# **Data Mining:**

3. Klassifikation

B) Decision Trees (cont.)

### Classification by Decision Tree Induction

- Non-parametric approach: no assumptions on probability distribution of class and other attributes
- Optimal decision tree construction is an NP-complete problem, but there are efficient heuristic-based algorithms.
   (here: greedy, top-down, recursive partitioning strategy for growing a decision tree; other search strategies?)
- Robust against redundant attributes
   (only one of two strongly correlated attributes will be chosen for splitting)
- Remaining problems:
  - Underfitting and overfitting
  - Data Fragmentation
  - Missing values
  - Expressiveness

# **Underfitting and Overfitting**



**Underfitting**: when model is too simple, both training and test errors are large **Overfitting**: when model is too specific, test errors start to increase though training errors continue to decrease

# **Overfitting due to Noise**



Decision boundary is distorted by noise point

**Table 4.3.** An example training set for classifying mammals. Class labels with asterisk symbols represent mislabeled records.

| Name          | Body         | Gives | Four-  | Hibernates | Class |
|---------------|--------------|-------|--------|------------|-------|
|               | Temperature  | Birth | legged |            | Label |
| porcupine     | warm-blooded | yes   | yes    | yes        | yes   |
| cat           | warm-blooded | yes   | yes    | no         | yes   |
| bat           | warm-blooded | yes   | no     | yes        | no*   |
| whale         | warm-blooded | yes   | no     | no         | no*   |
| salamander    | cold-blooded | no    | yes    | yes        | no    |
| komodo dragon | cold-blooded | no    | yes    | no         | no    |
| python        | cold-blooded | no    | no     | yes        | no    |
| salmon        | cold-blooded | no    | no     | no         | no    |
| eagle         | warm-blooded | no    | no     | no         | no    |
| guppy         | cold-blooded | yes   | no     | no         | no    |

hibernate= Winterschlaf halten

Table 4.4. An example test set for classifying mammals.

| Name                     | Body         |       | Four-  | Hibernates | Class |
|--------------------------|--------------|-------|--------|------------|-------|
|                          | Temperature  | Birth | legged |            | Label |
| human                    | warm-blooded | yes   | no     | no         | yes   |
| pigeon                   | warm-blooded | no    | no     | no         | no    |
| elephant                 | warm-blooded | yes   | yes    | no         | yes   |
| leopard shark            | cold-blooded | yes   | no     | no         | no    |
| $\operatorname{turtle}$  | cold-blooded | no    | yes    | no         | no    |
| penguin                  | cold-blooded | no    | no     | no         | no    |
| eel                      | cold-blooded | no    | no     | no         | no    |
| $\operatorname{dolphin}$ | warm-blooded | yes   | no     | no         | yes   |
| spiny anteater           | warm-blooded | no    | yes    | yes        | yes   |
| gila monster             | cold-blooded | no    | yes    | yes        | no    |

# Overfitting due to Noise: An Example



Figure 4.25. Decision tree induced from the data set shown in Table 4.3.

#### **Overfitting due to Lack of Representative Samples**



Lack of data points in the lower half of the diagram makes it difficult to predict correctly the class labels of that region.

Insufficient number of training records in the region causes the decision tree to predict the test examples using other training records that are irrelevant to the classification task.

#### **Overfitting due to Lack of Representative Samples**

**Table 4.5.** An example training set for classifying mammals.

| Name       | Body         | Gives                  | Four-  | Hibernates | Class |
|------------|--------------|------------------------|--------|------------|-------|
|            | Temperature  | $\operatorname{Birth}$ | legged |            | Label |
| salamander | cold-blooded | no                     | yes    | yes        | no    |
| guppy      | cold-blooded | yes                    | no     | no         | no    |
| eagle      | warm-blooded | no                     | no     | no         | no    |
| poorwill   | warm-blooded | no                     | no     | yes        | no    |
| platypus   | warm-blooded | no                     | yes    | yes        | yes   |

All warm-blooded creatures that do not hibernate will be classified as non-mammals, since there is only one training record with this characteristics.

