STEPPER MOTOR

Bisacchi, Di Cesare, Franzoni, Tosi

Tipologia di motore

Variable reluctance	Permanent magnet	Hybrid
		Rose Control of the C
1) Soft iron multipole rotor and a laminated core in the wound stator 2) Has four "stator pole sets" (A, B, C,) set 15 degrees apart 3) Rarely use in industry because of less detent torque.	1) Rotor has no teeth and and a laminated core in the wound stator 2) Has four phase and 90 degrees apart. 3) Ideal choice for non industrial application such as a line printer print wheel positioner and operate at fairly low speed.	1) Standard Hybrid motor has 200 rotor teeth and bifilar stator windings. 2) Standard Hybrid motor move at 1.8 step angles. Other Hybrid motor available in 0.9° and 3.6° step angle configurations. 3) Wide variety used for industrial applications because of high static and dynamic torque and run at very high step rates.

Modalità: FULL-STEP

- Ogni spostamento ha ampiezza pari all'angolo dello step indicato dalle specifiche del motore (1.8° nel nostro caso)
- Si prevede l'alimentazione di due fasi contemporaneamente per ottenere il massimo momento torcente

Modalità: HALF-STEP

- Ogni spostamento ha ampiezza pari alla metà dell'angolo dello step indicato dalle specifiche del motore (0.9° nel nostro caso)
- La sequenza alterna l'alimentazione di una e due fasi contemporaneamente durante lo spostamento

Microstepping

- Sviluppato per permettere allo stepper motor di avere un andamento più fluido nel passaggio da uno step al successivo
- Non aumenta la risoluzione reale del motore
- Utilizzato per aumentare la **risoluzione teorica** durante lo spostamento, minimizzando il **rumore** e le **vibrazioni** prodotte
- Molto impreciso: non è possibile mantenere una posizione intermedia perché la dipendenza di questa non è linearmente proporzionale alla corrente ma dipende dalla caratteristiche elettriche e meccaniche del motore
- Solo quando la sequenza di passi coincide con la modalità full/half step, la posizione del rotore è deterministica
- Il funzionamento richiede una **modulazione** della potenza mediante PWM, causando un minor momento torcente rispetto alle modalità full/half step

Sequenze

Full step

Index	1a	1b	2a	2b
1	1	0	0	1
2	1	1	0	0
3	0	1	1	0
4	0	0	1	1

Half step

Index	1a	1b	2a	2b
1	1	0	0	0
2	1	1	0	0
3	0	1	0	0
4	0	1	1	0
5	0	0	1	0
6	0	0	1	1
7	0	0	0	1
8	1	0	0	1

- 1a -> A
- 1b -> B
- 2a -> A'
- 2b -> B'

Schematico (Input)

- delayDuration_in: numero di clock di attesa dopo l'esecuzione di uno step
- doRewind_in: comando inviato dal sensore di fine corsa
- stopRewind_in: comando inviato dal sensore di inizio corsa
- doStep_in: comando di movimento.
 Provoca uno spostamento di nSteps
- nSteps_in: numero di step da eseguire in uno spostamento in avanti
- full_step_in: modalità di funzionamento del motore (1: Full step, 0: Half step)

Schematico (Output)

- a_out ... d_out: segnali di comandi del motore secondo la corrispondenza della tabella precedente
- stepDone_out: a 0 quando il motore è in movimento, ad 1 quando il modulo è in attesa di comandi

Automa

L'automa è stato realizzato secondo il modello Moore ed ogni transizione ha effetto al ciclo di clock successivo.

Report sintesi

- Late	Latency (clock cycles)						
- S	Summary						
La	atency		Interval				
mi	n	max	min	max	Type		
(0	0	1	1	none		

L'organizzazione del codice e l'inserimento di opportune pragma hanno permesso di ottenere una latenza nulla, che consente al modulo di intercettare gli input ad ogni clock.

Collegamento PMOD-motore

Per tener conto dell'accoppiamento dei fili del motore fornito, è stato necessario adattare tale schema scambiando le porte **JA8** e **JA9** del connettore PMOD, per ottenere in uscita i raggruppamenti **A-A'** e **B-B'**.

Testbench

