hw5 Graded 23 Hours, 55 Minutes Late Student Giancarlos Marte **Total Points** 26 / 30 pts Question 1 CFG derivations and parse trees 9 / 9 pts ✓ - 0 pts Correct Question 2 design a CFG 10 / 10 pts ✓ - 0 pts Correct Question 3 **6** / 10 pts design a PDA ✓ - 1.5 pts PDA still has content left at end ✓ - 1.5 pts Used incorrect cfg->pda conversion ✓ - 1 pt Combined too many transitions (minor infraction) You never popped the start state, and your implementation of the algorithm is a bit off. Separating into multiple rules would've made this problem easier for you, because with one rule, you only needed a single push and pop. You seem to be repeating yourself with your pushes and pops **Question 4** readme 1 / 1 pt

✓ - 0 pts Correct

1) Context-free grammars and string derivations

1.1

String 1:

 $\overline{i=3}$; if i == 0: print((1, i)) else: print(i + 7)

Derivation of string 1:

step	derivation	rule
1	<stmts></stmts>	start state
2	<stmt>; <stmts></stmts></stmt>	<stmts> → <stmt>; <stmts></stmts></stmt></stmts>
3	<id> = <expr>; <stmt></stmt></expr></id>	$\langle STMT \rangle \rightarrow \langle ID \rangle = \langle EXPR \rangle$ $\langle STMTS \rangle \rightarrow \langle STMT \rangle$
4	i = <num>; if <expr>: <stmt> else: <stmt></stmt></stmt></expr></num>	$\langle ID \rangle \rightarrow i$ $\langle EXPR \rangle \rightarrow \langle NUM \rangle$ $\langle STMT \rangle \rightarrow if \langle EXPR \rangle : \langle STMT \rangle$ else: $\langle STMT \rangle$
5	i = 3; if <expr> == <expr>: print(<expr>) else: print(<expr>)</expr></expr></expr></expr>	$\langle NUM \rangle \rightarrow 3$ $\langle EXPR \rangle \rightarrow \langle EXPR \rangle == \langle EXPR \rangle$ $\langle STMT \rangle \rightarrow print(\langle EXPR \rangle)$ $\langle STMT \rangle \rightarrow print(\langle EXPR \rangle)$
6	i = 3; if <id> == <num>: print(<tup>) else: print(<expr> + <expr>)</expr></expr></tup></num></id>	$\langle EXPR \rangle \rightarrow \langle NUM \rangle$ $\langle EXPR \rangle \rightarrow \langle ID \rangle$ $\langle EXPR \rangle \rightarrow \langle TUP \rangle$ $\langle EXPR \rangle \rightarrow \langle EXPR \rangle + \langle EXPR \rangle$
7	i = 3; if i == 3: print((<exprs>)) else: print(<id> + <num>)</num></id></exprs>	$\langle ID \rangle \rightarrow i$ $\langle NUM \rangle \rightarrow 3$ $\langle TUP \rangle \rightarrow (\langle EXPRS \rangle)$ $\langle EXPR \rangle \rightarrow \langle NUM \rangle$ $\langle EXPR \rangle \rightarrow \langle ID \rangle$
8	i = 3; if i == 3: print((<expr>, <exprs>)) else: print(i + 7)</exprs></expr>	$\langle ID \rangle \rightarrow i$ $\langle NUM \rangle \rightarrow 7$ $\langle EXPRS \rangle \rightarrow \langle EXPR \rangle$, $\langle EXPRS \rangle$
9	i = 3; if i == 3: print((<num>, <expr>)) else: print(i + 7)</expr></num>	<exprs> → <expr> <expr> → <num></num></expr></expr></exprs>

10	i = 3; if i == 3: print((1, <id>)) else: print(i + 7)</id>	$\langle EXPR \rangle \rightarrow \langle ID \rangle$ $\langle NUM \rangle \rightarrow 1$
11	i = 3; if i == 3: print((1, i)) else: print(i + 7)	$\langle ID \rangle \rightarrow i$ $\langle NUM \rangle \rightarrow 1$

String 2:

x = 4; y = lambda(z): z + 10; print(y(x))

Derivation of string 2:

DCIIVa	stration of string 2.		
step	derivation	rule	
1	<stmts></stmts>	start state	
2	<stmt>; <stmts></stmts></stmt>	$\langle STMTS \rangle \rightarrow \langle STMT \rangle; \langle STMTS \rangle$	
3	<id> = <expr>; <stmt>; <stmts></stmts></stmt></expr></id>	$\langle STMT \rangle \rightarrow \langle ID \rangle = \langle EXPR \rangle$ $\langle STMTS \rangle \rightarrow \langle STMT \rangle; \langle STMTS \rangle$	
4	x = <num>; <id> = <expr>; <stmt></stmt></expr></id></num>	$\langle ID \rangle \rightarrow x$ $\langle EXPR \rangle \rightarrow \langle NUM \rangle$ $\langle STMT \rangle \rightarrow \langle ID \rangle = \langle EXPR \rangle$ $\langle STMTS \rangle \rightarrow \langle STMT \rangle$	
5	x = 4; y = lambda(<ids>) : <expr>; print(<expr>)</expr></expr></ids>	$\langle NUM \rangle \rightarrow 4$ $\langle ID \rangle \rightarrow y$ $\langle EXPR \rangle \rightarrow lambda(\langle IDS \rangle) :$ $\langle EXPR \rangle$ $\langle STMT \rangle \rightarrow print(\langle EXPR \rangle)$	
6	x = 4; y = lambda(<id>): <expr> + <expr>; print(<id> (<expr>))</expr></id></expr></expr></id>	$\langle IDS \rangle \rightarrow \langle ID \rangle$ $\langle EXPR \rangle \rightarrow \langle EXPR \rangle + \langle EXPR \rangle$ $\langle EXPR \rangle \rightarrow \langle ID \rangle (\langle EXPR \rangle)$	
7	x = 4; y = lambda(z): <id> + <num>; print(y (<id>))</id></num></id>	$\langle ID \rangle \rightarrow z$ $\langle EXPR \rangle \rightarrow \langle ID \rangle$ $\langle EXPR \rangle \rightarrow \langle NUM \rangle$ $\langle ID \rangle \rightarrow y$ $\langle EXPR \rangle \rightarrow \langle ID \rangle$	
8	x = 4; y = lambda(z) : z + 10; print(y(x))	$\langle ID \rangle \rightarrow z$ $\langle NUM \rangle \rightarrow 10$ $\langle ID \rangle \rightarrow x$	

1.2

Formal description of the grammar PY

A context free grammar for PY is a 4-tuple (V, Σ , R, S), where:

V = {<STMTS>, <STMT>, <EXPRS>, <EXPR>, <TUP>, <NUM>, <IDS>, <ID>}

l, m, n, o, p, q, r, s, t, u, v, w, x, y, z}

R = RULES, where RULES is a set with the given rules

 $S = \langle STMTS \rangle$

1.3a

String:

if x == 9: print((a, b, c)) else: print(0)

Derivation:

step	derivation	rule
1	<stmts></stmts>	start state
2	<stmt></stmt>	$\langle STMTS \rangle \rightarrow \langle STMT \rangle$
3	if <expr> : <stmt> else: <stmt></stmt></stmt></expr>	$\langle STMT \rangle \rightarrow if \langle EXPR \rangle : \langle STMT \rangle$ else: $\langle STMT \rangle$
4	<pre>if <expr> == <expr>: print(<expr>) else: print(<expr>)</expr></expr></expr></expr></pre>	<expr> → <expr> == <expr> <stmt> → print(<expr>) <stmt> → print(<expr>)</expr></stmt></expr></stmt></expr></expr></expr>
5	<pre>if <id> == <num>: print(<tup>) else: print(<num>)</num></tup></num></id></pre>	$\langle EXPR \rangle \rightarrow \langle ID \rangle$ $\langle EXPR \rangle \rightarrow \langle NUM \rangle$ $\langle EXPR \rangle \rightarrow \langle TUP \rangle$ $\langle EXPR \rangle \rightarrow \langle NUM \rangle$
6	<pre>if x == 9: print((<exprs>)) else: print(0)</exprs></pre>	$\langle ID \rangle \rightarrow x$ $\langle NUM \rangle \rightarrow 9$ $\langle TUP \rangle \rightarrow (\langle EXPRS \rangle)$ $\langle NUM \rangle \rightarrow 0$
7	<pre>if x == 9: print((<expr>, <exprs>)) else: print(0)</exprs></expr></pre>	<exprs> → <expr>, <exprs></exprs></expr></exprs>
8	if x == 9: print((<id>, <expr>, <exprs>)) else: print(0)</exprs></expr></id>	<expr> → <id> <exprs> → <expr>, <exprs></exprs></expr></exprs></id></expr>

9	if x == 9: print((a, <id>, <expr>)) else: print(0)</expr></id>	$<$ ID> \rightarrow a $<$ EXPR> \rightarrow $<$ ID> $<$ EXPRS> \rightarrow $<$ EXPR>
10	if x == 9: print((a, b, <id>)) else: print(0)</id>	$\langle ID \rangle \rightarrow b$ $\langle EXPR \rangle \rightarrow \langle ID \rangle$
11	if x == 9: print((a, b, c)) else: print(0)	$\langle ID \rangle \rightarrow c$

Parse tree:

1.3b.

