

Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχ. και Μηχανικών Υπολογιστών Εργαστήριο Υπολογιστικών Συστημάτων

Εισαγωγή

Συστήματα Παράλληλης Επεξεργασίας 9° Εξάμηνο

Περιεχόμενο μαθήματος

- Ζητήματα παράλληλων αρχιτεκτονικών
 - Ο Κατηγορίες παράλληλων αρχιτεκτονικών
 - Ο Δίκτυα διασύνδεσης
- Παράλληλος προγραμματισμός
 - Ο Σχεδιασμός παράλληλων προγραμμάτων
 - Ο Ζητήματα υλοποίησης: προγραμματιστικά μοντέλα, γλώσσες και εργαλεία
 - Ο Ταυτόχρονη πρόσβαση σε δομές δεδομένων
 - Ο Αλληλεπίδραση εφαρμογών αρχιτεκτονικής
- Εργαστήριο και εργασίες:
 - Ο Παραλληλοποίηση προγραμμάτων σε διάφορες παράλληλες αρχιτεκτονικές:
 - Κοινής μνήμης
 - Κατανεμημένης μνήμης
 - Επιταχυντές (π.χ. GPUs)
 - Ο Μετρήσεις επίδοσης

Διαδικαστικά

- Διαλέξεις: Τρίτη 15:15-18:00, Αίθουσα 07
- Εργαστήριο: Ίδιες ώρες με τις διαλέξεις, είτε στο PCLab είτε στην αίθουσα. Οι εξετάσεις των ασκήσεων ή έλεγχοι προόδου μπορεί να γίνονται τα πρωινά της Τρίτης.
- Σχήμα βαθμολογίας: 50% γραπτό, 50% εργαστήριο. Απαιτείται προβιβάσιμος βαθμός στο γραπτό.
- Βιβλίο-σημειώσεις:
 - Ο Συστήματα Παράλληλης Επεξεργασίας, Γ. Παπακωνσταντίνου, Θ. Θεοχάρης, Π. Τσανάκας
 - Ο Σημειώσεις
 - Ο Διαφάνειες μαθημάτων
- Λίστα μαθήματος: http://lists.cslab.ece.ntua.gr/mailman/listinfo/parlab
 - Ο Γραφτείτε στη λίστα!:
 - Ερωτήσεις- απορίες
 - Ανακοινώσεις (επίσημες!)

Διαφημίζοντας το μάθημα...

- Η παραλληλία υπάρχει οπουδήποτε υπάρχουν πολλαπλές λειτουργικές μονάδες:
 στην παραγωγή, στην κατασκευή, κλπ, δηλαδή σχεδόν παντού!
- Είναι βασικός μηχανισμός για την επίτευξη υψηλής επίδοσης
 - Αλλά προκύπτει και ως ανάγκη για την επίλυση μεγάλης κλίμακας προβλημάτων που δεν είναι δυνατόν να τα διαχειριστεί μία λειτουργική μονάδα
 - Ο Μπορεί να είναι εγγενής στη φύση του προβλήματος (ταυτόχρονη πρόσβαση σε κοινούς πόρους από ανεξάρτητες λειτουργικές μονάδες)
- Παραλληλία στα υπολογιστικά συστήματα:
 - Ο Στο εσωτερικό του επεξεργαστή:
 - ILP και pipelines
 - vector processing
 - Στο επίπεδο του λειτουργικού για την αξιοποίηση των πόρων του συστήματος (CPU, I/O devices)
 - Ο Σε πολυπύρηνα συστήματα
 - Ο Σε υπερυπολογιστικά συστήματα με χιλιάδες επεξεργαστές
- Παράλληλος προγραμματισμός
 - Ο Παραδοσιακά για επιστημονικές εφαρμογές σε υπερυπολογιστές
 - Ο Πρόσφατα για ΟΛΕΣ τις εφαρμογές σε πολυπύρηνους επεξεργαστές

Τι θα μάθω...

