

Análisis Matemático Formulas

Analisis Matematico (Universitat Oberta de Catalunya)

Análisis Matemático Formulas

COCIENTES

$\frac{0}{\mathbf{k}} = 0$	$\frac{0}{\infty} = 0$
$\frac{k}{s} = \infty$	$\frac{\infty}{0} = \infty$

$$\frac{\infty}{k} = \infty$$

$$\frac{k}{\infty} = 0$$

POTENCIAS

 $e^0 = 1$

$$k^{0} = 1$$

$$0^{k} = \begin{cases} 0 & si \ k > 0 \\ \infty & si \ k < 0 \end{cases}$$

$$k^{\infty} = \begin{cases} \infty & si \ k > 1 \\ 0 & si \ 0 < k < 1 \end{cases}$$

$$1^{\infty} = IND$$

$$\infty^{\infty} = \infty$$

$$e^{\infty} = \infty$$

SUMA

$$\infty \pm k = \infty$$

$$\infty + \infty = \infty$$

$$\infty - \infty = IND$$

$$\log/\ln\left(1\right) = 0$$

$$log/ln(0) = -\infty$$

$$log/ln(\infty) = \infty$$

PRODUCTO

$$\infty \cdot (\pm k) = \pm \infty \quad k \neq 0$$

$$\infty\cdot\infty=\infty$$

INDETERMINACION

$$\frac{0}{0} = IND$$

$$\frac{\infty}{\infty} = IND$$

$$0^0 = IND$$

$$\infty^0 = IND$$

$$1^{\infty} = IND$$

$$\infty - \infty = IND$$

$$0 \cdot \infty = IND$$

Regla para calcular Ind. $\frac{\infty(N)}{\infty(D)}$

1.
$$g(N) > g(D) = \infty$$

$$\frac{x^3}{x^2} = \infty$$

2.
$$g(N) < g(D) = 0$$

$$\frac{x^2}{r^3} = 0$$

3.
$$g(N) = g(D) = \pm \mathbf{k}$$

$$\frac{4 \cdot x^2}{-1 \cdot x^2} = -\frac{4}{1} = -4$$

INTEGRALES

$$\int x^n = \frac{x^{n+1}}{n+1}$$

$$\int \mathbf{7}^x = \frac{7^x}{\ln{(7)}}$$

$$\int \frac{1}{(x-3)} = \ln(x-3)$$

$$\int \frac{1}{(x+4)^2} = (x+4)^{-2} = \frac{-1}{(x+4)}$$

$$\int \frac{x^2 + 15x - 16}{x + 4} = \int \left[(x + 11) + \frac{-60}{(x + 4)} \right]$$

$$\int \frac{1}{\sqrt{e^x}} = \int e^{-x\frac{1}{2}} = -2 \cdot e^{-\frac{x}{2}}$$

$$\int \frac{\cos(x)}{\sqrt{1 - \sin(x)}} = \int \cos x (1 - \sin x)^{-\frac{1}{2}} = -2 \cdot t^{\frac{1}{2}}$$

$$\int \frac{1}{e^x + e^{-x}} = \int \frac{1}{t^2 + 1} = tan^{-1}t$$

$$\int tan(x) = \frac{\sin(x)}{\cos(x)} = -\ln|\cos(x)|$$

POR PARTES: $oldsymbol{u}\cdotoldsymbol{v}-\intoldsymbol{v}\cdotoldsymbol{du}$

$$\int x \cdot e^x = x \cdot e^x - \int 1e^x = x \cdot e^x - e^x$$

$$\int \ln x \cdot dx = \ln x \cdot x - \int x \cdot \frac{1}{x} = x \cdot \ln x - x$$

$$\int \frac{\ln x}{x^2} \cdot dx = \ln x \cdot \frac{-1}{x} - \int \frac{-1}{x} \cdot \frac{1}{x} = \frac{-\ln x}{x} - \frac{1}{x}$$

