

CANDIDATE NAME

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

NS RanaCambridge.com

*	
5	
5	
2	
4	
\rightarrow	
0	
$\overline{}$	
∞	
00	
W	
04	
υī	
01	
∞	
O	

CENTRE NUMBER			CANDIDATE NUMBER				
CHEMISTRY						062	20/21
Paper 2			C	ctober	/Nove	mber	2011

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page. Write in dark blue or black pen.

You may need to use a pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

A copy of the Periodic Table is printed on page 20.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use							
1							
2							
3							
4							
5							
6							
7							
8							
Total							

1 hour 15 minutes

This document consists of 18 printed pages and 2 blank pages.

Chromatography can be used to test for the purity of substances. (a) (i) Describe one area in everyday life where purity of substances is important. [1] (ii) Mineral water contains dissolved salts such as magnesium chloride. Which one of the following statements about mineral water is correct? Tick one box. Mineral water boils at slightly above 100 °C. Mineral water is pure water. Mineral water boils at exactly 100 °C. Another name for mineral water is fizzy water. [1] (b) The diagram shows the apparatus used to separate different dyes in food colourings.		2	
Which one of the following statements about mineral water is correct? Tick one box. Mineral water boils at slightly above 100 °C. Mineral water is pure water. Mineral water boils at exactly 100 °C. Another name for mineral water is fizzy water. [1] (b) The diagram shows the apparatus used to separate different dyes in food colourings.	Chroma	atography can be used to test for the purity of substances.	For miner
Which one of the following statements about mineral water is correct? Tick one box. Mineral water boils at slightly above 100 °C. Mineral water is pure water. Mineral water boils at exactly 100 °C. Another name for mineral water is fizzy water. [1] (b) The diagram shows the apparatus used to separate different dyes in food colourings.	(a) (i)	Describe one area in everyday life where purity of substances is important.	Oridge.
Mineral water is pure water. Mineral water boils at exactly 100 °C. Another name for mineral water is fizzy water. [1] (b) The diagram shows the apparatus used to separate different dyes in food colourings. spot of food colouring placed here	(ii)	Which one of the following statements about mineral water is correct?	
Mineral water boils at exactly 100 °C. Another name for mineral water is fizzy water. [1] (b) The diagram shows the apparatus used to separate different dyes in food colourings. spot of food colouring placed here		Mineral water boils at slightly above 100 °C.	
Another name for mineral water is fizzy water. [1] (b) The diagram shows the apparatus used to separate different dyes in food colourings. spot of food colouring placed here		Mineral water is pure water.	
(b) The diagram shows the apparatus used to separate different dyes in food colourings. Spot of food colouring placed here		Mineral water boils at exactly 100 °C.	
(b) The diagram shows the apparatus used to separate different dyes in food colourings. Spot of food colouring placed here		·	
spot of food colouring placed here	<i>a</i> –.		
spot of food colouring placed here	(b) Th	e diagram shows the apparatus used to separate different dyes in food colourings.	
spot of food colouring placed here			
spot of food colouring placed here			
spot of food colouring placed here			
placed here			
placed here			
·			
Label the diagram in the boxes provided using the words below.	1 -1	·	
chromatography paper origin line solvent solvent front [2]			

(c) The diagram below shows the chromatography of four different food colourings, and D.

at the start of the experiment

the final chromatogram

(i) Which food colouring, A, B, C or D, contains only one dye? (ii) Which three food colourings have one dye in common? (iii) Which food colouring contains the greatest number of dyes? [1] [Total: 7]

www.PapaCambridge.com A student set up an experiment to demonstrate rusting as shown below. 2 He made observations at the start of the experiment, after 2 weeks and after 4 weeks.

	Water			
	start	after 2 weeks	after 4 weeks	
(a)	What conditions are needed			
			[2]
(b)	Two weeks after the start of had decreased. After a further Explain the results of this explain the results of the results	er two weeks there was no	e of air in the measuring cylinde change in the volume of air.	ər
				•••
			[3]
(c)	What change would you obs	erve in the iron wool as it re	usted?	
	appearance at start			
	appearance after 2 weeks		[2]
(d)	Rust contains iron(III) ions. Describe a test for iron(III) io	ons.		
	test			
	result			2]

$$\text{Fe + 2HC} l \rightarrow \text{FeC} l_{_2} + \text{H}_{_2}$$

Write a word equation for this reaction.

.....[2]

[Total: 11]

For miner's

The diagram shows some of the elements in Period 3 of the Periodic Table.

