Z specification language

Quantifers

- **V** Universal Quantifier, e.g. $\forall n : \mathbb{N} \bullet n^2 > n$
- **3** Existential Quantifier, e.g. $\exists n : \mathbb{N} \bullet n > 0$

Sets

- E is a predicate. Use n: N to declare a new variable n of type N
- $\{x: X \mid P(x)\}$: All elements of X for which predicate P is true
- $\bullet \quad a \dots b = \{ n : \mathbb{N} \mid a \leq n \leq b \}$
- **Subset** : $S \subseteq T \Leftrightarrow \forall s : S \bullet s \in T$
- **C** Proper subset : $S \subset T \Leftrightarrow S \subseteq T \land S \neq T$
- **P** Power set: P(X) = set of all subsets of X
 - \circ $S \subseteq T \Leftrightarrow S \in P(T)$
 - $\circ \quad \#X = k \Leftrightarrow \#P(X) = 2^k$
- **U** Union : Suppose S, T: P(X), $S \cup T \Leftrightarrow \{x : X \mid x \in S \lor x \in T\}$
- • Intersection : Suppose $S, T: P(X), S \cap T \Leftrightarrow \{x : X \mid x \in S \land x \in T\}$
- - Difference: Suppose $S, P(X), S T \Leftrightarrow \{x : X \mid x \in S \land x \notin T\}$
- × Cartesian Product: Set of all ordered pairs (s, t) where $s \in S \land t \in T$
 - The *i*-th value (1-indexed) of a tuple *t* is referred to as *t*. *i*

Relations

- \leftrightarrow Relation $A \leftrightarrow B$ = Set of all possible relations from A to B
 - o $A \leftrightarrow B = P(A \times B)$; Suppose $R: A \leftrightarrow B$, $R \subseteq A \times B$
 - o $(a,b) \in R \Leftrightarrow a \rightarrow b \in R \Leftrightarrow a R b$
- $\operatorname{dom}(R)$: Domain of $R = \{ a : A \mid \exists b : B \bullet a R b \}$
- ran(R): Range of $R = \{b : B \mid \exists a : A \bullet a R b \}$
- Suppose $R:A\leftrightarrow B$ and $S\subseteq A$ and $T\subseteq B$
 - \triangleleft Domain restriction: $S \triangleleft R \Leftrightarrow \{(a,b) : R \mid a \in S\}$
 - $S \triangleleft R \subseteq R : S \triangleleft R \in A \leftrightarrow B$
 - E.g. Supose has_sibling: People

 People, then female

 has_sibling = is_sister_of
 - \circ Range restriction: $R \triangleright T \Leftrightarrow \{(a,b) : R \mid b \in T\}$
 - \blacksquare $R \rhd T \subseteq R ; R \rhd T \in A \leftrightarrow B$
 - E.g. Suppose has_sibling: People
 → People,
 then has sibiling

 Female = has sister
 - \circ \triangleleft Domain subtraction: $S \triangleleft R \Leftrightarrow \{(a,b) : R \mid a \notin S\}$
 - $S \triangleleft R = R (S \triangleleft R) = (A S) \triangleleft R$
 - **P** Range subtraction: $R \triangleright T \Leftrightarrow \{(a,b) : R \mid a \notin T\}$
 - $\blacksquare R \triangleright T = R (R \triangleright T) = R \triangleright (B T)$
- Relational Image: Suppose $R:A\leftrightarrow B$ and $S\subseteq A$, then
- $R(|S|) = \{b : B \mid \exists a : S \bullet a R b\} \subseteq B$
- E.g. has sibling(| male |) = { people who have a brother }
- o E.g. divides($|\{8, 9\}|$) = { numbers divisible by 8 or 9 }
- Relational Image: Suppose R : $A \leftrightarrow B$ and $S \subseteq A$, then
- $R(|S|) = \{b : B \mid \exists a : S \bullet a \ R \ b\} \subseteq B$ Inverse: Suppose $R : A \leftrightarrow B$, then $R^{-1} = \{(b, a) : B \times A \mid (a, b) \in R\}$
- **■** Relational composition: Suppose $R: A \leftrightarrow B$ and $S: B \leftrightarrow C$, then $R \, \mathring{\wp} \, S = \{ (a,c): A \times C \mid \exists b \in B \bullet (a R b) \land (b S c) \}$
 - o $R^k = R \stackrel{\circ}{\nu} R \stackrel{\circ}{\nu} R \dots \stackrel{\circ}{\nu} R, k \text{ times}$

