Robot Soccer

Prénom Nom

Nº SCEI: ****

Sommaire

Le contexte

- La Robocup
- Problématique
- Objectifs

Robocup

- Compétition internationale de robotique et d'intelligence artificielle
- Catalyseur en R&D
- Développement open source
- Plusieurs ligues :
 - Soccer
 - Industrielle
 - Rescue
 - Home

ROBOCUP

Problématique

Comment tirer un pénalty capable de tromper le gardien avec un robot soccer?

Objectifs

Objectif 1 Objectif 2 Système de tir: Système de déplacement: Etude cinématique Ftude de la cinétique d'un tir d'un robot omnidirectionnelle Dimensionnement Réalisation d'un de l'électro-aimant robot holonome

Cinématique du robot omnidirectionnel

Objectif de l'étude :

Déterminer la relation entre la vitesse du robot et la vitesse de rotation des moteurs

Hypothèses

- $\forall i \in \{1, 2, 3\}, \forall \vartheta \in [0, 2\pi]$
- $\alpha_1 = (\overrightarrow{x_0}, \overrightarrow{x_1}) = 0$
- $\alpha_2 = (\overrightarrow{x_0}, \overrightarrow{x_2}) = \frac{2\pi}{3}$
- $\alpha_3 = (\overrightarrow{x_0}, \overrightarrow{x_3}) = \frac{-2\pi}{3}$
- R0 = $(\overrightarrow{x_0}, \overrightarrow{y_0}, \overrightarrow{z_0})$
- $\dot{\vartheta} = \omega_{Robot} = \omega_{0/s}$
- Robot en translation plane et en rotation sur $\overrightarrow{z_0}$
- Largeur de la roue négligée, roue circulaire

Calculs

- (1) et (2): Formule de Varignon (Changement de poin 3)
- A_i et B_i appartiennent à la roue i

$$\begin{cases}
\overline{V(A_i, 0/S)} = \overline{V(O, 0/S)} + \overline{A_iO} \Lambda \overline{\Omega_{0/S}} & (1) \\
\overline{V(A_i, 0/S)} = \overline{V(A_i, i/S)} & (2) \\
\overline{V(B_i, i/S)} = \overline{V(A_i, i/S)} + \overline{B_iA_i} \Lambda \overline{\Omega_{i/S}} & (3)
\end{cases}$$

11

Calculs

$$\bullet \qquad \left\{ v_{O/S} \right\} = \left\{ \begin{matrix} \overline{\Omega_{O/S}} = \omega_{0/S} \, \overline{z_0} \\ \overline{V_{O,O/S}} = u_{0/S} \, \overline{x_0} + v_{0/S} \, \overline{y_0} \end{matrix} \right\}$$

$$\begin{cases}
\overline{V(A_i, 0/S)} = \overline{V(O, 0/S)} + \overline{A_iO} \wedge \overline{\Omega_{0/S}} & (1) \\
\overline{V(A_i, 0/S)} = \overline{V(A_i, i/S)} & (2) \\
\overline{V(B_i, i/S)} = \overline{V(A_i, i/S)} + \overline{B_iA_i} \wedge \overline{\Omega_{i/S}} & (3)
\end{cases}$$

•
$$Or$$

$$\begin{cases} \overrightarrow{\Omega_{0/S}} = \omega_{0/S} \ \overrightarrow{z_0} \\ \overrightarrow{\Omega_{i/0}} = \omega_i \ \overrightarrow{x_i} \\ \overrightarrow{\Omega_{i/S}} = \overrightarrow{\Omega_{i/0}} + \overrightarrow{\Omega_{0/S}} \end{cases}$$

Ainsi,

$$\begin{cases}
(1) \Leftrightarrow \overrightarrow{V(A_i, 0/S)} = \overrightarrow{V_{0/S}} + R \omega_{0/S} \overrightarrow{z_0} \\
(3) \Leftrightarrow \overrightarrow{V(B_i, i/S)} = \overrightarrow{V(A_i, 0/S)} + r \omega_i \overrightarrow{y_i}
\end{cases}$$

