Język SQL. Rozdział 9. Język definiowania danych DDL, cześć 1.

Tworzenie relacji, typy danych, wartości domyślne atrybutów, słownik bazy danych.

Tworzenie relacji

polecenie CREATE TABLE

- Nazwa relacji:
 - musi zaczynać się od litery A-Za-z,
 - może zawierać litery, cyfry, znaki _ \$ # (ostatnie dwa nie są zalecane),
 - jest nieczuła na wielkość użytych znaków (chyba że użyto cudzysłowu),
 - nie może przekroczyć 30 znaków,
 - musi być jednoznaczna i różna od nazw innych relacji, perspektyw i synonimów w schemacie danego użytkownika,
 - nie może być słowem zastrzeżonym języka SQL.

Typy Oracle atrybutów relacji

Typ danych	Dopuszczalne wartości		
CHAR(n BYTE CHAR)	Ciąg znaków o stałej długości i rozmiarze n bajtów lub znaków (dom. 1). Maks. 2000B		
NCHAR(n)	Jak CHAR(n), n – liczba znaków, w UNICODE (2B lub 3B na znak)		
VARCHAR2(n BYTE CHAR)	Ciąg znaków o zmiennej długości i rozmiarze n bajtów lub znaków. Maks. 4000B (32 767B od Oracle 12c) . Rozmiar n <u>musi</u> być podany.		
NVARCHAR2(n)	Jak VARCHAR2(n), n – liczba znaków, w UNICODE (2B lub 3B na znak)		
NUMBER(p,s)	Liczba o precyzji p (1-38) i skali s (-84,127) z przedziału 1x10 ⁻¹³⁰ 9.99x10 ¹²⁵		
DATE	Data z przedziału 1.01.4712 p.n.e. i 31.12.9999 n.e.		
TIMESTAMP(p)	Znacznik czasowy z dokł. p części ułamkowych sekundy (od 0 do 9, domyślnie 6)		
INTERVAL YEAR(p) TO MONTH	Przedział czasu reprezentowany przez lata i miesiące z zadaną liczbą cyfr w określeniu lat (od 0 do 9, domyślnie 6)		
INTERVAL DAY(p1) TO SECOND(p2)	Przedział czasu reprezentowany przez dni, godziny, minuty i sekundy z zadaną liczbą cyfr w określeniu dni (p1) i liczbą pozycji ułamkowych części sekundy (p2)		
CLOB	Duży obiekt binarny zawierający łańcuchy znaków (stałej i zmiennej długości) o maks. rozmiarze 128TB dla Oracle11g lub 8TB dla Oracle9i/10g		
NCLOB	Jak CLOB, w UNICODE		
BLOB	Duży obiekt binarny o maks. rozmiarze 128TB dla Oracle11g lub 8TB Oracle9i/10g		
BFILE	Wskaźnik na plik systemu operacyjnego		

⁽c) Instytut Informatyki Politechniki Poznańskiej

Typ NUMBER (1)

- Zakres: <10⁻¹³⁰, 10¹²⁶ 1>
- Zaimplementowany w sposób <u>niezależny</u> od platformy
- Deklaracja typu zmiennoprzecinkowego: NUMBER
 - maks. 40 pozycji

```
pr placa NUMBER,
```

- Deklaracja typu stałoprzecinkowego: NUMBER(precyzja, skala):
 - precyzja: <1, 38> całkowita liczba pozycji znaczących
 - skala: <-84, 127> liczba pozycji na prawo (dodatnia) lub lewo (ujemna) od przecinka

```
pr_dodatek NUMBER(6,2),
pr_wzrost NUMBER(3),
pr_ułamek NUMBER(8,10),
pr_tysiące NUMBER(1,-3),
```

Typ NUMBER (2)

