

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Sporton (Auden)

Accreditation No.: SCS 108

Cartificate No: D2600V2-1008_Sep09 CALIBRATION CERTIFICATE Object D2600V2 - SN: 1008 Calibration procedure(s) QA CAL-05.v7 Calibration procedure for dipole validation kits September 24, 2009 Calibration date: Condition of the calibrated item In Tolerance This calibration cartificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID-W Call Date (Calibrated by, Certificate No.) Scheduled Calibration Power meter EPM-442A GR37480704 08-Oct-08 (No. 217-00898) Oct-09 Power sensor HP 8481 A US37292783 08-Oct-08 (No. 217-00898) Oct-09 Reference 20 dB Attenuator SN: 5086 (20g) 31-Mar-09 (No. 217-01025) Mar-10 SN: 5047.2 / 06327 31-Mar-09 (No. 217-01029) Type-N mismatch combination Mar-10 Reference Probe ES3DV3. SN: 3206 26-Jun-09 (No. ES3-3205_Jun09) Jun-10 DAE4 SN: 601 07-Mar-09 (No. DAE4-601_Mar09) Mar-10 Secondary Standards ID # Check Date (in house) Scheduled Check MY41092317 Power sensor HP 8481A 18-Oct-02 (in house check Oct-07) In house check: Oct-09 RF generator R&S SMT-06 100005 4-Aug-99 (in house check Oct-07) In house check: Oct-09 Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-08) In house check: Oct-09 Name Function Calibrated by: Claudio Leubler Laboratory Technician Katja Pokovic Technical Manager Approved by: Issued: September 24, 2009 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D2600V2-1008_Sop09 Page 1 of 9

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D2600V2-1008_Sep09

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V5.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2600 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.0	1.96 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.8 ± 6 %	1.91 mho/m ± 6 %
Head TSL temperature during test	(22.0 ± 0.2) °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	condition	
SAR measured	250 mW input power	14.4 mW / g
SAR normalized	normalized to 1W	57.6 mW / g
SAR for nominal Head TSL parameters 1	normalized to 1W	58.5 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.52 mW / g
SAR normalized	normalized to 1W	26.1 mW/g
SAR for nominal Head TSL parameters 1	normalized to 1W	26.3 mW / g ± 16.5 % (k=2)

¹ Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.5	2.16 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.9 ± 6 %	2.14 mho/m ± 6 %
Body TSL temperature during test	(21.8 ± 0.2) °C		******

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	condition	
SAR measured	250 mW input power	14.4 mW / g
SAR normalized	normalized to 1W	57.6 mW / g
SAR for nominal Body TSL parameters 2	normalized to 1W	57.9 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.40 mW / g
SAR normalized	normalized to 1W	25.6 mW / g
SAR for nominal Body TSL parameters 2	normalized to 1W	25.7 mW / g ± 16.5 % (k=2)

Certificate No: D2600V2-1008_Sep09

² Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	49.1 Ω - 3.6 jΩ
Return Loss	- 28.5 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	45.1 Ω - 0.6 jΩ
Return Loss	- 25.7 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.156 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	December 23, 2006

DASY5 Validation Report for Head TSL

Date/Time: 23.09.2009 12:50:48

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN1008

Communication System: CW-2600; Frequency: 2600 MHz; Duty Cycle: 1:1

Medium: HSL U11 BB

Medium parameters used: f = 2600 MHz; $\sigma = 1.91 \text{ mho/m}$; $\varepsilon_r = 39.8$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

DASY5 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.47, 4.47, 4.47); Calibrated: 26.06.2009

Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 07.03.2009

Phantom: Flat Phantom 5.0 (front); Type; QD000P50AA; Serial: 1001

Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 102.8 V/m; Power Drift = 0.041 dB Peak SAR (extrapolated) = 30.1 W/kg

SAR(1 g) = 14.4 mW/g; SAR(10 g) = 6.52 mW/g

Maximum value of SAR (measured) = 18.6 mW/g

 $0 \, dB = 18.6 \, mW/g$

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date/Time: 24.09.2009 14:36:24

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN1008

Communication System: CW-2600; Frequency: 2600 MHz; Duty Cycle: 1:1

Medium: MSL U10 BB

Medium parameters used: f = 2600 MHz; $\sigma = 2.14 \text{ mho/m}$; $\epsilon_r = 52.9$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

DASY5 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.18, 4.18, 4.18); Calibrated: 26.06.2009
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 07.03.2009
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 95.7 V/m; Power Drift = 0.00855 dB

