

Fig 2.1, Russell & Norvig's Textbook

Percept Sequence

All the content that an agent has acquired from the environment through its sensors. The agent's actions depends on the full percept sequence → human behavior depends on all of its past and present experiences

Agent Function

A mathematical function that maps every percept sequence to an action. It describes the *agent's behavior*. It can be represented as a table.

Percept sequence Action [A, Clean]Right [A, Dirty]Suck [B, Clean]Left [B,Dirty]Suck [A, Clean], [A, Clean]Right [A, Clean], [A, Dirty]Suck $[A,Clean],\,[A,Clean],\,[A,Clean]$ Right [A, Clean], [A, Clean], [A, Dirty]Suck

Fig 2.2, Russell & Norvig's Textbook

Fig 2.3, Russell & Norvig's Textbook

What is an Intelligent Agent? It depends on the notion of Rationality.

Rational Agent

One that does the *right* thing. Evaluating whether an agent's action is right or wrong is done using some performance measure. It requires that the results of an action are measurable.

Rationality depends on

- Performance measure for success
- Percept sequence of the agent
- Prior knowledge of the environment
- Actions the agent can perform

For each possible percept sequence, a rational agent should select an action that is expected to maximize its performance measure, given the evidence provided by the percept sequence and whatever built-in knowledge the agent has."

- Russell and Norvig

Definition of a "Rational Agent" in AI, A Modern Approach

Percept sequence	Action
[A, Clean]	Right
[A, Dirty]	Suck
[B, Clean]	Left
[B,Dirty]	Suck
[A, Clean], [A, Clean]	Right
[A, Clean], [A, Dirty]	Suck
:	:
[A, Clean], [A, Clean], [A, Clean]	Right
[A, Clean], [A, Clean], [A, Dirty]	Suck
<u>:</u>	÷

Fig 2.2, Russell & Norvig's Textbook

Fig 2.3, Russell & Norvig's Textbook

Is this Vacuum Cleaner a Rational Agent?

- What is the performance measure?
- What are the agent's possible actions?
- What is the percept sequence?
- What do we know about the environment?

It is essential to understand the task environment as it affects the performance outcome.

Agent Type	Performance Measure	Environment	Actuators	Sensors		
Taxi driver	Safe, fast, legal, comfortable trip, maximize profits, minimize impact on other road users	Roads, other traffic, police, pedestrians, customers, weather	Steering, accelerator, brake, signal, horn, display, speech	sensors, acce	r, GPS, engine	

Fig 2.4, Russell & Norvig's Textbook

Fully vs Partially Observable

Deterministic vs Stochastic

Ping-Pong Playing Agent

Episodic vs Sequential

Autonomous Car Agent

Discrete vs Continuous

Single-Agent vs Multiagent

Program

Structure of Al Agents

Program

Model-based Agents

Partial Observation Learn how the world works

Try & learn more

Types of Al Agents

Goal-based Agents

Select action that moves the agent towards the goal. (reaching destination)

Utility-based Agents

Percept -> Evaluate -> Action

For complex goals, a utility function is used to evaluate how each action yields a different utility value. (e.g., Faster vs. Safer)

Types of Al Agents

Learning Agents

Percept → Learn → Action

Able to learn how to function given a goal, performance metric, and a feedback mechanism to evaluate and refine its performance.

Modern AI programs focus on building Learning Agents.

Types of Al Agents