Mátrixok

- 1. Adja meg azt a 2×3-as mátrixot, amelynek (i,j)-edik eleme: $a_{ij} = i+2j$!
- 2. Adja meg azt a 2×3 -as mátrixot, amelynek (i,j)-edik eleme:

$$a_{ij} = i+j$$
, ha $i \le j$,
 $a_{ii} = 0$, ha $i > j$.

3. Legyen
$$A = \begin{pmatrix} 1 & 2 & -1 & 0 \\ 4 & 0 & 2 & 1 \\ 2 & -5 & 1 & 2 \end{pmatrix}, B = \begin{pmatrix} 3 & -4 & 1 & 2 \\ 1 & 5 & 0 & 3 \\ 2 & -2 & 3 & -1 \end{pmatrix}.$$

Határozza meg az A+B, A-B, 3A, -B, 4A+5B mátrixokat!

4. Legyen
$$A = \begin{pmatrix} 1 & 3 \\ 2 & 0 \\ -1 & 1 \\ 0 & 2 \end{pmatrix}$$
, $B = \begin{pmatrix} 4 & 0 & -1 \\ 0 & -1 & 0 \end{pmatrix}$.

Melyik létezik az AB és a BA szorzatok közül? Amelyik létezik, azt számítsa ki!

5. Legyen
$$A = \begin{pmatrix} 2 & -5 & 4 \end{pmatrix}, B = \begin{pmatrix} 3 & 1 & 0 \\ -2 & 2 & 5 \\ 4 & 1 & -3 \end{pmatrix}, C = \begin{pmatrix} 2 \\ -4 \\ 7 \end{pmatrix}.$$

Mutassa meg, hogy $(A \cdot B) \cdot C = A \cdot (B \cdot C)$!

6. Legyen
$$A = \begin{pmatrix} 2 & -3 & -5 \\ -1 & 4 & 5 \\ 1 & -3 & -4 \end{pmatrix}$$
, $B = \begin{pmatrix} -1 & 3 & 5 \\ 1 & -3 & -5 \\ -1 & 3 & 5 \end{pmatrix}$, $C = \begin{pmatrix} 2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3 \end{pmatrix}$.

Mutassa meg, hogy a fenti mátrixokra

•
$$C \cdot A = C$$

7. Legyen
$$A = \begin{pmatrix} 2 & -1 \\ 0 & 3 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & 0 & 2 \\ -3 & 4 & 1 \end{pmatrix}$. $C = \begin{pmatrix} 2 & 3 & -4 \\ 5 & 0 & 1 \end{pmatrix}$.

Ellenőrizze az $A \cdot (B+C) = A \cdot B + A \cdot C$ disztributív tulajdonságot!

8. Legyenek A és B $n \times n$ -es mátrixok. Igazolja, hogy általában

•
$$(A+B)\cdot(A-B) \neq A\cdot A-B\cdot B$$

•
$$(A+B)\cdot (A+B) \neq A\cdot A+2A\cdot B+B\cdot B$$

Adja meg mindkét esetben az egyenlőség teljesüléséhez szükséges feltételt!

1

9. Legyen
$$A = \begin{pmatrix} -1 & 0 & 4 \\ 3 & 2 & 0 \end{pmatrix}$$
. $B = \begin{pmatrix} -1 & 5 \\ 2 & 3 \end{pmatrix}$, $C = \begin{pmatrix} 3 & 0 & 1 \\ -1 & 5 & 2 \end{pmatrix}$, $D = \begin{pmatrix} 3 & 4 \\ 2 & 5 \\ 0 & 6 \end{pmatrix}$, $E = \begin{pmatrix} 2 & 1 \\ 0 & 1 \end{pmatrix}$, $F = \begin{pmatrix} 3 & 0 & 2 & 1 \\ 4 & 5 & 0 & -1 \\ 6 & 0 & 1 & 1 \end{pmatrix}$.

Melyik létezik az alábbi mátrixok közül? Amelyik létezik, azt számítsa ki!

2A-C, 3C+D, $C+D^{T}$, 4B+2E, $A\cdot B$, $A\cdot C$, $A\cdot D$, $E\cdot B$, $B\cdot E$, B^{2} , E^{3} , $A\cdot E$, $E\cdot A$, $C\cdot F$, $D\cdot C$, $C\cdot D$, $D\cdot E$.

