Odinary Differential Equations

- . Explain the difference between classes of differential equations.
- . Analyse initial value problems in order to determine whether or not they have unique solutions.
- . State, explain, and prove basic existence and uniqueness theorems.
- . Use and apply methods for finding general solutions of ordinary differential equations.
- . Apply and write programs for finding numerical solutions of ordinary differential equations.

Odinary Differential Equations

Chapter 1. First order equations: some integrable cases

Chapter 2. Theory of first order differential equations

Chapter 3. First order systems.

Chapter 4. linear differential equations of order n

Chapter 5. Stability and asymptotic behavior

Chapter 1 First Order Equations: Some Integrable Cases

1. Ordinary differential equation and solution

Implicit first order differential equation

$$F(x,y,y')=0. (1)$$

Explicit first order differential equation

$$y'=f(x,y).$$

A function y(x): $J \to R$ is called a solution to the differential equation (1)

If y is differential in J and (1) holds. Where J is an interval.

General solutions — Families of integral curves

Special solutions ———Families of integral curves

2.Equations with separated variables.
$$y' = f(x)g(y) \longrightarrow \frac{dy}{dx} = f(x)g(y)$$
,

Case 1. $g(y) \neq 0$, integration to the equation $\int \frac{dy}{a(y)} = \int f(x)dx$,

general solutions can be obtained by solving for y = y(x, C).

This is accomplished under the general hypothesis:

(H) f(x) is continuous in $J_x = (a, b)$; g(y) is continuous in $J_y = (\alpha, \beta)$.

Case 2. If $g(y_0) = 0, y_0 \in (\alpha, \beta)$, then one solution can be given: $y(x) = y_0$.

Examples. Determine all of the solutions to the following differential equations.

$$1.\frac{dy}{dx} = \frac{y}{x}.$$

$$2.\frac{dy}{dx} = \frac{y^2 - 1}{2}, with initial condition y(0) = 0.$$

Exercise.

$$1.x(y^2 - 1)dx + y(x^2 - 1)dy = 0.$$

3. Homogeneous differential equation. $y'(x) = g\left(\frac{y}{x}\right)$

$$y'(x) = g\left(\frac{y}{x}\right)$$

Using the ansatz $u = \frac{y(x)}{r}$ $(x \neq 0)$ and calculating the derivative, one obtains

the relation y' = u + xu' = g(u), and thus a differential equation for u(x) with

separated variables, $u' = \frac{g(u) - u}{x}$.

If $g(u) - u \neq 0$, then general solutions can be given $x = Ce^{\phi(\frac{y}{x})}$,

where $\phi(u) = \int \frac{du}{a(u) - u}$.

If $g(u_0) - u_0 = 0$ (in the case where $u_0 \in J_v$), then one solution is $y = u_0 x$.

$$y'(x) = g\left(\frac{y}{x}\right)$$

If $g(u) - u \neq 0$, then general solutions can be given $x = Ce^{\phi(\frac{y}{x})}$,

If $g(u_0) - u_0 = 0$ (in the case where $u_0 \in J_y$), then one solution is $y = u_0 x$.

Example.

1. The initial value problem $y' = \frac{y}{x} - \frac{x^2}{y^2}$, y(1) = 1.

$$2. x^2 \frac{dy}{dx} = xy - y^2.$$

$$y' = f(\frac{ax + by + c}{\alpha x + \beta y + \gamma})$$

In the case where the determinant $\begin{vmatrix} a & b \\ \alpha & \beta \end{vmatrix} = 0$, that is, where $a = \lambda \alpha$ and $b = \lambda \beta$,

the equation can be reduced to one of the types we have already considered.

If this determinant is not zero, then the linear system of equations

$$\begin{cases} ax + by + c = 0, \\ \alpha x + \beta y + \gamma = 0, \end{cases}$$
 has a unique solution (x_0, y_0) . If a new system coordinates (ξ, η)

is introduced by translating the origin to the point (x_0, y_0) ,

 $\xi = x - x_0, \eta = y - y_0$, in the new coordinate system a solution curve y(x) is described $\eta = y(\xi + x_0) - y_0$.

The differential equation in the (ξ, η) coordinate system

$$\frac{dy}{dx} = \frac{dy}{d\eta} \frac{d\eta}{d\xi} \frac{d\xi}{dx} = \frac{d\eta}{d\xi} = y'(\xi + x_0) = f\left(\frac{a(\xi + x_0) + b(\eta + y_0) + c}{\alpha(\xi + x_0) + \beta(\eta + y_0) + \gamma}\right) = f\left(\frac{a\xi + b\eta}{\alpha\xi + \beta\eta}\right),$$

is just the special case $c = \gamma = 0$ of the original equation.

How to proceed.

- 1. Determine the point (x_0, y_0) that satisfies $\begin{cases} ax + by + c = 0, \\ \alpha x + \beta y + \gamma = 0, \end{cases}$
- 2. Solve the differential equation with $c = \gamma = 0$ using techniques form above.
- 3. A solution $\eta(\xi)$ of this equation generates a solution to the original equation using the substitution $\xi = x x_0$, $\eta = y y_0$, that is, $y(x) = y_0 + \eta(x x_0)$.

Example.

$$1.\frac{dy}{dx} = \frac{x - y + 1}{x + y - 3}.$$

$$2.(2x + y + 1)dx - (4x + 2y - 3)dy = 0.$$

Exercises.

$$1.(y^2 - 2xy)dx + x^2dy = 0.$$

$$2.(2x^2 + 3y^2 - 7)xdx - (3x^2 + 2y^2 - 8)ydy = 0.$$

4. The linear differential equation. Related equations

A first order linear diffeential equation is an equation of the form

$$y' + p(x)y = f(x);$$
 (1)

we assume that the two given functions p(x) and f(x) are continuous on an interval J.

If $f(x) \equiv 0$, then equation (1) is called **homogeneous**, otherwise nonhomogeneous.

The homogeneous equation.
$$y' + p(x)y = 0$$
 (2)

This is an equation with separated variables. We obtain the family of solutions

$$y = Ce^{-\int p(x)dx}.$$
 (3)

The nonhomogeneous equation.

$$y' + p(x)y = f(x).$$
 (4)

Solutions to the nonhomogeneous equation can be obtained with the help of **the method of variation of constants**. In the method, the constant C is replaced by a function C(x). The Calculation of an appropriate choice of C(x) gives a solution of the nonhomogeneous equation. Indeed, the ansatz

$$y(x) = C(x)e^{-\int p(x)dx}$$

Leads to $C'(x)e^{-\int p(x)dx} = f(x)$, or equivalently, $C(x) = \int f(x)e^{\int p(x)dx}dx + C$.

Example.

$$1. \quad y' = \frac{y}{x} + x^2.$$

Exercise.

$$1. y' - \cot x \ y = 2x\sin x.$$

 $Example.y' = \frac{y}{x} + x^2.$

Solution. Solve the realted homogeneous ODE $y' = \frac{y}{2x}$, we have y = Cx.

Setting y = c(x)x is the solution of the original ODE, $c(x) = \frac{x^2}{2} + c$ can be obtained.

$$y = \left(\frac{x^2}{2} + c\right)x$$
 is the general solution.

Remark. If y, y_1 are two solutions to the nonhomogeneous equation, then $z = y - y_1$ is a solution of the homogeneous equation. Thus all solutions y(x) of the nonhomogeneous equation can be written in the form

$$y(x) = y_1(x) + z(x)$$
 (5).

where $y_1(x)$ is a fixed solution of the nonhomogeneous equation and z(x) runs through all solutions of the homogeneous equation.

For initial problem
$$\begin{cases} y' + p(x)y = f(x) \\ y(x_0) = y_0 \end{cases}$$
, the ansatz $y(x) = C(x)e^{-\int_{x_0}^x p(\tau)d\tau}$ leads to

$$C(x) = \int_{x_0}^{x} f(s)e^{\int_{x_0}^{s} p(\tau)d\tau}ds + C$$
. Then we substitude $C(x)$ and initial condition into

$$y(x) = C(x)e^{-\int_{x_0}^x p(\tau)d\tau}$$
. It follows that

$$y = y_0 e^{-\int_{x_0}^x p(\tau)d\tau} + \int_{x_0}^x f(s) e^{\int_{x_0}^s p(\tau)d\tau} ds.$$

Example.

$$y = y_0 e^{-\int_{x_0}^x p(\tau)d\tau} + \int_{x_0}^x f(s) e^{\int_{x_0}^s p(\tau)d\tau} ds.$$

 $y' + y\sin x = \sin^3 x .$

Hence $z(x) = Ce^{\cos x}$ is the general solution of the homogeneous equation and

$$y_1(x) = \int_0^x \sin^3 t e^{\cos x - \cos t} dt = \sin^2 x - 2\cos x - 2 + 4e^{\cos x - 1}$$
 is a solution to the

nonhomogeneous equation. Then the general solution of the nonhomogeneous equation is given by $y(x) = \sin^2 x - 2\cos x - 2 + Ce^{\cos x}$.

Bernoulli's equation. $y' + p(x)y + f(x)y^{\alpha} = 0, \alpha \neq 0, 1$.

This differential equation can be transformed into a linear differential equation. Let us assume that the functions g, h are continuous in J and that y > 0. If the equation is multiplied by $(1 - \alpha)y^{-\alpha}$ and the relation $(1 - \alpha)y^{-\alpha}y' = (y^{1-\alpha})'$ is used, then one obtains a linear differential equation, $z' + (1 - \alpha)g(x)z + (1 - \alpha)h(x) = 0$, where the function $z = y^{1-\alpha}$.

$$Example.y' = \frac{y}{2x} + \frac{x^2}{2y}.$$

 $Exercise.y' = y + xy^5.$

Example.
$$y' = \frac{y}{2x} + \frac{x^2}{2y}$$
.

Solution. set $y^2 = z$, the ODE transforms into $z' - \frac{z}{x} = x^2$.

use the method of variation of constants to solve the nonhomogeneous ODE,

we have
$$z = \left(\frac{x^2}{2} + c\right)x$$
, so the general solution of the original ODE is

$$y = \pm \sqrt{\left(\frac{x^2}{2} + c\right)x}.$$

5. Exact differential equations. M(x,y)dx + N(x,y)dy = 0.

$$M(x,y)dx + N(x,y)dy = 0. (1)$$

A differential equation of the form (1) is called an exact equation. If there exists a function $U(x,y) \in C^1$ such that $U_x(x,y) = M(x,y), U_y(x,y) = (x,y)$. The function U is called a potential function.

Example.

xdx + ydy = 0 is an exact equation, and $U(x,y) = \frac{1}{2}(x^2 + y^2)$ is a potential function.

Theorem on potential functions.

If M(x,y), N(x,y) are continuously differentiable in the domain $D: |x-x_0| \le a$, $|y-y_0| \le b$, then there exists a potential function U(x,y) satisfying $U_x(x,y) = M(x,y)$, $U_y(x,y) = N(x,y)$ if and only if $M_y \equiv N_x$ in D. The potential function is obtained as a line integral

$$U(x,y) = \int_{x_0}^{x} M(x,y) dx + \int_{y_0}^{y} N(x_0,y) dy = C.$$

Example. $(3x^2 + 6xy^2)dx + (6x^2y + 4y^3)dy = 0$.

M(x,y) and N(x,y) are continuous differentiable on the xOy-plane. Let's set $x_0=0$,

$$y_0 = 0$$
. Then potential functions are given by $\int_0^x (3x^2 + 6xy^2) dx + \int_0^y 4y^3 dy = C$.

Example.
$$\begin{cases} xydx + \frac{1}{2}(x^2 + y)dy = 0\\ y(0) = 2 \end{cases}$$

$$U(x,y) = \int_{x_0}^{x} M(x,y) dx + \int_{y_0}^{y} N(x_0,y) dy = C.$$

Is - ydx + xdy = 0 an exact differential equation?

Is
$$\frac{(-ydx + xdy)1}{x^2} = 0$$
 an exact differential equation?

2. Integrating Factors.

The differential equation ydx + 2xdy = 0 is not exact. However, it can easily be made an exact differential equation (in the domain x > 0) by multiplying

the equation $\frac{1}{\sqrt{x}}$. The resulting differential equation $\frac{y}{\sqrt{x}}dx + 2\sqrt{x}dy = 0$

is exact, and a potential function is given by $F(x,y) = 2y\sqrt{x}$ (x > 0).

Definition. If the funtions M(x,y), N(x,y) are continuous in D, then a continuous function $\mu(x,y) \neq 0$ defined in D is called an integrating factor or Euler multiplier for the differential equation (1) if the differential equation

 $\mu(x,y)M(x,y)dx + \mu(x,y)N(x,y)dy = 0 \text{ is exact.}$

If $\mu(x,y)$ is a integrating factor, $\mu_y M + \mu M_y = \mu_x N + \mu N_x$ is necessary.

Integrating factor depending on only one variable.

(1) An integrating factor can be found that **depends only on x** if and only if

$$\frac{1}{N} \left(\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} \right)$$
 depends only on x. Thus the integrating factor is given by

$$\mu(x) = e^{\int \frac{1}{N} \left(\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x}\right) dx}.$$

(2) An integrating factor can be found that **depends only on y** if and only if

$$-\frac{1}{M}\left(\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x}\right)$$
 depends only on y. Thus the integrating factor is given by

$$\mu(y) = e^{-\int \frac{1}{M} \left(\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x}\right) dy}.$$

Example.

$$1. -ydx + xdy = 0$$

$$2.(3x + 6xy + 3y^2)dx + (2x^2 + 3xy)dy = 0.$$

$$\frac{1}{N} \left(\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} \right) \text{ depends only on } x \longrightarrow \mu(x) = e^{\int \frac{1}{N} \left(\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} \right) dx}.$$

$$-\frac{1}{M}\left(\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x}\right) depends only on y \longrightarrow \mu(y) = e^{-\int \frac{1}{M}\left(\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x}\right) dy}.$$

Exercises.

$$1.e^{-y}dx - (2y + xe^{-y})dy = 0$$

$$2.(x^2 + y^2 + x)dx + xydy = 0.$$

Implicit first order differential equation

$$F(x,y,y')=0$$

Throughout this section, we assume that the Function F(x, y, p) is continuous in a domain.

