```
In [1]:
           import pandas as pd
            import seaborn as sns
           import matplotlib.pyplot as plt
  In [2]:
           df= pd.read_csv("WA_Fn-UseC_-HR-Employee-Attrition.csv")
           pd.set_option('display.max_columns', None)
  In [3]:
           df.head()
  In [4]:
                              BusinessTravel DailyRate
                                                        Department DistanceFromHome Education Educa
  Out[4]:
              Age Attrition
           0
                41
                                 Travel_Rarely
                                                  1102
                                                              Sales
                                                                                    1
                                                                                               2
                                                                                                    Life
                        Yes
                                                         Research &
                                                  279
                                                                                    8
                                                                                                    Life
           1
                49
                         No Travel_Frequently
                                                                                               1
                                                       Development
                                                         Research &
           2
                37
                                                  1373
                                                                                    2
                                                                                               2
                        Yes
                                 Travel_Rarely
                                                       Development
                                                         Research &
           3
                33
                         No Travel_Frequently
                                                  1392
                                                                                    3
                                                                                               4
                                                                                                    Life
                                                       Development
                                                         Research &
                                                  591
                                                                                    2
                                                                                               1
           4
                27
                                 Travel_Rarely
                         No
                                                       Development
           df["Attrition"].value_counts()
  In [5]:
                   1233
           No
  Out[5]:
                    237
           Name: Attrition, dtype: int64
           df["EducationField"].value_counts()
In [309...
           Life Sciences
                                 606
Out[309]:
           Medical
                                 464
           Marketing
                                 159
           Technical Degree
                                 132
           Other
                                  82
           Human Resources
                                  27
           Name: EducationField, dtype: int64
           df["Department"].value_counts()
In [307...
           Research & Development
                                        961
Out[307]:
                                        446
           Sales
           Human Resources
           Name: Department, dtype: int64
In [221...
           df["JobRole"].value_counts()
```

```
Sales Executive
                                         326
Out[221]:
           Research Scientist
                                         292
           Laboratory Technician
                                        259
           Manufacturing Director
                                        145
           Healthcare Representative
                                        131
                                         102
           Manager
           Sales Representative
                                          83
           Research Director
                                          80
           Human Resources
                                          52
           Name: JobRole, dtype: int64
```

```
In [222... sns.countplot(data=df,y=df["Age"], hue= df["Attrition"])
```

Out[222]: <Axes: xlabel='count', ylabel='Age'>

Out[224]:

	Age	DailyRate	DistanceFromHome	Education	EmployeeCount	EmployeeNum
count	1470.000000	1470.000000	1470.000000	1470.000000	1470.0	1470.000(
mean	36.923810	802.485714	9.192517	2.912925	1.0	1024.8653
std	9.135373	403.509100	8.106864	1.024165	0.0	602.0243
min	18.000000	102.000000	1.000000	1.000000	1.0	1.0000
25%	30.000000	465.000000	2.000000	2.000000	1.0	491.250(
50%	36.000000	802.000000	7.000000	3.000000	1.0	1020.5000
75%	43.000000	1157.000000	14.000000	4.000000	1.0	1555.750(
max	60.000000	1499.000000	29.000000	5.000000	1.0	2068.0000

In [225...

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1470 entries, 0 to 1469
Data columns (total 35 columns):

рата #	Columns (total 35 columns	Non-Null Count	Dtype
0	Age	1470 non-null	int64
1	Attrition	1470 non-null	object
2	BusinessTravel	1470 non-null	object
3	DailyRate	1470 non-null	int64
4	Department	1470 non-null	object
5	DistanceFromHome	1470 non-null	int64
6	Education	1470 non-null	int64
7	EducationField	1470 non-null	object
8	EmployeeCount	1470 non-null	int64
9	EmployeeNumber	1470 non-null	int64
10	EnvironmentSatisfaction	1470 non-null	int64
11	Gender	1470 non-null	object
12	HourlyRate	1470 non-null	int64
13	JobInvolvement	1470 non-null	int64
14	JobLevel	1470 non-null	int64
15	JobRole	1470 non-null	object
16	JobSatisfaction	1470 non-null	int64
17	MaritalStatus	1470 non-null	object
18	MonthlyIncome	1470 non-null	int64
19	MonthlyRate	1470 non-null	int64
20	NumCompaniesWorked	1470 non-null	int64
21	Over18	1470 non-null	object
22	OverTime	1470 non-null	object
23	PercentSalaryHike	1470 non-null	int64
24	PerformanceRating	1470 non-null	int64
25	RelationshipSatisfaction	1470 non-null	int64
26	StandardHours	1470 non-null	int64
27	StockOptionLevel	1470 non-null	int64
28	TotalWorkingYears	1470 non-null	int64
29	TrainingTimesLastYear	1470 non-null	int64
30	WorkLifeBalance	1470 non-null	int64
31	YearsAtCompany	1470 non-null	int64
32	YearsInCurrentRole	1470 non-null	int64
33	YearsSinceLastPromotion	1470 non-null	int64
34	YearsWithCurrManager	1470 non-null	int64
dtyp	es: int64(26), object(9)		

memory usage: 402.1+ KB

In [226...

In [227...

```
df= df.drop(['Over18', 'Department', 'EducationField', 'JobRole'], axis=1)
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1470 entries, 0 to 1469
Data columns (total 31 columns):
     Column
                                   Non-Null Count Dtype
v Age
1 Attrition
2 BusinessTravel
3 DailyRate
 0 Age
                                 1470 non-null int64
                                 1470 non-null object
                                1470 non-null object
                                 1470 non-null int64
 4 DistanceFromHome
                                 1470 non-null int64
    Education
                                 1470 non-null int64
                                1470 non-null int64
 6 EmployeeCount
    EmployeeCount 1470 non-null int64
EmployeeNumber 1470 non-null int64
 7
   EnvironmentSatisfaction 1470 non-null int64
                           1470 non-null object
1470 non-null int64
1470 non-null int64
 10 HourlyRate
11 JobInvolvement
                               1470 non-null int64
1470 non-null int64
1470 non-null object
 12 JobLevel
 13 JobSatisfaction
 14 MaritalStatus
 15 MonthlyIncome16 MonthlyRate
                                1470 non-null int64
                                 1470 non-null int64
 17 NumCompaniesWorked 1470 non-null int64
18 OverTime 1470 non-null object
 19 PercentSalaryHike20 PerformanceRating1470 non-null int64int64int64
 21 RelationshipSatisfaction 1470 non-null int64
 22 StandardHours 1470 non-null int64
23 StockOptionLevel 1470 non-null int64
24 TotalWorkingYears 1470 non-null int64
 25 TrainingTimesLastYear 1470 non-null int64
26 WorkLifeBalance 1470 non-null int64
                                 1470 non-null int64
 27 YearsAtCompany
 28 YearsInCurrentRole
                                1470 non-null int64
 29 YearsSinceLastPromotion 1470 non-null int64
 30 YearsWithCurrManager
                                  1470 non-null int64
dtypes: int64(26), object(5)
memory usage: 356.1+ KB
```

Creating a dummy variable for some of the categorical variables and dropping the first one.

```
dummy1 = pd.get_dummies(df[['Attrition','BusinessTravel', 'Gender', 'MaritalStatus',
'OverTime']], drop_first=True) dummy1.head()
```

df_dummy = pd.concat([df, dummy1], axis=1) df_dummy = df_dummy.drop(['BusinessTravel',
'Gender', 'MaritalStatus', 'OverTime'], axis = 1) df_dummy.head()

