

CSU8RP1185D 芯片 用户手册

基于 OTP ROM 的 8 位 RISC MCU REV 1.2

芯海科技(深圳)股份有限公司

地 址:深圳市南山区蛇口南海大道1079号花园城数码大厦A座9楼

电 话: +(86 755)86169257 传 真: +(86 755)86169057

网站: www.chipsea.com 邮编: 518067

微信号: 芯海科技

36 引脚 8 位 OTP ROM 单片机产品介绍

高性能的 RISC CPU

- 8位单片机 MCU
- 内置 4K×16 位一次性可编程存储器(OTP ROM)
- 256字节数据存储器(SRAM)
- 只有 39 条单字指令
- 8级存储堆栈

振荡器

● 内带 16MHz 振荡器

模拟特性

- 模数转换器 (ADC)
 - 一 1 路全差分模拟输入
 - 一 24 位分辨率
 - 一 内部集成的可编程增益放大器
 - ADC 的输出速率 30Hz~3.9KHz
- 内带电荷泵(2.6V 2.8V 3.0V 3.2 V)
- 内带稳压器供传感器和调制器
- 内置温度传感器

专用微控制器的特性

- 上电复位(POR)
- 上电复位延迟定时器(39ms)

- 内带低电压复位(LVR)
- Timer
 - 一 8 位可编程预分频的 8 位的定时计数器
- 扩展型看门狗定时器(WDT)
 - 一 可编程的时间范围

外设特性

- 12 位双向 I/O 口
- 1 路蜂鸣器输出,可选择 PT2.7 或 PT2.3 输出, 默认 PT2.7 口输出
- 4×14的 LCD 驱动
 - 一 可选择内部晶振或 WDT 晶振作为时钟源
 - 一 可选择两种不同的 LCD 驱动波形
 - 一 可选择不同的偏置电压产生方式
- 2个外部中断
- 低电压检测(LVD)引脚(内部提供 2.4V、 2.5V、2.6V、2.7V、2.8V、3.6V 电压比较)
- 内置低电压烧录控制电路,最低 2.5V 可以自 烧录

低功耗特性

- MCU工作电流
 - 一 正常模式 1.5mA@500KHz(工作电压 3.3V)
 - 一 休眠模式下的电流小于 2μA

CMOS 技术

- 电压工作范围
 - DVDD 2.4V~3.6V
 - AVDD 2.4V~3.6V

封装

• 36-PIN dice

应用场合

- 电子衡器
- 精密测量及控制系统

版本历史

历史版本	修改内容	版本日期
REV 1.0	初稿完成	2015-04-02
REV 1.1	1、修改在线烧录的模式 2、增加 VPP 外接电容要求描述	2016-05-30
REV1.2	对性能指标进行核对校正	2019-06-18

目 录

36	5引脚8位 O′	OTP ROM 单片机产品介绍	2
版	〔本历史 		3
目	Ⅰ 录		4
1	产品概试		6
_			
		特性	
		配置模块原理图	
	1.3 切配1	快大原埕台	9
2	标准功能.		11
	2.1 CPU	核	11
		存储器	
	2.1.2	状态寄存器	14
	2.1.3 I	INTE 及 INTF 中断寄存器	15
	2.2 SFR		17
	2.2.1	系统专用寄存器	17
	2.2.2	辅助专用寄存器	18
	2.3 时钟	系统	19
		振荡器状态	
		CPU 指令周期	
	2.3.3	蜂鸣器时钟	20
	2.3.4	TMCLK(定时器模块输入时钟)	21
		LCDCLK(LCD 模块输入时钟)	
		UARTCLK	
	2.4 定时	器 ORT	25
		ORT 带模拟输入通道的数字 I/O 口:PT1[4]	
		市侯弘和八旭垣的数子 I/O ロ: P11[4] 数字 I/O 口: PT1[5]	
		数字 I/O □: PT1[3] 数字 I/O □: PT1[7:6]	
	-	数字 I/O □、URAT 接口与外部中断输入:PT2[1:0]	
		数字 I/O 口、UKAT 接口与外部中断相尺: F12[1.0]数字 I/O 口 PT2[3:2]	
		数字 I/O 口、URAT 接口与外部中断输入:PT2[5:4]数字 I/O 口、URAT 接口与外部中断输入:PT2[5:4]	
		数字 I/O 接口或者蜂鸣器输出: PT2[7:6]数字 I/O 接口或者蜂鸣器输出: PT2[7:6]	
3			
	3.1 电源:	系统	42
		Regulator	
		低电压比较器	
		电荷泵	
		r 与 Sleep 模式	
		系统	
		狗	
		· 模块	
		ADC 寄存器说明	
		ADC 增益以及时钟	
		ADC 输出速率	
		ADC 工作电流	
4	/ 94	CS-QR-Y	F-054A02

	3.5.5	ADC 增益的温度特性调整	52
	3.6	LCD Driver	52
	3.6.1	LCD 控制模式	52
	3.6.2	LCD 帧频选择	53
	3.6.3	LCD 偏置电压	55
	3.6.4	LCD 驱动波形	56
	3.6.5	LCD 寄存器说明	64
	3.6.6	LCD 操作步骤	67
	3.7	串行通信接口	67
	3.7.1	工作方式	
	3.7.2	寄存器说明	70
	3.7.3	波特率	70
		OTP 模块	
		OTP 在线烧录	
4	MCU	J 指令集	74
5	由与!	特性	89
٥	- LL V	最大极限值	•••••••••
		直流特性(DVDD,AVDD=3.3V,TB _{AB} =25℃,如无其他说明则都是此条件)	
	5.3	ADC 的特性(VREF= 3V,TB _{AB} = 25 ℃,如无其他说明则都是此条件)	90
6	BON	DING 说明	91
	6.1	PIN 排布	01
	6.2	PIN 坐标	
		机产品命名规则	
7	单片	机产品命名规则	93
	7.1	产品型号说明	93

1 产品概述

1.1 主要特性

CSU8RP1185D 芯片是一个 8 位 CMOS 单芯片 MCU,内置 $4K \times 16$ 位一次性可编程(OTP)ROM,一个带有 1 路全差分模拟信号输入的 24 位 ADC,低噪声放大器及 4×14 的 LCD 驱动。

1.2 PIN 配置

图 1-1 功能引脚图

表 1-1 引脚说明表

管脚名称	输入/输出	管脚序号	描述
------	-------	------	----

DVDD	P	1	数字电源	
DGND	P	2	数字地	
VPP	P	3	烧录电源接口 注:外接电容耐压值必须为	:于 16V
AGND	P	4	模拟地	
AVDD	P	5	模拟电源	
VS/REF	O/I	6	稳压输出/参考电压输入	
AIN0~1	I	7~8	模拟差分输入端	
PT2[4]/ RX /INT1	I	9	I/O 或串口输入或外部中断 注意中断和串口优先级一致	
			控制信号	IO 功能描述
			PTW1[0]=0 且不是串口 配置	IO (默认值)
			PTW1[0]=1	可作为外部中断 1 输入
			UARTEN=1 且 UART_SEL=1	自动开启串口输入
PT2[5]/ TX /INT1	I/O	10	I/O 或外部中断 1 输入或串 注意中断和串口优先级一致	,
			控制信号	IO 功能描述
			PTW1[1]=0 且不是串口 配置	10 (默认值)
			PTW1[1]=1	可作为外部中断 1 输入
		X/	UARTEN=1 且 UART_SEL=1	自动开启串口输出
PT1[4]/LPD	I/O	11	I/O 或者低电压检测输入端	
PT1[5] /INT0	I/O	12	I/O 或外部中断 0 输入	
			控制信号	I0 功能描述
	- 1		PTW0[0]=0	IO (默认值)
V			PTW0[0]=1	可作为外部中断 0 输入
PT1[6]	I/O	13	I/O	
PT1[7]	I/O	14	I/O	
PT2[0] /RX /INT0	I/O	15	OTP 烧写的数据或作为 I/O 输入	或串口输入或外部中断 0
			控制信号	I0 功能描述
			PTW0[1]=1	OTP 烧写的数据或可 作为外部中断 0 输入 (默认值)
			PTW0[1]=0 且不是串口 配置	10
			UARTEN=1 且 UART_SEL=0	自动开启串口输入
PT2[1] /TX /INT1	I/O	16	UARTEN=1 且 UART_SEL=0 OTP 烧写的时钟或作为 I/O 输入	
PT2[1] /TX /INT1	I/O	16	OTP 烧写的时钟或作为 I/O	

	T	1	T 1			
				作为	外部中断 1 输入 (默认值)	
			PTW1[2]=0 且不是申 配置		10	
			UARTEN=1 且 UART_SE	CL=0 自z	动开启串口输出	
PT2[2]	I/O	17	I/O			
PT2[3] /BZ	I/O	18	I/O 或蜂鸣器输出			
			控制信号		I0 功能描述	
			BZSEL=0	I	0(默认值)	
			BZEN=1、BZSEL=1		蜂鸣器输出	
PT2[6] /SEG14	I/O	19	I/O 或 LCD Segment 输	出		
			SEGCONO、VLCDX[1]	I	0 功能描述	
			=10	开启	LCD SEG 功能	
			=其他值	10	(默认值)	
PT2[7] /BZ/SEG13	I/O	20	I/O 或蜂鸣器输出或 L	CD Segmen	t 输出	
			SEGCON1、 VLCDX[1]	BZEN 、BZSEL	I0 功能描述	
			=10	XX	开启 LCD SEG 功 能	
				=其他值	=10	蜂鸣器输出
			六心国	=其他值	I0 (默认值)	
SEG12~1	О	21~32	LCD Segment 输出		_	
COM4~1	О	33~36	LCD Com 输出			

1.3 功能模块原理图

图 1-2 CSU8RP1185D 功能模块

从功能模块原理图中可看到有5个功能模块,其描述见表1-2 CSU8RP1185D主要功能描述。

表 1-2 CSU8RP1185D 主要功能描述

项目	子项目	描述
	RISC CPU Core	详细描述见 2.1 节
CPU 核	OTP 程序存储器	OTP: 一次性可编程 4092 条编程指令
CPU 核	数据存储器	CSU8RP1185D 带有 384Bytes SRAM(128 Bytes 寄存器,256 Bytes 普通数据存储器)
	时钟系统	CSU8RP1185D 有一个内部 16M 晶振。
	定时器模块	用于定时中断及看门狗的时钟计数器
数据功能模块	LCD 模块	内带 4×14 的 LCD 驱动器
Stall Mudblest	Buzzer	用户连接一个蜂鸣器到内带的蜂鸣器接口以接收警告或 提醒信号

	Ext.INT	CSU8RP1185D 提供 2 个外部中断接口(外部中断 0 可选择 PT1.5 或 PT2.0 输入,外部中断 1 可选择 PT2.1 或 PT2.4 或 PT2.5 输入)
模拟功能模块	ADC	内带 Sigma-Delta 的 ADC 将传感器的模拟信号转换为数字信号
电源功能模块	电源模块	CSU8RP1185D有一个专用的电源系统。此电源系统能为 ADC 提供固定的电压。芯片的输入电压可以在一个范围内浮动
	PT1	PT1 接口有 4 位。
普通用途 I/O	PT2	PT2接口有8位。用户可以定义这8位接口用于普通用 途或某些专用功能,比如外部中断、UART、蜂鸣器、 LCD SEG 口