- Ζητήματα αρχιτεκτονικής που αφορούν τα συστήματα παράλληλης επεξεργασίας
 - Ο Ποιες είναι οι μεγάλες αρχιτεκτονικές κλάσεις παράλληλων συστημάτων
 - Ο Πως διασυνδέονται οι υπολογιστικοί κόμβοι (δίκτυα διασύνδεσης)
- «Μεθοδολογίες» σχεδίασης παράλληλων προγραμμάτων
- Ζητήματα συστημάτων χρόνου εκτέλεσης (runtime systems)
- Ζητήματα συγχρονισμού
- Γλώσσες, προγραμματιστικά μοντέλα και εργαλεία παράλληλου προγραμματισμού:
 - O MPI
 - O OpenMP
 - O CUDA
 - [... Cilk, TBBs, UPC...]
- Να κατανοώ τον παραλληλισμό, να τον εκφράζω και να αξιοποιώ τους πόρους του υπολογιστικού συστήματος

"Architecture-aware parallel programming"

Supercomputers

- Για δεκαετίες: parallel computing = supercomputing
- Συνεργασία πολλών επεξεργαστών για την επίλυση επιστημονικών προβλημάτων:
 - Ο Επιστήμες μηχανικού (ρευστοδυναμική, στατική, κλπ)
 - Ο Επιστήμες της γης και του διαστήματος (πρόγνωση καιρού/σεισμών/πυρκαγιάς, μαγνητικές καταιγίδες, αστρονομία, κοσμολογία, κλπ)
 - Ο Επιστήμες της ζωής (ανάλυση DNA, πρωτεϊνών)
 - Ο Οικονομικές επιστήμες (high-frequency trading)
 - Ο Κοινωνικές επιστήμες
- Εφαρμογές "number crunching" με ακόρεστη «δίψα» για υπολογιστική δύναμη
- Πλατφόρμα εκτέλεσης: υπερυπολογιστές με χιλιάδες επεξεργαστικές μονάδες

		SPECS	SITE	COUNTRY	CORES	RMAX PFLOP/S	POWER
1	Summit	IBM POWER9 (22C, 3.07 GHz), NVIDIA Volta GV100 (80C), Dual-Rail Mellanox EDR Infiniband	DOE/SC/ORNL	USA	2,414,592	148.6	11.4
2	Sierra	IBM POWER9 (22C, 3.16Hz), NVIDIA Tesla V100 (80C), Dual-Rail Mellanox EDR Infiniband	DOE/NNSA/LLNL	USA	1,572,480	94.6	7.44
3	Sunway TaihuLight	Shenwei SW26010 (260c, 1.45 GHz) Custom Interconnect	NSCC in Wuxi	China	10,649,600	93.0	15.4
4	Tianhe-2A (Milkyway-2A)	Intel Ivy Bridge (12C, 2.2 GHz) & TH Express-2, Matrix-2000	NSCC Guangzhou	China	4,981,760	61.4	18.5
5	Frontera	Dell C6420, Xeon Platinum 8280 28C 2.7GHz, Mellanox InfiniBand HDR	TACC/U of Texas	USA	448,448	23.5	-

PERFORMANCE DEVELOPMENT

INSTALLATION TYPE 100% Vendor A0% Industry Classified Academic Covernment

www.top500.org

Performance development

PERFORMANCE DEVELOPMENT

		SPECS	SITE	COUNTRY	CORES	RMAX PFLOP/S	POWER MW
1	Summit	IBM POWER9 (22C, 3.07 GHz), NVIDIA Volta GV100 (80C), Dual-Rail Mellanox EDR Infiniband	DOE/SC/ORNL	USA	2,414,592	148.6	11.4
2	Sierra	IBM POWER9 (22C, 3.1GHz), NVIDIA Tesla V100 (80C), Dual-Rail Mellanox EDR Infiniband	DOE/NNSA/LLNL	USA	1,572,480	94.6	7.44
3	Sunway TaihuLight	Shenwei SW26010 (260C, 1.45 GHz) Custom Interconnect	NSCC in Wuxi	China	10,649,600	93.0	15.4
4	Tianhe-2A (Milkyway-2A)	Intel Ivy Bridge (12C, 2.2 GHz) & TH Express-2, Matrix-2000	NSCC Guangzhou	China	4,981,760	61.4	18.5
5	Frontera	Dell C6420, Xeon Platinum 8280 28C 2.7GHz, Mellanox InfiniBand HDR	TACC/U of Texas	USA	448,448	23.5	*

