NOMBRE:

Ejercicio 1.- El resultado de un ensayo de dureza es 630 HV 50. Se pide:

- a) Calcular la diagonal de la huella (1 punto).
- b) Calcular el valor de la dureza, si se ha realizado el mismo ensayo en otro material, utilizando una carga de
- 20 kp, y la diagonal de la huella obtenida es de 0,5 mm (1 punto).

² | Ejercicio 1

Sobre un acero se ha realizado un ensayo Brinell utilizando una bola de 10 mm de diámetro y una carga de 3000 kp, obteniéndose un valor de 150 HB.

- a) Calcule el diámetro de la huella. (1 punto)
- b) Si la carga empleada fuera de 187,5 kp, ¿qué diámetro de bola utilizaría? (1 punto)

3 Ejercicio 1

Una barra cilíndrica de 80 mm de longitud y 8 mm² de sección, está sometida a una fuerza de tracción de 4 kN. Sabiendo que el módulo de elasticidad del material es 4x10⁴ MPa y que el límite elástico es 250 MPa:

- a) Calcule el alargamiento unitario en el límite elástico. (1 punto)
- **b)** Justifique si la barra recuperará la longitud primitiva al retirar la carga de 4 kN. En caso negativo, qué diámetro mínimo habrá de tener la barra para que la deformación no sea permanente. (1 punto)

4 Eiercicio 1

En un ensayo Charpy la maza de 30 kg ha caído desde una altura de 100 cm y, después de romper la probeta de sección cuadrada de 10 mm de lado y 2 mm de profundidad de la entalla, se ha elevado hasta una altura de 60 cm.

- a) Dibuje el esquema del ensayo y calcule la energía empleada en la rotura. (1 punto)
- b) Calcule la resiliencia del material de la probeta. (1 punto)

Recuperación / Subida de nota TEMA 3: Ensayos

NOMBRE:	Curso:	

- Ejercicio 1.- El resultado de un ensayo de dureza es 630 HV 50. Se pide:
 - a) Calcular la diagonal de la huella (1 punto).
 - b) Calcular el valor de la dureza, si se ha realizado el mismo ensayo en otro material, utilizando una carga de 20 kp, y la diagonal de la huella obtenida es de 0,5 mm (1 punto).

² Ejercicio 1

Curso:

Sobre un acero se ha realizado un ensayo Brinell utilizando una bola de 10 mm de diámetro y una carga de 3000 kp, obteniéndose un valor de 150 HB.

- a) Calcule el diámetro de la huella. (1 punto)
- b) Si la carga empleada fuera de 187,5 kp, ¿qué diámetro de bola utilizaría? (1 punto)

3 Eiercicio 1

Una barra cilíndrica de 80 mm de longitud y 8 mm² de sección, está sometida a una fuerza de tracción de 4 kN. Sabiendo que el módulo de elasticidad del material es 4x10⁴ MPa y que el límite elástico es 250 MPa:

- a) Calcule el alargamiento unitario en el límite elástico. (1 punto)
- **b)** Justifique si la barra recuperará la longitud primitiva al retirar la carga de 4 kN. En caso negativo, qué diámetro mínimo habrá de tener la barra para que la deformación no sea permanente. (1 punto)

4 Ejercicio 1

En un ensayo Charpy la maza de 30 kg ha caído desde una altura de 100 cm y, después de romper la probeta de sección cuadrada de 10 mm de lado y 2 mm de profundidad de la entalla, se ha elevado hasta una altura de 60 cm.

- a) Dibuje el esquema del ensayo y calcule la energía empleada en la rotura. (1 punto)
- b) Calcule la resiliencia del material de la probeta. (1 punto)