2 标准功能

2.1 CPU 核

图 2-1 CSU8RP1185D CPU 核的功能模块图

从 CPU 核的功能模块图中,可以看到它主要包含 7 个主要寄存器及 2 个存储器单元。

表 2-1 MCU 架构说明

模块名称	描述
程序计数器	此寄存器在CPU的工作周期间起到很重要的作用,它记录CPU每个周期处理程
	序存储器中指令的指针。在一个 CPU 周期中,程序计数器将程序存储器地址
	(12bits),指令指针推送到程序存储器,然后自动加1以进行下一次周期。
栈寄存器	堆栈寄存器是用来记录程序返回的指令指针。当程序调用函数,程序计数器会
	将指令指针推送到堆栈寄存器。在函数执行结束之后,堆栈寄存器会将指令指
	针送回到程序计数器以继续原来的程序处理。
指令寄存器	程序计数器将指令指针(程序存储器地址)推送到程序存储器,程序存储器将
	程序存储器的数据(16bits)及指令推送到指令寄存器。
	CSU8RP1185D 的指令是 16bits,包括 3 种信息:直接地址,立即数及控制
	信息。 CPU 能将立即数推送到工作寄存器,或者进行某些处理后,根据控制信
	息,将立即数存储到直接地址所指向的数据存储器寄存器中。
	直接地址(9bits)
	数据存储器的地址。CPU能利用此地址来对数据存储器进行操作。
	直接数据(8bits)
	CPU 通过 ALU 利用此数据对工作寄存器进行操作。
	控制信息
	它记录着 ALU 的操作信息。
指令译码器	指令寄存器将控制信息推送到指令译码器以进行译码,然后译码器将译码后的
海上 畑和	信息发送到相关的寄存器。
算术逻辑单元	算术逻辑单元不仅能完成8位二进制的加,减,加1,减1等算术计算,还能对8位变量进行逻辑的与,或,异或,循环移位,求补,清零等逻辑运算。
工作寄存器	工作寄存器是用来缓存数据存储器中某些存储地址的数据。
状态寄存器	当 CPU 利用 ALU 处理寄存器数据时,如下的状态寄存器将会根据不同的指令
文件选择寄存器	而变化: PD, TO, DC, C及Z。 在 CSU8RP1185D的指令集中,FSR 是用于间接数据处理(即实现间接寻址)。
义 件远挥句仔奋	用户可以利用 FSR 来存放数据存储器中的某个寄存器地址,然后通过 IND 寄存
	器对这个寄存器进行处理。
程序存储器	CSU8RP1185D 内带 4092*16Bits 的 OTP ROM 作为程序存储器。由于指令的操
- 14 M-HH	作码(OPCODE)是 16bits,用户最多只能编程 4092 的指令。程序存储器的地
	址总线是 12bits, 数据总线是 16bits。
数据存储器	CSU8RP1185D 内带 256bytes 的 SRAM 作为数据存储器。此数据存储器的地址
	总线是 8bits,数据总线是 8bits。

2.1.1 存储器

1. 程序存储器主要用于指令的存储,在 CSU8RP1185D 中,该程序存储器是 4092*16bit 的 OTP。 (范围为 000H~FFBH),FFCH 和 FFFH 为保留地址。系统的 reset 地址为 000H,中断入口地址 为 004H,需要注意的一点就是所有的中断共用同一个中断入口地址。

图 2-2 程序存储器

2. 数据存储器主要用于程序运行过程中,全局以及中间变量的存储。该存储器分为三个部分。 地址的 000H 至 008H 是系统特殊功能寄存器,例如间接地址,间接地址指针,状态寄存器, 工作寄存器,中断标志位,中断控制寄存器。地址的 009H 至 07FH 外设特殊功能寄存器,例 如 IO 端口,定时器,ADC,UART,LCD 驱动,系统特殊功能寄存器和外设特殊功能寄存器 是用寄存器实现,而通用数据存储器是 RAM 实现,可以读出也可以写入。

表 2-2 数据存储器地址分配

数据存储器	起始地址	结束地址
系统特殊功能寄存器	000H	008H
外设特殊功能寄存器	009Н	07FH
通用数据存储器	080Н	17FH

3. 通过 IND0 及 FSR0 或 IND1 及 FSR1 这两组寄存器可以对数据存储器以及特殊功能寄存器进行间接访问。当从间接地址寄存器(IND0/IND1)读入数据时,MCU 实际上是以 FSR0/FSR1 中的值作为地址去访问数据存储器得到数据。当向间接寄存器(IND0/IND1)写入数据时,MCU 实际上是以 FSR0/FSR1 中的值作为地址去访问数据存储器将值存入该地址。其访问方式见图 2-3间接地址访问。

图 2-3 间接地址访问

Bank 选择寄存器(地址为08H)

特性	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0
BSR	IRP0	IRP1						
X	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0

Bit 7 IRPO: INDO 间接页寻址位

1 = 间接寻址 IND0 时, 访问后 128byte 地址

0 = 间接寻址 IND0 时, 访问前 256byte 地址

Bit 6 IRP1: IND1 间接页寻址位

1 = 间接寻址 IND1 时,访问后 128byte 地址

0 = 间接寻址 IND1 时,访问前 256byte 地址

2.1.2 状态寄存器

状态寄存器包含ALU的算术状态及复位状态。状态寄存器类似于其它寄存器,可以作为任何指令

的目标寄存器。如果状态寄存器是某条指令的目标寄存器,则会影响到Z,DC或C位,那么对这三个位 的写是不使能。这些位是由器件逻辑进行置位或清零。TO及PD位是不可写的。

状态寄存器(地址为04H)

D 41-01-14 HA	, 1-2-14 14 Hz (1-2-12)									
特性	U-0	U-0	U-0	R-0	R-0	R/W-X	R/W-X	R/W-X		
STATUS				PD	TO	DC	С	Z		
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		

Bit 4 PD: 掉电标志位

1 = 执行 SLEEP 指令

0=上电复位后

Bit 3 TO: 看门狗定时溢出标志。

1=看门狗定时溢出发生

0=上电复位后

Bit 2 DC: 半字节进位标志/借位标志,用于 ADDWF(C)及 SUBWF(C)

用于借位时,极性相反

1=结果的第4位出现进位溢出

0=结果的第4位不出现进位溢出

Bit 1 C: 进位标志/借位标志

用于借位时,极性相反

1 = 结果的最高位 (MSB) 出现进位溢出

0 = 结果的最高位(MSB)不出现进位溢出

Bit 0 Z: 零标志

1=算术或逻辑操作结果为0

0=算术或逻辑操作结果不为0

特性 (Property):

R = 可读位 W = 可写位 U = 无效位

-n = 上电复位后的值

'1' = 位已设置 '0' = 位已清零 X = 不确定位

2.1.3 INTE 及 INTF 中断寄存器

中断系统的入口地址为004H,各个中断之间没有优先级,靠程序控制各个中断的优先级。只要有 中断标志位,就会有中断响应,响应中断之后需要软件将中断标志位清除,否则会不断响应中断。

INTE 及 INTF 寄存器是可读、可写的,包括使能位及标志位,用于中断器件。

特性	R/W-0	U-0	U-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
INTE	GIE			TMIE		ADIE	E1IE	E0IE

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1	Bit0
------------------------------------	------

INTE 寄存器(地址为07H)

Bit 7 GIE: 全局中断使能标志

1=使能所有非屏蔽中断

0=不使能所有中断

Bit 4 TMIE: 8-Bit 定时器中断使能标志

1 = 使能定时器中断

0=不使能定时器中断

Bit 2 ADIE: ADC 中断使能标志

1 = 使能 ADC 中断

0 = 不使能 ADC 中断

Bit 1 E1IE: 外部中断 1 使能标志

1=使能外部中断1

0=不使能外部中断1

Bit 0 E0IE: 外部中断 0 使能标志

1 = 使能外部中断 0

0=不使能外部中断0

特性 (Property):

R = 可读位

W=可写位

U = 无效位

-n = 上电复位后的值

'1'=位已设置

'0'=位已清零

X = 不确定位

INTF 寄存器(地址为06H)

特性	U-0	U-0	U-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
INTF	4/	A - 1		TMIF		ADIF	E1IF	E0IF
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0

Bit 4 TMIF: 定时中断标志

1=发生定时中断,必须软件清0

0=没发生定时中断

Bit 2 ADIF: ADC 中断标志

1 = 发生 ADC 中断,必须软件清 0

0 = 没发生 ADC 中断

Bit 1 E1IF: 外部中断 1 标志

1=发生外部中断 1,必须软件清 0

0=没发生外部中断1

Bit 0 EOIF: 外部中断志 0

1=发生外部中断 0,必须软件清 0

0=没发生外部中断0

INTE2 寄存器(地址为 33H)

特性	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
INTE							URTIE	URRIE
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0

Bit 1 URTIE: 串口发送中断使能标志

1=使能串口发送中断

0=不使能串口发送中断

Bit 0 URRIE: 串口接收中断使能标志

> 1=使能串口接收中断 0=不使串口接收中断

INTF2 寄存器(地址为 32H)

特性	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
INTF						Y	URTIF	URRIF
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0

Bit 1 URTIF: 串口通信发送中断标志

1=发生串口发送中断,必须软件清0

0=没有发生串口发送中断

URRIF: 串口通信接收中断标志 Bit0

1=发生串口接收中断,必须软件清0

0=没有发生串口接收中断

特性 (Property):

W = 可写位 R = 可读位

U = 无效位

-n = 上电复位后的值

'1'=位已设置

'0' = 位已清零 X = 不确定位

2.2 SFR

2.2.1 系统专用寄存器

系统专用寄存器用于完成 CPU 核的功能,由间接地址,间接地址指针,状态寄存器,工作寄存 器,中断标志及中断控制寄存器。

表 2-3 系统寄存器表

地址	名称	Bit7	Bit6	Bi5	Bi4	Bit3	Bit2	Bit1	Bit0	上电复位值
00H	IND0	以 FSR	以 FSR0 中内容作为地址的数据存储器中的数据						00000000	
01H	IND1	以FSR	以 FSR1 中内容作为地址的数据存储器中的数据						00000000	
02H	FSR0	间接数	据存储器	的地址	指针 0					00000000
03H	FSR1	间接数据存储器的地址指针 1							00000000	

04H	STATUS			PD	TO	DC	С	Z	uuu00xxx
05H	WORK			工作	寄存器				00000000
06H	INTF			TMIF		ADIF	E1IF	E0IF	uuu0u000
07H	INTE	GIE		TMIE		ADIE	E1IE	E0IE	0uu0u000
08H	BSR	IRP0	IRP1						00uuuuuu

2.2.2 辅助专用寄存器

辅助专用寄存器是为辅助功能而设计,比如 I/O 口,定时器,ADC,信号的条件控制寄存器,UART, LCD 驱动。详细描述请看表 2-4 辅助专用寄存器列表及以下章节。

表 2-4 辅助专用寄存器列表

地址	名称	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	上电复位值
0AH	EADRH]	EADRH[4	l:0]		uuu00000
0BH	EADRL				EADRL[7	7:0]	()			00000000
0DH	WDTCON	WDTEN			WDT_LCD		W]	DTS[3:0]		0uu00000
0EH	TMOUT				TMOUT[7:0]		7		00000000
0FH	TMCON	TRST				TMEN		INS[2:0]		1uuu0000
10H	ADOH				ADO[23:	16]				00000000
11H	ADOL				ADO[15:	:8]				00000000
12H	ADOLL				ADO[7:0	0]				00000000
13H	ADCON					ADSC		ADM[2:0]		uuuu0000
14H	MCK			4 _/	M		M2_CK	M1_CK		uuuuu00u
15H	PCK			LCDSCK	S[3:0]		S_BE	EEP[1:0]		u000000u
16H	MCK2	TMSE	L[1:0]	X	Reserved	l		M3_CK	Reserved	00110000
18H	NETA	SINL	[1:0]							00uuuuuu
19H	NETB		7			ERV				uuuuxuuu
1AH	NETC		/ X_	ADGAIN	[5:0]			ADEN		0000000u
1BH	NETD	,				VLCE	OX[1:0]	LCDRE	F[1:0]	uuuu0000
1CH	NETE	LDOS	S[1:0]		SI	LB[2:0]		ENLB		00u0000u
1DH	NETF	CHP_VPP		ENVDDA			BGl	[D[1:0]	ENVB	0u0uu000
1FH	SVD								LBOUT	uuuuuux
20H	PT1		PT	1[7:4]						xxxxuuuu
21H	PT1EN	57	PT11	EN[7:4]						0000uuuu
22H	PT1PU		PT11	PU[7:4]						0000uuuu
23H	AIENB					AIENB 1				uuuu0uuu
24H	PT2				PT2[7:0)]				xxxxxxx
25H	PT2EN				PT2EN[7	:0]				00000000
26H	PT2PU				PT2PU[7	:0]				00000000
27H	PT2MR	BZEN				E1M	I [1:0]	E0M[[1:0]	0uuu0000
28H	PT2CON	SEGCON 1	SEGCON 0			BZSEL				00uu0uuu
29H	PTINT			PTW1[2:0]				PTW0	[1:0]	u100uu10
40H	LCD1						SE	EG1[3:0]		uuuu0000
41H	LCD2						SE	EG2[3:0]		uuuu0000

