Автономная навигация мобильных роботов

A. Matveev

 $almat\,1712@yahoo.com$

Department of Mathematics and Mechanics, Saint Petersburg state University,

Scientific and Technological University "Sirius"

Мар

An abstracted representation of the salient features of the environment in which the robot moves. Should identify

- the zones where the robot can move and
- the zones (obstacles) where the robot cannot do so

Decomposition of the environment

Map

An abstracted representation of the salient features of the environment in which the robot moves. Should identify

- the zones where the robot can move and
- the zones (obstacles) where the robot cannot do so

Decomposition of the environment

Localization

- Determine the targeted object in the map
- Find its own position in the map

Map

An abstracted representation of the salient features of the environment in which the robot moves. Should identify

- the zones where the robot can move and
- the zones (obstacles) where the robot cannot do so

Decomposition of the environment

Localization

- Determine the targeted object in the map
- Find its own position in the map

Some popular types of maps

Continuous geometric representations

Мар

An abstracted representation of the salient features of the environment in which the robot moves. Should identify

- the zones where the robot can move and
- the zones (obstacles) where the robot cannot do so

Decomposition of the environment

Localization

- Determine the targeted object in the map
- Find its own position in the map

- Continuous geometric representations
 - rectangular worlds
 - spherical worlds
 - polygonal worlds
 - semi-algebraic worlds

Мар

An abstracted representation of the salient features of the environment in which the robot moves. Should identify

- ullet the zones where the robot can move and
- the zones (obstacles) where the robot cannot do so

Decomposition of the environment

Localization

- Determine the targeted object in the map
- Find its own position in the map

- Continuous geometric representations
 - rectangular worlds
 - spherical worlds
 - polygonal worlds
 - semi-algebraic worlds

Мар

An abstracted representation of the salient features of the environment in which the robot moves. Should identify

- the zones where the robot can move and
- the zones (obstacles) where the robot cannot do so

Decomposition of the environment

Localization

- Determine the targeted object in the map
- Find its own position in the map

- Continuous geometric representations
 - rectangular worlds
 - spherical worlds
 - polygonal worlds
 - semi-algebraic worlds

Мар

An abstracted representation of the salient features of the environment in which the robot moves. Should identify

- the zones where the robot can move and
- the zones (obstacles) where the robot cannot do so

Decomposition of the environment

Localization

- Determine the targeted object in the map
- Find its own position in the map

- Continuous geometric representations
 - rectangular worlds
 - spherical worlds
 - polygonal worlds
 - semi-algebraic worlds

Мар

An abstracted representation of the salient features of the environment in which the robot moves. Should identify

- the zones where the robot can move and
- the zones (obstacles) where the robot cannot do so

Decomposition of the environment

Localization

- Determine the targeted object in the map
- Find its own position in the map

- Continuous geometric representations
 - rectangular worlds
 - spherical worlds
 - polygonal worlds
 - semi-algebraic worlds

Мар

An abstracted representation of the salient features of the environment in which the robot moves. Should identify

- the zones where the robot can move and
- the zones (obstacles) where the robot cannot do so

Decomposition of the environment

Localization

- Determine the targeted object in the map
- Find its own position in the map

- Continuous geometric representations
 - rectangular worlds
 - spherical worlds
 - polygonal worlds
 - semi-algebraic worlds

Map

An abstracted representation of the salient features of the environment in which the robot moves. Should identify

- the zones where the robot can move and
- the zones (obstacles) where the robot cannot do so

Decomposition of the environment

Localization

- Determine the targeted object in the map
- Find its own position in the map

- Continuous geometric representations
- Topological (logical) representations

Мар

An abstracted representation of the salient features of the environment in which the robot moves. Should identify

- the zones where the robot can move and
- the zones (obstacles) where the robot cannot do so

Decomposition of the environment

Localization

- Determine the targeted object in the map
- Find its own position in the map

- Continuous geometric representations
- ullet Topological (logical) representations
 - Exact occupancy grid

Мар

An abstracted representation of the salient features of the environment in which the robot moves. Should identify

- the zones where the robot can move and
- the zones (obstacles) where the robot cannot do so

Decomposition of the environment

Localization

- Determine the targeted object in the map
- Find its own position in the map

- Continuous geometric representations
- Topological (logical) representations
 - Exact occupancy grid

Мар

An abstracted representation of the salient features of the environment in which the robot moves. Should identify

- the zones where the robot can move and
- the zones (obstacles) where the robot cannot do so

Decomposition of the environment

Localization

- Determine the targeted object in the map
- Find its own position in the map

- Continuous geometric representations
- Topological (logical) representations
 - Exact occupancy grid

Мар

An abstracted representation of the salient features of the environment in which the robot moves. Should identify

- the zones where the robot can move and
- the zones (obstacles) where the robot cannot do so

Decomposition of the environment

Localization

- Determine the targeted object in the map
- Find its own position in the map

- Continuous geometric representations
- Topological (logical) representations
 - Exact occupancy grid

occupancy grid representation

Мар

An abstracted representation of the salient features of the environment in which the robot moves. Should identify

- the zones where the robot can move and
- the zones (obstacles) where the robot cannot do so

Decomposition of the environment

Localization

- Determine the targeted object in the map
- Find its own position in the map

- Continuous geometric representations
- Topological (logical) representations
 - Exact occupancy grid

occupancy grid representation

Мар

An abstracted representation of the salient features of the environment in which the robot moves. Should identify

- the zones where the robot can move and
- the zones (obstacles) where the robot cannot do so

Decomposition of the environment

Localization

- Determine the targeted object in the map
- Find its own position in the map

Some popular types of maps

- Continuous geometric representations
- Topological (logical) representations
 - Exact occupancy grid

Nodes ∼ free cells;

two nodes are linked ~ the robot can immediately move from any of them to the other, and "knows" how Target point ~ target node

Path planning \sim finding a path on the graph

Sequence of way-points ("way-cells")

occupancy grid representation

Мар

An abstracted representation of the salient features of the environment in which the robot moves. Should identify

- the zones where the robot can move and
- the zones (obstacles) where the robot cannot do so

Decomposition of the environment

- Determine the targeted object in the map
- Find its own position in the map

Some popular types of maps

- Continuous geometric representations
- Topological (logical) representations
 - Exact occupancy grid
 - Exact cell decomposition

Nodes ∼ free cells:

two nodes are linked ~ the robot can immediately move from any of them to the other. and "knows" how Target point ~ target node

Path planning ~ finding a path on the graph

Sequence of way-points ("waycells")

occupancy grid representation

Мар

An abstracted representation of the salient features of the environment in which the robot moves. Should identify

- the zones where the robot can move and
- the zones (obstacles) where the robot cannot do so

Decomposition of the environment

Localization

- Determine the targeted object in the map
- Find its own position in the map

Some popular types of maps

- Continuous geometric representations
- Topological (logical) representations
 - Exact occupancy grid
 - Exact cell decomposition

cell decomposition

Nodes ~ free cells; two nodes are linked ~ the robot can immediately move from any of them to the other, and "knows" how Target point ~ target node Path planning ~ finding a path on the graph Sequence of way-points ("way-

occupancy grid representation

cells")

Мар

An abstracted representation of the salient features of the environment in which the robot moves. Should identify

- the zones where the robot can move and
- the zones (obstacles) where the robot cannot do so

Decomposition of the environment

Localization

- Determine the targeted object in the map
- Find its own position in the map

Some popular types of maps

- Continuous geometric representations
- Topological (logical) representations
 - Exact occupancy grid
 - Exact cell decomposition

cell decomposition

34 workplaces 8 toilet cabins

cell decomposition

Nodes ~ free cells; two nodes are linked ~ the robot can immediately move from any of them to the other.

and "knows" how

Target point ~ target node Path planning ~ finding a path

on the graph

Sequence of way-points ("way-cells")

occupancy grid representation

Мар

An abstracted representation of the salient features of the environment in which the robot moves. Should identify

- the zones where the robot can move and
- the zones (obstacles) where the robot cannot do so

Decomposition of the environment

Localization

- Determine the targeted object in the map
- Find its own position in the map

Some popular types of maps

- Continuous geometric representations
- Topological (logical) representations
 - Exact occupancy grid
 - Exact cell decomposition
 - Sampling-based representation

cell decomposition

34 workplaces 8 toilet cabins

cell decomposition

Nodes ∼ free cells;

two nodes are linked ~ the robot can immediately move from any of them to the other, and "knows" how

Target point ~ target node Path planning ~ finding a path

on the graph

Sequence of way-points ("way-cells")

occupancy grid representation

Мар

An abstracted representation of the salient features of the environment in which the robot moves. Should identify

- the zones where the robot can move and
- the zones (obstacles) where the robot cannot do so

Decomposition of the environment

Localization

- Determine the targeted object in the map
- Find its own position in the map

Some popular types of maps

- Continuous geometric representations
- Topological (logical) representations
 - Exact occupancy grid
 - Exact cell decomposition
 - Sampling-based representation

Nodes ~ free cells; two nodes are linked ~ the robot can immediately move from any of them to the other, and "knows" how Target point ~ target node Path planning ~ finding a path on the graph Sequence of way-points ("waycells")

Мар

An abstracted representation of the salient features of the environment in which the robot moves. Should identify

- the zones where the robot can move and
- the zones (obstacles) where the robot cannot do so

Decomposition of the environment

Localization

- Determine the targeted object in the map
- Find its own position in the map

Some popular types of maps

- Continuous geometric representations
- Topological (logical) representations
 - Exact occupancy grid
 - Exact cell decomposition
 - Sampling-based representation

Nodes ~ sample points; two nodes are linked ~ the robot can immediately move from any of them to the other, and "knows" how Target point ~ target node Path planning ~ finding a path on the graph Sequence of way-points ("waycells")

Мар

An abstracted representation of the salient features of the environment in which the robot moves. Should identify

- the zones where the robot can move and
- the zones (obstacles) where the robot cannot do so

Decomposition of the environment

Localization

- Determine the targeted object in the map
- Find its own position in the map

Some popular types of maps

- Continuous geometric representations
- Topological (logical) representations
 - Exact occupancy grid
 - Exact cell decomposition
 - Sampling-based representation

Nodes \sim sample points; an edge goes from point p_1 to $p_2 \sim$ the robot can immediately move from any of them to the other, and "knows" how Target point \sim target node Path planning \sim finding a path on the graph Sequence of way-points ("way-cells")

Мар

An abstracted representation of the salient features of the environment in which the robot moves. Should identify

- the zones where the robot can move and
- the zones (obstacles) where the robot cannot do so

Decomposition of the environment

Localization

- Determine the targeted object in the map
- Find its own position in the map

Some popular types of maps

- Continuous geometric representations
- Topological (logical) representations
 - Exact occupancy grid
 - Exact cell decomposition
 - Sampling-based representation

Nodes \sim sample points; an edge goes from point p_1 to $p_2 \sim$ the robot can safely move from from p_1 to p_2 , and "knows" how Target point \sim target node Path planning \sim finding a path on the graph Sequence of way-points

Definition

Let X be a metric space with the distance function $d(\cdot, \cdot)$ and let $\{x_1, \ldots, x_n\} \subset X$ be a finite set of points. The Voronoi cell with the center x_i is defined to be $C_i := \{x \in X : d(x, x_i) < d(x, x_i) \ \forall i \neq i\}$.

Definition

Let X be a metric space with the distance function $d(\cdot, \cdot)$ and let $\{x_1, \ldots, x_n\} \subset X$ be a finite set of points. The Voronoi cell with the center x_i is defined to be $C_i := \{x \in X : d(x, x_i) < d(x, x_i) \ \forall j \neq i\}.$

Basic properties

- $\bullet \ C_i \cap C_j = \emptyset \ \forall i \neq j$
- $x \notin \bigcup_{i=1}^{n} C_{i} \Rightarrow x \in H_{\cup} := \bigcup_{i \neq j} H_{i,j},$

where

$$H_{i,j} := \{x : d(x,x_i) = d(x,x_j)\}$$

Definition

Let X be a metric space with the distance function $d(\cdot, \cdot)$ and let $\{x_1, \dots, x_n\} \subset X$ be a finite set of points. The Voronoi cell with the center x_i is defined to be $C_i := \{x \in X : d(x, x_i) < d(x, x_j) \ \forall j \neq i\}.$

Basic properties

- $C_i \cap C_j = \emptyset \ \forall i \neq j$
- $\bullet \ \ x \not\in \bigcup_{i=1}^n C_i \Rightarrow x \in H_{\cup} := \bigcup_{i\neq j} H_{i,j},$

where

$$H_{i,j} := \{x : d(x,x_i) = d(x,x_j)\}$$

Definition

Let X be a metric space with the distance function $d(\cdot, \cdot)$ and let $\{x_1, \ldots, x_n\} \subset X$ be a finite set of points. The Voronoi cell with the center x_i is defined to be $C_i := \{x \in X : d(x, x_i) < d(x, x_j) \ \forall j \neq i\}.$

Basic properties

- $C_i \cap C_j = \emptyset \ \forall i \neq j$
- $\bullet \quad x \not\in \bigcup_{i=1}^n C_i \Rightarrow x \in H_{\cup} := \bigcup_{i \neq j} H_{i,j},$

where

$$H_{i,j} := \{x : d(x,x_i) = d(x,x_j)\}$$

Definition

Let X be a metric space with the distance function $d(\cdot, \cdot)$ and let $\{x_1, \ldots, x_n\} \subset X$ be a finite set of points. The Voronoi cell with the center x_i is defined to be $C_i := \{x \in X : d(x, x_i) < d(x, x_i) \ \forall j \neq i\}.$

Basic properties

- $C_i \cap C_i = \emptyset \ \forall i \neq j$
- $x \notin \bigcup_{i=1}^{n} C_{i} \Rightarrow x \in H_{\cup} := \bigcup_{i \neq j} H_{i,j},$

where

$$H_{i,i} := \{x : d(x,x_i) = d(x,x_i)\}$$

Definition

Let X be a metric space with the distance function $d(\cdot,\cdot)$ and let $\{x_1,\ldots,x_n\}\subset X$ be a finite set of points. The Voronoi cell with the center x_i is defined to be $C_i:=\{x\in X:d(x,x_i)< d(x,x_i)\ \forall j\neq i\}.$