		SPECS	SITE	COUNTRY	CORES	RMAX PFLOP/S	POWER
1	Summit	IBM POWER9 (22C, 3.07 GHz), NVIDIA Volta GV100 (80C), Dual-Rail Mellanox EDR Infiniband	DOE/SC/ORNL	USA	2,414,592	148.6	11.4
2	Sierra	IBM POWER9 (22C, 3.1GHz), NVIDIA Tesla V100 (80C), Dual-Rail Mellanox EDR Infiniband	DOE/NNSA/LLNL	USA	1,572,480	94.6	7.44
3	Sunway TaihuLight	Shenwei SW26010 (260C, 1.45 GHz) Custom Interconnect	NSCC in Wuxi	China	10,649,600	93.0	15.4
4	Tianhe-2A (Milkyway-2A)	Intel Ivy Bridge (12C, 22 GHz) & TH Express-2, Matrix-2000	NSCC Guangzhou	China	4,981,760	61.4	18.5
5	Frontera	Dell C6420, Xeon Platinum 8280 28C 2.7GHz, Mellanox InfiniBand HDR	TACC/U of Texas	USA	448,448	23.5	-

		SPECS	SITE	COUNTRY	CORES	RMAX PFLOP/S	POWER
1	Summit	IBM POWER9 (22C, 3.07 GHz), NVIDIA Volta GV100 (80C), Dual-Rail Mellanox EDR Infiniband	DOE/SC/ORNL	USA	2,414,592	148.6	11.4
2	Sierra	IBM POWER9 (22C, 3.1GHz), NVIDIA Tesla V100 (80C), Dual-Rail Mellanox EDR Infiniband	DOE/NNSA/LLNL	USA	1,572,480	94.6	7.44
3	Sunway TaihuLight	Shenwei SW26010 (260C, 1.45 GHz) Custom Interconnect	NSCC in Wuxi	China	10,649,600	93.0	15.4
4	Tianhe-2A (Milkyway-2A)	Intel Ivy Bridge (12C, 22 GHz) & TH Express-2, Matrix-2000	NSCC Guangzhou	China	4,981,760	61.4	18.5
5	Frontera	Dell C6420, Xeon Platinum 8280 28C 2.7GHz, Mellanox InfiniBand HDR	TACC/U of Texas	USA	448,448	23.5	-

		SPECS	SITE	COUNTRY	CORES	RMAX PFLOP/S	POWER MW
1	Summit	IBM POWER9 (22C, 3.07 GHz), NVIDIA Volta GV100 (80C), Dual-Rail Mellanox EDR Infiniband	DOE/SC/ORNL	USA	2,414,592	148.6	11.4
2	Sierra	IBM POWER9 (22C,3.16Hz), NVIDIA Tesla V100 (80C), Dual-Rail Mellanox EDR Infiniband	DOE/NNSA/LLNL	USA	1,572,480	94.6	7.44
3	Sunway TaihuLight	Shenwei SW26010 (260C, 1.45 GHz) Custom Interconnect	NSCC in Wuxi	China	10,649,600	93.0	15.4
4	Tianhe-2A (Milkyway-2A)	Intel Ivy Bridge (12C, 2.2 GHz) & TH Express-2, Matrix-2000	NSCC Guangzhou	China	4,981,760	61.4	18.5
5	Frontera	Dell C6420, Xeon Platinum 8280 28C 2.7GHz, Mellanox InfiniBand HDR	TACC/U of Texas	USA	448,448	23.5	-

		SPECS	SITE	COUNTRY	CORES	RMAX PFLOP/S	POWER MW
1	Summit	IBM POWER9 (22C, 3.07 GHz), NVIDIA Volta GV100 (89C), Dual-Rail Mellanox EDR Infiniband	DOE/SC/ORNL	USA	2,414,592	148.6	11.4
2	Sierra	IBM POWER9 (22C, 3.1GHz), NVIDIA Tesla V100 (80C), Dual-Rail Mellanox EDR Infiniband	DOE/NNSA/LLNL	USA	1,572,480	94.6	7.44
3	Sunway TaihuLight	Shenwei SW26010 (260C, 1.45 GHz) Custom Interconnect	NSCC in Wuxi	China	10,649,600	93.0	15.4
4	Tianhe-2A (Milkyway-2A)	Intel Ivy Bridge (12C, 2.2 GHz) & TH Express-2, Matrix-2000	NSCC Guangzhou	China	4,981,760	61.4	18.5
5	Frontera	Dell C6420, Xeon Platinum 8280 28C 2.7GHz, Mellanox InfiniBand HDR	TACC/U of Texas	USA	448,448	23.5	**

