Examenul de bacalaureat național 2016 Proba E. c) Matematică *M_mate-info*

BAREM DE EVALUARE ȘI DE NOTARE

Varianta 5

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total obținut pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	24 + a = 2.1020	3 p
	a = 2016	2p
2.	$\Delta = 16 - 4m$	3p
	$16 - 4m = 0 \Rightarrow m = 4$	2p
3.	$(3^{-1})^{2x-3} = 3^3 \Leftrightarrow -2x+3=3$	3 p
	x = 0	2p
4.	Mulțimea A are 25 de elemente, deci sunt 25 de cazuri posibile	1p
	Sunt 5 numere raționale în mulțimea A, deci sunt 5 cazuri favorabile	2p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{5}{25} = \frac{1}{5}$	2p
5.	$d \perp BC \Rightarrow m_d \cdot m_{BC} = -1$ și, cum $m_{BC} = 1$, obținem $m_d = -1$	2p
	Deoarece $A \in d$, ecuația dreptei d este $y - y_A = m_d (x - x_A)$, adică $y = -x + 1$	3 p
6.	$\frac{BC}{\sin A} = 2R \Rightarrow R = \frac{2\sqrt{2}}{2 \cdot \frac{\sqrt{2}}{2}} =$	3р
	= 2	2p

1.a)	$\begin{pmatrix} 1 & 0 & 0 \end{pmatrix}$ $\begin{vmatrix} 1 & 0 & 0 \end{vmatrix}$	
	$A(0) = \begin{pmatrix} 1 & 0 & 0 \\ 1 & -1 & 1 \\ 1 & 1 & 0 \end{pmatrix} \Rightarrow \det(A(0)) = \begin{vmatrix} 1 & 0 & 0 \\ 1 & -1 & 1 \\ 1 & 1 & 0 \end{vmatrix} =$	2 p
	=0+0+0-0-1-0=-1	3p
b)	$\begin{vmatrix} 1 & a & a^2 \\ 1 & a & a^2 \end{vmatrix}$	
	$\det(A(a)) = \begin{vmatrix} 1 & a & a^2 \\ 1 & -1 & 1 \\ 1 & 1 & -a \end{vmatrix} = (3a-1)(a+1)$	2p
	Pentru orice număr real a , $a \neq -1$ și $a \neq \frac{1}{3}$, obținem $\det(A(a)) \neq 0$, deci matricea $A(a)$ este inversabilă	3 p
c)	Sistemul are soluție unică, deci $a \neq -1$ și $a \neq \frac{1}{3}$; pentru fiecare număr real a , $a \neq -1$ și	
	$a \neq \frac{1}{3}$, obţinem $x_0 = \frac{-4a}{(3a-1)(a+1)}$ şi $y_0 = \frac{2(2-3a)}{3a-1}$	2p
	Cum $x_0 = y_0 \Leftrightarrow 3a^2 - a - 2 = 0$, obținem $a = -\frac{2}{3}$ sau $a = 1$	3 p

2.a)	x * y = -xy + 2x + 2y - 4 + 2 =	2p
	=-x(y-2)+2(y-2)+2=2-(x-2)(y-2), pentru orice numere reale x şi y	3 p
b)	$x * x = 2 - (x - 2)^2$	2p
	$2 - (x - 2)^2 = 1 \Leftrightarrow (x - 2)^2 = 1 \Leftrightarrow x = 1 \text{ sau } x = 3$	3 p
c)	Cum $m*n*p = 2 + (m-2)(n-2)(p-2)$, obţinem $(m-2)(n-2)(p-2) = 0$	2p
	m=2 sau $n=2$ sau $p=2$, deci produsul numerelor m , n și p este divizibil cu 2	3 p

1.a)	$f'(x) = (e^x)' + (\ln x)' + 1' =$	2p
	$= e^{x} + \frac{1}{x} + 0 = e^{x} + \frac{1}{x}, \ x \in (0, +\infty)$ $f(1) = e + 1, \ f'(1) = e + 1$	3 p
b)	f(1) = e + 1, f'(1) = e + 1	2p
	Ecuația tangentei este $y - f(1) = f'(1)(x-1)$, adică $y = (e+1)x$	3p
c)	$f'(x) > 0$ pentru orice $x \in (0, +\infty)$, deci f este strict crescătoare pe $(0, +\infty)$	2p
	Cum $\lim_{\substack{x \to 0 \\ x > 0}} f(x) = \lim_{\substack{x \to 0 \\ x > 0}} \left(e^x + \ln x + 1 \right) = -\infty$, $f(1) > 0$ și f este continuă, atunci ecuația	3 p
	f(x) = 0 are soluție unică în intervalul $(0,1)$	
2.a)	$I_0 = \int_0^1 \frac{x}{x+3} dx = \int_0^1 \left(1 - \frac{3}{x+3}\right) dx = \left(x - 3\ln(x+3)\right) \Big _0^1 =$	3p
	$=1-3\ln 4+3\ln 3=1+3\ln \frac{3}{4}$	2p
b)	$I_{n+1} + 3I_n = \int_0^1 \frac{x^{n+2} + 3x^{n+1}}{x+3} dx = \int_0^1 \frac{x^{n+1}(x+3)}{x+3} dx = \int_0^1 x^{n+1} dx =$	3 p
	$= \frac{x^{n+2}}{n+2} \Big _{0}^{1} = \frac{1}{n+2}, \text{ pentru orice număr natural } n$	2p
c)	$nI_n = n \int_0^1 \frac{x^{n+1}}{x+3} dx = \int_0^1 \left(x^n\right)^n \frac{x^2}{x+3} dx = x^n \cdot \frac{x^2}{x+3} \Big _0^1 - \int_0^1 x^n \cdot \frac{x^2+6x}{(x+3)^2} dx = \frac{1}{4} - \int_0^1 x^n \left(1 - \frac{9}{(x+3)^2}\right) dx$	2p
	pentru orice număr natural nenul n	
	Cum $0 \le \int_{0}^{1} x^{n} \left(1 - \frac{9}{(x+3)^{2}} \right) dx \le \int_{0}^{1} x^{n} dx = \frac{1}{n+1}$ pentru orice număr natural nenul n , obținem	3p
	$\lim_{n \to +\infty} nI_n = \frac{1}{4}$	

Matematică *M_mate-info*

Varianta 5

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- 1. Determinați numărul real a, știind că numerele 24, 1020 și a sunt, în această ordine, termeni consecutivi ai unei progresii aritmetice.
- **2.** Determinați numărul real m, știind că parabola asociată funcției $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 + 4x + m$ **5p** este tangentă axei Ox.
- 3. Rezolvați în mulțimea numerelor reale ecuația $\left(\frac{1}{3}\right)^{2x-3} = 27$. **5**p
- **4.** Calculați probabilitatea ca, alegând un număr din mulțimea $A = \{\sqrt{1}, \sqrt{2}, \sqrt{3}, ..., \sqrt{25}\}$, acesta să 5p fie număr rațional.
- 5. În reperul cartezian xOy se consideră punctele A(0,1), B(-2,-1) și C(2,3). Determinați ecuația dreptei care trece prin punctul A și este perpendiculară pe dreapta BC.
- **6.** Calculați lungimea razei cercului circumscris unui triunghi ABC, în care $m(\not < A) = 45^\circ$ și $BC = 2\sqrt{2}$.

SUBIECTUL al II-lea

1. Se consideră matricea $A(a) = \begin{bmatrix} 1 & a & a^2 \\ 1 & -1 & 1 \\ 1 & 1 & -a \end{bmatrix}$ și sistemul de ecuații $\begin{cases} x + ay + a^2z = 0 \\ x - y + z = 2 \end{cases}$, unde a este număr real.

număr real.

- a) Arătați că $\det(A(0)) = -1$. **5p**
- **b**) Demonstrați că matricea A(a) este inversabilă, pentru orice număr real a, $a \ne -1$ și $a \ne \frac{1}{2}$. **5p**
- c) Determinați numerele reale a, pentru care sistemul are soluție unică (x_0, y_0, z_0) , iar $x_0 = y_0$. **5p**
 - 2. Pe mulțimea numerelor reale se definește legea de compoziție asociativă x * y = -xy + 2x + 2y 2.
- a) Arătați că x * y = 2 (x 2)(y 2), pentru orice numere reale x și y. **5p**
- 5p **b)** Determinați numerele reale x, pentru care x * x = 1.
- c) Demonstrați că, dacă m, n și p sunt numere întregi astfel încât m*n*p=2, atunci produsul numerelor m, n și p este divizibil cu 2.

- **1.** Se consideră funcția $f:(0,+\infty) \to \mathbb{R}$, $f(x) = e^x + \ln x + 1$.
- a) Arătați că $f'(x) = e^x + \frac{1}{x}, x \in (0, +\infty)$.
- **b**) Determinați ecuația tangentei la graficul funcției f în punctul de abscisă x=1, situat pe graficul functiei f.
- c) Demonstrați că ecuația f(x) = 0 are soluție unică în intervalul (0,1).

- **2.** Pentru fiecare număr natural n, se consideră numărul $I_n = \int_0^1 \frac{x^{n+1}}{x+3} dx$.
- **5p a)** Arătați că $I_0 = 1 + 3\ln\frac{3}{4}$.
- **5p b**) Demonstrați că $I_{n+1} + 3I_n = \frac{1}{n+2}$, pentru orice număr natural n.
- **5p** c) Arătați că $\lim_{n\to+\infty} nI_n = \frac{1}{4}$.

