МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МОЭВМ

ОТЧЕТ

по лабораторной работе №1 по дисциплине «Машинное обучение»

Тема: Предобработка данных

Студент гр. 6307	 Новиков Б.М.
Преподаватель	 Жангиров Т.Р.

Загрузка данных

1. Загрузить датасет с сайта kaggle.com, создать датфрейм на основе этого датасета и исключить бинарные признаки и признаки времени.

	age	creatinine_phosphokinas e	ejection_fractio n	platelets	serum_creatinin e	serum_sodium
0	75.0	582	20	265000.00	1.9	130
1	55.0	7861	38	263358.03	1.1	136
2	65.0	146	20	162000.00	1.3	129
3	50.0	111	20	210000.00	1.9	137
4	65.0	160	20	327000.00	2.7	116

2. Построить гистограммы признаков.

4. Определить на основании гистограмм диапазоны значений для каждого признака и наиболее часто встречающееся значение.

```
diapason for age: (40.0 : 95.0)
diapason for creatinine_phosphokinase: (23 : 7861)
diapason for ejection_fraction: (14 : 80)
diapason for platelets: (25100.0 : 850000.0)
diapason for serum_creatinine: (0.5 : 9.4)
diapason for serum_sodium: (113 : 148)

most frequent value for age: 60.0
most frequent value for creatinine_phosphokinase: 582
most frequent value for ejection_fraction: 35
most frequent value for platelets: 263358.03
most frequent value for serum_creatinine: 1.0
most frequent value for serum_sodium: 136
```

5	Преобразовать	латафпойм	ν	ЛВУМАПЦОМУ	Macche	/ NiimDi	,
ο.	HIDEUUDASUBATB	датачреим	ĸ	TRAMEDHOMA	массиву	' NulliP	/

data = df.to_numpy(dtype='float')

Стандартизация данных

1, 2. Подключить модуль Sklearn и настроить стандартизацию для первых 150 наблюдений, а также применить их к данным

from sklearn import preprocessing

scaler = preprocessing.StandardScaler().fit(data[:150,:])
data scaled = scaler.transform(data)

3. Построить гистограммы стандартизированных данных.

4. Сравнить данные до стандартизации и после.

Стандартизация приводит все исходные значения набора данных, независимо от их начальных распределений и единиц измерения, к набору значений из распределения с нулевым средним и стандартным отклонением, равным 1. В результате формируется так называемая стандартизированная шкала, которая определяет место каждого значения в наборе данных, измеряя его отклонение от среднего в единицах стандартного отклонения.

5. Рассчитать мат. Ожидание и СКО до и после стандартизации. На основании этих значений вывести для каждого признака формулы, по которым они стандартизировались.

For age:

MO before стандарт.: 60.83389297658862 СКО before стандарт.: 11.874901429842655 MO after стандарт.: -0.16970362369106984 СКО after стандарт.: 0.9538237876978354

For creatinine_phosphokinase:

MO before стандарт.: 581.8394648829432

```
CKO before стандарт.: 968.6639668032415
MO after стандарт.: -0.021276750290383013
CKO after стандарт.: 0.8141790488228113
For ejection fraction:
MO before стандарт.: 38.08361204013378
CKO before стандарт.: 11.815033462318585
MO after стандарт.: 0.01050249484809085
СКО after стандарт.: 0.9061082161919123
For platelets:
MO before стандарт.: 263358.02926421404
CKO before стандарт.: 97640.54765451424
MO after стандарт.: -0.035228788194085287
СКО after стандарт.: 1.0150611342848024
For serum creatinine:
MO before стандарт.: 1.3938795986622072
СКО before стандарт.: 1.0327786652795918
MO after стандарт.: -0.10864080163893569
СКО after стандарт.: 0.8854288727548568
For serum sodium:
MO before стандарт.: 136.62541806020067
CKO before стандарт.: 4.405092379513557
MO after стандарт.: 0.03790759894920013
CKO after стандарт.: 0.9703735961735016
Формулы для каждого признака: yi = (xi - M) / o
yi=(xi - 60.83389297658862) / 11.874901429842655
yi=(xi - 581.8394648829432) / 968.6639668032415
yi=(xi - 38.08361204013378) / 11.815033462318585
yi=(xi - 263358.02926421404) / 97640.54765451424
yi=(xi - 1.3938795986622072) / 1.0327786652795918
yi=(xi - 136.62541806020067) / 4.405092379513557
6. Сравнить значения из формул с полями mean и var объекта scaler.
For age:
MO: 62.9466666666665
Дисп: 154.99715555555557
For creatinine phosphokinase:
```

MO: 607.153333333333 Дисп: 1415488.8231555554

For ejection_fraction: MO: 37.9466666666665 Дисп: 170.0238222222224

For platelets:

MO: 266746.74946666666 Дисп: 9252860499.078917

For serum_creatinine: MO: 1.5206000000000002 Дисп: 1.3605269733333336

For serum_sodium:

MO: 136.4533333333333 Дисп: 20.60782222222225

Значения не совпадают, потому что формулы были выведены относительно всех наблюдений.

