i) Se
$$L > 0$$
, então as séries $\sum_{n=1}^{+\infty} a_n$ e $\sum_{n=1}^{+\infty} b_n$ são ambas convergentes ou ambas divergentes.

ii) Se
$$L = 0$$
 e $\sum_{n=1}^{+\infty} b_n$ converge, então $\sum_{n=1}^{+\infty} a_n$ também converge.

iii) Se
$$L = \infty$$
 e $\sum_{n=1}^{+\infty} b_n$ diverge, então $\sum_{n=1}^{+\infty} a_n$ também diverge.

A demonstração desta propriedade é exercício para o leitor.

Exemplo 1.23.

Determine se a série $\sum_{n=1}^{+\infty} \frac{1}{n^n}$ converge ou diverge. Solução.

Seja $a_n = \frac{1}{n^n}$ e consideremos $b_n = \frac{1}{2^n}$; sabe-se que a série geométrica $\sum_{n=1}^{+\infty} \frac{1}{2^n}$ é convergente $(r = \frac{1}{2} < 1)$.

Então,
$$\lim_{n \to +\infty} \frac{a_n}{b_n} = \lim_{n \to +\infty} \frac{\frac{1}{n^n}}{\frac{1}{2^n}} = \lim_{n \to +\infty} \frac{2^n}{n^n} = \lim_{n \to +\infty} \left[\frac{2}{n}\right]^n = 0.$$

Pela parte ii) da *Propriedade* (1.18) segue que a série $\sum_{n=1}^{\infty} \frac{1}{n^n}$ é convergente.

1.2 Séries de funções

As linguagens de programação de computadores fornecem certas funções tais como seno, cosseno, logaritmo, exponencial, etc.

No entanto, muitas vezes não temos a função pré-definida e recorremos ao desenvolvimento em série de potências para fazer nossos cálculos.

Na seção anterior estudamos séries de números da forma $\sum_{n=0}^{\infty} a_n$ onde cada a_n é um número real. Em analogia a essas séries podemos estudar séries de funções da forma $\sum_{n=0}^{+\infty} a_n(x)$ onde os $a_n(x)$ são funções. Um exemplo típico desta classe de séries é

$$\sum_{n=1}^{+\infty} \frac{\cos(nx)}{n^2} = \frac{\cos x}{1} + \frac{\cos 2x}{4} + \frac{\cos 3x}{9} + \cdots$$

Evidentemente quando substituímos um valor para x, por exemplo, x = 2, retornamos ao estudo da série numérica.

Nossa atenção estará centrada nas somas particulares infinitas de equações tais como

$$e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$

referentes a somas de quantidades que dependem de x. Em outras palavras estamos interessados em funções definidas mediante equações da forma

$$\sum_{n=1}^{+\infty} f_n(x) = f_1(x) + f_2(x) + f_3(x) + f_4(x) + \cdots$$
 (1.5)

Em tal situação $\{f_i\}$ será uma sequência de funções; para cada valor de $x=x_0$ obteremos uma sequência $\{f_i(x_0)\}$ de números reais (ou complexos).

Para analisar tais funções tem-se que lembrar que cada soma

$$f_1(x) + f_2(x) + f_3(x) + f_4(x) + \cdots$$

é por definição o limite da sequência

$$f_1(x)$$
, $f_1(x) + f_2(x)$, $f_1(x) + f_2(x) + f_3(x)$, $f_1(x) + f_2(x) + f_3(x) + f_4(x) + \cdots$

Se definirmos uma nova sequência de funções $\{s_n\}$ mediante

$$s_n = f_1 + f_2 + f_3 + f_4 + \dots + f_n$$

então podemos expressar mais sucintamente este fato escrevendo

$$f(x) = \lim_{n \to +\infty} s_n(x)$$

Assim estaremos concentrados em funções definidas como limites.

De modo natural, existem duas perguntas importantes respeito de uma série de funções.

- 1^a pergunta: Para quais valores de x a série (1.5) converge?
- 2^a pergunta: A qual função converge a série de funções (1.5)?

Isto é, qual é a soma f(x) da série?

Para obter resposta a nossa preocupação será estudada as séries de potências.

Definição 1.6. Série de potências.

Uma série infinita da forma

$$\sum_{n=0}^{+\infty} a_n x^n = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 + \cdots$$
 (1.6)

onde a_n é número que não depende de x, denomina-se série de potências de x.

Pela sua forma, a igualdade (1.6) podemos imaginar como uma função polinômica de variável x. As séries de potências de x são uma generalização da noção de polinômio.

Mais geralmente, em matemática, uma série de potências de $(x-\mathbf{c})$, (de uma variável) é uma série infinita da forma

$$\sum_{n=0}^{+\infty} a_n (x-c)^n = a_0 + a_1 (x-c) + a_2 (x-c)^2 + a_3 (x-c)^3 + \cdots$$
 (1.7)

onde a_n representa o coeficiente do n-ésimo termo chamado "coeficiente da série de potência", \mathbf{c} é uma constante, e x varia entorno de \mathbf{c} (por esta razão, algumas vezes a série é dita "série centrada em \mathbf{c} "). Por convenção $(x - \mathbf{c})^0 = 1$ quando $x = \mathbf{c}$. O número \mathbf{c} é chamado "centro da série".

Note que não se trata de uma série numérica. Uma série da forma (1.7) pode convergir para alguns valores de x e divergir para outros valores. Assim, faz sentido falar em "domínio de convergência", o qual denotamos por D(s), que é o conjunto dos valores de x que tornam a série (1.7) convergente.

Essas séries de potências aparecem primariamente em análise matemática, também ocorre em análise combinatória (sob o nome de funções geradoras) e em engenharia elétrica (sob o nome de *Transformada-Z*), também as séries de potências aparecem em muitos problemas da Física-Matemática, como, por exemplo, em fenômenos ondulatórios, onde recorremos as "Funções de Bessel".

Definição 1.7.

Chama-se domínio de convergência D(s) da série de potências (1.7) ao conjunto dos valores reais que, substituídos na série, originam uma série numérica convergente.

Exemplo 1.24.

O domínio de convergência da série $\sum_{n=0}^{+\infty} x^n = 1 + x + x^2 + x^3 + \cdots \quad \acute{e} \quad \mathsf{D}(s) = (-1,1)$

O valor 0 (zero) pertence sempre ao domínio de convergência D(s) desta série, mais, para qualquer $x \in (-1, 1)$ tem-se que $\sum_{n=0}^{+\infty} x^n$ define a função $f(x) = \frac{1}{1-x}$. Esta é chamada "série geométrica", é um dos exemplos mais importantes de séries de potência.

A igualdade (1.7) permite imaginar que qualquer polinômio pode ser facilmente expresso como uma série de potências entorno de um centro x = c, embora um ou mais

coeficientes sejam iguais a zero. Como mostra o exemplo a seguir.

Exemplo 1.25.

O polinômio $p(x) = x^2 + 2x + 3$ pode ser escrito como a série de potência entorno de c = 0 assim:

$$p(x) = 3 + 2x + 1 \cdot x^2 + 0x^3 + 0x^4 + \cdots$$

ou entorno do centro c = 1 como

$$p(x) = 6 + 4(x-1) + 1 \cdot (x-1)^2 + 0(x-1)^3 + 0(x-1)^4 + \cdots$$

ou mesmo entorno de qualquer outro centro c.

Exemplo 1.26.

São exemplos de série de potências.

• A fórmula da função exponencial:
$$e^x = \sum_{n=0}^{+\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$

• A fórmula do seno:
$$\operatorname{sen} x = \sum_{n=0}^{+\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots$$

Exemplo 1.27.

