Index

CD information is listed by chapter and section number followed by page ranges (CD3.10:6–9). Page references preceded by a single letter refer to appendixes.	Addition, 216–21 binary, 216–17 floating-point, 238–42, 247 operands, 217 significands, 238 speed, 220 See also Arithmetic	Advanced Technology Attachment (ATA) disks, 563, 599, 600 AGP, A-9 Algol-60, CD2.20:6–7 Aliasing, 494 Alignment restriction, 84 All-pairs N-body algorithm, A-65
1-bit ALU, C-26–29 adder, C-27 CarryOut, C-28 illustrated, C-29 logical unit for AND/OR, C-27 for most significant bit, C-33 performing AND, OR, and -addition,	Addresses 32-bit immediates, 127–33 base, 83–4 byte, 83 defined, 82 memory, 90	Alpha architecture defined, 513 ALU control, 302–4 bits, 303 logic, D-6 mapping to gates, D-4–7 truth tables, D-5
C-31, C-33 See also Arithmetic logic unit (ALU) 32-bit ALU, C-29–38 from 31 copies of 1-bit ALU, C-34 with 32 1-bit ALUs, C-30 defining in Verilog, C-35–38 illustrated, C-36 ripple carry adder, C-29 tailoring to MIPS, C-31–35 See also Arithmetic logic unit (ALU)	virtual, 479–81, 500 Addressing 32-bit immediates, 127–33 Immediate, 130, 131 PC-relative, 111, 131 register, 130 x86 modes, 164–165 Address select logic, D-24, D-25 Address space, 478, 482	See also Arithmetic logic unit (ALU) ALU control block, 306 defined, D-4 generating ALU control bits, D-6 ALUOp, 302, D-6 bits, 303, 304 control signal, 306 AMD64, 162, CD2.20:5 Amdahl's law, 463, 621 corollary, 52
32-bit immediate operands, 127–28 7090/7094 hardware, CD3.10:6	extending, 531 flat, 531 ID (ASID), 496 inadequate, CD5.13:5 shared, 625–26	defined, 51 fallacy, 670 AMD Opteron X4 (Barcelona), 20, 44–50, 286 address translation, 526
Absolute references, 137 Abstractions defined, 20 hardware/software interface, 20–21 principle, 21 Accumulator architectures, CD2.20:1 Accumulators, CD2.20:1 Acronyms, 8	single physical, 624 unmapped, 500 virtual, 496 Address translation AMD Opteron X4, 526 defined, 479 fast, 488–90 Intel Nehalem, 526 TLB for, 488–90	architectural registers, 390 base versus fully optimized- performance, 669 caches, 527 characteristics, 663 CPI, miss rates, and DRAM accesses, 528 defined, 663 illustrated, 662 LBMHD performance, 668

I-2

AMD Opteron X4 (Barcelona) (continued)	signed-immediate input, 357	unary and binary operators, B1-52
memory hierarchies, 526–29	See also ALU control; Control units	label definition, B1-51
microarchitecture, 390, 391	ARM assembler, B1-49	predefined variables, B1-53
miss penalty reduction techniques,	AREA directive, B1-50	variables, B1-50–51
527–29	Armasm directives, B1-53	types, B1-50
pipeline, 390–92	ALIGN, B1-53	ARM11 cycle timings, B3-14
pipeline illustration, 392	AREA, B1-53–54	ARM (MIPS) instructions, 156–60, B1-3,
roofline model, 664	ASSERT, B1-54	B2-3
shared L3 cache, 529	CN, B1-54	addressing modes, 158
SPEC CPU benchmark, 48–49	CODE16, CODE32, B1-54	ADR instruction, B1-10
SPEC power benchmark,	CP, B1-54	Arithmetic shift right, B1-11
49–50	DATA, B1-54–55	32-bit program status registers, B2-11
SpMV performance, 681	DCB/DCD/DCI/DCQ/DCW, B1-55	Branch with exchange, B1-13
TLB hardware, 526	ELSE, B1-57	Branch with link and exchange, B1-13
American Standard Code for Information	END, B1-55	Breakpoint instruction, B1-12
Interchange. See ASCII	ENDFUNC, B1-55, B1-56	brief history, CD2.20:4
AND gates, C-12, D-7	ENDIF, B1-55, B1-57	Change processor state, B1-16
AND operation, 101, C-6	ENTRY, B1-55	Compare two 32-bit integers, B1-15
Annual failure rate (AFR), 559, 599	EQU, B1-56	
	EXPORT, B1-56	Coprocessor-dependent operation, B1-14
Antidependence, 383 Antifuse, C-78	EXTERN, IMPORT, B1-56	
Apple computer, CD1.10:6–7	FIELD, B1-56, B1-59	Count leading zeros, B1-14
Application binary interface	FUNCTION, B1-56	Cpsr/spsr, B1-25 calculations, 158–60
(ABI), 21	GBLA, GBLL, GBLS, B1-57	compare and conditional branch, 158–59
Application programming interfaces (APIs)	GET, B1-57	condition field, 369
defined, A-4	GLOBAL, B1-57 IF, B1-57	data transfer, 157
	IMPORT, B1-57	data transfer, 137 decode table, B2-4–7
graphics, A-14	INCLUDE, B1-57	
Arithmetic 214, 68	INFO, B1-57	Cpsr and spsr, B2-11 Mode, B2-7
Arithmetic, 214–68 addition, 216–21	KEEP, B1-58	Shift, shift size, and Rs, B2-8
division, 226–31		decoding procedure, B2-3
	LCLA, LCLL, LCLS, B1-58 LTORG, B1-58	~ ~
floating point, 232–57 for multimedia, 218–19		encodings, B2-3 formats, 159
multiplication, 220–26	MACRO, MEXIT, MEND, B1-58 MAP, B1-59	GNU assemblers, B1-3
subtraction, 216–21		
Arithmetic instructions	Memory initialization directives,	Instruction types, B1-4
	B1-55 NCBIN, B1-57	logical, 159
logical, 294 operands, 80	NOFP, B1-59	MIPS (ARM) similarities, 157
See also Instructions	OPT, B1-59	Rd and Rn, B1-4
Arithmetic intensity, 654	PROC, B1-60	register-register, 157 Relative branch with link, B1-12
		Rn/Rm, B1-9
Arithmetic logic unit (ALU) 1-bit, C-26–29	RLIST, RN, B1-60 ROUT, B1-60	Syntax, B1-4
32-bit, C-29–38	SETA, SETL, SETS, B1-60	Condition codes and flags, B1-5–7
before forwarding, 354	SPACE, B1-60	Optional expressions, B1-4
branch datapath, 298	WHILE, WEND, B1-60	Register names, B1-5
hardware, 218	assembly line, formats, B1-49	Shift operations, B1-7–8
memory-reference instruction	END directive, B1-50	Values stored, B1-5
use, 287	expressions, B1-51	Thumb instructions, B1-8
for register values, 294	assembly time, B1-51	Alphabetical list, B1-8–49
R-format operations, 296	predefined, B1-52–53	ARPANET, CD6.14:7
10111101 Operations, 270	Predefined, Dr. 32-33	111111111, ODO:11./

Arrays	L2 cache, 661	sticky, 255
logic elements, C-18–19	memory, 457, 458	valid, 444
multiple dimension, 254	network, 647	Blocking assignment, C-24
pointers versus, 152–56	Barrier synchronization, A-18	Block-interleaved parity, 588-89
procedures for setting to zero,	defined, A-20	Blocks
153	for thread communication, A-34	combinational, C-4
ASCII	Base addressing, 82–3	defined, 440
binary numbers versus, 123	Base registers, 83	finding, 505–506
character representation, 122	Basic block, 107–8	flexible placement, 465-70
defined, 122	Benchmarks	least recently used (LRU), 471
symbols, 126	defined, 48	locating in cache, 470–71
Assemblers, 136–37	I/O, 582–84	miss rate and, 451
defined, 11	Linpack, 650, CD3.10:3	multiword, mapping addresses
function, 136	multicores, 643–70	to, 449–50
microcode, D-30	multiprocessor, 650-52	placement locations, 504-505
number acceptance, 136	NAS parallel, 652	placement strategies, 467
object file, 136–37	parallel, 651	replacement selection, 471
Assembly language	PARSEC suite, 652	replacement strategies, 506-507
defined, 11, 136	SPEC CPU, 48–49	spatial locality exploitation, 450
floating-point, 248	SPEC power, 49–50	state, C-4
illustrated, 12	SPECrate, 650	valid data, 444
MIPS (ARM), 78, 97–98	SPLASH/SPLASH 2, 650–52	Boolean algebra, C-6
programs, 135	Stream, 661	Bounds check shortcut, 109
translating into machine language,	Biased notation, 93, 236	Branch datapath
97–98	Big-endian byte order, 84	ALU, 298
Asserted signals, 291, C-4	Binary digits. See Bits	operations, 297
Associativity	Binary numbers	Branch delay slots
in caches, 468–69	ASCII versus, 123	defined, 367
degree, increasing, 467, 504	conversion to decimal numbers, 89	scheduling, 368
floating-point addition, testing,	conversion to hexadecimal numbers,	Branch equal, 363
258–59	95	Branches
increasing, 472–73	defined, 86	compiler creation, 106
set, tag size versus, 472–73	Bisection bandwidth, 647	condition, 299
Asynchronous interconnect, 569	Bit error rate (BER), CD6.11:9	decision, moving up, 363
Atomic exchange, 134	Bit-interleaved parity, 588	delayed, , 299, 329, 363–65, 367, 368
Atomic memory operation, A-21	Bit maps, 17	ending, 107
Attribute interpolation, A-43–44	defined, 16, 87	execution in ID stage, 364
Availability, 559	goal, 17	pipelined, 364
Average memory access time (AMAT),	storing, 17	target address, 364
464	Bits	unconditional, 106
calculating, 464–65	ALUOp, 303, 304	See also Conditional branches
defined, 464	defined, 11	Branch hazards. See Control hazards
	dirty, 487	Branch history tables. See Branch
В	done, 574	prediction, buffers
	error, 574	Branch-on-equal instruction, 312
Backplane bus, 568	guard, 254–55	Branch prediction
Backups, 601–602	patterns, 256	buffers, 366, 367
Bandwidth	reference, 485	as control hazard solution, 328
bisection, 647	rounding, 255	defined, 327
external to DRAM, 460	sign, 89	dynamic, 327, 328, 366-69
I/O, 604	state, D-8	static, 379

