Clase 12 - Aproximación de funciones (3)

Mejor aproximación de funciones con pesos

Ahora se reformulará el problema de mejor aproximación de funciones por cuadrados mínimos con funciones de peso.

Definición 1. Una función (integrable) ω se llama **función de peso** en el intervalo I si $\omega(x) \geq 0$ para todo $x \in I$, pero $\omega(x) \neq 0$ para todo x en cualquier subintervalo de I, es decir ω no puede ser constantemente cero en un subintervalo de I.

Las funciones de peso se utilizarán en la definición de la medida del error y permiten dar más o menos importancia a las aproximaciones en ciertas partes del intervalo. Por ejemplo, la función de peso definida por

$$\omega(x) = \frac{1}{\sqrt{1 - x^2}} \quad \text{para } x \in (-1, 1)$$

pone menos énfasis cerca del origen y por el contrario mucho más cerca de los extremos del intervalo. Ver Figura (1).

Figura 1: Función de peso $w(x) = \frac{1}{\sqrt{1-x^2}}$

El problema reformulado: Dados $\{\phi_0, \phi_1, \dots, \phi_n\}$ un conjunto de funciones linealmente independientes en [a,b], una función de peso ω definida en [a,b] y f una función continua en [a,b], se desean determinar los coeficientes a_0, a_1, \dots, a_n de la combinación lineal que definen

$$P(x) = \sum_{k=0}^{n} a_k \, \phi_k(x),$$

tal que minimizan la medida del error

$$E = E(a_0, \dots, a_n) = \int_a^b \omega(x) [f(x) - P(x)]^2 dx = \int_a^b \omega(x) [f(x) - \sum_{k=0}^n a_k \phi_k(x)]^2 dx.$$

Notar que esto generaliza lo que vimos en la clase anterior tomando $\omega(x) \equiv 1$ y $\phi_k(x) = x^k$ para k = 0, ..., n.

Nuevamente, una condición necesaria para encontrar un minimizador en (a_0, \ldots, a_n) es que $\partial E/\partial a_j = 0$ para todo $j = 0, \ldots, n$, esto es,

$$\frac{\partial E}{\partial a_j} = 2 \int_a^b \omega(x) [f(x) - \sum_{k=0}^n a_k \phi_k(x)] \phi_j(x) dx = 0, \quad \text{para} \quad j = 0, \dots, n.$$

Así, obtenemos las ecuaciones normales para el caso general

$$\sum_{k=0}^{n} a_k \int_a^b \omega(x) \phi_k(x) \phi_j(x) dx = \int_a^b \omega(x) f(x) \phi_j(x) dx, \quad \text{para} \quad j = 0, \dots, n.$$

Si fuera posible elegir funciones $\{\phi_0, \dots, \phi_n\}$ tal que

$$\int_{a}^{b} \omega(x)\phi_{k}(x)\phi_{j}(x) dx = \begin{cases} 0 & \text{si} \quad j \neq k \\ \alpha_{j} > 0 & \text{si} \quad j = k \end{cases}$$

las ecuaciones normales se podrían reducir a

$$a_j \int_a^b \omega(x) (\phi_j(x))^2 dx = \int_a^b \omega(x) f(x) \phi_j(x) dx,$$
 para $j = 0, \dots, n.$

Ahora, usando (1) se tiene

$$a_j \alpha_j = \int_a^b \omega(x) f(x) \phi_j(x) dx$$
, para $j = 0, \dots, n$,

y por lo tanto

$$a_j = \frac{1}{\alpha_j} \int_a^b \omega(x) f(x) \phi_j(x) dx$$
, para $j = 0, \dots, n$.

Definición 2. El conjunto $\{\phi_0, \dots, \phi_n\}$ es un **conjunto ortogonal** de funciones en el intervalo [a,b], con respecto a la función de peso ω , si

$$\int_{a}^{b} \omega(x) \phi_{k}(x) \phi_{j}(x) dx = \begin{cases} 0 & si \quad j \neq k \\ \alpha_{j} & si \quad j = k. \end{cases}$$

Si $\alpha_i = 1$ para todo j = 0, ..., n se dice que el conjunto es **ortonormal**.

Lema 1. Si $\{\phi_0, \phi_1, \dots, \phi_n\}$ es un conjunto ortogonal de funciones en el intervalo I con respecto a una función de peso ω definida en I entonces son linealmente independientes.

