Scientific Computing: An Introductory Survey Chapter 3 – Linear Least Squares

Prof. Michael T. Heath

Department of Computer Science University of Illinois at Urbana-Champaign

Copyright © 2002. Reproduction permitted for noncommercial, educational use only.

Outline

- Least Squares Data Fitting
- Existence, Uniqueness, and Conditioning
- Solving Linear Least Squares Problems

Method of Least Squares

- Measurement errors are inevitable in observational and experimental sciences
- Errors can be smoothed out by averaging over many cases, i.e., taking more measurements than are strictly necessary to determine parameters of system
- Resulting system is overdetermined, so usually there is no exact solution
- In effect, higher dimensional data are projected into lower dimensional space to suppress irrelevant detail
- Such projection is most conveniently accomplished by method of *least squares*

Linear Least Squares

- For linear problems, we obtain *overdetermined* linear system Ax = b, with $m \times n$ matrix A, m > n
- System is better written $Ax \cong b$, since equality is usually not exactly satisfiable when m > n
- Least squares solution x minimizes squared Euclidean norm of residual vector r = b Ax,

$$\min_{m{x}} \|m{r}\|_2^2 = \min_{m{x}} \|m{b} - m{A}m{x}\|_2^2$$

Data Fitting

• Given m data points (t_i, y_i) , find n-vector x of parameters that gives "best fit" to model function f(t, x),

$$\min_{\boldsymbol{x}} \sum_{i=1}^{m} (y_i - f(t_i, \boldsymbol{x}))^2$$

• Problem is *linear* if function f is linear in components of x,

$$f(t, \mathbf{x}) = x_1 \phi_1(t) + x_2 \phi_2(t) + \dots + x_n \phi_n(t)$$

where functions ϕ_i depend only on t

• Problem can be written in matrix form as $Ax \cong b$, with $a_{ij} = \phi_j(t_i)$ and $b_i = y_i$

Data Fitting

Polynomial fitting

$$f(t, \mathbf{x}) = x_1 + x_2t + x_3t^2 + \dots + x_nt^{n-1}$$

is linear, since polynomial linear in coefficients, though nonlinear in independent variable \boldsymbol{t}

Fitting sum of exponentials

$$f(t, \mathbf{x}) = x_1 e^{x_2 t} + \dots + x_{n-1} e^{x_n t}$$

is example of nonlinear problem

For now, we will consider only linear least squares problems

Example: Data Fitting

 Fitting quadratic polynomial to five data points gives linear least squares problem

$$m{Ax} = egin{bmatrix} 1 & t_1 & t_1^2 \ 1 & t_2 & t_2^2 \ 1 & t_3 & t_3^2 \ 1 & t_4 & t_4^2 \ 1 & t_5 & t_5^2 \end{bmatrix} egin{bmatrix} x_1 \ x_2 \ x_3 \end{bmatrix} \cong egin{bmatrix} y_1 \ y_2 \ y_3 \ y_4 \ y_5 \end{bmatrix} = m{b}$$

 Matrix whose columns (or rows) are successive powers of independent variable is called *Vandermonde matrix*

Example, continued

For data

overdetermined 5×3 linear system is

$$\mathbf{A}\mathbf{x} = \begin{bmatrix} 1 & -1.0 & 1.0 \\ 1 & -0.5 & 0.25 \\ 1 & 0.0 & 0.0 \\ 1 & 0.5 & 0.25 \\ 1 & 1.0 & 1.0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \cong \begin{bmatrix} 1.0 \\ 0.5 \\ 0.0 \\ 0.5 \\ 2.0 \end{bmatrix} = \mathbf{b}$$

Solution, which we will see later how to compute, is

$$\boldsymbol{x} = \begin{bmatrix} 0.086 & 0.40 & 1.4 \end{bmatrix}^T$$

so approximating polynomial is

$$p(t) = 0.086 + 0.4t + 1.4t^2$$

Example, continued

Resulting curve and original data points are shown in graph

< interactive example >

Existence and Uniqueness

- ullet Linear least squares problem $Ax\cong b$ always has solution
- Solution is *unique* if, and only if, columns of A are *linearly independent*, i.e., rank(A) = n, where A is $m \times n$
- If rank(A) < n, then A is *rank-deficient*, and solution of linear least squares problem is not unique
- ullet For now, we assume $oldsymbol{A}$ has full column rank n

Normal Equations

To minimize squared Euclidean norm of residual vector

$$\|\boldsymbol{r}\|_2^2 = \boldsymbol{r}^T \boldsymbol{r} = (\boldsymbol{b} - \boldsymbol{A}\boldsymbol{x})^T (\boldsymbol{b} - \boldsymbol{A}\boldsymbol{x})$$