42H	LCD3						S	EG3[3:0]		uuuu0000
43H	LCD4						S	EG4[3:0]		uuuu0000
44H	LCD5						S	EG5[3:0]		uuuu0000
45H	LCD6						S	EG6[3:0]		uuuu0000
46H	LCD7						S	EG7[3:0]		uuuu0000
47H	LCD8						S	EG8[3:0]		uuuu0000
48H	LCD9						S	EG9[3:0]		uuuu0000
49H	LCD10						SE	EG10[3:0]		uuuu0000
4AH	LCD11						SE	EG11[3:0]		uuuu0000
4BH	LCD12						SE	EG12[3:0]		uuuu0000
4CH	LCD13						SE	EG13[3:0]		uuuu0000
4DH	LCD14						SE	EG14[3:0]		uuuu0000
58H	LCDENR	LCDCF	KS[1:0]	LCDEN	LCDWS	LEVE L	LCD_I	OUTY[1:0]	ENPMPL	00000110
59H	TEMPC				TEMPC[7	7:0]				00000000
7AH	SCON1	SM0	SM1	SM2	REN	TB8	RB8	UART_SEL	UARTEN	00000000
7BH	SCON2	SMOD								Ouuuuuu
7CH	SBUF									00000000

2.3 时钟系统

2.3.1 振荡器状态

内置振荡器只有执行 Sleep 指令后才能被关闭。

表 2-5 内部振荡器状态选择列表

睡眠指令(sleep)		内部振荡器状态
1	7-3/1	Disable
0	Arax	Enable

2.3.2 CPU 指令周期

表 2-6 CSU8RP1185D CPU 指令周期寄存器列表

地址	名称	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	上电复位值
14H	MCK						M2_CK	M1_CK		uuuuu00u
16H	MCK2	TMSI	EL[1:0]	Reserved				M3_CK	Reserved	00110000

用户可以通过设置 $M1_{CK}$, $M2_{CK}$, $M3_{CK}$ 来选择指令周期(用户必须保证切换指令周期时,时钟切换是稳定的,一般在切换后加一条 NOP 指令)。

图 2-4 CPU 指令周期时钟示意图

表 2-7 指令周期选择列表

M3_CK	M2_CK	M1_CK	指令周期(KHz)
0	0	0	125
0	0	1	62.5
0	1	0	500
0	1	1	250
1	0	0	250
1	0	1	125
1	1	0	1000
1	1	1	500

2.3.3 蜂鸣器时钟

表 2-8 蜂鸣器时钟寄存器列表

地址	名称	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	上电复位值
15H	PCK						S_BE	EEP[1:0]		uuuuu00u
16H	MCK2	TMSE	L[1:0]	Reserved				M3_CK	Reserved	00110000
27H	PT2MR	BZEN								0uuu0000
28H	PT2CON	SEGCON1	SEGCON0			BZSEL				00uu0uuu

CSU8RP1185D有一个蜂鸣器时钟用于蜂鸣器源。用户通过设置 S_BEEP 寄存器标志位来改变蜂鸣器时钟,设置如表 2-9。

注: BZSEL=0, 蜂鸣器输出为 PT2.7; BZSEL=1, 蜂鸣器输出为 PT2.3; BZSEL 默认为 0。

图 2-5 Beep 时钟选择示意图

S_BEEP 时钟源(KHz) BEEP CLOCK(KHz) 0 16000 ICK/1024 0 **ICK** 16 1 **ICK** 16000 ICK/2048 8 0 0 **ICK** 16000 ICK/4096 4 1 1 1 **ICK** ICK/8192 2 16000

表 2-9 蜂鸣器时钟选择列表

2.3.4 TMCLK (定时器模块输入时钟)

TMCLK 用于 CSU8RP1185D 定时器模块。根据表 2-11 和 表 2-12,用户通过正确设置 M1_CK 标志位以选择 TMCLK 的频率。

图 2-6 定时器时钟分频示意图

表 2-10 定时器时钟寄存器列表

地址	名称	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	上电复位值
16H	MCK2	TMSE	L[1:0]	4 /	Rese	erved		M3_CK	Reserved	00110000

表 2-11 定时器时钟源选择列表

	= 11 /C/1 HI // 1 // // // // // // // // // // // /				
TMSEL[1:0]	定时器时钟源(TMCK)				
00	内部晶振分频时钟 4KHz 或 1KHz				
01	CPUCLK: 指令周期				
10	保留				
11	内部 WDT 时钟 仅当内部 WDT 晶振打开时有效				

表 2-12 TMCLK 选择列表

M1_CK	时钟源	Ŕ(KHz)	TMCLK(Hz)			
0	ICK	16000	ICK/4096	3906		
1	ICK	16000	ICK/16384	976		

2.3.5 LCDCLK (LCD 模块输入时钟)

LCD 的帧频率可以通过设置寄存器标志 LCDCKS[1:0]确定。CSU8RP1185D 对 LCD 模块的输入时钟进行分频以获得 LCDCK。

图 2-7 LCD 帧频时钟选择

表 2-13 LCDCLK 选择列表

Wdt_lcd		LCDS	SCKS		LCDCL	K(KHz)
0	0	0	0	0	LCDSCK/32	1
0	0	0	0	1	LCDSCK/30	1.067
0	0	0	1	0	LCDSCK/28	1.143
0	0	0	1	1	LCDSCK/26	1.231
0	0	1	0	0	LCDSCK/24	1.333
0	0	1	0	T /	LCDSCK/22	1.455
0	0	1	1	0	LCDSCK/20	1.6
0	0	1	_1	- 1	LCDSCK/18	1.778
0	1	0	0	0	LCDSCK/16	2
0	1	0	0	1	LCDSCK/14	2.286
0	1	0	1	0	LCDSCK/12	2.667
0	1	0	1	1	LCDSCK/10	3.2
0	1	ĺ	0	0	LCDSCK/8	4
0	1	1	0	1	LCDSCK/6	5.333
0		1	1	0	LCDSCK/4	8
0	1	1	1	1	LCDSCK/2	16
1	0	0	0	0	WTDCLK/32	0.094
1	0	0	0	1	WTDCLK/30	0.1
1	0	0	1	0	WTDCLK/28	0.107
1	0	0	1	1	WTDCLK/26	0.115
1	0	1	0	0	WTDCLK/24	0.125
1	0	1	0	1	WTDCLK/22	0.136
1	0	1	1	0	WTDCLK/20	0.15
1	0	1	1	1	WTDCLK/18	0.167

1	1	0	0	0	WTDCLK/16	0.188
1	1	0	0	1	WTDCLK/14	0.214
1	1	0	1	0	WTDCLK/12	0.25
1	1	0	1	1	WTDCLK/10	0.3
1	1	1	0	0	WTDCLK/8	0.375
1	1	1	0	1	WTDCLK/6	0.5
1	1	1	1	0	WTDCLK/4	0.75
1	1	1	1	1	WTDCLK/2	1.5

表 2-14 LCD 帧频选择列表

LCDCKS[1:0]	LCD 帧频率(LCDCK)
00	LCD 输入时钟频率/4
01	LCD 输入时钟频率/8
10	LCD 输入时钟频率/16
11	LCD 输入时钟频率/32

2.3.6 UARTCLK

UARTCLK 用于 UART 模块。UARTCLK 的时钟源是 ICK,分频系数固定为 52。

图 2-8 UART 时钟分频示意图

2.4 定时器

图 2-9 定时模块的功能框图

定时器模块的输入是 TMCLK。在定时器模块集成了一个分频器对 TMCLK 进行 4 分频,分频的时钟作为 8 bits 计数器的输入时钟。当用户设置了定时器模块的使能标志,8 bits 计数器将启动,TMOUT[7:0]将会从 00H 向 FFH 递增 FFH 。用户需要设置 INS(定时器模块中断信号选择器)以选择定时超时中断信号。当定时超时发生时,中断标志位会自置位,程序计数器会跳转到 004H 以执行中断服务程序。

地址	名称	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	上电复位值
06H	INTF				TMIF					uuu0u000
07H	INTE	GIE			TMIE					0uu0u000
0EH	TMOUT		-	- 7	TMC	OUT[7:0]				00000000
0FH	TMCON	TRST				TMEN	-	INS[2:0]]	1uuu0000

表 2-15 定时器寄存器列表

操作:

- 1. 设置 TMCLK,为定时器模块选择输入。
- 2. 设置 INS[2:0], 选择定时器中断源。请看 表 2-16。
- 3. 设置寄存器标志位: TMIE 与 GIE, 使能定时器中断。
- 4. 设置寄存器标志位: TMEN, 使能定时器模块的 8 bits 计数器。
- 5. 清零寄存器标志位: TRST, 复位定时器模块的计数器。
- 6. 当定时超时发生时,寄存器标志位 TMIF 会自复位,程序计数器会复位为 004H。

表 2-16 定时器选择列表

INS[2:0]	中断源	时间(TMCLK = 976Hz)
000	TMOUT[0]	1/128 s
001	TMOUT[1]	1/64 s
010	TMOUT[2]	1/32 s
011	TMOUT[3]	1/16 s
100	TMOUT[4]	1/8 s

101	TMOUT[5]	1/4 s
110	TMOUT[6]	1/2 s
111	TMOUT[7]	1 s

2.5 I/O port

表 2-17 I/O 口寄存器表

地址	名称	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	上电复位值
06H	INTF							E1IF	E0IF	uuu0u000
07H	INTE	GIE						E1IE	EOIE	uuu0u000
20H	PT1	PT1[7:4]							xxxxuuuu	
21H	PT1EN		PT1EN[7:4]							0000uuuu
22H	PT1PU	PT1PU[7:4]						0000uuuu		
23H	AIENB					AIENB1				uuuu0uuu
24H	PT2		PT2[7:0]							
25H	PT2EN			P	Γ2EN[7:	0]				00000000
26H	PT2PU			P	Г2РU[7:	0]				00000000
27H	PT2MR	BZEN	E1M[1:0] E0M[1:0]		0uuu0000					
28H	PT2CON	SEGCON1	SEGCON0			BZSEL				00uu0uuu
29H	PTINT		PTW1[2:0]					PTW	70[1:0]	u100uu10

微控制器中的普通用途 I/O口(GPIO)用于普通的用途的输入与输出功能。用户可以通过 GPIO 接收数据信号或将数据传送给其它的数字设备。CSU8RP1185D的部分GPIO可以被定义为其它的特殊 功能。在本节,只说明 GPIO 的普通用途 I/O 口功能,特殊功能将会在接下来的章节中说明。

注意: 所有读 IO 的操作均是对 PT 口的状态进行读取,而不是读 PT 寄存器的值。

PT1 寄存器 (地址为 20H)

特性	R/W-X	R/W-X	R/W-X	R/W-X	U-0	U-0	U-0	U-0
PT1		PT1	[7:4]					
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0

Bit 7-0 PT1[7:4]: GPIO1 口数据标志

PT1[7] = GPIO1 bit 7 数据标志位

PT1[6] = GPIO1 bit 6 数据标志位

PT1[5] = GPIO1 bit 5 数据标志位

PT1[4] = GPIO1 bit 4 数据标志位

PT1EN 寄存器(地址为 21H)

特性	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	
26 / 94 CS-OR-YF-054									!