Basic properties

- $C_i \cap C_i = \emptyset \ \forall i \neq j$
- $\bullet \quad x \not\in \bigcup_{i=1}^n C_i \Rightarrow x \in H_{\cup} := \bigcup_{i \neq j} H_{i,j},$

where

$$H_{i,j} := \{x : d(x,x_i) = d(x,x_j)\}$$

Definition

Let X be a metric space with the distance function $d(\cdot, \cdot)$ and let $\{x_1, \ldots, x_n\} \subset X$ be a finite set of points. The Voronoi cell with the center x_i is defined to be $C_i := \{x \in X : d(x, x_i) < d(x, x_i) \ \forall j \neq i\}.$

Basic properties

- $C_i \cap C_i = \emptyset \ \forall i \neq j$
- $\bullet \quad x \not\in \bigcup_{i=1}^n C_i \Rightarrow x \in H_{\cup} := \bigcup_{i\neq j} H_{i,j},$

where

$$H_{i,j} := \{x : d(x,x_i) = d(x,x_j)\}$$

Планирование: подходы, основанные на логическом представлении

Walk over nodes: terminology

• Visited/unvisited node

- Visited/unvisited node
- Visited dead/alive node

- Visited/unvisited node
- Visited dead/alive node
- Priority queue Q of the alive nodes, the dead ones are excluded

- Visited/unvisited node
- Visited dead/alive node
- Priority queue Q of the alive nodes, the dead ones are excluded
- Prioritization method \sim to sort Q

- Visited/unvisited node
- Visited dead/alive node
- Priority queue Q of the alive nodes, the dead ones are excluded
- Prioritization method \sim to sort Q
- Direct walk (search) starts from the source and aims at the destination

- Visited/unvisited node
- Visited dead/alive node
- Priority queue Q of the alive nodes, the dead ones are excluded
- Prioritization method \sim to sort Q
- Direct walk (search) starts from the source and aims at the destination
- Reference ~ indication to a parent

- Visited/unvisited node
- Visited dead/alive node
- Priority queue Q of the alive nodes, the dead ones are excluded
- Prioritization method \sim to sort Q
- Direct walk (search) starts from the source and aims at the destination
- ullet Reference \sim indication to a parent
- Mark "dead"

- Visited/unvisited node
- Visited dead/alive node
- Priority queue Q of the alive nodes, the dead ones are excluded
- Prioritization method \sim to sort Q
- Direct walk (search) starts from the source and aims at the destination
- Reference ~ indication to a parent
- Mark "dead"
- Use the references to find the path (finalizing backward walk)

Walk over nodes: terminology

- Visited/unvisited node
- Visited dead/alive node
- Priority queue Q of the alive nodes, the dead ones are excluded
- Prioritization method \sim to sort Q
- Direct walk (search) starts from the source and aims at the destination
- Reference ~ indication to a parent
- Mark "dead"
- Use the references to find the path (finalizing backward walk)

Walk over nodes: terminology

- Visited/unvisited node
- Visited dead/alive node
- Priority queue Q of the alive nodes, the dead ones are excluded
- Prioritization method \sim to sort Q
- Direct walk (search) starts from the source and aims at the destination
- ullet Reference \sim indication to a parent
- Mark "dead"
- Use the references to find the path (finalizing backward walk)

Breadth first (grass-fire front) method

• Start with the source, put in in Q

Walk over nodes: terminology

- Visited/unvisited node
- Visited dead/alive node
- Priority queue Q of the alive nodes, the dead ones are excluded
- Prioritization method \sim to sort Q
- Direct walk (search) starts from the source and aims at the destination
- ullet Reference \sim indication to a parent
- Mark "dead"
- Use the references to find the path (finalizing backward walk)

- Start with the source, put in in Q
- Sort Q according to FIFO (first-in-first-out) policy

Walk over nodes: terminology

- Visited/unvisited node
- Visited dead/alive node
- Priority queue Q of the alive nodes, the dead ones are excluded
- Prioritization method \sim to sort Q
- Direct walk (search) starts from the source and aims at the destination
- Reference ~ indication to a parent
- Mark "dead"
- Use the references to find the path (finalizing backward walk)

- Start with the source, put in in Q
- Sort Q according to FIFO (first-in-first-out) policy
- Test only unvisited neighbors

Walk over nodes: terminology

- Visited/unvisited node
- Visited dead/alive node
- Priority queue Q of the alive nodes, the dead ones are excluded
- Prioritization method \sim to sort Q
- Direct walk (search) starts from the source and aims at the destination
- ullet Reference \sim indication to a parent
- Mark "dead"
- Use the references to find the path (finalizing backward walk)

- Start with the source, put in in Q
- Sort Q according to FIFO (first-in-first-out) policy
- Test only unvisited neighbors
- When arriving at the destination, terminate processing nodes

Walk over nodes: terminology

- Visited/unvisited node
- Visited dead/alive node
- Priority queue Q of the alive nodes, the dead ones are excluded
- Prioritization method \sim to sort Q
- Direct walk (search) starts from the source and aims at the destination
- Reference ~ indication to a parent
- Mark "dead"
- Use the references to find the path (finalizing backward walk)

- Start with the source, put in in Q
- Sort Q according to FIFO (first-in-first-out) policy
- Test only unvisited neighbors
- When arriving at the destination, terminate processing nodes
- Use the references to build a path

Walk over nodes: terminology

- Visited/unvisited node
- Visited dead/alive node
- Priority queue Q of the alive nodes, the dead ones are excluded
- Prioritization method \sim to sort Q
- Direct walk (search) starts from the source and aims at the destination
- Reference ~ indication to a parent
- Mark "dead"
- Use the references to find the path (finalizing backward walk)

Breadth first (grass-fire front) method

- Start with the source, put in in Q
- Sort Q according to FIFO (first-in-first-out) policy
- Test only unvisited neighbors
- When arriving at the destination, terminate processing nodes
- Use the references to build a path

Walk over nodes: terminology

- Visited/unvisited node
- Visited dead/alive node
- Priority queue Q of the alive nodes, the dead ones are excluded
- Prioritization method \sim to sort Q
- Direct walk (search) starts from the source and aims at the destination
- Reference ~ indication to a parent
- Mark "dead"
- Use the references to find the path (finalizing backward walk)

Breadth first (grass-fire front) method

- Start with the source, put in in Q
- Sort Q according to FIFO (first-in-first-out) policy
- Test only unvisited neighbors
- When arriving at the destination, terminate processing nodes
- Use the references to build a path

Properties

• Degree of the node := the length of the shortest path from the source

Walk over nodes: terminology

- Visited/unvisited node
- Visited dead/alive node
- Priority queue Q of the alive nodes, the dead ones are excluded
- Prioritization method \sim to sort Q
- Direct walk (search) starts from the source and aims at the destination
- ullet Reference \sim indication to a parent
- Mark "dead"
- Use the references to find the path (finalizing backward walk)

Breadth first (grass-fire front) method

- Start with the source, put in in Q
- Sort Q according to FIFO (first-in-first-out) policy
- Test only unvisited neighbors
- When arriving at the destination, terminate processing nodes
- Use the references to build a path

- Degree of the node := the length of the shortest path from the source
- for any step of the search stage, there exists $k \ge 0$ such that Q contains only nodes of degree k or k+1 and all nodes of degree < k are dead

Walk over nodes: terminology

- Visited/unvisited node
- Visited dead/alive node
- Priority queue Q of the alive nodes, the dead ones are excluded
- Prioritization method \sim to sort Q
- Direct walk (search) starts from the source and aims at the destination
- ullet Reference \sim indication to a parent
- Mark "dead"
- Use the references to find the path (finalizing backward walk)

Breadth first (grass-fire front) method

- Start with the source, put in in Q
- Sort Q according to FIFO (first-in-first-out) policy
- Test only unvisited neighbors
- When arriving at the destination, terminate processing nodes
- Use the references to build a path

- Degree of the node := the length of the shortest path from the source
- of for any step of the search stage, there exists $k \ge 0$ such that Q contains only nodes of degree k or k+1 and all nodes of degree < k are dead
- References highlight a shortest path

Walk over nodes: terminology

- Visited/unvisited node
- Visited dead/alive node
- Priority queue Q of the alive nodes, the dead ones are excluded
- Prioritization method \sim to sort Q
- Direct walk (search) starts from the source and aims at the destination
- ullet Reference \sim indication to a parent
- Mark "dead"
- Use the references to find the path (finalizing backward walk)

Breadth first (grass-fire front) method

- Start with the source, put in in Q
- \bullet Sort Q according to FIFO (first-in-first-out) policy
- Test only unvisited neighbors
- When arriving at the destination, terminate processing nodes
- Use the references to build a path

- Degree of the node := the length of the shortest path from the source
- for any step of the search stage, there exists $k \ge 0$ such that Q contains only nodes of degree k or k+1 and all nodes of degree < k are dead
- References highlight a shortest path
- O(|V| + |E|)

Walk over nodes: terminology

- Visited/unvisited node
- Visited dead/alive node
- Priority queue Q of the alive nodes, the dead ones are excluded
- Prioritization method \sim to sort Q
- Direct walk (search) starts from the source and aims at the destination
- Reference ~ indication to a parent
- Mark "dead"
- Use the references to find the path (finalizing backward walk)

Depth first (aggressive deepening) method

- Start with the source, put in in Q
- Sort **Q** according to FIFO (first-in-first-out) policy
- Test only unvisited neighbors
- When arriving at the destination, terminate processing nodes
- Use the references to build a path

- Degree of the node := the length of the shortest path from the source
- for any step of the search stage, there exists $k \ge 0$ such that Q contains only nodes of degree k or k+1 and all nodes of degree < k are dead
- References highlight a shortest path
- O(|V| + |E|)

Walk over nodes: terminology

- Visited/unvisited node
- Visited dead/alive node
- Priority queue Q of the alive nodes, the dead ones are excluded
- Prioritization method \sim to sort Q
- Direct walk (search) starts from the source and aims at the destination
- ullet Reference \sim indication to a parent
- Mark "dead"
- Use the references to find the path (finalizing backward walk)

Depth first (aggressive deepening) method

- Start with the source, put in in Q
- ullet Sort Q according to LIFO (last-in-first-out) policy
- Test only unvisited neighbors
- When arriving at the destination, terminate processing nodes
- Use the references to build a path

- Degree of the node := the length of the shortest path from the source
- of for any step of the search stage, there exists $k \ge 0$ such that Q contains only nodes of degree k or k+1 and all nodes of degree < k are dead
- References highlight a shortest path
- O(|V| + |E|)

Walk over nodes: terminology

- Visited/unvisited node
- Visited dead/alive node
- Priority queue Q of the alive nodes, the dead ones are excluded
- Prioritization method \sim to sort Q
- Direct walk (search) starts from the source and aims at the destination
- ullet Reference \sim indication to a parent
- Mark "dead"
- Use the references to find the path (finalizing backward walk)

Depth first (aggressive deepening) method

- Start with the source, put in in Q
- ullet Sort Q according to LIFO (last-in-first-out) policy
- Test only unvisited neighbors
- When arriving at the destination, terminate processing nodes
- Use the references to build a path

- Degree of the node := the length of the shortest path from the source
- Finds the destination
- References highlight a path
- O(|V| + |E|)

Dijkstra's algorithm

• At any step, forms a partition of the nodes into V (visited) and U (unvisited)

- At any step, forms a partition of the nodes into V (visited) and U (unvisited)
- Iteratively re-calculates labels $L(n) \geq 0$ of nodes n

- ullet At any step, forms a partition of the nodes into V (visited) and U (unvisited)
- Iteratively re-calculates labels L(n) > 0 of nodes n
- Initially, $V := \emptyset$, U contains all nodes, L(s) := 0, $L(n) := \infty \ \forall n \neq s$

- At any step, forms a partition of the nodes into V (visited) and U (unvisited)
- Iteratively re-calculates labels $L(n) \ge 0$ of nodes n
- Initially, $V := \emptyset$, U contains all nodes, L(s) := 0, $L(n) := \infty \ \forall n \neq s$
- At any step, do the following

- At any step, forms a partition of the nodes into V (visited) and U (unvisited)
- Iteratively re-calculates labels $L(n) \geq 0$ of nodes n
- Initially, $V := \emptyset$, U contains all nodes, L(s) := 0, $L(n) := \infty \ \forall n \neq s$
- At any step, do the following
 - find a minimizer of L(n) over $n \in U$

- At any step, forms a partition of the nodes into V (visited) and U (unvisited)
- Iteratively re-calculates labels $L(n) \geq 0$ of nodes n
- Initially, $V := \emptyset$, U contains all nodes, L(s) := 0, $L(n) := \infty \ \forall n \neq s$
- At any step, do the following
 - find a minimizer of L(n) over $n \in U$
 - run through the set of all unvisited nodes n' such that $n \to n'$ is an edge (the set of nearest unvisited descendants)

 $W(n \to n') > 0$ weight of the edge

- At any step, forms a partition of the nodes into V (visited) and U (unvisited)
- Iteratively re-calculates labels $L(n) \geq 0$ of nodes n
- Initially, $V := \emptyset$, U contains all nodes, L(s) := 0, $L(n) := \infty \ \forall n \neq s$
- At any step, do the following
 - find a minimizer of L(n) over $n \in U$
 - run through the set of all unvisited nodes n' such that $n \to n'$ is an edge (the set of nearest unvisited descendants)
 - for any such n', put $L(n') := \min \{L(n'); L(n) + W(n \rightarrow n')\}$

