

دانشگاه تهران

تاریخ تحویل: جمعه ۳۱ اردیبهشت

دانشکده ریاضی آمار و علوم کامپیوتر

تمرین سری دهم مبانی ترکیبیات

(میباشد.) ثابت کنید
$$x^{n} = \sum_{k=0}^{n} (-1)^{n-k} {n \brack k} x^{k}$$
 سپس نتیجه بگیرید که $x^{n} = \sum_{k=0}^{n} (-1)^{n-k} {n \brack k} x^{k}$ عدد استرلینگ نوع اول میباشد.)

ریاشد.) ثابت کنید
$${n\brack k}$$
 کنید ${n\brack k}$ کنید ${n\brack k}$ کنید ${n\brack k}$ کنید ${n\brack k}$ عدد استرلینگ نوع اول میباشد.) (۲

۳) به ازای هر عدد صحیح 0 فرض کنید $a_n = \frac{1}{(n+1)(n+2)}$ فرمول تابع مولد نمایی $\sum_{n=0}^{+\infty} \frac{a_n x^n}{n!}$ را بدست آورید. (تابع $a_n = \frac{1}{(n+1)(n+2)}$ ای را بدست آورید. (تابع $a_n \ge 0$ ای را بدست آورید که بسط مکلورن آن برابر $\sum_{n=0}^{+\infty} \frac{a_n}{n!} x^n$ شود.)

۴) به ازای هر عدد طبیعی a_n فرض کنید a_n تعداد حالاتی باشد که در پرتابهای متوالی یک تاس، مجموع اعداد ظاهر شده برابر n باشد. برای مثال a_n به ازای هر عدد طبیعی a_n فرض کنید a_n تابع مولد دنباله a_n حال فرمول تابع مولد a_n تابع مولد دنباله a_n برابر باشد.)

هیچ دو (a_r) به ازای هر عدد صحیح a_r فرض کنید a_r تعداد راههای انتخاب a_r عدد صحیح متمایز از مجموعه (a_r) باشد به (a_r) باشد به طوری که هیچ دو (a_r) عددی متوالی نباشند. تابع مولد دنباله ی (a_r) را محاسبه کنید و با استفاده از آن نشان دهید (a_r)