Métodos Heurísticos para o Problema de Escalonamento de Tarefas em uma Única Máquina com Data de Entrega Comum

José Eurípedes Ferreira de Jesus Filho jeferreirajf@gmail.com

Índice

- Problema
- Heurística
- Busca Local
- Algoritmo Memético
- Resultados
- Conclusões

Problema

- Ambiente com n tarefas a serem escalonadas.
- Apenas uma única máquina para processar todas as tarefas.
- Cada tarefa é formada de apenas uma única operação.
- Todas as tarefas estão disponíveis no início do horizonte de planejamento e possuem uma data comum d de entrega.
- Cada tarefa i = 1, ..., n possui um tempo de de processamento p_i .
- Cada tarefa $i=1,\ldots,n$ possui um custo de adiantamento (estoque) de α_i unidades por unidade de tempo e custo de atraso de entrega de β_i unidades por unidade de tempo.

Problema

• Para cada operação i=1,...,n, objetiva-se determinar o instante de início de processamento s_i de forma a minimizar a soma dos custos de adiantamento $(\sum \alpha_i(d-C_i))$ e atraso das tarefas $(\sum \alpha_i(C_i-d))$.

- Seja o conjunto Ω o conjunto de todas as tarefas ainda não escalonadas.
- Em um primeiro passo, para cada tarefa $i \in \Omega$ calcula-se

$$\overline{\alpha_i\beta_i} = \frac{(\alpha_i + \beta_i)}{2},$$

- Que representa a média dos custos por unidade de adiantamento e atraso de cada tarefa.
- Para selecionar a primeira tarefa λ a ser escalonada, primeiro calcula-se
- $\mu_i = \overline{\alpha_i \beta_i} (p_i [\max(p_i d, 0)]) \beta_i (\max(p_i d, 0))$

- μ_i indica uma estimativa do "ganho" de escalonar a tarefa $i \in \Omega$ para terminar seu processamento no instante d ou o mais próximo disso.
- Assim, escolhe-se $\lambda = \max(u_i)$, $\forall i \in \Omega$ com instante de início de processamento $s_{\lambda} = \max(d p_{\lambda}, 0)$.
- Para os demais passos, para cada tarefa $i \in \Omega$, os possíveis instantes de início de processamento são
- $s'_{i} = \begin{cases} e p_{i}, caso \ e p_{i} \ge 0 \\ -\infty, caso \ contrário \end{cases}$
- ou $s_i'' = t$, quer dizer, o primeiro caso considera adiantar o processamento da tarefa enquanto o segundo caso considera atrasar o processamento da tarefa. e e t são respectivamente o instante de início de processamento da primeira tarefa no escalonamento e o instante de término de processamento da última tarefa no escalonamento (earliness e tardiness).

- Seja $\omega_1 = \{(i,j) \mid i \in \Omega, j = \min\{\alpha_i(d-s_i'), \beta_i(s_i''+p_i)\}\},$ quer dizer, ω_1 é o conjunto formado pelos pares (i,j) tais que i é uma tarefa ainda não escalonada e j é o menor custo entre adiantar ou atrasar o processamento de i.
- Seja $j^{max} = \max\{j \mid (*,j) \in \omega_1\}.$
- Seja $\omega_2 = \{i \mid (i,j) \in \omega_1, j = j^{max}\}.$
- Seleciona-se como operação a ser escalonada a operação λ tal que $\lambda \in \omega_2$ e, caso ainda haja mais de um elemento em ω_2 , seleciona-se λ tal que $\overline{\alpha_\lambda \beta_\lambda} p_\lambda = k^{max}$, com
- $k^{max} = \max\{\overline{\alpha_i \beta_i} p_i \mid i \in \omega_2\}.$

i	1	2	3	4	5
p_i	6	13	13	12	3
α_i	1	5	2	5	6
$oldsymbol{eta_i}$	15	13	13	15	2
μ_i	48	117	97,5	120	12

i	1	2	3	4	5
p_i	6	13	13	12	3
α_i	1	5	2	5	6
β_i	15	13	13	15	2
e_i	11	∞	∞	-	72
t_i	90	169	169	-	6
$\min\{t_i, e_i\}$	11	169	169	-	6

i	1	2	3	4	5
p_i	6	13	13	12	3
α_i	1	5	2	5	6
β_i	15	13	13	15	1
e_i	11	-	∞	-	72
t_i	435	-	468	-	52
$\min\{t_i, e_i\}$	11	-	468	-	52

i	1	2	3	4	5
p_i	6	13	13	12	3
α_i	1	5	2	5	6
$oldsymbol{eta_i}$	15	13	13	15	2

Busca Local

- A heurística construtiva constrói um escalonamento completo e portanto, temos daí o conjunto A e o conjunto B de tarefas adiantadas ou no prazo e atrasadas respectivamente.
- Portanto, a partir do conjunto A constrói-se um vetor binário \hat{A} de tamanho n que diz se a tarefa i, $i=1,\ldots,n$, pertence $(\hat{A}[i]=1)$ ou não pertence $(\hat{A}[i]=0)$ ao conjunto de tarefas adiantadas ou no prazo.

