Elementary, Dr Powerset!

A SEQUEL TO: SILENCE OF THE POWERSETS

Isa Vialard Joint work with Sergio Abriola, Simon Halfon, Aliaume Lopez, Sylvain Schmitz and Philippe Schnoebelen

What to expect

- Previously in Silence of the Powersets
 - The ordinal invariants of \mathcal{P}_{fin} are not functional...
 - ...but can be bounded!
- ♦ In this episode
 - Ordinal invariants of a family of elementary WQOs
 - Bonus: some exciting results on the width of the cartesian product

In the previous episode...

Ordinal invariants

Definition (Maximal order type, Width and Height)

$$\mathbf{o}(X)$$
 $\mathbf{w}(X) = \text{rank of root in the tree of}$
 $\mathbf{h}(X)$
bad sequences
antichains in X .
decreasing sequences

Translation into residuals

♦ Descent equations

$$o(X) = \sup_{x \in X} o(X_{\geq x}) + 1$$
 $h(X) = \sup_{x \in X} h(X_{< x}) + 1$
 $w(X) = \sup_{x \in X} w(X_{\perp x}) + 1$

Translation into residuals

♦ Descent equations

$$o(X) = \sup_{x \in X} o(X_{\geq x}) + 1$$

$$h(X) = \sup_{x \in X} h(X_{< x}) + 1$$

$$w(X) = \sup_{x \in X} w(X_{\perp x}) + 1$$

 \clubsuit Ex: Residuals of $\mathbb{N} \times \mathbb{N}$

In the previous episode...

Comparing WQOs

Invariant preserving maps

Let $f:(X,\leq_X)\to (Y,\leq_Y)$ be a map.

♣ Substructures (add points)

Whenever f is injective and $x \leq_X y \Leftrightarrow f(x) \leq_Y f(y)$.

- $X \leq_{st} Y$ implies $h, w, o(X) \leq h, w, o(Y)$
- **♣** Augmentations (add relations)

Whenever f is bijective and $f(x) \leq_Y f(y) \Rightarrow x \leq_X y$

• $Y \leq_{\mathsf{aug}} X$ implies $\mathbf{w}, \mathbf{o}(X) \leq \mathbf{w}, \mathbf{o}(Y)$

Invariant preserving maps

Let $f:(X,\leq_X)\to (Y,\leq_Y)$ be a map.

♣ Substructures (add points)

Whenever f is injective and $x \le \chi y \Leftrightarrow f(x) \le \gamma f(y)$.

- $X \leq_{st} Y$ implies $h, w, o(X) \leq h, w, o(Y)$
- **♣** Augmentations (add relations)

Whenever f is bijective and $f(x) \leq_Y f(y) \Rightarrow x \leq_X y$

- $Y \leq_{\mathsf{aug}} X$ implies $\boldsymbol{w}, \boldsymbol{o}(X) \leq \boldsymbol{w}, \boldsymbol{o}(Y)$
- **♦** Condensation (simulates decreasing sequences of *Y* in *X*)

Whenever f is surjective, monotone, and $\forall y <_Y f(x), \exists x' <_X x \text{ such that } y = f(x')$

•
$$X \ge_{cond} Y$$
 implies $h(X) \ge h(Y)$

In the previous episode...

How to compute invariants compositionally

How to compute invariants compositionally

Space	M.O.T.	Height	Width
$A \sqcup B$	$oldsymbol{o}(A)\oplusoldsymbol{o}(B)$	$\max(\mathbf{h}(A),\mathbf{h}(B))$	$w(A) \oplus w(B)$
A + B	o(A) + o(B)	${m h}(A) + {m h}(B)$	$\max(\boldsymbol{w}(A), \boldsymbol{w}(B))$
$A \times B$	${m o}(A)\otimes{m o}(B)$	$\mathbf{h}(A) \oplus \mathbf{h}(B)$?
$A \cdot B$	$\boldsymbol{o}(A) \cdot \boldsymbol{o}(B)$	$\boldsymbol{h}(A)\cdot\boldsymbol{h}(B)$	$w(A)\odot w(B)$
$M^{\diamond}(A)$	$\omega^{\widehat{o(A)}}$	$h^*(A)$?
A^*	$\omega^{\omega^{(o(X)^{\pm})}}$	$h^*(A)$	$\omega^{\omega^{(o(X)^{\pm})}}$
$\mathcal{P}_{fin}(A)$?	?	?

