Your grade: 100%

Correct!

Your latest: 100% • Your highest: 100% • To pass you need at least 80%. We keep your highest score.

Next item →

1.	In a <i>Multi-Class</i> classification scenario, your model can identify all the different items and people that are present in a given input image.	1/1 point
	False	
	○ True	
	○ Correct Correct! The above statement is true for a Multi-Label classification.	
2.	Which of the following statements correctly describes the difference between <i>object detection</i> and <i>object localization</i> ?	1/1 point
	Object detection refers to detecting the object within an image, while object localization gives us the bounding box around that object.	
	Object detection is where you get a bounding box around the main subject of the image, while in object localization you get a bounding box around all of the objects within an image.	
	They both are the same.	
	Object localization is where you get a bounding box around the main subject of the image, while in object detection you get a bounding box around all of the objects within an image.	
	⊙ correct Correct!	
3.	What is the method that locates an object(s) by labelling the pixels, where each similar object(s) is assigned to	1/1point
٠.	the same class? Type your response here (two words, all lower case).	-/ - po
	semantic segmentation	
4.	In the context of <i>Transfer Learning</i> , the initial training task where the model learns reusable patterns is called a <i>downstream task</i> .	1/1 point
	False	
	O True	
	○ Correct	
	Correct! The above statement is true for a <i>pre-training task</i> . The task for which the model is borrowed is called <i>downstream task</i> .	
5.	Check all the scenarios in which Transfer Learning could be beneficial.	1/1 point
	When you don't have enough data for the task you want to perform, which resembles another same or similar, already trained task.	
	☐ To ensure better performance	
	When the task you want to perform is a sub-task of an already trained, larger, model.	
	○ Correct Correct!	
	554	
	✓ To reduce computation and processing cost	
	○ Correct	

6.	What is the name of the built-in TensorFlow layer-type which you can use to increase the dimensions of a 2D image?	1/1 point
	O UpSampling	
	UpSampling2D	
	○ SampleIncrease	
	○ SampleUp2D	
	⊙ correct Correct!	
7.	You have an image of dimensions 48 x 48, and you want to upscale it to 240 x 240 using the built-in TensorFlow layer-type which is used to perform such a task (mentioned in Question 6). What will you pass in as size=?	1/1 point
	(5,5)	
	⊙ Correct Correct!	
8.	Consider the following code:	1/1 point
	<pre>my_layer = tf.keras.applications.resnet.ResNet50(input_shape=(224, 224, 3), include_top=False, weights='imagenet')(inputs)</pre>	
	What does "include_top=False" mean ?	
	O It sets the top most layers as untrainable of ResNet50 when initializing my_layer using it.	
	O It randomly sets up the weights, instead of using that of ImageNet, for the top most dense layers of ResNet50 when initializing <i>my_layer</i> using it.	
	O It discards the first layer of ResNet50 when initializing my_layer using it.	
	① It discards the top most layers of ResNet50 when initializing <i>my_layer</i> using ResNet50.	
	⊙ Correct Correct!	
9.	What is the name of the technique used in the output dense layer that is used to predict Bounding Boxes ? (Hint: It is a one word answer)	1/1 point
	regression	
	⊙ correct Correct!	
10.	${\it Check all the statements that are true regarding Intersection Over Union (IoU), with regards to Bounding Boxes.}$	1/1 point
	IoU is the area of intersection of the two boxes (true and predicted) divided by the total union area of the two boxes.	
	⊙ Correct Correct!	
	The closer the value of IoU is to 0 the poorer is the prediction of the bounding box.	
	The values of IoU range from 0 to <i>all</i> possible <i>positive</i> values.	

☐ The closer the value of IoU is to 0 the better is the prediction of the bounding box.	