## Generalisering av ohms lag U=R\*I (visardiagram):



Vi har alltså tre formler för de tre spänningarna (där strömmen är gemensam referens):

| $\mathbf{U}_{\mathrm{TOT}} = \mathbf{Z} + \mathbf{I}$            | $\Rightarrow$ $\mathbf{Z} = \mathbf{U}_{TOT} / \mathbf{I}$     | (Impedans)  |
|------------------------------------------------------------------|----------------------------------------------------------------|-------------|
| $\mathbf{U}_{\mathbf{R}} = \mathbf{R} * \mathbf{I}$              | $=> \mathbf{R} = \mathbf{U}_{\mathbf{R}} / \mathbf{I}$         | (Resistans) |
| $\mathbf{U}_{\mathbf{L}} = \mathbf{X}_{\mathbf{L}} * \mathbf{I}$ | $=>\mathbf{X}_{\mathbf{L}}=\mathbf{U}_{\mathbf{L}}/\mathbf{I}$ | (Reaktans)  |
|                                                                  |                                                                |             |

Kontroll:  $\mathbf{Z} = \sqrt{(\mathbf{R}^2 + \mathbf{X_L}^2)}$ Kontroll:  $\mathbf{U_{TOT}} = \sqrt{(\mathbf{U_R}^2 + \mathbf{U_L}^2)}$ 

 $Anm: Om \ U \ och \ X \ pekar \ nedåt \ fås \ U_C \ resp. \ X_C \ (kapacitiv) \ istället \ för \ U_L \ resp. \ X_L \ (induktiv)$ 

## Generalisering av effektlagen P=U\*I (visardiagram):



Vi har alltså tre formler för de olika effekterna (där strömmen är gemensam referens):

| $S = U_{TOT} * I$ | (Skenbar effekt) |  |
|-------------------|------------------|--|
| $P = U_R * I$     | (Aktiv effekt)   |  |
| $Q = U_L * I$     | (Reaktiv effekt) |  |
|                   |                  |  |

Anm: Om U och X pekar nedåt fås U<sub>C</sub> (kapacitiv) istället för (induktiv)

Anm: Naturligtvis kan man även generalisera  $P = U^2/R$  resp  $P = I^{2*}R$  på samma sätt

## Jämförelse mellan impedans, spänning och effekt (visardiagram):



Anm: Vid beräkningar väljer man den variant där man har mest givna data. Notera att  $\varphi$  är samma för alla varianterna, dvs man kan räkna ut  $\varphi$  i en triangel och sedan använda  $\varphi$  i en annan triangel.