PT1EN		PT1E	N[7:4]					
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0

Bit 7-0 PT1EN[7:4]: GPIO1 口输入/输出控制标志

PT1EN[7] = GPIO1 bit 7 的 I/O 控制标志位; 0 = 定义为输入口, 1 = 定义为输出口

PT1EN[6] = GPIO1 bit 6 的 I/O 控制标志位; 0 = 定义为输入口, 1 = 定义为输出口

PT1EN[5] = GPIO1 bit 5 的 I/O 控制标志位; 0 = 定义为输入口, 1 = 定义为输出口

PT1EN[4] = GPIO1 bit 4 的 I/O 控制标志位; 0 = 定义为输入口, 1 = 定义为输出口

PT1PU 寄存器(地址为 22H)

特性	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	
PT1PU		PT1P	U[7:4]						
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	

Bit 7-0 PT1PU[7:4]: GPIO1 口上拉电阻使能标志

PT1PU[7] = GPIO1 bit 7 控制标志位; 0 = 断开上拉电阻, 1 = 使用上拉电阻

PT1PU[6] = GPIO1 bit 6 控制标志位; 0 = 断开上拉电阻, 1 = 使用上拉电阻

PT1PU[5] = GPIO1 bit 5 控制标志位; 0 = 断开上拉电阻, 1 = 使用上拉电阻

PT1PU[4] = GPIO1 bit 4 控制标志位; 0 = 断开上拉电阻, 1 = 使用上拉电阻

AENB 寄存器 (地址为 23H)

特性	U-0	U-0 U-0		U-0	R/W-0	U-0	U-0	U-0
AENB					AIENB1			
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0

Bit 3 AIENB1: PT1[4]数模通道选择信号

0 = PT1[4]定义为模拟通道

1 = PT1[4]定义为数字通道

PT2 寄存器 (地址为 24H)

特性	R/W-X R/W-X		R/W-X	R/W-X	R/W-X	R/W-X	R/W-X	R/W-X		
PT2	1	PT2[7:0]								
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		

Bit 7-0 PT2[7:0]: GPIO2 口数据标志位

PT2[7] = GPIO2 bit 7 的数据标志位

PT2[6] = GPIO2 bit 6 的数据标志位

PT2[5] = GPIO2 bit 5 的数据标志位

PT2[4] = GPIO2 bit 4 的数据标志位

PT2[3] = GPIO2 bit 3 的数据标志位

PT2[2] = GPIO2 bit 2 的数据标志位

PT2[1] = GPIO2 bit 1 的数据标志位

PT2[0] = GPIO2 bit 0 的数据标志位

PT2EN 寄存器 (地址为 25H)

de kd.	DAYA DAYA DAYA DAYA DAYA DAYA							TO ATT O				
特性	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
PT2EN		PT2EN[7:0]										
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0				

Bit 7-0 PT2EN[7:0]: GPIO 2 口输入/输出控制标志

PT2EN[7] = GPIO2 bit 7 的 I/O 控制标志位; 0 = 定义为输入口, 1 = 定义为输出口

PT2EN[6] = GPIO2 bit 6 的 I/O 控制标志位; 0 = 定义为输入口, 1 = 定义为输出口

PT2EN[5] = GPIO2 bit 5 的 I/O 控制标志位; 0 = 定义为输入口, 1 = 定义为输出口

PT2EN[4] = GPIO2 bit 4 的 I/O 控制标志位; 0 = 定义为输入口, 1 = 定义为输出口

PT2EN[3] = GPIO2 bit 3 的 I/O 控制标志位; 0 = 定义为输入口, 1 = 定义为输出口

PT2EN[2] = GPIO2 bit 2 的 I/O 控制标志位; 0 = 定义为输入口, 1 = 定义为输出口

PT2EN[1] = GPIO2 bit 1 的 I/O 控制标志位; 0 = 定义为输入口, 1 = 定义为输出口

PT2EN[0] = GPIO2 bit 0 的 I/O 控制标志位; 0 = 定义为输入口, 1 = 定义为输出口

PT2PU 寄存器 (地址为 26H)

特性	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
PT2PU		PT2PU[7:0]									
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			

Bit 7-0 PT2PU[7:0]: GPIO2 口上拉电阻使能标志

PT2PU[7] = GPIO2 bit 7 控制标志位; 0 = 断开上拉电阻, 1 = 使用上拉电阻

PT2PU[6] = GPIO2 bit 6 控制标志位; 0 = 断开上拉电阻, 1 = 使用上拉电阻

PT2PU[5] = GPIO2 bit 5 控制标志位; 0 = 断开上拉电阻, 1 = 使用上拉电阻

PT2PU[4] = GPIO2 bit 4 控制标志位; 0 = 断开上拉电阻, 1 = 使用上拉电阻

PT2PU[3] = GPIO2 bit 3 控制标志位; 0 = 断开上拉电阻,1 = 使用上拉电阻

PT2PU[2] = GPIO2 bit 2 控制标志位; 0 = 断开上拉电阻, 1 = 使用上拉电阻

PT2PU[1] = GPIO2 bit 1 控制标志位; 0 =断开上拉电阻, 1 =使用上拉电阻

PT2PU[0] = GPIO2 bit 0 控制标志位; 0 = 断开上拉电阻, 1 = 使用上拉电阻

PT2MR 寄存器 (地址为 27H)

特性	R/W-0	U-0	U-0	U-0	R/W-0 R/W-0		R/W-0	R/W-0
PT2MR	BZEN				E1M[1:0]		E0M[1:0]	
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0

Bit 7 BZEN: 蜂鸣器使能标志

1 = 使能蜂鸣器功能,蜂鸣器由 PT2.7 或 PT2.3 输出

0=不使能蜂鸣器功能,

Bit 3-2 E1M[1:0]: 外部中断 1 触发模式

11 = 外部中断 1 在状态改变时触发

10 = 外部中断 1 在状态改变时触发

01=外部中断1为上升沿触发

00=外部中断1为下降沿触发

Bit 1-0 E0M[1:0]: 外部中断 0 触发模式

11 = 外部中断 0 在状态改变时触发

10=外部中断0在状态改变时触发

01=外部中断0为上升沿触发

00=外部中断0为下降沿触发

PT2CON 寄存器(地址为 28H)

特性	R/W-0	R/W -0	U-0	U-0	R/W-0	U-0	U-0	U-0
PT2CON	SEGCON1	SEGCON0			BZSEL		7	
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0

Bit 7 SEGCON1: 选择 PT2.7 口功能

0 = PT2.7 为普通 IO 口

1 = PT2.7 为 SEG13 口

注: 在 VLCDX[1]=1 时 PT2.7 不能作为 SEG 口使用, SEGCON1 无效。

Bit6 SEGCONO: 选择 PT2.6 口功能

0 = PT2.6 为普通 IO 口

1 = PT2.6 为 SEG14 口

注: 在 VLCDX[1]=1 时 PT2.6 不能作为 SEG 口使用, SEGCON0 无效。

Bit 3 BZSEL: 蜂鸣器输出 IO 选择

0 = 蜂鸣器输出 IO 为 PT2.7

1 = 蜂鸣器输出 IO 为 PT2.3

PTINT 寄存器(地址为 29H)

特性	U -0	R/W-1	R/W-0	R/W-0	U-0	U-0	R/W-1	R/W-0
PTINT		PTW1[2:0]					PTW	0[1:0]
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0

Bit 6 PTW1[2]: PT2.1 外部中断 1 使能,默认为 1

0 = 禁止 PT2.1 外部中断 1

1 = 使能 PT2.1 外部中断 1

Bit 5 PTW1[1]: PT2.5 外部中断 1 使能

0 = 禁止 PT2.5 外部中断 1

1 = 使能 PT2.5 外部中断 1

Bit 4 PTW1[0]: PT2.4 外部中断 1 使能

0 = 禁止 PT2.4 外部中断 1

1 = 使能 PT2.4 外部中断 1

Bit 1 PTW0[1]: PT2.0 外部中断 0 使能,默认为 1

0 = 禁止 PT2.0 外部中断 0

1 = 使能 PT2.0 外部中断 0

Bit 0 PTW0[0]: PT1.5 外部中断 0 使能

0 = 禁止 PT1.5 外部中断 0

1 = 使能 PT1.5 外部中断 0

特性 (Property):

R = 可读位 W = 可写位

U = 无效位

-n = 上电复位后的值

'1'=位已设置

'0'=位已清零

X = 不确定位

2.5.1 带模拟输入通道的数字 I/O 口: PT1[4]

图 2-10 PT1[4] 功能框图

GPIO1口(PT1[4]) 功能框图如图 2-10 PT1[4] 功能框图所示。GPIO 的主要功能是用于数据总线 与接口之间的交换。通过控制寄存器标志 PT1EN[4]以决定接口是输入或输出。输入与输出功能及相关 的功能解释如下。

输入

GPIO1 接口 bit 4(PT1[4])可用于输入数字或模拟信号。用户应该控制寄存器标志 AIENB1 决定 输入信号的类型。如果 AIENB1 被置位(即为1), GPIO1 接口中的与门允许数字信号连接到数据总 线, 否则, 输入信号被定义为模拟信号, 模拟信号被发送到相应的功能模块

输出

CSU8RP1185D 通过内部 D 触发器输出数字信号。当程序通过 PT1 输出数据时,数据首先被发送

到数据总线,当有写信号及 AR (CSU8RP1185D 内部器件地址指针)指向 PT1 时,然后 D 触发器会锁存数据从 PT1 口输出。

● 上拉电阻

CSU8RP1185D 在 PT1 口集成内部上拉电阻功能,上拉电阻大约为 100KΩ(上拉电流大约为 30uA。当程序要运行至睡眠模式之前,须禁止 PT1PU)。可通过控制寄存器标志 PT1PU[4]决定是否连接上拉电阻。当接口接上拉电阻时,输入数据默认为高(即为 1)。

					10 1 11 11 11	HH / J-20				
地址	名称	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	上电复位值
20H	PT1				PT1[4]				~ \	xxxxuuuu
21H	PT1EN				PT1EN[4]				<i>\</i>	0000uuuu
22H	PT1PU				PT1PU[4]					0000uuuu
23H	AENB					AIENB1				uuuu0uuu

表 2-18 PT1 寄存器列表

读数据操作:

- 1. 清零寄存器标志位: PT1EN[n](n是用户要控制的 bit)。PT1 [n]被定义为输入接口。
- 2. 置位寄存器标志位: PT1PU[n]。PT1 [n]接口连接到一个内部上拉电阻。
- 3. 如果输入信号是数字信号,置位寄存器标志位: AIENB1。
- 4. 如果输入信号是模拟信号,清零寄存器标志位: AIENB1,同时将 PT1EN[4]置低(设置为数字输入), PT1UP[4]置低(没有上拉电阻)。
- 5. 需先使能 ENVB,模拟输入才能正常工作。
- 6. 在信号从外部输入后,用户可以从PT1[n]获得数据。

写数据操作:

- 1. 置位寄存器标志 PT1EN[n]。PT1 [n]被定义为输出接口。
- 2. 置位相应的寄存器标志 PT1PU[n]。PT1 [n]连接到内部的上拉电阻。
- 3. 设置 PT1[n]作为数据输出,内部的 D 触发器将锁存数据直到 PT1[n]的数据改变。

注意操作:

- 1. 为了在睡眠模式下保持低工作电流,置位 AIENB1 使 PT1 悬空。
- 2. 在 I/O 口与 VDD 之间并联一个小电阻(大约 $10K\Omega$),当 PT1PU[n]被置位时,可以增加输出的驱动电流。

2.5.2 数字 I/O 口: PT1[5]

图 2-11 PT1[5] 功能框图

GPIO1 口(PT1[5]) 功能框图如 图 2-12 PT1[7:6] 功能框图所示。GPIO 的主要功能是用于数据总 线与接口之间的交换。通过控制寄存器标志 PT1EN[5]以决定接口是输入或输出。输入与输出功能及相关的功能解释如下。

输入

GPIO1接口 bit 5(PT1[5])可作为外部中断 0接口: INT0,或者作为普通 I/O 口。通过控制 INTE 寄存器的标志位 E0IE、PTW0[1:0]以决定是否使能中断。中断触发模式是由寄存器标志 E0M[1:0]决定。当 PT1EN[n]置为 0 时,PT1[7:5]设置为数字输入。

● 输出

CSU8RP1185D 通过内部 D 触发器输出数字信号。当程序通过 PT1 输出数据时,数据首先被发送到数据总线,当有写信号及 AR(CSU8RP1185D 内部器件地址指针)指向 PT1 时,然后 D 触发器会锁存数据从 PT1 口输出。

● 上拉电阻

CSU8RP1185D 在 PT1 口集成内部上拉电阻功能,上拉电阻大约为 100KΩ(上拉电流大约为 30uA。当程序要运行至睡眠模式之前,须禁止 PT1PU)。可通过控制寄存器标志 PT1PU[5]决定是否连接上拉电阻。当接上拉电阻时,输入数据默认为高(即为 1)。

2.5.3 数字 I/O 口: PT1[7:6]

图 2-12 PT1[7:6] 功能框图

GPIO1 口(PT1[7:6]) 功能框图如图 2-12 PT1[7:6] 功能框图所示。GPIO 的主要功能是用于数据总线与接口之间的交换。通过控制寄存器标志 PT1EN[7:6]以决定接口是输入或输出。输入与输出功能及相关的功能解释如下。

