Game theory

a course for the

MSc in ICT for Internet and multimedia

Leonardo Badia

leonardo.badia @gmail.com

No Nash Equilibrium?

- In general, finding Nash Equilibria is tricky
- Sometimes, we do not seem to have one
 - For example, in the Odds&Evens game...

		Even 0 l		
pp	0	-4, 4	4, -4	
Ŏ	1	4, -4	-4, 4	

which feels somehow incomplete (especially if we want to use Nash Equilibrium as solution/prediction)

Mixed strategies

Uncertainty makes the games interesting

Missing outcome

Expand Odds&Evens to find the outcome

forridmo NE	Even		
	0	1/2	1
dd 0	-4, 4	0,0	4, -4
oppo oppo oppo oppo oppo oppo oppo opp	0,0	0,0	0,0
1	4, -4	0,0	-4, 4

□ It seems that $(\frac{1}{2}, \frac{1}{2})$ is a NE. Let formalize this.

Mixed strategies

- If \overline{A} is a non-empty discrete set, a **probability distribution** over \overline{A} is a function $p : \overline{A} \to [0,1]$, such that $\sum_{x \in A} p(x) = 1$
- The set of possible probability distributions over A is called the **simplex** and denoted as ΔA
- For a normal form game $(S_1,...,S_n; u_1,...,u_n)$, a **mixed strategy** for player i is a probability distribution m_i over set S_i
- That is, *i* chooses strategies in $S_i = (s_{i,1}, ..., s_{i,n})$ with probabilities $(m_i(s_{i,1}), ..., m_i(s_{i,n}))$

Expected payoff

- Utility u_i can be extended to the expected utility, which is a real function over $\Delta S_1 \times \Delta S_2 \times ... \times \Delta S_n$
- If players choose mixed strategies $(m_1, ..., m_n) \in S$ compute player i 's payoff by weighing on m_i 's

$$u_i(m_1,...,m_n) = \sum_{s \in S} m_1(s_1) \cdot m_2(s_2) \cdot ... \cdot m_n(s_n) \cdot u_i(s)$$

- □ In other words:
 - fix a global strategy's
 - compute its probability
 - weigh the utility of s on this probability and sum

Intuition

- Consider Odds&Evens game and assume Odd decides to play 0 with probability q, while Even plays 0 with probability r
 - Consequently 1 is played by Odd and Even with probability 1-q and 1-r, respectively

		O	Even l
		(prob r)	(prob l-r)
qq	0 (prob <i>q</i>)	-4 <i>qr</i> , 4 <i>qr</i>	4q(1-r), -4q(1-r)
0	l (prob 1-q)	4(1-q)r, -4(1-q)r	-4(1-q)(1-r), 4(1-q)(1-r)

this is a **single** global strategy $m = (m_1, m_2) = (q, r)$

Intuition

- In other words, we revise the game so that each player can choose not only either 0 or 1, but also a value between them: q for Odd, r for Even
- Odd's payoff is -16qr + 8q + 8r 4 = -4(2q-1)(2r-1)

		U	Even 1
		(prob r)	(prob l-r)
pp	0 (prob <i>q</i>)	-4 <i>qr</i> , 4 <i>qr</i>	4q(1-r), -4q(1-r)
0	l (prob 1-q)	4(1-q)r, -4(1-q)r	-4(1-q)(1-r), 4(1-q)(1-r)

Intuition

- In other words, we revise the game so that each player can choose not only either 0 or 1, but also a value between them: q for Odd, r for Even
- Odd's payoff is -16qr + 8q + 8r 4 = -4(2q-1)(2r-1)

