Título en español (definido en Cascaras\cover.tex)
Title in English (defined in Cascaras\cover.tex)

Trabajo de Fin de Máster Curso 2019–2020

Autor Nombre Apellido1 Apellido2

Director

Director 1 Director 2

Colaborador

Colaborador 1 Colaborador 2

Máster en Ingeniería Informática Facultad de Informática Universidad Complutense de Madrid

Título en español (definido en Cascaras\cover.tex) Title in English (defined in Cascaras\cover.tex)

Autor Nombre Apellido1 Apellido2

Director 1
Director 2

Colaborador 1 Colaborador 2

Convocatoria: Febrero/Junio/Septiembre 2020 Calificación: Nota

Máster en Ingeniería Informática Facultad de Informática Universidad Complutense de Madrid

DIA de MES de AÑO

Dedicatoria

Agradecimientos

A Guillermo, por el tiempo empleado en hacer estas plantillas. A Adrián, Enrique y Nacho, por sus comentarios para mejorar lo que hicimos. Y a Narciso, a quien no le ha hecho falta el Anillo Único para coordinarnos a todos.

Resumen

Título en español (definido en Cascaras\cover.tex)

Nuestro sistema inmune es esencial para nuestra supervivencia. Sin el, estaríamos expuestos a ataques de bacterias, virus, parásitos, entre otros.

Este sistema se extiende por todo el cuerpo e involucra a muchos tipos de células, órganos, proteínas y tejidos. Su misión principal es reconocer patógenos y reaccionar frente a ellos, provocando un proceso que llamaremos respuesta inmune.

En lo que sigue nos centraremos en la dinámica de población de un tipo de célula inmune concreto: las células T, estas participan de manera fundamental en la respuesta inmune. A pesar de lo complicado que pueda parecer, veremos que la decisión entre división o muerte de estas células sigue un patrón sumamente sencillo y propondremos un modelo matemático para estas variaciones. Así mismo, se presentarán simulaciones de ejemplo de dicho modelo.

Palabras clave

Máximo 10 palabras clave separadas por comas

Abstract

Title in English (defined in Cascaras\cover.tex)

An abstract in English, half a page long, including the title in English. Below, a list with no more than 10 keywords.

Keywords

10 keywords max., separated by commas.

Índice

1.	Intr	oducción	1
	1.1.	Motivación	2
	1.2.	Objetivos	2
	1.3.	Plan de trabajo	3
	1.4.	Estructura del documento	3
	1.5.	Explicaciones adicionales sobre el uso de esta plantilla	3
		1.5.1. Texto de prueba	3
2.	Esta	ado de la Cuestión	7
	2.1.	Cuestiones básicas de inmunología	7
		2.1.1. El sistema inmune innato	7
		2.1.2. El sistema inmune adaptativo	8
3.	Mod	delo matemático	11
	3.1.	Introducción	11
	3.2.	Hipótesis biológicas y modelo matemático	11
		3.2.1. Hipótesis biológicas	12
		3.2.2. Modelo matemático	13
4.	Con	iclusiones y Trabajo Futuro	15
5.	Intr	oduction	17
6.	Con	clusions and Future Work	19
Α.	Títu	ılo del Apéndice A	21
В.	Títı	ulo del Apéndice B	23

Índice de figuras

2.1.	Fagocitación de un macrófago a una bacteria.	8
2.2.	Macrófago reconociendo una bacteria gracias a la acción anticuerpo-antígeno.	Ĝ
3.1.	Representación del ciclo celular	12

Índice de tablas

Introducción

"Frase célebre dicha por alguien inteligente"
— Autor

Las Matemáticas tienen una larga tradición dentro de la Biología, desde los trabajos de Gregor Mendel en genética o los de Theodor Boveri en la naturaleza de los cromosomas. Sin embargo, las colaboraciones matematico-biologo no se hacen notar demasiado frecuentes. Poco a poco los descubrimientos en biología se vuelven más especializados y su entendimiento requiere más detalle, es por eso que los modelos matemáticos que se proponen en este contexto han sido, con frecuencia, mirados "bajo sospecha".

En el caso que nos cocupa, la inmnunología, la cosa no es muy diferente. A pesar de ello, los modelos matemáticos son cada día más importantes. Una de las razones principales es porque la intuición es insuficiente a partir de un cierto nivel de complejidad y el análisis del sistema inmune (SI) debe ser más cuantitativo.