= $\boldsymbol{b}^T \boldsymbol{b} - 2\boldsymbol{x}^T \boldsymbol{A}^T \boldsymbol{b} + \boldsymbol{x}^T \boldsymbol{A}^T \boldsymbol{A}\boldsymbol{x}$

take derivative with respect to x and set it to 0,

$$2\mathbf{A}^T \mathbf{A} \mathbf{x} - 2\mathbf{A}^T \mathbf{b} = \mathbf{0}$$

which reduces to $n \times n$ linear system of *normal equations*

$$A^T A x = A^T b$$

Orthogonality

- Vectors v_1 and v_2 are *orthogonal* if their inner product is zero, $v_1^T v_2 = 0$
- Space spanned by columns of $m \times n$ matrix A, span $(A) = \{Ax : x \in \mathbb{R}^n\}$, is of dimension at most n
- If m > n, b generally does not lie in span(A), so there is no exact solution to Ax = b
- Vector y = Ax in span(A) closest to b in 2-norm occurs when residual r = b Ax is orthogonal to span(A),

$$\mathbf{0} = \mathbf{A}^T \mathbf{r} = \mathbf{A}^T (\mathbf{b} - \mathbf{A} \mathbf{x})$$

again giving system of normal equations

$$\mathbf{A}^T \mathbf{A} \mathbf{x} = \mathbf{A}^T \mathbf{b}$$

Orthogonality, continued

ullet Geometric relationships among $m{b}, \, m{r}, \, {
m and } \, {
m span}(m{A})$ are shown in diagram

Orthogonal Projectors

- Matrix P is orthogonal projector if it is idempotent $(P^2 = P)$ and symmetric $(P^T = P)$
- ullet Orthogonal projector onto orthogonal complement $\mathrm{span}(m{P})^\perp$ is given by $m{P}_\perp = m{I} m{P}$
- For any vector v,

$$oldsymbol{v} = (oldsymbol{P} + (oldsymbol{I} - oldsymbol{P})) \ oldsymbol{v} = oldsymbol{P} oldsymbol{v} + oldsymbol{P}_{\perp} oldsymbol{v}$$

• For least squares problem $Ax \cong b$, if rank(A) = n, then

$$\boldsymbol{P} = \boldsymbol{A}(\boldsymbol{A}^T \boldsymbol{A})^{-1} \boldsymbol{A}^T$$

is orthogonal projector onto span(A), and

$$b = Pb + P_{\perp}b = Ax + (b - Ax) = y + r$$

Pseudoinverse and Condition Number

- Nonsquare $m \times n$ matrix A has no inverse in usual sense
- If rank(A) = n, pseudoinverse is defined by

$$\boldsymbol{A}^+ = (\boldsymbol{A}^T \boldsymbol{A})^{-1} \boldsymbol{A}^T$$

and condition number by

$$\operatorname{cond}(\boldsymbol{A}) = \|\boldsymbol{A}\|_2 \cdot \|\boldsymbol{A}^+\|_2$$

- By convention, $cond(A) = \infty$ if rank(A) < n
- Just as condition number of square matrix measures closeness to singularity, condition number of rectangular matrix measures closeness to rank deficiency
- ullet Least squares solution of $Ax\cong b$ is given by $x=A^+\,b$

Sensitivity and Conditioning

- Sensitivity of least squares solution to $Ax \cong b$ depends on b as well as A
- ullet Define angle heta between $oldsymbol{b}$ and $oldsymbol{y} = oldsymbol{A} oldsymbol{x}$ by

$$\cos(\theta) = \frac{\|\boldsymbol{y}\|_2}{\|\boldsymbol{b}\|_2} = \frac{\|\boldsymbol{A}\boldsymbol{x}\|_2}{\|\boldsymbol{b}\|_2}$$

• Bound on perturbation Δx in solution x due to perturbation Δb in b is given by

$$\frac{\|\Delta \boldsymbol{x}\|_2}{\|\boldsymbol{x}\|_2} \leq \operatorname{cond}(\boldsymbol{A}) \frac{1}{\cos(\theta)} \frac{\|\Delta \boldsymbol{b}\|_2}{\|\boldsymbol{b}\|_2}$$

Sensitivity and Conditioning, contnued

Similarly, for perturbation E in matrix A,

$$\frac{\|\Delta \boldsymbol{x}\|_2}{\|\boldsymbol{x}\|_2} \lessapprox \left([\operatorname{cond}(\boldsymbol{A})]^2 \tan(\theta) + \operatorname{cond}(\boldsymbol{A}) \right) \frac{\|\boldsymbol{E}\|_2}{\|\boldsymbol{A}\|_2}$$

ullet Condition number of least squares solution is about ${
m cond}({m A})$ if residual is small, but can be squared or arbitrarily worse for large residual