Pure strategies

- Given a mixed strategy $m_i \in \Delta S_i$ we define the **support** of m_i as $\{s_i \in S_i : m_i(s_i) > 0\}$
- □ Each strategy $s_i \subseteq S_i$ (an element of S_i) can be identified with the mixed strategy p (which is an element of ΔS_i) such that $p(s_i) = 1$
 - Hence, $p(s_i') = 0$ if $s_i' \neq s_i$ and also support $(p) = \{s_i\}$
- □ Thereafter, we identify p with s_i : Pure strategy s_i is seen as a degenerate probability distribution
 - Previous definitions of dominance and NE only refer to the pure strategy case

Strict/weak dominance

- □ Consider game $G = \{S_1, ..., S_n; u_1, ..., u_n\}$.
- □ If m_i' , $m_i
 vert ext{ \Delta S_i}$, m_i' strictly dominates m_i if $u_i(m_i', m_{-i}) > u_i(m_i, m_{-i})$ for every m_{-i}
- \square We say that m_i' weakly dominates m_i if

$$u_{i}(m_{i}', m_{-i}) \ge u_{i}(m_{i}, m_{-i})$$
 for every m_{-i}
 $u_{i}(m_{i}', m_{-i}) > u_{i}(m_{i}, m_{-i})$ for some m_{-i}

□ Note: there are infinitely (and continuously) many m_{-i} in the set: $\Delta S_1 \times ... \times \Delta S_{i-1} \times \Delta S_{i+1} \times ... \times \Delta S_n$

Strict/weak dominance

vister de considero als i, somo Appliera mi (1) del sommatoria di u.

However, it is possible to prove that:

If
$$m_i'$$
, $m_i \in \Delta S_i$ m_i' strictly dominates m_i if

$$u_i(m_i',s_{-i}) > u_i(m_i,s_{-i})$$
 for every $s_{-i} \in S_{-i}$

 \square Similarly, $\underline{m_i}'$ weakly dominates $\underline{m_i}$ if

$$u_{i}(m_{i}',s_{-i}) \ge u_{i}(m_{i},s_{-i})$$
 for every $s_{-i} \in S_{-i}$
 $u_{i}(m_{i}',s_{-i}) > u_{i}(m_{i},s_{-i})$ for some $s_{-i} \in S_{-i}$

That is, we can <u>limit our search to pure strategies</u> of the opponents.

Nash equilibrium

- □ Consider game $G = \{S_1, ..., S_n; u_1, ..., u_n\}$.
- □ A joint mixed strategy $m \in \Delta S_1 \times ... \times \Delta S_n$ is said to be a Nash equilibrium if for all i:

$$u_i(\mathbf{m}) \ge u_i(m_i', \mathbf{m}_{-i})$$
 for every $m_i' \subseteq \Delta S_i$

 This reprise the same concept of NE in pure strategies: no player has an incentive to change his/her move (which is a mixed strategy now)

back to Example 3

- □ In the Odds&Evens game, the payoff for Odd is -4(2q-1)(2r-1), the opposite for Even.
- □ If $q = \frac{1}{2}$, or $r = \frac{1}{2}$, **both** players have payoff 0.
- □ If $q = r = \frac{1}{2}$ no player has incentive to change.

Leonardo Badia – leonardo.badia@gmail.com

back to Example 3

- □ As an exercise, prove that $(\frac{1}{2}, \frac{1}{2})$ is the **only** Nash Equilibrium of the Odds&Evens game
- How to proceed
 - □ Consider three cases, where the payoff of player Odd is <0, >0, =0 but joint strategy is not $(\frac{1}{2}, \frac{1}{2})$
 - Show that in each case there is a player (who?) having an incentive in changing strategy
 - None of this is a NE. $(\frac{1}{2}, \frac{1}{2})$ is the only one

Using mixed strategies

and introducing the Nash theorem

IESDS vs mixed strategies

- R is not dominated by L or C. But mixed strategy $m = \frac{1}{2}L + \frac{1}{2}C$ gets $u_B = 2$ regardless of A's move
- Pure strategy R is strictly dominated by m
 - R can be eliminated
 - Further eliminations are possible

IESDS vs mixed strategies

- □ R is not dominated by L or C. But mixed strategy $m = \frac{1}{2} L + \frac{1}{2} C$ gets $u_B = 2$ regardless of A's move
- Pure strategy R is strictly dominated by m
 - R can be eliminated
 - Further eliminations are possible

IESDS vs mixed strategies

- Similar theorems to the pure strategy case hold for IESDS in mixed strategies (IESDSm).
- □ **Theorem.** Nash equilibria survive IESDSm.
- Theorem. The order of IESDSm is irrelevant.