Peak SAR (extrapolated) = 31.5 W/kg

SAR(1 g) = 14.4 mW/g; SAR(10 g) = 6.4 mW/g

Maximum value of SAR (measured) = 18.5 mW/g

0 dB = 18.5 mW/g

Impedance Measurement Plot for Body TSL

Dipole Verification

Model / SN: D2600V2 / 1008

Verification Date: Dec. 21, 2010

Antenna Parameters with Head TSL

ance, Transformed to Feed Point	51.99Ω - 4.74	7jΩ (50±5Ω)
ı Loss	Loss -25.96 dB (<= -20 dB)	
Agilent Technologies	page 1 of 1	21-Dec-2010 15:05:13
Window 1 (1) S11 Units Smith C 1-Port 1.00	2 3	1: 2.300000 GHz 23.82 Ω 2.513 pF -27.55 Ω 39.50 Ω 1.321 nH 20.34 Ω 51.99 Ω -4.747 Ω
Ch1: Start 2.10000 GHz —		Stop 2.80000 GHz
Channel Succes Points Start Star Star	Surgan Pour 1 Pour 2	
Channel Sweep Points Start Stop IF BW Type (MHz) (MHz) (kHz)	Sweep Pow 1 Pow 2 Time (ms) (dBm) (dBm)	
1 LinFreq 201 2100.000000 2800.000000 35.000	6.030 0.00 0.00	

	Trace Attributes										
Window	ID	Trace	Channel	Correction	Smooth	Options	Marker	Position		Response	
1	1	S11	1	C 1-Port			1	2300 MHz	(23.632 Ω,	-27.539 Ω)	2.5139 pF
							2	2450 MHz	(39.477 Ω,	20.373 Ω)	1.3235 nH
							3	2600 MHz	(52.090 Ω,	-4.7057 Ω)	13.011 pF

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8084 Zurich, Switzerland

C

Accreditation No.: SCS 108

Schweizerischer Kalibrierdienst Service suizee d'étalonnage Servizie svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client Sporton (Auden) Certificate No. DAE3-577_Aug10

	ERTIFICATE	THE RESIDENCE	THE REAL PROPERTY.
Object	DAE3 - SD 000 D	03 AA - SN: 577	
Calibration procedure(s)	QA CAL-06.v22 Calibration proces	lectronics (DAE)	
Calibration date:	August 18, 2010		Allowership
The measurements and the unce	rtainties with confidence pro	nal standards, which realize the physical shability are given on the following page	s and are part of the certificate.
		facility: environment temperature (22 ±	ay G and humidity < rons.
Calibration Equipment used (M&)	(E critical for calibration)		
	ID#	Cal Date (Certificate No.)	Scheduled Calibration
	ID# SN: 0810278	Cal Date (Certificate No.) 1-Oct-09 (No: 9065)	Scheduled Calibration Oct-10
Keithley Multimeter Type 2001		1-Oct-09 (No: 9065) Check Date (in house)	
Primary Standards Keithley Multimoter Type 2001 Secondary Standards Celibrator Box V1.1	SN: 0810278	1-Oct-09 (No: 9065)	Dai-10
Keithley Multimeter Type 2001 Secondary Standards	SN: 0810278 ID # SE UMS 006 AB 1004	1-Oct-09 (No: 9055) Check Date (in house) 07-Jun-10 (in house check)	Oct-10 Scheduled Check In house check: Jun-11
Keithley Multimeter Type 2001 Secondary Standards Celibrator Box V1.1	SN: 0810278 ID # SE UMS 006 AB 1004 Name	1-Out-09 (No: 9065) Check Date (in house) 07-Jun-10 (in house check) Function	Dos-10 Scheduled Check
Keithley Multimeter Type 2001 Secondary Standards Celibrator Box V1.1	SN: 0810278 ID # SE UMS 006 AB 1004	1-Oct-09 (No: 9055) Check Date (in house) 07-Jun-10 (in house check)	Oct-10 Scheduled Check In house check: Jun-11
Keithley Multimeter Type 2001 Secondary Standards	SN: 0810278 ID # SE UMS 006 AB 1004 Name	1-Out-09 (No: 9065) Check Date (in house) 07-Jun-10 (in house check) Function	Oct-10 Scheduled Check In house check: Jun-11

Certificate No: DAE3-577_Aug10

Page 1 of 5

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signaturies to the EA
Multilateral Agreement for the recognition of calibration certificates

