

AD-A038 484

FLEET WEATHER CENTRAL/Joint TYPHOON WARNING CENTER FP--ETC F/G 4/2
ANNUAL TYPHOON REPORT, 1976. (U)
1976

UNCLASSIFIED

NL

1976 ANNUAL

AD No. _____
DDC FILE COPY

ADA 038484

ANNUAL

1976

(12)
NW

TYPHOOON

DEC 1973

REPORT

DDC
APR 21 1977
A
F

JOINT TYPHOON WARNING CENTER
GUAM, MARIANA ISLANDS

DISTRIBUTION STATEMENT A
Approved for public release;
Distribution Unlimited

Indian Ocean Area (Malay Peninsula to Africa)

Pacific Area (Dateline to Malay Peninsula)

AREA OF RESPONSIBILITY - JOINT TYPHOON WARNING CENTER, GUAM

**U. S. FLEET WEATHER CENTRAL
JOINT TYPHOON WARNING CENTER**
COMNAVMARIANAS BOX 17
FPO SAN FRANCISCO 96630

DEAN R. MORFORD
Captain, United States Navy

COMMANDING

SERHIJ PILIPOWSKYJ
Lieutenant Colonel, United States Air Force

DIRECTOR, JOINT TYPHOON WARNING CENTER

STAFF

*LCDR Edward J. Harrison, Jr., USN
LCDR David Sokol, USN
*LT Douglas R. Moran, USN
LT Gary R. Willms, USN
LT George T. McKaige, USN
*CAPT Charles R. Sikora, USAF
CAPT Frederick P. Milwer, USAF
CAPT Charles P. Guard, USAF
ENS Edward M. Fukada, USNR
MSGT Philip A. Charron, USAF
SSGT Ellis D. Spencer, USAF
*SSGT Maurice L. Wymore, USAF
SSGT Bobby L. Setliff, USAF
AG2 Greg P. Metzger, USN
AG3 Robert L. Hern, Jr., USN
AG3 Susan J. Funk, USN
*AGAN Deborah H. Walker, USN
AGAN Deirdre A. Wexler, USN
SRA Craig A. Anderson, USAF
A1C Vandora A. Barnes, USAF
Ms. Gail E. James, Secretary

CONTRIBUTOR

Det 1, lww - USAF

DISTRIBUTION STATEMENT A
Approved for public release;
Distribution Unlimited

1976
ANNUAL TYPHOON REPORT

*Departed during 1976 season

FRONT COVER:

Infrared photograph of Super Typhoon Pamela near peak intensity 275 nm southeast of Guam, 19 May 1976, 0901Z. Pamela subsequently passed directly over Guam inflicting massive damage to military and civilian facilities. Details of this destructive storm begin on page 24.
(DMSP imagery)

FOREWORD

For centuries tropical cyclones have been a menace to both military and civilian activities in tropical and subtropical oceanic regions. During recent times much effort has been funneled toward more accurate tropical cyclone forecasts, and toward more efficient operational responses to these storms. A large portion of this effort has been based on studies which, if meaningful, must be based on accurately documented data. The Annual Typhoon Report represents such documentation. The body of this report summarizes the tropical cyclones occurring during 1976 in the western North Pacific, the Central North Pacific and the North Indian Oceans. The United States National Weather Service publishes summaries of eastern North Pacific tropical cyclones in the Mariners Weather Log, and Pilot Charts.

The PACOM Tropical Cyclone Warning System (western North Pacific and Indian Oceans) insures warnings of these dangerous storms is provided to all U. S. government interests. It consists of the Fleet Weather Central/Joint Typhoon Warning Center (FLEWEACEN/JTWC), the U. S. Air Force 54th Weather Reconnaissance Squadron stationed at Andersen AFB, Guam, and the U. S. Air Force Weather Service Defense Meteorological Satellite Program (DMSP) sites at Nimitz Hill, Guam; Clark AB, Philippines; Kadena AB, Okinawa; Osan AB, Korea; Hickam AFB, Hawaii; and the Air Force Global Weather Central, Offutt AFB, Nebraska. Additionally, satellite support is provided by the Fleet Weather Facility, Suitland, Maryland.

The Fleet Weather Central/Joint Typhoon Warning Center, Guam has the responsibility to:

1. Provide continuous meteorological watch of all tropical activity north of the

Equator, west of the Date Line, and east of the African coast (JTWC area of responsibility) for potential tropical cyclone development;

2. Provide warnings for all tropical cyclones within the area of responsibility;
3. Determine tropical cyclone reconnaissance requirements and assign priorities;
4. Conduct post-analysis studies including preparation of the Annual Typhoon Report; and
5. Conduct tropical cyclone research and forecast improvement studies as time permits.

JTWC is an integral part of FLEWEACEN Guam and is manned by officers and enlisted personnel from both the Air Force and Navy. The senior Air Force officer is designated as the Director, JTWC, and the senior Naval officer as the Deputy Director, JTWC.

Detachment 17, 30th Weather Squadron, Yokota AB, Japan with assistance from the Naval Weather Facility, Yokosuka, Japan and computer support from Fleet Weather Central, Pearl Harbor, Hawaii is designated as the Alternate Joint Typhoon Warning Center in the event that FLEWEACEN/JTWC, Guam is incapacitated.

The Central Pacific Hurricane Center, Honolulu, Hawaii, is responsible for the area north of the equator from the Date Line east to 140W. Warnings are issued in coordination with FLEWEACEN, Pearl Harbor and Detachment 4, 1WW, Hickam AFB, Hawaii.

CINCPACFLT, CDRUSACSG, and CINCPACAF are responsible for further dissemination, and if necessary, local modification of tropical cyclone warnings to U. S. government interests.

TABLE OF CONTENTS

CHAPTER I	OPERATIONAL PROCEDURES	page	
1.	General-----	1	
2.	Analyses and Data Sources-----	1	
3.	Forecast Aids-----	1	
4.	Forecasting Procedures-----	2	
5.	Warnings-----	2	
6.	Prognostic Reasoning Message-----	2	
7.	Significant Tropical Weather Advisory-----	2	
8.	Tropical Cyclone Formation Alert-----	2	
CHAPTER II	RECONNAISSANCE AND COMMUNICATIONS		
1.	General-----	3	
2.	Reconnaissance Responsibility and Scheduling-----	3	
3.	Aircraft Reconnaissance Evaluation Criteria-----	3	
4.	Aircraft Reconnaissance Summary-----	4	
5.	Satellite Reconnaissance Summary-----	5	
6.	Radar Reconnaissance Summary-----	6	
7.	Communications-----	6	
CHAPTER III	RESEARCH SUMMARY		
1.	General-----	7	
2.	Cross-Equatorial Interactions in the Development of a Winter Typhoon: NANCY 1970-----	7	
3.	Tropical Cyclone Center Fix Data for the 1975 Typhoon Season-----	7	
4.	An Evaluation of Utilizing Equivalent Potential Temperature as a Measure of Tropical Cyclone Intensity-----	7	
5.	Radius of Wind Field Surrounding a Tropical Cyclone-----	7	
6.	Correlation of JTWC Initial Position Error to Forecast Position Errors in the Western North Pacific-----	7	
7.	The Influences of the Tropical Upper Tropospheric Trough (TUTT) on Erratic Movement of Tropical Cyclones-----	7	
8.	The Development and Movement of Tropical Cyclones in Deep Southwesterly Monsoon Surges-----	8	
9.	Operational Applications of a Recurvature - Non-Recurvature Study Based on 200 MB Wind Fields-----	8	
CHAPTER IV	SUMMARY OF TROPICAL CYCLONES		
1.	General Resume-----	9	
2.	Western North Pacific Tropical Cyclones-----	13	
3.	Individual Typhoons-----	18	
	page	page	
Typhoon Kathy-----	18	Typhoon Anita-----	36
Typhoon Marie-----	20	Typhoon Billie-----	38
Typhoon Olga-----	22	Typhoon Fran-----	42
Typhoon Pamela-----	24	Typhoon Hope-----	46
Typhoon Ruby-----	30	Typhoon Iris-----	48
Typhoon Sally-----	32	Typhoon Joan-----	50
Typhoon Therese-----	34	Typhoon Louise-----	52
4.	North Indian Ocean Tropical Cyclones-----	56	
5.	Central Pacific Tropical Cyclones-----	58	
6.	Tropical Cyclone Center Fix Data-----	60	
CHAPTER V	SUMMARY OF FORECAST VERIFICATION DATA		
1.	Annual Forecast Verification-----	61	
2.	Comparison of Objective Techniques-----	61	
3.	Pacific Area Tropical Storm and Depression Data-----	67	
4.	Pacific Area Typhoon Data-----	72	
5.	Indian Ocean Area Cyclone Data-----	83	
6.	Central Pacific Hurricane Data-----	85	
APPENDIX	ABBREVIATIONS, ACRONYMS AND DEFINITIONS		
1.	Abbreviations and Acronyms-----	86	
2.	Definitions-----	86	
DISTRIBUTION		88	

TABLE OF CONTENTS

CHAPTER I	OPERATIONAL PROCEDURES	page		
1.	General-----	1		
2.	Analyses and Data Sources-----	1		
3.	Forecast Aids-----	1		
4.	Forecasting Procedures-----	2		
5.	Warnings-----	2		
6.	Prognostic Reasoning Message-----	2		
7.	Significant Tropical Weather Advisory-----	2		
	Tropical Cyclone Formation Alert-----	2		
CHAPTER II	RECONNAISSANCE AND COMMUNICATIONS	3		
1.	General-----	3		
2.	Reconnaissance Responsibility and Scheduling-----	3		
3.	Aircraft Reconnaissance Evaluation Criteria-----	3		
4.	Aircraft Reconnaissance Summary-----	4		
5.	Satellite Reconnaissance Summary-----	5		
6.	Radar Reconnaissance Summary-----	6		
	Communications-----	6		
CHAPTER III	RESEARCH SUMMARY	7		
1.	General-----	7		
2.	Cross-Equatorial Interactions in the Development of a Winter Typhoon: NANCY 1970-----	7		
3.	Tropical Cyclone Center Fix Data for the 1975 Typhoon Season-----	7		
4.	An Evaluation of Utilizing Equivalent Potential Temperature as a Measure of Tropical Cyclone Intensity-----	7		
5.	Radius of Wind Field Surrounding a Tropical Cyclone-----	7		
6.	Correlation of JTWC Initial Position Error to Forecast Position Errors in the Western North Pacific-----	7		
7.	The Influences of the Tropical Upper Tropospheric Trough (TUTT) on Erratic Movement of Tropical Cyclones-----	7		
8.	The Development and Movement of Tropical Cyclones in Deep Southwesterly Monsoon Surges-----	8		
9.	Operational Applications of a Recurvature - Non-Recurvature Study Based on 200 MB Wind Fields-----	8		
CHAPTER IV	SUMMARY OF TROPICAL CYCLONES	9		
1.	General Resume-----	9		
2.	Western North Pacific Tropical Cyclones-----	13		
3.	Individual Typhoons-----	18		
		page		
	Typhoon Kathy-----	18	Typhoon Anita-----	36
	Typhoon Marie-----	20	Typhoon Billie-----	38
	Typhoon Olga-----	22	Typhoon Fran-----	42
	Typhoon Pamela-----	24	Typhoon Hope-----	46
	Typhoon Ruby-----	30	Typhoon Iris-----	48
	Typhoon Sally-----	32	Typhoon Joan-----	50
	Typhoon Therese-----	34	Typhoon Louise-----	52
	4.	North Indian Ocean Tropical Cyclones-----	56	
	5.	Central Pacific Tropical Cyclones-----	58	
	6.	Tropical Cyclone Center Fix Data-----	60	
CHAPTER V	SUMMARY OF FORECAST VERIFICATION DATA	61		
1.	Annual Forecast Verification-----	61		
2.	Comparison of Objective Techniques-----	61		
3.	Pacific Area Tropical Storm and Depression Data-----	67		
4.	Pacific Area Typhoon Data-----	72		
5.	Indian Ocean Area Cyclone Data-----	83		
6.	Central Pacific Hurricane Data-----	85		
APPENDIX	ABBREVIATIONS, ACRONYMS AND DEFINITIONS	86		
1.	Abbreviations and Acronyms-----	86		
2.	Definitions-----	86		
DISTRIBUTION		88		

* PRECEDING PAGE BLANK-NOT FILMED

CHAPTER I - OPERATIONAL PROCEDURES

1. GENERAL

Services provided by the Joint Typhoon Warning Center (JTWC) include the following: (1) Significant Tropical Weather Advisories issued daily describing all tropical disturbances and their potential for further development; (2) Tropical Cyclone Formation Alerts issued whenever interpretation of satellite and synoptic data indicates likely formation of a tropical cyclone; (3) Tropical Cyclone Warnings issued four times daily whenever a significant tropical cyclone exists in the Pacific area; (4) Tropical Cyclone Warnings issued twice daily whenever a significant tropical cyclone exists in the Indian Ocean area; and (5) Prognostic Reasoning issued twice daily for tropical storms and typhoons in the Pacific area.

FLEWEACEN Guam provides computerized meteorological/oceanographic products for JTWC. Communication support is furnished by the Nimitz Hill Naval Telecommunications Center (NTCC) of the Naval Communications Area Master Station Western Pacific.

2. ANALYSES AND DATA SOURCES

a. COMPUTER PRODUCTS:

Varian plotted charts are routinely produced at synoptic times for the surface, 850 mb, 700 mb, and 500 mb. A chart of upper tropospheric data is produced which utilizes 200 mb rawinsonde data and AIREPS above 29,000 ft within 6 hours of the 0000Z and 1200Z synoptic times.

JTWC utilizes the FLEWEACEN Guam Computer Center for objective forecast techniques and statistical post-analysis.

In addition, the standard array of synoptic-scale computer analyses and prognostic charts are available from the Fleet Numerical Weather Central (FNWC) at Monterey, California.

b. JTWC ANALYSES:

(1) Combined surface/gradient level (3,000 ft) streamline analysis over tropical regions and an-isobaric analysis in more northern latitudes and around intense tropical systems at 0000Z and 1200Z. The blend between streamlines and isobars fluctuates as the pressure gradient changes from season to season. Low-level wind directions from satellite data are included in the analysis.

(2) 500 mb contour analysis at 0000Z and 1200Z.

(3) Composite upper-tropospheric streamline analysis, utilizing rawinsonde data from 300 mb through 100 mb, wind directions extracted from satellite data by Det 1, 1WW and AIREPS (plus or minus 6 hours) at or above 29,000 feet, at 0000Z and 1200Z.

(4) Additional sectional analyses similar to those above, at intermediate synoptic times, during periods of tropical cyclone activity.

c. AIRCRAFT RECONNAISSANCE:

These data are invaluable in the positioning of centers of developing systems and essential for the accurate determination of the maximum intensity, minimum sea-level pressure, and radius of significant winds exhibited by tropical cyclones. Aircraft reconnaissance data are plotted on large-scale sectional charts for each mission flown. A comprehensive discussion of aircraft reconnaissance is presented in Chapter II.

d. SATELLITE DATA:

The Defense Meteorological Satellite Program (DMSP) played a major role in the early detection of tropical cyclones in 1976. A discussion of this role, as well as applications of satellite data to tropical cyclone tracking, is presented in Chapter II.

e. RADAR:

During 1976, land radar coverage was utilized more extensively in the Selective Reconnaissance Program than ever before. Once a storm moved within the range of a land radar site, reports were usually received hourly. Use of radar during 1976 is discussed in Chapter II.

3. FORECAST AIDS

a. CLIMATOLOGY:

Climatological publications utilized during the 1976 typhoon season include previous JTWC Annual Typhoon Reports and climatic publications from Fleet Weather Central Guam, Director Naval Oceanography and Meteorology, Naval Weather Research Facility, Naval Environmental Prediction Research Facility, Naval Postgraduate School, Air Weather Service, First Weather Wing and Chanute Air Training Center, plus publications from other Air Force and Navy activities, various universities and foreign countries.

b. OBJECTIVE TECHNIQUES:

The following objective techniques were employed in tropical cyclone forecasting during 1976. A description and an evaluation of these techniques is presented in Chapter V:

- (1) TYFN75
- (2) MOHATT 700/500
- (3) FCSTINT
- (4) 12-HR EXTRAPOLATION
- (5) HPAC
- (6) XT24
- (7) INJAH74

4. FORECASTING PROCEDURES

a. INITIAL POSITIONING:

An initial center position is determined from a subjective evaluation of center fix data and synoptic data. When these data sources are not available, extrapolation from the previous position is used.

b. TRACK FORECASTING:

An initial forecast track is developed based on persistence, climatology and objective techniques. This initial track is subjectively modified based on the following:

(1) The prospects for recurvature are evaluated for all westward and northward moving storms. This evaluation is based primarily on present and forecast position and amplitude of middle tropospheric mid-latitude troughs from the latest 500 mb analysis and numerical prognoses.

(2) Determination of steering level is partly influenced by maturity and vertical extent of the system. For mature storms located south of the 500 mb subtropical ridge, forecast changes in speed of movement are closely correlated with forecast changes in the intensity of the ridge. When steering currents are very weak, the tendency for storms to move northward due to internal forces is an important consideration.

(3) Over the 12- to 72-hr forecast spectrum, speed of movement during the early time frame is biased toward persistence, while that near the end of the time frame is biased towards analogs and climatology.

(4) A final check is made against climatology to ascertain the likelihood of the forecast track. If the forecast deviates greatly from climatology, the forecast rationale is reappraised and the track adjusted as necessary.

c. INTENSITY FORECASTING:

In forecasting intensity, heavy reliance is placed on aircraft reconnaissance reports, the Dvorak satellite interpretation model, and the objective techniques discussed above. Additional considerations are the position and intensity of the tropical upper-tropospheric trough, extent and intensity of upper-level outflow, sea surface temperature, terrain influences, speed of movement, and proximity to an extratropical environment.

5. WARNINGS

Tropical cyclone warnings are numbered sequentially. If warnings are discontinued and the storm reintensifies, warnings are numbered consecutively from the last warning issued. Amended or corrected warnings are given the same number as the warnings they modify plus a sequential alphabetical designator. Each warning includes the location, intensity, direction and speed of movement, and the radial extent of 30, 50, and 100 kt surface winds (when applicable). Warnings within the JTWC Pacific Area are issued within 2 hours of 0000Z, 0600Z, 1200Z and 1800Z with the constraint that the 2 consecutive warnings may not be more than

seven hours apart. This variable warning time allows for maximum use of all available reconnaissance platforms and spreads the workload in multiple storm situations. The forecast intervals for all tropical cyclones, regardless of intensity, are 12-, 24-, 48-, and 72-hr.

Warnings in the JTWC Indian Ocean area are issued within 2 hours of 0800Z and 2000Z with the constraint that 2 consecutive warnings may not be more than fourteen hours apart. Warnings for this area are issued only after a tropical cyclone has attained an intensity of greater than 33 kt. Forecast intervals are 24 and 48 hours.

Warning forecast positions are verified against the corresponding post analysis "best track" positions. A summary of the verification results for 1976 is presented in Chapter V.

6. PROGNOSTIC REASONING MESSAGE

In the Pacific Area, prognostic reasoning messages are transmitted at 0000Z, 1200Z or whenever the previous reasoning is no longer valid. This message is intended to provide field meteorologists with the reasoning behind the latest JTWC forecast. Prognostic reasoning messages are not prepared for tropical depressions nor for the Indian Ocean area.

7. SIGNIFICANT TROPICAL WEATHER ADVISORY

This message, summarizing significant weather in the entire JTWC area of responsibility, is issued by 0600Z daily. It contains a detailed, non-technical description of all significant tropical disturbances, and the JTWC evaluation of potential for tropical cyclone development.

8. TROPICAL CYCLONE FORMATION ALERT

Alerts are issued whenever interpretation of satellite and other meteorological data indicates significant tropical cyclone formation is likely. These alerts will specify a valid period not to exceed 24 hours and must either be cancelled, reissued or superseded by a warning prior to expiration of the valid period.

CHAPTER II - RECONNAISSANCE & COMMUNICATIONS

1. GENERAL

The Joint Typhoon Warning Center relies primarily on two reconnaissance platforms, aircraft and satellites, to provide the required fix data for tropical cyclone warnings. In 1976 these two platforms provided 74.7% of the fixes used for tropical cyclone warnings in the western North Pacific. Radar, synoptic data and extrapolation were the basis for the remaining 25.3%. In the Indian Ocean area of responsibility 89% of all warnings were based on satellite data.

2. RECONNAISSANCE RESPONSIBILITY AND SCHEDULING

Aircraft weather reconnaissance is performed in the JTWC area of responsibility by the 54th Weather Reconnaissance Squadron (54 WRS). The squadron, presently equipped with six WC-130 aircraft, is located at Andersen Air Force Base, Guam. From July through October, augmentation by the 53rd Weather Reconnaissance Squadron at Keesler Air Force Base, Mississippi brings the total number of available aircraft to nine. The JTWC reconnaissance requirements are provided daily throughout the year to the Tropical Cyclone Aircraft Reconnaissance Coordinator (TCARC). These requirements include area(s) to be investigated, tropical cyclone(s) to be fixed, fix times, and forecast position of fix. In accordance with CINCPACINST 3140.1M, "Usage of reconnaissance assets in acquiring meteorological data from aircraft, satellites and land-based radar shall be at the discretion of FLEWEACEN/JTWC Guam based on the following priorities:

- (1) Alert flights and vortex or center fixes as required for issuance of tropical cyclone warnings in the Pacific area of responsibility;
- (2) Center or vortex fixes as required for issuance of tropical cyclone warnings in the Indian Ocean area of responsibility;
- (3) Supplementary fixes; and
- (4) Synoptic data acquisition".

As in previous years, aircraft reconnaissance provided direct measurements of height, temperature, flight level winds, sea level pressure, estimated surface winds (when observable) and numerous additional parameters. These data provide the Typhoon Duty Officer indications of changing cyclone characteristics, radius of cyclone associated winds and position and intensity determinations. Another important aspect of this data is its availability for research in tropical cyclone analysis and forecasting. Aircraft reconnaissance will become even more important in years to come when high-resolution tropical cyclone dynamic steering programs will require a dense input of wind and temperature data.

DMSP satellites and USAF ground sites provide day and night coverage of the JTWC area of responsibility. Interpretation of this satellite imagery provides cyclone positions, and for daytime passes estimates of storm intensities are also made. This year timely readouts were available at JTWC only for the 0000Z and 1200Z warnings. DMSP

satellite positions received at JTWC from the Air Force Global Weather Central, Offutt Air Force Base, Nebraska were timely for the 0800Z and 2000Z warnings in the Indian Ocean. As in 1974 and 1975, satellite metwatch of the western North Pacific proved extremely useful in identifying areas of possible tropical cyclone formation, thus reducing the number of aircraft investigative flights. The Detachment 1, 1st Weather Wing DMSP site on Guam was modified in February 1977 to receive and process data from NOAA satellites.

Land radar also provides very useful positioning data on well developed cyclones when in proximity (usually within 175 nm of the radar site) of the Republic of the Philippines, the Republic of China, Hong Kong, Japan (including the Ryukyu Islands), Korea, and Guam.

3. AIRCRAFT RECONNAISSANCE EVALUATION CRITERIA

The following criteria are used to evaluate reconnaissance support to JTWC.

a. Six-hour fixes - To be counted as made on time, a fix must satisfy the following criteria:

(1) Fix must be made not earlier than 1 hr before, nor later than 1/2 hr after scheduled fix time.

(2) Aircraft in area requested by scheduled fix time, but unable to locate center due to:

(a) Cyclone dissipation; or
(b) Rapid acceleration of the cyclone away from the forecast position.

(3) If penetration not possible due to geographic or other flight restrictions, aircraft radar fixes are acceptable.

b. Levied 6-hr fixes made outside the above limits are evaluated as follows:

(1) Early-fix is made within the interval from 3 hr to 1 hr prior to scheduled fix times. However, no credit will be given for early fixes made within 3 hr of the previous fix.

(2) Late-fix is made within the interval from 1/2 hr to 3 hr after scheduled fix time.

c. When 3 hr fixes are levied, they must satisfy the same time criteria discussed above in order to be classified as made on time. Three-hour fixes made that do not meet the above criteria are classified as follows:

(1) Early-fix is made within the interval from 1 1/2 hr to 1 hr prior to scheduled fix time.

(2) Late-fix is made within the interval from 1/2 hr to 1 1/2 hr after scheduled fix time.

d. Fixes not meeting the above criteria are scored as missed.

e. Levied fix time on an "as soon as possible" (ASAP) fix is considered to be:

(1) Sixteen hours plus estimated time enroute after an alert aircraft and crew are levied; or

(2) Four hours plus estimated time enroute after the DTG message levying as ASAP fix if an aircraft and crew, previously alerted, are available for duty.

f. Investigatives - to be counted as made on time, investigatives must satisfy the following criteria:

(1) The aircraft must be within 250 nm of the specified point by the scheduled time.

(2) The specified flight level and track must be flown.

(3) Reconnaissance observations are required every half-hour in accordance with AWSM 105-1. Turn and mid-point winds shall be reported on each full observation within 250 nm of the levied point.

(4) Observations are required in all quadrants unless a concentrated investigation in one or more quadrants has been specified.

(5) Aircraft must contact JTWC before leaving area of concern.

g. Investigatives not meeting the time criteria of paragraph f, will be classified as follows:

(1) Late-aircraft is within 250 nm of the specified point after the scheduled time, but prior to the scheduled time plus 2 hr.

(2) Missed-aircraft fails to be within 250 nm of the specified point by the scheduled time plus 2 hr.

4. AIRCRAFT RECONNAISSANCE SUMMARY

During the 1976 tropical cyclone season 310 six-hourly vortex fixes and 7 supplementary vortex fixes were levied (Table 2-1). This was 100 more levied fixes than during 1975. Although there were 25 tropical cyclones in the Pacific area of responsibility during both 1975 and 1976, those of 1976 were generally longer lived and required 126 more warnings. This primarily accounts for the increase in levied fixes. Heavy reliance on DMSP data has continued to keep the number of aircraft levies low. For example, during 1970 470 aircraft fixes were levied for 533 warnings, whereas during 1976 only 310 fixes were levied for 635 warnings. In addition to vortex fixes 34 investigative missions were levied during 1976 compared with 21 during 1975. This increase resulted primarily from reduced timeliness, areal coverage and resolution of the DMSP satellite data. Approximately 45% of all warnings were based on aircraft fixes, 30% on satellite data, and the remaining 25% on radar, synoptic data and extrapolated positions.

Reconnaissance effectiveness is summarized in Table 2-1. The missed fix rate of 3.5% is slightly higher than the 3.2% of 1975, but remains significantly better than that from 1971 through 1974.

TABLE 2-1. AIRCRAFT RECONNAISSANCE EFFECTIVENESS

EFFECTIVENESS	NUMBER OF FIXES	PERCENT
COMPLETED ON TIME	284	89.6
EARLY	2	.6
LATE	20	6.3
MISSED	11	3.5
TOTAL	317	100.0

LEVIED VS. MISSED FIXES

	LEVIED	MISSED	PERCENT
AVERAGE 1965-1970	507	10	2.0
1971	802	61	7.6
1972	624	126	20.2
1973	227	13	5.7
1974	358	30	8.4
1975	217	7	3.2
1976	317	11	3.5

5. SATELLITE RECONNAISSANCE SUMMARY

Satellite reconnaissance of tropical cyclones is provided by the Air Force Weather Service Defense Meteorological Satellite Program (DMSP) network. This network uses data from polar orbiting DMSP spacecraft. Coverage of JTWC's area of responsibility is accomplished in the western North Pacific by direct-readout tactical sites at: Clark AB, Philippines; Kadena AB, Japan; Yokota AB, Japan¹; Nimitz Hill, Guam; and Hickam AFB, Hawaii. Air Force Global Weather Central (AFGWC) at Offutt AFB, Nebraska, using stored data readouts from the spacecraft, monitors the North Indian Ocean, Bay of Bengal, and Arabian Sea, in addition to backing up tactical site operations when necessary. Operational control and tasking of the DMSP network by Detachment 1, 1st Weather Wing on Guam insures that positions and intensity estimates are supplied to JTWC as tropical cyclones spawn and develop.

DMSP derived positions of tropical cyclones are categorized into six classes according to the method of gridding and type of circulation center. These classes are identified by a Position Code Number (PCN) as shown in Table 2-2. Estimates of tropical cyclone intensity are obtained using the Dvorak technique (NOAA Technical Memorandum NESS 45 and subsequent refinements).

TABLE 2-2. POSITION CODE NUMBERS

PCN	METHOD OF CENTER DETERMINATION/GRIDDING
1	EYE/GEOGRAPHY
2	EYE/EPHEMERIS
3	WELL DEFINED CC/GEOGRAPHY
4	WELL DEFINED CC/EPHEMERIS
5	POORLY DEFINED CC/GEOGRAPHY
6	POORLY DEFINED CC/EPHEMERIS

CC=Circulation Center

A comparison of DMSP positions with the JTWC Best Track is shown in Table 2-3. A significant increase in satellite position error was observed in 1976. The mean deviation of 30.5 nm was an increase of 21% over the 1975 mean. This increase was attributable to the lack of Very High Resolution (VHR) visual data. Without VHR data it is frequently not possible to identify small islands and atolls necessary for precise gridding in oceanic regions. Geographic gridding was available for only 56% of this year's fixes, as opposed to 84% in 1975.

1. Yokota AB site ceased operation in December 1976. A new site at Osan AB, Korea will be providing inputs to the DMSP network in 1977.

In 1976 the number of warnings in the western North Pacific that were based on DMSP data dropped to 30%, compared with 38% in 1975 (Fig. 2-1). This decrease was due to the non-availability of sufficient and timely DMSP spacecraft. Of the warnings that were issued twice daily for the North Indian Ocean, 89% were based on satellite positions.

Use of the "dual-site" tasking concept, which requires at least two DMSP sites to make each tropical cyclone fix, resulted in 99% of the tasked fixes being accomplished.

TABLE 2-3. Mean Deviations (nm) of DMSP Derived Tropical Cyclone Positions from JTWC Best Track Positions, 1974-1976 (all sites). Number of cases shown in parentheses.

PCN	1974 (ALL SITES)	1975 (ALL SITES)	1976 (ALL SITES)
1	13.6 (224)	11.8 (214)	12.4 (131)
2	17.4 (37)	20.4 (35)	20.1 (124)
3	20.1 (422)	21.2 (271)	21.7 (161)
4	23.9 (70)	22.4 (50)	29.3 (152)
5	35.4 (342)	34.2 (323)	40.4 (247)
6	49.4 (108)	44.7 (71)	49.0 (153)
1&2	14.2 (261)	13.0 (249)	16.1 (255)
3&4	20.6 (492)	21.4 (321)	25.4 (313)
5&6	38.8 (450)	36.1 (394)	43.7 (400)
TOTAL	26.0 (1203) (35 storms)	25.2 (964) (25 storms)	30.5 (968) (26 storms)

FIGURE 2-1. Percentage of western North Pacific warnings based on DMSP fixes.

6. RADAR RECONNAISSANCE SUMMARY

During the 1976 typhoon season 862 radar center fixes were received at JTWC; 859 from land stations and 3 from aircraft. A WC-130 of the 54th Weather Reconnaissance Squadron (54th WRS) fixed Typhoon Marie by radar after earlier reconnaissance had experienced severe turbulence within the eye wall. A Pan American Boeing 747 flying from Manila to Guam fixed Typhoon Louise 385 nm north of Koror at 1035Z on November 2nd. Super Typhoon Pamela was fixed 100 nm east-southeast of Truk lagoon by a Continental Air Micronesia flight enroute to Guam from Truk.

The number of radar center fixes received at JTWC during 1976 is nearly twice the 444 received during 1975. However, the 12 storms that were under radar surveillance during 1976 were less than the 14 surveyed during 1975. This paradox resulted from the fact that in 1976 tropical cyclones moved slowly through regions of dense radar coverage.

Radar reports originating from national meteorological agencies are placed into 3 categories of accuracy. These categories as defined in the WMO radar code are:

1. good [within 10 km (5.4 nm)]
2. fair [within 10-30 km (5.4-16.2 nm)]
3. poor [within 30-50 km (16.2-27.0 nm)].

Of the 707 radar report encoded in this manner, 32% were classified good, 43% fair and 25% poor. Radar reports made while storms were of typhoon intensity had 35% in the good category.

All radar reports were compared to the JTWC best track. The mean vector deviation computed for land radar was 11.6 nm. The 3 aircraft radar fixes deviated an average of 16.0 nm from the best track. During 1975 the mean deviation for land and aircraft radar center fixes were 10.1 and 16.1 nm, respectively.

Of the 862 radar center fixes received, 71% were from sites of the various national meteorological agencies, 16% were from U. S. Air Force Air Weather Service sites and 13% were received from aircraft control and warning (AC & W) sites.

Of the 12 tropical cyclones that were fixed by land radar, nine, Ruby, Therese, Wilda, Anita, Billie, Dot, Fran, Louise and Marge had tracks within range of the highly reliable and extensive network maintained by the Japan Meteorological Agency

(JMA). Five storms Ruby, Therese, Anita, Billie, and Fran were fixed simultaneously by 4 or more radar sites. Super Typhoon Fran was fixed by 10 different sites accounting for 215 fixes or 25% of the 1976 total. This represents the greatest number of fixes ever received at JTWC for a single tropical cyclone.

Geographically, sites in the Japan-Ryukyu network accounted for 83% of the 862 reports. The Philippines provided 7%, Taiwan and Hong Kong 4% each, and Guam 2%. No radar reports were received from the Indian Ocean area of responsibility.

During 1976 5% of the 689 warnings issued by JTWC were based on radar.

7. COMMUNICATIONS

JTWC receives its data and disseminates its warnings through a variety of communication systems, including AUTOVON, AUTODIN, the Naval Environmental Data Network (NEDN), and the Air Force's Automated Weather Network (AWN). Much of the basic meteorological intelligence is received via the NEDN and graphically displayed by FWC computers. More timely observations, tailored bulletins, and reports are received by JTWC on a dedicated AWN circuit directly from the AWN switch at Clark AB. AUTODIN is used for dissemination of warnings which are concurrently transmitted on the AWN.

A unique JTWC communication procedure, that between the reconnaissance aircraft and JTWC, is discussed below:

Aircraft reconnaissance data are normally received by JTWC via direct phone patch through the Andersen Aeronautical Station, which is the primary station for this purpose. Under degraded radio propagation conditions, the Clark or Yokota Aeronautical Stations can intercept and relay the data via AUTOVON and teletype to JTWC.

The preliminary eye/center data message contains sufficient information to permit JTWC to begin early preparation of individual warnings. During 1976 average communication delays for the preliminary and the complete eye/center data messages were 15 and 30 minutes, respectively. This represents a significant improvement over that of the past four years, where they had stabilized near 20 and 48 minutes, respectively. Delay times are defined as the difference between the fix time and the time of message receipt at JTWC. Table 2-4 depicts the complete eye/center data messages received more than 1 hour after fix time and after warning time.

