Twisted Elliptic Genera

Kaiwen Sun (KIAS)

Joint HEP-TH Seminar

June 29, 2022

Joint work with Kimyeong Lee and Xin Wang, Arxiv:2207.xxxxx

For the last 10 years, there has been huge progress on the following relation web in both classification and computation.

6d (1,0) SCFTs classified in (Heckman-Morrison-Rudelius-Vafa 15)

- are engineered by F-theory compactified on local elliptic CY3
- ontain BPS strings with worldsheet theory as 2d (0,4) SCFTs
- \odot compactified on S^1 give 5d Kaluza-Klein (KK) theories

$$\mathbb{E}^{\mathrm{2d}\ (0,4)\ \mathrm{SCFT}} = Z_{\mathbb{R}^4\times\mathcal{T}^2}^{\mathrm{6d}\ (1,0)\ \mathrm{SCFT}} = Z_{\mathbb{R}^4\times\mathcal{S}^1}^{\mathrm{5d}\ \mathrm{KK}} = Z_{\mathrm{local\ elliptic\ CY3}}^{\mathrm{ref.\ top.}}$$

For the last 10 years, there has been huge progress on the following relation web in both classification and computation.

6d (1,0) SCFTs classified in (Heckman-Morrison-Rudelius-Vafa 15)

- are engineered by F-theory compactified on local elliptic CY3
- ontain BPS strings with worldsheet theory as 2d (0,4) SCFTs
- \odot compactified on S^1 give 5d Kaluza-Klein (KK) theories

$$\mathbb{E}^{\text{2d (0,4) SCFT}} = Z_{\mathbb{R}^4 \times \mathcal{T}^2}^{\text{6d (1,0) SCFT}} = Z_{\mathbb{R}^4 \times \mathcal{S}^1}^{\text{5d KK}} = Z_{\text{local elliptic CY3}}^{\text{ref. top.}}$$

A simple example

- 6d (1,0) E-string theory
- **2** 5d SU(2) + 8F KK theory
- local half-K3 Calabi-Yau threefold
- \bullet a series of 2d (0,4) O(k) gauge theories

When 6d (1,0) SCFT has a discrete global symmetry, we can do twisted circle compactification to a 5d KK theory (Bhardwaj-Jefferson-Kim-Tarazi-Vafa 19). There are two kinds

- gauge algebra allows outer automorphism: folding vector multiplet
- quiver structure has discrete symmetry: folding tensor multiplet

We focus on the first kind of twisted compactification. In such cases, the relations are generalized as

$$\mathbb{E}^{\text{2d (0,4) SCFT}}_{\text{twisted}} = Z^{\text{6d (1,0) SCFT}}_{\mathbb{R}^4 \times S^1 \times S^1, \text{twisted}} \ = Z^{\text{5d KK}}_{\mathbb{R}^4 \times S^1} = Z^{\text{ref. top.}}_{\text{local genus-one fibered CY3}}$$

We are interested the twisted elliptic genera arising here.

When 6d (1,0) SCFT has a discrete global symmetry, we can do twisted circle compactification to a 5d KK theory (Bhardwaj-Jefferson-Kim-Tarazi-Vafa 19). There are two kinds

- gauge algebra allows outer automorphism: folding vector multiplet
- quiver structure has discrete symmetry: folding tensor multiplet

We focus on the first kind of twisted compactification. In such cases, the relations are generalized as

$$\mathbb{E}_{\text{twisted}}^{\text{2d (0,4) SCFT}} = Z_{\mathbb{R}^4 \times S^1 \times S^1, \text{twisted}}^{\text{3d (1,0) SCFT}} = Z_{\mathbb{R}^4 \times S^1}^{\text{5d KK}} = Z_{\text{local genus-one fibered CY3}}^{\text{ref. top.}}$$

We are interested the twisted elliptic genera arising here. Two simple examples

- lacksquare \mathbb{Z}_2 twist of 6d (1,0) SU(3) SCFT o 5d $\mathcal{N}=1$ $SU(3)_9$
- ② \mathbb{Z}_3 twist of 6d (1,0) SO(8) SCFT \rightarrow 5d $\mathcal{N}=1$ $SU(4)_8$

Outline

- 6d (1,0) SCFTs and twisted compactification
- Twisted elliptic genera
- Twisted elliptic blowup equations
- Modular bootstrape on $\Gamma(N)$
- Spectral flow symmetry
- Summary

6d SCFTs and elliptic non-compact Calabi-Yau

Six is the highest dimension for SCFT

6d(2,0)

ADE classification

6d(1,0)

- Tons
- F-theory compactified on elliptic non-compact CY3
- Elliptic fibration over non-compact base surface *B* in which all curve classes can be simultaneously shrinkable to zero volume
- Atomic classification (Heckman-Morrison-Rudelius-Vafa 15)
- Generalized quiver from non-Higgsable clusters
- Tensor branch dimension called "rank" i.e. $H^{1,1}(B,\mathbb{Z})$

Rank One 6d (1,0) SCFTs

Rank one 6d (1,0) SCFTs are the natural elliptic lift of 4d $\mathcal{N}=2$ and 5d $\mathcal{N}=1$ gauge theories.

- ullet Associated to Calabi-Yau as elliptic fibration over $\mathcal{O}(-{ extbf{n}})
 ightarrow \mathbb{P}^1$
- Kodaira singularity type gives the gauge algebra G supported on the

 n curve
- Global flavor symmetry F on a non-compact curve
- matters in representation
 \mathfrak{R}\text{ at intersection points between curves}
- (n, G, F, \Re) are highly constrained by Calabi-Yau condition.

