

INPUTS and CONSTANTS

Red and Bonita Mine Bulkhead: 2/10/2015

Tunnel Height (h_t)	7 ft
Tunnel Width (w_t)	5 ft
Bulkhead Height (h_b)	10 ft
Bulkhead Width (w_b)	7 ft
Design water head (H)	1253 ft
Bulkhead Trial Thickness (L_T)	15 ft
Water density (γ_w)	62.4 pcf
Overburden rock density (γ_r)	165 pcf
Concrete Density (γ_c)	151 pcf
Concrete Compressive Strength (f_c)	3,000 psi
Acceptable bulkhead pressure gradient (p_{ag})	41 psi/ft
Bulkhead depth below surface (B_w)	203 ft
Slope Angle of Topography (β)	37
Acoustical velocity of water (c')	4,748 ft/s @50°F
Peak Ground Acceleration (PGA)	0.185 g
Gravity Acceleration (g)	32.2 ft/sec ²
Seed & Idriss Constant (SI)	1.8044 (ft/sec)/g From Seed and Idriss
Seismic Design Handbook Constant (SDH)	2 (ft/sec)/g From Seismic Design
Beam Unit Width (b)	1 ft
Inby Line-of-Site Water Distance (S_{ls})	125 ft
Rebar Yield Strength (f_y)	60,000 psi
Minimum Rebar Cover (m_c)	3.5 in
Rock Cover Factor of Safety (F_{RC})	1.1 Range 1.1-1.3 (Based on Bergh-C)
Fluid Static Load Factor (ϕ_{fs})	1.4
Concrete Flexural Strength Reduction Factor (ϕ_{pc})	0.55
Earthquake Static Fluid Load Acceleration Factor (ϕ_{fe})	1.05
Earthquake Impounded Fluid Load Acceleration Factor (ϕ_{ea})	1.40
Reinforced Concrete Flexural Strength Reduction Factor (ϕ_{rc})	0.90
Rebar Flexural Strength Reduction Factor (ϕ_{rt})	0.90

1983
Handbook (pg55)

hriestensen and Dannevig, 1971)

Water Hammer

Approach based on "Permanent Sealing of Tunnels to Retain Tail

Inputs:

*Change values on
Input Tab*

Acoustical velocity of water (c')	4,748 ft/s @50°F
Peak Ground Acceleration (PGA)	0.185g
Water Density (γ_w)	62.4 pcf
Gravity Acceleration (g)	32.2 ft/sec ²
Earthquake Static Fluid Load Acceleration Factor (ϕ_{fe})	1.05
Seed & Idriss Constant (SI)	1.8044(ft/sec)/g
Seismic Design Handbook Constant (SDH)	2(ft/sec)/g
	From Seed and Idriss 1983
	From Seismic Design Handbo

Calculation:

Max Earthquake Acceleration (α)	$\alpha = PGA * g =$	5.957 ft/sec ²	
Max Velocity SI (v_{max})	$v_{max} = SI * PGA =$	0.33381 ft/s	Seed and Idriss
Max Velocity SI (v_{max})	$v_{max} = SDH * PGA =$	0.37 ft/s	Seismic Design Ha
Water Hammer Pressure (P_H)	$P_H = c' * v_{max} * \gamma_w =$	109,622 lb	Used SDH
Factored Water Hammer Pressure (P'_H)	$P'_H = P_H * \phi_{fe} =$	115,103 lb	

ings or Acid Rock Drainage", Lang, 1999.

ok (pg55)

ndbook

Hydrofrac

Inputs:

Design water head (H)	1253 ft
Water density (γ_w)	62.4 pcf
Overburden rock density (γ_r)	165 pcf
Acceptable bulkhead pressure gradient (p_{ag})	41 psi/ft
Bulkhead depth below surface (B_w)	203 ft
Rock Cover Factor of Safety (F_{RC})	1.1
Slope Angle of Topography (β)	37 degrees

Calculations:

Maximum Hydraulic Pressure Head (p)	$p = H\gamma_w/144 =$	543.0 psi
Minimum Rock Cover Required: Hydrofrac (Z) (Abel Method)	$Z = 144p/2\gamma_r =$	236.9 ft
Minimum Rock Cover Required: Hydrojack (Z) (Norwegian Tunnel Method)	$Z = H\gamma_w F/\gamma_r \cos\beta =$	652.7 ft
Minimum contact grout pressure (σ_{mingp})	$\sigma_{mingp} = B_w \gamma_w/144 =$	88.0 psi
Maximum contact grout pressure (σ_{maxgp})	$\sigma_{maxgp} = 2B_w \gamma_r/144 =$	465.2 psi
Maximum contact grout pressure (σ_{maxgp})	$\sigma_{maxgp} = 2B_w \gamma_r \cos\beta/144 F_{RC} =$	168.9 psi
Required bulkhead thickness for pressure gradient (L_{hp})	$L_{hp} = p/p_{ag} =$	13.2 ft

Punching Shear Design

Inputs:

Change values on Input Tab

Concrete Compressive Strength (f_c)	3,000 psi
Bulkhead Height (h_b)	10 ft
Bulkhead Width (w_b)	7 ft
Design Head (H)	1253 ft
Water Density (γ_w)	62.4 pcf
Fluid Static Load Factor (ϕ_{fs})	1.4
Factored Water Hammer Pressure (P'_H)	115,103 lb (Calculated from Water Hammer Tab)

Calculations:

Concrete Shear Strength (f_{cs})	$f_{cs} = 2*f_c^{1/2} =$	109.5 psi
Static Fluid Load on Bulkhead Face (F_s)	$F_s = H*\gamma_w*h_b*w_b =$	5,473,104 lb
Factored Static Fluid Load on Bulkhead (F'_s)	$F'_s = F_s * \phi_{fs} =$	7,662,346 lb
Length of Bulkhead Required for Shear (L_s)	$L_s = F'_s / (2*(h_b+w_b)*f_{cs}*144)$	14.29 ft

Earthquake Consideration (Water Hammer):

$$\text{Length of Bulkhead Required } (L_s) \quad L_s = (F'_s + P'_H) / (2 * (h_b + w_b) * f_{cs} * 144) \quad 14.50 \text{ ft}$$