TABLE 2-4. 1976 AIR/GROUND DELAY STATISTICS FOR AIRCRAFT RECONNAISSANCE

	1972	1973	1974	1975	1976
%Complete fix messages delayed over one hour	6	20	19	20	21
%Complete fix messages received after warning time	5.5	10.1	4.9	3.7	4.7

CHAPTER III - RESEARCH SUMMARY

1. GENERAL

One of the five major tasks of the Joint Typhoon Warning Center is to conduct limited tropical cyclone post-analysis and forecasting research, time and resources permitting. In most cases research projects are directly concerned with improvement of intensity forecasts or speed of movement and positioning forecasts of tropical cyclones. Meteorologists from outside agencies such as the Naval Environmental Prediction Research Facility, the Naval Postgraduate School, the 54th Weather Reconnaissance Squadron and Detachment 1, 1st Weather Wing often collaborate with JTWC on research projects. The following abstracts summarize research completed or underway during the past year.

2. CROSS-EQUATORIAL INTERACTIONS IN THE DEVELOPMENT OF A WINTER TYPHOON: NANCY 1970

(Guard, C. P., NAVENVPREDRSCHFAC TECH PAPER No. 4-76, UHMET 74-6)

Although winter typhoons can be as intense and destructive as seasonal ones, little research has been devoted to these "off-season tropical cyclones." This synoptic and dynamic study is of such a storm, Typhoon Nancy (19-27 Feb 70). It examines anomalies in the February 1970 circulation patterns over the Western Pacific and utilizes them to explain the formation and development of Nancy. Special emphasis is placed on the impact of cross-equatorial interactions during the storm's genesis. The study indicates that the rarity of "off-season tropical cyclones" may result, in part, from the absence of two conditions north of the equator during winter: low-level westerly winds and a sea surface temperature maximum. Evidence is also presented to suggest that the wall cloud and subsequent eye formation is contingent upon a rapid increase of upper level divergence above the developing system.

3. TROPICAL CYCLONE CENTER FIX DATA FOR THE 1975 TYPHOON SEASON

(Staff, FLEWEACEN/JTWC TECH NOTE 76-5)

A computer printout of all center fix data is displayed for each tropical cyclone occurring in the western North Pacific, the Arabian Sea and the Bay of Bengal during 1975.

4. AN EVALUATION OF UTILIZING EQUIVALENT POTENTIAL TEMPERATURE AS A MEASURE OF TROPICAL CYCLONE INTENSITY

(Milwer, F. P., FLEWEACEN/JTWC)

A post season evaluation of the credibility of the 700 mb equivalent potential temperature technique to forecast rapid or explosive deepening of tropical cyclones is currently in progress at JTWC. The technique utilizes values of θ_e which exceed or equal 370°K (365°K

may be used if environment is favorable) to forecast rapid deepening within 12 to 24 hours (Sikora, 1976).

Preliminary results indicate that of the six storms that fell into the rapid or explosive deepening category during 1976, only two cases were found to correlate with a θ_e between 365°K and 370°K prior to rapid deepening. In general, the high θ_e values correspond to storms which were in the process of rapid or explosive deepening or had already peaked in intensity. The sample size was found to be too small to accurately determine the credibility of the technique, and an analysis of additional data is necessary to complete the evaluation.

5. RADIUS OF WIND FIELD SURROUNDING A TROPICAL CYCLONE

(Sokol, D., Metzger, G. P., Hern, R.L., FLEWEACEN/JTWC)

A preliminary analysis was conducted to determine the 100 kt, 50 kt and 30 kt wind radii surrounding a tropical cyclone, for use in cases when no detailed wind data are available. The 50th percentile was determined from a random sample based on JTWC warnings for super typhoons, typhoons and tropical storms.

6. CORRELATION OF JTWC INITIAL POSITION ERROR TO FORECAST POSITION ERRORS IN THE WESTERN NORTH PACIFIC

(Pilipowskyj, S., FLEWEACEN/JTWC)

A study correlating the JTWC initial warning position errors to 24-hour forecast errors shows a small but significant correlation. A regression analysis implies that 24-hour JTWC forecasts would improve to about a 90 nm vector error if the initial position error is reduced below 5 nm. Correlations for 48-hour and 72-hour forecasts are being calculated.

7. THE INFLUENCES OF THE TROPICAL UPPER TROPOSPHERIC TROUGH (TUTT) ON ERRATIC MOVEMENT OF TROPICAL CYCLONES

(Guard, C. P., FLEWEACEN/JTWC)

Although erratic movement has long presented a problem to the tropical cyclone forecaster, little light has been shed on the causes of this enigma. Frequently this movement has been attributed to "weak steering flow at mid-tropospheric levels". However, adequate explanations for this "weak steering flow" are lacking in the literature.

This study concentrates on the upper troposphere (200-mb level) where rawinsonde data is significantly augmented with aircraft reports. Results indicate a strong correlation between erratic movement of tropical

cyclones and movements of the TUTT. In many cases the TUTT is responsible for the entire erratic path of a tropical system; in others it merely initiates the abnormal movement.

8. THE DEVELOPMENT AND MOVEMENT OF TROPICAL CYCLONES IN DEEP SOUTHWESTERLY MONSOON SURGES

(Guard, C. P., FLEWEACEN/JTWC)

During August 1974 and September 1976 the western North Pacific was subjected to a stronger than normal southwesterly monsoon flow. This period was characterized by large pressure falls in the region of the near equatorial trough, strong southwesterly wind accelerations and deep southwesterly flow penetrating above the 500-mb level.

This study utilizes both satellite and synoptic data to illustrate the influences of this synoptic regime on the development, structure and movement of associated tropical cyclones.

9. OPERATIONAL APPLICATIONS OF A RECURVATURE - NON-RECURVATURE STUDY BASED ON 200-MB WIND FIELDS

(Guard, C. P., FLEWEACEN/JTWC)

One of the most difficult problems involving tropical cyclone forecasting is that of recurvature - non-recurvature. Colorado State University Atmospheric Science Paper No. 241, Tropical Cyclone Motion and Surrounding Parameter Relationships (John E. George, 1975) presented a recurvature - non-recurvature scheme based on 200-mb data composited from peripheral data surrounding 21 recurving and 21 non-recurving western Pacific typhoons. This 200-mb scheme was evaluated by JTWC based on 1974, 1975 and 1976 western North Pacific tropical cyclone data. Results indicated that even though the composited study required several alterations to be operationally practical, it provided a useful starting point. As a result, a follow-on recurvature - non-recurvature study was established, based on whether or not the Tropical Upper Tropospheric Trough (TUTT) is a persistent feature of the upper level synoptic pattern. Further evaluation is in progress.

CHAPTER IV - SUMMARY OF TROPICAL CYCLONES

I. GENERAL RESUME

a. WESTERN PACIFIC

In 1976 the number of tropical cyclones remained below the long term average. There were 25 numbered tropical cyclones in the JTWC area of responsibility, all of which progressed to tropical storm or typhoon intensity (Table 4-1). Although the number of tropical cyclones was the same as last year's total, the occurrence of named storms during 1976 increased by 25% (Table 4-2). Of the 25 storms, 14 attained typhoon intensity, including four super typhoons. The month of March was the only month without a numbered cyclone, while three months (February, March & December) were without a typhoon (Tables 4-2 and 4-3).

Table 4-4 indicates the number of tropical cyclone formation alerts issued by year. During 1976 there were 34 alerts, of which 25 developed to tropical storm or typhoon intensity. All storms of 1976 were preceded by a formation alert. The average lead time between the issuance of a formation alert and the first warning was 17.8 hours, with a minimum of 3.5 hours for Louise and a maximum of 64 hours for Marge.

The storm season had an early debut with typhoon Kathy forming in January. The near equatorial trough was firmly established by April and maintained itself throughout most of the remainder of the year. An exception was late September and most of October, when the westerly flow along the equator gave way to easterly trades.

TABLE 4-1.
1976 TROPICAL CYCLONES

PACIFIC AREA

CYCLONE	TYPE	NAME	PRD OF WRNG	CALENDAR		MAX SFC	MIN SLP	NO. OF WARNINGS		DISTANCE TRAVELED
				DAYS OF WARNING	WIND			TOTAL	AS TY	
01	TY	KATHY	28 JAN-02 FEB	6	80	969	22	9		1966
02	TS	LORNA	27 FEB-01 MAR	4	35	---	13	--		806
03	TY	MARIE	03 APR-14 APR	12	115	929	44	32		955
04	TS	NANCY	25 APR-02 MAY	8	55	984	27	--		1279
05	TY	OLGA	12 MAY-27 MAY	16	100	934	60	8		2443
06	STY	PAMELA	14 MAY-27 MAY	14	130	921	52	40		2570
07	TY	RUBY	23 JUN-04 JUL	12	120	934	45	24		2798
08	TY	SALLY	24 JUN-03 JUL	10	115	923	37	23		2981
09	STY	THERESE	11 JUL-20 JUL	10	135	903	37	29		2290
10	TS	VIOLET	21 JUL-25 JUL	5	55	---	20	--		650
11	TS	WILDA	22 JUL-24 JUL	3	45	992	9	--		898
12	TY	ANITA	23 JUL-25 JUL	3	65	979	9	2		864
13	TY	BILLIE	03 AUG-10 AUG	8	125	914	31	17		1854
14	TS	CLARA	05 AUG-07 AUG	3	40	---	7	--		263
15	TS	DOT	18 AUG-23 AUG	6	50	989	18	--		1408
16	TS	ELLEN	20 AUG-24 AUG	5	45	993	15	--		1243
17	STY	FRAN	03 SEP-13 SEP	11	130	913	41	26		2616
18	TS	GEORGIA	09 SEP-15 SEP	7	40	992	26	--		1325
19	TY	HOPE	14 SEP-17 SEP	4	70	981	15	6		1604
20	TY	IRIS	14 SEP-21 SEP	8	75	967	29	11		756
21	TY	JOAN	19 SEP-24 SEP	6	70	---	20	2		1368
22	HR	KATE	21 SEP-02 OCT	(CENTRAL PACIFIC HURRICANE CENTER)						
23	STY	LOUISE	30 OCT-07 NOV	9	140	895	35	25		2754
24	TS	MARGE	06 NOV-11 NOV	6	60	977	21	0		1836
25	TS	NORA	03 DEC-08 DEC	6	45	992	21	--		456
26	TS	OPAL	09 DEC-10 DEC	2	35	996	7	--		338
1976 TOTALS				131*		661	284			

INDIAN OCEAN AREA

TC	20-76	29 APR-02 MAY	4	50	---	7	--	403
TC	22-76	02 JUN-03 JUN	2	40	---	3	--	163
TC	23-76	10 SEP-11 SEP	2	40	---	5	--	324
TC	25-76	15 OCT-17 OCT	3	50	---	6	--	372
TC	30-76	30 DEC-02 JAN	4	55	---	7	--	511

1976 TOTALS 15* 28 --

*OVERLAPPING DAYS INCLUDED ONLY ONCE IN SUM

TABLE 4-2 FREQUENCY OF TROPICAL STORMS AND TYPHOONS BY MONTH AND YEAR

YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	TOTAL
AVERAGE (1945-58)	0.4	0.1	0.4	0.5	0.8	1.3	3.0	3.9	4.1	3.3	2.7	1.1	22.0
1959	0	1	1	1	0	0	3	6	6	4	2	2	26
1960	0	0	0	1	1	3	3	10	3	4	1	1	27
1961	1	1	1	1	3	2	5	4	6	5	1	1	31
1962	0	1	0	1	2	0	6	7	3	5	3	2	30
1963	0	0	0	1	1	3	4	3	5	5	0	3	25
1964	0	0	0	0	2	2	7	9	7	6	6	1	40
1965	2	2	1	1	2	3	5	6	7	2	2	1	34
1966	0	0	0	1	2	1	5	8	7	3	2	1	30
1967	1	0	2	1	1	1	6	8	7	4	3	1	35
1968	0	0	0	1	1	1	3	8	3	6	4	0	27
1969	1	0	1	1	0	0	3	4	3	3	2	1	19
1970	0	1	0	0	0	2	2	6	4	5	4	0	24
1971	1	0	1	3	4	2	8	4	6	4	2	0	35
1972	1	0	0	0	1	3	6	5	4	5	2	3	30
1973	0	0	0	0	0	0	7	5	2	4	3	0	21
1974	1	0	1	1	1	4	4	5	5	4	4	2	32
1975	1	0	0	0	0	0	2	4	5	5	3	0	20
1976	1	1	0	2	2	2	4	4	5	1	1	2	25
AVERAGE (1959-76)	0.6	0.4	0.4	0.9	1.3	1.6	4.6	5.9	4.9	4.2	2.5	1.2	28.4

TABLE 4-3 FREQUENCY OF TYPHOONS BY MONTH AND YEAR

YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	TOTAL
AVERAGE (1945-58)	0.4	0.1	0.3	0.4	0.7	1.1	2.0	2.9	3.2	2.4	2.0	0.9	16.3
1959	0	0	0	1	0	0	1	5	3	3	2	1	20
1960	0	0	0	1	0	2	2	8	0	4	1	1	19
1961	0	0	1	0	2	1	3	3	5	3	1	1	20
1962	0	0	0	1	2	0	5	7	2	4	3	0	24
1963	0	0	0	1	1	2	3	3	3	4	0	2	19
1964	0	0	0	0	2	2	6	3	5	3	4	1	26
1965	1	0	0	1	2	2	4	3	5	2	1	0	21
1966	0	0	0	1	2	1	3	6	4	2	0	1	20
1967	0	0	1	1	0	1	3	4	4	3	3	0	20
1968	0	0	0	1	1	1	1	4	3	5	4	0	20
1969	1	0	0	1	0	0	2	3	2	3	1	0	13
1970	0	1	0	0	0	1	0	4	2	3	1	0	12
1971	0	0	0	3	1	2	6	3	5	3	1	0	24
1972	1	0	0	0	1	1	4	4	3	4	2	2	22
1973	0	0	0	0	0	0	4	2	2	4	0	0	12
1974	0	0	0	0	1	2	1	2	3	4	2	0	15
1975	1	0	0	0	0	0	1	3	4	3	2	0	14
1976	1	0	0	1	2	2	2	1	4	1	1	0	15
AVERAGE (1959-76)	0.3	0.1	0.1	0.7	0.9	1.1	2.8	3.8	3.3	3.2	1.6	.5	18.7

1976 saw a large number of days (53) of multiple-storm situations (Tables 4-1 and 4-7). As early as May simultaneous storms were generated when Olga and Pamela tracked across the western Pacific causing extensive damage to the Philippines and to Guam. June through September saw six additional two-storm situations and one three-storm situation. The long duration of several storms (e.g., Olga, Pamela and Fran), accounted for the near average number of warnings issued despite the less than average number of tropical cyclones (Table 4-7). Although the season started quickly, the latter part of the season tapered off earlier than normal. For 36 days in September and October, normally a very active period, there were no warnings issued. Not since 1958, when 30 days passed without a depression, has such a lull in activity occurred during this time of the year. It is interesting to note that twin storms in the northern and southern hemisphere occurred during April when Tropical Storm Nancy formed in the Pacific north of the equator and TC 19-76 did likewise south of the equator.

Most of the damage during 1976 was associated with three of the four super typhoons. Damage estimates to public and private property for Pamela and Fran combined exceeded one billion dollars. Fran also accounted for 133 dead in Japan. While Pamela was responsible for 10 dead on Truk, the super typhoon miraculously caused only one fatality as it passed over Guam. Therese sank 12 ships, and left 1300 homeless due to heavy rains in Southern Japan. During May, Olga caused enhanced monsoonal rains over the Philippines which led to over 200 deaths and thousands homeless. In addition, Typhoon

Billie generated great waves which resulted in the drowning of 41 fishermen and swimmers as the storm passed through the Ryukyu Islands. It was subsequently responsible for 4 deaths in Taipei and caused millions of dollars of damage to facilities during its passage over northern Taiwan. Although Marie caused no known fatalities, it brought millions of dollars damage to crops and structures in the Palau Islands. In September Iris sank a Panamanian freighter and killed four as it tracked slowly across the South China Sea.

b. NORTH INDIAN OCEAN

During 1976 there were five tropical cyclones in the North Indian Ocean: three in the Bay of Bengal and two in the Arabian Sea. Table 4-5 presents the tropical cyclone distribution by month for 1976 and for the preceding five years. Except for the absence of activity during November, 1976 was climatologically normal. A total of 28 warnings were issued on the five cyclones, none of which exceeded 55 kt intensity. TC 25-76 occurred in the newly acquired JTWC area of responsibility, which this year was extended from 62E to the coast of Africa.

c. CENTRAL PACIFIC

The only Central Pacific tropical cyclone spawned during 1976 was in the month of September. A disturbance observed on the 20th ultimately developed into Hurricane Kate, and at one time became a threat to the Hawaiian Islands. It later recurved, passing northeast of Hawaii. Kate ended a 24 month absence of tropical cyclone activity in the Central Pacific, being the first hurricane since August 1974.

TABLE 4-4.
PACIFIC AREA
TROPICAL CYCLONE FORMATION ALERT SUMMARY

YEAR	NUMBER OF SYSTEMS	ALERT SYSTEMS WHICH BECAME NUMBERED	TOTAL		DEVELOPMENT RATE
			TROPICAL CYCLONES	CYCLOCLES	
1972	41	29	32	32	71%
1973	26	22	23	23	85%
1974	35	30	36	36	86%
1975	34	25	25	25	74%
1976	34	25	25	25	74%

MONTHLY DISTRIBUTION

FORMATION ALERTS	J	F	M	A	M	J	J	A	S	O	N	D
	2	2	1	2	2	3	6	4	6	2	1	3

BEST AVAILABLE COPY

TABLE 4-5. FREQUENCY OF NORTH INDIAN OCEAN CYCLONES BY MONTH AND YEAR.

YEAR*	J	F	M	A	M	J	J	A	S	O	N	D	TOTAL
1971	0	0	0	0	0	0	0	0	0	1	1	0	2
1972	0	0	0	1	0	0	0	0	2	0	1	0	4
1973	0	0	0	0	0	0	0	0	0	1	2	1	4
1974	0	0	0	0	0	0	0	0	0	0	1	0	1
1975	1	0	0	0	2	0	0	0	0	1	2	0	6
1976	0	0	0	1	0	1	0	0	1	1	0	1	5
AVG**	0.1	***	0.1	0.3	0.7	0.7	0.6	0.4	0.5	1.0	1.1	0.5	5.7

*1971-1974 REPRESENT BAY OF BENGAL CYCLONES ONLY

**1977-1980 AVERAGE (INCLUDING ARABIAN SEA) MARINERS WORLDWIDE CLIMATIC GUIDE

TO TROPICAL STORMS AT SEA (R. L. CRUTCHER AND R. G. QUAYLE)

***LESS THAN 0.05 PER MONTH

TABLE 4-6. FREQUENCY OF CENTRAL PACIFIC STORMS BY MONTH AND YEAR. (NUMBER IN PARENTHESIS INDICATE STORMS REACHING HURRICANE INTENSITY)

	JAN-JUN	JUL	AUG	SEP	OCT	NOV-DEC
1967	0	0	0	0	1	0
1968	0	0	2	0	0	0
1969	0	0	0	0	0	0
1970	0	0	1	0	0	0
1971	0	1 (1)	1	0	0	0
1972	0	0	3 (1)	1	0	0
1973	0	7 (1)	0	0	0	0
1974	0	0	2 (1)	0	0	0
1975	0	0	0	0	0	0
1976	0	0	0	1 (1)	0	0
AVERAGE	0	.2 (.2)	.9 (.3)	.2 (.2)	.1	0

TABLE 4-7. SUMMARY OF JTWC WARNINGS 1959-1976.

	WESTERN NORTH PACIFIC		NORTH INDIAN OCEAN		CENTRAL NORTH PACIFIC	
	1976	1959-75	1976	1971-75*	1976	1971-75
TOTAL NUMBER						
OF WARNINGS	661	680	28	25	42	33
CALENDAR DAYS OF WARNINGS	131	143	13	16	12	10
NUMBER OF WARNING DAYS WITH TWO CYCLONES	49	48	0	1	0	1
NUMBER OF WARNING DAYS WITH THREE OR MORE CYCLONES	4	9	0	0	0	0
TROPICAL DEPRESSIONS	0	5	-	-	0	1
TROPICAL STORMS	11	11	-	-	0	1
TYPHOONS/HURRICANES	14	19	-	-	1	1
I.O. TROPICAL CYCLONES	-	-	5	4	0	-
TOTAL TROPICAL CYCLONES	25	35	5	4	1	3

*BAY OF BENGAL ONLY 1971-1974

BEST AVAILABLE COPY

2. WESTERN NORTH PACIFIC TROPICAL CYCLONES

BEST AVAILABLE COPY

PACIFIC AREA TYPHOONS

BILLIE	03 AUG	-	10 AUG
FRAN	03 SEP	-	13 SEP
HOPE	14 SEP	-	17 SEP
IRIS	14 SEP	-	21 SEP
JOAN	19 SEP	-	24 SEP
LOUISE	30 OCT	-	07 NOV

3. INDIVIDUAL TYPHOONS

KATHY

The first typhoon of the 1976 season, a January storm, was initially detected by ship reports on the morning of the 25th as a cyclonic circulation unusually close to the equator (2N - 149E). By the morning of the 26th meteorological satellite data indicated a region of intense convective activity centered near 2.3N - 149.0E. During the next three days, the disturbance destined to become Typhoon Kathy slowly intensified as it moved northeastward and then northwestward (Fig. 4-1). On the morning of the 29th reconnaissance aircraft indicated that the circulation was nearly at tropical storm intensity, and the first warning was issued at 0000Z on the 28th. During the next 48 hours, Tropical Storm Kathy moved northwestward at 12 to 13 kt. Reconnaissance aircraft at 2143Z on the 29th reported the center of Kathy over Ulithi Atoll, and further indicated the absence of an eye or wall cloud. At 0000Z on the 30th, when Kathy was 40 nm to the northwest, Ulithi recorded winds of 25 kt and a sea level pressure of 1001.2 mb.

Later on the 30th a deep mid-latitude trough moved eastward into the Philippine Sea, weakening the mid-tropospheric subtropical ridge and providing an efficient outflow channel to the mid-latitude

westerlies. In response, Kathy intensified into a typhoon and moved northward, slowing to 10 kt. By that evening, the typhoon was drifting north through the weakness in the ridge, still intensifying slowly.

Late on the 30th, Kathy passed the point of recurvature and began to move north-northeastward as the slow moving mid-latitude trough to the west dug deeper toward the tropics (Fig. 4-2). Twelve hours later it attained its maximum intensity of 80 kt. At 0504Z on the 31st reconnaissance aircraft recorded maximum flight level winds of 90 kt and a minimum sea level pressure of 969 mb. At 0600Z a ship, JQFN, reported 55 kt winds 160 nm northeast of Kathy.

Embedded in westerly flow Kathy began to accelerate to the northeast. By the afternoon of February 1st the storm was on an east-northeast track moving at more than 20 kt, and had weakened into a tropical storm. The strong westerly shear and cooler temperatures rapidly stripped the storm of its tropical characteristics, and by 1800Z on the 1st Kathy had become extratropical. This extratropical low later produced copious precipitation over the Hawaiian Islands with Wailua, Oahu recording 18.81 inches of rain during the 6th, 7th and 8th of February.

FIGURE 4-1. Kathy during early development 250 nm south of Truk, 26 January 1976, 2059Z. (DMSP imagery)

FIGURE 4-2. Typhoon Kathy just after recurvature and 8 hours prior to attaining its 80 kt peak intensity 260 nm north of Yap, 30 January 1976, 2152Z. (DMSP imagery)

MARIE

On the 1st of April a tropical disturbance was detected by satellite near 10N - 140E. Synoptic data revealed a weak surface cyclonic circulation with an associated upper level anticyclone. The system drifted slowly southward for the next 2 days. At 0030Z on the 3rd a formation alert was issued when synoptic data indicated the system had intensified to 25 kt, and increasing upper level outflow to the north promised good potential for further intensification. At 0600Z on the 3rd the first warning was issued. Six hours later the system was upgraded to Tropical Storm Marie when synoptic data confirmed aircraft reports of 35 kt winds.

Influenced by weak steering flow, the storm turned eastward in a counterclockwise loop, and during the evening of the 4th began taking a slow, southerly heading. Tropical Storm Marie intensified, and by 0600Z on the 5th had attained typhoon strength. Twelve hours later the typhoon had acquired a 6 kt movement toward the west-northwest, and for the next 48 hours maintained 65 kt winds.

FIGURE 4-3. Moonlight image of Typhoon Marie near 70 kt intensity 70 nm north-northeast of Koror, Palau Islands, 7 April 1976, 1042Z. (DMSP imagery)

On the evening of the 7th, the typhoon once again began to intensify, as upper tropospheric winds over the Philippine Islands backed, indicating deeper troughing to the west and a more efficient link of the storm's outflow channel with the mid-latitude westerlies (Fig. 4-3). This intensification continued slowly during the subsequent 84 hours at a rate of about $\frac{1}{4}$ mb per hour.

At 1500Z on the 7th Typhoon Marie passed 40 nm north of Palau with peak gusts of 75 kt and a minimum sea level pressure of 993 mb recorded at Koror. While no deaths or injuries were reported, damage of more than \$4 million was incurred on the Palau Islands. Crop destruction was extensive as was damage to buildings and public utilities. As a result, Palau was declared a major disaster area.

By 0000Z on the 8th a weakness in the subtropical ridge appeared near the eastern coast of the Philippines. In response, Marie turned northward and recurved. During the typhoon's western-most position at 2100Z on the 10th, the system reached its maximum intensity of 115 kt (Fig. 4-4). The lowest sea-level pressure was 929 mb recorded by aircraft at 2031Z on the 10th. Typhoon Marie maintained 115 kt winds for 24 hours as its northeast movement increased to 11 kt. By 1800Z on the 11th Marie began to weaken while accelerating on a northeast track, closely following the 700 mb flow. Two days later the final warning was issued as Marie became extratropical.

FIGURE 4-4. Typhoon Marie at point of recurvature with winds at peak intensity 450 nm east of Manila, 10 April 1976, 2251Z. (DMSP imagery)

OLGA

Typhoon Olga originated within a very active trough near 10N and between 130 and 155E. As early as 4 May, several surface circulations were evident throughout this zone. By the 12th, a center analyzed near 10N - 140E showed indications that it would be the dominant circulation, and the first warning was issued at 0600Z on the 12th. From the onset, Olga was a unique system, having diffuse characteristics which it maintained throughout its life. One such trait was the lack of vertical stacking, observed when comparing satellite and aircraft positions. The low level circulation was often ill defined, and on several occasions multiple circulations could be identified.

Originally, Olga was tracked by satellite as a tropical disturbance moving toward the southwest, following the center of the upper level anticyclone. After 1200Z on the 12th a more climatological track toward the west-northwest was observed, but at half the speed normal for this time of year. This movement, along the southern edge of the subtropical ridge, persisted through the afternoon of the 13th when Olga was upgraded to a tropical storm. Later that night satellite data indicated the presence of a second circulation 120 nm to the east of the storm center. By the 14th the original center had dissipated and the convective energy had consolidated around this second center. The relocated system then proceeded toward the west-northwest while it slowly intensified, and attained tropical storm intensity for the second time. On the 16th Olga responded to a short wave trough in the westerlies and moved toward the north. However, on the 17th the storm resumed its west-northwest heading as the short wave progressed rapidly toward the east. It was at this point that satellite data indicated Olga was entering an unfavorable upper level shearing environment provided by a 200 mb ridge over Southeast Asia, which persisted

throughout the remainder of Olga's life.

On the 18th Olga began to slow its forward movement in response to a long wave trough moving off the east coast of China. At this point it was expected that the storm would recurve ahead of the trough, but instead, Olga began a counterclockwise loop, and slowly intensified despite the unfavorable upper level shear. On the 20th Olga completed its loop and attained typhoon intensity. After completing the loop the storm tracked toward the west at 6 kt, continuing to intensify. Between aircraft reports at 0330Z and 1947Z on the 20th, there was a drop in the central pressure of 44 mb (from 978 to 934 mb), a rate of 2.7 mb per hour (Fig. 4-5). With this rapid deepening, Olga made landfall on the east side of Luzon near 16.5N at approximately 0000Z on the 21st with winds estimated at 100 kt.

After landfall the small core of high winds subsided quickly (Fig. 4-6). For the next 24 hours Olga's center meandered toward the southwest along the east coast of Luzon passing near Bayler Bay with winds of 45 kt at storm center. Seeking the path of least resistance, Olga tracked through the Luzon lowlands during the next 48 hours exiting the island through Lingayen Gulf on the 24th. During its slow journey across Luzon, at 2 to 4 kt, Olga enhanced the southwest monsoon over southern Luzon, bringing rains in excess of 50 inches at Cubi Point and perhaps higher at other areas. The resulting floods contributed to over 200 deaths and thousands of homeless. For the next 24 hours Olga tracked toward the northwest through the Gulf re-intensifying to 40 kt. On the 25th, the low level circulation separated from the hard core convection and tracked toward the northeast at an accelerated rate. Olga dissipated to the west of Okinawa on the 27th as it was absorbed into a subtropical disturbance west of the island.

FIGURE 4-5. Typhoon Olga (left) at 70 kt intensity 85 nm east of Luzon begins rapid deepening as Typhoon Pamela moves toward Guam, 20 May 1976, 1109Z. (NOAA-4 imagery)

FIGURE 4-6. Olga at 40 kt intensity 95 nm north of Manila some 18 hours after moving inland over Luzon, 21 May 1976, 2304Z. (DMSP imagery)

PAMELA

Pamela, the fourth typhoon of 1976, was also the first super typhoon of the season. Destined to become one of the more destructive storms of history, Pamela was first detected on the morning of 13 May as a tropical disturbance near the eastern edge of the near equatorial trough approximately 230 nm north of Truk. For the next 24 hours the disturbance was difficult to track with the sparse synoptic data available, however, satellite pictures indicated a general southward movement. On the morning of the 14th the disturbance began to move to the southwest and at 0600Z it was upgraded to TD 06. By that evening the depression was moving west at 5 to 7 kt. At 0339Z on the 14th aircraft indicated surface winds near 40 kt and a sea level pressure of 998 mb; at 0600Z TD 06 was upgraded to Tropical Storm Pamela. Shortly thereafter Pamela began to move to the south at 9 to 10 kt, intensifying to 45 kt by 1800Z.

The next morning satellite data showed that Pamela was moving toward the south-southeast. Truk synoptic data at 1800Z indicated a sea level pressure of 998.6 mb, a 7.1 mb fall over the previous 24 hours. By 2200Z Truk had a surface pressure of 997.9 mb and northeasterly winds of 30 kt. At this time Pamela was forecast to trace a counter-clockwise loop around Truk. At 0348Z on the 16th an aircraft fixed Pamela 75 nm southeast of Truk and proceeded on a northeast track gathering peripheral information. Later that afternoon reports indicated destructive winds at Satawan Atoll (91338). The aircraft was diverted to the region of the atoll where the crew observed an extensive area of 55 to 65 kt flight level winds with surface winds estimated as high as 100 kt. At 0740Z on the 16th warning number 09 was amended to upgrade the storm to Typhoon Pamela. Pamela at this time was a small but intense typhoon (Fig. 4-7). The maximum winds were located on the south side of the 150 nm diameter central dense overcast.

FIGURE 4-7. Infrared photograph of Pamela near 65 kt 75 nm southeast of Truk, 16 May 1976, 0938Z. Wind bars represent 700 mb winds observed by reconnaissance aircraft from 0600Z to 1000Z. (DMSP imagery)

During the next 36 hours Pamela continued to intensify as it moved erratically at 3 to 6 kt, turning northwestward on the morning of the 17th. From the morning of the 16th until the morning of the 18th, Satawan Atoll continued to be buffeted with southwesterly and southerly surface winds of 50 to 55 kt. Damage was widespread on the tiny atoll, but no deaths were reported.

By the morning of the 18th Pamela had accelerated to 7 kt, passing within 50 nm of Truk. A minimum sea level pressure of 993.4 mb was recorded at 0400Z and a peak wind of 49 kt was observed an hour later. At 0327Z aircraft found maximum surface winds of 85 kt, a minimum pressure of 951 mb and a circular eye 10 nm in diameter. From the afternoon of the 17th to the afternoon of the 18th Truk recorded nearly 11 inches of rain which initiated mud slides killing 10 persons. Massive damage was inflicted on crops.

Pamela's erratic movements can be attributed to the influence of the Tropical Upper Tropospheric Trough (TUTT). On the 13th the TUTT began to establish itself north of the disturbance. Through the evening of the 15th the TUTT moved steadily south-southwestward, applying pressure to the upper anticyclone above Pamela. This pressure accounted for Pamela's southward and westward movement, and for the cyclone's slow intensification. By the morning of the 16th the TUTT had receded northward relieving the southward pressure, enhancing outflow and allowing the tropical storm to intensify. This release of pressure would have allowed the storm to move toward a climatological west-northwest track, however, by the 15th, an induced mid-tropospheric high pressure cell between Pamela and Typhoon Olga (in the Philippine Sea) had intensified, building eastward and forcing Pamela toward the east. By early morning on the 17th Olga had moved considerably to the west, the ridge had relaxed, and Pamela swung north and then northwest completing the loop around Truk.

From 0600Z on the 18th to 0600Z on the 19th Typhoon Pamela moved toward the northwest at an average speed of 9 kt, intensifying at a rate of 10 kt each 6 hours. At 1200Z on the 19th Pamela reached its super typhoon intensity of 130 kt with gusts to 160 kt (see photograph on front cover), which it maintained for 18 hours. At 2112Z on the 19th reconnaissance aircraft reported the minimum measured sea level pressure at 921 mb while observing concentric eye wall clouds with diameters of 10 and 20 nm. By the afternoon of the 20th, an eastward moving short-wave trough had created a weakness in the mid-tropospheric subtropical ridge north of Pamela. This, coupled with an elongated high pressure cell east of the typhoon, forced Pamela to acquire the north-northwest track which would bring it over Guam.

A possible threat to the island had been identified as early as the 16th, and all forecasts subsequently issued indicated that Pamela was expected to pass within 100 nm of Guam. At 0450Z on the 18th the Commander, Naval Forces Marianas (COMNAVMAR) set Typhoon

Condition III for Guam. At 2330Z on the 18th COMNAV MAR set Typhoon Condition II and at 2330Z on the 19th Condition I was set.

During the next 24 hours northeasterly winds on Guam slowly intensified as Pamela approached the island. At 1800Z on the 20th the National Weather Service (NWS) at Taguac (91217) reported 73 kt winds at the 3000 ft level while surface winds were only 30 kt (Fig. 4-8). At 0315Z on the 21st reconnaissance aircraft from the 54th Weather Reconnaissance Squadron, Andersen AFB, Guam fixed the typhoon 30 nm southeast of the island. Less than 90 minutes later the northwestern edge of the eye was over the southeast coast of Guam.

