NEC NEC LCD Technologies, Ltd.

TFT COLOR LCD MODULE

NL160120AC27-22B

54 cm (21.3 Type) UXGA LVDS Interface (2 port)

DATA SHEET = DOD-PP-0919 (2nd edition)

This DATA SHEET is updated document from DOD-PP-0675(1).

All information is subject to change without notice. Please confirm the sales representative before starting to design your system.

INTRODUCTION

The Copyright to this document belongs to NEC LCD Technologies, Ltd. (hereinafter called "NEC"). No part of this document will be used, reproduced or copied without prior written consent of NEC.

NEC does and will not assume any liability for infringement of patents, copyrights or other intellectual property rights of any third party arising out of or in connection with application of the products described herein except for that directly attributable to mechanisms and workmanship thereof. No license, express or implied, is granted under any patent, copyright or other intellectual property right of NEC.

Some electronic parts/components would fail or malfunction at a certain rate. In spite of every effort to enhance reliability of products by NEC, the possibility of failures and malfunction might not be avoided entirely. To prevent the risks of damage to death, human bodily injury or other property arising out thereof or in connection therewith, each customer is required to take sufficient measures in its safety designs and plans including, but not limited to, redundant system, fire-containment and anti-failure.

The products are classified into three quality grades: "Standard", "Special", and "Specific" of the highest grade of a quality assurance program at the choice of a customer. Each quality grade is designed for applications described below. Any customer who intends to use a product for application other than that of Standard quality grade is required to contact an NEC sales representative in advance.

The **Standard** quality grade applies to the products developed, designed and manufactured in accordance with the NEC standard quality assurance program, which are designed for such application as any failure or malfunction of the products (sets) or parts/components incorporated therein a customer uses are, directly or indirectly, free of any damage to death, human bodily injury or other property, like general electronic devices.

Examples: Computers, office automation equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment, industrial robots, etc.

The **Special** quality grade applies to the products developed, designed and manufactured in accordance with an NEC quality assurance program stricter than the standard one, which are designed for such application as any failure or malfunction of the products (sets) or parts/components incorporated therein a customer uses might directly cause any damage to death, human bodily injury or other property, or such application under more severe condition than that defined in the Standard quality grade without such direct damage.

Examples: Control systems for transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, medical equipment not specifically designed for life support, safety equipment, etc.

The **Specific** quality grade applies to the products developed, designed and manufactured in accordance with the standards or quality assurance program designated by a customer who requires an extremely higher level of reliability and quality for such products.

Examples: Military systems, aircraft control equipment, aerospace equipment, nuclear reactor control systems, medical equipment/devices/systems for life support, etc.

The quality grade of this product is the "Standard" unless otherwise specified in this document.

CONTENTS

INTRODUCTION	2
1 OUT INF	_
1. OUTLINE	
1.2 APPLICATION	
1.3 FEATURES	
2. GENERAL SPECIFICATIONS	
3. BLOCK DIAGRAM	
4. DETAILED SPECIFICATIONS	
4.1 MECHANICAL SPECIFICATIONS	
4.2 ABSOLUTE MAXIMUM RATINGS	
4.3 ELECTRICAL CHARACTERISTICS	
4.3.1 LCD panel signal processing board	
4.3.2 Inverter	10
4.3.3 Inverter current wave	
4.3.4 Power supply voltage ripple	
4.3.5 Fuse	
4.4 POWER SUPPLY VOLTAGE SEQUENCE	
4.4.1 LCD panel signal processing board	
4.4.2 Inverter	
4.5 CONNECTIONS AND FUNCTIONS FOR INTERFACE PINS	
4.5.1 LCD panel signal processing board	
4.5.2 Inverter	
4.5.3 Positions of socket	
4.6 LUMINANCE CONTROL	16
4.6.1 Luminance control methods	16
4.6.2 Detail of BRTI timing	
4.6.3 Detail of BRTP timing	18
4.7 LVDS DATA INPUT MAP	
4.7.1 Mode A	
4.7.2 Mode B	
4.7.3 Mode C	
4.8 DISPLAY COLORS AND INPUT DATA SIGNALS	
4.9 INPUT SIGNAL TIMINGS	
4.9.1 Timing characteristics	
4.9.2 Input signal timing chart	
4.10 DISPLAY POSITIONS	
4.11 TEN-bit LOOK UP TABLE FOR GAMMA ADJUSTMENT	
4.12 LUT SERIAL COMMUCATION TIMINGS	
4.12.1 Timing Chart	
4.12.2 Timing specifications	
4.13 OPTICS	
4.13.1 Optical characteristics	
4.13.2 Definition of contrast ratio	
4.13.3 Definition of luminance uniformity	
4.13.4 Definition of response times	
4.13.5 Definition of viewing angles	31

CONTENTS

5. RELIABILITY TESTS	
6. PRECAUTIONS	33
6.1 MEANING OF CAUTION SIGNS	
6.2 CAUTIONS	33
6.3 ATTENTIONS	33
6.3.1 Handling of the product	33
6.3.2 Environment	
6.3.3 Characteristics	
6.3.4 Other	
7. OUTLINE DRAWINGS	36
7.1 FRONT VIEW	36
7.2 REAR VIEW	37

1. OUTLINE

1.1 STRUCTURE AND PRINCIPLE

Color LCD module NL160120AC27-22B is composed of the amorphous silicon thin film transistor liquid crystal display (a-Si TFT LCD) panel structure with driver LSIs for driving the TFT (Thin Film Transistor) array and a backlight.

The a-Si TFT LCD panel structure is injected liquid crystal material into a narrow gap between the TFT array glass substrate and a color-filter glass substrate.

Grayscale data signals from a host system (e.g. signal generator, etc.) are modulated into best form for active matrix system by a signal processing board, and sent to the driver LSIs which drive the individual TFT arrays.

The TFT array as an electro-optical switch regulates the amount of transmitted light from the backlight assembly, when it is controlled by data signals. Color images are created by regulating the amount of transmitted light through the TFT array of red, green and blue dots.

1.2 APPLICATION

• Color monitor system

1.3 FEATURES

- Ultra-wide viewing angle (Ultra-Advanced Super Fine TFT (UA-SFT))
- High luminance
- High contrast
- High resolution
- Low reflection
- Wide color gamut
- 256 gray scale in each R, G, B sub-pixel (8-bit), 16,777,216 colors
- LVDS interface
- Adjustable gamma characteristics by using built-in 10-bit LUT (look up table)
- Selectable LVDS data input map
- Small foot print
- Incorporated direct light type backlight with an inverter
- Compliance with the European RoHS directive (2002/95/EC)