Examenul de bacalaureat național 2016 Proba E. c) Matematică M_mate-info

BAREM DE EVALUARE ȘI DE NOTARE

Varianta 8

Varianta 8

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total obținut pentru lucrare.

SUBIECTUL I (30 de puncte)

	(ev de pe	,
1.	$\left(\sqrt{2}-3\right)^2 = 11-6\sqrt{2}$	2p
	$(\sqrt{2}+3)^2 = 11 + 6\sqrt{2} \Rightarrow (\sqrt{2}-3)^2 + (\sqrt{2}+3)^2 = 11 - 6\sqrt{2} + 11 + 6\sqrt{2} = 22$	3 p
2.	f(-1)=0	3p
	f(-1)f(0)f(1) = 0	2p
3.	$x^2 - 6x + 6 = 1 \Rightarrow x^2 - 6x + 5 = 0$	2p
	x=1 sau $x=5$, care verifică ecuația dată	3 p
4.	Cifra unităților este 8	2p
	Cum cifrele sunt distincte, cifra zecilor poate fi aleasă în 3 moduri și, pentru fiecare alegere a acesteia, cifra sutelor poate fi aleasă în câte 2 moduri, deci se pot forma $3 \cdot 2 \cdot 1 = 6$ astfel de numere	3p
5.	$m_{AB} = 1$ și $m_d = m_{AB} \Rightarrow m_d = 1$	3 p
	Ecuația dreptei d este $y = x$	2 p
6.	$\sin\left(\frac{3\pi}{2} - x\right) = \sin\left(3\pi - \frac{3\pi}{2} - x\right) = \sin\left(3\pi - \left(\frac{3\pi}{2} + x\right)\right) = \sin\left(\pi - \left(\frac{3\pi}{2} + x\right)\right) = \sin\left(\frac{3\pi}{2} + x\right)$	3 p
	$\sin\left(\frac{3\pi}{2} + x\right) - \sin\left(\frac{3\pi}{2} - x\right) = \sin\left(\frac{3\pi}{2} + x\right) - \sin\left(\frac{3\pi}{2} + x\right) = 0, \text{ pentru orice număr real } x$	2p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$\begin{pmatrix} 1 & 1 & 2 \end{pmatrix}$ $\begin{vmatrix} 1 & 1 & 2 \end{vmatrix}$	
	$A(1) = \begin{pmatrix} 1 & 1 & 2 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix} \Rightarrow \det(A(1)) = \begin{vmatrix} 1 & 1 & 2 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{vmatrix} = $	2p
	$\begin{pmatrix} 0 & 0 & 1 \end{pmatrix}$ $\begin{pmatrix} 0 & 0 & 1 \end{pmatrix}$	
	=1+0+0-0-0-0=1	3p
b)	$A(x)A(y) = \begin{pmatrix} 1 & x & x^2 + x \\ 0 & 1 & 2x \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & y & y^2 + y \\ 0 & 1 & 2y \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & y + x & y^2 + y + 2xy + x^2 + x \\ 0 & 1 & 2y + 2x \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & y + x & y^2 + y + 2xy + x^2 + x \\ 0 & 1 & 2y + 2x \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & y + x & y^2 + y + 2xy + x^2 + x \\ 0 & 1 & 2y + 2x \\ 0 & 0 & 1 \end{pmatrix}$	3 p
	$= \begin{pmatrix} 1 & x+y & (x+y)^2 + (x+y) \\ 0 & 1 & 2(x+y) \\ 0 & 0 & 1 \end{pmatrix} = A(x+y), \text{ pentru orice numere reale } x \text{ şi } y$	2p
c)	$A\left(\frac{1}{1\cdot 2}\right)A\left(\frac{1}{2\cdot 3}\right)\cdot \dots \cdot A\left(\frac{1}{2016\cdot 2017}\right) = A\left(\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \dots + \frac{1}{2016\cdot 2017}\right) =$ $= A\left(\frac{1}{1} - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \dots + \frac{1}{2016} - \frac{1}{2017}\right) = A\left(\frac{2016}{2017}\right)$	3 p
	$A\left(\frac{2016}{2017}\right) = A\left(\frac{a}{a+1}\right) \Leftrightarrow a = 2016$	2 p

Probă scrisă la matematică M_mate-info

Barem de evaluare si de notare

2.a)	$f(1) = 0 \Leftrightarrow 1^4 + m \cdot 1^2 + 2 = 0$	2p
	m = -3	3 p
b)	$x_1 + x_2 + x_3 + x_4 = 0$	2p
	$x_1^2 + x_2^2 + x_3^2 + x_4^2 + 2x_1x_2 + 2x_1x_3 + 2x_1x_4 + 2x_2x_3 + 2x_2x_4 + 2x_3x_4 = (x_1 + x_2 + x_3 + x_4)^2 = 0,$ pentru orice număr real m	3 p
c)	$f = X^4 + 3X^2 + 2 = (X^2 + 1)(X^2 + 2)$	3 p
	Polinoamele $X^2 + 1$ și $X^2 + 2$ au coeficienți reali, au gradul 2 și nu au rădăcini reale, deci sunt ireductibile în $\mathbb{R}[X]$	2 p

SUBII	ECTUL al III-lea (30 de pu	uncte)
1.a)	$f'(x) = \frac{\sqrt{x^2 + 1} - \frac{x \cdot 2x}{2\sqrt{x^2 + 1}}}{x^2 + 1} =$	3p
	$= \frac{x^2 + 1 - x^2}{\left(x^2 + 1\right)\sqrt{x^2 + 1}} = \frac{1}{\left(x^2 + 1\right)\sqrt{x^2 + 1}}, \ x \in \mathbb{R}$	2 p
b)	f(0) = 0, f'(0) = 1	2 p
	Ecuația tangentei este $y - f(0) = f'(0)(x-0)$, adică $y = x$	3 p
c)	$f'(x) > 0$ pentru orice $x \in \mathbb{R}$, deci f este strict crescătoare pe \mathbb{R}	2p
	Cum $\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{x}{-x\sqrt{1 + \frac{1}{x^2}}} = -1$, $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{x}{x\sqrt{1 + \frac{1}{x^2}}} = 1$ și funcția f este continuă, atunci pentru orice $a \in (-1,1)$, ecuația $f(x) = a$ are soluție unică	3 p
2.a)	$\int_{0}^{2} f(x)e^{-x}dx = \int_{0}^{2} e^{x}(x-1)e^{-x}dx = \int_{0}^{2} (x-1)dx = \left(\frac{x^{2}}{2} - x\right)\Big _{0}^{2} =$	3 p
	$=\frac{4}{2}-2=0$	2p
b)	$\mathcal{A} = \int_{1}^{2} f(x) dx = \int_{1}^{2} (x-1)e^{x} dx = (x-2)e^{x} \Big _{1}^{2} =$	3 p
	=0-(-1)e=e	2 p
c)	$\int_{-n}^{1} \left(f(x) + e^{x} \right) dx = \int_{-n}^{1} x e^{x} dx = (x - 1)e^{x} \Big _{-n}^{1} = (n + 1)e^{-n}$	3 p
	$\lim_{n \to +\infty} \int_{-n}^{1} \left(f(x) + e^x \right) dx = \lim_{n \to +\infty} \frac{n+1}{e^n} = 0$	2p

Matematică M_mate-info

Varianta 8

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Arătați că $(\sqrt{2}-3)^2 + (\sqrt{2}+3)^2 = 22$.
- **5p** 2. Calculați produsul f(-1)f(0)f(1), unde $f: \mathbb{R} \to \mathbb{R}$, f(x) = 2x + 2.
- **5p** 3. Rezolvați în mulțimea numerelor reale ecuația $\log_3(x^2 6x + 6) = \log_3 1$.
- **5p 4.** Determinați câte numere naturale pare, de trei cifre distincte, se pot forma cu cifrele 5, 7, 8 și 9.
- **5p 5.** În reperul cartezian xOy se consideră punctele A(-1,0) și B(1,2). Determinați ecuația dreptei d care trece prin punctul O și este paralelă cu dreapta AB.
- **5p** 6. Arătați că $\sin\left(\frac{3\pi}{2} + x\right) \sin\left(\frac{3\pi}{2} x\right) = 0$, pentru orice număr real x.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră matricea $A(x) = \begin{pmatrix} 1 & x & x^2 + x \\ 0 & 1 & 2x \\ 0 & 0 & 1 \end{pmatrix}$, unde x este număr real.
- **5p** a) Arătați că $\det(A(1)) = 1$.
- **5p b**) Demonstrați că A(x)A(y) = A(x+y), pentru orice numere reale x și y.
- **5p** c) Determinați numărul real a, $a \neq -1$, știind că $A\left(\frac{1}{1 \cdot 2}\right)A\left(\frac{1}{2 \cdot 3}\right) \cdot \dots \cdot A\left(\frac{1}{2016 \cdot 2017}\right) = A\left(\frac{a}{a+1}\right)$.
 - **2.** Se consideră polinomul $f = X^4 + mX^2 + 2$, unde m este număr real.
- **5p** a) Determinați numărul real m, știind că f(1) = 0.
- **5p b)** Demonstrați că $x_1^2 + x_2^2 + x_3^2 + x_4^2 + 2(x_1x_2 + x_1x_3 + x_1x_4 + x_2x_3 + x_2x_4 + x_3x_4) = 0$, pentru orice număr real m, unde x_1, x_2, x_3 și x_4 sunt rădăcinile polinomului f.
- **5p** c) Pentru m = 3, descompuneți polinomul f în factori ireductibili în $\mathbb{R}[X]$.

