

ISDA: POSITION-AWARE INSTANCE SEGMENTATION WITH DEFORMABLE ATTENTION

Kaining Ying, Zhenhua Wang*, Cong Bai, Pengfei Zhou Zhejiang University of Technology

* zhwang@zjut.edu.cn

Keywords: Instance segementation, End-to-End, Transformer

Paper#2331

ABSTRACT

Most instance segmentation models are not end-to-end trainable due to either the incorporation of proposal estimation (RPN) as a pre-processing or non-maximum suppression as a post-processing. Here we propose a novel end-to-end instance segmentation method termed ISDA. It reshapes the task into predicting a set of object masks, which are generated via traditional convolution operation with learned position-aware kernels and features of objects. Such kernels and features are learned by leveraging a deformable attention network with multi-scale representation. Thanks to the introduced set-prediction mechanism, the proposed method is NMS-free. Empirically, ISDA outperforms Mask R-CNN (the strong baseline) by 2.6 points on MS-COCO, and achieves leading performance compared with recent models. Code is available at https://github.com/yingkaining/isda.

Motivation

- Traditional instance segmentation models are not end-to-end trainable due to either the incorporation of proposal estimation (RPN) as a pre-processing or non-maximum suppression (NMS) as a post-processing.
- We propose a novel end-to-end instance segmentation method termed ISDA.

Model Overview ISDA Head deformable Transformer Mask Feature Head predicted gt

- Our ISDA includes three components
 - The backbone and neck module to extract multi-scale feature
 - The ISDA head which includes a deformable Transformer, a mask feature head and a mask head to predict object masks
 - The Bipartite matching block which associates predictions with ground truth to compute loss

Backbone and neck

Given an image denoted by $x \in R^{3\times H\times W}$, the CNN backbone extracts four feature maps with different resolutions, denoted $by \{C_i \in R^{c_i\times H_i\times W_i}\}_{i=2}^5$. Here c_i , H_i , H_i , H_i denote the channel number, the height and the width of the feature map H_i . The neck takes the multi-scale features as the input and then enhances them separately as that done by deformable DETR. Consequently, we get $\{P_i \in R^{256\times H_i\times W_i}\}_{i=2}^6$, where P_i is down-sampled form P_i .

- Our ISDA includes three components
 - An encoder-decoder deformable Transformer
 - A mask feature head used to generate mask feature representations (MFR)
 - a mask head to make final predictions

Mask Feature Representation

Inspired by SOLOv2[],ISDA learns a compact and high-resolution mask feature representation (MFR) with feature pyramid. After repeated stages of 3×3 Conv, group-norm, ReLU and $2 \times$ bilinear upsampling, the neck features $\{P_i\}_{i=2}^5$ are fused (via elementwise summation) to create one single output at 1/4 scale. It is worth noting that normalized pixel coordinates are fed into the smallest feature map (at 1/32 scale) before convolution and upsampling.

Mask Head

Visualization of reference points

Experimental Result

Ablation on Mask Resolution

Resolution	AP	AP_{50}	AP_{75}	AP_S	AP_M	AP_L
1/8	35.0	58.3	35.9	14.6	38.5	54.7
1/4	36.5	58.9	38.3	17.4	39.5	54.6
1/2	36.4	58.7	38.3	17.6	39.3	53.8

Ablation on Positional information

MP KP Delta AP AP50 AP75 APS APM APL

54.6 53.8	v	√	-0.6	31.8	56.0	31.9	15.4	34.8	47.1
	\checkmark	√	+4.1	36.5	58.9	32.2 37.9 31.9 38.3	17.4	39.5	54.6

Results on MS COCO

Method	AP	AP_{50}	AP_{75}	AP_S	AP_M	AP
Mask R-CNN [7]	36.1	58.2	38.5	20.1	38.8	46.
SOLO [12]	35.1	55.9	37.4	13.7	37.6	51.
SOLOv2 [13]	37.4	58.4	40.1	15.4	40.2	57.
CondInst [33]	36.9	58.2	39.6	19.8	39.3	48.
BlendMask [34]	37.0	58.0	39.4	19.5	39.9	53.
ISTR [29]	37.6	-	-	22.1	40.4	50.
ISDA (ours)	38.7	62.0	41.1	17.0	41.2	55.