Here I am using the dataset only for assignment purpose. I am going to predict the price of the car using Linear Regression algorithm.

Used car Price Prediction

- · This dataset contains information about used cars.
- · Details of dataset is as follows:
 - name: different company name of cars
 - Year: purchase year of car.
 - Seling_Price: the price,owner wants to sell the car at.
 - km driven: the distance travelled by the car in km.
 - fuel: Fuel type of the car
 - seller_type: Defines whether the seller is a dealer or an individual.
 - transmission: Defines whether the car is manual or automatic.
 - owner: Defines the number of owners the car has previously had.
- we are constructing the model for price prediction

```
In [1]: # Import liberaries
   import pandas as pd
   import numpy as np
   import seaborn as sns
   import matplotlib.pyplot as plt
   import warnings
   warnings.filterwarnings('ignore')
```

```
In [2]: # read the data
df = pd.read_csv('Used car details.csv')
df.head()
```

Out[2]:

	name	year	selling_price	km_driven	fuel	seller_type	transmission	owner
0	Maruti 800 AC	2007	60000	70000	Petrol	Individual	Manual	First Owner
1	Maruti Wagon R LXI Minor	2007	135000	50000	Petrol	Individual	Manual	First Owner
2	Hyundai Verna 1.6 SX	2012	600000	100000	Diesel	Individual	Manual	First Owner
3	Datsun RediGO T Option	2017	250000	46000	Petrol	Individual	Manual	First Owner
4	Honda Amaze VX i-DTEC	2014	450000	141000	Diesel	Individual	Manual	Second Owner

```
In [3]: df.shape
```

Out[3]: (4340, 8)

In [4]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4340 entries, 0 to 4339
Data columns (total 8 columns):

		,	
#	Column	Non-Null Count	Dtype
0	name	4340 non-null	object
1	year	4340 non-null	int64
2	selling_price	4340 non-null	int64
3	km_driven	4340 non-null	int64
4	fuel	4340 non-null	object
5	seller_type	4340 non-null	object
6	transmission	4340 non-null	object
7	owner	4340 non-null	object

dtypes: int64(3), object(5)
memory usage: 271.4+ KB

No null values found in data

```
In [6]: df.describe().T
```

Out[6]:

	count	mean	std	min	25%	50%	75%	max
year	4340.0	2013.090783	4.215344	1992.0	2011.00	2014.0	2016.0	2020.0
selling_price	4340.0	504127.311751	578548.736139	20000.0	208749.75	350000.0	600000.0	8900000.0
km driven	4340.0	66215.777419	46644.102194	1.0	35000.00	60000.0	90000.0	806599.0

Here, the 75% selling_price is around 6 lacs and the maximum is around 90 lacs this indicates some outliers. also, in km driven 75% is 90k and max is around 8.6 lacs indicating outliers


```
In [8]: ##check the rows of outliers
df[df['km_driven']>500000]
```

Out[8]:

	name	year	selling_price	km_driven	fuel	seller_type	transmission	owner
525	Maruti SX4 S Cross DDiS 320 Delta	2016	665000	560000	Diesel	Dealer	Manual	First Owner
1243	Maruti Swift VXI BSIII	2009	250000	806599	Petrol	Dealer	Manual	First Owner
4184	Maruti SX4 S Cross DDiS 320 Delta	2016	665000	560000	Diesel	Dealer	Manual	First Owner

We can clearly see that only 3 values are present above 5 lacs.we need to remove that outliers

```
In [9]: # drop the rows of outliers
df=df[df['km_driven']<500000].reset_index(drop=True)
df</pre>
```