		.9.4 0.		e of the e						
		Na	Mg		Si	Р	S	Cl	Ar	A. PapaCo
	Fro	om the d	iagram, c	hoose						
	(i)	one el	ement wh	nich forms	a basic o	xide.				
										[1]
	(ii)			hich form						
	_									[2]
)	De	scribe h	ow metall	ic charact			_			F.4.1
ر.	۱۸/۲	at deter	mines the	e order of						[1]
٠,		iai actoi								[1]
d)	Th	e missin	g elemen	t in the ta						
	(i)	Descri	be the str	ucture of	an alumin		ı.			
		In you	r descripti	on write a	bout					
			e number e electron	and types	s of partic	les in the	nucleus			
										F 41

			7		MMN. P. OR	For miner's e
pre		or titanium for o	elow to explain overhead electri	•	is used in	miner's
metal	electrical conductivity	density in g/cm³	melting point /°C	strength	price in £/kg	Co
aluminium	very good	2.7	660	fairly strong	24	\
iron	good	7.9	1535	strong	3	
	good	4.5	1660	very strong	104	

	[2	2]
(e)	Chlorine is a green gas. When chlorine is bubbled through an aqueous solution of potassium bromide, the solutio turns orange. Complete the symbol equation for this reaction.	n
	Cl_2 +KBr \rightarrow +KC l	2]
(f)	Argon is a noble gas which is denser than air. Which one of these statements about argon is correct? Tick one box.	
	Argon reacts rapidly with chlorine.	
	Argon is used for filling balloons.	
	Argon has a complete outer shell of valency electrons.	
	Argon has only two valency electrons in its outer shell.	
	[*	1]

[Total: 14]

Ethane is a saturated hydrocarbon. Ethene is an unsaturated hydrocarbon.

Why.	
8	
ane is a saturated hydrocarbon. Ethene is an unsaturated hydrocarbon.	For miner's
Describe how you can distinguish between ethane and ethene using aqueous bromin.	Bride
	Se. COM
[2]	13

(b) The diagram shows the apparatus used to crack long chain alkanes into alkenes and shorter chained alkanes in the laboratory.

(i) State **two** conditions needed for cracking.

(ii) What information in the diagram shows that alkenes are insoluble in water?

(iii) Propene is an alkene.

The formula of propene is C_3H_6 .

Calculate the relative molecular mass of propene.

[1]

(iv) Complete the equation for the cracking of the alkane tetradecane, C₁₄H₃₀.

$$C_{14}H_{30} \rightarrow \dots + C_{10}H_{22}$$
 [1]

(c) Poly(ethene) is formed from ethene monomers. Select two words from the list that describe this reaction.

5		9		WWW. P.	Day	For
		ethene monomers. st that describe this rea	action.		dh	miner's
	addition	condensation	dehydration			Tide
f	ermentation	neutralisation	polymerisation			COM
		and			[2]	
				[To	tal: 9]	·

5 A pupil studied the effect of temperature on the speed of reaction of aqueous thiosulfate with dilute hydrochloric acid.

www.PapaCambridge.com When he added hydrochloric acid to a solution of sodium thiosulfate, a precipitate of sulfur gradually formed. He recorded the time taken for some writing placed under the flask to disappear from view.

He repeated the experiment at different temperatures. The table shows his results.

temperature /°C	time taken for the writing to disappear from view/s	
15	100	
30	56	
45	34	
60	20	
75	12	

(a) (i) On the grid below, plot a graph of the time taken against temperature.

I '⊀	K I
ı	וי
	-

(ii)	At which temperature was the reaction the fastest?	
		[1]
(iii)	Describe how the temperature affects the speed of reaction.	

 	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •

(b)	Suggest how the speed of this reaction at 30 °C will change when the concentration of
	hydrochloric acid is increased.

F4 '	٦.
11	
 L .	J.

•	Fo	r	
,	mir	ner's	S
4	-	2	
%		•	
1	2		•
	6	•	
7		.C	
	4	(4

(c) The equation for the reaction is

N. PapaCambr.
[4]
[1]
[1]
[1]
n. process?
[1]
[1]

[Total: 12]

6 The diagram shows the flame from a Bunsen burner when its air hole is open.

(a) In the outer zone of the flame, methane undergoes complete combustion. Complete the equation for the complete combustion of methane.

$$CH_4 + \rightarrow CO_2 + 2H_2O$$
 [2]

(b) In the middle zone of the flame, less air is present and incomplete combustion occurs. State the name of the poisonous gas formed during the incomplete combustion of methane.

.....[1]

(c) The inner cone of the flame contains only unburnt methane.
A student put a match in the Bunsen burner as shown in the diagram below.
He then lit the Bunsen burner.

Suggest why the match did not catch fire.

.....[1

Tor miner's e

(d) The products of the complete combustion of methane were drawn through the ap shown below.

(1)	State the name of the substance that turned the write copper surface in tube A, blue.
	[1]
(ii)	How could you change blue copper sulfate to white copper sulfate?
	[1]
(iii)	The soda lime in tube B absorbs carbon dioxide. State and explain what happens to the mass of the soda lime as the experiment proceeds.
	[1]
(e) M	ethane is a greenhouse gas.
(i)	State one source of the methane in the atmosphere.
	[1]
(ii)	State one effect of an increased concentration of methane in the atmosphere.
	[1]
	[Total: 9]

7 A student studied the reaction of citric acid with sodium hydrogen carbonate. Sh solution of citric acid in a plastic cup and measured its temperature.

