Министерство образования Республики Беларусь

Учреждение образования «Белорусский государственный университет информатики и радиоэлектроники»

Факультет компьютерных систем и сетей

Кафедра электронных вычислительных машин

Дисциплина: Арифметические и логические основы цифровых устройств

К ЗАЩИТЕ ДОПУСТИТЬ
_____ Ю. А. Луцик

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА к курсовой работе на тему

ПРОЕКТИРОВАНИЕ И ЛОГИЧЕСКИЙ СИНТЕЗ СУММАТОРА-УМНОЖИТЕЛЯ ДВОИЧНО-ЧЕТВЕРИЧНЫХ ЧИСЕЛ

БГУИР КР 1-40 02 01 223 ПЗ

Студент Д.А. Снитко

Руководитель Ю. А. Луцик

Министерство образования Республики Беларусь

Учреждение образования «Белорусский государственный университет информатики и радиоэлектроники»

Факультет компьютерных систем и сетей

Кафедра электронных вычислительных машин

Дисциплина: Арифметические и логические основы вычислительной техники

УТВЕ	РЖДАЮ
Заведу	лющий кафедрой ЭВМ
	Б. В. Никульшин
«»	2022 г.

ЗАДАНИЕ по курсовой работе студента Снитко Даниила Александровича

- **1** Тема работы: Проектирование и логический синтез сумматора-умножителя двоично-четверичных чисел.
- 2 Срок сдачи студентом законченной работы: 20 мая 2022 г.
- 3 Исходные данные к работе:
 - **3.1** исходные сомножители: $MH_{10} = 82,48$; $MT_{10} = 43,35$;
 - 3.2 алгоритм умножения: В;
 - **3.3** метод умножения: умножение закодированного двоично-четверичного множимого на два разряда двоичного множителя одновременно в прямых кодах;
 - **3.4** коды четверичных цифр множимого для перехода к двоично-четверичной системе кодирования; 0_4-01 , 1_4-10 , 2_4-11 , 3_4-00 ;
 - 3.5 тип синтезируемого умножителя: 1;
 - **3.6** тип синтезируемого умножителя: структурные схемы приведены для умножителя 1-ого типа (ОЧУ, ОЧС, аккумулятор);
 - **3.7** логический базис для реализации ОЧС: И, ИЛИ, НЕ; метод минимизации –алгоритм Рота;
 - **3.8** логический базис для реализации ОЧУ: НЕ; метод минимизации карты Карно-Вейча.

- **4** Содержание пояснительной записки (перечень подлежащих разработке вопросов):
 - 1. Разработка алгоритма умножения. 2. Разработка структурной схемы сумматора-умножителя. 3. Разработка функциональных схем основных узлов сумматора-умножителя. 4. Синтез комбинационных схем устройств на основе мультиплексоров. 5. Оценка результатов разработки. Заключение. Список литературы.
- 5 Перечень графического материала:
 - **5.1** Сумматор-умножитель первого типа. Схема электрическая структурная.
 - **5.2** Одноразрядный четвертичный сумматор. Схема электрическая функциональная.
 - **5.3** Одноразрядный четвертичный умножитель. Схема электрическая функциональная.
 - 5.4 Регистр-аккумулятор. Схема электрическая функциональная.
 - **5.5** Одноразрядный четвертичных сумматор. Реализация на мультиплексорах. Схема электрическая функциональная.

Наименование мероприятия	Срок исполнения
Выдача студентам заданий по курсовым работам.	с 09.02.2022 по 22.02.2022
1-я контрольная точка	<u>Процентовка</u> студентов: c 01.03.2022 по 10.03.2022
2-я контрольная точка	Процентовка студентов: с 01.04.2022 по 10.04.2022
3-я контрольная точка	Процентовка студентов: с 01.05.2022 по 10.05.2022
Представление студентами готовых курсовых работ руководителям для проверки	До 20.05.2022
Представление информации в деканат о сдаче студентами готовых курсовых работ руководителям для проверки	с 20.05.2022 по 01.06.2022
Защита студентами курсовых работ	с 25.05.2022 по 11.06.2022
Представление информации в деканат о защите студентами курсовых работ	До 11.06.2022

Дата выдачи задания: 10 февраля 2022 г.	
Руководитель	Ю. А. Луцик
ЗАДАНИЕ ПРИНЯЛ К ИСПОЛНЕНИЮ	

СОДЕРЖАНИЕ

Введение	5
1. Разработка алгоритма умножения	
2. Разработка структурной схемы сумматора-умножителя	9
3. Логический синтез одноразрядного четверичного сумматора	10
4. Логический синтез одноразрядного четверичного умножителя	21
5. Логический синтез одноразрядного четвертичного сумматора на	
основе мультиплексора	25
6. Логический синтез преобразователя множителя	
7. Оценка эффективности минимизации переключательных функций	28
8. Временные затраты на умножение	29
Заключение	30
Список использованных источников	31
Приложение А	32
Приложение Б	
Приложение В	32
Приложение Г	
Приложение Д	

ВВЕДЕНИЕ

работа Данная курсовая посвящена разработке алгоритмов выполнения операций умножения и сложения. На основе полученных алгоритмов требуется разработать и синтезировать следующие устройства: одноразрядный четвертичный сумматор (ОЧС), одноразрядный четвертичный умножитель (ОЧУ), а также переключательные функции ОЧС Минимизация на мультиплексорах. перечисленных устройств осуществляется с помощью карт Карно-Вейча и алгоритма извлечения Рота. На основе полученных данных требуется построить схемы этих устройств и проанализировать результаты (эффективность минимизации и время выполнения операций).

1. РАЗРАБОТКА АЛГОРИТМА УМНОЖЕНИЯ

1.1. Перевод сомножителей из десятичной системы счисления в четверичную.

