

Smart Automated STEM

Gerd Duscher
For MLSTEM 2024 workshop

Main developer of technique: Austin Houston, Utkarsh Pratiush

Maximal Possible Information in STEM

For
Different volume sizes
Different angles
Ideally with knowledge of number of incoming electrons

Current State of the Art

diffraction pattern
(only part of pattern
- HAADF:large angles),
one STEM condition
- EDS spectrum

- EELS (high- and low-loss)
- diffraction pattern

For one volume size one tilt angle small area

Current Data Collection Strategies

- Spectrum Imaging, 4D-STEM:
 - Grid Scan:
 - Fully filled matrix
 - Usually: 90% of data points are unimportant
- Compressed sensing (also known as compressive sensing, compressive sampling, or sparse sampling)

 - Sparse matrix
 - Important parts may be missed

Alternative Data Collection Strategies

- Select data points smartly
 - Use all possibilities of machine learning discussed in this workshop
 - And select the points of interest.
- Collect data remotely
- Select various of all available signals of a STEM

 Avoid investment in infrastructure and instrument time to collect a lot of data that are never used.

Minimum Requirement for Smart Acquisition

- Overview image
- Drift Correction
- Algorithm to select points
 - Complexity depends only on computing power
- Ability to collect data at selected points

Minimum Requirement for Smart Acquisition for EELS

- Get image
- Shift beam
- Get spectrum

Nice to have but not immediately necessary:

- Drift
- Set dispersion and energy offset
- Get dispersion and energy offset once

Implementation in Digital Micrograph

- Make a server software in python
 - Acquire digiscan image
 - Set beam position
 - Get (part) of ccd camera

This functionality is readily available in DM

Several server software packages available in python

Implementation of Smart Collection

The client

Can be any remote computer

 Can be a supercomputer to provide enough computing power for on-the-fly machine learning algorithms.

 Jupyter notebook: so data are directly accessible to all python packages

Example

Acquisition of single spectrum is 2 times slower for low loss than in spectrum image. Acquisition of 1/10000 data points in grid scan.

Advantages

- Truly large areas can be investigated
- Mostly relevant data points chosen for acquisition
- Variation of method to determine data points
 - Active Learning
 - Clustering
 - Edge detection
 - DCNN
 - _ ...
- Learning algorithms can be applied to increasing data volume

Further Development

- Keep STEM at optimum condition
- Change STEM optics and detectors
 - Get diffraction and EELS spectra from same sub pixel areas
- Smart drift correction
- Get metadata

Develop methods for correlated data

Human in the Loop Workflow

Human in the Loop Workflow

