Preliminary Exam

Peter Maginot
Co-Chairs: Jim Morel and Jean Ragusa
Committee Members: Marvin Adams and Jean-Luc Guermond

Texas A&M University- Department of Nuclear Engineering

March 31, 2014

 Maginot
 Prelim Exam
 March 31, 2014
 1 / 39

Dissertation Goal

Methods for high-fidelity S_N radiative transfer simulations

Requirements to Achieve Goal

- Accurate Spatial Discretization
 - Higher degree trial space DFEM
 - Must address robustness
- Accurate Spatial Treatment of Opacities
 - Cell-wise constant is a poor approximation for problems of interest
- Sefficient / Effective Acceleration
 - Computationally efficient
 - Compatible with spatial discretization

 Maginot
 Prelim Exam
 March 31, 2014
 2 / 39

Cross SectionBladingRadiative TransferMIP DSAFuture Work00000000000000000000

Outline

- 1 Lumping Techniques for High Order DFEM
- Spatially Varying Cross Section
- Interaction Rate
- Radiative Transfer
- 5 Low Order MIP DSA for High Order DFEM Transport
- 6 Future Work

Maginot Prelim Exam March 31, 2014 3 / 39

DFEM Discretization

Lumping

When we discretize the 1-D slab, mono-energetic, neutron transport equation with DGFEM, we get:

$$\mu_{d}\mathbf{L}\vec{\psi_{d}}+\sigma_{t}\mathbf{M}\vec{\psi_{d}}=\frac{\sigma_{s}}{2}\mathbf{M}\vec{\phi}+\vec{q}_{d}+\psi_{in}\vec{f}$$

where we define the following (focusing only on $\mu_d > 0$):

$$\mathbf{L}_{ij} = B_i(1)B_j(1) - \int_{-1}^1 \frac{dB_i}{ds} B_j(s) ds$$

$$\mathbf{M}_{ij} = \frac{\Delta x}{2} \int_{-1}^1 B_i(s)B_j(s) ds$$

$$\vec{f}_i = B_i(-1)$$

$$\vec{q}_{d,i} = \frac{\Delta x}{2} \int_{-1}^1 B_i(s)q_d(x) ds$$

 Maginot
 Prelim Exam
 March 31, 2014
 4 / 39

Matrix Lumping

Lumping

- One method to improve the "robustness"
 - solution positivity and resistance to oscillations
- Lumping- makes diagonal mass matrices, does not guarantee change in robustness
- Two ways to lump mass matrices
 - Collapse an exactly integrated matrix's entries to the main diagonal
 - Use quadrature restricted to the DFEM interpolation points
- Both methods are equivalent for linear DFEM

 Maginot
 Prelim Exam
 March 31, 2014
 5 / 39

Lumping

en-Lumping Concept

Since B_i are interpolatory, restricting quadrature to the DFEM interpolation points creates a diagonal mass matrix *automatically*

Self-lumping (SL) M

$$\mathbf{M}_{ij} = \begin{cases} \frac{\Delta x}{2} w_i & i = j \\ 0 & \text{otherwise} \end{cases}$$

- ullet Typically, s_j are chosen as equally-spaced points, and ${f L}$ and ${f M}_\sigma$ are integrated analytically
- No requirement that s_j be equally-spaced, could use more accurate quadrature as the interpolation points
 - E.g. Gauss-Legendre (Gauss) or Lobatto-Gauss-Legendre (Lobatto)

 Maginot
 Prelim Exam
 March 31, 2014
 6 / 39

Cross Section Blading Radiative Transfer MIP DSA Future Work

Numerical Schemes

Lumping

000000

New to Dissertation

- Self-lumping with higher degree trial spaces
- Non equally-spaced interpolation points

- **SL Gauss**: Gauss quadrature as interpolation points, quadrature restricted to interpolation points
- **SL Lobatto**: Lobatto quadrature as interpolation points, quadrature restricted to interpolation points
- SL Newton-Cotes: Equally-spaced points, quadrature (closed Newton-Cotes) restricted to interpolation points
- **TL** (Traditional Lumping): Equally-spaced points, analytic integration, then collapse to main diagonal
- Exact DFEM: Equally-spaced points, analytic integration

Maginot Prelim Exam March 31, 2014 7

Test Problem

Lumping

Source-free pure absorber, left incident flux, $\psi_{\mathit{in,d}}$, vacuum right BC.

