Historic, Archive Document

Do not assume content reflects current scientific knowledge, policies, or practices.

340

W. B. No. 171.

U. S. DEPARTMENT OF AGRICULTURE,

MOISTURE TABLES.

Prepared under direction of WILLIS L. MOORE, Chief of Weather Bureau.

BY

C. F. MARVIN,
PROFESSOR OF METEOROLOGY.

WASHINGTON:
WEATHER BUREAU.
1898.

W. B. No. 171.

U. S. DEPARTMENT OF AGRICULTURE,

WEATHER BUREAU.

MOISTURE TABLES.

Prepared under direction of WILLIS L. MOORE, Chief of Weather Bureau.

 \mathbf{BY}

C. F. MARVIN,
PROFESSOR OF METEOROLOGY.

WASHINGTON: WEATHER BUREAU. 1898.

MOISTURE TABLES.1

The quantity of moisture mixed with the air under different conditions as to temperature and degree of saturation often plays an important part in the operation of blast furnaces, drying kilns, cotton mills, steel mills, etc. The metallurgist, especially, is awakening to the importance of taking full account of the moisture in the air that incidentally, or designedly, is often a part of extensive chemical operations involved in the production of steel and iron.

From time to time letters requesting information on these questions have been received by the Chief of the Weather Bureau, and it has seemed advisable to publish a general answer to such inquiries in the shape of the following notes and

table.

The weight of a unit volume of vapor is given in the revised editions of meteorological tables only for conditions of complete saturation, whereas, in ordinary practice we deal nearly always with cases of partial saturation, and it is believed the table below will be useful to many and obviate the necessity of special computations.

Faulty conceptions.—A false notion that the air has a certain capacity for moisture is widely prevalent, and is perpetuated by all such expressions as "The air is partly saturated with moisture," "Weight of aqueous vapor in a cubic foot of

saturated air," etc.

It should always be clearly observed that the presence of the moisture in any given space is independent of the presence or absence of air in the same space except that the air retards the diffusion of the vapor particles. It is more correct to say, in the above cases, that the space is partly saturated with moisture, or the moisture is partly saturated or is superheated. By all means use the phrase "Weight of a cubic foot of saturated aqueous vapor," not "Weight of aqueous vapor in a cubic foot of saturated air."

The amount of saturated aqueous vapor that can exist in any given space depends entirely upon the temperature. It appears that the vapor may be supersaturated under certain peculiar conditions, but this is a special and an unstable state which need not be considered in the present connection. When the vapor is saturated, it will exert a certain pressure which varies with the temperature and which so-called "maximum pressure" has been measured with greater or less precision over a long range of temperature from about 60° below zero F., to far above the boiling point of water.

Saturated aqueous vapor is but little more than half as heavy as the same volume of dry air under like conditions of temperature and pressure. In all ordinary computations

it is assumed that the expansion and contraction of partially saturated aqueous vapor is in accordance with the same laws as apply to air and ordinary gases, which do not easily condense to the liquid state.

The adopted density of saturated aqueous vapor is not determined directly from experiment, but is deduced theoretically from the observed fact that two volumes of hydrogen and one of oxygen combine to produce two volumes of water vapor.

The weights of unit volumes of hydrogen, oxygen, and dry air are accurately known, from which the specific gravity of aqueous vapor is found to be 0.6221.

The weight of a cubic meter of saturated aqueous vapor is

given by the equation:

$$W = 0.6221 \frac{A}{1 + kt} \frac{F}{760},$$

in which t is the temperature, centigrade, and F the corresponding pressure, in millimeters, at saturation. A is the weight of a cubic meter of air, under standard conditions = 1.29278 kilogram, k is the coefficient of expansion of air = 0.003667.

If English units of temperature, pressure, and weight are used, we find the weight of a cubic foot of saturated aqueous vapor in grains is:

$$W = 11.7459 \frac{F'}{1 + 0.002037 (t - 32)}.$$

This formula gives the weights found in the column headed "100" in the accompanying table. Above 32° the values of F' employed were those deduced from Regnault's observations, by Broch, for the International Bureau of Weights and Measures. Broch's reduction is unsatisfactory for temperatures below 32°, and this portion of the table is based upon saturation pressures experimentally observed by the writer and described in Appendix 10, Annual Report of the Chief Signal Officer, 1891.

