MAE 228

Contagem e Análise Combinatória (Revisão)

Princípio básico de contagem

Considere r experimentos que podem ser realizados de maneira que o 1o. experimento produz um entre n_1 possíveis resultados e, para cada um desses n_1 resultados há n_2 possíveis resultados do 2o. experimento; e para cada um dos resultados dos 2 primeiros experimentos há n_3 possíveis resultados do 3o. experimento; e assim por diante.

Então há $n_1 \times n_2 \times \cdots \times n_r$ possíveis resultados para os r experimentos realizados conjuntamente.

Princípio básico de contagem - Exemplos

Ao resolver os exemplos, especifique o que são os "experimentos".

Exemplo 1

Quantas placas de carros distintas podem ser formadas com 3 letras e 4 números?

$$\longrightarrow 26 \times 26 \times 26 \times 10 \times 10 \times 10 \times 10 = 26^3 \times 10^4.$$

Exemplo 2

Quantas placas de carros distintas podem ser formadas com 3 letras e 4 números, sem repetição de letras e números?

$$\longrightarrow 26 \times 25 \times 24 \times 10 \times 9 \times 8 \times 7$$

Exemplo 3

De quantas maneiras podemos arranjar/dispor/posicionar as letras a, b e c?

- → lousa (listando todas as maneiras)
- \implies $3 \times 2 \times 1 = 6 = 3!$

3/17

Permutação e Arranjo

Definição:

 $\overline{\mathbf{A}}$ **permutação** de n elementos (distintos) é o número de arranjos ordenados de n elementos distintos, e é igual a

$$n(n-1) \times \cdots \times 2 \times 1 \stackrel{\mathsf{notação}}{=} n!$$

Definição:

 $\overline{\mathbf{O} \ \mathbf{arranjo}} \ \mathbf{de} \ n \ \mathbf{elementos} \ (\mathbf{distintos}) \ \mathbf{tomados} \ k \ \mathbf{a} \ k \ (k \leq n) \ \mathbf{\acute{e}} \ \mathbf{o} \ \mathbf{n\acute{e}}$ número de arranjos ordenados de k elementos distintos escolhidos dentre os possíveis n elementos, e $\mathbf{\acute{e}}$ igual a

$$n(n-1) imes \cdots imes (n-(k-1)) = rac{n!}{(n-k)!} \stackrel{ ext{notação}}{=} A_{n,k}$$

◆ロト ◆個 ト ◆ 恵 ト ◆ 恵 ・ り へ ②

Arranjo e combinação - Exemplos

Exemplo 4

Quantas diretorias de 3 pessoas (diretor, secretário e tesoureiro) podem ser formadas a partir de 8 pessoas?

$$\longrightarrow A_{8,3} = \frac{8!}{5!} = 8 \cdot 7 \cdot 6$$

Exemplo 5

Quantas comissões de 3 pessoas podem ser formadas a partir de 8 pessoas?

 \longrightarrow Uma comissão não envolve cargos, então a ordem não importa. Portanto, temos uma combinação.

$$C_{8,3} = \frac{8!}{3!5!} = 8 \cdot 7$$

Combinação

Definição

A combinação de n elementos tomados k a k ($k \le n$) é o número de maneiras de dispor, sem ordem, k elementos distintos escolhidos dentre os possíveis n elementos.

Notação: $C_{n,k}$

$$A_{n,k} = C_{n,k} \times k!$$
 ordenado sem ordem permuta

$$\implies C_{n,k} = \frac{A_{n,k}}{k!} = \frac{n!}{k!(n-k)!} = \binom{n}{k}$$

Problema dos sorvetes

Uma sorveteria vende sorvetes em 7 sabores distintos.
Uma pessoa entra na sorveteria e compra 4 sorvetes.

De quantos modos é possível escolher esses 4 sorvetes dentre os 7 sabores disponíveis?

<u>Atenção:</u> a resposta NÃO é $C_{7,4}=\left(\begin{array}{c} 7\\4 \end{array}\right)=35$ e nem 7^4 (justificativas dadas na lousa)

Descreva, em português, o que $C_{7,4}$ e 7^4 podem eventualmente representar em termos de maneiras de escolher sorvetes.

Para simplificar o problema (você pode listar todas as possíveis maneiras) considere 3 sorvetes e 4 sabores (a, b, c e d) disponíveis; ou ainda 2 sorvetes e 3 sabores.

Beti Kira (IME-USP) MAE 228

Resolução do problema dos sorvetes

O problema dos sorvetes pode ser inserido no seguinte contexto.

```
x_1 = no. de sorvetes escolhidos do sabor 1;

x_2 = no. de sorvetes escolhidos do sabor 2;

\vdots \vdots \vdots \vdots \vdots x_7 = no. de sorvetes escolhidos do sabor 7;
```

Assim, escolher 4 sorvetes de 7 sabores disponíveis corresponde a

$$(*) x_1 + x_2 + \dots + x_7 = 4$$

O número de maneiras de escolher 4 sorvetes de 7 sabores distintos é equivalente ao número de soluções (x_1, x_2, \ldots, x_7) de números inteiros e não-negativos da equação (*).