Calculs

$$\bullet \qquad \left\{ v_{O/S} \right\} = \left\{ \overrightarrow{\Omega_{0/S}} = \omega_{0/S} \, \overrightarrow{z_0} \\ \overrightarrow{V_{0/S}} = u_{0/S} \, \overrightarrow{x_0} + v_{0/S} \, \overrightarrow{y_0} \right\}$$

$$\begin{pmatrix}
(1) \Leftrightarrow \overrightarrow{V(A_i, 0/S)} = \overrightarrow{V_{0/S}} + R \omega_{0/S} \overrightarrow{z_0} \\
(3) \Leftrightarrow \overrightarrow{V(B_i, i/S)} = \overrightarrow{V(A_i, i/S)} + r \omega_i \overrightarrow{y_i}
\end{pmatrix}$$

Il suit que:

(*)
$$\Rightarrow \overrightarrow{V(B_i, i/S)} = u_{0/s} \overrightarrow{x_0} + v_{0/s} \overrightarrow{y_0} + R \omega_{0/s} \overrightarrow{z_0} + r \omega_i \overrightarrow{y_i}$$

Calculs

- $\overrightarrow{V(B_i,i/R0)} = u_{0/s} \overrightarrow{x_0} + v_{0/s} \overrightarrow{y_0} + R \omega_{0/s} \overrightarrow{z_0} + r \omega_i \overrightarrow{y_i}$
- Roue i en RSG selon $\overrightarrow{y_i}$:

$$\Rightarrow \overrightarrow{V(B_i, i/S)}. \overrightarrow{y_i} = \overrightarrow{0}$$

$$\Leftrightarrow -u_{0/s} \sin \alpha_i + v_{0/s} \cos \alpha_i + R \omega_{0/s} + r \omega_i = 0$$

$$u_{0/s} \sin \alpha_i - v_{0/s} \cos \alpha_i - R \omega_{0/s}$$

$$\iff \omega_i = \frac{u_{0/s} \sin \alpha_i - v_{0/s} \cos \alpha_i - R \,\omega_{0/s}}{r}$$

Expérience

Objectif de l'expérience :

Tester la validité de la relation établie par l'étude théorique

$$\omega_i = \frac{u_{0/s} \sin \alpha_i - v_{0/s} \cos \alpha_i - R \omega_{0/s}}{r}$$

Protocole et hypothèse

Hypothèses:

- Roulement sans glissement
- Baisse de tension de la batterie négligé

•
$$\{v_{Robot/Sol}\} = \{\overrightarrow{\Omega_{0/S}} = \overrightarrow{0} \}$$

Protocole:

- Faire translater le robot selon $\overrightarrow{x_2}$ durant T secondes
- Mesurer L: la distance parcourut
- Mesurer ω_1 et ω_3 les vitesses de rotation des roues 1 et 3 par tracking vidéo

Résultats théorique (1) Nota bene: $\alpha_{1} = 0$ $\alpha_{2} = \frac{2\pi}{3}$ $\alpha_{3} = \frac{-2\pi}{3}$ Rayon roue : r = 29m $\omega = |\omega_{1}| = |\omega_{3}|$ $v_{Robot} = \frac{L}{T}$

•
$$\{v_{Robot/Sol}\} = \left\{ \overrightarrow{\Omega_{0/S}} = \overrightarrow{0} \atop \overrightarrow{V_{0,0/S}} = v_{Robot} \overrightarrow{x_2} \right\}$$

• Relation:
$$\omega_i = \frac{u_{0/s} \sin \alpha_i - v_{0/s} \cos \alpha_i - R \omega_{0/s}}{r}$$