Considere-se a série:
$$\sum_{k=0}^{+\infty} \left(\frac{2}{3}\right)^k (x - \frac{1}{2})^k$$

Para
$$x=1$$
 obtém-se:
$$\sum_{k=0}^{+\infty} \left(\frac{2}{3}\right)^k \left(\frac{1}{2}\right)^k = \sum_{k=0}^{+\infty} \left(\frac{1}{3}\right)^k \text{ \'e s\'erie convergente.}$$

Para
$$x=3$$
 obtém-se:
$$\sum_{k=0}^{+\infty} \left(\frac{2}{3}\right)^k \left(\frac{5}{2}\right)^k = \sum_{k=0}^{+\infty} \left(\frac{5}{3}\right)^k \text{ \'e s\'erie divergente}$$

Para os valores de x em que a série de potências é convergente, a soma define uma função de variável x.

Observação 1.7.

• Potências negativas não são permitidas em uma série de potências, por exemplo

$$1 + x^{-1} + x^{-2} + \cdots$$

não é considerada uma série de potência (embora seja uma série de Laurent).

• Similarmente, potências fracionais, tais como $x^{1/2}$, não são consideradas séries de potências (veja série de Puiseux).

• Existem séries de potências da forma:

$$\sum_{k=0}^{+\infty} a_k [\varphi(x)]^k = a_0 + a_1 [\varphi(x)] + a_2 [\varphi(x)]^2 + a_3 [\varphi(x)]^3 + \dots + a_k [\varphi(x)]^k + \dots$$

onde $\varphi(x)$ é função de x.

Tal série é chamada de série de potência em $\varphi(x)$.

1.2.1 Raio de convergência

Dizemos que uma série de potências $\sum_{k=0}^{+\infty} a_k (x-c)^k$ pode convergir para alguns valores conforme os valores tomados da variável x, e pode divergir para outros. Sempre há um número r com $0 \le r \le +\infty$ tal que a série converge quando |x-c| < r e diverge para |x-c| > r.

Definição 1.8. Intervalo de convergência.

Chama-se intervalo de convergência da série de potências (1.7) ao subconjunto de \mathbb{R} de todos os valores para os quais a série converge.

O intervalo de convergência e o domínio de convergência são sinônimos quando estudamos séries em \mathbb{R} ; isso não acontece com as séries em \mathbb{R}^n , $n \geq 2$ neste último caso se estuda discos ou esferas de convergência, geralmente se entende como região de convergência.

O intervalo de convergência de uma série de potências pode ser de um dos seguintes tipos

$$(c-r, c+r)$$
 ou $[c-r, c+r)$ ou $(c-r, c+r]$ ou $[c-r, c+r]$

isso depende da convergência da série nos extremos.

Definição 1.9. Raio de convergência.

O número r que é a metade do comprimento do intervalo de convergência da série (1.7) é chamado "raio de convergência da série de potências "(1.7).

Em casos particulares $r=+\infty$, logo a série (1.7) converge em todo \mathbb{R} , para o caso r=0 a série de potências só converge em x=c.

O raio de convergência r pode ser encontrado utilizando na série dos módulos correspondentes, o critério da razão ou outro critério utilizado na determinação da natureza de uma série numérica.

Também é costume determinar o intervalo e o raio de convergência r da série de potências $\sum_{k=0}^{+\infty} a_k (x-c)^{kn}$ usando um dos seguintes procedimentos:

1. Se $a_k \neq 0$, $\forall k \in \mathbb{N}$, isto é a série só tem potências positivas de (x-c), então

$$r^{-1} = \lim_{k \to +\infty} \left| \frac{a_{k+1}}{a_k} \right| \tag{1.8}$$

sempre que o limite exista.

2. Se série tem a forma $\sum_{k=0}^{+\infty} a_k (x-c)^{kp}$ onde $p \in \mathbb{N}$ então

$$r^{-1} = \sqrt[p]{\lim_{k \to +\infty} \left| \frac{a_{k+1}}{a_k} \right|} \tag{1.9}$$

e a sequência dos expoentes

3. Para o caso da série de potências (1.7) tiver coeficientes iguais a zero, e a sequência dos x-c que ficaram é qualquer³, então o raio de convergência podemos determinar pela fórmula

$$r^{-1} = \lim_{k \to +\infty} \sup_{a_k = 1} |a_k|^{\frac{1}{k}} \tag{1.10}$$

ou, equivalentemente,

$$r = \lim_{k \to +\infty} \inf |a_k|^{-\frac{1}{k}}$$

na qual somente se usan valores de a_k diferentes de zero. Esta fórmula também é útil nos dois primeiros casos.

4. Em todos os casos, o intervalo de convergência pode-se determinar aplicando diretamente o critério de D'Alembert ou o de Cauchy a uma série determinada pelos valores absolutos dos termos da série inicial

A série converge absolutamente para |x-c| < r e converge uniformemente em todo subconjunto compacto⁴ de $\{x/. |x-c| < r\}$.

Propriedade 1.19.

O raio de convergência r de uma série de potências $\sum_{k=0}^{+\infty} a_k (x-c)^{kn} \text{ \'e dado por:}$

- $r^{-1} = \sqrt[n]{\lim_{k \to +\infty} \left| \frac{a_{k+1}}{a_k} \right|} desde que o limite exista ou seja zero.$
- $r^{-1} = \lim_{k \to +\infty} \sup |a_k|^{\frac{1}{kn}} desde que o limite exista ou seja zero.$

Além disso.

³Isto é não forma uma P.G. como no caso anterior

 $^{^4}$ Um subconjunto $A \subset \mathbb{R}$ se diz compacto, se A é fechado e limitado

- **1.** Se r = 0, a série converge só quando x = c;
- **2.** Se $r = +\infty$ a série converge para todo $x \in \mathbb{R}$;
- **3.** Se $r \in (0, +\infty)$ então a série converge pelo menos para todos os valores de $x \in (c-r, c+r)$.

A demonstração é exercício para o leitor.

Exemplo 1.28.

- a) A série $\sum_{n=1}^{+\infty} x^n \text{ tem raio de convergência } r=1. \text{ Para } x=1 \text{ diverge para } +\infty \text{ e para } x=-1 \text{ é oscilante.}$
- b) A série $\sum_{n=1}^{+\infty} \frac{x^n}{n} \text{ tem raio de convergência } r = 1. \text{ Para } x = 1 \text{ diverge para } +\infty \text{ e para } x = -1 \text{ converge (não absolutamente)}.$
- c) A série $\sum_{n=1}^{+\infty} \frac{x^n}{n^2}$ tem raio de convergência r=1. Para x=1 e para x=-1 converge absolutamente.

Exemplo 1.29.

Determine o raio de convergência e, o intervalo de convergência da $\sum_{k=0}^{+\infty} k! x^k$. Solução.

Tem-se $r^{-1} = \lim_{k \to +\infty} \left| \frac{a_{k+1}}{a_k} \right| = \lim_{k \to +\infty} \left| \frac{(k+1)!}{k!} \right| = \lim_{k \to +\infty} (k+1) = +\infty$ de onde r = 0. Como o raio de convergência é 0 (zero), a série dada converge apenas quando x = 0.

Exemplo 1.30.

Calcular o raio de convergência e o intervalo de convergência da série $\sum_{k=0}^{+\infty} \frac{x^k}{k!}.$ Solução.

Tem-se
$$r^{-1} = \lim_{k \to +\infty} \left| \frac{a_{k+1}}{a_k} \right| = \lim_{k \to +\infty} \left| \frac{k!}{(k+1)!} \right| = \lim_{k \to +\infty} \frac{1}{k+1} = 0$$
 de onde $r = +\infty$. O raio de convergência é $r = +\infty$, logo a série converge quando $x \in \mathbb{R}$.

Esta última série converge para todo $x \in \mathbb{R}$, logo podemos definir uma função f:

$$\mathbb{R} \longrightarrow \mathbb{R}$$
 de modo que $f(x) = 1 + x + \frac{x^2}{2!} + \frac{x}{3!} + \dots + \frac{x^n}{n!} + \dots = \sum_{k=0}^{+\infty} \frac{x^k}{k!}$

Formalmente, derivando em relação à variável x obtém-se

$$f(x) = 1 + x + \frac{x^2}{2!} + \frac{x}{3!} + \dots + \frac{x^{n-1}}{(n-1)!} + \dots = \sum_{k=1}^{+\infty} \frac{x^{k-1}}{(k-1)!} = f'(x)$$

como $f(x) \neq 0$, podemos escrever $\frac{f'(x)}{f(x)} = 1$ para logo integrando obter $\operatorname{Ln} f(x) = x$ de onde $f(x) = e^x$.