Case 1. If we can get the case of explicit differential equations $y' = f_i(x, y)(i = x)$

1,2,...,n), integrable methods can be used to solve these explicit differential equation.

Example.
$$y'^2 - (x + y)y' + xy = 0$$
.

From the equation, we obtain (y'-x)(y'-y)=0.

From the equations y' = x and y' = y, we can get the solutions $y = \frac{1}{2}x^2 + C$ and $y = Ce^x$.

Case 2. Parametric Representation.

In this section, we will discuss two kinds of implicit differential equations will could be solved by ansatze.

I.
$$F(x, y') = 0$$
 $(F(y, y') = 0)$.

$$II. y = f(x, y') \quad (x = f(y, y')).$$

I.
$$F(x, y') = 0$$
. (1)

We can use the parametric representation as $\begin{cases} x = \phi(t) \\ y' = \psi(t) \end{cases}$ to represent curve of

F(x,y')=0, where t is the parameter, it follows that $F(\phi(t),\psi(t))=0$.

Consider $\phi(t)$ and $\psi(t)$ are continuous differentiable in an interval with the property dy = y'dx, then the equation can be represented by $dy = \psi(t)\phi'(t)dt$, and moreover, it is given that $y = \int \psi(t)\phi'(t)dt + C$.

Then
$$\begin{cases} x = \phi(t) \\ y = \int \psi(t)\phi'(t)dt + C \end{cases}$$
 satisfies the equation (1).

We can discuss equation F(y, y') = 0 as described above.

Examples.

$$1.x\sqrt{1+y'^2}=y'.$$

$$2.y - y'^5 - y'^3 - y' - 5 = 0.$$

$$II. y = f(x, y') \quad (x = f(y, y')).$$

The ansatze that used here all have the property that they lead to solution curves with a special parametric representation in which p = y' is the parameter, and the parametric

representation is
$$\begin{cases} x = x \\ y' = p \end{cases}$$
. Consider the property $dy = y'dx$, we have $y = f(x,p)$

 $f_x(x,p)dx + f_p(x,p)dp = pdx$, and p(x) = p(x,C) can be derived by solving this equation.

The substitution p(x) into equation y = f(x, y') gives the general solution

$$y = f(x, p(x, C)).$$

We can discuss equation x = f(y, y') as described above.

Examples.

$$1. y = y'^2 - xy' + \frac{1}{2}x^2.$$

2. Clairaut's equation

 $y = xy' + \phi(y')$, where ϕ is twice continuous differentiable and $\phi'' \neq 0$.

Some special nth order ODEs

Case 1.
$$F(x, y^{(k)}, y^{(k+1)}, ..., y^{(n)}) = 0$$

Set
$$y^{(k)} = z$$
, then the ODE transforms into $F(x, z, z', ..., z^{(n-k)}) = 0$

Example.

$$y^{(5)} - \frac{1}{x}y^{(4)} = 0.$$

Some special nth order ODEs

Case 2.
$$F(y, y', ..., y^{(n)}) = 0$$

Set
$$y' = p$$
, then the ODE transforms into $\tilde{F}(y, p, p', ..., p^{(n-1)}) = 0 \longrightarrow p = p(y)$.

Example.

$$y'' + y = 0.$$
 $(y'' = \frac{d^2y}{dx^2} = \frac{dp}{dy}\frac{dy}{dx} = p\frac{dp}{dy})$

Exercises 1. Determine all the solutions to the following differential equations.

$$(1)\frac{dy}{dx} = \frac{\sqrt{1 - y^2}}{\sqrt{1 - x^2}}.$$

$$(2) x^2 \frac{dy}{dx} = xy - y^2.$$

(3)
$$y' = \frac{y+1}{x+2} - \exp\left(\frac{y+1}{x+2}\right)$$
.

$$(4)y' - y \cot x = 2x \sin x.$$

$$(5)(y^2e^{xy} + 3x^2y)dx + (x^3 + (1+xy)e^{xy})dy = 0 \text{ is exact in } R^2.$$

Chapter 2. Theory of first order differential equations Line element.

We consider the explicit first order differential equation y' = f(x,y)(1). f(x,y) is assumed to be defined as a real – valued function on a set D in the xy – plane. If y(x) is an integral curve of equation(1) that passes through a point (x_0,y_0) , then the differential equation specifies the slop of the curve at that point: $y'(x_0) = f(x_0,y_0)$. The unit line section which the center is (x_0,y_0) can be obtained by taking the slope as $f(x_0,y_0)$, and the line section is **line element** of (x_0,y_0) .

Example. Discuss the line element field of
$$y' = \frac{y}{x}$$
 and $y' = -\frac{x}{y}$.

Remark. A solution y(x) of equation (1)" fits" its line element field. The slope at each point on the solution curve agrees with the slope of the line element at that point.

Euler's method

In this section, we assume that f(x, y) is continuous and bounded in [a, b].

In order to obtain the approximate solution of the initial problem $\begin{cases} y' = f(x, y) \\ y(x_0) = y_0 \end{cases}$

in $[x_0, b]$, we should take the Euler's method as follows.

Step 1. Divide the $[x_0, b]$ into n equal parts, and $x_k = x_0 + kh, k = 0,1,...,n$, and

$$h = \frac{b - x_0}{n} , x_n = b.$$

Step 2. We take the function $y = y_0 + f(x_0, y_0)(x - x_0)$ as the approximate solution in $[x_0, x_1]$.

Step 3. We get $y_1 = y_0 + f(x_0, y_0)(x_1 - x_0)$ as the approximation of $y(x_1)$.

Step 4. We take the function $y = y_1 + f(x_1, y_1)(x - x_1)$ as the approximate solution in $[x_1, x_2]$, and we can get $y_2 \approx y(x_2)$ from the function.

Step 5. And so on. $y_k = y_{k-1} + f(x_{k-1}, y_{k-1})h, k = 1, 2, ..., n$.

So the line segments we obtained in $[x_0, b]$ are the approximation of y(x).

Exercise1.

- 1. Solve the approximate solution at x = 1.4 for the initial problem $\begin{cases} y' = x^2 + y^2 \\ y(1) = 1 \end{cases}$ by Euler's method, and take the step as h = 0.1.
- 2. Solve the approximate solution in $[0,2\pi]$ for the initial problem $\begin{cases} y' = \cos x \\ v(0) = 2 \end{cases}$ by Euler's method, and display the fitting curve.

Lipschitz condition. Function f(x) satisfies a Lipschitz condition in D $\binom{\text{with Lipschitz}}{\text{constant N}}$

$$if |f(x) - f(y)| \le N|x - y| for x, y \in D.$$

It's easy to check that such an function is uniformly continuous in D.

We consider the following initial value problem $\begin{cases} y' = f(x, y) \\ y(x_0) = y_0 \end{cases}$ (1).

Existence and uniqueness theorem. Let f(x,y) is continuous in the strip $R: x_0 - a \le x \le x_0 + a, y_0 - b \le y \le y_0 + b$ and satisfy the Lipschitz condition with respect to y in $R: |f(x,y) - f(x,\bar{y})| \le N|y - \bar{y}|$. Then the initial value problem (1) has exactly one solution $y = \phi(x)$ in an interval $x_0 - h_0 \le x \le x_0 + h_0$, where

$$h_0 = \min\left(a, \frac{b}{M}\right), M = \max|f(x, y)|, (x, y) \in R.$$

Remark 1. If there exist the partial derivative of f(x,y) with respect to y in R, and $f_y'(x,y)$ is bounded which $|f_y'(x,y)| \le N$.

Acoording to Lagrange Mean Value Theorem, we have

$$|f(x,y)-f(x,\bar{y})|=\big|f_y'(x,\xi)\big||y-\bar{y}|\leq N|y-\bar{y}|, where \ y<\xi<\bar{y}.$$

Remark 2. The initial value problem (1) is equivalent to the integral equation

$$y(x) = y_0 + \int_{x_0}^{x} f(\xi, y) d\xi$$
 (2).

The proof of existence.

1. Construct Picard's iterative sequence.

Finding any $y = \phi_0(x)$ which satisfies $\phi_0(x_0) = y_0$, and $y_0 - b \le \phi_0(x) \le y_0 + b$ $\forall x_0 - h_0 \le x \le x_0 + h_0$. We take $\phi_0(x) = y_0$, y_0 is substituted into equation (2), thus

$$\phi_1(x) = y_0 + \int_{x_0}^x f(\xi, y_0) d\xi$$
. $y = \phi_1(x)$ is substituted into equation (2), we have

$$\phi_2(x) = y_0 + \int_{x_0}^x f(\xi, \phi_1(\xi)) d\xi$$
 . And so on , then

$$\phi_n(x) = y_0 + \int_{x_0}^x f(\xi, \phi_{n-1}(\xi)) d\xi.$$
 (3)

Exercise. Prove $|\phi_n(x) - y_0| \le b$, $n = 1, 2, \dots$

Proving $|\phi_n(x) - y_0| \le b$ in $[x_0 - h_0, x_0 + h_0]$ by mathematical induction.

Obviously, $|\phi_0(x) - y_0| \le b$. Assume that $|\phi_{n-1}(x) - y_0| \le b$, then we have

$$|\phi_n(x) - y_0| \le \left| \int_{x_0}^x f(\xi, \phi_{n-1}(\xi)) d\xi \right| \le M|x - x_0| \le Mh_0 \le b.$$

2. Prove the convergence of approximate sequence $\{\phi_n(x)\}$.

Consider the functional series

$$\phi_0(x) + [\phi_1(x) - \phi_0(x)] + \dots + [\phi_n(x) - \phi_{n-1}(x)] + \dots (4).$$

$$|\phi_1(x) - \phi_0(x)| \le \left| \int_{x_0}^x |f(\xi, y_0)| d\xi \right| \le M|x - x_0|,$$

According to Lipschitz conditon, we have

$$|\phi_{2}(x) - \phi_{1}(x)| \leq \left| \int_{x_{0}}^{x} |f(\xi, \phi_{1}(\xi)) - f(\xi, \phi_{0}(\xi))| d\xi \right| \leq N \left| \int_{x_{0}}^{x} |\phi_{1}(\xi) - \phi_{0}(\xi)| d\xi \right|$$

$$\leq MN |\int_{x_0}^{x} |\xi - x_0| d\xi | \leq MN \frac{|x - x_0|^2}{2!},$$

Assume that $|\phi_n(x) - \phi_{n-1}(x)| \le MN^{n-1} \frac{|x - x_0|^n}{n!}$, then we have

$$|\phi_{n+1}(x) - \phi_n(x)| \le \left| \int_{x_0}^x |f(\xi, \phi_n(\xi)) - f(\xi, \phi_{n-1}(\xi))| d\xi \right| \le N \left| \int_{x_0}^x |\phi_n(\xi) - \phi_{n-1}(\xi)| d\xi \right|$$

$$\leq MN^n \left| \int_{x_0}^x \frac{|\xi - x_0|^n}{n!} d\xi \right| \leq MN^n \frac{|x - x_0|^{n+1}}{(n+1)!} .$$

The positive series $Mh_0 + MN\frac{h_0^2}{2} + \dots + MN^{n-1}\frac{h_0^n}{n!} + \dots$ is convergence.

Note that $|x - x_0| \le h_0$, so the **functional series** (4)'s uniform convergence can be obtained by Weierstrass discriminance.

3. Let $\phi(x) = \lim_{n \to \infty} \phi_n(x)$, prove $\phi(x)$ is a solution of equation (2).

$$\left| \int_{x_0}^{x} f(\xi, \phi_n(\xi)) d\xi - \int_{x_0}^{x} f(\xi, \phi(\xi)) d\xi \right| \le \left| \int_{x_0}^{x} |f(\xi, \phi_n(\xi)) - f(\xi, \phi(\xi))| d\xi \right|$$

$$\leq N \left| \int_{x_0}^{x} |\phi_n(\xi) - \phi(\xi)| d\xi \right| \leq N h_0 \max |\phi_n(x) - \phi(x)| \text{ for } x \in [x_0 - h_0, x_0 + h_0].$$

Because of the uniform convergence of functional series $\{\phi_n(x)\}$, so $\forall \epsilon, \exists n_0 \in \mathbb{N}^+$, st. $\forall n \geq n_0$, $|\phi_n(x) - \phi(x)| < \epsilon$ for $x \in [x_0 - h_0, x_0 + h_0]$.

That means
$$\left| \int_{x_0}^{x} f(\xi, \phi_n(\xi)) d\xi - \int_{x_0}^{x} f(\xi, \phi(\xi)) d\xi \right| \le Nh_0 \epsilon, so$$

$$\lim_{n\to\infty} \int_{x_0}^{x} f(\xi, \phi_n(\xi)) d\xi = \int_{x_0}^{x} f(\xi, \phi(\xi)) d\xi$$

$$\lim_{n\to\infty}\phi_n(x)=y_0+\lim_{n\to\infty}\int_{x_0}^x f\big(\xi,\phi_{n-1}(\xi)\big)d\xi \text{ is obtained by taking limit of equation (3).}$$

That is
$$\phi(x) = y_0 + \int_{x_0}^x f(\xi, \phi(\xi)) d\xi$$
, thus the $\phi(x)$ is a solution of equation (2).

1. The initial value problem (1) is equivalent to the integral equation

$$y(x) = y_0 + \int_{x_0}^{x} f(\xi, y) d\xi$$
 (2).

- 2. Construct Picard's iterative sequence. $\phi_n(x) = y_0 + \int_{x_0}^x f(\xi, \phi_{n-1}(\xi)) d\xi$. (3)
- 3. Prove the convergence of approximate sequence $\{\phi_n(x)\}$.
- 4. Let $\phi(x) = \lim_{n \to \infty} \phi_n(x)$, prove $\phi(x)$ is a solution of equation (2).

The proof of uniqueness.

Bellman Lemma.

Let y(x) is a nonnegative and continuous in [a,b]. If we can find $\delta \geq 0$ and $k \geq 0$ so

that
$$y(x) \le \delta + k \left| \int_{x_0}^x y(t) dt \right|$$
 for $a \le x_0 \le b$, where $x \in [a, b]$. Then $y(x) \le \delta e^{k|x-x_0|}, x \in [a, b]$.