Note: Use strict (not weak) dominance!
 A weakly dominated strategy can be a NE, or belong to the support of a NE

Characterization

- □ **Theorem**. Take a game $G = \{S_1, ..., S_n; u_1, ..., u_n\}$ and a joint mixed strategy m for game G. The following statements are equivalent:
- (1) Joint mixed strategy m is a Nash equilibrium
- (2) For each i:

$$u_i(\mathbf{m}) = u_i(\mathbf{s}_i, \mathbf{m}_{-i}) \text{ for every } \mathbf{s}_i \in \text{support}(m_i)$$

 $u_i(\mathbf{m}) \ge u_i(\mathbf{s}_i, \mathbf{m}_{-i}) \text{ for every } \mathbf{s}_i \notin \text{support}(m_i)$

 Corollary. If a pure strategy is a NE, it is such also as a mixed strategy

back to Example 5

		R ^{Brian} S		
Ann	R	2, 1	0,0	
Ä	S	0,0	1,2	

- □ This game had two pure NEs: (R,R) and (S,S)
- We show now that there is also a mixed NE
- \square Ann (or Brian) plays R with probabilities q (or r)
- \square A mixed strategy is uniquely identified by (q,r)
 - Ann's payoff is $u_A(q,r) = 2qr + (1-q)(1-r)$
 - Brian's is $u_B(q,r) = qr + 2(1-q)(1-r)$

back to Example 5

- \square Assume (a,b) is a mixed NE.
 - Note: support (a) = support (b) = $\{R,S\}$. Pure strategies R/S correspond with q (or r) being 0/1
- Due to the Theorem, $u_A(a,b) = u_A(0,b) = u_A(1,b)$
- □ Now, use: $u_A(q,r) = 2qr + (1-q)(1-r)$
- 2ab + (1-a)(1-b) = 1-b = 2b
- □ Solution: $b = \frac{1}{3}$
- □ Similarly, $u_B(a,0) = u_B(a,1)$
- □ Solution: $\frac{a}{a} = \frac{2}{3}$

Nash theorem (intro)

- The reasoning we used to find the third (mixed)
 NE of the Battle of Sexes is more general
- Every two-player games with two strategies has a NE in mixed strategies
- This is easy to prove and is part of the more general Nash theorem
- **Theorem** (Nash 1950) Every game with finite S_i 's has at least one Nash equilibrium (possibly involving mixed strategies)

teoreme di existenza => non dice some travare NE

Understanding mixed strategy

- Mixed strategies are key for Nash Theorem
 - What does "mixed strategies as probabilities" mean?
 - In the end, players take pure strategies.
- Possible interpretations
 - Large numbers: If the game is played *M* times, mixed strategy q = to choose a pure strategy *qM* times (note: each of the *M* times is one-shot memoryless)
 - Fuzzy values: Unsure actions: players do not know
 - Beliefs: The probability q reflects the uncertainty that my opponent has about my choice (which is pure)

Beliefs

- □ A **belief** of player i is a possible profile of opponents' strategies: an element of set ΔS_{-i}
 - Same definition of pure strategies (but here ↑)
- □ As before, a best-response-correspondence BR: $\Delta S_{-i} \rightarrow \mathcal{P}(\Delta S_i)$ associates to $m_{-i} \subseteq \Delta S_{-i}$ a subset of ΔS_i such that each $m_i \subseteq BR(m_{-i})$ is a best response to m_{-i}
 - Also, best responses are still not unique

