

Decoding and Representational Similarity Analysis with EEG/MEG

Máté Aller

mate.aller@mrc-cbu.cam.ac.uk

Decoding from EEG/MEG

Decoding recap

	fMRI	EEG/MEG
Spatial resolution	Few millimetres	Few centimetres
Temporal resolution	1-2 seconds	0.5 – 1 milliseconds

Data structure and notation

How to leverage the additional time dimension?

- 1. Concatenate across time
 - Number of features increase by number of time points
 - Most sensitive
 - No timing information left
- 2. Time resolved decoding
 - Decode separately at each time point
 - Time course of spatial information
- 3. Use time dimension as features
 - Decode separately at each sensor
 - Spatial map of temporal information

Time resolved decoding - intuition

Decoding from mass signals - fMRI

Decoding from mass signals – EEG/MEG

Time resolved decoding practicalities: Single trials vs pseudo-trials

Time resolved decoding practicalities: Single trials vs pseudo-trials

Time resolved decoding practicalities: Single trials vs pseudo-trials

Time resolved decoding practicalities: Single time points or moving window

Time resolved decoding practicalities: Single time points or moving window

Within the moving window of size k

 $\mathsf{Time} = \theta$

2012 9 16 7 ...

Concatenate

Time = 1

Time = k

or

Average $\frac{1}{k} \sum_{t=k}^{0} ($

Time resolved decoding practicalities: Single time points or moving window

Time resolved decoding practicalities: Sensor space or source space

Temporal generalisation

1. A differential brain activity pattern is recorded at each time point.

2. A classifier is trained at each time point.

3. Each classifier is tested on its ability to generalize to all time points.

Temporal generalisation

Temporal generalisation

Temporal and across-condition generalisation

Temporal and across-condition generalisation

Temporal and across-condition generalisation

Interpreting the generalisation of neural representations

Interpreting decoding weights

Walk-through of demo notebook

Representational similarity analysis on EEG/MEG

RSA recap

Time resolved RSA

Time resolved RSA - example study Cichy et al. (2014)

Time resolved RSA - dissimilarity time courses

Time resolved RSA – decoding categories

Time resolved RSA – compare with model

Time resolved RSA – compare with model

Animate

Inanimate

Stable representational geometry despite dynamic neural representations

Decoding Information Over Time And Space

0.1

0.2

0.3

0.4

0.5

0.6

RSA Granger Analysis of Information Flow

Kietzmann et al., PNAS 2019, https://www.pnas.org/doi/10.1073/pnas.1905544116 Also: Goddard et al. 2018: https://pubmed.ncbi.nlm.nih.gov/26806290/,

Walk-through of demo notebook

Thank you

