Theoretische Physik IV: Quantenmechanik (PTP4)

Universität Heidelberg Sommersemester 2021

Übungsblatt 9

Dozent: Prof. Dr. Matthias Bartelmann

Obertutor: Dr. Carsten Littek

Besprechung in den virtuellen Übungsgruppen in der Woche 14. - 18. Juni 2021 Bitte geben Sie maximal 2 Aufgaben per Übungsgruppensystem zur Korrektur an Ihre Tutorin / Ihren Tutor! Nutzen Sie dazu den Link https://uebungen.physik.uni-heidelberg.de/h/1291

1. Verständnisfragen

- a) Nennen Sie die eine wesentliche Annahme im Hamilton-Operator des Zweiteilchensystems und überlegen Sie sich deren physikalische Konsequenzen.
- b) Konstruieren Sie Situationen, in denen die Hamilton-Operatoren der Schwerpunkts- und der Relativbewegung nicht vertauschen.
- c) Üblicherweise sind Energie-Eigenwerte diskret, wenn das System einen Rand hat. Wie geht dieses oder ein vergleichbares Argument in die Behandlung des Wasserstoffatoms ein?

2. Herleitung der Pauli-Matrizen

In dieser Aufgabe soll die bekannte Form der Pauli-Matrizen für den Drehimpuls $j = \frac{1}{2}$ aus den allgemeinen Eigenschaften des Drehimpulsoperators \hat{J} hergeleitet werden. Dazu betrachte man die Zustände $|j, j_3\rangle$, die Eigenzustände zu \hat{J}^2 und \hat{J}_3 sind,

$$\hat{J}^2 |j, j_3\rangle = \hbar^2 j(j+1) |j, j_3\rangle,$$
$$\hat{J}_3 |j, j_3\rangle = \hbar j_3 |j, j_3\rangle.$$

Darüber hinaus wurden in der Vorlesung die Leiteroperatoren $\hat{J}_{+} = \hat{J}_{1} + i\hat{J}_{2}$ und $\hat{J}_{-} = \hat{J}_{1} - i\hat{J}_{2}$ definiert, die wie folgt auf den Zustand $|j, j_{3}\rangle$ wirken,

$$\hat{J}_{\pm} \left| j, j_3 \right\rangle = \hbar \, \sqrt{j(j+1) - j_3(j_3 \pm 1)} \left| j, j_3 \pm 1 \right\rangle.$$

Für den Drehimpuls $j=\frac{1}{2}$ kann j_3 die Werte $-\frac{1}{2}$ und $+\frac{1}{2}$ annehmen. Wählen Sie für die folgenden Überlegungen die übliche Darstellung

$$|\frac{1}{2}, +\frac{1}{2}\rangle = \begin{pmatrix} 1\\0 \end{pmatrix}, \qquad |\frac{1}{2}, -\frac{1}{2}\rangle = \begin{pmatrix} 0\\1 \end{pmatrix}.$$

Wie Sie bereits gesehen haben, schreibt man für den Fall $j=\frac{1}{2}$ in dieser Darstellung $\vec{J}=\vec{S}=\frac{\hbar}{2}\vec{\sigma}$, wobei $\vec{\sigma}=(\sigma_1,\sigma_2,\sigma_3)^{\rm T}$ der Vektor der Pauli-Matrizen ist.

Leiten Sie, ausgehend von den obigen Relationen für den Drehimpuls, die explizite Darstellung der Pauli-Matrizen her,

$$\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \qquad \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \qquad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

3. Kugelflächenfunktionen

Wie Sie in der Vorlesung gesehen haben, sind die Kugelflächenfunktionen $Y_{\ell m}$ ein orthonormales System von Eigenfunktionen des Laplace-Operators auf der Kugel. Sie sind in Kugelkoordinaten gegeben durch

$$Y_{\ell m}(\vartheta,\varphi) = \sqrt{\frac{2\ell+1}{4\pi} \frac{(\ell-m)!}{(\ell+m)!}} P_{\ell}^{m}(\cos\vartheta) e^{im\varphi}.$$

