MAT 299 - Proofs and Problem Solving

Mr. Ryan Evaul Southern New Hampshire University

Fall Semester 2018

Contents

1	Homework 1 - Saturday, November 3 rd , 2018	5
	1.1 §1 Differential Equations	Į.

Homework 1 - Saturday, November 3rd, 2018

1.1 §1 Differential Equations

Problem 1 Analyze the logical forms of the following statements. Use A to represent "Alice has a dog," B to represent "Bob has a dog," and C to represent "Carol has a cat" to write each as a symbolic statement.

- 1. Either Alice or Bob has a dog. $A \vee B$
- 2. Neither Alice nor Bob has a dog, but Carol has a cat. $\neg (A \land B) \land C$
- Either Alice has a dog and Carol has a cat, or Bob has a dog and Carol does not have a cat. (A ∧ C) ∨ (B ∧ ¬C)

This is similar to Example 1.1.2 and to Exercise 2 in Section 1.1 of your SNHU MAT299 textbook.

Problem 2 If D stands for "Doug is tall" and E stands for "Edie is short," what English sentences are represented by the following expressions?

- 1. $(D \land E) \lor \neg D$ Either Doug is tall and Edie is short, or Doug is not tall
- 2. $(D \lor \neg E) \land \neg (D \land E)$ Either Doug is tall or Edie is not short and both Doug is not tall and Edie is not short

3. $\neg D \land ((E \land D) \lor \neg E)$

Doug is not tall and either Edie is short and Doug is tall, or Eddie is not short

This is similar to Example 1.1.3 and to Exercise 6 in Section 1.1 of your SNHU MAT299 textbook.

Problem 3 Make a truth table for the following formula.

$$(G \vee \neg H) \wedge \neg (G \wedge L)$$

This is similar to Example 1.2.2 and to Exercise 2 in Section 1.2 of your SNHU MAT299 textbook.

G	Н	L	$\neg H$	$G \vee \neg H$	$G \wedge L$	$\neg G \wedge L$	$(G \vee \neg H) \wedge \neg (G \wedge L)$
T	T	T	F	T	T	F	F
T	T	F	F	T	F	T	T
T	F	T	T	T	T	F	F
T	F	F	T	T	F	T	T
$\mid F \mid$	T	T	F	F	F	T	F
F	T	F	F	F	F	T	F
$\mid F \mid$	F	T	T	T	F	T	T
F	F	F	T	T	F	T	T

Problem 4 Use truth tables to determine which of the following formulas are equivalent to each other.

1.
$$(J \wedge K) \vee (\neg J \wedge \neg K)$$

J	K	$J \wedge K$	$\neg J$	$\neg K$	$\neg J \wedge \neg K$	$(J \wedge K) \vee (\neg J \wedge \neg K)$
T	T	T	F	F	F	T
T	F	F	F	T	F	F
F	T	F	T	F	F	F
F	F	F	T	T	T	T

2. $J \vee K$

J	K	$J \vee K$
T	T	T
T	F	T
F	T	T
F	F	F

3. $J \wedge \neg K$

\int	K	$\neg K$	$J \wedge \neg K$
T	T	F	F
T	F	T	T
F	T	F	F
F	F	T	F

4.
$$\neg(\neg J \lor K)$$

J	K	$\neg J$	$\neg J \lor K$	$\neg(\neg J \lor K)$
T	T	F	T	F
T	F	F	F	T
F	T	T	T	F
F	F	T	T	F

5. $(J \land \neg K) \lor K$

J	K	$\neg K$	$J \wedge \neg K$	$(J \land \neg K) \lor K$
T	T	F	F	T
T	F	T	T	T
F	T	F	F	T
F	F	T	F	F

This is similar to Example 1.2.4 and to Exercise 8 in Section 1.2 of your SNHU MAT299 textbook.

Problem 5 Use truth tables to determine which of the following formulas are tautologies, which are contradictions, and which are neither.

1.
$$(M \land \neg N) \lor (\neg M \land N)$$

M	N	$\neg N$	$M \wedge \neg N$	$\neg M$	$\neg M \wedge N$	$(M \land \neg N) \lor (\neg M \land N)$
T	T	F	T	F	F	T
T	F	T	F	F	F	F
F	T	F	F	T	T	T
F	F	T	F	T	F	F

2.
$$(M \wedge \neg N) \wedge (\neg M \wedge N)$$

M	N	$\neg N$	$M \wedge \neg N$	$\neg M$	$\neg M \wedge N$	$(M \land \neg N) \land (\neg M \land N)$
T	T	F	T	F	F	F
T	F	T	F	F	F	F
F	T	F	F	T	T	F
F	F	T	F	T	F	F

This is a Contradiction because the formula will always evaluate to false.

3.
$$(\neg M \land \neg N) \lor (\neg M \lor N) \lor (M \land \neg N)$$

M	N	$\neg M$	$\neg N$	$\neg M \wedge \neg N$	$\neg M \vee N$	$M \wedge \neg N$	$(\neg M \land \neg N) \lor (\neg M \lor N)$	$ \begin{array}{c} (\neg M \wedge \neg N) \vee \\ (\neg M \vee N) \vee \\ (M \wedge \neg N) \end{array} $
T	T	F	F	F	T	F	T	T
T	F	F	T	F	F	T	F	T
F	T	T	F	F	T	F	T	T
F	F	T	T	T	T	F	T	T

This is similar to Example 1.2.6 and to Exercise 9 in Section 1.2 of your SNHU MAT299 textbook.

Problem 6 Use the laws stated in the text to find simpler formulas equivalent to these formulas. Explain the reasoning that you used to find your solution.

1.
$$\neg(\neg Q \lor (\neg P \land Q))$$

2.
$$((P \land Q) \land \neg R) \lor (P \land \neg (Q \lor R))$$

This is similar to Examples 1.2.5, 1.2.6, and 1.2.7 and to Exercise 12 in Section 1.2 of your SNHU MAT299 textbook

 \vee Or Vee

 \wedge and Wedge

 $\neg \cup \vee \wedge$