

Agenda

- Linear Regression
- Tree
- Capstone Part 1

Tree

Agenda

- Decision trees?
- XGBoost

What They Look Like

Description of Decision Rules or Trees

- Intuitive appeal for users
- Presentation Forms
 - "if, then" statements (decision rules)
 - graphically decision trees

How to approve a loan application

- Bank loan application
 - end result?
 - What criterion?

F

How they work?

- All paths
 - start at the root node
 - end at a leaf
 - Each path represents a decision rule
- All paths mutually exclusive
 - for any one case only one path will be followed
 - false decisions on the left branch
 - true decisions on the right branch

Goal

Dual goal - Develop tree that

...

A small size tree?

Why a small tree make senses?

F

Entropy and information gain

Discrete vs. Continuous Attributes

- Continuous variables attributes problems for decision trees
 - increase computational complexity of the task
 - promote prediction inaccuracy
 - lead to overfitting of data
- Convert continuous variables into discrete intervals
 - "greater than or equal to" and "less than"
 - optimal solution for conversion
 - difficult to determine discrete intervals ideal
 - size
 - number

Making the Split

- Models induce a tree by recursively selecting and subdividing attributes
 - random selection noisy variables
 - inefficient production of inaccurate trees
- Efficient models
 - examine each variable
 - determine which will improve accuracy of entire tree
 - problem this approach decides best split without considering subsequent splits

Overfitting

- Error rate in predicting the correct class for new cases
 - overfitting of test data
 - very low apparent error rate
 - high actual error rate

Optimal Size

- Certain minimal size smaller tree
 - higher apparent error rate
 - lower actual error rate
- Goal
 - identify threshold
 - minimize actual error rate
 - achieve greatest predictive accuracy

Ending Tree Growth

- Grow the tree until
 - additional splitting produces no significant information gain
 - statistical test a chi-squared test
 - problem trees that are too small
 - only compares one split with the next descending split

Pruning

- Grow large tree
 - reduce its size by eliminating or pruning weak branches step by step
 - continue until minimum true error rate
- Pruning Methods
 - reduced-error pruning
 - divides samples into validation set and training set
 - training set is used to produce the fully expanded tree
 - tree is then tested using the validation set
 - weak branches are pruned
 - stop when no more improvement

Evaluating Decision Trees

- Method's Appropriateness
- Data set or type
- Criteria
 - accuracy predict class label for new data
 - scalability
 - performs model generation and prediction functions
 - large data sets
 - satisfactory speed
 - robustness
 - perform well despite noisy or missing data
 - intuitive appeal
 - results easily understood
 - promotes decision making

Decision Tree Limitations

- No backtracking
 - local optimal solution not global optimal solution
 - lookahead features may give us better trees
- Rectangular-shaped geometric regions
 - in two-dimensional space
 - regions bounded by lines parallel to the x- and y- axes
 - some linear relationships not parallel to the axes

What is XGBoost

- Stands for:
 - –eXtreme Gradient Boosting.
- XGBoost is a powerful iterative learning algorithm based on gradient boosting.
- Robust and highly versatile, with custom objective loss function compatibility.

How does XGBoost work?

- Tree-Based Boosting algorithm.
- 4 Critical Parameters for Tuning:
 - -η: ETA or "Learning Rate"
 - -max_depth: Controls the "height" of the tree via splits.
 - $-\gamma$: Minimum required loss for the model to justify a split.
 - $-\lambda$: L2 (Ridge) regularization on variable weights.

Why use Xgboost?

- All of the advantages of gradient boosting, plus more.
- Frequent Kaggle data competition champion.
- Utilizes CPU Parallel Processing by default.
- Two main reasons for use:
 - 1. Low Runtime
 - 2. High Model Performance

Tuning XGBoost

• In order to produce the optimal XGBoost model, a grid-search method was employed against a hyper-grid of possible parameters.