[♣] Taken from Džamonja, Schmitz & Schnoebelen(2020)

How to compute invariants compositionally

Space	M.O.T.	Height	Width
$A \sqcup B$	$oldsymbol{o}(A)\oplusoldsymbol{o}(B)$	$\max(\mathbf{h}(A),\mathbf{h}(B))$	$w(A) \oplus w(B)$
A + B	$oldsymbol{o}(A) + oldsymbol{o}(B)$	${\it h}(A) + {\it h}(B)$	$\max({\it w}(A),{\it w}(B))$
$A \times B$	$oldsymbol{o}(A)\otimesoldsymbol{o}(B)$	$\mathbf{h}(A) \oplus \mathbf{h}(B)$	Not functional
$A \cdot B$	$\boldsymbol{o}(A)\cdot\boldsymbol{o}(B)$	$\boldsymbol{h}(A)\cdot\boldsymbol{h}(B)$	$w(A) \odot w(B)$
$M^{\diamond}(A)$	$\omega^{\widehat{o(A)}}$	$h^*(A)$	$\omega^{\widehat{o(A)}-1}$
A^*	$\omega^{\omega^{(o(X)^{\pm})}}$	$h^*(A)$	$\omega^{\omega^{(\mathfrak{o}(X)^{\pm})}}$
$\mathcal{P}_{fin}(A)$	Not functional	Not functional	Not functional

[♣] Taken from Džamonja, Schmitz & Schnoebelen(2020)

♦ Ordinal measures of the set of finite multisets (V. 2023)

In the previous episode...

Ordinal invariants of \mathcal{P}_{fin}

Finite Powerset

♣ Hoare's embedding

We consider $(\mathcal{P}_{fin}(X), \leq_{\mathcal{H}})$, with

$$S \leq_{\mathcal{H}} S'$$
 iff $\forall x \in S, \exists y \in S', x \leq y$

♦ Useful to know

- $\mathcal{P}_{fin}(\alpha) = 1 + \alpha$ for any ordinal α
- $\mathcal{P}_{fin}(A \sqcup B) = \mathcal{P}_{fin}(A) \times \mathcal{P}_{fin}(B)$

Bounds on width and m.o.t. of \mathcal{P}_{fin}

Theorem

$$\begin{aligned} 1 + \boldsymbol{o}(A) &\leq \ \boldsymbol{o}(\mathcal{P}_{\mathsf{fin}}(A)) \ \leq 2^{\boldsymbol{o}(A)} \\ 1 + h(A) &\leq \ \boldsymbol{h}(\mathcal{P}_{\mathsf{fin}}(A)) \ \leq 2^{\boldsymbol{h}(A)} \\ 2^{\boldsymbol{w}(A)} &\leq \ \boldsymbol{w}(\mathcal{P}_{\mathsf{fin}}(A)) \ \leq (\boldsymbol{o}(\mathcal{P}_{\mathsf{fin}}(A)) \end{aligned}$$

Corollary

$$\boldsymbol{w}(A) = \boldsymbol{o}(A) \Rightarrow \boldsymbol{w}(\mathcal{P}_{fin}(A)) = \boldsymbol{o}(\mathcal{P}_{fin}(A)) = 2^{\boldsymbol{o}(A)}$$

• Is the condition w = o met frequently?

Elementary WQOs: Width and Maximal order type

Is w = o frequent?

Everyday life WQOS

♣ An algebra of elementary wqos (First draft)

$$A,B := \alpha \mid A \sqcup B \mid A + B \mid A \times B \mid A \cdot B \mid M^{\diamond}(A) \mid A^* \mid \mathcal{P}_{fin}(A)$$

- ullet Basic blocks: linear orderings, i.e., ordinals lpha
- Closure by usual operations on WQOs

Is w = o frequent?

$$A, B := \alpha \mid A \sqcup B \mid A + B \mid A \times B \mid A \cdot B \mid M^{\diamond}(A) \mid A^* \mid \mathcal{P}_{fin}(A)$$