When the water vapor present in any given space is not saturated, this fact is generally expressed by the degree of humidity assigned to it. For example, we say the relative humidity, that is the percentage of saturation, is 60. This means that only 60 per cent of the vapor that might at the prevailing temperature exist in the space under consideration is present; hence, 40 per cent more vapor must be added in order that the space may be saturated. We may deduce the percentages of saturation either as a ratio of the weights, or as a ratio of pressures, with identical results, because in all such computations it is assumed without important errors that partially saturated vapor expands and compresses strictly proportional to the temperature and pressure. From this it follows that the weight of vapor at a given percentage of saturation is found by multiplying the weight corresponding to saturation by the relative humidity.

Weight of a cubic foot of aqueous vapor at different temperatures and percentages of saturation.

Temperature,	Percentage of saturation.										
	10	20	30	40	50	60	70	80	90	100	
Tem	Grains.										
-20 19 18 17 16	0.017 0.017 0.018 0.020 0.021	0.033 0.035 0.037 0.039 0.041	0.050 0.052 0.055 0.055 0.069 0.062	0.066 0.070 0.074 0.078 0.083	0.083 0.087 0.092 0.098 0.104	0.100 0.104 0.110 0.118 0.124	0.116 0.122 0.129 0.137 0.145	0.133 0.139 0.147 0.157 0.166	0.149 0.157 0.166 0.176 0.186	0.166 0.174 0.184 0.196 0.207	
15	0.022	0.044	0.065	0.087	0.109	0.131	0.153	0.174	0,196	0.218	
14	0.023	0.046	0.069	0.092	0.116	0.139	0.162	0.185	0,208	0.231	
13	0.024	0.049	0.073	0.097	0.122	0.146	0.170	0.194	0,219	0.243	
12	0.026	0.051	0.077	0.103	0.128	0.154	0.180	0.206	0,231	0.257	
11	0.027	0.054	0.081	0.108	0.135	0.162	0.189	0.216	0,243	0.270	
-10	0.028	0.057	0.086	0.114	0.142	0.171	0.200	0.228	$egin{array}{c} 0.256 \\ 0.270 \\ 0.284 \\ 0.299 \\ 0.315 \\ \end{array}$	0.285	
9	0.030	0.060	0.090	0.120	0.150	0.180	0.210	0.240		0.300	
8	0.032	0.063	0.095	0.126	0.158	0.190	0.221	0.253		0.316	
7	0.033	0.066	0.100	0.133	0.166	0.199	0.232	0.266		0.332	
6	0.035	0.070	0.105	0.140	0.175	0.210	0.245	0.280		0.350	
- 5 4 3 - 1	0.037 0.039 0.041 0.043 0.046	0.074 0.078 0.082 0.087 0.091	0.111 0.117 0.123 0.130 0.137	0.148 0.156 0.164 0.174 0.183	0.185 0.194 0.206 0.217 0.228	0, 222 0, 233 0, 247 0, 260 0, 274	0.259 0.272 0.288 0.304 0.320	0.296 0.311 0.329 0.347 0.366	0.333 0.350 0.370 0.391 0.411	0.370 0.389 0.411 0.434 0.457	
$+\frac{0}{1}$	0.048	0.096	0.144	0.192	0.240	0.289	0.337	0.385	0.433	0.481	