Combinação completa

Caso geral do problema dos sorvetes:

O número de soluções inteiras e não-negativas de

$$x_1 + x_2 + \dots + x_r = n$$

é dado por (demonstrado na lousa)

$$\left(\begin{array}{c} r-1+n\\ n \end{array}\right) = \left(\begin{array}{c} r+n-1\\ r-1 \end{array}\right)$$

Esse valor é chamado, às vezes, de combinação completa.

Técnicas de contagem

A maioria dos problemas de contagem se encaixa em uma de 4 possíveis situações associadas à

- Bolas e urnas: distribuição de n bolas em M urnas; ou
- Amostragem: seleção de n elementos de um conjunto de M elementos

Naturalmente essas técnicas de contagem envolvem os elementos de análise combinatória (permutações, arranjos e combinações).

Além disso, há equivalência em distribuir bolas em urnas e amostrar elementos.

10 / 17

Distribuição de BOLAS em URNAS

Deseja-se calcular o <u>número de maneiras</u> que n bolas podem ser distribuídas em M urnas.

- As BOLAS podem ser distintas ou iguais
- As URNAS podem ter restrição de no máximo 1 bola por urna (<u>com exclusão</u>) ou qualquer quantidade de bolas por urna (<u>sem exclusão</u>)

Os 4 possíveis casos estão especificados na tabela abaixo.

Distribuição de n bolas em M urnas

	Bolas distintas	Bolas iguais
Urna sem exclusão	(I)	(IV)
Urna com exclusão	(II)	(III)

Distribuição de bolas em urnas

Número de maneiras de distribuir n bolas em M urnas

	Bolas distintas	Bolas iguais
Urna sem exclusão	M^n	$C_{M+n-1,n}$
	Est. Maxwell-Boltzmann	Est. Bose-Einstein
$(M \ e \ n \in I\!\!N)$		(fótons, píons)
Urna com exclusão	$A_{M,n}$	$C_{M,n}$
		Est. Fermi-Dirac
$(n \leq M)$		(elétrons, prótons, neutrons)

12 / 17

Selecionar n elementos de um conjunto com M

Deseja-se calcular o <u>número de maneiras</u> que n elementos podem ser selecionados/retirados de um conjunto com M elementos.

- A AMOSTRA pode ser ordenada ou sem ordenação
- As RETIRADAS podem ser com ou sem reposição

Os 4 possíveis casos estão especificados na tabela abaixo.

Seleção de n elementos de um conjunto de M elementos

	Amostra ordenada	Amostra sem ordenação
Retiradas com reposição	(I)	(IV)
Retiradas sem reposição	(II)	(III)

Seleção de *n* elementos

Número de maneiras de selecionar n elementos de um conjunto com M elementos.

	Amostras ordenadas	Amostras sem ordenação
Retiradas com reposição $(M \ { m e} \ n \in IN)$	M^n	$C_{M+n-1,n}$
Retiradas sem reposição $(n \le M)$	$A_{M,n}$	$C_{M,n}$

Equivalência entre distribuição de bolas em urnas e seleção de amostras

Para
$$i = 1, ..., n$$
 e $k = 1, ..., M$,

Bola i na urna $k \iff i$ – ésimo elemento selecionado é o elemento k do conjunto

ou seja, bola na urna $k \iff$ elemento k está na amostra

A equivalência segue de

```
urna sem exclusão \iff retirada com reposição urna com exclusão \iff retirada sem reposição bolas distintas \iff amostra ordenada bolas iguais \iff amostra sem ordenação
```

Técnicas de Contagem

Distribuir n bolas em M urnas			
	Bolas	Bolas	
	distintas	iguais	
Urna			Retiradas
sem exclusão	M^n	$C_{M+n-1,n}$	com reposição
Urna			Retiradas
com exclusão	$A_{M,n}$	$C_{M,n}$	sem reposição
$(n \leq M)$			$(n \leq M)$
	Amostra	Amostra	
	ordenada	sem ordenação	
	Selecionar n elementos dentre M elementos		

Permutação com elementos repetidos

Considere n elementos tais que n_1 são do tipo 1, n_2 são do tipo 2, ..., n_r são do tipo r $(r \ge 2)$, de modo que $n = n_1 + n_2 + \cdots + n_r$.

Então o número de permutações desses elementos repetidos é

$$\frac{n!}{n_1! \; n_2! \; \cdots \; n_r!} \stackrel{\mathsf{nota}\tilde{\mathsf{qao}}}{=} \left(\begin{array}{c} n \\ n_1, n_2, \dots, n_r \end{array} \right)$$

Note (demonstre) que a expressão acima é igual a

$$\begin{pmatrix} n \\ n_1 \end{pmatrix} \begin{pmatrix} n-n_1 \\ n_2 \end{pmatrix} \begin{pmatrix} n-n_1-n_2 \\ n_3 \end{pmatrix} \cdots \begin{pmatrix} n_r \\ n_r \end{pmatrix}$$

Exemplo: número de anagramas da palavra ARARAQUARA