Hierbei sind ℓ und m ganzzahlig mit $\ell \geq 0$ und $-\ell \leq m \leq \ell$. Die *zugeordneten Legendre-Funktionen* P_{ℓ}^{m} sind gegeben durch

$$P_{\ell}^{m}(u) = \frac{(-1)^{\ell}}{2^{\ell} \ell!} \frac{(\ell+m)!}{(\ell-m)!} (1-u^{2})^{-m/2} \frac{\mathrm{d}^{\ell-m}}{\mathrm{d}u^{\ell-m}} (1-u^{2})^{\ell}.$$

- a) Rechnen Sie Y_{22} , Y_{21} , Y_{20} , $Y_{2,-1}$ sowie Y_{30} explizit aus.
- b) Vergewissern Sie sich (mit möglichst wenig Rechenaufwand), dass Ihre Ergebnisse paarweise orthogonal sind.
- c) Entwickeln Sie $f(\vartheta, \varphi) = \sin 2\vartheta \cos \varphi$ geschickt nach Kugelflächenfunktionen.

4. Kopplung von Spin und Bahndrehimpuls

Der Hilbertraum für die Kopplung von Spin und Bahndrehimpuls wird aufgespannt durch das Tensorprodukt $|\frac{1}{2}, \pm \frac{1}{2}\rangle \otimes |\ell, m\rangle$, wobei $|\frac{1}{2}, \pm \frac{1}{2}\rangle$ die Eigenzustände zu den Spinoperatoren \hat{S}^2 und \hat{S}_3 sind und $|\ell, m\rangle$ die Eigenzustände zu den Operatoren des Bahndrehimpulses \hat{L}^2 und \hat{L}_3 . Der Gesamtdrehimpuls ist $\vec{J} = \vec{L} + \vec{S}$. Was bedeutet die Summe der Drehimpulsoperatoren \vec{L} und \vec{S} ?

- a) Zeigen Sie, dass die Tensorprodukte $|\frac{1}{2},\pm\frac{1}{2}\rangle\otimes|\ell,m\rangle$ Eigenzustände zu \hat{J}_3 sind und geben Sie die Eigenwerte an.
- b) Geben Sie den Eigenzustand zu \hat{J}_3 mit dem minimal möglichen Eigenwert an. Zeigen Sie, dass dieser Zustand ebenfalls ein Eigenzustand zu \hat{J}^2 ist und bestimmen Sie den Eigenwert.*
- c) Gewinnen Sie durch Anwendung eines geeigneten Operators aus dem in b) gefundenen Zustand einen Zustand mit demselben Eigenwert bzgl. \hat{J}^2 und einen um \hbar größeren Eigenwert zu \hat{J}_3 .
- d) Überlegen Sie sich den dazu orthogonalen Zustand mit demselben Eigenwert zu \hat{J}_3 . Ist dieser Zustand ein Eigenzustand zu \hat{J}^2 ? Falls ja, wie lautet der entsprechende Eigenwert?

5. Runge-Lenz-Vektor

Im klassischen Kepler-Problem gibt es eine Erhaltungsgröße, die als Runge-Lenz-Vektor bekannt ist. Man kann ein quantenmechanisches Analogon $\hat{\vec{F}}$ zu diesem Vektor definieren mit den Komponenten

$$\hat{F}_j = \frac{1}{2m} \sum_{k,l} \epsilon_{jkl} (\hat{p}_k \hat{L}_l - \hat{L}_k \hat{p}_l) - \frac{Ze^2}{|\hat{\vec{x}}|} \hat{x}_j.$$

a) Zeigen Sie, dass die Komponenten von $\hat{\vec{F}}$ mit dem Hamilton-Operator des Coulomb-Problems

$$\hat{H} = \frac{\hat{\vec{p}}^2}{2m} - \frac{Ze^2}{|\hat{\vec{x}}|}$$

vertauschen.

b) Zeigen Sie, dass der Runge-Lenz-Vektor und der Drehimpuls senkrecht zueinander sind.

^{*}Hinweis: Nutzen Sie die Relation $\hat{J}_{+}\hat{J}_{-} = \hat{J}^{2} - \hat{J}_{3}^{2} + \hbar \hat{J}_{3}$ aus der Vorlesung.

Hinweis: Hier helfen die Relationen aus Aufgabe 2.