Demostraciones ejecutables

Ciclo de charlas CCCC 12 de agosto de 2022

Pablo Barenbaum

Instituto de Ciencias de la Computación FCEyN, UBA, Argentina

Universidad Nacional de Quilmes / CONICET
Argentina

Lógica	Computación

Computación

$$\frac{A \text{ form} \quad B \text{ form}}{(A \to B) \text{ form}}$$

$$\frac{\Gamma, A \vdash B}{\Gamma \vdash A \to B}$$

$$\frac{\Gamma \vdash A \to B \quad \Gamma \vdash A}{\Gamma \vdash B}$$

Deducción natural Gentzen (∼1934)

Computación

$$\frac{A \text{ form} \quad B \text{ form}}{(A \to B) \text{ form}}$$

$$\frac{\Gamma, A \vdash B}{\Gamma \vdash A \to B}$$

$$\frac{\Gamma \vdash A \to B \qquad \Gamma \vdash A}{\Gamma \vdash B}$$

$$\frac{A \text{ type} \quad B \text{ type}}{(A \to B) \text{ type}}$$

$$\frac{\Gamma, x : A \vdash e : B}{\Gamma \vdash \lambda x. e : A \rightarrow B}$$

$$\frac{\Gamma \vdash e : A \to B \qquad \Gamma \vdash e' : A}{\Gamma \vdash e e' : B}$$

Cálculo- λ simplemente tipado Church (\sim 1940)

Lógica	Computación

Lógica	Computación
Proposición, fórmula	Tipo, especificación

Lógica	Computación
Proposición, fórmula	Tipo, especificación
Demostración	Programa

Lógica	Computación
Proposición, fórmula Demostración ???	Tipo, especificación Programa Ejecutar un programa

Lógica	Computación
Proposición, fórmula	Tipo, especificación
Demostración	Programa
Normalizar una demostración	Ejecutar un programa

Computación Lógica Proposición, fórmula Tipo, especificación Demostración Programa Normalizar una demostración Ejecutar un programa ??? Polimorfismo paramétrico (generics)

Computación

Proposición, fórmula Demostración

Normalizar una demostración

Lógica de segundo orden

Tipo, especificación Programa

Ejecutar un programa

Polimorfismo paramétrico (generics)

Computación

Proposición, fórmula

Demostración

Normalizar una demostración

Lógica de segundo orden

Lógica de primer orden

Tipo, especificación

Programa

Ejecutar un programa

Polimorfismo paramétrico (generics)

???

Computación

Proposición, fórmula

Demostración

Normalizar una demostración

Lógica de segundo orden

Lógica de primer orden

Tipo, especificación

Programa

Ejecutar un programa

Polimorfismo paramétrico (generics)

Tipos dependientes

Computación

Proposición, fórmula

Demostración

Normalizar una demostración

Lógica de segundo orden

Lógica de primer orden

:

Tipo, especificación

Programa

Ejecutar un programa

Polimorfismo paramétrico (generics)

Tipos dependientes

÷

Lógica Computación Proposición, fórmula Demostración Programa Normalizar una demostración Lógica de segundo orden Computación Tipo, especificación Programa Ejecutar un programa Polimorfismo paramétrico

Logica de segundo orden Polimo

Lógica de primer orden

- :

(generics)

Tipos dependientes

÷

"Isomorfismo de Curry–Howard"
"Correspondencia entre proposiciones y tipos"
"Correspondencia entre pruebas y programas"

Diseñar lenguajes de programación en los cuales los tipos permitan expresar propiedades sobre el comportamiento de los programas.

```
\begin{array}{lll} \text{inversa} &:& \text{Matriz} \to \text{Matriz} \\ \text{inversa} &=& \dots \\ \\ &\text{inversa-correcta} &:& \forall \text{ (m : Matriz)} \to \text{det m} \neq 0 \\ && \to \text{m * inversa m = id} \\ \\ \text{inversa-correcta} &=& \dots \end{array}
```