Busca Local

•
$$n = 5$$

•
$$\hat{A} = \{1, 0, 0, 1, 1\}$$

•
$$\bar{A} = \{1,5,4\}$$

•
$$\bar{B} = \{2,3\}$$

i	1	2	3	4	5
p_i	6	13	13	12	3
α_i	1	6	2	5	1
β_i	15	13	13	15	2

Busca Local

•	Se		•
•	Se		

•	n	=	5
---	---	---	---

•
$$\hat{A} = \{1, 1, 0, 1, 1\}$$

Pι	O	13	13	12
α_i	1	6	2	5
β_i	15	13	13	15
α_i/p_i	0,17	0,46	0,15	0,42

12

•
$$\bar{A} = \{1,5,4,2\} \rightarrow \bar{A} = \{1,5,4\}$$

•
$$\bar{B} = \{3\} \to \bar{B} = \{2,3\}$$

0,33

Recombinação

Mutação

• Estrutura binária, seleção e migração

Reestruturação

Pseudo-código 1: Descrição do Algoritmo Memético Multi-Populacional Estruturado.

```
Input: m, \gamma, \lambda, \omega.
    AG(m, \gamma, \lambda, \omega)
 1 begin
          for i \leftarrow 1 to m do
 2
                initializePop(\mathcal{P}_i, \omega)
 3
                evaluatePop(\mathcal{P}_i)
 4
                structurePop(\mathcal{P}_i)
 5
                generation<sub>i</sub> \leftarrow 0
 6
          repeat
                for i \leftarrow 1 to m do
 8
                     repeat
 9
                           for j \leftarrow 1 to \gamma |\mathcal{P}_i| do
10
                                 f_1, f_2 \leftarrow \text{selectParents}(\mathcal{P}_i)
11
                                 child \leftarrow recombine(f_1, f_2)
12
                                \lambda' \in [0,1]
13
                                if \lambda' < \lambda then child \leftarrow \text{mutate}(child)
14
                                 evaluateInd(child)
15
                                insertInPop(child, \mathcal{P}_i)
16
                           structurePop(\mathcal{P}_i)
17
                           generation<sub>i</sub> \leftarrow generation<sub>i</sub> + 1
18
                           if qeneration_i \mod 200 = 0 then localSearchOnTheBestIndividual(\mathcal{P}_i)
19
                     until convergence \mathcal{P}_i
20
                reinitializePopulations(\mathcal{P}_1,\ldots,m)
21
                migrateBestIndividuals(\mathcal{P}_1,\ldots,m)
22
          until stop condition
23
24 end
```

- Métodos implementados em C++ e compilados utilizando Microsoft Visual Studio 2008.
- Testes executados em um computador Intel Core i7 4770k, de 3.5Ghz de processamento com 8 GB GDDR3, 1600 Mhz.
- O conjunto de 280 instâncias do benchmark proposto por Biskup and Feldmann (2001) foi utilizado para avaliar a qualidade dos métodos.

 Média dos desvios computacionais obtidos pela heurística construtiva.

	N								
Н	10	20	50	100	200	500	1000	Média	
0,2	9,91	10,21	8,14	6,81	6,60	5,07	3,90	7,23	
0,4	26,11	28,06	16,03	15,02	15,13	13,84	11,49	17,95	
0,6	31,10	15,40	8,31	5,02	3,29	2,38	2,02	9,65	
0,8	22,55	11,76	6,61	4,52	3,29	2,38	2,02	7,59	
Média	22,42	16,36	9,77	7,84	7,08	5,92	4,86	10,61	

 Média dos tempos computacionais obtidos pela heurística construtiva (em segundos).

	N								
Н	10	20	50	100	200	500	1000	Média	
0,2	0,00	0,00	0,00	0,00	0,00	0,00	0,01	0,00	
0,4	0,00	0,00	0,00	0,00	0,00	0,00	0,01	0,00	
0,6	0,00	0,00	0,00	0,00	0,00	0,00	0,01	0,00	
0,8	0,00	0,00	0,00	0,00	0,00	0,00	0,01	0,00	
Média	0,00	0,00	0,00	0,00	0,00	0,00	0,01	0,00	

• Média dos desvios computacionais obtidos pela busca local com ordenação de \bar{A} e \bar{B} diferentes varrendo a vizinhança parcialmente.