The proof of uniqueness.

Bellman Lemma.

Let y(x) is nonnegative and continuous in [a,b]. If we can find $\delta \geq 0$ and $k \geq 0$ so

that
$$y(x) \le \delta + k \left| \int_{x_0}^x y(t) dt \right|$$
 for $a \le x_0 \le b$, where $x \in [a, b]$. Then

$$y(x) \le \delta e^{k|x-x_0|}, x \in [a, b].$$

Let $y_1(x)$ and $y_2(x)$ are two equations of equation (2), the following estimation can be obtained by Lipschitze condition.

$$|y_1 - y_2| \le \left| \int_{x_0}^x |f(t, y_1(t)) - f(t, y_2(t))| dt \right| \le N \left| \int_{x_0}^x |y_1(t) - y_2(t)| dt \right|.$$

According to Bellman lem*ma*, we have y(x) = 0.

Example 1.

Show the solution of the equation $\frac{dy}{dx} = \begin{cases} 0, & y = 0 \\ yln|y|, y \neq 0 \end{cases}$ which pass through a point $(x_0, y_0) \in R^2$ is unique.

Lipschitz condition is not the necessary condition for existence and uniqueness of solution for the initial problem.

Example 2.

Discuss the uniqueness of the solution of $\frac{dy}{dx} = 3y^{\frac{2}{3}}$.

Exercise 2.

1. Discuss the region which satisfy the existence and uniqueness of solution for the following initial problems.

following initial problems.

$$(1)y' = x^2 + y^2; \quad (2)y' = x^{-\frac{1}{3}}; \quad (3)y' = \sqrt{|y|}.$$
2. Get all solutions of the initial problem
$$\begin{cases} y' = \frac{3}{2}y^{\frac{1}{3}}, \\ y(0) = 0 \end{cases}$$

Exercise 2.

- 3. Get the approximate solutions $\phi_0(x)$, $\phi_1(x)$, $\phi_2(x)$ for the initial problem $\begin{cases} y' = x y^2 \\ y(0) = 0 \end{cases}$ by Picard's iterative method.
- 3. Prove $|\phi_n(x) \phi(x)| \le \frac{MN^n}{(1+n)!} |x x_0|^{n+1}$ in existence and uniqueness theorem.

Exercise 2.

4. The solution of the initial problem $\begin{cases} y' = f(x, y) \\ y(x_0) = y_0 \end{cases}$ is unique in $R: a \le x \le b$,

 $|y| < +\infty$. Show $y_1(x) < y_2(x)$ in $x_0 \le x \le b$ for any two solutions $y_1(x), y_2(x)$ which satisfy $y_1(x_0) < y_2(x_0)$.

The extension of solutions.

Local Lipschitz condition. The function f(x,y) is said to satisfy a local Lipschitz condition with respect to y in $D \subset R^2$ if for every $(x_0, y_0) \in D$ there exists a neighbor – hood $U = U(x_0, y_0)$ and an $L = L(x_0, y_0)$ such that in $U \cap D$ the function f satisfies the Lipschitz condition $|f(x,y) - f(x,\bar{y})| \le L|y - \bar{y}|$.

Theorem on local solvability. If D is open and $f \in C(D)$ satisfies a local Lipschitz condition in D, then the initial value problem (1) is locally uniquely solvable for $(x_0, y_0) \in D$; i.e., there is a neighborhood I of x_0 such that exactly one solution exists in I.

Theorem on the extension of solutions. Let $f \in C(D)$ satisfy a local Lipschitz conditon with respect to y in D. Then for every $(x_0, y_0) \in D$ the initial value problem $y' = f(x, y), y(x_0) = y_0$ has a solution ϕ that can be extended to the left and to the right comes arbitrarily close to the boundary of D.

The Peano existence theorem. If f(x,y) is continuous in a domain D and (ξ,η) is a point in D, then at least one solution of the differential equation y' = f(x,y) goes through (ξ,η) . Every solution can be extended to the left and to the right up to the boundary of D.

Example 1.

Discuss the existence of the solutions of $y' = y^2$, y(1) = 1 and $y' = y^2$, y(3) = -1.

Example 2.

Discuss the existence of the solution of $y' = -\frac{1}{x^2}\cos\frac{1}{x}$.

Exercise 3.

- 1. Let $f(x,y) \in C(R^2)$ and $f'(x,y) \in C(R^2)$. Prove the solution of $y' = (y^2 a^2)f(x,y)$, $y(x_0) = y_0$ exists in $(-\infty, +\infty)$ for arbitrary x_0 and $|y_0| < a$.
- 2. f(y) is continuous and differentiable in $(-\infty, +\infty)$, and $yf(y) < 0 (y \neq 0)$.
- Show the initial problem $y' = f(y), y(x_0) = y_0$ has a solution in $[x_0, \infty]$.
- Assume that y(x) is a solution, show $\lim_{x\to +\infty} y(x) = 0$.
- 3. f(y) is continuous and differentiable in $(-\infty, +\infty)$, and $yf(y) < 0 (y \neq 0)$.
- Show the equation $y' = x^2 f(\sin y)$ has a solution y = y(x) in $(-\infty, +\infty)$, and if y(x)
- is not a constant, then it is a monotonic increasing function.

Comparison theorem.

Here we consider two initial value problems:

$$y' = f(x, y), y(x_0) = y_0$$
 (1),

$$y' = F(x, y), y(x_0) = y_0$$
 (2).

Let $f(x,y), F(x,y) \in C(D)$ satisfy Lipschitz condition with respect to y in $D.y = \phi(x)$

and $y = \Phi(x)$ are the solutions of equation (1) and equation (2) respectively.

If
$$f(x,y) < F(x,y)$$
 in D. Then $\phi(x) < \Phi(x)$ for $x > x_0$, $\phi(x) > \Phi(x)$ for $x < x_0$.

Upper solutions, Lower solutions.

Let f(x,y) be defined in $D,D \subset \mathbb{R}^2$ arbitary. The function v(x) is called a lower solution (or subsolution) and w(x) is called an upper solution (or supersolution) of the initial value problem y' = f(x,y) in $J = [x_0, x_0 + h_0], y(x_0) = y_0$, if it is differentiable in J and

$$v' < f(x, v)$$
 in J , $v(x_0) \le y_0$, lower solution,

$$w' > f(x, w)$$
 in J , $w(x_0) \ge y_0$, upper solution.

Naturally,
$$v(x) < y(x) < w(x)$$
 in $J_0: x_0 < x \le x_0 + h_0$.

Example.

We consider the equation $y' = x^2 + y^2$, y(0) = 1.

Singular solution. The integral curve is called a singular integral curve, if the differential equation has no unique solution for every point in the integral curve.

Example.

Determine whether there exist singular solutions for the follwing differential equations.

 $1.y' = x^2 + y^2$. The problem has no singular solution.

 $2.y' = 3y^{\frac{2}{3}}.y = 0$ is a singular solution.

 $3.y' = \sqrt{y-x} + 2$. The problem has no singular solution.

$$4. y' = \sqrt{|y|};$$

$$5. y' = \sqrt{y - x}.$$

Continuous dependence of solutions on initial value.

If D is open and $f \in C(D)$ satisfies Lipschitz condition in $D.y = \phi(x, x_0^*, y_0^*)$ is the

solution of the initial value problem
$$\begin{cases} y' = f(x,y) \\ y(x_0^*) = y_0^* \end{cases}$$
, and $(x,\phi(x,x_0^*,y_0^*)) \in D$ for $a \le x$

 $\leq b.$ Then for every $\epsilon > 0$, there exist $\delta > 0$, such that $|\phi(x,x_0,y_0) - \phi(x,x_0^*,y_0^*)| < \epsilon$

for every (x_0, y_0) which satisfies $|x - x_0^*| \le \delta$, $|y - y_0^*| \le \delta$, where $y = \phi(x, x_0, y_0)$ is

the solution of of the initial value problem
$$\begin{cases} y' = f(x, y) \\ y(x_0) = y_0 \end{cases}$$
 in $[a, b]$.

Chapter 3. First Order Systems.

A first order system of differential equations (in explicit form) of the form

$$\begin{cases} y_1' = f_1(x, y_1, ..., y_n) \\ \vdots \\ y_n' = f_n(x, y_1, ..., y_n) \end{cases}$$
(1)

An – order differential equation $y^{(n)} = f(x, y, y', ..., y^{(n-1)})$ can be described as

$$\begin{cases} y' = y_1 \\ y'_1 = y_2 \\ \vdots \\ y'_{n-2} = y_{n-1} \\ y'_{n-1} = f(x, y, y_1, ..., y_{n-1}) \end{cases}$$

We denote column vectors with boldface letters, as shown in the follwing:

$$\mathbf{Y}(x) = \begin{pmatrix} y_1(x) \\ \vdots \\ y_n(x) \end{pmatrix}, \qquad \mathbf{F}(x, \mathbf{Y}) = \begin{pmatrix} f_1(x, y_1, \dots, y_n) \\ \vdots \\ f_n(x, y_1, \dots, y_n) \end{pmatrix}.$$

Derivatives and integrals of a vector function Y(x) are also defined component wise:

$$\mathbf{Y}'(x) = \begin{pmatrix} y'_1(x) \\ \vdots \\ y'_n(x) \end{pmatrix}, \qquad \int_{x_0}^x \mathbf{F}(x) dx = \begin{pmatrix} \int_{x_0}^x f_1(x) dx \\ \vdots \\ \int_{x_0}^x f_n(x) dx \end{pmatrix}.$$

Written in vector notation, system (1) reads

$$Y' = F(x, Y)$$

The initial condition of system (1) $y_1(x_0) = y_{10}, ..., y_n(x_0) = y_{n0}$ can be written as

$$\mathbf{Y}(x_0) = \mathbf{Y}_0$$
, where $\mathbf{Y}_0 = \begin{pmatrix} y_{10} \\ \vdots \\ y_{n0} \end{pmatrix}$.

Initial value problem.
$$\begin{cases} Y' = F(x, Y) \\ Y(x_0) = Y_0 \end{cases}$$

Norm. A real value function
$$||\cdot||$$
 defined for $Y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$ and $A = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{bmatrix}$

is called a norm if it has the properties

$$||Y|| > 0$$
 for $Y \neq 0$ definiteness,

$$||\alpha Y|| = |\alpha| \cdot ||Y||$$
 for every cosntant α , homogeneity,

$$||Y + X|| \le ||X|| + ||Y||,$$
 triangle inequality

We define
$$||Y|| = \sum_{i=1}^{n} |y_i|$$
, $||A|| = \sum_{k,j=1}^{n} |a_{kj}|$. Based on the definition, we have

$$\left| \left| \int_{x_0}^x F(x) dx \right| \right| \le \left| \int_{x_0}^x \left| \left| F(x) \right| \right| dx \right|.$$

 $\forall x \in [a,b]$, a sequence $\{Y_n\}$ converges in the norm to Y if $\lim_{n\to\infty} \left| |Y_n(x) - Y(x)| \right| = 0$.

Lipschitz condition. A vector function F(x,Y) satisfies a Lipschitz condition with respect to Y in D(with Lipschitz constant L) if

 $|F(x,Y)-F(x,\overline{Y})| \leq L|Y-\overline{Y}| \ \forall \ (x,Y),(x,\overline{Y}) \in D.$

Local Lipschitz condition. A function f is said to satisfy in D a local Lipschitz condition with respect to Y if for every point $(x,Y) \in D$, there exists a neihborhood $U: |x - \bar{x}| < \delta, |y - \bar{y}| < \delta(\delta > 0)$ such that F satisfies a Lipschitz condition in $D \cap U$. **Lemma.** If $F \in C(D)$ satisfies in D a local Lipschitz condition in Y, then F satisfies a Lipschitz condition in Y on compact subsets of D.

Existence and uniqueness theorem. Let F(x,Y) be continuous and satisfy the Lipschitz condition in $J \times R^n$, $J = [\xi, \xi + a]$. Then there is exactly one solution to the initial value problem Y' = F(x,Y), $Y(\xi) = \eta$. The solution exists in of J.

Let F(x,Y) be continuous in a domain $D \subset R^{n+1}$ and satisfy a local Lipschitz condition with respect to y in D. If $(\xi,\eta) \in D$, then the initial value problem Y' = F(x,Y), $Y(\xi) = \eta$ has exactly one solution. Then solution can be extended to the left and right up to the boundary of D.

Chapter 3. First Order Systems.

A first order system of differential equations (in explicit form) of the form

$$\begin{cases} y_1' = f_1(x, y_1, ..., y_n) \\ \vdots \\ y_n' = f_n(x, y_1, ..., y_n) \end{cases}$$
(1)

An – order differential equation $y^{(n)} = f(x, y, y', ..., y^{(n-1)})$ can be described as

$$\begin{cases} y' = y_1 \\ y'_1 = y_2 \\ \vdots \\ y'_{n-2} = y_{n-1} \\ y'_{n-1} = f(x, y, y_1, ..., y_{n-1}) \end{cases}$$

We denote column vectors with boldface letters, as shown in the follwing:

$$\mathbf{Y}(x) = \begin{pmatrix} y_1(x) \\ \vdots \\ y_n(x) \end{pmatrix}, \qquad \mathbf{F}(x, \mathbf{Y}) = \begin{pmatrix} f_1(x, y_1, \dots, y_n) \\ \vdots \\ f_n(x, y_1, \dots, y_n) \end{pmatrix}.$$

Derivatives and integrals of a vector function Y(x) are also defined component wise:

$$\mathbf{Y}'(x) = \begin{pmatrix} y'_1(x) \\ \vdots \\ y'_n(x) \end{pmatrix}, \qquad \int_{x_0}^x \mathbf{F}(x) dx = \begin{pmatrix} \int_{x_0}^x f_1(x) dx \\ \vdots \\ \int_{x_0}^x f_n(x) dx \end{pmatrix}.$$

Written in vector notation, system (1) reads

$$Y' = F(x, Y)$$

The initial condition of system (1) $y_1(x_0) = y_{10}, ..., y_n(x_0) = y_{n0}$ can be written as

$$\mathbf{Y}(x_0) = \mathbf{Y}_0$$
, where $\mathbf{Y}_0 = \begin{pmatrix} y_{10} \\ \vdots \\ y_{n0} \end{pmatrix}$.

