ÉCOLE D'ACTUARIAT UNIVERSITÉ LAVAL

Modèles linéaires en actuariat ACT-2003 Exercices Chapitre 4

Marie-Pier Côté Automne 2018

Question 1. Est-ce que les compagnies d'assurance utilisent la race comme un facteur déterminant dans leur décision de rendre de l'assurance disponible? Fienberg (1985) a rassemblé des données d'un rapport de la U.S. Commission on Civil Rights sur le nombre de polices d'assurance habitation émises à Chicago entre Décembre 1977 et Février 1978. Les polices d'assurance étaient placées dans 2 catégories :

- polices émises dans le marché standard, volontaire
- polices émises dans le marché sous-standard, involontaire

Les polices du marché sous-standard sont émises selon un programme gouvernemental d'accès à l'assurance. Les personnes qui contractent ce type d'assurance se sont vues refuser une police d'assurance sur le marché volontaire. On s'intéresse à l'accessibilité à l'assurance selon la race et on utilise le nombre de polices émises (ou renouvellées) sur le marché sous-standard comme mesure de "non-accessibilité".

La ville de Chicago a été divisée en 45 régions (selon le code postal). Pour chaque région, on a les informations suivantes :

Variable	Description
race	pourcentage de la population de la région provenant d'une minorité raciale
fire	Nombre d'incendies par millier de maisons
theft	Nombre de vols par millier de maisons
age	Pourcentage des maisons construites avant 1940
involact	Nouvelles polices et renouvellements dans le marché sous-standard, par centaine de maisons
income	Revenu familial moyen

On s'intéresse majoritairement à l'effet de la variable explicative race, mais on veut aussi tenir compte des autres facteurs qui pourraient être en cause, et des intéractions entre ces facteurs. Les modèles considérés sont :

Modèle A : involact~race

Modèle B: involact~race+I(log(income))

 $Mod\`{e}le \ C : involact \sim race + fire + age$

 $Mod\grave{e}le~D:$ involact \sim race+fire+theft+age

 $Mod\grave{e}le~E:$ involact \sim race+I(log(income))+fire+theft+age

 $Mod\grave{e}le~F: \verb"involact" \sim \verb"race+I(log(income))* age+fire+theft"$

 $Mod\`{e}le~G:$ involact \sim I(log(income))*(age+race)+fire+theft

 $Mod\`ele\ H: involact \sim I(log(income))*age+race*(fire+theft+I(log(income)))$

Note : A*B représente A+B+A:B, c'est-à-dire les effets principaux et les intéractions entre les variables explicatives A et B.

On a les informations suivantes sur les modèles A à H :

Modèle	p'	PRESS	R_p^2	C_p de Mallows	AIC	BIC	R_a^2
A	2	9.6344	0.4735	63.24	-69.86	-66.25	0.5126
В	3	8.8248	0.5177	49.55	-75.20	-69.78	0.5761
C	4	5.2083	0.7154	8.58	-103.09	-95.87	0.7765
D	5	4.5727	0.7501	7.97	-103.75	-94.71	0.7840
E	6	4.8985	0.7323	9.88	-101.84	-91.00	0.7790
F	7	4.8999	0.7322	9.64	-102.25	-89.61	0.7850
G	8	4.7528	0.7403	8.46	-103.92	-89.47	0.7964
Н	10	5.4817	0.7004	10.00	-102.98	-84.91	0.7989

Les facteurs d'inflation de la variance pour ces modèles sont présentés dans le tableau suivant :

	С	D	Ε	F	G	Н
race	1.73	1.81	3.81	3.83	2191	5449
fire	2.03	2.03	2.16	2.48	2.50	19
age	1.25	1.39	2.08	4070	5247	6316
theft		1.23	1.63	1.64	1.68	4.05
I(log(income))			4.66	21	21	22
I(log(income)):age				3793	4932	5919
I(log(income)):race					2064	5155
race:theft						24
race:fire						40

On sait également que les postulats de la régression linéaire multiple sont vérifiés.

- a) Quel est le meilleur modèle selon
 - (i) le critère PRESS?

- (ii) le critère du coefficient de détermination de prévision R_p^2 ?
- (iii) le C_p de Mallows?
- (iv) le critère d'information d'Akaike?
- (v) le critère d'information de Bayes?
- (vi) le coefficient de détermination ajusté R_a^2 ?
- b) Que peut-on remarquer en regardant les facteurs d'inflation de la variance pour les modèles C à H?
- c) Selon vous, quel serait le meilleur modèle à utiliser pour ces données? Pourquoi?

Question 2. Un cas simplifié de régression ridge et lasso. Cet exercice est inspiré de James et al. (2013). Considérons le cas simplifié où n = p et la matrixce d'incidence X est diagonale, avec des 1 sur la diagonale et des 0 pour tous les éléments hors-diagonale.

On ajuste une régression linéaire multiple passant par l'origine avec de telles données, c'est-à-dire que $\beta_0 = 0$ est connu et on ne l'estime pas.

