

CZAS TRWANIA ZDERZENIA KUL

1. Opis teoretyczny do ćwiczenia

zamieszczony jest na stronie <u>www.wtc.wat.edu.pl</u> w dziale DYDAKTYKA – FIZYKA – ĆWICZENIA LABORATORYJNE.

2. Opis układu pomiarowego

Celem ćwiczenia jest wyznaczenie czasu trwania zderzenia dwóch metalowych kulek oraz wyznaczenia parametrów charakteryzujących deformację kulek podczas zderzenia. Rysunek 1 przedstawia schemat ideowy przyrządu pomiarowego do wyznaczania czasu trwania zderzenia.

W czasie zderzenia sprężystego metalowych kulek przekazywanie energii odbywa się w czasie **T**, który można wyznaczyć wykorzystując w tym celu zjawisko rozładowania kondensatora. Kondensator jest ładowany do napięcia **U**_o po zwarciu klucza W. Gdy klucz W zostanie rozwarty kondensator pozostanie naładowany, a różnicę potencjałów na jego okładkach wskazuje woltomierz. Przekręcenie pokrętła komutatora K zwalnia kulki, które po zderzeniu powinny ponownie zwierać się z elektromagnesami. W momencie zderzenia, kulki stykając się ze sobą powodują zwarcie okładek kondensatora i kondensator rozładowuje się poprzez opór **R**.

Napięcie między okładkami kondensatora maleje od wartości U_{\circ} do wartości U w czasie trwania zderzenia T.

Rys. 1. Obwód do pomiaru czasu trwania zderzenia. Z – zasilacze, A – elektromagnesy.

3. Przeprowadzenie pomiarów

- 1. Sprawdzić zgodność połączenia wszystkich elementów układu pomiarowego ze schematem przedstawionym na rysunku 1.
- 2. Zmierzyć odległość H_1 jako odległość od ławy do najniżej położonego punktu kuli (ze względu na warunki eksperymentu trudno jest ustalić położenie środka kul).
- 3. Włączyć prąd w obwodzie elektromagnesów i na mierniku zasilacza ustawić wartość natężenia płynącego prądu w obwodzie elektromagnesów na 1 A.
- 4. Odchylić kule tak, aby w położeniu odchylonym utrzymywał je elektromagnes.
- 5. Zmierzyć odległość H_2 jako odległość od ławy do najniższego punktu kuli dla kul odchylonych i przytrzymywanych przez elektromagnes. Samodzielnie oszacować niepewność maksymalną wyznaczenia ΔH .
- 6. Włączyć drugi zasilacz w obwodzie kondensatora i przyciskając klucz telegraficzny W naładować kondensator do napięcia około $U_o = 100 120$ V. Odczytać napięcie ze wskazań woltomierza.
- 7. Naciskając przycisk przerwać na chwilę obwód elektromagnesów i zwolnić kule. Po ich zderzeniu za pomocą przycisku ponownie zewrzeć obwód elektromagnesów, kule powinny pozostać w położeniu odchylonym.

- 8. Odczytać na woltomierzu napięcie między okładkami kondensatora U' po jego częściowym rozładowaniu.
- 9. Powtórzyć pomiar z punktu 7 jako pomiar napięcia powtórnego rozładowania kondensatora U".
- 10. Pomiary wartości napięć na kondensatorze należy powtórzyć minimum piętnastokrotnie.

Uwaga: Odczyt napięć oraz otwieranie i zamykanie obwodu elektromagnesów należy wykonywać na tyle szybko, aby nie następowało zauważalne rozładowanie kondensatora przez powietrze.