Balancing

```
In [228...
          # UNDERSAMPLING
          # # Separate the majority and minority classes
          majority_class = 'No'
          minority_class = 'Yes'
          majority_df = df[df['Attrition'] == majority_class]
          minority_df = df[df['Attrition'] == minority_class]
          # # Randomly sample rows from the majority class to make it balanced
          # # You can adjust the sample size based on your preference
          sample_size = len(minority_df)
          # # Randomly select rows from the majority class
          majority_sampled = majority_df.sample(n=sample_size, random_state=42)
          # # Concatenate the minority class DataFrame with the sampled majority class DataFr
          df = pd.concat([majority_sampled, minority_df])
          # # Shuffle the DataFrame to ensure randomness
          df= df.sample(frac=1, random_state=42).reset_index(drop=True)
          df.shape
          (474, 31)
```

Out[228]:

```
# # OVERSAMPLING
In [229...
          # import pandas as pd
          # from imblearn.over_sampling import RandomOverSampler
          # from sklearn.model_selection import train_test_split
          # # Assuming you have a DataFrame named 'df' and the dependent variable is 'Attriti
          # # Replace 'Attrition' with the actual column name
          # # Separate the features and the target variable
          \# X = df.drop('Attrition', axis=1)
          # y = df['Attrition']
          # # Split the data into training and testing sets
          # X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_s
          # # Concatenate the training features and target variable
          # train_data = pd.concat([X_train, y_train], axis=1)
          # # Count the number of occurrences of each class
          # class_counts = train_data['Attrition'].value_counts()
          # # Find the class with fewer occurrences
          # minority class = class counts.idxmin()
          # # Get the number of occurrences of the minority class
          # minority_class_count = class_counts[minority_class]
          # # Set the desired number of samples for each class (e.g., the number of the major
          # desired_count = class_counts.max()
          # # Calculate the number of samples to add for each class
          # samples_to_add = desired_count - minority_class_count
          # # Create a RandomOverSampler
          # oversampler = RandomOverSampler(sampling_strategy={minority_class: samples_to_ada
          # # Fit and apply the oversampler to the training data
          # X_train_resampled, y_train_resampled = oversampler.fit_resample(X_train, y_train)
```

```
# # Concatenate the resampled features and target variable
          # df = pd.concat([X_train_resampled, y_train_resampled], axis=1)
          # # Now 'train_data_resampled' contains the balanced dataset
          # # If you want to use the resampled data for training a model, you can use 'X_trai
          # df.shape
In [230...
          # from imblearn.over_sampling import SMOTE
          # from sklearn.model selection import train test split
          # # Assuming you have a DataFrame named 'df' and the dependent variable is 'Attriti
          # # Replace 'Attrition' with the actual column name
          # # Separate the features and the target variable
          # X = df_dummy.drop('Attrition', axis=1)
          \# y = df_{dummy}['Attrition']
          # # Split the data into training and testing sets
          # X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_s
          # # Concatenate the training features and target variable
          # train_data = pd.concat([X_train, y_train], axis=1)
          # # Count the number of occurrences of each class
          # class_counts = train_data['Attrition'].value_counts()
          # # Find the class with fewer occurrences
          # minority_class = class_counts.idxmin()
          # # Create a SMOTE object
          # smote = SMOTE(sampling_strategy='auto', random_state=42)
```

X_train_resampled, y_train_resampled = smote.fit_resample(X_train, y_train)

Model 1

df.shape

between attrition and WorkLifeBalance

Concatenate the resampled features and target variable

Now 'train_data_resampled' contains the balanced dataset

df = pd.concat([X train resampled, y train resampled], axis=1)

Fit and apply SMOTE to the training data

In [231	df.head(2)												
Out[231]:		Age	Attrition	BusinessTravel	DailyRate	DistanceFromHome	Education	EmployeeCount	Em				
	0	35	Yes	Travel_Rarely	737	10	3	1					
	1	30	Yes	Travel_Frequently	600	8	3	1					
4									•				
In [232	df df		f[["Attri	tion","Business	sTravel",	"DistanceFromHome	", "OverTi	lme", "WorkLife	≘Bal				

Out[232]:		Attrition	BusinessTravel	DistanceFromHome	OverTime	WorkLifeBalance
	0	Yes	Travel_Rarely	10	No	3
	1	Yes	Travel_Frequently	8	No	2
	2	No	Travel_Frequently	18	No	2
	3	Yes	Travel_Rarely	24	Yes	2
	4	No	Travel_Rarely	2	No	3
	•••					
	469	No	Travel_Frequently	1	No	3
	470	Yes	Travel_Rarely	3	Yes	3
	471	Yes	Travel_Rarely	2	No	3
	472	Yes	Travel_Rarely	7	Yes	3
	473	No	Travel_Rarely	14	No	4

474 rows × 5 columns

```
In [233...
          df1["BusinessTravel"].value_counts()
          Travel_Rarely
                                326
Out[233]:
          Travel_Frequently
                               109
          Non-Travel
                                39
          Name: BusinessTravel, dtype: int64
In [234...
          # Create a mapping dictionary
          mapping1 = {'Yes': 1, 'No': 0}
          mapping2= {'Travel_Frequently':2, 'Travel_Rarely':1, 'Non-Travel':0 }
          # Apply the mapping to the specified column
          df1['OverTime'] = df1['OverTime'].map(mapping1)
          df1['Attrition'] = df1['Attrition'].map(mapping1)
          df1['BusinessTravel']= df1["BusinessTravel"].map(mapping2)
          # Save the first 5 rows to an Excel file
          df1.head(5)
```

```
C:\Users\acer\AppData\Local\Temp\ipykernel_18884\3738258657.py:6: SettingWithCopyW
arning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stabl
e/user_guide/indexing.html#returning-a-view-versus-a-copy
  df1['OverTime'] = df1['OverTime'].map(mapping1)
C:\Users\acer\AppData\Local\Temp\ipykernel_18884\3738258657.py:7: SettingWithCopyW
arning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stabl
e/user_guide/indexing.html#returning-a-view-versus-a-copy
  df1['Attrition'] = df1['Attrition'].map(mapping1)
C:\Users\acer\AppData\Local\Temp\ipykernel_18884\3738258657.py:8: SettingWithCopyW
arning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stabl
e/user guide/indexing.html#returning-a-view-versus-a-copy
 df1['BusinessTravel']= df1["BusinessTravel"].map(mapping2)
```

Out[234]:		Attrition	BusinessTravel	DistanceFromHome	OverTime	WorkLifeBalance
	0	1	1	10	0	3
	1	1	2	8	0	2
	2	0	2	18	0	2
	3	1	1	24	1	2
	4	0	1	2	0	3

```
In [235...
          X = df1.drop(["Attrition"], axis=1)
          y = df1["Attrition"]
          from sklearn.model selection import train test split
In [236...
           from sklearn.linear_model import LogisticRegression
          from sklearn.metrics import classification report, confusion matrix
           # Assume X is your feature matrix and y is your target variable
          X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_sta
          X_train.columns
In [237...
          Index(['BusinessTravel', 'DistanceFromHome', 'OverTime', 'WorkLifeBalance'], dtype
Out[237]:
          ='object')
          from sklearn.preprocessing import StandardScaler
In [239...
          scaler = StandardScaler()
          X_train[['BusinessTravel', 'DistanceFromHome', 'OverTime', 'WorkLifeBalance']] = sc
          X train.head()
```

