

$\rm MA2201/TMA4150$

Vår 2018

Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag

Løsningsforslag — Øving 7

Seksjon 18

18 Et element i $\mathbb{Z} \times \mathbb{Q} \times \mathbb{Z}$ er et trippel (a, q, b), der $a, b \in \mathbb{Z}$, $q \in \mathbb{Q}$. Anta nå at dette trippelet har en invers c, p, d. Da er altså ac = bd = 1 og pq=1. Følgelig er a og benheter i Z og må dermed være lik $\pm 1.$ q er en enhet i $\mathbb Q$, og siden $\mathbb Q$ er en kropp betyr det bare at $q \neq 0$.

Vi får altså enhetene i $\mathbb{Z}\times\mathbb{Q}\times\mathbb{Z}$ er

$$(1, q, -1]$$

$$(-1, q, 1)$$

$$(1,q,1)$$
 $(1,q,-1)$ $(-1,q,1)$ $(-1,q,-1)$

 $der q \in \mathbb{Q}, q \neq 0.$

Seksjon 19

1 For å forstå oppgaven ed det lurt å først lese eksempel 19.1. Den greieste metoden for å finne alle røtter er nok å sjekke elementene i \mathbb{Z}_{12} .

Røttene er -4, -3, -1, 0, 3 og 5

2 Siden både 7 og 23 er primtall er \mathbb{Z}_7 og \mathbb{Z}_{23} begge kropper. Derfor kan vi bruke kanselleringslovene; det vil si at vi kan skrive $x = 3^{-1}2$.

Vi ser først på \mathbb{Z}_7 . Der er $3^{-1}=5$. Dermed har vi at $x=5\cdot 2=3$. Vi ser så på \mathbb{Z}_{23} . Der er $3^{-1}=8$. Dermed har vi at $x=8\cdot 2=16$.

[23] La R være en divisjonsring, og la $a \in R$ være idempotent, det vil si at $a^2 = a$. Da har vi at $a(a-1) = a^2 - a = 0$. R kan ikke inneholde nulldivisorer, altså må enten a = 0 eller så må a - 1 = 0, og dermed a = 1. Altså inneholder R kun to idempotente elementer, nemlig 0 og 1.

Eksamensoppgaver

| V2011, oppgave 5 | a)
$$|X| = 5! = 120$$

 $\overline{\text{Vi ser fra}}$ aksiomene for gruppevirkning¹ at S_5 har en gruppevirkning på X. Videre ser vi at det kun finnes en bane for denne gruppevirkningen, for

b) Gitt at $\sigma_1, \sigma_2 \in G$ så er også $\sigma_1 \sigma_2 \in G$. I tillegg er identitetselementet i G. Dermed er G en undergruppe av S_5 .

$$|G| = |\{\text{permutasjoner på }\{1,2,3\}\}| \cdot |\{\text{permutasjoner på }\{4,5\}\}| = 12.$$

Siden elementer G må ha elementer fra $\{1,2,3\}$ og $\{4,5\}$ i disjunkte sykler, mistenker vi at en konjugasjon med en transposisjon mellom de to settene ikke vil være i G (dette er en typisk ting du vil opparbeide deg intuisjon for etterhvert). Vi velger $(1,2) \in G$ og $(1,5) \in S_5$. Vi regner ut at

$$(1,5)(1,2)(1,5)^{-1} = (1,5)(1,2)(1,5) = (2,5) \notin G.$$

G er dermed ikke normal.

c) La (a_1, \ldots, a_r) være en sykel i σ , og merk at

$$\gamma \sigma \gamma^{-1}(\gamma(a_i)) = \gamma \sigma(a_i) = \begin{cases} \gamma(a_0) & i = r \\ \gamma(a_{i+1}) & i \neq r \end{cases}$$

¹På eksamen bør du skrive opp disse!

Det følger at $(\gamma(a_1), \gamma(a_2), \dots \gamma(a_r))$ er en sykel i $\gamma \sigma \gamma^{-1}$.

Anta at $\sigma = (a_1, a_2, a_3)(b_1, b_2)$ og $\sigma' = (c_1, c_2, c_3)(d_1, d_2)$. La γ være permutasjonen som sender a_i på c_i og b_i på d_i . Da er $\gamma \sigma \gamma^{-1} = \sigma'$ (dette krever minimalt med utregning, se forrige del-deloppgave).

Gitt et element σ , finner vi σ^{-1} ved å snu de disjunkte syklene i σ . Følgelig har σ^{-1} samme antall sykler som σ , og disse syklene er av samme lengde som syklene til sigma. Da ser vi fra argumentet over at σ og σ^{-1} er konjugerte elementer.

V2012, oppgave 3 Vi starter med å tegne opp figuren og navngi de ulike flatene:

- a) Symmetrigruppen til denne figuren er D_4 , symmetrigruppen på et kvadrat. Vi vil bruke samme notasjon som boken gjør i eksempel 8.10 (og videre utover).
- b) Dette er en oppgave som lukter Burnsides formel! Her er gruppen $G = D_4$, og X er mengden av alle fargelegginger av figuren. Siden figuren har ni flater som hver kan fargelegges med en av fire farger er $|X| = 4^9$. Vi regner nå ut isotropimengdene til de ulike symmetriene:

$g \in D_4$	$ X_g $	forklaring
ρ_0	$\frac{ X_g }{4^9}$	Alle flater kan velge farge fritt.
$ ho_1$	4^{3}	a, b, c, d må ha samme farge, e,f,g,h
		må ha samme farge, i velger fritt.
$ ho_2$	4^{5}	To og to motstående flater må ha
		samme farge, i velger fritt.
$ ho_3$	4^{3}	Som ρ_1
μ_1	4^{6}	a og b, c og d, f og h må ha samme
		farge. Resten velger fritt.
μ_2	4^{6}	a og c, b og d, e og g må ha samme
		farge. Resten velger fritt.
δ_1	4^{6}	b og c, e og h, f og g må ha samme
		farge. Resten velger fritt.
δ_2	4^{6}	a og d, e og f, g og h må ha samme
		farge. Resten velger fritt.

Fra burnsides formel får vi da at antall baner, det vil si antall distinkte farvelegginger opp til symmetri, er 34960.