Package 'diffeR'

December 11, 2019

Type Package

Title Metrics of Difference for Comparing Pairs of Maps or Pairs of Variables
Version 0.0-7
Date 2019-12-11
Author Robert Gilmore Pontius Jr. <rpontius@clarku.edu>, Ali Santacruz <asantacruzdelgado@clarku.edu></asantacruzdelgado@clarku.edu></rpontius@clarku.edu>
Maintainer Ali Santacruz <amsantac@unal.edu.co></amsantac@unal.edu.co>
Depends R (>= 2.14.0), rgdal, raster, methods, ggplot2, reshape2
Imports graphics, grDevices
 Description Metrics of difference for comparing pairs of variables or pairs of maps representing real or categorical variables at original and multiple resolutions. License GPL (>= 2)
BugReports https://github.com/amsantac/diffeR/issues
URL https://github.com/amsantac/diffeR Encoding latin1 NeedsCompilation no R topics documented:
diffeR-package 2 categoryComponentsPlot 2 categorySourcesPlot 4 composite 6 crosstabm 3 differenceMR 4 diffTablej 9 exchangeDij 10 exchangeDj 11 MAD 12 MADscatterplot 13 memberships 14 overallAllocD 15 overallComponentsPlot 16

diffe	R-package	Me abl	es (of .	Dij	ffe	rei	nce	e fe	or	Co	om	рс	ıri	ng	? <i>F</i>	Pai	rs	oj	· N	1a,	ps	0	r I	Pai	irs	o,	f I	/ar	i-
Index																														26
	shiftDj		 ٠		•	٠	٠		٠	•		•	•	٠	•			•	•	•	•	•		•	٠	•	•	•	•	25
	sample2pop																													
	quantityDj																													23
	overallSourcesPlot																													21
	overallShiftD																													20
	overallQtyD																													19
	overallExchangeD.																													19
	overallDiffCatj																													18

Description

Metrics of difference for comparing pairs of variables or pairs of maps representing real or categorical variables at original and multiple resolutions.

Details

Package: diffeR Type: Package Version: 0.0-7Date: 2019-12-11 License: GPL (>= 2)LazyLoad:

yes

BugReports: https://github.com/amsantac/diffeR/issues

Author(s)

Robert Gilmore Pontius Jr. <rpontius@clarku.edu>, Ali Santacruz <asantacruzdelgado@clarku.edu> Maintainer: Ali Santacruz <amsantac@unal.edu.co>

See Also

differenceMetrics

 ${\tt category Components Plot}$

Category Components plot

Description

If comparison and reference (raster) maps are provided, this function creates the Category Components plot from the comparison between the comparison map (or map at time t) and the reference map (or map at time t+1). If a square contingency table (matrix) is provided instead of raster maps, then this function creates the Category Components plot from the comparison between the comparison variable (or variable at time t) and the reference variable (or variable at time t+1).

Usage

Arguments

comp	object of class RasterLayer corresponding to a comparison map (or map at time <i>t</i>). See Details below
C	

ref object of class RasterLayer corresponding to a reference map (or map at time

t+1). See Details below

ctmatrix matrix representing a square contingency table between a comparison variable

or variable at time t (rows) and a reference variable or variable at time t+1

(columns). See Details below

units optional; character string indicating units of ctmatrix

population optional; an $n \times 2$ matrix provided to correct the sample count to population

count in the square contingency table. See Details below

fontSize text size (in pts)

breaks One of:

• NULL for no breaks

• waiver() for the default breaks computed by the transformation object

• A numeric vector of positions

• A function that takes the limits as input and returns breaks as output

labels One of:

• NULL for no labels

• waiver() for the default labels computed by the transformation object

• A character vector giving labels (must be same length as breaks)

• A function that takes the breaks as input and returns labels as output

A numeric vector of length two providing limits of the scale. Use NA to refer to the existing minimum or maximum.

Details

limits

Users may enter as input either a square contingency table (ctmatrix) or a comparison and a reference raster maps (comp and ref, respectively).

The first column of population must contain integer identifiers of each category, corresponding to the categories in the comparison and reference variables. The second column corresponds to the population totals for each category.

4 categorySourcesPlot

Value

a stacked barplot showing for each category the quantity, exchange and shift components of difference between the comparison map/variable (or map/variable at time t) and the reference map/variable (or map/variable at time t+1)

References

Pontius Jr., R.G., Millones, M. 2011. *Death to Kappa: birth of quantity disagreement and allocation disagreement for accuracy assessment.* International Journal of Remote Sensing 32 (15), 4407-4429.

See Also

```
diffTablej
```

Examples

```
comp <- raster(system.file("external/comparison.rst", package="diffeR"))
ref <- raster(system.file("external/reference.rst", package="diffeR"))
categoryComponentsPlot(comp, ref)
ctmat <- crosstabm(comp, ref)
categoryComponentsPlot(ctmatrix = ctmat, units = "pixels")</pre>
```

categorySourcesPlot

Category Sources plot

Description

If comparison and reference (raster) maps are provided, this function creates the Category Sources plot from the comparison between the comparison map (or map at time t) and the reference map (or map at time t+1). If a square contingency table (matrix) is provided instead of raster maps, then this function creates the Category Sources plot from the comparison between the comparison variable (or variable at time t) and the reference variable (or variable at time t+1).

