基於機器學習的社群媒體行銷圖像設計分析與推薦系統:母嬰護理產品行業的案例研究

A machine learning based image design analysis and recommendation system for social media marketing – a case study in maternity and baby care product industry

系所: 工業管理系

研究生: 王婕恩

指導教授:王孔政 博士

日期: 2024/01/22

01 INTRODUCTION

02 LITERATURE REVIEW

03 METHODOLOGY

1 EXPERIMENT RESULT

05 CONCLUSION

CONTENTS

Background of the maternity and baby care product industry and the role of social media marketing

出生率下降導致父母優先 考慮母嬰護理產品的品質

• 家庭可支配收入增加,對高端優質護理產品的需求增加

• 電商行銷盛行,社群媒體 (尤其是Instagram)在消 費者互動中的核心作用

The motivation for research

• 高品質圖像對於社群媒體 用戶參與度至關重要

圖像設計過程過於依賴專業攝影,限制了數位行銷靈活性與 可擴展性

現有圖像設計偏重美感, 忽略了傳達深層親子關係 的潛力,失去與目標受眾 產生情感共鳴的機會

Research Objectives and Value

●目標	針對母嬰行業開發機器學習為基礎的圖像分析推薦系統(IDARS),提升 社群媒體上的產品吸引力
●問題	如何利用AI圖像識別解讀視覺內容,找出與現代父母共鳴的模式
●價值	學術面:本研究擴展了圖像分析在社交媒體行銷領域的應用,並提出了一種新的量化圖像設計效果的方法
	實務面:為電商在母嬰產品行銷提供數據導向的圖像設計指南,幫助提升用戶參與度以激發客戶對品牌之忠誠度

影像特徵對提升社群媒體平台的用戶參與度極為重要。(Matz et al., 2019)

ML classifier

機器學習分類器	使用技術	特色	文獻來源
決策樹 (DT)	分類與回歸樹技術	解釋性強,資料探勘簡易	Hastie et al., 2009; Blockeel et al., 2023
輕梯度提升機 (LightGBM)	梯度提升框架	高效率、高性能,葉優先生長策略	Ke et al., 2017
RIPPER算法	規則學習算法	適合大數據集的規則學習,具有解釋性	Cohen, 1995; Asadi & Shahrabi, 2016
卷積神經網絡 (CNNs)	深度學習 / 卷積神經網絡	高效的影像分析能力,自動學習特徵	Alzubaidi et al., 2021

Research gap

- 社群媒體影像分析應用在母嬰產品行業的研究有限(Chen et al., 2023)
- 研究需要探討機器學習 (ML) 方法與影像分析結合, 識別影響母嬰產品行業圖像吸引力和用戶互動的關鍵因素, 基於這些因素提供推薦, 提升行銷效果
- 大家對機器學習模型的準確性重視,但常忽略其可解釋性(Sindhgatta et al., 2020)
- · 企業需要預測準確而且易於解釋的模型,以提取有意義的資訊,支持決策(Ouyang et al., 2021)

本研究旨在填補該領域的空白,比較不同機器學習模型在母嬰產品行業中的性能,注重模型的準確性與可解釋性

IDARS framework

Data collection and process module

• 數據蒐集

使用Python開發的網絡爬蟲技術從Instagram使用#Hashtag 自動蒐集母嬰護理產品相關圖像及數據

02.Literature review

• 對象

選擇追蹤者數量超過5,000粉絲的網紅,確保數據具有代表性

• 數據集範圍

從2018年1月至2022年8月,共1,000張圖像,且發布時間超過 三天之貼文

#母嬰用品

貼文

Image features extraction module

採用圖像處理和深度學習算法,從每幅圖像提取328個多方面特徵

視覺色彩特徵提取:Open science framework features (OSF)

- 從OSF平台的89種計算算法中選用46種特徵類型
- 涵蓋顏色、構圖、紋理和內容等方面

Class	Description	N	Features name
Color 顔色分析	使用HSV(色調、飽和度和明度)量化11種標準顏色的比例組成	20	use of light, avg saturation, std saturation, std brightness, valence, dominance, arousal, hue circular variance, colorfulness, black, blue, brown, gray, green, orange, pink, purple, red, white, yellow
Composition 構圖分析	• 考慮細節層次和長寬比等構成要素	10	Total number of edge points, level of detail, avg region size, low DOF – hue, low DOF – saturation, low DOF – brightness, rule of thirds – saturation, rule of thirds – brightness, image size, aspect ratio
Texture 紋理分析	通過對多個像素區域進行統計計算,分析物體或結構在空間中的物理表現能揭示圖像特徵如方向性、對比度和粗糙度	15	Tamura coarseness, Tamura contrast, Tamura directionality, GLCM contrast – hue, GLCM correlation – hue, GLCM energy – hue, GLCM homogeneity – hue, GLCM contrast – saturation, GLCM correlation – saturation, GLCM energy – saturation, GLCM contrast – brightness, GLCM correlation – brightness, GLCM energy – brightness, GLCM homogeneity – brightness
Content 內容分析	包括圖像內所有可檢測物件,如視覺擁擠度不同程度的視覺擁擠會影響人們的注意力	1	congestion clutter

