INTRODUCTION TO LIE ALGEBRAS - EXERCISES

6. For each $k=0,1,2,\ldots$ let \mathfrak{g}_k be the vector space of all $n\times n$ matrices $X=[X_{ij}]$ over the field $\mathbb F$ such that $X_{ij}=0$ unless $j-i\geqslant k$. Furthermore, let \mathfrak{t} be the vector space of all $n\times n$ matrices $X=[X_{ij}]$ over the field $\mathbb F$ such that $X_{ij}=0$ unless i=j. Note that $\mathfrak{g}_0=\mathfrak{t}\oplus\mathfrak{g}_1$ and that $\mathfrak{g}_0\supset\mathfrak{g}_1\supset\mathfrak{g}_2\supset\cdots$ by definition. Also note that $\mathfrak{g}_n=\mathfrak{g}_{n+1}=\cdots=0$. Prove that, for $k,l\geqslant 1$, $[\mathfrak{g}_k,\mathfrak{g}_l]=\mathfrak{g}_{k+l}$ for the matrix commutator

$$[X,Y] = XY - YX.$$

Deduce that $[\mathfrak{g}_0,\mathfrak{g}_k]=[\mathfrak{t},\mathfrak{g}_k]=\mathfrak{g}_k$ for $k\geqslant 1$ and that $[\mathfrak{g}_0,\mathfrak{g}_0]=[\mathfrak{t},\mathfrak{g}_0]=\mathfrak{g}_1$. Finally, show that each \mathfrak{g}_k is an ideal of \mathfrak{g}_0 and that \mathfrak{g}_0 is a Lie subalgebra of $\mathfrak{gl}_n\mathbb{F}$.

7. Let $D: \mathfrak{g} \to \mathfrak{g}$ be a derivation of an arbitrary Lie algebra \mathfrak{g} over the field \mathbb{C} . For every $n = 1, 2, \ldots$ the linear operator D can be applied n times, denote the resulting operator by D^n . Prove the following generalization of the *Leibniz rule*:

$$D^{n}[X,Y] = \sum_{k=0}^{n} \frac{n!}{k! (n-k)!} \cdot [D^{k}X, D^{n-k}Y].$$

8. Let X be a linear operator in an n-dimensional vector space V over the field \mathbb{C} . Suppose X has n distinct eigenvalues a_1, \ldots, a_n . Show that X is semisimple. Now only assume that X is semisimple with eigenvalues a_1, \ldots, a_n . Show that the operator ad $X: Y \mapsto [X,Y]$ in the n^2 -dimensional vector space $\mathfrak{gl}(V)$ is semisimple and has as eigenvalues the n^2 scalars $a_i - a_j$ where $i, j = 1, \ldots, n$.