1

Audio Filtering

EE23BTECH11013 - Chedurtipati Avyaaz*

1 DIGITAL FILTER

1.1 Download the sound file from

```
https://github.com/Avyaaz13/Audio-Filtering/blob/main/Audio%20Filtering/codes/Input audio.wav
```

1.2 Below is the Python Code to perform the Audio Filtering:

```
import matplotlib.pyplot as plt
import numpy as np
import soundfile as sf
from scipy import signal
# Read .wav file
input signal, fs = sf.read('Input audio.wav')
# Order of the filter
order = 3
# Cutoff frequency 4kHz
cutoff freq = 4000.0
# Digital frequency
Wn = 2 * cutoff freq / fs
b, a = signal.butter(order, Wn, 'low')
# Ensure the signal is long enough for the
    filter
if len(input signal) < max(3 * (max(len(a), a)))
    len(b)) - 1), 15):
    raise ValueError("Input_signal_is_too_
        short_for_the_specified_filter_order_
        and_padding.")
print(a)
print(b)
# Filter the input signal with a Butterworth
    filter
output signal = signal.filtfilt(b, a,
    input signal, method="gust")
```

```
sf.write('ReducedNoise_s181.wav', output_signal, fs)
```

1.3 The audio file is analyzed using spectrogram using the online platform https://academo.org/demos/spectrum-analyzer.

The orange and yellow areas represent frequencies that have high intensities in the sound. Also, the signal is blank for frequencies above 5.1 kHz.

Fig. 1: Spectrogram of Input Audio

Fig. 2: Spectrogram of Filtered Input Audio

2 Difference Equation

2.1 Let

$$x(n) = \left\{ 1, 2, 3, 4, 2, 1 \right\} \tag{2.0.1}$$

Sketch x(n).

2.2 Let

$$y(n) + \frac{1}{2}y(n-1) = x(n) + x(n-2),$$

$$y(n) = 0, n < 0 \quad (2.0.2)$$

Sketch y(n).

Solve

Solution: The C code calculates y(n) and Python plots the graph.

https://github.cm/Avyaaz13/Audio-Filtering/blob/main/Audio%20Filtering/codes/xnyn.c

Below are the plots of the x(n) and y(n):

https://github.com/Avyaaz13/Audio-Filtering/blob/main/Audio%20Filtering/codes/xnyn.py

Fig. 3: Plot of x(n) and y(n)

3 Z-Transform

3.1 The Z-transform of x(n) is defined as

$$X(z) = \mathcal{Z}\{x(n)\} = \sum_{n=-\infty}^{\infty} x(n)z^{-n}$$
 (3.0.1)

Show that

$$Z{x(n-1)} = z^{-1}X(z)$$
 (3.0.2)

and find

$$\mathcal{Z}\{x(n-k)\}\tag{3.0.3}$$

Solution: From (3.0.1),

$$Z\{x(n-k)\} = \sum_{n=-\infty}^{\infty} x(n-1)z^{-n}$$

$$= \sum_{n=-\infty}^{\infty} x(n)z^{-n-1} = z^{-1} \sum_{n=-\infty}^{\infty} x(n)z^{-n}$$
(3.0.4)

resulting in (3.0.2). Similarly, it can be shown that

$$Z\{x(n-k)\} = z^{-k}X(z)$$
 (3.0.6)

3.2 Find

$$H(z) = \frac{Y(z)}{X(z)}$$
 (3.0.7)

from (2.0.2) assuming that the Z-transform is a linear operation.

Solution: Applying (3.0.6) in (2.0.2),

$$Y(z) + \frac{1}{2}z^{-1}Y(z) = X(z) + z^{-2}X(z)$$
 (3.0.8)

$$\implies \frac{Y(z)}{X(z)} = \frac{1 + z^{-2}}{1 + \frac{1}{2}z^{-1}}$$
 (3.0.9)

3.3 Find the Z transform of

$$\delta(n) = \begin{cases} 1 & n = 0 \\ 0 & \text{otherwise} \end{cases}$$
 (3.0.10)

and show that the Z-transform of

$$u(n) = \begin{cases} 1 & n \ge 0 \\ 0 & \text{otherwise} \end{cases}$$
 (3.0.11)

is

$$U(z) = \frac{1}{1 - z^{-1}}, \quad |z| > 1$$
 (3.0.12)

Solution: It is easy to show that

$$\delta(n) \stackrel{\mathcal{Z}}{\longleftrightarrow} 1 \tag{3.0.13}$$

and from (3.0.11),

$$U(z) = \sum_{n=0}^{\infty} z^{-n}$$
 (3.0.14)

$$= \frac{1}{1 - z^{-1}}, \quad |z| > 1 \tag{3.0.15}$$

using the formula for the sum of an infinite geometric progression.

