Attribute Grammars

Prof. A. Morzenti

DOMAIN OF APPLICATION OF ATTRIBUTE GRAMMARS

The compilation process uses tasks that cannot be defined using purely syntactic methods Examples:

- translation of a decimal (base 10) number to binary
- translation of a record definition, *computing* the offset in central memory of every field

```
BOOK: record
AUT: char(8); TIT: char(20); PRICE: real; QUANT: int; end
```


Symbol	Туре	Dimension	Address
BOOK	record	34	3401
AUT	string	8	3401
TIT	string	20	3409
PRICE	real	4	3429
QUANT	int	2	3433

Syntax directed translators

They use functions applied to the syntax tree to compute some *semantic attributes* the values of the attributes constitute the translation (\$\Rightarrow\$ they express the *meaning* of the sentence)

attribute grammars have the same expressive power as the Turing machine

⇒ in fact, they provide a systematic compiler design method,
not a formal model that is easily analyzable, like automata or C.F.Grammars

Compilation is organized in two passes:

- 1. lexical+syntax analysis produces the syntax tree
- 2. semantic analysis or evaluation produces the decorated syntax tree it is designed using attribute grammars

For simplicity the attribute grammar is defined w.r.t. an *abstract syntax* a grammar that may be simpler than the real one, often ambiguous, but convenient

The ambiguity of the abstract syntax does not prevent a single-valued translation: the parser will pass to the semantic evaluator only one syntax tree

The simpler compilers may combine the two phases in a single pass using a unique syntax, the one of the language

Example: computing the value of a binary fractional number

Source language: $L = \{0, 1\}^+ \cdot \{0, 1\}^+$ (dot '•' separates integer and fractional parts)

Translation of string $1101 \cdot 01 \in \{0, 1\}^+ \cdot \{0, 1\}^+$ is $13,25 \in \mathbb{R}$ (NB: it is a number, not a string)

Base syntax: $\{N \rightarrow D \bullet D, D \rightarrow DB, D \rightarrow B, B \rightarrow 0, B \rightarrow 1\}$

Attributes and their meaning:

Attribute	Meaning	Domain	Nonterminals that
			possess the attribute
\overline{v}	value	decimal number	N, D, B
l	length	integer	D

inside rules, symbol instances are numbered with subscripts ≥0 to be uniquely identified *semantic functions* (i.e., assignments of values to attributes) are associated with syntax rules

#	Syntax	Semantic functions		Comment
1	$N \to D \bullet D$	$v_0 := v_1 + v_2 \times 2^{-l_2}$		Add integer to fractional value divide by weight 2^{l_2}
2	$D \rightarrow DB$	$v_0 := 2 \times v_1 + v_2$	$l_0 := l_1 + 1$	Compute value and length
3	$D \rightarrow B$	$v_0 := v_1$	$l_0 := 1$	
4	$B \rightarrow 0$	$v_0 := 0$		Value initialization
5	$B \rightarrow 1$	$v_0 := 1$		

4/35

semantic functions are applied following the dependences among attributes starting from attributes whose value is known often the initial values are in the leaves, possibly precomputed by the lexical analysis

«translation» or «meaning» of a sentence is the value of some attribute typically in the root

Attributes are of two types: left (or *synthesized*) and rigth (or *inherited*)

left attribute the semantic function $\sigma_0 = f(...)$, whereby attribute σ_0 is assigned a value, in

a rule where σ_0 is an attribute of the *left nonterminal* of the rule

right attribute the semantic function $\delta_i = f(...)$, $i \ge 1$, whereby attribute δ_i is assigned a value, in

a rule where δ_i is an attribute of a symbol in the *rule right part*

Example above: all attributes are left/synthesized (typical of simplest cases)

#	Syntax	Semantic functions		Comment
1	$N \to D \bullet D$	$v_0 := v_1 + v_2 \times 2^{-l_2}$		Add integer to fractional value divide by weight 2^{l_2}
2	$D \rightarrow DB$	$v_0 := 2 \times v_1 + v_2$	$l_0 := l_1 + 1$	Compute value and length
3	$D \rightarrow B$	$v_0 := v_1$	$l_0 := 1$	
4	$B \rightarrow 0$	$v_0 := 0$		Value initialization
5	$B \rightarrow 1$	$v_0 := 1$		

