

5MHz:

Date: 25.FEB.2017 23:44:36

Date: 25.FEB.2017 23:52:54

Lowest channel

Highest channel

Date: 25.FEB.2017 23:45:01

Date: 25.FEB.2017 23:53:22

Lowest channel

Highest channel

Date: 25.FEB.2017 23:49:25

Date: 25.FEB.2017 23:53:49

Lowest channel

Highest channel

Date: 25.FEB.2017 23:51:27

Date: 25.FEB.2017 23:54:23

Lowest channel

Highest channel

Date: 25.FEB.2017 23:52:12

Date: 25.FEB.2017 23:55:05

Lowest channel

Highest channel

Date: 25.FEB.2017 23:44:45

Date: 25.FEB.2017 23:53:04

Lowest channel

Highest channel

Date: 25.FEB.2017 23:45:13

Date: 25.FEB.2017 23:53:33

Lowest channel

Highest channel

Date: 25.FEB.2017 23:50:30

Date: 25.FEB.2017 23:53:59

Lowest channel

Highest channel

Date: 25.FEB.2017 23:51:40

Date: 25.FEB.2017 23:54:36

Lowest channel

Highest channel

Date: 25.FEB.2017 23:52:21

Date: 25.FEB.2017 23:55:13

Lowest channel

Highest channel

10MHz:

Date: 25.FEB.2017 23:56:32

Date: 25.FEB.2017 23:59:28

Lowest channel

Highest channel

Date: 25.FEB.2017 23:57:06

Date: 25.FEB.2017 23:59:49

Lowest channel

Highest channel

Date: 25.FEB.2017 23:57:44

Date: 26.FEB.2017 00:00:28

Lowest channel

Highest channel

Date: 25.FEB.2017 23:58:11

Date: 26.FEB.2017 00:00:55

Lowest channel

Highest channel

Date: 25.FEB.2017 23:58:50

Date: 26.FEB.2017 00:01:28

Lowest channel

Highest channel

Date: 25.FEB.2017 23:56:50

Date: 25.FEB.2017 23:59:36

Lowest channel

Highest channel

Date: 25.FEB.2017 23:57:16

Date: 25.FEB.2017 23:57:16

Lowest channel

Highest channel

Date: 25.FEB.2017 23:57:53

Date: 26.FEB.2017 00:00:38

Lowest channel

Highest channel

Date: 25.FEB.2017 23:58:23

Date: 26.FEB.2017 00:01:06

Lowest channel

Highest channel

Date: 25.FEB.2017 23:59:01

Date: 26.FEB.2017 00:01:37

Lowest channel

Highest channel

15MHz:

Date: 26.FEB.2017 00:02:34

Date: 26.FEB.2017 00:05:34

Lowest channel

Highest channel

Date: 26.FEB.2017 00:03:21

Date: 26.FEB.2017 00:06:02

Lowest channel

Highest channel

Date: 26.FEB.2017 00:04:03

Date: 26.FEB.2017 00:06:50

Lowest channel

Highest channel

Date: 26.FEB.2017 00:04:28

Date: 26.FEB.2017 00:07:17

Lowest channel

Highest channel

Date: 26.FEB.2017 00:04:59

Date: 26.FEB.2017 00:07:55

Lowest channel

Highest channel

Date: 26.FEB.2017 00:03:06

Date: 26.FEB.2017 00:05:45

Lowest channel

Highest channel

Date: 26.FEB.2017 00:03:32

Date: 26.FEB.2017 00:06:12

Lowest channel

Highest channel

Date: 26.FEB.2017 00:04:12

Date: 26.FEB.2017 00:07:00

Lowest channel

Highest channel

Date: 26.FEB.2017 00:04:38

Date: 26.FEB.2017 00:07:27

Lowest channel

Highest channel

Date: 26.FEB.2017 00:05:06

Date: 26.FEB.2017 00:08:05

Lowest channel

Highest channel

20MHz:

Date: 26.FEB.2017 00:09:12

Date: 26.FEB.2017 00:35:08

Lowest channel

Highest channel

Date: 26.FEB.2017 00:09:35

Date: 26.FEB.2017 00:34:31

Lowest channel

Highest channel

Date: 26.FEB.2017 00:10:14

Date: 26.FEB.2017 00:35:56

Lowest channel

Highest channel

Date: 26.FEB.2017 00:11:03

Date: 26.FEB.2017 00:36:23

Lowest channel

Highest channel

Date: 26.FEB.2017 00:11:31

Date: 26.FEB.2017 00:36:52

Lowest channel

Highest channel

Date: 26.FEB.2017 00:09:21

Date: 26.FEB.2017 00:35:25

Lowest channel

Highest channel

Date: 26.FEB.2017 00:09:45

Date: 26.FEB.2017 00:34:45

Lowest channel

Highest channel

Date: 26.FEB.2017 00:10:45

Date: 26.FEB.2017 00:36:07

Lowest channel

Highest channel

Date: 26.FEB.2017 00:11:15

Date: 26.FEB.2017 00:36:35

Lowest channel

Highest channel

Date: 26.FEB.2017 00:11:39

Date: 26.FEB.2017 00:36:59

Lowest channel

Highest channel

LTE band 4 part:1.4MHz:

Date: 26.FEB.2017 00:51:04

Date: 26.FEB.2017 00:57:22

Lowest channel

Highest channel

Date: 26.FEB.2017 00:51:39

Date: 26.FEB.2017 00:57:44

Lowest channel

Highest channel

Date: 26.FEB.2017 00:52:03

Date: 26.FEB.2017 00:58:07

Lowest channel

Highest channel

Date: 26.FEB.2017 00:52:27

Date: 26.FEB.2017 00:58:31

Lowest channel

Highest channel

Lowest channel

Date: 26.FEB.2017 00:52:55

Highest channel

Date: 26.FEB.2017 00:51:23

Date: 26.FEB.2017 00:57:29

Date: 26.FEB.2017 00:58:55

Lowest channel

Highest channel

Date: 26.FEB.2017 00:51:48

Date: 26.FEB.2017 00:57:52

Lowest channel

Highest channel

Date: 26.FEB.2017 00:52:11

Date: 26.FEB.2017 00:58:15

Lowest channel

Highest channel

Date: 26.FEB.2017 00:52:36

Date: 26.FEB.2017 00:58:40

Lowest channel

Highest channel

Date: 26.FEB.2017 00:53:05

Date: 26.FEB.2017 00:59:02

Lowest channel

Highest channel

3MHz:

Date: 26.FEB.2017 01:00:18

Date: 26.FEB.2017 01:02:47

Lowest channel

Highest channel

Date: 26.FEB.2017 01:00:43

Date: 26.FEB.2017 01:03:08

Lowest channel

Highest channel

Date: 26.FEB.2017 01:01:09

Date: 26.FEB.2017 01:03:37

Lowest channel

Highest channel

Date: 26.FEB.2017 01:01:31

Date: 26.FEB.2017 01:04:52

Lowest channel

Highest channel

Date: 26.FEB.2017 01:02:05

Date: 7.MAR.2017 13:48:16

Lowest channel

Highest channel

Date: 26.FEB.2017 01:00:26

Date: 26.FEB.2017 01:02:55

Lowest channel

Highest channel

Date: 26.FEB.2017 01:00:52

Date: 26.FEB.2017 01:03:17

Lowest channel

Highest channel

Date: 26.FEB.2017 01:01:17

Date: 26.FEB.2017 01:03:48

Lowest channel

Highest channel

Date: 26.FEB.2017 01:01:40

Date: 7.MAR.2017 13:45:11

Lowest channel

Highest channel

Date: 26.FEB.2017 01:02:14

Date: 7.MAR.2017 13:48:28

Lowest channel

Highest channel

5MHz:

Date: 26.FEB.2017 01:10:20

Date: 26.FEB.2017 01:13:05

Lowest channel

Highest channel

Date: 26.FEB.2017 01:10:52

Date: 26.FEB.2017 01:13:27

Lowest channel

Highest channel

Date: 26.FEB.2017 01:11:24

Date: 26.FEB.2017 01:13:53

Lowest channel

Highest channel

Date: 26.FEB.2017 01:11:52

Date: 7.MAR.2017 13:50:38

Lowest channel

Highest channel

Date: 26.FEB.2017 01:12:24

Date: 7.MAR.2017 13:51:52

Lowest channel

Highest channel

Date: 26.FEB.2017 01:10:37

Date: 26.FEB.2017 01:13:14

Lowest channel

Highest channel

Date: 26.FEB.2017 01:11:04

Date: 26.FEB.2017 01:13:36

Lowest channel

Highest channel

Date: 26.FEB.2017 01:11:32

Date: 26.FEB.2017 01:14:01

Lowest channel

Highest channel

Date: 26.FEB.2017 01:12:01

Date: 7.MAR.2017 13:51:00

Lowest channel

Highest channel

Date: 26.FEB.2017 01:12:34

Date: 7.MAR.2017 13:52:04

Lowest channel

Highest channel

10MHz:

Date: 26.FEB.2017 01:20:26

Date: 26.FEB.2017 01:23:18

Lowest channel

Highest channel

Date: 26.FEB.2017 01:20:54

Date: 7.MAR.2017 14:21:40

Lowest channel

Highest channel

Date: 26.FEB.2017 01:21:32

Date: 26.FEB.2017 00:28:54

Lowest channel

Highest channel

Date: 26.FEB.2017 01:21:56

Date: 26.FEB.2017 00:29:35

Lowest channel

Highest channel

Date: 26.FEB.2017 01:22:42

Date: 26.FEB.2017 00:30:41

Lowest channel

Highest channel

Date: 26.FEB.2017 01:20:36

Date: 26.FEB.2017 01:23:27

Lowest channel

Highest channel

Date: 26.FEB.2017 01:21:03

Date: 26.FEB.2017 00:28:08

Lowest channel

Highest channel

Date: 26.FEB.2017 01:21:42

Date: 26.FEB.2017 00:29:03

Lowest channel

Highest channel

Date: 26.FEB.2017 01:22:05

Date: 7.MAR.2017 13:56:46

Lowest channel

Highest channel

Date: 26.FEB.2017 01:22:50

Date: 26.FEB.2017 00:31:01

Lowest channel

Highest channel

15MHz:

Date: 26.FEB.2017 00:32:18

Date: 26.FEB.2017 00:35:59

Lowest channel

Highest channel

Date: 26.FEB.2017 00:33:37

Date: 26.FEB.2017 00:36:22

Lowest channel

Highest channel

Date: 26.FEB.2017 00:34:25

Date: 26.FEB.2017 00:37:00

Lowest channel

Highest channel

Date: 26.FEB.2017 00:34:51

Date: 26.FEB.2017 00:37:27

Lowest channel

Highest channel

Date: 26.FEB.2017 00:35:26

Date: 26.FEB.2017 00:38:26

Lowest channel

Highest channel

Date: 26.FEB.2017 00:32:28

Date: 26.FEB.2017 00:36:08

Lowest channel

Highest channel

Date: 26.FEB.2017 00:33:52

Date: 26.FEB.2017 00:36:32

Lowest channel

Highest channel

Date: 26.FEB.2017 00:34:34

Date: 26.FEB.2017 00:37:09

Lowest channel

Highest channel

Date: 26.FEB.2017 00:35:00

Date: 7.MAR.2017 14:02:54

Lowest channel

Highest channel

Date: 26.FEB.2017 00:35:34

Date: 26.FEB.2017 00:38:33

Lowest channel

Highest channel

20MHz:

Date: 26.FEB.2017 00:40:37

Date: 26.FEB.2017 00:43:34

Lowest channel

Highest channel

Date: 26.FEB.2017 00:40:58

Date: 26.FEB.2017 00:43:56

Lowest channel

Highest channel

Date: 26.FEB.2017 00:42:02

Date: 26.FEB.2017 00:44:34

Lowest channel

Highest channel

Date: 26.FEB.2017 00:42:31

Date: 26.FEB.2017 00:45:01

Lowest channel

Highest channel

Date: 26.FEB.2017 00:42:53

Date: 26.FEB.2017 00:45:30

Lowest channel

Highest channel

Date: 26.FEB.2017 00:40:45

Date: 26.FEB.2017 00:43:43

Lowest channel

Highest channel

Date: 26.FEB.2017 00:41:07

Date: 26.FEB.2017 00:44:05

Lowest channel

Highest channel

Date: 26.FEB.2017 00:42:12

Date: 26.FEB.2017 00:44:43

Lowest channel

Highest channel

Date: 26.FEB.2017 00:42:40

Date: 26.FEB.2017 00:45:14

Lowest channel

Highest channel

Date: 26.FEB.2017 00:43:00

Date: 26.FEB.2017 00:45:38

Lowest channel

Highest channel

6.10 ERP, EIRP Measurement

Test Requirement:	24.232 (c), part 27.50(d)
Test Method:	FCC part2.1046
Limit:	LTE Band 2: 2W EIRP LTE Band 4: 1W EIRP
Test setup:	Below 1GHz Antenna Tower Search Aotenna RF Test Receiver Ground Plane
	Above 1GHz Hote Arberts According Tower Tiest Receives Tiest Receives Tiest Receives
	Substituted method: Anteuns mast d. distance in meters d.3 meter 1-2 meter Substituted Dipole or Horn Anteuns Bi-Log Antenns or Horn Antenns

	-
Test Procedure:	1. The EUT was placed on an non-conductive turntable using a non-conductive support. The radiated emission at the fundamental frequency was measured at 3 m with a test antenna and EMI spectrum analyzer.
	2. During the measurement, the EUT was communication with the station. The highest emission was recorded with the rotation of the turntable and the lowering of the test antenna from 4m to 1m. The reading was recorded and the field strength (E in dBuV/m) was calculated.
	3. ERP in frequency band below 1GHz were measured using a substitution method. The EUT was replaced by dipole antenna connected, the S.G. output was recorded and ERP was calculated as follows:
	ERP = S.G. output (dBm) + Antenna Gain (dBd) – Cable Loss (dB)
	4. EIRP in frequency band above 1GHz were measured using a substitution method. The EUT was replaced by or horn antenna connected, the S.G. output was recorded and EIRP was calculated as follows:
	EIRP = S.G. output (dBm) + Antenna Gain (dBi) - Cable Loss (dB)
	5. The worse case was relating to the conducted output power.
Test Instruments:	Refer to section 5.8 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

Measurement Data (worst case):

LTE band 2 part

Lowest channel

Frequency (MHz)	UL Channel	Modulation	BW (MHz)	EUT Pol.	Antenna Pol.	EIRP(dBm)	Limit (dBm)	Result			
		1.	4MHz(RB s	ize 1 & RB	offset 0)						
1050.70	10007	ODCK	1.1	Н	V	22.00					
1850.70	18607	QPSK	1.4	П	Н	16.74	22.00	Doos			
1050.70	10007	160014	1.1	Н	V	21.89	33.00	Pass			
1850.70	18607	16QAM	1.4	П	Н	16.96					
	1.4MHz(RB size 3 & RB offset 0)										
1050.70	40007	ODCK	4.4		V	21.98					
1850.70	18607	QPSK	1.4	H	Н	16.52	22.00	Door			
1050.70	10007	160AM	1.4	Н	V	21.79	33.00	Pass			
1850.70	18607	16QAM	1.4		Н	16.92					
		1.	4MHz(RB s	ize 6 & RB	offset 0)						
4050.70	40007	ODOK	4.4		V	21.23					
1850.70	18607	QPSK	1.4	H	Н	15.64	22.00	Door			
1050.70	40007	40001	4.4		V	21.26	33.00	Pass			
1850.70	18607	16QAM	1.4	Н	Н	15.83					

Middle channel

Frequency (MHz)	UL Channel	Modulation	BW (MHz)	EUT Pol.	Antenna Pol.	EIRP(dBm)	Limit (dBm)	Result		
		1.4	4MHz(RB	size 1 & RE	3 offset 0)					
1880.00	18900	QPSK	1.4	Н	V	22.02				
1000.00	16900	QF3K	1.4	П	Н	16.72	33.00	Pass		
1880.00	18900	16QAM	1.4	Н	V	21.87	33.00	Pa55		
1000.00	10900	TOQAM	1.4	П	Н	16.94				
	1.4MHz(RB size 3 & RB offset 0)									
1880.00	18900	QPSK	1.4	Н	V	21.96				
1000.00	16900	QFSK	1.4	П	Н	16.38	33.00	Pass		
1880.00	18900	16QAM	1.4	Н	V	21.76	33.00	F 455		
1000.00	16900	TOQAW	1.4	П	Н	16.87				
		1.4	4MHz(RB	size 6 & RE	3 offset 0)					
1880.00	18900	QPSK	1.40	Н	V	21.16				
1000.00	10900	QF SIX	1.40	17	Н	15.60	33.00	Pass		
1880.00	18900	16QAM	1.40	Н	V	21.21	33.00	F 055		
1000.00	10900	IOQAW	1.40	11	Н	15.81				

