

Unit 1:Data Sources and Representations

Mamatha.H.R

Department of Computer Science and Engineering

Unit 1:Data Sources and Representations

Mamatha H R

Department of Computer Science and Engineering

Data Sources

- There has been enormous data growth in both commercial and scientific databases due to advances in data generation and collection technologies
- New mantra
 - Gather whatever data you can whenever and wherever possible.
- Expectations
 - Gathered data will have value either for the purpose collected or for a purpose not envisioned.

Cyber Security

E-Commerce

Traffic Patterns

Social Networking: Twitter

Sensor Networks

Computational Simulations

Data Sources

 Lots of data is being collected and warehoused

- Web data
 - Yahoo has Peta Bytes of YAHOO! web data

- amazon.com Facebook has billions of
- purchases at department/ grocery stores, e-commerce

active users

- Amazon handles millions of visits/day
- Bank/Credit Card transactions

Data Sources

- Data collected and stored at enormous speeds
 - remote sensors on a satellite
 - NASA EOSDIS archives
 over
 petabytes of earth science
 - telescopes scanning the skies
 - Sky survey data
 - High-throughput biological data
 - scientific simulations
 - terabytes of data generated in a few hours

fMRI Data from Brain

Surface Temperature of Earth

Sky Survey Data

Gene Expression Data

What is Data?

- Collection of data objects and their attributes
- An attribute is a property or characteristic of an object
 - Examples: eye color of a person, temperature, etc.
 - Attribute is also known as variable, field, characteristic, dimension, or feature
- A collection of attributes describe an object
 - Object is also known as record, point, case, sample, entity, or instance

Attributes

_	Tid	Refund	Marital Status	Taxable Income	Cheat	
	1	Yes	Single	125K	No	
	2	No	Married	100K	No	
	3	No	Single	70K	No	
	4	Yes	Married	120K	No	
	5	No	Divorced	95K	Yes	
	6	No	Married	60K	No	
	7	Yes	Divorced	220K	No	
	8	No	Single	85K	Yes	
	9	No	Married	75K	No	
	10	No	Single	90K	Yes	

A More Complete View of Data

- Data may have parts
- Attributes (objects) may have relationships with other attributes (objects)
- More generally, data may have structure
- Data can be incomplete

Attribute Values

- Attribute values are numbers or symbols assigned to an attribute for a particular object
- Distinction between attributes and attribute values
 - Same attribute can be mapped to different attribute values
 - Example: height can be measured in feet or meters
 - Different attributes can be mapped to the same set of values
 - Example: Attribute values for ID and age are integers
 - But properties of attribute values can be different

Types of Attributes

- There are different types of attributes
 - Nominal
 - Examples: ID numbers, eye color, zip codes
 - Ordinal
 - Examples: rankings (e.g., taste of potato chips on a scale from 1-10), grades, height {tall, medium, short}
 - Interval
 - Examples: calendar dates, temperatures in Celsius or Fahrenheit.
 - Ratio
 - Examples: temperature in Kelvin, length, counts, elapsed time (e.g., time to run a race)

Discrete and Continuous Attributes

Discrete Attribute

- Has only a finite or countably infinite set of values
- Examples: zip codes, counts, or the set of words in a collection of documents
- Often represented as integer variables.
- Note: binary attributes are a special case of discrete attributes

Continuous Attribute

- Has real numbers as attribute values
- Examples: temperature, height, or weight.
- Practically, real values can only be measured and represented using a finite number of digits.
- Continuous attributes are typically represented as floatingpoint variables.

Data Representations

- Structured
- Unstructured
- Semi structured
- Structured data means that the data is described in a matrix form with labelled rows and columns.

 Any data that is not originally in the matrix form with rows and columns is an unstructured data.

Data Representations

- relational databases and spreadsheets.
- text and multimedia content. photos and graphic images, videos, streaming instrument data, webpages, PDF files, PowerPoint presentations, emails, blog entries, wikis and word processing documents.
- XML documents and NoSQL databases.
- For example, word processing software now can include metadata showing the author's name and the date created, with the bulk of the document just being unstructured text.