Space	M.O.T.	Width	w = o?	
α	α	1	X	
$A \sqcup B$	$oldsymbol{o}(A)\oplusoldsymbol{o}(B)$	${m w}(A)\oplus{m w}(B)$	$\checkmark\Rightarrow\checkmark$	
A + B	o(A) + o(B)	$\max({m w}(A),{m w}(B))$	X	
$A \times B$	$oldsymbol{o}(A)\otimesoldsymbol{o}(B)$?	?	
$A \cdot B$	$\boldsymbol{o}(A)\cdot\boldsymbol{o}(B)$	$w(A) \odot w(B)$	$\checkmark\Rightarrow\checkmark$	
$M^{\diamond}(A)$	$\omega^{\widehat{o(A)}}$	$\omega^{\widehat{oldsymbol{o}(A)}-1}$	(✓)	if $o(A) \ge \omega$
A^*	$\omega^{\omega^{(o(X)^{\pm})}}$	$\omega^{\omega^{(o(X)^{\pm})}}$	(✓)	if $o(A) \ge 2$
$\mathcal{P}_{fin}(A)$	$\leq 2^{o(A)}$	$\geq 2^{\mathbf{w}(A)}$	$\checkmark\Rightarrow\checkmark$	

Is w = o frequent (in elementary WQOs)?

$$A, B := \alpha \ge \omega \mid A \sqcup B \mid A + B \mid A \times B \mid A \cdot B \mid M^{\diamond}(A) \mid A^* \mid \mathcal{P}_{fin}(A)$$

Space	M.O.T.	Width	w = o?
$\alpha \ge \omega$	α	1	X
$A \sqcup B$	$o(A) \oplus o(B)$	${m w}(A)\oplus{m w}(B)$	$\checkmark \Rightarrow \checkmark$
A + B	o(A) + o(B)	$\max({m w}(A),{m w}(B))$	X
$A \times B$	$oldsymbol{o}(A)\otimesoldsymbol{o}(B)$?	?
$A \cdot B$	$\boldsymbol{o}(A)\cdot\boldsymbol{o}(B)$	${m w}(A)\odot{m w}(B)$	$\checkmark\Rightarrow\checkmark$
$M^{\diamond}(A)$	$\omega^{\widehat{o(A)}}$	$\widehat{\omega^{m{o}(A)}}-1$	✓
<i>A</i> *	$\omega^{\omega^{(o(X)^{\pm})}}$	$\omega^{\omega^{(o(X)^{\pm})}}$	✓
$\mathcal{P}_{fin}(A)$	$\leq 2^{o(A)}$	$\geq 2^{\mathbf{w}(A)}$	√ ⇒ √

Is w = o frequent?

$$A, B := \alpha \ge \omega |A \sqcup B|A + B|A \times B|A + B|M^{\diamond}(A)|A^*|\mathcal{P}_{fin}(A)$$

Space	M.O.T.	Width	w = o?
$\alpha \ge \omega$	α	1	[✓]
$A \sqcup B$	${m o}(A)\oplus {m o}(B)$	${m w}(A)\oplus{m w}(B)$	[✓]
$A \times B$	${m o}(A)\otimes{m o}(B)$?	?
$M^{\diamond}(A)$	$\omega^{\widehat{o(A)}}$	$\omega^{\widehat{oldsymbol{o}(A)}-1}$	√
<i>A</i> *	$\omega^{\omega^{(o(X)^{\pm})}}$	$\omega^{\omega^{(o(X)^{\pm})}}$	✓
$\mathcal{P}_{fin}(A)$	$\leq 2^{o(A)}$	$\geq 2^{w(A)}$	√ ⇒ √

$$[\checkmark] \colon \mathsf{rewriting\ rule} \ \begin{cases} \mathcal{P}_\mathsf{fin}(\alpha) & \to 1 + \alpha = \alpha \\ \mathcal{P}_\mathsf{fin}(A \sqcup B) & \to \mathcal{P}_\mathsf{fin}(A) \times \mathcal{P}_\mathsf{fin}(B) \end{cases}$$

Is w = o frequent?

$$A, B := \alpha \ge \omega \mid A \sqcup B \mid A \times B \mid M^{\diamond}(A) \mid A^* \mid \mathcal{P}_{fin}(A)$$

Space	M.O.T.	Width	w = o?
$\alpha \ge \omega$	α	1	[✓]
$A \sqcup B$	${m o}(A)\oplus {m o}(B)$	$w(A) \oplus w(B)$	[✓]
$A \times B$	$oldsymbol{o}(A)\otimesoldsymbol{o}(B)$?	?
$M^{\diamond}(A)$	$\omega^{\widehat{o(A)}}$	$\omega^{\widehat{oldsymbol{o}(A)}-1}$	✓
A^*	$\omega^{\omega^{(o(X)^{\pm})}}$	$\omega^{\omega^{(o(X)^{\pm})}}$	✓
$\mathcal{P}_{fin}(A)$	$\leq 2^{o(A)}$	$\geq 2^{w(A)}$	√ ⇒ √

♦ What about the cartesian product ?

