

SEQUENCE LISTING

<110> WEI, Ming-Hui et al.

<120> ISOLATED HUMAN TRANSPORTER PROTEINS,
NUCLEIC ACID MOLECULES ENCODING HUMAN TRANSPORTER PROTEINS,
AND USES THEREOF

<130> CL000894

<140> US 09/691,219

<141> 2000-10-19

<160> 4

<170> FastSEQ for Windows Version 4.0

<210> 1

<211> 1617

<212> DNA

<213> Homo sapiens

A1
<400> 1

cgcggtaac agcacgaggg ggagcgcttg gcacgcggag ccagagccgg agtcgcagcc 60
gcagcgggag cggggggagc tcaggggccc caggagccgg gcccggagtga gcgcacctcg 120
cggggccctc ggggcagggtg ggtgagcgcc acccggagtc cccgcgcgaa ctttcaggc 180
gcactcggcg gggcggctgc gccggctgccg ggactcggcg cgggactgca tggaggccaa 240
ggagaagcag catctgttgg acgcaggccc ggcaatccgg tcatacacgg gatctctgtg 300
gcaggaaggg gctggctgga ttccctctgcc cccacctggc ctggacttgc aggccattga 360
gctggctgcc cagagcaacc atcaactgcca tgctcagaag gtcctgaca gtcactgtga 420
ccccaaagaag gggaaaggccc agcgcacgt gtatgtagcc tctgcacatct gcctgttgtt 480
catgatcgga gaagtcgttgg tgggttaccc ggcacacagc ttggctgtca tgactgacgc 540
agcacacactg ctcactgact ttgcagcat gctcatcagc ctcttctccc tctggatgtc 600
ctccccggcca gccaccaaga ccatgaacct tggctggcag agagctgaga tcttggagc 660
cctggctct gtactgtcca tctggctcgat gacggggta ctgggttacc tggctgtgga 720
gcccgtgatc tctggggact atgaaattga cggggggacc atgctgatca cgtcggtctg 780
cgctgtggct gtgaacatca taatggggtt gacccttcac cagtctggcc atggcacag 840
ccacggcacc accaaccagc aggaggagaa ccccaacgtc cgagctgcct tcatccatgt 900
gatcggcgac tttatgcaga gcatgggtgt cctagtggca gccttatattt tataacttcaa 960
gccagaatac aagtatgttag accccatctg caccttcgtc ttctccatcc tggctctggg 1020
gacaaccttg accatcctga gagatgttat cctgggttgc atggaaggga ccccaaggg 1080
cggtgacttc acagctgttc gtatctgtc gctgtcggtg gaggggtag aagccctgca 1140
cagcctgcat atctgggcac tgacgggtgg ccagcctgtt ctgtctgtcc acatcgccat 1200
tgctcagaat acagacgccc aggctgtgtc gaagacagcc agcagccgccc tccaaggaa 1260
gttccacttc cacaccgtga ccatccagat cgaggactac tcggaggaca tgaaggactg 1320
tcaggcatgc cagggccct cagactgact gtcagccag gcaccaactg gggcatgaac 1380
agacactgca ggtggctgga ctgagttgtcc cccagggccc gccaggactt tgccttacccc 1440
agctgtgtta taaaccaggc ccccttcctg acctctgccc cactccagga atggagctct 1500
tcccagccctc ccacactgact acagccagggg tggggactca gcgggtataa agctagtgtg 1560
accctgaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaatgtt 1617

