Discrete Mathematics Exercise 5

Qiu Yihang, 2020/10/03

1.

- a) **Proof:** For any given $x \in \mathbb{N}$, there exists a $y = x + 1 \in \mathbb{N}$ such that x < y. In other words, $[\![\forall x \exists y \mathcal{R}(x, y)]\!]_{\mathcal{J}_1} = \mathbf{T}$.
- **b)** Proof: Since $\mathcal{J}_2(x) = 0$, $[\![\mathcal{R}(x,y)]\!]_{\mathcal{J}_2} = [\![\varphi]\!]_{\mathcal{J}_2}$ ($\varphi = 0 > y$). For any $y \in \mathbb{N}$, $y \ge 0$.

 In other words, $[\![\exists y \mathcal{R}(x,y)]\!]_{\mathcal{J}_2} = \mathbf{F}$.
- c) Proof: There exists an $x = 0 \in \mathbb{N}$ such that for any $y \in \mathbb{N}, y \ge x$, namely $\nexists y \in \mathbb{N}, x < y$. In other words, $\llbracket \forall x \exists y \mathcal{R}(x, y) \rrbracket_{\mathcal{J}_3} = \mathbf{F}$.
- **d)** *Proof:* There exists $x = 0 \in \mathbb{N}$, $y = 1 \in \mathbb{N}$ such that $[\![\mathcal{R}(x,y)]\!]_{\mathcal{J}_1} = \mathbf{T}$. For any $z \in \mathbb{N}$, there exists two cases:
 - (1) z = 0. In this case, $[\![\mathcal{R}(x,z)]\!]_{\mathcal{J}_1} = \mathbf{F}$, so $[\![(\mathcal{R}(x,z) \land \mathcal{R}(z,y))]\!]_{\mathcal{J}_2} = \mathbf{F}$.
 - (2) $z \ge 1, z \in \mathbb{N}$. In this case, $[[\mathcal{R}(z,y)]]_{\mathcal{J}_1} = \mathbf{F}$, so $[[(\mathcal{R}(x,z) \land \mathcal{R}(z,y))]]_{\mathcal{J}_1} = \mathbf{F}$.

Therefore, for any $z \in \mathbb{N}$, $[(\mathcal{R}(x,z) \land \mathcal{R}(z,y))]_{\mathcal{I}_{x}} = \mathbf{F}$,

namely
$$[\exists z (\mathcal{R}(x,z) \land \mathcal{R}(z,y))]_{\mathcal{J}_1} = \mathbf{F}.$$

Thus, there exists an S-Interpretation \mathcal{J}_1 where $\mathcal{J}_1(x)=0$, $\mathcal{J}_1(y)=1$ such that

$$[\![\mathcal{R}(x,y) \to \exists z \big(\mathcal{R}(x,z) \land \mathcal{R}(z,y)\big)]\!]_{\mathcal{J}_1} = [\![\mathbf{T} \to \mathbf{F}]\!]_{\mathcal{J}_1} = \mathbf{F}.$$

In other words, $\left[\!\!\left[\forall x \forall y \left(\mathcal{R}(x,y) \to \exists z \left(\mathcal{R}(x,z) \land \mathcal{R}(z,y)\right)\right)\right]\!\!\right]_{\mathcal{J}_1} = \mathbf{F}.$

QED

e)

Proof: For any given $x, y \in \mathbb{Q}$, x < y, there exists a $z = \frac{x+y}{2} \in \mathbb{Q}$ s.t. x < z and z < y.

In other words,
$$\left[\!\!\left[\forall x \forall y \left(\mathcal{R}(x,y) \to \exists z \left(\mathcal{R}(x,z) \land \mathcal{R}(z,y)\right)\right)\right]\!\!\right]_{\mathcal{J}_4} = \mathbf{T}.$$
 QED

2.

- a) **Proof:** For any given $a, b \in \mathbb{N}$, a + b = b + a, namely f(a, b) = f(b, a).

 In other words, $[\![\forall x \forall y \mathcal{R} \big(f(x, y), f(y, x) \big)]\!]_{\mathcal{J}_1} = \mathbf{T}$. **QED**
- **b) Proof:** For any given $a, b \in \mathbb{N}$, a * b = b * a, namely f(a, b) = f(b, a).

 In other words, $[\![\forall x \forall y \mathcal{R} (f(x, y), f(y, x))]\!]_{\mathcal{I}_a} = \mathbf{T}$. **QED**
- c) **Proof:** For any given $a, b \in \{T, F\}$, $a \wedge b = b \wedge a$, namely f(a, b) = f(b, a).

 In other words, $[\![\forall x \forall y \mathcal{R} (f(x, y), f(y, x))]\!]_{\mathcal{J}_{a}} = \mathbf{T}$.

