Modeling and control

Problems:

1. Transient response, system type and steady state errors.(P-control)

A simple model of a DC-motor is a first order system from voltage, Va(s), to

Figure 1: Position controlled motor, P-controller

velocity, Y(s). The transfer function from velocity, Y(s), to shaft position, $\theta(s)$, is defined as an integration. A position controlled motor is shown in the figure.

- Find the K_P giving 20 % overshoot (M_P) .
- Giving this K_P determine the rise time (t_r) and settling time (t_s) (2 %)
- What is the system type? Determine the steady state errors for a step, a ramp and a parabola.

2. Transient reponse, system type and steady state errors (two controllers).

Another position control of the DC-motoren is shown in the figure.

- Determine the closed loop transfer function $T(s) = \frac{\Theta(s)}{R(s)}$.
- Find the K_1 and K_2 that gives an overshoot (M_P) equal 20 % and a settling time (2%) (t_s) equal 1 [sec].
- Find the rise time (t_r) of the system?
- What is the system type? Determine the steady state errors for a step, a ramp and a parabola.

Figure 2: Position controlled motor, two controllers

3. Transient response, system type and steady state errors (PD-controller).

On the figure a PD-controlled DC-motor is shown.

Figure 3: Position controlled motor, PD-controller

- Determine K and T_d giving an overshoot (M_P) of 20 % and a settling time $(t_s)(2\%)$ equal to 1 [sec].
- Find the rise time (t_r) .
- What is the system type? Determine the steady state errors for a step, a ramp and a parabola.

4. Step response analyses %

Figure 4: Block diagram of a proportional-controlled system

• With known $\tau > 0$ and K > 0 an expression for K_p giving 10 % overshoot must be determined. So find K_p given by τ and K.