Data Representations

- Record
 - Relational records
 - Data matrix, e.g., numerical matrix, crosstabs
 - Document data: text documents: term-frequency vector
 - Transaction data
- Graph and network
 - World Wide Web
 - Social or information networks
 - Molecular Structures

Data Representations

- Ordered
 - Video data: sequence of images
 - Temporal data: time-series
 - Sequential Data: transaction sequences
 - Genetic sequence data
- Spatial, image and multimedia:
 - Spatial data: maps
 - Image data:
 - Video data:

Data Representations-Record Data

 Data that consists of a collection of records, each of which consists of a fixed set of attributes

Tid	Refund	Marital Status	Taxable Income	Cheat	
1	Yes	Single	125K	No	
2	No	Married	100K	No	
3	No	Single	70K	No	
4	Yes	Married	120K	No	
5	No	Divorced	95K	Yes	
6	No	Married	60K	No	
7	Yes	Divorced	220K	No	
8	No	Single	85K	Yes	
9	No	Married	75K	No	
10	No	Single	90K	Yes	

Data Representations-Data Matrix

- If data objects have the same fixed set of numeric attributes, then the data objects can be thought of as points in a multidimensional space, where each dimension represents a distinct attribute
- Such data set can be represented by an m by n matrix, where there are m rows, one for each object, and n columns, one for each attribute

Projection of x Load	Projection of y load	Distance	Load	Thickness
10.23	5.27	15.22	2.7	1.2
12.65	6.25	16.22	2.2	1.1

Data Representations-Document Data

- Each document becomes a `term' vector,
 - each term is a component (attribute) of the vector,
 - the value of each component is the number of times the corresponding term occurs in the document.

	team	coach	pla y	ball	score	game	wi n	lost	timeout	season
Document 1	3	0	5	0	2	6	0	2	0	2
Document 2	0	7	0	2	1	0	0	3	0	0
Document 3	0	1	0	0	1	2	2	0	3	0

Data Representations-Transaction data

- A special type of record data, where
 - each record (transaction) involves a set of items.
 - For example, consider a grocery store. The set of products purchased by a customer during one shopping trip constitute a transaction, while the individual products that were purchased are the items.

	I tens
1	Bed Cle Mk
2	Rec; Beed
3	Rer; Cde, Daper; Mik
4	Rer; Beed, Deper; Mik
5	Cke, Daper, Mik

Data Representations

- Graph Data
- Examples: Generic graph and HTML Links

-
- Data Mining
-
- Graph Partitioning
-
- Parallel Solution of Sparse Linear System of Equations
-
- N-Body Computation and Dense Linear System Solvers

Benzene Molecule: C₆H₆

Data Representations-Ordered Data

Sequences of transactions

An element of the sequence

Spatio-Temporal Data

Genomic sequence data

Data Representations- Data Warehouse

"A data warehouse is a <u>subject-oriented</u>, <u>integrated</u>, <u>time-variant</u>, and <u>nonvolatile</u> collection of data in support of management's decision-making process."—W. H. Inmon

Sales volume as a function of product, month, and region

Data Representations

A Sample Data Cube

Typical OLAP Operations

- Roll up (drill-up): summarize data
 - by climbing up hierarchy or by dimension reduction
- Drill down (roll down): reverse of roll-up
 - from higher level summary to lower level summary or detailed data, or introducing new dimensions
- Slice and dice: project and select
- Pivot (rotate):
 - reorient the cube, visualization, 3D to series of 2D planes
- Other operations
 - drill across: involving (across) more than one fact table
 - drill through: through the bottom level of the cube to its back-end relational tables (using SQL)

Typical OLAP Operations

Typical OLAP Operations

Typical OLAP Operations

Slice

Typical OLAP Operations

ONLINE

Location (cities)

OLAP Processing

Assignment

- Identify an application for each of the data representation you have learnt
- Download a dataset from Kaggle and identify the different types of attributes

References

Text Book:

- <u>Data Mining: Concepts and Techniques</u> by Jiawei Han,
 Micheline Kamber and Jian Pei, The Morgan Kaufmann Series in Data Management Systems, 3rd Edition.
- <u>Introduction to Data Mining</u>, Tan, Steinbach, Kumar, 2nd Edition

THANK YOU

Dr.Mamatha H R

Professor, Department of Computer Science mamathahr@pes.edu

+91 80 2672 1983 Extn 834