Elementary WQOs: Width and Maximal order type

Zooming in on the cartesian product

Width of the Cartesian Product

♣ A Note on Dilworth's Theorem in the Infinite Case, Abraham(87)

Let
$$\alpha_i = \omega^{\beta_i} \cdot k_i + \sigma_i$$
, with $\sigma_i < \omega^{\beta_i}$

Theorem (Cartesian product of 2 ordinals)

$$\mathbf{w}(\alpha_1 \times \alpha_2) = \omega^{1 + (\beta_1 - 1) \oplus (\beta_2 - 1)} \cdot (k_1 + k_2 - 1) + [\mathbf{w}(\omega^{\beta_1} \times \sigma_2) \oplus \mathbf{w}(\omega^{\beta_2} \times \sigma_1)]$$

Width of the Cartesian Product

♣ A Note on Dilworth's Theorem in the Infinite Case, Abraham(87)

Let
$$\alpha_i = \omega^{\beta_i} \cdot k_i + \sigma_i$$
, with $\sigma_i < \omega^{\beta_i}$

Theorem (Cartesian product of 2 ordinals)

$$\mathbf{w}(\alpha_1 \times \alpha_2) = \omega^{1 + (\beta_1 - 1) \oplus (\beta_2 - 1)} \cdot (k_1 + k_2 - 1) + [\mathbf{w}(\omega^{\beta_1} \times \sigma_2) \oplus \mathbf{w}(\omega^{\beta_2} \times \sigma_1)]$$

Theorem (Cartesian product of *n* ordinals)

$$\mathbf{w}(\alpha_1 \times \cdots \times \alpha_n) = \omega^{1 + (\beta_1 - 1) \oplus \cdots \oplus (\beta_n - 1)} \cdot \left(\prod k_i - \prod (k_i - 1) \right) + \bigoplus_{\emptyset \neq I \subseteq [1, n]} \mathbf{w}((\times_{i \notin I} \omega^{\beta_i}) \times (\times_{i \in I} \sigma_i))$$

When w = o for the cartesian product

Theorem (Conditions for w = o, CP of ordinals)

$$\boldsymbol{w}(\alpha_1 \times \cdots \times \alpha_n) = \boldsymbol{o}(\alpha_1 \times \cdots \times \alpha_n)$$

if there are $i \le n$ and $j \ne j' \le n$ such that

- α_i verifies CP1,
- and α_j and $\alpha_{j'}$ verify CP2.

When w = o for the cartesian product

Theorem (Conditions for w = o, CP of wqos)

$$\boldsymbol{w}(A_1\times\cdots\times A_n)=\boldsymbol{o}(A_1\times\cdots\times A_n)$$

if there are $i \le n$ and $j \ne j' \le n$ such that

- $o(A_i)$ verifies CP1,
- and $o(A_j)$ and $o(A_{j'})$ verify CP2.

When w = o for the cartesian product

Theorem (Conditions for w = o, CP of wqos)

$$\boldsymbol{w}(A_1\times\cdots\times A_n)=\boldsymbol{o}(A_1\times\cdots\times A_n)$$

if there are $i \le n$ and $j \ne j' \le n$ such that

- $o(A_i)$ verifies CP1,
- and $o(A_j)$ and $o(A_{j'})$ verify CP2.
- ♦ On the cartesian product of well-orderings (V. 2022)

Elementary WQOs: Width and Maximal order type

CP1 and CP2

Is CP1 frequent?

$$A, B := \alpha \ge \omega \mid A \sqcup B \mid A \times B \mid \mathsf{M}^{\diamond}(A) \mid A^* \mid \mathcal{P}_{\mathsf{fin}}(A)$$

Space	M.O.T.	CP1	
α	α	(✓)	if $\alpha=\omega^{lpha'}$
$A \sqcup B$	$oldsymbol{o}(A)\oplusoldsymbol{o}(B)$	X	
$A \times B$	$oldsymbol{o}(A)\otimesoldsymbol{o}(B)$	[✓]	
$M^{\diamond}(A)$	$\omega^{\widehat{o(A)}}$	✓	
<i>A</i> *	$\omega^{\omega^{(o(X)^{\pm})}}$	✓	
$\mathcal{P}_{fin}(A)$	2°(A)	(✓)	if $\boldsymbol{w}(A) = \boldsymbol{o}(A)$

• CP1
$$\boldsymbol{o} = \omega^{\beta}$$

Is CP1 frequent?

