

Semaine interdisciplinaire Jour 2-3: arduino et electronique (analogique)

Programme Jour 2

- Comprendre les bases de la programmation arduino (blink)
- Savoir lire un schéma éléctronique
- Savoir lire une datasheet
- Savoir comment debugger un circuit /programme
- Comprendre les bases de l'électronique (Différence courant /tension)
- Fabrication du device micro / carte sd / et test!

Part 1- Electronics 101

Arduino Potentiometer – Ex 1 mesurer tension et R

Arduino Ex 1 Potentiometer correction

Entre quelles valeurs evolue

- R: 0-10kohms

- U: 0-5V

- valeur A0 : 0-1024

What is the Arduino?

Analog vs Digital

Output has been digitalized

Output directly linked to the signal

Ex 2 : Analog or digital

Ex2 correction

Analog vs Digital

Output has been digitalized

Si encodage: microprocesseur

Output directly linked to the signal

Analog vs Digital ex robots

Analog => Digital

Why 1023 et pas 53, 158, 256, 42???

There are 10 types of people in the world:

Those who understand binary and those who don't.

Analog => Digital

Ex 3 ecrire en binaire

2	2	2	2 ⁵	24	2 ³	2 ²	2 1	20	
									bits Vs bytes MSB vs LSB

Ecrire: 256, 64,17,23,42,58 en binaire

ADC precision

0-1023 - 10 bit

Quel est le plus petit voltage que l'on peut mesurer ??

LEDs

LEDs

I = U/R Si R~0 => I enorme => magic smoke

Differences tension/courant

Ex 4: LEDs - how to choose R

Voir la datasheet fournie!

Ex4: correction

Absolute Maximum Ratings: (Ta=25℃).

ITEMS	Symbol	Absolute Maximum Rating	Unit	
Forward Current	ΙF	20	mà	
Peak Forward Current	\mathbf{I}_{FP}	30	mA	
Suggestion Using Current	\mathbf{I}_{su}	16-18	mA	
Reverse Voltage (V _R =5V)	\mathbf{I}_{R}	10	uA	
Power Dissipation	P□	105	mW	
Operation Temperature	Topr	-40 ~ 85	°C	
Storage Temperature	Tstg	-40 ~ 100	°C	
Lead Soldering Temperature	TsoL	Max, 260°C for 3 Sec, Max. (3mm from the base	of the expoxy bulb)	

Absolute Maximum Ratings: (Ta=25℃)

ITEMS	Symbol	Test condition	Min.	Typ.	Max.	Unit
Forward Voltage	VF	I _F =20mA	1.8		2.2	V
Wavelenength (nm) or TC(k)	Δλ	I _F =20mA	620		625	nm
*Luminous intensity	Iv	I _F =20mA	150		200	mcd
50% Viewing Angle	2 € 1/2	I _F =20mA	40		60	deg

I=20ma U=5-2.2=2.8 R=U/I =140

Resistance + proche 150

Ex 4: triche

http://led.linear1.org/

Ex 5: potentiometer led dim

Ex 6 : Blink commande des led numérique

Changer le delay et voir le résultat!

Commande des leds par PWM

Ex 7: Commande des leds par PWM

Dans le code du blink changer le digitalwrite par :

analogWrite(led, brightness);

Et comprendre comment cela peut marcher

Ex 8: Commande des leds par PWM et potentiometre

Pont diviseur de tension

$$V_{\text{out}} = \frac{R_2}{R_1 + R_2} \cdot V_{\text{in}}$$

$$Ex R1=R2 = 5k = 5000$$

Ex 9 : Application thermistor

Coefficient thermique = -4.57%/°C

Ex 9: Application thermistor

Q1: Rt R1 ou R2?

Q2 : valeur approximative autre résistance ?

Q3: deviner la temperature actuelle/sensibilité?

Ex 10: Application thermistor correction

$$V_{\text{out}} = \frac{R_2}{R_1 + R_2} \cdot V_{\text{in}}$$

Thermistor 100K = 100Kohm@25°C

Vout= (100k/104.7k)5= 4.75V= 989@25°C

Arduino ADC: 5V=1024 -> 0.0488 V/step

Value A0 *0.0048 =voltage -4.57% de 100kohm/°C=-4.57k Ohm/°C

26°C = 100k - 4.57k = 95.43 = (95430/100 130)*5=4.76V= 992

Ex 11: Application 2 IR phototransistor + IR emitter

Point jaune: IR led

Point rouge: IR phototransistor

Polarité comme les leds

IR led: comme led (voir datasheet fournie)

IR phototransitor

Q1 : schéma phototransistor

Q2 : resistance pour ir led

Ex 11 : Application 2 IR phototransistor + IR emitter - correction

Part 2- Montage du device

Microphone

Vcc: arduino 5V

GND: GND

AUD: analog pin 0

Souder 3 fils!

Arduino code potentiometer

Reflechir au sampling rate et à la taille mémoire occupée

```
unsigned long time0 =0;
unsigned long time1 =0;
time0=time1;
time1=micros();
Serial.println(time1-time0);
```

Code processing oscillocope?

Int[] dataX;

Rappel processing: shapes

Rappel processing: shapes

Installer le shield carte SD

Installer les librairies arduino pour enregistrer des wave

Copier le contenu de day2->arduino_libraries

Dans

Arduino-> sketchbook -> libraries

Si bonne installation on devrait voir dans la liste d'example Sdfat et waveRP

Arduino -> example -> waveRP -> waverecorPlay

```
🔯 WaveRecordPlay | Ardui🔊 1.0.5
File Edit Sketch Tools Help
  WaveRecordPlay
    recordSoundActivated();
  } else {
    recordManualControl();
  // trim unused space from file
  wave.trim(&file);
  file.close();
#if PRINT DEBUG INFO
  if (wave.errors() ){
    PgmPrint("busyErrors: ");
    Serial.println(wave.errors(), DEC);
#endif // PRINT_DEBUG_INFO
// setup Serial port and SD card
void setup (void) {
  Serial.hegin(9600):
                                                     Arduino Uno on COM26
```

Upload -> ouvrir terminal série

a: liste des commandes

r:record

p: play (mais ne marchera pas car il n'y a pas de spaeaker branché)