

NOSITEL
VYZNAMENÁNÍ
ZA BRANNOU
VÝCHOVU
I. A II. STUPNĚ

ŘADA B PRO KONSTRUKTÉRY

ČASOPIS PRO ELEKTRONIKU
A AMATÉRSKÉ VYSÍLÁNÍ
ROČNIK XXXI/1982 ● ● ČÍSLO 6

V TOMTO SEŠITĚ

Kvalita a efektivnost	201
INTEGROVANÉ OBVODY ZEMÍ	
RVHP III	
Integrované obvody pro modulátory a demodulátory	202
Čtvrtice tranzistorů pro kruhový modulátor, IL1000L, ULA1000L	202
Univerzální integrované obvody	203
Dvojice rozdílových zesilovačů UL1101N	203
UL1102N, ULA5102N	205
Rozdílový zesilovač UL1111N, ULA6111N	205
Rídící obvod pro displeje, UL1121N	208
Přerušovače řady K101	208
Zesilovače napětí řady K118, K122	208
Integrované mf zesilovače	209
Mf zesilovač UL1200N	209
Sirokopásmový zesilovač UL1201N	210
Mf zesilovač UL1202L	212
Mf zesilovač AM, FM, UL1211	212
Mf zesilovač AM, FM, UL1212N, UL1213N	214
Mf zesilovač obrazového signálu, UL1221N, UL1231N	214
Mf zesilovač, nf předzesilovač UL1241N	218
Mf zesilovač FM, UL1242N	219
Mf zesilovač FM, UL1244N	221
Řízený generátor pro rádkový rozklad, UL1261N, UL1262N, TBA940, TBA950	223
IO pro snímkové vychylování, UL1265N	225
Mf zesilovač FM, TBA120S, TBA120AS	227
Nfzesilovače:	228

AMATÉRSKÉ RÁDIO ŘADA B

Vydává ÚV Svatazarmu ve vydavatelství NAŠE VOJSKO, Vladislávova 26, 133 66 Praha 1, tel. 26 06 51-7. Šéfredaktor ing. Jan Klaba, redaktor Luboš Kajousek, OKIFAC. Redakční rada: K. Bartoš, RNDr. V. Brunhofer, V. Brzák, K. Donáth, V. Gazda, A. Glanc, I. Harminc, M. Háša, Z. Hradík, P. Horák, J. Hudec, ing. J. T. Hyen, ing. J. Jaroš, doc. ing. M. Joachim, ing. F. Králik, RNDr. L. Kryšák, J. Kroupa, ing. E. Móćik, V. Němeček, K. Novák, RNDr. L. Ondříš, CSc., ing. F. Smolík, ing. E. Smutný, ing. V. Teska, doc. ing. J. Vackář, laureát st. ceny KG, J. Vorlický, ing. J. Zima.

Redakce Jungmannova 24, 113 66 Praha 1, tel. 26 06 51-7, Šéfredaktor linka 354, redaktor linka 353, sekretářka linka 355. Ročně vydeje 6 čísel. Cena výtisku 5 Kčs, pololetní předplatné 15 Kčs. Rozšířuje PNS, v jednotkách čzbrojených sil vydavatelství NAŠE VOJSKO, administrace Vladislávova 26, Praha 1. Objednávky do zahraničí využívají PNS, ústřední expedice a dovoz tisku, závod 01, Kaťkova 9, 160 00 Praha 6. Tiskne NAŠE VOJSKO, n. p., závod 08, 162 00 Praha 6 Vlastina 710.

Za původnost a správnost příspěvku odpovídá autor. Návštěvy v redakci a telefonické dotazy pouze po 14. hodině. Číslo indexu 46 044.

Toto číslo má výtisk podle plánu 24. 11. 1982.

© Vydavatelství NAŠE VOJSKO

Kvalita a efektivnost

Potřeba ekonomické propagandy a agitace, jako součásti ideologické práce strany, v současné době stále více vystupuje do popředí. Je to logický důsledek složitých a náročných vnitřních a vnějších vztahů našeho národního hospodářství.

Hlavním úkolem ekonomické propagandy a agitace je nepetrizitý úsilí o zvýšení efektivnosti a kvality veškeré práce o neustálé zlepšování technickoekonomických parametrů výrobků, o dodržování přísného režimu hospodářnosti, respektování ekonomických požadavků výroby.

Jedním z významných předpokladů uplatnění výrobků na trhu je jejich kvalita. Je třeba ji chápát jako souhrn řady činitelů – kvality materiálu, práce vložené do výrobku, délky doby života, spolehlivosti v používání a mnoha dalších. V nabídce na zahraničním trhu předpokládána kvalita soupeří s kvalitativní úrovňou konkurenčního zboží též cenové kategorie. Je pochopitelné, že za tutéž cenu si odběratel vybírá vždy to nejlepší. V mnoha případech ve své volbě postupuje na základě přesně zjištěných skutečností. I když kvalita v uvedeném pojetí představuje souhrn subjektivních vlastností, mnohá z nich lze ověřit zcela konkrétně známými metodami.

Je jasné, že i výrobce musí postupovat timěř způsobem, velmi přesně a podrobne si ověřovat kvalitativní znaky svého výrobku, a to ještě před tím, než jej zařadí do nabídky pro zahraniční odběratele. Nabízet neověřený výrobek je nefektivní, předem prohranou záležitostí. Pro kvalitu existují předem stanovené normy. Týkají se nejen celých výrobků či dokonce kompletů zařízení, ale též jejich jednotlivých součástí, komponentů, usl. Vzhledem k rychlému postupu vědeckotechnického rozvoje nemůže být normativní základna konzervativní, normotvorná činnost je proto stále živá – nebo by měla být – a zahrnuje stále nové požadavky. V mnoha druzích výrobků musí normativní základna být v souladu s mezinárodními nároky a požadavky.

Dnešní častá argumentace odvolávající se na objektivní těžkost při řešení problémů, ať už se jedná o momentální hospodářskou situaci na závodech, nebo v celé společnosti, pramení nejednou z určitého oportunitismu, z nedostatku odvahy podívat se pravdě do očí a řešit problémy dřív než se nahromadí, bez ohledu na jakékoli osobní či skupinové zájmy.

Hlavní směry státního plánu technického rozvoje ukládají koncentrovat síly a prostředky na řešení vybraných úkolů a dosáhnout zkrácení procesu řešení nové techniky a technologií až po zavádění výsledků výzkumu a vývoje do praxe. Stanoví se zvýšit kvalitu řešení a dosáhnout, aby technickoekonomické parametry výrobků a technologií postupně dosahovaly tempa světového vývoje. Za nezbytné se pokládá zvýšit rozsah realizace výsledků výzkumných a vývojových úkolů ukončených v šesté a sedmé pětiletce a tím i přínosů k řešení rozhodujících problémů ekonomického rozvoje ČSSR v letech 1981–1985.

Pro období sedmé pětiletky byly v tomto směru přijaty velmi náročné úkoly, a to zvláště v produkci určené na vývoz. Ačkoliv naše podniky měly prakticky celou šestou pětiletku na zvýšení své exportní schopnosti (tj. na přípravu k úspěšnějšímu soupeření s konkurencí na světovém trhu), ne všechny zmíněný čas účelně a úspěšně využily. Některé podniky setr-

valy v optimistickém hodnocení úrovně své produkce, vycházející z méně náročných požadavků vnitřního trhu, aniž by si uvědomily, že na světovém trhu platí jiná, podstatně přísnější měřítko. Jiné podniky, které měly ve svém výrobním programu novinky, úspěšně uplatňované na zahraničním trhu, přecenily možnosti jejich odbytu. Takové podniky se nyní dostaly do problémů, které ukazují, že žádný oboř, ani je-li považován za rozvojový, není z hlediska přílivu inovací na světovém trhu „pod penzí“.

Je ovšem příznačné, že se obvykle v adresních případech, kdy jsou kritická slova do značné míry opodstatněná, ozve výrobce (případně jeho vlivný ochránce), co si to dokovuje kritizovat výrobek socialistického podniku. Někdy to dokonce vyznívá tak, jako by tito pracovníci vůbec nic nevěděli o závěrech XVI. sjezdu KSC a o Souboru opatření, jako by ani neslyšeli projevy význačných stranických a vládních funkcionářů a nečetli úvodníky ústředních listů o naléhavé potřebě soustavného zvyšování kvality našich výrobků. Je třeba, aby si výrobci již konečně uvědomili to, že i když u nás není výrazný konkurenční boj, a že příslušný podnik je víceméně monopolním výrobcem daného výrobku, ještě neznamená, že může beze studu dát spotřebiteli nekvalitní výrobek. Právě zde, má-li socialistický podnik vyrábět kvalitní výrobky, musí nastoupit tvrdá a nesmlouvavá kritika. Jaký je například přístup výrobce ke spotřebiteli, když na veřejnou kritiku, že u několika přijímačů stejněho typu nelze plynule zhlásit (skoková změna regulace) prohlásit, že se autor kritické připomínky nechová vlástecky, když veřejně kritizuje vadu na výrobku socialistického podniku. Myslím si, že je nasnadě, kdo se vlastenecky chová a kdo již méně. Je nejvyšší čas skoncovat s oním „falešným kamarádstvím“, které tak často kryje lajdáctví a nechut k vyšší aktivitě i efektivnosti.

V rubrice našeho časopisu řady A „AR seznámuje“ občas uveřejňujeme tzv. „laicky“ test některých výrobků elektrotechnického průmyslu, které se občas na našem trhu objevují. Při testování (testu se zúčastní i pracovníci Kovoslužby) se neprovádí odborné komplexní proměření přístroje, ale pouze se k funkčnímu ověření přistupuje spotřebitelsky, tedy jak bude přístroj plnit požadavky majitele. Z toho pohledu by tedy test přístroje měl vyznít pozitivně. Jak však již měl nás pravidelný čtenář možnost zjistit, není tomu tak vždy.

U některých testů (které vyzná příliš negativně) posíláme výsledek nejprve výrobci. Reakce výrobce je však obvykle taková, že test raději není nakonec zveřejněn. V odpověď je obvykle poukazováno na řadu potíží výrobního charakteru i když mnohdy jde spíše o nedostatky konstrukčního či organizačního charakteru (např. v obvodu řízení je použitý lineární místo logaritmického potenciometru). Jde obvykle o subjektivní činitele, mezi něž patří úzký resortní přístup, podhadlost, malá společenská odpovědnost, nechut k hledání nových cest, ono neblaze proslulé „Však ono to nějak dopadne!“

Mnozí výrobci i přes stálé výzvy ústředních orgánů jak stranických, tak i vládních o nutnosti a potřebě soustavného zvyšo-

vání kvality a efektivnosti výrobků i výroby skrývají i omouvají lajdáctví či malou aktivitu pod rouškou zdůrazňování vysoké pracnosti, konstrukční či materiálové náročnosti atd., a jakoby zapomínali, že se stejnými problémy se potýkají i zahraniční výrobci a chtějí-li se udržet na mezinárodních trzích, musí je operativně řešit.

V oblasti elektroniky je kromě finálních výrobků ještě nutno klást také značný důraz na vysokou kvalitu součástkové základny a na zajištování jejího požadovaného sortimentu. Bez moderních základních prvků nelze totiž elektronické automatizační prostředky řešit na žádoucí technické úrovni. Nositelem pokroku je bezesporu mikroelektronická součástková základna, zejména integrované obvody vysoké stupně integrace. Rozvoj mikroelektroniky rozhodující měrou ovliv-

nuje řešení elektronických prostředků prakticky pro všechny obory aplikace.

Mikroelektronika spolu s miniaturizací přináší pronikavé snížení energetické náročnosti, zvětšení operační rychlosti systémů a umožňuje realizaci úloh dřívějšími prostředky neřešitelných. Rozvoj součástkové základny pro elektronizaci však nejde zužovat jen na problematiku integrovaných obvodů. Své místo si stále zachovává oblast diskrétních polovodičových součástek, jakými jsou tranzistory, tyristory, diody a podobně, stejně významné jsou i pasivní elektronické součástky, konstrukční součástky, čidla fyzikálních stavů a regulační prostředky pro ovládání procesů. Cílem je takový sortiment výrobků, který by řešil problematiku finální elektroniky komplexně. To nepochybň kladě velké nároky na řízení rozvoje, na stanovení správných proporcí

jednotlivých sortimentních skupin a na rozdělení sil a prostředků pro jejich realizaci a zde je také třeba, aby výrobci součástek nezapomínali i na prodej v malém, tj. pro amatéry elektroniky. Obchodní síť je stále velmi chudě zásobena a amatérův - konstruktérův elektronických zařízení a přístrojů trvale chybí řada stavebních prvků nutných ke stavbě náročnějších zařízení. Zde je třeba si uvědomit, že amatéři elektroniky nejsou jen staviteli jednoduchých „radií“, ale že se snaží i o stavbu automatizovaných, řídících i výpočetních systémů a dostatek kvalitních součástek ve značně širokém výběru je také důležitým stimulem podporujícím vznik chuti konstruovat a vyvíjet nová zařízení, tím si zvyšovat svoji kvalifikaci a odtud působit na zlepšování kvality a modernizaci finálních výrobků i v průmyslu.

Jak

INTEGROVANÉ OBVODY ZEMÍ RVHP III.

Vítězslav Stříž

Toto číslo AR řady B navazuje na čísla B6/80 a B2/81, v nichž jste se mohli seznámit s integrovanými obvody, vyráběnými v Německé demokratické republice. Toto číslo je uspořádáno zhruba stejně jako uvedená čísla, u každého typu integrovaného obvodu jsou základní technické údaje, vnitřní zapojení a doporučené zapojení, popř. další aplikační poznámky. U každého typu je též uváděn zahraniční ekvivalent.

Integrované obvody pro modulátory a demodulátory

Čtevítice tranzistorů pro kruhový modulátor UL1000L, ULA1000L

Integrované obvody UL1000L, ULA1000L jsou monolitické čtevítice tranzistorů n-p-n zapojených tak, aby bylo možno obvod používat v modulačních a demodulačních obvodech ve vícenásobné nosné telefonii, příp. v přístrojích pro všeobecné použití. Použité tranzistory se vyznačují nepatrnnými odchylkami elektrických parametrů v provozu. Vnitřní zapojení obvodu je na obr. 1. Pouzdření pouzdro je kovové CE52 (TO-74) s deseti dráty vývody ve skleněné průchodce. Obvody jsou přímými ekvivalenty současného TAB101 výrobce Philips, SFC2001 Thomson-CSF.

Obr. 1. Vnitřní elektrické zapojení UL1000L, ULA1000L

Integrovaný obvod ULA1000L má elektrické a mechanické vlastnosti shodné s obvodem UL1000L; je však určen pro práci v širším rozsahu provozních teplot. Proto je výhodný pro zařízení v průmyslové elektronice.

Doporučené zapojení

Příklad zapojení integrovaného obvodu UL1000L, ULA1000L v kruhovém modulátoru v telefonii nosných proudů je na obr. 2. Moderní technologie výroby monolitických integrovaných obvodů zaru-

Elektrické údaje UL1000L, ULA1000L

Mezní údaje	
Napětí kolektor-báze U_{CB} :	max. 10 V.
Napětí kolektor-substrát U_{CS} :	max. 12 V.
Napětí emitor-báze U_{EB} :	max. 5 V.
Proud kolektoru I_C :	max. 10 mA.
Ztrátový výkon celkový při $\theta_A = 100^\circ\text{C}$, P_{tot} :	max. 100 mW.
Rozsah provozních teplot okolo θ_A :	
UL1000L:	-25 až +100 °C.
ULA1000L:	-40 až +100 °C.
Rozsah skladovacích teplot θ_{stg} :	-40 až +125 °C.

Charakteristické údaje

	Jmen.	Min.-max.
Průzrazené napětí kolektor-báze $U_{(BR)CB0}$ ($I_E = 0$, $I_C = 10 \mu\text{A}$):		≤ 10 V.
Průzrazené napětí kolektor-báze $U_{(BR)CEO}$ ($I_B = 0$, $I_E = 10 \mu\text{A}$):		≤ 9 V.
Průzrazené napětí kolektor-substrát $U_{(BR)CS}$ ($I_B = 0$, $I_E = 0$, $I_S = 10 \mu\text{A}$):		≤ 12 V.
Průzrazené napětí emitor-báze $U_{(BR)EB0}$ ($I_C = 0$, $I_E = 200 \mu\text{A}$):		≤ 5 V.
Klidový proud kolektoru I_{CB} ($I_E = 0$, $U_{CB} = 5 \text{ V}$):	5	≤ 100 nA.
Klidový proud kolektor-substrát /cs ($I_B = 0$, $I_E = 0$, $U_{CS} = 9,5 \text{ V}$):	5	≤ 100 nA.
Klidový proud emitoru I_{EB0} ($I_C = 0$, $U_{EB} = 1 \text{ V}$):	5	≤ 100 nA.
Rozdíl napěti emitor-báze tranzistorů $T_1 - T_2$ ($-I_E = -I_2 = 150 \mu\text{A}$, $U_{CB1} = U_{CB2} = 5 \text{ V}$), $ U_{BE1} - U_{BE2} $:	2	≤ 5 mV.
$T_3 - T_4$ ($-I_E = -I_4 = 150 \mu\text{A}$, $-U_{BE3} - U_{BE4} $): Proudový zesilovací činitel h_{2IE} ($I_C = 150 \mu\text{A}$, $U_{CE} = 5 \text{ V}$):	2	≤ 5 mV.
Rozdíl proudových zesilovacích činitelů $T_1 - T_2$ ($-I_E = -I_2 = 150 \mu\text{A}$, $U_{CB1} = U_{CB2} = 5 \text{ V}$), $ h_{2IB1} - h_{2IB2} $:	75	≥ 20.
$T_3 - T_4$ ($-I_E = -I_4 = 150 \mu\text{A}$, $U_{CB3} = U_{CB4} = 5 \text{ V}$), $ h_{2IB3} - h_{2IB4} $:		0,002 až 0,008;
Šumový činitel F ($U_{CB} = 5 \text{ V}$, $-I_E = 150 \mu\text{A}$, $f = 1 \text{ kHz}$, $R_G = 1 \text{k}\Omega$, $BW = 200 \text{ Hz}$):		0,002 až 0,008.

Obr. 2. Doporučené zapojení UL1000L, ULA1000L v kruhovém modulátoru, používaném v telefonii nosných proudů

čuje velmi malý rozptyl parametrů součástek obvodu – tranzistorů, které mohou navíc zesilovat zpracovávaný signál. Použitý IO má jako kanálový modulátor demodulátor přenosový útlum (poměr výstupního výkonu k výkonu generátoru) 3,5 dB při modulačním kmitočtu 1 kHz, nosném kmitočtu 34 kHz a úrovni signálu -25 dBm. Zbytkový výkon nosné vlny při nosném kmitočtu 34 kHz je průměrně 3 nW.

Použité tranzistory v obvodu jsou n-p-n, mají proudový zesilovací činitel min. 20 při proudu kolektoru 150 μ A. Jejich mezní průchozí kmitočet je typicky 100 MHz, šum každého z tranzistorů je typicky 6 dB. Ve srovnání s dříve používanými kruhovými modulátory složenými ze čtyř diod, které musí být vybírány na stejně elektrické vlastnosti podle speciálních požadavků tak, aby byl obvod co nejsymetrický, jsou modulátory s obvody UL1000L levnější a konstrukčně výhodnější.

Univerzální integrované obvody

Dvojice nezávislých rozdílových zesilovačů UL1101N

Integrovaný obvod UL1101N je monolitická dvojice na sobě nezávislých rozdílových zesilovačů na společné křemíkové podložce. Každý rozdílový zesilovač je složen ze tří tranzistorů n-p-n v zapojení rozdílového zesilovače se společným proudovým zdrojem. Struktura obvodu nemá integrovaný žádné odpory ani předpeřové diody. Všechny tyto součástky musí být připojeny k obvodu zevně, což dovoluje velkou pružnost ve využití IO v širokém kmitočtovém rozsahu. V zesilovacích obvodech s vysokým pracovním kmitočtem lze používat rozdílové zesilovače ve dvou základních zapojeních – se společným emitem a v kaskádném zapojení. Vzhledem ke své univerzálnosti může se obvod používat v různých zapojeních, zvláště pak tam, kde se vyžaduje tepelná kompenzace. Vnitřní elektrické zapojení celého obvodu je na obr. 3. Součástka je v plastickém pouzdře DIL CE-70 s 2x sedmi vývody. Integrovaný obvod UL1101N je přímým elektrickým ekvivalentem obvodu RCA CA3054, má však jiné zapojení vývodů.

Doporučená zapojení

Integrovaný obvod UL1101N je určen pro použití v širokém rozsahu provozních kmitočtů – od nulových až do 100 MHz. Jedním ze základních je použití v selektivních, zesilovačích s řízením zesílení a v mezifrekvenčních zesilovačích malého signálu s kmitočtem 10,7 MHz, 30 MHz a 60 MHz.

Základní zapojení rozdílového, zesilovače se společnými emitory je na obr. 4.

Obr. 3. Vnitřní elektrické zapojení UL1101N

Obr. 4. Zapojení rozdílového zesilovače se společnými emitory UL1101N

Tranzistory T₁ a T₂ tvoří dvojici zesilovačů se spojenými emity, tranzistor T₃ tvoří proudový zdroj. Báze tranzistorů T₁ a T₂ musí mít stejně napětí, aby byla zajištěna činnost ve středu lineárního rozsahu charakteristiky zesilovače, který není velký (asi ± 50 mV). S ohledem na symetrii dvojice tranzistorů, vyrobených na společné integrované struktuře, lze soudit, že při stejném napětí bude pracovní bod zesilovače uprostřed lineární části charakteristiky. Ke zvětšení dynamického odporu proudového zdroje je třeba vložit do obvodu emitoru tranzistoru T₃ neblokován odpor R_E. Změna napětí U_{BE3} dovoluje řídit zesílení změnou parametru y_{21} . Změna je úměrná změně proudu kolektoru tranzistoru T₃. Obvod zesilovače se společnými emity je vhodný tam, kde se vyžaduje omezený výstupní signál.

Kaskádní zesilovač, který využívá jedné ze dvou trojic tranzistorů integrovaného obvodu UL1101N, je na obr. 5. Zapojení

Obr. 5. Kaskádní zesilovač s UL1101N

využívá tranzistorů T₃ a T₂ (nebo T₁). Třetí tranzistor T₁ (nebo T₂) se nemusí zapojit, nebo se může použít k řízení zesílení. Zesílení se řídí změnou proudu emitoru druhého tranzistoru vlivem kolektorového proudu T₃ mezi tranzistory T₁ a T₂ v důsledku napětí, připojeného na bázi tranzistoru T₁. Řízení tohoto druhu nemá vliv na proud výstupního tranzistoru T₃, nemění jeho výstupní impedanci a neovlivňuje pracovní podmínky vstupního obvodu.

Integrovaný obvod UL1101N je v posaných vysokofrekvenčních obvodech napěťově nestabilní. Vnitřní součinitel stability není dobrý při provozu v kaskádném zapojení. Je to způsobeno nevhodnou výstupní vodivostí y_{22} . Bez použití přídavných útlumových členů není zesilovač stabilní. Vlastnosti vnitřního zapojení lze zlepšit připojením symetrického výstupního laděného obvodu mezi kolektory tranzistorů T₁ a T₃ podle obr. 6. V tomto zesilovači se dostává zpětnovazební signál na vstup v opačné fázi, což zmenšuje zpětné působení. Přesto se však doporučuje při požadavku na velmi stabilní obvod připojit vhodně zvolené útlumové členy.

Obr. 6. Zapojení kaskádního zesilovače mf kmitočtu se symetrickým výstupem, který zmenšuje vliv zpětné vazby

Výkonové zesílení rozdílových zesilovačů v zapojení se společnými emity a v kaskádném zapojení je závislé na provozním kmitočtu. Průběh zesílení A_G je na obr. 7. Z krivek je patrné, že výkonové zesílení kaskádního zesilovače je větší než zesilovače se společnými emity. Je to způsobeno hlavně značně větším poměrem y_{21}/y_{12} a menšími velikostmi součinitele vnitřní stability.

Zesílení obou typů zesilovačů lze řídit ručně nebo automaticky změnou proudu emitoru I_{E3} nebo změnou rozdělení proudu I_{E3} mezi tranzistory T₁ a T₂ pomocí změny rozdílového napětí bází U_{B1} – U_{B2}. Zesílení je třeba řídit tak, aby se nerozladil vstupní a výstupní obvod. To je možno pouze tehdy, má-li řízení malý vliv na změnu vstupních parametrů a závislosti výstupní parametry jen nepatrně na pracovním bodu. V zesilovači se společnými emity se zesílení řídí změnou napětí báze U_{B3}, kterým se mění proud I_{E3} a další parametry tranzistoru. Protože vstupní admitance y₁₁ je přímo úměrná stejnosměrné složce proudu emitoru, může se při řízení přelaďovat vstupní obvod.

V kaskádném zesilovači lze zesílení řídit změnou rozdílového napětí bází U_{B1} – U_{B2}. Řízení nemá vliv na proud vstupního tranzistoru T₃ a nerozlaďuje vstupní obvod.

Maximální rozkmit výstupního napětí v kaskádném zapojení je omezen proudem výstupního tranzistoru a dynamickým odporem obvodu nebo napájecím napětím. První způsob se v praxi nepoužívá, jsou-li přípustné proudy kolektorů I_{C1} a I_{C2} 50 mA. Mnohem spolehlivěji je napěťové omezování. Maximální napětí na výdech kolektoru tranzistorů T₁ a T₂ vzhledem k emitoru tranzistoru T₃ nesmí překročit 20 V, což je prakticky maximální napájecí napětí. Za těchto podmínek může být největší rozkmit výstupního napětí 10 V.

Obr. 7. Závislost výkonového zesílení A_G na kmitočtu f z zesilovače mf kmitočtu s UL1101N v kaskádném zapojení a zapojení se společným emitem

Obr. 8. Zapojení symetrického kaskádného zesilovače mf kmitočtu s rozšířeným lineárním pracovním rozsahem, který využívá všech šesti tranzistorů UL1101N

Obr. 10. Zapojení dvoustupňového mf zesilovače 60 MHz s UL1101N

V zesilovači se společnými emitoru lze mimo podobný způsob omezování napájecím napětím ještě omezovat dynamiku vstupních signálů. Omezení rozkmitu vstupního napětí do asi 50 mV může se použít k omezování nežádoucí modulace rozkmitu kmitočtově modulovaného signálu.

Rozsah lineární funkce obvodu UL1101N v zapojení se společnými emitoru nemůže být prakticky zvětšen. K rozšíření lineární funkce je zapotřebí použít emitorové odpory tranzistorů rozdílového obvodu. Ty však nelze připojit do integrovaného obvodu. Využijte-li se obou trojic tranzistorů obvodu UL1101N v zapojení symetrické kaskády podle obr. 8, lze rozšířit lineární rozsah připojením emitorových odporů R_e .

Mezifrekvenční zesilovač s kmitočtem 10,7 MHz, jehož zapojení je na obr. 9, je osazen jedním integrovaným obvodem UL1101N. První stupeň zesilovače pracuje v kaskádném zapojení, druhý (omezovací) v zapojení se společnými emitoru. Druhý stupeň je zatížen obvyklým poměrovým detektorem. Sírka přenášeného pásma zesilovače je 300 kHz. Zesilovač se napájí napětím 15 V.

Kaskádní stupeň je napájen přes omezovací odpory, které sráží napájecí napětí tak, aby na kolektorech bylo +7,5 V. Protože proud I_{E3} obou stupňů má být 2,5 mA, jsou v emitorových obvodech odpory 510 Ω . Na bázích tranzistorů T_3 a T_4 je napětí +2 V. Na bázi tranzistoru T_2 kaskády je asi +5 V, báze tranzistorů rozdílového obvodu druhého stupně mají napětí +6 V. Z těchto pracovních podmí-

nek byly určeny odpory napájecích děličů. Báze tranzistoru T_1 (vývod 7) je určena pro řízení zesílení a nemá předpětí z napájecího zdroje.

Mf filtr má dva laděné obvody se šírkou pásma 265 kHz. Cívky jsou navinuty z vlnky $15 \times 0,05$ mm na běžných železových jádrech. Za mf zesilovačem následuje obvyklý detektor, před nímž je použita běžná pásmová propust. Zesílení prvního stupně mf zesilovače je 374, druhého stupně 36,3. Napěťové zesílení v lineární části charakteristiky je 4200. Výstupní signál lze omezit v mezech 1,5 mV až 2 V. Při vstupním signálu 0,5 mV kmitočtově modulovaným ± 75 kHz lze získat skutečné nf napětí 150 mV (na kmitočtu 1 kHz).

Zesílení zesilovače změnou proudu prvního stupně lze měnit v rozmezí 0 až -50 dB při změně napětí 4,8 až 5,25 V, přiváděného na vývod 7 přes odpory 5,6 k Ω bez jakékoli změny charakteristiky.

Na obr. 10 je zapojení mezifrekvenčního zesilovače s kmitočtem 60 MHz a šírkou pásma 8 MHz, který používá jako zesilovač IO UL1101N. K dosažení velké selektivity jsou použity pásmové propusti na vstupu, výstupu a mezi stupni, které pracují v kaskádném zapojení. Optimálního zapojení bylo dosaženo při stejné jakosti Q pásmových propustí. Zesilovač má vstupní a výstupní impedanci 50 Ω .

Zesilovač se napájí z jednoho zdroje 15 V. K ziskání malého šumového činitele je zvolen proud prvního stupně $I_{E3} = 1,25$ mA, druhým (k zajištění požadovaného výstupního signálu) $I_{E3} = 2,5$ mA. K omezení napětí prvního stupně je použit vhodný srážecí odpór. Emitorové odpory jsou 510 Ω .

Odpor v primárním obvodu výstupního filtru je $0,5G_0 = 0,5$ k Ω , proto rozkmit

nezkresleného výstupního napětí nemůže překročit 1,25 V. Skutečné výstupní napětí na zatěžovacím odporu 50 Ω je 189 mV. Šum je asi 6 dB při vnitřním odporu budicího zdroje 300 Ω .

Mf zesilovač používá pásmové propusti s nastavitelnou vazbou. Cívky mají po čtyřech závitech drátu o $\varnothing 0,35$ mm CuL. Zesilovač je na oboustranné desce s plošnými spoji, přičemž jedna strana spojuje byla použita jen jako uzemněné stínění. Zesílení se řídí v obou stupních, což rozšiřuje regulační rozsah. Při změně řidicího napětí U_{reg} z 2,83 na 3,34 V se tak získá řidící rozsah větší o -40 dB bez změny přenosové charakteristiky (8 MHz). Pouze na vrcholu charakteristiky je malý pokles asi o 0,5 dB při změně kmitočtu z 60 MHz o ± 2 MHz. Dynamická přechodová charakteristika (závislost výstupního napětí na vstupním) zesilovače je lineární asi do výstupního napětí 150 mV. Výkonové zesílení v lineární části je 26,8 dB.

Symetrický mf zesilovač s kmitočtem 30 MHz a šírkou pásma 4 MHz, který využívá obou trojic tranzistorů IO UL1101N, je na obr. 11. Vstupní tranzistory obou kaskád tvoří obvod rozdílového zesilovače, výstupní obvod je připojen mezi kolektory výstupních tranzistorů kaskád. Ostatní tranzistory tvoří symetrický obvod k řízení zesílení. Obvody vyvážených kaskád jsou charakteristické větším rozsahem řízení bez vlivu na zkreslení charakteristiky. Při zkouškách byl zesilovač buzen generátorem s výstupní impedancí 50 Ω , výstupní zatěžovací odpór zesilovače byl rovněž 50 Ω .

