UNIDAD 7. Regresión Lineal Simple

(1) Procedimiento para realizar una regresión lineal simple

1. Identificar las variables: Realizar un diagrama de dispersión para mostrar cómo la variable dependiente (Y) y la variable independiente (X) se relacionan entre sí.

Statgraphics: Gráficos / Dos dimensiones / Gráfico X-Y.

2. Estimar β_0 y β_1 a partir de b_0 y b_1 : Se aplica el método de los mínimos cuadrados para obtener la recta ajustada preliminar ($\hat{y} = b_0 + b_1 \cdot x$).

Statgraphics: Relacionar / Modelos Req. Simple / Regresión Simple. Seleccionar el modelo "lineal" y en la primera corrida marcar la casilla "incluir constante". Seleccionar las casillas de tablas "Resumen del Análisis", "Pronósticos", "Comparación Modelos Alternativos", "Residuos Atípicos" y de gráficos "Gráfico del Modelo Ajustado" y "Residuos vs Predichos".

- **3.** Determinar si β_0 y β_1 son significativos: Se determina si $\beta_0 \neq 0$ y $\beta_1 \neq 0$ a través de los siguientes métodos.
- **3.1. ANOVA**: Consiste en realizar una prueba de hipótesis para β_1 utilizando la D. Fisher con H_0 : $\beta_1=0$ y H_1 : $\beta_1\neq 0$. Se rechaza H_0 si $f_0>f_{1,n-2,\alpha}$ o si $Valor\ P<\alpha$, $Valor\ P=P(F_{1,n-2}>f_0)$. Si la hipótesis nula no es rechazada, el modelo no es válido para predecir.

Fuente	Suma de Cuadrados	GI	Cuadrado Medio	Razón-F	Valor-P
Modelo	SSR	1	$MS_R = \frac{SSR}{1}$	$f_0 = \frac{SSR/1}{SSE/(n-2)} = \frac{SSR}{s_e^2}$	$P(F_{1,n-2} > f_0)$
Residuo	SSE	n-2	$MS_E = s_e^2 = \frac{SSE}{n-2}$		
Total (Corr.)	SST	n-1			

Caso Especial: Cuando β_0 no es significativo (es igual a cero), el ANOVA presenta modificaciones. Se rechaza H_0 si $f_0 > f_{1,n-1,\alpha}$ o si $Valor \ P < \alpha$, $Valor \ P = P(F_{1,n-1} > f_0)$.

Fuente	Suma de Cuadrados	GI	Cuadrado Medio	Razón-F	Valor-P
Modelo	SSR	1	$MS_R = \frac{SSR}{1}$	$f_0 = \frac{SSR/1}{SSE/(n-1)} = \frac{SSR}{s_e^2}$	$P(F_{1,n-1} > f_0)$
Residuo	SSE	n-1	$MS_E = s_e^2 = \frac{SSE}{n-1}$		
Total (Corr.)	SST	n			

Statgraphics: Revisar la tabla "Análisis de Varianza" de la ventana "Regresión simple". Por defecto el software utiliza un nivel de significancia de 5%, si se desea modificar hacer clic derecho a "Opciones tabulares" y modificar en "Nivel alpha de valor P" colocando el valor deseado en porcentaje.

- **3.2.** Pruebas de hipótesis utilizando la D. t de Student: Se realizan para β_0 (H_0 : $\beta_0=B_0=0$ y H_1 : $\beta_0\neq B_0\neq 0$) y β_1 (H_0 : $\beta_1=B_1=0$ y H_1 : $\beta_1\neq B_1\neq 0$), se calculan los grados de libertad (n-2) y el estadístico de prueba (t_0).
 - Pruebas de hipótesis para β_0 :

$$t_0 = \frac{b_o - B_0}{\sqrt{S_e^2 \cdot \left(\frac{1}{n} + \frac{\bar{X}^2}{SS_\chi}\right)}}$$

• Pruebas de hipótesis para β_1 :

$$t_0 = \frac{b_1 - B_1}{\sqrt{\frac{S_e^2}{SS_x}}}$$

Si la hipótesis nula H_0 : $\beta_0=0$ no es rechazada, el modelo no tiene intercepto. Si la hipótesis nula H_0 : $\beta_1=0$ no es rechazada, el modelo no es válido para predecir.

Tip: H_0 y H_1 pueden plantearse también para otro tipo de pruebas. Por ejemplo para β_0 H_1 : $\beta_0 \neq B_0$; H_1 : $\beta_0 > B_0$; H_1 : $\beta_0 < B_0$. Y por ejemplo para β_1 H_1 : $\beta_1 \neq B_1$; H_1 : $\beta_1 > B_1$; H_1 : $\beta_1 < B_1$.

Caso Especial: Cuando β_0 no es significativo (es igual a cero), los grados de libertad para la D. t de Student en las pruebas de hipótesis para β_1 se calculan como n-1.

Statgraphics: Revisar la tabla "Coeficientes" de la ventana "Regresión simple".

