1 Квадратичные поля

Введём необходимые определения. Пусть, L, K — поля, причём $K \subset L$.

Определение 1. Элемент $\alpha \in L$ называется алгебраическим над K, если:

$$\exists (f \in K[x], f \neq 0) \colon f(\alpha) = 0.$$

Пусть α — алгебраичен над K. Рассмотрим множество всех многочленов из K[x], корнем которых он является: $I=f\in K[x]:f(\alpha)=0$. Это множество является идеалом в кольце многочленов K[x]. Этот идеал является главным с образующей — m(x) — минимальным многочленом для α

Определение 2. Расширение L поля K называется *алгебраическим*, если каждый элемент L алгебраичен над K.

Мы можем рассматривать расширение числового поля как векторное пространство над самим этим полем. Предположим, что мы хотим расширить поле K, добавив в него некоторый элемент α , u, тем самым, получив расширение L. B таком случае, каждый элемент l расширения можно представить в виде: $l = a + b \cdot \alpha$, где $a, b \in K$. Очевидно, что базисом L будет $(1, \alpha)$, а размерность такого векторного пространства будет 2.

Определение 3. Ственью расширения L над полем K называется размерность L как векторного пространства над K.

$$(L:K)=\dim_K L=\dim L$$
, где $L=<1,\alpha>$

Определение 4. *Квадратичным полем* называется любое расширение поля рациональных чисел \mathbb{Q} степени 2.

Пусть рациональное, свободное от квалратов число $d \neq 1$, тогда многочлен $x^2 - d = 0$ неприводим над полем $\mathbb Q$ и поле $\mathbb Q(\sqrt{d})$, полученное из $\mathbb Q$ присоединением корня этого многочлена, является квадратичным.

Предметный указатель

```
Алгебраическое расширение числового поля, 1
элемент
алгебраический, 1
квадратичное поле, 1
многочлен
минимальный, 1
поле
степень расширения, 1
```