Global Reference Atmospheric Model (GRAM) Suite Overview and Current Status

Hilary L. Justh

Planetary GRAM Lead
Natural Environments Branch (EV44)
NASA Marshall Space Flight Center
Hilary.L.Justh@nasa.gov

2022 GRAM Virtual Workshop April 21, 2022

GRAM Upgrade Team

NASA Langley Research Center

Project Manager

Soumyo Dutta

Code Architect

James Hoffman

Analytical Mechanics Associates

Implementation Experts

Richard Powell

Analytical Mechanics Associates

John Aguirre

Analytical Mechanics Associates

NASA Marshall Space Flight Center

Planetary Atmosphere Specialist

Hilary Justh

Earth-GRAM Developer

Patrick White

GRAM Developer

Lee Burns

Jacobs Space Exploration Group

GRAM Overview

- Engineering-oriented atmospheric models that estimate mean values and statistical variations of atmospheric properties for numerous planetary destinations
- Currently available for Earth, Mars, Venus, Titan, Neptune, Uranus, and Jupiter
- Outputs include atmospheric density, temperature, pressure, chemical composition, radiative fluxes (for Mars-GRAM), and wind components along a user-defined path
 - Includes seasonal, diurnal, geographic, and altitude variations
- Widely used by the engineering community because of their ability to create realistic atmospheric dispersions
- Can be integrated into high fidelity flight dynamic simulations of launch, entry, descent and landing (EDL), aerobraking and aerocapture

GRAM Overview (Continued)

- Optional trajectory input file consisting of time, height, latitude, and longitude can be used to provide the GRAM trajectory path
- Optional auxiliary profile consisting of height, latitude, longitude, temperature, pressure, density, eastward wind, and northward wind may be used to replace model data in the GRAMs
- Not a forecast model
- Available through the NASA Software Catalog https://software.nasa.gov/

GRAM Upgrades

- NASA Science Mission Directorate (SMD) has provided funding support to upgrade the GRAMs since Fiscal Year 2018
- GRAM Upgrade Primary Objectives:
 - Modernize the code
 - Develop a new framework that transitions the original Fortran code to C++
 - Take advantage of the object-oriented capabilities of C++
 - Upgrade atmosphere models
 - Update the atmosphere models in the existing GRAMs
 - Establish a foundation for developing GRAMs for additional destinations (Saturn, Uranus, and Jupiter)
 - Socialize plans and status to improve communication between users, modelers, and developers

GRAM Suite

- Common object-oriented C++ framework
- Includes a common GRAM library of data models and utilities
 - Reduces duplicated code
 - Ensures consistent constants across all GRAMs
 - Simplifies bug fixes
 - Streamlines the interface with trajectory codes
- Includes C++ library with C and Fortran interfaces which can be incorporated in a trajectory (or orbit propagation) code

Legacy GRAMs

GRAM Suite

Upgrades contained within the GRAM Suite

- GRAM ephemeris has been upgraded to the NASA Navigation and Ancillary Information Facility (NAIF) Spacecraft Planet Instrument Cmatrix Events (SPICE) toolkit (version N0066) for increased accuracy
 - Requires the GRAM user to download the latest SPICE data before using the GRAM Suite
- Input parameters have been renamed to be more descriptive
 - Legacy input parameter names are still accepted to maintain compatibility with existing NAMELIST input files from prior GRAM versions
- Output files have been reformatted
 - Comma separated value file
 - Consolidates the column formatted output files from the legacy GRAMs into a single file that can easily be loaded into data centric programs
 - LIST file
 - Can be read using a American Standard Code for Information Interchange (ASCII) reader or a Markdown syntax for enhanced rendering in a web browser

GRAM Suite Improvements in Speed of Sound Calculations

- GRAMs compute speed of sound based on a thermodynamic parameterization using density, pressure, and γ , the ratio of specific heats $\frac{C_p}{C_n}$, for a given constituent gas mixture
 - $-\ C_{\text{p}}$ is the specific heat capacity of a gaseous mixture for isobaric processes
 - C_v is the specific heat capacity of a gaseous mixture for isochoric processes
- GRAM legacy codes use a constant γ , which is physically unrealistic
 - Analyses have shown this formulation to over-estimate speed of sound by as much as 10%
- GRAM Suite includes an improved methodology for computing γ, involving temperature and pressure dependent tables of C_p and C_v evaluated in run-time for the current constituent combination

GRAM Suite Releases

- GRAM Suite Version 1.0 (Released May 2020) includes:
 - Rearchitected Neptune-GRAM (common GRAM framework and planet specific code)
 - Makefile and Visual Studio solutions for building the GRAM Suite
 - Neptune-GRAM User Guide (NASA/TM–20205001193)
 - GRAM Programmer's Manual
 - Examples and tests for successful implementation of Neptune-GRAM
- GRAM Suite Version 1.1 (Released September 2020) added:
 - Rearchitected Titan-GRAM (common GRAM framework and planet specific code)
 - Titan-GRAM User Guide (NASA/TM–20205006805)
 - Examples and tests for successful implementation of Titan-GRAM

GRAM Suite Releases

- GRAM Suite Version 1.2 (Released July 2021) added:
 - New Uranus-GRAM (common GRAM framework and planet–specific code)
 - Uranus-GRAM atmospheric data is from the NASA Ames Research Center (ARC) Uranus Atmospheric Model^{1,2}
 - Based on Voyager radio science, Infrared Interferometer Spectrometer and Radiometer (IRIS), and Ultraviolet Spectrometer (UVS) data from the Voyager 2 fly-by of Uranus that occurred on January 24, 1986^{3,4,5}
 - Includes atmospheric density, pressure, temperature, and chemical composition (helium, hydrogen, and methane)
 - Does not include wind data
 - Uranus-GRAM User Guide (NASA/TM -20210017250)
 - Examples and tests for successful implementation of Uranus-GRAM

