Q1 Team name

0 Points

Cipherberg

Q2 Commands

10 Points

List the commands used in the game to reach the ciphertext.

go, enter, pluck, c, c, back, give, back, back, thrnxxtzy, read

Q3 Analysis

50 Points

Give a detailed analysis of how you figured out the password? (Explain in less than 500 words)

After giving the mushrooms, we were presented a screen which had some hints and equations related to multiplicative groups.

This gave us the idea to use Modular Arithmetic in further analysis.

Given, the prime modulus p = 19807040628566084398385987581

Using the equations given in the hint,

 $wg^{324} \equiv 11226815350263531814963336315(say,y_1)$ (mod

p) -----eqn 1

 $wg^{2345} \equiv 9190548667900274300830391220(say,y_2)$ (mod

p) -----eqn 2

 $wg^{9513} \equiv 4138652629655613570819000497(say, y_3)$ (mod

p) -----eqn 3

where w is the password.

Divide eqn. 2 with eqn. 1,
$$g^{2021} \equiv y_2 * y_1^{-1}$$
 (mod p) -----eqn 4

Divide eqn. 3 with eqn. 1,
$$g^{9189} \equiv y_3 * y_1^{-1}$$
 (mod p) -----eqn 5

Divide eqn. 3 with eqn. 2,
$$g^{7168} \equiv y_3 * y_2^{-1}$$
 (mod p) -----eqn 6

To perform modular division, we need to find the modular inverse of the denominators $(y_1 \text{ and } y_2)$, if it exists. From properties of Multiplicative group of integers modulo n, we know that, $\gcd(y_1, p) = 1$ and $\gcd(y_2, p) = 1$ i.e. y_1 and y_2 are coprime to p, therefore, modular inverse of y_1 and y_2 exists under modulo p. Modular inverse of y_1 is a number x such that $(y_1 * x) \% p = 1$.

Since p is a prime number, therefore we can use Fermat's little theorem.

Therefore, Using Fermat's little theorem, $a^{p-1} \equiv 1 \pmod{\mathrm{p}}$ Multiplying both sides with a^{-1} and rearranging,

$$\implies a^{-1} \equiv a^{p-2} \pmod{p},$$

Using the above equation, we get

$$y_1^{-1} = x \equiv y_1^{p-2} \pmod{p} \equiv 17983774594023309985368857902 \pmod{p}.$$

Therefore using eqn 4,

$$g^{2021} \equiv (y_2 * x) ext{ (mod p)}$$
 $g^{2021} \equiv$

$$g^{2021} \equiv 7021284369301638640577066679$$
 (mod p) ------eqn 7

Similarly, by solving equation 5 and 6, we get, $g^{9189}\equiv 3426347385144995225825016781$ (mod p) ------eqn 8 $g^{7168}\equiv 6339248851737327508924059257$ (mod p) ------eqn 9

Multiplying both sides of equation 9 by inverse of $\left(g^{2021}\right)^3$ gives, $g^{7168}*\left(\left(g^{2021}\right)^3\right)^{-1} \pmod{\mathrm{p}} \equiv 6339248851737327508924059257*$ $\left(\left(g^{2021}\right)^3\right)^{-1} \pmod{\mathrm{p}}$ $g^{1105} \equiv 1332524359715193692493602650 \pmod{\mathrm{p}}$

Similarly the following calculations can be carried out:

$$g^{349} \equiv g^{9189} * \left(\left(g^{1105} \right)^8 \right)^{-1} \pmod{p} \equiv$$

$$9054846785544512610175699226 \pmod{p}$$

$$g^{73} \equiv \left(g^{349} \right)^6 * \left(g^{2021} \right)^{-1} \pmod{p} \equiv$$

$$2748579083294760009905704356 \pmod{p}$$

$$g^{16} \equiv \left(g^{73} \right)^5 * \left(g^{349} \right)^{-1} \pmod{p} \equiv$$

$$10610366411880988999637482966 \pmod{p}$$

$$g^3 \equiv \left(g^{16} \right)^{22} * \left(g^{349} \right)^{-1} \pmod{p} \equiv$$

$$5924011030095759455963670302 \pmod{p}$$

$$g \equiv g^{16} * \left(\left(g^3 \right)^5 \right)^{-1} \pmod{p} \equiv$$

$$192847283928500239481729 \pmod{p}$$

Also, in the hints mentioned on the panel, it is written that g is $1__4_2__0_94__9$ with some values missing. The result obtained for g from our computation agrees with this hint. Therefore, we can surely say that g is 192847283928500239481729.