Initial value problem.
$$\begin{cases} Y' = F(x, Y) \\ Y(x_0) = Y_0 \end{cases}$$

Norm. A real value function
$$||\cdot||$$
 defined for $Y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$ and $A = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{bmatrix}$

is called a norm if it has the properties

$$||Y|| > 0$$
 for $Y \neq 0$ definiteness,

$$||\alpha Y|| = |\alpha| \cdot ||Y||$$
 for every cosntant α , homogeneity,

$$||Y + X|| \le ||X|| + ||Y||,$$
 triangle inequality

We define
$$||Y|| = \sum_{i=1}^{n} |y_i|$$
, $||A|| = \sum_{k,j=1}^{n} |a_{kj}|$. Based on the definition, we have

$$\left| \left| \int_{x_0}^x F(x) dx \right| \right| \le \left| \int_{x_0}^x \left| \left| F(x) \right| \right| dx \right|.$$

 $\forall x \in [a,b]$, a sequence $\{Y_n\}$ converges in the norm to Y if $\lim_{n\to\infty} \left| |Y_n(x) - Y(x)| \right| = 0$.

Lipschitz condition. A vector function F(x,Y) satisfies a Lipschitz condition with respect to Y in D(with Lipschitz constant L) if

 $||F(x,Y) - F(x,\overline{Y})|| \le L||Y - \overline{Y}|| \ \forall \ (x,Y), (x,\overline{Y}) \in D.$

Local Lipschitz condition. A function F is said to satisfy in D a local Lipschitz condition with respect to Y if for every point $(x,Y) \in D$, there exists a neihborhood $U: |x - \bar{x}| < \delta, ||Y - \bar{Y}|| < \delta(\delta > 0)$ such that F satisfies a Lipschitz condition in $D \cap U$. **Lemma**. If $F \in C(D)$ satisfies in D a local Lipschitz condition in Y, then F satisfies a Lipschitz condition in Y on compact subsets of D.

Existence and uniqueness theorem. Let F(x,Y) be continuous and satisfy the Lipschitz condition in $R: |x - x_0| \le a$, $||Y - Y_0|| \le b$. Then there is exactly one solution to the

initial value problem
$$Y' = F(x,Y), Y(x_0) = Y_0$$
 in $|x - x_0| \le h_0$, where $h_0 = \min\left(a, \frac{b}{M}\right)$,

 $M = \max ||F(x, Y)||.$

Let F(x,Y) be continuous in a domain $D \subset R^{n+1}$ and satisfy a local Lipschitz condition with respect to y in D. If $(\xi,\eta) \in D$, then the initial value problem $Y' = F(x,Y), Y(\xi) = \eta$ has exactly one solution. Then solution can be extended to the left and right up to the boundary of D.

Peano existence theorem. If F(x,Y) is continuous in the domain D and $(\xi,\eta) \in D$, then the initial value problem (1) has at least one solution. Every solution can be extended to the left and right up to the boundary of D.

Homogeneous linear systems

$$\begin{cases} y_1' = a_{11}(x)y_1 + a_{12}(x)y_2 + \dots + a_{1n}(x)y_n + f_1(x) \\ \vdots \\ y_n' = a_{n1}(x)y_1 + a_{n2}(x)y_2 + \dots + a_{nn}(x)y_n + f_n(x) \end{cases}$$
 (1) is a first order linear systems.

$$Set A(x) = \begin{bmatrix} a_{11}(x) & \cdots & a_{1n}(x) \\ \vdots & \ddots & \vdots \\ a_{n1}(x) & \cdots & a_{nn}(x) \end{bmatrix} and F(x) = \begin{pmatrix} f_1(x) \\ \vdots \\ f_n(x) \end{pmatrix}.$$

Written in vector notation, system (1) reads Y' = A(x)Y + F(x), if $F(x) \equiv \mathbf{0}$, then Y' = A(x)Y is called homogeneous, otherwise, it is called inhomogeneous.

Theorem. If A(x) and F(x) are continuous in [a,b], for every $x_0 \in [a,b]$, $Y_0 \in \mathbb{R}^n$ or \mathbb{C}^n , there exists exactly one solution for the initial problem Y' = A(x)Y + F(x), $Y(x_0) = Y_0$ in [a,b].

A set of solutions $Y_1, ..., Y_k$ is called **linearly dependent** if there exist constants $c_1, ..., c_k$ with $|c_1| + \cdots + |c_k| > 0$ such that $c_1Y_1 + \cdots + c_kY_k = 0$.

The k solutions are said to be **linearly independent** if they are not linearly dependent **Proposition of homogeneous linear systems**.

- (a) $Y \equiv \mathbf{0}$ in J is a solution of the **homogeneous linear systems**.
- (b) There exist n linearly independent solutions $Y_1, ..., Y_n$. Every such set of n linearly independent solutions is called a **fundamental system of solutions**. If $Y_1, ..., Y_n$ is a fundamental system, then every solution y can be written in a unique way as a linear combination $Y = C_1Y_1 + \cdots + C_nY_n$.
- (c) A system of n solutions $Y_1, ..., Y_n$ can be assembled into an $n \times n$ solution matrix $\Phi(x) = (Y_1, ..., Y_n)$. If n solutions $Y_1, ..., Y_n$ are linearly independent, then $\Phi(x)$ is a **fundamental matrix**.

Example. Show vector functions
$$Y_1(x) = \begin{pmatrix} \cos^2 x \\ 1 \\ x \end{pmatrix}$$
 and $Y_2(x) = \begin{pmatrix} \sin^2 x - 1 \\ -1 \\ -x \end{pmatrix}$ are

linearly dependent in (a, b).

Example. Show vector functions
$$Y_1(x) = \begin{pmatrix} e^{3x} \\ e^{3x} \end{pmatrix}$$
 and $Y_2(x) = \begin{pmatrix} e^{6x} \\ -2e^{6x} \\ e^{6x} \end{pmatrix}$ are

linearly independent in $(-\infty, +\infty)$.

Excersise. Show vector functions
$$Y_1(x) = \begin{pmatrix} e^{-2x} \\ 0 \\ -e^{-2x} \end{pmatrix}$$
 and $Y_2(x) = \begin{pmatrix} 0 \\ e^{-2x} \\ -e^{-2x} \end{pmatrix}$ are

linearly independent in $(-\infty, +\infty)$.

The Wronskian. If $\Phi(x) = (Y_1, ..., Y_n)$ is a solution matrix of Y' = A(x)Y, then its determinant $W(x) = |\Phi(x)|$ is called the Wronskian determinant.

Theorem. If $Y_1, ..., Y_n$ are linearly dependent in J, then the Wronskian $W(x) \equiv 0$.

 $Proof.Y_1, ..., Y_n$ are linearly dependent in J, so there exists C

- = $(c_1, ..., c_n)^T$ which satisfies $|c_1| + \cdots + |c_n| > 0$ st. $\Phi(x)C = 0$ for every $x \in J$.
- That means the homegeneous linear equations $\Phi(x)C = 0$ has non zero solutions for every $x \in I$, so $w(x) = |\Phi(x)| = 0$ for every $x \in I$.

Theorem. If $Y_1, ..., Y_n$ are linearly dependent in J, then the Wronskian $W(x) \equiv 0$.

Theorem. If $Y_1, ..., Y_n$ is a fundamental system of equation Y' = A(x)Y, then the Wronskian $W(x) \neq 0$ in J.

Proof. If there exists $x_0 \in J$ st. $W(x_0) = 0$, the linear equations $\Phi(x_0)C = 0$ has non – zero solutions. That means $\exists C = (c_1, ..., c_n) \neq 0$ st. $c_1Y_1(x_0) + \cdots + c_nY_n(x_0) = 0$, and $Y(x) = c_1Y_1(x) + \cdots + c_nY_n(x)$ is a solution of the initial problem Y' = A(x)Y, $Y(x_0) = 0$. Obviously, Y(x) = 0 is a solution of such a initial problem.

According to the existence and uniqueness theorem, the initial problem has exactly one solution in J. So $W(x) \neq 0$ in J.

Corollary. The Wronskian is either = 0 or \neq 0 in J. The nonvanishing of the Wronskian is necessary and sufficient condition for $\Phi(x)$ to be a fundamental matrix.

Theorem. If $Y_1, ..., Y_n$ are linearly dependent in J, then the Wronskian $W(x) \equiv 0$.

Theorem. If $Y_1, ..., Y_n$ is a fundamental system of equation Y' = A(x)Y, then the Wronskian $W(x) \neq 0$ in J.

Theorem. There exists a fundamental system of solution for equation Y' = A(x)Y.

Proof. According to the existence and uniqueness theorem, the initial problem

$$Y' = A(x)Y, Y_i(x_0) = \begin{pmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{pmatrix} \rightarrow i \ (i = 1, ..., n) \ has \ exactly \ one \ solution. \ Note \ that$$

 $W(x_0) = |Y_1(x_0), ..., Y_n(x_0)| = |E| = 1$, so $Y_1(x), ..., Y_n(x)$ is a fundamental system of the linear homogeneous differential system Y' = A(x)Y.

Theorem. If $Y_1, ..., Y_n$ is a fundamental system of the linear homogeneous differential system Y' = A(x)Y, then every solution Y can be written in a unique way as a linear combination $Y = C_1Y_1 + \cdots + C_nY_n$.

Proof. $\forall c_1, ..., c_n$, set $Y(x) = c_1 Y_1(x) + \cdots + c_n Y_n(x)$, then we have

 $Y'(x) = [c_1Y_1(x) + \dots + c_nY_n(x)]' = A(x)Y(x)$, so Y(x) is a solution of Y' = A(x)Y.

If Y(x) is a solution of the initial problem Y' = A(x)Y, $Y(x_0) = Y_0$, then there exists

excatly one
$$C = \begin{pmatrix} c_1 \\ \vdots \\ c_n \end{pmatrix} \neq 0$$
 st. $\Phi(x_0)C = Y_0$ because of $W(x_0) = |\Phi_0(x_0)| \neq 0$.

According to the existence and uniqueness theorem, $Y(x) = \Phi(x)C$ is the unique solution of such initial problem.

Theorem. If $Y_1, ..., Y_n$ is a fundamental system of equation Y' = A(x)Y, then every solution Y can be written in a unique way as a linear combination $Y = C_1Y_1 + \cdots + C_nY_n$.

Theorem. If A(x) is real — valued and continuous in [a,b], then the set of real solutions Y(x) of the homogeneous equation Y' = A(x)Y forms a n — dimensional linear space.

Exercise.

1. If $\Phi(x)$ and $\Psi(x)$ are two fundamental matrixes of Y' = A(x)Y.

Show there exists a nonsigular matrix B such that $\Phi(x) = \Psi(x)B$.

Theorem. If A(x) is continuous in J, then the Weonskian $W(x) = W(x_0)e^{\int_{x_0}^x [trA(t)]dt}$, where $trA(t) = a_{11}(t) + \cdots + a_{nn}(t)$. This formula is called **Liouville formula**.

Inhomogeneous Systems.

$$Y' = A(x)Y + F(x) \quad (1).$$

Theorem. Let $\tilde{Y}(x)$ be a fixed solution of the inhomogeneous equation (1). If $Y_0(x)$ is an arbitrary solution of the homogeneous equaiton, then $Y(x) = \tilde{Y}(x) + Y_0(x)$ is a solution of the inhomogeneous equation, and all solutions of the inhomogeneous equation are obtained in this way.

Remark. The general solution of the inhomogeneous equation is given by $Y(x) = C_1Y_1(x) + \dots + C_nY_n(x) + \tilde{Y}(x), \text{ where } Y_1(x), \dots, Y_n(x) \text{ is a fundamental system}$ of the related homogeneous equation and C_1, \dots, C_n are arbitrary constants.

Method of Variation of constants.

$$Y' = A(x)Y. (1)$$

$$Y' = A(x)Y + F(x).$$
 (2)

$$Y(x) = \Phi(x)C$$
 is the general solution of the homogeneous systems(1).

In the method of variation of constants the constants $C = \begin{pmatrix} C_1 \\ \vdots \\ C_n \end{pmatrix}$ are replaced by

functions of
$$C(x) = \begin{pmatrix} C_1(x) \\ \vdots \\ C_n(x) \end{pmatrix}$$
.

Substituting
$$\tilde{Y}(x) = \Phi(x)C(x)$$
 into (2) gives $\tilde{Y}(x) = \int_{x_0}^x \Phi(x) \Phi^{-1}(t)F(t)dt$.

The general solution of the inhomogeneous systems(2) is

$$Y(x) = \Phi(x)C + \int_{x_0}^{x} \Phi(x) \Phi^{-1}(t)F(t)dt.$$

Methods for solving linear differential systems with constant coefficients Linear Transformations.

We consider the homogeneous system Y' = AY. (1)

If C is a nonsingular constant matrix, then the mapping $Y=CZ, Z=C^{-1}Y(\det C\neq 0)$

transforms a solution of (1) into a solution Z(t) of the system $Z' = C^{-1}ACZ$ (2).

Theorem. Suppose that A has n different eigenvalues, then it has n linearly

independent eigenvectors $C_1, ..., C_n$. If one sets $C = (C_1, ..., C_n)$, then $AC = (\lambda_1 C_1, ..., \lambda_n C_n)$

= CD, where $D = diag(\lambda_1, ..., \lambda_n)$. Thus for this choice of C st. $C^{-1}AC = D$ and (2) reads

simply $z_1' = \lambda_1 z_1, \dots, z_n' = \lambda_n z_n$. It's easy to find a fundamental system of solutions for

this system, namely
$$Z(t) = (z_1, ..., z_n) = \begin{bmatrix} e^{\lambda_1 t} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & e^{\lambda_n t} \end{bmatrix}$$
.

Going back to Y = CZ, we obtain the fundamental system of

$$Y_i = CZ_i = e^{\lambda_i x} C_i, i = 1, \dots, n.$$

Example. Determin the general solution of the system
$$\begin{cases} \frac{dx}{dt} = 3x - y + z \\ \frac{dy}{dt} = -x + 5y - z. \\ \frac{dz}{dt} = x - y + 3z \end{cases}$$

Solution.
$$A = \begin{bmatrix} 3 & -1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 3 \end{bmatrix}$$
. From $\det(A - \lambda E) = 0$, it follows that $\lambda_1 = 2, \lambda_2 = 3, \lambda_3$

= 6. The corresponding eigevectors are
$$T_1 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$$
, $T_2 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$, $T_3 = \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$.

