1. In the following circuit, determine the input resistance, R_{in} , output resistance, R_{out} , and the small-signal voltage gain, $A_v = v_o/v_i$.

2. In the following circuit, determine the current gain, $A_i = i_o/i_i$, and the voltage gain, $A_v = v_o/v_i$.

3. The small-signal voltage gain of the following circuit is supposed to be 48 and the DC voltage across R_C is 3 V. Determine the value of R_C .

4. In the following circuit, determine the input resistance, R_{in} , output resistance, R_{out} , and the small-signal voltage gain, $A_v = v_o/v_i$.

5. Calculate the small-signal voltage gain, input resistance, and output resistance of the structure shown below.

6. In the following circuit, determine the input resistance, R_{in} , output resistance, R_{out} , and the small-signal voltage gain, $A_v = v_o/v_i$.

$$V_{in}$$

$$R_{S} = 25\Omega, R_{1} = 3k\Omega, R_{2} = 7k\Omega$$

$$R_{E} = 2.3k\Omega, R_{C} = 2k\Omega, R_{L} = 2k\Omega$$

$$V_{EB,on} = 0.7V, V_{EC,sat} = 0.2V$$

$$V_{A} = \infty, V_{T} = 25mV, \beta = 100$$

$$V_{CC} = 10V$$

- 7. a) Prove that the bias current of the transistor Q_1 is 1 mA. Assume that the transistor operates in F.A. region.
 - b) Determine R_C so that $V_{CE1}=3.3$ V.
 - c) Calculate the output voltage (V_{out}).

Good luck – M.R. Ashraf