Rachunek prawdopodobieństwa i statystyka

Lista zadań nr 14. Tydzień rozpoczynający się 1. czerwca

- $\Phi(\cdot)$ oznacza od teraz aż do odwołania dystrybuantę rozkładu N(0,1). Oprócz tego: zadania 1–8 są zadaniami ćwiczeniowymi (jak zwykle po 1 punkcie), zaś zadania 9–16 są kategorii (**E0.5**) każde.
- 1. Obszar krytyczny określony jest nierównością $\Phi>2$. Poziom istotności α jest równy: a) 0.2280 b) 0.0228 c) 0.0500 d) 0.1000
- 2. Poziom istotności α odpowiadający obszarowi krytycznemu $|\Phi|>1.55$ to a) 0.5500 b) 0.0606 c) 0.1211 d) 0.1234
- 3. Poziom istotności $\alpha=0.075$. Obszar krytyczny dla lewostronnej hipotezy alternatywnej to: a) $\Phi<-1.34$ b) $\Phi<-1.38$ c) $\Phi<-1.40$ d) $\Phi<-1.44$.
- 4. Znaleźć wartość p-value dla $\Phi = 2.34$ i $H_a: \mu \neq \mu_0$: a) 0.0096 b) 0.0101 c) 0.0193 d) 0.0202
- 5. Znaleźć p-value jeśli $\Phi = -3.05$, $H_a: \mu < \mu_0$: a) 0.0011 b) 0.0111 c) 0.0038 d) 0.0001
- 6. Podać wartość p-value jeśli $\Phi = 1.89, H_a: \mu > \mu_0$: a) 0.0588 b) 0.1234 c) 0.0249 d) 0.0669
- 7. Testowana hipoteza to $H_0: \mu = 10$, hipoteza alternatywna $H_a: \mu \neq 10$, poziom istotności $\alpha = 0.01$. Dla którego z poniższych 99% przedziałów ufności dla μ odrzucimy hipotezę zerową? a) (12.1, 15.3) b) (8.8 12.5) c) (5.5, 15.5) d) (9.9 10.5)
- 8. Testujemy hipotezę o wartości oczekiwanej na podstawie jednej, dużej próbki.

Które z poniższych zdań są prawdziwe? a) Testowana hipoteza jest jednostronna. b) Obliczona wartość statystyki testowej to -22.59. c) Rozmiar próbki jest równy 500. d) Wartością μ_0 jest 5.51912.

9. W trakcie eksperymentu mierzono czas reakcji na bodziec neurologiczny.

Które z poniższych zdań są prawdziwe? a) Testowana hipoteza jest dwustronna. b) Pole obszaru na prawo od t=3.30 pod gęstością t(14) jest równy 0.005. c) Nie odrzucamy hipotezy zerowej na poziomie istotności $\alpha=0.05$, ponieważ 1.5 nie należy do 95% przedziału ufności (1.665, 2.277). d) Próbka ma rozmiar 15.

10. Poniżej znajdują się wyniki ankiety typu TAK-NIE.

```
Test of p = 0.4 vs p not = 0.4   
Sample X N Sample p 95%CI Z-Value P-Value 1 180 400 0.450000 (0.401247,0.498753) 2.04 0.041
```

Które z poniższych zdań są prawdziwe? a) Ankietowano 400 osób, 180 osób udzieliło odpowiedzi TAK. b) Testowano hipotezę jednostronną. c) Poziom istotności to $\alpha=0.05$. d) Obszar pod krzywą gęstości, na prawo od punktu 2.04, ma pole 0.041.

