Университет ИТМО

Цифровая обработка сигналов Лабораторная работа №3

Вариант 3

Выполнила: Калугина Марина

Группа: Р3402

г. Санкт-Петербург

2020 г.

Задание

Цель работы - определение возможностей применения медианного фильтра для подавления импульсных помех.

Пусть на входе системы наблюдается смесь полезного сигнала и импульсной помехи. При этом на входе помеха по своей амплитуде в несколько раз превышает амплитуду сигнала. Путем медианной фильтрации с использованием фильтра с различным размером окна сканирования удается увеличить соотношение сигнал/шум.

- 1. По результатам моделирования построить зависимости:
- а) соотношения сигнал/шум в выходной смеси от размера окна сканирования (S=3,5,7,9,11) и числа импульсных помех; (число импульсных помех, частота сигнала, амплитуда помехи выбираются в соответствии с вариантом задания);
- б) соотношения сигнал/шум на выходе для линейного усредняющего фильта при тех же, что в.п 1,а) значениях (размер окна фильтра постоянен и равен 3);
- в) соотношения сигнал/шум на выходе от частоты полезного сигнала для фиксированного числа импульсных помех (например, 3; 5; 15) (частота сигнала варьируется от 1 до 30)

№ варианта	Частота	Амплитуда	Число	Амплитуда
	сигнала	сигнала	импульсныхпомехи	помехи
3	2,5	1	15-45	15

Выполнение

Соотношение сигнал/шум в выходной смеси от размера окна сканирования (S=3,5,7,9,11) и числа импульсных помех; (число импульсных помех, частота сигнала, амплитуда помехи выбираются в соответствии с вариантом задания);

Число помех	SNR out S3	SNR out S5	SNR out S7	SNR out S9	SNR out S11
15	0,959	4,138	4,417	3,394	2,819
20	0,936	1,097	4,76	3,398	2,567
25	0,854	1,061	4,742	3,301	2,49
30	0,726	0,952	4,387	2,566	2,564
35	0,751	0,811	1,023	1,114	2,292
40	0,728	0,837	0,978	1,023	2,437
45	0,716	0,716	0,966	1,044	2,935

SNR out S3, SNR out S5, SNR out S7, SNR out S9 и SNR out S11

Соотношение сигнал/шум на выходе для линейного усредняющего фильта при тех же, что в.п 1,а) значениях (размер окна фильтра постоянен и равен 3)

Число помех	SNR out S3	
15	0,81	
20	0,889	
25	0,801	
30	0,852	
35	0,859	
40	0,746	
45	0,745	

SNR out S3 относительно параметра "Число помех"

Соотношение сигнал/шум на выходе от частоты полезного сигнала для фиксированного числа импульсных помех (например, 3; 5; 15) (частота сигнала варьируется от 1 до 30)

Частота полезного			
сигнала	SNR out N3	SNR out N5	SNR out N15
1	1,135	0,876	0,884
3	1,025	1,016	0,816
5	1,032	1,032	0,776
7	1,063	1,099	0,821
9	1,153	0,926	0,787
11	0,905	0,867	0,888
13	1,013	1,004	0,956
15	0,96	1,039	0,796
17	0,977	0,922	0,847
19	1,077	0,954	0,908
21	0,981	0,919	0,824
23	1,01	1,002	0,786
25	0,878	0,98	0,789
27	0,993	1,014	0,758
29	0,887	0,846	0,805
30	0,91	0,945	0,743

SNR out N3, SNR out N5 и SNR out N15

Схема устройства

Вывод

В ходе данной работе были построены зависимости соотношения выходного сигнал/шум к размеру сканирующего окна и числу импульсных помех. В итоге чем больше импульсов, тем хуже выходной сигнал. Чем больше окно, тем стабильнее выходное значение. Была также построена зависимость сигнал/шум от количества

импульсов для линейного фильтра. Независимо от количества импульсов сигнал приблизительно одинаково плох, так что этот фильтр не очень эффективен. Третья зависимость была сигнал/шум от частоты полезного сигнала для медианного фильтра - высокой амплитуды помехи, фильтр плохо справляется с помехой даже при низких значениях частоты сигнала, однако с увеличением частоты качество работы фильтра ухудшается.