$$A, B := \alpha = \omega^{\alpha'} \ge \omega \mid A \sqcup B \mid A \times B \mid M^{\diamond}(A) \mid A^* \mid \mathcal{P}_{fin}(A)$$

Space	M.O.T.	CP1	
α	α	✓	
$A \sqcup B$	$o(A) \oplus o(B)$	[✓]	
$A \times B$	${m o}(A)\otimes{m o}(B)$	[✓]	
$M^{\diamond}(A)$	$\omega^{\widehat{o(A)}}$	✓	
<i>A</i> *	$\omega^{\omega^{(o(X)^{\pm})}}$	✓	
$\mathcal{P}_{fin}(A)$	2°(A)	(✓)	if $\boldsymbol{w}(A) = \boldsymbol{o}(A)$

• CP1
$$\boldsymbol{o} = \omega^{\beta}$$

$$[\checkmark] A \times (B \sqcup C) = (A \times B) \sqcup (A \times C)$$

What about CP2?

$$A, B := \alpha = \omega^{\alpha'} \ge \omega \mid A \sqcup B \mid A \times B \mid M^{\diamond}(A) \mid A^* \mid \mathcal{P}_{fin}(A)$$

Space	M.O.T.	CP1	CP2	
α	α	✓	(✓)	if $\alpha \geq \omega^{\omega}$
$A \sqcup B$	$oldsymbol{o}(A)\oplusoldsymbol{o}(B)$	[√]	[√]	
$A \times B$	$oldsymbol{o}(A)\otimesoldsymbol{o}(B)$	[✓]	[✓]	
$M^{\diamond}(A)$	$\omega^{\widehat{o(A)}}$	✓	✓	
<i>A</i> *	$\omega^{\omega^{(o(X)^{\pm})}}$	✓	✓	
$\mathcal{P}_{fin}(A)$	2°(A)	(√)	(✓)	if $\boldsymbol{w}(A) = \boldsymbol{o}(A)$

• CP1
$$\boldsymbol{o} = \omega^{\beta}$$

$$\bullet$$
 CP2 $\boldsymbol{o} = \omega^{\omega} \cdot \gamma$

What about CP2?

$$A, B := \alpha = \omega^{\alpha'} \ge \omega^{\omega} | A \sqcup B | A \times B | M^{\diamond}(A) | A^* | \mathcal{P}_{fin}(A)$$

Space	M.O.T.	CP1	CP2	
α	α	✓	✓	
$A \sqcup B$	$o(A) \oplus o(B)$	[✓]	[✓]	
$A \times B$	$oldsymbol{o}(A)\otimesoldsymbol{o}(B)$	[✓]	[√]	
$M^{\diamond}(A)$	$\omega^{\widehat{o(A)}}$	✓	✓	
<i>A</i> *	$\omega^{\omega^{(o(X)^{\pm})}}$	✓	✓	
$\mathcal{P}_{fin}(A)$	2°(A)	(✓)	(✓)	if $\boldsymbol{w}(A) = \boldsymbol{o}(A)$

• CP1
$$\boldsymbol{o} = \omega^{\beta}$$

$$\bullet$$
 CP2 $\boldsymbol{o} = \omega^{\omega} \cdot \gamma$

$$A, B := \alpha = \omega^{\alpha'} \ge \omega^{\omega} | A \sqcup B | A \times B | M^{\diamond}(A) | A^* | \mathcal{P}_{fin}(A)$$

Space	M.O.T.	w = o	CP1	CP2
α	α	[√]	✓	✓
$A \sqcup B$	$oldsymbol{o}(A)\oplusoldsymbol{o}(B)$	[√]	[✓]	[✓]
$A \times B$	$oldsymbol{o}(A)\otimesoldsymbol{o}(B)$	✓	[✓]	[✓]
$M^{\diamond}(A)$	$\omega^{\widehat{o(A)}}$	✓	✓	✓
A^*	$\omega^{\omega^{(o(X)^{\pm})}}$	✓	✓	✓
$\mathcal{P}_{fin}(A)$	2°(A)	✓	✓	✓

$$[\checkmark]: \begin{cases} \mathcal{P}_{fin}(\alpha) & \to \alpha \\ \mathcal{P}_{fin}(A \sqcup B) & \to \mathcal{P}_{fin}(A) \times \mathcal{P}_{fin}(B) \\ A \times (B \sqcup C) & \to (A \times B) \sqcup (A \times C) \end{cases}$$

Conclusion (for now)

 \clubsuit We know how to compute w and o of elementary WQOs!

$$A, B := \alpha = \omega^{\alpha'} \ge \omega^{\omega} | A \sqcup B | A \times B | M^{\diamond}(A) | A^* | \mathcal{P}_{fin}(A)$$

- $\mathbf{w} = \mathbf{o}$ for elementary A...
- ... if A is not linear,
- ...and not a disjoint sum.

