Generalization of least square method (廣義最小平方法)

加減 Plus & Minus 2020.2

1 機器學習情境回顧

給定已知 N+1 筆 , M+K 維"連續變數"資料集, $\mathcal{D}:=\left\{\left(\underbrace{x_1^{(n)},x_2^{(n)},...x_M^{(n)}}_{\vec{x}^{(n)}},\underbrace{y_1^{(n)},y_2^{(n)},...,y_K^{(n)}}_{\vec{y}^{(n)}}\right)\right\}_{n=1}^{N+1}$

• 切割資料集

$$\forall \ \sigma \in \mathcal{S}_{N+1}, \mathcal{D} = \mathcal{D}_{\sigma}^{\text{train}} \cup \mathcal{D}_{\sigma}^{\text{valid}},$$

- $\ \, \text{本文只考慮 Leave-One-Out} : \ |\mathcal{D}_{\sigma}^{\text{train}}| = N, \\ |\mathcal{D}_{\sigma}^{\text{valid}}| = 1 \ \mathbb{P} \quad \sigma \in S_{N+1}^{Loo}, \\ |S_{N+1}^{Loo}| = C_N^{N+1} = N+1$
- 只根據 $\mathcal{D}^{\mathrm{train}}_{\sigma}$, 可建構迴歸模型 $F_{\sigma}: \mathbb{R}^{M} \longrightarrow \mathbb{R}^{K}$, 並同時使用 $\mathcal{D}^{\mathrm{train}}_{\sigma}$, $\mathcal{D}^{\mathrm{valid}}_{\sigma}$ 來評估建模成效

終極目標:
$$\forall \sigma \in \mathcal{S}_{N+1}, \forall n = 1, 2, ..., N+1$$
 $\underbrace{F_{\sigma}(\vec{x}^{(n)})}_{\text{predicted}} \approx \underbrace{\vec{y}^{(n)}}_{\text{target}}$

• 根據多維向量定義,可以把單一模型 $F: \mathbb{R}^M \longrightarrow \mathbb{R}^K$ 問題,想成獨立K個模型 $f: \mathbb{R}^M \longrightarrow \mathbb{R}$

$$F_{\sigma}(\vec{x}^{(n)}) = \begin{bmatrix} f_1(\vec{x}^{(n)}) \\ f_2(\vec{x}^{(n)}) \\ \dots \\ f_K(\vec{x}^{(n)}) \end{bmatrix} \approx \begin{bmatrix} y_1 \\ y_2 \\ \dots \\ y_K \end{bmatrix} = \vec{y}^{(n)}$$

- 於是只需研究 $f(\vec{x}^{(n)}) \approx y^{(n)} \in \mathbb{R}$ 迴歸問題如何建模!!
- 損失函數(Loss function)越小越好概念:

$$f(\vec{x}^{(n)}) \approx y^{(n)} \Longrightarrow \left(f(\vec{x}^{(n)}) - y^{(n)} \right)^2 \approx 0$$

$$\Longrightarrow \underbrace{\frac{1}{N} \sum_{n=1}^{N} \left(f(\vec{x}^{(n)}) - y^{(n)} \right)^2}_{\text{training.loss}(\mathcal{D}_{\sigma}^{\text{train}})} \approx 0, \underbrace{\left(f(\vec{x}^{(N+1)}) - y^{(N+1)} \right)^2}_{\text{validation.loss}(\mathcal{D}_{\sigma}^{\text{valid}})} \approx 0$$

- 交叉驗證(cross validation)最大誤差越小概念:

 $\underset{\text{overall }\sigma}{\Longrightarrow} \max_{\sigma} \text{ training_loss}(\mathcal{D}_{\sigma}^{\text{train}}) \approx 0, \max_{\sigma} \text{ validation_loss}(\mathcal{D}_{\sigma}^{\text{valid}}) \approx 0$

2 模型假設 = 參數化 + 線性組合假設

•
$$f(\vec{x}^{(n)}) \stackrel{\exists | \lambda \notin \mathbb{Z} \oplus \mathbb{Z}}{\Longrightarrow} f(\vec{w}, \vec{x}^{(n)}) := \sum_{b \in \mathcal{B}} w_b \cdot g_b(\vec{x}^{(n)}) \in Span \left\{ g_b \right\}_{b \in \mathcal{B}} =: Span \ g_{\mathcal{B}} \quad \text{(linear combinations of given basis } g_{\mathcal{B}})$$