4. Opracowanie wyników pomiarów

Wyznaczanie średniej zmiany wysokości kul przy zderzeniu i jej niepewności

- 1. Z pojedynczego pomiaru obliczyć odległość $\bar{H} = H_2 H_1$.
- 2. Przeliczyć niepewność maksymalną pomiaru wysokości na niepewność standardową $u(\bar{H}) = \frac{2dH}{\sqrt{\pi}}$.
- 3. Wyznaczyć niepewność standardową względną $u_r(\bar{H}) = \frac{u(\bar{H})}{\bar{H}}$.
 - 4. Wyznaczanie niepewności standardowej pomiaru napięcia

 Analogiczne obliczenia przeprowadzić dla napięć U', U, U, U.
- 5. Przeliczyć niepewność maksymalną pomiaru napięcia na niepewność standardową_ $u(U') = \frac{\Delta U'}{\sqrt{3}}$

Wyznaczanie średniego czasu pierwszego zderzenia sprężystego kul oraz jego niepewności

Analogiczne obliczenia przeprowadzić dla zderzenia wtórnego podstawiając \bar{U}' za \bar{U}_c oraz \bar{U}'' za \bar{U}' .

- 6. Obliczyć czas jednego zderzenia sprężystego kul $T_i' = \mathbf{R} \cdot \mathbf{C} \cdot \ln \frac{v_0}{v}$ biorąc i=1 czyli wartości $\bar{\mathbf{U}}^i$ $\bar{\mathbf{U}}_n$ dla pierwszego przeprowadzonego pomiaru.
- 7. Obliczyć czasy kolejnych zderzeń sprężystych kul $T_{i}^{r} = R \cdot C \cdot \ln \frac{\sigma_{o}}{\sigma}$
- 8. Obliczyć wartość czasu zderzenia sprężystego kul $\bar{T}' = \frac{1}{n} \sum_{i=1}^{n} T'_{i}$
- 9. Obliczyć niepewność standardową serii pomiarów $u(\bar{T}') = \sigma_{\bar{T}^{i}} = \sqrt{\frac{\sum_{i=1}^{n} (T_{i}' \bar{T}')^{2}}{(n-1) n}}$.
- 10. Obliczyć niepewność standardową złożoną

$$u_{o}(\bar{T}') = \sqrt{u(\bar{T}')^{2} + \left(C \cdot \ln \frac{\bar{U}_{o}}{\bar{U}'} \cdot u(R)\right)^{2} + \left(R \cdot \ln \frac{\bar{U}_{o}}{\bar{U}'} \cdot u(C)\right)^{2} + \left(RC \frac{1}{\bar{U}_{o}} u(\bar{U}_{o})\right)^{2} + \left(RC \frac{1}{\bar{U}'} u(\bar{U}')\right)^{2}}$$

11. Obliczyć niepewność standardową złożoną względną $u_{c,r}(\bar{T}') = \frac{u_c(T')}{T'}$

Wyznaczanie modułu Younga stali i jego niepewności

Analogiczne obliczenia przeprowadzić dla zderzenia wtórnego.

- 12. Wyznaczyć moduł Younga stali $E=1,389\frac{mg}{rh^2}$, jeżeli uwzględnimy, że $h=\frac{\sqrt{2\cdot g\cdot H}}{2}\cdot\frac{T}{2},\ r=\sqrt{2\cdot R_k\cdot h},$ $g=9,81\ m\cdot s^{-2}$ wtedy mamy $E=7,467\cdot\left(m\cdot R_k^{-0,5}\cdot\bar{H}^{-0,25}\cdot\bar{T}^{-2,5}\right)$ Pa, gdy wszystkie wielkości wyrażone są w jednostkach podstawowych SI.
- 13. Wyznaczyć niepewność standardową złożoną względną

$$u_{c,r}(E) = \sqrt{\left(\frac{u(m)}{m}\right)^2 + \left(0.5\frac{u(R_k)}{R_k}\right)^2 + \left(0.25\frac{u(R)}{R}\right)^2 + \left(2.5\frac{u(T)}{T}\right)^2}$$

- 14. Wyznaczyć niepewność standardową złożoną $u_e(E) = u_{e,r}(E) \cdot E$
- 15. Wyznaczyć niepewność rozszerzoną $U(E) = 2 \cdot u_{\varepsilon}(E)$.

