Machine Learning Project on Dumbell Usage

Bassem Taha

February 5, 2017

Overview

In this project, we will use data from accelerometers on the belt, forearm, arm, and dumbell of 6 participants who were asked to perform barbell lifts in 5 different ways as follow:

- correct performance per specification (Class A)
- throwing the elbows to the front (Class B)
- lifting the dumbbell only halfway (Class C)
- lowering the dumbbell only halfway (Class D)
- throwing the hips to the front (Class E).

The goal of this project is to predict the manner in which the 6 participants did the exercise.

Libraries

```
# Libraries
library(knitr)
library(caret)
library(rpart)
library(plyr)
library(dplyr)
library(gbm)
library(rattle)
library(randomForest)
```

Data Processing

Load the following training & testing datasets:

```
[pml-testing] (https://d396qusza40orc.cloudfront.net/predmachlearn/pml-testing.csv)
```

[pml-training] (https://d396qusza40orc.cloudfront.net/predmachlearn/pml-training.csv)

```
download.file(url = "https://d396qusza40orc.cloudfront.net/predmachlearn/pml-testing.csv", destfile = "
download.file(url = "https://d396qusza40orc.cloudfront.net/predmachlearn/pml-training.csv", destfile =
# read datasets
training <- read.csv("pml-training.csv", na.strings = c("NA", ""))
testing <- read.csv("pml-testing.csv", na.strings = c("NA", ""))</pre>
```

Datasets exploration and Cleaning

Data from the training dataset indicate that 100 columns have "NA" & spaces and columns 1:7 (i.e timestamp, date) have no bearing on the computation. Hence all these will be removed.

```
# First 7 irrelevant columns to be removed
head(training[,1:7],1)

## X user_name raw_timestamp_part_1 raw_timestamp_part_2 cvtd_timestamp
## 1 1 carlitos 1323084231 788290 05/12/2011 11:23
## new_window num_window
```

```
## 1
                          11
trainingDat <- training[, 8:length(names(training))]</pre>
testingDat <- testing[, 8:length(names(testing))]</pre>
# 100 columns have NA & spaces
length(which(colSums(is.na(trainingDat))!=0)); which(colSums(is.na(trainingDat))!=0)
   [1] 100
##
         kurtosis roll belt
                                   kurtosis_picth_belt
                                                                kurtosis_yaw_belt
##
                            5
##
         skewness_roll_belt
                                  skewness_roll_belt.1
                                                                skewness_yaw_belt
##
                                                                                10
##
               max_roll_belt
                                        max_picth_belt
                                                                     max_yaw_belt
                           11
                                                                                 13
##
                                        min_pitch_belt
               min_roll_belt
                                                                     min_yaw_belt
##
                                                      15
                                                                                 16
                           14
##
        amplitude_roll_belt
                                  amplitude_pitch_belt
                                                               amplitude_yaw_belt
##
                                                      18
                                                                                19
##
       var_total_accel_belt
                                         avg_roll_belt
                                                                 stddev_roll_belt
##
                                         avg_pitch_belt
##
               var_roll_belt
                                                                stddev_pitch_belt
##
##
              var_pitch_belt
                                           avg_yaw_belt
                                                                  stddev_yaw_belt
##
                           26
                                                     27
                                                                                28
                var_yaw_belt
                                          var_accel_arm
                                                                      avg_roll_arm
##
                           29
                                                     43
                                                                     avg_pitch_arm
##
             stddev_roll_arm
                                           var_roll_arm
##
                                                     46
##
           stddev_pitch_arm
                                          var_pitch_arm
                                                                       avg_yaw_arm
##
                                                      49
                                                                                50
##
              stddev_yaw_arm
                                                                kurtosis_roll_arm
                                            var_yaw_arm
##
                                                     52
                                                                skewness_roll_arm
##
         kurtosis_picth_arm
                                      kurtosis_yaw_arm
##
                           63
                                                     64
                                                                                65
##
                                                                     max_roll_arm
         skewness_pitch_arm
                                      skewness_yaw_arm
##
##
               max_picth_arm
                                                                     min_roll_arm
                                            max_yaw_arm
##
                           69
                                                     70
##
               min_pitch_arm
                                            min_yaw_arm
                                                               amplitude_roll_arm
##
                                                     73
##
                                                           kurtosis_roll_dumbbell
        amplitude_pitch_arm
                                     amplitude_yaw_arm
##
                           75
                                                     76
##
    kurtosis_picth_dumbbell
                                 kurtosis_yaw_dumbbell
                                                           skewness roll dumbbell
##
##
    skewness_pitch_dumbbell
                                 skewness_yaw_dumbbell
                                                                max_roll_dumbbell
##
##
         max_picth_dumbbell
                                      max_yaw_dumbbell
                                                                min_roll_dumbbell
##
##
         min_pitch_dumbbell
                                      min_yaw_dumbbell
                                                          amplitude_roll_dumbbell
##
   amplitude_pitch_dumbbell
                                amplitude_yaw_dumbbell
                                                               var_accel_dumbbell
##
                           93
                                                                                96
##
          avg_roll_dumbbell
                                  stddev_roll_dumbbell
                                                                var_roll_dumbbell
```

```
##
                           97
                                                      98
                                                                                 99
##
         avg_pitch_dumbbell
                                 stddev_pitch_dumbbell
                                                                var_pitch_dumbbell
##
                          100
##
                                   stddev_yaw_dumbbell
           avg_yaw_dumbbell
                                                                  var_yaw_dumbbell
##
                          103
                                                                                105
##
      kurtosis roll forearm
                                kurtosis_picth_forearm
                                                             kurtosis_yaw_forearm
##
                          118
##
      skewness_roll_forearm
                                skewness_pitch_forearm
                                                              skewness_yaw_forearm
##
                          121
                                                     122
                                                                                123
##
           max_roll_forearm
                                      max_picth_forearm
                                                                   max_yaw_forearm
##
                          124
                                                     125
                                                                                126
##
           min_roll_forearm
                                     min_pitch_forearm
                                                                   min_yaw_forearm
##
                                                     128
                          127
                                                                                129
     amplitude_roll_forearm
                                                             amplitude_yaw_forearm
##
                               amplitude_pitch_forearm
##
                          130
                                                                                132
##
                                                               stddev_roll_forearm
           var_accel_forearm
                                       avg_roll_forearm
##
                          134
                                                     135
                                                                                136
##
           var_roll_forearm
                                      avg_pitch_forearm
                                                              stddev_pitch_forearm
                          137
##
                                                     138
                                                                                139
##
           var_pitch_forearm
                                        avg_yaw_forearm
                                                                stddev_yaw_forearm
##
                          140
                                                     141
                                                                                142
##
             var_yaw_forearm
##
# Clean dataset by removing all columns with NA & spaces
trainingDat <- trainingDat[, colSums(is.na(trainingDat)) == 0]</pre>
testingDat <- testingDat[, colSums(is.na(testingDat)) == 0]</pre>
```

