SYS 5460: Stakeholders

Department of Computer & Engineering Sciences

College of Engineering
Florida Institute of Technology

Juan C. Avendano, PhD Operations Director COES

Key Concept....

Requirements ultimately begin and end with people-Stakeholders (Alexander)

Volere Requirements Process (Robertson)

A requirements elicitation process is recommended

Project Blastoff (Kickoff)

We need to keep in mind the life cycle

Project Blastoff (kickoff)

• The key purpose of project blastoff is to build the foundation for the requirements discovery, and to ensure that all the needed components for a successful project are in place.

- Involvement:
 - Principal Stakeholder (sponsor)
 - Key users
 - Lead requirement analyst
 - Technical business experts
- Discussions:
 - < Purpose of the project
 - < Scope of the work
 - < Stakeholders
 - < Constraints
 - < Special terminology
 - < Facts & Assumptions
 - < Cost estimates
 - < Risks

- The **sponsor** provides development funding for a project
- The champion provides political support for a project

- Outcomes:
 - < Stakeholders
 - < Project goals
 - Preliminary assessment of risk and costs
 - < "go/no" go decision

Requirements Process and SE (NASA)

- SE and project management are coupled
- Requirements is part of that intersection

Systems Engineering Processes (NASA)

FIGURE 2.1-1 The Systems Engineering Engine (NPR 7123.1)

System Design Process (NASA)

FIGURE 4.0-1 Interrelationships among the System Design Processes

Requirements Engineering and the V-Model (Dick et. al.)

Requirements engineering: the subset of systems engineering concerned with discovering, developing, tracing, analyzing, qualifying, communicating and managing requirements that define the system at successive levels of abstraction (Dick et. al.)

Identify: tracing and abstraction

Fig. 1.2 Requirements in the V-Model

Fig. 1.2 Requirements in the V-Model

System Scope (Robertson)

- The work is the part of the organization that you need to study to discover the requirements.
- The work is usually connected to other parts of the organization and to the outside world.
- You must study the work well enough to understand how it functions.

This understanding will enable you to come up with alternative scopes for the product and

eventually choose the one to build

EXERCISE 1

 Think of a product that predicts where ice will form on roads and to schedule trucks to treat the roads with de-icing material

Be prepared to tell the class what your idea is.

Volere Requirements Process (Robertson)

Stakeholders

- Stakeholder: An individual, group of people, organization or other entity (system) that has a direct or indirect interest (or stake) in a system
- A stakeholder's interest in a system may arise from (Dick et. al.):
 - using the system,
 - benefiting from the system (in terms of revenue or other advantage)
 - being disadvantaged by the system (in terms, for instance, of cost or potential harm)
 - being responsible for the system
- Identify stakeholders by:
 - Asking sponsor or client
 - Examining and organization chart
 - Using a template (onion model)
 - Comparison with similar projects
 - Analyzing the context of the project

Stakeholder (Cont)

- Identify Stakeholders. ...
- Analyze Stakeholders. ...
- Map Stakeholders. ...
- Prioritize Stakeholders. ...
- Be Inclusive. ...
- Communicate Clearly. ...
- Be Open and Honest. ...
- Remain Available.

Stakeholder Map

Example: IceBreaker Stakeholders

Excel Template (Robertson)

	Stakeholder Class (Class of stakeholders who share a particular stakeholding in the project)	title, department or	Stakeholder Name (The name(s) of the responsible stakeholder(s) or their representatives	Stakeholder Rationale (Why does this stakeholder need to be involved? Consider benefits and Impacts)	Necessary Involvement (Estimate of when and how much time)	
-						

Goals	Business Constraints	Technical Constraints	Functionality	Look and Feel	Usability	Performance	Safety	Operational Environment

EXERCISE 2

 In your groups, Identify as many steak holders as possible for the proposed system

Identify as many interactions as possible

Prepare to share with the class

Surrogate Roles

- Many roles including paid work are surrogates (on behalf of someone else):
 - Company director represents shareholders
 - Lawyer represents a plaintiff
 - User interface designer represents human operator
- In some cases the requirements engineer may not be able to talk to the actual users (large multi-year projects)
- Multiple groups of user for the product
- Surrogacy can be dangerous if people are wrong about the needs and whishes of the people they claim to represent

manufacturers to self-police

Operational Roles in the System

Stakeholder role	Type of requirement	Discovery technique	
Normal operators (possibly in many different roles)	Scenarios (Chapter 5) Usability (Chapter 6)		
Interfacing	Interface definitions (Chapter 4)	Interview (Chapter 10)	
Maintenance	Maintenance functions/scenarios (Chapter 5) Diagnostics, built-in test	Apprenticing (Chapter 10) Observation (Chapter 10) Workshops (Chapter 11) Data modelling (Chapter 8)	
Support	Support functions	Prototyping (Chapter 12) Archaeology (Chapter 12)	
Functional beneficiary	Product functions/scenarios (Chapter 5) Performance targets (Chapter 9)	Archaeology (Chapter 12)	
Financial beneficiary	Mission, objective (Chapter 3)	Interview (Chapter 10) Read policy documents	
Regulator	Regulations, laws, standards, guidance Responses to safety case, compliance statements, etc	Legal advice on regulations, etc Negotiate compliance	
Experts, specialists in disciplines	Safety, security, reliability, usability, etc (Chapter 6) Constraints (Chapter 6)	Analysis, simulation, modelling, standards	
Manufacturer	Producibility	Interview (Chapter 10) Workshop (Chapter 11) Prototyping (Chapter 12)	
Marketing (surrogate, on behalf of mass-market customers)	Mass market (consumer) Preferences by group (age, income, etc)	Market survey, Field trials Observation (Chapter 10) Prototyping (Chapter 12) Analogous products (Chapter 12) Competitor analysis	
Product manager, purchaser	Priorities Programme, schedule Budget (cost)	Prioritisation (Chapter 13) Trade-offs (Chapter 14)	
The public	(Lack of negative impact)	Public meetings, Focus groups, Consultation, Roadshows	