Glossary

DAE data acquisition electronics

Connector angle information used in DASY system to align probe sensor X to the robot

coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

Certificate No: DAE3-577_Aug10

DC Voltage Measurement

A/D - Converter Resolution nominal

High Range: 1LSB = 8.1μV, full range = -100...+300 mV Low Range: 1LSB = 61nV, full range = -1.....+3mV DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	×	Y	Z
High Range	404.410 ± 0.1% (k=2)	403.875 ± 0.1% (k=2)	404.306 ± 0.1% (k=2)
Low Range	3.93523 ± 0.7% (k=2)	3.93747 ± 0.7% (k=2)	3.95959 ± 0.7% (k=2)

Connector Angle

Connector Angle to be used in DASY system	237.0°±1°
TOTAL PROPERTY AND THE PROPERTY OF THE PROPERT	

Certificate No: DAE3-577_Aug10

Appendix

1. DC Voltage Linearity

High Range	Reading (µV)	Difference (µV)	Error (%)
Channel X + Input	200002.4	1.01	0.00
Channel X + Input	20001.90	2.00	0.01
Channel X - Input	-19995.45	3.95	-0.02
Channel Y + Input	200000,9	0.34	0.00
Channel Y + Input	20000.24	0.44	0.00
Channel Y - Input	-19999.83	-0.63	0.00
Channel Z + Input	200009.4	-0.37	-0.00
Channel Z + Input	20001.26	1.66	0.01
Channel Z - Input	-19997.92	1.18	-0.01

Low Range	Reading (µV)	Difference (µV)	Error (%)
Channel X + Input	2001.5	1.47	0.07
Channel X + Input	199.54	-0.56	-0.28
Channel X - Input	-200.29	-0.19	0.10
Channel Y + Input	2000.4	0.46	0.02
Channel Y + Input	199.57	-0.43	-0.22
Channel Y - Input	-200.89	-0.99	0.50
Channel Z + Input	2000.3	0.15	0.01
Channel Z + Input	198.91	-1.19	-0.60
Channel Z - Input	-201.38	-1.18	0.59

2. Common mode sensitivity

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (µV)
Channel X	200	15.30	13,68
	- 200	-12,48	-14.07
Channel Y	200	-6.90	-6.73
	- 200	6.05	5.52
Channel Z	200	-1.44	-1.60
	- 200	-0.02	0.09

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (µV)	Channel Y (µV)	Channel Z (µV)
Channel X	200		2.26	0.76
Channel Y	200	3.71		4.37
Channel Z	200	0.70	0.09	-

Certificate No: DAE3-577_Aug10

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	15971	16472
Channel Y	15862	15889
Channel Z	16210	16756

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input 10MQ

	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (µV)
Channel X	0.16	-1.80	3.19	0.66
Channel Y	-0.57	-1.98	1.29	0.46
Channel Z	-0.97	-1.74	-0.35	0.30

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)	
Supply (+ Vcc)	+7.9	
Supply (- Vcc)	-7.6	

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Voc)	-0.01	-8	-9

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

	en)		Certificate No: EX3-3731_Sep10			
CALIBRATION	CERTIFICAT	E				
Object	EX3DV4 - SN:3731					
Calibration procedure(s)	QA CAL-01.v6, QA CAL-14.v3, QA CAL-23.v3 and QA CAL-25.v2 Calibration procedure for dosimetric E-field probes					
Calibration date:	September 20,	2010				
he measurements and the unc	ertainties with confidence	tional standards, which realize the physical un probability are given on the following pages are ony facility: environment temperature (22 \pm 3)°	nd are part of the certificate.			
Calibration Equipment used (M&	RTE critical for calibration)					
rimary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration			
ower meter E4419B	GB41293874	1-Apr-10 (No. 217-01136)	Apr-11			
ower sensor E4412A	MY41495277	1-Apr-10 (No. 217-01136)	Apr-11			
ower sensor E4412A	MY41498087	1-Apr-10 (No. 217-01138)	Apr-11			
Reference 3 dB Attenuator	SN: S5054 (3c)	30-Mar-10 (No. 217-01159)	Mar-11			
Reference 20 dB Attenuator	SN: S5086 (20b)	30-Mar-10 (No. 217-01161)	Mar-11			
Reference 30 dB Attenuator	SN: S5129 (30b)	30-Mar-10 (No. 217-01160)	Mar-11			
Reference Probe ES3DV2	SN: 3013	30-Dec-09 (No. ES3-3013_Dec09)	Dec-10			
	SN: 660	20-Apr-10 (No. DAE4-660_Apr10)	Apr-11			
AE4						
	ID#	Check Date (in house)				
econdary Standards	ID# US3842U01700	Check Date (in house) 4-Aug-99 (in house check Oct-09)	Scheduled Check			
econdary Standards		Check Date (in house) 4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-09)				
Secondary Standards RF generator HP 8648C	US3842U01700 US37390585	4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-09)	Scheduled Check In house check: Oct-11 In house check: Oct10			
Secondary Standards RF generator HP 8648C Setwork Analyzer HP 8753E	US3842U01700 US37390585 Name	4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-09) Function	Scheduled Check In house check: Oct-11			
Secondary Standards RF generator HP 8648C	US3842U01700 US37390585	4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-09)	Scheduled Check In house check: Oct-11 In house check: Oct10			

