Programare logică și funcțională - examen scris -

Notă

- 1. Subjectele se notează astfel: of 1p; A 1.5p; B 2.5p; C 2.5p; D 2.5p.
- 2. Problemele Prolog vor fi rezolvate în SWI Prolog. Se cere: (1) explicarea codului și a raționamentului; (2) modelul recursiv de rezolvare, pentru fiecare predicat folosit; (3) specificarea fiecărui predicat (semnificația parametrilor, model de flux, tipul predicatului determinist/nedeterminist).
- 3. Problemele Lisp vor fi rezolvate în Common Lisp. Se cere: (1) explicarea codului și a raționamentului; (2) modelul recursiv de rezolvare, pentru fiecare funcție folosită; (3) specificarea fiecărei funcții (semnificația parametrilor).
- **A.** Fie următoarea definiție de funcție în LISP

```
(DEFUN F(L)

(COND

((ATOM L) -1)

((> (F (CAR L)) 0) (+ (CAR L) (F (CAR L)) (F (CDR L))))

(T (F (CDR L)))

)
```

Rescrieți această definiție pentru a evita dublul apel recursiv (**F (CAR L))**. Nu redefiniți funcția. Nu folosiți SET, SETQ, SETF. Justificați răspunsul.

В.	Dându-se	e o listă diferen	i eterogei ta dintre	nă forma cel mai n	tă din nu nic maxir	umere și n din su	i liste li bliste s	iniare ii cel m	nevide nai mar	de n e dintr	umere, re valor	se cer ile mini	e un me dir	program 1 subliste	SWI- e. Se r	PROLOG presupune	care să e că lista
	calculeze de intrare	e conține	e cel puțir	o sublist	ă. <u>De ex</u>	<u>cemplu</u> ,	pentru	i lista [[4, 2, 1	.8], 7,	2, -3, [6, 9, 11	l, 3], ⁴	1, [5, 9,	19]] r	ezultatul	va fi 6.

C. Să se scrie un program PROLOG care generează lista submulțimilor cu valori din intervalul [**a**, **b**], având număr par de elemente pare și număr impar de elemente impare. Se vor scrie modelele matematice și modelele de flux pentru predicatele folosite.

Exemplu- pentru $\mathbf{a}=2$ și $\mathbf{b}=4 \Rightarrow [[2,3,4]]$

D. Se consideră o listă neliniară. Să se scrie o funcţie LISP care să aibă ca rezultat lista iniţială din care au fost eliminate toate apariţiile unui element e. Se va folosi o funcţie MAP.
<u>Exemplu</u>

a) dacă lista este (1 (2 A (3 A)) (A)) şi e este A => (1 (2 (3))) NIL)
b) dacă lista este (1 (2 (3))) şi e este A => (1 (2 (3)))