Scope Insensitivity & Charitable Giving

[REDACTED], Jackie Chambers, [REDACTED] ECON4803: Behavioral Economics Dr. Whitney Buser

What is Scope Insensitivity?

A common cognitive bias that occurs when people make judgments that show no

concern to the number - or scope - of the things they are evaluating

Purpose

- Explore how scope insensitivity affects decision-making about charitable giving
- Test the effect of a framing treatment on people's ability to overcome scope insensitivity

Literature Review: Scope Insensitivity

Past literature shows that people are **consistently insensitive to scope** in altruistic contexts.

The reasons for scope insensitivity are not fully understood.

- (1) Emotional Response (Dickert et al., 2012)
 - (a) Unaffected by scope (Dunn & Ashton-James, 2008; Dunn et al., 2008)
 - (b) 'Warm Glow' Effect (Baron & Green, 1996)
 - (c) 'Collapse of Compassion' (Cameron & Payne, 2011)
- (2) Real-world Limitations
 - (a) Budget constraints (Baron & Green, 1996)
- (3) Irrationality
 - (a) 'Psychophysical numbing' (Fetherstonhaugh et al., 1997)
 - (b) Marginal utility (Dickert et al., 2015)

Scope sensitivity varies by group.

- (1) Cultural Norms (Kogut et al., 2015)
- **(2) Numeracy** (Dickert et al., 2018)
- (3) Self-Focus (Chang & Hung, 2018)

Literature Review: What makes people more scope sensitive?

- (1) Increasing tangibility (Imas & Lowenstein, 2018)
- (2) Identifiable victims (Kogut et al., 2015)
 - Teaching people to notice scope insensitivity can cause participants to decrease giving to identifiable victims (Small et al., 2007)
- (1) Relying on calculation (Hsee & Rottenstreich, 2004; Hasford et al., 2015)
 - Combining statistics & emotional info decreases donations (Erlandsson et al. 2016)
- (1) Caring about the issue (Bateman et al., 2005)
- (2) 'Unit asking' (Hsee et al., 2013)

Contribution to Literature

- Finds scope insensitivity bias in donations, consistent with the vast majority of the literature
- Investigates scope insensitivity for both human and nonhuman animals, which occurs in fewer studies (Desvousges et al. 2010)
- Mixes order of options to control for order effects, which may have caused issues in other studies (Bateman et al. 2004; Carson & Mitchell 1995)
- Controls for demographic variables

Hypothesis

Participants who complete a math activity are less affected by scope insensitivity. Their valuations will change in a way that is closer to proportional than the valuations of those who complete a grammar activity.

Experimental Design & Methodology

- Created a three-part Qualtrics survey:
 - 1. Activity: Math (intervention) & Grammar (control)
 - 2. Contingent Valuation Questions: 3 groups of 3 open-ended questions that evaluated people's willingness to save the lives of birds, turtles, and humans with small, medium, and large scope; 6 different versions were used that swapped the placement of the scope questions
 - 3. **Demographic Questions** (age, gender, ethnicity, education, etc.)
- Released survey to GATech clubs and organizations, Reddit survey collection subreddits, and various discord communities
- No personal identifiers were collected
- Participants were randomly distributed between activities and form types

Contingent Valuation Questions Example

- Everything on a separate page

Background Info/Prompt:

"At least 102 species of birds are known to have been harmed by the BP oil spill [in 2010], including black skimmers, brown pelicans, clapper rails, common loons, laughing gulls, northern gannets and several species of tern" (krüg). Consider a hypothetical scenario in which birds are dying due to oil spills, but your donation would guarantee the lives of many birds.

3 Questions of **Increasing Scope**:

- 1. How much would you be willing to pay (in US dollars) to prevent oil spills with certainty and therefore save the lives of around 2,000 birds?
- 2. How much would you be willing to pay (in US dollars) to prevent oil spills with certainty and therefore save the lives of around 20,000 birds?
- 3. How much would you be willing to pay (in US dollars) to prevent oil spills with certainty and therefore save the lives of around 200,000 birds?