Certificate No: EX3-3731_Sep10

Page 1 of 11

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid
NORMx,y,z sensitivity in free space
ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A, B, C modulation dependent linearization parameters

Polarization φ σ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- Techniques", December 2003

 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
 NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x, y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- Ax,y,z; Bx,y,z; Cx,y,z, VRx,y,z; A, B, C are numerical linearization parameters assessed based on the data of
 power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the
 maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: EX3-3731 Sep10

Probe EX3DV4

SN:3731

Manufactured: October 19, 2009 Last calibrated: July 16, 2010

Repaired: September 8, 2010 Recalibrated: September 20, 2010

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

DASY/EASY - Parameters of Probe: EX3DV4 SN:3731

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (μV/(V/m) ²) ^A	0.51	0.53	0.56	± 10.1%
DCP (mV) ^B	87.1	87.4	87.7	

Modulation Calibration Parameters

UID	Communication System Name	PAR		A dB	B dBuV	С	VR mV	Unc ^c (k=2)
10000	cw	0.00	×	0.00	0.00	1.00	300	± 1.5%
			Y	0.00	0.00	1.00	300	
			Z	0.00	0.00	1.00	300	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: EX3-3731_Sep10

 $^{^{\}wedge}$ The uncertainties of NormX,Y,Z do not affect the $E^{\hat{c}}$ -field uncertainty inside TSL (see Pages 5 and 6).

Numerical linearization parameter: uncertainty not required.

EUncertainty is determined using the maximum deviation from linear response applying recatangular distribution and is expressed for the square of the field value.

DASY/EASY - Parameters of Probe: EX3DV4 SN:3731

Calibration Parameter Determined in Head Tissue Simulating Media

f [MHz]	Validity [MHz] ^C	Permittivity	Conductivity	ConvF X	ConvF Y	ConvF Z	Alpha	Depth Unc (k=2)
835	±50/±100	41.5 ± 5%	$0.90 \pm 5\%$	8.85	8,85	8.85	0.60	0.69 ± 11.0%
1900	± 50 / ± 100	40.0 ± 5%	1.40 ± 5%	7.46	7.46	7.46	0.75	0.60 ±11.0%
2300	±50/±100	$39.5 \pm 5\%$	$1.67\pm5\%$	7.16	7.16	7.16	0.47	0.71 ± 11.0%
2600	±50/±100	39.0 ± 5%	$1.96\pm5\%$	6.88	6.88	6.88	0.31	0.95 ± 11.0%
3500	±50/±100	$37.9 \pm 5\%$	$2.91 \pm 5\%$	6.60	6.60	6.60	0.20	1.50 ± 13.1%
5200	±50/±100	$36.0 \pm 5\%$	$4.66\pm5\%$	4.83	4.83	4.83	0.35	1.90 ± 13.1%
5300	±50/±100	$35.9 \pm 5\%$	$4.76 \pm 5\%$	4.46	4.46	4.46	0.38	1.90 ± 13.1%
5500	± 50 / ± 100	$35.6\pm5\%$	$4.96 \pm 5\%$	4.46	4.46	4.46	0.42	1.90 ± 13.1%
5600	±50/±100	$35.5 \pm 5\%$	$5.07\pm5\%$	4.07	4.07	4.07	0.48	1.90 ± 13.1%
5800	±50/±100	35.3 ± 5%	$5.27 \pm 5\%$	4.22	4.22	4.22	0.50	1.90 ± 13.1%

^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

DASY/EASY - Parameters of Probe: EX3DV4 SN:3731

Calibration Parameter Determined in Body Tissue Simulating Media

Inc (k=2)
± 11.0%
± 11.0%
± 11.0%
± 11.0%
± 13.1%
± 13.1%
± 13.1%
± 13.1%
± 13.1%
± 13.1%
±

E The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ComvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Frequency Response of E-Field

(TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Dynamic Range f(SAR_{head})

(Waveguide R22, f = 1800 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment

Deviation from Isotropy in HSL

Error (φ, θ), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	Not applicable
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	2 mm