Course Name: Engineering Calculus

Course Outcome

- CO1- Compute nth order derivative and study its application in Leibnitz theorem
- CO2- Understand partial differentiation and its applications
- CO3- Compute the Jacobian and its applications
- CO4- Understand the expansion of functions

Printed Pages: 4

University Roll No.

Mid Term Examination, Odd Semester 2023-24 B. Tech., Year I, Semester I Subject Code and Name-BMAS 0104 and Engineering calculus

Time: 2 Hours

Maximum Marks: 30

Instruction for students:

All questions are compulsory. The symbols have their usual meanings.

Section - A

Attempt All Questions.		3 X	ks		
No.	Detail of Question	Marks	со	BL	KL
1	Find the n th derivative of the following functions: (i) $y = \frac{1}{2x+3}$ (ii) $y = e^{3x-5}$ (iii) $y = sin^2x$ OR,	3	1/2	R	С
	If $u = f(y - z, z - x, x - y)$, prove that:				
	$\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 0.$				

A rocket moves in the space. Its position at any time t is given by $x = \log_e (t^2 + 3t + 2),$	3	-	С	M
Determine the velocity, acceleration and the rate of change of acceleration of the rocket at 1 = 5.		de ray, e : - and de contraction of the contraction		

Section - B

Attempt All Questions.

5 X 3 = 15 Marks

	Attempt All Questions.			$5 \times 3 = 15 \text{ Marks}$				
No.	Detail of Question	Marks	co	BL	KL			
6	(a) If $u = tan^{-1} \left(\frac{y^2}{x}\right)$, Use Euler's theorem to prove that: (i) $2x \frac{\partial u}{\partial x} + 2y \frac{\partial u}{\partial y} = \sin 2u$ (ii) $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial y \partial x} + y^2 \frac{\partial^2 u}{\partial y^2} = -\sin 2u \sin^2 u$ (b) Prove that: $e^x \log_e(1+y) = y + xy - \frac{1}{2}y^2 + \frac{1}{2}x^2y - \frac{1}{2}xy^2 + \frac{1}{3}y^3 + \cdots$	5	2,	Ε	P			
7	If $x = r \cos \theta$, $y = r \sin \theta$ then, (i) Calculate $J_1 = \frac{\partial (x, y)}{\partial (r, \theta)}$ (ii) Calculate $J_2 = \frac{\partial (r, \theta)}{\partial (x, y)}$ (iii) Prove that: $J_1 J_2 = 1$ OR, If $y = (\sin^{-1} x)^2$, prove that	5	3/	An	P			

(a) In:	project	work,	Rakesh	was	given	a function
---------	---------	-------	--------	-----	-------	------------

$$u(x,y) = \frac{x+y}{1-xy}$$

while Mokesh was given another function

$$v(x,y) = tan^{-1}x + tan^{-1}y.$$

They were asked by their teacher to establish a relation between these functions, if possible. Are these functions, functionally related? If yes, what should be the relation between u and v?

(b) The curves f(x,y) = 0 and $\varphi(x,y) = 0$ touch each other. Show that at the point of contact, the following condition holds:

$$\frac{\partial f}{\partial x} \cdot \frac{\partial \varphi}{\partial y} = \frac{\partial f}{\partial y} \cdot \frac{\partial \varphi}{\partial x}$$