Zesilovač se napájí napětím +15 V, proudy obou trojic tranzistorů jsou 2,5 mA. Emitory obou rozdílových zesilo-

Obr. 9. Zapojení typického dvoustupňového mf zesilovače 10,7 MHz s UL1101N

Obr. 11. Symetrický mf zesilovač 30 MHz, který využívá všech šesti tranzistorů UL1101N

Elektrické údaje UL1101N, UL1102N, ULA6102N

Mezní údaje ($\theta_a = +25^\circ\text{C}$)				
Napětí kolektor-báze U_{CB} :	max. 20 V.		110,	
Napětí kolektor-emitor U_{CE} :	max. 15 V.		15 μS .	
Napětí kolektor-substrát U_{CS} :	max. 20 V.			
Napětí emitor-báze U_{EB} :	max. 5 V.			
Proud kolektoru I_C :	max. 50 mA.			
Ztrátový výkon P_{tot}				
každého tranzistoru:	max. 300 mW.			
celého integrovaného obvodu UL1101N:	max. 750 mW.			
UL1102N, ULA6102N:	max. 700 mW.			
Rozsah pracovních teplot okolo θ_a :	-25 až +70 °C.			
ULA6102N:	-40 až +85 °C.			
Rozsah skladovacích teplot θ_{stg} :	-25 až +100 °C.			
Charakteristické údaje				
<i>Pro každý tranzistor:</i>				
Průrazné napětí kolektor-báze $U_{(BR)CB0}$	Jmen.	Min. ~ max.		
($I_C = 10 \mu\text{A}, I_E = 0$):	60	≥ 20 V.		
Průrazné napětí kolektor-emitor $U_{(BR)CEO}$				
($I_C = 1 \text{ mA}, I_B = 0$):	24	≥ 15 V.		
Průrazné napětí kolektor-substrát $U_{(BR)CS0}$				
($I_C = 10 \mu\text{A}, I_CS = 0$):	60	≥ 20 V.		
Průrazné napětí emitor-báze $U_{(BR)EB0}$				
($I_E = 10 \mu\text{A}, I_E = 0$):	7	≥ 5 V.		
Klidový proud kolektor-báze I_{CB0}				
($U_{CB} = 10 \text{ V}, I_E = 0$):	0,002	≤ 100 nA.		
Napětí báze-emitor U_{BE}				
($U_{CB} = 3 \text{ V}, I_C = 1 \text{ mA}$):		≤ 0,8 V.		
Parametry h (při $U_{CE} = 3 \text{ V}, I_C = 1 \text{ mA}, f = 1 \text{ kHz}$)				
h_{11e} :	3,5 k Ω .			
h_{12e} :	2,10 $^{-4}$.			

vačů jsou spojeny a připojeny k zemi přes společný odpor $510\ \Omega$. Napětí na bázích vstupních tranzistorů musí být $+3,2\text{ V}$, na bázích výstupních tranzistorů obou kaskád $+5\text{ V}$. Použité pásmové propusti mají nastavitelnou vazbu, cívky jsou vinuty na železových jádrech drátem o $\varnothing 0,35\text{ mm}$ CuL (počet závitů každé cívky je 8, cívka primárního vinutí výstupní propusti má vyvedenou přesně uprostřed odbočku).

Změřené zesílení zesilovače je 22,5 dB, šumový činitel při šířce pásmá 4 MHz je menší než 5 dB. Přenosová charakteristika zesilovače má na vrcholu 30 MHz šířku 2 MHz, vůči vrcholu je prakticky symetrická. Při řízení zesílení o -20 dB se zkreslení charakteristiky neprojevilo a křivka měla stejný průběh jako bez řízení. Při větším rozsahu řízení je zkreslení způsobeno přechodem signálu kapacitou uzavřených tranzistorů.

Popsaný symetrický mf zesilovač potvrdil možnost použít obvod UL1101N pro zesilovače s velkým rozsahem řízení. Je však třeba upozornit, že při návrhu desky s plošnými spoji musí být zabezpečeno, že nevzniknou případné nežádoucí vazby. Zesilovač s UL1101N má podstatně lepší vlastnosti než stejný zesilovač z diskrétních tranzistorů. Zvláště vliv vnějších vazeb je mnohem menší. Pásmové propusti a laděné obvody musí být stíněny. Vstup i výstup musí být dobře odděleny uzemněným stínícím plechem.

Dvojice nezávislých rozdílových zesilovačů UL1102N, ULA6102N

Integrované obvody UL1102N, ULA6102N jsou monolitické dvojice na sobě nezávislých rozdílových zesiňovačů na společně křemíkové podložce, které mají prakticky shodné elektrické vlastnosti s rozdílovým zesiňovačem UL1101N až na proudové nesymetrie vstupů a tepelní součinitel napěťové nesymetrie vstupů, jež výrobce nezaručuje. Vnitřní elektrické zapojení obvodů UL1102N a ULA6102N je však zcela odlišné (obr. 12). Součástky jsou rovněž v plastickém pouzdru DIL typu CE-70 s 2 x sedmi vývody. Elektrické údaje obou součástek jsou uvedeny spolu s údaji UL1101N. Rovněž praktické použití je shodné.

UL1111N, ULA6111N jsou přímými ekvivalenty obvodu RCA CA3046.

Integrovaný obvod ULA6111N má elektrické a mechanické vlastnosti stejné jako obvod UL1111N, je však určen pro práci v širším rozsahu provozních teplot okolí. Je proto vhodný pro přístroje v průmyslové elektronice.

Obr. 12. Vnitřní elektrické zapojení
UL1102N, UL A6102N

Doporučená zapojení

Na obr. 14 je zapojení nf napěťového předzesilovače s UL1111N. Na vstupu jsou tranzistory T_1 , T_2 v rozdílovém zapojení. Do báze tranzistoru T_1 je přiváděn vstupní signál, zatímco do báze T_2 signál zpětné vazby z výstupu obvodu. Báze následujícího stupně (emitorového sledovače s tranzistorem T_3) je připojena ke kolektoru T_1 . Tranzistor T_5 tvoří napěťový zesilovač. Na koncovém stupni pracuje tranzistor T_4 v zapojení emitorového sledovače.

Dosažené parametry předzesilovače podle obr. 14:

Rozdílový zesilovač a tři samostatné tranzistory UL1111N, ULA6111N'

Integrované obvody UL1111N sdružují pět tranzistorů n-p-n na společném čipu. Dva z nich (T_1 a T_2) mají uvnitř spojeny emitory a tvoří rozdílový zesilovač. Obvod je určen pro všeobecné nf a v případě použití v obvodech malého výkonu v přístrojích pro spotřební elektroniku. Vnitřní elektrické zapojení je na obr. 13. Pouzdro součástek je z plastické hmoty DIL CE-70 s 2x sedmi vývody. Integrované obvody

Obr. 13. Vnitřní elektrické zapojení
III. 1111N

Obr. 14. Napěťový předzesilovač
s III 1111N

ních napětí 0 až 60 mV, napěťové zesílení 26 dB, vstupní odpor 60 kΩ, výstupní odpor 1 kΩ, rozsah přenášeného pásma 60 Hz až 100 kHz.

Popsaný zesílovač, upravený pro větší zesílení, je na obr. 15. Místo odporu R_{12} (3,9 kΩ) je připojen tranzistor p-n-p typu BC179A (T_6). Napěťový zisk se tak zvětší na 46 dB. Dynamická charakteristika obou zesílovačů je na obr. 16. Dalšího zvětšení napěťového zisku (až do 50 dB) lze dosáhnout zablokováním odporu 12 kΩ kondenzátorem 100 μF.

Nízkofrekvenční zesílovač středního výkonu s UL1111N, který využívá na vstupu rozdílového zesílovače T_1 , T_2 , tranzistoru T_4 jako zesílovače, odděleného emi-

torovým sledovačem T_3 , a budicího stupně s tranzistorem T_5 je na obr. 17. Ke zvětšení výkonu je na koncovém stupni použita doplňková dvojice nf tranzistorů středního výkonu n-p-n a p-n-p (BD354)/ (BD355).

V rozdílovém zesílovači se používá zpětná vazba, zavedená z výstupu obvodu. Napěťové zesílení signálu, které závisí na činiteli zpětné vazby, je asi 30. Emitorový sledovač zlepšuje podmínky spolupráce prvního a třetího zesílovacího stupně. Rídící stupeň je kapacitně vázán se zesílovačem výkonu s komplementárním párem tranzistorů BD354/BD355. Stupeň vazby určuje obvod složený z diody BAP855, potenciometru R a odporu R_{14} . Výkonové tranzistory jsou umístěny na hliníkovém chladiči. Velmi dobrá přenosová charakteristika zesílovače je na obr. 18.

Popsaný zesílovač podle obr. 17 má tyto vlastnosti:
napájecí napětí: 16 V,
odebírány proud v klidu ($P_0 = 0$): 8 mA,
odebírány proud při plném vybuzení ($P_0 = P_{0\max}$): 610 mA,
výstupní výkon ($k = 1\%$, $f = 1$ kHz): 2,8 W,

vstupní napětí: 160 mV,
zatěžovací odpor: 8 Ω,
přenášené kmitočtové pásma:

činitel harmonického zkreslení
($P_0 = 0,5P_{0\max}$, $f = 1$ kHz): 1,5 %.
Velmi jednoduchý stabilizátor napětí

9 V, který je osazen UL1111N, je na obr. 19. Je to typické zapojení sériového stabilizátoru s rozdílovým zesílovačem (T_1 , T_2). Tranzistor T_3 pracuje jako emitorový sle-

dovač, řídící vnější výstupní tranzistor n-p-n BC211. Tranzistor T_4 , jehož emitor je spojen s kolektorem, tvorí místní stabilizátor, který plní funkci stabilizační diody pro výrobu referenčního napětí pro rozdílový zesílovač.

Tranzistor T_5 určuje proudové omezení, přičemž práh omezení lze řídit nastavením vhodného odporu potenciometru R_2 (100 Ω). Obvod pracuje takto: překročení úbytek napětí na odporu 100 Ω stanovenou mez, tranzistor T_5 , který je uzavřen, začne propouštět proud, čímž se zvětšuje i proud tranzistorů T_1 a T_2 , což vyvolá zmenšení výstupního napětí. Kondenzátor C_1 značně omezuje pulsující složku výstupního napětí.

Údaje stabilizátoru napětí:
rozsah vstupního napětí: 11 až 15 V,
výstupní napětí: 9 V,
součinitel stabilizovaného napětí:

výstupní proud: ±0,3 %,
klidový proud: 650 mA,
pulsující a šumové výstupní napětí: 2,3 mA,
0,4 mV.

Sériový stabilizátor s výstupním napětím regulovatelným v rozsahu 0 až 9 V a výstupním proudem do 1,4 A, osazený IO UL1111N a tranzistory BC211, BUP52 podle obr. 20, je jiným příkladem využití popisovaného obvodu. Tranzistory T_1 , T_2 tvoří opět rozdílový zesílovač. Rozdíl napětí na bázích obou tranzistorů je zesílen v tranzistorem T_3 , který tvoří sériový regulátor (tranzistory T_6 a T_7).

K řízení výstupního napětí slouží potenciometry P_2 a P_3 (P_3 k jemné regulaci). Stabilizátor má ochranu před zkratem na výstupu a proti přetížení. K tomu slouží tranzistor T_3 , který v případě přetížení blokuje (uzavírá) nebo uvolňuje sériové tranzistory.

Obr. 15. Upravený napěťový předzesílovač s větším zesílením, osazený UL1111N a tranzistorem p-n-p BC179A

Obr. 16. Dynamické charakteristiky napěťových předzesílovačů:
1 – zesílovač s UL1111N podle obr. 14, 2 – zesílovač podle obr. 15

Obr. 18. Výstupní charakteristika podle obr. 17 v závislosti na přenášeném kmitočtovém pásma

Obr. 17. Návrh zapojení nf zesílovače s výstupním výkonem 2,8 W s UL1111N a komplementární dvojicí tranzistorů BD354/BD355

Obr. 19. Stabilizátor pevného výstupního napětí 9 V s UL1111N

Obr. 21. Zapojení generátoru pravoúhlých impulzů, jehož kmitočet je řízen vstupním napětím

Obr. 22. Závislost kmitočtu generátoru podle obr. 21 na jeho vstupním napětí

Technické údaje stabilizátoru:
výstupní napětí: 0 až 9 V,
součinitel napěťové stabilizace: $\pm 0,55\%$,
výstupní proud: 1,4 A,
výstupní odpor: 150 m Ω ,
zbytkové nevyhlazené a šumové výstupní napětí: 1 mV.

Regulační charakteristika zdroje je na nastaveném výstupním napětí zcela rovná

Obr. 20. Zapojení stabilizátoru napětí 0 až 9 V s UL1111N a výstupním tranzistorem BUYP52; výstupní stabilizovaný proud 1,4 A

Obr. 23. Zapojení širokopásmového zesilovače 6 Hz až 6 MHz

při odběru proudu až do 1,4 A, pak prudce klesá na nulové napětí při odběru 1,55 A.

Zapojení napětí řízeného generátoru pravoúhlých impulzů UL1111N je znázorněno na obr. 21. Generátor pracuje v zapojení astabilního multivibrátoru (tranzistory T₃, T₄) se zdrojem konstantního proudu (T₅), který udržuje výstupní napětí stabilní, bez závislosti na změnách napájecího napětí. Jako stabilizační prvek kmitočtu slouží proudový zdroj (tranzistory T₁, T₂), kompenzovaný v širokém teplotním rozsahu. Změna vstupního napětí U_1 vyvolá změnu odporu tranzistoru T₂ a tím změnu kmitočtu. Výstupní kmitočet generátoru v závislosti na vstupním napětí je na obr. 22. Hlavní předností generátoru je

přísně lineární závislost kmitočtu generátoru na vstupním ladicím napětí v kmitočtovém rozsahu 9 až 14 MHz.

Technické údaje generátoru:
napájecí napětí: 9 V,
rozsah ladicího napětí: 12 až 17 V,
rozsah pracovního kmitočtu: 9 až 14 MHz,
výstupní napětí: 5 V.
Integrovaný obvod UL1111N může v zapojení podle obr. 23 dobře pracovat jako širokopásmový zesilovač s širokým přenášeným pásmem od 10 Hz do 6 MHz. Tvoří jej dvě dvojice tranzistorů v kaskádném zapojení (T₅ a T₁, T₃ a T₄). K dosažení širokého zesilovaného pásmu slouží dva obvody záporné zpětné vazby: z emitoru T₁

Elektrické údaje UL1111N, ULA6111N

Mězní údaje ($\theta_a = +25^\circ C$)		
Napětí kolektor-báze U_{CB} UL1111N: ULA6111N:	max. 20 V,	$\leq 0,8$ V.
Napětí kolektor-emitor U_{CE} UL1111N: ULA6111N:	max. 30 V.	
Napětí kolektor-substrát U_{CS} UL1111N: ULA6111N:	max. 15 V,	≤ 5 mV.
Napětí emitor-báze U_{EB} :	max. 25 V,	≤ 2 μ A.
Proud kolektoru stejnosměrný, I_C :	max. 20 V,	
Ztrátový výkon celkový P_{tot} jednoho (každého) tranzistoru:	max. 30 V.	
celého integrovaného obvodu:	max. 5 V.	
Rozsah pracovních teplot okolo θ_a :	max. 50 mA.	
UL1111N:	max. 300 mW.	≤ 5 mV.
Rozsah skladovacích teplot θ_{stg} :	max. 750 mW.	≤ 5 mV.
UL6111N:	0 až $+55^\circ C$,	≤ 5 mV.
	-40 až $+85^\circ C$.	
	-25 až $+100^\circ C$.	≤ 5 mV.
Charakteristické údaje ($\theta_a = +25^\circ C$) každého tranzistoru:	Jmen.	Min.-max.
Průrazné napětí kolektor-báze $U_{(BR)CB0}$ ($I_C = 10 \mu A, I_E = 0$): UL1111N: ULA6111N:	60	≥ 20 V.
Průrazné napětí kolektor-emitor $U_{(BR)CEO}$ ($I_C = 1 mA, I_B = 0$): UL1111N: ULA6111N:	60	≥ 30 V.
Průrazné napětí kolektor-substrát $U_{(BR)CS0}$ ($I_{CS} = 10 \mu A, I_C = 0$):	24	≥ 15 V,
Průrazné napětí kolektor-báze $U_{(BR)EB0}$ ($I_E = 10 \mu A, I_C = 0$):	60	≥ 25 V.
Klíčový proud kolektor-báze I_{CB0} ($U_{CB} = 10 V, I_E = 0$):	0,002	≤ 40 nA.
Proud kolektor-emitor I_{CE0} ($U_{CE} = 10 V, I_B = 0$):	0,005	≤ 500 nA.
Proudový zesilovací činitel h_{21E} ($U_{CE} = 3 V, I_C = 1 mA$):	100	≤ 40 .
		B/6
		82

do báze tranzistoru T_5 , který pracuje v rozsahu konstantního proudu a nízkých kmitočtů, zatímco vazba z kolektoru T_3 do kolektoru T_5 pracuje s konstantním i proměnným proudem v celém rozsahu přenásených kmitočtů. Výstupní napětí se zvětšuje lineárně do 600 mV se vstupním napětím (až do 500 mV), s napětím větším je průběh výstupního napětí mírně zakřivený.

Technické údaje širokopásmového zesilovače:

napájecí napětí: 15 V,
zisk: 57 ± 1 dB,
přenášené kmitočtové pásmo: 10 až 6 000 000 Hz.

Obr. 24. Závislost výstupního širokopásmového zesilovače podle obr. 23 na vstupním napětí

Rídící obvod UL1121N pro displeje

Integrovaný obvod UL1121N je monolitická čtvrtice tranzistorů n-p-n, jejichž emitory jsou na čipu propojeny a vvedeny společně jedním vývodem z pouzdra. V obvodu báze každého tranzistoru je zařazen sériový odpor. Obvod se používá k řízení displejů. Vnitřní elektrické zapojení obvodu je na obr. 25. Pouzdro součástky

Obr. 25. Vnitřní elektrické zapojení UL1121N

ky CE-70 je z plastické hmoty s 2x sedmi vývody. Tento integrovaný obvod nemá žádný přímý zahraniční obdobný typ.

Elektrické údaje UL1121N.

Charakteristické údaje	
Proudový zesilovací činitel h_{21E} ($U_{CE} = 2$ V, $I_C = 60$ mA):	Min.-max ≥ 120 .
Saturační napětí kolektoru $U_{CE\text{ sat}}$ ($I_C = 60$ mA, $V_B = 0,5$ mA):	$\leq 0,3$ V.
Napětí báze a předpětí na odporu v obvodu báze, $U_{BE} + I_B R_B$:	$\leq 2,0$ V.
Záporný proud kolektor-emitor $/I_{CEX}$ ($U_{BE} = 0,3$ V, $U_{CE} = 5$ V):	≤ 700 nA.

Přerušovače řady K101

Integrované obvody řady K101 sovětské výroby jsou určeny pro přerušovací

a střídavé obvody. Jejich systém sdružuje dva tranzistory n-p-n, zapouzdřené v kovovém pouzdro 301.8-2 s osmi drátovými vývody ve skleněné průchodce. Vnitřní elektrické a funkční zapojení blokové je na obr. 26.

Obr. 26. Vnitřní elektrické a funkční blokové zapojení IO řady K101

Elektrické údaje – řada K101

Mezní údaje	
Proud kolektoru I_C :	max. 10 mA.
Proud emitoru I_E :	max. 10 mA.
Rozsah pracovních teplot okolo θ_A :	-10 až +70 °C.
Charakteristické údaje	
Napětí mezi emitory U_{EE} : K1KTO11A, K1KT11B:	$\leq 6,3$ V.
K1KTO11B, K1KT11F:	$\leq 3,0$ V.
Výstupní napětí zbytkové U_{OZ} : K1KTO11A, B:	100 μ V.
K1KTO11B, G:	300 μ V.
Výstupní proud svodový /oz:	≤ 40 nA.
Odpor mezi emitory R_{EE} :	≤ 120 Ω .

Obr. 27. Vnitřní elektrické a funkční blokové zapojení IO řady K118 a K122

Integrované obvody řady K118 a K122 sovětské výroby jsou určeny pro univerzální zesilovače napětí, obrazové a rozdílové zesilovače apod., určené pro obvody průmyslové i spotřební elektroniky.

Rada K118 obsahuje tyto součástky: K118YC1A – K118YC1D (K1YC181A – K1YC181D) – dvoustupňové zesilovače,

K118YC2A – K118YC2B (K1YC182A – K1YC182B) – kaskádní zesilovače,

K118YT1A – K118YT1B (K1YT181A – K1YT181B) – jednostupňové rozdílové zesilovače stejnosměrného proudu,

K118YB1A – K118YB1G (K1YB181A – K1YB181G) – obrazové zesilovače,

K118TSH1A – K118TSH1D (K1TSH181A – K1TSH181D) – Schmittovy klopné obvody.

Všechny součástky řady K118 jsou v plastickém pouzdře DIL typu 201.14-1 s 2x sedmi vývody ve dvou rádách. Vnitřní elektrické a funkční blokové zapojení je na obr. 27.

Rada K122 obsahuje tyto součástky: K122YC1A – K122YC1D (K1YC221A – K1YC221D) – dvoustupňové zesilovače,

K122YC2A – K122YC2B (K1YC222A – K1YC222B) – kaskádní zesilovače,

K122YT1A – K122YT1B (K1YT221A – K1YT221B) – jednostupňové rozdílové zesilovače stejnosměrného proudu,

K122YB1A – K122YB1G (K1YB221A – K1YB221G) – obrazové zesilovače,

K122TSH1A – K122TSH1D (K1TSH221A – K1TSH221D) – Schmittovy klopné obvody.

Součástky řady obvodů K122 jsou vestavěny v kovovém válcovém pouzdře 301.12-1 (průměr max. 9,5 mm, délka

4,6 mm) se dvanácti drátovými vývody ve skleněné průchodce. Obvody této řady jsou určeny pro použití v širším rozsahu teplot okolo -45 až +85 °C. Vnitřní elektrické a funkční blokové zapojení je stejně se součástkami řady K118, číslování vývodů platí pro řadu 122 v závorkách (obr. 27).

Jednotlivé součástky obvodů označené stejným postupným číslem mají u obou řad stejně elektrické údaje (např. K118YC1A a K122YC1A), odlišují se pouze jiným použitým pouzdrem a dovoleným rozsahem pracovních teplot okolo.

Elektrické údaje řady K118, K122

Mezní údaje	
Napájecí napětí $U_B(t \leq 5$ s)	
K...YC1A, B, K...YC2B, B	max. 7,5 V,
K...YC1B, G, D	max. 15 V,
K...YT1A	max. ±4,6 V,
K...YT1B, B	max. ±7,3 V,
K...YC2A	max. 4,8 V.

Vstupní napětí U_1 ($t \leq 1$ min)	
K...YC1A, B, K...YC2B, B	max. 6,9 V, max. 13,8 V,
K...YC1B, G, D	max. ± 4 V,
K...YT1A	max. $\pm 6,3$ V
K...YT1B, B	max. $\pm 6,3$ V
K...YC2A	max. 4,4 V.
Kolektorový impulsní proud / tranzistoru při impulsním poměru 2	
K...YC1A, B, V, G, D	max. 10 mA.
Rozsah provozních teplot okolo θ_a	
K118...	-10 až +70 °C.
K122...	-45 až +85 °C.

Charakteristické údaje

Řada K118YC1, K122YC1

Napěťový zesilovací činitel A_u

($U_1 = 1$ mV, $f = 12$ kHz)	
($U_B = 6,3$ V) K...YC1A:	≥ 250 ,
($U_B = 6,3$ V) K...YC1B:	≥ 400 ,
($U_B = 12,6$ V) K...YC1B:	≥ 350 ,
($U_B = 12,6$ V) K...YC1T:	≥ 500 ,
($U_B = 12,6$ V) K...YC1D:	≥ 800 .

Vstupní odpor R_i : ≥ 2 M Ω .

Výstupní napětí stejnosměrné U_O

($U_B = 6,3$ V) K...YC1A, B: 2,4 až 3,8 V,	
($U_B = 12,6$ V) K...YC1B, G, D: 7,0 až 9,6 V.	

Proud I_B :

($U_B = 6,3$ V) K...YC1A, B: $\leq 3,5$ mA,	
($U_B = 12,6$ V) K...YC1B, G, D: $\leq 5,0$ mA.	

Řada K118YC2, K122YC2

Napěťový zesilovací činitel A_u

($U_1 = 1$ mV, $f = 12$ kHz)	
($U_B = 4$ V) K...YC2A: ≥ 15 ,	
($U_B = 6,3$ V) K...YC2B: ≥ 25 ,	
($U_B = 6,3$ V) K...YC2B: ≥ 40 .	

Vstupní odpor R_i : ≥ 1 k Ω .

Výstupní ss napětí, U_O :

($U_B = 4$ V) K...YC2A: 2,4 až 3,8 V	
($U_B = 6,3$ V) K...YC2B, G, D: 3,8 až 5,5 V.	

Proud I_B :

($U_B = 4$ V) K...YC2A: $\leq 2,0$ mA,	
($U_B = 6,3$ V) K...YC2B, G, D: $\leq 3,0$ mA.	

Řada K118YT1, K122YT1

Vstupní napěťová nesymetrie U_{IO}

($U_4 = U_{IO}, U_{10} = 0$)	
($U_B = \pm 4$ V) K...YT1A: -5 až +5 mV,	
($U_B = \pm 6,3$ V) K...YT1B: -5 až +5 mV,	
($U_B = \pm 6,3$ V) K...YT1B: -10 až +10 mV.	

Výstupní napětí stejnosměrné U_O :

($U_B = \pm 4$ V) K...YT1A: 2,5 až 3,5 V,	
($U_B = \pm 6,3$ V) K...YT1B, G, D: 4,0 až 4,9 V.	

Vstupní proud maximální I_{11}, I_{12}

($U_{10} = U_{IO}$)	
($U_B = \pm 4$ V) K...YT1A: ≤ 10 μ A,	
($U_B = \pm 6,3$ V) K...YT1B, G, D: ≤ 10 μ A,	
($U_B = \pm 6,3$ V) K...YT1B: ≤ 20 μ A.	

Napěťový zesilovací činitel A_u

($U_4 = U_{IO}, U_{10} = 0,01$, $f = 12$ kHz)	
($U_B = \pm 4$ V) K...YT1A: ≥ 15 ,	
($U_B = \pm 6,3$ V) K...YT1B, G, D: ≥ 22 .	

Proud ($U_4 = U_{10} = 0$)

($U_B = \pm 4$ V) K...YT1A, B: ≤ 1 mA,	
/B ₂ : $\leq 1,8$ mA,	
($U_B = \pm 6,3$ V) K...YT1B, G, D: $\leq 1,3$ mA,	
/B ₂ : $\leq 2,4$ mA.	

Řada K118YB1, K122YB1

Napěťový zesilovací činitel A_u

($U_1 = 1$ mV, $f = 12$ kHz)	
($U_B = 6,3$ V) K...YB1A: ≥ 900 ,	
($U_B = 6,3$ V) K...YB1B: ≥ 1300 ,	
($U_B = 12,6$ V) K...YB1B: ≥ 1500 ,	
($U_B = 12,6$ V) K...YB1G: ≥ 2000 .	

Řada K118TSH1, K122TSH1

Výstupní napětí U_O

($U_B = \pm 3$ V, $U_1 = -0,35$ V)	K...TSH1A: -0,4 až +0,9 V,
($U_B = \pm 4$ V, $U_1 = +0,35$ V)	K...TSH1A: +2,75 až +3,0 V,
($U_B = \pm 4$ V, $U_1 = -0,35$ V)	K...TSH1B, G, D: -0,4 až +0,9 V,
($U_B = \pm 4$ V, $U_1 = +0,35$ V)	K...TSH1B, G, D: +3,75 až 4,0 V,
($U_B = \pm 6,3$ V, $U_1 = -0,7$ V)	K...TSH1G, D: -0,4 až +1,2 V,
($U_B = \pm 6,3$ V, $U_1 = +0,4$ V)	K...TSH1G, D: +6,0 až 6,3 V.

Vstupní proud I_I

($U_B = \pm 3$ V, $U_1 = 0,35$ V)	K...TSH1A: ≤ 20 μ A,
($U_B = \pm 4$ V, $U_1 = 0,35$ V)	K...TSH1B, G, D: ≤ 20 μ A,
($U_B = \pm 4$ V, $U_1 = 0,35$ V)	K...TSH1G, D: ≤ 40 μ A,
($U_B = \pm 6,3$ V, $U_1 = 0,4$ V)	K...TSH1D: ≤ 20 μ A,
($U_B = \pm 6,3$ V, $U_1 = 0,4$ V)	K...TSH1A: 0 až 0,35 V,

Nábehové napětí U_{ON}

($U_B = \pm 3$ V)	K...TSH1B, G, D: 0 až 0,35 V,
($U_B = \pm 4$ V)	K...TSH1B, G, D: 0 až 0,35 V,
($U_B = \pm 6,3$ V)	K...TSH1D: 0 až 0,4 V.
Napětí při doběhu U_{OFF}	

($U_B = \pm 3$ V)	K...TSH1A: -0,35 až 0 V,
($U_B = \pm 4$ V)	K...TSH1B, G, D: -0,35 až 0 V,
($U_B = \pm 6,3$ V)	K...TSH1D: -0,7 až 0 V.

Integrované mezifrekvenční zesilovače

Mezifrekvenční zesilovač FM s demodulátorem UL1200N

Integrovaný obvod UL1200N slouží k zesílení signálu mezifrekvenčního kmitočtu 10,7 MHz (kmitočtově modulovaného) pro použití v rozhlasových přijímačích s pásmem velmi krátkých vln. Obvod obsahuje zesilovač mf, řízený potlačením zvuku pro tiché ladění, automatické řízení kmitočtu (AFC), zpožděné automatické řízení zesílení (AGC) pro kanálový volič, spínač stereofonního dekódéra a budicí zesilovač měřiče síly signálu. Funkční blokové schéma je na obr. 28. Součástka je v plastickém pouzdře CE71 s 2x osmi vývody. Obdobný zahraniční ekvivalent obvodu UL1200N je výrobkem SGS-ATES TDA1200.

Vývody: 01 – vstup mf kmitočtu, 02, 03 – přípoj blokovacího kondenzátoru, 04 – zem, 05 – vstup obvodu pro potlačení zvuku, 06 – výstup, 07 – výstup automatic-

kého řízení kmitočtu (AFC), 08 – výstup koincidenčního detektoru, 09 – vstup kvadratického detektoru, 10 – referenční předpětí, 11 – výstup obvodu pro řízení potlačení zvuku, 13 – výstup budicího zesilovače pro měřič pole, 14 – substrát (připojení na zem), 15 – výstup AGC, 16 – vývod není zapojen.

Funkční blokové zapojení je doplněno o vnější součástky pro znázornění hlavních funkcí součástky.

Doporučené zapojení

Příklad typického zapojení mf zesilovače 10,7 MHz s popsánými funkcemi s obvodem UL1200N je na obr. 29. Zesilovač využívá přednost keramického mf filtru. Jako měřič síly signálu slouží mikroampermetr s rozsahem 150 μ A. Napájecí napájecí zdroj je 12 V.

Je-li napájecí napájetí menší než 12 V, musí se připojit mezi nf výstup a zem přídavný odpor R_B , 12 k Ω , a kapacita integračního kondenzátoru C_S se musí zvětšit na 10 nF (v zapojení znázorněno

Elektrické údaje UL1200N

Mezní údaje

Napájecí napájetí U_{CC} :	max. 16 V.
Vstupní napájetí mezirovlochové U_{IMM} :	max. 1 V.
Proud ze zdroje /cc:	max. 40 mA.
Proud vývodu 2, I ₂ :	max. $\pm 0,2$ mA.
Ztrátový výkon celkový P_{tot} :	max. 650 mW.

Charakteristické údaje

(při $U_{CC} = 12$ V, $f = 10,7$ MHz)	
Příkon ze zdroje /cc	≤ 33 mA.
Vstupní napájetí pro omezení U_{lim} :	≤ 25 μ V.
Výstupní napájetí U_O ($\Delta f = \pm 50$ kHz):	240 až 460 mV.
Poměr signálu k šumu S/N:	≥ 60 dB.
($\Delta f = \pm 50$ kHz):	4,4 až 6 V.
Vstupní napájetí U_I k potlačení funkce (tiché ladění):	10 až 38 μ V.
Úroveň potlačení zvuku A_N (tiché ladění):	≥ 60 dB.
Napětí vývodu 12, U_{12} , bez signálu:	4,4 až 6 V.
Napětí vývodu 13, U_{13} , bez signálu:	$\geq 0,1$ V.
a při $U_1 = 100$ mV:	$\geq 4,5$ V.
Napětí vývodu 15, U_{15} , bez signálu:	4,2 až 5,2 V.
a při $U_1 = 100$ mV:	$\leq 0,5$ V.
Zkreslení k harmonickým	
($U_1 = 100$ mV, $\Delta f = \pm 50$ kHz):	$\leq 0,3$ %.
Potlačení amplitudové modulace AMR	
($U_1 = 100$ mV, $\Delta f = \pm 50$ kHz, $f = 1$ kHz, mod. = 30 %):	≥ 45 dB.

Obr. 29. Doporučené zapojení mf zesilovače 10,7 MHz s velkou citlivostí, malým zkreslením a potlačením zvuku při tichém ladění UL1200N

tečkované). Odpor R_6 závisí na použití měřidlo síly signálu (pro mikroampérmetr $150 \mu\text{A}$ je $33 \text{k}\Omega$), R_7 závisí na obvodu AFC použitého kanálového voliče.

Širokopásmový zesilovač UL1201N

Integrovaný obvod UL1201N je monolitický širokopásmový zesilovač, určený především pro použití v rozhlasových přijímačích pro příjem signálů FM, radio-komunikačních přijímačích a jako omezovací zesilovač s vnějším detektorem. Součástka je v plastickém pouzdře CE70 s 2×7 vývody. Po stránce elektrické je UL1201N ekvivalentní součástce RCA CA3011, je však v jiném pouzdře (součástka RCA je v kovovém pouzdře se 16 drátovými vývody).

