

IIC2223 - Teoría de Autómatas y Lenguajes Formales

Ayudantía 5

Franco Bruña y Dante Pinto 10 de Septiembre, 2021

Pregunta 1 (P3 Ayudantía pasada)

Sea L un lenguaje regular sobre el alfabeto Σ . Demuestre que el siguiente lenguaje:

$$L^{\exists n} = \{ w \in \Sigma^* \mid \exists n \in \mathbb{N}. \ w^n \in L \}$$

es regular usando autómatas finitos en dos direcciones.

 ξ El autómata encontrado termina su ejecución para todas las palabras?. Si no es el caso, diseñe un algoritmo que reciba el 2DFA y una palabra w como input y retorne TRUE si el autómata acepta la palabra y FALSE en caso contrario.

Pregunta 2

Considere el siguiente problema:

Problema: #DFA

Input: Un DFA $\mathcal{A} = (Q, \Sigma, \delta, q_0, F) \text{ y } 0^n$.

Output: $|\{w \in \mathcal{L}(\mathcal{A}) \mid |w| = n\}|$

En otras palabras, el problema #DFA consiste en, dado un autómata finito determinista \mathcal{A} y dado una palabra de largo n, contar todas las palabras de largo n que acepta \mathcal{A} .

Escriba un algoritmo que resuleva #DFA en tiempo $\mathcal{O}(|\mathcal{A}| \cdot n)$ donde $|\mathcal{A}|$ es el número de estados y transiciones de \mathcal{A} . Demuestre la correctitud de su algoritmo.

Pregunta 3

Sea $\Sigma = \{a, b\}$. Para cada una de las siguientes relaciones construya un transductor equivalente:

- 1. El complemento de la identidad \neq entre palabras de Σ^*
- 2. La relación de "orden lexicográfico" \preccurlyeq entre palabras de $\Sigma^*,$ es decir

$$u \preccurlyeq v \quad \Longleftrightarrow \quad \begin{cases} v = uw & \text{para } w \in \Sigma^* \\ u = xay \text{ y } v = xbz & \text{para } x, y, z \in \Sigma^* \end{cases}$$

3. La relación de "orden $\mathit{radix}" \sqsubseteq \mathsf{entre}$ palabras de $\Sigma^*,$ es decir

$$u \sqsubseteq v \quad \Longleftrightarrow \quad \begin{cases} |u| < |v| & \text{para } w \in \Sigma^* \\ |u| = |v| & \text{y } u \preccurlyeq v \end{cases}$$