1 Regression	4 Least Squares	$= \prod \sigma(x_n^T w)^{y_n} [1 - \sigma(x_n^T w)]^{1 - y_n}$	The solution is sparse (α_n is the slope	10 Matrix Factorisations
1.1 Linear Regression	4.1 Normal Equation	Loss	of the lines that are lower bounds to	10.1 Prediction
Multiple	$X^{T}(\mathbf{y} - X\mathbf{w}) = 0 \Rightarrow$	$\mathcal{L}(w) = \sum_{n=1}^{N} ln(1 + exp(x_n^T w)) - y_n x_n^T w$	the hinge loss).	Find $\mathbf{X} \approx \mathbf{W} \mathbf{Z}^T$ where $\mathbf{W} \in \mathbb{R}^{D \times K}$ and
$f(\mathbf{x_n}) := w_0 + \sum_{j=1}^D w_j x_{nj} = \tilde{\mathbf{x}}_n^T \mathbf{w}$	$\mathbf{w}^* = (X^T X)^{-1} X^T \mathbf{y}$ and $\hat{\mathbf{y}}_{\mathbf{m}} = \mathbf{x}_{\mathbf{m}}^T \mathbf{w}^*$	which is convex in w .	8.6 Kernel Ridge Regression	$\mathbf{Z} \in \mathbb{R}^{N \times K}$ with $K \ll D, N$. Large
If $D > N$ the task is under-	Graham matrix invertible iff	Gradient	From duality $w^* := X^T \alpha^*$ where	$K \rightarrow \text{overfitting. If } K \ge \max\{D, N\} \text{ tri-}$
determined (more dimensions than	$rank(X) = D$ (use SVD $X = USV^T \in$	$\nabla \mathcal{L}(w) = \sum_{n=1}^{N} x_n (\sigma(x_n^T w) - y_n) =$	$\alpha^* := (K + \lambda I_N)^{-1} y$ and $K = XX^T =$	vial solution $(W = 1_D \text{ or } Z = 1_N)$.
$data) \rightarrow regularisation.$	$\mathbb{R}^{N \times D}$ if this is not the case to get	$X^{T}[\sigma(Xw)-y]$ (no closed form solu-	$\phi^T(x)\phi(x) = \kappa(x, x')$ (needs to be PSD	Quality of reconstruction (not jointly
2 Cost functions	pseudo-inverse $\mathbf{w}^* = V \tilde{S} U^T y$ with \tilde{S}	tion).	and symmetric).	convex nor identifiable): $\sum_{n=1}^{\infty} (T_n T_n^T)^{-12}$
$MSE = \frac{1}{N} \sum_{n=1}^{N} [y_n - f(\mathbf{x_n})]^2$	pseudo-inverse of <i>S</i>).	$Hessian \ H(w) = X^T S X$	9 Unsupervised Learning	$\mathcal{L}(\mathbf{W}, \mathbf{Z}) := \frac{1}{2} \sum_{(d,n) \in \Omega} [x_{dn} - (\mathbf{W}\mathbf{Z}^T)_{dn}]^2$
$MAE = \frac{1}{N} \sum_{n=1}^{N} y_n - f(\mathbf{x_n}) $	5 Likelihood	with $S_{nn} = \sigma(x_n^T w)[1 - \sigma(x_n^T w)]$	9.1 K-means clustering	$= \sum_{n=0}^{\infty} f_{dn}(w,z)$
$N = n-1$ if $n = j \in \mathbb{N}$	Probabilistic model $y_n = \mathbf{x_n}^T \mathbf{w} + \epsilon_n$.	8.3 Exponential family	$\min \mathcal{L}(z, \mu) = \sum_{n=1}^{N} \sum_{k=1}^{K} z_{nk} x_n - \mu_k _2^2$	$(d,n)\in\Omega$
2.1 Convexity	Probability of observing the data	General form	with $z_{nk} \in \{0, 1\}$ (unique assignments:	Regulariser: $\Omega(W,Z) = \frac{\lambda_w}{2} \mathbf{W} _{Frob}^2 +$
$f(\lambda \mathbf{u} + (1 - \lambda)\mathbf{v}) \le \lambda f(\mathbf{u}) + (1 - \lambda)f(\mathbf{v})$	given a set of parameters and in-	$p(y \eta) = h(y)exp[\eta^T \psi(y) - A(\eta)]$	$\sum_k z_{nk} = 1$).	
with $\lambda \in [0;1]$. A strictly convex func-	puts : $p(\mathbf{y} X,\mathbf{w}) = \prod p(y_n \mathbf{x_n},\mathbf{w}) =$	Cumulant $A(x) = hx \left[\int_{-1}^{1} h(x) dx \right] \left[\int_{-1}^{1} h(x) dx \right]$	Algorithm (Coordinate Descent)	$\frac{\lambda_z}{2} \ \mathbf{Z}\ _{Frob}^2$
