1-1 Decision Voriables

```
x_1 = quantity (in unite) of plant 1
x_2 = quantity (in unite) of plant 2
x_3 = quantity (in unite) of plant 3
x_4 = quantity (in unite) of plant 4
x_5 = quantity (in unite) of plant 5
```

Objective: Minimize me total cost

Minimize 5.6x1 + 8.6x2 + 7.0x3+ 6.2x4+ 6.9x6

Lonstraints

- 1) 21+22+23+24+25 = 100
- 2) 471+ 3.5x2+ 6x3+ 3.014+ 5.023 4 550
- 3) 10x1+ 36x2+ 16x3+ 18x4+12x3 > 1000
- 4 0x1+ 6x2+ 4x3+8x4+6x8 >> 500
- 5) 11,72, 13,74, 75 50

: The LP is

minimize
$$5.6\pi$$
1 + 8.6π 2 + 1.0π 3 + 6.2π 4 + 5.9π 6

80 bject to $\chi_1 + \chi_2 + \chi_3 + \chi_4 + \chi_5 = 100$

4 $\chi_1 + 3.5\chi_2 + 6\chi_3 + 3.0\pi$ 4 + 5.0π 3 ≤ 550

10 $\chi_1 + 36\chi_2 + 16\chi_3 + 18\chi_4 + 12\chi_3 > 1000$

2 $\chi_1 + 6\chi_2 + 4\chi_3 + 8\chi_4 + 6\chi_5 > 500$
 $\chi_1 = \chi_2 = \chi_3 + \chi_4 = \chi_4 = \chi_5 = \chi_5 = \chi_6 =$

1-2 OP Kmal values:-

$$\chi_2 = 0$$

: Minimum cost = 5.5 (16.66) + 6.9 (83.33) = \$ 583.33

Prof. Smith on plant 16.66 of plant 1 and 83.83 of prant 5 in order to have a minimum 10th wast of \$583.33

Pavarneteus

CP = dollars per plant in p EP

aip = properties i EI obtained by one unit of prant in PEP

bi = Properties i EI met or exceeded (>

m: Total amount of plants to be publicled

up: Maximum number of unit plants that can be purchased of each type per

Decision Variables

2p: Number of units purchosed for promt po for each pep

Objective Function min É cp. 2P

.. The LP is

Subject to Saip on P > bi Yi EI

0 = x6 = n6 A6 E 6

2-2 optimal value:

P4 = 13.19

Ps : 0

P6 = 0

Optimal apjective value = \$736.505

By planting 100 of pr., 13.25 of p2 and 13.19 of p3, our minimum cost of planting this garden is \$ 126.605

3-1) Decision Variable:

xi: number of police officers working 8 hours , i: 1,2,3,4,5

berise4	Λ.	J	3	9	5	6	
41	t	١					
4 2		1	1				
X 3			1	١			
#4				1	١		
25					C	l	
# Required	6)	(1)	9	6	5	Ч	_

Objective is to Minimize x1 + 22+ 23+ 24 +25

Min (m12e	X1 + X2+ X3+ X4	+ % S
Subject to	X i	>10
	21 + 22	> 11
	72 + X3	7, 9
	% 3 +	24 × 6
		24+25 > S
		75 77 4
	X1 , X2 , 83,	x4, 25 70

3-2)

si = number of police officero working 12 how shifts, i= 1,2,3,4
ye number of police officero working & how shifts, i= 1,2,3,4,5

lesiod	V	2	3	Ч	5	6	lost
2h	ι	1	1				\$ 650
×2		Ţ	1	1			\$ 650
13			1	1	1		\$ 650
χų				1	1	1	\$ 650
91	1	(\$ 400
y2		1	1				\$ 400
43			١	1			\$ 400
94				1	1		\$ 400
りを					l	1	\$400
Require d	10	\t	ા	6	Б	4	

minimize
$$650$$
 ($\pi_{1}+\pi_{2}+\pi_{3}+\pi_{4}$) + 400 ($y_{1}+y_{2}+y_{3}+y_{4}+y_{5}$)

 $x_{1}+\pi_{2}$
 $x_{1}+\pi_{2}$
 $x_{1}+y_{2}+y_{3}$
 $x_{2}+\pi_{3}$
 $x_{2}+\pi_{3}$
 $x_{2}+\pi_{3}$
 $x_{3}+\pi_{4}$
 $x_{4}+y_{5}$
 x_{5}
 $x_{1}+x_{2}+x_{3}$
 $x_{2}+\pi_{4}$
 $x_{2}+\pi_{4}$
 $x_{3}+\pi_{4}$
 $x_{4}+y_{5}$
 x_{5}
 $x_{1}+x_{2}$
 $x_{2}+\pi_{4}$
 $x_{3}+\pi_{4}$
 $x_{4}+y_{5}$
 x_{5}
 $x_{1}+x_{2}$
 $x_{2}+\pi_{4}$
 $x_{2}+\pi_{3}$
 $x_{3}+\pi_{4}$
 $x_{4}+y_{5}$
 x_{5}
 x_{5}
 $x_{1}+x_{2}$
 $x_{2}+\pi_{4}$
 $x_{3}+\pi_{4}$
 $x_{4}+y_{5}$
 x_{5}
 x_{5}
 $x_{1}+x_{2}$
 $x_{2}+\pi_{4}$
 $x_{3}+\pi_{4}$
 $x_{4}+y_{5}$
 x_{5}
 x_{5}
 $x_{1}+x_{2}$
 $x_{2}+\pi_{4}$
 $x_{2}+\pi_{3}$
 $x_{3}+\pi_{4}$
 $x_{3}+\pi_{4}$
 $x_{4}+y_{5}$
 x_{5}
 $x_$

4 At the Opera

4-1)

costs: Weekdows only: \$50 (c)
one weekend day: \$150 (e)
Two weekend days: \$250 (A)D)

	Sun	Mon	Tue	wed	77	For	Sae	w8° (\$)
A	١					1	Ţ	50(1)+110(え) = 250
В	(t	1	1	V			50(4)+100(1)=300
C			(1	1	1		Bo (4) = 200
D	l				1	١	1	50 (2)+100(2)= 300
#Required	30	8	\ S	20	25	3 O	90	

.. LP is

Objective: Min
$$250A + 300 (B+D) + 200 C$$
Subject to $A + B + D > 30$
 $B > 78$
 $B + C > 715$
 $B + C > 30$
 $A + C + D > 30$
 $A + C > 50$
 $A + C > 50$
 $A + C > 50$
 $A + C > 70$

The optimum usher staying revols for the overhule center is us for type A, 8 for type B, 12 for type C, 5 for type D, having a minimized salary cost of \$17550

opinal objective = \$ 17550