03. Methodology

物件場景特徵提取:Features by panoptic segmentation

02.Literature review

- 提取工具: Detectron2
- 提取模型: R101-FPN
- 特徵類別: COCO資料集中80種thing 類別及54種stuff類別
- 提取特徵:
 - ➤ Thing: 每類別的個數及面積
 - ➤ Stuff: 每類別是否存在及面積

物件場景特徵提取:Customized features by instance segmentation

• 提取工具: Detectron2

(允許用戶使用特定數據集進行模型訓練)

- 提取模型: R101-FPN
- · 自定義IS方法針對母嬰護理產品特定物件進行訓練

(授乳枕、奶嘴、尿布、圍兜、包巾)

• 圖像中提取與臉部相關的特徵,識別圖像中的臉部年齡、

數量及臉部面積占比

• 年齡分類有助於分析圖像的目標人群和吸引力

特徵類別	方法	說明
臉部識別	DNN模型 (OpenCV)	識別圖像中的臉部是否存在、數量及比例
年龄組估計	Caffe框架	估計臉部的年齡組別,以20歲為「兒童」 和「成人」分界

Dimensionality reduction module

•採用遞歸特徵消除(Recursive Feature Elimination, RFE)優化特徵集

03. Methodology

- •RFE通過重要性排名和迭代剪除過程來排除不重要的特徵
- •使用預測模型為特徵賦予權重
- 反覆擬合模型於縮減後的特徵集,直至得到最佳特徵組合
- •RFE有效篩選出對模型預測力有顯著貢獻的特徵,排除無關或冗餘因
- 子以提升模型性能

Intimacy

Target variables

Step 1

研究定義了兩個主要的 目標變數:互動率 (Y_l) 和親子親密度 (Y_2)

目標變數	定義	計算方式/確定方法
互動率 Engagement Rate (Y ₁)	衡量社交媒體帖文效果的指標	$Y_I = \frac{\text{(點讚數 + 評論數)}}{\text{發帖用戶的追蹤者數量}} \times 100\%$
親子親密度 Degree of Parent-Child Intimacy (Y2)	衡量圖像中親子關係親密程度	專家意見問卷調查結果

Step 2

根據 Y_1 和 Y_2 在數據集中的百分位排名, 將目標變數分為四個不同類型

Step 3

將'決策變數'進行數值編碼,'Type 1' 表示為1, Type 2' 為2, Type 3' 為3, 'Type 4' 為4, 使決策樹算法可以將這 四種類型作為目標變數(Y)使用

Type 2

- 互動率在Top 20%但親子親密度 不是的觀察結果
- 顯示高吸引力但較少親子親密度

Eye-catching

Type 1

- 互動率和親子親密度都在Top 20% 的理想類別
- 具有高吸引力和強烈親子親密度

Type 4

- 包含所有不屬於第一、二或三類 型的其他觀察結果
- 顯示低吸引力與較少親子親密度

Type 3

- 親子親密度在Top 20%但互動率不是 的觀察結果
- 反映出強烈親子親密度但較少吸引力

Modelling and validation

01.Introduction

DT 概述

- 使用CART方法建立決策樹模型
- 使用吉尼係數(gini)做為節點化分的依據

參數最佳化

分割標準:'gini'

樹的最大深度:7

葉節點最小樣本數:9

內部節點分割最小樣本數:37

• 使用貝葉斯優化法進行參數調整以提高模型準確率

模型效能評估

- 採用保留法(訓練集70%, 測試集30%)
- 進行k折交叉驗證(k=5) 以確保模型穩健性
- 最終模型效能為k次迭代的 平均表現

實驗概述

- 使用1000張Instagram上與母嬰護理產品相關的照片作為研究
- 透過特徵降維模組擷取特徵,最終使用前5個最相關的特徵
- 比較四種模型基於可解釋性與性能表現上之差義
- 使用CART DT產生建議規則與範例照片