A more complex example

Segmenting a free text into lines of $\leq W$ chars

The text is a list of one or more words separated by spaces

Requirement: every line must have the maximum possible number of unbroken words

The key attribute is *last*:

it indicates the column number of the last char of each word

Example: "no doubt he calls me an outlaw to catch", W=13; segmented text:

1	2	3	4	5	6	7	8	9	10	11	12	13
n	О		d	О	u	b	t		h	e		
c	a	1	1	\mathbf{s}		m	e		a	n		
О	u	t	1	a	w		t	О				
c	a	t	c	h								

attribute *last* is 2 for 'no' and 5 for 'calls'

Attributes and their meaning

lengthleftlength (in chars) of the current wordlastleftcolumn of the last char of current wordprecrightcolumn of the last char of previous word (-1 for first word)

fundamental relation between attributes concerning two consecutive words (here we adopt informally notation $last(w_k)$ for attribute last of k-th word etc.)

$$last(w_k) := prec(w_k) + 1 + length(w_k)$$
$$prec(w_0) := -1$$

#	Syntax	Right attributes	Left attributes
1	$S_0 \rightarrow T_1$	$prec_1 := -1$	
2	$T_0 \rightarrow T_1 \perp T_2$	$prec_1 := prec_0$ $prec_2 := last_1$	$last_0 := last_2$
3	$T_0 \rightarrow V_1$		$last_0 := \textbf{if } (prec_0 + 1 + length_1) \leq W$ $\textbf{then } (prec_0 + 1 + length_1)$ $\textbf{else } length_1$ $\textbf{end if}$
4	$V_0 \rightarrow c V_1$		$length_0 := length_1 + 1$
5	$V_0 \rightarrow c$		$length_0 := 1$

Graph for the attribute dependences

the dependence graph has no circuits

Any sequence of attribute computations that complies with the dependences is suitable to evaluate the attributes

Set of *semantic functions* (or *rules*)

every function is associated with a syntax rule p, called its syntax support:

$$p: D_0 \rightarrow D_1 D_2 \dots D_r \qquad r \geq 0$$

a semantic function: $\alpha_k := f(attr(\{D_0, D_1, ..., D_r\} \setminus \{\alpha_k\})), \quad 0 \le k \le r$

assigns a value to α_k (attribute of symbol D_k)

function f with arguments the *other* attributes of the same rule p (not α_k - no recursion)

semantic functions must be total and computable

⇒ they must be used as computation rules

semantic functions are written using notations taken from software specification languages, or algebra, or pseudocode

$$p: D_0 \rightarrow D_1 D_2 \dots D_i \dots D_r \qquad r \geq 0$$

 $\sigma_0 := f(...)$ defines a left attribute (of the parent, in the tree portion matching the applied rule) $\delta_i := f(...)$, with $1 \le i \le r$, defines a right attribute (of a child, in the same tree portion)

Attributes of terminal symbols (the tree leaves), often are assigned their value by the lexical analysis or they may take as value the terminal itself

The left attributes of D_0 and the right ones of D_i , $i \ge 1$, are called *internal* for rule p the semantic functions for a rule p define *all* and *only* the rule's internal attributes

The right attributes D_0 and the left ones of D_i , $i \ge 1$, are called *external* for rule p they are defined by semantic functions applied to other parts of the tree

An attribute *cannot* be *right* for one rule *and left* for another one otherwise it would not be uniquely defined, and conflicts may arise

#	Support	Semantic functions
1	$A \rightarrow BC$	$\sigma_C := f_1 (attr(A, B))$
2	$C \to DE$	$\sigma_C := f_2 \left(attr(D, E) \right)$

Dependence graph (relation) dep_p for the attributes associated with a syntax rule p

It is a directed graph

- the nodes are the attributes (the arguments and the results of semantic functions)
- there is an arc from every argument to the result
- left (synthesized) attributes placed to the left of tree node, right (inherited) ones to the right