2. GENERAL SPECIFICATIONS

Display area	432.0 (H) × 324.0 (V) mm
Diagonal size of display	54 cm (21.3 inches)
Drive system	a-Si TFT active matrix
Display color	16,777,216 colors
Pixel	1,600 (H) × 1,200 (V) pixels (1 pixel consists of 3 sub-pixels (RGB).)
Pixel arrangement	RGB (Red dot, Green dot, Blue dot) vertical stripe
Dot pitch	$0.090 \text{ (H)} \times 0.270 \text{ (V)} \text{ mm}$
Pixel pitch	$0.270 \text{ (H)} \times 0.270 \text{ (V)} \text{ mm}$
Module size	457.0 (W) × 350.0 (H) × 34.0 (D) mm (typ.)
Weight	2,600 g (typ.)
Contrast ratio	1050:1 (typ.)
Viewing angle	 At the contrast ratio ≥ 10:1 Horizontal: Right side 88° (typ.), Left side 88° (typ.) Vertical: Up side 88° (typ.), Down side 88° (typ.)
Designed viewing direction	Viewing angle with optimum grayscale (γ≒ DICOM): normal axis (perpendicular) Note1
Polarizer surface	Antiglare
Polarizer pencil-hardness	2H (min.) [by JIS K5400]
Color gamut	At LCD panel center 72 % (typ.)[against NTSC color space]
Response time	$Ton+Toff (10\% \longleftrightarrow 90\%)$ 35 ms (typ.)
Luminance	At the maximum luminance 860 cd/m² (typ.)
Signal system	2 ports LVDS interface (THC63LVD824 THine Electronics, Inc. or equivalent) [RGB 8-bit signals, Data enable signal (DE), Dot clock (CK)]
Power supply voltage	LCD panel signal processing board: 12.0V Inverter: 24.0V
Backlight	Direct light type: 16 cold cathode fluorescent lamps with an inverter Replaceable part Inverter: 213PW071
Power consumption	At checkered flag pattern, the maximum luminance 72 W (typ.)

Note1: When the product luminance is 400cd/m^2 , the gamma characteristic is designed to $\gamma = \text{DICOM}$.

3. BLOCK DIAGRAM

Note1: Relations between GND (Signal ground), FG (Frame ground) and GNDB (Inverter ground) in the LCD module are as follows.

GND - FG	Connected
GND - GNDB	Not connected
FG - GNDB	Not connected

Note2: GND, FG and GNDB must be connected to customer equipment's ground, and it is recommended that these grounds are connected together in customer equipment.

4. DETAILED SPECIFICATIONS

4.1 MECHANICAL SPECIFICATIONS

Parameter	Specification		Unit
Module size	$457.0 \pm 0.5 \text{ (W)} \times 350.0 \pm 0.5 \text{ (H)} \times 34.0 \text{ (typ., D)}$ 37.0 (max. D)	Note1, Note2	mm
Display area	432.0 (H) × 324.0 (V)	Note1	mm
Weight	2,600(typ.), 2,800 (max.)		gg

Note1: Excluding warpage of the signal processing board cover and the connection board cover

Note2: See "7. OUTLINE DRAWINGS".

4.2 ABSOLUTE MAXIMUM RATINGS

	Parameter				Rating	Unit	Remarks	
Power supply voltage LCD panel signal processing board Inverter			anel signal processing board		-0.3 to +14.0	V	Ta = 25°C	
			verter	VDDB	-0.3 to +27.0	V	1a – 25 C	
	LCD pan		al processing board Note1	Vi	-0.3 to +3.45	V	VDD= 12.0V	
			BRTI signal	VBI	-0.3 to +1.5	V		
Input voltage for signals	Inverter		BRTP signal	VBP	-0.3 to +5.5	V	VDDD- 24 0V	
	mverter		BRTC signal	VBC	-0.3 to +5.5	V	VDDB= 24.0V	
			PWSEL signal	VBS	-0.3 to +5.5	V		
	Storage te	mperat	ture	Tst	-20 to +60	°C	-	
Operating te	mnaratura		Front surface	TopF	0 to +55	°C	Note2	
Operating te	mperature		Rear surface	TopR	0 to +60	°C	Note3	
					≤ 95	%	Ta ≤ 40°C	
	Relative No		ity	RH	≤ 85	%	40°C < Ta ≤ 50°C	
					≤ 70	%	50°C < Ta ≤ 55°C	
Absolute humidity Note4			АН	≤ 73 Note5	g/m ³	Ta > 55°C		
	Operating altitude			-	≤ 4,850	m	0°C ≤ Ta ≤ 55°C	
	Storage	altitud	e	-	≤ 13,600	m	-20°C ≤ Ta ≤ 60°C	

Note1: DA0+/-, DA1+/-, DA2+/-, DA3+/-, CKA+/-, DB0+/-, DB1+/-, DB2+/-, DB3+/-, CKB+/- CS, SDATI, SCLK, TxSEL0, TxSEL1

Note2: Measured at center of LCD panel surface (including self-heat)

Note3: Measured at center of LCD module's rear shield surface (including self-heat)

Note4: No condensation

Note5: Water amount at Ta = 55°C and RH = 70%

4.3 ELECTRICAL CHARACTERISTICS

4.3.1 LCD panel signal processing board

 $(Ta = 25^{\circ}C)$

Parameter	Symbol	min.	typ.	max.	Unit	Remarks	
Supply voltage	VDD	10.8	12.0	13.2	V	-	
Supply current		IDD	-	400 Note1	600 Note2	mA	at VDD=12.0V
Ripple voltage		VRP	-	-	100	mVp-p	for VDD
	High	VTH	-	-	+100	mV	at VCM=1.2V
Differential input threshold voltage	Low	VTL	-100	-	-	mV	Note3, Note4
Input voltage swing	VI	0	-	2.4	V	Note4	
Terminating resistance		RT	-	100	-	Ω	-
Control signal input threshold	High	VIH	Keep this pin open.			-	
voltage	Low	VIL	0	-	0.8	V	Note5
Control signal input current	Low	IIL	-10	-	10	μΑ	
	High	V+	-	1.98	2.07	V	
Serial communication signal input threshold voltage	Low	V-	0.63	0.66	-	V	Note6
	Hysteresis	VH	0.4	-	-	V	
Output sional there lead and	High	VOH	2.4	-	-	V	
Output signal threshold voltage	Low	VOL	-	-	0.4	V	Note7
	High	ЮН	-12	-	-	mA	Note7
Output signal current	Low	IOL	-	-	12	mA	

Note1: Checkered flag pattern (by EIAJ ED-2522)

Note2: Pattern for maximum current

Note3: Common mode voltage for LVDS driver

Note4: DA0+/-, DA1+/-, DA2+/-, DA3+/-, CKA+/-, DB0+/-, DB1+/-, DB2+/-, DB3+/-, CKB+/-

Note5: T_XSEL0, T_XSEL1 Note6: CS, SDATI, SCLK

Note7: SDATO

4.3.2 Inverter

 $(Ta = 25^{\circ}C)$

Parameter			Symbol	min.	typ.	max.	Unit	Remarks
Power supply voltage			VDDB	22.8	24.0	25.2	V	-
Power supply current			IDDB	2,500	2,800	3,100	mA	VDDB = 24.0V, At the maximum luminance
	BRTI signal		VBI	0.25	-	1.0	V	
	RDTD signal	High	VBPH	2.0	-	5.25	V	
T 14	BRTP signal	Low	VBPL	0	-	0.8	V	
Input voltage for signals	BRIC signal —	High	VBCH	2.0	-	5.25	V	
Tor Signars		Low	VBCL	0	-	0.8	V	
	I PWSEL signal —	High	VBSH	2.0	-	5.25	V	
		Low	VBSL	0	-	0.8	V	
	BRTI signal		IBI	-200	-	1,000	μΑ	-
	BRTP signal	High	IBPH	-	-	1,000	μΑ	
T .	DKIF signal	Low	IBPL	-600	-	-	μΑ	
Input current for signals	BRTC signal	High	IBCH	-	-	440	μΑ	
	DKIC Signal	Low	IBCL	-600	-	-	μΑ	
	PWSEL signal	High	IBSH	-	-	440	μΑ	
	I WSEL Signal	Low	IBSL	-600	-	-	μΑ	

4.3.3 Inverter current wave

Maximum luminance control: 100% Minimum luminance control: 20%

Luminance control frequency: 270Hz (typ.)