10. Legyen
$$A = \begin{pmatrix} 1 & 2 & -1 & -3 \\ 0 & 1 & 3 & 2 \\ 4 & 5 & 0 & 6 \end{pmatrix}, B = \begin{pmatrix} 1 & 8 \\ -3 & 2 \\ 0 & 5 \\ -1 & -2 \end{pmatrix}, C = \begin{pmatrix} 0 & 4 \\ 1 & 5 \\ 2 & 6 \\ 3 & 7 \end{pmatrix}, D = \begin{pmatrix} 5 \\ -2 \\ 4 \\ 3 \end{pmatrix},$$

 $E = \begin{pmatrix} -3 \\ 2 \end{pmatrix}, \qquad F = \begin{pmatrix} 5 & 2 \end{pmatrix}.$

Melyik létezik az alábbi mátrixok közül? Amelyik létezik, azt számítsa ki!

A+B, C+B, C+D, E+F, $E+F^{\mathrm{T}}$, 5A, 3F, $B\cdot C$, $B\cdot C^{\mathrm{T}}$, $B^{\mathrm{T}}\cdot C$, $B\cdot A$, $A\cdot B$, $B\cdot D$, $B\cdot E$, $A\cdot D$, $D\cdot E$, $E\cdot E$, $E\cdot F$, $F\cdot E$.

- 11. Megválaszthatóak-e az a és b valós paraméterek úgy, hogy A A=A teljesüljön, ha
 - $\bullet \quad A = \begin{pmatrix} a & -2 \\ 3 & b \end{pmatrix},$
 - $\bullet \quad A = \begin{pmatrix} a & 2 \\ 5 & b \end{pmatrix}.$
- 12. Egy fuvarozással foglalkozó vállalatnak 4 telephelye van. Mindegyik telephelyen 5-féle különböző típusú gépjárművet tárolnak. Az alábbi táblázat megadja, hogy az egyes telephelyeken az egyes gépjárműfajtákból hány darab található.

	A	В	С	D	Е
1. telephely	8	12	7	4	6
2. telephely	6	9	10	5	7
3. telephely	10	5	8	7	3
4. telephely	4	7	10	6	5

a, Legyen *A* a táblázat adataiból nyerhető mátrix, <u>1</u> az összegző vektor. Számítsa ki és magyarázza meg a következő kifejezések jelentését!

•
$$(\underline{e}_1 + \underline{e}_3)^{\mathrm{T}} \cdot A$$

•
$$1^{\mathrm{T}} \cdot A \cdot e_2$$

•
$$\underline{1}^{\mathrm{T}} \cdot A \cdot \underline{1}$$

b, Írja fel és számítsa ki azt a kifejezést, amely megadja, hogy

- hány gépjárművet tárolnak a 3. telephelyen összesen,
- hány B és D típusú gépjárművet tárol összesen a vállalat,
- mennyi az egyes telephelyeken tárolt gépjárművek száma?

13. Egy középiskolában 4 éven keresztül figyelték 3 különböző osztályban az adott évben sikeresen nyelvvizsgázó tanulók számát:

	A osztály	B osztály	C osztály
1. év	0	1	0
2. év	2	3	1
3. év	4	3	4
4. év	8	6	5

a, Legyen A a táblázat adataiból nyerhető mátrix, $\underline{1}$ az összegző vektor.

Számítsa ki és magyarázza meg a következő kifejezések jelentését!

- $A \cdot \underline{e}_1$
- $A \cdot (\underline{e}_3 \underline{e}_1)$
- $1^T \cdot A$
- $1^{\mathrm{T}} \cdot A \cdot e_{2}$
- $e_3^T \cdot A$

b, Írja fel és számítsa ki azt a kifejezést, amely megadja, hogy

- hányan nyelvvizsgáztak az első évben az egyes osztályokban,
- hányan nyelvvizsgáztak összesen a 3. évben,
- mennyivel nyelvvizsgáztak többen az egyes osztályokban a 4. évben, mint az 1. évben,
- hányan nyelvvizsgáztak a 4 év alatt összesen a C osztályban,
- mennyivel nyelvvizsgáztak többen a 4 év alatt az A osztályban, mint a C osztályban?

