西南科技大学本科毕业设计(论文)中期检查表

学院	计算机科学与技 术学院	专业	软件工程	班级	软件 1804	
姓名	肖劲涛	学 号	5120184509	指导 教师	苏波	
设计(论文)题目	快速傅里叶变换的并行算法研究及实现					
开的况得性成果情取段	串行部分: 1. Naive FFT/iFFT, 2. Cooley-Tukey/Cooley-Tukey-r, 3. r2c/c2r, 4. convolve/correlate, 5. 2d FFT 6. radix-2/3/5, 7. srFFT, 8. PFA, 9. Hartley Transform. 并行部分: 1. Cooley-Tukey using CUDA on GPU 2. Cooley-Tukey using MPI on CPU					
存题 下的划向 下的划为作研容	1. 基-2/3/5 分裂基运行时要求数组长度必须为 2/3/5 的 n 次方,因此在对比时无法精确对比其运行时间(runtime)。 2. r2c 在运行时即现通过实数构造复数数组,之后再调用其他 FFT 实现,因此再复杂度上需要额外的时间与空间。 3. 2d FFT 的时间难以与 1d FFT 比较,但可以同 PFA(也是一种二维变换)比较。 4. MPI 实现内存共享需要通过拷贝时间,因此具有额外的时间开销。 1. 添加并行部分内容。 2. 查找其他高效的串行 FFT 算法,并实现。 3. 对比不同的算法,再不同平台下的性能,例如 x86-64,linux-amd64。并给出选择与优化建议。 4. 完成论文。					

指导教师意见	□通过	□不通过	指导教师(签名) 2022 年 5 月 7 日
学院审核	□通过	□不通过	审核人(签名)