Множимое

Множитель

$$43 \mid \underline{4}$$
 0,35 $M_{T_4} = 223,112$

* $\underline{40} \mid 10 \mid \underline{4}$ * $\underline{4}$ 1,40 $M_{T_2/4} = 101011,010110$

* $\underline{4} \quad \underline{4} \quad \underline{1,60} \quad \underline{M}_{D_2/4} = 101011,010110$

* $\underline{4} \quad \underline{4} \quad \underline{M}_{D_2/4} = \underline{01011,010110}$

* $\underline{4} \quad \underline{M}_{D_2/4} = \underline{01011,010110}$

* $\underline{4} \quad \underline{M}_{D_2/4} = \underline{01011,010110}$

* $\underline{4} \quad \underline{M}_{D_2/4} = \underline{01011,010110}$

* $\underline{M}_{D_2/4} = \underline{01011,010110}$

Запишем сомножители в форме с плавающей запятой в прямом коде: $M_H = 0.10100111100011 \qquad P_{M_H} = 0.1001 \ + 04_{10} -$ закодировано по заданию $M_T = 0.10101101101 \qquad P_{M_T} = 0.0011 \ + 03_{10} -$ закодировано традиционно

Умножение двух чисел с плавающей запятой на два разряда множителя одновременно в прямых кодах. Это сводится к сложению порядков, формированию знака произведения, преобразованию разрядов множителя согласно алгоритму, и перемножению мантисс сомножителей.

Порядок произведения будет равен:

$$P_{MH} = 0.1001 + 10_4$$

 $P_{MT} = 0.0011 + 03_4$
 $P = 0.1000 + 13_4$

Результат закодирован в соответствии с заданием на кодировку множимого.

Знак произведения определяется суммой по модулю "два" знаков сомножителей:

зн Мн
$$\bigoplus$$
 зн Мт = $0 \bigoplus 0 = 0$

Для умножения мантисс необходимо предварительно преобразовать множитель. Диада $11(3_4)$ заменяется на триаду $1\overline{01}$. Преобразованный множитель имеет вид: $M T^{\Pi}_4 = 1\overline{1}\overline{1}\overline{1}112$ или $M T^{\Pi}_2 = 010\overline{1}0\overline{1}0\overline{1}010110$. Алгоритм "B".

Таблица 1.1 - Перемножение мантисс

Y ₀	Четверичная с/с Двоично-четверичная с/с Комментарии									
	1	2	3							
0.	0000000000000	01. 01010101010101010101010101	∑0 ^ч							
<u>0.</u>	0000001102132	<u>01.</u> 01010101010110100111100011	$\Pi_1^{\mathbf{q}} = \mathbf{M}_{\mathbf{H}} \cdot \mathbf{b}_1$							
0.	0000001102132	01. 01010101010110100111100011	∑1 ^ч							
0.	0000011021320	01. 01010101011010011110001101	$\sum_{1} {}^{\mathbf{q}} \cdot 4$							
<u>3.</u>	3333332231202	<u>00.</u> 0000000000011110010110011	$\Pi_2^{\mathbf{q}} = \mathbf{M}_{\mathbf{H}} \cdot \mathbf{b}_2$							
0.	0000003313122	01. 01010101010100001000101111	∑2 ^ч							
0.	0000033131220	01. 01010101010000100010111101	$\sum_{2} {}^{\mathbf{q}} \cdot 4$							
<u>3.</u>	3333332231202	<u>00.</u> <u>00000000000011110010110111</u>	$\Pi_3{}^{\mathrm{q}} = \mathrm{M}_{\mathrm{H}} \cdot \mathrm{b}_3$							
0.	0000032023022	01. 01010101010011011100011111	∑3 ^ч							
0.	0000320230220	01. 01010101001101110001111101	∑ ₃ ч⋅ 4							
<u>3.</u>	3333332231202	<u>00.</u> <u>00000000000011110010110111</u>	$\Pi_4{}^{\mathrm{q}} = \mathrm{M}_{\mathrm{H}} \cdot \mathrm{b}_4$							
0.	0000313122022	01. 01010101001000101111001111	∑4 ^ч							
0.	0003131220220	01. 01010100100010111101111101	∑ ₄ ч· 4							
<u>0.</u>	0000001102132	<u>01.</u> 01010101010110100111100011	$\Pi_5^{\mathrm{q}} = \mathrm{M}_{\mathrm{H}} \cdot \mathrm{b}_5$							
0.	0003132323012	01. 01010100100011001100011011	∑5 ^ч							
0.	0031323230120	01. 01010010001100110001101101	∑ ₅ ч⋅ 4							
<u>0.</u>	0000001102132	<u>00.</u> 01010101010110100111100011	$\Pi_6^{\mathrm{q}} = \mathrm{MH} \cdot \mathrm{b}_6$							
0.	0031330332312	01. 01010010000001000011001011	∑6 ^ч							
0.	0313303323120	01. 01001000000100001100101101	$\sum_{6} {}^{\mathbf{q}} \cdot 4$							
<u>0.</u>	0000011021320	01. 01010101011010011110001101	$\Pi_7^{\mathrm{u}} = \mathrm{MH} \cdot \mathrm{b}_7$							
0.	0313321011100	01. 01001000001110011010100101	∑7 ^ч							

После окончания умножения необходимо оценить погрешность вычислений. Для этого полученное произведение (Мн·Мт₄ = 0, 112012000021, $P_{\text{Мн·Мт}}$ = 7) приводится к нулевому порядку, а затем переводится в десятичную систему счисления:

$$M_{H} \cdot M_{T_4} = 313321,011100$$
 $P_{M_{H} \cdot M_{T}} = 0;$ $M_{H} \cdot M_{T_{10}} = 3577,082$

Результат прямого перемножения операндов дает следующее значение:

$$M_{H_{10}} \cdot M_{T_{10}} = 82,48 \cdot 43,35 = 3575,508.$$

Абсолютная погрешность:

$$\Delta = 3577,082 - 3575,508 = 1,574.$$

Относительная погрешность:

$$\delta = \frac{\Delta}{\text{MH} \cdot \text{MT}} = \frac{1,574}{3575,508} = 0,00044022 \quad (\delta = 0,044022\%)$$

Эта погрешность получена за счет приближенного перевода из десятичной системы счисления в четверичную обоих сомножителей, а также за счет округления полученного результата произведения.

