(piversité Hassan 1 université Polydisciplinaire Khouribga

A. U. 2016-201 Filière: SMA/SM Module: Analyse Responsable: N.MRHARD

Examen de rattrapage

Durée: 2h

• Les documents et téléphones portables sont formellement interdits. • Les calculatrices sont à usage personnel.

Exercice 1.

(1) Soient A et B deux parties non vides de $\mathbb R$ telles que

$$\forall a \in A, \forall b \in B, a \leq b$$

Montrer que sup A et inf B existent et que sup $A \leq \inf B$.

(2) Soit A une partie non vide et minorée de \mathbb{R} . On pose

$$\alpha = \inf A$$
 et $B = A \cap]-\infty, \alpha+1]$

Montrer que $\inf A = \inf B$

Soit A une partie non vide et bornée de \mathbb{R} . Montrer que

$$\sup\{|x-y|,(x,y)\in A^2\}=\sup A-\inf A.$$

Exercice 2.

(1) Montrer que pour tout x > 0

$$\frac{1}{x+1} < \ln(x+1) - \ln(x) < \frac{1}{x}.$$

(2) Pour n entier naturel non nul, on pose

$$H_n = \sum_{k=1}^n \frac{1}{k}$$

Montrer que : $\forall n \in \mathbb{N}^*$, $\ln(n+1) < H_n < 1 + \ln(n)$ et en déduire $\lim_{n \to \infty} H$,

(3) Pour n entier naturel non nul, on pose

$$u_n = H_n - \ln(n)$$
 et $v_n = H_n - \ln(n+1)$

(a) Etudier la monotonie des suites (u_n) et (v_n) .

(b) Montrer que les suites (u_n) et (v_n) convergent vers la même limite γ .

(c) Montrer que $\gamma \in \left[\frac{1}{2}, 1\right]$ (γ est appelée la constante d'Euler).

Problème.

2

On considère la fonction $\varphi: \mathbb{R} \longrightarrow \mathbb{R}$ définie pour tout $x \in \mathbb{R}$ par

$$\varphi(x) = \arcsin(\sin 2x)$$

(1) (a) Etudiez la parité et la périodicité de φ.

(b) Montrez que

$$\varphi(x) = 2x \text{ pour } x \in \left[0, \frac{\pi}{4}\right]$$

$$\varphi(x) = \pi - 2x$$
 pour $x \in \left[\frac{\pi}{4}, \frac{\pi}{2}\right]$

(2) Soit f la fonction définie par

$$f(x) = \arcsin\left(\frac{2x}{1+x^2}\right)$$

- (a) Justifiez que pour tout $x \in \mathbb{R}$, $|2x| \le 1 + x^2$. Précisez les cas d'égalité.
- (b) Déduisez de la question précédente le domaine de définition de f.
- (c) Etudiez la parité de f.
- (d) Pout tout $t \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$, exprimez $\frac{2 \tan(t)}{1 + \tan^2(t)}$ en fonction de $\sin(t)$ puis déduisez

$$f(\tan t) = \varphi(t)$$

- Exprimez, pour tout réel $x \in \mathbb{R}$, f(x) à l'aide de φ et de arctan.
- (f) Déduisez des questions précédentes les variations de f sur R
- (g) Dressez le tableau de variations de f en précisant ses limites en $\pm \infty$ (a) Calculez f'(x) pour tout $x \in]-\infty, -1[\cup]-1, 1[\cup]1, +\infty[$.
- (b) Donnez les équations des tangentes aux points d'abscisses $0, \sqrt{3}, \frac{1}{\sqrt{3}}$
- $\psi(c)$ Déterminez les limites $\lim_{x\to 1^+} f'(x)$ et $\lim_{x\to 1^-} f'(x)$.