Pose-driven Deep Convolutional Model for Person Re-identification

Chi Su^{1,2}, Jianing Li¹, Shiliang Zhang¹, Junliang Xing⁴, Wen Gao¹, Qi Tian³

3 UTSA.
The University of Texas at San Antonio

Motivation

- **◆** Person's part information can alleviate the large pose variations
- ♦ Occlusion or pose estimation error frequently happens in real scene, directly use person's part information may introduces noises

Contribution

- **♦** Propose a Pose-driven Deep Convolutional (PDC) model to learn improved feature extraction and matching models from end to end.
- ◆ Proposed deep architecture explicitly leverages the human part cues to alleviate the pose variations and learn robust feature representations from both the global image and different local parts.
- ◆ Propose a pose driven feature weighting subnetwork for feature fusions

Experiments

♦ Comparison by 5 variants of our approach and the complete PDC

dataset	CUHK03		Market1501		VIPeR
dataset	labeled	detected	Warket1301		VII CIX
method	rank1	rank1	mAP	rank1	rank1
Global Only	79.83	71.89	52.84	76.22	37.97
Part Only	53.73	47.29	31.74	55.67	22.78
Global+Part	85.07	76.33	62.20	81.74	48.42
Global+Part+FEN	87.15	77.57	62.58	83.05	50.32
Global+Part+FWN	86.41	77.62	62.58	82.69	50.00
PDC	88.70	78.29	63.41	84.14	51.27

♦ Comparison with Related Works

On CUHK03 labeled

Methods	rank1	rank5	rank10	rank20
IDLA [1]	54.74	86.50	93.88	98.10
PersonNet [52]	64.80	89.40	94.90	98.20
DGDropout [53]	72.58	91.59	95.21	97.72
EDM [40]	61.32	88.90	96.44	99.94
Spindle [16]	88.50	97.80	98.60	99.20
PDC	88.70	98.61	99.24	99.67

On Market1501

Methods	mAP	rank1	rank5	rank10	rank20
PersonNet [52]	26.35	37.21	-	-	-
DGDropout [53]	31.94	59.53	-	-	-
Gate S-CNN [46]	39.55	65.88	-	-	-
LSTM S-CNN [47]	35.30	61.60	-	-	-
PIE [62]	55.95	79.33	90.76	94.41	96.65
Spindle [16]	-	76.90	91.50	94.60	96.70
PDC	63.41	84.14	92.73	94.92	96.82

Illustration of PDC

- **♦** Pose normalization in Feature Embedding sub-Net
 - (a) Original image
 - (b) Response maps of 14 body joints
 - (c) Key points of 14 body joints
 - (d) 6 body parts
 - (e) 6 body parts after rotated and resized
 - (f) Normalized by Pose Transform Network

♦ Feature Weighting subnet

Acknowledgments

Acknowledgments This work is partly supported by National Science Foundation of China under Grant No. 61572050, 91538111, 61620106009, 61429201, 61672519, and the National 1000 Youth Talents Plan. Dr. Qi Tian is supported by ARO grant W911NF-15-1-0290 and Faculty Research Gift Awards by NEC Laboratories of America and Blippar.