Save the first 5 rows to a CSV file

,					po.,you	
[239]:		BusinessTrave	l DistanceF	romHome	OverTime	WorkLifeBalance
	155	-0.258384	1	-0.133780	1.242427	-0.926767
	453	1.624836	5	-0.621303	1.242427	0.403705
	22	-0.258384	ļ	1.206910	1.242427	-0.926767
	310	1.624836	5	1.572553	-0.804876	-0.926767
	46	1.624836	5	-0.986946	-0.804876	-0.926767
40	<pre>clf = # Fit clf.f # Pre y_pre # Eva print print</pre>	the model it (X_train, or dictions or or cluate the model it (Confusion)	y_train) the test edict(X_test model Matrix:\n	set st) n", confu	ate=42) sion_matri	<pre>x(y_test, y_pro cation_report(y)</pre>
	[[2 [2	50] 41]] ification R		recall	f1-score	support
		0	0.50	0.04	0.07	52
		1	0.45	0.95	0.61	43
	ma	ccuracy cro avg ted avg	0.48 0.48	0.50 0.45	0.45 0.34 0.32	95 95 95
241	impor logm1	istic regre t statsmode = sm.Logit .fit().sumn	els.api <mark>as</mark> :(y_train,	sm	onstant(X_	train)))
					i	

Optimization terminated successfully.

Current function value: 0.621045

Iterations 5

Out[241]:

Logit Regression Results

```
Dep. Variable:
                           Attrition No. Observations:
                                                            379
         Model:
                                         Df Residuals:
                                                            374
                             Logit
       Method:
                              MLE
                                            Df Model:
                                                               4
          Date: Mon, 13 Nov 2023
                                       Pseudo R-squ.:
                                                          0.1037
                                      Log-Likelihood:
          Time:
                           16:16:03
                                                         -235.38
     converged:
                              True
                                             LL-Null:
                                                         -262.60
Covariance Type:
                         nonrobust
                                         LLR p-value: 4.256e-11
                       coef std err
                                          z P>|z| [0.025 0.975]
             const
                     0.0671
                              0.111
                                     0.605 0.545 -0.150
                                                             0.284
     BusinessTravel
                     0.3364
                              0.114
                                     2.953 0.003
                                                    0.113
                                                             0.560
DistanceFromHome
                     0.1364
                              0.111
                                     1.228 0.219
                                                    -0.081
                                                             0.354
         OverTime
                     0.6743
                              0.113
                                      5.983 0.000
                                                    0.453
                                                             0.895
  WorkLifeBalance -0.2094
                              0.111 -1.878 0.060
                                                    -0.428
                                                             0.009
```

```
from sklearn.linear_model import LogisticRegressionCV
In [242...
          from sklearn.metrics import roc curve, roc auc score
          import matplotlib.pyplot as plt
          # Assuming you have your X_train, X_test, y_train, and y_test
          # Train LogisticRegressionCV model
          logm1 = LogisticRegressionCV(cv=5) # You can adjust the number of cross-validation
          logm1.fit(X_train, y_train)
          y_probs = logm1.predict_proba(X_test)[:, 1]
          # Compute ROC curve
          fpr, tpr, thresholds = roc_curve(y_test, y_probs)
          # Compute AUC
          auc_value = roc_auc_score(y_test, y_probs)
          # Plot ROC curve
          plt.figure(figsize=(8, 8))
          plt.plot(fpr, tpr, label=f'AUC = {auc_value:.2f}')
          plt.plot([0, 1], [0, 1], 'k--') # Diagonal line representing random chance
          plt.xlabel('False Positive Rate')
          plt.ylabel('True Positive Rate')
          plt.title('Receiver Operating Characteristic (ROC) Curve')
          plt.legend(loc='lower right')
          plt.show()
          # Print AUC value
          print(f'AUC: {auc_value:.4f}')
```

Receiver Operating Characteristic (ROC) Curve

AUC: 0.5843

Model 2

Including Personal Factors

```
In [244... df.head(2)
```

Out[244]:		Age	Attritio	n BusinessTr	avel Dai	lyRate D	istanceFromH	lome E	ducation	Emplo	yeeCount	Em
	0	35	Ye	es Travel_Ra	arely	737		10	3		1	
	1	30	Ye	es Travel_Freque	ently	600		8	3		1	
4												•
In [245	df2 df2		d.conca	at([df1, df[["Age",	"Gender"	, "Marital	Status"	, "Educa	tion"]]], axi	s=1)
Out[245]:		Att	rition	BusinessTravel	Distance	FromHom	e OverTime	WorkL	ifeBalance	Age	Gender	Maı
	0		1	1		1	0 0		3	35	Male	
	1		1	2			8 0		2	30	Female	
	2		0	2		1	8 0		2	35	Male	
	3		1	1		2	4 1		2	53	Male	
	4		0	1			2 0		3	32	Male	
	•••											
	469		0	2			1 0		3	26	Female	
	470		1	1			3 1		3	30	Female	
	471		1	1			2 0		3	58	Male	
	472		1	1			7 1		3	23	Male	
	473		0	1		1	4 0		4	40	Male	
	474	rows	× 9 col	lumns								

474 rows × 9 columns

```
In [246... # Create a mapping dictionary
mapping1 = {'Male': 1, 'Female': 0}
mapping2= {'Single':2, 'Married':1, 'Divorced':0 }

# Apply the mapping to the specified column
df2['Gender'] = df2['Gender'].map(mapping1)
df2['MaritalStatus'] = df2['MaritalStatus'].map(mapping2)
df2
```

/23, 11:56 PM					Empolyee __	_Attrition_SMI	BA			
Out[246]:		Attrition	BusinessTravel	DistanceFr	omHome	OverTime	WorkLifeBalance	Age	Gender	Mai
	0	1	1		10	0	3	35	1	
	1	1	2		8	0	2	30	0	
	2	0	2		18	0	2	35	1	
	3	1	1		24	1	2	53	1	
	4	0	1		2	0	3	32	1	
	•••									
	469	0	2		1	0	3	26	0	
	470	1	1		3	1	3	30	0	
	471	1	1		2	0	3	58	1	
	472	1	1		7	1	3	23	1	
	473	0	1		14	0	4	40	1	
In [248 In [249 Out[249]: In [250	# As X_tr df2. Inde	columns x(['Attri: 'WorkL: dtype='0	your feature st, y_train, tion', 'Busir ifeBalance', object') inessTravel'	y_test = nessTravel 'Age', '(train_te	st_split(anceFromH 'MaritalS	et variable X, y, test_siz ome', 'OverTime tatus', 'Educat Time', 'WorkLi	≘', tion']	,	
Out[250]:		BusinessTra	avel DistanceF	romHome	OverTime	WorkLife	Balance Age	e G	ender M	larita
	155	-0.258	3384	-0.133780	1.242427	-0.	926767 0.082623	3 0.8	78082	-0
	453	1.624	836	-0.621303	1.242427	0.	.403705 -1.854342	2 0.8	78082	1.0
	22	-0.258	3384	1.206910	1.242427	-0.	926767 0.620670) -1.13	38846	1.0
	310	1.624	836	1.572553	-0.804876	-0.	.926767 -0.563032	2 0.8	78082	-1.
	46	1.624	836	-0.986946	-0.804876	-0.	926767 -0.778250	0.8	78082	1.0
4										•

```
In [251... # Create a Logistic Regression model with balanced class weights
    clf = LogisticRegression(random_state=42)

# Fit the model
    clf.fit(X_train, y_train)

# Predictions on the test set
    y_pred = clf.predict(X_test)
```

```
# Evaluate the model
print("Confusion Matrix:\n", confusion_matrix(y_test, y_pred))
print("\nClassification Report:\n", classification_report(y_test, y_pred))
```

Confusion Matrix:

[[52 0] [43 0]]

Classification Report:

	precision	recall	f1-score	support
0	0.55	1.00	0.71	52
1	0.00	0.00	0.00	43
accuracy			0.55	95
macro avg weighted avg	0.27 0.30	0.50 0.55	0.35 0.39	95 95

C:\Users\acer\anaconda3\lib\site-packages\sklearn\metrics_classification.py:1344: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.

warn prf(average, modifier, msg start, len(result))

C:\Users\acer\anaconda3\lib\site-packages\sklearn\metrics_classification.py:1344: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.

