

Projetos de Sistemas Elétricos - Equatorial Energia

Responsáveis: Edson Luiz Mass Junior; Jemilly Baptista do Nascimento Lima; Lucas da Silva Faustino; Matheus Sheid dos Santos.

01

02

03

SOBRE O LOCAL

A temperatura do local A norma da concessionária

DESENVOLVIMENTO 🔆 🗲

Tabela de Carqas Transformador Condutores Disjuntores Correção do FP

INFRAESTRUTURA ELÉTRICA 💡

Chaves de partida (Inversor PowerFlex) Projeto luminotécnico (DiaLux) Diagrama unifilar (concessionária e empresa) Subestação abrigada

SIMULAÇÕES E VALIDAÇÕES 📊

Cálculos e simulações de curto-circuito Validação com software PSP-UFU Ganhos no FP e perdas evitada

CONCLUSÃO E APRENDIZADOS 🔽

Eficiência, segurança e conformidade Preparado para ampliações futuras Aplicação prática de normas e softwares

São Luís - Maranhão 📍

- → Única capital brasileira em uma ilha (Ilha de Upaon-Açu)
- → Área urbana densa com alta demanda energética
- → Concessionária: Equatorial Energia
- → Temperatura Máxima: 35°C

A NORMA DA CONCESSIONÁRIA NT.00002.EQTL

SEGURANÇA OPERACIONAL

Essencial para garantir a conformidade e a viabilidade da conexão à rede pública.

APLICAÇÕES PRÁTICAS

Utilizada para subestação, transformadores, correção de fator de potência, e medição.

Base Regulatória

A norma estabelece critérios técnicos para entrada de energia em média tensão, visando segurança e padronização.

TABELA DE CARGAS

www.weg.net

Levantamento realizado com catálogo técnico da WEG (2024)

Conversão de potências mecânicas dos motores para potências ativas (kW)

Cálculo da potência aparente (kVA) e potência reativa (kVAr)

Tensão nominal: 380 V trifásico, 60 Hz

In em 440 V para In em 380 V usar a expressão: ln(380 V) = $ln(440 \text{ V}) \times 1,158$

16. Dados Elétricos

W22 Super Premium

Poté	imain		Conjugado	Corrente	Conjuga-	Conjugado	Momento	Tempo r			Nível médio de					% de	Carga				Corrente
FUIL	nua.	Carcaça		com Rotor Bioqueado	do de Partida	Máximo Cmáx/Cn	de Inércia J (kgm²)	bloque		Massa (kg)	pressão sonora	Fator de Serviço	RPM	R	endimen	ito	Fato	r de Poté	incla	Tensão (V)	Nominal In (A)
kW	HP		fulling	lp/ln	Cp/Cn	Salinaar Gar	a (ngur)	Quente	Frio	********	dB(A)			50	75	100	50	75	100	1000	III (prip
Polos																					
0,75	1	71	0,213	7	3,4	3,6	0,00051	17	37	9	60	1,25	3425	79	81,5	82,5	0,65	0,77	0,84	220	2,84
1,1	1,5	80	0,308	9,5	5,9	5,1	0,001	25	55	17	62	1,25	3475	81,5	84,8	86	0,56	0,69	0,79	220	4,25
1,5	2	L80	0,424	8,9	5,4	4,5	0,001	22	48	18	62	1,25	3445	84,2	85,6	87	0,63	0,76	0,81	220	5,59
2,2	3	90L	0,611	9,7	5	5,4	0,003	11	24	24	68	1,25	3505	84,9	87,6	87,7	0,55	0,69	0,79	220	8,33
3	4	100L	0,831	9,5	3,6	4,5	0,006	16	35	33	71	1,25	3515	86	88,2	89,5	0,66	0,77	0,85	440	5,17
3,7	5	100L	1,03	9,9	3,8	4,7	0,007	13	29	33	71	1,25	3515	88	89,3	90	0,67	0,79	0,85	440	6,35
4,5	6	112M	1,25	8,5	2,9	4,1	0,009	25	55	44	66	1,25	3500	87,8	89,4	90	0,74	0.83	0,85	440	7,72
5,5	7,5	112M	1,53	9,2	3,5	4,7	0,009	19	42	45	66	1,25	3510	88,1	90,1	90,5	0,66	0,78	0,81	440	9,85
7,5	10	132S	2,08	7,6	2,5	3,2	0,025	28	62	72	68	1,25	3520	90,7	90,9	91,6	0,8	0.87	0,9	440	11,9
9,2	12,5	132M	2,54	8,5	2,9	3,6	0,03	19	42	80	68	1,25	3525	91,2	91,7	92	0,76	0,85	0,88	440	14,9
11	15	L132M	3,03	9,5	3,3	3,9	0,032	9	20	82	68	1,25	3540	88,6	91,1	92	0,7	0,8	0,81	440	19,4
15	20	160M	4,13	7,4	2,7	3	0,05526	14	31	115	72	1,25	3540	91,3	92,2	92,2	0,74	0,83	0,87	440	24,5
18,5	25	160L	5,09	7,8	2,6	3	0,06263	11	24	119	72	1,25	3540	92	92,8	92,8	0,74	0,83	0,87	440	30,1
22	30	160L	6,04	8,5	3	3,5	0,06631	9	20	131	72	1,25	3545	92	92,5	92,8	0,72	0,82	0,87	440	35,8
30	40	200M	8,18	7,5	3,4	3,3	0,19495	27	59	248	76	1,25	3570	92,4	94,1	94,1	0,74	0,83	0,86	440	48,6
37	50	200L	10,1	8,2	3,6	3,2	0,22885	25	55	275	76	1,25	3570	93	94,5	94,5	0,74	0,83	0,86	440	59,7
45	60	225S/M	12,3	9,5	2,4	3,2	0,36268	25	55	420	79	1,25	3570	93	94,5	95	0,79	0,86	0,89	440	69,8
55	75	225S/M	15	9,5	3,1	3,6	0,36268	14	31	425	79	1,25	3570	93,6	95	95	0,77	0,85	0,88	440	86,3
75	100	250S/M	20,5	8	2,9	3,2	0,60454	20	44	535	79	1,25	3565	94,5	95,4	95,4	0,81	0.87	0,89	440	116
90	125	280S/M	24,5	8,2	2,1	2,8	1,31768	44	97	762	81	1,25	3577	94,1	95,4	95,8	0,76	0,84	0,87	440	142
110	150	280S/M	29,9	7,9	2,6	3,2	1,62042	30	66	845	81	1,25	3580	94,5	95,8	96	0,77	0,85	0,88	440	171
132	175	315S/M	35,9	7,2	2,2	2,8	2,09499	30	66	1020	81	1,25	3577	93,9	95,2	96	0,79	0,86	0,89	440	203
150	200	315S/M	40,8	8,3	2,4	3	2,3314	30	66	1040	81	1,25	3580	94,4	95,6	96,2	0,79	0.86	0,89	440	230
185	250	315S/M	50,4	7,5	2,4	2,6	2,8289	20	44	1080	81	1,25	3577	95,1	96	96,5	0,82	0,88	0,9	440	280
200	270	355M/L	54,3	8,9	2,9	3,2	3,861	51	112	1455	84	1,15	3586	93,8	95,6	96,5	0,82	0,88	0,9	440	302
220	300	355M/L	59,8	8	1,8	2,9	3,86039	20	44	1475	84	1,15	3585	95,3	95,9	96,5	0,83	0,88	0,9	440	332
260	350	355M/L	70,6	7,8	2,2	2,7	4,50378	26	57	1605	84	1,15	3585	95,2	96	96,5	0,86	0,9	0,91	440	389
300	400	355M/L	81,7	8,4	2	2,5	5,36165	24	53	1743	84	1,15	3576	95,8	96,2	96,5	0,86	0,9	0,91	440	448
330	450	355M/L	89,7	8,4	2,5	2,5	6,00505	18	40	1860	84	1,15	3583	95,3	95,8	96,5	0,87	0,91	0,92	440	488
370	500	355M/L	101	8,4	2.7	2,7	6,00505	15	33	1853	84	1,15	3582	95.6	96.1	96.7	0.87	0.91	0.92	440	546

