Sistemas Embebidos

Tema 2: Arquitecturas de Sistemas Embebidos

copyright © equipo docente

Contenidos

- Introducción
- 2. Microcontroladores
- 3. Procesadores Digitales de Señal (DSP Digital Signal Processors)
- 4. Arquitectura FPGA
- 5. Arquitectura ARM
- 6. Arquitectura GPU

1. Introducción

- La arquitectura del sistema embebido define la estructura del sistema, así como la funcionalidad que ofrece.
- La estructura del sistema describe los componentes que lo forman y las interrelaciones entre los mismos.

1. Introducción

- Evolución de las capacidades de Procesamiento y de Comunicación de los Sistemas Embebidos
- Buscar un compromiso entre las prestaciones del dispositivo y sus requerimientos de funcionamiento: microcontroladores, procesadores.
- Procesadores para Sistemas Embebidos:
 - General Purpose Processor Procesadores de Propósito General (GPP) Implementación:
 - Normalmente en circuitos VLSI.
 - Procesador Especializado Application Specific Instruction Processor (ASIP) Hechos a medida para un uso particular o específico.
 - Implementación:
 - Application Specific Integrated Circuits (ASIC)
 - Field Programmable Gate Arrays (FPGA)

1. Introducción

- Procesadores de propósito general:
 - Microcontrolador
 - Microprocesador
- Procesadores de propósito específico:
 - Procesador Digital de Señal
- Arquitecturas
 - Arquitectura FPGA
 - Arquitectura ARM
 - Arquitectura GPU

- Circuito VLSI con un juego de instrucciones reducido, memoria limitada (RAM y ROM) y entradas/salidas.
- Se utilizan para la construcción de SE simples con funciones de control.
- Las prestaciones no son elevadas pero suficientes para las tareas encomendadas.
- Ventajas:
 - Bajo coste.
 - Juego de instrucciones reducido.
 - Eficiencia del código. Todas las instrucciones se ejecutan en un ciclo.

Aplicaciones:

Robótica: control de extremidades, soportes, etc.

Aplicaciones:

- Equipamiento informático: impresoras, ratones, etc.
- Domótica: climatizaciones, control centralizado de puertas, persianas, etc.
- Electrónica de consumo: electrodomésticos.

Tipos de microcontroladores:

- Ancho de palabra: 4, 8, 16 y 32 bits
- Periféricos incluidos: serie, A/D, D/A, timers, etc.
- Especialidad concreta: comunicaciones, señales, video, etc.

Arquitectura de microcontrolador de 16 bits

Fabricantes:

- Microchip: http://www.microchip.com/
- Atmel: http://www.atmel.com/
- Motorola
- Texas Intruments
- Intel

Ejemplos:

- PIC: Microchip
- AVR: Atmel
- ▶ 68HCIIxx: Motorola
- ▶ 8051,80251:Intel

2. Microprocesador para SE

- Circuito VLSI con un juego de instrucciones más amplio.
- Los microprocesadores para SE requieren otros componentes externos, como la memoria RAM y las interfaces de periféricos para realizar sus funciones.
- Requieren de un Sistema Operativo.
- Mantienen condiciones para su implantación como sistema embebido:
 - Reducido tamaño.
 - Bajo consumo.
- ▶ En muchos casos comparten los mismos fabricantes de semiconductores.

3. Procesadores Digitales de Señal (DSP)

- Procesador Digital de Señal (DSP Digital Signal Processor) consiste en un circuito integrado especializado en el procesamiento de señal digital.
- Contiene un repertorio de instrucciones diseñadas específicamente para la implementación eficiente de algoritmos de procesamiento de señales digitales.

Señal digital:

- Audio
- Vídeo
- Otras señales (RADAR, LIDAR, infrarrojo, etc.)
- Ejemplos:
 - Compresión/reproducción mp3.
 - Decodificador H.264/MPEG-4, H.265/HEVC, etc.

2. Arquitectura FPGA

- FPGA Field Programmable Gate Array
- Una FPGA es un dispositivo de programación hardware.
- **Estructura:**
 - Conjunto de entradas y salidas.
 - Estructura interna formada por Bloques Lógicos Configurables (CLB) y conexiones entre ellos.
 - Otros elementos lógicos y de memoria: registros, módulos de memoria, multiplexores, codificadores, etc.

Los bloques CLB están formados por *Look-Up Tables* (LUT).

IOB Input Output Block

CLB Configurable Logic Block

PSM Programable Switch Matrix

Connection lines Single, Long Double, Direct

3. Arquitectura ARM

- ARM: Advanced RISC Machine
- Procesador sencillo de propósito general
- Requerimientos de funcionamiento poco exigentes: bajo consumo, bajo coste y reducido tamaño.
- Procesador dominante en el mercado de la electrónica móvil de consumo : dispositivos móviles, consolas, reproductores digitales, etc.
- ▶ ARM Holdings (https://www.arm.com/) diseña la arquitectura.
- Fabricantes:
 - Intel
 - Apple
 - Atmel
 - Nvidia
 - Samsung
 - Etc.

3. Arquitectura ARM

- Fundación Raspberry Pi (https://www.raspberrypi.org/)
- Arduino (http://www.arduino.org/)
- Fabricantes de placas de computación de propósito general basadas en procesadores ARM.

4. Consideraciones de diseño

Sistema operativo embebido

- Necesario en sistemas complejos para crear abstracción del hardware.
- Permite una gestión eficiente de los recursos.
- Ejemplos:
 - Windows embedded
 - Windows Mobile.
 - Windows CE.
 - Linux embebido.
 - BlackBerry OS.
 - Google Android
 - Windows 10 IoT
 - Raspbian

5. RaspBerry Pi

- Computador de placa reducida de bajo costo (~50€).
- Desarrollado por la fundación Fundación Raspberry Pi

https://www.raspberrypi.org/

Especificaciones:

- Quad core Cortex-A72 (ARM v8) 64-bit SoC @ 1.5GHz
- IGB, 2GB or 4GB LPDDR4-3200 SDRAM
- 2.4 GHz and 5.0 GHz IEEE 802.1 lac wireless, Bluetooth 5.0, BLE
- Gigabit Ethernet
- Micro-SD card slot for loading operating system and data storage