Systém integrovaného obvodu sdržuje tři propojené kaskádní rozdilové zesilovače (T_1-T_2 , T_4-T_5 , T_7-T_8) a stabilizátor napětí (T_9 , T_{10}). První dva stupně kromě rozdilového páru pracují s emitorovými sledovači (T_3 a T_6). Pracovní podmínky jsou voleny tak, aby výstupní napětí každého stupně bylo rovno napětí na jeho vstupu. Těchto podmínek se dosáhne zavedením stálých napětí bází, které se rovnají polovině napějicího napětí, a volbou vhodných odporů v kolektordrátových a v emitorových obvodech. Proud protékající kolektorem výstupního tranzistoru (T_8) je asi $1,5 \text{ mA}$. Maximální zatěžovací odpor zajišťující symetrické omezování výstupního signálu (největší dynamika signálů s modulovanou amplitudou) musí splnit podmíinku:

a) v případě skutečného zatížení

$$R_L \leq \frac{U_{CC} - 2U_{BE}}{2I_B}$$

b) v případě rezonančního obvodu

$$R_L \leq \frac{U_{CC} - 2U_{BE}}{I_B}$$

což při napájecím napětí $U_{CC} = 12 \text{ V}$ odpovídá odporům $R_L = 3,8 \text{ k}\Omega$ a $7,5 \text{ k}\Omega$.

Napěťové zesilení UL1201N je při zatěžovacím odporu $1 \text{ k}\Omega$ asi 60 dB . Vstupní napětí nesmí překročit 1 mV (není-li výstup omezován).

Vývody: 01 – vstup zesilovače, 03 – zemnický bod, 05 – napájecí napětí $+U_{CC}$, 07 – nepoužívat (vnitřní spoj slouží pro technologické účely), 08 a 10 – vstup zesilovače, 12 – slouží k odblokování obvodu (zpětné vazby (připojení blokovacího kondenzátoru)), 14 – přípoj blokovacího kondenzátoru, vývody 02, 04, 06, 09, 11 a 13 nejsou použity.

Dynamika výstupního stupně obvodu není velká. Při zatěžovacím odporu $1 \text{ k}\Omega$ je při vstupním budicím napětí $0,1 \text{ mV}$ výstupní napětí asi $0,15 \text{ V}$, při 10 mV je výstupní napětí 1 V . Se zvětšováním zatěžovacího odporu se dynamika zvětšuje. Při odporu $3,3 \text{ k}\Omega$ a vstupním napětí $0,1 \text{ mV}$ je výstupní napětí $0,65 \text{ V}$, při 10 mV již $3,5 \text{ V}$ (vše měřeno signálem s kmitočtem $0,5 \text{ MHz}$, impedance budicího zdroje 50Ω).

Výstupní napětí zesilovače je při zatěžovacím odporu $1 \text{ k}\Omega$ lineární až do 9 MHz , při odporu $2,7 \text{ k}\Omega$ až jen do 5 MHz . Pak se výstupní napětí značně zmenší. Výrazné zmenšení napětí na kmitočtu 13 MHz prakticky vylučuje možnost použít UL1201N na kmitočtech vysokých než 15 MHz . Změřené zesilení A_u v závislosti na provozním kmitočtu je na obr. 31.

Doporučená zapojení

Jak již bylo uvedeno, je přechodová charakteristika lineární jen ve velmi ome-

Obr. 30. Vnitřní elektrické zapojení UL1201N

Obr. 32. Funkční blokové zapojení zesilovače AM-FM s UL1201N

Obr. 31. Závislost napěťového zesílení UL1201N na provozním kmitočtu

zeném rozsahu vstupních napětí. Jisté rozšíření dynamické charakteristiky až do 100 mV umožňuje zavést automatické řízení zesílení pomocí přídavné součástky s řízeným zesílením. Integrovaný obvod UL1201N jinak neumožňuje bezprostředně řídit zesílení změnou pracovních podmínek.

Na obr. 32 je blokové zapojení mf zesilovače s automatickým řízením zesílení. Regulační prvek zajišťuje napěťové zesílení 30 až 40 dB, zesílení je ředitelné v rozsahu okolo 80 dB tak, že se prvek stává při velkých vstupních napětcích „útlumovým článkem“ s útlumem 40 až 50 dB. Ukoncem bloku selektivity je omezit pásmo zesilovače a zajistit příslušnou selektivitu. Základní součástí tohoto bloku je keramický filtr typu FCD-465-7-36: střední mf kmitočet 465 kHz , přenosové pásmo (-6 dB) je 7 kHz , selektivita při rozladění $\pm 9 \text{ kHz}$ je 36 dB , přípustobovací odpor $4,5 \text{ k}\Omega$.

Obvod automatického řízení zesílení zajišťuje stejnosměrný proud a slouží k zlepšení zbytkové stejnosměrné složky úměrně k rozkmitu vstupního signálu. Současně slouží jako zdroj signálu pro automatické řízení zesílení. Zesílený signál se pak přivádí na regulační prvek.

Keramický filtr typu FCD-465-7-36 má být řízen ze zdroje s odporem asi $4,5 \text{ k}\Omega$, zatížen má být stejným odporem. Protože UL1201N s ohledem na konečnou pěnovou úroveň stability musí spolupracovat s odporovým zdrojem s odporem ne větším než 50 až 100Ω , je nezbytné mezi keramickým filtrem s obvodem UL1201N použít impedanční transformátor. Může to být např. obvod podle obr. 33, který má na feritovém jádru navinuty cívky filtru pro AM.

K dosažení co největší dynamiky výstupního stupně zesilovače se musí použít jako zátěž výstupního stupně rezonančního obvodu s dynamickým odporem až

Obr. 33. Přizpůsobovací obvod mezi keramickým filtrem a obvodem UL1201N

7,5 kΩ při napájecím napětí 12 V. V primární laděného obvodu je použit kondenzátor 1600 pF. Útlumový odpor paralelně k sekundárnímu vinutí určuje vstupní odpor detektoru AM a výstupní odpor obvodu UL1201N.

Návrh zapojení zesilovače mf kmitočtu v provedení 1 je na obr. 34. Vstupní stupeň zesilovače tvoří páár tranzistorů BF194, pracujících v rozdílovém zapojení. Do báze tranzistoru T₁ se přivádí signál s mf kmitočtem, do báze T₂ signál z automaticky. Na obr. 35 je uvedena závislost napěťového záblesku vstupního stupně na regulačním napětí automaticky. Na výstup UL1201N je připojen amplitudový detektor s diodou BAP794. K získání lineární detekce je zavedeno vstupní předpětí diody proudem 0,2 mA.

Výstupní stupeň zesilovače tvoří emitorový sledovač s tranzistorem BC158, který

souží současně jako zesilovač stejnosměrného proudu pro signály z automaticky. Přenosová charakteristika zesilovače je na obr. 36. Plati pro měřicí kmitočet 1 kHz a hloubku modulace 0,5.

Integrovaný obvod UL1201N lze použít i jako zesilovač druhého mf kmitočtu v bloku mf zesilovače rádiového pojítka UKV. Jeho funkční blokové zapojení je na obr. 37, UL1201N zde plní funkci zesilovače a omezovače. Elektrické zapojení úplného mf zesilovače 465 kHz včetně demodulátoru je na obr. 38. Pro správnou funkci obvodu je zapotřebí vstupní napětí min. 0,3 až 0,4 mV.

Zapojení zesilovače mf kmitočtu 10,7 MHz, který slouží v rádiovém pojítku UKV s odstupem kanálů 25 kHz, je na obr. 39. UL1201N slouží jako zesilovač a omezovač přizpůsobovacího obvodu krystallového diskriminátoru DQF-2826. Diskriminátor vyžaduje řízení ze zdroje s odporem 400 Ω a zatížení impedancí 1 μF, 32 kΩ.

Rídící odpor lze vytvořit vhodnou jakostí zatěžovacího obvodu na výstupu integrovaného obvodu pro kmitočet 10,7 MHz (obvod je naladěn na rezonanci) podle vztahu.

$$Q_r = \frac{f}{\Delta f_r} = \frac{10,7}{0,33} \approx 32.$$

Údaje obvodu: jakost 32, rezonanční kapacita 70 pF, vypočítaný dynamický odpor asi 7 kΩ, odhadnutý poměr zmenšující kapacity $n = 4$, odtud řídící odpor diskriminátoru

$$R_{dyn} = \frac{R_d}{n^2} = \frac{7000}{16} \approx 440 \Omega.$$

K získání typické citlivosti mf zesilovacího bloku je nezbytný přidavný zesilovač s napěťovým ziskem asi 60 dB a s malou výstupní impedancí.

Zesilovač mf kmitočtu žvuku – omezovač je dalším příkladem využití UL1201N v zapojení podle obr. 40. Rozdílový kmitočet je 6,5 MHz. Omezování amplitudy je nezbytné k útlumu nežádoucí amplitudové modulace zvukového signálu FM přes nosnou obrazového signálu. Po omezení je zvukový signál přiváděn do kmitočtové-

Obr. 34. Návrh zesilovače AM-FM s UL1201N

Obr. 35. Regulační charakteristika zesilní výstupního stupně mf zesilovače podle obr. 34

Obr. 38. Elektrické zapojení mf zesilovače FM 465 kHz rádiového pojítka VKV

Obr. 36. Přenosová charakteristika mf zesilovače podle obr. 34

Obr. 37. Funkční blokové zapojení mf zesilovače FM pro rádiové pojítka VKV

Obr. 39. Elektrické zapojení mf zesilovače 10,7 MHz FM rádiového pojítka VKV UL1201N

Obr. 40. Návrh „zvukového“ zesilovače s UL1201N

.ho diskriminátoru (je použit diskriminátor z tranzistorového televizního přijímače Libra 201, který vyrábí podnik Unitra-WZT).

Výstupní napětí zesilovače je při vstupním napětí 40 mV asi 1,6 V, při větším napětí do 1 V se pozvolna zmenšuje na 1,5 V. Počátečně prudký nárůst a ohýb křivky výstupního napětí je v rozsahu výstupního napětí 12 až 25 mV (platí pro signál modulovaný kmitočtem 1 kHz a $\Delta f = \pm 50$ kHz). Přednosti popsaného mf zesilovače zvuku s UL1201N je ve srovnání s obvodem s diskrétními tranzistory nižší mez omezování signálu (asi 20 mV), což zvětšuje stabilitu úrovně výstupního signálu a dovoluje lépe potlačit rušivé zbytky nosné obrazového signálu. Nevýhodou zesilovače je menší sklon demodulační kmitočtové charakteristiky (asi 17 mV/kHz).

Elektrické údaje UL1201N

Mezní údaje ($\theta_a = +25^\circ\text{C}$)	
Napájecí napětí U_{CC} :	6 až 12 V.
Ztrátový výkon P_{tot} :	max. 600 mW.
Rozsah pracovních teplot okolí θ_a :	-25 až +70 °C.
Rozsah skladovacích teplot θ_{stg} :	-40 až +125 °C.
<hr/>	
Charakteristické údaje ($\theta_a = +25^\circ\text{C}$)	Min. - max.
Ztrátový výkon P_{tot}	
$U_{CC} = 6 \text{ V}$:	30 až 108 mW,
$U_{CC} = 7,5 \text{ V}$:	52 až 150 mW,
$U_{CC} = 10 \text{ V}$:	90 až 240 mW.
Napěťový zisk A_U	
($U_{CC} = 7,5 \text{ V}, U_I = 178 \mu\text{A}, f = 10,7 \text{ MHz}$):	typ. 60, ≥ 55 dB
Výstupní napětí saturační $U_O \text{ sat}$	
($U_{CC} = 7,5 \text{ V}, U_I = 100 \text{ mV}, f = 10,7 \text{ MHz}$):	0,55 až 1,4 V.
<hr/>	
Informativní údaje	
$\theta_a = +25^\circ\text{C}, U_{CC} = 7,5 \text{ V}, f = 10,7 \text{ MHz}$	
Vstupní odpor R_I :	2,85 kΩ.
Vstupní kapacita C_I :	6,5 pF.
Výstupní odpor R_O :	41 kΩ.
Výstupní kapacita C_O :	3,9 pF.

**Mezifrekvenční
mf zesilovač UL1202L**

Integrovaný obvod UL1202L je bipolární analogový integrovaný obvod, určený jako zesilovač signálu FM mf kmitočtu 10,7 MHz v rozehlasových přijímačích a jiných přístrojích pro všeobecné použití. Vnitřní elektrické zapojení obvodu je na obr. 41. Součástka je v kovovém pouzdře CE25 (TO-72) se čtyřmi drátovými vývody. „Integrovaný obvod UL1202L je ekvivalentem součástky LA1221 japonského výrobce Sanyo.“

Vývody: 1 – výstup obvodu, 2 – přívod napájecího napětí U_{cc} , 3 – vstup obvodu, 4 – zem.

Charakteristické údaje v tabulce platí pro mf zesilovač signálu FM s kmitočtem 10,7 MHz, měřený v zapojení podle obr. 42. Uvedený měřicí obvod lze po-

Obr. . 41. Vnitřní elektrické zapojení
Ull 1202I

malých úpravách zvolit i jako provozní zapojení. Závislost napěťového zesílení na napájecím napětí je značná. Při vstupním napětí 8 mV, zatěžovacím odporu

funkční blokové zapojení spolu se zapojením vývodů na obr. 44. Součástka je v plastickém pouzdro CE70 s 2x sedmi vývody. Přímý zahraniční ekvivalent je japonské výroby Sanyo LA1201.

Obr. 42. Měřicí zapojení UL1202L, které po malých úpravách lze použít jako doporučené zapojení mf zesilovače 10,7 MHz

Obr. 44. Funkční blokové zapojení a zapojení vývodů UL1211N

Elektrické údaje III 1202L

Mezní údaje ($\theta_a = +25^\circ C$)	
Napájecí napětí U_{CC} :	max. 24 V.
Vstupní napětí U_I :	max. $\pm 3 V$.
Ztrátový výkon P_{tot} :	max. 300 mW.
Rozsah pracovních teplot okolo θ_a :	$-25 až +70^\circ C$
Rozsah skladovacích teplot θ_{stg} :	$-40 až +125^\circ C$
Charakteristické údaje (mf zesilovač FM 10,7 MHz)	
($\theta_a = +25^\circ C$, $U_{CC} = 10 V$, $R_L = 1 k\Omega$, $f = 10,7$ MHz)	
Proud I_{CC} :	Jmen. Min. —max. 4 až 12 mA.
Výstupní klidový proud I_O :	3 mA.
Napěťový zisk A_u	
($U_I = 8$ mV):	25 až 33 dB.
Vstupní mezní napětí U_I :	50 mV.
Výstupní napětí saturační U_O sat	
při $U_I = 100$ mV:	$\geq 1,2$ V.
Vstupní kapacita C_I :	9 pF.
Vstupní odpor R_I :	1,1 k Ω .
Výstupní kapacita C_O :	3 pF.
Výstupní odpor R_O :	60 k Ω .

1 k Ω a na kmitočtu 10,7 MHz je největší zisk 20 dB při napájecím napětí 10 až 13 V. Při větším napájecím napětí se zisk zmenšuje na 28 dB při 20 V, při menším napětí (pod 10 V) se prudce zmenšuje. Nejmenší využitelné napájecí napětí je 8 V, při němž je zisk 27,5 dB.

**Zesilovač mf kmitočtu
AM/FM III 1211N**

Monolitický integrovaný obvod UL1211N je zesilovač mezinávlečeného signálu s modulací AM/FM a s detektorem signálů AM. Vzhledem k vestavěnému obvodu stabilizátoru napětí a malé spotřebě proudu je obvod vhodný k použití v přijímačích napájených z baterii. Vnitřní elektrické zapojení obvodu je na obr. 43.

Vývody: 01 – výstup detektoru AM, 02 – výstup stabilizátoru, 03 – vstup III. zesilovacího stupně AM/FM, 04 – výstup I. zesilovacího stupně mf AM/FM, 05 – vstup I. zesilovacího stupně AM/FM, 06 – přípoj blokovacího kondenzátoru, 07 – zem, 08 – výstup II. zesilovacího stupně mf AM/FM, 09 – vstup detektoru AM, 10 – vstup IV. zesilovacího stupně mf FM, 11 – zemnice bod, 12 – polarizace omezovače FM, 13 – výstup IV. zesilovacího stupně mf FM, 14 – napájecí napětí U_{CC} .

Integrovaný obvod se skládá z pěti samostatných stupňů:

I. Aperiodický zesilovač se dvěma tranzistory, pracující jako zesilovač mf signálu AM/FM, vybavený smyčkou automatického řízení zesílení AGC. Napětí pro AGC se

Obr. '43 Vnitřní elektrické zapojení UL-1211N

Mezifrekvenční zesilovač AM/FM UL1212N, UL1213N

Integrované obvody UL1212N, UL1213N jsou mezifrekvenční zesilovače pro použití v přijímačích pro příjem signálů AM (včetně krátkých vln) a signálů FM. Obvody obsahují nízkofrekvenční zesilovač třídy B s výstupním výkonem 600 mW, stabilizační obvod klidového proudu, buďť předesilovač, dvoustupňový mf zesilovač, obvod pro AFC a stabilizované předpětí. Vnitřní stabilizace zajišťuje téměř konstantní citlivost obvodu a zamezuje většimu zkreslení v celém rozsahu napájecího napětí 2,7 až 12 V. Použitý vstupní stupeň – směšovač – oscilátor pro AM, 1. stupeň mf zesilovače pro FM – dovoluje poměrně velkou pružnost v návrhu plošných spojů. Vnitřní zapojení na obr. 47 je u obou obvodů stejně. Použité pouzdro je typu DIL CE71 z plastické hmoty a s 2x osmi vývody. Obvod UL1212N je přímým ekvivalentem obvodu Philips, Valvo, Mullard TBA690, obvod UL1213N obvodu TBA700. Obě součástky se dosud ve větší míře neujaly v sériové vyráběných přijímačích. Rozdíl obou součástek je pouze v doporučeném provozním napájecím napětí a použitím zatěžovacího odporu.

Doporučené zapojení

Návrh doporučeného zapojení v přijímači pro příjem signálů AM a FM, které využívá všech blokových funkcí obvodu, je na obr. 48. Ke konstrukci zesilovače postačí pouze připojit mf pásmové propusti, detekční hrotové germaniové diody pro demodulaci, několik pasivních součástek a reproduktor. Stabilizované napětí z vývodu 14 slouží jako předpětí k řízení oscilátoru-směšovače s výtranzistorem (např. BF195, KF125, KF525). K vývodu 03 se připojuje přes oddělovací kondenzátor 1 μF sekundární vinutí laděného obvodu směšovače AM a 1. stupně mf FM. Odpor 3,3 kΩ lze vynechat, pokud není na závadu větší zkreslení při zmenšení napájecího napětí k dolní povolené hranici. Čárkované vyznačení kondenzátoru C₆₁ a C₆₂ se doporučuje použít pouze tehdy, je-li feritová anténa velmi blízko k výstupním součástkám nebo blízko integrovaného obvodu. Použije-li se C₆₁ s kapacitou 470 pF, C₆₂ s 2,2 nF, musí se zmenšit odpor R₄₂ na 2,2 Ω (z původních 10 Ω). Osadí-li se zesilovač obvodem UL1213N, platí odpor R₃₆ = 150 Ω při napájecím napětí 6 V a zatěžovacím odporu 4 Ω, při napětí 9 V a zatěžovacím odporu 8 Ω se musí R₃₆ zmenšit na 68 Ω.

Obr. 47. Vnitřní elektrické zapojení UL1212N, UL1213N

Obr. 48. Doporučené zapojení UL1212N, UL1213N v přijímači pro příjem signálů AM a FM

Mezifrekvenční zesilovač obrazového kmitočtu UL1221N, UL1231N

Integrované obvody UL1221N a UL1231N jsou mezifrekvenční zesilovače obrazového kmitočtu s klíčovanou automatickou regulací zesílení, určené pro obvody v černobílých a barevných televizních přijímačích a jiných přístrojích spotřební elektroniky. Vnitřní blokové zapojení spolu s příkladem použití obvodu

v televizním přijímači je na obr. 49 pro UL1221N, na obr. 50 pro UL1231N. Základní rozdíl mezi oběma obvody je v polaritě napětí AGC pro řízení kanálového voliče (UL1221N vyžaduje zvětšující se, UL1231N zmenšující se napětí), což je důležité vzhledem k osazení kanálového voliče tranzistoru n-p-n nebo p-n-p. Je-li v přijímači použit kanálový volič s tranzistory n-p-n, které se napájejí kladným napájecím napětím, musí se použít integrovaný obvod UL1221N, pokud jsou ve voliči tranzistory p-n-p napájené záporným na-

Elektrické údaje UL1212N, UL1213N

Mezní údaje	
Napájecí napětí U _{CC} :	2,7 až 12 V.
Ztrátový výkon P _{tot} při θ _A = 25 °C:	max. 650 mW. θ _A = 45 °C: max. 520 mW.
Charakteristické údaje	
Nízkofrekvenční zesilovač	
UL1212N: U _{CC} = 6 V, R _L = 4 Ω, f = 1 kHz	≥ 30,5 mA.
UL1213N: U _{CC} = 9 V, R _L = 8 Ω, f = 1 kHz	≤ 29 mA.
Klidový proud I _{CC} UL1212N:	0,6 W.
UL1213N:	200 až 6000 Hz.
Výstupní výkon P _O při zkreslení 10 %:	60 dB.
Šířka přenášeného pásma BW:	20 mW.
Napěťový zisk A _U :	
Sumový výkon P _{ON} na výstupu:	

Mezifrekvenční zesilovač AM	
UL1212N: U _{CC} = 6 V, f = 465 kHz, f _{mod} = 1 kHz, mod. = 30 %, R _L = 4 Ω	15 μV.
UL1213N: U _{CC} = 9 V, f = 465 kHz, f _{mod} = 1 kHz, mod. = 30 %, R _L = 8 Ω	
Vstupní napětí U _I při poměru signálu k šumu 26 dB:	15 dB.
Rozsah AVC (změna vstupního napětí pro dosažení zesílení 10 dB v nf zesilovači):	72 dB.
Výstupní napětí U _O při U _I = 100 μV:	100 mV.
Zkreslení k	≤ 3 %.
Mezifrekvenční zesilovač FM	
UL1212N: U _{CC} = 6 V, f = 10,7 MHz, f _{mod} = 1 kHz, f = ±15 kHz, R _L = 4 Ω	
UL1213N: U _{CC} = 9 V, f = 10,7 MHz, f _{mod} = 1 kHz, f = ±15 kHz, R _L = 8 Ω	
Vstupní omezovací napětí U _I lim:	100 μV.
Výstupní napětí saturací U _O sat:	100 mV.
Útlum amplitudové modulace AMR při f _{mod} = 400 Hz, mod. = 30 %:	≥ 40 dB.
Zkreslení k při f = 100 MHz, Δf = ±40 kHz, f _{mod} = 1 kHz:	≤ 3 %.

Obr. 49. Funkční blokové zapojení
UL1221N

Obr. 50 Funkční blokové zapojení
UL1231N

pětím, použije se obvod UL1231N. Obě součástky jsou v plastickém pouzdře DIL CE70 s 2× sedmi vývody. Přímý zahraničním ekvivalentem obvodu UL1221N je výrobek Motorola MC1352, obvodu UL1231N typ Motorola MC1353.

Vývody: 01, 02 – vstup mf signálu, 03, 04 – zem, 05 – vstup klíčovacích impulsů (záporných), 06 – k prahovému napětí AGC, 07, 08 – výstup mf signálu, 09 – filtrace střídavé složky napětí AGC, 10 – vstup obrazového signálu (s kladnou polaritou), 11 – napájecí napětí $+U_{CC}$, 12 – výstup AGC pro řízení kanálového voliče, 13 – výstup zpožděného napětí AGC pro kanálový volič, 14 – filtrace napětí AGC pro zesilovač mf signálu.

Základní funkce obvodu: Mezifrekvenční signál je přiváděn na symetrický vstup dvoustupňového rozdílového zesilovače. Zesílený obrazový signál se odebírá z výstupu s vývody 07, 08. Na vývod 05 se přivádějí klíčovací impulsy (záporné impulsy zpětného běhu rádkového vychlování). Stejnosměrné napětí, přiváděné na vývod 06, vytváří prahové napětí nasazení AGC. Při použití obvodu UL1221N je k vývodu 09 připojen „detekční obvod“, jehož úkolem je vyhodit napětí AGC. Je-li použit obvod UL1231N, vyhlašuje se zbytková střídavá složka napětí AGC obvodem RC, připojeným k vývodu 09. Obrazový signál se přivádí na vývod 10 (vstup prvního zesilovače AGC). Výstupní napětí

AGC pro kanálový volič se odebírá z vývodu 12, přičemž hranice zpoždění tohoto napětí je dáná vnějším napětím přiváděným na vývod 13.

K objasnění funkce obou integrovaných obvodů je nutno připomenout, že normu OIRT pro televizní příjem charakterizuje negativní obrazová modulace a kladné synchronizační impulsy. Ke správné funkci zesilovače je proto třeba přivést na vývod 10 obvodu kladné synchronizační impulsy z obrazového zesilovače a na vývod 06 stejnosměrné napětí, upravující stejnosměrný pracovní bod automatické regulace zesílení.

Podrobné zapojení integrovaného obvodu UL1221N na obr. 51 a UL1231N na

Obr. 51. Vnitřní elektrické
zapojení UL1221N

Obr. 52. Vnitřní elektrické
zapojení UL1231N

obr. 52 nám poslouží k popisu bližší funkce součástek integrovaných obvodů. Na vývod 05 integrovaného obvodu se přivedou kladné klíčovací impulsy z koncového stupně nebo generátoru řádkového rozkladu. Pokud tranzistor T_2 , který je v běžném stavu vodivý, přejde do stavu uzavřeného, vznikne na jeho kolektoru a anodě diody D_1 kladný impuls. Amplituda impulsu bude určena napětím, které budou ve stejném okamžiku na vývodech 06 a 10. V okamžiku kladného impulsu na kolektoru T_2 se dioda D_1 otevře a protékající proud nabije vnější kondenzátor C_1 , připojený k vývodu 09. V následujícím okamžiku impuls z koncového stupně řádkového rozkladu zaniká, tranzistor T_2 opět vede a zmenší se napětí na jeho kolektoru. Dioda D_1 bude v tomto okamžiku záporně polována, kondenzátor C_1 se vybijí. Napětí na kondenzátoru se zesiluje tranzistory T_4 a T_5 a pak vyhlazuje vnějším kondenzátorem C_2 a odporem R_1 (je součástí čipu). Takto vyhlazené napětí se přivádí na báze tranzistorů T_{15} a T_{17} jako regulační napětí pro řízení zesílení (tzv. U_{AGC}). Stejnosměrné napětí z kondenzátoru C_2 se dále přivádí na bázi tranzistoru T_7 , rozdílového zesílovače, tvořeného tranzistory T_7 a T_{10} .

Báze tranzistoru T_7 je napájena z vývodu 13 napětím, zpožďujícím regulaci zesílení kanálového voliče ve vztahu k regulačnímu napětí mf zesílovače. Výstupní napětí k rozdílovému zesílovači se odebírá z kolektoru T_7 (UL1221N) nebo z T_{10} (UL1231N).

Výsledkem popsaného pochodu je zvětšující nebo zmenšující se napětí U_{AGC} pro řízení kanálového voliče v závislosti na vstupním signálu. Zesílené regulační napětí (tranzistory T_{11} , T_{12} a T_{13}) je pak přiváděno na bázi zesílovacího tranzistoru kanálového voliče. Na obr. 53 jsou regulační charakteristiky kanálových voličů, osazených tranzistory n-p-n a p-n-p.

Dále si pøípíšeme funkci zesílovače obrazových signálù. Tranzistory T_{16} , T_{19} ,

Obr. 53. Regulační charakteristika kanálových voličů s tranzistory n-p-n a p-n-p

T_{14} a T_{18} tvoří kaskádní rozdílový zesílovač. V dobì, kdy tranzistory T_{15} a T_{17} nevedou, je zesílení zesílovače největší. V okamžiku připojení kladného napěti na báze tranzistorù T_{15} a T_{17} tranzistory povídou a zmenší se současně skutečné zesílení přesto, že proudy tranzistorù T_{16} a T_{19} zůstanou stejně.

Tranzistory T_{20} , T_{21} , T_{22} , T_{25} , T_{27} a diody D_4 až D_7 tvoří napájecí obvod kaskádního zesílovače mf kmitočtu a výstupního zesílovače, který je zatižen pásmovou propustí. Výstup zesílovače (tranzistory T_{26} a T_{28}) může být symetrický nebo nesymetrický.

Vstupní signály mf kmitočtu z kanálového voliče se přivádějí přes filtrační členy na vývody 01 a 02.

Je třeba ještě dodat, že mf zesílovače obrazového signálu s obvodem UL1221N nebo UL1231N musí navazovat na přidáváný zesílovací stupeň a diodový detektor, příp. na další integrovaný obvod, který plní současně funkci zesílovače a detektora synchronizačního signálu.

Výrobce doporučuje tyto pracovní podmínky obou obvodù: $U_{CC} = 12$ V, $I_{CC} = 30$ mA; $P_{tot} = 325$ mW. Mimo elektrické údaje charakterizuje vlastnosti obvodù graf závislosti zesílení mezifrekvenčního zesílovače a výstupního napěti AGC jako funkce napětí AGC na obr. 54 pro UL1221N a obr. 55 pro UL1231N. Další závislost na obr. 56 udává průběh výkonového zesílení v závislosti na napájecím napěti.

Integrovaný obvod UL1231N je schopen zpracovávat velmi vysoké mf kmitočty. Jeho zesílení je však závislé na stabilitě zapojení obvodu, kterou může konstruktér zajistit. Stabilita se zmenšuje se zvyšujícím se kmitočtem, ovšem při vhodně navržené desce s plošnými spoji může zesílovač zpracovávat mf signál až do 100 MHz při šířce pásmá 10 MHz.

Meziní přípustné napájecí napěti obvodù UL1221N, UL1231N je +18 V. Vnitřní stabilizační obvody zajišťují velkou stabilitu zesílení i při silném kolísání napájecího napěti. Pro napětí větší než +10 V je změna zesílení nepatrnná. Odebíraný proud $I_{CC} = I_{11} + I_7 + I_8$ má lineární závislost na napájecím napěti. Při 12 V je 21 mA, z čehož 15 mA odebírá zesílovač, zbytek proudu odebírají zesílovače automaticky.

Šumy zesílovače závisí hlavně na šumu kaskádního stupně. Teoreticky vypočtené údaje se však v podstatě odlišují od prakticky naměřených, které jsou větší. Sumový činitel závisí především na výstupním odporu budicího zdroje, prou-

du prvního tranzistoru a napájecím napěti. Při napájecím napěti 12 V a optimálně nastaveném odporu budicího stupně je šumový činitel asi 4,5 dB na kmitočtu 30 MHz a 8,5 dB na 60 MHz. Se zvětšujícím se napájecím napětim se šum zvětšuje přibližně lineárně na 5,5 dB a 10,5 dB při 30 a 60 MHz. Proto se doporučuje použít před mf zesílovačem zesílovač s malým šumem se zesílením 20 až 40 dB.

Nezkreslené výstupní napěti je ovlivněno proudem koncového stupně a dynamickým odporem výstupního obvodu. Při napájecím napěti U_7 (U_8) = 12 V je proud I_7 (I_8) 2,8 mA. Napětí emitoru výstupních stupňů T_{27} , T_{28} je 6,6 V. Jestliže předpokládáme minimální úbytek napěti U_{CE} na těchto tranzistorech asi 1 V, obdržíme maximální rozkmit výstupního napěti $U_{OMM} = 12 - 7,6 = 4,4$ V.

Větší rozkmit výstupního napěti lze dosáhnout při větším napájecím napěti koncového stupně, než mají předcházející stupně.

Použitím automatické regulace se rozkmit výstupního napěti zmenší v důsledku zvětšení stejnosměrného napěti na emitorech koncových tranzistorù. Zmenší-li se stejnosměrný proud tranzistorù T_8 , T_9 napětí na jejich kolektorech se zvětší, což vyvolá zvětšení napěti na bázích a odpovídající zvětšení napěti na emitorech koncového stupně. Rozkmit nezkresleného výstupního napěti zesílovače, napájeného napětím 12 V a pracují-

Obr. 56. Výkonové zesílení mf zesílovače 58 MHz s UL1221N nebo UL1231N v závislosti na napájecím napěti

Obr. 54. Závislost zesílení mf zesílovače a výstupního napěti AGC na napěti AGC obvodu UL1221N

Obr. 55. Závislost zesílení mf zesílovače a výstupního napěti AGC na napěti AGC obvodu UL1231N

ciho na kmitočtu 30 MHz, je max. 0,5 V. zavedením regulace zesílení o -10 dB se zmenší na 0,27 V, při -30 dB na 0,15 V.

Největší vstupní napětí, které se může přivést na vstup zesilovače, je omezeno rozdílovým zesilovačem. V žádném případě nemůže překročit 170 mV.

