

Quiz 8

* Full Name	
* WISH Participant ID	

803. Diodes are ideal. Vin=1.cos($2\pi t$). Voltage across the cap at t=0sec is approximately:

100Ω√δ

- (a) 1/π V
- (b) 1V
- (c) √2 V
- (d) 0V
- (e) -1V
- (f) -1/π V
- (g) 0.5V
- (h) 2/π V

Answer the Question 803

a

() е

 0.01Ω

 \bigcirc b

 \bigcirc f

 \bigcirc c

 \bigcirc g

 \bigcirc d

 \bigcirc h

13/06/2024, 12:00 Quiz 8 Survey

(h) 0.5V

804. All diodes have a forward drop of 0.7V. Each resistor is 1Ω . The voltage at Vout is:

(a) 0V (b) 0.67V (c) 0.2V (d) 1V (e) 0.3V (f) 0.225V (g) 0.75V

Answer the Question 804

○ a○ e○ b○ f○ c○ g○ d○ h

807. Vin=2.cos(ωt). Diode has a forward drop of 0.7V. In steady state, the highest voltage at Vout is:

(a) 2V (b) 1.3V (c) 1V (d) 0.7V (e) -0.7V (f) 0.3V (g) 2.7V (h) 0V

Answer the Question 807

 ○ a
 ○ e

 ○ b
 ○ f

 ○ c
 ○ g

() d

808. Vin=10.cos(ot). Diodes have a forward drop of 0.7V. Waveform at Vout is:

- (a) 10.cos(ωt)
- (b) 10.cos(ωt)-1.4V
- (c) 10.cos(ωt)-0.7V
- (d) 19.3V DC(e) 18.6V DC
- (f) 20V DC
- (g) 5.cos(ωt)
- (h) 9.3V DC

Vin

Answer the Question 808

() a

 \bigcirc \in

 \bigcirc b

 \bigcap f

 \bigcirc c

 \bigcirc g

 \bigcirc d

 \bigcirc h

809. Both diodes are ideal with a forward voltage of 1V. The switch is ideal and is closed at t=0. The voltage across the capacitor at t=1 ns is equal to:

- (a) -1V
- (b) -2V
- (c) 0V
- (d) 2V
- (e) Undefined
- (f) 0.5V
- (g) -0.5V
- (h) 1V

Answer the Question 809

○ a

 \bigcirc ϵ

 \bigcirc b

 \bigcirc f

 \bigcirc c

() g

 \bigcirc d

 \bigcap h

810.Both diodes are ideal with a forward voltage of 1V. The switch has an ON resistance of 1 kOhm and is closed at t=0. The steady state voltage across the capacitor is equal to:

(a) -1V (b) -2V

(c) 0V

(d) 2V

(e) Undefined

(f) 0.5V

(g) -0.5V

(h) 1V

Answer the Question 810

() a

 \bigcirc e

 \bigcirc b

 \bigcap f

 \bigcirc c

 \bigcirc 8

 \bigcirc d

h

811. Vin(t) = 3.u(t). Switch S is kept closed until time instant of t0=1 msec and then opened. Both diodes are ideal and have zero forward drop. What is the voltage (V_L) across the inductor at t=t0+.

(a) -10V

(b) -6V

(c) 6V

(d) -3V

(e) 10V (f) -30V

(g) 30V (h) 3V Pulling Service 10

Answer the Question 811

() a

 \bigcirc ϵ

3 mH

 \bigcirc b

 \bigcirc f

) c

() E

) d

(h) 1.5 mA

h

812. S is an ideal switch (zero ON resistance and infinite OFF resistance) which is closed at t=1 sec. The diode has a forward drop of 1V. What is the current through the diode in steady state (at t=∞)

Answer the Question 812

() a () d

814. Vin(t)=9.sin(100t). What are the maximum and minimum voltages at Vo(t)? Assume diode is ideal. Vx=6V.

(a) 6V, -7V

(b) 2V, -1V

(c) 0V, -3V (d) 6V, -3V

(e) 4V, 0V

(f) 0V, -6V

(g) 9V, 0V

(h) 2V, -3V

Answer the Question 814

() a

) b

) g

() d

816. The current source has a profile as shown. The diodes are ideal with a forward drop of 0.7V. What is Vo(t) at time t=T+ if: I_{MAX}=2 mA, T=1 msec, C=1μF (The capacitor is initially uncharged).

- (a) 1V
- (b) 0.6V
- (c) 1.7V
- (d) 0.3V
- (e) 0.9V
- (f) 0V
- (g) 0.2V
- (h) 0.4V

Answer the Question 816

) a

() d

 \bigcirc h

817. For the circuit, the diode current, ID=K*VD2 for $V_D>0$; and $I_D=0$ for $V_D<=0$. Find I_D if: K=3/4, $R=1 \Omega$, Vo=10V, and Io=8A.

- (a) 3A
- (b) 1A
- (c) 0.44A
- (d) 0.66A
- (e) 2.25A
- (f) 2A
- (g) 0.75A (h) 0.33A

13/06/2024, 12:00 Quiz 8 Survey

Answer the Question 817

O a	O e
○ b	◯ f
<u></u> с	○g
O d	◯ h

Done

Powered by

SurveyMonkey®

See how easy it is to <u>create surveys and forms</u>.

Privacy & Cookie Notice