Otimização Natural - CPE 723

Nome: Patricia de a. koralesti

dista de Exercícios 1

(1) a)
$$\int_{\infty}^{1} x e^{-x} dx = \left[-x e^{-x}\right]_{0}^{1} - \left[-e^{-x} dx\right] = \left(-e^{-1} - 0\right) - e^{-x}\Big|_{0}^{1}$$

= $-e^{-1} - \left(e^{-1} - e^{0}\right) = 1 - 2e^{-1} \approx 0.2642$

$$\overrightarrow{b}) \overrightarrow{F} \approx \frac{1}{M} \sum_{j=n}^{M} F(x_{ij})$$

$$\begin{cases} a = np \cdot xanden \cdot xand (10) \\ b = [xe^{-x} fix \times in a] \end{cases}$$

$$C = xum(b)/n0$$

(c)
$$(\alpha = np. \text{ sandom}. \text{ expan-ential } (n = n, \text{ size} = no)$$

 $b = [xe^{-x} \text{ for } x \text{ in } \alpha]$
 $c = \text{Dum}(b)/no$

Podemos aproximar i gerando M números aleatrólis da forma: o pelo mitodo de Monte Carlo

0

N = 20 $\sim 11 \% 3.2576$ $N = 1.000.000 \sim 11 \% 3.1423$

L'iea elaro que quanto mais o nuímico de exemplos (M) melhor ficará a aprohimação desejador.

(4) · Distribuição uni forme

Ν	Ŷ,	ŝ	72	9>n.	xmin	Jmin
0	0.1482	-0.0345	-2.5944		0.1482	- 0.0345
Λ	FF10000	0.9796	1.0140	1:	\\	\\
J	- 6.0319	3.3487	2.3692	0	\\	\\
3	9640.0-	4.2302	3.2406	0	\\	\\
4	0.3024	-0.0427	-1.0224	_	0.3024	- 0.0427
5	0.3915	6.2207	0.2634	1	"	``
Ç	0.3121	-0.0128	-0.2335	_	"	"
J	0.3733	4. N7 34	0.1863	0	"	~~
ક	0.1810	-0.1673	-0.1845		0.1810	-0.1673
9	0.1267	0.1169	0-2842	0	\	*

· Distribuição gaursiamo

N	ž	î ĉ	Δ J	gor	Xmin	Jmin
0	FP60.0-	3.4733	1.3133	°o	0	2.56
1	-0.0584	4.9779	2.4179	0	\\	"
ર	-0.0479	4.4652	1.9052	0	"	~ ~
3	0.0595	1.0218	-1.5382	_	0.0595	1.0214
4	0.0276	T 124.1	0.7229	0		"
5	0.08.20	0.6349	-0.3868	_	O .68 J V	0.6349
6	0.0864	0.5701	- D. DG47	_	0.0864	0.57 on
Ţ	0.1539	-0.0654	-0.6356	_	0.1539	-0.0654
8	0.1535	-0.0632	0.0022	^	"	W. W.
9	0.0724	P84.0	0.8529	0	"	
			1	I		

k=1; x=0; j=3(x); $x_{min}=x$; $f_{min}=\hat{y}$, $f_{im}=F_{0}O_{0}e$; while (! fim)

for i in range (N):

$$\hat{x} = x + 0.1 * xandom()$$

$$g = 2(s)$$

$$\nabla 2 = \mathcal{Y} - \hat{\mathcal{Y}}$$

$$\chi_{m,\omega} = \chi$$

6

Os valores encentrados tenderam a ficar préximes de gero; como espera de para a olistribuição de Poltzmann.

9	N	l â	<u>^</u>	Δ3		X(0) = 0.2796
٠	/)	0.3674	0-1350	0.0569	9>1	×(0) - 0. 0+76
	Q	0.3098	0.0959	-0.6390	_	
	3	0.3313	0.1032	0.0012	۸	
	4	0.2235	0.0499	-0.0532		
	5	0.3023	0.0914	0.0414	۸ .	
	6	0.3008	0.0954	0.0039	7	
	Ĵ	0.3834	0.1471	0.0516	0	
	8	6,3023	0.0975	0.002n	^	
	9	0.2195	6.0482	-0.0493	_	
	M	0.2116	0.0448	- O 2034		
				\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		

(5) Or função $f(x,y) = x^2 + nOy^2$ tem seu pende múnimo em x = 0. Executando o alapaitro para N = noo.000 e $K_{MAX} = 5$ temos $X = -0.6462 \times no^3$, $Y = -1.1882 \times no^3$ e $f_{MAX} = 1.4537 \times no^5$.

k=1; $\chi=np$. random. rand(2); j=J(*x); $\chi_{min}=\chi$; $j_{min}=j_{m$

$$T = 0.5 / \log_2(N)$$

$$\begin{cases} x = x + 0.0 \text{ (np. random. rand() # 2 - 0)} \\ 3 = 5 (# \%) \end{cases}$$

$$\Delta S = 3 - 3$$

def J(x,y): return pow(x,z) - 10 + pow(y,z)