•
$$u_{0/s} = \frac{-1}{2} v_{Robot}$$

•
$$v_{0/S} = \frac{\sqrt{3}}{2} v_{Robot}$$

•
$$\omega_{0/s} = 0$$

Finalement,

$$\omega_1 = \frac{-\sqrt{3} v_{Robot}}{2 \times 29}$$
 ; $\omega_2 = 0$; $\omega_3 = \frac{\sqrt{3} v_{Robot}}{2 \times 29}$

$$\omega_2 = 0$$

$$\alpha_1 = 0$$

$$\alpha_2 = \frac{2\pi}{3}$$

•
$$\alpha_3 = \frac{-2\pi}{3}$$

•
$$\omega = |\omega_1| = |\omega_3|$$

•
$$v_{Robot} =$$

$$\omega_3 = \frac{\sqrt{3} \, v_{Robot}}{2 \times 29}$$

Résultats pratique

Expérience 1

- Revêtement du sol : parquet stratifié
- T1 = 5 secondes
- L1 = 1480mm

Expérience 2

- Revêtement du sol : carrelage
- T2 = 3 secondes
- L2 = 1100mm

Calcul des vitesses de déplacement du robot

$$v_{E1} = \frac{L_1}{T_1} = 296 \ mm/s$$

$$v_{E2} = \frac{L_2}{T_2} = 367 \text{ mm/s}$$

Résultats pratique

Expérience 1

Expérience 2

Calcul des vitesses de déplacement du robot

$$v_{E1} = \frac{L_1}{T_1} = \frac{1480}{5} = 296 \text{ mm/s}$$
 $v_{E2} = \frac{L_2}{T_2} = \frac{1100}{3} = 367 \text{ mm/s}$

$$v_{E2} = \frac{L_2}{T_2} = \frac{1100}{3} = 367 \text{ mm/s}$$

Calcul des vitesses de rotation des roues

$$\omega_{E1} = \frac{\sqrt{3} v_{E1}}{2 \times 29} = 8.4 \text{ rad/s}$$
 $\omega_3 = \frac{\sqrt{3} v_{E2}}{2 \times 29} = 11 \text{ rad/s}$

$$\omega_3 = \frac{\sqrt{3} v_{E2}}{2 \times 29} = 11 \text{ rad/s}$$

Vitesse de rotation à vide mesurée par tracking vidéo :

14,6 rad/s

Conclusion expérience

- D'importantes incertitudes
 - Mesure des distances ≈ 1cm
 - Vitesse de rotation mesurée à vide
 - Forte influence du revêtement : augmentation de 35% de vitesse sur le carrelage par rapport au stratifié
 - o Problèmes électroniques
- Taux d'erreur :
 - Meilleur cas : 21,9% (expérience 2)
 - o Pire cas: 42,4% (expérience 1)
- Conclusion et Axe d'amélioration : Taux d'erreurs importants à cause du glissement et de la mesure de vitesse de rotation mais modèle théorique validé. Par ailleurs, des amélioration sont à prévoir sur le prototype.

Description du Robot

- Les besoins
- Exigence de déplacement
- Exigences du règlement
- BDD
- Système de tir

Les besoins

Exigences de déplacement

Exigences du règlement

24

Diagramme de définition de bloc

Système de tir

- Electro-aimant à solénoïde
- Certitude d'un tir cadré à une distance de 40cm
- Relation entre la position de la frappe sur la balle et la position de la balle dans les cages

Solution problématique

- Robot à roue omnidirectionnelles
- **/**
- Liaison Robot/Sol ⇔ Liaison plan (CDC)
- **/**
- Loi de commande des moteurs
- Vitesse max
- **/**
- théorique: 770 mm/s > 500 mm/s (CDC)
- 0
- Expérimentale : 367 mm/s < 500mm/s (CDC)
- Système de tir fonctionnel
- Améliorations nécessaires :
 - Montage électrique
 - Raquette de tir

Les problèmes

Chaine de puissance

- Tout les moteurs tournent bien à vide
- Difficile de solliciter plusieurs moteurs en même temps
- Ne tournent plus une fois chargé