- Requirements can be discovered by the analyst based on existing systems or mathematical modeling
- Other requirements are coming from stakeholders
- The most likely roles that may contribute with the majority of the requirement is listed in the table

Deriving Requirements from Stakeholders

- Goal and scenario modeling are useful tools to obtain requirements from stakeholders
- Surveys, public meetings are the recommended tools for non-operational stakeholders

Requirements from operational stakeholders.

Figure 2.7: Requirements from non-operational stakeholders.

Goals

- A goal is something that the stakeholder wants to achieve
- Goals are permitted to be neither fully achievable nor measurable (at the beginning)
- Requirements are achievable and measurable
- Goals!=requirements
- Requirements analysis function refines the goals into realistic and measurable target
- Goals may be in conflict (examples)
- Project without goals are vulnerable to pressure to add requirements
- Unstated conflicts lead to tension and confusion
- Stated conflicts can be used in tradeoff analyses

(Stakeholder) goals	(Product) requirements
Belong to different stakeholders	Agreed by all
May conflict, indicating design trade-offs; these often drive project design activity and the choice of life cycle (e.g. iterations with analysis or prototypes of competing options, to reduce risk)	Must not conflict in the chosen technology; therefore, design envelope must be known to a sufficient degree (leaving as much freedom inside that envelope as possible)
May be an ideal, unattainable, indicating what is hoped for	Must be realisable within limits of budget, timescale, technology, and skill available

Goals

- Definition
- Goal diagrams
- Goal conflicts
- Examples

Goals to Requirements

- Highest level ,large scale goals are mission statements
- Long lived goals are usually policies
- Low-level goals are functions
- Goals turn into requirements when:
 - Fully verifiable
 - Prioritized

Types of Goals

- Goals can be functional or quality
- Functional is to do something (carry passengers)
- Quality goal refers to the way something is done (e.g. comfort)

Example: Spacecraft

- To fly in space
- To do worthwhile science
- To send the results back to earth

Example: Restaurant

Role	Cook	Owner/ manager	Customer/ diner	Supplier	Public health department	Taxman
Goals	Good pay	Profit	Good food	Paid on time,	Hygiene rules Obeyed	Correct tax paid on time
	Reputation	Top chef	Value for money	in full	Oveyea	pau or ume
	No staff absences	Low running costs				

Tips for Discovering Goals

- Start with the people you know
- Identify stakeholders
- Use interviews and workshops to find out what their goals are
- Listen carefully for signs that goals may in conflict
- For specific feature request , ask why?
- Play back what you have heard to confirm that your interpretation is accurate

SYS 5460: System Requirements Analysis

Stakeholders in AGILE

Stakeholders in Agile Development: Personas

- Story about an invented person that includes:
 - Name
 - Age
 - Job
 - Family
 - Hobbies
 - Residence
 - Favorite food
 - Attitude towards technology, money
 - Include a graphical representation
- Summarize persona in a profile

Expectations vs Reality

Who: Make a Persona

"Mary"

Behaviors

- Has a housecleaner
- Buys take-away 3 nights/wk
- · Frequently feels overwhelmed when she "forgets" something

Demographics

- Working mom
- 34 years old
- · Lives in Reading, works in London
- · Married, 2 kids
- · Household 125k/yr

Needs & Goals

- · Help! Running errands, managing kids, keeping things running
- · Time for her girlfriends
- To feel like she "has it sorted"
- "To clone herself"

Excerpt from Luxr.co: http://www.slideshare.net/clevergirl/luxr-oneday-workshop

Product Vision

- Create a product vision
 - Use a product vision board template

Vision Tips:

• For: Stakeholders

■ That: Needs , goals

• The: Product

• **Is A:** Description

Which: Function main benefit

Differently: Than current methods/products

Our Product: Additional Benefits

THE PRODUCT VISION BOARD

EXERCISE 3

- In your groups, identify a product that can be completed within the scope of this class
- Product may be software, or hardware (3D printed Gadgets, small electronic assembly, etc.)
- Create a product vision board
- Prepare a 3 min presentation to share with the group
- You have 15 min

References Used in this Lecture

- S. Robertson and J. Robertson, Mastering the requirements process: getting requirements right, 3rd ed. Upper Saddle River, NJ: Addison-Wesley, 2013.
- **-** [2] Alexander, Discovering requirements. 2009.
- J. Dick, E. Hull, K. Jackson, and SpringerLink (Online service), Requirements engineering, 4th; Fourth; Cham: Springer, 2017.
- [4]"ISO/IEC/IEEE International Standard Systems and software engineering -- Software life cycle processes," *IEEE STD 12207-2008*, no. Generic, pp. 1–138, 2008, doi: 10.1109/IEEESTD.2008.4475826.
- S. NASA, "NASA systems engineering handbook," Natl. Aeronaut. Space Adm. NASASP-2007-6105 Rev2, 2016.