Subset training dataset into training & validation

Will subset the training dataset into 2 subsets, 75% of which is used for training the data and the remaining 25% for validating the data.

```
set.seed(020317)
inTrain <- createDataPartition(trainingDat$classe, p = 0.75, list = FALSE)
trainingDat <- trainingDat[inTrain, ]
validatingDat <- trainingDat[-inTrain, ]</pre>
```

The dimension of the training & validating datasets are 14718 x 53 and 3681 x 53 respectively:

```
dim(trainingDat); dim(validatingDat)
```

```
## [1] 14718 53
## [1] 3681 53
```

Model Training

We need to scale down the number of descriptors used for the model for simplicity and performance improvement yet still maintaining a minimum pof 95% covergae on variance. A few modeling techniques including decision tree, generalized boosting, k-nearest neighbor and Random Forest will be utilized to determine the best algorithm to use.

We will set k=5 for the trainControl function instead of the default setting of 10 to reduce the computing runtime. This function, used by the model fitting algorithm, set's 5-fold cross validation technique.

```
control.parms <- trainControl(method="cv", number=5)</pre>
Principal component analysis (PCA) is run to identify correlated descriptors
preProc <- preProcess(trainingDat[,-53],method="pca",thresh = 0.95)</pre>
preProc
## Created from 14718 samples and 52 variables
##
## Pre-processing:
     - centered (52)
##
     - ignored (0)
##
##
     - principal component signal extraction (52)
##
     - scaled (52)
##
## PCA needed 26 components to capture 95 percent of the variance
PCA shows that 26 components are needed to capture 95% of the variance. That is a 50% reduction from
the original number of 52 descriptors, and which will use to build the model.
# Creating 4 models from 26 descriptors and classe outcome
# Fitting training dataset with a decision tree model
predictedM <- predict(preProc, trainingDat)</pre>
dim(predictedM)
## [1] 14718
time_st <- proc.time()</pre>
model_rpart <- train(classe ~ ., data=predictedM, method="rpart", trControl=control.parms)</pre>
# time to build rpart
(time_rpart <- proc.time() - time_st); time_st <- proc.time()</pre>
##
      user system elapsed
##
     10.77
               0.20
                      11.01
# Fitting training dataset with a generalized boosting model
model_gbm <- train(classe ~ ., data=predictedM, method="gbm", trControl=control.parms)</pre>
## Iter
          TrainDeviance
                            ValidDeviance
                                             StepSize
                                                         Improve
##
                                               0.1000
                                                          0.0536
        1
                  1.6094
                                       nan
##
        2
                  1.5743
                                               0.1000
                                                          0.0435
                                       nan
##
        3
                  1.5470
                                               0.1000
                                                          0.0334
                                       nan
##
        4
                                               0.1000
                                                          0.0299
                  1.5256
                                       nan
        5
##
                                               0.1000
                                                          0.0239
                  1.5069
                                       nan
##
        6
                  1.4912
                                       nan
                                               0.1000
                                                          0.0209
        7
##
                  1.4770
                                               0.1000
                                                          0.0204
                                       nan
##
        8
                  1.4643
                                               0.1000
                                                          0.0188
                                       nan
##
        9
                  1.4524
                                               0.1000
                                                          0.0194
                                       nan
       10
##
                  1.4397
                                       nan
                                               0.1000
                                                          0.0156
##
       20
                  1.3502
                                       nan
                                               0.1000
                                                          0.0099
##
       40
                  1.2383
                                       nan
                                               0.1000
                                                          0.0058
                                                          0.0035
##
       60
                  1.1634
                                       nan
                                               0.1000
##
       80
                  1.1062
                                               0.1000
                                                          0.0046
                                       nan
##
      100
                  1.0603
                                               0.1000
                                                          0.0017
                                       nan
##
      120
                                               0.1000
                                                          0.0018
                  1.0221
                                       nan
##
      140
                  0.9908
                                       nan
                                               0.1000
                                                          0.0013
##
      150
                  0.9757
                                               0.1000
                                                          0.0012
                                       nan
```