Demostración. Supongamos que

$$\sum_{j=0}^{n} c_j \, \phi_j(x) = 0, \quad \text{ para todo } x \in I.$$

Luego

$$0 = \int_{a}^{b} 0 \, \phi_{k}(x) \, \omega(x) \, dx = \int_{a}^{b} \sum_{j=0}^{n} c_{j} \, \phi_{j}(x) \, \phi_{k}(x) \, \omega(x) \, dx = \sum_{j=0}^{n} c_{j} \int_{a}^{b} \phi_{j}(x) \, \phi_{k}(x) \, \omega(x) \, dx = c_{k} \, \alpha_{k},$$

como $\alpha_k > 0$, entonces $c_k = 0$ para todo k = 0, ..., n, y por lo tanto las funciones son linealmente independientes.

Lema 2. Sea el conjunto de funciones polinomiales $\{\phi_0, \phi_1, \dots, \phi_n\}$ es un conjunto ortogonal en el intervalo [a,b] con respecto a una función de peso ω , con grado de ϕ_k igual a k y $Q_k(x)$ es un polinomio de grado k menor estricto que n entonces

$$\int_{a}^{b} \omega(x)\phi_{n}Q_{k}(x) dx = 0.$$

Demostración. Como $Q_k(x)$ tiene grado k se sabe que existen coeficientes c_0, \ldots, c_k tales que

$$Q_k(x) = \sum_{j=0}^k c_j \phi_j(x).$$

Luego

$$\int_a^b \boldsymbol{\omega}(x)\phi_n(x)Q_k(x)\,dx = \sum_{j=0}^k c_j \int_a^b \boldsymbol{\omega}(x)\phi_n(x)\phi_j(x)\,dx = 0,$$

pues ϕ_n es ortogonal a ϕ_j para cada $j = 0, \dots, k$.

En resumen, con lo anterior se ha probado el siguiente teorema

Teorema 1. Si $\{\phi_0, \phi_1, \dots, \phi_n\}$ es un conjunto ortogonal de funciones en el intervalo [a,b] con respecto a una función de peso ω definida en [a,b], entonces la aproximación por cuadrados mínimos a una función continua f respecto al peso ω está dada por

$$P(x) = \sum_{k=0}^{n} a_k \, \phi_k(x),$$

donde para cada $k = 0, \ldots, n$,

$$a_k = \frac{\int_a^b \omega(x) f(x) \phi_k(x) dx}{\int_a^b \omega(x) (\phi_k(x))^2 dx} = \frac{1}{\alpha_k} \int_a^b \omega(x) f(x) \phi_k(x) dx.$$

El resultado siguiente da una relación de recurrencia que permite generar un conjunto de funciones ortogonales.

Teorema 2. El conjunto de funciones polinomiales $\{\phi_0, \phi_1, \dots, \phi_n\}$ que se define a continuación es un conjunto ortogonal en el intervalo [a,b] con respecto a una función de peso ω

$$\phi_0(x) = 1$$
, $\phi_1(x) = x - B_1$ para cada $x \in [a, b]$,

donde

$$B_1 = \frac{\int_a^b x \omega(x) (\phi_0(x))^2 dx}{\int_a^b \omega(x) (\phi_0(x))^2 dx},$$

y para $k \geq 2$

$$\phi_k(x) = (x - B_k) \phi_{k-1}(x) - C_k \phi_{k-2}(x)$$
 para cada $x \in [a, b]$,

donde

$$B_k = \frac{\int_a^b x \omega(x) (\phi_{k-1}(x))^2 dx}{\int_a^b \omega(x) (\phi_{k-1}(x))^2 dx} \quad y \quad C_k = \frac{\int_a^b x \omega(x) \phi_{k-1}(x) \phi_{k-2}(x) dx}{\int_a^b \omega(x) (\phi_{k-2}(x))^2 dx}.$$

Demostración. La prueba se hará por inducción en k.

Si k = 1, entonces,

$$\int_{a}^{b} \omega(x)\phi_{1}(x)\phi_{0}(x) dx = \int_{a}^{b} x\omega(x)\phi_{0}(x) dx - B_{1} \int_{a}^{b} \omega(x)\phi_{0}(x) dx = 0,$$

pues $\phi_0(x) = (\phi_0(x))^2$ y por la definición de B_1 .

Ahora supongamos, por hipótesis inductiva, que $\{\phi_0, \phi_1, \dots, \phi_{k-1}\}$ son ortogonales, y veamos que ϕ_k es ortogonal a todas las funciones anteriores.

$$\int_{a}^{b} \omega(x)\phi_{k}(x)\phi_{k-1}(x) dx = \int_{a}^{b} \omega(x) ((x - B_{k})\phi_{k-1}(x) - C_{k}\phi_{k-2}(x)) \phi_{k-1}(x) dx
= \int_{a}^{b} x\omega(x) (\phi_{k-1}(x))^{2} dx - B_{k} \int_{a}^{b} \omega(x) (\phi_{k-1}(x))^{2} dx
- C_{k} \int_{a}^{b} \omega(x)\phi_{k-2}(x)\phi_{k-1}(x) dx = 0,$$

pues los dos primeros términos suman cero por la definición de B_k y el último término es cero por la hipótesis inductiva.