Usage

Arguments

comp	object of class RasterLayer corresponding to a comparison map (or map at time t). See Details below
ref	object of class RasterLayer corresponding to a reference map (or map at time $t+1$). See Details below
ctmatrix	matrix representing a square contingency table between a comparison variable or variable at time t (rows) and a reference variable or variable at time $t+1$ (columns). See Details below
analysis	character string indicating type of analysis, either "error" (default) or "change"

categorySourcesPlot 5

units optional; character string indicating units of ctmatrix population optional; an $n \times 2$ matrix provided to correct the sample count to population

count in the square contingency table. See Details below

fontSize text size (in pts)

breaks One of:

· NULL for no breaks

• waiver() for the default breaks computed by the transformation object

• A numeric vector of positions

• A function that takes the limits as input and returns breaks as output

labels One of:

• NULL for no labels

• waiver() for the default labels computed by the transformation object

• A character vector giving labels (must be same length as breaks)

• A function that takes the breaks as input and returns labels as output

limits A numeric vector of length two providing limits of the scale. Use NA to refer to

the existing minimum or maximum.

Details

Users may enter as input either a square contingency table (ctmatrix) or a comparison and a reference raster maps (comp and ref, respectively).

The first column of population must contain integer identifiers of each category, corresponding to the categories in the comparison and reference variables. The second column corresponds to the population totals for each category.

Value

a stacked barplot showing for each category the agreement and the omission and comission components of difference between the comparison map/variable (or map/variable at time t) and the reference map/variable (or map/variable at time t+1)

References

Pontius Jr., R.G., Millones, M. 2011. *Death to Kappa: birth of quantity disagreement and allocation disagreement for accuracy assessment.* International Journal of Remote Sensing 32 (15), 4407-4429.

See Also

differenceMetrics

```
comp <- raster(system.file("external/comparison.rst", package="diffeR"))
ref <- raster(system.file("external/reference.rst", package="diffeR"))
categorySourcesPlot(comp, ref)
ctmat <- crosstabm(comp, ref)
categorySourcesPlot(ctmatrix = ctmat, units = "Pixels")</pre>
```

6 composite

com	nne	i	tο
COIII	pus	т	ιc

create a composite matrix

Description

provide a method to create a composite matrix from the crosstabulation of a comparison map (or map at time t) and a reference map (or map at time t+1), both aggregated at a given factor

Usage

```
composite(comp, ref, factor)
```

Arguments

factor

comp	object of class RasterLayer corresponding to a comparison map (or map at time t)
ref	object of class RasterLayer corresponding to a reference map (or map at time $t+1$)

integer. Aggregation factor expressed as number of cells in each direction (horizontally and vertically). Or two integers (horizontal and vertical aggregation

factor). See raster package for details

Details

the pixel definition in a composite matrix interpretes class membership as the proportion of a pixel that belongs to a class. The pixel contains information about only the quantity of each category (Kuzera and Pontius 2008).

Value

a matrix showing the contingency table derived from the crosstabulation of a comparison map (or map at time t) and a reference map (or map at time t+1), both aggregated at a given factor. Output values are given as proportion (0 to 1)

References

Kuzera, K., Pontius Jr., R.G. 2008. Importance of matrix construction for multiple-resolution categorical map comparison. GIScience & Remote Sensing 45 (3), 249-274.

See Also

```
memberships
```

```
comp <- raster(system.file("external/comparison.rst", package="diffeR"))</pre>
ref <- raster(system.file("external/reference.rst", package="diffeR"))</pre>
composite(comp, ref, factor=2)
```

crosstabm 7

crosstabm	create a contingency table between a comparison raster map (rows)
	and a reference raster map (columns)

Description

create a contingency table, also called cross-tabulated matrix, between a comparison raster map (rows), or map at time t, and a reference raster map (columns), or map at time t+1

Usage

```
crosstabm(comp, ref, percent = FALSE, population = NULL)
```

Arguments

comp object of class RasterLayer corresponding to the comparison map, or map at

time t

ref object of class RasterLayer corresponding to the reference map, or map at time

t+1

percent logical. If TRUE, output values are given as percentage. If FALSE, output

values are given in pixel counts

population an $n \times 2$ matrix provided to correct the sample count to population count in the

square contingency table. See Details below

Details

For correcting the sample count to population count in the square contingency table, assuming a stratified random sampling, an n (number of categories) by 2 matrix can be provided in the population argument. The first column of population must contains integer identifiers of each category, corresponding to the categories in the comparison map (or map at time t) and reference map (or map at time t+1). The second column corresponds to the population totals for each map category

Value

a matrix showing the cross-tabulation between the comparison map (or map at time t) and the reference map (or map at time t+1)