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \frac{x}{\sqrt{x^2 + 1}}$.
- **5p** a) Arătați că $f'(x) = \frac{1}{(x^2+1)\sqrt{x^2+1}}, x \in \mathbb{R}$.
- **5p b**) Determinați ecuația tangentei la graficul funcției f în punctul de abscisă x = 0, situat pe graficul funcției f.
- **5p** c) Demonstrați că, pentru orice număr real a, $a \in (-1,1)$, ecuația f(x) = a are soluție unică.
 - **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = e^x(x-1)$.
- **5p a)** Arătați că $\int_{0}^{2} f(x)e^{-x}dx = 0$.

- **5p b)** Demonstrați că suprafața plană delimitată de graficul funcției f, axa Ox și dreptele de ecuații x=1 și x=2 are aria egală cu e.
- **5p** c) Demonstrați că $\lim_{n \to +\infty} \int_{-n}^{1} (f(x) + e^x) dx = 0$.

Examenul de bacalaureat național 2016 Proba E. c) Matematică M_mate-info

BAREM DE EVALUARE ȘI DE NOTARE

Varianta 2

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total obținut pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$a_3 = 2016 + 2 \cdot 2 =$	3 p
	= 2020	2 p
2.	$f(1) = 2 \Rightarrow 1 + m = 2$	3 p
	m = 1	2 p
3.	$2^{4x-6} = (2^2)^{3x-4} \Leftrightarrow 4x-6 = 6x-8$	3p
	x=1	2p
4.	Mulțimea A are 40 de elemente, deci sunt 40 de cazuri posibile	1p
	Numerele din mulțimea A care conțin cifra 4 sunt 4, 14, 24, 34 și 40, deci sunt 5 cazuri	2 p
	favorabile	r
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{5}{40} = \frac{1}{8}$	2 p
	nr. cazuri posibile 40 8	- P
5.	$y - 2 = \frac{5 - 2}{4 - 1}(x - 1)$	3 p
	y = x + 1	2 p
6.	Cum $x \in \left(0, \frac{\pi}{2}\right)$, obţinem $\cos x = \sqrt{1 - \sin^2 x} = \frac{3}{5}$	3p
	$\sin 2x = 2\sin x \cos x = 2 \cdot \frac{4}{5} \cdot \frac{3}{5} = \frac{24}{25}$	2p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$A(0) = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \\ 1 & 1 & -2 \end{pmatrix} \Rightarrow \det(A(0)) = \begin{vmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \\ 1 & 1 & -2 \end{vmatrix} =$	2p
	=-2+0+0-1-(-1)-0=-2	3 p
b)	$\det(A(a)) = \begin{vmatrix} 1 & a & 1 \\ a & 1 & -1 \\ 1 & 1 & -2 \end{vmatrix} = 2(a-1)(a+1)$	3p
	Pentru orice număr real a , $a \ne -1$ și $a \ne 1$, obținem $\det(A(a)) \ne 0$, deci matricea $A(a)$ este inversabilă	2p
c)	Sistemul are soluție unică, deci $a \neq -1$ și $a \neq 1$; pentru fiecare număr a , $a \neq -1$ și $a \neq 1$, soluția sistemului este de forma $\left(-\frac{1}{a-1}, \frac{1}{a-1}, 0\right)$	3p
	Cum a este număr întreg, $\frac{1}{a-1} \in \mathbb{Z} \Leftrightarrow a-1$ este divizor al lui 1, deci $a=0$ sau $a=2$	2p
Probă so	crisă la matematică M_mate-info	rianta 2

Barem de evaluare și de notare

2.a)	$x \circ y = 3xy + 3x + 3y + 3 - 1 =$	3p
	=3x(y+1)+3(y+1)-1=3(x+1)(y+1)-1, pentru orice numere reale x şi y	2p
b)	$f(x \circ y) = 3(x \circ y) + 3 = 3(3(x+1)(y+1)-1) + 3 = 9(x+1)(y+1) =$	3p
	=(3x+3)(3y+3)=f(x)f(y), pentru orice numere reale x și y	2p
	$f\left(\underbrace{a \circ a \circ \circ a}_{\text{de } 2016 \text{ ori } a}\right) = f\left(3^{2015} - 1\right) \Leftrightarrow \left(f\left(a\right)\right)^{2016} = 3 \cdot \left(3^{2015} - 1\right) + 3 \Leftrightarrow \left(f\left(a\right)\right)^{2016} = 3^{2016} \Leftrightarrow f\left(a\right) = -3$ sau $f\left(a\right) = 3$	3p
	a = -2 sau $a = 0$	2p

1.a)	Cum $x \in (1, +\infty)$, $f(x) = \ln(x+1) - \ln(x-1) \Rightarrow f'(x) = (\ln(x+1) - \ln(x-1))' =$	2p
	$= (\ln(x+1))' - (\ln(x-1))' = \frac{1}{x+1} - \frac{1}{x-1}$	3 p
b)	$f''(x) = \frac{4x}{(x-1)^2(x+1)^2}$	2p
	Pentru orice $x \in (1, +\infty)$, $f''(x) > 0$, deci funcția f este convexă pe $(1, +\infty)$	3 p
c)	$\lim_{n \to +\infty} \left(f'(2) + f'(3) + \dots + f'(n) \right) = \lim_{n \to +\infty} \left(\left(\frac{1}{3} - \frac{1}{1} \right) + \left(\frac{1}{4} - \frac{1}{2} \right) + \left(\frac{1}{5} - \frac{1}{3} \right) + \dots + \left(\frac{1}{n+1} - \frac{1}{n-1} \right) \right) = \lim_{n \to +\infty} \left(\frac{1}{3} - \frac{1}{1} \right) + \left(\frac{1}{4} - \frac{1}{2} \right) + \left(\frac{1}{5} - \frac{1}{3} \right) + \dots + \left(\frac{1}{n+1} - \frac{1}{n-1} \right) \right) = \lim_{n \to +\infty} \left(\frac{1}{3} - \frac{1}{1} \right) + \left(\frac{1}{4} - \frac{1}{2} \right) + \left(\frac{1}{5} - \frac{1}{3} \right) + \dots + \left(\frac{1}{n+1} - \frac{1}{n-1} \right) \right) = \lim_{n \to +\infty} \left(\frac{1}{3} - \frac{1}{1} \right) + \left(\frac{1}{3} - \frac{1}{3} \right) + \dots + \left(\frac{1}{3} - \frac{1}{3} \right) + \dots + \left(\frac{1}{n+1} - \frac{1}{n-1} \right) \right) = \lim_{n \to +\infty} \left(\frac{1}{3} - \frac{1}{3} \right) + \dots + \frac{1}{3} + \dots + \frac{1}{$	3 p
	$= \lim_{n \to +\infty} \left(-\frac{1}{1} - \frac{1}{2} + \frac{1}{n} + \frac{1}{n+1} \right) = -\frac{3}{2}$	2p
2.a)	$\int_{1}^{2} \sqrt{x} f(x) dx = \int_{1}^{2} (x+1) dx = \left(\frac{x^{2}}{2} + x\right) \Big _{1}^{2} =$	3 p
	$=4-\frac{3}{2}=\frac{5}{2}$	2p
b)	$\int_{1}^{e^{2}} \left(f(x) - \sqrt{x} \right) \ln x dx = \int_{1}^{e^{2}} \frac{1}{\sqrt{x}} \cdot \ln x dx = 2\sqrt{x} \cdot \ln x \left \begin{array}{c} e^{2} & e^{2} \\ 1 & -2 \int_{1}^{e^{2}} \frac{1}{\sqrt{x}} dx \end{array} \right $	3 p
	$= \left(2\sqrt{x} \cdot \ln x - 4\sqrt{x}\right) \Big _{1}^{e^{2}} = 4e - 4e + 4 = 4$	2 p
c)	$V = \pi \int_{1}^{a} g^{2}(x) dx = \pi \int_{1}^{a} \left(x + 2 + \frac{1}{x} \right) dx = \pi \left(\frac{x^{2}}{2} + 2x + \ln x \right) \Big _{1}^{a} = \pi \left(\frac{a^{2}}{2} + 2a + \ln a - \frac{5}{2} \right)$	3 p
	$\pi\left(\frac{a^2}{2} + 2a + \ln a - \frac{5}{2}\right) = \pi\left(\ln a + \frac{7}{2}\right) \Leftrightarrow a^2 + 4a - 12 = 0 \text{ si, cum } a > 1, \text{ obtinem } a = 2$	2 p

Matematică M_mate-info

Varianta 2

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de

- **5p** 1. Determinați al treilea termen al progresiei aritmetice $(a_n)_{n\geq 1}$, știind că $a_1=2016$ și rația r=2.
- **5p** 2. Determinați numărul real m, știind că punctul A(1,2) aparține graficului funcției $f: \mathbb{R} \to \mathbb{R}$, f(x) = x + m.
- **5p 3.** Rezolvați în mulțimea numerelor reale ecuația $2^{4x-6} = 4^{3x-4}$.
- **5p 4.** Calculați probabilitatea ca, alegând un număr din mulțimea $A = \{1, 2, 3, ..., 40\}$, acesta să conțină cifra 4.
- **5p 5.** În reperul cartezian xOy se consideră punctele A(1, 2) și B(4, 5). Determinați ecuația dreptei AB.
- **5p 6.** Dacă $x \in \left(0, \frac{\pi}{2}\right)$ și $\sin x = \frac{4}{5}$, arătați că $\sin 2x = \frac{24}{25}$.