Sample Overview

- Sample size is 77 participants
- includes both paid and unpaid participants
 - Most paid participant responses could not be identified because the survey was designed to be anonymous, but confirmation of having completed the survey and payment did occur
- Data collection **spanned a month** from 10/18/22 to 11/18/22

Intervention Score

- 39 participants received the Math Activity (Intervention)
- 38 participants received the Grammar Activity (Control)
- Math Activity participants scored 32% on average higher (90% avg. score) than Grammar Activity participants (58% avg. score)

Sample Age and Gender

- **Average age** is approximately **31 years**
- **Gender** is **majority Male** (50.0%) with 35.1% Female
- GATech has a gender distribution of 68.50% Male and 31.50% Female (Fall 2021)
- The U.S. has a gender distribution of 49.5 percent male and 50.47 percent female

Sample Ethnicity and Education

- Majority White ethnicity
- **91% higher education** (Undergraduate and above)
- 63.3% of U.S. people age 25 and older have higher education (some college or more)

Analysis Overview

- Clean the data
 - a. Import survey results into excel
 - b. Remove invalid responses
 - c. Pre-calculations: determine accuracy scores and important averages
 - i. 'accuracy_bird', 'accuracy_turtle', 'accuracy_human'
 - (1) Found by calculating each participant's per life value, calculating the absolute value difference of per life values between increasing scope questions, and averaging the differences for each question group
 - ii. 'accuracy_score' the sum of the three calculated question group accuracy variables

- 1. Determine variables for regression
 - a. Dependent variable(s): 'accuracy_score', 'accuracy_bird', 'accuracy_turtle', 'accuracy_human'
 - b. Independent variable: 'math_activity'
 - c. Explanatory variables: see next slide
- 1. Run regressions and joint-significance tests

Explanatory Variables

- activity_score
- Form type variables: 'msl', 'slm', 'lsm', 'lms', 'mls'
- age
- gender
- race/ethnicity
- education
- income
- essential spending: 'ess_spend'
- non-essential spending: 'noness_spend'
- 'charity_past'
- 'charity_future'

Regression

Basic Multivariable Linear Regression Model

$$y = \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + ... \beta_n x_n + \varepsilon$$

where, y = accuracy score $x_n = the$ nth independent variable $\beta_n = the$ nth coefficient $\epsilon = error$

Model	Equation	Interpretation
Level-Level Regression	$Y = \alpha + \beta X$	One unit change in X leads to β unit change in Y
Log-Linear Regression	$log(Y) = \alpha + \beta X$	One unit change in X leads to $100 * \beta$ percent change in Y
Linear-Log Regression	$Y = \alpha + \beta \log(X)$	One percent change in X leads to $\beta/100$ unit change in Y
Log-Log Regression	$\log(Y) = \alpha + \beta \log(X)$	One percent change in X leads to β percent change in Y

 $\underline{https://www.kdnuggets.com/2017/10/learn-generalized-linear-models-glm-r.html/2}$

Results

After multiple regressions testing for joint significance with different models: linear-linear, linear-log, log-linear and log-log,

- It has been concluded that there is no significance between:
 - 1. Overall accuracy score,
 - 2. Accuracy score for the **bird-related** questions,
 - 3. Accuracy score for the **turtle-related** questions, &
 - 4. Accuracy score for the **human-related** questions

and the **Math activity**, considering the other explanatory variables of interest as well

Descriptive Statistics: Per-Life Valuations

	Mean	Median	Mode	Minimum	Maximum
D: 1	h - C -	φ	φ	φ-	φ
Bird	\$9.63	\$.01	\$ 0	\$0	\$500
Turtle	\$152.49	\$.50	\$.50	\$o	\$25,000
Human	\$74,737	\$5	\$o	\$o	\$10,000,000

Calculated Accuracy Scores

	Grammar Activity	Math Activity
Bird	7.24	.356
Turtle	351	4.83
Human	144,478	562
Overall	144,863	568

Larger scores corresponds with more discrepancy between an individual's answers, meaning they were less sensitive to scope. A score of o would indicate perfect sensitivity to scope.

Limitations

- Since the Grammar Activity was more difficult than the Math Activity, it serves as an imperfect control to compare with
 - Frustration from knowing fewer correct answers may affect willingness to pay
 - Non-Response Bias More participants who received the grammar activity chose to not complete the survey compared with participants who received the math activity
- Our results **cannot be generalized to the United States population** due to a disproportionate number of young people, men, and people with some higher education
- **Incomplete/Insufficient responses** result in **not meeting** the Central Limit Theorem's requirement of 30 minimum responses for approximately normal distribution
 - Results from comparisons between the 6 different form types might not accurately reflect the true nature of the differences

Final Notes

In conclusion, we can not confidently say that our math intervention led to statistically significant results.