The large, relatively calm eye, some 20 nm in diameter, required up to three hours to cross the center of the island (Fig. 4-9). Both Andersen AFB and the NWS at Taguac continually experienced winds exceeding 50 kt as the eye passed south of these stations. Most installations which had wind indicators lost their anemometers prior to the peak

FIGURE 4-8. Typhoon Pamela at 120 kt intensity 65 nm southeast of Guam, 20 May 1976, 2134Z. (DMSP imagery)

winds. The maximum observed wind gust was 138 kt reported by the NWS Taguac at 0946Z. The minimum recorded surface pressure was 931.7 mb at NAS Brewer Field, some 5 nm northeast of the center. The lowest pres-

sure of approximately 930 mb (indicated by aircraft and land stations) supports estimated peak sustained winds of 120 kt with gusts of 145 kt. Pamela's winds gusted as much as 80 kt between peak and lull in a matter of minutes, resulting in extremely large pressure differences (60-70 lbs per square foot) on windward and leeward sides. Few unreinforced structures were able to withstand the intermittent pressure and wrenching effects. NWS Taguac recorded 33 inches of rain during Pamela's passage, with 27 inches falling in a 24-hour period.

SUPER TYPHON PAMELA

GUAM, 21 MAY 1976

FIGURE 4-9. Estimated path of the center of Pamela's eye as it crossed Guam from 0433Z to 0804Z, 21 May 1976.

Although the winds of Pamela were 25 kt weaker than those of Typhoon Karen which flattened the island in November 1962, the slow 7 kt movement rendered Pamela more destructive (Fig. 4-10 and back cover). The 226 square mile island was buffeted by winds in excess of 100 kt for 6 hours, by winds of typhoon force for 18 hours and by winds exceeding 50 kt for 30 hours. The last warning on Pamela by JTWC was issued at 2320Z on the 20th. The alternate JTWC at Yokota AB, Japan assumed all warning responsibilities for Pamela and Olga during the next 5 days.

All Naval and Air Force units had been given adequate warning and had evacuated most

of their ships and aircraft. Despite extensive preparations damage to civilian and military facilities was severe, exceeding \$500 million (Fig. 4-11, Fig. 4-12 and Fig. 4-13). Ten small ships and tugs which had sought refuge in Apra Harbor, were either sunk or ran aground, and numerous other small craft were sunk or damaged (Fig. 4-14). One ship, the U. S. Coast Guard Cutter Basswood, courageously rode out the storm anchored in Apra Harbor where it recorded a peak gust of 120 kt and a minimum sea level pressure of 933.1 mb.

Miraculously, only one death occurred on Guam due to Pamela's passage. This low loss of life was attributed to the timely and accurate forecasts issued on the storm. A comprehensive account of lessons learned from Pamela is given in the Super Typhoon Pamela After-Action Report, prepared by CINCPAC REP GUAM/TTPI in August 1976.

FIGURE 4-10. The twisted steel skeleton of a once substantial warehouse attests to the destructive force of Pamela. (Official U. S. Navy photograph)

FIGURE 4-12. The long line at Andersen AFB, Guam was representative of those throughout the island as the refugees of Pamela gathered for food, water and other supplies. (Official U. S. Navy photograph)

FIGURE 4-11. Destruction was widespread in Guam's civilian community. Concrete structures fared well, but wooden houses, power lines and the telephone system were all severely damaged. (Official U. S. Navy photograph)

FIGURE 4-13. Super Typhoon Pamela inflicted heavy damage to military facilities on Guam. This is Andersen AFB housing. (Official U. S. Navy photograph)

FIGURE 4-14. Two grounded tugs at U. S. Naval Station, Guam. Powerful wind and wave action produced by Typhoon Pamela affected even the inner Apra Harbor. (Official U. S. Navy photograph)

FIGURE 4-15. Infrared photograph of Typhoon Pamela at 120 kt 30 nm northwest of Guam, 21 May 1976, 1018Z. (DMSP imagery)

After devastating Guam, Pamela continued to maintain its 120 kt intensity for an additional 36 hours, moving northwestward at an average speed of 10 kt (Fig. 4-15). Saipan (91232) experienced gusts of 55 kt and received 10 inches of rain as the storm passed 120 nm west of the island. As Pamela continued to threaten the northern Mariana Islands, mop-up operations were in full swing on Guam (Fig. 4-16 and Fig. 4-17). Although the civilian and military factions were well-organized and worked closely together, recovery efforts took months.

On the morning of the 23rd Pamela, still packing winds of 115 kt, slowed to 8 kt, and by that evening had passed through a weakness in the mid-tropospheric subtropical ridge, recurving to the northeast. At 2000Z on the 24th, Pamela passed 15 nm to the east of Iwo Jima (47981) blanketing the island with 75 kt winds (Fig. 4-18). By 1800Z on the 25th the system had weakened into a tropical storm. The cooler sea surface temperatures and tremendous vertical shear rapidly stripped the storm of its tropical characteristics, and by the afternoon of the 26th Pamela had become extratropical.

Pamela's 15 day trek took it a distance of 2570 nm during which a total of 52 warnings were issued, 40 of them as a typhoon.

FIGURE 4-16. An Air Force crew removes one of numerous trees uprooted during Pamela's rampage. This was typical of island-wide clean-up operations performed by military and civilian personnel. (Official U. S. Navy photograph)

FIGURE 4-17. Few, if any, establishments on Guam escaped water damage from Pamela's driving rains. Massive destruction to power transmission facilities rendered drying-out a slow process. (Official U. S. Navy photograph)

FIGURE 4-18. Infrared image of Typhoon Pamela at 65 kt 95 nm northeast of Iwo Jima, 25 May 1976, 0931Z. (DMSP imagery)

RUBY

The month of June was characterized by a persistent monsoon trough which was the breeding ground for numerous tropical disturbances. Ruby, the 5th typhoon of the season, was detected in this trough as an area of heavy thunderstorm activity located some 250 nm southwest of Guam. This region of convective activity was monitored for 3 days before undergoing significant intensification.

On the morning of the 23rd satellite data indicated that the disturbance had organized into a tropical depression located some 450 nm southeast of Manila, moving westward. Based on this information the first warning was issued on the 23rd at 0000Z. Reconnaissance aircraft at 1205Z indicated that TD 07 had attained tropical storm intensity; flight level winds of 70 kt and a central pressure of 987 mb were reported. Radar reports from Catanduanes Island (98446) further indicated that Tropical Storm Ruby was moving northwestward in response to weak steering south of the mid-tropospheric subtropical ridge.

At 2100Z on 23rd reconnaissance aircraft reported further development; Ruby had intensified, with an eye and surface winds in excess of 70 kt. This rapid intensification was in response to the westward movement of an intense cold-core low in the Tropical Upper Tropospheric Trough (TUTT) which increased the upper level outflow and destabilized the tropospheric column, enhancing convection.

On the afternoon of the 25th Ruby, still tracking northwestward, began its passage over central Luzon crossing the eastern coast 10 nm south of Cape Ildefonso with winds of 80 kt. Official reports of damage resulting from Ruby's passage were unavailable. However, Pacific Stars and Stripes did report in their July 4th issue that 16 persons in the province of Benguet were killed as a result of mudslides triggered by heavy rains.

Passage over the Philippines weakened Ruby into a tropical storm. Further weakening was experienced in the South China Sea when the storm's vertical organization became sheared by strong upper tropospheric north-easterly flow emanating from the massive Asian upper level anticyclone.

On the morning of the 26th, Ruby began to move northward, and passed 35 nm east of Pratas Island on the 27th at 0600Z. Thirty-five knot winds and a sea level pressure of 985 mb were observed. By the morning of the 28th satellite data indicated that the vertical organization had become realigned and that Ruby had re-intensified (Fig. 4-19). This had resulted from the westward regression of an upper tropospheric short wave trough to a position slightly northwest of Ruby's anticyclone. This blocked the earlier upper level shearing flow and enhanced outflow. Shortly after realignment a slow, eastward progression of the upper tropospheric trough steered Ruby to the east toward Typhoon Sally. It appears that any Fujiwara interaction between Ruby and Sally was either

very small or nonexistent.

As Ruby traveled eastward through the Bashi Channel, radar reports from Kao-hsiung indicated eastward movement and intensification (Fig. 4-20). Reconnaissance aircraft at 1600Z on July 1st recorded the lowest pressure, 934 mb, and indicated that Typhoon Ruby was moving toward the northeast.

Ruby maintained typhoon intensity until the night of the 3rd when it again moved into a hostile shearing environment. Meteorological satellite data at 2312Z on the 3rd indicated that Ruby had finally become extra-tropical after its 10 day trek.

FIGURE 4-19. Ruby (left) near typhoon intensity 430 nm north-northwest of Manila, 27 June 1976, 2223Z. Typhoon Sally is some 800 nm to the east-southeast. (DMSP imagery)

FIGURE 4-20. Radar presentation of Typhoon Ruby at 70 kt intensity 125 nm south-southeast of Kao-hsiung, Taiwan, 29 June 1976, 0600Z. (Picture courtesy of Central Weather Bureau, Taipei, Taiwan, Republic of China.)

SALLY

Sally, the 6th typhoon of the season, was first detected on the evening of June 23rd as a weak disturbance in the near-equatorial trough 210 nm south of Guam. During the next 36 hours the disturbance remained quasi-stationary as it slowly intensified. The first warning was issued at 0000Z on the 24th as the system intensified to 30 kt and began moving northwestward at 7 kt. Intensification was slow during the subsequent 30 hours as southeastward pressure from the Tropical Upper Tropospheric Trough (TUTT) to the northwest inhibited establishment of an efficient outflow channel to the north. By the evening of the 26th the TUTT had moved northward and Sally began more rapid intensification, attaining typhoon intensity at 1800Z on the 26th and a maximum intensity of 115 kt 36 hours later (Fig. 4-21 and Fig. 4-19: Typhoon Ruby). Reconnaissance aircraft reported a 40 mb drop in pressure (964 to 924 mb) from 0716Z on the 27th to 0230Z on the 28th, an average fall of 2 mb per hour.

By 1200Z on the 27th, Sally had slowed to 6 kt and had taken a more northward track. During the following 12 hours the typhoon moved slowly north, then north-northeast as Ruby, some 820 nm to the west, attained

typhoon force and began moving toward the east. By 1200Z on the 29th the distance between the two typhoons had closed to 790 nm and conditions for a Fujiwara interaction appeared favorable. However, between 1200Z on the 28th and 0000Z on the 29th, the axis of the mid-tropospheric subtropical ridge shifted some 300 nm to the south as westerly winds rapidly expanded equatorward. This unusually rapid shift of westerlies allowed a mid-tropospheric trough which had been far north of Sally to also move equatorward. Sally responded by recurving to the northeast and by 1200Z on the 29th had accelerated to 13 kt. At 0000Z on the 30th a ship, EWY, reported sustained 50 kt winds 120 nm northwest of the storm which still possessed 95 kt winds (Fig. 4-22).

At 1800Z on the 30th, Chichi Jima (40 nm northeast of Sally) reported southeasterly winds of 30 kt and a sea level pressure of 980.5 mb. Twelve hours later the rapidly moving storm was 180 nm east-northeast of the island. During the 2nd of July the system began more rapid weakening and became extratropical on the 3rd while traveling at more than 30 kt and still possessing surface winds of 40 kt.

FIGURE 4-21. Typhoon Sally at point of recurvature with 100 kt intensity 540 nm southeast of Okinawa, 27 June 1976, 2223Z. (DMSP imagery)

FIGURE 4-22. Typhoon Sally at 95 kt 235 nm west-southwest of Iwo Jima, 29 June 1976, 2159Z. (DMSP imagery)

THERESE

Near the end of the first week in July a tropical disturbance was detected by satellite near 9N-160E, moving slowly westward. At 2322Z on the 9th a formation alert was issued when satellite data indicated that the system was beginning to organize. During the next 24 hours the disturbance intensified rapidly, and aircraft observed winds of tropical storm intensity. At 0000Z on the 11th the first warning was issued on Tropical Storm Therese with winds of 40 kt near the center. For the next 24 hours Therese continued to intensify while accelerating slowly on a west-northwest course south of a well established subtropical ridge. By 0000Z on the 12th Therese had reached typhoon intensity. As the subtropical ridge to the north of the storm shifted northward, the typhoon reacted by slowing and moving toward the northwest. Near 1200Z on the 12th explosive deepening began to occur in response to enhanced outflow resulting from a cold-core, upper tropospheric low northwest of Therese. Reconnaissance aircraft indicated that from 0805Z on the 12th until 0537Z on the 13th, the storm's central pressure plummeted 66 mb, a rate of 3.1 mb per hour (Fig. 4-23). Therese had become the 2nd super typhoon of the season, attaining a minimum surface pressure of 903 mb and maximum winds of 135 kt at 0600Z on the 13th. Therese maintained super typhoon intensity for the next 18 hours, and at 2100Z on the 13th passed 30 nm northeast of Saipan with 130 kt winds near the center. Saipan sustained only minor damage with observed winds estimated at 75 to 100 kt.

Typhoon Therese began to accelerate along the southwestern periphery of the subtropical ridge heading toward a weakness near 130E. The system continued to weaken

slowly as it tracked farther north, still maintaining good outflow in all quadrants. At 1800Z on the 16th Therese passed 25 nm southwest of Minamidaito Jima where maximum sustained winds of 50 kt and a minimum sea level pressure of 966.9 mb were recorded. By the morning of the 17th Therese had slowed to 9 kt, and began to recurve toward the north in response to a long wave trough at the 200 mb level. At 0900Z the typhoon, still possessing 90 kt winds, passed 60 nm northeast of Okinawa where 41 kt gusts were recorded at Kadena AB. Directly ahead of the storm, Tokuno-Shima was reporting 50 kt winds. At 1200Z the island experienced eye passage with a recorded central pressure of 958 mb (Fig. 4-24).

For the next 24 hours Therese continued moving northward along the western edge of the subtropical ridge maintaining typhoon intensity. At 1200Z on the 18th Meshima (47842) reported sustained winds of 65 kt and minimum sea level pressure of 971.2 mb. Shortly thereafter Therese passed 10 nm east of the island as it turned to the northeast toward the west coast of Kyushu. By 1200Z on the 19th Therese had made landfall on the coast of Kyushu with 40 kt winds. After crossing the coast, the storm continued to dissipate over the mountainous terrain. The final warning was issued at 0000Z on the 20th as Therese became quasi-stationary over southern Japan.

Prior to dissipation, Therese brought nearly 20 inches of rain to the island of Kyushu. The storm flooded more than 1000 homes and sank 12 ships. During the onslaught, 3 persons were killed, more than 1300 were rendered homeless, and damage to crops was estimated in the millions of dollars.

FIGURE 4-23. Typhoon Therese near 115 kt undergoing explosive deepening 260 nm southeast of Guam, 12 July 1976, 2104Z. (DMSP imagery)

FIGURE 4-24. Infrared photograph of Typhoon Therese at 90 kt intensity 90 nm northeast of Kadena AB, Okinawa, 17 July 1976, 1042Z. (DMSP imagery)

TYphoon ANITA
BEST TRACK TC-12
23 JUL - 25 JUL 1976
MAX SPC WIND 65 KTS
MINIMUM SLP 979 MBS

ANITA

Anita had its inception in mid-July within the monsoon trough which was enhanced by cross equatorial flow at low levels. Three distinct surface circulation centers were evident on the 20th: one in the South China Sea which developed into Tropical Storm Violet; and two in the Philippine Sea which eventually became Tropical Storm Wilda and Typhoon Anita.

As early as the 18th, the weak circulation, which eventually developed into Anita, was tracked by satellite. Initially the disturbance moved slowly westward along the southern edge of the mid-tropospheric subtropical ridge, but by the 20th a break had developed in the ridge near 135°E and extended northward to Japan. At the same time, a high pressure center was building northwestward from its center location over Mindanao, forcing a wedge between the disturbance located in the South China Sea and those in the Philippine Sea. In response to this ridging, the disturbance which would become Anita reversed course on the 21st and began to head eastward.

The synoptic pattern at the 200 mb level from the 18th through the 20th found the Tropical Upper Tropospheric Trough (TUTT) positioned just north of the disturbances in the Philippine Sea. The flow around the trough initially suppressed the upper level outflow from the disturbances, however, by the 21st the trough began to recede northward, relieving the pressure. Midway through the 21st, a cyclonic cell within the TUTT moved into a position favorable to enhance the outflow of the disturbance which became Wilda, and duplicated this mechanism 24 hours later for Anita. On the 22nd, Wilda and Anita were developing simultaneously. They attained tropical depression character-

istics at 0600Z and 1200Z, respectively. By 1200Z Wilda had accelerated northward along the western side of the subtropical ridge, allowing Anita to develop independently at an accelerated pace. By 1800Z Anita had attained tropical storm intensity, and began to move through the weakness left by Wilda.

As Anita continued to intensify, the size of the storm remained relatively small. Aircraft reconnaissance on the 23rd found only a narrow band of strong winds near the storm center. As Anita progressed northward through the weakness, it continued to intensify, reaching a peak of 65 kt and a minimum sea level pressure near 979 mb at 1200Z on the 23rd. The NOAA-4 satellite picture at 1207Z on the 23rd (Fig. 4-25) caught Anita at its peak intensity with a ragged eye discernible between two interlocking convective bands.

About the time Anita attained typhoon intensity, it also began to accelerate northward on a path similar to that taken by Wilda. With this acceleration, Anita was again thrust under the influence of unidirectional shearing. This suppressed Anita's outflow and contributed to loss of vertical stacking. The shear persisted for the duration of Anita's life, forcing the system to weaken almost as fast as it had developed. Anita's typhoon intensity lasted only 12 hours. Satellite data at 2214Z on the 23rd indicated that the storm had lost most of its hard core convection (Fig. 4-26). Thus, Anita was downgraded to a tropical storm at 0000Z on the 24th. As the system sped northward at 20 kt, it continued to weaken crossing western Kyushu late on the 24th with minimal tropical storm intensity. On the 25th, the remains of Anita entered the Sea of Japan and became extratropical at 0600Z while moving northward at 14 kt.

FIGURE 4-25. Inverted infrared photograph of Typhoon Anita (right) at peak intensity 360 nm southeast of Kadena AB, Okinawa. At left Tropical Storm Violet approaches the China coast, 23 July 1976, 1209Z. (NOAA-4 imagery)

FIGURE 4-26. Anita at 60 kt intensity 270 nm east of Kadena AB, Okinawa, 23 July 1976, 2214Z. (DMSP imagery)

BILLIE

Billie, the 9th typhoon of the season, was first observed on the morning of July 31st as a disturbance in the near equatorial trough approximately 180 nm northeast of Ponape. During the subsequent two days the system demonstrated little intensification as it moved toward the west-northwest at 14 kt. Throughout this period poor vertical stacking and unidirectional flow through the system in the 300 mb to 200 mb region hindered development.

On the evening of 2 August, meteorological satellite data indicated that the disturbance had turned toward the north and was becoming better organized. By the morning of the 3rd, the convective system had consolidated and had acquired strong banding from the northeast and southwest (Fig. 4-27). At 0000Z on the 3rd the disturbance was placed into warning status as TD 13 centered about 100 nm east of Guam. Ship reports at 0000Z indicated 30 knot surface winds and aircraft at 0052Z reported 40 kt flight level (700 mb) winds from the south, 20 nm east of the depression center.

By late morning on the 3rd, the northward movement of the tropical system had positioned it near the southern periphery of the mid-tropospheric subtropical ridge. In response, the tropical depression turned sharply toward the northwest in the direction of Saipan. Between 1700Z and 1800Z on the 3rd, TD 13 passed over Saipan where the 1800Z synoptic reports indicated southwesterly winds at 15 kt, a sea level pressure of

999.8 mb and a 6-hour rainfall of 3.86 inches. At 1800Z the depression was designated Tropical Storm Billie.

By 0000Z on the 4th the storm had intensified to 40 kt, and the northwestward track changed to a 4 kt southwestward track. Since the 3rd an intense low cell in the Tropical Upper Tropospheric Trough (TUTT) was slowly propagating southwestward toward the storm. By the 4th this low cell and its associated trough was applying considerable southward pressure on the anticyclone above Billie. By this time the upper, middle and lower components of the storm were strongly coupled and the entire storm moved southwestward with the anticyclone. Billie continued to slowly intensify as outflow in all but the northeast quadrant remained good.

During this period of erratic movement it appeared that Billie would be a threat to Guam. However, by the afternoon of the 5th the TUTT began to rapidly recede to the northwest. This affected the storm in two ways: (1) It relieved the southwestward pressure allowing the storm to acquire a westward and ultimately a northwestward track; and (2) It allowed the low cell within the TUTT to move north of Billie, restricting outflow and temporarily slowing the intensification rate. By the 6th, the upper low had moved considerably westward, eliminating its restricting influence on the tropical cyclone. Billie reacted by accelerating on a northwestward track and attaining typhoon intensity at 1800Z on the 5th (Fig. 4-28).

FIGURE 4-27. Billie during its early development at 30 kt intensity 100 nm east of Guam, 2 August 1976, 2115Z.

FIGURE 4-28. Billie at minimal typhoon intensity 275 nm northwest of Guam, 5 August 1976, 2118Z. (DMSP imagery)

During the subsequent 2 days Typhoon Billie continued its trek toward the northwest at 12 to 15 kt. Throughout this period outflow above the typhoon was unobstructed, allowing the system to intensify rapidly. From the night of the 6th until the morning of the 7th Billie underwent explosive deepening as an upper level trough west of the cyclone enhanced outflow in the northern semicircle and an unrestricted channel to the Southern Hemisphere subtropical jet stream enhanced outflow in the south semicircle. Reconnaissance aircraft at 1448Z on the 6th and at 0340Z on the 7th indicated that during this 13 hour period the eye temperature at 700 mb rose from 17°C to 26°C, and that the central pressure had fallen 46 mb, a rate more than 3.5 mb per hour. The 914 mb reported at 0350Z on the 7th was the minimum pressure attained by Billie. During this reconnaissance flight maximum surface winds were estimated to be 120 kt. At 0800Z on the 7th a ship, JPLY, reported southwesterly winds of 50 kt and a minimum sea level pressure 992.3 mb while located 70 nm south-southeast of the typhoon (Fig. 4-29). At 1200Z on the 7th Typhoon Billie reached its maximum intensity of 125 kt.

By the morning of the 8th the upper level trough, which had been located to the west of Billie, had been forced east of the typhoon by the rapid eastward expansion of a massive Asian upper level anticyclone. This upper level synoptic pattern exposed the region north of Billie to strong northeasterly flow which drastically reduced the outflow to the north and dictated a more westward movement for the tropical cyclone. This synoptic pattern persisted throughout the remainder of the storm's life, causing it to weaken and to move in a westward direction at 11 to 14 kt until it dissipated over mainland China.

By 0000Z on the 9th Billie had moved into the southern Ryukyu Islands. Fig. 4-30 illustrates surface observations from 0000Z through 1000Z on the 9th at the island stations of Miyako Jima (47927) and Ishigaki Shima (47918). Miyako Jima reported its lowest sea level pressure 964.4 mb at 0400Z while experiencing 44 kt sustained winds.

Two hours later Ishigaki Jima reported a pressure of 952.0 mb and northwesterly winds of 45 kt. At about 0700Z Typhoon Billie passed over the northern tip of Ishigaki Jima with maximum winds estimated at 95 kt,

FIGURE 4-29. Typhoon Billie at 115 kt intensity 300 nm southeast of Kadena AB, Okinawa, 7 August 1976, 2238Z. (DMSP imagery)

STATION	TIME /										DATE 09 AUG 1976
	09/00	09/01	09/02	09/03	09/04	09/05	09/06	09/07	09/08	09/09	
47927 ROMY MIYAKOJIMA	○	○	○	○	○	○	○	○	○	○	C
	27 354 34 22 26	27 366 34 644 26	27 65 34 66 26	27 68 34 66 26	27 68 34 644 26	C					
47918 ROIG ISHIGAKIUMA	○	○	○	○	○	○	○	○	○	○	C
	28 633 25 -611	○	○	26 699 25	○	27 687 25	C				

FIGURE 4-30. Available synoptic surface observations at Miyako Jima and at Ishigaki Jima during the passage of Typhoon Billie.

and two hours later the island reported southwesterly winds of 91 kt with gust to 108 kt (Fig. 4-31). Newspaper reports stated that "huge waves south of Japan drowned 41 fisherman and swimmers along Japan's Pacific coast."

After its destructive whirl through the Ryukyus, Billie headed for Taipei traveling westward at 14 kt (Fig. 4-32). At 1200Z on the 9th, Penkiayu (46695) reported north-easterly winds of 77 kt. Taipei International Airport experienced 30 kt sustained winds with gusts to 65 kt, and a sea level pressure of 957.3 mb was observed at 1600Z; about one hour later the eye passed just south of Taipei.

Typhoon Billie exited Taiwan near Hsin-chu and moved toward the People's Republic of China on a west-northwestward track. By the morning of the 10th Billie had weakened into a tropical storm and slowed to 11 kt. At 0000Z on the 10th P'ing-t'an (58944) reported 60 kt winds from the north-northeast and a sea level pressure of 981.2 mb. About 0300Z Billie went ashore 25 nm southeast of P'ing-t'an. Within hours the storm had dissipated over the rugged terrain of eastern China.

Billie's passage over Taiwan was highly destructive (Fig. 4-33). Reports indicated 4 dead, 24 injured and 8 missing. Nearly 1000 homes were destroyed in the onslaught. Three ships were sunk and 7 others were severely damaged. Damage to power transmission facilities was estimated at \$2,630,000.

FIGURE 4-31. Radar presentation of Typhoon Billie as it pounds Ishigaki Jima with 90 kt winds, 150 nm east of Taipei, 9 August 1976, 0800Z. [Photograph courtesy of the Central Weather Bureau, Taipei, Taiwan, Republic of China.]

FIGURE 4-32. Infrared photograph of Typhoon Billie exiting the southern Ryukyu Islands with 90 kt intensity, 95 nm east of Taipei, 9 August 1976, 1109Z. [DMSP imagery]

FIGURE 4-33. Downtown Taipei after Typhoon Billie lashed the city with 75 kt winds. [Courtesy of Central Weather Bureau, Taipei, Taiwan, Republic of China.]

FRAN

Fran, the 17th storm of the season, began as an innocuous area of convective activity in the monsoon trough. Its life span of 10 days included development to super typhoon intensity and a destructive passage through the Japanese archipelago.

First detected on the afternoon of the 1st of September as an area of convective activity 200 nm northeast of Ponape, the system was monitored for 2 days before exhibiting any significant development. The initial warning on TD 17 was issued at 1200Z on the 3rd after satellite data indicated the disturbance had strengthened, and further intensification was expected. The depression was upgraded to Tropical Storm Fran after reconnaissance aircraft at 0339Z on the 4th recorded a central pressure of 997 mb. Aircraft data further indicated that the storm was heading northwestward at 11 kt. Mid-tropospheric synoptic data showed a weakness in the subtropical ridge south of Japan, toward which Fran was moving.

By 0000Z on the 5th the storm was 90 nm south of Guam, continuing on its northwestward track. Nine hours later Fran passed 20 nm west of Guam. A maximum sustained wind of 30 kt with gusts to 41 kt was reported on the island. By the morning of the 6th Fran had intensified to 60 kt while moving toward the northwest at 14 kt (Fig. 4-34). At 0245Z

aircraft reported that the storm was some 250 nm north-northwest of Guam. During this reconnaissance flight maximum surface winds were estimated at 65 kt and a circular eye 30 nm in diameter was observed. Based on this information and a recorded central pressure of 977 mb, Tropical Storm Fran was upgraded to a typhoon.

As Fran reached typhoon intensity, upper tropospheric data indicated development of two anticyclones to the north and east of the storm which acted to suppress outflow from the northeast semicircle of the typhoon. By the morning of the 7th the anticyclones had dissipated, allowing unhindered outflow. This outflow was enhanced by the deepening of a short wave trough over central China which produced a highly efficient link to the mid-latitude westerlies. In response Fran began to deepen explosively. On the 7th at 0307Z reconnaissance aircraft recorded a central pressure of 916 mb and observed maximum surface winds estimated at 130 kt. During the previous 12 hours the central pressure dropped 43 mb, a rate of 3.6 mb per hour.

For 24 hours the upper tropospheric outflow remained unhindered, permitting the storm to maintain its maximum 130 kt super typhoon intensity (Fig. 4-35). On the 7th at 2109Z the central pressure reached its

FIGURE 4-34. Fran at 60 kt intensity 190 nm northwest of Guam, 5 September 1976, 2150Z. [DMSP imagery]

FIGURE 4-35. Moonlight photograph of Super Typhoon Fran with winds near 130 kt 450 nm southeast of Kadena AB, Okinawa, 7 September 1976, 1023Z. [DMSP imagery]

FIGURE 4-36. Inverted infrared photograph of Typhoon Fran during period of erratic movement with 90 kt intensity 210 nm north-northeast of Kadena AB, Okinawa, 10 September 1976, 1129Z. (DMSP imagery)

FIGURE 4-36a. Moonlight visual presentation of Figure 4-36. Bright areas are city lights and bright horizontal lines are lightning discharges. (DMSP imagery)

FIGURE 4-36b. Figure 4-36a expanded.

lowest observed level of 913 mb.

As the short wave trough northwest of Fran moved eastward, northeasterly flow from the upper level Asian anticyclone began to hinder outflow in the western semicircle of the storm. Consequently, by the evening of the 8th the storm had weakened to 125 kt, and had begun to move northward in response to the retrogression of an upper tropospheric short-wave trough to a position west of the storm.

As Fran traveled through the Ryukyu Islands, it passed 60 nm east of Okinawa. Naha (47930) recorded a maximum sustained surface wind of 55 kt with gusts to 73 kt. Some damage was experienced at Kadena AB on Okinawa.

By the evening of the 10th Fran had slowed to 2 kt (Fig. 4-36, Fig. 4-36a, and Fig. 4-36b), and during the subsequent 36 hours drifted on an erratic path toward the west. On the night of the 11th Fran began to accelerate northward (Fig. 4-37) and by the following morning was moving toward the north-northeast at 7 kt. These irregular movements were apparently in response to east-west oscillations of the upper tropospheric short-wave trough north of the storm.

During this period of slow, erratic movement the storm's destructive winds caused several maritime mishaps. JICS, a ship of Panamanian registry, ran aground at Tibjima, Minamata Bay on September 12th and the Kyoyu Maru reportedly broke in two in the Bungo Straits on the 11th.

On the afternoon of the 12th the storm accelerated and moved toward the north-northeast in response to a deepening upper tropospheric trough over central China. Passing over Kyushu on the evening of the 12th, Typhoon Fran had weakened to tropical storm intensity. Twelve hours later, as the storm traveled over the cooler Sea of Japan, it lost its tropical features becoming extratropical at 0600Z on the 13th.

Typhoon Fran's slow movement through the Tokara Island group, over Kyushu, and into the Sea of Japan caused significant damage and loss of life. It was reported to be the most destructive tropical cyclone affecting Japan in the last 10 years. The Japanese National Police Agency confirmed a total of 133 persons dead, 32 missing and 227 injured as a result of Fran's torrential rains and strong winds. According to the Japan Times of 15 September, damage to private and public facilities was estimated at approximately \$572 million.

FIGURE 4-37. Infrared photograph of Typhoon Fran at 75 kt 190 nm south-southwest of Sasebo, 11 September 1976, 1116Z. (DMSP imagery)

HOPE

Hope, the 11th typhoon of the season, developed in a region of intense cyclonic shear produced by a deep southwesterly monsoon surge. Not since August 1974, during the similar development of Typhoon Mary, has the western Pacific experienced such a deep and prolonged southwesterly monsoon flow. The disturbance soon to become Typhoon Hope was first detected near 17N-157E on the morning of the 13th of September as a region of deep, but unorganized, convection at the eastern edge of the intense monsoon trough. This same trough had spawned Tropical Storm Georgia four days earlier.

By the following morning the disturbance exhibited much better organization (Fig. 4-38) and a Tropical Cyclone Formation Alert was issued at 0044Z on the 14th. At 0600Z the American Chieftain (WJNA) 125 nm northeast of Hope, reported 45 kt southeasterly winds and a minimum sea level pressure of 998.7 mb. Some 200 nm south-southeast of the system, the American Lynx (WZJE) reported 40 kt winds from the southwest and a minimum sea level pressure of 998.8 mb. The first warning on Tropical Storm Hope was issued at 0702Z.

FIGURE 4-38. Hope approaching tropical storm intensity 340 nm south of Marcus, 13 September 1976, 2013Z. Gale force winds were observed in the east semicircle of the system illustrating the intensity of the monsoon trough. (DMSP imagery)

Reconnaissance aircraft at 0847Z on the 14th indicated a central pressure of 995 mb and testified to the large asymmetrical character of this cyclone. Maximum winds in the western quadrant were found to be only 20 kt while ships in the east semicircle reported winds of 45 kt 250 nm from the storm.

During the subsequent 2 days Hope accelerated to the north-northwest toward a weakness in the mid-tropospheric subtropical ridge, a weakness created by the combined effects of a 500 mb trough located above Japan and an active Tropical Upper Tropospheric Trough (TUTT), oriented northeast-southwest, west of Marcus Island. At 0240Z on the 14th reconnaissance aircraft observed the minimum recorded sea level pressure of 981 mb and indicated that the north-northwestward movement of Hope had increased to 15 kt. At 0300Z, Marcus Island reported maximum sustained surface winds of 54 kt, a minimum sea level pressure of 988.6 mb and a 3-hourly pressure fall of 7.7 mb as the typhoon passed 90 nm south-southwest.

Hope attained its maximum intensity of 70 kt about 1800Z on the 15th, approximately 240 nm northwest of Marcus (Fig. 4-39). During the morning of the 16th Typhoon Hope began to weaken as it slowed to 12 kt and began to traverse the mid-tropospheric subtropical ridge. Twenty-four hours later the storm had weakened to 45 kt and was moving toward the north-northeast at a speed in excess of 30 kt. The final warning was issued at 1800Z on the 17th when strong shear, cooler sea surface temperatures, and incursion of cool air had stripped Hope of its tropical nature.

FIGURE 4-39. Inverted infrared photograph of Hope approaching typhoon intensity 110 nm west-northwest of Marcus, 15 September 1976, 1018Z. The remnants of Tropical Storm Georgia appear northeast of Guam. (NOAA-4 imagery)

TYPHOON IRIS
 BEST TRACK TC-20
 14 SEP ~ 21 SEP 1976
 MAX SFC WIND 75 KTS
 MINIMUM SLP 967 MBS

IRIS

On the 13th of September satellites gave the first indications of what was to become the only typhoon of the year to originate in the South China Sea. At 0140Z on the 14th a tropical cyclone formation alert was issued for an area west of Manila, and at 0600Z the first warning on TD 20 was issued.

During this period the synoptic situation was characterized by low pressure over Southeast Asia and an enhanced southwest monsoon over the southern South China Sea. At the mid-tropospheric level short wave troughs were passing from west to east well north of the storm. With a lack of significant steering flow TD 20 began to drift slowly northward. By 0600Z on the 15th satellite and synoptic data indicated some intensification, and the tropical depression was upgraded to Tropical Storm Iris (Fig. 4-40).

