

Test Signals / Building Blocks

- <u>Test Signals Concepts</u>
- Response Building Blocks

Standard Test Signals as Inputs

In general, **inputs**, u(t), are **not fully known** ahead of time, and are also **random in nature**. It is, therefore, **difficult to express** the actual input as an expression.

This has given rise to **test sig**nals, which provide a way of **characterizing** the behaviour during **design**, which are **simplified** forms of the **realistic inputs**.

In **control analysis** and design, impulse, step, ramp, parabolic & sinusoidal **inputs** are treated as **test** signals, as these are able to **excit**e the relevant dynamical **features**.

Standard Test Signals

Given below are the time variations of these test signals.

Standard Test Signals

Mathematically, these **test** signals can be **expressed** as **follows**.

Impulse:
$$\delta(t) = 0, t \neq 0;$$
 $\int_{-\varepsilon}^{+\varepsilon} \delta(t) dt = 1$

Step:
$$r(t) = Au(t), u(t) = 1, t > 0; u(t) = 0, t < 0$$

Ramp:
$$r(t) = At, t > 0$$
; $r(t) = 0, t < 0$

Parabolic:
$$r(t) = \frac{At^2}{2}, t > 0; \quad r(t) = 0, t < 0$$

Sinusoidal:
$$r(t) = A \sin \omega t$$

Summary

Test signals provide a **simple technique** to obtain the system **behaviour** during the **design process**.

Response Building Blocks

Time Response Generation Method

In dealing with **LTI** systems, principle of **superposition** is invoked in order to simplify the **solution procedure**. Thus, total response is a **sum** of natural and forced.

This philosophy is further extended by **decomposing** the general **n**th **order system** into a number of **1**st & **2**nd order systems, whose responses are **added** to get full response.

As a consequence, solution methodologies give a lot of importance to 1st and 2nd order system responses, which are also part of responses of even higher order systems.

Responses of 1st Order Systems

A typical 1st order system can be represented through the following differential equation.

$$|T\dot{c}(t) + c(t)| = r(t)$$

Unit **impulse** and **step** responses are as shown below.

1st Order System Response Features

We see that there is a **specific trend** of the response, which is **related** to the parameter, 'T', as shown below.

T – Time Constant

95% & 98% instants –
Used as settling time

Thus, we can **shape response** by suitably choosing, 'T'.

Responses of 2nd Order Systems

A typical 2nd order system can be represented through the following differential equation.

$$\ddot{c}(t) + 2\zeta\omega_n\dot{c}(t) + \omega_n^2c(t) = \omega_n^2r(t)$$

Unit **impulse** and **step** response are as follows.

2nd Order System Response Features

Response is a function of ' ζ ' and ' ω_n ', as shown below.

Thus, we can choose ' ζ ' and ' ω_n ', for a desirable 2^{nd} order response.

2nd Order System Response Features

2nd order system response contains important features, as described below.

M_p – Peak Overshoot

 $\mathbf{t_d}$ – Dead Time

 t_r – Rise Time

t_p - Peak Time

t_s – Settling Time

Response to General Inputs

While, we can obtain 1st and 2nd order responses through assumed functions, as most systems are of higher order & experience complex inputs, we need a generic procedure.

As integrating factor for a general input, is not feasible, an alternative strategy, which makes use of impulse response as basic building block, is employed.

'Convolution' is such a technique, which is based on the concept of assembling a large number of impulse responses to arrive at response to general inputs.

Summary

Response of 1st and 2nd order systems is used as building block for obtaining the time responses of the higher order systems.