Areas of future research include:

- Ensuring similar difficulty levels between the control activity and treatment activity
- Testing different control activities physical fitness, meditation, etc
- Increasing sample size
- Alternate wording of survey questions to decrease confusion
 - Hypotheticals and self-reported guesses are unreliable

Bibliography

- (n.d.). Table 2 Sample data for binary logistic regression [Review of Table 2 Sample data for binary logistic regression]. In KDNuggets. Retrieved November 22, 2022, from https://www.kdnuggets.com/2017/10/learn-generalized-linear-models-glm-r.html/2
- Baron, J., & Greene, J. (1996). Determinants of insensitivity to quantity in valuation of public goods: Contribution, warm glow, budget constraints, availability, and prominence. Journal of Experimental Psychology: Applied, 2(2), 107.
- Bateman, I. J., Cole, M., Cooper, P., Georgiou, S., Hadley, D., & Poe, G. L. (2004). On visible choice sets and scope sensitivity. Journal of environmental economics and management, 47(1), 71-93.
- Bateman, I. J., Cooper, P., Georgiou, S., Navrud, S., Poe, G. L., Ready, R. C., Riera, P., Ryan, M., & Vossler, C. A. (2005). Economic valuation of policies for managing acidity in remote mountain lakes: Examining validity through scope sensitivity testing. Aquatic Sciences, 67(3), 274–291. https://doi.org/10.1007/s00027-004-0744-3
- Cameron, C. D., & Payne, B. K. (2011). Escaping affect: how motivated emotion regulation creates insensitivity to mass suffering. Journal of personality and social psychology, 100(1), 1.
- Carson, R. T., & Mitchell, R. C. (1995). Sequencing and nesting in contingent valuation surveys. Journal of environmental economics and Management, 28(2), 155-173.
- Chang, H. H., & Hung, I. W. (2018). Mirror, Mirror on the Retail Wall: Self-Focused Attention Promotes Reliance on Feelings in Consumer Decisions. Journal of Marketing Research, 55(4), 586–599. https://doi.org/10.1509/jmr.15.0080
- Chang, Hannah H, and Pham, Michel Tuan. "Affective Boundaries of Scope Insensitivity." Journal of Consumer Research, Volume 45, Issue 2, August 2018, Pages 403–428, https://doi.org/10.1093/jcr/ucy007 Published 05 March 2018.
- Czajkowski, M., & Hanley, N. (2009). Using Labels to Investigate Scope Effects in Stated Preference Methods. Environmental and Resource Economics, 44(4), 521–535. https://doi.org/10.1007/s10640-009-9299-z
- Desvousges, W., Johnson, F. R., Dunford, R., Boyle, K., Hudson, S., & Wilson, K. N. (2010). Measuring Nonuse Damages Using Contingent Valuation: An Experimental Evaluation of Accuracy. https://doi.org/10.3768/rtipress.2009.bk.0001.1009