See Also

memberships

```
comp <- raster(system.file("external/comparison.rst", package="diffeR"))
ref <- raster(system.file("external/reference.rst", package="diffeR"))
crosstabm(comp, ref)

# Population-adjusted square contingency table
(population <- matrix(c(1,2,3,2000,4000,6000), ncol=2))
crosstabm(comp, ref, population = population)</pre>
```

8 differenceMR

Population-adjusted square contingency table, output as percentage
crosstabm(comp, ref, percent=TRUE, population = population)

differenceMR	calculates difference metrics between a reference map and a comparison map both consecutively aggregated at multiple resolutions
	ison map both consecutively aggregated at maniple resolutions

Description

calculates quantity, exchange and shift components of difference, as well as the overall difference, between a comparison raster map (or map at time t), and a reference raster map (or map at time t+1), both consecutively aggregated at multiple resolutions.

Quantity difference is defined as the amount of difference between the reference map and a comparison map that is due to the less than maximum match in the proportions of the categories. Exchange consists of a transition from category i to category j in some pixels and a transition from category j to category j in an identical number of other pixels. Shift refers to the difference remaining after subtracting quantity difference and exchange from the overall difference.

Usage

```
differenceMR(comp, ref, eval = "multiple", percent = TRUE, fact = 2, population = NULL)
```

Arguments

comp	object of class Raster Layer corresponding to the comparison map, or map at time t
ref	object of class RasterLayer corresponding to the reference map, or map at time $t+1$
eval	default "original", return difference metrics between the input raster maps at the original resolution; if "multiple", return difference metrics at multiple resolutions aggregated according to a geometric sequence
percent	logical. If TRUE, output value is given as percentage. If FALSE, output value is given as proportion $(0\ to\ 1)$
fact	integer. Aggregation factor expressed as number of cells in each direction (horizontally and vertically). Or two integers (horizontal and vertical aggregation factor). See raster package for details
population	an $n \times 2$ matrix provided to correct the sample count to population count in the square contingency table. See Details below

Details

For correcting the sample count to population count in the square contingency table, assuming a stratified random sampling, an n (number of categories) by 2 matrix can be provided in the population argument. The first column of population must contains integer identifiers of each category, corresponding to the categories in the comparison map (or map at time t) and reference map (or map at time t+1). The second column corresponds to the population totals for each map category

diffTablej 9

Value

data.frame containing quantity, exchange and shift components of difference, as well as the overall difference, between the comparison map and the reference map at multiple resolutions

References

Pontius Jr., R.G., Millones, M. 2011. *Death to Kappa: birth of quantity disagreement and allocation disagreement for accuracy assessment.* International Journal of Remote Sensing 32 (15), 4407-4429.

Pontius Jr., R.G., Santacruz, A. 2014. *Quantity, exchange and shift components of difference in a square contingency table.* International Journal of Remote Sensing 35 (21), 7543-7554.

See Also

differenceMetrics

Examples

```
## Not run:
comp <- raster(system.file("external/comparison.rst", package="diffeR"))
ref <- raster(system.file("external/reference.rst", package="diffeR"))
differenceMR(comp, ref, eval="original")
differenceMR(comp, ref, eval="multiple", fact=2)
## End(Not run)</pre>
```

diffTablej

calculates difference metrics at the category level from a square contingency table

Description

calculates quantity, exchange and shift components of difference, as well as the overall difference, at the category level from a contingency table derived from the crosstabulation between a comparison variable (or variable at time t), and a reference variable (or variable at time t+1).

Quantity difference is defined as the amount of difference between the reference variable and a comparison variable that is due to the less than maximum match in the proportions of the categories. Exchange consists of a transition from category i to category j in some observations and a transition from category j to category

Usage

```
diffTablej(ctmatrix, digits = 0, analysis = "error")
```

Arguments

ctmatrix	matrix representing a square contingency table between a comparison variable (rows) and a reference variable (columns)
digits	integer indicating the number of decimal places to be used
analysis	character string either "error" (default) or "change". The output table shows
	category-level omission error, agreement and comission error in the "error" anal-
	ysis, and category-level gain, persistence and loss in the "change" analysis

10 exchangeDij

Value

data.frame containing difference metrics at the category level between a comparison variable (rows) and a reference variable (columns). Output values are given in the same units as ctmatrix

References

Pontius Jr., R.G., Millones, M. 2011. *Death to Kappa: birth of quantity disagreement and allocation disagreement for accuracy assessment.* International Journal of Remote Sensing 32 (15), 4407-4429.

Pontius Jr., R.G., Santacruz, A. 2014. *Quantity, exchange and shift components of difference in a square contingency table.* International Journal of Remote Sensing 35 (21), 7543-7554.

