Linear Algebra Lecture Notes

Rostyslav Hryniv

Ukrainian Catholic University
Business Analytics and Computer Science Programmes

4th term Spring 2020

Lecture 7. Orthogonal vectors and subspaces

Outline

- Inner product
 - Distances and norms on \mathbb{R}^n
 - Cosine theorem
- Orthogonal vectors and subspaces
 - Orthogonal vectors and subspaces
 - Four orthogonal subspaces
- Pythagorean theorem and all that
 - Shortest distance
 - Applications

Outline

- Inner product
 - Distances and norms on \mathbb{R}^n
 - Cosine theorem
- - Orthogonal vectors and subspaces
 - Four orthogonal subspaces
- - Shortest distance
 - Applications

Distances in \mathbb{R}^n

- In \mathbb{R}^n (and in other vector spaces) one can measure the distance $\rho(\mathbf{x}, \mathbf{y})$ between any two vectors $\mathbf{x} = (x_1, \dots, x_n)^\top$, $\mathbf{y} = (y_1, \dots, y_n)^\top$
- The standard choice is the Euclidean distance ρ_2 :

$$\rho_2(\mathbf{x},\mathbf{y}) := \sqrt{(x_1-y_1)^2 + (x_2-y_2)^2 + \cdots + (x_n-y_n)^2}$$

Other possibilities: the block, or Manhattan distance:

$$\rho_1(\mathbf{x},\mathbf{y}) = |x_1 - y_1| + |x_2 - y_2| + \cdots + |x_n - y_n|$$

or maximum-coordinate distance

positivity

Distances and norms

Any distance must satisfy the following conditions:

$$ullet$$
 $ho(\mathbf{x},\mathbf{y})\geq 0$ and $ho(\mathbf{x},\mathbf{y})=0 \iff \mathbf{x}=\mathbf{y}$

symmetry triangle inequality

In linear vector spaces, distance should be translation invariant, i.e.,

$$\rho(\mathbf{u}, \mathbf{v}) = \rho(\mathbf{u} + \mathbf{w}, \mathbf{v} + \mathbf{w})$$

and thus only depends on $\mathbf{u} - \mathbf{v}$.

Thus

$$\rho(\mathbf{u}, \mathbf{v}) = \rho(\mathbf{u} - \mathbf{v}, \mathbf{0}) =: \|\mathbf{u} - \mathbf{v}\|,$$

where $\|\mathbf{x}\|$ is the norm, or length of \mathbf{x} .

Distances and norms

Definition (Norm)

Inner product

0000000000000

A norm $\|\cdot\|$ on a linear vector space V is a function $V\to\mathbb{R}$ with the following properties:

- $\|\mathbf{x}\| \geq 0$; moreover, $\|\mathbf{x}\| = 0 \iff \mathbf{x} = \mathbf{0}$
- $\|\mathbf{k}\mathbf{x}\| = \|\mathbf{k}\| \|\mathbf{x}\|$ for all $\mathbf{k} \in \mathbb{R}$ and all $\mathbf{x} \in V$
- $\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|$

positivity

linearity

triangle inequality

Example

- The Euclidean norm (will prove below): $\|\mathbf{x}\|_2 = \sqrt{x_1^2 + \cdots + x_n^2}$
- The block, or Manhattan norm: $\|\mathbf{x}\|_1 = |x_1| + \cdots + |x_n|$
- The maximum norm: $\|\mathbf{x}\|_{\infty} = \max\{|x_1|, \dots, |x_n|\}$

Euclidean norm and inner product

The Euclidean norm $\|\cdot\|_2$ is the most important one:

it comes from the scalar product of vectors,

$$\|\mathbf{x}\|_{2}^{2} = x_{1}^{2} + \cdots + x_{n}^{2} = \mathbf{x}^{\top}\mathbf{x}$$

Recall that the inner, dot, or scalar product of vectors $\mathbf{x} = (x_1, \dots, x_n)^{\top}$, $\mathbf{y} = (y_1, \dots, y_n)^{\top}$ in \mathbb{R}^n is

$$\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x} \cdot \mathbf{y} = \mathbf{x}^T \mathbf{y} = x_1 y_1 + \cdots + x_n y_n$$

Observe that

$$\mathbf{x} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{x}$$

Remark

Observe that $\mathbf{x} \cdot \mathbf{y}$ is a bilinear symmetric form.