Los datos recogidos experimentalmente exponen la complejidad del SI, su no linealidad, sus redundancias, etc. Todo esto sumado al avance de la tecnología y la explosión de información, eso que llamamos hoy big data, hacen que las soluciones automáticas (computarizadas) sean la única manera de acercarse a determinados problemas biológicos y médicos.

No debemos olvidar que los modelos matemáticos no son una representación 100 % fiable del problema que modelizan, pues la misión que tienen estos modelos es ayudar a comprender el funcionamiento de un determinado proceso cuyo conocimiento aún está incompleto, reproducirlo y predecir qué consecuencias tendrá. Es, por tanto, importante, remarcar que los modelos se construyen sobre hipótesis aún inestables y que es precisamente esto lo que les hace tan potentes: permiten incluir variaciones, nuevas hipótesis, compararse con otros modelos,... y gracias a ello lograr una visión más amplia del problema. Pudiendo obtener información útil que de otra manera hubiera sido imposible, ya bien sea por razones del elevado coste económico de los experimentos, por el tiempo que lleva realizarlos, o por la cantidad de datos a examinar, entre otras razones. Pero no pensemos que los modelos "aciertan", también nos ayudan a descartar vías de investigación que no se ajusten a lo observado. Y eso es, sin duda, avanzar en el problema.

En este trabajo propondremos un modelo matemático muy simple, basado en ecuaciones diferenciales, con el cual modelizaremos la dinámica de población de unas células del SI muy destacadas: las células T. Además, acompañaremos estos resultados con simulaciones de dicho modelo.

1.1. Motivación

- Matemáticas en este mundillo
- (Grandes problemas de la inmunología)
- Cómo ayudan las matemáticas
- Buscar preguntas sin resolver del SI
- (Grandes problemas de la inmunología)

La habilidad de nuestro sistema inmune (SI) para protegernos de los patógenos es ciertamente apasionante. Las células inmunes deben saber cómo diferenciar a las células amigas de las enemigas, cómo y dónde actuar.

Son diversas las amenazas a las que el SI tiene que enfrentarse y dar una respuesta eficiente y proporcional. Estas amenazas pueden ser de naturaleza biológica (agentes patógenos), físico-químicas (como contaminantes o radiaciones) o internas (por ejemplo, las células cancerosas).

A lo largo de los años, muchas preguntas sobre el funcionamiento del SI han sido respondidas, pero aún quedan muchas otras por responder: ¿Quién regula la actuación del SI? ¿qué influye en la respuesta inmune?, ¿cuál es el software que llevan las células inmunes?... PROBLEMAS SIN RESOLVER EN INMUNOLOGÍA EN GENERAL (BUSCAR)

Si bien parece natural pensar que hay un órgano que actúa de director, ese órgano, si existe, aún no se ha encontrado. Incita, por tanto, a considerar, que las células inmunes basan su actuación en la información local que encuentran a su alrededor. Y sobre esta suposición construiremos un modelo que describa las dos actuaciones básicas, división y muerte celular, que desarrollan las células inmunes que vamos a estudiar: las células T.

De este comportamiento aparentemente complejo destacaremos la simplicidad: las células T tienen un número muy limitado de opciones, y estas vienen determinadas por el ambiente en el que se mueven y la información que recogen de él.

A pesar de que en este trabajo nos centraremos en una tarea muy particular del SI, como es la dinámica de población de las células T, no debemos olvidar que estas células no son las únicas que forman parte de él, hay muchos otras, y de diversos tipos, interactuando con ellas. Pongamos un ejemplo que ayude a entender la dimensión del asunto: supongamos que estamos viendo un partido de fútbol en la televisión y nos enfocan a un jugador que va corriendo a toda velocidad y luego para en seco. Esto no parece tener mucho sentido. Después, repiten la misma jugada con un campo de visión más amplio, donde podemos ver todo el terreno de juego. Ahora entendemos que el jugador ha parado porque el equipo contrario se hizo con el balón que él estaba esperando.

A pesar de la descentralización en sus tareas y del poco margen de maniobra, es asombroso que el resultado que nos ofrece el SI sea tan eficiente.

1.2. Objetivos

- Estudiar el entorno biológico sobre el que se sustenta este TFG.
- Estudiar y entender el modelo propuesto y sus aplicaciones.