Sous ces hypothèses,

- a) Trouvez les estimateurs des moindres carrés $\hat{\beta}_1, \ldots, \hat{\beta}_p$.
- b) Écrivez l'expression à minimiser pour trouver les estimateurs sous la régression ridge.
- c) Trouvez l'expression de l'estimateur ridge.
- d) Écrivez l'expression à minimiser pour trouver les estimateurs sous la régression lasso.
- e) Montrez que l'estimateur lasso a la forme

$$\hat{\beta}_j^{\text{lasso}} = \begin{cases} y_j - \lambda/2, & \text{si } y_j > \lambda/2 \\ y_j + \lambda/2, & \text{si } y_j < -\lambda/2 \\ 0, & \text{si } |y_j| < \lambda/2. \end{cases}$$

f) Interprétez les effets des pénalités ridge et lasso à la lumière de vos réponses aux sous-questions précédentes.

SOLUTIONS

Question 1.

- a) (i) modèle D
 - (ii) modèle D
 - (iii) modèle G
 - (iv) modèle G
 - (v) modèle C
 - (vi) modèle H
- b) Il y a un très gros problème de multicolinéarité pour les modèle F, G et H, car certains VIFs sont beaucoup plus grands que 10. Ce problème augmente inutilement la variance des paramètres estimés.
- c) On évite les modèles F G et H pour ne pas avoir de problème de multicolinéarité. Le modèle D est préférable selon les critères PRESS et R_p^2 . De plus, ses critères AIC et BIC sont les deuxièmes plus petits. Le C_p est 8, donc 8-5=3. Ce n'est pas parfait, mais ce n'est pas si mal, etc.

Question 2.

a) Puisque n = p, $\beta_0 = 0$ et que la matrice d'incidence est diagonale, on a $\hat{y}_i = \hat{\beta}_i$ pour i = 1, ..., n. On minimise $S(\beta) = \sum_{i=1}^n (y_i - \beta_i)^2$ et on trouve pour $i \in \{1, ..., n\}$,

$$\left. \frac{\partial}{\partial \beta_i} S(\beta) \right|_{\hat{\beta}_i} = -2(y_i - \hat{\beta}_i) = 0 \quad \Rightarrow \quad \hat{\beta}_i = y_i.$$

b) On minimise, pour une valeur $\lambda > 0$,

$$S^{\text{ridge}}(\boldsymbol{\beta}) = \sum_{i=1}^{n} (y_i - \beta_i)^2 + \lambda \sum_{i=1}^{n} \beta_i^2.$$

c) On a

$$\frac{\partial}{\partial \beta_i} S^{\text{ridge}}(\boldsymbol{\beta}) = -2(y_i - \beta_i) + 2\lambda \beta_i.$$

On pose égal à 0 et on trouve

$$y_i - \hat{\beta}_i^{\text{ridge}} = \lambda \hat{\beta}_i^{\text{ridge}} \quad \Rightarrow \quad \hat{\beta}_i^{\text{ridge}} = \frac{y_i}{1+\lambda}.$$

d) On minimise, pour une valeur $\lambda > 0$,

$$S^{\text{lasso}}(\boldsymbol{\beta}) = \sum_{i=1}^{n} (y_i - \beta_i)^2 + \lambda \sum_{i=1}^{n} |\beta_i|.$$

e) On a

$$\frac{\partial}{\partial \beta_i} S^{\text{lasso}}(\boldsymbol{\beta}) = -2(y_i - \beta_i) + \lambda \operatorname{signe}(\beta_i).$$

On utilise les EMV trouvés en a) pour définir le signe. Supposons d'abord que $\hat{\beta}_i = y_i > 0$. Alors, on a aussi $\hat{\beta}_i^{\text{lasso}} > 0$ (sinon, changer le signe donnera une valeur plus petite de l'équation à minimiser). On pose la dérivée égale à 0 et on trouve

$$2(y_i - \hat{\beta}_i^{\text{lasso}}) = \lambda \quad \Rightarrow \quad \hat{\beta}_i^{\text{ridge}} = y_i - \lambda/2,$$

ce qui tient seulement si $\hat{\beta}_i^{\text{lasso}} > 0$, alors on a $\hat{\beta}_i^{\text{ridge}} = \max(0, y_i - \lambda/2)$. Supposons ensuite que $\hat{\beta}_i = y_i < 0$. Alors, on a aussi $\hat{\beta}_i^{\text{lasso}} < 0$. On pose la dérivée égale à 0 et on trouve

$$2(y_i - \hat{\beta}_i^{\text{lasso}}) = -\lambda \quad \Rightarrow \quad \hat{\beta}_i^{\text{ridge}} = y_i + \lambda/2,$$

sous la contrainte que ce soit négatif, donc dans ce cas, $\hat{\beta}_i^{\text{ridge}} = \min(0, y_i + \lambda/2)$. On combine les deux cas et on obtient l'équation donnée.

f) On peut voir que la façon de rapetisser les paramètre est bien différente pour les deux méthodes. Avec ridge, chaque coefficient des moindres carrés est réduit par la même proportion. Avec lasso, chaque coefficient des moindres carrés est réduit vers 0 d'un montant constant $\lambda/2$; ceux qui sont plus petits que $\lambda/2$ en valeur absolue sont mis exactement égaux à 0. C'est de cette façon que le lasso permet de faire la sélection des variables explicatives.