

Fuxxy Topology

MAT514

Prof. Dr Shamsun Naher Begum Shahjalal University of Science and Technology

> EDITED BY MEHEDI HASAN

Preface

This is a compilation of lecture notes with some books and my own thoughts. If there are any mistake/typing error or, for any query mail me at mehedi12@student.sust.edu.

Contents

Ι	Sheet	1
	Fuzzy Sets 1.1 Fuzzy Set Operations	2 3
2	Separation Axioms	4
3	Connected Fuzzy Topological Space	6
4	Compactness	8

Part I Sheet

Fuzzy Sets

Definition 1 (Characteristic function). Let X be a universal set and $A \subseteq X$. Then the function¹

$$\chi_A(x) = \begin{cases} 1; & x \in A \\ 0; & x \notin A \end{cases}$$

is characteristic function of A in X.

Definition 2 (Fuzzy Set). A fuzzy set² $A \subseteq X$ is a mapping $A: X \to [0,1]$, where, $A(x) = y \in [0,1]$ is called the membership function or, grade of membership of x in A. The collection of all fuzzy sets of X is denoted by $\mathcal{F}(X)$.

Definition 3 (Fuzzy subset). A fuzzy set A is called a fuzzy subset of another fuzzy set B if $A(x) \leq B(x)$ $\forall x \in X$. We denote it by $A \leq B$.

Definition 4 (Empty fuzzy set). A fuzzy set A is called empty fuzzy set if $\forall x \in X \ A(x) = 0$. The empty fuzzy set is denoted by $\underline{0}$. Thus, $\underline{0}(x) = 0 \ \forall x \in X$.

Definition 5 (Total fuzzy set). The total fuzzy set $\underline{1}$ is defined by $\underline{1}(x) = 1 \ \forall x \in X$.

Definition 6 (Equality of two fuzzy sets). Two fuzzy sets A and B of X is said to be equal iff $A \leq B$ and $B \leq A$.

Example (Empty and Total fuzzy set). Suppose, $A: X \to [0,1]$ where X = [20,80]. Then,

$$\underline{0}(x) = \begin{cases} 0 & \text{if } 15 < x < 90 \\ 1 & \text{otherwise} \end{cases} \quad \text{and} \quad \underline{1}(x) = \begin{cases} 1 & \text{if } 20 \le x < 90 \\ 0 & \text{otherwise} \end{cases}$$

Example (Fuzzy subset). Suppose, $A: X \to [0,1]$ where, X = [0,100] defined by

$$A(x) = \begin{cases} 0; & \text{if } 0 \le x < 40\\ \frac{x}{75}; & \text{if } 40 \le x < 75\\ 1; & \text{if } 75 \le x \le 100 \end{cases}$$

and $B: X = [0, 100] \to [0, 1]$ defined by

$$B(x) = \begin{cases} 0; & \text{if } 0 \le x < 40\\ \frac{x}{95}; & \text{if } 40 \le x < 95\\ 1; & \text{if } 95 \le x \le 100 \end{cases}$$

Then, B(x) is a subset of A(x). Since, $B(x) \le A(x) \ \forall x \in X$.

¹Some authors use μ as characteristic function.

²Sometimes fuzzy set is denoted by A.

1.1 Fuzzy Set Operations

Definition 7 (Union of Fuzzy Sets). Let $A, B \in \mathcal{F}(X)$. Then the union of A and B is denoted and defined by, $(A \vee B)(x) = \max\{A(x), B(x)\}$, $\forall x \in X$.

Definition 8 (Intersection of Fuzzy Sets). Let $A, B \in \mathcal{F}(X)$. Then the intersection of A and B is denoted and defined by, $(A \wedge B)(x) = \min \{A(x), B(x)\}, \forall x \in X$.

Definition 9 (Complement of Fuzzy Set). Let A be a fuzzy set of X. Then, the complement of A is denoted by A^c and defined by $A^c(x) = 1 - A(x)$, $\forall x \in X$.

Example. Given,

$$A_1 = \begin{cases} 1; & \text{if } 40 \le x < 50 \\ 1 - \frac{x - 50}{10}; & \text{if } 50 \le x < 60 \\ 0; & \text{if } 60 \le x \le 100 \end{cases} \quad \text{and} \quad A_2 = \begin{cases} 0; & \text{if } 40 \le x < 50 \\ \frac{x - 50}{10}; & \text{if } 50 \le x < 60 \\ 1 - \frac{x - 60}{10}; & \text{if } 60 \le x < 70 \\ 0; & \text{if } 70 \le x \le 100 \end{cases}$$

- 1. Find the complement of A_1 and A_2 .
- 2. Find $(A_1 \wedge A_2)(x)$ and $(A_1 \vee A_2)(x)$