Assim, obtivemos uma série de potências para representar a função exponencial

$$e^x = \sum_{k=0}^{+\infty} \frac{x^k}{k!}$$

Exemplo 1.31.

Encontre o raio de convergência e o intervalo de convergência da série $\sum_{k=0}^{+\infty} \frac{(x-5)^k}{k^2}.$ Solução.

Tem-se
$$r^{-1} = \lim_{k \to +\infty} \left| \frac{a_{k+1}}{a_k} \right| = \lim_{k \to +\infty} \left| \frac{k^2}{(k+1)^2} \right| = \lim_{k \to +\infty} \frac{1}{k+1} = 1 \text{ de onde } r = 1.$$

Como o raio de convergência é r=1 a série dada converge pelo menos para x tal que |x-5|<1 isto é $x\in(4,\,6)$.

Quando x = 4, a série $\sum_{k=0}^{\infty} \frac{(4-5)^k}{k^2} = \sum_{k=0}^{+\infty} \frac{(-1)^k}{k^2}$ é apenas uma série absolutamente convergente (justificar!) e por isso é convergente.

Quando x=6, a série $\sum_{k=0}^{+\infty} \frac{(6-5)^k}{k^2} = \sum_{k=0}^{+\infty} \frac{1}{k^2}$ é uma série de Dirichlet⁵ com p=2 e por isso é convergente.

Portanto, o intervalo de convergência é [4, 6].

Propriedade 1.20.

Se a série de potências $\sum_{k=0}^{+\infty} a_k x^k$ converge quando $x_1 \neq 0$, então converge para todo y tal que $|y| < |x_1|$.

Demonstração.

Tem-se que $\sum_{k=0}^{+\infty} a_k x_1^k$ converge, logo $\lim_{k \to +\infty} a_k x_1^k = 0$. Aplicando a definição de limite ao infinito, tem-se que para $\epsilon = 1 > 0$ existe M > 0 tal que $|a_k x_1^k| < 1$ sempre que $k \ge M$ Se y é tal que $|y| < |x_1|$ então $|a_k y^k| = |a_k y^k \cdot \frac{x_1^k}{y^k}| = |a_k y^k| \cdot |\frac{x_1^k}{y^k}| < \left|\frac{x_1}{y}\right|^k$ $\forall k \ge M$. Como a série $\sum_{k=0}^{+\infty} \left|\frac{x_1}{y}\right|^k$ converge, pois seu raio $r = |\frac{y}{x_1}| < 1$, e temos que $\sum_{k=0}^{+\infty} |a_k y^k| < \sum_{k=0}^{+\infty} \left|\frac{x_1}{y}\right|^k$, pelo critério de comparação Propriedade (1.11) a série $\sum_{k=0}^{+\infty} |a_k y^k|$ converge absolutamente quando $|y| < |x_1|$.

 $^{^5 \}rm Dirichlet~1805-1859$ nasceu na Alemanha, foi educado na Alemanha e na França, onde foi aluno dos mais renomados matemáticos da época. Sua primeira publicação foi sobre o "Último teorema de Fermat"

Portanto, se a série $\sum_{k=0}^{+\infty} a_k x^k$ converge quando $x_1 \neq 0$, então converge para todo y tal que $|y| < |x_1|$.

Propriedade 1.21.

Se a série de potências $\sum_{k=0}^{+\infty} a_k x^k$ diverge quando $x_2 \neq 0$, então diverge para todo y tal $|y| > |x_2|$.

Demonstração.

Suponhamos que a série $\sum_{k=0}^{+\infty} a_k x^k$ seja convergente, para algum x_1 tal que $|x_2| < |x_1|$, pela Propriedade (1.20) a série converge quando x_2 . Isto é contradição!

Portanto, a série
$$\sum_{k=0}^{+\infty} a_k x^k$$
 diverge para todo y tal que $|y| > |x_2|$

Teorema 1.1. de Abel.

Seja y = x - c, se temos a série $\sum_{k=0}^{+\infty} a_k y^k$ nas condições da Propriedade (1.21) então:

- 1. A série converge somente quando x = c.
- **2.** Existe um número r > 0 tal que a série converge absolutamente para todo $x \in \mathbb{R}$ tal que |x-c| < r e diverge $\forall x \in \mathbb{R}$ tal que |x-c| > r.

Logo o intervalo de convergência será um dos intervalos:

$$(c-r, c+r), (c-r, c+r), [c-r, c+r), [c-r, c+r]$$

Neste teorema, ao verificar o 1º caso tem-se r=0 e, se verifica o 2º caso tem- se $r=+\infty$.

Um dos corolários do Teorema de Abel é o fato que para toda série de potências existe um intervalo de convergência |x-c| < r para o qual a série de potências converge absolutamente e fora do intervalo diverge. Nos extremos do intervalo isto é em $x=c\pm r$ diversas séries de potências se comportam de um modo diferente, umas convergem absolutamente em ambos os extremos; outras convergem condicionalmente em ambos os extremos, o bem em um dos extremos convergem condicionalmente e no outro divergem; umas terceiras divergem em ambos os extremos.

Consequência deste teorema é a seguinte propriedade.

Propriedade 1.22.

Seja a série $\sum_{k=0}^{+\infty} a_k x^k$, então uma e somente uma das condições cumpre

- 1. A série converge só se x = 0.
- 2. A série converge absolutamente para todos os valores de x.
- **3.** Se r é o raio de convergência da série, então a série converge absolutamente se |x| < r e diverge se |x| > r.

Demonstração.

- 1. Se x = 0, então $\sum_{k=0}^{+\infty} a_k x^k = a_0 + 0 + 0 + 0 + \cdots = a_0$, a série converge.
- 2. Suponhamos que a série dada seja convergente para $x = x_1$, onde $x_1 \neq 0$, então a série converge absolutamente para todo x tal que $|x| < |x_1|$.

Se não existe outro valor de x para o qual a série dada seja divergente, podemos concluir que a série converge absolutamente para todo x

3. Suponhamos que a série dada seja convergente para $x = x_1$, onde $x_1 \neq 0$, e divergente para $x = x_2$ onde $|x_2| > |x_1|$, então pela Propriedade (??) a série diverge para todos x tal que $|x| > |x_1|$.

Portanto, $|x_2|$ é um limite superior do conjunto de valores de |x| para o qual a série converge absolutamente. Logo pelo Axioma do Supremo⁶, este conjunto tem um supremo que é o número r.

Esta propriedade nada afirma sobre a convergência da série nos extremos do intervalo de convergência. O intervalo de convergência é o maior intervalo aberto em que a série é convergente.

Exemplo 1.32.

Determine o raio de convergência de cada uma das seguintes séries:

1.
$$\sum_{k=0}^{+\infty} (-1)^k x^{2k}$$

2.
$$\sum_{k=0}^{\infty} \frac{x^{2k}}{5^{k+1}}$$

3.
$$\sum_{k=0}^{+\infty} \frac{(x-2)^k}{2^k k^2}.$$

Solução.

1.
$$r^{-1} = \sqrt{\lim_{k \to ++\infty} \left| \frac{a_{k+1}}{a_k} \right|} = \sqrt{\lim_{k \to \infty} \left| \frac{(-1)^{k+1}}{(-1)^k} \right|} = 1 \implies r = 1^2 = 1.$$

A série converge absolutamente se |x| < 1 = r. Se $x = \pm 1$ a série diverge, logo o intervalo de convergência é (-1, 1).