Model comparison and discussion

Model Name	Accuracy	Precision	Recall	F1 Score	模型概述與指標摘要
DT	0.743	0.718	0.656	0.686	解釋性強,易於理解
LightGBM	0.780	0.728	0.773	0.750	高準確性,效能優異
RIPPER	0.660	0.670	0.660	0.638	透明度高,基於規則,性能較低
CNNs	0.733	0.740	0.578	0.649	處理複雜圖像強 交叉驗證與個別驗證準確率有明顯差異可能過度擬合

RIPPER DT 低性能,高解釋性 高性能,高解釋性 CNNs 低性能,低解釋性 高性能,低解釋性 高性能,低解釋性 高性能,低解釋性

Model comparison and discussion

RIPPER

Rule 1: "aspect ratio=1.249-1.25^

Blank arearatio=>0.97^{person_num}=2"

Rule 2: "aspect ratio=1.249-

1.25[^]person_num=2"

CART DT

LightGBM

02.Literature review

測試照片(Type 2)

"node57_path": ["person_tarearatio > 0.0012267791898921132", "level of detail <= 2998.0", "child_arearatio > 0.00018713857571128756", "person_tarearatio > 0.40168745815753937", "level of detail > 1546.5", "level of detail > 1712.5"],

推薦照片(Type 1)

- 1. 減少leveal of detail至適中範圍:
 - 減少照片中的色塊複雜度有助於集中觀看者對圖 像主要元素的注意力,使視覺訊息更清晰
- 2. 降低GLCM energy brightness:
 - 良好的亮度平衡有助於增強圖像的整體視覺和諧
- 3. 降低person_tarearatio :
 - 此調整可將人物元素和背景之間取得平衡,有助 創造圖像中的情境

測試照片(Type 2)

02.Literature review


```
"node43 path": [
   "person_tarearatio > 0.0012267791898921132",
   "level of detail <= 2998.0",
   "child_arearatio <= 0.00018713857571128756",
   "level of detail > 1437.5",
   "level of detail > 1735.0",
   "level of detail <= 2141.5"
```

推薦照片(Type 1)

- 1. 調整child arearatio至適中範圍:
 - 確保圖片中孩童的存在恰到好處,既能捕捉與產品的互動, 又不會掩蓋其他元素
- 2. 降低person_tarearatio:
 - 構圖更加寬敞,能夠清晰且不雜亂地傳達視覺信息
 - 有助於更好地集中注意力於產品及其特點
- 3. 提升GLCM energy brightness :
 - 亮麗而充滿活力的圖像通常被視為更加積極,引起目標受 眾的興趣

```
'advice": [
       "Node 49":
          "Consider adjusting GLCM energy - brightness to be '> 0.3994957506656647'",
          "Consider adjusting child_arearatio to be between ' 0.00018713857571128756' and '0.053738728165626526'",
          "Consider adjusting person_tarearatio to be '<= 0.40168745815753937'"
```

結果總結

- 1. 開發了針對母嬰護理行業的機器學習基礎圖像設計分析與推薦系統(IDARS)
- 2. 色彩、紋理和人物或物體的存在影響用戶互動和感知

02.Literature review

- 3. 研究包括DT、LightGBM、RIPPER算法和CNNs在內的多種機器學習模型,進行比較分析,為現有文獻中依賴單一模型評估的方法填補空白
- 4. 尋求解釋性與性能之間平衡時, DT可能是一個良好的起點

未來研究方向

- 1. 進一步精煉預測模型,提高其準確性和可靠性
- 2. 結合生成模型技術,創建與市場趨勢相符的吸引人視覺素材
- 3. 利用社交媒體的廣闊特性,拓展到教育和資訊傳播領域,使用ML定制特定受眾內容,提高內容的教育價值和影響力

語義分割 Semantic segmentation (Hao et al., 2020)

對圖像中的每個像素打上類別標籤, 如下圖,把圖像分為人(紅色)、樹 木(深綠)、草地(淺綠)、天空 (藍色)標籤

實例分割 Instance segmentation (Hafiz & Bhat, 2020)

語義分割不區分屬於相同類別的不同實例 (所有人都標為紅色),實例分割區分同類 的不同實例(使用不同顏色區分不同的人)

全景分割 Panoptic segmentation (Kirillov et al., 2019)

語義分割和實例分割的結合,即要對所有目標 都檢測出來,對圖中的所有物體包括背景都要 進行檢測和分割,區分不同實例(使用不同顏 色)

Source: https://kknews.cc/tech/63o65qm.html