Solution:

1. Complement of

$$A_1, A_1^c = \begin{cases} 0; & \text{if } 40 \le x < 50\\ \frac{x - 50}{10}; & \text{if } 50 \le x < 60\\ 1; & \text{if } 60 \le x \le 100 \end{cases}$$

Complement of

$$A_2, A_2^c = \begin{cases} 1; & \text{if } 40 \le x < 50\\ \frac{60 - x}{10}; & \text{if } 50 \le x < 60\\ \frac{x - 60}{10}; & \text{if } 60 \le x < 70\\ 1; & \text{if } 70 \le x \le 100 \end{cases}$$

2.

$$(A_1 \wedge A_2)(x) = \begin{cases} 0; & \text{if } 40 \le x < 50 \\ \frac{x - 50}{10}; & \text{if } 50 \le x \le 55 \\ 1 - \frac{x - 50}{10}; & \text{if } 55 \le x \le 60 \\ 0; & \text{if } 60 \le x \le 100 \end{cases}$$

$$(A_1 \vee A_2)(x) = \begin{cases} 1; & \text{if } 40 \le x \le 50 \\ 1 - \frac{x - 50}{10}; & \text{if } 50 \le x \le 55 \\ \frac{x - 50}{10}; & \text{if } 55 \le x < 60 \\ 1 - \frac{x - 60}{10}; & \text{if } 60 \le x < 70 \\ 0; & \text{if } 70 \le x < 100 \end{cases}$$

Separation Axioms

Definition 10 (Quasi T_0 -space). Let, $\langle \mathcal{F}(X), \delta \rangle$ be a fuzzy topological space. Then, $\langle \mathcal{F}(X), \delta \rangle$ is called a quasi T_0 -space, if for every two distinct fuzzy points x_a and x_b with same support point x, there exists $U \in Q_{\delta}(x_a)$ such that $x_b \not\propto U$ or, there exists $V \in Q_{\delta}(x_b)$ such that $x_a \not\propto V$.

Definition 11 (Sub T_0 -space). Let, $\langle \mathcal{F}(X), \delta \rangle$ be a fuzzy topological space. Then, $\langle \mathcal{F}(X), \delta \rangle$ is called a sub T_0 -space, if for every two distinct $x, y \in X$, there exists $a \in [0, 1]$ such that either $\exists U \in Q_{\delta}(x_a)$ with $y_a \not\propto U$ or, $\exists V \in Q_{\delta}(y_a)$ with $x_a \not\propto V$.

Definition 12 (T_0 -space). Let, $\langle \mathcal{F}(X), \delta \rangle$ be a fuzzy topological space. Then, $\langle \mathcal{F}(X), \delta \rangle$ is called a T_0 -space, if for every two distinct fuzzy points x_a and y_b , $\exists U \in Q_\delta(x_a)$ such that $y_b \not\propto U$ or, $\exists V \in Q_\delta(y_b)$ with $x_a \not\propto V$.

Definition 13 $(T_1$ —space). Let, $\langle \mathcal{F}(X), \delta \rangle$ be a fuzzy topological space. Then, $\langle \mathcal{F}(X), \delta \rangle$ is called a T_1 —space, if for every two distinct fuzzy points x_a and y_b such that $x_a \not\leq y_b$ then there exists $U \in Q_{\delta}(x_a)$ such that $y_b \not\propto U$ and, $\exists V \in Q_{\delta}(y_b)$ such that $x_a \not\propto V$.

Definition 14 (T_2 -space). Let, $\langle \mathcal{F}(X), \delta \rangle$ be a fuzzy topological space. Then, $\langle \mathcal{F}(X), \delta \rangle$ is called a T_2 -space, if for every two distinct fuzzy points x_a and y_b (i.e., $x_a \neq y_b$) then there exists $U \in Q_\delta(x_a)$ and, $V \in Q_\delta(y_b)$ such that $U \wedge V = 0$.

Theorem 2.0.1. Quasi T_0 property is heriditary. or, Every subspace of a Quasi T_0 space is Quasi T_0 space.

Proof. Suppose, $\langle X, \delta \rangle$ be a fuzzy topological space which is Quasi T_0 -space. Let $\langle Y, \mu \rangle$ be the subspace of $\langle X, \delta \rangle$. We have to prove that, $\langle Y, \mu \rangle$ be a Q- T_0 -space.

Now, since, $Y \subseteq X$ so every $V \in \mu$, $V = U_{|Y}$ for some $U \in \delta$. Let y_a and y_b be two distinct fuzzy points in Y such that, $y_a \neq y_b$. Then as $Y \subseteq X$, we have y_a and y_b are in X with $y_a \neq y_b$.

