Protecting Water Quality in Washington

Heather Bartlett Manager, Water Quality Program

Topics for today

- Human Health Criteria & Implementation Tools Update
- Spokane River Toxics
- Industrial Stormwater
- Upcoming work
 - -Water Quality Assessment
 - -Nonpoint Plan Update

Human Health Criteria & Implementation Tools Update

Water Quality Standards Changes

- Human Health Criteria: Calculation Variables
 - Fish consumption rate
 - Risk rate for carcinogens
 - Relative source contribution for toxic effect chemicals
 - Body weight
 - Drinking water
- Challenging Chemicals
 - Arsenic
 - PCBs
 - Mercury
- Implementation Tools
 - Compliance schedules
 - Variances
 - Intake credits

GOVERNOR'S PROPOSED RULE

Keeping water clean for our communities.

MORE protective than current standards for 70% of chemicals

AS protective as current standards for 30% of chemicals

The Governor's proposed water quality rule will result in standards that are more protective for 70% of regulated toxics.

A majority of those will be 2-20 times more protective.

GOVERNOR'S PROPOSED RULE

The rule would be more protective than current standards for 70% of the 96 chemicals

KEY

- Proposed rule is **more** protective on this chemical
- Proposed rule is as protective on this chemical

FRESH WATER

1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethylene 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,2-Dichloroethane 1,2-Dichloropropane 1,2-Diphenylhydrazine 1,2-Trans-Dichloroethylene 1,3-Dichlorobenzene 1,3-Dichloropropene 1,4-Dichlorobenzene 2,3,7,8-TCDD (Dioxin) 2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dimethylphenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2-Chloronaphthalene 2-Chlorophenol 2-Methyl-4,6-Dinitrophenol 3,3'-Dichlorobenzidine 4,4'-DDD 4,4'-DDE 4,4'-DDT Acenaphthene Acrolein Acrylonitrile Aldrin alpha-BHC alpha-Endosulfan Anthracene Antimony Asbestos Benzene Benzidine Benzo(a)Anthracene Benzo(a)Pyrene Benzo(b)Fluoranthene Benzo(k)Fluoranthene | beta-BHC | beta-Endosulfan Bis(2-Chloroethyl)Ether Bis(2-Chloroisopropyl) Ether Bis(2-Ethylhexyl) Phthalate Bromoform Butylbenzyl Phthalate Carbon Tetrachloride Chlordane Chlorobenzene Chlorodibromomethane Chloroform Chrysene Copper Cyanide Dibenzo (a,h) Anthracene Dichlorobromomethane Dieldrin Diethyl Phthalate Dimethyl Phthalate Di-n-Butyl Phthalate Endosulfan Sulfate Endrin Endrin Aldehyde Ethylbenzene Fluoranthene Fluorene gamma-BHC (Lindane) Heptachlor Heptachlor Epoxide Hexachlorobenzene Hexachlorobutadiene Hexachloro-cyclopentadiene Hexachloroethane Indeno (1,2,3-cd) Pyrene Isophorone Mercury Methyl Bromide Methylene Chloride Nickel Nitrobenzene N-Nitrosodimethylamine N-Nitrosodi-n-Propylamine N-Nitrosodiphenylamine Pentachlorophenol Phenol PCBs Pyrene Selenium Tetrachloroethylene Thallium Toluene Toxaphene Trichloroethylene Vinyl Chloride Zinc

MARINE WATER

1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethylene 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,2-Dichloroethane 1,2-Dichloropropane 1,2-Diphenylhydrazine 1,2-Trans-Dichloroethylene 1,3-Dichlorobenzene 1,3-Dichloropropene 1,4-Dichlorobenzene 2,3,7,8-TCDD (Dioxin) 2,4,6-Trichlorophenol 2,4-Dichlorophenol 2.4-Dimethylphenol 2.4-Dinitrophenol 2.4-Dinitrotoluene 2-Chloronaphthalene 2-Chlorophenol 2-Methyl-4,6-Dinitrophenol 3.3'-Dichlorobenzidine 4.4'-DDD 4.4'-DDE 4.4'-DDT Acenaphthene Acrolein Acrylonitrile Aldrin alpha-BHC alpha-Endosulfan Anthracene Antimony Asbestos Benzene Benzidine Benzo(a)Anthracene Benzo(a)Pyrene Benzo(b)Fluoranthene Benzo(k)Fluoranthene | beta-BHC | beta-Endosulfan Bis(2-Chloroethyl)Ether Bis(2-Chloroisopropyl) Ether Bis(2-Ethylhexyl) Phthalate Bromoform Butylbenzyl Phthalate Carbon Tetrachloride Chlordane Chlorobenzene Chlorodibromomethane Chloroform Chrysene Copper Cyanide Dibenzo (a,h) Anthracene Dichlorobromomethane Dieldrin Diethyl Phthalate Dimethyl Phthalate Di-n-Butyl Phthalate Endosulfan Sulfate Endrin Endrin Aldehyde Ethylbenzene Fluoranthene Fluorene gamma-BHC (Lindane) Heptachlor Heptachlor Epoxide Hexachlorobenzene Hexachlorobutadiene Hexachloro-cyclopentadiene Hexachloroethane Indeno (1,2,3-cd) Pyrene Isophorone Mercury Methyl Bromide Methylene Chloride Nickel Nitrobenzene N-Nitrosodimethylamine N-Nitrosodi-n-Propylamine N-Nitrosodiphenylamine Pentachlorophenol Phenol PCBs Pyrene Selenium Tetrachloroethylene Thallium Toluene Toxaphene Trichloroethylene Vinyl Chloride Zinc

