P2 Álgebra Linear I-2008.2

- 1) Decida se cada afirmação a seguir é verdadeira ou falsa.
- Se $\{\overrightarrow{v}_1, \overrightarrow{v}_2\}$ é um conjunto de vetores linearmente dependente então se verifica $\overrightarrow{v}_1 = \sigma \ \overrightarrow{v}_2$ para algum número real σ .
- Considere os subespaços vetorias de \mathbb{R}^3

$$\mathbb{V} = \{\overrightarrow{v} = (x, y, z) \colon x - y - z = 0\}, \qquad \mathbb{U} = \{\overrightarrow{v} = (x, y, z) \colon x + y - z = 0\},$$

e uma transformação linear $T \colon \mathbb{R}^3 \to \mathbb{R}^3$ tal que

$$T(\mathbb{V}) = \mathbb{U}$$
 e $T(\mathbb{U}) = \mathbb{V}$.

A imagem de T é todo o espaço \mathbb{R}^3 .

• Considere as retas r_1 que contém o ponto P e é paralela ao vetor \overrightarrow{v} e a reta r_2 que contém o ponto Q e é paralela ao vetor \overrightarrow{w} . Se

$$\overline{PQ}\cdot(\overrightarrow{v}\times\overrightarrow{w})=0$$

então as retas r_1 e r_2 são concorrentes.

• Considere os planos

$$\pi: x + y + z = 1,$$
 $\rho: x + y + z = 0.$

A distância entre π e ρ é 1.

A transformação

$$T \colon \mathbb{R}^2 \to \mathbb{R}^2, \quad T(x,y) = (|x|, y),$$

verifica T(0,0) = (0,0) e é linear.

2)

Prova tipo A:

a) Considere a base

$$\beta = \{ \overrightarrow{u}_1 = (1, 0, 1), \overrightarrow{u}_2 = (2, 1, 1), \overrightarrow{u}_3 = (a, b, c) \}$$

de \mathbb{R}^3 (as coordenadas dos vetores da base β estão escritas na base canônica \mathcal{E}). Considere o vetor \overrightarrow{v} cujas coordenadas na base canônica são $(\overrightarrow{v})_{\mathcal{E}} = (4,1,2)$. Sabendo que as coordenadas do vetor \overrightarrow{v} na base β são

$$(\overrightarrow{v})_{\beta} = (2,1,1)$$

determine as coordenadas do vetor $\overrightarrow{u}_3=(a,b,c)$ na base canônica.

b) Considere uma transformação linear $T \colon \mathbb{R}^3 \to \mathbb{R}^3$ tal que a matriz de T na base canônica é

$$[T]_{\mathcal{E}} = \left(\begin{array}{ccc} 1 & 1 & 1 \\ -1 & -1 & a \\ b & c & d \end{array}\right)$$

e sua imagem é o plano vetorial \mathbb{V} cujos vetores $\overrightarrow{v} = (x, y, z)$ verificam x + y + z = 0. Determine **explicitamente** valores para a, b, c e d.

c) Considere o subespaço vetorial

$$\mathbb{W} = \{ \overrightarrow{u} = (x, y, z) \in \mathbb{R}^3 \colon x + y - z = 0 \},\$$

a base de W

$$\gamma = \{(1,1,2), (0,1,1)\}$$

e o vetor $\overrightarrow{v}=(3,1,4)$ de \mathbb{W} (as coordenadas dos vetores da base γ e do vetor \overrightarrow{v} estão escritas na base canônica \mathcal{E}).

Determine as coordenadas $(\overrightarrow{v})_{\gamma}$ do vetor $\overrightarrow{v} = (3, 1, 4)$ na base γ .