Doporučená zapojení

Návrh doporučeného zapojení integrovaných obvodů UL1221N nebo UL1231N v mf zesilovači obrazového kmitočtu, který je napájen kladným napětím 12 V (minus pól zdroje je uzemněn); výstup obvodu je připojen k detektoru TCA540 nebo MC1330

Další příklad zapojení na obr. 58 uvádí jednostupňový mf zesilovač s kmitočtem 60 MHz, šířkou pásma 8 MHz a maximálně plochou charakteristikou, který je osazen obvodem UL1231N. Šířku pásma prvního vstupního obvodu pásmové propusti určuje především výstupní odpor generátoru signálu 50 Ω. Druhý vstupní obvod filtrován spolu s vstupní kapacitou integrovaného obvodu, kapacitou spojů a součástek tvorí druhý laděný obvod. Primární vinutí výstupní pásmové propusti je symetrické s vyvedeným středem vinutí, což značně zmenšuje vliv zpětné vazby. Vzadní kapacita mezi primárním symetrickým a sekundárním nesymetrickým obvodem závisí na činiteli vazby obou polovin cívky. Podobně jako na vstupu je zde užit kapacitní dělič. Zesílení celého zesilovače je asi 34 dB, šumové číslo nepřekročí 8,7 dB. Zavedená regulace zesílení v mezech 0 až -50 dB neovlivňuje podstatně přenosové charakteristiky zesilovače.

Podobně lze konstruovat mf zesilovač s kmitočtem 30 MHz s automatickou regulací zesílení. Ke zvětšení výstupního napěti lze za obvodem UL1231N zařadit druhý zesilovací stupeň s tranzistorem BF215. Zesilovací činitel pak dosáhne až 60 dB na kmitočtu 30 MHz, šumový činitel 6,8 dB. Rizení napěti na vývodu 06 lze dosáhnout amplitudového omezení v po-někud užším rozsahu.

Měření vysokofrekvenčních napětí řádu milivoltů nebo set mikrovoltů v amatérských podmínkách je velmi obtížné, nebo zcela nemožné. Měření je nutné při zkoušení křemenných filtrů, pásmových propustí, vf a mf zesilovacích stupňů apod. Jako jediná přístupná metoda se jeví měřit signál širokopásmovým zesilovačem, kterým se signál zesílí, pak se usměrní a posuzuje se velikost usměrně-

Obr. 57. Doporučené zapojení obvodů UL1221N nebo UL1231 s kladným napájecím napětím 12 V (minus pól zdroje je uzemněn); výstup obvodu je připojen k detektoru TCA540 nebo MC1330

Obr. 58. Zapojení mf zesilovače 60 MHz s UL1231N a vstupní-výstupní impedancí 50 Ω

Obr. 59. Zajímavé zapojení indikátoru vf napětí se dvěma obvody UL1221N. Místo tranzistoru 2SK41 lze použít typ BF245, rovněž polské výroby

ného napěti. Vhodný způsob provedení jednoduchého indikátoru vf napěti je na obr. 59.

V signál se přivádí přes kondenzátor a diodový omezovací obvod na řídící elektrodu polem řízeného tranzistoru T₁, který pracuje jako proudový zdroj. V obvodu emitoru tranzistoru je zapojen napěťový dělič, kterým lze zeslabit měřený signál o -20 dB a -40 dB. Tranzistor lze použít jakýkoli typ s kanálem n, avšak vhodný pro vf použití. V indikátoru bylo použito japonského tranzistoru 2SK41. Dobře poslouží i známý typ BF245.

Širokopásmový vf zesilovač je zhoden s obvodem UL1221N s aperiodickým transformátorem Tr, navinutým na toroidním jádře o $\varnothing 10$ mm, 3x devíti závity třemi dráty najednou. Začátky závitů jsou v zapojení označeny tečkami. K sekundárnímu vinutí je připojen usměrňovací můstek se čtyřmi germaniovými diodami AAP153. Následuje další stupeň, který zesiluje stejnosměrné napětí. Je použit opět obvod UL1221N tak, že do obvodů výstupních tranzistorů jsou zapojeny odpory R₄, R₅ a regulační potenciometr P. Zesilovač má symetrický vstup i výstup.

Elektrické údaje UL1221N, UL1231N

Mezní údaje ($\theta_a = 25^\circ C$)

Napájecí napětí $U_{CC} 11/4$:

Napětí vývodu 07, $U_{7/4}$:

Napětí vývodu 08, $U_{8/4}$:

Vstupní napětí mf zesilovače, $U_{1/4}$:

Vstupní napětí mf zesilovače, $U_{2/4}$:

Vstupní napětí zesilovače AGC, $U_{6/4}$:

Vstupní napětí zesilovače AGC, $U_{10/4}$:

Napěťový rozsah klíčovacích impulsů, $U_{5/4}$:

Ztrátový výkon P_{tot} :

Rozsah pracovních teplot okolo θ_a :

Rozsah skladovacích teplot θ_{slg} :

Charakteristické údaje ($U_{CC} = U_{11/4} = 12$ V, $\theta_a = 25^\circ C$)

Napájecí proud klidový /cc:

($U_7 = U_8 = U_{11} = 12$ V):

Napájecí proud provozní /cc:

($U_7 = U_8 = U_{11} = 18$ V, $t_{ip} \leq 100$ ms):

Rozsah vstupního napětí U_1 :

Výkonové zesílení A_p :

($U_1 = 58$ μV, $f = 58$ MHz):

Výstupní mf napětí U_0 :

($U_1 = 160$ mV, $f = 58$ MHz, útlum

mf zesílení 30 dB):

Výstupní napětí šumové U_{ON}

($R_G = 50\Omega$, $f = 58$ MHz):

1 mV

Rozsah napěti AGC pro kanálový volič, $U_{12/4}$:

($U_5 = -8$ V, $U_6 = 1,5$ V, $U_{13} = 2$ V)

8 V

UL1221N: 8 V

UL1231N: -6 V

($I_5 = 0$ mA, $U_6 = 0$ V, $U_{13} = 4$ V)

0,2 V

UL1221N: 0,2 V

UL1231N: 8,2 V

≥ 60 dB

Rozsah vstupního napěti AGC, ΔU_1 :

Skutečná činnost AGC pro mf zesilovač ΔU_0 :

($U_1 = 0,16$ až 160 mV, $f = 58$ MHz):

ΔU_0 (změna výkonového zesílení mf zesilovače ΔA_p):

(v rozsahu AGC kanálového voliče):

Prahové napěti AGC kanálového voliče,

$U_{13/4}$ (útlum mf zesílení 30 dB):

Výstupní proud I_0 ($U_7 = U_8 = 12$ V):

($I_0 = 42$ až 55 dB):

≥ 200 mV

6 ≤ 7 mA

B/6	82	Amatérské RADI	217
-----	----	----------------	-----

Napájí se z baterie 9 V přes tlumivku T1 s 8 závitý na feritové tyče o $\varnothing 2 \times 10$ mm. Použije-li se měřidlo s malou třídou přesnosti (např. indikátor vybuzený z magnetofonů), nelze sice nazvat popsaný přístroj milivoltmetrem, přesto i tak postačí ke zkoušení křemenných pásmových propustí SSB, pásmových propustí vysílačů, vyvážení modulátorů apod.

Práce s indikátorem je jednoduchá. Na vstup se přivádí vf signál nejlépe krátkým kusem souosého kabelu, zakončeným konektorem. Po připojení napájecího napětí a nastavení vhodného měřicího rozsahu (k prepínání rozsahů se hodí tlačítkový prepínač typu Isostat) lze začít s měřením. Místo galvanického spojení se zdrojem lze na vstup připojit indukční sondu s cívkou umístěnou v izolační trubici. Taktéž lze zkoušet funkci oscilátoru přijímače nebo zjišťovat parazitní kmitání jednotlivých stupňů vysílače. Vysílač, pracující s příkonem koncového stupně 100 W, který je nestíněný, způsobí na vysílaném kmitočtu ve vzdálenosti 0,5 m od vysílače plnou výchylku měřidla s nastaveným rozsahem -40 dB.

Mezifrekvenční zesilovač signálu FM, demodulátor, nf předzesilovač UL1241N

Integrovaný obvod UL1241N je mezifrekvenční zesilovač signálu FM, který sdružuje diodový detektor signálu FM, nízkofrekvenční předzesilovač a stabilizátor napájecího napětí, vhodný pro osazení mf zesilovacích stupňů v rozhlasových přijímačích s pásem VKV a v televizních přijímačích. Mf zesilovač může zpracovávat mf kmitočty v rozsahu 100 kHz až 20 MHz. Předností integrovaného obvodu je možnost samostatného využití kterékoli části obvodu bez ohledu na ostatní části. Vnitřní elektrické zapojení obvodu je na obr. 60, funkční blokové zapojení s vyznačeným zapojením vývodů na obr. 61. Součástka je v plastickém pouzdře DIL CE70 s 2x sedmi vývody. Přímým zahraničním ekvivalentem je obvod CA3042 výrobce RCA.

Vývody: 01 – vstup mf zesilovače, 02, 03 – vyhlazení zbytkové střídavé složky, 04 –

Obr. 61. Funkční blokové zapojení a zapojení vývodů UL1241N

zem, 05 – výstup nf předzesilovače, 06 – výstup není použit, 07 – vstup mf zesilovače, 08 – klíčované potlačení šumu, 09, 10 – vstup detektora FM, 11, 12 – výstup mf zesilovače, 13 – výstup detektora FM, 14 – připoj kladného napájecího napětí $+U_{cc}$.

Základní funkce obvodu: Na vstup integrovaného obvodu (viz obr. 60) se přivádí signál s mf kmitočtem 10,7 MHz z výstupu kanálového voliče televizního přijímače. Obvod mf signál zesílí a přivede na detekční diody. Nízkofrekvenční signál po detekci se dále zesílí v nf předzesilovacím stupni.

Mezifrekvenční zesilovač je tvořen širokopásmovým zesilovačem v podstatě ze tří rozdílových zesilovačů (tranzistory T_1 až T_9 , dioda D_1 a 11 integrovaných odporek). První zesilovací stupeň tvoří tranzistory T_1 , T_2 , pracující se společným kolektorem a bází, jakož tranzistor T_3 se společným kolektorem. Druhý stupeň zesilovače (T_4 , T_5 , T_6) je proveden identicky. Třetí stupeň je vytvořen tranzistory T_7 a T_8 , přičemž výstup mf zesilovače tvoří tranzistor se společnou bází.

Napájecí napětí zesilovače je dostatečně stabilizované vnitřním stabilizátorem napětí 4,8 až 5 V. Mf zesilovač má napěťový zisk 60 až 66 dB na kmitočtech v rozsahu 5 až 10 MHz při zatěžovacím odporu 1 k Ω . Závislost napěťového zesílení mf

zesilovače na provozním kmitočtu je na obr. 62.

Nízkofrekvenční předzesilovač má velký vstupní odpor a malý výstupní odpor. Zesilovač tvoří tranzistory T_{10} , T_{11} v Darlingtonově zapojení s nezablokováným emitorovým odporem tranzistoru T_{11} . Na výstupu zesilovače je tranzistor T_{16} , pracující jako emitorový sledovač. Napěťový zisk předzesilovače závisí na vnitřním odporu budicího zdroje – průměrně je 28 dB při odporu 50 Ω . Průběh zesílení v závislosti na kmitočtu je na obr. 63.

Samostatnou část obvodu tvoří detekční obvod signálu FM, vytvořený ze čtyř diod (D_2 až D_5) a dvou odporek (10 k Ω). Proti sobě zapojené diody detektora tvoří zdvojovač napětí. Kladné půlvlny v napětí jsou usměrňovány diodami D_2 , D_4 , záporné diodami D_3 , D_5 . Zatěžovací odpory detektoru jsou na výstupu propojeny a vedeny společným vývodem 13. Ke správné funkci detektoru postačí vstupní signál mf kmitočtu z fázového diskriminátoru.

Stabilizátor napětí se skládá ze čtyř tranzistorů, tří Zenerových diod a čtyř odporů. Slouží k výrobě napájecího napětí pro širokopásmový zesilovač. Stabilizátor se napájí ze zdroje s malým výstupním odporem, jehož napětí nepřekročí 9 V nebo z proudového zdroje proudu nevětšího než 50 mA. Je-li stabilizátor napájen malým napětím, Zenerovy diody ZD_2 , ZD_3 jsou v „klidu“, teprve při proudovém napájení se na nich ustálí napětí 11,2 V. Je to první vstupní stabilizace pracovních podmínek. Druhá stabilizace následuje v obvodu z odporu 5 k Ω mezi bází a kolektorem tranzistoru T_{15} a Zenerovou diodou ZD_1 . Stabilizované napětí této stabilizační cesty je asi 5,5 V. Jejím napájením přes emitorové sledovače T_{14} , T_{15} širokopásmový zesilovač. Po úbytku na sledovači je napájecí napětí asi 4,8 V. Dvojice tranzistorů T_{12} , T_{13} slouží k vytvoření stabilizovaného napětí pro napájení bází tranzistorů zesilovače.

Obr. 60. Vnitřní elektrické zapojení UL1241N

Obr. 62. Průběh napěťového zesílení mf zesilovače s UL1241N v závislosti na kmitočtu

Obr. 63. Napěťový zisk nf předzesilovače s UL1241N v závislosti na kmitočtu pro různé výstupní odpory budicího generátoru; kondenzátor C_1 je připojen mezi vývody 07 a 09

Obr. 64. a) Zapojení mf zesilovače 10,7 MHz s obvodem UL1241N; b) montážní zapojení mf zesilovače podle obr. a)

Obr. 65. Blokové zapojení televizního přijímače s UL1241N jako mf zvukovým zesilovačem

Doporučená zapojení

Návrh doporučeného zapojení mf zesilovače signálů FM pro použití v rozhlasovém přijímači je na obr. 64a, na obr. 64b je pak uvedeno montážní zapojení desky s plošnými spoji při pohledu ze strany součástek. V zesilovači je použito polských typizovaných pásmových propustí s regulovatelnou vazbou – na vstupu zesilovače typ 4-27F1, v obvodu detektora typ 4-28R1.

Na vstup integrovaného obvodu (vývody 01 a 02) se přivádí přes dvouobvodový filtr mf signál 10,7 MHz. Zesílený signál se

přivádí na detektor signálů FM, který se skládá z filtru 4-28R1 a vnitřních součástek obvodu UL1241N (vstup je na vývodech 10 a 09, výstup na vývodu 13). Po detekci je nf signál z vývodu 13 zesílen předzesilovačem (vstup na vývodu 07, výstup na 05).

*Udaje mf zesilovače 10,7 MHz:
Celkový ztrátový výkon P_{CC} v obvodu při $U_{CC} = 9 \text{ V}$: 100 mW.
Výstupní napětí nízkofrekvenční $U_{o, nf}$: 0,42 V.*

*Práh omezování U_1 : 120 μV .
Útlum amplitudové modulace při $U_1 \geq 1 \text{ mV}, AMR$: 48 dB.*

Výstupní odpor R_{13} detektoru FM: 10 k Ω .

Obvod UL1241N lze rovněž používat v televizním přijímači jako zesilovač rozdílového kmitočtu zvuku. Blokové zapojení televizního přijímače s úplným elektrickým zapojením obvodu UL1241N ve funkci zvukového mf zesilovače je na obr. 65.

Mezifrekvenční zesilovač, signálů FM s demodulátorem, UL1242N

Integrovaný obvod UL1242N je zesilovač mf signálů FM 5,5 nebo 6,5 MHz, vybavený koincidenčním demodulátorem, zvlášť vhodný pro mf zesilovače zvuku v televizích a signálů FM v rozhlasových přijímačích. Obvod se vyznačuje velmi dobrými omezovacími vlastnostmi, velkým rozsahem napájecího napětí a malou potřebou vnějších součástek. Funkční blokové zapojení s některými vnějšími součástkami potřebnými pro funkci obvodu je na obr. 66. Součástka je v plastickém pouzdru DIL CE70 s 2x sedmi vývody. Přímým ekvivalentním typem obvodu je výrobek AEG-Telefunken, Siemens TBA120S. Obvodem lze též přímo zaměnit starší výrobek TBA120.

Integrovaný obvod sdružuje mf zesilovač FM signálů a demodulátor pro mezi-

Elektrické údaje UL 1241N

Mezní údaje ($\theta_a = 25^\circ \text{C}$)	
Napájecí proud I_{CC} :	max. 50 mA.
Ztrátový výkon P_{tot} :	max. 600 mW.
Rozsah pracovních teplot okolo θ_a :	0 až +70 °C.
Rozsah skladovacích teplot θ_{stg} :	-25 až +100 °C.
Charakteristické údaje	
Napájecí napětí U_{CC} 14:	Jmen. Min.-max. 10,6 až 11,8 V.
Klidový proud I_{CC} při $U_{CC} = 9 \text{ V}$:	8 až 18 mA.
Vstupní napětí U_{11} mf zesilovače ($f = 4,5 \text{ MHz}, U_0 = 350 \text{ mV}$):	$\leq 300 \mu\text{V}$.
Vstupní odpor R_{11} mf zesilovače ($f = 4,5 \text{ MHz}, U_1 = 20 \text{ mV}$):	10 k Ω .
Výstupní odpor $R_{11/12}$ mf zesilovače ($f = 4,5 \text{ MHz}, U_1 = 20 \text{ mV}$):	100 k Ω .
Součinitel potlačení signálů AM, AMR ($f = 4,5 \text{ MHz}, \Delta f = \pm 25 \text{ kHz}, f_{mod} = 1 \text{ kHz}, \text{mod.} = 30 \%, U_1 = 100 \text{ mV}$):	$\geq 45 \text{ dB}$.
Napěťový zisk $A_{u, mf}$ mf zesilovače ($f = 4,5 \text{ MHz}, R_L = 1 \text{ k}\Omega, U_1 = 50 \mu\text{V}$):	67 dB.
Výstupní napětí U_{13} detektoru FM ($f = 4,5 \text{ MHz}, \Delta f = \pm 25 \text{ kHz}, f_{mod} = 1 \text{ kHz}, U_1 = 100 \text{ mV}$):	60 mV.

Výstupní odpor R_{13} detektoru FM ($f = 4,5 \text{ MHz}, f = 1 \text{ kHz}, U_1 = 100 \text{ mV}$):	10 k Ω .
Vstupní odpor R_{17} mf předzesilovače ($f = 1 \text{ kHz}, U_1 = 10 \text{ mV}$):	100 k Ω .
Vstupní odpor R_{15} mf předzesilovače ($f = 1 \text{ kHz}, U_1 = 10 \text{ mV}$):	250 k Ω .
Napěťový zisk $A_{u, nf}$ mf předzesilovače ($f = 1 \text{ kHz}, U_1 = 10 \text{ mV}$):	28 dB.
Výstupní napětí $U_{o, nf}$ mf předzesilovače ($f = 4,5 \text{ MHz}, \Delta f = \pm 25 \text{ kHz}, f_{mod} = 1 \text{ kHz}, U_1 = 100 \text{ mV}$):	$\geq 0,5 \text{ V}$.
Harmónické zkreslení k ($f = 4,5 \text{ MHz}, \Delta f = \pm 25 \text{ kHz}, f_{mod} = 1 \text{ kHz}, U_1 = 100 \text{ mV}, U_0 = 500 \text{ mV}$):	1,5 $\leq 5 \%$.
Vstupní kapacita mf zesilovače C_1 ($f = 4,5 \text{ MHz}$):	5 pF.
Výstupní kapacita C_o mf zesilovače ($f = 4,5 \text{ MHz}$):	4 pF.

Obr. 66. Funkční blokové zapojení UL1242N

nosné zpracování zvukového signálu v televizních přijimačích. Za osmistupňovým symetrickým omezovacím zesílovačem následuje symetrický koincidenční demodulátor s říditelným dělícím obvodem kolektorového proudu k elektronickému řízení hlasitosti. Vazební kondenzátory obvodu fázového posuvu jsou součástí integrovaného obvodu (u staršího typu TBA120 se musely použít vnější součástky), stejně tak přídavný pomocný tranzistor a Zenerovy diody k libovolnému použití v rámci dovolených mezních údajů. Přídavný tranzistor lze používat jako nf předzesílovač (jeho kolektorový proud nesmí překročit 5 mA) nebo jako spínač. Zenerova dioda s napětím 12 V je vyvedena na samostatný vývod 12. Lze ji použít ke stabilizaci napájecího napětí integrovaného obvodu nebo jiných funkčních bloků v přístroji.

Vývody: 01 – zem, 02 – pripoj kondenzátoru k v zemnění druhého vstupu omezovacího zesílovače, 03 – kolektor přídavného tranzistoru, 04 – báze přídavného tranzistoru přes odpor (asi 1 k Ω), 05 – pripoj potenciometru 5 k Ω pro řízení hlasitosti, 06 – vývod se nepoužívá, 07 – pripoj obvodu LC na koincidenční detektor, 08 – výstup nf signálu, 09 – pripoj článku LC na koincidenční detektor, 10 – vývod se nepoužívá, 11 – pripoj napájecího napětí U_{cc} , 12 – vstup Zenerovy diody 12 V, 13 – výstup omezovacího zesílovače přes odpor, 14 – výstup omezovacího zesílovače pro pripoj vstupního signálu.

Ačkoliv stejného zisku omezovacího zesílovače bylo možné dosáhnout se třemi tranzistorovými stupni, bylo u obvodu UL1242N využito osmistupňového symetrického zesílovače, čímž se dosáhlo optimálního potlačení amplitudové modulace. Šířka pásma zesílovače může být nejvýše asi 12 MHz, čímž se potlačí parazitní kmitání v pásmu VKV při požadovaném velkém zesílení.

Protože strmost jednoho tranzistoru se s teplotou zmenšuje asi o 0,3 %/K, změní se zisk omezovacího zesílovače se změnou teploty systému integrovaného obvodu o 50 °C asi o 10 dB. Ke kompenzaci tohoto teplotního vlivu byly v jednotlivých stupních omezovače použity místo emitorových odporů proudové zdroje; jejich proudy se se zvýšením teploty zvětšují. Proudové odpovídají úbytku napětí na emitorových odporech tranzistorů proudových zdrojů. Ten pak odpovídá rozdílu napětí v propustném směru referenčního

Obr. 67a. Deska s plošnými spoji pro mf zesílovač s UL1242N podle zapojení na obr. 67

Obr. 67b. Rozmístění součástek mf zesílovače s int. obvodem UL1242N podle obr. 67 (pohled ze strany součástek)

tranzistoru a tranzistorů v proudových zdrojích. Úbytek napětí je úměrný strmosti. Tím je zesílení omezovacího zesílovače skoro nezávislé na provozní teplotě součástky.

Symetrický koincidenční demodulátor signálů FM je proti dříve používaným poměrovým detektorem velmi výhodný a podstatně lepší.

Na demodulátor navazují dvě dvojice tranzistorů v zapojení rozdílových zesílovačů, které slouží k dálkovému ovládání hlasitosti zvuku. Cím je napětí jednoho tranzistoru rozdílového zesílovače menší, tím menší je nf napětí na vývodu 08. Další dvojice tranzistorů třetího rozdílového zesílovače slouží společně s tranzistorem proudového zdroje k vytvoření stabilního pracovního bodu nf výstupu (vývod 08). Hlasitost se řídí tranzistorem p-n-p, jehož odpor pro předpětí tvoří vnější potenciometr, připojený k vývodu 05. Proudové řízení hlasitosti je jednoduché a při jeho použití při dálkovém ovládání odpadá drahy stíněný kabel.

Integrovaný obvod UL1242N obsahuje celkem 47 tranzistorů, které nemají všechny jen zesílovací funkci. Protože v integrovaném obvodu jsou často tranzistory levnější než odopy, vychází se při konstrukci složitých analogových obvodů ze zcela jiných hledisek než při konstrukci mf zesílovačů z diskrétních součástek. Oč složitější je systém integrovaného obvodu, o to jednodušší je jeho vnější zapojení.

Obr. 67. Zapojení mf zesílovače s kmitočtem 6,5 MHz a UL1242N

Doporučená zapojení

Integrovaný obvod UL1242N je vhodný především pro zvukové mf zesílovače. Proti staršímu typu TBA120 má větší citlivost, obsahuje vazební kondenzátory obvodu posuvu fáze a další již dříve popsané přídavné součástky. Elektronické řízení hlasitosti zvuku zaručuje výrobce v rozsahu větším než 70 dB. Protože se signál řídí až po omezení, nemění se vůbec omezovací vlastnosti a řízení nezpůsobuje žádné nízkofrekvenční zkreslení. Rídící charakteristika je logaritmická. Praktické zapojení mf zesílovače zvuku s kmitočtem 6,5 MHz je na obr. 67. V důsledku logaritmické charakteristiky obvodu se musí k řízení hlasitosti použít lineární potenciometr 5 k Ω . Bude-li mf.zesílovač pracovat s kmitočtem 455 kHz, musí se zvětšit kapacita kondenzátorů C_6 a C_7 nejméně na 0,1 μ F. Napájecí napětí zesílovače je 12 V, proud 14,5 mA. Údaje jednotlivých součástek jsou uvedeny v tabulce.

Součástky mf zesílovače podle obr. 67

f [MHz]	Δf [kHz]	4,5 50	5,5 50	10,7 75	10,7 75
C_1 [pF]	330	220	150	150	150
C_2 [pF]	2200	1500:1000:680	470	330	330
C_3 [pF]	47	47	27	47	47
R_1 [k Ω]	–	–, 2,2; 1,8	–	–	–
L_1 [závitů]	20	20	15	15	15
L_2 [závitů]	8	8; 10; 12	8	12	12
$U_{on,eff}$ [mV]	1000	1000:750:600	1000	280	280
k [%]	3,7	3,7; 2,0; 1	1,4	0,5	0,5
U_{lim} [μ V]	7	7	8	10	10

Odpor R_4 se použije pouze tehdy, požaduje-li se plošší charakteristika vstupního filtru.

Využije-li se keramických rezonátorů místo vstupního laděného obvodu, upraví se zesílovač podle obr. 68. Průchozí útlum keramického filtru vyžaduje větší vstupní napětí pro dobrou činnost omezovače. Doporučuje se proto připojit ke keramickému rezonátoru alespoň jeden obvod LC , čímž se zlepší i selektivita. V tabulce jsou uvedeny údaje součástek pro provoz s keramickými filtry Murata/Stettner pro mf kmitočty 455 kHz, 6,5 MHz a 10,7 MHz.

Obr. 68. Zapojení mf zesilovače 6,5 MHz nebo 10,7 MHz se vstupním keramickým filtrem a UL1242N

Údaje součástek mf zesilovače podle obr. 68

	Mf kmitočet zvuku v TVP	Mf kmitočet 10,7 MHz v přijímači monó	Mf kmitočet 10,7 MHz v přijímači stereo
C ₁	[pF]	1500	470
C ₂	[nF]	22	22
L ₁	[závit]	8	8
R ₁	[kΩ]		1
R ₂	[Ω]	680	330
Filtr Erie/Murata/Stettner	SFF6.5MA	SFE10.7	SFE10.7

L₁ – drát o Ø 0,15 mm

K usnadnění stavby mf zesilovače je na obr. 67a výkres desky s plošnými spoji, na obr. 67b rozložení součástek. Desku se spojí lze použít i pro mf zesilovač se vstupním keramickým rezonátorem podle obr. 68.

Mf zesilovač s obvodem UL1242N lze nejrychleji vyvážit rozmítaným generátorem. Obvod můžeme nastavit též „ručně“ tak, že fázový posuv nastavíme nejdříve hrubě poslechem, změříme napětí na vývod 08 bez mf signálu a pak s přivedeným signálem nastavíme jemně posuv fáze na nejvhodnější velikost.

Stejně tak můžeme vyvážit obvod fázového posuvu na nejmenší zkreslení nebo při velmi malém mf signálu na minimální rušení amplitudovou modulací. Protože se dobře shodují minimum potlačení AM, činitel zkreslení a výstupní stejnosměrné napětí při použití signálu nebo bez něj,

jsou všechny čtyři postupy vyvažování rovnocenné. Pásmové propusti nebo laděné obvody před mf zesilovačem s UL1242N je nutno vyvážit při velmi malém mf signálu na nejmenší amplitudu nf napětí (nemáme-li k dispozici rozmitáč).

Obr. 69. Návrh zapojení zvukového spínače s přidavným tranzistorem k UL1242N

Obr. 70. Nf předzesilovač s přidavným tranzistorem k UL1242N

Mezifrekvenční zesilovač signálů FM s demodulátorem UL1244N

Integrovaný obvod UL1244N je zesilovač mf signálu 5,5 MHz, 6,5 MHz nebo 10,7 MHz FM, vybavený koincidentním demodulátorem, určený především pro mf zesilovače v televizních přijímačích, pracujících s videomagnetofony. Obvod se vyznačuje velmi dobrými omezovacími vlastnostmi, nf výstupním napětím nezávislým na napájecím napěti, je necitlivý na brum, na výstupu má velmi malý bytak mf signálu, k provozu potřebuje minimální množství součástek. Funkční blokové zapojení obvodu je na obr. 71. Obvod sdržuje širokopásmový omezovací zesilovač, koincidentní demodulátor signálů FM, obvod elektronického řízení mezifrekvenčního signálu pomocí změny stejnosměrného napětí, předesilovač nf signálu, stabilizátor napětí a přidavný vstup pro spoluhraní s videomagnetofonem. Výstup nf signálu je dvojí – řízený a neřízený. Vstup a demodulátor obvodu je přizpůsoben pro práci s laděnými obvody LC. Součástka je v plastickém pouzdře DIL CE70 s 2x sedmi vývody. Přímým ekviva-

Obr. 71. Funkční blokové zapojení UL1244N

Elektrické údaje UL1242N

(Údaje se vztahují k vývodu 01, není-li uvedeno jinak)			
Mezní údaje			
Napájecí napětí U_{CC} :			
Vnější napětí U_5 – vývod 05:	6 až 18 V.		
Proud I_3 kolektoru tranzistoru – vývod 03:	max. 4 V.,		
Proud báze I_4 tranzistoru – vývod 04:	max. 5 mA.		
Proud I_{12} Zenerovy diody – vývod 12	max. 2 mA.		
trvalý:			
po dobu max. 60 s:	max. 15 mA,		
Ztrátovy výkon trvalý P_{tot}	max. 20 mA.		
po dobu max. 60 s:	max. 400 mW		
	max. 500 mW.		
Charakteristické údaje ($U_{CC} = 12$ V)			
Mezifrekvenční zesilovač:	Jmen.	Min.–max.	
Proud I_{CCQ} – vývod 05 volný:		10 až 18 mA.,	
vývod 05 spojen se zemí:		10 až 20 mA.	
Napěťový proud mf zisk A_{uf}	68	dB.	
($f = 6,5$ MHz, $U_1 = 10 \mu V$)			
Mf výstupní napětí U_6 , U_{10} při omezování (každý vývod 06, 10, $f = 6,5$ MHz, $U_1 = 10 \mu V$):			
Nf výstupní napětí $U_{08\text{nf}}$			
($f = 6,5$ MHz, $\Delta f = \pm 50$ kHz, $U_1 = 10 \mu V$, $f_{mod} = 1$ kHz, $Q = 45$):			
Vstupní impedance, $f = 6,5$ MHz:			
vstupní odpor – vývod 14, R_{14} :			
vstupní kapacita – vývod 14, C_{14} :			
Výstupní odpor R_{08} – vývod 08:			
Rozsah nastavení hlasitosti $\Delta U_{08\text{nf}}$			
($f = 6,5$ MHz, $\Delta f = \pm 50$ kHz, $U_1 = 10 \mu V$, $f_{mod} = 1$ kHz, $Q = 45$):			
Odpory potenciometru R_5 – vývod 05			
($f = 6,5$ MHz, $\Delta f = \pm 50$ Hz, $U_1 = 10 \mu V$, $f_{mod} = 1$ kHz, $Q = 45$)			
$U_{0\text{nf}} = -1 \text{ dB}$:		3,7	kΩ.
$U_{0\text{nf}} = -70 \text{ dB}$:		1,4	kΩ.
Napětí U_5 vývodu 05			
($f = 6,5$ MHz, $\Delta f = \pm 50$ kHz, $U_1 = 10 \mu V$, $f_{mod} = 1$ kHz, $Q = 45$)			
$U_{0\text{nf}} = -1 \text{ dB}$:		2,4	V.
$U_{0\text{nf}} = -70 \text{ dB}$:		1,3	V.
Potlačení amplitudové modulace AMR			
($f = 6,5$ MHz, $\Delta f = \pm 50$ kHz, $f_{mod} = 1$ kHz, mod. $\pm 30\%$)			
$U_1 = 500 \mu V$:			$\geq 45 \text{ dB}$,
$U_1 = mV$:			$\geq 60 \text{ dB}$.
Zkreslení k			
($f = 6,5$ MHz, $\Delta f = \pm 50$ kHz, $f_{mod} = 1$ kHz, $U_1 = 10 \mu V$, $Q = 45$):			$\leq 4\%$.
Stojnosměrné napětí U_8 na nf výstupu (vývod 08, $U_1 = 0 \text{ V}$):		7,4	V.
Pomocné přídavné součástky:			
Průrazné napětí U_{Z12} Zenerovy diody – vývod 12 (z $I_{12} = 5 \text{ mA}$):		11 až 13,2 V.	
Vnitřní odpor r_{Z12} – vývod 12 (z $I_{12} = 5 \text{ mA}$):			$\geq 55 \Omega$.
Průrazné napětí kolektor – emitor $U_{CE0\ 03}$ ($I_C = 500 \mu A$):			$\geq 13 \text{ V}$.
Proudový zesilovací činitel h_{21E} přidavného tranzistoru – vývod 03 ($I_C = 1 \text{ mA}$, $U_{CE} = 5 \text{ V}$):			≥ 25 .

lentním obvodem je výrobek AEG-Telefunken, Siemens TBA120U.