See Also

differenceMetrics

Examples

```
comp <- raster(system.file("external/comparison.rst", package="diffeR"))
ref <- raster(system.file("external/reference.rst", package="diffeR"))
ctmatCompRef <- crosstabm(comp, ref)
diffTablej(ctmatCompRef)

# Adjustment to population assumming a stratified random sampling
(population <- matrix(c(1,2,3,2000,4000,6000), ncol = 2))
ctmatCompRef <- crosstabm(comp, ref, percent = TRUE, population = population)
diffTablej(ctmatCompRef)</pre>
```

exchangeDij

calculates the exchange matrix between pairs of categories

Description

calculates the exchange matrix between pairs of categories from a contingency table derived from the crosstabulation between a comparison variable (or variable at time t), and a reference variable (or variable at time t+1). Exchange consists of a transition from category i to category j in some observations and a transition from category j to category j in an identical number of other observations.

Usage

```
exchangeDij(ctmatrix)
```

Arguments

ctmatrix

matrix representing a square contingency table between a comparison variable (rows) and a reference variable (columns)

Value

a matrix containing exchange occurring between pairs of categories from the comparison variable and the reference variable. Exchange is shown in the lower triangle of the output matrix. Output values are given in the same units as ctmatrix

exchangeDj 11

References

Pontius Jr., R.G., Santacruz, A. 2014. *Quantity, exchange and shift components of difference in a square contingency table.* International Journal of Remote Sensing 35 (21), 7543-7554.

See Also

```
exchangeDj
```

Examples

```
comp <- raster(system.file("external/comparison.rst", package="diffeR"))
ref <- raster(system.file("external/reference.rst", package="diffeR"))
ctmatCompRef <- crosstabm(comp, ref)
exchangeDij(ctmatCompRef)</pre>
```

exchangeDj

calculates exchange difference at the category level from a square contingency table

Description

calculates exchange difference at the category level from a contingency table derived from the crosstabulation between a comparison variable (or variable at time t), and a reference variable (or variable at time t+1). Exchange consists of a transition from category i to category j in some observations and a transition from category j to category j in an identical number of other observations.

Usage

```
exchangeDj(ctmatrix)
```

Arguments

ctmatrix

matrix representing a square contingency table between a comparison variable (rows) and a reference variable (columns)

Value

a numeric vector containing the exchange difference between the comparison variable and the reference variable at the category level. Output values are given in the same units as ctmatrix

References

Pontius Jr., R.G., Santacruz, A. 2014. *Quantity, exchange and shift components of difference in a square contingency table.* International Journal of Remote Sensing 35 (21), 7543-7554.

See Also

```
overallQtyD
```

12 MAD

Examples

```
comp <- raster(system.file("external/comparison.rst", package="diffeR"))
ref <- raster(system.file("external/reference.rst", package="diffeR"))
ctmatCompRef <- crosstabm(comp, ref)
exchangeDj(ctmatCompRef)</pre>
```

MAD

Mean Absolute Deviation (MAD)

Description

Provides a method to compare the quantity difference and allocation difference between two images of the same real variable at the original resolution or at multiple resolutions. The output provides a stacked graph and an accompanying numerical table for the Mean Absolute Deviation (MAD) for the difference due to quantity, the difference due to stratum-level allocation, and difference due to pixel-level allocation. The output also indicates which image has a smaller average. A scatterplot indicating the distribution of values in relation to the 1:1 line can be produced with MADscatterplot

Usage

```
MAD(grid1, grid2, strata = NULL, eval = "original")
```

Arguments

grid1	object of class RasterLayer corresponding to the first image
grid2	object of class RasterLayer corresponding to the second image
strata	object of class Raster Layer corresponding to the mask or strata image. Zero values are taken as no data (i.e., $\mbox{NA})$
eval	default "original", return the MAD value for the original resolution; if "multiple", return the MAD values for multiple resolutions following a geometric sequence

Value

a dataframe containing the multiples of the original resolution, the corresponding aggregated resolution, the difference due to quantity, the difference due to stratum-level allocation, and the difference due to pixel-level allocation.

References

Pontius Jr., R.G., Thontteh, O., Chen, H. 2008. *Components of information for multiple resolution comparison between maps that share a real variable*. Environmental and Ecological Statistics 15 (2), 111-142.

See Also

MADscatterplot

MADscatterplot 13

Examples

```
old.par <- par(no.readonly = TRUE)
grid1 <- raster(system.file("external/GRID1_INT.rst", package="diffeR"))
grid2 <- raster(system.file("external/GRID2_INT.rst", package="diffeR"))
strata <- raster(system.file("external/strata_int.rst", package="diffeR"))
MAD(grid1, grid2, strata, eval="original")
MAD(grid1, grid2, strata, eval="multiple")

## Not run:
veg_obs1 <- raster(system.file("external/veg_obs1.rst", package="diffeR"))
veg_pre1 <- raster(system.file("external/veg_pre1.rst", package="diffeR"))
veg_mask1 <- raster(system.file("external/veg_mask1.rst", package="diffeR"))
MADscatterplot(veg_obs1, veg_pre1, veg_mask1)
MAD(veg_obs1, veg_pre1, veg_mask1, eval="multiple")

## End(Not run)
par(old.par)</pre>
```