3.4 Show that

$$a^n u(n) \stackrel{\mathcal{Z}}{\longleftrightarrow} \frac{1}{1 - a z^{-1}} \quad |z| > |a| \qquad (3.0.16)$$

Solution:

$$a^n u(n) \stackrel{\mathcal{Z}}{\longleftrightarrow} \sum_{n=0}^{\infty} \left(a z^{-1} \right)^n$$
 (3.0.17)

$$= \frac{1}{1 - az^{-1}} \quad |z| > |a| \tag{3.0.18}$$

3.5 Let

$$H(e^{j\omega}) = H(z = e^{j\omega}). \tag{3.0.19}$$

Plot $|H(e^{j\omega})|$. Comment. $H(e^{j\omega})$ is known as the *Discrete Time Fourier Transform* (DTFT) of x(n).

Solution: Below is the code which plots the magnitude of Transfer Function:

https://github.com/Avyaaz13/Audio-Filtering/blob/main/Audio%20Filtering/codes/H.py

Substituting $z = e^{j\omega}$ in (3.0.9), we get

$$\left| H\left(e^{j\omega}\right) \right| = \left| \frac{1 + e^{-2j\omega}}{1 + \frac{1}{2}e^{-j\omega}} \right| \qquad (3.0.20)$$

$$= \sqrt{\frac{(1 + \cos 2\omega)^2 + (\sin 2\omega)^2}{\left(1 + \frac{1}{2}\cos \omega\right)^2 + \left(\frac{1}{2}\sin \omega\right)^2}} \qquad (3.0.21)$$

$$=\frac{4|\cos\omega|}{\sqrt{5+4\cos\omega}}\tag{3.0.22}$$

$$\left| H\left(e^{j(\omega+2\pi)}\right) \right| = \frac{4|\cos(\omega+2\pi)|}{\sqrt{5+4\cos(\omega+2\pi)}} \quad (3.0.23)$$

$$= \frac{4|\cos\omega|}{\sqrt{5+4\cos\omega}} \quad (3.0.24)$$

$$= \left| H\left(e^{j\omega}\right) \right| \quad (3.0.25)$$

Therefore, the fundamental period is 2π , which implies that DTFT of a signal is always periodic.

4 Impulse Response

4.1 Find an expression for h(n) using H(z), given that

$$h(n) \stackrel{\mathcal{Z}}{\longleftrightarrow} H(z)$$
 (4.0.1)

and there is a one to one relationship between h(n) and H(z). h(n) is known as the *impulse*

Fig. 4: $\left|H\left(e^{j\omega}\right)\right|$ vs ω

response of the system defined by (2.0.2). **Solution:** From (3.0.9),

$$H(z) = \frac{1}{1 + \frac{1}{2}z^{-1}} + \frac{z^{-2}}{1 + \frac{1}{2}z^{-1}}$$
(4.0.2)

$$\implies h(n) = \left(-\frac{1}{2}\right)^n u(n) + \left(-\frac{1}{2}\right)^{n-2} u(n-2)$$
(4.0.3)

using (3.0.16) and (3.0.6).

4.2 Sketch h(n). Is it bounded? Convergent? **Solution:** The following code plots h(n)

https://github.com/Avyaaz13/Audio-Filtering/blob/main/Audio%20Filtering/codes/h.py

Fig. 5: h(n) vs n

4.3 The system with h(n) is defined to be stable if

$$\sum_{n=-\infty}^{\infty} h(n) < \infty \tag{4.0.4}$$

Is the system defined by (2.0.2) stable for the impulse response in (4.0.1)?

Solution: For stable system (4.0.4) should converge.

By using ratio test for convergence:

$$\lim_{n \to \infty} \left| \frac{h(n+1)}{h(n)} \right| < 1 \tag{4.0.5}$$

(4.0.6)

For large *n*

$$u(n) = u(n-2) = 1$$
 (4.0.7)

$$\lim_{n \to \infty} \left(\frac{h(n+1)}{h(n)} \right) = 1/2 < 1 \tag{4.0.8}$$

Hence it is stable.

4.4 Compute and sketch h(n) using

$$h(n) + \frac{1}{2}h(n-1) = \delta(n) + \delta(n-2),$$
 (4.0.9)

This is the definition of h(n).

Solution:

Definition of h(n): The output of the system when $\delta(n)$ is given as input.

The following code plots Fig. 6. Note that this is the same as Fig. 5.

https://github.com/Avyaaz13/Audio-Filtering/blob/main/Audio%20Filtering/codes/hndef.py

Fig. 6: h(n) vs n using definition

4.5 Compute

$$y(n) = x(n) * h(n) = \sum_{n = -\infty}^{\infty} x(k)h(n - k)$$
 (4.0.10)

Comment. The operation in (4.0.10) is known as *convolution*.