	N								
Н	10	20	50	100	200	500	1000	Média	
0,2	2,93	-1,75	-3,91	-5,39	-3,55	-6,09	-6,75	-3,50	
0,4	2,47	1,04	-2,02	-3,19	-2,43	-3,36	-3,90	-1,63	
0,6	4,47	0,54	0,48	-0,13	-0,15	-0,11	-0,06	0,72	
0,8	2,09	0,63	-0,12	-0,16	-0,15	-0,11	-0,06	0,30	
Média	2,99	0,11	-1,40	-2,22	-1,57	-2,42	-2,69	-1,03	

- \bar{A} e \bar{B} ordenados de acordo com $\frac{(\beta_i \alpha_i)}{p_i}$ e $\frac{(\alpha_i \beta_i)}{p_i}$ respectivamente.
- V Shaped correto.

• Média dos tempos computacionais obtidos pela busca local com ordenação de \bar{A} e \bar{B} diferentes varrendo a vizinhança parcialmente (em segundos).

	N								
Н	10	20	50	100	200	500	1000	Média	
0,2	0,00	0,00	0,01	0,06	0,37	6,41	55,57	8,92	
0,4	0,00	0,00	0,01	0,05	0,32	4,81	32,75	5,42	
0,6	0,00	0,00	0,01	0,04	0,22	2,66	17,78	2,96	
0,8	0,00	0,00	0,00	0,04	0,22	2,54	17,30	2,87	
Média	0,00	0,00	0,01	0,05	0,28	4,11	30,85	5,04	

• Média dos desvios computacionais obtidos pelas melhores soluções em 5 execuções do AM.

	N								
Н	10	20	50	100	200	500	1000	Média	
0,2	0,12	-3,84	-5,69	-6,19	-5,78	-6,43	-6,77	-4,94	
0,4	0,19	-1,62	-0,34	-4,94	-3,75	-3,58	-4,40	-2,63	
0,6	0,01	-0,72	-4,66	-0,15	-0,15	-0,11	-0,06	-0,83	
0,8	0,00	-0,41	-0,24	-0,18	-0,15	-0,11	-0,06	-0,16	
Média	0,08	-1,65	-2,73	-2,86	-2,46	-2,56	-2,82	-2,14	

 Média dos desvios computacionais obtidos pelas médias das soluções em 5 execuções do AM.

	N								
Н	10	20	50	100	200	500	1000	Média	
0,2	0,12	-3,84	-5,69	-6,19	-5,78	-6,43	-6,77	-4,94	
0,4	0,19	-1,62	-0,34	-4,94	-3,75	-3,58	-4,40	-2,63	
0,6	0,01	-0,72	-4,65	-0,15	-0,15	-0,11	-0,06	-0,83	
0,8	0,00	-0,41	-0,24	-0,18	-0,15	-0,11	-0,06	-0,16	
Média	0,08	-1,65	-2,73	-2,86	-2,46	-2,56	-2,82	-2,14	

 Média dos desvios computacionais obtidos pelas piores soluções em 5 execuções do AM.

	N								
Н	10	20	50	100	200	500	1000	Média	
0,2	0,12	-3,84	-5,69	-6,19	-5,78	-6,43	-6,77	-4,94	
0,4	0,19	-1,62	-0,34	-4,94	-3,75	-3,58	-4,39	-2,63	
0,6	0,01	-0,72	-4,65	-0,15	-0,15	-0,11	-0,06	-0,83	
0,8	0,00	-0,41	-0,24	-0,18	-0,15	-0,11	-0,06	-0,16	
Média	0,08	-1,65	-2,73	-2,86	-2,46	-2,56	-2,82	-2,14	

 Média dos tempos computacionais em segundos obtidos pelo AM considerando a média das 5 execuções.

	N							
Н	10	20	50	100	200	500	1000	Média
0,2	0,00	0,05	1,63	6,36	21,35	171,93	413,88	87,89
0,4	0,00	0,01	2,21	5,56	26,24	150,45	432,45	88,13
0,6	0,00	0,01	0,16	0,69	3,17	30,02	187,07	31,59
0,8	0,00	0,00	0,06	0,87	2,01	36,63	171,33	30,13
Média	0,00	0,02	1,02	3,37	13,19	97,26	301,18	59,43

Conclusões

- Em questão de qualidade de solução o AM se mostrou bastante superior aos demais métodos.
- AM mais caro computacionalmente.
- Quanto a tempo computacional, a heurística construtiva se destacou por gastar, nas instâncias de maior porte, somente 0,01 segundo para construir uma solução.
- A Busca Local fica em posição intermediária, tanto em questão da qualidade da solução quanto do tempo computacional gasto.