

Cual es la importancia?

- La nanotecnología
- · La biotecnología
- La tecnología de la información se consideran una de las fuerzas impulsoras de una nueva revolución industrial

Nanomateriales-Definiciones

 Un nanómetro corresponde a una milmillonésima parte de un metro (10 -9 m) o una millonésima de milímetro (10 -

6 mm).
Gràfico:Universidad
Politècnica de Catalunya

Qué es un nanomaterial?

 El nanomaterial es un material natural o artificial, que contiene partículas en un estado no unido, como agregado o aglomerado, y en el que al menos el 50% de las partículas en la distribución de tamaño numérico tienen una o más dimensiones externas en el rango de 1 nm a 100 nm. "Def. de la Comision Europea"

Qué es un nanomaterial?

Existen diferentes definiciones de nanomateriales Las distintas definiciones de nanomaterial disponibles tienen en común dos características:

 a) el nanomaterial debe presentar al menos una dimensión externa en la escala nanométrica

У

 b) debido a ello, el nanomaterial debe presentar un comportamiento distinto al que tiene el material de idéntica composición en tamaño no nanométrico, esto es mayor de 100 nm.

> FIUBA-97-04-1er.C.2022-Ing.MÒNICA BIANUCCI

NANOMATERIAL según CEN <u>ISO / TS 80004-2</u>).

NANOMATERIAL

Material con dimensiones externas en la escala manométrica o con estructuras internas o estructuras superficiales en la escala manométrica. Por tanto, los nanomateriales incluyen materiales nanoestructurados y nano- objetos.

Material nanoestructurado

Estructura interna o estructura superficial a escala nanométrica (por ejemplo, nanocompuestos)

Objeto nano

Material con una, dos o tres dimensiones externas en la escala nanométrica.

NANOMATERIAL según CEN ISO / TS 80004-2).

Término genérico para todos los objetos individuales a Nanopartículas

nanoescala.

Nanoobjeto con una dimensión externa en el rango

nanométrico y dos dimensiones externas significativamente

mayores (por ejemplo, molécula de grafeno).

Nanoobjeto con dos dimensiones externas similares en la escala Nanofibra

nanométrica y una tercera dimensión externa que es

significativamente más grande que las otras dos dimensiones

externas (por ejemplo, nanotubos de carbono).

Nanotubos Nanofibra hueca Nanorods Nanofibra rígida.

Nanofibra eléctricamente conductora o Nanoalambre

semiconductora.

Fuente:

Nanoplaca

ISO / TS 80004

FIUBA-97-04-1er.C.2022-Ing.MÒNICA BIANUCCI

Qué es un nanomaterial?

Tabla:Universidad Politècnica de Catalunya

NANOMATERIALES ARTIFICIALES						
NANO-OBJETOS		MATERIALES NANOESTRUCTURADOS				
Nanoparticulas		Agregados y aglomerados de nano-objetos.				
Nanofibras, nanotubos	11	Nanocomposites: nano-objetos incorporados en una matriz o en una superficie.				
Nanoplatos		Materiales nanoporosos				

Figura 3. Las dos grandes familias de nanomateriales artificiales, (INRS, 2012)

FIUBA-97-04-1er.C.2022-Ing.MÒNICA

Qué es un nanomaterial?

- los chips de computadora pertenecen a los materiales nanoestructurados,
- las partículas de dióxido de titanio en las cremas solares pertenecen a los nano-objetos.

Nanostäbchen

Nanoplättchen

Fuente:

ISO / TS 80004

FIUBA-97-04-1er.C.2022-Ing.MÒNICA BIANUCCI

Qué es un nanomaterial?

C60-Fullereno: molécula esférica formada por 60 átomos de carbono con un diámetro aproximado de 1 nm. (© TebNad - Fotolia.com)

Nanocables de dióxido de titanio-Ti O₂₋ Imagen proporcionada por Plasma Chem

Cual es la importancia de los nanomateriales?

Propiedades únicas

En comparación con las formas a macroescala, los nanomateriales pueden, por ejemplo, tener una

- mayor reactividad
- propiedades ópticas modificadas
- incluso una estabilidad mecánica mayor.

Esto crea una multitud de efectos útiles e interesantes que se utilizan en diferentes áreas de aplicación.

FIUBA-97-04-1er.C.2022-Ing.MÒNICA BIANUCCI

USOS DE NANOMATERIALES

MATERIAL	USO
Silice amorfa sintética	Elaboración de Hormigón y neumáticos
nano-dióxido de titanio	agente bloqueador de los rayos UV en pinturas o filtros solares
nano- plata	antimicrobiano en textiles y aplicaciones médicas
nanotubos de carbono Fuente: Occupational Safety and Health News	aplicaciones en electrónica, el almacenamiento de energía, las estructuras de naves espaciales y vehículos.
Furone	occi -

Efectos de los nanomateriales

Debido a su tamaño extremadamente pequeño, las nanopartículas tienen una superficie muy grande y una gran movilidad en relación con su masa. Esto les permite reaccionar fuertemente con su entorno. Los riesgos potenciales surgen principalmente de los efectos de las nanopartículas en el cuerpo humano

Principio de precaución: " Si no hay un conocimiento científicamente probado de un nanomaterial específico sobre su potencial de peligro, este material debe considerarse como una sustancia peligrosa para la salud ".

