Apprentissage par renforcement pour le contrôle de processus Markovien déterministe par morceaux

Application à l'optimisation d'un traitement médical

Orlane Rossini ¹, Alice Clevnen ^{1,2}, Benoîte de Saporta ¹ et Régis Sabbadin 3

¹IMAG, Univ Montpellier, CNRS, Montpellier, France ²John Curtin School of Medical Research. The Australian National University. Canberra, ACT, Australia ³Univ Toulouse, INRAE-MIAT, Toulouse, France

lune 2024

Le contexte médical

FIGURE: Exemple de donnée d'un patient^a

^aIUCT Oncopole et CRCT, Toulouse, France

- Des patients ayant eu un cancer bénéficient d'un suivi régulier;
- La concentration d'immunoglobuline clonale est mesurée dans le temps;
- Le médecin doit prendre de nouvelles décisions à chaque visite.

Le contexte médical

FIGURE: Exemple de donnée d'un patient^a

- Des patients ayant eu un cancer bénéficient d'un suivi régulier;
- La concentration d'immunoglobuline clonale est mesurée dans le temps;
- Le médecin doit prendre de nouvelles décisions à chaque visite.

Optimiser la prise de décision pour assurer la qualité de vie du patient

^aIUCT Oncopole et CRCT, Toulouse, France

Méthodes

¹Processus Markovien Déterministe par Morceaux

Le modèle PDMP² contrôlé

On passe aléatoirement d'un régime déterministe à un autre.

²Processus Markovien Déterministe par Morceaux

Le modèle PDMP² contrôlé

On passe aléatoirement d'un régime déterministe à un autre.

Soit l'état du patient $x = (m, k, \zeta, u)$:

- m l'état du patient;
- k le nombre de rechute;
- ζ le biomarqueur;
- *u* le temps depuis le dernier saut.

²Processus Markovien Déterministe par Morceaux

Le modèle PDMP² contrôlé

On passe aléatoirement d'un régime déterministe à un autre.

Soit l'état du patient $x = (m, k, \zeta, u)$:

- m l'état du patient;
- k le nombre de rechute;
- ζ le biomarqueur;
- *u* le temps depuis le dernier saut.

Soit d la décision telle que: $d = (\ell, r)$:

- ℓ le traitement;
- *r* le temps avant la prochaine visite.

²Processus Markovien Déterministe par Morceaux

Un PDMP se définit par trois caractéristiques locales.

³Processus Markovien Déterministe par Morceaux

Un PDMP se définit par trois caractéristiques locales.

Description de la partie déterministe du processus.

$$\Phi^{\ell}(\mathbf{x},t) = (m,k,\phi^{\ell}_{m,k}(\zeta,t),u+t)$$

³Processus Markovien Déterministe par Morceaux

Un PDMP se définit par trois caractéristiques locales.

L'intensité de saut

Description des mécanismes de saut du processus.

• Saut à la frontière (déterministe)

$$t^{\star}(x) = t_m^{\ell \star}(\zeta) = \inf\{t > 0 : \phi_{m,k}^{\ell}(\zeta, t) \in \{\zeta_0, D\}\}$$

Saut aléatoire

$$\mathbb{P}(T>t)=e^{-\int_0^t \lambda_m^\ell(\Phi(x,s))\,\mathrm{d}s}$$

³Processus Markovien Déterministe par Morceaux

Un PDMP se définit par trois caractéristiques locales.

³Processus Markovien Déterministe par Morceaux

Méthodes

⁴Processus Markovien Déterministe par Morceaux

⁵Processus de Décision Markovien Partiellement Observé

Le modèle POMDP⁶

Soit $s = (m, k, \zeta, u, t, \tau)$ l'état du patient:

- m état général du patient;
- k nombre de rechute;
- ζ biomarqueur;
- *u* temps depuis le dernier saut;
- t temps écoulé depuis le début du suivi;
- τ temps depuis l'application d'un traitement.

Soit d la décision telle que: $d = (\ell, r)$:

- l traitement (rien, chimiothérapie);
- r temps avant la prochaine visite (15, 30, 60 jours).

⁶Processus de Décision Markovien Partiellement Observé

Le modèle POMDP⁶

Soit $s = (m, k, \zeta, u, t, \tau)$ l'état du patient:

- m état général du patient;
- *k* nombre de rechute;
- ζ biomarqueur;
- *u* temps depuis le dernier saut;
- t temps écoulé depuis le début du suivi;
- τ temps depuis l'application d'un traitement.

Soit d la décision telle que: $d = (\ell, r)$:

- ℓ traitement (rien, chimiothérapie);
- r temps avant la prochaine visite (15, 30, 60 jours).

⁶Processus de Décision Markovien Partiellement Observé

Agent

Environnement

POMDP DEFINITION

- Etat du patient $s = (m, k, \zeta, u, t, \tau) \in S$;
- Décisions $d = (\ell, r) \in \mathcal{D}$;
- $\mathcal{K}(s) \subseteq \textit{D}$ l'espace des décisions admissibles dans l'état s;
- Probabilité de transition $\mathcal{P}(s,d)(s')$;
- Observation $\omega = (\tau, t, F(\zeta, \epsilon), \mathbb{1}_{m=3}) \in \Omega$;
- Fonction d'observation $\mathcal{Z}(s)(\omega)$;
- Fonction coût C(s, d, s').

⁷Processus de Décision Markovien Partiellement Observé

POMDP DEFINITION

- Etat du patient $s = (m, k, \zeta, u, t, \tau) \in S$;
- Décisions $d = (\ell, r) \in \mathcal{D}$;
- $\mathcal{K}(s) \subseteq \mathit{D}$ l'espace des décisions admissibles dans l'état s;
- Probabilité de transition $\mathcal{P}(s,d)(s')$;
- Observation $\omega = (\tau, t, F(\zeta, \epsilon), \mathbb{1}_{m=3}) \in \Omega$;
- Fonction d'observation $\mathcal{Z}(s)(\omega)$;
- Fonction coût C(s, d, s').

⁷Processus de Décision Markovien Partiellement Observé

POMDP DEFINITION

- Etat du patient $s = (m, k, \zeta, u, t, \tau) \in S$;
- Décisions $d = (\ell, r) \in \mathcal{D}$;
- $\mathcal{K}(s) \subseteq \textit{D}$ l'espace des décisions admissibles dans l'état s;
- Probabilité de transition $\mathcal{P}(s,d)(s')$;
- Observation $\omega = (\tau, t, F(\zeta, \epsilon), \mathbb{1}_{m=3}) \in \Omega$;
- Fonction d'observation $\mathcal{Z}(s)(\omega)$;
- Fonction coût C(s, d, s').

⁷Processus de Décision Markovien Partiellement Observé

POMDP DEFINITION

- Etat du patient $s = (m, k, \zeta, u, t, \tau) \in S$;
- Décisions $d = (\ell, r) \in \mathcal{D}$;
- $\mathcal{K}(s) \subseteq \mathcal{D}$ l'espace des décisions admissibles dans l'état s;
- Probabilité de transition $\mathcal{P}(s,d)(s')$;
 - Observation $\omega = (\tau, t, \mathit{F}(\zeta, \epsilon), \mathbb{1}_{m=3}) \in \Omega;$
- Fonction d'observation $\mathcal{Z}(s)(\omega)$;
- Fonction coût C(s, d, s').

⁷Processus de Décision Markovien Partiellement Observé

Identifier une politique optimale!

Fonction de coût
$$C_V$$

coût de la visite

$$+\underbrace{C_D(H-t')\times \mathbb{1}_{m'=3}}_{\text{coût de la mort}}$$

+ $\underbrace{\kappa_C\times r\times \mathbb{1}_{\ell=a}}_{\text{coût de la chimiothérapie}}$

⁸Processus de Décision Markovien Partiellement Observé

Identifier une politique optimale!

$$\underbrace{V(\pi,s)}_{\text{Critère à optimiser}} = \underbrace{\mathbb{E}_s^{\pi}[\sum_{n=0}^{H-1}c(S_{n-1},D_n,S_n)]}_{\text{Coût attendu à long terme suite à la politique menée }\pi}$$

⁸Processus de Décision Markovien Partiellement Observé

Identifier une politique optimale!

$$\underbrace{V(\pi, \mathbf{S})}_{\text{Critère à optimiser}} = \underbrace{\mathbb{E}_{\mathbf{S}}^{\pi} [\sum_{n=0}^{H-1} c(S_{n-1}, D_n, S_n)]}_{\text{Coût attendu à long terme suite à la politique menée } \pi}$$

$$\underbrace{V^{\star}(s)}_{\text{Fonction valeur}} = \underbrace{\min_{\pi \in \Pi} V(\pi, s)}_{\text{Minimisation sur l'ensemble des politiques }\Pi}.$$

Orlane Rossini

⁸Processus de Décision Markovien Partiellement Observé

Identifier une politique optimale!

En réalité on observe pas l'espace d'état!

Soit l'historique $h = (\omega_0, d_0, \omega_1, d_1, \dots, \omega_n)$

$$\underbrace{V^{\star}(h)}_{\text{Fonction valeur}} = \underbrace{\min_{\pi \in \Pi} V(\pi, h)}_{\text{Minimisation sur l'ensemble des politiques } \Pi.$$

⁸Processus de Décision Markovien Partiellement Observé

Etat de l'art

Quand la dynamique est connue

⁹Processus Markovien Déterministe par Morceaux

¹⁰ Processus de Décision Markovien Partiellement Observé

¹¹A. Cleynen and B. de Saporta. Numerical method to solve impulse control problems for partially observed piecewise deterministic Markov processes. 2023

¹²A. Cleynen, B. de Saporta, A. Thierry D'Argenlieu, and R. Sabbadin. Medical follow-up optimization : A Monte-Carlo planning strategy. 2024

Problème vie réelle simplifié

Apprentissage par renforcement profond

¹³Processus Markovien Déterministe par Morceaux

¹⁴Processus de Décision Markovien Partiellement Observé

¹⁵Univ Toulouse, INRAE-MIAT, Toulouse, France

Apprentissage par renforcement

La politique optimale est obtenue à partir des expériences $<\omega,d,\omega',c>$

$$\underbrace{Q^{\pi}(s,d)}_{\text{Critère à optimiser}} = \underbrace{\mathbb{E}^{\pi}[\sum_{n=0}^{H-1}c(S_{n-1},D_n,S_n)|s,d=(\ell,r)]}_{\text{Critère à optimiser}}$$

Valeur d'une action dans un état suivant la politique π

$$\underbrace{Q^{\star}(s,d)}_{Q \text{ fonction}} = \min_{\pi \in \Pi} Q^{\pi}(s,d)$$

$$\underbrace{\pi^*}_{\substack{0 \text{ fonction}}} = \arg\min_{\substack{d \in \mathcal{D}}} Q^*(s, d)$$

Algorithme DQN¹⁶

Orlane Rossini Sherbrooke 13 / 1:

¹⁶Deep Q-Network

Politique	Coût moyen (log)	Interval de confiance	
ОН	8.79	[7.89, 9.69]	
Random	11.82	[10.80, 12.84]	
Inactive	12.49	[11.54, 13.45]	
Threshold	9.89	[8.94, 10.83]	
DQN	12.49	[11.54, 13.45]	
R2D2	8.47	[7.61, 9.33]	

 ${
m TABLE:}$ Policy evaluation performance on 10 5 simulations

Politique	Coût moyen (log)	IC	Taux de survie	Rechutes
ОН	8.79	[7.89, 9.69]	93.45%	2.14
Random	11.82	[10.80, 12.84]	27.45%	1.01
Inactive	12.49	[11.54, 13.45]	0.01%	1.00
Threshold	9.89	[8.94, 10.83]	78.95%	1.01
DQN	12.49	[11.54, 13.45]	0.02%	1
R2D2	8.47	[7.61, 9.33]	96.95%	0.65

Table: Policy evaluation performance on 10⁵ simulations

Politique	Coût moyen (log)	IC	Taux de survie	Rechutes
ОН	8.79	[7.89, 9.69]	93.45%	2.14
Random	11.82	[10.80, 12.84]	27.45%	1.01
Inactive	12.49	[11.54, 13.45]	0.01%	1.00
Threshold	9.89	[8.94, 10.83]	78.95%	1.01
DQN	12.49	[11.54, 13.45]	0.02%	1
R2D2	8.47	[7.61, 9.33]	96.95%	0.65

Table: Policy evaluation performance on 10⁵ simulations

Nécessite beaucoup de données pour apprendre la politique optimale!

Conclusion et futurs travaux

¹⁷Processus Markovien Déterministe par Morceaux

¹⁸Processus de Décision Markovien Partiellement Observé

¹⁹Processus de Décision Markovien Partiellement Observé Bayes Adaptif

Une dynamique partiellement connue

On ne connaît pas le paramètre de pente v_1 de la maladie.

Hypothèse: $v_1 \sim \text{log-normale } (\mu, \sigma^{-2}).$

Une dynamique partiellement connue

On ne connaît pas le paramètre de pente v_1 de la maladie.

 $\begin{array}{c} & \text{Hypoth\`ese:}\\ \mathbf{v_1} \sim \text{log-normale} \ (\mu,\sigma^{-2}).\\ & \underline{\text{Inf\'erence bay\'esienne:}}\\ (\mu,\sigma^{-2}) \sim & \text{gamma-log-normale}(\alpha,\beta,\kappa,\nu). \end{array}$

Une dynamique partiellement connue

On ne connaît pas le paramètre de pente v_1 de la maladie.

Hypothèse: $extsf{v}_{ extsf{1}} \sim \log$ -normale (μ, σ^{-2}) . Inférence bayésienne:

 $(\mu, \sigma^{-2}) \sim \overline{\text{gamma-log-normale}}(\alpha, \beta, \kappa, \nu).$

MISE À JOUR DES HYPERPARAMÈTRES

•
$$\alpha_{n+1} = \frac{\beta_n \alpha_n + \log(\hat{v_1})}{\beta_n + 1}$$

•
$$\beta_{n+1} = \beta_n + 1$$

•
$$\kappa_{n+1} = \kappa_n + \frac{1}{2}$$

•
$$\nu_{n+1} = \nu_n + \frac{\beta_n(\log(\hat{v_1} - \alpha_n)^2)}{2(\beta_n + 1)}$$

Agent

BAMDP PO

- L'hyper-état du patient $s^+ = (m, k, \zeta, u, \tau, t, \alpha, \beta, \kappa, \nu)$;
- Les décisions restent inchangées;
- $\mathcal{K}(\omega) \subseteq \mathcal{D}$ l'espace des décisions admissibles selon l'observation ω ;
- La probabilité de transition $\mathcal{P}(s^+, d)(s')$;
- Les observations $\omega^+ = (\mathsf{z}, \mathsf{F}(\zeta), \tau, \mathsf{t}, \tilde{\alpha}, \tilde{\beta}, \tilde{\kappa}, \tilde{\nu});$
- La fonction d'observations $\mathcal{Z}(s^+)(\omega^+)$;
- La fonction de coût $C: \mathcal{D} \times \mathcal{S} \to \mathbb{R}$.

²⁰Processus de décision Markovien Partiellement Observé Bayes adaptatif

BAMDP PO

Un BAMDP-PO se définit par un tuple $(S^+, \mathcal{D}, \mathcal{K}, \mathcal{P}^+, \Omega^+, \mathcal{Z}^+, C)$.

- L'hyper-état du patient $s^+ = (m, k, \zeta, u, \tau, t, \alpha, \beta, \kappa, \nu)$;
- Les décisions restent inchangées;
- $\mathcal{K}(\omega) \subseteq D$ l'espace des décisions admissibles selon l'observation ω :
- La probabilité de transition $\mathcal{P}(s^+, d)(s')$;
- Les observations $\omega^+ = (\mathsf{z}, \mathsf{F}(\zeta), \tau, \mathsf{t}, \tilde{\alpha}, \tilde{\beta}, \tilde{\kappa}, \tilde{\nu});$
- La fonction d'observations $\mathcal{Z}(s^+)(\omega^+)$;
- La fonction de coût $C: \mathcal{D} \times \mathcal{S} \to \mathbb{R}$.

Orlane Rossini Sherbrooke 15 / 1

²⁰Processus de décision Markovien Partiellement Observé Bayes adaptatif

BAMDP PO

Un BAMDP-PO se définit par un tuple $(S^+, \mathcal{D}, \mathcal{K}, \mathcal{P}^+, \Omega^+, \mathcal{Z}^+, C)$.

- L'hyper-état du patient $s^+ = (m, k, \zeta, u, \tau, t, \alpha, \beta, \kappa, \nu)$;
- Les décisions restent inchangées;
- $\mathcal{K}(\omega) \subseteq D$ l'espace des décisions admissibles selon l'observation ω ;
- La probabilité de transition $\mathcal{P}(s^+, d)(s')$;
- Les observations $\omega^+ = (\mathsf{z}, \mathsf{F}(\zeta), \tau, \mathsf{t}, \tilde{\alpha}, \tilde{\beta}, \tilde{\kappa}, \tilde{\nu});$
- La fonction d'observations $\mathcal{Z}(s^+)(\omega^+)$;
- La fonction de coût $C: \mathcal{D} \times \mathcal{S} \to \mathbb{R}$.

Orlane Rossini Sherbrooke 15 / 1.

²⁰Processus de décision Markovien Partiellement Observé Bayes adaptatif

BAMDP PO

Un BAMDP-PO se définit par un tuple $(S^+, \mathcal{D}, \mathcal{K}, \mathcal{P}^+, \Omega^+, \mathcal{Z}^+, C)$.

- L'hyper-état du patient $s^+ = (m, k, \zeta, u, \tau, t, \alpha, \beta, \kappa, \nu)$;
- Les décisions restent inchangées;
- $\mathcal{K}(\omega) \subseteq D$ l'espace des décisions admissibles selon l'observation ω ;
- La probabilité de transition $\mathcal{P}(s^+, d)(s')$;
- Les observations $\omega^+ = (z, F(\zeta), \tau, t, \tilde{\alpha}, \tilde{\beta}, \tilde{\kappa}, \tilde{\nu});$
- La fonction d'observations $\mathcal{Z}(\mathsf{s}^+)(\omega^+)$;
- La fonction de coût $C: \mathcal{D} \times \mathcal{S} \to \mathbb{R}$.

Orlane Rossini Sherbrooke 15 / 1.

²⁰ Processus de décision Markovien Partiellement Observé Bayes adaptatif

Une suggestion de résolution

Une suggestion de résolution

Une suggestion de résolution

