# Algebraic Topology Homework 5

#### Michael Nelson

### Problem 1

*Remark* 1. In this problem, we are identifying  $S^1$  with  $\mathbb{R}/2\pi\mathbb{Z}$ . Thus an element in  $S^1$  has the form  $\overline{\theta}$  where  $\theta \in \mathbb{R}$ .

**Exercise 1.** Does the Borsuk–Ulam theorem hold for the torus? In other words, for every map  $f: S^1 \times S^1 \to \mathbb{R}^2$  must there exist  $(\overline{\theta}, \overline{\vartheta}) \in S^1 \times S^1$  such that  $f(\overline{\theta}, \overline{\vartheta}) = f(\overline{\theta} + \overline{\pi}, \overline{\vartheta} + \overline{\pi})$ ?

**Solution 1.** No: let  $\iota_{r,R} \colon S^1 \times S^1 \to \mathbb{R}^3$  be the embedding of the torus in  $\mathbb{R}^3$  given parametrically by

$$x(\overline{\theta}, \overline{\theta}) = (R + r \cos \overline{\theta}) \cos \overline{\theta}$$
$$y(\overline{\theta}, \overline{\theta}) = (R + r \cos \overline{\theta}) \sin \overline{\theta}$$
$$z(\overline{\theta}, \overline{\theta}) = r \sin \overline{\theta}$$

Here R is the distance from the center of the tube to the center of the torus and r is the radius of the tube. For this problem it doesn't matter what r and R are; we can set them both equal to 1 and denote  $\iota = \iota_{1,1}$ . Note that this map is well-defined since the cosine and sin functions are  $2\pi$ -periodic. Next let  $\pi \colon \mathbb{R}^3 \to \mathbb{R}^2$  be the projection map given by  $\pi(x,y,z) = (x,y)$ . Clearly both  $\iota$  and  $\pi$  are continuous, so the composite  $f := \pi \circ \iota$  is also continuous. Furthermore, it is straightforward to check that  $f(\overline{\theta}, \overline{\theta}) = f(\overline{\theta} + \overline{\pi}, \overline{\theta} + \overline{\pi})$  for any  $(\overline{\theta}, \overline{\theta}) \in S^1 \times S^1$ .

#### Problem 2

**Exercise 2.** Let  $A_1$ ,  $A_2$ ,  $A_3$  be compact sets in  $\mathbb{R}^3$ . Use the Borsuk–Ulam theorem to show that there is one plane  $\mathcal{P} \subseteq \mathbb{R}^3$  that simultaneously divides each  $A_i$  into two pieces of equal measure.

**Solution 2.** Step 1: Fix  $s \in S^2$  and let A be an arbitrary compact set in  $\mathbb{R}^3$ . We will find a plane with normal vector s which divides A into two pieces of equal measure. Let  $t \in \mathbb{R}$ , and let P(s,t) be the plane in  $\mathbb{R}^3$  which passes through the point ts and with normal vector s. Thus P(s,t) is given by

$$P(s,t) = \{x \in \mathbb{R}^3 \mid \ell(s,t) = 0\}$$

where  $\ell(s,t) = s_1x_1 + s_2x_2 + s_3x_3 - t$ . The plane P(s,t) partitions the compact set A into two pieces, namely  $A = A^+(s,t) \cup A^-(s,t)$  where

$$A^{+}(s,t) = \{a \in A \mid a \ge \ell(s,t)\} \text{ and } A^{-}(s,t) = \{a \in A \mid a \le \ell(s,t)\}.$$

Let  $f: \mathbb{R} \to \mathbb{R}$  be given by  $f(t) = \operatorname{m}(A^+(s,t))$ . It is easy to show that since A is bounded, the function f is continuous in t, and that there exists  $T \in \mathbb{R}$  such that f(-T) = 0 and f(T) = 1. By the intermediate value theorem, there exists  $t_0 \in [-T,T]$  such that  $f(t_0) = 1/2$ . Let  $a = \inf\{t \in \mathbb{R} \mid f(t) = 1/2\}$  and let  $b = \sup\{t \in \mathbb{R} \mid f(t) = 1/2\}$ . We set  $t_A(s) = (a+b)/2$ . Thus any plane of the form P(s,t), where  $a \le t \le b$ , divides A into two pieces, and the plane  $P(s,t_A(s))$  is the one in the "middle" which divides A into two pieces of equal measure.

**Step 2:** For each  $s \in S^2$ , let  $P_i(s, t_i(s))$  be the "middle" plane which divides  $A_i$  into two pieces of equal measure where  $t_i(s) = t_{A_i}(s)$  for each i = 1, 2, 3. Define  $\varphi \colon S^2 \to \mathbb{R}^2$  by

$$\varphi(s) = (t_3(s) - t_1(s), t_3(s) - t_2(s)).$$

This is a continuous map such that  $\varphi(-s) = -\varphi(s)$ , so by Borsuk-Ulam, there exists  $s_0 \in S^2$  such that  $\varphi(s_0) = \varphi(-s_0)$ , which is equivalent to saying

$$t_1(s_0) = t_2(s_0) = t_3(s_0).$$

In other words,  $P_i(s_0, t_i(s_0))$  is the same plane for each i = 1, 2, 3.