Note1: Luminance control frequency indicate the input pulse frequency, when select the external pulse control. See "**4.6.3 Detail of BRTP timing**".

Note2: The power supply lines (VDDB and GNDB) have large ripple voltage (See "4.3.4 Power supply voltage ripple".) during luminance control. There is the possibility that the ripple voltage produces acoustic noise and signal wave noise in audio circuit and so on. Put a capacitor $(5,000 \text{ to } 6,000 \mu\text{F})$ between the power supply lines (VDDB and GNDB) to reduce the noise, if the noise occurred in the circuit..

4.3.4 Power supply voltage ripple

This product works, even if the ripple voltage levels are beyond the permissible values as following the table, but there might be noise on the display image.

Power sup	oly voltage	Ripple voltage Note1 (Measure at input terminal of power supply)	Unit
VDD	12.0 V	≤ 100	mVp-p
VDDB	24.0 V	≤ 200	mVp-p

Note1: The permissible ripple voltage includes spike noise.

Example of the power supply connection

a) Separate the power supply

4.3.5 Fuse

Parameter		Fuse	Rating	Fusing current	Remarks	
Туре		Supplier	Kating	Tusing current	Remarks	
VDD	FCC16132AB	KAMAYA ELECTRIC	1.25A	2.5A,		
VDD FCC16132AB	recioi32Ab	Co., Ltd.	32V	5 seconds maximum	Note1	
VDDB	11CT-6.3A	SOC	6.3A	10A,	Note1	
VDDB IICI-6	11C1-0.3A	SOC	72V	5 seconds maximum		

Note1: The power supply capacity should be more than the fusing current. If it is less than the fusing current, the fuse may not blow in a short time, and then nasty smell, smoke and so on may occur.

4.4 POWER SUPPLY VOLTAGE SEQUENCE

4.4.1 LCD panel signal processing board

- *1: DA0+/-, DA1+/-, DA2+/-, DA3+/-, CKA+/-, DB0+/-, DB1+/-, DB2+/-, DB3+/- and CKB+/-
- *2: LVDS signals should be measured at the terminal of 100Ω resistance.
- Note1: In terms of voltage variation (voltage drop) while VDD rising edge is below 10.8V, a protection circuit may work, and then this product may not work.
- Note2: LVDS signals and CS, SDATI, SCLK must be Low or High-impedance, exclude the VALID period (See above sequence diagram), in order to avoid that internal circuits is damaged. If some of signals are cut while this product is working, even if the signal input to it once again, it might not work normally. VDD should be cut when the display and function signals are stopped.
- Note3: At the beginning of the serial communication mode, take 20ms or more after the LVDS signal input. As writing and reading the LUT data, see "4.11 TEN-bit LOOK UP TABLE FOR GAMMA ADJUSTMENT".
- Note4: The backlight should be turned on within the valid period of LVDS signals, in order to avoid unstable data display.

4.4.2 Inverter

- Note1: The backlight should be turned on within the valid period of LVDS signals, in order to avoid unstable data display.
- Note2: If tr is more than 800ms, the backlight will be turned off by a protection circuit for inverter.
- Note3: When VDDB is ON and BRTC is high, voltage to BRTI, BRTP and PWSEL terminals should be applied.

4.5 CONNECTIONS AND FUNCTIONS FOR INTERFACE PINS

4.5.1 LCD panel signal processing board

CN1 Socket (LCD module side): DF19G-30P-1H (56) (Hirose Electric Co., Ltd. (HRS))

Adaptable plug: DF19-30S-1C (Hirose Electric Co., Ltd. (HRS))

Adaptable D: M	<u> </u>			·					
Pin No.	Symbol	Signal		Rem	narks				
1	DA0-	Pixel data A0	Odd pixel data Inp	ut (LVDS diffe	erential signal)	No	ote1		
2	DA0+		ı r						
3	DA1-	Pixel data A1	Pixel data A1 Odd pixel data Input (LVDS differential signal)						
4	DA1+	1 1101 0000 111	oud piner data imp	ut (2 / 2 / 3 / 3 / 11 / 1	orenium signary		Note1		
5	DA2-	Pixel data A2	Odd pixel data Inp	ut (LVDS diffe	erential signal)	No	ote1		
6	DA2+	1 1101 0000 112	1	ut (2 / 2 / 3 / 3 / 11 / 1	orenium signary		,,,,,,		
7	GND	Ground	Signal ground			No	ote2		
8	CKA-	Pixel clock	Odd pixel clock In	nut (LVDS dif	ferential signal)	No	ote1		
9	CKA+	T IACT CIOCK	oud pixer clock in	put (E+B5 un	rerential signal)		,,,,,		
10	DA3-	Pixel data A3	Odd pixel data Inp	ut (LVDS diffe	erential signal)	No	ote1		
11	DA3+	Tinor data Tis	oud pixer data inp	at (E v B b ann	orential signal)		,,,,,		
12	DB0-	Pixel data B0	Even pixel data In	No	ote1				
13	DB0+	Tiner data Bo			,,,,,				
14	GND	Ground	Signal ground	Signal ground					
15	DB1-	Pixel data B1	Even pixel data In	Note1					
16	DB1+	Tixer data Di	Even pixel data m	110	Notes				
17	GND	Ground	Signal ground			No	te2		
18	DB2-	Pixel data B2	Even nivel data In	Even pixel data Input (LVDS differential signal)					
19	DB2+	Tixel data b2	Even pixel data mj	out (LVDS um	lerentiai signai)	INC	Note1		
20	CKB-	Pixel clock	Even pixel clock Is	anut (LVDS di	fforantial signal)	No	ote 1		
21	CKB+	1 IXCI CIOCK	Even pixer clock ii	iput (LVD3 ui	nerentiai signai)	110	ж		
22	DB3-	Pixel data B3	Even pixel data In	out (LVD\$ diff	forantial signal)	No	ote1		
23	DB3+	Tixel data D3	Even pixel data mj	out (LVDS um	lerentiai signai)	INC	лет		
24	GND	Ground	Signal ground			No	te2		
				1	<u> </u>		_		
25	TxSEL0			TxSEL1	TxSEL0	Mode			
		Selection of LVDS		Open	Open	A			
		data input map	Note3, Note4	Open	Low	В	1		
26	TxSEL1			Low	Open	С	1		
				Low	Low	A	1		
27	GND	Ground	Signal ground		<u> </u>	No	ote2		
28	VDD								
29	VDD	Power supply	12V Note2						
30	VDD	1	100						
		•	•						

Note1: Twist pair wires with 100Ω (Characteristic impedance) should be used between LCD panel signal processing board and LVDS transmitter.

