 1.0.3. Let $\langle \mathcal{F}(X), \delta \rangle$ be a fuzzy topological space. Let $A, B, C \in \mathcal{F}(X)$ such that A be a N-compact and B be closed. Then $A \wedge B$ is N-compact.

Proof. Let S be an α -net in $A \wedge B$. Then S is also an α -net in A. Since, A is N-compact, S has a cluster point x_{α} in A such that $ht(\alpha) = \alpha$. But, S is also a net in closed subset B, we have $x_{\alpha} \leq B$.

So, $x_a \leq A \wedge B$, i.e., x_a is a cluster point of δ in $A \wedge B$ such that $ht(\alpha) = \alpha$. Hence, $A \wedge B$ is N-compact. \square