Plain Concrete Deep Beam Bending Stress

Inputs:		*Change values on Input Tab*	
Concrete Compressive Strength (f_c)	3,000 psi	Peak Ground Acceleration (PGA)	0.185 g
Bulkhead Height (h_b)	10 ft	Fluid Static Load Factor (ϕ_{fs})	1.4
Bulkhead Width (w_b)	7 ft	Concrete Flexural Strength Reduction Factor (ϕ_{rf})	0.55
Tunnel Height (h_t)	7 ft	Earthquake Static Fluid Load Acceleration Factor (ϕ_{se})	1.05
Tunnel Width (w_t)	5 ft	Earthquake Impounded Fluid Load Acceleration Factor (ϕ_{ie})	1.40
Design Head (H)	1253 ft	Beam Unit Width (b)	1 ft
Inby Line-of-Site Water Distance (S_b)	125 ft	Static Fluid Load on Bulkhead Face (F_s)	5,473,104 lb (Calculated from Punching Shear)
Water Density (γ_w)	62.4 pcf	Factored Static Fluid Load On Bulkhead Face (F'_s)	7,662,346 lb (Calculated from Punching Shear)
Concrete Density (γ_c)	151 pcf	Factored Water Hammer Pressure (P'_h)	115,103 lb (Calculated from Water Hammer)
Bulkhead Trial Thickness (L_t)	15 ft		
Calculations:			
Deep Beam Verification			
Uniform Static Fluid Load on Face (f'_s)	$w_b/L_t =$ $f'_s = F'_s/(h_t * w_b) =$	0.5 Deep Beam	
Maximum Nominal Bending Moment (M_n)	$M_n = f'_s * w_b^2/8 =$	670,455 ft-lb (f'_s , load per unit length w/ 1ft beam width)	
Factored Nominal Bending Moment (M'_n)	$M'_n = M_n/\phi_{rf} =$	1,219,010 ft-lb	
Concrete Flexural (tensile) Design Stress (f_{ct})	$f_{ct} = 3 * f_c^{1/2} =$	164.3 psi	
Plain Concrete Beam Bulkhead Length (L_c)	$L_c = (6 * M'_n / b * f_{ct})^{1/2} =$	17.6 ft	
Considering Earthquake (Water Hammer):			
Factored Earthquake Load on Face (U'_a)	$U'_a = F'_s + P'_h =$	7,777,449 lb	
Uniform Static Fluid Load on Face (u'_s)	$u'_s = U'_a / (h_t * w_b) =$	111,106 psf	
Maximum Nominal Bending Moment (M_n)	$M_n = u'_s * w_b^2/8 =$	680,527 ft-lb (u'_s , load per unit length w/ 1ft beam width)	
Factored Nominal Bending Moment (M'_n)	$M'_n = M_n/\phi_{rf} =$	1,237,321 ft-lb	
Concrete Flexural (tensile) Design Stress (f_{ct})	$f_{ct} = 3 * f_c^{1/2} =$	164.3 psi	
Plain Concrete Beam Bulkhead Length (L_c)	$L_c = (6 * M'_n / b * f_{ct})^{1/2} =$	17.7 ft	
Considering Earthquake (Abel Method):			
Factored Earthquake Accelerated Static Fluid Load (E_{fa})	$E_{fa} = F'_s * \phi_{se} =$	5,746,759 lb	
Factored Earthquake Accelerated Line-of-Sight Fluid Load (E_{lm})	$E_{lm} = S_b * \gamma_w * h_t * w_b * PGA * \phi_{es} =$	70,707 lb	
Factored Earthquake Bulkhead Load (E_{bm})	$E_{bm} = L_c * \gamma_c * h_b * w_b * PGA * \phi_{es} =$	41,064.45 lb	
Factored Earthquake Load on Face (U'_a)	$U'_a = E_{fa} + E_{lm} + E_{bm} =$	5,858,531 lb	
Uniform Static Fluid Load on Face (u'_s)	$u'_s = U'_a / (h_t * w_b) =$	83,693 psf	
Maximum Nominal Bending Moment (M_n)	$M_n = u'_s * w_b^2/8 =$	512,621 ft-lb (u'_s , load per unit length w/ 1ft beam width)	
Factored Nominal Bending Moment (M'_n)	$M'_n = M_n/\phi_{rf} =$	932,039 ft-lb	
Concrete Flexural (tensile) Design Stress (f_{ct})	$f_{ct} = 3 * f_c^{1/2} =$	164.3 psi	
Plain Concrete Beam Bulkhead Length (L_c)	$L_c = (6 * M'_n / b * f_{ct})^{1/2} =$	15.4 ft	

r Tab)
r Tab)
r Tab)

Reinforced Concrete Deep Beam Bending Design:

Inputs:

Change values on Input Tab

Reinforced Concrete Flexural Strength Reduction Factor (ϕ_{rc})	0.90
Rebar Flexural Strength Reduction Factor (ϕ_{rt})	0.90
Concrete Compressive Strength (f_c)	3,000 psi
Beam Unit Width (b)	1 ft
Rebar Yield Strength (f_y)	60,000 psi
Maximum Nominal Bending Moment (M_n)	680,527 ft-lb (Plain Concrete Deep Be
Bulkhead Trial Thickness (L_T)	15 ft
Minimum Rebar Cover (m_c)	3.5 in

Calculations:

Compressive Force (C)	$C = \phi_{rc} * f_c * b * a =$	32,400 a (psi)
Tensile Force (T)	$T = A_s * f_y =$	60,000 A _s (psi)
Minimum Concrete Depth to Balance Rebar (a)	a =	1.852 A _s (psi)
Factored Bending Moment (M'_u)	$M'_u = M_n / \phi_{rt} =$	756,141 ft-lb
Factored Bending Moment (M'_u)	$M'_u = M_n / \phi_{rt} =$	9,073,690 in-lb
Maximum Rebar Cover (d)	$d = 12 * L_T - m_c =$	176.5 in

$$C_1 A_s^2 - C_2 A_s d + M'_u = 0$$

$C_1 = f_y * a / 2 =$	55,556
$C_2 = f_y * d =$	-10,590,000
$C_3 = M'_u =$	9,073,690
$A_s = (-C_2 - (C_2^2 - 4 * C_1 * C_3)^{1/2}) / 2 * C_1 =$	0.861 in ² /ft

Bar Size (#)	9 (enter value)
Spacing (C-C)	9 in (enter value)
Area of Steel (A _s)	1.33 in ² /ft

am Considering Water Hammer)