2 РАЗРАБОТКА СТРУКТУРНОЙ СХЕМЫ СУММАТОРА-УМНОЖИТЕЛЯ

Структурная схема сумматора-умножителя первого типа для алгоритма умножения «В» приведена в приложении А.

Структура первого типа строится на базе заданных узлов ОЧУ, ОЧС, формирователя дополнительного кода и регистра результата. Управление режимами работы схемы осуществляется внешним сигналом *Mul/sum*, который определяет вид текущей арифметической операции (умножение или суммирование).

Принцип работы ФДК в зависимости от управляющих сигналов приведён в таблице 2.1.

Таблица 2.1 – Режимы работы формирователя дополнительного кода

			1 ' '				
Сигналы	на входах ФДК		Воруни тот на вижа	тох ФПГ			
\mathbf{F}_1	\mathbf{F}_2	Результат на выходах ФДК					
0	0	Д	ополнительный код м	оломижон			
0	1	Д	ополнительный код сл	іагаемого			
1	0	N	Пеняется знак множим	ого			
1	1	Д	ополнительный код сл	агаемого			

3. РАЗРАБОТКА ФУНКЦИОНАЛЬНЫХ СХЕМ ОСНОВНЫХ УЗЛОВ СУММАТОРА-УМНОЖИТЕЛЯ

3.1. Логический синтез одноразрядного четверичного сумматора

Одноразрядный четверичный сумматор — это комбинационное устройство, имеющее 5 входов (2 разряда одного слагаемого, 2 разряда второго слагаемого и вход переноса) и 3 выхода. Принцип работы ОЧС представлен с помощью таблицы истинности (табл. 3.1.1).

Разряды обоих слагаемых закодированы: 0 - 01; 1 - 10; 2 - 11; 3 - 00.

В таблице 3.2.1 выделено 24 безразличных наборов, т.к. со старших выходов не могут прийти коды «2» и «3».

Таблица 3.2.1 – Таблица истинности ОЧС

a 1	a ₂	b ₁	b ₂	р	П	S ₁	S ₂	Пример операции в четверичной с/с
1	2	3	4	5	6	7	8	9
0	0	0	0	0	X	X	X	3+3+0=12
0	0	0	0	1	X	X	X	3+3+1=13
0	0	0	1	0	0	0	0	3+0+0=03
0	0	0	1	1	1	0	1	3+0+1=10
0	0	1	0	0	1	0	1	3+1+0=10
0	0	1	0	1	1	1	0	3+1+1=11
0	0	1	1	0	X	X	X	3+2+0=11
0	0	1	1	1	X	X	X	3+2+1=12
0	1	0	0	0	X	X	X	0+3+0=03
0	1	0	0	1	X	X	X	0+3+1=10
0	1	0	1	0	0	1	1	0+0+0=00
0	1	0	1	1	0	1	0	0+0+1=01
0	1	1	0	0	0	1	0	0+1+0=01
0	1	1	0	1	0	1	1	0+1+1=02
0	1	1	1	0	X	X	X	0+2+0=02
0	1	1	1	1	X	X	X	0+2+1=03
1	0	0	0	0	X	X	X	1+3+0=10
1	0	0	0	1	X	X	X	1+3+1=11
1	0	0	1	0	0	1	0	1+0+0=01
1	0	0	1	1	0	1	1	1+0+1=02
1	0	1	0	0	0	1	1	1+1+0=02
1	0	1	0	1	1	1	0	1+1+1=11
1	0	1	1	0	X	X	X	1+2+0=03
1	0	1	1	1	X	X	X	1+2+1=10
1	1	0	0	0	X	X	X	2+3+0=11

Продолжение таблицы 3.2.1

1	2	3	4	5	6	7	8	9
1	1	0	0	1	X	X	X	2+3+1=12
1	1	0	1	0	0	1	1	2+0+0=02
1	1	0	1	1	0	0	0	2+0+1=03
1	1	1	0	0	0	0	0	2+1+0=03
1	1	1	0	1	1	0	1	2+1+1=10
1	1	1	1	0	X	X	X	2+2+0=10
1	1	1	1	1	X	X	X	2+2+1=11

Для минимизации функции S1 воспользуемся алгоритмом Рота. Определим множество единичных и безразличных кубов, а после произвели их склеивание:

L	N
	00000
	00001
	00110
00101	00111
01010	01000
01011	01001
01100	01110
01101	01111
10010	10000
10011	10001
10100	10110
10101	10111
11010	11000
	11001
	11110
	11111

L	N
01100 11010	00
ADDOMESTIC CONTROLS	xx00x xx11x
1010x	

Поиск простых импликант - воспользуемся операцией умножения (*) над множествами C0, C1 и т. д., пока в результате операции будут образовываться новые кубы большей размерности.

Поиск простых импликант со*со:

C0*C0	01100	11010	0x101	0101x	1001x	1010x	xx00x	xx11x
01100	-							
11010		-						
0x101	0110y		-					
0101x		y1010		1				
1001x		1y010			-			
1010x			y0101			-		
xx00x	01y00	110y0	0xy01	010yx	100yx	10y0x	-	
xx11x	011y0	11y10	0x1y1	01y1x	10y1x	101yx		-
A1	0110x 01x00 011x0	11x010	x0101 0xx01 0x1x1		100xx 10x1x		Ø	Ø

```
A1 = { 0110x; 01x00; 011x0; x1010; 1x010; 110x0; 11x10; x0101; 0xx01; 0x1x1; 010xx; 01x1x; 100xx; 10x1x; 10x0x; 101xx } Z0 = { Ø } - Множество Z кубов, не участвовавших в образовании новых кубов, пустое. B1= C0 - Z0 = \{ 01100; 11010; 0x101; 0101x; 1001x; 1010x; xx00x; xx11x \} C1 = A1 \cup B1 = \{ 0110x; 01x00; 011x0; x1010; 1x010; 110x0; 11x10; x0101; 0xx01; 0x1x1; 010xx; 01x1x; 100xx; 10x1x; 10x0x; 101xx; xx00x; xx11x }
```

Поиск простых импликант с1*с1:

C1*C1	0110x	01x00	011x0	x1010	1x010	110x0	11x10	x0101	0xx01	0x1x1	010xx	01x1x	100xx	10x1x	10x0x	101xx
0110x	-															
01x00		-														
011x0			-													
x1010				-												
1x010					-											
110x0						-										
11x10							-									
x0101								-								
0xx01		01x0y							-							
0x1x1			011xy							-						
010xx	01y0x		01yx0			y10x0				01yx1	-					
01x1x	011ух	01xy0					y1x10		01xy1			-				
100xx						1y0x0							-			
10x1x							1yx10							-		
10x0x									y0x01					10хух	-	
101xx										y01x1			10ухх			-
xx00x	01y0x			x10y0	1x0y0			x0y01		0xy01		010yx		100ух		10y0x
xx11x	011yx			x1y10	1xy10			x01y1	0x1y1		01y1x		10y1x		101yx	
A2	l	01x0x 01xx0	011xx 01xx0				l		x0x01	01xx1 x01x1 0xx01	01x1x	010xx		10xxx 100xx	101xx	10x0x

```
A2 = { 01x0x; 011xx; 01xx0; x10x0; x1x10; 1x0x0; 1xx10; x0x01; x01x1; 01xx1; 0x1x1; 0xx01; 01x1x; 010xx; 10xxx }

Z1 = { Ø }- Множество Z кубов, не участвовавших в образовании новых кубов, пустое.

B2 = C1 - Z1 = \{ 0110x; 01x00; 011x0; x1010; 1x010; 110x0; 11x10; x0101; 0xx01; 0x1x1; 010xx; 01x1x; 100xx; 10x1x; 10x0x; 101xx; xx00x; xx11x }

C2 = A2 \cup B2 = \{ 01x0x; 011xx; 01xx0; x10x0; x1x10; 1x0x0; 1xx10; x0x01; x01x1; 01xx1; 0xx01; 01x1x; 010xx; 10xxx; xx00x; xx11x }

Поиск простых импликант C2*C2:
```

C2*C2	01x0x	011xx	01xx0	x10x0	x1x10	1x0x0	1xx10	x0x01	x01x1	01xx1	10xxx
01x0x	-										
011xx		-									
01xx0			-								
x10x0				-							
x1x10					-						
1x0x0						-					
1xx10							-				
x0x01								-			
x01x1									-		
01xx1			01хху							-	
0x1x1											-
0xx01											
01x1x	01хух										
010xx		01ухх									
10xxx											
xx00x											
xx11x											
А3	01xxx	01xxx	01xxx	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø

```
A3 = { 01xxx }

Z2 = { x10x0; x1x10; 1x0x0; 1xx10; x0x01; x01x1; 0x1x1; 0xx01; 10xxx; xx00x; xx11x }

B3 = C2 — Z2 = { 01x0x; 011xx; 01xx0; 01xx1; 01x1x; 010xx }

C3 = A3 \cup B3 = { 01xxx }
```

Поиск простых импликант с3*с3:

C3*C3	01xxx
01xxx	-
A4	Ø

$$A4 = \{ \emptyset \}$$

Конечное множество простых импликант $Z = \{ x10x0; x1x10; 1x0x0; 1xx10; x0x01; x01x1; 0x1x1; 0xx01; 10xxx; xx00x; xx11x; 01xxx \}$

Множество Z может быть избыточным. Необходимо выявить обязательные простые импликанты, называемые в алгоритме Рота L-экстремалями.

L-экстремаль – это единственный куб, который покрывает вершину из множества L, не покрываемую другими кубами из множества Z.

Для определения L-экстремалей воспользуемся операциями вычитания "#" и пересечения "∩" кубов.

Поиск L-экстремалей (из каждой простой импликанты поочерёдно вычитаются все остальные простые импликанты):

					1			Kullib	,			
z#(Z-z)	x10x0	x1x10	1x0x0	1xx10	x0x01	x01x1	0x1x1	0xx01	10xxx	xx00x	xx11x	01xxx
x10x0	-	x1110	100x0	10x10 1x110	x0x01	x01x1	0x1x1	0xx01	10xxx	x000x xx001	xx11x	011xx 01xx1
x1x10	x1000	-	100x0	10x10 10110	1 v() v() 1	x01x1	0x1x1	0xx01	10xxx	x000x xx001		0110x 011x1 01xx1
1x0x0	01000	x1110	1	10110 10110	I Y () Y () T	x01x1	0x1x1	0xx01	101xx 10xx1	1x0001	x011x xx111	0110x 011x1 01xx1
1xx10	01000	01110	10000	-	x0x01	x01x1	0x1x1	0xx01	101x1	0000x x0001 xx001	x0111	011x1
x0x01	01000	01110	10000	10110 10110	-	x0111	011x1 0x111	01x01	10100 10111 10x11	1 X 1 L JL J I I	0011x x0111 xx111	0110x 011x1 01xx1
x01x1	01000	01110	10000	10110 10110	เ∨∩∩∩1	_	011x1 01111	01x01	10100 10011	00000 x1001	00110 x1111	0110x 011x1 01xx1
0x1x1	01000	01110	10000	10110 10110	x0001	10111	-	IO1001		00000 x1001		
0xx01	01000	01110	10000	10110 10110	10001	10111	01111 01111	-		00000 11001		01100 01011
10xxx	01000	01110	Ø	Ø	Ø	Ø	01111 01111	01001	-	00000 11001	00110 11111	
xx00x	Ø	01110	Ø	Ø	Ø	וסו	01111 01111	Ø	10100 10011	_	00110 11111	
xx11x	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø		00000 11001	-	01100 01011
01xxx	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø		00000 11001		-
Остаток	Ø	Ø	Ø	Ø	Ø	Ø	Ø	ומו		00000 11001		

Получили кубы, подозрительные на L-экстремальность.

