1.9 Media unei variabile aleatoare. Proprietăți.

1.9.1 Cazul variabilelor aleatoare discrete

Exemplul 1.9.1 Să considerăm variabila aleatoare X reprezentând câștigul obținut în următorul joc: se aruncă un ban, și pentru apariția stemei (cu probabilitatea p_1) se câștigă x_1 lei, iar pentru apariția banului (cu probabilitatea p_2) se câștigă x_2 lei. Variabila aleatoare este deci $X = \begin{pmatrix} x_1 & x_2 \\ p_1 & p_2 \end{pmatrix}$, cu $x_{1,2} \in \mathbb{R}$, $0 \le p_1, p_2 \le 1$ și $p_1 + p_2 = 1$.

Repetând de n ori experimentul, câştigul mediu obținut în cele n încercări este

$$\frac{c \hat{a} s t i g u l \ din \ prima \ ar un care + a \ doua + \dots + u l t i ma \ ar un care }{n}$$

$$= \frac{x_1 \cdot nr \ apariții \ ale \ lui \ x_1 + x_2 \cdot nr \ de \ apariții \ ale \ lui \ x_2}{n}$$

$$= x_1 \frac{nr \ apariții \ ale \ lui \ x_1}{n} + x_2 \cdot \frac{de \ apariții \ ale \ lui \ x_2}{n} .$$

Una din teoremele limită ale teoriei probabilităților (legea numerelor mari) arată că frecvențele relative tind către probabilitate, și deci

$$\begin{tabular}{lll} \textit{Media în nîncercări} & = & x_1 & \underbrace{ \begin{matrix} nr \ apariții \ ale \ lui \ x_1 \end{matrix} }_{frecvența \ de \ apariție \ a \ lui \ x_1} + x_2 \cdot \underbrace{ \begin{matrix} de \ apariții \ ale \ lui \ x_2 \end{matrix} }_{frecvența \ de \ apariție \ a \ lui \ x_2} & \xrightarrow[n \to \infty]{} \xrightarrow[n \to \infty]{} \\ & \xrightarrow[n \to \infty]{} & x_1 \cdot p_1 + x_2 \cdot p_2. \\ \end{tabular}$$

Exemplul anterior sugerează că media variabilei aleatoare X este $M(X) = x_1 \cdot p_1 + x_2 \cdot p_2$. Mai general, avem:

Definiția 1.9.2 $Dacă X = \begin{pmatrix} x_1 & x_2 & \dots \\ p_1 & p_2 & \dots \end{pmatrix}$ este o variabilă aleatoare discretă ce ia valorile distincte x_1, x_2, \dots cu probabilitățile p_1, p_2, \dots , definim media variabilei aleatoare X prin

$$M(X) = \sum_{i} x_i \cdot p_i = x_1 \cdot p_1 + x_2 \cdot p_2 + \dots,$$

dacă această serie este absolut convergentă (adică dacă $\sum_i |x_i \cdot p_i| < +\infty$). În caz contrar spunem că X nu are medie.

Teorema 1.9.3 Dacă X, Y sunt variabile aleatoare discrete pentru care există mediile M(X) și M(Y), atunci:

- a) $Dac\check{a} X = c constant$, atunci atunci M(X) = c
- b) Dacă $X(\omega) \ge Y(\omega)$, oricare ar fi $\omega \in \Omega$, atunci $M(X) \ge M(Y)$

c) M(aX + bY) = aM(X) + bM(Y), oricare ar $fi \ a, b \in \mathbb{R}$

d)
$$\operatorname{Dac\check{a}} \varphi : \mathbb{R} \to \mathbb{R} \operatorname{si} X = \begin{pmatrix} x_1 & x_2 & \dots \\ p_1 & p_2 & \dots \end{pmatrix}, \operatorname{atunci} M\left(\varphi\left(X\right)\right) = \sum_i \varphi\left(x_i\right) \cdot p_i.$$

Demonstrație. a) Din definiție, avem

$$M(X) = c \cdot P(X = c) = c \cdot 1 = c.$$

b) Dacă $X=\left(\begin{array}{ccc} x_1 & x_2 & \dots \\ p_1 & p_2 & \dots \end{array}\right)$ și $X\left(\omega\right)\geq 0$, oricare ar fi $\omega\in\Omega$, rezultă că $x_i\geq 0$ oricare ar fi $i\geq 1$. Obținem deci în acest caz:

$$M(X) = \sum_{i} \underbrace{x_{i}}_{\geq 0} \cdot \underbrace{p_{i}}_{\geq 0} \geq 0.$$

Dacă $X \geq Y$, rezultă că variabila aleatoare $Z = X - Y \geq 0$, și din demonstrația anterioară avem $M\left(Z\right) = M\left(X - Y\right) \geq 0$. Folosind punctul c) obtinem $M\left(X\right) - M\left(Y\right) = M\left(X - Y\right) \geq 0$, adică $M\left(X\right) \geq M\left(Y\right)$.

