VE 492 Homework9

Due: 23:59, July. 22th

Q1. Naive Bayes

Your friend claims that he can write an effective Naive Bayes spam detector with only three features: the hour of the day that the email was received $(H \in \{1,2,...,24\})$, whether it contains the word 'viagra' $(W \in \{yes,no\})$, and whether the email address of the sender is Known in his address book, Seen before in his inbox, or Unseen before $(E \in \{K,S,U\})$.

(a) Flesh out the following information about this Bayes net:

Graph structure:

Here $Y \in \{spam, ham\}$

Parameters: $P(Y=spam), P(H' | Y), P(W=yes | Y), P(E' | Y), where <math>H' \in \{1,2,...,23\}, E' \in \{K,S\}$

Size of the set of parameters: $1 + 23 \cdot 2 + 2 + 2 \cdot 2 = 53$

Suppose now that you labeled three of the emails in your mailbox to test this idea:

spam or ham?	H	W	E
spam	3	yes	S
ham	14	no	K
ham	15	no	K

(b) Use the three instances to estimate the maximum likelihood parameters.

$$P(Y=spam) = 1/3$$
, $P(H=3 \mid Y=spam) = 1$, $P(H=14 \mid Y=ham) = 1/2$, $P(H=15 \mid Y=ham) = 1/2$, $P(W=yes \mid Y=spam) = 1$, $P(E=S \mid Y=spam) = 1$, $P(E=K \mid Y=ham) = 1$, All the other parameters defined in (a) are 0

- (c) Using the maximum likelihood parameters, find the predicted class of a new datapoint with H = 3, W = no, E = U. No predicted class
- (d) Now use the three to estimate the parameters using Laplace smoothing and k = 2. Do not forget to smooth both the class prior parameters and the feature values parameters.

$$P(Y=spam) = 3/7, P(H=3 \mid Y=spam) = 3/49, \ all \ the \ other \ P(H' \mid Y=spam) = 2/49, \ P(H=14 \mid Y=ham) = 3/50, \ P(H=15 \mid Y=ham) = 3/50, \ all \ the \ other \ P(H' \mid Y=ham) = 1/25, \ P(W=yes \mid Y=spam) = 3/5, \ P(W=yes \mid Y=ham) = 1/3, \ P(E=S \mid Y=spam) = 3/7, \ P(E=K \mid Y=spam) = 2/7, \ P(E=S \mid Y=ham) = 1/4, \ P(E=K \mid Y=ham) = 1/2$$

- (e) Using the parameters obtained with Laplace smoothing, find the predicted class of a new datapoint with H = 3, W = no, E = U. ham
- (f) You observe that you tend to receive spam emails in batches. In particular, if you receive one spam message, the next message is more likely to be a spam message as well. Explain a new graphical model which most naturally captures this phenomena.

Graph structure:

Parameters:

 $P(Y_0 = spam), P(Y_t = spam \mid Y_{t-1}), P(H_t \mid Y_t), P(W_t = yes \mid Y_t), P(E_t \mid Y_t), where H_t \in \{1, 2, ..., 23\}, E_t \in \{K, S\}$

Size of the set of parameters: 53 + 2 = 55

Q2. Perceptron

(a) Suppose you have a binary perceptron in 2D with weight vector $\mathbf{w} = r [w_1, w_2]^T$. You are given w_1 and w_2 , and are given that r > 0, but otherwise not told what r is. Assume that ties are broken as positive. Can you determine the perceptron's classifification of a new example x with known feature vector f(x)?

A. Always

- B. Sometimes
- C. Never
- (b) Now you are learning a multi-class perceptron between 4 classes. The weight vectors are currently $[1,0]^T$, $[0,1]^T$, $[-1,0]^T$, $[0,-1]^T$ for the classes A, B, C, and D. The next training example x has a **label of A** and feature vector f(x).

For the following questions, *do not make any assumptions about tie-breaking*. (Do not write down a solution that creates a tie.)

If the answer does not exist, write down Not possible

$$f(x) =$$
 O Not possible

- (i) Write down a feature vector in which no weight vectors will be updated. $\underline{f(x)} = [1,0]^T$
- (ii) Write down a feature vector in which only \mathbf{w}_A will be updated by the perceptron. Not possible
- (iii) Write down a feature vector in which **only** \mathbf{w}_A and \mathbf{w}_B will be updated by the perceptron. $f(x) = [0,1]^T$
- (iv) Write down a feature vector in which **only** \mathbf{w}_A and \mathbf{w}_C will be updated by the perceptron. $f(x) = [-1,0]^T$

The weight vectors are the same as before, but now there is a bias feature with value of 1 for all x and the weight of this bias feature is 0, -2, 1, - 1 for classes A, B, C, and D respectively. As before, the next training example x has a **label of A** and a feature vector f(x). The always "1" bias feature is the first entry in f(x).

If the answer does not exist, write down Not possible

$$f(x) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
 O Not possible

- (v) Write down a feature vector in which only wB and wC will be updated by the perceptron. Not possible
- (vi) Write down a feature vector in which **only** w*A* and w*C* will be updated by the perceptron. $\underline{f(x)} = [1,-1,0]^T$