Problem Set 4*

Xiaowei Zhang[†]

Problem 1

(1) Emperical zero-one error $\hat{\epsilon}_{D_t}(h_t)$, by definition, $=\sum_{i=1}^N D_t(i)[[h_t(x_i) \neq y_i]]$, here [[A]] is the indicator function.

$$\begin{split} \hat{\epsilon}_{D_t}(h_t) &= \sum_{i=1}^N D_t(i)[[h_t(x_i) \neq y_i]] \\ &= \sum_{i=1}^N \frac{D_{t-1}(i) \exp(-\alpha_t y_i h_t(x_i))}{\sum_{j=1}^N D_{t-1}(j) \exp(-\alpha_t y_j h_t(x_j))}[[h_t(x_i) \neq y_i]] \\ &= \frac{\sum_{i=1}^N [[h_t(x_i) \neq y_i]] D_{t-1}(i) \exp(-\alpha_t y_i h_t(x_i))}{\sum_{j=1}^N D_{t-1}(j) \exp(-\alpha_t y_j h_t(x_j))} \\ &= \frac{\hat{\epsilon}_{D_{t-1}}(h_t) \exp(\alpha_t)}{\sum_{j=1}^N D_{t-1}(j) \exp(-\alpha_t y_j h_t(x_j))} \\ &= \frac{\hat{\epsilon}_{D_{t-1}}(h_t) \exp(\alpha_t)}{\sum_{j:h_t(x_j) \neq y_j} D_{t-1}(j) \exp(\alpha_t) + \sum_{j:h_t(x_j) = y_j} D_{t-1}(j) \exp(-\alpha_t)} \\ &= \frac{\hat{\epsilon}_{D_{t-1}}(h_t) \exp(\alpha_t)}{\hat{\epsilon}_{D_{t-1}}(h_t) \exp(\alpha_t) + (1 - \hat{\epsilon}_{D_{t-1}}(h_t)) \exp(-\alpha_t)} = \frac{1}{2} \end{split}$$
 We know that $y_i h_t(x_i) = -1$ when $y_i \neq h_t(x_i)$ because both y_i and $h_t(x_i)$ has two possible

We know that $y_i h_t(x_i) = -1$ when $y_i \neq h_t(x_i)$ because both y_i and $h_t(x_i)$ has two possible values: 1 or -1. When they are different, the product should be -1. When they are the same, the product should be 1. Therefore, $\exp(-\alpha_t y_i h_t(x_i))$ becomes $\exp(\alpha_t)$ when $y_i \neq h_t(x_i)$ and becomes $\exp(-\alpha_t)$ when $y_i = h_t(x_i)$.

We also know that $\sum_{j:h_t(x_j)=y_j} D_{t-1}(j) = \sum_{j=1}^N D_{t-1}(j)[[h_t(x_j)=y_j]] = 1 - \sum_{j=1}^N D_{t-1}(j)[[h_t(x_j)\neq y_j]] = 1 - \hat{\epsilon}_{D_{t-1}}(h_t)$ because the sum of a distribution should be 1

^{*}Due: Nov 23, 2021, Student(s) worked with:

[†]NetID: xz561, Email: xz561@scarletmail.rutgers.edu

(2)
$$\frac{\hat{\epsilon}_{D_{t-1}}(h_t) \exp(\alpha_t)}{\hat{\epsilon}_{D_{t-1}}(h_t) \exp(\alpha_t) + \left(1 - \hat{\epsilon}_{D_{t-1}}(h_t)\right) \exp(-\alpha_t)} = \frac{1}{2}$$

$$2\hat{\epsilon}_{D_{t-1}}(h_t) \exp(\alpha_t) = \hat{\epsilon}_{D_{t-1}}(h_t) \exp(\alpha_t) + \left(1 - \hat{\epsilon}_{D_{t-1}}(h_t)\right) \exp(-\alpha_t)$$

$$\hat{\epsilon}_{D_{t-1}}(h_t) \exp(\alpha_t) = \left(1 - \hat{\epsilon}_{D_{t-1}}(h_t)\right) \exp(-\alpha_t)$$

$$\exp(\alpha_t + \alpha_t) = \frac{1 - \hat{\epsilon}_{D_{t-1}}(h_t)}{\hat{\epsilon}_{D_{t-1}}(h_t)}$$

$$2\alpha_t = \log\left(\frac{1 - \hat{\epsilon}_{D_{t-1}}(h_t)}{\hat{\epsilon}_{D_{t-1}}(h_t)}\right)$$

$$\alpha_t = \frac{1}{2}\log\left(\frac{1 - \hat{\epsilon}_{D_{t-1}}(h_t)}{\hat{\epsilon}_{D_{t-1}}(h_t)}\right)$$