Normal Equations Method

• If $m \times n$ matrix A has rank n, then symmetric $n \times n$ matrix $A^T A$ is positive definite, so its Cholesky factorization

$$\boldsymbol{A}^T \boldsymbol{A} = \boldsymbol{L} \boldsymbol{L}^T$$

can be used to obtain solution \boldsymbol{x} to system of normal equations

$$\boldsymbol{A}^T \boldsymbol{A} \boldsymbol{x} = \boldsymbol{A}^T \boldsymbol{b}$$

which has same solution as linear least squares problem $Ax\cong b$

Normal equations method involves transformations

rectangular \longrightarrow square \longrightarrow triangular

Example: Normal Equations Method

 For polynomial data-fitting example given previously, normal equations method gives

$$\boldsymbol{A}^T\boldsymbol{A} \ = \ \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ -1.0 & -0.5 & 0.0 & 0.5 & 1.0 \\ 1.0 & 0.25 & 0.0 & 0.25 & 1.0 \end{bmatrix} \begin{bmatrix} 1 & -1.0 & 1.0 \\ 1 & -0.5 & 0.25 \\ 1 & 0.0 & 0.0 \\ 1 & 0.5 & 0.25 \\ 1 & 1.0 & 1.0 \end{bmatrix}$$

$$= \begin{bmatrix} 5.0 & 0.0 & 2.5 \\ 0.0 & 2.5 & 0.0 \\ 2.5 & 0.0 & 2.125 \end{bmatrix},$$

$$\mathbf{A}^{T}\mathbf{b} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ -1.0 & -0.5 & 0.0 & 0.5 & 1.0 \\ 1.0 & 0.25 & 0.0 & 0.25 & 1.0 \end{bmatrix} \begin{bmatrix} 1.0 \\ 0.5 \\ 0.0 \\ 0.5 \\ 2.0 \end{bmatrix} = \begin{bmatrix} 4.0 \\ 1.0 \\ 3.25 \end{bmatrix}$$

Example, continued

• Cholesky factorization of symmetric positive definite matrix A^TA gives

- Solving lower triangular system $Lz = A^Tb$ by forward-substitution gives $z = \begin{bmatrix} 1.789 & 0.632 & 1.336 \end{bmatrix}^T$
- Solving upper triangular system $L^T x = z$ by back-substitution gives $x = \begin{bmatrix} 0.086 & 0.400 & 1.429 \end{bmatrix}^T$

Shortcomings of Normal Equations

- Information can be lost in forming A^TA and A^Tb
- For example, take

$$\boldsymbol{A} = \begin{bmatrix} 1 & 1 \\ \epsilon & 0 \\ 0 & \epsilon \end{bmatrix}$$

where ϵ is positive number smaller than $\sqrt{\epsilon_{\mathrm{mach}}}$

Then in floating-point arithmetic

$$\boldsymbol{A}^T \boldsymbol{A} = \begin{bmatrix} 1 + \epsilon^2 & 1 \\ 1 & 1 + \epsilon^2 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$

which is singular

Sensitivity of solution is also worsened, since

$$\operatorname{cond}(\boldsymbol{A}^T \boldsymbol{A}) = [\operatorname{cond}(\boldsymbol{A})]^2$$

Augmented System Method

• Definition of residual together with orthogonality requirement give $(m+n) \times (m+n)$ augmented system

$$egin{bmatrix} egin{bmatrix} m{A} & m{A} \ m{A}^T & m{O} \end{bmatrix} egin{bmatrix} m{r} \ m{x} \end{bmatrix} = egin{bmatrix} m{b} \ m{0} \end{bmatrix}$$

- Augmented system is not positive definite, is larger than original system, and requires storing two copies of A
- But it allows greater freedom in choosing pivots in computing $\boldsymbol{L}\boldsymbol{D}\boldsymbol{L}^T$ or $\boldsymbol{L}\boldsymbol{U}$ factorization

Augmented System Method, continued

• Introducing scaling parameter α gives system

$$\begin{bmatrix} \alpha \boldsymbol{I} & \boldsymbol{A} \\ \boldsymbol{A}^T & \boldsymbol{O} \end{bmatrix} \begin{bmatrix} \boldsymbol{r}/\alpha \\ \boldsymbol{x} \end{bmatrix} = \begin{bmatrix} \boldsymbol{b} \\ \boldsymbol{0} \end{bmatrix}$$

which allows control over relative weights of two subsystems in choosing pivots

Reasonable rule of thumb is to take

$$\alpha = \max_{i,j} |a_{ij}|/1000$$

 Augmented system is sometimes useful, but is far from ideal in work and storage required

Orthogonal Transformations

- We seek alternative method that avoids numerical difficulties of normal equations
- We need numerically robust transformation that produces easier problem without changing solution
- What kind of transformation leaves least squares solution unchanged?
- Square matrix Q is *orthogonal* if $Q^TQ = I$
- Multiplication of vector by orthogonal matrix preserves Euclidean norm

$$\|Qv\|_2^2 = (Qv)^T Qv = v^T Q^T Qv = v^T v = \|v\|_2^2$$

 Thus, multiplying both sides of least squares problem by orthogonal matrix does not change its solution

Triangular Least Squares Problems

- As with square linear systems, suitable target in simplifying least squares problems is triangular form
- Upper triangular overdetermined (m > n) least squares problem has form

$$egin{bmatrix} R \ O \end{bmatrix} x \cong egin{bmatrix} b_1 \ b_2 \end{bmatrix}$$

where ${\bf \it R}$ is $n \times n$ upper triangular and ${\bf \it b}$ is partitioned similarly

Residual is

$$\|\boldsymbol{r}\|_2^2 = \|\boldsymbol{b}_1 - \boldsymbol{R}\boldsymbol{x}\|_2^2 + \|\boldsymbol{b}_2\|_2^2$$