Funkční blokové zapojení na obr. 71 je doplněno nejnutnějšími vnějšími součástkami. Integrovaný obvod je složen ze čtyř bloků: I – širokopásmový omezovací zesilovač, II – koincidenční demodulátor FM signálu, III – dvojitý předzesilovač s obvodem elektronického řízení nf signálu, IV – stabilizační obvod.

Vstupní kmitočtové modulovaný signál se přivádí na vstupy 14 a 02 integrovaného obvodu. V mnohastupňovém širokopásmovém zesilovači (I) se signál zesiluje a omezuje. Každý stupeň zesilovače je zhotoven jako rozdílový zesilovač s proudovým zdrojem. Zesílený a omezený signál je vyveden na vývody 06 a 10 a dále přiveden na symetrický koincidenční detektor signálů FM a současně na spolu-pracující obvod posuvu fáze (II). Obvod posuvu fáze tvoří kondenzátory s kapacitou asi 50 pF a vnější součástky L, C paralelně připojeného rezonančního obvodu, připojeného k vývodům 07 a 09. Laděný obvod je dodádán na střední kmitočet vstupního signálu.

Nízkofrekvenční signál získaný po detekci je předán na obvod řízení zesílení a dále do vstupních nf zesilovačů (III). Zesílení se řídí změnou stejnosměrného napětí na vývodu 05 (vnějším potenciometrem P).

Změna stejnosměrného napětí na vývodu 05 má vliv na statické pracovní podmínky tranzistorů T₁ až T₄ a současně vyvolává změny proudového zesilovacího činitele uvedených tranzistorů pro střídavé signály. Napětí na bázích tranzistorů T₂ a T₃, jakož i na vývodu 04 je stabilizováno vnitřním stabilizačním obvodem. Z rozboru práce rozdílových zesilovačů je patrné, že součet proudů tekoucích do vstupního zesilovače 1 je nezávislý na řídicím obvodu. Proto na jeho výstupu a tím na vývodu 12 bude nefázový výstupní nf napětí. Součet proudů tekoucích do vstupního zesilovače 2 se mění při změně napětí na vývodu 05. Výstupní nf napětí na vývodu 08 integrovaného obvodu bude proto závislý na postavení potenciometru P.

Stabilizační obvod (IV) stabilizuje přivedené napájecí napětí. Z jeho výstupu se napájí příslušné funkční stupně integrované v obvodu UL1244N.

Vývody: 01 – zem, 02 – vstup mf zesilovače přes kondenzátor C₀₃ – vstup nf signálu z videomagnetofonu, 04 – přípoj referenčního napětí 4,8 V, 05 – řízení hlasitosti vnějším potenciometrem P, 06 – výstup zesíleného a omezeného mf signálu FM, 07 – přípoj obvodu LC na koincidenční detektor, 08 – výstup nf řízeného signálu, 09 – přípoj obvodu LC na koincidenční detektor, 10 – výstup zesíleného a omezeného mf signálu FM, 11 – přípoj

Obr. 73. Doporučené zapojení dvounormového mf zesilovače zvuku s kmitočtem 5,5 MHz a 6,5 MHz s UL1244N

napájecího napětí +U_{CC}, 12 – výstup nf řízeného signálu, 13 – společný bod výstupu omezovacího zesilovače a vstupu koincidenčního demodulátoru, 14 – vstup mf zesilovače.

Doporučená zapojení

Hlavní použití integrovaného obvodu UL1244N je jako mf zesilovač zvuku v televizních přijímačích. Praktické zapojení zesilovače, který je použit v polských barevných televizních přijímačích T5601, je na obr. 72. Signál s mf kmitočtem 6,5 MHz, vybraný z obrazového signálu pomocí vstupního filtru L₁, C₂, se přivádí na vstup integrovaného obvodu UL1244N (vývody 14 a 02). Tam se zesílí, omezí a demoduluje. Z demodulátoru získaný nf signál se zesílí vnitřním zesilovačem vstupního napětí. Pro funkci obvodu posuvu fáze, který je součástí demodulátoru FM, je zapotřebí vnější laděný obvod L₂, C₃. Výstupní nf signál (vývod 08) se řídí přes odpor R₁, potenciometrem P, připojeným k vývodu 05. Na vývodu 12 integrovaného obvodu se odeberá neřízený nf signál pro nahrávání na magnetofon. Rozsah signálu na tomto výstupu nezávisí na nastavení potenciometru P pro řízení hlasitosti. Kondenzátor C₄ a C₅ tvoří část filtru deemfáze. Odpor R₂ a kondenzátor C₆ filtry zvukový signál po připojení přijímače.

Pomocí zesilovače podle obr. 73 lze zesilovat a demodulovat mf signály v televizním přijímači podle norm OIRT i CCIR. Vstupní signál je přiváděn na vstupní dvouobvodovou pásmovou propust s rezonančním kmitočtem 5,5 MHz a 6,5 MHz. Podobným obvodem je využito k posuvu fáze. Zde jsou však oba laděné obvody zapojeny sériově a připojeny ke koincidenčnímu detektoru. Jsou nastaveny na kmitočet 5,5 MHz a 6,5 MHz. Činitel jakosti laděného obvodu 6,5 MHz posuvu fáze

musí být asi o 20 % větší než obvodu 5,5 MHz, což je nutné k získání stejného rozkmitu nf signálu při stejných deviacích signálů FM. Vypustit-li se kondenzátor 47 µF v obvodu vývodu 11, změní se regulační charakteristika zesilovače.

Na obr. 74 je zapojení mezfrekvenčního zesilovače zvuku v televizním přijímači, který je určen pro spolupráci s video-magnetofonem. V zapojení je plně využito všech funkcí obvodu UL1244N. Spolu s tímto obvodem pracuje zesilovač s diskrétními tranzistory T₁ a T₂.

Při chodu magnetofonu v poloze přehrávání (reprodukce) se přivede stejnosměrné napětí +12 V na vstup A. Tím se zablokuje tranzistor T₁ a sepne oddělovačí zesilovač T₂. Dojde k preemfázi, čímž se vyzává deemfáze. Napětí umožňuje průtok proudu diodou D₁, odporem 47 kΩ a zablokuje zesilovač pro signály z demodulátoru obrazu (funkční skupina 1 na obr. 71). Zvukový signál z magnetofonu se přivádí na vstup B, tranzistorem T₂ se zesílí a pak se přivádí na vývod 03 obvodu UL1244N. Signál je pak přiveden na tu část obvodu řízení zesilovače, která je spojena se zvukovým výstupem (vývod 08) integrovaného obvodu. Na vývodu 12 není nf signál. Místo toho je k dispozici na vývodu 08 zvukový signál z magnetofonu, řízený potenciometrem P. Od tutu se pak přivádí k dalšímu zesílení do koncového zesilovače v televizním přijímači. Podobně jako filtr deemfáze v obvodu vývodu 08 IO je i zesilovač s tranzistorem T₂ vybaven filtrem preemfáze, složeným ze součástek C₁, R₁.

Při chodu magnetofonu v poloze nahrávání (záznam) nesmí být na vstupní svorce A žádné stejnosměrné napětí. Dioda je tudíž v nevodivém stavu. Mf zesilovač zvuku pracuje běžně. Přes emitorový sledovač s tranzistorem T₁ je přiváděn neřízený nf výstupní signál z vývodu 12 na svorku B, která v tomto případě bude sloužit jako vstup tohoto signálu. Kondenzátor C₂ je součástí filtru deemfáze

Obr. 75. Nízkofrekvenční zesilovač signálů FM s kmitočtem 10,7 MHz s UL1244N

pro signál přiváděný na vstup magnetofonu. Při nahrávání i přehrávání se může využít elektronického řízení hlasitosti televizního přijímače (potenciometr P).

Integrovaný obvod UL1244N se rovněž používá jako mf zesilovač signálů FM 10,7 MHz v rozhlasových přijímačích s rozsahem VKV. Příklad zapojení zesilovače je na obr. 75. Zesilovač se skládá ze vstupního zesilovače mf signálu, který je osazen tranzistorem T₁ a na jeho výstupu jsou čtyři pásmové propusti a ze zesilovače s demodulátorem v UL1244N. Vstupní signál se přivádí na bázi tranzistoru T₁, který jej zesílí a kompenzuje ztrátu útlumu na obvodech filtru. Filtr určuje požadované propustné pásmo a selektivitu. Signál, který prošel filtrem, je přiváděn na vstup UL1244N. Neřízený nebo výstupní signál (vývod 12) se může používat pro nahrávání na magnetofon, řízený signál z vývodu 08 je určen pro další zesílení v koncovém stupni televizního přijímače.

Údaje mf zesilovače:

Napětí pro mez omezování: 5 V.

Útlum amplitudové modulace při

$U_1 = 200 \mu\text{V}$, $\Delta f = \pm 50 \text{ kHz}$,

mod. = 30 %: 55 dB.

Propustné pásmo (prů 3 dB): 200 kHz.

Selektivita při 300 kHz: 30 dB.

Výstupní nf napětí při

$U_1 = 200 \mu\text{V}$, $\Delta f = \pm 50 \text{ kHz}$: 450 mV.

Zkreslení: 0.5 %.

Hlavní obor použití UL1244N je v televizních přijímačích s dálkovým řízením hlasitosti pomocí infračervených paprsků nebo ultrazvukem a dále všude tam, kde je zapotřebí na výstupu demodulátoru FM mimo řízený i neřízený nf signál.

Elektrické údaje UL1244N

Mezní údaje	Vstupní impedance, $f = 5,5 \text{ MHz}$		
Napájecí napětí U_{CC} :	10 až 18 V.	40	k Ω ,
Stejnosměrné napětí U_S na vývodu 05:	max. 6 V.	4,5	pF,
Ztrátový výkon P_{tot} :	max. 400 mW.	1,1	k Ω ,
Rozsah pracovního vstupního kmitočtu f :	0 až 12 MHz.	1,1	k Ω .
Rozsah pracovního vstupního kmitočtu f :	-25 až +70 °C.	$\geq 70 \text{ dB}$.	
Charakteristické údaje ($U_{CC} = 12 \text{ V}$)	Jmen.	Min.-max.	
Napájecí klidový proud /ccq:	13,5	9,3 až 17,5 mA.	
Napěrový zisk mf signálu $A_{u,mf}$:	68	dB.	
($f = 5,5 \text{ MHz}$, $U_1 = 10 \mu\text{V}$):	250	mV,	
Výstupní napětí mf signálu (mezivrcholové)	250	mV,	
($f = 5,5 \text{ MHz}$, $U_1 = 10 \mu\text{V}$, $U_{6,M/M}$:	250	mV.	
$U_{10,M/M}$:			
Výstupní napětí U_O			
($f = 5,5 \text{ MHz}$, $\Delta f = \pm 50 \text{ kHz}$, $f_{mod} = 1 \text{ kHz}$,	1,3	>0,8 V,	
$U_1 = 10 \mu\text{V}$, $Q = 45$)	1,0	>0,55 V,	
vývod 08:			
vývod 12:			
Výstupní napětí pro nasazení omezování $U_{1,lim}$			
($f = 5,5 \text{ MHz}$, $\Delta f = \pm 50 \text{ kHz}$, $f_{mod} = 1 \text{ kHz}$,		$\leq 60 \mu\text{V}$.	
$Q = 45$):			

jeni obou obvodů je na obr. 76. Součástky jsou v plastickém pouzdře CE70 s 2x sedmi vývody. Obdobně zahraniční výrobky obvodu UL1261, TBA940 jsou součástky TBA940 výrobce ITT Intermetall.

Integrované obvody UL1262N (a TBA950) a jeho odrůdy jsou funkčně stejné součástky jako obvody UL1261N, TBA940, jsou však určeny pro použití v televizních přijímačích osazených tranzistorem na koncovém stupni rádkového rozkladu. Přímý-zahraniční ekvivalent obvodu UL1262N a maďarského obvodu TBA950 Tungsram je součástka TBA950 výrobce ITT Intermetall.

Vývody: 01 – zem, 02 – výstup koncového stupně rádkových impulsů, 03 – připoj napájecího napětí U_{CC} , 04 – výstup fázového porovnávacího obvodu, vstup oscilátoru, 05 – výstup obrazového signálu BAS, 06 – výstup úplného synchronizačního signálu, 07 – výstup obrazových synchronizačních impulsů, 08 – připoj kondenzátor přepínače pro provoz videomagnetofonu, 09 – nastavení časové konstanty přepínačního stupně, 10 – výstup impulsů rádkového zpětného běhu, 11 – řízení fáze, 12 – připoj vnějšího kondenzátoru fázového řízení ($1 \mu\text{F}$), 13 – připoj vnějšího kondenzátoru rádkového oscilátoru, 14 – připoj součástek pro nastavení kmitočtu rádkového oscilátoru.

Integrovaný obvod UL1261N (a všechny ostatní jmenované obvody) sdružuje od-

Obr. 76. Funkční blokové zapojení a měřicí zapojení UL1261N, UL1262N, TBA940, TBA950

dělovací obvod řádkových impulsů s výkločením rušivých signálů, oddělovací stupeň snímkového rozkladu, fázový porovnávací obvod, spínací obvod pro automatické přepínání rušivé šířky pásmo, řádkový oscilátor s kmitočtovou „zarážkou“, fázový regulační obvod a výstupní stupeň. Díky vysokému stupni integrace součástek systému na čipu vyžaduje obvod UL1261N jen velmi málo vnějších součástek. Na vývodu 07 dodává zpracované obrazové synchronizační impulsy ke spouštění obrazového oscilátoru, na vývodu 06 je pak úplný synchronizační signál, přepinatelný na fázovém porovnávacím obvodu pro provoz videomagnetofonu.

Funkce obvodu je následující: Oddělovací stupeň odděluje synchronizační impulsy z úplného signálu BAS. Obvod invertoru (k provozu nepotřebuje žádné vnější součástky) a integrační-derivační obvod zavádí synchronizační signál rušivých impulsů a šumu.

Několikanásobnou vnitřní integraci a oboustranným omezováním se získává ze směsi synchronizačního signálu obrazový synchronizační impuls, který lze odebrát na vývodu 07. Dosud potřebný člen RC mezi oddělovacím stupněm synchronizačních impulsů a obrazovým oscilátorem tak odpadá. Protože doba trvání obrazového synchronizačního impulsu na vývodu 07 je omezena tolerancemi, doporučuje se řídit obvod vzestupnou hranou impulsu.

V řádkovém oscilátoru se využívá k nastavení kmitočtu styroflexového kondenzátoru 10 nF (je připojen k obvodu 13), který je periodicky nabijen a vybíjen ze dvou vnitřních proudových zdrojů. Vnější odpor připojený k vývodu 14 určuje velikost nabíjecího proudu a tím (spolu s kondenzátorem oscilátoru) kmitočet oscilátoru.

V porovnávacím obvodu fáze se srovnává napětí pilovitého průběhu oscilátoru s řádkovými synchronizačními impulsy. Odtud odvozené řídící napětí ovlivňuje kmitočet oscilátoru, přičemž rozsah zachycení kmitočtu omezuje omezovací obvod (kmitočtovou „zarážku“).

Ve fázovém regulačním obvodu se porovnává napětí pilovitého průběhu oscilátoru, který má vždy pevný vztah k synchronizačnímu impulsu, s impulsem řádkového zpětného běhu a tím se vyrovňávají měničí se doby zpoždění budicího stupně a řádkového koncového stupně. Nepoužije-li se vývod 11, nastaví se normovaná poloha fáze. Odchylku polohy lze realizovat připojením potenciometru $10\text{ k}\Omega$ k vývodu 11. V řídícím rozsahu je doba trvání výstupních impulsů konstantní (vývod 02). Větší posuvy obrazu, např. v důsledku nesymetrické obrazovky, nelze korigovat vyrovnávacím potenciometrem fáze, protože v každém případě musí být zaručeno, že impuls zpětného běhu řádku oboustranně překryje řádkový synchronizační impuls (viz obr. 77 a 78).

Spínací stupeň plní pomocné funkce. Jestliže jsou na něj přivedeny synchronní signály z oddělovacího stupně synchronizačních impulsů a obvodu fázové regulační, bude k integrovanému odporu $2\text{ k}\Omega$ mezi vývodem 09 a zemí připojen tranzistor v nasyceném stavu. Tím se prodlouží, časová konstanta na vývodu 04 působícího filtračního člena a zúží zachycovací rozsah fázového porovnávacího obvodu v synchronním stavu na asi 50 Hz. To je žádoucí pro bezporuchový provoz.

Obr. 77. Fázové vztahy impulsů vstupních, výstupních a zpětného běhu řádků obvodů UL1261N, TBA940

Obr. 78. Fázové vztahy impulsů vstupních, výstupních a zpětného běhu řádků obvodů UL1262N, TBA950

Přepínání na užší rozsah zachycování se může blokovat pro provoz videomagnetofonu. K tomu lze využít kladného proudu vývodu 08, např. pomocí odporu připojeného k vývodu 03. Při provozu videomagnetofonu může být účelně připojit odpor $680\ \Omega$ nebo $1\text{ k}\Omega$ mezi vývod 09 a zem. Kondenzátor na vývodu 04 může být případně změšen (např. na $0,1\ \mu\text{F}$). Tyto změny nemají patrný vliv na běžný provoz integrovaného obvodu a nemusí se proto jistit přepínáním.

Výstupní stupeň odevzdává na vývod 02 výstupní impulsy potřebné dobu trvání a polaritu k řízení budiče koncového stupně. Vestavěný ochranný obvod způsobuje, že při zmenšujícím se napájecím napětí na vývodu 03 (např. při vypnutí přijímače) až do $U_3 = 4\text{ V}$ budou na výstupu 02 k dispozici impulsy řádkového kmitočtu definovaného tvaru. Tepře při napětí menší než 4 V impulsy zmizí bez toho, že bý se na výstupu objevily impulsy nedefinované doby trvání a kmitočtu. Při opětovném zvětšení napájecího napětí $U_3 > 4,5\text{ V}$ budou na výstupu znovu předepsané impulsy řádkového kmitočtu.

Uvedený popis funkce platí v plném rozsahu též pro integrované obvody TBA940, UL1261N, TBA950.

Blokové zapojení integrovaných obvodů UL1262N a TBA950, jakož měřicí zapojení pro měření charakteristických vlastností je shodné s popisovaným obvodem UL1261N. Rozdíl je pouze v polaritě výstupního impulsního signálu. UL1261N, TBA940 odevzdává na výstupu záporné impulsy, UL1262N, TBA950 kladné impulsy. Pouze u obvodu TBA950-F, který je určen pro použití v přijímačích podle francouzské normy, je rozdíl v použitých vnějších součástkách. Definice impulsů na jednotlivých vývodech a vzájemné fázové vztahy mezi nimi jsou vyjádřeny na obr. 77 pro obvody UL1261N, TBA940 a obr. 78 pro UL1262N, TBA950.

Doporučená zapojení

Návrh provozního zapojení integrovaného obvodu UL1261N, TBA940 v rozkladových obvodech televizního přijímače s rychlým spínacím tyristorem v koncovém stupni je uveden na obr. 79. Zapojení se téměř shoduje s popisovaným zapojením podle obr. 76. Na výstupu je však použit tranzistor p-n-p BC327 pro řízení rozkladového tyristoru. Vstupní obvod zapojení se musí upravit podle podmínek v přijímači. Odporovým trimrem P_1 se nastavuje kmitočet řádkového oscilátoru, trimrem P_2 fáze. Tlačítko TI slouží k výrovnení kmitočtu.

Na obr. 80 je navržen jiný způsob řízení kmitočtu a fáze řádkových impulsů. V obou případech je nutno použít styroflexový kondenzátor s tolerancí $\pm 2\%$, připojený k vývodu 13, a metalizované odpory s tolerancí $\pm 1\%$ v obvodu vývodu 14. Potenciometr P_1 má mít toleranci nejvýše $\pm 10\%$.

Obdobná zapojení platí pro použití integrovaných obvodů UL1262N a TBA950; které však pracují ve spojení s výkonovými spínacími tranzistory v koncovém stupni řádkových rozkladových obvodů. Základní zapojení je uvedeno na obr. 81.

Obr. 80. Návrh jiného způsobu nastavení kmitočtu řádkového oscilátoru rozkladového stupně s UL1261N, TBA940 v zapojení podle obr. 79

Obr. 81. Doporučené zapojení UL1262N, TBA950 v rádkovém rozkladovém stupni s koncovým tranzistorem

Obr. 82. Používané zapojení TBA950:F ve dvounormovém přijímači s přepínáním počtu rádků 625 a 819. Zakresleny jsou pouze odlišné zapojení vnější součástky

Jiný způsob řízení kmitočtu oscilátoru lze použít shodně se zapojením na obr. 80.

Zajímavá úprava předchozího zapojení pro použití integrovaného obvodu TBA950:F ve dvounormovém přijímači s přepínáním počtu rádků 625 a 819 podle evropské a francouzské normy je ná obr. 82. Nezakreslené součástky se použijí shodně se zapojením podle obr. 81. Doba trvání obrazového synchronizačního impulsu je odlišná – musí být delší než 20 µs.

Předrádný odporník R_V je ve všech zapojeních závislý na použitém napájecím napětí U_B podle tabulky.

U_B [V]	R_V min [Ω]	R_V max [Ω]
10	30	60
15	140	215
20	250	365
25	360	510
30	470	–

Doporučené provozní údaje zapojení podle obr. 79 a 81:

Napájecí napětí U_B : 24 V.

Vstupní proud I_{15} během synchronizačního impulsu: $\geq 5 \mu\text{A}$.

Vstupní signál BAS $U_{15\text{M/M}}$ (mezivrcholová velikost): 1 až 6 V.

Vstupní proud I_{10} během rádkového zpětného běhu: 0,2 až 2 mA.

Přepínací proud I_8 pro provoz video magnetofonu: $\geq 2 \text{ mA}$.

Předstřík t_d vstupního impulsu na výstupu 02 proti impulsu rádkového zpětného běhu na vývodu 10: $\geq 20 \mu\text{s}$.

Proud I_3 : $\leq 45 \text{ mA}$.

Rozsah pracovních teplot okolo θ_a : 0 až +60 °C.

Elektrické údaje UL1261N, UL1262N, TBA940,

Mezní údaje		
Příkon proudu I_{CC3} :	max. 45 mA.	
Vstupní proud I_{15} :	2 mA.	
Vstupní napětí U_{15} :	max. -6 V.	
Výstupní proud I_{02} :	max. 22 mA.	
Výstupní napětí U_{02} :	max. 12 V.	
Proud I_{10} impulsu rádkového zpětného běhu (vrcholová velikost):	max. 5 mA.	
Napětí U_{11} pro nastavení jmenovité fáze:	0 až U_3	
Teplota okolo θ_a :	0 až +60 °C.	

Charakteristické údaje	(platí při $\theta_a = 25^\circ\text{C}$, $f_0 = 15\ 625\text{ Hz}$, $U_{15\text{M/M}} = 1,5\text{ V}$, měřeno v zapojení podle obr. 76)	Jmen. Min.-max.
Rozkmit napětí U_7 M/M obrazového synchronizačního impulsu:	$\geq 8\text{ V}$.	
Doba trvání t_7 obrazového synchronizačního impulsu		
TBA950:F:	$\geq 20\text{ }\mu\text{s}$,	
UL1262N, TBA950, UL1261N, TBA940:	$\geq 150\text{ }\mu\text{s}$.	
Výstupní odporník – vývod 07 (úroveň H), R_{07} :	10	7,5 až 13 k Ω .
Rozkmit U_6 M/M úplného synchronizačního impulsu:	$\geq 8\text{ V}$.	
Výstupní odporník R_{06} – vývod 06:		2,5 až 4,5 k Ω .
Doba trvání t_6 výstupního impulsu		
UL1261N, TBA940:	$\geq 4\text{ }\mu\text{s}$,	
UL1262N, TBA950, TBA950:F:	$\geq 25\text{ }\mu\text{s}$,	
TBA950:1:	$\geq 22\text{ }\mu\text{s}$,	
TBA950:2X:	$\geq 25\text{ }\mu\text{s}$.	
Kmitočet f_0 oscilátoru		
($C_{13/1} = 10\text{ nF}$, $R_{14/1} = 10,5\text{ k}\Omega$):	15 625	$\pm 1562\text{ Hz}$.
Rozsah začycování kmitočtu $\pm \Delta f$:		400 až 1000 Hz.
Rozsah nastavení kmitočtu $\pm \Delta f$:		400 až 1000 Hz.
Strmost $d\theta/dt_p$ fázidloho obvodu fázového porovnání ($t_{10} = 12\text{ }\mu\text{s}$, $t_d = 5\text{ }\mu\text{s}$,		$\geq 1,5\text{ kHz}/\mu\text{s}$.
$U_{10\text{M/M}} \geq 2\text{ V}$		
UL1261N, UL1262N:		
TBA940, TBA950:	2	
Zesílení $d\theta/dt_p$ fázového řízení		$\geq 15(20)$:
($t_{10} = 12\text{ }\mu\text{s}$, $t_d = 5\text{ }\mu\text{s}$, $U_{10\text{M/M}} = 2\text{ V}$)		
UL1261N, UL1262N (TBA940, TBA950):		
Fázový posuv t_f mezi synchronizačním impulsem signálu BAS a impulsem zpětného běhu 2 :		
vývod 11 volný		
($t_{10} = 12\text{ }\mu\text{s}$, $U_{10\text{M/M}} = 2\text{ V}$, $t_d = 5\text{ }\mu\text{s}$):		-1 až +3,5 µs.

1) Po změně hodnot vnitřních součástek určujících kmitočet, připojených k vývodům 13 a 14, lze použít integrovaný obvod UL1262N, TBA950 i pro všechny jiné televizní normy.

2) Omezený impuls rádkového zpětného běhu musí oboustranně překrývat rádkový impuls signálu BAS.

IO pro rozkladové stupně snímkového vychylování, UL1265N

Integrovaný obvod UL1265N je určen pro rozkladové stupně snímkového vychylování v černobílých a barevných televizních přijímačích. Výstup obvodu odevzdává proudový signál k napájení různých typů vychylovacích cívek vertikálního vychylování, umožňuje synchronizaci kladními nebo zápornými impulsy, regulaci kmitočtu a amplitudy proudu a linearitu vychylování. Všechny uvedené způsoby regulace jsou na sobě nezávislé, což ulehčuje obsluhu přijímače. Integrovaný obvod se vyznačuje velkou nezávislostí výstupních parametrů na změnách provozní teploty, a napájecího napětí a stárnutí elektrolytických kondenzátorů. Vnitřní elektrické zapojení obvodu UL1265N je na obr. 83. Součástka je v plastickém pouzdře CE74 s 2x šesti vývody tvarovanými do čtyř řad a středními širokými chladicími vývody. Přímý elektrický ekvivalentem obvodu UL1265N je výrobek TDA1170 výrobce SGS-Ates.

Integrovaný obvod se skládá ze čtyř hlavních bloků, synchronizovaného budicího generátoru, generátoru pilovitých kmitů, výkonového zesilovače a generátoru impulsů zpětného běhu.

Vývody: 01 – výstup generátoru pilovitých kmitů, 02 – přípoj napájecího napětí U_{CC} , 03 – generátor impulsů zpětného běhu, 04 – výstup zesilovače, 05 – napájení zesilovače, 06 – regulované napětí, 07 – nastavení výšky, 08 – vývod synchronizační

nich impulsů, 09 – oscilátor, 10 – vstup předzesilovače, 11 – kompenzace, 12 – vývod z generátoru pilovitých kmitů pro připojení vnitřních součástek.

Funkce obvodu: Snímkové synchronizační impulsy z oddělovacího stupně se přivádějí na vstup obvodu UL1265N (vývod 08), kde se zajišťuje synchronizace kladních i záporných impulsů. Kladní impulsy způsobují nasycení tranzistoru T_{14} , záporné impulsy tranzistoru T_{13} . Impulzy obou polarit vyvolají ubytek napětí na odporu R_6 . Tato změna napětí působí přes odporový obvod R_3, R_4, R_5, R_6 na budicí generátor (funkční blok 2 ve funkčním blokovém zapojení na obr. 84). Budicí generátor je tvořen rozdílovým zesilovačem s kladnou zpětnou vazbou, jehož kmitočet závisí na vnitřních součástkách P_1 a C_1 . Generátor je charakterizován velmi velkou nezávislostí na změnách teploty a napájecího napětí. Navíc je budicí generátor po většinu doby výběru velmi odolný proti šumu a rušení v synchronizačním signálu.

Signály z budicího generátoru se přivádějí na generátor pilovitých kmitů (blok 3). Generátor je proudového typu, vytváří kmity lineárně se zvětšující s časem. Amplitudu vytvořeného průběhu lze ředit potenciometrem P_2 , lineáritu potenciometrem P_3 . Odpor R_3 zajišťuje příslušnou korekci vychylování. Oddělovací stupeň (blok 4), který tvoří tranzistory T_{17} a T_{19} ,

Obr. 83. Vnitřní elektrické zapojení UL 1265N

Obr. 84. Funkční blokové zapojení UL1265N

umožňuje získat pilovitý průběh v rozsahu malých impedancí. Signál je pak přiveden do výkonového operačního zesilovače vnějším odporem R_5 . OZ ho tvaruje pro svislou vychylovací čítku. Zesilovač pracuje v obvodu s kladnou-zpětnou vazbou, vytvořenou odporem R^{10} . Zesilovač se skládá z předzesilovače se vstupním rozdílovým zesilovačem (blok 5) a koncového stupně (blok 6). Invertující vstup předzesilovače je vveden na vývod 10, neinvertující vstup je uvnitř obvodu připojen na stabilizované napětí 2 V.

Předzesilovač tvoří tranzistor T₂₀ až T₂₄. Na jeho vstup je přiváděn rovněž výstupní signál a to přes odpor R'₇, ve větví zpětné vazby. Výstup předzesilovače je připojen jak na výstup koncového zesilovače, tak na samostatný vývod 11. K vývodu 11 se připojují vnější součástky R'₄ a C₈, které určují příslušnou kmitočtovou kompenzaci.

Výstupní koncový stupeň obsahuje buďcizesiwoč (tranzistor T_{27}) a dvě dvojice tranzistorů v Darlingtonové zapojení. Jedna z nich s tranzistory p-n-p/n-p-n je určena pro proudy tekoucí do záteže, druhá s tranzistory p-n-p/n-p-n pro vystupující proudy. Obvod je schopen dodat výstupní proud pilovitého tvaru s mezivrstvovou velikostí 1,6 A

Klidové výstupní napětí na vývodu 04 závisí na vnějších součástkách zpětné vazby R_7 , R_8 , R_9 , je dáno vztahem

$$U_4 = U_{10} \frac{R'_7 + R'_8 + R'_9}{R'_7},$$

Obr. 85. Napěťové průběhy impulsů na vybraných místech obvodu UL1265N: a) průběh výstupního proudu a napětí cívky, b) průběh výstupního proudu a napětí cívky během zpětného běhu, c) průběh snímkových synchronizačních impulsů a napětí budícího generátoru (na vývodu 09), d) průběh snímkových synchronizačních impulsů a napětí generátoru pilovitého průběhu (na vývodu 12)

běhu). Blok 8 slouží jako tepelně kompenzovaný stabilizátor napětí, který dodává stabilizované napětí 6,4 V k napájení vnitřních bloků integrovaného obvodu. Napětové průběhy impulsů na vybraných charakteristických bodech integrovaného obvodu UL1265N jsou uvedeny na obr. 85.

Doporučená zapojení

Integrovaný obvod UL1265N je určen pro použití ve snímkových rozkladových obvodech černobilých i barevných přijímačů. Prakticky ověřené zapojení snímkového vychylovacího obvodu, použitého v černobílém přijímači Unitra Vela 203, je na obr. 86.. Obvod se napájí napětím +26 V, na integrovaném obvodu je napětí 22,5 V. „Zem“ obvodu je shodná se „zemí“ přijímače. Vnějšími součástkami lze samostatně řídit kmitočet, rozkmit a linearitu. Ve spojení s obrazovkou s velkou plochou má zapojení tyto technické údaje:

Impedance vychylovací cívky L_Y : 20 mH,
 R_Y : 10 Ω .