By the evening of the 16th, a weak mid-tropospheric ridge had begun to build north of Iris causing the storm to turn northwestward toward southern China. An upper tropospheric trough northwest of Iris enhanced outflow to the north, allowing the system to intensify to typhoon intensity by 0600Z on the 17th. Aircraft reconnaissance at 0420Z observed typhoon strength surface winds 40 nm southeast of the storm center and recorded a central pressure of 983 mb. At 1200Z Pratas Island (59981) recorded winds of 40 kt and a sea level pressure of 997.3 mb.

Three hours later, Iris with maximum winds of 75 kt passed 90 nm south-southwest of the island. At 2100Z Pratas recorded a minimum sea level pressure of 997.1 mb and winds of 33 kt. As Iris continued toward the southeastern coast of Asia it became further influenced by the subtropical ridge to the north, the typhoon turned more westward and accelerated to 7 kt (Fig. 4-41). At 0600Z on the 19th Iris, still maintaining 75 kt winds, passed 35 nm south of Shan-Ch'uan-Tao (59673) where the station reported a sea level pressure of 988.1 mb and winds of 60 kt.

Typhoon Iris made landfall 30 nm north of Ch'ancian (59755) on the Luichow Peninsula at 2100Z on the 19th. The cyclone dissipated rapidly as it crossed the peninsula. Fifteen hours later it had weakened to a 35 kt tropical storm and entered the Gulf of Tonkin. The final warning was issued at 0600Z on the 21st.

On the 18th, Iris had passed 90 nm south of Hong Kong, where 68 kt winds were observed. Hong Kong newspaper reports indicated that more than a dozen people were injured by flying debris. Also on the 18th, 50 nm east of Pratas and 50 nm north of the storm, the Chieh Lee, a 5000 ton Panamanian freighter, sank. According to newspaper reports, 13 crewmen were rescued while 4 were known dead and 11 others were missing.

FIGURE 4-40. Inverted infrared photograph of Iris at 40 kt 195 nm northwest of Manila, 15 September 1976, 1212Z. (NOAA-4 imagery)

FIGURE 4-41. Typhoon Iris (right) at 75 kt peak intensity 110 nm southwest of Hong Kong, 19 September 1976, 0216Z. Tropical Cyclone 23-76 is seen inland over India. (NOAA-5 imagery)

JOAN

Destined to spend its entire life over the open ocean, Joan originated within an active near equatorial trough which extended from the coast of China across the western Pacific to the Marshall Islands. Joan was initially observed on the 17th of September as a tropical disturbance, with a weak surface cyclone centered near 13N 155E. At the time the disturbance was detected, the southwestern edge of a sharp Tropical Upper Tropospheric Trough (TUTT) was situated over the low level circulation creating unidirectional shear which suppressed growth of the upper level anticyclone above the system. By the 18th, the TUTT had receded northward allowing a small anticyclone to develop and permitting outflow to the west above the disturbance. By the 19th, the TUTT had receded even farther north allowing the anticyclone to fully develop and to generate outflow in all quadrants. With the outflow mechanism established, the disturbance intensified and became TD 21 on the 19th at 0600Z. At 1800Z on the 19th it was upgraded to Tropical Storm Joan, 325 nm south-southwest of Marcus Island (Fig. 4-42).

Initially, Joan tracked northward through a large break in the mid-tropospheric subtropical ridge which had persisted since the passage of Typhoon Hope the previous week. By the 20th, the ridge began to reestablish itself toward the northwest, forcing Joan to acquire a northwestward track during the subsequent 24 hours. During this period the

storm intensified at a rate of 5 kt per 6 hours. On the 21st, Joan slowed its forward speed to 5 kt. As it approached the western extremity of the subtropical ridge it became evident that Joan would recurve toward the northeast. At this point the storm had a well developed outflow pattern with several convective bands consolidating around a central dense overcast approximately 1 degree in diameter.

By 0600Z on the 21st, Joan had attained typhoon intensity while at the midpoint of recurvature. Six hours later, Typhoon Joan attained its peak intensity of 70 kt (Fig. 4-43), and a distinct, well defined eye was visible on satellite data with tightly wrapped convective bands surrounding the center. At 0000Z on the 21st Joan passed 125 nm west of Marcus Island where 33 kt surface winds were observed. By the 22nd Joan had weakened slightly but maintained typhoon intensity as it accelerated to 11 kt toward the northeast. Firmly implanted in the mid-latitude southwesterlies ahead of a long wave trough moving slowly across Japan, Joan continued to track northeastward accelerating to 31 kt by the 24th. It became an extratropical system at 1200Z on the 24th. The remains of Typhoon Joan continued to disrupt shipping lanes in the western Pacific. A ship, UWGR, at 1200Z on the 24th reported sustained winds of 65 kt and a sea level pressure of 975 mb while located near 38N 165E, 60 nm east of the extratropical low.

FIGURE 4-42. Joan just after attaining tropical storm intensity 300 nm south-southwest of Marcus, 19 September 1976, 2042Z. (DMSP imagery)

FIGURE 4-43. Infrared image of Typhoon Joan near its 70 kt peak intensity 130 nm west of Marcus, 21 September 1976, 0915Z. (DMSP imagery)

LOUISE

Louise, the 14th and final typhoon of season, was also the most intense of 1976. The disturbance that was to become Louise was first detected by satellite data on the morning of 27 October about 75 nm east of Truk. During the next 3 days the disturbance showed little intensification as it meandered through the northern Truk District. Late on the 29th the system began moving toward the west, and by the morning of the 30th satellite data indicated that it was intensifying (Fig. 4-44). The first warning was issued at 0000Z on the 30th as TD 23.

FIGURE 4-44. Louise a few hours prior to becoming TD 23 150 nm northwest of Truk and 400 nm southeast of Guam, 29 October 1976, 2107Z. (DMSP imagery)

Reconnaissance aircraft at 1515Z on the 30th indicated that the central pressure had fallen to 996 mb, and at 1800Z the depression was upgraded to Tropical Storm Louise. During the next 36 hours Louise moved west-northwestward at 14 kt, then westward at 11 kt as its winds increased at a rate of 5 kt every 6 hours. At 0311Z on the 1st of November aircraft observed 70 kt flight level winds and found that the central pressure of the storm had fallen to 976 mb. At 0600Z Louise was upgraded to a typhoon while 100 nm northwest of Ulithi Atoll.

Beginning on the 1st, a series of rapidly moving, mid-tropospheric short-wave troughs created a weakness in the subtropical ridge between 125E and 130E. On the afternoon of the 1st Louise began to respond to this weakness by acquiring a northwestward track. Almost simultaneously, the typhoon commenced more rapid deepening, attaining 105 kt winds by the morning of the 2nd. From 0311Z on the 1st to 0310Z on the 2nd reconnaissance aircraft indicated a fall in the central pressure of 43 mb, a rate of 1.8 mb per hour. This deepening was in response to favorable upper-level outflow channels to the northeast and south (Fig. 4-45). Further deepening to 905 mb had occurred by 1435Z on the 2nd, a fall of 28 mb in 11 hours.

During the early morning of the 3rd Super Typhoon Louise attained its maximum intensity of 140 kt which it maintained for nearly 36 hours (Fig. 4-46). The lowest recorded pressure was 895 mb observed by aircraft at 0830Z on the 3rd (Fig. 4-47).

FIGURE 4-45. Typhoon Louise at 100 kt intensity 240 nm west-northwest of Yap, 1 November 1976, 2212Z. (DMSP imagery)

From the morning of 2nd until the afternoon of the 3rd Louise maintained its northwestward track moving at 14 to 16 kt. Then, on the afternoon of the 3rd, the storm slowed to 6 kt as it recurved around the western periphery of the mid-tropospheric subtropical ridge. By 0000Z on the 4th, Louise began to accelerate to 9 kt, moving in a north-northeastward direction and slowly weakening. Louise continued this movement for more than 30 hours as it traversed the broad axis of the subtropical ridge. Late on the afternoon of the 5th the typhoon, which had weakened to 115 kt, began to accelerate on a northeast track.

From 0000Z on the 4th until 1800Z on the 6th Louise weakened at the unusually slow rate of 5 kt per 6 hours. This slow weakening resulted from two conditions: (1) A broad surface high pressure cell centered over northern Honshu prevented significant

FIGURE 4-46. Super Typhoon Louise at 140 kt peak intensity 500 nm east of Manila, 2 November 1976, 2318Z. (DMSP imagery)

FIGURE 4-47. Infrared photograph of Typhoon Louise at peak intensity 380 nm east-northeast of Manila and 615 nm south of Kadena AB, Okinawa, 3 November 1976, 1045Z. (DMSP imagery)

equatorward penetration of frontal systems; and (2) The extremely strong jet stream (exceeding 200 kt) over eastern Japan provided an excellent outflow channel. At 0300Z on the 6th, Minamidaito Jima (47945), 40 nm north-northeast of Louise, reported east-northeasterly winds of 40 kt and a sea level pressure of 984.8 mb. Two hours later the storm passed 15 nm southeast of the island with maximum winds estimated near 95 kt.

By the 7th, cooler sea surface temperatures and very strong vertical shear were taking their toll as Louise moved north of 30N. Reconnaissance aircraft at 0359Z on the 7th indicated that Louise was rapidly losing its tropical character and was

becoming extratropical. The Airborne Reconnaissance Weather Officer also observed that the lower half of the wall cloud was "rotating rapidly", a phenomenon sometimes reported when a storm is becoming extratropical.

At 0600Z on the 7th, moving east-northeast at 25 kt, Louise became extratropical. As an extratropical system the remains of Louise moved northward to combine with another surface low. The resulting system had deepened to 947 mb by the 10th and became one of the most severe extratropical storms of the year, ultimately producing surf in excess of 30 ft in the Hawaiian Islands.

4. NORTH INDIAN OCEAN TROPICAL CYCLONES

FIGURE 4-48. Tropical Cyclone 26-76 entering southwestern Burma coast with 55 kt peak intensity 110 nm west-southwest of Rangoon, 1 May 1976, 0750Z. (NOAA-4 imagery)

FIGURE 4-49. Tropical Cyclone 25-76 at 50 kt peak intensity 110 nm east of Socotra, 16 October 1976, 0548Z. (NOAA-5 imagery)

FIGURE 4-50. Tropical Cyclone 30-76 at 55 kt peak intensity 25 nm southwest of Port Blair, 31 December 1976, 0228Z. (NOAA-5 imagery)

5. CENTRAL NORTH PACIFIC TROPICAL CYCLONES

KATE¹

Hurricane Kate, the only hurricane to develop in the Central Pacific during 1976, posed a threat to the Hawaiian Islands before it veered northwestward about a day's distance from the island of Hawaii. Seas generated by the hurricane caused surf up to 15 feet along the northern and eastern shores of Hawaii, Maui and Oahu, but no significant damage was reported.

The storm which was later named Kate was spawned on September 20th in the usually absent Central North Pacific near equatorial trough. Other weak vortices were observed in this trough during the period of Kate but did not develop.

The Central Pacific Hurricane Center issued the first bulletin on TD 22 on the morning of the 21st. A ship, URFJ, reported 30 kt southwest winds 150 nm southwest of the center of the tropical depression.

The depression's previous northwest track stopped on the morning of the 22nd and the storm gradually intensified, becoming Hurricane Kate on the morning of the 24th, very near its position 48 hours earlier. Kate then slowly travelled westward for a day before sharply veering north-northwestward.

On the evening of the 25th, a ship, ATAY, about 120 nm south of Kate, reported 25 kt west winds indicating that the strong winds in Kate were tightly wound near its center. Attaining maximum winds of 85 kt on the afternoon of the 26th 600 nm east-southeast of Hawaii, Kate did not appear an immediate threat to the Hawaiian Islands (Fig. 4-51). However, by the following day it had turned northwest, and on the morning of the 28th was positioned only 330 nm due east of Hawaii. It was then expected to pass 150 nm northeast of the island.

However, during the 28th Kate veered slightly to the right of its expected path and passed harmlessly, 240 nm east-northeast of Hilo, Hawaii while it gradually weakened (Fig. 4-52). Kate finally turned north as a weak tropical storm and ended its career near 27N 154W as the upper air westerlies sheared its clouds and circulation.

¹Extracted from report submitted by Meteorologist in Charge, NWS Forecast Office Honolulu, Hawaii.

FIGURE 4-51. Hurricane Kate (center) with 80 kt intensity 550 nm east-southeast of Hilo, Hawaii, while Hurricane Liza parallels the coast of Mexico, 27 September 1976, 1745Z. [SMS-2 imagery, Courtesy NOAA]

FIGURE 4-52. Kate at 55 kt 230 nm northeast of Honolulu, 29 September 1976, 2015Z. [SMS-2 imagery, Courtesy NOAA]

6. TROPICAL CYCLONE CENTER FIX DATA

Fix data for 1976 will be published in a separate Technical Note. This Tech Note will include fix data for all storms in the PACOM area west of 140W and north of the equator. To obtain a copy of this report write:

Commanding Officer
Fleet Weather Central/JTWC
COMNAVMARIANAS Box 12
FPO San Francisco 96630

CHAPTER V - SUMMARY OF FORECAST VERIFICATION DATA

1. ANNUAL FORECAST VERIFICATION

a. POSITION FORECAST VERIFICATION

Forecast positions for the warning, 24-, 48-, and 72-hour forecasts are verified against the best track. Positions for storms over land, dissipated or extratropical are not verified. In addition to the overall verifications depicted in Table 5-1, a separate verification for only Pacific Area typhoons is computed. This information is listed in Table 5-2, for comparison with previous years. This same information is depicted graphically in Figure 5-1. A computation of closest distance to the best track (right angle error) is also calculated. Right angle error, graphically depicted in Figure 5-2, is a measure of ability to forecast the path of motion without regard to speed. In the Indian Ocean Area, no 72-hour forecasts are available for verification, and no attempt is made to segregate storms by intensity. Error statistics for this area are summarized in Tables 5-2 and 5-3 and Figure 5-3.

b. INTENSITY FORECAST VERIFICATION

Intensity verification statistics for tropical cyclones attaining typhoon intensity are depicted in Table 5-4. Adherence to a standardized pressure-height versus wind speed relationship and improved satellite analysis techniques have resulted in a low initial position intensity error (4.3 kt) over the past three seasons. This in turn has contributed to smaller 24-, 48-, and 72-hour intensity forecast deviations from the JTWC best track.

2. COMPARISON OF OBJECTIVE TECHNIQUES

a. GENERAL

Objective techniques have been verified annually since 1967, however year-to-year modifications and improvements prevent any long term comparisons of the various techniques. The analog technique provides three movement forecasts, one for straight moving storms, one for recurving storms and one combining the tracks of straight, recurving and other storms that do not meet the criteria as straight or recurving analogs. However, only the combined is listed for verification. The analog technique also provides an intensity forecast for each warning position. The dynamic objective technique employs the steering concept of a point vortex in a smoothed large-scale flow field. An intensity forecast scheme is based on statistical regression equations of analog storms.

b. DESCRIPTION OF OBJECTIVE TECHNIQUES

(1) TYFN75-Analog program which scans history tapes for storms similar (within a specified acceptance envelope) to the instant storm. Three 24-, 48-, and 72-hour forecasts are provided. In addition 24-, 48-, and 72-hour intensity forecasts are provided.

(2) MOHATT 700/500-Steering program which advects a point vortex on a preselected analysis or smoothed prognostic fields at the designated upper-levels in 6-hour time steps through 72 hours. Utilizing the previous 12-hour history position, MOHATT computes the 12-hour forecast error and applies a bias correction to the forecast position.

TABLE 5-1. 1976 JTWC ERROR SUMMARY FOR THE WESTERN NORTH PACIFIC

CYCLONE	WARNING			24 HOUR			48 HOUR			72 HOUR		
	POSIT ERROR	RT ANGLE ERROR	# WRNGS	FCST ERROR	RT ANGLE ERROR	# WRNGS	FCST ERROR	RT ANGLE ERROR	# WRNGS	FCST ERROR	RT ANGLE ERROR	# WRNGS
1. TY KATHY	36	18	19	135	75	15	332	180	11	566	291	7
2. TS LORNA	47	24	8	134	54	4	--	--	--	--	--	--
3. TY MARIE	21	11	42	112	75	38	236	157	34	379	260	30
4. TS NANCY	29	19	27	122	74	23	237	147	19	475	292	15
5. TY OLGA	33	22	57	97	60	53	185	101	49	275	164	45
6. STY PAMELA	29	15	49	123	66	45	203	119	41	237	126	37
7. TY RUBY	24	17	43	117	66	39	228	147	33	299	175	23
8. TY SALLY	27	16	35	139	78	31	331	192	27	572	334	23
9. STY THERESE	19	10	37	115	75	33	218	146	29	319	203	25
10. TS VIOLET	33	23	20	129	103	16	215	136	12	175	110	5
11. TS WILDA	72	39	9	273	148	5	576	161	1	--	--	--
12. TY ANITA	28	18	9	182	77	5	560	163	1	--	--	--
13. TY BILLIE	15	10	31	111	67	27	240	130	23	278	126	19
14. TS CLARA	15	8	7	102	40	3	--	--	--	--	--	--
15. TS DOT	28	6	18	104	48	14	233	123	9	379	208	4
16. TS ELEN	19	23	14	89	50	10	141	69	6	292	99	2
17. STY FRAN	16	8	41	113	66	37	258	109	33	422	212	29
18. TS GEORGIA	28	16	19	93	38	15	130	56	11	232	153	7
19. TY HOPE	14	20	12	173	77	8	350	82	4	--	--	--
20. TY IRIS	17	11	25	91	58	21	182	105	17	316	202	13
21. TY JOAN	46	25	20	140	102	16	244	156	12	363	291	8
22. KATE				(CENTRAL PACIFIC HURRICANE CENTER)								
23. STY LOUISE	16	12	35	102	69	31	203	112	27	260	139	23
24. TS MARGE	54	27	21	120	76	17	300	178	13	416	327	9
25. TS NORA	21	10	20	96	63	17	184	132	13	249	125	9
26. TS OPAL	18	14	7	161	152	3	--	--	--	--	--	--
ALL FORECASTS	27	16	625	112	71	526	230	132	425	338	202	333
TYPHOONS ONLY (WHILE WINDS OVER 35 KNOTS)	24	14	419	112	71	390	232	133	333	336	194	277

TABLE 5-2. JTWC ANNUAL AVERAGE POSITION FORECAST
ERROR FOR TROPICAL CYCLONES WHILE
WTNDS OVER 35 KNOTS

	WESTERN NORTH PACIFIC**			INDIAN OCEAN***		
	24-HR	48-HR	72-HR	24-HR	48-HR	
1950-58	170	---	---	---	---	---
1959	*117	*267	---	---	---	---
1960	177	354	---	---	---	---
1961	136	274	---	---	---	---
1962	144	287	476	---	---	---
1963	127	246	374	---	---	---
1964	133	284	429	---	---	---
1965	151	303	418	---	---	---
1966	136	280	432	---	---	---
1967	125	276	414	---	---	---
1968	105	229	337	---	---	---
1969	111	237	349	---	---	---
1970	98	181	272	---	---	---
1971	99	203	308	220	410	
1972	116	245	382	193	233	
1973	102	193	245	203	305	
1974	114	218	351	137	238	
1975	129	279	442	145	228	
1976	117	232	336	138	204	

*FORECAST POSITIONS NORTH OF 35°N WERE NOT VERIFIED.

**FOR TYPHOONS ONLY

***1971-1974 DOES NOT INCLUDE ARABIAN SEA

TABLE 5-3. 1976 JTWC ERROR SUMMARY FOR THE NORTH INDIAN OCEAN

POSIT ERROR	WARNINGS			24 HOUR			48 HOUR		
	RT ANGLE ERROR	# WRNGS	FCST ERROR	RT ANGLE ERROR	# WRNGS	FCST ERROR	RT ANGLE ERROR	# WRNGS	
TC 20-76	31	12	6	201	162	4	157	107	2
TC 22-76	28	18	3	56	41	1	---	---	---
TC 23-76	35	13	4	71	34	2	---	---	---
TC 25-76	59	40	6	109	99	4	244	230	2
TC 30-76	64	43	7	154	114	5	209	147	3
ALL FCSTS	46	28	26	138	108	6	204	159	7

TABLE 5-4. JTWC ANNUAL AVERAGE INTENSITY FORECAST ERROR

WARNING POSITION	WESTERN NORTH PACIFIC*			INDIAN OCEAN**		
	24-HR	48-HR	72-HR	WARNING POSITION	24-HR	48-HR
1971	7	16	21	24	--	--
1972	9	14	20	24	13	15
1973	7	16	20	28	8	15
1974	4	11	15	20	0	8
1975	4	13	18	20	7	14
1976	5	12	19	22	5	10
AVG	6	14	19	23	7	12

*FOR TYPHOONS ONLY

**1971-1974 DOES NOT INCLUDE ARABIAN SEA

(3) FCSTINT-Intensity forecast program which utilizes statistical regression equations to provide 24-, 48-, and 72-hour forecast intensities.

(4) 12-HR EXTRAPOLATION-A track through current warning position and 12-hour old preliminary best track position is linearly extrapolated to 24 and 48 hours.

(5) HPAC-Mean 24 and 48 hour forecast positions are derived by averaging the 24 and 48 hour positions from the 12-HR EXTRAPOLATION track and a track based on climatology.

(6) XT24-Similar to 12-HR EXTRAPOLATION, except 24 hr old preliminary best track and latest fix position are used. Rather than linear extrapolation, the actual forecast speed of movement is used.

(7) INJAH74-Analog program for North Indian Ocean. Similar to TYFN75, except tracks are not segregated.

c. TESTING AND RESULTS

It is of interest to compare the performance of the objective techniques to each other and to the official forecast as well. This information is listed in Table 5-5 for Pacific typhoons only and in Table 5-6 for all Pacific forecasts.

In these tables "X-AXIS" refers to the techniques listed horizontally across the top, while "Y-AXIS" refers to those listed vertically. As a matter of explanation, the example shown in Table 5-5 compares TYFC to XT24. In the 182 cases available for comparison, the average 24 hour vector error for TYFC was 126 nm, while that for XT24 was 133 nm. The difference of -7 nm is shown in the lower right.

FIGURE 5-1. Mean vector error for the Pacific Area.

FIGURE 5-2. Mean right angle error for the Pacific Area.

FIGURE 5-3. Mean vector error for the Indian Ocean Area.

TABLE 5-5. 1976 OBJECTIVE TECHNIQUES FOR WESTERN NORTH PACIFIC TYPHOONS

24-HOUR

	<u>JTWC</u>	<u>XTRP</u>	<u>HPAC</u>	<u>XT24</u>	<u>TYFC</u>	<u>MH70</u>	<u>MH50</u>
JTWC	390 117 117 0						
XTRP	299 114 127 13	299 127 127 0					
HPAC	271 111 130 19	271 124 130 6	271 130 130 0				
XT24	195 113 131 18	192 125 131 6	182 134 128 -6	195 131 131 0			
TYFC	283 112 129 17	267 125 130 5	245 131 125 -6	283 129 129 0			
MH70	190 115 158 43	185 131 155 24	170 143 154 11	125 139 162	185 138 23 15	190 158 158 0	
MH50	177 114 149 35	172 131 145 14	159 143 143 0	118 135 149 14	172 137 144 7	175 159 149 -10	177 149 149 0

48-HOUR

	<u>JTWC</u>	<u>XTRP</u>	<u>HPAC</u>	<u>XT24</u>	<u>TYFC</u>	<u>MH70</u>	<u>MH50</u>
JTWC	334 232 232 0						
XTRP	270 233 270 37	270 270 270 0					
HPAC	239 231 244 13	239 277 244 -33	239 244 244 0				
XT24	171 243 298 48	169 291 298 7	164 262 297 35	171 298 298 0			
TYFC	247 236 273 37	231 286 277 -9	215 250 273 23	157 314 275 -39	247 273 273 0		
MH70	157 243 355 112	152 299 353 54	144 270 356 86	103 320 385 65	155 287 349 62	157 355 355 0	
MH50	147 243 310 67	143 289 306 17	138 270 304 34	99 293 342 49	145 287 305 18	145 359 311 -48	147 310 310 0

72-HOUR

	<u>JTWC</u>	<u>XT24</u>	<u>TYFC</u>	<u>MH70</u>	<u>MH50</u>
JTWC	277 335 335 0				
XT24	130 353 438 85	130 438 438 0			
TYFC	219 346 390 44	125 442 389 -53	219 390 390 0		
MH70	117 369 572 203	73 466 618 152	118 415 562 147	117 572 572 0	
MH50	119 374 523 149	75 450 574 124	119 412 514 102	115 567 522 -45	119 523 523 0

TABLE 5-6. 1976 OBJECTIVE TECHNIQUES FOR ALL WESTERN NORTH PACIFIC FORECASTS

24-HOUR

	JTWC	XTRP	HPAC	XT24	TYFC	MH70	MH50
JTWC	525 117 117 0						
XTRP	414 116 134 18	414 134 134 0					
HPAC	367 114 129 15	366 133 129 -4	367 129 129 0				
XT24	263 114 132 18	259 126 133 7	235 132 131 -1	263 132 132 0			
TYFC	373 113 132 19	352 133 144 11	315 130 127 -3	242 138 125 -13	373 132 132 0		
MH70	251 117 153 36	244 133 151 18	218 139 150 11	168 144 154 10	245 139 150 11	251 153 153 0	
MH50	233 117 150 33	227 134 147 13	205 138 146 8	160 142 151 9	227 138 147 9	231 153 151 -2	233 150 150 0

48-HOUR

	JTWC	XTRP	HPAC	XT24	TYFC	MH70	MH50
JTWC	425 231 231 0						
XTRP	346 231 265 34	346 265 265 0					
HPAC	302 228 249 21	301 269 248 -21	302 249 249 0				
XT24	220 241 287 46	217 282 287 5	203 255 287 32	220 287 287 0			
TYFC	310 235 269 34	287 281 274 -7	262 256 269 13	198 305 264 -41	310 269 269 0		
MH70	198 247 334 87	191 296 333 37	177 263 338 75	135 311 350 39	195 276 329 53	198 334 334 0	
MH50	184 246 300 54	179 274 296 22	169 262 295 33	130 294 317 23	181 275 295 20	183 336 300 -36	184 300 300 0

72-HOUR

	JTWC	XT24	TYFC	MH70	MH50
JTWC	333 338 338 0				
XT24	161 359 417 58	161 417 417 0			
TYFC	258 347 377 30	151 424 369 -55	258 377 377 0		
MH70	142 372 531 159	95 429 556 127	144 390 522 132	142 531 531 0	
MH50	144 377 511 134	97 429 545 116	144 378 496 118	140 526 511 -15	144 511 511 0

3. PACIFIC AREA TROPICAL STORM AND DEPRESSION DATA

TROPICAL STORM LORNA

0600Z 27 FEB TO 0600Z 01 MAR

BEST TRACK		WARNING		24 HOUR FORECAST				48 HOUR FORECAST				72 HOUR FORECAST			
POSIT	WIND	POSIT	WIND	POSIT	WIND	DST	WIND	POSIT	WIND	DST	WIND	POSIT	WIND	DST	WIND
270600Z	8.1N 151.6E	25	7.9N 151.3E	25	21	0	9.2N 146.0E	40	173	5	---	---	---	---	---
271200Z	8.4N 150.8E	25	8.6N 150.5E	25	21	0	9.8N 145.9E	35	118	0	---	---	---	---	---
271800Z	8.8N 150.2E	30	8.9N 149.7E	25	53	-5	10.0N 144.9E	35	114	0	---	---	---	---	---
280000Z	9.3N 149.5E	30	9.6N 149.5E	30	18	0	11.2N 145.9E	40	133	10	---	---	---	---	---
280600Z	9.6N 148.9E	35	10.0N 148.6E	35	30	6	---	---	---	---	---	---	---	---	---
281200Z	9.8N 147.9E	35	10.2N 148.1E	35	27	0	---	---	---	---	---	---	---	---	---
281800Z	9.6N 146.8E	35	10.4N 147.7E	35	71	0	---	---	---	---	---	---	---	---	---
290000Z	9.0N 145.6E	30	10.2N 147.5E	35	133	5	---	---	---	---	---	---	---	---	---
AVERAGE FORECAST ERROR															
24-HR 48-HR 72-HR															
47NM 134NM 0NM															
24NM 54NM 0NM															
1KTS 4KTS 0KTS															
0KTS 4KTS 0KTS															
NUMBER OF FORECASTS															
8 4 0															

TROPICAL STORM NANCY

1200Z 25 APR TO 0000Z 02 MAY

BEST TRACK		WARNING		24 HOUR FORECAST				48 HOUR FORECAST				72 HOUR FORECAST					
POSIT	WIND	POSIT	WIND	POSIT	WIND	DST	WIND	POSIT	WIND	DST	WIND	POSIT	WIND	DST	WIND		
251200Z	11.5N 152.0E	30	11.4N 152.1E	30	8	0	14.8N 150.2E	50	173	15	16.6N 155.5E	55	262	10	22.2N 150.3E	51	429
251800Z	11.8N 150.9E	30	11.4N 151.9E	30	63	0	13.7N 150.4E	50	116	15	16.8N 155.5E	55	170	10	20.2N 159.5E	51	351
260000Z	11.8N 150.0E	30	12.7N 151.1E	30	54	0	15.2N 157.4E	50	136	10	18.8N 157.3E	55	235	10	22.2N 158.5E	51	459
260600Z	11.9N 159.4E	35	12.4N 159.7E	35	76	0	13.3N 154.1E	50	264	10	14.2N 150.2E	60	357	15	19.2N 146.3E	71	451
261200Z	12.2N 158.9E	35	12.4N 157.1E	35	77	0	13.0N 153.9E	55	263	10	14.0N 150.1E	65	337	15	19.1N 146.1E	75	433
261800Z	12.7N 158.7E	35	12.2N 158.4E	35	35	0	12.6N 156.4E	55	144	10	13.4N 153.2E	65	166	15	14.4N 149.3E	75	222
270000Z	13.3N 158.7E	40	12.4N 157.9E	35	54	-5	12.7N 157.9E	45	146	0	13.0N 156.3E	55	168	5	13.4N 154.3E	65	281
270600Z	13.9N 158.6E	40	14.8N 157.4E	40	55	0	16.8N 158.5E	60	162	15	19.5N 159.3E	60	372	5	22.3N 151.7E	55	687
271200Z	14.4N 158.2E	45	15.2N 158.6E	40	40	-5	17.0N 158.6E	50	193	0	19.8N 159.1E	50	455	-5	23.0N 151.6E	45	417
271800Z	14.8N 157.4E	45	15.1N 157.7E	45	25	0	17.2N 157.2E	55	157	5	19.9N 156.5E	55	324	0	23.0N 157.5E	45	589
280000Z	14.2N 156.8E	45	15.2N 156.9E	45	8	0	16.1N 155.3E	55	51	5	18.0N 154.7E	55	191	0	20.9N 155.7E	45	528
280600Z	15.1N 156.3E	45	15.2N 157.4E	45	8	0	16.5N 155.1E	45	75	10	18.9N 154.4E	40	253	-15	21.7N 156.3E	35	647
281200Z	15.2N 155.8E	50	15.4N 157.5E	50	21	0	16.4N 153.3E	50	56	-5	18.3N 151.8E	40	139	-10	20.7N 151.8E	35	466
281800Z	15.3N 155.3E	50	15.5N 157.3E	50	12	0	16.3N 153.3E	50	43	-5	18.2N 151.9E	40	188	-5	20.5N 151.8E	35	531
290000Z	15.4N 154.8E	50	15.2N 154.8E	50	12	5	15.5N 152.9E	55	55	0	15.9N 150.4E	55	150	5	16.4N 148.0E	55	292
290600Z	15.5N 154.3E	55	15.4N 154.7E	50	12	-5	15.7N 152.2E	55	63	0	16.0N 149.4E	55	190	20	17.7N 147.4E	55	27
291200Z	15.5N 153.6E	55	15.4N 154.7E	50	24	-5	15.6N 151.9E	60	98	10	15.8N 149.4E	60	230	30	17.7N 147.4E	55	27
291800Z	15.9N 152.9E	55	15.6N 154.9E	50	6	-5	15.8N 150.4E	60	78	15	16.1N 147.5E	60	192	30	17.7N 147.4E	55	27
300000Z	16.0N 152.1E	55	15.7N 152.1E	50	18	-5	15.9N 149.0E	60	71	20	16.1N 146.1E	60	184	35	17.7N 147.4E	55	27
300600Z	16.1N 151.3E	55	15.8N 151.1E	50	50	0	15.9N 148.2E	65	98	30	16.2N 147.4E	65	190	30	17.7N 147.4E	55	27
301200Z	16.4N 150.6E	50	16.3N 150.4E	50	13	5	16.8N 147.5E	65	134	35	17.1N 146.4E	60	193	30	17.7N 147.4E	55	27
301800Z	16.4N 149.2E	45	16.2N 149.3E	50	13	10	16.8N 149.9E	60	133	30	17.1N 146.4E	60	193	30	17.7N 147.4E	55	27
010000Z	16.2N 147.8E	40	16.2N 147.1E	45	29	5	15.8N 141.8E	35	100	10	16.0N 140.4E	35	115	15	17.7N 147.4E	55	27
010600Z	16.1N 146.5E	35	16.2N 145.3E	40	13	6	15.7N 144.7E	35	115	15	16.0N 143.4E	35	115	15	17.7N 147.4E	55	27
011200Z	15.9N 145.4E	30	16.1N 147.2E	40	21	10	15.7N 144.7E	35	115	15	16.0N 143.4E	35	115	15	17.7N 147.4E	55	27
011800Z	15.2N 144.3E	30	16.0N 144.1E	35	48	5	15.7N 143.2E	35	115	15	16.0N 143.4E	35	115	15	17.7N 147.4E	55	27
020000Z	14.8N 143.2E	25	14.8N 143.5E	25	17	0	15.7N 144.7E	35	115	15	16.0N 143.4E	35	115	15	17.7N 147.4E	55	27
ALL FORECASTS																	
WARNING 24-HR 48-HR 72-HR																	
29NM 122NM 237NM 475NM																	
19NM 74NM 147NM 282NM																	
3KTS 12KTS 13KTS 8KTS																	
6KTS 10KTS 9KTS 7KTS																	
27 23 19 15																	