<210> 2

<211> 372

<212> PRT

<213> Homo sapiens

TECH CENTER 1600/2900

RECEIVED
NOV 07 2002

<400> 2

Met Glu Ala Lys Glu Lys Gln His Leu Leu Asp Ala Arg Pro Ala Ile
1 5 10 15
Arg Ser Tyr Thr Gly Ser Leu Trp Gln Glu Gly Ala Gly Trp Ile Pro
20 25 30
Leu Pro Arg Pro Gly Leu Asp Leu Gln Ala Ile Glu Leu Ala Ala Gln
35 40 45
Ser Asn His His Cys His Ala Gln Lys Gly Pro Asp Ser His Cys Asp
50 55 60
Pro Lys Lys Gly Lys Ala Gln Arg Gln Leu Tyr Val Ala Ser Ala Ile
65 70 75 80
Cys Leu Leu Phe Met Ile Gly Glu Val Val Gly Gly Tyr Leu Ala His
85 90 95
Ser Leu Ala Val Met Thr Asp Ala Ala His Leu Leu Thr Asp Phe Ala
100 105 110
Ser Met Leu Ile Ser Leu Phe Ser Leu Trp Met Ser Ser Arg Pro Ala
115 120 125
Thr Lys Thr Met Asn Phe Gly Trp Gln Arg Ala Glu Ile Leu Gly Ala
130 135 140
Leu Val Ser Val Leu Ser Ile Trp Val Val Thr Gly Val Leu Val Tyr
145 150 155 160
Leu Ala Val Glu Arg Leu Ile Ser Gly Asp Tyr Glu Ile Asp Gly Gly
165 170 175
Thr Met Leu Ile Thr Ser Gly Cys Ala Val Ala Val Asn Ile Ile Met
180 185 190
Gly Leu Thr Leu His Gln Ser Gly His Gly His Ser His Gly Thr Thr
195 200 205
Asn Gln Gln Glu Glu Asn Pro Ser Val Arg Ala Ala Phe Ile His Val
210 215 220
Ile Gly Asp Phe Met Gln Ser Met Gly Val Leu Val Ala Ala Tyr Ile
225 230 235 240
Leu Tyr Phe Lys Pro Glu Tyr Lys Tyr Val Asp Pro Ile Cys Thr Phe
245 250 255
Val Phe Ser Ile Leu Val Leu Gly Thr Thr Leu Thr Ile Leu Arg Asp
260 265 270
Val Ile Leu Val Leu Met Glu Gly Thr Pro Lys Gly Val Asp Phe Thr
275 280 285
Ala Val Arg Asp Leu Leu Leu Ser Val Glu Gly Val Glu Ala Leu His
290 295 300
Ser Leu His Ile Trp Ala Leu Thr Val Ala Gln Pro Val Leu Ser Val
305 310 315 320
His Ile Ala Ile Ala Gln Asn Thr Asp Ala Gln Ala Val Leu Lys Thr
325 330 335
Ala Ser Ser Arg Leu Gln Gly Lys Phe His Phe His Thr Val Thr Ile
340 345 350
Gln Ile Glu Asp Tyr Ser Glu Asp Met Lys Asp Cys Gln Ala Cys Gln
355 360 365
Gly Pro Ser Asp
370

<210> 3

<211> 11101

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature
. <222> (1)...(11101)
<223> n = A,T,C or G