шш					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.0858
##	2	1.5547	nan	0.1000	0.0618
##	3	1.5152	nan	0.1000	0.0512
##	4	1.4817	nan	0.1000	0.0312
##	5	1.4554	nan	0.1000	0.0389
##	6	1.4301	nan	0.1000	0.0325
##	7	1.4087	nan	0.1000	0.0287
##	8	1.3889	nan	0.1000	0.0285
##	9	1.3705	nan	0.1000	0.0270
##	10	1.3531	nan	0.1000	0.0243
##	20	1.2212	nan	0.1000	0.0125
##	40	1.0646	nan	0.1000	0.0095
##	60	0.9632	nan	0.1000	0.0042
##	80	0.8878	nan	0.1000	0.0038
##	100	0.8285	nan	0.1000	0.0026
##	120	0.7768	nan	0.1000	0.0015
##	140	0.7320	nan	0.1000	0.0020
##	150	0.7135	nan	0.1000	0.0015
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.0978
##	2	1.5451	nan	0.1000	0.0834
##	3	1.4922	nan	0.1000	0.0682
##	4	1.4494	nan	0.1000	0.0560
##	5	1.4127	nan	0.1000	0.0507
##	6	1.3794	nan	0.1000	0.0416
##	7	1.3516	nan	0.1000	0.0436
##	8	1.3237	nan	0.1000	0.0345
##	9	1.3001	nan	0.1000	0.0332
##	10	1.2776	nan	0.1000	0.0320
##	20	1.1218	nan	0.1000	0.0178
##	40	0.9451	nan	0.1000	0.0057
##	60	0.8340	nan	0.1000	0.0061
##	80	0.7532	nan	0.1000	0.0044
##	100	0.6859	nan	0.1000	0.0037
##	120	0.6288	nan	0.1000	0.0017
##	140	0.5836	nan	0.1000	0.0019
## ##	150	0.5624	nan	0.1000	0.0021
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.0556
##	2	1.5736	nan	0.1000	0.0362
##	3	1.5488	nan	0.1000	0.0385
##	4	1.5249	nan	0.1000	0.0294
##	5	1.5057	nan	0.1000	0.0265
##	6	1.4894	nan	0.1000	0.0215
##	7	1.4754	nan	0.1000	0.0193
##	8	1.4619	nan	0.1000	0.0176
##	9	1.4495	nan	0.1000	0.0170
##	10	1.4381	nan	0.1000	0.0156
##	20	1.3460	nan	0.1000	0.0109
##	40	1.2323	nan	0.1000	0.0059