Moteur

- Importants efforts internes anormaux
- Anomalie absente des autres moteurs
- S'est déclaré après assemblage

continu

Problème : Chaine de puissance

Solution: Chaine de puissance

Diagramme des cas d'utilisation

Driver I (Moteur I et Moteur 2)

Robot « omni »

Inconvénients Avantages Liberté de Vibration déplacement Manque Maniabilité d'adhérence Besoin d'un couple plus important qu'un système "classique" Système plus complexe

Robot « omni »

Configuration 3WD

Configuration 4WD

Robot « omni »

3 roues motrices

- + Stable :
 - 3 points ⇒ 1 plan
- Code plus complexe :
 - Cinématique moins intuitive
- Mécanisme + simple :
 - Chaines de puissance et d'information plus légères
 - Plus compact

4 roues motrices

- + d'adhérence
- + de couple
- Code + simple
- Mécanisme plus complexe :
 - Problème de planéité
 - 4 moteurs à contrôler
 - Encombrement plus important

Choix: Robot 3 roues motrices

Critères retenus:

- Compacité
- Stabilité
- Simplicité de conception

Omniwheel

Déplacement holonome

Dessin support driver et moteur

Support driver

Support moteur

Dessin support driver et moteur

Chassie moteur

Chassie supérieur

Calcul expérience:

•
$$\{v_{Robot/Sol}\} = \left\{ \overrightarrow{\Omega_{0/S}} = \overrightarrow{0} \atop \overrightarrow{V_{O,0/S}} = v_{Robot} \overrightarrow{x_2} \right\}$$
 (1)

$$(1) \Rightarrow \overrightarrow{V_{0,0/S}} = v_{Robot} \left(\cos \alpha_2 \ \overrightarrow{x_0} + \sin \alpha_2 \ \overrightarrow{y_0} \right)$$

$$= v_{Robot} \left(\cos \frac{2\pi}{3} \ \overrightarrow{x_0} + \sin \frac{2\pi}{3} \ \overrightarrow{y_0} \right)$$

$$= \underbrace{\frac{-1}{2} v_{Robot}}_{u_{0/S}} \ \overrightarrow{x_0} + \underbrace{\frac{\sqrt{3}}{2} v_{Robot}}_{v_{0/S}} \ \overrightarrow{y_0}$$

Nota bene:

•
$$\alpha_2 = \frac{2\pi}{3}$$

Alors:

$$u_{0/s} = \frac{-1}{2} v_{Robot}$$
 ; $v_{0/s} = \frac{\sqrt{3}}{2} v_{Robot}$; $\omega_{0/s} = 0$

Calcul expérience: ω₁

• Relation:
$$\omega_i = \frac{u_{0/s} \sin \alpha_i - v_{0/s} \cos \alpha_i - R \omega_{0/s}}{r}$$

$$\bullet \quad u_{0/s} = \frac{-1}{2} v_{Robot} \tag{3}$$

•
$$v_{0/S} = \frac{\sqrt{3}}{2} v_{Robot}$$
 (

Alors,

$$\omega_{1} = \frac{1}{29} \left(\frac{-1}{2} v_{Robot} \sin 0 - \frac{\sqrt{3}}{2} v_{Robot} \cos 0 \right)$$
$$= \frac{-1}{29} \times \frac{\sqrt{3}}{2} v_{Robot}$$

Nota bene:

- (3) $\alpha_1 = 0$ Rayon roue: r = 29mm

Calcul expérience: ω₂

• Relation:
$$\omega_i = \frac{u_{0/s} \sin \alpha_i - v_{0/s} \cos \alpha_i - R \omega_{0/s}}{r}$$

$$\bullet \quad u_{0/s} = \frac{-1}{2} v_{Robot} \tag{3}$$

$$\bullet \quad v_{0/S} = \frac{\sqrt{3}}{2} v_{Robot} \tag{4}$$

Alors.