		SPECS	SITE	COUNTRY	CORES	RMAX PFLOP/S	POWER MW
1	Summit	IBM POWER9 (22C, 3.07 GHz), NVIDIA Volta GV100 (80C), Dual-Rail Mellanox EDR Infiniband	DOE/SC/ORNL	USA	2,414,592	148.6	11.4
2	Sierra	IBM POWER9 (22C, 3.1GHz), NVIDIA Tesla V100 (80C), Dual-Rail Mellanox EDR Infiniband	DOE/NNSA/LLNL	USA	1,572,480	94.6	7.44
3	Sunway TaihuLight	Shenwei SW26010 (260C, 1.45 GHz) Custom Interconnect	NSCC in Wuxi	China	10,649,600	93.0	15.4
4	Tianhe-2A (Milkyway-2A)	Intel Ivy Bridge (12C, 2.2 GHz) & TH Express-2, Matrix-2000	NSCC Guangzhou	China	4,981,760	61.4	18.5
5	Frontera	Dell C6420, Xeon Platinum 8280 28C 2.7GHz, Mellanox InfiniBand HDR	TACC/U of Texas	USA	448,448	23.5	*

rendered on SuperMUC by LRZ

Κλάσεις Υπολογιστών Υψηλών Επιδόσεων

Δύο μεγάλες αρχιτεκτονικές κλάσεις:

- Cluster: εμπορικό δίκτυο διασύνδεσης και μέρη (π.χ. επεξεργαστές)
 - Ο Πλεονεκτήματα :
 - Οικονομικότερες λύσεις
 - 🔍 Ευκολία στην συναρμολόγηση, ρύθμιση και λειτουργία
 - Ο Μειονεκτήματα :
 - Λιγότερο «κλιμακώσιμο» (?)
 - «Μετριότερη» επίδοση (?)
 - Περισσότερο ενεργοβόρο
- Custom built: ειδικά κατασκευασμένο δίκτυο διασύνδεσης ή.και μέρη
 - Ο Πλεονεκτήματα:
 - «Κλιμακώσιμο»
 - Υψηλή επίδοση
 - Χαμηλότερη κατανάλωση ενέργειας
 - Ο Μειονεκτήματα :
 - Υψηλό κόστος

Timeline: distribution of architectures in Top500

Architecture - Performance Share

Επεξεργαστές και επιταχυντές

- Οι ΥΥΕ χρησιμοποιούν κατά κύριο λόγο εμπορικούς επεξεργαστές
- Τα τελευταία χρόνια έχει αυξηθεί ραγδαία η χρήση επιταχυντών (κυρίως GPUs)
- Σημαντικό εύρος από οικογένειες επεξεργαστών:
 - O AMD Opteron
 - O Intel Xeon
 - O NEC 3200
 - O IBM Power 7/8/9
 - O IBM PowerPC 970MP
 - O IBM PowerXcell 8i

Επεξεργαστές

CHIP TECHNOLOGY

Επιταχυντές

Κάρτες γραφικών

Καλύτερη επίδοση ανά μονάδα ισχύος και κόστους από τους επεξεργαστές

ACCELERATORS/CO-PROCESSORS

- Μαζικά πολυπύρηνες
- Διαχείριση ιεραρχίας μνήμης από το λογισμικό
- Χαμηλή επίδοση σε εφαρμογές με πολύπλοκες ροές ελέγχου
- Απαιτούν εξειδικευμένα προγραμματιστικά μοντέλα και εργαλεία

Επιταχυντές

AI REVOLUTION

Big Data

Better Algorithms

GPU Acceleration

facebook

350 million images uploaded per day

Walmart :

Petabytes of customer data hourly

300 hours of video uploaded every minute

"The Three Breakthroughs that have Finally Unleashed A.I. on the World"

Image taken from: Deep Learning and AI for Healthcare and Retail, https://www.slideshare.net/E2ENetworks/deep-learning-ai-for-healthcare-and-retail

Top 500 (June 2019 list) Performance development

PERFORMANCE DEVELOPMENT

Θα φτάσουμε τη κλίμακα "exascale" (=1018 FLOPS) μέχρι το τέλος της δεκαετίας;