<400> 3

cctgccacca tgcctggcta attttcttat ttttagtaga gacgagggtt tgccatgttg 60
accaggctgg tctcgaactc ttgacctcg gtgatccgccc tgcctcagcc tcccaaagtg 120
ctgggattat aggcgtgagc cgccgcaccc agccaacatt ttttaaatac taaaaagtag 180
aggaatagt tatagtgta cccatttacc catcaactcg tttcaacagc tggtgacata 240
tttatttctt ctataccagt accgtactct ccccaactggg attatttaa ggcaaaaccc 300
agatgacatt ttatccctaa atactttaga taaaggtgtt ctttggaaaaa aatcataacc 360
tcaggaccag cctggccaac atggtgaac cctgtctgtt cttaaaatac aaaaattagc 420
ttggcatggt cgtggcacc tgaatcccc gctactcagg aagctgaggc aggagaatca 480
cttgaatccg ggaagcagag attgcagtga gctgagattg cagtcgagcc tggcgacag 540
agacagaaat gaaactctgt ctcaaaaaca aacaacaaa aaaaccacta tacataaaaa 600
tgaacaatga tgccacaata gcaccagaga atttataaa tacagattcc cagggccctgc 660
cccaagacta ctgaatcctg gaaatattca ggctccacac ccagagattc tggttcgggtt 720
ggtctgatgc agggacctgt aacctgcgtt gtaacacctt ctccaggtaa tgctgagcct 780
gctggtgctc agatgagaca gacctggaga aaaccagggt gtctgaggtt ttccagaaga 840
aaaccagagt ccagagaagc agagaggcac tcagtgagga cccaagcaga gcgggtgcac 900
ctcacatctt cactcctggc accccgtctc ctacaagatg agagactgaa agagccctt 960
cctgtccccca gtggtgtggg caagaggcct gcacctctga ctcttggctc tgtgaaaggc 1020
catacccacc aagcctatgg tcctagcgtc aaagggtgtt ggggagacga attgaccaga 1080
caggagggtc tccagcagct ttttctaca cagagggcac ctgtcagagg ccagcgtggg 1140
ggccacaggc tccccatcc ccaagaaccc ccagggagg aggctgcttc aagtgggtgg 1200
ggcaccaagc tggccaggaa ggacagggtc tctccagcg gtaccaacac ggtggcacct 1260
ccggcctgca tctcccaggc ttgttctgtt ggcttctgg ggctcccagg agccgctgct 1320
ggggagggga gaagggggtgg cagcagtggc agtggtcgtc tctgtccga tggtgactgc 1380
cgatgacact gttctctgtt cgggtggaga caaagccggc cactccagat tctctgcgc 1440
gcaggagagg aggagctggc gctgcttcgt tggcgaggat gggtcgatca gtcccgccg 1500
gtccttagggg gagacactgc cccagcctga gggcggcgca gcccacccca cccaggacc 1560
ctcctagcag gaggacagga acgcaagccg acctcggggg gtctccggc tgagagggga 1620
acatgatcaa gcccaggcgca gcccgcagtc ggagggggca gacgcggccc cagtagcctc 1680
tgagaccct cttccgaggc aaggagccac attcctgcgt tggggaccac caaagcggat 1740
ttctacaaac taaagtcgag aactttctgg cggcgaggcg ggcaccccg cgcggagag 1800
ggggcgcagg cgtcaccccg tcctcactca gcaacacccc ggcgcgcgc cggcgaagg 1860
ctggcagact tctcgcggcc ggcaggtggg ctccgcggc cccatggcg caggcacagg 1920
tggcggggc cacagccggg cttttcgtt ccggcgaccg cccccccttc cccgcgggct 1980
tttgcacacg acgcggcgac ggcagcttca cacgggttg cgagggccgg ataaagccgg 2040
cgccgcggg ggcagcggc tgaccggaga cacgggagcg cttggcagcc ggagccagag 2100
ccggagctgc agccgcagcg ggagccgggg gagctcaggg ggcgcaggag cggggccgg 2160
gtgagcgcac ctcgcggggc cttcgccggca ggtgggtgag ggcaccccg agtcccgcgc 2220
gcaacttca gggcgcactc ggcggggcgg ctgcgcggct gcccggactc ggcgcgggac 2280
tgcacggagg ccaaggagaa gcaagcatctg ttggacgcctt ggcggcaat ccgtaaggc 2340
gagagcctgg ggacggcgcc gaattttggc ggcagccgc gacacccgcg atttgcctc 2400
ctagcagtgg ttggtttgg ctgcggctt agctgggacc atgcaggagg ggtgggtga 2460
ggtagggaa cgaagataat gggctgtggc ccaaggaccg tctctccctt gggcgcagc 2520
ccagatccctg accccctgccc gccccggggcc tggggccggg ggattggggg ttccatgcc 2580
tgagatccc ccccccccg cactttgcctt cagcggccccc cgcggccggg aggccctgtg 2640
tcccaagtgc gctggggggg ggcggctgtt ctccctcggc ctgcgccttgc ttccctcccc 2700
gcgcctccact ggacagcactc cccctggcc gttccagg gtctcacct cctctggcct 2760
ctgaaggggcc cccggggccca ggactccat tccctatca tcccgctctg aatacaggct 2820
tctcacctt ggtttgtcgat gtcggagcg tcttagcta tttttccag tggacacaag 2880
gcttcacaga gaaatgggac tagactcggt cctccattacc tcatctcaga gctgagcg 2940
ccctctcttc ccctctggcc aggtcataca cggatctct gtggcaggaa gggctggct 3000
ggattccctct gccccggaccc ggcctggact tgcaggccat tgagctggct gcccagagca 3060
accatcaactg ccatgcttag aagggtcctt acagtcactg tgaccccaag aagggaagg 3120