输入

GPIO1 接口 bit 7~bit 6 (PT1[7:6]) 可用于输入数字。当 PT1EN[n]置为 0 时,PT1[7:6]设置为数字输入。

● 输出

CSU8RP1185D 通过内部 D 触发器输出数字信号。当程序通过 PT1 输出数据时,数据首先被发送到数据总线,当有写信号及 AR(CSU8RP1185D 内部器件地址指针)指向 PT1 时,然后 D 触发器会锁存数据从 PT1 口输出。

● 上拉电阻

CSU8RP1185D 在 PT1 口集成内部上拉电阻功能,上拉电阻大约为 100KΩ(上拉电流大约为 30uA。当程序要运行至睡眠模式之前,须禁止 PT1PU)。可通过控制寄存器标志 PT1PU[7:6]决定是否连接上拉电阻。当接上拉电阻时,输入数据默认为高(即为 1)。

 地址
 名称
 Bit7
 Bit6
 Bit5
 Bit4
 Bit3
 Bit2
 Bit1
 Bit0
 上电复位值

 20H
 PT1
 PT1[7:5]
 xxxxuuuu

表 2-19 PT1 寄存器列表

21H	PT1EN	PT1EN[7:5]			0000uuuu
22H	PT1PU	PT1PU[7:5]			0000uuuu

读数据操作:

- 1. 清零寄存器标志位: PT1EN[n](n是用户要控制的bit)。PT1 [n]被定义为输入接口。
- 2. 置位寄存器标志位: PT1PU[n]。PT1 [n]接口连接到一个内部上拉电阻。
- 3. 在信号从外部输入后,用户可以从PT1[n]获得数据。

写数据操作:

- 1. 置位寄存器标志 PT1EN[n]。PT1 [n]被定义为输出接口。
- 2. 置位相应的寄存器标志 PT1PU[n]。PT1 [n]连接到内部的上拉电阻。
- 3. 设置 PT1[n]作为数据输出,内部的 D 触发器将锁存数据直到 PT1[n]的数据改变。注意操作:

在 I/O 口与 VDD 之间并联一个小电阻(大约 $10K\Omega$),当 PT1PU[n]被置位时,可以增加输出的驱动电流。

2.5.4 数字 I/O 口、URAT 接口与外部中断输入: PT2[1:0]

图 2-13 PT2[1:0]功能框图

GPIO2 口的 bit1~0 (PT2[1:0]) 功能框图如图 2-13所示。此GPIO 口的主要功能是用于数据在数据总线与端口之间的输入/输出。通过控制寄存器标志 PT2EN[1:0]以决定接口是输入或输出。输入与输出

功能及相关的功能解释如下:

输入

GPIO2 口 bit1~0(PT2[1:0])可作为外部中断接口: INT1 与 INT0,或者作为 UART 通信接口 (PT2.0 作为 UART 接收端口),或者作为普通 I/O 口。通过控制 INTE 寄存器的标志位 E0IE 与 E1IE、PTW1[2:0]和 PTW0[1:0]以决定是否使能中断。中断触发模式是由寄存器标志: E0M[1:0], E1M[1:0]决定。这两个输入接口可以作为施密特触发,上/下触发电平分别为 0.7VDD/0.3VDD。

● 输出

CSU8RP1185D 通过内部 D 触发器输出数字数据,可作为 UART 通信接口(PT2.1 作为 UART 发送端口),或者作为普通 I/O 口。当程序通过 PT2 输出数据时,数据首先被发送到数据总线,当有写信号及 AR(CSU8RP1185D 内部器件地址指针)指向 PT2 时,然后 D 触发器会锁存数据从 PT2 口输出。

● 上拉电阻

CSU8RP1185D 在 PT2 口集成内部上拉电阻功能,上拉电阻大约为 100KΩ(上拉电流大约为 30uA。当程序要运行至睡眠模式之前,须禁止 PT2PU)。可通过控制寄存器标志 PT2PU[1:0]决定是否连接上拉电阻。当接口接上拉电阻时,输入数据默认为高(即为 1)。

4 14 BB / 4 kg										
地址	名称	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	上电复位值
06H	INTF						7	E1IF	E0IF	uuu0u000
07H	INTE	GIE			1		7	E1IE	E0IE	0uu0u000
24H	PT2	PT2[7:0]								XXXXXXX
25H	PT2EN	PT2EN[7:0]								00000000
26H	PT2PU	PT2PU[7:0]								00000000
27H	PT2M R		7-0-7			E1M[1:0]		E0M[1:0]		00000000
29H	PTINT		I	PTW1[2:0)],			PTW0[1:0]		u100uu10

表 2-20 PT2 寄存器列表

读数据操作:

- 1. 清零寄存器标志位: PT2EN[n](n 是用户要控制的 bit)。PT2[n]被定义为输入接口。
- 2. 置位寄存器标志位: PT2PU[n]。PT2[n]接口连接到一个内部上拉电阻。
- 3. 在信号从外部输入后,用户可以从PT2[n]获得数据。

写数据操作:

- 1. 置位寄存器标志 PT2EN[n]。PT2[n]被定义为输出接口。
- 2. 置位相应的寄存器标志 PT2PU[n]。PT2[n]连接到内部的上拉电阻。
- 3. 设置 PT2[n]作为数据输出,内部的 D 触发器将锁存数据直到 PT2[n]的数据改变。

外部中断操作(以下降沿触发为例子)

- 1. 清零寄存器标志位 PT2EN[n]。PT2[n]被定义为输入接口。
- 2. 置位相应的寄存器标志 PT2PU[n]。PT2[n]连接到内部的上拉电阻。
- 3. 置 E0M[1:0]为 00, 定义 INT0 的中断触发模式为"下降沿触发"。
- 4. 置 E1M[1:0]为 00, 定义 INT1 的中断触发模式为"下降沿触发"。

- 5. 置 PTW1[2:0] 为 100, 定义 PT2.1 为 INT1 的中断源。
- 6. 置 PTW0[1:0]为 00, 定义 PT2.0 为 INT1 的中断源。。

注意操作:

在 I/O 口与 VDD 之间并联一个小电阻(大约 $10K\Omega$),当 PT2PU[n]被置位时,可以增加输出的驱动电流,

2.5.5 数字 I/O 口 PT2[3:2]

图 2-14 PT2[6:2] 功能框图

GPIO2 口 bit 3:2 (PT2[3:2]) 的功能框图如图 2-14 PT2[6:2] 功能框图所示。此 GPIO 口的主要功能是用于数据在数据总线与端口之间的输入/输出。通过控制寄存器标志 PT2EN[3:2]以决定接口是输入或输出。输入与输出功能及相关的功能解释如下:

輸入

GPIO2 口 bit3:2(PT2[3:2]): PT2.3 可以作为蜂鸣器输出,或者作为普通用途的 I/O 口; PT2.2 只可作为普通用途的 I/O 口。

● 输出

CSU8RP1185D 使用内部 D 锁存器输出数字数据。当程序通过 PT2 输出数据时,数据首先被发送到数据总线,当有写信号及 AR(CSU8RP1185D 内部器件地址指针)指向 PT2 时,然后 D 触发器会锁存数据从 PT2 口输出。

● 上拉电阻

36 / 94 CS-QR-YF-054A02

CHIPSEA

CSU8RP1185D 在 PT2 口集成内部上拉电阻功能,上拉电阻大约为 100KΩ(上拉电流大约为 30uA。当程序要运行至睡眠模式之前,须禁止 PT2PU)。可通过控制寄存器标志 PT2PU[3:2]决定是否连接上拉电阻。当接口接上拉电阻时,输入数据默认为高(即为 1)。

表 2-21 PT2 寄	·仔器列表
--------------	-------

地址	名称	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	上电复位值	
24H	PT2				PT2	[7:0]				XXXXXXX	
25H	PT2EN		PT2EN[7:0]								
26H	PT2PU		PT2PU[7:0]								
27H	PT2MR	BZEN				E1M	[1:0]	E0M[[1:0]	0uuu0000	
28H	PT2CO N					BZSEL			V	00uu0uuu	

读数据操作:

- 1. 清零寄存器标志位: PT2EN[n](n是用户要控制的bit)。PT2[n]被定义为输入接口。
- 2. 置位寄存器标志位: PT2PU[n]。PT2[n]接口连接到一个内部上拉电阻。
- 3. 在信号从外部输入后,用户可以从 PT2[n]获得数据。

写数据操作:

- 1. 置位相应的寄存器标志位: PT2EN[n]。PT2[n]被定义为输出接口。
- 2. 置位相应的寄存器标志位: PT2PU[n]。PT2[n]连接到内部的上拉电阻。
- 3. 设置 PT2[n]作为数据输出,内部的 D 触发器将锁存数据直到 PT2[n]的数据改变。

PT2.3 蜂鸣器输出操作:

- 1. 置位寄存器标志位 PT2EN[3]。PT2[3]定义为输出接口。
- 2. 置位寄存器标志位 S_BEEP, 设置蜂鸣器频率。
- 3. 置位寄存器标志位 BZEN 和 BZSEL(BZSEL=1)。PT2[3]就作为蜂鸣器输出接口。
- 4. 将一个蜂鸣器与 PT2 bit3 口连接。蜂鸣器就可以正确工作。

注意操作:

在 I/O 口与 VDD 之间并联一个小电阻(大约 $10K\Omega$),当 PT2PU[n]被置位时,可以增加输出的驱动电流。

2.5.6 数字 I/O 口、URAT 接口与外部中断输入: PT2[5:4]

图 2-15 PT2[5:4]功能框图

GPIO2 口的 bit5~4(PT2[5:4])功能框图如 图 2-13所示。此 GPIO 口的主要功能是用于数据在数据总线与端口之间的输入/输出。通过控制寄存器标志 PT2EN[5:4]以决定接口是输入或输出。输入与输出功能及相关的功能解释如下:

输入

GPIO2 口 bit5~4(PT2[5:4])可作为外部中断接口: INT1,或者作为 UART 通信接口(PT2.4 作为 UART 接收端口),或者作为普通 I/O 口。通过控制 INTE 寄存器的标志位 E1IE、PTW1[2:0]以决定是 否使能中断。中断触发模式是由寄存器标志 E1M[1:0]决定。

● 输出

CSU8RP1185D通过内部 D 触发器输出数字数据,可作为 UART 通信接口(PT2.5 作为 UART 发送端口),或者作为普通 I/O 口。当程序通过 PT2 输出数据时,数据首先被发送到数据总线,当有写信号及 AR(CSU8RP1185D 内部器件地址指针)指向 PT2 时,然后 D 触发器会锁存数据从 PT2 口输出。

● 上拉电阻

CSU8RP1185D 在 PT2 口集成内部上拉电阻功能,上拉电阻大约为 100KΩ(上拉电流大约为 30uA。当程序要运行至睡眠模式之前,须禁止 PT2PU)。可通过控制寄存器标志 PT2PU[5:4]决定是否连接上拉电阻。当接口接上拉电阻时,输入数据默认为高(即为 1)。

表 2-22 PT2 寄存器列表

地址	名称	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	上电复位值
----	----	------	------	------	------	------	------	------	------	-------

06H	INTF							E1IF	E0IF	uuu0u000	
07H	INTE	GIE						E1IE	EOIE	0uu0u000	
24H	PT2		PT2[7:0]								
25H	PT2EN		PT2EN[7:0]								
26H	PT2PU				P	Γ2PU[7:0]				00000000	
27H	PT2MR		E1M[1:0] E0M[1:0]							0uuu0000	
29H	PTINT		PTW1[2:0]					PTW0	[1:0]	u100uu10	

读数据操作:

- 1. 清零寄存器标志位: PT2EN[n](n是用户要控制的bit)。PT2[n]被定义为输入接口。
- 2. 置位寄存器标志位: PT2PU[n]。PT2[n]接口连接到一个内部上拉电阻。
- 3. 在信号从外部输入后,用户可以从 PT2[n]获得数据。

写数据操作:

- 1. 置位寄存器标志 PT2EN[n]。PT2[n]被定义为输出接口。
- 2. 置位相应的寄存器标志 PT2PU[n]。PT2[n]连接到内部的上拉电阻。
- 3. 设置 PT2[n]作为数据输出,内部的 D 触发器将锁存数据直到 PT2[n]的数据改变。

外部中断操作(以下降沿触发为例子)