*Remark* 2. I used https://math.stackexchange.com/questions/1166179/hatcher-exercise-9-chapter-1-using-borsuk-ulams-theorem as a reference for this solution.

## Problem 3

**Exercise 3.** Show that there are no retractions  $r: X \to A$  in the following cases:

- 1.  $X = \mathbb{R}^3$  with A any subspace homeomorphic to  $S^1$ .
- 2.  $X = S^1 \times D^2$  with A its boundary torus  $S^1 \times S^1$ .
- 3.  $X = S^1 \times D^2$  and A the circle shown in the figure.
- 4.  $X = D^2 \vee D^2$  with A its boundary  $S^1 \vee S^1$ .
- 5. *X* a disk with two points on its boundary identified and *A* its boundary  $S^1 \vee S^1$ .
- 6. *X* the Möbius band and *A* its boundary circle.

**Solution** 3. First consider the most general case where X is an arbitrary topological space and where A is an arbitrary subspace of X with  $\iota: A \to X$  denoting the inclusion map. Suppose a retraction  $r: X \to A$  exists. Since  $\pi_1: \mathbf{Top} \to \mathbf{Gp}$  is a functor, we have

$$1_{\pi_1(A)} = \pi_1(1_A) = \pi_1(r \circ \iota) = \pi_1(r) \circ \pi_1(\iota).$$

Thus we have the identity

$$1_{\pi_1(A)} = \pi_1(r) \circ \pi_1(\iota). \tag{1}$$

There are at least two ways we can obtain a contradiction from (1):

- If  $\pi_1(A) \neq 0$  and  $\pi_1(r)$  is not surjective, then  $\pi_1(r) \circ \pi_1(\iota)$  is not surjective which contradicts (1).
- If  $\pi_1(A) \neq 0$  and  $\pi_1(\iota) = 0$ , then  $1_{\pi_1(A)} \neq 0 = \pi_1(r) \circ \pi_1(\iota)$  which contradicts (1).

We now consider the special cases:

- 1. In this case, we have  $\pi_1(A) = \mathbb{Z}$  and  $\pi_1(\iota) = 0$  (since  $\pi_1(X) = 0$ ), which contradicts (1).
- 2. In this case, we have  $\pi_1(A) = \mathbb{Z} \times \mathbb{Z}$  and  $\pi_1(r)$  is not surjective (since  $\pi_1(X) = \mathbb{Z}$ ), which contradicts (1).
- 3. In this case, we have  $\pi_1(A) = \mathbb{Z} = \pi_1(X)$  and  $\pi_1(\iota) = 2$ . In particular,  $\operatorname{im}(\pi_1(r) \circ \pi_1(\iota)) \subseteq 2\mathbb{Z}$  which contradicts (1).
- 4. In this case, we have  $\pi_1(A) = \mathbb{Z} \star \mathbb{Z}$  and  $\pi_1(\iota) = 0$  (since  $\pi_1(X) = 0$ ), which contradicts (1).
- 5. In this case, we have  $\pi_1(A) = \mathbb{Z} \star \mathbb{Z}$  and  $\pi_1(r)$  is not surjective (since  $\pi_1(X) = \mathbb{Z}$ ), which contradicts (1).
- 6. In this case, we have  $\pi_1(A) = \mathbb{Z} = \pi_1(X)$  and  $\pi_1(\iota) = 2$ . In particular,  $\operatorname{im}(\pi_1(r) \circ \pi_1(\iota)) \subseteq 2\mathbb{Z}$  which contradicts (1).

## Problem 4

**Exercise 4.** Use van Kampen's theorem to compute the fundamental group of the Klein bottle and projective plane.

**Solution 4.** I wrote this solution down by hand:

# Klein Bottle K



$$U_1 \sim 0$$
 $\pi_1(U_1) = 1$ 
 $U_2 \sim 0$ 
 $\pi_1(U_2) = \mathbb{Z} \times \mathbb{Z} = \langle \alpha, \beta \rangle$ 

$$\pi_1(V_2) = \ell^* \mathcal{U}$$

$$U_1 \cap U_2 \sim 5'$$
 or,  $(U_1 \cap V_2) = 2$ 



$$\pi_{1}(K) = \pi_{1}(U_{1}) * \pi_{1}(U_{2})$$

$$= 1 *_{\mathbb{Z}}(\mathbb{Z} * \mathbb{Z})$$

$$= \langle \alpha, \beta | (= \alpha \beta \alpha^{-1} \beta)$$

# Projective Plane IRP2



$$U_2 \sim 5'$$
  $m_1(U_2) = 7 = \langle x \rangle$ 

$$U_1 \cap U_2 \sim 5'$$
 or,  $(U_1 \cap V_2) = \mathbb{Z}$ 

$$\pi_{i}(K) = \pi_{i}(U_{i}) * \pi_{i}(U_{2})$$

$$\pi_{i}(\mathbb{RP}^{2}) = 1 *_{\mathbb{Z}} \mathbb{Z}$$

$$=\langle \alpha | \alpha^2 = 1 \rangle$$