Question 1

A directed graph G = (V, E) could be constructed where $v \in V$ is the city of Krypton and $e \in E$ is the time cost between two cities. For each city C_i , Using Breadth-first search to obtain the minimum time cost $t(C_i, C_j)$ from city C_i to city C_i .

Then, constructing a bipartite graph which has a set of $v \in L$ representing the population of each city and a set of $v \in R$ representing the number of pods that each city has. Connecting the two vertexes from L,R respectively only when minimum time cost $t(C_i,C_i)$ is less than X days. It could be represented by following diagram.

Where set L is the set of population of each city and set R is the number of pods of each city.

To obtain the largest population that could take the pods to earth, we need to find the maximum matching of G. Thus, constructing a network flow G' that respect to G. The capacity of the path from S to the vertex in G and the path from the vertex in G to sink G to si

In addition, the capacity of edge between L and R should be infinity because there is not such a limitation about the maximum population flow between each city. Therefore, G' could be represented by following diagram.

Finally, applying *Ford-Fulkerson algorithm* to obtain the maximum flow of G' and the number of edge from L to R is the maximum number of invaders the Earth will have to deal with.