- **1.** A **probability space** is a measurable space (S, \mathcal{M}, μ) with $\mathcal{M} \subseteq \mathcal{P}(S)$ and $\mu : \mathcal{M} \to [0, 1]$ with $\mu(S = 1)$. In particular, we will write $\mathcal{M} = \mathcal{F}$, $\Omega = S$ and $\mu = \mathbb{P}$. The sets $E \in \mathcal{M}$ are called **events**. The σ -algebra \mathcal{F} must satisfy the following axioms:
 - (a) $\emptyset \in \mathcal{F}$
 - (b) If $A \in \mathcal{F}$, then $A^c \in \mathcal{F}$
 - (c) If $A_1, A_2, \ldots \in \mathcal{F}$, then $\bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$.

As well, IP must satisfy

- (a) $\mathbb{P}(A) \geq 0$ for all $A \in \mathcal{F}$.
- (b) $\mathbb{P}(\Omega) = 1$.
- (c) Let $A_1, A_2,...$ be disjoint. Then $\mathbb{P}\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} \mathbb{P}(A_i)$.

As a result, we collect some general properties here:

(a) $\mathbb{P}(A^c) + \mathbb{P}(A) = 1$

(b)
$$\mathbb{P}\left(\bigcup_{i=1}^{n} A_i\right) = \sum_{r=1}^{n} (-1)^{r+1} \sum_{1 \le i_1 < \dots < i_r \le n} \mathbb{P}(A_{i_1} \cap \dots \cap A_{i_r})$$

- (c) We say $D_1, D_2, ...$ is a **decreasing** (resp. **increasing**) sequence of events if $D_1 \supset D_2 \cdots$ (resp. $D_1 \subset D_2 \cdots$) and define $\lim_{n \to \infty} D_n = \bigcap_{i=1}^{\infty} D_i$ (resp. $\lim_{n \to \infty} D_n = \bigcup_{i=1}^{\infty} D_i$). Then $\mathbb{P}(\lim_{n \to \infty} D_n) = \lim_{n \to \infty} \mathbb{P}(D_n)$.
- **2.** Let $E, F \in \mathcal{F}$. Fix E with $\mathbb{P}(E) > 0$. Then define $\mathbb{P}(F|E) = \frac{\mathbb{P}(F \cap E)}{\mathbb{P}(E)}$, the **conditional probability** of F given E. In fact, the map $\mathbb{P}(\cdot|E) : \mathcal{F} \to \mathbb{R}$ is a probability measure in its own right. Conditional probability has some nice properties:
 - (a) $\mathbb{P}(A_1 \cap A_2 \cap \cdots \cap A_n) = \mathbb{P}(A_1 | A_2 \cap \cdots \cap A_n) \cdots \mathbb{P}(A_3 | A_2 \cap A_1) \mathbb{P}(A_2 | A_1) \mathbb{P}(A_1).$
 - (b) Let $A_1, A_2, ..., A_n \in \mathcal{F}$ be a partition of Ω . Then for any $B \in \mathcal{F}$,

$$\mathbb{P}(B) = \sum_{i=1}^{n} \mathbb{P}(B|A_i)\mathbb{P}(A_i)$$

and

$$\mathbb{P}(A_k|B) = \frac{\mathbb{P}(B|A_k)\mathbb{P}(A_k)}{\sum_{i=1}^{n} \mathbb{P}(B|A_i)\mathbb{P}(A_i)}$$

3. Let $A_1, A_2, ..., A_n \in \mathcal{F}$. We say the events are **independent (as a collection)** if

$$\mathbb{P}(A_{i_1}\cap\cdots\cap A_{i_k})=\mathbb{P}(A_{i_1})\cdots\mathbb{P}(A_{i_k})$$

We say the evens are **conditionally independent** with respect to *B* if they are independent with respect to the conditional probability measure:

$$\mathbb{P}(A_{i_1} \cap \cdots \cap A_{i_k}|B) = \mathbb{P}(A_{i_1}|B) \cdots \mathbb{P}(A_{i_k}|B)$$

4. A **random variable** is a measurable function $f: S \to \mathbb{R}$. We usually write random variables with capital letters, like X. We say X is **discrete** if its range is countable.

Let \mathcal{B} denote the Borel measurable subset of \mathbb{R} . The **distribution** of a measurable function is a measure $\rho : \mathcal{B} \to \mathbb{R}$ given by $\rho(S) = \mathbb{P}(f^{-1}(S))$. This is indeed measurable: by definition, X is measurable if it pulls open sets in \mathbb{R} to elements of \mathcal{F} .

For some reason, probabilists dislike writing sets down properly. We say $\mathbb{P}(X = i) = \mathbb{P}(X^{-1}(i))$, $\mathbb{P}(X \le i) = \mathbb{P}(X^{-1}(-\infty, i])$, and other similar notations.

The **expected value** of a random variable X is given by $\mathbb{E}(X) = \int_{\Omega} X \, d\mathbb{P}$. When X is discrete and $X(\Omega) = \{x_1, x_2, \ldots\}$, this becomes $\mathbb{E}(X) = \sum_{k=1}^{\infty} x_k \mathbb{P}(X = x_k)$. Note that the sum need not necessarily exist.

- (a) If X is discrete and $g: \mathbb{R} \to \mathbb{R}$, then $\mathbb{E}(g(X)) = \sum_{k=1}^{\infty} g(x_k) \mathbb{P}(X = x_k)$.
- (b) $\mathbb{E}(aX + Y) = a\mathbb{E}(X) + \mathbb{E}(Y)$.

We define the **variance** $\operatorname{Var}(X) = \inf_{a \in \Omega} \mathbb{E}[(X - a)^2]$. If $X \in L^2$, then this value is minimized for $a = \mathbb{E}(X)$ and $\operatorname{Var}(X) = \mathbb{E}[(X - \mathbb{E}(X))^2]$.

- (a) $Var(X) = \mathbb{E}(X^2) \mathbb{E}(X)^2$
- (b) $Var(aX + b) = a^2 Var(X)$
- 5. Let $(\Omega, \mathcal{M}, \mathbb{P})$ be a measure space, and let $X : \Omega \to \mathbb{R}$ be a random variable. Then define P_X on \mathbb{R} by $P_X(E) = \mathbb{P}(X^{-1}(E))$, which is a Borel measure on \mathbb{R} called the **distribution** of X. Then the function

$$F(t) = P_X((-\infty, t])$$

is called the (cumulative) distribution function of X. A family of functions $\{X_{\alpha}\}_{\alpha \in A}$ is **identically distributed** if $P_{X_{\alpha}} = P_{X_{\beta}}$ for any $\alpha, \beta \in A$. In the special case $\Omega = \mathbb{R}$ and \mathbb{P} is the standard Lebesgue measure on \mathbb{R} , $X : \mathbb{R} \to \mathbb{R}$ is a Lebesgue measureable function. There is a particularly nice class of random variables called **absolutely continuous** random variables, in which the measure P_X has a nice form. We say X is absolutely continuous if there exists some $f_X : \mathbb{R} \to \mathbb{R}$ so that for any $E \in \mathcal{B}$,

$$P_X(E) = \int_E f_X(x) \, \mathrm{d}x$$

If we have a collection of random variables $(X_1,...,X_n)$ then we can consider them as a map $(X_1,...,X_n): \Omega \to \mathbb{R}^n$, and the corresponding measure is called the **joint distribution** of $X_1,...,X_n$. Often, we take $\Omega = \mathbb{R}^n$ and \mathbb{P} to be the standard Lebesgue measure on \mathbb{R}^n .