

Roller Coaster Nation

Daniel Anez
Berkson Dierivot
Evan Latshaw

Warning: Extreme Entertainment

ROLLER COASTER

- Roller Coasters have two ways of getting their potential energy
- Magnets
 - Fast
 - Exhilarating
- Chain "Bike Chain"
 - Slow
 - Creepy
 - Loud

The Engineers Perspective

- Safety
 - People can't handle over 9g's
 - Age of riders
- Reliability
 - How often are repairs needed
 - Will it fall apart
- Cost
 - Dependent on reliability
 - Underlying factor of technology, length, etc

Engineering Physics

- Gravity
- Wind Resistance
- Potential Energy
- Kinetic Energy
- Angles
- Slopes
- Parabolas
- Friction

Mathematics

The Problem

- Find f(x)
- $L_1'(0) = 0.8$
- $L_2'(100) = -1.6$
- f(x) = ?
- L₁ and L₂ have to be tangent to f(x) at points P and Q

The Better Roller Coaster (A)

Suppose the horizontal distance between P and Q is 100ft

- Write f(x) in terms of a, b, and c
- Ensuring a smooth transition

The Better Roller Coaster (B)

■ Solve f(x) for a, b, and c

Trial and Error

- Trial #1: Use of trigonometric Identities
- Tanθ = <u>Opposite</u> Adjacent
- Adjacent Side = 100ft
- Opposite = X
- $\theta = ?$

Result: Too many unknowns

Trial and Error

- Trial #2: Use of slope-intercept form to find the y value of Q
- Slope Intercept form
 - Y = mx + b
 - = m = -1.6
 - x = 100
 - b = y-intercept = ?
- Find equation of L₂ to find Q
- Result: Too many unknowns

Trial and Victory

- $f'(0) = \text{Slope of } L_1$
 - Solve f'(0) for b and c
- f'(100) = Slope of L_2
 - Solve *f* (100) for a
 - b is now known

The Better Roller Coaster (D)

Find the difference in elevation of P and Q

f(100) - f(0)

Difference in elevation is 40