A general bilinear form is given by $\langle \mathbf{x}, \mathbf{y} \rangle_A = \mathbf{x}^\top A \mathbf{y}$ for an $n \times n$ matrix A. The form $\langle \cdot, \cdot \rangle_A$ defines a norm $\| \cdot \|_A$ if A is positive definite

The inner products $\langle \cdot, \cdot \rangle_A$ are used in the conjugate gradient method

positivity

linearity

Inner products in linear vector spaces

An inner product in a linear vector space V is

a symmetric positive definite biliner form
$$\langle \cdot, \cdot \rangle : V \times V \to \mathbb{R}$$

- $\langle \mathbf{u}, \mathbf{u} \rangle \geq 0$; moreover, $\langle \mathbf{u}, \mathbf{u} \rangle = 0 \iff \mathbf{u} = \mathbf{0}$
- $\langle \mathbf{u}, \mathbf{v} \rangle = \langle \mathbf{v}, \mathbf{u} \rangle$ symmetry
- $ullet \langle c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2, \mathbf{v}
 angle = c_1 \langle \mathbf{u}_1, \mathbf{v}
 angle + c_2 \langle \mathbf{u}_2, \mathbf{v}
 angle$

Example

In the space \mathcal{P}_{∞} , introduce the inner product via

$$\langle p,q\rangle := \int_{-1}^{1} p(t)q(t) dt$$

Another possibility: for $p(t) = p_0 + p_1 t + \cdots + p_n t^n$ and $q(t) = q_0 + q_1 t + \cdots + q_m t^m$, set

$$\langle p,q\rangle := \sum_{k>0} p_k q_k$$

Inner products in linear vector spaces

Question

Inner product

In the linear vector space $V = \mathcal{P}_n$, consider the bilinear form

$$\langle p, q \rangle := p(0)q(0) + p(1)q(1) + \cdots + p(10)q(10)$$

For what values of n is that a scalar product in \mathcal{P}_n ?

- for every $n \in \mathbb{N}$
 - for no values of $n \in \mathbb{N}$
- for n = 10 only
- for n = 1, 2, ..., 9
- none of the above

Voting instructions:

- Go to www.socrative.com
- Choose Student login
- Enter the class LAUCU2020

Outline

- Inner product
 - Distances and norms on \mathbb{R}^n
 - Cosine theorem
- - Orthogonal vectors and subspaces
 - Four orthogonal subspaces
- - Shortest distance
 - Applications

Inner product

0000000000000

$\mathbf{x} \cdot \mathbf{y} = \|\mathbf{x}\| \|\mathbf{y}\| \cos \theta$, with θ the angle between \mathbf{x} and \mathbf{y}

- Set $\mathbf{x}_1 := \mathbf{x}/\|\mathbf{x}\|$ and $\mathbf{y}_1 := \mathbf{y}/\|\mathbf{y}\| \implies$ $\mathbf{x} \cdot \mathbf{v} = \|\mathbf{x}\| \|\mathbf{v}\| (\mathbf{x}_1 \cdot \mathbf{v}_1)$
- $\|\mathbf{x}_1\| = \|\mathbf{y}_1\| = 1 \implies \exists \alpha, \beta \text{ s.t.}$

$$\mathbf{x}_1 = \begin{pmatrix} \cos \alpha \\ \sin \alpha \end{pmatrix}, \qquad \mathbf{y}_1 = \begin{pmatrix} \cos \beta \\ \sin \beta \end{pmatrix}$$

- Then $\mathbf{x}_1 \cdot \mathbf{y}_1 = \cos \alpha \cos \beta + \sin \alpha \sin \beta = \cos(\alpha \beta)$
- $\theta := |\alpha \beta|$ is the angle between **x** and **y**

Cosine theorem: general case

Reduction to the case n = 2 (isometric transformation):

- Consider the plane V through \mathbf{x} and \mathbf{y} and choose any orthonormal basis $E' = (\mathbf{e}'_1, \mathbf{e}'_2)$ in V
- orthonormal means $\mathbf{e}'_1 \cdot \mathbf{e}'_2 = 0$ and $\|\mathbf{e}'_1\| = \|\mathbf{e}'_2\| = 1$
- Let $(\mathbf{x})_{E'} = (x'_1, x'_2)^{\top}$ and $(\mathbf{y})_{E'} = (y'_1, y'_2)^{\top}$; then

$$\mathbf{x} = P_{E' \to E}(\mathbf{x})_{E'} = (\mathbf{e}'_1 \ \mathbf{e}'_2)(\mathbf{x})_{E'}$$
$$\mathbf{y} = P_{E' \to E}(\mathbf{y})_{E'} = (\mathbf{e}'_1 \ \mathbf{e}'_2)(\mathbf{y})_{E'}$$