tion has a unique global minimum	$\prod \mathcal{N}(y_n \mathbf{x_n}^T \mathbf{w}, \sigma^2)$	$A(\eta) = \ln\left[\int_{\mathcal{Y}} h(y) \exp\left[\eta^{T} \psi(y)\right] dy\right]$	1 $\forall u \in \int 1 \text{ if } k = \operatorname{argmin}_i x_n - \mu_k ^2$	Optimisation with SGD (compute ∇_w
w^* . A function must always lie above its linearisation:	Best model maximises log-likelihood	$\nabla A(\eta) = \mathbb{E}[\psi(y)] = g^{-1}(\eta)$	1. $\forall n, z_n = \begin{cases} 1 \text{ if } k = argmin_j x_n - \mu_k ^2 \\ 0 \text{ otherwise} \end{cases}$	for a fixed user d' and ∇_z for a fixed
$\mathcal{L}(u) \ge \mathcal{L}(w) + \nabla \mathcal{L}(w)^T (u - w) \forall u, w.$	$\mathcal{L}_{LL} = -\frac{1}{2\sigma^2} \sum (y_n - x_n^T w)^2 + cst.$	$\nabla^2 A(\eta) = \mathbb{E}[\psi \psi^T] - \mathbb{E}[\psi] \mathbb{E}[\psi^T]$	2. $\forall k \text{ compute } \mu_k = \sum_n z_{nk} x_n / \sum_n z_{nk}$	item n').
A set is convex iff line segment bet-	6 Regularisation	Link function	Pb:cost,spher+hard clusters	ALS (assume no missing ratings):
ween any two points of $\mathcal C$ lies in $\mathcal C$:	6.1 Ridge Regression	$\eta = g(\mu) \Leftrightarrow \mu = g^{-1}(\eta)$	Probabilistic model	$\mathbf{Z}_{*}^{T} = (\mathbf{W}^{T}\mathbf{W} + \lambda_{z}I_{K})^{-1}\mathbf{W}^{T}\mathbf{X}$
$\theta u + (1 - \theta)v \in \mathcal{C}$	$\mathcal{L}(\mathbf{w}) = \frac{1}{2} (\mathbf{y} - X\mathbf{w})^T (\mathbf{y} - X\mathbf{w}) + \frac{\lambda}{2} \mathbf{w} _2^2 \rightarrow$	$\eta_{gaussian} = (\mu/\sigma^2, -1/2\sigma^2) ; \eta_{poisson} =$	$p(X \mu,z) = \prod_{n} \mathcal{N}(x_n \mu_k,I)$	$\mathbf{W}_*^T = (\mathbf{Z}^T \mathbf{Z} + \lambda_w I_K)^{-1} \mathbf{Z} \mathbf{X}^T$
3 Optimisation	$\mathbf{w_{ridge}^*} = (XX^T + \lambda I_D)^{-1} X^T \mathbf{y}$	$ln(\mu)$; $\eta_{bernoulli} = ln(\mu/1 - \mu)$	$= \prod \prod \mathcal{N}(x_n \mu_k, I)^{z_{nk}}$	11 Dimensionality reduction
Gradient $\nabla \mathcal{L} := \begin{bmatrix} \frac{\partial \mathcal{L}(\mathbf{w})}{\partial w_1} & \dots & \frac{\partial \mathcal{L}(\mathbf{w})}{\partial w_D} \end{bmatrix}$	$= X^{T}(XX^{T} + \lambda I_{N})^{-1}\mathbf{v}$	$\eta_{general} = g^{-1}(\frac{1}{N}\sum_{n=1}^{N}\psi(y_n))$	n k	11.1 SVD
	Can be considered a MAP estimator :	$\nabla \mathcal{L}(w) X^T [g^{-1}(Xw) - \psi(y)] = 0$	9.2 Gaussian Mixture Models	$X = USV^T$, with $X : D \times N$, $U : D \times D$
3.1 Gradient descent $\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} - \gamma \nabla \mathcal{L}(\mathbf{w}^{(t)})$. Very sensiti-	$\mathbf{w_{ridge}^*} = argmin_w - log(p(w X, y))$	8.4 Nearest Neighbor Models	$p(X \mu,z) = \prod (x_n z_n,\mu_k,\Sigma_k)p(z_n \pi) =$	orthonormal, $\mathbf{V}: N \times N$ orthonormal,
we to ill-conditioning.	6.2 Lasso	Performs best in low dimensions.	$\prod \prod [\mathcal{N}(x_n \mu_k,\Sigma_k)]^{z_{nk}} \prod [\pi_k]^{z_{nk}}$	S : $D \times N$ diagonal PSD, values in descending order $(s_1 \ge \cdots \ge s_D \ge 0)$.