Napájecí napětí U_{cc} : 22,5 V

Příkon proudu int. obvodu, I_{cc} : 140 mA.

Výstupní proud (mezivrcholový) $I_{Y/M}$:

Doba zpožděného běhu t :

Ztrátový výkon na int. obvodu, P_{ztr} : 2,2 W.

Pomocí integrovaného obvodu UL1265N lze získat výstupní proud pilovitý.

Obr. 86. Zapojení snímkového vychylovacího obvodu s UL1265N, použitého v přijímači Unitra Vela 203

k přímému vybuzení sériově zapojené cívky v černobilém i barevném televizním přijímači. Použije-li se v barevném televizním přijímači obrazovka se sedlovými vychylovacími cívky v rovnoběžném nebo toroidním provedení, lze k výstupu obvodu UL1265N připojit dva komplementární tranzistory v zapojení podle obr. 87. Použijí-li se výstupní tranzistory uvedených typů, dosáhne se výstupního proudu až 7 A bez narušení tepelné stability obvodu a zkreslení vychylovacího proudu cívky. Technické údaje vychylovacího obvodu podle obr. 87 v barevném televizním přijímači s toroidními vychylovacími cívky:

Impedance vychylovací cívky L_Y : 1 mH,
 R_Y : 1,6 Ω .

Výstupní proud (mezivrcholový) I_{OMM} : 7 A.

Napájecí napětí U_{CC} : 23 ± 2 V.

Proud I_{CC} : 920 mA.

Doba zpětného běhu t_p : 0,7 ms.

Dodávaný výkon do cívky, P_Y : 6,5 W.

Ztrátový výkon v int. obvodu, P_{tot} : 2,3 W.

Ztrátový výkon ve výstupních tranzistorech, P_{T1+T2} : 12,3 W.

Elektrické údaje UL1265N

Mezní údaje		Proud cívky, mezivrcholový / Y ($U_{CC} = 25$ V, $R_L = 10 \Omega$):		$\leq 1,6$ A.	
Napájecí napětí U_{CC} :		max. 27 V.			
Napětí zpětného běhu, vrcholové, U_4, U_5 :		max. 58 V.			
Vstupní napětí synchronizační U_8 :		-12 až +12 V.			
Vstupní napětí zesilovače výkonu U_{10} :		-0,5 až +10 V.			
Výstupní proud vrcholový lom (ojedinělý impuls, $t \leq 2$ ms- ($f = 50$ Hz, $t \leq 10 \mu$ s):		max. 2 A.			
		max. 2,5 A.			
Ztrátový výkon P_{tot} bez chladiče, $\theta_a = 70^\circ C$: s chladičem, $\theta_C = 90^\circ C$:		max. 1 W.			
		max. 5 W.			
Rozsah skladovacích teplot θ_{stg} :		-40 až +150 °C.			
Tepelný odpor přechod-okolí R_{thja} :		max. 70 K/W.			
Tepelný odpor přechod-radiátor R_{thjj} :		max. 12 K/W.			
Charakteristické údaje		Proud cívky, mezivrcholový / Y ($U_{CC} = 25$ V, $R_L = 10 \Omega$):		$\leq 1,6$ A.	
Napájecí napětí U_{CC} :	Jmen.	Min.-max.			
Výstupní napětí klidové U_{04}		10 až 27 V.			
$R_1 = 10$ k Ω , $U_{CC} = 10$ V:	4,4	4 až 4,8 V.			
$R_1 = 30$ k Ω , $R_2 = 10$ k Ω , $U_{CC} = 25$ V	8,8	8 až 9,6 V.			
Řidicí napětí U_6 :	6,5	6 až 7 V.			
Řidicí napětí U_7 :	6,5	6 až 7 V.			
Stálost řízeného napětí při změně U_{CC} z 10 na 27 V při změně $U_{CC} = 10$ V \rightarrow 27 V, $\Delta U_6/\Delta U_{CC}$:	1,3	mV/V.			
při změně $U_{CC} = 10$ V \rightarrow 27 V, $\Delta U_7/\Delta U_{CC}$:	1,3	mV/V.			
Napájecí proud I_{CC} ($U_{CC} = 25$ V, $I_0 = 1$ A):	140	110 až 170 mA.			
Posuv kmitočtu budicího generátoru $\Delta f/\Delta \theta_{rad}$ při změně teploty chladiče					
		$\theta_{rad} = 40^\circ C \rightarrow 120^\circ C$:		0,05	Hz/K.
Vstupní odpor R_8 synchronizačního obvodu ($U_8 = 1$ V):				3	k Ω .
		Rozsah udržení synchronizace, Δf pod $f = 50$ Hz:		8	Hz.

Obr. 87. Zapojení snímkového vychylovacího obvodu v barevném televizním přijímači s toroidními vychylovacími cívками

Mf zesilovač FM signálů s demodulátorem, TBA120S, TBA120AS

Integrované obvody TBA120S, TBA120AS maďarské výroby Tungsram jsou symetrické osmstupňové zesilovače se symetrickým koincidenčním demodulátorem, určené pro zesilování, omezování a demodulaci kmitočtově modulovaných signálů především v mf zesilovačích zvuku v televizních přijímačích a mf zesilovačích signálů FM v rozhlasových přijímačích. Funkční blokové zapojení obou součástek je prakticky shodné s popsáným obvodem UL1244N. Oba IO se dodávají v plastickém pouzdře s $2 \times$ sedmi vývody, typ TBA120S má vývody tvarovaný do dvou řad, TBA120AS do čtyř řad. Obdobné typy zahraničních výrobčů mají stejné typové označení.

Vývody: 01 – zem, 02 – přípoj kondenzátoru k V_Z zemnění druhého vstupu omezovacího zesilovače, 03 – kolektor přídavného tranzistoru, 04 – báze přídavného tranzistoru, 05 – řízení hlasitosti (přípoj potenciometru 5 k Ω), 06 – výstup mf (neinvertovaný), 07 – vstup demodulátoru (neinvertující), 08 – nf výstup, 09 – vstup demodulátoru (invertující), 10 – výstup mf (invertovaný), 11 – přípoj napájecího napětí U_{CC} , 12 – katoda Zenerovy diody, 13 – výstup omezovacího zesilovače přes odpor, 14 – výstup omezovacího zesilovače.

Funkce obvodu je shodná s popsáným obvodem UL1242N, proto ji dále nepopisujieme. Kolektor přídavného (samostatného) tranzistoru je vyveden na vývod 03, báze přes omezovací odpor na vývod 04. Tranzistor se může použít jako nf předzesilovač (jeho proud kolektoru smí být max. 5 mA) nebo jako přepínač hloubek a výšek (stejnosměrný přepínač s obvodem RC). Na vývod 12 je vyvedena Zenerova dioda s napětím 12 V, která se používá ke stabilizaci napájecího napětí integraceho obvodu nebo jiných funkčních bloků v zařízení. Zenerův proud diody smí být max. 15 mA.

Integrované obvody TBA120S se dodávají ve čtyřech různých skupinách podle „hlasitosti“. Zmenší hlasitosti o 30 dB vyžaduje vnější odpor mezi vývodem 05 a zemí podle čísla skupiny dodávaných integrovaných obvodů:

- skupina II odpor $R_S = 1,9$ až 2,2 k Ω ,
- skupina III odpor $R_S = 2,1$ až 2,5 k Ω ,
- skupina IV odpor $R_S = 2,4$ až 2,9 k Ω ,
- skupina V odpor $R_S = 2,8$ až 3,3 k Ω .

Číslo skupiny je natištěno na každém integrovaném obvodu.

Doporučené zapojení

Provozní doporučené zapojení TBA120S, TBA120AS jako mf zesilovač signálů FM s kmitočtem 5,5 MHz nebo 10,7 MHz je uvedeno na obr. 88. Doporu-

Obr. 88. Doporučené provozní zapojení TBA120S, TBA120AS v mřížovací signálu FM 5,5 nebo 10,7 MHz.

čené napájecí napětí 12 V. Zesilovač se však může napájet v rozsahu 6 až 18 V, jeho pracovní kmitočet se může libovolně volit v rozsahu 0 až 12 MHz. Podle zesilovaného kmitočtu se však musí volit laděný obvod demodulátoru. V navrženém zesilovači je kapacita kondenzátoru laděného obvodu 1500 pF při kmitočtu 5,5 MHz, 470 pF při 10,7 MHz. Nf vstupní napětí zesilovače při vstupním kmitočtu 5,5 MHz s deviací ± 50 Hz je prům. 1 V při zkrácení 4 %, vstupním signálu 10 mV a jakosti laděného obvodu asi 45. Zesilovač vyniká mimofázdnou kvalitou omezování, je kmitočtově velmi stabilní a k provozu vyžaduje velmi málo přídavných součástek.

Nízkofrekvenční zesilovače malých signálů

Dvojitý předzesilovač napětí UL1321N

Monolitický integrovaný obvod UL1321N sdružuje dva shodné napěťové předzesilovače a jeden nezávislý tranzistor n-p-n. Je určen pro použití v napěťových zesilovacích stupních. Samotný tranzistor lze použít jako řídící stupeň výkonového zesilovače s přímou vazbou. Využije-li se obou zesilovacích stupňů za stejných pracovních podmínek, může obvod sloužit jako dvoukanálový předzesilovač ve stereofonních přístrojích. Vnitřní elektrické zapojení integrovaného obvodu UL1321N je na obr. 89, funkční blokové

Elektrické údaje TBA120S, TBA120AS

Obr. 89. Vnitřní elektrické zapojení UL 1321N

zapojení spolu se zapojením vývodů na obr. 90. Součástka je v plastickém pouzdře DIL CE70 s 2 × sedmi vývody. Přímým elektrickým ekvivalentem obvodu UL1321N je výrobek Sanyo LA3101.

Funkce obvodu: Vstupní signál se přivádí na vývod 5 (nebo 14). Přes tranzistor T_1 , který pracuje jako emitorový sledovač, se přivádí signál na rozdílový zesilovač z tranzistorů T_2 a T_3 . Díky použití rozdílového zesilovače může pracovat předzesilovač v širokém rozsahu napájecích napětí. Tranzistory T_4 a T_5 pracují v Darlingtonovém zapojení. Poslední zesilovací stupeň tvoří tranzistor T_6 . Mezi kolektorem tranzistoru T_6 a bází T_3 je zařazen vnitřní obvod záporné zpětné vazby. Smyčka této zpětné vazby se realizuje připojením vnějších součástek RC mezi zem a vývody. Závislost zesílení každého z obou předzesilovačů s ohledem na použitý odpor R , zpětnovazebního obvodu je na obr. 91. Clen RC se připojuje k vývodu 06 (nebo 01) a zem.

Doporučená zapojení

Zapojení stereofonního napěťového předzesilovače pro přístroje spotřební elektroniky s UL1321N je na obr. 92. Zesílení obvodu se reguluje změnou od-

Obr. 90. Funkční blokové zapojení a zapojení vývodů UL1321N

Obr. 91. Závislost zesílení každého z obou předzesilovačů UL1321N na zpětnovazebním odporu

Mezní údaje			
Napájecí napětí U_{CC} ¹⁾ :	max. 18 V.		
Napětí vývodu 05:	max. 4 V.		
Proud vývodu 03/3:	max. 5 mA.		
Proud vývodu 04/4:	max. 2 mA.		
Zenerův proud (vývod 12), I_{Z2} :	max. 15 mA.		
$t \leq 1$ min:	max. 20 mA.		
Teplota přechodu θ_J :	max. 150 °C.		
Rozsah pracovních teplot okolí θ_a :	-15 až +70 °C.		
Rozsah skladovacích teplot θ_{sig} :	-40 až +125 °C.		
Tepelný odpor přechod-okolí R_{thj} :	max. 12 K/W.		
Charakteristické údaje ($\theta_a = +25$ °C, $U_{CC} = 12$ V, $f = 5,5$ MHz, 10,7 MHz)			
Proud I_{CC} celkový při $R_S = \infty$:	Jmen.	Min.-max.	
	14	10 až 18 mA,	
$R_S = 0$:	15,2	11 až 20 mA,	
Napěťový zisk A_U mlf zesilovače:	68	dB.	
Výstupní napětí U_O M/M mlf zesilovače při omezování (každý výstup):	250	≥ 170 mV.	
Výstupní odpor R_O :	2,6	1,9 až 3,3 kΩ, ≤ 1 kΩ.	
Paralelní odpor vývodů 13/14, $R_{13/14}$:		≥ 70 dB.	
Rozsah řízení hlasitosti $U_{NF,max}/U_{NF,min}$:	75		
Stejnosměrná úroveň výstupního napětí U_B :	7,4	6,2 až 8,5 V.	
Odpor potenciometru R_S pro pokles o -1 dB:	3,7	$\leq 4,7$ kΩ,	
-70 dB:	1,4	$\geq 1,0$ kΩ.	
Napětí na vývodu 05 při poklesu o -1 dB:	2,4	V,	
-70 dB:	1,3	V.	
Poměr signálu k šumu, aS/N			
$(U_I = 10$ mV, $\Delta f = \pm 50$ kHz):	85	≥ 75 dB.	
Zkreslení k harmonickými			
$(U_I = 10$ mV, $f = \pm 25$ kHz):	1,3	$\leq 2,5$ %.	
Šumové napětí $U_N M$:	80	≤ 140 μ V.	
Dynamické údaje			
($f = 5,5$ MHz, $\Delta f = \pm 50$ kHz, $f_{mod} = 1$ kHz)			
Nf výstupní napětí $U_{NF,ef}$			
$(U_I = 10$ mV):	1,0	$\leq 0,7$ V.	
Vstupní napětí U_I lim pro omezování o -3 dB:	30	≤ 60 μ V.	
Potlačení amplitudové modulace a_{AM}			
mod. 30 %, $U_I = 500$ μ V:	55	≥ 45 dB.	
$U_I = 10$ mV:	68	≥ 60 dB.	
Vstupní impedance Z_I :	40/4,5	kΩ/pF.	
($f = 10,7$ MHz, $\Delta f = \pm 75$ kHz, $f_{mod} = 1$ kHz, mod. = 30%, $Q_{LC} \sim 45$)			
Nf výstupní napětí $U_{NF,ef}$	0,7	$\leq 0,4$ V.	
Vstupní napětí U_I lim pro omezování o -3 dB:	50	≤ 100 μ V.	
Potlačení amplitudové modulace, a_{AM}			
mod. = 30 %, $U_I = 500$ μ V:	50	≥ 40 dB.	
$U_I = 10$ mV:	68	≥ 60 dB.	
Vstupní impedance Z_I :	20/4	kΩ/pF.	
Charakteristické údaje přidavného obvodu			
Zenerovo napětí U_Z 12 při $I_Z = 5$ mA:	12	11,2 až 13,2 V.	
Průrazné napětí kolektor-báze U_{CE0} :	40	≥ 26 V.	
Průrazné napětí kolektor-emitor U_{CB0} :		≥ 13 V.	
Proudový zisk A_C			
$(U_{CE} = 5$ V, $I_C = 1$ mA):	80	≥ 25 dB.	

Obr. 92. Zapojení stereofonního napěťového zesilovače s UL1321N

Obr. 93. Nf zesilovač s automatickým řízením zesílení s UL1321N

Obr. 94. Multivibrátor s pravoúhlým výstupním napětím s UL1321N; a) základní zapojení s pevnou dobou trvání impulsu, b) zapojení s řízením doby trvání impulsu předpětím

porů R_1 , R_2 v každém zesilovacím stupni. Zesílení se zvětší zmenšením odporu R_1 nebo zvětšením R_2 .

Při napájecím napětí $U_{CC} = 14$ V, zatěžovacím odporu $R_L = 10$ k Ω a teplotě okolo 25 °C má zesilovač tyto vlastnosti:

Elektrické údaje UL1321N

Mezní údaje ($\theta_a = 25$ °C)			
Napájecí napětí U_{CC} :	max. 18 V.		
Rozsah pracovních teplot okolo θ_a :	-20 až +70 °C.		
Rozsah skladovacích teplot θ_{stg} :	-30 až +100 °C.		
Charakteristické údaje			
Každý předzesilovací stupeň ($\theta_a = 25$ °C, $U_{CC} = 6$ V, $f = 1$ kHz)			
Napájecí proud klidový I_{CC04} :	3,5	min.-max.	
I_{CC013} :	3,5	≤ 6 mA	
Napěťový zisk A_u bez zpětné vazby ($U_I = 0,5$ mV):	60	dB.	
Napěťový zisk A_u se zpětnou vazbou ($U_I = 1$ mV, $R_f = 100$ Ω):		≥ 45 dB.	
Výstupní napětí U_o ($k = 5\%$, $R_f = 100$ Ω):	1,5	V.	
Přenášené pásmo (3 dB), BW ($U_I = 0,5$ mV, bez zpětné vazby):	400	kHz.	
Součinitel nelineárního zkreslení ($U_O = 0,5$ V, $R_f = 100$ Ω):	0,4	$\leq 0,9$ %.	

Obr. 95. Závislost doby trvání impulsů na kapacitě kondenzátoru C multivibrátoru podle obr. 94a

Napěťový zisk A_u : 50 až 55 dB.
Součinitel nelineárního zkreslení k ($U_O = 1$ V): $\leq 0,1$ %.
Šumové napětí U_N (vstup spojen se zemí): $\leq 0,3$ mV.
Vstupní odpor R_i při $f = 1$ kHz: ≥ 100 k Ω .
Výstupní napětí maximální, $U_{O \max}$, při $k = 3\%$: 3 V.
Potlačení přeslechu a mezi zesilovači ($f = 1$ kHz): ≥ 40 dB.
Dolní mezní kmitočet f_d (-3 dB): 15 Hz.
Horní mezní kmitočet f_h (+1 dB): 130 kHz.

Napájecí proud klidový I_{CC} : 20 mA.
Na obr. 93 je zapojení nf zesilovače se stálým vstupním napětím, jehož se dosahuje použitím automatické regulace zesílení. Na vstupu zesilovače je použit proměnný dělič napětí, jehož jednu větev tvoří tranzistor T₁₃ v integrovaném obvodu. Tranzistor je řízen stejnosměrným napětím, závislým na napětí signálu. Za napěťovým děličem následují dva nezávislé integrované zesilovací obvody. Jeden z nich zesiluje vlastní signál, druhý pak signál ve smyčce automatického řízení zesílení. Mimo nízkofrekvenční zesilovač jsou ve smyčce automatického řízení zesílení ještě detektor s filtrem a zesilovač stejnosměrného napětí s přídavným vnějším tranzistorem p-n-p BC177B.

Na rychlé zvětšení vstupního napětí reaguje zesilovací obvod během 10 až 20 ms. Po zániku nebo zmenšení vstupního napětí se zesílení obvodu pomalu zvětšuje, během asi 2 s pak dosáhne maxima. Doba náběhu a doběhu automatického řízení určují kapacity kondenzátorů ve filtru za detektorem; podle potřeby je lze měnit.

Změnou příslušných součástek zesilovače lze zúžit přenášené pásmo do omezení

zeného rozsahu, např. 300 až 4000 Hz při současném zmenšení nelineárního zkreslení.

Výstupní napětí popsaného zesilovače je typicky 370 až 400 mV při vstupním napětí v rozsahu 0,03 až 10 V a kmitočtu 30 Hz až 20 kHz. Výstupní napětí se prudce zmenší se zmenšováním vstupního napětí, při napětí 30 V se naopak zvětší asi na 430 mV. Zkreslení výstupního napětí je při vstupním napětí 0,03 až 30 V asi 2 % na kmitočtech 300 a 3000 Hz.

Jiným námětem k využití UL1321N je multivibrátor s pravoúhlým výstupním napětím v zapojení podle obr. 94a, jehož kmitočet závisí na kapacitě kondenzátoru C a napájecím napětí. Konstrukce obvodu je velmi jednoduchá. Závislost doby trvání impulsů multivibrátoru na kapacitě kondenzátoru C je patrná z obr. 95.

Zapojení multivibrátoru podle obr. 94b je modifikací obvodu podle obr. 94a. Doba trvání impulsů multivibrátoru závisí na přidavném polarizačním napětí U_{pol} . Vlastní doba trvání impulsů je dána závislostí podle obr. 96.

Dosažené vlastnosti

Napájecí napětí U_{CC} : 6 V.
Doba náběhu impulsu t_r : 500 ns.
Doba týlu impulsu, t_f : 50 ns.
Opakovací kmitočet maximální f_p : ≤ 1 MHz.

Obr. 96. Závislost doby trvání impulsů na předpěti multivibrátoru podle obr. 94b

Nízkofrekvenční zesilovače výkonu

Nízkofrekvenční zesilovače výkonu 1 až 5 W, UL1401L až UL1405L, UL1401P až UL1403P

Integrované obvody řady UL1401 až UL1405 jsou analogové obvody, které plní funkci nf zesilovačů výkonu. Jsou určeny pro použití v přístrojích spotřební a všeobecné elektroniky. Vnitřní elektrické zapojení obvodů je na obr. 97. Zapojení obou řad obvodů je stejné, rozdíl je pouze v použitém pouzdru. Obvody řady

Výstupní odpor R_o :	90	k Ω .
Výstupní odpor R_o :	1	k Ω .
Šumové výstupní napětí U_{IN} ($U_{CC} = 10$ V, $R_G = 600$ Ω):	1	≤ 3 μ V.
Přeslech a mezi oběma zesilovacími stupni:	40	dB.
Samostatný tranzistor n-p-n T_{13}		
Proudový zesilovací činitel h_{21E} ($U_{CE} = 3$ V, $I_C = 1$ mA):	150	≥ 70
Průrazné napětí kolektor-emitor $U_{(BR)CEO}$ ($I_C = 1$ mA):	25	≥ 15 V.
Průrazné napětí kolektor-báze $U_{(BR)CBO}$ ($I_C = 1$ μ A):		≥ 25 V.
Klidový proud emitor-báze I_{EB0} ($I_C = 0$ mA, $U_{EB} = 4$ V):		≤ 1 μ A.

Obr. 97. Vnitřní elektrické zapojení UL1401P – UL1403P a UL1401L – UL1405L

UL1401L jsou v kovovém pouzdro CE50 s devíti kolíkovými vývody (upravené pouzdro TO-3), obvody řady UL1401P jsou v plastickém pouzdro CE74 (quad-in-line) se širokými středními vývody, které slouží k chlazení součástky. Přibližnými ekvivalentními výrobky obvodů UL1401P jsou součástky japonského výrobce Sanyo LA4030P, UL1402P přibližně LA4031P, UL1403P přibližně LA4032.

Integrované obvody obou řad jsou složeny ze tří funkčních bloků: napěťového předzesilovače, budicího stupně a koncového zesilovače. Další výklad funkce se bude vzhledem k odlišnému číslování vývodů vztahovat k obvodům řady UL1401P. Po přečíslování vývodů platí i pro řadu UL1401L. Vstupní signál se přivádí na vývod 05, tedy na bázi jednoho z tranzistorů (T_1) rozdílového zesilovače. Na druhý vstup (vývod 06) rozdílového zesilovače (T_2) se přivádí signál záporné zpětné vazby. Vnější část obvodu záporné zpětné vazby je tvořena odporem R_t a kondenzátorem C_t , pripojeným k vývodu 06 integrovaného obvodu a zemi.

Součástí napěťového předzesilovače jsou ještě tranzistory T_3 (p-n-p) a T_4 (n-p-n), které vytvářejí tzv. složený tranzistor p-n-p s napěťovým zesílením, daným poměrem odporů v kolektoru a emitoru.

Tranzistor T_5 v zapojení sledovače plní funkci oddělovacího stupně.

V budicím stupni pracuje tranzistor T_6 , který současně spolu s tranzistory T_7 , T_8 a T_9 tvoří koncový zesilovač výkonu.

Vývody (platí pro řadu UL1401P): 01 – útlum budiče, 02 – blokování napájení, 03, 04 – nepoužívat, vnitřní spoj, 05 – vstup, 06 – zpětná vazba, 07 – kmitočtová kompenzace, 08 – zem, 09, 10 – nepoužívat, vnitřní spoj, 11 – výstup, 12 – přípoj napájecího napětí U_{CC} .

Vývoj obvodu řady UL1401L: 1 – zem, 2 – výstup, 3 – přípoj napájecího napětí U_{CC} , 4 – nepoužívat, 5 – útlum budiče, 6 – blokování napájení, 7 – vstup, 8 – zpětná vazba, 9 – kmitočtová kompenzace.

Při práci s integrovanými obvody obou řad doporučuje výrobce zachovávat alespoň minimální bezpečnostní opatření, jimiž se ochrání součástky před zničením. Především je třeba:

- k ochraně součástek před zničením elektrostatickým nábojem musí být každá osoba, která s nimi manipuluje, uzemněna např. zemnicím náramkem, spojeným přes odporník $1 M\Omega$ se zemí;
- při ručním vypájení obvodu z desky s plošnými spoji se musí používat páječka se speciálním pájecím hrotom, který se zahřívá všechny vývody najednou. Při automatickém pájení součástek musí být teplota pájecí lázně $270^\circ C$, doba pájení v lázni nejvýše 10 s. Při ručním pájení smí být teplota pájecího hrotu $350^\circ C$, doba pájení 4 s. Pájecí lázně i hrot ruční páječky musí být uzemněny.

Doporučená zapojení

Návrh typického nízkofrekvenčního zesilovače výkonu, v němž lze použít kterýkoli z řady integrovaných obvodů UL1401L či UL1401P, je na obr. 98. Výstupní výkon, zkreslení, napěťové zesílení, příkon proudu v klidovém stavu a další provozní údaje použitého obvodu jsou shodné s elektrickým údajem IO. Číslování vývodů platí pro použití obvodů řady UL1401P. Použijí-li se obvody řady UL1401L, musí se vývody přečíslovat.

Zajímavé zapojení koncového zesilovače se dvěma obvody UL1401L a jedním UL1321N je na obr. 99. Zesilovač je použit ve stereofonním rozhlasovém přijímači

Obr. 98. Doporučené zapojení nízkofrekvenčního zesilovače středního výkonu s UL1401P až UL1403P nebo UL1401L až UL1405L

Amator-stereo, výrobce Unitra. Jeho výkon je 2×4 W, napájecí napětí 24 V musí být dobře stabilizováno. Nf signály levého a pravého kanálu ze stereofonního dekodéru jsou zesíleny nejdříve diskrétními tranzistory s větším vstupním odporem. Mezi výstupními obvody těchto tranzistorů a vstupem následujících zesilovacích stupňů jsou kmitočtové korektory a regulátor zesílení. V nf předzesilovacím stupni je použit integrovaný obvod UL1321N, k jehož výstupu je připojen regulátor vyvážení R_{A15} . Symetrie zesílení obou kanálů předzesilovače se nastavuje proměnným odporem R_{S19} .

Jako koncové zesilovače výkonu pracují dva stejně integrované obvody UL1405L. Ke koncovému stupni lze připojit kromě reproduktorů i stereofonní sluchátka (např. typu WM-590-1) konektorem GM-590-1. Sluchátka lze připojit tímto konektorem tak, že lze poslouchat i na reproduktarové soustavy, otočením konektoru o 180° kolem jeho osy je možný poslech pouze na sluchátka (reprodukty se samočinně odpojí). Při napájení napětí 24 V je příkon levého i pravého kanálu v klidu asi 70 mA, výstupní výkon při plném vybuzení a zatěžovacím odporu $2 \times 8 \Omega$ je 2×4 W, zkreslení 5 %. Přenášené nf pásmo (pro pokles -3 dB) je lineární v rozsahu 80 až 16 000 Hz.

Nízkofrekvenční zesilovač výkonu 10 W, UL1440T

Integrovaný obvod UL1440T je bipolární monolitický integrovaný nf zesilovač

Elektrické údaje UL1401L, UL1402L, UL1403L, UL1405L, UL1401P, UL1402P, UL1403P

Mezní údaje ($\theta_a = 25^\circ C$)				
Napájecí napětí U_{CC} UL1401L, UL1401P:	8 až 16 V,			
UL1402L, UL1402P:	8 až 18 V,			
UL1403L, UL1403P:	8 až 25 V,			
UL1405L:	8 až 27 V,			
Výstupní proud kolektoru, I_C				
UL1401L, UL1401P:	max. 1 A,			
všechny ostatní typy:	max. 1,5 A,			
Ztrátový výkon P_{TOT}				
bez chlazení, $\theta_a = 25^\circ C$:	max. 1,5 W,			
s ideálním chlazením, $\theta_a = 65^\circ C$:	max. 5 W,			
Tepelný odpor přechod-okolí $R_{Th(j)}$:	55 K/W,			
Tepelný odpor přechod-pauzdro $R_{Th(j)}$:	8 K/W,			
Rozsah pracovních teplot okolí θ_a :	-25 až +70 °C,			
Rozsah skladovacích teplot θ_{SIG} :	-40 až +125 °C,			
Charakteristiky údaje ($\theta_a = 25^\circ C$)				
Plati při UL1401L, UL1401P: $U_{CC} = 11$ V, $R_L = 8 \Omega$,				
UL1402L, UL1402P: $U_{CC} = 13,2$ V, $R_L = 4 \Omega$,				
UL1403L, UL1403P: $U_{CC} = 18$ V, $R_L = 8 \Omega$,				
UL1405L: $U_{CC} = 22$ V, $R_L = 8 \Omega$.				
Výstupní výkon P_O	Jmen.	Min. max.		
($R_f = 330 \Omega$, $f = 1$ kHz, $k = 10\%$)	1,0	$\geq 0,8$ W,		
UL1401L, UL1401P:	2,0	$\geq 1,8$ W,		
UL1402L, UL1402P:				
UL1403L, UL1403P:				
UL1405L:				
UL1403L, UL1403P:	3,0	$\geq 2,7$ W,		
UL1405L:	5,0	W;		
($R_f = 330 \Omega$, $f = 1$ kHz, $k = 2,5\%$)				
UL1401L, UL1401P:	0,8	W,		
UL1402L, UL1402P:	1,8	W,		
UL1403L, UL1403P:	2,7	W,		
UL1405L:	4,5	W.		
Činitel harmonického zkreslení k				
($R_f = 330 \Omega$, $f = 1$ kHz, $P_0 = 0,5$ W):	0,3	$\leq 1,5\%$.		
Napěťový zisk A_U				
($R_f = 330 \Omega$, $f = 1$ kHz, $P_0 = 0,5$ W):	30	27 až 33 dB.		
Šířka přenášeného pásmo (-3 dB), BW				
($R_f = 330 \Omega$, 0 dB $\leq P_0 = 0,5$ W)				
UL1401L – UL1405L:			40 až 100 000 Hz.	
($R_f = 330 \Omega$)				
UL1401P – UL1403P:	100	kHz.		
Šumové výstupní napětí U_{ON}				
($R_f = 330 \Omega$, $U_1 = 0$):			≤ 1 mV.	
Klidový napájecí proud I_{CC}				
($R_f = 330 \Omega$)				
UL1401L, UL1401P:	15	≤ 27 mA,		
UL1402L, UL1402P:	16	≤ 32 mA,		
UL1403L, UL1403P:	23	≤ 43 mA,		
UL1405L:		≤ 55 mA.		
Vstupní odpor R_I				
($R_f = 330 \Omega$, $f = 1$ kHz):	8	≥ 6 k Ω .		
Výstupní odpor R_O				
($R_f = 330 \Omega$, $f = 1$ kHz):	450	Ω.		

Obr. 99. Zapojení dvoukanálového stereofonního zesilovače s výkonem $2 \times 4\text{ W}$ a dvěma UL1405L

výkonu s výstupním výkonem 10 W, určený pro rozhlasové a televizní přijímače, magnetofony, gramofony a malé zesilovače. Vnitřní elektrické zapojení obvodu je na obr. 100. Součástka je v plastickém pouzdře CE82 s 2×6 vývody profilovanými do čtyř řad a středními širokými rovnými vývody, které slouží jako chladicí vývod. Při plném zatížení obvodu se musí k chladicím vývodům připojit potřebné chladidlo. K tomu slouží upevňovací otvory o $\varnothing 3,5\text{ mm}$ v chladicích vývodech. Přímý ekvivalentem obvodu UL1440T je výrobek TCA940N italského výrobce SGS-ATES.

Vývody: 01 – pripoj napájecího napětí U_{CC} , 02, 03 – nepoužívat, 04 – zpětná vazba typu „bootstrap“, 05 – kmitočtová kompenzace, 06 – záporná zpětná vazba, 07 – potlačení zvlnění napájecího napěti, 08 – vstup, 09 – substrát, spojuje se zemí, 10 – zem, 11 – nepoužívat, 12 – výstup.

Cinnost obvodu je velmi podobná činnosti daleko popsaného integrovaného zesilovače UL1481P. Obvod je vybaven tepelnou ochranou před přetížením a obvodem pro omezení výstupního proudu, které zabezpečují integrovaný obvod před zničením při zkratu na výstupu.

