Satisfiability Checking

13 Gauß and Fourier-Motzkin variable elimination

for <u>linear</u> real arithmetic

> only "4"

Prof. Dr. Erika Ábrahám

RWTH Aachen University Informatik 2 LuFG Theory of Hybrid Systems

WS 23/24

The Xmas problem

There are three types of Xmas presents Santa Claus can make.

- Santa Claus wants to reduce the overhead by making only two types.
- He needs at least 100 presents.
- He needs at least 5 of either type 1 or type 2.
- He needs at least 10 of the third type.
- Each present of type 1, 2, and 3 need 1, 2, resp. 5 minutes to make.
- Santa Claus is late, and he has only 3 hours left.
- Each present of type 1, 2, and 3 costs 3, 2, resp. 1 EUR.
- He has 300 EUR for presents in total.

$$(p_1 = 0 \lor p_2 = 0 \lor p_3 = 0) \land p_1 + p_2 + p_3 \ge 100 \land (p_1 \ge 5 \lor p_2 \ge 5) \land p_3 \ge 10 \land p_1 + 2p_2 + 5p_3 \le 180 \land 3p_1 + 2p_2 + p_3 \le 300$$

Quantifier-free linear real arithmetic (QFLRA)

```
式, signature为所允许出现的非逻辑符号
Linear real arithmetic is a first-order theory whose signature contains
integer constants const, real-valued variables x and addition + to build
theory) terms, and strict comparison < to build (atomic) constraints:
                                             小于号<为predicate
Syntax of linear real arithmetic
 Terms:
                                 const
                                                               t+t
                                                                            和他们构成的函数
 Constraints:
 Formulas:
                                                                            不2 转化的+ (周x 3)
   Syntactic sugar: t_1 = t_2, t_1 \le t_2, 5 \cdot x + \frac{2}{3} \cdot y < 4
The semantics is standard.

\exists x. \varphi(x) \text{ true} \Leftrightarrow \forall x. \varphi(x) \text{ unset}
```

- Linear real arithmetic is also called linear real algebra.
- We consider the satisfiability problem for the quantifier-free fragment QFLRA (or equivalently the existential fragment, i.e., no universal quantifiers and no negation of expressions containing existential quantifiers).

Reduced theory checks for lazy SMT

- Reminder: In (full/less) lazy SMT solving, the theory solver needs to check the satisfiability of sets of constraints (instead of arbitrary Boolean combinations).
- For QFLRA, we convert the input CNF not to negate any constraint by transforming

 Reduced theory checks: If the input CNF contains no negated constraints then, for each Boolean solution, it is sufficient to check theory consistency for the true constraints.

Correctness of reduced theory checks

If the input CNF contains no negated constraints then, for each Boolean solution, it is sufficient to check theory consistency for the **true** constraints.

Proof: Assume QFLRA CNF formula φ with constraints \mathcal{C} , none negated. Let φ_{abs} abstract φ by replacing constraints $c \in \mathcal{C}$ by propositions b_c .

First we show that if φ_{abs} has no solution then φ is also unsatisfiable (i.e. UNSAT answers are correct), even if we restrict all theory checks to those constraints that are true under the current Boolean solution.

- 1 The statement holds for the initial Boolean abstraction φ_{abs} .
- 2 The abstraction φ_{abs} is changed only when the constraints sent to the theory solver are inconsistent; the returned infeasible subset E is used for the abstraction refinement to $\varphi_{abs} \wedge (\bigvee_{e \in E} \neg b_e)$. Since E is infeasible, the refinement is still conservative (i.e. unsatisfiability of φ_{abs} implies unsatisfiability of φ).

Correctness of reduced theory checks

Second we show that if φ_{abs} has a solution α and the true constraints $C_T = \{c \in \mathcal{C} \mid \alpha(b_c) = true\}$ are consistent then φ has a solution (i.e. SAT answers are correct). So assume a φ_{abs} -solution α with consistent $C := C_T$. We generate a solution for φ by stepwise considering each constraint $c \in \mathcal{C} \setminus C$ as follows:

- If $C \cup \{\neg c\}$ is consistent then set $C := C \cup \{\neg c\}$.
- 2 Otherwise, set $C:=C\cup\{c\}$ and modify α to assign true to c. Note that since φ is constraint-negation-free, c appears only positively in φ , therefore the updated assignment still satisfies φ_{abs} .

After completing the above procedure for each constraint, we get a satisfying assignment α for φ_{abs} such that the true constraints and the negated false constraints build a consistent set, i.e. φ is satisfiable.

Problem statement

Thus the theory solver needs to consider sets $\mathcal{C} = \{c_1, \dots, c_M\}$ of constraints of the form

$$c_i$$
:
$$\sum_{k=1}^{N} a_{ik} \cdot x_k \sim_i b_i$$
,

where

- a_{ik} and b_i are integer (or rational) constants,
- \blacksquare x_k are real-valued variables and
- $\sim_i \in \{=, \leq, <\}$ are comparison operators.

for $k=1,\ldots,N$ and $i=1,\ldots,M$.

