#### ANALISIS DE SENSIBILIDAD

Erika Mishelle Arapa Condori LINK YOUTUBE: https://youtu.be/YF4xKRYyWVA

27/10/2024

#### Tabla de Contenidos

7.1 MOTIVACION

7.2 ejemplo en excel

#### 7.1 MOTIVACION

Maximize: 
$$P(x_1, x_2) = 60x_1 + 90x_2$$
 (7.1)  
Subject to:  $x_1 + 2x_2 = 40$  (7.2)  
 $2x_1 + 3x_2 = 72$  (7.3)  
 $x_1, x_2 \ge 0$ . (7.4)

TABLE 7.1 Manufacturing Data for Lincoln Outdoors in Example 6.1.1

| Labor-Hours    | Cabin Model | Frontier Model | Max Hours per Day |
|----------------|-------------|----------------|-------------------|
| Cutting Dept.  | 1           | 2              | 40                |
| Assembly Dept. | 2           | 3              | 72                |
| Profit per Bag | \$60        | \$90           |                   |

| Cabin Model    |   |       |          |           |
|----------------|---|-------|----------|-----------|
| Frontier Model |   |       |          |           |
|                |   | Cabin | Frontier | Available |
| Profit         | 0 | 60    | 90       |           |
| Cutting        | 0 | 1     | 2        | 40        |
| Assembly       | 0 | 2     | 3        | 72        |

FIGURE 7.1

The Lincoln Outdoors problem in Excel.

| Cabin Model    | 24   |       |          |           |
|----------------|------|-------|----------|-----------|
| Frontier Model | 8    |       |          |           |
|                |      | Cabin | Frontier | Available |
| Profit         | 2160 | 60    | 90       |           |
| Cutting        | 40   | 1     | 2        | 40        |
| Assembly       | 72   | 2     | 3        | 72        |

| and itions are satisfied.                   | Regorts               |
|---------------------------------------------|-----------------------|
| Seep Solver Solution                        | Answer<br>Sensitivity |
| © Zeeb souse soutton                        | Limits                |
| ○ Bestore Original Values                   | Lines .               |
| av   a                                      | Save Scenario         |
| QK <u>C</u> ancel                           | Zere scenero          |
|                                             |                       |
| olver found a solution. All Constraints and |                       |

FIGURE 7.3

Options in Excel's solution for Lincoln Outdoors.

| 1  | A | В               | C          | D          | E        | F          | G        |
|----|---|-----------------|------------|------------|----------|------------|----------|
| 1  |   |                 |            |            |          |            |          |
| 2  |   | Cabin Model     | 0          |            |          |            |          |
| 3  |   | Frontier Model  | 0          |            |          |            |          |
| 4  |   |                 |            | Cabin      | Frontier | Available  |          |
| 5  |   | Profit          | 0          | 60         | 90       |            |          |
| 6  |   |                 |            |            |          |            |          |
| 7  |   | Cutting         | 0          | 1          | 2        | 40         |          |
| 8  |   | Assembly        | 0          | 2          | 3        | 72         |          |
| 9  |   |                 |            |            |          |            |          |
| 10 |   |                 |            |            |          |            |          |
|    |   | Answer Report 1 | Sensitivit | y Report 1 | Limits R | eport 1 Sh | neet1 (4 |

Objective Cell (Max)

| Cell   | Name   | Original Value | Final Value |
|--------|--------|----------------|-------------|
| \$C\$5 | Profit | 0              | 2160        |

#### Variable Cells

| Cell   | Name           | Original Value | Final Value | Integer |
|--------|----------------|----------------|-------------|---------|
| \$C\$2 | Cabin Model    | 0              | 24          | Contin  |
| \$C\$3 | Frontier Model | 0              | 8           | Contin  |

#### Constraints

| Cell   | Name     | Cell Value | Formula        | Status  | Slack |
|--------|----------|------------|----------------|---------|-------|
| \$C\$7 | Cutting  | 40         | \$C\$7<=\$F\$7 | Binding | 0     |
| \$C\$8 | Assembly | 72         | \$C\$8<=\$F\$8 | Binding | 0     |

