3. Osnove digitalne logike (1)

Sadržaj predavanja

- logika sudova
 - logika sudova i digitalni sklopovi
 - logički kombinatori
 - simboli za logičke kombinatore
- Booleova algebra

Logika sudova i digitalni sklopovi

- digitalni sustav
 - sve funkcije temeljene na malom skupu "osnovnih logičkih funkcija"
- sklopovi koji ostvaruju osnovne logičke funkcije
 osnovni logički sklopovi:
 obrađuju "logičke varijable"
- elektroničke izvedbe osnovnih logičkih sklopova:
 - "Električke veličine koje odgovaraju logičkim varijablama održavaju se unutar unaprijed definiranih i fiksnih granica (na ulazu i na izlazu)."

Logika sudova i digitalni sklopovi

- "logičke varijable", "osnovne logičke funkcije"
 ~ terminologija logike sudova
- logika sudova, propozicijska logika (engl. propositional logic)
 - ~ "kombiniranje" *elementarnih* sudova radi dobivanja novih *složenih* sudova, bez obzira na suvislost samih sudova
- osnovni kombinatori sudova
 - ~ "osnovni logički veznici"

Logika sudova i digitalni sklopovi

- sudovi (tvrdnje, iskazi):
 - jednostavne rečenice
 - istiniti ili neistiniti

Primjer:

sud A: "Nema ulja (u motoru)."

sud B: "Temperatura (motora) je previsoka."

Logički kombinatori

- osnovni logički veznici:
 - ~ "kombinatori" I, ILI
- vrijednost složenog suda
 ristinit ili neistinit

Primjer:

Logički kombinatori

- izvedba kombinatora I
 - (mehanički) kontakt:

```
A ≡ <sklopka A uključena>
B ≡ <sklopka B uključena>
f ≡ <žarulja svijetli>
```


izvedba relejima:struja = pobuda releja

Interpretacija kombiniranja

algoritamski:

"logički produkt"

~ konjunkcija

• "računarska" notacija: $f = A \cdot B = AB$

• simbolička logika: $f = A \wedge B$

• teorija skupova: $f = A \cap B$

Logički kombinatori

- izvedba kombinatora ILI
 - (mehanički) kontakt:

A ≡ <sklopka A uključena> B ≡ <sklopka B uključena>

f ≡ <žarulja svijetli>

izvedba relejima: struja = pobuda releja

Interpretacija kombiniranja

algoritamski
 ako (A istinit) *ili* (B istinit) *(ili oba!)* onda f istinit
 inače f neistinit

- "logička suma"~ disjunkcija
 - "računarska" notacija: f = A + B
 - simbolička logika: $f = A \vee B$
 - teorija skupova: $f = A \cup B$

Tablice istinitosti (kombinacija)

- tablica kombinacija, tablica istinitosti (engl. truth table)
 prikaz djelovanja kombinatora:
 konačni broj mogućih kombinacija
 vrijednosti istinitosti elementarnih sudova
- oznake: T ~ istina, ⊥ ~ neistina
- definiraju odnos ulaza i izlaza digitalnog sustava

funkcija I (konjunkcija)

funkcija ILI (inkluzivna disjunkcija)

Α	В	f
Т	F	Т
Τ	Т	Т
Т	Τ	Т
Т	Т	Т

Logička negacija

- logička funkcija NE, komplement, inverzija
- nije kombinator (ali je korisni operator ②)
- U A ~A

algoritamski
 ako (A istinit)
 onda f neistinit
 inače f istinit

- logički izraz
 - "računarska" notacija: $f = \overline{A}$
 - simbolička logika: $f = \neg A$
 - teorija skupova: $f = A^C$

funkcija NE (negacija)

Α	f
T	Т
Т	Τ

Simboli za logičke kombinatore

- simboli za kombinator I:
 - američki vojni standard Mil-STD-806B
 - međunarodni standard IEC/ISO, DIN 40900, ANSI/IEEE 91-1984
 - stari standard DIN

Simboli za logičke kombinatore

- simboli za kombinator ILI:
 - američki vojni standard Mil-STD-806B
 - međunarodni standard IEC/ISO, DIN 40900, ANSI/IEEE 91-1984
 - stari standard DIN