	0.050	0.101	0.152	0.202	0.252	0.303	0.354	0.404	0.454	0.505	
	0.053	0.106	0.159	0.212	0.264	0.317	0.370	0.423	0.476	0.529	
	0.055	0.111	0.166	0.222	0.277	0.332	0.388	0.443	0.499	0.554	
	0.058	0.116	0.175	0.233	0.291	0.349	0.407	0.466	0.524	0.582	
5	0.061	0.122	0.183	0.244	0.305	0.366	0.427	0.488	0.549	0.610	
6	0.064	0.128	0.192	0.256	0.320	0.383	0.447	0.511	0.575	0.639	
7	0.067	0.134	0.201	0.268	0.336	0.403	0.470	0.537	0.604	0.671	
8	0.070	0.141	0.211	0.282	0.352	0.422	0.493	0.563	0.634	0.704	
9	0.074	0.148	0.222	0.296	0.370	0.443	0.517	0.591	0.665	0.739	
10	0.078	0.155	0.233	0.310	0.388	0.466	0.543	0.621	0.698	0.776	
11	0.082	0.163	0.245	0.326	0.408	0.490	0.571	0.653	0.734	0.816	
12	0.086	0.171	0.257	0.342	0.428	0.514	0.599	0.685	0.770	0.856	
13	0.090	0.180	0.269	0.359	0.449	0.539	0.629	0.718	0.808	0.898	
14	0.094	0.188	0.282	0.376	0.470	0.565	0.659	0.753	0.847	0.941	
15	0.099	0.197	0.296	0.394	0.493	0.592	0.690	0.789	0.887	0.986	
16	0.103	0.206	0.310	0.413	0.516	0.619	0.722	0.826	0.929	1.032	
17	0.108	0.216	0.324	0.432	0.540	0.648	0.756	0.864	0.972	1.080	
18	0.113	0.226	0.338	0.451	0.564	0.677	0.790	0.902	1.015	1.128	
19	0.118	0.236	0.354	0.472	0.590	0.709	0.827	0.945	1.063	1.181	
20	0. 124	0.247	0.370	0.494	0.618	0.741	0.864	0.988	1.112	1.235	
21	0. 129	0.259	0.388	0.518	0.647	0.776	0.906	1.035	1.165	1.294	
22	0. 136	0.271	0.406	0.542	0.678	0.813	0.948	1.084	1.220	1.355	
23	0. 142	0.284	0.425	0.567	0.709	0.851	0.993	1.134	1.276	1.418	
24	0. 148	0.297	0.445	0.593	0.742	0.890	1.038	1.186	1.335	1.483	
25	0.155	0.310	0.465	0.620	0.776	0.931	1.086	1.241	1.396	1.551	
26	0.162	0.325	0.487	0.649	0.812	0.974	1.136	1.298	1.461	1.623	
27	0.170	0.339	0.509	0.679	0.848	1.018	1.188	1.358	1.527	1.697	
28	0.177	0.355	0.532	0.709	0.886	1.064	1.241	1.418	1.596	1.778	
29	0.185	0.371	0.556	0.741	0.926	1.112	1.297	1.482	1.668	1.853	
30	0. 194	0.387	0.580	0.774	0.968	1.161	1.354	1.548	1.742	1.935	
31	0. 202	0.404	0.607	0.809	1.011	1.213	1.415	1.618	1.820	2.022	
32	0. 211	0.422	0.634	0.845	1.056	1.268	1.479	1.690	1.902	2.113	
33	0. 219	0.439	0.658	0.878	1.097	1.316	1.536	1.755	1.975	2.194	
34	0. 228	0.456	0.684	0.912	1.140	1.367	1.595	1.823	2.051	2.279	
35	0.237	0.473	0.710	0.946	1.183	1.420	1.656	1.893	2.129	2.366	
36	0.246	0.491	0.737	0.983	1.228	1.474	1.720	1.966	2.211	2.457	
37	0.255	0.510	0.765	1.020	1.275	1.530	1.785	2.040	2.295	2.550	
38	0.265	0.529	0.794	1.058	1.323	1.588	1.852	2.117	2.381	2.646	
+39	0.275	0.549	0.824	1.098	1.373	1.648	1.922	2.197	2.471	2.746	

Weight of a cubic foot of aqueous vapor, etc.—Continued.

