

CONTENTS

- 01 단순 로지스틱 회귀(= 피타고리안 기대 승률)
- 02 다중 로지스틱 회귀
- 03 다중 로지스틱 회귀 + 신경망 모델

Sabermetrics

야구를 '통계학적 / 수학적' 으로 분석하는 방법론

정규시즌 우승 기준

승률을 기준으로 순위를 정한다

승률 = 승리 수 / (승리 수 + 패배 수)

1 단순 로지스틱 (피타고리안 승률 예측)

피타고리안 승률 =
$$\dfrac{$$
 총 득점 $^{eta}}{$ 총 득점 eta + 총 실점 eta = $\dfrac{1}{1+\left($ 총 실점 $/$ 총 득점 $)^{eta}}$

피타고리안 승률 =
$$\frac{\dot{s} \cdot \mathsf{FA}^{\beta}}{\dot{s} \cdot \mathsf{FA}^{\beta} + \dot{s} \cdot \mathsf{JA}^{\beta}} = \frac{1}{1 + (\dot{s} \cdot \mathsf{JA}/\dot{s} \cdot \mathsf{FA})^{\beta}}$$

피타고리안 승률 =
$$\frac{\dot{s} \in A^{\beta}}{\dot{s} \in A^{\beta} + \dot{s} \, \Delta A^{\beta}}$$

$$\frac{\Pi \text{FLZ 리안 승률}}{1 - \Pi \text{FLZ 리안 승률}} = \left(\frac{\dot{s} \in A}{\dot{s} \, \Delta A}\right)^{\beta}$$

$$\log\left(\frac{\Pi \text{FLZ 리안 승률}}{1 - \Pi \text{FLZ 리안 승률}}\right) = \beta \log\left(\frac{\dot{s} \in A}{\dot{s} \, \Delta A}\right) \longrightarrow \frac{\text{CL} \, \mathcal{L}}{\dot{s} \, \Delta A}$$

$$\log\left(\frac{\Pi \text{FLZ 리안 승률}}{1 - \Pi \text{FLZ 리안 승률}}\right) = \alpha + \beta \log\left(\frac{\dot{s} \in A}{\dot{s} \, \Delta A}\right)$$

Coefficient	Estimate	Std.Error	Z-value	P-value
Intercept	0.001018	0.010743	0.095	0.925
log(총 득점/ 총실점)	1.860938	0.060805	30.605	< 2e-16

Coefficient	Estimate	Std.Error	Z-value	P-value
Intercept	0.001018	0.010743	0.095	0.925
log(총 득점/ 총실점)	1.860938	0.060805	30.605	< 2e-16

^{*}실제 KB0에서 사용하는 β 값은 2, MLB에서 사용하는 β 값은 1.85

피타고리안 승률 =
$$\dfrac{$$
 총 득점 $^{eta}}{$ 총 득점 eta + 총 실점 eta = $\dfrac{1}{1+\left($ 총 실점 $/$ 총 득점 $)^{eta}}$

우리의 목표:

현재 승률의 예측 (X) / 시즌 마지막 승률의 예측 (○)

우리의 목표:

현재 승률의 예측 (X) / 시즌 마지막 승률의 예측 (○)

현재 팀의 전력으로 시즌 마지막까지 가능한 '총 득점의 수' & '총 실점의 수' 예측 (by. 단순 선형 회귀 분석)

RMSE = 0.0330

각 팀의 승률에 대한 예측 오차의 평균은 약 3.3%

$$\sqrt{\frac{1}{n}\sum_{i=1}^{n}(y_i-\hat{y}_i)^2}$$

Logistic Regression

팀	승률
BEARS 무산	0.667
Eagles 한화	0.595
SK	0.560
TWINS LG	0.557
KIA	0.493
네센	0.488
Giants 롯데	0.467
LionS삼성	0.438
KT KT	0.390
TITOS NC	0.350

득점과 실점 데이터 말고 다른 데이터도 사용할 수 있지 않을까?

- 스탯디즈 (http://www.statiz.co.kr/main.php)

- 변수: team, season, avg, oba, slg, OPS, wOBA, wRC+, WAR, ERA, FIP, WHIP, ERA+, FIP+, POSADJ, RAAwithADJ, WAAwithADJ

- 누적 지표 (x), 비율 지표와 가공 지표 (○)