Výhodou obvodu UL1440T je shodné zapojení vývodů s integrovanými zesilovači UL1481T, TBA810AS či MBA810AS, takže případná zámena součástek je oboustranně možná po malých úpravách vnějších součástek, i když výstupní výkon bude odlišný.

Velmi zajímavý je u IO UL1440T obvod pro omezování proudu výstupních tranzistorů. Na obr. 101 je závislost maximálního výstupního proudu na napětí kolektoru.

Obr. 101. Závislost maximálního výstupního proudu na napětí kolektor-emitor každého výstupního tranzistoru UL1440T

Toru vůči emitoru. Integrovaný obvod je chráněn jak před dočasným přetížením nebo zkratem na výstupu, tak i před déle trvajícím zkratem, neboť při něm začne pracovat tepelná ochrana, která udrží teplotu přechodu na bezpečné velikosti. Tepelná ochrana se projeví kladně též při použití chladicí s větším tepelným odporem, než jaký vyžaduje bezpečný provoz v běžných pracovních podmínkách.

Zapojení zesilovače výkonu s integrovaným obvodem UL1440T je na obr. 102.

Obr. 102. Doporučené zapojení nf zesilovače výkonu 10 W UL1440T

Elektrické údaje UL1440T	
Mezní údaje	
Napájecí napětí U_{CC} :	6 až 24 V, max. 3 A.
Výstupní proud I_O :	-25 až +70 °C.
Rozsah pracovní teploty okolo θ_A :	-40 až +150 °C.
Charakteristické údaje	
Výstupní výkon P_O :	
($U_{CC} = 20\text{ V}, R_L = 4\text{ }\Omega, k = 10\%, f = 1\text{ kHz}$):	10 W.
($U_{CC} = 18\text{ V}, R_L = 4\text{ }\Omega, k = 10\%, f = 1\text{ kHz}$):	9 W.
($U_{CC} = 20\text{ V}, R_L = 8\text{ }\Omega, k = 10\%, f = 1\text{ kHz}$):	6,5 W.
Zkreslení k :	
($U_{CC} = 18\text{ V}, P_O = 50\text{ mW}$ až $5\text{ W}, f = 1\text{ kHz}, R_L = 4\text{ }\Omega$):	0,3 %.
Napěťový zisk A_U :	
($U_{CC} = 18\text{ V}, R_L = 4\text{ }\Omega, f = 1\text{ kHz}, R_f = 56\text{ }\Omega$):	34 až 40 dB.
Šířka přenášeného pásmá, BW	
($U_{CC} = 18\text{ V}, R_L = 4\text{ }\Omega, C_3 = 1000\text{ pF}$):	40 až 20 000 Hz.
Potlačení zvlnění SVR	
($U_{CC} = 24\text{ V}, R_L = 4\text{ }\Omega, f_{zvlnění} = 100\text{ Hz}$):	45 dB.
Vstupní napětí pro plné vybuzení; U_I :	$\geq 250\text{ mV}$.
Vstupní odpor R_I :	$5\text{ M}\Omega$.

Obr. 100. Vnitřní elektrické zapojení UL1440T

Zatěžovací impedance R_L je připojena k výstupu přes elektrolytický kondenzátor $2000 \mu F$. Výstupní výkon a ostatní parametry zesilovače jsou v tabulce elektrických údajů. Kapacity kondenzátorů C_3 a C_7 jsou voleny pro optimální šířku přenášeného pásma. Kondenzátor C_7 se jinak zpravidla volí přibližně pětkrát větší než C_3 , tedy $C_7 = 5C_3$. Pro jiné horní mezní kmitočty lze volit C_3 a R_L takto:

$f_h = 10 \text{ kHz}$:	$C_3 [\mu F]$	950	1600	1900	2500
	$R_L [\Omega]$	20	40	56	100
$f_h = 20 \text{ kHz}$:	$C_3 [\mu F]$	400	800	1000	1400
	$R_L [\Omega]$	20	40	56	100

Ztrátový výkon přeměněný v integrovaném obvodu v teplo musí se odvést ze součástky chladičem z hliníkového plechu $80 \times 50 \text{ mm}$ a tloušťkou $3,5 \text{ mm}$ (obr. 103). V hliníkové desce se výřiznou dva jazyky, které se „vyhnou“ do pravého úhlu. Do vyvrťaných děr o $\varnothing 3,5 \text{ mm}$ se připevní integrovaný obvod. K lepšemu odvodu tepla je vhodné styčné plechy chladiče a integrovaného obvodu potřít silikonovou vazelinou. Chladič současně slouží jako držák desky s plošnými spoji zesilovače.

Obr. 103. Chladicí držák UL1440T

Nízkofrekvenční zesilovač výkonu 3 W s předzesilovačem, UL1461L

Integrovaný obvod UL1461L je analogový obvod, sdružující nf. předzesilovač napětí a zesilovač výkonu 3 W, vhodný pro nf. zesilovací stupně v rozhlasových přijímačích napájených ze sítě, v autorádiích, nf. zesilovačích a jiných elektronických přístrojích pro spotřební účely.

Vnitřní elektrické zapojení obvodu je na obr. 104. Zesilovač je v kovovém pouzdře CE51 s dvanácti kolíkovými vývody (upravené pouzdro TO-3). Obvod nemá žádnou známou obdobu jiných zahraničních výrobčů.

Vývody: 1 – zemnický bod koncového stupně předzesilovače (vývod není spojen s pouzdrem), 2 – blokování napájení, 3 – záporná zpětná vazba zesilovače, 4 – kmitočtová kompenzace, 5 – výstup zesilovače, 6 – napájení zesilovače, 7 – útlum oscilací, 8 – vstup předzesilovače, 9 – výstup předzesilovače, 10 – napájení předzesilovače, 11 – vstup předzesilovače, 12 – zpětná vazba předzesilovače.

Integrovaný obvod UL1461L je charakterizován možností úprav průběhu kmitočtové charakteristiky v rozsahu dolních kmitočtů vhodnou volbou zatěžovacího odporu a kapacity vazebního kondenzátoru, kterým se připojuje reproduktor k výstupu zesilovače. V rozsahu horních kmitočtů lze upravit průběh přenosové charakteristiky volbou kapacity konden-

Obr. 105. Doporučené zapojení nf. předzesilovače a zesilovače výkonu 3 W s UL1461L

zátorů připojených k vývodu 4. Kapacity těchto kondenzátorů jsou v doporučeném zapojení voleny pro optimální přenášené kmitočtové pásma.

Doporučené zapojení úplného nf. zesilovače s UL1461L je na obr. 105. Jeho parametry jsou shodné s charakteristicemi

Elektrické údaje UL1461L

Mezní údaje

Napájecí napětí U_{CC} :

8 až 17 V.

max. 1,5 A.

Výstupní proud I_{out} :

max. 2 W.

max. 5 W.

bez chlazení:

-25 až +70 °C.

s chladičem Al $100 \times 100 \times 1 \text{ mm}$:

-40 až +125 °C.

Rozsah pracovních teplot okolo θ_a :

Rozsah skladovacích teplot θ_{stg} :

Charakteristické údaje

Klidový napájecí proud I_{CC} :

Jmen. 35 \leq 60 mA.

($U_{CC} = 13,2 \text{ V}, R_L = 4 \Omega, U_I = 0 \text{ mV}$):

0,1 až 1,5 mA.

Vstupní napětí U_I předzesilovače:

20 až 100 mV.

Vstupní napětí U_{Iz} zesilovače výkonu:

Výstupní výkon P_o :

3 \leq 20 W.

($U_{CC} = 13,2 \text{ V}, R_L = 4 \Omega, f = 1 \text{ kHz}, k = 10\%$):

0,6 \leq 1,3 %.

Zkreslení k :

($U_{CC} = 13,2 \text{ V}, R_L = 4 \Omega, f = 1 \text{ kHz}, P_o = 1 \text{ W}$):

100 \geq 20 kHz.

Šířka přenášeného pásma, BW:

($U_{CC} = 13,2 \text{ V}, R_L = 4 \Omega, f = 1 \text{ kHz}$):

Napěťový zisk A_v :

($U_{CC} = 13,2 \text{ V}, R_L = 4 \Omega, f = 1 \text{ kHz}$)

celého obvodu:

59 až 71 dB.

předzesilovače:

35 dB.

zesilovače výkonu:

30 dB.

Vstupní odpor R_I :

($U_{CC} = 13,2 \text{ V}, R_L = 4 \Omega, f = 1 \text{ kHz}$)

předzesilovače:

15 k Ω .

zesilovače výkonu:

8 k Ω .

Výstupní odpor R_O :

($U_{CC} = 13,2 \text{ V}, R_L = 4 \Omega, f = 1 \text{ kHz}$)

předzesilovače:

20 Ω .

zesilovače výkonu:

0,45 Ω .

Účinnost:

($U_{CC} = 13,2 \text{ V}, R_L = 4 \Omega, f = 1 \text{ kHz}$):

50 %.

Šumové napětí na výstupu U_{ON} :

($U_{CC} = 13,2 \text{ V}, R_L = 4 \Omega, vstup spojen se zemí$):

$\leq 10 \text{ mV}$.

Obr. 104. Vnitřní elektrické zapojení UL1461L

kými údaji v tabulce. Při vybuzení zesilovače na výstupní výkon 3 W a při napájecím napětí 13,2 V odebírá zesilovač proud 450 mA. Použije-li se větší napájecí napětí, zvětší se jak odebíraný proud zesilovače při plném vybuzení, tak i klidový proud. Při napájecím napětí 16 V je klidový proud 40 mA, při 18 V 45 mA. Malý součinitel zkreslení 0,6 % výstupního signálu je v rozsahu výstupního výkonu 0,7 až 2,6 W. Při menším a větším výkonu se zkreslení zvětšuje (při $P_o = 0,1 \text{ W}$ je zkreslení 1,8 %, při 3,5 W asi 10 %). Při napětí 16 V a zkreslení 10 % je výstupní výkon zesilovače (informativně) 4,8 W.

Nízkofrekvenční zesilovač výkonu 5 W, UL1480P

Integrovaný obvod UL1485 je monolitický integrovaný zesilovač středního vý-

Obr. 106. Vnitřní elektrické zapojení UL1480P

padě je úbytek napětí kladné půlvlny vstupního signálu

$$U_{(+)} = U_{BE15} + U_{BE14} + U_{CE\text{ sat }15}$$

záporné půlvlny

$$U_{(-)} = U_{CE\text{ sat }16}.$$

Pro stejné omezování obou půlvln signálu musí být stejnosměrná složka výstupního signálu

$$U_{O(CC)} \cong \frac{U_{CC} + U_{BE}}{2} - U_{BE} = \dots$$

Má-li se tato podmínka splnit, musí se oddělit vývod 01 a 03 a integrovaný obvod UL1480P se musí napájet jen ze strany vývodu 01.

Vnější člen C_1 , R_f tvoří zpětnou vazbu a rozhoduje o zesílení a citlivosti. Závislost vstupního napětí U_i a napěťového zisku A_u na odporu R_f je v tabulce (platí pro $P_0 = 5 \text{ W}$ při $f = 1 \text{ kHz}$):

$R_f [\Omega]$	10	40	56	80	120	130
$A_u [\text{dB}]$	500	180	130	80	40	38
$U_i [\text{mV}]$	15	50	70	100	160	185

Údaje v tabulce umožňují volit R_f pro požadované pracovní podmínky. Dolní mezní kmitočet zesílovače f_d závisí na R_f , R_L , C_1 a C_7 . Je-li splněna podmínka

$$R_f C_1 > R_L C_7,$$

závisí dolní kmitočet pouze na R_L a C_7 takto:

f_d [Hz]	R_L [Ω]	C_7 [μF]	R_L [Ω]	C_7 [μF]	R_L [Ω]	C_7 [μF]
10	15	1000	-	-	-	-
20	15	530	8	1000	-	-
40	15	250	8	470	4	1000
60	15	170	8	300	4	600
100	15	110	8	200	4	400

Horní mezní kmitočet f_h závisí především na kondenzátoru C_3 a odpore R_f (kondenzátory C₃ a C₇ slouží ke kompenzaci v oblasti horní části přenosového pásmá):

f_h [kHz]	R_f [Ω]	C_3 [pF]	R_f [Ω]	C_3 [pF]	R_f [Ω]	C_3 [pF]
5	10	350	30	900	60	1200
10	10	170	30	400	60	600
10	-	-	-	-	100	900
20	10	90	30	200	60	350
20	-	-	-	-	100	500

Ostatní použité součástky:
 C_8 – kondenzátor tvoří obvod vazby „bootstrap“, který dovoluje maximální využití koncových tranzistorů při kladných půlvlnách vstupního signálu,

C_5 – kondenzátor spolu s odporem 7 k Ω (uvnitř obvodu) mezi vývody 03 a 07 tvoří filtr napájecího napětí,

C_9 – elektrolytický kondenzátor vyhlažuje zbytkové zvlnění napájecího napětí.

Doporučená zapojení

Nízkofrekvenční zesílovač výkonu s UL1480P podle obr. 107 pracuje se zatěžovacím odporem připojeným mezi kladný pól napájecího napětí a výstup. Zapojení vyžaduje málo vnějších součás-

ek, který může odevzdát výstupní výkon 2,5 W (použije-li se měděná fólie jednou stranu desky s plošnými spoji jako dodatkový chladič, odevzdá obvod výstupní výkon 5 W). Zesílovač pracuje ve třídě B s účinností až 70 % při napájecím napětí 24 V a zatěžovací impedanci 16 Ω . Předností obvodu je široký rozsah pracovních napětí (5 až 30 V), při nichž obvod spolehlivě pracuje. Obvod se používá především v koncových zesílovačích zvuku v televizních přijímačích. Vnitřní elektrické zapojení obvodu UL1480P je na obr. 106. Součástka je v pouzdře CE74 z plastické hmoty s 2x šesti vývody tvarovanými do čtyř řad a středními širokými páskovými vývody, které slouží jako chladiče. Přímý zahraniční ekvivalentem obvodu UL1480P je výrobek francouzské firmy Thomson-CSF TBA800 a stejně označené výrobky jiných výrobců (AEG-Telefunken, SGS-ATES apod.).

Vývody: 01 – přípoj napájecího napětí 02 – nepoužívat, 03 – napájecí napětí U_{CC} , 04 – zpětná vazba typu „bootstrap“, 05 – kmitočtová kompenzace, 06 – zpětná vazba, 07 – potlačení zvlnění napájecího napětí, 08 – vstup, 09 – substrát, zem, 10 – zem, 11 – nepoužívat, 12–výstup.

Integrovaný obvod UL1480P sdružuje čtyři hlavní funkční skupiny – vstupní stupeň, obvod automatické rovnováhy, budicí stupeň a koncový zesílovač. Vstupní stupeň tvoří tranzistory T₁ a T₂ v Darlingtonově zapojení, což umožňuje získat velké proudové zesílení a velkou vstupní impedanci. Navíc (vzhledem k 0 V na bázi tranzistoru T₁) se může zdroj signálu připojit na vstup bez použití vazebního kondenzátoru, což zmenšuje jednak počet použitých vnějších součástek, jednak šum na nízkých kmitočtech. Napěťové zesílení stupně je velké též v důsledku zatížení tranzistoru T₂ proudovým zdrojem, paralelně připojeným ke vstupní impedance následujícího stupně.

Integrovaný obvod UL1480P pracuje v širokém rozsahu napájecích napětí (5 až 30 V) s malým zkreslením díky použitímu obvodu automatické rovnováhy – tedy obvodu automatického řízení stejnosměrné složky výstupního napětí na $U_{CC}/2$. Proud I , který protéká odporem R₂, je větší než proud protékající kolektorem tranzistoru T₅, proto

$$I > I_{C(T_5)} \text{ nebo též } I = p/I_{C(T_5)}$$

kde

$$p = \frac{1}{h_{21E2}} \text{ (blíží se 1).}$$

Obr. 107. Doporučené zapojení nf zesilovače s UL1480P se zátěží připojenou ke kladnému pólu napájecího zdroje

tek a může pracovat i při malém napájecím napětí. Technické údaje zesilovače jsou shodné s elektrickými údaji v tabulce.

Zapojení zesilovače podle obr. 108 je vhodné především pro případy, kdy se zesilovač napájí větším napětím. Vývod 03 může zůstat nezapojen, pak diody D2, D3

Obr. 108. Doporučené zapojení nf zesilovače s UL1480P

(viz vnitřní elektrické zapojení) upraví výstupní signál do symetrického tvaru. Předností zapojení je malé zkreslení (prům. 0,5 %) až do výstupního výkonu

3,3 W, při výkonu do 5 W se zkreslení zvětší až na 10 %. Výstupní výkon silně závisí jak na napájecím napěti, tak na zatěžovacím odporu. Při zatěžovacím odporu 16 Ω platí dále uvedené údaje, při odporu 8 Ω a napájecím napěti 18 V je výstupní výkon 3,5 W při zkreslení 10 %.

Technické údaje:

Napájecí napětí U_{CC} : 24 V.

Klidové napětí U_{CO} (vývod 12): 12 (11 až 13 V).

Klidový proud I_{CC} (vývod 01): typ. 9, ≤ 20 mA.

Vstupní proud I_i (vývod 08): typ. 1, $\neq 5$ μA.

Výstupní výkon P_0 při $k = 10\%$: typ. 5, $\geq 4,4$ W.

Citlivost S při $P_0 = 5$ W: 80 mV.

Vstupní odpor R_i : 5 MΩ.

Přenášené pásmo (-3 dB):

($C_3 = 330$ pF): 40 až 20 000 Hz.

Nelineární zkreslení k v rozsahu

$P_0 = 50$ mW až 2,5 W: 0,5 %.

Napěťový zisk A_u uzavřené smyčky zpětné vazby: typ. 42, 39 až 45 dB.

Napěťový zisk A_{uo} otevřené smyčky zpětné vazby: 80 dB.

Účinnost při $P_0 = 4$ W: 70 %.

Integrovaný obvod UL1480P se může používat též se zatěžovacím odporem připojeným k výstupu přes elektrolytický kondenzátor (druhým koncem k zemi) a se zavedenou zpětnou vazbou typu „bootstrap“ podle obr. 109. Zpětnovazební kondenzátor C_8 zajišťuje stejnou charakteristiku, jako má zesilovač podle obr. 108. Může však pracovat i s malým napájecím napětím. Při malém napájecím napětí v rozsahu 9 až 14 V se musí použít odpor $R_x = 150$ Ω, připojený mezi vývody 01 a 04. V obou zesilovačích podle obr. 109 a 110 se dosáhne výborné filtrace zbytku zvlnění napájecího napětí, připojili se elektrolytický kondenzátor C_5 (10 až 100 μF/15 V) mezi vývod 07 a zem.

Nf zesilovač výkonu podle obr. 110 se odliší od předcházejícího způsobem zavedení vnější zpětné vazby odporem R_2 .

Obr. 109. Doporučené zapojení nf zesilovače s UL1480P se zpětnou vazbou „bootstrap“

Výsledkem je nezávislost napěťového zesílení zesilovače na výrobních rozptylech UL1480P. Lze to objasnit takto: Obvod zpětné vazby u zesilovače podle obr. 108 je zjednodušit pomocí náhradního obvodu na jediný vnitřní odpór R , připojený k vývodům 06 a 12. K vývodu 06 je připojen obvyklý člen $C_1 R_1$. V tomto případě je napěťové zesílení

$$A_u = 1 + \frac{R}{R_f} \cong \frac{R}{R_f},$$

kde R je odpor zpětné vazby uvnitř obvodu s rozptylem $\pm 30\%$ od jmenovité hodnoty.

Napěťové zesílení zesilovače podle obr. 110 s vnějším odporem R_2 je

$$A_u = \frac{RR_2}{R_f(R+R_2)}.$$

Je-li $R_2 \ll R$ (v našem případě $R_2 = 300$ Ω, $R = 7$ kΩ), bude

$$A_u = \frac{R_2}{R_f},$$

takže A_u nezávisí na vnitřním odporu R .

Technické údaje:

Napájecí napětí U_{CC} : 24 V.

Klidový proud I_{CC} : 11 mA.

Proud I_C pro vybuzení na:

$P_0 = 4,5$ W: $= 320$ mA.

Výstupní výkon P_0 při $k = 10\%$: 4,5 W.

Citlivost S při $P_0 = 4,5$ W: 115 mV.

Vstupní odpor R_i : 100 kΩ.

Přenášené pásmo (-3 dB):

($C_3 = 390$ pF): 9 až 60 000 Hz.

Nelineární zkreslení k v rozsahu

$P_0 = 0,4$ až 2,5 W: 0,5 %.

Napěťový zisk A_u uzavřené smyčky zpětné vazby: 38 dB.

Účinnost při $P_0 = 4,5$ W: 60 %.

UL1480P se chladi v podstatě stejným způsobem jako obvody UL1481P, UL1481T (viz dále).

Obr. 110. Doporučené zapojení nf zesilovače s UL1480P s odlišnou zpětnou vazbou

Elektrické údaje UL1480P

Mezní údaje		
Napájecí napětí U_{CC} (vývod 01, 03):	5 až 30 V.	
Výstupní proud I_O (vývod 12):	max. 1,5 A.	
Charakteristické údaje		
Klidový proud I_{CC} (vývod 01, 03):	≤ 20 mA.	
($U_{CC} = 24$ V, $U_I = 0$ V):		
Výstupní výkon P_0 :	5 W.	
($U_{CC} = 24$ V, $R_L = 16$ Ω, $f = 1$ kHz, $k = 10\%$):	≤ 5 μA.	
Vstupní předpěťový proud I_B (vývod 08):	0,5 %.	
($U_{CC} = 24$ V):		
Zkreslení k :	80 dB.	
($U_{CC} = 24$ V, $P_0 = 50$ mW až 2,5 W, $R_L = 16$ Ω, $f = 1$ kHz, $R_f = 56$ Ω):	39 až 45 dB.	
Vstupní proud I_B (vývod 08):	40 až 20 000 Hz.	
($U_{CC} = 24$ V, $R_L = 16$ Ω, $f = 1$ kHz):		
Vstupní odpor R_i (vývod 08):	80 mV.	
Potlačení zvlnění, SVR:	5 MΩ.	
($U_{CC} = 24$ V, $R_L = 16$ Ω, $C_5 = 100$ μF, f zvlnění = 100 Hz):	38 dB.	
Vstupní šumové napětí U_{IN} (vývod 08):	5 μV.	
($U_{CC} = 24$ V, $R_g = 0$, BW = 40 až 20 000 Hz):		

Nízkofrekvenční zesilovač
výkonu 5 W, UL1481P, UL1481T

Integrovaný obvod UL1481P, UL1481T je nf zesilovač výkonu se ztrátovým výkonom 5 W a vnitřní tepelnou ochranou před přetížením. Obvod je určen jako nf zesilovač výkonu v rozhlasových a televizních přijímačích, gramofonech, magnetofonech, v nf zesilovačích středního výkonu a ve snímkových vychylovacích obvodech černobílých televizních přijímačů s malým rozměrem stínítka obrazovky. Vnitřní elektrické zapojení je na obr. 111. Součástka UL1481P je v plastickém pouzdru CE74 s 2x šesti vývody, tvarovanými do čtyř řad, a bočními tvarovanými širokými vývody, UL1481T v pouzdru CE82 s rovnými páskovými vývody s dérami o Ø 3,5 mm k přišroubování ke chladící ploše. Radiátory se připájají nebo jinak spojí se zemí jedné strany desky s plošnými spoji. Přímým ekvivalentem obvodu UL1481P je výrobek Thomson-CSF TBA810S, obvod UL1481T typ. příp. stejně označené součástky jiných výrobců.

Teplotní odpor přechodokolí má přímý vliv na ztrátový výkon součástek v provozu. Pokud jsou střední široké páskové vývody připájeny na fólii desky s plošnými spoji, je odpor $R_{th,1}$ max. 70 K/W. Zmenšíť tento odpor lze připájením pásků k větší ploše měděné fólie (např. podle návrhu na obr. 112). V tomto případě se doporučuje použít oboustranně plátovanou desku. Pro chlazení integrovaného obvodu se použije jedna strana fólie (neleptaná), která se uzemní. Známe-li plochu fólie, vypočteme tepelný odpor $R_{th,2}$ podle obr. 113.

Vnitřní elektrické zapojení obvodu lze rozdělit do těchto funkčních skupin – vstupní stupeň, předzesilovač se symetrickým členem, koncový stupeň s tepelnou ochranou před přetížením. Ve vstupním stupni pracují dva tranzistory T_1 (p-n-p) a T_4 v Darlingtonově zapojení. K tomu, aby protékal proud báze T_1 , musí se galvanicky spojit vstupní vývod (č. 08) se zemí.

Střídavé napětí na emitoru tranzistoru T₄ (vývod 06) je přibližně rovno vstupnímu signálu. Za předpokladu, že k vývodu 06 je připojen vnější člen Z₁, doplňující obvod záporné zpětné vazby (C₂ a R₄, na obr. 114 a 115), lze vypočítat napěťové zesílení obvodu s uzavřenou smyčkou.

$$A_u \equiv \frac{Z_f + R_6}{Z_f} = 1 + \frac{R_6}{Z_f}. \quad (1)$$

Vztah platí, je-li napěťové zesílení obvodu s otevřenou smyčkou záporné zpětné vazby velmi velké. Tranzistor T_2 slouží

Obř. 112. Návrh úpravy chladicího vývodu obvodu UL1481P

Obr. 113. Tepelný odpor přechod-okolí UL1481P v závislosti na ploše chladiče (podle obr. 112)

Obr. 114. Zapojení nf zesilovače s UL1481P, UL1481T se záteží připojenou ke kladnému napájecímu napětí

Obr. 115. Zapojení nf zesilovače s UL1481P, UL1481T se zátěží připojenou na zem.

Obr. 111. Vnitřní elektrické zapojení UL 1481P, UL 1481T

jako dynamická zátěž tranzistoru T_4 (proudový zdroj). Signál z kolektoru T_4 se přivádí na bázi tranzistoru T_9 , který řídí koncový stupeň.

Napájecí napětí obvodu se přivádí na vývod 01. Protože stejnosměrné napětí na bázi tranzistoru T_8 je V_{BE} a $R_5 = R_4$, je proud protékající tranzistorem T_3 (proud báze je přitom zanedbatelný)

$$I_{T3} \cong \frac{U_{CC} - 4U_{BE}}{2R_5} \cong \frac{\frac{U_{CC}}{2} - 2U_{BE}}{R_5}$$

Obdobně protéká proud tranzistory T_2 , T_4 , odpor R_6 se rovná R_5 a R_4 . Odtud lze vypočítat stejnosměrnou složku napětí na výstupu (vývod 12)

$$U_0 \cong 2U_{BE} + I_{T2} R_6 \cong \frac{U_{CC}}{2} \quad (2)$$

Symetrační obvod zesílovače vyžaduje na výstupu obvodu stejnosměrnou složku napětí, která je přibližně $U_{cc}/2$, což potvrzuje výsledky měření.

Proud protékající tranzistory T₈ a T₅ je při pokojové teplotě okolí

$$I_{T8} \cong \frac{U_{BE}}{R_3} \cong 0,8 \text{ mA}$$

Protože tranzistor T_8 pracuje v proudovém zdroji, závisí tento proud jen nepatrně na napájecím napětí a pracovní teplotě. Tranzistor T_5 je tepelně kompenzovaný napáťovým zdrojem, který napájí báze tranzistorů T_6 a T_7 , pracující jako proudové zdroje pro předpětí koncového stupně. Na vývod 04 je vyvedena zpětná vazba typu „bootstrap“, takže napětí na emitorech tranzistorů T_5 , T_6 a T_7 , vždy odpovídá velikosti signálu.

Koncový stupeň tvoří tranzistory T₁₄, T₁₅ a T₁₃, T₁₆. Diody D₅, D₆, D₇ napojené stejnosměrným proudem asi 0,8 mA z proudového zdroje T₇ tvoří spolu s emitorovým sledovačem T₁₂ napěťový zdroj, který vytváří na emitoru tranzistoru T₁₃ napětí rovné +2U_{BE} vzhledem k výstupnímu napětí. Je možno dokázat, že tento obvod pracuje stejně jako běžné zapojení se třemi sériově spojenými diodami, připojenými místo D₃. Přednosti popisovaného obvodu je lepší přepínání koncových tranzistorů při změnách půlvln signálu, díky čemuž má zesilovač menší celkové zkreslení. To pak dovoluje zmenšit předpěťový proud koncových tranzistorů asi na 4 mA.

Teplelná ochrana před přetížením se opírá o funkci tranzistorů T_{10} a T_{11} . Tranzistor T_{11} vynucuje na bázi tranzistoru T_{10} napětí, které je při pokojové teplotě asi 350 mV. Tranzistor T_{10} slouží jako tepelné čidlo. Na čipu obvodu je umístěn poblíž koncových tranzistorů. Při běžné teplotě čipu je tranzistor uzavřen, otevírá se při teplotě asi 130 °C, přičemž svádí při dalším zvyšování teploty vstupní signál k zemi. Tento způsob jištění má své výhody před jištěním, které vzorkuje výstupní proud, v tom, že reaguje na soubor všech činitelů, způsobujících zvýšení teploty obvodu.

Doporučená zapojení

Na obr. 114 a 115 jsou příklady zapojení dvou základních zesilovačů středního výkonu s integrovaným obvodem UL1481P.

Obr. 116. Návrh desky s plošnými spoji na zesilovače podle obr. 115.

Elektrické údaje UL1481P, UL1481T

Mezní údaje	Výstupní výkon P_0
Napájecí napětí U_{CC} :	4 až 20 V.
Výstupní proud I_O :	max. 2,5 A.
Výstupní proud /om vřcholový:	max. 3,5 A.
Ztrátový výkon P_{tot} :	
$\theta_a = 25^\circ C$, bez přídavného chlazení:	max. 1,8 W.
$\theta_a = 70^\circ C$, s ideálním chlazením:	max. 5 W.
Tepelný odpor přechod-okoří R_{thj} (radiátory připájení k měděné fólii desky s plošnými spoji):	max. 70 K/W.
Tepelný odpor přechod-pouzdro R_{thj} :	max. 12 K/W.
Rozsah pracovních teplot okolo θ_a :	-25 až +70 °C.
Rozsah skladovacích teplot θ_{sig} :	-40 až +125 °C.
Charakteristické údaje	
($\theta_a = 25^\circ C$, $U_{CC} = 14,4 V$, $R_L = 4 \Omega$, $f = 1 \text{ kHz}$, $R_f = 56 \Omega$)	
Klidový proud $/cco$ ($U_{CC} = 14,4 V$):	Jmen. Min.-max. 12 $\leq 20 \text{ mA}$.
Výstupní výkon P_0	
$k = 10\%$:	6 W, $\geq 3,5 \text{ W}$
$k = 2,5\%$:	4,6 W,
($U_{CC} = 9 \text{ V}$, $R_L = 4 \Omega$, $f = 1 \text{ kHz}$)	
$k = 10\%$:	2,5 W,
$k = 2,5\%$:	2,0 W.
Zkreslení k ($P_0 = 50 \text{ mW}$ až 3 W):	0,3 $\leq 1,5\%$.
Napěťový zisk A_u uzavřené smyčky zpětné vazby:	34 až 40 dB.
Šířka přenášeného pásmá, BW	
$C_3 = 820 \text{ pF}$:	40 až 20 000 Hz,
$C_3 = 1500 \text{ pF}$:	40 až 10 000 Hz,
Vstupní napětí U_I pro $P_0 = 6 \text{ W}$:	$\geq 80 \text{ mV}$.
Vstupní odpor R_I :	5 MΩ.
Šumové vstupní napětí U_N ($R_G = 0$, BW = 20 až 20 000 Hz):	0,2 μV.
Vstupní klidový proud $/IB$ ($U_{CC} = 14,4 \text{ V}$):	$\leq 4 \mu\text{A}$.
Potlačení zvlnění napájecího napětí, SVR, $f_{zvlnění} = 100 \text{ Hz}$:	48 dB.

nebo UL1481T, které mají zatěžovací odpor připojen k napájecímu zdroji nebo proti zemi. Zapojení se zatěžovacím odporem připojeným na napájecí napětí U_{CC} lípe využívá napájecího napětí, proto ho lze používat při napájecím napětí do 6 V. Jeho druhou předností je menší počet vnějších součástek; jeho nevýhodou je nutnost použít stabilizovaný napájecí zdroj. Zesilovač se zatěžovacím odporem připojeným k zemi se může napájet nestabilizovaným napětím. Má-li napájecí napětí zbytkovou střídavou složku s mezikvachlovou velikostí do 1 V při napětí 15 V (při vybuzení zesilovače), nezávisí zkreslení výstupního signálu na velikosti této složky za podmínky, že výstupní signál není omezován koncovým stupněm. Dosažené technické vlastnosti zesilovače v obou zapojeních jsou shodné s uvedenými charakteristikami údaji.