SUBIECTUL al II-lea (30 de puncte)

1. Se consideră matricea $A(a) = \begin{pmatrix} 1 & a & 1 \\ a & 1 & -1 \\ 1 & 1 & -2 \end{pmatrix}$ și sistemul de ecuații $\begin{cases} x + ay + z = 1 \\ ax + y - z = -1 \end{cases}$, unde a este x + y - 2z = 0

număr real.

- **5p** a) Arătați că $\det(A(0)) = -2$.
- **5p b**) Demonstrați că matricea A(a) este inversabilă, pentru orice număr real a, $a \ne -1$ și $a \ne 1$.
- **5p** c) Determinați numerele întregi a, pentru care sistemul are soluție unică (x_0, y_0, z_0) , iar x_0 , y_0 și z_0 sunt numere întregi.
 - **2.** Pe mulțimea numerelor reale se definește legea de compoziție asociativă $x \circ y = 3xy + 3x + 3y + 2$.
- **5p** a) Arătați că $x \circ y = 3(x+1)(y+1)-1$, pentru orice numere reale x și y.
- **5p b)** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, f(x) = 3x + 3. Demonstrați că $f(x \circ y) = f(x)f(y)$, pentru orice numere reale x și y.
- **5p** c) Determinați numerele reale a, pentru care $\underbrace{a \circ a \circ ... \circ a}_{\text{de } 2016 \text{ ori } a} = 3^{2015} 1$.

- **1.** Se consideră funcția $f:(1,+\infty)\to\mathbb{R}$, $f(x)=\ln\frac{x+1}{x-1}$.
- **5p a)** Arătați că $f'(x) = \frac{1}{x+1} \frac{1}{x-1}, x \in (1,+\infty).$
- **5p b**) Demonstrați că funcția f este convexă pe $(1,+\infty)$.
- **5p** c) Demonstrați că $\lim_{n \to +\infty} (f'(2) + f'(3) + f'(4) + ... + f'(n)) = -\frac{3}{2}$.
 - **2.** Se consideră funcția $f:(0,+\infty) \to \mathbb{R}$, $f(x) = \sqrt{x} + \frac{1}{\sqrt{x}}$.
- **5p a)** Arătați că $\int_{1}^{2} \sqrt{x} f(x) dx = \frac{5}{2}$.

5p b) Arătați că
$$\int_{1}^{e^{2}} \left(f(x) - \sqrt{x} \right) \ln x \, dx = 4.$$

5p c) Determinați numărul real a, a > 1, știind că volumul corpului obținut prin rotația în jurul axei Ox a graficului funcției $g:[1,a] \to \mathbb{R}$, g(x) = f(x) este egal cu $\pi\left(\ln a + \frac{7}{2}\right)$.

Examenul de bacalaureat național 2016

Proba E. c) Matematică *M mate-info*

BAREM DE EVALUARE ȘI DE NOTARE

Model

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total obținut pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$7 + x^2 + 2 = 2 \cdot 3x$	3p
	$x^2 - 6x + 9 = 0 \Leftrightarrow x = 3$	2p
2.	$\Delta = 0 \Leftrightarrow 4 - 4m = 0$	3p
	m = 1	2p
3.	$\left(2^{-1}\right)^{4x-9} = 2^{5x} \iff -4x+9 = 5x$	3p
	x=1	2p
4.	Mulțimea A are $C_6^0 + C_6^1 + C_6^2 + C_6^3 + C_6^4 + C_6^5 + C_6^6 = 2^6 = 64$ de submulțimi, deci sunt 64 de cazuri posibile	2p
	Mulțimea A are $C_6^0 + C_6^1 + C_6^2 = 1 + 6 + 15 = 22$ de submulțimi cu cel mult două elemente, deci sunt 22 de cazuri favorabile	2p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{22}{64} = \frac{11}{32}$	1p
5.	Punctul $M(1, 2)$ este mijlocul laturii BC	1p
	$m_{AM} = \frac{2 - 0}{1 - \left(-1\right)} = 1$	2p
	Ecuația dreptei care trece prin punctul B și este paralelă cu dreapta AM este $y = x - 1$	2p
6.	$\frac{BC}{\sin A} = 2R \Rightarrow R = \frac{\sqrt{2}}{2\sin\frac{3\pi}{4}} =$	3p
	=1	2p

1.a)	$A(10) = \begin{pmatrix} 1 & 10 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2^{10} \end{pmatrix} \Rightarrow \det(A(10)) = \begin{vmatrix} 1 & 10 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2^{10} \end{vmatrix} =$	2p
	$=2^{10}=1024$	3 p
b)	$A(x) \cdot A(2x) = A(3x)$	2p
	$A(3x) = A(x^2 + 2) \Leftrightarrow x^2 - 3x + 2 = 0 \Leftrightarrow x_1 = 1 \text{ si } x_2 = 2$	3 p
c)	Deoarece $A(x) \cdot A(y) = A(x+y)$, pentru orice numere reale $x \neq y$, obținem $A(n) = A(x+y)$	_
	$= A(1) \cdot A(2) \cdot A(3) \cdot \dots \cdot A(2016) = A(1+2+3+\dots+2016) = A(2017 \cdot 1008)$	3р
	$n = 2017 \cdot 1008$, deci n este număr natural divizibil cu 2017	2p

2.a)	$f(0) = 0^3 - 5 \cdot 0 + a =$	3p
	=0-0+a=a	2p
b)	$x_1 + x_2 + x_3 = 0$, $x_1^3 + x_2^3 + x_3^3 = 5(x_1 + x_2 + x_3) - 3a = -3a$	3 p
	$-3a = 2016 - 4a \Leftrightarrow a = 2016$	2p
c)	Presupunem că f are cel puțin două rădăcini întregi x_1 și x_2 ; cum $x_1 + x_2 + x_3 = 0 \Rightarrow x_3 \in \mathbb{Z}$	1p
	Ştiind că $x_1^2 + x_2^2 + x_3^2 = 10$, dacă $x_1^2 \ge x_2^2 \ge x_3^2$, obținem $x_1^2 = 9$, $x_2^2 = 1$ și $x_3^2 = 0$	2p
	Deoarece pentru valorile pe care le obținem pentru x_1 , x_2 și x_3 , relația $x_1 + x_2 + x_3 = 0$ nu este verificată, polinomul f are cel mult o rădăcină întreagă	2p

1.a)	$f'(x) = (e^x)' - (\frac{1}{2}x^2)' - x' - 1' =$	2p
	$=e^x-\frac{1}{2}\cdot 2x-1=e^x-x-1, x\in\mathbb{R}$	3 p
b)	Aplicând succesiv teorema lui l'Hospital, obținem $\lim_{x \to +\infty} \frac{e^x - x - 1}{e^x - \frac{1}{2}x^2 - x - 1} = \lim_{x \to +\infty} \frac{e^x - 1}{e^x - x - 1} = \lim_{x \to +\infty} e^x$	3p
	$= \lim_{x \to +\infty} \frac{e^x}{e^x - 1} = 1$	2p
(c)	$f''(x) = e^x - 1 > 0$ pentru orice $x \in (0, +\infty)$, deci f' strict crescătoare pe $(0, +\infty)$ și cum $f'(0) = 0$, obținem $f'(x) > 0$ pentru orice $x \in (0, +\infty)$, deci f strict crescătoare pe $(0, +\infty)$	3p
	$0 < 2\sqrt{3} < 3\sqrt{2} \Rightarrow f\left(2\sqrt{3}\right) < f\left(3\sqrt{2}\right)$	2p
2.a)	$I_1 = \int_0^1 (1 - x^2) dx = \left(x - \frac{x^3}{3}\right) \Big _0^1 =$	3p
	$=1-\frac{1}{3}=\frac{2}{3}$	2p
b)	$I_{n+1} - I_n = \int_0^1 (-x^2) (1-x^2)^n dx$, pentru orice număr natural nenul n	2p
	Pentru orice număr natural nenul n și $x \in [0,1]$ avem $-x^2 \le 0$ și $(1-x^2)^n \ge 0$, deci $I_{n+1} \le I_n$	3p
c)	$I_{n+1} = \int_{0}^{1} x' (1 - x^{2})^{n+1} dx = x (1 - x^{2})^{n+1} \Big _{0}^{1} - \int_{0}^{1} x (n+1) (1 - x^{2})^{n} (-2x) dx =$	2p
	$= 2(n+1)\int_{0}^{1} x^{2} (1-x^{2})^{n} dx = -2(n+1)\int_{0}^{1} (1-x^{2}-1)(1-x^{2})^{n} dx = -2(n+1)(I_{n+1}-I_{n}), \text{ deci}$	3 p
	$(2n+3)I_{n+1} = 2(n+1)I_n$, pentru orice număr natural nenul n	