Parámetro	Mínimos Cuadrados Estimado	Estándar Error	Estadístico T	Valor-P
Intercepto	<i>b</i> ₀	$\sqrt{s_e^2 \cdot \left(\frac{1}{n} + \frac{\bar{x}^2}{SS_x}\right)}$	t_0 para β_0	$Valor\ P$ para eta_0
Pendiente	b_1	$\sqrt{\frac{s_e^2}{SS_x}}$	t_0 para eta_1	$Valor\ P$ para eta_1

3.3. Intervalos de confianza: Para β_0 y β_1 con un nivel de confianza de $(1-\alpha)\cdot 100\%$.

$$\begin{split} b_0 - t_{n-2,\alpha/2} \cdot \sqrt{s_e^2 \cdot \left(\frac{1}{n} + \frac{\bar{x}^2}{SS_x}\right)} &\leq \beta_0 \leq b_0 + t_{n-2,\alpha/2} \cdot \sqrt{s_e^2 \cdot \left(\frac{1}{n} + \frac{\bar{x}^2}{SS_x}\right)} \\ b_1 - t_{n-2,\alpha/2} \cdot \sqrt{\frac{s_e^2}{SS_x}} &\leq \beta_1 \leq b_1 + t_{n-2,\alpha/2} \cdot \sqrt{\frac{s_e^2}{SS_x}} \end{split}$$

Caso Especial: Cuando β_0 no es significativo (es igual a cero), el intervalo de confianza para β_1 presenta modificaciones.

$$b_1 - t_{n-1,\alpha/2} \cdot \sqrt{\frac{s_e^2}{SS_x}} \le \beta_1 \le b_1 + t_{n-1,\alpha/2} \cdot \sqrt{\frac{s_e^2}{SS_x}}$$

Statgraphics: No muestra los I.C. pero se pueden calcular manualmente a partir de la información que se muestra en la tabla "Coeficientes" de la ventana "Regresión simple".

- **4. Escribir la recta ajustada definitiva**: Según los resultados del paso 3 se originan tres casos.
 - Si $\beta_1 = 0$ no hay relación entre X y Y (no hay recta).
 - Si $\beta_0 = 0$ y $\beta_1 \neq 0$ la recta no tiene intercepto ($\hat{y} = b_1 \cdot x$).
 - Si $\beta_0 \neq 0$ y $\beta_1 \neq 0$ la recta sería igual a la preliminar ($\hat{y} = b_0 + b_1 \cdot x$).

Statgraphics: Si se obtiene que la recta no tiene intercepto, entonces se debe repetir el paso 2 y realizar nuevamente la regresión lineal simple indicando que el intercepto es cero (se desmarca la casilla "incluir constante"). Esto modificará el valor de la pendiente (b_1) y por eso se deben repetir los pasos 3.1, 3.2 y 3.3.

UNIDAD 7. Regresión Lineal Simple

(2) Procedimiento para realizar una regresión lineal simple (continuación)

- **5. Verificar qué tan buena es la recta**: Se calcula el coeficiente de correlación y el coeficiente de determinación.
- **5.1. Coeficiente de correlación:** Mide el grado de asociación lineal entre las dos variables. Se interpreta según su valor entre -1 y 1.
 - Si $\rho = 0$ no existe regresión lineal.
 - Si $\rho \pm 1$ existe relación lineal perfecta entre las variables.
 - Valores de ρ cercanos a la unidad implican una buena correlación entre las variables.
 - Valores de ρ cercanos a cero implican poca o ninguna correlación entre las variables.
- **5.2.** Coeficiente de determinación: Determina la calidad del modelo para replicar los resultados, y a su vez representa la proporción de variación de los resultados que puede explicarse por el modelo. Se interpreta según su valor entre 0 y 1.
 - Si R^2 va de 0.9 a 1.0 el modelo es excelente.
 - Si R^2 va de 0.8 a 0.9 el modelo es muy bueno.
 - Si R^2 va de 0.6 a 0.8 el modelo es bueno.
 - Si R^2 va de 0.5 a 0.6 el modelo es regular.
 - Si R^2 es menor de 0.5 el modelo es malo.

Statgraphics: Los valores de los coeficientes de interés se pueden leer en la ventana de "Regresión simple". Por ejemplo...

Coeficiente de Correlación = $0.959903 = \rho$ R cuadrada = 92.1413 porciento R-cuadrado (ajustado para g.l.) = 91.9776 porciento = R^2 Error estándar del est. = $5.851 = s_\theta = \sqrt{SSE/(n-2)}$ Error absoluto medio = 3.75083 Estadístico Durbin-Watson = 2.02763 (P=0.4797) = D_W Autocorrelación de residuos en retraso 1 = 0.0165066

- **6. Verificar supuestos sobre los errores**: Se verifica la normalidad, independencia y homocedasticidad de los errores. Si uno o más supuestos no se pueden verificar entonces la recta no sería válida.
- **6.1. Normalidad:** Se verifica a través de una prueba de bondad de ajuste Chi-cuadrado con H_0 : Los errores distribuyen normal con $\mu=0$ y $\sigma^2=s_e^2$ y H_1 : Los errores no distribuyen normal con $\mu=0$ y $\sigma^2=s_e^2$.

