Methods for Improved EEG Classification with Neural Networks

Xiang Wang, Cherelle Connor, Tai Nguyen, Liangyu Tao

Background

- Neural prosthetics allow people with motor disability to have a chance at a normal life.
- EEG shows great potential on decoding movements due to being noninvasive, cheap and fast.
- Previous research has shown that Neural Networks can achieve high accuracy in classifying actions involving highly segregated limb extremities
- Can this high accuracy generalize to more difficult datasets?

Related Work

Paper 1. Upper limb movements can be decoded from the time-domain of low-frequency EEG (Ofner, 2017)

Aim: To determine if executed and imagined movements from the same limb can be extracted from low-frequency time-domain signals (<3 Hz).

Method: Used linear discriminative analysis and sLORETA to identify between 6 movement classes and 1 rest class

Results: Obtained significant accuracies of 55% (movement vs movement) and 87% (movement vs rest) for executed movements, and 27% and 73%, respectively, for imagined movements

Related Work

Paper 2. Cascade and Parallel Convolutional Recurrent Neural Networks on EEG-Based Intention Recognition for Brain Computer Interface (Zhang et al., 2018)

Aim: To detect human movement intentions through learning the effective compositional spatio-temporal dynamics from raw EEG streaming signals without preprocessing.

Method: Converting EEG sequences to 2 D Meshes and build a cascade and a parallel LSTM-CNN

Results: Both models achieve and accuracy near 98.3%; real world evaluation of with BCI resulted in a recognition accuracy of 93%

Aim

- Investigate whether the network architecture can be used to decode a more difficult dataset (similar set of actions)
- 2. Gain insight into the electrophysiological features associated with movement execution that allows neural networks to achieve high accuracy.

Outline of proposal

- Dataset
- Data Preprocessing
- Network Architecture
- Results
 - Pairwise Classification
 - Model Interpretation
- Conclusions
- Limitations/Future Work

Data

15 participants

2 sessions

EEG data recorded on 61 channels from corresponding motor execution or motor imagination

a

b

Ofner et. al (2017)

Data Processing

Preprocessing for Neural Network

Following Zhang et al., we preprocessed by:

- Convert 1D channel information to 2D data matrix
- Bin matrices into 62.5
 ms bins with 31.25
 ms overlap

- Using keras's TimeDistributed class in order to create S (number of frames in a segment) parallel CNN stacks (8) automatically with input dimension of 8 x 9 x 9 x 1
- 1st CNN layer has kernel size = 3x3 and 32 filters
- 2nd CNN layer has kernel size = 3x3 and 64 filters
- 3rd CNN layer has kernel size = 3x3 and 128 filters
- The output of the S CNN stacks is: 8 x 9 x 9 x 128, which is flatten into 8 x 10368
- Then, it is fed into a fully connected layer, condensing into 8 x
 1024
- Each 1024-length vector is fed into 1 LSTM unit
- 2 LSTM layers, bottom layer is treated as external input of the upper layer
- The output of the last unit in the 2nd layer is fed into a fully connected layer of size 1 x 64
- The output of this layer is fed into another fully connected layer of size 1 x 8 and softmax activation function is applied into this last layer for classification.
- Learning rate is 1e-4
- Optimizer is Adam
- Cost function is Categorical Entropy
- Batch size is 16. Number of epoch is 20.

- model = Sequential()
 model.add(TimeDistributed(Conv2D(filters=32, kernel_size=3, padding='same', activation='relu', input shape=inputs.shape[1:])))
- model.add(TimeDistributed(Conv2D(filters=64, kernel_size=3,
 padding='same', activation='relu')))
- model.add(TimeDistributed(Conv2D(filters=128, kernel_size=3,
 padding='same', activation='relu')))
- model.add(TimeDistributed(Flatten()))
- model.add(TimeDistributed(Dense(1024, activation='relu')))
- model.add(TimeDistributed(Dropout(0.5)))
- model.add(LSTM(S, return sequences=True))
- model.add(LSTM(S))
- model.add(Dense(64, activation='relu'))
- model.add(Dropout(0.5))
- model.add(Dense(nClasses, activation='softmax'))
- opt = keras.optimizers.Adam(learning rate=1e-4)
- model.compile(loss='categorical_crossentropy', optimizer=opt, metrics=['accuracy'])
- targetsOneHot = to categorical(y train-1)
- history = model.fit(X_train, targetsOneHot, epochs=50, batch_size=16, verbose=1, validation_split=0.2, callbacks=[checkpoint,early])
- # evaluate model
- targetsOneHot = to_categorical(y_test-1)
- _, accuracy = model.evaluate(X_test, targetsOneHot, batch_size=16, verbose=1)
- display(accuracy)

