- ☐ A tarefa deste trabalho será fazer a prototipação em FPGA do processador R8
- Inicialmente será necessário trocar a memória a fim de que ela seja implementada utilizando as Block RAMs do FPGA

- □ A descrição da memória a ser utilizada está no moodle
 - Memory.vhd
 - Devido à maneira como foi descrita esta memória, o sintetizador (XST) fará a inferência de block RAMs
 - □ O número de posições da memória deve ser 2¹⁵ (32768)
 e a largura dos dados 16 bits

```
RAM: entity work.Memory

generic map (

ADDR_WIDTH => 15, -- 32768 posições (2^15)

DATA_WIDTH => 16, -- palavras de 2 Bytes
```

Capacidade de armazenamento da memória: 64KB Block RAM disponível no FPGA Spartan-6 LX16: ~70KB (72000B)

 O arquivo de imagem desta memória deve conter o conteúdo de todas as posições da memória.
 Uma palavra por linha

- ☐ Para gerar a nova imagem, uma nova versão do simulador estrá disponível no *moodle*
 - R8_sim.jar
 - Além de gerar a imagem no formato até então utilizada, será gerada também automaticamente uma imagem com sufixo _BRAM
 - Exemplo: Todas_Instrucoes_R8.asm
 - Todas_Instrucoes_R8.txt
 - Todas_Instrucoes_R8_BRAM.txt

- ☐ Visto que a nova memória tem a leitura síncrona, será necessário que ela opere nas bordas de descida do *clock* do processador para fins de sincronia
 - Basta setar o clock da memória como o complemento do clock do processador

- □ A prototipação será feita utilizando a placa Nexys3 (NUPEDEE)
 - □ Nesta placa o FPGA opera a 100MHz, no entanto nosso projeto deve operar a 50 MHz
 - □ Para dividir a frequência da placa utilizaremos um dos DCMs (*Digital Clock Manager*) do FPGA

- □ Para utilizar o DCM do FPGA, deve-se adicionar ao projeto componente *ClockManager*
 - ClockManager.vhd (moodle)

```
Não utlizaremos estes
entity ClockManager is
    port (
         -- Board clock (100MHz
                                     std logic;
        clk in
                                     std logic;
                             out
                                     std logic;
                             out
                                     std logic
                            : out
end ClockManager;
                                        clk_in / 2 (processador)
```

- ☐ Para simular componentes internos do FPGA (e.g. DCM) será necessário utilizar a biblioteca UNISIM
 - Moodle: unisim.zip (descompactar)
- Para adicionar biblioteca no Modelsim
 - □ Abrir o menu de contexto do painel *Library* e selecionar
 New → Library

- □ Para simular componentes internos do FPGA (e.g.
 □ DCM) será necessário utilizar a biblioteca UNISIM
 - Moodle: unisim.zip (descompactar)
- Para adicionar biblioteca no Modelsim
 - □ Abrir o menu de contexto do painel *Library* e selecionar
 New → *Library*
 - ☐ Marcar a opção
 "a map to an existing library",
 Adicionar o nome da library
 Selecionar o diretório da library

- ☐ Para simular componentes internos do FPGA (e.g. DCM) será necessário utilizar a biblioteca UNISIM
 - Moodle: unisim.zip (descompactar)
- Para adicionar biblioteca no Modelsim
 - □ Abrir o menu de contexto do painel *Library* e selecionar
 New → *Library*
 - ☐ Marcar a opção
 "a map to an existing library",
 Adicionar o nome da library
 Selecionar o diretório da library
 - □ Compilar (*Refresh*) -
 - É necessesário compilar apenas uma vez

□ Para simular projetos que utilizam o DCM, é necessário alterar a resolução do simulador Modelsim antes de iniciar a simulação

□ Para que seja possível verificar o funcionamento da prototipação utilizaremos os *displays* da placa

Block RAMs

☐ Implemented design

□ Spartan 6 (LX16)

DCM

- □ Aplicação
 - Implementar um contador com incremento de 1 segundo
 - Considerar o tempo de execução das instruções e a frequência a fim de atingir um incremento o mais próximo possível de 1 segundo
- □ Sequência sugerida para o desenvolvimento
 - 1. Trocar memória
 - Adicionar o DCM
 - 3. Adicionar a parte relativa à interface com os displays
 - 4. Prototipar
 - O arquivo com a imagem da memória deve estar no mesmo diretório do arquivo Memory.vhd
 - Atenção aos warnigs!

☐ Grupos de 2 alunos

- Apresentação da descrição do funcionando será IMPRETERIVELMEN TE dia 31/3
- A nota do trabalho dará ENORME ÊNFASE à execução correta da simulação
 - ☐ Se a simulação não funciona, não há o que apresentar
- A apresentação será oral, teórico-prática, frente ao computador, onde o grupo deverá explicar ao professor o projeto, a simulação e a implementação
- Em relação às duvidas, sejam pontuais