Elementary WQOs: Height

Approximated maximal order type

Height of \mathcal{P}_{fin}

Theorem

$$1+\boldsymbol{h}(X) \leq \boldsymbol{h}(\mathcal{P}_{\mathsf{fin}}(X)) \leq 2^{h(X)}$$

\clubsuit A word about $\mathcal P$ and ideals

- $h(\mathcal{P}(X)) = o(X) + 1$
- $\mathcal{P}_{fin}(IdI(X)) = \mathcal{P}(X)$

lacktriangle Definition of IdI(X)

- Ideal: downward-closed, non-empty, directed subset
- $(IdI(X), \subseteq)$

Height of \mathcal{P}_{fin} on elementary wqos

$$m{h}(\mathcal{P}_{\mathsf{fin}}(A)) = \underline{\mathsf{o}}(A) = \sup_{A' \leq \mathsf{approx}} (m{o}(A') + 1)$$

Space A	$A' \leq_{approx} A$
α	$\alpha' < \alpha$
$A \sqcup B$	$A' \sqcup B'$
$A \times B$	$A' \times B'$
$M^{\diamond}(A)$	$M^{\diamond}{}_{n}(A')$
	$\overbrace{\hspace{1cm}}^n$
A^*	$A' \times \cdots \times A'$
$\mathcal{P}_{fin}(A)$	$\mathcal{P}_{fin}(A')$

Illustration

$$extbf{ extit{h}}(\mathcal{P}_{\mathsf{fin}}(A)) \ = \ \operatorname{\underline{o}}(A) \ = \sup_{A' \leq \operatorname{\mathsf{approx}} A} (extbf{ extit{o}}(A') + 1)$$

- \clubsuit A word about $\mathcal P$ and ideals
 - $h(\mathcal{P}(X)) = o(X) + 1$
 - $\mathcal{P}_{fin}(IdI(X)) = \mathcal{P}(X)$

$$extbf{ extit{h}}(\mathcal{P}_{\mathsf{fin}}(A)) \ = \ \mathop{\underline{\mathsf{o}}}(A) \ = \ \mathop{\sup}_{A' \leq \mathop{\mathsf{approx}} A}(extbf{ extit{o}}(A') + 1)$$

- \clubsuit A word about \mathcal{P} and ideals
 - $h(\mathcal{P}(X)) = o(X) + 1$
 - $\mathcal{P}_{fin}(IdI(X)) = \mathcal{P}(X)$
- **♦ Proof idea** (≥)

$$A' \leq_{\mathsf{approx}} A \ \Rightarrow \ A' \leq_{\mathsf{st}} A$$

$$\Rightarrow IdI(A') \leq_{\mathsf{approx}} A$$

$$\Rightarrow IdI(A') \leq_{\mathsf{st}} A$$

$$m{h}(\mathcal{P}_{\mathsf{fin}}(A)) = \underline{o}(A) = \sup_{A' \leq_{\mathsf{approx}} A} (m{o}(A') + 1)$$

- \clubsuit A word about $\mathcal P$ and ideals
 - $h(\mathcal{P}(X)) = o(X) + 1$
 - $\mathcal{P}_{fin}(IdI(X)) = \mathcal{P}(X)$
- **♦ Proof idea** (≤)
 - Residual equation: $\mathbf{h}(\mathcal{P}_{\mathsf{fin}}(A)) = \sup_{S \in \mathcal{P}_{\mathsf{fin}}(A)} (\mathbf{h}(\mathcal{P}_{\mathsf{fin}}(A)_{< S}) + 1)$

Theorem (Approximated maximal order type)

$$\mathbf{h}(\mathcal{P}_{\mathsf{fin}}(A)) = \underline{o}(A) = \sup_{A' \leq_{\mathsf{approx}} A} (\mathbf{o}(A') + 1)$$

\clubsuit A word about \mathcal{P} and ideals

- $h(\mathcal{P}(X)) = o(X) + 1$
- $\mathcal{P}_{fin}(IdI(X)) = \mathcal{P}(X)$

♦ Proof idea (≤)

