## This Page Is Inserted by IFW Operations and is not a part of the Official Record

### **BEST AVAILABLE IMAGES**

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

## IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problems Mailbox.

THIS PAGE BLANK (USPTO)

# BUNDESREPUBLIK DEUTSCHLAND



REC'D 0 1 MAR 1993 ...

#### Bescheinigung

Die DIAGEN Institut für molekularbiologische Diagnostik GmbH in 4000 Düsseldorf hat eine Patentanmeldung unter der Bezeichnung

> "Vorrichtung und Verfahren zur Isolierung und Reinigung von Nukleinsäuren"

am 2. Dezember 1991 beim Deutschen Patentamt eingereicht.

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patent-anmeldung.

Der Sitz der Anmelderin wurde geändert in: Diagen Institut für molekularbiologische Diagnostik GmbH in 4010 Hilden.

Die Anmeldung hat im Deutschen Patentamt vorläufig das Symbol C 07 H 21/04 der Internationalen Patentklassifikation erhalten.

München, den 30. Dezember 1992 Der Präsident des Deutschen Patentamts

Im Auftrag

Akt z chen: P 41 39 664.2

A 9161

K. Konvalin





#### VON KREISLER

SELTING

WERNER

Deichmannhaus am Hauptbahnhof D-5000 KÖLN 1

DIAGEN
Institut für molekularbiologische Diagnostik GmbH
Niederheider Straße 3
4000 Düsseldorf 13

Patentanwälte

Dr.-Ing. von Kreisler † 1973

Dipl.-Chem. Alek von Kreisler Dipl.-Ing. Günther Selting Dr. Hans-Karsten Werner Dr. Johann F. Fues Dipl.-Ing. Georg Dallmeyer Dipl.-Ing. Jochen Hilleringmann Dr. Hans-Peter Jönsson Dr. Hans-Wilhelm Meyers

02. Dezember 1991 Me/kk 489/91

"Vorrichtung und Verfahren zur Isolierung und Reinigung von Nukleinsäuren"

#### "Vorrichtung und Verfahren zur Isolierung und Reinigung von Nukleinsäuren"

Die Erfindung betrifft ein Verfahren zur Isolierung und Reinigung von Nukleinsäuren aus Zellen oder anderen Quellen und eine Vorrichtung zur Durchführung des Verfahrens gemäß Oberbegriff des Patentanspruchs 16.

Bei der Präparation von Nukleinsäuren müssen die Zellen zunächst durch die Verwendung von Enzymen, wie zum Beispiel Proteinase K, Lysozym und Detergentien wie SDS, Brij, Triton-X-100, Tween 20, DOC und Chemikalien wie Natriumhydroxid, Guanidin-Hydrochlorid und Guanidin-Isothiocyanat aufgeschlossen werden. Dem Experimentator stellt sich das Problem, vor der Reinigung der Nukleinsäuren die Zelltrümmer zu entfernen und dann aus dem Zell-Lysat die Nukleinsäuren oder Nukleinsäurefraktionen zu isolieren. Weiterhin müssen bei der Präparation von Plasmid DNA oder genomischer DNA häufig verwendete Detergentien, wie SDS (Sodiumdodecylsulfat), entfernt werden. Dies erfolgt wie in den meisten Fällen bei Verwendung von SDS durch ein Ausfällen mit Kalziumacetat, da das Kaliumsalz von SDS schwer löslich ist. Die Zelltrümmer werden dann zusammen mit dem ausgefallenen SDS abzentrifugiert. Da die Bestandteile im Lysat ein sehr voluminöses und schmieriges, gelartiges Pellet ergeben, bereitet selbst die Abtrennung dieser Trümmer in einer hochtourigen Zentrifuge Schwierigkeiten. Üblicherweise erfolgt die Entfernung der Zelltrümmer durch eine Zentrifugation zwischen 5.000 g bis 20.000 g für 15 bis 60 Minuten. Dieses Verfahren hat den Nachteil, daß es sehr zeit- und arbeitsaufwendig ist und sich nicht automatisieren läßt.

Die DE-A 36 39 949 beschreibt ein Verfahren zur Isolierung und Reinigung langkettiger Nukleinsäuren von anderen Substanzen aus Bakterien, Viren, tierischen und pflanzlichen Geweben und Zellen sowie Körperflüssigkeiten, insbesondere Zellinhaltsstoffen und/oder deren Abbauprodukten sowie Bestandteilen der Körperflüssigkeiten, die nicht langkettigen Nukleinsäuren sind. Dabei werden die langkettigen Nukleinsäuren nach einem schonenden Aufschluß und Entfernung der Zellbruchstücke und anderer ungelöster Bestandteile an einem Anionenaustauscher fixiert, während die abzutrennenden Substanzen ausgewaschen werden. Danach werden die fixierten Nukleinsäuren mit einem Puffer hoher Ionenstärke von der Matrix wieder abgelöst.

Aus der DE-A 37 17 211 ist ein Verfahren bekannt zur Trennung und Reinigung von Biopolymeren, wie Nukleinsäuren, wobei die Nukleinsäuren an einer in einer speziellen Vorrichtung angeordneten Matrix adsorbiert werden. Die Pufferbedingungen sind dabei so eingestellt, daß die Nukleinsäuren überwiegend adsorbiert werden, während störende Substanzen, wie Proteine, niedermolekulare Stoffe oder auch Zelltrümmer, nicht gebunden werden.

Nachteilig an diesem stellvertretenden Stand der Technik ist die Tatsache, daß ein Zentrifugationsschritt zur Entfernung der Zellbruchstücke und der ungelösten Bestandteile aus dem Zell-Lysat notwendig ist. Ein weiteres Problem besteht darin, daß die Nukleinsäuren durch die Elution in Puffern hoher Ionenstärke von den in großer Konzentration vorhandenen Salzen befreit und gleichzeitig konzentriert werden müssen. In den allermeisten Fällen sind die weiteren Verfahrensoperationen mit den so gewonnenen Nukleinsäuren nur mit Pufferbedingungen möglich, die geringere Ionenstärken aufweisen. Die Entfernung der in hoher Konzentration im Puffer gelösten Salze kann auch

durch Dialyse erfolgen, jedoch führt dies zu merklicher Degradation der Nukleinsäuren in den entsprechenden Proben. Nach der Dialyse muß die entsalzte Nukleinsäure durch eine Gefriertrocknung konzentriert werden. Eine andere Art der Konzentrierung erfolgt durch eine Fällung der Nukleinsäure mit Ethanol, Isopropanol, Polyethylenglykol (PEG). Die Nukleinsäuren sind in diesem System nicht löslich und fallen aus. Die ausgefallenen Nukleinsäuren müssen jedoch durch einen Zentrifugationsschritt pelletiert werden. Das Nukleinsäurepellet wird kurz getrocknet und anschließend in einem kleinen Volumenpuffer sehr niedriger Salzkonzentrationen gelöst, um eine konzentrierte salzfreie Nukleinsäureprobe zu erhalten. Durch diese Zentrifugations- und Fällungsverfahren ist eine einfache und schnelle Gewinnung von Nukleinsäuren nicht möglich und eine Automatisierung läßt sich nur schwer durchführen. Andererseits steigt der Bedarf nach einfachen und automatischen Verfahren zur Präparation von Nukleinsäuren durch das Vordringen der Molekularbiologie in die klinische Diagnostik sowie die Sequenzierung des menschlichen Genoms. Dabei sind jeweils große Probenmengen aufzuarbeiten.

Das der Erfindung zugrundeliegende technische Problem besteht darin, ein Verfahren bereitzustellen, daß es ermöglicht, Nukleinsäuren zu isolieren und zu reinigen, ohne daß ein Zentrifugationsschrift zur Entfernung der Zellbruchstücke oder ungelöster Bestandteile des Zell-Lysats notwendig wäre und, ohne daß die Nukleinsäuren in Puffersystemen hoher Salzkonzentrationen anfallen, wobei die Nukleinsäuren einen nachgeschalteten Entsalzungs- und Konzentrierungsschritt notwendig machen. Das bereitzustellende Verfahren soll die Nukleinsäuren praktisch in einem direkt weiterverarbeitbaren Zustand liefern. Ein weiterer Aspekt des genannten technischen Problems be-

steht in der Schaffung einer Vorrichtung, mit der das Verfahren in besonders vorteilhafter Weise ausgeführt werden kann. Das der Erfindung zugrundeliegende technische Problem wird in überraschend einfacher Weise durch ein Verfahren gelöst, daß durch die Merkmale des Anspruchs 1, 34, 36 charakterisiert ist. Die daran anschließenden Verfahrensansprüche betreffen bevorzugte Ausführungsformen des erfindungsgemäßen Verfahrens.

Eine Vorrichtung, mit der das erfindungsgemäße Verfahren in besonders vorteilhafter Weise ausgeführt werden kann, ist durch die Merkmale des Anspruchs 16, 35, 37 charakterisiert. Die darauf zurückbezogenen Unteransprüche betreffen weitere bevorzugte Ausführungsformen der erfindungsgemäßen Vorrichtung.