Out[9]:

	name	year	selling_price	km_driven	fuel	seller_type	transmission	owner
0	Maruti 800 AC	2007	60000	70000	Petrol	Individual	Manual	First Owner
1	Maruti Wagon R LXI Minor	2007	135000	50000	Petrol	Individual	Manual	First Owner
2	Hyundai Verna 1.6 SX	2012	600000	100000	Diesel	Individual	Manual	First Owner
3	Datsun RediGO T Option	2017	250000	46000	Petrol	Individual	Manual	First Owner
4	Honda Amaze VX i-DTEC	2014	450000	141000	Diesel	Individual	Manual	Second Owner
4332	Hyundai i20 Magna 1.4 CRDi (Diesel)	2014	409999	80000	Diesel	Individual	Manual	Second Owner
4333	Hyundai i20 Magna 1.4 CRDi	2014	409999	80000	Diesel	Individual	Manual	Second Owner
4334	Maruti 800 AC BSIII	2009	110000	83000	Petrol	Individual	Manual	Second Owner
4335	Hyundai Creta 1.6 CRDi SX Option	2016	865000	90000	Diesel	Individual	Manual	First Owner
4336	Renault KWID RXT	2016	225000	40000	Petrol	Individual	Manual	First Owner

4337 rows × 8 columns

Out[10]:

		name	year	selling_price	km_driven	fuel	seller_type	transmission	owner	
	89	Mercedes-Benz S-Class S 350d Connoisseurs Edition	2017	8150000	6500	Diesel	Dealer	Automatic	First Owner	
3	8870	Audi RS7 2015-2019 Sportback Performance	2016	8900000	13000	Petrol	Dealer	Automatic	First Owner	

Only 2 values this could cause the data to maybe fit to the wrong values and might not work with new data.

```
In [11]: #Lets remove the rows of outliers
    df=df[df['selling_price']<6e6].reset_index(drop=True)
    df</pre>
```

Out[11]:

	name	year	selling_price	km_driven	fuel	seller_type	transmission	owner
0	Maruti 800 AC	2007	60000	70000	Petrol	Individual	Manual	First Owner
1	Maruti Wagon R LXI Minor	2007	135000	50000	Petrol	Individual	Manual	First Owner
2	Hyundai Verna 1.6 SX	2012	600000	100000	Diesel	Individual	Manual	First Owner
3	Datsun RediGO T Option	2017	250000	46000	Petrol	Individual	Manual	First Owner
4	Honda Amaze VX i-DTEC	2014	450000	141000	Diesel	Individual	Manual	Second Owner
4330	Hyundai i20 Magna 1.4 CRDi (Diesel)	2014	409999	80000	Diesel	Individual	Manual	Second Owner
4331	Hyundai i20 Magna 1.4 CRDi	2014	409999	80000	Diesel	Individual	Manual	Second Owner
4332	Maruti 800 AC BSIII	2009	110000	83000	Petrol	Individual	Manual	Second Owner
4333	Hyundai Creta 1.6 CRDi SX Option	2016	865000	90000	Diesel	Individual	Manual	First Owner
4334	Renault KWID RXT	2016	225000	40000	Petrol	Individual	Manual	First Owner

4335 rows × 8 columns

As now we can see the shape of the data is 4335x8 that means total 5 rows of outlirs are deleted

```
In [12]: # Find unique values
         print("Fuel unique values: ", df['fuel'].unique())
         print("seller_type unique values: ", df['seller_type'].unique())
         print("transmission unique values: ", df['transmission'].unique())
         print("owner unique values: ", df['owner'].unique())
         Fuel unique values: ['Petrol' 'Diesel' 'CNG' 'LPG' 'Electric']
         seller_type unique values: ['Individual' 'Dealer' 'Trustmark Dealer']
         transmission unique values: ['Manual' 'Automatic']
         owner unique values: ['First Owner' 'Second Owner' 'Fourth & Above Owner' 'Third Owner'
          'Test Drive Car']
In [13]: # make a column of car age
         df['car_age'] = 2022 - df['year']
         df['car_age']
Out[13]: 0
                 15
                 15
         2
                 10
         3
                  5
         4
                  8
                  8
         4330
                  8
         4331
         4332
                 13
         4333
                  6
         4334
         Name: car age, Length: 4335, dtype: int64
```

```
In [14]: df.head()
```