• Desarrollar simulaciones de dicho modelo que complementen la teoría vista.

1.3. Plan de trabajo

Aquí se describe el plan de trabajo a seguir para la consecución de los objetivos descritos en el apartado anterior.

1.4. Estructura del documento

1.5. Explicaciones adicionales sobre el uso de esta plantilla

Si quieres cambiar el **estilo del título** de los capítulos, edita TeXiS\TeXiS_pream.tex y comenta la línea \usepackage[Lenny]{fncychap} para dejar el estilo básico de LATEX.

Si no te gusta que no haya **espacios entre párrafos** y quieres dejar un pequeño espacio en blanco, no metas saltos de línea (\\) al final de los párrafos. En su lugar, busca el comando $\mathbf{setlength{parskip}{0.2ex}}$ en TeXiS\TeXiS_pream.tex y aumenta el valor de 0.2ex a, por ejemplo, 1ex.

TFMTeXiS se ha elaborado a partir de la plantilla de TeXiS¹, creada por Marco Antonio y Pedro Pablo Gómez Martín para escribir su tesis doctoral. Para explicaciones más extensas y detalladas sobre cómo usar esta plantilla, recomendamos la lectura del documento TeXiS-Manual-1.0.pdf que acompaña a esta plantilla.

El siguiente texto se genera con el comando \lipsum[2-20] que viene a continuación en el fichero .tex. El único propósito es mostrar el aspecto de las páginas usando esta plantilla. Quita este comando y, si quieres, comenta o elimina el paquete lipsum al final de TeXiS\TeXiS_pream.tex

1.5.1. Texto de prueba

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tincidunt ultrices. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In hac habitasse platea dictumst. Integer tempus convallis augue. Etiam facilisis. Nunc elementum fermentum wisi.

http://gaia.fdi.ucm.es/research/texis/

Aenean placerat. Ut imperdiet, enim sed gravida sollicitudin, felis odio placerat quam, ac pulvinar elit purus eget enim. Nunc vitae tortor. Proin tempus nibh sit amet nisl. Vivamus quis tortor vitae risus porta vehicula.

Fusce mauris. Vestibulum luctus nibh at lectus. Sed bibendum, nulla a faucibus semper, leo velit ultricies tellus, ac venenatis arcu wisi vel nisl. Vestibulum diam. Aliquam pellentesque, augue quis sagittis posuere, turpis lacus congue quam, in hendrerit risus eros eget felis. Maecenas eget erat in sapien mattis porttitor. Vestibulum porttitor. Nulla facilisi. Sed a turpis eu lacus commodo facilisis. Morbi fringilla, wisi in dignissim interdum, justo lectus sagittis dui, et vehicula libero dui cursus dui. Mauris tempor ligula sed lacus. Duis cursus enim ut augue. Cras ac magna. Cras nulla. Nulla egestas. Curabitur a leo. Quisque egestas wisi eget nunc. Nam feugiat lacus vel est. Curabitur consectetuer.

Suspendisse vel felis. Ut lorem lorem, interdum eu, tincidunt sit amet, laoreet vitae, arcu. Aenean faucibus pede eu ante. Praesent enim elit, rutrum at, molestie non, nonummy vel, nisl. Ut lectus eros, malesuada sit amet, fermentum eu, sodales cursus, magna. Donec eu purus. Quisque vehicula, urna sed ultricies auctor, pede lorem egestas dui, et convallis elit erat sed nulla. Donec luctus. Curabitur et nunc. Aliquam dolor odio, commodo pretium, ultricies non, pharetra in, velit. Integer arcu est, nonummy in, fermentum faucibus, egestas vel, odio.

Sed commodo posuere pede. Mauris ut est. Ut quis purus. Sed ac odio. Sed vehicula hendrerit sem. Duis non odio. Morbi ut dui. Sed accumsan risus eget odio. In hac habitasse platea dictumst. Pellentesque non elit. Fusce sed justo eu urna porta tincidunt. Mauris felis odio, sollicitudin sed, volutpat a, ornare ac, erat. Morbi quis dolor. Donec pellentesque, erat ac sagittis semper, nunc dui lobortis purus, quis congue purus metus ultricies tellus. Proin et quam. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos hymenaeos. Praesent sapien turpis, fermentum vel, eleifend faucibus, vehicula eu, lacus.

Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Donec odio elit, dictum in, hendrerit sit amet, egestas sed, leo. Praesent feugiat sapien aliquet odio. Integer vitae justo. Aliquam vestibulum fringilla lorem. Sed neque lectus, consectetuer at, consectetuer sed, eleifend ac, lectus. Nulla facilisi. Pellentesque eget lectus. Proin eu metus. Sed porttitor. In hac habitasse platea dictumst. Suspendisse eu lectus. Ut mi mi, lacinia sit amet, placerat et, mollis vitae, dui. Sed ante tellus, tristique ut, iaculis eu, malesuada ac, dui. Mauris nibh leo, facilisis non, adipiscing quis, ultrices a, dui.

Morbi luctus, wisi viverra faucibus pretium, nibh est placerat odio, nec commodo wisi enim eget quam. Quisque libero justo, consectetuer a, feugiat vitae, porttitor eu, libero. Suspendisse sed mauris vitae elit sollicitudin malesuada. Maecenas ultricies eros sit amet ante. Ut venenatis velit. Maecenas sed mi eget dui varius euismod. Phasellus aliquet volutpat odio. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Pellentesque sit amet pede ac sem eleifend consectetuer. Nullam elementum, urna vel imperdiet sodales, elit ipsum pharetra ligula, ac pretium ante justo a nulla. Curabitur tristique arcu eu metus. Vestibulum lectus. Proin mauris. Proin eu nunc eu urna hendrerit faucibus. Aliquam auctor, pede consequat laoreet varius, eros tellus scelerisque quam, pellentesque hendrerit ipsum dolor sed augue. Nulla nec lacus.

Suspendisse vitae elit. Aliquam arcu neque, ornare in, ullamcorper quis, commodo eu, libero. Fusce sagittis erat at erat tristique mollis. Maecenas sapien libero, molestie et, lobortis in, sodales eget, dui. Morbi ultrices rutrum lorem. Nam elementum ullamcorper leo. Morbi dui. Aliquam sagittis. Nunc placerat. Pellentesque tristique sodales est. Maecenas imperdiet lacinia velit. Cras non urna. Morbi eros pede, suscipit ac, varius vel, egestas non, eros. Praesent malesuada, diam id pretium elementum, eros sem dictum tortor, vel

consectetuer odio sem sed wisi.

Sed feugiat. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Ut pellentesque augue sed urna. Vestibulum diam eros, fringilla et, consectetuer eu, nonummy id, sapien. Nullam at lectus. In sagittis ultrices mauris. Curabitur malesuada erat sit amet massa. Fusce blandit. Aliquam erat volutpat. Aliquam euismod. Aenean vel lectus. Nunc imperdiet justo nec dolor.

Etiam euismod. Fusce facilisis lacinia dui. Suspendisse potenti. In mi erat, cursus id, nonummy sed, ullamcorper eget, sapien. Praesent pretium, magna in eleifend egestas, pede pede pretium lorem, quis consectetuer tortor sapien facilisis magna. Mauris quis magna varius nulla scelerisque imperdiet. Aliquam non quam. Aliquam porttitor quam a lacus. Praesent vel arcu ut tortor cursus volutpat. In vitae pede quis diam bibendum placerat. Fusce elementum convallis neque. Sed dolor orci, scelerisque ac, dapibus nec, ultricies ut, mi. Duis nec dui quis leo sagittis commodo.

Aliquam lectus. Vivamus leo. Quisque ornare tellus ullamcorper nulla. Mauris porttitor pharetra tortor. Sed fringilla justo sed mauris. Mauris tellus. Sed non leo. Nullam elementum, magna in cursus sodales, augue est scelerisque sapien, venenatis congue nulla arcu et pede. Ut suscipit enim vel sapien. Donec congue. Maecenas urna mi, suscipit in, placerat ut, vestibulum ut, massa. Fusce ultrices nulla et nisl.

Etiam ac leo a risus tristique nonummy. Donec dignissim tincidunt nulla. Vestibulum rhoncus molestie odio. Sed lobortis, justo et pretium lobortis, mauris turpis condimentum augue, nec ultricies nibh arcu pretium enim. Nunc purus neque, placerat id, imperdiet sed, pellentesque nec, nisl. Vestibulum imperdiet neque non sem accumsan laoreet. In hac habitasse platea dictumst. Etiam condimentum facilisis libero. Suspendisse in elit quis nisl aliquam dapibus. Pellentesque auctor sapien. Sed egestas sapien nec lectus. Pellentesque vel dui vel neque bibendum viverra. Aliquam porttitor nisl nec pede. Proin mattis libero vel turpis. Donec rutrum mauris et libero. Proin euismod porta felis. Nam lobortis, metus quis elementum commodo, nunc lectus elementum mauris, eget vulputate ligula tellus eu neque. Vivamus eu dolor.