2.
$$r^{-1} = \sqrt{\lim_{k \to +\infty} \left| \frac{a_{k+1}}{a_k} \right|} = \sqrt{\lim_{k \to +\infty} \left| \frac{\frac{1}{5^{k+2}}}{\frac{1}{5^{k+1}}} \right|} = \sqrt{\lim_{k \to +\infty} \left| \frac{5^{k+1}}{5^{k+2}} \right|} = \sqrt{\left| \frac{1}{5} \right|} \quad \Rightarrow \quad r = \sqrt{5}.$$

⁶Ver "Cálculo Diferencial em \mathbb{R} " do mesmo autor. $|X^2| < \sqrt{5} \implies |x| < \sqrt{5} = \text{naiv de conv.}$

3.
$$r^{-1} = \lim_{k \to +\infty} \left| \frac{a_{k+1}}{a_k} \right| = \lim_{k \to +\infty} \left| \frac{2^k k^2}{2^{k+1} (k+1)^2} \right| = \frac{1}{2} \implies r = 2 \implies |x-2| < 2.$$
A série converge absolutamente se $|x-2| < 2 = r$. série converge, logo

o intervalo de convergência é [0, 4].

Exemplo 1.33.

Determine o domínio de convergência da série $\sum_{n=1}^{+\infty} \left[\frac{n+1}{2n+1}\right]^n (x-2)^{2n}$. Solução.

Seja $k \in \mathbb{N}$, observe que, se n=2k-1 tem-se que $a_n=0$ e, se n=2k tem-se $a_k = \left\lceil \frac{n+1}{2n+1} \right\rceil^n$. Para determinar o raio de convergência devemos usar a fórmula (1.9)

$$\lim_{n \to +\infty} \sqrt[n]{\left[\frac{n+1}{2n+1}\right]^n} = \lim_{n \to +\infty} \frac{n+1}{2n+1} = \frac{1}{2}$$

como $|x-2|^{2^n}<2, \quad \forall \, n\in \mathbb{N},$ então $|x-2|^2<2,$ e o raio de convergência é $r=\sqrt{2}.$ La série converge se $|x-2|<\sqrt{2}$ um estudo nos extremos leva a estudar a série

$$\sum_{n=1}^{\infty} \left[\frac{n+1}{2n+1} \right]^n (\sqrt{2})^{2n} = \sum_{n=1}^{\infty} \left[\frac{n+1}{2n+1} \right]^n 2^{n-1} = \frac{1}{2} \sum_{n=1}^{\infty} \left[1 + \frac{1}{2n+1} \right]^n$$

Como $\lim_{n=1} \left[1 + \frac{1}{2n+1}\right]^n = \sqrt{e} \neq 0$ a série diverge. O mesmo acontece com $x = -\sqrt{2}$. Portanto, o domínio de convergência é o intervalo $(2 - \sqrt{2}, 2 + \sqrt{2})$

Exemplo 1.34.

Determine o domínio de convergência da série $\sum \frac{(x-1)^{k(k+1)}}{k^k}$. Solução.

Aplicando a Propriedade (??) (critério da raiz ou de Cauchy) considerando a_k $\frac{(x-1)^{k(k+1)}}{k^k}$ então

$$\sqrt[k]{a_k} = \frac{(x-1)^{(k+1)}}{k}, \qquad \log o \qquad \lim_{k \to +\infty} \sqrt[k]{a_k} = \begin{cases} 0 & \text{se } |x-1| \le 1\\ \infty & \text{se } |x-1| > 1 \end{cases}$$

assim, a série converge quando $|x-1| \leq 1$

Portanto, a série converge em [0, 2].

Exercícios 1-1

- 1. Mostre que a série $\sum_{n=1}^{+\infty} \frac{1}{n^p}$ converge sempre que p>1 e diverge se $0\leq p\leq 1$.
- 2. Demonstre a condição de Cauchy: Se $\{s_n\}_{\in \mathbb{N}^+}$ é uma sequência de números reais, a série $s_n = \sum_{k=1}^n a_k$ é convergente se, para qualquer $\varepsilon > 0$, existe $n_0 > 0$ tal que $|s_m s_n| < \varepsilon$ sempre que $m, n > n_0$.
- 3. Determine a convergência das séries: 1. $\sum_{n=1}^{+\infty} \frac{9\sqrt{n}-1}{n^2+3,n}$
 - 2. $\sum_{n=1}^{+\infty} \frac{1}{2^n} \left(1 + \frac{1}{n} \right)^{n^2}$ 3. $\sum_{n=1}^{+\infty} \frac{1}{(n+1) \operatorname{Ln}(n+1)}$
- 4. Suponhamos temos uma série de termo geral a_n de modo que $a_n \ge a_{n+1}$ para todo $n \in \mathbb{N}^+$. Demonstre que a série $\sum_{n=1}^{+\infty} a_n$ converge se, e somente se a série $\sum_{n=1}^{+\infty} 2^n \cdot a_{2^n}$ também converge.
- 5. Verificar que o produto infinito $\prod_{n=0}^{\infty} (1+a_n)$ com $a_n > 0$ converge sempre $\sum_{n=0}^{\infty} a_n$ converge.
- 6. Demonstre que se $\{a_n\}_{\in\mathbb{N}^+}$ é uma sequência com $a_n \geq 0$ para todo $n \in \mathbb{N}^+$, então a série $\sum_{n=1}^{+\infty} a_n$ é convergente se, e somente se a sequência de somas parciais $\{s_n\}_{\in\mathbb{N}^+}$ é limitada.
- 7. Sejam $\sum_{n=1}^{+\infty} a_n$ e $\sum_{n=1}^{+\infty} b_n$ duas séries numéricas e $\alpha \in \mathbb{R}$. Mostre o seguinte:
 - 1. Se as séries $\sum_{n=1}^{+\infty} a_n$ e $\sum_{n=1}^{+\infty} b_n$ são convergentes, então $\sum_{n=1}^{+\infty} (a_n + b_n)$ e $\sum_{n=1}^{+\infty} \alpha \cdot a_n$ também convergem.
 - **2.** Se $\sum_{n=1}^{+\infty} a_n$ e convergente e $\sum_{n=1}^{+\infty} b_n$ é divergente, a série $\sum_{n=1}^{+\infty} (a_n + b_n)$ diverge.
 - 3. Se $\sum_{n=1}^{+\infty} a_n$ é divergente e $\beta \neq 0$, então a série $\sum_{n=1}^{+\infty} \beta \cdot a_n$ é também divergente.
- 8. Critério de comparação: Sejam $\sum_{n=1}^{+\infty} a_n \text{ e } \sum_{n=1}^{+\infty} b_n \text{ duas séries de termos positivos.}$ Demonstre o seguinte:

- 1. Se a série $\sum_{n=1}^{+\infty} b_n$ converge e $a_n \leq b_n \ \forall \ n \in \mathbb{N}^+$, então a série $\sum_{n=1}^{+\infty} a_n$ também converge.
- **2.** Se a série $\sum_{n=1}^{+\infty} a_n$ diverge e $a_n \leq b_n \, \forall n \in \mathbb{N}^+$, então a série $\sum_{n=1}^{+\infty} b_n$ também diverge.
- 9. Demonstre que, se a série $\sum_{n=1}^{+\infty} a_n$ é absolutamente convergente, então ela é convergente e: $\left|\sum_{n=1}^{+\infty} a_n\right| \leq \sum_{n=1}^{+\infty} |a_n|$.
- 10. Sejam $\sum_{n=1}^{+\infty} a_n$ e $\sum_{n=1}^{+\infty} b_n$ séries absolutamente convergentes, demonstre o seguinte:
 - 1. A série $\sum_{n=1}^{+\infty} a_n b_n$ é absolutamente convergente.
 - 2. O produto $\sum_{n=1}^{+\infty} c_n$ das séries $\sum_{n=1}^{+\infty} a_n$ e $\sum_{n=1}^{+\infty} b_n$ é absolutamente convergente, e:

$$\sum_{n=1}^{+\infty} c_n = \left(\sum_{n=1}^{+\infty} a_n\right) \left(\sum_{n=1}^{+\infty} a_n\right)$$