Catálogo da Weg - Modelo W22 Super Premium

TABELA DE CARGAS

Setor	Carga	Potência mecânica (cv)	Potência mecânica (kW)	Fator de potência	Rendimento	In 380V (A)	Potência ativa (kW)	Potência reativa (kVAr)	Potência aparente (kVA)
	Motor 1	75	55,16	0,81	95,4	108,16	57,82	41,52	71,19
4	Motor 2	100	73,55	0,79	95,8	150,54	76,77	62,63	99,08
18	Motor 3	30	22,06	0,8	94,1	44,35	23,45	17,39	29,19
0	Motor 4	150	110,32	0,82	96,2	211,91	114,68	79,38	139,48
	Motor 5	30	22,06	0,8	94,1	44,35	23,45	17,39	29,19
2	Motor 6	125	91,94	0,8	95,8	251,29	95,97	134,70	165,39
	Motor 7	30	22,06	0,8	94,1	44,35	23,45	17,39	29,19

Tabela de Cargas - Desenvolvida pelo Grupo

O TRANSFORMADOR

Demanda Total da Instalação:

- Potência ativa (P): 685,59 kW
- Potência reativa (Q): 440,69 kVAr
- Potência aparente (S): 815 kVA

Triângulo de Potências - Desenvolvido pelo Grupo

O TRANSFORMADOR

Transformador selecionado:

- Potência nominal: 1000 kVA
- Tipo: Trifásico a óleo, resfriamento ONAN
- Tensão primária: 15 kV (delta)
- Tensão secundária: 380/220 V (estrela com neutro acessível)

Exemplo de Transformador - SIMETRAFO

O TRANSFORMADOR

Justificativa de escolha:

- Atende à demanda atual com margem para ampliações futuras
- Conformidade com a NT.00002.EQTL item 6.9
- Compatível com o modelo normalizado de subestação abrigada

Ponto de Conexão Segundo Norma da Concessionária NT.00002.EQTL

Normas e base técnica:

Guia de cabos Prysmian Rev. 9 e NBR 5410:2004 (circuitos de força e controle)

Métodos aplicados:

- Seção mínima:
 - Circuitos de força: 10 mm²
 - Circuitos de controle: 4 mm²
- Ampacidade (corrente máxima admissível):
 - Considerou fator de correção por temperatura ambiente
 - \circ Ex: Motor 1 \rightarrow corrente corrigida: 112,32 A \rightarrow cabo 35 mm²

Queda de tensão:

Circuito Trifásico:

$$\Delta V = \sqrt{3} \cdot (R \cdot \cos \varphi + X_L \cdot \sin \varphi) \cdot I \cdot \ell$$

ΔV = queda de tensão (V)

R = resistência elétrica do condutor corrente alternada na temperatura máxima de operação (Ω/km)

 X_L = reatância indutiva da linha (Ω /km)

cosφ = FP = fator de potência da carga

$$sen \varphi = \sqrt{1 - cos^2 \varphi}$$

I = corrente a ser transportada (A)

√ = comprimento do circuito, do ponto de alimentação até a carga (km)

Tabela 33 - Resistências Elétricas e Reatâncias Indutivas - Voltenax (cobre) e Voltalene (cobre) RESISTÊNCIAS ELÉTRICAS E REATÂNCIAS INDUTIVAS

Condutor de Cobre

Voltenax e Voltalene

Frequência: 60 Hz • Rca: Resistência elétrica máxima do condutor em corrente alternada na temperatura de operação • X; Reatância Indutiva

Seção			() ₅ ()				_						
nominal	S =	2.D	s = 1	3 cm	5 = 2	s = 20 cm			Ver Nota (1)		40		
	Rca	X,	Rca	X,	Rca	X,	Rca	X,	Rca	X,	Rca	X	
(mm²)	(Ω/km)	(Ω/km)	(Ω/km)	(Ω/km)	(Ω/km)	(Ω/km)	(Ω/km)	(Ω/km)	(Ω/km)	(Ω/km)	(Ω/km)	(Ω/km	
1,5	15,40	0,17	15,40	0,42	15,40	0,45	15,40	0,15	15,40	0,12	15,40	0,44	
2,5	9,45	0,16	9,45	0,40	9,45	0,44	9,45	0,14	9,45	0,11	9,45	0,43	
4	5,88	0,15	5,88	0,39	5,88	0,42	5,88	0,13	5,88	0,10	5,88	0,41	
6	3,93	0,14	3,93	0,37	3,93	0,40	3,93	0,12	3,93	0,10	3,93	0,39	
10	2,33	0,14	2,33	0,36	2,33	0,39	2,33	0,12	2,33	0,10	2,33	0,38	
16	1,47	0,13	1,47	0,34	1,47	0,37	1,47	0,11	1,47	0,09	1,47	0,36	
25	0,93	0,13	0,93	0,32	0,93	0,35	0,93	0,11	0,93	0,09	0,93	0,35	
35	0,67	0,12	0,67	0,31	0,67	0,34	0,67	0,11	0,67	0,09	0,67	0,33	
50	0,49	0,12	0,49	0,30	0,49	0,33	0,49	0,10	0,49	0,09	0,49	0,32	
70	0,34	0,12	0,34	0,29	0,34	0,32	0,34	0,10	0,34	0,09	0,34	0,31	
95	0,25	0,12	0,25	0,27	0,25	0,30	0,25	0,10	0,25	0,08	0,25	0,30	
120	0,20	0,11	0,20	0,26	0,20	0,30	0,20	0,10	0,20	0,08	0,20	0,29	
150	0,16	0,11	0,16	0,26	0,16	0,29	0,16	0,10	0,16	0,08	0,16	0,28	
185	0,13	0,11	0,13	0,25	0,13	0,28	0,13	0,10	0,13	0,09	0,13	0,27	
240	0,10	0,11	0,10	0,24	0,10	0,27	0,10	0,09	0,10	0,08	0,10	0,26	
300	0,08	0,11	0,08	0,23	0,08	0,26	0,08	0,09	-	-	0,08	0,25	
400	0,07	0,11	0,06	0,22	0,06	0,25	0,07	0,09	7(4)	-	0,06	0,24	
500	0,05	0,11	0,05	0,21	0,05	0,24	0,05	0,09	1.0	- 2	0,05	0,23	