TROPICAL STORM VIOLET

0000Z 21 JUL TO 1800Z 25 JUL

BEST TRACK	WARNING	24 HOUR FORECAST						48 HOUR FORECAST						72 HOUR FORECAST					
		POSIT	WIND	POSIT	WIND	DST WIND	POSIT	WIND	DST WIND	POSIT	WIND	DST WIND	POSIT	WIND	DST WIND	POSIT	WIND	DST WIND	
210000Z 15.9N 115.7E 30 15.7N 112.4E 30	21 0 17.5N 113.8E 35	49 -10	18.8N 112.0E 45	51 -5	20.3N 110.2E 35	55 -5	21.5N 110.2E 35	137 -5											
210000Z 15.9N 115.2E 30 16.3N 112.7E 30	13 0 18.0N 113.5E 40	34 -10	19.6N 111.8E 45	78 -5	21.5N 110.2E 35	137 -5													
211000Z 17.0N 114.6E 35 17.1N 114.7E 30	8 -5	19.2N 112.9E 40	67 -15	21.7N 112.1E 50	191 5	23.4N 112.0E 20	215 -20												
211000Z 17.7N 114.2E 40 17.7N 114.2E 35	0 -5	19.8N 112.6E 45	106 -10	22.1N 112.0E 45	201 0	24.0N 112.0E 20	228 -20												
240000Z 17.1N 113.6E 45 18.2N 113.7E 45	8 0	20.2N 112.3E 60	124 10	22.1N 112.0E 55	188 15	24.0N 112.2E 20	213 -25												
240000Z 16.1N 115.0E 50 18.8N 113.1E 50	50 0	21.4N 111.7E 60	173 10	23.4N 111.2E 20	233 -20	---	---	---	---	---	---	---	---	---	---	---	---	---	
241000Z 16.3N 112.2E 55 18.7N 111.7E 50	37 0	20.1N 109.2E 40	135 -5	21.9N 108.0E 20	251 -20	---	---	---	---	---	---	---	---	---	---	---	---	---	
241000Z 16.3N 111.6E 55 18.0N 110.9E 50	53 0	20.6N 109.0E 40	156 -5	22.7N 107.9E 20	291 -20	---	---	---	---	---	---	---	---	---	---	---	---	---	
240000Z 17.4N 111.2E 50 19.1N 110.6E 50	54 0	20.5N 108.7E 40	154 0	22.4N 107.4E 30	326 -15	---	---	---	---	---	---	---	---	---	---	---	---	---	
240000Z 16.0N 110.9E 50 18.9N 111.1E 50	21 0	20.4N 108.9E 35	150 -5	22.3N 107.6E 25	319 -25	---	---	---	---	---	---	---	---	---	---	---	---	---	
241000Z 17.7N 112.9E 45 19.4N 110.7E 50	42 5	20.4N 109.6E 35	134 -5	22.2N 108.5E 20	241 -35	---	---	---	---	---	---	---	---	---	---	---	---	---	
241000Z 16.0N 110.9E 45 19.6N 110.4E 45	45 0	20.9N 109.2E 35	184 -5	22.7N 108.3E 20	204 -30	---	---	---	---	---	---	---	---	---	---	---	---	---	
240000Z 19.1N 111.0E 40 19.5N 110.9E 40	25 0	21.2N 110.0E 30	167 -15	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	
240000Z 19.5N 111.4E 40 19.8N 110.9E 40	40 33	21.5N 109.1E 30	230 -20	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	
241000Z 19.8N 111.7E 40 20.3N 110.9E 50	59 64	22.4N 110.9E 25	116 -30	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	
241000Z 20.2N 112.4E 40 20.9N 110.9E 35	39 49	22.9N 110.9E 25	91 -25	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	
250000Z 20.5N 112.9E 45 20.8N 112.3E 40	19 -5	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	
250000Z 21.1N 113.2E 50 21.2N 113.1E 45	8 -5	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	
251000Z 21.6N 112.8E 55 21.8N 113.2E 50	25 3	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	
251000Z 21.7N 111.9E 50 22.3N 112.2E 30	30 61	0 ---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	

ALL FORECASTS
 WARNING 24-HR 48-HR 72-HR
 33NM 129NM 215NM 175NM
 23NM 103NM 136NM 110NM
 2KTS 11KTS 16KTS 15KTS
 -1KTS -9KTS -13KTS -15KTS
 20 16 12 5

AVERAGE FORECAST ERROR
 AVERAGE RIGHT ANGLE ERROR
 AVERAGE MAGNITUDE OF WIND ERROR
 AVERAGE BIAS OF WIND ERROR
 NUMBER OF FORECASTS

TROPICAL STORM WILDA

0600Z 22JUL TO 0600Z 24 JUL

BEST TRACK	WARNING	24 HOUR FORECAST						48 HOUR FORECAST						72 HOUR FORECAST					
		POSIT	WIND	POSIT	WIND	DST WIND	POSIT	WIND	DST WIND	POSIT	WIND	DST WIND	POSIT	WIND	DST WIND	POSIT	WIND	DST WIND	
240000Z 26.5N 138.1E 30 20.3N 137.5E 25	36 -5	22.6N 135.8E 35	287 -10	24.9N 134.1E 45	576 30	---	---	---	---	---	---	---	---	---	---	---	---	---	
241200Z 21.2N 138.3E 30 21.4N 137.7E 30	77 0	25.3N 135.8E 45	261 5	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	
241800Z 23.9N 138.3E 35 22.2N 137.5E 35	131 0	25.8N 135.2E 45	378 10	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	
250000Z 25.6N 137.4E 40 27.5N 137.4E 50	160 10	32.7N 128.9E 40	159 15	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	
250000Z 27.4N 135.7E 45 28.2N 137.1E 50	60 6	34.4N 125.9E 40	281 25	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	
251700Z 29.4N 134.1E 40 30.2N 133.2E 35	59 -5	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	
251800Z 31.8N 132.9E 35 31.1N 131.5E 35	86 0	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	
240000Z 33.8N 131.8E 25 33.9N 131.5E 35	16 10	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	
240000Z 34.3N 131.6E 15 34.2N 131.2E 20	21 5	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	

ALL FORECASTS
 WARNING 24-HR 48-HR 72-HR
 72NM 273NM 576NM 0NM
 39NM 148NM 161NM 0NM
 4KTS 13KTS 30KTS 0KTS
 2KTS 9KTS 30KTS 0KTS
 9 5 1 0

AVERAGE FORECAST ERROR
 AVERAGE RIGHT ANGLE ERROR
 AVERAGE MAGNITUDE OF WIND ERROR
 AVERAGE BIAS OF WIND ERROR
 NUMBER OF FORECASTS

TROPICAL STORM CLARA

1200Z 05 AUG TO 0600Z 07 AUG

BEST TRACK	WARNING	24 HOUR FORECAST						48 HOUR FORECAST						72 HOUR FORECAST					
		POSIT	WIND	POSIT	WIND	DST WIND	POSIT	WIND	DST WIND	POSIT	WIND	DST WIND	POSIT	WIND	DST WIND	POSIT	WIND	DST WIND	
051200Z 14.9N 114.2E 30 20.1N 114.1E 30	13 0	21.7N 113.7E 40	35 0	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	
051800Z 20.2N 114.1E 30 35.2N 114.1E 40	6 5	21.9N 114.0E 55	106 25	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	
060000Z 26.5N 114.0E 40 20.5N 114.7E 40	0 0	21.8N 113.8E 55	164 30	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	
060000Z 21.9N 113.7E 40 21.2N 113.9E 40	21 0	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	
061200Z 21.5N 113.1E 40 21.5N 113.5E 40	22 0	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	
061800Z 22.1N 112.1E 30 22.2N 112.4E 40	28 10	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	
070000Z 24.7N 111.0E 25 22.6N 111.3E 25	18 0	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	

ALL FORECASTS
 WARNING 24-HR 48-HR 72-HR
 15NM 102NM 0NM 0NM
 8NM 40NM 0NM 0NM
 2KTS 18KTS 0KTS 0KTS
 2KTS 18KTS 0KTS 0KTS
 7 3 0 0

AVERAGE FORECAST ERROR
 AVERAGE RIGHT ANGLE ERROR
 AVERAGE MAGNITUDE OF WIND ERROR
 AVERAGE BIAS OF WIND ERROR
 NUMBER OF FORECASTS

TROPICAL STORM DOT

1800Z 18 AUG TO 0600Z 23 AUG

BEST TRACK	WARNING	24 HOUR FORECAST				48 HOUR FORECAST				72 HOUR FORECAST			
		POSIT	WIND	POSIT	WIND	POSIT	WIND	POSIT	WIND	POSIT	WIND	POSIT	WIND
181800Z 22.4N 134.9E	30 22.5N 134.9E	30	6	24.4N 129.6E	55	48	5	25.8N 125.3E	65	128	25	26.7N 121.2E	70
182000Z 21.9N 133.3E	35 23.0N 133.4E	35	8	24.9N 128.3E	55	48	5	26.2N 124.2E	65	147	25	26.9N 120.0E	70
190600Z 23.6N 131.8E	40 23.3N 132.3E	40	33	24.7N 127.4E	60	110	10	25.8N 123.0E	70	216	30	27.0N 118.9E	45
191200Z 24.4N 130.4E	45 23.5N 131.3E	45	93	24.8N 127.6E	60	184	15	25.8N 123.5E	70	270	30	26.4N 119.2E	45
191800Z 25.0N 129.0E	50 25.0N 129.0E	45	0	27.9N 120.9E	65	165	25	28.1N 116.8E	30	328	5	--	--
200000Z 25.5N 127.7E	50 25.6N 127.7E	50	6	27.5N 122.8E	40	63	0	29.4N 119.5E	25	212	-10	--	--
200600Z 21.3N 125.4E	50 26.2N 125.5E	45	8	28.7N 122.0E	35	56	-5	30.5N 119.6E	25	221	-5	--	--
211200Z 21.8N 125.0E	45 26.8N 125.1E	45	5	29.6N 120.9E	30	81	-10	31.5N 120.2E	25	239	-5	--	--
211800Z 27.6N 124.0E	40 27.5N 124.0E	45	8	30.6N 120.4E	25	92	-10	32.4N 120.3E	20	336	-10	--	--
212000Z 26.5N 123.2E	40 28.1N 122.9E	40	29	30.6N 120.5E	25	124	-10	--	--	--	--	--	--
212600Z 29.4N 122.7E	40 29.1N 122.4E	40	19	32.5N 122.2E	30	42	0	--	--	--	--	--	--
213200Z 31.2N 122.3E	40 30.5N 122.3E	40	12	32.9N 122.8E	30	65	0	--	--	--	--	--	--
213800Z 31.1N 122.1E	35 30.9N 122.7E	40	13	34.0N 123.6E	30	146	0	--	--	--	--	--	--
220000Z 31.0N 122.3E	35 31.6N 122.3E	35	24	34.6N 124.3E	30	217	10	--	--	--	--	--	--
220600Z 33.0N 122.8E	30 32.5N 124.5E	30	33	0	--	--	--	--	--	--	--	--	--
221200Z 33.9N 124.0E	30 33.4N 124.7E	30	62	0	--	--	--	--	--	--	--	--	--
221800Z 35.0N 126.3E	30 34.3N 124.7E	30	125	0	--	--	--	--	--	--	--	--	--
230000Z 35.8N 128.5E	20 35.7N 128.2E	25	20	5	--	--	--	--	--	--	--	--	--

ALL FORECASTS
 WARNING 24-HR 48-HR 72-HR
 28NM 104NM 233NM 379NM
 9NM 48NM 123NM 208NM
 1KTS 8KTS 16KTS 25KTS
 6KTS 3KTS 8KTS 25KTS
 18 14 9 4

TROPICAL STORM ELLEN

1800Z 20 AUG TO 0600Z 24 AUG

BEST TRACK	WARNING	24 HOUR FORECAST				48 HOUR FORECAST				72 HOUR FORECAST			
		POSIT	WIND	POSIT	WIND	POSIT	WIND	POSIT	WIND	POSIT	WIND	POSIT	WIND
211800Z 14.4N 131.9E	30 14.6N 131.4E	30	21	0 16.6N 127.4E	50	93	15	18.5N 123.9E	65	233	30	20.5N 120.6E	80
212000Z 15.0N 130.5E	35 15.1N 130.5E	35	6	0 17.4N 125.9E	50	103	15	19.5N 122.3E	70	197	30	21.4N 119.1E	85
212600Z 15.8N 129.1E	35 15.6N 129.7E	35	13	0 17.9N 124.2E	45	110	10	20.1N 120.2E	60	136	15	--	--
213200Z 16.5N 127.4E	35 16.5N 128.7E	32	34	0 19.0N 122.9E	50	123	15	21.3N 118.9E	65	103	20	--	--
213800Z 16.9N 125.8E	35 17.1N 128.7E	39	53	0 19.6N 121.8E	45	120	10	21.9N 117.6E	60	116	15	--	--
220000Z 17.2N 124.1E	35 17.3N 124.7E	35	8	0 19.7N 119.0E	50	13	10	22.2N 114.9E	55	62	30	--	--
220600Z 17.6N 122.3E	35 18.0N 122.4E	35	25	0 21.3N 117.7E	50	8	5	--	--	--	--	--	--
221200Z 16.2N 120.9E	35 18.1N 121.7E	35	46	0 19.7N 117.2E	40	120	-5	--	--	--	--	--	--
221800Z 11.9N 119.8E	35 18.6N 120.7E	35	33	0 20.3N 115.9E	45	132	0	--	--	--	--	--	--
230000Z 19.6N 118.8E	40 19.3N 119.1E	35	25	+5 22.0N 114.3E	55	74	30	--	--	--	--	--	--
230600Z 21.4N 117.8E	45 20.1N 117.1E	45	43	0 --	--	--	--	--	--	--	--	--	--
231200Z 21.7N 117.1E	45 20.5N 116.4E	50	82	5 --	--	--	--	--	--	--	--	--	--
231800Z 21.5N 115.8E	45 21.5N 117.9E	50	60	5 --	--	--	--	--	--	--	--	--	--
240000Z 23.2N 114.6E	25 22.3N 114.9E	50	56	25 --	--	--	--	--	--	--	--	--	--

ALL FORECASTS
 WARNING 24-HR 48-HR 72-HR
 36NM 89NM 141NM 282NM
 23NM 50NM 69NM 99NM
 3KTS 12KTS 23KTS 48KTS
 2KTS 11KTS 23KTS 48KTS
 14 10 6 2

TROPICAL STORM GEORGIA

0000Z 09 SEP TO 0000Z 15 SEP

BEST TRACK	WARNING	24 HOUR FORECAST						48 HOUR FORECAST						72 HOUR FORECAST					
		POSIT	KIND	POSIT	A100	DST WIND	ERRORS	POSIT	KIND	DST WIND	ERRORS	POSIT	KIND	DST WIND	ERRORS	POSIT	KIND	DST WIND	ERRORS
090000Z	9.1N 156.5E	30	9.2N 156.5E	30	6	0	11.9N 151.3E	51	135	10	13.9N 146.8E	70	250	30	15.8N 142.2E	90	295	55	
090600Z	9.6N 155.4E	30	9.5N 155.2E	40	47	10	11.1N 152.5E	61	64	20	13.1N 146.0E	80	112	40	15.1N 143.1E	100	183	65	
091200Z	9.9N 154.5E	35	9.9N 153.5E	40	59	5	11.4N 147.8E	60	236	20	12.9N 142.7E	80	298	40	14.4N 138.1E	100	336	65	
091800Z	10.0N 153.6E	35	10.1N 153.4E	45	6	10	11.4N 148.9E	65	116	25	13.2N 144.4E	85	152	50	14.6N 139.7E	105	204	70	
100000Z	10.1N 152.7E	40	10.2N 152.5E	45	13	5	11.8N 147.9E	65	124	25	13.4N 143.3E	85	163	50	15.5N 139.0E	105	220	70	
100600Z	10.1N 152.1E	40	10.2N 152.2E	45	8	5	11.9N 148.4E	65	24	25	13.2N 143.9E	85	72	50	15.2N 139.7E	105	141	75	
101200Z	10.1N 151.4E	40	10.1N 150.9E	50	38	10	11.9N 147.0E	70	41	30	13.6N 142.5E	90	102	55	15.8N 138.0E	110	249	85	
101800Z	10.4N 150.6E	40	9.9N 150.7E	40	40	0	11.0N 146.9E	50	72	15	12.9N 142.4E	60	24	25	---	--	--	--	
110000Z	10.9N 149.8E	40	10.1N 149.2E	40	48	0	11.3N 145.9E	45	66	10	13.3N 141.4E	55	48	20	---	--	--	--	
110600Z	11.4N 149.7E	40	11.3N 149.1E	40	13	0	12.3N 145.2E	45	36	10	13.6N 141.4E	55	33	25	---	--	--	--	
111200Z	11.9N 147.7E	40	11.7N 147.8E	40	13	0	13.2N 143.5E	45	48	10	14.9N 139.0E	55	181	30	---	--	--	--	
111800Z	11.2N 146.8E	30	12.1N 147.4E	40	6	5	13.5N 142.2E	45	50	10	---	--	--	--	---	--	--	--	
120000Z	11.4N 145.9E	35	12.5N 145.1E	40	13	5	14.1N 142.0E	40	38	5	---	--	--	--	---	--	--	--	
120600Z	11.7N 144.5E	35	12.9N 143.1E	40	46	5	14.3N 141.0E	40	50	10	---	--	--	--	---	--	--	--	
121200Z	11.4N 143.5E	35	12.8N 143.5E	40	30	5	14.4N 139.7E	50	139	25	---	--	--	--	---	--	--	--	
121800Z	12.0N 142.8E	35	12.9N 143.5E	40	41	5	---	--	--	--	---	--	--	--	---	--	--	--	
130000Z	13.5N 142.2E	35	13.2N 142.6E	40	33	5	---	--	--	--	---	--	--	--	---	--	--	--	
130600Z	14.0N 141.8E	30	14.5N 141.9E	35	30	5	---	--	--	--	---	--	--	--	---	--	--	--	
131200Z	14.5N 142.1E	25	14.7N 141.3E	35	48	10	---	--	--	--	---	--	--	--	---	--	--	--	

ALL FORECASTS
 WARNING 24-HR 48-HR 72-HR
 28NM 83NM 130NM 232NM
 16NM 38NM 56NM 153NM
 5KTS 17KTS 38KTS 69KTS
 5KTS 17KTS 38KTS 69KTS
 19 15 11 7

TROPICAL STORM MARGE

0000Z 05 NOV TO 0000Z 11 NOV

BEST TRACK	WARNING	24 HOUR FORECAST						48 HOUR FORECAST						72 HOUR FORECAST					
		POSIT	KIND	POSIT	A100	DST WIND	ERRORS	POSIT	KIND	DST WIND	ERRORS	POSIT	KIND	DST WIND	ERRORS	POSIT	KIND	DST WIND	ERRORS
060000Z	11.2N 140.1E	25	11.3N 141.7E	25	74	0	13.2N 136.7E	35	157	5	15.7N 133.1E	45	287	5	18.4N 130.8E	60	313	0	
060600Z	11.2N 137.5E	25	11.1N 140.1E	25	160	0	14.3N 139.6E	35	190	8	16.6N 132.4E	50	283	5	19.4N 131.0E	65	355	6	
061200Z	13.1N 135.3E	25	12.1N 134.7E	25	227	0	15.2N 139.0E	35	214	5	18.4N 132.8E	45	335	-10	21.2N 132.9E	55	442	-6	
061800Z	11.4N 134.7E	25	11.4N 134.7E	25	84	0	15.4N 131.2E	35	104	0	19.4N 129.9E	45	203	-15	22.2N 130.3E	55	316	0	
070000Z	10.9N 134.1E	35	10.2N 133.7E	25	65	-5	17.2N 130.5E	40	126	0	20.1N 129.3E	55	205	-5	23.0N 130.6E	55	322	5	
070600Z	11.0N 133.1E	30	14.3N 133.1E	25	42	-5	18.1N 129.7E	40	121	-5	21.0N 128.3E	55	171	-5	24.5N 130.8E	50	275	5	
071200Z	11.7N 129.6E	35	16.6N 129.4E	30	109	0	19.3N 129.0E	40	124	-15	22.4N 128.9E	50	211	-10	26.4N 133.6E	50	350	15	
071800Z	11.2N 129.6E	35	16.6N 129.4E	30	26	-5	20.1N 126.0E	45	29	-15	24.4N 129.9E	50	273	-5	29.3N 139.3E	45	577	20	
080000Z	17.1N 128.3E	40	18.1N 128.2E	30	60	-10	21.1N 127.7E	45	181	-15	26.8N 134.2E	35	492	-15	32.3N 145.3E	30	734	5	
080600Z	17.3N 127.6E	45	18.7N 127.5E	45	30	0	22.3N 127.7E	60	154	0	26.8N 134.2E	55	434	10	31.4N 130.8E	50	275	5	
081200Z	11.7N 126.9E	55	19.0N 126.9E	55	18	0	23.3N 127.9E	60	145	0	28.2N 135.2E	50	432	15	33.2N 139.3E	45	577	20	
081800Z	14.6N 126.3E	60	19.2N 126.7E	60	19	0	24.7N 128.5E	50	200	-5	28.9N 136.7E	40	440	15	33.2N 139.3E	45	577	20	
090000Z	21.7N 125.7E	60	20.6N 125.4E	55	8	-5	25.2N 124.9E	50	16	0	30.2N 131.9E	40	132	15	---	--	--	--	
090600Z	21.6N 125.3E	60	21.7N 125.1E	65	13	5	24.7N 125.3E	65	37	-10	30.1N 131.9E	40	132	15	---	--	--	--	
091200Z	20.8N 125.1E	60	22.4N 125.1E	60	24	0	27.1N 127.6E	50	27	15	33.2N 137.5E	45	432	15	33.2N 139.3E	45	577	20	
091800Z	26.2N 124.9E	55	23.0N 124.7E	45	12	-10	28.5N 127.3E	30	71	5	33.2N 139.3E	45	432	15	33.2N 139.3E	45	577	20	
100000Z	25.2N 125.2E	50	25.7N 125.1E	35	5	-15	28.8N 127.5E	30	165	5	33.2N 139.3E	45	432	15	33.2N 139.3E	45	577	20	
100600Z	21.3N 126.1E	45	25.6N 125.4E	35	50	-10	33.2N 137.5E	45	37	-10	33.2N 139.3E	45	432	15	33.2N 139.3E	45	577	20	
101200Z	27.2N 127.1E	35	26.8N 127.2E	35	26	0	33.2N 137.5E	45	32	-10	33.2N 139.3E	45	432	15	33.2N 139.3E	45	577	20	
101800Z	27.9N 128.4E	35	27.9N 129.2E	30	42	5	33.2N 137.5E	45	32	-10	33.2N 139.3E	45	432	15	33.2N 139.3E	45	577	20	
110000Z	28.3N 130.6E	25	28.5N 131.2E	30	34	5	33.2N 137.5E	45	32	-10	33.2N 139.3E	45	432	15	33.2N 139.3E	45	577	20	

ALL FORECASTS
 WARNING 24-HR 48-HR 72-HR
 54NM 120NM 300NM 416NM
 27NM 76NM 178NM 327NM
 4KTS 7KTS 19KTS 7KTS
 -2KTS 0KTS 0KTS 6KTS
 21 17 13 9

TROPICAL STORM NORBERT

2020 RELEASE UNDER E.O. 14176

ALL FORECASTS

AVERAGE FORECAST ERROR
 AVERAGE RIGHT ANGLE ERROR
 AVERAGE MAGNITUDE OF WIND ERROR
 AVERAGE BIAS OF WIND ERROR
 NUMBER OF FORECASTS

WARNING	24-HR	48-HR	72-HR
21NM	96NM	184NM	249NM
10NM	63NM	132NM	225NM
3KTS	6KTS	10KTS	11KTS
3KTS	5KTS	8KTS	11KTS
20	17	13	9

TROPICAL STORM DOL

2020/21/08/10/12/13/14/250

ALL FORECASTS

AVERAGE FORECAST ERROR
AVERAGE RIGHT ANGLE ERROR
AVERAGE MAGNITUDE OF WIND ERROR
AVERAGE BIAS OF WIND ERROR
NUMBER OF FORECASTS

WARNING	24-HR	48-HR	72-HR
18NM	161NM	UNM	0NM
14NM	152NM	UNM	0NM
10KTS	22KTS	OKTS	OKTS
10KTS	22KTS	OKTS	OKTS

4. PACIFIC AREA TYPHOON DATA

TYPHOON KATHY

TYPHONNS WHILE WIND OVER 35KTS	ALL FORECASTS
WARNING 24-HR 48-HR 72-HR	WARNING 24-HR 48-HR 72-HR
76NM 135NM 332NM 558NM	36NM 135NM 332NM 558NM
18NM 75NM 18DNM 291NM	18NM 75NM 18DNM 291NM
3KTS 11KTS 13KTS 6KTS	3KTS 12KTS 13KTS 6KTS
+4KTS +5KTS +4KTS 5KTS	+0KTS -5KTS -4KTS 5KTS
10 15 11 7	19 15 11 3

TYPHON MARIE

0600Z 03 APR TO 0000Z 14 APR

BEST TRACK	WARNING	24 HOUR FORECAST						48 HOUR FORECAST						72 HOUR FORECAST					
		POSIT	WIND	POSIT	WIND	POSIT	WIND	POSIT	WIND	POSIT	WIND	POSIT	WIND	POSIT	WIND	POSIT	WIND	POSIT	WIND
030600Z	6.2N 140.4E	30	8.7N 140.1E	30	19	8.5N 140.8E	40	112	-5	9.3N 137.1E	10	10.4N 135.4E	50	206	-15	11.8N 138.8E	60	248	-15
031200Z	6.1N 140.7E	35	8.5N 140.7E	35	25	8.6N 140.0E	40	78	-10	10.7N 139.5E	50	204	-15	11.8N 138.8E	60	248	-15		
031800Z	6.2N 140.9E	40	8.8N 140.4E	35	46	-5	9.7N 139.9E	45	132	-10	10.8N 139.3E	50	217	-15	11.8N 138.7E	60	251	-5	
040000Z	6.3N 141.0E	40	8.1N 141.2E	40	17	0	8.9N 141.2E	55	126	-5	9.9N 141.5E	60	202	-5	10.9N 139.8E	60	271	-5	
040600Z	6.6N 140.7E	45	8.7N 141.5E	45	30	0	9.2N 140.9E	60	139	-5	10.2N 140.3E	65	210	0	11.2N 139.5E	65	288	0	
041200Z	6.3N 140.0E	50	8.5N 140.5E	45	55	-5	9.5N 140.6E	60	155	-5	10.6N 140.1E	65	235	0	11.6N 139.7E	65	344	-5	
041800Z	7.7N 139.8E	55	8.1N 140.5E	45	27	-10	9.2N 139.6E	60	128	-5	10.2N 139.3E	65	204	0	11.3N 139.0E	65	335	-10	
050000Z	7.5N 139.5E	60	7.9N 139.5E	55	19	-5	8.5N 138.9E	70	78	5	9.6N 138.5E	75	164	10	11.5N 137.8E	80	320	0	
050600Z	7.4N 139.4E	65	7.3N 139.7E	55	13	0	7.5N 137.9E	75	21	10	8.5N 137.7E	80	13	15	10.2N 133.0E	80	93	0	
051200Z	7.3N 139.2E	65	7.2N 139.1E	70	8	5	7.2N 138.5E	80	96	15	7.8N 136.6E	85	105	15	9.6N 133.9E	85	120	0	
051800Z	7.2N 138.8E	65	7.2N 139.1E	70	18	5	7.2N 138.3E	80	122	15	7.9N 136.4E	85	132	10	9.7N 133.8E	85	139	0	
060000Z	7.4N 138.2E	65	7.4N 138.5E	70	18	5	8.1N 137.1E	65	59	0	9.1N 135.4E	60	129	-20	9.8N 132.1E	50	53	-45	
060600Z	7.8N 137.7E	65	7.8N 137.7E	65	12	0	8.5N 135.9E	60	25	-5	10.1N 132.9E	50	85	-30	10.5N 129.3E	45	100	-50	
061200Z	7.0N 137.1E	65	8.0N 137.4E	65	18	0	9.1N 135.2E	60	51	-10	10.4N 132.2E	50	90	-35	11.4N 128.6E	45	112	-55	
061800Z	6.2N 136.5E	65	8.2N 136.5E	65	0	0	9.3N 133.9E	65	62	-10	10.2N 130.9E	60	69	-25	10.3N 127.3E	60	174	-45	
070000Z	6.2N 136.1E	65	8.4N 136.1E	65	12	0	9.7N 133.7E	65	75	-15	10.8N 130.6E	60	75	-30	11.5N 127.0E	60	150	-45	
070600Z	6.3N 135.6E	65	8.3N 135.1E	65	12	0	8.7N 133.7E	65	65	-15	9.8N 132.7E	60	38	-35	11.4N 127.9E	60	144	-45	
071200Z	6.3N 134.9E	70	8.3N 135.2E	65	18	-5	8.5N 133.0E	65	62	-20	9.6N 129.8E	60	99	-40	10.9N 126.4E	60	223	-50	
071800Z	6.3N 134.2E	75	8.3N 134.5E	70	6	5	8.9N 131.3E	70	21	-15	10.1N 127.9E	65	151	-35	11.0N 125.3E	60	284	-55	
080000Z	6.5N 133.3E	80	8.4N 133.3E	80	6	0	8.6N 130.1E	85	92	-5	9.5N 126.5E	75	243	-30	10.7N 123.1E	60	427	-55	
080600Z	6.7N 132.6E	80	8.6N 132.5E	80	9	0	8.9N 129.5E	95	126	0	9.5N 126.7E	90	257	-15	10.5N 123.5E	60	458	-55	
081200Z	6.9N 132.0E	85	8.7N 131.7E	85	21	0	9.1N 128.6E	95	164	-5	9.7N 125.9E	90	298	-20	10.4N 122.8E	60	528	-55	
081800Z	9.2N 131.5E	85	8.9N 131.3E	85	21	0	9.5N 128.4E	95	158	-5	10.2N 125.7E	85	306	-30	11.4N 122.7E	60	573	-55	
090000Z	9.7N 131.2E	90	9.1N 130.5E	90	50	0	9.7N 127.8E	100	187	-5	10.6N 125.0E	90	351	-25	12.4N 121.6E	60	663	-45	
090600Z	10.4N 131.0E	95	10.4N 130.4E	90	23	-5	12.5N 128.5E	100	50	-5	13.6N 125.6E	90	243	-25	14.3N 122.2E	80	624	-20	
091200Z	11.1N 130.5E	100	11.1N 130.7E	95	12	-5	13.5N 129.4E	105	39	-5	14.7N 126.9E	95	195	-20	15.3N 123.6E	85	604	-15	
091800Z	11.7N 129.9E	100	11.9N 129.3E	100	37	0	13.8N 125.3E	100	200	-5	14.8N 121.1E	75	543	-35	17.9N 118.5E	60	875	-20	
100000Z	12.4N 129.4E	105	12.1N 129.3E	105	19	0	13.5N 125.1E	115	183	0	14.5N 122.1E	105	555	0	16.8N 117.8E	75	999	5	
100600Z	13.1N 129.1E	105	13.0N 128.9E	105	13	0	14.5N 125.8E	115	205	0	16.2N 122.0E	110	581	10	19.2N 117.9E	75	1007	15	
101200Z	13.8N 128.8E	110	13.5N 128.2E	110	19	0	15.2N 127.0E	120	171	5	16.9N 125.2E	119	475	25	19.1N 124.0E	110	766	60	
101800Z	14.4N 128.7E	115	14.4N 128.9E	115	12	0	16.9N 127.1E	115	176	5	18.9N 125.0E	110	502	30	--	--	--	--	
110000Z	15.2N 128.8E	115	15.0N 128.5E	115	21	0	17.1N 127.4E	120	213	15	19.5N 127.2E	115	450	45	--	--	--	--	
110600Z	16.0N 129.0E	115	16.1N 129.4E	115	24	0	19.6N 129.4E	105	119	5	22.1N 135.0E	95	115	35	--	--	--	--	
111200Z	16.9N 129.4E	115	16.7N 129.4E	115	12	0	18.8N 132.6E	100	132	10	20.5N 138.7E	90	300	40	--	--	--	--	
111800Z	17.9N 130.0E	110	17.7N 130.1E	115	12	5	19.9N 133.1E	100	132	20	--	--	--	--	--	--	--	--	
120000Z	18.8N 130.7E	105	18.7N 130.9E	110	13	5	21.1N 134.8E	85	123	15	--	--	--	--	--	--	--	--	
120600Z	19.8N 131.5E	100	19.5N 131.2E	100	25	0	22.1N 134.9E	80	116	20	--	--	--	--	--	--	--	--	
121200Z	21.0N 132.4E	90	21.0N 132.2E	90	11	0	24.2N 136.7E	70	52	20	--	--	--	--	--	--	--	--	
121800Z	22.1N 133.3E	80	22.0N 133.1E	90	13	10	--	--	--	--	--	--	--	--	--	--	--	--	
130000Z	23.1N 134.3E	70	23.2N 133.9E	75	23	5	--	--	--	--	--	--	--	--	--	--	--	--	
130600Z	24.0N 135.3E	60	23.0N 134.1E	60	89	0	--	--	--	--	--	--	--	--	--	--	--	--	
131200Z	25.0N 136.3E	50	24.4N 135.1E	55	39	5	--	--	--	--	--	--	--	--	--	--	--	--	