Upgraded GRAM Releases

- GRAM Suite Version 1.3 (Released October 2021) added:
 - New Jupiter-GRAM (common GRAM framework and planet-specific code)
 - Based on Galileo probe Atmospheric Structure Instrument (ASI) data from Seiff et al.⁶
 - Includes atmospheric density, pressure, and temperature
 - Does not include chemical composition or winds
 - Rearchitected Venus-GRAM (common GRAM framework and planetspecific code)
 - Jupiter-GRAM User Guide (NASA/TM-20210022058)
 - Venus-GRAM User Guide (NASA/TM-20210022168)
 - Examples and tests for successful implementation of Jupiter-GRAM and Venus-GRAM

Upgraded GRAM Releases

- GRAM Suite Version 1.4 (Released November 2021) added:
 - Rearchitected and Updated Earth-GRAM (common GRAM framework and planet-specific code)
 - Addition of the 2019 Range Reference Atmosphere database
 - Able to produce correlated atmospheric dispersions from a ballistic (up-down) trajectory
 - Able to correlate atmospheric dispersions originating from multiple atmosphere objects
 - Rearchitected Mars-GRAM (common GRAM framework and planetspecific code)
 - Updated Earth-GRAM User Guide (NASA/TM-20210022157)
 - Updated Mars-GRAM User Guide (NASA/TM-20210023957)
 - Examples and tests for successful implementation of Earth-GRAM and Mars-GRAM

GRAM Upgrade Team Funded Projects

- The GRAM project has established several ongoing contracts to improve atmospheric data in the GRAMs
- Beginning Fiscal Year 2020
 - University of Wisconsin Sanjay Limaye and Patrick Fry
 - Reanalysis of the Venus Express radio occultation observations
 - Calculating number density, temperature, and pressure profiles (40-90 km altitude)
 - Analysis of Akatsuki thermal imaging data
 - Calculating temperature values at the limb altitudes as a function of solar time
 - Hampton University Kunio Sayanagi, Justin Garland, and Ryan McCabe
 - Developing global models for Venus, Jupiter, Saturn, Uranus, Neptune, and Titan
- Beginning Fiscal Year 2022
 - Johns Hopkins University Applied Physics Laboratory Ralph Lorenz
 - Develop Dragonfly atmospheric profile for use in Titan-GRAM upgrade

Fiscal Year 2022 GRAM Suite Upgrade Activities

- Established GRAM Working Groups
 - Focused on discussing potential GRAM upgrades and developing a forward plan
 - Venus-GRAM and Titan-GRAM Working Groups meet once a month
 - Mars-GRAM Working Group will be starting soon
- Earth-GRAM Upgrades to be released by end of FY2022
 - Implement Modern-Era Retrospective analysis for Research and Applications, version 2 (MERRA-2) data
 - Update Earth-GRAM User Guide
- Venus-GRAM Upgrades Currently Under Discussion
 - Incorporate Magellan datasets to improve thermospheric datasets
 - Improve zonal, meridional, and vertical winds

Summary

- GRAMs are frequently used toolsets and vital in assessing effects of atmospheres on interplanetary spacecraft during the program life cycle process
- Upgrades of the existing GRAMs and development of new GRAMs are continuing
 - Venus-GRAM and Titan-GRAM Working Groups have been established
 - Upgraded Earth-GRAM to be released by end of Fiscal Year 2022
 - Saturn-GRAM currently under initial stages of development
 - Ongoing discussions with modeling groups within NASA and academia regarding status of their models
 - Ongoing discussions with planetary mission teams (VERITAS, DAVINCI, Dragonfly, MAVEN, etc.) to determine potential mission support by the GRAM team, utilization of collected atmospheric data, and needed GRAM upgrades

References

- 1. Allen Jr., G.A.; Marley, M.S.; and Agrawal, P.: "Uranus Atmospheric Model for Engineering Application", Paper Presented at the 11th International Planetary Probe Workshop, Abstract #8023, Pasadena, CA, June 16-20, 2014.
- 2. Allen Jr., G.A.; Marley, M.S.; and Agrawal, P.: "Uranus Atmospheric Model for Engineering Application", Paper Presented at the Workshop on the Study of the Ice Giant Planets, Abstract #2001, Laurel, MD, July 28-30, 2014.
- 3. Lindal, G.F.; Lyons, J.R.; Sweetnam, D.N.; Eshleman, V.R.; Hinson, D.P.; and Tyler, G.L.: "The Atmosphere of Uranus: Results of Radio Occultation Measurements with Voyager 2," Journal of Geophysical Research, Vol. 92, No. A13, pp. 14,987-15,001, December 30, 1987.
- 4. Herbert, F.; Sandel, B.R.; Yelle, R.V.; Holberg, J.B.; Broadfoot, A.L.; Shemansky, D.E.; Atreya, S.K.; and Romani, P.N.: "The Upper Atmosphere of Uranus: EUV Occultations Observed by Voyager 2," Journal of Geophysical Research, Vol. 92, No. A13, pp. 15,093- 15,109, December 30, 1987.
- 5. Bishop, J.; Atreya, S.K.; Herbert, F.; and Romani, P.: "Reanalysis of Voyager 2 UVS Occultations at Uranus: Hydrocarbon Mixing Ratios in the Equatorial Stratosphere," Icarus, Vol. 88, pp. 448-464, 1990.
- 6. Seiff, A., et al.: "Thermal structure of Jupiter's atmosphere near the edge of a 5-μm hot spot in the north equatorial belt," *Journal of Geophysical Research*, Vol. 103, No. E10, pp. 22,857-22,889, 1998.

