Assignment 1.2

Exercises: 1, 2, 3, 4, 5, 6, 8, 9, 15

Exercise 1.2.1

Exercise 1.2.2

Exercise 1.2.3 The following is $V(x^2 + y^2 - 4) \cap V(xy - 2)$, which is the intersection of the two affine varieties represented by two different colors. The points of intersection are approximately (0.518, 1.932), (1.932, 0.518), (-0.518, -1.932), (-1.932, -0.518).

These points of intersection are equal to the affine variety $V(x^2 + y^2 - 4, xy - 1)$.

Exercise 1.2.4

(1.2.4a) A unit sphere centered at the origin.

(1.2.4b) A cylinder whose cross-sections parallel to the xy-plane are unit circles centered at (0,0) in the xy-plane.

(1.2.4c) A point (-2, 1.5, 0).

(1.2.4d) The union of the yz-plane and a parabolic cylinder perpendicular to the yz-plane above $y = z^2$.

(1.2.4e) The union of the yz-plane and a twisted cubic given by $V(x^3 - z, x^2 - y)$.

(1.2.4f) A circle with radius $\frac{\sqrt{3}}{2}$ centered at $(0,0,\frac{1}{2})$ that lies on the plane $z=\frac{1}{2}$.

Exercise 1.2.5 The affine variety in \mathbb{R}^3 given by $V((x-2)(x^2-y), y(x^2-y), (z+1)(x^2-y))$ can be described as the union $V(x-2, y, z+1) \cup V(x^2-y)$, which is the union of the point (2, 0, -1) and a parabolic cylinder which is perpendicular to the xy-plane above the parabola $y = x^2$.

Exercise 1.2.6

(1.2.6a)

Proof. Define V to be the affine variety $V(f_1, \ldots, f_n)$ with each $f_i = x_i - a_i$ for all $1 \le i \le n$. Then $V = \{(b_1, \ldots, b_n) | f_i(b_1, \ldots, b_n) = 0, 1 \le i \le n\}$. Thus we have that $(b_1, \ldots, b_n) \in V$ implies $b_i - a_i = 0$ for $1 \le i \le n$. This results in $(b_1, \ldots, b_n) = (a_1, \ldots, a_n)$ so $V = \{(a_1, \ldots, a_n)\}$.

Since this works for an arbitrary point (a_1, \ldots, a_n) , this argument will hold for any point. Therefore, a single point $(a_1, \ldots, a_n) \in k^n$ is an affine variety.

(1.2.6b)

Proof. Let S be a finite subset of k^n with r points such that $S = \{p_1, \ldots, p_r\}, p_i \in k^n$ for $1 \le i \le r$.

By (1.2.6a), we have that each set of one point $\{p_i\}$ is an affine variety V_i . Lemma 2 indicates that finite unions of affine varieties are also affine varieties, so taking the union of finitely many p_i yields

$$V = \bigcup_{i=1}^{r} V_i = \bigcup_{i=1}^{r} \{p_i\} = S.$$

Since S is arbitrary, we conclude that every finite subset S of a field k^n is an affine variety.

Exercise 1.2.8

Proof. Let $f(x,y) \in \mathbb{R}[x,y]$ vanish on $X = \{(x,x) \in \mathbb{R}^2 | x \neq 1\}$. Then $g(t) = f(t,t) \in \mathbb{R}[t]$ vanishes at all points such that $t = x \neq 1$. This implies that g(t) has infinitely many roots, so g(t) must therefore be the zero polynomial. Note, however, that if g(t) = 0 is the zero polynomial, then g(1) = f(1,1) = 0. Thus, we conclude that X is not an affine variety. \square

Exercise 1.2.9

Proof. Assume, by way of contradiction, that $R = \{(x,y) \in \mathbb{R}^2 | y > 0\}$ is a variety. Then $R = V(f_1, \ldots f_n)$ where each f_i is a polynomial in $\mathbb{R}[x,y]$. We consider $f_1(x,y)$ and let $y = y_0 > 0$. Note that

$$f_1(x, y_0) = \sum_{i=0}^{N} g_i(y_0)x^i$$

vanishes at all $x \in \mathbb{R}$. This means that $g_i(y_0) = 0$ is the zero polynomial for all i. This holds for all $y_0 > 0$. Thus, f_1 is the zero polynomial. This can be applied to all f_i so $f_i = 0$ is the zero polynomial for all i. Now $R = V(0, \ldots 0) = \mathbb{R}^2$, and we arrive at a contradiction. Therefore R is not an affine variety.

Exercise 1.2.15

(1.2.15a)

Proof. The base cases have been shown for both unions and intersections of two affine varieties. Thus, we can rewrite finite intersections and unions as follows: $V_1 \cup \ldots \cup V_m = (V_1 \cup \ldots \cup V_{m-1}) \cup V_m$ and $V_1 \cap \ldots \cap V_m = (V_1 \cap \ldots \cap V_{m-1}) \cap V_m$, so our result follows from induction on m.

(1.2.15b)

Proof. Consider the affine variety $V_i = \{i\} \subseteq \mathbb{R}$. Note that $\bigcup_{i=1}^{\infty} = \mathbb{N}$. Note that this set is infinite, but not equal to \mathbb{R} , so it is not an affine variety.

(1.2.15c)

Proof. Define $V = \mathbb{R}, W = \{0\}$. Then $V \setminus W = \mathbb{R} - \{0\}$ which is an infinite set not equal to \mathbb{R} . Thus, similarly to (1.2.15b), $V \setminus W$ is not an affine variety.

(1.2.15d)

Proof. Let $V = V(f_1, \ldots, f_s)$ with $f_i \in k[x_1, \ldots, x_n]$ and let $W = V(g_1, \ldots, g_t)$ with $g_j \in k[x_1, \ldots, x_m]$. Furthermore, define y_1, \ldots, y_m to be new variables and $h_j = g_j(y_1, \ldots, y_m)$. We wish to show that

$$V \times W = V(f_1, \dots, f_s, h_1, \dots, h_t) \subseteq k^n \times k^m$$

Note that, if $f(a,b) \in V \times W$, then $f_i(a,b) = f_i(a) = 0$ and $h_j(a,b) = h_j(b) = 0$ since $a \in V, b \in W$. Thus $(a,b) \in V(f_1,\ldots,f_s,h_1,\ldots,h_t)$.

Conversely, if $(a,b) \in V(f_1,\ldots,f_s,h_1,\ldots,h_t)$, then $f_i(a)=0$ for $i=1,\ldots,s$, and $g_j(b)=0$ for $j=1,\ldots,t$. Therefore $a \in V$ and $b \in W$.

Thus we conclude that the cartesian product of two affine varieties is an affine variety. \Box