请扫码登记

无线网名称: BUAA_SME3, 无线网密码: sme41sme

扫码登记

课程微信群

微电子器件实验

彭守仲

北京航空航天大学 微电子学院

第一馆203办公室 shouzhong.peng@buaa.edu.cn

2020年10月21日

直流特性测量与分析

■ 直流特性实验内容

- 1、二极管的直流特性测量与分析
- 2、双极型晶体管的直流特性测量与分析
- 3、场效应晶体管的直流特性测量与分析

■ 实验要求和目的:

- 1、了解通用仪表的的基本原理和使用方法
- 2、了解被测器件各项参数的定义和测量方法
- 3、掌握被测器件直流特性和相关机理

回顾

实验一、二极管直流特性

■ 注意事项

- 1. 请测量发光二极管(小心烫手)
- 2. 反向击穿电压大于30V

实验二、双极型晶体管输入特性

注意事项:

- V_{CE}=0V时CE端不需要连接电压源, 只需用导线连接
- 2. V_{CE} 太大会烧毁器件(小心烫手), 建议 V_{CE} =0.5V
- 3. 反向击穿电压约为-12.5V

回顾

- 二极管两端的电压测量
 - > 万用表的二极管测量模式不能用于电压测量

- 测量结果随时间变化
 - 电容的充放电过程导致读数变化
 - > 交流电等带来的噪音

二、双极型晶体管的直流特性测量与分析。

■ 输出特性曲线

TO封装 (Transistor Outline)

SOT封装 (Small Outline Transistor)

二、双极型晶体管的直流特性测量与分析。

■ 输出特性曲线

TO封装 (Transistor Outline)

SOT封装 (Small Outline Transistor)

测试器件

S9018 NPN型晶体管

/ce[V], COLLECTOR-EMITTER VOLTAGE V

输出特性曲线

二、双极型晶体管的直流特性测量与分析。

■ 输出特性曲线

□ 基本测试原理电路如右图所示,测试时用逐点测试的方法把一条条曲线

描绘出来。

二、双极型晶体管的直流特性测量与分析

S9018

■ 输出特性曲线

1.调节*E*_B使

 $I_B = 20/40/60/80/100 \mu A$

2.调节*E*c使

E_C=0.1-1V以及1-10V

 $3.测量V_{CE}和I_C并画图$

电压源 产生电压*E_B和E_C*

手持式万用表1 测量电压 V_{CE}

100kΩ

手持式万用表2 测量电流 I_c

台式万用表 测量电流/₈

课后思考

■ 课后思考

- 1. 双极型晶体管的截止区、放大区、饱和区分别具有 什么特点?
- 2. 当 V_{CE} 增大时, I_B 如何变化?内在机理是什么?

二、双极型晶体管的直流特性测量与分析

S9018

■ 输出特性曲线

1.调节*E*_B使

 $I_B = 20/40/60/80/100 \mu A$

2.调节*Ec*使

E_C=0.1-1V以及1-10V

 $3.测量V_{CE}和I_C并画图$

电压源 产生电压*E_B和E_C*

手持式万用表1 测量电压 V_{CE}

100kΩ

手持式万用表2 测量电流 I_c

台式万用表 测量电流/₈