Examenul de bacalaureat național 2016

Proba E. c) Matematică *M mate-info*

Model

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p** 1. Determinați numărul real x, știind că numerele 7, 3x și $x^2 + 2$ sunt, în această ordine, termeni consecutivi ai unei progresii aritmetice.
- **5p** 2. Determinați numărul real m, știind că parabola asociată funcției $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 2x + m$ este tangentă axei Ox.
- **5p** 3. Rezolvați în mulțimea numerelor reale ecuația $\left(\frac{1}{2}\right)^{4x-9} = 32^x$.
- **4.** Calculați probabilitatea ca, alegând o submulțime a mulțimii $A = \{\sqrt{1}, \sqrt{2}, \sqrt{3}, \sqrt{4}, \sqrt{5}, \sqrt{6}\}$, aceasta să aibă cel mult două elemente.
- **5p 5.** În reperul cartezian xOy se consideră punctele A(-1,0), B(1,0) și C(1,4). Determinați ecuația dreptei care trece prin punctul B și este paralelă cu mediana din A a triunghiului ABC.
- **5p 6.** Calculați lungimea razei cercului circumscris triunghiului ABC în care $A = \frac{3\pi}{4}$ și $BC = \sqrt{2}$.

SUBIECTUL al II-lea (30 de puncte)

- 1. Se consideră matricea $A(x) = \begin{pmatrix} 1 & x & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2^x \end{pmatrix}$, unde x este număr real.
- **5p a)** Arătați că $\det(A(10)) = 1024$.
- **5p b)** Determinați numerele reale x, știind că $A(x) \cdot A(2x) = A(x^2 + 2)$.
- **5p** c) Știind că $A(n) = A(1) \cdot A(2) \cdot A(3) \cdot ... \cdot A(2016)$, demonstrați că n este număr natural divizibil cu 2017.
 - **2.** Se consideră polinomul $f = X^3 5X + a$, unde a este număr real.
- **5p** a) Arătați că f(0) = a.
- **5p b)** Determinați numărul real a pentru care $x_1^3 + x_2^3 + x_3^3 = 2016 4a$, unde x_1, x_2 și x_3 sunt rădăcinile polinomului f.
- **5p** c) Demonstrați că polinomul f are cel mult o rădăcină în mulțimea numerelor întregi.

- 1. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = e^x \frac{1}{2}x^2 x 1$.
- **5p** a) Arătați că $f'(x) = e^x x 1$, $x \in \mathbb{R}$.
- **5p b)** Calculați $\lim_{x \to +\infty} \frac{f'(x)}{f(x)}$.
- **5p** c) Demonstrați că $f(2\sqrt{3}) < f(3\sqrt{2})$

- **2.** Pentru fiecare număr natural nenul n, se consideră numărul $I_n = \int_0^1 (1-x^2)^n dx$.
- **5p** a) Arătați că $I_1 = \frac{2}{3}$.
- **5p b)** Demonstrați că $I_{n+1} \le I_n$, pentru orice număr natural nenul n.
- **5p** c) Demonstrați că $(2n+3)I_{n+1} = 2(n+1)I_n$, pentru orice număr natural nenul n.

Matematică *M_mate-info*

Clasa a XII-a BAREM DE EVALUARE ȘI DE NOTARE

Simulare

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total obținut pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	(2a+1)+(2b-1)i=0	3 p
	Cum a și b sunt numere reale, obținem $a = -\frac{1}{2}$, $b = \frac{1}{2}$	2p
2.	$\Delta = m^2 - 4$	2p
	$-\frac{m^2 - 4}{4} = -3 \Leftrightarrow m^2 - 16 = 0 \Leftrightarrow m = -4 \text{ sau } m = 4$	3 p
3.	$\log_3 x = \frac{1}{\log_3 x} \Longrightarrow (\log_3 x + 1)(\log_3 x - 1) = 0$	3 p
	$x = \frac{1}{3}$ sau $x = 3$, care verifică ecuația	2p
4.	Sunt 90 de numere naturale de două cifre, deci sunt 90 de cazuri posibile	1p
	Pătratele perfecte de o cifră sunt 0, 1, 4 și 9, deci sunt $3 \cdot 4 = 12$ numere naturale de două	•
	cifre care au ambele cifrele pătrate perfecte, adică sunt 12 cazuri favorabile	2 p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{12}{90} = \frac{2}{15}$	2 p
5.	Punctele A, B şi C sunt coliniare, deci $m_{AB} = m_{BC}$	2p
		2P
	$\frac{-3-a}{0+1} = \frac{1+3}{1-0} \Leftrightarrow a = -7$	3 p
6.	$\sin^2\frac{\pi}{7} - 2\sin\frac{\pi}{7}\cos a + \cos^2 a + \cos^2 \frac{\pi}{7} - 2\cos\frac{\pi}{7}\sin a + \sin^2 a = 2 \Leftrightarrow 2 - 2\sin\left(\frac{\pi}{7} + a\right) = 2$	3p
	Cum $a \in (0,\pi)$, din relația $\sin\left(\frac{\pi}{7} + a\right) = 0$, obținem $a = \frac{6\pi}{7}$	2p

1.a)	$\begin{vmatrix} A(1) = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix} \Rightarrow \det(A(1)) = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix} = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix}$	3p
	=0	2p
b)	$\det(A(m)) = \begin{vmatrix} 2 & 1 & m \\ m & m & 1 \\ 1 & m & 1 \end{vmatrix} = \begin{vmatrix} 2 & 1 & m+1 \\ m & m & m+1 \\ 1 & m & m+1 \end{vmatrix} = (m+1) \begin{vmatrix} 2 & 1 & 1 \\ m-2 & m-1 & 0 \\ -1 & m-1 & 0 \end{vmatrix} = (m+1)(m-1)^2$	2p
	Matricea $A(m)$ este inversabilă $\Leftrightarrow \det(A(m)) \neq 0 \Leftrightarrow (m+1)(m-1)^2 \neq 0 \Leftrightarrow m \in \mathbb{R} \setminus \{-1, 1\}$	3 p

c)	$A(0) = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 1 \end{pmatrix}, \det(A(0)) = 1 \neq 0, (A(0))^{-1} = \begin{pmatrix} 0 & -1 & 1 \\ 1 & 2 & -2 \\ 0 & 1 & 0 \end{pmatrix}$	3р
	$X = \begin{pmatrix} 2 & 1 & 0 \\ -1 & 3 & 2 \end{pmatrix} \begin{pmatrix} 0 & -1 & 1 \\ 1 & 2 & -2 \\ 0 & 1 & 0 \end{pmatrix} \Rightarrow X = \begin{pmatrix} 1 & 0 & 0 \\ 3 & 9 & -7 \end{pmatrix}$	2p
2.a)	x * y = xy - 4x - 4y + 16 + 4 =	2p
	= x(y-4)-4(y-4)+4=(x-4)(y-4)+4, pentru orice numere reale x şi y	3 p
b)	x*4=4*y=4, pentru x și y numere reale	2p
	1*2*3**2016 = ((1*2*3)*4)*(5**2016) = 4*(5**2016) = 4	3 p
c)	(a-4)(b-4)(c-4) = 62, unde a , b și c sunt numere naturale și $a < b < c$	1p
	a-4=-2 $a=2$	
	$\begin{cases} b-4=-1 \Leftrightarrow b=3 \end{cases}$	2 p
	$\begin{cases} a-4=-2 \\ b-4=-1 \Leftrightarrow \begin{cases} a=2 \\ b=3 \\ c-4=31 \end{cases} \begin{cases} c=35 \end{cases}$	
	$\int a-4=1 \qquad \int a=5$	
	$\begin{cases} a-4=1 \\ b-4=2 \Leftrightarrow \begin{cases} a=5 \\ b=6 \\ c-4=31 \end{cases} & c=35 \end{cases}$	2 p
	$\left \begin{array}{c} c-4=31 \end{array} \right \left c=35 \right $	