##	60	1.1580	nan	0.1000	0.0041
##	80	1.1004	nan	0.1000	0.0030
##	100	1.0546	nan	0.1000	0.0019
##	120	1.0184	nan	0.1000	0.0019
##	140	0.9849	nan	0.1000	0.0013
##	150	0.9708	nan	0.1000	0.0012
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.0828
##	2	1.5582	nan	0.1000	0.0680
##	3	1.5149	nan	0.1000	0.0529
##	4	1.4812	nan	0.1000	0.0446
##	5	1.4525	nan	0.1000	0.0365
##	6	1.4274	nan	0.1000	0.0321
##	7	1.4067	nan	0.1000	0.0288
##	8	1.3872	nan	0.1000	0.0308
##	9	1.3676	nan	0.1000	0.0278
##	10	1.3503	nan	0.1000	0.0248
##	20	1.2161	nan	0.1000	0.0146
##	40	1.0630	nan	0.1000	0.0067
##	60	0.9590	nan	0.1000	0.0052
##	80	0.8823	nan	0.1000	0.0026
##	100	0.8205	nan	0.1000	0.0022
##	120	0.7725	nan	0.1000	0.0030
##	140	0.7301	nan	0.1000	0.0010
##	150	0.7114	nan	0.1000	0.0017
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
## ##	Iter 1		ValidDeviance nan	StepSize 0.1000	Improve 0.1009
		TrainDeviance 1.6094 1.5442		0.1000	_
##	1	1.6094 1.5442	nan	0.1000 0.1000	0.1009
## ##	1 2	1.6094 1.5442 1.4963	nan nan	0.1000 0.1000 0.1000	0.1009 0.0748 0.0702
## ## ##	1 2 3	1.6094 1.5442 1.4963 1.4523	nan nan nan	0.1000 0.1000 0.1000 0.1000	0.1009 0.0748 0.0702 0.0580
## ## ## ##	1 2 3 4	1.6094 1.5442 1.4963 1.4523 1.4154	nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000	0.1009 0.0748 0.0702 0.0580 0.0503
## ## ## ##	1 2 3 4 5	1.6094 1.5442 1.4963 1.4523 1.4154	nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.1009 0.0748 0.0702 0.0580 0.0503 0.0490
## ## ## ## ##	1 2 3 4 5	1.6094 1.5442 1.4963 1.4523 1.4154 1.3835	nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.1009 0.0748 0.0702 0.0580 0.0503 0.0490 0.0413
## ## ## ## ##	1 2 3 4 5 6 7	1.6094 1.5442 1.4963 1.4523 1.4154 1.3835 1.3525	nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.1009 0.0748 0.0702 0.0580 0.0503 0.0490 0.0413 0.0362
## ## ## ## ## ##	1 2 3 4 5 6 7 8	1.6094 1.5442 1.4963 1.4523 1.4154 1.3835 1.3525 1.3255	nan nan nan nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.1009 0.0748 0.0702 0.0580 0.0503 0.0490 0.0413
## ## ## ## ## ##	1 2 3 4 5 6 7 8	1.6094 1.5442 1.4963 1.4523 1.4154 1.3835 1.3525 1.3019 1.2798	nan nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.1009 0.0748 0.0702 0.0580 0.0503 0.0490 0.0413 0.0362 0.0317
## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20	1.6094 1.5442 1.4963 1.4523 1.4154 1.3835 1.3525 1.3255	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.1009 0.0748 0.0702 0.0580 0.0503 0.0490 0.0413 0.0362 0.0317 0.0264 0.0172
## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20 40	1.6094 1.5442 1.4963 1.4523 1.4154 1.3835 1.3525 1.3019 1.2798 1.1232	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.1009 0.0748 0.0702 0.0580 0.0503 0.0490 0.0413 0.0362 0.0317 0.0264 0.0172 0.0080
## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20 40 60	1.6094 1.5442 1.4963 1.4523 1.4154 1.3835 1.3525 1.3255 1.3019 1.2798 1.1232 0.9400 0.8294	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.1009 0.0748 0.0702 0.0580 0.0503 0.0490 0.0413 0.0362 0.0317 0.0264 0.0172 0.0080 0.0070
## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20 40 60 80	1.6094 1.5442 1.4963 1.4523 1.4154 1.3835 1.3525 1.3255 1.3019 1.2798 1.1232 0.9400 0.8294 0.7476	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.1009 0.0748 0.0702 0.0580 0.0503 0.0490 0.0413 0.0362 0.0317 0.0264 0.0172 0.0080 0.0070 0.0040
## ## ## ## ## ## ## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100	1.6094 1.5442 1.4963 1.4523 1.4154 1.3835 1.3525 1.3255 1.3019 1.2798 1.1232 0.9400 0.8294	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.1009 0.0748 0.0702 0.0580 0.0503 0.0490 0.0413 0.0362 0.0317 0.0264 0.0172 0.0080 0.0070
## ## ## ## ## ## ## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120	1.6094 1.5442 1.4963 1.4523 1.4154 1.3835 1.3525 1.3019 1.2798 1.1232 0.9400 0.8294 0.7476 0.6834 0.6289	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.1009 0.0748 0.0702 0.0580 0.0503 0.0490 0.0413 0.0362 0.0317 0.0264 0.0172 0.0080 0.0070 0.0040 0.0031 0.0019
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140	1.6094 1.5442 1.4963 1.4523 1.4154 1.3835 1.3525 1.3019 1.2798 1.1232 0.9400 0.8294 0.7476 0.6834 0.6289 0.5848	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.1009 0.0748 0.0702 0.0580 0.0503 0.0490 0.0413 0.0362 0.0317 0.0264 0.0172 0.0080 0.0070 0.0040 0.0031 0.0019 0.0016
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120	1.6094 1.5442 1.4963 1.4523 1.4154 1.3835 1.3525 1.3019 1.2798 1.1232 0.9400 0.8294 0.7476 0.6834 0.6289	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.1009 0.0748 0.0702 0.0580 0.0503 0.0490 0.0413 0.0362 0.0317 0.0264 0.0172 0.0080 0.0070 0.0040 0.0031 0.0019
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140	1.6094 1.5442 1.4963 1.4523 1.4154 1.3835 1.3525 1.3019 1.2798 1.1232 0.9400 0.8294 0.7476 0.6834 0.6289 0.5848	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.1009 0.0748 0.0702 0.0580 0.0503 0.0490 0.0413 0.0362 0.0317 0.0264 0.0172 0.0080 0.0070 0.0040 0.0031 0.0019 0.0016 0.0033
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150	1.6094 1.5442 1.4963 1.4523 1.4154 1.3835 1.3525 1.3255 1.3019 1.2798 1.1232 0.9400 0.8294 0.7476 0.6834 0.6289 0.5848 0.5625	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.1009 0.0748 0.0702 0.0580 0.0503 0.0490 0.0413 0.0362 0.0317 0.0264 0.0172 0.0080 0.0070 0.0040 0.0031 0.0019 0.0016 0.0033
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150 Iter	1.6094 1.5442 1.4963 1.4523 1.4154 1.3835 1.3525 1.3019 1.2798 1.1232 0.9400 0.8294 0.7476 0.6834 0.6289 0.5848 0.5625 TrainDeviance 1.6094	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.1009 0.0748 0.0702 0.0580 0.0503 0.0490 0.0413 0.0362 0.0317 0.0264 0.0172 0.0080 0.0070 0.0040 0.0031 0.0019 0.0016 0.0033 Improve 0.0520
#######################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150 Iter 1 2	1.6094 1.5442 1.4963 1.4523 1.4154 1.3835 1.3525 1.3019 1.2798 1.1232 0.9400 0.8294 0.7476 0.6834 0.6289 0.5848 0.5625 TrainDeviance 1.6094 1.5768	nan	0.1000 0.1000	0.1009 0.0748 0.0702 0.0580 0.0503 0.0490 0.0413 0.0362 0.0317 0.0264 0.0172 0.0080 0.0070 0.0040 0.0031 0.0019 0.0016 0.0033 Improve 0.0520 0.0390
########################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150 Iter	1.6094 1.5442 1.4963 1.4523 1.4154 1.3835 1.3525 1.3019 1.2798 1.1232 0.9400 0.8294 0.7476 0.6834 0.6289 0.5848 0.5625 TrainDeviance 1.6094 1.5768 1.5512	nan	0.1000 0.1000	0.1009 0.0748 0.0702 0.0580 0.0503 0.0490 0.0413 0.0362 0.0317 0.0264 0.0172 0.0080 0.0070 0.0040 0.0031 0.0019 0.0016 0.0033 Improve 0.0520
########################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150 Iter 1 2 3 4	1.6094 1.5442 1.4963 1.4523 1.4154 1.3835 1.3525 1.3255 1.3019 1.2798 1.1232 0.9400 0.8294 0.7476 0.6834 0.6289 0.5848 0.5625 TrainDeviance 1.6094 1.5768 1.5512 1.5291	nan	0.1000 0.1000	0.1009 0.0748 0.0702 0.0580 0.0503 0.0490 0.0413 0.0362 0.0317 0.0264 0.0172 0.0080 0.0070 0.0040 0.0031 0.0019 0.0016 0.0033 Improve 0.0520 0.0390 0.0334
########################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150 Iter 1 2 3	1.6094 1.5442 1.4963 1.4523 1.4154 1.3835 1.3525 1.3019 1.2798 1.1232 0.9400 0.8294 0.7476 0.6834 0.6289 0.5848 0.5625 TrainDeviance 1.6094 1.5768 1.5512	nan	0.1000 0.1000	0.1009 0.0748 0.0702 0.0580 0.0503 0.0490 0.0413 0.0362 0.0317 0.0264 0.0172 0.0080 0.0070 0.0040 0.0031 0.0019 0.0016 0.0033 Improve 0.0520 0.0390 0.0334 0.0286

