Class 18: Pertussis mini project

Jihyun In

Background

Pertussis (aka whoppping cough) is a common lung infection cuased by the bacteria *B. pertussis*. The CDC track s cases of pertussis in the US.

https://tinyurl.com/pertussiscdc

Examining cases of pertussis by year

We can use the datapasta package to scrape case numbers from the CDC website.

head(cdc)

```
year cases
1 1922 107473
2 1923 164191
3 1924 165418
4 1925 152003
5 1926 202210
6 1927 181411
```

Q. Make a plot of pertussis cases per year using ggplot

```
library(ggplot2)
```

```
cases <- ggplot(cdc) +
  aes(year, cases) +
  geom_line()
cases</pre>
```


Q2. Add some key time points in our history of interaction with pertussis. These include wP roll-out (the first vaccine) in 1945 and the switch to aP in 1996.

We can use geom_vline()

```
cases <- cases + geom_vline(xintercept=1945, col="blue") + geom_vline(xintercept=1996, cole
cases</pre>
```


Mounting evidence suggests that he newer \mathbf{aP} vaccine is less effective over the long term than the older \mathbf{wP} vaccine that it replaced. In other words, the vaccine efficacy wane smore rapidly with \mathbf{aP} than with \mathbf{wP} .

Enter the CMI-PB project

CMI-PB (computational models of immunity - pertussis boost)'s major goal is to investigate how the immune system responds differently to aP vs. wP vaccinated individuals and be able to predict this

CMI-PB makes all their collected data freely avialbe and they store it in a databased composed different tables. Here we will access a few of these.

```
library(jsonlite)
subject <- read_json("https://www.cmi-pb.org/api/subject", simplifyVector = TRUE)
head(subject)</pre>
```

	subject_id	infancy_vac	biological_sex			eth	nicity	race
1	1	wP	Female	Not	Hispanic	or	${\tt Latino}$	White
2	2	wP	Female	Not	Hispanic	or	${\tt Latino}$	White
3	3	wP	Female			Ţ	Jnknown	White
4	4	wP	Male	Not	Hispanic	or	Latino	Asian

```
5
           5
                      wP
                                    Male Not Hispanic or Latino Asian
6
           6
                      wΡ
                                  Female Not Hispanic or Latino White
  year_of_birth date_of_boost
                                    dataset
     1986-01-01
                   2016-09-12 2020_dataset
1
2
                   2019-01-28 2020_dataset
     1968-01-01
3
     1983-01-01
                   2016-10-10 2020_dataset
4
     1988-01-01
                   2016-08-29 2020_dataset
5
     1991-01-01
                   2016-08-29 2020_dataset
6
     1988-01-01
                   2016-10-10 2020_dataset
```

How many subjects (i.e. enrolled people are there)

nrow(subject)

[1] 172

how many ap and wp subjects are there?

table(subject\$infancy_vac)

aP wP 87 85

Q. How many male/female are in the dataset

table(subject\$biological_sex)

Female Male 112 60

Q. how about gender and race

table(subject\$race, subject\$biological_sex)

	Female	Male
American Indian/Alaska Native	0	1
Asian	32	12
Black or African American	2	3
More Than One Race	15	4
Native Hawaiian or Other Pacific Islander	1	1
Unknown or Not Reported	14	7
White	48	32

Q. Is this representative of the US population?

No. It's more representative of UCSD students.

Let's read soe other database table from CMI

```
# Complete the API URLs...
specimen <- read_json("https://www.cmi-pb.org/api/specimen", simplifyVector = TRUE)
titer <- read_json("https://www.cmi-pb.org/api/plasma_ab_titer", simplifyVector = TRUE)</pre>
```

We want to join these tables to get all our information

```
library(dplyr)
```

```
Attaching package: 'dplyr'
```

The following objects are masked from 'package:stats':

```
filter, lag
```

The following objects are masked from 'package:base':

intersect, setdiff, setequal, union

```
meta <- inner_join(subject, specimen)</pre>
```

Joining with `by = join_by(subject_id)`

dim(meta)

```
[1] 1503 13
```

one more join

```
abdata <- inner_join(titer, meta)</pre>
```

Joining with `by = join_by(specimen_id)`

head(abdata)

