Devoir Maison nº 23

Exercice 1:

- 1. (a) Soit $E = \mathbb{R}^4$. On définit $f_1 = (1, 2, 3, 4), f_2 = (0, -3000, 1967, 800), f_3 = (0, 0, 1789, 1914)$ et $f_4 = (0, 0, 0, 1987^{2013})$. Montrer que la famille (f_1, f_2, f_3, f_4) est une base de E.
 - (b) Soit $E = \mathbb{R}^3$. On note $g_1 = (1, -2, 3), g_2 = (-1, 1, 2), g_3 = (3, -2, 1)$. Montrer que la famille (g_1, g_2, g_3, g_4) est une base de E. Décomposer explicitement le vecteur (1, 1, 1) dans cette base.
 - (c) On se place à nouveau dans $E = \mathbb{R}^4$ et on considère les quatre vecteurs : $h_1 = (1, 2, -1, -2), h_2 = (-2, -1, 2, -3), h_3 = (-1, 4, 1, 0)$ et $h_4 = (2, 7, -2, 5)$. Les h_i forment-ils une famille libre? génératrice?
- 2. Dans $E = \mathbb{R}^4$, on considère les cinq vecteurs $e_1 = (1, -3, 2, 4), e_2 = (2, 1, 3, 1), e_3 = (-3, 2, 1, 1), e_4 = (-16, -1, -1, 9), e_5 = (9, -6, 3, 3).$
 - (a) Ces vecteurs forment-ils une famille libre? génératrice?
 - (b) Donner une base de $Vect(e_1, e_2, e_3, e_4, e_5)$.

Exercice 2:

Soit E un espace vectoriel de dimension n et soient F_1, \ldots, F_k des sous-espaces vectoriels de E. On suppose que

$$\sum_{i=1}^{k} \dim(F_i) > n(k-1)$$

Le but de cet exercice est de montrer que $\bigcap_{i=1}^{k} F_i \neq \{0\}$.

- 1. Faire un dessin pour s'en convaincre dans le cas où n=3, k=2 et où F_1 et F_2 sont deux plans, puis dans le cas où k=3 et où F_1, F_2 et F_3 sont trois plans. On commentera selon le fait qu'on est dans les conditions de l'exercice ou non. Constater que les maths sont bien faites.
- 2. Retour au cas général. Soit φ l'application suivante

$$\varphi: \left\{ \begin{array}{l} F_1 \times \dots \times F_k \to E^{k-1} \\ (x_1, \dots, x_k) \mapsto (x_2 - x_1, x_3 - x_1 \dots, x_k - x_1) \end{array} \right.$$

Montrer que φ est linéaire.

- 3. Montrer que $\ker \varphi = \left\{ (x_1, x_1, \dots, x_1) \mid x_1 \in \bigcap_{i=1}^k F_i \right\}.$
- 4. Montrer que $\ker \varphi$ et $\bigcap_{i=1}^k F_i$ sont isomorphes. Conclure.

Page 1/1 2023/2024