AI & Robotics

Random Forests

Goals

The junior-colleague

- can explain bagging in the context of random forests in their own words
- can explain bootstrap sampling
- can explain a random forest in their own words
- can explain the importance of random sampling in the context of random forests
- can describe the habit of overfitting in context of decision trees
- can describe why the different decision trees in a random forest need to be as uncorrelated as possible
- is able to sum up and explain 5 advantages and 2 disadvantages of random forests

Ensemble methods

- Combining classifiers
- Methods:
 - Bagging
 - Boosting
 - Voting
 - Stacking

Bagging

- Bootstrap aggregating
- Apply "bootstrapping"
 - From training set T of size n, draw sample T_i of size n (with replacement)
 - Do this m times -> m different training sets from T
- Learn model from each different data set T_i
- => Different learners have different inductive bias
- => Each model makes their own mistakes
 - Average over the results

- General purpose Machine Learning model for structured data
- Good at lots of different problems
- Method: Decision Tree Bootstrap Aggregation

=> Correct for decision trees' habit of overfitting to their training set

- You want the decision trees in your random forest to be as uncorrelated as possible
- Remember Bootstrapping!
 - => Random sampling with replacement

Example:

- Dataset: 100 000 samples
- Random forest:
 - 1000 trees on 10 random samples
 - => trees are uncorrelated
 - 1000 trees on the entire dataset 1 sample
 - => trees are correlated

Why random forests?

Advantages	Disadvantages
Generally applicable to structured data	Time-consuming to construct for large datasets
Flexible and high accuracy	Not as easy to interpret as a single decision tree
Easy to visualize separate decision trees	
Able to handle both numerical and categorical data	
Able to handle multi class classification	