Defining *h*:

$$h = \frac{\sigma_t \Delta x}{\mu_d}$$

Analytic solution is

$$\psi(\mathbf{x}, \mu_d) = \psi_{in,d} \exp[-h]$$

 Maginot
 Prelim Exam
 March 31, 2014
 8 / 39

New Results (M&C 2013)

Positivity

- SL Gauss is strictly positive for even P
- SL Lobatto and SL Newton-Cotes: strictly positive for odd P
- TL not robust for P > 1

Accuracy

- ullet TL and SL Newton-Cotes converge $\left\|\widetilde{\psi}-\psi
 ight\|_{L^{2}}$ 2nd order for odd P. 3rd order for even P
- ullet SL Lobatto and SL Gauss converge $\left\|\widetilde{\psi}-\psi
 ight\|_{L^{2}}\propto P+1$

Maginot Prelim Exam March 31, 2014 Lumping

Outflow Robustness

Figure: P = 3 Outflow as a function of h.

Figure: P = 4 Outflow as a function of h.

Cross Section Blading Radiative Transfer MIP DSA Future Work

10°

Order of Convergence

Lumping

00000000

Convergence of $\left\|\widetilde{\psi}-\psi\right\|_{L^2}$ as a function of h

10⁻¹⁵

| 10⁻¹⁵
| 10⁻¹
|

Figure: P = 3.

Figure: P = 4

 Maginot
 Prelim Exam
 March 31, 2014
 11 / 39

 Lumping
 Cross Section
 Blading
 Radiative Transfer
 MIP DSA
 Future Work

 ○○○○○○○○
 ○○○○○○○
 ○○
 ○○
 ○○

New Results: Fixed Source Lumping (NS&E)

- Positivity of $\widetilde{\psi}(x)$ near inflow in source driven problem.
- Vacuum, no incident flux
- \bullet δ shaped source
- Exact integration of RHS source moments is the most robust

Figure: Numerical solution near cell inflow.

 Maginot
 Prelim Exam
 March 31, 2014
 12 / 39

Motivation to Account for Cross Section Spatial Variation

- Many problems of interest to the NE community have within cell spatially varying cross section/opacity
 - Cross sections are functions of temperature, density, fuel burn-up, etc.
 - High fidelity simulations do not assume cell-wise constant values for these variables
- Neutronics examples: fuel depletion problems, coupled reactor physics...
- Radiative transfer: $\sigma = T^{-3}$

 Maginot
 Prelim Exam
 March 31, 2014
 13 / 39

 Cross Section
 Blading
 Radiative Transfer
 MIP DSA
 Future Work

 ○●○○○○○○○
 ○○○○○○
 ○○
 ○○
 ○○

History

- Neutronics calculations almost exclusively approximate cross section as a cell-wise constant
 - Some work has focused on assuming cross section is a linear function within cells
 - Focus of this historical work has been on reproducing fine mesh results with coarser zoning
- Radiative transfer/radiative diffusion calculations (sometimes) account for within cell variation by using vertex based quadrature integration
 - Idea introduced by Adams and Nowak circa 1997
 - Used by some (ex. Ober and Shadid 2004)
 - Not by everyone

 Maginot
 Prelim Exam
 March 31, 2014
 14 / 39

SL Schemes for Spatially Varying Cross Section Problems

 Trivial to extend quadrature integration to include spatial variation of cross section

$$\mathbf{R}_{\sigma,ij} = \left\{ egin{array}{ll} rac{\Delta x}{2} \sigma(s_i) w_i & i = j \\ 0 & ext{otherwise} \end{array}
ight.$$

where the DFEM equations that account for cross section spatial variation are:

$$\mu_{d}\mathbf{L}\vec{\psi_{d}} + \mathbf{R}_{\sigma_{t}}\vec{\psi_{d}} = \frac{1}{2}\mathbf{R}_{\sigma_{s}}\vec{\phi} + \vec{q}_{d} + \psi_{in}\vec{f}$$

- M&C 2013 showed that exact mass matrix integration not required for full order accuracy schemes
 - SL Lobatto does not exactly integrate ${\bf M}$ but has the same order of L^2 as SL Gauss

 Maginot
 Prelim Exam
 March 31, 2014
 15 / 39

Test Problem

• Spatially varying cross section of the form:

$$\sigma_t(x) = c_1 e^{c_2 x}$$

- Incident flux, $\psi_{in,d}$ on the left, vacuum on the right, no sources.
- Analytic Solution

$$\psi(\mu_d, x) = \psi_{\textit{in}, d} \exp \left[\frac{c_1}{\mu_d c_2} \left(1 - e^{c_2 x} \right) \right]$$

