Ejercicios 1.1: Funciones

En los siguientes ejercicios determine el dominio y el conjunto imagen de la función.

1.
$$f(x) = 1 + x^2$$

Dominio.

Si $x \in \mathbb{R}$ entonces $x^2 \in \mathbb{R}$ entonces $x^2 + 1 \in \mathbb{R}$ entonces $D_f = \mathbb{R}$.

Imagen.

Sea $y \in I_f$ entonces existe $x \in D_f$ tall que $y = x^2 + 1$ entonces $x^2 = y - 1$ entonces $y - 1 \ge 0$ entonces $y \ge 1$ entonces $y \in [1, +\infty[$ entonces $I_f = [1, +\infty[$

2.
$$f(x) = 1 - \sqrt{x}$$

Dominio

Es claro que \sqrt{x} es un número real sólo si $x \ge 0$ y por lo tanto, $D_f = [0, +\infty[$

<u>Imagen</u>

Sea $y \in I_f$ entonces existe $x \in D_f$ tal que $y = 1 - \sqrt{x}$ entonces $\sqrt{x} = 1 - y$ entonces $1 - y \ge 0$ entonces $y \le 1$ entonces $I_f =]-\infty, 1]$.

3.
$$f(x) = \sqrt{5x + 10}$$

Dominio

$$5x + 10 \ge 0 \Leftrightarrow 5x \ge -10 \Leftrightarrow x \ge -2$$

$$D_f = [-2, +\infty[$$

<u>Imagen</u>

Sea $y \in I_f$ entonces existe $x \in [-2, +\infty[$ tal que $y = \sqrt{5x + 10}$. De esta expresión nace una primera restricción para y, a saber, $y \ge 0$.

También se cumple que.

$$y^2 = 5x + 10$$
$$x = \frac{y^2 - 10}{5}$$

De esta última expresión surge otra restricción sobre *y*, a saber:

$$\frac{y^2 - 10}{5} \ge -2$$

Esto es cierto para todo $y \in \mathbb{R}$. La única restricción entonces es que $y \ge 0$. Por lo tanto:

$$I_f = [0, +\infty[$$

4.
$$g(x) = \sqrt{x^2 - 3x}$$

Solución

Dominio

$$x^{2} - 3x \ge 0$$

$$x(x - 3) \ge 0$$

$$x \in]-\infty, 0] \cup [3, +\infty[$$

$$D_{q} =]-\infty, 0] \cup [3, +\infty[$$

Imagen

Sea $y \in I_q$. Entonces existe $x \in]-\infty, 0] \cup [3, +\infty[$ tal que $y = \sqrt{x^2 - 3x}$.

La primera restricción es que $y \ge 0$. También se ha de cumplir que $y^2 = x^2 - 3x$, o equivalentemente $x^2 - 3x - y^2 = 0$. Esta ecuación tiene solución cualquiera sea el valor de la variable y. En efecto $\Delta = 9 + 4y^2 > 0$ para todo valor de y. Por lo tanto

$$I_g = [0, +\infty[$$

5.
$$f(t) = 4/(3-t)$$

Solución

Dominio

$$D_f = \mathbb{R} - \{3\}$$

<u>Imagen</u>

Sea $y \in I_g$. Entonces existe $x \neq 3$ tall que y = 4/(3-x). De esta expresión obtenemos que $y \neq 0$. Si $y \neq 0$ entonces 3-x=4/y, por lo tanto x=3-4/y.

O sea, dado $y \neq 0$ existe un número real distinto de 3 tal cuya imagen es y.

$$I_f = \mathbb{R} - \{0\}$$

6.
$$g(t) = \frac{2}{t^2 - 16}$$

Dominio.

$$g(t) \in \mathbb{R} \Leftrightarrow t^2 - 16 \neq 0 \Leftrightarrow (t \neq -4 \land t \neq 4)$$

Por lo tanto, $D_g = \mathbb{R} - \{-4,4\}$

Imagen.

Sea $y \in I_g$ entonces existe $t \in D_g$ tall que $y = \frac{2}{t^2 - 16}$ entonces $y \cdot (t^2 - 16) = 2$ entonces $y \neq 0$ por lo cual $t^2 = \frac{2}{y} + 16$ entonces $\frac{2}{y} + 16 \ge 0 \Leftrightarrow \frac{2}{y} \ge -16$.

Supongamos que $y \ge 0$ entonces $2 \ge -16 \cdot y$; Por lo tanto, $y \ge \frac{-1}{8}$ pero esto bajo el supuesto que $y \ge 0$ por lo cual $y \ge 0$.