##	7	1.4804	nan	0.1000	0.0202
##	8	1.4669	nan	0.1000	0.0172
##	9	1.4554	nan	0.1000	0.0165
##	10	1.4446	nan	0.1000	0.0178
##	20	1.3566	nan	0.1000	0.0092
##	40	1.2441	nan	0.1000	0.0073
##	60	1.1683	nan	0.1000	0.0043
##	80	1.1098	nan	0.1000	0.0024
##	100	1.0639	nan	0.1000	0.0021
##	120	1.0255	nan	0.1000	0.0022
##	140	0.9931	nan	0.1000	0.0013
##	150	0.9782		0.1000	0.0000
##	130	0.9102	nan	0.1000	0.0012
	T+	T i Di	V-1: dD	C+ C :	T
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.0790
##	2	1.5602	nan	0.1000	0.0649
##	3	1.5191	nan	0.1000	0.0489
##	4	1.4877	nan	0.1000	0.0434
##	5	1.4589	nan	0.1000	0.0369
##	6	1.4344	nan	0.1000	0.0353
##	7	1.4126	nan	0.1000	0.0298
##	8	1.3922	nan	0.1000	0.0272
##	9	1.3741	nan	0.1000	0.0254
##	10	1.3575	nan	0.1000	0.0236
##	20	1.2278	nan	0.1000	0.0152
##	40	1.0712	nan	0.1000	0.0092
##	60	0.9697	nan	0.1000	0.0055
##	80	0.8909	nan	0.1000	0.0043
##	100	0.8303	nan	0.1000	0.0031
##	120	0.7814	nan	0.1000	0.0022
##	140	0.7392	nan	0.1000	0.0020
##	150	0.7193	nan	0.1000	0.0017
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.1037
##	2	1.5427	nan	0.1000	0.0771
##	3	1.4949	nan	0.1000	0.0624
##	4	1.4547	nan	0.1000	0.0572
##	5	1.4181	nan	0.1000	0.0435
##	6	1.3902	nan	0.1000	0.0426
##	7	1.3620	nan	0.1000	0.0418
##	8	1.3348	nan	0.1000	0.0364
##	9	1.3117	nan	0.1000	0.0328
##	10	1.2894	nan	0.1000	0.0314
##	20	1.1281	nan	0.1000	0.0153
##	40	0.9493	nan	0.1000	0.0080
##	60	0.8337	nan	0.1000	0.0053
##	80	0.7470	nan	0.1000	0.0025
##	100	0.6849	nan	0.1000	0.0027
##	120	0.6294	nan	0.1000	0.0028
##	140	0.5814	nan	0.1000	0.0023
##	150	0.5607	nan	0.1000	0.0025
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
			22 0 . 141100		r_0.0