GD - Linear Reg	Sparse solution. $\mathcal{L}(w) = \frac{1}{2N}(y - $		$n \ k$	D (
$\mathcal{L}(\mathbf{w}) = \frac{1}{2N} (\mathbf{y} - X\mathbf{w})^T (\mathbf{y} - X\mathbf{w}) \rightarrow$	$(x,y)^T (y-Xw) + \lambda w _1$	8.4.1 k-NN	where $pi_k = p(z_n = k)$	Reconstruction $\ \mathbf{X} - \hat{\mathbf{X}}\ _F^2 \ge \ \mathbf{X} - \mathbf{U}_K \mathbf{U}_K^T \mathbf{X}\ _F^2 = \sum_{i \ge K+1} s_i^2$
	7 Model Selection	$f_{-1}(x) = {}^{1}\nabla$	Marginal likelihood: z_n latent varia-	
$\nabla \mathcal{L}(\mathbf{w}) = -\frac{1}{N} X^T (\mathbf{y} - X\mathbf{w}).$ Cost:	7.1 Bias-Variance decomposition	$f_{S^{t,k}}(x) = \frac{1}{k} \sum_{n:x_n \in ngbh_{S^{t,k}(x)}} y_n$ Pick odd	bles => factored out of likelihood	\forall rank- K matrix $\hat{\mathbf{X}}$ (i.e. we should com-
$O_{err} = 2ND + N \text{ and } O_w = 2ND + D.$ 3.2 SGD	Small dimensions : large bias, small	k so there is a clear winner. Large $k \rightarrow$ large bias small variance (inv.)	$p(x_n \theta) = \sum \pi_k \mathcal{N}(x_n \mu_k, \Sigma_k).$ nb params $O(N)$ to $O(D^2K)$.	press the data by projecting it onto these
	variance. Large dimensions : small	large bias silian variance (inv.)	9.3 EM	left singular vectors.)
$\mathcal{L} = \frac{1}{N} \sum \mathcal{L}_n(\mathbf{w}) \text{ with update}$	bias, large variance. Error for the val	0.4.0 E 1 1	9.3.1 GMM	Truncated SVD: $\mathbf{U}_K \mathbf{U}_K^T \mathbf{X} = \mathbf{U} \mathbf{S}_K \mathbf{V}^T$
$\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} - \gamma \nabla \mathcal{L}_n(\mathbf{w}^{(t)}).$	set compared to the emp distr of the	8.4.2 Error bound		Application to MF: $\mathbf{U} = \mathbf{W}$, $\mathbf{S}\mathbf{V}^T = \mathbf{Z}^T$.
3.3 Mini-batch SGD	data $\propto \sqrt{ln(\Omega)}/\sqrt{ V }$ 8 Classification	$\mathbb{E}[\mathcal{L}_{St}] \le 2\mathcal{L}_{f^*} + 4c\sqrt{d}N^{-1/d+1}$	Intialize $\mu^{(1)}$, $\Sigma^{(1)}$, $\pi^{(1)}$.	Rec. limited by the rank-K of W,Z.
$\mathbf{g} = \frac{1}{ B } \sum_{n \in B} \nabla \mathcal{L}_n(\mathbf{w}^{(t)})$ with update	8.1 Optimal	8.5 Support Vector Machines (SVM)	1. E-step: Compute the assignments.	11.2 PCA
$\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} - \gamma \mathbf{g}.$	$\hat{y}(\mathbf{x}) = argmax_{v \in \mathcal{Y}} p(y \mathbf{x})$	Logistic regression with hinge loss :	$a^{(t)} := \frac{\pi_k^{(t)} \mathcal{N}(x_n \mu_k^{(t)}, \Sigma_k^{(t)})}{2}$ 2 Compute	Decorrelate the data. Empirical cov
3.4 Subgradient at $oldsymbol{w}$		$min_w \sum_{n=1}^{N} [1 - y_n x_n^T w]_+ + \frac{\lambda}{2} w ^2$ whe-	$q_{kn}^{(t)} := \frac{\pi_k^{(t)} \mathcal{N}(x_n \mu_k^{(t)}, \Sigma_k^{(t)})}{\sum_k^K \pi_k^{(t)} \mathcal{N}(x_n \mu_k^{(t)}, \Sigma_k^{(t)})} \text{ 2. Compute}$	before: $N\mathbf{K} = \mathbf{X}\mathbf{X}^T = \mathbf{U}\mathbf{S}_D^2\mathbf{U}^T$. After
$\mathbf{g} \in \mathbb{R}^D$ such that $\mathcal{L}(u) \ge \mathcal{L}(w) + \mathbf{g}^T(u - u)$	8.2 Logistic regression	re $y \in [-1;1]$ the label and $hinge(x) =$	Marginal Likelihood 3. M-step: Up-	$\tilde{\mathbf{X}} = \mathbf{U}^T \mathbf{X} : N\tilde{\mathbf{K}} = \tilde{\mathbf{X}}\tilde{\mathbf{X}}^T = \mathbf{S}_D^2$ (the com-
