

Comparative Analysis of BERT & ModernBERT in Binary Lexical Complexity Prediction

Jonathan Hernandez

Introduction & Problem Statement

· Lexical Complexity Prediction (LCP) uses language models to identify and simplify complex words in multi-word expressions (MWEs).

Research Questions:

- Does ModernBERT outperform BERT on classifying spans as complex vs. not-complex, across multiple domains?
- Do data enrichment strategies outperform raw data?

Objective:

 Compare the performance and error patterns of BERT and ModernBERT on a newly binarized LCP dataset

Data & Motivation

- · SemEval-2021 Task 1 LCP **Dataset:**

 - 10,800 multi-word, annotated, spans
 Likert-averaged continuous outcome variable
 2 Tasks: complexity based on unigrams and bigrams
 3 Domains: EU parliament, biomedical, and bible

Single-Task Set					
Quartiles	Validation	n Test			
Q1 - Q2: Less Complex	3,865	229	476		
Median Value:	0.28	0.27	0.27		
Q3 - Q4: More Complex	3,797	192	441		
Total	7,662	421	917		

Multi-Task Set					
Quartiles	Train	Validation	Test		
Q1 - Q2: Less Complex	759 51		99		
Median Value:	021		0.43		
Q3 - Q4: More Complex	758	48	85		
Total	1,517	99	184		

- · Data Engineering:
 - · Binarize continuous outcome variable on train medians
 - Feature Engineer 13 new spans with spaCy and Contractions
 - · Re-Balance Dataset
- 2 Data Splits x 2 Y Variables x 13 X Variables x 5 Models
 - = 260 Combinations

Single-Task Set					
Quartiles	Train Validation Test				
Q1 - Q2	Not Complex				
Q3 - Q4	Complex				
Total:	7,000 1,000 1,000				

Multi-Task Set					
Quartiles	Train Validation Test				
Q1 - Q2	Not Complex				
Q3 - Q4	Complex				
Total:	1,300 250 250				

Feature Engineering

- Example: "Don't underestimate us, it's more than complicated!"
 - Eliminate Contractions → don't → do not
 - Part-of-Speech Tags → AUX, PART, VERB, PRON, PUNCT...
 - Dependency Mapping → aux, neg, ROOT, dobj, punct, nsubj...
 - Morphological Complexity → VerbForm=Fin|Tense=Pres, Polarity=Neg, VerbForm=Inf, Case=Acc|Number=Plur|Person=1

Feature Types:

- · Solo Feature → "[CLS] Do not underestimate us, it is more... [SEP]"
- · Concatenation → "[CLS] [input sequence] + [feature sequence] [SEP]"
- Interleaved → "[CLS] [word 1] + [word 1 feature] + [word 2] + [word 2 feature] + [word 3] + ... [SEP]"

Methods & Models

Methods

- · Predict complex vs. not-complex
- Perform Naive Bayes Baseline
- Tune hyperparameters with BERT
- Train & Compare BERT vs. ModernBERT (...and Roberta, Deberta, XLNet)
- Perform ablation study
- Evaluate with F1, Precision, Recall

Experiments

- · 287 total experiments
- 46 baseline results
- · 54 hyperparameter tuning experiments
- · 84 BERT vs. ModernBERT (base and large) comparisons
- · 103 reference experiments with RoBERTa, DeBERTa, XLNet

Epochs	Learning Rate	Batch Size	L2 Regularization	Conext Length	Warm-up Steps %	Unfrozen Parameter %
1	5e-6 / 0.00005	128	0.5	Default	10 - 100%	~7%

Model Average Performance (All Tasks & Experiments)					
Model	Precision	Recall	FI		
Naive Bayes	0.58956	0.58347	0.5608		
BERT Base	0.45938	0.53489	0.42765		
BERT Large	0.50057	0.35012	0.35256		
ModernBERT Base	0.49728	0.94757	0.64800		
ModernBERT Large	0.47205	0.57760	0.50285		

Per Model Average Performance Relative to Baseline					
Model	Precision	Recall	Fl		
BERT Base	-20.93%	-7.25%	-25.22%		
BERT Large	-14.1%	-39.81%	-38.31%		
ModernBERT Base	-14.1%	65.04%	13.9%		
ModernBERT Large	-17.12%	2.11%	-10.17%		

Key Results (Ablation Study)

Average Best & Worst Performing Experiment Designs, By Model

Model		Single Task	Multi Task	Avg Precision	Avg Recall	Avg F1
ModernBERT-base	Best	snc_pos_seq	sentence_no_contractions	0.51198	0.99896	0.67647
	Worst	sentence_no_contracti ons	snc_morph_alt	0.42717	0.87317	0.54788
ModernBERT-large	Best	pos_sequence	snc_dep_seq	0.50878	0.87812	0.64050
	Worst	snc_dep_seq	pos_sequence	0.24415	0.17324	0.20267
bert-base-cased	Best	sentence	snc_morph_seq	0.50948	1.00000	0.67457
	Worst	snc_pos_alt	snc_morph_alt	0.00000	0.00000	0.00000
bert-large-cased	Best	snc_pos_alt	snc_morph_alt	0.50698	0.85270	0.63150
	Worst	pos_sequence	snc_morph_complexity_va lue	0.25652	0.12755	0.13166

Error Analysis (By Domain)

Berkeley SCHOOL OF INFORMATION

Average Symmetric KL Divergence of Predictions

Average Symmetric KL Divergence of Predictions

Future Directions

- · Data Quality:
 - · Join the Datasets from both tasks
 - Use Cosine Similarity to drop additional training data, where complex unigram and bigram tokens are above a threshold that don't appear related to the sequence
- Model Training:
 - · Perform Multi-Stage Fine-Tuning on Bible and European Parliament
 - Add token-level binary LCP task
 - Add text-generation task