Axioms -

1. Axiom of reflexivity -

If A is a set of attributes and B is subset of A, then A holds B . If $B\subseteq A$ then $A\to B$ This property is trivial property.

2. Axiom of augmentation -

If $A \to B$ holds and Y is attribute set, then $AY \to BY$ also holds. That is adding attributes in dependencies, does not change the basic dependencies. If $A \to B$, then $AC \to BC$ for any C.

3. Axiom of transitivity -

Same as the transitive rule in algebra, if $A \to B$ holds and $B \to C$ holds, then $A \to C$ also holds. $A \to B$ is called as A functionally that determines B. If $X \to Y$ and $Y \to Z$, then $X \to Z$

Secondary Rules -

These rules can be derived from the above axioms.

1. Union -

If
$$A \to B$$
 holds and $A \to C$ holds, then $A \to BC$ holds. If $X \to Y$ and $X \to Z$ then $X \to YZ$

2. Composition -

If
$$A o B$$
 and $X o Y$ holds, then $AX o BY$ holds.

3. Decomposition -

If
$$A \to BC$$
 holds then $A \to B$ and $A \to C$ hold. If $X \to YZ$ then $X \to Y$ and $X \to Z$

4. Pseudo Transitivity -

If
$$A \to B$$
 holds and $BC \to D$ holds, then $AC \to D$ holds. If $X \to Y$ and $YZ \to W$ then $XZ \to W$.