Команда 13 Проектный практикум Эдуард Исаханов Артем Смирнов Яков Чибинин Владимир Ульзутуев

Предсказание индекса качества воздуха по данным Мосэкомониторинга с помощью ARIMA

28 декабря 2023

Что такое индекс качества воздуха?

- Индекс качества воздуха (ИКВ, AQI) используется для того, чтобы сообщить людям о качестве воздуха в настоящий момент или о том, какое качество воздуха можно ожидать в будущем
- высокий ИКВ связано с рисками для общественного здоровья, и чем выше ИКВ, тем больше эти риски
- в разных странах существуют собственные ИКВ, которые соответствуют национальным стандартам качества воздуха

Какой ИКВ используем мы?

WAQI.Info: World Air Quality Index (на основе <u>US EPA Air Now</u>)

Базовые показатели ИКВ

Дневной цвет ИКВ	Уровень опасности	Значения ИКВ	Описание качества воздуха	
Зеленый	Низкий	0-50	Качество воздуха удовлетворительное, а загрязнение воздуха представляет незначительный риск или не представляет его вовсе	
Желтый	Умеренный	51-100	Качество воздуха приемлемое. Может представлять опасность для тех, кто особенно чувствителен к загрязнению воздуха	
Оранжевый	Нездоровый для уязвимых групп	101-150	Представители уязвимых групп могут испытывать последствия для здоровья. Влияние на обычных людей менее вероятно	
Красный	Нездоровый	151-200	Обычные люди могут испытывать последствия для здоровья; представители уязвимых групп могут испытывать более серьезные последствия для здоровья	
Фиолетовый	Крайне нездоровый	201-300	Здоровье под угрозой: риск последствий для здоровья возрастает для всех	
Бордовый	Опасный	301 и выше	Чрезвычайная ситуация: высока вероятность негативных последствий для здоровья всех	

Пять основных загрязнителей

- Твердые частицы (РМ2.5 и РМ10)
- Приземный озон (О₃)
- Монооксид углерода (СО)
- Диоксид серы (SO₂)
- Диоксид азота (NO₂)

Наиболее полные данные – по твердым частицам, получаемые с датчиков частных лиц, негосударственных организаций и официальных служб.

Композитный ИКВ

World Air Quality Index использует композитный ИКВ по пяти загрязнителям, рассчитываемый по формуле:

ИКВ =
$$max(ИКВ_{PM2.5}, ИКВ_{PM10}, ИКВ_{O3}, ...)$$

Используемые данные

Исторические данные для 26 станций <u>"Мосэкомониторинга"</u>, бесплатно доступные на <u>WAQI.Info</u>.

Ежедневный композитный ИКВ бесплатно доступен через API WAQI.Info.

The JSON API can be used for advanced programmatic integration:

- Access to more than 11000 station-level and 1000 city-level data
- Geo-location query (based on latitude/longitude or IP address)
- Individual AQI for all pollutants (PM2.5, PM10, NO2, CO, SO2, Ozone)
- · Station name and coordinates
- · Originating EPA name and link
- · Current weather conditions
- Stations within a map lat/lng bounds
- · Search stations by name

```
$ curl -i "http://api.waqi.info/feed/shanghai/?to

{
    status: "ok",
    data: {
        aqi: 70,
        time: {
            s: "2023-12-28 11:00:00"
        },
        city: {
            name: "Shanghai",
            url: "http://aqicn.org/city/shanghai/",
        geo: [
            "31.2047372",
            "121.4489017"
        ]
}
```

Сравнение методов предсказания

	Инерционный прогноз	Регрессия	Нейронные сети
Усилия по разработке	Низкие	Умеренные	Умеренные/высокие
Усилия по поддержанию	Низкие	Умеренные	Умеренные
Точность	Низкая	Умеренная/высокая	Умеренная/высокая
Метод описания	Сегодняшняя (вчерашняя) концентрация загрязнителя – это прогноз концентрации загрязнителя на завтра.	Уравнение регрессии предсказывает концентрацию загрязнителей	Нелинейные уравнения и веса предсказывают концентрацию загрязнителей
Сильные стороны	Хорошо работает там, где на протяжении нескольких дней подряд были высокие или низкие концентрации загрязнителей	Часто используется и проста в использовании	Позволяют находить нелинейные зависимости
Потенциальные ограничения	Не предсказывает начало или конец эпизода; низкая точность	Не способна точно предсказывать крайние концентрации	Не способны точно предсказывать крайние концентрации. Требуют в 1,5 раза больше усилий для разработки (в сравнении с регрессией) при незначительном улучшении точности предсказания

Модель ARIMA

Модель ARIMA (авторегрессионная интегрированная скользящая средняя) - это статистическая модель, которая используется для анализа временных рядов.

Она представляет собой комбинацию авторегрессии (AR), интегрирования (I) и скользящей средней (MA). Модель ARIMA позволяет учитывать тренды, сезонность и другие особенности временных рядов, что делает ее полезной для прогнозирования будущих значений временных рядов.

Формула ARIMA

Модель ARIMA(p, d, q) имеет следующую формулу:

$$y_{t} = c + \phi_{1} y_{t-1} + \phi_{2} y_{t-2} + ... + \phi_{p} y_{t-p} + \theta_{1} \varepsilon_{t-1} + \theta_{2} \varepsilon_{t-2} + ... + \theta_{q} \varepsilon_{t-q} + \varepsilon_{t}$$

где:

- ${\sf y'}_{\sf t}$ значение временного ряда в момент времени ${\sf t}$
- с константа
- ф1, ф2, ..., фр коэффициенты авторегрессии (AR)
- у_{t-1}, у_{t-2}, ..., у_{t-p} значения временного ряда в предыдущие моменты времени
- θ_1 , θ_2 , ..., θ_0 коэффициенты скользящей средней (МА)
- $\epsilon_{\text{t-1}}$, $\epsilon_{\text{t-2}}$, ..., $\epsilon_{\text{t-o}}$ остатки модели в предыдущие моменты времени
- $\epsilon_{\scriptscriptstyle +}$ остаток модели в момент времени t
- р порядок авторегрессии
- d порядок интегрирования
- q порядок скользящей средней

Эта формула позволяет учитывать предыдущие значения временного ряда, а также остатки модели для прогнозирования будущих значений.

Использование модели ARIMA для предсказание индекса качества воздуха

Структура:

- Обработка полученных исторических данных со станций за весь период
- Обучение модели ARIMA и проверка на корректность значений
- Получение предсказания на следующий день по каждой станции

Предсказание для каждого значения

Реализация приложения на сервере Streamlit

Для визуализации на сервере Streamlit был реализован функционал:

- Наложение данных по координатам на карту с цветовой дифференциацией по уровню загрязнения
- Реализация приложения на сервере Streamlit

Что дальше?

- Использование в модели новых данных от пользовательских датчиков, собираемых глобальной сетью <u>sensor.community</u>, для Москвы
- Создание гибридных моделей (ARIMA и нейронные сети), сочетающих лучшие качества обоих подходов, для предсказания качества воздуха*

^{*} См., напр.: Duan, J., Gong, Y., Luo, J. *et al.* Air-quality prediction based on the ARIMA-CNN-LSTM combination model optimized by dung beetle optimizer. *Sci Rep* **13**, 12127 (2023). https://doi.org/10.1038/s41598-023-36620-4; Luo, J., Gong, Y., Air pollutant prediction based on ARIMA-WOA-LSTM model, *Atmospheric Pollution Research* **14** (2023). https://doi.org/10.1016/j.apr.2023.101761.