 $W(n \to n') > 0$ weight of the edge

- At any step, forms a partition of the nodes into V (visited) and U (unvisited)
- Iteratively re-calculates labels $L(n) \geq 0$ of nodes n
- Initially, $V := \emptyset$, U contains all nodes, L(s) := 0, $L(n) := \infty \ \forall n \neq s$
- At any step, do the following
 - find a minimizer of L(n) over $n \in U$
 - run through the set of all unvisited nodes n' such that $n \to n'$ is an edge (the set of nearest unvisited descendants)
 - for any such n', put $L(n') := \min \{L(n'); L(n) + W(n \rightarrow n')\}$
 - when the run is completed, remove n from U to V

 $W(n \to n') > 0$ weight of the edge

- At any step, forms a partition of the nodes into V (visited) and U (unvisited)
- Iteratively re-calculates labels $L(n) \geq 0$ of nodes n
- Initially, $V := \emptyset$, U contains all nodes, L(s) := 0, $L(n) := \infty \ \forall n \neq s$
- At any step, do the following
 - find a minimizer of L(n) over $n \in U$
 - run through the set of all unvisited nodes n' such that $n \to n'$ is an edge (the set of nearest unvisited descendants)
 - for any such n', put $L(n') := \min \{L(n'); L(n) + W(n \rightarrow n')\}$
 - when the run is completed, remove n from U to V
- terminate the algorithm whenever either $U = \emptyset$ or $L(n) = \infty \ \forall n \in U$

 $W(n \to n') > 0$ weight of the edge

Dijkstra's algorithm

- At any step, forms a partition of the nodes into V (visited) and U (unvisited)
- Iteratively re-calculates labels $L(n) \geq 0$ of nodes n
- Initially, $V := \emptyset$, U contains all nodes, L(s) := 0, $L(n) := \infty \ \forall n \neq s$
- At any step, do the following
 - find a minimizer of L(n) over $n \in U$
 - run through the set of all unvisited nodes n' such that $n \to n'$ is an edge (the set of nearest unvisited descendants)
 - for any such n', put $L(n') := \min \{L(n'); L(n) + W(n \rightarrow n')\}$
 - when the run is completed, remove n from U to V
- terminate the algorithm whenever either $U = \emptyset$ or $L(n) = \infty \ \forall n \in U$

 $W(n \to n') > 0$ weight of the edge

Lemma

At any step and for the node visited at this step, its label L(n) is the shortest length d(n) of the path from the source s to n. The final set U is the set of the nodes unreachable from s.

Dijkstra's algorithm

- At any step, forms a partition of the nodes into V (visited) and U (unvisited)
- Iteratively re-calculates labels $L(n) \geq 0$ of nodes n
- Initially, $V := \emptyset$, U contains all nodes, L(s) := 0, $L(n) := \infty \ \forall n \neq s$
- At any step, do the following
 - find a minimizer of L(n) over $n \in U$
 - run through the set of all unvisited nodes n' such that $n \to n'$ is an edge (the set of nearest unvisited descendants)
 - for any such n', put $L(n') := \min \{L(n'); L(n) + W(n \rightarrow n')\}$
 - when the run is completed, remove n from U to V
- terminate the algorithm whenever either $U = \emptyset$ or $L(n) = \infty \ \forall n \in U$

Proof

Lemma

At any step and for the node visited at this step, its label L(n) is the shortest length d(n) of the path from the source s to n. The final set U is the set of the nodes unreachable from s.

Dijkstra's algorithm

- At any step, forms a partition of the nodes into V (visited) and U (unvisited)
- Iteratively re-calculates labels $L(n) \geq 0$ of nodes n
- Initially, $V := \emptyset$, U contains all nodes, L(s) := 0, $L(n) := \infty \ \forall n \neq s$
- At any step, do the following
 - find a minimizer of L(n) over $n \in U$
 - run through the set of all unvisited nodes n' such that $n \to n'$ is an edge (the set of nearest unvisited descendants)
 - for any such n', put $L(n') := \min \{L(n'); L(n) + W(n \rightarrow n')\}$
 - when the run is completed, remove n from U to V
- terminate the algorithm whenever either $U = \emptyset$ or $L(n) = \infty \ \forall n \in U$

 $W(n \to n') > 0$ weight of the edge

Proof: Induction on the number N of visited nodes.

Lemma

Dijkstra's algorithm

- At any step, forms a partition of the nodes into V (visited) and U (unvisited)
- Iteratively re-calculates labels $L(n) \geq 0$ of nodes n
- Initially, $V := \emptyset$, U contains all nodes, L(s) := 0, $L(n) := \infty \ \forall n \neq s$
- At any step, do the following
 - find a minimizer of L(n) over $n \in U$
 - run through the set of all unvisited nodes n' such that $n \to n'$ is an edge (the set of nearest unvisited descendants)
 - for any such n', put $L(n') := \min \{L(n'); L(n) + W(n \rightarrow n')\}$
 - when the run is completed, remove n from U to V
- terminate the algorithm whenever either $U = \emptyset$ or $L(n) = \infty \ \forall n \in U$

 $W(n \to n') > 0$ weight of the edge

Proof: Induction on the number N of visited nodes. For N = 0 is trivial.

Lemma

Dijkstra's algorithm

- At any step, forms a partition of the nodes into V (visited) and U (unvisited)
- Iteratively re-calculates labels $L(n) \geq 0$ of nodes n
- Initially, $V := \emptyset$, U contains all nodes, L(s) := 0, $L(n) := \infty \ \forall n \neq s$
- At any step, do the following
 - find a minimizer of L(n) over $n \in U$
 - run through the set of all unvisited nodes n' such that $n \to n'$ is an edge (the set of nearest unvisited descendants)
 - for any such n', put $L(n') := \min \{L(n'); L(n) + W(n \rightarrow n')\}$
 - when the run is completed, remove n from U to V
- terminate the algorithm whenever either $U = \emptyset$ or $L(n) = \infty \ \forall n \in U$

 $W(n \to n') > 0$ weight of the edge

Proof: Induction on the number N of visited nodes. For N=0 is trivial. Let the claim be true for some N and one more node n_* is visited.

Lemma

Dijkstra's algorithm

- At any step, forms a partition of the nodes into V (visited) and U (unvisited)
- Iteratively re-calculates labels $L(n) \geq 0$ of nodes n
- Initially, $V := \emptyset$, U contains all nodes, L(s) := 0, $L(n) := \infty \ \forall n \neq s$
- At any step, do the following
 - find a minimizer of L(n) over $n \in U$
 - run through the set of all unvisited nodes n' such that $n \to n'$ is an edge (the set of nearest unvisited descendants)
 - for any such n', put $L(n') := \min \{L(n'); L(n) + W(n \rightarrow n')\}$
 - when the run is completed, remove n from U to V
- terminate the algorithm whenever either $U = \emptyset$ or $L(n) = \infty \ \forall n \in U$

 $W(n \to n') > 0$ weight of the edge

Proof: Induction on the number N of visited nodes. For N=0 is trivial. Let the claim be true for some N and one more node n_* is visited. Then $L(n_*) \geq d(n_*)$.

Lemma

Dijkstra's algorithm

- At any step, forms a partition of the nodes into V (visited) and U (unvisited)
- Iteratively re-calculates labels $L(n) \geq 0$ of nodes n
- Initially, $V := \emptyset$, U contains all nodes, L(s) := 0, $L(n) := \infty \ \forall n \neq s$
- At any step, do the following
 - find a minimizer of L(n) over $n \in U$
 - run through the set of all unvisited nodes n' such that $n \to n'$ is an edge (the set of nearest unvisited descendants)
 - for any such n', put $L(n') := \min \{L(n'); L(n) + W(n \rightarrow n')\}$
 - when the run is completed, remove n from U to V
- terminate the algorithm whenever either $U = \emptyset$ or $L(n) = \infty \ \forall n \in U$

 $W(n \to n') > 0$ weight of the edge

Proof: Induction on the number N of visited nodes. For N=0 is trivial. Let the claim be true for some N and one more node n_* is visited. Then $L(n_*) \geq d(n_*)$. Consider the shortest path from the source s to this node n_* .

Lemma

Dijkstra's algorithm

- At any step, forms a partition of the nodes into V (visited) and U (unvisited)
- Iteratively re-calculates labels $L(n) \geq 0$ of nodes n
- Initially, $V := \emptyset$, U contains all nodes, L(s) := 0, $L(n) := \infty \ \forall n \neq s$
- At any step, do the following
 - find a minimizer of L(n) over $n \in U$
 - run through the set of all unvisited nodes n' such that $n \to n'$ is an edge (the set of nearest unvisited descendants)
 - for any such n', put $L(n') := \min \{L(n'); L(n) + W(n \rightarrow n')\}$
 - when the run is completed, remove n from U to V
- terminate the algorithm whenever either $U = \emptyset$ or $L(n) = \infty \ \forall n \in U$

 $W(n \to n') > 0$ weight of the edge

Proof: Induction on the number N of visited nodes. For N=0 is trivial. Let the claim be true for some N and one more node n_* is visited. Then $L(n_*) \geq d(n_*)$. Consider the shortest path from the source s to this node n_* . Let n_u be the first unvisited node on this path.

Lemma

Dijkstra's algorithm

- At any step, forms a partition of the nodes into V (visited) and U (unvisited)
- Iteratively re-calculates labels $L(n) \geq 0$ of nodes n
- Initially, $V := \emptyset$, U contains all nodes, L(s) := 0, $L(n) := \infty \ \forall n \neq s$
- At any step, do the following
 - find a minimizer of L(n) over $n \in U$
 - run through the set of all unvisited nodes n' such that $n \to n'$ is an edge (the set of nearest unvisited descendants)
 - for any such n', put $L(n') := \min \{L(n'); L(n) + W(n \rightarrow n')\}$
 - when the run is completed, remove n from U to V
- terminate the algorithm whenever either $U = \emptyset$ or $L(n) = \infty \ \forall n \in U$

Lemma

At any step and for the node visited at this step, its label L(n) is the shortest length d(n) of the path from the source s to n. The final set U is the set of the nodes unreachable from s.

 $W(n \to n') > 0$ weight of the edge

Proof: Induction on the number N of visited nodes. For N=0 is trivial. Let the claim be true for some N and one more node n_* is visited. Then $L(n_*) \geq d(n_*)$. Consider the shortest path from the source s to this node n_* . Let n_U be the first unvisited node on this path. It is preceded by a visited node n_V .

Dijkstra's algorithm

- At any step, forms a partition of the nodes into V (visited) and U (unvisited)
- Iteratively re-calculates labels $L(n) \geq 0$ of nodes n
- Initially, $V := \emptyset$, U contains all nodes, L(s) := 0, $L(n) := \infty \ \forall n \neq s$
- At any step, do the following
 - find a minimizer of L(n) over $n \in U$
 - run through the set of all unvisited nodes n' such that $n \to n'$ is an edge (the set of nearest unvisited descendants)
 - for any such n', put $L(n') := \min \{L(n'); L(n) + W(n \rightarrow n')\}$
 - when the run is completed, remove n from U to V
- terminate the algorithm whenever either $U = \emptyset$ or $L(n) = \infty \ \forall n \in U$

Lemma

At any step and for the node visited at this step, its label L(n) is the shortest length d(n) of the path from the source s to n. The final set U is the set of the nodes unreachable from s.

 $W(n \to n') > 0$ weight of the edge

Proof: Induction on the number N of visited nodes. For N=0 is trivial. Let the claim be true for some N and one more node n_* is visited. Then $L(n_*) \geq d(n_*)$. Consider the shortest path from the source s to this node n_* . Let n_u be the first unvisited node on this path. It is preceded by a visited node n_u .

$$d(n_u) = d(n_v) + W(n_v \to n_u).$$

Dijkstra's algorithm

- At any step, forms a partition of the nodes into V (visited) and U (unvisited)
- Iteratively re-calculates labels $L(n) \geq 0$ of nodes n
- Initially, $V := \emptyset$, U contains all nodes, L(s) := 0, $L(n) := \infty \ \forall n \neq s$
- At any step, do the following
 - find a minimizer of L(n) over $n \in U$
 - run through the set of all unvisited nodes n' such that $n \to n'$ is an edge (the set of nearest unvisited descendants)
 - for any such n', put $L(n') := \min \{L(n'); L(n) + W(n \to n')\}$
 - when the run is completed, remove n from U to V
- terminate the algorithm whenever either $U = \emptyset$ or $L(n) = \infty \ \forall n \in U$

Lemma

At any step and for the node visited at this step, its label L(n) is the shortest length d(n) of the path from the source s to n. The final set U is the set of the nodes unreachable from s.

 $W(n \to n') > 0$ weight of the edge

Proof: Induction on the number N of visited nodes. For N=0 is trivial. Let the claim be true for some N and one more node n_* is visited. Then $L(n_*) \geq d(n_*)$. Consider the shortest path from the source s to this node n_* . Let n_U be the first unvisited node on this path. It is preceded by a visited node n_V .

 $d(n_u) = d(n_v) + W(n_v \rightarrow n_u)$. Meanwhile, $L(n_v) = d(n_v)$ and so

$$L(n_u) \leq L(n_v) + W(n_v \rightarrow n_u) = d(n_v) + W(n_v \rightarrow n_u) = d(n_u).$$

Dijkstra's algorithm

- At any step, forms a partition of the nodes into V (visited) and U (unvisited)
- Iteratively re-calculates labels $L(n) \geq 0$ of nodes n
- Initially, $V := \emptyset$, U contains all nodes, L(s) := 0, $L(n) := \infty \ \forall n \neq s$
- At any step, do the following
 - find a minimizer of L(n) over $n \in U$
 - run through the set of all unvisited nodes n' such that $n \to n'$ is an edge (the set of nearest unvisited descendants)
 - for any such n', put $L(n') := \min \{L(n'); L(n) + W(n \rightarrow n')\}$
 - when the run is completed, remove n from U to V
- terminate the algorithm whenever either $U = \emptyset$ or $L(n) = \infty \ \forall n \in U$

Lemma

At any step and for the node visited at this step, its label L(n) is the shortest length d(n) of the path from the source s to n. The final set U is the set of the nodes unreachable from s.