Q1

cccagcgcca gctgtatgta gcctctgcca tctgcctgtt gttcatgatc ggagaagtcg 3180
 ttggtaagca ctttgggct aattaaatga agttggtgca tggatagact ggatgttccc 3240
 agcaatactg acactaaaag ccccaattac tgaacacaca ctacagtaag cctttatata 3300
 cacattatct gatgcaggc tcacaacaac ctgtgttctc acatgggtga cgttattctc 3360
 cttaacttac agatgatgaa actgaggcac gttcagggtga agtaacttgc caaagatcac 3420
 gcacaactcg tagctaaggg aaggcctgaa ttccctagaag ggaagagcat ttactgagta 3480
 tctgctatgt tttccagtcc ctatggac ttgatgtgca cattcacccct ctaagtagat 3540
 attggtgcc catttcacag agagtggaa ttgaggctca gagagagtag gtcacttgc 3600
 acgggtgtac agctcatggg tagagagatc ttgagccag aatgtcctc tccagagcct 3660
 gtggctccc tgctgcacac acagtctgg gagccagctc tctggggag ctgataagga 3720
 ccctccaccc tgcagggtgg tacctggcac acagettggc tgtcatgact gacgcagcac 3780
 acctgctcac tgactttgcc agcatgctca tcagcctt ctccctctgg atgtcctccc 3840
 gcccagccac caagaccatg aactttggc ggcagagagc tggtgaggat cgcgtttgg 3900
 ctggagatgg gttgagaga gagggtgggt tagaacaggg gttcttaggt ggctgtaatg 3960
 ggtggatccc cccttcctcc cctgagtgag gccaggaggg tgatctggat ggggaagag 4020
 gatgtcaacc atggcctctg tcctctggg aatcctagtc tgatggggg gccctggtcc 4080
 cagtcatcca ggagctctca gtctgcagg aagcaaagtt gacccctta agaagtgcag 4140
 tagccaagct tcaagaacaa atgacaatgg cattaacact gcacataact ctgtggatca 4200
 gctctggggg gaggggaagg ccagcaaagg ctgctggaa atataggcct taacctctct 4260
 tccggtcacc ctggactgca tcgtcacctt cctcttgtg ggagatggcc cagcctgtct 4320
 tccccagaag cctcagtttta ctagctgaaac aaaaggcaca tactttaata agttagtttc 4380
 ttacatgta caaccaaaaa ggtggactca gatgatgact tattagttcc ttctagctct 4440
 tacattccta gatatatgag ggggtgggt aggggcagcc ataccggccc atacccctcag 4500
 cagagcccaag tgggaccctg gcccctgactt tggggggg gtggggggg aggatcctga 4560
 aggaaggggg aagactcctt agctccaggc ccatgccaag gtgggtgtg gggttgggtt 4620
 ctccctcaga gatcttggg gcccctggct ctgtactgatc catctgggtc gtgacggggg 4680
 tactggtgta cctggctgtg gagcggctga tctctggg aatgaaatt gacggggggg 4740
 ccatgctgat cacgtcgggc tgctgcgtgg ctgtgaacat catgtgagtg gggccccagt 4800
 ttcctcgtc tcccctcctc ctcccgccctc tcacacccac acctatgtct gcttgcgg 4860
 aagagactgt gccactttcc agcatacgtc acagggacag aacttccctt atggctcgag 4920
 ctctggcacc tggAACACCTTGGGTCTACC TTAGGCCTAG GCCAAGAAACA CTGGGAGCTG 4980
 taaatcgag tcttcatcca ctctacccac tccctgatac atgtcagggg ctggcttgg 5040
 tggcttcata cctgaagtgg ggcgggaaaga ggccagttgt tgcaggagta gctgtcccta 5100
 ggggcagaac ccaagctgt aattggtctc agttagagac aatgggtgtc tcttcggggg 5160
 tctttgttca gaggccttag tttcccccattc tggatgttca tggagtggaa tgacagtgc 5220
 ctcccataatg ccctcctgct ctgagatttg acactgtggc attgttgtgc ccaggctcg 5280
 cctggcattt ggcgtggcc ctatctctca tggctgtctg aaccaaggcc acgtgggttg 5340
 gacttctcac atggccaaag agatcacaag gtttagggc ttgagatttt tgccctacaa 5400
 gtggcttagt cctaataatggt gacccatc tgcgacccatc gtgagccctt ggcttgc 5460
 ccacttccat agaatggggt tgacccttca ccagtcgtgc catgggcaca gccaacggc 5520
 caccacccag caggaggaga accccaggt ccgagctgcc ttcatccatg tgatcggcga 5580
 ctttatgcag agcatgggtg tccttagtggc agcctatatt ttataacttca aggtcagagc 5640
 tgggacacag ggtgggggg gtggcagggg agttagatc acctgagttt actctctacc 5700
 ggggtttttt ttcagattt agctccctcc cagttctagg gaaaagggtg gggagaggaa 5760
 agaacattt atccaataacc taccatgtt cagcacttct gatcctcaca acaacctgaa 5820
 ggttaggtgg tagtggttt tggatgttca aaagggttca tgacttgcac agtgcacac 5880
 agccggtaaa gcatagagcc agattcaagc ctacgactgt gtgttgc 5940
 atgcccata catagaggca gggagctgtt gtggaaagag gcaggcattt gctctgaagc 6000
 ttggctctcc tccttgc 5940
 tcaatttccatctgtca atggggacgg atggcgatc agatggatc taagatggct 6120
 tttgtctg tccatgttca agctcccttga gaaggagggg tggaaaggga ctgccttatt 6180
 ctgaactgtg gtctgcctt tctgttctt cagatgttca ataaagagca gaaaactggg 6240
 aggcaggcc agggcgaggc tcatgcccac ccagcagaga gagcacctt cccacgt 6300
 gctgggtggg aggggagaag ggaagctgtt gtgttagatg gtgaacttca ggtctgc 6360
 cctgtcttcc tgcagccaga atacaagtat gtagacccca tctgcacccct cgtcttctcc 6420
 atccctggtcc tggggacaac ctggaccatc ctgagagatg tgatcctgtt gttgatggaa 6480
 ggttaacctgg gctttgtggc tccctttttt ctcttgc 6480
 tcaagcgctt atcagctcaa 6540