I-4 Index

Branch predictors (continued)	cache coherency protocol,	physically indexed, 493
accuracy, 367	CD5.9:11–15	physically tagged, 493
correlation, 369	coherent cache implementation	primary, 474, 475, 478
information from, 368	techniques, CD5.9:10-11	secondary, 474, 475, 478
tournament, 369	implementing, CD5.9:1-16	set-associative, 465
Branch taken	snoopy cache coherence, CD5.9:16	simulating, 529-30
cost reduction, 363	SystemVerilog, CD5.9:1–9	size, 448
defined, 297	Cache hits, 494	split, 456
Branch target	Cache misses	summary, 460–61
addresses, 296	block replacement on, 506-507	tag field, 446
buffers, 369	capacity, 509	tags, CD5.9:10, CD5.9:11
Bubbles, 360	compulsory, 509	virtually addressed, 494
Bubble Sort, 151	conflict, 509	virtually indexed, 494
Bus-based coherent multiprocessors,	defined, 451	virtually tagged, 494
CD7.14:6	direct-mapped cache, 468	virtual memory and TLB integration,
Buses, 570, 571	fully associative cache, 469	490–494
backplane, 568	handling, 451–52	write-back, 453, 454, 507, 508
defined, C-19	memory-stall clock cycles, 461	writes, 452–54
processor-memory, 568	reducing with flexible block	write-through, 453, 454, 507, 508
synchronous, 569	placement, 465–70	See also Blocks
Bytes	set-associative cache, 468–69	Callee, 114, 117
addressing, 84	steps, 452	Caller, 114
order, 84	in write-through cache, 453	Capabilities, CD5.13:7
,	Cache performance, 461–78	Capacity misses, 509
C	calculating, 463	Carry lookahead, C-38–47
C	hit time and, 464	4-bit ALUs using, C-45
Cache-aware instructions, 533	impact on processor	adder, C-39
Cache coherence, 520–24	performance, 462–63	fast, with first level of abstraction,
coherence, 520	Caches, 443–61	C-39-40
consistency, 521	accessing, 445–51	fast, with "infinite" hardware,
enforcement schemes, 522	associativity in, 468–69	C-38-39
implementation techniques,	bits in, 449	fast, with second level of -abstraction,
CD5.9:10–11	bits needed for, 446	C-40-46
migration, 522	contents illustration, 447	plumbing analogy, C-42, C-43
problem, 520, 521, 524	defined, 20, 443	ripple carry speed versus, C-46
protocol example, CD5.9:11–15	direct-mapped, 443, 445, 449, 465	summary, C-46–47
protocols, 522	disk controller, 564	Carry save adders, 225
replication, 522	empty, 446	Cause register, 576
snooping protocol, 522–524	flushing, 581	defined, 372
snoopy, CD5.9:16	FSM for controlling, 515–25	illustrated, 577
state diagram, CD5.9:15	fully associative, 465	CDC 6600, CD1.10:6, CD4.15:2
Cache coherency protocol,	GPU, A-38	Central processor unit (CPU)
CD5.9:11–15	inconsistent, 452	classic performance equation, 35–37
finite-state transition diagram,	index, 446	defined, 19
CD5.9:12, CD5.9:14	Intrinsity FastMATH example, 454–56	execution time, 30, 31, 32
functioning, CD5.9:12	locating blocks in, 470–71	performance, 30–32
mechanism, CD5.9:13	locations, 444	system, time, 30
state diagram, CD5.9:15	memory system design, 457–60	time, 461
states, CD5.9:11–12	multilevel, 461, 473–77	time measurements, 31
write-back cache, CD5.9:12	nonblocking, 527	user, time, 30
Cache controllers, 524	physically addressed, 494	See also Processors

Cg pixel shader program, A-15–17	isolation, 630	speculation, 378–79
Channel controllers, 579	organization, 617	structure, CD2.15:1
Characters	overhead in division of memory, 628	Compiling
ASCII representation, 122	scientific computing on, CD7.14:7	C assignment statements, 79–80
in Java, 126–27	Cm, CD7.14:3–4	C language, 106–7, 156, CD2.15:1–2
Chips. See Integrated circuits (ICs)	C.mmp, CD7.14:3	floating-point programs, 249–53
C++ language, CD2.15:26, CD2.20:7	Coarse-grained multithreading, 631–32	if-then-else, 105
C language	Cobol, CD2.20:6	in Java, CD2.15:18–19
assignment, compiling into MIPS,	Code generation, CD2.15:12	procedures, 115, 117–18
79–80	Code motion, CD2.15:6	recursive procedures, 117–18
compiling, 156, CD2.15:1–2	Combinational blocks, C-4	while loops, 106–7
compiling assignment with registers,	Combinational control units, D-4–8	Compressed sparse row (CSR) matrix,
81–82	Combinational elements, 290	A-55, A-56
compiling while loops in, 106–7	Combinational logic, 292, C-3, C-9–20	Compulsory misses, 509
sort algorithms, 152	arrays, C-18–19	Computers
translation hierarchy, 135	decoders, C-9	application classes, 5–7
translation to MIPS assembly	defined, C-5	applications, 4
language, 79	don't cares, C-17–18	arithmetic for, 214–68
variables, 119	multiplexors, C-10	characteristics, CD1.10:12
Classes	ROMs, C-14–16	commercial development,
defined, CD2.15:14	two-level, C-11–14	CD1.10:3–9
packages, CD2.15:20	Verilog, C-23–26	component organization, 14
Clock cycles	Commands, to I/O devices, 574–75	components, 14, 215, 555
defined, 31	Commercial computer development,	design measure, 55
memory-stall, 461, 462	CD1.10:3–9	desktop, 5, 15
number of registers and, 80	Commit units	embedded, 5–7
worst-case delay and, 316	buffer, 385	first, CD1.10:1–3
Clock cycles per instruction (CPI),	defined, 385	in information revolution, 4
33–34, 327	in update control, 388	instruction representation, 93–100
one level of caching, 474	Common case fast, 172	laptop, 18
two levels of caching, 474	Common subexpression elimination,	performance measurement,
Clocking methodology, 291–3, C-48	CD2.15:5	CD1.10:9
defined, 291	Communication, 24–25	principles, 99
edge-triggered, 291, 292, C-48,	overhead, reducing, 43	rack mount, 592
C-73	thread, A-34	servers, 5
level-sensitive, C-74, C-75-76	Compact code, CD2.20:3	Compute Unified Device Architecture.
for predictability, 291	Compact disks (CDs), 23, 24	See CUDA programming
Clock rate	Comparisons, 108–9	environment
defined, 31	signed versus unsigned, 108–9	Conditional branches
frequency switched as	Compilers, 135	ARM, 158
function of, 40	branch creation, 106	changing program counter
power and, 39	brief history, CD2.20:8	with, 369
Clocks, C-48–50	conservative, CD2.15:5–6	compiling if-then-else into, 105-6
edge, C-48, C-50	defined, 11	defined, 105
in edge-triggered design, C-73	front end, CD2.15:2	implementation, 113
skew, C-74	function, 13, 135	in loops, 111
specification, C-57	high-level optimizations,	PC-relative addressing, 111
synchronous system, C-48–49	CD2.15:3–4	Conditional move instructions, 369
Clusters, CD7.14:7–8	ILP exploitation, CD4.15:4–5	Condition field, 369
defined, 618, 627, CD7.14:7	Just In Time (JIT), 142	Conflict misses, 509
drawbacks, 628	optimization, 155, CD2.20:8	Constant memory, A-40

Index

Constant operands, 85–86	instruction decode/register file read,	barrier synchronization, A-18, A-34
frequent occurrence, 86	347	defined, A-5
Content Addressable Memory	instruction fetch, 347	development, A-17, A-18
(CAM), 471	memory access, 348	hierarchy of thread groups, A-18
Context switch, 496	setting of, 307, 309	kernels, A-19, A-24
Control	values, 346	key abstractions, A-18
ALU, 302–4	write-back, 348	paradigm, A-19–23
challenge, 370	Control signals	parallel plus-scan template, A-61
finishing, 313	ALUOp, 306	per-block shared memory, A-58
forwarding, 352	defined, 292	plus-reduction implementation,
FSM, D-8–21	effect of, 307	A-63
implementation, optimizing,	multi-bit, 308	programs, A-6, A-24
D-27-28	pipelined datapaths with, 345	scalable parallel programming with
for jump instruction, 315	truth tables, D-14	A-17–23
mapping to hardware, D-2-32	Control units, 289	shared memories, A-18
memory, D-26	address select logic, D-24, D-25	threads, A-36
organizing, to reduce logic,	combinational, implementing,	
D-31-32	D-4–8	D
pipelined, 345–49	with explicit counter, D-23	
Control flow graphs, CD2.15:8–9	illustrated, 308	Databases
defined, CD2.15:8	logic equations, D-11	brief history, CD6.14:4
illustrated examples, CD2.15:8,	main, designing, 304–312	Integrated Data Store (IDS),
CD2.15:9	as microcode, D-28	CD6.14:4
Control functions	MIPS, D-10	relational, CD6.14:5
ALU, mapping to gates, D-4-7	next-state outputs, D-10, D-12–13	Datacenters, 5
defining, 307	output, 302–3, D-10	Data flow analysis, CD2.15:8
PLA, implementation, D-7,	See also Arithmetic logic unit (ALU)	Data hazards, 322–25, 349–61
D-20–21	Cooperative thread arrays (CTAs), A-30	defined, 322
ROM, encoding, D-18-19	Coprocessors	forwarding, 322, 349–61
for single-cycle implementation,	defined, 253	load-use, 324, 363
313	Copy back. See Write-back	stalls and, 357–60
Control hazards, 325–29, 361–70	Core MIPS instruction set, 268	See also Hazards
branch delay reduction, 363–65	abstract view, 288	Data-level parallelism, 635
branch not taken assumption, 363	implementation, 286–289	Data parallel problem decomposition,
branch prediction as solution, 328	implementation illustration, 290	A-17, A-18
defined, 325, 362	overview, 287–9	Datapath elements
delayed decision approach, 329	subset, 286–7	defined, 293
dynamic branch prediction, 366–69	See also MIPS	sharing, 299
logic implementation in Verilog,	Cores	Datapaths
CD4.12:7–9	defined, 41	•
pipeline stalls as solution, 326	number per chip, 42	branch, 297, 298
pipeline summary, 369–70	Correcting code, 588	building, 293–302
simplicity, 362	Correlation predictor, 369	control signal truth tables, D-14
solutions, 326	Cosmic Cube, CD7.14:6	control unit, 308
static multiple-issue processors and,	Cray computers, CD3.10:4, CD3.10:5	defined, 19
380	Critical word first, 451	design, 293
Control lines	Crossbar networks, 648	exception handling, 373
asserted, 309	CTSS (Compatible Time-Sharing	for fetching instructions, 295
in datapath, 306	System), CD5.13:8	for hazard resolution via
execution/address calculation, 347	CUDA programming environment, 645,	forwarding, 356
final three stages, 347	A-5, CDA.11:5	for jump instruction, 315
imai unice stages, 34/	A-3, CDA.11:3	for memory instructions, 300