14. Az alábbi táblázatban egy áruházban a hét egyes napjain 3 különböző árufajtából eladott mennyiségek szerepelnek:

	I.	II.	III.
Hétfő	15	21	15
Kedd	22	17	12
Szerda	18	14	16
Csütörtök	20	18	20
Péntek	16	15	14
Szombat	12	10	9

Az árufélék egységárait tartalmazó árvektor:
$$\underline{p} = \begin{pmatrix} 1580 \\ 2100 \\ 1990 \end{pmatrix}$$

a, Legyen *A* a táblázat adataiból nyerhető mátrix, <u>1</u> az összegző vektor. Számítsa ki és magyarázza meg a következő kifejezések jelentését!

- $(\underline{e}_2 + \underline{e}_4)^{\mathrm{T}} \cdot A$
- $\underline{e}_3^{\mathrm{T}} \cdot A \cdot \underline{p}$
- $\underline{1}^{\mathrm{T}} \cdot A \cdot \underline{p}$
- $e_1^T \cdot A \cdot \underline{1}$
- $A \cdot (\underline{e}_1 + \underline{e}_2)$

b, Írja fel és számítsa ki azt a kifejezést, amely megadja, hogy

- mennyit adott el a héten az áruház az egyes árufélékből,
- mennyi volt a hét egyes napjain a három áruféleség eladásából származó napi bevétel,
- mennyi volt az áruház összes árbevétele a három áruféleségből a hét első három napján,
- mennyi volt a héten az összes eladott mennyiség?
- 15. Az alábbi táblázatban három különböző banknál az elmúlt hét egyes napjain egy adott valutából eladott mennyiségek találhatóak:

	1. bank	2. bank	3. bank
Hétfő	22	18	15
Kedd	20	14	16
Szerda	17	16	15
Csütörtök	14	20	14
Péntek	19	18	16

A valuta napi árfolyama:
$$\underline{p} = \begin{pmatrix} 285 \\ 287 \\ 287 \\ 286 \\ 285 \end{pmatrix}$$

a, Legyen A a táblázat adataiból nyerhető mátrix, $\underline{1}$ az összegző vektor.

Számítsa ki és magyarázza meg a következő kifejezések jelentését!

- $(\underline{e}_4 + \underline{e}_5)^{\mathrm{T}} \cdot A$
- A·1
- $\underline{p}^{\mathrm{T}} \cdot \overline{A}$
- $\underline{p}^{\mathrm{T}} \cdot A \cdot \underline{e}_2$

b, Írja fel és számítsa ki azt a kifejezést, amely megadja, hogy

- mennyivel volt több a valutaeladás az egyes bankoknál hétfőn, mint kedden,
- mennyivel volt több a valutaeladásból származó árbevétel az egyes bankoknál hétfőn, mint kedden,
- mennyi volt a héten az 1. banknál a megfigyelt valuta eladásából származó összes bevétel,

4

• mennyi volt az egyes bankoknál a héten eladott összes valuta?

16. Egy jegyiroda három héten keresztül árusított négy koncertre jegyeket. Az egyes heteken eladott jegyek számát tartalmazza az alábbi táblázat:

	1. koncert	2. koncert	3. koncert	4. koncert
1. hét	25	48	32	46
2. hét	46	52	36	58
3. hét	40	55	42	52

Az egyes koncertek jegyárai: p^{T} =(1500, 2000, 1800, 2000).

a, Legyen *A* a táblázat adataiból nyerhető mátrix, <u>1</u> az összegző vektor. Számítsa ki és magyarázza meg a következő kifejezések jelentését!

