Math-Topic Classification with MLflow

AIN-3009 — MLOps Term-Project Report

Firas Elbayoumi — 2100503

May 17, 2025

Contents

1	Introduction	2
2	Dataset	
3	Methodology3.1 Pipeline Overview3.2 Model Choice3.3 QLoRA Configuration3.4 Training Environment	3 3 4 4 4
4	Hyper-parameter Tuning	
5	Results	6
6	Deployment	
7	Difficulties & Lessons Learned	7

1 Introduction

This project implements a complete MLOps workflow that classifies any mathematical question into one of eight well-defined topics. Beyond mere model training, it tracks every experiment end-to-end with MLflow, automates hyper-parameter search, and packages the winning checkpoint as a reproducible MLflow artifact. The workflow further demonstrates real-world operability by deploying the model as an Azure ML online endpoint and wiring a lightweight FastAPI front end for interactive use question to one of eight topics, using data from the Kaggle competition *Classification of Math Problems by Kasut Academy*. The work is steered by three objectives:

- 1. **Efficiency** exploit 4-bit QLoRA so that large language models (LLMs) can be fine-tuned on a single P100.
- 2. **Reproducibility** capture every experiment with MLflow and promote the best run through a governed model registry.
- 3. **Operability** expose an Azure ML online endpoint and provide a minimal web front end suitable for educational platforms.

The delivered system achieves **0.9114 F1-micro** on the private leaderboard $(7^{th}/341)$.

2 Dataset

The competition supplies the training and test corpora in plain-text CSV files: 21 600 labeled questions and 5 400 unlabeled questions, each row containing a single problem statement. Over 97 % of questions are fewer than 500 characters (≈ 200 tokens), making them well within the context window of modern small LLMs. A stratified 70 %/30 % train/validation split is used with random seed 42 so every topic is represented proportionally.

Table 1: Eight target classes provided by the competition.

ID	Topic
0	Algebra
1	Geometry and Trigonometry
2	Calculus and Analysis
3	Probability and Statistics
4	Number Theory
5	Combinatorics and Discrete Math
6	Linear Algebra
7	Abstract Algebra & Topology

¹Competition URL recorded in the hyperlink.

3 Methodology

3.1 Pipeline Overview

Figure 1 summarizes the lifecycle—starting with raw data and ending with a live endpoint and Kaggle submission.

Figure 1: Full ML lifecycle: data ingestion, training, MLflow tracking, evaluation, model selection, Azure ML deployment, and final Kaggle submission.

- 1. **Data** Load the text questions and perform minimal normalization (lower-casing and whitespace cleanup).
- 2. **Model Training** Fine-tune a 4-bit quantized LLM with LoRA adapters; objective = cross-entropy.
- 3. **Log & Save** MLflow records all parameters, metrics, and model artifacts (checkpoints, tokenizer) during training.
- 4. **Model Evaluation** Validation loss and F1 are computed each epoch; early stopping prevents over-fitting.
- 5. **Final Model Selection** The run with highest validation F1 is promoted in the MLflow Model Registry.
- 6. **Deploy with Azure ML Endpoint** The chosen model is served through Azure MLflow workspace.
- 7. **Submit to Kaggle** Predictions on the public test set are uploaded for leaderboard scoring.

3.2 Model Choice

Phi-4 Mini Reasoning (3.8 B) was selected for its strong reasoning capacity and manageable parameter count. 4-bit QLoRA compression reduces GPU memory to ≈ 5.3 GB, enabling batch size 16 on a P100.

3.3 QLoRA Configuration

- Quantization: NF4 integers with double-quant strategy.
- Adapter rank: 8 (empirically optimal).
- Target modules: attention and MLP projections.
- Optimizer: paged_adamw_32bit; weight decay 0.01; linear scheduler.

3.4 Training Environment

All experiments ran inside Kaggle Notebook sessions backed by a single NVIDIA Tesla P100 GPU (16 GB VRAM), 13 GB system RAM, and one vCPU. The software stack was CUDA, PyTorch, Hugging Face Transformers , and bitsandbytes. Thanks to 4-bit QLoRA quantization, the full 3.8 B-parameter model plus adapters, optimizer state, and a batch size of 16 comfortably fit within the 16 GB GPU memory limit.

4 Hyper-parameter Tuning

A grid search explored LoRA rank $\{4, 8, 16\}$ and learning rate $\{1 \times 10^{-4}, 2 \times 10^{-5}, 1 \times 10^{-5}\}$.

Figure 2: Training and validation loss versus steps for LoRA ranks 4, 8, 16. Rank 8 converges fastest while retaining good generalization.

Figure 3: Validation loss trajectories for three learning rates; curves almost overlap, indicating robustness to the LR choice.

5 Results

Figure 4: Validation F1 comparison—Phi-4 Mini Reasoning outperforms LLaMA-8B and Qwen-2.5-7B under the identical fine-tuning recipe.

• Best run: Phi-4 Mini Reasoning + LoRA rank $8 + LR 1 \times 10^{-4}$

• Validation F1: 0.912

• Private-test F1: 0.9114 (7th/341)

6 Deployment

Model registry → Azure ML. The production run is exported by MLflow and registered on Azure ML; conda.yaml and a model signature are auto-generated.

Endpoint. The 3.8 B model exceeded the free CPU quota, so a distilled *Qwen-2.5-0.5 B QLoRA adapter* was merged and deployed, sacrificing $\approx 2\%$ F1 but meeting cost constraints. The endpoint exposes /score and is secured by a managed identity.

Frontend. A lightweight FastAPI UI (Figure 5) calls the endpoint, displays topic probabilities, and is containerized, pushed to Azure Container Registry, and served on Azure Web App (B1 plan).

Live demo \rightarrow ain3009-webapp.azurewebsites.net Source code \rightarrow github.com/FerasOo/math-topic-classifier

Figure 5: Screenshot of the deployed FastAPI frontend querying the Azure ML endpoint.

7 Difficulties & Lessons Learned

- 1. **MLflow** \rightarrow **Azure ML Compatibility**. Local runs packaged cleanly, but Azure required explicit Python, CUDA, and bitsandbytes versions before acceptance.
- 2. **Resource Constraints**. GPU inference was beyond the course subscription, necessitating deployment of the smaller 0.5 B model—highlighting the importance of artifact-size budgeting early in the project.