Triangular Least Squares Problems, continued

• We have no control over second term, $\|\mathbf{b}_2\|_2^2$, but first term becomes zero if x satisfies $n \times n$ triangular system

$$\mathbf{R}\mathbf{x} = \mathbf{b}_1$$

which can be solved by back-substitution

 Resulting x is least squares solution, and minimum sum of squares is

$$\|m{r}\|_2^2 = \|m{b}_2\|_2^2$$

 So our strategy is to transform general least squares problem to triangular form using orthogonal transformation so that least squares solution is preserved

QR Factorization

• Given $m \times n$ matrix \boldsymbol{A} , with m > n, we seek $m \times m$ orthogonal matrix \boldsymbol{Q} such that

$$A = Q \begin{bmatrix} R \\ O \end{bmatrix}$$

where R is $n \times n$ and upper triangular

• Linear least squares problem $Ax \cong b$ is then transformed into triangular least squares problem

$$egin{aligned} oldsymbol{Q}^T oldsymbol{A} oldsymbol{x} = egin{bmatrix} oldsymbol{R} \ oldsymbol{O} \end{bmatrix} oldsymbol{x} \cong egin{bmatrix} oldsymbol{c}_1 \ oldsymbol{c}_2 \end{bmatrix} = oldsymbol{Q}^T oldsymbol{b} \end{aligned}$$

which has same solution, since

$$\|oldsymbol{r}\|_2^2 = \|oldsymbol{b} - oldsymbol{A}oldsymbol{x}\|_2^2 = \|oldsymbol{b} - oldsymbol{A}oldsymbol{p}\|_2^2 = \|oldsymbol{D} - oldsymbol{A}oldsymbol{p}\|_2^T oldsymbol{b} - egin{bmatrix} oldsymbol{R} \ oldsymbol{O} \end{bmatrix} oldsymbol{x}\|_2^2$$

Orthogonal Bases

• If we partition $m \times m$ orthogonal matrix $Q = [Q_1 \ Q_2]$, where Q_1 is $m \times n$, then

$$oldsymbol{A} = oldsymbol{Q}egin{bmatrix} oldsymbol{R} \ oldsymbol{O} \end{bmatrix} = oldsymbol{Q}_1oldsymbol{R} \ oldsymbol{Q} \end{bmatrix} = oldsymbol{Q}_1oldsymbol{R}$$

is called *reduced* QR factorization of A

- ullet Columns of $oldsymbol{Q}_1$ are orthonormal basis for $\mathrm{span}(oldsymbol{A})$, and columns of $oldsymbol{Q}_2$ are orthonormal basis for $\mathrm{span}(oldsymbol{A})^\perp$
- $Q_1Q_1^T$ is orthogonal projector onto span(A)
- Solution to least squares problem $Ax \cong b$ is given by solution to square system

$$\boldsymbol{Q}_1^T \boldsymbol{A} \boldsymbol{x} = \boldsymbol{R} \boldsymbol{x} = \boldsymbol{c}_1 = \boldsymbol{Q}_1^T \boldsymbol{b}$$

Computing QR Factorization

- To compute QR factorization of m × n matrix A, with m > n, we annihilate subdiagonal entries of successive columns of A, eventually reaching upper triangular form
- Similar to LU factorization by Gaussian elimination, but use orthogonal transformations instead of elementary elimination matrices
- Possible methods include
 - Householder transformations
 - Givens rotations
 - Gram-Schmidt orthogonalization

Householder Transformations

Householder transformation has form

$$\boldsymbol{H} = \boldsymbol{I} - 2 \frac{\boldsymbol{v} \boldsymbol{v}^T}{\boldsymbol{v}^T \boldsymbol{v}}$$

for nonzero vector v

- ullet $oldsymbol{H}$ is orthogonal and symmetric: $oldsymbol{H} = oldsymbol{H}^T = oldsymbol{H}^{-1}$
- Given vector a, we want to choose v so that

$$m{Ha} = egin{bmatrix} lpha \ 0 \ dots \ 0 \end{bmatrix} = lpha egin{bmatrix} 1 \ 0 \ dots \ 0 \end{bmatrix} = lpha m{e}_1$$

Substituting into formula for H, we can take

$$\mathbf{v} = \mathbf{a} - \alpha \mathbf{e}_1$$

and $\alpha = \pm \|\boldsymbol{a}\|_2$, with sign chosen to avoid cancellation

Example: Householder Transformation

• If $a = \begin{bmatrix} 2 & 1 & 2 \end{bmatrix}^T$, then we take

$$v = a - \alpha e_1 = \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix} - \alpha \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix} - \begin{bmatrix} \alpha \\ 0 \\ 0 \end{bmatrix}$$

where $\alpha = \pm ||\boldsymbol{a}||_2 = \pm 3$

• Since a_1 is positive, we choose negative sign for α to avoid cancellation, so $\mathbf{v} = \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix} - \begin{bmatrix} -3 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 5 \\ 1 \\ 2 \end{bmatrix}$

