SOLUTIONS – am group

1) A sine wave is to be used for two different signalling schemes: i) PSK; and ii) QPSK. The duration of a signal element is 10⁻⁵ s. If the received signal is of the following form,

 $s(t) = 0.005 \sin(2\pi 10^6 t + \theta)$ volts and if the measured noise power at the receiver is 2.5×10^{-8} watts, determine E_b/N_0 in dB for each case.

[8 marks]

Answer:

 $T_s = \text{signal element period}; \quad T_b = \text{bit period}; \quad A = \text{amplitude} = 0.005$

i)
$$T_s = T_b = 10^{-5} \text{ sec}$$

$$P = \frac{1}{T_s} \int_0^{T_s} s^2(t) = \frac{A^2}{2}$$

$$E_b = P \times T_b = P \times T_s = \frac{A^2}{2} \times T_s; N_0 = 2.5 \times 10^{-8} \times T_s$$

$$\frac{E_b}{N_0} = \frac{(A^2/2) \times T_s}{2.5 \times 10^{-8} \times T_s} = 500; (E_b/N_0)_{dB} = 10 \log 500 = 27 dB$$
[2 marks]

[2 marks]

ii)
$$T_b = \frac{T_s}{2}; E_b = P \times \frac{T_s}{2}; N_0 = 2.5 \times 10^{-8} \times T_s$$

$$(E_b/N_0) = 250; (E_b/N_0)_{dB} = 10\log 250 = 24dB$$
[2 marks]

2) The following table illustrates the operation of an FHSS system for one complete period of the PN sequence.

<u>-3)</u>					_	/														
Time	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
Input data	0	1	1	1	1	1	1	0	0	0	1	0	0	1	1	1	1	0	1	0
Frequency	f	1	f	3	f_2		f_2	.6	f_{ξ}	3	f_1	0	f	1	f	3	\mathbf{f}_{2}	2	\mathbf{f}_{2}	2
PN Sequence	001			110		011		001			001									

- 4) To determine:
 - i) What is the period of the PN sequence?
 - ii) The system makes use of a form of FSK. What form of FSK is it?
 - iii) What is the number of bits per symbol?
 - iv) What is the number of FSK frequencies?
 - v) What is the length of a PN sequence per hop?
 - vi) Is this a slow or fast FH system?

- vii) What is the total number of possible hops?
- viii) Show the variation of the dehopped frequency with time.

[8 marks]

Answer:

i) Period of the PN sequence is 15 [1 Mark]

ii) MFSK [1 Mark]

iii) L = 2 [1 Mark]

iv) $M = 2^L = 4$ [1 Mark]

v) k = 3 [1 Mark]

vi) slow FHSS [1 Mark]

 $\mathbf{vii}) 2^k = 8 \qquad \qquad [\mathbf{1} \mathbf{Mark}]$

viii) [1 Mark]

Time	0	1	2	3	4	5	6	7	8	9	10	11
Input data	0	1	1	1	1	1	1	0	0	0	1	0
Frequency	f_1		f_3		f_3		f_2		f_0		f_2	

Time	12	13	14	15	16	17	18	19	
Input data	0	1	1	1	1	0	1	0	
Frequency	f_1		f	3	f	2	f_2		