w).	$\sigma(z) = \frac{e^z}{1 + e^z}$ to limit the predicted va-	$max\{0,x\}$. Convex but not differentia-	date	ponents are uncorrelated).
3.5 Projected SGD	lues $y \in [0;1]$ $(p(1 \mathbf{x}) = \sigma(\mathbf{x}^T\mathbf{w}))$ and	ble so need subgradient.	$\mu^{(t+1)} = \frac{\sum\limits_{n} q_{kn}^{(t)} x_n}{\sum\limits_{n} q_{kn}^{(t)}} \ \pi^{(t+1)} = \frac{1}{N} \sum\limits_{n} q_{kn}^{(t)}$	Pitfalls: not invariant under scalings.
$\mathbf{w}^{(t+1)} = \mathcal{P}_{\mathcal{C}}[\mathbf{w}^{(t)} - \gamma \nabla \mathcal{L}(\mathbf{w}^{(t)})]$	$p(0 \mathbf{x}) = 1 - \sigma(\mathbf{x}^T \mathbf{w})$). Decision wrt 0.5.	Duality : $\mathcal{L}(w) = max_{\alpha}G(w,\alpha)$. For	$-\frac{1}{\sum q_{kn}^{(t)}} $ $N = -\frac{N}{N} \sum_{n} q_{kn}$	12 Neural Networks The output at the node i in layer lie
3.6 Newton's method	Likelihood	SVM $min_w max_{\alpha \in [0,1]^N} \sum \alpha_n (1 -$	$\Sigma^{(t+1)} = \frac{\sum_{n} q_{kn}^{(t)}}{\sum_{n} q_{kn}^{(t)}} \frac{1}{n^{t}} - \frac{1}{N} \sum_{n} q_{kn}^{t}$ $\Sigma^{(t+1)} = \frac{\sum_{n} q_{kn}^{(t)} (x_{n} - \mu^{(t+1)}) (x_{n} - \mu^{(t+1)})^{T}}{\sum_{n} q_{kn}^{(t)}}$	The output at the node j in layer l is
0 1 1 /	$p(y X, w) = \prod_{n \in \mathbb{N}} p(y_n x_n)$	$y_n x_n^T w$) + $\sqrt[3]{2} w ^2$ differentiable and	$\Sigma^{(t+1)} = \frac{\sum_{n} q_{kn}(x_n - \mu^{(t+1)})(x_n - \mu^{(t+1)})^T}{n!}$	$x_j^{(l)} = \phi\left(\sum_i w_{i,j}^{(l)} x_i^{(l-1)} + b_j^{(l)}\right)$
$O(ND^2 + D^3)$ but faster conver-	$= p (0 x_n) \dots p (K x_n)$	convex. Can switch max and min	$\sum q_{kn}^{(t)}$	12.1 Representation power
	$n:y_n=0$ $n:y_n=K$		n ····	Error bound $\leq \frac{(2Cr)^2}{r}$ where <i>C</i> is the
gence). $(t+1) = (t) = (t)(t)(t)(t) - 1\nabla C(t)(t)$	$= \prod_{k} \left[p(y_n = k x_n, w) \right]^{\overline{y}_{nk}}$	Simpler form: $v(x) = {}^{1}\nabla x \cdot v \cdot v = {}^{1}V^{T} diag(v) c$		smoothness bound, n the number of
$w^{(t+1)} = w^{(t)} - \gamma^{(t)} (H^{(t)})^{-1} \nabla \mathcal{L}(w^{(t)})$	where $\tilde{y}_{nk} = 1$ if $y_n = k$.	$w(\alpha) = \frac{1}{\lambda} \sum_{n} \alpha_n y_n x_n = \frac{1}{\lambda} X^T diag(y) \alpha$	9.3.2 General	nodes. We can approximate any suffi-
3.7 Optimality conditions	For binary classification	which yields the optimisation problem:		ciently smooth 2D function on boun-
Necessary : $\nabla \mathcal{L}(\mathbf{w}^*) = 0$ Sufficient :	$p(y X, w) = \prod p(y_n x_n)$	$\max_{\alpha \in [0,1]^N} \alpha^T 1 - \frac{1}{2\lambda} \alpha^T Y X X^T Y \alpha$	$\theta^{(t+1)} := argmax_{\theta} \sum_{n} \mathbb{E}_{p(z_n x_n,\theta^{(t)})}$	ded domain (on average with σ acti-
Hessian PSD $\mathbf{H}(\mathbf{w}^*) := \frac{\partial^2 \mathcal{L}(\mathbf{w}^*)}{\partial w \partial w^T}$	$= \prod p(0 x_n) \prod p(1 x_n)$	ac[0,1]	$[\log p(x_n, z_n \theta)]$	vation, pointwise with ReLU).