The graph is superimposed to that of the syntax support

Example for rule 2 (for simplicity the terminal \perp is omitted)

left attribute: upward or leftward arrows right attribute: down or sideways arrows

dependence graphs of the remaining productions

#	Syntax	Right attributes	Left attributes
1	$S_0 \rightarrow T_1$	$prec_1 := -1$	
2	$T_0 \to T_1 \perp T_2$	$prec_1 := prec_0$ $prec_2 := last_1$	$last_0 := last_2$
3	$T_0 \rightarrow V_1$		$last_0 := \mathbf{if} \; (prec_0 + 1 + length_1) \leq W$ $\mathbf{then} \; (prec_0 + 1 + length_1)$ $\mathbf{else} \; length_1$ $\mathbf{end} \; \mathbf{if}$
4	$V_0 \rightarrow c V_1$		$length_0 := length_1 + 1$
5	$V_0 \rightarrow c$		$length_0 := 1$

Dependence graph for attributes of an entire syntax tree

Obtained by combining the graphs of the rules used in the various tree nodes

Existence and unicity of the solution:

If the dependence graph of the tree is acyclic

⇒ there exists a set of attribute values consistent with the dependences

(we consider this a self-evident property)

A grammar is called loop-free if the dependence graph of every tree is acyclic

We consider only loop free grammars

(later we provide a sufficient condition to ensure that the grammar is loop-free)

For a given tree, to compute the attribute values one must provide a total order of the attributes so that every attribute is computed only after those preceding it in the dependence relation

To this purpose one could use the *Topological Sorting* algorithm (known in the literature)

However this method is not efficient: one should apply the sorting algorithm before computing the attribute values $\frac{15/35}{1}$

Another problem: how to determine if the grammar is loop-free ? how can one ensure that the dependence graph of **every** *possible* **string** is acyclic ?

The languages of interest are typically infinite \Rightarrow one cannot execute an exhaustive test

The property is decidable but

... the problem of deciding whether a grammar is loop-free is NP-complete w.r.t. the grammar size

Alternative, more efficient though less general idea: fixed scheduling visit and computation

A faster evaluator based on the idea of *predetermining*a fixed sequence of visit (scheduling)
which is valid for every tree,
according to functional dependence among attributes

in practice: one provides some (general enough) sufficient conditions ensuring that

- the grammar is loop-free
- all attribute values can be computed through a depth-first visit of the tree

depth-first visit of the tree: implemented through recursive procedures visit of a subtree \Leftrightarrow procedure call with the subtree root as parameter

- 1. Start from the tree root (grammar axiom)
- 2. the depth-first visit of a (sub)tree includes (recursively) the depth-first visit of the subtrees rooted in its child nodes (in some specified order, e.g., left-to-right)

For each subtree t_N rooted at a node N:

- 3. Before visiting t_N compute the *right attributes* of node N and pass them as the *input parameters* of the procedure that implements the visit; procedure calls with input parameter passing are the «descending phase» of the visit
- 4. At the end of the visit of subtree t_N the *left attributes* of N become available: they are the *output parameters* of the procedure that implements the visit; procedure return and output parameter passing are the «ascending phase» of the visit

NB: order of subtree visits of the various children is specific for each rule

We now provide sufficient conditions on attribute dependences that permit attribute evaluation by a depth-first tree visit

Four Conditions allowing for attribute evaluation through a depth-first visit

they must be checked on the dependence graph dep_p of every syntax rule p

1. The graph dep_p has no circuit

obviously necessary for the grammar to be loop-free

2. In the graph dep_p there exists no path $\sigma_i \to ... \to \delta_i$, with $i \ge 1$, from a *left attribute* σ_i to a *right attribute* δ_i both associated with the same symbol D_i in the right part of p

because δ_i is an input parameter, and σ_i an output parameter, of the recursive call that visits subtree rooted at D_i