Bibliography

- Dickert, S., Kleber, J., Peters, E., & Slovic, P. (2011). Numeracy as a precursor to pro-social behavior: The impact of numeracy and presentation format on the cognitive mechanisms underlying donation decisions. Scholarsbank.uoregon.edu. http://hdl.handle.net/1794/22050
- Dickert, S., Västfjäll, D., Kleber, J., & Slovic, P. (2012). Valuations of human lives: normative expectations and psychological mechanisms of (ir)rationality. Synthese, 189(S1), 95–105. https://doi.org/10.1007/s11229-012-0137-4
- Dickert, S., Västfjäll, D., Kleber, J., & Slovic, P. (2015). Scope insensitivity: The limits of intuitive valuation of human lives in public policy. Journal of Applied Research in Memory and Cognition, 4(3), 248-255.
- Duffin, Erin. (2022, September 30). Total population in the United States by gender from 2010 to 2027. Statista. https://www.statista.com/statistics/737923/us-population-by-gender/#:~:text=Projection%20estimates%20calculated%20using%20the,US%20Census%20data%20for%202021.
- Dunn, E. W., & Ashton-James, C. (2008). On emotional innumeracy: Predicted and actual affective responses to grand-scale tragedies. Journal of Experimental Social Psychology, 44(3), 692–698. https://doi.org/10.1016/j.jesp.2007.04.011
- Erlandsson, A., Västfjäll, D., Sundfelt, O., & Slovic, P. (2016). Argument-inconsistency in charity appeals: Statistical information about the scope of the problem decrease helping toward a single identified victim but not helping toward many non-identified victims in a refugee crisis context. Journal of Economic Psychology, 56, 126–140. https://doi.org/10.1016/j.joep.2016.06.007
- Fetherstonhaugh, D., Slovic, P., Johnson, S., & Friedrich, J. (1997). Insensitivity to the value of human life: A study of psychophysical numbing. Journal of Risk and uncertainty, 14(3), 283-300.
- Harel, I., & Kogut, T. (2021). The Effect of the Number and Identification of Recipients on Organ-Donation Decisions. Frontiers in Psychology, 12. https://doi.org/10.3389/fpsyg.2021.794422
- Hasford, J., Farmer, A., & Waites, S. F. (2015). Thinking, feeling, and giving: the effects of scope and valuation on consumer donations. International Journal of Research in Marketing, 32(4), 435-438.
- Hsee, C. K., & Rottenstreich, Y. (2004). Music, pandas, and muggers: on the affective psychology of value. Journal of Experimental Psychology: General, 133(1), 23.

Bibliography

- Hsee, C. K., Zhang, J., Lu, Z. Y., & Xu, F. (2013). Unit Asking. Psychological Science, 24(9), 1801–1808. https://doi.org/10.1177/0956797613482947
- Imas, A., & Loewenstein, G. (2018, May). Is altruism sensitive to scope? The role of tangibility. In AEA Papers and Proceedings (Vol. 108, pp. 143-47).
- Kogut, T., Slovic, P., & Västfjäll, D. (2015). Scope insensitivity in helping decisions: Is it a matter of culture and values?. Journal of Experimental Psychology: General, 144(6), 1042.
- Krüg, Kris. "A Deadly Toll." Center for Biological Diversity,
 https://www.biologicaldiversity.org/programs/public_lands/energy/dirty_energy_development/oil_and_gas/gulf_oil_spill/a_deadly_toll.html. Accessed 23 September 2022.
- Lipponen, Matilda. "How can I help save Sea Turtles from Plastic Pollution?" Projects Abroad, 12 July 2022, https://www.projects-abroad.org/blog/how-we-can-help-save-sea-turtles/. Accessed 23 September 2022.
- Serebrisky, Denise. "Pediatric Asthma: A Global Epidemic PMC." NCBI, 22 January 2019, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7052318/. Accessed 23 September 2022.
- Small, D. A., Loewenstein, G., & Slovic, P. (2007). Sympathy and callousness: The impact of deliberative thought on donations to identifiable and statistical victims.
 Organizational Behavior and Human Decision Processes, 102(2), 143-153. https://doi.org/10.1016/j.obhdp.2006.01.005
- United States Census Bureau. (2022, February 24). Census Bureau releases New Educational Attainment Data. Census.gov. Retrieved November 22, 2022, from https://www.census.gov/newsroom/press-releases/2022/educational-attainment.html#:~:text=In%202021%2C%20the%20highest%20level,college%20but%20not%20a%20degree.
- "Scope insensitivity: failing to appreciate the number of those who need our help." Effective Altruism Forum. https://forum.effectivealtruism.org/s/B79ro5zkhndbBKRRX/p/NmDrpKdmjr. Published 22 August 2022.

Appendices

Descriptive Statistics: Per-Life Valuations

		Mean	Median	Mode	Minimum	Maximum
Bird	Small	\$14.17	\$.03	\$ 0	\$o	\$500
	Medium	\$7.89	\$.10	\$.001	\$o	\$500
	Large	\$6.83	\$.001	\$.001	\$o	\$500
Turtle	Small	\$365	\$1.25	\$100	\$o	\$25,000
	Medium	\$75.67	\$.50	\$5	\$o	\$5,000
	Large	\$16.93	\$.10	\$.05	\$o	\$1,000
Human	Small	\$144,044	\$50	\$100	\$o	\$10,000,000
	Medium	\$78,744	\$5	\$5	\$o	\$5,000,000
	Large	\$1,421	\$.62	\$.25	\$o	\$50,000