Full List of Rank One 6d (1,0) SCFTs

e.g. n = 4, SO(r + 8) + rF theories

n	G	F	$2(R_G, R_F)$
12	E ₈	_	_
8	E ₇	_	_
7	E ₇	_	(56, 1)
6	E ₆	_	_
6	E ₇	so(2) ₁₂	(56, 2)
5	F ₄	_	_
5	E ₆	$\mathfrak{u}(1)_6$	27 _{−1} \oplus <i>c.c.</i>
5	E7	so(3) ₁₂	(56, 3)
4	so(8)	_	_
4	$\mathfrak{so}(N \geq 9)$	$\mathfrak{sp}(N-8)_1$	(N, 2(N-8))
4	F ₄	$\mathfrak{sp}(1)_3$	(26, 2)
4	E ₆	$\mathfrak{su}(2)_6 \times \mathfrak{u}(1)_{12}$	$({\bf 27},{f \overline{2}})_{-1}\oplus c.c.$
4	E ₇	so(4) ₁₂	(56, 2 ⊕ 2)
3	su(3)	_	_
3	so(7)	$\mathfrak{sp}(2)_1$	(8, 4)
3	so(8)	$\mathfrak{sp}(1)_1^a imes \mathfrak{sp}(1)_1^b imes \mathfrak{sp}(1)_1^c$	$(8_{v}\oplus8_{c}\oplus8_{s},2)$
3	so(9)	$\mathfrak{sp}(2)_1^a \times \mathfrak{sp}(1)_2^b$	$({f 9},{f 4}^s)\oplus ({f 16},{f 2}^b)$
3	so(10)	$\mathfrak{sp}(3)_1^{\mathfrak{s}} \times (\mathfrak{su}(1)_4 \times \mathfrak{u}(1)_4)^b$	$({f 10},{f 6}^a)\oplus [({f 16}_s)_1^b\oplus c.c.]$
3	so(11)	$\mathfrak{sp}(4)_1^a \times Ising^b$	$({f 11},{f 8}^a)\oplus ({f 32},{f 1}^b_s)$
3	so(12)	$\mathfrak{sp}(5)_1$	$(12,10) \oplus (32_s,1)$
3	G_2	$\mathfrak{sp}(1)_1$	(7, 2)
3	F ₄	sp(2) ₃	(26, 4)
3	E ₆	$\mathfrak{su}(3)_6 \times \mathfrak{u}(1)_{18}$	$(27, \overline{3})_{-1} \oplus c.c.$
3	E ₇	so(5) ₁₂	(56, 5)

Full List of Rank One 6d (1,0) SCFTs

e.g. $SU(r) + 2r\mathbf{F}$ theories

n	G	F	$2(R_G, R_F)$
2	su(1)	$\mathfrak{su}(2)_1$	_
2	su(2)	$\mathfrak{so}(7)_1 \times Ising$	$(2,8_s imes1_s)$
2	$\mathfrak{su}(N \geq 3)$	$\mathfrak{su}(2N)_1$	$(\mathbf{N}, \overline{2\mathbf{N}}) \oplus c.c.$
2	so(7)	$\mathfrak{sp}(1)_1^a imes \mathfrak{sp}(4)_1^b$	$(7,2^{s}) \oplus (8,8^{b})$
2	so(8)	$\mathfrak{sp}(2)_1^a \times \mathfrak{sp}(2)_1^b \times \mathfrak{sp}(2)_1^c$	$(8_{v},4^{s})\oplus(8_{s},4^{b})\oplus(8_{c},4^{c})$
2	so(9)	$\mathfrak{sp}(3)_1^a \times \mathfrak{sp}(2)_2^b$	$(9,6^{a}) \oplus (16,4^{b})$
2	so(10)	$\mathfrak{sp}(4)_1^a \times (\mathfrak{su}(2)_4 \times \mathfrak{u}(1)_8)^b$	$({f 10},{f 8}^a)\oplus [({f 16}_s,{f 2}^b)_1\oplus c.c.]$
2	so(11)	$\mathfrak{sp}(5)_1^a \times ?^b$	$({\bf 11},{\bf 10}^a)\oplus ({\bf 32},{\bf 2}^b)$
2	so(12)a	$\mathfrak{sp}(6)_1^a \times \mathfrak{so}(2)_8$	$(12,12^{s})\oplus (32_{s},2^{b})$
2	so(12) _b	$\mathfrak{sp}(6)_1^a \times Ising^b \times Ising^c$	$(12,12^a) \oplus (32_s,1_s^b) \oplus (32_c,1_s^c)$
2	so(13)	$\mathfrak{sp}(7)_1$	$({f 13},{f 14})\oplus ({f 64},{f 1})$
2	G_2	$\mathfrak{sp}(4)_1$	(7,8)
2	F ₄	sp(3) ₃	(26,6)
2	E ₆	$\mathfrak{su}(4)_6 \times \mathfrak{u}(1)_{24}$	$(27, \overline{4})_{-1} \oplus c.c.$
2	E ₇	$\mathfrak{so}(6)_{12}$	(56, 6)

Full List of Rank One 6d (1,0) SCFTs

e.g.
$$SU(r) + (r+8)\mathbf{F} + \mathbf{\Lambda}^2$$
 theories, $Sp(r) + (2r+8)\mathbf{F}$ theories