3. In the graph dep_p there exists no arc $\sigma_0 \to \delta_i$ ($i \ge 1$) from a left attribute of the father D_0 to a right attribute of any child D_i

because σ_0 is the output parameter of the procedure call for the parent node D_0

w.r.t. syntax rule $p: D_0 \to D_1 D_2 \dots D_r$, with $r \ge 1$, we define binary relation $sibl_p$ called the $sibling\ graph$ among right part $symbols\ \{D_1, D_2, \dots, D_r\}$ In $sibl_p$ there exists an arc $D_i \to D_j$, with $i \ne j$, if and only if there is a dependence for an attribute of D_i to an attribute of D_j , that is, the dependence graph dep_p has an arc $\alpha_i \to \beta_i$, with $\alpha_i \in attr(D_i)$ and $\beta_i \in attr(D_i)$

The fourth and last condition is:

4. The graph $sibl_p$ has no circuit

hence on can define an order in the recursive calls on the child nodes $D_1, ..., D_r$ attribute evaluation through a depth-first visit also called *one sweep evaluation* the conditions 1-4 above are collectively called *one sweep (evaluation) condition*

CONSTRUCTION OF THE ONE-SWEEP EVALUATOR

One procedure for each nonterminal; its input parameters are :

- the subtree rooted at the nonterminal
- the right attributes of the subtree root node

The procedure

- visits the subtree, computes its attributes and
- returns the left attributes of the root (through the output parameters)

Construction in 3 steps of the semantic evaluation procedure for rule $p: D_0 \to D_1 D_2 \dots D_r$, $r \ge 1$

- 1. Choose a *Topological Order of Siblings* $D_1, D_2, ..., D_r$, *TOS*, compatible with the sibling graph $sibl_p$
- 2. For each symbol D_i , with $1 \le i \le r$, choose a *Topological Order of Right attributes*, TOR, of symbol D_i
- 3. Choose a *Topological Order of Left attributes, TOL*, of symbol D_0

The three orders *TOS*, *TOR* and *TOL* determine the instruction sequence in the procedure body (shown in the coming example)

Example of a one-sweep procedure

Given a syntax rule p and the dependence graph dep_p :

 $p: D \to ABC$

It satisfies the four conditions for attribute evaluation through a depth-first visit

- 1. dep_p has no circuits
- 2. dep_p has no path of type $\sigma_i \rightarrow ... \rightarrow \delta_i$, $i \ge 1$
- 3. dep_p has no arcs of type $\sigma_0 \to \delta_i$, with $i \ge 1$
- 4. $sibl_p$ is acyclic

 $A \to C$ derives from dependence $\lambda_A \to \rho_C$

 $C \rightarrow B$ derives from dependence $\rho_C \rightarrow \rho_B$

Here are the possible topological orders

- sibling graph: TOS = A, C, B
- right attributes of every child:

TOR for
$$A = \rho$$
; **TOR** for $B = \rho$; **TOR** for $C = \rho$, σ ;

• left attributes of *D*: $TOL = \lambda$, μ

procedure D (in t, ρ_D ; out λ_D , μ_D)

- - t root of subtree to be decorated

$$\rho_A := f_1(\rho_D)$$

- - abstract functions are denoted f_1 , f_2 , etc.

$$A(t_A, \rho_A; \lambda_A)$$

- - invocation of A to decorate subtree t_A

$$\rho_C := f_2(\lambda_A)$$

$$\sigma_C := f_3(\rho_C)$$

$$C(t_C, \rho_C, \sigma_C; \lambda_C)$$

- - invocation of C to decorate subtree t_C

$$\rho_B := f_4(\rho_D, \rho_C)$$

$$B(t_B, \rho_B; \lambda_B)$$

- - invocation of B to decorate subtree t_C

$$\lambda_D := f_5(\rho_D, \lambda_B, \lambda_C)$$

$$\mu_D := f_6(\lambda_D)$$

end procedure

Now we can introduce and motivate an «attribute grammar design hint»:

when an initial (\Rightarrow inherited) attribute is needed in the root S of the tree (like an initialization) then one adds a «new spurious» axiom S and a rule S $\rightarrow S$

... this occurs in the previous example of text segmentation (slide 8, attribute prec in rule $S \rightarrow T$; it is the only reason for having an axiom S distinct from T)