### **Estimating Generalization Errors**

- Re-substitution errors: error e(T) on training (for a tree T)
- Generalization errors: error e'(T) on testing...on previously unseen records
- Let e(t),e'(t) be the number of misclassified records at a leaf node t, n(T) the number of training records classified by T. e(T):=Σ e(t) / n(T)
- Methods for estimating generalization errors:
  - Optimistic approach: e'(T) = e(T)
  - Pessimistic approach:
    - ◆ For each leaf node: e'(t):= e(t)+penalty [e.g. 0.5 or 1]
    - ◆ Total error: e'(T):= e(T) + (nl(T)×penalty) / n(T)) [nl(T): number of leaf nodes]
    - Total a tree with 30 leaf nodes and 10 misclassified training records (out of 1000 instances), and penalty=0.5:

```
Training error = 10/1000 = 1\%
Generalization error = 1\% + (30 \times 0.5 / 1000) = (10 + 30 \times 0.5)/1000 = 2.5\%
```

- Using a validation set:
  - Use a part of the training data set to estimate generalization error

### Pessimistic Generalization Error: An Example



Figure 4.27. Example of two decision trees generated from the same training data.

Let: Training error:  $\frac{4}{24} = 0.167$ , penalty=1.0 Training error:  $\frac{6}{24} = 0.25$ , penalty=1.0 Then: Pessimistic error= (4+7x1.0)/24=0.458 Pessimistic error= (6+4x1.0)/24=0.417

Penalty 1.0|0.5 means: A node should not be split [nl(T):=nl(T)+1] unless it reduces the training error for >/>= 1 record.

#### **Pessimistic Generalization Error: Review**

- By considering the number of leaves, we have included model complexity when evaluating a model
- In the context of decision trees, it makes sense to prefer the simpler model over a similar, but more complex model, since:
- For complex models (trees), there is a greater chance that they were fitted accidentally by statistically insignificant data or by errors in data (noise)

# **How to Address Overfitting**

#### Pre-Pruning (Early Stopping Rule)

- Stop the algorithm before it becomes a fully-grown tree
- Typical stopping conditions for a node:
  - Stop if all instances belong to the same class
  - Stop if all the attribute values are the same
- More restrictive conditions:
  - Stop if number of instances is less than some user-specified threshold
  - Stop if class distribution of instances are independent of the available features (e.g., using χ² test)
  - Stop if expanding the current node does not improve impurity measures (e.g., Gini or information gain).

# **How to Address Overfitting...**

#### Post-Pruning

- Grow decision tree to its entirety
- Trim the nodes of the decision tree in a bottom-up fashion by replacing a subtree with
  - a new leaf node whose class label of leaf node is determined from majority class of instances in the sub-tree
  - the most frequently used branch of the subtree (subtree raising)
  - as long as generalization error improves after trimming.
- More reliable than pre-pruning but more expensive.

### **Example of Post-Pruning**

| Class = Yes | 20 |
|-------------|----|
| Class = No  | 10 |

Training Error (before splitting) = 10/30Pessimistic error = (10 + 0.5)/30 = 10.5/30



**Prune!** (replace A-subtree by leaf node above)

# **Post-pruning in Web Robot Application**



Figure 4.29. Post-pruning of the decision tree for Web robot detection.

# **Data Fragmentation**

- Number of instances gets smaller as you traverse down the tree
- Number of instances at the leaf nodes could be too small to make any statistically significant decision
- Can be avoided by restrictive stopping conditions (compare pre-pruning)

### **Missing Attribute Values**

- Missing values affect decision tree construction in three different ways:
  - Affects how impurity measures are computed
  - Affects how to distribute instance with missing value to child nodes
  - Affects how a test instance with missing value is classified

#### Missing Attribute Values: Computing Impurity Measure

| Tid | Refund | Marital<br>Status | Taxable Income | Class |
|-----|--------|-------------------|----------------|-------|
| 1   | Yes    | Single            | 125K           | No    |
| 2   | No     | Married           | 100K           | No    |
| 3   | No     | Single            | 70K            | No    |
| 4   | Yes    | Married           | 120K           | No    |
| 5   | No     | Divorced          | 95K            | Yes   |
| 6   | No     | Married           | 60K            | No    |
| 7   | Yes    | Divorced          | 220K           | No    |
| 8   | No     | Single            | 85K            | Yes   |
| 9   | No     | Married           | 75K            | No    |
| 10  | ?      | Single            | 90K            | Yes   |

