Outlier Quasars

Reza Monadi Arman Irani Hasin Us Sami Terrance Kuo

What is a quasar?

Data and Preprocessing

- Catalog of quasars (~750,000X180)
- Focus → filtered fluxes
- Flux difference → color of quasars
- Selecting most reliable colors (7 colors)
- Keeping quasars with 2.7<redshift<3
- Removing objects with low Signal/Noise (~#180,000)
- Standard scaling using variance and mean

Dimensionality Reduction with tSNE

Why tSNE?

- Less susceptible to outliers
- Local, not global like PCA
- Preserving higher-D structure better in the mapped lower-D

DBSCAN:

Key Concepts:

- -A density based clustering algorithm
- -Insensitive to outliers
- -Forms clusters of arbitrary shape
- -Does not need the number of clusters to be specified
- -Two parameters(epsilon,minimum points) needed to be specified

DBSCAN Implementation from Scratch:

Challenges:

- 1)Memory Constraint
- 2)Run Time
- 3)selection of parameters

Solution:

- -Using KD-tree approach for neighborhood searching instead of using distance matrix
- -Using the optimum value for parameters that gives the best isolation of normal points and outliers

Data Visualization in Reduced Dimension:

DBSCAN Built-in function:

DBSCAN Implementation from scratch:

DBSCAN on mapped 2D space

Agglomerative Clustering

 This lets us cluster our data into groups that has easily visualized results

Chart on right is our data with reduced dimensions split into 3 clusters.

• We can notice that the blue is in a smaller cluster compared to red and green.

Agglomerative Clustering

- Another test using Euclidean distance and making the number of clusters 7, we can also visualize the outliers in our data.
- Points 17, 12, and 10 would be outliers in our data due to only having 1 unit in their clusters.

Isolation Forest

 Outlier detection based on an instance's ability to be partitioned.

Assumptions

- Outlier's attributes have a high degree of variability from normal.
- Outlier's do not occur often.

• Ensemble of Decision Trees

• Expected Path Length < Average Path Length = Outlier

$$s(x, \psi) = 2^{-\frac{E(h(x))}{c(\psi)}}$$

Evaluation with Isolation Forest scores

Distinction in iForest scores distribution of clusters show they are more outlier than the biggest cluster.

Evaluation with median spectra

- Median spectra for each cluster of quasars
- Cluster 8 has the most distinct spectrum
- Cluster 8 is very isolated in tSNE map

Evaluation with color distribution

- i-W1 color distributions for different clusters
- This validates the distinct color behavior of quasars
- Cluster 8 has very red quasars
- Cluster 3 has very blue quasars

Conclusion

- 1. We found some clusters of outlier quasars
- 2. Among the outlier cluster, a cluster consisted of 256 objects was more interesting.
- 3. Our most anomalous cluster:
 - a. Has the highest Isolation Forest anomaly scores
 - b. Has the most deviated median spectrum
 - c. Has the reddest color among other clusters