 $\forall l: \delta^{(l)} = (\mathbf{W}^{(l+1)}\delta^{(l+1)}) \odot \phi'(\mathbf{z}^{(l)})$ X conditionally indep. of Y conditio- $\prod_{n}\prod_{k}\mathcal{N}(y_{nk}|w_{k}^{T}x_{n},\sigma_{k}^{2})$ and prior ned on the Z if X and Y are D-sep. Final pass by Z. Indep. is symmetric. $\frac{\partial L_n}{\partial w_{i:i}^{(l)}} = \delta_j^{(l)} \mathbf{x}_i^{(l-1)}, \ \frac{\partial L_n}{\partial b_{:}^{(l)}} = \delta_j^{(l)}$ 14 Quick maff Chain rule $h = f(g(w)) \rightarrow \partial h(w) =$ $\partial f(g(w))\nabla g(w)$ 12.3 Activations Gaussian sigmoid $\phi(x) = 1 - \sigma(x)$, tanh $\mathcal{N}(y|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} exp(-\frac{(y-\mu)^2}{2\sigma^2})$ $\frac{e^x + e^{-x}}{e^x + e^{-x}} = 2\phi(2x) - 1$, ReLU, Leaky Re-LU $(max\{\alpha x, x\})$. Multivariate Gaussian $\mathcal{N}(y|\mu,\sigma^2) =$ $\frac{1}{\sqrt{(2\pi)^D det(\Sigma)}} exp(-\frac{1}{2}(y-\mu)^T \Sigma^{-1}(y-\mu))$ 12.4 Convolutional Neural Nets Convolution with filter $f: x^{(1)}[n, m] =$ Bayes rule p(x|y) = p(y|x)p(x)/p(y) $\sum_{k,l} f[k,l] x^{(0)} [n-k,m-l]$. Filter is lo-Logit $\sigma(x) = \frac{\partial \ln[1 + e^x]}{\partial x}$ cal so no need for fully connected Naming Joint distribution p(x,y) =layers. We can use same filter at evep(x|y)p(y) = p(y|x)p(x) where ry position: weight sharing. Learning: p(x|y) or $p(y|X,w) \rightarrow$ likelihood // run backprop by computing different weights, then sum the gradients of p(y) or $p(w) \rightarrow \text{prior} // p(y|x) \rightarrow \text{pos-}$ shared weights. terior $//p(x) \rightarrow$ marginal likelihood $// p(w|y,X) \rightarrow MAP$ estimator 12.5 Overfitting Marginal Likelihood Adding regularisation is equivalent $p(\mathbf{X}|\alpha) = \int_{\theta} p(\mathbf{X}|\theta) p(\theta|\alpha) \, d\theta$ to weight decay (by $(1-\eta\lambda)$). Can also use dataset augmentation, dropout. $p(X = x) = \sum_{v} p(X = x, Y = y) =$ $\sum_{v} p(X = x \mid Y = y) p(Y = y)$ 13 Graphical Models 13.1 Bayes Nets Posterior probability ∝ Likelihood × Prior. Max over \mathcal{N} is equiv. to min. $p(X_1,...,X_D) = p(X_1)p(X_2|X_1)...$ $p(X_D|X_1,...,X_{D-1})$. One node is a ran- $\beta_{MAP}^* = argmax_{\beta}p(y|X,\beta)p(\beta) \Leftrightarrow$ dom variable, directed edge from X_i $\beta^* = argmin_{\beta} \mathcal{L}(\beta)$ to X_i if X_i appears in the conditioning $p(X_i|...,X_i,...)$. The graph must—Identifiable model $\theta_1 = \theta_2 \rightarrow P_{\theta_1} = P_{\theta_2}$ be acyclic. 14.1 Algebra Conditional independence: p(X, Y) =p(X)p(Y) or given Z p(X,Y|Z) = $(PQ + I_N)^{-1}P = P(QP + I_M)^{-1}$ p(X|Z)p(Y|Z). $\sum_{n} (y_n - \beta^T \mathbf{x_n})^2 = (\mathbf{y} - \mathbf{X}\beta)^T (\mathbf{y} - \mathbf{X}\beta)$ $\sum_{i} \beta^{2} = \beta^{T} \beta$