She then added sodium hydrogen carbonate powder and measured the temperature again

(a) The temperature of the reaction mixture decreased. Which one of these statements about this reaction is correct? Tick one box.

The reaction released heat energy.	
The reaction is exothermic.	
The reaction is endothermic.	
The products have less energy than the reactants.	

[1]

(b) The structure of citric acid is shown below.

- (i) On this structure, put a ring around the alcohol functional group. [1]
- (ii) Write the simplest formula for citric acid.

(c) Salts of citric acid can be prepared from lemon juice.

	For	
١	miner	

www.PapaCambridge.com (i) The lemon juice is first boiled to remove various substances including enzymes. What do you understand by the term enzyme?[2] (ii) The lemon juice is then neutralised with calcium carbonate and solid calcium citrate is formed. Suggest how the calcium citrate can be separated from the mixture. (iii) Carbon dioxide gas is released when citric acid solution reacts with calcium carbonate. Describe a test for carbon dioxide. (d) The concentration of a citric acid solution can be found by carrying out a titration using the apparatus shown below. sodium hydroxide solution citric acid solution Describe how to carry out this titration.[3]

[Total: 11]

8 The diagram shows an electrolysis cell for extracting sodium from molten sodium chi

(a)	(i)	Which letter on the diag	ram represent	S		
		the electrolyte?				
		the cathode?				[2]
	(ii)	Which one of the following Put a ring around the co	•	s is most likel	y to be used as	s the anode?
		graphite	sodium	sulfur	zinc	[1]
(b)		at information from the lium chloride?	diagram sugg	ests that soc	dium is less de	ense than molten
						[1]
(c)	Pre	edict the product formed a	at the anode du	uring this elec	ctrolysis.	
						[1]
(d)		me the gases formed at thoride is electrolysed.	ne anode and o	cathode wher	n an aqueous s	solution of sodium
	pro	duct at the anode				
	pro	duct at the cathode				[2]
						[Total: 7]

BLANK PAGE

www.PapaCambridge.com

BLANK PAGE

www.PapaCambridge.com

The Periodic Table of the Elements **DATA SHEET**

	0	4 He Helium	20 Neon 10	40 Ar Argon	84 Kr Krypton 36	131 Xe xenon	Radon 86		175
Group	II/		19 Fluorine	35.5 C1 Chlorine	80 Br Bromine 35	127 I lodine 53	At Astatine 85		173
	5		16 Oxygen	32 S Suffur	79 Se Selenium 34	128 Te Tellurium	Po Polonium 84		169
	>		14 N Nitrogen 7	31 Phosphorus	75 AS Arsenic	122 Sb Antimony 51	209 Bi Bismuth 83		167
	2		12 Carbon	28 Sil icon	73 Ge Germanium	Sn In	207 Pb Lead		165
	=		11 Boron 5	27 A1 Aluminium 13	70 Ga Gallium 31	115 I n Indium	204 T t Thallium 81		162
					65 Zn Zinc	Cadmium 48	201 Hg Mercury 80		159
					64 Copper 29	108 Ag Silver 47	197 Au Gold		157
					59 X Nickel	106 Pd Palladium 46	195 Pt Platinum 78		152
			1		59 Co Cobalt	Rhodium 45	192 Ir		150
		Hydrogen			56 Iron	Ru Ruthenium 44	190 Os Osmium 76		
					Manganese 25	Tc Technetium 43	186 Re Rhenium 75		144
					Chromium	96 Mo Molybdenum 42	184 W Tungsten 74		141
					51 V Vanadium 23	Nobium 41	181 Ta Tantalum		140
					48 T Titanium	91 Zr Zirconium 40	178 # Hafnium		,
					Scandium	89 ×	139 La Lanthanum 57 *	227 AC Actinium 4	o diric
	=		Be Beryllium	Magnesium	40 Ca Calcium 20	Strontium	137 Ba Barium 56	226 Ra Radium 88	*58-71 Lanthanoid series
	_		7 Li Lithium	23 Na Sodium	39 K Potassium 19	Rb Rubidium	Caesium 55	Francium 87	*58_711,

www.papaCambridge.com T_{mulium} ğ Erbium F Es ರ Bk Berkelium Ferbium Gd **Curium** Am En Sm Pu **N**eptunium Š Ра ቯ 232 **Th** Thorium Cerium 28 06 b = proton (atomic) number a = relative atomic mass X = atomic symbol *58-71 Lanthanoid series 190-103 Actinoid series

а **×**

Key

Lutetium

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included the publisher will be pleased to make amends at the earliest possible opportunity.