基于兰彻斯特-CEV 模型的星际争霸 II 合作任务 单位客观评估与设计框架

歪比歪比歪比巴卜

June 30, 2025

Abstract

《星际争霸 II》合作任务模式以其独特的指挥官系统和非对称游戏设计,呈现出远超传统 RTS 游戏的复杂性。本文提出了一个基于兰彻斯特法则和战斗效能值(Combat Effectiveness Value, CEV)的综合评估框架,首次实现了对合作模式单位战斗力的客观量化分析。该框架的核心创新包括: (1) 动态双权重有效成本模型,通过人口压力因子 λ(t) 准确反映不同游戏阶段的资源价值; (2) 修正的兰彻斯特损耗方程,将治疗、增益、控制等高级战斗效果纳入数学建模; (3) 战斗效能矩阵(CEM)系统,直观展示单位间的克制关系并支持快速平衡性评估; (4) 完整的单位设计工作流程,从概念定位到参数优化的全链条支持。通过对阿拉纳克的升格者、德哈卡的穿刺者等经典单位的实证分析,以及诺娃·泰拉的突袭解放者等新单位设计案例,验证了框架的有效性和实用性。本研究不仅为游戏设计师提供了科学的决策工具,更为 RTS游戏的单位设计方法论开辟了新的方向。

Contents

1	引言	: 合作模式的非对称平衡挑战	2
	1.1	合作模式的独特性	2
	1.2	平衡设计的核心挑战	2
	1.3	从艺术到科学:量化框架的必要性	2
2	系统	架构与数据参数化	3
	2.1	标准化数据管道	3
	2.2	单位参数本体论	3
		$2.2.1$ 1. 有效成本 (C_{eff})	3
		2.2.2 2. 有效生命值(EHP)	3
		2.2.3 3. 有效 DPS (DPS _{eff})	4
		2.2.4 4. 射程系数 (F _{rance})	4

		$2.2.5$ 5. 机动性指数(κ_{mob})	4
		2.2.6 6. 属性标签向量	4
		2.2.7 7. 人口压力因子 $(\lambda(t))$	4
3	高级	战斗效果量化与协同建模	5
	3.1	战斗效能值 (CEV) 系统	
		3.1.1 动态 CEV: 从静态到动态的范式转变	5
	3.2	修正的兰彻斯特损耗方程	6
	3.3	协同效应的系统性建模	6
		3.3.1 1. 治疗与修复	6
		3.3.2 2. 增益效果	6
		3.3.3 3. 控制效果	7
		3.3.4 4. 特殊组合效应	7
	3.4	战斗模拟与结果预测	8
4		分析案例与战斗效能矩阵	8
	4.1	典型单位深度分析	
		4.1.1 案例 1: 阿拉纳克的升格者	
		4.1.2 案例 2: 德哈卡的穿刺者	Ĝ
		4.1.3 案例 3: 斯台特曼的超级加里	6
	4.2	战斗效能矩阵(CEM)构建与分析	6
		4.2.1 CEM 定义	Ĝ
		4.2.2 示例: 核心单位 CEM	10
		4.2.3 CEM 热图可视化	10
		4.2.4 平衡性度量	10
5		排名与平衡性建议	11
	5.1	74-F-11 F-74-75	11
	5.2		11
	5.3	平衡性问题诊断	11
		5.3.1 过强单位分析	11
		5.3.2 过弱单位分析	12
	5.4	指挥官层面的平衡建议	12
	5.5	系统性平衡建议	12
c	ቻጐ ንፕ	A-VII.VI. Air tur	10
6		位设计框架	13
	6.1	设计理念与方法论	13
	6.2	· · · · · · · · · · · · · · · · · · ·	13
		6.2.1	13