	Α	В	C ~ o o
1	0.25	Procent odpowiedzi TAK	=125/500
2	0.0194	błąd standardowy wskaźnika struktury	=PIERWIASTEK(C1*(1-C1)/500)
3	1.96	kwantyl rozkładu normalnego	=ROZKŁAD.NORMALNY.ODW(0.975;0;1)
4			
5	0.212	lewy kraniec 95% przedziału ufności	=C1-C2*C3
6	0.288	prawy kraniec 95% przedziału ufności	=C1+C2*C3
7			
8	2.7951	wartość statystyki testowej	=(C1-0.2)/PIERWIASTEK(0.2*0.8/500)
9	0.0052	p-value	=2*(1-ROZKŁAD.NORMALNY(C8;0;1;PRAWDA))

- 11. Przepytano 500 osób, pytanie było typu TAK-NIE.
 - Które z poniższych zdań są prawdziwe? a) Wartością testowaną jest $p_0=0.20$ b) Wartość 0.0052 to jednostronne p-value. c) Wartość p_0 nie należy do 95% przedziału ufności. d) Wartość n jest duża, $np_0 \geqslant 5$, $nq_0 \geqslant 5$, zatem można przybliżać rozkład dwumianowy rozkładem normalnym.
- 12. Stawiamy hipotezę, że odchylenie standardowe zmiennej jest mniejsze od 5.

	Α	В	С	D	E	F	G			
1	70	3.437758	Odchylenie	Odchylenie standardowe = ODCH.STANDARDOWE(A1:A12)						
2	73	5.2	Wartość sta	Vartość statystyki testowej =11*B1^2/25						
3	70									
4	72	0.078905	0.078905 p-value =1-ROZKŁAD.CHI(B2;11)							
5	74									
6	70	p-value > 0.05, nie odrzucamy hipotezy zerowej								
7	74									
8	76									
9	75									
10	80									
11	74									
12	80									
12										

Które z poniższych zdań są prawdziwe? a) S^2 dla próbki ma wartość 3.43776. b) Przy poziomie istotności $\alpha=0.05$ nie odrzucamy hipotezy H_0 . c) Obszar pod gęstością rozkładu $\chi^2(11)$ ma pole 0.078905. d) Jest to test prawostronny.

13. Zmierzono prędkości 100 samochodów. Poniżej wyznaczono 95%-procentowy przedział ufności dla odchylenia standardowego.

10	75	75	50	60	80	60	50	75		
11										
12	10.64818	Odchylenie sta	dchylenie standardowe =ODCH.STANDARDOWE(A1:J10)							
13	113.3838	Wariancja =A	riancja =A12^2							
14										
15	73.3611	Chi-kwadrat, (ni-kwadrat, 0.975 na prawo od tego punktu =ROZKŁAD.CHI.ODW(0.							
16	128.4219 Chi-kwadrat, 0.025 na prawo od tego punktu =ROZKŁAD.CHI.ODW(0.025;99)							25;99)		
17										
18	87.40719	Lewy kraniec	ewy kraniec 95% CI dla wariancji =99*A13/A16							
19	153.0102	Prawy kranied	rawy kraniec 95% CI dla wariancji =99*A13/A15							
20										
21	9.349181	Lewy kraniec	Lewy kraniec dla odchylenia standardowego =PIERWIASTEK(A18)							
22	12.36973	Prawy kranied	Prawy kraniec dla odchylenia standardowego =PIERWIASTEK(A19)							
23										

Które z poniższych zdań są prawdziwe? a) $S^2=10.64818$ b) Przedział ufności dla σ^2 to (87.40710, 153.0102) c) Przedział ufności dla σ to (9.349181, 12.36973) d) Pole obszaru pod gęstością $\chi^2(99)$ od 73.3611 do 128.4219 jest równe 0.99.

- 14. Testujemy hipotezę na poziomie istotności $\alpha = 0.05$. Przy której wartości **p-value** odrzucimy hipotezę zerową: a) p-value= 0.05 b) p-value= 0.14 c) p-value= 0.024 d) p-value= 0.34.
- 15. Przedmiotem testowania hipotez jest a) opisywanie próbek, b) opisywanie populacji, c) wnioskowanie o populacji na podstawie próbek, d) wnioskowanie o próbkach na podstawie populacji.
- 16. Wykonujemy test t o równości średnich dla dwóch próbek. Zakładamy przy tym, że: a) próbki są niezależne b) próbki pochodzą z populacji o rozkładzie normalnym c) próbki pochodzą z rozkładu $t(n_1+n_2-2)$ d) próbki pochodzą z tej samej populacji.

Niniejszym – odwołuję założenie iż $\Phi(\cdot)$ oznacza dystrybuantę rozkładu N(0,1),

Witold Karczewski