Out[14]:

	name	year	selling_price	km_driven	fuel	seller_type	transmission	owner	car_age
0	Maruti 800 AC	2007	60000	70000	Petrol	Individual	Manual	First Owner	15
1	Maruti Wagon R LXI Minor	2007	135000	50000	Petrol	Individual	Manual	First Owner	15
2	Hyundai Verna 1.6 SX	2012	600000	100000	Diesel	Individual	Manual	First Owner	10
3	Datsun RediGO T Option	2017	250000	46000	Petrol	Individual	Manual	First Owner	5
4	Honda Amaze VX i-DTEC	2014	450000	141000	Diesel	Individual	Manual	Second Owner	8

Out[15]:

	name	selling_price	km_driven	fuel	seller_type	transmission	owner	car_age
0	Maruti 800 AC	60000	70000	Petrol	Individual	Manual	First Owner	15
1	Maruti Wagon R LXI Minor	135000	50000	Petrol	Individual	Manual	First Owner	15
2	Hyundai Verna 1.6 SX	600000	100000	Diesel	Individual	Manual	First Owner	10
3	Datsun RediGO T Option	250000	46000	Petrol	Individual	Manual	First Owner	5
4	Honda Amaze VX i-DTEC	450000	141000	Diesel	Individual	Manual	Second Owner	8

Exploratory data analysis

```
In [16]: # Plot the graph
```

```
In [17]:
    sns.countplot(x='fuel', data=df)
    plt.xlabel('fuel', fontdict={'fontsize':20, 'color':'Green'})
    plt.show()

sns.countplot(x='seller_type', data=df)
    plt.xlabel('seller_type', fontdict={'fontsize':20, 'color':'Green'})
    plt.show()

sns.countplot(x='transmission', data=df)
    plt.xlabel('transmission', fontdict={'fontsize':20, 'color':'Green'})
    plt.show()

plt.figure(figsize=(10,5))
    sns.countplot(x='owner', data=df)
    plt.xlabel('owner', fontdict={'fontsize':20, 'color':'Green'})
    plt.show()
```


• Inference:

- Majority of car use Petrol and Diesel as fuel
- individual seller are more than other seller.
- majority of vehicle transmission is mannual.
- First owners are more who want to sell the car.

```
In [18]: plt.figure(figsize=(15,8))
    sns.scatterplot(data = df, x = "km_driven", y = "selling_price")
    plt.xlabel("km driven", fontdict={'fontsize':20, 'color':'Black', 'fontweight':'bold'})
    plt.ylabel("selling Price", fontdict={'fontsize':20, 'color':'Black', 'fontweight':'bold'})
    plt.show()
```


Inference: Selling Price is inversly propotional to distance travelled by a vehicle.

```
In [19]: plt.figure(figsize=(15,8))
    sns.barplot(data = df, x = "car_age", y = "selling_price")
    plt.xlabel("car_age", fontdict={'fontsize':20, 'color':'Black', 'fontweight':'bold'})
    plt.ylabel("selling Price", fontdict={'fontsize':20, 'color':'Black', 'fontweight':'bold'})
    plt.show()
```


• Inference: Selling Price is inversly propotional to the age of vehicle.

```
In [20]: plt.figure(figsize=(10,5))
    sns.distplot(df[df['seller_type']=='Individual']['selling_price'], hist=False)
    sns.distplot(df[df['seller_type']=='Dealer']['selling_price'], hist=False)
    plt.xlabel("selling_price", fontdict={'fontsize':18, 'color':'green', 'fontweight':'bold'})
    plt.show()
```


• Inference: From the above graph we can say that the density of individual seller_type is more than dealer.

```
In [21]: df_1 =df.pivot_table(values='selling_price',index='owner',columns='transmission')
    plt.figure(figsize=(10,5))
    sns.heatmap(df_1,annot= True)
    plt.xlabel("transmission", fontdict={'fontsize':15, 'color':'Black', 'fontweight':'bold'})
    plt.ylabel("owner", fontdict={'fontsize':15, 'color':'Black', 'fontweight':'bold'})
    plt.show()
```


• Inference :automatic & first owner has higher prices and manual & Fourth and above owners have least price.

```
In [22]: df_2=df.pivot_table(values='selling_price',index='owner',columns='seller_type')
    plt.figure(figsize=(10,5))
    sns.heatmap(df_2,annot= True)
    plt.xlabel("seller_type", fontdict={'fontsize':15, 'color':'Black', 'fontweight':'bold'})
    plt.ylabel("owner", fontdict={'fontsize':15, 'color':'Black', 'fontweight':'bold'})
    plt.show()
```