Solution: Below code plots Fig. 7. Note that this is the same as y(n) in Fig. 3.

https://github.com/Avyaaz13/Audio-Filtering/blob/main/Audio%20Filtering/codes/ynconv.py

Fig. 7: y(n) from the definition of convolution

4.6 Show that

$$y(n) = \sum_{n = -\infty}^{\infty} x(n - k)h(k)$$
 (4.0.11)

Solution: In (4.0.10), we substitute k = n - k to get

$$y(n) = \sum_{k=-\infty}^{\infty} x(k) h(n-k)$$
 (4.0.12)

$$= \sum_{n-k=-\infty}^{\infty} x(n-k) h(k)$$
 (4.0.13)

$$= \sum_{k=-\infty}^{\infty} x(n-k) h(k)$$
 (4.0.14)

5 DFT and FFT

5.1 Compute

$$X(k) \stackrel{\triangle}{=} \sum_{n=0}^{N-1} x(n)e^{-j2\pi kn/N}, \quad k = 0, 1, \dots, N-1$$
(5.0.1)

and H(k) using h(n).

5.2 Compute

$$Y(k) = X(k)H(k) \tag{5.0.2}$$

5.3 Compute

$$y(n) = \frac{1}{N} \sum_{k=0}^{N-1} Y(k) \cdot e^{j2\pi kn/N}, \quad n = 0, 1, \dots, N-1$$
(5.0.3)

Solution: The above three questions are solved using the code below.

https://github.com/Avyaaz13/Audio-Filtering/blob/main/Audio%20Filtering/codes/5sol.py

Fig. 8: y(n) obtained from DFT

5.4 Repeat the previous exercise by computing X(k), H(k) and y(n) through FFT and IFFT. **Solution:** The solution of this question can be found in the code below.

https://github.com/Avyaaz13/Audio-Filtering/blob/main/Audio%20Filtering/codes/IFFT IDFT.py

Fig. 9: y(n) obtained from IFFT

5.5 Wherever possible, express all the above equations as matrix equations.

Solution: The DFT matrix is defined as:

$$\mathbf{W} = \begin{pmatrix} \omega^0 & \omega^0 & \dots & \omega^0 \\ \omega^0 & \omega^1 & \dots & \omega^{N-1} \\ \vdots & \vdots & \ddots & \vdots \\ \omega^0 & \omega^{N-1} & \dots & \omega^{(N-1)(N-1)} \end{pmatrix}$$
(5.0.4)

where $\omega = e^{-\frac{j2\pi}{N}}$. Now any DFT equation can be written as

$$\mathbf{X} = \mathbf{W}\mathbf{x} \tag{5.0.5}$$

where

$$\mathbf{x} = \begin{pmatrix} x(0) \\ x(1) \\ \vdots \\ x(n-1) \end{pmatrix}$$
 (5.0.6)

$$\mathbf{X} = \begin{pmatrix} X(0) \\ X(1) \\ \vdots \\ X(n-1) \end{pmatrix}$$
 (5.0.7)

Thus we can rewrite (5.0.2) as:

$$\mathbf{Y} = \mathbf{X} \cdot \mathbf{H} = (\mathbf{W}\mathbf{x}) \cdot (\mathbf{W}\mathbf{h}) \tag{5.0.8}$$

The below code computes y(n) by DFT Matrix and then plots it.

https://github.com/Avyaaz13/Audio-Filtering/blob/main/Audio%20Filtering/codes/matrix.py

Fig. 10: y(n) from DFT Matrix

6 EXERCISES

Answer the following questions by looking at the python code in Problem 1.2.

6.1 The command

in Problem 1.2 is executed through the following difference equation

$$\sum_{m=0}^{M} a(m) y(n-m) = \sum_{k=0}^{N} b(k) x(n-k)$$
 (6.0.1)

where the input signal is x(n) and the output signal is y(n) with initial values all 0. Replace **signal. filtfilt** with your own routine and verify.

Solution: The below code gives the output of an Audio Filter without using the built in function signal.lfilter.

https://github.com/Avyaaz13/Audio-Filtering/blob/main/Audio%20Filtering/codes/filtfilt.py

Fig. 11: Both the outputs using and without using function overlap

6.2 Repeat all the exercises in the previous sections for the above *a* and *b*.

Solution: The code in 1.2 generates the values of a and b which can be used to generate a difference equation.

And,

$$M = 4 \tag{6.0.2}$$

$$N = 4$$
 (6.0.3)

From 6.0.1

$$a(0) y(n) + a(1) y(n-1) + a(2) y(n-2) + a(3)$$

$$y(n-3) = b(0) x(n) + b(1) x(n-1)$$

$$+ b(2) x(n-2) + b(3) x(n-3)$$