1. (d) We minimize

$$\frac{1}{2}\mathbf{w}^T\mathbf{w}$$

subject to the constraint

$$y_n\left(\mathbf{w}^T\mathbf{x}_n + b\right) \ge 1$$

The Lagrangian is

$$\frac{1}{2}\mathbf{w}^{T}\mathbf{w} - \sum_{n} \alpha_{n} \left(y_{n} \left(\mathbf{w}^{T} \mathbf{x}_{n} + b \right) - 1 \right)$$

and the primal problem requires differentiating with respect to the α_n 's, which gives the constraint

$$y_n(\mathbf{w}^T\mathbf{x}_n + b) = 1$$

If we re-absorb the b into the vector \mathbf{w} (making it a d+1 dimensional vector), we have the mapping

$$\frac{1}{2}\mathbf{w}^T\mathbf{w} \to \frac{1}{2}\mathbf{w}^T\mathbf{P}\mathbf{w}, \qquad y_n(\mathbf{w}^T\mathbf{x}_n + b) \to y_n\mathbf{w}^T\mathbf{x}_n$$

where **P** is the $(d+1) \times (d+1)$ matrix

$$\mathbf{P} = \begin{pmatrix} 0 & \mathbf{0} \\ \mathbf{0} & \mathbf{I}_{d \times d} \end{pmatrix}, \qquad \mathbf{I}_{d \times d} \text{ is the identity matrix.}$$

Thus we have the d+1 variable quadratic programming problem minimizing with respect to ${\bf w}$

$$\frac{1}{2}\mathbf{w}^T\mathbf{P}\mathbf{w}$$

subject to the constraint

$$y_n \mathbf{w}^T \mathbf{x}_n = 1.$$

- 2. (a) 0 vs all had the lowest in-sample accuracy. Interestingly, it was hard to distinguish the others from the pack. Yet, they had a lower $E_{\rm in}$.
- 3. (a) 1 vs all had the lowest $E_{\rm in}$. It was hard to distinguish the rest from the pack.
- 4. (c) 0 vs all has 2180 SV and 1 vs all has 386 SV, so the difference is about 1800.
- 5. (d) The C=1 case has 2 more correct classification points in-sample than the other C's.
- 6. (b) At Q=2 the number of support vectors is 76 while at Q=5 the number of support vectors is 25.
- 7. (b) C = 0.001 has the most lowest- $E_{\rm CV}$ cases at 28 cases out of 100 iterations.
- 8. (c) Averaging E_{CV} for C = 0.001 gives $E_{\text{CV}} = 0.00478$.
- 9. (e) $C = 10^6$ had the lowest $E_{\rm in} = 0.00064$.
- 10. (c) C = 100 had the lowest $E_{\text{out}} = 0.019$.