DERIVADAS

$$\left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{\left(g(x)\right)^2}$$

$$(f(x) \cdot g(x))' = f'(x) \cdot g(x) + f(x) \cdot g'(x)$$

$$\sqrt[k]{f(x)^1} = f(x)^{\frac{1}{k}} \implies \left(f(x)^k \right)' = k \cdot f(x)^{k-1} \cdot f'(x)$$

$$x^n = n \cdot x^{n-1}$$

$$e^{x^2} = 2x \cdot e^{x^2}$$
$$e^{2x} = 2 \cdot e^{2x}$$

$$\mathbf{7^{2x}} = 2 \cdot 7^{2x} \cdot \ln(7)$$

$$\ln\left(x\right) = \frac{1}{x}$$

$$\ln(1+x) = \frac{1}{1+x} \cdot 1$$
$$\frac{1}{x} = x^{-1} = -\frac{1}{x^2} \cdot 1$$

$$\frac{1}{x} = x^{-1} = -\frac{1}{x^2} \cdot 1$$

$$\frac{1}{x^2} = x^{-2} = -\frac{2}{x^3} \cdot 1$$

$$\sqrt{x} = x^{\frac{1}{2}} = \frac{1}{2 \cdot \sqrt{x}}$$

$$sin(x) = cos(x) \cdot 1$$
 $e^x = e^x$
 $cos(x) = -sin(x) \cdot 1$

$$\sin^3(x) = 3 \cdot \sin^2(x) \cdot \cos(x) \cdot 1$$

$$sin(2x) = \cos(x) \cdot 2$$

$$tan(x) = \frac{1}{\cos^2(x)} = sec^2(x)$$

$$tan^{-1}(x) = arctan(x) = \frac{1}{1+x^2}$$

$$arcsin(x) = sin^{-1}(x) = \frac{1}{\sqrt{1-x^2}}$$

This document is available free of charge on Studio Culcom

$$\int arctanx \cdot dx = arctanx \cdot x - \int x \cdot \frac{1}{1+x^2} = x \cdot arctanx - \frac{1}{2} \ln |1+x^2|$$

$$\int x \cdot \frac{1}{1+x^2} = \int \frac{x}{u} \cdot \frac{du}{2x} = \frac{1}{2} \int \frac{1}{u} = \frac{1}{2} \ln|u| = \frac{1}{2} \ln|1+x^2|$$

CONTINUIDAD y DERIVABILIDAD:

Analizamos f(x) en los puntos donde la función está definida a TROZOS:

 $\mathbf{x} \leq \mathbf{k} \rightarrow \mathsf{Al}$ ser un Polinomio $\rightarrow \mathsf{f}(\mathsf{x})$ es **CONTINUA** y **DERIVABLE** para todo \mathbb{R} .

 $\mathbf{x} > \mathbf{k} \mid \rightarrow$ Buscamos los puntos donde se anula el DENOMINADOR:

❖ Si cae fuera del intervalo \rightarrow f(x) es **CONTINUA** y **DERIVABLE** para todo \mathbb{R} . \rightarrow f(x) es **CONTINUA** y **DERIVABLE** para todo \mathbb{R} .

 $\mathbf{x} = \mathbf{k} \mid \rightarrow$ Calcular **LIMITE LATERAL** de $f(\mathbf{x})$: $\mathbf{\uparrow} \leftarrow$ **COINCIDE** el resultado \rightarrow f(x) es **CONTINUA** en x = k **\Leftrightarrow NO COINCIDE** el resultado \rightarrow f(x) **NO** es **CONTINUA** \rightarrow **NO** es **DERIVABLE**

 \rightarrow Calcular **DERIVADA** f'(x) de cada Trozo.

→ Calcular LIMITE LATERAL de f'(x): 「 COINCIDE el resultado \rightarrow f(x) es **DERIVABLE** en x = k NO COINCIDE el resultado \rightarrow f(x) **NO** es **DERIVABLE** en x = k

RECTA TANGENTE: a la función en x_0

$$y = m \cdot (x - x_0) + n$$

AREA:

delimitada por la f(x) y las rectas verticales [1;3]

$$\int_{1}^{3} f(x) = \int_{1}^{2} f(x)_{Trozo_{1}} + \int_{2}^{3} f(x)_{Trozo_{2}}$$

❖ delimitada por Recta Tangente a f(x) en $x_0 = 0$ y rectas verticales [0;10]

ASINTOTAS:

A. VERTICAL: \rightarrow Tiene A.V. donde se anula el DENOMINADOR de f(x) (en x=k)

 \rightarrow No tiene A.V. si no se anula el DENOMINADOR de f(x)

 $\lim f(x) = \infty \mid \rightarrow \text{ Tiene A. V. en } x = k \rightarrow \text{ Calcular LIMITE LATERAL de } k^- y k^+$