Далее для расчетов используется исходное множество L без произведенного склеивания (проверка на L-экстремальность):

z#(Z-z) ∩ L	00101	01010	01011	01100	01101	10010	10011	10100	10101	11010
10100	y010y Ø	yyyy0 Ø	ууууу Ø	уу100 Ø	yy10y Ø	10yy0 Ø	10ууу Ø	10100	1010y Ø	1yyy0 Ø
10011	y0yy1 Ø	уу01у Ø	yy011 Ø	ууууу Ø	yyyy1 Ø	1001y Ø	10011	10ууу Ø	10yy1 Ø	1y01y Ø
00000	00y0y Ø	0y0y0 Ø	0y0yy Ø	0yy00 Ø	0yy0y Ø	y00y0 Ø	у00уу Ø	y0y00 Ø	y0y0y Ø	yy0y0 Ø
11001	ууу01 Ø	y10yy Ø	y10y1 Ø	y1y0y Ø	y1y01 Ø	1y0yy Ø	1y0y1 Ø	1yy0y Ø	1yy01 Ø	110yy Ø
00110	001уу Ø	0yy10 Ø	0yy1y Ø	0y1y0 Ø	0y1yy Ø	y0y10 Ø	y0y1y Ø	y01y0 Ø	y01yy Ø	yyy10 Ø
11111	Ø	Ø	Ø	y11yy Ø	y11y1 Ø	1yy1y Ø	1yy11 Ø	1y1yy Ø	1y1y1 Ø	11y1y Ø
01100	0y10y Ø	01yy0 Ø	01yyy Ø	01100	0110y Ø	yyyy0 Ø	ууууу Ø	уу100 Ø	уу10у Ø	y1yy0 Ø
01011	0yyy1 Ø	0101y Ø	01011	01yyy Ø	01yy1 Ø	yy01y Ø	уу011 Ø	ууууу Ø	yyyy1 Ø	y101y Ø

Множество L-экстремалей $E = \{10xxx; 01xxx\}$ – эти кубы обязательно должны войти в минимальное покрытие.

 $Z' = Z - E = \{ \ x10x0; \ x1x10; \ 1x0x0; \ 1xx10; \ x0x01; \ x01x1; \ 0x1x1; \ 0xx01; \ xx00x; \ xx11x \ \}$

Поиск непокрытых наборов:

L#E	00101	01010	01011	01100	01101	10010	10011	10100	10101	11010
10xxx	00101	01010	01011	01100	01101	Ø	Ø	Ø	Ø	11010
01xxx	00101	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	11010
Остаток	00101	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	11010

Множество кубов, непокрываемых L-экстремалями, $L' = L \# E = \{00101; 11010\}$ — чтобы покрыть их, нужно воспользоваться множеством простых импликант, не являющихся L-экстремалями.

Покрытие оставшихся кубов:

TIORP	Dillic	0 0 1 112
Z′ ∩ L′	00101	11010
x10x0	0yy0y Ø	11010
x1x10	0y1yy Ø	11010
1x0x0	y0y0y Ø	11010
1xx10	y01yy Ø	11010
x0x01	00101	1y0yy Ø
x01x1	00101	1yy1y Ø
0x1x1	00101	y1y1y Ø
0xx01	00101	у10уу Ø
xx00x	00y01 Ø	110y0 Ø
xx11x	001y1 Ø	11y10 Ø

Fmin S1 = {
$$10xxx$$
; $01xxx$; $1xx10$; $x01x1$ } =
= $a_1 * \overline{a_2} + \overline{a_1} * a_2 + a_1 * b_2 * \overline{p} + \overline{a_2} * b_1 * p$

Проверку минимизации функции S_I выполним при помощи карты Карно

Ozbzh Ozbz	000	001	011	010	110	111	101	100
00	X	X	0	0	X	X	1)	0
01	X	X	1	1	Х	Х	1	1
11	X	X	0	1	Х	X	0	0
10	X	X	1	1	Х	X	1	1

Рисунок 3.1.2 — Минимизация функции S1 при помощи карты Карно.

$$extbf{S}_{1 \; ext{CДH}\Phi} \; = a_1 * \; \overline{a_2} + \overline{a_1} * a_2 + a_1 * b_2 * \; \overline{p} + \; \overline{a_2} * b_1 * p$$

Минимизацию функций Π и S_2 проведем при помощи карт Карно.

Для функции Π :

Babah	000	001	011	010	110	111	101	100
00	*	*	1	0	*	*	1	1
01	*	*	0	0	*	*	0	0
11	*	*	0	0	*	*	1	0
10	*	*	0	0	*	*	1	0

Рисунок 3.1.3 — Минимизация функции Π при помощи карты Карно.

$$\Pi_{\mathsf{CДH\Phi}} = a_1 * b_1 * p + \overline{a_1} * \overline{a_2} * b_1 + \overline{a_1} * \overline{a_2} * p$$

Для функции **S2**:

a,bzh	000	001	011	010	110	111	101	100
00	*	*	1	0	*	*	0	1
01	*	*	0	1	*	*	1	0
11	*	*	0	1	*	*	1	0
10	*	*	1	0	*	*	0	1

Рисунок 3.1.4 — Минимизация функции S2 при помощи карты Карно.

$$m{S}_{2 \; \text{СДН}\Phi} \; = \; a_2 * \; b_1 * p \; + \; \overline{a_2} \; * b_1 * \overline{p} \; \; + \; a_2 * b_2 * \overline{p} \; + \; \overline{a_2} * b_2 * p$$

Функциональная схема реализации ОЧС на мультиплексорах приведена в приложении В.

3.2. Логический синтез одноразрядного четверичного умножителя

Одноразрядный четверичный умножитель — это комбинационное устройство, имеющее 5 двоичных входов (2 разряда из регистра Мн, 2 разряда из регистра Мт и управляющий вход h) и 4 двоичных выхода. Принцип работы ОЧУ описывается с помощью таблицы истинности (табл.3.2.1).

Разряды множителя закодированы: 0-00, 1-01, 2-10, 3-11. Разряды множимого закодированы: 0-01; 1-10; 2-11; 3-00.