- $e_3^T \cdot A$
- $\underline{1}^{\mathrm{T}} \cdot A$
- *A*⋅<u>*p*</u>
- *A*⋅<u>1</u>

b, Írja fel és számítsa ki azt a kifejezést, amely megadja, hogy

- mennyi az egyes koncertekre eladott összes jegyek száma,
- mennyi az egyes koncertekre befolyó árbevétel,
- mennyi a három hét alatt eladott jegyek összértéke,
- mennyi az egyes heteken eladott összes jegyek száma,
- mennyi a második héten eladott összes jegyek száma,
- mennyi az egyes heteken befolyó árbevétel?
- 17. Egy híradástechnikai vállalat 4-féle TV-készüléket gyárt. Egy beszállító 6-féle alkatrészt szállít a vállalatnak. Az alábbi táblázat az egyes készüléktípusokhoz az egyes alkatrészfajtákból felhasznált darabszámot adja meg:

	1. alkatrész	2. alkatrész	3. alkatrész	4. alkatrész	5. alkatrész	6. alkatrész
1. TV	5	8	0	4	10	6
2. TV	6	10	2	1	8	5
3. TV	10	6	4	0	8	4
4. TV	8	8	3	3	10	4

A következő táblázat az első negyedév hónapjaiban az egyes típusokból gyártott TV-készülékek darabszámát mutatja:

	1. TV	2. TV	3. TV	4. TV
Január	240	350	150	220
Február	300	320	160	240
Március	280	290	200	250
Április	320	300	180	220

A hatféle alkatrész beszerzési árát tartalmazza az alábbi vektor: \underline{p}^{T} =(28, 15, 30, 22, 14, 8). A TV-készülékek árait tartalmazza az alábbi vektor: \underline{r}^{T} =(350, 800, 520, 280).

a, Legyen A az első, míg B a második táblázat adataiból nyerhető mátrix, $\underline{1}$ az összegző vektor.

Számítsa ki és magyarázza meg a következő kifejezések jelentését!

- *B*·*A*

- $\bullet \underline{e_3}^{\mathsf{T}} \cdot B \cdot \underline{r}$ $\bullet \underline{1}^{\mathsf{T}} \cdot A \cdot \underline{p}$ $\bullet \underline{e_2}^{\mathsf{T}} \cdot B \cdot A \cdot \underline{p}$
- b, Írja fel és számítsa ki azt a kifejezést, amely megadja, hogy
 - mennyi a 2. típusú TV-készülékhez szükséges alkatrészek összértéke,
 - mennyi a januárban gyártott TV-készülékek összértéke,
 - mennyi a márciusban felhasznált alkatrészek darabszáma fajtánként,
 - mennyi az egyes hónapokban a felhasznált alkatrészek összértéke,
 - hány TV-készüléket gyártottak összesen a negyedév során?
- 18. Az első évben három vállalat (A, B és C) részesedése egy adott áruféleség piacán: 30%, 50% és 20%. A második évben a részesedésekben az alábbi változások történnek:
 - A fogyasztóinak 85%-a nála marad, 5% B-hez, 10% C-hez kerül,
 - B fogyasztóinak 60%-a nála marad, 15% A-hoz, 25% C-hez kerül,
 - C fogyasztóinak 90%-a nála marad, 5% A-hoz, 5% B-hez kerül.
 - a, Adja meg az első év piaci részesedési vektorát! (Legyen ez x.) Írja fel azt a T átmeneti mátrixot, amelynek (i,j)-edik eleme megadja, hogy a j-edik vállalat fogyasztóinak hányadrésze vált az *i*-edik vállalat fogyasztójává!
 - b, Számítsa ki és értelmezze a *T*·*x* vektort!
 - c, Feltételezve, hogy a változások tendenciája változatlan, mit ad meg a $T(T \cdot x)$ vektor?

19.
$$A = \begin{pmatrix} 3 & 4 & -2 \\ 1 & 0 & 8 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & 0 & 5 \\ 2 & 3 & 0 \\ 0 & 4 & 5 \end{pmatrix}$, $C = \begin{pmatrix} 2 & 6 & 10 & -4 \\ 0 & 2 & 2 & 0 \\ -1 & 4 & 2 & 2 \end{pmatrix}$. $D = \begin{pmatrix} 1 & -2 \\ 2 & 5 \\ 4 & 1 \end{pmatrix}$, $E = \begin{pmatrix} 1 & -4 & -2 & 5 \\ 2 & 3 & 7 & -1 \\ 3 & 1 & 7 & 2 \end{pmatrix}$, $F = \begin{pmatrix} 1 & -1 & 2 \\ 3 & 4 & 0 \\ 1 & 0 & 4 \\ 3 & 2 & 1 \end{pmatrix}$

Határozza meg a fenti mátrixok rangját!