Tabela 33 - Guia de Dimensionamento de Cabos da Prysmian

Em posse do resultado da queda de tensão em volts, consideramos o seguinte cálculo:

ΔV [V] = Fator da tabela [V/A.km] x comprimento do circuito [km] x corrente do circuito [A]

Com isso podemos calcular o fator da tabela dada em [V/A.km] comparamos com os valores da tabela 24 do guia de cabos da Prysmian

Tabela 24 - Queda de Tensão - Voltenax (cobre) e Voltalene (cobre) QUEDA DE TENSÃO Condutor de Cobre Voltenax e Voltalene Frequência: 60 Hz

Seção	•	(1)	6	0			() ₅	•]•			(0)(0)	(0)
nominal		-	Ver Nota (1)		s = 2.0		5=1	3 cm	s = 20 cm			
	FP=0,80	FP=0,95	FP=0,80	FP=0,95	FP=0,80	FP=0,95	FP=0,80	FP=0,95	FP=0,80	FP=0,95	FP=0,80	FP=0,95
(mm²)	(V/A.km)	(V/A.km)	(V/A.km)	(V/A.km)	(V/A.km)	(V/A.km)	(V/A.km)	(V/A.km)	(V/A.km)	(V/A.km)	(V/A.km)	(V/A.km
1,5	24,82	29,36	24,78	29,33	24,89	29,39	25,12	29,51	25,16	29,53	21,49	25,40
2,5	15,29	18,04	15,25	18,02	15,35	18,08	15,58	18,20	15,62	18,22	13,25	15,62
4	9,57	11,26	9,53	11,24	9,63	11,29	9,85	11,40	9,89	11,42	8,29	9,75
6	6,44	7,54	6,41	7,53	6,50	7,58	6,71	7,69	6,75	7,71	5,59	6,54
10	3,87	4,50	3,84	4,49	3,94	4,53	4,14	4,64	4,17	4,66	3,37	3,90
16	2,49	2,86	2,46	2,85	2,55	2,90	2,74	2,99	2,78	3,01	2,17	2,49
25	1,62	1,83	1,59	1,82	1,68	1,86	1,85	1,95	1,89	1,97	1,42	1,59
35	1,20	1,34	1,18	1,33	1,26	1,37	1,42	1,45	1,46	1,47	1,05	1,17
50	0,91	1,00	0,90	0,99	0,98	1,04	1,13	1,11	1,16	1,13	0,81	0,88
70	0,67	0,71	0,65	0,71	0,73	0,75	0,87	0,82	0,91	0,84	0,60	0,63
95	0,51	0,53	0,50	0,52	0,58	0,56	0,70	0,63	0,74	0,65	0,46	0,47
120	0,43	0,43	0,42	0,43	0,49	0,46	0,61	0,53	0,65	0,55	0,39	0,38
150	0,37	0,36	0,36	0,36	0,43	0,39	0,54	0,45	0,58	0,47	0,34	0,33
185	0,32	0,30	0,31	0,30	0,38	0,34	0,48	0,39	0,52	0,41	0,30	0,27
240	0,27	0,25	0,26	0,24	0,33	0,28	0,42	0,32	0,46	0,34	0,25	0,22
300	0,24	0,21	0,23	0,21	0,30	0,24	0,38	0,28	0,42	0,30	0,23	0,19
400	0,21	0,18	0,21	0,18	0,27	0,21	0,34	0,24	0,38	0,26	0,21	0,17
500	0,19	0,16	0,19	0,15	0,25	0,18	0,31	0,21	0,35	0,23	0,19	0,15

Tabela 24 - Guia de Dimensionamento de Cabos da Prysmian

Queda de tensão em %:

$$\Delta V(\%) = \frac{\Delta V}{V} \cdot 100$$

V = tensão nominal da instalação no ponto de alimentação (V)

	tabela 33 guia	tabela 24 guia			
Queda de tensão permitida (V)	Delta V = Raiz(3)*(Rca*Cos(f.p)+Xca*sen(f.p))	Fator da Tabela	VOLTENAX	Cabo mm² - queda de tensão	Delta
Motor 1	1,008	1,773	1,57	25	0,2
Motor 2	0,742	0,963	0,86	50	0,20
Motor 3	3,306	14,145	9,72	4	0,8
Motor 4	0,414	0,361	0,31	150	0,1
Motor 5	3,306	14,145	9,72	4	0,8
Motor 6	0,541	0,561	0,45	95	0,1
Motor 7	3,306	14,145	9,72	4	0,8
Auxiliar 1	0,612	0,824	0,61	70	0,10
Auxiliar 2	1,112	1,795	1,57	25	0,2
Aquecimento 1	4,036	15,178	9,72	4	1,0
Aquecimento 2	4,036	17,708	15,59	2,5	1,0
Aquecimento 3	4,036	13,281	9,72	4	1.06

Tabela do Cálculo de Queda de Tensão- Desenvolvida pelo Grupo

Setor	Carga	Cabo - Ampacidade	Cabo - queda de tensão	Cabo - seção mínima	Cabo - escolhido
	Motor 1	35	25	10	35
1	Motor 2	50	50	10	50
1	Motor 3	10	4	10	10
	Motor 4	95	150	10	95
	Motor 5	10	4	10	10
2	Motor 6	70	95	10	70
	Motor 7	10	4	10	10
	aux 1	50	70	4	50
	aux 2	35	25	4	35
3	Aquecimento 1	10	4	4	10
	Aquecimento 2	10	2,5	4	10
3	Aquecimento 3	10	4	4	10

Tabela de Cabos Escolhidos - Desenvolvida pelo Grupo

Disjuntores - Cargas

Proteção dos Circuitos – Disjuntores Selecionados via Catálogo Siemens

Disjuntor deve atender:

I circuito < I disjuntor < I condutor

Correntes calculadas com base em: $I = \frac{P}{V \times FP}$

Setor	Carga	Cabo - escolhido	Corrente Corrigida	Disjuntor BT	Tipo
	Motor 1	35	112,32	125A	D
1	Motor 2	50	168	160A	D
1	Motor 3	10	46,08	50A	D
	Motor 4	95	258,24	250A	D
46	Motor 5	10	46,08	50A	D
2	Motor 6	70	213,12	200A	D
	Motor 7	10	46,08	50A	D
	aux 1	50	168	160A	С
	aux 2	35	138,24	125A	С
3	Aquecimento 1	10	63,36	63A	В
	Aquecimento 2	10	46,08	50A	В
1	Aquecimento 3	10	63,36	63A	В