- Using beliefs, we can speak of best response to an opponent's (mixed) strategy
 - Intuition

		F Be	ea G
Art	U	6, 1	0, 4
	D	2,5	4,0

- Bea ignores what Art will play
- \blacksquare So she assumes he will play U with probability q
- \square And, Art thinks Bea will play F with probability r

- □ E.g., if Bea is known for always playing F (r = 1), Art's best response is to play U (q = 1). In general?
- □ It holds: $u_{A}(D,r) = 2r + 4(1-r), u_{A}(U,r) = 6r$
- U is actually Art's best response as long as $r > \frac{1}{2}$, else it is D. If $r = \frac{1}{2}$ they are equivalent
- Denote Art's best response with $q^*(r)$

Art's best response is either U or D means that $q^*(r) = 1, 0$, respectively; then, $q^*(r)$ is step-wise $q^*(r) = 0$ if $r < \frac{1}{2}$, $q^*(r) = 1$ if $r > \frac{1}{2}$

- □ For Bea: $u_B(q,F) = q + 5(1-q), u_B(q,G) = 4q$
- □ Thus, Bea's best response $r^*(q)$ is step-wise

$$r^*(q) = 1 \text{ if } q < \frac{5}{8}, \qquad r^*(q) = 0 \text{ if } q > \frac{5}{8}$$

- □ Joint strategy $m = (q = \frac{1}{2}, r = \frac{5}{8})$ is a NE.
- NE are points were the choice of each player is the best response to the other player's choice.

Existence of NE

- Clearly, the existence of at least one NE is guaranteed by topological reasons.
- There may be more NEs (e.g. Battle of Sexes).

		R ^{Brian} S		
Ann	R	2, 1	0,0	
Ą	S	0,0	1,2	

$$u_{A}(R,r) = 2r, u_{A}(S,r) = 1-r, q^{*}(r) = 1-h(r-\frac{1}{3})$$

$$u_B(q,R) = q$$
, $u_B(q,S) = 2(1-q)$, $r^*(q) = 1 - h(q - \frac{2}{3})$

Existence of NE

- □ Anyway, $q^*(r)$ must intersect $r^*(q)$ at least once.
- The Nash theorem generalizes this reasoning.

The Nash theorem

- □ For game $G = \{S_1, ..., S_n; u_1, ..., u_n\}$, define: $BR_i : \Delta S_1 \times ... \times \Delta S_{i-1} \times \Delta S_{i+1} \times ... \times \Delta S_n \rightarrow \mathscr{D} \Delta S_i$ $BR_i (m_{-i}) = \{m_i \in \Delta S_i : u_i (m_i, m_{-i}) \text{ is maximal } \}$
- □ Then define **BR**: $\Delta S \rightarrow \mathscr{D} \Delta S$ as **BR**(m) = BR_1 (m_{-1}) × ... × BR_n (m_{-n})
- \square BR_i (m_{-i}) is the set of best responses of i to what others may do (m_{-i}) ; **BR** is their aggregate.
 - $lue{m}$ is a NE if $m \in \mathbf{BR}(m)$
 - □ Properties of BR_i (m_{-i}): (1) is always non-empty (2) always contains at least a pure strategy

The Nash theorem

Brouwer's Fixed Point Theorem

- □ If f(x) is a continuous function from a closed real interval \mathcal{J} to itself, $\exists x^* \in \mathcal{J}$ such that $f(x^*) = x^*$
- □ **Proof:** consider $\mathcal{J} = [0,1]$. If f(0) > 0 and f(1) < 1, apply Bolzano-Weierstrass theorem to f(x)-x

Leonardo Badia – leonardo.badia@gmail.com

The Nash theorem

- Kakutani's Fixed Point Theorem
- □ If A is a non-empty, compact, convex subset of \mathbb{R}^n
- □ If correspondence $F : A \Rightarrow A$ is such that
 - □ For all $x \in A$, F(x) is non-empty and convex
 - □ If $\{x_i\}$, $\{y_i\}$ are sequences in \mathbb{R}^n converging to x and y, respectively: $y_i \in F(x_i) \Rightarrow y \in F(x)$ (F has **closed graph**)
- □ Then there exists $x^* \in A$ such that $x^* \in F(x^*)$.