Nulla in ipsum. Praesent eros nulla, congue vitae, euismod ut, commodo a, wisi. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Aenean nonummy magna non leo. Sed felis erat, ullamcorper in, dictum non, ultricies ut, lectus. Proin vel arcu a odio lobortis euismod. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Proin ut est. Aliquam odio. Pellentesque massa turpis, cursus eu, euismod nec, tempor congue, nulla. Duis viverra gravida mauris. Cras tincidunt. Curabitur eros ligula, varius ut, pulvinar in, cursus faucibus, augue.

Nulla mattis luctus nulla. Duis commodo velit at leo. Aliquam vulputate magna et leo. Nam vestibulum ullamcorper leo. Vestibulum condimentum rutrum mauris. Donec id mauris. Morbi molestie justo et pede. Vivamus eget turpis sed nisl cursus tempor. Curabitur mollis sapien condimentum nunc. In wisi nisl, malesuada at, dignissim sit amet, lobortis in, odio. Aenean consequat arcu a ante. Pellentesque porta elit sit amet orci. Etiam at turpis nec elit ultricies imperdiet. Nulla facilisi. In hac habitasse platea dictumst. Suspendisse viverra aliquam risus. Nullam pede justo, molestie nonummy, scelerisque eu, facilisis vel, arcu.

Curabitur tellus magna, porttitor a, commodo a, commodo in, tortor. Donec interdum. Praesent scelerisque. Maecenas posuere sodales odio. Vivamus metus lacus, varius quis, imperdiet quis, rhoncus a, turpis. Etiam ligula arcu, elementum a, venenatis quis, sollicitudin sed, metus. Donec nunc pede, tincidunt in, venenatis vitae, faucibus vel, nibh. Pellentesque wisi. Nullam malesuada. Morbi ut tellus ut pede tincidunt porta. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam congue neque id dolor.

Donec et nisl at wisi luctus bibendum. Nam interdum tellus ac libero. Sed sem justo, laoreet vitae, fringilla at, adipiscing ut, nibh. Maecenas non sem quis tortor eleifend fermentum. Etiam id tortor ac mauris porta vulputate. Integer porta neque vitae massa. Maecenas tempus libero a libero posuere dictum. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Aenean quis mauris sed elit commodo placerat. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos hymenaeos. Vivamus rhoncus tincidunt libero. Etiam elementum pretium justo. Vivamus est. Morbi a tellus eget pede tristique commodo. Nulla nisl. Vestibulum sed nisl eu sapien cursus rutrum.

Nulla non mauris vitae wisi posuere convallis. Sed eu nulla nec eros scelerisque pharetra. Nullam varius. Etiam dignissim elementum metus. Vestibulum faucibus, metus sit amet mattis rhoncus, sapien dui laoreet odio, nec ultricies nibh augue a enim. Fusce in ligula. Quisque at magna et nulla commodo consequat. Proin accumsan imperdiet sem. Nunc porta. Donec feugiat mi at justo. Phasellus facilisis ipsum quis ante. In ac elit eget ipsum pharetra faucibus. Maecenas viverra nulla in massa.

Nulla ac nisl. Nullam urna nulla, ullamcorper in, interdum sit amet, gravida ut, risus. Aenean ac enim. In luctus. Phasellus eu quam vitae turpis viverra pellentesque. Duis feugiat felis ut enim. Phasellus pharetra, sem id porttitor sodales, magna nunc aliquet nibh, nec blandit nisl mauris at pede. Suspendisse risus risus, lobortis eget, semper at, imperdiet sit amet, quam. Quisque scelerisque dapibus nibh. Nam enim. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Nunc ut metus. Ut metus justo, auctor at, ultrices eu, sagittis ut, purus. Aliquam aliquam.