n	G	F	$2(R_G, R_F)$
1	sp(0)	(E ₈) ₁	_
1	$\mathfrak{sp}(N \geq 1)$	$\mathfrak{so}(4N+16)_1$	(2N, 4N + 16)
1	su(3)	su(12) ₁	$(3,\overline{12})_1\oplus c.c.$
1	su(4)	$\mathfrak{su}(12)_1^a \times \mathfrak{su}(2)_1^b$	$[(4,\overline{12}_{1}^{s})\oplus c.c.]\oplus (6,2^{b})$
1	$\mathfrak{su}(N \geq 5)$	$\mathfrak{su}(N+8)_1 \times \mathfrak{u}(1)_{2N(N-1)(N+8)}$	$[(N,\overline{N+8})_{-N+4}\oplus (\Lambda^2,1)_{N+8}]\oplus c.c.$
1	su(6)*	su(15) ₁	$[(6,\overline{15})\oplus c.c.]\oplus (20,1)$
1	so(7)	$\mathfrak{sp}(2)_1^a \times \mathfrak{sp}(6)_1^b$	$({f 7},{f 4}^a)\oplus ({f 8},{f 12}^b)$
1	so(8)	$\mathfrak{sp}(3)_1^a \times \mathfrak{sp}(3)_1^b \times \mathfrak{sp}(3)_1^c$	$(8_{v},6^{s})\oplus(8_{s},6^{b})\oplus(8_{c},6^{c})$
1	so(9)	$\mathfrak{sp}(4)_1^a \times \mathfrak{sp}(3)_2^b$	$({f 9},{f 8}^a)\oplus ({f 16},{f 6}^b)$
1	so(10)	$\mathfrak{sp}(5)_1^a \times (\mathfrak{su}(3)_4 \times \mathfrak{u}(1)_{12})^b$	$({\bf 10},{\bf 10}^a)\oplus [({\bf 16}_s,{\bf 3}^b)_1\oplus c.c.]$
1	so(11)	$\mathfrak{sp}(6)_1^a \times ?^b$	$(11,12^a) \oplus (32,3^b)$
1	so(12)a	$\mathfrak{sp}(7)_1^a \times \mathfrak{so}(3)_8^b$	$(12,14^a) \oplus (32_s,3^b)$
1	so(12) _b	$\mathfrak{sp}(7)_1^a \times ?^b \times ?^c$	$(12,14^{a}) \oplus (32_{s},2^{b}) \oplus (32_{c},1^{c})$
1	G ₂	$\mathfrak{sp}(7)_1$	(7, 14)
1	F ₄	sp(4) ₃	(26,8)
1	E ₆	$\mathfrak{su}(5)_6 \times \mathfrak{u}(1)_{30}$	$(27, \overline{5})_{-1} \oplus c.c.$
1	E ₇	so(7) ₁₂	(56, 7)

Twisted 6d (1,0) rank-one SCFTs

- When the gauge algebra allows outer automorphism, i.e. folding the Dynkin diagrams, we can construct twisted 6d theories
- Twisted circle compactification to 5d KK theories (Bhardwaj-Jefferson-Kim-Tarazi-Vafa 19,...).
- In rank one, one can fold both 6d vector and hyper multiplets.
- We denote the truncated gauge algebra, flavor algebra and matter representation as G, F, R.
- Upon twist, fractional KK charges naturally appear.

Twisted 6d (1,0) rank-one SCFTs

KK-momentum shifts of representations under twist

G	Ğ	R	\rightarrow	Ř
$A_{2r}^{(2)}$	Cr	Adj	\rightarrow	$Adj_0 \oplus F_{1/4} \oplus \Lambda^2_{1/2} \oplus 1_{1/2} \oplus F_{3/4}$
A_{2r}	Cr	$F\oplus\overline{F}$	\rightarrow	$F_0 \oplus 1_{1/4} \oplus F_{1/2} \oplus 1_{3/4}$
		Adj	\rightarrow	$Adj_0 \oplus \Lambda^2_{1/2}$
$A_{2r-1}^{(2)}$	C_r			$F_0 \oplus F_{1/2}$
		$\mathbf{\Lambda}^2\oplus\overline{\mathbf{\Lambda}^2}$	\rightarrow	$oldsymbol{\Lambda}_0^2\oplusoldsymbol{\Lambda}_{1/2}^2\oplusoldsymbol{1}_0\oplusoldsymbol{1}_{1/2}$
		Adj	\rightarrow	$Adj_0 \oplus F_{1/2}$
$D_{r+1}^{(2)}$	B_r	V	\rightarrow	$V_0 \oplus 1_{1/2}$
		$S \oplus C$	\rightarrow	$S_0 \oplus S_{1/2}$
$E_6^{(2)}$	F ₄	Adj	\rightarrow	$Adj_0 \oplus F_{1/2}$
<i>E</i> ₆	14	$F\oplus\overline{F}$	\rightarrow	$F_0 \oplus F_{1/2} \oplus 1_0 \oplus 1_{1/2}$
$D_4^{(3)}$	G_2	Adj	\rightarrow	$Adj_0 \oplus F_{1/3} \oplus F_{2/3}$
D_4		$V \oplus S \oplus C$	\rightarrow	$F_0 \oplus 1_0 \oplus F_{1/3} \oplus 1_{1/3} \oplus F_{2/3} \oplus 1_{2/3}$

Some typical twisted 6d (1,0) rank one theories

There exist four pure gauge twisted theories: n = 6, $E_6^{(2)}$, n = 4, $D_4^{(2)}$, $D_4^{(3)}$ and n = 3, $A_2^{(2)}$.

n	G	Ğ	Ř	_F
6	$E_6^{(2)}$	F ₄	_	_
4	$D_4^{(3)}$	G_2	_	_
4	$D_{\Lambda}^{(2)}$	B_3	_	_
4	$D_{r+4}^{(2)}$	B_{r+3}	$2r(\mathbf{V}_0\oplus 1_{1/2})$	$\mathfrak{sp}(2r)$
4	$D_{r+4}^{(2)}$ $E_6^{(2)}$	F ₄	$F_0 \oplus F_{1/2} \oplus 1_0 \oplus 1_{1/2}$	$\mathfrak{sp}(1)$
3	$A_2^{(2)}$ $D_4^{(2)}$	C_1	_	_
3	$D_4^{(2)}$	B_3	$V_0 \oplus 1_{1/2} \oplus S_0 \oplus S_{1/2}$	$\mathfrak{sp}(1) imes \mathfrak{sp}(1)$
3	$D_4^{(3)}$	G_2	$F_0 \oplus F_{1/3} \oplus F_{2/3} \oplus 1_0 \oplus 1_{1/3} \oplus 1_{2/3}$	$\mathfrak{sp}(1)$
2	A_{2r}	C_r	$(2r+1)({\sf F}_{1/4}\oplus {\sf F}_{3/4}\oplus {\sf 1}_0\oplus {\sf 1}_{1/2})$	$\mathfrak{so}(4r+2)$
2	A_{2r-1}	C_r	$2r(\mathbf{F}_0 \oplus \mathbf{F}_{1/2})$	so(4r)
2	$D^{(2)}$	B_3	$2(V_0 \oplus 1_{1/2} \oplus S_0 \oplus S_{1/2})$	$\mathfrak{sp}(2) \times \mathfrak{sp}(2)$
2	$D_4^{(3)}$	G_2	$2(F_0 \oplus F_{1/3} \oplus F_{2/3} \oplus 1_0 \oplus 1_{1/3} \oplus 1_{2/3})$	sp(2)
2	D(2)	B_4	$4(V_0\oplus 1_{1/2})\oplus S_0\oplus S_{1/2}$	$\mathfrak{sp}(4) \times \mathfrak{sp}(1)$
2	$D_{6}^{(2)}$	B_5	$6(V_0\oplus 1_{1/2})\oplus rac{1}{2}S_0\oplus rac{1}{2}S_{1/2}$	sp(6)
2	$E_6^{(2)}$	F ₄	$2(F_0\oplusF_{1/2}\oplus1_0\oplus1_{1/2})$	sp(2)
1	$E_6^{(2)}$ $A_2^{(2)}$	C_1	$6(F_0 \oplus F_{1/2} \oplus 1_{1/4} \oplus 1_{3/4})$	so(12)
1	$A_{2}^{(2)}$	C_2	$6(F_0\oplusF_{1/2})\oplus1_0\oplus\mathbf{\Lambda}_{1/2}^2$	$\mathfrak{so}(12) imes \mathfrak{sp}(1)$
1	$D_4^{(2)}$	B_3	$3(V_0\oplus 1_{1/2}\oplus S_0\oplus S_{1/2})$	$\mathfrak{sp}(3) \times \mathfrak{sp}(3)$
1	$D_{i}^{(3)}$	Go	3(F ₀ \oplus F ₁ / ₂ \oplus F ₂ / ₂ \oplus 1 ₀ \oplus 1 ₁ / ₂ \oplus 1 ₂ / ₂)	sn(3)

