# Machine Learning in Business

Chulalongkorn Business School
17 January 2024
Warut Khern-am-nuai

#### Agenda

• Traditional Machine Learning

• Beyond Machine Learning: Toward Artificial Intelligence

• Ethical Issues Discussions

#### Traditional Machine Learning

• Machine learning is usually defined as algorithms that can learn and improve themselves without explicitly programmed to do so.

• How can machine learning algorithms "learn"?

- Why do people rely a lot on machine learning these days?
  - Individuals
  - Firms
  - Government agencies

# Types of Machine Learning

• Supervised Learning

• Unsupervised Learning

• Reinforcement Learning

### Supervised Learning

• Machine learning algorithms that are trained using labeled data to make predictions.

Classification tasks vs. Regression tasks

• The training process involves feeding labeled data to the model and adjusting model parameters to optimize prediction performance.

### Supervised Learning Examples

• Application Screening

• Fraud Detection

• Predictive Analytics

#### Unsupervised Learning

• Machine learning algorithms that are trained using unlabeled data to identify patterns and structures within the data.

• The training process focuses on data exploration, pattern recognition, and the extraction of valuable information.

• Clustering is the most popular unsupervised machine learning models, but there are many other applications.

# Unsupervised Learning Examples

• Customer Segmentation

Anomaly Detection

• Dimensionality Reduction

#### Reinforcement Learning

• Algorithms that train an agent to make sequential decisions in an environment to maximize cumulative rewards.

• The training process involves trials-and-errors where agents explore actions, learn from outcomes, and derive strategies to achieve long-term goals with the highest rewards.

• Primarily used in autonomous vehicle navigations, game playing, and robot control.

#### Using Machine Learning in Business

#### ผังของงานพัฒนาจริง



#### Using Machine Learning in Business

- Business requirements
  - Do we really need machine learning or simple data analyses?
  - Business processes compatible with ML implementations?
  - Budget constraints?
  - User acceptance

#### Key Challenges

- Data availabilities
  - Insufficient or poor-quality data
  - Inconsistent data formats or missing values
  - Limited access to relevant data sources
- Skilled talents
  - There is a shortage of professionals with expertise in both machine learning and business domains.
  - Training and retaining skilled data scientists and machine learning engineers can be challenging.
  - Building a multidisciplinary team is essential for successful machine learning implementation.

#### Our Opportunities

• Cross-discipline skills

• Strategic decision-making and insights

• Marketing and customer-centric mindset

• Entrepreneurship knowledge

#### Our Opportunities

• Cross-discipline skills

• Strategic decision-making and insights

• Marketing and customer-centric mindset

• Entrepreneurship knowledge

#### **Success Stories**

- Amazon Personalized Recommendations
  - Challenge: Amazon faced the challenge of helping users discover products among the vast catalog.
  - Solution: Implemented machine learning algorithms to analyze user behavior, purchase history, and preferences.
  - Outcome: The recommendation system suggests products based on individual user interests, significantly improving user engagement and driving increased sales. Amazon attributes a significant portion of its revenue to the success of personalized recommendations.

#### **Success Stories**

- Netflix: Content Recommendation and Optimization
  - Challenge: Netflix aimed to enhance user satisfaction by recommending personalized content.
  - Solution: Utilized machine learning algorithms to analyze viewing habits, preferences, and ratings.
  - Outcome: Netflix's recommendation engine predicts what users may like, leading to a more personalized content experience. This has contributed to increased user retention and engagement, as users are more likely to discover and enjoy content tailored to their tastes.

#### **Success Stories**

- Google: AdWords and Predictive Bidding
  - Challenge: Google wanted to improve the efficiency of its online advertising platform, AdWords.
  - Solution: Implemented machine learning algorithms for predictive bidding, considering factors like user behavior, device, and demographics.
  - Outcome: Advertisers using Google's AdWords experience more effective ad placements. Machine learning optimizes bidding strategies, helping advertisers achieve better returns on investment by targeting the right audience with relevant ads.