Zunächst werden die Zellen, deren Nukleinsäure isoliert werden sollen, in üblicher Weise aufgeschlossen und die Zelltrümmer werden entfernt. Dies kann mittels Filtration oder Zentrifugation geschehen. Vorzugsweise erfolgt die Gewinnung der klaren Zell-Lysate durch eine Filtration über eine stufenweise oder asymetrisch aufgebaute Filterschicht. Das die Nukleinsäuren enthaltende Filtrat kann sofort mit Anionenaustauschern behandelt werden. Als Anionenaustauscher kann ein handelsübliches Material ausgewählt werden, welches eine Bindung der zu isolierenden Nukleinsäure unter den jeweiligen Präparationsbedingungen erlaubt. Die Anionenaustauscher sind vorzugsweise oberflächenmodifizierte Träger aus einer Matrix, vorzugsweise bestehend aus Agarose, Dextran, Zellulose, Acrylamid, Polyvinylalkohol, Polystyrol, Glas, Aluminiumoxid, Titandioxid, Zirkondioxid oder Silicagel, wie zum Beispiel DEAE-Sepharose<sup>R</sup>, Q-Sepharose<sup>R</sup>, DEAE-Sephadex<sup>R</sup>, DEAE-Toyopearl<sup>R</sup>, Amberlite<sup>R</sup>, Nukleogen<sup>R</sup>, Qiagen<sup>R</sup>. Die Anionenaustauscher können poröse Trägermaterialien mit einer zur Wechselwirkung geeigneten inneren Oberfläche hoher Kapa-

zität oder nicht poröse Trägermaterialien sein, die nur auf der äußeren Oberfläche eine Wechselwirkung mit dem zu trennenden Gemisch eingeht. Ganz besonders bevorzugt handelt es sich bei dem Anionenaustauscher um ein Material auf Basis von Silicagel, das eine Partikelgröße von 1 bis 250  $\mu\text{m}$ , vorzugsweise 10 bis 50  $\mu\text{m}$  und ganz besonders bevorzugt 15 bis 25  $\mu \mathrm{m}$  und einen Porendurchmesser von 1 bis 2.500 nm, bevorzugt 10 bis 500 nm, besonders bevorzugt 200 bis 400 nm, aufweist. Als Anionenaustauschermaterial hat sich insbesondere ein Material mit hoher Oberflächenladung und hoher Bindungskapazität für Nukleinsäuren erwiesen. Die Modifizierung des Silicagels erfolgt vorzugsweise durch Silanisierung des Trägermaterials, wie beispielsweise in der EP-A 83 901 065, DE-A-39 35 098 und US-A-5,057,426 offenbart. In der EP-A 83 901 065 wird zum gamma-Glycidyloxypropyltrimethoxysilan N, N-Dimethylaminoethanol zur Modifizierung des Trägermaterials verwendet.

Die Adsorption der Nukleinsäuren erfolgt unter Bedingungen, wie sie typischerweise bei niedrigen Salzkonzentrationen vorliegen. Vorzugsweise sind dies niedrigere Salzkonzentrationen als solche mit der die Nukleinsäuren von der Säule eluiert werden können. Je nach verwendeten Ionenaustauschermaterialien und pH-Werten kann die Salzkonzentration dabei 0,25 bis 1,5 M betragen.

Nach der Adsorption der Nukleinsäuren an dem Anionenaustauschermaterial kann sich mindestens ein Waschschritt mit Puffer geringer Ionenstärke anschließen.

Vorzugsweise befindet sich das Inonenaustauschermaterial dabei in einem überwiegend zylindrischen Hohlkörper einer Säule. Die Säule wird dann mit einer Salzlösung gewaschen, deren Ionenstärke so hoch wie möglich ist, ohne daß die erwünschte Nukleinsäure eluiert wird. Damit werden niedermolekulare und schwach geladene Verunreinigungen und Proteine ausgewaschen.

Danach wird die Nukleinsäure mit einem Puffer hoher Ionenstärke von dem Anionenaustauschermaterial desorbiert, um dann unmittelbar im Elutionspuffer hoher Ionenstärke mit einem mineralischen Träger gebunden zu werden. Nukleinsäuren können in Gegenwart von chaotropen Salzen wie Natriumiodid, Natriumperchlorat an feingemahlenem Glas oder Silicagel gebunden werden, wenn man die Nukleinsäuren mit der feinen Glas- bzw. Silicagelsuspension versetzt und längere Zeit inkubiert, um eine Bindung der Nukleinsäure an das Silicagel zu ermöglichen (B. Vogelstein und D. Gillespie, 1979, Proc. Nat. Aca. Sci USA, 76, 615 - 19; Preparative and analytical purification of DNA from agarose; R. Yang, J. Lis und B. Wu, 1979, Elution of DNA from agarose after gel electrophoresis, Methods Enzymol. 65, 176 - 182; M.A. Marko, R. Chipperfield und H.C. Birnboim, 1982, A procedure for the large scale isolation of highly purified plasmid DNA using alkaline extraction and binding to glass powder, Anal. Biochem, 121, 382 - 387).

Das erfindungsgemäße Verfahren zeigt überraschenderweise, daß Nukleinsäure auch beim Passieren von sehr dünnen Schichten von Glas oder Silicagel effizient adsorbieren, obwohl die Verweilzeit nur 1 - 30 Sekunden beträgt. Es zeigt sich auch, daß eine Bindung in hohen Natriumchloridund Lithiumchloridkonzentrationen erfolgt und chaotrope Salze nicht notwendig sind. Auch ist bisher eine Kombination aus Anionenaustauscher und Silicagel nicht beschrieben, wobei der Anionenaustauscher die Reinigung der Nukleinsäure übernimmt und bei den Konzentrationen von 0,25 M - 1,5 M Salz zwar die Verunreinigungen, wie Metaboliten, Proteine und teilweise RNA, Polysaccharide entfernt werden, aber diese unter den gegebenen Bedingungen nicht an die nachgeschaltete Silicagelschicht adsorbieren können, und die Silicagelschicht die Entsalzungs- und Konzentrationsaufgabe übernimmt, wenn die Nukleinsäure im

folgenden Schritt mit einer Salzkonzentration vom Anionenaustauscher eluiert wird, die hoch genug ist die Nukleinsäure an die Silicagelschicht adsorbieren kann.

Als Puffersalze in den angegebenen Konzentrationen kommen für den Adsorptionsschritt an den mineralischen Träger folgende in Betracht:

| Salz    | Konzentration |   |   |   |
|---------|---------------|---|---|---|
| NaCl:   | 3             | _ | 5 | М |
| NaClO4: | 5             | - | 7 | M |
| Gu-HCl: | 5             |   | 7 | M |
| NaJ:    | 3             | - | 5 | M |

Die Behandlung mit der Salzlösung kann einfach durch Auftropfen auf den Filter und Absaugen erfolgen. In einer bevorzugten Ausführungsform wird die Silicagelschicht mit einer Perchloratlösung, pH 6,5 bis 8,5, insbesondere pH 7 bis 8, behandelt. Dies erfolgt zweckmäßig durch Pipettieren und Durchsaugen. Besonders bevorzugt wird hierzu eine Lösung, die 4 bis 8 M/l NaClO4, 5 bis 20 mM/l Tris-HCl, pH 7 bis 8 und 0,5 bis 2 mM/l EDTA enthält, verwendet. Nach dem Entfernen der chaotropen Lösungen, insbesondere der Natriumperchloratlösung, wird vorzugsweise mit wäßrigem Ethanol nachgewaschen, zum Beispiel mit 50 bis 90%-igem Ethanol.

Nach dem Trocknen der Filter erfolgt dann die Elution in üblicher Weise mit einer verdünnten wäßrigen Salzlösung, wie z. B. in Anal. Biochem. 101, 339 - 341 (1980) beschrieben. Ein bevorzugtes Elutionsmittel ist 0,5 bis 2 mM/l Tris-HCl, pH 7 bis 8, enthaltend 0,05 bis 0,2 mM/l EDTA, im folgenden als TE bezeichnet. Besonders bevorzugt wird ein pH-Wert von 7,5 bis 8,5. Ein anderes geeignetes Elutionsmittel sind verdünnte Detergenslösungen, wie zum Beispiel 0,1% SDS, die jedoch weniger bevorzugt werden.

Es hat sich gezeigt, daß außer Silicagel auch andere mineralische Träger zur Adsorption der Nukleinsäure geeignet sind. In einer bevorzugten Form wird jedoch Silicagel der Partikelgröße 1 bis 250  $\mu$ m, bevorzugt 5 bis 50  $\mu$ m, insbesonderen 15 - 25  $\mu$ m, eingesetzt. Die Entsalzungsschicht kann als eine lose geschüttete Schicht, die zwischen zwei PE-Fritten eingeschlossen ist, in der Extraktionssäule eingesetzt werden. Eine andere Ausführungsform beinhaltet die Anwendung der mineralischen Träger in Membranform nach EP 0 323 055 (07.12.1988, 3M, Composition Chromatographic Article).

Mit dem erfindungsgemäßen Verfahren können Nukleinsäuren verschiedenster Provenienz getrennt und präpariert werden. Dabei ist es gleichgültig, ob die Nukleinsäuren aus Bakterien, Zellkulturen, Blut, Gewebe, Urin, Viren oder aus Amplifikationsreaktionen, wie PCR (Polymerase Chain Reaction), SSSR (Self-Sustained-Sequence Replication), Ligase-Chain-Reaction und ähnlichen Reaktionen stammen, oder ob es sich um markierte Nukleinsäuren, wie in Biotin markierte, fluoreszens-markierte oder radioaktiv markierte Nukleinsäuren handelt. Als Nukleinsäure kommen Nukleinsäuren in einem Größenbereich vom 10 Nukleotiden bis 200.000 Nukleotiden in Betracht. Als Nukleinsäuren im Sinne der Erfindung werden Olegonukleotide von 10 bis 100 Nukleotiden, RNA mit 50 bis 25.000 Nukleotiden, Plasmid-DNA mit 2.500 bis 25.000 Basenpaaren, Cosmid-DNA mit 5.000 bis 60.000 Basenpaaren oder genomische DNA mit 100 bis 200.000 Basenpaaren verstanden.

Die nach Schritt d) des erfindungsgemäßen Verfahrens erhaltene Nukleinsäurefraktion oder -fraktionen werden in Lösungen mit geringer Salzbelastung erhalten. Es ist somit möglich, die für die weitere Prozessierung erforderlichen Pufferbedingungen nachträglich einzustellen. In besonders vorteilhafter Weise wird die an dem Silicaglas

gebundene Nukleinsäure bereits in dem zur Weiterverarbeitung bestimmten Puffer eluiert.

Die isolierten Nukleinsäuren werden für die unterschiedlichsten Anwendungen eingesetzt. Besonders häufig erfolgt die enzymatische Umsetzung mit Restriktionsenzymen, Polymerasen und Ligasen zur Restriktionsanalyse, Sequenzierung, Markierung mit Radioaktivität oder nicht radioaktiven Markern, wie Biotin, FITC, Digoxigenin und der Amplifikation mit Hilfe der PCR, SSSR (Self-Sustained-Sequence Replication) und Ligase-Chain-Reaction.

Die Figuren zeigen bevorzugte Ausführungsformen der erfindungsgemäßen Vorrichtung.

