ABSTRACT

A fast encryption method particularly useful for long message lengths is provided. A message m is encrypted using a transmitter secret key z to form a quantity E. A transmitter processor prepares a quadruplet (a_{new} , b_{new} , s_{new} , E) where:

$$a_{new} = z^* y^c \text{ modulo p };$$

 $b_{new} = g^c \text{modulo p};$
 $s_{new} = \text{signature }_c(a_{new}, b_{new}, E).$

As in previous embodiments $y = g^x$ modulo p is the public key and x is the receiver secret key. The parameters g, x, and p according to methods known to a person skilled in the art and the parameter g is a generator of the group G_p . The parameter c is a random number. The transmitter processor sends the quadruplet $(a_{new}, b_{new}, s_{new}, E)$ to a receiver processor. The receiver processor verifies the signature on s_{new} using methods known in the art. The receiver processor then decrypts a_{new} and b_{new} using the receiver secret key x to get the transmitter secret key z, i.e. in the following manner. $z = a_{new}/b_{new}^{x}$. The receiver processor uses the transmitter secret key z to decrypt E to get the message M.