Combined Syntax and Semantic Analysis

Syntax and semantic analysis can be integrated into the parser Simple and efficient method, suitable for simple translations Various cases, depending on the nature of the source language

- regular source language: lexical analysis with attribute evaluation can be performed with tools such as *flex* or *lex*
- *LL(k)* syntax: recursive top-down parser with attributes

 can be implemented manually with left (synthesized) attributes only
- *LR*(*k*) syntax: shift-reduce parser with attributes

 can be performed with tools such as *bison* or *yacc*(NB: functional dependence among right attributes is strongly limited)

Attributed recursive descent translator

Several hypotheses must be satisfied

- syntax suitable for deterministic top-down analysis (LL)
- attribute grammar suitable for one-sweep evaluation (depth-first visit)
- further conditions on functional dependence among attributes ... that we see now

Top-down analysis builds the subtrees from left to right

If combined with attribute evaluation then ...

...attribute dependences must permit a visit of subtrees in the sequence from left to right: 1, 2, ..., r-1, r

Therefore: Condition *L* (*left-to-right*) for syntax/semantic recursive descent analysis

- 1. Conditions allowing for *one sweep evaluation* through depth-first visit, plus
- 2. The sibling graph $sibl_p$ for rule $D_0 \rightarrow D_1 \dots D_r$ allows one to choose as TOS the "natural" sequence D_1, D_2, \dots, D_r
 - i.e., $sibl_p$ must not include any arc $D_j \to D_i$ with j > i:

 no attribute of D_i can depend on an attribute of D_j with D_j placed to the right of D_i

if a grammar is LL(k) and satisfies the L condition \Rightarrow

⇒ build a deterministic recursive descent parser that also evaluates the attributes

Example of a recursive descent syntax-semantic analyzer

Computes the numeric value of a binary string encoding a value less than 1

Language: $L = \bullet(0 \mid 1)^+$ Translation (ex.): $\pi(\bullet 01) = 0.25$

Grammar				
Syntax		Left attributes	Left attributes	
$N_0 \to \bullet D_1$		$v_0 := v_1$		$l_1 := 1$
$D_0 \to B_1 D_2$		$v_0 := v_1 + v_2$		$l_1 := l_0 l_2 := l_0 + 1$
$D_0 \to B_1$		$v_0 := v_1$		$l_1 := l_0$
$B_0 \to 0$		$v_0 := 0$		
$B_0 \rightarrow 1$		$v_0 := 2^{-l_0}$		
Attributes				
Attribute	Meaning	Domain	Туре	Assoc. symbols
\overline{v}	Value	Real	Left	N, D, B
l	Length	Integer	Right	D, B

The value of each bit is weighted by a power of 2 with negative exponent = distance from the fractional point

The syntax is deterministic LL(2): lookahead=2 needed for nonterminal D

Check the L condition for every syntax rule

$$N \rightarrow \bullet D$$
: $v_0 := v_1$ $l_1 := 1$

the dependence graph *dep* has the only arc $v_1 \rightarrow v_0$, hence the L condition is satisfied, because

- 1. the graph has no circuit
- 2. there is no path from a left attribute v to a right attribute l of the same child
- 3. there is no arc from a left attribute v of the father to a right attribute l of a child
- 4. the sibling graph *sibl* has no arc

$$D \to B D$$
: $v_0 := v_1 + v_2$ $l_1 := l_0$ $l_2 := l_0 + 1$

- has no circuit
- there is no path from a left attribute v to a right attribute l of the same child
- no arc from a left attr. (v) of the father to a right attr. l of a child
- the sibling graph *sibl* has no arc

$$D \rightarrow B$$
: $v_0 := v_1$, same as above

$${\it B} \rightarrow 0$$
: $v_0 \coloneqq 0$, dependence graph has no arc

$$B \to 1$$
: $v_0 := 2^{-l_0}$ dep graph has a unique arc $l_0 \to v_0$ and satisfies the L condition