Highest channel

Frequency (MHz)	UL Channel	Modulation	BW (MHz)	EUT Pol.	Antenna Pol.	EIRP(dBm)	Limit (dBm)	Result			
			1.4MHz(RE	3 size 1 & F	RB offset 0)						
1909.30	19193	QPSK	1.4	Н	V	22.01					
1909.30	19193	QFSK	1.4		Н	16.76	33.00	Pass			
1000 20	19193	16QAM	1.4	Н	V	21.89	33.00	Fa55			
1909.30	19193	IOQAW	1.4	П	Н	16.95					
	1.4MHz(RB size 3 & RB offset 0)										
1000.20	10102	ODSK	4.4	Н	V	21.98					
1909.30	19193	QPSK	1.4	П	Н	16.39	22.00	Door			
1909.30	19193	16QAM	1.4	Н	V	21.79	33.00	Pass			
1909.30	19193	TOQAM	1.4	П	Н	16.84					
			1.4MHz(RE	3 size 6 & F	RB offset 0)						
1000.20	10102	ODSK	4.4	Н	V	21.15					
1909.30	19193	QPSK	1.4	П	Н	15.56	22.00	Door			
1909.30	19193	16QAM	1.4	Н	V	23.32	33.00	Pass			
1909.30	נפופו	IOQAW	1.4	П	Н	15.83					

Lowest channel

	Lowest channel										
Frequency (MHz)	UL Channel	Modulation	BW (MHz)	EUT Pol.	Antenna Pol.	EIRP(dBm)	Limit (dBm)	Result			
20MHz(RB size 1 & RB offset 0)											
1860.00	18700	QPSK	20	Н	V	22.04					
1000.00	16700	QFSK	20	П	Н	18.35	33.00	Pass			
1860.00	18700	16QAM	20	Н	V	21.92	33.00	F 455			
1000.00	10700	TOQAM	20	П	Н	18.49					
	20MHz(RB size 50 & RB offset 0)										
1860.00	18700	QPSK	20	Н	V	22.15					
1000.00	18700	QFSN	20		Н	18.33	33.00	Pass			
1860.00	18700	16QAM	20	Н	٧	22.06	33.00	F 455			
1000.00	18700	TOQAM	20		Н	18.87					
		20	MHz(RB siz	e 100 & R	B offset 0)						
1860.00	18700	QPSK	20	Н	V	21.59					
1000.00	10700	UFON	20	П	Н	17.72	33.00	Pass			
1860.00	18700	16QAM	20	Н	V	21.39	33.00	F a 5 5			
1000.00	10700	IOQAW	20	П	Н	17.82					

Middle channel

Frequency (MHz)	UL Channel	Modulation	BW (MHz)	EUT Pol.	Antenna Pol.	EIRP(dBm)	Limit (dBm)	Result			
20MHz(RB size 1 & RB offset 0)											
1880.00	18900	QPSK	20	Н	V	22.09					
1000.00	10900	QFSK	20	П	Н	18.36	33.00	Pass			
1880.00	18900	16QAM	20	Н	V	21.93	33.00	Fa55			
1000.00	10900	IOQAW	20	П	Н	18.45					
	20MHz(RB size 50 & RB offset 0)										
1880.00	18900	QPSK	20	Н	V	22.12					
1000.00	10900	QF5K	20	П	Н	18.34	33.00	Pass			
1880.00	18900	16QAM	20	Н	V	22.03	33.00	F 455			
1000.00	10900	IOQAW	20	П	Н	18.40					
		20	MHz(RB siz	ze 100 & R	B offset 0)						
1000.00	10000	ODSK	20	Н	V	21.54					
1880.00	18900	QPSK	20	П	Н	17.70	22.00	Door			
1880.00	18900	16QAM	20	Н	V	21.36	33.00	Pass			
1000.00	10900	IOQAW	20	П	Н	17.79					

Highest channel

	rignest channel										
Frequency (MHz)	UL Channel	Modulation	BW (MHz)	EUT Pol.	Antenna Pol.	EIRP(dBm)	Limit (dBm)	Result			
20MHz(RB size 1 & RB offset 0)											
1900.00	19100	QPSK	20	Н	V	22.12					
1900.00	19100	QFSK	20	П	Н	18.39	33.00	Pass			
1900.00	19100	16QAM	20		V	21.94	33.00	F 455			
1900.00	19100	TOQAM	20 H		Н	18.52					
	20MHz(RB size 50 & RB offset 0)										
1900.00	19100	QPSK	20	Н	V	22.16					
1900.00	19100	QFSK	20	- 1	Н	18.37	33.00	Pass			
1900.00	19100	16QAM	20	Н	_ V 22.00	22.00		F 455			
1900.00	19100	TOQAM	20	[1]	Н	18.42					
		2	0MHz(RB s	ize 100 8	RB offset (0)					
1900.00	19100	QPSK	20	Н	V	21.56					
1900.00	19100	QF SN	20	11	Н	17.73	33.00	Pass			
1900.00	19100	16QAM	20	Н	V	21.31	33.00	F 033			
1300.00	13100	IOQAM	20	11	Н	17.82					

LTE band 4 part

Lowest channel

Frequency (MHz)	UL Channel	Modulation	BW (MHz)	EUT Pol.	Antenna Pol.	EIRP(dBm)	Limit (dBm)	Result			
		•	I.4MHz(RE	3 size 1 &	RB offset 0)						
1710.70	19957	QPSK	1.4	Н	V	25.02					
1710.70	19937	QFSK	1.4	Н	20.53	30.00	Pass				
1710.70	19957	16QAM	1.4 H		V	24.91	30.00	Fa55			
1710.70	19957	TOQAM	1.4	- 11	Н	20.26					
	1.4MHz(RB size 3 & RB offset 0)										
1710.70	100F7	QPSK	4.4	Н	V	24.87		Pass			
1710.70	19957	QPSK	1.4	П	Н	19.52	20.00				
1710.70	100F7	160 AM	4.4	Н	V	25.01	30.00	Pass			
1710.70	19957	16QAM	1.4	П	Н	19.77		1			
		•	1.4MHz(RE	3 size 6 &	RB offset 0)						
1710 70	10057	ODSK	4.4	Н	V	19.26					
1710.70	19957	QPSK	1.4	П	Н	24.35	20.00	Pass			
1710 70	10057	160 AM	1.4	4.4	V	24.36	30.00				
1710.70	19957	16QAM	1.4	Н	Н	19.93					

Middle channel

Frequency (MHz)	UL Channel	Modulation	BW (MHz)	EUT Pol.	Antenna Pol.	EIRP(dBm)	Limit (dBm)	Result			
		1	.4MHz(RE	3 size 1 &	RB offset 0)						
1732.50	20175	QPSK	1.4	Н	V	24.97					
1732.50	20175	QFSK	1.4	П	Н	20.53	30.00	Pass			
1732.50	20175	16QAM	1 /	С	V	24.92	30.00	Fa55			
1732.50	20173	IOQAW	1.4 H H 20.18								
	1.4MHz(RB size 3 & RB offset 0)										
1732.50	20175	QPSK	1.4	Н	V	24.87					
1732.50	20175	QPSK	1.4	П	Н	19.95	30.00	Pass			
1732.50	20175	16QAM	1.4	1.4 H	V	25.03	30.00	F d 5 5			
1732.50	20175	IOQAW	1.4	- 11	Н	19.78					
		1	.4MHz(RE	3 size 6 &	RB offset 0)						
1722.50	20175	ODCK	1.1	ш	V	19.25					
1732.50	20175	QPSK	1.4 H		Н	24.33	20.00	D			
1732.50	20175	16QAM	1.4	Н	V	24.76	30.00	Pass			
1732.50	20173	TOQAM	1.4	П	Н	19.90		i			

Highest channel

Frequency (MHz)	UL Channel	Modulation	BW (MHz)	EUT Pol.	Antenna Pol.	EIRP(dBm)	Limit (dBm)	Result			
		•	1.4MHz(RE	size 1 & l	RB offset 0)						
1754.30	20393	QPSK	1.4	Н	V	24.95					
1754.50	20393	QFSK	1.4	П	Н	20.56	30.00	Door			
1754 20	20393	16QAM	1.4	Н	V	24.89	30.00	Pass			
1754.30	20393	IOQAW	1.4	П	Н	20.21					
	1.4MHz(RB size 3 & RB offset 0)										
1751 20	20202	ODSK	1.1	ы	V	24.86		Door			
1754.30	20393	QPSK	1.4	4 H	Н	19.94	20.00				
1754.20	20202	160014	1.1	Н	V	25.03	30.00	Pass			
1754.30	20393	16QAM	1.4	П	Н	19.82					
		,	1.4MHz(RE	3 size 6 & I	RB offset 0)						
4754.00	20202	ODCK	4.4	- 11	V	19.28					
1754.30	20393	QPSK	1.4	Н	Н	24.26	20.00	Doos			
1754 20	20202	160 AM	4.4		V	24.83	30.00	Pass			
1754.30	20393	16QAM	1.4	Н	Н	19.97					