_warn_prf(average, modifier, msg_start, len(result))

C:\Users\acer\anaconda3\lib\site-packages\sklearn\metrics_classification.py:1344: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.

_warn_prf(average, modifier, msg_start, len(result))

```
In [252...
```

```
# Logistic regression model
import statsmodels.api as sm
logm2 = sm.GLM(y_train,(sm.add_constant(X_train)))
logm2.fit().summary()
```

Out[252]:

Generalized Linear Model Regression Results

Attrition	No. Observations:	379
GLM	Df Residuals:	370
Gaussian	Df Model:	8
identity	Scale:	0.19912
IRLS	Log-Likelihood:	-227.40
Mon, 13 Nov 2023	Deviance:	73.673
16:16:05	Pearson chi2:	73.7
3	Pseudo R-squ. (CS):	0.2434
1	GLM Gaussian identity IRLS Mon, 13 Nov 2023 16:16:05	GLM Df Residuals: Gaussian Df Model: identity Scale: IRLS Log-Likelihood: Mon, 13 Nov 2023 Deviance: 16:16:05 Pearson chi2:

Covariance Type: nonrobust

	coef	std err	z	P> z	[0.025	0.975]
const	0.5119	0.023	22.332	0.000	0.467	0.557
BusinessTravel	0.0756	0.023	3.264	0.001	0.030	0.121
DistanceFromHome	0.0271	0.023	1.174	0.240	-0.018	0.072
OverTime	0.1536	0.023	6.676	0.000	0.109	0.199
WorkLifeBalance	-0.0455	0.023	-1.968	0.049	-0.091	-0.000
Age	-0.0807	0.024	-3.357	0.001	-0.128	-0.034
Gender	0.0586	0.023	2.530	0.011	0.013	0.104
MaritalStatus	0.0950	0.023	4.064	0.000	0.049	0.141
Education	0.0115	0.024	0.483	0.629	-0.035	0.058

```
In [253...
          # Train LogisticRegressionCV model
          logm2 = LogisticRegressionCV(cv=5) # You can adjust the number of cross-validation
          logm2.fit(X_train, y_train)
          # Predict probabilities
          y_probs = logm2.predict_proba(X_test)[:, 1]
          # Compute ROC curve
          fpr, tpr, thresholds = roc_curve(y_test, y_probs)
          # Compute AUC
          auc_value = roc_auc_score(y_test, y_probs)
          # Plot ROC curve
          plt.figure(figsize=(8, 8))
          plt.plot(fpr, tpr, label=f'AUC = {auc_value:.2f}')
          plt.plot([0, 1], [0, 1], 'k--') # Diagonal line representing random chance
          plt.xlabel('False Positive Rate')
          plt.ylabel('True Positive Rate')
          plt.title('Receiver Operating Characteristic (ROC) Curve')
          plt.legend(loc='lower right')
          plt.show()
          # Print AUC value
          print(f'AUC: {auc_value:.4f}')
```

Receiver Operating Characteristic (ROC) Curve

AUC: 0.6275

Model 3

Including Overall Satsifaction

```
In [255... df.head(2)
```

Out[255]:		Age	Attrition	n BusinessTra	avel DailyRate	Dista	anceFromH	ome	Education	Emplo	yeeCount	Em
	0	35	Yes	s Travel_Ra	rely 737			10	3		1	
	1	30	Yes	Travel_Freque	ntly 600			8	3		1	
4												•
In [256		= 0			"JobSatisfact "], axis= 1)	ion"	, "Enviro	nmen	tSatisfact:	ion",	"Relati	onsł
Out[256]:		Att	trition B	susinessTravel	DistanceFromHo	ome	OverTime	Wor	kLifeBalance	Age	Gender	Maı
	0		1	1		10	0		3	35	1	
	1		1	2		8	0		2	30	0	
	2		0	2		18	0		2	35	1	
	3		1	1		24	1		2	53	1	
	4		0	1		2	0		3	32	1	
	•••					•••						
	469		0	2		1	0		3	26	0	
	470		1	1		3	1		3	30	0	
	471		1	1		2	0		3	58	1	
	472		1	1		7	1		3	23	1	
	473		0	1		14	0		4	40	1	

474 rows × 11 columns

```
In [257... X = df3.drop(["Attrition"], axis=1)
y = df3["Attrition"]
```

No mapping required

Bu	sinessTravel	DistanceFromHome	OverTime	WorkLifeBalance	Age	Gender	Marita						
155	-0.258384	-0.133780	1.242427	-0.926767	0.082623	0.878082	-0.3						
453	1.624836	-0.621303	1.242427	0.403705	-1.854342	0.878082	1.0						
22	-0.258384	1.206910	1.242427	-0.926767	0.620670	-1.138846	1.0						
310	1.624836	1.572553	-0.804876	-0.926767	-0.563032	0.878082	-1.0						
46	1.624836	-0.986946	-0.804876	-0.926767	-0.778250	0.878082	1.0						
							>						
<pre># Create a Logistic Regression model with balanced class weights clf = LogisticRegression(random_state=42) # Fit the model</pre>													
<pre># Evaluate the model print("Confusion Matrix:\n", confusion_matrix(y_test, y_pred)) print("\nClassification Report:\n", classification_report(y_test, y_pred))</pre>													
[[52	0]												
Classif			f1-score	e support									
	0	0.55 1.00	0.71	52									
	1	0.00 0.00	0.00	43									
	-		0.55	95									
		0.27 0.50 0.30 0.55											
Undefin in labe behavio _warn C:\User Undefin in labe behavio _warn C:\User	edMetricWants with no rprf(averagedMetricWants with no rprf(averages\acer\anages	rning: Precision predicted sample ge, modifier, msg conda3\lib\site-pring: Precision predicted sample ge, modifier, msg conda3\lib\site-p	and F-scors. Use `ze _start, le ackages\sk and F-scor s. Use `ze _start, le ackages\sk	re are ill-definero_division` paren(result)) klearn\metrics_ re are ill-definero_division` paren(result)) klearn\metrics_	classific crameter t classific ed and be crameter t	ation.py: ing set to control ation.py:	1344: 10 0.0 1 this						
	# Creat clf = L # Fit t clf.fit # Predi y_pred # Evalu print(" Confusi [[52 [43 0 Classif C:\User Undefin in labe behavio _warn C:\User Undefin in labe behavio _warn C:\User	155 -0.258384 453 1.624836 22 -0.258384 310 1.624836 46 1.624836 # Create a Logistic Clf = Logistic Regulations on the second of the seco	155 -0.258384 -0.133780 453 1.624836 -0.621303 22 -0.258384 1.206910 310 1.624836 1.572553 46 1.624836 -0.986946 # Create a Logistic Regression mode clf = LogisticRegression(random_stern	155	# Create a Logistic Regression model with balanced class we clf = LogisticRegression(random_state=42) # Create a Logistic Regression model with balanced class we clf = LogisticRegression(random_state=42) # Fit the model clf.fit(X_train, y_train) # Predictions on the test set y_pred = clf.predict(X_test) # Evaluate the model print("Confusion Matrix:\n", confusion_matrix(y_test, y_predict) matrix: [[52 0] [43 0]] Classification Report:	# Create a Logistic Regression model with balanced class weights clf = LogisticRegression(random_state=42) # Create a Logistic Regression model with balanced class weights clf = LogisticRegression(random_state=42) # Fit the model clf.fit(X_train, y_train) # Predictions on the test set y_pred = clf.predict(X_test) # Evaluate the model print("Confusion Matrix:\n", confusion_matrix(y_test, y_pred)) print("\nClassification Report:\n", classification_report(y_test, y_confusion Matrix:\n", confusion Matrix:\n", classification_report(y_test, y_confusion Matrix:\n", classification_report(y_test, y_confusion Matrix:\n", confusion Matrix:\n", classification_report(y_test, y_confusion Matrix:\n", classification_report(y_test, y_confusion_report(y_test, y_confusion_report(y_	155						

```
In [262... # Logistic regression model
import statsmodels.api as sm
logm3 = sm.GLM(y_train,(sm.add_constant(X_train)))
logm3.fit().summary()
```