Now

$$\mathbf{x}^{\top}\mathbf{y} = (\mathbf{x})_{E'}^{\top} \begin{pmatrix} (\mathbf{e}_{1}')^{\top} \\ (\mathbf{e}_{2}')^{\top} \end{pmatrix} \begin{pmatrix} \mathbf{e}_{1}' & \mathbf{e}_{2}' \\ (\mathbf{e}_{2}')^{\top} \end{pmatrix} (\mathbf{y})_{E'}$$

$$= (\mathbf{x})_{E'}^{\top} \begin{pmatrix} \mathbf{e}_{1}' \cdot \mathbf{e}_{1}' & \mathbf{e}_{1}' \cdot \mathbf{e}_{2}' \\ \mathbf{e}_{2}' \cdot \mathbf{e}_{1}' & \mathbf{e}_{2}' \cdot \mathbf{e}_{2}' \end{pmatrix} (\mathbf{y})_{E'} = (\mathbf{x})_{E'}^{\top} \mathbf{I}_{2}(\mathbf{y})_{E'}$$

• Thus $\mathbf{x} \cdot \mathbf{y} = (\mathbf{x})_{E'} \cdot (\mathbf{y})_{E'}$

Geometric interpretation: projection

In $\mathbf{x} \cdot \mathbf{y} = \|\mathbf{x}\| \|\mathbf{y}\| \cos \theta$,

• $\|\mathbf{y}\|\cos\theta$ is the length of projection of \mathbf{y} onto \mathbf{x} -direction

- $|AC|\cos\theta = \pm |AD|$, so that $\mathbf{x} \cdot \mathbf{y} = \pm |AB||AD|$
- $\mathbf{x} \cdot \mathbf{y} > 0 \iff \theta < \pi/2 \text{ (acute)}$
- $\mathbf{x} \cdot \mathbf{y} < 0 \iff \theta > \pi/2$ (obtuse)
- $\mathbf{x} \cdot \mathbf{y} = 0 \iff \theta = \pi/2 \text{ (right)}$

Geometric interpretation: hyperplanes

Identify a point $A(x_1,...,x_n)$ in \mathbb{R}^n and a vector $\overrightarrow{OA} = \mathbf{x} = (x_1,...,x_n)^{\top}$

Hyperplane in \mathbb{R}^n

Fix $\mathbf{v} \in \mathbb{R}^n$ and $c \in \mathbb{R}$; then endpoints of vectors

$$\{\mathbf{x} \in \mathbb{R}^n : \mathbf{x} \cdot \mathbf{v} = c\}$$

form a hyperplane $v_1x_1 + v_2x_2 + \cdots + v_nx_n = c$ orthogonal to \mathbf{v}

Further properties of the scalar product in \mathbb{R}^n

To summarize:

• The standard inner, dot, or scalar product in \mathbb{R}^n is

$$\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x} \cdot \mathbf{y} = \mathbf{x}^T \mathbf{y} = \sum_{k=1}^n x_k y_k$$

in a general vector space V, it is

a symmetric positive definite bilinear form:

- $\langle \mathbf{x}, \mathbf{x} \rangle \geq 0$ and $\langle \mathbf{x}, \mathbf{x} \rangle = 0 \iff \mathbf{x} = \mathbf{0}$

positivity symmetry linearity

- Euclidean norm, or length of a vector \mathbf{x} : $\|\mathbf{x}\| = \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle}$
- Transposition: for an $m \times n$ matrix A, $\mathbf{x} \in \mathbb{R}^n$, and $\mathbf{y} \in \mathbb{R}^m$

$$\langle A\mathbf{x}, \mathbf{y} \rangle = (A\mathbf{x})^{\top} y = (\mathbf{x}^{\top} A^{\top}) \mathbf{y} = \mathbf{x}^{\top} (A^{\top} \mathbf{y}) = \langle \mathbf{x}, A^{\top} \mathbf{y} \rangle$$

