```
import pandas as pd
import numpy as np
dt = pd.read csv('Transaction.csv', delimiter=';')
dc = pd.read_csv('Customer.csv', delimiter=';')
dp = pd.read_csv('Product.csv', delimiter=';')
ds = pd.read_csv('Store.csv', delimiter=';')
dt = dt.dropna()
dc = dc.dropna()
dp = dp.dropna()
ds = ds.dropna()
dt
     TransactionID CustomerID
                                       Date ProductID Price Qty
TotalAmount \
                            328
                                 01/01/2022
                                                   P3
                                                        7500
           TR11369
30000
           TR16356
                            165
                                 01/01/2022
                                                   P9
                                                       10000
                                                                 7
70000
                                                   P1
2
            TR1984
                            183
                                 01/01/2022
                                                         8800
                                                                 4
35200
                                                   P1
           TR35256
                            160
                                 01/01/2022
                                                         8800
                                                                 7
61600
                            386 01/01/2022
                                                   P9
                                                       10000
                                                                 1
4
           TR41231
10000
. . .
5015
                                                   P10 15000
                                                                 5
           TR54423
                            243 31/12/2022
75000
5016
            TR5604
                            271 31/12/2022
                                                   P2
                                                         3200
                                                                 4
12800
5017
           TR81224
                             52 31/12/2022
                                                   P7
                                                        9400
                                                                 6
56400
5018
                             18 31/12/2022
                                                   P8
                                                       16000
                                                                 3
           TR85016
48000
5019
           TR85684
                             55
                                 31/12/2022
                                                   P8 16000
                                                                 1
16000
      StoreID
0
           12
1
            1
2
            4
3
            4
4
            4
. . .
            3
5015
            9
5016
5017
            9
```

```
13
5018
5019
       6
dc
```

[5020 rows x 8 columns]

	CustomerID	Age	Gender	Marital Status	Income
0	1	55	1	Married	5,12
1	2	60	1	Married	6,23

9,17 Married 4,87 Married 3,57 Married 14,88 Married Married 15,31 Married 14,48 7,81 Married

Married 20,37

[444 rows x 5 columns]

dp

	ProductID	Product Name	Price
0	P1	Choco Bar	8800
1	P2	Ginger Candy	3200
2	P3	Crackers	7500
3	P4	Potato Chip	12000
4	P5	Thai Tea	4200
5	P6	Cashew	18000
6	P7	Coffee Candy	9400
7	P8	0at	16000
8	P9	Yoghurt	10000
9	P10	Cheese Stick	15000

ds

	StoreID	StoreName	GroupStore	Туре	Latitude
\					
0	1	Prima Tendean	Prima	Modern Trade	-6,2
1	2	Prima Kelapa Dua	Prima	Modern Trade	-6,914864
2	3	Prima Kota	Prima	Modern Trade	-7,797068
3	4	Gita Ginara	Gita	General Trade	-6,966667
4	5	Bonafid	Gita	General Trade	-7,250445
5	6	Lingga	Lingga	Modern Trade	-5,135399

```
7
                  Buana Indah
                                              General Trade
6
                                       Buana
                                                              3,316694
7
          8
                Sinar Harapan
                               Harapan Baru
                                              General Trade
                                                               5,54829
8
          9
                                               Modern Trade
                       Lingga
                                      Lingga
                                                              -3,654703
9
         10
                 Harapan Baru
                               Harapan Baru
                                              General Trade
                                                               3,597031
10
                Sinar Harapan
                                    Prestasi
                                              General Trade
         11
                                                               0,533505
11
         12
               Prestasi Utama
                                    Prestasi
                                              General Trade
                                                              -2,990934
12
         13
                                              General Trade
                                                               -1,26916
                        Buana
                                       Buana
13
         14
                     Priangan
                                    Priangan
                                               Modern Trade
                                                                  -5,45
     Longitude
0
    106,816666
    107,608238
1
2
    110,370529
3
    110,416664
4
    112,768845
5
     119,42379
6
    114,590111
7
     95,323753
8
    128,190643
9
     98,678513
10
    101,447403
    104,756554
11
12
    116,825264
     105,26667
13
print(dt.columns)
print(dc.columns)
print(dp.columns)
print(ds.columns)
Index(['TransactionID', 'CustomerID', 'Date', 'ProductID', 'Price',
'Qty',
       'TotalAmount', 'StoreID'],
      dtype='object')
Index(['CustomerID', 'Age', 'Gender', 'Marital Status', 'Income'],
dtype='object')
Index(['ProductID', 'Product Name', 'Price'], dtype='object')
Index(['StoreID', 'StoreName', 'GroupStore', 'Type', 'Latitude',
'Longitude'], dtype='object')
#mergerdata
```

```
merged_data = pd.merge(dt, dc, on='CustomerID')
merged data
                                                                 Qty
     TransactionID CustomerID
                                        Date ProductID
                                                         Price
TotalAmount \
           TR11369
                             328
                                  01/01/2022
                                                     P3
                                                          7500
30000
           TR67395
                             328
                                  22/01/2022
                                                     P8
                                                         16000
                                                                   3
1
48000
           TR89012
                             328
                                  25/03/2022
                                                     P5
                                                           4200
                                                                   5
21000
                                                     P1
                                                                   5
           TR97172
                             328
                                  21/05/2022
                                                           8800
44000
                             328
                                                     P7
                                                           9400
                                                                   6
4
           TR57013
                                  15/09/2022
56400
. . .
. . .
                                                         12000
4971
           TR27321
                             441
                                  11/08/2022
                                                     P4
                                                                   2
24000
4972
           TR16832
                             441
                                  25/08/2022
                                                     P6
                                                         18000
                                                                   1
18000
                             441
                                  05/09/2022
                                                     P5
4973
           TR81827
                                                          4200
                                                                   3
12600
4974
           TR61352
                             441
                                  28/09/2022
                                                     P5
                                                           4200
                                                                   3
12600
4975
           TR29879
                                                                   4
                             441
                                  25/12/2022
                                                     P4
                                                         12000
48000
                Age Gender Marital Status Income
      StoreID
0
           12
                 36
                                    Married
                                              10,53
                          0
1
           11
                 36
                          0
                                    Married
                                              10,53
2
            6
                 36
                          0
                                    Married
                                              10,53
3
            1
                 36
                          0
                                    Married
                                              10,53
4
             1
                                    Married
                 36
                          0
                                              10,53
                                               2,66
           10
                 19
                          0
                                     Single
4971
4972
            6
                 19
                          0
                                     Single
                                               2,66
4973
                                               2,66
            2
                 19
                          0
                                     Single
4974
            1
                 19
                          0
                                     Single
                                               2,66
4975
           14
                 19
                          0
                                     Single
                                               2,66
[4976 rows x 12 columns]
merged data = pd.merge(merged data, dp, on='ProductID')
merged data = pd.merge(merged data, ds, on='StoreID')
merged data
                                        Date ProductID
     TransactionID
                     CustomerID
                                                         Price x
                                                                   Qty \
0
           TR11369
                             328
                                  01/01/2022
                                                     Р3
                                                             7500
                                                                     4
                                                     Р3
1
           TR89318
                             183
                                  17/07/2022
                                                             7500
                                                                     1
```

2 3 4	TR	9106 4331 6445		123 335 181	26/09/20 08/01/20 10/01/20	922	P3 P3 P3	7500 7500 7500	4 3 4
4971 4972 4973 4974 4975	TR69555 4972 TR21587 4973 TR51183 4974 TR14963			221 425 409 374 271	01/08/20 17/10/20 19/07/20 16/12/20 30/11/20	922 922 922	P4 P4 P4 P4 P4	12000 12000 12000 12000 12000	 3 1 1 5 3
	TotalAmo	unt Sto	reID	Age	Gender	Marital	Status	Income	Product
Name 0 Crack		000	12	36	0		Married	10,53	
1	7	500	12	27	1		Single	0,18	
Crack 2 Crack	30	000	12	34	0		Married	4,36	
3	22	500	12	29	1		Single	4,74	
Crack 4 Crack	30	000	12	33	1		Married	9,94	
	C1 5								
4971 Chip	36	000	4	23	1		Single	7,5	Potato
4972	12	000	4	58	1		Married	7,22	Potato
Chip 4973	12	000	4	47	Θ		Married	28,23	Potato
Chip		000	4	32	0		Single	5,4	Potato
Chip 4975	36	000	4	29	0		Married	4,74	Potato
Chip	Chip								
Lanai	Price_y	St	oreNa	ame G	roupStor	е	Туре	e Lat:	itude
Longi 0	7500	Prestas	i Uta	ama	Prestas	i Gener	al Trade	e -2,99	90934
1	56554 7500	Prestas	i Uta	ama	Prestas	i Gener	al Trade	e -2,99	90934
2	56554 7500	Prestas	i Uta	ama	Prestas	i Gener	al Trade	e -2,99	90934
104,756554 3 7500 Prestasi Utama Prestasi General Trade -2,990934 104,756554 4 7500 Prestasi Utama Prestasi General Trade -2,990934 104,756554							90934		
							90934		

```
4971
                  Gita Ginara
                                    Gita General Trade -6,966667
        12000
110,416664
4972
        12000
                  Gita Ginara
                                    Gita General Trade -6,966667
110,416664
4973
        12000
                  Gita Ginara
                                    Gita General Trade -6,966667
110,416664
                  Gita Ginara
                                    Gita General Trade -6,966667
4974
        12000
110,416664
                  Gita Ginara
                                    Gita General Trade -6,966667
4975
        12000
110,416664
[4976 rows x 19 columns]
# Data baru untuk analisis regresi time series
daily sales = merged data.groupby('Date')['Qty'].sum().reset index()
daily sales
           Date
                 Qty
0
     01/01/2022
                  49
1
                  50
     01/02/2022
2
     01/03/2022
                  76
3
     01/04/2022
                  98
4
                  67
     01/05/2022
. .
                 . . .
    31/05/2022
360
                  21
361
    31/07/2022
                  72
    31/08/2022
                  36
362
363 31/10/2022
                  69
364 31/12/2022
                  37
[365 rows x 2 columns]
daily sales.index.freq = 'D' # Frekuensi harian
# Cek stasioneritas data
def check stationarity(ts):
    # Hitung rolling statistics
    rolling mean = ts.rolling(window=30).mean()
    rolling std = ts.rolling(window=30).std()
    # Plot rolling statistics
    plt.figure(figsize=(12, 6))
    plt.plot(ts, label='Original Data')
    plt.plot(rolling mean, label='Rolling Mean (30 days)')
    plt.plot(rolling std, label='Rolling Std (30 days)')
    plt.legend()
    plt.title('Rolling Statistics')
    plt.show()
```

Cek stasioneritas data daily_sales check_stationarity(daily_sales['Qty'])


```
# Mengurangkan rolling mean dari data untuk membuat data lebih
stasioner
daily_sales['Qty_diff'] = daily_sales['Qty'] -
daily_sales['Qty'].rolling(window=30).mean()

# Cek stasioneritas data yang sudah di-differencing
check_stationarity(daily_sales['Qty_diff'].dropna())
```



```
# Plot ACF dan PACF
plot_acf(daily_sales['Qty_diff'].dropna(), lags=40)
plt.title('Autocorrelation Function (ACF)')
plt.show()

plot_pacf(daily_sales['Qty_diff'].dropna(), lags=40)
plt.title('Partial Autocorrelation Function (PACF)')
plt.show()
```



```
from statsmodels.tsa.arima.model import ARIMA
p = 1
d = 1
q = 1
model = ARIMA(daily_sales['Qty'], order=(p, d, q))
model fit = model.fit()
print(model fit.summary())
                               SARIMAX Results
Dep. Variable:
                                  Qty
                                        No. Observations:
365
Model:
                       ARIMA(1, 1, 1) Log Likelihood
1541.538
Date:
                     Wed, 27 Sep 2023
                                        AIC
3089.076
Time:
                             16:30:47
                                        BIC
3100.767
                                        HQIC
Sample:
                                    0
3093.723
                                - 365
Covariance Type:
                                  opg
                 coef std err
                                                 P>|z|
                                                            [0.025
                                          Z
0.975]
ar.L1
              -0.0750
                           0.056
                                     -1.342
                                                 0.180
                                                            -0.184
0.035
ma.L1
              -0.9412
                           0.020
                                    -48.254
                                                 0.000
                                                            -0.979
-0.903
sigma2
             277.4498
                          21.033
                                     13.191
                                                 0.000
                                                           236.226
318.674
Ljung-Box (L1) (Q):
                                      0.02
                                             Jarque-Bera (JB):
7.44
Prob(Q):
                                      0.88
                                             Prob(JB):
0.02
Heteroskedasticity (H):
                                      0.90
                                             Skew:
0.35
Prob(H) (two-sided):
                                      0.55
                                             Kurtosis:
```

```
3.03
=========
Warnings:
[1] Covariance matrix calculated using the outer product of gradients
(complex-step).
#validasi model
# Memisahkan data menjadi data pelatihan dan data uji
train size = int(len(daily sales) * 0.8)
train, test = daily sales[:train size], daily sales[train size:]
# Membuat model ARIMA dengan nilai p, d, dan q yang sesuai
model = ARIMA(train['Qty'], order=(p, d, q))
model fit = model.fit()
# Prediksi dengan model yang telah dilatih
forecast = model fit.forecast(steps=len(test))
# Tampilkan hasil prediksi
print(f'Prediksi total kuantitas harian produk:')
print(forecast)
Prediksi total kuantitas harian produk:
292
       50.791770
293
       51.167158
294
       51.144460
295
       51.145833
296
       51.145750
360
      51.145754
361
       51.145754
362
       51.145754
363
       51.145754
364
       51.145754
Name: predicted mean, Length: 73, dtype: float64
# Hitung metrik evaluasi (MSE)
from sklearn.metrics import mean squared error
mse = mean squared error(test['Qty'], forecast)
print(f'Mean Squared Error (MSE): {mse}')
Mean Squared Error (MSE): 302.2640837607094
#Prediksi Total Kuantitas Harian Produk
# Prediksi total kuantitas harian produk untuk 7 hari ke depan
forecast days = 7
forecast_future = model fit.forecast(steps=forecast days)
# Tampilkan hasil prediksi
```

```
print(f'Prediksi total kuantitas harian produk untuk {forecast days}
hari ke depan:')
print(forecast future)
Prediksi total kuantitas harian produk untuk 7 hari ke depan:
292
       50.791770
293
       51.167158
294
       51.144460
295
       51.145833
       51.145750
296
297
       51.145755
298
       51.145754
Name: predicted mean, dtype: float64
#Membuat Data Baru untuk Clustering
cluster data = merged data.groupby('CustomerID').agg({
    'TransactionID': 'count',
    'Qty': 'sum',
    'TotalAmount': 'sum'
}).reset index()
cluster_data
     CustomerID TransactionID Qty TotalAmount
0
              1
                             17
                                  60
                                           623300
1
              2
                             13
                                  57
                                           392300
2
              3
                             15
                                  56
                                           446200
3
              4
                             10
                                  46
                                           302500
4
              5
                             7
                                  27
                                           268600
                                  37
                                           269400
439
            442
                             13
440
            444
                                  62
                             18
                                           577700
441
            445
                             18
                                  68
                                           587200
                                  42
442
            446
                             11
                                           423300
443
            447
                             13
                                  42
                                           439300
[444 rows x 4 columns]
from sklearn.preprocessing import StandardScaler
# Kolom yang akan di-standarisasi (fitur-fitur untuk clustering)
features = ['TransactionID', 'Qty', 'TotalAmount']
# Inisialisasi StandardScaler
scaler = StandardScaler()
# Standarisasi data pada kolom yang dipilih
cluster data[features] = scaler.fit transform(cluster data[features])
cluster data
```

```
CustomerID TransactionID
                                     0tv
                                           TotalAmount
0
              1
                      1.788282
                                1.508934
                                              2.102424
1
              2
                      0.553450 1.272891
                                              0.246343
2
              3
                      1.170866 1.194211
                                              0.679428
3
              4
                     -0.372675
                                0.407403
                                             -0.475199
4
              5
                     -1.298799 -1.087531
                                             -0.747585
439
            442
                      0.553450 -0.300723
                                             -0.741157
440
            444
                      2.096990 1.666295
                                              1.736029
441
            445
                      2.096990 2.138380
                                              1.812361
442
            446
                     -0.063967 0.092680
                                              0.495427
443
            447
                      0.553450 0.092680
                                              0.623987
[444 rows x 4 columns]
from sklearn.cluster import KMeans
# Menghapus fitur 'Cluster' dari data latihan
cluster data = cluster data.drop(columns=['Cluster'])
# Pilih jumlah cluster (K)
k = 3
# Inisialisasi model K-Means
kmeans = KMeans(n clusters=k)
# Melatih model
kmeans.fit(cluster data)
cluster data
D:\Python\Lib\site-packages\sklearn\cluster\_kmeans.py:1412:
FutureWarning: The default value of `n init` will change from 10 to
'auto' in 1.4. Set the value of `n_init` explicitly to suppress the
warning
  super()._check_params_vs_input(X, default n init=10)
D:\Python\Lib\site-packages\sklearn\cluster\ kmeans.py:1436:
UserWarning: KMeans is known to have a memory leak on Windows with
MKL, when there are less chunks than available threads. You can avoid
it by setting the environment variable OMP NUM THREADS=2.
  warnings.warn(
     CustomerID
                 TransactionID
                                           TotalAmount
                                      0tv
0
                                1.508934
                                              2.102424
              1
                      1.788282
1
              2
                      0.553450
                                1.272891
                                              0.246343
2
              3
                      1.170866
                                1.194211
                                              0.679428
3
              4
                     -0.372675 0.407403
                                             -0.475199
4
              5
                     -1.298799 -1.087531
                                             -0.747585
                      0.553450 -0.300723
                                             -0.741157
            442
439
```

```
440
           444
                     2.096990 1.666295
                                           1.736029
           445
441
                     2.096990 2.138380
                                           1.812361
442
           446
                    -0.063967 0.092680
                                           0.495427
443
           447
                     0.553450 0.092680
                                           0.623987
[444 rows x 4 columns]
from sklearn.cluster import KMeans
# Pilih jumlah cluster (K)
k = 3
# Inisialisasi model K-Means
kmeans = KMeans(n clusters=k)
# Melatih model
kmeans.fit(cluster data)
# Menambahkan label kluster ke data
cluster data['Cluster'] = kmeans.labels
# Analisis hasil
cluster centers = kmeans.cluster centers
cluster labels = kmeans.labels
# Menampilkan hasil
print("Centroids:")
print(cluster centers)
print("Labels:")
print(cluster labels)
D:\Python\Lib\site-packages\sklearn\cluster\ kmeans.py:1412:
FutureWarning: The default value of `n init` will change from 10 to
'auto' in 1.4. Set the value of `n init` explicitly to suppress the
warning
  super(). check params vs input(X, default n init=10)
D:\Python\Lib\site-packages\sklearn\cluster\ kmeans.py:1436:
UserWarning: KMeans is known to have a memory leak on Windows with
MKL, when there are less chunks than available threads. You can avoid
it by setting the environment variable OMP NUM THREADS=2.
 warnings.warn(
Centroids:
[7.59395973e+01 6.24173161e-02 7.89507253e-02 1.14347991e-01]
  6.71140940e-031
 [ 3.72231293e+02 -9.33673242e-02 -1.13388377e-01 -1.13285544e-01
  2.00000000e+001
 [ 2.24500000e+02 2.98974091e-02 3.31380633e-02 -2.60051145e-03
   1.00000000e+0011
Labels:
```

```
0 0
0 \quad 0
0 0
1 1
1 1
1 11
data = pd.DataFrame({
  'CustomerID': range(1, 445),
  'TransactionID': range(1, 445), # Panjang yang sama dengan
'CustomerID'
  'Qty': [10] * 444, # Panjang yang sama dengan 'CustomerID'
  'TotalAmount': [1000] * 444, # Panjang yang sama dengan
'CustomerID'
  'Cluster': [0] * 444  # Panjang yang sama dengan 'CustomerID'
})
cluster_stats = data.groupby('Cluster').agg({
  'TransactionID': ['count', 'mean', 'std'], 'Qty': ['mean', 'median', 'std'],
  'TotalAmount': ['mean', 'median', 'std']
}).reset index()
print(cluster stats)
Cluster TransactionID
                     Qty
TotalAmount \
                  std mean median std
        count
            mean
mean
         444 222.5 128.316016 10.0
   0
                        10.0 0.0
1000.0
```

```
median std
0 1000.0 0.0

import matplotlib.pyplot as plt
import seaborn as sns

# Visualisasi hasil klustering dengan plot scatter
plt.figure(figsize=(10, 6))
sns.scatterplot(data=cluster_data, x='TransactionID', y='Qty',
hue='Cluster', palette='Setl', s=100)
plt.title('Visualisasi Hasil Klustering')
plt.xlabel('TransactionID')
plt.ylabel('Qty')
plt.legend(title='Cluster')
plt.show()
```