Elliptic Genera of 6d SCFT

- Consider a elliptic non-compact Calabi-Yau X
- \bullet Compactify F-theory on $\mathbb{C}^2_{\epsilon_1,\epsilon_2}\times T^2\times X$
- The full partition function contains three parts

$$\begin{split} Z_{6d} &= Z_{\mathrm{poly}} Z_{\mathrm{1-loop}} Z_{\mathrm{ell}}, \\ Z_{\mathrm{ell}} &= 1 + \mathbb{E}_1 Q_{\mathrm{ell}} + \mathbb{E}_2 Q_{\mathrm{ell}}^2 + \dots \end{split}$$

- Z_{poly} comes from the perturbative part
- Z_{1-loop} contains the contributions from tensor, vector and hyper multiplets
- One main goal to study 6d SCFT is to compute the d-string elliptic genus $\mathbb{E}_d(\tau, m_G, m_F, \epsilon_1, \epsilon_2)$ of the associated 2d (0,4) SCFTs on the BPS strings
- \mathbb{E}_d is the natural elliptic lift the d-instanton Nekrasov partition function, also certain Jacobi form with $m_G, m_F, \epsilon_1, \epsilon_2$ as elliptic parameters

Twisted elliptic genera

In the twisted cases, similarly one can define twisted elliptic genera

$$Z_{6d}^{tw} = Z_{\mathrm{poly}}^{\mathrm{tw}} Z_{\mathrm{1-loop}}^{\mathrm{tw}} Z_{\mathrm{ell}}^{\mathrm{tw}}, \qquad Z_{\mathrm{ell}}^{\mathrm{tw}} = 1 + \mathbb{E}_{1}^{\mathrm{tw}} Q_{\mathrm{ell}} + \mathbb{E}_{2}^{\mathrm{tw}} Q_{\mathrm{ell}}^{2} + \dots$$

Now \mathbb{E}_d^{tw} contains fractional $q_{ au}$ powers.

- In twisted circle compactification, $Z_{6d}^{tw} = Z_{5d}^{KK}$.
- Twisted elliptic genera for a few theories have been studied in (Kim³-Lee 21, Kim³ 21)
- Now we would like go through all twistable theories
- We want to keep everything elliptic and as 6d gauge theory, rather than geometries or 5d KK theories.

Approaches to twisted elliptic genera

In the following, I mainly talk about the last three approaches.

2d quiver gauge theories

•
$$n = 4, D_4^{(2)}, (\text{Kim}^3 21)$$

- Twisting from Higgsing
 - many (Kim²-Lee 19, Kim³ 21, Hayashi-Kim-Ohmori 21)
- topological vertex and brane-webs
 - (Hayashi-Zhu 20, Kim³ 21)
- Twisted elliptic blowup equations

•
$$n = 3, A_2^{(2)}, (Kim^3-Lee 21)$$

- Modular bootstrape
- Spectral flow symmetry

Background for blowup equations

- Blowup equations are functional equations for Nekrasov partition functions originally for 4d $\mathcal{N}=2$ SU(N) gauge theories (Nakajima-Yoshioka 03)
- K-theoretic version 5d $\mathcal{N}=1$ (Nakajima-Yoshioka 05, 09, Göttsche-Nakajima-Yoshioka 06, Keller-Song 12, Kim²-Lee²-Song 19)
- further generalize to refined topological strings on local Calabi-Yau threefolds (Huang-KS-Wang 17)
- elliptic version for 6d (1,0) SCFTs (Gu-Haghighat-Klemm-KS-Wang 18-20)
- ullet 6d (2,0) SCFTs, 5d $\mathcal{N}=1^{\star}$ (Duan-Lee-Nahmgoong-Wang 21)
- 6d twisted SCFTs and 5d KK theories (Kim³-Lee 21)

Twisted elliptic blowup equations

Let λ_0 be a coweight of G invariant upon the twist. If (λ_0, λ_F) is admissible for the original 6d SCFT, and let $\lambda_{\hat{F}}$ be the reduction of λ_F , then the twisted elliptic genera $\mathbb{E}_d(\tau, m_{\hat{G}}, m_{\hat{F}}, \varepsilon_{1,2})$ satisfy the following