i.e., for every $m \times n$ matrix A and vectors $\mathbf{x} \in \mathbb{R}^n$, $\mathbf{y} \in \mathbb{R}^m$

$$(A\mathbf{x}) \cdot \mathbf{y} = \mathbf{x} \cdot (A^{\top}\mathbf{y})$$

Outline

- Inner product
 - Distances and norms on \mathbb{R}^n
 - Cosine theorem
- Orthogonal vectors and subspaces
 - Orthogonal vectors and subspaces
 - Four orthogonal subspaces
- Pythagorean theorem and all that
 - Shortest distance
 - Applications

Basic inequalities and theorems

Cauchy–Bunyakovsky–Schwarz inequality: $| |\langle \mathbf{x}, \mathbf{y} \rangle | \le ||\mathbf{x}|| ||\mathbf{y}||$

- use that $f(t) = \|\mathbf{x} + t\mathbf{y}\|^2 = \|\mathbf{x}\|^2 + 2t\langle \mathbf{x}, \mathbf{y} \rangle + t^2\|\mathbf{y}\|^2 \ge 0$
- the discriminant nonpositive $\implies |\langle \mathbf{x}, \mathbf{y} \rangle|^2 \le ||\mathbf{x}||^2 ||\mathbf{y}||^2$
- alternatively: $|\langle \mathbf{x}, \mathbf{y} \rangle| = \|\mathbf{x}\| \|\mathbf{y}\| \cos \theta | \leq \|\mathbf{x}\| \|\mathbf{y}\|$

Triangle inequality:

$$\|\mathbf{x} \pm \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|$$

This follows from bilinearity:

$$\|\mathbf{x} \pm \mathbf{y}\|^{2} = \langle \mathbf{x} \pm \mathbf{y}, \mathbf{x} \pm \mathbf{y} \rangle = \|\mathbf{x}\|^{2} \pm 2\langle \mathbf{x}, \mathbf{y} \rangle + \|\mathbf{y}\|^{2}$$

$$\leq \|\mathbf{x}\|^{2} + 2\|\mathbf{x}\|\|\mathbf{y}\| + \|\mathbf{y}\|^{2} = (\|\mathbf{x}\| + \|\mathbf{y}\|)^{2}$$

Pythagorean theorem: $\mathbf{x} \cdot \mathbf{y} = 0 \iff \|\mathbf{x} \pm \mathbf{y}\|^2 = \|\mathbf{x}\|^2 + \|\mathbf{y}\|^2$

Follows from the above equality for $\|\mathbf{x} \pm \mathbf{v}\|^2$

Parallelogram identity:

$$\|\mathbf{u} + \mathbf{v}\|^2 + \|\mathbf{u} - \mathbf{v}\|^2 = 2\|\mathbf{u}\|^2 + 2\|\mathbf{v}\|^2$$

Orthogonal vectors and subspaces

Definitions:

- x and y are orthogonal $(x \perp y) \iff \langle x, y \rangle = 0$
- for a subspace M:

$$\mathbf{x} \perp \mathbf{M} \iff \forall \mathbf{y} \in \mathbf{M} : \langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{0}$$

for two subspaces L and M:

$$L \perp M \iff \forall \mathbf{x} \in L \ \forall \mathbf{y} \in M : \langle \mathbf{x}, \mathbf{y} \rangle = 0$$

• an orthogonal complement L^{\perp} of a subspace L:

$$L^{\perp} = \{ \mathbf{y} \in \mathbb{R}^n \mid \mathbf{y} \perp L \}$$

Question:

Are the wall and the floor two orthogonal subspaces in \mathbb{R}^3 ?