Note2: All GND and VDD terminals should be used without any non-connected lines.

Note3: This terminal is pulled-up in the product. (Pull-up resistance: $50k\Omega$)

Note4: See "4.7 LVDS DATA INPUT MAP".

CN2 Socket (LCD module side): SM10B-SRSS-TB (LF)(SN) (J.S.T. Mfg Co., Ltd.) Adaptable plug: SHR-10V-S, SHR-10V-S-B or 10SR-3S (J.S.T. Mfg Co., Ltd.)

Pin No.	Symbol	Signal	Remarks	
1	RSVD			
2	RSVD	Reserved	Keep this pin Open.	
3	RSVD			
4	GND	Ground	Signal ground	Note1
5	CS	Chip selection	For LUT communication control	Note2
6	SDATO	Serial data output	For LUT output signal	
7	SDATI	Serial data input	For LUT communication control	Note3
8	SCLK	Serial clock	For LUT communication control	Note3
9	GND	Ground	Signal ground	Note1
10	RSVD	Reserved	Keep this pin Open.	

Note1: All GND terminals should be used without any non-connected lines.

Note2: This terminal is pulled-up in the product. (Pull-up resistance: $50k\Omega$)

Note3: These terminals are pulled-down in the product. (Pull-down resistance: $50k\Omega$)

4.5.2 Inverter

CN201 socket (LCD module side): DF3Z-10P-2H (2*) (HIROSE ELECTRIC Co,. Ltd.)

Adaptable plug: DF3-10S-2C (HIROSE ELECTRIC Co,. Ltd.)
Pin No. | Symbol | Function | D

Pin No.	Symbol	Function	Description
1	GNDB		
2	GNDB		
3	GNDB	Inverter ground	Note1
4	GNDB		
5	GNDB		
6	VDDB		
7	VDDB		
8	VDDB	Power supply	Note1
9	VDDB		
10	VDDB		

Note1: All VDDB and GNDB terminals should be used without any non-connected lines.

CN202 socket (LCD module side): IL-Z-9PL-SMTYE (Japan Aviation Electronics Industry Limited (JAE))
Adaptable plug: IL-Z-9S-S125C3 (Japan Aviation Electronics Industry Limited (JAE))

Pin No.	Symbol	Function	Description			
1	GNDB	Inverter ground	Note1			
2	GNDB	inverter ground	Note1			
3	N.C.	-	Keep this pin Open.			
4	BRTC	Backlight ON/OFF control signal	High or Open: Backlight ON Low: Backlight OFF			
5	BRTH	Luminance control terminal				
6	BRTI	Lummance condor terminar	Note2, Note3			
7	BRTP	BRTP signal				
8	GNDB	Inverter ground	Note1			
9	PWSEL	Selection of luminance control signal method	Note2, Note3			

Note1: All GNDB terminals should be used without any non-connected lines.

Note2: See "4.6.1 LUMINANCE CONTROL ".

Note3: When VDDB is ON and BRTC is high, voltage to BRTI, BRTP and PWSEL terminals should be applied.

4.5.3 Positions of socket

4.6 LUMINANCE CONTROL

4.6.1 Luminance control methods

Method	Adjustment and l	uminance ratio	PWSEL terminal	BRTP terminal
	• Adjustment The variable resistor (R) for lum			
Variable resistor control Note1	±5%, 1/10W. Minimum point of luminance and maximum point of luminance. The resistor (R) must be conterminals.			
	• Luminance ratio Note3	T		
	Resistance 1.5 k Ω Note4	Luminance ratio 20% (Min. Luminance)		
		· · · · · · · · · · · · · · · · · · ·	High or Open	Open
	10 kΩ	100% (Max. Luminance)		
Voltage control Note1 Note5	Adjustment Voltage control method works, w VBI voltage is input between control method can carry out luminance. Luminance is the maximum when Luminance ratio Note3			
	BRTI Voltage (VBI)	Luminance ratio		
	0.2 V Note4	20% (Min. Luminance)		
	1.0 V	100% (Max. Luminance)		
Pulse width modulation	Adjustment Pulse width modulation (PWM) terminal is Low and PWM sign BRTP terminal. The luminance BRTP signal.		PPTD signal	
Note1	Luminance ratio Note3		LOW	BRTP signal
Note2 Note6	Duty ratio	Luminance ratio		
	0.2 Note4	20% (Min. Luminance)		
	1.0	100% (Max. Luminance)		

Note1: In case of the variable resistor control method and the voltage control method, noises may appear on the display image depending on the input signals timing for LCD panel signal processing board.

Use PWM method, if interference noises appear on the display image!

Note2: The inverter will stop working, if the Low period of BRTP signal is more than 500ms while BRTC signal is High or Open. Then the backlight will not turn on anymore, even if BRTP signal is input again. This is not out of order. The inverter will start to work when power is supplied again.

Note3: These data are the target values.

Note4: Do not set the variable resistor, BRTI voltage and Pulse width modulation in less than $1.5k\Omega$ or less than 0.2V or less than $0.2(Duty\ ratio)$. Otherwise flicker or display mura may cause, or the lamp may not be turned on.

Note5: See "4.6.2 Detail of BRTI timing".

Note6: See "4.6.3 Detail of BRTP timing".

4.6.2 Detail of BRTI timing

(1) Timing diagrams

Note1: When VDDB is ON and BRTC is high, voltage to BRTI, BRTP and PWSEL terminals should be applied.

4.6.3 Detail of BRTP timing

(1) Timing diagrams

• Detail of A part

(2) Each parameter

Parameter	Symbol	min.	typ.	max.	Unit	Remarks
Luminance control frequency	FL	185	-	325	Hz	Note1, Note2
Duty ratio	DL	0.2	-	1.0	-	Note1, Note3
Low period	tPWL	0	-	500	ms	Note4

Note1: Definition of parameters is as follows.

$$FL = \frac{1}{tPW} DL = \frac{tPWH}{tPW}$$

Note2: See the following formula for luminance control frequency.

Luminance control frequency = $1/\text{tv} \times (\text{n}+0.25)$ [or (n+0.75)]

$$n = 1, 2, 3 \cdot \cdot \cdot \cdot$$

tv: Vertical cycle (See "4.9.1 Timing characteristics".)

The interference noise of luminance control frequency and input signal frequency for LCD panel signal processing board may appear on a display. Set up luminance control frequency so that the interference noise does not appear!

Note3: See "4.6.1 Luminance control methods".

Note4: If tPWL is more than 500ms, the backlight will be turned off by a protection circuit for inverter. The inverter will start to work when power is supplied again.

Note5: When VDDB is ON and BRTC is high, voltage to BRTI, BRTP and PWSEL terminals should be applied.