- 11. Sejam $\sum_{n=1}^{+\infty} a_n$ tais que $\sum_{n=1}^{+\infty} b_n$ duas séries e $|a_n| \le K|b_n|, \ \forall n \in \mathbb{N}^+, K > 0$:
 - 1. Se a série $\sum_{n=1}^{+\infty} b_n$ é absolutamente convergente, então a série $\sum_{n=1}^{+\infty} a_n$ também é absolutamente convergente.
 - 2. Se a série $\sum_{n=1}^{+\infty} a_n$ não é absolutamente convergente, então a série $\sum_{n=1}^{+\infty} a_n$ não é absolutamente convergente.
- 12. Demonstre que uma série alternada $\sum_{n=1}^{+\infty} (-1)^{n+1} a_n$ é absolutamente convergente, se $\sum_{n=1}^{+\infty} a_n$ for convergente.
- 13. Critério de Leibniz: Seja a série alternada $S = \sum_{n=1}^{+\infty} (-1)^{n+1} a_n$ uma série de termos alternados, com $a_n \ge 0$. Demonstre que esta série que satisfaz as condições:
 - 1. $\{a_n\}_{n\in\mathbb{N}^+}$ é decrescente. 2. $\lim_{n\to+\infty} a_n = 0$.

- 14. Critério D'Alembert's: Seja $a_n \neq 0$ para todo $n \in \mathbb{N}^+$ e suponhamos que $\lim_{n \to +\infty} \left| \frac{a_{n+1}}{a_n} \right| = r \in \mathbb{R}$. Demonstre o seguinte:
 - 1. Se r < 1, a série $\sum_{n=1}^{+\infty} a_n$ é absolutamente convergente.
 - **2.** Se r > 1, a série $\sum_{n=1}^{+\infty} a_n$ diverge.
- 15. Critério de Cauchy: Suponhamos que $\lim_{n\to+\infty} \sqrt[n]{|a_n|} = r \in \mathbb{R}$. Demonstre o seguinte:
 - 1. Se r < 1, a série $\sum_{n=1}^{+\infty} a_n$ é absolutamente convergente.
 - **2.** Se r > 1, a série $\sum_{n=1}^{+\infty} a_n$ diverge.
- 16. Consideremos a função $f:[1, +\infty) \longrightarrow \mathbb{R}$ contínua e suponhamos que f seja não negativa e monótona decrescente; isto é:
 - 1. $f(x) \ge 0, \ \forall x \ge 1.$ 2. $f(x) \ge f(y)$, sempre que $1 \le x \le y$.

Nessas condições, demonstre que a série $\sum_{n=1}^{+\infty} f(n)$ é convergente se e somente se, a $\int_{-\infty}^{+\infty} f(n)$

integral $\int_{n=1}^{\infty} f(n)$ for convergente.

- 17. Consideremos a função $f:[1,+\infty)\longrightarrow\mathbb{R}$ contínua e suponhamos que f(x) seja não negativa e monótona decrescente. Demonstre que se a integral $\int\limits_{1}^{+\infty}f(x)dx$ converge, então a série $\sum_{n=1}^{+\infty}f(n)$ converge, e: $\int\limits_{1}^{+\infty}f(x)dx\leq\sum_{n=1}^{+\infty}f(n)\leq f(1)+\int\limits_{1}^{+\infty}f(x)dx$.
- 18. Critério de comparação no limite: Sejam $\sum_{n=1}^{+\infty} a_n$ e $\sum_{n=1}^{+\infty} b_n$ duas séries de termos positivos e seja $L = \lim_{n \to +\infty} \frac{a_n}{b_n}$.
 - 1. Se L > 0, então as séries $\sum_{n=1}^{+\infty} a_n$ e $\sum_{n=1}^{+\infty} b_n$ são ambas convergentes ou ambas divergentes.
 - **2.** Se L=0 e $\sum_{n=1}^{+\infty} b_n$ converge, então $\sum_{n=1}^{+\infty} a_n$ também converge.

3. Se
$$L = \infty$$
 e $\sum_{n=1}^{+\infty} b_n$ diverge, então $\sum_{n=1}^{+\infty} a_n$ também diverge.

19. Determine os intervalos de convergência para as seguintes séries de potências:

1.
$$2x + \frac{8}{3}x^3 + \frac{32}{5}x^5 + \frac{128}{7}x^7 + \cdots$$

1.
$$2x + \frac{8}{3}x^3 + \frac{32}{5}x^5 + \frac{128}{7}x^7 + \cdots$$
 2. $\frac{x}{1 \cdot 2} + \frac{x^2}{2 \cdot 3} + \frac{x^3}{2^2 \cdot 4} + \frac{x^4}{2^3 \cdot 5} + \cdots$

3.
$$1 - \frac{x^2}{2^2} + \frac{x^4}{2^2 4^2} - \frac{x^6}{2^2 4^2 6^2} + \cdots$$

20. Calcule o raio de convergência das seguintes séries de potências:

1.
$$\sum_{n=1}^{\infty} \left(\frac{n}{2n+1}\right)^{2n-1} x^n$$

1.
$$\sum_{n=1}^{\infty} \left(\frac{n}{2n+1}\right)^{2n-1} x^n$$
 2.
$$\sum_{n=1}^{\infty} (-1)^n \frac{1 \cdot 3 \cdot 5 \cdots (2n-1)}{2 \cdot 4 \cdot 6 \cdots (2n)} x^{2n}$$

3.
$$\sum_{n=1}^{\infty} \left(1 + \frac{1}{n}\right)^{n^2} (x-1)^n$$
 4.

21. Encontre a região de convergência das seguintes séries de potências:

$$1. \quad \sum_{n=1}^{\infty} \frac{(x-3)^n}{n \cdot 5^n}$$

1.
$$\sum_{n=1}^{\infty} \frac{(x-3)^n}{n \cdot 5^n}$$
 2. $\sum_{n=0}^{\infty} \frac{(n+1)^5}{2n+1} x^{2n}$ 3. $\sum_{n=1}^{\infty} \frac{n}{n+1} \left[\frac{x}{2}\right]^n$

$$3. \quad \sum_{n=1}^{\infty} \frac{n}{n+1} \left[\frac{x}{2} \right]^r$$

4.
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{x^{2n-1}}{(2n-1)!}$$
 5.
$$\sum_{n=1}^{\infty} \frac{2^n x^n}{n^2}$$
 6.
$$\sum_{n=1}^{\infty} \frac{(x+2)^n}{\ln(n+1)}$$

$$5. \quad \sum_{n=1}^{\infty} \frac{2^n x^n}{n^2}$$

6.
$$\sum_{n=1}^{\infty} \frac{(x+2)^n}{\text{Ln}(n+1)}$$

7.
$$\sum_{n=1}^{\infty} \frac{\operatorname{Ln} n}{n+1} (x-5)^n$$
 8. $\sum_{n=1}^{\infty} n! \cdot x^n$ 9. $\sum_{n=1}^{\infty} \frac{1}{1+x^{2n}}$

8.
$$\sum_{i=1}^{\infty} n! \cdot x^{r}$$

9.
$$\sum_{n=1}^{\infty} \frac{1}{1 + x^{2n}}$$

22. Determine o maior intervalo aberto em que a série $\sum_{n=1}^{+\infty} \frac{(n!)^2}{(2n)!} x^n$ é convergente.

23. Determine a convergência da série
$$\sum_{n=1}^{+\infty} \left[\frac{n+1}{2n+1} \right]^n (x-2)^n$$

24. Mostre que a série $\sum_{n=1}^{+\infty} \frac{x^2}{(1+x^2)^n}$ é convergente em \mathbb{R} .

25. Considere a série de potências
$$\sum_{n=0}^{\infty} \frac{a^{n+1}}{n+1} x^{n+1}$$
; com $a \in \mathbb{R}^+$:

- 1. Determine o raio de convergência da série e estude a sua natureza nos extremos do intervalo de convergência.
- 2. Considere a série numérica que se obtém fazendo x=-3. Justifique que existe um único valor de a para o qual a série numérica correspondente é simplesmente convergente e determine-o.