Supongamos ahora que $y \le 0$ entonces $2 \le -16 \cdot y$; lo que es equivalente a decir que $y \le \frac{-1}{8}$. Como estamos bajo el supuesto que $y \le 0$ entonces podemos afirmar que $y \le \frac{-1}{8}$.

Luego
$$I_g = \left] -\infty, \frac{-1}{8} \right] \cup \left] 0, +\infty \right[$$

7. ¿La gráfica representa una función de x?a)

Implicit plot:

<u>Solución</u>

No representa una función de x pues existe una recta paralela al eje $\overrightarrow{0Y}$ que corta a la gráfica en más de un punto del plano. Ejemplo, la recta cuya ecuación es x=4 corta la gráfica en los puntos $(4,\sqrt{2})$ y $(4,-\sqrt{2})$.

b)

plot $\sin(t) + \cos(\sqrt{t})$	3 t)
---------------------------------	------

Plots:

Solución

Sí es una función pues cada recta paralela al eje $\overrightarrow{0Y}$ corta la gráfica sólo en un punto del plano.

9. Exprese el área y el perímetro de un triángulo equilátero como una función del lado *x* del triángulo.

Solución

En primer lugar, las longitudes de los lados de un triángulo son números reales positivos. Entonces el dominio será $D_f =]0, +\infty[$.

Si denotamos p(x) al perímetro y a(x) al área de un triángulo equilátero de lado x entonces p(x)=3x y $a(x)=\frac{\sqrt{3}}{4}x^2$

10. Exprese la longitud del lado de un cuadrado como una función de la longitud d de la diagonal del cuadrado. Exprese el área como una función de la longitud de la diagonal.

Solución

Sea l=f(d) la función que asocia a la longitud de la diagonal d>0 de un cuadrado la longitud de su lado. Entonces usando el teorema de Pitágoras $l^2+l^2=d^2$ con lo cual:

$$\begin{cases} f(d) = d\sqrt{2}/2 \\ d \in]0, +\infty[\end{cases}$$

Si a = g(d) es la función que relaciona la diagonal d > 0 con el área a del cuadrado, entonces:

$$\begin{cases} g(d) = d^2/2 \\ d \in [0, +\infty[$$

11. Exprese la longitud del lado de un cubo como una función de la longitud de la diagonal *D* del cubo. Exprese el área de la superficie y el volumen del cubo como una función de la longitud de la diagonal.

Solución

Supongamos que el lado del cubo es x y que la diagonal de una cara del cubo es d entonces por Pitágoras sabemos que $x^2 + x^2 = d^2$ lo que implica que $2 \cdot x^2 = d^2$ entonces $d = \sqrt{2} \cdot x$ y en consecuencia $D^2 = \left(\sqrt{2} \cdot x\right)^2 + x^2$ entonces $D^2 = 3 \cdot x^2$ Por lo tanto, se sigue que $x = \frac{\sqrt{3}}{3} \cdot D$.

|Sea A el área de la superficie del cubo. Entonces $A=6\cdot x^2=2\cdot (3\cdot x^2)=2\cdot D^2$ Sea V el volumen del cubo. Entonces $V=x^3=\frac{\sqrt{3}}{9}\cdot D^3$.

12. Un punto P en el primer cuadrante pertenece a la gráfica de la función $f(x) = \sqrt{x}$. Exprese las coordenadas de P como funciones de la pendiente correspondiente a la recta que une a P con el origen.

Solución

Como el punto P es un punto de G_f tiene coordenadas (x, \sqrt{x}) en que x > 0. No consideramos el caso x = 0 pues en ese caso no queda definida una recta.

Si m representa la pendiente de la recta $\overrightarrow{0P}$ entonces $m=\frac{\sqrt{x}}{x}$ Por lo tanto, se cumple que $m^2\cdot x^2=x$ o equivalentemente $x=\frac{1}{m^2}$. Entonces las coordenadas de P son $\left(\frac{1}{m^2},\frac{1}{m}\right)$.

14. Considere el punto (x, y) que está en la gráfica de $y = \sqrt{x - 3}$. Sea L la distancia entre los puntos (x, y) y (4,0). Escriba L como función de y.

Solución

Es claro que $x \ge 3$ y que además $y \ge 0$.