Simbol za logičku negaciju

- simboli za operator NE:
 - američki vojni standard Mil-STD-806B

 kombiniranje s drugim operatorima

 međunarodni standard IEC/ISO

Sadržaj predavanja

- logika sudova
- Booleova algebra
 - Huntingtonovi postulati
 - teoremi Booleove algebre
 - dvočlana Booleova algebra
 - teorija skupova kao Booleova algebra

Booleova algebra

- osnovni matematički aparat korišten u analizi i projektiranju digitalnih sklopova:
 - G. Boole: formalizam za proučavanje "zakona prosuđivanja": "An Investigation of the Laws of Thought", 1854
 - C. E. Shannon:

 primjena Booleove algebre
 (u analizi relejnih elektromehaničkih sklopova):
 "A Symbolic Analysis of Relay and Switching Circuits",

 1938

Booleova algebra

- izgradnja konzistentnog matematičkog sustava na aksiomatski način
- algebra se definira postavljanjem skupa tvrdnji
- formalna definicija:
 - konačni skup objekata: K
 - dvije binarne operacije: +, *
 - skup osnovnih postulata (aksioma)
 - ~ aksiomatizacija

Booleova algebra

- aksiomatizacija s dobrim svojstvima:
 - E. V. Huntington: "Sets of Independent Postulates for the Algebra of Logic", 1904:
 - ~ aksiomatizacija s *minimalnim* brojem postulata
 - konzistentnost:
 niti jedan postulat iz skupa ne proturječi nekom drugom iz istog skupa
 - nezavisnost:
 niti jedan se postulat ne da dokazati pomoću ostalih

P1: Postoji skup K objekata ili elemenata podložnih relaciji ekvivalencije, oznakom "=", koja zadovoljava princip supstitucije.

ekvivalencija:

• refleksivnost: $(\forall a \in K)(a = a)$

• simetričnost: $(\forall a, b \in K)(b = a \text{ uvijek kada je } a = b)$

• tranzitivnost: $(\forall a, b, c \in K)(a = b \text{ i } b = c \text{ implicite } a = c)$

P2: Definiraju se dva operatora kombiniranja "+" i "." koji su zatvoreni s obzirom na K:

P2a: $(\forall a, b \in K)(a + b \in K)$

P2b: $(\forall a, b \in K)(a \cdot b \in K)$

P3: Za operatore kombiniranja postoji neutralni element:

P3a: $(\exists 0 \in K)(\forall a \in K \mid a+0=a)$

P3b: $(\exists 1 \in K)(\forall a \in K \mid a \cdot 1 = a)$

P4: Vrijedi zakon *komutacije*:

P4a: $(\forall a, b \in K)(a + b = b + a)$

P4b: $(\forall a, b \in K)(a \cdot b = b \cdot a)$

P5: Vrijedi zakon *distribucije*:

P5a: $(\forall a, b, c \in K)(a + (b \cdot c) = (a + b) \cdot (a + c))$

P5b: $(\forall a, b, c \in K)(a \cdot (b+c) = (a \cdot b) + (a \cdot c))$

P6: Postoji inverzni element – "komplement":

$$(\forall a \in K)(\exists \overline{a} \in K \mid (a + \overline{a} = 1)$$
$$(a \cdot \overline{a} = 0))$$

P7: Skup K sadrži barem dva različita elementa:

$$(\exists \text{ barem } a, b \in K \mid a \neq b)$$

- "operabilni" postulati
 - ~ direktno korištenje u manipulacijama logičkih izraza
 - P3 (neutralni element)
 - P4 (komutativnost)
 - P5 (distributivnost)
 - P6 (inverzni element)

- inverzni element (komplement)
 - ~ interpretacija kao rezultat operacije komplementiranja
- interpretacija "+" i "." u uobičajenom smislu aritmetičkih operatora?
 ~ P5a i P6 ne vrijede!
- dualnost (metateorem o dualnosti):
 - "Zamjenom operatora i neutralnih elemenata u nekom postulatu dobiva se njegov par, ako takav postoji."