Properties of orthogonal vectors/subspaces

L^{\perp} is a subspace:

$$\mathbf{x}, \mathbf{y} \in L^{\perp} \implies \mathbf{x} \cdot \mathbf{z} = \mathbf{y} \cdot \mathbf{z} = 0$$
 for all $\mathbf{z} \in L$

Therefore, $(a\mathbf{x} + b\mathbf{y}) \cdot \mathbf{z} = 0 \implies a\mathbf{x} + b\mathbf{y} \in L^{\perp}$

$$\mathbf{x} \perp \mathbf{v}_1, \dots, \mathbf{v}_m \implies \mathbf{x} \perp \mathsf{ls}(\mathbf{v}_1, \dots, \mathbf{v}_m)$$

$$\mathbf{x} \cdot (c_1 \mathbf{v}_1 + \cdots + c_m \mathbf{v}_m) = c_1 \mathbf{x} \cdot \mathbf{v}_1 + \cdots + c_m \mathbf{x} \cdot \mathbf{v}_m = 0$$

$\dim(L^{\perp}) = n - \dim L$

- Set $m := \dim L$ and take any basis $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m$ of L
- Form an $m \times n$ matrix A with rows $\mathbf{v}_1, \dots, \mathbf{v}_m$
- Then $\mathcal{N}(A) = L^{\perp}$: $\mathbf{x} \in \mathcal{N}(A) \implies \mathbf{x} \perp L$, $\mathbf{x} \perp L \implies \mathbf{x} \in \mathcal{N}(A)$
- $\dim(\mathcal{N}(A)) = n m$

Properties of orthogonal vectors/subspaces

• if subspaces L and M are orthogonal ($L \perp M$), can form their orthogonal sum $L \oplus M$:

$$L \oplus M = \{\mathbf{x} + \mathbf{y} \mid \mathbf{x} \in L, \mathbf{y} \in M\}$$

- L ⊕ M is a subspace
- dim(L⊕M) = dim L + dim M:
 indeed, the union of bases of L and M is a basis of L⊕M
- in particular, since $\dim(L^{\perp}) = n \dim L$,

$$L \oplus L^{\perp} = \mathbb{R}^n$$

Outline

- Inner product
 - Distances and norms on \mathbb{R}^n
 - Cosine theorem
- Orthogonal vectors and subspaces
 - Orthogonal vectors and subspaces
 - Four orthogonal subspaces
- Pythagorean theorem and all that
 - Shortest distance
 - Applications

Four orthogonal subspaces of a matrix

Every $m \times n$ matrix A generates 4 subspaces:

- column space $C(A) \subset \mathbb{R}^m$ linear span of its columns
- nullspace $\mathcal{N}(A) \subset \mathbb{R}^n$ solutions of $A\mathbf{x} = \mathbf{0}$
- row space $\mathcal{R}(A)$ of A = column space $\mathcal{C}(A^T)$ of $A^T \subset \mathbb{R}^n$
- left nullspace of $A = \mathcal{N}(A^T) \subset \mathbb{R}^m$

Theorem (Second fundamental theorem of LA)

- (i) The column space C(A) of A is the orthogonal complement of its left nullspace $\mathcal{N}(A^T)$
- (ii) The nullspace $\mathcal{N}(A)$ of A is the orthogonal complement of its row space $\mathcal{R}(A) = \mathcal{C}(A^T)$

Proof: Orthogonality of C(A) and $\mathcal{N}(A^{\top})$.

$$\mathcal{C}(A) = \{ \mathbf{z} = A\mathbf{x} \mid \mathbf{x} \in \mathbb{R}^n \}, \quad \mathcal{N}(A^T) = \{ \mathbf{y} \in \mathbb{R}^m \mid \mathbf{y}^T A = \mathbf{0} \} \implies$$

$$\mathbf{y}^T \mathbf{z} = \mathbf{y}^T (A\mathbf{x}) = (\mathbf{y}^T A)\mathbf{x} = \mathbf{0}^T \mathbf{x} = \mathbf{0}$$

$$\dim(\mathcal{C}(A)) = r, \qquad \dim(\mathcal{N}(A^T)) = m - r \implies$$

$$\mathcal{C}(A) \oplus \mathcal{N}(A^T) = \mathbb{R}^m$$

Four orthogonal subspaces of a matrix

Example

$$A = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 1 \end{pmatrix} \implies \begin{matrix} \mathcal{C}(A) = \mathbb{R}^2, & \mathcal{N}(A) = ls\{(1, -1, 1)\}, \\ \mathcal{C}(A^T) = ls\{(1, 0, -1), (0, 1, 1)\}, & \mathcal{N}(A^T) = \{\boldsymbol{0}\} \end{matrix}$$

Further examples

Matrices with given column and null-spaces

Assume
$$C(A) = ls\{\mathbf{u}_1 = (1, 1, 0)^\top, \mathbf{u}_2 = (0, 1, 2)^\top\}$$
 and $\mathcal{N}(A) = ls\{\mathbf{v}_1 = (1, 1, 0, 1)^\top, \mathbf{v}_2 = (0, 1, -1, 0)^\top\}$.

