Enhancing NCBI Pathogen Detection cluster surveillance with ncbi-cluster-tracker

Samuel Baird
April 22, 2025
AMD Mountain Regional Bioinformatics Conference

NCBI Pathogen Detection

Automated system that clusters related bacterial and fungal pathogen genome sequences submitted to NCBI to help identify possible links between cases for genomic epidemiology

NCBI Pathogen Detection

Isolates and associated clusters can be searched on the NCBI Isolate Browser website and phylogenetic trees investigated using the SNP Tree Viewer

NCBI Pathogen Detection

Pathogen Detection data can be also be accessed through the FTP file server and BigQuery data warehouse

Original system for tracking HAI clusters

Every week: submit new sequencing data to NCBI, run BigQuery SQL query, copy results to Google sheet, review new clusters with epi at weekly meeting

Goals for a new system and report format

- 1. Indicate new isolates and new clusters from the previous week
- 2. Annotate with additional metadata not published on NCBI (exact collection dates, internal lab IDs...)
- 3. Additional data visualizations (isolate counts over time, pairwise SNP distance matrix)
- 4. Report can be securely shared and explored
- 5. Agnostic to CDPHE data systems, could be deployed and adopted by other agencies

ncbi-cluster-tracker

Inputs

Cluster report

VCFs, Newicks

Clusters and

isolates CSV

Demo

Clusters table: View clusters associated with internal isolates and changes to isolate counts since the previous report was created.

Cluster timelines: View when isolates were added to each cluster.

Isolates table: View metadata and associated clusters for specific isolates. Table can be sorted, filtered, and exported for further analysis.

Cluster details: Look up details about specific clusters using the dropdown menu or search bar.

Tree links and labels: Load the Pathogen Detection tree with defined isolates selected and download label file to display custom metadata on the tree.

SNP matrix: View pairwise SNP distances between internal and external isolates.

Clusters Is	olates	Cluster details																				
	isolate_id		collection_date	geo_loc_name	SAMN18319160	13 SAMN41036368	1 SAMN41036328	[] SAMN41036353	SAMN32777951	SAMN32745605	SAMN14997961	SAMN14997952	+!ab_id_24	💠 🖪 lab_id_25	!ab_id_23	SAMN29503575	SAMEA112938329	SAMEA112938368	SAMN28857294	SAMEA6368822	SAMN30393072	
SAMN18319160	rs104	2018	3-05-16	Banglad: Dhaka	0	18	17	16	24	20	21	20	32	32	22	22	20	19	24	13	17	V.
SAMN41036368	19AR077	8 2	019	New Zealand	18	0	3	2	22	18	19	18	32	32	22	24	22	21	26	23	27	OMO:
SAMN41036328	148450	2	019	New Zealand	17	3	0	1	21	17	18	17	31	31	21	23	21	20	25	22	26	Š
SAMN41036353	19AR067	5 2	019	New Zealand	16	2	1	0	20	16	17	16	30	30	20	22	20	19	24	21	25	8
SAMN32777951	20200317_MC	GL_35 2020	0-02-17	India: Sahyog	24	22	21	20	0	4	25	24	38	38	28	30	28	27	32	29	33	2
SAMN32745605	2020031L-3	35_B2 2020	0-02-17	India: Sahyog	20	18	17	16	4	0	21	20	34	34	24	26	24	23	28	25	29	
SAMN14997961	BA8153	2	019	India: Vellore	21	19	18	17	25	21	0	1	35	35	25	27	25	24	29	26	30	
SAMN14997952	BA33222	2 2	018	India: Vellore	20	18	17	16	24	20	1	0	34	34	24	26	24	23	28	25	29	
☆ lab_id_24	2024CJ-00	073 2024	1-07-03	USA	32	32	31	30	38	34	35	34	0	0	10	38	36	35	40	37	41	
🌟 🔤 lab_id_25	2024CJ-00	089 2024	1-08-27	USA	32	32	31	30	38	34	35	34	0	0	10	38	36	35	40	37	41	17.00
☆ lab_id_23	2023CJ-00	175 2023	3-07-07	USA	22	22	21	20	28	24	25	24	10	10	0	28	26	25	30	27	31	
SAMN29503575	21D20CP00	03B 2	020	Canada	22	24	23	22	30	26	27	26	38	38	28	0	20	21	26	27	31	

Technical note

Report-generating code written in Python (no HTML/CSS/JavaScript) using Arakawa to create interactive tables and plots within the report

```
import altair as alt
import arakawa as ar
from vega datasets import data
df = data.iris()
plot_base = alt.Chart(df).mark_point().interactive()
ar.Group(
    "Iris analysis",
    ar.Select(
       ar.DataTable(df, label='Data'),
       ar.Group(
           ar.Plot(plot_base.encode(
               x='sepalLength',
               v='sepalWidth',
               color='species')
           ar.Plot(plot_base.encode(
               x='petalLength',
               y='petalWidth',
               color='species')),
           columns=2,
           label='Plots'
```


Limitations of tracking clusters with Pathogen Detection

- Limitations of ncbi-cluster-tracker:
 - Currently does not incorporate AMR results
 - Cannot add notes directly to report (this was easy to do in the Google Sheets system!)
- General limitations with using Pathogen Detection:
 - Clustering distance threshold and timeline are fixed, resulting in sensitivity and specificity issues with detecting potential outbreaks
 - Can be difficult to find useful or actionable information about closely related external isolates
 - Particularly relevant to HAI: inability to detect plasmid clusters to help track the spread of AMR genes

Limitations of tracking clusters with Pathogen Detection

- Limitations of ncbi-cluster-tracker:
 - Currently does not incorporate AMR results
 - Cannot add notes directly to report (this was easy to do in the Google Sheets system!)
- General limitations with using Pathogen Detection:
 - Clustering distance threshold and timeline are fixed, resulting in sensitivity and specificity issues with detecting potential outbreaks
 - Can be difficult to find useful or actionable information about closely related external isolates
 - Particularly relevant to HAI: inability to detect plasmid clusters to help track the spread of AMR genes

Overall: Clusters identified through ncbi-cluster-tracker and Pathogen Detection can be a good *starting point* (hypothesis generation), and can help confirm existing links identified through epidemiology, but require follow-up analysis and investigation

Future directions

- Automated querying of Pathogen Detection without needing BigQuery access
- Include AMR genes
- Ability to add notes to clusters / isolates
- Include annotated tree directly within report
- Incorporate references to any literature that exists about external isolates and clusters
- Provide more options to configure analysis
- Easier installation and usage (Pip/Docker options and cross-platform support)

THANKS!

Documentation and source code can be found here:

github.com/CDPHE-bioinformatics/ncbi-cluster-tracker

Feature requests, bug reports, and pull requests are welcomed!

More questions?

sam.baird@state.co.us cdphe_bioinformatics_lab@state.co.us

