Day 5: Chain Rule

1 Motivation

- Impossible right now: Differentiate $F(x) = \sqrt{1-x^2}$. No tools let us do it yet.
- Note that F(x) is a composition of two functions: \sqrt{x} after $1-x^2$, both of which we know how to differentiate.

2 Review: Composition

• Recall: Given two functions f(x) and g(x), we can form the *composition* f after g, notated by $f \circ g$. The definition is

$$(f \circ q)(x) := f(q(x)).$$

Remember that order matters. $f \circ g \neq g \circ f$.

• Example: $f(x) = e^x$, g(x) = 4x + 2.

$$(f \circ g)(x) = f(g(x)) = f(4x+2) = e^{4x+2}$$

$$(g \circ f)(x) = g(f(x)) = g(e^x) = 4e^x + 2$$

• Many functions naturally *are* compositions of simpler functions.

3 Chain Rule

• Says how to differentiate a composition of functions.

•

$$f'(g(x)) = f'(g(x))g'(x).$$

• In differential notation, where we let y = f(u) and u = g(x),

$$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$$

4 Examples

- Work outside to inside.
- $F(x) = \sqrt{1 x^2} = (1 x^2)^{1/2}$.

$$F'(x) = \frac{1}{2} (1 - x^2)^{-1/2} (-2x) = -\frac{x}{\sqrt{1 - x}}$$

• If you want to do differential notation: set $u = 1 - x^2$, so $y = F(u) = u^{1/2}$.

$$\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$$

$$= \frac{1}{2} u^{-1/2} \cdot (-2x)$$

$$= \frac{1}{2} (1 - x^2)^{-1/2} \cdot (-2x),$$

same as before.

• $G(x) = \frac{1}{1+x} = (1+x)^{-1}$

$$G'(x) = -1 (1+x)^{-2} (1+x)' = -\frac{1}{(1+x)^2}$$

• $H(x) = e^{\sin(x)}$.

$$H'(x) = e^{\sin(x)} \left(\sin(x)\right)' = \cos(x)e^{\sin(x)}$$

ullet Most common mistake in applying chain rule: incorrectly assuming what f and g are.

• Sometimes its convenient to "chain" a bunch of chain rules together. For example, if y = f(u), u = g(x), and x = h(t), so we're trying to differentiate f(g(h(t))),

$$\frac{dy}{dt} = \frac{dy}{du}\frac{du}{dx}\frac{dx}{dt}.$$

• $F(x) = \cos(\sin(x^2))$.