- 1. 清零寄存器标志位 PT2EN[n]。PT2[n]被定义为输入接口。
- 2. 置位相应的寄存器标志 PT2PU[n]。PT2[n]连接到内部的上拉电阻。
- 3. 置 E1M[1:0]为 00, 定义 INT1 的中断触发模式为"下降沿触发"。
- 4. 置 PTW1[2:0] 为 010, 定义 PT2.5 为 INT1 的中断源, 或置 PTW1[2:0] 为 001, 定义 PT2.4 为 INT1 的中断源。

注意操作:

在 I/O 口与 VDD 之间并联一个小电阻(大约 $10K\Omega$),当 PT2PU[n]被置位时,可以增加输出的驱动电流。

2.5.7 数字 I/O 接口或者蜂鸣器输出: PT2[7:6]

图 2-16 PT2[7:6] 功能框图

GPIO2 口 bit7~6(PT2[7:6])的功能框图如 图 2-16所示。此 GPIO 口的主要功能是用于数据在数据总线与端口之间的输入/输出。通过控制寄存器标志 PT2EN[7:6]以决定接口是输入或输出。输入与输出功能及相关的功能解释如下:

● 输入

GPIO2 口 bit 7~6(PT2[7:6])PT2.7 可以作为蜂鸣器输出接口,或者作为普通 I/O 接口; PT2.6 可以作为普通 I/O 接口。

PT2.7 通过设置寄存器标志 BZEN 和 BZSEL 决定是否使能蜂鸣器输出。

● 输出

CSU8RP1185D 使用内部 D 锁存器输出数字数据。当程序通过 PT2 输出数据时,数据首先被发送到数据总线,当有写信号及 AR(CSU8RP1185D 内部器件地址指针)指向 PT2 时,然后 D 触发器会锁存数据从 PT2 口输出。

● 上拉电阻

CSU8RP1185D 在 PT2 口集成内部上拉电阻功能,上拉电阻大约为 100KΩ(上拉电流大约为 30uA。当程序要运行至睡眠模式之前,须禁止 PT2PU)。可通过控制寄存器标志 PT2PU[7:6]决定是否连接上拉电阻。当接口接上拉电阻时,输入数据默认为高(即为 1)。

	Pe = 25 7 7 10 Ht > 4 Me												
地址	名称	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	上电复位值			
24H	PT2		PT2[7:0]										
25H	PT2EN		PT2EN[7:0]										
26H	PT2PU		PT2PU[7:0]										
27H	PT2MR	BZEN				E1M[1:0] E0M[1:0]				0uuu0000			
28H	PT2CON					BZSEL				00uu0uuu			

表 2-23 PT2[7]寄存器列表

读数据操作:

- 1. 清零寄存器标志位: PT2EN[n](n是用户要控制的bit)。PT2[n]被定义为输入接口。
- 2. 置位相应的寄存器标志位: PT2PU[n]。PT2[n]接口连接到一个内部上拉电阻。
- 3. 在信号从外部输入后,用户可以从 PT2[n]获得数据。

写数据操作:

- 1. 置位相应的寄存器标志位: PT2EN[n]。PT2[n]被定义为输出接口。
- 2. 置位相应的寄存器标志位: PT2PU[n]。PT2[n]连接到内部的上拉电阻。
- 3. 设置 PT2[n]作为数据输出,内部的 D 触发器将锁存数据直到 PT2[n]的数据改变。

PT2.7 蜂鸣器输出操作:

- 1. 置位寄存器标志位 PT2EN[7]。PT2[7]定义为输出接口。
- 2. 置位寄存器标志位 S BEEP, 设置蜂鸣器频率。
- 3. 置位寄存器标志位 BZEN 和 BZSEL(BZSEL=0)。PT2[7]就作为蜂鸣器输出接口。
- 4. 将一个蜂鸣器与 PT2 bit7 口连接。蜂鸣器就可以正确工作。

注意操作:

在 I/O 口与 VDD 之间并联一个小电阻(大约 $10 \mathrm{K}\,\Omega$),当 PT2PU[n]被置位时,可以增加输出的驱动电流。

3 增强功能

3.1 电源系统

3.1.1 Regulator

图 3-1 稳压电路

如图 3-1 所示,用于产生 VS 作为传感器和 ADC 的参考电压,通过选择 LDOS 可以使输出 2.35V,2.45V,2.8V,3.0V 可选。ENVDDA 作为 LDO 的使能信号。LDO 的控制寄存器标志是 ENVDDA 与 LDOS。输出电压是 VS。ENVB 作为整个模拟电源部分的使能信号,关断之后 ADC 和 LCD 电荷泵等将会不工作。

表 3-1 稳压电路寄存器列表

地址	名称	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	上电复位值
1CH	NETE	LDO	S[1:0]							00uu000u
1DH	NETF			ENVDDA					ENVB	0u0uu000

NETE 寄存器(地址=1CH)

特性	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	U-0
NETE	LDOS[1:0]							
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0

Bit7~6 LDOS[1:0]: VS 电压值选择

LDOS[1:0] 00 VS=3.0 LDOS[1:0] 01 VS=2.8

LDOS[1:0] 10 VS=2.45 LDOS[1:0] 11 VS=2.35

NETF 寄存器(地址=1DH)

特性	R/W-0	U-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0
NETF			ENVDDA					ENVB
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0

Bit5 ENVDDA: LDO 使能信号

ENVDDA=1: LDO 使能 ENVDDA=0: LDO 不使能

Bit0 ENVB: 模拟电源使能信号

ENVB=1: 模拟电源使能 ENVB=0: 模拟电源不使能

操作:

1. 将 ENVDDA 置高

2. 设置 ENVB 置高

3. 设置 LDOS[1:0],选择 VS 值。

3.1.2 低电压比较器

图 3-2 低电压比较功能模块框图

低电压比较器用于 VDD 的低电压检测。CSU8RP1185D 集成一个可产生 1/2VDD 及 1/3VDD 的分压器。多路选择器用于选择不同的分压连接到低电压比较器的输入端。多路选择器的输出与 1.20V 进行比较,它的控制寄存器标志是 SILB[2:0]及 ENLB,比较器的输出是 LBOUT,LBOUT 为只读。请看

图 3-2.。

表 3-2 低电压比较器寄存器列表

地址	名称	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	上电复位 值
1CH	NETE				SILB[2:0]			ENLB		00u0000u
1FH	SVD								LBOUT	uuuuuux

操作:

- 1. 设置寄存器标志位 ENLB, 使能低电压比较器。
- 2. 比较器输出是 LBOUT。

表 3-3 低电压比较器检测电压的选择列表

SILB[2:0]	检测电压	满足条件	则
000	VDD	VDD>2.4V	LBOUT=1
001	VDD	VDD>2.5V	LBOUT=1
010	VDD	VDD>2.6V	LBOUT=1
011	VDD	VDD>2.7V	LBOUT=1
100	VDD	VDD>2.8V	LBOUT=1
101	VDD	VDD>3.6V	LBOUT=1
110	AIN4	AIN4>1.20V	LBOUT=1
111	VDD	VDD>3.6V	LBOUT=1

3.1.3 电荷泵

图 3-3 电荷泵外围电路示意图

电荷泵电路主要有两种使用方式,一种是提供 LCD 的显示电压源,一种是作为自烧录时提供烧录

电压。当使用电荷泵电路时,需要在 VPP 引脚处接入一个 1uF 的电容。

注: VPP 外接电容耐压值必须大于 16V。

不同应用情况下的寄存器配置和外置电容接法。

功能	LCDEN	CHP_VPP	ENPMPL	外置电容(VPP 引脚)
LCD 关闭,不升压,不外部供电	0	0	0	无需外接电容
内部供电显示,LCD 接 DVDD	1	X	0	无需外接电容
自烧录,LCD 关闭	0	1	1	接外置电容
自烧录,LCD 显示	1	1	1	接外置电容
内部供电显示,LCD 接 Pump	1	0	1	接外置电容
Pump 开,LCD 关闭	0	0	1	接外置电容

地址	名称	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	上电复位值
1BH	NETD					VLCD:	X[1:0]			uuuu0000
1DH	NETF	CHP_VPP					/		ENVB	0u0uu000
58H	LCDENR					_			ENPMPL	00000110

NETF 寄存器(地址=1DH)

特性	R/W-0	U-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0
NETF	CHP_VPP		17) ′			ENVB

Bit 7 CHP_VPP:升压泵电压选项

0=升压泵电压受 VLCDX 选择

1 = 升压泵电压泵到烧录电压 6.5V

NETD 寄存器(地址为 1BH)

特性	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
NETD	1//				VLCDX[1:0]			
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0

VLCDX: VLCD 输出电压选择 Bit3-2

00 = 2.6V

01 = 2.8V

10 = 3.0V

11 = 3.2V

LCDENR 寄存器(地址为58H)

特性	R/W-0							
LCDENR								ENPMPL
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0

ENPMPL: 电荷泵 使能标志位 Bit 0

1 = 电荷泵 打开(此时 ENVB 必须置 1,否则 PUMP 无法正常工作)

0 = 电荷泵 关闭

电荷泵作为 LCD 显示使用操作说明:

- 1. 把基准打开(ENVB置高)
- 2. 根据 LCD 要求设置 LCDREF 和 VLCDX 寄存器
- 3. 将电荷泵使能信号打开(ENPMPL置高)

电荷泵作为自烧录 EPROM 区域使用操作说明:

- 1. 把基准打开(ENVB置高)
- 2. 将 VLCDX 置为 11
- 3. 将电荷泵使能信号打开(ENPMPL 置高)
- 4. 将 CHP_VPP 置高, 然后等待 200ms 时间检测 ERV 寄存器

3.2 Halt与Sleep模式

CSU8RP1185D 支持低功耗工作模式。为了使 CSU8RP1185D 处于待机状态, 可以让 CPU 停止工作使 CSU8RP1185D 进行停止或睡眠模式,减低功耗。这两种模式描述如下:

停止模式

CPU 执行停止指令后,程序计数器停止计数直到出现中断指令。为了避免由中断返回(Interrupt Return)引起的程序错误,建议在停止指令之后加一 NOP 指令以保证程序返回时能正常运行。

睡眠模式

CPU 执行睡眠指令后,所有的振荡器停止工作直到出现一个外部中断指令复位 CPU。为了避免由中断返回(Interrupt Return)引起的程序错误,建议在停止指令之后加一 NOP 指令以保证程序的正常运行。在睡眠模式下的功耗大约有 2uA。

为了保证 CPU 在睡眠模式下的功耗最小,在执行睡眠指令之前,需要关闭所有的电源模块及模拟电路,并且保证所有的 I/O 口是接到 DVDD 或 DGND 电平。

在执行睡眠指令之前, 先执行下面的程序。

CLRF NETA ;复位状态 CLRF NETC ;复位状态 CLRF NETE ;复位状态 CLRF NETF :复位状态

CLRF PT1PU ;断开 PT1 上拉电阻

MOVLW FFH

 MOVWF PT1EN
 ;PT1[7:4]用作输出接口

 CLRF PT1
 ;将 PT1[7:4]输出为低

MOVLW 01H

MOVWF PT2PU ;断开 PT2 口除 bit0(PT2[0])外的其它接口的上拉电阻

MOVLW 0FEH

MOVWF PT2EN ;除 bit0 (PT2[0]) 外, PT2[7:0]用作输出接口

CLRF PT2 ;将 PT2[7:1]输出为低

CLRF INTF ;清零中断标志

MOVLW 081H

MOVWF INTE ;使能外部中断

SLEEP ;使 CSU8RP1185D 进行睡眠模式 NOP ;保证 CPU 重启后程序能正常工作

3.3 复位系统

CSU8RP1185D包括以下几种复位方式:

上电复位

看门狗复位

掉电复位

上述复位方式中除看门狗复位以外的复位方式发生时,所有的系统寄存器恢复默认状态,程序停止运行,同时程序计数器 PC 清零。复位结束后,系统从向量 000H 处重新开始运行。 当看门狗复位发生时,系统寄存器值仍然保持不变,程序停止运行,同时程序计数器 PC 清零。复位结束后,系统从向量 000H 处重新开始运行。

系统复位需要一定的时间,并提供完整的上电复位过程。对于不同类型的振荡器,完成复位所需要的时间也不同。因此,DVDD的上升速度和不同晶振的起振时间都不固定。晶体振荡器类型不同则复位时间亦存在差别,这使得 DVDD 上升时间和启动时间不是确定值。