d) Dacă $X = \begin{pmatrix} x_1 & x_2 & \dots \\ p_1 & p_2 & \dots \end{pmatrix}$, atunci $\varphi(X)$ ia valorile $\varphi(x_i)$, $i = 1, 2, \dots$, nu neapărat distincte. Avem:

$$M(\varphi(X)) = \sum_{i:\varphi(x_i)-\text{distincte}} \varphi(x_i) \cdot P(\varphi(X) = \varphi(x_i))$$

$$= \sum_{i:\varphi(x_i)-\text{distincte}} \varphi(x_i) \cdot \sum_{j:\varphi(x_j)=\varphi(x)} P(X = x_j)$$

$$= \sum_{i:\varphi(x_i)-\text{distincte}} \sum_{j:\varphi(x_j)=\varphi(x)} \varphi(x_i) \cdot P(X = x_j)$$

$$= \sum_{i>1} \varphi(x_i) \cdot P(X = x_i)$$

Exemplul 1.9.4 Considerând variabila aleatoare $X = \begin{pmatrix} -1 & 0 & 1 \\ 1/3 & 1/3 & 1/3 \end{pmatrix}$ și $\varphi(x) = x^2$, avem $Y = \varphi(X) = \begin{pmatrix} 0 & 1 \\ 1/3 & 2/3 \end{pmatrix}$, și deci conform definiției avem $M(Y) = M(X^2) = 0 \cdot \frac{1}{3} + 1 \cdot \frac{2}{3} = \frac{2}{3}$.

Folosind punctul d) al teoremei anterioare, putem calcula pe o altă cale

această valoare, și anume:

$$M(X^{2}) = M(\varphi(X)) = \sum_{i=1}^{3} \varphi(x_{i}) P(X = x_{i}) =$$

$$= (-1)^{2} \cdot \frac{1}{3} + 0^{2} \cdot \frac{1}{3} + 1^{2} \cdot \frac{1}{3}$$

$$= \frac{2}{3}.$$

1.9.2 Cazul variabilelor aleatoare continue

Considerăm acum cazul unei variabile aleatoare continue $X: \Omega \to \mathbb{R}$, unde (Ω, \mathcal{F}, P) este un spațiu de probabilitate fixat.

Pentru a defini media variabilei aleatoare X, procedăm similar cazului discret, adică definim media ca suma valorilor înmulțite cu probabilitățile corespunzătoare. Cum pentru o variabilă aleatoare continuă avem P(X=a)=0 oricare ar fi $a\in\mathbb{R}$, pentru a defini media procedam astfel: considerăm o partiție $(x_i)_{i>1}$ a lui \mathbb{R} și aproximăm media prin

$$\sum_{i \ge 1} x_i \cdot P(x_i \le X < x_{i+1}) = \sum_{i \ge 1} x_i \cdot (F(x_{i+1}) - F(x_i)) = \sum_{i \ge 1} x_i \cdot \Delta F(x_i).$$

Trecând la limită cu $\Delta x_i = x_{i+1} - x_i \to 0$ obținem $\int_{\mathbb{R}} x dF(x)$, și avem deci următoarea:

Definiția 1.9.5 Definim media variabilei aleatoare continue X prin

$$M\left(X\right) = \int_{\mathbb{R}} x dF_X\left(x\right),$$

dacă această integrală este absolut convergentă.

Observația 1.9.6 În acest curs vom considera numai variabile aleatoare continue care admit densitate, și am văzut că dacă această densitate este o funcție continuă, atunci avem $\frac{dF_X}{dx} = f_X$. Avem deci următoarea definiție:

Definiția 1.9.7 Dacă X este o variabilă aleatoare continuă cu densitatea f_X , atunci media variabilei aleatoare X este

$$M(X) = \int_{-\infty}^{+\infty} x f_X(x) dx,$$

dacă această integrală este absolut convergentă (adică dacă $\int_{-\infty}^{+\infty} |xf_X(x)| dx < +\infty$).

