计算机组成原理 第七周作业 4月10日 周五

PB18151866 龚小航

4.12.

本习题讨论流水线对处理器时钟周期的影响。表中给出了数据通路中不同阶段延迟的两种情况, 试根据这两种情况分别回答下列问题。

	IF	ID	EX	MEM	WB
a.	300 ps	400 ps	350 ps	500 ps	100 ps
b.	200 ps	150 ps	120 ps	190 ps	140 ps

- 4.12.1[5] < 4.5 > 流水线处理器与非流水线处理器的时钟周期分别是多少?
- 4.12.2[10] < 4.5 > lw 指令在流水线处理器和非流水线处理器中的总延迟分别是多少?。
- 4.12.3[10] < 4.5 > 如果可以将原流水线数据通路的一级划分为两级,每级的延迟是原级的一半,那么你会选择哪一级进行划分?划分后处理器的时钟周期为多少?

假设处理器执行的指令比例如下表两种情况所示,试根据每种情况分别回答下列问题。

	ALU	beq	lw	sw
a.	50%	25%	15%	10%
<i>b</i> .	30%	25%	30%	15%

- 4.12.4[10]<4.5> 假设没有阻塞和冒险,数据存储器的利用率是多少(占总周期数的百分比)?
- 4.12.5[10]<4.5> 假设没有阻塞和冒险,寄存器堆的写寄存器端口的利用率是多少?
- 4.12.6[30]<4.5> 假设一种多周期的处理器设计,其中每条指令需要多个时钟周期完成,但上一条指令完成前不取下一条指令。在这种设计中,指令仅经过其所需的阶段(例如,存储指令仅需4个时钟周期,因为其不需要WB阶段)。比较单周期设计、多周期设计和流水线设计三者的时钟周期和总执行时间。

解: (1) 流水线处理器的时钟周期取决于最长流水级的耗时, 而非流水线处理器的时钟周期和总时长一致。

- ① 对于a.情况:流水线处理器周期 500 ps, 非流水线处理器时钟周期 1650 ps
- ② 对于b.情况: 流水线处理器周期 200 ps, 非流水线处理器时钟周期 800 ps
- (2) 一条 lw 指令在流水线处理器内经历五个周期完成,而非流水线处理器内需要一个周期完成:
 - ① 对于a.情况: 流水线处理器耗时 2500 ps, 非流水线处理器时钟周期 1650 ps
 - ② 对于b.情况: 流水线处理器周期 1000 ps, 非流水线处理器时钟周期 800 ps
- (3) 对流水线细分流水级,显然分当前耗时最长的流水级,周期就一定可以缩短。
 - ① 对于a.情况: 划分 MEM 段, 划分后流水线处理器周期 400 ps, 划分后取决于ID段耗时。
 - ② 对于b.情况:划分 IF 段,划分后流水线处理器周期 190 ps,划分后取决于MEM段耗时。
- (4) 上述指令只有lw和sw两种指令需要用到数据存储器。因此:
 - ① 对于a.情况:数据存储器利用率= 15% + 10% = 25%
 - ② 对于b.情况: 数据存储器利用率= 30% + 15% = 45%
- (5) 上述指令只有ALU和lw两种指令将要写寄存器组。因此:
 - ① 对于a.情况:寄存器写端口利用率=50%+15%=65%
 - ② 对于b.情况: 寄存器写端口利用率= 30% + 30% = 60%
- (6) 单周期和流水线设计的 CPU 的时钟周期和任一条指令总执行时间已在前两问给出;

以下讨论题中描述的改版多周期设计处理器:

题中所给的四种指令中,仅lw需要完整的五个周期,ALU不需要MEM段,sw,beq不需要WB段:计算执行指令的平均需要周期数:再根据指令需要的阶段计算平均执行时间。

① 对于a.情况: $\bar{n}_a = 15\% * 5 + 85\% * 4 = 4.15$

 $\bar{t}_a = 15\% * 1650 + 50\% * (1650 - 500) + (25\% + 10\%) * (1650 - 100) = 1365 \text{ ps}$

