CS217 – Algorithm Design and Analysis Homework 5

Not Strong Enough

May 6, 2020

 Γ_1

Consider the induced bipartite subgraph $H_n[L_i \cup L_{i+1}]$, show that for i < n/2 the graph has a matching of size $|L_i| = \binom{n}{i}$

Proof. We do this by induction.

- 1. The initial step is that if n = 1, 2, the theorem is correct. This is trivial since in these conditions we only need to consider i = 0 and $|L_i| = 1$. Since L_0 and L_1 is connected, there is at least one edge between them.
- 2. the inductive assumption is that for n = 1, 2 ... k, the theorem is correct, the inductive step proves that for n = k + 1 it is correct. In below, write each vertex v in H_{k+1} by its bitcode $b_v = \overline{B_1 B_2 ... B_{k+1}}$, where $b_{v,i} = B_i$ is the coordinate of the vertex in dimension i.
 - 3. To prove the theorem is true for (n, i) we use induction again.
- 1) The initial step is that if i = 1, the theorem is correct. This is trivial since the condition is like what in 1. that only one edge is needed.
- 2) The inductive assumption is that, for n = k + 1, $i = 1, 2 \dots u(u + 1 < n/2)$ the theorem is correct, the inductive step proves that for n = k + 1, i = u + 1 it is correct. If such a form exists, it is obvious that all vertex in L_{u+1} has a corresponding vertex in L_{u+2} and only one bit of the bitcodes of the two matched vertex is different. More generally, let L_i in H_n be $L_{i,n}$.

To prove this, we form the matching by:

A. First, consider the collection $L_{u+1,k+1}^{(1)} = \{v \in L_{u+1} : b_{v,u+1} = 1\}$, and consider the first u bits. Then the collection equals $L_{u,k}$. It is obvious that u < k/2 and by assumption, there is a matching $M_{u,k}$ from $L_{u,k}$ to $L_{u+1,k}$. Let the vertex v in $L_{u+1,k+1}^{(1)}$ matched v' that:

 $b_v = \overline{b_t 1}, b_{v'} = \overline{b_{t'} 1}$ where $t \in L_{u,k}, t' \in L_{u+1,k}$ and t, t' are matched by $M_{u,k}$. This matching is obviously correct.

Now denote the matched vertices in $L_{u+1,k}$ by matching $M_{u,k}$ be $L_{u+1,k}^{(1)}$, and the rest in $L_{u+1,k}$ be $L_{u+1,k}^{(2)}$.

- B. Now consider the rest vertices in $L_{u+1,k+1}$ (denoted by $L_{u+1,k+1}^{(2)}$). They are in forms of $\{v: b_v = \overline{b_t 0}, t \in L_{u+1,k}\}$. Consider the subset that: $\{v: b_v = \overline{b_t 0}, t \in L_{u+1,k}\}$. We matched these points to $L_{u+2,k+1}$ by the following rule:
 - v is matched by v' if $b_v = \overline{b_t 0}, b_{v'} = \overline{b_t 1}$. Since $t \in L^{(2)}_{u+1,k}$, all matched v' are not ever matched before.
 - C. Now consider the last part that $\{v: b_v = \overline{b_t 0}, t \in L_{u+1,k}^{(1)}\}$.
- C1. If u + 1 < k/2, there is a matching $M_{u+1,k}$ from $L_{u+1,k}$ to $L_{u+2,k}$. Let v matches v' that $b_v = \overline{b_t 0}, b_{v'} = \overline{b_{t'} 0}$ and t, t' are matched by $M_{u+1,k}$.
 - C2. Otherwise, there is $u+1 \ge k/2$, u < (k+1)/2 so there is k=2u. And we consider that:

(How to get this??) If k = 2u, there is a set of disjoint paths from L_{u-1} to L_{u+1} . (this may be done by some symmetry?) If so, the set of all vertices of $L_{u+1,k}$ in these paths is our $L_{u+1,k}^{(1)}$ and has a matching to $L_{u+2,k}$, add a 0 at the end of each bitcode is what we need.

My idea of exercise 5 is to prove the "how to get this" part first. And then by our construction in exercise 4, choose the $L_{u,k}^{(1)}$ part to go to two side.