MADscatterplot

MAD scatterplot

Description

Generates a scatterplot indicating the distribution of values from two images in relation to the 1:1 line

Usage

```
MADscatterplot(grid1, grid2, strata = NULL)
```

Arguments

grid1	object of class RasterLayer corresponding to the first image
grid2	object of class RasterLayer corresponding to the second image
strata	object of class RasterLayer corresponding to the mask or strata image. Zero values are taken as no data (i.e., NA)

Value

a ggplot object corresponding to the scatterplot

See Also

MAD

```
old.par <- par(no.readonly = TRUE)
grid1 <- raster(system.file("external/GRID1_INT.rst", package="diffeR"))
grid2 <- raster(system.file("external/GRID2_INT.rst", package="diffeR"))
strata <- raster(system.file("external/strata_int.rst", package="diffeR"))
MADscatterplot(grid1, grid2, strata)</pre>
```

14 memberships

```
veg_obs1 <- raster(system.file("external/veg_obs1.rst", package="diffeR"))
veg_pre1 <- raster(system.file("external/veg_pre1.rst", package="diffeR"))
veg_mask1 <- raster(system.file("external/veg_mask1.rst", package="diffeR"))
MADscatterplot(veg_obs1, veg_pre1, veg_mask1)
par(old.par)</pre>
```

memberships

produces membership values for each category in the input raster at a specified aggregated resolution

Description

Calculates membership values for each category in the input raster at a specified aggregated resolution

Usage

```
memberships(grid, fact = 2)
```

Arguments

grid object of class RasterLayer

fact integer. Aggregation factor expressed as number of cells in each direction (hor-

izontally and vertically). Or two integers (horizontal and vertical aggregation

factor). See raster package for details

Value

a RasterBrick object containing membership values for each category in the input raster at a specified aggregated resolution

See Also

```
composite
```

```
ref <- raster(system.file("external/reference.rst", package="diffeR"))
plot(ref)
memb.ref <- memberships(ref, fact=2)
names(memb.ref) <- c("ref.A", "ref.B", "ref.C")
plot(memb.ref)</pre>
```

overallAllocD 15

overallAllocD calculates overall allocation difference from a square contingency ta- ble	overallAllocD	
---	---------------	--

Description

calculates overall allocation difference from a contingency table derived from the crosstabulation between a comparison variable (or variable at time t), and a reference variable (or variable at time t+1). Allocation difference is defined as the amount of difference between a reference variable and a comparison variable that is due to the less than maximum match in the spatial allocation of the categories, given the proportions of the categories in the reference and comparison variables. Allocation difference is equivalent to the addition of the exchange and shift components of difference (i.e., allocation difference can be disaggregated into exchange and shift components).

Usage

```
overallAllocD(ctmatrix)
```

Arguments

ctmatrix

matrix representing a square contingency table between a comparison variable (rows) and a reference variable (columns)

Value

overall allocation difference between the comparison variable and the reference variable. Output values are given in the same units as ctmatrix

References

Pontius Jr., R.G., Millones, M. 2011. *Death to Kappa: birth of quantity disagreement and allocation disagreement for accuracy assessment.* International Journal of Remote Sensing 32 (15), 4407-4429.

Pontius Jr., R.G., Santacruz, A. 2014. *Quantity, exchange and shift components of difference in a square contingency table.* International Journal of Remote Sensing 35 (21), 7543-7554.

See Also

```
overall \verb|QtyD|, overall \verb|ExchangeD|, overall ShiftD|
```

```
comp <- raster(system.file("external/comparison.rst", package="diffeR"))
ref <- raster(system.file("external/reference.rst", package="diffeR"))
ctmatCompRef <- crosstabm(comp, ref)
overallAllocD(ctmatCompRef)</pre>
```

overallComponentsPlot Overall Components plot

Description

If comparison and reference (raster) maps are provided, this function creates the Overall Components plot from the comparison between the comparison map (or map at time t) and the reference map (or map at time t+1). If a square contingency table (matrix) is provided instead of raster maps, then this function creates the Overall Components plot from the comparison between the comparison variable (or variable at time t) and the reference variable (or variable at time t+1).

Usage

Arguments

8	
comp	object of class RasterLayer corresponding to a comparison map (or map at time <i>t</i>). See Details below
ref	object of class RasterLayer corresponding to a reference map (or map at time $t+1$). See Details below
ctmatrix	matrix representing a square contingency table between a comparison variable (rows) and a reference variable (columns) See Details below
units	character string indicating units of ctmatrix
population	an $n \times 2$ matrix provided to correct the sample count to population count in the square contingency table. See Details below

Details

Users may enter as input either a square contingency table (ctmatrix) or a comparison and a reference raster maps (comp and ref, respectively).

The first column of population must contain integer identifiers of each category, corresponding to the categories in the comparison and reference variables. The second column corresponds to the population totals for each category.

Value

a stacked barplot showing the quantity, exchange and shift components of difference between the comparison map/variable (or map/variable at time t) and the reference map/variable (or map/variable at time t+1)

References

Pontius Jr., R.G., Millones, M. 2011. *Death to Kappa: birth of quantity disagreement and allocation disagreement for accuracy assessment.* International Journal of Remote Sensing 32 (15), 4407-4429.