 QED

- **d) Proof:** There exists an S-Interpretation \mathcal{J}_4 such that
 - The domain of \mathcal{J}_4 is \mathbb{R} .
 - $\mathcal{J}_4(f, x, y) = x y$.
 - $\mathcal{J}_4(\mathcal{R}, a, b) = \mathbf{T}$ if and only if a = b.

There exists x = 0, y = 1 such that $x - y \neq y - x$,

namely
$$[\![\forall x \forall y \mathcal{R} (f(x,y), f(y,x))]\!]_{\mathcal{J}_A} = \mathbf{F}.$$

In other words, $\forall x \forall y \mathcal{R}(f(x,y), f(y,x))$ is not valid.

QED

3. Solution:

There exists an S-Interpretation $\mathcal J$ such that

- The domain of \mathcal{J} is \mathbb{N} .
- P(x) mean whether x can be divided by 3.
- Q(x) mean whether x is a negative number.

Under this S-Interpretation \mathcal{J} , $\llbracket \forall x (P(x) \to Q(x)) \rrbracket_{\mathcal{J}} = \mathbf{F}$ while $\llbracket \forall x P(x) \rrbracket_{\mathcal{J}} = \mathbf{F}$ and

$$\llbracket \forall x Q(x) \rrbracket_{\mathcal{J}} = \mathbf{F}, \text{ namely } \llbracket \forall x P(x) \rightarrow \forall x Q(x) \rrbracket_{\mathcal{J}} = \mathbf{T}.$$

In this case, $[\![\forall x (P(x) \to Q(x))]\!]_{\mathcal{J}} \neq [\![\forall x P(x) \to \forall x Q(x)]\!]_{\mathcal{J}}$.

In other words, $\forall x (P(x) \rightarrow Q(x))$ and $\forall x P(x) \rightarrow \forall x Q(x)$ are not logically equivalent.

4. Solution:

$$\neg \forall x (\phi \to \psi) \equiv \exists x \left(\neg (\phi \to \psi) \right) \equiv \exists x \left(\neg (\neg \phi \lor \psi) \right) \equiv \exists x (\phi \land \neg \psi).$$
 So $\neg \forall x (\phi \to \psi)$ and $\exists x (\phi \land \neg \psi)$ are logically equivalent.

- 5. a) Solution: $\forall z \exists y \exists x \neg T(x, y, z)$
 - **b**) Solution: $(\forall x \forall y \neg P(x, y)) \lor (\exists x \exists y \neg Q(x, y))$
 - $c) \ \ \textit{Solution:} \ \ \forall x \forall y \left(\left(P(x,y) \land \neg Q(y,x) \right) \lor \left(\neg P(x,y) \land Q(y,x) \right) \right)$
 - **d**) Solution: $\exists y \forall x \forall z (\neg T(x, y, z) \land \neg Q(x, y))$
- **6.** a) **Proof:** When $[\![\forall x\phi]\!]_{\mathcal{J}} = \mathbf{T}$, for any x, $[\![\phi]\!]_{\mathcal{J}} = \mathbf{T}$.

Since $\phi \models \psi$, we know that for any x, $\llbracket \psi \rrbracket_{\mathcal{J}} = \mathbf{T}$. Thus, $\llbracket \forall x \psi \rrbracket_{\mathcal{J}} = \mathbf{T}$.

In other words, $\forall x \phi \vDash \forall x \psi$.

QED

b) Proof: When $\llbracket \forall x \phi \rrbracket_{\mathcal{J}} = \mathbf{T}$ and $\llbracket \Phi \rrbracket_{\mathcal{J}} = \mathbf{T}$ (x does not freely occur in Φ), for any x,

$$\llbracket \phi \rrbracket_{\mathcal{J}} = \mathbf{T}$$
, $\llbracket \Phi \rrbracket_{\mathcal{J}} = \mathbf{T}$.

Since $\Phi, \phi \models \psi$, we know that for any x, $[\![\psi]\!]_{\mathcal{J}} = \mathbf{T}$. Thus, $[\![\forall x\psi]\!]_{\mathcal{J}} = \mathbf{T}$.

In other words, Φ , $\forall x \phi \vDash \forall x \psi$.

QED

c) **Solution:** Let \mathcal{J} be an S-Interpretation where the domain is \mathbb{N} .

Let $\Phi = {\chi}, \chi = P(x)$, which means $x \ge 1$.

Let $\phi = Q(x)$, which means x is a natural number. Thus, $[\![\forall x \phi]\!]_{\mathcal{J}} = \mathbf{T}$.

Let $\psi = T(x)$, which means x > 0.

It's plain to see that $\Phi, \phi \models \psi$.

However, $[\![\forall x \psi]\!]_{\mathcal{J}} = \mathbf{F}$ because there exists x = 0 such that x > 0.

Thus, $\Phi, \forall x \phi \not\models \forall x \psi$.