re.	Percentage of saturation.										
Temperature.	10	20	30	40	50	60	70	80	90	100	
Temp	Grains.										
+40	0.285	0.570	0.855	1.140	1.424	1.709	1.994	2. 279	2.564	2.849	
41	0.296	0.591	0.886	1.182	1.478	1.773	2.068	2. 364	2.660	2.955	
42	0.306	0.613	0.919	1.226	1.532	1.838	2.145	2. 451	2.758	3.064	
43	0.318	0.635	0.953	1.271	1.588	1.906	2.224	2. 542	2.859	3.177	
44	0.329	0.659	0.988	1.318	1.647	1.976	2.306	2. 635	2.965	3.294	
45	0.341	0.683	1.024	1.366	1.707	2.048	2.390	2.731	3.073	3.414	
46	0.354	0.708	1.062	1.416	1.770	2.123	2.477	2.831	3.185	3.539	
47	0.367	0.733	1.100	1.467	1.834	2.200	2.567	2.934	3.300	3.667	
48	0.380	0.760	1.140	1.520	1.900	2.280	2.660	3.040	3.420	3.800	
49	0.394	0.787	1.181	1.574	1.968	2.362	2.755	3.149	3.542	3.936	
50	0.408	0,815	1.223	1.630	2.038	2.446	2.853	3.261	3.668	4.076	
51	0.422	0,844	1.267	1.689	2.111	2.533	2.955	3.378	3.800	4.222	
52	0.437	0,874	1.312	1.749	2.186	2.623	3.060	3.498	3.935	4.372	
53	0.453	0,905	1.358	1.810	2.263	2.716	3.168	3.621	4.073	4.526	
54	0.468	0,937	1.406	1.874	2.342	2.811	3.280	3.748	4.216	4.685	
55	0.485	0.970	1.455	1.940	2.424	2.909	3.394	3.879	4.364	4.849	
56	0.502	1.003	1.505	2.006	2.508	3.010	3.511	4.013	4.514	5.016	
57	0.519	1.038	1.557	2.076	2.596	3.115	3.634	4.153	4.672	5.191	
58	0.537	1.074	1.611	2,148	2.685	3.222	3.759	4.296	4.833	5.370	
59	0.556	1.111	1.666	2.222	2.778	3.333	3.888	4.444	5.000	5.555	
60	0.574	1.149	1.724	2.298	2.872	3.447	4.022	4.596	5.170	5.745	
61	0.594	1.188	1.782	2.376	2.970	3.565	4.159	4.753	5.347	5.941	
62	0.614	1.228	1.843	2.457	3.071	3.685	4.299	4.914	5.528	6.142	
63	0.635	1.270	1.905	2.540	3.174	3.809	4.444	5.079	5.714	6.349	
64	0.656	1.313	1.969	2.625	3.282	3.938	4.594	5.250	5.907	6.563	
65	0.678	1.356	2.035	2.713	3.391	4.069	4.747	5.426	6. 104	6.782	
66	0.701	1.402	2.103	2.804	3.504	4.205	4.906	5.607	6. 308	7.009	
67	0.724	1.448	2.172	2.896	3.620	4.345	5.069	5.793	6. 517	7.241	
68	0.748	1.496	2.244	2.992	3.740	4.488	5.236	5.984	6. 732	7.480	
69	0.773	1.545	2.318	3.090	3.863	4.636	5.408	6.181	6. 953	7.726	
70	0.798	1.596	2.394	3. 192	3.990	4.788	5.586	6.384	7. 182	7.980	
71	0.824	1.648	2.472	3. 296	4.120	4.944	5.768	6.592	7. 416	8.240	
72	0.851	1.702	2.552	3. 403	4.254	5.105	5.956	6.806	7. 657	8.508	
73	0.878	1.756	2.635	3. 513	4.391	5.269	6.147	7.026	7. 904	8.782	
74	0.907	1.813	2.720	3. 626	4.533	5.440	6.346	7.253	8. 159	9.066	
75	0.936	1.871	2.807	3.742	4.678	5. 614	6.549	7.485	8,420	9.356	
76	0.966	1.931	2.896	3.862	4.828	5. 793	6.758	7.724	8,690	9.655	
77	0.996	1.992	2.989	3.985	4.981	5. 977	6.973	7.970	8,966	9.962	
78	1.028	2.055	3.083	4.111	5.138	6. 166	7.194	8.222	9,249	10.277	
79	1.060	2.120	3.180	4.240	5.300	6. 361	7.421	8.481	9,541	10.601	
80	1.093	2.187	3.280	4.374	5.467	6.560	7.654	8.747	9.841	10.934	
81	1.128	2.255	3.382	4.510	5.638	6.765	7.892	9.020	10.148	11.275	
82	1.163	2.325	3.488	4.650	5.813	6.976	8.138	9.301	10.463	11.626	
83	1.199	2.397	3.596	4.795	5.994	7.192	8.391	9.590	10.788	11.987	
84	1.236	2.471	3.707	4.942	6.178	7.414	8.649	9.885	11.120	12.356	
85	1.274	2.547	3.821	5. 094	6.368	7.642	8,915	10. 189	11.462	12.736	
86	1.313	2.625	3.938	5. 251	6.564	7.877	9,189	10. 502	11.814	13.127	
87	1.353	2.705	4.058	5. 410	6.763	8.116	9,468	10. 821	12.173	13.526	
88	1.394	2.787	4.181	5. 575	6.968	8.362	9,756	11. 150	12.543	13.987	
89	1.436	2.872	4.308	5. 744	7.180	8.615	10,051	11. 487	12.923	14.359	
90	1.479	2.958	4.437	5.916	7.395	8.874	10.353	11.832	13.311	14.790	
91	1.523	3.047	4.570	6.094	7.617	9.140	10.664	12.187	13.711	15.234	
92	1.569	3.138	4.707	6.276	7.844	9.413	10.982	12.551	14.120	15.689	
93	1.616	3.231	4.846	6.462	8.078	9.693	11.308	12.924	14.540	16.155	
94	1.663	3.327	4.990	6.654	8.317	9.980	11.644	13.307	14.971	16.634	
95	1.712	3. 425	5. 137	6.850	8,562	10.274	11. 987	13.699	15. 412	17. 124	
96	1.763	3. 525	5. 288	7.050	8,813	10.576	12. 338	14.101	15. 863	17. 626	
97	1.814	3. 628	5. 443	7.257	9,071	10.885	12. 699	14.514	16. 328	18. 142	
98	1.867	3. 734	5. 601	7.468	9,336	11.203	13. 070	14.937	16. 804	18. 671	
+99	1.921	3. 842	5. 764	7.685	9,606	11.527	13. 448	15.370	17. 291	19. 212	