Tabela de Dimensionamento de Disjuntores - Desenvolvida pelo Grupo

Condutores dos Alimentadores QGF → Setores

Normas e base técnica:

Guia de cabos Prysmian Rev. 9 e NBR 5410:2004 (circuitos de força e controle)

Correntes calculadas por setor:

- Soma das correntes dos motores e cargas de cada setor
- Fator de correção aplicado B1 (instalação em solo/canaleta ventilada)
- Métodos de cálculo: seção mínima, ampacidade e queda de tensão

Circuito Trifásico:

$$\Delta V = \sqrt{3} \cdot (R \cdot \cos \varphi + X_L \cdot \sin \varphi) \cdot I \cdot \ell$$

ΔV = queda de tensão (V)

R = resistência elétrica do condutor corrente alternada na temperatura máxima de operação (Ω/km)

X_L = reatância indutiva da linha (Ω/km)

cosφ = FP = fator de potência da carga

$$sen \varphi = \sqrt{1 - cos^2 \varphi}$$

I = corrente a ser transportada (A)

ℓ = comprimento do circuito, do ponto de alimentação até a carga (km)

Queda de tensão em %:

$$\Delta V(\%) = \frac{\Delta V}{V} \cdot 100$$

V = tensão nominal da instalação no ponto de alimentação (V)

Condutores dos Alimentadores QGF → Setores

Critérios e Justificativa Técnica:

- Escolha baseada na ampacidade, como nos circuitos de força
- Queda de tensão avaliada e considerada não significativa
- Cabos suportam as correntes corrigidas com folga
- Queda de tensão dentro dos limites da norma (≤ 4%)

Setor	Cabo - Ampacidade	Cabo - queda de tensão	Cabo - seção mínima	Cabo - escolhido
1	400	500	10	400
2	150	500	10	150
3	300	500	10	300

Tabela de Cabos Alimentadores - Desenvolvida pelo Grupo

Disjuntores QGF → **Setores**

Proteção dos Circuitos – Disjuntores Selecionados via Catálogo Siemens

Disjuntor deve atender:

I circuito < I disjuntor < I condutor

Correntes calculadas com base em: $I = \frac{P}{V \times FP}$

Setor	Cabo - escolhido	Corrente corrigida	Disjuntor BT	Tipo
1	400	588,29	630	Curva D
2	150	318,62	320	Curva D
3	300	492,17	500	Curva C

Tabela de Disjuntores dos Setores - Desenvolvida pelo Grupo

Disjuntores com curva D para motores → tolerância a picos de partida e curva C para equipamentos comuns

Condutores da Subestação → QGF

Critérios e Justificativa Técnica:

- Escolha baseada na ampacidade, como nos circuitos de força
- Queda de tensão avaliada e considerada não significativa
- Cabos suportam as correntes corrigidas com folga
- Queda de tensão dentro dos limites da norma (≤ 4%)
- Foi adotado três cabos de 300mm para atender a corrente demanda

Disjuntor Subestação

Proteção dos Circuitos – Disjuntores Selecionados via Catálogo Siemens

Disjuntor deve atender:

I circuito < I disjuntor < I condutor

Correntes calculadas com base nas somatórias das correntes de cada setor

Setor	Cabo - escolhido	Corrente corrigida	Disjuntor BT	Tipo
1	400	588,29	630	Curva D
2	150	318,62	320	Curva D
3	300	492,17	500	Curva C

Tabela de Disjuntores dos Setores - Desenvolvida pelo Grupo

Disjuntor Subestação

Proteção dos Circuitos – Disjuntores Selecionados via Catálogo Siemens

Especificações Técnicas:

- Tipo: Disjuntor tripolar MCCB ou ACB
- Corrente nominal (In): 640 à 1600 A
- Tensão de operação: 380/220 V (BT)
- Capacidade de interrupção: ≥ 65 kA
- Curvas: D (motores), Proteções L, S, I, G
- Normas: ABNT NBR IEC 60947-2, NBR 14039

Justificativa da Escolha

- Atende à carga máxima da SE
- Permite manobra e proteção eficiente

Correção do FP

FP global calculado:

$$FP_{Global} = \frac{S_{total}}{P_{total}} = \frac{847,06 \, kVA}{685,59 \, kW} \approx 0,842$$

Abaixo do mínimo exigido pela Equatorial Energia (≥ 0,92)

O item 6.22.6 da norma da Equatorial Energia sugere que a correção do fator de potência seja feita com a instalação de banco de capacitores próximos as cargas.

Calculado a potência reativa dos bancos de capacitores necessária para a correção do fator de potência

equatorial ENERGIA	Fornecimento de Energia Elétrica em Média Tensão Código:					
		Código: NT.00002.EQTL	Revisão: 09			
NORMA TECNICA 27/ Título: Fornecimento de Energia Elétrica em Média Tensão C NT.00 NT.00		Restrito	Confidencial			