FIUBA-97-04-1er.C.2022-Ing.MÒNICA BIANUCCI

NANOMATERIALES-Vias de ingreso

- Inhalación
- Absorción dérmica
- Absorción oral

NANOMATERIALES-Vias de ingreso

- Inhalación: la absorción más importante de nanomateriales para la mayoría de las aplicaciones se produce a través de la inhalación. La deposición de nanomateriales (especialmente partículas) en los pulmones depende del tamaño. cuanto más pequeñas son las partículas, más profundamente penetran en los pulmones y posiblemente incluso en la sangre. Los nanomateriales se depositan en todas las zonas del aparato respiratorio y la mayor proporción llega a los alvéolos. Algunas de las partículas depositadas se eliminan de nuevo ("aclaramiento"), por ejemplo mediante fagocitosis o transporte epitelial ciliado. Algunos nanomateriales pueden penetrar el epitelio pulmonar y entrar en el torrente sanguíneo (Meili et al. 2007)
- Absorción dérmica: Según el estado actual de la investigación, la absorción dérmica es muy baja en la mayoría de los casos, ya que la piel intacta representa una barrera eficaz frente a los nanomateriales. Sin embargo, no se puede descartar una mayor absorción a través de la piel no intacta (por ejemplo, después de una quemadura solar) (DEPA 2013).

FIUBA-97-04-1er.C.2022-Ing.MÒNICA BIANUCCI

Absorción oral: los nanomateriales se pueden ingerir por deglución o a través de los cilios de las membranas mucosas (mucociliares). La mayoría de los estudios indican que la mayoría de los nanomateriales ingeridos de esta forma se excretan directamente en las heces. Sin embargo, el comportamiento de los nanomateriales en el tracto gastrointestinal depende en gran medida de su tamaño y no se puede descartar la superación de la barrera intestinal (DaNa).

Nanomateriales-Efectos

- La superficie hace el efecto
- Las nanopartículas pueden atravesar las barreras del cuerpo y entrar en órganos que son inaccesibles para partículas más grandes.
- Parte de los efectos deseados e indeseables de las nanopartículas se basan, independientemente de su naturaleza química, en su <u>superficie y en el número</u> <u>de partículas</u> que son órdenes de magnitud mayores que las de las partículas más gruesas de la misma composición.

FIUBA-97-04-1er.C.2022-Ing.MÒNICA BIANUCCI

Nanomateriales-Medicion

- Se debe determinar la exposición de los empleados a las nanopartículas.
- Además de los métodos <u>gravimétricos</u> clásicos, también se debe determinar la concentración del número de partículas y, si es posible, su distribución de tamaño.
- Los dispositivos de medición simples que solo brindan información parcial se pueden usar de manera sensata para verificar la efectividad de las medidas de protección.

Medidas de control

Sustitución:

 La sustitución básica de nanomateriales generalmente no es posible, ya que estos se utilizan precisamente por sus propiedades especiales.

Método de trabajo

- Es importante la sustitución de nanomateriales que se encuentran presentes en fases peligrosas (especialmente polvos y aerosoles) por el mismos material pero en medios líquidos o sólidos (dispersiones, pastas, compuestos).
- Las aplicaciones de rociado deben reemplazarse por métodos de bajo aerosol (por ejemplo, métodos de cepillado, inmersión).

Medidas de control

Medidas Técnicos :

Ventilación: El trabajo con nanomateriales solo debe realizarse en ambientes ventilados con presión negativa. El aire de escape no debe recircularse.

Las áreas de trabajo deben estar separadas (habitaciones separadas). En los laboratorios, el trabajo debe realizarse al menos con vitrinas de gases y, en el caso de nanomateriales peligrosos, en las denominadas cajas de guantes.

En la producción se utilizarán equipos cerrados

Los materiales del más alto nivel de seguridad solo deben realizarse en habitaciones con controles de acceso y ventilación con filtros F7 para el aire de escape.

Los trabajos de limpieza en tales habitaciones solo deben realizarse con aspiradoras de clase de polvo H.

Los pisos deben ser de baldosas

FIUBA-97-04-1er.C.2022-Ing.MÒNICA BIANUCCI

Medidas de control

- Los sistemas, máquinas y dispositivos emisores de polvo deben estar equipados con un sistema de aspiración eficaz o debe evitarse la liberación de polvo con otras medidas.
- Se debe evitar que el polvo se extienda a áreas de trabajo no contaminadas.
- Los polvos deben recogerse lo más completamente posible en el punto de descarga o generación y eliminarse de manera segura; El aire extraído debe guiarse de tal manera que entre la menor cantidad de polvo posible en el aire respirable de los empleados. el retorno del aire extraído al área de trabajo solo se permite después de una limpieza suficiente.
- Debe evitarse un depósito de polvo. Si esto no es posible, los depósitos de polvo deben eliminarse con procesos húmedos o mojados o con aspiradores o extractores de polvo adecuados; No se permite barrer en seco o soplar los depósitos de polvo con aire comprimido.