2 다중 로지스틱

team, season, avg, oba, slg, OPS, wOBA, wRC+, WAR, ERA, FIP, WHIP, ERA+, FIP+, POSADJ, RAAwithADJ, WAAwithADJ

season, avg, oba, slg, OPS, wRC+, WAR, ERA, FIP, WHIP

avg, OPS, wRC+, WAR, ERA, FIP

Multinomial Logistic Regression

avg 타율

OPS 장타율

WAR

wRC+ 타자의 타석당 득점 생산력을 평가하는 지표

선수의 '공격'과 '수비'를 종합적으로 평가할 수 있는 지표

ERA 투수의 9이닝당 평균자책점

FIP 수비 무관 평균자책점

Analysis of Maximum Likelihood Estimates

			Standard		
Parameter	DF	Estimate	Error	t Value	Pr > t
Intercept	1	-0.1251	0.0435	-2.87	0.0045
ERA	1	-0.0748	0.00907	-8.25	<.0001
FIP	1	0.0241	0.0118	2.05	0.0415
OPS .	1	0.4092	0.1830	2.24	0.0265
WAR	1	0.00466	0.000718	6.50	<.0001
avg	1	1.0147	0.3617	2.81	0.0055
wRC_	1	0.00177	0.000572	3.09	0.0023

avg > OPS > ERA > FIP > WAR > wRC+ 순으로

승률에 영향을 많이 미침

RMSE = 0.0320

→ 각 팀의 승률에 대한 예측 오차의 평균은 약 3.2%

Multinomial Logistic Regression

팀	승률
BEARS 무산	0.667
Eagles 한화	0.595
SK	0.560
TWINS LG	0.557
KIA	0.493
네센	0.488
Giants 롯데	0.467
Lions 삼성	0.438
Kt WIZ KT	0.390
TITOS NC	0.350

3 다중 로지스틱 + 신경망 모델

다중 회귀

로지스틱 회귀

Gradient Boosting

라쏘 회귀

Random Forest

신경망 모델

다중 회귀

로지스틱 회귀

Gradient Boosting

라쏘 회귀

Random Forest

신경망 모델

로지스틱 회귀

신경망 모델

로지스틱 회귀

신경망 모델

로지스틱 회귀 + 신경망 모델

로지스틱 회귀

신경망 모델

로지스틱 회귀 + 신경망 모델

로지스틱 회귀

신경망 모델 1 (2 Layer, 5 Node)

+

신경망 모델 2 (2 Layer, 6 Node)

+

신경망 모델 3 (2 Layer, 7 Node)

RMSE = 0.0303

각 팀의 승률에 대한 예측 오차의 평균은 약 3.03%

RMSE = 0.0303

각 팀의 승률에 대한 예측 오차의 평균은 약 3.03%

하지만,

어떤 변수가 승리에 강한 영향을 미치는지 해석하기 어렵고 이 모델을 사용했을 때에는 개별 승률의 오차를 제시할 수 없음

팀	승률
BEARS 무산	0.667
Enles 한화	0.595
SK	0.560
TWINS LG	0.557
KIA	0.493
비른roes	0.488
Giants 롯데	0.467
Lions	0.438
kt wiz KT	0.390
TIOS NC	0.350

단순 로지스틱

RMSE = 0.0330

팀	승률
● 두산	0.594
TWINS LG	0.559
	0.541
KIA	0.530
(1) 넥센	0.517
를 롯데	0.497
ᢀ 한화	0.496
🧼 삼성	0.456
KT	0.444
NC NC	0.360

다중 로지스틱

RMSE = 0.0320

팀	승률
● 두산	0.543
TWINS LG	0.534
	0.508
KIA	0.492
🥮 넥센	0.461
뻊 롯데	0.460
●한화	0.455
KT	0.404
<i>></i> 삼성	0.387
orios NC	0.281

다중 로지스틱 + 신경망 모델

RMSE = 0.0303

팀	승률
●두산	0.543
TWINS LG	0.528
	0.489
KIA	0.481
뻊 롯데	0.458
७ 넥센	0.448
② 한화	0.447
KT	0.394
🧼 삼성	0.382
NC NC	0.260

뎁스(선수층) 때문일까?

-> 비주전 선수들이 주전 선수들만큼의 기량을 가지고 있으면 '뎁스가 두껍다'고 함

뎁스(선수층) 때문일까?

- -> 비주전 선수들이 주전 선수들만큼의 기량을 가지고 있으면 '뎁스가 두껍다' 고 함
- -> 내야 / 외야 / 포수로 나누어 각 팀의 주전들끼리의 WAR, 비주전끼리의 WAR 비교

뎁스(선수층) 때문일까?

- -> 비주전 선수들이 주전 선수들만큼의 기량을 가지고 있으면 '뎁스가 두껍다'고 함
- -> 내야 / 외야 / 포수로 나누어 각 팀의 주전들끼리의 WAR, 비주전끼리의 WAR 비교

두산 > KIA > LG > SK > 삼성 > 넥센 > KT > 한화 = 롯데 > NC