2. $p = p(x_1)p(x_3|x_1)p(x_2|x_3)$: id.

 x_2 **not** indep. given x_3

descendants are in Z.

3. $p = p(x_1)p(x_2)p(x_3|x_1,x_2) : x_1$ and

 $X \rightarrow Y$ path blocked by Z if it con-

tains a variable such that either 1. va-

riable is in Z and it is head-to-tail

or tail-to-tail 2. node is head-to-head

and neither this node nor any of its

X and Y are D-sep. by Z iff every

path $X \to Y$ is blocked by Z.

Unit/ortho: $UU^T = U^TU = I$.

 $log(\sum a) \ge \sum qlog(a/q)$

 $\mathbf{U}^T = \mathbf{U}^{-1}$ Rotation matrix (preserves

length of vector). Jensen's inequality:

12.2 Learning

Forward pass

Backward pass

 $(\mathbf{x}_{\scriptscriptstyle 1})$

 $(\mathbf{x}_{\scriptscriptstyle 1})$

: x_1 and x_2 indep. given x_3

1. $p(x_1, x_2, x_3) = p(x_3)p(x_1|x_3)p(x_2|x_3)$

 (\mathbf{x}_2)

 (\mathbf{x}_1)

Problem is not convex but SGD

is stable. Backpropagation: Let

 $\mathbf{z}^{(l)} = (\mathbf{W}^{(l)})^T \mathbf{x}^{(l-1)} + \mathbf{b}^{(l)}, \ \mathbf{x}^{(l)} = \phi(\mathbf{z}^{(l)})$

 $\delta^{(L+1)} = -2(y_n - \mathbf{x}^{(L+1)})\phi'(\mathbf{z}^{(L+1)})$ and

 $\mathcal{L}_n = (y_n - f^{(L+1)} \circ \cdots \circ f^{(1)}(\mathbf{x}_n^{(0)}))^2.$

 $\mathbf{x}^{(0)} = \mathbf{x}_n$. For l = 1, ..., L + 1

 $\sum_{m} (b_m^2 + ||\mathbf{w}_m||^2)$. The optimal value for b_u for a particular user u': $\sum_{u' \ m} (\hat{r}_{u'm} - r_{u'm}) + \lambda b_{u'} = 0.$ Problem jointly convex? Compu- $2w^{2}$ 4vw-2r4vw-2rwhich is not PSD in general. 16 Multiple Choice Notes 16.1 True statements Regularisation term sometimes renders the min. problem into a strictly concave/convex problem. parated.