To compute the password put value of g in eqn. 1, $wg^{324}\equiv 11226815350263531814963336315 \ ({\rm mod\ p})$ Multiply both sides by inverse of g^{324} ,

$$w*g^{324}*(g^{324})^{-1}\equiv \\ \left(11226815350263531814963336315*(g^{324})^{-1}\right) \text{ (mod p)} \\ \text{From properties of Multiplicative group of integers modulo p, we know that } a*a^{-1}=1, \\ \text{Therefore,} \\ w\equiv \left(11226815350263531814963336315*\\ 7280920143223660694435112264\right) \text{ (mod p)} \\ \\$$

where the modular inverse $(g^{324})^{-1}$ is again obtained using

Fermat's little theorem. Therefore, w=3608528850368400786036725

Hence the password is 3608528850368400786036725

The python code for above computations and for finding the modular inverse using Fermat's little theorem is attached.

Q4 Password

10 Points

What was the final command used to clear this level?

```
3608528850368400786036725
```

Q5 Codes

0 Points

Upload any code that you have used to solve this level.

```
▲ Download
▼ crypto_ass3.ipynb
     In [15]:
                  def gcd(x, y):
                      if (x == 0):
                           return y
                      return gcd(y % x, x)
                  def power(a, b, m):
                      if (b == 0):
                          return 1
                      p = power(a, b // 2, m) % m
                      p = (p * p) % m
                      if (b % 2 == 0):
                          return p
                      else:
                           return ((a * p) % m)
                  def modInverse(a, m):
                      g = gcd(a, m)
                      if(g==1):
                           z=power(a, m - 2, m)
                          print("The modular multiplicative
                  inverse is ",z)
                           return z
                      else:
                          print("Oops! The inverse does not
```

```
exist")
             y1 = 11226815350263531814963336315
             y2 = 9190548667900274300830391220
             y3= 4138652629655613570819000497
             p = 19807040628566084398385987581
             y1_inverse = modInverse(y1, p)
             y2_inverse= modInverse(y2,p)
             The modular multiplicative inverse is 17983774594
             The modular multiplicative inverse is 14487011570
 In [16]:
             g_2021= (y2 * y1_inverse)%p
             g 2021
Out [16]:
             7021284369301638640577066679
 In [17]:
             g_7168= (y3 * y2_inverse)%p
             g_7168
Out [17]:
             6339248851737327508924059257
 In [18]:
             g_9189= (y3 * y1_inverse) % p
             g_9189
Out [18]:
             3426347385144995225825016781
 In [19]:
             g_1105= (g_7168 *
             modInverse(power(g_2021,3,p),p)) % p
             g_1105
             The modular multiplicative inverse is 37593003101
Out [19]:
             1332524359715193692493602650
 In [20]:
             g_349= (g_9189 *
             modInverse(power(g_1105,8,p),p)) % p
             g_349
             The modular multiplicative inverse is 14402582163
Out [20]:
             9054846785544512610175699226
 In [21]:
             g_{349,6,p} *
             modInverse(g 2021,p)) % p
```

```
g_73
             The modular multiplicative inverse is 16586880129
Out [21]:
             2748579083294760009905704356
 In [22]:
             g_16= (power(g_73,5,p) * modInverse(g_349,p))
             % p
             g_16
             The modular multiplicative inverse is 98360082593
Out [22]:
             10610366411880988999637482966
In [23]:
             g_3 = (power(g_16, 22, p) * modInverse(g_349, p))
             % p
             g_3
             The modular multiplicative inverse is 98360082593
Out [23]:
             5924011030095759455963670302
 In [24]:
             g= (g_16 * modInverse(power(g_3,5,p),p)) % p
             The modular multiplicative inverse is 16621723109
Out [24]:
             192847283928500239481729
 In [25]:
             password= (y1 * modInverse(power(g, 324,
             p),p))%p
              password
             The modular multiplicative inverse is 72809201432
Out [25]:
             3608528850368400786036725
```

Assignment 3	GRADED
GROUP SAMBHRANT MAURYA DEEKSHA ARORA SHRUTI SHARMA View or edit group	
TOTAL POINTS	
70 / 70 pts	
QUESTION 1	
Team name	0 / 0 pts
QUESTION 2	
Commands	10 / 10 pts
QUESTION 3	
	EQ / EQ ntc
Analysis	50 / 50 pts
QUESTION 4	
Password	10 / 10 pts
QUESTION 5	
Codes	0 / 0 pts