Multi-tier Architecture for Adaptive Systems

N. D'Ippolito, V. Braberman, J. Kramer,
J. Magee, D. Sykes, <u>S. Uchitel</u>
Imperial College London — University of Buenos Aires

Requirements Engineering à la Michael Jackson

World Interface Machine

Environment assumptions (Goals

Requirements

$$E, R_i \models G$$

Before SOA

After SOA

Adaptive System Architecture

- Multi-layered
- Event-driven
- Top-down decreasing latency
- Bottom-up increasing statefullness and strategic planning

P. Doherty et al., 7th International Symposium on Distributed Robotic Autonomous Systems (DARS), 2004

Software Architecture for an Autonomous Vehicle (AVENUE project - CMU)

Architectural Behaviour Modelling

Controller Synthesis

(~ Planning, Supervisory Control)

$$E \mid\mid x_i \models G$$

 $E_{ ext{nvironment}}$ $I_{ ext{nterface}}$ $G_{ ext{oals}}$ $F_{ ext{lanner}}$ $I_{ ext{System with}}$ $I_{ ext{interface}}$

Build a strategy for the controller that always beats its adversary

Synthesis at Runtime

Environment

Risk Management

Risk Management

$$E \mid\mid x_i \models G$$

Risk

(Idealised)
Models

Achievable Goals

Robustness

Multi-tier Architecture

idealised

$$E_n \mid\mid x_{I_n} \models G_n$$

strong assumptions and guarantees

 $E_i \mid\mid x_{I_i} \vDash G_i$

•

realistic

$$E_0 \mid\mid x_{I_0} \vDash G_0$$

weak assumptions and guarantees

Multi-tier Controller at Runtime

Multi-tier Controller at Runtime

Inter-Tier Relations

strong assumptions and guarantees

weak assumptions and guarantees

Experimental Platform

Case Studies

Quadrotor@NII

Robot Arm@Imperial College

Nao@Imperial College

Arduino@Buenos Aires

Lessons Learned

Liveness

Bounded Liveness

Safety

Physical Safety

Conclusions

Architecture for High Level System Adaption

- Automated strategic planning through synthesis
- Supports multiple levels of robustness and risk
- Supports graceful degradation and progressive enhancement

Available at: sourceforge.net/projects/mtsa/

Hope for the Best, Prepare for the Worst: Multi-tier Control for Adaptive Systems

N. D'Ippolito, V. Braberman, J. Kramer, J. Magee, D. Sykes, S. Uchitel

Imperial College London — University of Buenos Aires