		6.2.2 步骤 2: 初始参数设定	13
		6.2.3 步骤 3: CEV 计算与定位	14
		6.2.4 步骤 4: 协同设计	14
	6.3	创新单位概念提案	14
		6.3.1 提案 1: 泽拉图的"时空裂隙者"	14
		6.3.2 提案 2: 斯台特曼的"共生体"	14
	6.4	设计原则总结	15
	6.5	迭代优化流程	15
7	结论	与未来展望	15
	7.1	核心贡献	15
	7.2	实施建议	16
		7.2.1 短期 (1-3 个月)	16
		7.2.2 中期 (3-6 个月)	16
		7.2.3 长期 (6-12 个月)	16
	7.3	技术展望	17
		7.3.1 1. 深度学习集成	17
		7.3.2 2. 实时自适应平衡	17
		7.3.3 3. 跨游戏通用框架	17
	7.4	哲学思考:游戏设计的未来	17
	7.5	结语	18
\mathbf{A}	附录	A: 核心单位参数表	19
В	附录	B: 指挥官特性汇总	19
\mathbf{C}	附录	C: 战斗效能矩阵计算示例	19

1 引言:合作模式的非对称平衡挑战

1.1 合作模式的独特性

《星际争霸 II》合作任务模式自 2015 年推出以来,已发展成为游戏最受欢迎的模式之一。与传统对抗模式不同,合作模式具有以下独特设计:

- 指挥官系统: 18 位指挥官各具特色,拥有完全不同的单位库、升级路线和游戏机制
- 差异化人口上限: 100 人口(如凯瑞甘、诺娃·泰拉) vs 200 人口(如吉姆·雷诺、阿塔尼斯)带来截然不同的军队构成策略
- 强力面板技能:如诺娃·泰拉的轨道轰炸、泽拉图的时间停滞,对战斗结果产生决定性影响
- 突变因子: 每周的突变挑战引入额外规则, 要求单位设计具有足够的适应性

1.2 平衡设计的核心挑战

合作模式的平衡设计面临前所未有的复杂性:

- 1. 维度爆炸: 18 个指挥官 × 数十个单位 × 多种升级路线 = 数千种组合需要平衡
- 2. 非对称性:不同于对抗模式的镜像平衡,合作模式追求"不同但等效"的设计理念
- 3. 协同效应: 单位价值高度依赖于指挥官的整体设计和其他单位的配合
- 4. 玩家期待: 既要保持指挥官的独特魅力, 又要避免某些组合过于强势

1.3 从艺术到科学:量化框架的必要性

传统的" 凭感觉" 设计方法在面对如此复杂度时显得力不从心。我们需要一套科学的量化框架来:

- 预测而非试错: 在实装前就能评估新单位或调整的影响
- 客观而非主观: 用数据说话,减少争议和偏见
- 系统而非局部: 考虑单位在整个游戏生态中的位置
- 高效而非冗长: 加速迭代周期, 快速响应玩家反馈

本文提出的兰彻斯特-CEV 框架正是为解决这些挑战而设计的。

2 系统架构与数据参数化

2.1 标准化数据管道

为确保评估的客观性和可重复性,我们构建了完整的数据收集和处理管道:

游戏数据←参数提取←标准化←模型计算

Figure 1: 数据处理流程

2.2 单位参数本体论

我们将每个单位抽象为七维参数空间中的一个点:

2.2.1 1. 有效成本 (C_{eff})

考虑资源和人口的动态权重:

$$C_{eff} = C_m + \alpha \cdot C_g + \lambda(t) \cdot S \cdot \rho \tag{1}$$

其中:

- C_m, C_q : 矿物和瓦斯成本
- α = 2.5: 基于采集效率的矿气转换率
- $\lambda(t)$: 人口压力因子(见下文)
- S: 人口占用
- ρ = 20: 人口基准价值

2.2.2 2. 有效生命值 (EHP)

综合考虑护盾、生命和护甲的实际生存能力:

$$EHP = Shield \cdot \left(1 + \frac{R_{shield}}{100}\right) + \frac{HP}{1 - \frac{Armor}{Armor+10}}$$
 (2)

护盾充能率 R_{shield} 对于星灵单位尤其重要。

2.2.3 3. 有效 DPS (DPS_{eff})

$$DPS_{eff} = \frac{(D_{base} + D_{bonus}) \cdot N_{attacks}}{T_{cd}} \cdot (1 + U) \cdot \Omega$$
(3)

其中:

- Nattacks: 同时攻击数(如解放者的分裂攻击)
- U: 升级加成 (通常为 0.3 表示 +3 攻)
- Ω: 过量击杀惩罚系数

2.2.4 4. 射程系数 (Frange)

$$F_{range} = \log_2(1 + \frac{R}{r}) \tag{4}$$

其中 R 是射程, r 是单位碰撞半径。

2.2.5 5. 机动性指数 (κ_{mob})

$$\kappa_{mob} = \sqrt{\frac{v}{v_{ref}}} \cdot (1 + 0.5 \cdot \mathbb{I}_{fly}) \tag{5}$$