1.a)	$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{1}{x(x+1)} = 0$	3p
	Dreapta de ecuație $y = 0$ este asimptotă orizontală spre $+\infty$ la graficul funcției f	2p
b)	$f'(x) = 0 \Leftrightarrow -\frac{2x+1}{x^2(x+1)^2} = 0$	3p
	Coordonatele punctului sunt $x = -\frac{1}{2}$ și $y = -4$	2p
c)	$\lim_{n \to +\infty} \left(\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \dots + \frac{1}{n(n+1)} \right)^n = \lim_{n \to +\infty} \left(\frac{1}{1} - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \dots + \frac{1}{n} - \frac{1}{n+1} \right)^n = \lim_{n \to +\infty} \left(1 - \frac{1}{n+1} \right)^n = \lim_{$	3 p
	$=\frac{1}{e}$	2p
2.a)	$\int_{2}^{4} \frac{1}{\ln x} f(x) dx = \int_{2}^{4} \frac{1}{\ln x} \cdot \frac{\ln x}{x} dx = \int_{2}^{4} \frac{1}{x} dx = \ln x \Big _{2}^{4} =$	3 p
	$= \ln 2$	2p
b)	$\int_{1}^{e} \frac{f(x)}{x} dx = \int_{1}^{e} \frac{\ln x}{x^{2}} dx = \int_{1}^{e} \left(-\frac{1}{x}\right)' \ln x dx = -\frac{1}{x} \ln x \Big _{1}^{e} + \int_{1}^{e} \frac{1}{x^{2}} dx =$	3 p
	$=-\frac{1}{e}-\frac{1}{x}\Big _{1}^{e}=1-\frac{2}{e}$	2 p
c)	Cum $x \in [1, e]$, obținem $0 \le \ln x \le 1$, deci $0 \le \frac{\ln x}{x^{n+1}} \le \frac{1}{x^{n+1}}$, pentru orice număr natural n	2p
	$0 \le \int_{1}^{e} \frac{\ln x}{x^{n+1}} dx \le \int_{1}^{e} \frac{1}{x^{n+1}} dx = -\frac{1}{n} \left(\frac{1}{e^n} - 1 \right) \text{ si cum } \lim_{n \to +\infty} \left(-\frac{1}{n} \left(\frac{1}{e^n} - 1 \right) \right) = 0 \Rightarrow \lim_{n \to +\infty} \int_{1}^{e} \frac{f(x)}{x^n} dx = 0$	3 p

Matematică M mate-info

Clasa a XII-a

Simulare

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p** 1. Determinați numerele reale a și b, știind că (a+b)(i+1)=(a-b+1)(i-1), unde $i^2=-1$.
- **5p** 2. Determinați numerele reale m, pentru care funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 mx + 1$ are valoarea minimă egală cu -3.
- **5p** | **3.** Rezolvați în mulțimea numerelor reale ecuația $\log_3 x = \log_x 3$.
- **5p 4.** Calculați probabilitatea ca, alegând un număr din mulțimea numerelor naturale de două cifre, acesta să aibă ambele cifre pătrate perfecte.
- **5p 5.** În reperul cartezian xOy se consideră punctele A(-1,a), B(0,-3) și C(1,1), unde a este număr real. Determinați numărul real a, știind că AB + BC = AC.
- **5p 6.** Determinați $a \in (0, \pi)$, știind că $\left(\sin \frac{\pi}{7} \cos a\right)^2 + \left(\cos \frac{\pi}{7} \sin a\right)^2 = 2$.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră matricea $A(m) = \begin{pmatrix} 2 & 1 & m \\ m & m & 1 \\ 1 & m & 1 \end{pmatrix}$, unde m este număr real.
- **5p** a) Calculați $\det(A(1))$.
- $\mathbf{5p}$ **b**) Determinați valorile reale ale lui m, pentru care matricea A(m) este inversabilă.
- **5p** c) Rezolvați ecuația matriceală $X \cdot A(0) = \begin{pmatrix} 2 & 1 & 0 \\ -1 & 3 & 2 \end{pmatrix}$, unde $X \in \mathcal{M}_{2,3}(\mathbb{R})$.
 - 2. Pe mulțimea numerelor reale se definește legea de compoziție asociativă x * y = xy 4x 4y + 20.
- **5p** a) Arătați că x * y = (x-4)(y-4)+4, pentru orice numere reale x și y.
- **5p b**) Calculați 1*2*3*...*2016.
- **5p** | **c**) Determinați numerele naturale a, b și c, știind că a < b < c și a * b * c = 66.

- **1.** Se consideră funcția $f: \mathbb{R} \setminus \{-1,0\} \to \mathbb{R}$, $f(x) = \frac{1}{x(x+1)}$.
- **5p** a) Determinați ecuația asimptotei orizontale spre $+\infty$ la graficul funcției f.
- **5p b)** Determinați coordonatele punctului situat pe graficul funcției f, în care tangenta la graficul funcției f este paralelă cu axa absciselor.
- **5p** c) Calculați $\lim_{n \to +\infty} (f(1) + f(2) + ... + f(n))^n$.

2. Se consideră funcția
$$f:(0,+\infty) \to \mathbb{R}$$
, $f(x) = \frac{\ln x}{x}$.

5p a) Calculați
$$\int_{2}^{4} \frac{1}{\ln x} f(x) dx$$
.

5p b) Arătați că
$$\int_{1}^{e} \frac{f(x)}{x} dx = 1 - \frac{2}{e}$$
.

5p c) Demonstrați că
$$\lim_{n \to +\infty} \int_{1}^{e} \frac{f(x)}{x^{n}} dx = 0$$
.

Matematică M_mate-info

Clasa a XI-a BAREM DE EVALUARE ȘI DE NOTARE

Simulare

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total obținut pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$\log_{2016} 63 + \log_{2016} 32 + \sqrt{0,0625} = \log_{2016} 2016 + 0,25 =$	3 p
	$=1+\frac{1}{4}=\frac{5}{4}$	2p
2.	$x_1 + x_2 = 3m - 4$, $x_1 x_2 = m - 3$	2p
	$3m-4=2m-6 \Leftrightarrow m=-2$	3p
3.	$2^{x}(2+2^{x}-4^{x})=0 \Leftrightarrow 2^{x}(2-2^{x})(1+2^{x})=0$	3p
	Deoarece $2^x > 0$, soluția ecuației este $x = 1$	2p
4.	Mulțimea {0, 1, 2,, 9} are 10 elemente, deci numărul cazurilor posibile este egal cu 10	1p
	1 este singurul element al mulțimii $\{0,1,2,,9\}$ care verifică relația $f(n)=0$, deci numărul cazurilor favorabile este egal cu 1	2p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{1}{10}$	2p
5.	$\overrightarrow{AC} - \overrightarrow{AB} = \overrightarrow{BC}$	2p
	BC = 18	3 p
6.	$1 + 2\sin a\cos a = 1 + 2\sin b\cos b \Rightarrow \sin 2a = \sin 2b$	2p
	Cum $a, b \in \left(0, \frac{\pi}{2}\right), a \neq b$, obținem $2a = \pi - 2b$, adică $a + b = \frac{\pi}{2}$, deci $\sin(a + b) = 1$	3 p

SUBIECTUL al II-lea

1.a)	$\Delta(-1,0) = \begin{vmatrix} -1 & 3 & 0 \\ 1 & 2 & 0 \\ 1 & 1 & 1 \end{vmatrix} = -2 + 0 + 0 - 0 - 3 - 0 =$	3 p
	=-5	2p
b)	$\Delta(x,y) = \begin{vmatrix} x-y & 3-y & y \\ x^2-y^2 & 2-y^2 & y^2 \\ 0 & 0 & 1 \end{vmatrix} = (x-y) \begin{vmatrix} 1 & 3-y \\ x+y & 2-y^2 \end{vmatrix} =$	2p
	$=(x-y)(2-y^2-3x+xy-3y+y^2)=(x-y)(xy-3x-3y+2)$, pentru orice numere reale x și y	3 p
c)	$xy - 3x - 3y + 2 = -8 \Leftrightarrow (x - 3)(y - 3) = -1$	3 p
	Cum x și y sunt numere întregi distincte, obținem $x = 4$, $y = 2$ sau $x = 2$, $y = 4$	2 p

2.a)	$A(1) - A(0) = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix} - \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} =$	2p
	$= \begin{pmatrix} 0 & 1 & 2 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$	3 p
b)	$\det(A(1)) = \begin{vmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{vmatrix} = 1 \neq 0$	2p
	Inversa matricei $A(1)$ este matricea $\begin{pmatrix} 1 & -2 & 1 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{pmatrix}$	3р
c)	$ \begin{pmatrix} 1 & 2^{n+1} & 2 \cdot 3^n + 2^{2n} \\ 0 & 1 & 2^{n+1} \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2^p & 3^p \\ 0 & 1 & 2^p \\ 0 & 0 & 1 \end{pmatrix} $	2p
	$2^{n+1} = 2^p \iff n+1 = p$	1p
	$2 \cdot 3^n + 2^{2n} = 3^{n+1} \iff 2^{2n} = 3^n$, deci $n = 0$ şi $p = 1$	2p