- Residual equation: $\mathbf{h}(\mathcal{P}_{fin}(A)) = \sup_{S \in \mathcal{P}_{fin}(A)} (\mathbf{h}(\mathcal{P}_{fin}(A)_{< S}) + 1)$
- Exists $A' \leq_{\mathsf{approx}} A$ such that $\mathcal{P}_{\mathsf{fin}}(A)_{<\mathcal{S}} \leq_{\mathit{st}+\mathit{cond}} \mathcal{P}_{\mathsf{fin}}(A') \leq_{\mathsf{st}} \mathcal{P}(A')$

Theorem (Approximated maximal order type)

$$\mathbf{h}(\mathcal{P}_{\mathsf{fin}}(A)) = \underline{o}(A) = \sup_{A' \leq_{\mathsf{approx}} A} (\mathbf{o}(A') + 1)$$

\clubsuit A word about $\mathcal P$ and ideals

- $h(\mathcal{P}(X)) = o(X) + 1$
- $\mathcal{P}_{fin}(IdI(X)) = \mathcal{P}(X)$

♦ Proof idea (≤)

- Residual equation: $\mathbf{h}(\mathcal{P}_{fin}(A)) = \sup_{S \in \mathcal{P}_{fin}(A)} (\mathbf{h}(\mathcal{P}_{fin}(A)_{< S}) + 1)$
- Exists $A' \leq_{\mathsf{approx}} A$ such that $\mathcal{P}_{\mathsf{fin}}(A)_{<\mathcal{S}} \leq_{\mathit{st+cond}} \mathcal{P}_{\mathsf{fin}}(A') \leq_{\mathsf{st}} \mathcal{P}(A')$
- Condensation: $A \leq_{cond} B$ implies $\mathbf{h}(A) \leq \mathbf{h}(B)$

What is o?

$$m{h}(\mathcal{P}_{\mathsf{fin}}(A)) = \underline{o}(A) = \sup_{A' \leq \mathsf{approx}} (m{o}(A') + 1)$$

Space A	$A' \leq_{approx} A$	o (A')
α	$\alpha' < \alpha$	lpha'
$A \sqcup B$	$A' \sqcup B'$	$oldsymbol{o}(A')\oplusoldsymbol{o}(B')$
$A \times B$	$A' \times B'$	$oldsymbol{o}(A')\otimesoldsymbol{o}(B')$
	n	n
A^*	$A' \times \cdots \times A'$	$o(A') \otimes \cdots \otimes o(A')$
$M^{\diamond}(A)$	$M^{\diamond}{}_{n}(A')$	like A*
$\mathcal{P}_{fin}(A)$	$\mathcal{P}_{fin}(A')$	$2^{w(A')} \leq \cdots \leq 2^{o(A')}$

Multiplicative indecomposable ordinal

Definition (Multiplicative indecomposable)

$$\begin{array}{l} \alpha \text{ indecomposable } \Leftrightarrow \alpha = \omega^{\omega^{\alpha'}} \text{ for some } \alpha' \\ \Leftrightarrow \beta \otimes \gamma < \alpha \text{ for all } \beta, \gamma < \alpha \end{array}$$

♣ Elementary WQOs (final definition)

$$A, B := \alpha \ge \omega^{\omega}$$
 indecomposable $|A \sqcup B| A \times B |M^{\diamond}(A)| A^* |\mathcal{P}_{fin}(A)|$

Multiplicative indecomposable ordinal

Definition (Multiplicative indecomposable)

$$\begin{array}{l} \alpha \text{ indecomposable } \Leftrightarrow \alpha = \omega^{\omega^{\alpha'}} \text{ for some } \alpha' \\ \Leftrightarrow \beta \otimes \gamma < \alpha \text{ for all } \beta, \gamma < \alpha \end{array}$$

♣ Elementary WQOs (final definition)

$$A, B := \alpha \ge \omega^{\omega} \text{ indecomposable } |A \sqcup B|A \times B|M^{\diamond}(A)|A^*|\mathcal{P}_{fin}(A)$$

♦ Inductively, o stays indecomposable!

