$$\vec{a} = \frac{dv}{dt}, \vec{U}_T + \frac{v^2}{R}, \vec{U}_R$$
 \vec{v}, \vec{v}
Sentripitalalkelerajon

Nor $\frac{dv}{dt} = 0$ (Farten er kanstant)

har i kun sentripitalalkelerajon

 $\vec{a} = \frac{v^2}{R}, \vec{U}_R$

Nor $\frac{dv}{dt} \neq 0$ (Farten erdrer seg)

 $\vec{a} = \frac{dv}{dt}, \vec{U}_T + \frac{v^2}{R}, \vec{U}_R$

N. 2. los
$$f = m \ddot{o}_{x}$$
 () g -retning: $f = m \ddot{o}_{x}$ () g -retning: $g = 0$ $g = 0$

Frilegemediagram:

N. 2. bor
$$\vec{G} + \vec{N} = m\vec{a}$$

N. 2. bor $\vec{G} + \vec{N} = m\vec{a}$

X - retaing: $N_X = m \frac{v^2}{R}$

Q N. Sin X

 $N_y = N \cdot C_9 a$

Q N. COSX = mg

$$\frac{0}{2} \quad \frac{\text{M} \cdot \sin \alpha}{\text{M} \cos \alpha} = \frac{v^2}{\text{Mg}}$$

$$\tan \alpha = \frac{v^2}{\text{Rg}}$$

$$\alpha = \tan^{-1}\left(\frac{(20 \text{ mg})^2}{(200 \text{ m} \cdot 9.8 \text{ mg} \cdot 2)}\right)$$

$$\alpha = 0.20 \text{ radion} = 12^{\circ}$$

sma cinhler Taglor:

Sin
$$\times \times \times$$

Sin $\times \times \times$

Sin $(\frac{5}{2}) \stackrel{?}{\sim} \stackrel{?}{\sim}$

S" + $\frac{3}{2}$ s = 0

S = $A \cos \sqrt{2}$ t + $B \sin \sqrt{2}$. t

S(6) = 0 $G = 2.0 \text{ m/s}$
 $L = 1.0 \text{ m}$
 $G = \frac{10}{4}$
 $G = \frac{10}{4}$
 $G = \frac{10}{4}$
 $G = \frac{10}{4}$