

Module 6: Recurrence Relations (?q=onlinecourse/course/43519)

Recurrence Relations I

- วิชชาภัทร จินดานาถ previously submitted answers to this quiz/test on 27-Oct-2023 @ 02:16:58 and obtained 15 correct answers out of 16.
- This test/quiz can be taken many times.
- Correct answers will NOT be revealed after submission.

undefined

- Let the recurrence relation a_n be the number of ways to climb n stairs if the person climbing the stairs can take one, two, or four stairs at a time ($n \ge 1$). Given a_n is in the form of statis call take one, two, or four stairs at a time ($n \ge 1$). Given a_n is in the form of $a_n = Aa_{n-1} + Ba_{n-2} + Ca_{n-3} + Da_{n-4}$ where $n \ge 5$, find A, B, C_{con} and respectively.
 - O, 1, 1, and 1
 - 1, 0, 1, and 1
 - 1, 1, 0, and 1
 - 1, 1, 1, and 0
- 2 From a_n got in the question 1, find a_1 , a_2 , a_3 , and a_4 respectively (which are the initial From previous attempt conditions).
 - 1, 2, 3, 6
 - 1, 2, 4, 8
 - 1, 1, 4, 6
 - 1, 1, 3, 8

3 From a_n got in the question 1, find the degree of a_n .

1

From previous attempt

3

4

5

Let the recurrence relation a_n be the number of bit strings of length n that **DO NOT** contain 00 ($n \ge 0$). Given a_n is in the form of $a_n = Aa_{n-1} + Ba_{n-2} + Ca_{n-3} + Da_{n-4}$ where $n \ge 3$, find A, B, C, and D respectively.

0, 0, 1, 1

0, 1, 0, 1

1, 0, 1, 0

1, 1, 0, 0

5 From a_n got in the question 4, find a_0 , a_1 , and a_2 respectively (which are the initial conditions).

1, 1, 2

From previous attempt

1, 2, 3

2, 1, 3

2, 2, 4

6 From a_n got in the question 4, find the degree of a_n .

1

From previous attempt

2

3

4

7 A recurrence relation for the number of ways to completely cover a $2 \times n$ checkerboard with 1×2 dominoes is $a_n = Aa_{n-1} + Ba_{n-2} + Ca_{n-3}$

[Hint: Consider separately the coverings where the position in the top right corner of the checkerboard is covered by a domino positioned horizontally and where it is covered by a domino positioned vertically.]

 $\operatorname{Find}\left(A,B,C\right)$

- (1,0,1)
- (1,1,0)
- (0,1,1)
- (1,1,1)
- 8 Find (a_1,a_2) for the recurrence relation in problem 7 [Find the initial conditions]

- (0,2)
- (1,2)
- (0,1)
- (1,1)
- 9 How many ways are there to completely cover a 2×17 checkerboard with 1×2 dominoes?

1596

From previous attempt

- 1597
- 2584
- 4180

10	A recurrence red, gree considere Find $(A,$	ence relation for the number of ways to lay out a walkway with slan, or gray, so that no two red tiles are adjacent and tiles of the same dindistinguishable is $a_n=Aa_{n-1}+Ba_{n-2}$	ate tiles if the tiles are ame color are attempt previous attempt
	(0,2)	
	(2,1)		
	(2,2))	
	(3,-	1)	
11	(-0, -1)		
	(0,3)	From previous attempt
	(3,8)	
	(1,3)		
	(1,8)		

12 How many ways are there to lay out a path of seven tiles as described in problem 10?

448

From previous attempt

2/10/2567 BE, 15:36

696

1224

3344

13 String of decimal digits is a valid codeword if it contains an even number of 0 digits e.g. 100230290 is valid.

Let a_n be the number of valid n - digit codewords.

From previous attempt

Find a_1

8

9

10

0

14 String of decimal digits is a valid codeword if it contains an even number of 0 digits e.g. 100230290 is valid.

Let a_n be the number of valid n - digit codewords.

From previous attempt

Recurrence relation for a_n is in the form of $a_n = Aa_{n-1} + Ba_{n-2} + C^{n-1}$

Find A, B, and C respectively.

- 8, 0, 10
- 1, 0, 2
- 2, 3, 1
- 5, 1, 8

The recurrence relation satisfied by an where an is the number of regions that a plane is divided into by n lines, if no two of the lines are parallel and no three of the lines go through the same point, is in the form of $a_n = Aa_{n-1} + Ba_{n-2} + Cn$

Find a_1

3

1

2

4

The recurrence relation satisfied by an where an is the number of regions that a plane is divided into by n lines, if no two of the lines are parallel and no three of the lines go through, the same point, is in the form of $a_n = Aa_{n-1} + Ba_{n-2} + Cn$

Find A, B, and C respectively

1, 0, 2

1, 0, 1

2, 1, 0

1, 1, 1

Submit

 Next > (?

q=onlinecourse/theatre/27044/czq4E6jSQZ)

Version 1.15.23.2

Privacy Policy (https://lic.chula.ac.th/?page_id=7606) updated on 06 Jan 2023 Cookie Policy (https://www.mycourseville.com/cookiepolicy.html) updated on 21 May 2022

LMS and Online Course Platform within mycourseville.com are operated by Learning Innovation Center, Chulalongkorn University (http://www.lic.chula.ac.th/)