Again, since $\langle X, \delta \rangle$ is a Quasi T_0 -space there exist $U \in Q_{\delta}(y_a)$ such that $y_b \not\propto U$ or, there exist $V \in Q_{\delta}(y_b)$ such that $y_a \not\propto V$. This implies, there is $U_{|y|} \in Q_{\delta|y}(y_a)$ such that $y_b \not\propto U_{|Y|}$ or there is $V_{|Y|} \in Q_{\delta|y}(y_b)$ such that $y_a \not\propto V_{|Y|}$.

Thus, by definition of a Q- T_0 -space $\langle Y, \mu \rangle$ is a Q- T_0 -space.

Theorem 2.0.2. Every subspace of a T_0 -space is T_0 -space.

Proof. Let, $\langle X, \delta \rangle$ be a fuzzy topological space and $\langle Y, \mu \rangle$ be a subspace of $\langle X, \delta \rangle$. Let x_a and y_b be two distinct points in Y. Then since, $Y \subseteq X$, we have, x_a and y_b in X with $x_a \neq y_b$. Now since $\langle X, \delta \rangle$ is a fuzzy T_0 —space. We have either there is $U \in Q_\delta(x_a)$ such that $y_b \not\propto U$ or, there is $V \in Q_\delta(y_b)$ such that $x_a \not\propto V$.

Now, $U_{|Y} \in Q_{\delta|Y}(x_a)$ such that $y_b \not\propto U_{|Y}$ as $x_a, y_b \in Y$ and $V_{|Y} \in Q_{\delta|Y}(y_b)$ such that $x_a \not\propto V_{|Y}$. Thus, $\langle Y, \mu \rangle$ is a T_0 -space.

Thus, $\langle Y, \mu \rangle$ is a T_0 -space.

Theorem 2.0.3. A fuzzy topological space $\langle \mathcal{F}(X), \delta \rangle$ is a quasi- T_0 -space iff for every $x \in X$ and $a \in [0, 1]$ there exists $B \in \delta$ such that B(x) = a.

Proof. Suppose, $\langle \mathcal{F}(X), \delta \rangle$ be a quasi T_0 -space. If a = 0, then it suffices to take $B = \underline{0}$. If 0 < a < 1, we take a strictly monotonic increasing sequence of positive real numbers converging to a. Let $\Delta_n = (a_n, a_{n+1}]$, $n = 1, 2, 3, \ldots$

Since $\langle \mathcal{F}(X), \delta \rangle$ be a quasi T_0 -space, then for any $x \in X$ and $\Delta = (a_1, a_2)$ with $0 \le a_1 < a_2 < 1$, there exists $B \in \delta$ such that $B(x) \in \Delta$.

From this property, we can say that, $\exists B_n \in \delta$ such that $B_n(x) \in \Delta_n$, for each n

$$\therefore B = \bigvee_{n=1}^{\infty} B_n \in \delta \quad \text{and} \quad B(x) = a.$$

Conversely, suppose x_a and x_b are two fuzzy points with b < a where $a, b \in [0, 1]$. Then by hypothesis, there is an open set B such that B(x) = 1 - b > 1 - a.

This implies, B is an open Q-nbd of x_a but not quasi-conincident with x_b [since, B is a nbd of x_{1-a}]. Hence, $\langle \mathcal{F}(X), \delta \rangle$ is a quasi T_0 -space.

Theorem 2.0.4. A fuzzy topological space $\langle \mathcal{F}(X), \delta \rangle$ is T_1 -space iff for every $x \in X$ and each $a \in [0, 1]$ there exists $B \in \delta$ such that B(x) = 1 - a and B(y) = 1 for $y \neq x$.

Or, $\langle \mathcal{F}(X), \delta \rangle$ is a T_1 -space \Leftrightarrow every fuzzy point in $\langle X, \delta \rangle$ is closed.

Proof. Suppose $\langle \mathcal{F}(X), \delta \rangle$ be a T_1 -space. If a = 0 then it suffices to take $B = \underline{1}$.

Suppose, a > 0 and x_a is a fuzzy point. Since, every fuzzy point in a T_1 -space is closed, so, x_a is a closed set. \therefore We have, $B = 1 - x_a \in \delta$ and hence B(x) = 1 - a and B(y) = 1. if $y \neq x$.

Conversely, let x_a be a fuzzy point. Then by hypothesis there exists $B \in \delta$ such that B(x) = 1 - a and B(y) = 1 with $y \neq x$. This implies, $B = 1 - x_a$ and hence $B^c = x_a$ which is closed. Thus, $B \in \delta$. Hence, $\langle \mathcal{F}(X), \delta \rangle$ is a T_1 -space.

