Computer Networks

Assignment 2

2020-21 Even Semester

Submitted By: Abhishek Kumar 19ucs241 Lab Batch: C4

1) What is the difference between HTTP and HTTPS?

HTTP stands for Hypertext Transfer Protocol.

HTTPS stands for Secured Hypertext Transfer Protocol.

The HTTP is transporting information over www without any security layer, and HTTPS is transporting information with the layer of security and encryption called an SSL Certificate.

In Computer Networking, HTTP works on Port 80 and HTTPS work on Port 443.

No.	▼ Time	Src IP	Source	Src Port Dst IP	Destination	Dst Port Protocol	Length Info
	111 1.407280662	10.0.2.15	linux.local	37089 8.8.4.4	dns.google	53 DNS	93 Standard query 0x8e5b A stor
i	113 1.495050098	8.8.4.4	dns.google	53 10.0.2.15	linux.local	37089 DNS	301 Standard query response 0x8e
+	117 1.573198302	10.0.2.15	linux.local	52114 172.217.160.240	storage.googleapis	80 HTTP	405 GET /update-delta/gcmjkmgdlg
•	143 1.852561460	10.0.2.15	linux.local	52114 172.217.160.240	storage.googleapis	80 HTTP	397 GET /update-delta/khaoiebndk
	554 15.723704917	10.0.2.15	linux.local	32984 216.58.200.165	nrt12s11-in-f165.1e	443 TLSv1.3	571 Client Hello
	589 15.873669903	10.0.2.15	linux.local	51361 8.8.4.4	dns.google	53 DNS	85 Standard query 0x1785 A ogs.
!	597 15.935612311	8.8.4.4	dns.google	53 10.0.2.15	linux.local	60696 DNS	135 Standard query response 0x2e
ļ	602 15.961332018	8.8.4.4	dns.google	53 10.0.2.15	linux.local	51361 DNS	122 Standard query response 0x17
l	608 15.985345028	10.0.2.15	linux.local	54204 172.217.166.238	www3.1.google.com	443 TLSv1.3	571 Client Hello
	676 16.540077894	8.8.4.4	dns.google	53 10.0.2.15	linux.local	36131 DNS	138 Standard query response 0x95
	694 16.657311217	10.0.2.15	linux.local	54974 8.8.4.4	dns.google	53 DNS	96 Standard query 0x36b6 A lh6.
L	702 16.743518454	8.8.4.4	dns.google	53 10.0.2.15	linux.local	54974 DNS	141 Standard query response 0x36

2) How is the differentiation between HTTP and HTTPS has impacted the result for the scenarios implemented?

In case of HTTP, we could easily see the email and password on POST request. While in the case of HTTPS, as data is encrypted so we can't get essential information, making it secure.

3) What is your plain text message HTTP POST message information for all the websites you have worked upon?

For http://techpanda.org

While the HTTPS POST messages can't be sniffed, thus we won't be able to sniff POST messages for Gmail and Facebook. (Screenshots attached below)

4) Could you sniff the credential information for all the websites? (Yes/No) Give reasons with substantiated result screenshot.

No, we couldn't sniff the credential information for Gmail and Facebook because they use HTTPS and get their data encrypted.

For mail.google.com

For www.facebook.com

5) Name all the protocols which you have encountered during the sniffing operation. Explain their functionalities.

i) DNS

DNS stands for Domain Name System. DNS servers translate a human-friendly name, like "example.com", to a machine-friendly IP address, like 192.168.2.1.

ii) TLS

TLS stands for Transport Layer Security. It encrypts the data sent over the Internet to ensure data security.

iii) TCP

TCP (Transmission Control **Protocol**) is a standard that defines how to establish and maintain a network conversation through which application programs can exchange data.

iv) IP

The Internet Protocol is the protocol which pretty much dictates how data(in form of datagrams) is transmitted to and from the internet.

v) UDP

Universal Datagram Protocol provides a connectionless service and without error recovery. It uses no acknowledgement, not resequence the messages and sets up no flow control.

vi) HTTP

HTTP: A client-server protocol which allows the fetching of resources and data exchange on the Web such as HTML.

(Screenshots attached below)

l		36987 DNS
52300 UDP	254 443 → 523	53 DNS
443 UDP	75 52300 → 4	53 DNS
80 HTTP	365 GET /edge	60696 DNS
49644 TCP	60 80 → 4964	51361 DNS
49644 TCP	1482 80 → 496 ⁴	53 DNS
80 TCP	54 49644 → 8	36131 DNS
49644 TCP	2910 80 → 4964	53 DNS
I		L

37994	TLSv1.2	93	Application
443	TLSv1.2	93	Application
443	TLSv1.2	78	Application
40126	TLSv1.2	78	Application
51402	TLSv1.2	85	Encrypted Al
51398	TLSv1.2	85	Encrypted Al
53676	TLSv1.2	106	Application
53676	TLSv1.2	85	Application
53676	TLSv1.2	93	Application
443	TLSv1.2	93	Application

99 Sta 85 Sta 91 Sta 135 Sta 122 Sta 91 Sta 138 Sta 96 Sta