Lowest channel

Frequency (MHz)	UL Channel	Modulation	BW (MHz)	EUT Pol.	Antenna Pol.	EIRP(dBm)	Limit (dBm)	Result		
	20MHz(RB size 1 & RB offset 0)									
1720.00	20050	QPSK	20	Н	V	19.42				
1720.00	20050	QF3K	20	П	Н	20.13	30.00	Door		
1720.00	20050	16QAM	20	Н	V	19.96	30.00	Pass		
1720.00	20050	IOQAW	20	П	Н	20.78				
	20MHz(RB size 50 & RB offset 0)									
1720.00	20050	QPSK	20	Н	V	19.67				
1720.00	20050	QFSK	20	П	Н	20.05	30.00	Pass		
1720.00	20050	16QAM	20	Н	V	20.54	30.00	F a 5 5		
1720.00	20030	TOQAIVI	20	11	Н	21.26				
		20MHz(RB size 100	& RB offs	et 0)					
1720.00	20050	QPSK	20	Н	V	17.76				
1720.00	20030	QF3K	20	П	Н	18.25	30.00	Pass		
1720.00	20050	16QAM	20	Н	V	19.08	30.00	F a 5 5		
1720.00	20000	IOQAW	20	17	Н	19.71				

Report No: CCISE170202006

Middle channel

Frequency (MHz)	UL Channel	Modulation	BW (MHz)	EUT Pol.	Antenna Pol.	EIRP(dBm)	Limit (dBm)	Result
		2	0MHz(RB si	ze 1 & RB	offset 0)			
1722.50	20175	OBSK	20	Ш	V	19.41		Pass
1732.50	20175	QPSK	20	Н	Н	20.08	30.00	
1722 50	20175	16QAM	20	Н	V	19.93	30.00	
1732.50	20175	IOQAW	20	П	Н	20.79		
	20MHz(RB size 50 & RB offset 0)							
1722 FO	20175	ODSK	20	Н	V	19.60		
1732.50	20175	QPSK	20	П	Н	19.98	20.00	Pass
1732.50	20175	16O A M	20	Н	V	20.55	30.00	F 455
1732.50	20175	16QAM	20	П	Н	21.16		
		20	MHz(RB siz	e 100 & RI	3 offset 0)			
1732.50	20175	QPSK	20	Н	V	17.73		
1732.50	20175	QFSN	20	П	Н	18.22	20.00	Door
1732.50	20175	16QAM	20	Н	V	19.10	30.00	Pass
1732.50	20173	TOQAM	20	П	Н	19.74		

High channel

High channel										
Frequency (MHz)	UL Channel	Modulation	BW (MHz)	EUT Pol.	Antenna Pol.	EIRP(dBm)	Limit (dBm)	Result		
	20MHz(RB size 1 & RB offset 0)									
1745.00	20300	QPSK	20	Н	V	19.38				
1745.00	20300	QFSK	20	П	Н	20.12	30.00	Pass		
1745.00	20300	16QAM	20	Н	V	19.97	30.00	F a 5 5		
1743.00	20300	TOQAW 20	IOQAIVI		11	Н	20.83			
			20MHz(RB siz	ze 50 & RE	offset 0)					
1745.00	20300	QPSK	20	Н	V	19.62				
1745.00	20300	QFSK	20	П	Н	20.30	30.00	Pass		
1745.00	20300	20200	15.00 20300 16QAM	160 4 M	20	Н	V	20.57	30.00	F a 5 5
1745.00	20300	IOQAIVI	20	П	Н	21.23				
		2	20MHz(RB siz	e 100 & RI	3 offset 0)					
1745.00	20300	QPSK	20	Н	V	17.76				
1745.00	20300	QFSN	20	П	Н	18.26	30.00	Pass		
1745.00	20300	16QAM	20	Н	V	19.12	30.00	Fa55		
1745.00	20300	IOQAM	20	П	Н	19.76				

6.11 Field strength of spurious radiation measurement

o. 11 Field strength of spurious radiation measurement				
Test Requirement:	Part 24.238 (a), Part 27.53(h)			
Test Method:	FCC part2.1053			
Limit:	LTE Band 2, LTE Band 4: -13dBm,			
Test setup:	Below 1GHz			
	Antenna Tower Search Antenna RE Test Receiver Turn Table Ground Plane			
	Above 1GHz			
	Anterina Tower Test Receive Cartage Controller			
	Substituted method:			
	Ground plane d: distance in meters d:3 meter 1-5 meter Substituted Dipole or Horn Antenna Bi-Log Antenna or Horn Antenna			
Test Procedure:	 The EUT was placed on an non-conductive turntable using a non-conductive support. The radiated emission at the fundamental frequency was measured at 3 m with a test antenna and EMI spectrum analyzer. During the tests, the antenna height and the EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. This maximization process was repeated with the EUT positioned in each of its three orthogonal orientations. The frequency range up to tenth harmonic was investigated for each of three fundamental frequency (low, middle and high channels). Once spurious emission was identified, the power of the emission was determined using the substitution method. 			

Report No: CCISE170202006

	4. The spurious emissions attenuation was calculated as the difference between radiated power at the fundamental frequency and the spurious emissions frequency. ERP / EIRP = S.G. output (dBm) + Antenna Gain(dB/dBi) – Cable Loss (dB)
Test Instruments:	Refer to section 5.8 for details
Test mode:	Refer to section 5.3 for details.
Test results:	Passed

Measurement Data (worst case):

Below 1GHz:

The emission levels of below 1 GHz are 20 dB lower than the limit so not show in this report.

Above 1GHz

For above 1 GHz, all test modes were performed, and just the worst case shown in the report.

Report No: CCISE170202006

LTE band 2 part:

		ze 1 & RB offset 0) for	or QPSK	
Frequency (MHz)	Spurious Emission		Limit (dBm)	Result
Frequency (IVIF12)	Polarization	Level (dBm)	Lilliit (ubili)	Kesuit
		Lowest		
3701.40	Vertical	-32.41	40.00	
5552.10	V	-21.63		
7402.00	V	-18.42		Door
3701.40	Horizontal	-33.19	-13.00	Pass
5552.10	Н	-22.36		
7402.00	Н	-21.82		
<u> </u>		Middle		
3760.00	Vertical	-35.64	_	
5640.00	V	-32.43		
7520.00	V	-20.50	40.00	Dana
3760.00	Horizontal	-35.31	-13.00	Pass
5640.00	Н	-30.65		
7520.00	Н	-22.18		
		Highest		
3816.60	Vertical	-37.08		
5724.90	V	-30.37	-13.00	
7633.20	V	-33.37		Date
3816.60	Horizontal	-35.45		Pass
5724.90	Н	-33.96		
7633.20	Н	-34.95		

	3MHz(RB siz	ze 1 & RB offset 0)	for QPSK	
Fraguenov (MUz)	Spurious Emission		Limit (dPm)	Result
Frequency (MHz)	Polarization	Level (dBm)	Limit (dBm)	Result
		Lowest		
3703.00	Vertical	-41.38		
5554.50	V	-24.82		
7406.00	V	-26.09	-13.00	Pass
3703.00	Horizontal	-40.09	-13.00	Pass
5554.50	Н	-24.30		
7406.00	Н	-25.87		
·		Middle		·
3760.00	Vertical	-33.85		Pass
5640.00	V	-24.26		
7520.00	V	-22.09	-13.00	
3760.00	Horizontal	-35.36	-13.00	Pass
5640.00	Н	-27.39		
7520.00	Н	-23.09		
		Highest		
3817.00	Vertical	-38.14		
5725.50	V	-30.08	-13.00	
7634.00	V	-30.69		Dee-
3817.00	Horizontal	-40.62		Pass
5725.50	Н	-29.58		
7634.00	Н	-35.19		

	5MHz(RB siz	ze 1 & RB offset 0) fo	or QPSK	
Fraguenov (MUz)	•	Emission		Result
Frequency (MHz)	Polarization	Level (dBm)	Limit (dBm)	Result
		Lowest		
3705.00	Vertical	-38.62		
5557.50	V	-23.52		
7410.00	V	-21.93	-13.00	Door
3705.00	Horizontal	-36.99	-13.00	Pass
5557.50	Н	-24.35		
7410.00	Н	-23.74		
		Middle		
3760.00	Vertical	-37.95		
5640.00	V	-29.63	-	
7520.00	V	-24.00	42.00	Door
3760.00	Horizontal	-35.47	-13.00	Pass
5640.00	Н	-28.06		
7520.00	Н	-25.81		
		Highest		
3815.00	Vertical	-39.44		
5722.50	V	-34.14	-13.00	
7630.00	V	-26.97		Door
3815.00	Horizontal	-37.16		Pass
5722.50	Н	-32.92		
7630.00	Н	-27.70		