Computing on our example

Computing on our example

Computing o on our example

Computing o on our example

Computing o on our example

What is o?

$$m{h}(\mathcal{P}_{\mathsf{fin}}(A)) = \underline{\mathsf{o}}(A) = \sup_{A' \leq \mathsf{approx}} (m{o}(A') + 1)$$

Space A	$A' \leq_{approx} A$	<u>o</u> (A)	
α	$\alpha' < \alpha$	α	
$A \sqcup B$	$A' \sqcup B'$	$\max(\underline{o}(A),\underline{o}(B))$	
$A \times B$	$A' \times B'$	$\max(\underline{o}(A),\underline{o}(B))$	
$M^{\diamond}(A)$	$M^{\diamond}{}_{n}(A')$	<u>o</u> (A)	
A^*	$\overbrace{A' \times \cdots \times A'}^n$	<u>o</u> (A)	
$\mathcal{P}_{fin}(A)$	$\mathcal{P}_{fin}(\mathcal{A}')$	2 <u>o</u> (A)	if $\underline{w}(A) = \underline{o}(A)$

What is o?

$$extbf{ extit{h}}(\mathcal{P}_{\mathsf{fin}}(A)) \ = \ \underline{\mathtt{o}}(A) \ = \sup_{A' \leq \mathsf{approx}} (extbf{ extit{o}}(A') + 1)$$

Space A	$A' \leq_{approx} A$	<u>o</u> (A)	$\underline{w} = \underline{o}$?
α	$\alpha' < \alpha$	α	[/]
$A \sqcup B$	$A' \sqcup B'$	$\max(\underline{o}(A),\underline{o}(B))$	[✓]
$A \times B$	$A' \times B'$	$\max(\underline{o}(A),\underline{o}(B))$	\checkmark
$M^{\diamond}(A)$	$M^{\diamond}{}_{n}(A')$	<u>o</u> (A)	✓
<i>A</i> *	$\overbrace{A' \times \cdots \times A'}^n$	<u>o</u> (A)	✓
$\mathcal{P}_{fin}(A)$	$\mathcal{P}_{fin}(A')$	2 <u>∘</u> (<i>A</i>)	√ ⇒ √

♣ Elementary WQOs (Final version)

$$A, B := \alpha \ge \omega^{\omega}$$
 indecomposable $|A \sqcup B| A \times B | M^{\diamond}(A) | A^* | \mathcal{P}_{fin}(A)$

- o(A) indecomposable except if A is a disjoint sum,
- w(A) = o(A) except if A is linear or a disjoint sum,
- h(P_{fin}(A)) = max of the ordinals that appear in its expression if A can be expressed without P_{fin}

Space	M.O.T.	Width	Height
$\alpha \geq \omega$	α	1	α
$A \sqcup B$	$o(A) \oplus o(B)$	${m w}(A)\oplus{m w}(B)$	$\max(\mathbf{h}(A),\mathbf{h}(B))$
$A \times B$	$oldsymbol{o}(A)\otimesoldsymbol{o}(B)$	$oldsymbol{o}(A)\otimesoldsymbol{o}(B)$	${\it h}(A) \oplus {\it h}(B)$
$M^{\diamond}(A)$	$\omega^{\widehat{o(A)}}$	$\omega^{\widehat{o(A)}-1}$	$h^*(A)$
<i>A</i> *	$\omega^{\omega^{(o(X)^{\pm})}}$	$\omega^{\omega^{(o(X)^{\pm})}}$	$h^*(A)$
$\mathcal{P}_{fin}(A)$	2°(A)	2°(A)	<u>o</u> (A)

♦ Don't forget to rewrite your expression

$$\mathcal{P}_{fin}(\alpha), \mathcal{P}_{fin}(A \sqcup B), \underline{A} \times (B \sqcup C)$$

- ♦ Soon on arXiv (hopefully)
 - ullet Bounds on the ordinal invariants $\mathcal{P}_{\mathsf{fin}}$
 - Proof of tightness
 - A larger elementary family (with ω !)

- ♦ Soon on arXiv (hopefully)
 - Bounds on the ordinal invariants $\mathcal{P}_{\mathsf{fin}}$
 - Proof of tightness
 - A larger elementary family (with ω !)
- ♣ Already on arXiv

On the cartesian product of linear orderings

- Width of the cartesian product of *n* ordinals
- Handy tool for the width: Quasi-incomparable subsets

- ♦ Soon on arXiv (hopefully)
 - ullet Bounds on the ordinal invariants $\mathcal{P}_{\mathsf{fin}}$
 - Proof of tightness
 - A larger elementary family (with ω !)
- ♣ Already on arXiv

On the cartesian product of linear orderings

- Width of the cartesian product of *n* ordinals
- Handy tool for the width: Quasi-incomparable subsets

Ordinal measures of the set of finite multisets

- Width of the multiset (embedding order)
- Width and height of the multiset (multiset order)