So the general solution is
$$\begin{pmatrix} x(t) \\ y(t) \\ z(t) \end{pmatrix} = C_1 e^{2t} \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} + C_2 e^{3t} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + C_3 e^{6t} \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}.$$

Example. Solve the nonhomogeneous linear differential system $\begin{cases} x' = 2x + 3y + 5t \\ y' = 3x + 2y + 8e^t \end{cases}$

Solution. The general solution of the related homogeneous system is

$$C_1e^{5t}\begin{pmatrix}1\\1\end{pmatrix}+C_2e^{-t}\begin{pmatrix}1\\-1\end{pmatrix}.$$

Set the special solution of the nonhomogeneous system is

$$C_1(t)e^{5t}\begin{pmatrix}1\\1\end{pmatrix}+C_2(t)e^{-t}\begin{pmatrix}1\\-1\end{pmatrix}.$$

We have
$$C_1'(t)e^{5t} \begin{pmatrix} 1 \\ 1 \end{pmatrix} + C_2'(t)e^{-t} \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 5t \\ 8e^t \end{pmatrix}$$
.

Moreover,
$$\begin{cases} C_{1}(t) = \left(-\frac{1}{2}t - \frac{1}{10}\right)e^{-5t} - e^{\wedge} - 4t \\ C_{2}(t) = \left(\frac{5}{2}t - \frac{5}{2}\right)e^{t} - 2e^{2t} \end{cases}$$

Exercise. Determine the general solution of the systems

(a).
$$\begin{cases} 2x' - 5y' = 4y - x, \\ 3x' - 4y' = 2x - y. \end{cases}$$

$$(b).\begin{cases} x' = y + 2e^t, \\ y' = x + t^2. \end{cases}$$

Remark. A is a real coefficient matrix, so the complex eigenvalues of the matrix come in pairs, and the corresponding eigenvectors are conjugate too.

Remark. If Y(x) = U(x) + iV(x) is a solution of Y' = A(x)Y, then U(x) and V(x) are solutions of the homogeneous system.

Theorem. If $\lambda = \mu + iv(v \neq 0)$ is a complex eigenvalue of the real matrix A and c = a + ib is a corresponding eigenvector, then the complex solution $Y = ce^{\lambda x}$ products two real solutions:

$$Y_1(x) = Re Y = e^{\mu x} (a \cos vx - b \sin vx),$$

$$Y_2(x) = Im Y = e^{\mu x} (a \sin vx + b \cos vx).$$

Example. Determin the general solution of the system
$$\begin{cases} \frac{dx}{dt} = x - y - z \\ \frac{dy}{dt} = x + y \\ \frac{dz}{dt} = 3x + z \end{cases}$$

Solution.
$$A = \begin{bmatrix} 1 & -1 & -1 \\ 1 & 1 & 0 \\ 3 & 0 & 1 \end{bmatrix}$$
. From $\det(A - \lambda E) = 0$, it follows that $\lambda_1 = 1$, $\lambda_2 = \lambda_3 = 1 \pm 1$

2i. The corresponding eigevectors are
$$T_1 = \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}$$
, $T_2 = \begin{pmatrix} 2i \\ 1 \\ 3 \end{pmatrix}$, $T_3 = \begin{pmatrix} -2i \\ 1 \\ 3 \end{pmatrix}$.

So the general solution is
$$\begin{pmatrix} x(t) \\ y(t) \\ z(t) \end{pmatrix} = C_1 e^t \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} + C_2 e^t \begin{pmatrix} -2\sin 2t \\ \cos 2t \\ 3\cos 2t \end{pmatrix} + C_3 e^t \begin{pmatrix} 2\cos 2t \\ \sin 2t \\ 3\sin 2t \end{pmatrix}$$
.

Jordan normal form of a matrix. The matrix theory says for every real or complex matrix A there exists a nonsingular matrix C (in general, C will be complex), such that

$$B=C^{-1}AC$$
 has the so – called Jordan normal form $B=\begin{bmatrix} J_1 & 0 & 0 \ 0 & J_i & 0 \ 0 & 0 & J_k \end{bmatrix}$, where the Jordan

block
$$J_i$$
 is a square matrix of the form $J_i = \begin{bmatrix} \lambda_i & 1 & 0 \\ 0 & \lambda_i & 1 \\ 0 & 0 & \lambda_i \end{bmatrix}$ with r_i rows and columns; Out

of the Jordan blocks, B consists entirely of zeros. Here $r_1 + \dots + r_k = n$, and $\det(A - \lambda E) = P_n(\lambda) = (-1)^n (\lambda - \lambda_1)^{r_1} \dots (\lambda - \lambda_k)^{r_k}.$

Note that the main diagonal of B consists of eigenvalues of A and that each block is made up of one and the same eigenvalue.

The system corresponding to a Jordan block J with r rows and diagonal element λ is

given by
$$X'_r = JX_r$$
 or
$$\begin{cases} x'_1 = \lambda x_1 + x_2 \\ x'_2 = \lambda x_2 + x_3 \\ \vdots \\ x'_r = \lambda x_r \end{cases}$$
 can be easily solved (one begins with the last

equation). For example, if
$$J = \begin{bmatrix} \lambda_1 & 1 & 0 & 0 & 0 \\ 0 & \lambda_1 & 1 & 0 & 0 \\ 0 & 0 & \lambda_1 & 0 & 0 \\ 0 & 0 & 0 & \lambda_2 & 1 \\ 0 & 0 & 0 & 0 & \lambda_2 \end{bmatrix}$$
, then the corresponding system

Z' = JZ can be rewritten as

$$\begin{cases} z_1' = \lambda_1 z_1 + z_2 \\ z_2' = \lambda_1 z_2 + z_3 \end{cases} \text{ and } \begin{cases} z_4' = \lambda_2 z_4 + z_5 \\ z_5' = \lambda_2 z_5 \end{cases}. \text{ We can obtain solutions of such two systems}$$

$$\begin{cases} z_{1} = (\frac{C_{3}}{2!}x^{2} + C_{2}x + C_{1})e^{\lambda_{1}x} \\ z_{2} = (C_{3}x + C_{2})e^{\lambda_{1}x} \end{cases} and \begin{cases} z_{4} = (C_{5}x + C_{4})e^{\lambda_{2}x} \\ z_{5} = C_{5}e^{\lambda_{2}x} \end{cases}$$

Set $C_1 = 1$, $C_2 = C_3 = C_4 = C_5 = 0$; $C_2 = 1$, $C_1 = C_3 = C_4 = C_5 = 0$; $C_3 = 1$, $C_1 = C_2 = C_4 = C_5 = 0$; $C_4 = 1$, $C_1 = C_2 = C_3 = C_5 = 0$; $C_5 = 1$, $C_1 = C_2 = C_3 = C_4 = 0$, we get the fundamental system of solutions.

Summary. For every k-f old eigenvalue λ there exist k linearly independent solutions $Y_1=\boldsymbol{p}_0(x)e^{\lambda x},\ldots,Y_k=\boldsymbol{p}_{k-1}(x)e^{\lambda x}$ in which every component of

$$p_m(x) = (p_1^m(x), ..., p_n^m(x))^T$$
 $(m = 0, 1, ..., k - 1)$ is a polynomial of degree $\leq m$.

Example.
$$\begin{cases} x' = x - y \\ y' = 4x - 3y \end{cases}$$

From
$$A = \begin{pmatrix} 1 & -1 \\ 4 & -3 \end{pmatrix}$$
 follows that $\lambda_1 = \lambda_2 = -1$.

The corresponding solution is
$$\binom{x}{y} = e^{-t} \binom{1}{2}$$
. A second, linearly independent solution

can be obtained using the ansatz
$$\binom{x}{y} = e^{-t} \binom{a+bt}{c+dt}$$
.

From
$$\binom{x'}{y'} = e^{-t} \binom{b-a-bt}{d-c-dt} = Ae^{-t} \binom{a+bt}{c+dt}$$
, we have $\binom{x}{y} = e^{-t} \binom{t}{-1+2t}$.

Theorem. For every k-f old eigenvalue λ there exist k linearly independent solutions $Y=(R_0+R_1x+\cdots+R_{k-1}x^{k-1})e^{\lambda x}$ in which R_0,\ldots,R_{k-1} are solved by

$$\begin{cases} (A - \lambda E)R_0 = R_1 \\ (A - \lambda E)R_1 = 2R_2 \\ \dots \\ (A - \lambda E)R_{k-2} = (k-1)R_{k-1} \\ (A - \lambda E)^k R_0 = 0 \end{cases}$$

Example. Determine the general solution of the system $\begin{cases} y_1' = y_2 + y_3, \\ y_2' = y_1 + y_3, \\ y_3' = y_1 + y_2. \end{cases}$

Solution.
$$A = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$
. From $\det(A - \lambda E) = 0$, it follows that $\lambda_1 = 2, \lambda_2 = \lambda_3 = -1$.

The corresponding solution about λ_1 is $Y_1 = e^{2x} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$.

For
$$\lambda = -1$$
, we have
$$\begin{cases} (A + E)R_0 = R_1 \\ (A + E)^2R_0 = 0. \end{cases}$$

From $(A + E)^2 R_0 = 0$, we obtain linearly independent vectors are $\begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$ and $\begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$,

the corresponding R_1 are zeros. Then we have two lineary independent solutions

$$Y_2 = e^{-x} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}, Y_3 = e^{-x} \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}.$$

Exercise. Determine the general solution of the system
$$\begin{cases} y_1'=3y_1+y_2-y_3,\\ y_2'=-y_1+2y_2+y_3,\\ y_3'=y_1+y_2+y_3. \end{cases}$$

* Matrix functions.

Power series of matrices.

If B is an $n \times n$ matrix and p(s) is the polynomial $p(s) = c_0 + c_1 s + \dots + c_k s^k$, then p(B) is defined to be the matrix $p(B) = c_0 E + c_1 B + \dots + c_k B^k$.

For
$$B = At (b_{ij} = a_{ij}t), p(At) = c_0E + c_1At + \dots + c_kA^kt^k$$
.

For
$$C = \sum_{k=0}^{\infty} C_k$$
,

convergence is defined as usual: $S_p = C_0 + \dots + C_p \to C$ as $p \to \infty$, i.e., $||S_p - C|| \to 0$.

The matrix series is **absolutely convergent** if the real series $\sum ||C_k||$ converges.

The exponential matrix functions.

If A is an $n \times n$ matrix, the series

$$e^{A} = E + A + \frac{A^{2}}{2!} + \frac{A^{3}}{3!} + \dots + \dots + \frac{A^{n}}{n!} + \dots$$

converges absolutely for all A.

A simple calculation shows that $\frac{d}{dx}e^{Ax}=Ae^{Ax}$, so e^{Ax} is a fundamental matrix for the linear system Y'=AY.

Standard fundamental matrix: e^{Ax} is a fundamental matrix for the IVP $\begin{cases} Y' = AY \\ Y(0) = E \end{cases}$

Example. If $A = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$, we have the series

$$e^{A} = E + A + \frac{A^{2}}{2!} + \frac{A^{3}}{3!} + \dots + \dots + \frac{A^{n}}{n!} + \dots$$

$$= \begin{bmatrix} 1+1+\frac{1}{2!}+\cdots+\frac{1}{n!}+\cdots & 0 \\ 0 & 1+2+\frac{1}{2!}2^2+\cdots+\frac{1}{n!}2^n+\cdots \end{bmatrix} = \begin{bmatrix} e & 0 \\ 0 & e^2 \end{bmatrix}.$$

converges absolutely for all A.

$$e^{Ax} = \begin{bmatrix} e^x & 0 \\ 0 & e^{2x} \end{bmatrix}$$
 is the standard fundamental matrix of $Y' = AY$,

then
$$e^A = \begin{bmatrix} e & 0 \\ 0 & e^2 \end{bmatrix}$$
.

Exercise1.

1. Determine the general solution of the autonomous differential system

$$\begin{cases} \frac{dx}{dt} = p(t)x + q(t)y\\ \frac{dy}{dt} = q(t)x + p(t)y \end{cases}$$
, where $p(t)$ and $q(t)$ are continuous.

- 2. If $A_1(t)$ and $A_2(t)$ are continuous in (a,b), and $\Phi(t)$ is a fundamental matrix of
- the differential system $\frac{dX}{dt} = A_1(t) X$ and $\frac{dX}{dt} = A_2(t) X$. Show $A_1(t) \equiv A_2(t)$.
- 3. Consider the linear homogeneous differential system $\frac{dY}{dx} = A(x)Y$, where A(x) is a
- T-periodic continuous function.
- (a) If $\Phi(x)$ is a fundamental matrix of such a system, then show $\Phi(x+T)$ is a fundamental matrix.
- (b) Show there exists a nonsingular matrix B such taht $\Phi(x+T) = \Phi(x)B$.

Exercise2.

1. Determine the general solution of the following differential systems

(a)
$$\begin{cases} \frac{dy}{dx} = 5y + 4z \\ \frac{dz}{dx} = 4y + 5z \end{cases}$$
 (b)
$$\begin{cases} 2x' - 5y' = 4y - x \\ 3x' - 4y' = 2x - y \end{cases}$$
 (c)
$$\begin{cases} x' = y + 2e^t \\ y' = x + t^2 \end{cases}$$

- 2. If A(x) and F(x) are continuous, $Y_1(x)$, ... $Y_{n+1}(x)$ are solutions of the linear
- nonhomogeneous system $\frac{dY}{dx} = A(x)Y + F(x)$ and they are linearly independent.
- Show the general solution of such nonhomogeneous system is
- $Y(x) = a_1 Y_1(x) + \dots + a_{n+1} Y_{n+1}(x)$, where a_1, \dots, a_{n+1} are some constants which satisfy
- $a_1 + \dots + a_{n+1} = 1.$
- 3. Show $\forall t Be^{At} = e^{At}B$ if and only if AB = BA.

