

FACULDADE SUPERIOR DE TECNOLOGIA EM ANÁLISE E DESENVOLVIMENTO DE SISTEMAS

Disciplina: Matemática Discreta Professor: Lívia Ribeiro

Exercícios – LÓGICA E CÁLCULO PROPOSICIONAL

1. Tautologia

A **tautologia** é uma função lógica que **é sempre verdadeira** (V) para quaisquer valores de suas variáveis proposicionais.

Exemplo: A proposição $[A \lor \neg (A \land B)]$ é uma tautologia conforme a tabela verdade a seguir ilustra.

\mathbf{A}	В	$A \wedge B$	$\neg (\mathbf{A} \wedge \mathbf{B})$	$\mathbf{A} \vee \neg (\mathbf{A} \wedge \mathbf{B})$
V	V	V	F	V
V	F	F	V	V
F	V	F	V	V
F	F	F	V	V

2. Contradição

A **contradição** é uma função lógica que **é sempre falsa** (F) para quaisquer valores de suas variáveis proposicionais.

Exemplo

 $\operatorname{Prove\,que}\left(A\vee B\right)\wedge [(\neg A)\wedge (\neg B)]_{\text{\'e uma contradiç\~ao}}.$

Conforme a tabela verdade que é dada a seguir.

Α	В	$A \lor B$	$\neg \mathbf{A}$	$\neg \mathbf{B}$	$(\neg \mathbf{A}) \wedge (\neg \mathbf{B})$	$(\mathbf{A} \ \lor \mathbf{B}) \land [(\neg \mathbf{A}) \land (\neg \mathbf{B})]$
V	V	V	F	F	F	F
V	F	V	F	V	F	F
F	V	V	V	F	F	F
F	F	F	V	V	V	F

Como pode-se notar, todos os valores da função lógica $(A \lor B) \land [(\neg A) \land (\neg B)]_{são falsos}(F)$, assim, pode-se concluir que esta função lógica é uma contradição.

3. Contingência

Se tem uma contingencia quando não há nem uma tautologia e nem uma contradição, ou seja, quando a tabela-verdade apresenta, ao mesmo tempo, alguns valores verdadeiros e alguns falsos, a depender do valor das proposições que dão origem à afirmação em análise.

Exemplo: Pode-se verificar que a sentença (A \leftrightarrow B) é uma contingência, verificando-se sua tabela-verdade.

\mathbf{A}	В	$\mathbf{A} \longleftrightarrow \mathbf{B}$
V	V	V
V	F	F
F	V	F
F	F	V

De fato, a tabela-verdade do bicondicional, dada acima, nos retorna valores que são hora verdadeiro e hora falsos, e dessa maneira que não se pode caracterizar esta afirmação como tautologia ou contradição. Assim, função lógica dada pode ser chamada de contingência. A contingência é a situação mais comum de ocorrer. Ela é a regra geral. A tautologia e a contradição são exceções.

Importante

- Tautologia: proposição composta cuja tabela verdade só apresenta valor lógico V.
- Contradição: proposição composta cuja tabela verdade só apresenta valor lógico F.
- Contingência: proposição composta que apresenta tabela verdade com valores lógicos V e F.

4. Equivalência lógica

Dizemos que duas proposições P e **Q** são **equivalentes** se os resultados de suas tabelas-verdade são **idênticos** (ou seja, as colunas com os valores de **P** e **Q** são iguais). Para dizer que **P** e **Q** são equivalentes, escrevemos **P** = **Q**. Um exemplo simples está na dupla negação, **(p')'**, equivalente a **P**. Observe a tabela seguinte:

Р	Q	P v Q	~(P√Q)	~P	~Q	~P∧~Q
V	V	٧	F	F	F	F
V	F	٧	F	F	V	F
F	V	V	F	V	F	F
F	F	F	V	V	V	V

Equivalências lógicas básicas

O início da nossa lista contém equivalências diretas e intuitivas quando associadas a propriedades e equivalências usadas na própria álgebra. As duas primeiras, de certa forma, tratam de "redundâncias" no emprego de construções lógicas:

1) P \(P = P

Suponha que P seja a proposição "Pedro é ótimo aluno". Assim, a proposição composta "Pedro é ótimo aluno" pode ser resumida em "P: Pedro é ótimo aluno".