 $W(n \to n') > 0$ weight of the edge

Proof: Induction on the number N of visited nodes. For N=0 is trivial. Let the claim be true for some N and one more node n_* is visited. Then $L(n_*) \geq \sigma(n_*)$. Consider the shortest path from the source s to this node n_* . Let n_u be the first unvisited node on this path. It is preceded by a visited node n_V .

 $d(n_u) = d(n_v) + W(n_v \rightarrow n_u)$. Meanwhile, $L(n_v) = d(n_v)$ and so

 $L(n_v) = U(n_v)$ and so $L(n_u) \le L(n_v) + W(n_v \to n_u) =$

 $d(n_v) + W(n_v \to n_u) = d(n_u)$. On the other hand, $L(n_*) \le L(n_u) \le d(n_u) \le d(n_*)$

A*-algorithm

 $\ensuremath{\bullet}$ G(n) – the minimum weight of the path from n to the destination (costto-go)

A^* -algorithm

- \bigcirc G(n) the minimum weight of the path from n to the destination (cost-to-go)
- $G(n) \geq G_{\downarrow}(n)$ its known lower estimate

A^* -algorithm

- igoplus G(n) the minimum weight of the path from n to the destination (cost-to-go)
- $G(n) \geq G_{\downarrow}(n)$ its known lower estimate
 - ullet At any step, forms a partition of the nodes into V and U
 - Iteratively re-calculates labels $L(n) \geq 0$ of nodes n
 - Initially, $V := \emptyset$, U contains all nodes, L(s) := 0, $L(n) := \infty \ \forall n \neq s$
 - At any step, do the following
 - find a minimizer of L(n) over $n \in U$
 - run through the set of all unvisited nodes n' such that $n \to n'$ is an edge (the set of nearest unvisited descendants)
 - for any such n', put $L(n') := \min \{L(n'); L(n) + W(n \rightarrow n')\}$
 - when the run is completed, remove n from U to V
 - terminate the algorithm whenever either $U = \emptyset$ or $L(n) = \infty \ \forall n \in U$

 $W(n \to n') > 0$ weight of the edge

A^* -algorithm

- \bullet G(n) the minimum weight of the path from n to the destination (cost-to-go)
- $G(n) \geq G_{\downarrow}(n)$ its known lower estimate
 - ullet At any step, forms a partition of the nodes into V and U
 - Iteratively re-calculates labels $L(n) \geq 0$ of nodes n
 - Initially, $V := \emptyset$, U contains all nodes, L(s) := 0, $L(n) := \infty \ \forall n \neq s$
 - At any step, do the following
 - find a minimizer of $L(n)+G_{\perp}(n)$ over $n \in U$
 - run through the set of all unvisited nodes n' such that $n \to n'$ is an edge (the set of nearest unvisited descendants)
 - for any such n', put $L(n') := \min \{L(n'); L(n) + W(n \rightarrow n')\}$
 - when the run is completed, remove n from U to V
 - terminate the algorithm whenever either $U = \emptyset$ or $L(n) = \infty \ \forall n \in U$

 $W(n \to n') > 0$ weight of the edge

A^* -algorithm

- \bullet G(n) the minimum weight of the path from n to the destination (cost-to-go)
- $G(n) \geq G_{\downarrow}(n)$ its known lower estimate
 - \bullet At any step, forms a partition of the nodes into V and U
 - Iteratively re-calculates labels L(n) > 0 of nodes n
 - Initially, $V := \emptyset$, U contains all nodes, L(s) := 0, $L(n) := \infty \ \forall n \neq s$
 - At any step, do the following
 - find a minimizer of $L(n)+G_1(n)$ over $n \in U$
 - run through the set of all unvisited nodes n' such that $n \to n'$ is an edge (the set of nearest unvisited descendants)
 - for any such n', put $L(n') := \min \{L(n'); L(n) + W(n \rightarrow n')\}$
 - when the run is completed, remove n from U to V
 - terminate the algorithm whenever either $U = \emptyset$ or $L(n) = \infty \ \forall n \in U$

 $W(n \to n') > 0$ weight of the edge

Lemma

At any step and for any node, its label L(n) is the shortest length $\sigma(n)$ of the path among those that go from the source s to n through V (except for the last node). (The minimum over the empty set is defined to be ∞ .) The final set U is the set of the nodes unreachable from s.

Best first

- lack A numerical evaluation $G_*(n)$ of "successfulness" of node n (e.g., cost-to-go)
 - Start with the source, put it in Q
 - Sort Q in the decreasing value of $G_*(n)$
 - Test only unvisited neighbors
 - When arriving at the destination, terminate processing nodes
 - Use the references to build a path

Best first

- lack A numerical evaluation $G_*(n)$ of "successfulness" of node n (e.g., cost-to-go)
 - Start with the source, put it in Q
 - Sort Q in the decreasing value of $G_*(n)$
 - Test only unvisited neighbors
 - When arriving at the destination, terminate processing nodes
 - Use the references to build a path

Iterative deepening

- ① Put d := 1
- ② Perform the depth-first search, with limiting it to nodes of degree $\leq d$
- 3 If the search is not terminated (the destination is not found)
 - Erase the results of all previous computations
 - Put d := d + 1
 - Go to step 2, where the search starts with the source once more

Best first

- lack A numerical evaluation $G_*(n)$ of "successfulness" of node n (e.g., cost-to-go)
 - Start with the source, put it in Q
 - Sort Q in the decreasing value of $G_*(n)$
 - Test only unvisited neighbors
 - When arriving at the destination, terminate processing nodes
 - Use the references to build a path

Iterative deepening

- Put d := 1
- ② Perform the depth-first search, with limiting it to nodes of degree $\leq d$
- 3 If the search is not terminated (the destination is not found)
 - Erase the results of all previous computations
 - Put d := d + 1
 - Go to step 2, where the search starts with the source once

Backward search

Any of the forward search methods, where the roles of the source and destination are interchanged.

Best first

- lack A numerical evaluation $G_*(n)$ of "successfulness" of node n (e.g., cost-to-go)
 - Start with the source, put it in Q
 - Sort Q in the decreasing value of $G_*(n)$
 - Test only unvisited neighbors
 - When arriving at the destination, terminate processing nodes
 - Use the references to build a path

Iterative deepening

- Put d := 1
- Perform the depth-first search, with limiting it to nodes of degree < d</p>
- 3 If the search is not terminated (the destination is not found)
 - Erase the results of all previous computations
 - Put d := d + 1
 - Go to step 2, where the search starts with the source once

Backward search

Any of the forward search methods, where the roles of the source and destination are interchanged.

Bidirectional search

A forward and backward search methods are run simultaneously until meeting.

Оптимальное планирование: динамическое программирование, основанное на логическом представлении

• States x, nodes of the graph

Оптимальное планирование: динамическое программирование, основанное на логическом представлении

- States x, nodes of the graph
- Phase space X, finite set of the nodes

- States x, nodes of the graph
- Phase space X, finite set of the nodes
- \bullet Controls u encode the edges outgoing from node x

- States x, nodes of the graph
- Phase space X, finite set of the nodes
- Controls u encode the edges outgoing from node x
- $U(x) \neq \emptyset$, finite set of the edges outgoing from X

- States x, nodes of the graph
- Phase space X, finite set of the nodes
- Controls u encode the edges outgoing from node x
- $U(x) \neq \emptyset$, finite set of the edges outgoing from x
- $f(x, u) \in X$, head of the edge u

- States x, nodes of the graph
- Phase space X, finite set of the nodes
- \bullet Controls u encode the edges outgoing from node x
- $U(x) \neq \emptyset$, finite set of the edges outgoing from x
- $f(x, u) \in X$, head of the edge u
- $\varphi(x, u) \geq 0$, cost of applying u at the state x

- States x, nodes of the graph
- Phase space X, finite set of the nodes
- \bullet Controls u encode the edges outgoing from node x
- $U(x) \neq \emptyset$, finite set of the edges outgoing from x
- $f(x, u) \in X$, head of the edge u
- $\varphi(x, u) \geq 0$, cost of applying u at the state x
- $\eta(x) \geq 0$, penalty for terminating at state x

- States x, nodes of the graph
- Phase space X, finite set of the nodes
- Controls u encode the edges outgoing from node x
- $U(x) \neq \emptyset$, finite set of the edges outgoing from X
- $f(x, u) \in X$, head of the edge u
- $\varphi(x, u) \geq 0$, cost of applying u at the state x
- $\eta(x) \geq 0$, penalty for terminating at state x

Optimal search with given number k of steps

$$x_{t+1} = f(x_t, u_t), \quad u_t \in U[x_t] \quad \forall t \in [0:k)$$

$$x_0=a,$$
 (\bullet)

$$I := \sum_{t \in [0:k]} \varphi(x_t, u_t) + \eta(x_k) \to \min$$
 (\$\infty\$)

- States x, nodes of the graph
- Phase space X, finite set of the nodes
- \bullet Controls u encode the edges outgoing from node x
- $U(x) \neq \emptyset$, finite set of the edges outgoing from x
- $f(x, u) \in X$, head of the edge u
- \circ $\varphi(x, u) \geq 0$, cost of applying u at the state x
- $\eta(x) \geq 0$, penalty for terminating at state x

Optimal search with given number k of steps

$$x_{t+1} = f(x_t, u_t), \quad u_t \in U[x_t] \quad \forall t \in [0:k)$$

$$x_0 = a, \qquad x_k = b \tag{+}$$

$$I := \sum_{t \in [0:k)} \varphi(\mathbf{X}_t, \mathbf{U}_t) \to \min \tag{\odot}$$

- States x, nodes of the graph
- Phase space X, finite set of the nodes
- Controls u encode the edges outgoing from node x
- $U(x) \neq \emptyset$, finite set of the edges outgoing from X
- $f(x, u) \in X$, head of the edge u
- $\varphi(x, u) \geq 0$, cost of applying u at the state x
- $\eta(x) \geq 0$, penalty for terminating at state x

Optimal search with given number k of steps

$$x_{t+1} = f(x_t, u_t), \quad u_t \in U[x_t] \quad \forall t \in [0:k)$$

$$x_0=a,$$
 (\bullet)

$$I := \sum_{t \in [0:k)} \varphi(x_t, u_t) + \eta(x_k) \to \min$$
 (\$\infty\$)

- \bullet States x, nodes of the graph
- Phase space X, finite set of the nodes
- \bullet Controls u encode the edges outgoing from node x
- $U(x) \neq \emptyset$, finite set of the edges outgoing from X
- $f(x, u) \in X$, head of the edge u
- $\varphi(x, u) \geq 0$, cost of applying u at the state x
- $\eta(x) \geq 0$, penalty for terminating at state x

Optimal search with given number k of steps

$$X_{t+1} = f(X_t, u_t), \quad u_t \in U[X_t] \quad \forall t \in [t_0 : k)$$
 (*)

$$x_{t_0}=a,$$
 $(+)$

$$I := \sum_{t \in [t_0:k)} \varphi(x_t, u_t) + \eta(x_k) \to \min$$
 (3)

Setup hints

It is needed to

- States x, nodes of the graph
- Phase space X, finite set of the nodes
- \bullet Controls u encode the edges outgoing from node x
- $U(x) \neq \emptyset$, finite set of the edges outgoing from X
- $f(x, u) \in X$, head of the edge u
- \circ $\varphi(x, u) \geq 0$, cost of applying u at the state x
- $\eta(x) \geq 0$, penalty for terminating at state x

Optimal search with given number k of steps

$$x_{t+1} = f(x_t, u_t), \quad u_t \in U[x_t] \quad \forall t \in [t_0 : k)$$

$$x_{t_0}=a,$$
 (+)

$$I := \sum_{t \in [t_0, k)} \varphi(x_t, u_t) + \eta(x_k) \to \min$$
 (\$\infty\$)

Setup hints

It is needed to

- \bullet States x, nodes of the graph
- Phase space X, finite set of the nodes
- \bullet Controls u encode the edges outgoing from node x
- $U(x) \neq \emptyset$, finite set of the edges outgoing from X
- $f(x, u) \in X$, head of the edge u
- $\circ \varphi(x, u) > 0$, cost of applying u at the state x
- $\eta(x) \geq 0$, penalty for terminating at state x

Optimal search with given number k of steps

$$x_{t+1} = f(x_t, u_t), \quad u_t \in U[x_t] \quad \forall t \in [t_0 : k)$$

$$x_{t_0}=a,$$
 $(+)$

$$I := \sum_{t \in [t_0:k)} \varphi(x_t, u_t) + \eta(x_k) \to \min$$
 (\$\infty\$)

Setup hints

It is needed to

- arrive at b: $\eta(x) := \lambda ||x b||, \lambda \approx \infty$

- States x, nodes of the graph
- Phase space X, finite set of the nodes
- \circ Controls u encode the edges outgoing from node x
- $U(x) \neq \emptyset$, finite set of the edges outgoing from X
- $f(x, u) \in X$, head of the edge u
- $\circ \varphi(x,u) > 0$, cost of applying u at the state x
- $\eta(x) \geq 0$, penalty for terminating at state x

Optimal search with given number k of steps

$$X_{t+1} = f(X_t, u_t), \quad u_t \in U[X_t] \quad \forall t \in [t_0 : k)$$
 (\ddf)

$$x_{t_0} = a,$$
 (+)

$$I := \sum_{t \in [t_0,k)} \varphi(\mathbf{X}_t, \mathbf{U}_t) + \eta(\mathbf{X}_k) \to \min$$
 (9)

Setup hints

It is needed to

- arrive at b: $n(x) := \lambda ||x b||, \lambda \approx \infty$
- arrive at the set $D: \bowtie \eta(x) := \lambda \operatorname{dist}(x,C), \lambda \approx \infty$
- trespass a given landmark $x_1 \ge x_1^0$ where $\eta(x) := \lambda(x_1^0 x_1), \lambda \approx \infty$

- \bullet States x, nodes of the graph
- Phase space X, finite set of the nodes
- \bullet Controls u encode the edges outgoing from node x
- $U(x) \neq \emptyset$, finite set of the edges outgoing from X
- $f(x, u) \in X$, head of the edge u
- $\varphi(x, u) \geq 0$, cost of applying u at the state x
- $\eta(x) \geq 0$, penalty for terminating at state x

