INTRODUCTION TO MODULE THEORY: BASIC DEFINITIONS AND EXAMPLES

COLTON GRAINGER (MATH 6140 ALGEBRA 2)

1. ASSIGNMENT DUE 2019-01-13

1.1. [1, No. 10.1.1]. Given. R is a unital ring and M is a left R-module.

To prove. 0m = 0 and (-1)m = -m for all $m \in M$.

1.2. [1, No. 10.1.3]. Given. Say rm = 0 for some $r \in R$ and some $m \in M$ with $m \neq 0$.

To prove. There is no $s \in R$ such that sr = 1.

1.3. [1, No. 10.1.4]. Given. Let M be the modules R^n and let $\alpha_1, \alpha_2, \ldots, \alpha_n$ be left ideals of R.

To prove. Both of the following are submodules of M:

$$\begin{array}{l} \text{a. } P = \{(x_1, x_2, \ldots, x_n) : x_i \in \mathfrak{a}_i\}, \\ \text{b. } N = \{(x_1, x_2, \ldots, x_n) : x_i \in R \text{ and } \sum_i x_i = 0\}. \end{array}$$

1.4. [1, No. 10.1.5]. Given. Consider a left ideal α of R. Let

$$\mathfrak{a}M = \left\{ \sum_{\text{finite}} \mathfrak{a}_{\mathfrak{i}} \mathfrak{m}_{\mathfrak{i}} : \mathfrak{a}_{\mathfrak{i}} \in \mathfrak{a}, \mathfrak{m}_{\mathfrak{i}} \in M \right\}.$$

To prove. We have $\mathfrak{a}M$ as a submodule of M.

1.5. [1, No. 10.1.6]. Given. Let M be a module over R and $\{N_i\}$ be a nonempty collection of submodules.

To prove. The intersection $\bigcap_i N_i$ is a submodule of M.

1.6. **[1, No. 10.1.8].** Given. An element m of the R-module M is called a torsion element if rm=0 for some nonzero element $r\in R$. The set of torsion elements is denoted

Tor
$$(M) = \{m \in M : rm = 0 \text{ for some nonzero } r \in R\}.$$

To prove.

- a. If R is an integral domain, then Tor(M) is a submodule of M (called the torsion submodule).
- b. If R has zero divisors, then every nonzero R-module has nonzero torsion elements.
- 1.7. **[1, No. 10.1.9].** Given. If N is a submodule of M, the annihilator of N in R is defined to be

$$\{r \in R : rn = 0 \text{ for all } n \in N\}.$$

To prove. The annihilator of N in R is a 2-sided ideal of R.

1.8. [1, No. 10.1.15]. Given. Say M is a finite abelian group. M is naturally a Z-module.

To prove. This action cannot be extended to make M into a \mathbf{Q} -module.

Date: 2019-01-14. Compiled: 2019-01-14.

1

1.9. **[1, No. 10.1.18].** Given. Let $F = \mathbf{R}$, let $V = \mathbf{R}^2$, and let T be the linear transformation from V to V that is rotation clockwise about the origin by $\pi/2$ radians.

To prove. V and 0 are the only F[x]-submodules for this T.

1.10. **[1, No. 10.1.19].** Given. Let $F = \mathbf{R}$, let $V = \mathbf{R}^2$, and let T be the linear transformation from V to V that is projection onto the y-axis.

To prove. V, 0, the x-axis and the y-axis are the only F[x]-submodules for this T.

1.11. **[1, No. 10.1.20].** Given. Let $F = \mathbf{R}$, let $V = \mathbf{R}^2$, and let T be the linear transformation from V to V that is rotation clockwise about the origin by π radians.

To prove. Every subspace of V is an F[x]-submodule for this T.

1.12. **[1, No. 10.1.21].** Given. Let $n \in \mathbf{Z}^+$, n > 1, and R be the ring $\mathscr{M}_n(F)$ of $n \times n$ matrices from the field F. Let $M \subset \mathscr{M}_n(F)$ be

$$M = \left\{ (\alpha_i^j) : \alpha_i^j = 0 \text{ if } j > 1 \right\},$$

that is, the set of matrices with arbitrary elements of F in the first column and zeros elsewhere.

To prove.

- M is a submodule of R when R is considered as a left module over itself.
- M is not a submodule of R when R is considered as a right module.

REFERENCES

[1] D. Dummit and R. Foote, Abstract algebra. Prentice Hall, 2004.