0-1 Knapsack problem¹

- ▶ Given n items $\{1, 2, ..., n\}$
- ▶ Item i is worth v_i , and weight w_i
- lacktriangle Find a most valuable subset of items with total weight $\leq W$

0-1 knapsack problem can be expressed as

Greedy solution strategies

Three possible greedy approaches:

- 1. Greedy by highest value v_i
- 2. Greedy by least weight w_i
- 3. Greedy by largest value density $\dfrac{v_i}{w_i}$

All three appraches generate feasible solutions. However, we cannot guarantee that any of them will always generate an optimal solution!

Example

i	v_i	w_i	v_i/w_i
1	6	1	6
2	10	2	5
3	12	3	4

Total weight ${\cal W}=5$

Greedy by value density v_i/w_i :

- ▶ take items 1 and 2.
- ightharpoonup value = 16, weight = 3
- ► Leftover capacity = 2

Optimal solution

- take items 2 and 3.
- ightharpoonup value = 22, weight = 5
- no leftover capacity

Question: how about greedy by highest value? by least weight?