#### Master of Computer Applications

## CAPOL403R01: Computer Organization & Architecture

Unit V: Lecture 5

**Direct Cache Access** 

Dr. D. MURALIDHARAN
School of Computing
SASTRA Deemed to be University

## Why DCA?

- DMA is unable to scale to meet the increased data rate demands
  - 100 Gbps Ethernet switches
  - Wi-Fi is in the Gigabit range
- DCA is considered as the solution
  - Enabling the I/O function to have direct access to the cache
  - Here, the cache refers to the last-level cache
  - Normally, this cache is shared by the cores

## Intel Xeon Multicore Processor



- Many of the members of the Xeon family use a ring interconnect system
- The E5-2600/4600 can be configured with up to eight cores on a single chip
- Each core has dedicated L1 and L2 caches
- It has a 20MB shared L3 cache
- The L3 cache is divided into slices
  - one associated with each core
  - Each slice has its own cache pipeline
  - The requests can be sent in parallel to the slices.
- Each core can address the entire cache.

### Intel Xeon Multicore Processor



- The ring is bidirectional.
- It interconnects cores, last-level cache, PCIe, and integrated memory controller (IMC).
- Ring logic
  - Ring agent: The components which are connected to the ring (QPI, PCI3, L3 and L2 cache)
  - Ring agents follow a distributed protocol
  - The protocol allotted time slots for the agent
  - The agent sends the data in its allotted time slot and in the direction of shorter distance of the destination
  - If more number of cores are added, multiple rings are used each ring supports some number of cores

#### DMA use of the cache

- In traditional DMA operation, data are exchanged between main memory and an I/O device
- Consider Xeon uses DMA for memory output operation
  - An I/O driver running on a core would send an I/O command to the I/O controller
  - The command includes the location and size of the buffer in main memory
  - The I/O controller issues a read request
  - The request is routed to the memory controller hub (MCH)
  - MCH accesses the data on DDR3 memory
  - MCH puts it on the system ring for delivery to the I/O controller
    - one or more off-chip memory reads are required
    - The L3 cache is not involved in this transaction

### DMA use of the cache

- Consider Xeon uses DMA for memory write operation
  - Data arrive from the I/O controller
  - Data are delivered over the system ring to the MCH
  - Data are written out to main memory
  - The MCH must also invalidate any L3 cache lines corresponding to the updated memory locations.
  - In this case, one or more off- chip memory writes are required.
  - If an application wants to access the new data, a main memory read is required

#### DMA use of the cache

- As Xeon E5-2600/4600 has a large amount of L3 cache, the technique can be refined
  - The I/O controller issues a read request
  - The MCH first checks to see if the data are in the L3 cache
    - This is likely to be the case, if an application has recently written data into the memory block to be output.
  - In hit, the MCH directs data from the L3 cache to the I/O controller
  - As no main memory accesses are needed, the performance is enhanced
  - This technique is NOT referred as direct cache access

### Data communication

- Network traffic is transmitted in the form of a sequence of protocol blocks
  - These blocks are called as packets or protocol data units
- Normally, Ethernet protocol is used as link level protocol
  - Each arriving and departing block of data consists of an Ethernet packet
  - Ethernet packets contain as payload the higher-level protocol packet
- TCP/IP protocols are, normally, used as higher level protocols
  - Internet protocol is operating on top of the Ethernet
  - Transmission Control Protocol is operating on top of the IP
  - The Ethernet payload consists of a block of data with a TCP header and an IP header

## Data communication...

• The I/O controller or network interface controller (NIC) creates Ethernet packets for outgoing traffic

• The I/O controller strips off the Ethernet information and delivers the TCP/IP packet to the host CPU during incoming traffic

 For both outgoing and incoming traffic, the core, main memory, and cache are all involved

## Cache-Related Performance Issues

- Consider a DMA scheme
  - An application wishes to transmit data
  - It places that data in an application-assigned buffer in main memory
  - The core transfers this to a system buffer in main memory
  - The core then creates the necessary TCP and IP headers
  - These are also buffered in system memory
  - The packet is then picked up via DMA for transfer via the NIC
  - For incoming traffic, similar transfers between system and application buffers are required
  - This transferring activity engages not only main memory but also the cache

### Cache-Related Performance Issues

- Two factors in this scenario degrade performance
  - 1. the core consumes valuable clock cycles in copying data between system and application buffers
  - 2. The core loses time waiting on memory reads and writes as the CPU speed is higher compared to memory speed

- As the data and protocol headers are constantly changing, cache does not help to enhance the performance
  - To enhance the performance, the cache must constantly be updated

## Cache write techniques

- Write through
  - All write operations are made to main memory as well as to the cache
  - Mani memory is always valid
- Write back
  - The write operations updates only the cache
  - When an update occurs, a dirty bit associated with the line is set
  - when a block is replaced, it is written back to main memory if and only if the dirty bit is set
- DDIO uses the write- back strategy in the L3 cache

## Cache miss during write

#### Write allocate:

- The required line is loaded into the cache from main memory.
- Then, the line in the cache is updated by the write operation.
- This scheme is typically used with the write-back method.

#### Non-write allocate:

- The block is modified directly in main memory.
- No change is made to the cache.
- This scheme is typically used with the write-through method.

## DDIO – Intel Xeon's memory write

- If there is a cache hit, only the cache line is updated
  - The Intel literature refers to this as write update
- If there is a cache miss, the write operation occurs to a line in the cache that will not be written back to main memory
  - Subsequent writes update the cache line
  - No reference to main memory
  - No future action that writes this data to main memory
  - The Intel literature refers to this as write allocate
    - This is not same as the term used in cache literature

## Direct Data IO (DDIO)

- For the specific function of protocol processing, the packet and packet descriptor information are accessed only once in the system buffer by the core.
  - For incoming packets, the core reads the data from the buffer and transfers the packet payload to an application buffer.
    - It has no need to access that data in the system buffer again.
  - Similarly, for outgoing packets, the core has placed the data in the system buffer
    - It has no need to access that data again.
  - Consider the I/O system were equipped with the capability of directly accessing the cache, both for input and output operations.
  - Then it would be possible to use the last-level cache instead of the main memory to buffer packets and descriptors of incoming and outgoing packets

## DDIO – Memory input operation

#### **DMA**

- 1. The NIC initiates a memory write
- 2. Then the NIC invalidates the cache lines corresponding to the system buffer
- 3. Next, the DMA operation is performed, depositing the packet directly into main memory
- 4. Finally, after the appropriate core receives a DMA interrupt signal, the core can read the packet data from memory through the cache



## DDIO – Memory input operation

#### **DCA**

- 1. The NIC initiates a memory write
- 2. Then the NIC invalidates the cache lines corresponding to the system buffer and it deposits the data in the cache
- 3. Finally, after the appropriate core receives a DCA interrupt signal, the core can read the packet data from the cache



## DDIO – Memory output operation

#### **DCA**

- The TCP/IP protocol handler creates the packet to be transmitted and stores it in allocated space in the L3 cache
  - But not in main memory
- The read operation initiated by the NIC is satisfied by data from the cache



# Thank you