在 CSU8RP1185D 中,除看门狗复位以外的复位方式发生以后,系统需要等待 39ms 的时间,才能 开始正常工作。

图 3-4 上电复位电路示例及上电过程

参数	典型值
VPOR	2.2V

VLVR	2.0V
tWVS	39ms

VPOR: 上电复位 VLVR: 低电压复位

tWVS: 等待电压稳定时间

3.4 看门狗

图 3-5 看门狗定时器功能框图

看门狗定时器(WDT)用于防止程序由于某些不确定因素而失去控制。当 WDT 启动时,WDT 计时超时后将使 CPU 复位。在正常运行时,程序一般在 WDT 复位 CPU 之前先复位 WDT。当出现某些故障时,程序会被 WDT 复位到正常状态下。

看门狗定时器的输入是寄存器标志位: WDTEN 与 WDTS[2:0], WDT 的输出是寄存器标志位: TO。当用户置位 WDTEN 时,则内部的看门狗定时器振荡器(3KHz)将会启动,产生的时钟被送到 "8 bits 计数器 1",如 图 3-5 所示。 "8 bits 计数器 1"的输出是虚信号 WDTA[7:0],被发送到一个受 寄存器标志位 WDTS[2:0]控制的多路选择器,选择器的输出作为 "8 bits 计数器 2"的时钟输入。当 "8 bits 计数器 2"溢出时,它会发送 WDTOUT 信号复位 CPU(程序计数器将会跳转到 000H 以复位程序)及置位 TO 标志位。

当 WDTS[3]为 1 时,8 bits 计数器 2 的计数到 93 时溢出,当 WDTS[3]为 0 时,8 bits 计数器 2 的计数到 255 时溢出。

用户可以使用指令 CLRWDT 复位 WDT。

表 3-4 看门狗定时器寄存器表

地址	名称	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	上电复位值
04H	STATUS					TO				00u00xxx
0DH	WDTCON	WDTEN			WDT_LCD	WDTS[3:0]		0uu00000		

操作:

- 1. 设置 WDTS[3:0],选择 WDT 超时频率。
- 2. 置位寄存器标志位: WDTEN, 使能 WDT。
- 3. 在程序中执行 CLRWDT 指令复位 WDT。

当 wdt_lcd 标志位置高以后,LCD 将采用 wdt 的 2 分频时钟作为 LCD_CLK,此时 LCSSCKS 的寄存器对于 LCD_CLK 的分频作用无效,但是 LCDCKS 的帧频分频仍然有效。具体时钟分频请参考 3.6.2LCD 帧频选择。

WDTS[3]	WDTS[2:0]	计数器时钟	时间
0	000	WDTIN[7]	21.8 s
(8 bits 计数器 1)	001	WDTIN [6]	10.9 s
	010	WDTIN [5]	5.5 s
	011	WDTIN [4]	2.7 s
	100	WDTIN [3]	1.4 s
	101	WDTIN [2]	0.68 s
	110	WDTIN [1]	0.34 s
	111	WDTIN [0]	0.17 s
1	000	WDTIN[7]	8 s
(6bits 计数器 1)	001	WDTIN [6]	4 s
	010	WDTIN [5]	2s
	011	WDTIN [4]	1 s
	100	WDTIN [3]	0.5s
	101	WDTIN [2]	0.25s
	110	WDTIN [1]	0.125s
	111	WDTIN [0]	0.0625s

表 3-5 看门狗时钟选择列表

3.5 ADC 模块

3.5.1ADC 寄存器说明

表 3-6 ADC 功能模块相关寄存器列表

				/ -	1401247411					
地址	名称	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	上电复位值
06H	INTF						ADIF			uuu0u000
07H	INTE	GIE					ADIE			0uu0u000
10H	ADOH				ADO[2	23:16]				00000000

11H	ADOL		ADO[15:8]								
12H	ADOLL		ADO[7:0]								
13H	ADCON		ADSC ADM[2:0]							uuuu0000	
18H	NETA	SINL								00uuuuuu	
1AH	NETC		ADGAIN[5:0] ADEN						0000000u		
1DH	NETF						BGII	D[1:0]		0u00u000	

ADOH 寄存器(地址为10H)

特性	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	
ADOH		ADO[23:16]							
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	

ADOL 寄存器(地址为11H)

特性	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
ADOL	IX-U	ADO[15:8]								
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		

ADOLL 寄存器(地址为12H)

特性	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0			
ADOLL		ADO[7:0]									
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			

Bit 23-0 ADO[23:0]: ADC 数字输出

ADO[23] = ADC 数字输出符号位。0 = 输出为正; 1 = 输出为负。

ADO[22] = ADC 数字输出数据 bit 22

~

ADO[0] = ADC 数字输出数据 bit 0

NETA 寄存器(地址为 18h)

特性	R/W-0 R/W-0		U-0	U-0	U-0	U-0	U-0	U-0				
NETA	SINL[1:0]											
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0				

Bit 7-6 SINL:

00 = ADC 输入端连接到 AIN0 和 AIN1, AIN0 为 Vin+, AIN1 为 Vin-;

 $01 = \Box 00$;

10 = ADC 输入端连接到 TEMP;

11 = ADC 输入端连接到 AIN0 和 AIN1, AIN0 为 Vin-, AIN1 为 Vin+;

其中 TEMP 片内集成温度传感器的输入端。

当选择片内集成的温度传感器时,PGA(ADC增益)要选择1这一档。

针对传感器的温度补偿,建议使用 TEMPC 寄存器配置(参见0

ADC 增益以及时钟),可以不使用温度传感器直接进行温度补偿。

NETC 寄存器(地址为1AH)

特性	R/W-0	U-0						
NETC			ADEN					
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0

Bit 7-2 ADGAIN[5:0]: ADC 增益相关选项

Bit 1 ADEN: ADC 使能标志

1 = ADC 使能

0 = ADC 不使能

注意: VS 使能前(NETF 寄存器的 ENVDDA 位), ADEN 不使能; VS 使能后,延时 50us 以上 ADEN 才使能。(要严格按照该过程操作否则 AD 工作异常)示例代码和过程如下:

.....

BCF NETC,ADEN ;1、使能VS电源之前ADEN要关闭

.....

MOVLW xx1xxxx1B

MOVWF NETF ;2、使能模拟电源ENVB和VS电源ENVDDA

.

CALL sub_delay_50us ;3、延时50us

•••••

BSF NETC,ADEN ;4、使能ADEN

.

3.5.2 ADC 增益以及时钟

表 3-7 ADC 增益选择列表

VS	ADSC	ADGAIN	BGID	TEMPC	ADCF	PGA	ENOB
2.35V	0	110101	01	11100000	250K	1	18.3
2.33 V	0	000001	01	11100000	250K	64	17.3
	0	110101	01	11100000	250K	1	18.3
2.45V	0	000001	01	11100000	250K	64	17.3
	1	000001	01	11100000	125K	128	16.6
	0	110101	01	11100000	250K	1	18.3
2.8V	0	000001	01	11100000	250K	64	17.3
	1	000001	01	11100000	125K	128	16.6
	0	110101	01	11100000	250K	1	18.3
3.0V	0	000001	01	11100000	250K	64	17.3
	1	000001	01	11100000	125K	128	16.6

注:

- 1. 信号源内阻为 $1K\Omega$, ADM=111, 信号测试范围 $0mV\sim5mV$ 。
- 2. ENOB 计算中所选取的 AD 个数为连续的 1024 个 AD 值, ENOB 结果不包含符号位。所有 ENOB 数据为单一样片测试结果,对批量生产只起参考作用,实际应用中,由于传感器及芯片的批次不同,精度将有所偏差。

3.5.3 ADC 输出速率

表 3-8 ADC 输出速率选择列表

ADM[2:0]	ADC 输出速率(ADCF 参照表 3-7 ADC 增益选择列表)
000	ADCF/64
001	ADCF/128
010	ADCF/256
011	ADCF/512
100	ADCF/1024
101	ADCF/2048
110	ADCF/4096
111	ADCF/8192

注: 详细使用参见表 3-7 ADC 增益选择列表

3.5.4 ADC 工作电流

NETF 寄存器(地址为1DH)

特性	R/W-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
NETF		/ X)		BGIE	D [1:0]	
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0

注: 详细使用参见表 3-7 ADC 增益选择列表

3.5.5 ADC 增益的温度特性调整

TEMPC 寄存器(地址为 59H)

特性	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
TEMPC		TEMPC[7:0]										
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0				

注: 详细使用参见表 3-7 ADC 增益选择列表

3.6 LCD Driver

3.6.1 LCD 控制模式

LCD 驱动器有 3 种控制模式: 1/2duty, 1/3duty 及 1/4duty, 设置寄存器标志 LCD_DUTY[1:0]选择

一种模式。

表 3-9 LCD 的 duty 选择列表

LCD_DUTY[1:0]	控制模式	SEG1-16									
LCD_DUTT[T:0]		Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
01	1/2duty					-	-	COM2	COM1		
10	1/3duty					-	COM3	COM2	COM1		
11	1/4duty					COM4	COM3	COM2	COM1		

图 3-6 LCD 的 duty 模式工作周期

3.6.2 LCD 帧频选择

LCD 的帧频率可以通过表 3-10 和表 3-11 配置确定确定。CSU8RP1185D 对 LCD 模块的输入时钟进行分频以获得 LCDCK。

图 3-7 LCD 帧频时钟选择

表 3-10 LCDCLK 选择列表

WDT_LCD		LCDS	SCKS		LCDCL	K(KHz)
0	0	0	0	0	LCDSCK/32	1
0	0	0	0	1	LCDSCK/30	1.067
0	0	0	1	0_	LCDSCK/28	1.143
0	0	0	1	1	LCDSCK/26	1.231
0	0	1	0	0	LCDSCK/24	1.333
0	0	1	0	1	LCDSCK/22	1.455
0	0	1	1	0	LCDSCK/20	1.6
0	0	1 -	1	1	LCDSCK/18	1.778
0	_1	0	0	0	LCDSCK/16	2
0	1	0	0	1	LCDSCK/14	2.286
0	-1	-0	1	0	LCDSCK/12	2.667
0	1	0	1	1	LCDSCK/10	3.2
0	1	1	0	0	LCDSCK/8	4
0	1	1	0	1	LCDSCK/6	5.333
0	1	1	1	0	LCDSCK/4	8
0	1	1	1	1	LCDSCK/2	16
1	0	0	0	0	WTDCLK/32	0.094
1	0	0	0	1	WTDCLK/30	0.1
1	0	0	1	0	WTDCLK/28	0.107
1	0	0	1	1	WTDCLK/26	0.115
1	0	1	0	0	WTDCLK/24	0.125
1	0	1	0	1	WTDCLK/22	0.136
1	0	1	1	0	WTDCLK/20	0.15

1	0	1	1	1	WTDCLK/18	0.167
1	1	0	0	0	WTDCLK/16	0.188
1	1	0	0	1	WTDCLK/14	0.214
1	1	0	1	0	WTDCLK/12	0.25
1	1	0	1	1	WTDCLK/10	0.3
1	1	1	0	0	WTDCLK/8	0.375
1	1	1	0	1	WTDCLK/6	0.5
1	1	1	1	0	WTDCLK/4	0.75
1	1	1	1	1	WTDCLK/2	1.5

表 3-11 LCD 帧频选择列表

LCDCKS[1:0]	LCD 帧频率(LCDCK)	
00	LCD 输入时钟频率/4	()
01	LCD 输入时钟频率/8	
10	LCD 输入时钟频率/16	X Y
11	LCD 输入时钟频率/32	4 X Y

3.6.3 LCD 偏置电压

LCD 驱动器有 3 个偏置电压,V1、V2 及 V3,有 2 种电源模式: 1/3bias、1/2bias。偏置电压的产生电路采用内部电阻分压,优点是可以节省 V2 与 V1 pin 的外部电容,静态功耗的大小与分压电阻的阻值有关,分压电阻越大驱动能力越弱。

采用电阻分压的方式产生偏置电压

● 1/3bias 电源系统

图 3-8 LCD 的 1/3bias 电源系统电路连接图 (电阻分压)

● 1/2bias 电源系统

图 3-9 LCD 的 1/2bias 电源系统电路连接图 (电阻分压)

3.6.4 LCD 驱动波形

LCD 驱动波形分为 A 和 B 两种波形,通过寄存器 LCDWS 来选择,其中 B 波形对于大尺寸的显示效果更好。

图 3-10 LCD 的 1/4duty 1/3bias 电源系统的时钟(A波形)