Die Figur 1 zeigt eine Vorrichtung zur Durchführung des erfindungsgemäßen Verfahrens, die aus einem Hohlkörper 1 mit einer Einlaßöffnung 7 und einer Auslaßöffnung 8 besteht. Der Hohlkörper besteht vorzugsweise aus Polypropylen (PP), Polyethylen (PE), Polymethylmethacrylat (PMMA), Polytetrafluorethylen (PTEE), Polyethylterephthalat (PET) oder Polyacrylnitril (PAN). Im Hohlkörper 1 ist zwischen zwei Fixiereinrichtungen 5, 6 ein pulverförmiges erstes Material aus einem mineralischen Trägermaterial 10 angeordnet. Im Hohlkörper 1 befindet sich ein zweites pulverförmiges Material 11 aus einem mineralischen Trägermaterial zwischen dem ersten Material 10 und der Auslaßöffnung 8. Die ersten und zweiten Materialien 10, 11 weisen unterschiedliche Adsorptionscharakteristika für Nukleinsäuren auf. Die Unterschiede in den Adsorptionscharakteristika werden durch unterschiedliches Adsorptionsverhalten in Puffern hoher bzw. niedriger Ionenstärken bestimmt. Werden zum Beispiel Nukleinsäuren vom ersten Material 10 unter Bedingungen niedriger Ionenstärke gebunden, so muß das zweite Material 11 in der Lage sein, Nukleinsäuren unter Pufferbedingungen niedriger Ionenstärke ungehindert passieren zu lassen, wohingegen unter Bedingungen hoher Ionenstärke die Nukleinsäure vom ersten Material 10 desorbiert und an dem zweiten Material 11 adsorbiert wird.

Vorzugsweise besteht das erste pulverförmige Material 10 aus einem Anionenaustauscher aus oberflächenmodifizierten Trägermaterialien auf Basis von Agarose, Dextranen, Cellulose, Acrylamid, Polyvinylalkohol, Polystyrol, Glas, Aluminiumoxid, Titanoxid, Zirkondioxid oder Silicagel, insbesondere Anionenaustauscher der oben genannten Art auf Silicagelbasis. Der vorzugsweise basische Ionenaustauscher weist eine Partikelgröße von 1 bis 250  $\mu$ m, bevorzugt von 10 bis 40  $\mu$ m, insbesondere 15 bis 25  $\mu$ m, und einem Porendurchmesser von 1 bis 2.500 nm, vorzugsweise 10 bis 500 nm, insbesondere 200 – 400 nm, auf.

Das zweite Material 11 ist ein mineralisches Trägermaterial, insbesondere aus Silicagel, Glas, Zeolith, Aluminiumoxid, Titandioxid, Zirkiondioxid, Kaolin, Kieselalgen, vorzugsweise ein Silicaglas, gegebenenfalls in Form einer Silicagelsuspension. Das zweite Material 11 weist vorzugsweise eine Partikelgröße von 1 - 250  $\mu$ m, insbesondere 10 bis 30  $\mu$ m, bevorzugt 15 bis 25  $\mu$ m, auf.

Die Einrichtungen 5 und 6 bestehen vorzugsweise aus gesintertem Glas (Fritten) oder Membranen aus Kunststoff, wie Polyethylen, PTFE, Polypropylen, Glas, Keramik, Nylon oder ein Vlies aus Polypropylen, Poylethylen, Nylon. Die Porosität der Einrichtungen 5, 6 beträgt vorzugsweise 10 bis 500  $\mu$ m.

Eine weitere bevorzugte Ausführungsform der erfindungsgemäßen Vorrichtung zeigt die Figur 2. Dort ist das erste Material 10 und das zweite Material 11 so im Hohlkörper 1 angeordnet, daß die Materialien 10, 11 direkt aneinandergrenzen und zwar in getrennten Schichten, die gemeinsam von den Fixiereinrichtungen 5, 6 gehalten werden. Vorzugsweise kann das Material durch eine Trenneinrichtung 13 getrennt werden, wobei die Trenneinrichtung 13 eine poröse Scheibe, vorzugsweise aus gesintertem Glas, oder eine Kunststoffmembran, oder Gewebe, vorzugsweise aus Nylon, ist.

Die Figur 3 zeigt eine weitere bevorzugte Ausführungsform der erfindungsgemäßen Vorrichtung, wobei das zweite Material 11 in dem einen Kanal bildenden Auslaß 18 zwischen den Fixiereinrichtungen 5, 15 fixiert ist. Die einen Kanal bildende Auslaßöffnung 18 weist einen geringeren Querschnitt als der Hohlkörper 1 auf und mündet vorzugsweise in einem Kanal 18a, dessen Querschnitt geringer als derjenige des Kanals 18 ist. Das erste Material 10 befindet sich im Lumen des Hohlkörpers 1 im Bereich des größeren Durchmessers und ist durch die Einrichtung 6, 16 fixiert. Es kann dabei vorteilhaft sein, das erste und zweite Material 10, 11 aneinandergrenzen zu lassen, so daß diese nur durch eine gemeinsame Einrichtung 17 getrennt sind (siehe Figur 4).

Die Figur 5 beschreibt eine weitere bevorzugte Ausführungsform der erfindungsgemäßen Vorrichtung, die im Hohlkörper neben den Schichten aus einem ersten und zweiten Material 10, 11 eine weitere Schicht 12 aufweist, die über dem ersten Material 10 angeordnet ist. Die Schicht 12 ist als mechanische Filtereinrichtung ausgebildet. Vorzugsweise ist die dritte Schicht 12 ein asymmetrischer Filter, wobei die Porengrößen des Filters in Fließrichtung der Probe, also von Zuführungsöffnung 7 zur Auslaßöffnung 8 bzw. 18, abnimmt. Damit können auch noch in der Probe befindliche Zelltrümmer entfernt werden, ohne daß die Gefahr einer Verstopfung der Vorrichtung besteht.

Die Materialien 10 und 11 können in sämtlichen Ausführungsformen der erfindungsgemäßen Vorrichtung entweder pulverförmig und/oder als Presskörper ausgebildet sein. Wenn die Materialien 10, 11 in Partikelform vorliegen, kann es empfehlenswert sein, diese in einem Trägernetz aus inerten Kunststoffen einzubetten, so daß die Schichten in Form einer Membran vorliegen gemäß US-PS 4,810,381 und US-PS 4,699,717 sowie in der DE 41 27 276 vorgeschlagen. Das Trägernetz kann aus Teflon bestehen.

Die Figur 6 beschreibt eine weitere bevorzugte Ausführungsform der erfindungsgemäßen Vorrichtung, wobei acht einzelne, getrennte Vorrichtungen gemäß Figur 2 aneinandergrenzen und eine Achtereinheit bilden. Der Vorteil dieser Ausführungsform, die mit jeder der in 1 - 5 beschriebenen Einzelformen durchführbar ist, liegt in der parallelen Präparation von 8 Proben unter Zuhilfenahme von Mehrkanalpipetten. Diese Form kann auch 12 mal aneinandergesetzt hergestellt werden, wobei 96 Proben prozessierbar werden. Der große Vorteil ist dann gegeben, wenn das international standardisierte Mikrotiter-Format verwendet wird.

Die Figur 7 beschreibt eine Vorrichtung, die in einem zylindrischen Hohlkörper 1 mit Einlaßöffnung 7 und Auslaßöffnung 8 ein Anionenaustauschermaterial 10 zwischen zwei Einrichtungen 6 und 5 fixiert enthält. Darauf ist aufgesteckt ein weiterer zylindrischer Hohlkörper in dessen Lumen verschiedene Filterschichten angeordnet sind. Die Filterschichten 20, 21, 22 können aus gesintertem Polyethylen, Polypropylen, PTFE, Glas, Silicagel, Aluminiumoxid oder geschütteten Diatomenerde, z. B. Cellit oder Silicagel bestehen. Aber auch verwebtes, verklebtes Vlies in Form von Polypropylen, Polyester, Glasfasern und Silica kommen in Betracht. Die Porosität der einzelnen Schichten beträgt vorzugsweise 15  $\mu$ m bis 500  $\mu$ m

in einer Dicke von 0,1 mm bis 10 mm. Die Porengröße der Filterschicht wird, in Fließrichtung gesehen, von Schicht zu Schicht geringer. In einer typischen Ausführungsform beträgt die Größe der Poren in der Schicht 20 etwa 100 bis 300  $\mu$ m, in der Schicht 21 30 bis 100  $\mu$ m und in der dritten Filterschicht 5 bis 30  $\mu$ m.

Die Figur 8 zeigt eine weitere bevorzugte Ausführungsform der Vorrichtung nach Figur 7, wobei als, in Fließrichtung gesehen, oberste Filterschicht 23 eine hydrophobe Schicht eingesetzt wird. Die hydrophobe Trennschicht 23 verhindert die unerwünschte Penetration des rohen Zell-Lysats in die Filterschicht vor Beginn der eigentlichen Filtration. Die hydrophobe Trennschicht 23 besteht vorzugsweise aus versponnenem oder gesintertem Polypropylen, Polyethylen, Polyester oder Polytetrafluoroetylen(PTFE)-Fasern, in einer Porosität von 10  $\mu$ m bis 500  $\mu$ m und vorzugsweise eine Dicke von 0,1 bis 5 mm.

Die Figur 9 beschreibt eine Filtrationsvorrichtung, die ähnlich aufgebaut ist, wie die in den Figuren 7 und 8 beschriebenen, mit dem Unterschied, daß verschiedene Filterschichten mit abnehmender Porengröße in einer einzigen Filterschicht 12 mit kontinuierlich abnehmender Porengröße verbunden sind. Die asymmetrische Filterschicht 12 ist vorzugsweise mit einer hydrophoben Filterschicht 23 am oberen Ende, in Fließrichtung gesehen, versehen. Die asymmetrische Filterschicht 12 besteht vorzugsweise aus versponnenem Polypropylen oder Polyesterfasern; kommerziell erhältlich sind Profile, beispielsweise von Pall Filtertechnik, Dreieich, Frankfurt, mit Porositätsabstufungen von 500 bis 50  $\mu$ m, 100 bis 10  $\mu$ m, 50 bis 5  $\mu$ m sowie 10 bis 0,1  $\mu$ m. Die Dicke der asymmetrischen Filterschicht sollte vorzugsweise 1 mm bis 10 mm betragen.