DCDI	(So de pu	incte)
1.a)	$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \ln \frac{2x+1}{x} = \lim_{x \to +\infty} \ln \left(2 + \frac{1}{x}\right) = \ln 2$	3 p
	Dreapta de ecuație $y = \ln 2$ este asimptotă orizontală spre $+\infty$ la graficul funcției f	2p
b)	$x_{n+1} - x_n = \ln \frac{2n+3}{n+1} - \ln \frac{2n+1}{n} = \ln \frac{2n^2 + 3n}{2n^2 + 3n + 1} < \ln 1$, pentru orice număr natural $n, n \ge 1$	3p
	$x_{n+1} - x_n < 0$, pentru orice număr natural n , $n \ge 1$, deci șirul $(x_n)_{n \ge 1}$ este descrescător	2 p
c)	$x_n \le x_1 = \ln 3$, pentru orice număr natural n , $n \ge 1$	2p
	$x_n = \ln \frac{2n+1}{n} = \ln \left(2 + \frac{1}{n}\right) > \ln 2$, pentru orice număr natural $n, n \ge 1$	3p
2.a)	$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{x^2 - 8x + 7}{x^2 - 4x + 3} =$	2p
	$= \lim_{x \to -\infty} \frac{1 - \frac{8}{x} + \frac{7}{x^2}}{1 - \frac{4}{x} + \frac{3}{x^2}} = 1$	3р
b)	f este continuă în $x = 1 \Leftrightarrow \lim_{\substack{x \to 1 \ x < l}} f(x) = \lim_{\substack{x \to 1 \ x > l}} f(x) = f(1)$	1p
	$\lim_{\substack{x \to 1 \\ x < 1}} f(x) = \lim_{\substack{x \to 1 \\ x < 1}} \frac{x - 7}{x - 3} = 3, \ \lim_{\substack{x \to 1 \\ x > 1}} f(x) = \lim_{\substack{x \to 1 \\ x > 1}} \left(\sqrt{x^2 + 4x - 4} + a\right) = 1 + a, \ f(1) = 1 + a$	3 p
	$3=1+a \Leftrightarrow a=2$	1p
c)	$\lim_{\substack{x \to 1 \\ x > 1}} \frac{\ln \sqrt{x^2 + 4x - 4}}{x - 1} = \lim_{\substack{x \to 1 \\ x > 1}} \ln \left(x^2 + 4x - 4\right)^{\frac{1}{2(x - 1)}} = \lim_{\substack{x \to 1 \\ x > 1}} \ln \left(\left(1 + x^2 + 4x - 5\right)^{\frac{1}{x^2 + 4x - 5}}\right)^{\frac{(x - 1)(x + 5)}{2(x - 1)}} = \lim_{\substack{x \to 1 \\ x > 1}} \ln \left(\frac{1 + x^2 + 4x - 5}{x^2 + 4x - 5}\right)^{\frac{1}{x^2 + 4x - 5}} = \lim_{\substack{x \to 1 \\ x > 1}} \ln \left(\frac{1 + x^2 + 4x - 5}{x^2 + 4x - 5}\right)^{\frac{1}{x^2 + 4x - 5}} = \lim_{\substack{x \to 1 \\ x > 1}} \ln \left(\frac{1 + x^2 + 4x - 5}{x^2 + 4x - 5}\right)^{\frac{1}{x^2 + 4x - 5}} = \lim_{\substack{x \to 1 \\ x > 1}} \ln \left(\frac{1 + x^2 + 4x - 5}{x^2 + 4x - 5}\right)^{\frac{1}{x^2 + 4x - 5}} = \lim_{\substack{x \to 1 \\ x > 1}} \ln \left(\frac{1 + x^2 + 4x - 5}{x^2 + 4x - 5}\right)^{\frac{1}{x^2 + 4x - 5}} = \lim_{\substack{x \to 1 \\ x > 1}} \ln \left(\frac{1 + x^2 + 4x - 5}{x^2 + 4x - 5}\right)^{\frac{1}{x^2 + 4x - 5}} = \lim_{\substack{x \to 1 \\ x > 1}} \ln \left(\frac{1 + x^2 + 4x - 5}{x^2 + 4x - 5}\right)^{\frac{1}{x^2 + 4x - 5}} = \lim_{\substack{x \to 1 \\ x > 1}} \ln \left(\frac{1 + x^2 + 4x - 5}{x^2 + 4x - 5}\right)^{\frac{1}{x^2 + 4x - 5}} = \lim_{\substack{x \to 1 \\ x > 1}} \ln \left(\frac{1 + x^2 + 4x - 5}{x^2 + 4x - 5}\right)^{\frac{1}{x^2 + 4x - 5}} = \lim_{\substack{x \to 1 \\ x > 1}} \ln \left(\frac{1 + x^2 + 4x - 5}{x^2 + 4x - 5}\right)^{\frac{1}{x^2 + 4x - 5}} = \lim_{\substack{x \to 1 \\ x > 1}} \ln \left(\frac{1 + x^2 + 4x - 5}{x^2 + 4x - 5}\right)^{\frac{1}{x^2 + 4x - 5}} = \lim_{\substack{x \to 1 \\ x > 1}} \ln \left(\frac{1 + x^2 + 4x - 5}{x^2 + 4x - 5}\right)^{\frac{1}{x^2 + 4x - 5}} = \lim_{\substack{x \to 1 \\ x > 1}} \ln \left(\frac{1 + x^2 + 4x - 5}{x^2 + 4x - 5}\right)^{\frac{1}{x^2 + 4x - 5}} = \lim_{\substack{x \to 1 \\ x > 1}} \ln \left(\frac{1 + x^2 + 4x - 5}{x^2 + 4x - 5}\right)^{\frac{1}{x^2 + 4x - 5}} = \lim_{\substack{x \to 1 \\ x > 1}} \ln \left(\frac{1 + x^2 + 4x - 5}{x^2 + 4x - 5}\right)^{\frac{1}{x^2 + 4x - 5}} = \lim_{\substack{x \to 1 \\ x > 1}} \ln \left(\frac{1 + x^2 + 4x - 5}{x^2 + 4x - 5}\right)^{\frac{1}{x^2 + 4x - 5}} = \lim_{\substack{x \to 1 \\ x > 1}} \ln \left(\frac{1 + x^2 + 4x - 5}{x^2 + 4x - 5}\right)^{\frac{1}{x^2 + 4x - 5}} = \lim_{\substack{x \to 1 \\ x > 1}} \ln \left(\frac{1 + x^2 + 4x - 5}{x^2 + 4x - 5}\right)^{\frac{1}{x^2 + 4x - 5}} = \lim_{\substack{x \to 1 \\ x > 1}} \ln \left(\frac{1 + x^2 + 4x - 5}{x^2 + 4x - 5}\right)^{\frac{1}{x^2 + 4x - 5}} = \lim_{\substack{x \to 1 \\ x > 1}} \ln \left(\frac{1 + x^2 + 4x - 5}{x^2 + 4x - 5}\right)^{\frac{1}{x^2 + 4x - 5}} = \lim_{\substack{x \to 1 \\ x > 1}} \ln \left(\frac{1 + x^2 + 4x - 5}{x^2 + 4x - 5}\right)^{\frac{1}{x^2 + 4x - 5}} = \lim_{\substack{x \to 1 \\ x > 1}} \ln \left(\frac{1 + x^2 + 4x - 5}{x^2 + 4x - 5}\right)^{\frac{1}{x^$	3р
	$= \ln e^3 = 3$	2p

Matematică M_mate-info

Clasa a XI-a

Simulare

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Arătați că $\log_{2016} 63 + \log_{2016} 32 + \sqrt{0,0625} = \frac{5}{4}$.
- **5p** 2. Determinați numărul real m, pentru care soluțiile ecuației $x^2 (3m-4)x + m 3 = 0$ verifică relația $x_1 + x_2 = 2x_1x_2$.
- **5p 3.** Rezolvați în mulțimea numerelor reale ecuația $2 \cdot 2^x + 4^x 8^x = 0$.
- **5p 4.** Calculați probabilitatea ca, alegând un element din mulțimea $\{0, 1, 2, ..., 9\}$, acesta să fie soluție a ecuației f(n) = 0, unde $f: \mathbb{R} \to \mathbb{R}$, $f(n) = n^3 + 3n 4$.
- **5p** | **5.** Se consideră triunghiul ABC cu $AB = AC = 6\sqrt{3}$ și $m(\angle A) = 120^\circ$. Calculați lungimea vectorului $\overrightarrow{AC} \overrightarrow{AB}$.
- **5p 6.** Arătați că $\sin(a+b)=1$, știind că $a, b \in \left(0, \frac{\pi}{2}\right), a \neq b$ și $\sin a + \cos a = \sin b + \cos b$.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră determinantul $\Delta(x, y) = \begin{vmatrix} x & 3 & y \\ x^2 & 2 & y^2 \\ 1 & 1 & 1 \end{vmatrix}$, unde x și y sunt numere reale.
- **5p a**) Calculați $\Delta(-1,0)$.
- **5p b**) Demonstrați că $\Delta(x, y) = (x y)(xy 3x 3y + 2)$, pentru orice numere reale x și y.
- **5p** c) Determinați numerele întregi distincte x și y, știind că $\frac{1}{y-x}\Delta(x,y)=8$.
 - **2.** Se consideră matricea $A(n) = \begin{pmatrix} 1 & 2^n & 3^n \\ 0 & 1 & 2^n \\ 0 & 0 & 1 \end{pmatrix}$, unde n este număr natural.
- **5p** a) Calculați A(1) A(0).
- **5p b**) Determinați inversa matricei A(1).
- **5p** c) Demonstrați că, dacă $A(n) \cdot A(n) = A(p)$, atunci n = 0 și p = 1.

- **1.** Se consideră funcția $f:(0,+\infty)\to\mathbb{R}$, $f(x)=\ln\frac{2x+1}{x}$ și șirul de numere reale $(x_n)_{n\geq 1}$, $x_n=f(n)$.
- **5p** a) Determinați ecuația asimptotei orizontale spre $+\infty$ la graficul funcției f.
- **5p b**) Demonstrați că șirul $(x_n)_{n\geq 1}$ este descrescător.
- **5p** c) Demonstrați că $\ln 2 < x_n \le \ln 3$, pentru orice număr natural n, $n \ge 1$.

