MATH 2330: Multivariable Calculus

Section 5.3: Double Integrals in Polar Coordinates

5.3: Double Integrals in Polar Coordinates

Polar Coordinates:

 $x = r\cos\theta, \qquad y = r\sin\theta, \qquad x^2 + y^2$

For the purposes of this class: $r \ge 0$

Radially Simple Regions:

$$\iint_D f(x,y) \ dA = \int_{\alpha}^{\beta} \int_{h_1(\theta)}^{h_2(\theta)} f(r\cos\theta, r\sin\theta) \ r \ dr \ d\theta$$

Area Element: $dA = r \ dr \ d\theta$

Make sure that you integrate in the direction of increasing θ values!

Examples:

Example 1: Evaluate $\iint_R x^2 + y^2 + 1 \ dA$ where R is the disk bounded by $x^2 + y^2 = 4$.

Example 2: Evaluate $\iint_R (x^2+y^2)^2 \; dA$ where R is the "bow tie" region shaded below, which is bounded by y=x and y=-x and $x^2+y^2=16$.

Example 3: Show that $\int_{-\infty}^{\infty} e^{-\frac{x^2}{2}} \ dx = \sqrt{2\pi}.$

Section 5.3 Group Work:

Fun with Polar Volume

Find the volume of the region bounded above by the upper hemisphere of the sphere x²+y²+(z-1)² = 1 and bounded below by the xy-plane.

2. Find the volume of the region bounded above by the sphere $x^2 + y^2 + z^2 = 1$ and below by the sphere $x^2 + y^2 + (z - 1)^2 = 1$.