• Inference:

- 1)we can clearly see from the above map that, trustmark dealer has more price than individual and dealer.
 - 2)Test drive car has high price in every seller type
 - 3)for dealer and individual only fourth & above owner car price is low

```
In [23]: # encode the categorical variable columns:
    df.replace({'fuel':{'Petrol':0,'Diesel':1,'CNG':2,'LPG':3,'Electric':4}},inplace=True)

    df.replace({'seller_type':{'Dealer':0,'Individual':1,'Trustmark Dealer':2}},inplace=True)

    df.replace({'owner':{"Test Drive Car":0,"First Owner":1,"Second Owner":2,"Third Owner":3,"Fourth & Above Owner":

    df.rename(columns={'transmission':'is_automatic'}, inplace=True)
    df.replace({'is_automatic':{'Manual':0,'Automatic':1}},inplace=True)
```

In [24]: # Let's check the replacement
 df.head()

Out[24]:

	name	selling_price	km_driven	fuel	seller_type	is_automatic	owner	car_age
0	Maruti 800 AC	60000	70000	0	1	0	1	15
1	Maruti Wagon R LXI Minor	135000	50000	0	1	0	1	15
2	Hyundai Verna 1.6 SX	600000	100000	1	1	0	1	10
3	Datsun RediGO T Option	250000	46000	0	1	0	1	5
4	Honda Amaze VX i-DTEC	450000	141000	1	1	0	2	8

In [25]: # Check the correlation of variables
 plt.figure(figsize=(15,8))
 sns.heatmap(df.corr(), annot= True)
 plt.show()

- Inference: There is high inverse correlation between
 - selling price and car age
 - selling price and owner
 - selling price and km driven
- https://www.investopedia.com/terms/i/inverse-correlation.asp (https://www.investopedia.com/terms/i/inverse-correlation.asp)

```
In [26]: # shorten the Length of name of car to get some uniformity.
         df['name']=df['name'].str.split().str.slice(0,3).str.join(' ')
         df['name']
Out[26]: 0
                     Maruti 800 AC
                    Maruti Wagon R
         1
         2
                 Hyundai Verna 1.6
          3
                    Datsun RediGO T
                    Honda Amaze VX
         4
                        . . .
                 Hyundai i20 Magna
         4330
                 Hyundai i20 Magna
         4331
         4332
                      Maruti 800 AC
         4333
                 Hyundai Creta 1.6
                  Renault KWID RXT
         4334
         Name: name, Length: 4335, dtype: object
```

Model Building

```
In [27]: # split the data into X and Y
X=df.drop(columns='selling_price')
Y=df['selling_price']
```

```
In [28]: # import necessary liberaries
         from sklearn.model selection import train test split
         from sklearn.linear model import LinearRegression
         from sklearn.preprocessing import OneHotEncoder
         from sklearn.metrics import mean squared error
         from sklearn.pipeline import make pipeline
         from sklearn.compose import make column transformer
         from sklearn import metrics
In [29]: | # manage the categorical data using one hot encoder
         ohe=OneHotEncoder()
         ohe.fit(X[['name','fuel','seller_type','is_automatic','owner']])
Out[29]: OneHotEncoder()
In [30]: col_transform=make_column_transformer((OneHotEncoder(categories=ohe.categories_),['name','fuel','seller_type','i
In [46]: X train,X test,Y train,Y test=train test split(X,Y,test size=0.2,random state=13)
         reg=LinearRegression()
         pipe=make pipeline(col transform, reg)
         pipe.fit(X train,Y train)
         y pred=pipe.predict(X test)
         error=mean squared error(Y test,y pred)
         rmse=np.sqrt(error)
In [47]: rmse
Out[47]: 236872.96691171892
```

• The difference in predicted price and expected price is due to the less accuracy of model

I apply Linear Regression algorithm to this model for assignment purpose only.