for MIPS architecture, 301	Design	as nonvolatile, 561
in operation for branch-on-equal	compromises and, 172	rotational latency, 562
instruction, 312	datapath, 293	sectors, 561
in operation for load instruction, 311	digital, 392–93	seek time, 561
in operation for R-type	I/O system, 584–85	tracks, 561
instruction, 310	logic, 289–7, C-1–79	transfer time, 562
operation of, 307–312	main control unit, 304–312	Divide algorithm, 229
pipelined, 330–44	memory hierarchy,	Dividend, 226
for R-type instructions, 300, 309	challenges, 511	Division, 226–31
single, creating, 299–302	pipelining instruction sets, 321	algorithm, 228
single-cycle, 331	Desktop and server RISCs	dividend, 226
static two-issue, 381	See also Reduced instruction set	divisor, 226
Data race, 133	computer (RISC) architectures	faster, 231
Data rate, 582	Desktop computers	floating-point, 247
Data selectors, 289	defined, 5	hardware, 227–28
Data structure compression, 666	illustrated, 15	hardware, improved version,
Data transfer instructions	D flip-flops, C-51, C-53	230
defined, 82	Dicing, 46	in ARM, 231
load, 82	Dies, 46	operands, 226
offset, 83	Digital design pipeline, 392–93	quotient, 226
store, 84	Digital video disks (DVDs), 23, 24	remainder, 226
See also Instructions	DIMMs (dual inline memory modules),	signed, 229–31
Deasserted signals, 291, C-4	CD5.13:4	SRT, 231
DEC disk drive, CD6.14:3	Direct3D, A-13	See also Arithmetic
Decimal numbers	Direct-mapped caches	Divisor, 226
binary number conversion to, 89-90	address portions, 470	D latches, C-51, C-52
defined, 86	choice of, 506	Done bit, 574
Decision-making instructions, 104–13	defined, 443, 465	Don't cares, C-17–18
Decoders, C-9	illustrated, 445	example, C-17-18
defined, C-9	memory block location, 466	term, 304
two-level, C-65	misses, 468	Double Data Rate RAMs (DDRRAMs)
DEC PDP-8, CD1.10:5	single comparator, 471	459, C-65
Deep Web, CD6.14:8	total number of bits, 449	Double precision
Delayed branches	See also Caches	defined, 234
as control hazard solution, 329	Direct memory access (DMA)	FMA, A-45–46
defined, 299	defined, 578	GPU, A-45-46, A-74
for five-stage pipelines, 368	multiple devices, 579	representation, 237
reducing, 363–65	setup, 579	See also Single precision
scheduling limitations, 367	transfers, 579, 581	Double words, 165
See also Branches	Dirty bit, 487	Dynamically linked libraries (DLLs),
Delayed decision, 329	Dirty pages, 487	140–42
DeMorgan's theorems, C-11	Disk controllers	defined, 140
Denormalized numbers, 257	caches, 564	lazy procedure linkage version,
Dependences	defined, 562	141
bubble insertion and, 360	time, 562	Dynamic branch prediction,
detection, 351	Disk read time, 563	366–69
name, 383	Disk storage, 561–65	branch prediction buffer, 366
between pipeline registers, 353	characteristics, 565	defined, 366
between pipeline registers and	densities, 563	loops and, 366
ALU inputs, 352	history, CD6.14:1–4	See also Control hazards
sequence, 349	interfaces, 563–64	Dynamic hardware predictors, 327
* :	·	

I-8

Dynamic multiple-issue processors, 378,	Elements	pipelined computer example, 374
383–86	combinational, 290	in pipelined implementation,
pipeline scheduling, 384-86	datapath, 293, 299	372–77
superscalar, 383	memory, C-50-58	precise, 376
See also Multiple issue	state, 291, 292, 294, C-48, C-50	reasons for, 371–72
Dynamic pipeline scheduling,	Embedded computers	result due to overflow in add
385–86	application requirements, 7	instruction, 375
commit unit, 385	design, 6	saving/restoring stage on, 501
concept, 386	growth, CD1.10:11-12	Execute/address calculation
defined, 384	Embedded Microprocessor	control line, 347
hardware-based speculation, 386	Benchmark Consortium	load instruction, 336
primary units, 385	(EEMBC), CD1.10:11-12	store instruction, 338
reorder buffer, 385	Embedded RISCs	Execute or address calculation stage,
reservation station, 385	See also Reduced instruction set	336, 338
Dynamic random access memory	computer (RISC) architectures	Execution time
(DRAM), 439, 457, C-63–65	Encoding	CPU, 30, 31, 32
bandwidth external to, 460	ARM instruction, 97	pipelining and, 330
cost, 23	defined, D-31	as valid performance measure, 54
defined, 18-19, C-63	ROM control function, D-18–19	Explicit counters, D-23, D-26
DIMM, CD5.13:4	ROM logic function, C-15	Exponents, 233–45
Double Date Rate (DDR), 459	x86 instruction, 168–69	EX stage
early board, CD5.13:4	ENIAC (Electronic Numerical	load instructions, 336
GPU, A-37–38	Integrator and Calculator),	overflow exception detection, 373
growth of capacity, 27	CD1.10:1, CD1.10:2, CD1.10:3,	store instructions, 339
history, CD5.13:3–4	CD5.13:1	otore mor detroits, 337
pass transistor, C-63	EPIC, CD4.15:4	F
SIMM, CD5.13:4, CD5.13:5	Error bit, 574	r
single-transistor, C-64	Error correction, C-65–67	Failures
size, 460	Error detection, 588, C-66	disk, rates, 599–600
speed, 23	Ethernet, 24, 25, CD6.14:8	mean time between (MTBF), 559
synchronous (SDRAM), 459, C-60,	defined, CD6.11:5	mean time to (MTTF), 559, 560,
C-65	multiple, CD6.11:6	
two-level decoder, C-65	success, CD6.11:5	599, 616
two-level decodel, C-03	Exception enable, 498	reasons for, 560
_		synchronizer, C-77 Fallacies
E	Exception program counters (EPCs), 371	
F. 1	* **	Amdahl's law, 670
Early restart, 451	address capture, 376	assembly language for performance
Edge-triggered clocking methodology,	defined, 372	170
291, 292, C-48, C-73	in restart determination, 371	commercial binary compatibility
advantage, C-49	Exceptions, 370–77	importance, 170–71
clocks, C-73	association, 376	defined, 51
defined, C-48	datapath with controls for	disk failure rates, 599–600
drawbacks, C-74	handling, 373	GPUs, A-72–74, A-75
illustrated, C-50	defined, 371	low utilization uses little power, 52
rising edge/falling edge, C-48	detecting, 371	MTTF, 599
EDSAC (Electronic Delay -Storage	event types and, 371	peak performance, 670–71
Automatic Calculator), CD1.10:2,	imprecise, 376	pipelining, 393
CD5.13:1–2	interrupts versus, 370–71	powerful instructions mean higher
Eispack, CD3.10:3	in MIPS architecture, 371–72	performance, 170
Electrically erasable programmable	overflow, 373	right shift, 262–63
read-only memory (EEPROM), 567	PC, 495, 497	See also Pitfalls

False sharing, 523	as EEPROM, 567	Floating-point arithmetic (GPUs), A-41-46
Fast carry	NAND, CD6.14:4	basic, A-42
with first level of abstraction,	NOR, 567, CD6.14:4	double precision, A-45-46, A-74
C-39-40	wear leveling, 567	performance, A-44
with "infinite" hardware, C-38-39	Flat address space, 531	specialized, A-42-44
with second level of abstraction,	Flip-flops	supported formats, A-42
C-40-46	defined, C-51	texture operations, A-44
Fast Fourier Transforms (FFT), A-53	D flip-flops, C-51, C-53	Floating-point multiplication, 242–47
Fiber Distributed Data Interface (FDDI),	Floating point, 232–57	binary, 244–46
CD6.14:8	ARM instruction frequency	illustrated, 245
Fibre Channel Arbitrated Loop	for, 268	instructions, 247
(FC-AL), CD6.11:11	ARM instructions, 247–49	significands, 244
Field programmable devices (FPDs),	assembly language, 248	steps, 242–44
C-78	backward step, CD3.10:3–4	Floating vectors, CD3.10:2
Field programmable gate arrays (FPGAs),	binary to decimal conversion, 238	Flow-sensitive information,
C-78	challenges, 266	CD2.15:14
Fields	defined, 232	Flushing instructions, 363, 364
ARM, 95–96	diversity versus portability,	defined, 363
defined, 94	CD3.10:2–3	exceptions and, 376
format, D-31	division, 247	For loops, 152
names, 95	first dispute, CD3.10:1–2	inner, CD2.15:25
Filebench, 583	form, 233	SIMD and, CD7.14:2
	fused multiply add, 256	Format fields, D-31
Files, register, 294, 300, C-50, C-54–56		
File server benchmark (SPECFS), 583	guard digits, 254–55	Fortran, CD2.20:6
Fine-grained multithreading, 631, 633	history, CD3.10:1–10	Forwarding, 349–61
Finite-state machines (FSMs), 515–20,	IEEE 754 standard, 235, 236	ALU before, 354
C-67–72	immediate calculations, 254	control, 352
control, D-8–22	operands, 248	datapath for hazard resolution, 356
controllers, 518	operands variation in x86, 261	defined, 322
defined, 517, C-67	overflow, 233	functioning, 350–51
implementation, 517, C-70	packed format, 261	graphical representation, 323
Mealy, 518	precision, 258	illustrations, CD4.12:25–30
Moore, 518	procedure with two-dimensional	multiple results and, 325
for multicycle control, D-9	matrices, 250–53	multiplexors, 356
next-state function, 517, C-67	programs, compiling, 249–53	pipeline registers before, 354
output function, C-67, C-69	registers, 252	with two instructions, 322–23
for simple cache controller, 519	representation, 233–38	Verilog implementation,
state assignment, C-70	rounding, 254–55	CD4.12:3–5
state register implementation, C-71	sign and magnitude, 233	Fractions, 233, 234, 235
style of, 518	SSE2 architecture, 261–62	Frame buffer, 17
synchronous, C-67	subtraction, 247	Front end, CD2.15:2
SystemVerilog, CD5.9:6-9	underflow, 233	Fully associative caches
traffic light example, C-68–70	units, 255	block replacement strategies, 507
Fixed-function graphics pipelines,	in x86, 259–62	choice of, 506
CDA.11:1	Floating-point addition, 238-42	defined, 465
Flash-based removable memory	arithmetic unit block diagram, 243	memory block location, 466
cards, 23	associativity, testing, 258-59	misses, 469
Flash memory, 566–68	binary, 240, 241	See also Caches
brief history, CD6.14:4	illustrated, 240	Fully connected networks, 647, 648
characteristics, 23, 566	instructions, 247	Fused-multiply-add (FMA) operation,
defined, 22, 566	steps, 238–39	256, A-45–46

I-10 Index

G	as accelerators, 640	access times, 23
<u>.</u>	attribute interpolation, A-43-44	defined, 22
Game consoles, A-9	computing, CDA.11:4	diameters, 23
Gates, C-3, C-8	defined, 44, 620, A-3	illustrated, 22
AND, C-12, D-7	driver software, 641	read-write head, 22
defined, C-8	evolution, A-5, CDA.11:2	Hardware
delays, C-46	fallacies and pitfalls, A-72-75	as hierarchical layer, 10
mapping ALU control function to,	floating-point arithmetic, A-17,	language of, 11–13
D-4-7	A-41–46, A-74	operations, 77–80
NAND, C-8	future trends, CDA.11:5	supporting procedures in, 113–22
NOR, C-8, C-50	GeForce 8-series generation, A-5	synthesis, C-21
Gateways, CD6.11:6	general computation, A-73–74	translating microprograms to,
General Purpose GPUs (GPGPUs), 642,	General Purpose (GPGPUs), 642, A-5,	D-28-32
A-5, CDA.11:3	CDA.11:3	virtualizable, 513
General-purpose registers	graphics mode, A-6	Hardware-based speculation, 386
architectures, CD2.20:2–3	graphics trends, A-4	Hardware description languages
Generate	history, A-3–4	defined, C-20
defined, C-40	logical graphics pipeline, A-13–14	using, C-20–26
example, C-44	main memory, 641	VHDL, C-20–21
super, C-41	mapping applications to, A-55–72	See also Verilog
Gigabytes, 23	memory, 642	Hardware multithreading, 631–34
Global common subexpression	multilevel caches and, 641	coarse-grained, 631–32
elimination, CD2.15:5	N-body applications, A-65–72	defined, 631
Global memory, A-21, A-39	NVIDIA architecture, 642–45	fine-grained, 631, 633
•	parallelism, 641, A-76	options, 632
Global entimization GD2 15.4.6	parallel memory system, A-36–41	simultaneous, 632–34
Global optimization, CD2.15:4–6	performance doubling, A-4	Harvard architecture, CD1.10:3
code, CD2.15:6	perspective, 645–46	Hazard detection units, 358
defined, CD2.15:4	programmable real-time, CDA.11:2–3	functions, 359
implementing, CD2.15:7–10		pipeline connections for, 359
GNU assembler, B1-61	programming, A-12–24	
Assembler directives, B1-61–64	programming interfaces to, 640, A-17	Hazards, 321–29
Assembler macro, B1-63	real-time graphics, A-13	control, 325–29, 361–70
ELF format files, B1-64	scalable, CDA.11:4–5	data, 322–25, 349–61
Section flags, B1-64	summary, A-76	defined, 321
GPU computing	See also GPU computing	forwarding and, 357
defined, A-5	Graphics shader programs, A-14–15	structural, 321–22, 338
visual applications, A-6–7	Gresham's Law, 268, CD3.10:1	See also Pipelining
See also Graphics processing	Grids, A-19	Heap
units (GPUs)	Guard digits	allocating space on, 119–22
GPU system architectures, A-7–12	defined, 254	defined, 120
graphics logical pipeline, A-10	rounding with, 254–55	Heterogeneous systems, A-4–5
heterogeneous, A-7–9		architecture, A-7–9
implications for, A-24	Н	defined, A-3
interfaces and drivers, A-9		Hexadecimal numbers, 94
unified, A-10–12	Half precision, A-42	binary number conversion to, 95
Graph coloring, CD2.15:11	Halfwords, 126	defined, 94
Graphics displays	Handlers	High-level languages, 11–13
computer hardware support, 17	defined, 499	benefits, 13
LCD, 16	TLB miss, 500	computer architectures, CD2.20:4
Graphics logical pipeline, A-10	Handshaking protocol, 570	defined, 12
Graphics processing units (GPUs), 640–46	Hard disks	importance, 12

High-level optimizations, CD2.15:3-4	IEEE 802.3, CD6.14:8	Instruction formats
Hit rate, 440	I-format, 110	ARM, 158
Hit time	If statements, 111	defined, 94
cache performance and, 464	If-then-else, 105	jump instruction, 314
defined, 441	Immediate instructions, 85	Instruction latency, 394
Hit under miss, 527	Imprecise interrupts, 376, CD4.15:3	Instruction-level parallelism (ILP)
Hold time, C-54	Index-out-of-bounds check, 109	compiler exploitation, CD4.15:4–5
Horizontal microcode, D-32	Induction variable elimination,	defined, 41, 377
Hot-swapping, 591	CD2.15:6	exploitation, increasing, 388
Hubs, CD6.11:6, CD6.11:7	Inheritance, CD2.15:14	See also Parallelism
Hybrid hard disks, 567	In-order commit, 386	Instruction mix, 37, CD1.10:9
,	Input devices, 15	Instructions, 74–213
1	Inputs, 304	add immediate, 86
•	Instances, CD2.15:14	addition, 218
IBM 360/85, CD5.13:6	Instruction count, 35, 36	arithmetic-logical, 294
IBM 370, CD6.14:2	Instruction cycle timings, B3-3	ARM, 156–60assembly, 79
IBM 701, CD1.10:4	abbreviations, B3-4	basic block, 107–8
IBM 7030, CD4.15:1	ARM11, B3-15–18	cache-aware, 533
IBM ALOG, CD3.10:6	ARM11 address calculation cycles,	conditional branch, 105
IBM Blue Genie, CD7.14:8–9	B3-14	conditional move, 369
IBM Cell QS20	ARM7TDMI, B3-6	core, 268
base versus fully optimized	ARM7TDMI core, B3-5	data transfer, 82
performance, 669	ARM7TDMI multiplier, B3-5	decision-making, 104–13
characteristics, 663	ARM9TDMI core, B3-6–7	defined, 11, 76
defined, 665	calculation steps, B3-3-4	as electronic signals, 93
illustrated, 662	dynamic predictor, B3-15	encoding, 97
	pipeline behavior statements, B3-5	fetching, 295
LBMHD performance, 668	return stack, B3-15	fields, 95
roofline model, 664	static predictor, B3-14	floating-point, 247–49
SpMV performance, 681	tables, B3-3-5	floating-point (x86), 260
IBM Personal Computer, CD1.10:7,	Instruction decode/register file read stage	flushing, 363, 364, 376
CD2.20:5	control line, 347	immediate, 85
IBM System/360 computers, CD1.10:5,	load instruction, 334	introduction to, 76–77
CD3.10:4, CD3.10:5, CD5.13:5		
IBM z/VM, CD5.13:7	store instruction, 338 Instruction execution illustrations,	I/O, 575
ID stage		jump, 110, 114
branch execution in, 364	CD4.12:16–30	left-to-right flow, 332
load instructions, 335	clock cycles 1 and 2, CD4.12:20	load, 82
store instruction in, 335	clock cycles 3 and 4, CD4.12:21	load linked, 135
IEEE 754 floating-point standard,	clock cycles 5 and 6, CD4.12:22	logical operations, 100–4
234–236, CD3.10:7–9	clock cycles 7 and 8, CD4.12:23	memory access, A-33–34
first chips, CD3.10:7–9	clock cycle 9, CD4.12:24	memory-reference, 287
in GPU arithmetic, A-42–43	examples, CD4.12:19–24	multiplication, 225
implementation, CD3.10:9	forwarding, CD4.12:25,	nop, 359
rounding modes, 255	CD4.12:26–27	performance, 33–34
today, CD3.10:9	no hazard, CD4.12:16–19	pipeline sequence, 358
See also Floating point	pipelines with stalls and forwarding,	PTX, A-31, A-32
IEEE 802.11, CD6.11:8–10	CD4.12:25, CD4.12:28–30	representation in computer, 93–100
with base stations, CD6.11:9	Instruction fetch stage	restartable, 499
cellular telephony versus, CD6.11:10	control line, 347	resuming, 502
defined, CD6.11:8	load instruction, 334	R-type, 294–5
Wired Equivalent privacy, CD6.11:10	store instruction, 338	store, 84

Index

Instructions (continued)	Interference graphs, CD2.15:11	processor communication, 575-76
store conditional, 134	Interleaving, 458, 460	rate, 582, 596, 597
subtraction, 218	Interlock cycles, B3-6	requests, 558, 604
thread, A-30–31	ARM10E, B3-12	standards, 570
vector, 638	ARM10E core, B3-11	system performance impact,
as words, 76	ARM9E core, B3-9	585–586
x86, 161–69	ARM9Erev2, B3-10	systems, 556
See also Arithmetic instructions;	ARM9TDMI, B3-7	transactions, 569
MIPS; Operands	ARM9TDMI multiplier, B3-7	I/O benchmarks, 582–83
Instruction set architecture	Intel XScale, B3-12, B3-13	file system, 583–84
ARM, 156–60	Intel XScale multiplier, B3-12	transaction processing,
branch address calculation, 296	StrongARM1, B3-9	582–83
defined, 21, 54	StrongARM1 core, B3-8	Web, 583–84
history, 174	StrongARM1 multiplier, B3-8	See also Benchmarks
maintaining, 54	Intermediate addressing, 129, 130	I/O devices
protection and, 514–15	Internetworking, CD6.11:1–3	characteristics, 557
thread, A-31–34	Interprocedural analysis, CD2.15:13	commands to, 574-75
virtual machine support, 513–14	Interrupt-driven I/O, 575	diversity, 557
Instruction sets	Interrupt enable, 498	expandability, 558
ARM, 369	Interrupt priority levels (IPLs),	illustrated, 556
design for pipelining, 321	576–78	interfacing, 572–81
NVIDIA GeForce 8800, A-49	defined, 577	maximum number, 603
x86 growth, 171	higher, 578	multiple paths to, 604
Instructions per clock cycle (IPC), 377	Interrupts	priorities, 576–78
Integrated circuits (ICs)	defined, 234, 371	reads/writes to, 558
cost, 46	event types and, 371	transfers, 571, 578–79
defined, 26	exceptions versus, 370–71	I/O interconnects
manufacturing process, 45	imprecise, 376, CD4.15:3	function, 569
very large-scale (VLSIs), 26	precise, 376	of x86 processors, 570–72
See also specific chips	vectored, 372	I/O systems
Integrated Data Store (IDS), CD6.14:4	Intrinsity FastMATH processor,	design, 584–85
Intel IA-64 architecture, CD4.15:4	454–56	design example, 595–97
Intel Nehalem	caches, 455	history, 604
address translation for, 526	data miss rates, 456, 470	operating system responsibilities
caches, 527	defined, 454	and, 573–74
die processor photo, 525	read processing, 492	organization, 571
memory hierarchies, 526–29	TLB, 490	peak transfer rate, 603
miss penalty reduction techniques,	write-through processing, 492	performance, 604
527–29	Inverted page tables, 486	power evaluation, 597–98
TLB hardware for, 526	I/O, CD6.14:1–8	weakest link, 584
Intel Paragon, CD7.14:7	bandwidth, 604	Issue packets, 379
Intel Threading Building Blocks, A-60	chip sets, 572	•
Intel Xeon e5345	coherence problem for, 581	J
base versus fully optimized	controllers, 579, 601	-
performance, 669	future directions, 604	Java
characteristics, 663	instructions, 575	bytecode, 142
defined, 663	interrupt-driven, 575	bytecode architecture, CD2.15:16
illustrated, 663	memory-mapped, 574	characters in, 126–27
LBMHD performance, 668	parallelism and, 585–592	compiling in, CD2.15:18–19
roofline model, 664	performance, 558	goals, 142
SpMV performance, 681	performance measures, 582–84	interpreting, 143, 156, CD2.15:14–15

keywords, CD2.15:20	Leaf procedures	Local area networks (LANs), CD6.11:5–8,
method invocation in,	defined, 117	CD6.14:8
CD2.15:19-20	example, 126	defined, 25
pointers, CD2.15:25	See also Procedures	Ethernet, CD6.11:5–6
primitive types, CD2.15:25	Least recently used (LRU)	hubs, CD6.11:6, CD6.11:7
programs, starting, 142–43	as block replacement strategy, 507	routers, CD6.11:6
reference types, CD2.15:25	defined, 471	switches, CD6.11:6-7
sort algorithms, 152	pages, 485	wireless, CD6.11:8-11
strings in, 126–27	Least significant bits, C-32	See also Networks
translation hierarchy, 142	defined, 87	Locality
while loop compilation in,	Left-to-right instruction flow, 332	principle, 438, 439
CD2.15:17-18	Level-sensitive clocking, C-74, C-75–76	spatial, 438–39, 442
Java Virtual Machine (JVM), 143,	defined, C-74	temporal, 438, 439, 442
CD2.15:15	two-phase, C-75	Local memory, A-21, A-40
Job-level parallelism, 618	Lines. See Blocks	Local miss rates, 475
Jump instructions, 298	Linkers, 137–40	Local optimization, CD2.15:4-6
branch instruction versus, 314	defined, 137	defined, CD2.15:4
control and datapath for, 315	executable files, 137	implementing, CD2.15:7
implementing, 314	steps, 137	See also Optimization
instruction format, 314	using, 138–40	Locks, 625
Just In Time (JIT) compilers,	Linking object files, 138–39	Lock synchronization, 133
143, 673	Linpack, 650, CD3.10:3	Logic
	Liquid crystal displays (LCDs), 16	address select, D-24, D-25
K	Live range, CD2.15:10	ALU control, D-6
_	Livermore Loops, CD1.10:10	combinational, 292, C-5, C-9–20
Karnaugh maps, C-18	Load balancing, 623–24	components, 291
Kernel mode, 495	Loaders, 140	control unit equations, D-11
Kernels	Load instructions	design, 289–7, C-1–79
CUDA, A-19, A-24	access, A-41	equations, C-7
defined, A-19	base register, 305	minimization, C-18
	compiling with, 84	programmable array (PAL), C-78
L	datapath in operation for, 311	sequential, C-5, C-56–58
LAPACK, 259	defined, 82	two-level, C-11–14
Laptop computers, 18	EX stage, 336	Logical operations, 100–104
Large-scale multiprocessors,	halfword unsigned, 157	ARM, 158
CD7.14:6–7, CD7.14:8–9		
Latches	ID stage, 335	defined, 100–4
defined, C-51	IF stage, 335	NOR, 101
	load byte unsigned, 157 load half, 126	NOT, 102
D latch, C-51, C-52		OR, 101 shifts, 102
Latency	load upper immediate, 160	
constraints, 584	MEM stage, 337	Long-haul networks, CD6.11:5
instruction, 394	pipelined datapath in, 341	Long instruction word (LIW),
memory, A-74–75	signed, 123	CD4.15:4
pipeline, 330	unit for implementing, 297	Lookup tables (LUTs), C-79
rotational, 562	unsigned, 123	Loops, 106–8
use, 381, 382	WB stage, 337	conditional branches in, 111
Lattice Boltzmann Magneto-	See also Store instructions	defined, 106
Hydrodynamics (LBMHD), 666–68	Load-store architectures, CD2.20:2	for, 152, CD2.15:25
defined, 666	Load-use data hazard, 324, 363	prediction and, 366
optimizations, 667–68	Load-use stalls, 363	test, 153, 154
performance, 668	Load word, 82, 84	while, compiling, 106–7

I-14 Index

Loop unrolling	parallel system, A-36-41	Memory-mapped I/O
defined, 383, CD2.15:3	read-only (ROM), C-14–16	defined, 574
for multiple-issue pipelines, 383	SDRAM, 459	Memory-stall clock cycles, 461, 462
register renaming and, 383	secondary, 22	Message passing
	shared, A-21, A-39–40	defined, 627
M	spaces, A-39	multiprocessors, 627–31
	SRAM, C-58–62	Metastability, C-76
Machine code, 94	stalls, 464	Methods
Machine instructions, 94	technologies for building, 25–26	defined, CD2.15:14
Machine language	texture, A-40	invoking in Java, CD2.15:19–20
defined, 11, 94	virtual, 478–503	Microarchitectures
illustrated, 12	volatile, 21	AMD Opteron X4 (Barcelona), 391
SRAM, 20	Memory access instructions, A-33–34	defined, 390
Magnetic disks. See Hard disks	Memory access stage	Microcode
Magnetic tapes, 601–2	control line, 348	assembler, D-30
defined, 23	load instruction, 336	control unit as, D-28
use history, 601–2	store instruction, 338	defined, D-27
Main memory, 479	Memory consistency model, 524	dispatch ROMs, D-30–31
defined, 21	Memory elements, C-50–58	field translation, D-29
page tables, 487	clocked, C-51	horizontal, D-32
physical addresses, 478, 479	D flip-flop, C-51, C-53	vertical, D-32
See also Memory	D latch, C-52	Microinstructions, D-31
Mapping applications, A-55–72	DRAMs, C-63–67	Microprocessors
Mark computers, CD1.10:3	flip-flop, C-51	design shift, 619
Mealy machine, 518, C-68, C-71, C-72	hold time, C-54	multicore, 8, 41, 618
Mean time between failures	latch, C-51	Microprograms
(MTBF), 559	setup time, C-53, C-54	as abstract control representation,
Mean time to failure (MTTF), 559, 560	SRAMs, C-58–62	D-30
fallacies, 599	unclocked, C-51	translating to hardware, D-28-32
ratings, 586	Memory hierarchies	Migration, 522
Mean time to repair (MTTR), 559, 560	block (or line), 440	Million instructions per second
Memory	cache performance, 461–78	(MIPS), 53
addresses, 90	caches, 443–61	Minterms
affinity, 666, 681	common framework, 504–511	defined, C-12, D-20
atomic, A-21	defined, 439	in PLA implementation, D-20
bandwidth, 457, 458	design challenges, 511	MIP-map, A-44
cache, 20, 443-78	development, CD5.13:5-7	MIPS, 78, 97–98
CAM, 471	exploiting, 436–534	arithmetic core, 267
constant, A-40	inclusion, 528	arithmetic instructions, 77
control, D-26	level pairs, 441	ARM similarities, 157
defined, 17	multiple levels, 440	control registers, 497
DRAM, 18–19, 439, 457, 459, C-63–65	overall operation of, 493	control unit, D-10
efficiency, 628	parallelism and, 520–24	exceptions in, 371–72
flash, 22, 23, 566-68, CD6.14:4	pitfalls, 529–33	instruction classes, 173
global, A-21, A-39	program execution time and, 477	Mirroring, 588
GPU, 642	quantitative design parameters, 504	Miss penalty
instructions, datapath for, 300	reliance on, 441	defined, 441
local, A-21, A-40	structure, 440	determination, 450
main, 21	structure diagram, 442	multilevel caches, reducing,
nonvolatile, 21	variance, 477	473–77
operands, 81–82	virtual memory, 478-503	reduction techniques, 527–29

operands, 81-82

Miss rates	Multiple instruction single data	TFLOPS, CD7.14:5
block size versus, 451	(MISD), 635	UMA, 625
data cache, 505	Multiple issue, 377–86	Multistage networks, 648
defined, 440	code scheduling, 382	Multithreaded multiprocessor
global, 475	defined, 377	architecture, A-25–36
improvement, 450	dynamic, 378, 383-86	conclusion, A-36
Intrinsity FastMATH	issue packets, 379	ISA, A-31–34
processor, 456	loop unrolling and, 383	massive multithreading, A-25-26
local, 475	processors, 377, 378	multiprocessor, A-26–27
miss sources, 510	static, 378, 379–83	multiprocessor comparison,
split cache, 456	throughput and, 387	A-35–36
Miss under miss, 527	Multiplexors, C-10	SIMT, A-27–30
Moore machines, 518, C-68,	controls, 517	special function units
C-71, C-72	in datapath, 306	(SFUs), A-35
Moore's law, 640, A-72–73	defined, 288	streaming processor (SP), A-34
Most significant bit	forwarding, control values,	thread instructions, A-30–31
1-bit ALU for, C-33	356	threads/thread blocks management,
defined, 87	selector control, 300	A-30
Motherboards, 17	two-input, C-10	Multithreading, A-25–26
Mouse anatomy, 16	Multiplicand, 220	coarse-grained, 631–32
MS-DOS, CD5.13:10–11	Multiplication, 220–25	defined, 620
Multicore multiprocessors, 41	fast, hardware, 221	fine-grained, 631, 633
benchmarking with roofline model,	faster, 225	hardware, 631–34
661–70	first algorithm, 222	simultaneous (SMT), 632–34
characteristics, 663	floating-point, 242–46	Must-information, CD2.15:14
defined, 8, 618	hardware, 221–23	Mutual exclusion, 133
system organization, 662	instructions, 226	Widtual Caciusion, 133
two sockets, 662	multiplicand, 220	N
MULTICS (Multiplexed Information	multiplier, 220	N
and Computing Service),	operands, 220	Name dependence, 383
CD5.13:8–9	product, 220	
Multilevel caches	sequential version, 221–23	NAND gates C. 8
complications, 475	signed, 224	NAND gates, C-8
defined, 461, 475	See also Arithmetic	NAS (NASA Advanced Supercomputing),
		652
miss penalty, reducing, 473–77	Multiplier, 220	N-body
performance of, 473–74	Multiply-add (MAD), A-42	all-pairs algorithm, A-65
summary, 477–78 See also Caches	Multiprograms	GPU simulation, A-71
	Multiprocessors	mathematics, A-65–67
Multimedia arithmetic, 218–19 Multimedia extensions	benchmarks, 650–52	multiple threads per body,
	bus-based coherent, CD7.14:6	A-68–69
vector versus, 639	defined, 618	optimization, A-67
Multiple-clock-cycle pipeline	historical perspective, 674	performance comparison,
diagrams, 342	large-scale, CD7.14:6–7,	A-69–70
defined, 342	CD7.14:8–9	results, A-70–72
five instructions, 343	message-passing, 627–31	shared memory use, A-67–68
illustrated, 343	multithreaded architecture,	Negation shortcut, 90–91
Multiple dimension arrays, 254	A-26–27, A-35–36	Nested procedures, 117–19
Multiple instruction multiple data	organization, 617, 627	compiling recursive procedure
(MIMD), 645	for performance, 672–73	showing, 117–18
defined, 634	shared memory, 619, 624–26	defined, 117
first multiprocessor, CD7.14:3	software, 618	Network of Workstations, CD7.14:7-8

I-16 Index

Networks, 24–25, 598–99, CD6.11:1–11	denormalized, 257	32-bit immediate, 127–28
advantages, 24	hexadecimal, 94–95	adding, 217
bandwidth, 647	signed, 86–90	arithmetic instructions, 80
characteristics, CD6.11:1	unsigned, 86–90	compiling assignment when in
crossbar, 648	NVIDIA GeForce 3, CDA.11:1	memory, 82–83
fully connected, 647, 648	NVIDIA GeForce 8800, A-46-55,	constant, 85–86
local area (LANs), 25, CD6.11:5-8,	CDA.11:3	division, 227
CD6.14:8	all-pairs N-body algorithm, A-71	floating-point, 248, 261
long-haul, CD6.11:5	dense linear algebra computations,	memory, 81–83
multistage, 648	A-51–53	MIPS, 78
OSI model layers, CD6.11:2	FFT performance, A-53	multiplication, 220
peer-to-peer, CD6.11:2	instruction set, A-49	See also Instructions
performance, CD6.11:7–8	performance, A-51	Operating systems
protocol families/suites, CD6.11:1	rasterization, A-50	brief history, CD5.13:8-11
switched, CD6.11:5	ROP, A-50-51	defined, 10
wide area (WANs), 25, CD6.14:7-8	scalability, A-51	disk access scheduling pitfall, 602-3
Network topologies, 646–49	sorting performance, A-54-55	encapsulation, 21
implementing, 648-49	special function approximation	Operations
multistage, 649	statistics, A-43	hardware, 77–80
Newton's iteration, 253	special function unit (SFU), A-50	logical, 100-4
Next state	streaming multiprocessor (SM),	x86 integer, 165-67
nonsequential, D-24	A-48-49	Optical disks
sequential, D-23	streaming processor, A-49–50	defined, 23
Next-state function, 517, C-67	streaming processor array (SPA), A-46	technology, 24
defined, 517	texture/processor cluster (TPC),	Optimization
implementing, with sequencer,	A-47–48	class explanation, CD2.15:13
D-22-28	NVIDIA GPU architecture, 642–45	compiler, 155
Next-state outputs, D-10, D-12–13		control implementation, D-27-28
example, D-12–13	0	global, CD2.15:4–6
implementation, D-12		high-level, CD2.15:3
logic equations, D-12–13	Object files, 136	local, CD2.15:4–6, CD2.15:7
truth tables, D-15	debugging information, 137	manual, 155
Nonblocking assignment, C-24	header, 136	Out-of-order execution
Nonblocking caches, 389, 527	linking, 138–39	defined, 386
Nonuniform memory access	relocation information, 136	performance complexity, 475
(NUMA), 625	static data segment, 136	processors, 389
Nonvolatile memory, 21	symbol table, 136, 137	Output devices, 15
Nonvolatile storage, 561	text segment, 136	Overflow
Nops, 359	Object-oriented languages	defined, 88, 233
NOR flash memory, 567, CD6.14:4	brief history, CD2.20:7	detection, 218
NOR gates, C-8	defined, 156, CD2.15:14	exceptions, 373
cross-coupled, C-50	See also Java	floating point, 233
D latch implemented with, C-52	One's complement, 93, C-29	occurrence, 90
NOR operation, 101	Opcodes	saturation and, 219
North bridge, 570	control line setting and, 309	subtraction, 218
NOT operation, 102	defined, 95, 305	_
No write allocation, 453	OpenGL, A-13	P
Numbers	OpenMP (Open MultiProcessing), 652	D 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
binary, 87 computer versus real-world, 257	Open Systems Interconnect (OSI) model,	Packed floating-point format, 261
decimal, 86, 89	CD6.11:2	Page faults, 484
ucciiiai, 00, 07	Operands, 80–86	for data access, 499

defined, 479, 480	ROP, A-41	response time, 28, 29
handling, 481, 496-502	shared memory, A-39-40	sorting, A-54–55
virtual address causing, 500	surfaces, A-41	throughput, 28
See also Virtual memory	texture memory, A-40	time measurement, 30
Pages	See also Graphics processing units	Petabytes, 5
defined, 479	(GPUs)	Physical addresses, 479
dirty, 487	Parallel processing programs, 620-24	defined, 478
finding, 482	creation difficulty, 620–24	mapping to, 480
LRU, 485	defined, 618	space, 624, 626
offset, 480	for message passing, 628–29	Physically addressed caches, 494
physical number, 480	for shared address space, 625–26	Physical memory. See Main memory
placing, 482	use of, 672	Pipelined branches, 364
size, 481	Parallel reduction, A-62	Pipelined control, 345–49
virtual number, 480	Parallel scan, A-60–63	control lines, 346, 347
See also Virtual memory	CUDA template, A-61	overview illustration, 361
Page tables, 506	defined, A-60	specifying, 347
defined, 482	inclusive, A-60	See also Control
illustrated, 485	tree-based, A-62	Pipelined datapaths, 330-44
indexing, 483	Parallel software, 619	with connected control signals, 348
inverted, 486	Paravirtualization, 533	with control signals, 345
levels, 486–487	Parity, 588	corrected, 341
main memory, 487	bit-interleaved, 588	illustrated, 333
register, 483	block-interleaved, 588–590	in load instruction stages, 341
storage reduction techniques,	code, C-65	Pipelined dependencies, 350
486–487	disk, 589	Pipeline registers
updating, 482	distributed block-interleaved,	before forwarding, 354
VMM, 515	589–90	dependences, 352, 353
Parallelism, 41, 377–89	PARSEC (Princeton Application	forwarding unit selection, 357
data-level, 635	Repository for Shared Memory	Pipelines
debates, CD7.14:4–6	Computers), 652	AMD Opteron X4 (Barcelona),
GPUs and, 641, A-76	Pass transistor, C-63	390–92
instruction-level, 41, 377, 388	PCI-Express (PCIe), A-8	branch instruction impact, 362
I/O and, 585–592	PC-relative addressing, 111, 130	effectiveness, improving, CD4.15:3–4
job-level, 618	Peak floating-point performance, 654	execute and address calculation stage
memory hierarchies and, 520–24	Peak transfer rate, 603	336, 338
multicore and, 634	Peer-to-peer networks, CD6.11:2	five-stage, 319, 334–36, 344
multiple issue, 377–86	Pentium bug morality play, 264–65	fixed-function graphics, CDA.11:1
multithreading and, 634	Performance, 26–38	graphic representation, 323,
performance benefits, 43	assessing, 26–27	342–44
process-level, 618	classic CPU equation, 35–37	instruction decode and register file
task, A-24	components, 37	read stage, 334, 338
thread, A-22	CPU, 30–32	instruction fetch stage, 334, 338
Parallel memory system, A-36–41	defining, 27–30	instructions sequence, 358
caches, A-38	equation, using, 34	latency, 330
constant memory, A-40	improving, 32–33	memory access stage, 336, 338
DRAM considerations, A-37–38	instruction, 33–34	multiple-clock-cycle diagrams, 342
•		
global memory, A-39 load/store access, A-41	measuring, 30–32, CD1.10:9 networks, CD6.11:7–8	performance bottlenecks, 388 single-clock-cycle diagrams, 342
local memory, A-40	program, 38	
memory spaces, A-39	ratio, 30	stages, 319 static two-issue, 380
MMU, A-38–39	relative, 29	write-back stage, 336, 338
1V11V1 U, A-JO-J7	15141175, 47	WIIIC-DACK STARE, 220, 220

Index

Pipeline stalls, 324–25	software development with	Processors, 284–395
avoiding with code reordering,	multiprocessors, 671	control, 19
324–25	VMM implementation, 531-33	as cores, 41
data hazards and, 357-60	See also Fallacies	datapath, 19
defined, 324	Pixel shader example, A-15-17	defined, 14, 19
insertion, 360	Pizza boxes, 593	dynamic multiple-issue, 378
load-use, 363	Pointers	I/O communication with, 575–76
as solution to control hazards, 326	arrays versus, 152–56	multiple-issue, 377, 378
Pipelining, 316–30	incrementing, 154	out-of-order execution, 389, 475
advanced, 388–89	Java, CD2.15:25	performance growth, 42
benefits, 317	stack, 115, 116	ROP, A-12, A-41
control hazards, 325–14	Polling, 575	speculation, 378–79
data hazards, 322–25	Pop, 115	static multiple-issue, 378, 379–83
defined, 316	Power	streaming, 643, A-34
exceptions and, 372–77	clock rate and, 39	superscalar, 383, 384, 385–386, 632
execution time and, 330	critical nature of, 55	CD4.15:4
fallacies, 393	efficiency, 388–89	technologies for building, 25–26
hazards, 321–29	relative, 40	two-issue, 381
instruction set design for, 321	PowerPC	vector, 636–39
laundry analogy, 317	P + Q redundancy, 590	VLIW, 380
overview, 316–30	Precise interrupts, 376	Product, 220
paradox, 317	Prediction	Product of sums, C-11
performance improvement, 321	2-bit scheme, 367	Program counters (PCs), 293
pitfall, 393–94		changing with conditional
	accuracy, 366, 367	branch, 369
simultaneous executing instructions, 330	dynamic branch, 366–69	defined, 110, 293
	loops and, 366	
speed-up formula, 319	steady-state, 366	exception, 495, 497
structural hazards, 321–22, 338	Prefetching, 533, 666	incrementing, 293, 295
summary, 329	Primary memory. See Main memory	instruction updates, 334
throughput and, 330	Primitive types, CD2.15:25	Programmable array logic (PAL),
Pitfalls	Priority levels, 576–78	C-78
address space extension, 531	Procedure calls	Programmable logic arrays (PLAs)
associativity, 531	preservation across, 119	component dots illustration, C-16
defined, 51	Procedures, 113–22	control function implementation,
GPUs, A-74–75	compiling, 115	D-7, D-20–21
ignoring memory system	compiling, showing nested	defined, C-12
behavior, 530	procedure linking, 117–18	example, C-13–14
magnetic tape backups, 601–2	defined, 113	illustrated, C-13
memory hierarchies, 529–33	execution steps, 113	ROMs and, C-15–16
moving functions to I/O	frames, 119	size, D-20
processor, 601	leaf, 117	truth table implementation, C-13
network feature provision, 600–601	nested, 117–18	Programmable logic devices (PLDs),
operating system disk accesses, 602–3	recursive, 121	C-78
out-of-order processor	for setting arrays to zero, 153	Programmable real-time graphics,
evaluation, 531	sort, 145–51	CDA.11:2–3
peak transfer rate performance, 603	strcpy, 124–25	Programmable ROMs (PROMs), C-14
performance equation subset, 52–53	string copy, 124–25	Programming languages
pipelining, 393–94	swap, 144–45	brief history of, CD2.20:6-7
pointer to automatic variables, 171	Process identifiers, 496	object-oriented, 156
sequential word addresses, 171	Process-level parallelism, 618	variables, 80
simulating cache, 529–30	Processor-memory bus, 568	See also specific languages

D	P. 1. 1. 500 500	B. 11. 120
Program performance	Rank units, 592, 593	Register addressing, 130
elements affecting, 38	Rasterization, A-50	Register allocation, CD2.15:10–12
understanding, 9	Raster operation (ROP) processors,	Register files, C-50, C-54–56
Programs	A-12, A-41	in behavioral Verilog, C-57
assembly language, 135	fixed function, A-41	defined, 294, C-50, C-54
Java, starting, 142–43	GeForce 8800, A-50–51	single, 300
parallel processing, 620–24	Raster refresh buffer, 17	two read ports implementation,
starting, 135–43	Read-only memories (ROMs), C-14–16	C-55
translating, 135–43	control entries, D-16–17	with two read ports/one write port,
Propagate	control function encoding, D-18–19	C-55
defined, C-40	defined, C-14	write port implementation, C-56
example, C-44	dispatch, D-25	Register-memory architecture,
super, C-41	implementation, D-15-19	CD2.20:2
Protected keywords, CD2.15:20	logic function encoding, C-15	Registers
Protection	overhead, D-18	architectural, 390
defined, 478	PLAs and, C-15–16	base, 83
group, 588	programmable (PROM), C-14	Cause, 372, 576, 577
implementing, 494–96	total size, D-16	clock cycle time and, 81
mechanisms, CD5.13:7	Read-stall cycles, 462	compiling C assignment with, 81
VMs for, 512	Receive message routine, 627	defined, 80
Protocol families/suites	Recursive procedures, 121	destination, 96, 305
analogy, CD6.11:2-3	clone invocation, 117	left half, 334
defined, CD6.11:1	See also Procedures	MIPS conventions, 121
goal, CD6.11:2	Reduced instruction set computer	number specification, 295
Protocol stacks, CD6.11:3	(RISC) architectures	page table, 483
Pseudoinstructions	See also Desktop and server RISCs;	pipeline, 352, 353, 354, 357
defined, 136	Embedded RISCs	primitives, 80–81
Pthreads (POSIX threads), 652	Reduction, 626	renaming, 383
PTX instructions, A-31, A-32	Redundant arrays of inexpensive disks	right half, 334
Public keywords, CD2.15:20	(RAID), 586–592	spilling, 85
Push	calculation of, 591	Status, 372, 576, 577
defined, 115	defined, 586	temporary, 81, 116
using, 117	example illustration, 587	variables, 81
0.	history, CD6.14:6–7	x86, 163
Q	PCI controller, 597	Relational databases, CD6.14:5
4	popularity, 586	Relative performance, 29
Quad words, 165	RAID 0, 587	Relative power, 40
Quicksort, 475, 476	RAID 1, 588, CD6.14:6	Reliability, 559
Quotient, 226	RAID $1 + 0,592$	Remainder
Quotient, 220	RAID 2, 588, CD6.14:6	defined, 226
В	RAID 3, 588, CD6.14:6, CD6.14:7	Reorder buffers, 385, 388, 389
R	RAID 4, 588–89, CD6.14:6	Replication, 522
D 0.50	RAID 5, 589–90, CD6.14:6, CD6.14:7	Requested word first, 451
Race, C-73	RAID 6, 590	Reservation stations
Radix sort, 475, 476, A-63–65	spread of, CD6.14:7	buffering operands in, 386
CUDA code, A-64	summary, 590–91	defined, 385
implementation, A-63–65	use statistics, CD6.14:7	Response time, 28, 29
RAID. See Redundant arrays of	Reference bit, 485	Restartable instructions, 499
inexpensive disks	References	Restorations, 559
RAMAC (Random Access Method	absolute, 137	Return address, 114
of Accounting and Control),	types, CD2.15:25	Return from exception (ERET), 495
CD6.14:1, CD6.14:2	types, CD2.13.23	Return from exception (ERE1), 495

I-20

R-format, 305	Seek time, 561	asserted, 291, C-4
ALU operations, 296	Segmentation, 481	control, 292, 306, 307, 308
Ripple carry	Selector values, C-10	deasserted, 291, C-4
adder, C-29	Semiconductors, 45	Sign and magnitude, 233
carry lookahead speed versus, C-46	Send message routine, 627	Sign bit, 89
RISC. See Desktop and server RISCs;	Sensitivity list, C-24	Signed division, 229–31
Embedded RISCs; Reduced	Sequencers	Signed multiplication, 224
instruction set computer (RISC)	explicit, D-32	Signed numbers, 86–93
architectures	implementing next-state function	sign and magnitude, 88
Roofline model, 653–61	with, D-22–28	treating as unsigned, 109
benchmarking multicores with,	Sequential logic, C-5	Sign extension, 296
661–70	Servers	defined, 123
with ceilings, 658, 660	cost and capability, 5	shortcut, 91–92
computational roofline, 659	defined, 5	Significands, 234
IBM Cell QS20, 664	See also Desktop and server RISCs	addition, 239
illustrated, 655	Set-associative caches, 465–66	multiplication, 244
Intel Xeon e5345, 664	address portions, 470	Silicon
I/O intensive kernel, 661	block replacement strategies, 507	crystal ingot, 45
Opteron generations, 656	choice of, 506	defined, 45
with overlapping areas shaded, 660	defined, 465	as key hardware technology, 54
peak floating-point performance, 654	four-way, 467, 472	wafers, 45
peak memory performance, 655	memory-block location, 466	SIMD (Single Instruction Multiple Data)
Sun UltraSPARC T2, 664	misses, 468–69	635, 645
with two kernels, 660		
•	n-way, 465	computers, CD7.14:1–3
Rotational latency, 562	two-way, 467	data vector, A-35
Rounding	See also Caches	extensions, CD7.14:3
accurate, 254	Setup time, C-53, C-54	for loops and, CD7.14:2
bits, 255	Shaders, CDA.11:3	massively parallel multiprocessors,
defined, 254	defined, A-14	CD7.14:1
with guard digits, 254	floating-point arithmetic, A-14	small-scale, CD7.14:3
IEEE 754 modes, 255	graphics, A-14–15	vector architecture, 636–39
Routers, CD6.11:6	pixel example, A-15–17	in x86, 635–36
Row-major order, 253	Shading languages, A-14	SIMMs (single inline memory modules)
R-type instructions, 294–5	Shared memory	CD5.13:4, CD5.13:5
datapath for, 309	caching in, A-58–60	Simple programmable logic devices
datapath in operation for, 310	CUDA, A-58	(SPLDs), C-78
	defined, A-21	Simplicity, 172
S	as low-latency memory, A-21	Simultaneous multithreading
	N-body and, A-67–68	(SMT), 632–34
Saturation, 219	per-CTA, A-39	defined, 632
Scalable GPUs, CDA.11:4–5	SRAM banks, A-40	support, 633
SCALAPAK, 259	See also Memory	thread-level parallelism, 633
Scaling	Shared memory multiprocessors (SMP),	unused issue slots, 634
strong, 623, 624	624–26	Single-clock-cycle pipeline
weak, 623	defined, 619, 624	diagrams, 342
Scientific notation	single physical address	defined, 342
adding numbers in, 238	space, 624	illustrated, 344
defined, 232	synchronization, 625	Single-cycle datapaths
for reals, 232	Shift operations, B1-7	illustrated, 331
Secondary memory, 22	Barrel shifter circuit outputs, B1-7	instruction execution, 332
Sectors, 561	Signals	See also Datapaths

Single-cycle implementation	on heap, 119–22	defined, 114
control function for, 313	on stack, 119	pop, 115
defined, 313	Sparse matrices, A-55–58	push, 115, 117
nonpipelined execution versus	Sparse Matrix-Vector multiply (SpMV),	Stalls, 324–25
pipelined execution, 320	665–66, 681, A-55,	avoiding with code reordering,
non-use of, 314–16	A-57, A-58	324–25
penalty, 316	CUDA version, A-57	behavioral Verilog with detection,
pipelined performance versus,	serial code, A-57	CD4.12:5–9
318–19	shared memory version, A-59	data hazards and, 357-60
Single-instruction multiple-thread	Spatial locality, 438–39	defined, 324
(SIMT), A-27–30	defined, 438	illustrations, CD4.12:25, CD4.12:28-30
defined, A-27	large block exploitation of, 450	insertion into pipeline, 360
multithreaded warp scheduling, A-28	tendency, 442	load-use, 363
overhead, A-35	SPEC, CD1.10:10–11	memory, 464
processor architecture, A-28	CPU benchmark, 48–49	as solution to control hazard, 326
warp execution and divergence,	defined, CD1.10:10	write-back scheme, 462
A-29–30	power benchmark, 49–50	write buffer, 462
Single instruction single data	SPEC89, CD1.10:10	Standby spares, 591
(SISD), 634	SPEC92, CD1.10:11	State
Single precision	SPEC95, CD1.10:11	in 2-bit prediction scheme, 367
binary representation, 236	SPEC2000, CD1.10:11	assignment, C-70, D-27
defined, 234	SPEC2006, 268, CD1.10:11	bits, D-8
See also Double precision	SPECPower, 583	exception, saving/restoring, 501
Single-program multiple data (SPMD),	SPECrate, 650	logic components, 291
634, A-22	SPECratio, 48	specification of, 482
Small Computer Systems Interface (SCSI)	Special function units (SFUs), A-35	State elements
disks, 563, 599	defined, A-43	clock and, 292
Smalltalk	GeForce 8800, A-50	combinational logic and, 292
Smalltalk-80, CD2.20:7	Speculation, 378–79	defined, 291, C-48
Snooping protocol, 522–23, 524	defined, 378	inputs, 291
Snoopy cache coherence, CD5.9:16	hardware-based, 386	register file, C-50
Software	implementation, 378	in storing/accessing instructions, 294
GPU driver, 641		
layers, 10	performance and, 379 problems, 379	Static branch prediction, 379 Static data
•		
multiprocessor, 618	recovery mechanism, 379	segment, 119
parallel, 619	Speed-up challenge, 621–24	Static multiple-issue processors, 378, 379–83
as service, 592, 672	balancing load, 623–24	
systems, 10	bigger problem, 622–23	control hazards and, 380 instruction sets, 379
Sort algorithms, 152 Sorting performance, A-54–55	Spilling registers, 85, 117 SPLASH/SPLASH 2 (Stanford Parallel	
		with MIPS ISA, 380–83
Sort procedure, 145–51	Applications for Shared Memory), 650–52	See also Multiple issue
code for body, 146–48		Static random access memories (SRAMs),
defined, 145	Split caches, 456	C-58-62
full procedure, 149–51	Stack architectures, CD2.20:3	array organization, C-62
passing parameters in, 149	Stack pointers	basic structure, C-61
preserving registers in, 149	adjustment, 117	defined, 20, C-58
procedure call, 148	defined, 115	fixed access time, C-58
register allocation for, 146	values, 117	large, C-59
See also Procedures	Stacks	read/write initiation, C-59
South bridge, 570	allocating space on, 119	synchronous (SSRAMs), C-60
Space allocation	for arguments, 151	three-state buffers, C-59, C-60

I-22

Static variables, 119	Structured Query Language (SQL),	defined, C-76
Status register, 576	CD6.14:5	from D flip-flop, C-76
illustrated, 577	Subnormals, 257	failure, C-77
Steady-state prediction, 366	Subtracks, 592	Synchronous bus, 569
Sticky bits, 255	Subtraction, 216–21	Synchronous DRAM (SRAM),
Storage	binary, 216–17	459, C-60, C-65
disk, 561–65	floating-point, 247	Synchronous SRAM (SSRAM), C-60
flash, 566–68	negative number, 218	Synchronous system, C-48
nonvolatile, 561	overflow, 218	Syntax tree, CD2.15:3
Storage area networks (SANs),	See also Arithmetic	System Performance Evaluation
CD6.11:11	Sum of products, C-11, C-12	Cooperative. See SPEC
Store buffers, 389	Sun Fire x4150 server, 592–98	Systems software, 10
Stored program concept, 77	front/rear illustration, 594	SystemVerilog
as computer principle, 99	idle and peak power, 598	cache controller, CD5.9:1–9
illustrated, 100	logical connections and	cache data and tag modules,
principles, 171	bandwidths, 595	CD5.9:5
Store instructions	minimum memory, 597	FSM, CD5.9:6–9
access, A-41	Sun UltraSPARC T2 (Niagara 2),	simple cache block diagram,
base register, 305	633, 644	CD5.9:3
defined, 84	base versus fully optimized	
		type declarations, CD5.9:1, CD5.9:2
EX stage, 339	performance, 669	CD3.9:2
ID stage, 335	characteristics, 663	_
IF stage, 335	defined, 663	Т
instruction dependency, 357	illustrated, 662	_
MEM stage, 340	LBMHD performance, 668	Tags
unit for implementing, 297	roofline model, 664	defined, 444
WB stage, 340	SpMV performance, 681	in locating block, 470
See also Load instructions	Supercomputers, 5, CD4.15:1	page tables and, 484
Store word, 84	Superscalars	size of, 472–73
Strcpy procedure, 124–25	defined, 383, CD4.15:4	Tail call, 121
defined, 124	dynamic pipeline scheduling,	Task identifiers, 496
as leaf procedure, 125	384, 385–86	Task parallelism, A-24
pointers, 125	multithreading options, 632	TCP/IP packet format, CD6.11:4
See also Procedures	Surfaces, A-41	Telsa PTX ISA, A-31–34
Stream benchmark, 661	Swap procedure, 144–45	arithmetic instructions, A-33
Streaming multiprocessor (SM),	body code, 144	barrier synchronization, A-34
A-48–49	defined, 144	GPU thread instructions, A-32
Streaming processors, 643, A-34	full, 145	memory access instructions,
array (SPA), A-41, A-46	register allocation, 144	A-33–34
GeForce 8800, A-49–50	See also Procedures	Temporal locality, 439
Streaming SIMD Extension 2 (SSE2)	Swap space, 484	defined, 438
floating-point architecture,	Switched networks, CD6.11:5	tendency, 442
261–62	Switches, CD6.11:6–7	Temporary registers, 81, 116
Stretch computer, CD4.15:1	Symbol tables, 136	Terabytes, 5
Strings	Synchronization, 133–34	Tesla multiprocessor, 644
defined, 124	barrier, A-18, A-20, A-34	Texture memory, A-40
in Java, 126–27	defined, 625	Texture/processor cluster (TPC),
representation, 123	lock, 133	A-47–48
Striping, 587	overhead, reducing, 43	TFLOPS multiprocessor, CD7.14:5
Strong scaling, 623, 624	unlock, 133	Thrashing, 503
Structural hazards, 321-22, 338	Synchronizers	Thread blocks, 645

	Datatorn P1 21	TEO D1 47
creation, A-23 defined, A-19	Datatypes, B1-21	TEQ, B1-47
managing, A-30	LSL, B1-22	TST, B1-47-48
memory sharing, A-20	LSR, B1-22 MCRR, B1-23	USAD, B1-48–49 See also ARM instruction
synchronization, A-20		Timing
Thread dispatch, 645	MLA, B1-23	O
Thread dispatch, 643 Thread parallelism, A-22	MOV, B1-24	asynchronous inputs, C-76–77
Threads	MRRC, B1-24	level-sensitive, C-75–76
creation, A-23	MRS, B1-25	
	MSR, B1-25	methodologies, C-72–77
CUDA, A-36	MUL, B1-26	two-phase, C-75 TLB misses, 489
ISA, A-31–34	MVN, B1-26	•
managing, A-30	NEG, B1-27	entry point, 500
memory latencies and, A-74–75	NOP, B1-27	handler, 500
multiple, per body, A-68–69	ORR, B1-27	handling, 496–502
warps, A-27	PKH, B1-28	minimization, 681
Three Cs model, 509	PLD, B1-28	occurrence, 496
Three-state buffers, C-59, C-60	POP, B1-29	problem, 503
Throughput	PUSH, B1-29	See also Translation-lookaside
defined, 28	QDADD, B1-29–30	buffer (TLB)
multiple issue and, 387	REV, B1-30–31	Tomasulo's algorithm, CD4.15:2
pipelining and, 330, 387	RFE, B1-31	Tournament branch predicators,
Thumb instructions, B1-8, B1-10, B2-9	ROR, B1-31	369
ADC, B1-8	RSB, B1-32–33	Tracks, 561
ADD, B1-9	RSB, B1-31–32	Transaction Processing Council
ADR, B1-10	S ET E N D, B1-34–35	(TPC), 582
AND, B1-10	SADD, B1-33	Transaction processing (TP)
Arithmetic shift right, B1-11	SBC, B1-34	defined, 582
ASR, B1-11	SEL, B1-34	I/O benchmarks, 582–83
BIC, B1-12	SHADD, B1-35–36	Transfer time, 562
BKPT, B1-12	SMLA, B1-36–37	Transistors, 26
BL, B1-12	SMMLA, B1-37	Translation-lookaside buffer (TLB),
BLX, B1-13	SMUL, B1-38	488–90, CD5.13:5
Branch relative, B1-11	SRS, B1-39	associativities, 489
BXJ, B1-13	SSAT, B1-39	defined, 488
CDP, B1-14	SSUB, B1-39	illustrated, 488
CLZ, B1-14	STC, B1-39	integration, 490–94
CMN, B1-14	Addressing format, B1-40	Intrinsity FastMATH, 490
CMP, B1-15	STM, B1-40	typical values, 489
CPS, B1-16	Addressing modes, B1-41	See also TLB misses
CPY, B1-16	Memory addresses, B1-41	Tree-based parallel scan, A-62
Decode table, B1-8-10, B2-10	Pseudocode, B1-40	Truth tables, C-5
Decoding procedure, B2-9	Register number, B1-40	ALU control lines, D-5
Table efficiently, B2-9	STR, B1-42	for control bits, 304
Encodings, B2-9	Addressing modes, B1-42,	datapath control outputs, D-17
EOR, B1-16	B1-43	datapath control signals, D-14
LDC, B1-17, B1-19	Data types, B1-43	defined, 303
Addressing format, B1-17	System coprocessor, B1-44	example, C-5
LDM, B1-18	SUB, B1-44-45	next-state output bits, D-15
Addressing modes, B1-19	SWI, B1-45	PLA implementation, C-13
LDR, B1-20, B1-22	SWP, B1-45-46	Two-level logic, C-11–14
Addressing format, B1-20	SXT, B1-46–47	Two-phase clocking, C-75

I-24 Index

Two's complement representation, 88, 89	Variables	structural specification, C-21
advantage, 89	C language, 119	wire, C-21–22
defined, 88	programming language, 80	Vertical microcode, D-32
negation shortcut, 90–91	register, 80	Very large-scale integrated (VLSI)
rule, 92	static, 119	circuits, 26
sign extension shortcut, 91–92	storage class, 119	Very Long Instruction Word (VLIW)
TX-2 computer, CD7.14:3	type, 119	defined, 379
	VAX architecture, CD2.20:3, CD5.13:6	first generation computers,
U	Vectored interrupts, 372	CD4.15:4
	Vector processors, 636–39	processors, 380
Unconditional branches, 106	conventional code comparison, 636–37	VHDL, C-20–21
Underflow, 233		Video graphics array (VGA) controller A-3–4
Unicode	instructions, 638 multimedia extensions and, 639	Virtual addresses
alphabets, 126	scalar versus, 638	
defined, 126	See also Processors	causing page faults, 500 defined, 479
example alphabets, 126	Verilog	
Unified GPU architecture,	_	mapping from, 480
A-10–12	behavioral definition of MIPS ALU, C-25	size, 481 Virtualizable hardware, 513
illustrated, A-11	behavioral definition with bypassing,	Virtually addressed caches, 494
processor array, A-11–12	CD4.12:4–5	Virtually addressed caches, 454 Virtual machine monitors (VMMs)
Uniform memory access (UMA), 624–25,	behavioral definition with stalls for	defined, 512
A-9	loads, CD4.12:6–7, CD4.12:8–9	implementing, 531–33
defined, 624	behavioral specification, C-21,	laissez-faire attitude, 532
multiprocessors, 625	CD4.12:2–3	page tables, 515
Units	behavioral specification of multicycle	in performance improvement, 514
commit, 385, 388	MIPS design, CD4.12:11–12	requirements, 513
control, 289, 302–3, D-4–8, D-10,	behavioral specification with	Virtual machines (VMs), 511–15
D-12–13	simulation, CD4.12:1–5	benefits, 512
defined, 255	behavioral specification with stall	illusion, 515
floating point, 255	detection, CD4.12:5–9	instruction set architecture
hazard detection, 358, 359	behavioral specification with	support, 513–14
for load/store implementation, 297	synthesis, CD4.12:10–16	performance improvement, 514
rank, 592, 593	blocking assignment, C-24	for protection improvement, 512
special function (SFUs), A-35,	branch hazard logic implementation,	Virtual memory, 478–503
A-43, A-50	CD4.12:7–9	address translation, 479,
UNIVAC I, CD1.10:4	combinational logic, C-23–26	488–90
UNIX, CD2.20:7, CD5.13:8–11	datatypes, C-21–22	defined, 478
AT&T, CD5.13:9	defined, C-20	integration, 490–94
Berkeley version (BSD), CD5.13:9	forwarding implementation,	mechanism, 502
genius, CD5.13:11	CD4.12:3	motivations, 478–79
history, CD5.13:8–11	MIPS ALU definition in, C-35–38	page faults, 479, 484
Unlock synchronization, 133 Unsigned numbers, 86–93	modules, C-23	protection implementation,
e	multicycle MIPS datapath, CD4.12:13	494–96
Use latency defined, 381	nonblocking assignment, C-24	segmentation, 481
	operators, C-22	summary, 502
one-instruction, 382	program structure, C-23	virtualization of, 515
W	reg, C-21–22	writes, 487
V	sensitivity list, C-24	See also Pages
V	sequential logic specification,	Visual computing, A-3
Vacuum tubes, 26	C-56–58	Volatile memory, 21

Valid bit, 444

Write-back caches	Write-stall cycles, 462
advantages, 508	Write-through caches
cache coherency protocol, CD5.9:12	advantages, 508
complexity, 454	defined, 453, 507
defined, 453, 507	tag mismatch, 454
stalls, 462	See also Caches
write buffers, 454	
See also Caches	X
Write-back stage	
control line, 348	X86, 161–69
load instruction, 336	brief history, CD2.20:5
store instruction, 338	conclusion, 169
	data addressing modes, 163, 165
defined, 453	evolution, 161–63
stalls, 462	first address specifier encoding, 169
write-back cache, 454	floating point, 259–61
Write invalidate protocols,	floating-point instructions, 262
522, 523	historical timeline, 161-63
	instruction encoding, 168-69
complications, 453	instruction formats, 168
expense, 502	instruction set growth, 171
0.	instruction types, 165
	integer operations, 165-67
	I/O interconnects, 570–72
	registers, 163
, .	SIMD in, 635–36
	typical instructions/functions, 166
	typical operations, 167
Write serialization, 521–22	Xerox Alto computer, CD1.10:7-8
	advantages, 508 cache coherency protocol, CD5.9:12 complexity, 454 defined, 453, 507 stalls, 462 write buffers, 454 See also Caches Write-back stage control line, 348 load instruction, 336 store instruction, 338 Write buffers defined, 453 stalls, 462 write-back cache, 454 Write invalidate protocols, 522, 523 Writes complications, 453