15 Mock Exam Notes

15.1 Normal equation

 $\frac{1}{2}X(X^Tw_k - y_k) + w_k = 0 \Leftrightarrow$

 $w_k^* = (\frac{1}{\sigma^2} X X^T + I_D)^{-1} \frac{1}{\sigma^2} X y_k$

 $\mathcal{L}(w) = \sum_{k} \sum_{n} \frac{1}{2\sigma_{r}^{2}} (y_{nk} - x_{n}^{T} w_{k})^{2} +$

 $\frac{1}{2}\sum_{k}||w_{k}||_{2}^{2} \rightarrow \text{Likelihood } p(y|X,w) =$

15.4 Deriving marginal distribution

 $p(y_n|x_n, r_n = k, \beta) = \mathcal{N}(y_n|\beta_k^T \tilde{x}_n, 1)$

Assume r_n follows a multinomi-

al $p(r_n = k|\pi)$. Derive the mar-

ginal $p(y_n|x_n, \beta, \pi)$. $p(y_n|x_n, r_n) =$

 k,β) = $\sum_{k}^{K} p(y_n, r_n = k|x_n, \beta, \pi) =$

 $\sum_{k}^{K} p(y_n | r_n = k, x_n, \beta, \pi) \cdot \pi_k =$

 $\hat{r}_{um} = \langle \mathbf{v}_u, \mathbf{w}_m \rangle + b_u + b_m \mathcal{L} =$

 $\frac{1}{2} \sum_{u \ m} (\hat{r}_{um} - r_{um}) + \frac{\lambda}{2} \sum_{u} (b_u^2 + ||\mathbf{v}_u||^2) +$

Unique if convex.

15.2 MAP solution

 $p(w) = \prod_k \mathcal{N}(w_k|0, I_D)$

 $ln[\sum_{k}^{K} e^{t_k}]$ is convex

 $\sum_{k}^{K} \mathcal{N}(y_n | \beta_k^T \tilde{x}_n, \sigma^2) \cdot \pi_k$

15.3 Convexity

• k-NN can be applied even if the data cannot be linearly se-• $max\{0, x\} = max \alpha x$

 $\alpha \in [0,1]$ $min\{0,x\} = min \alpha x$ • $g(x) = min f(x,y) \Rightarrow g(x) \le$

f(x,y)

• $max g(x) \le max f(x,y)$

• max minf(x, y)≤ 17 Mock2014 17.1 Weighted LS min max f(x, y) $\mathcal{L}(\beta) = \frac{1}{2} \sum_{n} w_{n} (y_{n} - \beta^{T} \tilde{\mathbf{x}}_{n})^{2}$ • $\nabla_W(\mathbf{x}^T\mathbf{W}\mathbf{x}) = \mathbf{x}\mathbf{x}^T$ $\partial \mathcal{L}(\beta) = \sum_{n} w_{n} (y_{n} - \beta^{T} \tilde{\mathbf{x}}_{n}) \tilde{\mathbf{x}}_{n}$ $= -\tilde{X}^T W \mathbf{y} + \tilde{X}^T W \tilde{X} \mathbf{B} = 0.$ • $\nabla_{\mathbf{x}}(\mathbf{x}^T\mathbf{W}\mathbf{x}) = (\mathbf{W} + \mathbf{W}^T)\mathbf{x}$ $w_n > 0 \rightarrow W \text{ pos def } \rightarrow \tilde{X}^T W \tilde{X}$ • K-means: optimal cluster (resp. invertible \rightarrow unique sol $\beta^* = (\rightarrow$ centers) init \rightarrow one step optimal representation points (re- $\tilde{X}^T W \tilde{X}$)⁻¹ $\tilde{X}^T W \mathbf{v}$. prob model:

sp. clusters). $p(\mathbf{y}|X,\beta) = \prod_{n} \mathcal{N}(y_n|\beta^T \tilde{\mathbf{x}}_n, 1/w_n).$ · Logistic loss is typically preferred over L_2 loss in classificati-17.2 Subgradients on tasks. $MAE(\mathbf{w}) = \frac{1}{N} \sum_{n} |y_n - f(\mathbf{w}, \mathbf{w_n})|.$ Use chain rule with subgradient matrix, for large D, N: per iteration, ALS has an increased

• For optimizing a MF of a $D \times N$ h(x) = sgn(x). $\nabla \mathcal{L}(\mathbf{w}) = -1/N \sum_{n} h(y_n - f(\mathbf{w}))$ $\nabla f(\mathbf{w}, \mathbf{x_n})$. Then update weights. computational cost over SGD and per iteration, SGD cost is independent of D, N. • The complexity of backprop for a nn with \hat{L} layers and \hat{K} nodes/layer is $O(K^2L)$

vex and increasing over \mathbb{R}

• $\sum \mathcal{N}$, sin(x), $\forall x \in \mathbb{R}$

 CNN where the data is laid out in a one-dimensional fashion and the filter/kernel has M non-zero terms. Ignoring the bias terms, there are M para-17.4 Kernels meters.

