- 1. (4 分)给定目标字符串,目标是从相同长度的随机字符串开始生成它。使用遗传算法解决此问题。当迭代次数大于 5000 或生成目标字符串时,算法终止。具体实现如下。
 - 字符 AZ, az, 0-9 和其他特殊符号被视为基因。目标字符串是" Hello, World!"。19/11/09"。
 - 这些字符生成的字符串被视为染色体。
 - 适应度得分是等于特定索引处目标字符串中字符的字符数。例如,健身得分为"ke: 1F,) 5X#iM# &\$ n11g0A"为6。

	Н	е	l	I	О	,		W	0	r	1	d	!		-	9	/	1	1	/	1	U
- 1																						
	k	e	:	1	f	,)	5	X	#	i	M	#	•	&	\$	n	1	1	g	0	a

需求: 打印每一代中健身得分最高的个人。例如,

世代: 1字串: H6f7Vu1Fo11eZB#g73SK#z

生成: 54 字符串: ke: 1F,) 5X#iM#&\$ n11g0A

代: 396 弦: 你好, Noeld! g9 / 11/09

•

2. (4分) 查找 x*以最小化 $x ● \sin (x)$, $x ∈ [-1, 15] (\sin (π) = 0)$ 。使用遗传铝

之里特姆。染色体是 16.位二进制代码。当迭代次数大于 5000 或平均适应度得分≈最佳适应度的,算法终止得分。

要求:

• 自己设计实现细节。

CS241 作业**9** 2019年

- *x**= arg min_xx sin x≈11.0857。只要您的最终结果将被接受属于 (11.08, 11.10)。
- 打印每一代中具有最佳健身得分的个人。
- 3. (2分) 描述您对问题的实施情况 2,包括结束条件,交叉运算符,选择方法等。

重要笔记:

- 参考: 第 15 课的课堂笔记。
- 记住提交您的 makefile!
- 提交问题 3 在 pdf 文件中。
- 到期日: 2019/11/17 11:59 pm