Optimal search with given number k of steps

$$x_{t+1} = f(x_t, u_t), \quad u_t \in \textit{U}[x_t] \quad \forall t \in [t_0:k) \tag{$\stackrel{\line + 1}{•}$}$$

$$x_{t_0}=a,$$
 (\clubsuit)

$$I := \sum_{t \in [t_0:k)} \varphi(x_t, u_t) + \eta(x_k) \to \min$$
 (\infty)

Setup hints

It is needed to

- arrive at b: $\eta(x) := \lambda ||x b||, \lambda \approx \infty$
- arrive at the set $D: \bowtie \eta(x) := \lambda \operatorname{dist}(x, C), \lambda \approx \infty$
- trespass a given landmark $x_1 \ge x_1^0$ where $\eta(x) := \lambda(x_1^0 x_1), \lambda \approx \infty$
- arrive at some of b_1, \ldots, b_s : \mathbb{R}^s $\eta(x) := \lambda \min_{i=1,\ldots,s} ||x b_i||, \lambda \approx \infty$

- States x, nodes of the graph
- Phase space X, finite set of the nodes
- \circ Controls u encode the edges outgoing from node x
- $U(x) \neq \emptyset$, finite set of the edges outgoing from X
- $f(x, u) \in X$, head of the edge u
- $\varphi(x, u) \ge 0$, cost of applying u at the state x
- $\eta(x) \geq 0$, penalty for terminating at state x

Optimal search with given number k of steps

$$x_{t+1} = f(x_t, u_t), \quad u_t \in U[x_t] \quad \forall t \in [t_0 : k)$$

$$x_{t_0}=a,$$
 $(+)$

$$I := \sum_{t \in [t_0:k)} \varphi(x_t, u_t) + \eta(x_k) \to \min$$
 (\$\infty\$)

Rigorous problem statement

$$\mathfrak{M}(t_0,a):=\left\{p=\left[\{x_t\}_{t=t_0}^k,\{u_t\}_{t=t_0}^{k-1}\right]:(•) \text{ and } (•) \text{ hold}\right\}$$

- States x, nodes of the graph
- Phase space X, finite set of the nodes
- \bullet Controls u encode the edges outgoing from node x
- $U(x) \neq \emptyset$, finite set of the edges outgoing from X
- $f(x, u) \in X$, head of the edge u
- $\varphi(x, u) \ge 0$, cost of applying u at the state x
- $\eta(x) \geq 0$, penalty for terminating at state x

Optimal search with given number k of steps

$$x_{t+1} = f(x_t, u_t), \quad u_t \in U[x_t] \quad \forall t \in [t_0 : k)$$

$$x_{t_0}=a,$$
 $(+)$

$$I := \sum_{t \in [t_0:k)} \varphi(x_t, u_t) + \eta(x_k) \to \min$$
 (\$\infty\$)

Rigorous problem statement

$$\mathfrak{M}(t_0, \mathbf{a}) := \left\{ p = \left[\{ \mathbf{x}_t \}_{t=t_0}^k, \{ u_t \}_{t=t_0}^{k-1} \right] : (\clubsuit) \text{ and } (\clubsuit) \text{ hold} \right\}$$

$$\min_{p\in\mathfrak{M}(t_0,a)}I=:V_{t_0}(a)$$

- States x, nodes of the graph
- Phase space X, finite set of the nodes
- \circ Controls u encode the edges outgoing from node x
- $U(x) \neq \emptyset$, finite set of the edges outgoing from X
- $f(x, u) \in X$, head of the edge u
- $\varphi(x, u) \ge 0$, cost of applying u at the state x
- $\eta(x) \geq 0$, penalty for terminating at state x

Optimal search with given number k of steps

$$x_{t+1} = f(x_t, u_t), \quad u_t \in U[x_t] \quad \forall t \in [t_0 : k)$$

$$x_{t_0}=a,$$
 $(+)$

$$I := \sum_{t \in [t_0:k)} \varphi(x_t, u_t) + \eta(x_k) \to \min$$
 (\$\infty\$)

Rigorous problem statement

$$\mathfrak{M}(t_0, a) := \left\{ p = \left[\{x_t\}_{t=t_0}^k, \{u_t\}_{t=t_0}^{k-1} \right] : (\clubsuit) \text{ and } (\clubsuit) \text{ hold} \right\}$$

$$\min_{p \in \mathfrak{M}(t_0, a)} I =: V_{t_0}(a) \qquad V_k(\cdot) := \eta(\cdot)$$

$$\begin{aligned} x_{t+1} &= f(x_t, u_t), \quad u_t \in U[x_t] \quad \forall t \in [t_0 : k) \quad (\clubsuit) \\ x_{t_0} &= a, \qquad \qquad (\clubsuit) \\ I &:= \sum_{t \in [t_0 : k)} \varphi(x_t, u_t) + \eta(x_k) \rightarrow \min \quad (\clubsuit) \end{aligned}$$

$$\begin{aligned} x_{t+1} &= f(x_t, u_t), \quad u_t \in U[x_t] \quad \forall t \in [t_0 : k) \quad (\clubsuit) \\ x_{t_0} &= a, \qquad (\clubsuit) \\ I &:= \sum_{t \in [t_0 : k)} \varphi(x_t, u_t) + \eta(x_k) \to \min \quad (\clubsuit) \end{aligned}$$

Belman equation

$$V_t(a) = \min_{u \in U(a)} \{ V_{t+1}[f(a, u)] + \varphi(a, u) \} \ \forall a \ t = t_0, \dots, k-1$$

$$x_{t+1} = f(x_t, u_t), \quad u_t \in U[x_t] \quad \forall t \in [t_0 : k)$$
 (\ddf)

$$x_{t_0}=a, (\bullet)$$

$$I := \sum_{t \in [t_0:k)} \varphi(x_t, u_t) + \eta(x_k) \to \min$$
 (3)

Belman equation

$$V_t(a) = \min_{u \in U(a)} \{ V_{t+1}[f(a, u)] + \varphi(a, u) \} \ \forall a \quad t = t_0, \dots, k-1$$

Boundary condition: $V_k(\cdot) := \eta(\cdot)$

$$x_{t+1} = f(x_t, u_t), \quad u_t \in U[x_t] \quad \forall t \in [t_0 : k)$$
 (\ddf)

$$x_{t_0}=a,$$
 (+)

$$I := \sum_{t \in [t_0:k)} \varphi(x_t, u_t) + \eta(x_k) \to \min \qquad (\$)$$

Belman equation

$$V_t(a) = \min_{u \in U(a)} \{ V_{t+1}[f(a, u)] + \varphi(a, u) \} \ \forall a \ t = t_0, \dots, k-1$$

Boundary condition: $V_k(\cdot) := \eta(\cdot)$

Permits us to compute

$$V_k(\cdot) \curvearrowright V_{k-1}(\cdot) \curvearrowright \ldots \curvearrowright V_0(\cdot), \ V_t(a) \in [0,\infty);$$

$$\mathfrak{U}_t(a) := \operatorname{Arg} \min_{u \in \mathcal{U}(a)} \left\{ V_{t+1}[f(a,u)] + \varphi(a,u) \right\} \quad \forall a,t = t_0,\ldots,k-1$$

$$x_{t+1} = f(x_t, u_t), \quad u_t \in U[x_t] \quad \forall t \in [t_0 : k)$$
 (\ddf)

$$x_{t_0}=a, \qquad (\bullet)$$

$$I := \sum_{t \in [t_0:k)} \varphi(\mathbf{x}_t, \mathbf{u}_t) + \eta(\mathbf{x}_k) \to \min$$
 (3)

Belman equation

 $V_t(a) = \min_{u \in U(a)} \{ V_{t+1}[f(a, u)] + \varphi(a, u) \} \ \forall a \ t = t_0, \dots, k-1$

Boundary condition: $V_k(\cdot) := \eta(\cdot)$

Permits us to compute

$$V_k(\cdot) \curvearrowright V_{k-1}(\cdot) \curvearrowright \ldots \curvearrowright V_0(\cdot), \ V_t(a) \in [0,\infty);$$

$$\mathcal{U}_t(a) := \operatorname{Arg} \min_{u \in U(a)} \left\{ V_{t+1}[f(a, u)] + \varphi(a, u) \right\} \quad \forall a, t = t_0, \dots, k-1$$

Theorem

The following statements hold:

- The Bellman function is the unique solution of the Bellman equation
- $u_t \in \mathcal{U}_t(x_t)$ is the optimal control law (search rule)

$$(t_0,a) \xrightarrow{u_{t_0}:=u \in U(a)} \left[\underbrace{t_0+1}_{\tau}, x_{t_0+1} = \underbrace{f(a,u)}_{x_+}\right] \xrightarrow{\mathrm{continue\ optimally\ from\ the\ state}(\tau,x_+)}$$

$$(t_0, a) \xrightarrow{u_0 := u \in U(a)} \left[\underbrace{t_0 + 1}_{\tau}, x_{t_0 + 1} = \underbrace{f(a, u)}_{\chi_+}\right] \xrightarrow{\text{continue optimally from the state}(\tau, x_+)} V_{t_0}(a) \le I_{t_0}(\text{the just constructed process}) = \underbrace{\varphi(a, u)}_{\text{the first oddered}} + I_{t_0 + 1}(\text{the continuation}) = \varphi(a, u) + V_{t_0 + 1}[f(a, u)]$$

$$(t_0, a) \xrightarrow{u_0 := u \in U(a)} \left[\underbrace{t_0 + 1}_{\tau}, x_{t_0 + 1} = \underbrace{f(a, u)}_{X_+}\right] \xrightarrow{\text{continue optimally from the state}(\tau, x_+)}$$

$$V_{t_0}(a) \leq I_{t_0}(\text{the just constructed process}) = \underbrace{\varphi(a, u)}_{\text{the first addend}} + I_{t_0 + 1}(\text{the continuation}) = \varphi(a, u) + V_{t_0 + 1}[f(a, u)]$$

$$V_{t_0}(a) \leq \varphi(a, u) + V_{t_0 + 1}[f(a, u)] \quad \forall u \in U(a)$$

Given t_0 and $a \in \mathbb{R}^n$, we build a process from $\mathfrak{M}(t_0, a)$ as follows:

$$(t_0,a) \xrightarrow{u_0:=u \in U(a)} [\underbrace{t_0+1}_{\tau},x_{t_0+1} = \underbrace{f(a,u)}_{x_+}] \xrightarrow{\mathrm{continue\ optimally\ from\ the\ state}(\tau,x_+)}$$

$$V_{t_0}(a) \le I_{t_0}(\text{the just constructed process}) = \underbrace{\varphi(a, u)}_{\text{first addend}} + I_{t_0+1}(\text{the continuation}) = \varphi(a, u) + V_{t_0+1}[f(a, u)]$$

$$V_{t_0}(a) \leq \varphi(a,u) + V_{t_0+1}[f(a,u)] \qquad \forall u \in U(a)$$

Process optimal for $(t_0, a) \xrightarrow{\text{disintegrate}}$ the first term $(t_0, a, u_{t_0}^0)$ and the remainder that corresponds to $t \ge t_0 + 1$

Given t_0 and $a \in \mathbb{R}^n$, we build a process from $\mathfrak{M}(t_0, a)$ as follows:

$$(t_0,a) \xrightarrow{u_{t_0}:=u \in U(a)} \big[\underbrace{t_0+1}_{\tau}, x_{t_0+1} = \underbrace{f(a,u)}_{x_+}\big] \xrightarrow{\mathrm{continue\ optimally\ from\ the\ state}(\tau,x_+)}$$

 $V_{t_0}(a) \le I_{t_0}(\text{the just constructed process}) = \underbrace{\varphi(a, u)}_{\text{the first addend}} + I_{t_0+1}(\text{the continuation}) = \varphi(a, u) + V_{t_0+1}[f(a, u)]$

$$V_{t_0}(a) \leq \varphi(a,u) + V_{t_0+1}[f(a,u)] \quad \forall u \in U(a)$$

Process optimal for $(t_0, a) \xrightarrow{\text{disintegrate}}$ the first term $(t_0, a, u_{t_0}^0)$ and the remainder that corresponds to $t \ge t_0 + 1$ the remainder starts at $t = t_0 + 1$ from the state $x_+ := f(a, u_{t_0}^0)$ and should be optimal for these initial conditions

Given t_0 and $a \in \mathbb{R}^n$, we build a process from $\mathfrak{M}(t_0, a)$ as follows:

$$(t_0,a) \xrightarrow{u_{t_0}:=u \in U(a)} \left[\underbrace{t_0+1}_{\tau}, x_{t_0+1} = \underbrace{f(a,u)}_{x_+}\right] \xrightarrow{\mathrm{continue\ optimally\ from\ the\ state}(\tau,x_+)}$$

 $V_{t_0}(a) \le I_{t_0}(\text{the just constructed process}) = \underbrace{\varphi(a, u)}_{\text{the first addend}} + I_{t_0+1}(\text{the continuation}) = \varphi(a, u) + V_{t_0+1}[f(a, u)]$

$$V_{t_0}(a) \leq \varphi(a,u) + V_{t_0+1}[f(a,u)] \qquad \forall u \in U(a)$$

Process optimal for $(t_0, a) \xrightarrow{\text{disintegrate}}$ the first term $(t_0, a, u_{t_0}^0)$ and the remainder that corresponds to $t \ge t_0 + 1$ the remainder starts at $t = t_0 + 1$ from the state $x_+ := f(a, u_{t_0}^0)$ and should be optimal for these initial conditions

$$V_{t_0}(a) = I_{t_0}(\text{the optimal process}) = \varphi_{t_0}(a, u_{t_0}^0) + \underbrace{I_{t_0+1}(\text{the remainder})}_{\text{cost at the optimal process}} = \varphi_{t_0}(a, u_{t_0}^0) + V_{t_0+1}[f(a, u_{t_0}^0)]$$