- 20. Mutassa meg, hogy általában $r(A \cdot B) \neq r(B \cdot A)$! Útmutatás: 2×2-es mátrixokkal próbálkozzon!
- 21. Legyen $A = \begin{pmatrix} 3 & 0 \\ 2 & -1 \end{pmatrix}$ és $B = \begin{pmatrix} 1/3 & 0 \\ 2/3 & -1 \end{pmatrix}$. Mutassa meg, hogy az A és B mátrixok egymás
- 22. Legyen $A = \begin{pmatrix} 1 & 2 & 4 \\ 0 & 1 & 6 \\ 1 & 3 & 2 \end{pmatrix}$ és $B = \begin{pmatrix} 2 & -1 & -1 \\ a & 1/4 & b \\ 1/8 & 1/8 & -1/8 \end{pmatrix}$. Megválaszthatóak-e az a és b valós

paraméterek úgy, hogy A és B egymás inverzei legyenek?

23.
$$A = \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & -2 \\ -2 & 4 \end{pmatrix}$, $C = \begin{pmatrix} -1 & -1 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$, $D = \begin{pmatrix} 2 & -3 & -4 \\ -1 & 7 & 2 \\ 3 & 1 & -6 \end{pmatrix}$, $E = \begin{pmatrix} 1 & 3 & 4 \\ 0 & 2 & 2 \\ -1 & 5 & 4 \end{pmatrix}$, $F = \begin{pmatrix} 1 & 0 & 5 \\ 0 & 1 & 1 \\ 3 & 2 & 4 \end{pmatrix}$, $G = \begin{pmatrix} 3 & 1 & 2 & 4 \\ 7 & 1 & 0 & 1 \\ 2 & 1 & 2 & 3 \\ 4 & 1 & 2 & 2 \end{pmatrix}$

Invertálhatóak-e a fenti mátrixok? Ha igen, akkor bázistranszformáció alkalmazásával határozza meg az inverzüket!

- 24. Legyen $A = \begin{pmatrix} -1/2 & -\sqrt{3}/2 \\ \sqrt{3}/2 & -1/2 \end{pmatrix}$. Mutassa meg, hogy $A^3 = E$! Ezt felhasználva keresse meg az A^{-1} inverzmátrixot!
- 25. Legyen $A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \\ 3 & 2 & 1 \end{pmatrix}$ és $B = 1/12 \cdot \begin{pmatrix} a & b & 3 \\ 7 & -8 & 3 \\ 1 & b & -3 \end{pmatrix}$, ahol a és b valós számok.
 - a, Mutassa meg, hogy *a* és *b* megválaszthatóak úgy, hogy az *A* és *B* mátrixok egymás inverzei legyenek!
 - b, Határozza meg azt az X mátrixot, amelyre teljesül a DX=2X+C egyenlet, ahol

$$D = \begin{pmatrix} 3 & 2 & 3 \\ 2 & 3 & 3 \\ 3 & 2 & 3 \end{pmatrix} \text{ és } C = \begin{pmatrix} 2 & 3 & 0 & 1 \\ 1 & 0 & 3 & 1 \\ 0 & 5 & -4 & 1 \end{pmatrix}.$$

Útmutatás: használja fel az a, pont eredményét!

26. Számítsa ki az alábbi mátrixok determinánsát! Milyen egyéb mátrixtulajdonságokra következtethetünk a determináns értékéből?

