Negative Answers To Some Positivity Questions

John Lesieutre, MIT

Nefness in families

Let $\mathcal{X} \to (\mathbb{P}^2)^{10}$ \\ \Delta be the family of blow-ups of \mathbb{P}^2 at 10 distinct points. There exists an \mathbb{R} -divisor D on \mathcal{X} such that $D_{\mathbf{p}}$ is nef on $X_{\mathbf{p}}$ for very general \mathbf{p} , but is not nef for \mathbf{p} in countably many codimension-1 subvarieties of the base. Thus nefness is not an open condition under deformation.

Sequences of Cremona maps

- Suppose C is a curve in \mathbb{P}^2 with degree d and multiplicities $m_1, m_2,$ and m_3 at three points.
- The strict transform of C under a Cremona transformation centered at those points has degree $2d-m_1-m_2-m_3$ and multiplicities $m_1=d-m_2-m_3,\ldots$
- Cremona transformation + permutation of the points generates an action of a Coxeter group on the space of k-tuples of points in \mathbb{P}^2 .
- Example element: move the last three points to beginning of list, then make a Cremona transformation at these.
- If \mathbf{p} is a k-tuple, this induces a map $M^{\mathbf{pq}}_{\sigma}: N^1(X_{\mathbf{p}}) \to N^1(X_{\mathbf{q}})$, where \mathbf{q} is a new configuration.
- $M_{\sigma}^{\mathbf{pq}}$ preserves the nef cone.

Nefness of an eigenvector

- $\Phi: N^1(X_{\mathbf{q}}) \to N^1(X_{\mathbf{p}})$ equating d and m_i preserves the nef cone if \mathbf{p} is very general, but not otherwise.
- If $k \ge 10$, then $M_{\sigma} = \Phi \circ M_{\sigma}^{\mathbf{pq}}$ has an eigenvalue $\lambda > 1$.
- The dominant eigenvector of M_{σ} is nef for very general ${\bf p}$. In the example,

 $D_{\lambda} \approx h - 0.451e_1 - 0.440e_2 - 0.408e_3 - \cdots$

- This is not nef if:
- $p_1, p_2, \text{ and } p_3 \text{ are collinear}$
- p_1, \ldots, p_6 lie on a conic
- There exists a curve of class $M_{\sigma}^{n}(h-e_{1}-e_{2}-e_{3})$ on $X_{\mathbf{p}}$ (a codimension-1 condition on the base for each n)
- The reason is simple: if there is such a curve,

$$D_{\lambda} \cdot C = \frac{1}{\lambda^{n}} (M_{\sigma}^{n} D_{\lambda}) \cdot (M_{\sigma}^{n} (h - e_{1} - e_{2} - e_{3}))$$
$$= \frac{1}{\lambda^{n}} D_{\lambda} \cdot (h - e_{1} - e_{2} - e_{3}) < 0.$$

- [1] Arthur B. Coble, Algebraic geometry and theta functions, American Mathematical Society, 1929.
- [2] I. Dolgachev and D. Ortland, *Point sets in projective spaces and theta functions*, Astérisque (1988).
- [3] Curtis T. McMullen, Dynamics on blowups of the projective plane, Publ. Math. IHES (2007).

The diminished base locus

Let X be the blow-up of \mathbb{P}^3 at 9 very general points. There exists a pseudoeffective \mathbb{R} -divisor D which has negative intersection with an infinite sequence of curves C_n , which are Zariski dense on X. In particular $\mathbf{B}_{-}(D)$ is not Zariski closed.

A Cremona transformation

- The standard Cremona transformation on \mathbb{P}^3 is defined by $[W;X,Y;Z]\mapsto [W^{-1};X^{-1};Y^{-1};Z^{-1}]$
- Has a resolution

$$\begin{array}{c|c}
Y & p' \\
X & \overline{Cr} & X' \\
\pi & \pi' \\
\mathbb{P}^3 & \mathbb{P}^3
\end{array}$$

where π and π' are the blow-up of \mathbb{P}^3 at four points, and \overline{Cr} is the flop of the strict transforms of the six lines through two points.