Die Figur 10 beschreibt Filtrationseinrichtungen zur Abtrennung von Nukleinsäuren im erfindungsgemäßen Sinne wobei auf die Filterkonfigurationen der Figur 9 zurückgegriffen wird und wobei eine asymmetrische Filterschicht mit einer hydrophoben Filterschicht 23 versehen ist. Im Hohlkörper 1 befindet sich anstelle des Anionenaustauschers 10 ein mineralischer Träger 11, der in der Lage ist, Nukleinsäuren in hochkonzentrierten Salzlösungen zu adsorbieren.

Die Figur 11 beschreibt eine Konfiguration in einer Verbindung der Figuren 9 und 10. Dabei wird der Vorrichtung, die in Figur 2 beschrieben wird, lediglich ein Filteraufsatz bestehend aus einem asymmetrischen Filter 12 und einer hydrophoben Filterschicht 23 zugeordnet etwa durch Einstecken einer entsprechend ausgebildeten Kartusche.

Sämtliche Einzelvorrichtungen, die in den Figuren 1 bis 5 und 7 bis 11 näher beschrieben worden sind, lassen sich in einem Mikrotiterstreifen bestehend aus 8 aneinandergesetzten Einzelvorrichtungen anordnen. Beispielhaft ist dies nocheinmal in den Figuren 12 bis 14 dargestellt.

Die Figur 12 zeigt eine Filtrationsvorrichtung mit Anionenaustauscher wobei ein Mikrotiterstrip oder eine
Mikrotiterplatte mit 8 bzw. 8 x 12 Vertiefungen. In der
Vorrichtung gemäß Abbildung 12 befindet sich eine
asymmetrische Filtrationseinrichtung in einer aufsteckbaren Kartusche auf dem zylindrischen Hohlkörper 1, der
eine Anionenaustauscherschicht zwischen den Einrichtungen
5, 6 fixiert enthält.

Die Figur 13 betrifft eine Filtrationsvorrichtung, die anstelle des Anionenaustauschermaterials ein mineralisches Trägermaterial besitzt, welches in der Lage ist, Nukleinsäuren in hohen Salzkonzentrationen zu adsorbieren. Vor-

zugsweise befindet sich eine Silicagelschicht 11 angeordnet zwischen zwei Einrichtungen 5 und 6.

Die Figur 14 zeigt eine Kombination der Anordnung gemäß Figur 2 sowie einer asymmetrischen Filterschicht mit hydrophober Filterschicht, die über dem Hohlkörper 1, in Fließrichtung der Probe gesehen, angeordnet ist.

Die erfindungsgemäße Vorrichtung, insbesondere die in Figur 3 oder 4 näher erläuterte Vorrichtungen, sind besonders vorteilhaft, das die Elution der Nukleinsäure aus dem zweiten Material 11 mit nur sehr geringen Flüssigkeitsmengen gewährleistet.

Der Durchfluß der Probe durch die erfindungsgemäße Vorrichtung wird grundsätzlich durch die Schwerkraft bewirkt, jedoch kann zur Beschleunigung der Reinigung und Trennung der Nukleinsäuren ein Überdruck an der Öffnung 7 bzw. ein Unterdruck an der Öffnung 8 bzw. 18 angelegt werden. Eine weitere bevorzugte Ausführungsform der erfindungsgemäßen Vorrichtung verwendet als asymmetrische Filter solche aus gesintertem Glas mit abnehmender Porengröße oder übereinandergeschichtete Kunststoffmembranen mit abnehmender Porengröße in Fließrichtung der Probe durch den Hohlkörper.

Nukleinsäuren aus Zellen und anderen Quellen können ohne Zentrifugation, Phenol/Chloroform-Extraktion und ohne Alkoholfällung erhalten werden, wobei die Nukleinsäure am Ende des Verfahrens in konzentrierter Form in Wasser oder Puffer niedriger Salzkonzentration vorliegt und somit direkt für anschließende enzymatische Reaktionen einsetzbar ist. Ein weiterer Vorteil besteht darin, daß der Einsatz von teuren Laboreinrichtungen vermieden werden kann. Die Elution kann beispielsweise durch Schwerkraft bewirkt werden und muß nicht mittels sogenannter HPLC-Geräte durchgeführt werden.

Die Herstellung einer Silicagel-Anionenaustauscher/Silicagel-Extraktions-Säule erfolgt vorzugsweise dadurch, daß ein Polypropylen-Gefäß passend in ein handelsübliches 1,5 ml Zentrifugengefäß, unten mit einer 50  $\mu$ m Polyethylen-Fritte (poröse Filterschicht aus Polyethylen, 1,5 mm dick) verschlossen wird und mit 50 mg Silicagel (Lichrosphere Si 100, 16 - 24  $\mu$ m; Merck, Darmstadt, FRG) überschichtet. Diese Silicagelschicht wird mit einer zweiten porösen Polyethylen-Fritte verschlossen und die zweite Fritte mit 100 mg Silicagel-Anionenaustauscher (Qiagen, Fa. Diagen, Düsseldorf, FRG), Partikelgröße 16 bis 23  $\mu$ m überschichtet und abschließend mit einer dritten porösen Polyethylen-Fritte verschlossen.

Die Herstellung einer Agarose-Anionaustauscher/Silicagel-Extraktions-Säule erfolgt vorzugsweise dadurch, daß ein Polypropylen-Gefäß unten mit einer 50  $\mu$ m Polyethylen-Fritte (poröse Filterschicht aus PE; 1,5 mm dick) verschlossen und mit 50 mg Silicagel (Lichrosphere Si 100, 16 - 24  $\mu$ m) überschichtet wird. Diese Silicagelschicht wird mit einer zweiten Polyethylen-Fritte verschlossen und die zweite Fritte mit 0,5 ml DEAE-Sepharose FF (Fa. Pharmacia, Freiburg, FRG), Partikelgröße 45 - 165  $\mu$ m überschichtet und abschließend mit einer dritten porösen Polyethylen-Fritte verschlossen.

Die Herstellung einer Anionenaustauscher-Membrane/Silicagel-Membran-Extraktions-Säule nach Figur 3 erfolgt vorzugsweise dadurch, daß in ein Polypropylen-Gefäß auf eine Polyethylen-Fritte eine 1 mm dicke Empore Silicagelmembrane (3) (3M Corp. St. Paul, MN, USA), ein 0,2 mm dickes Polypropylen-Vlies und 1 mm dicke Anionenaustauscher-Membrane bestehen aus 16 – 23  $\mu$ m Qiagen Anionenaustauscher Partikel (Diagen GmbH, Düsseldorf, FRG) plaziert wird.

Die Herstellung einer Anionenaustauscher/Silicagel-Mikrotiterstreifen-Extrations-Säule erfolgt wie beschrieben: Ein Mikrotiterstreifen mit 8 oder 96 Positionen wird mit einer DEAE.Silicagel-Membrane und einer Silicagel-Membrane gefüllt. In eine Bohrung eines Mikrotiterstreifens werden eine 0,75 mm dicke Silicagelmembrane, hergestellt aus Sident 9 Silicagelpartikeln (fa. Degussa, Frankfurt, FRG), eine 0,2 mm dicke Polypropylen-Vlies-Schicht und eine 0,8 mm dicke Anionenaustauscher-Membrane hergestellt aus Qiagen, 16 - 23  $\mu \rm m$  (Fa. Diagen, Düsseldorf, FRG) eingepaßt.

Die Erfindung wird anhand der folgenden Beispiele weiter erläutert.

#### Beispiel 1

Präparation von Plasmid DNA

Eine 100 ml Kultur in LB-Ampicillin Medium mit pUC 18 transformierten HB 101 E. coli Zellen wird 10 Minuten bei 5.000g zentrifugiert. Das Zellpellet wird in 10 ml 50 ml Tris-HCl, 10 mM EDTA, pH 8,0, 100  $\mu$ g/ml RNAse A resuspendiert.

Um die Zelle zu lysieren werden 10 ml 0,2 M NaOH, 1% SDS werden zur Zellsuspension gegeben, vorsichtig gemischt und 5 Minuten bei Raumtemperatur stehen gelassen. Danach wird mit 10 ml 3M K-Acetat, 2 M Essigsäure neutralisiert, gemischt und 15 Minuten auf Eis inkubiert. Das Lysat wird 30 Minuten bei 15.000 g zentrifugiert und der Überstand vorsichtig abgehoben. 1 ml klares Zell-Lysat wird auf eine DEAE-Anionenaustauscher/Silicagel-Zentrifugations-Extraktions-Säule pipettiert und die Probe durch die Austauscherschicht 1 Minute bei 2.500 g zentrifugiert. Die Extraktionssäule wird mit 0,8 ml 1 M NaCl, 15% Ethanol,

50 mM MOPS, pH 7,0 und mit 15% Ethanol, 10 mM Na-Acetat pH 7,0,0,8 ml 1 M NaClO $_4$  gewaschen, um RNA und Proteine zu entfernen. Die DNA wird mit 7 M NaClO $_4$ , 15% Ethanol, 10 mM Na-Acetat, pH 7,0 eluiert und dabei direkt an die Silicagel-Schicht gebunden. Die Extraktionssäule wird mit 0,8 ml 70% Ethanol, 100mM NaCl, 10 mM Na-Acetat pH 7,0 und mit 0,8 ml 90% Ethanol/Wasser gewaschen. Spuren an EtoH werden eventuell durch eine weitere Zentrifugation entfernt. Anschließend wird die DNA mit 50  $\mu$ l 10 mM Tris-HCl, 1 mM EDTA, pH 8,0 durch Zentrifugieren eluiert und in neuen 1,5 ml Röhrchen aufgefangen. Die eluierte DNA kann dann direkt in einer enzymatischen Reaktion wie zum Beispiel Restriktionsspaltung, Markierung, Sequenzierung oder Amplifikation eingesetzt werden.

