

loT 환경에서 연합학습 적용 연구

SHI JINGYAO 202255072

사람 개인 인식 테스트

- R peak의 앞의 99개와 뒤의 201개의 신호점은 심장 박동 한 주기 라고 한다.
- 사용한 데이터베이스에는 10번 심장 박동 주기만 사람이 있기 때문에 모델 학습 테스트에서 이 데이터 양을 기준으로 학습한다.
 - 한 사람이 300*10 / 총 90*300*10 신호점으로 학습 진행
- 데이터 양이 너무 적어 최종 테스트 결과는 최대 70%만 나타난다.

류	정확도: 0.718518518 OPERATION		DATA	DIMENSI	ONS WI	EIGHTS(N)	WEIGHTS(8)
	Input		300					
		117				88	0.0%	
	relu			_		0	0.0%	
	MaxPooling1D	#####	150			U	0.06	
		117				1488	0.4%	
	relu	#####	150	16				
	MaxPooling1D					0	0.0%	
			75					
	Conv1D	\ /				12832	3.3%	
	relu	#####	75	32				
	AveragePooling1D	Y avg				0	0.0%	
		#####	38	32				
	Conv1D	\ /				55360	14.1%	
	relu	#####	38	64				
	Flatten	11111				0	0.0%	
		#####		2432				
	Dense	XXXXX				311424	79.3%	
	relu	#####		128				
	Dropout					0	0.0%	
		#####		128				
	Dense	XXXXX				11610	3.0%	
	softmax	#####		90				

Related Work Purpose

- 1. 라즈베리 파이를 이용한 연합 학습이 적절한지(라즈베리 파이 성능)
 - GPU가 없어 서버에 비해 성능이 부족한데 FL에 대처할 수 있을까?
- 2. Non-IID Data
 - 센서는 측정 시간에 따라 측정 대상이 다르므로 데이터 분포는 달라진다
 - 예:모든 사람의 학습 데이터 같은 양인 것과 달리 데이터가 많은 사람이 더 많은
 훈련 데이터를 사용

Paper

- 제목: End-to-End Evaluation of Federated Learning and Split Learning for Internet of Things(2020)
- FL과 SplitNN은 서로 다른 유형의 데이터 분포에서 비교
 - 학습 시간
 - 학습 결과
 - 통신 트래픽 (communication traffic)

Data Set

- 1. 심전도(ECG): MIT-BIH Arrhythmia[21]는 부정맥 진단을 위한 ECG 신호 분류 또는 탐지 모델에 널리 사용되는 데이터 세트
 - Class 5^⅓: N (normal beat), L (left bundle branch block), R (right bundle branch block), A (atrial premature contraction), and V (ventricular premature contraction)
- 2. Speech Command(SC): SC에는 여러 개의 one-second.wav 오디오 파일이 포함되어 있다.
 - Class 10개: 각 샘플에는 영어로 된 단어는 "0", "1", "2", "3", "4", "5", "6", "7", "8" 및 "9"의 10가지 범주를 사용

Dataset	# of labels	Input size	# of samples	Model Architecture	Total Parameters	Total Model Accuracy (Centralized data)
ECG	5	124	26,490	4conv + 2dense 1D CNN	68,901	97.78%
Speech Command (SC)	10	8,000	32,187	4conv + 2dense 1D CNN	522,586	85.29%

테스트 환경

- Raspberry Pi 장치(클라이언트)가 2개에서 5개일 때 FL과 SplitNN을 비교
- 테스트 한 모델은
 - 1D CNN layers(4개)
 - Dense layers(2개)

비교 결과

- 5개의 데이터 클래스 사용(각 클라이언트에 무작위로 할당)
 - 클라이언트가 다 5개 클래스일 때 결과 가장 좋다.
 - SplitNN은클래스 분배가 다를 경우 학습하지 않는다
 - FL은 Non-IID Data의 상황에 더 적합

Related Work Purpose

- 제목: Federated Learning on Non-IID Data Silos: An Experimental Study
 - 논문에서 여러 개의 Non-IID 데이터 상황에서의 연합 학습 프레임워크의 정확도를 비교하였다
 - 이 논문을 공부해서 라즈베리 파이 환경에서 작동하기에 적합한 것을 사용할 것 이다.

Quantity-based label imbalance

• Cifar-10, 10 parties, sample rate = 1, batch size = 64, learning rate = 0.01

Partition	Model	Round	Algorithm	Accuracy
noniid-#label2	simple-cnn	50	FedProx (mu=0.01)	50.7%
noniid-#label2	simple-cnn	50	FedAvg	49.8%
noniid-#label2	simple-cnn	50	SCAFFOLD	49.1%
noniid-#label2	simple-cnn	50	FedNova	46.5%