TYPHONS WHILE WIND OVER 35KTS

WARNING 24-HR 48-HR 72-HR

AVERAGE FORECAST ERROR 71NM 112NM 236NM 379NM

AVERAGE RIGHT ANGLE ERROR 71NM 75NM 157NM 260NM

AVERAGE MAGNITUDE OF WIND ERROR 2KTS 9KTS 22KTS 27KTS

AVERAGE BIAS OF WIND ERROR -OKTS +OKTS -2KTS +2KTS

NUMBER OF FORECASTS 41 38 34 30

ALL FORECASTS

WARNING 24-HR 48-HR 72-HR

21NM 112NM 236NM 379NM

11NM 75NM 157NM 260NM

2KTS 9KTS 22KTS 27KTS

OKTS -OKTS -2KTS +2KTS

42 38 34 30

TYPHON OLRA

0600Z 12 MAY TO 0000Z 27 MAY

BEST TRACK			WARNING			24 HOUR FORECAST			48 HOUR FORECAST			72 HOUR FORECAST			
POSIT	KIND	POSIT	WIND	WIND	ERRORS	POSIT	WIND	WIND	POSIT	WIND	WIND	POSIT	WIND	WIND	
140600Z	11.5N 136.2E	29 11.8N 135.9E	22 45 0	11.7N 134.4E	38 0	11.8N 131.1E	45 58 10	12.9N 128.0E	55 299 20						
141200Z	11.7N 135.4E	30 11.8N 135.7E	50 47 0	10.9N 133.3E	40 38 0	11.7N 130.2E	45 85 15	12.4N 127.2E	55 291 15						
141800Z	11.9N 134.9E	30 11.8N 135.4E	50 45 0	10.7N 133.1E	40 60 0	11.3N 130.0E	45 246 15	12.3N 126.9E	55 270 10						
142000Z	11.7N 134.3E	30 11.8N 135.7E	50 24 0	11.7N 131.6E	35 53 0	12.6N 128.8E	40 289 5	14.3N 126.1E	45 315 5						
142600Z	11.4N 133.9E	35 11.8N 135.4E	50 25 0	12.4N 131.7E	40 21 5	13.4N 129.4E	45 256 10	15.1N 126.5E	50 284 0						
142800Z	11.5N 133.5E	40 11.8N 135.4E	50 19 5	12.5N 132.0E	40 37 10	13.1N 129.7E	45 180 5	14.6N 127.4E	50 168 0						
143000Z	11.7N 133.0E	40 11.8N 135.7E	50 21 5	12.5N 131.5E	40 190 10	13.3N 129.3E	45 171 0	14.2N 126.9E	50 166 0						
143000Z	12.0N 132.5E	35 12.0N 134.9E	50 23 0	12.2N 131.0E	40 176 5	12.3N 128.9E	45 146 5	14.8N 126.0E	50 193 0						
143600Z	11.2N 132.0E	39 12.0N 134.5E	50 29 0	12.7N 130.5E	40 171 5	13.6N 128.1E	45 156 5	15.3N 125.3E	50 189 5						
144200Z	11.5N 131.4E	30 12.0N 133.1E	50 24 5	13.3N 130.0E	40 186 0	14.6N 127.8E	45 171 5	15.9N 125.2E	55 154 10						
144800Z	11.4N 134.1E	30 11.8N 135.4E	50 63 5	12.0N 133.8E	45 146 0	12.8N 131.8E	50 131 0	13.8N 130.0E	55 200 10						
150000Z	10.6N 133.3E	39 11.2N 134.5E	50 38 0	11.7N 132.8E	45 70 5	12.6N 130.2E	50 97 0	13.7N 128.5E	55 156 10						
150600Z	10.7N 132.6E	39 11.0N 134.4E	50 21 5	11.6N 131.5E	45 76 5	12.3N 129.7E	50 141 5	13.3N 128.1E	55 177 5						
151200Z	11.0N 131.9E	40 11.2N 134.4E	50 32 5	12.0N 130.5E	45 50 5	13.5N 126.8E	50 100 5	15.2N 126.1E	55 140 5						
151800Z	11.3N 131.4E	45 11.2N 134.5E	50 8 10	12.2N 129.4E	45 49 5	14.0N 127.0E	50 51 5	15.9N 124.9E	55 47 5						
152000Z	11.7N 130.8E	50 11.1N 134.1E	40 18 10	12.6N 128.2E	50 97 0	13.9N 125.9E	55 61 10	15.8N 123.2E	60 86 10						
152600Z	11.1N 130.3E	50 11.2N 133.3E	45 12 5	13.1N 128.3E	55 72 10	14.4N 125.8E	60 38 10	15.9N 123.0E	65 84 15						
153200Z	11.6N 129.9E	50 12.3N 129.3E	45 19 5	13.6N 127.7E	55 61 10	15.2N 125.3E	60 6 10	16.7N 122.9E	55 126 10						
153800Z	11.3N 129.6E	50 13.0N 129.1E	45 34 5	14.6N 127.2E	55 31 10	16.3N 125.0E	60 49 10	18.2N 122.6E	65 195 10						
154000Z	13.9N 129.2E	50 14.4N 129.7E	50 8 5	15.9N 127.6E	50 147 5	20.6N 126.2E	45 299 5	24.2N 127.5E	35 512 25						
154600Z	14.3N 128.4E	45 14.6N 129.1E	50 26 10	17.2N 127.0E	45 154 5	21.0N 125.8E	45 338 5	24.5N 127.5E	35 510 30						
155200Z	14.6N 127.5E	45 15.1N 127.7E	50 27 5	17.7N 125.4E	45 119 5	20.1N 124.0E	45 278 10	22.9N 123.3E	45 382 30						
155800Z	14.8N 126.7E	45 15.1N 129.4E	50 21 5	17.1N 124.4E	45 106 5	20.0N 122.9E	40 279 15	22.7N 122.2E	35 371 50						
156000Z	14.9N 126.1E	45 15.1N 125.7E	50 28 5	16.7N 123.3E	50 97 0	18.4N 121.6E	35 215 25	20.5N 120.5E	35 256 45						
156600Z	14.0N 125.6E	50 14.9N 125.5E	50 8 5	15.5N 122.5E	55 109 5	16.3N 120.2E	35 212 30	18.6N 118.5E	45 266 10						
157200Z	15.2N 125.4E	50 15.2N 125.1E	50 17 5	15.7N 122.9E	55 104 0	16.3N 120.8E	35 144 35	17.5N 119.2E	45 145 5						
157800Z	15.1N 125.2E	50 15.1N 125.1E	50 25 5	15.5N 123.7E	55 106 0	16.1N 120.9E	35 106 50	17.1N 119.5E	45 111 0						
158000Z	15.8N 124.7E	50 15.4N 124.7E	50 29 5	15.7N 123.5E	55 62 5	16.8N 121.4E	50 55 50	17.1N 119.5E	35 137 0						
158600Z	15.5N 124.4E	50 15.5N 124.7E	50 21 5	16.7N 122.6E	55 77 10	16.8N 119.4E	35 134 15	18.4N 116.5E	45 297 5						
159200Z	15.5N 124.7E	55 15.5N 124.4E	50 21 5	16.2N 123.3E	70 16 0	16.6N 121.0E	55 29 10	17.8N 118.7	55 201 15						
159800Z	15.7N 124.9E	55 15.7N 124.4E	50 23 5	16.2N 123.5E	70 49 15	16.9N 121.2E	55 42 15	18.2N 118.7	55 211 15						
200000Z	11.1N 124.2E	60 16.8N 124.4E	55 8 5	16.9N 123.5E	70 84 30	18.6N 121.7E	65 159 30	21.0N 121.1E	65 312 30						
200600Z	11.3N 123.9E	65 16.6N 124.7E	55 25 2	19.3N 122.3E	65 177 15	23.2N 122.5E	65 444 30	26.3N 125.1E	65 677 30						
201200Z	11.5N 123.5E	70 16.5N 124.5E	55 11 5	18.3N 122.1E	70 126 25	21.9N 122.2E	60 366 35	25.2N 123.5E	65 588 30						
201800Z	11.5N 122.7E	85 16.5N 124.6E	100 5 15	18.2N 120.1E	70 135 30	21.7N 120.2E	65 354 50	24.7N 122.8E	90 544 55						
210000Z	11.5N 122.1E	100 16.5N 124.2E	100 6 0	18.1N 120.2E	60 136 25	21.7N 120.2E	70 353 35	24.5N 122.6E	75 519 35						
211600Z	11.4N 121.7E	70 16.5N 124.5E	50 6 30	16.9N 119.6E	75 48 40	17.7N 116.5E	65 255 50	20.8N 114.1E	75 421 35						
212200Z	11.3N 121.4E	45 16.1N 120.7E	55 42 20	16.8N 118.0E	75 175 50	18.7N 119.1E	65 348 50	21.9N 114.1E	65 443 25						
212800Z	11.2N 121.2E	40 16.3N 119.4E	55 81 25	17.0N 117.5E	85 202 50	18.9N 114.4E	65 361 50	22.6N 114.1E	50 446 10						
240000Z	11.0N 121.1E	35 16.7N 120.4E	50 51 15	16.0N 119.0E	60 93 25	17.1N 115.9E	65 253 25	20.7N 114.7E	65 327 25						
240600Z	11.9N 121.0E	35 16.1N 124.1E	50 59 15	16.8N 121.6E	35 87 0	19.5N 120.7E	45 184 5	21.4N 118.6E	55 212 15						
241200Z	11.9N 120.7E	35 16.5N 120.4E	50 34 0	15.2N 119.2E	45 69 10	17.8N 117.1E	50 165 10	21.2N 116.7E	45 218 5						
241800Z	11.8N 120.8E	35 15.5N 120.1E	50 44 0	16.2N 118.5E	45 105 10	18.4N 117.2E	50 154 10	21.5N 117.4E	45 241 10						
242000Z	11.6N 120.6E	35 15.6N 119.4E	55 59 0	18.0N 116.9E	45 220 5	19.4N 116.0E	50 224 10	21.4N 116.1E	50 290 15						
242600Z	11.6N 120.5E	35 16.1N 119.4E	55 50 0	16.8N 118.7E	60 77 20	18.8N 117.3E	60 120 20	22.3N 116.7E	60 338 30						
243200Z	11.8N 120.4E	35 16.1N 119.4E	40 55 5	17.3N 118.6E	60 75 20	18.4N 117.6E	60 108 20	--	--						
243800Z	11.6N 120.3E	35 16.0N 119.4E	40 58 5	16.8N 119.0E	55 42 15	17.8N 118.3E	60 143 25	--	--						
244000Z	11.1N 120.2E	40 15.9N 119.9E	35 21 5	15.9N 119.9E	45 100 5	16.6N 119.6E	45 226 10	--	--						
244600Z	11.2N 120.0E	40 16.1N 119.4E	35 27 5	15.7N 119.4E	40 43 0	18.6N 119.1E	40 229 10	--	--						
245200Z	11.8N 119.8E	40 16.4N 119.4E	35 24 5	15.7N 119.8E	40 45 0	--	--	--	--						
245800Z	11.7N 119.6E	40 16.3N 119.4E	35 21 5	15.8N 119.4E	40 58 5	--	--	--	--						
250000Z	11.5N 119.4E	40 17.4N 119.7E	40 18 0	19.3N 120.3E	45 66 10	--	--	--	--						
250600Z	11.7N 119.2E	40 18.0N 119.3E	35 35 5	20.2N 120.7E	40 159 10	--	--	--	--						
251200Z	11.4N 119.2E	40 19.0N 121.2E	32 119 5	--	--	--	--	--	--						
251800Z	11.8N 120.6E	35 19.8N 121.7E	35 86 0	--	--	--	--	--	--						
260000Z	21.1N 121.1E	35 18.9N 120.2E	35 88 0	--	--	--	--	--	--						
260600Z	22.0N 122.8E	30 22.7N 123.4E	35 53 5	--	--	--	--	--	--						

TYPHONS WHILE WIND OVER 35KTS

AVERAGE FORECAST ERROR 71NM 95NM 184NM 274NM
AVERAGE RIGHT ANGLE ERROR 20NM 63NM 106NM 161NM
AVERAGE MAGNITUDE OF WIND ERROR 6KTS 10KTS 14KTS 16KTS
AVERAGE BIAS OF WIND ERROR -2KTS 6KTS 7KTS 8KTS
NUMBER OF FORECASTS 50 50 46 44

ALL FORECASTS

WARNING 24-HR 48-HR 72-HR
33NM 97NM 183NM 275NM
22NM 60NM 101NM 144NM
5KTS 10KTS 14KTS 17KTS
2KTS 7KTS 7KTS 7KTS
57 53 49 45

TYPHON PAMELA

0600Z 14 MAY TO 0600Z 27 MAY

BEST TRACK	WARNING	24 HOUR FORECAST						48 HOUR FORECAST						72 HOUR FORECAST					
		POSIT	WIND	POSIT	WIND	DST	WIND	POSIT	WIND	DST	WIND	POSIT	WIND	DST	WIND	POSIT	WIND	DST	WIND
140600Z	E,5N 152.8E	30	8,5N 152.1E	25	42	-5	9,5N 150.3E	30	75	-5	10,0N 147.5E	35	354	-25	10,4N 143.8E	45	606	-25	
141200Z	E,4N 152.5E	30	8,5N 152.0E	30	30	0	9,5N 150.0E	35	135	-5	10,4N 147.4E	40	405	-25	10,4N 143.5E	45	617	-25	
141800Z	E,2N 152.1E	30	8,5N 149.7E	30	145	0	8,5N 147.8E	35	220	-10	9,0N 145.4E	40	496	-30	9,4N 142.7E	45	619	-30	
150000Z	E,3N 151.6E	30	8,5N 149.5E	30	125	0	8,5N 147.4E	35	295	-15	9,5N 145.0E	40	533	-30	10,0N 142.7E	50	553	-30	
150600Z	E,2N 150.9E	35	8,4N 151.1E	32	17	0	8,5N 149.2E	40	224	-20	9,0N 147.0E	45	401	-25	9,4N 144.6E	50	429	-35	
151200Z	7,3N 150.5E	40	8,1N 150.4E	35	51	-5	8,5N 146.8E	45	276	-20	9,2N 146.8E	50	401	-20	9,9N 144.7E	60	368	-35	
151800Z	E,4N 150.7E	45	7,5N 150.5E	35	67	-10	7,5N 149.0E	45	274	-25	8,6N 147.1E	50	354	-25	9,4N 144.8E	60	301	-45	
160000Z	E,1N 151.5E	50	6,8N 151.7E	40	43	-10	8,0N 151.3E	50	154	-20	8,3N 149.4E	60	178	-20	8,4N 147.1E	70	116	-45	
160600Z	E,5N 152.4E	60	7,0N 153.0E	70	43	10	8,5N 151.4E	90	150	-20	9,5N 149.3E	100	157	-15	10,5N 146.6E	110	106	-15	
161200Z	E,5N 153.0E	65	6,9N 153.4E	70	34	5	8,5N 152.2E	90	111	-20	9,9N 150.1E	100	67	5	10,9N 147.1E	110	95	-20	
161800Z	E,5N 153.4E	70	6,2N 153.4E	70	21	0	8,1N 153.8E	90	156	-15	9,2N 151.8E	100	113	-5	10,5N 148.6E	110	82	-20	
170000Z	E,8N 153.6E	70	6,9N 153.4E	75	6	5	8,5N 152.1E	90	39	10	9,8N 149.6E	100	43	-15	11,0N 146.6E	110	0	-20	
170600Z	7,1N 153.5E	70	7,2N 153.4E	75	8	5	8,7N 152.1E	90	19	5	10,1N 149.7E	100	83	-25	11,4N 146.7E	110	30	-15	
171200Z	7,3N 153.3E	70	7,7N 153.1E	75	27	5	9,0N 151.4E	90	30	-5	10,5N 146.9E	100	73	-30	11,4N 145.9E	110	0	-15	
171800Z	7,6N 153.0E	75	7,7N 153.2E	80	13	5	8,9N 151.6E	95	106	-10	10,3N 149.2E	105	119	-25	11,5N 146.3E	115	50	-5	
180000Z	E,1N 152.4E	80	7,9N 152.9E	80	32	0	9,2N 151.3E	95	143	-20	10,5N 148.5E	105	115	-25	11,5N 144.7E	115	93	-5	
180600Z	E,5N 151.8E	85	8,6N 151.8E	90	0	10,2N 148.8E	120	34	-5	11,5N 145.1E	130	66	5	12,4N 141.2E	130	219	15		
181200Z	E,5N 150.9E	95	9,1N 151.2E	95	18	0	11,0N 147.9E	120	49	-10	12,4N 144.2E	130	110	5	13,5N 140.2E	130	245	15	
181800Z	E,5N 149.9E	105	9,8N 150.2E	100	25	-5	11,6N 146.5E	120	72	-10	12,9N 142.7E	130	181	0	13,4N 138.8E	130	305	10	
190000Z	E,6N 148.9E	115	9,8N 149.3E	105	26	-10	11,3N 145.4E	120	73	-10	12,5N 141.5E	130	228	0	13,4N 137.6E	130	358	10	
190600Z	E,9N 148.3E	125	9,9N 148.1E	115	12	10	11,5N 144.2E	130	117	5	13,0N 140.6E	130	251	0	15,5N 138.1E	130	277	10	
191200Z	10,2N 147.7E	130	10,1N 147.4E	120	8	10	11,1N 144.5E	130	87	5	12,3N 142.0E	130	169	0	13,8N 139.9E	130	268	10	
191800Z	10,6N 147.2E	130	10,3N 147.2E	120	18	-10	11,5N 144.6E	130	74	10	13,2N 142.4E	130	125	0	14,7N 140.6E	130	230	10	
200000Z	11,0N 146.6E	130	11,1N 146.5E	130	6	0	12,2N 144.2E	135	72	15	14,3N 141.6E	130	126	10	16,0N 139.3E	120	213	5	
200600Z	11,3N 146.2E	125	11,3N 146.1E	130	6	5	12,9N 144.4E	135	38	15	15,4N 142.3E	130	64	0	17,1N 139.5E	120	178	5	
211200Z	11,6N 145.9E	125	11,4N 146.0E	130	13	5	12,8N 144.4E	135	66	15	15,3N 142.4E	130	133	10	17,1N 139.7E	125	215	5	
211800Z	12,1N 145.7E	120	12,0N 145.7E	125	6	5	13,7N 144.2E	120	55	0	16,1N 142.2E	110	152	-10	18,8N 140.8E	100	165	-10	
210000Z	12,7N 145.4E	120	12,7N 145.4E	120	12	0	14,4N 144.4E	115	87	-5	16,5N 143.2E	110	219	-5	18,7N 142.2E	100	237	-10	
210600Z	12,3N 144.9E	120	13,7N 145.3E	120	25	20	16,5N 143.3E	120	35	0	20,3N 142.5E	100	130	-15	24,7N 144.7E	95	249	-15	
211200Z	12,9N 144.4E	120	14,0N 144.4E	130	6	10	16,0N 143.2E	110	113	-10	18,3N 142.1E	110	189	-5	21,6N 141.7E	105	131	66	
211800Z	14,6N 144.7E	120	14,5N 144.1E	130	8	10	16,4N 142.7E	110	139	-10	19,8N 141.5E	110	135	0	23,2N 141.3E	105	66	0	
220000Z	15,5N 143.4E	120	15,5N 143.6E	135	12	15	17,2N 141.7E	125	122	10	21,5N 139.8E	125	47	15	27,1N 143.6E	115	162	40	
220600Z	16,4N 142.7E	120	16,5N 142.6E	130	8	10	19,7N 141.2E	120	59	5	23,8N 141.1E	120	60	20	28,3N 143.0E	100	161	30	
221200Z	17,5N 142.0E	120	17,4N 144.4E	120	24	0	20,8N 141.0E	115	62	0	25,1N 141.6E	105	90	15	29,8N 144.8E	95	234	30	
221800Z	18,5N 141.3E	120	18,0N 141.7E	120	38	0	21,3N 140.6E	110	45	0	25,8N 141.6E	105	90	25	30,2N 147.2E	95	272	35	
230000Z	14,3N 140.1E	115	19,5N 141.1E	120	36	5	22,7N 159.7E	120	41	10	25,8N 139.8E	110	113	35	29,6N 143.4E	95	125	40	
230600Z	21,1N 140.2E	115	20,1N 140.7E	130	6	15	23,3N 157.8E	120	163	20	26,7N 137.0E	110	285	40	29,3N 138.3E	95	417	45	
231200Z	21,7N 139.9E	115	20,9N 139.7E	130	16	15	24,2N 157.6E	115	188	25	28,6N 138.6E	105	262	40	--	--	--	--	
231800Z	21,4N 139.8E	110	21,7N 139.5E	115	18	5	25,3N 159.7E	105	110	25	30,0N 144.3E	95	184	35	--	--	--	--	
240000Z	22,2N 140.2E	110	22,2N 140.7E	110	16	0	25,0N 140.7E	100	54	25	30,4N 147.0E	65	200	10	--	--	--	--	
240600Z	22,9N 140.6E	100	22,7N 140.7E	90	13	-10	26,4N 145.9E	60	254	-10	37.0N 158.7E	40	810	-10	--	--	--	--	
241200Z	23,7N 141.0E	90	24,2N 141.9E	75	57	-15	30,4N 148.8E	50	399	-15	--	--	--	--	--	--	--	--	
241800Z	24,3N 141.4E	80	25,5N 141.7E	70	112	-10	31,4N 150.2E	50	437	-10	--	--	--	--	--	--	--	--	
250000Z	25,0N 141.7E	75	24,6N 141.7E	80	24	5	27,1N 143.1E	65	90	10	--	--	--	--	--	--	--	--	
250600Z	25,7N 142.2E	70	25,6N 141.5E	80	38	10	29,0N 144.6E	60	91	10	--	--	--	--	--	--	--	--	
251200Z	26,3N 142.3E	65	26,2N 142.2E	75	33	10	--	--	--	--	--	--	--	--	--	--	--	--	
251800Z	27,3N 143.5E	60	27,3N 143.2E	65	24	5	--	--	--	--	--	--	--	--	--	--	--	--	
260000Z	27,8N 144.6E	55	28,1N 144.4E	60	21	5	--	--	--	--	--	--	--	--	--	--	--	--	
260600Z	28,4N 146.2E	50	28,9N 147.7E	60	40	10	--	--	--	--	--	--	--	--	--	--	--	--	

TYPHONS WHILE WIND OVER 35KTS

WARNING 24-HR 48-HR 72-HR

24NM 123NM 203NM 237NM

18NM 65NM 119NM 126NM

13NM 66NM 119NM 125NM

7XTS 12KTS 17KTS 21KTS

6KTS 12KTS 17KTS 21KTS

5KTS 1KTS -1KTS -2KTS

4KTS 45 41 37

ALL FORECASTS

WARNING 24-HR 48-HR 72-HR

29NM 123NM 203NM 237NM

15NM 56NM 119NM 126NM

10NM 56NM 119NM 125NM

6KTS 12KTS 17KTS 21KTS

5KTS 1KTS -1KTS -2KTS

4KTS 45 41 37

AVERAGE FORECAST ERROR

1.3NM

TYPHON HONY

0000Z 23 JUN TO 0000Z 04 JUL

BEST TRACK	WARNING	24 HOUR FORECAST						48 HOUR FORECAST						72 HOUR FORECAST					
		POSIT	KIND	WIND	DST	KIND	POSIT	WIND	DST	KIND	POSIT	WIND	DST	KIND	POSIT	WIND	DST	KIND	
240000Z 11.6N 127.6E	30 12.2N 125.7E	30	45	0	12.9N	123.8E	40	82	-5	13.5N	120.1E	30	166	-50	14.4N	116.1E	35	260	-20
240600Z 11.7N 127.1E	35 12.3N 127.1E	30	36	-5	13.1N	123.2E	35	97	-15	13.7N	119.6E	30	176	-35	14.5N	115.7E	35	273	-20
241200Z 11.9N 126.6E	40 12.5N 125.5E	40	3	0	12.3N	122.5E	35	136	-25	13.5N	119.0E	35	222	-25	15.0N	115.1E	35	276	-20
241800Z 11.3N 125.9E	40 12.1N 125.5E	40	25	0	12.7N	122.3E	35	141	-35	13.5N	116.8E	35	269	-25	15.0N	115.0E	35	305	-20
240000Z 14.9N 125.2E	45 12.5N 125.7E	45	27	0	13.2N	121.8E	30	133	-50	14.6N	118.4E	35	229	-20	16.2N	114.8E	45	268	-15
240600Z 14.6N 124.6E	50 13.5N 124.5E	50	8	0	15.7N	121.4E	65	32	0	17.5N	118.2E	40	93	-15	20.1N	114.4E	45	180	-15
241200Z 14.7N 123.8E	60 14.7N 123.7E	50	8	-10	16.1N	120.2E	40	54	-20	18.0N	118.7E	45	75	-10	20.1N	113.2E	45	270	-15
241800Z 14.8N 123.0E	70 14.1N 123.1E	65	6	-5	16.5N	119.4E	70	85	10	18.5N	116.8E	75	68	20	20.5N	114.9E	75	169	10
250000Z 15.4N 122.2E	80 15.4N 122.7E	30	0	0	17.1N	118.7E	75	90	20	19.2N	116.2E	70	78	15	21.3N	114.3E	65	200	0
250600Z 16.1N 121.6E	65 15.9N 121.1E	70	19	5	18.0N	118.4E	75	79	20	20.0N	116.0E	70	91	10	21.9N	114.0E	65	243	0
251200Z 17.0N 120.3E	60 16.5N 120.5E	65	31	5	19.1N	117.9E	75	46	20	21.2N	115.5E	70	144	10	22.9N	113.2E	65	323	0
251800Z 16.3N 119.1E	60 17.4N 120.2E	65	72	5	19.9N	117.2E	70	19	15	22.4N	114.6E	65	204	5	23.6N	113.0E	45	384	-25
260000Z 18.4N 117.9E	55 18.5N 118.5E	50	35	5	21.6N	115.1E	45	156	-10	--	--	--	--	--	--	--	--	--	
260400Z 18.8N 117.4E	55 18.8N 117.4E	55	5	0	21.4N	113.7E	40	227	-20	23.6N	111.9E	20	581	-45	--	--	--	--	
261200Z 19.2N 117.1E	55 19.3N 117.1E	50	18	5	21.7N	113.9E	50	238	-10	24.1N	112.2E	25	401	-40	--	--	--	--	
261800Z 19.6N 117.3E	55 19.7N 119.2E	50	91	5	21.9N	113.8E	50	236	20	24.3N	112.1E	20	446	-45	--	--	--	--	
270000Z 20.0N 117.3E	55 20.0N 117.1E	55	67	5	22.3N	113.9E	50	231	-15	25.0N	113.5E	20	432	-50	--	--	--	--	
270400Z 20.3N 117.6E	60 20.5N 119.9E	55	95	-5	23.2N	114.3E	40	251	-25	--	--	--	--	--	--	--	--		
271200Z 20.4N 116.3E	60 20.4N 117.1E	55	92	-5	22.5N	117.3E	55	119	-10	25.0N	117.8E	35	118	-35	--	--	--	--	
271800Z 20.9N 117.9E	60 20.3N 117.1E	55	45	-5	22.7N	117.3E	50	154	-15	25.1N	117.8E	35	340	-35	--	--	--	--	
280000Z 21.2N 117.9E	65 21.2N 117.3E	65	6	0	22.5N	119.9E	55	113	-15	24.5N	120.5E	50	224	-20	27.0N	122.5E	50	310	-40
280600Z 22.2N 118.3E	65 21.7N 117.7E	65	23	0	22.1N	114.6E	60	135	-10	22.8N	120.1E	60	203	-15	23.2N	121.5E	45	302	-50
291200Z 22.1N 118.7E	65 21.5N 118.7E	70	5	5	21.4N	120.3E	70	73	0	22.7N	122.3E	65	129	-15	24.7N	124.4E	55	204	-45
291800Z 20.9N 119.3E	65 21.0N 119.1E	75	15	10	21.5N	120.8E	70	87	0	23.1N	122.9E	65	150	-20	24.4N	125.6E	55	211	-55
290000Z 21.2N 117.9E	70 20.3N 120.4E	75	28	6	21.5N	122.8E	70	12	0	23.4N	122.6E	65	37	-25	25.4N	128.0E	55	157	-65
290400Z 21.3N 119.9E	70 20.3N 120.4E	75	28	6	21.5N	122.8E	70	12	0	23.4N	122.6E	65	42	-30	25.1N	128.9E	55	197	-65
291200Z 21.7N 121.7E	70 20.8N 120.7E	75	6	5	21.8N	123.4E	70	30	-5	23.2N	126.3E	65	87	-35	25.4N	129.3E	55	246	-55
291800Z 20.9N 121.5E	70 20.9N 121.4E	75	6	5	21.8N	124.2E	70	13	-10	23.4N	126.7E	65	157	-45	26.3N	130.0E	55	378	-45
290000Z 21.2N 122.3E	70 21.2N 122.7E	75	6	5	21.8N	124.6E	70	41	-15	23.6N	127.0E	65	157	-45	--	--	--	--	
300000Z 21.4N 122.6E	70 21.4N 123.7E	75	11	6	22.3N	129.9E	70	25	-20	24.4N	128.1E	65	168	-55	26.5N	129.9E	65	453	-25
300600Z 21.5N 123.4E	75 21.6N 125.7E	75	21	0	21.5N	125.1E	80	105	-15	25.2N	127.2E	65	282	-35	27.4N	129.3E	55	674	5
310000Z 21.6N 124.3E	80 22.0N 125.7E	80	37	5	24.2N	126.2E	90	104	-10	26.5N	128.5E	90	290	-20	28.7N	130.6E	85	650	15
310600Z 21.7N 125.1E	85 22.3N 125.1E	80	5	15	24.7N	127.3E	90	120	-20	27.3N	129.3E	90	348	-10	--	--	--	--	
040000Z 22.0N 126.7E	90 22.9N 122.9E	82	8	-5	25.2N	128.7E	100	120	-20	28.9N	130.9E	95	361	5	--	--	--	--	
040600Z 22.5N 127.0E	95 23.4N 126.1E	90	12	-5	26.4N	129.4E	100	158	-20	29.9N	132.0E	95	426	10	--	--	--	--	
041200Z 24.1N 126.1E	100 24.2N 127.0E	92	17	-5	27.7N	130.0E	105	210	-5	30.5N	132.8E	95	509	25	--	--	--	--	
041800Z 24.9N 129.5E	110 25.0N 129.5E	100	12	-10	29.0N	132.6E	110	174	10	--	--	--	--	--	--	--	--	--	
040000Z 24.6N 130.9E	120 25.4N 130.4E	100	27	-10	28.5N	135.0E	100	172	10	--	--	--	--	--	--	--	--	--	
040600Z 24.3N 132.3E	120 26.3N 132.1E	100	0	-15	29.2N	138.7E	90	123	10	--	--	--	--	--	--	--	--	--	
041200Z 27.1N 133.9E	110 27.1N 134.5E	100	53	-15	31.1N	142.8E	85	120	15	--	--	--	--	--	--	--	--	--	
041800Z 21.2N 135.6E	100 28.2N 135.4E	92	21	-5	--	--	--	--	--	--	--	--	--	--	--	--	--	--	
050000Z 24.5N 137.8E	90 29.4N 137.7E	85	8	-5	--	--	--	--	--	--	--	--	--	--	--	--	--	--	
050600Z 31.8N 140.2E	80 30.5N 139.5E	80	38	0	--	--	--	--	--	--	--	--	--	--	--	--	--	--	
051200Z 31.1N 142.6E	70 32.6N 142.5E	72	32	5	--	--	--	--	--	--	--	--	--	--	--	--	--	--	

TYPHONS WHILE WIND OVER 35KTS
 WARNING 24-HR 48-HR 72-HR
 24VM 117VM 228VM 299VM
 AVERAGE FORECAST ERROR 17NM 14VM 147VM 175VM
 AVERAGE RIGHT ANGLE ERROR 14KTS 14KTS 26KTS 27KTS
 AVERAGE MAGNITUDE OF WIND ERROR -1KTS -5KTS -20KTS -27KTS
 AVERAGE BIAS OF WIND ERROR -1KTS -5KTS -20KTS -25KTS
 NUMBER OF FORECASTS 42 39 33 23

ALL FORECASTS
 WARNING 24-HR 48-HR 72-HR
 24NM 117NM 228NM 299NM
 17NM 14NM 147NM 175NM
 14KTS 14KTS 26KTS 27KTS
 -1KTS -5KTS -20KTS -25KTS
 43 39 33 23

TYPHON SALLY

0000Z 24 JUN TO 0000Z 03 JUL

BEST TRACK	WARNING	24 HOUR FORECAST						48 HOUR FORECAST						72 HOUR FORECAST					
		POSIT	WIND	ERRORS	POSIT	WIND	ERRORS	POSIT	WIND	ERRORS	POSIT	WIND	ERRORS	POSIT	WIND	ERRORS	POSIT	WIND	ERRORS
240000Z 5.5N 145.1E	25 0.5N 142.5E	30 6 5	0.5N 143.0E	32 142 0	10.6N 137.9E	45 305 -5	11.0N 136.1E	55 350 -15											
240500Z 5.7N 144.4E	30 0.5N 145.7E	30 6 0	0.7N 142.9E	32 213 -2	10.8N 134.8E	45 368 -10	11.4N 135.9E	55 370 -2											
241000Z 4.1N 143.7E	30 10.1N 143.7E	30 0 0	11.4N 142.5E	45 136 5	12.3N 136.5E	55 253 -15	13.3N 132.8E	60 311 -25											
241500Z 11.0N 143.1E	35 10.5N 143.7E	35 19 0	12.1N 139.8E	45 153 0	13.4N 133.8E	55 224 -10	14.5N 131.9E	65 264 -30											
250000Z 11.3N 142.1E	35 11.5N 142.8E	35 38 0	13.5N 138.9E	55 118 5	16.7N 135.1E	70 98 0	17.4N 130.5E	85 144 -20											
250500Z 11.7N 141.1E	40 12.7N 140.5E	55 13 5	15.5N 136.6E	50 17 -5	17.6N 132.3E	65 90 -10	15.9N 127.7E	85 279 -30											
251000Z 11.8N 141.4E	40 13.6N 140.7E	55 54 -5	14.5N 136.5E	50 58 +10	19.0N 132.1E	65 54 -20	20.1N 127.3E	75 308 -35											
251500Z 10.4N 139.4E	40 13.6N 140.7E	55 55 47 +10	16.7N 134.8E	50 33 +15	18.6N 130.1E	65 131 -30	19.9N 125.2E	75 451 -37											
252000Z 14.2N 138.3E	45 14.1N 139.1E	55 19 0	17.1N 132.8E	65 111 -5	19.7N 129.1E	80 188 -25	22.4N 126.7E	90 397 -15											
260000Z 11.0N 137.2E	50 14.7N 137.3E	45 19 -5	17.2N 132.8E	65 65 92 -10	21.5N 128.9E	75 281 -30	25.1N 126.2E	90 510 -11											
260500Z 15.8N 136.4E	55 15.5N 137.1E	50 3 5	18.7N 132.3E	65 92 -10	22.2N 128.5E	80 306 -25	25.8N 126.1E	90 573 -5											
261000Z 11.8N 135.5E	60 16.5N 137.1E	55 24 -5	19.7N 131.2E	70 120 -15	22.2N 128.5E	80 306 -25	25.8N 126.1E	90 573 -5											
261500Z 17.1N 135.2E	65 17.0N 134.7E	55 29 -5	19.7N 131.1E	70 87 -25	22.5N 128.0E	80 306 -25	25.8N 126.1E	90 573 -5											
270000Z 17.6N 134.7E	70 17.5N 134.7E	55 24 -5	19.8N 132.1E	75 40 -30	22.1N 130.0E	80 214 -25	25.4N 128.8E	90 474 -5											
270500Z 17.6N 133.8E	75 18.0N 133.7E	50 20 8	20.7N 131.9E	80 77 -35	23.4N 130.0E	90 255 -10	26.4N 129.4E	85 573 -5											
271000Z 16.1N 132.9E	85 18.7N 133.7E	75 26 +10	21.4N 131.1E	85 123 -25	24.2N 129.6E	90 318 -10	26.7N 129.3E	90 583 -5											
271500Z 16.5N 132.4E	95 19.1N 133.7E	90 13 -5	21.7N 130.1E	120 141 25	24.3N 124.9E	120 410 25	26.7N 129.1E	110 666 25											
280000Z 14.2N 132.4E	105 19.4N 132.7E	100 26 -5	21.5N 130.0E	115 211 10	24 129.0E	110 464 15	26.5N 129.1E	105 768 25											
280500Z 19.8N 132.6E	115 19.5N 131.9E	110 40 -5	21.7N 130.6E	125 219 25	22.4N 129.9E	120 522 30	24.2N 129.1E	110 915 30											
281000Z 20.1N 132.6E	110 19.5N 132.9E	105 13 -5	20.9N 133.1E	85 146 -15	22.4N 132.7E	65 457 -25	24.2N 131.6E	50 897 -30											
281500Z 20.1N 133.2E	125 20.5N 132.9E	105 25 0	22.4N 132.1E	85 234 -10	25.2N 130.9E	65 583 -20	27.8N 131.4E	50 984 -25											
290000Z 21.5N 133.8E	105 21.5N 133.7E	105 35 0	24.2N 132.9E	85 251 -10	26.9N 131.8E	75 622 -5	29.3N 130.2E	65 1147 -5											
290500Z 21.7N 134.4E	100 21.0N 134.1E	105 13 5	24.9N 133.1E	85 197 -5	28.0N 135.3E	75 549 -5	30.9N 135.5E	65 962 -5											
291000Z 22.5N 135.1E	100 22.5N 135.1E	105 0 0	25.6N 137.7E	90 165 0	29.2N 138.8E	80 477 0	32.4N 140.8E	70 817 20											
291500Z 23.2N 136.3E	95 23.0N 135.8E	105 30 10	26.3N 135.2E	90 185 5	30.2N 140.0E	80 531 5	32.4N 140.8E	70 817 20											
300000Z 24.3N 137.5E	95 24.2N 137.4E	100 8 5	27.4N 141.3E	85 117 5	30.8N 146.5E	75 622 -5	29.3N 130.2E	65 1147 -5											
300500Z 21.4N 138.7E	90 25.1N 138.7E	95 23 5	27.8N 142.2E	80 185 0	31.4N 147.5E	70 348 10	34.4N 150.5E	70 328 20											
301000Z 21.2N 140.2E	91 25.5N 139.7E	90 52 0	29.7N 144.0E	80 208 0	32.3N 150.7E	70 328 20	34.4N 150.5E	70 328 20											
301500Z 21.9N 141.6E	85 27.0N 141.2E	90 28 5	30.7N 147.0E	80 197 5	33.1N 154.7E	70 477 5	36.1N 158.8E	70 477 5											
010000Z 27.3N 143.5E	80 27.5N 143.4E	85 13 5	31.0N 150.9E	70 102 0	34.4N 157.7E	70 477 5	37.4N 161.7E	70 477 5											
010500Z 27.7N 145.7E	80 28.4N 142.7E	80 49 0	32.2N 154.5E	65 72 5	35.7N 161.7E	70 477 5	38.7N 165.7E	70 477 5											
011000Z 21.0N 147.4E	80 28.2N 147.4E	80 34 0	30.1N 157.1E	65 126 15	33.6N 164.5E	70 477 5	36.6N 168.5E	70 477 5											
011500Z 21.8N 150.1E	75 28.7N 149.4E	80 37 5	30.7N 157.1E	80 197 5	34.1N 167.7E	70 477 5	37.1N 171.7E	70 477 5											
020000Z 25.8N 152.3E	70 29.5N 151.7E	70 36 0	31.4N 167.7E	70 102 0	34.5N 171.7E	70 477 5	37.5N 175.7E	70 477 5											
020500Z 32.0N 154.3E	60 30.0N 154.2E	65 60 5	32.1N 167.7E	70 102 0	35.2N 171.7E	70 477 5	38.2N 175.7E	70 477 5											
021000Z 32.2N 157.0E	50 32.4N 158.1E	65 57 15	32.8N 167.7E	70 102 0	35.8N 171.7E	70 477 5	38.8N 175.7E	70 477 5											