Functions

- \Rightarrow Partial function: $f:A \Rightarrow B \subseteq A \times B$, maps each $a \in A$ to at most one $b \in B$
- dom(f): Domain of $f = \{ a : A \mid \exists b : B \bullet (a,b) \in f \}$
- $\operatorname{ran}(f)$: Range of $f = \{b : B \mid \exists a : A \bullet (a,b) \in f\}$

- → **Total** function: $f: A \rightarrow B$, where dom(f) = A
- **⊕** Function overriding: Suppose $f, g: A \rightarrow B$
 - o $f \oplus g = (dom(g) \triangleleft f) \cup g; f \oplus g \in A \Rightarrow B$
 - $\circ \quad \mathsf{dom}(f \oplus g) = \mathsf{dom}(f) \cup \mathsf{dom}(g)$
 - $\circ \quad \forall a : dom(g) \cdot (f \oplus g)(a) = g(a)$
 - $\circ \quad \forall a : \mathsf{dom}(g) \mathsf{dom}(f) \bullet (f \oplus g)(a) = f(a)$

Sequences

- Sequence $s : \text{seq } A \text{ is a special type of function } s : \mathbb{N} \to A$
 - \circ seq₁ A = set of all non-empty sequences of A
- Concatenation, e.g. $\langle a, b \rangle$ $\langle b, c \rangle = \langle a, b, b, c \rangle$
- head : $seq_1 A \rightarrow A$, returns the first item in the sequence
- tail: $seq_1 A \rightarrow seq A$, returns the sequence without the head, i.e. $\forall s : seq_1 A \cdot seq_1 A$
- s(i) = i-th (1-indexed) element of sequence s
- Filter 1, e.g $< a, b, c, d, e, d, c, b, a > 1 \{a, d\} = < a, d, d, a > 1 \{a, d\} = < a, d, d, a > 1 \{a, d\} = < a, d, d, a > 1 \{a, d\} = < a, d, d, a > 1 \{a, d\} = < a, d, d, a > 1 \{a, d\} = < a, d, d, a > 1 \{a, d\} = < a, d, d, a > 1 \{a, d\} = < a, d, d, a > 1 \{a, d\} = < a, d, d, a > 1 \{a, d\} = < a, d, d, a > 1 \{a, d\} = < a, d, d, a > 1 \{a, d\} = < a, d, d, a > 1 \{a, d\} = < a, d, d, a > 1 \{a, d\} = < a, d, d, a > 1 \{a, d\} = < a, d, d, a > 1 \{a, d\} = < a, d, d, a > 1 \{a, d\} = < a, d, d, a > 1 \{a, d\} = < a, d, d, a > 1 \{a, d\} = < a, d, d, a > 1 \{a, d\} = < a, d, d, a > 1 \{a, d\} = < a, d, d, a > 1 \{a, d\} = < a, d, d, a > 1 \{a, d\} = < a, d, d, a > 1 \{a, d\} = < a, d, d, a > 1 \{a, d\} = < a, d, d, a > 1 \{a, d\} = < a, d, d, a > 1 \{a, d\} = < a, d, d, a > 1 \{a, d\} = < a, d, d, a > 1 \{a, d\} = < a, d, d, a > 1 \{a, d\} = < a, d, d, a > 1 \{a, d\} = < a, d, d, a > 1 \{a, d\} = < a, d, d, a > 1 \{a, d\} = < a, d, d, a > 1 \{a, d\} = < a, d, d, a > 1 \{a, d\} = < a, d, d, a > 1 \{a, d\} = < a, d, d, a > 1 \{a, d\} = < a, d, d, a > 1 \{a, d\} = < a, d, d, a > 1 \{a, d\} = < a, d, d, a > 1 \{a, d\} = < a, d, d, a > 1 \{a, d\} = < a, d, d, a > 1 \{a, d\} = < a, d, d, a > 1 \{a, d\} = < a, d, d, a > 1 \{a, d\} = < a, d, d, a > 1 \{a, d\} = < a, d, d, a > 1 \{a, d\} = < a, d, d, a > 1 \{a, d\} = < a, d, d, a > 1 \{a, d\} = < a, d, d, a > 1 \{a, d\} = < a, d, d, a > 1 \{a, d\} = < a, d, d, a > 1 \{a, d\} = < a, d, d, a > 1 \{a, d\} = < a, d, d, a > 1 \{a, d\} = < a, d, d, a > 1 \{a, d\} = < a, d, d, a > 1 \{a, d\} = < a, d, d, a > 1 \{a, d\} = < a, d, d, a > 1 \{a, d\} = < a, d, d, a > 1 \{a, d\} = < a, d, d, a > 1 \{a, d\} = < a, d, d, a > 1 \{a, d\} = < a, d, d, a > 1 \{a, d\} = < a, d, d, a > 1 \{a, d\} = < a, d, d, a > 1 \{a, d\} = < a, d, d, a > 1 \{a, d\} = < a, d, d, a > 1 \{a, d\} = < a, d, d, a > 1 \{a, d\} = < a, d, d, a > 1 \{a, d\} = < a, d, d, a > 1 \{a, d\} = < a, d, d, a > 1 \{a, d\} = < a, d, d, a > 1 \{a, d\} = a, d, d, a > 1 \{a, d\} = < a, d, d, a > 1 \{a, d\} = < a, d, d, a > 1 \{a, d\} = < a, d, d, a > 1 \{a, d\} = < a, d, d, a > 1 \{a, d\} = a, d, d, a > 1 \{a, d\} = < a, d, d, a > 1 \{a, d\} = < a, d, d, a >$