Weight of a cubic foot of aqueous vapor, etc.—Continued.

Temperature.	Percentage of saturation.										
	10	20	30	40	50	60	70	80	90	100	
Tem	Grains.										
+100 101 102 103 104 105 106 107 108	1.977 2.034 2.092 2.151 2.212 2.275 2.339 2.405 2.472	3. 953 4. 067 4. 183 4. 303 4. 425 4. 550 4. 678 4. 809 4. 944	5.930 6.100 6.275 6.454 6.638 6.825 7.018 7.214 7.416	7.906 8.134 8.367 8.606 8.850 9.100 9.357 9.619 9.888	9, 883 10, 168 10, 458 10, 757 11, 062 11, 375 11, 696 12, 024 12, 360	11.860 12.201 12.550 12.908 13.275 13.650 14.035 14.429 14.832	13.836 14.234 14.642 15.060 15.488 15.925 16.374 16,834 17.304	15.813 16.268 16.734 17.211 17.700 18.200 18.714 19.238 19.776	17.789 18.302 18.825 19.363 19.912 20.475 21.053 21.643 22.248	19.766 20.335 20.917 21.514 22.125 22.750 23.392 24.048 24.720	
+110	2.541 2.611	5.082	7.622 7.834	10.163	12.704 13.056	15. 245 15. 667	17.786 18.278	20.326	22.867 23.501	25.408 26.112	

Note.—The following example of the use of the above table indicates how interpolation for intermediate percentages of saturation may be effected:

What is the weight of vapor in a cubic foot corresponding to a temperature of 70° and a relative humidity of 83 per cent?

At 70° and 80 per cent the weight is 6. 384 grs.

Hence the weight at 70° and 83 per cent is.... 6.623 grs.

Relative humidity.—In order to utilize the foregoing table in practical work it is necessary to determine the percentage of humidity in any given case. Generally, it will suffice simply to measure the moisture present in the air adjacent to the place at which operations are being conducted, or at the point at which the air is being drawn into works, kilns, etc. One of the best instruments for this purpose is known as the sling, or whirling, psychrometer, consisting of a pair of thermometers, provided with a handle as shown in Fig. 1, which permits the thermometers to be whirled rapidly, the bulbs being thereby strongly affected by the temperature of and moisture in the air. The bulb of the lower of the two thermometers is covered with thin muslin, which is wet at the time an observation is made.