How many such matrices A are there?

Idea:

- fix any linearly independent vectors \mathbf{v}_3 and \mathbf{v}_4 in $\mathcal{R}(A) = (\mathcal{N}(A))^{\perp}$
- find a unique matrix that sends $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4$ into $\mathbf{0}, \mathbf{0}, \mathbf{u}_1, \mathbf{u}_2$
- all A are obtained this way

Further examples

Problem

The last two columns of a 3 × 3 matrix A are $\mathbf{u}_2 = (1, 1, 0)^{\top}$ and $\mathbf{u}_3 = (0, 1, 2)^{\top}$ respectively, while its RREF is

$$R = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

What is the first column of A?

Solution

- $\mathcal{R}(A) = \mathcal{R}(R) = ls\{(1,0,2)^{\top}, (0,1,1)^{\top}\} = (\mathcal{N}(A))^{\perp}$
- therefore, $\mathcal{N}(A) = \mathcal{N}(R) = \operatorname{ls}\{(2, 1, -1)^{\top}\}$
- thus $A(2,1,-1)^{\top} = 2\mathbf{u}_1 + \mathbf{u}_2 \mathbf{u}_3 = \mathbf{0}$, i.e., $\mathbf{u}_1 = (\mathbf{u}_3 \mathbf{u}_2)/2 = (-1/2,0,1)^{\top}$

Further examples

Solvability of the normal equation

- The least square solution of an inconsistent system $A\mathbf{x} = \mathbf{b}$ is a solution to the normal equation $A^{\top}A\mathbf{x} = A^{\top}\mathbf{b}$
- the latter is always solvable since $A^{\top}\mathbf{b} \in \mathcal{C}(A^{\top}A)$
- in fact, the equality $\mathcal{N}(A) = \mathcal{N}(A^{\top}A)$ and the theorem yield

$$\mathcal{C}(A^{\top}) = \mathcal{C}(A^{\top}A)$$

so that $A^{\top}\mathbf{b} \in \mathcal{C}(A^{\top}) = \mathcal{C}(A^{\top}A)$

Outline

- Inner product
 - Distances and norms on \mathbb{R}^n
 - Cosine theorem
- Orthogonal vectors and subspaces
 - Orthogonal vectors and subspaces
 - Four orthogonal subspaces
- Pythagorean theorem and all that
 - Shortest distance
 - Applications

Pythagorean theorem and shortest distance

Pythagorean theorem

u and **v** are orthogonal

$$\|\mathbf{u} \pm \mathbf{v}\|^2 = \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2$$

Reason:
$$\begin{aligned} \|\mathbf{u} \pm \mathbf{v}\|^2 &= \langle \mathbf{u} \pm \mathbf{v}, \mathbf{u} \pm \mathbf{v} \rangle = \langle \mathbf{u}, \mathbf{u} \rangle \pm 2 \langle \mathbf{u}, \mathbf{v} \rangle + \langle \mathbf{v}, \mathbf{v} \rangle \\ &= \|\mathbf{u}\|^2 \pm 2 \langle \mathbf{u}, \mathbf{v} \rangle + \|\mathbf{v}\|^2 \end{aligned}$$

Shortest distance to a line

 ℓ is a line in \mathbb{R}^n in direction of **a**; P is a point in \mathbb{R}^n outside ℓ

Problem: Find a point Q on ℓ that is closest to P.

Solution: Set $\mathbf{p} := \overrightarrow{OP}$, $\mathbf{q} := \overrightarrow{OQ} = k\mathbf{a}$. The optimal k minimizes

$$|PQ|^2 = ||\mathbf{k}\mathbf{a} - \mathbf{p}||^2 = \mathbf{k}^2 ||\mathbf{a}||^2 - 2\mathbf{k}\langle \mathbf{p}, \mathbf{a}\rangle + ||\mathbf{p}||^2 \implies \mathbf{k} = \langle \mathbf{p}, \mathbf{a}\rangle / ||\mathbf{a}||^2$$

Observe that $\overrightarrow{PQ} = \mathbf{q} - \mathbf{p}$ and \mathbf{a} are then orthogonal:

$$-\langle \mathbf{p}, \mathbf{a} \rangle = 0$$

Shortest distance and orthogonality

Orthogonal PQ is the shortest one!