Definition 15 (Purely T_2 -space). $\langle \mathcal{F}(X), \delta \rangle$ is called purely T_2 -space if for every two zero-meet fuzzy points x_a and y_b , $\exists U \in Q_\delta(x_a)$ and $V \in Q_\delta(y_b)$ such that $U \wedge V = \underline{0}$.

Definition 16. A fuzzy topological space $\langle X, \delta \rangle$ is said to be fuzzy regular iff for each $x \in X$ and each closed fuzzy set U with U(x) = 0 there exists $V, W \in \delta$ such that V(x) = 1 and $V \subseteq 1 - W$.

Theorem 2.0.5. For a fuzzy topological space $\langle \mathcal{F}(X), \delta \rangle$ the following statements are equivalent

- 1. $\langle X, \delta \rangle$ is a fuzzy T_0 -space.
- 2. For $x, y \in X$, $x \neq y$, $\exists U \in \delta$ such that U(x) > 0, U(y) = 0 or U(y) > 0, U(x) = 0.

Proof. (1) \Rightarrow (2), Suppose $\langle X, \delta \rangle$ is a fuzzy T_0 -space. Thus, we have $\overline{x_1(y)} \cap \overline{y_1(x)} < 1$.

Connected Fuzzy Topological Space

Definition 17 (Separated Fuzzy Sets). Let $\langle \mathcal{F}(X), \delta \rangle$ be a fuzzy topological space. Then $A, B \in \mathcal{F}(X)$ are called separated sets if $\bar{A} \wedge B = \underline{0} = A \wedge \bar{B}$.

Lemma. Let $\langle \mathcal{F}(X), \delta \rangle$ be a fuzzy topological space and $A, B, C \in \mathcal{F}(X)$. If B and C are separated sets then $A \wedge B$ and $A \wedge C$ are separated.

Proof. Since B and C are separated, we have, $\bar{B} \wedge C = \underline{0} = B \wedge \bar{C}$.

We have, $A \wedge B < B \implies \overline{A \wedge B} < \overline{B}$ and $A \wedge C < C$.

This implies, $\overline{(A \wedge B)} \wedge (A \wedge C) \leq \overline{B} \wedge C = \underline{0}$. Similarly, $(A \wedge B) \wedge \overline{(A \wedge C)} \leq B \wedge \overline{C} = \underline{0}$.

Hence, $A \wedge B$ and $A \wedge C$ are separated.

Definition 18 (Connected Fuzzy Sets). Let $\langle \mathcal{F}(X), \delta \rangle$ be a fuzzy topological space. A fuzzy set A on X is called connected if there do not exist $C, D \in \mathcal{F}(X) \setminus \{\underline{0}\}$ such that $A = C \vee D$. Or, A set A is connected if $A = B \vee C$ then either $B = \underline{0}$ or, $C = \underline{0}$.

Theorem 3.0.1. Let, $\langle \mathcal{F}(X), \delta \rangle$ be a fuzzy topological space and $A \in \mathcal{F}(X)$. Then the following are equivalent:

- 1. A is connected.
- 2. $B, C \in \mathcal{F}(X)$ are separated, $A \leq B \vee C$ implies $A \wedge B = \underline{0}$ or, $A \wedge C = \underline{0}$.
- 3. $B, C \in \mathcal{F}(X)$ are separated, $A < B \lor C$ implies A < B or, A < C.

Proof. (1) \Rightarrow (2), Since, B and C are separated set. By the above lemma, we have $(A \land B)$ and $(A \land C)$ are separated. Since, A is connected and $A \leq B \lor C$ implies

$$A = A \wedge (B \vee C)$$

= $(A \wedge B) \vee (A \wedge C)$

then by definition of connectedness, either $A \wedge B = \underline{0}$ or, $A \wedge C = \underline{0}$. Hence, (2) holds.

 $(2) \Rightarrow (3)$, Suppose, $A \wedge B = \underline{0}$, then,

$$A = (A \wedge B) \vee (A \wedge C)$$
$$= \underline{0} \vee (A \wedge C)$$
$$= (A \wedge C).$$

So, $A \leq C$. Similarly, if $A \wedge C = 0$, then we can prove that $A \leq B$. Thus, (3) holds.

Finally, (3) \Rightarrow (1), Suppose, (3) holds, we need to show that, A is connected. Let $B, C \in \mathcal{F}(X)$ are two separated fuzzy sets such that $A = B \vee C$.

We need to prove that, either, $B=\underline{0}$ or, $C=\underline{0}$. By (3), we have either $A\leq B$ or, $A\leq C$. Now if $A\leq B$ then $C\wedge A\leq C\wedge B\leq C\wedge \bar{B}$. But since, B,C are separated sets so, $C\wedge \bar{B}=\underline{0}$. $C\wedge A=\underline{0}$. Again, $C\wedge A=C\wedge (B\vee C)=C$. So $C=\underline{0}$.

