18.726, Homework 1

Due Tuesday February 16th, 11.00 am

- 1. Let X be a topological space and \mathcal{B} a basis of open sets (so \mathcal{B} is closed under finite intersections and every open set is covered by elements of \mathcal{B}). Recall from class the notion of a sheaf of groups with respect to \mathcal{B} . Prove that a sheaf with respect to \mathcal{B} extends uniquely to a sheaf on X. Given two sheaves F, F' on X in the usual sense, show that a map between the restrictions of F and F' with respect to \mathcal{B} extends uniquely to a map between F and F'.
- 2. Find an example of rings R and S, a continuous map of topological spaces $f: X = \operatorname{Spec} R \to Y = \operatorname{Spec} S$, and a map $\mathcal{O}_Y \to f_* \mathcal{O}_X$ of sheaves of rings, which is not a morphism of schemes.
- 3. Exercises from Hartshorne II.2:
 - 1. 2.4 (and then deduce that every scheme admits a unique morphism to $\operatorname{Spec}\mathbb{Z}$.)
 - 2. 2.8
 - 3. 2.12
 - 4. 2.16
 - 5. 2.17
- 4. Exercises from Hartshorne II.3:
 - 1. 3.1
 - 2. 3.5 a) and c)
 - 3. 3.10