Colle 7A: Espaces vectoriels

Question de cours :

Soit E, F deux espaces vectoriels, G un sev de E. Soit $f \in \mathcal{L}(E, F)$. Montrer que f(G) est un sev de F.

Exercice 1:

Soit E, F deux espaces vectoriels et $u \in \mathcal{L}(E, F)$. Montrer que $\Phi : (x, y) \mapsto (x, y - u(x))$ est un automorphisme de $E \times F$.

Exercice 2 : Noyaux itérés

Soit E un espace vectoriel et $u \in \mathcal{L}(E)$.

- 1. Montrer que la suite (Ker u^n) $_{n\in\mathbb{N}}$ est croissante pour l'inclusion.
- 2. Montrer que la suite (Im u^n) $_{n\in\mathbb{N}}$ est décroissante pour l'inclusion.
- 3. Montrer que Ker $u = \text{Ker } u^2 \text{ ssi Im } u \cap \text{Ker } u = \{0_E\}.$
- 4. Montrer que Im $u = \text{Im } u^2 \text{ ssi } E = \text{Ker } u + \text{Im } u$.

Exercice 3: (Oral X MP)

Soit E, F et G trois \mathbb{K} -espaces vectoriels de dimension finie.

- 1. Soit $f \in \mathcal{L}(E, F)$ et $g \in \mathcal{L}(E, G)$. Donner une CNS sur f et g pour qu'il existe $h \in \mathcal{L}(F, G)$ telle que $g = h \circ f$.
- 2. Soit $g \in \mathcal{L}(E,G)$ et $h \in \mathcal{L}(F,G)$. Donner une CNS sur g et h pour qu'il existe $f \in \mathcal{L}(E,F)$ telle que $g = h \circ f$.

Valentin Messina

Aux Lazaristes - Maths Sup

Colle 7B : Espaces vectoriels

Question de cours :

Soit E, F deux espaces vectoriels et $f \in \mathcal{L}(E, F)$. Montrer que f est injective ssi $Ker(F) = \{0\}$.

Exercice 1: Soit E un espace vectoriel et $u, v \in \mathcal{L}(E)$ tels que $u \circ v \circ u = u$ et $v \circ u \circ v = v$.

- 1. Montrer que $E = \operatorname{Ker} v \oplus \operatorname{Im} u$.
- 2. Montrer que $u(\operatorname{Im} v) = \operatorname{Im} u$.

Exercice 2:

Soit E, F deux \mathbb{K} -espaces vectoriels, $\Phi \in \mathcal{L}(E)$ et $u \in \mathcal{L}(E, F)$. On admet que tout sous-espace vectoriel de E et de F admet un supplémentaire.

Montrer qu'il existe $v \in \mathcal{L}(E, F)$ tel que $u = v \circ \Phi$ ssi Ker $\Phi \subset \text{Ker } u$.

Exercice 3: (Oral X MP)

Soit E, F et G trois \mathbb{K} -espaces vectoriels de dimension finie.

- 1. Soit $f \in \mathcal{L}(E, F)$ et $g \in \mathcal{L}(E, G)$. Donner une CNS sur f et g pour qu'il existe $h \in \mathcal{L}(F, G)$ telle que $g = h \circ f$.
- 2. Soit $g \in \mathcal{L}(E,G)$ et $h \in \mathcal{L}(F,G)$. Donner une CNS sur g et h pour qu'il existe $f \in \mathcal{L}(E,F)$ telle que $g = h \circ f$.

Colle 7C: Espaces vectoriels

Question de cours :

Montrer que A et B sont en somme directe ssi $A \cap B = \{0\}$. Donner la définiton de deux sous-espaces supplémentaires et donner des méthodes de preuve pour montrer la supplémentarité.

Exercice 1:

Soit E, F deux espaces vectoriels, $u \in \mathcal{L}(E, F)$ et $v \in \mathcal{L}(F, E)$ tels que $v \circ u = \mathrm{Id}_E$. Montrer que Ker $v \oplus \mathrm{Im}\ u = F$.

Exercice 2:

Soit E l'espace vectoriel des fonctions réelles à valeurs réelles, F le sev de E des fonctions 1-périodiques et G le sev de E des fonctions de limite nulle en $+\infty$.

- 1. Montrer que $F \cap G = \{0_E\}$.
- $2. \ F$ et G sont-ils supplémentaires?

Exercice 3: (Oral X MP)

Soit E, F et G trois \mathbb{K} -espaces vectoriels de dimension finie.

- 1. Soit $f \in \mathcal{L}(E, F)$ et $g \in \mathcal{L}(E, G)$. Donner une CNS sur f et g pour qu'il existe $h \in \mathcal{L}(F, G)$ telle que $g = h \circ f$.
- 2. Soit $g \in \mathcal{L}(E,G)$ et $h \in \mathcal{L}(F,G)$. Donner une CNS sur g et h pour qu'il existe $f \in \mathcal{L}(E,F)$ telle que $g = h \circ f$.