1.3 Desenvolvimento em séries de potências

Seja a um número real (não nulo) e considere-se a sequência $u_k = a^k$, $k \in \mathbb{N}$.

Considere-se uma nova sequência, obtida de u_k , a qual designamos por S_n , de tal modo que para cada n é a soma dos n+1 primeiros termos de u_k , onde k=0 até $n \in \mathbb{N}$, isto é,

$$S_n = \sum_{k=0}^n a^k$$

Embora é imediato compreender o seu significado (soma dos n+1 primeiros termos da sequência u_k), tal como a sequência S_n esta escrita, não nos revela muito sobre o seu comportamento. Esta sequência S_n é limitada? É convergente?

Podemos então tentar escrevê-la de outra forma.

$$S_n = a^0 + a^1 + a^2 + a^3 + \dots + a^{n-1} + a^n = a^0 + a(1 + a^1 + a^2 + a^3 + \dots + a^{n-1}) = 1 + aS_{n-1}$$

também

$$S_n = a^0 + a^1 + a^2 + a^3 + \dots + a^{n-1} + a^n = (a^0 + a^1 + a^2 + a^3 + \dots + a^{n-1}) + a^n = S_{n-1} + a^n$$

deste modo $S_{n-1} + a^n = 1 + aS_{n-1} \implies S_{n-1} = \frac{1 - a^n}{1 - a}$ se $a \neq 1$, sabemos que

$$\lim_{n \to +\infty} a^n = \begin{cases} 0 & \text{se } |a| < 1\\ \infty & \text{se } |a| \ge 1 \end{cases}$$

Assim,
$$\lim_{n \to +\infty} S_{n-1} = \begin{cases} \frac{1}{1-a} & \text{se } |a| < 1\\ \infty & \text{se } |a| \ge 1 \end{cases}$$
.

Portanto,
$$S = \sum_{k=0}^{+\infty} a^k = \lim_{n \to +\infty} \left[\sum_{k=0}^{n-1} a^k \right] = \lim_{n \to +\infty} S_{n-1} = \frac{1}{1-a}$$
 se $|a| < 1$

Logo desenvolvemos $f(x) = \frac{1}{1-x}$ em série de potências de x entorno de x=0, obtendo, para |x|<1, a soma $\sum_{n=0}^{\infty} x^n$.

Deste desenvolvimento obtemos outros. Escrevamos então o mesmo desenvolvimento mas em ordem a uma nova variável y:

$$\frac{1}{1-y} = \sum_{n=0}^{+\infty} y^n \quad \text{se} \quad |y| < 1 \tag{1.11}$$

Suponhamos que dada uma constante c, y = x - c, então podemos escrever

$$g(x) = \frac{1}{1 - (x - c)} = \sum_{n=0}^{+\infty} (x - c)^n$$
 se $|x - c| < 1$

Admitindo que no interior do intervalo de convergência de uma série de potências de x, a derivada da série é igual à série das derivadas e que a primitiva da série é igual à série das primitivas. Isto vai-nos permitir obter desenvolvimentos em série de potências de x como por exemplo para funções Ln(1+x) e $\arctan(x)$.

De fato, quando y = -x, na igualdade (1.11) tem-se

$$\frac{1}{1+x} = \sum_{n=0}^{+\infty} (-1)^n x^n$$
 se $|x| < 1$

logo

$$\int \frac{1}{1+x} dx = \int \sum_{n=0}^{+\infty} (-1)^n x^n dx \quad \Rightarrow \quad \text{Ln}(x+1) = \sum_{n=0}^{+\infty} \frac{(-1)^n}{n+1} x^{n+1} + C \quad \text{se} \quad |x| < 1$$

Quando $y = -x^2$, na igualdade (1.11) tem-se

$$\frac{1}{1+x^2} = \sum_{n=0}^{+\infty} (-1)^n x^{2n} \quad \text{se} \quad |x^2| < 1$$

logo

$$\int \frac{1}{1+x^2} dx = \int \sum_{n=0}^{+\infty} (-1)^n x^{2n} dx \quad \Rightarrow \quad \arctan x = \sum_{n=0}^{+\infty} \frac{(-1)^n}{2n+1} x^{2n+1} + C \quad \text{se} \quad |x^2| < 1$$

1.3.1 A função exponencial

Podemos admitir que uma maneira de definir a função exponencial é:

$$e^x = \sum_{n=0}^{+\infty} \frac{1}{n!} x^n \tag{1.12}$$

que faz sentido para todo número x real, ou melhor, como a série (1.12) em questão converge para todo número real x então define um função de domínio \mathbb{R} . A essa função de x chamamos "função exponencial de x".

Lembrar que graças à Propriedade (1.14), se existe o limite $\lim_{n\to+\infty} \left| \frac{a_{n+1}}{a_n} \right| = |r| < 1$

então a série de potências

$$\sum_{n=0}^{+\infty} a_n (x-c)^n$$

converge absolutamente para todo x em (c-r,c+r) e diverge para todo x no intervalo $(-\infty,c-r)\cup(c+r,+\infty)$ a convergência em x=r tem que ser averiguada para cada caso específico de a_n .

Nesta abordagem informal, introduzamos a variável xi na definição (1.12) acima de exponencial (onde $i^2 = -1$). Sabe-se que:

$$i^0 = 1$$
, $i^1 = i$, $i^2 = -1$, $i^3 = -i$, $i^4 = 1$, $i^5 = i$, $i^6 = -1$, $i^7 = -i$, ...

assim, $i^{2k}=(-1)^k, \quad i^{2k+1}=(-1)^k i, \quad k\in\mathbb{N}.$ então

$$e^{ix} = \sum_{n=0}^{+\infty} \frac{1}{n!} (xi)^n = \sum_{n=0}^{+\infty} \frac{1}{(2n)!} (xi)^{2n} + \sum_{n=0}^{+\infty} \frac{1}{(2n+1)!} (xi)^{2n+1} \quad \Rightarrow$$

$$e^{ix} = \sum_{n=0}^{+\infty} \frac{(-1)^n}{(2n)!} x^{2n} + \sum_{n=0}^{+\infty} \frac{(-1)^n i}{(2n+1)!} x^{2n+1}$$

lembrando que $e^{ix} = \cos x + i \operatorname{sen} x$ segue:

$$\cos x = \sum_{n=0}^{+\infty} \frac{(-1)^n}{(2n)!} \cdot x^{2n} \qquad \text{e} \qquad \text{sen} x = \sum_{n=0}^{+\infty} \frac{(-1)^n}{(2n+1)!} \cdot x^{2n+1}$$
 (1.13)

Como podemos observar, para determinar a soma de séries de potências, é comum partir de uma das seguintes séries:

$$\sum_{n=0}^{+\infty} x^n = \frac{1}{1-x}, \quad |x| < 1 \qquad e \qquad \sum_{n=0}^{+\infty} \frac{x^n}{n!} = e^x$$

Através de processos como substituição de variáveis, multiplicação, integração e diferenciação, efetuados em ambos os membros da igualdade, é possível chegar à série cuja soma queremos determinar.

Exemplo 1.35.

Calcular o limite $L = \lim_{x \to 0} \left[\frac{1}{x^2} - \cot^2 x \right].$ Solução.