a)

atagggtatg tgtgtgtctg gggcatccta gcacatggc ggggagccag gatccggagc 6600
 cccggcatag gctggaaaac ctccctgggc ccctgggctg atcttgacat agaggctggg 6660
 ctttcagggtg tggcagttcc tggaaaccgtc cccccagcccg agtcttcct tccccctacc 6720
 cctaagggtg ctcctctgc cttagtcagggt ggcttctggg ggacatctgt agcatctgga 6780
 gctctccagc ctcctccat acactcccc aggctctggc tgccttctc caggaagaga 6840
 gaggggggtga ggattatgtc ttcatttgc a cagagggca gactgaggct cagagaagga 6900
 cagttagcct tggaccaaagc tactgaatcc actgcagcgc aggccccc tacatctcg 6960
 ggaccaaaca atgccacacc ctgtgggac atggctgtc ttgtggggt tggagaacgg 7020
 tcagtggtg agaatgatct ggtctccct gaattacctt ttttttttct tttttttt 7080
 tttgaaaca gggtcttgct ctgtcatcca agctagatg cagtggtgcc accaaggctc 7140
 accgcagcct tgacccctca ggctcaagta atccctctgc ctcagccctc caagtagctg 7200
 ggaccacagg cgcatgccac catgtctggc taactttaa atgtttgtag agatgggggg 7260
 ggggggtct cactatgtt ccctggctgg ttcgaactt ttgggctcaa gcaatcatct 7320
 cacttcggcc tctcaaagtg ctggagttac agatgtgagc caccacacct ggcctgcac 7380
 ctggcttcc ttatgtctca ggccctggc ctgggcccann nnnnnnnntt cttcaaaaat 7440
 atatttattt ggcagggtcg gtggctcaca cctgtatcc cagcactgtg ggaggccgag 7500
 gcaggcagat tacctgaggt caggagttca agaccagcct ggctaacaca gtgaaaccct 7560
 gtctctacca aaaataaaaaa aattagccgg gcgtggtgcc atgcgcctgt agtcccagct 7620
 actcaggagg ctgaggcagg aataattgtc tgaaccaggg aggcagaggt tgcagtgagc 7680
 caagatcacg ccactgcact ccagcctggg tgacagagca agattccgtc tcaaaaaaaaa 7740
 ccaaaaaata tatttattga gcacctacta tggagtaggt gctgttttag gcaccaagga 7800
 tactgtggta atcaaaggag actgtcctgc cctcatggag tgcattttt agaggagaa 7860
 actgacaata agtacattca taaataattt cagtgttaag agtggagagg aaatacaaca 7920
 gagtgtatgg gcagagaccc tgggaggtga aggccgcctc agacctgcag gccaagagg 7980
 tcttcttgc ggggatgaca cctgaggatc aggagccagc cctgcacccaa tggcaggcg 8040
 tgggaggggt agttccctt agttccctt gtcccttgcc gtccctcaggg acccccaagg 8100
 gcgttgactt cacagctgtt cgtatctgc tgctgtcggt ggaggggtt gaagccctgc 8160
 acagcctgca tatctggca ctgacgggtt cccagcctgt tctgtctgtc cacatcgcca 8220
