Proofs about Fields Field - a set with two binny operations, t, , satisfying PI-P9 examples: R, Q, C

Proposition 1
$$-(-\alpha) = \alpha$$
 $\forall \alpha \in \mathbb{F}$ Justification $Proof(\alpha + (-\alpha) + (-(-\alpha)) = \alpha + ((-\alpha) + (-(-\alpha)))$ P1 $O + (-(-\alpha)) = \alpha + O$ P3 $-(-\alpha) = \alpha$ P2

Proposition 2 (al) = U Yac F1803

Proof (lemma a e F \ {0} = c' e F {0} Proof by contradiction:

assume
$$\alpha' = 0$$
 for contradiction
$$\alpha \cdot \alpha' = \alpha \cdot 0$$

$$1 = 0 \qquad \qquad P7, \quad 0.\alpha = 0 \quad (proved)$$
this contradicts ps, $1 \neq 0$

50 at #0

Global substitution: +-. from proposition 1.

Proposition 3 a(-6) = - (ab) Ya, 6 & F Proof $\alpha(b+(-b)) = \alpha \cdot 0$ ab+a(-b)=0Pa, and a.o = o proved p3, addition well-defined -((4)) + (4) + (4) + (4) = -(4) + 0(-(ab) + ab) + a(-b) = -(ab) + 0Pl 0 + a(-b) = -(ab)+. P3 $\alpha(-b) = -(ab)$ P2

Corollary (of prox 1 and prop3) (-a)(-b) = ab

"Proof"

$$a-b=b-a$$

"Proof"

 $a-b=b-a$

"Proof"

 $a-b=b-a$
 $a-b=b+b-a$
 $a-b=b-a$
 $a-b=b-a$
 $a-b=b-a$
 $a-b=b+b-a$
 $a-b=b-a$
 $a-b=b-a$
 $a-b=b-a$
 $a-b=b-a$
 $a-b=b-a$
 $a-b=b-a$
 $a-b=b+b-a$
 $a-b=b-b+a$
 $a-b=b+b+a$
 $a-b-b+b-a$
 $a-b=b-a$
 $a-b=a-a$
 $a-a-a$
 $a-a-a$

Problem 1.25: α Sield of Z elements, \mathbb{Z}_2 or \mathbb{F}_2 $\mathbb{F}_2 = \{0, 1\}$

with the following + aw . tables:

remark: for any prime
$$p$$
, there is a field $f_p = \{0,1,\dots p-1\}$
where $\forall a,p \in f_p$ $a+b = mod(a+b,p)$ (remainder after division of $\frac{a+b}{r}$)
 $a\cdot b = mod(a\cdot b,p)$

F_c is not a field 270, 370, but 2.3 mod 6= 0

More axions for real numbers which exclude these fields

More axions for real numbers which exclude these fields

an ordered field # contains a distinguished subset PEF (803 which satisfy 3 additional axiom

PlO: Trichotomy: Yae F, exactly one of the following holds:

(1) $\alpha = 0$ (2) $\alpha \in P$

(3) -a & P

PII: a, b & P > a+b & P PIZ: a, o EP = ab EP

Observation: Cis not an ordered field.

Proof by contradiction. Suppose we could find a set PC(1803 satisfying Plo-Plz

i= [-1 70

So either (EP or-iEP [if $i \in P$, then $i \cdot i = -1 \in P$ P12 So $-1 \cdot i = -i \in P$. but this is a contradiction of P10 [if $-i \in P$, then $(-i) \cdot (-i) \cdot (-i) = -i \cdot (-i) = i \in P$ some contradiction.

Note: if fis an ordered field, then we can define a < b \ 6-a & p a≤6 ⇔ 6-a € P U 203