2. Se consideră funcția
$$f: \mathbb{R} \to \mathbb{R}$$
, $f(x) = \begin{cases} \frac{x^2 - 8x + 7}{x^2 - 4x + 3}, & x < 1 \\ \sqrt{x^2 + 4x - 4} + a, & x \ge 1 \end{cases}$, unde a este număr real.

- **5p a)** Calculați $\lim_{x \to -\infty} f(x)$.
- **5p b**) Determinați numărul real a, pentru care funcția f este continuă în punctul x = 1.
- **5p** c) Pentru a = 2, calculați $\lim_{\substack{x \to 1 \\ x > 1}} \frac{\ln(f(x) 2)}{x 1}$.

Examenul de bacalaureat național 2016 Proba E. c) Matematică *M_mate-info*

BAREM DE EVALUARE ȘI DE NOTARE

Varianta 01

Filiera teoretică, profilul real, specializarea matematică-informatică

Filiera vocațională, profilul militar, specializarea matematică-informatică

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total obținut pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	r = 4 - 1 = 3	2p
	$a_4 = 1 + 3 \cdot 3 = 10$	3 p
2.	$f(1) = a \Rightarrow 1^2 + 4 = a$	3 p
	a = 5	2p
3.	$3^{2(x-2)} = 3^{2-x} \Leftrightarrow 2x - 4 = 2 - x$	3 p
	x = 2	2p
4.	Sunt 90 de numere naturale de două cifre, deci sunt 90 de cazuri posibile	1p
	Sunt 21 de numere naturale de două cifre care sunt mai mici sau egale cu 30, deci sunt 21 de cazuri favorabile	2p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{21}{90} = \frac{7}{30}$	2p
5.	$y-3=1\cdot (x-0)$	3 p
	y = x + 3	2 p
6.	$AD = 8$, unde $AD \perp BC$, $D \in BC$	2p
	$\sin B = \frac{AD}{AB} = \frac{4}{5}$	3 p

1.a)	$\begin{pmatrix} 0 & 1 & 1 \end{pmatrix}$ $\begin{vmatrix} 0 & 1 & 1 \end{vmatrix}$	
	$A(0) = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \Rightarrow \det(A(0)) = \begin{vmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{vmatrix} =$	2p
	=0+1+1-0-0-0=2	3 p
b)	$\det(A(m)) = \begin{vmatrix} -m & 1 & 1 \\ 1 & -m & 1 \\ 1 & 1 & -m \end{vmatrix} = (2-m)(m+1)^{2}$	3p
	Pentru orice număr real m , $m \neq -1$ și $m \neq 2$, obținem $\det(A(m)) \neq 0$, deci matricea $A(m)$ este inversabilă	2p
c)	Pentru $m=2$, sistemul este compatibil nedeterminat și soluțiile sistemului sunt de forma $(1+\alpha,1+\alpha,\alpha)$, unde $\alpha\in\mathbb{R}$	3p
	Cum $x_0 + 2y_0 + 3z_0 = 9 \Leftrightarrow 1 + \alpha + 2(1 + \alpha) + 3\alpha = 9 \Leftrightarrow \alpha = 1$, soluția sistemului care verifică relația este $(2,2,1)$	2 p
2.a)	x * y = -2xy + 10x + 10y - 50 + 5 =	2p
	=-2x(y-5)+10(y-5)+5=-2(x-5)(y-5)+5, pentru orice numere reale x și y	3 p

b)	x*5=5*y=5, pentru x și y numere reale	2p
	((1*2*3*4)*5)*6*7*8*9*10=5*(6*7*8*9*10)=5	3 p
c)	$-2(m-5)(n-5)+5=27 \Leftrightarrow (m-5)(n-5)=-11$	2p
	Cum m și n sunt numere naturale, obținem $m=4$, $n=16$ sau $m=16$, $n=4$	3 p

1.a)	$f'(x) = 2x - \frac{8}{x} =$	2p
	$= \frac{2x^2 - 8}{x} = \frac{2(x - 2)(x + 2)}{x}, \ x \in (0, +\infty)$	3p
b)	Cum $x \in (0, +\infty)$, $f'(x) = 0 \Leftrightarrow x = 2$	1p
	$x \in (0,2] \Rightarrow f'(x) \le 0$, deci f este descrescătoare pe $(0,2]$	2p
	$x \in [2, +\infty) \Rightarrow f'(x) \ge 0$, deci f este crescătoare pe $[2, +\infty)$	2p
c)	$\lim_{\substack{x \to 0 \\ x > 0}} f(x) = \lim_{\substack{x \to 0 \\ x > 0}} \left(x^2 - 8\ln x\right) = +\infty , \lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} x^2 \left(1 - \frac{8\ln x}{x^2}\right) = +\infty$	2p
	Cum $f(2) < 0$, ecuația $f(x) = 0$ are două soluții reale distincte	3 p
2.a)	$\int_{5}^{10} (x-4) f(x) dx = \int_{5}^{10} \frac{1}{x} dx = \ln x \Big _{5}^{10} =$	3p
	$= \ln 10 - \ln 5 = \ln 2$	2p
b)	$g(x) = \frac{1}{x-4}$, deci $V = \pi \int_{5}^{6} g^{2}(x) dx = \pi \int_{5}^{6} \frac{1}{(x-4)^{2}} dx =$	2p
	$=\pi\left(-\frac{1}{x-4}\right)\Big _{5}^{6}=\frac{\pi}{2}$	3р
c)	Pentru $n > 4$, $\int_{n}^{n+1} f(x) dx = \int_{n}^{n+1} \frac{1}{x(x-4)} dx = \frac{1}{4} \int_{n}^{n+1} \left(\frac{1}{x-4} - \frac{1}{x} \right) dx = \frac{1}{4} \ln \frac{n^2 - 3n}{n^2 - 3n - 4}$	2p
	$\lim_{n \to +\infty} \left(n^2 \int_{n}^{n+1} f(x) dx \right) = \lim_{n \to +\infty} \ln \left(\left(1 + \frac{4}{n^2 - 3n - 4} \right)^{\frac{n^2 - 3n - 4}{4}} \right)^{\frac{4n^2}{4(n^2 - 3n - 4)}} = \ln e = 1$	3р

Examenul de bacalaureat național 2016 Proba E. c) Matematică *M mate-info*

Varianta 01

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Determinați al patrulea termen al progresiei aritmetice $(a_n)_{n>1}$, știind că $a_1 = 1$ și $a_2 = 4$.
- **5p** 2. Determinați numărul real a, știind că punctul A(1,a) aparține graficului funcției $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 + 4$.
- **5p** 3. Rezolvați în multimea numerelor reale ecuația $9^{x-2} = 3^{2-x}$.
- **5p 4.** Calculați probabilitatea ca, alegând un număr din mulțimea numerelor naturale de două cifre, acesta să fie mai mic sau egal cu 30.
- **5p 5.** În reperul cartezian xOy se consideră punctul A(0,3). Determinați ecuația dreptei care trece prin punctul A și are panta egală cu 1.
- **5p 6.** Se consideră triunghiul *ABC*, cu *AB* = 10, *AC* = 10 și *BC* = 12. Arătați că $\sin B = \frac{4}{5}$.

SUBIECTUL al II-lea (30 de puncte)

1. Se consideră matricea $A(m) = \begin{pmatrix} -m & 1 & 1 \\ 1 & -m & 1 \\ 1 & 1 & -m \end{pmatrix}$ și sistemul de ecuații $\begin{cases} -mx + y + z = -1 \\ x - my + z = -1 \end{cases}$, unde m x + y - mz = m

este număr real.

- **5p** | **a**) Arătați că $\det(A(0)) = 2$.
- **5p b**) Demonstrați că matricea A(m) este inversabilă, pentru orice număr real m, $m \neq -1$ și $m \neq 2$.
- **5p** c) Pentru m = 2, determinați soluția (x_0, y_0, z_0) a sistemului pentru care $x_0 + 2y_0 + 3z_0 = 9$.
 - **2.** Pe mulțimea numerelor reale se definește legea de compoziție asociativă x*y = -2xy + 10x + 10y 45.
- **5p** a) Arătați că x * y = -2(x-5)(y-5)+5, pentru orice numere reale x și y.
- **5p b**) Arătați că 1*2*3*4*5*6*7*8*9*10=5.
- **5p** c) Determinați numerele naturale m și n, pentru care m*n=27.

- **1.** Se consideră funcția $f: \overline{(0,+\infty)} \to \mathbb{R}$, $f(x) = x^2 8 \ln x$.
- **5p a)** Arătați că $f'(x) = \frac{2(x-2)(x+2)}{x}, x \in (0,+\infty).$
- **5p b**) Determinați intervalele de monotonie a funcției f.
- **5p** c) Demonstrați că ecuația f(x) = 0 are două soluții reale distincte.
 - 2. Se consideră funcția $f:(4,+\infty) \to \mathbb{R}$, $f(x) = \frac{1}{x(x-4)}$.
- **5p a)** Arătați că $\int_{5}^{10} (x-4) f(x) dx = \ln 2$.
- **5p b**) Determinați volumul corpului obținut prin rotația în jurul axei Ox a graficului funcției $g:[5,6] \to \mathbb{R}$, g(x) = x f(x).
- **5p** c) Demonstrați că $\lim_{n \to +\infty} \left(n^2 \int_{n}^{n+1} f(x) dx \right) = 1$.