

Ανακάλυψη Γνώσης σε Βάσεις Δεδομένων (ISE709)

ΑΚΑΔ. ΕΤΟΣ 2024-25

Διδάσκουσα: Γ. Κολωνιάρη

HW3

Εξόρυξη Γνώσης σε Δεδομένα - Εργασία 3 (Clustering)

Φοιτητής: Ερρίκος Ματεβοσιάν

AM: iis23018

(A) Συσταδοποίηση με το χέρι, Hierarchical και KMeans

```
(i)
BHMA 1: a(0), b(3), c(5), d(8), e(10), f(12), g(16), h(17), i(19), j(20)
BHMA 2: a(0), b(3), c(5), d(8), e(10), f(12), g(16), h(17), ij(19,20)
BHMA 3: a(0), b(3), c(5), d(8), e(10), f(12), gh(16,17), ij(19,20)
BHMA 4: a(0), bc(3,5), d(8), e(10), f(12), gh(16,17), ij(19,20)
BHMA 5: a(0), bc(3,5), de(8,10), f(12), gh(16,17), ij(19,20)
BHMA 6: a(0), bc(3,5), def(8,10,12), gh(16,17), ij(19,20)
BHMA 7: abc(0,3,5), def(8,10,12), gh(16,17), ij(19,20)
BHMA 8: abcdef(0,3,5,8,10,12), gh(16,17), ij(19,20)
BHMA 9: abcdef(0,3,5,8,10,12), ghij(16,17,19,20)
BHMA 10: abcdef(0,3,5,8,10,12,16,17,19,20)
(ii)
BHMA 1: a(0), b(3), c(5), d(8), e(10), f(12), g(16), h(17), i(19), j(20)
BHMA 2: a(0), b(3), c(5), d(8), e(10), f(12), g(16), h(17), ij(19,20)
BHMA 3: a(0), b(3), c(5), d(8), e(10), f(12), gh(16,17), ij(19,20)
BHMA 4: a(0), bc(3,5), d(8), e(10), f(12), gh(16,17), ij(19,20)
BHMA 5: a(0), bc(3,5), de(8,10), f(12), gh(16,17), ij(19,20)
BHMA 6: a(0), bc(3,5), def(8,10,12), gh(16,17), ij(19,20)
BHMA 7: abc(0,3,5), def(8,10,12), gh(16,17), ij(19,20)
BHMA 8: abcdef(0,3,5,8,10,12), gh(16,17), ij(19,20)
BHMA 9: abcdef(0,3,5,8,10,12), ghij(16,17,19,20)
BHMA 10: abcdefgij(0,3,5,8,10,12,16,17,19,20)
(iii)
BHMA 1: c1-centroid=0, c2-centroid=3, c3-centroid=8
```

ανάθεση σημείων: c1(a) c2(b,c) c3(d,e,f,g,h,i,j)

BHMA 2: c1-centroid=0, c2-centroid=4, c3-centroid=14.57 ανάθεση σημείων: c1(a) c2(b,c,d) c3(e,f,g,h,i,j)

BHMA 3: c1-centroid=0, c2-centroid=5.33, c3-centroid=15.67 ανάθεση σημείων: c1(a) c2(b,c,d) c3(e,f,g,h,i,j)

BHMA 4: c1-centroid=0, c2-centroid=5.33, c3-centroid=15.67 ανάθεση σημείων: ΙΔΙΑ ΜΕ ΠΡΙΝ

Γ) Weka K-Means:

- Για το K-Means, δοκιμάστηκαν 5 διαφορετικα random seeds (1, 10, 45, 100, 130), και τα αποτελέσματα για κάθε seed παρουσίασαν κάποιες διακυμάνσεις στις κατανομές των δεδομένων στους 4 κλάδους.
- Οι ομάδες 0, 1, 2 και 3 είχαν διάφορες κατανομές, με τις περισσότερες ομάδες να περιλαμβάνουν 13-23 άτομα, και με τις κατηγορίες να είναι κάπως ασαφείς, χωρίς να υπάρχει πλήρης αντιστοιχία μεταξύ των κατηγοριών και των ομάδων.
- Τα αποτελέσματα ήταν ικανοποιητικά, αν και απαιτήθηκαν πολλές δοκιμές με διάφορα seed για να επιτευχθούν πιο ισχυρές συστάσεις.

Clustered	Instances	Clustered In	nstances	Clustered Instances
1 23 2 8	(32%) (37%) (13%) (19%)	0 23 (1 20 (2 12 (3 8 (32%)	0 23 (37%) 1 12 (19%) 2 8 (13%) 3 20 (32%)
1		10		45
	Clustered Inst	ances	Clustered Ins	tances
	0 10 (16 1 13 (21 2 12 (19 3 28 (44	%) %)	0 12 (1 1 23 (3 2 8 (1	7%) 3%)
	100	0)	3 20 (3	2%)

Hierarchical Clustering:

- Δοκιμάστηκαν τέσσερις διαφορετικοί τρόποι για την μέτρηση της απόστασης μεταξύ των ομάδων: SINGLE, COMPLETE, AVERAGE, και CENTROID.
- Τα αποτελέσματα ήταν παρόμοια για κάθε μέθοδο μέτρησης της απόστασης. Ο αλγόριθμος δημιούργησε 4 ομάδες, με κατανομές παρόμοιες με εκείνες του K-Means (όπως 37% στην ομάδα 0, 32% στην ομάδα 3 κλπ.).
- Ωστόσο με Hierarchical Clustering εμφανίστηκαν πιο "σφιχτές" ομάδες, χωρίς μεγάλες διακυμάνσεις στις κατανομές των δεδομένων, σε σχέση με το Κ-Means. Πέρα από τον COMPLETE, τα υπόλοιπα ήταν ίδια

Clustered Instances		Clustered	Instances
0	23 (37%) 8 (13%)	1 21	(22%) (33%) (13%)
3	12 (19%) 20 (32%)		(32%)
ΟΛΑ		COMF	PLETE

Συγκρίνοντας τους δύο αλγόριθμους, η απόδοση του K-Means εξαρτάται από την αρχική επιλογή των seeds, με αποτέλεσμα να παρατηρούνται διαφορετικές κατανομές ανάλογα με την τυχαία αρχικοποίηση. Αυτό μπορεί να οδηγήσει σε λιγότερο σταθερά αποτελέσματα. Από την άλλη, ο Hierarchical παράγει πιο συνεκτικές και σταθερές ομάδες

Με βάση τα αποτελέσματα της άσκησης και την ανάλυση των δύο αλγορίθμων, ο Hierachical φαίνεται να είναι η καλύτερη επιλογή για το σύνολο δεδομένων "cancer.arff". Ο αλγόριθμος αυτός παρέχει πιο συνεκτικά και αξιόπιστα αποτελέσματα σε σύγκριση με το K-Means,