Deploying Machine Learning Models in Python

Albert Au Yeung

PyCon HK 2018 23th November, 2018

Deploying Machine Learning Models in Python

Albert Au Yeung

PyCon HK 2018 23th November, 2018

Deploying Machine Learning Mode in Python

Albert Au Yeung

PyCon HK 2018 23th November, 2018

vviiat is tills Tath Abbut:

- The need to **deploy** machine learning models
- Different kinds of workflows
- Common strategies
- Options in Python
- Other considerations
- NOT about using docker/kubernetes

The Maggie Way of Machine Learning

- Kaggle: a Website that host machine learning competitions
- You train machine learning models and generate predictions on the
- Everything is done offline

Machine Leanning Applications

- In practice, generating predictions is only a small part of a machine
- Consider a system that uses machine learning to recognize hand-w

Common ML Systems Workflow (1)

- Train offline ➤ Predict offline ➤ Store predictions in DB
- Example: **Recommender systems**
 - A model is trained **offline**
 - o For each user, generate (pre-compute) a list of recommended items, store in **database**
 - When the user visits the Website, return the list of items

COMMINION ME SYSTEMS WORKITOW

- There are several common workflows for machine learning system
 - 1. Train offline ➤ Predict offline ➤ Store predictions in DB
 - 2. Train offline ➤ Embed model in a device ➤ Predict online
 - 3. Train offline ➤ Make model available as a service ➤ Predict online

Notes:

Offline

separate from a production system; does not have to be completed in real time

Online

part of a production system; perform tasks in real time

Common Mr Systems Workhow (1)

- Train offline ➤ Predict offline ➤ Store predictions in DB
- Example: Recommender systems
 - A model is trained **offline**
 - o For each user, generate (pre-compute) a list of recommended items, store in data
 - When the user visits the Website, return the list of items

Recommendations for you in Books

COMMON ME SYSTEMS WORKITOW (Z)

- Train offline ➤ Embed model in a device ➤ Predict online
- Example: Object detection using a drone
 - A model is trained offline
 - The model together with other processing logic are downloaded to the drone's computer
 - The drone detects objects while it is in operation

Common ML Systems Workitow (3)

- Train offline > Make model available as a service > Predict online
- Example: **Spam E-mail detection**
 - A classifier is trained offline with spam and non-span emails
 - Deployed as a service to serve users or other components in the system

COMMINDER SYSTEMS WORKITOW

- In (2) and (3), we need to think about how to **deploy** a machine lea
- Definition of **deploy**:

To place some resources into a position so as to be ready or use

- In this talk, we will focus on Use Case (3)
- How to make machine learning models available to other users/sy

Common Stratogics

Common Strategies

- Persist model in a standard format
- Different languages for development and production

- Serve models in
- The same languates used in development

reisist models ill a stalldald i Ollilat

```
from sklearn.linear_model import LogisticRegression
from sklearn.feature_extraction.text import CountVectorizer
from sklearn2pmml import sklearn2pmml
from sklearn2pmml.pipeline import PMMLPipeline

# Load data ...

# Create pipeline and fit model
pipeline = PMMLPipeline([
    ("vec", CountVectorizer()),
    ("clf", LogisticRegression())
])
pipeline.fit(X, y)

# Write model in PMML format
sklearn2pmml(pipeline, "model.pmml", with_repr=True)
```

PredictLangua

- XML-kmode
- scikitsklea
- Lightjpmm
- ReferenScikit-Le

Serve Models III Micro-Services

- Models are persisted in a certain format specific to the language in (e.g. using sklearn.externals.joblib)
- The model (or even the module to load, pre-process and generate process)
 wrapped in a micro-service that expose endpoints to receive requ

Options in Fython

- XML-RPC
- HTTP REST micro-services
 - Flask: http://flask.pocoo.org/
 - Bottle: https://bottlepy.org/
 - Falcon: https://falconframework.org/
 - Vibora: https://github.com/vibora-io/vibora
 - AIOHTTP: https://aiohttp.readthedocs.io/en/stable/
- Asynchronous Messaging
 - Kafka: https://kafka.apache.org/
 - RabbitMQ: https://www.rabbitmq.com/
 - Redis: https://redis.io/

wrapping model riediction in a class

- Generating predictions can involve pre-processing and post-proce
- More convenient if everything is wrapped inside a class

```
class TextClassifier(object):
    """A Class wrapping the ML model"""

def __init__(self):
    # Load the persisted model into memory
    self.model = joblib.load("model.pkl")

def train(self):
    # Model training
    # ...

def predict(self, x):
    y = self.model.predict([x])
    return y[0]
```

TELISOTTOW MODELS

For Tensorflow models, we need to keep a reference to the graph d

VIVIL-UL

- XML-RPC: Remote procedure call based on HTTP and XML file formate
- The most straight-forward way if the clients are also written in Py
- Server

```
from xmlrpc.server import \
    SimpleXMLRPCServer
from model import TextClassifier

clf = TextClassifer()

address = ("localhost", 8000)
server = SimpleXMLRPCServer(address)
server.register_function(
    clf.predict, "predict")

server.serve_forever()
```

Client

```
address = ("localhost

# Create a proxy to to
with ServerProxy(address)
server.predict("He
```