State Schema

- State schema: 'snapshot' of a system
- State variables declared and types on top; predicates listed at the hottom
- An instance = assignment of (valid) values to state variables

Operation Schema

- An instance of a state schema to another instance, modelling how the system can change
- Pre-state variables: unprimed; post-state variables: primed
- "?" denotes an input; "!" denotes an output

- Join
items, items' : seq MSG
msg? : MSG
#items ≤ max
#items' ≤ max
#items < max
items' = items <msg?></msg?>

Schema Inclusion

Schema inclusion to simplify the syntax:

Δ required to use post state variables

- Buffer	- Join		
items : seq MSG	Δ Buffer		
	msg? : MSG		
#items ≤ max			
	#items < max		
	items' = items <msg?></msg?>		
- Δ Buffer			
items, items' : seq MSG	•		
#items ≤ max			
#items' ≤ max			
1			

Merging Schemas/Schema conjunction

- - Declaration part: Union of declarations from A and B
 - Predicate part: Conjunction of predicates from A and B

- A	- B	- C	- C
x : T ₁	y : T ₂	x : T ₁	A
y: T ₂	z : T ₃	y:T ₂	B
		z : T ₃	
P(x, y)	P(y, z)		
		$ P(x, y) \wedge P(y, z)$	

Schema disjunction △

- - Declaration part: Union of declarations from A and B
 - o Predicate part: Disjunction of predicates from A and B

- A	- B	- C	- C
x : T ₁	y : T ₂	x : T ₁	A
y: T ₂	z : T ₃	y:T ₂	B
		z : T ₃	
P(x, y)	P(y, z)		$ P(x, y) \lor P(y, z)$
		$ P(x, y) \lor P(y, z)$	

Schema composition 3

- Applies to operation schemas to indicate an operation immediately followed by another (atomically)
- - o Declaration part: Union of declarations from A and B
 - Predicate part:
 - Predicates from A (Pre-state of C = pre-state of A)
 - Pre-state of B = post-state of A and post-state of C = post-state of B
 (can be represented by ∃state": X post-state of A ∧ post-state of B)

Communicating Sequential Process (CSP)

- Process: defined by its behaviour
- Events: A process engages in events; e.g. events for a chocolate vending machine are (i) coin – insert a coin and (ii) choc – extract a chocolate
- Alphabet: Set of events a process can engage in e.g. Alphabet of the chocolate vending machine = { coin, choc }
- Trace: finite sequence of events e.g. <coin, choc>
- STOP_A: process with alphabet A that can do nothing, i.e. traces(STOP_A) = {<>}
- SKIP: A process that can only terminate, i.e. traces(SKIP) = {<**√**>}
- CLOCK: process with αCLOCK={tick}, i.e. traces(CLOCK) = tickⁿ
- Event Prefix: A process which may participate in event a then act according to process description P is denoted as a -> P

CSP Primitives

- Sequential Composition (P;Q)
- Parallel Composition (P | [X] | Q, or P | | Q)