- prioriteti operatora:
 - komplement, "-"
 - konjunkcija, "."
 - inkluzivna disjunkcija, "+"
- zagrade mijenjaju redoslijed obavljanja operacija

T1: dominacija

T1a:
$$(\forall a \in K)(a+1=1)$$

T1b:
$$(\forall a \in K)(a \cdot 0 = 0)$$

Dokaz:

$$(a+1) = (a+1) \cdot 1 \qquad (P3b)$$

$$= (a+1) \cdot (a+\overline{a}) \qquad (P6)$$

$$= a + (1 \cdot \overline{a}) \qquad (P5a)$$

$$= a + \overline{a} \qquad (P3b)$$

$$= 1 \qquad (P6)$$

$$(P6)$$

$$(P6)$$

T2: idempotencija

T2a:
$$(\forall a \in K)(a + a = a)$$

T2b:
$$(\forall a \in K)(a \cdot a = a)$$

Dokaz:
$$(a + a) = (a + a) \cdot 1$$
 $(P3b)$
 $= (a + a) \cdot (a + \overline{a})$ $(P6)$
 $= a + (a \cdot \overline{a})$ $(P5a)$
 $= a + 0$ $(P6)$
 $= a$ $(P3a)$
 $\overline{(Q.E.D.)}$

T3: involucija

$$(\forall a \in K)(a = \overline{(\overline{a})})$$

Dokaz: bez dokaza

T4:

T4a:
$$(\forall a, b \in K)(a + \overline{a}b = a + b)$$

T4b: $(\forall a, b \in K)(a \cdot (\overline{a} + b) = a \cdot b)$

Dokaz:

$$(a + \overline{a}b) = (a + \overline{a}) \cdot (a + b)$$

$$= 1 \cdot (a + b)$$

$$= a + b$$

$$(P5a)$$

$$(P6)$$

$$(P3b)$$

$$\overline{(Q.E.D.)}$$

T5: apsorpcija

T5a:
$$(\forall a,b \in K)(a+ab=a)$$

T5b:
$$(\forall a,b \in K)(a \cdot (a+b) = a)$$

Dokaz:
$$(a+ab) = a \cdot 1 + ab$$
 $(P3b)$
 $= a \cdot (1+b)$ $(P5b)$
 $= a \cdot 1$ $(T1)$
 $= a$ $(P3b)$ $\overline{(Q.E.D.)}$

L6:
$$(\forall a, b, c \in K)(a \cdot ((a+b)+c) = ((a+b)+c) \cdot a) = a)$$

Dokaz:
$$a \cdot ((a+b)+c) = a \cdot (a+b)+a \cdot c$$
 (P5)
 $= a+a \cdot c$ (T5)
 $= a$ (T5)
 $= ((a+b)+c) \cdot a$ $\overline{(Q.E.D.)}$

T7: asocijativnost

T7a: $(\forall a, b, c \in K)((a+b)+c = a+(b+c))$

T7b: $(\forall a,b,c \in K)((a \cdot b) \cdot c = a \cdot (b \cdot c))$

Dokaz: indirektan

 ako tvrdnja teorema vrijedi, lijeva i desna strana su jednake, pa vrijedi idempotencija (T2):

$$z = ((a+b)+c) \cdot (a+(b+c))$$

$$= ((a+b)+c) \cdot a + ((a+b)+c) \cdot (b+c)$$

$$= a + ((a+b)+c) \cdot (b+c)$$

$$= a + (((a+b)+c) \cdot b + ((a+b)+c) \cdot c)$$

$$= a + (b+((a+b)+c) \cdot c)$$

$$= a + (b+c)$$

$$(P5b)$$

$$(P4, P6)$$

$$(P4, P6)$$

$$(P5b)$$

T8: de Morganovi zakoni

T8a: $(\forall a, b \in K)(\overline{a+b} = \overline{a} \cdot \overline{b})$

T8b: $(\forall a, b \in K)(\overline{a \cdot b} = \overline{a} + \overline{b})$

Dokaz: indirektan

ispitivanjem ispravnosti komplementa (P6)