TABELA 22 – Fator Multiplicador para Determinação da Potência Reativa Capacitiva

FP		500 300			25 N		Fator	de Potér	ncia Cor	rigido	- 30	8 8	50 30		1	55
Original	0,85	0,86	0,87	0,88	0,89	0,90	0,91	0,92	0,93	0,94	0,95	0,96	0,97	0,98	0,99	1,00
0,50	1,112	1,139	1,185	1,192	1,220	1,248	1,276	1,306	1,337	1,369	1,403	1,440	1,481	1,529	1,590	1,73
0,51	1,067	1,093	1,120	1,147	1,174	1,202	1,231	1,261	1,291	1,324	1,358	1,395	1,436	1,484	1,544	1,68
0,52	1,023	1,049	1,076	1,103	1,130	1,159	1,187	1,217	1,247	1,280	1,314	1,351	1,392	1,440	1,500	1,64
0,53	0,980	1,007	1,033	1,060	1,088	1,118	1,144	1,174	1,205	1,237	1,271	1,308	1,349	1,397	1,458	1,60
0.54	0.939	0.985	0.992	1,019	1,046	1,074	1,103	1,133	1,163	1,196	1,230	1,267	1.308	1,356	1,416	1,55
0,55	0,899	0,925	0,952	0,979	1,006	1,034	1,083	1,092	1,123	1,156	1,190	1,227	1,268	1,315	1,376	1,51
0,56	0,860	0,886	0,913	0,940	0,967	0,995	1,024	1,053	1,084	1,116	1,151	1,188	1,229	1,276	1,337	1,47
0,57	0,822	0,848	0,875	0,902	0,929	0,957	0,988	1,015	1,046	1,079	1,113	1,150	1,191	1,238	1,299	1,44
0,58	0,785	0,811	0,838	0,805	0,892	0,920	0,949	0,979	1,009	1,042	1,070	1,113	1,154	1,201	1,262	1,40
0,59	0,740	0,776	0,802	0,820	0,856	0,884	0,013	0,942	0,073	1,006	1,040	1,077	1,118	1,165	1,226	1,36
0.60	0.714	0.740	0.787	0.794	0.821	0.849	0.878	0.907	0.938	0.970	1.005	1.042	1.083	1.130	1,191	1.33
0,61	0.679	0.706	0.732	0.759	0.787	0.815	0.843	0,873	0,904	0.936	0.970	1,007	1.048	1,098	1,157	1.29
0,62	0,648	0,672	0.699	0,726	0,753	0,781	0,810	0,839	0,870	0,903	0,937	0.974	1,015	1,062	1,123	1,2
0,63	0.613	0.639	0.686	0.693	0.720	0.748	0.777	0.807	0.837	0.870	0.904	0.941	0.982	1.030	1.090	1.23
0,64	0,581	0,607	0,634	0,561	0,688	0,716	0,745	0,775	0,805	0,838	0,872	0,909	0,950	0,998	1,058	1,2
0,65	0,549	0,576	0,602	0,629	0,657	0,685	0,714	0,743	0,774	0,808	0,840	0,877	0,919	0,966	1,027	1,1
0,66	0,510	0,546	0,572	0,500	0,628	0,654	0,683	0,712	0,743	0,775	0,810	0,847	0,898	0,035	0,008	1,1
0.67	0.488	0.515	0.541	0.568	0.596	0.624	0.652	0.682	0.713	0.745	0.779	0.816	0.857	0.905	0.966	1.1
0,68	0,459	0,485	0,512	0,539	0,566	0,594	0,623	0,652	0,683	0,715	0,750	0,787	0,828	0,875	0,936	1,0
0,69	0.429	0.456	0.482	0.509	0.537	0.565	0.593	0.623	0.854	0.686	0.720	0.757	0.798	0.846	0.907	1.0-
0.70	0,400	0.427	0.453	0.480	0,508	0,538	0,565	0,594	0,825	0,657	0,692	0.729	0.770	0,817	0,878	1.03
0,71	0,372	0,398	0,425	0,452	0,480	0,508	0,530	0,566	0,597	0,029	0,003	0,700	0,741	0,789	0,849	0,9
0,72	0,344	0,370	0,397	0,424	0,452	0,490	0,508	0,538	0,569	0,601	0,635	0,672	0,713	0,761	0,821	0,9
0,73	0,318	0,343	0,370	0,396	0,424	0,452	0,481	0,510	0,541	0,573	0,608	0.645	0,698	0,733	0,794	0,95
0.74	0.289	0.316	0.342	0.369	0.397	0.425	0.453	0.483	0.514	0.546	0.580	0.617	0.658	0.708	0.768	0.9
0,75	0.262	0.289	0.315	0.342	0,370	0,398	0.428	0,456	0,487	0,519	0,553	0.590	0.631	0,879	0.739	0.8
0,76	0,235	0,262	0,288	0,315	0,343	0,371	0,400	0,429	0,460	0,492	0,528	0,563	0,605	0,652	0,713	0,8
0,77	0,209	0,235	0,282	0,289	0,316	0,344	0,373	0,403	0,433	0,466	0,500	0,537	0,578	0,626	0,686	0,8
0,78	0.183	0.209	0.236	0.203	0.290	0.318	0.347	0,376	0,407	0,439	0,474	0.511	0.552	0,599	0.000	0.8
0.79		0.183	0.200	0.236	0.264	0.202		0.350	0.381				0.525	0.573	0.834	0.7

Tabela do Fator Multiplicador - Norma da Concessionária

SETOR 1

$$FP_{Setor1} = \frac{S_{Setor1}}{P_{Setor1}} = \frac{338,94 \, kVA}{272,73 \, kW} \approx 0,81$$

$$FP_{NovoSetor1} = \frac{297,82 \, VA}{272,73 \, kW} = 0,9157$$

Problema identificado:

- Setor 1 não atingiu o FP 0,92 após correção
- FP global continuava abaixo do exigido

Novo FP Global =
$$\frac{862,05}{685,59}$$
 = 0,7953

SETOR 2

$$FP_{Setor2} = \frac{S_{Setor2}}{P_{Setor2}} = \frac{142,86 \, kVA}{221,66 \, kW} \approx 0,64$$

$$FP_{NovoSetor2} = \frac{142,86 \, VA}{154,47 \, kW} = 0,9248$$

SETOR 3

Não necessário realizar correção devido ao fator de potência já atender as especificações da norma da concessionária

Correção do FP

Correção recalculada considerando todos os setores ativos simultaneamente

FP = 0,93 para o Fator Multiplicador da Potência Reativa Necessária

Novo fator de multiplicação adotado para Setor 1 = 0.329

$$FP_{NovoSetor1} = \frac{294,52 \, VA}{272,73 \, kW} = 0,9259$$

FP global recalculado:

Novo FP Global =
$$\frac{727,23}{685,59}$$
 = 0,9427

TABELA 22 - Fator Multiplicador para Determinação da Potência Reativa Capacitiva

FP								de Poter			-		42.00			
Original	0,85	0,86	0,87	0,88	0,89	0,90	0,91	0,92	0,93	0,94	0,95	0,96	0,97	0,98	0,99	1.0
0,50	1,112	1,139	1,165	1,192	1,220	1,248	1,276	1,306	1,337	1,369	1,403	1,440	1,481	1,529	1,590	1,7
0,51	1,067	1,093	1,120	1,147	1,174	1,202	1,231	1,261	1,291	1,324	1,358	1,395	1,436	1,484	1,544	1,6
0,52	1,023	1,049	1,076	1,103	1,130	1,158	1,187	1,217	1.247	1,280	1,314	1,351	1,392	1,440	1,500	1,6
0,53	0,980	1,007	1,033	1,060	1,088	1,116	1,144	1,174	1,205	1,237	1,271	1,308	1,349	1,397	1,458	1,6
0,54	0,939	0.965	0,992	1,019	1,046	1,074	1,103	1,133	1.163	1,196	1,230	1,267	1,308	1,358	1,416	1,5
0,55	0,899	0,925	0,952	0,979	1,006	1,034	1,063	1,092	1,123	1,156	1,190	1,227	1,268	1,315	1,376	1,5
0,56	0,860	0,886	0,913	0,940	0,967	0,995	1,024	1,053	1,084	1,116	1,151	1,188	1,229	1,276	1,337	1,4
0,57	0,822	0,848	0,875	0,902	0,929	0,957	889,0	1,015	1,046	1,079	1,113	1,150	1,191	1,238	1,299	1,4
0,58	0,785	0,811	0,838	0,865	0,892	0,920	0,949	0,979	1,009	1,042	1,076	1,113	1,154	1,201	1,262	1,4
0,59	0,749	0,775	0,802	0,829	0,856	0,884	0,913	0,942	0.973	1,006	1,040	1,077	1,118	1,165	1,228	1,3
0,60	0.714	0,740	0,767	0,794	0.821	0,849	0,878	0,907	0.938	0,970	1,005	1,042	1,083	1,130	1,191	1,3
0,61	0,679	0,706	0,732	0,759	0,787	0,815	0.843	0,873	0.904	0,936	0,970	1,007	1,048	1,095	1,157	1,2
0,62	0,646	0,672	0,699	0,726	0,753	0,781	0,810	0,839	0,870	0,903	0,937	0,974	1,015	1,062	1,123	1,2
0,63	0,613	0,639	0,666	0,693	0,720	0,748	0,777	0,807	0,837	0,870	0,904	0,941	0,982	1,030	1,090	1,2
0,64	0,581	0,607	0,634	0,661	0,688	0,716	0,745	0,775	0.805	0,838	0,872	0,909	0,950	0,998	1,058	1,2
0,65	0,549	0,576	0,602	0,629	0,657	0,685	0,714	0,743	0,774	0,806	0,840	0,877	0,919	0,966	1,027	1,1
0,66	0,519	0,545	0,572	0,599	0,626	0,654	0,683	0,712	0.743	0,775	0,810	0,847	0,888	0,935	0,996	1,1
0,67	0.488	0.515	0,541	0.568	0.596	0,624	0.652	0,682	0.713	0,745	0,779	0,816	0,857	0.905	0.966	1,1
0,68	0,459	0,485	0,512	0,539	0,566	0,594	0,623	0,652	0,683	0,715	0,750	0,787	0,828	0,875	0,936	1,0
0,69	0,429	0,456	0,482	0,509	0,537	0,565	0,593	0,623	0,654	0,686	0,720	0,757	0,798	0,846	0,907	1,0
0,70	0,400	0,427	0.453	0.480	0.508	0.536	0.565	0.594	0.625	0.657	0.692	0,729	0.770	0.817	0.878	1,0
0,71	0,372	0,398	0,425	0,452	0,480	0,508	0,536	0,566	0,597	0,629	0,663	0,700	0,741	0,789	0,849	0,8
0,72	0.344	0,370	0,397	0.424	0,452	0,480	0,508	0,538	0,560	0,601	0,635	0,672	0,713	0.761	0,821	0,0
0.73	0,316	0,343	0,370	0,396	0.424	0.452	0,481	0,510	0.541	0.573	0,608	0.645	0.686	0,733	0,794	0,8
0,74	0,289	0,316	0,342	0,369	0,397	0,425	0,453	0,483	0,514	0,546	0,580	0,617	0,658	0,708	0,766	0,8
0,75	0.262	0,289	0,315	0.342	0,370	0,398	0,426	0,456	0,487	0,519	0,553	0.590	0,631	0.679	0,739	0,8
0,76	0,235	0,262	0,288	0,315	0,343	0,371	0,400	0,429	0.460	0,492	0,526	0,563	0,605	0,652	0,713	0,8
0,77	0,209	0,235	0,262	0,289	0,316	0,344	0,373	0,403	0.433	0,466	0,500	0,537	0,578	0,626	0,686	0,8
0,78	0.183	0,209	0,236	0,263	0,290	0,318	0,347	0,376	0.407	0,439	0,474	0,511	0,552	0,599	0,660	0,8
0,79	0,156	0,183	0,209	0,236	0,264	0,292	0,320	0,350	0.381	0,413	0,447	0,484	0,525	0,573	0,634	0,7
0,80	0,130	0,157	0,183	0,210	0,238	0,266	0,294	0,324	0.355	0,387	0,421	0,458	0,499	0,547	0,608	0,7
0,81	0,104	0.131	0.157	0.184	0,212	0,240	0,268	0,298	0,329	0,361	0,395	0,432	0,473	0,521	0,581	0,7
0,82	0.078	0.105	0,131	0.158	0.186	0.214	0.242	0,272	0.303	0,335	0.369	0.406	0.447	0.495	0,556	0,6
0,83	0,052	0,079	0,105	0,132	0,160	0,188	0,216	0,246	0,277	0,309	0,343	0,380	0,421	0,469	0,530	0,6
0,84	0,026	0,053	0,079	0,106	0,134	0,162	0,190	0,220	0,251	0,283	0,317	0,354	0,395	0,443	0,503	0,6
0.85	0	0,026	0.053	0.080	0,107	0,135	0.164	0,194	0,225	0.257	0,291	0.328	0.369	0,417	0.477	0,6
0,86		0	0,027	0,054	0,081	0,109	0,138	0,167	0,198	0,230	0,265	0,302	0,343	0,390	0,451	0,5
0,87			0	0,027	0,054	0,082	0,111	0,141	0,172	0,204	0,238	0,275	0,316	0,384	0,424	0,5
0,88			i i	0	0.027	0,055	0.084	0,114	0,145	0,177	0,211	0,248	0,289	0,337	0,397	0,5
0,89	1				0	0.028	0.057	0,086	0.117	0.149	0.184	0.221	0.262	0.309	0.370	0,5
0.90	1					0	0.029	0.058	0.089	0,121	0,158	0,193	0.234	0,281	0,342	0,4

Chaves de Partida

Inversor de Frequência

Utilizamos o Inversor PowerFlex 750 da RockWell. E escolhemos dois motores os 3, 4 como exemplo levando em consideração o menor e maior entre os motores:

Para o Motor 3 - 30cv, 380V, In = 44,35 A. Escolha do PowerFlex 750, - modelo 20x a C060

Para o Motor 4 - 150 cv, 380V, In = 211,91 A . Escolha do PowerFlex 750 - modelo 20x a C260.

Projeto luminotécnico (Calculos)

Dados do problema:

- Medidas: 20x15x4,6;
- Atividade: Escritório;
- Índice de refletância: 571 (Teto claro, parede branca, piso escuro);
- Foi adotado uma refletância de 551 pois não existe na tabela o índice de 571.
- Lâmpadas de 4x32W Fluorescente;

Resolução:

- Iluminância mantida: 500 Lux (escritório) Tabela NBR 5995
- Luminária escolhida: 4 lâmpadas de 32 watts, TMS 500 C/RA 500

Determinar o índice do local pela equação:

$$K = (CL) (Hm(C + L))$$

 $Hm = 4,6 - (0,8+1,0) = 2,8$
 $K = (2015) (2,8 (20 + 15) = 3,00$

De acordo com a tabela 13.7 do Hélio Creder é definido o coeficiente de utilização pelo índice do local (3,00) e refletância(551) sendo equivalente à 0,79, o fator de manutenção (depreciação) foi definido de acordo com a tabela 13.9 igual a 0,67.