#### Beispiel 2

Parallele Präparation von Plasmid DNA

DEAE-Silicagel-Membrane/Silicagel-Extraktions-Säulen werden auf einer Vakuumkammer aufgesetzt. 8 x je 1 ml eines Plasmid DNA enthaltenen Zell-Lysates werden unter Vakuum (20 bis 750 mbar) durch die Extraktionssäulen gesaugt. Die Extraktionssäule wird mit 0,8 ml 1 M NaCl, 15% Ethanol, 50 mM MOPS, pH 7,0 und mit 15% Ethanol, 10 mM Na-Acetat pH 7,0, 0,8 ml 1 M NaClO $_4$  gewaschen, um RNA und Proteine zu entfernen. Die DNA wird mit 7 M NaClO4, 15% Ethanol, 10 mMNa-Acetat, pH 7,0 von der Anionenaustauscher-Schicht eluiert und dabei direkt an die Silicagel-Schicht gebunden. Die Extraktionssäule wird mit 0,8 ml 70% Ethanol, 100 mM NaCl, 10 mM Na-Acetat pH 7,0 und mit 0,8 ml 90% Ethanol/Wasser gewaschen. Die Probenröhrchen werden zur Entfernung der hochkonzentrierten Salzlösung mit 0,8 ml 70% Ethanol, 100 mM NaCl, 10 mM Na-Acetat, pH 7,0 und 0,8 ml 90% Ethanol/Wasser gewaschen. Die in der Extraktionsschicht vorhandenen

Ethanol-H $_2$ O-Reste werden durch ei nDurchsaugen von Raumluft durch ein Vakuum für 1 - 2 Minuten verflüchtigt. Anschließend werden die 8 Proben mit je 50  $\mu$ l 1 mM Tris-HCl, 0,1 mM EDTA, pH 8,0 eluiert.

#### Beispiel 3

Präparation von M13 Einzelstrang DNA

1 ml M13 Phagensuspension werden mit 0,5 ml 30% PEG 6000, 1,5 M NaCl versetzt und nach 10 Minuten Inkubation auf Eis 15 Minuten bei 15.000 g abzentrifugiert. Das Phagenpellet wird in 0,5 ml 0,5 M Guanidin-HCl, 1% Triton X-100 resuspendiert und 10 Minuten bei 70°C lysiert. Das Phagenlysat wird auf einer Vakuumkammer direkt durch eine Extraktionssäule nach Beispiel 3 gesaugt und adsorbiert. Die Extraktionssäule wird mit 1 ml 0,75 M NaCl, 15% Ethanol, 50 mM MOPS, pH 7,0, lml 0,75 M NaCl04, 50 mM Tris-HCl, pH 7,0 gewaschen und mit 7 M Guanidin, 15% Ethanol, 50 mM Na-Acetat, pH 7,0 von der Anionenaustauscherschicht eluiert und an die SiO2-Schicht adsorbiert.

#### Beispiel 4

Präparation von genomischer DNA aus Blut

1 ml citrat-stabilisiertes, humanes Vollblut werden zur Lyse der Erythrozyten mit 1 ml 1% Saponin versetzt und sofort nach dem Mischen, 5 Minuten bei 2.500 g abzentrifugiert. Die Leukozyten werden in 1 ml PBS-Buffer resuspendiert und nochmals pelletiert. Die gewaschenen Leukozyten werden in 1 ml 500 mM Guanidin-HCl, 50 mM Tris-HCl. 10 mM EDTA, pH 8,0 resuspendiert und die Zellen durch Zugabe von 0,1 ml Proteinase K (10 mg/ml) 2 Stunden bei 50°C lysiert. Das Leukozyten-Lysat wird sofort auf

die Agarose/Anionenaustauscher/Silicagel/Extraktionssäule pipettiert und mit 1 ml 0,25 M NaCl, 10 mM Na-Acetat pH 7,0 und 1 ml 0,25 NaClO4, 10 mM Na-Acetat pH 7,0 gewaschen. 1 ml citrat-stabilisiertes, humanes Vollblut wird unter Vakuum, durch eine Anionentauscher-Silicagel-Säule gesaugt. Die Leukozyten werden dabei in der Matrix eingefangen, wogegen die wesentlich kleineren Erythrozyten durch die Matrix durchwandern. Die Extraktionssäule wird zweimal mit 1 ml PBS-Puffer nachgewaschen. Die eingefangenen Leukozyten werden mit 10 % Tween 10, 15 Minuten bei Raumtemperatur lysiert. Die Zellbruchstücke und Proteine werden mit zweimal 1 ml 1 M Guanidin-HCl, pH 7,0 ausgewaschen und die DNA mit 7M NaClO4, 50mM Na-Acetat, pH 7,0 von der Säule eluiert.

#### Beispiel 5

Präparation, Entsalzung und Konzentration von DNA im Mikrotiterformat

96 x 1 ml Kulturen von Plasmid pBluescript in XL 1 Blue E.coli Zellen, werden im 2 x YT Medium 18 Stunden bei 37°C in einer Mikrotiterplatte mit 1,5 ml Vertiefungen (Fa. Beckmann, München) kultiviert. Die Zellen werden in einer Mikrotiterzentrifuge für 10 Minuten bei 2.500 g pelletiert. Mit einer 8-Kanal Multichanel-Pipette (Fa. Matrix Technologies, Lowell, MA, USA) werden je 0,25 ml 50 mM Tris-HCl, 10 mM EDTA, 100  $\mu$ g/ml RNAglA in die Mikrotiterplattenvertiefungen pipettiert und die Zellen 5 Minuten auf einen Vibrations-Schüttler resuspendiert.

Die Zellen werden durch die Zugabe von je 0,25 ml 0,2 M NaOH, 1% SDS 5 Minuten bei Raumtemperatur unter leichtem Schütteln lysiert. Anschließend werden je 0,25 ml 3 M K-Acetat, 2 M Esigsäure, pH 5,5 - 6,0 Neutralisationspuffer zugegeben, die einzelnen Näpfe mit einer Kappe

verschlossen und gemischt. Nach einer Inkubation von 10 Minute auf Eis wird die Probe 30 Minuten bei 3.000 g zentrifugiert, um die Zellbruchstücke und das präzipiterte SDS zu pelletieren. Der Überstand wir mit einer 8-Kanal-Multichanel-Pipette vorsichtig abgehoben und in die 96er Mikrotiterplatte mit einer DEAE-Silicagelmembrane und Silicagelmembrane pipettiert. Nach der Überführung aller 96 Proben werden die Proben durch Anlegen eines Vakuums an eine Filtrierapparatur durch die Mikrotiterplatte gesaugt. Die DNA wird dabei an die Anionenaustauscher-Schicht adsorbiert, wohingegen unter diesen speziellen Bedingungen Proteine, RNA und Metabolite nicht adsorbiert werden.

Die Extraktionssäule wird mit 0,8 ml 1 M NaCl, 15% Ethanol, 50 mM MOPS, pH 7,0 und mit 15% Ethanol, 10 mM Na-Acetat pH 7,0, 0,8 ml 1 M NaClO $_4$  gewaschen, um RNA und Proteine zu entfernen. Die DNA wird mit 7 M NaClO $_4$ , 15% Ethanol, 10 mM Na-Acetat, pH 7,0 eluiert und dabei direkt an die Silicagel-Schicht gebunden. Die Extraktionssäule wird mit 0,0 ml 70% Ethanol, 100 mM NaCl, 10 mM Na-Acetat pH 7,0 und mit 0,8 ml 90% Ethanol/Wasser gewaschen. Anschließend wird die von Salz befreite DNA in konzentrierter Form mit je 50  $\mu$ l 1 mM Tris-HCl, 0,1 mM EDTA, pH 8,0 von der Silicagel-Schicht in eine weitere Mikrotiterplatte eluiert.

Die Herstellung der Zell-Lysate mit Hilfe der Zentrifugation ist ein langwieriges und aufwendiges Verfahren. Die Limitierung ist vor allem dann gegeben, wenn viele Proen routinemäßig präpariert werden müssen. Die Zentrifugation hat den Nachteil, daß sie sich nicht automatisieren läßt.

Ein weiterer Gegenstand (und Verfahren) der Erfindung ist eine Vorrichtung und ein Verfahren zur automatischen Durchführung des Verfahrens ohne Zentrifugation in Form einer Filtrationseinheit, die der eigentlichen Reinigung der Nukleinsäure vorgeschaltet ist.

Dabei wird die Probe nach bekannter Weise mit Proteinasen, Detergentien und/oder Temperatur oder Alkali lysiert. Dieses rohe Lysat wird direkt auf den Filtrationsaufsatz dekantiert, überführt oder pipettiert. Die Filterschicht des Filtrationsaufsatzes ist so aufgebaut, daß ein Verstopfen der Filter durch die Zelltrümmer, ausgefallene Proteine oder Detergentien vermieden wird. Das Zell-Lysat wird durch die Filterschicht mit einem Stempel oder Überdruck durchgedrückt oder unter Anlegen eines Vakuums durchgesaugt. Dabei werden alle ungelösten Bestandteile zurückgehalten und das klare Lysat tropft direkt auf die Adsorptionsschicht. Durch die Wahl der geeigneten Adsorptionsbedingungen wird die Nukleinsäure an der Adsorptionsschicht adsorbiert. Die Filtrationseinheit mit dem Filterkuchen wird von der Adsorptionseinheit abgetrennt und/oder verworfen und für die Analyse des Filterkuchens aufgehoben. Die Adsorptionseinheit wird mit geeigneten Lösungsmitteln oder Puffern nachgewaschen, um unerwünschte Bestandteile zu entfernen und die erwünschte Probe wird zum Schluß mit einem geeigneten Elutionsmittel eluiert.

Beispielsweise läßt sich nach dem erfindungsgemäßen Verfahren Plasmid DNA ohne eine Klar-Zentrifugation in einer Kühlzentrifuge präparieren. 96 x l ml Kulturen von Plasmid pBluescript in XLl Blue E.coli Zellen, werden im 2 x YT Medium 18 Stunden bei 37 °C in einer Mikrotiterplatte mit 1,5 ml Vertiefungen (Fa. Beckmann, München) kultiviert. Die Zellen werden in einer Mikrotiterzentrifuge für 10 Minuten bei 2.500 g pelletiert.