Chapter 4. Linear differential equations of order n

A linear differential equation of order n

$$y^{(n)} + p_1(x)y^{(n-1)} + \dots + p_{n-1}(x)y' + p_n(x)y = f(x)$$
 (1)

which has the initial condition $y(x_0) = y_0, y'(x_0) = y'_0, \dots, y^{(n-1)}(x_0) = y_0^{(n-1)}$ (2)

$$\frac{dy_1}{dx} = y_2$$
 ...
$$\frac{dy_{n-2}}{dx} = y_{n-1}$$

$$\frac{dy_{n-2}}{dx} = -p_1(x)y_{n-1} - \dots - p_{n-1}(x)y_1 - p_n(x)y + f(x)$$
 And this can be written in the form $\frac{dY}{dx} = A(x)Y + F(x)$, $Y(x_0) = Y_0$, where

$$A(x) = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ -p_n(x) & \cdots & \dots & -p_1(x) \end{bmatrix}, F(x) = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ f(x) \end{pmatrix}, Y = \begin{pmatrix} y \\ y_1 \\ \vdots \\ y_{n-1} \end{pmatrix}.$$

The initial condition can be proposed as $Y(x_0) = Y_0$, where $Y_0 = \begin{pmatrix} y(x_0) \\ y_1(x_0) \\ \vdots \\ y_{n-1}(x_0) \end{pmatrix} = \begin{pmatrix} y_0 \\ y_0 \\ \vdots \\ y_0^{(n-1)} \end{pmatrix}$.

Existence and uniqueness theorem. If the coefficients $p_k(x)(k=1,2,...,n)$ and f(x) are continuous in an interval J and if $x_0 \in J$, then the initial value problem $y^{(n)} + p_1(x)y^{(n-1)} + \cdots + p_{n-1}(x)y' + p_n(x)y = f(x),$

 $y(x_0) = y_0, y'(x_0) = y'_0, ..., y^{(n-1)}(x_0) = y_0^{(n-1)}$ has exactly one solution in J.

The homogeneous differential equations of order n Ly = 0.

The nth – order homogeneous differential equation can be written as $\frac{dY}{dx} = A(x)Y$, so the solutions of the differential equation form an n – dimensional vector space. **Propositions.** (a) A set of functions $\phi_1(x), ..., \phi_n(x)$ is called linearly dependent if there exist constants $c_1, ..., c_n$ with $|c_1| + \cdots + |c_n| > 0$ st. $c_1\phi_1(x) + \cdots + c_n\phi_n(x) = 0$ in J. (b) If $\phi_k(x)$ k = 1, ... n are n solutions of

$$y^{(n)} + p_1(x)y^{(n-1)} + \dots + p_{n-1}(x)y' + p_n(x)y = 0, then Y_k = \left(\phi_k(x), \phi_k'(x) \dots, \phi_k^{(n-1)}(x)\right)^T$$

k = 1, ..., n are n solutions of the corresponding system $\frac{dY}{dx} = A(x)Y$. Thus the

wronskian of the n solutions is the determinant $W(x) = \begin{bmatrix} \phi_1 & \dots & \phi_n \\ \phi_1' & \dots & \phi_n' \\ \vdots & \dots & \vdots \\ \phi_1^{(n-1)} & \dots & \phi_n^{(n-1)} \end{bmatrix}$.

(c) A set of functions $\phi_1(x), ..., \phi_n(x)$ is linearly dependent in J if and only if

$$\begin{pmatrix} \phi_1(x) \\ \phi_1'(x) \\ \vdots \\ \phi_1^{(n-1)}(x) \end{pmatrix}, \dots, \begin{pmatrix} \phi_n(x) \\ \phi_n'(x) \\ \vdots \\ \phi_n^{(n-1)}(x) \end{pmatrix} \text{ is linearly dependent in } J.$$

(d) A set of solutions $\phi_1(x), ..., \phi_n(x)$ of the homogeneous differential equation $y^{(n)} + p_1(x)y^{(n-1)} + \cdots + p_{n-1}(x)y' + p_n(x)y = 0$ is linearly independent (dependent) in J if and only if there exists $x_0 \in J$ such that $W(x_0) \neq 0 (W(x_0) = 0)$.

(e) There exist n linearly independent solutions of $\phi_1(x), ..., \phi_n(x)$ for the equation. Every such set of n linearly independent solutions is called a fundamental system of solutions. If $\phi_1(x), ..., \phi_n(x)$ is a fundamental system, then every solution y can be written in a unique way as a linear combination

$$y = C_1 \phi_1(x) + \dots + C_n \phi_n(x).$$

(f) If $\phi_1(x), ..., \phi_n(x)$ are n solutions of the homogeneous differential equation, then the Wronskian determinant $W(x) = W(x_0)e^{-\int_{x_0}^x p_1(t)dt}$ for every $x_0 \in J$.

The inhomogeneous differential equations of order n Ly = f(x).

Theorem. Every solution y(x) of the inhomogeneous differential equation Ly = f(x) can be written in the form of $y(x) = y^*(x) + \phi(x)$, where $y^*(x)$ is a particular solution of the inhomogeneous differential equation and $\phi(x)$ is the general solution to the homogeneous differential equation.

Method of variation of constants.

Let $y(x) = c_1(x)\phi_1(x) + \cdots + c_n(x)\phi_n(x)$, where $\phi_1(x), \dots, \phi_n(x)$ is a fundamental system of the homogeneous differential equation and $c_1(x), \dots, c_n(x)$ are funcitons that are yet to be determined.

We refer to the result in chapter 3, $\Phi(x)C'(x) = F(x)$, where

$$C(x) = \begin{pmatrix} c_1(x) \\ \vdots \\ c_n(x) \end{pmatrix}, \Phi(x) = \begin{bmatrix} \phi_1 & \dots & \phi_n \\ {\phi_1}' & \dots & {\phi_n}' \\ \vdots & \dots & \vdots \\ {\phi_1^{(n-1)}} & \dots & {\phi_n^{(n-1)}} \end{bmatrix}, F(x) = \begin{pmatrix} 0 \\ \vdots \\ f(x) \end{pmatrix}.$$

Due to $|\Phi(x)| \neq 0$, the unique C(x) can be obtained.

Example. $y_1 = \cos x$ and $y_2 = \sin x$ are two solutions of y'' + y = 0.

The corresponding Wronskian determinant is $\begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix} = 1 \neq 0$ in $(-\infty, +\infty)$.

The general solution is $y = C_1 \cos x + C_2 \sin x$, where C_1 and C_2 are arbitrary constants.

Example. Determine the general solution of $y'' + y = \frac{1}{\cos x}$.

Solution. The general solution of the related homogeneous differential equation is $y = c_1 \cos x + c_2 \sin x$.

Set $y_1 = c_1(x) \cos x + c_2(x) \sin x$ is a special solution of the inhomogeneous differential equation. So $c_1'(x)$ and $c_2'(x)$ satisfy the following system

$$\begin{pmatrix} \cos x & \sin x \\ -\sin x & \cos x \end{pmatrix} \begin{pmatrix} c_1'(x) \\ c_2'(x) \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ \cos x \end{pmatrix}, then we have $c_1'(x) = -\frac{\sin x}{\cos x}, c_2'(x) = 1.$$$

By integrating, we obtain $c_1(x) = \ln|\cos x|$, $c_2(x) = x$.

Thus the general solution is $y = c_1 \cos x + c_2 \sin x + \ln|\cos x| \cos x + x \sin x$.

Linear equations of order n with constant coefficients.

Now let
$$Ly = \sum_{i=0}^{n} a_i y^{(i)}(x) = 0$$
, a_i are constants, $a_n = 1$ (1).

The characteristic polynomial is
$$P(\lambda) = \sum_{i=0}^{n} a_i \lambda^i$$
.

Theorem. If λ is a zero of the characteristic polynomial of multiplicity k, then there are k solutions of the differential equation $(1) e^{\lambda x}, xe^{\lambda x}, ..., x^{k-1}e^{\lambda x}$ that correspond to λ . In this manner, one obtains n linearly independent solutions from the n zeros of the characteristic polynomial $P(\lambda)$ (each counted according to its multiplicity), that is a fundamental system.

$$Ly = \sum_{i=0}^{n} a_i y^{(i)}(x) = 0, a_i \text{ are constants, } a_n = 1 (1).$$

Remark. If a_i are real and there exist complex zeros, then this fundamental system contains complex solutions. A real fundamental system can be obtained by splitting the k solutions corresponding to a complex zero $\lambda = \mu + iv$ ($v \neq 0$) into real and ima ginary parts, $x^i e^{\mu x} \cos vx$, $x^i e^{\mu x} \sin vx$ (i = 0,1,...,k-1)(and discarding the solutions corresponding to $\bar{\lambda}$.

Example. Determine the general solution of y'' - 5y' = 0.

Solution. The characteristic equation is $\lambda^2 - 5\lambda = 0$, $\lambda_1 = 0, \lambda_2 = 5$ are the roots.

The general solution of such equation is $y = c_1 + c_2 e^{5x}$.

Example. Determine the general solution of y''' - 3y'' + 3y' - y = 0.

Solution. The characteristic polynomial is $\lambda^3 - 3\lambda^2 + 3\lambda - 1 = (\lambda - 1)^3$.

The characteristic roots are $\lambda_{1,2,3} = 1$, so the fundamental system is e^x , xe^x , x^2e^x .

Then the general solution of such equation is $y = e^x(c_1 + c_2x + c_3x^2)$.

Example. Determine the general solution of y'''' - 4y''' + 5y'' - 4y' + 4y = 0.

Solution. The characteristic equation is $\lambda^4 - 4\lambda^3 + 5\lambda^2 - 4\lambda + 4\lambda = (\lambda - 2)^2(\lambda^2 + 1)$.

- So the characteristic roots are $\lambda_{1,2}=2$, $\lambda_3=i$, $\lambda_4=-i$.
- Then the fundamental system is e^{2x} , xe^{2x} , $\cos x$, $\sin x$.
- The general solution is $y = e^{2x}(c_1 + c_2x) + c_3 \cos x + c_4 \sin x$.

Exercise.

- 1. Determine the solution of the initial problem $\begin{cases} y'' 5y' + 6y = 0 \\ y(0) = 1, y'(0) = 2 \end{cases}$
- 2. Determine the general solution of y''' 3y'' + 9y' + 13y = 0.
- 3. Determine the general solution of y'' + 4y' + 4y = 0.
- 4. Discuss how to choose λ so that the initial problem $\begin{cases} y'' + \lambda y = 0 \\ y(0) = y(1) = 0 \end{cases}$ has non
- zero solution.

Nonhomogeneous linear equations of order n

$$y^{(n)} + p_1(x)y^{(n-1)} + \dots + p_{n-1}(x)y' + p_n(x)y = f(x), (1)$$

Case 1. $f(x) = e^{ax}P_m(x)$, where $P_m(x) = p_0x^m + p_1x^{m-1} + \cdots + p_{m-1}x + p_m$.

Remark.

1. If a is not a characristic root, we can set

$$y(x) = Q_m(x)e^{ax}$$

as the special solution of the eqution (1).

2. If a is a k – fold characristic root, we can set

$$y(x) = x^k Q_m(x) e^{ax}$$

as the special solution of the eqution (1).

Where
$$Q_m(x) = q_0 x^m + q_1 x^{m-1} + \dots + q_{m-1} x + q_m$$
.

Example.

1. Determine the general solution of $y'' - 3y' = e^{5x}$.

We can set $y = Ae^{5x}$ as the special solution of such a equation.

- 2. Determine the general solution of $y'' y = \frac{1}{2}e^x$.
- We can set $y = Axe^x$ as the special solution of such a equation.
- 3. Determine the general solution of $y'' 5y' + 6y = 6x^2 10x + 2$.
- We can set $y = Ax^2 + Bx + C$ as the special solution of such a equation.
- 4. Determine the general solution of $y'' 5y' = -5x^2 + 2x$.
- We can set $y = x(Ax^2 + Bx + C)$ as the special solution of such a equation.

*Nonhomogeneous linear equations of order n

$$y^{(n)} + p_1(x)y^{(n-1)} + \dots + p_{n-1}(x)y' + p_n(x)y = f(x), (1)$$

Case 2. $f(x) = e^{\alpha x}[P_m^1(x)\cos\beta x, +P_m^2(x)\sin\beta x]$ where $P_m(x) = p_0x^m + \dots + p_m$. Remark.

1. If $\alpha + i\beta$ is not a characristic root, we can set

$$y(x) = e^{\alpha x} [Q_m^{(1)}(x) \cos \beta x + Q_m^{(2)}(x) \sin \beta x]$$

as the special solution of the eqution (1).

2. If $\alpha + i\beta$ is a k - fold characristic root, we can set

$$y(x) = x^k e^{\alpha x} [Q_m^{(1)}(x) \cos \beta x + Q_m^{(2)}(x) \sin \beta x]$$

as the special solution of the eqution (1).

Where
$$Q_m(x) = q_0 x^m + q_1 x^{m-1} + \dots + q_{m-1} x + q_m$$
.

Example.

- 1. Determine the general solution of $y'' + y' 2y = e^x(\cos x 7\sin x)$.
- We can set $y = e^x(A\cos x + B\sin x)$ as the special solution of such a equation.
- 2. Determine the general solution of $y'' + y = 2\sin x$.
- We can set $y = x(A\cos x + B\sin x)$ as the special solution of such a equation.

Example.

1. Determine the general solution of $y'' - 6y' + 5y = -3e^x + 5x^2$.

Solution. The characteristic euquation to the related homogeneous equation is $\lambda^2 - 6\lambda + 5 = 0$.

Then the general solution of the homogeneous equation is $y = C_1 e^x + C_2 e^{5x}$.

We set $y_1 = Axe^x$ as the special solution to the equation $y'' - 6y' + 5y = -3e^x$.

Set $y_2 = Bx^2 + Cx + D$ as the special solution to the equation $y'' - 6y' + 5y = 5x^2$.

Thus, $y = y_1 + y_2$ is a special solution to the original nonhomogeneous equation.

Exercise.