We obtained expression (2). We see indeed that α_t results in $\hat{\epsilon}_{D_t}(h_t) = 1/2$

Problem 2

It is not possible to have $h_{t+1} = h_t$ given we assume that the base classifiers in \mathcal{H} are neither too weak nor too strong. From previous problem, we discovered that adaboost will always choose α_t such that the updated data distribution yields the worst possible weighted loss for h_t , which is 1/2. By letting $h_{t+1} = h_t$, we are saying that the best base classifiers we can find in \mathcal{H} to minimize $\hat{\epsilon}_{D_t}(h)$ is h such that the $\hat{\epsilon}_{D_t}(h) = 1/2$. This conclusion contradicts with our assumption that there is always some h in \mathcal{H} such that $\hat{\epsilon}_D(h) < 1/2$. Therefore, we can never let $h_{t+1} = h_t$ for any t.

Problem 3

It is possible if we assume the number of base classifiers in \mathcal{H} is finite and if T, the number of rounds, is larger than the number of base classifiers. If that is the case, it is deemed that there is some t and n > 1 such that $h_{t+n} = h_t$.

Formally, suppose the size of \mathcal{H} is Q and the number of rounds of adaboost is T and Q < T. By pigeonhole principle, there is at least one base classifier h will be picked more than once.

Problem 4

$$\hat{l}_{D_{t-1}}(h_t) = \sum_{i=1}^{N} D_{t-1}(i) \exp(-\alpha_t y_i h_t(x_i))$$

$$= \sum_{i:y_i = h_t(x_i)}^{N} D_{t-1}(i) \exp(-\alpha_t) + \sum_{i:y_i \neq h_t(x_i)}^{N} D_{t-1}(i) \exp(\alpha_t)$$

$$= \sum_{i=1}^{N} D_{t-1}(i) [[h_t(x_i) \neq y_i]] \exp(\alpha_t) + \sum_{i=1}^{N} D_{t-1}(i) [[h_t(x_i) = y_i]] \exp(-\alpha_t)$$

$$= \hat{\epsilon}_{D_{t-1}}(h_t) \exp(\alpha_t) + (1 - \hat{\epsilon}_{D_{t-1}}(h_t)) \exp(-\alpha_t)$$

Assuming h_t is selected: To minimize $\hat{l}_{D_{t-1}}(h_t)$ We take partial derivative of $\hat{l}_{D_{t-1}}(h_t)$ with respect to α_t .

$$\frac{\partial \hat{l}_{D_{t-1}}(h_t)}{\partial \alpha_t} = \frac{\partial \left(\hat{\epsilon}_{D_{t-1}}(h_t) \exp(\alpha_t) + \left(1 - \hat{\epsilon}_{D_{t-1}}(h_t)\right) \exp(-\alpha_t)\right)}{\partial \alpha_t}$$
$$= \hat{\epsilon}_{D_{t-1}}(h_t) \exp(\alpha_t) - \left(\left(1 - \hat{\epsilon}_{D_{t-1}}(h_t)\right) \exp(-\alpha_t)\right)$$

We want minimize this, so set it to 0.

$$0 = \hat{\epsilon}_{D_{t-1}}(h_t) \exp(\alpha_t) - \left(\left(1 - \hat{\epsilon}_{D_{t-1}}(h_t)\right) \exp(-\alpha_t)\right)$$

$$\hat{\epsilon}_{D_{t-1}}(h_t) \exp(\alpha_t) = \left(1 - \hat{\epsilon}_{D_{t-1}}(h_t)\right) \exp(-\alpha_t)$$

$$\frac{\hat{\epsilon}_{D_{t-1}}(h_t)}{1 - \hat{\epsilon}_{D_{t-1}}(h_t)} = \exp(-\alpha_t - \alpha_t)$$

$$\alpha_t = -\frac{1}{2} \log\left(\frac{\hat{\epsilon}_{D_{t-1}}(h_t)}{1 - \hat{\epsilon}_{D_{t-1}}(h_t)}\right)$$

$$\alpha_t = \frac{1}{2} \log\left(\frac{1 - \hat{\epsilon}_{D_{t-1}}(h_t)}{\hat{\epsilon}_{D_{t-1}}(h_t)}\right)$$

Indeed, the choice of α_t in (2) minimizes $\hat{l}_{D_{t-1}}(h_t)$