A. HORIZONTAL: → Al tener una A.H. → No puede tener una A. Oblicua

$$\lim_{x\to\infty} f(x) = k$$
 \rightarrow Tiene A. H. en y = k

A. OBLICUA:
$$y = m \cdot x + n \rightarrow \text{Ecuación}$$

$$\boxed{m = \lim_{x \to \infty} [f(x): x] = k} \to m(PENDIENTE) \neq 0, \pm \infty \to Tiene A. 0.$$

 $n = \lim_{x \to \infty} [f(x) - m \cdot x] = k \rightarrow n$ (DESPLAZAMIENTO).

CRECIMIENTO Y DECRECIMIENTO. EXTREMOS RELATIVOS.

DERIVAR f(x) e IGUALAR A CERO:

$$f'(x) = 0$$
 \rightarrow Obtenemos los Posibles **CANDIDATOS** a **EXTREMOS** ($x_0 = k$)

Se escogen 2 puntos próximos a K, por la IZQ (k-1) y por la DCHA (k+1)para estudiar el signo de f'(x): (por ejemplo para k=1)

$$f'(k-1) = f'((1-1) = f'(0) = -$$

 $f'(k+1) = f'(1+1) = f'(2) = +$

$$f'(x) > 0$$
 →CRECIENTE $(1, \infty)$
 $f'(x) < 0$ →DECRECIENTE $(-\infty, 1)$

→ Hay un MINIMO RELATIVO en x=1

- ❖ → Existen 2 maneras para averiguar si son MIN o MAX:
 - I. Si $f'(x_0) = 0$ y $f''(x_0) > 0$ \rightarrow MINIMO RELATIVO Si $f'(x_0) = 0$ y $f''(x_0) < 0 \rightarrow MAXIMO$ RELATIVO
 - II. Para saber si es máximo o mínimo relativo, también se puede dividir la recta real en intervalos (representando en ella las soluciones de la ecuación $f'(x_0) = 0$) y estudiar el signo de la derivada:
 - Si la función cambia de creciente a decreciente es un Máximo relativo
 - Si la función cambia de decreciente a creciente es un Mínimo relativo
- **❖ Estudiar el punto crítico** (donde el denominador de f(x) se anula)

 $x = 0 \rightarrow \text{Calcular LIMITE LATERAL de } f(x)$

$$\lim_{x \to 0^{-}} f(x) = +\infty$$

$$\lim_{x \to 0^{+}} f(x) = -\infty$$

➤ Si el resultado es un número (k):

COINCIDE el resultado \rightarrow f(x) es **CONTINUA** en x = 0

❖ NO COINCIDE el resultado \rightarrow f(x) NO es CONTINUA \rightarrow NO es DERIVABLE

 \triangleright Si el resultado es $+\infty$:

No hay Extremos en x=0 pero si hay una A. Vertical

METODO PA SACÁR LOS MÁXIMOS Y LOS MÍNIMORS:

- 1.- HACES LA PRIMERA DERIVADA
- 2.- LA IGUALAS A CERO Y SACAS LAS RAICES...
- 3.- HACES LA SEGUNDA DERIVADA Y PRUEBAS LOS VALORES DE LAS RAICES ANTERIORES Y:
 - --> Si sale **Positivo** → MINIMO
 - --> Si sale **Negativo** → MAXIMO
 - --> Si sale **0** → PUNTO DE INFLEXION

Tabla 1. Descomposición en fracciones simples

Factor en el denominador	Términos de la descomposición en fracciones simples
ax + b (raíz real)	$\frac{A}{ax+b}$
(ax + b) ^k (raíz real múltiple)	$\frac{A_1}{ax+b} + \frac{A_2}{\left(ax+b\right)^2} + \dots + \frac{A_k}{\left(ax+b\right)^k}$
ax ² + bx + c (raíces complejas)	$\frac{Ax+B}{ax^2+bx+c}$
(ax ² + bx + c) ^k (raíces complejas múltiples)	$\frac{A_{1}x + B_{1}}{ax^{2} + bx + c} + \frac{A_{2}x + B_{2}}{\left(ax^{2} + bx + c\right)^{2}} + \dots + \frac{A_{k}x + B_{k}}{\left(ax^{2} + bx + c\right)^{k}}$