To confirm that transformation works,

$$oldsymbol{Ha} = oldsymbol{a} - 2 rac{oldsymbol{v}^T oldsymbol{a}}{oldsymbol{v}^T oldsymbol{v}} oldsymbol{v} = egin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix} - 2 rac{15}{30} egin{bmatrix} 5 \\ 1 \\ 2 \end{bmatrix} = egin{bmatrix} -3 \\ 0 \\ 0 \end{bmatrix}$$

Householder QR Factorization

- To compute QR factorization of A, use Householder transformations to annihilate subdiagonal entries of each successive column
- Each Householder transformation is applied to entire matrix, but does not affect prior columns, so zeros are preserved
- In applying Householder transformation H to arbitrary vector u,

$$\boldsymbol{H}\boldsymbol{u} = \left(\boldsymbol{I} - 2\frac{\boldsymbol{v}\boldsymbol{v}^T}{\boldsymbol{v}^T\boldsymbol{v}}\right)\boldsymbol{u} = \boldsymbol{u} - \left(2\frac{\boldsymbol{v}^T\boldsymbol{u}}{\boldsymbol{v}^T\boldsymbol{v}}\right)\boldsymbol{v}$$

which is much cheaper than general matrix-vector multiplication and requires only vector $m{v}$, not full matrix $m{H}$

Householder QR Factorization, continued

Process just described produces factorization

$$oldsymbol{H}_n \cdots oldsymbol{H}_1 oldsymbol{A} = egin{bmatrix} oldsymbol{R} \ oldsymbol{O} \end{bmatrix}$$

where R is $n \times n$ and upper triangular

- ullet If $oldsymbol{Q} = oldsymbol{H}_1 \cdots oldsymbol{H}_n$, then $oldsymbol{A} = oldsymbol{Q} egin{bmatrix} oldsymbol{R} \ oldsymbol{O} \end{bmatrix}$
- To preserve solution of linear least squares problem, right-hand side b is transformed by same sequence of Householder transformations
- ullet Then solve triangular least squares problem $egin{bmatrix} m{R} \ m{O} \end{bmatrix} m{x} \cong m{Q}^T m{b}$

Householder QR Factorization, continued

- ullet For solving linear least squares problem, product Q of Householder transformations need not be formed explicitly
- R can be stored in upper triangle of array initially containing A
- Householder vectors v can be stored in (now zero) lower triangular portion of A (almost)
- Householder transformations most easily applied in this form anyway

Example: Householder QR Factorization

For polynomial data-fitting example given previously, with

$$\mathbf{A} = \begin{bmatrix} 1 & -1.0 & 1.0 \\ 1 & -0.5 & 0.25 \\ 1 & 0.0 & 0.0 \\ 1 & 0.5 & 0.25 \\ 1 & 1.0 & 1.0 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 1.0 \\ 0.5 \\ 0.0 \\ 0.5 \\ 2.0 \end{bmatrix}$$

ullet Householder vector $oldsymbol{v}_1$ for annihilating subdiagonal entries of first column of $oldsymbol{A}$ is

$$v_1 = \begin{bmatrix} 1\\1\\1\\1\\1\\1 \end{bmatrix} - \begin{bmatrix} -2.236\\0\\0\\0 \end{bmatrix} = \begin{bmatrix} 3.236\\1\\1\\1\\1 \end{bmatrix}$$

Example, continued

ullet Applying resulting Householder transformation $oldsymbol{H}_1$ yields transformed matrix and right-hand side

$$\boldsymbol{H_1 A} = \begin{bmatrix} -2.236 & 0 & -1.118 \\ 0 & -0.191 & -0.405 \\ 0 & 0.309 & -0.655 \\ 0 & 0.809 & -0.405 \\ 0 & 1.309 & 0.345 \end{bmatrix}, \quad \boldsymbol{H_1 b} = \begin{bmatrix} -1.789 \\ -0.362 \\ -0.862 \\ -0.362 \\ 1.138 \end{bmatrix}$$

• Householder vector v_2 for annihilating subdiagonal entries of second column of H_1A is

$$\boldsymbol{v}_2 = \begin{bmatrix} 0 \\ -0.191 \\ 0.309 \\ 0.809 \\ 1.309 \end{bmatrix} - \begin{bmatrix} 0 \\ 1.581 \\ 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ -1.772 \\ 0.309 \\ 0.809 \\ 1.309 \end{bmatrix}$$

Example, continued

Applying resulting Householder transformation H₂ yields

$$\boldsymbol{H}_2\boldsymbol{H}_1\boldsymbol{A} = \begin{bmatrix} -2.236 & 0 & -1.118 \\ 0 & 1.581 & 0 \\ 0 & 0 & -0.725 \\ 0 & 0 & -0.589 \\ 0 & 0 & 0.047 \end{bmatrix}, \quad \boldsymbol{H}_2\boldsymbol{H}_1\boldsymbol{b} = \begin{bmatrix} -1.789 \\ 0.632 \\ -1.035 \\ -0.816 \\ 0.404 \end{bmatrix}$$

