

ЭТИКЕТКА

УП3.487.318 ЭТ

Микросхема интегральная 564 ИР6В Функциональное назначение –

Функциональное назначение —
8-ми разрядный последовательно-параллельный регистр сдвига

Климатическое исполнение УХЛ Схема расположения выводов

Условное графическое обозначение

Таблица назначения выводов

№ вывода	Назначение вывода	№ вывода	Назначение вывода	№ вывода	Назначение вывода
1	Вход – выход	9	Вход «считывание-хранение»	17	Вход – выход
2	Вход – выход	10	Вход последовательного кода	18	Вход – выход
3	Вход – выход	11	Вход управления	19	Вход – выход
4	Вход – выход	12	Общий	20	Вход – выход
5	Вход – выход	13	Вход «параллельно- последовательный»	21	Вход – выход
6	Вход – выход	14	Вход «асинхронно- синхронный»	22	Вход – выход
7	Вход – выход	15	Вход «тактовый импульс»	23	Вход – выход
8	Вход – выход	16	Вход – выход	24	Питание, U _{u.n.}

1. ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ

1.1 Основные электрические параметры (при t = (25 \pm 10) °C) Таблица 1

Цантанаранна параматра админиа намарання рамини намарання	Буквенное	Норма	
Наименование параметра, единица измерения, режим измерения	обозначение	не менее	не более
1	2	3	4
1. Выходное напряжение низкого уровня, B, при: $U_{CC} = 5~B; 10~B$	U_{OL}	-	0,01
2. Выходное напряжение высокого уровня, B, при: $U_{\text{CC}} = 5 \; \text{B}$ $U_{\text{CC}} = 10 \; \text{B}$	U _{OH}	4,99 9,99	- -
3. Максимальное выходное напряжение низкого уровня, B, при: U_{CC} = 5 B, U_{IL} = 1,5 B, U_{IH} = 3,5 B U_{CC} = 10 B, U_{IL} = 3,0 B, U_{IH} = 7,0 B	U _{OL max}	-	0,8 1,0
4. Минимальное выходное напряжение высокого уровня, B, при: $U_{CC}=5$ B, $U_{IL}=1,5$ B, $U_{IH}=3,5$ B $U_{CC}=10$ B, $U_{IL}=3,0$ B, $U_{IH}=7,0$ B	U _{OH min}	4,2 9,0	-
5. Входной ток низкого уровня, мкА, при: $U_{CC} = 15 \; B$	$I_{\rm IL}$	-	/-0,1/
6. Входной ток высокого уровня, мкА, при: $U_{\rm CC} = 15~{\rm B}$	I_{IH}	-	0,1
7. Выходной ток низкого уровня, мА, при: $U_{CC} = 5 \; B, \; U_{O} = 0,5 \; B \\ U_{CC} = 10 \; B, \; U_{O} = 0,5 \; B$	I_{OL}	0,5 1,0	-

Продолжение таблицы 1			
1	2	3	4
8. Выходной ток высокого уровня, мА, при: $U_{CC} = 5$ B, $U_0 = 4.5$ B $U_{CC} = 10$ B, $U_0 = 9.5$ B	І _{ОН}	/-0,5/ /-1,0/	-
9. Ток потребления в статическом режиме, мкА, при: $U_{CC} = 5 \; B \\ U_{CC} = 10 \; B \\ U_{CC} = 15 \; B$	I _{CC}	- - -	5,0 10,0 20,0
10. Максимальный ток утечки, нА, при: $U_{CC} = 5~B;~10B$	I _{Lmax}	-	/-100/
11. Время задержки распространения сигнала при включении, нС, при: $U_{CC}=5$ B; $C_L=50$ пФ $U_{CC}=10$ B; $C_L=50$ пФ	t _{PHL}	-	1000 500
12. Время задержки распространения сигнала при выключении, нС, при: $U_{CC}=5$ B; $C_L=50$ пФ $U_{CC}=10$ B; $C_L=50$ пФ	t _{PLH}	-	1000 500
13. Минимальное время следования между тактовыми импульсами, нС, при: $U_{CC}=5$ B; $C_L=50$ пФ $U_{CC}=10$ B; $C_L=50$ пФ	t _{сл}	-	500 250
14. Минимальная длительность импульсного тактового сигнала, нС, при: $U_{CC}=5~B;~C_L=50~\pi\Phi$ $U_{CC}=10~B;~C_L=50~\pi\Phi$	$ au_{\mathrm{Tmin}}$	- -	500 250

1.2 Содержание драгоценных металлов в 1000 шт. микросхем:

 $_{\rm r}$ золото $_{\rm r}$, серебро $_{\rm r}$, в том числе:

на 24 выводах, длиной мм.

Цветных металлов не содержится.

- 2 НАДЕЖНОСТЬ
- $2.1\,$ Минимальная наработка (Тнм) микросхем в режимах и условиях эксплуатации, допускаемых стандартом ОСТ В $11\,0398-2000\,$ и ТУ, при температуре окружающей среды (температуре эксплуатации) не более $65\,^{\circ}$ C не менее $100000\,$ ч., а в облегченных режимах, которые приводят в ТУ, при $U_{CC}=5B\pm10\%$ не менее $120000\,$ ч.

 Γ амма – процентный ресурс ($T_{p\gamma}$) микросхем устанавливают в ТУ при $\gamma = 95\%$ и приводят в разделе "Справочные данные" ТУ.

2.2 Минимальный срок сохраняемости микросхем (Т см) при их хранении в отапливаемом хранилище или в хранилище с регулируемыми влажностью и температурой или местах хранения микросхем, вмонтированных в защищенную аппаратуру, или находящихся в защищенном комплекте ЗИП, должен быть 25 лет.

Минимальный срок сохраняемости микросхем в условиях, отличающихся от указанных,- в соответствии с разделом 4 ОСТ В 11 0398 – 2000.

- 2.3 Срок сохраняемости исчисляют с даты изготовления, указанной на микросхеме.
- 3 ГАРАНТИИ ПРЕДПРИЯТИЯ ИЗГОТОВИТЕЛЯ
- 3.1 <u>Гарантии предприятия изготовителя по ОСТ В 11 0398 2000:</u>

Предприятие-изготовитель гарантирует соответствие поставляемой микросхемы всем требованиям ТУ в течение срока сохраняемости и минимальной наработки в пределах срока сохраняемости при соблюдении потребителем режимов и условий эксплуатации, правил хранения и транспортирования, а также указаний по применению, установленных ТУ.

Срок гарантии исчисляют с даты изготовления, нанесенной на микросхеме.

4 СВЕДЕНИЯ О ПРИЕМКЕ

Микросхемы 564 ИР6В соответствуют техническим условиям бК0.347.064 ТУ23 и признаны годными для эксплуатации.

Приняты по		ОТ			
	(извещение, акт и др.)	-		(дата)	
Место для шт	гампа ОТК				Место для штампа ВП
Место для шт	гампа «Перепроверка	произ	ведена		(дата)
Приняты по	(извещение, акт и др.)	ОТ		(дата)	
Место для шт	гампа ОТК				Место для штампа ВП

Цена договорная

- 5 УКАЗАНИЯ ПО ПРИМЕНЕНИЮ И ЭКСПЛУАТАЦИИ
- 5.1 При работе с микросхемами и монтаже их в аппаратуру должны быть приняты меры по защите их от воздействия электростатических зарядов. Допустимое значение статического потенциала 500 В. Наиболее чувствительные к статическому электричеству последовательности (пары выводов): вход общая точка, выход общая точка.

Остальные указания по применению и эксплуатации – в соответствии с бК0.347.064 ТУ/02.