 Maginot
 Prelim Exam
 March 31, 2014
 16 / 39

 Cross Section
 Blading
 Radiative Transfer
 MIP DSA
 Future Work

 ○○○○○○○○○
 ○○○○○○
 ○○
 ○○
 ○○

Additional Numerical Schemes

In addition to the self-lumping schemes, we will consider the following as well:

- CXS DFEM: Equally-spaced interpolation points, analytic integration approximate cross section by cell average value
- EXS DFEM: Equally-spaced interpolation points, (nearly) exact integration of cross section spatial dependence in the mass matrix

We will no longer consider the TL scheme.

 Maginot
 Prelim Exam
 March 31, 2014
 17 / 39

 Cross Section
 Blading
 Radiative Transfer
 MIP DSA
 Future Work

 ○○○○●●○○○
 ○○○○○○
 ○○
 ○○
 ○○

New Result: Robustness Is Not Guaranteed

For an arbitrarily varying spatial cross section:

 Only linear SL Lobatto/SL Newton-Cotes yields strictly positive outflow:

$$\widetilde{\psi}_{out} = \frac{2\mu_d^2 \psi_{in,d}}{2\mu_d^2 + \Delta x^2 \Sigma_{t,1} \Sigma_{t,2} + \Delta x \mu_d \Sigma_{t,1} + \Delta x \mu_d \Sigma_{t,2}}$$

- Angular flux outflow for all schemes that explicitly account for cross-section spatial variation is a function of cell optical thickness and cross section spatial shape
- Dependence on anything other than optical thickness is non-physical!

 Maginot
 Prelim Exam
 March 31, 2014
 18 / 39

Robustness-2

Outflow for exponential $\sigma_t(s)$, constant optical thickness of 20 MFP, $\mu_d = 1$, $x \in [0, 1 \text{ cm}]$.

Figure: Quadratic Trial Space.

Figure: Cubic Trial Space.

 Maginot
 Prelim Exam
 March 31, 2014
 19 / 39

Convergence Results

We examine the convergence of E_{ψ} and $E_{\psi_{out}}$ for a pure absorber with

$$\sigma_t(x) = 0.1 \ 10^{2x}$$

and $x \in [0, 1 \ cm]$. We define the error quantities as:

$$E_{\psi} = \left\| \widetilde{\psi}_{d}(x) - \psi(x, \mu_{d}) \right\|_{L^{2}}$$

$$E_{\psi_{out}} = \sqrt{\sum_{i=1}^{N_{cells}} \Delta x_{i} \left(\widetilde{\psi}_{out, i} - \psi(x_{i+1/2}) \right)^{2}}$$

 Maginot
 Prelim Exam
 March 31, 2014
 20 / 39

ımping Cross Section Blading Radiative Transfer MIP DSA Future Work
00000000 0000000 0000000 000000 000000 00

*L*² Convergence

New Result: SL Lobatto and SL Gauss are accurate methods for spatially varying cross section problems

Figure: P = 3 convergence plot.

Summary of Convergence Orders

- SL Gauss: $\propto P+1$
- SL Lobatto: $\propto P + 1$, less accurate than SL Gauss
- SL Newton-Cotes: 2 if odd *P*, 3 if even *P*
- CXS DFEM: 2 regardless of P

 Maginot
 Prelim Exam
 March 31, 2014
 21 / 39

 Cross Section
 Blading
 Radiative Transfer
 MIP DSA
 Future Work

 ○○○○○○○○○
 ○○○○○○
 ○○
 ○○
 ○○

$E_{\psi_{out}}$ Convergence

Figure: P = 4 convergence plot.