# 10-Min Break

Any Questions?

#### Beyond Machine Learning

#### **ARTIFICIAL INTELLIGENCE**

Programs with the ability to learn and reason like humans

#### **MACHINE LEARNING**

Algorithms with the ability to learn without being explicitly programmed

#### **DEEP LEARNING**

Subset of machine learning in which artificial neural networks adapt and learn from vast amounts of data

## Beyond Machine Learning

• Deep Learning-based application

• Generative AI

• Artificial general intelligence (AGI)

### Deep Learning

• Using "deep" neural networks to model

• Require a large dataset

• Computationally intensive

• Typically used for unstructured data

# In Event of Moon Disaster

https://arts.mit.edu/in-event-of-moon-disaster/

https://www.youtube.com/watch?v=LWLadJFI8Pk&t=208s

# Lip-syncing AI

https://twitter.com/i/status/1617494748331122688

https://twitter.com/i/status/1618987800388587521

## Bruce Willis in Russian Ads

https://www.dailymotion.com/video/x83i85w

https://www.youtube.com/watch?v=Hp4jbs7ivSY

#### Deepfake

• Now "easy" to use

• Do not require many pictures/videos to develop a faceset

• Implications on businesses?

• Implications on society?

### Other Deep learning-based applications

• Algorithmic trading

• Language translation/speech recognition

• Object detection/image recognition

• Cybersecurity – Threat identification/prevention

#### Generative AI

• Generative AI (GenAI) refers to a class of artificial intelligence algorithms designed to generate new, original content or data.

• It goes beyond traditional AI by creating new examples rather than predicting existing ones, making it valuable for content creation and innovation.

#### Text Generation

- Generative Pre-Trained Transformers (GPT)
  - ChatGPT
  - Google Bard
- Generate content based on prompts
- Can be pre-trained for specific data

#### Image Generation

- Generate images based on descriptions
  - StableDiffusion
  - Midjourney
- Generate images based on contexts
  - Adobe Generative Fill

# Stable Diffusion with Brain Activity

https://sites.google.com/view/stablediffusion-with-brain/



# Pope Francis with Jacket



#### Business Applications of GenAI

- Customer services
  - ChatBot
  - Automated Email
- Training and skill development
- Review generation
- Implications in education

#### Artificial General Intelligence

- AGI refers to a type of artificial intelligence that possesses the ability to understand, learn, and apply knowledge across a wide range of tasks at a level comparable to human intelligence.
- It implies a system that can generalize its understanding and adapt to diverse contexts, demonstrating a broad spectrum of cognitive abilities.
- AGI aims to replicate or mimic human cognitive functions, including reasoning, problem-solving, perception, and natural language understanding.

#### Artificial General Intelligence

- How close are we to AGI?
- Any ethical and safety considerations?
- Achieving AGI remains an active area of research and is considered a long-term goal in the field of artificial intelligence.
- Researchers face challenges such as developing robust learning algorithms, addressing ethical concerns, and ensuring the alignment of AGI goals with human values.

# 10-Min Break

Any Questions?

- Bias and Fairness Issues
  - What should be considered "fair"?
  - How to ensure the fairness?
  - Behavioral responses to fairness

- Privacy Issues
  - What data can companies collect?
  - How should companies use the data they have?
  - Opt-in vs. Opt-out

- Transparency and Explainability Issues
  - Do we need to understand how ML/AI make prediction?
  - Ensuring models are explainable is crucial for building trust, as stakeholders may demand accountability and understanding of the reasoning behind AI-driven decisions.

- Autonomy and Accountability Issues
  - Do we need to make sure that the data we have are correct?
  - Do we need to make accurate predictions?
  - Who should be responsible for damages caused by ML/AI?

- Job Displacement and Economic Impact
  - Automation and AI-driven technologies have the potential to displace jobs, leading to economic and social implications.
  - Ethical considerations include addressing the impact on employment, fostering reskilling initiatives, and mitigating potential societal inequalities resulting from technological advancements.

# Thank you!