Automatic Segmentation of Human Aorta through 4D MRI

Raghuvir Jonnagiri¹

Dr. Elias Sundström¹

Dr. Iris Gutmark Little²

Dr. Ephraim Gutmark¹

Dr. Justin Tretter²

¹Department of Aerospace Engineering, University of Cincinnati, OH.

²Department of Pediatrics, University of Cincinnati, OH.

Research Motivation

To study the influence of aorta geometry on hemodynamics

Image credit: healthtipinsurance.com

Phase Contrast MRI?

Regular MRI

MRI with Phase Contrast

Softwares used: Slicer3d, Paraview

Why not use existing software?

- Flow analysis limited to shear stress and pressure
- Restrictions on exporting data for further analysis
- No transparency in mathematical models used
- Different results from different software

Velocity Corrections in 4D MRI

- Remove pixels with low magnitudes
- Eddy current offset errors reduced based on static tissue
- Remove calibration artifacts

- Remove pixels with high velocity at second half of cardiac phase
- Identify descending aorta and calculate flow rate through it.

- Using DAo flow rate, Refine rest of the domain using correlation.
- Use axial component of velocity to separate aorta and pulmonary artery

- Calculate centerline.
- Remove branches.
- Smoothen centerline

- Check the final mask
- Compare the results with manual segmentation

Planar streamlines

Current status

- Correct errors in 4D MRI scans
- Segmentation and extraction for aortas with tricuspid and bicuspid values
- Plot velocity and it's derivatives along desired planes

Future

- Calculation of number of vortices and their positions.
- Extend current algorithm for unicuspid and diseased values/aortas.
- Automatic segmentation of 3D MRI and CFD simulation.

Thank you

Questions?