 Nash theorem. Nothing but Kakutani theorem applied to the global best-response BR

Adding a time dimension

Still "static" games?

Fictitious Play

- In fictitious play (G.W. Brown, 1951), regrets become actual changes of moves
 - Each player i assumes the (possibly mixed) strategies played by −i as fixed
 - □ If *i* gets a chance to play again, it best responds to what see the other players just did
 - Somehow, "full rationality" is denied
 (we acknowledge predictions may be incorrect)
- How does fictitious game evolve?
 - Nash equilibrium points are absorbing states.
 So, are they always convergence points?

Fictitious Play

- Not always! Players can also keep
 "cycling" (we will see examples of this)
 - □ In Rock/Paper/Scissors, FP does not converge.
- □ FP converges to a NE in some relevant cases:
 - The game can be solved by IESDS
 - Potential games
 - (also other cases such as 2xN games with generic payoffs – which means every outcome has a different payoff for all the players)

Potential games

- □ Take G = { $S_1,...,S_n$; $u_1,...,u_n$ }. $S = S_1 \times ... \times S_n$
- □ Function Ω : $S \rightarrow \mathbb{R}$ is an (exact) potential for G if:

$$\Omega(s_{i}',s_{-i}) - \Omega(s_{i},s_{-i}) = u_{i}(s_{i}',s_{-i}) - u_{i}(s_{i},s_{-i}) = \Delta u_{i}$$

- □ Ω : $S \rightarrow \mathbb{R}$ is a **weighted potential** with weight vector $\mathbf{w} = \{w_i > 0\}$ if: $\Omega(s_i', s_{-i}) \Omega(s_i, s_{-i}) = w_i \Delta u_i$
- \square Ω : $S \rightarrow \mathbb{R}$ is an **ordinal potential** for G if:

$$\Omega(s_{i}',s_{-i}) > \Omega(s_{i},s_{-i}) \Leftrightarrow u_{i}(s_{i}',s_{-i}) > u_{i}(s_{i},s_{-i})$$

If G admits a potential (ordinal potential), it is called a potential (ordinal potential) game.

Potential games

- Potential games have nice properties
- □ If $G = \{S_1, S_2, ..., S_n; u_1, u_2, ..., u_n\}$ has an ordinal potential Ω, it is immediate that its set of NEs is the same of $G' = \{S_1, S_2, ..., S_n; Ω, Ω, ..., Ω\}$
- I.e., all the players want to max the potential
 - Multi-person reduces to single-goal optimization
 - To some extent, enables distributed optimization
 - The physical meaning of the potential may not be always immediate

Examples of potential

The Prisoner's Dilemma is a potential game.

M Bob F				M Bob F		
$\mathbf{A}_{\mathbf{M}}$	-1,-1	-9,0	M 🕏	0	1	
F	0, -9	-6, -6	F	1	4	
ր Ͳh	potential Ω					

- This potential is exact
- However, the players are not very smart (they do not maximize their global welfare!)
- So, there must be some dummy somewhere

Examples of potential

- The game of Cournot oligopoly is an ordinal potential game.
 - \blacksquare Recall that firms choose q_1 and q_2 ;
 - the market clearing price is $a q_1 q_2$;
 - \blacksquare unit cost is c (so cost to produce $q_i = c q_i$)
- □ Thus $u_i(q_i,q_j) = q_i(a-q_i-q_j-c)$

and an ordinal potential function is:

$$\Omega\left(q_{i},q_{j}\right)=q_{i}q_{j}\left(a-q_{i}-q_{j}-c\right)$$

Potential games

- Theorem. Every finite ordinal potential game has (at least) a pure strategy Nash eq.
 - This NE can be found deterministically
- Proof: a consequence of fictitious play
 - All players move, one at a time, to maximize their utility → they also maximize the potential
 - \blacksquare Repeat this until a local maximum of Ω is found