Funkce vnějších součástek v obou příkladech zapojení zesilovačů:
 R_1 odpor pro předpětí báze vstupního tranzistoru a řízení zesílení,
 R_i součástky zpětné vazby,
 C_5 výhlašovací filtr střídavé složky napájecího zdroje,
 C_3, C_4, C_7, R_4 obvod ke kompenzování kmitočtové charakteristiky zesilovače,
 C_6 kondenzátor zpětné vazby typu „bootstrap“.

Kapacity kompenzačních kondenzátorů C_3 a C_7 v závislosti na odporu R_i jsou (za předpokladu horního přenášeného kmitočtu 20 Hz a při $C_7 = (3 \text{ až } 5) C_3$:

$R_f [\Omega]$	20	50	100	200	350
$C_3 [\text{pF}]$	470	800	1000	1600	1800

Na obr. 116 je návrh desky s plošnými spoji na zesilovače s integrovaným obvodem UL1481P podle zapojení na obr. 115 s pracovní zatěžovací impedancí připojenou na zem. Druhá strana desky s plošnými spoji je využita jako chladič integrovaného obvodu. Řídicí potenciometr R_1 je mimo desku se spoji.

Integrovaný obvod UL1481P, UL1481T spolu s obvodem TCA511 SGS-Ates lze použít v zapojení podle obr. 117 jako vychylovací obvod v černobílých televizorech.

nich přijimačích s obrazovkou o úhlopříčce 31 cm a vychylovacím úhlem 110° (např. typu A31-120W). Integrovaný obvod TCA511 pracuje jako rozkladový obvod rádkového vychylování a řídí UL1481P/T, který pracuje jako rozkladový obvod snímkového vychylování. Potenciometry 2,2 MΩ, 100 kΩ a 46 kΩ slouží k řízení rozkmitu, kmitočtu a linearity snímkového vychylování.

Dosažené technické vlastnosti

Napájecí napětí U_{CC} : 11 V.
 Vychylovací proud I_Y snímkového rozkladu (mezikvachlová velikost): 1,5 A.

Obr. 117. Zapojení vychylovacího obvodu s UL1481P (T) a TCA511 v černobílých televizorech s malou obrazovkou

Výkon dodávaný P_y do vychylovací cívky
snímkového rozkladu: 0,47 W.
Doba zpětného běhu: 1 ms.
Ztrátový výkon P_{tot} UL1481P/T: 1,8 W.

Máme-li k dispozici nesymetrický stabilizovaný zdroj stejnosměrného napětí, který nemá uzemněn některou z výstupních svorek (tj. takový zdroj, u něhož můžeme uzemnit podle potřeby +, - nebo žádný výstupní vývod), můžeme pomocí integrovaného obvodu UL1481P, UL1481T konstruovat napájecí zdroj se dvěma symetrickými napětími – kladným a záporným napětím proti nule (kostře přístroje). Zapojení zdroje je na obr. 118. Kostra nesymetrického stabilizovaného

Obr. 118. Návrh zapojení obvodu pro symetrický zdroj dvou napětí s UL1481P, UL1481T

zdroje je spojena s obvodem. Kostra napájecího obvodu je připojena k vývodu 12 integrovaného obvodu UL1481. Potenciometr P_1 slouží k nastavení symetrie kladného a záporného výstupního napětí (podobně lze symetrizovat i zesilovač výkonu).

Dosažené technické údaje (platí při teplotě 25 °C)

Napájecí napětí U_{cc} : 6 až 16 V.
Výstupní odpor R_{o+} mezi výstupem kladného napětí (+ pól) a zemí: $\equiv 0,5 \Omega$.
Výstupní odpor R_{o-} mezi výstupem záporného napětí (- pól) a zemí: $\equiv 0,3 \Omega$.
Maximální přípustný odběr proudu při nesymetrickém zatížení (mezi vývody země a + polem nebo země a - polem): 400 mA.

Výstupní napětí U_o
kladné: $+U_{cc}/2$,
záporné: $-U_{cc}/2$.
Upozornění!

Vzhledem k trvalému zatížení výstupních tranzistorů integrovaného obvodu UL1481P a v tomto případě neobvyklých

Obr. 119. Zapojení nf zesilovače 2 W s UL1482K, UL1482M a zátěží připojenou ke kladnému napájecímu napětí

pracovních podmínek, při nichž není vždy možné zajistit bezporuchový chod, doporučuje se použití integrovaného obvodu ne-přetěžovat.

Nízkofrekvenční zesilovač 2 W, UL1482K

Integrovaný obvod UL1482K je nf zesilovač malého výkonu, pracující ve třídě B v poměrně širokém rozsahu napájecích napětí (3 až 16 V). Předností obvodu je malý klidový napájecí proud, možnost změnit vstupní citlivost pro maximální výstupní výkon, malé zkreslení harmonickým a malý tepelný odpor přechod-okolí (80 K/W). Elektrické zapojení vývodů je shodné s integrovaným obvodem UL1482M. Přímým ekvivalentem obvodu UL1482K je výrobek TBA820 výrobce SGS-ATES, od něhož se odlišuje tvarovanými vývody. Součástka je v plastickém pouzdře CE75A s 2x sedmi vývody tvarovanými do čtyř řad.

Sírový rozsah napájecích napětí dovoluje používat integrovaný zesilovač UL1482K v elektronických přístrojích se síťovým a bateriovým napájením, např. v přenosných rozhlasových a televizních přijímačích, magnetofonech a gramofonech.

Doporučená zapojení

Zapojení integrovaného obvodu UL1482K v nf zesilovači malého výkonu je na obr. 119. V podstatě je to obdobné

Obr. 120. Zapojení nf zesilovače 2 W s UL1482K, UL1482M a zátěží připojenou na zem

zapojení, které se používá u všech typů integrovaných nf zesilovačů. Rozdíl spočívá v odlišně dimenzovaných součástkách. Obvod pracuje se zatěžovacím odporem mezi výstupem a kladným napájecím napětím. Kapacita kondenzátoru C_B má značný vliv na přenášené kmitočtové pásmo. S kondenzátorem 220 pF se přenáší pásmo 25 až 20 000 Hz, při 680 pF se pásmo zvýší na 25 až 7000 Hz. Kondenzátor C_6 se použije tehdy, je-li třeba potlačit zbytky střídavé složky napájecího napětí.

Obdobné zapojení se zatěžovacím odporem mezi výstupem a zemí je na obr. 120. Kondenzátor C_7 zde slouží k zavedení zpětné vazby „bootstrap“; jinak je zapojen kondenzátor C_6 , který je připojen k vývodu 02 a zemí.

Elektrické údaje obou typů zesilovačů jsou shodné s charakteristickými údaji v tabulce.

Nízkofrekvenční zesilovač 2 W, UL1482M

Integrovaný obvod UL1482M je nízkofrekvenční zesilovač malého výkonu, pracující ve třídě B v poměrně širokém rozsahu napájecího napětí 3 až 16 V. Jeho předností je malý klidový proud, malé zkreslení, montážní zaměnitelnost se starším zahraničním výrobkem TAA611 SGS-ATES a jiných výrobců. Vnitřní elektrické zapojení je na obr. 121. Součástka je v plastickém pouzdře CE75B s 2x sedmi vývody tvarovanými do čtyř řad. Obdobným elektrickým ekvivalentem obvodu UL1482M je výrobek TBA820 SGS-

Elektrické údaje UL1482K

Mezní údaje		
Napájecí napětí U_{cc} :	3 až 16 V.	
Výstupní proud vrcholový /OM/:	max. 1,5 A.	
Ztrátový výkon P_{tot} při $\theta_a = 50^\circ C$:	max. 1,25 W.	
Teplota přechodu θ_j :	max. 150 °C.	
Charakteristické údaje		
Výstupní výkon P_0 při ($R_L = 120 \Omega$, $k = 10\%$, $f = 1 \text{ kHz}$)	Jmen.	Min.-max.
$U_{cc} = 12 \text{ V}$, $R_L = 8 \Omega$:	2	W.
$U_{cc} = 3,5 \text{ V}$, $R_L = 8 \Omega$:	0,15	W.
Zkreslení v harmonickém		
($U_{cc} = 9 \text{ V}$, $P_0 = 0,5 \text{ W}$, $R_f = 33 \Omega$,		
$R_L = 8 \Omega$, $f = 1 \text{ kHz}$):		
Napěťový zisk A_u uzavřené smyčky		
($U_{cc} = 9 \text{ V}$, $P_0 = 0,5 \text{ W}$, $R_f = 33 \Omega$,		
$R_L = 8 \Omega$, $f = 1 \text{ kHz}$):		
Šířka přenášeného pásmo (-3dB velikostí A_u), BW		
($U_{cc} = 9 \text{ V}$, $R_L = 8 \Omega$, $R_f = 120 \Omega$,		
$C_B = 220 \text{ pF}$):		
Klidový proud /CCO/		
($U_{cc} = 9 \text{ V}$):	4	mA.
Potlačení změny napájecího napětí, SVR		
($U_{cc} = 9 \text{ V}$, $R_L = 8 \Omega$, $R_f = 120 \Omega$,		
$C_6 = 50 \mu\text{F}$, $f_{zvlnění} = 100 \text{ Hz}$):		
Výstupní odpor R_i :	5	$\text{M}\Omega$.

Obr. 121. Vnitřní elektrické zapojení UL1482M

Elektrické údaje UL1482M

Mezní údaje	
Napájecí napětí U_{CC} :	3 až 16 V.
Výstupní proud vřcholový, I_{OM} :	max. 1,5 A.
Ztrátový výkon P_{TOL} při $\theta_a = 50^\circ C$:	max. 1,25 W.
Teplota přechodu θ_j :	max. 150 °C
Charakteristické údaje	
Výstupní výkon P_O	Jmen. Min.-max.
($R_L = 120 \Omega$, $k = 10\%$, $f = 1 \text{ kHz}$, $U_{CC} = 12 \text{ V}$, $R_L = 8 \Omega$):	2 W.
Vstupní napětí U_I :	
($U_{CC} = 9 \text{ V}$, $P_O = 50 \text{ mW}$, $f = 1 \text{ kHz}$, $R_L = 8 \Omega$, $R_f = 120 \Omega$):	9,5 mV.
Napěťový zisk A_{UO} otevřené smyčky	
($U_{CC} = 9 \text{ V}$, $R_L = 8 \Omega$, $f = 1 \text{ kHz}$):	75 dB.
Šířka přenášeného pásmá, $BW (-3 \text{ dB})$	
($U_{CC} = 9 \text{ V}$, $R_L = 8 \Omega$, $R_f = 120 \Omega$, $C_B = 220 \text{ pF}$):	25 až 20 000 Hz.
Zkreslení k	
($U_{CC} = 9 \text{ V}$, $P_O = 0,5 \text{ W}$, $R_L = 8 \Omega$, $R_f = 120 \Omega$, $f = 1 \text{ kHz}$):	0,4 %.
Vstupní odpor R_I :	5 MΩ.
Vstupní šumové napětí U_{IN}	
($U_{CC} = 9 \text{ V}$, $BW = 25$ až 20 000 Hz):	3 μV.

ATES a jiných výrobců, od něhož se odlišíuje tvarováním vývodů (TBA820 je má tvarovány do dvou řad) a malých rozdílech elektrických vlastností.

Doporučená zapojení integrovaného obvodu UL1482M jsou shodná se zapojeními obvodu UL1482K (obr. 119 a 120).

Nf zesilovač malého výkonu UL1490N, UL1491R-UL1493R

Integrované obvody UL1490N a UL1491R – UL1493R jsou nízkofrekvenční zesilovače malých výkonů 600 mW a 1000 mW, určené pro použití v přenosných rozhlasových přijímačích napájených z baterií, gramofonech a magnetofonech. Jejich výstupní výkon je dán typem obvodu, závisí na napájecím napětí a použitím zatěžovacím odporem. Vnitřní elektrické zapojení obvodu je na obr. 122. Obvody UL1490N jsou v plastickém pouzdře CE75A, obvody UL1491R a UL1493R v pouzdře CE75B s 2x sedmi vývody ve dvou řádkách. Obdobnými zahraničními typy jsou: obvodu UL1490N výrobek TBA790 Thomson-CSF, obvody UL1491R až UL1493R výrobek TBA790LA, TBA790LB a TBA790LC (jen velmi přibližně).

Funkční blokové zapojení všech typů obvodů je na obr. 123. Obvody sdružují pět funkčních skupin: předzesilovač vstupního napětí, budící zesilovač, invertor, dva koncové stupně a obvod automatické stabilizace stejnosměrné složky výstupního napětí.

Vývody: 01 – vazba typu „bootstrap“, 02 – nepoužit, 03 – kmitočtová kompenzace, 04 – nepoužit, 05 – zpětná vazba, 06 – nepoužit, 07 – vstup, 08 – zem, 09 – nepoužit, 10 – zem, 11 – nepoužit, 12 – výstup, 13 – nepoužit, 14 – přípoj napájecího napětí kladného $+U_{CC}$.

Předzesilovač tvoří tranzistory T_2 , T_3 pracující jako rozdílový zesilovač s malým proudem, který protéká přes proudový zdroj T_6 , T_7 , T_8 a R_1 a nezávisí na napájecím napětí. Tranzistorový stupeň T_2 , T_3 je symetrický, buzený vstupním signálem přes tranzistor T_1 typu p-n-p, jehož kolektor je součástí substrátu a tvoří zemníci bod. Střídavý vstupní signál je omezován

Obr. 123. Funkční blokové zapojení UL1490N, UL1491R až UL1493R

Obr. 122. Vnitřní elektrické zapojení UL1490N, UL1491R až UL1493R

v kladné půlvlně napětí nasyceným stavem tranzistoru T_1 (asi 0,4 V).

Popsané uspořádání zesilovače dovoluje pracovat s malým kolektorským proudem asi 0,1 mA u tranzistorů T_2 , T_3 a proudem báze tranzistoru T_1 rovným 25 nA. Proud báze slouží k vytvoření předpěti zesilovače. Protéká vnitřním vstupním obvodu. Malý proud báze umožňuje vznik napětí, které vzhledem k trvalé funkci zpětné vazby se porovnává pouze v poměru k výstupnímu napětí; je asi 25 mV při vstupním odporu 1 MΩ, má vliv na posuv výstupního napětí a na maximální výstupní výkon.

Na bázi tranzistoru T_3 se přivádí kladná zpětná vazba. Šumové napětí integrovaného obvodu UL1490N (další výklad platí též pro UL1491R až UL1493R) vzniká ve vstupním stupni obdobně jako ve všech zesilovačích. Šum se zmenšuje úmerně se stejnosměrným proudem kolektoru vstupního tranzistoru v okamžiku, kdy h_{21E} je blízko svého maxima. Technologie, kterou jsou IO využívány, umožňuje využít tranzistory s velkým proudovým zesilovačním činitelem i při malých proudech, což je velmi výhodné vzhledem k vlastnostem integrovaného obvodu.

Koncový zesilovač nepotřebuje při velkém proudu a zesílení velký proud budícího stupně. Proto pracuje budící stupně ve třídě A s klidovým proudem, zvětšujícím se na vřcholový proud báze, který je potřebný pro funkci tranzistoru T_2 . Maximální výstupní signál tohoto stupně může být blízký napájecímu napětí U_{CC} , protože koncové stupně mají zesílení poněkud menší než jedna.

Zapojení tranzistorů T_{13} a T_{14} je rovnocenné použití jednoho tranzistoru n-p-n s velkým zesílením. Napětí emitor-báze tranzistoru T_{15} je minimálně $3U_{BE} + U_{CE\text{ sat}}$. Odpor R_8 ve vnitřní struktuře integrovaného obvodu je jedním koncem připojen k napájecímu napětí U_{CC} . Stejnosměrný

proud protékající tímto odporem udržuje vřcholové výstupní napětí, rovnající se napájecímu napětí U_{CC} .

K udílení počátečního vodivého stavu koncových tranzistorů (průtok omezeného klidového proudu) dostávají vstupní tranzistory T_{21} , T_{22} předpěti vzhledem k tranzistorům T_{15} , T_{23} . Při zbytečně velkém předpěti vznikají v obvodu výkonové ztráty. Naopak malé předpěti způsobuje omezování signálů s nízkým kmitočtem a velké zkreslení (posuvem fáze při průchodu nulou).

V zapojení zesilovače lze ještě poukázat na předpěti mezi bázemi tranzistorů T_{21} a T_{15} nebo na předpěti emitoru tranzistoru T_{15} . Klidový proud emitoru T_{22} nezávisí na proudovém zesílení h_{21E} tranzistoru n-p-n a p-n-p. Proud protékající odporem R_8 je asi 15 % proudu kolektoru tranzistoru T_{22} .

K dosažení nejlepší energetické bilance pracuje koncový zesilovač výkonu ve dvojicích zapojení třídy AB. Jeho klidový proud má velikost potřebnou k využití tranzistorů T_{15} a T_{21} . Každý pár řidičího a koncového tranzistoru T_{15} , T_{23} a T_{21} , T_{22} funkčně odpovídá jednomu tranzistoru s proudovým zesilovacím činitelem h_{21E} rovným součinu činitelů h_{21E} obou tranzistorů. Jeden pár tranzistorů (T_{21} , T_{22}) představuje obvod odpovídající tranzistoru typu n-p-n, druhý pár (T_{15} , T_{23}) tranzistoru p-n-p. Zapojení dovoluje použít výlučně tranzistory n-p-n s větším proudem, což je z technologického hlediska výhodnější a výrobně snazší než tranzistory p-n-p.

Tranzistory T_{21} , T_{22} jsou vodivé při kladné půlvlně vstupního signálu. Zatíženy jsou odporem reproduktoru přes elektrolytický kondenzátor, nabíjený na napětí $U_{CC}/2$, tj. na polovinu napájecího napětí. Napěťové zesílení stupně je blízké jedné. Během záporné půlvlny vstupního signálu jsou vodivé tranzistory T_{15} , T_{23} .

Protože časová konstanta $C_L R_L$ je vzhledem k napětí signálu velká, nabíjecí a vybijecí pochod kondenzátoru C_L nezávisí jen na jeho svorkovém napěti. Výhodou použitého kvazikomplementárního zesilovače s dvojitým doplnkovým párem tranzistorů je velmi malý potřebný proud buďtočného stupně.

Výstupní výkon integrovaného obvodu UL1490N je omezen omezovačem napěťových špiček v okamžiku, kdy je jeden z tranzistorů v násyceném stavu. Výstupní výkon je největší tehdy, přecházejí-li tranzistory T_{22} a T_{21} do násyceného stavu při stejném signálu. Tento stav nastává při klidovém napětí, které se rovná polovině napájecího napětí U_{CC} .

Tranzistory T_{10} , T_{11} , T_{12} tvoří proudový zdroj. Tranzistor T_{12} kompenzuje proudy bází tranzistorů T_{10} , T_{11} .

Obvod zpětné vazby pro střídavé proudy se skládá z vnějšího kondenzátoru C_1 a odporu R_{11} , a z odporu R_{10} , který je součástí struktury IO. Vazba upravuje maximální zesílení signálu podle vztahu

$$G = \frac{R_{10}}{R_{11}},$$

přičemž odpor R_{10} je pevný a je $8\text{k}\Omega$. Proto

$$G = \frac{A_u}{1 + \beta A_u} + \frac{1}{\frac{1}{A_u} + \beta} = \frac{U_0}{U_1},$$

kde A_u je napěťové zesílení bez zpětné vazby,

G zesílení se zavedenou zpětnou vazbou,

β součinitel smyčky zpětné vazby.

Pro integrované obvody UL1490N i UL1491R až UL1493R je β

$$\beta = \frac{R_{11}}{R_{11} + R_1}.$$

K získání dobré stability obvodu se má překrývat průběh závislosti $A_u = f(f)$ s přímkou $G = 1/\beta$ se sklonem, který je blíže 6 dB na oktavu než 12 dB na oktavu, tzn. posuv fáze má být menší než 180° (nejvhodnější úhel je 135°).

Doporučeného posunu fáze můžeme dosáhnout snížením mezního kmitočtu zesilovače s otevřenou smyčkou připojením vnějšího kondenzátoru C_F mezi vývody 12 a 03 integrovaného obvodu. Kapacita má být tím větší, čím je menší zesílení zesilovače s otevřenou smyčkou zpětné vazby. Kapacita, která zaručuje stabilitu funkci pro malá zesílení, zaručuje stabilitu i pro větší zesílení $G = 1/\beta$. Přenášené kmitočtové pásma není ovšem vždy optimální.

Napěťové zesílení UL1490N lze měnit volbou odporu R_{11} . Při $R_{11} = 0$ je zisk

Obr. 124. Doporučené zapojení UL1490N, UL1491R až UL1493R se zatěžovacím odporem připojeným ke kladnému napájecímu napětí

46 dB, zvětšuje-li se postupně odpory, bude napěťové zesílení až 1. Nedoporučuje se ovšem pracovat se ziskem užavřené smyčky menším než 30 dB. Dolní hranice přenášeného kmitočtového pásma (pro pokles -3 dB) je dána kondenzátory C_1 a C_L . Je-li reaktance C_1 dostatečně menší než R_{11} , určuje dolní hranici přenášeného pásma kapacita kondenzátoru C_L . Kapacitu C_L v závislosti na zatěžovacím odporu R_L pro danou minimální hranici přenášeného pásma udává tabulka:

f _{min} [Hz]	R _L [Ω]	C _L [μF]
10	16	1000
50	16	200
200	16	50
20	8	1000
100	8	200
400	8	50
40	4	1000
200	4	200
500	4	80

Obdobně lze určit hranici přenášeného pásma, které závisí na kapacitě kondenzátoru C_F .

Výstupní výkon zesilovače s UL1490N závisí na napájecím napětí a zatěžovacím odporu R_L podle vztahu

$$P_{O\max} = \frac{\alpha^2 U_{CC}^2}{8R_L},$$

kde α je součinitel využití, který určuje stupeň využití koncových stupňů; pohybuje se v mezích 0,8 až 0,9.

Maximální velikosti dalších parametrů jsou

$$I_{max} = \frac{\alpha}{2} \frac{U_{CC\max}}{R_{L\min}},$$

$$P_{tot\max} = \frac{1}{20} \frac{U_{CC}^2}{R_L} = \frac{0,4}{\alpha^2} P_{O\max}.$$

Doporučená zapojení

Integrované obvody UL1490N, UL1491R až UL1493R lze používat ve dvou již známých zapojeních – se zatěžovacím odporem připojeným k výstupu a kladnému napájecímu napětí anebo k zemi. První z obou zapojení nf zesilovače malého výkonu je na obr. 124. Je vhodné pro použití v malých gramofonech a přenosných rozhlasových přijímačích. Rozdíl při použití jednotlivých typů IO je v rozdílných zatěžovacích odporech a kapacitě vazebního kondenzátoru C_L . Pro dané typy obvodů se doporučuje použít tyto součástky:

Typ	R _L [Ω]	C _L [μF]
UL1490N	15	250
UL1491R	8	470
UL1492R	8	470
UL1493R	4	1000

Toto zapojení nf zesilovače je prakticky shodné s měřicím zapojením, v němž se měří integrované obvody ve výrobním pochodu.

Zapojení nf zesilovače s reproduktorem připojeným ke kladnému zdroji je na obr. 125. Táto zapojení IO UL1490N je často používán v přenosných gramofonech polské výroby Unitra.

Zapojení zesilovače se zatěžovacím odporem mezi výstupem a zemí je na obr. 126. Elektrické vlastnosti obou popsaných zesilovačů odpovídají údajům, uvedeným v tabulce. Pro úplnost uvádíme

Obr. 125. Upravené doporučené zapojení nf zesilovače s UL1490N, UL1491R až UL1493R používané v přenosných gramofonech

rozsah přenášeného kmitočtového pásma v závislosti na kapacitě kondenzátoru C_F . Zcela lineární průběh charakteristiky začíná u dolního přenášeného kmitočtu 100 Hz, končí u kmitočtu 9000 Hz při $C_F = 68 \text{ pF}$, u 5000 Hz při 150 pF, u 2000 Hz při 330 pF. Přenosová charakteristika se poněkud prodlouží pro -3 dB – začíná na 50 Hz a končí na 14 kHz, příp. 7 kHz. Pro -10 dB končí charakteristika na 31 kHz, příp. 18 a 9 kHz.

Těsně před integrovaným obvodem se doporučuje použít korekční obvod pro úpravu barvy tónu podle obr. 127. V tomto obvodu reaguje řízení barvy tónu na zpětnou vazbu zesilovače, přičemž se nemění poměr signálu k šumu. Potenciometrem P_1 se zdůrazňují v poloze A (blíže kondenzátoru C_1) hloubky při silném útlumu výšek, v poloze B (blíže kondenzátoru 22 nF) zdůrazňuje výšky na 10 kHz (při -3 dB) a 38 kHz (-10 dB) při současném potlačení hloubek.

Obr. 126. Doporučené zapojení nf zesilovače s UL1490N, UL1491R až UL1493R se zatěžovacím odporem připojeným na zem. Rx je 100 Ω pro UL1490N až UL1492R, 60 Ω pro UL1493R

Obr. 127. Korekční obvod používaný ve spojení s UL1490N v nf zesilovači výkonu

Elektrické údaje UL1490N, UL1491R – UL1493R

Mezní údaje		
Napájecí napětí U_{CC} :	6 až 12 V.	
UL1492R:	6 až 15 V.	
Výstupní proud /0		
UL1490N:	max. 0,5 A.	
UL1491R, UL1492R:	max. 1,0 A.	
UL1493R:	max. 1,5 A.	
Ztrátový výkon P_{tot} (bez chladiče)		
UL1490N:	max. 0,6 W.	
UL1491R – UL1493R:	max. 1,0 W.	
Rozsah pracovních teplot okolo θ_a :	-25 až +70 °C.	
Charakteristické údaje		
(platí při: UL1490N $\theta_a = 25^\circ C$, $U_{CC} = 9 V$, $R_L = 15 \Omega$, $R_1 = 39 \Omega$.		
UL1491R $\theta_a = 25^\circ C$, $U_{CC} = 9 V$, $R_L = 8 \Omega$, $R_1 = 39 \Omega$,		
UL1492R $\theta_a = 25^\circ C$, $U_{CC} = 12 V$, $R_L = 8 \Omega$, $R_1 = 39 \Omega$		
UL1493R $\theta_a = 25^\circ C$, $U_{CC} = 9 V$, $R_L = 4 \Omega$, $R_1 = 39 \Omega$.		
Klidový napájecí proud /ccq	Jmen.	Min.–max.
UL1490N:		≤ 10 mA.
UL1491R, UL1493R:	6	≤ 10 mA.
UL1492R:	8	≤ 10 mA.
Výstupní výkon P_0		
($f = 1 \text{ kHz}$, $k = 10\%$) UL1490N:	0,65	W.
UL1491R:	1,2	W.
UL1492R, UL1493R:	2,1	W.
($f = 1 \text{ kHz}$, $k = 2,5\%$) UL1491R:	1,0	W.
UL1492R, UL1493R:	1,9	W.
Zkreslení k		
($P_0 = 0,15 \text{ W}$, $f = 1 \text{ kHz}$) UL1490N:		≤ 1 %.
($P_0 = 0,5 \text{ W}$, $f = 1 \text{ kHz}$)		
UL1491R – UL1493R:	0,4	≤ 1 %.
Napěťový zisk A_u		
($P_0 = 0,15 \text{ W}$, $f = 1 \text{ kHz}$) UL1490N:	46	41 až 50 dB.
($P_0 = 0,5 \text{ W}$, $f = 1 \text{ kHz}$)		
UL1491R – UL1493R:	46	41 až 50 dB.
Šířka přenášeného pásma, BW:	15	kHz.
Účinnost:		
($P_0 = 0,53 \text{ W}$, $f = 1 \text{ kHz}$) UL1490N:	65	%.
($k = 2,5\%$, $f = 1 \text{ kHz}$) UL1491R, UL1492R:	70	%.
($k = 2,5\%$, $f = 1 \text{ kHz}$) UL1493R:	65	%.
Vstupní odpor při $f = 1 \text{ kHz}$:	1	MΩ.
Citlivost U_I		
($f = 1 \text{ kHz}$, $P_0 = 50 \text{ mW}$) UL1490N:	4,3	2 až 20 mV.
UL1491R, UL1492R:	3,2	1,5 až 15 mV.
UL1493R:	2,0	1,0 až 10 mV.
Šumové napětí na vstupu, U_{IN} :	1,0	mV.

Nízkofrekvenční zesilovač výkonu, 5 W TBA800, TBA800A

Integrované obvody TBA800, TBA800A madarské výroby Tungsram jsou monolitické nízkofrekvenční zesilovače středního výkonu 5 W, určené pro nf koncové zesilovače zvuku v televizních přijímačích a jiných nf zesilovačích, pracujících ve třídě B. Zesilovače pracují s napájecím napětím 24 V a zatěžovacím odporem 16 Ω. Vyznačují se širokým rozsahem napájecích napětí, velkým špičkovým výstupním proudem až 1,5 A, velkou účinností v provozu a malým zkreslením. Vnitřní elektrické zapojení obvodů je na obr. 128. Oba integrované obvody jsou v plastickém pouzdře s 2x šesti vývody tvarovanými do čtyř řad a středními širokými chladicími vývody. Ty jsou u typu TBA800 tvarovány do třetí řady k připojení k fólii plošných spojů (pouzdro P3) 9 W, u TBA800A jsou rovně a opatřeny dírou o Ø 3,6 mm k příslušnému chladiči (pouzdro P4) 9 W.

Vývody: 01 – připoj napájecího napětí U_{CC} , 02 – nepoužity, 03 – nastavení předpětí, 04 – zpětná vazba „bootstrap“, 05 – kmitočtová kompenzace, 06 – zpětná vazba, 07 – potlačení zvlnění napájecího zdroje, 08 – vstup, 09 – substrát, 10 – zem výkonového stupně, 11 – nepoužity, 12 – výstup. Široké chladicí vývody se uzemňují.

Elektrické údaje TBA800, TBA800A

Mezní údaje		
Napájecí napětí U_{CC} :	max. 30 V.	
Výstupní proud /0M v rychlosti, neopakovatelný:	max. 2 A.	
Výstupní proud /0M opakovatelný:	max. 1,5 A.	
Ztrátový výkon P_{tot} při $\theta_a = 80^\circ C$:	max. 1,0 W.	
Ztrátový výkon P_{tot} při $\theta_a = 90^\circ C$:	max. 5,0 W.	
Rozsah pracovních teplot okolo θ_a :	-40 až +150 °C.	
Teplota vývodu při pájení ($t = 10 \text{ s}$):	max. 260 °C.	
Charakteristické údaje ($\theta_a = 25^\circ C$, $U_{CC} = 24 \text{ V}$)		
Jmen.	Min.–max.	
Napájecí napětí U_{CC} :	5 až 30 V.	
Výstupní napětí klidové U_{OQ12} (při $U_{CE} = 24 \text{ V}$):	12	11 až 13 V.
Klidový proud vývodu 01, /ccq 1:	9	≤ 20 mA.
Předpěťový proud /s:	1	≤ 5 μA.
Výstupní výkon P_0 ($R_L = 16 \Omega$, $k = 10\%$, $f = 1 \text{ kHz}$)	5	≥ 4,4 W.
Vstupní saturaci napětí U_{ISAT} :		≥ 220 mV.
Vstupní napětí U_{I1} (f):		
($R_L = 16 \Omega$, $P_0 = 5 \text{ W}$, $f = 1 \text{ kHz}$):	80	mV.
Vstupní odpor R_{I1} (vývod 08):	5	MΩ.
Přenášené kmitočtové pásma BW (-3 dB):		40 až 20 000 Hz.
($R_L = 16 \Omega$, $C_3 = 330 \text{ pF}$):		
Celkové zkreslení k harmonickým:		
($R_L = 16 \Omega$, $P_0 = 50 \text{ mW}$ až 2,5 W, $f = 1 \text{ kHz}$):	0,5	%.
Napěťový zisk A_u otevřené smyčky:	80	dB.
Napěťový zisk A_{u0} uzavřené smyčky:		
($R_L = 16 \Omega$, $f = 1 \text{ kHz}$):	42	39 až 45 dB.
Vstupní šumové napětí U_{IN} :		
($R_G = 0 \Omega$, BW (-3 dB) = 40 až 20 000 Hz):	5	μV.
Vstupní šumový proud I_{IN} :		
(BW (-3 dB) = 40 až 20 000 Hz):	0,2	nA.
Účinnost:		
($R_L = 16 \Omega$, $P_0 = 5 \text{ W}$, $f = 1 \text{ kHz}$):	75	%.
Tepelný odpor R_{thj} TBA800:		≤ 12 K/W.
TBA800A:		≤ 10 K/W.
Tepelný odpor R_{thj} TBA800:		≤ 70 K/W.
TBA800A:		≤ 80 K/W.

Obr. 129. Doporučené zapojení

Plný výstupní výkon zesilovače platí při využití jedné strany oboustranné plátnové desky s plošnými spoji k chlazení integrovaného obvodu.

Obr. 128. Vnitřní elektrické zapojení TBA800, TBA800A