Application of a model-free based control algorithm to neural networks updating

Loic MICHEL École Centrale de Nantes (France) Laboratory of Digital Sciences of Nantes - UMR 6004 CNRS

July 2019

Outline

- Para-model control
- Application to neural networks
 - Basic network supervised training
 - Short-term memory network updating

Derivative-free & model-free control: Para-model control

Based on the original model-free control...

(Michel - 2011)

Para-model control definition

For any discrete moment t_k , $k \in \mathbb{N}^*$, one defines the discrete controller $\mathcal{C}_{\pi}: (y, y^*) \mapsto u_k$ such as :

$$u_k = \Psi_k \cdot \int_0^{\tau} K_i(y_{k-1}^* - y_{k-1}) d\tau$$

with

$$\Psi_k = \Psi_{k-1} + \mathcal{K}_p(k_\alpha e^{-k_\beta k} - y_{k-1})$$

where : y^* is the output reference trajectory; K_p , K_I , k_α and k_β are real positive tuning gains

ullet Equivalent to a product of an integrator and a series $(\Psi_n)_{n\in\mathbb{N}}$

Para-model control

Structural properties

Given an output reference y^* and a nonlinear dynamical system E, it is a priori possible :

- to control E (track y*) in a robust manner
- to *optimize E* (look for extremum)

Para-model control

Example of code

Only few lines of basic operations :

```
y_int(i) = M_alpha*exp(-M_beta*tt(i));
para_exp_err = y_int(i-1) - y(i-1);
para_stand_err(i) = y_ref(i) - y(i-1);
para_u(i) = para_u(i-1) + Kp*para_exp_err;
para_G(i) = Kint*para_stand_err(i);
para_tr(i) = para_tr(i-1) + h*(para_G(i) + para_G(i-1))/2;
para_u_final = para_u(i)*para_tr(i);
```

Outline

- Para-model control
- Application to neural networks
 - Basic network supervised training
 - Short-term memory network updating

Considering a neural network defined as an "unknown" system $E:(x_1,x_2)\mapsto y$ and given a data training set $\{x_1^{train},\,x_2^{train},y^{train}\}$,

the goal is to adjust the set of the weights W_i to fit with the data training using the proposed algorithm such as :

for all
$$i, \quad W_i = \mathcal{C}_\pi(y, y^{\textit{train}})$$

Proposed control scheme of the trained neural network

• Allows a priori online updates of the network according to topological network modifications / training data changes

Case 1

Online tuning w.r.t. an <u>initial</u> set of training data

Evolution of the weights W_i

Evolution of the output *y*

 \Rightarrow Allows a priori stabilization of the weights W_i according to the training data

a

Case 2

Online tuning w.r.t. changes of the training data

Evolution of the weights W_i

Evolution of the output *y*

 \Rightarrow Allows a priori re-stabilization of the weights W_i according to the training data changes

Case 3

 Online tuning w.r.t. <u>changes</u> of the training data <u>and</u> the network topology

Evolution of the weights W_i

Evolution of the output *y*

 \Rightarrow Allows a priori re-stabilization of the weights W_i according to the different changes

Outline

- Para-model control
- Application to neural networks
 - Basic network supervised training
 - Short-term memory network updating

Application to the self-org. short-term memory network (Federer, Zylberberg - 2018)

Considering firstly a single neuron model:

$$\begin{cases} \tau \frac{d \, a(t)}{d \, t} = -a(t) + Lr(t) \\ r(t) = \text{relu}(a(t)) \end{cases}$$

Evolution of the free response a(t) with a(0) = 0.1105

Controlling the single neuron to retain stimulus

First, try controlling a single neuron using Para-model to 'simulate' a stimulus $s = a^*(0)$ retention :

$$\begin{cases} \tau \frac{d \ a(t)}{d \ t} = -a(t) + r(t) u(t) \\ r(t) = \text{relu}(a(t)) \\ u(t) = \mathcal{C}_{\pi}(a(t), a^*(t)) \text{ under different "shapes" of } a^*(t) \end{cases}$$

• $a^*(t)$ is the output reference for which it is expected that ideally : for all t, $a(t) \rightarrow a^*(0)$

Controlling the single neuron to retain stimulus - Simulation results

- Oscillations around $a^*(0)$ but a priori invariance of the transient response whatever the "shape" of $a^*(t > 0)$
- ⇒ Allows a priori to retain stimulus without any external signal

Inclusion of the Para-model algorithm in a 100-neuron network

Considering a 100-neuron network updated thanks to the gradient descent plasticity rule

<u>Goal</u>: Preliminary (exploratory) results to observe the behavior of the proposed Para-model control considered as an update law

Working Assumption : A simple initial pulse s defined at t=0 can a priori determine the behavior of the controlled neuron transient

Inclusion of the Para-model algorithm in a 100-neuron network

 A single neuron - randomly chosen - is updated with our proposed Para-model algorithm

Evolution of the retained stimulus value s according to plasticity rules in comparison with our proposed algorithm (with s(0) = 29.4)

Algorithms in interaction in a 100-neuron network

Plasticity rules ΔL for three (randomly chosen) neurons

Evolution of the controlled ΔL with Para-model algorithm

⇒ First observation of an a priori non divergence of our Para-model algorithm (and stability of the s value) over a long period of time

Perspectives

Future works include investigation of the interactions between our proposed algorithm and the plasticity update rules in multiple operating conditions as well as study of the general stability properties

References

- J.E. Gaudio *et al.*, "Connections between adaptive control and optimization in machine learning", preprint arXiv, Apr. 2019.
- M. Fliess and C. Join, "Model-free control", Int. J. Control, vol. 86, issue 12, pp. 2228-2252, Jul. 2013.
- L. Michel, "Online tuning of artificial neural networks using para-model algorithm – A preliminary study", preprint arXiv, May 2018.
- © C. Federer, J. Zylberberg, "A self-organizing short-term dynamical memory network", Neural Networks, vol. 106, pp. 30-41, Oct. 2018.