Measures of Spread

Statistics overview

- From a given random process, we can make probability statements about what we expect to happen.
 - ► The random process can be:
 - ▶ A random sample (of size *n*) is taken from a much larger population
 - ▶ A random number generator is rolled *n* times.
- From a given sample, we can infer what the population/spinner looks like.

Measures of spread

- Range
- ► Inter-quartile range (IQR)
- Mean absolute deviation (MAD, average absolute deviation, AAD)
- Standard deviation
- ▶ (Bessel corrected) sample standard deviation.

Range

Range is the difference between maximum and minimum.

$$Range = max - min$$

Example:

sample =
$$8,5,20,6,5,4,19$$

range = $20 - 4 = 16$

The problem with range...

- ► A sample's range often underestimates the population's range.
- ► A sample's range often underestimates a spinner's range.
- ▶ When we use a sample statistic (like sample's range) to estimate a population parameter (like population's range), we call that sample statistic an "estimator".
- Range is a biased estimator.

Example: icosahedron

- ► Take a 20-sided die. It should be equally likely to land on any integer between 1 and 20. (Discrete Uniform Distribution)
- ▶ We say the population has a range of 19, because 20-1=19.
- ▶ I rolled 30 20-sided dice:

- ▶ The sample range is 17.
- Is it possible for a sample range to be larger than the population range?

Repeat the 30 rolls many times.

I "rolled" a 20-sided die 30 times, 1000 times. For each sample of 30 rolls, the sample's range was determined. Notice the sample range never was larger than the population range.

histogram of ranges

IQR

- We will come back to inter-quartile range another day.
- ▶ IQR is the difference between the 75th percentile and the 25th percentile.
- ► The 75th percentile is the smallest value larger (or equal) to 75% of the other values.

Mean absolute deviation

$$\mathsf{MAD} = \frac{\sum |x - \bar{x}|}{n}$$

The mean absolute deviation represents how far from center the values are on average.

ightharpoonup Example: sample = {41, 32, 39, 38}

X	$x - \bar{x}$	$ x-\bar{x} $
41	3.5	3.5
32	-5.5	5.5
39	1.5	1.5
38	0.5	0.5
======	======	=======
$\sum x = 150$		$\sum x - \bar{x} = 11$
$\bar{x} = 37.5$		$MAD = \frac{11}{4} = 2.75$

Mean absolute deviation

MAD =
$$\frac{\sum |x - \bar{x}|}{n}$$
 = $\frac{3.5 + 5.5 + 1.5 + 0.5}{4}$ = $\frac{11}{4}$ = 2.75

Standard deviation

Standard deviation without Bessel correction:

$$s = \sqrt{\frac{\sum (x - \bar{x})^2}{n}}$$

Standard deviation with Bessel correction (sample standard deviation):

$$s = \sqrt{\frac{\sum (x - \bar{x})^2}{n - 1}}$$

▶ The Bessel correction makes the estimator less biased.

Standard deviation example

ightharpoonup Example: sample = {41, 32, 39, 38}

41 3.5 12.2 32 -5.5 30.2 39 1.5 2.25			
32	$x - \bar{x} \qquad (x - \bar{x})^2$	$x - \bar{x}$	X
39 1.5 2.25	3.5 12.25	3.5	41
	-5.5 30.25	-5.5	32
38 0.5 0.25	1.5 2.25	1.5	39
	0.5 0.25	0.5	38
	= = = = = = = = = = = = = = = = = = =	=====	_

$$s = \sqrt{\frac{\sum (x - \bar{x})^2}{n - 1}} = \sqrt{\frac{45}{4 - 1}} = \sqrt{15} \approx 3.87$$

Estimating standard deviation from a histogram

Shape	Estimated s
Bell	$s pprox rac{{\sf range}}{6}$
Uniform	$s pprox rac{ m range}{4}$
Bimodal	$s pprox rac{range}{2}$

Estimating standard deviation from a histogram **Histogram of x**

$$s \approx \frac{6}{6} = 1$$

The actual value is 1.0449493

Estimating standard deviation from a histogram **Histogram of x**

$$s \approx \frac{10}{4} = 2.5$$

The actual value is 2.948021

Estimating standard deviation from a histogram **Histogram of x**

The actual value is 15.0979203