Comunicações Móveis 5G Urbano

*Note: Sub-titles are not captured in Xplore and should not be used

1st Marco Gameiro 2181091

Engenharia Eletrotécnica e de Computadores

Politécnico de Leiria

Leiria, Portugal

2181091@my.ipleiria.pt

Abstract—This paper describes a 5G propagation study for a specific region. Both the signal quality and the bit rate in specific areas, are addressed. The antenna radiation pattern is also shown

Keywords—component, formatting, style, styling, insert (key words)

I. Introduction (Heading 1)

II. ENQUADRAMENTO E ESTADO DA ARTE

Foi desenvolvido, no âmbito da UC de Comunicações Móveis, um projeto que visa o estudo da comunicação 5G em ambiente Urbano. O IDE de programação utilizado foi o MatLab.

De modo a maximizar os beneficios em função do utilizador relativamente às redes 5G e tendo em conta as diferentes situações existentes em ambiente Urbano, foram adotadas as normas da *Autoridade Nacional das Comunicações (ANACOM)*, referentes às diferentes gamas de frequência, que se encontram descritas em 2.1, e em [1].

Tab.2.1. Tabela de frequências 5G

Bands	Quantity of Spectrum	Lot size
700 MHz	2 x 30 MHz (FDD)	2 x 5 MHz
900 MHz	2 x 5 MHz (FDD) + 2 x 3 MHz (FDD) + 2 x 1 MHz (FDD)	2 x 5 MHz and 2 x 1 MHz
1800 MHz	2 x 15 MHz (FDD)	2 x 5 MHz
2.1 GHz	2 x 5 MHz (FDD)	2 x 5 MHz
2.6 GHz	2 x 10 MHz (FDD) + 25 MHz (TDD)	2 x 5 MHz 25 MHz
3.6 GHz	20 x 20 MHz (TDD)	20 MHz (national and regional)

III. DEFINIÇÃO DOS CENÁRIOS DE ESTUDO

Como cenário de estudo ter-se-á a cidade de Leiria para o estudo da simulação de cobertura.

Dado que a densidade populacional do concelho de Leiria é de 224,6 hab/km², para uma área de 1000Mx1000M = 1km², tem-se, em média, uma população de 224,6 habitantes. Desta forma, encontrase representado na figura 3.1 o mapa das distâncias.

Fig.3.1. Mapa das distâncias para uma área de $1km^2$

IV. METODOLOGIA A ADOTAR

Este trabalho visa apresentar estratégias para a cobertura, identificação e minimização de interferências, mobilidade, qualidade e capacidade por serviço. A metodologia que se adoptou foi a seguinte:

1. Pleneamento celular genérico

Nesse sentido, definiu-se um agregado de 6 células, com configuração hexagonal, sendo cada célula composta por 3 setores. Desta forma, o ângulo interno para cada um dos setores é dado por 360°/3 = 120°. Na figura 4.1, encontra-se representado este planeamento celular.

Fig.4.1. Planeamento Celular da rede 5G

Definiram-se as antenas transmissoras com uma altura de 25 metros, e uma potência transmitida de 44 dBm. Relativamente às antenas recetoras, definiu-se uma sensibilidade de -90 dBm.

2. Sistemas radiantes

Foram também incorporados diagramas de radiação das antenas, que se podem observar nas figuras 4.2 e 4.3.

Fig.4.2. Diagrama de Radiação da antena

Fig.4.3. Diagrama de Diretividade da antena

3. Simulação de cobertura e obtenção de KPI relevantes

Os pontos indicados a vermelho, na figura 4.4, referemse às localizações das antenas transmissoras, enquanto que aqueles que se encontram indicados a azul se referem às localizações das antenas recetoras.

Em, pelo menos, duas ocasiões, foi calculado o nível de sinal presente no centro de um "triângulo grográfico" formado, quer apenas pelas localizações de certas antenas transmissoras, quer também por localizações de certas antenas recetoras. De modo a calcular a localização do centro destes triângulos, foi utilizada a equação 4.1, tendo por base [2], sendo que X_i e Y_i representam, respetivamente, a latitude e longitude de cada um dos pontos,

$$C_{\Delta}(x_c, y_c) = \left(\frac{\sum_{i=1}^{3} X_i}{3}, \frac{\sum_{i=1}^{3} Y_i}{3}\right)$$
 (4.1)

Na análise do best server:

- Caso as distâncias da antenna transmissora às antenas recetoras sejam diferentes entre si, o cálculo do melhor servidor torna-se trivial.
- Caso existam distâncias (da antena transmissora às recetoras) que sejam iguais, verifica-se o nível de sinal nestas antenas recetoras.

Em ambos os casos, considerou-se o ponto onde o nível de sinal é melhor.

Para o cálculo da distância utilizou-se a função *distance* do MatLab (disponível em [3]). Esta função devolve dois valores, sendo que o primeiro (pela formula de *Haversine*), pelo facto de ser mais preciso, foi o utilizado neste estudo.

Fig.4.4. Localização das antenas

Na figura 4.5 encontra-se representado o nível de sinal em cada um dos pontos selecionados, sendo que a margem, de manobra, também representada, reflete a diferença entre o nível de sinal e a sensibilidade da antenna recetora, de acordo com a equação 4.2, onde $P_{Receivver}$ designa a sensibilidade da antena recetora, e S o nível de sinal

Fig.4.5. Análise da cobertura

$$Margin = P_{Receiver} - S$$
 (4.2)

O cálculo do débito binário, correspondente ao limite de Shannon, foi efetuado através da equação 4.3, e encontra-se graficamente representado na figura 4.6.

$$C = B \log_2(1 + SNR) \tag{4.3}$$

Fig.4.6. Débito Binário correspondente ao limite de Shannon

Neste caso, o débito binário máximo possível, segundo o limite de Shannon, é de 1.7 Gbps. Tendo em conta que, segundo a ANACOM, o débito binário, no 5G, é de 10.240Gbps em *download*, o débito calculado encontra-se na mesma ordem de grandeza do ideal.