Twisted elliptic blowup equations

$$\begin{split} & \sum_{\substack{\lambda_{\mathring{G}} \in \phi_{\lambda_{0}}(Q^{\vee}(\mathring{G})) \\ \lambda_{\mathring{G}} \in \phi_{\lambda_{0}}(Q^{\vee}(\mathring{G}))}} (-1)^{|\lambda_{\mathring{G}}|} \theta_{i}^{[a]} \left(n\tau, \frac{-n\lambda_{\mathring{G}} \cdot m_{\mathring{G}} + k_{F}\lambda_{\mathring{F}} \cdot m_{\mathring{F}} + (y - \frac{n}{2}||\lambda_{\mathring{G}}||^{2})(\epsilon_{1} + \epsilon_{2}) - nd'\epsilon_{1} - nd''\epsilon_{2}} \right) \\ & \times A_{V}^{\mathring{G}}(\tau, m_{\mathring{G}}, \lambda_{\mathring{G}}) A_{V}^{frac}(\tau, m_{\mathring{G}}, \lambda_{\mathring{G}}) A_{H}^{\mathring{R}}(\tau, m_{\mathring{G}}, m_{\mathring{F}}, \lambda_{\mathring{G}}, \lambda_{\mathring{F}}) \\ & \times \mathbb{E}_{d'}^{\text{tw}}(\tau, m_{\mathring{G}} + \epsilon_{1}\lambda_{\mathring{G}}, m_{\mathring{F}} + \epsilon_{1}\lambda_{\mathring{F}}, \epsilon_{1}, \epsilon_{2} - \epsilon_{1}) \\ & \times \mathbb{E}_{d''}^{\text{tw}}(\tau, m_{\mathring{G}} + \epsilon_{2}\lambda_{\mathring{G}}, m_{\mathring{F}} + \epsilon_{2}\lambda_{\mathring{F}}, \epsilon_{1} - \epsilon_{2}, \epsilon_{2}) \\ & = \Lambda(\delta) \theta_{i}^{[a]}(n\tau, k_{F}\lambda_{\mathring{F}} \cdot m_{\mathring{F}} + ny(\epsilon_{1} + \epsilon_{2})) \mathbb{E}_{d}^{\text{tw}}(\tau, m_{\mathring{G}}, m_{\mathring{F}}, \epsilon_{1}, \epsilon_{2}). \end{split}$$

For $\delta=0$, $\Lambda(\delta)=1$, we call it unity blowup equations. For $\delta>0$, $\Lambda(\delta)=0$, we call it vanishing blowup equations.

Twisted elliptic blowup equations

The parameters $y, \lambda_{\mathring{F}}$ of unity twisted elliptic blowup equations for rank one models. # is the number of equations with fixed characteristic a.

n	G	Ğ	F	#	у	$\lambda_{\mathring{F}}$
6	E ₆	F_4	_	1	4	Ø
4	$D_4^{(3)}$	G_2	_	1	2	Ø
4	$D_{r+4}^{(2)}$	B_{r+3}	$\mathfrak{sp}(2r)$	2^{2r}	r+2	(001)
4	$E_6^{(2)}$	F_4	$\mathfrak{sp}(1)$	2	5	(1)
3	$D_{r+4}^{(2)}$ $E_{6}^{(2)}$ $A_{2}^{(2)}$ $D_{4}^{(2)}$	C_1	_	1	1	Ø
3	$D_4^{(2)}$	B_3	$\mathfrak{sp}(1) imes \mathfrak{sp}(1)$	4	5/2	(1),(1)
3	$D_4^{(3)}$	G_2	$\mathfrak{sp}(1)$	2	5/2	(1)
2	A_{2r}	C_r	$\mathfrak{so}(4r+2)$	2^{2r+1}	$r + \frac{1}{2}$	(001)
2	A_{2r-1}	C_r	so(4r)	2^{2r}	r	(001)
2	$D_4^{(2)}$	B_3	$\mathfrak{sp}(2) \times \mathfrak{sp}(2)$	16	3	(01),(01)
2	$D_4^{(2)} \\ D_4^{(3)} \\ D_5^{(2)} \\ E_6^{(2)}$	G_2	sp(2)	4	3	(01)
2	$D_5^{(2)}$	B_4	$\mathfrak{sp}(4) \times \mathfrak{sp}(1)$	32	4	(0001), (1)
2	$E_6^{(2)}$	F_4	sp(2)	4	6	(01)
1	$A_{1}^{(2)}$	C_1	so(10)	64	3/2	(001)
1	$A_2^{(2)}$ $A_3^{(2)}$	C_1	so(12)	64	2	(001)
1	$A_3^{(2)}$	C_2	$\mathfrak{so}(12) imes \mathfrak{sp}(1)$	128	5/2	(001), (1)
1	$D_4^{(2)}$ $D_4^{(3)}$	B_3	$\mathfrak{sp}(3) \times \mathfrak{sp}(3)$	64	7/2	(001),(001)
1	$D_4^{(3)}$	G_2	sp(3)	8	7/2	(001)

Universal formula for twisted elliptic genera \mathbb{E}_1

From the unity equations, we can solve twisted elliptic genera recursively. In particular, the twisted one-string elliptic genera for the pure gauge cases have the following universal formula:

$$\mathbb{E}_1^{\mathrm{tw}} = \sum_{\alpha \in \Delta_I^{\vee}} (-1)^{|\alpha^{\vee}|} \frac{D^{\alpha^{\vee}}}{D} \frac{D^{\alpha^{\vee}}}{\theta_1(m_{\alpha})\theta_1(m_{\alpha} - \varepsilon_{1,2})\theta_1(m_{\alpha} - 2\varepsilon_+)} \prod_{\substack{\beta \in \Delta \\ \alpha^{\vee} \cdot \beta = 1}} \frac{\eta}{\theta_1(m_{\beta})} \prod_{\substack{\gamma \in \Delta_s \\ \alpha^{\vee} \cdot \gamma = 1}} \frac{\eta}{\theta_1(m_{\gamma})}.$$