TYPHON'S WHILE WIND OVER 35KTS

WARNING 24-HR 48-HR 72-HR

58NM 139NM 331NM 572NM

58NM 139NM 331NM

TYPHOON THERESE

0000Z 11 JUL TO 0000Z 20 JUL

BEST TRACK	WARNING	24 HOUR FORECAST			48 HOUR FORECAST			72 HOUR FORECAST			
		POSIT	WIND	POSIT	WIND	POSIT	WIND	POSIT	WIND	POSIT	
120000Z	9.3N 158.6E	40	9.5N 159.7E	35	13	-5	10.2N 152.4E	55	59 -10	11.2N 148.4E	70
120001Z	9.4N 159.7E	50	9.5N 159.3E	40	3	-10	10.2N 151.1E	60	30 -15	11.8N 147.0E	75
120002Z	9.6N 159.7E	55	9.5N 159.7E	40	6	-15	10.1N 149.9E	60	36 -30	12.1N 145.9E	75
120003Z	9.9N 159.4E	60	9.9N 159.4E	45	18	-15	10.8N 149.2E	65	25 -40	12.2N 145.1E	80
120004Z	11.1N 159.4E	65	10.0N 154.4E	55	59	-10	10.8N 148.8E	75	60 -45	12.5N 144.7E	90
120005Z	11.3N 159.6E	75	10.3N 150.6E	65	0	-10	11.5N 146.7E	85	105 -50	13.3N 142.6E	100
120006Z	11.7N 149.9E	90	10.8N 149.4E	70	30	-20	12.5N 144.9E	95	167 -40	13.9N 140.1E	115
120007Z	11.8N 149.3E	105	11.3N 148.6E	80	41	-25	12.8N 144.3E	100	191 -30	14.3N 139.8E	120
120008Z	11.8N 148.7E	120	11.7N 146.6E	100	8	-20	13.4N 145.8E	130	181 0	15.3N 140.0E	105
120009Z	11.7N 148.1E	135	12.1N 145.7E	120	36	-15	13.5N 145.2E	140	236 15	15.6N 141.6E	145
120010Z	12.8N 147.5E	135	13.3N 147.4E	130	30	0	14.7N 145.1E	145	206 20	19.0N 142.0E	140
120011Z	15.1N 146.6E	150	14.7N 146.7E	150	27	0	18.5N 144.0E	125	189 5	21.1N 140.2E	110
120012Z	16.4N 145.4E	130	15.9N 142.9E	120	38	0	19.1N 142.0E	120	168 0	21.1N 138.3E	110
120013Z	17.6N 144.1E	125	17.2N 144.6E	125	37	0	20.2N 139.8E	120	106 5	22.3N 135.2E	110
120014Z	14.1N 142.5E	125	19.0N 142.4E	125	8	0	22.5N 136.0E	115	74 0	25.2N 131.2E	105
120015Z	20.1N 141.1E	120	19.8N 141.1E	120	18	0	22.9N 135.2E	110	44 0	25.8N 131.0E	100
120016Z	21.9N 139.7E	120	20.9N 139.8E	120	6	0	25.5N 133.9E	110	120 5	29.6N 131.5E	100
120017Z	21.5N 138.5E	115	21.6N 138.7E	120	18	5	25.4N 132.3E	110	117 10	31.3N 131.0E	105
120018Z	22.2N 137.3E	115	22.4N 136.9E	120	29	6	25.8N 132.2E	110	61 10	29.6N 131.0E	105
120019Z	22.9N 136.0E	110	22.9N 136.0E	130	6	20	25.5N 131.6E	115	40 20	29.3N 129.5E	100
120020Z	23.5N 134.9E	105	23.7N 134.4E	110	20	5	26.4N 130.4E	100	17 5	29.6N 129.7E	95
120021Z	24.1N 133.7E	100	24.3N 133.9E	105	13	5	26.6N 130.1E	95	41 4	28.4N 126.9E	85
120022Z	24.3N 132.4E	100	24.2N 132.4E	100	6	0	27.5N 128.0E	95	49 5	29.7N 124.3E	85
120023Z	25.4N 131.1E	95	25.6N 131.1E	95	16	0	28.7N 127.2E	90	76 5	30.2N 123.4E	85
120024Z	26.3N 130.1E	95	26.1N 130.0E	90	13	-5	29.5N 125.3E	75	170 -10	30.6N 122.5E	65
120025Z	26.9N 129.4E	90	26.9N 129.4E	90	17	0	29.5N 125.0E	70	184 -10	31.3N 123.6E	60
120026Z	27.7N 128.9E	90	27.4N 128.4E	85	19	-5	29.5N 126.4E	70	174 -5	31.5N 125.5E	60
120027Z	28.7N 128.4E	85	28.8N 128.7E	85	3	0	32.7N 128.3E	70	35 0	36.0N 130.7E	60
120028Z	29.8N 128.2E	85	29.7N 128.7E	85	6	0	33.8N 128.8E	75	74 15	37.0N 132.7E	50
120029Z	30.3N 128.1E	80	30.7N 128.0E	80	8	0	34.5N 129.5E	65	109 25	37.0N 132.7E	50
120030Z	31.7N 128.3E	75	31.5N 128.2E	80	13	5	35.5N 130.4E	65	179 35	37.0N 132.7E	50
120031Z	32.3N 128.8E	70	32.2N 128.8E	80	6	10	35.5N 131.6E	65	219 40	37.0N 132.7E	50
120032Z	32.8N 129.2E	60	32.8N 129.3E	70	13	10	35.7N 132.6E	55	238 35	37.0N 132.7E	50
120033Z	32.3N 129.4E	40	33.0N 129.4E	55	13	25	-- --	--	-- --	37.0N 132.7E	50
120034Z	31.3N 129.4E	35	33.0N 129.4E	45	33	15	-- --	--	-- --	37.0N 132.7E	50
120035Z	32.4N 130.3E	25	33.1N 130.0E	40	44	15	-- --	--	-- --	37.0N 132.7E	50
200000Z	32.2N 130.3E	20	32.8N 130.1E	30	37	10	-- --	--	-- --	37.0N 132.7E	50

TYPHOONS WHILE WIND OVER 35KTS

WARNING 24-HR 48-HR 72-HR

AVERAGE FORECAST ERROR 18NM 105NM 213NM 300NM
 AVERAGE RIGHT ANGLE ERROR 9NM 63NM 139NM 182NM
 AVERAGE MAGNITUDE OF WIND ERROR 7KTS 15KTS 20KTS 19KTS
 AVERAGE BIAS OF WIND ERROR -2KTS -5KTS -3KTS 5KTS
 NUMBER OF FORECASTS 74 30 26 22

ALL FORECASTS

WARNING 24-HR 48-HR 72-HR

18NM 105NM 213NM 300NM 19NM 115NM 218NM 319NM
 10NM 75NM 146NM 203NM 8KTS 17KTS 21KTS 22KTS
 -1KTS -1KTS 1KTS 10KTS

TYPHOON ANITA

0000Z 23 JUL TO 0000Z 25 JUL

TYPHOONS WHILE WIND OVER 50KT

	WARNING	24-HR	48-HR	72-HR		WARNING	24-HR	48-HR	72-HR	
AVERAGE FORECAST ERROR	32NM	256NM	0NM	0NM		28NM	192NM	560NM	0NM	
AVERAGE RIGHT ANGLE ERROR	26NM	92NM	0NM	0NM		18NM	77NM	163NM	0NM	
AVERAGE MAGNITUDE OF WIND ERROR	4KTS	30KTS	0KTS	0KTS		5KTS	25KTS	60KTS	0KTS	
AVERAGE BIAS OF WIND ERROR	1KTS	30KTS	0KTS	0KTS		3KTS	25KTS	60KTS	0KTS	
NUMBER OF FORECASTS	7	3	0	0		9	5	1	0	

TYPHOON BILLIE

0000Z 03 AUG TO 1200Z 10 AUG

BEST TRACK	WARNING			24 HOUR FORECAST						48 HOUR FORECAST						72 HOUR FORECAST					
	POSIT	WIND	POSIT	XIVU	ERRORS	WIND	POSIT	XIVU	ERRORS	WIND	POSIT	XIVU	ERRORS	WIND	POSIT	XIVU	ERRORS	WIND	POSIT	XIVU	ERRORS
040000Z 17.7N 146.6E	30	13.8N 146.5E	30	8	0	16.7N 145.0E	45	60	5	19.2N 143.1E	60	246	0	21.8N 141.7E	70	375	0	24.3N 140.5E	70	373	-5
040000Z 17.4N 146.2E	30	14.7N 145.4E	30	30	0	17.3N 144.6E	45	102	0	19.9N 142.7E	60	288	0	22.5N 140.5E	70	240	-10	25.1N 140.2E	70	240	-10
041200Z 17.4N 145.9E	30	14.9N 145.7E	30	13	0	16.9N 144.2E	45	102	-5	19.5N 142.3E	60	245	0	21.2N 140.2E	70	240	-10	23.8N 139.7E	85	217	-5
041800Z 15.7N 145.6E	35	15.1N 145.7E	40	18	5	17.7N 144.3E	60	157	5	19.7N 142.4E	75	221	10	21.8N 141.7E	70	217	0	24.1N 139.7E	85	217	-5
042000Z 17.7N 145.1E	40	16.1N 145.7E	50	25	10	18.1N 145.7E	70	160	10	19.8N 141.4E	85	185	15	21.8N 138.3E	95	176	-10	24.1N 137.3E	100	155	-5
042600Z 15.6N 144.6E	45	16.2N 144.8E	55	38	10	17.1N 142.7E	75	163	15	19.8N 140.1E	90	140	15	21.4N 137.3E	100	155	-5	24.4N 142.9E	70	566	-55
041200Z 17.2N 144.3E	50	15.2N 144.2E	55	5	5	14.1N 145.1E	60	167	0	16.0N 145.0E	65	406	15	18.4N 142.9E	65	406	15	21.7N 140.9E	70	572	-5
041800Z 15.1N 143.9E	55	15.1N 144.3E	55	24	0	14.8N 145.7E	60	248	-5	16.5N 144.2E	65	440	-25	17.4N 140.9E	70	572	-5	20.3N 139.7E	85	217	-5
040000Z 15.1N 143.5E	60	15.1N 143.5E	60	0	0	15.1N 141.1E	75	94	5	17.5N 138.2E	90	202	-15	19.9N 135.0E	105	289	-15	22.7N 132.7E	105	322	-5
050600Z 15.1N 143.1E	60	15.2N 143.1E	60	6	0	15.1N 142.9E	65	112	-10	18.4N 135.1E	80	244	-40	20.7N 134.7E	95	322	-5	23.0N 134.0E	100	380	-5
051200Z 15.4N 142.4E	60	15.3N 142.7E	60	18	0	15.3N 141.4E	70	192	-10	18.0N 137.4E	85	311	-40	20.3N 134.0E	100	380	-5	23.6N 132.7E	105	345	5
051800Z 15.1N 141.6E	65	15.6N 141.6E	60	38	-5	16.1N 139.1E	75	165	-15	19.1N 136.1E	90	294	-30	21.0N 132.7E	105	345	5	24.6N 132.7E	105	345	5
060000Z 18.8N 140.6E	70	18.6N 140.6E	65	12	-5	18.8N 137.0E	80	99	-25	20.8N 133.1E	90	176	-25	22.7N 129.3E	105	222	10	24.7N 127.8E	105	185	-5
060600Z 17.5N 139.5E	75	17.5N 139.5E	70	6	-5	20.0N 135.7E	90	78	-30	22.2N 131.9E	100	143	-10	24.3N 127.8E	105	185	-5	25.0N 126.2E	105	179	-5
061200Z 17.3N 138.3E	80	18.7N 138.5E	75	11	-5	20.7N 134.4E	95	77	-30	23.0N 130.3E	105	123	0	25.5N 124.3E	105	179	-5	25.7N 124.3E	100	166	-5
061800Z 19.2N 137.7E	90	18.2N 137.7E	80	25	-10	21.7N 132.9E	100	57	-20	23.9N 128.8E	105	104	5	25.7N 124.3E	100	166	-5	26.8N 122.1E	105	195	-5
070000Z 21.0N 135.9E	105	20.0N 135.9E	95	11	-10	23.2N 130.2E	110	50	-5	25.3N 125.7E	110	66	15	27.0N 121.9E	105	195	-5	27.7N 121.9E	105	195	-5
070600Z 21.8N 134.6E	120	20.7N 134.3E	120	8	0	23.7N 129.7E	130	8	20	25.9N 125.3E	120	97	30	27.7N 121.3E	105	195	-5	28.4N 121.3E	105	302	-5
071200Z 21.6N 133.4E	125	21.5N 133.7E	130	13	5	24.3N 128.5E	125	39	20	26.6N 124.9E	115	152	25	28.4N 122.1E	105	302	-5	29.5N 122.1E	100	283	-5
071800Z 21.4N 132.2E	120	22.3N 134.3E	120	8	0	25.3N 128.5E	110	113	10	27.8N 125.5E	100	283	25	27.7N 121.3E	105	195	-5	28.4N 121.3E	105	195	-5
080000Z 20.2N 131.1E	115	23.7N 130.7E	115	16	0	26.2N 126.3E	100	166	5	30.8N 125.5E	90	454	30	30.8N 125.5E	90	454	30	30.8N 125.5E	90	454	30
080600Z 20.5N 129.8E	110	23.2N 129.7E	110	19	0	27.7N 125.8E	100	205	10	31.9N 125.4E	90	523	45	31.9N 125.4E	90	523	45	31.9N 125.4E	90	523	45
081200Z 20.7N 128.2E	105	23.3N 128.7E	110	8	5	25.9N 123.2E	100	42	10	27.9N 119.7E	60	173	35	31.9N 125.4E	90	523	45	31.9N 125.4E	90	523	45
081800Z 20.9N 126.9E	100	23.9N 127.7E	105	5	5	25.2N 122.1E	90	45	-5	27.7N 119.7E	60	173	35	31.9N 125.4E	90	523	45	31.9N 125.4E	90	523	45
090000Z 24.2N 125.6E	95	24.1N 125.6E	100	6	5	25.6N 120.8E	90	52	30	27.7N 119.7E	60	173	35	31.9N 125.4E	90	523	45	31.9N 125.4E	90	523	45
090600Z 24.5N 124.4E	90	24.3N 124.5E	95	13	5	25.9N 120.5E	85	101	40	27.7N 119.7E	60	173	35	31.9N 125.4E	90	523	45	31.9N 125.4E	90	523	45
091200Z 24.8N 122.9E	90	24.8N 123.7E	95	5	5	26.4N 118.4E	80	60	55	27.7N 119.7E	60	173	35	31.9N 125.4E	90	523	45	31.9N 125.4E	90	523	45
091800Z 24.8N 121.4E	75	25.2N 121.7E	90	26	15	--,--	--,--	--,--	--,--	27.7N 119.7E	60	173	35	31.9N 125.4E	90	523	45	31.9N 125.4E	90	523	45
100000Z 25.1N 119.8E	60	25.3N 119.7E	55	12	5	--,--	--,--	--,--	--,--	27.7N 119.7E	60	173	35	31.9N 125.4E	90	523	45	31.9N 125.4E	90	523	45
100600Z 25.4N 118.7E	45	25.4N 119.7E	50	18	5	--,--	--,--	--,--	--,--	27.7N 119.7E	60	173	35	31.9N 125.4E	90	523	45	31.9N 125.4E	90	523	45
110000Z 25.7N 117.6E	25	25.3N 117.4E	35	26	10	--,--	--,--	--,--	--,--	27.7N 119.7E	60	173	35	31.9N 125.4E	90	523	45	31.9N 125.4E	90	523	45

TYPHONS WHILE WIND OVER 35 KTS

	1000HTS	1200HTS	1400HTS	2000HTS	2200HTS	2400HTS			
WARNING	24-HR	48-HR	72-HR			WARNING			
AVERAGE FORECAST ERROR	15NM	121NM	243NM	275NM		15NM	111NM	240NM	278NM
AVERAGE RIGHT ANGLE ERROR	10°W	67NM	129NM	119NM		10°W	67NM	130NM	126NM
AVERAGE MAGNITUDE OF WIND ERROR	5KTs	14KTs	19KTs	21KTs		4KTs	15KTs	21KTs	23KTs
AVERAGE BIAS OF WIND ERROR	2KTs	2KTs	1KTs	1KTs		2KTs	4KTs	2KTs	3KTs
NUMBER OF FORECASTS	27	26	22	18		31	27	24	19

TYPHOON FRAN

1200Z 03 SEP TO 1200Z 15 SEP

TYPHOONS WHILE WIND OVER 35KTS

	WARNING			24-HR 48-HR 72-HR				WARNING			24-HR 48-HR 72-HR		
AVERAGE FORECAST ERROR	14NM	130NM	258NM	422NM				16NM	130NM	258NM	422NM		
AVERAGE RIGHT ANGLE ERROR	8NM	65NM	79NM	212NM				8NM	66NM	109NM	212NM		
AVERAGE MAGNITUDE OF WIND ERROR	5KTS	11KTS	14KTS	23KTS				4KTS	11KTS	14KTS	23KTS		
AVERAGE BIAS OF WIND ERROR	-1KTS	-3KTS	-9KTS	-21KTS				-1KTS	-3KTS	-9KTS	-21KTS		
NUMBER OF FORECASTS	38	37	33	29				41	37	33	29		

TYPHOON HOPE

0600Z 14 SEP TO 1800Z 17 SEP

BEST TRACK	WARNING			24 HOUR FORECAST			48 HOUR FORECAST			72 HOUR FORECAST			
	POSIT	WIND	POSIT	WIND	DST	WIND	POSIT	WIND	DST	WIND	POSIT	WIND	DST
140607Z 19.4N 154.5E	40	18.5N 154.0E	45	61	5	19.8N 151.7E	65	239	5	21.8N 149.1E	75	419	15
141207Z 20.3N 154.5E	45	20.2N 154.5E	45	8	0	20.7N 154.4E	65	214	0	25.1N 152.2E	75	350	20
141807Z 21.3N 154.1E	50	20.9N 154.8E	55	46	5	23.5N 154.0E	75	261	5	25.7N 151.4E	80	375	30
150007Z 22.4N 153.9E	55	22.1N 153.4E	55	19	0	25.3N 151.9E	65	189	0	29.2N 150.2E	70	257	25
150507Z 23.7N 152.7E	60	23.2N 153.0E	60	34	0	27.1N 150.8E	70	126	10	30.1N 150.0E	70	257	25
151207Z 25.3N 151.7E	65	24.7N 150.2E	65	45	0	29.3N 150.2E	70	100	15	32.1N 149.5E	70	257	25
151807Z 26.3N 150.3E	70	25.9N 151.0E	65	84	5	30.3N 150.1E	70	109	20	32.1N 149.5E	70	257	25
160007Z 27.7N 149.2E	65	27.6N 149.0E	70	12	5	32.0N 146.8E	70	143	25	33.1N 145.5E	70	257	25
160407Z 28.3N 148.7E	60	29.2N 148.5E	70	39	10	34.7N 145.5E	70	143	25	33.1N 145.5E	70	257	25
161207Z 29.4N 148.4E	55	29.8N 148.4E	70	6	15	34.7N 145.5E	70	143	25	33.1N 145.5E	70	257	25
161807Z 31.4N 148.4E	50	30.9N 148.1E	65	34	15	34.7N 145.5E	70	143	25	33.1N 145.5E	70	257	25
170007Z 33.4N 149.1E	45	33.2N 148.7E	50	23	5	34.7N 145.5E	70	143	25	33.1N 145.5E	70	257	25

TYPHOONS WHILE WIND OVER 35KTS

	WARNING	24-HR	48-HR	72-HR		WARNING	24-HR	48-HR	72-HR
AVERAGE FORECAST ERROR	TANM	173NM	350NM	DNM		TANM	173NM	350NM	DNM
AVERAGE RIGHT ANGLE ERROR	20NM	77NM	82NM	0NM		20NM	77NM	82NM	0NM
AVERAGE MAGNITUDE OF WIND ERROR	5KTS	10KTS	23KTS	0KTS		5KTS	10KTS	23KTS	0KTS
AVERAGE BIAS OF WIND ERROR	5KTS	10KTS	23KTS	0KTS		5KTS	10KTS	23KTS	0KTS
NUMBER OF FORECASTS	12	8	4	0		12	8	4	0

TYPHOON (B/S)

0600Z 14 SEP TO 0600Z 21 SEP

TYPHOONS WHILE WIND OVER 35KTS

AVERAGE FORECAST ERROR	WARNING	24-HR	48-HR
AVERAGE RIGHT ANGLE ERROR	16NM	91NM	182NM
AVERAGE MAGNITUDE OF WIND ERROR	10NM	95NM	105NM
AVERAGE BIAS OF WIND ERROR	-1KTS	7KTS	15KTS
NUMBER OF FORECASTS	24	24	12KTS

ALL FORECASTS			
WARNING	24-HR	48-HR	72-HR
17NM	91NM	182NM	316NM
11NM	58NM	105NM	202NM
1KTS	7KTS	15KTS	21KTS
-1KTS	-7KTS	-12KTS	-19KTS
25	21	17	13

TYPHOON JOAN

1200Z 19 SEP TO 0600Z 24 SEP

TYPHONS WHILE WIND OVER 80 M.P.H.

	OPERATIONS WHILE WIND OVER 10 MPH		
AVERAGE FORECAST ERROR	WARNING	24-HR	48-HR
AVERAGE RIGHT ANGLE ERROR	47NM	142NM	244NM
AVERAGE MAGNITUDE OF WIND ERROR	25NM	102NM	156NM
AVERAGE BIAS OF WIND ERROR	12KTS	17KTS	10KTS
NUMBER OF FORECASTS	124ATS	11KTS	8KTS
	19	16	12

ALL FORECASTS			
	24-HR	48-HR	72-HR
46NM	140NM	244NM	363NM
25NM	102NM	156NM	291NM
12KTS	17KTS	10KTS	6KTS
+12KTS	-11KTS	-9KTS	+6KTS
20	14	12	8

TYPHON LOUISE

0000Z 30 OCT TO 1200Z 07 NOV

BEST TRACK		WARNING			24 HOUR FORECAST			48 HOUR FORECAST			72 HOUR FORECAST			
POSIT	WIND	POSIT	WIND	ERRORS	POSIT	WIND	ERRORS	POSIT	WIND	ERRORS	POSIT	WIND	ERRORS	
300000Z	10.0N 148.5E	25 10.3N 145.5E	25	18	12.2N 146.2E	40	145	0	13.6N 143.3E	55	249	-5	19.1N 139.5E	
300600Z	9.8N 149.2E	30 9.5N 146.5E	25	25	11.5N 146.0E	40	164	-5	13.0N 143.2E	50	292	-15	14.6N 139.4E	
301200Z	9.7N 147.3E	30 10.1N 147.5E	30	27	11.5N 144.7E	40	156	+10	13.0N 141.8E	50	260	-25	14.5N 137.8E	
301800Z	9.8N 146.1E	35 9.6N 145.9E	30	17	10.3N 141.3E	40	45	+15	11.9N 136.8E	50	43	-40	14.2N 132.6E	
310000Z	10.2N 144.8E	40 9.9N 144.9E	40	19	10.8N 140.5E	50	47	+10	12.4N 136.3E	60	88	-45	14.2N 131.8E	
311600Z	10.6N 143.4E	45 10.7N 143.6E	45	13	12.2N 138.9E	55	62	+10	13.9N 135.1E	65	109	-55	15.9N 131.7E	
311800Z	11.0N 142.1E	50 10.7N 142.2E	50	13	12.2N 131.7E	120	45	+15	13.2N 131.8E	75	88	-65	14.8N 130.1E	
312000Z	11.2N 141.0E	55 11.2N 140.5E	55	19	11.9N 137.3E	65	30	+10	13.1N 133.4E	70	76	-65	14.8N 130.1E	
010000Z	11.2N 139.8E	60 11.5N 139.5E	60	25	12.7N 134.9E	80	30	+25	13.2N 131.8E	75	88	-65	14.8N 128.5E	
010600Z	11.2N 138.6E	65 11.3N 138.5E	65	8	12.1N 134.0E	85	48	+35	14.1N 131.1E	90	104	-50	15.3N 128.3E	
011200Z	11.4N 137.3E	75 11.5N 137.4E	65	8	12.1N 133.2E	85	88	+50	13.4N 129.8E	95	166	-45	14.9N 125.9E	
011800Z	11.7N 136.1E	90 11.5N 136.2E	90	13	12.4N 131.7E	120	125	+20	13.7N 127.4E	125	187	-15	15.7N 123.9E	
020000Z	12.2N 134.8E	105 12.1N 134.8E	95	6	13.6N 129.5E	125	78	+15	15.3N 125.5E	130	138	-10	18.2N 121.7E	
020600Z	12.8N 133.6E	120 12.7N 133.6E	110	6	16.7N 128.6E	130	64	+10	17.2N 124.7E	135	131	0	20.3N 121.8E	
021200Z	12.8N 132.2E	135 13.7N 132.1E	115	8	16.7N 126.5E	135	57	+5	21.7N 124.5E	135	249	0	24.7N 123.8E	
021800Z	14.3N 130.8E	140 14.3N 131.1E	135	17	17.2N 125.8E	150	67	10	21.1N 122.7E	130	256	20	25.3N 123.2E	
030000Z	14.9N 129.5E	140 15.2N 129.3E	140	21	0 18.3N 124.3E	145	149	5	22.0N 123.2E	135	248	15	25.8N 127.7E	
030600Z	16.3N 127.4E	140 16.4N 127.2E	135	6	+5 18.5N 124.8E	130	116	+5	21.7N 124.5E	125	173	10	25.2N 127.7E	
031200Z	16.3N 126.9E	140 17.0N 126.4E	135	13	+5 19.4N 123.5E	130	199	0	22.8N 124.1E	125	227	15	25.7N 128.2E	
040000Z	17.3N 126.7E	140 17.2N 126.5E	135	21	+5 19.8N 123.8E	125	185	0	22.4N 124.3E	115	272	10	25.8N 128.7E	
040600Z	18.1N 126.8E	135 17.9N 126.5E	135	13	+5 18.9N 125.2E	125	160	5	20.5N 125.2E	115	373	15	23.7N 127.7E	
041200Z	19.0N 127.0E	130 19.2N 127.1E	135	12	0 20.5N 127.1E	120	66	5	24.1N 130.3E	105	132	10	27.4N 135.9E	
041800Z	19.8N 127.2E	125 20.0N 127.3E	130	13	5 22.3N 129.8E	120	88	10	25.7N 135.4E	100	151	10	28.6N 143.5E	
050000Z	20.6N 127.4E	120 20.7N 127.3E	125	8	5 23.4N 127.9E	105	149	5	27.3N 130.8E	95	437	15	--	
050600Z	21.5N 127.6E	115 21.5N 127.5E	120	6	5 25.0N 128.8E	100	165	5	29.1N 133.1E	75	358	20	--	
051200Z	22.5N 128.2E	110 22.4N 127.8E	120	23	10 26.0N 129.5E	100	219	10	30.7N 134.3E	75	431	30	--	
060000Z	24.6N 130.3E	100 24.5N 130.5E	110	12	10 28.7N 138.7E	90	106	20	--	--	--	--	--	
060600Z	25.9N 131.3E	95 25.9N 131.5E	110	14	15 30.7N 139.0E	90	42	35	--	--	--	--	--	
061200Z	27.4N 131.7E	90 27.3N 131.7E	100	13	10 32.6N 142.0E	85	100	40	--	--	--	--	--	
070000Z	30.0N 137.3E	70 30.2N 137.0E	70	20	0 --	--	--	--	--	--	--	--	--	
070600Z	30.8N 139.8E	55 30.9N 140.2E	65	27	10 --	--	--	--	--	--	--	--	--	
071200Z	31.0N 142.6E	45 31.4N 143.3E	60	43	15 --	--	--	--	--	--	--	--	--	
AVERAGE FORECAST ERROR														
AVERAGE RIGHT ANGLE ERROR														
AVERAGE MAGNITUDE OF WIND ERROR														
NUMBER OF FORECASTS														
TYPHONS WHILE WIND OVER 35KTS														
WARNING 24-HR 48-HR 72-HR														
15NM 102NM 203NM 260NM														
11NM 69NM 112NM 139NM														
6KTS 14KTS 25KTS 36KTS														
1KTS *2KTS *11KTS -17KTS														
32 31 27 23														
ALL FORECASTS														
16NM 102NM 203NM 260NM														
12NM 69NM 112NM 139NM														
5KTS 14KTS 25KTS 36KTS														
0KTS -2KTS -11KTS -17KTS														
35 31 27 23														

5. INDIAN OCEAN AREA CYCLONE DATA

TROPICAL CYCLONE 20-76

0000Z 29 APR TO 2000Z 02 MAY

BEST TRACK				WARNING				24 HOUR FORECAST				48 HOUR FORECAST				72 HOUR FORECAST			
POSIT	WIND	POSIT	WIND	POSIT	WIND	POSIT	WIND	POSIT	WIND	POSIT	WIND	POSIT	WIND	POSIT	WIND	POSIT	WIND		
241800Z 13.1N 94.2E	35 12.9N 93.9E	40	21	5	13.9N 92.6E	50	123	0	15.2N 91.7E	60	186	20	--	--	--	--			
310000Z 13.4N 94.0E	40	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--			
310600Z 14.0N 93.6E	45	13.6N 93.2E	45	33	0	15.3N 92.2E	55	145	15	17.3N 92.2E	60	128	15	--	--	--			
311200Z 14.3N 93.5E	45	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--			
311800Z 15.6N 93.8E	50	16.1N 94.2E	45	38	25	17.8N 99.6E	20	315	20	--	--	--	--	--	--	--			
020000Z 16.0N 94.2E	50	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--			
020600Z 16.5N 94.4E	40	16.0N 94.0E	45	38	5	17.4N 98.0E	25	223	20	--	--	--	--	--	--	--			
021200Z 16.0N 94.3E	35	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--			
021800Z 17.3N 94.1E	40	16.8N 94.4E	50	34	10	--	--	--	--	--	--	--	--	--	--	--			
020000Z 17.9N 94.1E	45	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--			
020600Z 18.3N 94.2E	45	18.0N 94.1E	50	19	5	--	--	--	--	--	--	--	--	--	--	--			
021200Z 18.8N 94.4E	35	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--			
ALL FORECASTS																			
AVERAGE FORECAST ERROR																			
31NM	201NM	157NM	DNM																
12NM	162NM	107NM	DNM																
5KTS	14KTS	18KTS	OKTS																
3KTS	6KTS	18KTS	OKTS																
NUMBER OF FORECASTS																			
	6	4	2																

TROPICAL CYCLONE 22-76

0800Z 02 JUN TO 0800Z 03 JUN

BEST TRACK				WARNING				24 HOUR FORECAST				48 HOUR FORECAST				72 HOUR FORECAST			
POSIT	WIND	POSIT	WIND	POSIT	WIND	POSIT	WIND	POSIT	WIND	POSIT	WIND	POSIT	WIND	POSIT	WIND	POSIT	WIND		
020600Z 19.0N 70.8E	35 19.2N 70.2E	40	12	5	21.1N 71.3E	50	56	10	--	--	--	--	--	--	--	--	--		
021200Z 19.4N 70.9E	40	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--			
021800Z 20.0N 71.0E	40	20.2N 71.0E	50	21	10	--	--	--	--	--	--	--	--	--	--	--			
030000Z 21.6N 71.8E	40	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--			
030600Z 21.1N 72.3E	40	21.2N 72.2E	40	50	0	--	--	--	--	--	--	--	--	--	--	--			
031200Z 21.7N 72.9E	35	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--			
ALL FORECASTS																			
AVERAGE FORECAST ERROR																			
2RNM	56NM	DNM	DNM																
1RNM	41NM	DNM	DNM																
5KTS	10KTS	OKTS	OKTS																
5KTS	10KTS	OKTS	OKTS																
NUMBER OF FORECASTS																			
	3	1	0																