É um pouco (muito!) estranho pensar nesse tipo de construção, mas a lógica matemática possui ferramentas para tratá-las.

A ideia é a mesma que fora apresentada acima e agora a redundância está no uso do conectivo "ou" para duas proposições equivalentes. Assim, a proposição "Estudar RLM é desafiador ou Estudar RLM é desafiador" é equivalente a "Estudar RLM é desafiador"

Até o momento, nada de extraordinário. Nas duas equivalências a seguir, destacamos uma propriedade que diz que a ordem dos operandos (proposições) não altera o resultado quando se tratar de "conjunção" ou "disjunção". Essa característica é chamada de comutatividade.

3) $P \wedge Q = Q \wedge P$

Aqui podemos traçar um **paralelo** entre a disjunção e a multiplicação de números reais. Assim como a ordem dos fatores não altera o produto (resultado da multiplicação), a ordem das proposições **P** e **Q** não altera a tabela-verdade da proposição **P** e **Q**. Veja:

P: 2 divide 30.

Q: 3 divide 30.

P ∧ **Q:** 2 divide 18 **e** 3 divide 18.

Q \wedge **P:** 3 divide 18 **e** 2 divide 18.

A mensagem passada com as frases (P e Q) e (Q e P) é a mesma.

4) $P \vee Q = Q \vee P$

Para a disjunção, o paralelo que costumo traçar está relacionado à adição de números naturais. Da mesma forma que a ordem dos fatores não altera a adição (resultado da soma), a ordem das

proposições **P** e **Q** não altera a tabela-verdade da proposição **P** ou **Q**. Veja que, mesmo alterando a ordem das proposições P e **Q** seguinte, a mensagem não tem significado modificado.

P: 2 é par.

Q: 7 é número primo.

P v Q: 2 é par ou 7 é número primo.

Q v P: 7 é número primo ou 2 é par.

Equivalências de De Morgan

As importantíssimas relações de De Morgan tratam, em última análise, da negação de proposições lógicas compostas. Mais especificamente, da equivalência para a negação da conjunção e da equivalência para a disjunção de proposições simples:

5)
$$\sim$$
 (P \wedge Q) = (\sim P) \vee (\sim Q)

Leia assim: "A negação da conjunção ~(P e Q) é equivalente à disjunção das negações (~P) ou (~Q)". Vejam uma questão que explora essa equivalência lógica:

6)
$$\sim$$
 (P \vee Q) = (\sim P) \wedge (\sim Q)

Leia assim: "A negação da disjunção ~(P Ú Q) é equivalente à disjunção das negações (~Q) Ù (~Q)". Bem parecida com a anterior...

Exercícios:

- 1. Assinale a alternativa que apresenta uma contradição.
 - a. Nenhum político é ladrão e algum político é ladrão.
 - b. Todo político é ladrão e algum político é ladrão.
 - c. Todo ladrão é político e nenhum ladrão é político
 - d. Algum político é ladrão e algum político não é ladrão.
 - e. Nenhum político é ladrão e algum político não é ladrão.
- 2. Julgue o item que segue, a respeito de lógica proposicional. Se P e Q forem proposições simples, então a proposição $\neg [PV(\neg Q)] \leftrightarrow [(\neg P) \land Q]$ é uma tautologia. Justifique sua resposta com a tabela verdade.
- 3. A negação da proposição se P então Q é equivalente à proposição
 - a. (não P) e Q.
 - b. (não P) ou Q
 - c. Se (não P), então (não Q)
 - d. (não Q) e P.
 - e. Se (não Q), então (não P)
- 4. Uma afirmação que corresponda à negação lógica da afirmação "Pedro distribuiu amor e Pedro colheu felicidade" é:
 - (A) Pedro não distribuiu amor ou Pedro não colheu felicidade.
 - (B) Pedro distribuiu ódio e Pedro colheu infelicidade.
 - (C) Pedro não distribuiu amor e Pedro não colheu felicidade.
 - (D) Se Pedro colheu felicidade, então Pedro distribuiu amor.
 - (E) Pedro não distribuiu ódio e Pedro não colheu infelicidade.