A continuación, un esquema gráfico de la situación:

Entonces
$$L = \sqrt{(x-4)^2 + (y-0)^2}$$

Pero $x=y^2+3$ por lo cual $L=\sqrt{(y^2-1)^2+y^2}$. Finalmente, $L=\sqrt{y^4-y^2+1}$ en que $y\geq 0$.

16. Determine el dominio y gráfico de $f(x) = 1 - 2x - x^2$.

Solución

f(x) es un número real, cualquiera que sea $x \in \mathbb{R}$. Por lo tanto, $D_f = \mathbb{R}$ También es claro que $f(x) = 2 - (x+1)^2$ por lo cual $I_f =]-\infty$, 2]

17. Determine el dominio y gráfico de $g(x) = \sqrt{|x|}$.

Solución

Como $|x| \geq 0$ para todo $x \in \mathbb{R}$ entonces $D_g = \mathbb{R}$

También es claro que $g(x) \ge 0$ por lo cual $I_q = [0, +\infty[$

El gráfico de g es el siguiente.

18. Determine el dominio y gráfico de $g(x) = \sqrt{-x}$

Solución

Debe cumplirse que $-x \ge 0$ lo que es equivalente a $x \le 0$ por lo cual $D_f =]-\infty, 0]$.

Como $g(x) \ge 0$ también podemos afirmar que $I_g = [0, +\infty[$

También es claro que si $x \le 0$ entonces |x| = -x por lo cual esta función es una restricción de la función del ejercicio 17 anterior y en consecuencia su gráfico será el restringido al dominio $]-\infty,0]$

Plot:

21. Determine el dominio de $y = \frac{x+3}{4-\sqrt{x^2-9}}$.

Solución

Se debe cumplir que $x^2 - 9 \ge 0$ es decir $x \in]-\infty, -3] \cup [3, +\infty[$.

Por otra parte, se debe cumplir que $\sqrt{x^2 - 9} \neq 4$, lo cual es equivalente a afirmar que $x^2 \neq 25$, es decir, se debe cumplir que $x \neq -5 \land x \neq 5$ por lo cual el dominio es el conjunto $]-\infty, -5[\ \cup\]-5, -3] \cup [3,5[\ \cup\]5, +\infty[$.

22. Determine el rango de $y = 2 + \frac{x^2}{x^2+4}$

Solución

$$y - 2 = \frac{x^2}{x^2 + 4}$$

Sabemos que $x^2 \ge 0 \land x^2 + 4 > 0$ por lo cual $y - 2 \ge 0$ lo que es equivalente a que $y \ge 2$

$$(y-2) \cdot (x^2 + 4) = x^2$$
$$(y-2) \cdot x^2 + 4 \cdot (y-2) = x^2$$
$$(y-3) \cdot x^2 = 4 \cdot (2-y)$$

Entonces $y \neq 3$

$$x^2 = \frac{4 \cdot (2 - y)}{y - 3}$$

Como $x^2 \ge 0$ se debe cumplir que:

$$(2 - y \ge 0 \land y - 3 > 0) \lor (2 - y \le 0 \land y - 3 < 0)$$

 $(y \le 2 \land y > 3) \lor (y \ge 2 \land y < 3)$
 $y \in \emptyset \cup [2,3[$
 $y \in [2,3[$

Luego el recorrido es el conjunto [2,3[.

Otra manera sería la siguiente:

$$0 \le x^{2} < x^{2} + 4$$

$$0 < \frac{1}{x^{2} + 4}$$

$$0 \le \frac{x^{2}}{x^{2} + 4} < 1$$

$$2 \le 2 + \frac{x^{2}}{x^{2} + 4} < 3$$

Por lo tanto, el recorrido de la función es el conjunto [2,3[.

47. Determine la paridad de f(x) = 3.

Solución

El dominio de la función constante, a menos que se indique otra cosa, es R.

$$f(-x) = f(x) = 3$$

Por lo tanto, la función es par.

48. Determine la paridad de $f(x) = x^{-5}$

Solución

$$Dom(f) = \mathbb{R} - \{0\}$$
$$f(-x) = (-x)^{-5} = \frac{1}{(-x)^5} = \frac{1}{-x^5} = \frac{-1}{x^5} = -\left(\frac{1}{x^5}\right) = -x^{-5} = -f(x)$$

La función es impar.

50. Determine la paridad de $f(x) = x^2 + x$

Solución

$$Dom(f) = \mathbb{R}$$
$$f(-1) = 0$$
$$f(1) = 2$$
$$f(-1) \neq f(-1)$$
$$f(-1) \neq -f(1)$$

Concluimos que f no es par ni impar.