Missing value

#### Before Splitting:

Entropy(Parent)

$$= -(0.3)\log(0.3) - (0.7)\log(0.7) = 0.8813$$

|            | Class | Class |
|------------|-------|-------|
|            | = Yes | = No  |
| Refund=Yes | 0     | 3     |
| Refund=No  | 2     | 4     |
| Refund=?   | 1     | 0     |

#### Split on Refund:

$$Entropy(Refund=Yes) = 0$$

$$= -(2/6)\log(2/6) - (4/6)\log(4/6) = 0.9183$$

#### Entropy(Children)

$$= 0.3 \times 0 + 0.6 \times 0.9183 = 0.551$$

Gain = 
$$0.9 \times (0.8813 - 0.551) = 0.3303$$

#### Missing Attribute Values: Distribute Training Instances

| Tid | Refund | Marital<br>Status | Taxable<br>Income | Class |
|-----|--------|-------------------|-------------------|-------|
| 1   | Yes    | Single            | 125K              | No    |
| 2   | No     | Married           | 100K              | No    |
| 3   | No     | Single            | 70K               | No    |
| 4   | Yes    | Married           | 120K              | No    |
| 5   | No     | Divorced          | 95K               | Yes   |
| 6   | No     | Married           | 60K               | No    |
| 7   | Yes    | Divorced          | 220K              | No    |
| 8   | No     | Single            | 85K               | Yes   |
| 9   | No     | Married           | 75K               | No    |



| Class=Yes | 0 |
|-----------|---|
| Class=No  | 3 |

| Class=Yes | 2 |
|-----------|---|
| Class=No  | 4 |

| Tid | Refund |        | Taxable Income | Class |
|-----|--------|--------|----------------|-------|
| 10  | ?      | Single | 90K            | Yes   |



Probability that Refund=Yes is 3/9 Probability that Refund=No is 6/9

Assign record with missing value to the left child with weight = 3/9 and to the right child with weight = 6/9

#### Missing Attribute Values: Classify New Instances

#### **New record:**

| Tid | Refund | Marital<br>Status | Taxable<br>Income | Class |
|-----|--------|-------------------|-------------------|-------|
| 11  | No     | ?                 | 85K               | ?     |
| ,   | 1      |                   |                   |       |



NO
Single,
Divorced
TaxInc

< 80K

NO

YES

NO

NO

YES

Follow several branches and do bookkeeping of probabilities for the branches:

Probability that Marital Status = Married is 3/6.67

Probability that Marital Status = {Single,Divorced} is 3.67/6.67

# **Expressiveness**

- Decision tree provides expressive representation for learning discrete-valued function
  - But they do not generalize well to certain types of Boolean functions
    - Example: parity function:
      - Class = 1 if there is an even number of Boolean attributes with truth value = True
      - Class = 0 if there is an odd number of Boolean attributes with truth value = True
    - For accurate modeling, you must have a complete tree
- Not expressive enough for modeling continuous variables
  - Particularly when test condition involves only a single attribute at-a-time

## **Expressiveness: Decision Boundary**



- Border line between two neighboring regions of different classes is known as decision boundary
- Decision boundary can be only parallel to axes (rectilinear)
   because test condition involves a single attribute at-a-time

## **Expressiveness: Decision Boundary**



- Test condition should involve multiple attributes!
- More expressive representation
- But finding optimal test condition is computationally expensive

# **Expressiveness: Decision Boundary**



#### Circular points:

$$0.5 \le \text{sqrt}(x_1^2 + x_2^2) \le 1$$

#### Triangular points:

$$sqrt(x_1^2+x_2^2) < 0.5 \text{ or}$$
  
 $sqrt(x_1^2+x_2^2) > 1$