Diseñar lenguajes de programación en los cuales los tipos permitan expresar propiedades sobre el comportamiento de los programas.

```
\begin{array}{lll} \text{inversa} &:& \text{Matriz} \to \text{Matriz} \\ \text{inversa} &=& \dots \\ \\ &\text{inversa-correcta} &:& \forall \text{ (m : Matriz)} \to \text{det m} \neq 0 \\ && \to \text{m * inversa m = id} \\ \\ \text{inversa-correcta} &=& \dots \end{array}
```

Más aún: dar programas correctos por construcción.

```
inversa': \forall (m : Matriz) \rightarrow det m \neq 0 \rightarrow \exists (m': Matriz) \times (m * m' = id) inversa' = ...
```

Diseñar lenguajes de programación en los cuales los tipos permitan expresar propiedades sobre el comportamiento de los programas.

```
\begin{array}{lll} \text{inversa} &:& \text{Matriz} \to \text{Matriz} \\ \text{inversa} &=& \dots \\ \\ &\text{inversa-correcta} &:& \forall \text{ (m : Matriz)} \to \text{det m} \neq 0 \\ && \to \text{m * inversa m = id} \\ \\ \text{inversa-correcta} &=& \dots \end{array}
```

Más aún: dar programas correctos por construcción.

```
inversa': \forall (m : Matriz) \rightarrow det m \neq 0 \rightarrow \exists (m': Matriz) \times (m * m' = id) inversa' = ...
```

El sistema lógico es consistente. Todos los programas terminan.

Ejemplos: Coq, Agda, Lean, Isabelle, F*, ...

Líneas de trabajo

Colaboradores

Proposiciones clásicas como tipos
Tipos cuantitativos B. Accattoli, D. Kesner, M. Milicich
Notación para reescrituras de orden superior E. Bonelli
Cálculo- λ funcional-lógicoF. Giordano, F. Lochbaum, M. Milicich

Líneas de trabajo

Colaboradores

Proposiciones clásicas como tipos
Tipos cuantitativos B. Accattoli, D. Kesner, M. Milicich
Notación para reescrituras de orden superior E. Bonelli
Cálculo- λ funcional–lógico \ldots F. Giordano, F. Lochbaum, M. Milicich

Las demostraciones se pueden ejecutar.

Las demostraciones se pueden ejecutar.

Pero tienen que ser constructivas.

Las demostraciones se pueden ejecutar.

Pero tienen que ser constructivas.

Ejemplo de demostración no constructiva

P(x): "padezco x"

C(x): "creo que padezco x"

H : "hipocondría"

Postulado. $P(H) \longleftrightarrow \exists x. (C(x) \land \neg P(x))$

"Padezco hipocondría si y sólo si creo que padezco algo que no padezco."

Teorema.
$$C(H) \rightarrow P(H)$$

"Si creo que padezco hipocondría, padezco hipocondría."

Las demostraciones se pueden ejecutar.

Pero tienen que ser constructivas.

Ejemplo de demostración no constructiva

P(x): "padezco x"

C(x): "creo que padezco x"

H : "hipocondría"

Postulado. $P(H) \longleftrightarrow \exists x. (C(x) \land \neg P(x))$

"Padezco hipocondría si y sólo si creo que padezco algo que no padezco."

Teorema. $C(H) \rightarrow P(H)$

"Si creo que padezco hipocondría, padezco hipocondría."

Demostración. Supongamos C(H). Se da $P(H) \vee \neg P(H)$.

Si P(H), listo.

Si $\neg P(H)$, tenemos $C(H) \land \neg P(H)$. Luego P(H). Absurdo.

Las demostraciones se pueden ejecutar.

Pero tienen que ser constructivas.

Ejemplo de demostración no constructiva

P(x): "padezco x"

C(x): "creo que padezco x"

H : "hipocondría"

Postulado. $P(H) \longleftrightarrow \exists x. (C(x) \land \neg P(x))$

"Padezco hipocondría si y sólo si creo que padezco algo que no padezco."