	10MHz(RB si	ze 1 & RB offset 0) f	or QPSK	
	Spurious Emission			
Frequency (MHz)	Polarization	Level (dBm)	Limit (dBm)	Result
		Lowest		
3710.00	Vertical	-41.36		
5565.00	V	-24.81	-13.00	
7420.00	V	-26.12		Pass
3710.00	Horizontal	-40.12	-13.00	Pass
5565.00	Н	-24.26		
7420.00	Н	-25.86		
·		Middle		•
3760.00	Vertical	-33.89		
5640.00	V	-24.21		
7520.00	V	-22.16	-13.00	Pass
3760.00	Horizontal	-35.34	-13.00	Pass
5640.00	Н	-27.36		
7520.00	Н	-23.05		
<u>.</u>		Highest		·
3810.00	Vertical	-38.17		
5715.00	V	-30.14		
7620.00	V	-30.66	-13.00	Dana
3810.00	Horizontal	-40.59		Pass
5715.00	Н	-29.53		
7620.00	Н	-35.24		

	15MHz(RB	size 1 & RB offset 0) for QPSK	
Frequency (MHz)	Spurious Emission		Limit (dBm)	Result
r requericy (Wir 12)	Polarization	Level (dBm)	Limit (dbin)	Result
		Lowest		
3715.00	Vertical	-38.64		
5572.50	V	-23.59		
7430.00	V	-21.96	12.00	Door
3715.00	Horizontal	-36.97	-13.00	Pass
5572.50	Н	-24.36		
7430.00	Н	-23.79		
		Middle	<u>.</u>	
3760.00	Vertical	-37.89		D
5640.00	V	-29.68		
7520.00	V	-23.98	42.00	
3760.00	Horizontal	35.52	-13.00	Pass
5640.00	Н	-28.94		
7520.00	Н	-25.62		
		Highest	•	
3805.00	Vertical	-39.46		
5707.50	V	-34.13		
7610.00	V	-26.97	-13.00	Dana
3805.00	Horizontal	-37.06		Pass
5707.50	Н	-32.97		
7610.00	Н	-27.76		

	20MHz(RB	size 1 & RB offset 0)	for QPSK	
	Spurious	Emission		
Frequency (MHz)	Polarization	Level (dBm)	Limit (dBm)	Result
,		Lowest		
3720.00	Vertical	-41.62		
5580.00	V	-24.82		
7440.00	V	-26.07	-13.00	Pass
3720.00	Horizontal	-40.97		Pass
5580.00	Н	-24.21		
7440.00	Н	-25.79		
<u> </u>		Middle		
3760.00	Vertical	-33.90		
5640.00	V	-24.09		
7520.00	V	-22.07	12.00	Door
3760.00	Horizontal	-35.51	-13.00	Pass
5640.00	Н	-27.35		
7520.00	Н	-23.09		
		Highest		
3800.00	Vertical	-38.12		
5700.00	V	-30.15	-13.00	
7600.00	V	-30.69		Door
3800.00	Horizontal	-40.54		Pass
5700.00	Н	-29.55		
7600.00	Н	-35.23		

LTE Band 4 Part:

		ze 1 & RB offset 0)	for QPSK	
Frequency (MHz)	Spurious	Emission	Limit (dBm)	Result
Frequency (Miriz)	Polarization	Level (dBm)	Limit (dbin)	Nesuit
		Lowest		
3421.40	Vertical	-39.30	-13.00	
5132.10	V	-28.17		
6842.80	V	-28.28		Pass
3421.40	Horizontal	-36.77		Pass
5132.10	Н	-28.40		
6842.80	Н	-24.97		
<u> </u>		Middle		<u>.</u>
3465.00	Vertical	-36.18		
5197.50	V	-24.75		
6930.00	V	-27.74	12.00	Desa
3465.00	Horizontal	-39.29	-13.00	Pass
5197.50	Н	-25.81		
6930.00	Н	-27.63		
<u> </u>		Highest		<u>.</u>
3508.60	Vertical	-43.50		
5262.90	V	-27.13		
7017.20	V	-33.36	-13.00	Door
3508.60	Horizontal	-36.84		Pass
5262.90	Н	-26.98		
7017.20	Н	-31.71		

	3MHz(RB siz	e 1 & RB offset 0) fo	r QPSK	
Fraguency (MHz)	Spurious Emission			Result
Frequency (MHz)	Polarization	Level (dBm)	Limit (dBm)	Result
		Lowest		
3423.00	Vertical	-46.85		
5134.50	V	-35.32		
6846.00	V	-36.57	-13.00	Pass
3423.00	Horizontal	-46.82	-13.00	Pass
5134.50	Н	-34.58		
6846.00	Н	-41.09		
<u> </u>		Middle		
3465.00	Vertical	-42.63		
5197.50	V	-34.89		
6930.00	V	-30.18	-13.00	Pass
3465.00	Horizontal	-42.01	-13.00	Pass
5197.50	Н	-33.96		
6930.00	Н	-36.58		
<u>, </u>		Highest		
3507.00	Vertical	-44.27		
5260.50	V	-36.73		
7014.00	V	-30.13	-13.00	Doo-
3507.00	Horizontal	-43.15		Pass
5260.50	Н	-34.86		
7014.00	Н	-36.69		

	5MHz/PR ci	70 1 & PR offsot (1) f	or OPSK	
	5MHz(RB size 1 & RB offset 0) for Spurious Emission			
Frequency (MHz)	Polarization	Level (dBm)	Limit (dBm)	Result
		Lowest		
3425.00	Vertical	-39.25		Pass
5137.50	V	-28.17		
6850.00	V	-28.23	-13.00	
3425.00	Horizontal	-36.79		
5137.50	Н	-28.37		
6850.00	Н	-24.93		
		Middle		
3465.00	Vertical	-36.21		
5197.50	V	-24.73	-13.00	Pass
6930.00	V	-27.82		
3465.00	Horizontal	-39.34		
5197.50	Н	-25.86		
6930.00	Н	-27.61		
		Highest		
3505.00	Vertical	-43.48	-13.00	Pass
5257.50	V	-27.16		
7010.00	V	-33.34		
3505.00	Horizontal	-36.83		
5257.50	Н	-26.98		
7010.00	Н	-31.76		

	10MHz(RB s	ize 1 & RB offset 0)	for QPSK	
Fraguesey (MHz)	Spurious Emission			Desult
Frequency (MHz)	Polarization	Level (dBm)	Limit (dBm)	Result
		Lowest		
3430.00	Vertical	-46.85		Pass
5145.00	V	-35.56		
6860.00	V	-36.61	40.00	
3430.00	Horizontal	-46.97	-13.00	
5145.00	Н	-34.62		
6860.00	Н	-41.12		
		Middle	<u> </u>	
3465.00	Vertical	-42.56		
5197.50	V	-34.92		Pass
6930.00	V	-30.21	-13.00	
3465.00	Horizontal	-42.03		
5197.50	Н	-34.00		
6930.00	Н	-36.59		
		Highest		•
3500.00	Vertical	-44.21	-13.00	Pass
5250.00	V	-36.64		
7000.00	V	-30.15		
3500.00	Horizontal	-43.16		
5250.00	Н	-34.87		
7000.00	Н	-36.71		

		ze 1 & RB offset 0) f	or QPSK	
Frequency (MHz)	Spurious Emission		Limit (dBm)	Result
	Polarization	Level (dBm)	Limit (abin)	Nesult
		Lowest		
3435.00	Vertical	-39.23		Pass
5152.50	V	-28.15		
6870.00	V	-28.27	-13.00	
3435.00	Horizontal	-36.82		
5152.50	Н	-28.89		
6870.00	Н	-24.96		
		Middle		
3465.00	Vertical	-36.24		Pass
5197.50	V	-24.73		
6930.00	V	-27.86	-13.00	
3465.00	Horizontal	-39.37		
5197.50	Н	-25.83		
6930.00	Н	-27.59		
		Highest		
3495.00	Vertical	-43.62	-13.00	Pass
5242.50	V	-27.10		
6990.00	V	-33.31		
3495.00	Horizontal	-36.86		
5242.50	Н	-26.76		
6990.00	Н	-31.75		

	20MHz(RB s	ize 1 & RB offset 0)) for QPSK	
Frequency (MHz)	Spurious Emission			Dogult
	Polarization	Level (dBm)	Limit (dBm)	Result
	_	Lowest		
3440.00	Vertical	-46.82		Pass
5160.00	V	-35.52		
6880.00	V	-36.63	12.00	
3440.00	Horizontal	-46.99	-13.00	
5160.00	Н	-34.63		
6880.00	Н	-41.08		
		Middle		
3465.00	Vertical	-42.49		Pass
5197.50	V	-34.89		
6930.00	V	-30.24	12.00	
3465.00	Horizontal	-42.04	-13.00	
5197.50	Н	-34.27		
6930.00	Н	-36.61		
		Highest		
3490.00	Vertical	-44.29	-13.00	Pass
5235.00	V	-36.65		
6980.00	V	-30.09		
3490.00	Horizontal	-43.18		
5235.00	Н	-34.99		
6980.00	Н	-36.72		