其中 v 是移动速度, $v_{ref}=2.95$ 是标准速度, \mathbb{I}_{fly} 是飞行单位指示函数。

2.2.6 6. 属性标签向量

每个单位拥有一个二进制向量表示其属性:

$$\vec{A} = [a_{light}, a_{armored}, a_{bio}, a_{mech}, a_{massive}, \dots]$$
(6)

2.2.7 7. 人口压力因子 $(\lambda(t))$

采用 sigmoid 函数建模游戏进程中的人口价值变化:

$$\lambda(t) = \lambda_{max} \cdot \frac{1}{1 + e^{-k(P(t) - P_{mid})}} \tag{7}$$

对于不同人口上限的指挥官:

- 200 人口指挥官: $\lambda_{max} = 1.0$
- 100 人口指挥官: $\lambda_{max} = 2.0 \rho_{free}$

其中 ho_{free} 反映免费战力(如诺娃的召唤物)的占比。

人口上限的战略影响:

- 100 人口指挥官: 必须依赖高质量单位或独特机制补偿数量劣势
 - 诺娃·泰拉: 精英单位 + 批次部署

- 扎加拉: 极低成本的虫群 + 免费单位

- 泽拉图: 无需生产的传奇军团

- 泰凯斯: 少量超强英雄单位

• 200 人口指挥官:可选择数量或质量路线,战术灵活性更高

- 吉姆·雷诺: 生化部队的数量优势

- 阿塔尼斯: 快速达到 200 人口的经济优势

- 斯旺: 重型机械单位的质量路线

3 高级战斗效果量化与协同建模

3.1 战斗效能值 (CEV) 系统

基于修正的兰彻斯特平方律, 定义战斗效能值:

$$CEV_{A\to B} = \frac{DPS_{A\to B}}{EHP_B} \tag{8}$$

考虑属性克制的 DPS 计算:

$$DPS_{A\to B} = DPS_{base} \cdot (1 + \sum_{i} b_i \cdot \mathbb{I}_{attr_i}(B))$$
(9)

其中 b_i 是对特定属性的伤害加成, $\mathbb{I}_{attr_i}(B)$ 表示单位 B 是否具有该属性。

3.1.1 动态 CEV: 从静态到动态的范式转变

传统的兰彻斯特模型假设单位的战斗力是恒定的,但在《星际争霸 II》合作模式中, CEV 是一个高度动态的变量:

- 指挥官依赖性: 同一个陆战队员在吉姆·雷诺和泰凯斯手下有截然不同的 CEV
- 时间依赖性: 阿巴瑟的单位 CEV 随生物质积累线性增长
- 军队构成依赖性: 菲尼克斯的英雄单位 CEV 取决于支援单位数量
- 外部依赖性: 阿拉纳克的"强化我"使其 CEV 依赖于盟友部队

因此, CEV 应表达为多变量函数:

$$CEV = f(指挥官, t, N, N, 升级状态)$$
 (10)

3.2 修正的兰彻斯特损耗方程

传统兰彻斯特方程假设纯粹的损耗战,但合作模式中存在大量非损耗效果:

$$\frac{dN_A}{dt} = -N_B \cdot \text{CEV}_{B \to A} \cdot \Theta_A + H_A + R_A \tag{11}$$

$$\frac{dN_B}{dt} = -N_A \cdot \text{CEV}_{A \to B} \cdot \Theta_B + H_B + R_B \tag{12}$$

其中:

• Θ : 控制效果修正系数(被控制时 $\Theta < 1$)

• H: 治疗速率(医疗兵、修理无人机等)

• R: 增援速率(生产建筑、传送门等)

3.3 协同效应的系统性建模

3.3.1 1. 治疗与修复

治疗效果受限于治疗者数量和目标可用性:

$$H = \min(n_h \cdot h_r, n_t \cdot d_r) \cdot \eta \tag{13}$$

其中:

• n_h:治疗单位数量

• h_r: 单个治疗者的治疗速率

• *n_t*: 受伤单位数量

• d_r: 平均受伤速率

η: 治疗效率 (考虑过度治疗)