$$A = \begin{pmatrix} -2 & 5 \\ 4 & 6 \end{pmatrix}, \quad B = \begin{pmatrix} 4 & 2 \\ 10 & 5 \end{pmatrix}, \quad C = \begin{pmatrix} 3 & -2 \\ 4 & -1 \end{pmatrix}, \quad D = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}, \quad E = \begin{pmatrix} -1 & -1 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix},$$

$$F = \begin{pmatrix} 1 & 4 & 8 \\ -2 & 1 & 5 \\ -3 & 2 & 4 \end{pmatrix}, \quad G = \begin{pmatrix} 2 & 4 & -4 \\ 5 & -6 & 3 \\ 4 & 2 & -3 \end{pmatrix}, \quad H = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 5 \\ 0 & 0 & -1 & 0 \\ 0 & 2 & 0 & 0 \end{pmatrix}, \quad I = \begin{pmatrix} 1 & 0 & 3 & 2 \\ 2 & 1 & 5 & -1 \\ -4 & 1 & 0 & 1 \\ 0 & 1 & 2 & 3 \end{pmatrix}.$$

$$J = \begin{pmatrix} 2 & -1 & 0 & 2 \\ -4 & 2 & -9 & 3 \\ 2 & -6 & 4 & -2 \\ 1 & 3 & 2 & 2 \end{pmatrix}, \quad K = \begin{pmatrix} 3 & 0 & -4 & 2 & 5 \\ 0 & 1 & 7 & 5 & -2 \\ 0 & 0 & -3 & 4 & 2 \\ 0 & 0 & 0 & 4 & 5 \\ 0 & 0 & 0 & 0 & -2 \end{pmatrix}, \quad L = \begin{pmatrix} 2 & 0 & 0 & 0 & 0 \\ 4 & -1 & 0 & 0 & 0 \\ 6 & 3 & 5 & 0 & 0 \\ 1 & 1 & 3 & 0 & 0 \\ 2 & 7 & 4 & 3 & 5 \end{pmatrix}.$$

27. Legyen
$$A = \begin{pmatrix} -4 & 1 & 1 & 1 & 1 \\ 1 & -4 & 1 & 1 & 1 \\ 1 & 1 & -4 & 1 & 1 \\ 1 & 1 & 1 & -4 & 1 \\ 1 & 1 & 1 & 1 & -4 \end{pmatrix}.$$

A determináns kifejtése nélkül igazolja, hogy det(A)=0!

28. Legyen
$$A = \begin{pmatrix} c & 0 & 2 \\ 1 & 3 & 1 \\ -1 & 2 & 5 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & -1 & 1 \\ 1 & c & 3 \\ 1 & -3 & -c \end{pmatrix}$, $C = \begin{pmatrix} 5 & 2 & -3 \\ 3 & -2 & 0 \\ 4 & 3 & c \end{pmatrix}$.

Milyen legyen a c valós paraméter értéke, hogy a fenti mátrixok invertálhatóak legyenek?

29. Legyen
$$A = \begin{pmatrix} 1 & 3 & -1 \\ 0 & 5 & 7 \\ 0 & 0 & c \end{pmatrix}$$
, $B = \begin{pmatrix} 2 & 4 & 3 \\ -3 & 13 & c \\ 3 & -1 & 2 \end{pmatrix}$, $C = \begin{pmatrix} c & 1 & 3 \\ -1 & 1 & 1 \\ -3 & 1 & -c \end{pmatrix}$.

Milyen legyen a c valós paraméter értéke, hogy a fenti mátrixok <u>ne</u> legyenek invertálhatóak?

30.
$$A = \begin{pmatrix} 2 & 3 \\ 1 & 4 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & -3 \\ -3 & 9 \end{pmatrix}$, $C = \begin{pmatrix} 0 & 5 \\ -1 & 2 \end{pmatrix}$, $D = \begin{pmatrix} 2 & -1 \\ 6 & -3 \end{pmatrix}$, $E = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$, $F = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 2 \\ 3 & 3 & 4 \end{pmatrix}$, $G = \begin{pmatrix} 1 & 0 & 5 \\ 0 & 1 & 1 \\ 3 & 2 & 4 \end{pmatrix}$, $H = \begin{pmatrix} 3 & 1 & 4 \\ 2 & 1 & 0 \\ 8 & 5 & 8 \end{pmatrix}$, $I = \begin{pmatrix} 3 & -2 & 1 \\ 4 & 1 & -3 \\ -6 & 4 & -2 \end{pmatrix}$

- a, Határozza meg a fenti mátrixok adjungált mátrixát!
- b, Invertálhatóak-e a fenti mátrixok? Ha igen, akkor az adjungált mátrix felhasználásával adja meg az inverzmátrixot!