Encontram-se, nas tabelas 3.1, 3.2 e 3.3, os valores relativos ao nível de sinal, à respetiva margem tendo em conta a sensibilidade na receção e ao débito binário correspondente ao limite de Shannon, respetivamente, para as frequências de 700 MHz, 900 MHz e 1500 MHz.

Tab.3.1. Parâmetros medidos, para 700 MHz

Fields	☐ Sinal_Strength ☐	Hargem_de_Manobra	Hannon_Limit
1	-41.0527	48.9473	1.6260e+09
2	-38.5997	51.4003	1.7075e+09
3	-44.0466	45.9534	1.5265e+09
4	-59.4482	30.5518	1.0150e+09
5	-45.7739	44.2261	1.4692e+09
6	-47.1496	42.8504	1.4235e+09
7	-34.5522	55.4478	1.8419e+09
8	-80.0730	9.9270	3.4374e+08
9	-40.5204	49.4796	1.6437e+09
10	-28.3797	61.6203	2.0470e+09
11	-105.7186	15.7186	5.2597e+08
12	-70.1915	19.8085	6.5952e+08
13	-31.4206	58.5794	1.9460e+09
14	-73.4310	16.5690	5.5355e+08

Tab.3.2. Parâmetros medidos, para 900 MHz

Fields	☐ Sinal_Strength ☐	Hargem_de_Manobra	${\color{red} \blacksquare} \ {\color{blue} Shannon_Limit}$
1	-29.8965	60.1035	1.9966e+09
2	-37.1831	52.8169	1.7545e+09
3	-30.7702	59.2298	1.9676e+09
4	-69.8082	20.1918	6.7213e+08
5	-49.5492	40.4508	1.3438e+09
6	-54.9014	35.0986	1.1660e+09
7	-32.6755	57.3245	1.9043e+09
8	-92.9157	2.9157	1.5641e+08
9	-48.6249	41.3751	1.3745e+09
10	-35.0984	54.9016	1.8238e+09
11	-118.4226	28.4226	9.4439e+08
12	-73.0603	16.9397	5.6561e+08
13	-39.0671	50.9329	1.6920e+09
14	-84.4275	5.5725	2.2041e+08

Tab.3.3. Parâmetros medidos, para 1500 MHz

Fields	■ Sinal_Strength	Hargem_de_Manobra	H Shannon_Limit
1	-43.5286	46.4714	1.5437e+09
2	-43.1577	46.8423	1.5561e+09
3	-40.7777	49.2223	1.6351e+09
4	-80.2794	9.7206	3.3753e+08
5	-54.3047	35.6953	1.1858e+09
6	-58.9587	31.0413	1.0313e+09
7	-41.4650	48.5350	1.6123e+09
8	-109.4444	19.4444	6.4756e+08
9	-53.2806	36.7194	1.2198e+09
10	-37.8591	52.1409	1.7321e+09
11	-133,4449	43.4449	1.4432e+09
12	-87.9274	2.0726	1.3849e+08
13	-42.4986	47.5014	1.5780e+09
14	-97.6354	7.6354	2.7659e+08

4. Exportação dos resultados, devidamente georreferenciados, para formato *kml*, e inclusão do modelo *raytrace*, em determinadas regiões

De seguida, foi utilizado o modelo de propagação *raytrace* numa determinada área específica em redor de cada antena transmissora, com um raio de, aproximadamente 11.77 metros, com resolução de 1 metro.

Os pontos indicados a vermelho, na figura 4.7, referem-se às localizações das antenas transmissoras, enquanto que aqueles que se encontram indicados a azul se referem às localizações das antenas recetoras.

Fig.4.7. Localização das antenas

Na figura 4.8 encontra-se representado o nível de sinal em cada um dos pontos selecionados, bem como a respetiva margem, tendo em conta a sensibilidade da antena recetora.

Fig.4.8. Análise da cobertura

Também se encontra, para este caso, representado, na figura 4.9, o débito binário correspondente ao limite de Shannon.

Fig.4.9. Débito Binário correspondente ao limite de Shannon

Neste caso, o débito binário máximo possível, segundo o limite de Shannon, é semelhante ao conseguido no caso anterior. Tendo em conta que, segundo a ANACOM, o débito binário, no 5G, é de 10.240Gbps em *download*, o débito calculado encontra-se na mesma ordem de grandeza do tabelado.

Considerando um Sistema MIMO para ambos os casos, com um total de seis antenas, o débito binário máximo seria de 1.96 Gbps, o que significaria um aumento de 15% face ao débito binário máximo alcançado para um sistema SISO.

A exportação dos dados para formato *kml* foi efetuada para as três diferentes frequências utilizadas (700MHZ, 900MHz e 1500MHz). Para tal, recorreu-se à função *kmlwritepoint* do MatLab (disponível em [3]).

REFERENCES

- [1] ANACOM, "ANACOM creates conditions for consistent and competitive development of 5G in Portugal", Press releases, Press room, Comunication area. Available at:
- https://www.anacom.pt/render.jsp?contentId=1493002, November 2019
- [2] Catherine S. Claudia F. et all, "How to Find the Centroid of a Triangle", Lesson, Academy, Study.com.
- [3] MATLAB, "MatLab Documentation", MatLab, Help, mathworks.com.