_warn_prf(average, modifier, msg_start, len(result))

Out[262]:

Generalized Linear Model Regression Results

Dep. Variable:	Attrition	No. Observations:	379
Model:	GLM	Df Residuals:	368
Model Family:	Gaussian	Df Model:	10
Link Function:	identity	Scale:	0.19349
Method:	IRLS	Log-Likelihood:	-220.94
Date:	Mon, 13 Nov 2023	Deviance:	71.205
Time:	16:16:06	Pearson chi2:	71.2
No. Iterations:	3	Pseudo R-squ. (CS):	0.2744

Covariance Type: nonrobust

	coef	std err	z	P> z	[0.025	0.975]
const	0.5119	0.023	22.654	0.000	0.468	0.556
BusinessTravel	0.0786	0.023	3.440	0.001	0.034	0.123
DistanceFromHome	0.0293	0.023	1.288	0.198	-0.015	0.074
OverTime	0.1630	0.023	7.115	0.000	0.118	0.208
WorkLifeBalance	-0.0530	0.023	-2.306	0.021	-0.098	-0.008
Age	-0.0667	0.023	-2.862	0.004	-0.112	-0.021
Gender	0.0615	0.023	2.691	0.007	0.017	0.106
MaritalStatus	0.1004	0.023	4.339	0.000	0.055	0.146
JobSatisfaction	-0.0403	0.023	-1.764	0.078	-0.085	0.004
EnvironmentSatisfaction	-0.0485	0.023	-2.123	0.034	-0.093	-0.004
RelationshipSatisfaction	-0.0524	0.023	-2.275	0.023	-0.098	-0.007

```
In [263...
          # Train LogisticRegressionCV model
          logm3 = LogisticRegressionCV(cv=5) # You can adjust the number of cross-validation
          logm3.fit(X_train, y_train)
          # Predict probabilities
          y_probs = logm3.predict_proba(X_test)[:, 1]
          # Compute ROC curve
          fpr, tpr, thresholds = roc_curve(y_test, y_probs)
          # Compute AUC
          auc_value = roc_auc_score(y_test, y_probs)
          # Plot ROC curve
          plt.figure(figsize=(8, 8))
          plt.plot(fpr, tpr, label=f'AUC = {auc_value:.2f}')
          plt.plot([0, 1], [0, 1], 'k--') # Diagonal line representing random chance
          plt.xlabel('False Positive Rate')
          plt.ylabel('True Positive Rate')
          plt.title('Receiver Operating Characteristic (ROC) Curve')
          plt.legend(loc='lower right')
          plt.show()
```

```
# Print AUC value
print(f'AUC: {auc_value:.4f}')
```


AUC: 0.6471

Model 4

AIC: 441.3982

Including Employee Engagement

```
In [265...
            df.head(2)
               Age Attrition
Out[265]:
                                BusinessTravel DailyRate
                                                         DistanceFromHome
                                                                             Education EmployeeCount
                35
                                  Travel Rarely
                                                     737
                                                                          10
                                                                                     3
                          Yes
                30
                             Travel_Frequently
                                                     600
                                                                          8
                                                                                     3
                          Yes
            df4 = pd.concat([df3, df[["TotalWorkingYears", "NumCompaniesWorked","YearsAtCompany
In [266...
            df4 = df4.drop(["RelationshipSatisfaction"], axis= 1)
Out[266]:
                 Attrition
                           BusinessTravel
                                          DistanceFromHome OverTime
                                                                        WorkLifeBalance
                                                                                          Age Gender
                                                                                                        Maı
              0
                        1
                                       1
                                                          10
                                                                      0
                                                                                       3
                                                                                           35
                                                                                                     1
              1
                                       2
                                                           8
                                                                      0
                                                                                       2
                                                                                           30
                                                                                                     0
                        1
              2
                        0
                                       2
                                                          18
                                                                      0
                                                                                       2
                                                                                           35
                                                                                                     1
              3
                                       1
                                                          24
                                                                      1
                                                                                       2
                                                                                           53
                        1
                                                           2
              4
                        0
                                       1
                                                                      0
                                                                                       3
                                                                                           32
                                                                                                     1
                                       2
            469
                        0
                                                                      0
                                                                                       3
                                                                                           26
                                                                                                     0
                                                           1
            470
                        1
                                                           3
                                                                      1
                                                                                       3
                                                                                           30
                                                                      0
                                                                                           58
            471
                        1
                                       1
                                                           2
                                                                                       3
                                                                                                     1
                                                           7
            472
                        1
                                       1
                                                                      1
                                                                                       3
                                                                                           23
            473
                        0
                                       1
                                                          14
                                                                      0
                                                                                           40
                                                                                       4
                                                                                                     1
           474 rows × 15 columns
            X = df4.drop(["Attrition"], axis=1)
In [267...
            y = df4["Attrition"]
            No Mapping Required
            # Assume X is your feature matrix and y is your target variable
In [268...
            X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_sta
In [269...
            df4.columns
            Index(['Attrition', 'BusinessTravel', 'DistanceFromHome', 'OverTime',
Out[269]:
                    'WorkLifeBalance', 'Age', 'Gender', 'MaritalStatus', 'JobSatisfaction', 'EnvironmentSatisfaction', 'TotalWorkingYears', 'NumCompaniesWorked',
                    'YearsAtCompany', 'YearsWithCurrManager', 'YearsInCurrentRole'],
                   dtype='object')
            X_train[['BusinessTravel', 'DistanceFromHome', 'OverTime', 'WorkLifeBalance', 'Age'
In [270...
            X train.head()
```