Tem-se
$$\frac{1}{x^2} - \cot^2 x = \frac{(\operatorname{sen} x - x \cos x)(\operatorname{sen} x + x \cos x)}{x^2 \operatorname{sen}^2 x}.$$

Por outro lado
$$\sin x - x \cos x = \sum_{n=0}^{+\infty} \frac{(-1)^n}{(2n+1)!} \cdot x^{2n+1} - x \cdot \sum_{n=0}^{+\infty} \frac{(-1)^n}{(2n)!} \cdot x^{2n}$$
, isto é

$$\operatorname{sen} x - x \cos x = \sum_{n=0}^{+\infty} \left[\frac{1}{(2n+1)!} - \frac{1}{(2n)!} \right] \cdot x^{2n+1} (-1)^n = \sum_{n=0}^{+\infty} \left[\frac{-2n \cdot (-1)^n}{(2n+1)!} \right] \cdot x^{2n+1}$$

também

$$\operatorname{sen} x + x \cos x = \sum_{n=0}^{+\infty} \left[\frac{1}{(2n+1)!} + \frac{1}{(2n)!} \right] \cdot x^{2n+1} (-1)^n = \sum_{n=0}^{+\infty} \left[\frac{2(n+1) \cdot (-1)^n}{(2n+1)!} \right] \cdot x^{2n+1} (-1)^n = \sum_{n=0}^{+\infty} \left[\frac{2(n+1) \cdot (-1)^n}{(2n+1)!} \right] \cdot x^{2n+1} (-1)^n = \sum_{n=0}^{+\infty} \left[\frac{2(n+1) \cdot (-1)^n}{(2n+1)!} \right] \cdot x^{2n+1} (-1)^n = \sum_{n=0}^{+\infty} \left[\frac{2(n+1) \cdot (-1)^n}{(2n+1)!} \right] \cdot x^{2n+1} (-1)^n = \sum_{n=0}^{+\infty} \left[\frac{2(n+1) \cdot (-1)^n}{(2n+1)!} \right] \cdot x^{2n+1} (-1)^n = \sum_{n=0}^{+\infty} \left[\frac{2(n+1) \cdot (-1)^n}{(2n+1)!} \right] \cdot x^{2n+1} (-1)^n = \sum_{n=0}^{+\infty} \left[\frac{2(n+1) \cdot (-1)^n}{(2n+1)!} \right] \cdot x^{2n+1} (-1)^n = \sum_{n=0}^{+\infty} \left[\frac{2(n+1) \cdot (-1)^n}{(2n+1)!} \right] \cdot x^{2n+1} (-1)^n = \sum_{n=0}^{+\infty} \left[\frac{2(n+1) \cdot (-1)^n}{(2n+1)!} \right] \cdot x^{2n+1} (-1)^n = \sum_{n=0}^{+\infty} \left[\frac{2(n+1) \cdot (-1)^n}{(2n+1)!} \right] \cdot x^{2n+1} (-1)^n = \sum_{n=0}^{+\infty} \left[\frac{2(n+1) \cdot (-1)^n}{(2n+1)!} \right] \cdot x^{2n+1} (-1)^n = \sum_{n=0}^{+\infty} \left[\frac{2(n+1) \cdot (-1)^n}{(2n+1)!} \right] \cdot x^{2n+1} (-1)^n = \sum_{n=0}^{+\infty} \left[\frac{2(n+1) \cdot (-1)^n}{(2n+1)!} \right] \cdot x^{2n+1} (-1)^n = \sum_{n=0}^{+\infty} \left[\frac{2(n+1) \cdot (-1)^n}{(2n+1)!} \right] \cdot x^{2n+1} (-1)^n = \sum_{n=0}^{+\infty} \left[\frac{2(n+1) \cdot (-1)^n}{(2n+1)!} \right] \cdot x^{2n+1} (-1)^n = \sum_{n=0}^{+\infty} \left[\frac{2(n+1) \cdot (-1)^n}{(2n+1)!} \right] \cdot x^{2n+1} (-1)^n = \sum_{n=0}^{+\infty} \left[\frac{2(n+1) \cdot (-1)^n}{(2n+1)!} \right] \cdot x^{2n+1} (-1)^n = \sum_{n=0}^{+\infty} \left[\frac{2(n+1) \cdot (-1)^n}{(2n+1)!} \right] \cdot x^{2n+1} (-1)^n = \sum_{n=0}^{+\infty} \left[\frac{2(n+1) \cdot (-1)^n}{(2n+1)!} \right] \cdot x^{2n+1} (-1)^n = \sum_{n=0}^{+\infty} \left[\frac{2(n+1) \cdot (-1)^n}{(2n+1)!} \right] \cdot x^{2n+1} (-1)^n = \sum_{n=0}^{+\infty} \left[\frac{2(n+1) \cdot (-1)^n}{(2n+1)!} \right] \cdot x^{2n+1} (-1)^n = \sum_{n=0}^{+\infty} \left[\frac{2(n+1) \cdot (-1)^n}{(2n+1)!} \right] \cdot x^{2n+1} (-1)^n = \sum_{n=0}^{+\infty} \left[\frac{2(n+1) \cdot (-1)^n}{(2n+1)!} \right] \cdot x^{2n+1} (-1)^n = \sum_{n=0}^{+\infty} \left[\frac{2(n+1) \cdot (-1)^n}{(2n+1)!} \right] \cdot x^{2n+1} (-1)^n = \sum_{n=0}^{+\infty} \left[\frac{2(n+1) \cdot (-1)^n}{(2n+1)!} \right] \cdot x^{2n+1} (-1)^n = \sum_{n=0}^{+\infty} \left[\frac{2(n+1) \cdot (-1)^n}{(2n+1)!} \right] \cdot x^{2n+1} (-1)^n = \sum_{n=0}^{+\infty} \left[\frac{2(n+1) \cdot (-1)^n}{(2n+1)!} \right] \cdot x^{2n+1} (-1)^n = \sum_{n=0}^{+\infty} \left[\frac{2(n+1) \cdot (-1)^n}{(2n+1)!} \right] \cdot x^{2n+1} (-1)^n = \sum_{n=0}^{+\infty} \left[\frac{2(n+1) \cdot (-1)^n}{(2n+1)!} \right] \cdot x^{2n+1} (-1)^n = \sum_{n=0}^{+\infty} \left[$$

Logo

$$L = \lim_{x \to 0} \left[\frac{\sum_{n=0}^{+\infty} \left[\frac{-2n \cdot (-1)^n}{(2n+1)!} \right] x^{2n+1} \cdot \sum_{n=0}^{+\infty} \left[\frac{2(n+1) \cdot (-1)^n}{(2n+1)!} \right] x^{2n+1}}{x^2 \sum_{n=0}^{+\infty} \frac{(-1)^n}{(2n+1)!} \cdot x^{2n+1} \cdot \sum_{n=0}^{+\infty} \frac{(-1)^n}{(2n+1)!} \cdot x^{2n+1}} \right] = \frac{2}{3}$$

Exemplo 1.36.

Calcular o limite $L = \lim_{x \to 0} \frac{2e^x - 2 - 2x - x^2}{x - \operatorname{sen} x}.$ Solução.

Das igualdades (1.12) e (1.13) em séries de potências temos

$$L = \lim_{x \to 0} \frac{2e^x - 2 - 2x - x^2}{x - \text{sen}x} = \lim_{x \to 0} \frac{2\left[\sum_{k=0}^{\infty} \frac{1}{n!}x^n\right] - 2 - 2x - x^2}{x - \sum_{n=0}^{\infty} \frac{(-1)}{(2n+1)!}(x)^{2n+1}} = L = \lim_{x \to 0} \frac{\frac{2x^3}{3!} + \frac{2x^4}{4!} + \dots}{\frac{x^3}{3!} - \frac{x^5}{5!} + \dots} = \lim_{x \to 0} \frac{\frac{2}{3!} + \frac{2x}{4!} + \dots}{\frac{1}{3!} - \frac{x^2}{5!} + \dots} = 2$$

Portanto, $L = \lim_{x \to 0} \frac{2e^x - 2 - 2x - x^2}{x - \sin x} = 2.$

1.4 Operações com série de potências

Cada série de potências $\sum_{n=0}^{+\infty} a_n x^n$ define uma função f

$$f(x) = \sum_{n=0}^{+\infty} a_n x^n \tag{1.14}$$

o domínio da função f é o intervalo de convergência da série.

Consequência do Teorema de Abel (Teorema (1.1) é que qualquer função definida por

uma série de potências de x-c, com raio r>0, é indefinidamente derivável em (c-r, c+r) e as suas derivadas podem ser calculadas derivando a série termo a termo.

