The Picard - Lindelof theorem

(BMath Meetup, 13/03/24)

--- one of my favourite theorems from one of my least favourite subjects.

Illustrates how a simple idea becomes powerful in abstraction and an interesting proof technique

Measuring distance

Can we measure the distance of points in sets other than R"?

What properties would we expect "distance" to have?

Def. Let X be a set. A distance function on X, or metric, is a map $d: X \times X \longrightarrow \mathbb{R}_{\geq 0}$ such that

(i)
$$d(x, y) = 0 \iff x = y$$

$$(ii) \quad d(x,y) = d(y,x)$$

(iii)
$$d(x,z) \leq d(x,y) + d(y,z)$$

Example 1

$$X = \mathbb{R}^2$$
, $d(x,y) := "the usual distance"$

Example 2

$$X = \{ \text{continuous functions from [0,1] to } \mathbb{R} \} =: \mathbb{C}([0,1], \mathbb{R})$$

$$d(f,g) := \sup \{ |f(x) - g(x)| : x \in [0,1] \}$$

this has all the properties!

Def. Let (X, d) be a metric space. A contraction of X is a map $c: X \to X$ such that there is $0 \le \lambda < 1$ so that for all $x, y \in X$ we have $d(c(x), c(y)) \leq \lambda d(x, y)$.

Example $X = \mathbb{R}^2$ with the word distance and $C(x) := \frac{1}{2} X :$

any two points move closer to each other (and towards the centre)

$$d(c(x),c(y))=d\left(\frac{1}{2}x,\frac{1}{2}y\right)=\frac{1}{2}d(x,y)$$

Theorem (Barrach 1922)

imprecise !

Every contraction has a unique fixed point.

Idea: the fixed point can be found by starting anywhere and repeatedly

applying the contraction.

Uniqueness: if x, y are fixed points: $d(x, y) = d(c(x), c(y)) \leq \lambda d(x, y) = 0 \Leftrightarrow x = y$.

And now: something completely different (?)

Let $F: \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n$ be a time-dependent vector field time location vector

(the answer should be yes - just drop a pebble into the river and see what happens)

Theorem (Picard-Lindelof)

Yes, at least for a small time frame around the initial time point $x:(t_0-S,t_0+S)\longrightarrow \mathbb{R}^n$ (set $T_S:=(t_0-S,t_0+S)$)

Proof (idea)

We need a function
$$x(t)$$
 so that $x(t) = x_0 + \int F(s, x(s)) ds$.

Then: $x(t_0) = x_0 + \int F(s, x(s)) ds = x_0$ and

 $x'(t) = F(t, x(t))$ (fundamental theorem of calculus)

We can't use this as a definition, however, because it is recursive. Instead, consider the metric space $X := (C(I_S, \mathbb{R}^n), d)$ and the map $c : X \longrightarrow X$, $x \longmapsto c(x)(t) := x_0 + \int F(s,x(s)) ds$.

We are looking for a fixed point of the map c. Luckily, under some assumptions on F, the map c is a contraction:

$$d\left(c(x_1),c(x_2)\right) = \sup_{t \in I_S} \left\|c(x_1)(t)-c(x_2)(t)\right\|$$

$$= \left\|\int_{t} F(s,x_1(s)) - F(s,x_2(s)) ds\right\|$$
where assumption:
$$\leq \int_{scations} \|F(s,x_1(s)) - F(s,x_2(s))\| ds$$

reasonable assumption:
if locations are
close them vectors
are close

$$\leq \delta \cdot L \cdot d(x_1, x_2)$$
 $\leq \delta \cdot L \cdot d(x_1, x_2)$
 $\leq \delta \cdot L \cdot d(x_1, x_2)$

So by Barach's theorem there is a fixed point.