$$\omega_{2} = \frac{1}{29} \left(\frac{-1}{2} v_{Robot} \sin \frac{2\pi}{3} - \frac{\sqrt{3}}{2} v_{Robot} \cos \frac{2\pi}{3} \right)$$

$$= \frac{1}{29} \left(\frac{-1}{2} \times \frac{\sqrt{3}}{2} v_{Robot} - \frac{\sqrt{3}}{2} \times \frac{-1}{2} v_{Robot} \right)$$

$$= 0$$

Nota bene:

•
$$\alpha_2 = \frac{2\pi}{3}$$

(3) $\alpha_2 = \frac{2\pi}{3}$ • Rayon roue : r = 29mm

Calcul expérience: ω_3

• Relation:
$$\omega_i = \frac{u_{0/s} \sin \alpha_i - v_{0/s} \cos \alpha_i - R \omega_{0/s}}{r}$$
 (2)

$$\bullet \quad u_{0/s} = \frac{-1}{2} v_{Robot} \tag{3}$$

•
$$v_{0/S} = \frac{\sqrt{3}}{2} v_{Robot}$$

Alors,

$$\omega_{3} = \frac{1}{29} \left(\frac{-1}{2} v_{Robot} \sin \frac{-2\pi}{3} - \frac{\sqrt{3}}{2} v_{Robot} \cos \frac{-2\pi}{3} \right)$$

$$= \frac{1}{29} \left(\frac{1}{2} \times \frac{\sqrt{3}}{3} v_{Robot} + \frac{\sqrt{3}}{3} \times \frac{1}{3} v_{Robot} \right)$$

$$=\frac{1}{29}\times\frac{\sqrt{3}}{2}v_{Robot}=-\omega_1$$

$$\alpha_3 = \frac{-2\pi}{3}$$

(2) Nota bene:
(3)
$$\alpha_3 = \frac{-2\pi}{3}$$

(4) Rayon roue: $r = 29$ mm

Calcul résultat pratique

$$\omega = \frac{\sin\frac{2\pi}{3}}{r} v_{Robot} = \frac{\sqrt{3}}{2 \times 29} v_{Robot}$$

$$\begin{cases} V_{E1} = \frac{L_1}{T_1} = \frac{1480}{5} = 296 \text{ mm/s} \\ V_{E2} = \frac{L_2}{T_2} = \frac{1100}{3} = 367 \text{ mm/s} \end{cases}$$

$$\begin{cases} \omega_{E1} = \frac{\sqrt{3}}{2 \times 29} \times 296 = 8,4 \ rad/s \\ \omega_{E2} = \frac{\sqrt{3}}{2 \times 29} \times 367 = 11 \ rad/s \end{cases}$$

Expérience validation vidéo

Expérience validation vidéo

	Moteur 1	Moteur 3
Consigne	250 bits	110 bits
$T_{1 tour}$	0,43s	0,43s
ω	14,62 rad/s	14,62 rad/s

- Faire tourner les moteurs à vide aux même consigne que durant l'expérience
- Mesure de temps pour 1 tour

•
$$\omega = \frac{2\pi}{T_{1,tour}} = \frac{2\pi}{0.43} = 14,61 \text{ rad/s}$$

Expérience encodeur

1 moteur

2 moteurs

•
$$T1 = 0.27s$$

•
$$T1 = 0.29s$$

- rad/s
- Vitesse mesuré: 23 Vitesse mesuré: 11,55 rad/s

Calcul des vitesses de rotations

$$\omega_{1mot} = \frac{2\pi}{0.27} = 23,7 \ rad/s$$

$$\omega_{1mot} = \frac{2\pi}{0.27} = 23.7 \ rad/s$$
 $v_{2mot} = \frac{2\pi}{0.29} = 21,66 \ rad/s$