Eigenvector intersections

- As in the first example, we can repeatedly make a Cremona transformation at the first four points and then move the last four to the front.
- The induced action $M_{\sigma}: N^1(X_{\mathbf{p}}) \to N^1(X_{\mathbf{p}})$ has an eigenvalue bigger than 1 as long as at least 9 points; let D_{λ} be the eigenvector.
- If C_0 is the line between p_1 and p_2 , its strict transforms C_n are disjoint from the indeterminacy loci. Thus C_n is a curve of class $N_{\sigma}^n([C_0])$.
- We have

$$D_{\lambda} \cdot C_n = \left(\frac{1}{\lambda^n} M_{\sigma}^n D_{\lambda}\right) \cdot (N_{\sigma}^n C_0) = \frac{1}{\lambda^n} D_{\lambda} \cdot C_0 < 0.$$

- The diminished base locus is $\mathbf{B}_{-}(D) = \bigcup_{A \text{ ample}} \mathbf{B}(D+A)$, a countable union of subvarieties.
- Since $D_{\lambda} \cdot C_n < 0$, $C_n \subset \mathbf{B}_{-}(D_{\lambda})$, and D_{λ} is a countable union of curves.
- Can construct a similar 4-dimensional example with D' big and X' a \mathbb{P}^1 -bundle over X. Here $\mathbf{B}_{-}(D')$ is an infinite set of curves, dense in a codimension-1 subvariety.
- [1] Turgay Bayraktar, Green currents for meromorphic maps of compact Kähler manifolds, pre-print (2012).
- [2] Ein, Lazarsfeld, Mustaţă, Nakamaye, and Popa, Asymptotic invariants of base loci, Ann. Inst. Fourier (Grenoble) **56** (2006).
- [3] Antonio Laface and Luca Ugaglia, *Elementary* (-1)-curves of \mathbb{P}^3 , Comm. Algebra **35** (2007).

Fourier-Mukai partners

There is an infinite set W of configurations of 8 points in \mathbb{P}^3 such that if \mathbf{p} and \mathbf{q} are distinct elements of W, then $D^b \operatorname{Coh}(\operatorname{Bl}_{\mathbf{p}}(\mathbb{P}^3)) \cong D^b \operatorname{Coh}(\operatorname{Bl}_{\mathbf{q}}(\mathbb{P}^3))$, but $\operatorname{Bl}_{\mathbf{p}}(\mathbb{P}^3)$ and $\operatorname{Bl}_{\mathbf{q}}(\mathbb{P}^3)$ are not isomorphic.

Reconstruction problems

- The derived category $D(X) = D^b \operatorname{Coh}(X)$ is a fairly strong invariant of X.
- Two varieties with equivalent derived categories have the same dimension, Kodaira dimension, etc.
- X and Y are said to be Fourier-Mukai partners if $D(X) \cong D(Y)$.
- Question (Kawamata): is the number of Fourier-Mukai partners of X always finite?
- Yes, for curves, surfaces, abelian varieties, toric varieties, Fano varieties, varieties with K_X ample.
- The example shows this is not the case for all threefolds!

Cremona orbits

- If \mathbf{p} is a configuration of 8 points in \mathbb{P}^3 , we can make a Cremona transformation centered at the first four.
- This gives a new configuration of points \mathbf{q} , and the blow-ups differ by a rational map $\mathrm{Bl}_{\mathbf{p}}(\mathbb{P}^3) \dashrightarrow \mathrm{Bl}_{\mathbf{q}}(\mathbb{P}^3)$ which flops six curves.
- Bondal-Orlov: if $X \dashrightarrow X^+$ is the flop of a rational curve with normal bundle $\mathcal{O}(-1) \oplus \mathcal{O}(-1)$, then $D(X) \cong D(X^+)$.
- The claimed example then follows from three observations:
- \bullet $\mathrm{Bl}_{\mathbf{p}}(\mathbb{P}^3)$ and $\mathrm{Bl}_{\mathbf{q}}(\mathbb{P}^3)$ are isomorphic if and only if \mathbf{p} and \mathbf{q} coincide, up to permutation and an automorphism of \mathbb{P}^3 .
- If \mathbf{q} can be obtained from \mathbf{p} by a sequence of standard Cremona transformations, then $\mathrm{Bl}_{\mathbf{p}}(\mathbb{P}^3)$ and $\mathrm{Bl}_{\mathbf{q}}(\mathbb{P}^3)$ are connected a sequence of flops of rational curves with normal bundle $\mathcal{O}(-1) \oplus \mathcal{O}(-1)$, and so $D(X_{\mathbf{p}}) \cong D(X_{\mathbf{q}})$.
- The orbit of a sufficiently general configuration **p** of 8 points under standard Cremona transformations is infinite.
- [1] A. Bondal and D. Orlov, *Derived categories of coherent sheaves*, Proceedings of the ICM, 2002.
- [2] Yujiro Kawamata, *D-equivalence and K-equivalence*, J. Differential Geom. **61** (2002).
- [3] Mathieu Anel and Bertrand Toën, Dénombrabilité des classes d'équivalences dérivées de variétés algébriques, J. Algebraic Geom. **18** (2009).

Multiplicities on CY3's

Let $\pi: X \to S$ be the versal deformation space of a fiber of Kodaira type I_2 . There exists a π -pseudoeffective Cartier divisor D on X and a curve Γ for which $\sigma_{\Gamma}(D; X/S)$ is infinite.