17.3 Multiple output reg x_n has dim D but now y_n has dim K. $\mathcal{L}(\mathbf{W}) = \sum_{k} \sum_{n} \frac{1}{2\sigma_k^2} (y_{nk} - \mathbf{x}_n^T \mathbf{w})^2 +$ $1/2\sigma_0^2 \sum_k ||\mathbf{w}_k||^2$. Derive w.r.t. a \mathbf{w}_k to

get optimal weights : $1/\sigma_{\nu}^2 X^T (X \mathbf{w}_k (\mathbf{y}_k) + \frac{1}{\sigma_0^2} \mathbf{w}_k = 0$. Pb is convex in W. $\mathbf{w}_{k}^{*} = (1/\sigma_{k}^{2} X^{T} X + 1/\sigma_{0}^{2} I_{D})^{-1} 1/\sigma_{k}^{2} X^{T} \mathbf{y}_{k}$. Prob model (posterior) same answer as 15.2 but with $1/2\sigma_0^2 I_D$ for the prior Prove symmetry $\mathcal{K}(\mathbf{x}_i, \mathbf{x}_i)$ and PSD

 $\overline{p(\mathbf{y}|X,\beta,\mathbf{r})} = \prod [\mathcal{N}(y_n|\beta_k^T \tilde{\mathbf{x}}_n,\sigma^2]^{r_{nk}}.$

Not identifiable by permutation of

 $t^T K t = \sum_i \sum_i K_{ij} t_i t_j \ge 0 \forall t$ 16.2 Convex functions • $f(x) = x^{\alpha}, x \in \mathbb{R}^+, \forall \alpha \ge 1 \text{ or } \le 0$ 17.5 Mixture of lin reg $p(y_n|\mathbf{x}_n, r_n = k, \beta) = \mathcal{N}(y_n|\beta_k^T \tilde{\mathbf{x}}_n, 1)$. We • $f(x) = -x^3, x \in [-1, 0]$ define \mathbf{r}_{nk} like \mathbf{y}_{nk} in 17.2 • $f(x) = e^{ax}, \forall x, a \in \mathbb{R}$ Likelihood: $p(y_n|\mathbf{x}_n,\beta,\mathbf{r}_n) = \prod_{i} [\mathcal{N}(y_n|\beta_k^T \tilde{\mathbf{x}}_n,\sigma^2]^{r_{nk}}.$ • $f(x) = ln(1/x), x \in \mathbb{R}^+$ • $f(x) = g(h(x)), x \in \mathbb{R}, g, h \text{ con-}$

For $p(r_n = k | \pi) = \pi_k$: • $f(x) = ax + b, x \in \mathbb{R}, \forall a, b \in \mathbb{R}$ $p(y_n|\mathbf{x}_n,\beta,\pi) = \sum p(y_n,r_n=k|\mathbf{x}_n,\beta,\pi)$ • $f(x) = |x|^p, x \in \mathbb{R}, p \ge 1$ $= \sum_{n} p(y_n|r_n = k, \mathbf{x}_n, \beta, \pi) \cdot \pi_k$ • $f(x) = x log(x), x \in \mathbb{R}^+$ $= \sum \mathcal{N}(y_n | \beta_k^T \tilde{\mathbf{x}}_n, \sigma^2) \pi_k.$

16.3 Non-convex functions • $f(x) = x^3, x \in [-1, 1]$ $-logp(\mathbf{y}|X,\beta,\pi)$ $-\sum log \sum \mathcal{N}(y_n | \beta_k^T \tilde{\mathbf{x}}_n, \sigma^2) \cdot \pi_k$. Model • $f(x) = e^{-x^2}, x \in \mathbb{R}$ is not convex as a sum of gaussians.

labels.