Conclusion

Mesure de l'encodeur Mesure de l'encodeur validé

invalidé

Table de vérité Driver Bit de seuil moteurs

	Moteur 1		Moteur 3	
	Sens 1	PWM1	Sens 3	PWM 3
Rotation Horaire Vmax	LOW	255 bit	LOW	255 bit
Rotation Horaire Vmax	LOW	38 bit	LOW	60 bit
Rotation anti-Horaire Vmax	HIGH	0 bit	HIGH	0 bit
Rotation anti-Horaire Vmin	HIGH	245 bit	HIGH	236 bit

```
1 #include <digitalWriteFast.h>
                                                                                     1 void setup() {
       const int Encodeur1A = 18;
                                                                                               pinMode(Encodeur1A, INPUT):
       const int Encodeur1B = 19:
                                                                                               pinMode(Encodeur1B, INPUT)
       const int Encodeur2A = 18;
       const int Encodeur2B = 19:
                                                                                               pinMode(Encodeur3A, INPUT)
       const int Encodeur3A = 20:
                                                                                               pinMode(Encodeur3B, INPUT)
       const int Encodeur3B = 21:
                                                                                                   digitalWrite(Encodeur1A, HIGH)
       volatile long ticks1 = 0; volatile long ticks1 offset = 0;
                                                                                                   digitalWrite(Encodeur1B, HIGH)
       volatile long ticks3 = 0; volatile long ticks3 offset = 0;
                                                                                                   digitalWrite(Encodeur3A, HIGH)
                                                                                                   digitalWrite(Encodeur3B, HIGH)
       const int Mot_1_PWM = 8 ;
       const int Mot 1 Sens = 50 ;
                                                                                                   attachInterrupt(digitalPinToInterrupt(Encodeur1A), Codeur_Interupt_1A, CHANGE);
       const int Mot 2 PWM = 10 ;
                                                                                                   attachInterrupt(digitalPinToInterrupt(Encodeur1B), Codeur_Interupt_1B, CHANGE);
       const int Mot_2_Sens = 51;
       const int Mot 3 PWM = 12 ;
                                                                                               pinMode(Mot_1_Sens, OUTPUT)
                                                                                               pinMode(Mot_1_PWM, OUTPUT);
       volatile double omegal
       volatile double omega2
                                                                                               pinMode(Mot 3 Sens, OUTPUT)
       volatile double omega3
                                                                                               pinMode(Mot_3_PWM, OUTPUT)
                                                                                               digitalWrite(Mot_1_Sens, LOW)
       volatile long temps_initiale = millis(); //(en milliseconde)
                                                                                               analogWrite(Mot 1 PWM, 250);
       volatile long temps precedent1; volatile long dt1;
       volatile long temps_precedent2; volatile long dt2;
                                                                                               digitalWrite(Mot_3_Sens, LOW)
                                                                                               analogWrite(Mot_3_PWM, 110 );
```

```
void loop() {
        Moteur1();
        Moteur3();
        if ( (millis() - temps_initiale) > 3000) {
            analogWrite(Mot_1_PWM, 0 );
            digitalWrite(Mot_1_Sens, LOW);
11
12
13
            analogWrite(Mot_3_PWM, 0 );
            digitalWrite(Mot_3_Sens, LOW);
15
17
```

```
void Moteur1() {
        dt1 = millis() - temps_precedent1;
        temps_precedent1 = millis();
        ticks1_offset = ticks1;
        ticks1 = 0;
        omega1 = ((2*pi) / 544) * (ticks1_offset / dt1) *1000 ;
11
12 }
```

```
void Codeur_Interupt_1A() {
   if (digitalReadFast(Encodeur1A) == digitalReadFast(Encodeur1B)) {
void Codeur_Interupt_1B() {
   if (digitalReadFast(Encodeur1A) == digitalReadFast(Encodeur1B)) {
```

```
void print data() {
  Serial.println("-----");
  Serial.print("Temps : "); Serial.println( (millis() - temps_initiale) );
  Serial.println("----");
  Serial.println("-----");
  Serial.print("Moteur 1 | "); Serial.print( omega1 ); Serial.println(" rad/seconde");
  Serial.println("----");
  Serial.print("Moteur 3 | "); Serial.print( omega3 ); Serial.println(" rad/seconde");
  Serial.println("-----");
  Serial.println(" ");
```

```
void Moteur1() {
           dt1 = millis() - temps precedent1;
           temps_precedent1 = millis();
          ticks1_offset = ticks1;
           omega1 = ( (2*pi) / 544) * (ticks1_offset / dt1 ) *1000 ;
       void Moteur2() {
           dt2 = millis() - temps_precedent2;
          temps_precedent2 = millis();
          omega2 = ( (2*pi) / 544) * (ticks2_offset / dt2 ) *1000 ;
       void Moteur3() {
           dt3 = millis() - temps precedent3;
          omega3 = ( (2*pi) / 544) * (ticks3_offset / dt3 ) *1000 ;
```