Summary of Convergence Orders

• SL Gauss: 2P + 1

• SL Lobatto: 2P

• SL Newton-Cotes: P + 1 for odd P, P + 2 for even P

CXS DFEM: 2P + 1

 Maginot
 Prelim Exam
 March 31, 2014
 22 / 39

Interaction Rate

Analytic interaction rate

$$IR(x) = \sigma_t(x)\psi(x, \mu_d)$$

CXS DFEM approximation

$$\widetilde{IR}(x) = \hat{\sigma}_t \widetilde{\psi}(x)$$

- SL schemes: Only point-wise knowledge of $\sigma_t(x)$ in DFEM equations
 - Integrals: evaluate IR(x) with quadrature restricted to interpolation points
 - Plotting purposes:

$$\widetilde{IR}(x) = \sum_{j=1}^{P+1} \sigma_{t,j} \psi_j B_j(s)$$

 Maginot
 Prelim Exam
 March 31, 2014
 23 / 39

Cross Section Blading Radiative Transfer MIP DSA Future Work
0000 0000000000 0●00000 000000 00 00

L^2 error of $\widetilde{IR}(x)$

New Result: SL Lobatto and SL Gauss Accurately Approximate $\widetilde{IR}(x)$

Figure: Cubic DFEM

Summary of Convergence Orders

● SL Gauss: *P* + 1

● SL Lobatto: *P* + 1

 SL Newton-Cotes: 2 for odd P, 3 for even P

 CXS DFEM: 1, regardless of trial space degree

 Maginot
 Prelim Exam
 March 31, 2014
 24 / 39

ping Cross Section Blading Radiative Transfer MIP DSA Future Work
0000000 000000000 000000 000000 00 00

E_{IR_A} Convergence

Figure: Quartic DFEM

Summary of Convergence Orders

- SL Gauss: 2P + 1
- SL Lobatto: 2P
- SL Newton-Cotes: P + 1 for odd P, P + 2 for even P
- CXS DFEM: 2P + 1, regardless of trial space degree

 Maginot
 Prelim Exam
 March 31, 2014
 25 / 39

Cross Section Blading Radiative Transfer MIP DSA Future Work

○○○○○○○○ ○○○ ○○○ ○○ ○○ ○○

CXS DFEM Accuracy Calculating IR_A

- How can CXS DFEM converge E_{IR_A} so accurately?
- Local Conservation

Particles In - Particles Out = Total Interactions

- Particles In: Outflow from Previous Cell
- Particles Out: Outflow from Current Cell
- ullet CXS DFEM converges angular flux outflow $\propto 2P+1$
- .: CXS DFEM accurately calculates

Total Interactions =
$$\Delta x \left(\widetilde{IR}_A \right)$$

 Maginot
 Prelim Exam
 March 31, 2014
 26 / 39

mping Cross Section Blading Radiative Transfer MIP DSA Future Work
00000000 000000000 0000000 000000 00

CXS DFEM Interaction Rate Profile

New to Dissertation

Observation and explanation of blading phenomena

Figure: $\widetilde{IR}(x)$ profile.

Figure: Interpolated \widetilde{IR}_A profile

 Maginot
 Prelim Exam
 March 31, 2014
 27 / 39

ımping Cross Section Blading Radiative Transfer MIP DSA Future Work 00000000 00000000 0000000 00 00

Something Wrong with DFEM?

No. Consider the analytic solution to a problem that has the cell-wise average cross section.

Figure: Angular Flux.

Figure: Interaction Rate.

 Maginot
 Prelim Exam
 March 31, 2014
 28 / 39

ımping Cross Section Blading Radiative Transfer MIP DSA Future Work 00000000 000000000 0000000 00 00

Linear SL Lobatto Solution

New to Dissertation

New: Self-lumping schemes do not exhibit blading

Figure: Angular Flux.

Figure: Interaction Rate.

 Maginot
 Prelim Exam
 March 31, 2014
 29 / 39

Grey, Spatially Analytic Radiative Transfer

$$\frac{1}{c\Delta t} \left(I^{n+1} - I^n \right) + \mu \frac{\partial}{\partial x} I + \sigma_t^{n+1} I^{n+1} = \frac{\sigma_s^{n+1}}{4\pi} \phi^{n+1} + \sigma_a B(T^{n+1})$$
$$\frac{C_v}{\Delta t} \left(T^{n+1} - T^n \right) = \sigma_a^{n+1} \left(\phi^{n+1} - 4\pi B(T^{n+1}) \right)$$

Linearizing the Plank function about an arbitrary temperature, T^* :

$$\frac{1}{c\Delta t} \left(I^{n+1} - I^{n} \right) + \mu \frac{\partial}{\partial x} I^{n+1} + \sigma_{t}^{n+1} I^{n+1} =$$

$$\frac{\sigma_{s}^{n+1}}{4\pi} \phi^{n+1} + \sigma_{s}^{n+1} \left[B(T^{*}) + \frac{\partial B}{\partial T} \Big|_{T=T^{*}} (T^{n+1} - T^{*}) \right] \quad (1)$$

$$\frac{C_{\nu}^{n+1}}{\Delta t} \left(T^{n+1} - T^{n} \right) = \sigma_{a}^{n+1} \phi^{n+1} - 4\pi \sigma_{a}^{n+1} \left[B(T^{*}) + \frac{\partial B}{\partial T} \Big|_{T=T^{*}} \left(T^{n+1} - T^{*} \right) \right] \tag{2}$$