Are loc următoarea:

Teorema 1.9.8 Dacă X, Y sunt variabile alatoare continue pentru care există mediile M(X) și M(Y), atunci

- a) Dacă $X(\omega) \ge Y(\omega)$, oricare ar fi $\omega \in \Omega$, atunci $M(X) \ge M(Y)$
- b) M(aX + bY) = aM(X) + bM(Y), oricare ar fi $a, b \in \mathbb{R}$
- c) Dacă $\varphi : \mathbb{R} \to \mathbb{R}$ este o funcție măsurabilă pentru care există media variabilei aleatoare $\varphi(X)$, atunci

$$M\left(\varphi\left(X\right)\right) = \int_{-\infty}^{+\infty} \varphi\left(x\right) f_X\left(x\right) dx.$$

Demonstrație. a) Dacă $X(\omega) \geq 0$ oricare ar fi $\omega \in \Omega$, atunci avem $0 = P(X < 0) = \int_{-\infty}^{0} f(x) dx$, și cum în general $f \geq 0$ (fiind o densitatea de probabilitate), rezultă că avem f(x) = 0 pentru (aproape) orice $x \in (-\infty, 0)$. Obținem

$$M\left(X\right) = \int_{-\infty}^{+\infty} x f\left(x\right) dx \stackrel{f(x)=0}{=} \stackrel{\text{pe}}{=} \stackrel{(-\infty,0)}{=} \int_{0}^{+\infty} \underbrace{x}_{\geq 0} \underbrace{f\left(x\right)}_{> 0} dx \geq 0.$$

Pentru cazul general, dacă $X \geq Y$, notând Z = X - Z avem $Z(\omega) \geq 0$ oricare ar fi $\omega \in \Omega$, şi conform demonstrației anterioare avem $M(Z) \geq 0$, de unde rezultă (folosind punctul b) al teoremei) $M(X) - M(Y) \geq 0$, sau echivalent $M(X) \geq M(Y)$.

1.9.3 Funcția de distribuție a unei variabile aleatoare vectoriale

Fie $X, Y : \Omega \to \mathbb{R}$ variabile aleatoare pe spațiul de probabilitate (Ω, \mathcal{F}, P) .

Definiția 1.9.9 Funcția $F = F_{X,Y} : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ definită prin

$$F(a,b) = P(X < a, Y < b)$$

se numește funcția de distribuție comună a variabilelor aleatoare X și Y (sau funcția de distribuție a variabilei aleatoare vectoriale (X,Y)).

O funcție $f = f_{X,Y} : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ cu proprietatea că

$$P((X,Y) \in C) = \int \int_{C} f(x,y) dxdy,$$

oricare ar fi o mulțime Boreliană $C \in \mathcal{B}(\mathbb{R}^2)$ se numește densitatea de probabilitate comună a variabilelor aleatoare X și Y / denistatea de probabilitate a variabilei aleatoare vectoriale (X,Y).

Observația 1.9.10 Considerând $C = A \times B \in \mathcal{B}(\mathbb{R}^2)$, unde $A, B \in \mathcal{B}$ sunt mulțimi Boreliene din \mathbb{R} , obținem

$$P(X \in A, Y \in B) = P((X, Y) \in A \times B) = \int_{A} \int_{B} f(x, y) \, dy dx.$$

În particular, pentru $A=(-\infty,a)$ și $B=(-\infty,b)$ obținem

$$F_{X,Y}(a,b) = P(X < a, Y < b) = \int_{-\infty}^{a} \int_{-\infty}^{b} f_{X,Y}(x,y) \, dy dx.$$

Avem următoarea:

Propoziția 1.9.11 Dacă F_X , F_Y şi f_X , f_Y sunt funcțiile de distribuție, respectiv densitățile variabilelor aleatoare X și Y, iar $F_{X,Y}$ și $f_{X,Y}$ sunt funcția de distribuție și densitatea variabilei aleatoare vectoriale (X,Y), atunci:

a)
$$F_X(a) = \lim_{b\to\infty} F_{X,Y}(a,b), F_Y(b) = \lim_{a\to\infty} F_{X,Y}(a,b)$$

b)
$$f_{X,Y}(a,b) = \frac{\partial^2}{\partial a \partial b} F_{X,Y}(a,b)$$

c)
$$f_X(a) = \int_{-\infty}^{+\infty} f_{X,Y}(a,y) \, dy$$
, $f_Y(b) = \int_{-\infty}^{+\infty} f_{X,Y}(x,b) \, dx$.

Demonstrație. a) $F_X(a) = P(X < a) = P(X < a, Y < \infty) = \lim_{b \to \infty} P(X < a, Y < b) = \lim_{b \to \infty} F_{X,Y}(a,b)$

b) În ipoteza că $f_{X,Y}$ este o funcție continuă, avem

$$F_{X,Y}(a,b) = \int_{-\infty}^{a} \int_{-\infty}^{b} f_{X,Y}(x,y) \, dy dx,$$

de unde derivând în raport cu b, apoi cu a, obţinem:

$$\frac{\partial}{\partial b}F_{X,Y}\left(a,b\right) = \frac{\partial}{\partial b}\int_{-\infty}^{a}\int_{-\infty}^{b}f_{X,Y}\left(x,y\right)dydx = \int_{-\infty}^{a}f_{X,Y}\left(x,b\right)dx,$$