Statgraphics: Análisis / Resultados marcar la casilla "Residuos". Luego Describir / Ajuste Distribución / Ajuste Datos No Censurados seleccionar los datos de nombre "Residuos". En las opciones de ajuste de distribuciones seleccionar "Normal". Seleccionar las casillas de tablas "Resumen del Análisis" y "Pruebas de Bondad-de-Ajuste". Los resultados aparecen en el menú "Ajuste de Distribuciones". Seleccionar la venta "Pruebas de Bondad-de-Ajuste" y una vez allí hacer clic derecho para "Opciones de ventana". En las opciones de "Pruebas de Bondad de Ajuste" desmarcar las casillas "Kolmogórov-Smirnov" y "Usar clases equiprobables", y marcar la casilla "Chi-cuadrada". Verificar si se recalcularon los resultados para la ventana "Pruebas de Bondad-de-Ajuste" utilizando una Distribución Chi-cuadrado. Copiar la tabla agrupada para realizar la prueba de bondad de ajuste con el procedimiento visto en el curso.

6.2. Independencia: Se verifica a través de una prueba Durbin-Watson con H_0 : Los errores son independientes y H_1 : Los errores no son independientes. El estadístico Durbin-Watson se interpreta

según su valor entre 0 y 4, y si este valor es cercano a 2 los residuos se asumen independientes. Para un nivel de significancia de 5% y $k^*=1$ se buscan los valores de d_L y d_u para el n que corresponda en la Tabla Durbin-Watson.

- Si $0 \le D_w \le d_L$ la correlación es negativa
- Si $d_L \le D_w \le du$ es inconcluso
- Si $d_u \le D_w \le 4 d_u$ los residuos son independientes
- Si $4 d_u \le D_w \le 4 d_L$ es inconcluso
- Si $4 d_L \le D_w \le 4$ la correlación es positiva

Statgraphics: El estadístico Durbin-Watson se puede leer en la ventana de "Regresión simple".

6.3. Homocedasticidad: Indica la homogeneidad de la varianza, para verificarlo se realiza una gráfica de los errores contra las variables X y/o Y con H_0 : Los residuos son homocedásticos y H_1 : Los residuos son heterocedásticos. Si las fluctuaciones de los residuales parecen ser aleatorias alrededor de cero y no muestran ningún patrón, entonces, se dice que los residuos son homocedásticos.

Statgraphics: Revisar la ventana "Gráfico de residuos" del menú "Regresión Simple".

7. Inferencias para Y: Intervalo de confianza de $(1-\alpha)\cdot 100\%$ para la respuesta media $E(y|x_0)$ e Intervalos de predicción de $(1-\alpha)\cdot 100\%$ de confianza para y dado $x=x_0$.

$$\begin{split} \hat{y} - t_{n-2,\alpha/2} \cdot s_e \sqrt{\frac{1}{n} + \frac{(x_0 - \bar{x})^2}{SS_x}} &\leq E(y|x_0) \leq \hat{y} + t_{n-2,\alpha/2} \cdot s_e \sqrt{\frac{1}{n} + \frac{(x_0 - \bar{x})^2}{SS_x}} \\ \hat{y} - t_{n-2,\alpha/2} \cdot s_e \sqrt{1 + \frac{1}{n} + \frac{(x_0 - \bar{x})^2}{SS_x}} &\leq y|x_0 \leq \hat{y} + t_{n-2,\alpha/2} \cdot s_e \sqrt{1 + \frac{1}{n} + \frac{(x_0 - \bar{x})^2}{SS_x}} \end{split}$$

Caso Especial: Cuando β_0 no es significativo (es igual a cero), los intervalos de confianza y predicción presentan modificaciones.

$$\begin{split} \hat{y} - t_{n-1,\alpha/2} \cdot s_e \sqrt{\frac{1}{n} + \frac{(x_0 - \bar{x})^2}{SS_x}} &\leq E(y|x_0) \leq \hat{y} + t_{n-1,\alpha/2} \cdot s_e \sqrt{\frac{1}{n} + \frac{(x_0 - \bar{x})^2}{SS_x}} \\ \hat{y} - t_{n-1,\alpha/2} \cdot s_e \sqrt{1 + \frac{1}{n} + \frac{(x_0 - \bar{x})^2}{SS_x}} &\leq y|x_0 \leq \hat{y} + t_{n-1,\alpha/2} \cdot s_e \sqrt{1 + \frac{1}{n} + \frac{(x_0 - \bar{x})^2}{SS_x}} \end{split}$$

Statgraphics: Revisar la ventana "Valores predichos" del menú "Regresión Simple". Para cambiar el tipo de intervalo (unilateral o bilateral) y los valores de la variable independiente (x) hacer clic derecho y seleccionar "Opciones de ventana".