Asymptotic multiplicities

- If D is big, set $\sigma_{\Gamma}(D) = \inf_{D' \equiv_{\mathbb{R}} D} \{ \operatorname{mult}_{\Gamma}(D') \}$
- This extends to the pseudoeffective boundary as

$$\sigma_{\Gamma}(D) = \lim_{\epsilon \to 0} \sigma_{\Gamma}(D + \epsilon A).$$

- This limit is finite and depends only on the numerical class of D.
- Analogous definition in the relative setting –
 but the example shows this limit can be infinite!

Basic example

- $\pi: X \to S$ has central fiber the union of two smooth rational curves C_1 and C_2 meeting transversally at two points. The base S is two dimensional, one for each node.
- $N^1(X/S)$ is spanned by C_1 and C_2 .
- There exists an infinite sequence of flops of curves in central fiber, giving infinitely many chambers in $\overline{\text{Mov}}(X/S) = \overline{\bigcup_i \text{Nef}(X_i/S)}$.

Multiplicities under a flop

- If we know $D \cdot C_1$, $D \cdot C_2$, $\operatorname{mult}_{C_1}(D)$, and $\operatorname{mult}_{C_2}(D)$, we can find how all of these change when taking strict transform under the flop of C_1 .
- Let D_0 be ample, D_n its transform under n flops.

n	$D_n \cdot C_1$	$D_n \cdot C_2$	$ig \operatorname{mult}_{C_1} D_n$	$\left \operatorname{mult}_{C_2} D_n ight $
0	1	1	0	0
1	3	-1	0	1
		• • •		
n	2n+1	$\left -2n+1\right $	$\frac{n(n-1)}{2}$	$\frac{n(n+1)}{2}$

Then compute

$$\sigma_C(D) = \lim_{n \to \infty} \operatorname{mult}_C(D + \frac{1}{2n}D_0)$$

$$= \lim_{n \to \infty} \frac{1}{2n} \operatorname{mult}_C D_n = \lim_{n \to \infty} \frac{n-1}{4} = \infty.$$

- [1] Yujiro Kawamata, On the cone of divisors of Calabi-Yau fiber spaces, Internat. J. Math. 8 (1997).
- [2] Noboru Nakayama, Zariski-decomposition and abundance, MSJ Memoirs, vol. 14, 20043
- [3] Miles Reid, Minimal models of canonical 3-folds, Algebraic varieties and analytic varieties.

Zariski decompositions

- The \mathbb{R} -divisor D of column two does not admit a weak Zariski decomposition $f^*D = P + N \ (P \ nef, \ N \ effective) \ on \ any \ birational model <math>f: Y \to X$.
- The divisor D of column four does not admit a relative weak Zariski decomposition over S.

These follow respectively from the fact that D is negative on a dense set of curves, and the fact that $\sigma_C(D; X/S) = \infty$.

A second example

- Let X be a complete intersection of type (1,1), (1,1), (2,2) in $\mathbb{P}^3 \times \mathbb{P}^3$.
- This is a Calabi-Yau threefold of Picard number 2 with infinitely many minimal models.
- Multiplicities can be computed by the same strategy as before.
- Let D be a divisor on the pseudoeffective boundary of X and Γ be a flopping curve. Then $\sigma_{\Gamma}(mD) \sigma_{\Gamma}(mD + A)$ is not bounded in m
- This shows that although σ_{Γ} must have a finite limit, it may still increase very fast: this function is not Lipschitz at the boundary.

Two conjectures

Conjecture A. If X is a smooth threefold and D is a pseudoeffective \mathbb{R} -divisor on X with $\mathbf{B}_{-}(D)$ closed, then D admits a Zariski decomposition in the sense of Nakayama.

Conjecture B. If X is a terminal threefold, the number of K_X -negative extremal rays on $\overline{\mathrm{NE}}(X)$ is finite.

Question. Does the D above admit a weak Zariski decomposition?

- If no, then Conjecture A is false.
- If yes, then Conjecture B is false.

(Reason: if $f: Y \to X$ is birational, and H is ample on Y, the K_Y -MMP with scaling by H ends up at the model of X on which f_*H is nef. If $f^*D = P + N$, then taking H = P + tA would yield infinitely many models as possible MMP outcomes, all X_i whose chambers accumulate at D.) **Confession.** I don't know! (my guess: no)

- [1] Caucher Birkar, On existence of log minimal models and weak Zariski decompositions, (2009).
- [2] Lazić and Peternell, On the cone conjecture for Calabi-Yau manifolds with Picard number two.
- [3] Keiji Oguiso, Automorphism groups of Calabi-Yau manifolds of Picard number two, pre-print (2012).

This research was supported by an NSF Graduate Research Fellowship under Grant #1122374.