CMSC 25025 / STAT 37601

Machine Learning and Large Scale Data Analysis

Assignment 7

Due: Thursday, May 30, 2013

This assignment consists of two "pencil and paper" problems and one computing problem.

1. Leave one out (30 points)

As discussed in class, kernel smoother is given by

$$\widehat{Y}(x) = \frac{\sum_{j=1}^{n} K_h(X_j, x) Y_j}{\sum_{j=1}^{n} K_h(X_j, x)}$$

for training data $(X_1, Y_1), \dots, (X_n, Y_n)$. Let $\widehat{Y} = (\widehat{Y}(X_1), \dots, \widehat{Y}(X_n))^T$, and let L be the $n \times n$ matrix

$$L_{ij} = \frac{K_h(X_j, X_i)}{\sum_{j=1}^{n} K_h(X_i, X_j)}.$$

The fitted values can then be written as $\hat{Y} = LY$.

The leave-one-out cross validation risk is defined as

$$R_{\text{LOO}}(h) = \frac{1}{n} \sum_{i=1}^{n} (Y_i - \widehat{Y}_{(i)})^2$$

where

$$\widehat{Y}_{(i)} = \frac{\sum_{j \neq i} K_h(X_j, X_i) Y_j}{\sum_{j \neq i} K_h(X_j, X_i)}$$

is the predicted value at X_i estimated by leaving the data point (X_i, Y_i) out of the sample.

Show that the leave-one-out cross-validation risk can be written as

$$R_{\text{LOO}}(h) = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{Y_i - \widehat{Y}_i}{1 - L_{ii}} \right)^2.$$

2. Gaussian tails (40 points)

(a) If $Z \sim N(0, 1)$ show that

$$\mathbb{P}(|Z| > t) \le \sqrt{\frac{2}{\pi}} \frac{e^{-t^2/2}}{t}$$

To do this, first note that $\mathbb{P}(|Z| > t) = 2\mathbb{P}(Z > t)$. Next, write an expression for $\mathbb{P}(Z > t)$ and note that x/t > 1 whenever x > t.

(b) If $Z_1, \ldots, Z_n \sim N(0, \sigma^2)$ are independent, show that

$$\mathbb{P}\left(\max_{1 \le i \le n} Z_i > \sqrt{2r\sigma^2 \log n}\right) \to 0$$

as $n \to \infty$ for any $r \ge 1$.

3. Computing is believing (30 points)

This problem is aimed at giving a better understanding of the results above, and the thresholding technique used for the exoplanet data project.

Generate T trials of normal samples $Z_1^{(t)}, \ldots, Z_n^{(t)} \sim N(0,1)$ of size n, for $t=1,\ldots,T$. For each trial, compute $\max_{1 \leq j \leq n} |Z_j^{(t)}|$. From these statistics, you can estimate the probability $\mathbb{P}(\max_{1 \leq j \leq n} |Z_j^{(t)}| \geq \sqrt{2r \log n})$ using the empirical probabilities over the T trials:

$$\widehat{p}_n(r) \equiv \widehat{\mathbb{P}}\left(\max_{1 \le j \le n} |Z_j^{(t)}| \ge \sqrt{2r \log n}\right) = \frac{1}{T} \sum_{t=1}^T \mathbb{1}\left(\max_{1 \le j \le n} |Z_j^{(t)}| \ge \sqrt{2r \log n}\right)$$

Choose a sufficiently large number of trials, such as $T=1{,}000$, and plot $\widehat{p}_n(r)$ versus r for several values of n, such as $n=2^k$ for $k=5,6,\ldots,15$.