Given t_0 and $a \in \mathbb{R}^n$, we build a process from $\mathfrak{M}(t_0, a)$ as follows:

$$(t_0,a) \xrightarrow{u_{t_0}:=u \in U(a)} \left[\underbrace{t_0+1}_{\tau}, x_{t_0+1} = \underbrace{f(a,u)}_{x_+}\right] \xrightarrow{\mathrm{continue\ optimally\ from\ the\ state}(\tau,x_+)}$$

 $V_{t_0}(a) \leq I_{t_0}(\text{the just constructed process}) = \underbrace{\varphi(a,u)}_{\text{the first addend}} + I_{t_0+1}(\text{the continuation}) = \varphi(a,u) + V_{t_0+1}[f(a,u)]$

$$V_{t_0}(a) \leq \varphi(a,u) + V_{t_0+1}[f(a,u)] \qquad \forall u \in U(a)$$

Process optimal for $(t_0, a) \xrightarrow{\text{disintegrate}}$ the first term $(t_0, a, u_{t_0}^0)$ and the remainder that corresponds to $t \ge t_0 + 1$ the remainder starts at $t = t_0 + 1$ from the state $x_+ := f(a, u_{t_0}^0)$ and should be optimal for these initial conditions

$$V_{t_0}(a) = I_{t_0}(\text{the optimal process}) = \varphi_{t_0}(a, u_{t_0}^0) + \underbrace{I_{t_0+1}(\text{the remainder})}_{\text{cost at the optimal process}} = \varphi_{t_0}(a, u_{t_0}^0) + V_{t_0+1}[f(a, u_{t_0}^0)]$$

 $\text{Overall:} V_{t_0}(a) = \min_{u \in U(a)} \Big\{ \varphi(a,u) + V_{t_0+1}[f(a,u)] \Big\}, \qquad u_{t_0}^0 = \operatorname{argmin}_{u \in U(a)} \Big\{ \dots \Big\} \\ \Rightarrow u_{t_0}^0 \in \mathfrak{U}_{t_0}[x_{t_0}^0] \\ \Rightarrow u_t^0 \in \mathfrak{U}_{t_0$

Let the process $p = \left[\left\{ x_t \right\}_{t=t_0}^{t_1}, \left\{ u_t \right\}_{t=t_0}^{t_1-1} \right] \in \mathfrak{M}(t_0, a)$ be generated by the dynamic programming regulator $u_t \in \mathfrak{U}_t(x_t) = \operatorname{Arg\ min}_{u \in \mathcal{U}(x_t)} \left\{ V_{t+1} \left[f(x_t, u) \right] + \varphi(x_t, u) \right\}$

Let the process $p = \left[\left\{ x_t \right\}_{t=t_0}^{t_1}, \left\{ u_t \right\}_{t=t_0}^{t_1-1} \right] \in \mathfrak{M}(t_0, a)$ be generated by the dynamic programming regulator $u_t \in \mathfrak{U}_t(x_t) = \operatorname{Arg\ min}_{u \in \mathcal{U}(x_t)} \left\{ V_{t+1}[f(x_t, u)] + \varphi(x_t, u) \right\}$ $V_{t+1}[\underbrace{f(x_t, u_t)}_{x_t}] + \varphi(x_t, u_t) = \min_{u \in \mathcal{U}(x_t)} \left\{ V_{t+1}[f(x_t, u)] + \varphi(x_t, u) \right\} = V_t(x_t)$

Let the process $p = [\{x_t\}_{t=t_0}^{t_1}, \{u_t\}_{t=t_0}^{t_1-1}] \in \mathfrak{M}(t_0, \mathbf{a})$ be generated by the dynamic programming regulator $u_t \in \mathcal{U}_t(x_t) = \operatorname{Arg\ min}_{u \in \mathcal{U}(x_t)} \{V_{t+1}[f(x_t, u)] + \varphi(x_t, u)\}$

$$V_{t+1}[\underbrace{f(x_t, u_t)}_{x_{t+1}}] + \varphi(x_t, u_t) = \min_{u \in U(x_t)} \{V_{t+1}[f(x_t, u)] + \varphi(x_t, u)\} = V_t(x_t)$$

$$I_{t_0}(p) = \sum_{t \in [t_0:k)} \varphi[x_t, u_t] = \sum_{t=t_0}^{k-1} \varphi[x_t, u_t] + V_k[x_k] = \sum_{t=t_0}^{k-2} \varphi[x_t, u_t] + \left\{ \varphi_{k-1}[x_{k-1}, u_{k-1}] + V_k[x_k] \right\}$$

Let the process $p = \left[\{x_t\}_{t=t_0}^{t_1}, \{u_t\}_{t=t_0}^{t_1-1} \right] \in \mathfrak{M}(t_0, \mathbf{a})$ be generated by the dynamic programming regulator $u_t \in \mathcal{U}_t(x_t) = \operatorname{Arg\ min}_{u \in \mathcal{U}(x_t)} \{V_{t+1}[f(x_t, u)] + \varphi(x_t, u)\}$

$$V_{t+1}[\underbrace{f(x_t, u_t)}_{x_{t+1}}] + \varphi(x_t, u_t) = \min_{u \in U(x_t)} \{V_{t+1}[f(x_t, u)] + \varphi(x_t, u)\} = V_t(x_t)$$

$$I_{t_0}(p) = \sum_{t \in [t_0:k)} \varphi[x_t, u_t] = \sum_{t=t_0}^{k-1} \varphi[x_t, u_t] + V_k[x_k] = \sum_{t=t_0}^{k-2} \varphi[x_t, u_t] + \left\{ \varphi_{k-1}[x_{k-1}, u_{k-1}] + V_k[x_k] \right\}$$

$$\xrightarrow{\underline{\tau} := k-1} \sum_{t=t_0}^{k-2} \varphi[x_t, u_t] + \left\{ \varphi[x_{\tau}], \underbrace{u_{\tau}}_{=:a_*}, \underbrace{u_{\tau}}_{=:v \in U(a_*)} \right] + V_{\tau+1}[f(a_*, v)] \right\}$$

Let the process $p = \left[\{x_t\}_{t=t_0}^{t_1}, \{u_t\}_{t=t_0}^{t_1-1} \right] \in \mathfrak{M}(t_0, \mathbf{a})$ be generated by the dynamic programming regulator $u_t \in \mathcal{U}_t(x_t) = \operatorname{Arg\ min}_{u \in \mathcal{U}(x_t)} \{V_{t+1}[f(x_t, u)] + \varphi(x_t, u)\}$

$$V_{t+1}[\underbrace{f(x_t, u_t)}_{x_{t+1}}] + \varphi(x_t, u_t) = \min_{u \in U(x_t)} \{V_{t+1}[f(x_t, u)] + \varphi(x_t, u)\} = V_t(x_t)$$

$$I_{t_0}(p) = \sum_{t \in [t_0:k)} \varphi[x_t, u_t] = \sum_{t=t_0}^{k-1} \varphi[x_t, u_t] + V_k[x_k] = \sum_{t=t_0}^{k-2} \varphi[x_t, u_t] + \left\{ \varphi_{k-1}[x_{k-1}, u_{k-1}] + V_k[x_k] \right\}$$

$$\frac{\underline{\tau := k-1}}{\sum_{t=t_0}^{k-2} \varphi[x_t, u_t] + \left\{ \varphi[\underbrace{x_{\tau}}_{,}, \underbrace{u_{\tau}}_{=:a_*}] + V_{\tau+1}[f(a_*, v)] \right\}}$$

$$\stackrel{\text{Belmann equation}}{=} \sum_{t=t_0}^{k-2} \varphi[x_t, u_t] + V_{\tau}(a_*) = \sum_{t=t_0}^{k-2} \varphi[x_t, u_t] + V_{k-1}(x_{k-1}) = \cdots = V_{t_0}[x_{t_0}] = V_{t_0}(a)$$

Let the process $p = \left[\{x_t\}_{t=t_0}^{t_1}, \{u_t\}_{t=t_0}^{t_1-1} \right] \in \mathfrak{M}(t_0, \mathbf{a})$ be generated by the dynamic programming regulator $u_t \in \mathcal{U}_t(x_t) = \operatorname{Arg\ min}_{u \in \mathcal{U}(x_t)} \{V_{t+1}[f(x_t, u)] + \varphi(x_t, u)\}$

$$V_{t+1}[\underbrace{f(x_t, u_t)}_{x_{t+1}}] + \varphi(x_t, u_t) = \min_{u \in U(x_t)} \{V_{t+1}[f(x_t, u)] + \varphi(x_t, u)\} = V_t(x_t)$$

$$I_{t_0}(p) = \sum_{t \in [t_0:k)} \varphi[x_t, u_t] = \sum_{t=t_0}^{k-1} \varphi[x_t, u_t] + V_k[x_k] = \sum_{t=t_0}^{k-2} \varphi[x_t, u_t] + \left\{ \varphi_{k-1}[x_{k-1}, u_{k-1}] + V_k[x_k] \right\}$$

$$\frac{\underline{\tau := k-1}}{\sum_{t=t_0}^{k-2} \varphi[x_t, u_t] + \left\{ \varphi[\underbrace{x_{\tau}}_{=:a_*}, \underbrace{u_{\tau}}_{=:v \in U(a_*)}] + V_{\tau+1}[f(a_*, v)] \right\}}$$

$$= \sum_{t=t_0}^{\text{Belmann equation}} \sum_{t=t_0}^{k-2} \varphi[x_t, u_t] + V_{\tau}(\boldsymbol{a}_*) = \sum_{t=t_0}^{k-2} \varphi[x_t, u_t] + V_{k-1}(x_{k-1}) = \cdots = V_{t_0}[x_{t_0}] = V_{t_0}(\boldsymbol{a})$$

$$V_{t_0}(\boldsymbol{a}) = I_{t_0}(\boldsymbol{p})$$

Problem statement

$$x_{t+1} = f(x_t, u_t), \quad u_t \in U[x_t] \quad \forall t \in [0:k)$$

$$x_0 = a$$
, k is freely manipulable $(+)$

$$I := \sum_{t \in [0:k)} \varphi(x_t, u_t) + \eta(x_k) \to \min$$
 (\$\infty\$)

Problem statement

$$x_{t+1} = f(x_t, u_t), \quad u_t \in U[x_t] \quad \forall t \in [0:k)$$

$$x_0 = a,$$
 k is freely manipulable $(+)$

$$I := \sum_{t \in [0:k)} \varphi(x_t, u_t) + \eta(x_k) \to \min$$
 (3)

Problem statement

$$x_{t+1} = f(x_t, u_t), \quad u_t \in U[x_t] \quad \forall t \in [0:k)$$

$$x_0 = a$$
, k is freely manipulable $(+)$

$$I := \sum_{t \in [0:k)} \varphi(x_t, u_t) + \eta(x_k) \to \min$$
 (3)

Bellman equation

$$V_t(a) = \min_{u \in U(a)} \{ V_{t+1}[f(a, u)] + \varphi(a, u) \} \ \forall a$$

Boundary condition: $V_k(\cdot) := \eta(\cdot)$

Regulator $\mathcal{U}_t(a) := \operatorname{Arg\ min}_{u \in U(a)} \{ V_{t+1}[f(a, u)] + \varphi(a, u) \}$

(·!·)

Problem statement

$$x_{t+1} = f(x_t, u_t), \quad u_t \in U[x_t] \quad \forall t \in [0:k)$$

$$x_0 = a$$
, k is freely manipulable $(+)$

$$I := \sum_{t \in [0:k)} \varphi(x_t, u_t) + \eta(x_k) \to \min$$
 (\$\infty\$)

$$V_t(a) = \min_{u \in U(a)} \{V_{t+1}[f(a, u)] + \varphi(a, u)\} \ \forall a$$

Boundary condition: $V_k(\cdot) := \eta(\cdot)$

Regulator $\mathcal{U}_t(a) := \operatorname{Arg\ min}_{u \in U(a)} \{ V_{t+1}[f(a, u)] + \varphi(a, u) \}$

$$V(\cdot) \xrightarrow{\mathfrak{F}} V_{-}(\cdot), \ V_{-}(a) := \min_{u \in U(a)} \left\{ V[f(a,u)] + \varphi(a,u) \right\}$$

$$V_t(\cdot)=\mathfrak{F}[V_{t+1}(\cdot)]$$

Problem statement

$$x_{t+1} = f(x_t, u_t), \quad u_t \in U[x_t] \quad \forall t \in [0:k)$$

$$x_0 = a,$$
 k is freely manipulable $(•)$

$$I := \sum_{t \in [0:k)} \varphi(x_t, u_t) + \eta(x_k) \to \min$$
 (3)

Bellman equation

$$V_t(a) = \min_{u \in U(a)} \left\{ V_{t+1}[f(a, u)] + \varphi(a, u) \right\} \ \forall a$$

Boundary condition: $V_k(\cdot) := \eta(\cdot)$

Regulator $U_t(a) := \operatorname{Arg\ min}_{u \in U(a)} \{ V_{t+1}[f(a, u)] + \varphi(a, u) \}$

$$V(\cdot) \xrightarrow{\mathfrak{F}} V_{-}(\cdot), \ V_{-}(a) := \min_{u \in U(a)} \{ V[f(a, u)] + \varphi(a, u) \}$$

$$V_t(\cdot) = \mathfrak{F}[V_{t+1}(\cdot)]$$
 $t = k-1, k-2, \ldots, 0$

Problem statement

$$x_{t+1} = f(x_t, u_t), \quad u_t \in U[x_t] \quad \forall t \in [0:k)$$

$$x_0 = a,$$
 k is freely manipulable $(+)$

$$I := \sum_{t \in [0:k)} \varphi(x_t, u_t) + \eta(x_k) \to \min$$
 (\$\infty\$)

$$V_t(a) = \min_{u \in U(a)} \{V_{t+1}[f(a, u)] + \varphi(a, u)\} \ \forall a$$

Boundary condition: $V_k(\cdot) := \eta(\cdot)$

Regulator $\mathcal{U}_t(a) := \operatorname{Arg\ min}_{u \in U(a)} \{ V_{t+1}[f(a, u)] + \varphi(a, u) \}$

$$V(\cdot) \xrightarrow{\mathfrak{F}} V_{-}(\cdot), \ V_{-}(a) := \min_{u \in U(a)} \{ V[f(a, u)] + \varphi(a, u) \}$$

$$V_t(\cdot) = \mathfrak{F}[V_{t+1}(\cdot)]$$
 $t = -1, \ldots, -k$

(+)