4.7 LVDS DATA INPUT MAP 4.7.1 Mode A

₹	
\sim	

		Transmitter	
Input data Note1	Pin THC63LVDF83A	Pin THC63LVD823	CN1
RA2 →	51 TA0	53 R12 No	ote2 Pin Symbol
$RA3 \rightarrow$	52 TA1	54 R13 TA1-	→ 1 DA0-
RA4 →	54 TA2	57 R14 TA1+	\rightarrow 2 DA0+
$RA5 \rightarrow$	55 TA3	58 R15	2 DA1
$\begin{array}{c} RA6 \longrightarrow \\ RA7 \longrightarrow \end{array}$	56 TA4 3 TA5	59 R16 TB1- 60 R17 TB1+	
	4 TA6	63 G12	\rightarrow 4 DA1+
$GA3 \rightarrow GA3$	6 TB0	64 G13 TC1-	→ 5 DA2-
$GA4 \rightarrow$	7 TB1	65 G14 TC1+	
$GA5 \rightarrow$	11 TB2	66 G15	7 GND
$GA6 \rightarrow$	12 TB3	67 G16 TCLK1-	
$GA7 \rightarrow$	14 TB4	68 G17 TCLK1+	→ 9 CKA+
$\stackrel{\text{BA2}}{=}$	15 TB5	73 B12	10.510
$\stackrel{\text{BA3}}{\rightleftharpoons} \rightarrow$	19 TB6	74 B13 TD1-	
\overrightarrow{B} $\xrightarrow{BA4}$ \rightarrow	20 TC0 1st 22 TC1	75 B14 TD1+	→ 11 DA3+
$ \begin{array}{ccc} \hline \bullet & BA5 \\ BA6 & \rightarrow \end{array} $	23 TC2	76 B13	
$\stackrel{\text{X}}{=} \stackrel{\text{BA6}}{=} \stackrel{\rightarrow}{\rightarrow}$	24 TC3	77 B10 78 B17	
GA2	27 TC4	7 RSVD	
\circ Note3 RSVD \rightarrow	28 TC5	8 RSVD	
$\overline{\text{DE}} \rightarrow$	30 TC6	9 DE	
$RA0 \rightarrow$	50 TD0	51 R10	
$RA1 \rightarrow$	2 TD1	52 R11	
$GA0 \rightarrow$	8 TD2	61 G10	
$GA1 \rightarrow$	10 TD3	62 G11	
$BA0 \rightarrow$	16 TD4	69 B10	
$\begin{array}{c} BA1 \rightarrow \\ Note3 RSVD \rightarrow \end{array}$	18 TD5 25 TD6	70 B11	
$ \begin{array}{c} \text{Note3} & \text{RSVD} \rightarrow \\ \text{CLK} \rightarrow \end{array} $	31 CLKIN	10 CLK	
$RB2 \rightarrow$	51 TA0	81 R22	
$RB3 \rightarrow$	52 TA1	82 R23 TA2-	→ 12 DB0-
RB4 →	54 TA2	83 R24 TA2+	
RB5 →	55 TA3	84 R25	14 GND
$RB6 \rightarrow$	56 TA4	85 R26 TB2-	
<u>RB7</u> →	3 TA5	86 R27 TB2+	→ 16 DB1+
$GB2 \rightarrow$	4 TA6	91 G22	17 GND
$GB3 \rightarrow GP4$	6 TB0 7 TB1	92 G23 TC2- 93 G24 TC2+	
$\begin{array}{c} \underline{GB4} \rightarrow \\ \underline{GB5} \rightarrow \end{array}$	11 TB2	93 G24 94 G25	→ 19 DB2+
$GB6 \rightarrow$	12 TB3	95 G26 TCLK2-	→ 20 CKB-
CP7	14 TB4	96 G27 TCLK2+	\rightarrow 21 CKB+
$\begin{array}{ccc} & & & & \rightarrow \\ & & & & & \rightarrow \\ & & & & & & \\ & & & & & & \\ & & & &$	15 TB5	99 B22	
$\frac{3}{60}$ BB3 \rightarrow	19 TB6	100 B23 TD2-	→ 22 DB3-
. <u>×</u> BB4 →	20 TC0 2nd	1 B24 TD2+	→ 23 DB3+
$\frac{c_1}{a}$ $\frac{BB5}{a}$ \rightarrow	22 TC1	2 B25	24 GND
$\stackrel{\text{BB6}}{\sim} \rightarrow$	23 TC2	5 B26	25 TxSEL0
	24 TC3	6 B27	26 TxSEL1
Note3 RSVD \rightarrow Note3 RSVD \rightarrow	27 TC4 28 TC5	- 	27 GND 28 VDD
Note3 RSVD \rightarrow Note3 RSVD \rightarrow	30 TC6	 	29 VDD
$\begin{array}{c} RB0 \rightarrow \end{array}$	50 TD0	79 R20	30 VDD
$RB1 \rightarrow$	2 TD1	80 R21	
$GB0 \rightarrow$	8 TD2	89 G20	
GB1 →	10 TD3	90 G21	
$BB0 \rightarrow$	16 TD4	97 B20	
$BB1 \rightarrow$	18 TD5	98 B21	
Note3 RSVD \rightarrow	25 TD6	 	
$CLK \rightarrow$	31 CLKIN	-	1

4.7.2 Mode B

4.7.3 Mode C

Note1: LSB (Least Significant Bit) – RA0, GA0, BA0, RB0, GB0, BB0 MSB (Most Significant Bit) – RA7, GA7, BA7, RB7, GB7, BB7

Note2: Twist pair wires with 100Ω (Characteristic impedance) should be used between LCD panel

signal processing board and LVDS transmitter.

Note3: Input signal RSVD is not used inside the product, but do not keep pin open to avoid noise

problem.

4.8 DISPLAY COLORS AND INPUT DATA SIGNALS

This product can display in equivalent to 16,777,216 colors in 256 gray scales in each RGB sub-pixel. Also the relation between display colors and input data signals is as the following table.

		Data signal (0: Low level, 1: High level)																							
Displa	ay colors	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	GA7 GA6 GA5 GA4 GA3 GA2 GA1 GA0			BA7 BA6 BA5 BA4 BA3 BA2 BA1 BA0												
		RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	GB7	GB6	GB5	GB4	GB3	GB2	GB1	GB0	BB7	BB6	BB5	BB4	BB3	BB2	BB1	BB0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
ors	Red	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Col	Magenta	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Basic Colors	Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Ba	Cyan	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0		0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
scale	dark	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ay s	1					:								:								:			
Red gray scale	\					: .		_			0	0	0	:	0	0	0		0	0	0	:	0	_	0
Re	bright	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	1	$\frac{1}{0}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Black	0	0	0	0	0	0	0	0	0	0	0		0			0	0	0	0		0			0
ale	1 1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 1	1 0	0	0	0	0	0	0	0	0
y SC	dark ↑	U	U	0	U	. 0	U	0	U	U	U	0	U	. 0	U	1	U	U	U	0	U	. 0	U	U	U
Green gray scale	\downarrow																								
een	∀ bright	0	0	0	0	. 0	0	0	0	1	1	1	1	1	1	0	1	0	0	0	0	. 0	0	0	0
5	origin	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	ő	0	0	0	0	0	0	0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Bluck	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
ale	dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
iy sc	↑					:								:								:			
gra	\downarrow					:								:								:			
Blue gray scale	bright	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0
	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

