Polynomial Interpolation: Exploring Stability and Accuracy

The Importance of Chebyshev nodes

Olivia Gette 12/03/2024

The Problem

What is Polynomial Interpolation?

- Finds a smooth polynomial that passes through a set of points
- Commonly used to estimate unknown values or create smooth curves from data
- Using evenly spaced points can make interpolation unstable and lead to oscillations (Runge phenomenon)

Mathematical Background

Different ways to Interpolate

- Vandermonde Method
 - Constructs a system of linear equations to find polynomial coefficients
 - Can become unstable with too many points
- Barycentric Method
 - Builds the interpolating polynomial more efficiently and avoids stability issues
 - Uses precomputed weights

The Role of Chebyshev Nodes

Why They Work

- Chebyshev nodes are clustered near the edges of the interval, reducing oscillations
- They make interpolation more accurate and stable by minimizing the Runge phenomenon

Results – Interpolation Comparisons

- Figure 1
 - Interpolation with Equispaced Nodes (Runge phenomenon appears at higher n)
- Figure 2
 - o Interpolation with

 Chebyshev Nodes (reduced oscillations and better accuracy)

Different n Values

Takeaway and Extensions

What I Learned and What's Next

- What I Learned:
 - Barycentric and Vandermonde methods can both accurately interpolate data when nodes are chosen well
 - Chebyshev nodes significantly improve stability and reduce errors

- Ideas for Extensions:
 - Interpolation in higher dimensions
 - Try with noisy data
 - Look into other methods to interpolate

References

Berrut, Jean-Paul. "Barycentric Lagrange Interpolation." *People.Maths.Ox.Ac. Uk*, 30 July 2004, people.maths.ox.ac.uk/trefethen/barycentric.pdf.

Fonte, Christophe, and Cedric Delattre. "Conditions for Interpolation of Stable Polynomials." *Conferences.Hu*, 9 July 2010, www.conferences.hu/mtns2010/proceedings/Papers/089_112.pdf.

"Interpolation Using the Vandermonde Matrix." *University of Wisconsin-Madison*, pages.cs.wisc.edu/~sifakis/courses/cs412s13/lecture_notes/CS412_12_Feb_2013.pdf.

"Lagrange Interpolating Polynomial." Wolfram MathWorld, 28 Oct. 2024, mathworld.wolfram.com/LagrangeInterpolatingPolynomial.html.