Además,

$$\int_{a}^{b} \omega(x)\phi_{k}(x)\phi_{k-2}(x) dx = \int_{a}^{b} \omega(x) \left((x - B_{k}) \phi_{k-1}(x) - C_{k}\phi_{k-2}(x) \right) \phi_{k-2}(x) dx
= \int_{a}^{b} x \omega(x)\phi_{k-1}(x)\phi_{k-2}(x) dx - B_{k} \int_{a}^{b} \omega(x)\phi_{k-1}(x)\phi_{k-2}(x) dx
- C_{k} \int_{a}^{b} \omega(x)(\phi_{k-2}(x))^{2} dx = 0,$$

pues el primero y el tercer término suman cero por la definición de C_k y el segundo término es cero por la hipótesis inductiva.

Por último para $0 \le i \le k-3$, reemplazando k por i+1 en $\phi_k(x) = (x-B_k)\phi_{k-1}(x) - C_k\phi_{k-2}(x)$, se obtiene que $\phi_{i+1}(x) = (x-B_{i+1})\phi_i(x) - C_{i+1}\phi_{i-1}(x)$ y por lo tanto

$$x\phi_i(x) = \phi_{i+1}(x) + B_{i+1}\phi_i(x) + C_{i+1}\phi_{i-1}(x).$$
(2)

Luego

$$\int_{a}^{b} \omega(x)\phi_{k}(x)\phi_{i}(x) dx = \int_{a}^{b} \omega(x) ((x - B_{k}) \phi_{k-1}(x) - C_{k}\phi_{k-2}(x)) \phi_{i}(x) dx
= \int_{a}^{b} x\omega(x)\phi_{k-1}(x)\phi_{i}(x) dx - B_{k} \int_{a}^{b} \omega(x)\phi_{k-1}(x)\phi_{i}(x) dx
- C_{k} \int_{a}^{b} \omega(x)\phi_{k-2}(x)\phi_{i}(x) dx.$$

Los dos últimos términos son iguales a cero por la hipótesis inductiva. Usamos (2) para analizar el primer término:

$$\int_{a}^{b} x \omega(x) \phi_{k-1}(x) \phi_{i}(x) dx = \int_{a}^{b} \omega(x) x \phi_{i}(x) \phi_{k-1}(x) dx
= \int_{a}^{b} \omega(x) (\phi_{i+1}(x) + B_{i+1} \phi_{i}(x) + C_{i+1} \phi_{i-1}(x)) \phi_{k-1}(x) dx
= \int_{a}^{b} \omega(x) \phi_{i+1}(x) \phi_{k-1}(x) dx + B_{i+1} \int_{a}^{b} \omega(x) \phi_{i}(x) \phi_{k-1}(x) dx
= +C_{i+1} \int_{a}^{b} \omega(x) \phi_{i-1}(x) \phi_{k-1}(x) dx,$$

y estos tres términos son iguales a cero por la hipótesis inductiva si $0 \le i \le k-3$. Por lo tanto queda demostrada la ortogonalidad en todos los casos.

Ejemplos:

- **Polinomios de Legendre:** $I = [-1, 1], \omega(x) = 1$ para todo $x \in I$,

$$\phi_0(x) = 1$$
, $\phi_1(x) = x$, $\phi_2(x) = x^2 - \frac{1}{3}$, $\phi_3(x) = x^3 - \frac{3}{5}x$, $\phi_4(x) = x^4 - \frac{6}{7}x^2 + \frac{3}{25}$,...

- **Polinomios de Chebyshev:** $I = (-1,1), \omega(x) = \frac{1}{\sqrt{1-x^2}}$ para todo $x \in I$,

$$\phi_k(x) = \cos(k \arccos(x)), \quad \text{para todo } x \in I, \quad k = 0, 1, 2, \dots$$

- **Polinomios de Laguerre:** $I = [0, +\infty), \omega(x) = e^{-x}$ para todo $x \in I$,

$$\phi_k(x) = \frac{e^x}{k!} \frac{d^k}{dx^k} (x^k e^{-x}), \quad \text{para todo } x \in I, \quad k = 0, 1, 2, \dots$$

- **Polinomios de Hermite:** $I=(-\infty,+\infty),\, \omega(x)=e^{-x^2}$ para todo $x\in I,$

$$\phi_k(x) = (-1)^k e^{x^2} \frac{d^k}{dx^k} e^{x^2}, \quad \text{para todo } x \in I, \quad k = 0, 1, 2, \dots$$