See Also

differenceMetrics

overallDiff 17

Examples

```
comp <- raster(system.file("external/comparison.rst", package="diffeR"))
ref <- raster(system.file("external/reference.rst", package="diffeR"))
overallComponentsPlot(comp, ref)

ctmat <- crosstabm(comp, ref)
overallComponentsPlot(ctmatrix = ctmat, units = "pixels")</pre>
```

overallDiff

calculates overall difference from a square contingency table

Description

calculates overall difference from a contingency table derived from the crosstabulation between a comparison variable (or variable at time t), and a reference variable (or variable at time t+1). Overall difference is equivalent to the addition of the quantity and allocation components of difference (i.e., overall difference can be disaggregated into quantity and allocation components).

Usage

```
overallDiff(ctmatrix)
```

Arguments

ctmatrix

matrix representing a square contingency table between a comparison variable (rows) and a reference variable (columns)

Value

overall difference between the comparison variable and the reference variable. Output values are given in the same units as ctmatrix

References

Pontius Jr., R.G., Millones, M. 2011. *Death to Kappa: birth of quantity disagreement and allocation disagreement for accuracy assessment.* International Journal of Remote Sensing 32 (15), 4407-4429.

Pontius Jr., R.G., Santacruz, A. 2014. *Quantity, exchange and shift components of difference in a square contingency table.* International Journal of Remote Sensing 35 (21), 7543-7554.

See Also

```
overallQtyD, overallAllocD
```

```
comp <- raster(system.file("external/comparison.rst", package="diffeR"))
ref <- raster(system.file("external/reference.rst", package="diffeR"))
ctmatCompRef <- crosstabm(comp, ref)
overallDiff(ctmatCompRef)</pre>
```

18 overallDiffCatj

overallDiffCati	calculates overall difference at the category level from a square con-
over dilbirroacy	tingency table

Description

calculates overall difference at the category level from a contingency table derived from the crosstabulation between a comparison variable (or variable at time t), and a reference variable (or variable at time t+1). Overall difference is equivalent to the addition of the quantity and allocation components of difference (i.e., overall difference can be disaggregated into quantity and allocation components).

Usage

```
overallDiffCatj(ctmatrix)
```

Arguments

ctmatrix

matrix representing a square contingency table between a comparison variable (rows) and a reference variable (columns)

Value

a numeric vector containing overall difference between the comparison variable and the reference variable at the category level. Output values are given in the same units as ctmatrix

References

Pontius Jr., R.G., Millones, M. 2011. *Death to Kappa: birth of quantity disagreement and allocation disagreement for accuracy assessment.* International Journal of Remote Sensing 32 (15), 4407-4429.

Pontius Jr., R.G., Santacruz, A. 2014. *Quantity, exchange and shift components of difference in a square contingency table.* International Journal of Remote Sensing 35 (21), 7543-7554.

See Also

```
overallDiff
```

```
comp <- raster(system.file("external/comparison.rst", package="diffeR"))
ref <- raster(system.file("external/reference.rst", package="diffeR"))
ctmatCompRef <- crosstabm(comp, ref)
overallDiffCatj(ctmatCompRef)</pre>
```

overallExchangeD 19

overallExchangeD

calculates overall exchange difference from a square contingency table

Description

calculates overall exchange difference from a contingency table derived from the crosstabulation between a comparison variable (or variable at time t), and a reference variable (or variable at time t+1). Exchange consists of a transition from category i to category j in some observations and a transition from category j to category j in an identical number of other observations.

Usage

```
overallExchangeD(ctmatrix)
```

Arguments

ctmatrix

matrix representing a square contingency table between a comparison variable (rows) and a reference variable (columns)

Value

overall exchange difference between the comparison variable and the reference variable. Output values are given in the same units as ctmatrix

References

Pontius Jr., R.G., Santacruz, A. 2014. *Quantity, exchange and shift components of difference in a square contingency table.* International Journal of Remote Sensing 35 (21), 7543-7554.

See Also

```
overallAllocD
```

Examples

```
comp <- raster(system.file("external/comparison.rst", package="diffeR"))
ref <- raster(system.file("external/reference.rst", package="diffeR"))
ctmatCompRef <- crosstabm(comp, ref)
overallExchangeD(ctmatCompRef)</pre>
```

overallQtyD

calculates overall quantity difference from a square contingency table

Description

calculates overall quantity difference from a contingency table derived from the crosstabulation between a comparison variable (or variable at time t), and a reference variable (or variable at time t+1). Quantity difference is defined as the amount of difference between the reference variable and a comparison variable that is due to the less than maximum match in the proportions of the categories.

