CPSC 513 — Assignment #2 Solutions for Question #2

Recall that, for $n \geq \mathbb{N}$, Φ_n is the (partial or total) function that is computed by the program with encoding n. The problems on this assignment concern the set

Monotone =
$$\{n \in \mathbb{N} \mid \Phi_n \text{ is total and } \Phi_n(x) \leq \Phi_n(x+1) \text{ for all } x \in \mathbb{N} \}.$$

This question also concerns the set

Total =
$$\{n \in \mathbb{N} \mid \Phi_n \text{ is total}\}$$

that was considered during the lecture on "Diagonalization and Reducibility."

- (a) You were first asked to give an \mathcal{L} -program such that, for inputs $x_1, x_2 \in \mathbb{N}$,
 - if $\Phi_{x_2}(0), \Phi_{x_2}(1), \dots, \Phi_{x_2}(x_1)$ are all defined then this program computes and returns

$$\Phi_{x_2}(0) + \Phi_{x_2}(1) + \cdots + \Phi_{x_2}(x_1);$$

• this program fails to halt on inputs x_1 and x_2 otherwise.

Solution Consider the following program.

$$\begin{array}{c} Y \leftarrow 0 \\ Z_1 \leftarrow 0 \\ [A_1] \quad Z_2 \leftarrow \Phi_{X_2}(Z_1) \\ Z_3 \leftarrow Z_2 + Y \\ Y \leftarrow Z_3 \\ Z_3 \leftarrow X_1 - Z_1 \\ \text{IF } Z_3 \neq 0 \text{ GOTO } B_1 \\ \text{GOTO } C_1 \\ [B_1] \quad Z_1 \leftarrow Z_1 + 1 \\ \text{GOTO } A_1 \end{array}$$

The following is not hard to prove by induction on n: For all $n, x_2 \in \mathbb{N}$, if each of the values

$$\Phi_{x_2}(0), \Phi_{x_2}(1), \dots, \Phi_{x_2}(n)$$

are defined, and this program is executed with inputs n and x_2 , then the statement

IF
$$Z_3 \neq 0$$
 GOTO B_1

is executed exactly n+1 times. Furthermore, if $1 \le i \le n+1$ then, at the i^{th} execution of this statement, Y has value

$$\Phi_{x_2}(0) + \Phi_{x_2}(1) + \cdots + \Phi_{x_2}(i-1),$$

 Z_1 has value i-1, and Z_3 has value n+1-i. Consequently Y has the desired output value and Z_3 has value 0 at the $n+1^{\rm st}$ execution of this statement. The test will fail and the next statement will be reached and executed. Since there is no statement with label C_1 this will cause the execution of the program to halt with the desired output being returned.

Suppose, instead, that one or more of the values

$$\Phi_{x_2}(0), \Phi_{x_2}(1), \dots, \Phi_{x_2}(n)$$

is *not* defined. Let $m \in \mathbb{N}$ such that $0 \le m \le n$ and m is the *smallest* value such that $\Phi_{x_2}(m)$ is undefined.

Notice that if m=0 then the program fails to halt when it is executed with inputs n and x_2 because the statement with label A_1 is reached and fails to halt the first time it is executed.

Suppose, instead, that $1 \leq m \leq n$. Then, if the program is executed with inputs n and x_2 then, once again, it can be argued that the statement with label A_1 is executed exactly m+1 times. Indeed, it can be proved by induction on i that if $1 \leq i \leq m$ then the variable Z_1 has value i-1 and the variable Z_3 has value $n-i+1 \geq n-m+1 \geq 1$ at the i^{th} execution of this statement.

In particular, Z_1 has value m-1 and Z_3 has a positive value at the m^{th} execution of this statement — so that the test will pass once again, and the statement with label B_1 will be executed after that — increasing the value of Z_1 after that. The statement with label A_1 will be reached and executed, for a final time, two steps after that — and the fail will fail to halt, because of this execution of this statement will never end.

Thus this program has the properties listed in the question.

Note: Since this program exists it has encoding p for some (fixed by unknown) natural number p.

(b) You were next asked to prove that Total \leq_m Monotone.

Consider the function $f: \mathbb{N} \to \mathbb{N}$ such that, for all $n \in \mathbb{N}$,

$$f(n) = s_1^1(n, p)$$

where s_1^1 is the function mentioned in the Parameter Theorem and the constant p is the encoding of the program given in part (a). Since s_1^1 is primitive recursive it should be clear that f is also a primitive recursive function — so that if is certainly a computable total function.

Suppose that $n \in \text{Total}$. Then, for all $x \in \mathbb{N}$,

$$\begin{split} \Phi_{f(n)}(x) &= \Phi^{(1)}(x, f(n)) \\ &= \Phi^{(1)}(x, s_1^1(n, p)) \\ &= \Phi^{(2)}(x, n, p) \\ &= \Phi_n(0) + \Phi_n(1) + \dots + \Phi_n(x) \in \mathbb{N}, \end{split}$$

since $n \in \text{Total}$, so that Φ_n is a program that computes a total function. Thus $f(n) \in \text{Total}$. Furthermore, it follows by the above that for all $x \in \mathbb{N}$,

$$\Phi_{f(n)}(x+1) - \Phi_{f(n)}(x) = \Phi_{x_2}(x+1) \ge 0,$$

so that $\Phi_{f(n)}$ is a monotone function. Thus $f(n) \in M$ onotone in this case.

Suppose, on the other hand, that $n \neq \text{Total}$. Then Φ_n is not a total function. Let x be the smallest natural number such that $\Phi_n(x)$ is undefined. Then (arguing as above once again)

$$\Phi_{f(n)}(x) = \Phi^{(2)}(x, n, p)$$

is undefined as well, because Φ_p fails to halt when executed on inputs x and n. Thus $\Phi_{f(n)}$ is not a total function, so that it is not monotone, either: $f(n) \notin M$ onotone.

Thus $x \in \text{Total}$ if and only if $f(x) \in \text{Monotone}$ and, since f is a computable total function it follows that

Total
$$\leq_m$$
 Monotone

as claimed.

(c) Finally you were asked what can be concluded about the set Monotone.

Solution: Recall (from Lecture #9) that the set Total is not recursively enumerable. It follows by the above reduction that Monotone is not recursively enumerable either.