Tabela 13.9

Fator de Manutenção	Exemplo
0,80	Ambiente muito limpo, ciclo de manutenção de um ano, 2 000 h/ano de vida até a queima com substituição da lâmpada a cada 8 000 h, substituição individual, luminárias direta e direta/indireta com uma pequena tendência de coleta de poeira.
0,67	Carga de poluição normal no ambiente, ciclo de manutenção de três anos, 2 000 h/ano de vida até a queima com substituição da lâmpada a cada 12 000 h, substituição individual, luminárias direta e direta/indireta com uma pequena tendência de coleta de poeira.
0,57	Carga de poluição normal no ambiente, ciclo de manutenção de três anos, 2 000 h/ano de vida até a queima com substituição da lâmpada a cada 12 000 h, substituição individual, luminárias com uma tendência normal de coleta d poeira.
0,50	Ambiente sujo, ciclo de manutenção de três anos, 8 000 h/ano de vida até a queima com substituição da lâmpada a cada 8 000 h, LLB, substituição em grupo, luminárias com uma tendência normal de coleta de poeira.

Projeto luminotécnico (DiaLux)

Tabela 13.4

Sendo assim calculamos o fluxo luminoso:

$$\phi = ((20 \times 15) \times 500) \div (0.79 \times 0.67) = 283,393 \text{ lumens}$$

Usando lâmpadas de 32W fluorescente o fluxo luminoso é 2700 de acordo com a tabela 13.4, portanto:

$$\phi = 4 \times 2700 = 10.800 \, \text{lúmens/luminária}$$

O número de luminárias é definido pela seguinte equação:

$$N = \Phi \div \Phi$$

$$N = 283.393 \div 10.800 = 26,24 \approx 28$$
 luminárias

Incandescente		Fluore	scente	Vapor de mercúrio		
Potência (watts)	Fluxo luminoso (lumens)	Potência (watts)	Fluxo luminoso (lumens)	Potência (watts)	Fluxo luminoso (lumens)	
25	230	20	1 100	80	3 600	
40	450	32	2 950*	125	6300	
60	800	40	3 000 3 500*	2 700* 250	12 700	
100	1500	110	7 800	400	22 000	

*Lâmpada de alto rendimento

Distribuição das luminárias no software (DiaLux)

Diagrama unifilar (concessionária e empresa)

Diagrama unifilar modelo - Norma NT.00002.EQTL.09

Temos na norma da concessionária o diagrama unifilar padrão que podemos, ter como parâmetro para uma visualização clara de como é a instalação até a carga efetivamente ligada a subestação.

Diagrama unifilar (Empresa)

Diagrama unifilar da empresa a partir da subestação - Desenvolvido pelo grupo

Subestação Abrigada

Segundo a norma da concesionária para essa demanda devemos construir uma subestação do tipo ao tempo no solo ou subestação abrigada (alvenaria ou cabine), definimos seguir com a subestação abrigada em alvenaria.

Encontramos também a recomendação de realizar a construção de uma subestação compartilhada o que é ideal para futuras

ampliações.

Subestação Abrigada

Especificação sumária:

LEGENDA - DESENHO 29A

Item	Material	Especificação Técnica
01	Alça Pré-formada Para Cabo de Alumínio (*)	ET.00102
02	Isoladores de Ancoragem 15kV, 24,2kV ou 36,2kV(*)	ET.00176
03	Gancho Olhal; Porca-Olhal ; Parafuso Cabeça Quadrada Ø 16 x 250mm	ET.00125, ET.00120 e ET.00104
04	Conector Cunha (*)	ET.00147
05	Bucha de Passagem – 15 kV, 24,2kV ou 36,2kV	70
06	Para-raios Óxido de Zinco 12 kV, 10 kA para 13.8 kV (*) Para-raios Óxido de Zinco 30 kV, 10 kA para 34,5 kV (*) Para-raios Óxido de Zinco 21kV, 10 kA para 24,2 kV (*)	ET.00002
07	Suporte Para Para-raios/Isoladores Suporte em Cantoneira de Aço Galvanizado 1.1/2" x 1.1/2" x 3/16" com 1.200 mm de Comprimento	-
08	Cabo de Cobre Nu Ø 50mm² (mínimo) – Aterramento	ET.00133
09	Eletroduto Rígido PVC Diâmetro 25mm	ET.00166
10	Chapa Galvanizada 1600 x 600mm com 3/16" de espessura (Aterrada)	2
11	Barramento de Cobre Tipo Vergalhão, Tubo ou Barra	7.8
12	Isolador Suporte, 15 kV, 24,2kV ou 36,2kV Uso Interno	•:

13	Transformador de Corrente 15kV, 24,2kV ou 36,2kV Medição (Fornecimento CONCESSIONÁRIA)	ET.00006
14	Transformador de Potencial Medição 15kV, 24,2kV ou 36,2kV (Fornecimento CONCESSIONÁRIA)	ET.00303
15	Cavalete para Instrumentos de Medição	÷
16	Chave Faca Tripolar Seca, 15KV, 24,2kV ou 36,2kV-630A acionamento simultâneo com fusível limitador de corrente tipo HH	*
17	Transformador de Corrente 15kV Proteção	*
18	Disjuntor Tripolar Automático, 630 A, 350 MVA, Isolamento Para 15 KV ,24,2 KV e 36,2 kV	-
19	Transformador Distribuição	ET.00001, ET.00008 ou ET.00014
20	Cabo de Cobre Isolado XLPE 90°, EPR 90° ou HEPR 90° – Isolamento 0,6/1kV	2
21	Eletroduto 4" Aço Galvanizado	ET.00122
22	Eletroduto de Aço Galvanizado 1.1/2" pesado, zincado por imersão a quente	ET.00122
23	Caixa Padrão Para Instalação de Medidores (*)	NT.00030
24	Iluminação Artificial	*
25	Veneziana Para Ventilação Permanente com Grade de Proteção com Armação de Cantoneira e Tela de Arame Galvanizado nº 18 BWG com Malha Máxima de 13mm Sistema de Palhetas Metálicas	2
26	Grade de Proteção Removível com Armação de Cantoneira e Tela de Arame Galvanizado nº 12BWG, com Malha Mínima de 13mm e Máxima de 20mm	6
27	Bacia de Contenção de Óleo	8
28	Extintor de Incêndio – CO ₂ 6 kg Mínimo	5
29	Tapete Isolante	÷
30	Malha de Terra	2
31	Tubo de PVC ½" com tampa externa	

Nota 135: Os materiais marcados com (*) devem obrigatoriamente ser de fornecedores homologados pela CONCESSIONÁRIA.

