CSEG601 & CSE5601 Spatial Data Management & Application:

RNN Query Processing method using R-tree-

Sungwon Jung

Big Data Processing & Database Lab
Dept. of Computer Science and Engineering
Sogang University
Seoul, Korea

Tel: +82-2-705-8930

Email: jungsung@sogang.ac.kr

RNN Definition

• A data point p is the reverse nearest neighbor of query point q, if there is no point p ' such that dist(p', p) < dist(q, p), i.e. q is the NN of p.

$$NN(p_2) = NN(p_3) = q$$

 $RNN(q) = \{p_2, p_3\}$

- In our example, p_2 , p_3 are the houses for which q is the nearest restaurant
- Is RNN a symmetric relation?

Related Works

3

Original RNN method [KM00]

- For all *p*:
 - 1. Pre-compute NN(p)
 - 2. Represent p as a vicinity circle
 - 3. Index the MBR of all circles by an R-tree(Named RNN-tree)
 - 4. RNN(q)= all circles that contain q
- Needs two trees: RNN-tree & R-tree

4

SAA

- Elimination of the need for pre-computing all NNs in filter/refinement methods
- SAA:

Divide the space around query into six equal regions

Find NN(q) in all regions (candidate keys)

- Either (i) or (ii) holds for each candidate key p
 - (i) p is in RNN(q)
 - (ii) No RNN(q) in S_i
 - $RNN(q) = \{p_6\}$

- The number of regions increases exponentially with the dimensionality

5

SFT

Find the kNNs of the query q (k candidates)

Eliminate the points that are closer to other candidates than q.

Apply *Boolean range queries* to determine the actual RNNs

- A Boolean range query terminates immediately when
 - 1. the first data point is found
 - 2. The entire side of a node MBR lies within a circle

e.g.,) $\min(N_1, p_2) \le \text{dist}(p_2, q)$

- Drawbacks?
 - False misses
 - Choosing a proper k

Step 1: Given k=4, Find 4NN Candidates Set = $\{p_6, p_5, p_4, p_2\}$

Step 2: Discard p_4 and p_6 since they are closer to each other than \boldsymbol{q}

Step 3: Boolean Range Queries $(p_2, dist(p_2,q))$ and $(p_6, dist(p_6,q))$

Step 4: Discard p_2 since minmaxdist(N_1, p_2) \leq = dist(p_2, q)

False miss: p_3 due to k = 4.

6

Half-plane prunning

• Can p 'be closer to q than p?

- (a) Pruning with one point (b) Pruning with two points
- If $p_1, p_2, ..., p_n$ n data points, then any node whose MBR falls inside $\bigcup_{i=1,...,n} PL_{p_i(p_i,q)}$ cannot contain any RNN result.

7

Computing the residual region

- (a) After processing $\perp (q, p_I)$
- (b) The final polygon
- $O(n^2)$ processing time in terms of bisector trimming for computing N^{res}
- Computation of intersections does not scale with dimensionality

Approximating the residual MBR

- An MBR can be pruned if its residual region is empty
- The approximation is a superset of the real residual region
- We can prune an MBR if its approximate residual is empty
- Good news:
 - O(n) processing time for computing N^{resM}
 - No more hyper-polyhedrons to make the intersection computation complex

9

<u>TPL algorithm for Single RNN – example(1)</u>

11

Flitering step - 2

13

Flitering step - 4

15

Flitering step - 6

17

Refinement Heuristics

- Let P_{rfn} be the set of points and N_{rfn} be the set of nodes in S_{rfn}
- A point p from S_{cnd} can be discarded as a false hit if there is a point $p' \in P_{rfn}$ such that either of the following hold:
 - (i) dist(p,p') < dist(p,q)
 - (ii) There is a node MBR $N \in N_{rfn}$ such that minmaxdist(p, N) < dist(p, q)
- A candidate point can be eliminated if it is closer to another candidate point than to the query
- A point p from S_{cnd} can be reported as an actual result if the following two conditions hold:
 - (i) There is no point $p' \in P_{rfn}$ such that dist(p, p') < dist(p, q)
 - (ii) For every node $N ∈ N_{rfn}$: mindist(p, N) ≥ dist(p, q)
- If none of the above works, visit all node MBRs $N \in N_{rfn}$ where mindist(p, N) < dist(p, q) and use the mentioned heuristics considering the newly visited entries

Refinement step - 1

19

Refinement step - 2

