Respuestas.md 2023-09-22

Practica 1.1

Sistema de codificacion y aritmetica binaria

1. Crea un fichero llamado "codifica_decimal.py" con el siguiente contenido. Una vez guardado pon permisos de ejecución con "chmod +x codifica_dacimal.py" y obtén una captura del resultado tras ejecutar "./codifica_decimal.py". ¿Con qué prefijo indica python que está mostrando un número en el sistema de codificación binario, octal y hexadecimal?

```
#!/usr/bin/env python3
# Obtiene una cadena de caracteres escrita por teclado
numero_cadena = input("Escribe un número entero: ")
# Transforma la cadena en un número entero
numero_decimal = int(numero_cadena)
# Muestra la codificación binaria, octal y hexadecimal
print("En binario es", bin(numero_decimal))
print("En octal es", oct(numero_decimal))
print("En hexadecimal es", hex(numero_decimal))
```

```
Escribe un número entero: 12
En binario es 0b1100
En octal es 0o14
En hexadecimal es 0xc
```

El prefijo que indica que esta mostrando:

- **Binario**: El prefijo es el **0b**, que la **b** significa binario.
- Octal: El prefijo es el 00, donde la 0 es octal.
- **Hexadecimal**: El prefijo es **0x**, que **x** significa hexadecimal.
- 2. El método "int(string, base)" en python permite convertir una cadena de caracteres (string) a un número entero codificado con la base indicada. Si no se indica la base, por defecto utiliza el sistema decimal (base 10). Crea unprograma en python que solicite un número binario y muestre su codificación en octal, hexadecimal y decimal.

```
#!/usr/bin/env python

numero_cadena = input("Escribe un numero binario: ")

numero_binario=int(numero_cadena, 2)

print("Numero Decimal: ", int(numero_binario))

print("Numero hexadecimal: ", hex(numero_binario))

print("Numero octal: ", oct(numero_binario))
```

Respuestas.md 2023-09-22

3. Crea un programa en python que solicite un número hexadecimal y muestre su codificación en binario, octal y decimal.

```
#!/usr/bin/env python

numero_cadena = input("Escribe un numero hexadecimal: ")

numero_hexa=int(numero_cadena, 16)

print("Numero decimal: ", int(numero_hexa))

print("Numero binario: ", bin(numero_hexa))

print("Numero octal: ", oct(numero_hexa))
```

4. Codifica a mano de binario a decimal los siguientes números, comprueba con las aplicaciones realizadas anteriormente si la solución es correcta:

```
a. 10111_2 = 1x2^4 + 1x2^2 + 1x2^1 + 1x2^0 = 23
```

b.
$$110111_2 = 1x2^5 + 1x2^4 + 1x2^2 + 1x2^1 + 1x2^0 = 55$$

5. Codifica a mano de decimal a binario los siguientes números, comprueba con las aplicaciones realizadas anteriormente si la solución es correcta.

```
a. 101<sub>10</sub> => 1100101
```

128	64	32	16	8	4	2	1
0	1	1	0	0	1	0	1

b. 26₁₀ => 11010

6. Codifica a mano de binario a octal y a hexadecimal los siguientes números, comprueba con las aplicaciones realizadas anteriormente si la solución es correcta.

a.
$$1111011110_2 = 1DD_{16} = 756_8$$

0001	1110	1110
1	D	D
111	101	110
7	5	6

b. $1010111_2 = 57_{16} = 127_8$

0101	011	1
5	7	
001	010	111
1	2	7

7. Codifica a mano de hexademimal a binario los siguientes números, comprueba con las aplicaciones realizadas anteriormente si la solución es correcta.

a.
$$1F1_{16} = 1111110001_2$$

b.
$$A2_{16} = 10100010_2$$

8. Realiza a mano las siguientes operaciones en binario:

b. 10110000 - 101111 = 10000001

c. 11101110 x 1010 = 100101001100

Respuestas.md 2023-09-22

				0	0	0	0	0	0	0	0
			1	1	1	0	1	1	1	0	
		0	0	0	0	0	0	0	0		
	1	1	1	0	1	1	1	0			
-	-	-	-	-	-	-	-	-	-	-	-
1	0	0	1	0	1	0	0	1	1	0	0

d. 101111011: 101 = 1001011

1	0	1	1	1	1	0	1	1	/	1	0	1		
1	0	1							1	0	0	1	0	1
0	0	0	1	1	1									
			1	0	1									
			0	1	0	0	1							
					1	0	1							
				0	0	0	0	1						