• Householder vector v_3 for annihilating subdiagonal entries of third column of H_2H_1A is

$$\boldsymbol{v}_3 = \begin{bmatrix} 0\\0\\-0.725\\-0.589\\0.047 \end{bmatrix} - \begin{bmatrix} 0\\0\\0.935\\0\\0 \end{bmatrix} = \begin{bmatrix} 0\\0\\-1.660\\-0.589\\0.047 \end{bmatrix}$$

Example, continued

• Applying resulting Householder transformation H_3 yields

$$\boldsymbol{H}_{3}\boldsymbol{H}_{2}\boldsymbol{H}_{1}\boldsymbol{A} = \begin{bmatrix} -2.236 & 0 & -1.118 \\ 0 & 1.581 & 0 \\ 0 & 0 & 0.935 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad \boldsymbol{H}_{3}\boldsymbol{H}_{2}\boldsymbol{H}_{1}\boldsymbol{b} = \begin{bmatrix} -1.789 \\ 0.632 \\ 1.336 \\ 0.026 \\ 0.337 \end{bmatrix}$$

• Now solve upper triangular system $\mathbf{R}\mathbf{x} = \mathbf{c}_1$ by back-substitution to obtain $\mathbf{x} = \begin{bmatrix} 0.086 & 0.400 & 1.429 \end{bmatrix}^T$

Givens Rotations

- Givens rotations introduce zeros one at a time
- Given vector $\begin{bmatrix} a_1 & a_2 \end{bmatrix}^T$, choose scalars c and s so that

$$\begin{bmatrix} c & s \\ -s & c \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} \alpha \\ 0 \end{bmatrix}$$

with
$$c^2+s^2=1$$
, or equivalently, $\alpha=\sqrt{a_1^2+a_2^2}$

Previous equation can be rewritten

$$\begin{bmatrix} a_1 & a_2 \\ a_2 & -a_1 \end{bmatrix} \begin{bmatrix} c \\ s \end{bmatrix} = \begin{bmatrix} \alpha \\ 0 \end{bmatrix}$$

Gaussian elimination yields triangular system

$$\begin{bmatrix} a_1 & a_2 \\ 0 & -a_1 - a_2^2/a_1 \end{bmatrix} \begin{bmatrix} c \\ s \end{bmatrix} = \begin{bmatrix} \alpha \\ -\alpha a_2/a_1 \end{bmatrix}$$

Givens Rotations, continued

Back-substitution then gives

$$s = \frac{\alpha a_2}{a_1^2 + a_2^2} \qquad \text{and} \qquad c = \frac{\alpha a_1}{a_1^2 + a_2^2}$$

• Finally, $c^2 + s^2 = 1$, or $\alpha = \sqrt{a_1^2 + a_2^2}$, implies

$$c = \frac{a_1}{\sqrt{a_1^2 + a_2^2}} \qquad \text{and} \qquad s = \frac{a_2}{\sqrt{a_1^2 + a_2^2}}$$

$$s = \frac{a_2}{\sqrt{a_1^2 + a_2^2}}$$

Example: Givens Rotation

- Let $a = \begin{bmatrix} 4 & 3 \end{bmatrix}^T$
- To annihilate second entry we compute cosine and sine

$$c = \frac{a_1}{\sqrt{a_1^2 + a_2^2}} = \frac{4}{5} = 0.8$$
 and $s = \frac{a_2}{\sqrt{a_1^2 + a_2^2}} = \frac{3}{5} = 0.6$

Rotation is then given by

$$\boldsymbol{G} = \begin{bmatrix} c & s \\ -s & c \end{bmatrix} = \begin{bmatrix} 0.8 & 0.6 \\ -0.6 & 0.8 \end{bmatrix}$$

To confirm that rotation works,

$$\boldsymbol{Ga} = \begin{bmatrix} 0.8 & 0.6 \\ -0.6 & 0.8 \end{bmatrix} \begin{bmatrix} 4 \\ 3 \end{bmatrix} = \begin{bmatrix} 5 \\ 0 \end{bmatrix}$$

Givens QR Factorization

 More generally, to annihilate selected component of vector in n dimensions, rotate target component with another component

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & c & 0 & s & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & -s & 0 & c & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \\ a_5 \end{bmatrix} = \begin{bmatrix} a_1 \\ \alpha \\ a_3 \\ 0 \\ a_5 \end{bmatrix}$$

- By systematically annihilating successive entries, we can reduce matrix to upper triangular form using sequence of Givens rotations
- Each rotation is orthogonal, so their product is orthogonal, producing QR factorization

Givens QR Factorization

- Straightforward implementation of Givens method requires about 50% more work than Householder method, and also requires more storage, since each rotation requires two numbers, c and s, to define it
- These disadvantages can be overcome, but requires more complicated implementation
- Givens can be advantageous for computing QR factorization when many entries of matrix are already zero, since those annihilations can then be skipped

Gram-Schmidt Orthogonalization

- Given vectors a₁ and a₂, we seek orthonormal vectors q₁ and q₂ having same span
- This can be accomplished by subtracting from second vector its projection onto first vector and normalizing both resulting vectors, as shown in diagram