Cálculos e simulações de curto-circuito

Foi desenvolvido uma planilha a fim de facilitar os cálculos de curto circuito para os diversos pontos da instalação, sendo assim é possível verificar os resultado na tabela abaixo:

Setor		Corrente de	e curto-circuito	
Seloi	trifásico (lcs) - kA	monofásico franco (lcft) - kA	Fator de assimetria	Corrente de curto assimétrica (Ica) - kA
Ponto de entrega	8,36 < -88,85°	6,971 < -88,72°	120	=
Secundário do transformador	33,89 < -74,33°	33,17 < -74,63°	(-)	
Barramento área 1	23,19< -66,99°	22,86 < -67,30°	1,24	28,75
Barramento área 2	17,55 < -52,83°	17,39< -53,21°	1,1	19,31
Barramento área 3	21,64 < -64,6°	26,22 < - 63,17°	1,19	25,75

Tabela de Resultados dos calculos de curto circuitos

Para a validação dos cálculos foi desenvolvido uma modelagem no software PSP-UFU, é possível observar que ficou dentro de valores consideráveis, veja abaixo as simulações:

Setor	
Seloi	trifásico (lcs) - kA
Ponto de entrega	8,36 < -88,85"
Secundário do transformador	33,89 < -74,33°
Barramento área 1	23,19< -66,99°
Barramento área 2	17,55 < -52,83°
Barramento área 3	21.64 < -64.6°

Setor	trifásico (lcs) - kA
Ponto de entrega	8,36 < -88,85"
Secundário do transformador	33,89 < -74,33°
Barramento área 1	23,19< -66,99°
Barramento área 2	17,55 < -52,83°
Barramento área 3	21,64 < -64,6°

Curto circuito trifásico no secundário do transformador

Setor	trifásico (lcs) - kA
Ponto de entrega	8,36 < -88,85"
Secundário do transformador	33,89 < -74,33°
Barramento área 1	23,19< -66,99°
Barramento área 2	17,55 < -52,83°
Barramento área 3	21.64 < -64.6°

Curto circuito trifásico na área 1

Setor	trifásico (lcs) - kA
Ponto de entrega	8,36 < -88,85"
Secundário do transformador	33,89 < -74,33°
Barramento área 1	23,19< -66,99°
Barramento área 2	17,55 < -52,83°
Barramento área 3	21.64 < .64.6°

Curto circuito trifásico na área 2

Setor	trifásico (lcs) - kA
Ponto de entrega	8,36 < -88,85"
Secundário do transformador	33,89 < -74,33°
Barramento área 1	23,19< -66,99°
Barramento área 2	17,55 < -52,83°
Barramento área 3	21.64 < -64.6°

Curto circuito trifásico na área 3

Setor	monofásico franco (lcft) - kA
Ponto de entrega	6,971 < -88,72°
Secundário do transformador	33,17 < -74,63°
Barramento área 1	22,86 < -67,30°
Barramento área 2	17,39< -53,21°
Barramento área 3	26.22 < - 63.17°

Curto fase-terra no ponto de entrega

Setor	ETT 100 0 100 0 100
	monofásico franco (Icft) - kA
Ponto de entrega	6,971 < -88,72°
Secundário do transformador	33,17 < -74,63°
Barramento área 1	22,86 < -67,30°
Barramento área 2	17,39< -53,21°
Barramento área 3	26.22 < - 63.17°

Curto fase-terra no secundário do transformador

Setor	
	monofásico franco (lcft) - kA
Ponto de entrega	6,971 < -88,72°
Secundário do transformador	33,17 < -74,63°
Barramento área 1	22,86 < -67,30°
Barramento área 2	17,39< -53,21°
Barramento área 3	26.22 < - 63.17°

Curto fase-terra na área 1

Setor	ETT 100 0 100 0 100
	monofásico franco (lcft) - kA
Ponto de entrega	6,971 < -88,72°
Secundário do transformador	33,17 < -74,63°
Barramento área 1	22,86 < -67,30°
Barramento área 2	17,39< -53,21°
Barramento área 3	26.22 < - 63.17°

Curto fase-terra na área 2

Setor	monofásico franco (lcft) - kA
Ponto de entrega	6,971 < -88,72°
Secundário do transformador	33,17 < -74,63°
Barramento área 1	22,86 < -67,30°
Barramento área 2	17,39< -53,21°
Barramento área 3	26.22 < - 63.17°

Curto fase-terra na área 3

Carregamento dos Circuitos após Correção do FP

Os bancos de capacitores para o Setor 1 e 2 fornecem potência reativa localmente, reduzindo a necessidade de que essa potência reativa seja suprida pela fonte (transformador, concessionária, etc.), portanto:

$$\Delta V = \frac{P_c X_{cir}}{10 \ V_{cir}^2} \ (\%)$$

Para o Setor 1:

$$\Delta V = \frac{89,72 \times 0,07}{10 \times 380^2} = \frac{6,2804}{10 \times 144400} = \frac{6,2804}{1.444,000} \approx 0,00000435\%$$

Para o Setor 2:

$$\Delta V = \frac{58,75 \times 0.07}{10 \times 380^2} = \frac{4,1125}{1.444.000} = \approx 0,000285\%$$

Esses valores extremamente baixos de queda de tensão — inferiores a 0,001% — demonstram que, com a correção do fator de potência, a corrente nos condutores caiu significativamente.

Ganhos no FP e perdas evitada

Se o FP mensal ficar abaixo de 0,92, a Equatorial aplica uma tarifa extra sobre o consumo reativo excedente

Valor da penalidade: R\$ 0,38 por kVArh excedente (valor de referência médio, pode variar por bandeira tarifária e contrato

- Evita multa por energia reativa excedente
- Reduz corrente elétrica total, liberando capacidade do transformador e dos cabos
- Menor queda de tensão = melhor desempenho dos motores
- Aumento da eficiência energética geral

Gráfico de Comparação da Correção do FP -Desenvolvido pelo grupo

Eficiência, segurança e conformidade 🔽

- Adequação completa às normas da concessionária (NT.00002.EQTL) e NBR 5410
- Correção do fator de potência evitando penalidades tarifárias
- Dimensionamento seguro de condutores, disjuntores e transformadores
- Simulações robustas (curto-circuito e PSP-UFU) garantindo segurança operacional
- Redução de perdas e aumento da vida útil dos equipamentos
- Projeto pronto para liberação sem pendências técnicas

Preparado para ampliações futuras 🔽

- Transformador com margem de sobra (1000 kVA vs 815 kVA de demanda)
- Infraestrutura com capacidade reservada para expansão
- Canalização e alimentação setorial pensadas para modularidade
- Solução de FP escalável: bancos de capacitores por setor
- Diagrama unifilar claro, com possibilidade de inserção de novos ramais
- Projeto que antecipa o crescimento visão estratégica de longo prazo

Aplicação prática de normas, softwares e catalogos 💻 📐

- NT.00002.EQTL A NORMA DA CONCESSIONÁRIA.
- Catálogo da Weg Modelo W22 Super Premium Motores.
- Catálogo da Siemetrafo Transformadores a oleo trifasico 1000 kVA.
- Prysmian, Rev. 9- Guia de dimensionamento de cabo.
- NBR 5410 Instalações elétricas de baixa tensão.
- Catálogo da Siemens fichas técnicas macro Disjuntores.
- Catálogo da Rock Produtos PowerFlex série 750 Inversor.
- Livro do Hélio creder Instalações elétrica, 16 ed.

- DiaLux Simulação do Luminotécnico
- PSP UFU Simulação do Curto Circuito
- AutoCAD Diagrama unifilar

OBRIGADO!

Dúvidas?

Responsáveis: Edson Luiz Mass Junior; Jemilly Baptista do Nascimento Lima; Lucas da Silva Faustino; Matheus Sheid dos Santos.

