

MATEMÁTICA DISCRETA 2

Aula 23 Homomorfismo e Isomorfirmo

Cristiane Loesch

Estruturas Algébricas

Fonte: Paiva, C. R. (2010)

Estruturas Algébricas

Definição 3.1. Sejam (G, *) e (H, \otimes) grupos.

1. Uma aplicação $f: G \to H$ é um homomorfismo se, e somente se,

$$\forall a, b \in G, \ f(a * b) = f(a) \otimes f(b).$$

2. Uma aplicação $f: G \to H$ é um isomorfismo se, e somente se, f é um homomorfismo bijetor. Neste caso, dizemos que G e H são grupos isomorfos e denotamos por $G \cong H$.

Definição 3.1. Sejam (G, *) e (H, \otimes) grupos.

1. Uma aplicação $f:G\to H$ é um homomorfismo se, e somente se,

$$\forall a, b \in G, \ f(a * b) = f(a) \otimes f(b).$$

2. Uma aplicação $f: G \to H$ é um isomorfismo se, e somente se, f é um homomorfismo bijetor. Neste caso, dizemos que G e H são grupos isomorfos e denotamos por $G \cong H$.

Definição 3.3. Seja G um grupo.

- 1. Uma aplicação $\phi:G\to G$ é um endomorfismo se, e somente se, ϕ é um homomorfismo.
- 2. Uma aplicação $\phi:G\to G$ é um automorfismo se, e somente se, ϕ é um isomorfismo.

Lema 3.5. Sejam G e H grupos, e $f:G\to H$ um homomorfismo. Então:

1.
$$f(e_G) = e_H$$
 onde $e_G \in G$, $e_H \in H$ são os elementos neutros.

2.
$$f(a^{-1}) = f(a)^{-1}$$
 para todo $a \in G$.

3.
$$f(a^n) = f(a)^n$$
 para todo $n \in \mathbb{Z}$.

Lema 3.5. Sejam G e H grupos, e $f:G\to H$ um homomorfismo. Então:

1.
$$f(e_G) = e_H$$
 onde $e_G \in G$, $e_H \in H$ são os elementos neutros.

Demonstração: Sejam e_G e e_H os respectivos elementos neutros de G e H. Se $a \in G, n \in \mathbb{Z}$, e $f: G \to H$ é um homomorfismo, então:

1.
$$f(e_G) = e_H$$
. De fato, $f(e_G) = f(e_G e_G) = f(e_G) f(e_G)$.

Logo, como $f(e_G) \in H$, pelo Lema 1.7 vem que $f(e_G) = e_H$.

Lema 1.7. Sejam (G, *) um grupo e $a \in G$. Se a * a = a, então a = e.

Demonstração: Como $a \in G$, existe $a^{-1} \in G$ tal que $a^{-1} * a = e$. Logo,

$$a^{-1} * (a * a) = a^{-1} * a = e.$$

Por outro lado,

$$a^{-1} * (a * a) = (a^{-1} * a) * a = e * a = a.$$

Portanto, a = e. FONTE: em anexo

Lema 3.5. Sejam G e H grupos, e $f:G\to H$ um homomorfismo. Então:

2.
$$f(a^{-1}) = f(a)^{-1}$$

para todo $a \in G$.

Demonstração: Sejam e_G e e_H os respectivos elementos neutros de G e H. Se $a \in G$, $n \in \mathbb{Z}$, e $f: G \to H$ é um homomorfismo, então:

2. $f(a^{-1}) = f(a)^{-1}$. De fato, $f(a)f(a^{-1}) = f(aa^{-1}) = f(e_G) = e_H$. Consequentemente, pela unicidade do elemento inverso vem que $f(a)^{-1} = f(a^{-1})$.

Lema 3.5. Sejam G e H grupos, e $f:G\to H$ um homomorfismo. Então:

$$3. f(a^n) = f(a)^n$$

para todo $n \in \mathbb{Z}$.

Demonstração: Sejam e_G e e_H os respectivos elementos neutros de G e H. Se $a \in G, n \in \mathbb{Z}$, e $f: G \to H$ é um homomorfismo, então:

3.
$$f(a^n) = f(a)^n$$
. De fato,

$$f(a^n) = f(\underbrace{aa \cdots a}_n) = \underbrace{f(a)f(a) \cdots f(a)}_n = f(a)^n.$$

Núcleo de um Homomorfismo de Grupos

Definição 3.14. Sejam G e H grupos, e $f: G \to H$ um homomorfismo. Definimos o núcleo de f, denotado por Ker(f), como segue:

$$Ker(f) = \{x \in G \mid f(x) = e_{_H}\}.$$

Homomorfismo e Isomorfismo de Anéis

Definição 7 Sejam $(R, +, \cdot)$ e (S, \oplus, \odot) anéis. Uma função $\varphi : R \to S$ é um homomorfismo de anéis se, para todo $a, b \in R$, temos:

(i)
$$\varphi(a+b) = \varphi(a) \oplus \varphi(b)$$
, (i.é, φ é um homomorfismo de grupos)

(ii)
$$\varphi(a \cdot b) = \varphi(a) \odot \varphi(b)$$
.

Se, além disso, φ é bijetora, dizemos que φ é um **isomorfismo de anéis** e, neste caso, dizemos tamém que os anéis R e S são isomorfos e denotamos por $R\cong S$ ou $R\stackrel{\varphi}\cong S$.

Se $(R, +, \cdot) = (S, \oplus, \odot)$, dizemos que φ é um **endomorfismo** de anéis.

Se $\varphi: R \to R$ é um isomorfismo, então φ é um **automorfismo** do anel R.

Homomorfismo de Anéis

Teorema 6 Seja $\varphi:(R,+,\cdot)\to(S,\oplus,\odot)$ um homomorfismo de anéis.

Então:

(i)
$$\varphi(O_R) = O_S$$
,

(ii)
$$\varphi(-a) = -\varphi(a), \forall a \in R,$$

(iii)
$$\varphi(R) = \{\varphi(a); a \in R\}$$
 é um subanel de S.

(iv) Se R tem 1, então
$$\varphi(1_R) = 1_{\varphi(R)}$$
.

(v) Se
$$a \in R$$
 é inversível, ou seja, tem inverso multiplicativo, então $\varphi(a^{-1}) = \varphi(a)^{-1}$ em $\varphi(R)$.

Núcleo de um Homomorfismo de Anéis

Corolário 3 Se φ : $R \to S$ é um homomorfismo de anéis, então $\operatorname{Ker}(\varphi) = \varphi^{-1}(\{O_s\})$ é um subanel de R, chamado o núcleo do homomorfismo φ . Note que $\operatorname{Ker}(\varphi) = \{a \in R; \varphi(a) = O_S\}$.