· In real world, it is common to how	Question: Is blocking counting									
	as emo-weigs AMOVA?									
more than one factor of interest in experiment										
design. This type of experiments olesign is called										
factorical design juhish is part of two-way ANOVA.										
Terms:										
· A treatments is defined as combination of	· A treatments is defined as combination of									
level in different factors.	level in different factors.									
- Since the treaments is combination of levels	- Since the treaments is combination of levels									
of foctors, this expendent could be	This also named									
① Crossed factor: Treatments contains "All"	O crossed factor: Treatments contains "All" combination of levels. factorial design									
Nested factor: Inextments may not be	Nested factor: Insortments may not be able to contain all the have nested									
combination of level.	factor experiment, this									
Model:	model work.									
We define a model as fallowing										
Yijk = Ur + Kj + BK + Eijk	Possible Question: How can we say a design is									
•	factorial design?									
	yijk:= represents ith response volue									
k th level of factor B .	from jth level of factor A and									
	eue l									
of factor A.										
BK := represents the effect of kth le	eue									
of factor B.										
Eijk := represents random emor j Eijk	Abte: If yik is missing,									
	we may use the									
→ This is in terms of ANOVA , not regression	مياس مالا									
Note: these could be an interaction effect between	I two factors.									
Real world example could be the effective of	Real world example could be the effective of combination									
of age and vaccine.	of age and vaccine.									
An interaction model is defined as	1									
Yijk = UT + «j + BK + («A)jk + Eijk										
Yijk:= represents ith response value	BK := represents the effect of kth level									
from jth level of factor A	and of factor B.									
k th level of factor B.	(AB)jk := represents the interaction effect									
Kj:= represents the effect of jth	level from jth level of factor A and 14th									
of factor A.	level of factor B.									
	Eijk := represents error of ith unit.									

```
Analysis
                  · If we found out the interaction effect is significant,
                       then we can drop off the conclusion that
                                             the response value depends on Factor A
                                                                                                                                                                                                                                                     the offece of focus A
                                                          differently for different levels of factor
                                                                                                                                                                                                                                                       depends on the level of
                         And then, the factor A and B along will not
                                                                                                                                                                                                                                                       factor B.
                          be meaningful. This is 40: (KB); k=0 for all j, k
                                                                                                       Hi: At least on (AB) +0
                 · In the other hand, if we found out the intention
                       effect is not significant, then we will use "additive"
                      model (i.e without interaction) to make a follow up to: eg=0 for all investigation. There are two possible hypothesis testing: \Theta to: \Theta_K=0 for all K
 ANOVA Table:
                           With interaction:
                                                                                                                                                                                                                                                   (4) k - 41) (4) k - 4 k) (4) k 
                                                                                           a-1
                                                                                                                                     SSA
                                              Factor A
                                                                                    b-I
          them is
                                                                                                                                    SSB
                                                                                           (a-1)(b-1)
                                                                                                                                     Scab
                                                                                                                                                                                                                                                   S6Rec, = SSA+S5B+ S5ab
                                                                                           N-ab
                                                                                                                                     SSE
                                                       Empr
                                                     total
                                                        SGA = j^{\frac{n}{2}} j^{\frac{n}{2}} j^{\frac{n}{2}} j^{\frac{n}{2}} j^{\frac{n}{2}} j^{\frac{n}{2}} j^{\frac{n}{2}}
                                                         SSB = Est is Mik ( yar - yī)
                                                         Sab = 15 1 mik ( (ab); k)2
                                                          SSE = $ $ (nik-1) Sik
                                                           Note: E[yijk] = Mik = UT + Oi + Bk + (aB)ik.
                                                                                                            > 1/1/ + (1/2-1/1) + (1/K-1/T) + (AB)K
                                                                                                             → (aB); k = 11; K - 11; - 11k + 117
                                                                                                                   (dB) = Jik - Ji - Jik + Ji
```

Without interaction							
			dł	SS	MS	Fobs	
	Factor	A	a-1	S&A	95A a-1	MSA_ MSE	
			b-I		P-1	MSB MSE	
	Foces			SSB		MSOLD MSE	
	intercic	Eion	(Q-1)(b-1)	S6ab Jadd	<u>SSE+950b</u> N-a-b+1	MSE	
	Emor		N-ab	SSE			
	total		N-1				