Problema 4.01. ()

Guias de ondas padrões, preenchidos com ar, são geralmente projetados para bandas de radar. Entre eles, WG-16 é adequado para aplicações na banda X (8GHz - 12GHz). Suas dimensões são a = 2,29cm e b = 1,02cm.

Se desejamos que tal guia opere em modo dominante TE_{10} e que a frequência de operação esteja ao menos 25% acima da frequência de corte do modo TE_{10} mas não mais do que 95% da frequência de corte do próximo modo, qual é a faixa de frequência permitida?

Problema 4.02. ()

Um túnel é modelado como um guia de ondas retangular preenchido com ar, possuindo as dimensões a = 8m e b = 16m. Determine se os seguintes sinais conseguem passar por esse túnel: a) Sinal AM de 1.5MHz; b) Sinal FM de 120MHz.

Problema 4.03. ()

Assumindo um guia de ondas de frequência de corte 6.5GHz preenchido com ar e possui 150m de comprimento. Esse guia é fechado com uma placa de metal perfeitamente condutor e então um pulso em 7.2GHz é aplicado em sua entrada. Quanto tempo irá demorar para o pulso voltar para a entrada?

Problema 4.04. ()

Um guia de ondas de 2cm x 3cm é preenchido com um material dielétrico de constante dielétrica 4. Se esse guia opera em 20GHz no modo TM_{11} , encontre: a) frequência de corte; b) constante de fase; c) velocidade de fase.

Problema 4.05. ()

Um guia de ondas preenchido de ar possui a=6cm, b= 3cm. Dado que

$$E_z = 5\sin(\frac{2\pi x}{a})\sin(\frac{3\pi y}{b})\cos(10^{12}t - \beta_z z)V/m$$

calcule a impedância intrínsica do meio desse modo e a potência média do guia.

Problema 4.06. ()

Para um guia retangular preenchido com ar, um mode de operação TE em 6GHz possui

$$E_y = 5\sin(\frac{2\pi x}{a})\cos(\frac{\pi y}{b})\sin(\omega t - 12z)V/m$$

Determine: a) o modo de operação; b) a frequência de corte; c) a impedância intrínsica; d) o campo H_x .

Problema 4.07. ()

Para o modo TM_{11} , derive a fórmula para a potência média transmitida pelo guia.

Problema 4.08. ()

Em uma cavidade retangular, qual é o modo dominante quando:

- a) a < b < d
- b) a > b > d
- c) a = d > b

Problema 4.09. ()

Uma cavidade retangular de dimensões a = 3cm, b = 6cm e d = 9cm é preenchida com polietileno ($\epsilon_r = 2.5$). Encontre a frequência de ressonância para os cinco primeiros modos de ordem mais baixa.

Problema 4.10. ()

Calcule os tamanhos necessário para fazer uma cavidade ressonante preenchida com ar que tenha frequência de ressonância do modo dominante em 3GHz.

Problema 4.11. ()

Uma cavidade ressonante cúbica de 10cm possui

$$\vec{E} = 200 \sin 30\pi x \sin 30\pi y \cos 6 \times 10^6 t \vec{a_z} \text{V/m}$$

Calcule o vetor \vec{H} .