Out[270]:	Bus	inessTravel	DistanceFrom	Home	OverTime	WorkLifeBalance	Age	Gender	Marita
	155	-0.258384	-0.1	33780	1.242427	-0.926767	0.082623	0.878082	-0.3
	453	1.624836	-0.6	21303	1.242427	0.403705	-1.854342	0.878082	1.0
	22	-0.258384	1.2	06910	1.242427	-0.926767	0.620670	-1.138846	1.0
	310	1.624836	1.5	72553	-0.804876	-0.926767	-0.563032	0.878082	-1.0
	46	1.624836	-0.9	86946	-0.804876	-0.926767	-0.778250	0.878082	1.0
4									•
	<pre># Fit th clf.fit # Predic y_pred = # Evalua print("(print("))</pre>	the model (X_train, ctions on clipped ate the mo Confusion \nClassifi on Matrix:	the test set ict(X_test) del Matrix:\n",	confus	sion_matr	ix(y_test, y_pr ication_report(_pred))	
	Classifi	ication Re	•	11	£1	a una a a t			
		pr			f1-score	e support			
		0 1		1.00 0.05	0.72 0.09	52 43			
	accı	ıracy			0.57	95			
	macro weighted	o avg		0.52 0.57	0.40 0.43	95 95			
In [272	<pre>import s logm4 =</pre>	statsmodel	sion model s.api as sm train,(sm.ad	ld_cons	stant(X_tı	rain)))			

logm4.fit().summary()

Out[272]:

Generalized Linear Model Regression Results

Dep. Variable:	Attrition	No. Observations:	379
Model:	GLM	Df Residuals:	364
Model Family:	Gaussian	Df Model:	14
Link Function:	identity	Scale:	0.17952
Method:	IRLS	Log-Likelihood:	-204.66
Date:	Mon, 13 Nov 2023	Deviance:	65.344
Time:	16:16:08	Pearson chi2:	65.3
No. Iterations:	3	Pseudo R-squ. (CS):	0.3509

Covariance Type: nonrobust

	coef	std err	z	P> z	[0.025	0.975]
const	0.5119	0.022	23.520	0.000	0.469	0.555
BusinessTravel	0.0779	0.022	3.530	0.000	0.035	0.121
DistanceFromHome	0.0375	0.022	1.693	0.091	-0.006	0.081
OverTime	0.1576	0.022	7.117	0.000	0.114	0.201
WorkLifeBalance	-0.0361	0.022	-1.625	0.104	-0.080	0.007
Age	-0.0411	0.031	-1.337	0.181	-0.101	0.019
Gender	0.0437	0.022	1.970	0.049	0.000	0.087
MaritalStatus	0.0920	0.022	4.125	0.000	0.048	0.136
JobSatisfaction	-0.0339	0.022	-1.521	0.128	-0.077	0.010
EnvironmentSatisfaction	-0.0494	0.022	-2.233	0.026	-0.093	-0.006
TotalWorkingYears	-0.1133	0.039	-2.905	0.004	-0.190	-0.037
NumCompaniesWorked	0.1037	0.025	4.202	0.000	0.055	0.152
YearsAtCompany	0.1329	0.045	2.952	0.003	0.045	0.221
YearsWithCurrManager	-0.0989	0.041	-2.402	0.016	-0.180	-0.018
YearsInCurrentRole	-0.0433	0.039	-1.119	0.263	-0.119	0.033

```
In [273... # Train LogisticRegressionCV model
    logm4 = LogisticRegressionCV(cv=5) # You can adjust the number of cross-validation
    logm4.fit(X_train, y_train)

# Predict probabilities
y_probs = logm4.predict_proba(X_test)[:, 1]

# Compute ROC curve
fpr, tpr, thresholds = roc_curve(y_test, y_probs)

# Compute AUC
auc_value = roc_auc_score(y_test, y_probs)

# Plot ROC curve
plt.figure(figsize=(8, 8))
plt.plot(fpr, tpr, label=f'AUC = {auc_value:.2f}')
plt.plot([0, 1], [0, 1], 'k--') # Diagonal Line representing random chance
```

```
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver Operating Characteristic (ROC) Curve')
plt.legend(loc='lower right')
plt.show()

# Print AUC value
print(f'AUC: {auc_value:.4f}')
```


AUC: 0.6816

AIC: 418.1057

Iterations 6

In [275... df4.corr(numeric_only=True)

Out[275]:

	Attrition	BusinessTravel	DistanceFromHome	OverTime	WorkLifeBalance
Attrition	1.000000	0.172249	0.084048	0.293803	-0.082342
BusinessTravel	0.172249	1.000000	0.012902	0.044349	0.008648
DistanceFromHome	0.084048	0.012902	1.000000	0.051422	-0.055475
OverTime	0.293803	0.044349	0.051422	1.000000	0.006919
WorkLifeBalance	-0.082342	0.008648	-0.055475	0.006919	1.000000
Age	-0.181864	-0.056005	0.030702	0.031401	0.006121
Gender	0.106868	-0.092106	-0.007661	0.009530	-0.056597
MaritalStatus	0.213730	0.011963	0.036451	0.034068	0.035214
JobSatisfaction	-0.085050	0.012519	-0.037930	0.066684	-0.056171
EnvironmentSatisfaction	-0.086241	-0.042323	0.015773	0.057224	-0.007612
TotalWorkingYears	-0.234247	-0.079355	0.007161	-0.002400	0.042227
NumCompaniesWorked	0.093153	-0.022974	-0.096496	-0.001471	0.004876
YearsAtCompany	-0.191977	-0.072465	-0.009068	-0.033154	0.036868
YearsWithCurrManager	-0.248757	-0.051867	-0.011397	-0.041218	0.034864
YearsInCurrentRole	-0.222822	-0.046202	0.014924	-0.014928	0.082539

In [276...

```
# Create a heatmap
plt.figure(figsize=(6, 4)) # Adjust the overall size of the plot
sns.heatmap(df4.corr(), linewidths=4)
# Save the heatmap to an image file
plt.savefig('final_heatmap.png')
```



```
from sklearn.metrics import confusion_matrix
In [277...
          # Assuming you have your logistic regression model 'logm1' and test data 'X_test' a
          y_pred = logm4.predict(X_test)
          # Confusion matrix
          conf_matrix = confusion_matrix(y_test, y_pred)
          # True Positives, False Positives, False Negatives
          tp = conf matrix[1, 1]
          fp = conf_matrix[0, 1]
          fn = conf_matrix[1, 0]
          # Sensitivity (Recall)
          sensitivity = tp / (tp + fn)
          # Precision
          precision = tp / (tp + fp)
          print(f"Sensitivity (Recall): {sensitivity:.4f}")
          print(f"Precision: {precision:.4f}")
          Sensitivity (Recall): 0.0233
          Precision: 1.0000
```

Model 5

Dropping Insignificant Variables

```
In [278... df.head(2)
```

Out[278]:	1	Age	Attrition	BusinessTra	vel DailyRate	DistanceFron	nHome	Education	Employ	/eeCount	Em
	0	35	Yes	Travel_Rar	ely 737		10	3		1	
	1	30	Yes	Travel_Frequen	ntly 600		8	3		1	
											•
[279	df5 df5		.drop(["WorkLifeBala	ance", "Age",	"JobSatisf	actior	າ", "Years	InCurre	ntRole"]], ā
[279]:		Att	rition B	usinessTravel [DistanceFromHoi	ne OverTin	ne Gen	nder Marita	alStatus	Environm	nent:
	0		1	1		10	0	1	1		
	1		1	2		8	0	0	0		
	2		0	2		18	0	1	1		
	3		1	1		24	1	1	2		
	4		0	1		2	0	1	2		
	•••										
	469		0	2		1	0	0	0		
	470		1	1		3	1	0	2		
	471		1	1		2	0	1	2		
	472		1	1		7	1	1	0		
	473		0	1		14	0	1	2		
	474	rows	× 11 co	lumns							>
80			.drop([["Attri	"Attrition"], tion"]	axis=1)						
281				•	matrix and y /_test = train	-	_		ze=0.2,	random_	_sta
282	df5	.col	umns								
282]:	Ind	<pre>Index(['Attrition', 'BusinessTravel', 'DistanceFromHome', 'OverTime', 'Gender',</pre>									
283			[['Busi .head()	nessTravel',	'DistanceFrom	Home', 'Ov	verTime	e', 'Gende	r', 'Ma	ritalSta	atus