Gram-Schmidt Orthogonalization

• Process can be extended to any number of vectors a_1, \ldots, a_k , orthogonalizing each successive vector against all preceding ones, giving *classical Gram-Schmidt* procedure

```
\begin{aligned} &\text{for } k=1 \text{ to } n \\ &q_k=a_k \\ &\text{for } j=1 \text{ to } k-1 \\ &r_{jk}=q_j^Ta_k \\ &q_k=q_k-r_{jk}q_j \\ &\text{end} \\ &r_{kk}=\|q_k\|_2 \\ &q_k=q_k/r_{kk} \end{aligned}
```

• Resulting q_k and r_{jk} form reduced QR factorization of A

Modified Gram-Schmidt

- Classical Gram-Schmidt procedure often suffers loss of orthogonality in finite-precision
- Also, separate storage is required for A, Q, and R, since original a_k are needed in inner loop, so q_k cannot overwrite columns of A
- Both deficiencies are improved by *modified Gram-Schmidt* procedure, with each vector orthogonalized in turn against all *subsequent* vectors, so q_k can overwrite a_k

Modified Gram-Schmidt QR Factorization

Modified Gram-Schmidt algorithm

```
\begin{aligned} &\text{for } k=1 \text{ to } n \\ &r_{kk}=\|\boldsymbol{a}_k\|_2 \\ &\boldsymbol{q}_k=\boldsymbol{a}_k/r_{kk} \\ &\text{for } j=k+1 \text{ to } n \\ &r_{kj}=\boldsymbol{q}_k^T\boldsymbol{a}_j \\ &\boldsymbol{a}_j=\boldsymbol{a}_j-r_{kj}\boldsymbol{q}_k \\ &\text{end} \end{aligned}
```


Rank Deficiency

- If $\operatorname{rank}(\boldsymbol{A}) < n$, then QR factorization still exists, but yields singular upper triangular factor \boldsymbol{R} , and multiple vectors \boldsymbol{x} give minimum residual norm
- ullet Common practice selects minimum residual solution x having smallest norm
- Can be computed by QR factorization with column pivoting or by singular value decomposition (SVD)
- Rank of matrix is often not clear cut in practice, so relative tolerance is used to determine rank

Example: Near Rank Deficiency

• Consider 3×2 matrix

$$\mathbf{A} = \begin{bmatrix} 0.641 & 0.242 \\ 0.321 & 0.121 \\ 0.962 & 0.363 \end{bmatrix}$$

Computing QR factorization,

$$\mathbf{R} = \begin{bmatrix} 1.1997 & 0.4527 \\ 0 & 0.0002 \end{bmatrix}$$

- *R* is extremely close to singular (exactly singular to 3-digit accuracy of problem statement)
- If R is used to solve linear least squares problem, result is highly sensitive to perturbations in right-hand side
- For practical purposes, rank(A) = 1 rather than 2, because columns are nearly linearly dependent

QR with Column Pivoting

- Instead of processing columns in natural order, select for reduction at each stage column of remaining unreduced submatrix having maximum Euclidean norm
- If rank(A) = k < n, then after k steps, norms of remaining unreduced columns will be zero (or "negligible" in finite-precision arithmetic) below row k
- Yields orthogonal factorization of form

$$Q^T A P = \begin{bmatrix} R & S \\ O & O \end{bmatrix}$$

where R is $k \times k$, upper triangular, and nonsingular, and permutation matrix P performs column interchanges

QR with Column Pivoting, continued

• Basic solution to least squares problem $Ax \cong b$ can now be computed by solving triangular system $Rz = c_1$, where c_1 contains first k components of Q^Tb , and then taking

$$x = P egin{bmatrix} z \ 0 \end{bmatrix}$$

- Minimum-norm solution can be computed, if desired, at expense of additional processing to annihilate S
- rank(A) is usually unknown, so rank is determined by monitoring norms of remaining unreduced columns and terminating factorization when maximum value falls below chosen tolerance

Singular Value Decomposition

• Singular value decomposition (SVD) of $m \times n$ matrix ${\bf A}$ has form

$$A = U\Sigma V^T$$

where ${\bf \it U}$ is $m \times m$ orthogonal matrix, ${\bf \it V}$ is $n \times n$ orthogonal matrix, and ${\bf \it \Sigma}$ is $m \times n$ diagonal matrix, with

$$\sigma_{ij} = \begin{cases} 0 & \text{for } i \neq j \\ \sigma_i \ge 0 & \text{for } i = j \end{cases}$$

- Diagonal entries σ_i , called *singular values* of A, are usually ordered so that $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_n$
- ullet Columns $oldsymbol{u}_i$ of $oldsymbol{U}$ and $oldsymbol{v}_i$ of $oldsymbol{V}$ are called left and right singular vectors