② 对于b.情况: $\bar{n}_b = 30\% * 5 + 70\% * 4 = 4.30$

 $\bar{t}_b = 30\% * 800 + 30\% * (800 - 190) + (25\% + 15\%) * (800 - 140) = 687 \text{ ps}$

本习题讨论数据相关如何影响 4.5 节中基本五级流水线的运行。试根据下表的两种指令序列情况分别回答下列问题。

	指令系列		指令系列
a.	lw \$1,40(\$6) add \$6, \$2, \$2 sw \$6, 50(\$1)	b.	lw \$5, –16(\$5) sw \$5, –16(\$5) add \$5, \$5, \$5

- 4.13.1[10] < 4.5> 指出指令序列中存在的相关及其类型。
- 4.13.2[10] < 4.5 > 假设该流水线处理器没有转发,

指出指令序列中存在的冒险并加入nop指令以消除冒险。

4.13.3 [10] < 4.5 > 假设该流水线处理器中有充分的转发。

指出指令序列中存在的冒险并加入nop指令以消除冒险。

根据下表的两种时钟周期情况、分别回答下列问题。

	无转发	充分的转发	仅 ALU 至 ALU 的转发
a.	300 ps	400 ps	360 ps
<i>b</i> .	200 ps	250 ps	220 ps

- 4.13.4[10] < 4.5 > 该指令序列在无转发和有充分的转发时总执行时间分别是多少? 后者相对于前者的加速比是多少?
- 4.13.5[10] < 4.5 > 如果仅有 ALU 至 ALU 的转发 (没有从 MEM 到 EX 的转发), 如何加入nop指令以消除可能的冒险?
- 4.13.6[10] < 4.5 > 该指令序列在仅有 ALU 至 ALU 的转发时总执行时间分别是多少? 与无转发的情况相比,加速比是多少?

解: (1) 记从上至下三条指令分别为 I₁,I₂,I₃:

① 对于a.情况:在多条指令中同时出现的寄存器有\$1,\$6,考虑他们之间的相关:

对于寄存器\$1, I_1 , I_3 之间存在RAW相关;

对于寄存器\$6、I₁,I₂之间存在WAR相关; I₁,I₃之间存在WAR相关; I₂,I₃之间存在RAW相关;

② 对于b.情况: 在多条指令中同时出现的寄存器有\$5, 考虑他们之间的相关

对于寄存器\$5, I_1 , I_2 之间存在RAW相关; I_1 , I_3 之间存在RAW,WAR,WAW相关; I_2 , I_3 之间存在WAR相关

(2) MIPS 五级流水线中, WAR和WAW不会产生冒险; RAW是真相关, 产生冒险且无法通过重命名避免。 插入空指令后, 新的指令系列如下所示:

	指令系列		指令系列
a.	lw \$1,40(\$6) add \$6, \$2, \$2 nop sw \$6, 50(\$1)	b.	lw \$5, -16(\$5) nop nop sw \$5, -16(\$5) add \$5, \$5, \$5

(3) 当存在旁路时,a.中的冒险可以通过MEM – EX旁路来解决,而b.中的一个RAW仍无法解决可以加一个nop等待一个周期。更改后指令系列如下:

	lw \$5, -16(\$5)
b.	nop sw \$5, -16(\$5)
	add \$5, \$5, \$5

- (4) 两种情况分别列出:
 - ① 对于a.情况: 无旁路时总执行时间= 8 * 300 = 2400 ps

有旁路时总执行时间= 7 * 400 = 2800 ps

加速比= $\frac{2400}{2800}$ = 0.86

② 对于b.情况: 无旁路时总执行时间= 9 * 200 = 1800 ps

有旁路时总执行时间=8*250 = 2000 ps

加速比= $\frac{1800}{2000}$ = 0.9

事实上都变得更慢了。

(5) 上面也已经讨论过,此时两种情况的冒险都无法消除。因此插入nop,答案与第二问一样。

27,70~2,	2043 3 1 1 1 2 3 1 1 2 1 2 3 3 3 3 3 3 3 3 3		H201H7 (F) H 7/ 5/1/
	指令系列		指令系列
a.	lw \$1,40(\$6) add \$6, \$2, \$2 nop sw \$6, 50(\$1)	b.	lw \$5, -16(\$5) nop nop sw \$5, -16(\$5) add \$5, \$5, \$5