Now if $A \leq C$, we can similarly prove that B = 0. Thus, A is connected.

Theorem 3.0.2. Let $\langle \mathcal{F}(X), \delta \rangle$ be a fuzzy topological space, $A \in \mathcal{F}(X)$ is connected such that $A \leq B \leq \bar{A}$. Show that B is connected.

Proof. Suppose, C and D are two separated fuzzy sets such that, $B = C \vee D$. To show that, B is connected we need only to show either, C=0 or, D=0.

By the lemma, we have $(A \wedge C)$ and $(A \wedge D)$ are separated sets. Let $F = A \wedge C$, $G = A \wedge D$. Now

$$F \lor G = (A \land C) \lor (A \land D)$$
$$= A \lor (C \land D)$$
$$= A \lor B$$
$$= A$$

Since, A is connected, we have either $F = \underline{0}$ or, $G = \underline{0}$.

Suppose, F = 0. Then, $A = F \vee G = G = A \wedge D$. This implies, A < D. Thus, $\bar{A} < \bar{D}$. i.e., $B < \bar{A} < \bar{D}$. Now, $C \wedge B < C \wedge \bar{A} < C \wedge \bar{D} = 0$. i.e.,

$$C \land B \leq \underline{0}$$

$$\Rightarrow C \land (C \lor D) \leq \underline{0}$$

$$\Rightarrow C = 0$$

Similarly, if G=0, then we can show that D=0. Hence, B is connected.

Definition 19 (Connected Fuzzy Topological Space). If the fuzzy set $\underline{1}$ is connected i.e., there does not exist separated sets $C, D \in \mathcal{F}(X) \setminus \{0\}$ such that $1 = C \vee D$, then the fuzzy topological space $\langle \mathcal{F}(X), \delta \rangle$ is called a connected fuzzy topological space.

Theorem 3.0.3 (Characterization Theorem). Let $\langle \mathcal{F}(X), \delta \rangle$ be a fuzzy topological space. Then the followings are equivalent

- 1. $\langle \mathcal{F}(X), \delta \rangle$ is connected.
- 2. $A, B \in \delta, A \vee B = 1, A \wedge B = 0, \text{ implies } 0 \in \{A, B\}.$
- 3. $A, B \in \delta', A \vee B = 1, A \wedge B = 0, \text{ implies } 0 \in \{A, B\}.$

Proof. (1) \Rightarrow (2), Suppose, (2) is false. Then there are $A, B \in \delta \setminus \{0\}$ such that

$$A \lor B = \underline{1}, \qquad A \land B = \underline{0}$$

 $\Rightarrow A^c \land B^c = \underline{0}, \text{ and } A^c \lor B^c = \underline{1} \text{ [By De Morgan's Law]}$
 $\Rightarrow \bar{A}^c \land B^c = 0, \text{ and } A^c \land \bar{B}^c = 0 \text{ [Since, } A^c, B^c \text{ are closed.]}$

 \therefore We have by definition, A^c and B^c are two separated sets. Therefore, we have $A^c \vee B^c = \underline{1}$ and A^c , B^c are two separated sets. Hence, $\langle \mathcal{F}(X), \delta \rangle$ is disconnected. Hence, (2) is true.

 $(2) \Rightarrow (3)$, Let $A, B \in \delta'$ such that $A \vee B = \underline{1}$ and $A \wedge B = \underline{0}$. Then by De Morgan's Laws, $A^c \wedge B^c = \underline{0}$ and $A^c \vee B^c = 1$. By (2), $0 \in \{A^c, B^c\}$. Hence, $0 \in \{A, B\}$.

 $(3) \Rightarrow (1)$, If $\langle \mathcal{F}(X), \delta \rangle$ is not connected, then there exists non-zero separated sets $A, B \in \delta' \setminus \{0\}$ such that $A \vee B = \underline{1}$, which contradicts (3).

Hence, $\langle \mathcal{F}(X), \delta \rangle$ is connected.

Compactness

Definition 20 (Cover and C-compactness). Let $\langle \mathcal{F}(X), \delta \rangle$ be a fuzzy topological space and $A \in \mathcal{F}(X)$. Then, $\mathcal{A} \subseteq \mathcal{F}(X)$ is called a cover of A if $A \subseteq \vee \mathcal{A}$.

- $\langle \mathcal{F}(X), \delta \rangle$ is called C-compact if every open cover of $\langle \mathcal{F}(X), \delta \rangle$ has a finite subcover.
- \mathcal{A} is called an open cover of A, if $\mathcal{A} \subseteq \delta$ and if \mathcal{A} is a cover of A.
- $\mathcal{B} \subseteq \mathcal{A}$ is called a subcover if \mathcal{B} is still a cover of A.

