

Implementar modelos de aprendizaje automático por medio de técnicas estadísticas, adecuando los diferentes algoritmos debidamente a la situación y requerimientos necesarios

- Unidad 1: Introducción al Machine Learning
- Unidad 2: Aprendizaje Supervisado y No Supervisado (Parte I: No supervisado) (Parte II: Clasificación) (Parte III: Clasificación) (Parte IV: Regresión) (Parte V: Series de tiempo)
  - Unidad 3: Aplicando lo aprendido (Parte I: Preprocesamiento de datos) (Parte II: Modelamiento)







En esta sesión aprenderás se hará un repaso general sobre el proceso de un proyecto de data science, aplicando todo lo aprendido en la sesión y poniendo foco en el preprocesamiento de los datos.

{desafío} latam\_ ¿Qué es una serie de tiempo? ¿Cuáles son sus componentes?



¿En qué consiste un modelo ARIMA? ¿Cómo se determinan los parámetros?



¿Cómo evaluamos un modelo de serie de tiempo?



# /\* Metodología de Proyectos de Data Science \*/



### Metodología de proyectos Data Science CRISP DM

¿Por qué utilizar un marco de trabajo como CRISP DM?

- Estructura Clara
- 2. Orientación al Negocio
- 3. Flexibilidad





## Entendimiento del Negocio CRISP DM

| Definición de los<br>objetivos                                                 | Estudio del<br>Contexto                                                      | Levantamiento<br>de Recursos                                               | Definición de<br>éxito                                         | Planificación<br>inicial                                                         |
|--------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------------|
| Se establece el<br>problema de<br>negocio.                                     | Investigación de la industria y procesos involucrados.                       | Se evalúa los<br>recursos necesarios<br>para el proyecto<br>como personas, | Se establecen<br>criterios claros para<br>evaluar el proyecto, | Se crea un plan de<br>alto nivel,<br>describiendo las<br>principales             |
| Se definen los<br>objetivos que se van<br>a abarcar con ayuda<br>del proyecto. | Identificar las partes<br>interesadas y<br>consultarles sobre su<br>opinión. | datos, hardware, etc.                                                      | Se considera el impacto financiero y estratégico del proyecto. | características.  Se definen las métricas de evaluación a lo largo del proyecto. |



# /\*Entendimiento y preparación de datos\*/



## **Entendimiento de los datos** *CRISP DM*

| Recopilación de datos                           | Calidad de datos                                                                           | Exploración de<br>datos                            | Muestreo de datos                                                               |
|-------------------------------------------------|--------------------------------------------------------------------------------------------|----------------------------------------------------|---------------------------------------------------------------------------------|
| Identificar las diferentes<br>fuentes de datos. | Identificar valores<br>faltantes, valores<br>duplicados u otros                            | Análisis univariado y<br>multivariado.             | En caso de ser necesario<br>se puede muestrear los<br>datos para trabajarlos de |
| Adquisición de datos                            | problemas de datos.                                                                        | Análisis entre variables y correlaciones.          | mejor forma.                                                                    |
|                                                 | Identificar outliers.                                                                      | Definir puntos                                     | Asegurar que la muestra sea significativa.                                      |
|                                                 | Concluir si la calidad de<br>los datos permite<br>modelar y primer filtro de<br>variables. | importantes para la<br>siguiente etapa y se itera. |                                                                                 |



#### **Identificando Outliers**

#### Métodos

- 1. **Método IQR (Inter Quartil Range)**: consideramos solo los datos entre Q1 1.5\*IQR y Q3 + 1.5\*IQR, donde IQR = Q3 Q1
- 2. Z Score: calcula la puntuación Z para cada punto de datos, que determina a cuántas desviaciones estándar se encuentra un valor del promedio (se suele considerar outlier un valor por sobre 2 o 3 desviaciones estándar
- 3. **Métodos basados en ML:** hay algoritmos como **dbscan** que detectan outliers, o KNN, que buscan valores con una distancia significativa que se consideran outliers.
- Otras: algoritmos de detección de anomalías como svm one class o isolation forest.





#### **Correlaciones**

#### Métodos de cálculo y detección

1. **Pearson:** mide la relación lineal entre variables numéricas

$$r=rac{Cov(X,Y)}{\sqrt{Var(X)Var(Y)}}$$

- 2. Chi-Cuadrado: mide la relación entre variables categóricas
- Test de Anova: calcula si hay una diferencia en la variable numérica entre grupos de una categórica
- Otras: kendall, spearman, v de cramer, test kolgomorov-smirnov, etc.



#### Coeficiente de Chi cuadrado

#### Categórica vs categórica

Prueba estadística que determinar si existe una asociación significativa entre dos variables categóricas.

