Neural Dependency Parsing Mini Project Report

Ilayda Soz Yilmaz

February 5, 2025

Introduction

The objective of this mini project is to implement a bilinear dependency parser using PyTorch. Dependency parsing is a critical task in natural language processing and in this work, a simple bilinear parser is constructed and trained on a UD dataset to predict the syntactic heads of tokens.

Methodology

Data Preparation

The dataset is derived from the English UD EWT training set provided in the CoNLL-U format. The preprocessing steps included:

- Loading sentences and their corresponding dependency annotations using the conllu library.
- Extracting tokens and their head indices.
- Converting the head indices from 1-based to 0-based indexing, and mapping the root (index 0) to a special value (-1).
- Building a vocabulary by counting token frequencies and reserving indices for special tokens such as <PAD> and <UNK>.
- Converting sentences into sequences of word indices.
- Padding the sequences to handle variable lengths during batching.

Model Implementation

The dependency parser was implemented with the following components:

- 1. Embedding Layer: Converts word indices into dense vectors of dimension 128.
- 2. **Bidirectional LSTM:** Processes the sequence of embeddings to capture context-aware representations, using a hidden dimension of 256.
- 3. MLP Layers: Two separate linear layers generate representations for potential head words and dependent words.

4. Bilinear Scoring Layer: Computes scores for every potential head-dependent pair using a bilinear transformation.

The entire model was implemented in Python using PyTorch.

Training

The training of the model was conducted using the following settings:

• Embedding Dimension: 128

• Hidden Dimension: 256

• Batch Size: Initially 64 (increased to 512 later)

• Number of Epochs: 10

• Learning Rate: 0.001 (using the Adam optimizer)

• Loss Function: Cross-entropy loss

During training, the model's performance was monitored through the average loss per epoch and its accuracy on the test set.

Results

Initial experiments with the model show promising improvements in accuracy over training epochs:

• After 3 epochs: Test Accuracy $\approx 45.76\%$

• After 5 epochs: Test Accuracy $\approx 60.76\%$

• After 10 epochs: Test Accuracy reached 81.62%

These results demonstrate that the bilinear dependency parser significantly benefits from additional training, with the final model showing a strong ability to capture syntactic dependencies.

Discussion

The experimental results indicate that the implemented bilinear parser is capable of learning complex syntactic structures. Key points include:

- A clear improvement in performance with an increased number of epochs.
- While 81.62% accuracy is promising, further improvements could be attained by exploring more complex architectures. Like additional linguistic features (e.g., POS tags), or utilizing attention mechanisms.

Conclusion

This project successfully implemented a bilinear dependency parser using PyTorch. The model progressively improved its performance, ultimately achieving a test accuracy of 81.62% after 10 epochs. These results confirm that even a relatively simple bilinear scoring approach is effective for dependency parsing.

References

- Kiperwasser, E., & Goldberg, Y. (2016). Simple and Accurate Dependency Parsing Using Bidirectional LSTM Feature Representations. *Transactions of the Association for Computational Linguistics*.
- Dozat, T., & Manning, C. D. (2017). Deep Biaffine Attention for Neural Dependency Parsing. *ICLR*.
- PyTorch Documentation. https://pytorch.org/docs/