#### Variable Cells

| Cell   | Name           | Final<br>Value |   | Objective<br>Coefficient |    |    |
|--------|----------------|----------------|---|--------------------------|----|----|
| \$C\$2 | Cabin Model    | 24             | 0 | 60                       | 0  | 15 |
| \$C\$3 | Frontier Model | 8              | 0 | 90                       | 30 | 0  |

#### Constraints

|          |         | Final | Shadow | Constraint | Allowable | Allowable |
|----------|---------|-------|--------|------------|-----------|-----------|
| Cell     | Name    | Value | Price  | R.H. Side  | Increase  | Decrease  |
| \$C\$7 C | utting  | 40    | 0      | 40         | 8         | 4         |
| \$C\$8 A | ssembly | 72    | 30     | 72         | 8         | 12        |



### algoritmo 2.2.1

```
Algorithm 7.2.1 Finding Additional Non-Degenerate LP Solutions Using
Solver.
```

Input: Solved LP problem in Solver with decision variables  $x_1, ..., x_n$ .

- 1: Add a constraint to the model that holds the objective function at the optimal value.
- 2: for i = 1 to k do
- if Allowable Decrease = 0 for  $x_i$  then
- run Solver to minimize  $x_i$
- end if 50
- if Allowable Increase = 0 then
- run Solver to maximize  $x_i$
- end if
- 9: end for

Output: Additional non-degenerate LP solutions via Solver (if they exist).

| Objective |       |       |  |  |  |  |
|-----------|-------|-------|--|--|--|--|
| Cell      | Name  | Value |  |  |  |  |
| \$C\$5 P  | rofit | 2160  |  |  |  |  |

| Variable |                |       | Lower | Objective | Upper Objective |        |
|----------|----------------|-------|-------|-----------|-----------------|--------|
| Cell     | Name           | Value | Limit | Result    | Limit           | Result |
| \$C\$2   | Cabin Model    | 24    | 0     | 720       | 24              | 2160   |
| \$C\$3   | Frontier Model | 8     | 0     | 1440      | 8               | 2160   |

### FIGURA 7.8 Reporte de límites para Lincoln Outdoors.

Maximize: 
$$f(x_1, x_2) = x_1$$
 (7.5)  
Subject to:  $60x_1 + 90x_2 = 2160$  (7.6)  
 $x_1 + 2x_2 = 40$  (7.7)

$$x_1 + 2x_2 = 40$$
 (7.7)  
 $2x_1 + 3x_2 = 72$  (7.8)

$$x_1 + 3x_2 = 72$$
 (7.6)  
 $x_1, x_2 \ge 0$  (7.9)

 $x_2 \ge 0$  (

and

Minimize: 
$$f(x_1, x_2) = x_2$$
 (7.10)  
Subject to:  $60x_1 + 90x_2 = 2160$  (7.11)  
 $x_1 + 2x_2 = 40$  (7.12)

$$2x_1 + 3x_2 = 72$$
 (7.13)  
 $x_1, x_2 > 0.$  (7.14)

Reduced Cost = coefficient of variable in objective function

- value per unit of resources used (7.15)

where the resources are valued at their shadow price.

For example, the reduced cost of the Cabin Model for Lincoln Outdoors is (all values are per unit)

contribution to objective function — cutting hours · shadow price — assembly hours · shadow price

$$= 60 - 1 \cdot 0 - 2 \cdot 30 = 0.$$

As well, the reduced cost of the Frontier Model is

$$90 - 2 \cdot 0 - 3 \cdot 30 = 0$$

It is not a coincidence that both of these values are 0, as the only time Reduced Cost of a decision variable is non-zero is if the variable is at either its lower or upper bound of the feasible region. For example, based on the cutting and assembly constraints we will only be able to produce between 0 and 36 Cabin Model sleeping bags. The solution  $x_1 = 24$  is easily within this range.