22 Octobre 2009

MT22-PARTIEL 1 : Durée 1 heure

Seules 4 pages format A4 sont autorisées

Exercice 1 Soit la fonction f de \mathbb{R}^2 dans \mathbb{R} définie par :

$$f(x,y) = \begin{cases} \frac{x^2y}{x^2 + y^2} & si \quad (x,y) \neq (0,0) \\ 0 & si \quad (x,y) = (0,0) \end{cases}$$

- 1. Etudier la continuité de f au point (0,0).
- 2. Soit la direction $\overrightarrow{d} = (d_1, d_2)$ un vecteur non nul de \mathbb{R}^2 tel que $d_1^2 + d_2^2 = 1$. Calculer la dérivée de f dans la direction \overrightarrow{d} au point (0,0).
- 3. Calculer les dérivées partielles $\frac{\partial f}{\partial x}(0,0)$ et $\frac{\partial f}{\partial u}(0,0)$.
- 4. Les fonctions $\frac{\partial f}{\partial x}$ et $\frac{\partial f}{\partial y}$ sont elles continues en (0,0)? Justifier
- 5. Peut-on conclure à la différentiabilité de f au point (0,0)? Justifier
- 6. La fonction $\varepsilon(x,y) = \frac{x^2y}{(x^2+y^2)^{\frac{3}{2}}}$ pour $(x,y) \neq (0,0)$ admet-elle une limite lorsque $(x,y) \rightarrow (0,0)$.
- 7. En déduire si f est différentiable en (0,0).
- 8. Retrouver le résultat de la question 4.
- 9. Déterminer les points critiques de f (c'est à dire les points (x^*, y^*) tels que $\overrightarrow{\nabla} f(x^*, y^*) = (0, 0)$).
- 10. Les points $(x^*, y^*) \neq (0, 0)$ sont-ils des extremums locaux? Justifier.
- 11. Le point (0,0) est-il un point critique? Si oui est-il un maximum? est-il un minimum ou ni l'un ni l'autre?.

Corrigé

- 1. f est continue au point (0,0) (pour le voir, il suffit de suivre la méthode proposée en TD (voir corrigé du TD1))
- 2. Il suffit de calculer la limite lorsque $\lambda \to 0$ de $\frac{f(\lambda d_1, \lambda d_2)}{\lambda}$ (il s'agit d'appliquer la définition). On trouve $d_1^2 d_2$.
- 3. $\frac{\partial f}{\partial x}(0,0) = 0$ (cela correspond à $d_2 = 0$), $\frac{\partial f}{\partial y}(0,0) = 0$ ($d_1 = 0$).
- 4. $\frac{\partial f}{\partial x}(x,y) = \frac{2xy}{x^2+y^2} \frac{2x^3y}{(x^2+y^2)^2}$ n'est pas continue en (0,0) (montrer qu'elle n'a pas de limite). Pour $\frac{\partial f}{\partial y}(x,y)$ c'est la même chose.
- 5. f n'est pas différentiable (voir théorème du cours)
- 6. Cette fonction n'a pas de limite lorsque $(x, y) \rightarrow (0, 0)$
- 7. *f est donc non différentiable (voir définition)*
- 8. Si les dérivées partielles premières étaient continues, f serait différentiable (théorème du cours).
- 9. L'ensemble des points critiques $\{(0,y), y \in \mathbb{R}\}$
- 10. un simple calcule montre que $\frac{\partial^2 f}{\partial x^2}(0,y) = \frac{2}{y}$ pour $y \neq 0$. $\frac{\partial^2 f}{\partial y^2}(0,y) = 0$, $\frac{\partial^2 f}{\partial xy}(0,y) = 0$. Par le théorème de lagrange, on montre que (0,y) pour $y \neq 0$ est un minimum. Il reste le cas (0,0). En effet, f(h,k) > f(0,0) = 0 pour k > 0 et f(h,k) < f(0,0) = 0 pour k < 0. Il s'agit d'un point selle

2 MT22-22 Octobre 2009

Exercice 2 *Soit la fonction f de* \mathbb{R}^2 *dans* \mathbb{R} *définie par :*

$$f(x,y) = y^3 + x + y$$

On considère la courbe de niveau 0

$$C = \{(x, y) \in \mathbb{R}^2 : f(x, y) = 0\}$$

- 1. Montrer qu'il existe un voisinage U(0), un voisinage V(0) et une unique fonction φ définie de U(0) dans V(0) telle que $\varphi(0)=0$ et $f(x,\varphi(x))=0 \ \forall \ x\in U(0)$.
- 2. Montrer que $\varphi'(x) = \frac{-1}{3\varphi^2(x) + 1}$.
- 3. Calculer $\varphi'(0), \varphi''(0)$ et $\varphi^{(3)}(0)$.
- 4. Ecrire le développement limité à l'ordre 3 de φ au voisinage de 0.
- 5. En déduire l'allure de la courbe C au voisinage du point (0,0).
- 6. On rappelle que le vecteur tangent à la courbe C en (0,0) est donné par $\overrightarrow{T} = (1, \varphi'(0))$. Montrer que $\overrightarrow{\nabla} f(0,0)$ est orthogonal à la courbe C au point (0,0). Faire un dessin.
- 7. Soit Δ la droite tangente à la courbe C au point (0,0). Montrer que

$$M = (x, y) \in \Delta \iff \overrightarrow{OM}. \overrightarrow{\nabla} f(0, 0) = 0$$

en déduire l'équation cartésienne de la droite Δ .

Corrigé

La démarche à suivre est la même que celle adoptée en TD1 (voir corrigé).