Here $D^{lpha^ee}=Det^{lpha^ee}_{\{1,0,0\}}$ and $D=Det^{lpha^ee}_{\{0,0,0\}}$, and we define

$$\theta_{i,\{d_0,d_1,d_2\}}^{[a]} = \theta_i^{[a]}(n\tau,-nm_{\alpha^{\vee}} + (n-2)(\epsilon_1 + \epsilon_2) - n((d_0 + d_1)\epsilon_1 + (d_0 + d_2)\epsilon_2)),$$

$$Det_{\{d_0,d_1,d_2\}}^{\alpha^\vee} = \det \left(\begin{array}{ccc} \theta_{i,\{0,d,0\}}^{[a_1]} & \theta_{i,\{0,0,d\}}^{[a_1]} & \theta_{i,\{d_0,d_1,d_2\}}^{[a_1]} \\ \theta_{i,\{0,d,0\}}^{[a_2]} & \theta_{i,\{0,0,d\}}^{[a_2]} & \theta_{i,\{d_0,d_1,d_2\}}^{[a_2]} \\ \theta_{i,\{0,d,0\}}^{[a_3]} & \theta_{i,\{0,0,d\}}^{[a_3]} & \theta_{i,\{d_0,d_1,d_2\}}^{[a_3]} \\ \end{array} \right).$$

Besides, k are the fractional KK charges for the short roots.

Structure of twisted elliptic genera

From the universal $\mathbb{E}_1^{\mathrm{tw}}$ formula, we find the following universal expansion for twisted pure gauge theories $(v=e^{\epsilon_+})$

$$\mathbb{E}_1^{\mathrm{tw}} = v^{h_{\hat{G}}^{\vee} - 1} \Big(\sum_{n=0}^{\infty} \chi_{k\theta}^{\hat{G}} v^{2n} + q_{\tau}^{\frac{1}{N}} (1 + v^2) \sum_{n=0}^{\infty} \chi_{k\theta + f}^{\hat{G}} v^{2n} + \ldots \Big).$$

- q_{τ}^{0} order gives 5d one \mathring{G} -instanton Hilbert series (Benvenuti-Hanany-Mekareeya 10)
- Fractional orders $q_{ au}^{i/N}, i=1,\ldots,N-1$ all have exact v expansion formulas
- ullet For example, for $D_4^{(3)}$ theory the $q_ au^{2/3}$ order of $\mathbb{E}_1^{
 m tw}$ is

$$\sum_{n=0}^{\infty} (\chi_{2f+n\theta}^{G_2}(1+v^2+v^4)+\chi_{f+n\theta}^{G_2}(1+v^2)+\chi_{n\theta}^{G_2})v^{2n+3}.$$

Modular bootstrap on $\Gamma(N)$

We turn off all gauge and flavor fugacities to study the modular property of $\mathbb{E}_1(q, v)$. In many cases, this can fully determine $\mathbb{E}_1(q, v)$ with small amount of initial data.

- For untwisted theories, the modular ansatz was proposed in (Del Zotto-Lockhart 18) on $SL(2,\mathbb{Z})$
- For twisted cases, we propose the modular ansatz on congruence subgroup $\Gamma(N)$. Here N is the twist coefficient:

$$N = \begin{cases} 2, & A_{2r-1}^{(2)}, D_r^{(2)}, E_6^{(2)}, \\ 3, & D_4^{(3)}, \\ 4, & A_{2r}^{(2)}. \end{cases}$$

 Inspired by the modular ansatz for genus-one fibered CY3 (Cota-Klemm-Schimannek 19) (Knapp-Scheidegger-Schimannek 21)

Modular bootstrap on $\Gamma(N)$

For a theory on (-n)-curve with twist coefficient N = 2, 3, 4, we propose modular ansatz for the reduced one-string elliptic genus:

$$\mathbb{E}_1^{\mathrm{tw}}(\tau, \epsilon_+) = \frac{\mathcal{N}(\tau, \epsilon_+)}{\eta^{12(n-2)-4+24\delta_{n,1}} \Delta_{2N}(\frac{\tau}{N})^{\frac{s}{N}} \phi_{-2,1}(\tau, 2\epsilon_+)^{h_{\hat{\mathsf{G}}}^{\vee}-1}}.$$

Here $s=\frac{N}{N-1}(c-\frac{n-2}{2}-\delta_{n,1})$. Numerator $\mathcal{N}(\tau,\epsilon_+)$ is of weight $6(n-2)+2Ns+12\delta_{n,1}-2h_{\mathring{G}}^{\vee}$ and index $4(h_{\mathring{G}}^{\vee}-1)+n-h_{G}^{\vee}$ and

$$\mathcal{N}(N\tau,\epsilon_{+}) \in M_{\star}(N)[\phi_{-2,1}(N\tau,\epsilon_{+}),\phi_{0,1}(N\tau,\epsilon_{+})].$$

 Δ_{2N} are certain cusp forms on $\Gamma(N)$:

$$\Delta_4(\tau) = \frac{\eta(2\tau)^{16}}{\eta(\tau)^8}, \quad \Delta_6(\tau) = \frac{\eta(3\tau)^{18}}{\eta(\tau)^6}, \quad \Delta_8(\tau) = \frac{\eta(2\tau)^8\eta(4\tau)^{16}}{\eta(\tau)^8},$$

and $\phi_{-2,1}, \phi_{0,1}$ are Eichler-Zagier's generators for weak Jacobi forms.

Examples on modular bootstrap

• For pure $D_4^{(2)}$ theory on (-4) curve, twist coefficient N=2,

$$\mathbb{E}_1^{\mathrm{tw}}(\tau, \epsilon_+) = \frac{\Delta_4(\tau/2)^{\frac{1}{2}} \mathcal{N}(\tau, \epsilon_+)}{\eta(\tau)^{20} \phi_{-2,1}(\tau, 2\epsilon_+)^4}.$$

Here $\mathcal{N}(\tau, \epsilon_+)$ is of weight 0 and index 14. There are 64 coefficients to fix $\mathcal{N}(2\tau, \epsilon_+)$.

② For pure $D_4^{(3)}$ theory on (-4) curve, twist coefficient N=3,

$$\mathbb{E}_1^{\mathrm{tw}}(\tau,\epsilon_+) = \frac{\Delta_6(\tau/3)^{\frac{2}{3}}\mathcal{N}(\tau,\nu)}{\eta(\tau)^{20}\phi_{-2,1}(\tau,2\epsilon_+)^3}.$$

Here $\mathcal{N}(\tau, \epsilon_+)$ is of weight 0 and index 10. There are 67 coefficients to fix $\mathcal{N}(3\tau, \epsilon_+)$.

