=

CHAROTAR UNIVERSITY OF SCIENCE AND TECHNOLOGY Chandubhai S. Patel Institute of Technology Devang Patel Institute of Advance Technology & Research CHARUSAT Campus, Highway 139, Off, Nadiad - Petlad Road, Changa, Gujarat 388421

B.E. IT SEM-IV YEAR 2019

ASSIGNMENT -2

SUBJECT & SUBJECT CODE: Statistical and Numerical Technique (MA244)

POINT TO REMEMBER:

BEFORE STARTING THE CALCULTION FOR THE SOLUTION OF EQUATION INVOLVING TRIGONOMETRIC FUNCTION MODE OF CALCALUTOR MUST BE IN RADIAN.

CHAPTERS INCLUDED

- NUMERICAL SOLUTION OF NON-LINEAR EQUATIONS.
- > SOLUTION OF LINEAR SYSTEM.
- > NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS.
- > NUMERICAL INTEGRATION.

CHAPTER: NUMERICAL SOLUTION OF NON-LINEAR EQUATIONS.

BISECTION METHOD

- 1. Use bisection method of find a root of the equation $x^3 + 4x^2 10 = 0$ in the interval at [1 2]. Find the relative percentage error at each iteration. Use four iterations.
- 2. Find the negative root $x^3 7x + 3 = 0$ of by bisection method up to three decimal places.

FALSE POSITION METHOD

3. Find a real root of the equation $xe^x = \cos x$ using Regula-Falsi method, correct to three decimal places.

NEWTON RAPHSON METHOD OR NR METHOD

- 4. Find $(701)^{\frac{1}{3}}$ correct up to 3 decimal places by Newton Raphson Method.
- 5. Find a real root of the equation $x^3 + x 1 = 0$ correct up to six places of decimals.
- 6. Find a zero of the function $f(x) = x^3 \cos x$, with starting point $x_0 = 1$, by Newton Raphson Method. **Could** $x_0 = 0$ be used for this problem?

CHAPTER: SOLUTION OF LINEAR SYSTEM.

GAUSS JORDAN METHOD

Solve the following system of equation using Gauss Jordan Method

7. 3x-2y+5z=2 (ans x=-13/4, 41/6,61/12) 4x+y+2z=4

Subject In charge: Dr. Yogeshwari Patel

Subject: Statistical and Numerical Technique (MA244)

$$2x - y + 4z = 7$$

8.
$$2x-6y+8z=24$$
 (Ans x= 1, 3,5)

$$5x + 4y - 3z = 2$$

$$3x + y + 2z = 16$$

GAUSS SEIDEL METHOD

Solve the following system of equation using Gauss Seidel Method

9.
$$25x + 2y - 3z = 48$$

$$3x + 27y - 2z = 56$$

$$x + 2y + 23z = 52$$
 Starting with (1, 1,0) (Ans x=2, y=2,z=2)

10.
$$3x - 0.1y - 0.2z = 7.85$$

$$0.1x + 7y - 0.3z = -19.3$$

$$0.3x - 0.2y + 10z = 71.4$$
 (Ans x=3, y=-2.5,z=7)

CHAPTER: NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS.

RUNGE KUTTA METHOD 4th ORDER

11. Apply the Ruge Kutta method of fourth order to find an approximate value of y at x=0.6

$$\frac{dy}{dx} = \sqrt{x+y}$$
, $y(0.4) = 0.41$ in two step. (Ans 0.5052, 0.6104)

EULER MODIFIED METHOD

- 12. Use Euler's modified method to find the value of y satisfying the equation $\frac{dy}{dx} = \log(x + y)$, for x=1.2 and x=1.4 correct up to four decimal places by taking h =0.2 . Given that y(1)=2. **(Ans 2.2332, 2.4924)**
- 13. Using Euler's modified method, solve $\frac{dy}{dx} = 1 y$ with the initial condition y(0)=0 at x=0.1,0.2.(Ans 0.0952,0.1814)

TAYLOR'S SERIES METHOD

- 14. Use the Taylor's series method to solve $\frac{dy}{dx} = x^2y 1$, y(0)=1.Also find y(0.03) (Remark step size i.e., h is not given so select h according to initial and final value of x or apply the formula $h = \frac{x x_0}{n}$; where n is number of sub interval) (ANS 0.970009)
- 15. Using the Taylors series method ,find y(1.1) correct up to four decimal places given that $\frac{dy}{dx} = xy^{\frac{1}{3}}$, y(1)=1,h=0.1

(Ans 1.1068)

CHAPTER: NUMERICAL INTEGRATION.

TRAPEZOIDAL RULE , SIMPSON 1/3RD RULE, SIMPSON 3/8TH RULE

16. A rocket is launched from the ground .Its acceleration is registered during the first 80 seconds and is given as follows:

T(s)	0	10	20	30	40	50	60	70	80

$a(m/s^2)$	30	31.63	33.34	35.47	37.75	40.33	43.25	46.69	50.67

By Simpson's 1/3rd, find the velocity at t=80 s.(Ans 3086.1)

- 17. Evaluate the integral $\int_0^5 \frac{1}{4x+5} dx$ by Simpson's 1/3rd rule with taking 10equal parts. Hence ,find the approximate value of log_e5.(Ans 0.4026, 1.6104)
- 18. Evaluate the integral $\int_{0}^{\frac{\pi}{2}} \sqrt{1 \frac{1}{2} \sin^2 t} dt$ by Simpson's 1/3rd rule with taking 6 sub-interval. (Ans 1.3496)
- 19. Given data below , find the isothermal work done on the gas if it is compressed from $v_1 = 22 L$ to $v_2 = 2L$

.Use
$$W = -\int\limits_{v_1}^{v_2} p \, dv$$
 using Trapezoidal rule. (Ans 68.17)

v, L	2	7	12	17	22
P, atm	12.20	3.49	2.049	1.44	1.11

Subject In charge: Dr. Yogeshwari Patel

Subject: Statistical and Numerical Technique (MA244)