5. Podsumowanie

- 1. Zgodnie z regułami prezentacji wyników zestawić wyznaczone parametry
- $(E, u_{c}(E), u_{c,r}(E), U(E))$ oraz wartość odniesienia E_{teoria} ,

$$\left(T_{J} \ u_{\sigma}(T), \ u_{\sigma,r}(T), \ U(T)\right)$$
 oraz wartość $\Delta T = T_{max} - T_{min}$,

dla zderzenia pierwotnego i wtórnego.

- 2. Przeanalizować uzyskane rezultaty:
- a) która z niepewności wnosi największy wkład do niepewności złożonej $u_{\varepsilon}(E)$,
- b) czy spełniona jest relacja $u_{ex}(E) < 0.1$,
- c) czy spełniona jest relacja $|E_{teoria} E| < U(E)$,
- d) która z niepewności wnosi największy wkład do niepewności złożonej $u_{\alpha}(T)$,
- e) czy spełniona jest relacja $u_{xx}(T) < 0.1$,
- f) czy spełniona jest relacja $|T_{\text{max}} T_{\text{min}}| \le U(T)$, pod kątem występowania i przyczyn błędów grubych, systematycznych i przypadkowych.
- 3. Wnioski z analizy rezultatów.
- **a)** Wyciągnąć wnioski pod kątem występowania błędów grubych, systematycznych i przypadkowych i ich przyczyn.
- **b)** Czy wyznaczanie poszukiwanych wielkości ze zderzenia pierwotnego i wtórnego jest równie dokładne? Zaproponować działania zmierzające do podniesienia dokładności wykonywanych pomiarów.
- c) Wyjaśnić czy cele ćwiczenia zostały osiągnięte.

6. Przykładowe pytania

Zamieszczone są na stronie <u>www.wtc.wat.edu.pl</u> w dziale DYDAKTYKA – FIZYKA – ĆWICZENIA LABORATORYJNE.

Zadania dodatkowe do wyznaczenia i analizy:

- Przeprowadzić i opracować pomiary dla różnych wartości napięcia ładowania np. około 100 V, 110 V, 120 V tylko dla zderzenia pierwotnego.
- Przeprowadzić i opracować pomiary dla różnych wartości napięcia ładowania np. około 100 V, 110 V, 120 V tylko dla zderzenia wtórnego.

Zespół w składzie
cele ćwiczenia: wyznaczyć czas zderzenia sprężystego kul stalowych, wyznaczyć wartość modułu Younga stali, sprawdzić jak zależą wyznaczane wielkości dla zderzenia pierwotnego i wtórnego.
3.1 Wartości teoretyczne wielkości wyznaczanych lub określanych.
modułu Younga stali
3.2 Parametry stanowiska (wartości i niepewności), które należy potwierdzić na stanowisku: pojemność kondensatora $C=3,0~\mu F,~u(C)=0,1~\mu F$
wartość rezystancji $R=$ 100 Ω_{s} $u(R)=$ 1 Ω_{s}
promienie kul $R_k=20,\!64$ mm, $u(R_k)=0,\!01$ mm
masa każdej z kul $m=299$,0 g , $u(m)=0$,1 g
3.3 Pomiary i uwagi do ich wykonania.
Odległość od poziomu do kuli wiszącej swobodnie H_1 , niepewność maks
Odległość od poziomu do kuli przy elektromagnesie H_2 , niepewność maks
Niepewność maksymalna pomiaru napięcia
Kartę Pomiarów proszę drukować dwustronnie

Pomiar	Napięcie ładowania kondensatora U ₀ []	Napięcie <i>U'</i> rozładowania kondensatora []	Napięcie U" powtórnego rozładowania kondensatora []
1	[]	[[
2			
3			
4			
5			
6			
7			
8			
9			
10			
11			
12			
13			
14			
15			
16			
17			
18			
19			
20			