4.9 INPUT SIGNAL TIMINGS

4.9.1 Timing characteristics

	Parameter	Symbol	min.	typ.	max.	Unit	Remarks	
	Frequency	1/ tc	60.0	64.5	65.0	MHz	LVDS transmitter	
CLK	Pulse width	tc	15.38	15.5	-	ns	input	
CLK	Duty	-	See the data	See the data sheet of LVDS				
	Rise, fall	-	transmitter.			ns	-	
	Cycle	th	13.1	13.3	19.2	μs	Note1	
Horizontal	Cycle	ui	848	860	1,156	CLK		
	Display period	thd		800	CLK	-		
	Cycle	1/tv	59	60	61	Hz		
Vertical	Cycle	tv	1,206	1,250	-	Н	-	
	Display period	tvd		1,200		Н	-	
D.F.	Setup time	-	G 1 1	1	. G	ns		
DE, DATA	Hold time	-	See the data sheet of LVDS transmitter.			ns	-	
2	Rise, fall	-	a anomittor.			ns		

Note1: During operation, fluctuation of horizontal cycle should be within ± 1 CLK.

4.9.2 Input signal timing chart

4.10 DISPLAY POSITIONS

Even pixel: RA= Red data Odd pixel: RB= Red data

GA= Green data
BA= Blue data

GB= Green data
BB= Blue data

	D ((0, 0)		D(1,0)					
	RA	GA	BA	RB	GB	ВВ			
•			1						

$\bigcirc D(0, 0)$	D(1, 0)	•••	D(X, 0)	• • •	D(1598, 0)	D(1599, 0)
D(0, 1)	D(1, 1)	• • •	D(X, 1)	• • •	D(1598, 1)	D(1599, 1)
•	•	•	•	•	•	•
•	•	• • •	•	• • •	•	• • •
•	•	•	•	•	•	•
D(0, Y)	D(1, Y)	•••	D(X, Y)	• • •	D(1598, Y)	D(1599, Y)
•	•	•	•	•	•	•
•	•	• • •	•	• • •	•	•
•	•	•	•	•	•	•
D(0, 1198)	D(1, 1198)	•••	D(X, 1198)	• • •	D(1598, 1198)	D(1599, 1198)
D(0, 1199)	D(1, 1199)	•••	D(X, 1199)	• • •	D(1598, 1199)	D(1599, 1199)

4.11 TEN-bit LOOK UP TABLE FOR GAMMA ADJUSTMENT

Adjustment of gamma characteristics for each 8-bit RGB data is possible by using built-in 10-bit LUT (look up table) for Gamma characteristics.

The LUT is set with the serial data. The combination of the control command determines the R/W actions.: READ, Random/Sequential Address WRITE and Individual/Simultaneous RGB setting.

The serial data is composed as Table 1.

Table1: Serial data Composition

DATA	DATA name	Function	Remarks			
D31	CMD5	Control Command				
D30	CMD4	Control Command				
D29	CMD3	Control Command	See Table2 and 3.			
D28	CMD2	Control Command	See Table2 and 3.			
D27	CMD1	Control Command				
D26	CMD0	Control Command				
D25	ADD9	LUT Address (MSB)				
D24	ADD8	LUT Address				
D23	ADD7	LUT Address				
D22	ADD6	LUT Address				
D21	ADD5	LUT Address	See Table4.			
D20	ADD4	LUT Address	See Table4.			
D19	ADD3	LUT Address				
D18	ADD2	LUT Address				
D17	ADD1	LUT Address				
D16	ADD0	LUT Address (LSB)				
D15	Dummy	Dummy Data "0"				
D14	Dummy	Dummy Data "0"				
D13	Dummy	Dummy Data "0"				
D12	Dummy	Dummy Data "0"				
D11	Dummy	Dummy Data "0"				
D10	Dummy	Dummy Data "0"				
D9	DATA9	LUT Data (MSB)				
D8	DATA8	LUT Data	See Table5.			
D7	DATA7	LUT Data	See Tables.			
D6	DATA6	LUT Data				
D5	DATA5	LUT Data				
D4	DATA4	LUT Data				
D3	DATA3	LUT Data				
D2	DATA2	LUT Data				
D1	DATA1	LUT Data				
D0	DATA0	LUT Data (LSB)				

Table2: Command table (CMD5 to CMD0: 6-bit)

DATA name	Parameter	Remarks
CMD5	Selection of WRITE/READ mode "1": WRITE mode "0": READ mode	In case of "0", must be set as follows. CMD4: "1", CMD3: "0", CMD2: "1" CMD1: "0", CMD0: "0"
CMD4	Must be set to "1".	-
CMD3	Selection of Random/Sequential Address WRITE "1": Random Address WRITE "0": Sequential Address WRITE	-
CMD2	Must be set to "1".	-
CMD1	Selection of Individual/Simultaneous RGB setting "1": Individual RGB setting "0": Simultaneous RGB setting	"1": Select the color by using ADD9 and ADD8. (See Table4.) "0": ADD9 and ADD8 are invalid.
CMD0	Must be set to "0".	-

Table3: Command Combination table (CMD5 to CMD0: 6-bit)

						,
CMD5	CMD4	CMD3	CMD2	CMD1	CMD0	Mode
1	1	1	1	1	0	Random Address WRITE, Individual RGB setting
1	1	1	1	0	0	Random Address WRITE, Simultaneous RGB setting
1	1	0	1	1	0	Sequential Address WRITE, Individual RGB setting
1	1	0	1	0	0	Sequential Address WRITE, Simultaneous RGB setting
0	1	0	1	0	0	READ mode

^{*}Other combinations are prohibited, and may cause function error.

Table4: Address table (ADD9 to ADD0: 10-bit)

DATA name	Parameter	Remarks
ADD9	Sub-pixel selection ADD[9:8]= 0:0 Red	When "ADD[9:8]=1:1", ON/OFF of
ADD8	0:1 Green 1:0 Blue 1:1 ON/OFF selection of Gamma Correction	Gamma correction can select according to the GMA[2:0]. (See Table6 and Table7.)
ADD7		
ADD6		
ADD5		
ADD4	LUT Address	When $ADD[9:8] = 1:1$,
ADD3	256 address = 00h - FFh	ADD[7:0] must be set to 00h.
ADD2		
ADD1		
ADD0		

Table5: Data table (DATA15 to DATA0: 16-bit)

DATA	DATA name	Parameter	Remarks
DATA15	Dummy		
DATA14	Dummy		
DATA13	Dummy	Dummy Data	_
DATA12	Dummy	Must be set to "0".	_
DATA11	Dummy		
DATA10	Dummy		
DATA9	DATA9	[MSB]	
DATA8	DATA8		
DATA7	DATA7		
DATA6	DATA6		
DATA5	DATA5	10-bit LUT Data	
DATA4	DATA4	000h - 3FFh	_
DATA3	DATA3		
DATA2	DATA2		
DATA1	DATA1		
DATA0	DATA0	[LSB]	

Table6: Gamma correction table (DATA15 to DATA0: 16bit)

DATA	DATA name	Parameter	Remarks
DATA15	Dummy		
DATA14	Dummy		
DATA13	Dummy		
DATA12	Dummy		
DATA11	Dummy		
DATA10	Dummy	Dummy Data	
DATA9	Dummy	Must be set to "0".	-
DATA8	Dummy	Widst be set to 0.	
DATA7	Dummy		
DATA6	Dummy		
DATA5	Dummy		
DATA4	Dummy		
DATA3	Dummy		
DATA2	GMA2	[MSB]	
DATA1	GMA1	GMA Data	See Table7.
DATA0	GMA0	[LSB]	

Table7: Control code GMA[2:0]

GMA2	GMA1	GMA0	Function				
0	0	0	No correction (Initial setting)				
0	0	1	Correction according to the LUT Data.	Note1			

^{*}Other combinations are prohibited, and may cause function error.

