Aim: To perform and analysis of Linear Regression Algorithm

```
In [5]:
#Name : Taufiq Rafik Nagori
#Roll no. : 77 (BDA-B77)
#Section : B
#Subject : PE-II
In [7]:
import os
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
In [9]:
os.getcwd()
Out[9]:
'C:\\Users\\USER'
In [11]:
os.chdir("C:\\Users\\USER\\Desktop")
In [13]:
data = pd.read csv("Salary.csv")
In [15]:
data.head()
Out[15]:
   YearsExperience Salary
0
               1.1
                  39343
1
               1.3 46205
               1.5 37731
2
3
               2.0 43525
               2.2 39891
4
In [17]:
data.tail()
Out[17]:
    YearsExperience
                    Salary
30
               11.2 127345
31
               11.5 126756
32
               12.3 128765
```

12.9 135675

33

```
34
               13.5 139465
In [19]:
data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 35 entries, 0 to 34
Data columns (total 2 columns):
                       Non-Null Count
#
     Column
                                        Dtype
 0
     YearsExperience 35 non-null
                                         float64
 1
     Salary
                       35 non-null
                                        int64
dtypes: float64(1), int64(1)
memory usage: 692.0 bytes
In [21]:
data.describe()
Out[21]:
       YearsExperience
                              Salary
                           35.000000
             35.000000
count
              6.308571
                        83945.600000
 mean
   std
              3.618610
                        32162.673003
  min
              1.100000
                        37731.000000
  25%
              3.450000
                        57019.000000
  50%
              5.300000
                        81363.000000
  75%
              9.250000
                       113223.500000
  max
             13.500000
                       139465.000000
In [23]:
data.shape
Out[23]:
(35, 2)
In [25]:
data.size
Out[25]:
70
In [27]:
data.columns
Out[27]:
Index(['YearsExperience', 'Salary'], dtype='object')
In [29]:
data.ndim
Out[29]:
2
```

YearsExperience Salary

data.isnull()

Out[31]:

0 4 2	YearsExperience	Salary
0	False	False
1	False	False
2	False	False
3	False	False
4	False	False
5	False	False
6	False	False
7	False	False
8	False	False
9	False	False
10	False	False
11	False	False
12	False	False
13	False	False
14	False	False
15	False	False
16	False	False
17	False	False
18	False	False
19	False	False
20	False	False
21	False	False
22	False	False
23	False	False
24	False	False
25	False	False
26	False	False
27	False	False
28	False	False
29	False	False
30	False	False
31	False	False

```
32
               False
                      False
 33
               False
                      False
 34
               False
                      False
In [33]:
data.isnull().sum()
Out[33]:
                     0
YearsExperience
Salary
                     0
dtype: int64
```

In [35]:

YearsExperience Salary

```
sns.scatterplot(x='YearsExperience', y='Salary',data=data)
plt.title('Experience Vs Salary')
plt.show()
```



```
In [37]:
x = data[['YearsExperience']]
y = data['Salary']

In [39]:
from sklearn.model_selection import train_test_split

In [41]:
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.2, random_state=
In [43]:
```

```
from sklearn.linear model import LinearRegression
In [45]:
model = LinearRegression()
model.fit(x train,y train)
Out[45]:
    LinearRegression -
LinearRegression()
In [47]:
y predict = model.predict(x test)
In [49]:
from sklearn.metrics import mean squared error, r2 score
print("Mean Squared Error:", mean squared error(y test, y predict))
print("R2 Score:", r2_score(y_test, y_predict))
Mean Squared Error: 55761791.30626011
R<sup>2</sup> Score: 0.891423414004278
from sklearn.metrics import r2_score,mean_absolute_error
In [53]:
mean_absolute_error(y_test,y_predict)
Out[53]:
6692.364094497281
In [55]:
plt.scatter(x_test, y_test, color='blue', label='Actual')
plt.plot(x_test, y_predict, color='red', linewidth=2, label='Predicted')
plt.title("Linear Regression - Experience vs Salary")
plt.xlabel("Years of Experience")
plt.ylabel("Salary")
plt.show()
```

Linear Regression - Experience vs Salary