şi

$$\frac{\partial^{2}}{\partial a \partial b} F_{X,Y}(a,b) = \frac{\partial}{\partial a} \int_{-\infty}^{a} f_{X,Y}(a,y) \, dy dx = f_{X,Y}(a,b)$$

c) Pentru orice $A \in \mathcal{B}$ avem

$$P\left(X \in A\right) = P\left(X \in A, Y \in (-\infty, +\infty)\right) = \int_{A} \left(\int_{-\infty}^{+\infty} f_{X,Y}\left(x, y\right) dy\right) dx,$$

şi deci conform definiţiei densităţii variabilei aleatoare X avem $f_X(x) = \int_{-\infty}^{+\infty} f_{X,Y}(x,y) dy$, cealaltă egalitate demonstrându-se în mod similar.

1.9.4 Exerciții

- 1. Să se determine valoarea medie la aruncarea unui zar.
- 2. Să se determine media următoarelor variabile aleatoare:
 - (a) Variabila aleatoare binomială cu parametrii n și p
 - (b) Variabila aleatoare Poisson cu parametrul $\lambda > 0$

- (c) Variabila aleatoare geometrică cu parametrul p
- (d) Variabila uniformă pe intervalul [a, b]
- (e) Variabila aleatoare exponențială cu parametrul $\lambda > 0$
- (f) Variabila aleatoare normală $\mathcal{N}(\mu, \sigma^2)$ cu medie μ și dispersie σ^2
- 3. Se aruncă un ban până la prima apariție a stemei sau până la a treia încercare, în caz de nereuşită. Care este numărul mediu de fețe stemă, respectiv ban, obținut?
- 4. Funcția de distribuție comună a variabilelor aleatoare X, Y este

$$f(x,y) = \begin{cases} 2e^{-x}e^{-2y}, & x,y > 0\\ 0, & \text{in rest} \end{cases}$$

- (a) Să se determine funcția de distribuție F_X și funcția de densitate f_X a variabilei aleatoare X
- (b) Să se determine funcția de distribuție F_Y și funcția de densitate f_Y a variabilei aleatoare Y
- (c) Să se calculeze probabilitățile P(X > 1, Y < 1), P(X < Y) și P(X < a).
- 5. Considerăm un disc de rază R > 0 și variabilele aleatoare X, Y ce reprezintă coordonatele x, respectiv y, a unui punct ales arbitrar în acest disc (adică acest punct se află în orice regiune din disc cu probabilități egale).
 - (a) Să se determine funcția de densitate comună $f_{X,Y}$ a variabilelor aleatoare X,Y
 - (b) Să se determine densitățile f_X , f_Y ale variabilelor aleatoare X, respectiv Y
 - (c) Să se determine probabilitatea ca punctul de coordonate (X,Y) să se afle la distanță mai mică decât r față de centrul discului dat.
- 6. Funcția de densitate comună a variabilelor aleatoare X, Y este dată de

$$f\left(x,y\right) = \left\{ \begin{array}{ll} e^{-x-y}, & x,y > 0 \\ 0, & \text{in rest} \end{array} \right.$$

- 7. Să se determine funcția de distribuție și densitatea variabilei aleatoare $Z = \frac{X}{Y}$.
- 8. Două persoane decid să se întălnească într-un anumit loc. Dacă fiecare persoană sosește în acest loc, în mod independent, la o oră ce este uniform distribuită între ora 12 și ora 13, să se determine probabilitatea ca una din persoane să aștepte cel puţin 10 minute.
- 9. Să se determine densitatea f_{X+Y} a variabilei aleatoare X+Y, unde X și Y sunt variabile aleatoare independente având densitățile f_X , rspectiv f_Y .

- 10. Să se determine densitatea f_{X+Y} a sumei a două variabile aleatoare X, Y uniform distribuite pe intervalul (0, 1).
- 11. Densitatea comună a variabilelor aleatoare X, Y este

$$f\left(x,y\right) = \left\{ \begin{array}{ll} c\left(x^2 + xy\right), & \quad 0 < x < 1, \ 0 < y < 2 \\ 0, & \quad \text{in rest} \end{array} \right.$$

- (a) Să se determine valoarea constantei c
- (b) Să se determine densitatea f_X a variabilei aleatoare X
- (c) Să se calculeze probabilitate
a $P\left(X>Y\right)$
- (d) Să se calculeze probabilitate
a $P\left(X<\frac{1}{2},Y>\frac{1}{2}\right).$
- 12. Densitatea comună a variabilelor aleatoare $X,\,Y$ este

$$f(x,y) = \begin{cases} e^{-x-y}, & x,y > 0\\ 0, & \text{in rest} \end{cases}$$

- (a) Să se determine probabilitatea P(X < Y)
- (b) Să se determine probabilitatea P(X < 1).