##	1	1.6094	nan	0.1000	0.0535
##	2	1.5747	nan	0.1000	0.0437
##	3	1.5475	nan	0.1000	0.0350
##	4	1.5245	nan	0.1000	0.0277
##	5	1.5060	nan	0.1000	0.0268
##	6	1.4884	nan	0.1000	0.0190
##	7	1.4751	nan	0.1000	0.0211
##	8	1.4608	nan	0.1000	0.0190
##	9	1.4478	nan	0.1000	0.0156
##	10	1.4369	nan	0.1000	0.0184
##	20	1.3472	nan	0.1000	0.0084
##	40	1.2347	nan	0.1000	0.0058
##	60	1.1607	nan	0.1000	0.0039
##	80	1.1028	nan	0.1000	0.0023
##	100	1.0574	nan	0.1000	0.0024
##	120	1.0194	nan	0.1000	0.0008
##	140	0.9873	nan	0.1000	0.0011
##	150	0.9728	nan	0.1000	0.0008
##					
##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	Improve
##	1	1.6094	nan	0.1000	0.0869
##	2	1.5552	nan	0.1000	0.0631
##	3	1.5156	nan	0.1000	0.0518
##	4	1.4814	nan	0.1000	0.0446
##	5	1.4519	nan	0.1000	0.0367
##	6	1.4284	nan	0.1000	0.0347
##	7	1.4051	nan	0.1000	0.0322
##	8	1.3842	nan	0.1000	0.0289
##	9	1.3656	nan	0.1000	0.0295
##	10	1.3468	nan	0.1000	0.0248
##	20	1.2165	nan	0.1000	0.0135
##	40	1.0662	nan	0.1000	0.0087
##	60	0.9636	nan	0.1000	0.0050
##	80	0.8891	nan	0.1000	0.0035
##	100	0.8275	nan	0.1000	0.0029
##	120	0.7753	nan	0.1000	0.0031
##	140	0.7332	nan	0.1000	0.0020
##	150	0.7140	nan	0.1000	0.0015
## ##	Iter	TrainDeviance	ValidDeviance	C+onCiao	Tmnmarra
##	1	1.6094		StepSize 0.1000	Improve 0.0971
##	2	1.5459	nan	0.1000	0.0371
##	3	1.4966	nan	0.1000	0.0748
##	4	1.4511	nan nan	0.1000	0.0589
##	5	1.4135	nan	0.1000	0.0478
##	6	1.3827		0.1000	0.0478
##	7	1.3531	nan	0.1000	0.0438
##	8	1.3271	nan nan	0.1000	0.0397
##	9	1.3009		0.1000	0.0332
##	10	1.2781	nan nan	0.1000	0.0346
##	20	1.1204	nan	0.1000	0.0313
##	40	0.9420	nan	0.1000	0.0178
##	60	0.8272	nan	0.1000	0.0050
##	80	0.7451	nan	0.1000	0.0042
		0., 101	11011	0.1000	0.0012