In particularly, \mathcal{A} is a cover of $\langle \mathcal{F}(X), \delta \rangle$ if \mathcal{A} is a cover of $\underline{1}$.

Definition 21 (α -cover and α -compactness). Let $\langle \mathcal{F}(X), \delta \rangle$ be a fuzzy topological space and $\alpha \in [0, 1)$. Then a family $\mathcal{A} \subseteq \mathcal{F}(X)$ is called an α -cover, if for very $x \in X \exists A \in \mathcal{A} \ni A(x) > \alpha$.

• ft is called an α -compact, if for every open α -cover of $\langle \mathcal{F}(X), \delta \rangle$ has a finite sub- α -cover where $\alpha \in [0, 1)$.

Definition 22 (Strong Compact). A fuzzy topological space $\langle \mathcal{F}(X), \delta \rangle$ is called strongly compact if it is α -compact for every $\alpha \in [0, 1)$.

Definition 23 (α^* -cover and α^* -compactness). Let $\langle \mathcal{F}(X), \delta \rangle$ be a fuzzy topological space and $\alpha \in [0, 1)$. Then a family $\mathcal{A} \subseteq \mathcal{F}(X)$ is called an α^* -cover, if for every $x \in X$, there exists $A \in \mathcal{A}$ such that, $A(x) \geq \alpha$.

• For $\alpha \in [0,1)$, $\langle \mathcal{F}(X), \delta \rangle$ is called an α^* -compact, if for every open α^* -cover of $\langle \mathcal{F}(X), \delta \rangle$ has a finite sub α^* -cover.

Example. Given $X = \{a, b, c\}, A = \{A, B, C\}, \alpha \in [0, 1), \delta = \{\underline{0}, \underline{1}, A, B, C\}$ where,

$$A: a \mapsto 0.2, b \mapsto 0.4, c \mapsto 0.6;$$

 $B: a \mapsto 0.4, b \mapsto 0.6, c \mapsto 0.8;$
 $C: a \mapsto 0.6, b \mapsto 0.8, c \mapsto 0.9;$

Check whether \mathcal{A} is α -compact or, α^* -compact corresponding to the given value of α .

Solution.

- 1. Let $\alpha=0.7$ $a\in X: \alpha=0.7>A(a), B(a), C(a).$ Hence, for $\alpha=0.7, \mathcal{A}$ is not an $\alpha-$ cover.
- 2. Let $\alpha = 0.3$ $a \in X : \alpha = 0.3 < C(a) = 0.6$, B(a) = 0.4 $b \in X : \alpha = 0.3 < A(b) = 0.4$, B(b) = 0.6, C(b) = 0.8 $c \in X : \alpha = 0.3 < A(c) = 0.6$, B(c) = 0.8, C(c) = 0.9 $A : \alpha = 0.3$.
- 3. Let $\alpha = 0.6$ For, $a \in X : \alpha = 0.6 = C(a)$ For, $b \in X : \alpha = 0.6 = B(b), \alpha = 0.6 < C(b) = 0.8$ For, $c \in X : \alpha = 0.6 = A(c) = 0.6, \alpha = 0.6 < B(c) = 0.8, C(c) = 0.9$ $\therefore A$ is an α^* -compact space for a = 0.6.

Definition 24 (Q-cover). Let $\langle \mathcal{F}(X), \delta \rangle$ be a fuzzy topological space and $A \in \mathcal{F}(X)$. Then a collection $\mathcal{A} \subseteq \mathcal{F}(X)$ is called a Q-cover of A if for every $x \in Supp(A)$, there exists $U \in \mathcal{A}$ such that $x_{A(x)} \propto U$.

Definition 25 (Q-compact). A fuzzy set A is called Q-compact if every open Q-cover of A has a finite sub Q-cover. A fuzzy topological space $\langle \mathcal{F}(X), \delta \rangle$ is called Q-compact if $\underline{1}$ is Q-compact.

Example. Consider, $X = \{a, b, c\}, \delta = \{\underline{0}, \underline{1}, U, V, W\}$ where

 $U: a \mapsto 0.3, b \mapsto 0.5, c \mapsto 0.7;$ $V: a \mapsto 0.4, b \mapsto 0.6, c \mapsto 0.8;$ $W: a \mapsto 0.6, b \mapsto 0.8, c \mapsto 0.9;$

Consider $\mathcal{A} = \{U, V\} \subseteq \delta$ and let, $A: a \mapsto 0.1, b \mapsto 0.2, c \mapsto 0.3$. Then, find the Q-cover of A.