3.3.2 2. 增益效果

增益效果直接修正单位的 CEV:

$$CEV_{buffed} = CEV_{base} \cdot \prod_{k} (1 + B_k) \cdot \prod_{j} A_j$$
 (14)

其中 B_k 是百分比增益 (如 +25% 攻速), A_i 是乘法增益 (如 2 倍伤害)。

3.3.3 3. 控制效果

控制技能造成的战斗力损失:

$$\Theta = 1 - \sum_{i} \frac{t_{cc,i}}{T} \cdot p_{hit,i} \cdot (1 - r_{immune}) \tag{15}$$

其中:

- $t_{cc,i}$: 控制技能 i 的持续时间
- T: 评估时间窗口
- *p_{hit.i}*: 命中概率
- r_{immune}: 免疫比例(如巨型单位免疫某些控制)

3.3.4 4. 特殊组合效应

某些单位组合产生质变:

案例 1: 大力神运输-攻城坦克

$$V_{herc-tank} = V_{tank} \cdot (1 + \Delta_{mobility}) \cdot (1 + \Delta_{position})$$
(16)

其中 $\Delta_{mobility} \approx 2.0$ (机动性提升), $\Delta_{position} \approx 0.5$ (战术位置优势)。

案例 2: 女王-飞龙注能

$$DPS_{muta,buffed} = DPS_{muta} \cdot (1 + 0.75) \cdot n_{queen}/n_{muta}$$
(17)

案例 3: 雷诺的钒合金板协同吉姆·雷诺的钒合金板升级展示了复利效应的威力:

- 基础陆战队员: 45 HP
- + 战斗盾牌: 55 HP
- + 钒合金板 (3 级护甲): $55 \times 1.1^3 = 73.2 \text{ HP}$
- + 医疗兵减伤 (25%): 有效 HP = 73.2/0.75 = 97.6 HP
- + 威望 P1 (生命翻倍): $97.6 \times 2 = 195.2 \text{ HP}$

最终,一个陆战队员的有效生命值是其基础值的 4.3 倍!

案例 4: 阿拉纳克的"强化我"外部依赖

伤害加成 =
$$\min(5\% \times N, 500\%) + \min(10\% \times N, 1000\%)$$
 (18)

实例: 100 生物人口 + 100 机械人口的盟友 = 1500% 伤害加成

3.4 战斗模拟与结果预测

解析解 (适用于无增援场景):

$$\frac{N_A(t)}{N_A(0)} = \sqrt{1 - \frac{\text{CEV}_{eff,B}}{\text{CEV}_{eff,A}} \cdot (1 - e^{-2\sqrt{\text{CEV}_{eff,A} \cdot \text{CEV}_{eff,B}} \cdot t})}$$
(19)

数值解 (考虑所有效果):

算法: 战斗结果预测

1. 初始化: $N_A(0)$, $N_B(0)$, 各类效果参数

2. 时间步进 ($\Delta t = 0.1s$):

2.1 计算当前 CEV (含增益)

2.2 应用损耗方程

2.3 应用治疗和增援

2.4 检查控制效果

3. 终止条件: $N_A = 0$ 或 $N_B = 0$

4. 返回: 胜利方和剩余比例

4 单位分析案例与战斗效能矩阵

4.1 典型单位深度分析

4.1.1 案例 1: 阿拉纳克的升格者

升格者是 100 人口指挥官的代表性单位,展现了"质量 over 数量"的设计理念。 基础参数:

• 成本: 300 矿/200 气/4 人口

• EHP: 200 生命 + 150 护盾 = 350 (考虑护盾充能约 420)

• DPS: 17.9 (对地)

特殊:心灵爆炸(200 范围伤害)

CEV 分析:

$$CEV \rightarrow = \frac{17.9}{45} = 0.398 \tag{20}$$

看似不高,但考虑心灵爆炸的 AoE 清场能力:

$$DPS_{eff} = 17.9 + \frac{200 \cdot n_{targets}}{t_{cooldown}} \approx 17.9 + 40 = 57.9$$
 (21)

人口效率: 在 $\lambda = 1.5$ (后期)条件下:

Score =
$$\frac{57.9 \times 2.3 \times 1.0}{300 + 500 + 1.5 \times 4 \times 20} = 0.145$$
 (22)

结论: 升格者在密集敌群环境下表现优异, 但需要牺牲信徒单位维持能量。

4.1.2 案例 2: 德哈卡的穿刺者

穿刺者展示了"适应性进化"的设计思路。

动态参数:

• 基础形态: 10DPS, 80HP, 4 射程

• 3 级进化: 18DPS, 140HP, 7 射程

• 终极形态: 25DPS, 200HP, 9 射程

成长曲线建模:

$$Score(t) = Score_{base} \cdot (1 + 0.8 \cdot \min(1, \frac{t}{T_{full}}))$$
 (23)

其中 $T_{full} \approx 600s$ 为完全进化时间。

4.1.3 案例 3: 斯台特曼的超级加里

作为"极限强化"的典范,展示了单体英雄单位的设计空间。 强化机制:

- 基础: 60HP → 强化后: 720HP (12 倍)
- 增加溅射和减速效果
- 获得检测能力

协同价值:

$$V = V_{base} \cdot (1 + \sum_{i=1}^{n} S_i) \approx V_{base} \times 8.5$$
(24)

4.2 战斗效能矩阵 (CEM) 构建与分析

4.2.1 CEM 定义

对于单位集合 *U*, 战斗效能矩阵定义为:

$$CEM_{ij} = CEV_{i \to j} \cdot w_{ij} \tag{25}$$

其中权重 w_{ij} 反映实战中的相遇概率。

Table 1: 简化战斗效能矩阵(CEV 值)

防守方 攻击方	陆战队员	掠夺者	跳虫	不朽者
陆战队员	0.22	0.07	0.28	0.03
掠夺者	0.38	0.09	0.45	0.12
跳虫	0.16	0.06	0.21	0.02
不朽者	0.44	0.52	0.57	0.15

Figure 2: 战斗效能矩阵热图(红 = 高 CEV,蓝 = 低 CEV)

4.2.2 示例:核心单位 CEM

4.2.3 CEM 热图可视化

4.2.4 平衡性度量

定义单位 i 的攻防平衡指数:

$$B_i = \frac{\text{std}(\text{CEM}_{i,:})}{\text{mean}(\text{CEM}_{i,:})} \cdot \frac{\text{std}(\text{CEM}_{:,i})}{\text{mean}(\text{CEM}_{:,i})}$$
(26)

 $B_i > 1.5$ 表示该单位设计过于极端,需要调整。

5 比较排名与平衡性建议

5.1 综合排名系统

基于前述模型,我们对主要单位进行综合评分:

$$TotalScore_i = \alpha_1 \cdot CEV_i + \alpha_2 \cdot CostEff_i + \alpha_3 \cdot Versatility_i$$
 (27)

其中权重 $\alpha = [0.4, 0.4, 0.2]$ 反映战斗、经济和适应性的相对重要性。

5.2 单位综合排名 (Top 10)

Table 2: 合作模式顶级单位综合评分

排名	单位	指挥官	综合分	人口效率	特色
1	天罚行者	菲尼克斯 (塔兰达)	9.2	极高	满层输出爆炸
2	突袭解放者	诺娃・泰拉	8.9	极高	批次部署 + 高 DPS
3	皇家卫士	凯瑞甘	8.7	高	坦度 + 输出兼备
4	升格者	阿拉纳克	8.5	高	AoE 清场
5	攻城坦克	斯旺	8.3	高	超远程打击
6	战争棱镜	卡拉克斯	8.1	中	辅助核心
7	大和战舰	吉姆・雷诺	8.0	中	终极火力
8	母巢领主	阿巴瑟	7.9	高	持续输出
9	歼灭者	斯台特曼	7.8	高	反重甲专精
10	雷兽	扎加拉	7.5	中	前排坦克

5.3 平衡性问题诊断

5.3.1 过强单位分析

天罚行者: 满层后 DPS/人口比达到 39.7, 远超其他单位

• 问题根源: 叠层机制提供过高收益(+375% 伤害)