				. , -			
it[283]:	В	BusinessTravel	DistanceFromHome	e OverTime	Gender	MaritalStatus	EnvironmentSatisfacti
	155	-0.258384	-0.133780	1.242427	0.878082	-0.313632	1.2901
	453	1.624836	-0.621303	3 1.242427	0.878082	1.052650	-0.4718
	22	-0.258384	1.206910	1.242427	-1.138846	1.052650	-0.4718
	310	1.624836	1.572553	3 -0.804876	0.878082	-1.679915	-1.3529
	46	1.624836	-0.986946	6 -0.804876	0.878082	1.052650	0.4091
							>
	# Pred y_pred # Eval print(print(Confus [[41 [22 2	<pre>d = clf.pred Luate the mo ("Confusion ("\nClassifi sion Matrix: 11]</pre>	<pre>the test set ict(X_test) del Matrix:\n", conf cation Report:\r</pre>				, y_pred))
			•	l f1-score	e suppor	rt	
		0 1	0.65 0.79 0.66 0.49		52 43		
	ac	curacy		0.65	95	5	
		cro avg ted avg	0.65 0.64 0.65 0.65				
[285	import logm5	istic regres t statsmodel = sm.GLM(y_ .fit().summa	s.api as sm train,(sm.add_co	onstant(X_t	rain)))		

```
file: ///C: /Users/acer/Downloads/Empolyee\_Attrition\_SMBA.html
```

Out[285]:

Generalized Linear Model Regression Results

Dep. Variable:	Attrition	No. Observations:	379
Model:	GLM	Df Residuals:	368
Model Family:	Gaussian	Df Model:	10
Link Function:	identity	Scale:	0.18163
Method:	IRLS	Log-Likelihood:	-208.95
Date:	Mon, 13 Nov 2023	Deviance:	66.841
Time:	16:16:11	Pearson chi2:	66.8
No. Iterations:	3	Pseudo R-squ. (CS):	0.3331

Covariance Type: nonrobust

	coef	std err	z	P> z	[0.025	0.975]
const	0.5119	0.022	23.382	0.000	0.469	0.555
BusinessTravel	0.0747	0.022	3.369	0.001	0.031	0.118
DistanceFromHome	0.0375	0.022	1.694	0.090	-0.006	0.081
OverTime	0.1527	0.022	6.898	0.000	0.109	0.196
Gender	0.0465	0.022	2.096	0.036	0.003	0.090
MaritalStatus	0.0942	0.022	4.230	0.000	0.051	0.138
EnvironmentSatisfaction	-0.0540	0.022	-2.441	0.015	-0.097	-0.011
TotalWorkingYears	-0.1378	0.033	-4.221	0.000	-0.202	-0.074
NumCompaniesWorked	0.1015	0.024	4.155	0.000	0.054	0.149
YearsAtCompany	0.1153	0.043	2.707	0.007	0.032	0.199
YearsWithCurrManager	-0.1215	0.036	-3.369	0.001	-0.192	-0.051

```
In [286...
          # Train LogisticRegressionCV model
          logm4 = LogisticRegressionCV(cv=5) # You can adjust the number of cross-validation
          logm4.fit(X_train, y_train)
          # Predict probabilities
          y_probs = logm4.predict_proba(X_test)[:, 1]
          # Compute ROC curve
          fpr, tpr, thresholds = roc_curve(y_test, y_probs)
          # Compute AUC
          auc_value = roc_auc_score(y_test, y_probs)
          # Plot ROC curve
          plt.figure(figsize=(8, 8))
          plt.plot(fpr, tpr, label=f'AUC = {auc_value:.2f}')
          plt.plot([0, 1], [0, 1], 'k--') # Diagonal line representing random chance
          plt.xlabel('False Positive Rate')
          plt.ylabel('True Positive Rate')
          plt.title('Receiver Operating Characteristic (ROC) Curve')
          plt.legend(loc='lower right')
          plt.show()
```

```
# Print AUC value
print(f'AUC: {auc_value:.4f}')
```


AUC: 0.6699

Model 6

Dropping Distance from home variable

```
In [288...
           df.head(2)
Out[288]:
              Age Attrition
                              BusinessTravel DailyRate DistanceFromHome
                                                                          Education EmployeeCount
                35
                                 Travel_Rarely
                                                  737
                                                                      10
                                                                                  3
                                                                                                 1
                        Yes
           1
                30
                        Yes Travel_Frequently
                                                  600
                                                                       8
                                                                                  3
           df6=df5.drop(["DistanceFromHome"], axis =1)
In [289...
                 Attrition BusinessTravel OverTime Gender MaritalStatus EnvironmentSatisfaction
Out[289]:
                                                                                               TotalWo
             0
                       1
                                     1
                                               0
                                                        1
                                                                     1
                                                                                            4
             1
                       1
                                                        0
                                                                     0
                                                                                            3
                       0
                                     2
                                               0
                                                                                            2
             2
                                                        1
                                                                     1
                       1
                                     1
             4
                       0
                                     1
                                               0
                                                        1
                                                                     2
                                                                                            4
           469
                       0
                                     2
                                               0
                                                        0
                                                                     0
                                                                                            1
                                                                     2
           470
                       1
                                                        0
                                     1
                                                                     2
           471
                       1
                                               0
                                                        1
                                                                                            4
           472
                                                1
                                                        1
                                                                     0
                                                                                            3
                                               0
           473
                       0
                                     1
                                                        1
                                                                     2
                                                                                            3
          474 rows × 10 columns
In [290...
           df6.shape
           (474, 10)
Out[290]:
           X = df6.drop(["Attrition"], axis=1)
In [291...
           y = df6["Attrition"]
           # Assume X is your feature matrix and y is your target variable
In [292...
           X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_sta
           df6.columns
In [293...
           Index(['Attrition', 'BusinessTravel', 'OverTime', 'Gender', 'MaritalStatus',
Out[293]:
                   'EnvironmentSatisfaction', 'TotalWorkingYears', 'NumCompaniesWorked',
                   'YearsAtCompany', 'YearsWithCurrManager'],
                  dtype='object')
           X_train[['BusinessTravel', 'OverTime', 'Gender', 'MaritalStatus', 'EnvironmentSatisf
In [294...
           X train.head()
```