- Typ stałoprzecinkowy:
 - przypadek 1. precyzja > skala, np. NUMBER(6,2):
 - zakres: <-9 999,99, 9 999,99>
 - liczby zaokrąglane do dwóch miejsc po przecinku, np.:
 - 1 234,56 -> 1 234,56
 - 1 234,567 -> 1 234,57
 - > 9999,99 lub < -9999,99 -> błąd
 - przypadek 2. skala = 0, np. NUMBER(4,0) lub NUMBER(4):
 - liczba całkowita, zakres: <-9999, 9999>
 - liczby zaokrąglane do liczb całkowitych, np.:
 - 0.01 -> 0
 - 0.5 -> 1
 - 1234,5678 -> 1235
 - > 9999 lub < -9999 -> błąd

Typ NUMBER (3)

- Typ stałoprzecinkowy (cd):
 - przypadek 3. precyzja < skala, np. NUMBER(8,10):
 - zakres: <-0.00999999999, 0.0099999999>
 - · liczby zaokrąglane do dziesięciu miejsc po przecinku, np.:
 - 0,0012345678 -> 0,0012345678
 - 0,00123456781 -> 0,0012345678
 - 0,00123456789 -> 0,0012345679
 - 0.00000000005 -> 0.0000000001
 - >=0,01 lub <= -0,01 -> błąd
 - przypadek 4. skala < 0, np. NUMBER(1, -3):
 - zakres: <-9000, 9000>
 - liczby całkowite zaokrąglane do najbliższego tysiąca, np.:
 - 499 -> 0
 - 500 -> 1 000
 - 9 499,99 -> 9 000
 - >=9500 lub <=-9500 -> błąd

Podtypy typu NUMBER

- DECIMAL(precyzja, skala) NUMBER(precyzja, skala),
- FLOAT, DOUBLE PRECISION NUMBER(126), precyzja binarna,
- FLOAT(precyzja) NUMBER(precyzja), precyzja binarna do 126 bitów,
- INT, INTEGER, SMALLINT NUMBER(38),
- NUMERIC(precyzja, skala) NUMBER(precyzja, skala),
- REAL FLOAT(63).

Pozostałe typy numeryczne

- Typy zmiennoprzecinkowe z reprezentacją binarną wg standardu IEEE-754:
 - BINARY_FLOAT 4 bajty,
 - BINARY_DOUBLE 8 bajtów.

Ciągi znaków zmiennej długości (1)

- VARCHAR2 ciąg znaków kodowany zestawem znaków domyślnym dla bazy, maks. długość 4000B (32 767B w Oracle12c),
 - długość podajemy w bajtach lub znakach:

nazwisko VARCHAR2(100 BYTE), imię VARCHAR2(50 CHAR),

 pominięcie BYTE i CHAR – długość wyrażona w jednostkach określonych przez parametr sesji NLS_LENGTH_SEMANTICS.

SELECT value FROM nls_session_parameters WHERE parameter = 'NLS_LENGTH_SEMANTICS';

 NVARCHAR2 – ciąg znaków kodowany w wielobajtowym Unicode, może wykorzystywać inny zestaw znaków niż domyślny dla bazy.

Ciągi znaków zmiennej długości (2)

Synonimy:

- VARCHAR2: CHAR VARYING, CHARACTER VARYING, STRING, VARCHAR,
- NVARCHAR2: NATIONAL CHAR VARYING, NCHAR VARYING, NATIONAL CHARACTER VARYING.

Uwaga!

W Oracle pusty ciąg znaków jest równy NULL. Jest to sprzeczne ze standardem języka SQL.

Ciągi znaków stałej długości

- CHAR ciąg znaków kodowany zestawem znaków domyślnym dla bazy, maks długość. 2000B (255B przed Oracle8i),
 - długość podajemy w bajtach lub znakach:

PESEL CHAR(11 BYTE), plec CHAR

- pominięcie BYTE i CHAR długość wyrażona w jednostkach określonych przez parametr sesji NLS_LENGTH_SEMANTICS,
- pominięcie długości długość ciągu = 1,
- niewykorzystane pozycje <u>dopełniane</u> spacjami z prawej strony.
- NCHAR ciąg znaków kodowany w wielobajtowym Unicode, może korzystać z innego zestawu znaków niż domyślny dla bazy
- Synonimy:
 - CHAR: CHARACTER
 - NCHAR: NATIONAL CHARACTER, NATIONAL CHAR