Estado de la Cuestión

En el estado de la cuestión es donde aparecen gran parte de las referencias bibliográficas del trabajo. Una de las formas más cómodas de gestionar la bibliografía en LATEX es utilizando **bibtex**. Las entradas bibliográficas deben estar en un fichero con extensión .bib (con esta plantilla se proporciona el fichero biblio.bib, donde están las entradas referenciadas más abajo). Cada entrada bibliográfica tiene una clave que permite referenciarla desde cualquier parte del texto con los siguiente comandos:

- Referencia bibliografica con cite: ?
- Referencia bibliográfica con citep: (?)
- Referencia bibliográfica con citet: ?

Es posible citar más de una fuente, como por ejemplo (???)

Después, latex se ocupa de rellenar la sección de bibliografía con las entradas que hayan sido citadas (es decir, no con todas las entradas que hay en el .bib, sino sólo con aquellas que se hayan citado en alguna parte del texto).

Bibtex es un programa separado de latex, pdflatex o cualquier otra cosa que se use para compilar los .tex, de manera que para que se rellene correctamente la sección de bibliografía es necesario compilar primero el trabajo (a veces es necesario compilarlo dos veces), compilar después con bibtex, y volver a compilar otra vez el trabajo (de nuevo, puede ser necesario compilarlo dos veces).

2.1. Cuestiones básicas de inmunología

Antes de comenzar sería conveniente introducir una serie de términos básicos referentes al sistema inmune. De esta manera los conceptos y modelos que se expondrán más adelante serán entendidos sin ningún impedimento terminológico.

2.1.1. El sistema inmune innato

Como ya hemos comentado en la sección 1 de Introducción, el sistema inmune funciona como un equipo. Está compuesto por numerosas células, proteínas y otros agentes de distinto tipo que trabajan de forma coordinada para dar una respuesta eficaz y proporcional al ataque recibido. Pero comencemos por lo más simple: las barreras físicas. La piel y

Figura 2.1: Fagocitación de un macrófago a una bacteria.

la mucosa de nuestro sistema respiratorio, digestivo y reproductivo intentan que virus, bacterias, hongos o parásitos entren en nuestro organismo. Pero, ¿qué pasa si estos logran atravesar esta barrera?

Aquí entra lo que se denomina sistema inmune innato, este recibe este nombre porque parece la defensa "natural" que todo animal parece tener. De hecho, muchos mecanismos de este sistema inmune innato llevan con nosotros más de 500 millones de años. Entre los jugadores más famosos de este equipo encontramos los macrófagos. Su nombre compuesto por "macro", que significa grande y "fago", que viene del Griego y significa comer, lo dice todo. En efecto, los macrófagos son células que se comen invasores mediante un proceso llamado fagocitosis, que ilustra la figura 2.1.

Durante la batalla, los *macrófagos* producen y secretan unas proteínas llamadas *citoquinas*. Estas son hormonas que facilitan la comunicación entre células del SI y cobrarán un papel muy relevante en los capítulos que siguen. Podríamos decir que los *macrófagos* hacen el papel de centinelas, que cuando ven al enemigo mandan señales (*citoquinas*) para reclutar a más defensores.

2.1.2. El sistema inmune adaptativo

Los macr'ofagos son células muy importantes del SI, pero no son las únicas. Durante nuestra andanza por este preámbulo al mundo inmunológico veremos otros tipos de células, en este caso referentes al $sistema\ inmune\ adaptativo$.

El nombre es bastante descriptivo y, valga la redundancia, gracias a este SI somos capaces de adaptar nuestras defensas contra nuevos invasores.

CONTAR EJ COWPOX?????????

Seguro que el término anticuerpo no resulta desconocido, pero ¿a qué nos referimos con él? Los anticuerpos no son más que proteínas especiales que circulan por la sangre, y el agente que las produce se denomina antígeno. Gracias a su estructura, los anticuerpos son capaces de encajar en un determinado antígeno. Cada anticuerpo es producido por células B. Este tipo de células empiezan con el mismo ADN, pero cuando empiezan a madurar el ADN que forma los anticuerpos puede cambiar. Dando lugar así a gran diversidad de ellos y permitiendo la adaptabilidad de nuestro SI.

Figura 2.2: Macrófago reconociendo una bacteria gracias a la acción anticuerpo-antígeno.