6.12 Frequency stability V.S. Temperature measurement

Test Requirement:	FCC Part2.1055(a)(1)(b)
Test Method:	FCC Part2.1055(a)(1)(b)
Limit:	±2.5ppm
Test setup:	Spectrum analyzer EUT Att. Variable Power Supply Note: Measurement setup for testing on Antenna connector
Test procedure:	 The equipment under test was connected to an external DC power supply and input rated voltage. RF output was connected to a frequency counter or spectrum analyzer via feed through attenuators. The EUT was placed inside the temperature chamber. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and measure EUT 25°C operating frequency as reference frequency. Turn EUT off and set the chamber temperature to -30°C. After the temperature stabilized for approximately 30 minutes recorded the frequency. Repeat step measure with 10°C increased per stage until the highest temperature of +50°C reached
Test Instruments:	Refer to section 5.8 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed
Remark:	All three channels of all modulations have been tested, but only the worst channel and the worst modulation show in this test item.

Measurement Data (the worst channel):

LTE Band 2(QPSK):

LTE Band 2(QPSK):						
Reference Frequency: LTE Band 2(1.4MHz) Middle channel=18900 channel=1880.00MHz						
Power supplied	Temperature (°C)		equency error	Limit (ppm)	Result	
(Vdc)	, , ,	Hz	ppm	Еши (ррш)	resuit	
	-30	166	0.088298			
	-20	174	0.092553			
	-10	163	0.086702			
	0	150	0.079787			
3.80	10	146	0.077660	±2.5	Pass	
	20	163	0.086702			
	30	125	0.066489			
	40	136	0.072340			
	50	174	0.092553			
Reference F	requency: LTE Band	1 2(3MHz) M	liddle channel=18900 c	hannel=1880.00	MHz	
Power supplied	Temperature (°ℂ)	Fr	equency error	Limit (none)	Daguit	
(Vdc)	remperature (C)	Hz	ppm	Limit (ppm)	Result	
	-30	163	0.086702	±2.5		
	-20	147	0.078191			
	-10	145	0.077128			
	0	126	0.067021			
3.80	10	152	0.080851		Pass	
	20	134	0.071277			
	30	106	0.056383			
	40	125	0.066489			
	50	107	0.056915			
Reference F	requency: LTE Band	1 2(5MHz) M	liddle channel=18900 c	hannel=1880.00	MHz	
Power supplied (Vdc)	Temperature (°C)	Fr	equency error	Limit (ppm)	Result	
rower supplied (vuc)	remperature (c)	Hz	ppm	Еши (ррш)	Nesuit	
	-30	184	0.097872			
	-20	152	0.080851			
	-10	163	0.086702			
	0	137	0.072872			
3.80	10	152	0.080851	±2.5	Pass	
	20	146	0.077660			
	30	152	0.080851			
	40	102	0.054255			
	50	147	0.078191	1		

Reference Frequency: LTE Band 2(10MHz) Middle channel=18900 channel=1880.00MHz						
Power supplied (Vdc)	Temperature (°C)		equency error	Limit (ppm)	Result	
	` ` `	Hz	ppm	- (11)		
	-30	136	0.072340			
	-20	170	0.090426			
	-10	145	0.077128			
	0	178	0.094681			
3.80	10	155	0.082447	±2.5	Pass	
	20	146	0.077660			
	30	128	0.068085			
	40	136	0.072340			
	50	128	0.068085			
Reference Fi	requency: LTE Band		fiddle channel=18900	channel=1880.00	MHz	
D " 10/1)	T	Fre	equency error	1		
Power supplied (Vdc)	Temperature (°C)	Hz	ppm	Limit (ppm)	Result	
	-30	152	0.080851			
	-20	163	0.086702			
	-10	142	0.075532			
	0	174	0.092553	±2.5		
3.80	10	178	0.094681		Pass	
	20	166	0.088298			
	30	125	0.066489			
	40	107	0.056915			
	50	122	0.064894			
Reference Fi	requency: LTE Band	2(20MHz) M	liddle channel=18900	channel=1880.00	MHz	
Power supplied (Vdc)	Temperature (°C)		equency error	Limit (ppm)	Result	
Tomor supplied (Tuo)		Hz	ppm	Σ (ββ)	Result	
	-30	176	0.093617			
	-20	166	0.088298	_		
	-10	152	0.080851	_		
0.55	0	158	0.084043	-		
3.80	10	159	0.084574	±2.5	Pass	
	20	136	0.072340	_		
	30	174	0.092553	_		
	40	169	0.089894	_		
	50	166	0.088298			

LTE Band 2(16QAM):

LTE Band 2(16QAM):							
Reference F	requency: LTE Band	2(1.4MHz)	Middle channel=18900	channel=1880.0	0MHz		
	Temperature (°C)	F	requency error	Limit (ppm)			
Power supplied (Vdc)	remperature (C)	Hz	ppm	Limit (ppin)	Result		
	-30	152	0.080851				
	-20	146	0.077660				
	-10	174	0.092553				
	0	185	0.098404				
3.80	10	162	0.086170	±2.5	Pass		
	20	174	0.092553				
	30	105	0.055851				
	40	126	0.067021				
	50	136	0.072340				
Reference F	requency: LTE Band	2(3MHz) M	liddle channel=18900 c	channel=1880.00	MHz		
Dower cumplied (\/de)	Temperature (℃)	Fr	equency error	Limit (ppm)	D li		
Power supplied (Vdc)	romporatoro (e)	Hz	ppm	Ziiiii (ppiii)	Result		
	-30	146	0.077660				
	-20	157	0.083511				
	-10	156	0.082979				
	0	150	0.079787				
3.80	10	145	0.077128	±2.5	Pass		
	20	141	0.075000				
	30	133	0.070745				
	40	126	0.067021				
	50	126	0.067021				
Reference F	requency: LTE Band	2(5MHz) M	liddle channel=18900 c	channel=1880.00	MHz		
Power supplied (Vdc)	Temperature (°C)		equency error	Limit (ppm)	Result		
1 ower supplied (vae)	` ` `	Hz	ppm	Еппт (ррпп)	resuit		
	-30	152	0.080851				
	-20	141	0.075000				
	-10	136	0.072340				
	0	125	0.066489				
3.80	10	146	0.077660	±2.5	Pass		
	20	105	0.055851				
	30	126	0.067021				
	40	152	0.080851				
	50	151	0.080319				

Reference Fi	requency: LTE Band	2(10MHz) M	1iddle channel=18900	channel=1880.00)MHz
Power supplied (Vdc)	Temperature (°C)	Fro Hz	equency error ppm	Limit (ppm)	Result
	-30	163	0.086702		
	-20	152	0.080851		
	-10	154	0.081915		
	0	174	0.092553	7	
3.80	10	175	0.093085	±2.5	Pass
0.00	20	166	0.088298		
	30	152	0.080851		
	40	133	0.070745		
	50	134	0.071277	7	
Reference Fi			fiddle channel=18900	channel-1880 00	MHz
Power supplied			equency error		NVII IZ
(Vdc)	Temperature (°C)	Hz	ppm	Limit (ppm)	Result
(122)	-30	168	0.089362		
	-20	145	0.077128		
	-10	140	0.074468		
	0	125	0.066489		
3.80	10	153	0.081383	±2.5	Pass
	20	142	0.075532		
	30	162	0.086170		
	40	155	0.082447		
	50	179	0.095213		
Reference Fi	requency: LTE Band	2(20MHz) M	1iddle channel=18900	channel=1880.00	MHz
Power supplied	Temperature (°ℂ)		equency error	Limit (com	Dr. II
(Vdc)		Hz	ppm	Limit (ppm)	Result
	-30	152	0.080851		
	-20	136	0.072340		
	-10	142	0.075532	_	
	0	177	0.094149	4	_
3.80	10	123	0.065426	±2.5	Pass
	20	120	0.063830	4	
	30	116	0.061702	_	
	40	155	0.082447	4	
	50	156	0.082979		