Teorema. $C(H) \rightarrow P(H)$

"Si creo que padezco hipocondría, padezco hipocondría."

Demostración. Supongamos C(H). Se da $P(H) \vee \neg P(H)$.

Si P(H), listo.

Si $\neg P(H)$, tenemos $C(H) \wedge \neg P(H)$. Luego P(H). Absurdo.

Asumiendo C(H), la demostración no exhibe un x tal que $C(x) \land \neg P(x)$.

Las demostraciones se pueden ejecutar.

Pero tienen que ser constructivas.

Ejemplo de demostración no constructiva

P(x) : "padezco x" C(x) : "creo que padezco x"

H : "hipocondría"

Postulado. $P(H) \longleftrightarrow \exists x. (C(x) \land \neg P(x))$

"Padezco hipocondría si y sólo si creo que padezco algo que no padezco."

Teorema.
$$C(H) \rightarrow P(H)$$

"Si creo que padezco hipocondría, padezco hipocondría."

Demostración. Supongamos
$$C(H)$$
. Se da $P(H) \vee \neg P(H)$.

Si P(H), listo.

Si $\neg P(H)$, tenemos $C(H) \land \neg P(H)$. Luego P(H). Absurdo.

Asumiendo C(H), la demostración no exhibe un x tal que $C(x) \land \neg P(x)$.

Lógica clásica

A diferencia de la lógica intuicionista

- ► Admite el principio del tercero excluido.
- ► *A priori* no constructiva.

Lógica clásica

A diferencia de la lógica intuicionista

- Admite el principio del tercero excluido.
- A priori no constructiva.

¿Se le puede dar una interpretación computacional?

Varios intentos:

```
Cálculo-\lambda simétrico ... F. Barbanera, S. Berardi Cálculo \lambda\mu ... M. Parigot Cálculo \bar{\lambda}\mu\tilde{\mu} ... P.-L. Curien, H. Herbelin ...
```

Lógica clásica

A diferencia de la lógica intuicionista

- ► Admite el principio del tercero excluido.
- A priori no constructiva.

¿Se le puede dar una interpretación computacional?

Varios intentos:

Cálculo- λ simétrico	F. Barbanera, S. Berardi
Cálculo $\lambda\mu$	M. Parigot
Cálculo $\bar{\lambda}\mu\tilde{\mu}$	PL. Curien, H. Herbelin

Cálculo- λ^{PRK}

con T. Freund

$$A^{\oplus} \simeq (A^{\ominus} \to A^+)$$
 $A^{\ominus} \simeq (A^{\oplus} \to A^-)$

Simétrico con respecto a la dualidad de de Morgan.

Confluencia, terminación, semántica de Kripke, extensión a segundo orden.

Tipos simples	Tipos cuantitativos (intersección no idempotente)

Tipos simples	Tipos cuantitativos (intersección no idempotente)
Cada subexpresión tiene un tipo.	

Tipos cuantitativos (intersección no idempotente)
Cada subexpresión tiene tantos tipos como veces se usa.

Tipos simples	Tipos cuantitativos (intersección no idempotente)
Cada subexpresión tiene un tipo.	Cada subexpresión tiene tantos tipos como veces se usa.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	

Tipos simples	Tipos cuantitativos (intersección no idempotente)
Cada subexpresión tiene un tipo.	Cada subexpresión tiene tantos tipos como veces se usa.
$ f : Int \rightarrow Int \rightarrow Int $ $ f n m = n + n $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Tipos simples	Tipos cuantitativos (intersección no idempotente)
Cada subexpresión tiene un tipo.	Cada subexpresión tiene tantos tipos como veces se usa.
$\begin{array}{lll} \texttt{f} & \texttt{:} & \texttt{Int} \ \rightarrow \ \texttt{Int} \ \rightarrow \ \texttt{Int} \\ \texttt{f} & \texttt{n} & \texttt{m} \ = \ \texttt{n} \ + \ \texttt{n} \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
e tiene tipo $\implies e$ termina	