Note1: Initial setting of the LUT is undefined data. The LUT should be enabled by setting of the GMA after writing the LUT data in all the 256 addresses, in order to avoid undefined data display.

Note2: Transfer the data every power-on, because the LUT data isn't stored in the LCD module.

Note3: As writing and reading the LUT data, a noise may appear on the display image. In order to prevent the noise appearing on the display, following measures should be performed.

(1) The LUT data should be rewritten during invalid period of pixel data (See "4.9 INPUT SIGNAL TIMINGS".).

(2) The LUT data should be rewritten when the Gamma Correction is OFF (GMA[2:0] = 000).

4.12 LUT SERIAL COMMUCATION TIMINGS

4.12.1 Timing Chart

(1) READ Timing Chart

(2) Random Address WRITE Timing Chart

(3) Sequential Address WRITE Timing Chart

4.12.2 Timing specifications

Parameter	Symbol	min.	typ.	max.	Unit	Remarks
SCLK Frequency	1/Tsck	-	-	5	MHz	-
SCLK Pulse Width (WRITE)	Twsck	50	-	-	ns	-
SCLK Pulse Width (READ)	Twsck	5	-	-	tc	Note1
SDATI-SCLK Setup Time	Tds	50	-	-	ns	-
SDATI-SCLK Hold Time	Tdh	50	-	-	ns	-
CS-SCLK Setup Time	Tcs	50	-	-	ns	-
CS-SCLK Hold Time	Tch	50	-	-	ns	-

Note1: At the READ of the serial communication mode, the SCLK Pulse Width (Twsck) must be greater than 5CLK (5 tc's). (See "**4.9.1 Timing characteristics**".)

Note2: During the serial communication mode, the display noise may appear because of rewriting the data. To avoid this, rewrite the LUT data when the pixel data is invalid or the Gamma Correction is OFF (GMA[2:0] = 000). The external noise may cause the data change, refresh the data regularly according to need.

4.13 OPTICS

4.13.1 Optical characteristics

(Note1, Note2, Note3)

Paramete	r	Condition	Symbol	min.	typ.	max.	Unit	Measuring instrument	Remarks
Luminance		White at center $\theta R = 0^{\circ}$, $\theta L = 0^{\circ}$, $\theta U = 0^{\circ}$, $\theta D = 0^{\circ}$	L	650	860	-	cd/m ²	BM-5A or SR-3	-
Contrast ratio		White/Black at center $\theta R = 0^{\circ}$, $\theta L = 0^{\circ}$, $\theta U = 0^{\circ}$, $\theta D = 0^{\circ}$	CR	800	1050	-	-	BM-5A or SR-3	Note4
Luminance unit	formity	White $\theta R = 0^{\circ}$, $\theta L = 0^{\circ}$, $\theta U = 0^{\circ}$, $\theta D = 0^{\circ}$	LU	75	-	-	%	BM-5A or SR-3	Note5
	White	x coordinate	Wx	0.293	0.313	0.333	-		
	Willie	y coordinate	Wy	0.309	0.329	0.349	-		
	Red	x coordinate	Rx	ı	0.650	-			
Chromaticity	Red	y coordinate	Ry	ı	0.330	-		SR-3	Note6
Cilibiliaticity	Green	x coordinate	Gx	ı	0.290	-			
		y coordinate	Gy	-	0.610	-			
	Blue	x coordinate	Bx	1	0.150	-			
	Diue	y coordinate	By	1	0.060	-			
Color gam	ut	$\theta R = 0^{\circ}, \ \theta L = 0^{\circ}, \ \theta U = 0^{\circ}, \ \theta D = 0^{\circ}$ at center, against NTSC color space	С	65	72	-	%	SR-3	-
Response ti	Response time Black to White		Ton	-	18	26	ms	BM-5A	Nore7
Response ti		White to Black	Toff	-	17	24	ms	BW-371	Noie/
	Right	$\theta U = 0^{\circ}, \theta D = 0^{\circ}, CR \ge 10$	θR	70	88	-	0		
Viewing angle	Left	$\theta U = 0^{\circ}, \theta D = 0^{\circ}, CR \ge 10$	θL	70	88	-	0	EZ	Note8
viewing angle	Up	$\theta R = 0^{\circ}, \theta L = 0^{\circ}, CR \ge 10$	θU	70	88	-	0	Contrast	Notes
	Down	$\theta R = 0^{\circ}, \theta L = 0^{\circ}, CR \ge 10$	θD	70	88	-	0		

Note1: These are initial characteristics.

Note2: Measurement conditions are as follows.

Ta = 25°C, VDD = 12.0V, VDDB = 24.0V, Display mode: UXGA,

Horizontal cycle = 1/75.19 kHz, Vertical cycle = 1/60.0Hz

Optical characteristics are measured after 20 minutes from working the product, in the dark room. Also measurement methods are as follows.

Note3: TopF=40°C (Center of LCD panel surface at the maximum luminance)

Note4: See "4.13.2 Definition of contrast ratio".

Note5: See "4.13.3 Definition of luminance uniformity".

Note6: These coordinates are found on CIE 1931 chromaticity diagram.

Note7: See "4.13.4 Definition of response times".

Note8: See "4.13.5 Definition of viewing angles".

4.13.2 Definition of contrast ratio

The contrast ratio is calculated by using the following formula.

Contrast ratio (CR) =
$$\frac{\text{Luminance of white screen}}{\text{Luminance of black screen}}$$

4.13.3 Definition of luminance uniformity

The luminance uniformity is calculated by using following formula.

Luminance uniformity (LU) =
$$\frac{\text{Minimum luminance from } \textcircled{1} \text{ to } \textcircled{5}}{\text{Maximum luminance from } \textcircled{1} \text{ to } \textcircled{5}}$$

The luminance is measured at near the 5 points shown below.

4.13.4 Definition of response times

Response time is measured, the luminance changes from "black" to "white", or "white" to "black" on the same screen point, by photo-detector. Ton is the time it takes the luminance change from 10% up to 90%. Also Toff is the time it takes the luminance change from 90% down to 10% (See the following diagram.).