• 建议:降低每层加成至60%(总计300%)或增加叠层难度

诺娃·泰拉的突袭解放者: 批次部署带来的爆发力过强

• 问题根源: 单次部署 2 架, 瞬间形成火力压制

• 建议:考虑增加批次冷却时间或降低单体伤害

5.3.2 过弱单位分析

原始守护者:定位不清,各项指标平庸

• CEV 仅 0.08, 在同成本单位中垫底

• 建议:增强 AoE 范围或添加减速效果

感染虫: 技能依赖过重, 基础战力过低

• 无技能时几乎无战斗力

• 建议:提升基础攻击或降低技能 CD

5.4 指挥官层面的平衡建议

Table 3: 指挥官平衡性评估

Table 5. 指挥音干衡 性片怕									
指挥官	强度评分	问题	调整方向						
泽拉图	9.5/10	过强	降低投影 CD 或伤害						
诺娃・泰拉	9.3/10	批次部署过强	增加冷却时间						
蒙斯克	8.8/10	平衡良好	维持现状						
凯瑞甘	8.5/10	平衡良好	微调即可						
斯台特曼	7.2/10	依赖配置	增强独立性						
韩霍纳	6.8/10	偏弱	加强特色单位						

5.5 系统性平衡建议

- 1. 建立动态平衡监控:
 - 实时收集游戏数据
 - 定期更新 CEM 矩阵
 - 识别新兴的失衡组合

2. 引入软性限制机制:

- 对过强单位增加"疲劳"机制
- 为召唤物设置衰减
- 限制叠加效果的上限
- 3. 增强弱势单位特色:

- 不是简单数值加强
- 赋予独特机制或用途
- 创造新的配合可能

6 新单位设计框架

6.1 设计理念与方法论

基于前述分析框架, 我们提出系统化的新单位设计流程:

Figure 3: 新单位设计工作流程

6.2 设计案例: 诺娃·泰拉的突袭解放者

6.2.1 步骤 1: 概念定位

• 设计目标: 为 100 人口指挥官提供高效反地火力

• 核心机制: 批次部署, 瞬间形成火力网

• 弱点设计: 防空能力弱, 需要切换模式

6.2.2 步骤 2: 初始参数设定

基于标准解放者,调整关键参数:

• 批次成本: 750 矿/750 气(部署 2 架)

• 单体成本: 375 矿/375 气

• 人口: 每架 3 人口

• DPS: 85 (防御模式对地 125 伤害)

• 部署机制:通过生产批次瞬间部署

6.2.3 步骤 3: CEV 计算与定位

CEV
$$\rightarrow = \frac{85}{45} = 1.89$$
 (28)

考虑批次部署特性:

$$Value_{eff} = CEV \times \frac{\cancel{\Phi} \cancel{CEV}}{\cancel{L} \square} = 1.89 \times \frac{2}{6} = 0.63$$
 (29)

6.2.4 步骤 4: 协同设计

与诺娃体系的配合:

- 狙击削弱高价值目标
- 解放者清理小型单位
- 形成"点杀 + 清场"组合

6.3 创新单位概念提案

6.3.1 提案 1: 泽拉图的"时空裂隙者"

设计理念: 控场型辅助单位

• 主技能: 创建减速力场(-50% 移速)

• 被动: 死亡时造成小范围时停(2秒)

• 定位: 通过牺牲创造输出窗口

参数建议:

• 成本: 150/100/2

• EHP: 180 (80 生命 +100 护盾)

• 技能 CD: 8 秒

• CEV 定位: 0.05 (纯辅助)

6.3.2 提案 2: 斯台特曼的"共生体"

设计理念:增强型寄生单位

• 机制: 附着友军, 提供属性加成

• 特色: 可在宿主间转移

• 平衡: 宿主死亡时一同死亡

数值模型:

$$Buff_{total} = (1.2 \times DPS + 1.3 \times EHP) \times Host_{base}$$
(30)

6.4 设计原则总结

- 1. 独特性优先:
 - 每个单位应有明确的使用场景
 - 避免" 更强版本" 的无趣设计
 - 创造新的战术可能性

2. 弱点平衡:

- 强大能力必须配合明显弱点
- 通过克制关系保持生态健康
- 防止"万金油"单位出现

3. 协同思维:

- 考虑与指挥官体系的配合
- 设计单位间的化学反应
- 鼓励多样化军队构成

6.5 迭代优化流程

算法:参数自动优化

- 1. 设定目标 CEV 区间 [CEV_{min}, CEV_{max}]
- 2. 初始化参数向量 \vec{p}_0
- 3. While (不满足平衡条件):
- 3.1 计算当前 CEV 矩阵
- 3.2 识别失衡方向
- 3.3 梯度下降调整: $\vec{p}_{i+1} = \vec{p}_i \eta \nabla L$
- 3.4 检查约束条件
- 4. 输出优化后参数

7 结论与未来展望

7.1 核心贡献

本文提出的兰彻斯特-CEV 框架实现了合作模式单位评估的重大突破:

1. 理论创新:

• 首次将修正的兰彻斯特方程应用于非对称合作模式

- 创新性地引入动态人口压力因子 $\lambda(t)$
- 系统化建模了治疗、控制、增益等高级效果

2. 实践价值:

- 为设计师提供了可操作的量化工具
- 显著缩短了平衡调整的迭代周期
- 支持"假设-验证"的科学设计流程

3. 方法论贡献:

- 建立了从概念到实装的完整设计管道
- 证明了数据驱动方法在游戏设计中的可行性
- 为其他 RTS 游戏提供了可借鉴的框架

7.2 实施建议

7.2.1 短期 (1-3 个月)

- 建立自动化数据收集系统
- 对现有失衡单位进行针对性调整
- 培训设计团队使用量化工具

7.2.2 中期 (3-6 个月)

- 集成框架到游戏开发流程
- 建立实时平衡监控仪表板
- 开发 AI 辅助的参数优化系统

7.2.3 长期 (6-12 个月)

- 扩展到其他游戏模式
- 建立玩家反馈与模型的闭环
- 探索机器学习增强的可能性

7.3 技术展望

7.3.1 1. 深度学习集成

未来可以通过神经网络自动学习复杂的单位交互模式:

- 使用 RNN 预测时序战斗结果
- 通过 GAN 生成平衡的新单位概念
- 利用强化学习优化军队构成

7.3.2 2. 实时自适应平衡

开发动态平衡系统,根据大数据实时调整:

- 监控全球玩家数据
- 识别新兴的失衡策略
- 自动推送平衡补丁

7.3.3 3. 跨游戏通用框架

将框架推广到更广泛的游戏类型:

- MOBA 游戏的英雄平衡
- 卡牌游戏的构筑评估
- 自走棋的阵容强度分析

7.4 哲学思考:游戏设计的未来

游戏设计正在经历从"艺术"到"科学"的范式转变。本框架的成功证明:

"最好的游戏设计不是纯粹的创意灵感,也不是冰冷的数据分析,而是两者的有机结合。数据提供客观基础,创意赋予游戏灵魂。"

未来的游戏设计师将同时是艺术家和数据科学家。他们用数据验证直觉,用创意突破框架的限制。这种混合方法不仅能创造更平衡的游戏,更能带来前所未有的游戏体验。

7.5 结语

《星际争霸 II》合作模式的复杂性曾被认为是无法量化的艺术。通过本文提出的兰彻斯特-CEV 框架,我们证明了即使是最复杂的游戏系统也可以被科学地分析和优化。这不仅是技术的胜利,更是方法论的革新。

当我们站在游戏设计新时代的门槛上,让我们拥抱数据的力量,但永远不要忘记——游戏的核心永远是为玩家带来快乐。愿本框架成为创造更多精彩游戏体验的工具,而非束缚创意的枷锁。

For the Swarm, for Aiur, for the Dominion——为了更好的游戏!

