Integração Dupla Numérica

Introdução

A integração numérica é uma forma de calcular o valor aproximado da integral definida de uma função. Essa técnica é útil principalmente funções complicadas de se integrar ou que possuem fórmula fechada para sua primitiva. Um exemplo é a distribuição normal. muito que é utilizada para modelar naturais fenômenos depende do cálculo integral de uma função cuja primitiva não é uma função analítica.

Peso, em kg, de 1500 pessoas adultas selecionadas ao acaso em uma população.

O objetivo do projeto é aplicar os métodos de integração numérica utilizados em funções de uma variável para funções de duas variáveis e avaliar seus resultados.

Metodologia

O método utilizado para a integração dupla foi o método de Simpson com interpolação de LaGrange. Também foram utilizados os métodos do retângulo e do trapézio para critério de comparação. O único método que será explicado a fundo é o de Simpson, visto que os outros podem ser feitos de forma análoga e mais simples.

Primeiramente, avaliando a integral dupla, temos que ela pode ser vista da seguinte forma:

$$\int_{a}^{b} \int_{h(x)}^{g(x)} f(x,y) dy dx$$
. O método do Simpson pode ser facilmente aplicado a uma integral

simples. Dessa forma, podemos olhar para a integral dupla como duas etapas de integração e aplicar o método a elas separadamente.

Começamos dividindo o eixo x em N espaços, de forma a termos x0, x1, x2, ..., xN, onde x0 = a e xN = b. Em seguida, fixamos o x e avaliamos a integral de y nesse x constante: Supondo que a função esteja sendo avaliada inicialmente em x0, os limites inferior e superior de integração de y seriam h(x0) e g(x0). Assim, podemos dividir o intervalo em M espaços, definindo o ponto inicial h(x0) e um passo p, que seria [g(x0) - h(x0)]/M.

Feito isso, chegamos em um problema de integração simples, podendo aplicar o método de Simpson e encontrar o valor da integral.

Definimos F(s) como
$$\int_{h(s)}^{g(s)} f(s,y) dy$$
. Assim, pelo método de Simpson, temos que:

$$\mathsf{F}(\mathsf{s}) = \frac{p}{3}(f(s,y0) + 4f(s,y1) + 2f(s,y2) + 4f(s,y3) + 2f(s,y4) + \dots + f(s,yM))$$

Pela definição dada anteriormente, a integral dupla agora pode ser reescrita como:

$$\int_{a}^{b} \int_{h(x)}^{g(x)} f(x,y) dy dx = \int_{a}^{b} F(x) dx$$
. Pode-se perceber que o problema de integral dupla foi

reduzido a duas etapas de problemas com integrais simples. Novamente, aplicando o método de Simpson, encontramos um valor aproximado para a integral:

$$\int_{a}^{b} \int_{h(x)}^{g(x)} f(x,y) dx dy = \frac{p}{3} (F(x0) + 4F(x1) + 2F(x2) + 4F(x3) + 2F(x4) + \dots + F(xN))$$

Resultados

Os métodos foram implementados em C++ utilizando variáveis de precisão dupla (64 bits).

Foram feitos experimentos comparativos entre os três métodos variando a quantidade de intervalos – e consequentemente o tamanho do passo – para avaliar diversas funções. Para auxiliar na obtenção dos valores exatos das integrais, foi utilizada a ferramenta Wolfram Alpha. Erros maiores que 1 unidade foram marcados de vermelho.

$$\int_0^5 \int_0^{x^2} x \, y \, dy \, dx = \frac{15625}{12} \approx 1302.08$$

Avaliando essa função com os métodos implementados e utilizando N intervalos de integração para x e y, obtemos os seguintes resultados:

N	M. do retângulo	M. do trapézio	M. de Simpson
10	849.5508	1334.5703	1302.3438
20	1059.1595	1310.2173	1302.0996
100	1250.7129	1302.4088	1302.0834
200	1276.2203	1302.1647	1302.0833
1000	1296.8822	1302.0866	1302.0833
2000	1299.4810	1302.0841	1302.0833

Avaliando outra função:

$$\int_{1}^{7} \int_{x}^{x^{2}} \left(\frac{x^{2}}{y} + \frac{y^{2}}{x} \right) dy \, dx = 6460 + \frac{343 \log(7)}{3} \approx 6682.48$$

N	M. do retângulo	M. do trapézio	M. de Simpson
10	4538.1049	6824.1054	6683.2985
20	5530.8378	6717.8457	6682.5359
100	6438.6896	6683.8964	6682.4825
200	6559.7207	6682.8359	6682.4824
1000	6657.7909	6682.4965	6682.4824
2000	6670.1279	6682.4859	6682.4824

Outra função:

$$\int_0^7 \int_0^{x^2} x \cos(y) \, dy \, dx = \sin^2\left(\frac{49}{2}\right) \approx 0.349704$$

N	M. do retângulo	M. do trapézio	M. de Simpson
10	11.7284	0.9147	-43.2462
20	13.5389	0.7390	1.8831
100	3.6622	0.3647	0.3490
200	2.0180	0.3535	0.3497
1000	0.6848	0.3499	0.3497
2000	0.5173	0.3497	0.3497

Discussão e conclusões

Percebe-se que o ganho de precisão com o método de Simpson sobre os outros dois métodos é considerável. Com N em torno de 100 e 200, este método atingiu uma precisão próxima à sua máxima, enquanto os outros não haviam atingido mesmo com o N em 2000. A necessidade dessa precisão torna-se mais dramática ao avaliarmos o tempo de computação de cada método. Como há N partições para x e para y, a complexidade ficará $O(N^2)$. Para y000, y10 = 4y10 - 6. Para y20000, y20000, y30 = 4y10 - 6. Para y30000, y30 = 4y10 - 6. Para y30000, y3000, y30000, y3000, y30000, y3000, y300, y3000, y300, y3000, y3000,

Um acontecimento interessante pode ser percebido na avaliação da terceira integral, onde o método de Simpson obteve o pior resultado entre os três métodos para o menor valor de N. De fato, não há garantia de que com essa quantidade de intervalos o método de Simpson terá um resultado melhor que os outros. Contudo, percebe-se que seu erro diminuiu mais rápido que o dos outros métodos, como era de se esperar, e com N = 100 já tinha a melhor precisão entre os três.

N-dimensões

A ideia utilizada nesse projeto pode ser estendida, de forma análoga, a mais dimensões. O conceito é o mesmo: reduzir o problema da integral múltipla para uma sequência de problemas de integrais simples. Para funções com 3 variáveis, por exemplo, teríamos algo assim:

Para 2 variáveis, integramos em y para cada xi fixado para então integrar em x com o resultado das integrais obtidas na etapa anterior. Com 3 variáveis, integraríamos em z para cada xi e yj fixados, depois integraríamos em y para cada xi fixado utilizando os resultados das integrais anteriores, por fim, integramos em x.

Referências

https://www.ime.usp.br/~hbolfar/aula_2013/Aula6-A12012.pdf https://www.wolframalpha.com/

Dissertação de mestrado de Raymundo Oliveira – 7. A Integral Dupla