Dokaz T8:

$$(a+b) + \overline{a} \cdot \overline{b} = ((a+b) + \overline{a}) \cdot ((a+b) + \overline{b}) \quad (P5a)$$

$$= (\overline{a} + (a+b)) \cdot (\overline{b} + (a+b)) \quad (P4)$$

$$= 1 \cdot 1 \quad (T5,T1)$$

$$= 1 \quad (T1)$$

$$(a+b) \cdot (\overline{a} \cdot \overline{b}) = a \cdot (\overline{a} \cdot \overline{b}) + b \cdot (\overline{b} \cdot \overline{a}) \quad (P5b, P4b)$$

$$= 0 + 0 \quad (T7, P6,T1)$$

$$= 0 \quad (T2)$$

Dokaz T8 (nastavak):

• oba zahtjeva P6 su zadovoljena: (a+b) je jedinstveni komplement od $(a \cdot \overline{b})$

$$a+b=\overline{a\cdot b} \to \overline{a+b} = \overline{a\cdot b}$$

$$a \to \overline{a}, b \to \overline{b}$$

$$\overline{a+\overline{b}} = \overline{a\cdot b}$$

$$= a \cdot b$$

$$\overline{a+\overline{b}} = \overline{a\cdot b} \to \overline{a\cdot b} = \overline{a+\overline{b}}$$

$$(T3)$$

$$\overline{a+\overline{b}} = \overline{a\cdot b} \to \overline{a\cdot b} = \overline{a+\overline{b}}$$

$$(Q.E.D.)$$

Poopćenje de Morganovih zakona:

$$(\forall a, b, ..., z \in K)(\overline{a+b+...+z} = \overline{a} \cdot \overline{b} \cdot ... \cdot \overline{z})$$

$$(\forall a, b, ..., z \in K)(\overline{a \cdot b \cdot ... \cdot z} = \overline{a} + \overline{b} + ... + \overline{z})$$

Dokaz:

putem asocijativnosti (T7)

$$\overline{a+b+c} = \overline{a+(b+c)} = \overline{a} \cdot \overline{b+c} = \overline{a} \cdot \overline{b} \cdot \overline{c}$$

T9: simplifikacija

T9a: $(\forall a, b \in K)(a \cdot b + a \cdot \overline{b} = a)$

T9b: $(\forall a, b \in K)((a+b) \cdot (a+\overline{b}) = a)$

Dokaz:

 primjenom distributivnosti (P5) i neutralnog elementa (P3)

Dvočlana Booleova algebra

• najjednostavnija Booleova algebra: $K = K_2 = \{0,1\}$ ~ 0 i 1 nemaju numerička nego *logička* značenja

⇒ ekvivalentni *termi* (izrazi)

za 1 odnosno 0: $\overline{1} = 0$, $\overline{0} = 1$

$$1 \cdot 1 = 1 + 0 = 0 + 1 = 1 + 1 = 1$$

$$0+0=0\cdot 1=1\cdot 0=0\cdot 0=0$$

Teorija skupova kao Booleova algebra

- teorija skupova
 - ~ izomorfna dvočlanoj Booleovoj algebri:

pridruživanje:

$$\langle K, \cdot, +, \overline{}, 0, 1 \rangle \longleftrightarrow \langle S, \cap, \cup, \sim, \phi, U \rangle$$

$$K = \{0, 1\} \longleftrightarrow S = \{\phi, U\}$$

 ϕ : prazni skup

U: univerzalni skup

definicija operacija:

$$x \in A \cap B, x \in A \cup B, x \in A$$

Teorija skupova kao Booleova algebra

- Vennov dijagram
 - ~ prikaz skupa skupom točaka
 - univerzalni skup U: kvadrat, pravokutnik ili slični lik
 - skup: lik (obično krug) unutar U

Teorija skupova kao Booleova algebra

postulati u skupovnom obliku:

(P3)
$$A \cup \phi = A$$

 $A \cap U = A$

(P4)
$$A \cup B = B \cup A$$
$$A \cap B = B \cap A$$

(P5)
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

(P6)
$$A \cup \overline{A} = U$$

 $A \cap \overline{A} = \phi$

Literatura

- U. Peruško, V. Glavinić: *Digitalni sustavi*, Poglavlje 3: Osnove digitalne logike.
- logika sudova: str. 79-89
- Booleova algebra: str. 89-96

M. Čupić: *Digitalna elektronika i digitalna logika. Zbirka riješenih zadataka*, Cjelina 3: Booleova algebra.

riješeni zadaci: 3.1 – 3.3