Out[294]:	Busi	inessTravel	OverTime	Gender	MaritalStatus	EnvironmentSatisfaction	TotalWorkingYea
	155	-0.258384	1.242427	0.878082	-0.313632	1.290161	-1.0494(
	453	1.624836	1.242427	0.878082	1.052650	-0.471897	-1.31859
	22	-0.258384	1.242427	-1.138846	1.052650	-0.471897	-0.7802
	310	1.624836	-0.804876	0.878082	-1.679915	-1.352925	0.02734
	46	1.624836	-0.804876	0.878082	1.052650	0.409132	-0.24184
4)
In [295	<pre># Fit th clf.fit(# Predic y_pred = cm= conf # Evalua print("C print(") plt.figu sns.heat plt.titl plt.xlab plt.ylab plt.show</pre>	pgisticReg ne model X_train, tions on clf.pred fusion_mat te the mo confusion nClassifi tre(figsiz map(cm, a e("Confus pel("Predi pel("True	the test: dict(X_test rix(y_test del Matrix:\n .cation Re de=(8, 6)) nnot=True ion Matri .cted Labels")	<pre>set t) t, y_pred ", cm) port:\n", , fmt="d" x")</pre>	te=42)) classificat	cion_report(y_test, y_ es", cbar= False , annot	
	[[46 6 [26 17]]					
	-1433111		ecision	recall	f1-score	support	
		0 1	0.64 0.74	0.88 0.40	0.74 0.52	52 43	
	accu macro weighted	_	0.69 0.68	0.64 0.66	0.66 0.63 0.64	95 95 95	

Predicted Labels

```
In [296... # Logistic regression model
   import statsmodels.api as sm
   logm5 = sm.GLM(y_train,(sm.add_constant(X_train)))
   logm5.fit().summary()
```

Out[296]:

Generalized Linear Model Regression Results

Dep. Variable:	Attrition	No. Observations:	379
Model:	GLM	Df Residuals:	369
Model Family:	Gaussian	Df Model:	9
Link Function:	identity	Scale:	0.18255
Method:	IRLS	Log-Likelihood:	-210.43
Date:	Mon, 13 Nov 2023	Deviance:	67.363
Time:	16:16:13	Pearson chi2:	67.4
No. Iterations:	3	Pseudo R-squ. (CS):	0.3266

Covariance Type: nonrobust

	coef	std err	z	P> z	[0.025	0.975]
const	0.5119	0.022	23.323	0.000	0.469	0.555
BusinessTravel	0.0761	0.022	3.425	0.001	0.033	0.120
OverTime	0.1544	0.022	6.963	0.000	0.111	0.198
Gender	0.0465	0.022	2.093	0.036	0.003	0.090
MaritalStatus	0.0959	0.022	4.302	0.000	0.052	0.140
EnvironmentSatisfaction	-0.0542	0.022	-2.444	0.015	-0.098	-0.011
TotalWorkingYears	-0.1358	0.033	-4.154	0.000	-0.200	-0.072
NumCompaniesWorked	0.0968	0.024	3.979	0.000	0.049	0.145
YearsAtCompany	0.1162	0.043	2.722	0.006	0.033	0.200
YearsWithCurrManager	-0.1230	0.036	-3.403	0.001	-0.194	-0.052

```
# Train LogisticRegressionCV model
In [297...
          logm4 = LogisticRegressionCV(cv=5) # You can adjust the number of cross-validation
          logm4.fit(X_train, y_train)
          # Predict probabilities
          y_probs = logm4.predict_proba(X_test)[:, 1]
          # Compute ROC curve
          fpr, tpr, thresholds = roc_curve(y_test, y_probs)
          # Compute AUC
          auc_value = roc_auc_score(y_test, y_probs)
          # Plot ROC curve
          plt.figure(figsize=(8, 8))
          plt.plot(fpr, tpr, label=f'AUC = {auc_value:.2f}')
          plt.plot([0, 1], [0, 1], 'k--') # Diagonal line representing random chance
          plt.xlabel('False Positive Rate')
          plt.ylabel('True Positive Rate')
          plt.title('Receiver Operating Characteristic (ROC) Curve')
          plt.legend(loc='lower right')
          plt.show()
          # Print AUC value
          print(f'AUC: {auc_value:.4f}')
```

Receiver Operating Characteristic (ROC) Curve

AUC: 0.6800

```
In [298...
          # Add a constant term to the design matrix (required for statsmodels)
          X = sm.add_constant(X_train)
          # Fit your logistic regression model
          model = sm.Probit(y_train, X).fit()
          # Calculate AIC
          aic_value = model.aic
          print(f"AIC: {aic_value:.4f}")
          Optimization terminated successfully.
                   Current function value: 0.524266
                    Iterations 6
          AIC: 417.3938
In [299...
          # Assuming you have your logistic regression model 'logm1' and test data 'X_test' a
          y_pred = logm4.predict(X_test)
          # Confusion matrix
          conf_matrix = confusion_matrix(y_test, y_pred)
          # True Positives, False Positives, False Negatives
          tp = conf_matrix[1, 1]
          fp = conf_matrix[0, 1]
```

```
fn = conf_matrix[1, 0]
          # Sensitivity (Recall)
          sensitivity = tp / (tp + fn)
          # Precision
          precision = tp / (tp + fp)
          print(f"Sensitivity (Recall): {sensitivity:.4f}")
          print(f"Precision: {precision:.4f}")
          Sensitivity (Recall): 0.3953
          Precision: 0.7391
          from statsmodels.stats.outliers_influence import variance_inflation_factor
In [300...
          # Assuming you have a DataFrame named 'df' with your data
          # and 'y' is your binary dependent variable
          # and 'X' is a DataFrame containing your independent variables
          # Create a DataFrame to store the VIF values
          vif_data = pd.DataFrame()
          vif_data["Variable"] = X.columns
          vif_data["VIF"] = [variance_inflation_factor(X.values, i) for i in range(X.shape[1]
          # Display the VIF DataFrame
          print(vif_data)
                            Variable
                                            VTF
          0
                               const 1.000000
                      BusinessTravel 1.023510
          1
          2
                            OverTime 1.021068
          3
                              Gender 1.026315
          4
                       MaritalStatus 1.032006
          5 EnvironmentSatisfaction 1.019870
                   TotalWorkingYears 2.219991
          6
          7
                  NumCompaniesWorked 1.229104
          8
                      YearsAtCompany 3.783904
                YearsWithCurrManager 2.710849
          beta= 0.5119
In [301...
          beta0 = 0.0761
          beta1 =0.1544
          beta2=-0.0645
          beta3=0.0955
          beta4=-0.0542
          beta5=-0.1358
          beta6=0.0968
          beta7=0.1162
          beta8=-0.1230
          # Display the Logistic regression equation
          equation = "P(Attrition=1) = 1 / (1 + e^{-({} + {}) * BusinessTravel + {}) * OverTime}
              beta, beta0, beta1, beta2, beta3, beta4, beta5, beta6, beta7, beta8) # Replace ... wi
          print("Logistic Regression Equation:")
          print(equation)
```

Logistic Regression Equation: $P(\text{Attrition=1}) = 1 \ / \ (1 + e^{-(0.5119 + 0.0761 * BusinessTravel + 0.1544 * OverTime + -0.0645 * Age + 0.0955 * MaritalStatus + -0.0542 * EnvironmentSatisfaction + -0.1358 * TotalWorkingYEar + 0.0968 * NumCompWork + 0.1162 * YearsAtcomp + -0.123 * YearsCurrManager)))$

```
In [302... # Create a heatmap
   plt.figure(figsize=(6, 4)) # Adjust the overall size of the plot
   sns.heatmap(df6.corr(), linewidths=4)
   # Save the heatmap to an image file
   # plt.savefig('final_heatmap6.png')
```

Out[302]: <Axes: >

Tn Γ 1: