STABILITY THRESHOLDS ON RATIONAL FANO T-VARIETIES OF COMPLEXITY ONE

KEWEI ZHANG

ABSTRACT. We compute $\alpha(X)$ and $\delta(X)$ on rational Fano T-varieties of complexity one.

We derive explicit formulae of stability thresholds for Fano T-varieties of complexity one.

1. Preliminaries

We collect some concepts and results of T-varieties that will be used in this note. We refer the reader to [4] for more details. We will restrict ourselves to the case of rational complexity one T-varieties.

Let N be the lattice with dual M and let $N_{\mathbb{Q}}$ and $M_{\mathbb{Q}}$ be the associated \mathbb{Q} vector spaces.

Definition 1.1. A polehedral divisor \mathcal{D} on \mathbb{P}^1 with $tail(\mathcal{D}) = \sigma$ is a formal sum

$$\mathcal{D}:=\sum_{P\in\mathbb{P}^1}\mathcal{D}_P\otimes P,$$

where each \mathcal{D}_P is a polyhedral in $N_{\mathbb{Q}}$ with tail cone σ . Moreover, only finitely many \mathcal{D}_P differ from σ .

Definition 1.2. \mathcal{D} is called a p-divisor if

$$\deg \mathcal{D} := \sum_{P} \mathcal{D}_{P} \subsetneq \sigma.$$

Note that, we allow the coefficients of \mathcal{D} to be empty set and we use the convention $\mathcal{D}_P + \emptyset = \emptyset$.

Definition 1.3. Given a polehedral divisor \mathcal{D} on \mathbb{P}^1 with $tail(\mathcal{D}) = \sigma$, the locus of \mathcal{D} is defined by

$$\operatorname{Loc} \mathcal{D} := \mathbb{P}^1 \setminus \left(\bigcup_{\mathcal{D}_P = \emptyset} P\right).$$

For any $u \in \sigma^{\vee} \cap M$, we put

$$\mathcal{D}(u) := \sum_{P} \min_{v \in \mathcal{D}_{P}} \langle u, v \rangle P.$$

Note that, this is a \mathbb{Q} -divisor on Loc \mathcal{D} .

Given a p-divisor \mathcal{D} , we define a M-graded sheaf of rings

$$\mathcal{A}(\mathcal{D}) := \bigoplus_{u \in \sigma^{\vee} \cap M} \mathcal{O}_{\operatorname{Loc} \mathcal{D}}(\mathcal{D}(u)) \chi^{u}.$$

We then define two T-varieties

$$\widetilde{X}(\mathcal{D}) := \operatorname{\mathbf{Spec}}_{\operatorname{Loc} \mathcal{D}} \mathcal{A}(\mathcal{D}) \text{ and } X(\mathcal{D}) := \operatorname{\mathbf{Spec}} \Gamma(\operatorname{Loc} \mathcal{D}, \mathcal{A}(\mathcal{D})).$$

Note that $T = \operatorname{Spec}\mathbb{C}[M]$ and we have the following diagram

Here r is a proper birational T-equivariant contraction morphism and π is a good quotient map.

An important fact for us is that, $\widetilde{X}(\mathcal{D})$ is toroidal, meaning that $\widetilde{X}(D)$ is locally biholomorphic to a toric variety. In particular, when we are working locally on $\widetilde{X}(\mathcal{D})$, we can apply standard toric tools. See [11, 15] for related discussions.

In this note, we will deal with T-invariant divisors, so let us recall some results from [13]. There are two types of prime T divisors on $\widetilde{X}(\mathcal{D})$: vertical divisors and horizontal divisors. Vertical divisors are in bijection with the pair (P,v), where $P \in \mathbb{P}^1$ and v is a vertex of \mathcal{D}_P ; we denote the corresponding divisor by $D_{P,v}$. Likewise, horizontal divisors are in bijection with rays ρ of σ ; we denote the corresponding divisor by D_{ρ} . Under the contraction morphism $r: \widetilde{X}(\mathcal{D}) \to X(\mathcal{D})$, all the vertical divisors will survive, while some horizontal divisors will be contracted. Those D_{ρ} that are not contracted can be characterized by extremal rays: rays ρ of σ such that $\rho \cap \deg \mathcal{D} = \emptyset$. The prime T divisors on $X(\mathcal{D})$ are exactly those that are not contracted by r.

The T-variety $X(\mathcal{D})$ defined above is affine. To construct complete T-varieties, we need the following.

Definition 1.4. A finite set $S = \{D^i\}$ of p-divisors on \mathbb{P}^1 is called a divisorial fan if the intersection of two p-divisors from S is a common face of both and S is closed under taking intersections. For any point $P \in \mathbb{P}^1$, the set $S_P := \{D_P^i\}$ is called a slice. S is called complete if each slice S_P is a complete polyhedral subdivision of $N_{\mathbb{Q}}$.

By [3], given a complete divisorial fan \mathcal{S} , one can glue $X(\mathcal{D}^i)$ together to obtain a complete T variety $X(\mathcal{S})$. Any Cartier divisor on $X(\mathcal{S})$ is linearly equivalent to a Cartier T-divisor. Note that Cartier T-divisors on $X(\mathcal{S})$ can be described by support functions in CaSF(\mathcal{S}) (see [13] for its definition).

2. Log canonical threshold of T-divisors

Let X be a rational Fano T-variety of complexity one with log terminal singularities. Note that X can be characterized by a complete divisorial fan S. Let us fix a canonical divisor $K_{\mathbb{P}^1} = \sum a_P \cdot P$ on \mathbb{P}^1 . Then the canonical divisor K_X can be represented by (see [13, theorem 3.21])

$$K_X = \sum_{P,v} (\mu(v)a_P + \mu(v) - 1)D_{P,v} - \sum_{\text{extremal } \rho} D_{\rho}.$$

Here v is any vertex in S_P and $\mu(v) \in \mathbb{N}_+$ is the smallest integer such that $\mu(v)v \in N$. Note that $D_{P,v}$ is the vertical T-divisor associated to (P,v) and D_{ρ} is the horizontal T-divisor associated to the ray $\rho \in \text{tail}(S)$.

Then we can find a support function $h \in \text{CaSF}(\mathcal{S})$ corresponding to $-K_X$ such that

(2.1)
$$-K_X = -\sum_{P,v} \mu(v) h_p(v) D_{P,v} - \sum_{\text{extremal } \rho} h_t(n_\rho) D_\rho$$

where h_t be the linear part of h and n_{ρ} are the primitive vectors of ρ (cf. [13, Corollary 3.19]). We can then construct a polytope

$$\Box_h := \bigcap_{\rho} \{ \langle u, n_{\rho} \rangle \ge h_t(n_{\rho}) \},$$

where ρ run through all the rays in tail(\mathcal{S}).

Moreover, we define

$$\Psi_P(u) := h_P^*(u) := \min_{v \in \mathcal{S}_P^{(0)}} \{ \langle u, v \rangle - h_P(v) \}, \ u \in \square_h,$$

where $\mathcal{S}_{P}^{(0)}$ denotes the set of vertices in the slice \mathcal{S}_{P} . We put

$$\Psi := \sum_{P \in \mathbb{P}^1} \Psi_P \otimes P.$$

Then the pair (\Box_h, Ψ) is a divisorial polytope associated to the polarized pair $(X, -K_X)$ (cf. [9, Section 3]). For $k \in \mathbb{N}_+$, we have

(2.2)
$$H^{0}(X, -kK_{X}) = \bigoplus_{u \in k \square_{k} \cap M} H^{0}(\mathbb{P}^{1}, \mathcal{O}(\lfloor k\Psi(u/k) \rfloor)).$$

For any effective T-invatiant \mathbb{Q} -Cartier divisor $D \sim_{\mathbb{Q}} -K_X$, we can explicitly calculate lct(X, D) using the combinatoric description of X. More specifically, suppose that for some $k \in \mathbb{N}_+$, kD is Cartier. Then we can find $f \in K(\mathbb{P}^1)$ and $u \in k\square_h \cap M$ such that

$$kD = \operatorname{div}(f\chi^u) - \sum_{P,v} k\mu(v)h_P(v)D_{P,v} - \sum_{\text{extremal }\rho} kh_t(n_\rho)D_\rho.$$

Lemma 2.3. We have

$$\operatorname{lct}(X, D) = \min \left\{ \frac{-h_t(n_\rho)}{\langle u/k, n_\rho \rangle - h_t(n_\rho)} \right\}_o \cup \left\{ \frac{1}{\mu(v)(\operatorname{ord}_P f/k + \langle u/k, v \rangle - h_P(v))} \right\}_{P_v}.$$

Proof. Let us pick $\mathcal{D} \in \mathcal{S}$ and work on $\widetilde{X}(\mathcal{D})$. We have

$$\begin{cases} K_{\widetilde{X}} = \sum_{P,v} \left(\mu(v) a_P + \mu(v) - 1 \right) D_{P,v} - \sum_{\rho} D_{\rho} \\ r^* K_X = \sum_{P,v} \mu(v) h_P(v) D_{P,v} + \sum_{\rho} h_t(n_{\rho}) D_{\rho} \\ r^* D = \sum_{P,v} \mu(v) \left(\operatorname{ord}_P f/k + \langle u/k, v \rangle - h_p(v) \right) D_{P,v} + \sum_{\rho} \left(\langle u/k, n_{\rho} \rangle - h_t(n_{\rho}) \right) D_{\rho} \end{cases}$$

By our choice of h, we have

$$\mu(v)h_P(v) = \mu(v)a_P + \mu(v) - 1.$$

Thus we obtain

(2.4)
$$A_X(D_{P,v}) = 1 \text{ and } A_X(D_\rho) = -h_t(n_\rho).$$

Here $A_X(\cdot)$ denotes the discrepancy of any prime divisor over X. Note that $-h_t(n_\rho) > 0$ as X is log terminal.

For $\lambda > 0$, we have

$$r^*(K_X + \lambda D) - K_{\widetilde{X}} = \sum_{P,v} \lambda \mu(v) \left(\operatorname{ord}_P f / k + \langle u/k, v \rangle - h_P(v) \right) D_{P,v} + \sum_{\rho} \left(1 + \lambda \langle u, n_\rho \rangle + (1 - \lambda) h_t(n_\rho) \right) D_{\rho}.$$

Now we use [15, Lemma 4.2]. Since $\widetilde{X} \xrightarrow{r} X$ is a toroidal desingularization, the pair $(X, \lambda D)$ is log canonical if and only if

$$\begin{cases} \lambda \mu(v)(\operatorname{ord}_{P} f/k + \langle u/k, v \rangle - h_{P}(v)) \leq 1\\ 1 + \lambda \langle u, n_{\rho} \rangle + (1 - \lambda)h_{t}(n_{\rho}) \leq 1 \end{cases}$$

Or equiavalently,

$$\begin{cases} \lambda \leq \frac{A_X(D_{P,v})}{\operatorname{ord}_{D_{P,v}}(D)} = \frac{1}{\mu(v)(\operatorname{ord}_P f/k + \langle u/k, v \rangle - h_p(v))} \\ \lambda \leq \frac{A_X(D_\rho)}{\operatorname{ord}_{D_\rho}(D)} = \frac{-h_t(n_\rho)}{\langle u, n_\rho \rangle - h_t(n_\rho)} \end{cases}$$

Thus we obtain the desired formula for lct(X, D)

As a consequence, we get the following formula for Tian's α -invariant.

Theorem 2.5. We have

$$\alpha(X) = \alpha_T(X) = \min_{u \in \Box_h} \left\{ \frac{-h_t(n_\rho)}{\langle u, n_\rho \rangle - h_t(n_\rho)} \right\}_\rho \cup \left\{ \frac{1}{\mu(v)(\sum_{Q \neq P} \Psi_Q(u) + \langle u, v \rangle - h_p(v))} \right\}_{P,v}.$$

Proof. It is well known that (cf. [8, 14])

$$\alpha(X) = \lim_{k} \alpha_k(X).$$

We will give an formula for $\alpha_k(X)$ and then let $k \to \infty$.

As shown in [15, Propostion 2.6], to compute $\alpha_k(X)$, it is enough to look at T-divisors. So it suffices to consider $f\chi^u \in H^0(X, -kK_X)$, where $f \in K(\mathbb{P}^1)$ and $u \in k\square_h \cap M$. Note that (cf. (2.2))

$$f \in H^0(\mathbb{P}^1, \mathcal{O}(|k\Psi(u/k)|)).$$

This immediately implies that

(2.6)
$$-\lfloor k\Psi_P(u/k)\rfloor \le \operatorname{ord}_P f \le \sum_{Q \ne P} \lfloor k\Psi_Q(u/k)\rfloor.$$

Combining this with Lemma 2.3, we obtain

$$\alpha_k(X) = \min_{u \in k \square_h \cap M} \left\{ \frac{-h_t(n_\rho)}{\langle u/k, n_\rho \rangle - h_t(n_\rho)} \right\}_{\rho} \cup \left\{ \frac{1}{\mu(v) \left(\sum_{Q \neq P} \lfloor k \Psi_Q(u/k) \rfloor / k + \langle u/k, v \rangle - h_p(v) \right)} \right\}_{P,v}.$$
 Letting $k \to \infty$, we complete the proof. \square

3. Delta invariant

We use the same notation as in the previous section. The purpose of this part is to give an explicit formula for the stability threshold $\delta(X)$. Let $d\mu$ denote the Lebesgue measure on \square_h . We put

$$\begin{cases} \operatorname{vol}(\Psi) := \int_{\square_h} \operatorname{deg} \Psi d\mu, \\ \operatorname{bc}(\Psi) := \frac{1}{\operatorname{vol}(\Psi)} \int_{\square_h} u \cdot \operatorname{deg} \Psi d\mu, \\ \operatorname{bc}_P := \frac{1}{\operatorname{vol}(\Psi)} \int_{\square_h} (\frac{\operatorname{deg} \Psi}{2} - \Psi_P) \operatorname{deg} \Psi d\mu. \end{cases}$$

Here $\deg \Psi = \sum_{P} \Psi_{p}$. By straightforward computation, $(bc(\Psi), bc_{P})$ is exactly the barycenter of the following polytope

(3.1)
$$\Delta_P := \left\{ (u, a) \in M \times \mathbb{Q} \mid u \in \square_h, \ -\Psi_P(u) \le a \le \sum_{Q \ne P} \Psi_Q(u) \right\}.$$

Note that, this polytope also appears in [10, 7].

Theorem 3.2. We have

$$\delta(X) = \min \left\{ \frac{-h_t(n_\rho)}{\langle \operatorname{bc}(\Psi), n_\rho \rangle - h_t(n_\rho)} \right\}_{\rho} \cup \left\{ \frac{1}{\mu(v)(\operatorname{bc}_P + \langle \operatorname{bc}(\Psi), v \rangle - h_p(v))} \right\}_{P,v}.$$

To prove this, we use toroidal desingularization and then apply the argument in [6, §7]. So in the following, we will work locally.

To describe the toroidal desingularization more explicitly, let us pick $P \in \mathbb{P}^1$ and $\mathcal{D}_P \in \mathcal{S}_P$. We put $N' = N \times \mathbb{Z}$, $M' = (N')^{\vee}$ and consider the Cayley cone

$$\sigma_P := \operatorname{cone}(\mathcal{D}_P \times \{1\}) \subset N_{\mathbb{O}}'.$$

Then $\widetilde{X}_P := \operatorname{Spec} \mathbb{C}[\sigma_P^{\vee} \cap M']$ gives us a local toric model. The vertex $v \in \mathcal{D}_P$ turns into the ray of σ_P generated by the primitive vector $(\mu(v)v, \mu(v))$ and the ray ρ of $\operatorname{tail}(\mathcal{D}_P)$ turns into the ray $(\rho, 0)$ of σ_P . Meanwhile, $f\chi^u \in K(\mathbb{P}^1)[M]$ translates into the lattice point $(u, \operatorname{ord}_P f) \in M'$. Note that this construction also appears in the proof of [5, Theorem 2.2].

FIGURE 1. Local toric model

On \widetilde{X}_P , we can consider the Cartier divisor $r^*(-K_X)$. By standard toric geometry and by our choice of h, we may find $b(\sigma_P) \in M'$ such that

$$\begin{cases} \langle b(\sigma_P), (n_\rho, 0) \rangle = -h_t(n_\rho) \\ \langle b(\sigma_P), (\mu(v)v, \mu(v)) \rangle = -\mu(v)h_P(v) \end{cases}$$

Let us put

$$\psi_P(w) := -\langle b(\sigma_P), w \rangle, \ w \in \sigma_P.$$

We will be mainly interested in the semi-invariant elements $f\chi^u \in H^0(X, -kK_X)$. If we put $a = \operatorname{ord}_P f$, then by (2.6), these $f\chi^u$ translate into the lattice points $(u, a) \in k\Delta_P \cap M'$ (recall (3.1)). In other words, the polytope Δ_P captures all the sections in $R(X, -K_X)$ when we are working on \widetilde{X}_P (so Δ_P can be thought of as the Okounkov body of $-K_X$ arising from our localization; see also [12]).

Let us denote the point in $M'_{\mathbb{Q}}$ by (u, a), with a being the last component. Now for any $(u, a) \in \Delta_P$, we can define an effective \mathbb{Q} -divisor

$$D_{(u,a)} := \sum_{v} \left(\left\langle (u,a), (\mu(v)v, \mu(v)) \right\rangle \right) D_{P,v} + \sum_{\rho} \left(\left\langle (u,a), (n_{\rho}, 0) \right\rangle \right) D_{\rho} + r^*(-K_X).$$

Then $D_{(u,a)} \sim_{\mathbb{Q}} r^*(-K_X)$.

Now we can follow the argument in [6, §7] closely, and we will freely use the notation therein. For any $w \in \sigma_P$, the map

$$\mathbb{C}[\sigma_P^{\vee} \cap M'] = \bigoplus_{(u,a) \in \sigma_P^{\vee} \cap M'} \mathbb{C} \cdot \chi^{(u,a)} \to \mathbb{Q}_+$$

defined by

$$\sum_{(u,a)\in\sigma_P^{\vee}\cap M'} c_{(u,a)}\chi^{(u,a)} \mapsto \min\{\langle (u,a), w\rangle \mid c_{u,a} \neq 0\}$$

gives rise to a valuation on X, which we also denote by w. In [6], such a w is called a toric valuation.

Lemma 3.3. If $(u, a) \in \Delta_P$ and $w \in \sigma_P$, then

$$w(D_{(u,a)}) = \langle (u,a), w \rangle - \psi_P(w).$$

Proof. This is [6, Lemma 7.1] in our setting. We may pick a sufficiently divisible $k \in \mathbb{N}_+$ such that $(ku, ka) \in M'$ and

$$D_{(u,a)} = k^{-1} \operatorname{div}(\chi^{(ku,ka)+kb(\sigma_P)})$$

So it is clear that

$$w(D_{(u,a)}) = \langle (u,a) + b(\sigma_P), w \rangle = \langle (u,a), w \rangle - \psi_P(w).$$

Lemma 3.4. The restriction of the log discrepancy function A_X to $\sigma_P \subset \operatorname{Val}_X$ is the unique function that is linear on the cone σ_P such that

$$A_X((\mu(v)v, \mu(v))) = 1 \text{ and } A_X((n_\rho, 0)) = -h_t(n_\rho).$$

Proof. By [6, Proposition 7.2], we know that $A_{\widetilde{X}_P}$ is linear on σ_P such that

$$A_{\widetilde{X}_P}((\mu(v)v,\mu(v))) = 1$$
 and $A_{\widetilde{X}_P}((n_\rho,0)) = 1$.

To compute A_X , we use the relation

$$A_X(w) = A_{\widetilde{X}_R}(w) + w(K_{\widetilde{X}_R/X}).$$

Note that A_X is also linear on σ_P and the desired result follows from (2.4).

Lemma 3.5. For $w \in \sigma_P$, we have

$$S(w) = \langle (bc(\Psi), bc_P), w \rangle - \psi_P(w).$$

Proof. This is [6, Corollary 7.7] in our setting. For $k \in \mathbb{N}_+$, we put

$$\Omega_k := \left\{ (u, a) \in M' \mid u \in k \square_h \cap M, \ - \lfloor k \Psi_P(u/k) \rfloor \le a \le \sum_{Q \ne P} \lfloor k \Psi_Q(u/k) \rfloor \right\} \subset k \Delta_P \cap M'.$$

Then we have

$$S_k(w) = \frac{\sum_{(u,a)\in\Omega_k} \left(\langle (u,a), w \rangle - k\psi_P(w) \right)}{k \# \Omega_k}.$$

We finish the proof by letting $k \to \infty$.

Corollary 3.6. We have

$$\delta(X) \le \min \left\{ \frac{-h_t(n_\rho)}{\langle \operatorname{bc}(\Psi), n_\rho \rangle - h_t(n_\rho)} \right\}_{\rho} \cup \left\{ \frac{1}{\mu(v)(\operatorname{bc}_P + \langle \operatorname{bc}(\Psi), v \rangle - h_p(v))} \right\}_{P,v}.$$

Proof. As we know,

$$\delta(X) = \inf_{w \in \text{Val}_X} \frac{A_X(w)}{S(w)}.$$

So we have

$$\delta(X) \le \inf_{w \in \sigma_P} \frac{A_X(w)}{S(w)}, \ P \in \mathbb{P}^1.$$

The result follows from Lemma 3.4 and 3.5 by linearity.

Now we follow [6, §7.4] closely to show that the inequality in the above corollary is actually an equality.

Set $\widetilde{N}:=\widetilde{N'}\times \mathbb{Z}$ and $\widetilde{M}:=M'\times \mathbb{Z}.$ We define a cone

$$\Sigma_P := \operatorname{cone}(\Delta_P \times \{1\}) \subset \widetilde{M}_{\mathbb{Q}}$$

and choose $y_1, ..., y_{n+1} \in \Sigma_P^{\vee} \cap \widetilde{N}$ that are linear independent in $\widetilde{N}_{\mathbb{Q}}$ (here $n = \dim X$). Let $\nu : \Sigma_P \cap \widetilde{M} \to \mathbb{Z}_+^{n+1}$ denote the injective map given by

$$\nu(\tilde{u}) = (\langle \tilde{u}, y_1 \rangle, \cdots, \langle \tilde{u}, y_{n+1} \rangle), \ \tilde{u} \in \Sigma_P \cap \widetilde{M}.$$

We endow \mathbb{Z}_+^{n+1} with the lexicorgraphic order. In this way we put a \mathbb{Z}_+^{n+1} order on $\mathbb{C}[\Sigma_P \cap \widetilde{M}]$.

Moreover, we define

$$S := \bigcup_{k} \Omega_k \times \{k\} \subset \Sigma_P \cap \widetilde{M},$$

where Ω_k is defined in the proof of Lemma 3.5. Note that each monomial $\chi^{(u,a,k)} \in \mathbb{C}[S]$ can be thought of as a section in $H^0(X, -kK_X)$, and all these monomials form a basis. So as in [6], for $s \in H^0(X, -kK_X)$, we can define its initial term in_>(s) to be the greatest monomial $\chi^{(u,a,k)}$ in s with respect to the \mathbb{Z}^{n+1}_+ order chosen above.

Given a subspace W of $H^0(X, -kK_X)$, we set

$$\operatorname{in}_{>}(W) = \operatorname{Span}\{\operatorname{in}_{>}(s) \mid s \in W\}$$

By [6, Proposition 7.10], we have

$$\dim W = \dim \operatorname{in}_{>}(W).$$

Thus for any filtration \mathcal{F} of $R(X, -K_X)$, if we write \mathcal{F}_{in} for the filtration defined by

$$\mathcal{F}_{in}^{\lambda}H^0(X,-kK_X) := \operatorname{in}_{>} (\mathcal{F}^{\lambda}H^0(X,-kK_X)),$$

for all $\lambda \in \mathbb{R}_+$ and $k \in \mathbb{N}_+$, we get (cf. [6, Proposition 7.13])

$$S(\mathcal{F}_{\mathrm{in}}) = S(\mathcal{F}).$$

By [6, Theorem E], there always exists a valuation $w \in \operatorname{Val}_X$ with $A_X(w) < \infty$ such that

$$\delta(X) = \frac{A_X(w)}{S(w)}.$$

And we know that, w must satisfy (cf. Proposition 4.8 therein)

$$lct(\mathfrak{a}_{\bullet}(w)) = A_X(w).$$

Namely, w computes $lct(\mathfrak{a}_{\bullet}(w))$. Let $\xi := c_X(w)$ denote the center of w. Since we are working locally, we may assume that ξ is contained in our local picture. Let \mathcal{F}_w be the filtration of $R(X, -K_X)$ induced by w. Then by previous discussion, we have

$$S(\mathcal{F}_{w,\mathrm{in}}) = S(\mathcal{F}_w).$$

Meanwhile, we can find a nontrivial toric valuation $w_0 \in \sigma_P$ such that

$$\frac{A_X(w_0)}{w_0(\mathfrak{b}_{\bullet}(\mathcal{F}_{w,\mathrm{in}}))} \le \mathrm{lct}\big(\mathfrak{b}_{\bullet}(\mathcal{F}_w)\big) = \mathrm{lct}\big(\mathfrak{a}_{\bullet}(w)\big) = A_X(w).$$

By rescaling w_0 , we may assume $w_0(\mathfrak{b}_{\bullet}(\mathcal{F}_{w,\text{in}})) = 1$, then as in [6, Proposition 7.14], we get

$$A_X(w_0) \le A_X(w)$$
, and $S(w_0) \ge S(\mathcal{F}_{w,\text{in}}) = S(\mathcal{F}_w)$.

So we see that $\delta(X)$ is indeed computed by some toric valuation $w_0 \in \sigma_P$. Thus Theorem 3.2 is proved.

4. Examples

4.1. Let us consider $X = Bl_p\mathbb{P}^2$. Of course, X is a smooth toric Fano variety. But we would like to interpret it as a T-variety of complexity one. To do this, we can use toric downgrade (cf. [13, Example 2.9]; see also [2, Section 11]).

Let $N = \mathbb{Z} \oplus \mathbb{Z}$ with P and P' being the projections from N to the first and the second component respectively. Via P', the fan Σ corresponding to X on $N_{\mathbb{Q}}$ projects down to the fan Σ' corresponding to \mathbb{P}^1 on \mathbb{Q} (see Figure 2).

Note that $\Sigma' = \{\{0\}, \mathbb{Q}_+, \mathbb{Q}_-\}$. Suppose that the rays \mathbb{Q}_+ and \mathbb{Q}_- correspond to the toric divisors $0, \infty$ on \mathbb{P}^1 respectively. For each cone $\sigma_i \in \Sigma$, we set

$$\Delta_0(\sigma_i) := P(P'^{-1}(1) \cap \sigma_i), \ \Delta_\infty(\sigma_i) := P(P'^{-1}(-1) \cap \sigma_i).$$

And we put

$$\mathcal{D}_i := \Delta_0(\sigma_i) \otimes 0 + \Delta_\infty(\sigma_i) \otimes \infty.$$

Then we get the following 4 polyhedral divisors on \mathbb{P}^1 :

$$\begin{cases} \mathcal{D}_0 = [0, \infty) \otimes 0 + \emptyset \otimes \infty \\ \mathcal{D}_1 = [-1, 0] \otimes 0 + \emptyset \otimes \infty \\ \mathcal{D}_2 = (-\infty, -1] \otimes 0 + (-\infty, 0] \otimes \infty \\ \mathcal{D}_3 = \emptyset \otimes 0 + [0, \infty) \otimes \infty \end{cases}$$

Note that $\deg \mathcal{D}_0 = \deg \mathcal{D}_1 = \deg \mathcal{D}_3 = \emptyset$ and $\deg \mathcal{D}_2 = (-\infty, -1]$. These polyhedral divisors give rise to a divisorial fan \mathcal{S} corresponding to X. The slices \mathcal{S}_0 and \mathcal{S}_{∞} are illustrated in figure 2. Moreover, we have

$$tail(S) = \{\{0\}, \rho_+, \rho_-\}$$

FIGURE 2. Toric downgrade

where $\rho_+ = \mathbb{Q}_+$ and $\rho_- = \mathbb{Q}_-$ are the rays in tail(\mathcal{S}). Note that

$$\rho_+ \cap \deg \mathcal{D}_0 = \rho_+ \cap \deg \mathcal{D}_3 = \emptyset, \ \rho_- \cap \deg \mathcal{D}_2 \neq \emptyset,$$

so that ρ_+ is extremal while ρ_- is not (cf. [13, Definition 3.18]). Meanwhile, in \mathcal{S}_0 there are two vertices and in \mathcal{S}_{∞} there is only one vertex. Thus the Picard number of X is given by (see [13, Corollary 3.20])

$$\rho_X = 1 + 1 + (2 - 1) + (1 - 1) - 1 = 2,$$

which is of course a standard fact since $X = Bl_p \mathbb{P}^2$.

Now let us fix a canonical divisor $K_{\mathbb{P}^1} = -2 \cdot \infty$. Then by [13, theorem 3.21] we have

$$-K_X = 2D_{\infty,0} + D_{\rho_+}$$
.

This is a T-Cartier divisor on X so it corresponds to a support function h on S (see [13, Proposion 3.10]). We can explicitly write down h (see Figure 3).

FIGURE 3. Support function h

The linear part h_t of h is given by

$$h_t = \begin{cases} -x, & x \ge 0, \\ 2x, & x \le 0. \end{cases}$$

So we get a polytope (cf. [13, Definition 3.22])

$$\Box_h := [-1, 2].$$

We can also compute the Legendre transform of h on \square_h :

$$\Psi_0(u) := h_0^*(u) = \min\{0, -u\}, \ \Psi_\infty(u) := h_\infty^*(u) = 2, \text{ for } u \in [-1, 2].$$

We put

$$\Psi(u) = \Psi_0(u) \otimes 0 + \Psi_{\infty}(u) \otimes \infty.$$

Then we get a divisorial polytope (\Box_h, Ψ) associated to the polarized pair $(X, -K_X)$. Moreover, we have

$$\deg \Psi(u) = \Psi_0(u) + \Psi_\infty(u) = \begin{cases} 2, & -1 \le u \le 0, \\ 2 - u, & 0 \le u \le 2. \end{cases}$$

We can easily compute

$$\operatorname{vol}(\Psi) = \int_{-1}^{2} \operatorname{deg} \Psi(u) du = 4.$$

So we get (cf. [13, Proposition 3.31])

$$vol(-K_X) = 2! \cdot vol(\Psi) = 8,$$

which is again a standard fact since $X = Bl_p\mathbb{P}^2$. We can also compute (recall (2.2))

$$h^{0}(X, -K_{X}) = (\deg \Psi(-1) + 1) + (\deg \Psi(0) + 1) + (\deg \Psi(1) + 1) + (\deg \Psi(2) + 1) = 9.$$

The Futaki character of (\Box_h, Ψ) is given by (cf. [16, Theorem 3.15])

$$bc(\Psi) = \frac{1}{vol(\Psi)} \int_{-1}^{2} u \deg \Psi(u) du = \frac{1}{12}.$$

We can calculate $\alpha(X)$:

$$\alpha(X) = \min_{u \in \Box_h} \left\{ \frac{-h_t(1)}{u - h_t(1)}, \frac{-h_t(-1)}{-u - h_t(-1)}, \frac{1}{\Psi_{\infty}(u)}, \frac{1}{\Psi_{\infty}(u) - u}, \frac{1}{\Psi_0(u) + 2} \right\} = \frac{1}{3}.$$

We can also calculate $\delta(X)$. We have

$$bc_0 = \frac{1}{4} \int_{-1}^{2} (\frac{\deg \Psi}{2} - \Psi_0) \deg \Psi = \frac{7}{6}, \ bc_{\infty} = \frac{1}{4} \int_{-1}^{2} (\frac{\deg \Psi}{2} - \Psi_{\infty}) \deg \Psi = -\frac{7}{6}.$$

So $\delta(X)$ is simply given by

$$\delta(X) = \min\left\{\frac{1}{1+1/12}, \frac{2}{2-1/12}, \frac{1}{7/6}, \frac{1}{7/6-1/12}, \frac{1}{2-7/6}\right\} = \frac{6}{7}.$$

References

- [1] D. Anderson, Okounkov bodies and toric degenerations. Math. Ann. 356 (2013), 1183-1202.
- [2] K. Altmann, J. Hausen, Polyhedral divisors and algebraic torus actions. Math. Ann. 334 (2006), 557-607.
- [3] K. Altmann, J. Hausen, H. Sss, Gluing affine torus actions via divisorial fans. Transform. Groups 13 (2008), 215-242.
- [4] K. Altmann, N.O. Ilten, L. Petersen, H. Süss, R. Vollmert, The geometry of T -varieties. In: Pragacz, P. (ed.) Contributions to Algebraic Geometry. EMS Series of Congress Reports, pp. 17-69. European Mathematical Society, Zrich (2012).
- [5] K. Altmann, L. Petersen, Cox rings of rational complexity-one T-varieties. J. Pure Appl. Algebra 216 (2012), 1146-1159.
- [6] H. Blum, M. Jonsson, Thresholds, valuations, and K-stability, preprint, arXiv:1706.04548 (2017).
- [7] J. Cable, Greatest lower bounds on Ricci curvature for Fano T-manifolds of complexity 1, arXiv:1803.10672.
- [8] I. Cheltsov, K. Shramov, Log canonical thresholds of smooth Fano threefolds, with an appendix by J.-P. Demailly, Russian Math. Surveys 63 (2008), 859–958.
- [9] N.O. Ilten, H. Süss, Polarized complexity-1 T-varieties. Michigan Math. J. 60 (2011), 561-578.
- [10] N.O. Ilten, H. Süss, K-stability for Fano manifolds with torus action of complexity 1. Duke Math. J. **166**(1) (2017), 177-204.
- [11] A. Liendo, H. Süss, Normal singularities with torus actions. Tohoku Math. J. (2) 65 (2013), 105-130.
- [12] L. Petersen, Okoukov bodies of complexity-one T-varieties, preprint, arXiv:1108.0632 (2010).
- [13] L. Petersen, H. Süss, Torus invariant divisors. Israel J. Math. 182 (2011), 481-504.
- [14] Y. Shi, On the α -invariants of cubic surfaces with Eckardt points. Adv. Math. **225** (2010), 1285-1307.
- [15] H. Süss, Kähler-Einstein metrics on symmetric Fano T-varieties. Adv. Math. 246 (2013), 100-113.
- [16] H. Süss, Fano threefolds with 2-torus actiona picture book. Documenta Math. 19, (2014) 905-940.