 Maginot
 Prelim Exam
 March 31, 2014
 30 / 39

Spatially Discretized Radiative Transfer

Drop $^{n+1}$ and discretize Eq. (1) and Eq. (2) with P degree DFEM.

$$\frac{1}{c\Delta t}\mathbf{M}\left(\vec{I} - \vec{I}^{h}\right) + \mu \mathbf{L}\vec{I} + \mathbf{R}_{\sigma_{t}}\vec{I} = \frac{1}{4\pi}\mathbf{R}_{\sigma_{s}}\vec{\phi} + \mathbf{R}_{\sigma_{a}}\left[\vec{B}^{*} + \mathbf{D}(\vec{T} - \vec{T}^{*})\right] + \vec{f}I_{in} \quad (3)$$

$$\frac{1}{\Delta t} \mathbf{R}_{C_{\nu}} \left(\vec{T} - \vec{T}^{n} \right) = \mathbf{R}_{\sigma_{a}} \left\{ \vec{\phi} - 4\pi \left[\vec{B^{*}} + \mathbf{D} (\vec{T} - \vec{T^{*}}) \right] \right\}$$
(4)

Define $(P+1) \times (P+1)$ diagonal matrix **D** and $(P+1) \times 1$ vector \vec{B}^* :

$$\mathbf{D}_{ii} = \frac{\partial B}{\partial T} \Big|_{T=T_i^*}$$

$$\vec{B^*}_i = B(T_i^*)$$

Maginot Prelim Exam March 31, 2014 31 / 39

Solving for \vec{T}

Solve Eq. (4) for \vec{T} , use in Eq. (3) to eliminate T^{n+1} dependence.

$$\begin{split} \left[\mathbf{I} + 4\pi\Delta t \mathbf{R}_{C_{v}}^{-1} \mathbf{R}_{\sigma_{a}} \mathbf{D}\right] \, \vec{\mathcal{T}} &= \, \vec{\mathcal{T}}^{n} + \Delta t \mathbf{R}_{C_{v}}^{-1} \mathbf{R}_{\sigma_{a}} \vec{\phi} \\ &- 4\pi\Delta t \mathbf{R}_{C_{v}}^{-1} \mathbf{R}_{\sigma_{a}} \left[\vec{B^{*}} - \mathbf{D} \, \vec{\mathcal{T}^{*}} \right] \end{split}$$

Adding "zero" to both sides

$$=+\mathbf{I}\left[ec{T^{st}}-ec{T^{st}}
ight]$$

Get a Newton update for $T^{(\vec{n}+1)}$

$$\vec{\mathcal{T}} = \vec{\mathcal{T}^*} + \left[\mathbf{I} + 4\pi\Delta t \mathbf{R}_{C_v}^{-1} \mathbf{R}_{\sigma_a} \mathbf{D}\right]^{-1} \left[(\vec{\mathcal{T}^n} - \vec{\mathcal{T}^*}) \right] + \left[\mathbf{I} + 4\pi\Delta t \mathbf{R}_{C_v}^{-1} \mathbf{R}_{\sigma_a} \mathbf{D} \right]^{-1} \Delta t \mathbf{R}_{C_v}^{-1} \mathbf{R}_{\sigma_a} \left[\vec{\phi} - 4\pi \vec{B^*} \right]$$

 Maginot
 Prelim Exam
 March 31, 2014
 32 / 39

ing Cross Section Blading Radiative Transfer MIP DSA Future Work
000000 000000000 0000000 00 00

Forming the Radiation Equation

- Eq. (5) is inserted into the radiation equation, Eq. (3)
- 2 The only unknown in this new equation is \vec{l}^{n+1}
 - Opacities are evaluated at $\vec{\mathcal{T}}^*$
- **3** Eq. (5) becomes a Newton iteration for \vec{T}^*
- **4** Cannot isolate \vec{T}^{n+1} if $\frac{\partial \sigma}{\partial T}$ terms accounted for
- $footnote{\bullet}$ No observed stability/convergence issues with updating σ in a fixed-point style
- New radiation equation (next slide) can be written in pseudo-fission format
 - DFEM unknowns de-couple with SL schemes (diagonal R)