4.13.5 Definition of viewing angles

5. RELIABILITY TESTS

Tes	st item	Condition	Judgment Note1		
	ture and humidity eration)	① 60 ± 2°C, RH = 60%, 500hours ② Display data is white. Note2			
	nt cycle eration)	① 0 ± 3°C1hour 55 ± 3°C1hour ② 50cycles, 4hours/cycle ③ Display data is white. Note2	No display malfunctions		
	nal shock operation)	 ① -20 ± 3°C30minutes 60 ± 3°C30minutes ② 100cycles, 1hour/cycle ③ Temperature transition time is within 5 minutes. 			
	oration operation)	 5 to 100Hz, 11.76m/s² 1 minute/cycle X, Y, Z directions 10 times each directions 	No display malfunctions No physical damages		
	nical shock operation)	 ① 294m/s², 11ms ② X, Y, Z directions ③ 3 times each directions 			
	ESD eration)	 ① 150pF, 150Ω, ±10kV ② 9 places on a panel surface Note3 ③ 10 times each places at 1 sec interval 			
_	Oust eration)	 ① Sample dust: No.15 (by JIS-Z8901) ② 15 seconds stir ③ 8 times repeat at 1 hour interval Note2 	No display malfunctions		
Low pressure	Non-operation	① 15 kPa (Equivalent to altitude 13,600m) ② -20°C±3°C24 hours ③ +60°C±3°C24 hours	No display malfunctions		
Low pressure	Operation	 ① 53.3 kPa (Equivalent to altitude 4,850m) ② 0°C±3°C24 hours ③ +55°C±3°C24 hours 	No display manunctions		

Note1: Display and appearance are checked under environmental conditions equivalent to the inspection conditions of defect criteria.

Note2: Luminance: 500cd/m² at luminance control.

Note2: Luminance: 500cd/m² at luminance control. Note3: See the following figure for discharge points

6. PRECAUTIONS

6.1 MEANING OF CAUTION SIGNS

The following caution signs have very important meaning. Be sure to read "6.2 CAUTIONS" and "6.3 ATTENTIONS", after understanding these contents!

This sign has the meaning that customer will be injured by himself or the product will sustain a damage, if customer has wrong operations.

This sign has the meaning that customer will get an electrical shock, if customer has wrong operations.

This sign has the meaning that customer will be injured by himself, if customer has wrong operations.

6.2 CAUTIONS

* Do not touch the working backlight. There is a danger of an electric shock.

- * Do not touch the working backlight. There is a danger of burn injury.
- * Do not shock and press the LCD panel and the backlight! There is a danger of breaking, because they are made of glass. (Shock: To be not greater 294m/s² and to be not greater 11ms, Pressure: To be not greater 19.6N (\$\phi\$16mm jig))

6.3.1 Handling of the product

- ① Take hold of both ends without touching the circuit board when the product (LCD module) is picked up from inner packing box to avoid broken down or misadjustment, because of stress to mounting parts on the circuit board.
- ② Do not hook nor pull cables such as lamp cable, and so on, in order to avoid any damage.
- 3 When the product is put on the table temporarily, display surface must be placed downward.
- 4 When handling the product, take the measures of electrostatic discharge with such as earth band, ionic shower and so on, because the product may be damaged by electrostatic.
- ⑤ The torque for product mounting screws must never exceed 0.735 N·m. Higher torque might result in distortion of the bezel. And the length of product mounting screws must be ≤ 4.7 mm.

The product must be installed using mounting holes without undue stress such as bends or twist (See outline drawings). And do not add undue stress to any portion (such as bezel flat area). Bends or twist described above and undue stress to any portion may cause display mura.

Recommended installing method: Ideal plane "A" is defined by one mounting hole (datum point) and other mounting holes. The ideal plane "A" should be the same plane within ± 0.3 mm.

- ② Do not press or rub on the sensitive product surface. When cleaning the product surface, use of the cloth with ethanolic liquid such as screen cleaner for LCD is recommended.
- On not push nor pull the interface connectors while the product is working.
- When handling the product, use of an original protection sheet on the product surface (polarizer) is recommended for protection of product surface. Adhesive type protection sheet may change color or characteristics of the polarizer.
- ① Usually liquid crystals don't leak through the breakage of glasses because of the surface tension of thin layer and the construction of LCD panel. But, if you contact with liquid crystal for the worst, please wash it out with soap.

6.3.2 Environment

- ① Do not operate or store in high temperature, high humidity, dewdrop atmosphere or corrosive gases. Keep the product in packing box with antistatic pouch in room temperature to avoid dusts and sunlight, when storing the product.
- ② In order to prevent dew condensation occurring by temperature difference, the product packing box should be opened after enough time being left under the environment of an unpacking room. Evaluate the leaving time sufficiently because a situation of dew condensation occurring is changed by the environmental temperature and humidity. (Recommended leaving time: 6 hours or more with packing state)
- 3 Do not operate in high magnetic field. Circuit boards may be broken down by it.
- 4 This product is not designed as radiation hardened.

6.3.3 Characteristics

The following items are neither defects nor failures.

- ① Response time, luminance and color may be changed by ambient temperature.
- ② Display mura, flicker, vertical seam or small spot may be observed depending on display patterns.
- ③ Optical characteristics (e.g. luminance, display uniformity, etc.) gradually is going to change depending on operating time, and especially low temperature, because the LCD has cold cathode fluorescent lamps.
- ④ Do not display the fixed pattern for a long time because it may cause image sticking. Use a screen saver, if the fixed pattern is displayed on the screen.
- ⑤ The display color may be changed depending on viewing angle because of the use of condenser sheet in the backlight.
- 6 Optical characteristics may be changed depending on input signal timings.
- The interference noise between input signal frequency for this product's signal processing board and luminance control frequency of the inverter may appear on a display. Set up luminance control frequency of the inverter so that the interference noise does not appear.
- After the product is stored under condition of low temperature or dark place for a long time, the cold cathode fluorescent lamp may not be turned on under the same condition because of the general characteristic of cold cathode fluorescent lamp. In addition, when Luminance control ratio is low in pulse width modulation method inverter, the lamp may not be turned on. In this case, power should be supplied again.

6.3.4 Other

- ① All VDD, VDDB, GND and GNDB terminals should be used without any non-connected lines.
- ② Do not disassemble a product or adjust variable resistors.
- ③ See "REPLACEMENT MANUAL FOR INVERTER", when replacing the inverter.
- Pack the product with original shipping package, in order to avoid any damages during transportation, when returning the product to NEC for repair and so on.
- ⑤ The LCD module by itself or integrated into end product should be packed and transported with display in the vertical position. Otherwise the display characteristics may be degraded.
- **(6)** The information of China RoHS directive six hazardous substances or elements in this product is as follows.

	China RoHS directive six hazardous substances or elements								
Lead (Pb)Mercury (Hg)Cadmium (Cd)Hexavalent Chromium (Cr VI)Polybrominated Biphenys (PBB)Polybrominated Biphenyl Ethers (PBDE)									
×	×	0	0	0	0				

- Note1: (): This indicates that the poisonous or harmful material in all the homogeneous materials for this part is equal or below the limitation level of SJ/T11363-2006 standard regulation.
 - X: This indicates that the poisonous or harmful material in all the homogeneous materials for this part is above the limitation level of SJ/T11363-2006 standard regulation.

7. OUTLINE DRAWINGS 7.1 FRONT VIEW

Unit: mm

Note4: The values in parentheses are for reference.

7.2 REAR VIEW

Unit: mm