Prova tipo B:

a) Considere a base

$$\beta = \{ \overrightarrow{u}_1 = (0, 1, 1), \overrightarrow{u}_2 = (1, 2, 1), \overrightarrow{u}_3 = (a, b, c) \}$$

de \mathbb{R}^3 (as coordenadas dos vetores da base β estão escritas na base canônica \mathcal{E}). Considere o vetor \overrightarrow{v} cujas coordenadas na base canônica são $(\overrightarrow{v})_{\mathcal{E}} = (1,4,2)$. Sabendo que as coordenadas do vetor \overrightarrow{v} na base β são

$$(\overrightarrow{v})_{\beta} = (1, 2, 1)$$

determine as coordenadas do vetor $\overrightarrow{u}_3 = (a, b, c)$ na base canônica.

b) Considere uma transformação linear $T \colon \mathbb{R}^3 \to \mathbb{R}^3$ tal que a matriz de T na base canônica é

$$[T]_{\mathcal{E}} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & a \\ b & c & d \end{pmatrix}$$

e sua imagem é o plano vetorial \mathbb{V} cujos vetores $\overrightarrow{v} = (x, y, z)$ verificam x - y + z = 0. Determine **explicitamente** valores para a, b, c e d.

c) Considere o subespaço vetorial

$$\mathbb{W} = \{ \overrightarrow{u} = (x, y, z) \in \mathbb{R}^3 \colon x + y - z = 0 \},\$$

a base de \mathbb{W}

$$\gamma = \{(1, 1, 2), (1, 0, 1)\}$$

e o vetor $\overrightarrow{v} = (1,3,4)$ de \mathbb{W} (as coordenadas dos vetores da base γ e do vetor \overrightarrow{v} estão escritas na base canônica \mathcal{E}).

Determine as coordenadas $(\overrightarrow{v})_{\gamma}$ do vetor $\overrightarrow{v} = (1,3,4)$ na base γ .

Prova tipo C:

a) Considere a base

$$\beta = \{ \overrightarrow{u}_1 = (1, 0, 1), \overrightarrow{u}_2 = (1, 1, 2), \overrightarrow{u}_3 = (a, b, c) \}$$

de \mathbb{R}^3 (as coordenadas dos vetores da base β estão escritas na base canônica \mathcal{E}). Considere o vetor \overrightarrow{v} cujas coordenadas na base canônica

são $(\overrightarrow{v})_{\mathcal{E}}=(2,1,4).$ Sabendo que as coordenadas do vetor \overrightarrow{v} na base β são

$$(\overrightarrow{v})_{\beta} = (1,1,2)$$

determine as coordenadas do vetor $\overrightarrow{u}_3 = (a, b, c)$ na base canônica.

b) Considere uma transformação linear $T\colon \mathbb{R}^3 \to \mathbb{R}^3$ tal que a matriz de T na base canônica é

$$[T]_{\mathcal{E}} = \left(\begin{array}{ccc} 1 & 1 & 1 \\ -1 & -1 & a \\ b & c & d \end{array}\right)$$

e sua imagem é o plano vetorial \mathbb{V} cujos vetores $\overrightarrow{v}=(x,y,z)$ verificam x-y+z=0. Determine **explicitamente** valores para a,b,c e d.

c) Considere o subespaço vetorial

$$\mathbb{W} = \{ \overrightarrow{u} = (x, y, z) \in \mathbb{R}^3 \colon x - y - z = 0 \},\$$

a base de \mathbb{W}

$$\gamma = \{(2, 1, 1), (1, 1, 0)\}$$

e o vetor $\overrightarrow{v} = (4, 1, 3)$ de \mathbb{W} (as coordenadas dos vetores da base γ e do vetor \overrightarrow{v} estão escritas na base canônica \mathcal{E}).

Determine as coordenadas $(\overrightarrow{v})_{\gamma}$ do vetor $\overrightarrow{v} = (4, 1, 3)$ na base γ .