20 overallShiftD

Usage

```
overallQtyD(ctmatrix)
```

Arguments

ctmatrix

matrix representing a square contingency table between a comparison variable (rows) and a reference variable (columns)

Value

overall quantity difference between the comparison variable and the reference variable. Output values are given in the same units as ctmatrix

References

Pontius Jr., R.G., Millones, M. 2011. *Death to Kappa: birth of quantity disagreement and allocation disagreement for accuracy assessment.* International Journal of Remote Sensing 32 (15), 4407-4429.

Pontius Jr., R.G., Santacruz, A. 2014. *Quantity, exchange and shift components of difference in a square contingency table.* International Journal of Remote Sensing 35 (21), 7543-7554.

See Also

```
overallAllocD
```

Examples

```
comp <- raster(system.file("external/comparison.rst", package="diffeR"))
ref <- raster(system.file("external/reference.rst", package="diffeR"))
ctmatCompRef <- crosstabm(comp, ref)
overallQtyD(ctmatCompRef)</pre>
```

overallShiftD

calculates overall shift difference from a square contingency table

Description

calculates overall shift difference from a contingency table derived from the crosstabulation between a comparison variable (or variable at time t), and a reference variable (or variable at time t+1). Shift refers to the difference remaining after subtracting quantity difference and exchange from the overall difference.

Usage

```
overallShiftD(ctmatrix)
```

Arguments

ctmatrix

matrix representing a square contingency table between a comparison variable (rows) and a reference variable (columns)

overallSourcesPlot 21

Value

overall shift difference between the comparison variable and the reference variable. Output values are given in the same units as ctmatrix

References

Pontius Jr., R.G., Santacruz, A. 2014. *Quantity, exchange and shift components of difference in a square contingency table.* International Journal of Remote Sensing 35 (21), 7543-7554.

See Also

```
overallAllocD
```

Examples

```
comp <- raster(system.file("external/comparison.rst", package="diffeR"))
ref <- raster(system.file("external/reference.rst", package="diffeR"))
ctmatCompRef <- crosstabm(comp, ref)
overallShiftD(ctmatCompRef)</pre>
```

overallSourcesPlot

Overall Sources plot

Description

If comparison and reference (raster) maps are provided, this function creates the Overall Sources plot from the comparison between the comparison map (or map at time t) and the reference map (or map at time t+1). If a square contingency table (matrix) is provided instead of raster maps, then this function creates the Overall Sources plot from the comparison between the comparison variable (or variable at time t) and the reference variable (or variable at time t+1).

Usage

Arguments

comp	object of class RasterLayer corresponding to a comparison map (or map at time <i>t</i>). See Details below
ref	object of class RasterLayer corresponding to a reference map (or map at time $t+1$). See Details below
ctmatrix	matrix representing a square contingency table between a comparison variable (rows) and a reference variable (columns). See Details below
analysis	character string indicating type of analysis, either "error" (default) or "change"
units	character string indicating units of ctmatrix
population	an $n \times 2$ matrix provided to correct the sample count to population count in the square contingency table. See Details below
fontSize	text size (in pts)

22 overallSourcesPlot

colorValues

a set of aesthetic values to map data values to. If this is a named vector, then the values will be matched based on the names. If unnamed, values will be matched in order (usually alphabetical) with the limits of the scale. Any data values that don't match will be given na.value.

breaks One of:

- · NULL for no breaks
- waiver() for the default breaks computed by the transformation object
- A numeric vector of positions
- A function that takes the limits as input and returns breaks as output

labels One of:

- NULL for no labels
- waiver() for the default labels computed by the transformation object
- A character vector giving labels (must be same length as breaks)
- A function that takes the breaks as input and returns labels as output

limits

A numeric vector of length two providing limits of the scale. Use NA to refer to the existing minimum or maximum.

Details

Users may enter as input either a square contingency table (ctmatrix) or a comparison and a reference raster maps (comp and ref, respectively).

The first column of population must contain integer identifiers of each category, corresponding to the categories in the comparison and reference variables. The second column corresponds to the population totals for each category.

Value

a stacked barplot showing the omission and comission components of difference between the comparison map/variable (or map/variable at time t) and the reference map/variable (or map/variable at time t+1)

References

Pontius Jr., R.G., Millones, M. 2011. *Death to Kappa: birth of quantity disagreement and allocation disagreement for accuracy assessment.* International Journal of Remote Sensing 32 (15), 4407-4429.

See Also

differenceMetrics

```
comp <- raster(system.file("external/comparison.rst", package="diffeR"))
ref <- raster(system.file("external/reference.rst", package="diffeR"))
overallSourcesPlot(comp, ref)
ctmat <- crosstabm(comp, ref)
overallSourcesPlot(ctmatrix = ctmat, units = "pixels")</pre>
```

quantityDj 23

quantityDj	calculates quantity difference at the category level from a square contingency table

Description

calculates quantity difference at the category level from a contingency table derived from the crosstabulation between a comparison variable (or variable at time t), and a reference variable (or variable at time t+1). Quantity difference is defined as the amount of difference between the reference variable and a comparison variable that is due to the less than maximum match in the proportions of the categories.