1. Determine the general solution of $y'' - 4y' + 4y = 2e^{2x}$.

2. Determine the general solution of $y'' - 2y' + 4y = (x + 2)e^{3x}$.

3. Determine the general solution of $y'' + 9y = 18\cos 3x - 30\sin 3x$.

Chapter 5. Stability and Asymptotic Behavior

Stability, **Asymptotic Stability**. Let $x = \phi(t, t_0, x_1)$ be a solution of the differential

$$system \frac{dx}{dt} = f(t,x) \ for \ t_0 \le t < \infty \ with initial \ condition \ x(t_0) = x_1. We \ assume \ that$$

f(t,x) is defined and continuous at least in S_{α} : $-\infty \le t < \infty, x \in D \subseteq \mathbb{R}^n$ and satisfies Lipschitz condition.

The solution $x = \phi(t, t_0, x_1)$ is said to be stable (in the sense of Lyapunov) if the following statement is ture:

For every $\epsilon > 0$, there exists $\delta > 0$ such that every solution $x = x(t, t_0, x_0)$ with $||x_0 - x_1|| < \delta$ exists for all $t \ge t_0$ and satisfies the inequality $||x(t, t_0, x_0) - \phi(t, t_0, x_1)|| < \epsilon$ for $t_0 \le t < \infty$.

A solution $x = \phi(t, t_0, x_1)$ is called asymptotically stable if it is stable and if there exists $\delta_1 > 0$ such that every solution $x = x(t, t_0, x_0)$ with $||x_0 - x_1|| < \delta_1$ satisfies $\lim_{t \to \infty} ||x(t, t_0, x_0) - \phi(t, t_0, x_1)|| = 0$.

A solution x(t) is called unstable if it is not stable.

Example. Let y(t) be the solution of $y' = y, y(0) = \eta$ and z(t) be a solution with the initial value $z(0) = \eta + \epsilon$. Then $z(t) - y(t) = \epsilon e^t$, i.e., the difference between two solutions to the same differential equation with different initial conditions tends to ∞ like e^t .

On the other hand, if y and z are two solutions of the differential equation y' = -y with initial values η and $\eta + \epsilon$, then the difference is given by $z(t) - y(t) = \epsilon e^{-t}$, and hence converges to 0 as $t \to \infty$.

$$Set \ x(t) = \phi(t, t_0, x_0), \phi(t) = \phi(t, t_0, x_1), set \ y = x(t) - \phi(t), then \frac{dy}{dt} = \frac{dx(t)}{dt} - \frac{d\phi(t)}{dt} = f(t, x(t)) - f(t, \phi(t)) = f(t, \phi(t) + y) - f(t, \phi(t)) = F(t, y), obviously, F(t, 0) = 0.$$

Then we translate the stability of
$$\phi(t)$$
 for $\frac{dx}{dt} = f(t,x)$ into the sability of $y = 0$ of $\frac{dy}{dt} = f(t,y)$.

Example. Determine the stability of the zero solution of $\begin{cases} \frac{dx}{dt} = y\\ \frac{dy}{dt} = -x \end{cases}.$

Solution. set $t_0 = 0$, then for every $t \ge 0$, the solution which satisfies $x(0) = x_0$, y(0)

$$= y_0 is \begin{cases} x(t) = x_0 \cos t + y_0 \sin t \\ y(t) = -x_0 \sin t + y_0 \cos t \end{cases}$$
 For every $\epsilon > 0$, set $\delta = \epsilon$, if $(x_0^2 + y_0^2)^{\frac{1}{2}} < \delta$, then we

have
$$[x(t)^2 + y(t)^2]^{\frac{1}{2}} = (x_0^2 + y_0^2)^{\frac{1}{2}} < \delta = \epsilon$$
.

So the zero solution of such a system is stable.

However,
$$\lim_{t\to\infty} [x(t)^2 + y(t)^2]^{\frac{1}{2}} = (x_0^2 + y_0^2)^{\frac{1}{2}} \neq 0.$$

So zero solution is not asymptotically stable.

The method of Lyapunov. We consider real antonomous systems $\frac{dx}{dt} = F(x)$ (1), where $F(x) = (F_1(x), ..., F_n(x))^T$ is continuous and locally Lipschitz continuous in $G(x) = \{x \in R^n | ||x|| \le K\}$, and G(x) = 0.

Definition. A Lyapunov function for (1) is a real – valued function $V \in C^1(G)$ that satisfies the relations V(0) = 0, V(x) > 0 for $x \neq 0$ and $\frac{dV}{dt} \leq 0$, where $\frac{dV}{dt}$

$$=\sum_{i=1}^{n}\frac{\partial V}{\partial x_{i}}F_{i}(x).$$

Stability Theorem (Lyapunov). Let $F \in C(D)$ with F(0) = 0 and let there exist a

Lyapunov function V for $\frac{dx}{dt} = F(x)$. Then

- $(a)\frac{dV}{dt} \le 0$ in $G \Rightarrow$ the zero solution of (1) is stable.
- $(b)\frac{dV}{dt} < 0$ in $G\setminus\{0\} \Rightarrow$ the zero solution of (1) is asymptotically stable.

Example. Determine the stability of the zero solution of $\begin{cases} x' = -y + x(x^2 + y^2 - 1) \\ y' = x + y(x^2 + y^2 - 1) \end{cases}$ (2).

Proof.

We consider $V(x,y) = \frac{1}{2}(x^2 + y^2)$ as a Lyapunov function in $D = \{(x,y)|x^2 + y^2 < 1\}$,

$$it has \frac{dV}{dt} = xx' + yy' = (x^2 + y^2)(x^2 + y^2 - 1) < 0 inD \setminus \{0\}.$$

So the zero solution of (2) is asymptotically stable.

Exercise.

1. Determine the stability of the zero solution of $\begin{cases} \frac{dx}{dt} = -x \\ \frac{dy}{dt} = -y \end{cases}$

2. Discuss the stability of zero solution of the autonomous system $\begin{cases} x_1' = Ax_1 - x_1x_2^2 \\ x_2' = Ax_2 + x_1^2x_2 \end{cases}$

- 3. Consider the linear system with constant coefficients X' = Ax.
- Show the zero solution of such system is asymptotically stable if all the eigenvalues of A are real and less than $\mathbf{0}$.

Exercise.

Solve the following differential equations (1-8).

$$1. \ \frac{dy}{dx} = \frac{y^2 - 1}{2}$$

Solution. Obviously, $y = \pm 1$ are constant solutions to this equation.

If $y \neq \pm 1$, the general integral form of the equation is $\int \frac{2dy}{y^2 - 1} = x + C$.

The general solution of the equation is $y = \frac{1+ce^x}{1-ce^x}$.

$$2. x^2 y' = xy - y^2.$$

Solution. The equation can be written $\frac{dy}{dx} = \frac{y}{x} - \left(\frac{y}{x}\right)^2$, and for y = ux the differential equation is $x \frac{du}{dx} = -u^2$.

Clearly, u = 0 is a solution, so y = 0 is a solution of the original differential equation.

If $u \neq 0$, we obtain $u = \frac{1}{\ln|x|+C}$. The functions $y = \frac{x}{\ln|x|+C}$ are the solutions of the original differential equation.

 $3. x(y'-y) = e^x.$

Solution. $y = Ce^x$ is the general solution of the homogeneous differential equation $x \frac{dy}{dx} = xy$.

Let $y = C(x)e^x$ be a solution of the nonhomogeneous differential equation.

After a simple calculation, one obtains $C'(x) = \frac{1}{x} \Rightarrow C(x) = \ln|x| + C$.

Therefore, the general solution of the nonhomogeneous differential equation is $y(x) = (\ln|x| + C)e^x$.

 $4. y' - y = xy^5.$

Solution. Obviously y = 0 is a particular solution of the equation.

If $y \neq 0$, the equation can be transformed into $\frac{1}{y^5}y' = \frac{1}{y^4} + x$ by multiplying $\frac{1}{y^5}$.

Then the function $z = \frac{1}{y^4}$ satisfies a linear differential equation $-\frac{1}{4}\frac{dz}{dx} = z + x$. The general

solution of the corresponding homogeneous differential equation is $\bar{z} = Ce^{-4x}$, and $z^* =$

$$\int_0^x -4t \cdot e^{4t} dt \cdot e^{-4x} = -x + \frac{1}{4}$$
 is a solution of the nonhomogeneous differential equation.

It follows that the general solution of the nonhomogeneous equation is

$$z = Ce^{-4x} - x + \frac{1}{4}.$$

Therefore, the solutions of the original differential equation read

$$\frac{1}{v^4} = Ce^{-4x} - x + \frac{1}{4}.$$

$$5. y' = \frac{x - y + 2}{x + y^2 + 4}.$$

Solution. The differential equation $(x - y + 2)dx - (x + y^2 + 4)dy = 0$ is exact.

A potential function is given by

$$F(x,y) = \int_0^x (x - y + 2) dx + \int_0^y -(y^2 + 4) dy = \frac{x^2}{2} - xy + 2x - \frac{y^3}{3} - 4y.$$

Therefore, the solutions of the exact equation are given by

$$F(x,y) = \frac{x^2}{2} - xy + 2x - \frac{y^3}{3} - 4y = C.$$

6. $(x^2 + y^2 + x)dx + xydy = 0$.

Solution. Set $M = x^2 + y^2 + x$, N = xy. The differential equation is not exact.

However, $\frac{\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x}}{N} = \frac{1}{x}$, and hence $\mu(x) = x$ is an integrating factor.

An exact differential equation can be obtained by multiplying the original differential equation by the integrating factor.

A potential function can be determined by

$$F(x,y) = \int_0^x x(x^2 + y^2 + x)dx + \int_0^y 0dy = \frac{x^4}{4} + \frac{x^2y^2}{2} + \frac{x^3}{3}.$$

Thus, the solutions are given by

$$F(x,y) = \frac{x^4}{4} + \frac{x^2y^2}{2} + \frac{x^3}{3} = C.$$

$$7. y = y'^2 - xy' + \frac{1}{2}x^2.$$

Solution. Set y' = p, the equation $y = p^2 - xp + \frac{1}{2}x^2$ implies

(-p+x)dx + (2p-x)dp = pdx with the property dy = y'dx. Then, we have (2p-x)dx + (2p-x)dx = pdx

$$x)\left(\frac{dp}{dx}-1\right)=0.$$

From 2p - x = 0, we obtain $p = \frac{x}{2}$, hence, $y = \frac{x^2}{4} + C$.

Substituting $y = \frac{x^2}{4} + C$ in $y = p^2 - xp + \frac{1}{2}x^2$ gives C = 0, thus $y = \frac{x^2}{4}$ is a particular solution to the original differential equation.

From $\frac{dp}{dx} - 1 = 0$, we have p = x + C, it follows that $y = \frac{1}{2}x^2 + Cx + D$.

Substituting $y = \frac{1}{2}x^2 + Cx + D$ in $y = p^2 - xp + \frac{1}{2}x^2$ gives $D = C^2$, thus $y = \frac{1}{2}x^2 + Cx + C^2$ is the general solution of the original equation.

$$8. x\sqrt{1+y'^2}=y'.$$

Solution. Set
$$\begin{cases} x = \sin t \\ y' = \tan t' \end{cases} dy = \tan t \cdot \cos t \ dt = \sin t \ dt \ is \ obtained \ by$$

$$dy = y'dx$$
. Then we have the parametric solution is
$$\begin{cases} x = \sin t \\ y = -\cos t + C \end{cases}$$

That implies
$$y = C \pm \sqrt{1 - x^2}$$
.

9. Let f(x,y) be continuous and satisfy the Lipschitz condition with respect to y in D:

 $|x - x_0| \le a$, $|y - y_0| \le b$ (a, b > 0) (with Lipschitz condition N). If the sequence of Picard

$$iterations \{\phi_n(x)\} \ of \ the \ problem \begin{cases} y'=f(x,y) \\ y(x_0)=y_0 \end{cases} \ converges \ to \ \phi(x), \ show \ |\phi_n(x)-\phi(x)| \leq$$

 $\frac{MN^n}{(n+1)!}|x-x_0|^{n+1} \text{ for } x \in D, \text{ where } M=\max|f(x,y)| \text{ in } D.$

Proof. Since
$$\phi_n(x) = y_0 + \int_{x_0}^x f(\xi, \phi_{n-1}(\xi)) d\xi$$
, $\phi_0(x) = y_0$, and $\phi(x) = y_0 + \int_{x_0}^x f(\xi, \phi_{n-1}(\xi)) d\xi$

$$\int_{x_0}^{x} f(\xi, \phi(\xi)) d\xi$$
, we have

$$|\phi_0(x) - \phi(x)| = \left| \int_{x_0}^x f(\xi, \phi(\xi)) d\xi \right| \le M|x - x_0|.$$

Use the Lipschitz condition property of f(x,y), we have

$$|\phi_1(x) - \phi(x)| = \left| \int_{x_0}^x \left[f\left(\xi, \phi_0(\xi)\right) - f\left(\xi, \phi(\xi)\right) \right] d\xi \right| \le N \left| \int_{x_0}^x |\phi_0(\xi) - \phi(\xi)| d\xi \right|$$

$$\leq MN \left| \int_{x_0}^{x} |\xi - x_0| d\xi \right| = MN \frac{|x - x_0|^2}{2}.$$

Suppose
$$|\phi_{n-1}(x) - \phi(x)| \le \frac{MN^{n-1}}{n!} |x - x_0|^n$$
, then we have

$$|\phi_n(x)-\phi(x)|=\left|\int_{x_0}^x \left[f\big(\xi,\phi_{n-1}(\xi)\big)-f\big(\xi,\phi(\xi)\big)\right]d\xi\right|\leq N\left|\int_{x_0}^x |\phi_{n-1}(\xi)-\phi(\xi)|d\xi\right|\leq N\left|\int_{x_0}^x |\phi_{n-1}(\xi)-\phi(\xi)|d\xi\right|$$

$$\frac{MN^n}{n!} \left| \int_{x_0}^{x} |\xi - x_0|^n d\xi \right| = \frac{MN^n}{(n+1)!} |x - x_0|^{n+1}.$$

So we prove the estimate by mathematical induction.