Mit einer 8-Kanal Multichanel-Pipette (Fa. Matrix Technologies, Lowell, MA, USA) werden je 0,25 ml 50 mM Tris-HCl, 10 mM EDTA, 100  $\mu$ g/ml RNAglA in die Mikrotitervertiefungen pipettiert und die Zellen 5 Minuten auf einem Vibrations-Schüttler resuspendiert. Die resuspendierten Zellen werden in das Probenreservoir des Filtrationsaufsatezs überführt und mit 0,25 ml 0,2 M NaOH/l% SDS versetzt. Die Probe wird 5 Minuten auf einen Vibrationsschüttler geschüttet oder mit einem Stopfen oder einer Klebefolie verschlossen und gemischt, oder durch mehrmaliges Auf- und Abpipettieren gemischt.

Nach 5 Minuten Inkubation bei Raumtemperatur zur Lyse wird zur Neutralisation der NaOH und Präzipitation des SDS 0,25 ml 3M K-Acetat, 2 M Essigsäure zugegeben und nach einem der oben beschriebenen Verfahren gemischt. Dieses rohe Zell-Lysat wird nun statt einer Zentrifugation auf einer Vakuumkammer bei 10 mbar - 800 mbar Vakuum durch die Filtrationsschicht gesaugt. asymmetrische oder eine stufenweise Porosität im Bereich 200  $\mu \text{m}$  bis 5  $\mu \text{m}$  aufweisende Filterschicht mit einer Dicke von 2 - 10 mm hält die Zellbruchstücke und anderen ungelösten bzw. präzipitierten Bestandteile zurück ohne zu verstopfen. Das Plasmid DNA enthaltende, klare Zell-Lysat tropft durch die Filterschicht auf die Adsorptionsschicht (Anionenaustauscher oder Silicagel) und die DNA wird adsorbiert, wogegen Proteine, RNA und andere zelluläre Metabolite unter den gegebenen Salzbedingungen nicht binden. Die Filtration ist nach ca 10 bis 60 Sekunden beendet. Der Filteraufsatz wird abgenommen und zusammen mit dem Filterkuchen verworfen.

Die gebundene DNA wird mit 1 ml 1 M NaCl, 15% Ethanol, 50 mM Tris-HCl pH 7,0 und 2 mal mit 1 ml 1,5 M NaClo $_4$ , 10 mM Na-Acetat, pH 6,5 gewaschen und mit 7 M NaClo $_4$ , 15% Ethanol, 50 mM Tris-HCl, pH 7,0 von Anionenaustauscher

eluiert und nach Passieren der Trennschicht aus einem Nylonnetz oder PP-Vlies unter den hohen Salzkonzentrationen sofort an die Silicagelschicht gebunden. Dabei binden die Proteine und RNA bei 1 M - 2 M NaClO $_4$  nicht an die Silicagelschicht und werden ausgewaschen. Die Silicagelschicht und werden ausgewaschen. Die Silicagelschicht wird zum Entfernen der restlichen Spuren an Proteinen mit 1 ml 7 M Guanidin HCl, 10 mM Na-Acetat, pH 7,0 gewaschen. Die Hochsalzlösung an 7 M NaClO $_4$  wird zweckmäßigerweise mit 1 ml 70% EtoH, 100 mM NaCl, 10 mM Na-Acetat, pH 7,0 und 1 ml 90% Ethanol/Wasser oder 1 ml 90% Aceton/Wasser ausgewaschen. Nach dem Trocknen wir die Plasmid DNA salzfrei und inkonzentrierter Form mit 50  $\mu$ l 1 mM Tris-HCl, 0,1 mM EDTA, pH 8,5 eluiert.

Auf diese Weise läßt sich die Plasmid DNA in kürzester Zeit ohne Zentrifugation, Phenol/Chloroform-Extraktion und ohne Alkoholfällung mit einer Ausbeute von 50% bis 80% inkonzentrierter Form isolieren. Bei der Verwendung einer beschriebenen Mikrotiterplattenversion lassen sich 96 Plasmid-Minipreps von 1 - 2 ml E.coli Kulturen mit einer Ausbeute von 1 - 10  $\mu$ m DNA in ca. 60 Minuten präparieren von einer Person. Die bisher bekannten Verfahren benötigen dazu 6 bis 12 Stunden.

#### Beispiel 6

Plasmid Miniprep mit einer Vorrichtung nach Figur 7

Eine 1,5 ml XL Blue E.coli Kultur mit pUC 18 Plasmid DNA in LB-Medium wird 5 Minuten bei 10.000 g zentrifugiert, um die Zellen zu pelletieren. Das Zell-Pellet wird in 0,25 ml 50 ml Tris-HCl, 10 mM EDTA, pH 8,0, 100  $\mu$ g/ml RNAse A resuspendiert. Zur Zell-Lyse werden 0,25 ml 0,2 M NaOH, 1% SDS werden zur Zellsuspension gegeben, vorsichtig gemischt und 5 Minuten bei Raumtemperatur stehen gelassen. Danach wird 0,25 ml 3M K-Acetat, 2 M Essigsäure zur Neu-

tralisation zugegeben, gemischt und 15 Minuten auf Eis inkubiert. Das Lysat wird in die Filtrationsvorrichtung nach Figur 7 überführt. Die ganze Vorrichtung wird auf eine Vakuum-Kammer aufgesetzt und das Zell-Lysat mit 20 mbar - 800 mbar durch die Vorrichtung gesaugt. Alternativ kann die Probe mit einem Kolbenstempel oder Überdruck durch die Filtrationsschichten gedrückt werden. Nach der Filtration wird die Filtrationsvorrichtung abgenommen und der Filterkuchen mit den Zellbrucstücken, den denaturierten Proteinen und dem ausgefallenen SDS verworfen.

Die Extraktionssäule wird 2 mal mit 0,8 ml 1 M NaCl, 15% Ethanol, 50 mM MOPS, pH 7,0 gewaschen, um RNA und Proteine zu entfernen.Die DNA wird mit 1 ml 1,25 M NaCl, 15% Ethanol, 50 mM Tris-HCl, pH 8,5 eluiert. Die eluierte DNA wird zur Entsalzung und zur Konzentrierung mit Alkohol gefällt und das Alkohol-Pellet durch eine Zentrifugation pelletiert.

#### Beispiel 7

Präparation von Plasmid DNA mit einer Vorrichtung nach Figur 8

Eine 1,5 ml XL Blue E.coli Kultur mit pUC 18 Plasmid DNA in LB-Medium wird 5 Minuten bei 10.000 g zentrifugiert, um die Zellen zu pelletieren. Das Zell-Pellet wird in 0,25 ml 50 ml Tris-HCl, 10 mM EDTA, pH 8,0, 100  $\mu$ g/ml RNAse A resuspendiert und in die Filtrationsvorrichtung überführt. Zur Zell-Lyse werden 0,25 ml 0,2 M NaOH, 1% SDS zur Zellsuspension in die Filtrationsvorrichtung nach Figur 8 gegeben, die Vorrichtung mit einem Stopfen oder einer Klebefolie verschlossen, vorsichtig gemischt und 5 Minuten bei Raumtemperatur stehen gelassen. Danach wird 0,25 ml 3 M K-Acetat, 2 M Essigsäure zur Neutralisation zugegeben, gemischt und 15 Minuten auf Eis inkubiert. Die ganze Vorrichtung wird auf eine Vakuum-Kammer aufgesetzt

und das Zell-Lysat mit 20 mbar - 800 mbar durch die Vorrichtung gesaugt. Alternativ kann die Probe mit einem Kolbenstempel oder Überdruck durch die Filtrationsschichten gedrückt werden. Nach der Filtration wird die Filtrationsvorrichtung abgenommen und der Filterkuchen mit den Zellbruchstücken, den denaturierten Proteinen und dem ausgefallenen SDS verworfen. Die Extraktionssäule wird 2 mal mit 0,8 ml 1 M NaCl, 15% Ethanol, 50 mM MOPS, pH 7,0 gewaschen, um RNA und Proteine zu entfernen. Die DNA wird mit 1 ml 1,25 M NaCl, 15% Ethanol, 50 mM Tris-HCl, pH 8,5 eluiert. Die eluierte DNA wird zur Entsaltzung und zur Konzentrierung mit Alkohol gefällt und das Alkohol-Pellet durch eine Zentrifugation pelletiert.

#### Beispiel 8

Präparation von Plasmid DNA an einer Silicagel-Schicht mit einer Vorrichtung nach Figur 10

Eine 1,5 ml XL Blue E.coli Kultur mit pUC 18 Plasmid DNA in LB-Medium wird 5 Minuten bei 10.000 g zentrifugiert, um die Zellen zu pelletieren. Das Zell-Pellet wird in 0,25 ml 50 ml Tris-HCl, 10 m MEDTA, pH 8,0, 100  $\mu$ g/ml RNAse A resuspendiert und in die Filtrationsvorrichtung nach Figur 10 überführt. Zur Zell-Lyse werden 0,25 ml 0,2 M NaOH, 1% SDS zur Zellsuspension in die Filtrationsvorrichtung gegeben, die Vorrichtung mit einem Stopfen oder einerKlebefolie verschlossen, vorsichtig gemischt und 5 Minuten bei Raumtemperatur stehen gelasen. Danach wird 0,5 ml 5,5 M Guanidin-HCl, 0,25 M K-Acetat, pH 5,5 zur Neutralisation zugegeben, gemischt und 15 Minuten auf Eis inkubiert. Die ganze Vorrichtung nach Abb. 10 wird auf eine Vakuum-Kammer aufgesetzt und das Zell-Lysat mit 20 mbar - 800 mbar durch die Vorrichtung gesaugt. Alternativ kann die Probe mit einem Kolbenstempfel oder Überdruck

durch die Filtrationsschicht abgenommen und der Filter-kuchen mit den Zellbruchstücken, den denaturierten Proteinen und dem ausgefallenen SDS verworfen. Die Extraktionssäule wird 2 mal mit 1 ml 7 M NaClO $_4$ , 10 mM Na-Acetat, pH 7,0 gewaschen und mit 0,8 ml 90% Ethanol/Wasser gewaschen und die Ethanolspuren durchgesaugt. Zum Schluß wird die DNA mit 50  $\mu$ l 10 mM Tris-HCl, 1 mM EDTA, pH 8,0 eluiert und in neuen 1,5 ml Röhrchen aufgefangen.