		LTE Band	4(QPSK):		
Reference Fr	equency: LTE Band	4(1.4MHz) N	Middle channel=20175	channel=1732.50)MHz
Power supplied	Temperature (°C)	Fr	equency error	Limit (ppm)	Result
(Vdc)	remperature (c)	Hz	ppm	Limit (ppin)	Result
	-30	170	0.098124		
	-20	166	0.095815		
	-10	141	0.081385		
	0	136	0.078499		
3.80	10	166	0.095815	±2.5	Pass
	20	125	0.072150		
	30	130	0.075036		
	40	142	0.081962		
	50	167	0.096392		
Reference F	requency: LTE Band	l 4(3MHz) M	iddle channel=20175	channel=1732.50	MHz
Power supplied	Temperature (°ℂ)	Fr	equency error	Limit (nnm)	Result
(Vdc)	remperature (C)	Hz	ppm	Limit (ppm)	Result
	-30	152	0.087734	±2.5	
	-20	141	0.081385		
	-10	123	0.070996		
	0	105	0.060606		
3.80	10	155	0.089466		Pass
	20	156	0.090043		
	30	127	0.073304		
	40	141	0.081385		
	50	168	0.096970		
Reference F	requency: LTE Band	l 4(5MHz) M	iddle channel=20175	channel=1732.50	MHz
Power supplied (Vdc)	Temperature (°C)		equency error	Limit (ppm)	Result
1 ower supplied (vuc)		Hz	ppm	Еппі (рріп)	Nesuit
	-30	190	0.109668		
	-20	152	0.087734		
	-10	142	0.081962		
	0	133	0.076768		
3.80	10	124	0.071573	±2.5	Pass
	20	115	0.066378		
	30	104	0.060029		
	40	152	0.087734		
	50	156	0.090043		

Reference Fi	equency. LTE Band		fiddle channel=20175		νίνι⊓∠
Power supplied (Vdc)	Temperature (°C)	Hz	equency error ppm	Limit (ppm)	Result
	-30	152	0.087734		
	-20	142		_	
	-10		0.081962		
		126	0.072727		
	0	135	0.077922	.0.5	Dana
3.80	10	185	0.106782	±2.5	Pass
	20	174	0.100433	_	
	30	170	0.098124		
	40	161	0.092929		
	50	125	0.072150		
Reference Fi	requency: LTE Band	4(15MHz) M	liddle channel=20175	channel=1732.50	MHz
Power supplied (Vdc)	Temperature (°C)	Frequency error		Limit (nnm)	_
Power supplied (vac)	remperature (C)	Hz	ppm	Limit (ppm)	Result
	-30	156	0.090043		Pass
	-20	158	0.091198		
	-10	174	0.100433		
	0	136	0.078499	±2.5	
3.80	10	155	0.089466		
	20	152	0.087734		
	30	156	0.090043		
	40	108	0.062338		
	50	109	0.062915		
Reference Fi	requency: LTE Band	4(20MHz) M	fiddle channel=20175	channel=1732.50	MHz
Power supplied (Vdc)	Temperature (°C)		equency error	Limit (ppm)	D
1 ower supplied (vuc)	. , ,	Hz	ppm	Еппі (рріп)	Result
	-30	167	0.096392	_	
	-20	136	0.078499	_	
	-10	152	0.087734	_	
	0	146	0.084271		
3.80	10	128	0.073882	±2.5	Pass
	20	156	0.090043		
	30	163	0.094084	_	
	40	108	0.062338		
	50	125	0.072150		

LTE Band 4(16QAM):

LTE Band 4(16QAM):							
Reference F	requency: LTE Band	4(1.4MHz)	Middle channel=20175	channel=1732.5	0MHz		
	Temperature (°C)	F	requency error	Limit (ppm)			
Power supplied (Vdc)	remperature (C)	Hz	ppm	Limit (ppin)	Result		
	-30	179	0.103319				
	-20	152	0.087734				
	-10	136	0.078499				
	0	122	0.070418				
3.80	10	105	0.060606	±2.5	Pass		
	20	136	0.078499				
	30	122	0.070418				
	40	107	0.061760				
	50	125	0.072150				
Reference F	requency: LTE Band	4(3MHz) M	liddle channel=20175 c	hannel=1732.50	MHz		
Power supplied (Vdc)	Temperature (℃)	Fr	equency error	Limit (ppm)	Result		
Power supplied (vdc)	romporataro (o)	Hz	ppm	(PP)	Result		
	-30	156	0.090043				
	-20	142	0.081962				
	-10	122	0.070418				
	0	108	0.062338				
3.80	10	156	0.090043	±2.5	Pass		
	20	167	0.096392				
	30	169	0.097547				
	40	153	0.088312				
	50	169	0.097547				
Reference F	requency: LTE Band	4(5MHz) M	liddle channel=20175 c	channel=1732.50	MHz		
Power supplied (Vdc)	Temperature (°C)		equency error	Limit (ppm)	Result		
1 ower cappiloa (vac)	` ` `	Hz	ppm	Ziiiii (ppiii)	rtoodit		
	-30	142	0.081962				
	-20	152	0.087734				
	-10	105	0.060606				
	0	136	0.078499				
3.80	10	177	0.102165	±2.5	Pass		
	20	146	0.084271				
	30	125	0.072150				
	40	103	0.059452				
	50	136	0.078499				

		,	liddle channel=20175		
Power supplied (Vdc)	Temperature (°C)	Hz	ppm	Limit (ppm)	Result
	-30	167	0.096392		
	-20	166	0.095815		
	-10	152	0.087734		
	0	134	0.077345		
3.80	10	133	0.076768	±2.5	Pass
	20	126	0.072727		
	30	125	0.072150		
	40	148	0.085426		
	50	145	0.083694		
Reference F	requency: LTE Band		iddle channel=20175	channel=1732.50	MHz
Power supplied		,	equency error		
(Vdc)	Temperature (°C)	Hz	ppm	Limit (ppm)	Result
	-30	188	0.108514		Pass
	-20	185	0.106782		
	-10	174	0.100433		
	0	166	0.095815		
3.80	10	152	0.087734	±2.5	
	20	156	0.090043		
	30	137	0.079076		
	40	109	0.062915		
	50	145	0.083694		
Reference F	requency: LTE Band	4(20MHz) M	liddle channel=20175	channel=1732.50	MHz
Power supplied	Temperature (°ℂ)	Fre	equency error		
(Vdc)		Hz	ppm	Limit (ppm)	Result
	-30	163	0.094084		
	-20	152	0.087734		
	-10	144	0.083117		
	0	127	0.073304		
3.80	10	136	0.078499	±2.5	Pass
	20	185	0.106782		
	30	124	0.071573		
	40	107	0.061760		
	50	152	0.087734		

6.13 Frequency stability V.S. Voltage measurement

Test Requirement:	
rest requirement.	FCC Part2.1055(d)(1)(2)
Test Method:	FCC Part2.1055(d)(1)(2)
Limit:	2.5ppm
Test setup:	Spectrum analyzer EUT Variable Power Supply Note: Measurement setup for testing on Antenna connector
Test procedure:	 Set chamber temperature to 25°C. Use a variable DC power source to power the EUT and set the voltage to rated voltage. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and recorded the frequency. Reduce the input voltage to specify extreme voltage variation (+/-15%) and endpoint, record the maximum frequency change.
Test Instruments:	Refer to section 5.8 for details
Test mode:	Refer to section 5.3 for details, and all channels have been tested, only shows the worst channel data in this report.
Test results:	Passed

Measurement Data (the worst channel):

LTE Band 2(QPSK):

Reference F	requency: LTE Band	2(1.4MHz) Middle	•	channel=1880 00)MHz
	Power supplied	,	ncy error		
Temperature (℃)	(Vdc)	Hz	ppm	Limit (ppm)	Result
	4.25	63	0.033511		
25	3.80	87	0.046277	±2.5	Pass
	3.14	90	0.047872		. 4.00
Reference F	requency: LTE Band	2(3MHz) Middle	channel=18900 c	channel=1880.00l	ИНz
	Power supplied	Freque	ncy error		
Temperature (℃)	(Vdc)	Hz	ppm	Limit (ppm)	Result
	4.25	85	0.045213		
25	3.80	69	0.036702	±2.5	Pass
	3.14	74	0.039362		
Reference F	requency: LTE Band	2(5MHz) Middle	channel=18900 c	channel=1880.00l	ИНz
	Power supplied	Freque	ncy error		
Temperature (℃)	(Vdc)	Hz	ppm	Limit (ppm)	Result
	4.25	79	0.042021		
25	3.80	88	0.046809	±2.5	Pass
	3.14	63	0.033511		
Reference F	requency: LTE Band	2(10MHz) Middle	channel=18900	channel=1880.00	MHz
	Power supplied	Freque	ncy error		
Temperature (℃)	(Vdc)	Hz	ppm	Limit (ppm)	Result
	4.25	94	0.050000		
25	3.80	78	0.041489	±2.5	Pass
	3.14	77	0.040957		
Reference F	requency: LTE Band	2(15MHz) Middle	channel=18900	channel=1880.00	MHz
T(°C)	Power supplied	Frequei	ncy error		5 "
Temperature (℃)	(Vdc)	Hz	ppm	Limit (ppm)	Result
	4.25	68	0.036170		
25	3.80	85	0.045213	±2.5	Pass
	3.14	74	0.039362		
Reference F	requency: LTE Band	2(20MHz) Middle	channel=20175	channel=1880.00	MHz
Tomporatura (°C)	Power supplied	Freque	ncy error	Line it (many)	Decult
Temperature (°C)	(Vdc)	Hz	ppm	Limit (ppm)	Result
	4.25	63	0.033511		
25	3.80	52	0.027660	±2.5	Pass
	3.14	88	0.046809		

