The Diversity Coefficient: a Data Quality Metric for Machine Learning shows that LLM are Pretrained on formally Diverse Data

Alycia Lee ¹, Brando Miranda ¹, Patrick Yu ², and Sanmi Koyejo ¹

¹Computer Science, Stanford University ²Un

²University of Illinois Urbana-Champaign

Summary

Contributions

- Develop a data quality metric of the pre-training data of Large Language Models (LLLMs)
- Our focus is on a formal quantitative definition of data diversity

Background

Task2Vec method (Achille, Lam, et al 2019) computes vectorial representation of task τ using probe network.

• Definition: Task2Vec embedding of τ = diagonal entries of Fisher information matrix (FIM) after fine-tuning final layer of probe network on task dataset D_{τ} :

$$\hat{F}(D_{\tau}, f_w) = \mathbb{E}_{x, y \sim \hat{p}(x|\tau)\hat{p}(y|x, f_w)} \left[\nabla_w \log p(y|x, f_w) \nabla_w \log p(y|x, f_w)^T \right]$$

Intuition: FIM = measure of information in probe network parameter about $\overline{p_w(x,y)}$, i.e. importance of parameter for network to perform a task.

Methods

Task2Vec-based diversity coefficient (Miranda, Yu, et al 2022) approximately measures the intrinsic variability of tasks in a few-shot learning benchmark B.

• Ground Truth Diversity Coefficient: expected distance between pairs of tasks τ_1, τ_2 :

$$\hat{div}(B) = \mathbb{E}_{\tau_1, \tau_2 \sim \hat{p}(\tau|B): \tau_1 \neq \tau_2} [d(p(x_1, y_1 \mid \tau_1), p(x_2, y_2 \mid \tau_2))]$$

• Definition: expected distance between pairs of tasks τ_1, τ_2 as Task2Vec embeddings:

$$\hat{div}(B) = \mathbb{E}_{\tau_1, \tau_2 \sim \hat{p}(\tau|B): \tau_1 \neq \tau_2} \mathbb{E}_{D_1 \sim \hat{p}(x_1, y_1|\tau_1), D_2 \sim \hat{p}(x_2, y_2|\tau_2)} \left[d(\operatorname{diag}(\hat{F}_{D_1, f_w}), \operatorname{diag}(\hat{F}_{D_2, f_w}) \right]$$

- Fixed probe network f_w required for fair comparison of tasks.
- Intuition: diversity \sim information content in data.

Experiments & Results

Task2Vec Diversity Coefficient Correlates with Ground Truth Diversity

Diversity of c4, Wikitext-103, and The Pile are twice as high vs. benchmarks evaluated in Miranda, Yu, et al (2022)

Dataset	Probe Network	Diversity Coeff
Minilmagenet		$0.117 \pm 2.098e-5$
Cifar-fs	Resnet18	$0.100 \pm 2.18e-5$
c4	GPT-2	$0.2374 \pm 2.785e-5$
WikiText-103	GPT-2	$0.2140 \pm 7.93e-5$
The Pile	GPT-2	$0.2463 \pm 3.034 - 5$

Batch size has positive correlation with diversity, but diminishing returns

Random probe underestimates diversity, none fine-tuned overestimates diversity

Experiments & Results (cont.)

Diversity coefficient correlates with latent concepts in GINC data, using pretrained (left) and random (right) probe networks

Diversity coefficient correlates with vocab size in GINC data, using pretrained (left) and random (right) probe networks

Takeaways

- Diversity coeff's of three LLM pretraining datasets c4,
 WikiText-103, and The Pile are high compared to previous work on vision datasets.
- Diversity coeff is sensitive to changes in task batch size and probe network.
- Diversity coeff value is underestimated when using random probe network vs. overestimated when using none fine-tuned network.
- Diversity coefficient correlates individually with latent concepts and vocab size in GINC datasets.