Die eluierte DNA kann direkt in einer enzymatischen Reaktion wie zum Beispiel Restriktionsspaltung, Markierung, Sequenzierung oder Amplifikation eingesetzt werden.

#### Beispiel 9

Präparation von 8 x Plasmid DNA in einem Mikrotiterstreifen

8 mal 1,5 ml XL Blue E.coli Kulturen mit pUC 18 Plasmid DNA in LB-Medium werden 5 Minuten bei 10.000 g zentrifugiert, um die Zellen zu pelletieren. Die Zell-Pellets werden in 0,25 ml 50 ml Tris-HCl,10 m MEDTA, pH 8,0,  $\mu$ g/ml RNAse A resuspendiert und in die vorrichtung nach Figur 14 überführt. Zur Zell-Lyse werden 0,25 ml 0,2 M NaOH, 1% SDS zur Zellsuspension in die Filtrationsvorrichtung gegeben, die Vorrichtung mit einem Stopfen oder einer Klebefolie verschlossen, vorsichtig gemischt und 5 Minuten bei Raumtemperatur stehen gelassen. Danach wird 0,25 ml 3 M K-Acetat, 2 M Essigsäure zur Neutralisation zugegeben, gemischt und 15 Minuten auf Eis inkubiert. Die ganze Vorrichtung wird auf eine Vakuum-Kammer aufgesetzt und das Zell-Lysat mit 20mbar - 800 mbar durch die Vorrichtung esaugt. Alternativ kann die Probe mit Überdruck durch die Filtrationsschichten gedrückt werden. Nach der Filtration wird die Filtrationsvorrichtung abgenommen und

der Filterkuchen mit den Zellbruchstücken, den danaturierten Proteinen und dem ausgefallenen SDS verworfen. Die Extraktionssäule wird mit 0,8 ml 1 M NaCl, 15% Ethanol, 50 mM MOPS, pH 7,0 und mit 0,8 ml 1 M NaClO $_4$ , 15% Ethanol, 10 mM Na-Acetat pH 7,0 gewaschen, um RNA und Proteine zu entfernen. Die DNA wird mit 7 M NAClO $_4$ , 15% Ethanol, 10 mM Na-Acetat, pH 7,0 von der Anionenaustauscher-Schicht 10 eluiert und dabei direkt an die Silicagel-schicht 11 gebunden. Die Extraktionssäule wird mit 0,8 ml 70% Ethanol, 100 mM NaCl, 10 mM Na-Acetat pH 7,0 und mit 0,8 ml 90% Ethanol/Wasser gewaschen. Die in der Extraktionsschicht vorhandenen Ethanol-H $_2$ O-Reste werden durch ein Durchsaugen von Raumluft durch ein Vakuum für 1 – 2 Minuten verflüchtigt. Anschließend werden die 8 Proben mit je 50  $\mu$ l 1 mM Tris-HCl, 0,1 mM EDTA, pH 8,0 eluiert.

#### Beispiel 10

Präparation von 8 x 1 ml M13 DNA mit einer Vorrichtung nach Figur 13

8 x 1 ml Ml3 Phagensuspension werden mit 0,5 ml 30% PEG 6000, 1,5 M NaCl versetzt und 10 Minuten auf Eis inkubiert. Die Proben werden auf eine Vorrichtung nach Abb. 13 überführt und das Phagenlysat wird auf einer Vakuumkammer direkt durch eine Vorrichtung nach Figur 13 gesaugt und filtriert. Das Phagenpellet wird durch das Durchsaugen von 7M Guanidin-HCl, pH 7,0 lysiert und die DNA gleichzeitig an die Silicagelschicht 11 adsorbiert. Die Extraktionssäule wird 2 mal mit 1 ml 7 M Guanidin-HCl, 10 mM Na-Acetat, pH 7,0 gewaschen,um Proteine zu entfernen. Die Extraktionssäule wird mit 0,0 ml 70% Ethanol, 100 mM NaCl, 10 mM Na-Acetat pH 7,0 und mit 0,8 ml 70% Ethanol, 100 mM NaCl, 100 mM Na-Acetat pH 7,0 und mit 0,8 ml 90% Ethanol/Wasser gewaschen und für 1 - 2 Minuten Luft durchgesaugt. Zum Schluß wird die DNA mit 50  $\mu$ l 10 mM Tris-HCl, 1 mM EDTA, pH 8,0 eluiert und in neuen 1,5 ml Röhrchen aufgefangen.

Die eluierte DNA kann direkt in einer enzymatischen Reaktion wie zum Beispiel Restriktionsspaltung, Markierung, Sequenzierung oder Amplifiation eingesetzt werden.

#### Beispiel 11

Präparation von 8 x 12 Plasmid DNA mit einer Vorrichtung nach Figur 14

96 mal 1,5 ml XL Blue E.coli Kulturen mit pUC 18 Plasmid DNA in LB-Medium werden 5 Minuten bei 2.500 g zentrifugiert, um die Zellen zu pelletieren. Die Zell-Pellets werden in 0,25 ml 50 ml Tris-HCl, 10 m MEDTA, pH 8,0, 100  $\mu$ g/ml RNAse A resuspendiert und in die Vorrichtung mit einem Stopfen oder einer Klebefolie verschlossen, vorsichtig gemischt und 5 Minuten bei Raumtemperatur stehen gelassen. Danach wird 0,25 ml 3 M K-Acetat 2 M Essigsäure zur Neutralisation zugegeben, gemischt und 15 Minuten auf Eis inkubiert. Die ganze Vorrichtung wird auf eine Vakuum-Kammer aufgesetzt und das Zell-Lysat mit 20 mbar - 800 mbar durch die Vorrichtung gesaugt. Alternativ kann die Probe mit Überdruck durch die Filtrationsschichten gedrückt werden. Nach der Filtration wird die Filtrationsvorrichtung abgenommen und der Filterkuchen mit den Zellbruchstücken, den denaturierten Proteinen und dem ausgefallenen SDS verworfen. Die Extraktionssäule wird 0,8 ml 1 M NaCl, 15% Ethanol, 50 mM MOPS, pH 7,0 und mit 0,8 ml 1 M NaClO,, 15% Ethanol, 10 mM Na-Acetat pH 7,0 gewaschen, um RNA und Proteine zu entfernen. Die DNA wird mit 7 M NaClO<sub>4</sub>, 15% Ethanol, 10 mM Na-Acetat, pH 7,0 von der Anionenaustauscher-Schicht 10 eluiert und dabei direkt an die Silicagel-Schicht 11 gebunden. Die Extraktionssäule wird mit 0,8 ml 70% Ethanol, 100 mM NaCl, 10 mM Na-Acetat pH 7,0 und mit 0,8 ml 90% Ethanol/Wasser gewaschen.

Die in der Extraktionsschicht vorhandenen Ethanol- ${\rm H_2O-Reste}$  werden durch ein Durchsaugen von Raumluft durch ein Vakuum für 1-2 Minuten verflüchtigt. Anschließend werden die 96 Proben mit je 50  $\mu$ l 1 mM Tris-HCl, 0,1 mM EDTA pH 8,0 eluiert und in neuen 1,5 ml Röhrchen aufgefangen. Die eluierte DNA kann direkt in einer enzymatischen Reaktion, wie zum Beispiel Restriktionsspaltung, Markierung, Sequenzierung oder Amplifikation eingesetzt werden.

#### Patentansprüche

- Verfahren zur Isolierung und Reinigung von Nukleinsäuren aus Zellen oder anderen Quellen, wobei
  - a) die Nukleinsäuren enthaltenden Zellen aufgeschlossen und die Zelltrümmer entfernt werden oder sonstige nukleinsäurehaltige Proben mit Anionenaustauschern behandelt werden, und zwar in Pufferlösungen mit geringer Ionenstärke,
  - b) danach die Nukleinsäuren mit einem Puffer hoher Ionenstärke von dem Anionenaustauscher desorbiert werden, um danach
  - c) im Puffer hoher Ionenstärke mit einem mineralischen Trägermaterial behandelt zu werden unter Adsorption der Nukleinsäure an die Oberfläche der mineralischen Trägerstoffe, woraufhin
  - d) eine Desorption der Nukleinsäure mit Wasser oder einer Pufferlösung mit geringer Ionenstärke erfolgt.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Verfahrensschritte b) und c) unmittelbar aufeinanderfolgend durchgeführt werden.
- 3. Verfahren nach Anspruch 1 und/oder 2, wobei Zentrifugations- oder Filtrationsschritte dem Schritt a) vorgeschaltet werden, um nicht gelöste Bestandteile mechanisch abzutrennen.

- Verfahren nach mindestens einem der Ansprüche 1 bis 3, wobei zwischen den Schritten a) und b) ein oder mehrere Waschschritte mit Pufferlösungen mit geringer oder pro Waschschritt steigender Ionenstärke erfolgen.
- 5. Verfahren nach mindestens einem der Ansprüche 1 bis 4, wobei zwischen den Schritten c) und d) ein oder mehrere Waschschritte mit einer Pufferlösung hoher Ionenstärke erfolgen.
- 6. Verfahren nach mindestens einem der Ansprüche 1 bis 5, wobei zwischen den Schritten c) und d) mindestens ein Waschschritt mit wäßrig/alkoholischer Lösung erfolgt.
- Verfahren nach mindestens einem der Ansprüche 1 bis
   wobei ein Anionenaustauscher vorzugsweise mit hoher Oberflächenladung verwendet wird.
- 8. Verfahren nach mindestens einem der Ansprüche 1 bis 7, wobei die Nukleinsäure aus einer PCR- (Polymerase Chain Reaction), SSSR- (Self-Sustained- Sequence Replication), Ligase-Chain-Reaction stammt.
- Verfahren nach mindestens einem der Ansprüche 1 bis
   wobei die Nukleinsäure 10 Nukleotide bis 200.000
   Nukleotide umfaßt.
- 10. Verfahren nach mindestens einem der Ansprüche 1 bis 9, wobei die Nukleinsäuren aus Bakterien, Zell-kulturen, Blut, Gewebe, Urin, Viren oder anderen biologischen Quellen stammt.
- 11. Verfahren nach mindestens einem der Ansprüche 1 bis 10, wobei markierte Nukleinsäuren insbesondere mit

Biotin markierte Nukleinsäuren fluoreszenz markierte Nukleinsäuren, wie mit Fluorescein-Isothiocyanat markierte oder radioaktiv markierte Nukleinsäuren eingesetzt werden.