 Maginot
 Prelim Exam
 March 31, 2014
 33 / 39

Pseudo-Fission Form of Radiation Equation

$$\mu \mathbf{L} \vec{I} + \mathbf{R}_{\sigma_{\tau}} \vec{I} = \frac{1}{4\pi} \mathbf{R}_{\sigma_{s}} \vec{\phi} + \frac{1}{4\pi} \bar{\bar{\nu}} \mathbf{R}_{\sigma_{s}} \vec{\phi} + \bar{\xi} + \vec{f} I_{in}$$
 (6)

Where we have made the following definitions:

$$\mathbf{R}_{\sigma_{\tau}} = \frac{1}{c\Delta t}\mathbf{M} + \mathbf{R}_{\sigma_{t}}$$

$$\bar{\nu} = 4\pi \mathbf{R}_{\sigma_{a}}\mathbf{D} \left[\mathbf{I} + 4\pi\Delta t \mathbf{R}_{C_{v}}^{-1} \mathbf{R}_{\sigma_{a}} \mathbf{D}\right]^{-1} \Delta t \mathbf{R}_{C_{v}}^{-1}$$

$$\bar{\xi} = \mathbf{R}_{\sigma_{a}}\vec{B^{*}} + \mathbf{R}_{\sigma_{a}}\mathbf{D} \left[\mathbf{I} + 4\pi\Delta t \mathbf{R}_{C_{v}}^{-1} \mathbf{R}_{\sigma_{a}} \mathbf{D}\right]^{-1} \left[\vec{\mathcal{T}}^{n} - \vec{\mathcal{T}^{*}}\right]$$

$$\dots -4\pi \mathbf{R}_{\sigma_{a}}\mathbf{D} \left[\mathbf{I} + 4\pi\Delta t \mathbf{R}_{C_{v}}^{-1} \mathbf{R}_{\sigma_{a}} \mathbf{D}\right]^{-1} \Delta t \mathbf{R}_{C_{v}}^{-1} \mathbf{R}_{\sigma_{a}}\vec{B^{*}}$$

 Maginot
 Prelim Exam
 March 31, 2014
 34 / 39

ımping Cross Section Blading Radiative Transfer MIP DSA Future Work 00000000 000000000 000000 00 00

SL Lobatto Radiative Transfer Solution

New to Dissertation

Observation of radiative transfer temperature blading, explanation of why, and a viable solution to the problem

Figure: Linear SL Lobatto solution to the Marshak wave problem.

Figure: Linear, traditional lumping, constant cross section solution to the Marshak wave problem.

 Maginot
 Prelim Exam
 March 31, 2014
 35 / 39

nping Cross Section Blading Radiative Transfer MIP DSA Future Work

Third Known Use of MIP DSA!

Neutronics Spectral Radius Test:

- Slab, 80 [cm] thick
- $\sigma_t = 10 \ [cm^{-1}]$
- c = 0.9999
- S_{16} quadrature
- Random initial solution

Figure: Numerical SPR for P degree SL Gauss transport with P=1 SL Gauss MIP DSA

 Maginot
 Prelim Exam
 March 31, 2014
 36 / 39

Krylov with Low Order MIP

- 80 [cm] slab
- $\sigma_t = 10 \ [cm^{-1}]$
- c = 0.9999
- S₁₆ quadrature
- Uniform, isotropic source, vacuum BC

Figure: P = 4 SL Gauss transport

 Maginot
 Prelim Exam
 March 31, 2014
 37 / 39

Cross Section Blading Radiative Transfer MIP DSA **Future Work**

Work to Be Completed

Slab, Multi-frequency S_N Radiative Transfer Code

- C++
- Arbitrary trial space degree
- Lobatto, Gauss, and equally-spaced interpolation points
- Arbitrary SDIRK time integration
- Fixed-point and Krylov for solving within group scattering
- Fixed-point and Krylov for absorption/re-emission iteration
- MIP DSA/LMFGA operators
- Use PETSc / Trillinos for GMRES and inverting diffusion operators

Complete non-negative, unstructured mesh bilinear DFEM implementation in PDT (98% done)

Maginot Prelim Exam March 31, 2014 38 / 39

Questions?

 Maginot
 Prelim Exam
 March 31, 2014
 39 / 39