I lash

A popular WSGI Web framework for creating HTTP APIs

```
from flask import Flask, current_app, request, jsonify
from model import TextClassifier

app = Flask(__name__)  # Create a Flask app
app.model = TextClassifier() # Load model into the app

# Define the HTTP API for prediction
@app.route('/predict', methods=['POST'])
def predict():
    d = request.get_json()
    prediction = current_app.model.predict(d['x'])
    return jsonify(result=prediction)

# Start the Flask internal Web server
app.run()
```

Deploying

- Flask is a WSGI Web Framework, it can be deployed using Gunicorr
- Gunicorn uses a pre-fork worker model (creates copies of your ap)
- \$ gunicorn app:app -b localhost:8000 -w 4

I alcuii

- A Framework that focuses on REST APIs
- Falcon vs. Flask Which one to pick to create a scalable deep learn

```
import falcon
from model import TextClassifier

class Handler(object):

    def __init__(self):
        self.model = TextClassifier()

    def on_post(self, req, resp):
        data = json.loads(req.stream.read())
        resp.media = {"result": self.model.predict(data['x'])}

app = falcon.API()
app.add_route('/predict', Handler())
app.run()
```

vibula

- Asynchronous HTTP client/server framework (requires Python 3.6+
- API very similar to Flask

```
from vibora import Vibora, Request
from vibora.responses import JsonResponse
from model import TextClassifier

app = Vibora() # Create an Vibora application
app.add_component(TextClassifer()) # Add a globally available component

@app.route('/predict', methods=['POST'])
async def predict(request: Request):
    data = await request.json()
    model = app.get_component(TextClassifier) # Get reference to the model
    prediction = model.predict(data['x'])
    return JsonResponse({"result": prediction})
```

AIUIIII

Framework for implementing Asychronous HTTP client/server on t

```
from aiohttp import web
from model import TextClassifier

async def handle(request):
    data = await request.json()
    prediction = request.app['model'].predict(data['input'])
    return web.json_response({"result": prediction})

app = web.Application()
app.router.add_post('/predict', handle)
app["model"] = TextClassifier()

web.run_app(app, host='localhost', port=8000)
```

Companing web maineworks

- Some benchmarking results can be found here or here
- For ML services, the choice of framework seems not too important,
 the time will be spent on data processing and inference

Simple request and response http://klen.github.io/py-frameworks-bench/

Frameworks	Requ
Tornado	1
Django	1
Flask	1
Aiohttp	2
Sanic	7
Vibora	13

POST JSON data https://github.com/v

Disadvantage of Using III if Aris

- HTTP REST APIs are simple to implement, however the process is s
- The client must wait until the ML service has finished the process of predictions
- In a complex system involving a lot of components, this may not be

Asylicinolious messaging

- If components are relatively independent, using **asynchronous me** more efficient use of the services' resources
- Send requests and responses to a message broker instead of direct

- Options:
 - Redis https://redis.io/
 - RabbitMQ: https://www.rabbitmq.com/
 - Kafka: https://kafka.apache.org/

VERI2

• Redis is a key/value cache, but can also be used as a message que

• Client Side

ML Service

```
from redis import Str
from model import Text

queue = StrictRedis(head)
pubsub = queue.pubsub
pubsub.subscribe('predistry
while True:
    x = p.get_message
    y_pred = model.predistry
# send result back
```

Naina

- A scalable and distributed message queue
- Two Python packages available: kafka-python and confluent-kafka
- Producer of messages

```
from kafka import KafkaProducer

# Create a message producer
address = 'localhost:1234'
producer = KafkaProducer(
    bootstrap_servers=address)

# Send message to a topic
producer.send('prediction', # topic
    '{"x": "Hello!"}') # msg
...
```

Consumer of mes

```
# Create a consumer og
consumer = KafkaConsum
# Get message from brown
for msg in consumer:
    # Decode message
    content = msg.valu
    data = json.loadse
...
```

Scalling ML Services

- Nowadays micro-services are usually deployed as docker container systems such as Kubernetes
- Scaling involves creating multiple containers, each container runn service
- Challenge: How to configure resources allocated to each contained

Scaling MI Sorvices

Scalling ML Services

- Some models can benefit from multiple cores using multi-threading processing, e.g.:
 - scikit-learn's RandomForestClassifier
 - Facebook's fastText
 - Deep learning models built using Tensorflow or PyTorch
- Some models are huge and consume a lot of RAM
- Some models can only run on single cores
- Using GPUs, sometimes batch processing can be faster

Singlove Multiplo Workors

Single vs. Multiple workers

- Example: using Flask and Gunicorn to deploy a Tensorflow model
- Tensorflow models can utilize multiple cores during inference
- Would be better to scale using multiple containers, each allocated rather than having multiple workers in a single container

Summary

Summary

- When using a model in a **production system**, in addition to the per (i.e. accuracy / precision / recall of the model, we need to consider:
- 1. **Model Size** ➤ would it be too big to be copied around?
- 2. **Memory** ➤ how much memory will it take up after loaded?
- 3. CPU ➤ how much CPU resources needed to generate a prediction?
- 4. **Time to Predict** ➤ time requried to generate a prediction
- 5. **Preprocessing** > how complicated are the preprocessing steps?

Thank You!

http://www.albertauyeung.com albertauyeung@gmail.com

Slides Avaliable at:

http://talks.albertauyeung.com/pycon2018-deploy-