##	100	0.6825	nan	0.1000	0.0033
##	120	0.6271	nan	0.1000	0.0030
##	140	0.5776	nan	0.1000	0.0023
##	150	0.5579	nan	0.1000	0.0013
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.6094	nan	0.1000	0.0555
##	2	1.5744	nan	0.1000	0.0388
##	3	1.5491	nan	0.1000	0.0375
##	4	1.5253	nan	0.1000	0.0286
##	5	1.5070	nan	0.1000	0.0247
##	6	1.4921	nan	0.1000	0.0222
##	7	1.4779	nan	0.1000	0.0224
##	8	1.4643	nan	0.1000	0.0182
##	9	1.4528	nan	0.1000	0.0176
##	10	1.4411	nan	0.1000	0.0155
##	20	1.3523	nan	0.1000	0.0098
##	40	1.2413	nan	0.1000	0.0063
##	60	1.1651	nan	0.1000	0.0032
##	80	1.1076	nan	0.1000	0.0038
##	100	1.0601	nan	0.1000	0.0020
##	120	1.0227	nan	0.1000	0.0016
##	140	0.9912	nan	0.1000	0.0012
##	150	0.9768	nan	0.1000	0.0011
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.0848
##	2	1.5544	nan	0.1000	0.0629
##	3	1.5151	nan	0.1000	0.0516
##	4	1.4808	nan	0.1000	0.0394
##	5	1.4538	nan	0.1000	0.0361
##	6	1.4306	nan	0.1000	0.0338
##	7	1.4078	nan	0.1000	0.0288
##	8	1.3890	nan	0.1000	0.0290
##	9	1.3700	nan	0.1000	0.0277
##	10	1.3525	nan	0.1000	0.0270
##	20	1.2210	nan	0.1000	0.0128
##	40	1.0637	nan	0.1000	0.0093
##	60	0.9630	nan	0.1000	0.0040
##	80	0.8886	nan	0.1000	0.0031
##	100	0.8276	nan	0.1000	0.0033
##	120	0.7758	nan	0.1000	0.0012
##	140	0.7324	nan	0.1000	0.0017
##	150	0.7144	nan	0.1000	0.0011
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.6094	nan	0.1000	0.1001
##	2	1.5451	nan	0.1000	0.0765
##	3	1.4968	nan	0.1000	0.0694
##	4	1.4532	nan	0.1000	0.0577
##	5	1.4169	nan	0.1000	0.0497
##	6	1.3846	nan	0.1000	0.0441
##	7	1.3560	nan	0.1000	0.0387
##	8	1.3312	nan	0.1000	0.0347

```
##
                  1.3069
                                               0.1000
                                                          0.0343
                                      nan
##
       10
                  1.2848
                                               0.1000
                                                          0.0304
                                      nan
                                               0.1000
##
       20
                  1.1274
                                      nan
                                                          0.0165
##
       40
                  0.9424
                                               0.1000
                                                          0.0085
                                      nan
##
       60
                  0.8308
                                      nan
                                               0.1000
                                                          0.0068
##
       80
                  0.7479
                                               0.1000
                                                         0.0030
                                      nan
##
      100
                  0.6835
                                      nan
                                               0.1000
                                                         0.0021
##
      120
                  0.6262
                                      nan
                                               0.1000
                                                         0.0034
##
      140
                  0.5802
                                      nan
                                               0.1000
                                                          0.0022
##
      150
                  0.5581
                                      nan
                                               0.1000
                                                         0.0015
##
##
                           ValidDeviance
   Iter
          TrainDeviance
                                             StepSize
                                                         Improve
##
                  1.6094
                                               0.1000
                                                         0.1003
        1
                                      nan
        2
##
                  1.5459
                                      nan
                                               0.1000
                                                         0.0850
##
        3
                                               0.1000
                                                          0.0645
                  1.4919
                                      nan
##
        4
                  1.4506
                                               0.1000
                                                          0.0556
                                      nan
##
        5
                  1.4154
                                               0.1000
                                                         0.0484
                                      nan
##
        6
                  1.3844
                                               0.1000
                                                          0.0421
                                      nan
##
        7
                                               0.1000
                                                         0.0412
                  1.3572
                                      nan
##
        8
                  1.3312
                                      nan
                                               0.1000
                                                         0.0353
##
        9
                  1.3078
                                      nan
                                               0.1000
                                                         0.0347
##
       10
                  1.2858
                                               0.1000
                                                         0.0325
                                      nan
##
       20
                                                         0.0162
                  1.1287
                                               0.1000
                                      nan
       40
                                                         0.0094
##
                  0.9504
                                      nan
                                               0.1000
##
       60
                  0.8391
                                      nan
                                               0.1000
                                                         0.0056
##
       80
                  0.7586
                                      nan
                                               0.1000
                                                         0.0039
##
      100
                  0.6934
                                               0.1000
                                                          0.0023
                                      nan
##
      120
                  0.6399
                                               0.1000
                                                          0.0020
                                      nan
##
      140
                                               0.1000
                  0.5928
                                      nan
                                                          0.0017
##
      150
                  0.5727
                                               0.1000
                                                          0.0030
                                      nan
(time_gbm <- proc.time() - time_st); time_st <- proc.time()</pre>
##
            system elapsed
      user
##
    320.84
              0.35 321.53
# Fitting training dataset with a K-nearest model
model_knn <- train(classe ~ ., data=predictedM, method="knn", trControl=control.parms)</pre>
(time_knn <- proc.time() - time_st); time_st <- proc.time()</pre>
##
      user system elapsed
                      29.74
##
     29.74
              0.00
# Fitting training dataset with a Random Forest model
model_rf <- train(classe ~ ., data=predictedM, method="rf", trControl=control.parms)</pre>
(time_rf <- proc.time() - time_st)</pre>
##
      user system elapsed
              7.50 652.81
##
    644.53
# Random Forest has the maximum time to build the model
(max(c(time_rf[[1]], time_knn[[1]], time_gbm[[1]], time_rpart[[1]])))
## [1] 644.53
```

Cross Validation

```
print(model_rpart, digits = 3)
## CART
##
## 14718 samples
##
      26 predictor
##
       5 classes: 'A', 'B', 'C', 'D', 'E'
##
## No pre-processing
## Resampling: Cross-Validated (5 fold)
## Summary of sample sizes: 11772, 11775, 11775, 11774, 11776
## Resampling results across tuning parameters:
##
##
             Accuracy Kappa
     ср
##
     0.0259 0.381
                       0.1802
##
    0.0574 0.350
                       0.1126
##
     0.0702 0.326
                       0.0665
## Accuracy was used to select the optimal model using the largest value.
## The final value used for the model was cp = 0.0259.
conf_rpart <- confusionMatrix(validatingDat$classe,predict(model_rpart,predict(preProc,validatingDat[,-</pre>
# Accuracy;
conf_rpart$overall[1]
## Accuracy
## 0.3849497
# Error rate;
1-conf_rpart$overall[1]
## Accuracy
## 0.6150503
print(model_gbm, digits = 3)
## Stochastic Gradient Boosting
##
## 14718 samples
##
      26 predictor
       5 classes: 'A', 'B', 'C', 'D', 'E'
##
##
## No pre-processing
## Resampling: Cross-Validated (5 fold)
## Summary of sample sizes: 11774, 11775, 11773, 11776, 11774
## Resampling results across tuning parameters:
##
##
     interaction.depth n.trees Accuracy Kappa
##
                         50
                                  0.557
                                            0.429
     1
##
                        100
                                 0.616
                                            0.509
     1
                        150
##
     1
                                 0.645
                                            0.547
##
     2
                         50
                                 0.658
                                            0.563
##
     2
                        100
                                 0.726
                                            0.652
     2
##
                        150
                                 0.760
                                            0.696
##
     3
                         50
                                 0.709
                                            0.631
##
     3
                                 0.774
                                            0.714
                        100
```

```
##
                        150
                                 0.813
                                           0.763
##
## Tuning parameter 'shrinkage' was held constant at a value of 0.1
##
## Tuning parameter 'n.minobsinnode' was held constant at a value of 10
## Accuracy was used to select the optimal model using the largest value.
## The final values used for the model were n.trees = 150,
## interaction.depth = 3, shrinkage = 0.1 and n.minobsinnode = 10.
conf_gbm <- confusionMatrix(validatingDat$classe,predict(model_gbm,predict(preProc,validatingDat[,-53])</pre>
# Accuracy;
conf_gbm$overall[1]
## Accuracy
## 0.8606357
# Error rate;
1-conf_gbm$overall[1]
## Accuracy
## 0.1393643
print(model_knn, digits = 3)
## k-Nearest Neighbors
##
## 14718 samples
##
      26 predictor
       5 classes: 'A', 'B', 'C', 'D', 'E'
##
##
## No pre-processing
## Resampling: Cross-Validated (5 fold)
## Summary of sample sizes: 11774, 11773, 11775, 11775, 11775
## Resampling results across tuning parameters:
##
##
    k Accuracy Kappa
##
    5 0.950
                  0.937
    7 0.937
                  0.920
##
     9 0.927
                  0.907
## Accuracy was used to select the optimal model using the largest value.
## The final value used for the model was k = 5.
conf_knn <- confusionMatrix(validatingDat$classe,predict(model_knn,predict(preProc,validatingDat[,-53])</pre>
# Accuracy;
conf_knn$overall[1]
## Accuracy
## 0.9828851
# Error rate;
1-conf_knn$overall[1]
     Accuracy
## 0.01711491
print(model_rf, digits = 3)
## Random Forest
```

```
##
## 14718 samples
      26 predictor
##
       5 classes: 'A', 'B', 'C', 'D', 'E'
##
##
## No pre-processing
## Resampling: Cross-Validated (5 fold)
## Summary of sample sizes: 11775, 11773, 11775, 11775, 11774
## Resampling results across tuning parameters:
##
##
     mtry Accuracy Kappa
##
     2
           0.973
                     0.965
           0.969
                     0.961
##
     14
##
     26
           0.959
                     0.948
##
## Accuracy was used to select the optimal model using the largest value.
## The final value used for the model was mtry = 2.
conf_rf <- confusionMatrix(validatingDat$classe,predict(model_rf,predict(preProc,validatingDat[,-53])))</pre>
# Accuracy;
conf_rf$overall[1]
## Accuracy
##
# Error rate;
1-conf_rf$overall[1]
## Accuracy
##
          0
# Maximum accuracy across models goes to Random Forest
max(c(conf_rpart$overall[1], conf_gbm$overall[1], conf_knn$overall[1], conf_rf$overall[1]))
## [1] 1
conf_rf
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction
                      R
                           С
                                D
                                      Ε
                 Α
            A 1061
                      0
                    710
##
            В
                 0
                           0
                                0
                                      0
##
            С
                 0
                      0
                         632
                                0
##
            D
                 0
                      0
                           0
                              614
                                      0
##
            Ε
                           0
                                0
                                   664
##
## Overall Statistics
##
##
                  Accuracy: 1
                    95% CI: (0.999, 1)
##
       No Information Rate: 0.2882
##
       P-Value [Acc > NIR] : < 2.2e-16
##
##
##
                     Kappa: 1
  Mcnemar's Test P-Value : NA
```

```
##
## Statistics by Class:
##
##
                         Class: A Class: B Class: C Class: D Class: E
## Sensitivity
                           1.0000
                                    1.0000
                                              1.0000
                                                       1.0000
                                                                 1.0000
## Specificity
                           1.0000
                                    1.0000
                                              1.0000
                                                       1.0000
                                                                 1.0000
## Pos Pred Value
                           1.0000
                                    1.0000
                                              1.0000
                                                       1.0000
                                                                 1.0000
## Neg Pred Value
                           1.0000
                                    1.0000
                                              1.0000
                                                       1.0000
                                                                 1.0000
                                    0.1929
## Prevalence
                           0.2882
                                              0.1717
                                                       0.1668
                                                                 0.1804
## Detection Rate
                           0.2882
                                    0.1929
                                              0.1717
                                                       0.1668
                                                                 0.1804
## Detection Prevalence
                           0.2882
                                    0.1929
                                              0.1717
                                                       0.1668
                                                                 0.1804
                                                                 1.0000
## Balanced Accuracy
                           1.0000
                                    1.0000
                                              1.0000
                                                       1.0000
```

Random forest method shows much better results compared to the other algorithms. We build the models using 26 predictors compared to a 2 fold performance degradation if we were to build it with all 52 variables. All the prediction outcomes fall on the diagonal in the table with a 100% accuracy rate and no out-of-sample error.

Final Testing

We will predict the outcome by running the Random Forest model on the testing dataset.

```
(conclusion <- predict(model_rf,predict(preProc,testingDat[,-53])))</pre>
```

```
## [1] B A B A A B D B A A B C B A E E A B B B ## Levels: A B C D E
```

Conclusion

We can predict the way people are performing the excercise with a very high degree of accuracy using the Random forest model. Random Forest model build took more compute time than the others but it is a secondary order effect compared to the accuracy obtained.

Appendix

```
fancyRpartPlot(model_rpart$finalModel)
```


Rattle 2017-Feb-05 18:51:29 btaha