在本次考试中,遵守考场纪律、自尊自爱、平等竞争,维护学校的荣誉和学生的尊严。

签字:

2015-2016 学年第一学期 高等代数 (I) 期末试题

(考试时间: 2016.01.07. 上午 8:00-10:00)

姓名______ 学号_____

	是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就									
1	题号			and the second s	四	五	六	合计	评卷人	
	题分	30	20	15	10	10	15	100		
	得分									

得分

一、(共30分)判断下列命题是否成立,并说明理由.

- 1. $\alpha_1,\alpha_2,\ldots,\alpha_n$ 线性无关蕴含 $\alpha_1+\alpha_2,\ \alpha_2+\alpha_3,\ \ldots,\ \alpha_n+\alpha_1$ 也线性无关. (X) n=y 时, y_1+y_2 , y_2+y_3 , y_3+y_4 , y_4+y_1 从尼线性相关 这可由其行列式为0证明.
- 2. 设 A_1 , A_2 是 $m \times n$ 矩阵, β_1 , β_2 是m维向量. 若 $A_1x = \beta_1$ 与 $A_2x = \beta_2$ 同解, 则 (A_1, β_1) 与 (A_2, β_2) 行等价.
 - (X) 反例: A₁=(1/0), A₂=(0/0), A₁=A₂=(1/1). 列两个方程组同解 (均无解),但(A₁,A₁),(A₂,A₂)不是行掌价的
- 3. 两个可逆矩阵的和必可逆.
- (X) 反例: A=E, B=-E 均可逆, 而 A+B=O 不可逆.
- 4. 对称矩阵的逆矩阵也是对称矩阵.
 - (\checkmark) 後 $A^T = A$, $AA^{-1} = E$, 则 有 $E = (A^{-1})^T A^T = (A^{-1})^T A$, 所以 $(A^{-1})^T = A^{-1}$
- 5. 设n阶矩阵A,B的元素均为非负实数,那么 $|A|+|B| \le |A+B|$.

$$(X)$$
 (X) (X) (A) (A)

- 6. 实二次型 $f(x_1, x_2, \ldots, x_n)$ 正定的充要条件是符号差为 n.
 - (√) 实=次型正定 ←> 正慢性推数为几,即负慢性指数为 0, 也就是符号至为 n-0 = n.

第1页 (共6页)

。姓名	学号	第	页,	共	页

然

K

採

得分 二、(共20分) 填空

$$2. \begin{pmatrix} 1 & 2 & 3 \\ -1 & 1 & 2 \\ -3 & -2 & 1 \end{pmatrix}^{-1} \begin{pmatrix} 6 \\ 4 \\ 2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 2 \end{pmatrix}.$$

3. 线性方程组

$$\begin{cases} \lambda x_1 + x_2 + x_3 = b_1 \\ x_1 + \lambda x_2 + x_3 = b_2 \\ x_1 + x_2 + \lambda x_3 = b_3 \end{cases}$$

 $\lambda=1$, $b_1=b_2=b_3$ 或者有无穷多解,则 λ , b_1 , b_2 , b_3 满足的条件是 $\lambda=-2$, $b_1+b_2+b_3=0$

得分

三、(共15分) 设n元线性方程组 $\mathbf{A}\mathbf{x} = \boldsymbol{\beta}$,其中

$$\mathbf{A} = \begin{pmatrix} 2a & 1 & \cdots & 0 & 0 \\ a^2 & 2a & \cdots & 0 & 0 \\ \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & \cdots & 2a & 1 \\ 0 & 0 & \cdots & a^2 & 2a \end{pmatrix}, \quad \mathbf{\beta} = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \\ 0 \end{pmatrix}.$$

- 1. 计算行列式 |A|;
- 2. 当 a 为何值时, 该方程组有无穷多解, 并求通解;
- 3. 当 a 为何值时, 该方程组有唯一解, 并求解的第1个分量.

m | 沁 $D_n = |A|$, 挨第一行展开有 $D_n = 2a D_{n-1} - a^2 D_{n-2}$ 同时, $D_1 = 2a$, $D_2 = 3a^2$, 世界可解出 $|A| = D_n = (n+1)a^n$.

2: 当 (1=0 时, 增广矩阵为

$$(A, A) = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 & 1 \\ 0 & 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & \cdots & 1 & 0 \\ 0 & 0 & \cdots & \cdots & 0 & 0 \end{pmatrix}$$

由此可知 $\gamma(A, \beta) = \gamma(A) = n-1 < n$,从而为程组有无为多解。 容易求出 $- \gamma(A) = n-1 < n$,从而为程组有无为多解。 容易求出 $- \gamma(A) = \gamma(A) = n-1 < n$,从而为程组有无为多解。 $\gamma(A) = \gamma(A) = \gamma($

行列式
$$\begin{vmatrix} 1 & 1 & - & 0 & 0 \\ 0 & 2a & - & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & & a^2 & 2a \end{vmatrix} = D_{n+} = \mathcal{N} O^{n-1}$$

由 Cramer 法则可知 $n_1 = \frac{na^{n+1}}{|A|} = \frac{n}{(n+1)a}$

第3页 (共6页)

彩

江

潊

得分

四、(共10分) 设A是n阶正定矩阵,B是n阶实矩阵.