 ttggtgagtg ctgggacac tcagggtgg gtggagaca ggcagccaaa ggcctagtgc 8280
 catccccaaac gggtccaggt gaccccgat gtcacagtg cccatgcac aagcccgcc 8340
 tcatgtctgag tacttgatac gcattattcc atctgtatcag cacaatctca tttatccatg 8400
 aagaaactga ggctgggtt ggggtgtaaa gttacttgcc caggctttt cagctgtat 8460
 atggcagtag gtggcagatt cctggctta aggccagtgc tttaccagct ctttcaggca 8520
 tgagccaggt ctgggctgg aggctacctg gcagaggaat ggaatctggg ggctctcca 8580
 tggcatgtt ccccatctt gttctgtgg ggatgggtt tgagattttt gctctgtat 8640
 gtccaaagg gccagatgaa atggcttccc cgcgtgtgc ctctggccccc ccagctcaga 8700
 atacagacgc ccaggctgtc ctgaagacag ccagcagccg cctccaaggaa aagttccact 8760
 tccacaccgt gaccatccag atcgaggact actcgaggaa catgaaggac tgcaggcat 8820
 gcaggggccc ctcagactga ctgctcagcc aggccaccaac tggggcatga acaggacctg 8880
 caggtggctg gactgagtg ccccccaggcc cagccaggac tttgcctacc ccagctgtgt 8940
 tgtaaaccag gtcccttcc tgcctctgc cccactccag gaatggagct cttcccgcc 9000
 tcccatctga ctacagccag ggtgggact cagcgggtat aaagctgtg tgaccctgt 9060
 ctccagctc ctggccagg tctggaaagg ctgttattttt gcctaatcct cagcaaatgt 9120
 tctaccactc gcaggggcaa aggtggtagt ccacgggacg tccaaggggaa ggctggcccc 9180
 agcgcccca tactgcctgc ctcatcccc attctcagcc tggctggctt ttgcctttat 9240
 gaatctgagc ccctccatct gcctatagca ataggcacgg gggtagggac ctcacactc 9300
 tcatttgagc ctccctgagg cagggagcca ggaggcacct gaggcctatc tgcctttag 9360
 tcacttcagc tatgagccaa atgttccctt tcctggaggg gagaggcttc ttacttagta 9420
 agagacaggt ttccctttc ttatccctt cagctgtgcc aacaaaaaaaaa acaactttgg 9480
 cacaggtgtt gggcagggg tagagagatt tcagcttggg ttctgcacta acaggcccca 9540
 agcccccctgg cacttctgtt gcccctgagag tgcctccagg gattcagagt ctccagaaag 9600
 atatggctgg gccaactctg ttgcctaccc ggcctgaccc agtccggagcc tgacatggtg 9660
 gagggaaagg gagacaagtg gggctgcact cggccaggag gcccacttggaggaaaccg 9720
 cagcttcctg gggcttgggt gtgaagatcc ctgacttagg ggtggctttt gtttacaaga 9780
 tgcagggagg gaaacctgtc cccgactcat cgagacaaca tgcctcaggta tcaggagtc 9840
 ctgtgtcaca aggtctgtct ctgcattgt aagcaagtgc ttggggcgag ctggccctgc 9900
 ccccacagtc tcatctgtac accgacaggg ttgatgcctc ctcacaggg ttgagaacaa 9960