Human Health Criteria Fish Consumption Rate

	Current	Alternative1	Decision Alternative 2	Alternative 3
Fish Consumption Rate	6.5 grams/day	225 grams/day	175 grams/day	125 grams/day
Basis	National data	Washington data: Suquamish Fish Consumption Tribal survey	Negotiated value used in Oregon's updated Human Health Criteria	Washington data: Fish Consumption Rate surveys of three Puget Sound tribes
Target Population	Mean of General Population	Mean of Surveyed Suquamish Tribal Members	Highly Exposed Population	Mean of three Puget Sound Tribal Studies

Human Health Criteria Risk Level

Numeric	What it means, under specified exposure assumptions
10 ⁻⁶	risk of one additional occurrence of cancer, in one million people beyond existing risk level (women1:3 – men:1:2) – after 70 years of daily exposure
Decision 10^{-5}	risk of one additional occurrence of cancer, in one hundred thousand people beyond existing risk level (women1:3 – men:1:2) – after 70 years of daily exposure
10 ⁻⁴	risk of one additional occurrence of cancer, in ten thousand people beyond existing risk level (women1:3 – men:1:2) – after 70 years of daily exposure

For NTR human health criteria, the exposure assumptions are: **70 years** of daily exposure to **6.5 g/day** of fish and shellfish, and **2 liters/day** of untreated surface waters, for a **154 lb.** person.

Challenging Chemicals: Arsenic, PCBs, Mercury

Arsenic - Adopt Safe Drinking Water Act regulatory level of 10 ppb

PCBs - Criteria calculated at a risk level of 4x10⁻⁵ (to equal noncancer) & apply "hold the line" decision

Mercury - Defer adoption of new mercury criteria (stay under the NTR in interim)

Tools to Help with Implementation

Ecology already has a number of tools that we use when issuing permits (e.g. mixing zones).

We are planning to expand those tools:

- New language allowing intake credits for water quality based effluent limits
- Additional language around compliance schedules
- 3. Clarifying language for variances

Timeline

- Preliminary draft rule went out on Sept.
 30, 2014
- Issue draft rule in early 2015
- Governor proposes Toxics Reduction Package to 2015 Legislature
- Adopt final rule after 2015 Legislature closes

Website

www.ecy.wa.gov/water/standards/index.html

Spokane River Toxics

Spokane River Regional Toxics Task Force

Goals

- •Bring the Spokane River into compliance with water quality standards
- Better understand how PCBs enter and move through river
- Identify data obtained and needed to address data gaps
- •Implement Best Management Practices to achieve source reduction

How Do We Know It's Working?

Measurable Progress

- Adaptive Management
- Inputs, Outputs, Outcomes
- Implementation Timeframes

Industrial Stormwater

Industrial Stormwater General Permit

- Most permit conditions unchanged
- Revisions made to:
 - Streamline reporting (e-Reporting)
 - Simplify engineering reports for treatment systems
 - Improve protection of Puget Sound sediment cleanup sites

Industrial Stormwater

- Most controversial for discharges to waters undergoing sediment cleanups
 - Characterize solids in storm drain lines
 - Clean out, dispose of solids
 - Total Suspended Solids (TSS) sampling
 - Category 5, 30 mg/L TSS limit
 - Non-Category 5 (e.g. Cat. 4B), 30 mg/L TSS benchmark
 - 2 year compliance schedule, if discharge point wasn't already subject to the TSS limit

Upcoming Work

Water Quality Assessment

- Data analysis began in 2011
- Finally complete with all the data analysis
- More data records than the past
- Will only be for freshwater (marine water was done in 2012).
- Analysis is based on existing water quality standards.
- Will include new hydrological based segment sizes.

Nonpoint Management Plan

- Develop strategies for addressing all nonpoint pollution
- Required by EPA to develop strategies for addressing nonpoint
- Important to do this right distribute pressure and responsibility for controlling pollution.
- Need engagement public process starts this winter.

Questions and Discussion