- Se calcula la tabla de contingencia.
- 2. Se calcula el coeficiente en base a la tabla de contingencia.
- 3. Se calcula los grados de libertad y se observa el p-valor con una tabla.

$$\chi^2 = \sum \frac{(O_i - E_i)^2}{E_i}$$

#### Coeficiente de Chi cuadrado

#### Categórica vs categórica

| Frecuencias observadas |        |         |
|------------------------|--------|---------|
|                        | Acción | Romance |
| F                      | 5      | 15      |
| М                      | 12     | 8       |

| Frecuencias esperadas |        |         |
|-----------------------|--------|---------|
|                       | Acción | Romance |
| F                     | 8.5    | 11.5    |
| M                     | 8.5    | 11.5    |

| Tabla chi-cuadrado |                               |                                             |  |  |
|--------------------|-------------------------------|---------------------------------------------|--|--|
|                    | Acción                        | Romance                                     |  |  |
| F                  | $(5 - 8.5)^2/8.5 = 1.441176$  | (8 - 11.5) <sup>2</sup> /11.5 = 1,065217391 |  |  |
| М                  | $(12 - 8.5)^2/8.5 = 1.441176$ | (8 - 11.5) <sup>2</sup> /11.5 = 1,065217391 |  |  |



#### **Test de ANOVA**

#### Numérica vs categórica

Es un test estadístico para ver si hay diferencia significativa entre diferentes grupos:

H0: No hay diferencia significativa

H1: Existe al menos un grupo diferente a los

demás

No dice que grupo es diferente, pero con ayuda de un análisis posterior se puede observar.





¡Manos a la obra! Entendimiento y preparación de datos



#### Manos a la obra

#### Entendimiento y preparación de datos

Veremos ahora cómo aplicar estos procedimientos con la ayuda de Python. Para ello, sigue los pasos que te presentará tu profesor en el archivo Jupyter Notebook.

En esta ocasión veremos:

- Detección de outliers
- Correlaciones





/\* Dimensionalidad y características\*/



### Preparación de datos CRISP DM

latam

Transformación de Selección de Limpieza de datos Feature Engineering datos características En base a lo aprendido Normalización. Generación de nuevas Fliminar las se eliminan duplicados, características a partir de características se eliminan las variables Codificación de variables irrelevantes. las existentes que que no sirven, se decide categóricas. puedan ser más cómo tratar los valores informativas para el Mantener las más nulos y outliers. Aplicación de modelo. importantes. transformaciones Se aplican los filtros matemáticas a Extracción de Considerar el problema necesarios a los datos. de dimensionalidad. características características relevantes de los datos (logaritmos, raíces cuadradas, etc.) para originales. reducir la asimetría. {desafío}

#### **Dimensionalidad**

#### La maldición de la dimensionalidad

La **maldición de la dimensionalidad** es un término utilizado en estadísticas y aprendizaje automático para describir los desafíos y problemas que surgen cuando trabajamos con conjuntos de datos de alta dimensionalidad, es decir, conjuntos de datos que tienen un gran número de características o variables en comparación con el número de observaciones.

Algunos de los efectos de la maldición de la dimensionalidad son los siguientes:

- Espacio de características disperso
- Requerimientos computacionales
- Sobreajuste



#### Selección de características

#### Métodos de selección

- Backward Selection: se comienza con todas las características y se eliminan iterativamente con algún criterio de evaluación.
- Forward Selection: se comienza con un conjunto vacío y se agregan características de forma iterativa.
- Métodos de filtro: se evalúan características filtrando por algún criterio de correlación.
- Otras: Lasso, Random Forest



¡Manos a la obra! Entendimiento y preparación de datos



#### Manos a la obra

#### Entendimiento y preparación de datos

Veremos ahora cómo aplicar estos procedimientos con la ayuda de Python. Para ello, sigue los pasos que te presentará tu profesor en el archivo Jupyter Notebook.

En esta ocasión veremos:

- Forward selection
- Filtro por correlaciones
- Selección por Lasso





## Desafío - Preprocesamiento de datos



#### Desafío

#### "Preprocesamiento de datos"

- Descarga el archivo "Preprocesamiento de datos".
- Tiempo de desarrollo asincrónico: desde 4 horas.
- Tipo de desafío: individual.

¡AHORA TE TOCA A TI! 🦾





#### Ideas fuerza



Las
metodologías
son útiles para
estandarizar y
utilizar las
mejores
prácticas al
momento de
trabajar.

Nos centramos en la metodología CRISP-DM principalmente en los primeros pasos de entendimiento del negocio, de la data y preparación de los datos .

Para cada etapa hay
varios estadísticos
y métodos que son
útiles, pero lo
importante es
analizar caso a
caso que es lo
mejor para mi
problema.



¿Qué conceptos no te quedaron claros o quieres reforzar?



#### Recursos asincrónicos

#### ¡No olvides revisarlos!

Para esta semana deberás revisar:

- Guía de estudio
- Desafío "Preprocesamiento de datos"



