Usage

```
quantityDj(ctmatrix)
```

Arguments

ctmatrix

matrix representing a square contingency table between a comparison variable (rows) and a reference variable (columns)

Value

a numeric vector containing the quantity difference between the comparison variable and the reference variable at the category level. Output values are given in the same units as ctmatrix

References

Pontius Jr., R.G., Millones, M. 2011. *Death to Kappa: birth of quantity disagreement and allocation disagreement for accuracy assessment.* International Journal of Remote Sensing 32 (15), 4407-4429.

Pontius Jr., R.G., Santacruz, A. 2014. *Quantity, exchange and shift components of difference in a square contingency table.* International Journal of Remote Sensing 35 (21), 7543-7554.

See Also

```
overallQtyD
```

```
comp <- raster(system.file("external/comparison.rst", package="diffeR"))
ref <- raster(system.file("external/reference.rst", package="diffeR"))
ctmatCompRef <- crosstabm(comp, ref)
quantityDj(ctmatCompRef)</pre>
```

24 sample2pop

sample2pop	corrects sample counts to population counts in a square contingency table
------------	---

Description

Converts sample count to population count in the square contingency table, assuming a stratified random sampling

Usage

```
sample2pop(ctmatrix, population)
```

Arguments

ctmatrix matrix representing a sampling-derived square contingency table between a com-

parison variable (rows) and a reference variable (columns)

population an n x 2 matrix provided to correct the sample count to population count in the

square contingency table. See Details below

Details

The first column of population must contain integer identifiers of each category, corresponding to the categories in the comparison and reference variables. The second column corresponds to the population totals for each category.

Value

matrix representing a population-adjusted square contingency table for the crosstabulation between a comparison variable (rows) and a reference variable (columns). Output values are given in the same units as ctmatrix

See Also

crosstabm

```
comp <- raster(system.file("external/comparison.rst", package="diffeR"))
ref <- raster(system.file("external/reference.rst", package="diffeR"))
# Sample square contingency table
(ctmatCompRef <- crosstabm(comp, ref))
# Population-adjusted square contingency table
(population <- matrix(c(1,2,3,2000,4000,6000), ncol=2))
sample2pop(ctmatCompRef, population = population)
# The square contingency table can also be adjusted directly using the crosstabm function
crosstabm(comp, ref, population = population)</pre>
```

shiftDj 25

shiftDj	calculates shift difference at the category level from a square contingency table
	gene) there

Description

calculates shift difference at the category level from a contingency table derived from the crosstabulation between a comparison variable (or variable at time t), and a reference variable (or variable at time t+1). Shift refers to the difference remaining after subtracting quantity difference and exchange from the overall difference.

Usage

```
shiftDj(ctmatrix)
```

Arguments

ctmatrix

matrix representing a square contingency table between a comparison variable (rows) and a reference variable (columns)

Value

a numeric vector containing the shift difference between the comparison variable and the reference variable at the category level. Output values are given in the same units as ctmatrix

References

Pontius Jr., R.G., Santacruz, A. 2014. *Quantity, exchange and shift components of difference in a square contingency table.* International Journal of Remote Sensing 35 (21), 7543-7554.

See Also

```
overallDiff
```

```
comp <- raster(system.file("external/comparison.rst", package="diffeR"))
ref <- raster(system.file("external/reference.rst", package="diffeR"))
ctmatCompRef <- crosstabm(comp, ref)
shiftDj(ctmatCompRef)</pre>
```

Index

memberships, 6, 7, 14

```
*Topic package
                                                 overallAllocD, 15, 17, 19-21
    diffeR-package, 2
                                                 overallComponentsPlot, 16
*Topic spatial
                                                 overallDiff, 17, 18, 25
    categoryComponentsPlot, 2
                                                 overallDiffCatj, 18
    categorySourcesPlot, 4
                                                 overallExchangeD, 15, 19
    composite, 6
                                                 overallQtyD, 11, 15, 17, 19, 23
                                                 overallShiftD, 15, 20
    crosstabm, 7
                                                 overallSourcesPlot, 21
    diffeR-package, 2
    differenceMR, 8
                                                 quantityDj, 23
    diffTablej, 9
    exchangeDij, 10
                                                 sample2pop, 24
    exchangeDj, 11
                                                 shiftDj, 25
    MAD, 12
    MADscatterplot, 13
    memberships, 14
    overallAllocD, 15
    overallComponentsPlot, 16
    overallDiff, 17
    overallDiffCatj, 18
    overallExchangeD, 19
    overallQtyD, 19
    overallShiftD, 20
    overallSourcesPlot, 21
    quantityDj, 23
    sample2pop, 24
    shiftDj, 25
categoryComponentsPlot, 2
categorySourcesPlot, 4
composite, 6, 14
crosstabm, 7, 24
diffeR (diffeR-package), 2
diffeR-package, 2
differenceMetrics, 2, 5, 9, 10, 16, 22
differenceMR, 8
diffTablej, 4, 9
exchangeDij, 10
exchangeDj, 11, 11
MAD, 12, 13
MADscatterplot, 12, 13
```