	specimen_id	isotype i	s_antigen	_specific	antigen	MF	I MFI_normalised
1	1	IgE		FALSE	Total	1110.2115	4 2.493425
2	1	IgE		FALSE	Total	2708.9161	6 2.493425
3	1	IgG		TRUE	PT	68.5661	4 3.736992
4	1	IgG		TRUE	PRN	332.1271	8 2.602350
5	1	IgG		TRUE	FHA	1887.1226	3 34.050956
6	1	IgE		TRUE	ACT	0.1000	0 1.000000
	unit lower_	limit_of_o	detection	subject_i	d infan	cy_vac bio	logical_sex
1	UG/ML		2.096133		1	wP	Female
2	IU/ML	4	29.170000		1	wP	Female
3	IU/ML		0.530000		1	wP	Female
4	IU/ML		6.205949		1	wP	Female
5	IU/ML		4.679535		1	wP	Female
6	IU/ML		2.816431		1	wP	Female
		ethnicity	y race y	ear_of_bir	th date	_of_boost	dataset
1	Not Hispanic	or Latin	o White	1986-01-	01 20	016-09-12	2020_dataset
2	Not Hispanic	or Latin	o White	1986-01-	01 20	016-09-12	2020_dataset
3	Not Hispanic	or Latin	o White	1986-01-	01 20	016-09-12	2020_dataset
4	Not Hispanic	or Latin	o White	1986-01-	01 20	016-09-12	2020_dataset
5	Not Hispanic	or Latin	o White	1986-01-	01 20	016-09-12	2020_dataset
6	Not Hispanic	or Latin	o White	1986-01-	01 20	016-09-12	2020_dataset
	actual_day_r	elative_to	o_boost p	lanned_day	_relativ	ve_to_boos	t specimen_type
1			-3				0 Blood
2			-3				0 Blood
3			-3				0 Blood
4			-3				0 Blood
5			-3				0 Blood
6			-3				0 Blood

visit

- 1 1
- 2 1
- 3 1
- 4 1
- 5 1
- 6 1

dim(abdata)

[1] 52576 20

Q. How many Ab isotypes are there in the dataset?

table(abdata\$isotype)

```
IgE IgG IgG1 IgG2 IgG3 IgG4
6698 5389 10117 10124 10124 10124
```

How many differen tantigens are measured in the dataset?

table(abdata\$antigen)

ACT	BETV1	DT	FELD1	FHA	FIM2/3	LOLP1	LOS	Measles	AVO
1970	1970	4978	1970	5372	4978	1970	1970	1970	4978
PD1	PRN	PT	PTM	Total	TT				
1970	5372	5372	1970	788	4978				

boxplot

```
ggplot(abdata) + aes(MFI, antigen ) + geom_boxplot()
```

Warning: Removed 1 row containing non-finite outside the scale range (`stat_boxplot()`).

ggplot(abdata) + aes(MFI, antigen, col = infancy_vac) + geom_boxplot()

Warning: Removed 1 row containing non-finite outside the scale range (`stat_boxplot()`).

igg <- abdata |> filter(isotype == "IgG") head(igg)

```
specimen_id isotype is_antigen_specific antigen
                                                             MFI MFI_normalised
                                       TRUE
1
             1
                   IgG
                                                  PT
                                                        68.56614
                                                                        3.736992
2
            1
                   IgG
                                       TRUE
                                                 PRN
                                                      332.12718
                                                                        2.602350
            1
3
                   IgG
                                       TRUE
                                                 FHA 1887.12263
                                                                       34.050956
4
            19
                                                  PT
                   IgG
                                       TRUE
                                                        20.11607
                                                                        1.096366
5
            19
                   IgG
                                                 PRN
                                       TRUE
                                                      976.67419
                                                                        7.652635
                                       TRUE
                                                 FHA
            19
                   IgG
                                                        60.76626
                                                                        1.096457
   unit lower_limit_of_detection subject_id infancy_vac biological_sex
1 IU/ML
                         0.530000
                                             1
                                                                    Female
                                                         wP
2 IU/ML
                                             1
                         6.205949
                                                         wP
                                                                    Female
3 IU/ML
                         4.679535
                                             1
                                                         wP
                                                                    Female
                                             3
4 IU/ML
                                                         wΡ
                                                                    Female
                         0.530000
                                             3
5 IU/ML
                          6.205949
                                                         wΡ
                                                                    Female
                                             3
6 IU/ML
                          4.679535
                                                         wΡ
                                                                    Female
                ethnicity race year_of_birth date_of_boost
                                                                     dataset
1 Not Hispanic or Latino White
                                    1986-01-01
                                                   2016-09-12 2020_dataset
2 Not Hispanic or Latino White
                                    1986-01-01
                                                   2016-09-12 2020_dataset
3 Not Hispanic or Latino White
                                    1986-01-01
                                                   2016-09-12 2020_dataset
4
                  Unknown White
                                    1983-01-01
                                                   2016-10-10 2020_dataset
5
                  Unknown White
                                                   2016-10-10 2020_dataset
                                    1983-01-01
6
                  Unknown White
                                    1983-01-01
                                                   2016-10-10 2020_dataset
  actual_day_relative_to_boost planned_day_relative_to_boost specimen_type
1
                              -3
                                                                          Blood
2
                              -3
                                                               0
                                                                          Blood
3
                              -3
                                                               0
                                                                          Blood
4
                              -3
                                                               0
                                                                          Blood
5
                              -3
                                                               0
                                                                          Blood
6
                              -3
                                                               0
                                                                          Blood
  visit
1
      1
2
      1
3
      1
4
      1
      1
5
6
      1
```


Focus in further just one of these - let's pick PT (pertussis toxin)

```
table(igg$dataset)
```

```
2020_dataset 2021_dataset 2022_dataset 2023_dataset 1182 1617 1456 1134
```

```
dim(pt_igg)
```

[1] 231 20

ggplot(pt_igg) + aes(actual_day_relative_to_boost, MFI_normalised, col = infancy_vac, group=

p