String: a = 1; f = lambda(x): x + a; f(5)

Derivation:

step	derivation	rule
1	<stmts></stmts>	start state
2	<stmt>; <stmts></stmts></stmt>	<stmts> → <stmt>; <stmts></stmts></stmt></stmts>
3	<id> = <expr>; <stmt>; <stmts></stmts></stmt></expr></id>	$\langle STMT \rangle \rightarrow \langle ID \rangle = \langle EXPR \rangle$ $\langle STMTS \rangle \rightarrow \langle STMT \rangle; \langle STMTS \rangle$
4	a = <num>; <id> = <expr>; <stmt></stmt></expr></id></num>	$\langle ID \rangle \rightarrow a$ $\langle EXPR \rangle \rightarrow \langle NUM \rangle$ $\langle STMT \rangle \rightarrow \langle ID \rangle = \langle EXPR \rangle$ $\langle STMTS \rangle \rightarrow \langle STMT \rangle$
5	a = 1; f = lambda(<ids>) : <expr>; <expr></expr></expr></ids>	$<$ NUM> \rightarrow 1 $<$ ID> \rightarrow f $<$ EXPR> \rightarrow lambda($<$ IDS>) : <EXPR> $<$ STMT> \rightarrow $<$ EXPR>
6	a = 1; f = lambda(<id>): <expr> + <expr>; <id> (<expr>)</expr></id></expr></expr></id>	$\langle IDS \rangle \rightarrow \langle ID \rangle$ $\langle EXPR \rangle \rightarrow \langle EXPR \rangle + \langle EXPR \rangle$ $\langle EXPR \rangle \rightarrow \langle ID \rangle (\langle EXPR \rangle)$
7	y = 1; f = lambda(x) : <id> + <id>; f (<num>)</num></id></id>	$\langle ID \rangle \rightarrow x$ $\langle EXPR \rangle \rightarrow \langle ID \rangle$ $\langle EXPR \rangle \rightarrow \langle ID \rangle$ $\langle ID \rangle \rightarrow f$ $\langle EXPR \rangle \rightarrow \langle NUM \rangle$
8	y = 1; $f = lambda(x) : x + a;$ $f(5)$	$\langle ID \rangle \rightarrow x$ $\langle ID \rangle \rightarrow a$ $\langle NUM \rangle \rightarrow 5$

Parse tree:

2) Design a CFG, including whitespace?

step	statement	justification
1	prove that the following language B is a CFL: B = {w if_var==num:indent_num_1else:indent_num_2} B is a language over the alphabet	given
	$\Sigma = \{a,, z, 0, 1, 9, _, =, :\}$	
2	A language is a CFL if a CFG describes it.	theorem and given
3	A CFG is a 4-tuple (V, Σ , R, S), where V represents a set of variables, Σ is a set of terminals, R is a set of rules and S is the start variable.	definition of a CFG
4	$V = \{var, num, num_{1}, num_{2}, indent_{1}, indent_{2}\}$	(3) and (1)
5	$\Sigma = \{a, b,, z, 0, 1,, 9, _, =, :\}$	(1) and (3)
6	$ \begin{array}{l} R = \{ \\ \text{start} \rightarrow \text{if_var} == num: indent_num_1 \text{else}: indent_num_2, \\ \text{var} \rightarrow \text{a} \mid \text{b} \mid \text{c} \mid \text{d} \mid \text{e} \mid \text{f} \mid \text{g} \mid \text{h} \mid \text{i} \mid \text{j} \mid \text{k} \mid \text{l} \mid \text{m} \mid \text{n} \mid \text{o} \mid \text{p} \mid \text{q} \mid \\ \text{r} \mid \text{s} \mid \text{t} \mid \text{u} \mid \text{v} \mid \text{w} \mid \text{x} \mid \text{y} \mid \text{z}, \\ num \rightarrow 0 \mid 1 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6 \mid 7 \mid 8 \mid 9, \\ num_1 \rightarrow 0 \mid 1 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6 \mid 7 \mid 8 \mid 9, \\ num_2 \rightarrow 0 \mid 1 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6 \mid 7 \mid 8 \mid 9, \\ indent_2 \rightarrow indent_1 \\ \} \end{array} $	(4), (5) and (3)
7	S = start	(3) and (6)
8	A CFG (V, Σ , R, S) describes the language B, therefore it is a CFL.	(4), (5), (6) and (7)

3) Design of a PDA, including whitespace?

(graph is on the next page)

README

names of others: none

books/websites used: class slides

time spent: 5 hours