 $\operatorname{Ainsi}_{s} \left\{ v_{0/S} \right\} = \left\{ \begin{array}{ccc} 0 & u_{0/s} \\ 0 & v_{0/s} \\ \omega_{0/s} & 0 \end{array} \right\}_{R0 = (\overrightarrow{x_0}, \overrightarrow{y_0}, \overrightarrow{z_0})} = \left\{ \overrightarrow{V_{0/S}} = \omega_{0/s} \, \overrightarrow{x_0} + v_{0/s} \, \overrightarrow{y_0} \right\}_{R0 = (\overrightarrow{x_0}, \, \overrightarrow{y_0}, \overrightarrow{z_0})}$

$$\begin{cases}
\overline{V(A_i, 0/S)} = \overline{V(O, 0/S)} + \overline{A_{i,O}} \Lambda \overline{\Omega_{0/S}} & \text{(1)} \\
\overline{V(B_i, i/S)} = \overline{V(A_i, i/R0)} + \overline{B_i A_i O} \Lambda \overline{\Omega_{i/S}} & \text{(3)}
\end{cases}$$
Relation: ω_i

$$= \frac{u_{0/s} \sin \alpha_i - v_{0/S} \cos \alpha_i - R \omega_{0/S}}{r}$$

• Or
$$\begin{cases} \Omega_{i/0} = \omega_{0/S} \, \overline{z_0} \\ \overline{\Omega_{i/0}} = \omega_i \, \overline{x_i} \\ \overline{\Omega_{i/S}} = \overline{\Omega_{i/0}} + \overline{\Omega_{0/S}} \end{cases}$$

$$V_1 = \frac{148}{5} \times 10 = 294 \, \text{m}$$

$$V_2 = \frac{110}{3} \times 10 = 367 \, \text{m}$$
• $u_{0/S} = \frac{-1}{2} v_{Robot}$
• $v_{0/S} = \frac{\sqrt{3}}{2} v_{Robot}$

• $\begin{cases} (1) \Leftrightarrow \overrightarrow{V\left(A_i, \frac{0}{s}\right)} = \overrightarrow{V_0} + R \ \omega_{0/s} \ \overrightarrow{z_0} \\ (3) \Leftrightarrow \overrightarrow{V\left(B_i, \frac{i}{R0}\right)} = \overrightarrow{V\left(A_i, \frac{0}{s}\right)} + r \ \omega_i \ \overrightarrow{y_i} \end{cases}$

 $V_1 = \frac{148}{5} \times 10 = 294 \ mm/s$

 $V_2 = \frac{110}{3} \times 10 = 367 \text{ mm/s}$

Table de vérité/seuil Driver

Moteurs 1	Sens	PWM
Rotation Horaire Vmax	LOW 255	
Rotation Horaire Vmin	LOW	38
Rotation anti-Horaire Vmax	HIGH	0
Rotation anti-Horaire Vmin	HIGH	245