La misión principal de los anticuerpos es identificar a los "indeseables", dejando que el trabajo sucio lo hagan otros. Es decir, gracias a la presencia de anticuerpos, otras células, como los ya conocidos macrófagos son capaces de identificar a los atacantes. Esto se ilustra en la figura 2.2

Aunque los anticuerpos puedan ayuden a identificar a los malos, ¿qué ocurre cuando un virus ya ha entrado en una célula de nuestro cuerpo?. Los anticuerpos no pueden alcanzarlo y el virus puede dedicarse a replicarse cuanto quiera. En este momento, es el turno de las células T.

Modelo matemático

En este capítulo exponemos un modelo matemático sencillo que da una posible explicación al mecanismo de reproducción y muerte de las células T. Para este algoritmo, hemos supuesto una cantidad mínima de procesos bioquímicos conocidos y, a partir de ellos, hemos logrado un modelo que, a pesar de su simplicidad, es capaz de ajustarse a hechos observados.

Al final del capítulo se recogen una serie de simulaciones del modelo, así como un análisis de las mismas.

3.1. Introducción

Como ya sabemos, las células T juegan un papel fundamental en cuanto a la defensa de patógenos se refiere. Una vez que se detecta el patógeno, estas se activan y reproducen de manera rápida para intentar paliar los efectos dañinos producidos por estos agentes. Este proceso de división masiva, la población puede llegar a incrementarse hasta 10^6 veces, se conoce como expansión clonal. Una vez que el patógeno ha sido vencido, los niveles de población se restauran mediante un proceso denominado contracción clonal. Aunque durante esta última etapa muchas células T mueren, alrededor de un 5-10 % quedan como células T con memoria, células listas para dar una respuesta más rápida si el mismo patógeno vuelve a aparecer.

Hechos experimentales demuestran que la aparición de un patógeno no es suficiente para la toma de decisión entre división o muerte de la célula. Las células T continúan dividiéndose en la ausencia de este estímulo o cometen apóptosis cuando este persiste. Siguiendo estos hechos, asumiremos en nuestro modelo que estas decisiones vienen determinadas por la competición de dos moléculas inhibidoras: Retinoblastoma (Rb), que previene la expresión de genes necesarios para que la célula pueda continuar el ciclo celular y dividirse, y célula B linfoma-2 (Bcl-2), que bloqueará la muerte celular. También tendremos en cuenta que la las células T se comunican con el exterior gracias a sus TCR y, por tanto, sus decisiones se ven influenciadas por la cantidad de receptores que tengan. Cuantos más receptores, más estímulos serán capaces de percibir.

3.2. Hipótesis biológicas y modelo matemático

En esta sección explicaremos cuáles son las hipótesis de partida y describiremos con detalle las ecuaciones de nuestro modelo.

Figura 3.1: Representación del ciclo celular.

3.2.1. Hipótesis biológicas

3.2.1.1. La competición entre dos moléculas inhibidoras determina la decisión y la duración de la vida de una célula T

La división celular, así como, el programa de apóptosis están bloqueados al comienzo de la formación de las células T. Por una parte, Rb frena el inicio del ciclo celular. Para desactivar esta función y que la célula pueda dividirse, es necesario que un número suficiente de estas moléculas sea fosforilado 1 . Por otra parte, las proteínas Bcl-2 bloquean el camino hacia la muerte celular durante infecciones agudas, mediante la contención de la acción de otras proteínas como Bax o Bim.

Para nuestro modelo estableceremos que la célula pasa el *punto de restricción* ² (ver Figura 3.1) si la cantidad de Bcl-2 o de Rb cae por debajo de cierto límite, dando lugar al inicio de la muerte celular o división, respectivamente.

La variación en las dinámicas de Rb y Bcl-2 da una explicación de la variabilidad observada en la duración de la fase G_1 de las células y, consecuentemente, en la duración de sus vidas.

3.2.1.2. Los receptores de membrana regulan las dinámicas de Rb y Bcl-2

La fluctuación en la cantidad de Rb y Bcl-2 depende de unas proteínas llamadas citoquinas ³. Estas pueden inducir tanto la fosforilación de Rb, en cuyo caso se denominan citoquinas de proliferación. Como tener un efecto positivo o negativo en cuanto a la cantidad de Bcl-2 se refiere, en ese caso nos referiremos a ellas como citoquinas de supervivencia o muerte, respectivamente.