gagccagttg gccaagtacc tgggttggta gaagatttgt tactttacc atcctgggga 10020
 caggaaactc tggcccga ggctgcctca ctgaggagtc aggtgggctt cccagccctcc 10080
 ccagggcag tgctgagtt gtcttgactg ttctggccca aggtgggagg aggtggggtt 10140
 ggtcaactgc ctccccactt aaatctctgt cttccatct gtgaaatgac ctctttgtgc 10200
 ctccccagca ctgtcatctt gatcgctgt gttctaggta ggtgggtct tcagccctc 10260
 caggtctgtg aaaagtctgt ggaaagcact ggcctggaga ggggtggggg gttctggtg 10320
 ggtgctccat tccaccacaa tctcagggga ctcaacctcc cctacccaaac taccacccacc 10380
 ccacccaagc catggcaggc cccaggaact tgatcctggg ctttgcgtt tgccaaagtcc 10440
 ttacacccct ctcaagagac agtcattggc tggcactggg ggctcatgcc tgcaatccca 10500
 gcaccttggg aggctgaggc aggcatgta cttgaggcca ggagttcgag accagcctgg 10560
 ccaatatggc gaaacccat ttctactaaa aataaaaaaa ctaaccaggc gtggtggctt 10620
 gtgcctgtaa tcccagctac tcgggaggct gaggcaggag aatcgcttga accggggagg 10680
 cagaggttgc agtgagctga gatcacacca ctgcactcca gcctggcga cagagcgaga 10740
 ctccagctta aaaaaaaaaa aaaaaaaaaa aaaaggagac catcaactgt gtcctgcatt 10800
 cttagatg aaaaaacagg ctcagaggtt gaatcgttt cctgaagtca gacagccagt 10860
 gcaggcaggc ctgggatttc tgcctcattt cggttagaccc tcctctacag cagggctgg 10920
 gggcctgtcg gtctgcgtg cctgttggta caatacaaac ccctgggacc agcagtgc 10980
 gccccatggg tgaggacatg ccaaggcagt tcagtgtcct ggggtcaca gctgtgattg 11040
 gaaaggtgcc tcttcaccc ggctggcct ggcatccagc gccctccca ccctgggaag 11100
 g 11101

<210> 4
 <211> 358
 <212> PRT
 <213> Rattus norvegicus

Q1
 <400> 4
 Ala Ser Arg Ser Phe Phe Gly Ala Leu Trp Lys Ser Glu Ala Ser Arg
 1 5 10 15
 Ile Pro Pro Val Asn Leu Pro Ser Val Glu Leu Ala Val Gln Ser Asn
 20 25 30
 His Tyr Cys His Ala Gln Lys Asp Ser Gly Ser His Pro Asn Ser Glu
 35 40 45
 Lys Gln Arg Ala Arg Arg Lys Leu Tyr Val Ala Ser Ala Ile Cys Leu
 50 55 60
 Val Phe Met Ile Gly Glu Ile Ile Gly Gly Tyr Leu Ala Gln Ser Leu
 65 70 75 80
 Ala Ile Met Thr Asp Ala Ala His Leu Leu Thr Asp Phe Ala Ser Met
 85 90 95
 Leu Ile Ser Leu Phe Ser Leu Trp Val Ser Ser Arg Pro Ala Thr Lys
 100 105 110
 Thr Met Asn Phe Gly Trp Gln Arg Ala Glu Ile Leu Gly Ala Leu Leu
 115 120 125
 Ser Val Leu Ser Ile Trp Val Val Thr Gly Val Leu Val Tyr Leu Ala
 130 135 140
 Val Gln Arg Leu Ile Ser Gly Asp Tyr Glu Ile Lys Gly Asp Thr Met
 145 150 155 160
 Leu Ile Thr Ser Gly Cys Ala Val Ala Val Asn Ile Ile Met Gly Leu
 165 170 175
 Ala Leu His Gln Ser Gly His Ser His Gly His Ser His Glu
 180 185 190
 Asp Ser Ser Gln Gln Gln Asn Pro Ser Val Arg Ala Ala Phe Ile
 195 200 205
 His Val Val Gly Asp Leu Leu Gln Ser Val Gly Val Leu Val Ala Ala
 210 215 220
 Tyr Ile Ile Tyr Phe Lys Pro Glu Tyr Lys Tyr Val Asp Pro Ile Cys
 225 230 235 240

Thr Phe Leu Phe Ser Ile Leu Val Leu Gly Thr Thr Leu Thr Ile Leu
245 250 255
Arg Asp Val Ile Leu Val Leu Met Glu Gly Thr Pro Lys Gly Val Asp
260 265 270
Phe Thr Thr Val Lys Asn Leu Leu Leu Ser Val Asp Gly Val Glu Ala
275 280 285
Leu His Ser Leu His Ile Trp Ala Leu Thr Val Ala Gln Pro Val Leu
290 295 300
Ser Val His Ile Ala Ile Ala Gln Asn Val Asp Ala Gln Ala Val Leu
305 310 315 320
Lys Val Ala Arg Asp Arg Leu Gln Gly Lys Phe Asn Phe His Thr Met
325 330 335
Thr Ile Gln Ile Glu Ser Tyr Ser Glu Asp Met Lys Ser Cys Gln Glu
340 345 350
Cys Gln Gly Pro Ser Glu
355