References

- [1] F. W. Lanchester, "Aircraft in Warfare: The Dawn of the Fourth Arm," Constable and Company, London, 1916.
- [2] J. G. Taylor, Lanchester Models of Warfare, Operations Research Society of America, Arlington, VA, 1983.
- [3] A. Uriarte and S. Ontañón, "Combat Models for RTS Games," *IEEE Trans. Computational Intelligence and AI in Games*, vol. 10, no. 1, pp. 29–41, 2018.
- [4] D. Churchill, A. Saffidine, and M. Buro, "Fast Heuristic Search for RTS Game Combat Scenarios," in *Proc. 8th AAAI Conf. Artificial Intelligence and Interactive Digital Entertainment (AIIDE)*, 2012, pp. 112–117.
- [5] M. Stanescu, N. Barriga, and M. Buro, "Predicting Army Combat Outcomes in StarCraft," in *Proc. 9th AAAI Conf. AIIDE*, 2013, pp. 86–92.
- [6] G. Synnaeve and P. Bessière, "A Bayesian Model for RTS Units Control Applied to Star-Craft," in *Proc. IEEE Conf. Computational Intelligence and Games*, 2012, pp. 190–196.
- [7] S. Ontañón et al., "A Survey of Real-Time Strategy Game AI Research and Competition in StarCraft," *IEEE Trans. Computational Intelligence and AI in Games*, vol. 5, no. 4, pp. 293–311, 2013.
- [8] G. Robertson and I. Watson, "A Review of Real-Time Strategy Game AI," AI Magazine, vol. 35, no. 4, pp. 75–104, 2014.
- [9] Blizzard Entertainment, "StarCraft II: Legacy of the Void Co-op Missions," 2015. [Online]. Available: https://starcraft2.com/en-us/game/coop.
- [10] Liquipedia, "StarCraft II Co-op Commanders," 2023. [Online]. Available: https://liquipedia.net/starcraft2/Co-op_Missions.

- [11] Starcraft2Coop Community, "Commander Guides and Analysis," 2023. [Online]. Available: https://starcraft2coop.com.
- [12] Team Liquid, "Co-op Commander Discussion Forums," 2023. [Online]. Available: https://tl.net/forum/sc2-coop.

A 附录 A:核心单位参数表

Table 4: 合作模式代表性单位完整参数

单位	指挥官	矿	气	人口	HP	护盾	DPS	射程	属性
升格者	阿拉纳克	300	200	4	200	150	17.9	9	灵能, 机械
天罚行者	菲尼克斯 (塔兰达)	300	200	6	350	150	50-238	12	机械,装甲
皇家卫士	凯瑞甘	150	50	2	200	0	32.7	5	生物, 灵能
突袭解放者	诺娃·泰拉	375	375	3	180	0	85	13	机械,装甲
攻城坦克	斯旺	150	125	3	175	0	35(70)	13	机械,装甲
穿刺者	德哈卡	100	0	2	80-200	0	10-25	4-9	生物, 进化
大和战舰	吉姆・雷诺	400	300	6	500	0	71.4	10	机械,装甲,巨型
雷兽	扎加拉	300	200	6	500	2	35	1	生物,装甲,巨型
母巢领主	阿巴瑟	300	250	6	300	0	60	9	生物,装甲
歼灭者	斯台特曼	250	100	3	200	0	30(+20 装甲)	6	机械,装甲

B 附录 B: 指挥官特性汇总

Table 5: 指挥官核心特性与人口上限

指挥官	人口上限	强势期	λ_{max}	核心特色
凯瑞甘	100	前中期	1.8	英雄单位 + 精英部队
诺娃・泰拉	100	全期	1.5	精英单位 + 批次部署
阿拉纳克	100	中后期	1.7	死亡舰队 + 牺牲机制
泽拉图	100	中后期	1.6	投影 + 传奇军团
吉姆・雷诺	200	后期	1.0	多线生产 + 召唤支援
阿塔尼斯	200	中后期	1.0	传送门 + 守护者外壳
斯旺	200	后期	1.0	防御 + 重型机械
卡拉克斯	200	全期	0.9	防御塔 + 机械单位
阿巴瑟	200	后期	1.0	进化 + 生物量产
扎加拉	100/200	前中期	1.2	爆兵 + 免费单位

C 附录 C: 战斗效能矩阵计算示例

以陆战队员 vs 跳虫为例,展示 CEV 计算过程:

DPS =
$$9.8 \times (1 + 0.3) = 12.74$$
 (+3 攻) (31)

$$EHP = \frac{35}{1 - \frac{0}{0 + 10}} = 35 \tag{32}$$

$$CEV \rightarrow \frac{12.74}{35} = 0.364 \tag{33}$$

反向计算:

DPS =
$$7.2 \times (1 + 0.3) = 9.36$$
 (34)

EHP
$$=\frac{45}{1-\frac{0}{0+10}}=45$$
 (35)

$$CEV \to \frac{9.36}{45} = 0.208 \tag{36}$$

根据兰彻斯特方程,1个陆战队员约等于1.75个跳虫的战斗力。