Endomorphismes nilpotents

Thèmes: espaces vectoriels, applications linéaires, dimension finie

Dans tout le problème \mathbb{K} désigne \mathbb{R} ou \mathbb{C} .

Soit E un \mathbb{K} -espace vectoriel de dimension finie non nulle.

On note \tilde{o} l'endomorphisme nul de E et Id l'endomorphisme identité.

Pour $n \in \mathbb{N}$ et f endomorphisme de E, on définit par récurrence l'endomorphisme f^n par :

$$f^0 = \operatorname{Id}_{\scriptscriptstyle E}$$
 et pour tout $n \in \mathbb{N}$, $f^{n+1} = f \circ f^n$.

Un endomorphisme f de E est dit nilpotent si et seulement s'il existe $n\in\mathbb{N}^*$ tel que $f^n=\tilde{o}$.

Notons qu'alors, pour tout entier $p \ge n$, $f^p = \tilde{o}$.

Partie I – Deux exemples

- 1. Dans cette question $E = \mathbb{K}^n$ espace vectoriel des n uplets d'éléments de \mathbb{K} . Soit $\varphi : \mathbb{K}^n \to \mathbb{K}^n$ définie par $\varphi(x_1, x_2, ..., x_n) = (0, x_1, ..., x_{n-1})$.
- 1.a Justifier que φ est un endomorphisme de \mathbb{K}^n .
- 1.b Déterminer la dimension de l'image et du noyau de l'endomorphisme φ .
- 1.c Montrer que φ est nilpotent.
- 2. Dans cette question $E=\mathbb{K}_n\big[X\big]$ espace vectoriel des polynômes de degrés inférieurs ou égaux à $n\in\mathbb{N}^*$. Soit $\Delta:\mathbb{K}_n\big[X\big]\to\mathbb{K}_n\big[X\big]$ définie par $\Delta(P)=P(X+1)-P(X)$.
- 2.a Justifier que Δ est un endomorphisme de $\mathbb{K}_n[X]$.
- 2.b Soit $P \in \mathbb{K}_n[X]$.

Déterminer $\deg \Delta(P)$ en distinguant les cas selon que P est, ou n'est pas un polynôme constant.

- 2.c Déterminer image et noyau de Δ .
- 2.d Etablir que Δ est un endomorphisme nilpotent.

Partie II – Etude générale

- 1. Soit f et g des endomorphismes de E.
- 1.a Justifier que si f est nilpotent et que f et g commutent alors $f \circ g$ est nilpotent.
- 1.b Justifier que si $f \circ g$ est nilpotent alors $g \circ f$ est nilpotent.
- 1.c On suppose que f est nilpotent.

Montrer que l'endomorphisme Id-f est inversible.

2. Soit f un endomorphisme nilpotent de E.

Justifier l'existence d'un plus petit entier $n \in \mathbb{N}^*$ tel que $f^n = \tilde{o}$.

Celui-ci est appelé indice de nilpotence de l'endomorphisme nilpotent f, on le note $\nu(f)$.

- 3. Soit f un endomorphisme nilpotent de E.
 - L'objectif de cette question est d'établir que $\,\nu(f) \leq \dim E$.

Pour cela on pose, pour tout $p \in \mathbb{N}$, $N_{_p} = \ker f^{_p}$.

- 3.a Déterminer $N_{\nu(f)}$.
- 3.b Montrer que pour tout $p \in \mathbb{N}$, $N_p \subset N_{p+1}$.
- 3.c Montrer que s'il existe $p \in \mathbb{N}$ tel que $\dim N_p = \dim N_{p+1}$, alors pour tout $q \in \mathbb{N}$, $N_p = N_{p+q}$.
- 3.d Conclure.

Partie III - Commutant d'un endomorphisme nilpotent maximal

Soit f un endomorphisme nilpotent de E tel que $\nu(f) = \dim E$.

Pour alléger la suite, nous convenons de noter n au lieu de $\nu(f)$ l'indice de nilpotence de f .

On note C(f) l'ensemble des endomorphismes de E commutant avec f.

- 1. Montrer que C(f) est un sous-espace vectoriel de $\mathcal{L}(E)$.
- 2. Soit $g \in C(f)$.
- 2.a Justifier qu'il existe $\vec{x}_0 \in E$ tel que $f^{n-1}(\vec{x}_0) \neq \vec{o}$.
- 2.b Montrer que la famille de vecteurs $\mathcal{B} = (\vec{x_0}, f(\vec{x_0}), \dots, f^{n-1}(\vec{x_0}))$ constitue une base de E.
- 2.c On note $a_0, a_1, \dots, a_{n-1} \in \mathbb{K}$ les composantes du vecteur $g(\vec{x}_0)$ dans la base \mathcal{B} . Exprimer, pour tout $k \in \{0,1,\dots,n-1\}$, $g(f^k(\vec{x}_0))$ comme combinaison linéaire des vecteurs de \mathcal{B} .
- $\text{2.d} \qquad \text{En d\'eduire que } g = a_0 \operatorname{Id} + a_{\scriptscriptstyle 1} f + \dots + a_{\scriptscriptstyle n-1} f^{\scriptscriptstyle n-1} \,.$
- 3. Conclure que $C(f) = \text{Vect}(\text{Id}, f, f^2, ..., f^{n-1})$.
- 4. Déterminer la dimension de C(f).