Prova tipo D:

a) Considere a base

$$\beta = \{ \overrightarrow{u}_1 = (1, 1, 0), \overrightarrow{u}_2 = (2, 1, 1), \overrightarrow{u}_3 = (a, b, c) \}$$

de \mathbb{R}^3 (as coordenadas dos vetores da base β estão escritas na base canônica \mathcal{E}). Considere o vetor \overrightarrow{v} cujas coordenadas na base canônica são $(\overrightarrow{v})_{\mathcal{E}} = (4,2,1)$. Sabendo que as coordenadas do vetor \overrightarrow{v} na base β são

$$(\overrightarrow{v})_{\beta} = (2,1,1)$$

determine as coordenadas do vetor $\overrightarrow{u}_3 = (a, b, c)$ na base canônica.

b) Considere uma transformação linear $T \colon \mathbb{R}^3 \to \mathbb{R}^3$ tal que a matriz de T na base canônica é

$$[T]_{\mathcal{E}} = \left(\begin{array}{ccc} 1 & 1 & 1\\ -1 & -1 & a\\ b & c & d \end{array}\right)$$

e sua imagem é o plano vetorial \mathbb{V} cujos vetores $\overrightarrow{v}=(x,y,z)$ verificam x-y-z=0. Determine **explicitamente** valores para a,b,c e d.

c) Considere o subespaço vetorial

$$\mathbb{W} = \{ \overrightarrow{u} = (x, y, z) \in \mathbb{R}^3 \colon x - y + z = 0 \},\$$

a base de \mathbb{W}

$$\gamma = \{(1, 2, 1), (0, 1, 1)\}$$

e o vetor $\overrightarrow{v} = (3,4,1)$ de \mathbb{W} (as coordenadas dos vetores da base γ e do vetor \overrightarrow{v} estão escritas na base canônica \mathcal{E}).

Determine as coordenadas $(\overrightarrow{v})_{\gamma}$ do vetor $\overrightarrow{v} = (3, 4, 1)$ na base γ .

- 3) Considere uma base $\beta = \{\overrightarrow{u}_1, \overrightarrow{u}_2, \overrightarrow{u}_3\}$ de \mathbb{R}^3 .
- a) Prove que

$$\gamma = \{\overrightarrow{u}_1, \overrightarrow{u}_2, \overrightarrow{u}_1 + \overrightarrow{u}_2 + \overrightarrow{u}_3\}$$

também é uma base de \mathbb{R}^3 .

b) Suponha que as coordenadas do vetor \overrightarrow{v} na base β são

$$(\overrightarrow{v})_{\beta} = (1, 2, 1).$$

Determine as coordenadas de $(\overrightarrow{v})_{\gamma} = (y_1, y_2, y_3)$ de \overrightarrow{v} na base γ .

c) Considere o subespaço vetorial

$$\mathbb{W} = \{ \overrightarrow{u} = (x, y, z) \in \mathbb{R}^3 \colon x - y - z = 0 \}$$

e o vetor $\overrightarrow{u}=(2,1,1)$ de \mathbb{W} (as coordenadas do vetor \overrightarrow{u} estão escritas na base canônica \mathcal{E}).

Determine uma base ϱ de \mathbb{W} tal que as coordenadas $(\overrightarrow{u})_{\varrho}$ de \overrightarrow{u} na base ϱ sejam $(\overrightarrow{u})_{\varrho} = (2,0)$ (as coordenadas dos vetores da base ϱ devem estar escritas na base canônica \mathcal{E}).

4) Considere a transformação linear

$$T \colon \mathbb{R}^3 \to \mathbb{R}^3$$

que verifica

$$T(1,1,0) = (2,2,1), \quad T(1,0,1) = (3,4,2), \quad T(0,1,1) = (3,2,1).$$

- a) Determine a matriz de T na base canônica.
- b) Determine o conjunto $\mathbb U$ de vetores \overrightarrow{w} de $\mathbb R^3$ que verificam

$$T(\overrightarrow{w}) = (2, 2, 2).$$

c) Determine a imagem im $(T(\mathbb{R}^3))$ de T,

$$\operatorname{im}(T(\mathbb{R}^3)) = \{\overrightarrow{v} \text{ tal que existe } \overrightarrow{w} \in \mathbb{R}^3 \text{ tal que } \overrightarrow{v} = T(\overrightarrow{w})\}.$$