LTE Band 2(16QAM):

	LTE Band 2(16	QAM):		
requency: LTE Band	2(1.4MHz) Middle	e channel=18900	channel=1880.00	MHz
Power supplied	Frequer	ncy error	Limit (none)	Danish
(Vdc)	Hz	ppm	Limit (ppm)	Result
4.25	98	0.052128		
3.80	92	0.048936	±2.5	Pass
3.14	45	0.023936		
requency: LTE Band	channel=18900 c	channel=1880.00 l	ИНz	
Power supplied	Frequer	ncy error		
(Vdc)	Hz		Limit (ppm)	Result
4.25	63	0.033511		
3.80	52	0.027660	±2.5	Pass
3.14	74	0.039362	7	
requency: LTE Band	2(5MHz) Middle	channel=18900 c	channel=1880.00ľ	ИНz
Power supplied	Frequer	ncy error		
• •		, and the second	Limit (ppm)	Result
4.25				
3.80			±2.5	Pass
3.14			1	
Power supplied	Frequer	ncy error		
* *	Hz		Limit (ppm)	Result
4.25	63			
3.80	88		±2.5	Pass
3.14				
requency: LTE Band			channel=1880.00	MHz
	,			
	Hz		Limit (ppm)	Result
4.25	74			
3.80	68		±2.5	Pass
3.14	77		1	
requency: LTE Band			channel=1880.00	MHz
Power supplied	Frequer	ncy error		_
(Vdc)	Hz	ppm	Limit (ppm)	Result
4.25	95	0.050532		
3.80	98	0.052128	±2.5	Pass
3.14	86	0.045745]	
	Power supplied (Vdc) 4.25 3.80 3.14 Frequency: LTE Band Power supplied (Vdc) 4.25 3.80 3.14 Frequency: LTE Band Power supplied (Vdc) 4.25 3.80 3.14 Power supplied (Vdc) 4.25 3.80 3.14 Frequency: LTE Band Power supplied (Vdc) 4.25 3.80 3.14 Frequency: LTE Band Power supplied (Vdc) 4.25 3.80 3.14 Frequency: LTE Band Power supplied (Vdc) 4.25 3.80 3.14 Frequency: LTE Band Power supplied (Vdc) 4.25 3.80 3.14 Frequency: LTE Band Power supplied (Vdc) 4.25 3.80 3.14	Power supplied (Vdc) Hz 4.25 98 3.80 92 3.14 45 Frequency: LTE Band 2(3MHz) Middle Power supplied (Vdc) Hz 4.25 63 3.80 52 3.14 74 Frequency: LTE Band 2(5MHz) Middle Power supplied (Vdc) Hz 4.25 88 3.80 95 3.14 71 Frequency: LTE Band 2(5MHz) Middle Power supplied (Vdc) Hz 4.25 88 3.80 95 3.14 71 Power supplied (Vdc) Hz 4.25 63 3.80 95 3.14 71 Power supplied (Vdc) Hz 4.25 63 3.80 88 3.14 89 Frequency: LTE Band 2(15MHz) Middle Power supplied (Vdc) Hz 4.25 63 3.80 88 3.14 89 Frequency: LTE Band 2(15MHz) Middle Power supplied Frequency: LTE Band 2(20MHz) Middle	Power supplied	Power supplied Frequency error Limit (ppm) Limit (

LTE Band 4(QPSK):

Reference Freque	ency: LTE Band ower supplied	,	channel=20175	channel=1732.50	MHz			
Temperature (°C) Po	ower supplied							
remperature (C)		Frequency error		Linit (name)	Danish			
	(Vdc)	Hz	ppm	Limit (ppm)	Result			
	4.25	63	0.036364	±2.5	Pass			
25	3.80	74	0.042713					
	3.14	58	0.033478					
Reference Frequency: LTE Band 4(3MHz) Middle channel=20175 channel=1732.50MHz								
_ Po	ower supplied	Frequency error						
Temperature (°C)	(Vdc)	Hz	ppm	Limit (ppm)	Result			
	4.25	69	0.039827	±2.5	Pass			
25	3.80	70	0.040404					
	3.14	58	0.033478					
Reference Frequ	ency: LTE Band	4(5MHz) Middle	channel=20175 c	hannel=1732.50N	ЛНz			
Po	ower supplied	Frequency error						
Temperature (°C)	(Vdc)	Hz	ppm	Limit (ppm)	Result			
	4.25	50	0.028860		Pass			
25	3.80	63	0.036364	±2.5				
	3.14	79	0.045599					
Reference Freque	ency: LTE Band	4(10MHz) Middle	channel=20175	channel=1732.50	MHz			
Po	ower supplied	Frequency error						
Temperature (°C)	(Vdc)	Hz	ppm	Limit (ppm)	Result			
	4.37	95	0.054834	±2.5	Pass			
25	3.80	67	0.038672					
	3.23	88	0.050794					
Reference Freque	ency: LTE Band	4(15MHz) Middle	channel=20175	channel=1732.50	MHz			
_ (%) Po	ower supplied	Frequency error						
Temperature (°C)	(Vdc)	Hz	ppm	Limit (ppm)	Result			
	4.25	74	0.042713	±2.5	Pass			
25	3.80	79	0.045599					
	3.14	80	0.046176					
Reference Frequency: LTE Band 4(20MHz) Middle channel=20175 channel=1732.50MHz								
Po	ower supplied	Frequency error						
Temperature (°C)	(Vdc)	Hz	ppm	Limit (ppm)	Result			
	4.25	66	0.038095	±2.5	Pass			
25	3.80	85	0.049062					
	3.14	73	0.042136					

LTE Band 4(16QAM):

LTE Band 4(16QAM):								
Reference F	requency: LTE Band	4(1.4MHz) Middle	e channel=20175	channel=1732.50	MHz			
Temperature (℃)	Power supplied	Frequency error		Limit ()	D 1			
	(Vdc)	Hz	ppm	Limit (ppm)	Result			
25	4.25	69	0.039827	±2.5	Pass			
	3.80	87	0.050216					
	3.14	65	0.037518					
Reference Frequency: LTE Band 4(3MHz) Middle channel=20175 channel=1732.50MHz								
Temperature ($^{\circ}\!\mathbb{C}$)	Power supplied	Frequency error			_			
	(Vdc)	Hz	ppm	Limit (ppm)	Result			
25	4.25	74	0.042713	±2.5	Pass			
	3.80	72	0.041558					
	3.14	90	0.051948					
Reference F	requency: LTE Band	I 4(5MHz) Middle	channel=20175 c	hannel=1732.50N	ЛHz			
Temperature (℃)	Power supplied	Frequency error						
	(Vdc)	Hz	ppm	Limit (ppm)	Result			
25	4.25	38	0.021934		Pass			
	3.80	75	0.043290	±2.5				
	3.14	74	0.042713					
Reference F	requency: LTE Band	4(10MHz) Middle	channel=20175	channel=1732.50	MHz			
Temperature ($^{\circ}\!$	Power supplied	Frequency error			5			
	(Vdc)	Hz	ppm	Limit (ppm)	Result			
25	4.25	65	0.037518	±2.5	Pass			
	3.80	90	0.051948					
	3.14	48	0.027706					
Reference F	requency: LTE Band	4(15MHz) Middle	channel=20175	channel=1732.50	MHz			
Temperature ($^{\circ}\!$	Power supplied	Frequency error			D			
	(Vdc)	Hz	ppm	Limit (ppm)	Result			
25	4.25	67	0.038672	±2.5	Pass			
	3.80	85	0.049062					
	3.14	95	0.054834					
Reference F	requency: LTE Band	4(20MHz) Middle	e channel=20175	channel=1732.50	MHz			
Temperature (°C)	Power supplied	Freque	ncy error	Limit ()	Result			
	(Vdc)	Hz	ppm	Limit (ppm)				
25	4.25	84	0.048485	±2.5	Pass			
	3.80	92	0.053102					
	3.14	67	0.038672					