Integrated syntax - semantic procedure

- in parameters: right attributes of the father
- out parameters: left attributes of the father
- variables cc1 and cc2: the current terminal symbol and the next one (syntax is LL(2))
- some local variables to pass the attribute values to other internal procedures
- «read» function updates cc1 and cc2 (NB: syntax is LL(2) but not LL(1))

```
procedure N (in \emptyset; out v_0)

if cc1 = ` \bullet ` then

read

else

error

end if

l_1 := 1

-- initialize a local var. with right attribute of D

D(l_1, v_0)

-- call D to construct a subtree and compute v_0

end procedure
```

Syntax	Left attributes	Right attributes
$N_0 \to \bullet D_1$	$v_0 := v_1$	$l_1 := 1$

Integrated syntax - semantic procedure

procedure B (in l_0 ; out v_0)

case cc1 of

'0': $v_0 := 0$ -- case of rule $B \to 0$ '1': $v_0 := 2^{-l_0}$ -- case of rule $B \to 1$ otherwise errorend case; readend procedure

Grammar		
Syntax	Left attributes	Right attributes
$N_0 \to \bullet D_1$	$v_0 := v_1$	$l_1 := 1$
$D_0 \to B_1 D_2$	$v_0 := v_1 + v_2$	$l_1 := l_0 l_2 := l_0 + 1$
$D_0 \to B_1$	$v_0 := v_1$	$l_1 := l_0$
$B_0 \to 0$	$v_0 := 0$	
$B_0 \rightarrow 1$	$v_0 := 2^{-l_0}$	

Integrated syntax - semantic procedure

```
procedure D (in l_0; out v_0)
   case cc2 of
       '0', '1':
                   begin -- case of rule D \to BD
                       B(l_0, v_1)
                       l_2 := l_0 + 1
                       D(l_2, v_2)
                       v_0 := v_1 + v_2
                   end
                   begin -- case of rule D \to B
       '⊢':
                       B(l_0, v_1)
                       v_0 := v_1
                   end
        otherwise error
    end case
end procedure
```

Grammar		
Syntax	Left attributes	Right attributes
$N_0 \to \bullet D_1$	$v_0 := v_1$	$l_1 := 1$
$D_0 \to B_1 D_2$	$v_0 := v_1 + v_2$	$l_1 := l_0 l_2 := l_0 + 1$
$D_0 \to B_1$	$v_0 := v_1$	$l_1 := l_0$

Example: Code generation for conditional control structures

if-then-else construct is converted to a combination of (conditional) jump instructions

For every generated instruction the translator needs a new label for the instruction targeted by the jump; every label must differ fom previous ones used for other instructions

function fresh returns, at each invocation, a new integer, to be assigned to variable n, a right attribute of the nonterminal representing the instruction

computed translation assigned to the tr attribute

concatenation operator (•) to combine the translation of the various fragments

Labels have the form: e397, f397, i23, ...

Example translation (assuming that the current call of *fresh* returns 7)

if
$$(a > b)$$
 $tr(a > b)$

 then
 jump-if-false rc , e_7

 $a := a - 1$
 $tr(a := a - 1)$ jump f_7

 else
 e_7:

 $a := b$
 $tr(a := b)$

 end if
 f_7:

 ...
 -- rest of the program

Grammar of the *if-then-else* conditional instruction

Syntax	Semantic functions
$F \rightarrow I$	$n_1 := fresh \blacktriangleleft$ NB: n_0 has the value of n_1
$I \rightarrow \mathbf{if} \ (cond)$	$tr_0 := tr_{cond} \bullet$ (fresh) above
then	jump-if-false rc_{cond} , $e_{-}n_0$
L_1	$tr_{L_1} \bullet jumpf_n_0 \bullet $
else	e_{n_0} : • rc_{cond} is an attribute of
L_2	$tr_{L_2} \bullet$ nonterm. $cond$
end if	f_n_0 :

translation of cond (tr_{cond}) , L_1 (tr_{L_1}) , and L_2 (tr_{L_2}) specified by other rules (not reported)

Proposed exercise: define similarly an attribute grammar for the translation of the iterative *while* instruction so to obtain the result here below

```
while (a > b)i_8: tr(a > b)dojump-if-false rc, f_8a := a - 1tr(a := a - 1) jump i_8end whilef_8:...- - rest of the program
```