El punto importante es que la acción que las citoquinas llevan a cabo se produce gracias sus interacciones con receptores de membrana específicos. De esta manera, el efecto que

 $^{^1 \}mbox{Fosforilación:}$ adición de un grupo fosfato a cualquier otra molécula.

²El punto de restricción es el punto entre las fases G_1 y S, donde pasamos del crecimiento celular a la división.

³citoquinas: son proteínas que regulan la función de las células que las producen sobre otros tipos celulares. Son los agentes responsables de la comunicación intercelular, inducen la activación de receptores específicos de membrana, funciones de proliferación y diferenciación celular, entre otros. Ver https://es.wikipedia.org/wiki/Citocina

percibe una célula T depende, no solo de la cantidad de citoquinas del ambiente, sino también del número de receptores de membrana de la célula. De esta manera, si, por ejemplo, tenemos una concentración muy alta de cierta citoquina, podríamos asumir que el efecto que esta va a tener en una célula T vendrá determinado por la cantidad de receptores de membrana específicos para ella que posea la célula en cuestión.

3.2.1.3. Las células T naïve se dividen de manera asimétrica después de su activación.

Postulamos que tanto los fenotipos de las células T efectoras como los de las células T con memoria se determinan durante la sinapsis inmune. Por su parte, una vez diferenciadas, las células T efectoras y con memoria, se dividen de manera simétrica y ambas pueden considerarse indistinguibles durante la respuesta inmune.

3.2.2. Modelo matemático

Basándonos en las hipótesis anteriormente formuladas proponemos a continuación una serie de ecuaciones con las que daremos forma al modelo matemático de nuestro estudio. Con este algoritmo modelaremos la decisión de las células T durante la respuesta inmune. Antes de expresar las ecuaciones exponemos la notación y algunas aclaraciones:

- Denotaremos por c(t) y a(t) la cantidad de Rb y Bcl-2 activa en tiempo t, respectivamente.
- Establecemos, sin pérdida de generalidad, que los límites que determinan la decisión entre división o apóptosis (ver hipótesis 3.2.1.1) estarán en c(t) = 0 y a(t) = 0, respectivamente. De acuerdo a esta hipótesis definimos:
 - Decisión: Fase que parte desde el nacimiento de la célula hasta que una de las células inhibidoras alcanza el límite establecido.
 - Ciclo: Fase que se extiende desde la punto de restricción hasta la división celular.
 - Apóptosis: Tiempo de vida de la célula que comprende desde la desactivación de Bcl-2 y la finalización del programa ACAD.
 - División: Estado final después de que la célula haya entrado en la fase de ciclo.
 - Muerte: Estado final después de haberse completado la fase de apóptosis.
- R_i será el receptor de la i-ésima citoquina y $r_i(t)$ será la cantidad de ese receptor en tiempo t.
- r_T es el número de señales TCR/antíeno percibidas por la célula T correspondiente.

Conclusiones y Trabajo Futuro

Conclusiones del trabajo y líneas de trabajo futuro.

Antes de la entrega de actas de cada convocatoria, en el plazo que se indica en el calendario de los trabajos de fin de máster, el estudiante entregará en el Campus Virtual la versión final de la memoria en PDF. En la portada de la misma deberán figurar, como se ha señalado anteriormente, la convocatoria y la calificación obtenida. Asimismo, el estudiante también entregará todo el material que tenga concedido en préstamo a lo largo del curso.

Introduction

Introduction to the subject area. This chapter contains the translation of Chapter 1.

Conclusions and Future Work

Conclusions and future lines of work. This chapter contains the translation of Chapter 4.

Título del Apéndice A

Contenido del apéndice

'A / I'			
Apéndice			
, ipolialoo			

Título del Apéndice B

Este texto se puede encontrar en el fichero Cascaras/fin.tex. Si deseas eliminarlo, basta con comentar la línea correspondiente al final del fichero TFMTeXiS.tex.

-¿Qué te parece desto, Sancho? - Dijo Don Quijote Bien podrán los encantadores quitarme la ventura,
pero el esfuerzo y el ánimo, será imposible.

Segunda parte del Ingenioso Caballero Don Quijote de la Mancha Miguel de Cervantes

-Buena está - dijo Sancho -; fírmela vuestra merced.
-No es menester firmarla - dijo Don Quijote-,
sino solamente poner mi rúbrica.

Primera parte del Ingenioso Caballero Don Quijote de la Mancha Miguel de Cervantes