Layer (type)		Output	Shape	 Param #
time_distributed_12			8, 9, 9, 32)	320
time_distributed_13	(TimeDis	(None,	8, 9, 9, 64)	18496
time_distributed_14	(TimeDis	(None,	8, 9, 9, 128)	73856
time_distributed_15	(TimeDis	(None,	8, 10368)	0
time_distributed_16	(TimeDis	(None,	8, 1024)	10617856
time_distributed_17	(TimeDis	(None,	8, 1024)	0
lstm_2 (LSTM)		(None,	8, 8)	33056
lstm_3 (LSTM)		(None,	8)	544
dense_5 (Dense)		(None,	64)	576
dropout_4 (Dropout)		(None,	64)	0
dense_6 (Dense)		(None,	2)	130

Total params: 10,744,834
Trainable params: 10,744,834

Non-trainable params: 0

Sample Run with class 4, 5 and 6

Epoch 00008: val_accuracy improved from 0.84980 to 0.85938, saving model to CascadeModel_S8_C4_5_6.h5

```
Epoch 9/50
                         - 517s 6ms/step - loss: 0.1178 - accuracy: 0.9603 - val loss: 0.4176 -
val accuracy: 0.8645
Epoch 00009: val accuracy improved from 0.85938 to 0.86446, saving model to CascadeModel S8 C4 5 6.h5
val accuracy: 0.8698
Epoch 00010: val accuracy improved from 0.86446 to 0.86980, saving model to CascadeModel S8 C4 5 6.h5
val accuracy: 0.8729
Epoch 00011: val_accuracy improved from 0.86980 to 0.87289, saving model to CascadeModel_S8_C4_5_6.h5
val_accuracy: 0.8784
Epoch 00012: val_accuracy improved from 0.87289 to 0.87841, saving model to CascadeModel_S8_C4_5_6.h5
val accuracy: 0.8792
Epoch 00013: val_accuracy improved from 0.87841 to 0.87921, saving model to CascadeModel_S8_C4_5_6.h5
val accuracy: 0.8807
Epoch 00014: val_accuracy improved from 0.87921 to 0.88071, saving model to CascadeModel_S8_C4_5_6.h5
Epoch 15/50
```

(Zhang et al., 2018)

Disclaimer

- The following results were run using 1D CNN layers
- Rerunning with 2D CNN
 layers improves classification
 performance and epochs to
 convergence

Pairwise classification shows high accuracy for pronation, hand close, and hand open

- Plot shows training accuracy
- Stopped after 10 epochs, batch size of 64
- High classification for pronation, hand open/close
- Chance level for other classes

Comparison with a LDA classifier

Classification for pronation, hand close, and hand open movements reach above 80% accuracy

Training parameters:

- 64/16/20 (training/validation/testing)
- Reaches ~88% validation and testing accuracy by 150 iterations

Saliency maps for "average" forearm pronation

X = Time points in average 8 frame bin

Saliency Maps $\left(\frac{dOutput}{dx}\right)$

Saliency maps for "average" hand close

Saliency maps for "average" hand open

Movement Related Cortical Potential (MRCP) for most influential channels

Extremely low SNR!

Movement vectors for actions show high variability in movement capabilities

Sample of 150 trials for each class aligned by movement onset

Conclusions

- 1. Developed a neural network model that offers a more robust method for the analysis for EEG signals
 - a. Capitalize on the spatio-temporal information previously overlooked in the dataset
- 2. Improved classification accuracy data as compared to Ofner et. al.
 - a. High classification of 3 movement classes: wrist pronation, hand open, and hand close
- 3. Gained some insight into significance of eeg channels on neural network

Improvements/Future directions

1. Data

a. Classification based on the Motor Imagery dataset

2. Data Processing

- a. Systematically remove preprocessing steps to understand what is important for network performance
- b. Exploration of classification based on frequently studied frequency bands (mu, beta, delta, and low frequency)

3. Model architecture

- a. Implement a CNN-LSTM parallel network
- b. Hyperparameterization

4. Interpretation

- a. Use bins that maximize the confidence of each class (not the average bin for each class) to compute saliency maps
- b. Compute gradient maps to interpret individual layers
- c. Frequency information

References

- 1. Ofner, P., et al., Upper limb movements can be decoded from the time-domain of low-frequency EEG. PLOS ONE, 2017. 12(8): p. E0182578.
- 2. Zhang, D., et al., Cascade and Parallel Convolutional Recurrent Neural Networks on EEG-based Intention Recognition for Brain Computer Interface. 2017.