Problem statement

$$x_{t+1} = f(x_t, u_t), \quad u_t \in U[x_t] \quad \forall t \in [0:k)$$

$$x_0 = a$$
, k is freely manipulable

$$I := \sum_{t \in [0:k)} \varphi(x_t, u_t) + \eta(x_k) \to \min$$
 (3)

Bellman equation

$$V_t(a) = \min_{u \in U(a)} \{V_{t+1}[f(a, u)] + \varphi(a, u)\} \ \forall a$$

Boundary condition: $V_k(\cdot) := \eta(\cdot)$

Regulator $U_t(a) := \operatorname{Arg\ min}_{u \in U(a)} \{ V_{t+1}[f(a, u)] + \varphi(a, u) \}$

$$V(\cdot) \xrightarrow{\mathfrak{F}} V_{-}(\cdot), \ V_{-}(a) := \min_{u \in U(a)} \{ V[f(a, u)] + \varphi(a, u) \}$$

$$V_t(\cdot) = \mathfrak{F}[V_{t+1}(\cdot)]$$
 $t = -1, \ldots, -\infty$

$$V_k^{\downarrow}(a) := \min_{\theta \in [-k:0]} V_{\theta}(a), \qquad V_0^{\downarrow}(\cdot) = \eta(\cdot)$$

(·!·)

Problem statement

$$x_{t+1} = f(x_t, u_t), \quad u_t \in U[x_t] \quad \forall t \in [0:k)$$

$$x_0 = a$$
, k is freely manipulable $(+)$

$$I := \sum_{t \in [0:k)} \varphi(x_t, u_t) + \eta(x_k) \to \min$$
 (3)

Bellman equation

$$V_t(a) = \min_{u \in U(a)} \{V_{t+1}[f(a, u)] + \varphi(a, u)\} \ \forall a$$

Boundary condition: $V_k(\cdot) := \eta(\cdot)$

Regulator $\mathcal{U}_t(a) := \operatorname{Arg\ min}_{u \in U(a)} \{ V_{t+1}[f(a, u)] + \varphi(a, u) \}$

$$V(\cdot) \xrightarrow{\mathfrak{F}} V_{-}(\cdot), \ V_{-}(a) := \min_{u \in U(a)} \{ V[f(a, u)] + \varphi(a, u) \}$$

$$V_t(\cdot) = \mathfrak{F}[V_{t+1}(\cdot)]$$
 $t = -1, \ldots, -\infty$

$$V_k^{\downarrow}(a) := \min_{\theta \in [-k:0]} V_{\theta}(a), \qquad V_0^{\downarrow}(\cdot) = \eta(\cdot)$$

$$V_{-k}^{\downarrow}(a) = \min_{\theta \in [-k:0]} V_{\theta}(a)$$

Problem statement

$$x_{t+1} = f(x_t, u_t), \quad u_t \in U[x_t] \quad \forall t \in [0:k)$$
 (\ddf)

$$x_0 = a$$
, k is freely manipulable $(+)$

$$I := \sum_{t \in [0:k)} \varphi(x_t, u_t) + \eta(x_k) \to \min$$
 (3)

Bellman equation

$$V_t(a) = \min_{u \in U(a)} \{V_{t+1}[f(a, u)] + \varphi(a, u)\} \ \forall a$$

Boundary condition: $V_k(\cdot) := \eta(\cdot)$

Regulator $\mathcal{U}_t(a) := \operatorname{Arg\ min}_{u \in U(a)} \{ V_{t+1}[f(a, u)] + \varphi(a, u) \}$

$$V(\cdot) \stackrel{\mathfrak{F}}{\longrightarrow} V_{-}(\cdot), \ V_{-}(a) := \min_{u \in U(a)} \{ V[f(a, u)] + \varphi(a, u) \}$$

$$V_t(\cdot) = \mathfrak{F}[V_{t+1}(\cdot)]$$
 $t = -1, \ldots, -\infty$

$$V_k^{\downarrow}(a) := \min_{\theta \in [-k:0]} V_{\theta}(a), \qquad V_0^{\downarrow}(\cdot) = \eta(\cdot)$$

$$V_{-k}^{\downarrow}(a) = \min_{\theta \in [-k:0]} V_{\theta}(a) = \min \left\{ \min_{\theta \in [-k:-1]} V_{\theta}(a); \eta(a)
ight\}$$

Problem statement

$$x_{t+1} = f(x_t, u_t), \quad u_t \in U[x_t] \quad \forall t \in [0:k)$$

$$x_0 = a$$
, k is freely manipulable $(•)$

$$I := \sum_{t \in [0:k)} \varphi(x_t, u_t) + \eta(x_k) \to \min$$
 (3)

Bellman equation

$$V_t(a) = \min_{u \in U(a)} \{V_{t+1}[f(a, u)] + \varphi(a, u)\} \ \forall a$$

Boundary condition: $V_k(\cdot) := \eta(\cdot)$

Regulator $\mathcal{U}_t(a) := \operatorname{Arg\ min}_{u \in U(a)} \{ V_{t+1}[f(a, u)] + \varphi(a, u) \}$

$$V(\cdot) \xrightarrow{\mathfrak{F}} V_{-}(\cdot), \ V_{-}(a) := \min_{u \in U(a)} \{ V[f(a, u)] + \varphi(a, u) \}$$

$$V_t(\cdot) = \mathfrak{F}[V_{t+1}(\cdot)]$$
 $t = -1, \dots, -\infty$

$$V_k^{\downarrow}(a) := \min_{\theta \in [-k:0]} V_{\theta}(a), \qquad V_0^{\downarrow}(\cdot) = \eta(\cdot)$$

$$\begin{aligned} &V_{-k}^{\downarrow}(a) = \min_{\theta \in [-k:0]} V_{\theta}(a) = \min \left\{ \min_{\theta \in [-k:-1]} V_{\theta}(a); \eta(a) \right\} \\ &= \min \left\{ \min_{\theta \in [-k:-1]} \min_{u \in U(a)} \left(V_{\theta+1}[f(a,u)] + \varphi(a,u) \right); \eta(a) \right\} \end{aligned}$$

Problem statement

$$x_{t+1} = f(x_t, u_t), \quad u_t \in U[x_t] \quad \forall t \in [0:k)$$

$$x_0 = a$$
, k is freely manipulable $(+)$

$$I := \sum_{t \in [0:k)} \varphi(x_t, u_t) + \eta(x_k) \to \min$$
 (co)

Bellman equation

$$V_t(a) = \min_{u \in U(a)} \{V_{t+1}[f(a, u)] + \varphi(a, u)\} \ \forall a$$

Boundary condition: $V_k(\cdot) := \eta(\cdot)$

Regulator $U_t(a) := \operatorname{Arg\ min}_{u \in U(a)} \{ V_{t+1}[f(a, u)] + \varphi(a, u) \}$

$$V(\cdot) \xrightarrow{\mathfrak{F}} V_{-}(\cdot), \ V_{-}(a) := \min_{u \in U(a)} \{ V[f(a, u)] + \varphi(a, u) \}$$

$$V_t(\cdot) = \mathfrak{F}[V_{t+1}(\cdot)]$$
 $t = -1, \dots, -\infty$

$$V_k^{\downarrow}(a) := \min_{\theta \in [-k:0]} V_{\theta}(a), \qquad V_0^{\downarrow}(\cdot) = \eta(\cdot)$$

$$\begin{aligned} &V_{-k}^{\downarrow}(a) = \min_{\theta \in [-k:0]} V_{\theta}(a) = \min \left\{ \min_{\theta \in [-k:-1]} V_{\theta}(a); \eta(a) \right\} \\ &= \min \left\{ \min_{u \in U(a)} \min_{\theta \in [-k:-1]} \left(V_{\theta+1}[f(a,u)] + \varphi(a,u) \right); \eta(a) \right\} \end{aligned}$$

Problem statement

$$x_{t+1} = f(x_t, u_t), \quad u_t \in U[x_t] \quad \forall t \in [0:k)$$
 (*)

$$x_0 = a$$
, k is freely manipulable $(+)$

$$I := \sum_{t \in [0:k)} \varphi(x_t, u_t) + \eta(x_k) \to \min$$
 (co)

Bellman equation

$$V_t(a) = \min_{u \in U(a)} \left\{ V_{t+1}[f(a, u)] + \varphi(a, u) \right\} \ \forall a$$

Boundary condition: $V_k(\cdot) := \eta(\cdot)$

Regulator $U_t(a) := \operatorname{Arg\ min}_{u \in U(a)} \{ V_{t+1}[f(a, u)] + \varphi(a, u) \}$

$$V(\cdot) \xrightarrow{\mathfrak{F}} V_{-}(\cdot), \ V_{-}(a) := \min_{u \in U(a)} \{ V[f(a, u)] + \varphi(a, u) \}$$

$$V_t(\cdot) = \mathfrak{F}[V_{t+1}(\cdot)]$$
 $t = -1, \dots, -\infty$

$$V_k^{\downarrow}(a) := \min_{\theta \in [-k:0]} V_{\theta}(a), \qquad V_0^{\downarrow}(\cdot) = \eta(\cdot)$$

$$\begin{aligned} V_{-k}^{\downarrow}(a) &= \min_{\theta \in [-k:0]} V_{\theta}(a) = \min \left\{ \min_{\theta \in [-k:-1]} V_{\theta}(a); \eta(a) \right\} \\ &= \min \left\{ \min_{u \in U(a)} \min_{\theta \in [-k:-1]} \left(V_{\theta+1}[f(a,u)] + \varphi(a,u) \right); \eta(a) \right\} \\ &= \min \left\{ \min_{u \in U(a)} \left[\varphi(a,u) + \min V_{\theta+1}[f(a,u)] \right]; \eta(a) \right\} \end{aligned}$$

Problem statement

$$x_{t+1} = f(x_t, u_t), \quad u_t \in U[x_t] \quad \forall t \in [0:k)$$

$$x_0 = a$$
, k is freely manipulable $(+)$

$$I := \sum_{t \in [0:k)} \varphi(x_t, u_t) + \eta(x_k) \to \min$$
 (co)

Bellman equation

$$V_t(a) = \min_{u \in U(a)} \left\{ V_{t+1}[f(a, u)] + \varphi(a, u) \right\} \ \forall a$$

Boundary condition: $V_k(\cdot) := \eta(\cdot)$

Regulator $U_t(a) := \operatorname{Arg\ min}_{u \in U(a)} \{ V_{t+1}[f(a, u)] + \varphi(a, u) \}$

$$V(\cdot) \xrightarrow{\mathfrak{F}} V_{-}(\cdot), \ V_{-}(a) := \min_{u \in U(a)} \{ V[f(a, u)] + \varphi(a, u) \}$$

$$V_t(\cdot) = \mathfrak{F}[V_{t+1}(\cdot)]$$
 $t = -1, \dots, -\infty$

$$V_k^{\downarrow}(a) := \min_{\theta \in [-k:0]} V_{\theta}(a), \qquad V_0^{\downarrow}(\cdot) = \eta(\cdot)$$

$$\begin{aligned} V_{-k}^{\downarrow}(a) &= \min_{\theta \in [-k:0]} V_{\theta}(a) = \min \left\{ \min_{\theta \in [-k:-1]} V_{\theta}(a); \eta(a) \right\} \\ &= \min \left\{ \min_{u \in U(a)} \min_{\theta \in [-k:-1]} \left(V_{\theta+1}[f(a,u)] + \varphi(a,u) \right); \eta(a) \right\} \\ &= \min \left\{ \min_{u \in U(a)} \left[\varphi(a,u) + \min_{\theta \in [-k:-1]} V[f(a,u)] \right]; \eta(a) \right\} \end{aligned}$$

Problem statement

$$x_{t+1} = f(x_t, u_t), \quad u_t \in U[x_t] \quad \forall t \in [0:k)$$

$$x_0 = a$$
, k is freely manipulable $(+)$

$$I := \sum_{t \in [0:k)} \varphi(x_t, u_t) + \eta(x_k) \to \min$$
 (3)

Bellman equation

$$V_t(a) = \min_{u \in U(a)} \left\{ V_{t+1}[f(a, u)] + \varphi(a, u) \right\} \ \forall a$$

Boundary condition: $V_k(\cdot) := \eta(\cdot)$

Regulator $\mathcal{U}_t(a) := \operatorname{Arg\ min}_{u \in U(a)} \{ V_{t+1}[f(a, u)] + \varphi(a, u) \}$

$$V(\cdot) \xrightarrow{\mathfrak{F}} V_{-}(\cdot), \ V_{-}(a) := \min_{u \in U(a)} \{ V[f(a, u)] + \varphi(a, u) \}$$

$$V_t(\cdot) = \mathfrak{F}[V_{t+1}(\cdot)]$$
 $t = -1, \dots, -\infty$

$$V_k^{\downarrow}(a) := \min_{\theta \in [-k:0]} V_{\theta}(a), \qquad V_0^{\downarrow}(\cdot) = \eta(\cdot)$$

$$V_{-k}^{\downarrow}(a) = \min_{\theta \in [-k:0]} V_{\theta}(a) = \min \left\{ \min_{\theta \in [-k:-1]} V_{\theta}(a); \eta(a) \right\}$$

$$= \min \left\{ \min_{u \in U(a)} \min_{\theta \in [-k:-1]} \left(V_{\theta+1}[f(a,u)] + \varphi(a,u) \right); \eta(a) \right\}$$

$$= \min \left\{ \min_{u \in U(a)} \left[\varphi(a, u) + \min_{\tau \in [-k+1:0]} V_{\tau}[f(a, u)] \right]; \eta(a) \right\}$$

$$= \min \left\{ \min_{u \in U(a)} \left[\varphi(a, u) + V_{-k+1}^{\downarrow}[f(a, u)] \right]; \eta(a) \right\}$$