Таблица 3.2.1 - Таблица истинности ОЧУ

	[H	M		Упр.	Ст. раз			азряды	Результат операции
X_1	X_2	<i>y</i> 1	<i>y</i> ₂	h	P_1	P_2	P ₃	P_4	в четверичной с/с
1	2	3	4	5	6	7	8	9	10
0	0	0	0	0	0	1	0	1	3.0=00
0	0	0	0	1	0	0	0	0	Выход 03
0	0	0	1	0	0	1	0	0	3.1=03
0	0	0	1	1	0	0	0	0	Выход 03
0	0	1	0	0	1	0	1	1	3·2=12
0	0	1	0	1	0	0	0	0	Выход 03
0	0	1	1	0	X	X	X	X	3.3=21
0	0	1	1	1	X	X	X	X	Выход 03
0	1	0	0	0	0	1	0	1	0.0 = 00
0	1	0	0	1	0	0	0	1	Выход 00
0	1	0	1	0	0	1	0	1	0.0 = 00
0	1	0	1	1	0	0	0	1	Выход 00
0	1	1	0	0	0	1	0	1	0.1=00
0	1	1	0	1	0	0	0	1	Выход 00
0	1	1	1	0	X	X	X	X	0.3=00
0	1	1	1	1	X	X	X	X	Выход 00
1	0	0	0	0	0	1	0	1	1.0=00
1	0	0	0	1	0	0	1	0	Выход 01
1	0	0	1	0	0	1	1	0	1.1=01
1	0	0	1	1	0	0	1	0	Выход 01
1	0	1	0	0	0	1	1	0	1.1=01
1	0	1	0	1	0	0	1	0	Выход 01
1	0	1	1	0	X	X	X	X	1.3=03

Продолжение таблицы 3.2.1

1	2	3	4	5	6	7	8	9	10
1	0	1	1	1	X	X	X	X	Выход 01
1	1	0	0	0	1	1	1	1	2.0=00
1	1	0	0	1	0	0	1	1	Выход 02
1	1	0	1	0	0	1	1	1	2·1=02
1	1	0	1	1	0	0	1	1	Выход 02
1	1	1	0	0	1	0	0	1	2·2=10
1	1	1	0	1	0	0	1	1	Выход 02
1	1	1	1	0	X	X	X	X	2·3=12
1	1	1	1	1	X	X	X	X	Выход 02

Минимизацию функций P_1 , P_2 , P_3 и P_4 проведем при помощи карт Карно-Вейча.

Для функции P_1 :

Рисунок 3.2.2 — Минимизация функции P_I при помощи карты Вейча.

$$\frac{\boldsymbol{P}_{1 \text{ CДН}\Phi} = \overline{x_1} * \overline{x_2} * y_1 * \overline{h} + x_1 * x_2 * \overline{y_2} * \overline{h} = \overline{x_1 + x_2 + \overline{y_1} + h} + \overline{x_1 + \overline{x_2} + y_2 + h}$$

Для функции P_2 :

			<i>x</i> ₂		_				
24		0	0	0	1	0	0		
x_1			U	U		U	U		
	1	0	*	*	*	*	0	1	y_2
	1	0	*	*	*	*	0	1	
		0	0	1	0	0	0	1	
				1	, ₁		_		
			1	_	′1			_	
			h				h		

Рисунок 3.2.3 – Минимизация функции P_2 при помощи карты Вейча.

$$\frac{\boldsymbol{P}_{2 \text{ CДH}\Phi} = \overline{y_1}}{x1 + \overline{x_2 + h}} * \overline{h} + x_1 * \overline{x_2} * \overline{h} + \overline{x_1} * x_2 * \overline{h} = \overline{y_1 + h} + \overline{\overline{x_1} + x_2 + h} + \overline{x_1 + \overline{x_2 + h}}$$

Для функции P_3 :

ナッシャ	000	001	011	010	110	111	101	100
00	0	0	0	0	X	X	0	
01	0	0	0	0	X	X	0	0
11	1	1	1	1	X	X	1	0
10	0	1	1	1	X	X	1	

Рисунок 3.2.4 — Минимизация функции P_3 при помощи карты Карно.