Congestion games

- Congestion games are a special case of potential game. They involve the choice of "least congested resources"
 - Especially found in network problems (finding the least congested route on a graph)
 - Or in resource allocation (minority games)
- It can actually be found that:
 - congestion games are potential games
 - for every potential game, there exists a congestion game with the same potential

Coordination game

- A coordination game models situations
 where players are required to act together
 - They give higher payoffs to the players when they make the same choice
 - An example is the Battle of sexes
 - In the historical "Stag Hunt" (proposed by Rousseau) 2 hunters may decide to hunt a deer (value 20), but they succeed only together; or, each one can hunt a hare (worth 7), even alone

Coordination game

- A coordination game has multiple pure strategy NEs
- It can be seen as a potential game, with coordination points as potential maxima
 - For the Stag Hunt:

Coordination game

- Another case is the anti-coordination game
 - For example the Hawk-and-Dove, Chicken
 - Players try not to select the same thing

	Hawk	Dove
Hawk	-99,-99	10,-10
Dove	-10,10	0,0

- Hawk = buy nuclear weaponsDove = be peaceful
- Hawk = hold the wheel; if you win, the other is a chickenDove = steer the wheel
- Note: Odd/Even and similar ones (a player is for =, the other ≠) are called discoordination games

Potential=coordination+dummy

- □ Finally, a **dummy** (or pure externality) game is such that for all \mathbf{s}_{-i} , $u_i(\mathbf{s}_i, \mathbf{s}_{-i}) = u_i(\mathbf{s}_i', \mathbf{s}_{-i})$, i.e., payoff of player i only depends on \mathbf{s}_{-i}
- Every potential game is a sum of a pure coordination and a dummy game

Computational complexity

Is a NE easy to find?

How easy is to find a NE?

- Since Nash equilibria are regarded as the "natural" evolution of the system, one may wonder how much it takes to find them
- We already have the Nash theorem, which is an existence theorem
- Plus, there are notable results for certain specific games

A negative result

- Unfortunately, in the general case, finding a NE is computationally hard
- This has been proven in some recent papers by Papadimitriou et al.
- However, computationally hard does not mean NP-complete
- The search for a NE cannot be NP-complete as a solution *must* exist (there may even be multiple solutions, which complicates things)

The PPAD class

- The NASH problem is PPAD-complete
 - PPAD = Polynomial Parity Arguments on Directed graphs (Papadimitriou, 1994)
 - The PPAD class is somehow intermediate between P and NP
 - More or less, P<PPAD<NP. This means it is computationally hard, unless P=NP
 - This class includes the problem equivalent to the end-of-line problem

The PPAD class

- Consider the end-of-line problem:
 - "Take a directed graph with an unbalanced node. There must be another (at least). Find it."

- This problem is bound to have a solution
- However, finding it without exploring the whole graph is far from trivial (and in certain cases cannot be avoided)

How is NASH a PPAD problem?

- The NASH problem corresponds to find a fixed point of the **BR** function
- Finding a fixed point over a compact set can be shown to be equivalent to finding the end of a proper path on a directed graph
- There are elegant (not difficult but very long) proofs of it, involving graph coloring and compact partitioning

Consequences on NE?

- This may imply bad consequences on the practical usefulness of Nash Equilibrium
- To be optimistic:
 - Certain simple problems can be shown to have a NE which can be found through constructive steps (good for engineers)
 - one may be "close" to a NE (maybe it is enough) \rightarrow relaxation: ϵ -Nash Equilibrium, i.e., instead of checking for "no unilateral improvements," ignore all improvements less than a given $\epsilon > 0$