Classe de dilluns 16-3

Definició 0.1 Una identificació és una aplicació contínua exhaustiva entre espais topològics $\phi \colon X \to Y$ tal que l'espai d'arribada té la topologia quocient: $\mathcal{U} \in \mathscr{T}_Y \Leftrightarrow \phi^{-1}(\mathcal{U}) \in \mathscr{T}_X$.

En tal cas l'aplicació induïda $\widetilde{\phi} \colon X/\sim \to Y$ és un homeomorfisme, on \sim és la relació d'equivalència $x \sim y \Leftrightarrow \phi(x) = \phi(y)$.

PROVA: L'aplicació induïda satisfà $\widetilde{\phi} \circ \pi = \phi$. És bijectiva: exhaustiva per ser-ho ϕ i injectiva ja que $[x] = [y] \Leftrightarrow x \sim y \Leftrightarrow \phi(x) = \phi(y)$. Transforma oberts en oberts ja que, tenint en compte la caracterització dels oberts de Y per ser espai quocient, i la dels oberts de X/\sim , per a tot $\mathcal{U} \subseteq Y$ es té

$$\mathcal{U} \in \mathscr{T}_Y \Leftrightarrow \phi^{-1}(\mathcal{U}) \in \mathscr{T}_X \Leftrightarrow \pi^{-1}(\widetilde{\phi}^{-1}(\mathcal{U})) \in \mathscr{T}_X \Leftrightarrow \widetilde{\phi}^{-1}(\mathcal{U}) \in \mathscr{T}_{X/\sim}$$

de manera que la bijecció $\widetilde{\phi}^{-1}$ transforma oberts en oberts.

Lema 0.2 Tota aplicació contínua exhaustiva que sigui oberta o sigui tancada és una identificació.

PROVA: Sigui $\pi: X \to Q$ contínua i exhaustiva. Per ser exhaustiva es té $\pi(\pi^{-1}(B)) = B$ per a tot subconjunt $B \subseteq Q$. Suposi's que és oberta. Per a tot subconjunt $\mathcal{U} \subseteq Q$ es té:

- com que π és contínua, si \mathcal{U} és obert aleshores $\pi^{-1}(\mathcal{U})$ és obert;
- com que π és oberta, si $\pi^{-1}(\mathcal{U})$ és obert aleshores $\pi(\pi^{-1}(\mathcal{U})) = \mathcal{U}$ és obert.

Per tant, Q té la topologia quocient.

Si l'aplicació és tancada es demostra de manera anàloga, tenint en compte que la topologia quocient també es caracteritza per la propietat \mathcal{C} tancat si, i només si, $\pi^{-1}(\mathcal{C})$ tancat.

Observi's que no tota identificació ha de ser necessàriament oberta o tancada. Es pot veure un contraexemple en el problema 16 (pag. 80) del Pascual-Roig.

Exemples 0.3 Moltes construccions habituals en topologia corresponen a espais quocient. A continuació es donen noves construccions com a quocients de subespais de l'espai euclidià: circumferència, esfera, tor, ..., i també definicions de nous espais com a espai quocient: espai projectiu, ampolla de Klein, ...

- 1. identificació dels extrems: $[0,1]/\{0 \sim 1\} \cong \mathbb{S}^1$;
- 2. identificació de traslladats: $\mathbb{R}/2\pi\mathbb{Z} = \mathbb{R}^2/\{x \sim x + 2\pi n : n \in \mathbb{Z}\} \cong \mathbb{S}^1$;
- 3. identificació d'òrbites per arrels de la unitat: $\mathbb{C}^*/\{z \sim e^{2\pi i k/n}z : k \in \mathbb{Z}\} \cong \mathbb{S}^1$
- 4. identificació de raigs: $(\mathbb{R}^2 \setminus \{\mathbf{0}\})/\{\mathbf{x} \sim \lambda \mathbf{x} : \lambda > 0\} \cong \mathbb{S}^1$;
- 5. identificació de rectes: $\mathbb{P}^1 := (\mathbb{R}^2 \setminus \{\mathbf{0}\})/\{\boldsymbol{x} \sim \lambda \boldsymbol{x} : \lambda \neq 0\} \cong \mathbb{S}^1;$
- 6. identificació de raigs: $(\mathbb{R}^{n+1} \setminus \{\mathbf{0}\})/\{\mathbf{x} \sim \lambda \mathbf{x} : \lambda > 0\} \cong \mathbb{S}^n$;
- 7. identificació de rectes: $\mathbb{P}^n := (\mathbb{R}^{n+1} \setminus \{\mathbf{0}\})/\{\boldsymbol{x} \sim \lambda \boldsymbol{x} : \lambda \neq 0\};$

- 8. identificació de punts antipodals: $\mathbb{S}^n/\{\boldsymbol{x} \sim -\boldsymbol{x}\} \cong \mathbb{P}^n$;
- 9. identificació de circumferències: $\mathbb{R}^2/\{\boldsymbol{x}\sim\boldsymbol{y}\Leftrightarrow\|\boldsymbol{x}\|=\|\boldsymbol{y}\|\}\cong[0,\infty)\subset\mathbb{R};$
- 10. col·lapse d'un subespai: $\mathbb{D}^2/\mathbb{S}^1 = \mathbb{D}^2/\{\boldsymbol{x} \sim \boldsymbol{y} : \boldsymbol{x}, \boldsymbol{y} \in \mathbb{S}^1\} \cong \mathbb{S}^2;$
- 11. identificació de dos costats d'un rectangle $R = [0,1] \times (0,1)$:
 - *cilindre:* $R/\{(0,y) \sim (1,y)\};$
 - banda de Möbius: $R/\{(0,y) \sim (1,1-y)\};$
- 12. identificació de costats oposats d'un quadrat $R = [0, 1] \times [0, 1]$:
 - esfera: $R/\{(x,0) \sim (0,x), (1,y) \sim (y,1)\}, abb^{-1}a^{-1};$
 - tor: $R/\{(x,0) \sim (x,1), (0,y) \sim (1,y)\}, aba^{-1}b^{-1};$
 - pla projectiu: $R/\{(x,0) \sim (1-x,1), (0,y) \sim (1,1-y)\}$, abab;
 - ampolla de Klein: $R/\{(x,0) \sim (1-x,1), (0,y) \sim (1,y)\}, abab^{-1};$

Estudieu totes aquestes construccions procurant entendre bé en què consisteixen i trobar homeomorfismes a partir d'identificacions en els casos de subespais de l'euclidià: circumferència, esfera, interval, etc.