Note: t > b is equivalent to -t < -b and similarly for \geq .

Gauß variable elimination (based on equations)

■ Assume that the *i*th constraint is an equation with $a_{ij} \neq 0$ for some $1 \leq j \leq N$:

$$\sum_{k=1}^{N-3} a_{ik} \cdot x_{k} \equiv b_{i} \quad (a_{ik}, b_{i}: integer/rational \ constants, \ x_{k}: \ variables)$$

$$\Rightarrow \quad a_{ij} \cdot x_{j} = b_{i} - \sum_{k \in \{1, \dots, j-1, j+1, \dots, N\}} a_{ik} \cdot x_{k}$$

$$\Rightarrow \quad x_{j} = \frac{b_{i}}{a_{ij}} - \sum_{k \in \{1, \dots, j-1, j+1, \dots, N\}} \frac{a_{ik}}{a_{ij}} \cdot x_{k} := \beta_{j}$$

- Replace x_j by β_j in all constraints (and multiply the involved constraints by a_{jj} if integer coefficients are wanted).
- After removing tautologies, this substitutiton leads to an equisatisfiable problem with (at most) M − 1 constraints in (at most) N − 1 variables (at least the *i*th constraint and x_i are eliminated).

What remains to be solved

Let us assume first that after applying Gauß variable elimination as long as possible, m weak inequalities in n variables are left (i.e., there

```
are no strict inequalities): weak inequality: 可以包含等号,即\leqslant,\geqslant strong inequality: 不包含等号,即\leqslant,\geqslant \sum_{1\leq j\leq m} a_{ij}x_j \leq b_i
```

Input in matrix form: $A\vec{x} \leq \vec{b}$

m constraints
$$\begin{pmatrix} a_{11} & a_{12} & \cdots & \cdots & a_{1n} \\ a_{21} & a_{22} & \ddots & & \vdots \\ \vdots & & & \ddots & \vdots \\ a_{m1} & a_{22} & \cdots & \cdots & a_{mn} \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ \vdots \\ x_n \end{pmatrix} \leq \begin{pmatrix} b_1 \\ \vdots \\ \vdots \\ b_m \end{pmatrix}$$

Fourier-Motzkin variable elimination

处理高新后的不等机

- Earliest method for solving linear inequality systems: discovered in 1826 by Fourier, re-discovered by Motzkin in 1936
- Basic idea of variable elimination:
 - Pick a variable and eliminate it, yielding an equisatisfiable formula that does not refer to the eliminated variable any more.
 - Continue until all variables are eliminated.
- Fourier-Motzkin repeats iteratively for each variable x_i , i = n, ..., 1:
 - For each inequality, bring x_i to stay alone at one side.
 - Collect all lower bounds $\beta_{\ell 1}, \dots, \beta_{\ell L}$ from inequalities $\beta_{\ell i} \leq x_i$.
 - Collect all upper bounds $\beta_{u1}, \dots, \beta_{uv}$ from inequalities $x_i \leq \beta_{uj}$.
 - R is dense ~ Constraint set is solvable iff the interval between the highest lower bound and the lowest upper bound is not empty.
 - BUT: bounds are symbolic terms, i.e. <u>no order is given!</u>
 - Solution: Require each lower bound to be less or equal each upper bound.

Variable bounds

- For a variable x_n , we can partition the constraints according to the coefficients of x_n :
 - $a_{in} = 0$: constraint i puts no bound on x_n
 - $a_{in} > 0$: constraint *i* puts an upper bound on x_n
 - $a_{in} < 0$: constraint i puts a lower bound on x_n

$$\sum_{j=1}^n a_{ij} \cdot x_j \le b_i$$

$$\Rightarrow a_{in} \cdot x_n \leq b_i - \sum_{j=1}^{n-1} a_{ij} \cdot x_j$$

(a)
$$\stackrel{a_{in} \searrow 0}{\Rightarrow} x_n \leq \frac{b_i}{a_{in}} - \sum_{i=1}^{n-1} \frac{a_{ij}}{a_{in}} \cdot x_j$$
 upper bound

$$(b) \stackrel{a_{in} < 0}{\Longrightarrow} x_n \ge \frac{b_i}{a_{in}} - \sum_{i=1}^{n-1} \frac{a_{ij}}{a_{in}} \cdot x_j \quad \text{lower bound}$$

Example for upper and lower bounds

Eliminating unbounded variables

- Iteratively remove variables that are not bounded in both ways (and all the constraints that use them).
- The new problem has a solution iff the old problem has one!