TROPICAL CYCLONE 23-76

0800Z 10 SEP TO 2000Z 11 SEP

BEST TRACK				WARNING				24 HOUR FORECAST				48 HOUR FORECAST				72 HOUR FORECAST			
POSIT	WIND	POSIT	WIND	POSIT	WIND	POSIT	WIND	POSIT	WIND	POSIT	WIND	POSIT	WIND	POSIT	WIND	POSIT	WIND		
110600Z 19.6N 91.2E	40 19.8N 91.1E	40	13	0	21.1N 89.8E	50	78	20	--	--	--	--	--	--	--	--	--		
111200Z 21.2N 90.7E	40	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--			
111800Z 21.8N 90.1E	40	21.3N 89.7E	35	54	5	22.5N 86.2E	25	65	5	--	--	--	--	--	--	--			
110000Z 21.3N 89.5E	35	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--			
110600Z 21.9N 88.7E	30	21.3N 89.1E	35	42	5	--	--	--	--	--	--	--	--	--	--	--			
111200Z 21.5N 87.8E	20	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--			
111800Z 23.3N 87.0E	20	22.8N 86.8E	30	32	10	--	--	--	--	--	--	--	--	--	--	--			
ALL FORECASTS																			
AVERAGE FORECAST ERROR																			
35NM	71NM	DNM	DNM																
13NM	34NM	DNM	DNM																
5KTS	13KTS	OKTS	OKTS																
3KTS	13KTS	OKTS	OKTS																
NUMBER OF FORECASTS																			
	4	2	0																

TROPICAL CYCLONE 25-76
0800Z 15 OCT TO 2000Z 17 OCT

BEST TRACK										WARNING										24 HOUR FORECAST										48 HOUR FORECAST										72 HOUR FORECAST																			
150600Z 16.0N 59.6E 35 13.7W 58.7E 50	127	0	14.5N 55.3E 45	133	-5	17.2N 54.2E 45	295	5	16.0N 53.8E 50	192	20	15.0N 52.9E 40	103	0	14.0N 52.0E 40	125	10	13.0N 51.0E 40	125	10	12.0N 50.0E 40	125	10	11.0N 49.0E 40	125	10	10.0N 48.0E 40	125	10	9.0N 47.0E 40	125	10	8.0N 46.0E 40	125	10	7.0N 45.0E 40	125	10	6.0N 44.0E 40	125	10	5.0N 43.0E 40	125	10	4.0N 42.0E 40	125	10	3.0N 41.0E 40	125	10	2.0N 40.0E 40	125	10	1.0N 39.0E 40	125	10	0.0N 38.0E 40	125	10
151200Z 16.0N 58.9E 40 11.7W 57.2E 40	63	-5	13.3N 54.0E 50	75	0	16.0N 53.8E 50	192	20	15.0N 52.9E 40	103	0	14.0N 52.0E 40	125	10	13.0N 51.0E 40	125	10	12.0N 50.0E 40	125	10	11.0N 49.0E 40	125	10	10.0N 48.0E 40	125	10	9.0N 47.0E 40	125	10	8.0N 46.0E 40	125	10	7.0N 45.0E 40	125	10	6.0N 44.0E 40	125	10	5.0N 43.0E 40	125	10	4.0N 42.0E 40	125	10	3.0N 41.0E 40	125	10	2.0N 40.0E 40	125	10	1.0N 39.0E 40	125	10	0.0N 38.0E 40	125	10			
151800Z 16.3N 58.2E 45 11.9W 57.2E 40	127	0	14.5N 55.3E 45	133	-5	17.2N 54.2E 45	295	5	16.0N 53.8E 50	192	20	15.0N 52.9E 40	103	0	14.0N 52.0E 40	125	10	13.0N 51.0E 40	125	10	12.0N 50.0E 40	125	10	11.0N 49.0E 40	125	10	10.0N 48.0E 40	125	10	9.0N 47.0E 40	125	10	8.0N 46.0E 40	125	10	7.0N 45.0E 40	125	10	6.0N 44.0E 40	125	10	5.0N 43.0E 40	125	10	4.0N 42.0E 40	125	10	3.0N 41.0E 40	125	10	2.0N 40.0E 40	125	10	1.0N 39.0E 40	125	10	0.0N 38.0E 40	125	10
160000Z 16.5N 57.4E 50 11.7W 57.2E 40	63	-5	13.3N 54.0E 50	75	0	16.0N 53.8E 50	192	20	15.0N 52.9E 40	103	0	14.0N 52.0E 40	125	10	13.0N 51.0E 40	125	10	12.0N 50.0E 40	125	10	11.0N 49.0E 40	125	10	10.0N 48.0E 40	125	10	9.0N 47.0E 40	125	10	8.0N 46.0E 40	125	10	7.0N 45.0E 40	125	10	6.0N 44.0E 40	125	10	5.0N 43.0E 40	125	10	4.0N 42.0E 40	125	10	3.0N 41.0E 40	125	10	2.0N 40.0E 40	125	10	1.0N 39.0E 40	125	10	0.0N 38.0E 40	125	10			
160600Z 16.5N 56.3E 50 12.7W 56.7E 50	127	0	14.5N 55.3E 45	133	-5	17.2N 54.2E 45	295	5	16.0N 53.8E 50	192	20	15.0N 52.9E 40	103	0	14.0N 52.0E 40	125	10	13.0N 51.0E 40	125	10	12.0N 50.0E 40	125	10	11.0N 49.0E 40	125	10	10.0N 48.0E 40	125	10	9.0N 47.0E 40	125	10	8.0N 46.0E 40	125	10	7.0N 45.0E 40	125	10	6.0N 44.0E 40	125	10	5.0N 43.0E 40	125	10	4.0N 42.0E 40	125	10	3.0N 41.0E 40	125	10	2.0N 40.0E 40	125	10	1.0N 39.0E 40	125	10	0.0N 38.0E 40	125	10
161200Z 16.4N 55.6E 50 12.7W 56.7E 50	127	0	14.5N 55.3E 45	133	-5	17.2N 54.2E 45	295	5	16.0N 53.8E 50	192	20	15.0N 52.9E 40	103	0	14.0N 52.0E 40	125	10	13.0N 51.0E 40	125	10	12.0N 50.0E 40	125	10	11.0N 49.0E 40	125	10	10.0N 48.0E 40	125	10	9.0N 47.0E 40	125	10	8.0N 46.0E 40	125	10	7.0N 45.0E 40	125	10	6.0N 44.0E 40	125	10	5.0N 43.0E 40	125	10	4.0N 42.0E 40	125	10	3.0N 41.0E 40	125	10	2.0N 40.0E 40	125	10	1.0N 39.0E 40	125	10	0.0N 38.0E 40	125	10
161800Z 16.4N 54.9E 50 12.7W 56.7E 50	127	0	14.5N 55.3E 45	133	-5	17.2N 54.2E 45	295	5	16.0N 53.8E 50	192	20	15.0N 52.9E 40	103	0	14.0N 52.0E 40	125	10	13.0N 51.0E 40	125	10	12.0N 50.0E 40	125	10	11.0N 49.0E 40	125	10	10.0N 48.0E 40	125	10	9.0N 47.0E 40	125	10	8.0N 46.0E 40	125	10	7.0N 45.0E 40	125	10	6.0N 44.0E 40	125	10	5.0N 43.0E 40	125	10	4.0N 42.0E 40	125	10	3.0N 41.0E 40	125	10	2.0N 40.0E 40	125	10	1.0N 39.0E 40	125	10	0.0N 38.0E 40	125	10
170000Z 12.1N 54.1E 45 -- -- -- --	57	0	15.0N 52.9E 40	103	0	14.0N 52.0E 40	125	10	13.0N 51.0E 40	125	10	12.0N 50.0E 40	125	10	11.0N 49.0E 40	125	10	10.0N 48.0E 40	125	10	9.0N 47.0E 40	125	10	8.0N 46.0E 40	125	10	7.0N 45.0E 40	125	10	6.0N 44.0E 40	125	10	5.0N 43.0E 40	125	10	4.0N 42.0E 40	125	10	3.0N 41.0E 40	125	10	2.0N 40.0E 40	125	10	1.0N 39.0E 40	125	10	0.0N 38.0E 40	125	10									
170600Z 12.3N 53.5E 40 -- -- -- --	63	0	15.0N 52.9E 40	103	0	14.0N 52.0E 40	125	10	13.0N 51.0E 40	125	10	12.0N 50.0E 40	125	10	11.0N 49.0E 40	125	10	10.0N 48.0E 40	125	10	9.0N 47.0E 40	125	10	8.0N 46.0E 40	125	10	7.0N 45.0E 40	125	10	6.0N 44.0E 40	125	10	5.0N 43.0E 40	125	10	4.0N 42.0E 40	125	10	3.0N 41.0E 40	125	10	2.0N 40.0E 40	125	10	1.0N 39.0E 40	125	10	0.0N 38.0E 40	125	10									
171200Z 12.6N 53.2E 35 13.4N 53.2E 45	68	5	15.0N 52.9E 40	103	0	14.0N 52.0E 40	125	10	13.0N 51.0E 40	125	10	12.0N 50.0E 40	125	10	11.0N 49.0E 40	125	10	10.0N 48.0E 40	125	10	9.0N 47.0E 40	125	10	8.0N 46.0E 40	125	10	7.0N 45.0E 40	125	10	6.0N 44.0E 40	125	10	5.0N 43.0E 40	125	10	4.0N 42.0E 40	125	10	3.0N 41.0E 40	125	10	2.0N 40.0E 40	125	10	1.0N 39.0E 40	125	10	0.0N 38.0E 40	125	10									
171800Z 12.9N 52.9E 30 13.1N 52.5E 35	26	5	15.0N 52.9E 40	103	0	14.0N 52.0E 40	125	10	13.0N 51.0E 40	125	10	12.0N 50.0E 40	125	10	11.0N 49.0E 40	125	10	10.0N 48.0E 40	125	10	9.0N 47.0E 40	125	10	8.0N 46.0E 40	125	10	7.0N 45.0E 40	125	10	6.0N 44.0E 40	125	10	5.0N 43.0E 40	125	10	4.0N 42.0E 40	125	10	3.0N 41.0E 40	125	10	2.0N 40.0E 40	125	10	1.0N 39.0E 40	125	10	0.0N 38.0E 40	125	10									

AVERAGE FORECAST ERROR
AVERAGE RIGHT ANGLE ERROR
AVERAGE MAGNITUDE OF WIND ERROR
AVERAGE BIAS OF WIND ERROR
NUMBER OF FORECASTS

ALL FORECASTS				
WARNING	24-HR	48-HR	72-HR	
59NM	109NM	244NM	DNH	
40NM	99NM	230NM	DNH	
3KTS	4KTS	13KTS	DKTS	
1KTS	1KTS	13KTS	DKTS	
6	4	2	0	

TROPICAL CYCLONE 30-76
0800Z 30 DEC TO 0800Z 02 JAN

BEST TRACK										WARNING										24 HOUR FORECAST										48 HOUR FORECAST										72 HOUR FORECAST																			
291800Z 9.1N 90.9E 30 -- -- -- --	127	0	12.1N 89.7E 45	133	-5	15.2N 89.2E 45	295	5	18.3N 88.7E 45	103	0	17.2N 88.2E 40	125	10	16.1N 87.7E 40	125	10	15.0N 87.2E 40	125	10	13.9N 86.7E 40	125	10	12.8N 86.2E 40	125	10	11.7N 85.7E 40	125	10	10.6N 85.2E 40	125	10	9.5N 84.7E 40	125	10	8.4N 84.2E 40	125	10	7.3N 83.7E 40	125	10	6.2N 83.2E 40	125	10	5.1N 82.7E 40	125	10	4.0N 82.2E 40	125	10	2.9N 81.7E 40	125	10	1.8N 81.2E 40	125	10	0.7N 80.7E 40	125	10
300000Z 9.5N 91.2E 35 10.2N 91.2E 35	43	-5	12.1N 89.7E 45	133	-5	15.2N 89.2E 45	295	5	18.3N 88.7E 45	103	0	17.2N 88.2E 40	125	10	16.1N 87.7E 40	125	10	15.0N 87.2E 40	125	10	13.9N 86.7E 40	125	10	12.8N 86.2E 40	125	10	11.7N 85.7E 40	125	10	10.6N 85.2E 40	125	10	9.5N 84.7E 40	125	10	8.4N 84.2E 40	125	10	7.3N 83.7E 40	125	10	6.2N 83.2E 40	125	10	5.1N 82.7E 40	125	10	4.0N 82.2E 40	125	10	2.9N 81.7E 40	125	10	1.8N 81.2E 40	125	10	0.7N 80.7E 40	125	10
300600Z 9.5N 91.5E 40 10.2N 91.2E 35	59	-15	12.1N 89.7E 45	133	-5	15.2N 89.2E 45	295	5	18.3N 88.7E 45	103	0	17.2N 88.2E 40	125	10	16.1N 87.7E 40	125	10	15.0N 87.2E 40	125	10	13.9N 86.7E 40	125	10	12.8N 86.2E 40	125	10	11.7N 85.7E 40	125	10	10.6N 85.2E 40	125	10	9.5N 84.7E 40	125	10	8.4N 84.2E 40	125	10	7.3N 83.7E 40	125	10	6.2N 83.2E 40	125	10	5.1N 82.7E 40	125	10	4.0N 82.2E 40	125	10	2.9N 81.7E 40	125	10	1.8N 81.2E 40	125	10	0.7N 80.7E 40	125	10
301200Z 10.2N 92.1E 45 10.2N 91.2E 35	38	-5	12.1N 89.7E 45	133	-5	15.2N 89.2E 45	295	5	18.3N 88.7E 45	103	0	17.2N 88.2E 40	125																																														

6. CENTRAL NORTH PACIFIC HURRICANE DATA

HURRICANE KATE

1200Z 20 SEP TO 1200Z 02 OCT

BEST TRACK				WARNING				24 HOUR FORECAST				48 HOUR FORECAST				72 HOUR FORECAST			
POSIT	WIND	POSIT	WIND	POSIT	WIND	DST	WIND	POSIT	WIND	DST	WIND	POSIT	WIND	DST	WIND	POSIT	WIND	DST	WIND
211800Z 12.9N 140.5E	30 12.7N 140.7E	30 17	0 13.9N 144.5E	35 145	5 14.8N 148.3E	35 377	-10	15.8N 152.2E	30 575	-35									
240000Z 13.4N 141.2E	30 13.3N 141.0E	30 13	0 14.8N 145.0E	35 184	0	--	--	--	--	--	--	--	--	--	--	--	--	--	--
240600Z 13.5N 141.6E	30 13.4N 141.7E	30 21	0 15.2N 145.8E	35 237	0	15.0N 150.1E	35 469	-25	15.8N 154.3E	35 661	-35								
241200Z 13.9N 142.0E	30 14.2N 142.9E	30 50	0 15.0N 146.8E	35 293	-5	15.0N 151.2E	35 522	-25	15.8N 155.3E	35 701	-35								
241800Z 14.0N 142.0E	30 14.3N 141.9E	35 19	5 15.0N 145.5E	35 107	-10	15.9N 146.7E	40 276	-25	16.4N 149.8E	40 381	-3								
240000Z 14.1N 141.9E	35 14.0N 141.8E	35 8	0 14.0N 142.5E	35 42	-10	14.7N 146.7E	40 240	-30	15.5N 151.0E	40 410	-3								
240600Z 14.1N 141.8E	35 14.0N 141.8E	35 6	0 14.0N 142.5E	35 38	-25	14.7N 146.7E	40 223	-30	15.5N 151.0E	40 390	-3								
241200Z 14.2N 141.8E	40 14.2N 141.7E	40 6	0 14.2N 142.5E	40 18	-20	14.7N 146.7E	45 205	-25	15.5N 151.0E	45 369	-25								
241800Z 14.3N 141.8E	45 14.2N 141.8E	40 6	-5 14.5N 142.7E	50 38	-15	15.8N 144.6E	55 112	-15	16.5N 146.5E	55 104	-25								
240000Z 14.4N 141.9E	45 14.6N 142.2E	40 21	-5 15.0N 143.3E	50 67	-20	15.8N 144.6E	55 96	-15	16.5N 146.5E	55 91	-3								
240600Z 14.4N 142.0E	60 14.3N 142.5E	40 30	0 15.0N 143.8E	65 75	-5	15.7N 145.0E	70 77	0	16.2N 146.3E	65 70	-2								
241200Z 14.3N 142.2E	60 14.3N 142.2E	60 0	0 14.5N 143.0E	70 21	0	15.0N 145.0E	65 24	-5	15.8N 148.0E	65 191	-15								
241800Z 14.1N 142.3E	65 14.1N 142.3E	65 0	0 14.5N 143.5E	70 19	0	15.0N 145.5E	65 54	-15	15.8N 148.5E	65 215	-15								
250000Z 14.1N 142.6E	70 14.1N 142.8E	70 12	0 14.1N 145.0E	70 59	0	14.1N 147.0E	70 162	-15	14.1N 149.0E	70 281	-5								
250600Z 14.1N 142.9E	70 14.1N 143.0E	70 6	0 14.1N 144.0E	70 35	0	14.1N 145.0E	65 137	-20	14.1N 146.0E	65 285	-15								
251200Z 14.2N 143.2E	70 14.2N 143.4E	70 12	0 14.2N 144.5E	70 54	0	14.2N 145.5E	65 167	-15	14.2N 147.5E	65 296	-15								
251800Z 14.2N 143.6E	70 14.1N 143.6E	75 6	5 14.1N 144.8E	75 96	-5	14.1N 146.0E	70 203	-10	14.1N 147.2E	65 335	-5								
260000Z 14.3N 144.0E	70 14.3N 144.0E	70 0	0 14.5N 145.2E	70 90	-15	14.6N 146.4E	70 215	-5	14.7N 147.6E	60 356	-5								
260600Z 14.6N 144.5E	70 14.6N 144.7E	70 0	0 15.2N 145.7E	65 60	-20	15.7N 147.0E	60 180	-15	16.2N 148.3E	55 328	-10								
261200Z 15.1N 144.6E	70 15.3N 144.5E	70 15	0 16.8N 146.5E	70 64	-10	17.2N 148.9E	65 118	-10	16.9N 151.3E	60 293	0								
261800Z 15.7N 144.9E	80 15.7N 144.9E	90 0	10 16.9N 146.5E	75 54	-5	17.0N 149.1E	65 143	-5	17.0N 152.2E	60 323	5								
270000Z 16.0N 145.0E	85 15.9N 145.1E	85 8	0 17.3N 146.0E	75 64	0	17.9N 148.0E	65 178	0	18.0N 151.0E	65 299	15								
270600Z 16.4N 145.1E	85 16.5N 145.0E	85 8	0 18.3N 145.0E	75 132	0	20.5N 143.5E	65 415	0	22.4N 140.5E	60 659	10								
271200Z 17.0N 145.4E	80 17.0N 145.4E	85 0	5 18.5N 146.9E	75 57	0	19.9N 148.6E	60 198	0	21.0N 150.5E	50 237	5								
271800Z 17.5N 145.8E	80 17.2N 145.5E	80 25	0 18.6N 146.9E	75 133	5	19.9N 148.6E	60 250	5	21.0N 150.5E	50 251	5								
280000Z 18.2N 146.6E	75 18.2N 146.6E	75 0	5 20.6N 149.7E	65 29	0	22.5N 153.5E	55 58	5	25.0N 157.0E	45 260	5								
280600Z 18.7N 147.3E	75 18.7N 147.1E	75 11	0 20.9N 149.2E	65 96	0	22.3N 152.0E	55 79	5	24.5N 155.0E	45 161	10								
281200Z 19.1N 148.3E	75 19.1N 148.3E	75 0	0 20.6N 152.3E	65 84	5	22.0N 156.3E	55 269	10	23.3N 161.3E	45 461	10								
281800Z 19.4N 149.1E	70 19.4N 149.1E	70 6	0 20.7N 152.6E	60 104	5	22.3N 156.5E	50 282	5	24.0N 159.5E	45 399	10								
290000Z 21.2N 150.0E	65 20.2N 150.0E	55 0	0 22.2N 153.6E	55 70	5	24.2N 157.2E	50 278	10	26.5N 161.0E	40 446	10								
290600Z 21.1N 150.9E	65 21.2N 150.8E	55 8	0 23.3N 153.9E	55 75	5	26.0N 157.5E	50 287	15	--	--	--								
291200Z 21.3N 151.5E	60 21.7N 151.4E	65 8	5 23.8N 155.1E	45 160	0	27.4N 157.7E	35 313	0	--	--	--								
291800Z 24.4N 152.2E	55 22.4N 152.2E	55 0	0 25.3N 155.2E	35 164	-10	27.8N 157.3E	30 287	0	--	--	--								
300000Z 24.8N 152.5E	50 22.8N 152.5E	50 0	0 25.6N 155.7E	35 190	-5	28.5N 158.8E	30 357	0	--	--	--								
300600Z 23.5N 152.6E	50 23.5N 152.4E	50 0	0 25.5N 154.5E	35 124	0	--	--	--	--	--	--								
301200Z 24.6N 152.3E	45 24.6N 152.3E	50 0	5 29.2N 150.5E	30 233	-5	--	--	--	--	--	--								
301800Z 24.9N 152.2E	45 25.0N 152.1E	45 8	0 28.0N 150.6E	30 203	0	--	--	--	--	--	--								
010000Z 25.2N 152.2E	40 25.5N 152.2E	40 18	0 28.0N 151.5E	30 135	0	--	--	--	--	--	--								
010600Z 25.4N 152.2E	35 25.8N 152.1E	55 26	0 --	--	--	--	--	--	--	--	--								
011200Z 25.6N 152.2E	35 25.7N 152.1E	35 8	0 --	--	--	--	--	--	--	--	--								
011800Z 25.8N 152.4E	30 25.9N 152.4E	30 6	0 --	--	--	--	--	--	--	--	--								
040000Z 26.0N 152.7E	30 25.9N 152.9E	25 12	-5 --	--	--	--	--	--	--	--	--								

HURRICANE WHILE WIND OVER 35KTS									
WARNING					ALL FORECASTS				
AVERAGE FORECAST ERROR					9NM 24HR 213NM 333NM				
AVERAGE RIGHT ANGLE ERROR					9NM 103NM 220NM 339NM				
AVERAGE MAGNITUDE OF WIND ERROR					5NM 40NM 144NM 210NM				
AVERAGE BIAS OF WIND ERROR					1KTS 6KTS 12KTS 16KTS				
NUMBER OF FORECASTS					1KTS -4KTS 11KTS 16KTS				
					0KTS -4KTS -8KTS -10KTS				
					42 18 33 29				

APPENDIX

ABBREVIATIONS, ACRONYMS AND DEFINITIONS

Abbreviations, acronyms and definitions which apply for the purpose of this report.

1. ABBREVIATIONS AND ACRONYMS

AC&W	Aircraft Control and Warning
AIREP	Aircraft Weather Reports (Commercial and Military)
AJTWC	Alternate Joint Typhoon Warning Center
AUTODIN	Automatic Digital Network
AUTOVON	Automatic Voice Network
AWN	Automated Weather Network
AWS	Air Weather Service
CINCPAC	Commander in Chief Pacific
CINCPACFLT	Commander in Chief U. S. Pacific Fleet
CDRUSACSG	Commander, U. S. Army CINCPAC Support Group
DMSP	Defense Meteorological Satellite Program
FLEWEACEN/JTWC	Fleet Weather Central/ Joint Typhoon Warning Center
NEDN	Naval Environmental Data Network
NESS	National Environmental Satellite Service
NOAA	National Oceanic and Atmospheric Administration
NTCC	Naval Telecommunications Center
NWS	National Weather Service
PACOM	Pacific Command
SLP (MSLP)	Sea Level Pressure (Minimum Sea Level Pressure)
SMS	Synchronous Meteorological Satellite
TCARC	Tropical Cyclone Aircraft Reconnaissance Coordinator
TC	Tropical Cyclone
TD	Tropical Depression
WMO	World Meteorological Organization

2. DEFINITIONS

ALTERNATE JOINT TYPHOON WARNING CENTER-The AJTWC is Detachment 17, 30th Weather Squadron, Yokota AB, Japan with assistance from the Naval Weather Service Facility, Yokosuka, Japan.

CYCLONE-A closed atmospheric circulation rotating about an area of low pressure (counterclockwise in the northern hemisphere).

EXTRATROPICAL-A term used in warnings and tropical summaries to indicate that a cyclone has lost its "tropical characteristics". The term implies both poleward displacement from the tropics and the conversion of the cyclone's primary energy sources from release of latent heat of condensation to baroclinic processes. The term carries no implications as to strength or size.

EYE/CENTER-Refers to the roughly circular central area of a well developed tropical cyclone usually characterized by comparatively light winds and fair weather. If more than half surrounded by wall cloud, the word "eye" is used, otherwise the area is referred to as a center.

MAXIMUM SUSTAINED WIND-Maximum surface wind speed of a cyclone averaged over a 1-minute period of time. Wind speed is subject to gusts which bring a sudden temporary increase in speed (i.e., on the order of a few seconds). Peak gusts over water average 20 to 25 percent higher than the sustained 1-minute wind speed.

SIGNIFICANT TROPICAL CYCLONE-A tropical cyclone becomes "significant" with the issuance of the first numbered warning by the responsible warning agency.

TROPICAL CYCLONE-A nonfrontal low pressure system of synoptic scale developing over tropical or subtropical waters and having a definite organized circulation.

TROPICAL CYCLONE AIRCRAFT RECONNAISSANCE COORDINATOR-A CINCPACAF representative designated to levy tropical cyclone aircraft weather reconnaissance requirements on reconnaissance units within a designated area of the PACOM and to function as coordinator between CINCPACAF, aircraft weather reconnaissance units, and the appropriate typhoon/hurricane warning center.

TROPICAL DEPRESSION-A tropical cyclone in which the maximum sustained surface wind (1-minute mean) is 33 kt or less.

TROPICAL DISTURBANCE-A discrete system of apparently organized convection-- generally 100 to 300 miles in diameter-- originating in the tropics or subtropics, having a nonfrontal migratory character,

and having maintained its identity for 24 hours or more. It may or may not be associated with a detectable perturbation of the wind field. As such, it is the basic generic designation which, in successive stages of intensification, may be classified as a tropical depression, tropical storm or typhoon.

TROPICAL STORM-A tropical cyclone with maximum sustained surface winds (1-minute mean) in the range of 34 to 63 kt, inclusive.

TYphoon/Hurricane-A tropical cyclone in which the maximum sustained surface wind (1-minute mean) is 64 kt or greater.

SUPER TYPHOON/HURRICANE-A typhoon/hurricane in which the maximum sustained surface wind (1-minute mean) is 130 kt or greater.

WALL CLOUD-An organized band of cumuliform clouds immediately surrounding the central area of a tropical cyclone. Wall clouds may entirely enclose the eye or only partially surround the center.

X DISTRIBUTION

AFGWC (2)
 AFGL/LYS (2)
 AMER EMBASSY, BANGKOK (7)
 ANDREWS UNIV (1)
 ARIZONA STATE UNIV (1)
 ARRS (4)
 AWS (9)
 BUR OF MET, BRISBANE (3)
 BUR OF MET, MELBOURNE (1)
 BUR OF MET, PERTY (1)
 CATH UNIV OF AMER (2)
 CENWEABUR TAIWAN (3)
 CHIEF, MAAG TAIWAN (1)
 CHINESE AF WEACEN TAIWAN (3)
 CHINESE NAV WEACEN TAIWAN (1)
 CINCPAC (2)
 CINCPACAF/WE (1)
 CINCPACFLT (5)
 CIVIL DEFENSE (GUAM) (4)
 CNO (2)
 COLORADO STATE UNIV (LIBR) (1)
 COLORADO STATE UNIV (2)
 COMATKCARSTKFORSEVENTHFLT (1)
 COMFAIRECONRON ONE (1)
 COMLOGSUPFORSEVENTHFLT (1)
 COMMNAVAIRSYSCOM (2)
 COMMNAVFACEGNGCOMPACDIV (1)
 COMMNAVFORJAPAN (1)
 COMMNAV MARIANAS (1)
 COMMNAVPHIL (1)
 COMMNAV SURFPAC (2)
 COMMNAV SURFPAC REP SUBIC BAY (1)
 COMPATRECONFOR (1)
 COMPATWING (1)
 COMPHIBFORSEVENTHFLT (1)
 COMPHIBGRU (1)
 COMSC (1)
 COMSEVENTHFLT (2)
 COMSUBGRU SEVEN (1)
 COMSUBPAC (1)
 COMTHIRDFLT (1)
 COMUSTDC (1)
 DDC (12)
 DET 2, IWW (2)
 DET 5, IWW (2)
 DET 8, 30WS (1)
 DET 10, 30WS (1)
 DET 15, 30WS (1)
 DET 17, 30WS (2)
 DET 18, 30WS (1)
 DIRNAVOCEANMET (10)
 DISTAD MARSHALLS (5)
 ENVSCISUPGRU (4)
 ESCAP (2)
 FAA (GUAM) (5)
 FLENUMWEACEN (1)
 FLEWEACEN NORFOLK (1)
 FLEWEACEN PEARL HARBOR (2)
 FLEWEACEN ROTA (1)
 FLEWEAFAC SUITLAND (1)
 FLORIDA STATE UNIV (1)
 GEN MET DEPT THAILAND (2)
 GOVERNOR OF GUAM (1)
 GUAM PUBLIC LIBRARY (1)
 HEDSUPFACT (1)
 INDIA MET DEPT (2)
 JAPAN MET AGENCY (3)
 LIBR OF CONGRESS (1)
 LIBR OF CONGRESS (EXCHANGE & GIFT DIV) (4)
 LOS ANGELES PUBLIC LIBR (1)
 MCAS FUTEMA (1)
 MCAS IWAKUNI (2)
 MCAS KANEOHE BAY (2)
 MET DEPT BANGKOK (2)

MET RESEARCH INSTITUTE LIBR (2)
 NASA GREENBELT (3)
 NASA WOLLOPS ISLAND (1)
 NAT CLIM CNTR (1)
 NATWEASERV FOROFF HONOLULU (1)
 NATWEASERV PACREG (2)
 NAVAL ACADEMY (1)
 NAVENVPREDRSCHFAC (5)
 NAVOCEANO (1)
 NAVWEASERVFAC ALAMEDA (1)
 NAVWEASERVFAC JACKSONVILLE (1)
 NAVWEASERVFAC YOKOSUKA (1)
 NESS/SFSS (2)
 NHC (1)
 NOAA/EDS CORAL GABLES (4)
 NOAA/EDS WASHINGTON, DC (2)
 NOAA/ERL BOULDER (2)
 NOAA/ERL MIAMI (1)
 NOAA/HYDROLOGY BR (1)
 NOAA/LIBRARY (1)
 NOAA/NESS (4)
 NOAA/PMEL (2)
 NPGS DEPT OF MET LIBR (2)
 NPGS LIBR (1)
 NWSD ASHEVILLE (2)
 NWSED ATSUGI (1)
 NWSED BARBERS POINT (1)
 NWSED CUBI POINT (1)
 NWSED KADENA (4)
 NWSED MISAWA (1)
 OCEANOGRAPHER OF THE NAVY (3)
 OCEAN ROUTES (2)
 ODDR & E (2)
 OKINAWA MET OBS (1)
 PAGASA (6)
 ROYAL OBSERVATORY HONG KONG (3)
 TAIWAN UNIV (1)
 TEXAS A&M UNIV (1)
 TIME INC (1)
 TTPI (8)
 TYPHOON COMM SECR (1)
 UNIV OF CHICAGO (1)
 UNIV OF GUAM (2)
 UNIV OF HAWAII DEPT OF MET (3)
 UNIV OF HAWAII LIBR (1)
 UNIV OF MEXICO (1)
 UNIV OF OREGON (1)
 UNIV OF RP (2)
 UNIV OF WASHINGTON (1)
 USAFSAAS (2)
 USS BLUE RIDGE (LCC 19) (1)
 USS CONSTELLATION (CV 64) (1)
 USS CORAL SEA (CV 43) (1)
 USS ENTERPRISE (CVN 65) (1)
 USS KITTY HAWK (CV 63) (1)
 USS LONG BEACH (CGN 9) (1)
 USS MIDWAY (CV 41) (1)
 USS NEW ORLEANS (LPH 11) (1)
 USS OKINAWA (LPH 3) (1)
 USS OKLAHOMA CITY (CG 5) (1)
 USS RANGER (CV 61) (1)
 USS TARAWA (LHA 1) (1)
 USS TRIPOLI (LPH 10) (1)
 VQ-1 (2)
 WEA SERV MET OBS (1)
 1WW (6)
 3AD (1)
 3WW (1)
 5WW (1)
 30WSQ (11)
 41RWRW (2)
 53WRS (1)
 54WRS (10)
 3345TH TECH SCHOOL (1)

AD-A038 484 FLEET WEATHER CENTRAL/Joint TYPHOON WARNING CENTER FP--ETC F/G 4/2
ANNUAL TYPHOON REPORT, 1976.(U)
1976

UNCLASSIFIED

NL

2 OF 2
AD
A038484

END

DATE
FILMED
5-77

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER Annual Typhoon Report 1976	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER <i>(C 125)</i>
4. TITLE (and Subtitle) ANNUAL TYPHOON REPORT 1976,	5. TYPE OF REPORT & PERIOD COVERED Annual JAN-DEC 1976	
7. AUTHOR(s)	8. CONTRACT OR GRANT NUMBER(s)	
9. PERFORMING ORGANIZATION NAME AND ADDRESS FLEET WEATHER CENTRAL/JOINT TYPHOON WARNING CENTER (FLEWEACEN/JTWC), GUAM FPO SAN FRANCISCO 96630	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS <i>(1296 P.)</i>	
11. CONTROLLING OFFICE NAME AND ADDRESS FLEET WEATHER CENTRAL/JOINT TYPHOON WARNING CENTER (FLEWEACEN/JTWC), GUAM FPO SAN FRANCISCO 96630	12. REPORT DATE 1976	
14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office)	13. NUMBER OF PAGES 87	
16. DISTRIBUTION STATEMENT (of this Report)	15. SECURITY CLASS. (of this report) UNCLASSIFIED	
Approved for public release; distribution unlimited.	15a. DECLASSIFICATION/DOWNGRADING SCHEDULE	
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)		
18. SUPPLEMENTARY NOTES		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number)		
Tropical cyclones	Analog forecasting	
Tropical cyclone forecasting	Tropical cyclone research	
Typhoons	Tropical storms	
Typhoon forecasting	Tropical depressions	
Meteorological satellite	Aircraft reconnaissance	
20. ABSTRACT (Continue on reverse side if necessary and identify by block number)		
Annual publication summarizing the tropical cyclone season in the western North Pacific, the North Indian Ocean, and the central North Pacific. A brief narrative is given on each typhoon in the western North Pacific including the best track. Forecast verification data and statistics for JTWC are summarized. Research efforts at JTWC are discussed briefly.		

DD FORM 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

Areas of Responsibility - Central and Eastern Pacific Hurricane Centers