• For pure $A_2^{(2)}$ theory on (-3) curve, twist coefficient N=4,

$$\mathbb{E}_1^{\mathrm{tw}}(\tau, \epsilon_+) = \frac{\Delta_8(\tau/4)^{\frac{1}{4}} \mathcal{N}(\tau, \epsilon_+)}{\eta(\tau)^8 \phi_{-2,1}(\tau, 2\epsilon_+)}.$$

Here $\mathcal{N}(\tau,\epsilon_+)$ is of weight 0 and index 4. There are 15 coefficients to fix $\mathcal{N}(4\tau,\epsilon_+)$

Spectral flow symmetry

For twisted one-string elliptic genus, we find the spectral flow from R-R sector to NS-R sector is induced by transformation:

$$\boxed{\mathbb{E}_{\mathrm{NS-R}}^{\mathring{R}_{\mathrm{KK}}}\!\left(v,q\right) = \pm\!\left(\frac{q^{1/4}}{v}\right)^{n-h_{G}^{\vee}}\!\mathbb{E}_{\mathrm{R-R}}^{\mathring{R}_{\mathrm{KK}}}\!\left(\frac{q^{1/2}}{v},q\right)}.$$

On the other hand, 2d (0,4) analysis shows spectral flow shifts the KK charges of hypermultiplets by 1/2:

$$\boxed{\mathbb{E}_{\mathrm{NS-R}}^{\mathring{R}_{\mathrm{KK}}} = \mathbb{E}_{\mathrm{R-R}}^{\mathring{R}_{\mathrm{KK+1/2}}}.}$$

These two properties together suggest interesting symmetry for the twisted elliptic genera.

Example: spectral flow symmetry for pure gauge theories

For 6d (1,0) pure gauge $G^{(k)}$ theories on (-n)-curve, we find the following spectral flow symmetry for the reduced twisted one-string elliptic genera:

$$\boxed{\mathbb{E}_1^{G^{(k)}}\Big(q,\frac{q^{1/2}}{v}\Big) = \Big(-\frac{q^{1/2}}{v^2}\Big)^{n-3}\,\mathbb{E}_1^{G^{(k)}}(q,v).}$$

We explicitly checked this symmetry for $A_2^{(2)}$, $D_4^{(2)}$, $D_4^{(3)}$, $E_6^{(2)}$.

- generalization of (Del Zotto-Lockhart 16, 18) for the untwisted cases $A_2, D_4, F_4, E_{6,7,8}$.
- relate twisted R-R elliptic genus to twisted NS-R

Spectral flow symmetry for $E_6^{(2)}$

Let us expand the twisted one-string elliptic genus as

$$\mathbb{E}_1^{\mathrm{tw}}(q_{\tau}, v, m_{F_4} = 0) = v^{-3} \sum_{i,j=0}^{\infty} b_{i,j} q^i v^{2i+j}.$$

Then we find the following table for coefficients b_{ij} :

$q \backslash v$	0	1	2	3	4	5	6	7	8
0	0	0	0	0	0	1	0	52	0
1/2	0	0	0	0	0	0	26	0	1079
1	0	0	0	0	0	0	0	378	0
3/2	0	0	0	0	0	0	0	0	4056
2	0	0	0	0	0	-1	0	0	0
5/2	-1	0	0	0	1	0	-26	0	0
3	0	-26	0	0	0	26	0	-378	0
7/2	-52	0	-378	0	0	0	378	0	-4004
4	0	-1079	0	-4056	0	0	0	4004	0

Spectral flow symmetry for $D_4^{(3)}$

Let us expand the twisted one-string elliptic genus as

$$\mathbb{E}_1^{\mathrm{tw}}(q_{\tau}, v, m_{G_2} = 0) = v^{-1} \sum_{i,j=0}^{\infty} b_{i,j} q^i v^{2i+j}.$$

Then we find the following table for coefficients b_{ij} :

$q \backslash v$	0			2			4			6
0	0	0	0	1	0	0	14	0	0	77
1/3	0	0	0	0	7	0	0	71	0	0
2/3	0	0	0	0	0	35	0	0	301	0
1	-1	0	0	0	0	0	141	0	0	1127
4/3	0	-7	0	0	0	0	0	497	0	0
5/3	0	0	-35	0	0	0	0	0	1582	0
2	-14	0	0	-141	0	0	0	0	0	4650
7/3	0	-71	0	0	-497	0	0	0	0	0
8/3	0	0	-301	0	0	-1582	0	0	0	0
3	-77	0	0	-1127	0	0	-4650	0	0	0

Spectral flow symmetry for $A_2^{(2)}$

Let us expand the twisted one-string elliptic genus as

$$\mathbb{E}_1^{\mathrm{tw}}(q, v, m_{A_1} = 0) = \sum_{i=0}^{\infty} b_{i,j} q^i v^{2i+j}.$$

$q \backslash v$	0		1		2		3		4		5
0	0	0	1	0	0	0	3	0	0	0	5
1/4	0	0	0	2	0	0	0	6	0	0	0
1/2	1	0	0	0	4	0	0	0	9	0	0
3/4	0	2	0	0	0	8	0	0	0	18	0
1	0	0	4	0	0	0	17	0	0	0	39
5/4	0	0	0	8	0	0	0	30	0	0	0
3/2	3	0	0	0	17	0	0	0	51	0	0
7/4	0	6	0	0	0	30	0	0	0	86	0
2	0	0	9	0	0	0	51	0	0	0	147
9/4	0	0	0	18	0	0	0	86	0	0	0
5/2	5	0	0	0	39	0	0	0	147	0	0

A possible $Sp(1)_{\pi}$ theory from $A_2^{(2)}$

Interestingly, we find the twisted elliptic blowup equations of $A_2^{(2)}$ and modular ansatz allow another solution of twisted one-string elliptic genus. The spectral flow symmetry also holds, and the 5d limit is $Sp(1)_{\pi}$ theory.