 ℓ is a line in \mathbb{R}^n in direction of **a**; P is a point in \mathbb{R}^n outside ℓ

Claim: If Q on ℓ is s.t. $\mathbf{u} := \overrightarrow{PQ} \perp \mathbf{a}$, then |PQ| is the smallest one

Reason: for any other point P' on ℓ , we have

$$|PQ'|^2 = \|\overrightarrow{PQ'}\|^2 = \|\overrightarrow{PQ} + \overrightarrow{QQ'}\|^2 = \|\overrightarrow{PQ}\|^2 + \|\overrightarrow{QQ'}\|^2 \ge \|\overrightarrow{PQ}\|^2$$
 and the inequality is strict unless $Q = Q'$

Conclusion:

$$\mathit{Q} \in \ell$$
 minimizes $|\mathit{PQ}| \iff \overrightarrow{\mathit{PQ}} \perp \ell$

Shortest distance to a plane

Remark

The same arguments work if instead of a line ℓ we take a plane π :

$$extbf{\textit{Q}} \in \pi \; extit{minimizes} \; | extit{\textit{PQ}}| \; \Longleftrightarrow \; \overrightarrow{ extit{\textit{PQ}}} \perp \pi$$

Remark

In fact, instead of line ℓ or plane π we can take any subspace W in \mathbb{R}^n

Outline

- Inner product
 - Distances and norms on \mathbb{R}^n
 - Cosine theorem
- Orthogonal vectors and subspaces
 - Orthogonal vectors and subspaces
 - Four orthogonal subspaces
- Pythagorean theorem and all that
 - Shortest distance
 - Applications

Shortest distance in \mathcal{P}_{∞}

Consider \mathcal{P}_{∞} with the inner product

$$\langle p,q\rangle=\int_{-1}^{1}p(t)q(t)\,dt.$$

The distance from the polynomial $p(t) = t^3$ to the subspace \mathcal{P}_2 can be obtained this way:

- let $p_0 = a + bt + ct^2 \in \mathcal{P}_2$ be the closest polynomial;
- then $q := p p_0$ is orthogonal to $\mathcal{P}_2 = \operatorname{ls}\{1, t, t^2\}$
- therefore, we get three equations:

$$\langle q, 1 \rangle = -a - c/3 = 0,$$

 $\langle q, t \rangle = 1/5 - b/3 = 0,$
 $\langle q, t^2 \rangle = -a/3 - c/5 = 0$

and find that a = c = 0 and b = 3/5, so that $p_0(t) = 3t/5$

Example: modelling COVID-19 exponential spread

COVID-19 is believed to spread exponentially

Assume we have the numbers

$$x_1 = x_2 = 1, x_3 = x_4 = 2, x_5 = 4, x_{10} = 11$$

of confirmed infections in some region on the day n = 1, 2, 3, 4, 5, 10

- It is believed that the number of infected people grows exponentially, i.e., that $x_n = a \cdot e^{bn}$
- Based on these data, what is the best estimate for a and b?

Solution:

Will be discussed next Wed, so stay healthy and tuned!

Summary:

- In inner product vector spaces
 - the norm $\|\mathbf{u}\| = \langle \mathbf{u}, \mathbf{u} \rangle^{1/2}$ of \mathbf{u} and
 - the distance $\|\mathbf{u} \mathbf{v}\|$ between \mathbf{u} and \mathbf{v}

can be introduced;

- the inner product $\langle \cdot, \cdot \rangle$ and the related norm $\| \cdot \|$ satisfy
 - the Cauchy–Bunyakovski–Schwarz inequality
 - the triangle inequality
- every $m \times n$ matrix A generates two pairs of orthogonal subspaces (column space=range and nullspace of A and its transposed A^T)
 - $\mathbb{R}^m = \mathcal{C}(A) \oplus \mathcal{N}(A^T)$
 - $\mathbb{R}^n = \mathcal{C}(A^T) \oplus \mathcal{N}(A)$
- orthogonal vectors **u** and **v** satisfy the Pythagorean theorem:

$$\|\mathbf{u} \pm \mathbf{v}\|^2 = \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2$$

• a point Q in a subspace W is the closest to $P \iff \overrightarrow{PQ} \perp W$