$$\frac{\mathbf{P}_{3 \text{ СДН}\Phi}}{\overline{x1} + \overline{y2}} = \frac{x_1 * y_2 + x_1 * h + x_1 * \overline{x_2}}{\overline{x1} + \overline{h}} + \frac{x_1 * h + x_1 * \overline{x_2}}{\overline{x1} + x2 + \overline{y1}} + \frac{y_1 + \overline{x_2} * y_1 * \overline{h} + x_1 * x_2 * \overline{y_1}}{\overline{x2} + \overline{x2} + y1} = \frac{x_1 * y_2 + x_1 * h + x_1 * \overline{x_2}}{\overline{x1} + \overline{x2} + y1} = \frac{x_1 * y_2 + \overline{x_1} * h + x_1 * \overline{x_2}}{\overline{x1} + \overline{x_2} + \overline{y_1}} = \frac{x_1 * y_2 + \overline{x_1} * h + x_1 * \overline{x_2} * \overline{y_1}}{\overline{x_1} + \overline{x_2} + \overline{y_1}} = \frac{x_1 * y_2 + \overline{x_1} * h + x_1 * \overline{x_2}}{\overline{x_1} + \overline{x_2} + \overline{y_1}} = \frac{x_1 * y_2 + \overline{x_1} * h + x_1 * \overline{x_2} * \overline{y_1}}{\overline{x_1} + \overline{x_2} + \overline{y_1}} = \frac{x_1 * y_2 + \overline{x_1} * h + x_1 * \overline{x_2} * \overline{y_1}}{\overline{x_1} + \overline{x_2} + \overline{y_1}} = \frac{x_1 * y_2 + \overline{x_1} * h + x_1 * \overline{x_2} * \overline{y_1}}{\overline{x_1} + \overline{x_2} + \overline{y_1}} = \frac{x_1 * y_2 + \overline{x_1} * h + x_1 * \overline{x_2} * \overline{y_1}}{\overline{x_1} + \overline{x_2} + \overline{y_1}} = \frac{x_1 * y_2 + \overline{x_1} * h + x_1 * \overline{x_2} * \overline{y_1}}{\overline{x_1} + \overline{x_2} + \overline{y_1}} = \frac{x_1 * y_2 + \overline{x_1} * h + x_1 * \overline{x_2} * \overline{y_1}}{\overline{x_1} + \overline{x_2} + \overline{y_1}} = \frac{x_1 * y_2 + \overline{x_1} * h + x_1 * \overline{x_2} * \overline{y_1}}{\overline{x_1} + \overline{x_2} + \overline{y_1}} = \frac{x_1 * y_2 + \overline{x_1} * h + x_1 * \overline{x_2} * \overline{y_1}}{\overline{x_1} + \overline{x_2} + \overline{y_1}} = \frac{x_1 * y_2 + \overline{x_1} * h + x_1 * \overline{x_2} * \overline{y_1}}{\overline{x_1} + \overline{x_2} + \overline{y_1}} = \frac{x_1 * y_2 + \overline{x_1} * h + x_1 * \overline{x_2} * \overline{y_1}}{\overline{x_1} + \overline{x_2} + \overline{y_1}} = \frac{x_1 * y_2 + \overline{x_1} * h + x_1 * \overline{x_2} * \overline{y_1}}{\overline{x_1} + \overline{x_2} + \overline{y_1}} = \frac{x_1 * y_2 + \overline{x_1} * h + x_1 * \overline{x_2} * \overline{y_1}}{\overline{x_1} + \overline{x_2} + \overline{y_1}} = \frac{x_1 * y_2 + \overline{x_1} * h + x_1 * \overline{x_2} * \overline{y_1}}{\overline{x_1} + \overline{x_2} + \overline{y_1}} = \frac{x_1 * y_2 + \overline{x_1} * h + x_1 * \overline{x_2} * \overline{y_1}}{\overline{x_1} + \overline{x_2} + \overline{x_1} * \overline{y_1}} = \frac{x_1 * y_2 + \overline{x_1} * h + x_1 * \overline{x_2} * \overline{y_1}}{\overline{x_1} + \overline{x_2} + \overline{x_1} * \overline{y_1}} = \frac{x_1 * \overline{x_1} * \overline{x_1} * \overline{x_1}}{\overline{x_1} + \overline{x_2} * \overline{x_1}} = \frac{x_1 * \overline{x_1} * \overline{x_1} * \overline{x_1}}{\overline{x_1} + \overline{x_1} * \overline{x_1}} = \frac{x_1 * \overline{x_1} * \overline{x_1} * \overline{x_1}}{\overline{x_1} + \overline{x_1} * \overline{x_1}} = \frac{x_1 * \overline{x_1} * \overline{x_1} * \overline{x_1}}{\overline{x_1} + \overline{x_1} * \overline{x_1}} = \frac{x_1 * \overline{x_1} * \overline{x_1}}{\overline{x_1} + \overline{x_1} * \overline{x_1}} = \frac{x_1 * \overline{x_1} * \overline{x_1}}{\overline{x_1} + \overline{x_1} * \overline{x_1}} = \frac{x_1 * \overline{x_1}$$

Для функции P_4 :

tyty h	000	001	011	010	110	111	101	100
00	1	0	0	0	X	X	0 /	1
01	1	1	1	1	Х	X	1	1
11	1	1	1	1	Х	X	1	1
10	1	0	0	0	X	X	0	0

Рисунок 3.2.5 — Минимизация функции P_4 при помощи карты Карно.

$$P_{4 \text{ CДH}\Phi} = x_2 + \overline{x_1} * y_1 * \overline{h} + \overline{y_1} * \overline{y_2} * \overline{h} = x_2 + \overline{x_1} + \overline{y_1} + \overline{h} + \overline{y_1} + y_2 + \overline{h}$$

Функциональная схема реализации ОЧУ на мультиплексорах приведена в приложении Б.

4. ЛОГИЧЕСКИЙ СИНТЕЗ ОДНОРАЗРЯДНОГО ЧЕТВЕРИЧНОГО СУММАТОРА НА ОСНОВЕ МУЛЬТИПЛЕКСОРА

Мультиплексор — это логическая схема, имеющая n информационных входов, m управляющих входов и один выход. При этом должно выполняться условие $n=2^m$.

Принцип работы мультиплексора состоит в следующем. На выход мультиплексора может быть пропущен без изменений любой (один) логический сигнал, поступающий на один из информационных входов. Порядковый номер информационного входа, значение которого в данный момент должно быть передано на выход, определяется двоичным кодом, поданным на управляющие входы.

Функции ОЧС зависят от пяти переменных. Удобно взять мультиплексор с тремя адресными входами, это позволит упростить одну функцию от пяти аргументов до восьми функций от двух переменных. Функции от двух переменных достаточно просты для того, чтобы самостоятельно заметить их минимальную форму.

Таблица 4.1. – Таблица истинности для ОЧС на мультиплексорах

№	a 1	a_2	b 1	b 2	p	П	Вы- ход	S_1	Вы-	<i>s</i> ₂	Вы- ход
1	2	3	4	5	6	7	8	9	10	11	12
0	0	0	0	0	0	X	р	X	0	X	р
1	0	0	0	0	1	X		X		X	
2	0	0	0	1	0	0		0		0	
3	0	0	0	1	1	1		0		1	
4	0	0	1	0	0	1	1	0	р	1	!p
5	0	0	1	0	1	1		1		0	
6	0	0	1	1	0	X		X		X	
7	0	0	1	1	1	X		X		X	
8	0	1	0	0	0	X	р	X	1	X	!p

	X		X		X	1	0	0	1	0	9
	1		1		0	0	1	0	1	0	10
	0		1		0	1	1	0	1	0	11
р	0	1	1	0	0	0	0	1	1	0	12
	1		1		0	1	0	1	1	0	13
	X		X		X	0	1	1	1	0	14
	X		X		X	1	1	1	1	0	15
р	X	1	X	0	X	0	0	0	0	1	16
	X		X		X	1	0	0	0	1	17
	0		1		0	0	1	0	0	1	18
	1		1		0	1	1	0	0	1	19
!p	1	1	1	р	0	0	0	1	0	1	20
	0		1		1	1	0	1	0	1	21
	X		X		X	0	1	1	0	1	22
	X		X		X	1	1	1	0	1	23
!p	X	!p	X	0	X	0	0	0	1	1	24
	X		X		X	1	0	0	1	1	25
	1		1		0	0	1	0	1	1	26
	0		0		0	1	1	0	1	1	27
р	0	0	0	р	0	0	0	1	1	1	28
	1		0		1	1	0	1	1	1	29
	X		X		X	0	1	1	1	1	30
	X		X		X	1	1	1	1	1	31

Функциональная схема реализации ОЧС на мультиплексорах приведена в приложении Γ .

