Eigenvalue problems

1. Let $A \in \mathbb{R}^{n \times n}$ and $s \in \mathbb{C}$. Perform two steps of explicit QR algorithm on A with shifts s and \overline{s} :

$$A - sI = Q_1R_1, A_1 := R_1Q_1 + sI$$

 $A_1 - \overline{s}I = Q_2R_2, A_2 := R_2Q_2 + \overline{s}I.$

Show that $A_1 = Q_1^* A Q_1$ is complex and $A_2 = Q_2^* A_1 Q_2$ is real. Outline an algorithm to compute A_2 directly from A without computing A_1 . Describe an implicit implementation of your algorithm.

- 2. Consider the matrix $H := \begin{bmatrix} H_1 & C \\ 0 & H_2 \end{bmatrix}$, where H_1 and H_2 are irreducible upper hessenberg matrices. Is H an irreducible upper hessenberg matrix? Suppose that H is nonsingular. Show that performing a QR step on H is equivalent to performing a QR step on H_1 and H_2 separately and modifying C suitably.
- 3. Let $T \in \mathbb{C}^{n \times n}$ be upper triangular with distinct diagonals. Outline an algorithm for computing n linearly independent eigenvectors of T and determine the total flop count.
- 4. Let $u \in \mathbb{R}^n$ be a unit vector. Consider the Householder reflector $H = I 2uu^{\top}$. What are the eigenvalues of H?
- 5. Let $A \in \mathbb{C}^{n \times n}$ with eigenvalues $\lambda_1, \ldots, \lambda_n$. Let v_1 be an eigenvector of A corresponding to λ_1 . Let H be the Householder reflector such that $Hv_1 = ||v_1||_2 e_1$.
 - (a) Show that $H^*AH = \begin{bmatrix} \lambda_1 & h^\top \\ 0 & S \end{bmatrix}$, where $h \in \mathbb{C}^{n-1}$ and $S \in \mathbb{C}^{(n-1)\times(n-1)}$ with eigenvalues $\lambda_2, \ldots, \lambda_n$.
 - (b) Let x_2 be an eigenvector of S corresponding to the eigenvalue λ_2 . Set $v_2 := H\begin{bmatrix} \frac{h^{\top}u_2}{\lambda_2 \lambda_1} \\ x_2 \end{bmatrix}$ when $\lambda_1 \neq \lambda_2$. Show that v_2 is an eigenvector of A corresponding to the eigenvalue λ_2 . This process is called deflation and can be repeated to find additional eigenvalues and eigenvectors of A by solving smaller and smaller size eigenvalue problems.
- 6. Let $A \in \mathbb{C}^{n \times n}$ with eigenvalues $\lambda_1, \ldots, \lambda_n$. Let y_1 and x_1 be left and right eigenvectors of A corresponding to λ_1 such that $y_1^*x_1 = 1$. Show that the matrix $S := A \lambda_1 x_1 y_1^*$ has eigenvalues $0, \lambda_2, \ldots, \lambda_n$.
- 7. Let $A \in \mathbb{C}^{n \times n}$. Consider the disks

$$D(a_{ii}, r_i) := \{ z \in \mathbb{C} : |a_{ii} - z| \le r_i \}, \text{ where } r_i := \sum_{j \ne i}^n |a_{ij}|, i = 1 : n.$$

Show that $\Lambda(A) \subset \bigcup_{i=1}^n D(a_{ii}, r_i)$.

- 8. Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix with eigenvalues $\lambda_1 > \lambda_2 \ge \cdots \ge \lambda_{n-1} > \lambda_n$. Consider the shift $\mu := (\lambda_2 + \lambda_n)/2$. Determine the rate of convergence of the power method applied to $A \mu I$. One can show that this shift gives the fastest convergence.
- 9. Let $A \in \mathbb{R}^{n \times n}$ be symmetric with eigenvalues $\lambda_1, \ldots, \lambda_n$. Show, for every $\lambda \in \mathbb{R}$ and nonzero $v \in \mathbb{R}^n$, that $\min_{1 \le j \le n} |\lambda \lambda_j| \le \frac{\|\lambda v Av\|_2}{\|v\|_2}$.
- 10. Let $A \in \mathbb{R}^{n \times n}$ be symmetric. Consider the Rayleigh quotient function

$$q_A: \mathbb{R}^n \setminus \{0\} \longrightarrow \mathbb{R}, x \longmapsto x^\top A x / x^\top x.$$

Show that the gradient of $q_A(x)$ is given by $\nabla q_A(x) = \frac{2(Ax - q_A(x)x)}{x^\top x}$. Deduce that $q_A(v)$ is a stationary point of $q_A(x)$ if and only if $(q_A(v), v)$ is an eigenpair of A.

****** End ******