Problem statement

$$x_{t+1} = f(x_t, u_t), \quad u_t \in U[x_t] \quad \forall t \in [0:k)$$

$$x_0 = a$$
, k is freely manipulable (+

$$I := \sum_{t \in [0:k)} \varphi(x_t, u_t) + \eta(x_k) \to \min \qquad (\varphi(\cdot) > 0)$$
 (\$\infty\$)

Bellman equation

$$V_{-k}^\downarrow(a) = \min\left\{\min_{u \in U(a)} \left[\varphi(a,u) + V_{-k+1}^\downarrow[f(a,u)]\right]; \eta(a)\right\}, \ V_0^\downarrow(\cdot) := \eta(\cdot)$$

Problem statement

$$x_{t+1} = f(x_t, u_t), \quad u_t \in U[x_t] \quad \forall t \in [0:k)$$

$$x_0 = a$$
, k is freely manipulable (+

$$I := \sum_{t \in [0:k)} \varphi(x_t, u_t) + \eta(x_k) \to \min \qquad (\varphi(\cdot) > 0)$$

Bellman equation

$$V_{-k}^{\downarrow}(\mathbf{a}) = \min \left\{ \min_{u \in U(\mathbf{a})} \left[\varphi(\mathbf{a}, u) + V_{-k+1}^{\downarrow}[f(\mathbf{a}, u)] \right]; \eta(\mathbf{a}) \right\}, V_0^{\downarrow}(\cdot) := \eta(\cdot)$$

Theorem

$$V(a) = \min \left\{ \min_{u \in U(a)} \left[\varphi(a, u) + V[f(a, u)] \right]; \eta(a) \right\} \text{ and simultaneously the Bellman function of the optimization problem.}$$

Problem statement

$$x_{t+1} = f(x_t, u_t), \quad u_t \in U[x_t] \quad \forall t \in [0:k)$$

$$x_0 = a$$
, k is freely manipulable (+

$$I := \sum_{t \in [0:k)} \varphi(x_t, u_t) + \eta(x_k) \to \min \qquad (\varphi(\cdot) > 0)$$
 (\$\infty\$)

V-closing state $\sim V(a) = \eta(a)$

Bellman equation

$$V_{-k}^{\downarrow}(\mathbf{a}) = \min \left\{ \min_{u \in U(\mathbf{a})} \left[\varphi(\mathbf{a}, u) + V_{-k+1}^{\downarrow}[f(\mathbf{a}, u)] \right]; \eta(\mathbf{a}) \right\}, V_0^{\downarrow}(\cdot) := \eta(\cdot)$$

Theorem

$$V(a) = \min \left\{ \min_{u \in U(a)} \left[\varphi(a, u) + V[f(a, u)] \right]; \eta(a) \right\} \text{ and simultaneously the Bellman function of the optimization problem.}$$

Problem statement

$$x_{t+1} = f(x_t, u_t), \quad u_t \in U[x_t] \quad \forall t \in [0:k)$$

$$x_0 = a$$
, k is freely manipulable (+)

$$I := \sum_{t \in [0:k)} \varphi(x_t, u_t) + \eta(x_k) \to \min \qquad (\varphi(\cdot) > 0)$$
 (\$\infty\$)

$\begin{array}{l} \textit{V-} \textit{closing state} \sim \textit{V}(\textit{a}) = \eta(\textit{a}) \\ \textit{U}_{\textit{V}}(\textit{a}) := \mathop{\mathrm{Arg min}}_{\textit{u} \in \textit{U}(\textit{a})} \left\{ \textit{V}[\textit{f}(\textit{a},\textit{u})] + \varphi(\textit{a},\textit{u}) \right\} \end{array}$

Bellman equation

$$V_{-k}^{\downarrow}(\mathbf{a}) = \min \left\{ \min_{u \in U(\mathbf{a})} \left[\varphi(\mathbf{a}, u) + V_{-k+1}^{\downarrow}[f(\mathbf{a}, u)] \right]; \eta(\mathbf{a}) \right\}, V_0^{\downarrow}(\cdot) := \eta(\cdot)$$

Theorem

$$V(a) = \min \left\{ \min_{u \in U(a)} \left[\varphi(a, u) + V[f(a, u)] \right]; \eta(a) \right\} \text{ and simultaneously the Bellman function of the optimization problem.}$$

Problem statement

$$x_{t+1} = f(x_t, u_t), \quad u_t \in U[x_t] \quad \forall t \in [0:k)$$

$$x_0 = a$$
, k is freely manipulable $(+)$

$$I := \sum_{t \in [0:k)} \varphi(\mathbf{x}_t, \mathbf{u}_t) + \eta(\mathbf{x}_k) \to \min \qquad (\varphi(\cdot) > 0)$$
 (\$\infty\$)

Bellman equation

$$V_{-k}^{\downarrow}(\mathbf{a}) = \min \left\{ \min_{u \in U(\mathbf{a})} \left[\varphi(\mathbf{a}, u) + V_{-k+1}^{\downarrow}[f(\mathbf{a}, u)] \right]; \eta(\mathbf{a}) \right\}, V_0^{\downarrow}(\cdot) := \eta(\cdot)$$

$$\begin{array}{l} \textbf{V-closing state} \sim V(a) = \eta(a) \\ \mathcal{U}_V(a) := \operatorname{Arg min}_{u \in U(a)} \left\{ V[f(a,u)] + \varphi(a,u) \right\} \end{array}$$

Theorem

The set of V^{\downarrow} -closing states is not empty. Optimal process $\Leftrightarrow u_t \in \mathcal{U}_V(x_t)$ and the process terminates terminates upon arrival at a closing state.

Theorem

$$V(a) = \min \left\{ \min_{u \in U(a)} \left[\varphi(a, u) + V[f(a, u)] \right]; \eta(a) \right\} \text{ and simultaneously the Bellman function of the optimization problem.}$$

Lemma

Let $[\{x_t\}_{t=0}^k, \{u_t\}_{t=0}^{k-1}]$ be an optimal process. Then the process $[\{x_t\}_{t=\theta}^k, \{u_t\}_{t=\theta}^{k-1}]$ is also optimal for any $\theta \in [0:k]$, the state x_k is stopping, $u_t \in \mathcal{U}_{V^{\downarrow}}(x_t)$, and $V^{\downarrow}(x_0) = \sum_{t=0}^{\theta-1} \varphi(x_t, u_t) + V^{\downarrow}(x_{\theta})$.

Lemma

Let $[\{x_t\}_{t=0}^k, \{u_t\}_{t=0}^{k-1}]$ be an optimal process. Then the process $[\{x_t\}_{t=\theta}^k, \{u_t\}_{t=\theta}^{k-1}]$ is also optimal for any $\theta \in [0:k]$, the state x_k is stopping, $u_t \in \mathcal{U}_{V^{\downarrow}}(x_t)$, and

$$V^{\downarrow}(x_0) = \sum_{t=0}^{\theta-1} \varphi(x_t, u_t) + V^{\downarrow}(x_{\theta}).$$

$$V^{\downarrow}(x_0) = \varphi(x_0, u_0) + V^{\downarrow}(x_1) = \varphi(a, u_0) + V^{\downarrow}[f(a, u_0)], \quad a := x_0$$
$$V^{\downarrow}(a) = \min \left\{ \min_{u \in U(a)} \left[\varphi(a, u) + V^{\downarrow}[f(a, u)] \right] ; \eta(a) \right\}$$

Lemma

Let $[\{x_t\}_{t=0}^k, \{u_t\}_{t=0}^{k-1}]$ be an optimal process. Then the process $[\{x_t\}_{t=\theta}^k, \{u_t\}_{t=\theta}^{k-1}]$ is also optimal for any $\theta \in [0:k]$, the state x_k is stopping, $u_t \in \mathcal{U}_{V^{\downarrow}}(x_t)$, and $V^{\downarrow}(x_0) = \sum_{t=0}^{\theta-1} \varphi(x_t, u_t) + V^{\downarrow}(x_{\theta})$.

Lemma

$$V(a) = \min \left\{ \min_{u \in U(a)} \left[\varphi(a, u) + V[f(a, u)] \right]; \eta(a) \right\}$$
 is a lower estimate of the Bellman function.

Lemma

Let $[\{x_t\}_{t=0}^k, \{u_t\}_{t=0}^{k-1}]$ be an optimal process. Then the process $[\{x_t\}_{t=\theta}^k, \{u_t\}_{t=\theta}^{k-1}]$ is also optimal for any $\theta \in [0:k]$, the state x_k is stopping, $u_t \in \mathcal{U}_{V^{\downarrow}}(x_t)$, and $V^{\downarrow}(x_0) = \sum_{t=0}^{k-1} \varphi(x_t, u_t) + V^{\downarrow}(x_{\theta})$.

Lemma

$$V(a) = \min \left\{ \min_{u \in U(a)} \left[\varphi(a, u) + V[f(a, u)] \right]; \eta(a) \right\}$$
 is a lower estimate of the Bellman function.

$$V(a) = \min \left\{ \min_{u \in U(a)} \left[\varphi(a, u) + V[f(a, u)] \right]; \eta(a) \right\}$$

$$I = \sum_{t=0}^{k-1} \varphi(x_t, u_t) + \eta[x_k] \ge \sum_{t=0}^{k-1} \varphi(x_t, u_t) + V[x_k]$$

Lemma

Let $[\{x_t\}_{t=0}^k, \{u_t\}_{t=0}^{k-1}]$ be an optimal process. Then the process $[\{x_t\}_{t=\theta}^k, \{u_t\}_{t=\theta}^{k-1}]$ is also optimal for any $\theta \in [0:k]$, the state x_k is stopping, $u_t \in \mathcal{U}_{V^{\downarrow}}(x_t)$, and $V^{\downarrow}(x_0) = \sum_{t=0}^{k-1} \varphi(x_t, u_t) + V^{\downarrow}(x_{\theta})$.

Lemma

$$V(a) = \min \left\{ \min_{u \in U(a)} \left[\varphi(a, u) + V[f(a, u)] \right]; \eta(a) \right\} \text{ is a lower}$$
 estimate of the Bellman function.

$$V(a) = \min \left\{ \min_{u \in U(a)} \left[\varphi(a, u) + V[f(a, u)] \right]; \eta(a) \right\}$$

$$I = \sum_{t=0}^{k-1} \varphi(x_t, u_t) + \eta[x_k] \ge \sum_{t=0}^{k-1} \varphi(x_t, u_t) + V[x_k]$$

$$= \sum_{t=0}^{k-2} \varphi(x_t, u_t) + \varphi(x_{k-1}, u_{k-1}) + V[f(x_{k-1}, u_{k-1})]$$

Lemma

Let $[\{x_t\}_{t=0}^k, \{u_t\}_{t=0}^{k-1}]$ be an optimal process. Then the process $[\{x_t\}_{t=\theta}^k, \{u_t\}_{t=\theta}^{k-1}]$ is also optimal for any $\theta \in [0:k]$, the state x_k is stopping, $u_t \in \mathcal{U}_{V^{\downarrow}}(x_t)$, and $V^{\downarrow}(x_0) = \sum_{t=0}^{\theta-1} \varphi(x_t, u_t) + V^{\downarrow}(x_{\theta})$.

Lemma

$$V(a) = \min \left\{ \min_{u \in U(a)} \left[\varphi(a, u) + V[f(a, u)] \right]; \eta(a) \right\}$$
 is a lower estimate of the Bellman function.

$$V(a) = \min \left\{ \min_{u \in U(a)} \left[\varphi(a, u) + V[f(a, u)] \right]; \eta(a) \right\}$$

$$I = \sum_{t=0}^{k-1} \varphi(x_t, u_t) + \eta[x_k] \ge \sum_{t=0}^{k-1} \varphi(x_t, u_t) + V[x_k]$$

$$= \sum_{t=0}^{k-2} \varphi(x_t, u_t) + \varphi(x_{k-1}, u_{k-1}) + V[f(x_{k-1}, u_{k-1})]$$

$$\ge \sum_{t=0}^{k-2} \varphi(x_t, u_t) + V[x_{k-1}] \ge \dots \ge V[x_0]$$

Lemma

Let $[\{x_t\}_{t=0}^k, \{u_t\}_{t=0}^{k-1}]$ be an optimal process. Then the process $[\{x_t\}_{t=\theta}^k, \{u_t\}_{t=\theta}^{k-1}]$ is also optimal for any $\theta \in [0:k]$, the state x_k is stopping, $u_t \in \mathcal{U}_{V^{\downarrow}}(x_t)$, and $V^{\downarrow}(x_0) = \sum_{t=0}^{\theta-1} \varphi(x_t, u_t) + V^{\downarrow}(x_{\theta})$.

Lemma

Any solution of the equation

$$V(a) = \min \left\{ \min_{u \in U(a)} \left[\varphi(a, u) + V[f(a, u)] \right]; \eta(a) \right\}$$
 is a lower estimate of the Bellman function.

Lemma

Let $u_t \in \mathcal{U}_V(x_t)$ and the process terminates upon arrival at the first stopping state. Then this process is optimal.

$$V(a) = \min \left\{ \min_{u \in U(a)} \left[\varphi(a, u) + V[f(a, u)] \right]; \eta(a) \right\}$$

$$I = \sum_{t=0}^{k-1} \varphi(x_t, u_t) + \eta[x_k] \ge \sum_{t=0}^{k-1} \varphi(x_t, u_t) + V[x_k]$$

$$= \sum_{t=0}^{k-2} \varphi(x_t, u_t) + \varphi(x_{k-1}, u_{k-1}) + V[f(x_{k-1}, u_{k-1})]$$

$$\ge \sum_{t=0}^{k-2} \varphi(x_t, u_t) + V[x_{k-1}] \ge \dots \ge V[x_0]$$