1 | Further Questions

1.1 Virtually strongs & supercompacts

Question 1.1. Are virtually θ -strong cardinals, virtually θ -supercompacts and virtually θ -supercompacts ala Magidor all equivalent, for any uncountable regular cardinal θ ?

1.2 Behaviour in core models

Question 1.2. What happens in larger core models? It seems that in both $L[\mu]$ and K below 0^{\P} we get that generically θ -measurables are equivalent to virtually θ -measurables, but the measurable in $L[\mu]$ is virtually measurable and not virtually κ^{++} -strong. What happens to winning strategies in $\mathcal{G}^{\theta}_{\omega}(\kappa)$ then?

1.3 Separation results

Question 1.3. Assume $V = L[\mu]$. Is every virtually θ -measurable cardinal also virtually θ -prestrong?

Question 1.4. Can we find a virtually ∞ -measurable which isn't measurable?

1.4 Berkeleys

Question 1.7 in [?] asks whether the existence of a non- Σ_2 -reflecting weakly remarkable cardinal always implies the existence of an ω -Erdős cardinal. Here a weakly remarkable cardinal is a rewording of a virtually prestrong cardinal, and Lemmata 2.5 and 2.8 in the same paper also shows that being

 ω -Erdős is equivalent to being virtually club berkeley and that the least such is also the least virtually berkeley.¹

Furthermore, they also showed that a non- Σ_2 -reflecting virtually prestrong cardinal is equivalent to a virtually prestrong cardinal which isn't virtually strong. We can therefore reformulate their question to the following equivalent question.

Question 1.5 (Wilson). If there exists a virtually prestrong cardinal which is not virtually strong, is there then a virtually berkeley cardinal?

[?] showed that their question has a positive answer in L, which in particular shows that they are equiconsistent. Applying our Theorem ?? we can ask the following related question, where a positive answer to that question would imply a positive answer to Wilson's question.

Question 1.6. If there exists a cardinal κ which is virtually (θ, ω) -superstrong for arbitrarily large cardinals $\theta > \kappa$, is there then a virtually berkeley cardinal?

Our results above at least gives a partially positive result:

Corollary 1.7 (N.). If there exists a virtually A-prestrong cardinal for every class A and there are no virtually strong cardinals, then there exists a virtually berkeley cardinal.

PROOF. The assumption implies by definition that **On** is virtually prewoodin but not virtually woodin, so Theorem **??** supplies us with the desired.

The assumption that there is a virtually A-prestrong cardinal for every class A in the above corollary may seem a bit strong, but Theorem ?? shows that this is necessary, which might lead one to think that the question could have a negative answer.

¹Note that this also shows that virtually club berkeley cardinals and virtually berkeley cardinals are equiconsistent, which is an open question in the non-virtual context.

1.5 Games

Question 1.8. If κ is generically θ -power-measurable, does player II then have a winning strategy in $\mathcal{G}^{\theta}_{\omega}(\kappa)$?

1.6 IDEALS

Question 1.9. Is " ω -distributive (κ , κ)-distributive" ideal-absolute? Does it correspond to generically power-measurables?