5 ЛОГИЧЕСКИЙ СИНТЕЗ ПРЕОБРАЗОВАТЕЛЯ МНОЖИТЕЛЯ (ПМ)

Преобразователь множителя (ПМ) служит для исключения из множителя диад 11 и 10, заменяя их на триады $1\overline{01}$ и $1\overline{10}$, соответственно.

Таблица 5.1 Таблица истинности ПМ.

Входная диада		Младший бит	Знак	Выходн	ая диада
Qn	Q _{n-1}	Q _{n-2}	P	S_1	S_2
0	0	0	0	0	0
0	0	1	0	0	1
0	1	0	0	0	1
0	1	1	0	1	0
1	0	0	1	1	0
1	0	1	1	0	1
1	1	0	1	0	1
1	1	1	1	0	0

Проведём минимизацию Р при помощи карты Карно:

Рисунок 5.1 – Минимизация функции Р при помощи карты Карно

$$P = Q_n$$

Видно, что S_1 не минимизируется, поэтому $S_1 = \overline{Q_n}Q_{n-1}Q_{n-2} + Q_n\overline{Q_{n-1}}\overline{Q_{n-2}}$ Проведём минимизацию S_2 при помощи карты Карно:

$Q_{n-1}Q_{n-2}$								
Qn	00	01	11	10				
0		1		1				
1		1		1				

Рисунок $5.\overline{2}$ – Минимизация функции S_2 при помощи карты Карно

$$S_2 = \overline{Q_{n-1}}Q_{n-2} \cdot Q_{n-1}\overline{Q_{n-2}} = Q_{n-1} \oplus Q_{n-2}$$

6 ОЦЕНКА ЭФФЕКТИВНОСТИ МИНИМИЗАЦИИ ПЕРЕКЛЮЧАТЕЛЬНЫХ ФУНКЦИЙ

Для проведения оценки эффективности минимизации переключательных функций необходимо посчитать цену схемы до минимизации и цену схемы после минимизации. Эффективность минимизации k определяется как:

$$k = \frac{C_{\text{до мин.}}}{C_{\text{после мин.}}}$$

Таблица 6.1 – Эффективность минимизации ОЧУ

Вых.	Рассчитанная цена схемы					
схемы	До минимизации	После минимизации	мин. k			
\mathbf{P}_1	c=3*5+3+5=23	c=2*4+4+2=14	1,64			
P_2	c=10*5+10+5=65	c=2*1+3*2+4+3=15	4,33			
P_3	c=11*5+11+5=71	c=2*2+3*3+3+5=21	3,38			
P_4	c=15*5+15+5=95	c=1+2*3+4+3=14	6,79			

Таблица 6.2 – Эффективность минимизации ОЧС

Tuestingu 0.2 Sppektinbheetib kinimikinsugini S 16							
Вых.	Рассчитанная це	Эфф.					
схемы	До минимизации	После минимизации	мин. k				
П	c=5*5+5+5=35	c=3*3+2+3=14	2,5				
S_1	c=10*5+5+10=65	c=2*2+2*3+4+3=17	3,82				
S_2	c=8*5+5+8=53	c=4*3+2+4=18	2,94				

7 ОЦЕНКА РЕЗУЛЬТАТОВ РАЗРАБОТКИ ВРЕМЕННЫЕ ЗАТРАТЫ НА УМНОЖЕНИЕ

Формула расчёта временных затрат на умножение:

 $T=n^*(T_{\Pi M}+T_{\Phi J K}+T_{O \Psi Y}+(n+1)^*T_{O \Psi C}+T_{c g B \mu \Gamma a}),$ где

 $T_{\text{ПМ}}$ – время преобразования множителя;

 $T_{\Phi \text{ДК}}$ – время формирования дополнительного кода множимого;

Точу – время умножения на ОЧУ;

Точс – время формирования единицы переноса в ОЧС;

 $T_{cдвига}$ — время сдвига частичной суммы;

n – количество разрядов множителя.

ЗАКЛЮЧЕНИЕ

В процессе выполнения курсовой работы была разработана структурная схема сумматора-умножителя второго типа, а также функциональные схемы основных узлов данного устройства. Для уменьшения стоимости логических схем были выполнены минимизации переключательных функций различными способами. Такой подход позволил выявить достоинства и недостатки этих алгоритмов.

В качестве главного достоинства минимизации картами Карно-Вейча можно выделить простоту и минимальные затраты времени. Однако применение данного способа для функций многих переменных будет затруднительно. Функциональные схемы были построены в различных логических базисах. Это позволило закрепить теоретические знания основных законов булевой алгебры, например, правило де Моргана. Также можно отметить, что необходимо сократить количество уровней в логической схеме для уменьшения времени работы данного устройства.

Реализация переключательных функций на основе мультиплексоров позволила облегчить процесс минимизации этих функций.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Луцик Ю.А., Лукьянова И.В. Учебное пособие по курсу "Арифметические и логические основы вычислительной техники". Минск: БГУИР, 2014 г.
- 2. Луцик Ю.А., Лукьянова И.В. Методические указания к курсовому проекту по курсу "Арифметические и логические основы вычислительной техники". Минск.: БГУИР, 2016 г.

ПРИЛОЖЕНИЕ А

(обязательное)

Сумматор-умножитель первого типа. Схема электрическая структурная

приложение Б

(обязательное)

Одноразрядный четверичный умножитель. Схема электрическая функциональная

приложение в

(обязательное)

Одноразрядный четверичный сумматор. Схема электрическая функциональная

приложение г

(обязательное)

Одноразрядный четверичный сумматор. Реализация на мультиплексорах. Схема электрическая функциональная

приложение д

(обязательное)

Преобразователь множителя. Схема электрическая функциональная

ПРИЛОЖЕНИЕ Е

(обязательное)

Ведомость документов