Tipos simples	Tipos cuantitativos (intersección no idempotente)
Cada subexpresión tiene un tipo.	Cada subexpresión tiene tantos tipos como veces se usa.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
e tiene tipo $\implies e$ termina	e tiene tipo \iff e termina

Tipos simples

Tipos cuantitativos

(intersección no idempotente)

Cada subexpresión tiene un tipo.

```
\begin{array}{lll} f &:& Int \ \rightarrow \ Int \ \rightarrow \ Int \\ f &n \ m \ = \ n \ + \ n \end{array}
```

e tiene tipo $\implies e$ termina

Inferencia decidible.

Cada subexpresión tiene tantos tipos como veces se usa.

```
\begin{array}{ll} f \ : & \hbox{[Int, Int]} \ \rightarrow \ \hbox{[]} \ \rightarrow \ \hbox{Int} \\ f \ n \ m \ = \ n \ + \ n \end{array}
```

e tiene tipo $\iff e$ termina

Tipos simples

Tipos cuantitativos

(intersección no idempotente)

Cada subexpresión tiene un tipo.

e tiene tipo $\implies e$ termina

Cada subexpresión tiene tantos tipos como veces se usa.

```
\begin{array}{ll} f \ : & \hbox{[Int, Int]} \ \rightarrow \ \hbox{[]} \ \rightarrow \ \hbox{Int} \\ f \ n \ m \ = \ n \ + \ n \end{array}
```

e tiene tipo $\iff e$ termina

Inferencia indecidible.

Tipos simples

Tipos cuantitativos

(intersección no idempotente)

Cada subexpresión tiene un tipo.

$$f : Int \rightarrow Int \rightarrow Int$$

$$f n m = n + n$$

e tiene tipo \implies e termina

Captura propiedades estáticas.

Asegurar terminación.

Asegurar invariantes.

Cada subexpresión tiene tantos tipos como veces se usa.

$$\begin{array}{ll} f : & [\texttt{Int, Int}] \rightarrow [] \rightarrow \texttt{Int} \\ f : & n : m = n + n \end{array}$$

e tiene tipo $\iff e$ termina

Inferencia indecidible.

Tipos simples

Tipos cuantitativos

(intersección no idempotente)

Cada subexpresión tiene un tipo.

$$\begin{array}{lll} f & : & Int \ \rightarrow & Int \ \rightarrow & Int \\ f & n & m \ = \ n \ + \ n \end{array}$$

e tiene tipo \implies e termina

Captura propiedades estáticas.

Asegurar terminación.

Asegurar invariantes.

Cada subexpresión tiene tantos tipos como veces se usa.

$$\begin{array}{ll} f : & [\texttt{Int, Int}] \rightarrow [] \rightarrow \texttt{Int} \\ f \ n \ m = n + n \end{array}$$

e tiene tipo $\iff e$ termina

Inferencia indecidible.

Captura propiedades dinámicas.

Medir el tiempo de ejecución. Medir el tamaño del resultado.

Algunos problemas:

▶ Dar un sistema de tipos cuantitativos para el useful strong call-by-need de Accattoli y Dal Lago.

con B. Accattoli y D. Kesner

Algunos problemas:

▶ Dar un sistema de tipos cuantitativos para el useful strong call-by-need de Accattoli y Dal Lago.

con B. Accattoli y D. Kesner

Establecer una correspondencia entre derivaciones en sistemas de tipos cuantitativos y secuencias de reducción estratégicas.

con E. Bonelli y M. Milicich

Algunos problemas:

▶ Dar un sistema de tipos cuantitativos para el useful strong call-by-need de Accattoli y Dal Lago.

con B. Accattoli y D. Kesner

Establecer una correspondencia entre derivaciones en sistemas de tipos cuantitativos y secuencias de reducción estratégicas.

con E. Bonelli y M. Milicich

► Estudiar la acción de las traducciones a *continuation-passing style* sobre los tipos cuantitativos.

con D. Kesner y M. Milicich