Assignment 4

Adarsh Bhende (CS21BTECH11008)

Abstract—solution for Assignment 4 - Papoulis Eercise-8.6

Papoulis Exercise 8.6:Consider a random variable x with density $f(x) = xe^{-x}U(x)$. Predict with 95 confidence that the next value of x will be in the interval(a,b). Show that the lenght b-a of this interval is minimum if a and b are such that f(a) = f(b)

$$P(a < x < b) = 0.95$$

Solution:We shall show that if f(x) is a density with a single maximum and $P(a < x < b) = \gamma$, then b-a is not minimum if f(a) = f(b). The density $xe^{-x}U(x)$ is aspecial case. It suffies to show that b-a is not minimum if f(a) < f(b) or f(a) > f(b)

Suppose first that f(a) < f(b) as in fig(a).Clearly, f'(a) > 0 and f'(b) < 0, hence ,we can find two constants $\delta_1 > 0$ and $\delta_2 > 0$ such that

$$P(a + \delta_1, b + \delta_2)$$
 and $f(a) < f(a + \delta_1) < f(b + \delta_2)$

From this of follows that $\delta_1 > \delta_2$, hence, the length of the new interval $(a + \delta_1, b + \delta_2)$ is smaller than b-a

If f(a) > f(a), we form the interval $(a - \delta_1, b - \delta_2)$ and proceed similarly

Special case:If
$$f(x) = xe^{-x}$$
 then , $F(x) = 1 - e^{-x} - xe^{-x}$,hence

$$P(a < x < b) = e^{-a} + ae^{-a} - e^{-b} - be^{-b} = 0.95$$

And since $f(a) = f(b)$,the system $ae^{-a} = be^{-b}$

$$ae^{-a} = be^{-a}$$

therefore, $e^{-a} - e^{-b} = 0.95$

solving we obtain approximately a=0.04 and b=5.75

A numerically simpler solution results if we set

$$0.025 = P(x \le a) = F(a)$$

$$0.025 = P(x > b) = 1 - F(b)$$

This yields the system

$$0.025 = 1 - e^{-a} - ae^{-a}$$

$$0.025 = e^{-b} + be^{-b}$$

Solving we obtain a = 0.242 and b = 5.572 How-

ever,the length 5.572-0.242=5.33 of the resulting interval is larger than the length 4.75-0.04=4.71 of the optimal interval.

Hence, the length b-a of this interval is minimum if a and b are such that

$$f(a) = f(b)$$

$$P(a < x < b) = 0.95$$

hence proved