Medidas de gestiòn :

- Las salas en las que se utilicen nanomateriales deben estar bajo la supervisión de un experto en prevención (responsable de seguridad laboral).
- Deben estar disponibles instrucciones y protocolos (incluidos los protocolos de emergencia) para la manipulación de nanomateriales (formación del personal).
- La duración de la exposición debe acortarse tanto como sea posible. Los empleados deben usar el equipo de protección provisto. Se dispondrá de instalaciones de almacenamiento separadas para ropa de trabajo y de calle.
- El número de empleados potencialmente expuestos debe ser limitado. Las zonas peligrosas deben demarcarse. Existe una prohibición de acceso para personas no autorizadas.
- Los nanomateriales deben almacenarse, transportarse y desecharse en envases herméticos dobles. También es importante etiquetar los contenedores en consecuencia y agregar u observar la hoja de datos de seguridad (SDS). FIUBA-97-04-1er.C.2022-lng.MôNICA BIANUCCI

Uso de EPP

- Se recomienda usar protección respiratoria personal si las medidas de protección técnica no pueden evitar la liberación.
- Para protegerse contra el contacto con la piel, asegúrese de que los guantes tengan suficiente estabilidad mecánica y que el material del guante no esté dañado. Superponer los guantes con ropa protectora adicional y ponérselos y quitárselos correctamente juega un papel más importante que la permeabilidad del material para evitar un posible contacto con la piel. Los materiales de ropa protectora tejida ofrecen una protección más pobre que los materiales de membrana. Puede ser necesaria una protección química adicional en determinadas circunstancias.

"Enfoque de bandas de control" controlbanding

Para garantizar que se apliquen las medidas de protección correctas al manipular nanomateriales, se puede utilizar el denominado
 "Enfoque de bandas de control"
 Se clasifica el riesgo en Muy alto, Alto, Medio y Bajo.

FIUBA-97-04-1er.C.2022-Ing.MÒNICA BIANUCCI

Control banding-Bandas de control

- Es un método administrativo cualitativo que estratifica el riesgo potencial en niveles (bandas) y asigna controles a cada una de ellas.
- Se aplica a nanomateriales insolubles.

FIUBA-97-04-1er.C.2022-Ing.MÒNICA BIANUCCI

Bandas de control

EXPOSICIÓN

	Baja (0-25)	Media (26-50)	Alta (51-75)	Muy Alta (75-100)
Muy alto 76-100	RL3	RL3	RL4	RL4
Alto 51-75	RL2	RL2	RL3	RL4
Medio 26-50	RL1	RL1	RL2	RL3
Bajo 0-25	RL1	RL1	RL1	RL2

RL1:Ventilación General

RL2: Controles_Ingenierìa_Campana de extracción

RL3: Contenido

S E

Ε

D

RL4: Requiere estudio especializado

Control banding-Bandas de control

FIUBA-97-04-1er.C.2022-Ing.MÒNICA BIANUCCI

Factores para determinar la banda de Severidad

Còmo obtengo la información?: de HOJAS DE SEGURIDAD DE LAS SUSTANCIAS

- Superficie (10 pts)
- Forma de partícula(10 pts)
- Diámetro de partícula(10 pts)
- Solubilidad(10 pts)
- Carcinogenidad (6 pts)
- Toxicidad en sistema reproductivo (6 pts)
- Mutagenicidad (6 pts)
- Toxicidad dérmica (6 pts)
- Asmagenicidad (6 pts)

 La puntuación por severidad se obtiene como un 70% del nanomaterial y un 30 % del material parental.

Estimación de la banda de Exposición

- Estimación de la cantidad de material utilizado (25 pts)
- Pulverulencia/neblina (30 pts)
- Número de empleados con una exposición similar (15 pts)
- Frecuencia de la actividad(15 pts)
- Duración de la actividad (15 pts)

Estimación de la banda de Exposición

Cantidad material u En un dìa	utilizado	Polvo en ambiente		Cantidad Trabajado similar ex	ores con	Frecuencia	anual	Duración operaciòr	
> 100	25	Alto	30	> 15	15	Diaria	15	> 4	15
11-100	12,5	Medio	15	11-15	10	Semanal	10	1-4	10
0-10	6,25	Bajo	7,5	6-10	5	mensual	5	30-60 minutos	5
				1-5	0	> mensual	0	< 30 minutos	0
Desconocido	18,75	Desconocido	22,5	Desconocido	11,25	Desconocido	11,25	Desconocido	11,25

76-100 –MUY ALTA 51-75-ALTA 26-50-MEDIA 0-25-BAJA