Fourier-Motzkin variable elimination

■ For each pair of a lower bound β_{ℓ} and an upper bound β_{u} , we have

For each such pair, add the constraint

此时变量x被消去

14 / 21

Fourier-Motzkin: Example

Category for
$$x_1$$
?

(1) x_1 $x_2 \le 0$

(2) x_1 $x_3 \le 0$

(3) $x_1 + x_2 + 2x_3 \le 0$

(4) $-x_3 \le -1$

(5) $2x_3 \le 0$

(6) $x_2 + x_3 \le 0$

(7) $1 \le 0$

Category for x_1 ?

Upper bound

Lower bound
eliminate x_1

Upper bound

Upper bound

Upper bound

we eliminate x_3

→ Contradiction (the system is UNSAT)

Algorithm: satCheck (only weak inequalities, full lazy)

Input: Set C of weak linear real arithmetic inequalities over variables x_1, \ldots, x_n Output: Satisfiability of $\bigwedge_{c \in C} c$

- k := 0:
- 2 if k = n then goto 8 else k := k + 1
- 3 $C_{\ell} := \{ (\sum_{j=1}^{n} a_j x_j \le b) \in C \mid a_k < 0 \};$
- 4 $C_u := \{(\sum_{j=1}^n a_j x_j \le b) \in C \mid a_k > 0\};$
- 5 $C:=C\setminus (C_\ell\cup C_u);$ //case for $a_k=0$ 6 $C:=C\cup \{\frac{b_\ell}{a_{\ell k}}-\sum_{j=k+1}^n\frac{a_{\ell j}}{a_{\ell j}}\cdot x_j\leq \frac{b_u}{a_{uk}}-\sum_{j=k+1}^n\frac{a_{uj}}{a_{uk}}\cdot x_j \}$ $\sum_{i=1}^n a_{\ell i} x_i \leq b_{\ell} \in C_{\ell} \wedge \sum_{i=1}^n a_{u i} x_i \leq b_{u} \in C_{u} \};$
- **7** goto 2
- 8 if $\ell \leq u$ for all $(\ell \leq u) \in C$ then return SAT; //here, ℓ and u are constants
- 9 else return UNSAT;

Strict inequalities

The approach works also if we have both weak and strict inequalities. All we need to change is that

- we distinguish between strict and weak lower and upper bounds (defined by strict respectively weak inequalities), and
- for each pair of lower and upper bounds, if any of them is strict then we add the constraint

$$\beta_{\ell} < \beta_{u} \Leftarrow \beta_{\iota} < \times \wedge \times \leq \beta_{u}$$

instead of

$$\beta_{\ell} \leq \beta_{u} \cdot \Leftrightarrow \beta_{\iota} \leq \times \wedge \times \leq \beta_{u}$$

Linear integer arithmetic, non-linear real arithmetic

- Question: Does this method work also for linear integer arithmetic.
- Answer: No. Reason: The integer domain is not dense.
- Question: Does this method work also for non-linear real arithmetic. i.e., if the variables range over the reals but also multiplication is
- Reason: In general it is not possible to transform constraints containing non-linear polynomial expressions such that we have a single variable on the left-hand-side and a real-arithmetic expression on the right-hand side (we would need complicated case distinctions, fractions and roots).

 (We would need complicated case distinctions, fractions and roots). fractions and roots).

Bonus exercise 19 (8 minutes)

Assume the following constraint set: (4)
$$\{2x-y \le 8, \ 2x+y \le -8, \ -2x-y \le 8, \ -2x+y \le 8\}$$

Eliminating first y and then x using the method of Fourier-Motzkin will result in a single constraint. Which is it (without applying any simplification)?

simplification)?

(A)
$$2x - 8 \le y$$

(B) $3 \le -2x - 8$

(C) $-2x - 8 \le y$

(C) $-2x - 8 \le y$

(A) $4 \le 0$

(B) $4 \le 0$

(C) $-2x - 8 \le y$

(A) $4 \le 0$

(B) $4 \le 0$

(C) $4 \le$

Complexity

$$\rightarrow \dots$$

$$\rightarrow 4 \cdot \left(\frac{m}{4}\right)^{2^{d}}$$
odi mension, 即 夜皇 编 数量
$$\rightarrow 4 \cdot \left(\frac{m}{4}\right)^{2^{d}}$$

$$\rightarrow 4 \cdot \left(\frac{m}{4}\right)^{2^{a}}$$

- Heavy!
- The bottleneck: case-splitting

Requirements on theory solver in the SMT context

- 1 Incrementality?
- 2 Minimal infeasible subsets?
- Backtracking?

Learning target

- How does the Gauß method eliminate a variable from a set of QFLRA constraints using an equality?
- How does the Fourier-Motzkin method eliminate a variable from a set of QFLRA constraints?
- What is the complexity of the methods?