

Submitted By:

Ajay Singh (240840130002)

Astitva Srivastava (240840130006)

Hansraj Sahani (240840130009)

Rohan Jagtap (240840130011)

Nivya Ashokkumar (240840130023)

Content Outline

Introduction

System Architecture

Hardware Components

Software Implementation

System Workflow & Data Processing

Conclusion & Future Scope

Introduction () /1\ () () 7.3 km. DRIVE MODE > SPORT 12413.2 km. TRACTION CONTROL : READY **△** 213.5 DRIVE ASSISTANT : READY **1412.2** Remain: 685.7 km. 31.1km 90 11.6 km. Introduction to CANDrive Smart Dashboard 100 Project objectives **Battery Efficient** 21/09/2024 2:26 PM

Introduction to CANDrive Smart Dashboard

- Modern vehicles require real-time monitoring for performance optimization, predictive maintenance, and safety enhancements.
- Traditional systems rely on **manual diagnostics** or **basic onboard diagnostics (OBD)**, which may lack real-time insights.
- The CANDrive Smart Dashboard is an IoT-based vehicle monitoring system that provides real-time
 data acquisition, processing, and cloud visualization.
- The system integrates:
 - FreeRTOS Ensures efficient multitasking for sensor data processing.
 - CAN Bus Communication Facilitates high-speed data transfer between STM32 microcontrollers.
 - o MQTT & Thingsboard Enables cloud-based remote monitoring and analytics.
- By leveraging IoT and embedded systems, the project aims to enhance predictive maintenance, operational efficiency, and vehicle safety.

Project Objectives

- Develop a real-time vehicle monitoring system with efficient data acquisition and cloud-based visualization.
- Utilize FreeRTOS to manage multiple concurrent tasks efficiently.
- Implement CAN communication for seamless data transfer between microcontrollers.
- Integrate ESP32 with MQTT for cloud connectivity and dashboard visualization via Thingsboard.
- Improve predictive maintenance by monitoring key vehicle parameters such as motor temperature, speed, distance, and door status.

Overview of System Architecture

- The CANDrive Smart Dashboard consists of three main processing units:
 - STM32 Discovery Board 1 Collects sensor data.
 - STM32 Discovery Board 2 Processes and relays data.
 - ESP32 Transmits data to the cloud.

Sensors Used:

- TMP103 Monitors motor temperature.
- IR Sensor Tracks wheel revolutions for speed and distance calculation.
- Reed Switch Detects door status.

Communication Protocols:

- CAN Bus Facilitates fast and reliable communication between STM32 boards.
- UART Enables data exchange between STM32 and ESP32.
- MQTT Transfers sensor data to the cloud for visualization.

System Block Diagram

3. Cloud: Remote Storage to data Store data and that data

will be represented on the dashboard

Key Hardware Components

 The CANDrive Smart Dashboard consists of multiple hardware components working together for real-time data acquisition and communication.

Core Processing Units:

- STM32 Discovery Board 2 Collects sensor data and transmits it over CAN Bus.
- STM32 Discovery Board 1 Processes and relays data to ESP32 via UART.
- ESP32 Formats data and sends it to the cloud using MQTT.

Sensors Used:

TMP102 (Temperature Sensor):

Measures motor temperature for **overheating prevention**.

IR Sensor (Speed & Distance Calculation):

Tracks wheel revolutions to determine **vehicle speed and distance traveled**.

Reed Switch (Door Status Monitoring):

Detects whether the vehicle door is **open or closed**.

Hardware Integration

System Software Overview

- The CANDrive Smart Dashboard software is built on FreeRTOS, facilitating multitasking and real-time data processing.
- Major components include:
 - FreeRTOS Task Management Schedules tasks efficiently for sensor data processing and transmission.
 - Communication Protocols CAN Bus (STM32 ↔ STM32), UART (STM32 ↔ ESP32), and MQTT (ESP32 ↔ Cloud) for seamless data flow.
 - Cloud Integration ESP32 transmits data to Thingsboard via MQTT for real-time visualization.
- Task Execution in FreeRTOS:
 - Sensor Task Reads values from TMP102, IR sensor, and Reed switch.
 - CAN Communication Task Transfers data between STM32 boards.
 - UART Processing Task Formats and transmits data from STM32 to ESP32.
 - MQTT Publishing Task Sends JSON-formatted data to Thingsboard
 Cloud.

CAN Node 1 (Software Architecture)

Application Layer

- Task 1 Processing speed knob
- Task 2 Speed & distance measurement
- Task 3 CAN packet reception & processing
- Task 4 Transmitting vehicle parameter packet to ESP via UART

System service calls

- · GPIO (IR sensor, Motor driver control)
- UART (STM-ESP32 communication)
- CAN (STM node 1 STM node 2 communication)
- Timers (PWM, periodic)

Embedded OS (FreeRTOS)

Hardware Abstraction Layer (HAL)

CAN Node 2 (Software Architecture)

Application Layer

- Task 1 Read temperature
- · Task 2 CAN packet transmission to Node 1

System service calls

- GPIO (Reed switch)
- I2C (TMP102)
- CAN (STM node 1 STM node 2 communication)

Embedded OS (FreeRTOS)

Hardware Abstraction Layer (HAL)

Vehicle Paramater Payload

l		MSB
Byte 3-4	Byte 1-2	Byte 0
temperature+Door	distance travelled	speed
(data from CAN node 2)	m CAN node 1)	(data from
last bit of byte 4 is door status		
byte3 and most significant 4 bits of byte 4 is		

End-to-End System Workflow

- The system follows a structured data flow from sensors to cloud visualization:
- Sensor Data Acquisition:
 - TMP102 (Temperature), IR Sensor (Speed & Distance), Reed Switch (Door Status).
- STM32 Board 2:
 - Reads sensor values and transmits data via CAN Bus.
- STM32 Board 1:
 - Processes received data and relays it to ESP32 via UART.
- ESP32 (Wi-Fi Enabled IoT Node):
 - Formats data into JSON and sends it via MQTT to Thingsboard Cloud.
- Real-Time Dashboard:
 - Data is visualized in a graphical interface for monitoring and analysis.
- System Reliability:
 - Uses FreeRTOS for efficient task scheduling, ensuring smooth realtime operation.
 - CAN Bus and UART ensure secure and low-latency data transfer.

Conclusion

- •CANDrive Smart Dashboard provides a robust and realtime vehicle monitoring solution.
- •The system **enhances predictive maintenance** by **detecting anomalies** early.

Key Achievements:

- Accurate sensor data acquisition and seamless cloud integration.
- Multi-protocol communication (CAN, UART, MQTT) ensuring efficient data flow.
- Remote vehicle monitoring with Thingsboard-based IoT visualization.

Future Scope & Enhancements

Advanced Al Analytics:

 Implement ML models to analyze sensor trends for predictive failure detection.

GPS Integration:

 Add real-time vehicle tracking for fleet management applications.

Mobile App Development:

 Create a user-friendly smartphone dashboard for remote access to vehicle status.

Edge Computing Capabilities:

 Implement on-device processing in ESP32 to reduce cloud dependency.