Propriedade 1.23.

Dada uma série de potências como em (1.14) cujo raio de convergência é $r \neq 0$, então sua função derivada é definida por $f'(x) = \sum_{n=1}^{+\infty} na_n x^{n-1}$ em cada número x do intervalo aberto (-r, r).

A demonstração é exercício para o leitor.

Observação 1.8.

Se o raio de convergência da série $f(x) = \sum_{n=0}^{+\infty} a_n x^n$ é r > 0, então r também é o raio de convergência da série $f''(x) = \sum_{n=2}^{+\infty} n(n-1)a_n x^{n-2}$.

Propriedade 1.24.

Dada uma série de potências $f(x) = \sum_{n=0}^{+\infty} a_n x^n$ cujo raio de convergência é $r \neq 0$, então para |x| < r tem-se:

$$\int_{0}^{x} f(t)dt = \sum_{n=0}^{+\infty} \int_{0}^{x} a_n t^n dt = \sum_{n=0}^{+\infty} \frac{a_n}{n+1} x^{n+1}$$

Demonstração.

Sejam $f(x) = \sum_{n=0}^{+\infty} a_n x^n$ e $g(x) = \sum_{n=0}^{+\infty} \frac{a_n}{n+1} x^{n+1}$ então pela Propriedade (1.23) g(t)

tem o mesmo raio de convergência de f(t) e g'(x) = f(x). Como g(0) = 0, pelo teorema fundamental do cálculo integral segue que

$$\int_{0}^{x} f(t)dt = g(x)$$

As Propriedades (1.23) e (1.24) apresentam vários aspectos. Afirmam que f é derivável e integrável e implica que o raio de convergência da série derivada e integrada é o mesmo raio de convergência da série original (não afirma nada respeito dos extremos do intervalo de convergência).

Exemplo 1.37.

Obter uma representação em série de potências para $\frac{1}{(x-1)^2}$. Solução.

Sabemos pela igualdade (1.11) que

$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + \dots + x^n + \dots$$
, se $|x| < 1 \implies$

derivando respeito de x segue

$$\frac{1}{(1-x)^2} = 1 + 2x + 3x^2 + 4x^3 + \dots + nx^{n-1} + \dots, \quad \text{se} \quad |x| < 1$$

Portanto,
$$\frac{1}{(x-1)^2} = \sum_{n=1}^{+\infty} nx^{n-1}$$
.

Exemplo 1.38.

Verificar que $e^x = \sum_{n=0}^{+\infty} \frac{x^n}{n!}$.

Solução.

Sabe-se que se $f(x) = e^x$, então sua derivada $f'(x) = e^x = f(x)$.

Seja
$$f(x) = \sum_{n=0}^{+\infty} \frac{x^n}{n!}$$
 \Rightarrow $f'(x) = \sum_{n=1}^{+\infty} \frac{nx^{n-1}}{n!} = \sum_{n=1}^{+\infty} \frac{x^{n-1}}{(n-1)!} = \sum_{n=0}^{+\infty} \frac{x^n}{n!} = f(x)$
Portanto, $e^x = \sum_{n=0}^{+\infty} \frac{x^n}{n!}$.

O teorema a seguir é uma complementação das Propriedades (1.23) e (1.24).

Teorema 1.2.

Seja a série $\sum_{n=0}^{+\infty} a_n (x-c)^n \text{ com raio de convergência } r, \text{ isto \'e, a série converge no}$

intervalo aberto (a-r,a+r). Então, definindo $f(x) = \sum_{n=0}^{+\infty} a_n (x-c)^n$ tem-se que:

- 1. f(x) é contínua em (c-r, c+r).
- **2.** Existe f'(x) tal que $f'(x) = \sum_{n=1}^{+\infty} n \cdot a_n (x-c)^{n-1}$
- **3.** Existe h(x) tal que $h(x) = \int \left(\sum_{n=0}^{+\infty} a_n (x-c)^n\right) dx = \sum_{n=0}^{+\infty} \frac{a_n (x-c)^{n+1}}{n+1}$

A demonstração é exercício para o leitor.

Exemplo 1.39.

Determine uma representação em séries de potências para o arctan x Solução.

Sabe-se que $\frac{1}{1-y} = 1 + y + y^2 + y^3 + \dots + y^n$ quando |y| < 1. Considerar $y = -t^2$, logo

$$\int_{0}^{x} \frac{1}{1+t^{2}} dt = \int_{0}^{x} (1-t^{2}+t^{4}-t^{6}+\dots+t^{n}+\dots)dt, \qquad |-x^{2}| < 1$$

$$\arctan x = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \frac{x^9}{9} - \frac{x^{11}}{11} + \cdots, \qquad |x| < 1$$

Propriedade 1.25.

Sejam $f(x) = \sum_{n=0}^{+\infty} a_n x^n$ e $g(x) = \sum_{n=0}^{+\infty} b_n x^n$ convergentes em |x| < r. Ao se realizar operações de adição, subtração e multiplicação com estas séries como se forem polinômios, então a série resultante converge em |x| < r e representa; f(x) + g(x), f(x) - g(x) e $f(x) \cdot g(x)$ respectivamente. Quando $b_0 \neq 0$ o resultado também vale para a divisão, sendo |x| suficientemente pequeno.

A demonstração deste teorema é exercício para o leitor.

Exemplo 1.40.

 $\begin{aligned} & \textit{Multiplicar a série geométrica} & \sum_{n=0}^{+\infty} x^n \ com \ o \ desenvolvimento \ em \ série \ de \ g(x) = \\ & \frac{1}{1-x} \quad para \ obter \ uma \ série \ de \ potências \ de \quad \frac{1}{(1-x)^2} \\ & \textit{Solução}. \end{aligned}$

Sabe-se que
$$\sum_{n=0}^{+\infty} x^n = \frac{1}{1-x}$$
 sempre que $|x| < 1$, e sejam

$$f(x) = \sum_{n=0}^{+\infty} a_n x^n = 1 + x + x^2 + x^3 = \dots + x^n + \dots; \qquad |x| < 1, \qquad a_n = 1, \ \forall n \in \mathbb{N}$$

$$g(x) = \sum_{n=0}^{+\infty} b_n x^n = 1 + x + x^2 + x^3 = \dots + x^n + \dots; \qquad |x| < 1, \qquad b_n = 1, \ \forall n \in \mathbb{N}$$

logo
$$f(x) \cdot g(x) = \sum_{n=0}^{+\infty} c_n x^n$$
 onde

$$c_n = a_0 b_n + a_1 b_{n-1} + a_2 b_{n-2} + \dots + a_j b_{n-j} + \dots + a_{n-1} b_1 + a_n b_0 = n+1, \quad \forall n \in \mathbb{N}$$

Então pela Propriedade (1.25)

$$f(x) \cdot g(x) = \sum_{n=0}^{+\infty} c_n x^n = \sum_{n=0}^{+\infty} (n+1)x^n = \frac{1}{(1-x)^2}, \quad |x| < 1$$

Exemplo 1.41.

Determine uma série de potências para e arctan x. Solução.

Sabe-se que
$$e^y = 1 + y + \frac{y^2}{2!} + \frac{y^3}{3!} + \frac{y^4}{4!} + \cdots$$
. De onde

$$e^{\arctan x} = 1 + \arctan x + \frac{(\arctan x)^2}{2!} + \frac{(\arctan x)^3}{3!} + \frac{(\arctan x)^4}{4!} + \dots =$$

$$= 1 + \left(x - \frac{x^3}{3} + \frac{x^5}{5} - \dots\right) + \frac{\left(x - \frac{x^3}{3} + \frac{x^5}{5} - \dots\right)^2}{2!} + \frac{\left(x - \frac{x^3}{3} + \frac{x^5}{5} - \dots\right)^3}{3!} + \dots$$

logo

$$e^{\arctan x} = 1 + x + \frac{x^2}{2} - \frac{x^3}{6} - \frac{7x^4}{24} + \cdots$$