Top 500 (June 2019 list) Performance development

PERFORMANCE DEVELOPMENT

Τρία μεγάλα εμπόδια

- a) Κατανάλωση ισχύος
- b) Κλιμακωσιμότητα / μεταφορά δεδομένων
- c) Ανθεκτικότητα σε σφάλματα

Top500: June 2018 list (countries)

Countries System Share

Top500: June 2019 list (countries)

Countries Performance Share

ARIS: Ο ελληνικός υπερυπολογιστής

June 2015

466	St. Petersburg Polytechnic University Russia	RSC PetaStream - RSC PetaStream, Intel Xeon Phi 5120D 60C 1.05GHz, Infiniband FDR, Intel Xeon Phi 5120D RSC Group	15,360	170.5	258.6	71
467	Electronics Company Japan	Cluster Platform 3000 BL460c Gen8, Intel Xeon E5-2690v2 10C 3GHz, 10G Ethernet Hewlett-Packard	10,320	170.3	247.7	
468	Greek Research and Technology Network Greece	ARIS - IBM NeXtScale nx360M5, Intel Xeon E5-2680v2 10C 2.8GHz, Infiniband FDR14 IBM	8,520	169.7	190.8	154
469	GSIC Center, Tokyo Institute of Technology Japan	TSUBAME-KFC - LX 1U-4GPU/104Re-1G Cluster, Intel Xeon E5-2620v2 6C 2.100GHz, Infiniband FDR, NVIDIA K20x NEC	2,992	169.6	239.6	40
470	Logistic Services (E) United States	Cluster Platform 3000 BL460c Gen8, Intel Xeon E5-2697v2 12C 2.7GHz, 10G Ethernet Hewlett-Packard	11,112	169.0	240.0	
471	EDF R&D France	Ivanhoe - iDataPlex, Xeon X56xx 6C 2.93 GHz, Infiniband IBM	16,320	168.8	191.3	510

ARIS

Ευρωπαϊκός οδικός χάρτης για exascale computing

- EuroHPC: Leading the way in the European Supercomputing:
 - https://eurohpc-ju.europa.eu/
 - acquiring and providing a world-class petascale and pre-exascale supercomputing and data infrastructure for Europe's scientific, industrial and public users, matching their demanding application requirements by 2020.
- European Processor Initiative: https://www.european-processor-

initiative.eu EPI IP's Launch Pad **ROADMAP** ZEUS Core TITAN Acc. Pan European Research Platform for HPC and Al Gen3 GPP Family 2021-2022 2024-... Rhea Family - Gen1 GPP Cronos Family - Gen2 GPP ZEUS Core 2022 - H2 EPI Common Platform EPI Common Platform ARM & RISC-V ARM & RISC-V **EU Exascale Supercomputer** External IPs Edge-HPC (autonomous vehicle) HPC System Exarcale HPC System PreExascale with CHRONOS & TITAN Automotive PoC 2021 - H2 E4 - PCle board (WS compatible) ATOS - BullxSequana Board with RHEA β version

Multicore processors

- Intel Xeon
 - "Kaby Lake", "Cascade Lake", 10 18 cores
 - O "Sandy-Bridge", up to 8 cores
 - "Ivy-Bridge", up to 12 cores (24 threads)
 - O "Haswell" (server with 18-20 threads)
 - O "Broadwell"
- AMD Opteron
 - O "Interlagos", 4, 8, ,12, 16 cores
- IBM
 - O Power 7 4, 6, 8-core (4 threads/core), up to 4 CPUs per system (up to 128 hw threads)
 - O Power 8, 12-core, 8 hw threads (96 hw threads in total)
- Tilera Tile
 - O TILE64, 64-core
 - O TILE-Gx, 100-core
- Sun UltraSPARC T3
 - O sixteen-core, 128-concurrent-threads
- ARM Cortex-A9 MPCore (1-4 cores)

Technological trends: From Moore's law...

- The number of transistors on integrated circuits doubles approximately every two years (Moore, 1965)
- More good news! transistors become faster as well! ©
 CPU speed doubles every 18 months (David House)
- What to do with so many, fast transistors?
 - O Instruction Level Parallelism! (ILP)
 - Deeper pipelines
 - Faster clock speeds
 - Better branch predictors
 - Out of order execution
 - Superscalar
 - O Larger caches More caching levels
 - O Vector units
- Faster processing cores at no programming cost

Technological trends: From Moore's law...

