类型	缓存什么	被缓存在何处	延迟 (周期数)	由谁管理
CPU寄存器	4节字或8字节字	芯片上的CPU寄存器	0	编译器
TLB	地址翻译	芯片上的TLB	0	硬件MMU
L1高速缓存	64字节块	芯片上的Ll高速缓存	4	硬件
L2高速缓存	64字节块	芯片上的L2高速缓存	10	硬件
L3高速缓存	64字节块	芯片上的L3高速缓存	50	硬件
虚拟内存	4KB页	主存	200	硬件 + OS
缓冲区缓存	部分文件	主存	200	OS
磁盘缓存	磁盘扇区	磁盘控制器	100 000	控制器固件
网络缓存	部分文件	本地磁盘	10 000 000	NFS客户
浏览器缓存	Web页	本地磁盘	10 000 000	Web浏览器
Web缓存	Web页	远程服务器磁盘	1 000 000 000	Web代理服务器

图 6-23 缓存在现代计算机系统中无处不在。TLB:翻译后备缓冲器(Translation Lookaside Buffer); MMU:内存管理单元(Memory Management Unit); OS:操作系统(Operating System); AFS:安德鲁文件系统(Andrew File System); NFS: 网络文件系统(Network File System)

6.4 高速缓存存储器

早期计算机系统的存储器层次结构只有三层: CPU 寄存器、DRAM 主存储器和磁盘存储。不过,由于 CPU 和主存之间逐渐增大的差距,系统设计者被迫在 CPU 寄存器文件和主存之间插入了一个小的 SRAM 高速缓存存储器,称为 L1 高速缓存(一级缓存),如图 6-24 所示。L1 高速缓存的访问速度几乎和寄存器一样快,典型地是大约 4 个时钟周期。

图 6-24 高速缓存存储器的典型总线结构

随着 CPU 和主存之间的性能差距不断增大,系统设计者在 L1 高速缓存和主存之间又插入了一个更大的高速缓存,称为 L2 高速缓存,可以在大约 10 个时钟周期内访问到它。有些现代系统还包括有一个更大的高速缓存,称为 L3 高速缓存,在存储器层次结构中,它位于 L2 高速缓存和主存之间,可以在大约 50 个周期内访问到它。虽然安排上有相当多的变化,但是通用原则是一样的。对于下一节中的讨论,我们会假设一个简单的存储器层次结构,CPU 和主存之间只有一个 L1 高速缓存。

6.4.1 通用的高速缓存存储器组织结构

考虑一个计算机系统,其中每个存储器地址有m位,形成 $M=2^m$ 个不同的地址。如图6-25a所示,这样一个机器的高速缓存被组织成一个有 $S=2^s$ 个高速缓存组(cache set)的