10. Let f(y) be continuous and differentiable in $(-\infty, +\infty)$, and $yf(y) < 0 (y \neq 0)$. Show every solution of the differential equation $y' = x^2 f(\sin y)$ exists in $(-\infty, +\infty)$, and y(x) is a strictly monotonic function if it's a non-constant solution of the differential equation.

Proof. Since
$$yf(y) < 0$$
 in $(-\infty, +\infty) \setminus \{0\}$, we have $\begin{cases} f(y) < 0, y > 0 \\ f(y) > 0, y < 0 \end{cases}$
Moreover, $f(0) = 0$ is obtained because of $f(y)$ is continuous in $(-\infty, +\infty)$.
It is easy to check that the straight lines $y = n\pi$, $n = 0, \pm 1, \pm 2, ...$ are solutions of $y' = x^2 f(\sin y)$. If $y = y(x)$ is an arbitrary non-constant solution, then $m\pi < y(x) < (m+1)\pi$, where m is an integer. Moreover, $y(x)$ can be extended to infinity by the existence and uniqueness theorem and extension theorem, so $y(x)$ exists in $(-\infty, +\infty)$.
In addition, the function $\sin y(x) > 0 < 0$ in $(-\infty, +\infty)$ if $m\pi < y(x) < (m+1)\pi$, that implies $y(x)' = x^2 f(\sin y(x)) < 0 < 0$ in $(-\infty, +\infty)$. Hence, $y(x)$ is a strictly monotonic function.

11. Consider the initial problem
$$\begin{cases} \frac{dy}{dx} = y^2 - x^2 \\ y(0) = 1 \end{cases}$$

(a) Use the sequence of Euler lines to calculate the value of the approximate solution at x = 0.2. Here we take the step as h = 0.1.

Solution. Here
$$y_{n+1} = y_n + (y_n^2 - x_n^2) \times h$$
, then we have $x = 0.1 \Rightarrow y = 1 + (1^2 - 0^2) \times 0.1 = 1.1$, $x = 0.2 \Rightarrow y = 1.1 + (1.1^2 - 0.1^2) \times 0.1 = 1.22$.

11. Consider the initial problem
$$\begin{cases} \frac{dy}{dx} = y^2 - x^2 \\ y(0) = 1 \end{cases}$$

(b) Consider the sequence of Picard iterations $\{\phi_n(x)\}$, and calculate $\phi_2(x)$. Solution. We construct the sequence of Picard iterations:

$$\phi_0(x)=1,$$

$$\phi_1(x) = 1 + \int_0^x [\phi_0^2(\xi) - \xi^2] d\xi = 1 + \int_0^x (1 - \xi^2) d\xi = 1 + x - \frac{1}{3}x^3,$$

$$\phi_2(x) = 1 + \int_0^x [\phi_1^2(\xi) - \xi^2] d\xi = 1 + x + x^2 - \frac{1}{6}x^4 - \frac{2}{15}x^5 + \frac{1}{63}x^7,$$

•

$$\phi_n(x) = \phi_0(x) + \int_0^x [\phi_{n-1}^2(\xi) - \xi^2] d\xi.$$

12. Determine whether there exist singular solutions for the following ODEs.

$$y' = \sqrt{y - x}$$

Solution. Set $f(x,y) = \sqrt{y-x}$, then f(x,y) and $f_y' = \frac{1}{2} \frac{1}{\sqrt{y-x}}$ are continuous for y > x.

By the existence and uniqueness theorem, we just need to consider the point set on y = x.

However, y = x is not a solution to the equation.

So the equation has no singular solutions.

13. Determine whether there exist singular solutions for the following ODEs.

$$y'=3y^{2/3}.$$

Solution. Set $f(x,y) = 3y^{2/3}$, then f(x,y) and $f_y' = 2y^{-1/3}$ are continuous for $y \neq 0$.

By the existence and uniqueness theorem, we just need to consider the point set on y = 0.

Obviously, y = 0 is a solution to the equation, $y = (x + C)^3$ is the general solution of the equation.

Then $y = (x - x_0)^3$ and y = 0 are two solutions which pass through an arbitrary point $(x_0, 0)$ on the X-axis.

Soy = 0 is a singular solution to the equation.

Determine the general real solution of the following differential systems (14-17).

14.
$$\begin{cases} \frac{dy}{dx} = 5y + 4z \\ \frac{dz}{dx} = 4y + 5z \end{cases}$$

Solution. From the system, we have $A = \begin{pmatrix} 5 & 4 \\ 4 & 5 \end{pmatrix}$.

The eigenvalues of *A* are $\lambda_1 = 1$, $\lambda_2 = 9$.

The corresponding eigenvectors are $T_1 = (1, -1)^T$, $T_2 = (1, 1)^T$.

Then solutions $y_1 = e^x \cdot T_1$, $y_2 = e^{9x} \cdot T_2$ constitute a fundamental system. For this choice

of fundamental system, the general solution of this system is $\binom{y(x)}{z(x)} = C_1 \binom{e^x}{-e^x} + C_2 \binom{e^{9x}}{e^{9x}}$.

$$15. \begin{cases} \frac{dx}{dt} = x + y\\ \frac{dy}{dt} = 3y - 2x \end{cases}$$

Solution. From the system, we have $A = \begin{pmatrix} 1 & 1 \\ -2 & 3 \end{pmatrix}$.

The eigenvalues of A are $\lambda_1 = 2 + i$, $\lambda_2 = 2 - i$.

The corresponding eigenvectors are $T_1 = (1,1+i)^T$, $T_2 = (1,1-i)^T$.

Then real solutions
$$y_1 = e^{2t} {\cos t \choose \cos t - \sin t}$$
, $y_2 = e^{2t} {\sin t \choose \sin t + \cos t}$

constitute a fundamental system.

For this choice of fundamental system, the general solution of this system is

$$y(x) = C_1 e^{2t} \begin{pmatrix} \cos t \\ \cos t - \sin t \end{pmatrix} + C_2 e^{2t} \begin{pmatrix} \sin t \\ \sin t + \cos t \end{pmatrix}.$$

$$16. \begin{cases} \frac{dy_1}{dx} = 3y_1 + y_2 - y_3 \\ \frac{dy_2}{dx} = -y_1 + 2y_2 + y_3 \\ \frac{dy_3}{dx} = y_1 + y_2 + y_3 \end{cases}$$

Solution. From the system, we have
$$A = \begin{pmatrix} 3 & 1 & -1 \\ -1 & 2 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$
.

The eigenvalues of A are $\lambda_1 = \lambda_2 = \lambda_3 = 2$.

 $Set Y(x) = (R_0 + R_1 x + R_2 x^2)e^{2x}$ as the solution to the equation, where

$$\begin{cases} (A - 2E)^3 R_0 = 0\\ (A - 2E)R_0 = R_1\\ (A - 2E)R_1 = 2R_2 \end{cases}$$

By a simple calculation, we have $\begin{cases} R_0 = (1,0,0)^T \\ R_1 = (1,-1,1)^T \\ R_2 = \left(-\frac{1}{2},0,-\frac{1}{2}\right)^T \end{cases} \begin{cases} R_0 = (0,1,0)^T \\ R_1 = (1,0,1)^T, \\ R_2 = (0,0,0)^T \end{cases} \begin{cases} R_0 = (0,0,1)^T \\ R_1 = (-1,1,-1)^T, \\ R_2 = \left(\frac{1}{2},\frac{0,1}{2}\right)^T \end{cases}$

Then the corresponding fundamental system is Y_1, Y_2, Y_3 .

The general solution of this system is $Y = C_1Y_1 + C_2Y_2 + C_3Y_3$.

17.
$$\begin{cases} \frac{dx}{dt} = 2x + 3y + 5t \\ \frac{dy}{dt} = 3x + 2y + 8e^t \end{cases}$$

Solution. From the related homogeneous system, we have $A = \begin{pmatrix} 2 & 3 \\ 3 & 2 \end{pmatrix}$.

The eigenvalues of A are $\lambda_1 = 5$, $\lambda_2 = -1$.

The corresponding eigenvectors are $T_1 = (1,1)^T$, $T_2 = (1,-1)^T$.

Then
$$\begin{pmatrix} x_1 \\ y_1 \end{pmatrix} = \begin{pmatrix} e^{5t} \\ e^{5t} \end{pmatrix}$$
, $\begin{pmatrix} x_2 \\ y_2 \end{pmatrix} = \begin{pmatrix} e^{-t} \\ -e^{-t} \end{pmatrix}$ constitute a fundamental system.

Using the method of variation of constants, we set $\binom{x}{y} = C_1(t) \binom{e^{5t}}{e^{5t}} + C_2(t) \binom{e^{-t}}{-e^{-t}}$ as a solution of the nonhomogeneous equation. We obtain

$$\begin{cases} C_1'(t)e^{5t} + C_2'(t)e^{-t} = 5t \\ -C_1'(t)e^{5t} - C_2'(t)e^{-t} = 8e^t \end{cases} \Longrightarrow \begin{cases} C_1(t) = C_2(t) = 0 \end{cases}$$

The general solution to the homogeneous equation is $\begin{cases} x(t) = \\ y(t) = \end{cases}$

18. If $A(x)_{n \times n}$ is continuous in J, and the set of n solutions $Y_1(x), \ldots, Y_n(x)$ is a fundamental

system of solutions to the differential system $\frac{dY}{dx} = A(x)Y$.

Show the general solution of the differential system could be proposed as

$$Y(x) = C_1 Y_1(x) + C_2 Y_2(x) + \dots + C_n Y_n(x),$$

where C_1, C_2, \ldots, C_n are arbitrary constants.

Proof. For arbitrary constants C_1 , ..., C_n , we have $\frac{dY}{dx} = \frac{d[C_1Y_1(x) + \cdots + C_nY_n(x)]}{dx} = A(x)Y(x)$, that implies Y(x) is a solution of the differential system.

Set $\Phi(x) = (Y_1(x), ..., Y_n(x))$, then $\Phi(x)$ is a nonsingular matrix in J. If $\mathbf{Z}(x)$ is an arbitrary solution of the differential system and goes through (x_0, Y_0) , then there exists exactly one

$$vector \mathbf{C} = \begin{pmatrix} c_1 \\ \vdots \\ c_n \end{pmatrix}$$
 such that $\mathbf{\Phi}(x_0)\mathbf{C} = \mathbf{Y_0}$ because of $|\mathbf{\Phi}(x_0)| \neq 0$. According to the existence and uniqueness theorem, $\mathbf{Z}(x) = \mathbf{\Phi}(x)\mathbf{C}$ is the unique solution of the differential system that goes through $(x_0, \mathbf{Y_0})$. Since this argument can be applied for every solution of the differential system, it follows that every solution can be written in a unique way as a linear combination

 $Y(x) = C_1 Y_1(x) + C_2 Y_2(x) + ... + C_n Y_n(x)$.

19. A set of n+1 solutions $Y_1(x), ..., Y_{n+1}(x)$ to the linear differential system $\frac{dY}{dx} = A(x)Y + F(x)$ is linearly independent, where $A(x)_{n \times n}$ and F(x) are continuous in J.

Show the general solution of the differential system is $Y(x) = \sum_{i=1}^{n+1} a_i Y_i(x)$, where $a_1, ..., a_{n+1}$ are arbitrary constants which satisfy $\sum_{i=1}^{n+1} a_i = 1$.

Proof. Set $Y_i^*(x) = Y_i(x) - Y_{n+1}(x)$, i = 1, ..., n, and hence $Y_i^*(x)$ (i = 1, ..., n) are n solutions of the corresponding homogeneous differential system.

A simple calculation shows that

$$\sum_{i=1}^{n} c_{i} Y_{i}^{*}(x) = \sum_{i=1}^{n} c_{i} Y_{i}(x) - \sum_{i=1}^{n} c_{i} Y_{n+1}(x), \text{ hence the set of n solutions } Y_{1}^{*}(x), \dots, Y_{n}^{*}(x)$$
 is a fundamental system of solutions to the homogeneous differential system because of $Y_{1}(x), \dots, Y_{n+1}(x)$ are linearly independent.

Therefore, the general solution of $\frac{d\mathbf{Y}}{dx} = \mathbf{A}(x)\mathbf{Y} + \mathbf{F}(x)$ is

$$Y(x) = \sum_{i=1}^{n} a_i Y_i^*(x) + Y_{n+1}(x) = \sum_{i=1}^{n} a_i Y_i(x) + [(1 - \sum_{i=1}^{n} a_i) Y_{n+1}(x)], \text{ where } a_i (i = 1, ..., n) \text{ are arbitrary constants.}$$

20. Solve the following high order differential equations

(a)
$$y''' - 3y'' + 3y' - y = 0$$
.

Solution. The characteristic equation $\lambda^3 - 3\lambda^2 + 3\lambda - 1 = (\lambda - 1)^3 = 0$ has three roots $\lambda_{1,2,3} = 1$.

A fundamental system of solutions is given by e^x , xe^x , x^2e^x .

The general solution of the differential equation is

$$y = C_1 e^x + C_2 x e^x + C_3 x^2 e^x.$$

(b)
$$y'' - 5y' = -5x^2 + 2x$$
.

Solution. The characteristic roots are $\lambda_1 = 0$, $\lambda_2 = 5$.

A fundamental system of solutions to the related homogeneous equation is given by 1, e^{5x} .

We can set $y = x(Ax^2 + Bx + C)$ as the special solution to the nonhomogeneous equation.

Substituting the special solution into the equation, we obtain

$$A = \frac{1}{3}, B = 0, C = 0.$$

*C discriminant method

 $\Phi(x,y,C) = 0$ is the general integral of the differential equation y' = f(x,y).

$$T: \begin{cases} x = \phi(C) \\ y = \psi(C) \end{cases} satisfies \begin{cases} \Phi(x, y, C) = 0 \\ \Phi'_{c}(x, y, C) = 0 \end{cases} and \begin{cases} \phi'^{2}(C) + \psi'^{2}(C) \neq 0 \\ \Phi'_{x}(\phi(C), \psi(C), C) + \Phi'^{2}_{y}(\phi(C), \psi(C), C) \neq 0 \end{cases}$$

T is the envelop to the integral curves.

Example. Determine the sigular solutions to the following equations.

$$1. y' = 3y^{\frac{2}{3}}.$$

$$2.y' = \sqrt{1 - y^2}$$
.