- (6) 仅有 ALU 至 ALU 的转发时:
 - ① 对于a.情况: 总执行时间= 8 * 360 = 2880 ps, 加速比= $\frac{2400}{2880} = 0.83$
 - ② 对于b.情况: 无旁路时总执行时间= 9*220 = 1980 ps,加速比= $\frac{1800}{1980} = 0.91$ 事实上都变得更慢了。

试根据表中的两条 MIPS 指令分别回答下列问题。

	指令
a.	lw \$1,40(\$6)
b.	add \$5,\$5,\$5

- 4.16.1[5] < 4.6> 指令执行时,两级流水线之间的寄存器中的内容是什么?
- 4.16.2[5] < 4.6 > 哪些寄存器是需要读的? 实际上读了哪些寄存器?
- 4.16.3[5] < 4.6 > 这条指令在 EX 级和 MEM 级分别做了什么?

根据下表的两个循环分别回答下列问题。假设分支被完美地预测(没有因控制冒险导致的阻塞),没有延迟时间槽,而且流水线有完全的转发支持,并且循环在退出前运行了很多次。

	循环		循环
a.	loop: lw \$1,40(\$6) add \$5,\$5,\$8 add \$6,\$6,\$8 sw \$1,20(\$5) beg \$1,\$0,loop	b.	loop: add \$1,\$2,\$3 sw \$0,0(\$1) sw \$0,4(\$1) add \$2,\$2,\$4 beg \$2,\$0,loop

- 4.16.4[10] < 4.6 > 画出循环第三次执行的流水线图,从取出循环的首条指令开始至取出下次循环的首条指令结束。给出这段时间内流水线中的所有指令。
- 4.16.5[10] < 4.6 > 在这段时间内有百分之多少五级流水线都在做有用的工作?
- 4.16.6[10] < 4.6 > 在第三次循环的首条指令被取指时, IF/ID寄存器中的内容是什么?

解: (1) 对于两种情况,分别列出段间寄存器的内容:

① 对于a.情况: lw \$1,40(\$6)

IF/ID: 存放PC + 4与指令字本身

ID/EX: 存放PC + 4、16 位立即数40₍₁₀₎、两个寄存器号\$1,\$6、控制信号WB,M,EX

EX/MEM: 存放目标寄存器\$1、最终要寻址的地址(\$6 + 40)、控制信号WB, M MEM/WB: 存放目标寄存器\$1、从上述地址中读取到的内容、控制信号WB

② 对于b.情况: add \$5,\$5,\$5

IF/ID: 存放PC + 4与指令字本身

ID/EX: 存放PC+4、寄存器号\$5、控制信号WB,M,EX

EX/MEM:存放目标寄存器\$5、ALU的相加结果、控制信号WB,M MEM/WB:存放目标寄存器\$5、ALU的相加结果、控制信号WB

(2) 对于两种情况,分别列出需要读和实际读取的寄存器:

① 对于a.情况: \$6寄存器需要读取, 实际上读取了\$6和\$1

② 对于b.情况: \$5寄存器需要读取, 实际上读取了\$5和\$5 (两次读取)

(3) 对于两种情况,分别列出指令在 EX 级和 MEM 级的操作:

① 对于a.情况: EX: ALU 计算\$6 + 40 MEM: 按算得的地址从数据存储器内取值

② 对于b.情况: EX: ALU 计算\$5 + \$5 MEM: 无操作

(4) 流水线中的情况如下表: 蓝色字体为不执行阶段

① 对于a.情况:

		ı	ı	1	1	!
循环次数与指令	1	2	3	4	5	6
2: add \$5,\$5,\$8	WB					
2: add \$6,\$6,\$8	MEM	WB				
2: sw \$1,20(\$5)	EX	MEM	WB			
2: beq \$1,\$0,loop	ID	EX	MEM	WB		
3: lw \$1,40(\$6)	IF	ID	EX	MEM	WB	
3: add \$5,\$5,\$8		IF	ID	EX	MEM	WB
3: add \$6,\$6,\$8			IF	ID	EX	MEM
3: sw \$1,20(\$5)				IF	ID	EX
3: beq \$1,\$0,loop					IF	ID
4: lw \$1,40(\$6)						IF
青况:						

② 对于b.情况

循环次数与指令	1	2	3	4	5	6
2: sw \$0,0(\$1)	WB					
2: sw \$0,4(\$1)	MEM	WB				
2: add \$2,\$2,\$4	EX	MEM	WB			
2: beq \$2,\$0,loop	ID	EX	MEM	WB		
3: add \$1,\$2,\$3	IF	ID	EX	MEM	WB	
3: sw \$0,0(\$1)		IF	ID	EX	MEM	WB
3: sw \$0,4(\$1)			IF	ID	EX	MEM
3: add \$2,\$2,\$4				IF	ID	EX
3: beq \$2,\$0,loop					IF	ID
4: add \$1,\$2,\$3						IF
			1			

(5) 按题目的描述,这一段时间应是完整的一次循环。从上表中可以看出来,一次循环五个流水周期,对于a.情况只有一个周期是五级流水都在工作,而对于b.情况有两个周期是五级流水都在工作:
① 对于a.情况: 20%

② 对于b.情况: 40%

(6) IF/ID寄存器中的内容是第三次循环第一条指令的地址、上一次循环beq指令的指令字

4.18.

下表给出了流水线 (参见图 4-51)中执行的指令、时钟周期、ALU 延迟和 Mux 延迟的两种情况。试根据表中两种情况分别回答下列问题。

	指令	时钟周期	ALU 延迟	多选器延迟
a.	add \$1,\$2,\$3	100 ps	80 ps	10 ps
b.	slt \$2,\$1,\$3	80 ps	50 ps	20 ps

- 4.18.1[5] < 4.6> 每个流水级的控制信号值是多少?
- 4.18.2[5] < 4.6 4.7> 控制单元需要在多长时间内产生控制信号ALUSrc?与单周期实现进行比较。
- 4.18.3[5] 对这条指令而言, PCSrc控制信号的值应是多少?

这个信号在 MEM 级中产生(仅使用了一个与门),为什么不在 EX 级才产生这个信号? 下表给出两个信号的两种情况,试根据每种情况分别回答下列问题。

	信号1	信号2
a.	RegDst	RegWrite
b.	MemRead	RegWrite

- 4.18.4[5] < 4.6 > 这两个控制信号分别是在哪个流水级生成,又在哪个流水级使用的?
- 4.18.5[5] < 4.6 > 对哪些 MIPS 指令, 这两个信号都设置为 !?
- 4.18.6[10] < 4.6 > 这两个信号中哪一个沿流水线反向传输? 这是一个时间旅行悖论吗? 为什么?

解: (1) 各控制信号的值列成下表: IF, ID段没有控制信号。

	EX	MEM	WB
а.	$\begin{array}{c} ALUSrc = 0 \\ ALUOp = 10 \end{array}$	Branch = 0 $MemRead = 0$	MemtoReg = 1 RegWrite = 1
и.	RegDst = 1	MemWrite = 0	Regwitte = 1
	ALUSrc = 0	Branch = 0	MemtoReg = 1
b.	ALUOp = 10	MemRead = 0	RegWrite = 1
	RegDst = 1	MemWrite = 0	