- 12. Verfahren nach mindestens einem der Ansprüche 1 bis 11, wobei als mineralische Träger Silicagel, Glas, Zeolithe, Alumniumoxid, Titandioxid, Zirconoxid, Kaolin und/oder Kieselalgen verwendet werden.
- 13. Verfahren nach mindestens einem der Ansprüche 1 bis 12, wobei poröse oder nicht poröse Matrices verwendet werden mit einer Partikelgröße von 1  $\mu$ m bis 250  $\mu$ m, vorzugsweise 10 bis 30  $\mu$ m.
- 14. Verfahren nach mindestens einem der Ansprüche 1 bis 13, wobei eine Silicagelsuspension mit einer Partikelgröße von 1 bis 250  $\mu\text{m}$ , vorzugsweise 10 bis 30  $\mu\text{m}$  verwendet wird.
- 15. Verfahren nach mindestens einem der Ansprüche 1 bis 14, wobei der Anionenaustauscher eine Partikelgröße von 1 bis 250  $\mu$ m, vorzugsweise 10 bis 100  $\mu$ m, und einem Porendurchmesser von 1 bis 2.500 nm, vorzugsweise 100 bis 400 nm, aufweist.
- 16. Vorrichtung zur Isolierung und Reinigung von Nukleinsäuren mit einem Hohlkörper (1) mit einer Einlaßöffnung (7) und einer Auslaßöffnung (8), wobei im Hohlkörper (1) zwischen zwei Fixiereinrichtungen (5, 6) ein pulverförmiges erstes Material auf Silicagelbasis (10) angeordnet ist, dadurch gekennzeichnet, daß ein zweites Material (11) zwischen dem ersten Material (10) und der Auslaßöffnung (8) angeordnet ist, wobei die ersten und zweiten Materialien (10, 11) unterschiedliche Adsorptionscharakteristika für Nukleinsäuren aufweisen.

- 17. Vorrichtung nach Anspruch 16, dadurch gekennzeichnet, daß die Fixiereinrichtungen (5, 6) poröse Scheiben aus gesintertem Glas oder Keramik (Fritten) oder Membranen aus Kunststoffen, wie Polyethylen, Polypropylen, Polytetrafluorethylen oder Nylon, sind.
- 18. Vorrichtung nach Anspruch 16 und/oder 17, dadurch gekennzeichnet, daß die Materialien (10, 11) direkt aneinandergrenzen, und zwar in getrennten Schichten, und gemeinsam von den Fixiereinrichtungen (5, 6) gehalten werden.
- 19. Vorrichtung nach mindestens einem der Ansprüche 16 bis 18, dadurch gekennzeichnet, daß die Materialien (10, 11) durch eine Trenneinrichtung (13) getrennt sind.
- 20. Vorrichtung nach Anspruch 19, dadurch gekennzeichnet, daß die Trenneinrichtung (13) eine poröse Scheibe, vorzugsweise aus gesintertem Glas (Fritte), oder eine Kunststoffmembran, vorzugsweise aus Nylon, ist.
- 21. Vorrichtung nach mindestens einem der Ansprüche 16 bis 20, dadurch gekennzeichnet, daß das zweite Material (11) in dem einen Kanal bildenden Auslaßröhrchen (18), das einen geringeren Querschnitt als der Hohlkörper (1) aufweist, zwischen den Fixiereinrichtungen (5, 15) fixiert ist.
- 22. Vorrichtung nach Anspruch 21, wobei das zweite Material (11) vom ersten Material (10) nur durch eine gemeinsame Einrichtung (17) getrennt sind.

- 23. Vorrichtung nach mindestens einem der Ansprüche 16 bis 23, dadurch gekennzeichnet, daß das erste Material (10) aus einem Anionaustauscher auf Silicagelbasis besteht, während das zweite Material (11) aus einem Silicaglas besteht.
- 24. Vorrichtung nach mindestens einem der Ansprüche 16 bis 23, dadurch gekennzeichnet, daß die Materialien (10, 11) pulverförmig und/oder Preßkörper sind.
- 25. Vorrichtung nach mindestens einem der Ansprüche 16 bis 23, wobei die Partikel der Materialien (10, 11) in einem Trägernetz aus inerten Kunststoffen eingebettet sind.
- 26. Vorrichtung nach Anspruch 25, dadurch gekennzeichnet, daß das Trägernetz aus Teflon besteht.
- 27. Vorrichtung nach mindestens einem der Ansprüche 23 bis 26, dadurch gekennzeichnet, daß im Hohlkörper (1) eine weitere Schicht (12) zwischen dem Einlaß (7) und dem ersten Material (10) angeordnet ist, die als mechanische Filtereinrichtung wirkt.
- Vorrichtung nach Anspruch 27, dadurch gekennzeichnet, daß die dritte Schicht (12) ein asymmetrischer Filter ist, wobei die Porengrößen des Filters in Fließrichtung abnimmt.
- 29. Vorrichtung nach einem der Ansprüche 27 und/oder 28, wobei der asymmetrische Filter aus gesintertem Glas mit abnehmender Porengröße oder übereinandergeschichteten Kunststoffmembranen mit abnehmender Porengröße besteht.

- 30. Verwendung der Vorrichtung nach einem der Ansprüche 16 bis 29 in einem Verfahren gemäß mindestens einem der Ansprüche 1 bis 15 zur Proteinentfernung einer nukleinsäurehaltigen Probe unter Vermeidung einer phenolischen, phenolisch/Chloroform oder Chloroform-extraktion.
- 31. Verwendung eines Wasch- oder Adsorptionspuffers zur Durchführung des Verfahrens nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, daß die Lösung 1 bis 7 M Natriumperchlorat, 1 bis 7 M Gornidinhydrochlorid, 1 bis 5 M Natriumchlorid, 1 bis 6 M Natriumiodid, 1 M Natriumchlorid/20% Ethanol enthält.
- 32. Verwendung eines Puffersystems zur Elution der adsorbierten Nukleinsäuren in einem Verfahren gemäß mindestens einem der Ansprüche 1 bis 15, wobei der Puffer Wasser, Tris bei einem pH-Wert von 5 bis 9 enthält.
- 33. Verwendung der gemäß einem der Verfahren 1 bis 15 gewonnen Nukleinsäuren in einer der folgenden enzymatischen Reaktionen, wie Restriktionsabdauung, Sequenzierung, Amplifikation, Markierung.
- 34. Verfahren zur Isolierung und Reinigung von Nukleinsäuren aus Zellen oder anderen Quellen, wobei
  - a) die Zelltrümmer oder sonstige Partikel durch eine Filterschicht mit, in Fließrichtung der Probe gesehen, abnehmender Porengröße entfernt werden,
  - b) wobei dann das Effluat mit einem Anionenaustauscher in Pufferlösungen mit geringer Ionenstärke behandelt wird.

- 35. Vorrichtung zur Durchführung des Verfahrens nach Anspruch 34, wobei mindestens eine Filterschicht (12, 20, 21 oder 22) im Lumen eines im wesentlichen zylindrischen Hohlkörpers (1) vor einer zwischen zwei Einrichtungen (5, 6) fixierten Schicht (10) mit Anionenaustauschereigenschaften, aus der Richtung der Einlaßoffnung (7) her gesehen, angeordnet ist.
- 36. Verfahren zur Isolierung und Reinigung von Nukleinsäuren aus Zellen oder anderen Quellen, wobei
  - a) die Zelltrümmer oder sonstige Partikel durch eien Filterschicht mit, in Fließrichtung der Proben gesehenen, abnehmenden Filterporengrößen entfernt werden,

## wobei

- b) das Effluat danach mit einem mineralischen Träger in Pufferlösungen hoher Ionenstärke behandelt wird.
- 37. Vorrichtung zur Durchführung des Verfahrens nach Anspruch 36, wobei mindestens eine Filterschicht (12, 20, 21 oder 22) im Lumen eines im wesentlichen zylindrischen Hohlkörpers (1) vor einer zwischen zwei Einrichtungen (5, 6) fixierten Schicht (11), die Nukleinsäuren bei hoher Ionenstärke der entsprechenden Lösung zu binden vermag, aus der Richtung der Einlaßöffnung (7) her gesehen, angeordnet ist.

## Zusammenfassung

Es wird ein Verfahren beschrieben zur Isolierung und Reinigung von Nukleinsäuren aus Zellen oder anderen Quellen, wobei

- a) die Nukleinsäuren enthaltenden Zellen aufgeschlossen und die Zelltrümmer entfernt werden oder sonstige nukleinsäurehaltige Proben mit Anionenaustauschern behandelt werden, und zwar in Pufferlösungen mit geringer Ionenstärke,
- b) danach die Nukleinsäuren mit einem Puffer hoher Ionenstärke von dem Anionenaustauscher desorbiert werden, um danach
- c) im Puffer hoher Ionenstärke mit einem mineralischen Trägermaterial behandelt zu werden unter Adsorption der Nukleinsäure an die Oberfläche der mineralischen Trägerstoffe, woraufhin
- d) eine Desorption der Nukleinsäure mit Wasser oder einer Pufferlösung mit geringer Ionenstärke erfolgt.

Die Vorrichtung zur Durchführung des erfindungsgemäßen Verfahrens besteht aus einem Hohlkörper (1) mit einer Einlaßöffnung (7) und einer Auslaßöffnung (8), wobei im Hohlkörper (1) zwischen zwei Fixiereinrichtungen (5 und 6) ein pulverförmiges erstes Material auf Silicagelbasis (10) angeordnet ist und ein zweites Material (11) zwischen dem ersten Material (10) und der Auslaßöffnung (8) angeordnet ist, wobei die ersten und zweiten Materialien (10, 11) unterschiedliche Adsorptionscharakteristika für Nukleinsäuren aufweisen.



719 1



Fig. 2



Fig. 3



FG. 4



Fig. 5



Fig:6



Flg:7



Fig:8



Flg:9



Fig: 10



Fig: 11



Fig: 12

`



Fig: 13