Microprocessor Transistor Counts 1971-2011 & Moore's Law

Technological trends: ... to Dennard Scaling

From wikipedia:

MOSFETs continue to function as voltage-controlled switches while all key figures of merit such as layout density, operating speed, and energy efficiency improve — provided geometric dimensions, voltages, and doping concentrations are consistently scaled to maintain the same electric field (Dennard 1974)

- $P = CV^2f$ (C = count, V = voltage, f = frequency)
 - O Increase in device count
 - O Higher operating frequencies
 - O Lower supply voltages
 - Constant power / chip!!!

what a wonderful world...

what a wonderful world...

- Is it?
- In ~2004 we hit the ILP wall
 - Transistors could not be utilized to increase serial performance
 - O Logic became too complex
 - Performance attained was very low compared to power consumption

what a wonderful world...

- Is it?
- In ~2004 we hit the ILP wall
 - Transistors could not be utilized to increase serial performance
 - O Logic became too complex
 - Performance attained was very low compared to power consumption

Solution:

- O Multicore CPUs!
- But.. The free lunch is over... welcome to the jungle!

(http://herbsutter.com/welcome-to-the-jungle/)

We need parallel software

Welcome to the jungle

cloud-core

The free

The end of Dennard scaling?

- Transistors are becoming too small
- A lot of energy is lost in leakage
- Voltage has not dropped significantly during the last few years

The power wall...

- If $P = CV^2f$
 - O C can still increase as predicted my Moore's law
 - transistors get shorter
 - number of cores increase
 - O V cannot drop drastically
 - O We need to keep **f** low
 - O But still **P** may take off....
- Dark silicon? (functionality is there but we cannot switch it on)

The power wall

Ok.. Is that all?

Ok.. Is that all?

No ☺

Ok.. Is that all?

- No ⊗
- CPU to memory gap

 The memory wall: CPUs are much faster than memory and applications may starve waiting for data from main memory...

Two ways ahead...

The catapult way:

Advances through technological breakthrough

The parkour way:

Redesign software and algorithms
This is what the course "Parallel
Processing Systems" is about...

Σύνοψη του μαθήματος

- Παράλληλες πλατφόρμες εκτέλεσης
 - Ο Η «ιδανική» παράλληλη πλατφόρμα PRAM
 - Ο Ταξινόμηση του Flynn
 - Ο Ρεαλιστικές πλατφόρμες:
 - Κοινής μνήμης
 - Κατανεμημένης μνήμης
 - Υβριδικές
- Αναλυτική μοντελοποίηση παράλληλων προγραμμάτων
 - Ο Αξιολόγηση επίδοσης
 - Ο Μοντελοποίηση και πρόβλεψη της επίδοσης

Σύνοψη του μαθήματος

- Σχεδιασμός παράλληλων προγραμμάτων
 - Ο Κατανομή δεδομένων και υπολογισμών
 - O task centric vs data centric
 - O tasks, processes and processors
 - Ο Αλληλεπίδραση μεταξύ tasks: συγχρονισμός και επικοινωνία
- Υλοποίηση παράλληλων προγραμμάτων
 - Ο Προγραμματιστικά μοντέλα
 - Κοινού χώρου διευθύνσεων
 - Ανταλλαγής μηνυμάτων
 - Ο Προγραμματιστικές δομές (πώς μπορώ να «μιλήσω» παράλληλα;)
 - Ο Ζητήματα επίδοσης και αλληλεπίδραση με την αρχιτεκτονική (γιατί δεν παίρνω την επίδοση που θέλω;)

Σύνοψη του μαθήματος

- Συγχρονισμός:
 - Ο Από το hardware στις δομές συγχρονισμού υψηλού επιπέδου
 - Ο Κλειδώματα (locks)
 - Ο Ταυτόχρονες δομές δεδομένων (concurrent data structures)
 - O Transactional memory
- Δίκτυα διασύνδεσης

Image taken from: Big data and extreme-scale computing: Pathways to Convergence-Toward a shaping strategy for a future software and data ecosystem for scientific inquiry, The International Journal of High Performance Computing Applications 2018, Vol. 32(4) 435–479

Ερωτήσεις;