Example: SVD

$$ullet$$
 SVD of $m{A}=egin{bmatrix}1&2&3\\4&5&6\\7&8&9\\10&11&12\end{bmatrix}$ is given by $m{U}m{\Sigma}m{V}^T=$

$$\begin{bmatrix} .141 & .825 & -.420 & -.351 \\ .344 & .426 & .298 & .782 \\ .547 & .0278 & .664 & -.509 \\ .750 & -.371 & -.542 & .0790 \end{bmatrix} \begin{bmatrix} 25.5 & 0 & 0 \\ 0 & 1.29 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} .504 & .574 & .644 \\ -.761 & -.057 & .646 \\ .408 & -.816 & .408 \end{bmatrix}$$

Applications of SVD

ullet Minimum norm solution to $Ax\cong b$ is given by

$$oldsymbol{x} = \sum_{\sigma_i
eq 0} rac{oldsymbol{u}_i^T oldsymbol{b}}{\sigma_i} oldsymbol{v}_i$$

For ill-conditioned or rank deficient problems, "small" singular values can be omitted from summation to stabilize solution

- Euclidean matrix norm: $\|A\|_2 = \sigma_{\max}$
- Euclidean condition number of matrix: $ext{cond}(m{A}) = rac{\sigma_{ ext{max}}}{\sigma_{ ext{min}}}$
- Rank of matrix: number of nonzero singular values

Pseudoinverse

- Define pseudoinverse of scalar σ to be $1/\sigma$ if $\sigma \neq 0$, zero otherwise
- Define pseudoinverse of (possibly rectangular) diagonal matrix by transposing and taking scalar pseudoinverse of each entry
- Then *pseudoinverse* of general real $m \times n$ matrix \boldsymbol{A} is given by

$$A^+ = V \Sigma^+ U^T$$

- Pseudoinverse always exists whether or not matrix is square or has full rank
- If A is square and nonsingular, then $A^+ = A^{-1}$
- ullet In all cases, minimum-norm solution to $Ax\cong b$ is given by $x=A^+\,b$

Orthogonal Bases

- SVD of matrix, $A = U\Sigma V^T$, provides orthogonal bases for subspaces relevant to A
- ullet Columns of U corresponding to nonzero singular values form orthonormal basis for $\mathrm{span}(A)$
- ullet Remaining columns of U form orthonormal basis for orthogonal complement $\mathrm{span}(A)^\perp$
- ullet Columns of V corresponding to zero singular values form orthonormal basis for null space of A
- Remaining columns of V form orthonormal basis for orthogonal complement of null space of A

Lower-Rank Matrix Approximation

Another way to write SVD is

$$A = U\Sigma V^T = \sigma_1 E_1 + \sigma_2 E_2 + \cdots + \sigma_n E_n$$

with $\boldsymbol{E}_i = \boldsymbol{u}_i \boldsymbol{v}_i^T$

- E_i has rank 1 and can be stored using only m+n storage locations
- Product $E_i x$ can be computed using only m+nmultiplications
- Condensed approximation to A is obtained by omitting from summation terms corresponding to small singular values
- Approximation using k largest singular values is closest matrix of rank k to A
- Approximation is useful in image processing, data compression, information retrieval, cryptography, etc. < interactive example >

Total Least Squares

- Ordinary least squares is applicable when right-hand side b is subject to random error but matrix A is known accurately
- When all data, including A, are subject to error, then total least squares is more appropriate
- Total least squares minimizes orthogonal distances, rather than vertical distances, between model and data
- ullet Total least squares solution can be computed from SVD of $[oldsymbol{A},oldsymbol{b}]$

Comparison of Methods

- Forming normal equations matrix ${\bf A}^T{\bf A}$ requires about $n^2m/2$ multiplications, and solving resulting symmetric linear system requires about $n^3/6$ multiplications
- Solving least squares problem using Householder QR factorization requires about $mn^2 n^3/3$ multiplications
- If $m \approx n$, both methods require about same amount of work
- If $m \gg n$, Householder QR requires about twice as much work as normal equations
- Cost of SVD is proportional to mn^2+n^3 , with proportionality constant ranging from 4 to 10, depending on algorithm used

Comparison of Methods, continued

- Normal equations method produces solution whose relative error is proportional to $[\operatorname{cond}(\boldsymbol{A})]^2$
- Required Cholesky factorization can be expected to break down if $\mathrm{cond}(\boldsymbol{A}) \approx 1/\sqrt{\epsilon_{\mathrm{mach}}}$ or worse
- Householder method produces solution whose relative error is proportional to

$$\operatorname{cond}(\boldsymbol{A}) + \|\boldsymbol{r}\|_2 \left[\operatorname{cond}(\boldsymbol{A})\right]^2$$

which is best possible, since this is inherent sensitivity of solution to least squares problem

• Householder method can be expected to break down (in back-substitution phase) only if $\mathrm{cond}(\boldsymbol{A}) \approx 1/\epsilon_{\mathrm{mach}}$ or worse

Comparison of Methods, continued

- Householder is more accurate and more broadly applicable than normal equations
- These advantages may not be worth additional cost, however, when problem is sufficiently well conditioned that normal equations provide sufficient accuracy
- For rank-deficient or nearly rank-deficient problems,
 Householder with column pivoting can produce useful solution when normal equations method fails outright
- SVD is even more robust and reliable than Householder, but substantially more expensive