- No event from set X may occur unless enabled by both P and Q
- When events from X occur, they occur in both P and Q in parallel; events not from X occur in P or Q separately
- E.g.(a -> P) |[a]| (c -> (a -> Q)): Event c must happen before event a for event a to run in parallel
- If P | | Q, we can infer $X = \alpha P \cap \alpha Q$
- Laws: suppose $a \in (\alpha P \alpha Q)$, $b \in (\alpha Q \alpha P)$, $\{c, d\} \subseteq (\alpha P \cap \alpha Q)$,
 - P | | Q = Q | | P
 - P | | (Q | | R) = (P | | Q) | | R
 - P | | STOP $_{\alpha P}$ = STOP $_{\alpha P}$ (deadlock)
 - $(c \rightarrow P) \mid | (c \rightarrow Q) = c \rightarrow (P \mid | Q)$
 - $(c -> P) \mid | (d -> Q) = STOP \text{ if } c \neq d$
 - (a -> P) || (c -> Q) = a -> (P || c -> Q))
 - $(c \rightarrow P) \mid | (b \rightarrow Q) = b \rightarrow ((c \rightarrow P \mid | Q))$
 - (a -> P) || (b -> Q) = a -> (P || (b -> Q)) [] b -> ((a -> P) || Q)
- Interleaving (P | | | Q)
 - o P and Q execute concurrently without any synchronisations
- Choice ((a -> P) [] (b -> Q))
 - Either event a or event b occurs. If event a occurs, then the process acts as P afterwards, otherwise is acts as Q
- Channel event
 - o c!n: A process writes value n to the tail of channel c's buffer
 - c?n: A process reads a value from the head of the channel c's buffer to a local variable n
 - c.n: Channel output and its matching channel input are engaged together by two processes
 - Each channel has a capacity. If a channel is full, only a read event (c?n) can occur. If a channel is empty, only a write event (c!n) can occur
 - Synchronous channel: a channel with buffer size of 0
 - c!n and c?n must happen at the same time (denoted as c.n)
- Interrupt (P ∇ e -> Q)
 - Process behaves as P until first occurrence of event e, then the control passes to Q
- $\operatorname{op} \times \operatorname{cop} = \operatorname{P}(x_1) \operatorname{op} \operatorname{P}(x_2) \dots \operatorname{op} \operatorname{P}(x_n)$ for each x_k in dom

Process Analysis Toolkit (PAT)

- Linear Temporal Logic (LTL) assertion
 - o var name = [1, 2, 3] or var name[n]; values defaulted to 0
 - o Initialization with range:
 - e.g. var name: {0..} = ..., var name: {1..9} = [...]
 - Fast array initialization:
 - e.g. Suppose #define N 2. Then [1(2), 3..6, 7(N*2), 12..10] = [1, 2, 3, 4, 5, 6, 7, 7, 7, 7, 12, 11, 10]
- Multi-dimensional arrays are internally converted into a 1d array
- Macro: #define name pred, e.g. #define goal x == 0; often used with #assert to define system property
- Event compound forms: x.exp1.exp2, to uniquely identify events with same event name but different states (e.g. process params, global vars)

- Statement block inside events: Run piece of code when the event is engaged, e.g. P = { C# code } -> SKIP
 - If accompanied with another event, eg P = a{ C# code } -> SKIP, it means that the C# code runs atomically with event a
- Conditional choice: e.g. P = if (exp) { a -> SKIP } else { b -> SKIP }
- Guarded process: Guarded processes only execute when their guard condition is satisfied e.g. P = [x == 1] a -> STOP [] [x != 1] b -> STOP
- Atomic process: Use atomic keyword to associate higher priority with process e.g. P = atomic { a -> ... }
 - An atomic process will execute it's next event before any nonatomic processes
- Assertions: #assert process name
 - o Deadlock-freeness: #assert P deadlockfree
 - Reachability: #assert P reaches cond [with exp]

Linear Temporal Logic (LTL) assertion

- A LTL assertion is true iif every trace of the system satisfies F:
 - #assert P |= F, where F = LTL formula = event, proposition or any of the operators below (F = event, just check initial event)

Ор	Explanation	Diagram
Χ φ, Χ	ne X t: φ must hold at the next state	φ •——•—————————————————————————————————
F φ, <>	Finally: $arphi$ must eventually hold	φ
G φ, []	G lobally: $arphi$ must always hold	φ φ φ φ φ
ψ U φ, ∪	U ntil: ψ must hold at least until φ becomes true	Ψ Ψ Ψ φ
ψ R φ , R	Release: φ must hold until and including but not beyond the first position in which ψ is true, or forever if such position does not exist	φ φ φ φ φ

Timed Process Definition

- Wait[t] process
 - Process Wait[t]; P delays the starting time of P by t time units
- Timeout (P timeout[t] Q)
 - Engage Q if no visible event has occurred in process P before t time units have elapsed
- Timed Interrupt (P interrupt[t] Q)
 - $\circ\quad$ Process behaves as P until t time units elapse and then switches to Q
- Deadline[t]
 - o Process P deadline[t] must terminate within t time units
- Within[t]
 - In Process P within[t], the first visible event in P must be engaged within t time units