Homework 5

A portion of the following problems will be graded according to the provided rubric.

- 1. Let $f_n(x) = \frac{nx}{1 + nx^2}$.
 - a. Find the pointwise limit of $\{f_n\}$ for all $x \in (0, \infty)$.
 - b. Is the convergence uniform on $(0, \infty)$?
 - c. Is the convergence uniform on (0, 1)?
 - d. Is the convergence uniform on $(1, \infty)$?
- 2. Rudin page 166 problem 5
- 3. Rudin page 166 problem 6
- 4. Let $f_n \to f$ pointwise and $f'_n \to g$ uniformly on [a, b]. Assume each f'_n is continuous, so that $\int_a^x f_n' d\alpha = f_n(x) f_n(a)$ for all $x \in [a, b]$. Use this to prove g(x) = f'(x).
- 5. Rudin page 166 problem 7
- 6. Let $g_n(x) = \frac{nx + x^2}{2n}$ and set $g(x) = \lim_{n \to \infty} g_n(x)$.
 - a. Compute g(x) by algebraically taking the limit as $n \to \infty$ and then find g'(x).
 - b. Compute $g_n{}'(x)$ for each $n \in \mathbb{N}$ and show the sequence of derivatives converges uniformly on every interval [-M,M]. Conclude $g'(x) = \lim_{n \to \infty} g_n{}'(x)$.
- 7. Rudin page 166 problem 8
- 8. Rudin page 166 problem 9
- 9. Use the Weierstrass M-Test to prove that if a power series $\sum_{n=0}^{\infty} a_n x^n$ converges absolutely at a point x_0 , then it converges uniformly on the closed interval [-c, c] where $c = |x_0|$.