DM 28

Les polynômes de Bernoulli

- 1°) En procédant par analyse-synthèse, montrer qu'il existe une unique suite de polynômes $(B_n)_{n\in\mathbb{N}}$ de $\mathbb{R}[X]$ telle que :
 - 1. pour tout $n \in \mathbb{N}$, B_n est de degré n;
 - 2. $B_0 = 1$;
 - 3. $\forall n \geq 1, \ B'_n = nB_{n-1};$
 - 4. $\forall n \geq 1, \int_0^1 B_n(x) \ dx = 0.$

Il s'agit de la suite des polynômes de Bernoulli.

- **2°)** Montrer que pour tout $n \in \mathbb{N}$, $B_n(1-X) = (-1)^n B_n(X)$. Qu'en déduit-on au sujet du graphe de B_n ?
- **3°)** À l'aide de la formule de Taylor, montrer que, pour tout $n \in \mathbb{N}$ et pour tous $x, y \in \mathbb{R}$, $B_n(x+y) = \sum_{k=0}^n \binom{n}{k} B_k(x) y^{n-k}$.

Pour toute la suite du problème, on pose, pour tout $n \in \mathbb{N}$, $b_n = B_n(0)$.

- **4**°) Pour $n \in \{0, 1, 2, 3, 4\}$, calculer B_n et b_n .
- **5°)** Montrer que, pour tout $n \geq 2$, $b_n = B_n(1)$. Montrer que, pour tout $n \in \mathbb{N}^*$, $b_{2n+1} = 0$.
- **6°)** On pose $Q_0 = B_0$ et, pour tout $n \in \mathbb{N}^*$, $Q_n = B_n(X) nb_1X^{n-1}$. Exprimer $Q_n(-X)$ en fonction de $Q_n(X)$. Montrer que, pour tout $n \in \mathbb{N}^*$, $B_n(-X) = (-1)^n(B_n(X) + nX^{n-1})$. Montrer que, pour tout $n \in \mathbb{N}^*$, $B_n(X+1) B_n(X) = nX^{n-1}$.
- 7°) Montrer que pour tout $n \in \mathbb{N}$, $\sum_{k=0}^{n} \binom{n+1}{k} B_k(X) = (n+1)X^n$. Montrer que, pour tout $n \in \mathbb{N}^*$, $\sum_{k=0}^{n} \binom{n+1}{k} b_k = 0$.
- 8°) Soit $K, N \in \mathbb{N}$.

Donner une expression simple de $\sum_{N=0}^{K} m^N$ en fonction de K, N et de B_{N+1} .

Vérifier cette formule lorsque N = 2.

Soit g est une fonction de \mathbb{R} dans \mathbb{R} .

On note (E_g) l'équation $\forall x \in \mathbb{R}$, f(x+1) - f(x) = g(x), dont l'inconnue f est une application de \mathbb{R} dans \mathbb{R} .

 9°) Montrer que (E_q) est une équation linéaire.

On note $\mathcal P$ l'ensemble des applications 1-périodiques de $\mathbb R$ dans $\mathbb R$.

- 10°) Pour cette seule question, on suppose que g est une application polynomiale, de la forme $\sum_{n=0}^{N} a_n X^n$. Déterminer les solutions de (E_g) , en fonction de \mathcal{P} , des coefficients a_n et de la suite $(B_n)_{n\in\mathbb{N}}$.
- 11°) Montrer que (E_g) possède au moins une solution f telle que f(x) tend vers une limite réelle lorsque x tend vers $+\infty$ si et seulement si pour tout $x \in \mathbb{R}$, la série

$$\sum_{n} g(x+n) \text{ converge et si } \sum_{n=0}^{+\infty} g(x+n) \underset{x \to +\infty}{\longrightarrow} 0.$$

12°) Soit $\lambda \in \mathbb{R}_+^*$.

Déterminer les solutions de (E_g) lorsque, pour tout $x \in \mathbb{R}$, $g(x) = e^{-\lambda x}$.

13°) Montrer que la série $\sum_{n} g(x+n)$ peut être convergente pour tout $x \in \mathbb{R}$, sans

que
$$\sum_{n=0}^{+\infty} g(x+n) \xrightarrow[x \to +\infty]{} 0.$$