- (2) ALUSrc仅需一个时钟周期就可以产生。
- (3) 对a.b.两种情况来说,均有PCSrc = 0

这个信号不在EX段就产生是因为需要等待 ALU 的计算结果才可以判断PCSrc的值(ALU 计算其零输出)。如果可以提前判断 Zero 是否有效就可以提前生成控制信号PCSrc

- (4) 分别写出这两个控制信号的生成时间和使用时间:
 - ① 对于a.情况: RegDst产生于ID段,用于EX段; RegWrite产生于ID段,用于WB段
 - (2) 对于b.情况: MemRead产生于ID段,用于MEM段; RegWrite产生于ID段,用于WB段

(5)

- ① 对于a.情况: RegDst = RegWrite = 1, 当指令是R TYPE时都成立
- ② 对于b.情况: MemRead = RegWrite = 1,当指令是lw时成立。
- (6) RegWrite沿流水线反向传播。这不是时间旅行悖论,它只影响这一条指令的执行而对后面的指令没有影响。

4.20.

试根据下表的两个指令序列分别回答下列问题。

	指令系列		指令系列
a.	lw \$1,40(\$2) add \$2,\$3,\$3 add \$1,\$1,\$2 sw \$1,20(\$2)	b.	add \$1,\$2,\$3 sw \$2,0(\$1) lw \$1,4(\$2) add \$2,\$2,\$1

- 4.20.1[5] < 4.7> 找出指令序列中的数据相关。
- 4.20.2 [5] < 4.7> 分别对有转发和无转发的五级流水线找出指令序列中的冒险。

解: (1) 记从上至下四条指令分别为 I1, I2, I3, I4:

① 对于a.情况:在多条指令中同时出现的寄存器有\$1,\$2.考虑他们之间的相关:

对于寄存器\$1、I₁,I₃之间存在RAW, WAW相关; I₁,I₃之间存在RAW, WAW相关;

对于寄存器\$2, I_1 , I_2 之间存在WAR相关; I_2 , I_3 , I_4 之间存在RAW相关

② 对于b.情况: 在多条指令中同时出现的寄存器有\$1,\$2. 考虑他们之间的相关:

对于寄存器\$1. I_1, I_2 之间存在RAW相关; I_4, I_3 之间存在WAW相关; I_4, I_4 之间存在RAW相关;

I₂, I₃之间存在WAW相关; I₃, I₄之间存在RAW相关;

对于寄存器\$2、 I_1,I_2 之间存在WAR相关; I_1,I_4 之间存在WAR相关; I_1,I_3 之间存在WAR相关;

I₂, I₄之间存在WAR相关; I₃, I₄之间存在WAR相关;

(2) 当存在旁路时,a·情况无冒险,b·情况在 I_4 读取\$1时存在冒险。 当不存在旁路时,a·情况在 I_3 读取\$1,\$2时 和 I_4 读取\$1时 和 I_3 , I_4 读取\$2时存在冒险; b·情况在 I_1 , I_2 同时写\$1时与 I_3 , I_4 读取\$1时存在冒险

4.21.

本习题讨论转发、冒险检测和指令集设计之间的关系。分别根据下表的两个指令序列回答下列问题。假设其在一个五级流水线上执行。

	指令系列		指令系列
a.	lw \$1,40(\$6) add \$2,\$3,\$1 add \$1,\$6,\$4 sw \$2,20(\$4) add \$1,\$1,\$4	b.	add \$1,\$5,\$3 sw \$1,0(\$2) lw \$1,4(\$2) add \$5,\$5,\$1 sw \$1,0(\$2)

4.21.1[5] < 4.7> 如果没有转发或冒险检测电路,请插人nop指令以保证正确执行。

解:插入后指令系列如下:

	指令系列		指令系列
a.	lw \$1,40(\$6) nop nop add \$2,\$3,\$1 add \$1,\$6,\$4 nop sw \$2,20(\$4) add \$1,\$1,\$4	b.	add \$1,\$5,\$3 nop nop sw \$1,0(\$2) nop lw \$1,4(\$2) nop nop add \$5,\$5,\$1 sw \$1,0(\$2)