Solution. Here, $Supp(A) = \{a, b, c\}$

For, x = a, $a_{A(a)} = a_{0.1} = 0.1$

For, x = b, $b_{A(b)} = b_{0.2} = 0.2$

For, x = c, $c_{A(c)} = c_{0.3} = 0.3$

For x = a, we have U_a : 0.3 + 0.1 < 1, $V_a = 0.4 + 0.1 < 1$. Hence \mathcal{A} is not a Q-cover of A.

If $A: a \mapsto 0.7$, $b \mapsto 0.6$, $c \mapsto 0.5$.

Then, For x = a, $a_{A(a)} = a_{0.7} = 0.7$

For, x = b, $b_{A(b)} = b_{0.6} = 0.6$

For, x = c, $c_{A(c)} = c_{0.5} = 0.5$

For, $x = a, 0.3 + 0.7 \ge 1, 0.4 + 0.7 > 1$

For, x = b, 0.5 + 0.6 > 1, 0.6 + 0.6 > 1

For, x = c, 0.7 + 0.5 > 1, 0.8 + 0.5 > 1

Hence, for every $x \in Supp(A)$, $x_{A(x)} \propto U$.

 \therefore \mathcal{A} is a Q-cover of A.

Definition 26 $(\alpha - Q - \text{cover})$. Let $\langle \mathcal{F}(X), \delta \rangle$ be a fuzzy topological space and $A \in \mathcal{F}(X)$. Then a collection $\varphi \subseteq \mathcal{F}(X)$ is called an $\alpha - Q - \text{cover}$ of A, if for every $x_a \subseteq A$, there exists $U \in \varphi$ such that $x_a \propto U$. It is denoted by $\vee \varphi \hat{q} A(\alpha)$.

Definition 27 $(\bar{\alpha} - Q - \text{cover})$. Let $\langle \mathcal{F}(X), \delta \rangle$ be a fuzzy topological space and $A \in \mathcal{F}(X)$. Then a collection $\varphi \subseteq \mathcal{F}(X)$ is called an $\bar{\alpha} - Q - \text{cover}$ of A, if there exists $\gamma \in B^*(\alpha)$ such that γ is a $\gamma - Q - \text{cover}$ of A.

- $B(b) = \{a \in L : a \propto b\}$, where the binary relation ∞ is defined as, for $a, b \in L$, $a \propto b \Leftrightarrow$ for every subset $D \subset L$, b < Sup D implies the existence of $d \in D$ with a <
- $B^*(b) = B(b) \cap M(L)$, where, M(L) = (0, 1].

Definition 28. Let $\langle \mathcal{F}(X), \delta \rangle$ be a fuzzy topological space, $A \in \mathcal{F}(X)$. A is called N-compact if for every $\alpha \in (0,1] - M([0,1])$, every open $\alpha - Q$ -cover of A has a finite subfamily which is an $\bar{\alpha} - Q$ -cover of A. $\langle \mathcal{F}(X), \delta \rangle$ is called N-compact, if $\underline{1}$ is compact.

Theorem 4.0.1. Let $\langle \mathcal{F}(X), \delta \rangle$ be a fuzzy topological space, $A \in \mathcal{F}(X)$. Then A is N-compact iff the following conditionds hold:

- (a) For every $\alpha \in (0,1]$, every open αQ -cover of A has a finite sub αQ -cover.
- (b) For every $\alpha \in (0,1]$, every open αQ -cover of A which consists of just one subset is an $\bar{\alpha} Q$ -cover of A.
- *Proof.* (a) Let, A be N-compact, $\alpha \in (0,1]$ and φ is an open αQ -cover of A. By the definition of N-compact, φ has a finite subfamily ψ such that, ψ is an $\bar{\alpha} Q$ -cover of A. Hence, $\vee \psi \hat{q} A(\alpha)$ i.e., ψ is an αQ -cover of A.
- (b) Suppose, $U \in \delta$ and $\varphi = \{U\}$ is an open αQ -cover of A. Then, by the N-compactness of A, φ has a subfamily ψ such that ψ is an $\bar{\alpha} Q$ -cover of A. But, clearly, $\varphi = \psi$. Hence, ψ is an open αQ -cover of A.

Therefore, $f^{\rightarrow}(A)$ is an N-compact.

Conversely, suppose (a) and (b) holds.

Let $\alpha \in (0,1]$ and φ is an open $\alpha - Q$ -cover of A.

By (a), φ has a finite sub $\alpha - Q$ -cover ψ of A. Take $U = \vee \psi$. Then $\{U\}$ is an $\alpha - Q$ -cover of A.