Kolumna IDENTITY (1)

- Kolumna, której wartości w rekordach będą generowane automatycznie (przy użyciu sekwencji).
- Najczęściej służy do identyfikowania rekordów (jako np. klucz podstawowy).
- Cechy:
 - tylko jedna kolumna IDENTITY w relacji,
 - kolumna domyślnie posiada ograniczenie NOT NULL,
 - kolumna nie może mieć zdefiniowanej klauzuli DEFAULT,
 - mechanizm dostępny od Oracle12c.
- Przykłady:

CREATE TABLE pracownicy (id_prac NUMBER(6) GENERATED ALWAYS AS IDENTITY,

. . .

- id_prac w kolejnych rekordach uzyska wartości od 1 z krokiem 1,
- podanie wartości dla id_prac przy wstawianiu rekordu zakończy się błędem,

Kolumna IDENTITY (2)

Przykłady (cd):

CREATE TABLE pracownicy (id_prac NUMBER(6) GENERATED BY DEFAULT AS IDENTITY, ...

- id_prac w kolejnych rekordach uzyska wartości od 1 z krokiem 1,
- podana przez użytkownika wartość dla id_prac przy wstawianiu rekordu zostanie uwzględniona,
- podanie wartości NULL zakończy się błędem,

CREATE TABLE pracownicy
(id_prac NUMBER(6) GENERATED BY DEFAULT
ON NULL AS IDENTITY, ...

 j.w. + wartość zostanie wygenerowana automatycznie również wówczas, gdy przy wstawianiu dla id_prac podano wartość NULL.

Kolumna IDENTITY (3)

- Przykłady (cd):
 - id_prac w kolejnych rekordach uzyska wartości od 100 z krokiem 10.

```
CREATE TABLE pracownicy
(id_prac NUMBER(6) GENERATED ALWAYS
AS IDENTITY(START WITH 100 INCREMENT BY 10),
```

. . .

Wartości domyślne atrybutów (1)

Każdemu atrybutowi można nadać domyślną wartość początkową.
 Robi się to za pomocą słowa kluczowego DEFAULT.

 W Oracle12c wartością domyślną dla atrybutu może być sekwencja (alternatywa dla kolumny IDENTITY).

```
CREATE TABLE pracownicy (
id_prac NUMBER(6) DEFAULT seq_prac.nextval,
...
```

Wartości domyślne atrybutów (2)

Działanie klauzuli DEFAULT podczas wstawiania danych:

Od Oracle12c dostępna klauzula DEFAULT ON NULL:

Tworzenie relacji przez podzapytanie

- Wynik zapytania można utrwalić_w postaci relacji:
 - nowa relacja składa się z atrybutów wymienionych w klauzuli SELECT zapytania,
 - jeśli podano listę nazw atrybutów nowej relacji to lista atrybutów w klauzuli SELECT zapytania musi się pokrywać z tą listą.

```
CREATE TABLE nazwa_relacji
[ (nazwa_atrybutu [typ_wartości] [NULL | NOT NULL], ...) ]
AS SELECT zapytanie;
```

CREATE TABLE roczne_place (nazwisko NOT NULL, etat, roczne)
AS SELECT nazwisko, etat, 12*placa_pod+COALESCE(placa_dod,0)
FROM pracownicy;

CREATE TABLE pracownicy_zespoly AS SELECT nazwisko, nazwa, CURRENT_DATE-zatrudniony AS staz FROM pracownicy JOIN zespoly USING (id_zesp);

Słownik bazy danych (dot. Oracle)

Perspektywa	Synonim	Opis
USER_OBJECTS	OBJ	Obiekty użytkownika
USER_TABLES	TABS	Relacje użytkownika
USER_TAB_COLUMNS	COLS	Atrybuty z relacji użytkownika

SELECT object_name, object_type FROM user_objects ORDER BY object_name;

SELECT table_name FROM user_tables ORDER BY table_name;

SELECT column_name FROM user_tab_columns WHERE table_name = 'PRACOWNICY' ORDER BY column_name;