- 1. 证明 $E B^{T}B$ 与 $E BB^{T}$ 合同.
- 2. 若E A正定,证明 $E A^{-1}$ 负定.

证明: 1. 由于

$$\begin{pmatrix} E & 0 \\ B^{T} & E \end{pmatrix} \begin{pmatrix} E & 0 \\ 0 & E - B^{T}B \end{pmatrix} \begin{pmatrix} E & B \\ 0 & E \end{pmatrix} = \begin{pmatrix} E & B \\ B^{T} & E \end{pmatrix}$$

$$\begin{pmatrix} E & B \\ 0 & E \end{pmatrix} \begin{pmatrix} E - B^{T}B & 0 \\ 0 & E \end{pmatrix} \begin{pmatrix} E & 0 \\ B^{T} & E \end{pmatrix} = \begin{pmatrix} E & B \\ B^{T} & E \end{pmatrix}$$

$$\mathcal{H} \mathcal{H}$$

$$\begin{pmatrix} E & 0 \\ 0 & E - B^{T}B \end{pmatrix} \mathcal{H}$$

$$\begin{pmatrix} E - B^{T}B & 0 \\ 0 & E \end{pmatrix} \mathcal{H}$$

从而可知 E-BTB与E-BBT 有相同的正気惯性指数,故它们合同。

2. A正定,则存在可逆矩阵P使得 A=PTP. 由 E-A正定,附 E-PTP正定可知 E-PPT正定,从而 PPT-E负定。

又 PA-1 PT = E , 从而有 P(E-A-1) PT= PPT-E, 所以 E-A-1 负定、

第4页 (共6页)

五、(共10分) 设A为 $m \times n$ 矩阵, B为 $s \times t$ 矩阵, C为 $m \times t$ 矩阵.

1. 证明: 若矩阵方程 AXB = C 有解, 则秩的等式成立:

$$r(A) = r(A, C)$$
 $\pi(B) = r(B)$

- 2. 问 1. 的逆命题是否成立? 如果成立, 请给出证明; 如果不成立, 请给出反例.
- | 证明: 将AI 叠成一个整体,则可知 (的行何量但可由B的行何是但线性表出,所以有 B与(b)有相同的行秩,即

$$\gamma(B) = \gamma(B)$$

同理,把IB 卷做一整体,可得出 $\Upsilon(A) = \Upsilon(A,C)$

- 2. 结婚成立.
 - ① 对于特殊情况 $A = \begin{pmatrix} Er & 0 \\ 0 & 0 \end{pmatrix}$.

田 $\gamma(A,C)=\gamma(A)$, 可得 $C=\begin{pmatrix}CI\\0\end{pmatrix}$, CI是 γ 行矩阵

? T=(C1) 是 NXt 矩阵. 验证 AT=C

又 $\gamma(B) = \gamma(\frac{B}{C}) = \gamma(\frac{B}{T})$, 存在工使律 ZB = 10, 下有 AIB = C.

Q 对于一般情况,说 $\Upsilon(A) = T$,有可逆矩阵 P, 见,使得 $PAA = \begin{pmatrix} E \times & 0 \\ 0 & 0 \end{pmatrix}$

原为程度仍为 $A_1 I_1 B = PO$, 其中 $A_1 = \begin{pmatrix} E_7 & 0 \\ 0 & 0 \end{pmatrix}$, $I_1 = \Omega^{-1} I$ 验证 $\Upsilon(A_1, PC) = \Upsilon(A_1)$, 及 $\Upsilon(B) = \Upsilon(B)$, 所以 I_1 有爛 , 即 I_2 有懈 .

第5页 (共6页)

纵

13

滐

得分

六、(共15分) A是三阶实对称矩阵, $\alpha_1,\alpha_2,\alpha_3\in\mathbb{R}^3$ 是非零向

量,满足

 $A\alpha_1 = \alpha_1$, $A\alpha_2 = 2\alpha_2$, $A\alpha_3 = 3\alpha_3$.

- 1. 证明当 $i \neq j$ 时, $\alpha_i^{\mathrm{T}} \alpha_j = 0$.
- 2. 证明 $\alpha_1, \alpha_2, \alpha_3$ 线性无关.
- 3. 证明 A 是正定矩阵.

证明: 1. 由于 A di = i di , i=1,2,3.

所相 (i-j) $q_i^T q_j = 0$.

从面生 水产的时,从下介了=0。

- 2. 從 k, q, + k, q, + k, q, q, q, = 0. 对于 i=1,2,3, 有 q, (k, q, + k, q, + k, q) = 0. 由1的结论可知 k, q, q, q, i = 0. 而实何量 q, i = 0, 从而 q, q, i = 0. 所以 k, i = 0. 即 q, q, y, 缓慢无关

別有 $n^T A n = n_1^2 q_1^T q_1 + 2n_2^2 q_2^T q_2 + 3n_3^2 q_3^T q_3 > 0$.

从所名正定

第6页 (共6页)