Máquinas de Estado do tipo – *Tipo MOORE*

- Mostrar como construir um contador de módulo 4 utilizando uma máquina de estados. Esse contador pode incrementar ou decrementar o seu valor;
- Implementação utilizando Flip-Flops D;
- Implementando utilizando Flip-Flops JK.

Estado Atual	Saída	Próximo Estado		
$Q_1^{\ n}Q_0^{\ n}$	Z_1Z_0	$M=0$ $Q_1^{n+1}Q_0^{n+1}$	$M=1$ $Q_1^{n+1}Q_0^{n+1}$	
00	00	11	01	
01	01	00	10	
10	10	01	11	
11	11	10	00	

IMPLEMENTANDO COM FLIP-FLOPS D

Neste Exemplo, as equações de saída Z1 e Z2 são iguais ao estado atual

Ou seja, Z1 = Q1 e Z2 = Q2. Determina-se as equações para o próximo estado Q_1^{n+1} , utilizando os elementos marcados em vermelho na tabela

Q_1^n	Q_1^{n+1}	D
0	0	0
0	1	1
1	0	0
1	1	1

$$\mathbf{D1} = \overline{M} \overline{Q_1} \overline{Q_0} + \overline{M} Q_1 Q_0 + M \overline{Q_1} Q_0 + M Q_1 \overline{Q_0}$$

Estado Atual $Q_1^nQ_0^n$	Saída	Próximo Estado	
		M=0 M=1	
		$Q_1^{n+1}Q_0^{n+1} Q_1^{n+1}Q_0^{n+1}$	
00	00	11	01
01	01	00	10
10	10	01	11
11	11	10	00

Determina-se as equações para o próximo estado Q_0^{n+1} , utilizando os elementos marcados em vermelho na tabela

$$\mathbf{D0} = \overline{\mathbf{Q}_0}$$

Estado Atual Q ₁ ⁿ Q ₀ ⁿ	Saída	Próximo Estado		
		$M=0 \\ Q_1^{n+1}Q_0^{n+1}$	$M=1$ $Q_1^{n+1}Q_0^{n+1}$	
00	00	11	01	
01	01	00	10	
10	10	01	11	
11	11	10	00	

Vamos agora implementar a mesma máquina de estados com Flip-Flops JK

Tabela Verdade de um JK

J	K	Q
0	0	Q_ant
0	1	0
1	0	1
1	1	$\overline{Q_{ant}}$

Tabela de transições para prox. estado

$Q_1^n \to Q_1^{n+1}$	J_1	K_1
0 >0	0	X
0 →1	1	X
1 →0	X	1
1 →1	X	0

Se estava em Zero e passou para Zero, pode ser: forçou 0 (K=1) Ou manteve o valor (j=0,k=0)

Se estava em 0 e passou para

1, pode ser: forçou 1 (J=1)
Ou inverteu o valor (j=1,k=1)

Se estava em 1 e passou para 0, pode ser: forçou 0 (K=1) Ou inverteu o valor (j=1,k=1)

Se estava em 1 e passou para 1, pode ser: forçou 1 (J=1) Ou manteve o valor (j=0,k=0)

Vamos criar as equações para J₁ e K₁

J1=Q0.M+M'.Q0'

Vamos criar as equações para J₁ e K₁

K1=Q0'.M'+M.Q0

Vamos criar as equações para J₀

J0=1

Vamos criar as equações para K₀

K0=1

Curiosamente o FF0 somente Inverterá o seu valor anterior Pois sua configuração é J=1, K=1

Observe que neste circuito (CRIADO COM FLIP-FLOPS JK) fica mais difícil indicar qual é o estado futuro, pois teremos os sinais J0 e K0 e J1 e K1 e não diretamente o valor numérico do estado futuro como nos Flip-Flops D.

Máquinas de Estado do tipo <u>Mealy</u>

- Mostrar como construir um contador de módulo 4 (dec/incr) utilizando uma máquina de estados do tipo <u>Mealy</u>, deixando claro a diferença para o tipo <u>Moore</u>.
- Implementação utilizando Flip-Flops D
- Implementando utilizando Flip-Flops JK

• Vamos examinar mais atentamente o funcionamento da máquina de Moore

K | K+1

Esta no estado A no pulso <u>K</u> de clock. Neste estado a saída é 0. O valor da variável M pode

Mudar durante este pulso, mas a saída permanecerá em 0 e o estado atual permanecerá A.

No pulso <u>K+1</u> de clock o valor da entrada é amostrado E com base na entrada realiza-se uma transição para o Estado B. No estado B a saída é 1.

A saída é uma função apenas do estado atual. Desta forma, para mudar o valor de saída, somente após uma mudança de estado (que por sua vez ocorre apenas pelas entradas e pelo pulso de clock).

Na máquina de Moore

• Ou seja, primeiro temos que transitar para um novo estado para que a saída mude.

Máquina de Mealy

- As vezes as máquina de Mealy gera um diagrama de estados com menos estados.
- Ex: Detector de seqüências. Queremos detectar pelo menos 3 x o número 1 em seqüência.

Máquina Moore – 4 Estados

Máquina Mealy – 3 Estados

Implementação usando Flip-Flops D para uma máquina de Mealy para O contador de módulo 4.

Fora a questão dos estados, não existe diferença na forma de gerar as equações para as Saídas e para os Estados.

Estado Atual	M=0	M=1
$Q_1^{n}Q_0^{n}$		
	Próximo Estado/Saída	Próximo Estado/Saída
00	11/11	01/01
01	00/00	10/10
10	01/01	11/11
11	10/10	00/00

- Temos diferença na criação da equação das saídas Z₁Z₀ Antes as saídas eram dependentes do estado apenas.
- Agora são dependentes do estado e das entradas.
 Neste exemplo, serão iguais a D₁ e D₂
- O mesmo raciocínio anterior seria utilizado para implementar com flip-flops JK

Como ficaria para o Detector de seqüência de 3x1?

Estado Atual Q ₁ ⁿ Q ₀ ⁿ	M=0	M=1
	Próximo Estado/Saída	Próximo Estado/Saída
A 00	00/0	01/0
В 01	00/0	10/0
C 10	00/0	10/1

D_{0-} Q_1Q	0			
0- M	00	01	11	10
0	0	0	0	0
1	1	0	0	0