7. Провести настройку стандартизации на всех данных и сравнить с результатами настройки на основании 150 наблюдений.

For age:

MO before стандарт.: 60.83389297658862 СКО before стандарт.: 11.874901429842655 MO after стандарт.: 5.703353062957326e-16 СКО after стандарт.: 0.9999999999999

For creatinine_phosphokinase:

MO before стандарт.: 581.8394648829432 СКО before стандарт.: 968.6639668032415

MO after стандарт.: 0.0 СКО after стандарт.: 1.0

For ejection fraction:

MO before стандарт.: 38.08361204013378 СКО before стандарт.: 11.815033462318585 MO after стандарт.: -3.267546025652635e-17

СКО after стандарт.: 1.0

For platelets:

MO before стандарт.: 263358.02926421404 СКО before стандарт.: 97640.54765451424 MO after стандарт.: 7.723290606088045e-17

СКО after стандарт.: 1.0

For serum_creatinine:

MO before стандарт.: 1.3938795986622072 СКО before стандарт.: 1.0327786652795918 MO after стандарт.: 1.4258382657393315e-16

СКО after стандарт.: 1.0

For serum sodium:

MO before стандарт.: 136.62541806020067 СКО before стандарт.: 4.405092379513557 MO after стандарт.: -8.673849449914267e-16 СКО after стандарт.: 0.99999999999999

For age:

MO: 60.83389297658862 Дисп: 141.01328396847913

For creatinine_phosphokinase:

MO: 581.8394648829432 Дисп: 938309.8805829913

For ejection_fraction: MO: 38.08361204013378 Дисп: 139.5950157157079

For platelets:

MO: 263358.02926421404 Дисп: 9533676546.273466

For serum_creatinine: MO: 1.3938795986622072 Дисп: 1.066631771456695

For serum_sodium:

MO: 136.62541806020067 Дисп: 19.404838872048412

Теперь параметры стандартизации совпадают.

Приведение к диапазону.

1. Привести данные к диапазону, используя MinMaxScaler

min_max_scaler = preprocessing.MinMaxScaler().fit(data)
data_min_max_scaled = min_max_scaler.transform(data)

2. Построить гистограммы для признаков и сравнить

Данные оказались преведены к диапозону от 0 до 1.

3. Через параметры MinMaxScaler определить минимальное и максимальное значение в данных для каждого признака.

min_max_scaler.data_max_
array([9.500e+01, 7.861e+03, 8.000e+01, 8.500e+05, 9.400e+00, 1.480e+02])
min_max_scaler.data_min_
array([4.00e+01, 2.30e+01, 1.40e+01, 2.51e+04, 5.00e-01, 1.13e+02])

4. Аналогично трасформируйте данные, используя MaxAbsScaler и RobustScaler.

max_abs_scaler = preprocessing.MaxAbsScaler().fit(data)
data max abs scaled = max abs scaler.transform(data)

Значения наблюдений для каждого признака делятся на максимальное значение наблюдения. Диапозон от 0 до 1.

robust_scaler = preprocessing.RobustScaler().fit(data)
data_robust_scaled = robust_scaler.transform(data)

Из значений наблюдений для каждого признака удаляется медианной значение, а после они приводятся межквартильному диапозону.

5. Написать функцию, которая приводит все данные к диапазону [-5 10]

Функция, приводящая данные к диапазону [-5, 10]: yi = (xi - xmin) / (xmax - xmin) * (10 + 5) - 5 yi = 15 * (xi - xmin) / (xmax - xmin) - 5

Нелинейные преобразования.

1. Привести данные к равномерному распределению, используя QuantileTransformer quantile_transformer = preprocessing.QuantileTransformer(n_quantiles = 100,random_state=0).fit(data) data_quantile_scaled = quantile_transformer.transform(data)

2. Построить гистограммы и сравнить с исходными данными

3. Определите как и на что влияет значение параметра n quantiles

n_quantiles влияет на то, насколько точно приведутся исходные данные к равномерному распределению. Данное значение используется для задания размера шага при дискретизации оценочной CDF для исходных данных.

4. Приведите данные к нормальному распределению, передав параметр output_distribution="normal"

quantile_transformer = preprocessing.QuantileTransformer(n_quantiles =
100,random_state=0, output_distribution="normal").fit(data)
data_quantile_scaled = quantile_transformer.transform(data)

5. Построить гистограммы и сравнить с исходными данными

6. Самостоятельно привидите данные к нормальному распределению, используя PowerTransformer

Дискретизация признаков

1. Проведите дискретизацию признаков, используя KBinsDiscretizer, на следующее количество диапазонов:

```
age — 3
creatinine_phosphokinase — 4
ejection_fraction — 3
platelets — 10
serum_creatinine — 2
serum_sodium — 4

bins = [3, 4, 3, 10, 2, 4]
discretizer = preprocessing.KBinsDiscretizer(n_bins=bins, encode='ordinal')
discrete data = discretizer.fit transform((data), 'discr')
```

2. Построить гистрограммы. Объяснить результаты

Данные дискретизированы на диапозоны.

3. Через параметр bin_edges_ выведите диапазоны каждого интервала для каждого признака