By (b), $\{U\}$ is also an $\bar{\alpha} - Q$ -cover of A. By the definition of $\bar{\alpha} - Q$ -cover, there exists $\gamma \in B^*(\alpha)$ such that x_{γ} is a quasi-coincident with U for every $x_{\gamma} \subseteq A$. Hence, $\gamma + U(x) > 1 \Rightarrow \gamma > 1 - U(x)$

i.e., $\gamma \leq (U(x))' \Rightarrow \gamma \not\leq (U\psi(x))' = \wedge \{(W(x))' | W \in \psi\}$

i.e., $W \in Q_{\gamma}(x_{\gamma})$. So, ψ is an $\bar{\alpha} - Q$ -cover of A. Hence, A is N-compact.

Theorem 4.0.2. Continuous image of an N-compact space is N-compact.

Proof. Let $f^{\to}: \langle \mathcal{F}(X), \delta \rangle \to \langle \mathcal{F}(Y), \mu \rangle$ be a continuous fuzzy mapping and A be a N-compact fuzzy set in $\mathcal{F}(X)$. For $\alpha \in (0,1]$, let \mathcal{A} be an open $\alpha - Q$ -cover of $f^{\to}(A)$. Then for every $x_{\alpha} \leq A$, $f^{\to}(x_{\alpha}) = f(x)_{\alpha} \leq f^{\to}(A)$, there exists $U \in \mathcal{A}$ such that $f(x)_{\alpha} \propto U \Rightarrow f(x)_{\alpha} \not\propto U^{c} \Rightarrow \alpha \not\leq U^{c}(f(x)) \Rightarrow \alpha \not\leq f^{\leftarrow}(U^{c})(x) = f^{\leftarrow}(U)^{c}(x)$. That is $x_{\alpha} \propto f^{\leftarrow}(U)$. Since, f^{\to} is continuous, $f^{\leftarrow}(U) \in \delta$ and hence $f^{\leftarrow}(U) \in Q(x_{\alpha})$. Thus, $f^{\leftarrow}(A)$ is an open $\alpha - Q$ -cover of A.

Since A is N-compact, \mathcal{A} has a finite subfamily $\mathcal{A}_n = \{U_i : 1 \leq i \leq n\}$ such that $f^{\leftarrow}(\mathcal{A}_n)$ is an $\bar{\alpha} - Q$ -cover of A.

Now, we show that, \mathcal{A}_n is an $\bar{\alpha} - Q$ -cover of $f^{\rightarrow}(A)$. Since, $f^{\leftarrow}(\mathcal{A})_n$ is an open $\bar{\alpha} - Q$ -cover of A, there exists $\gamma \in \mathcal{B}(\alpha)$ such that $f^{\leftarrow}(\mathcal{A}_{\setminus})$ is $\gamma - Q$ -cover of A. This implies, $\gamma \sqsubseteq a$ and hence $\exists \lambda \in (0,1]$ such that $\gamma \sqsubseteq \lambda \sqsubseteq \alpha$. So, $\lambda \in \mathcal{B}(\alpha)$ and hence we have, $\lambda \leq f^{\leftarrow}(A)(y) = \vee \{A(x) : x \in X, f(x) = y\}$. Now, $\gamma \sqsubseteq \lambda$ implies, $\gamma \not\leq (f^{\leftarrow}(U_i))^c(x) = f^{\leftarrow}(U_i^c)(x) = U_i^x(f(x)) = U_i^c(y)$, for some $1 \leq i \leq n$ such that $x_{\gamma} \propto f^{\leftarrow}(U_i)$. By $\gamma \sqsubseteq \lambda$ and hence $\gamma \leq \lambda$, we have $\lambda \not\leq U_i^c(y)$. Thus $y_{\lambda} \propto U_i$ for some $1 \leq i \leq n$. So, \mathcal{A}_n is an open $\lambda - Q$ -cover of $f^{\rightarrow}(A)$ and hence \mathcal{A}_n is an $\bar{\alpha} - Q$ -cover of $f^{\leftarrow}(A)$.

Definition 29 (Net in X). Let X be a non-empty ordinary set and D be a directed set then every mapping $S:D\to X$ is called a net in X and D is called the index set of S.

Theorem 4.0.3. Let $\langle \mathcal{F}(X), \delta \rangle$ be a fuzzy topological space. Let $A, B, C \in \mathcal{F}(X)$ such that A be a N-compact and B be closed. Then $A \wedge B$ is N-compact.

Proof. Let S be an α -net in $A \wedge B$. Then S is also an α -net in A. Since, A is N-compact, S has a cluster point x_{α} in A such that $ht(\alpha) = \alpha$. But, S is also a net in closed subset B, we have $x_{\alpha} \leq B$.

So, $x_a \leq A \wedge B$, i.e., x_a is a cluster point of δ in $A \wedge B$ such that $ht(\alpha) = \alpha$. Hence, $A \wedge B$ is N-compact. \square