- 常見 basis $g_{\mathcal{B}}, (M=1)$
 - Simple Intepolation:

$$g_{\mathcal{B}} := \left\{1, x_1, x_1^2, ... x_1^{N-1}\right\}$$

- Special Functions:

 $g_{\mathcal{B}} := \text{Hermites}$, Chebyshevs, Legendres, Laguerres, Bessels...

- Fourier Series:

$$g_{\mathcal{B}} := \left\{ e^{ikx_1} \right\}_{k \in \mathbb{Z}}$$

- ODE(微分方程)

$$g_{\mathcal{B}} := \left\{ e^{\lambda x_1} \right\}_{\lambda \in \text{eigenvalues}}$$

- 常見 basis $g_{\mathcal{B}}, (M \geq 1)$:
 - Linear Regression:

$$g_{\mathcal{B}} := \left\{ 1, x_1, x_2, ... x_M \right\}$$

- Response Surface Methodology:

$$g_{\mathcal{B}} := \left\{1, \underbrace{x_1, x_2, ..., x_M}_{\text{first-order M terms}}, \underbrace{x_1^2, ..., x_M^2, x_1 x_2, x_1 x_3, ... x_{M-1} x_M}_{\text{second-order M^2 terms (features interaction)}}\right\}$$

- DIY or data transform by domain knowledge ...

3 核心推導

• 計算 \vec{w}^* 使得 training_loss($\vec{w}^*, \mathcal{D}^{\text{train}}_{\sigma}$) 最小,則必須滿足 first-order optimality condition

$$\frac{\partial}{\partial w_{b}} \left[\frac{1}{2} \sum_{n=1}^{N} \left(f(\overrightarrow{w_{b}}, \overrightarrow{w_{-b}}, \overrightarrow{x}^{(n)}) - y^{(n)} \right)^{2} \right] = \sum_{n=1}^{N} \left[\frac{1}{2} \cdot \frac{\partial}{\partial w_{b}} \left(f(\overrightarrow{w_{b}}, \overrightarrow{w_{-b}}, \overrightarrow{x}^{(n)}) - y^{(n)} \right)^{2} \right] = 0$$

$$\implies \sum_{n=1}^{N} \frac{1}{2} \times 2 \left(f(\overrightarrow{w}, \overrightarrow{x}^{(n)}) - y^{(n)} \right) \cdot g_{b}(\overrightarrow{x}^{(n)}) = \sum_{n=1}^{N} \left(\sum_{b' \in \mathcal{B}} w_{b'} g_{b'}(\overrightarrow{x}^{(n)}) - y^{(n)} \right) \cdot g_{b}(\overrightarrow{x}^{(n)}) = 0$$

$$\implies \bigwedge_{b \in \mathcal{B}} \left\{ \sum_{b' \in \mathcal{B}} \sum_{n=1}^{N} g_{b'}(\overrightarrow{x}^{(n)}) g_{b}(\overrightarrow{x}^{(n)}) w_{b'} = \sum_{n=1}^{N} y^{(n)} \cdot g_{b}(\overrightarrow{x}^{(n)}) \right\}$$

$$\equiv \underbrace{\left[\sum_{n=1}^{N} \phi^{(n)} \phi^{(n)} \right]^{T}}_{\text{Matrix}(|\mathcal{B}| \times |\mathcal{B}|) \cdot \text{Vector}(|\mathcal{B}| \times 1) \text{ Multiplication}}^{\overrightarrow{w}} \text{ where } \phi^{(n)} := [g_{b'}(\overrightarrow{x}^{(n)})]_{b' \in \mathcal{B}} \text{ is column vector (also called kernel !!)}$$

• analytic optimal solution:

$$\vec{w}^* = \left[\sum_{n=1}^N \phi^{(n)} \phi^{(n)^T}\right]^{-1} \left[\sum_{n=1}^N y^{(n)} \phi^{(n)}\right]$$