$q \backslash v$	0		1		2		3		4		5		6
0	0	0	0	0	2	0	0	0	4	0	0	0	6
1/4	0	0	0	0	0	4	0	0	0	8	0	0	0
1/2	0	0	0	0	0	0	6	0	0	0	12	0	0
3/4	0	0	0	0	0	0	0	12	0	0	0	24	0
1	2	0	0	0	4	0	0	0	28	0	0	0	52
5/4	0	4	0	0	0	8	0	0	0	48	0	0	0
3/2	0	0	6	0	0	0	12	0	0	0	74	0	0
7/4	0	0	0	12	0	0	0	24	0	0	0	124	0
2	4	0	0	0	28	0	0	0	52	0	0	0	220
9/4	0	8	0	0	0	48	0	0	0	88	0	0	0
5/2	0	0	12	0	0	0	74	0	0	0	136	0	0
11/4	0	0	0	24	0	0	0	124	0	0	0	224	0
3	6	0	0	0	52	0	0	0	220	0	0	0	388

Example with matters

Consider the \mathbb{Z}_2 twist of $E_6 + 2\mathbf{F}$ theory on (-4) curve. Upon twist

vector multiplet : $\mathbf{78} \rightarrow \mathbf{52}_0 + \mathbf{26}_{1/2}$,

 $\mathrm{hyper\ multiplet}:\ 2\cdot \boldsymbol{27} \rightarrow \boldsymbol{26}_0 + \boldsymbol{26}_{1/2} + \boldsymbol{1}_0 + \boldsymbol{1}_{1/2}$

Thus the twisted theory can be written as $E_6^{(2)} + \mathbf{F}_0 + \mathbf{F}_{1/2}$.

On the other hand, the \mathbb{Z}_2 twist of $E_6 + \mathbf{F}$ theory on (-5) curve have two possibilities: $E_6^{(2)} + \mathbf{F}_0$ and $E_6^{(2)} + \mathbf{F}_{1/2}$.

The twisted elliptic genera of all these theories can be exactly computed by the recursion formula from twisted elliptic blowup equations.

Example with matters: $E_6^{(2)} + \mathbf{F}_0 + \mathbf{F}_{1/2}$

Let us expand the twisted one-string elliptic genus as

$$\mathbb{E}_{1}^{\mathrm{tw}}(q_{\tau}, v, m_{F_{4}} = m_{F} = 0) = \sum_{i,j=0}^{\infty} b_{i,j}q^{i}v^{2i+j}.$$

Then we find the following table for coefficients b_{ij} :

$q \backslash v$	4	5	6	7	8	9	10
0	0	0	0	-1	-4	78	-754
1/2	0	0	0	2	-27	-108	2509
1	0	0	0	3	54	-512	-1736
3/2	1	-2	-3	0	86	874	-7436
2	4	27	-54	-86	0	1437	10756
5/2	-78	108	512	-874	-1437	0	16930
3	754	-2509	1736	7436	-10756	-16930	0

Orange numbers give 5d one-instanton partition function $Z_1^{F_4+F}(v)$.

Example with matters: $E_6^{(2)}+{f F}_{1/2}$ and $E_6^{(2)}+{f F}_0$

Let us expand the twisted one-string elliptic genus of $E_6^{(2)} + \mathbf{F}_{1/2}$ as

$$\mathbb{E}_1^{ ext{tw}}(q_{ au}, v) = q_{ au}^{-4/3} \sum_{i,j=0}^{\infty} c_{ij} q_{ au}^i v^j = q_{ au}^{-\frac{4}{3}} \sum_{i,j=0}^{\infty} b_{ij} q_{ au}^i v^{2i+j}.$$

We obtain the following coefficients b_{ij} :

$q \backslash v$	5	6	7	8	9	10	11	12
0	0	0	0	1	0	52	0	1053
1/2	0	0	0	0	26	-52	1079	-2106
1	0	0	0	0	-2	381	-1300	15209
3/2	0	0	0	0	-3	-46	4235	-18670
2	0	0	0	0	-2	-73	-610	38768
5/2	1	-2	1	0	-1	8	-1100	-6134
3	4	23	-50	22	2	4	578	-12778
7/2	-78	154	307	-766	441	-112	-167	10866
4	754	-2197	2610	3113	-8788	6143	-2582	-4314

Orange numbers give 5d one-instanton partition function $Z_1^{F_4}(v)$.

Example with matters: $E_6^{(2)} + \mathbf{F}_0$ and $E_6^{(2)} + \mathbf{F}_{1/2}$

Let us expand the twisted one-string elliptic genus of $E_6^{(2)}+{f F}_0$ as

$$\mathbb{E}_1^{\mathrm{tw}}(q_{\tau},v) = q_{\tau}^{-\frac{7}{12}} \sum_{i,j=0}^{\infty} c_{ij} q_{\tau}^i v^j = q_{\tau}^{-\frac{7}{12}} \sum_{i,j=0}^{\infty} b_{ij} q_{\tau}^i v^{2i+j}.$$

We obtain the following coefficients b_{ij} :

$q \backslash v$	2	3	4	5	6	7	8	9	10
0	0	0	0	0	0	1	4	-78	754
1/2	0	0	0	0	0	-2	23	154	-2197
1	0	0	0	0	0	1	-50	307	2610
3/2	1	0	0	0	0	0	22	-766	3113
2	0	26	-2	-3	-2	-1	2	441	-8788
5/2	52	-52	381	-46	-73	8	4	-112	6143
3	0	1079	-1300	4235	-610	-1100	578	-167	-2582

The twisted one-string elliptic genera of $E_6^{(2)} + \mathbf{F}_0$ and $E_6^{(2)} + \mathbf{F}_{1/2}$ theories are exactly spectral dual to each other!

Summary

- We find all twisted elliptic blowup equations for all twisted rank one 6d (1,0) SCFTs
- We compute the twisted elliptic genera for most of them
- We determine the modular ansatz for most of the twisted elliptic genera
- We find study the spectral flow symmetry for the twisted elliptic genera
- In the cases with 2d quiver gauge description, we can directly prove the spectral flow symmetry

Thank you for listening!