The wet bulb.—It is important that the muslin covering for the wet bulb be kept in good condition. The evaporation of the water from the muslin always leaves in its meshes a small quantity of solid material, which sooner or later somewhat stiffens the muslin so that it does not readily take up water. This will be the case if the muslin does not readily become wet after being dipped in water. On this account it is desirable to use as pure water as possible, and also to renew the muslin from time to time. New muslin should always be washed to remove sizing, etc., before being used. A small rectangular piece wide enough to go about one and one-third times

Fig. 1.—Sling psychrometer.

around the bulb, and long enough to cover the bulb and that part of the stem below the metal back, is cut out, thoroughly wetted in clean water, and neatly fitted around the thermometer. It is tied first around the bulb at the top, using a moderately strong thread. A loop of thread to form a knot is next placed around the bottom of the bulb, just where it begins to round off. As this knot is drawn tighter and tighter the thread slips off the rounded end of the bulb and neatly stretches the muslin covering with it, at the same time securing the latter at the bottom.

To make an observation.—The so-called wet bulb is thoroughly saturated with water by dipping it into a small cup or wide-mouthed The thermometers are then whirled rapidly for fifteen or twenty seconds; stopped This readand quickly read, the wet bulb first. ing is kept in mind, the psychrometer immediately whirled again and a second reading This is repeated three or four times, or more, if necessary, until at least two successive readings of the wet bulb are found to agree very closely, thereby showing that it has reached its lowest temperature. A minute or more is generally required to secure the correct temperature.

When the air temperature is near the freezing point it very often happens that the temperature of the wet bulb will fall several degrees below freezing point, but the water will still remain in the liquid state. No error results from this, provided the minimum temperature is reached. If, however, as frequently happens, the water suddenly freezes, a large amount of heat is liberated, and the temperature of the wet bulb immediately becomes 32°. In such cases it is necessary to continue the whirling until the ice-covered bulb has reached a minimum temperature.

Whirling and stopping the psychrometer.—It is impossible to effectually describe these movements. The arm is held with the forearm about horizontal, and the hand well in front. A peculiar swing starts the thermometers whirling, and afterward the motion is kept up by only a slight but very regular action of the wrist, in harmony with the whirling thermometers. The rate should be a natural one, so as to be easily and regularly maintained. If too fast, or irregular,

the thermometers may be jerked about in a violent and dan-

gerous manner.

The stopping of the psychrometer, even at the very highest rates, can be perfectly accomplished in a single revolution, when one has learned the knack. This is only acquired by practice, and consists of a quick swing of the forearm by which the hand also describes a circular path, and, as it were, follows after the thermometers in a peculiar manner that wholly overcomes their circular motion without the slightest shock or jerk. The thermometers may, without very great danger, be allowed simply to stop themselves; the final motion in such a case will generally be quite jerky, but, unless the instrument is allowed to fall on the arm, or strikes some object, no injury should result.

Exposure.—While the psychrometer will give quite accurate indications, even in the bright sunshine, yet observations so made are not without some error, and, where greater accuracy is desired, the psychrometer should be whirled in the shade of a building or tree, or, as may sometimes be necessary, under an umbrella. In all cases there should be perfectly free circulation of the air, and the observer should face the wind, whirling the psychrometer in front of his body. It is a good plan, while whirling, to step back and forth a few steps to further prevent the presence of the observer's body from giving rise to erroneous observations.

The relation between the readings of the psychrometer and the pressure of the vapor of water mixed with the air is not perfectly understood, although several empirical formulæ have been developed which express this relation more or less exactly. The tables employed by the Weather Bureau were computed by Professor Ferrel's formula, the constants of which were determined from a large number of comparative observations of the psychrometer and Regnault's dewpoint apparatus (see W. B. No. 127). The formula is:

$$p = F - 0.000360 (t-t') (1+0.00065 t') P$$

p is the desired pressure of the aqueous vapor.

F is the maximum pressure corresponding to saturation at the temperature of the wet bulb.

t equals the air temperature; t' the wet bulb temperature, and P the barometric pressure.

Acme Library Card Pocket
Under Pat. "Ref. Index File"
Made by Library Bureau
530 ATLANTIC AVE., BOSTON

Keep Your Card in this Pocket