图 3-11 LCD 的 1/3duty 1/3bias 电源系统的时钟(A 波形)

图 3-12 LCD 的 1/4duty 1/2bias 电源系统的时钟(A 波形)

CS-QR-YF-054A02

图 3-13 LCD 的 1/3duty 1/2bias 电源系统的时钟(A 波形)

图 3-14 LCD 的 1/4duty 1/3bias 电源系统的时钟(B波形)

图 3-15 LCD 的 1/3duty 1/3bias 电源系统的时钟(B波形)

图 3-16 LCD 的 1/4duty 1/2bias 电源系统的时钟(B波形)

CS-QR-YF-054A02

图 3-17 LCD 的 1/3duty 1/2bias 电源系统的时钟(B波形)

3.6.5 LCD 寄存器说明

表 3-12 CSU8RP1185D 的 LCD 驱动器寄存器列表

	Dec 12 es esta 11055 H4 205 4174 H1 4174 De												
地址	名称	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	上电复位值			
15H	PCK			LCDS	CKS[3:0]					u000000u			
1BH	NETD					VLCDX[1:0]		LCDREF[1:0]		uuuu0000			
28H	PT2CON	SEGCON 1	SEGCON 0			BZSEL				00uu0uuu			
40H	LCD1						S	EG1[3:0]		uuuu0000			

41H	LCD2					SEG2[3:0]		uuuu0000
	LCD3					SEG3[3:0]		uuuu0000
43H	LCD4					SEG4[3:0]		uuuu0000
44H	LCD5					SEG5[3:0]		uuuu0000
45H	LCD6					SEG6[3:0]		uuuu0000
46H	LCD7					SEG7[3:0]		uuuu0000
47H	LCD8					SEG8[3:0]		uuuu0000
48H	LCD9					SEG9[3:0]		uuuu0000
49H	LCD10					SEG10[3:0]		uuuu0000
4AH	LCD11					SEG11[3:0]	7 /	uuuu0000
4BH	LCD12					SEG12[3:0]		uuuu0000
4CH	LCD13					SEG13[3:0]	Y	uuuu0000
4DH	LCD14					SEG14[3:0]		uuuu0000
58H	LCDENR	LCDCKS[1:0]	LCDEN	LCDWS	LEVEL	LCD_DUTY[1:0]	ENPMPL	00000110

NETD 寄存器(地址为1BH)

特性	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-X	R/W-0
NETD					VLCD	X[1:0]	LCDR	EF[1:0]
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0

Bit3-2 VLCDX: VLCD 输出电压选择

00 = 保留

01 = 2.8V

10 = 3.0V

11 = 3.2V

注: 在 VLCDX[1]=1 时, PT2.6/PT2.7 不能作为 SEG 口使用, SEGCON1、SEGCON0 无效。

Bit1-0 LCDREF: LCD V1/V2产生电路分压电阻选择

0X=保留

10 = 50Kohm

11 = 10Kohm

PT2CON 寄存器 (地址为 28H)

特性	R/W-0	R/W-0	U-0	U-0	R/W-0	U-0	U-0	U-0
PT2CON	SEGCON1	SEGCON0			BZSEL			
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0

Bit 7 SEGCON1:选择 PT2.7 口功能

0 = PT2.7 为普通 IO 口

1 = PT2.7 为 SEG13 口

注: 在 VLCDX[1]=1 时 PT2.7 不能作为 SEG 口使用, SEGCON1 无效。

Bit6 SEGCONO: 选择 PT2.6 口功能

0 = PT2.6 为普通 IO 口

1 = PT2.6 为 SEG14 口

注: 在 VLCDX[1]=1 时 PT2.6 不能作为 SEG 口使用, SEGCON0 无效。

LCD1 寄存器(地址为 40H)

特性	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
LCD1						SEG	1[3:0]	
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0

Bit 3-0 SEG1[3]: LCD 驱动器控制信号: SEG1 带 COM4。

SEG1[2]: LCD 驱动器控制信号: SEG1 带 COM3。

SEG1[1]: LCD 驱动器控制信号: SEG1 带 COM2。

SEG1[0]: LCD 驱动器控制信号: SEG1 带 COM1。

LCD2 寄存器(地址为 41H)

 \sim

LCD3 寄存器(地址为 42H)

 \sim

LCD14 寄存器(地址为 4DH)

特性	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
LCD14		*				SEG1	4[3:0]	
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0

Bit 3-0 SEG14[3]: LCD 驱动器控制信号: SEG14 带 COM4。

SEG14[2]: LCD 驱动器控制信号: SEG14 带 COM3。

SEG14[1]: LCD 驱动器控制信号: SEG14 带 COM2。

SEG14[0]: LCD 驱动器控制信号: SEG14 带 COM1。

LCDENR 寄存器 (58H)

特性	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
LCDENR	LCDCk	KS[1:0]	LCDEN	LCDWS	LEVEL	LCD_DU	JTY[1:0]	ENPMPL
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0

Bit 7-6 LCDCKS[1:0]: LCD 帧频选择器

11 = LCD 的帧频是 LCD 输入时钟频率的 1/32

10 = LCD 的帧频是 LCD 输入时钟频率的 1/16

01 = LCD 的帧频是 LCD 输入时钟频率的 1/8

00 = LCD 的帧频是 LCD 输入时钟频率的 1/4

Bit 5 LCDEN: LCD 驱动器使能标志

1 = LCD 驱动器使能。LCD 的时钟被启动

0 = LCD 驱动器不使能。LCD 的时钟被停止

Bit 4 LCDWS:LCD 波形选择

1 = 波形 B

0=波形 A

Bit 3 LEVEL: LCD 驱动器的偏置电压选择器

0 = LCD 驱动器的偏置电压是 1/3bias

1 = LCD 驱动器的偏置电压是 1/2bias

Bit 2-1 LCD_DUTY[1:0]: LCD 驱动器控制模式 (SEG duty 周期)

11 = LCD 驱动器控制模式是 1/4duty 周期模式

10 = LCD 驱动器控制模式是 1/3duty 周期模式

01 = LCD 驱动器控制模式是 1/2duty 周期模式

00 = 不可用

Bit 0 ENPMPL: 电荷泵 使能标志位

1 = 电荷泵 打开(此时 ENVB 必须置 1, 否则 PUMP 无法正常工作)

0 = 电荷泵 关闭

3.6.6 LCD 操作步骤

LCD 的操作:

- 1. 将段接口连接到 LCD 面板。
- 2. 设置寄存器标志 LEVEL 选择 LCD 驱动器电源系统。(0 = 1/3bias, 1 = 1/2bias)
- 3. 如果使用芯片提供 LCD 的电源时,设置 ENPMPL 使能 LCD 电荷泵。(同时必须打开 ENVB)
- 4. 如果使用外部电源提供 LCD 的电源时,将外部电源与 VLCD 相连即可,不需要打开 LCD 电荷泵。
- 5. 选择 LCD 输入时钟的频率。
- 6. 设置寄存器标志 LCD DUTY[1:0],选择控制模式。(SEG duty 周期)。

表 3-13 LCD 的 duty 控制模式选择列表

LCD_DUTY[1:0]	控制模式
00	
01	1/2
10	1/3
11	1/4

1. 置位 LCDEN 以使能 LCD 驱动器

注:如果要使用 4×14 的 LCD,需要配置寄存器 SEGCON0 和 SEGCON1。

3.7 串行通信接口

CSU8RP1185D 主要提供一个可编程全双工串行通信接口。该接口能同时进行数据的发送和接收, 也可以作为一个同步移位寄存器使用。工作模式同通用 8051。

3.7.1 工作方式

主要提供四种工作模式:

表 3-14 串口通信工作模式

SM0	SM1	方式	类型	波特率		帧长度	起始位	停止位	第9位
0	0	0	同步	fcpuclk/6		8bits	无	无	无
0	1	1	异步	UARTCLE	K/16 或者 32	10bits	1	1	无
				SMOD	波特率	11bits	1	1	
1	0	2	异步	0	fcpuclk/32				0,1
				1 fcpuclk/16					
1	1	3	异步	UARTCLK	7/16 或者 32	11bits	1	1	0,1

模式 0:

图 3-18 模式 0 发送数据波形

图 3-19 模式 0 接收数据波形

图 3-21 UART 模式 1 接收数据波形

模式 2:

图 3-23 UART 模式 2 接收数据波形

模式 3:

模式 3 的操作、数据结构同模式 2,它们的不同在于波特率的生成。模式 3 的数据传输时序同模式 2 相同,只是移位时钟的时钟源不同。进入模式 3 状态,需将 SCON1 寄存器的 SM0 标志位置 1,同时

将 SM1 标志位置 1。

3.7.2 寄存器说明

地址	名称	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	上电复位值
32H	INTF2							URTIF	URRIF	uuuuuu00
33H	INTE2							URTIE	URRIE	uuuuuu00
7AH	SCON1	SM0	SM1	SM2	REN	TB8	RB8	UART_SEL	UARTEN	00000000
7BH	SCON2	SMOD								Ouuuuuu
7CH	SBUF									00000000

SCON1 寄存器

位地址	标识符	功能
7:6	SM0、SM1	串口通信工作方式选择寄存器 参见表 3-14 串口通信工作模式
5	SM2	保留
4	REN	接收控制选择 1: 允许接收 0: 禁止接收
3	TB8	发送数据第9位
2	RB8	接收数据第9位 不可写
1	UART_SEL	串口通信接口选择: =0: PT2.0/PT2.1 作为通信接口 =1: PT2.4/PT2.5 作为通信接口
0	UARTEN	串口使能

SCON2 寄存器

位地址	标识符	功能
7	SMOD	波特率选择寄存器 参见表 3-14 串口通信工作模式

SBUF 寄存器

位地址	标识符	功能
7:0	SBUF	当串口发送数据时,将发送数据写入 SBUF 寄存器。 当串口接收数据时,从 SBUF 寄存器读出接收数据。

3.7.3 波特率

波特率(K)	ICK=16MHz,模式 2						
夜符 华 (K)	实际波特率(K)	偏差(%)	SMOD				
9.6	9.6153	0.16	=0				
19.2	19.2307	0.16	=1				

3.8 OTP 模块

OTP 烧写器的接口:

图 3-24 OTP 烧写器接口图

表	3-15 (ЭTР	接┕	说明

端口名称	说明	备注
VPP	烧录电压	
DVDD	电源正端	
DGND	电源负端	
PT2[0]	数据端口	
PT2[1]	数据端口	

3.9 OTP 在线烧录

电路要求:在在线烧录需要写入数据时,VPP必须采用内部的电荷泵。

注: VPP 外接电容耐压值必须大于 16V。

地址要求: CSU8RP1185D 芯片通过 EADRH[4:0]和 EADRL[7:0]寄存器来选择地址: 当 EADRH[4]=0 时,地址由 800H+{ EADRH[2:0], EADRL[7:0]}组成,寻址空间是 800H~FFBH;当 EADRH[4]=1 时,地址由{ EADRH[3:0], EADRL[7:0]}组成,寻址空间是 000H~FFBH。

例如:

1. 当 EADRH[4:0]为 00H, EADRL[7:0]为 7FH 时选择对 87FH 地址进行烧录和读取;

- 2. 当 EADRH[4:0]为 10H, EADRL[7:0]为 7FH 时选择对 07FH 地址进行烧录和读取;
- 3. 当 EADRH[4:0]为 02H, EADRL[7:0]为 7FH 时选择对 A7FH 地址进行烧录和读取;
- 4. 当 EADRH[4:0]为 12H, EADRL[7:0]为 7FH 时选择对 27FH 地址进行烧录和读取;

图 3-25 在线烧录地址寻址

表 3-16 在线烧录寄存器列表

地址	名称	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	上电复位值
05H	WORK				工作寄存器					00000000
0AH	EADRH				EADRH[4:0]				uuu00000	
0BH	EADRL	ADRL EADRL[7:0]							00000000	
19H	NETB	7.				ERV				uuuuxuuu

EADRH: 提供 OTP 在线烧录或者在线读 OTP 的高位地址。

EADRL: 提供 OTP 在线烧录或者在线读 OTP 的低位地址。

Work: 提供 OTP 在线烧录时的烧录数据,读 OTP 时读出的数据的低 8 位。

ERV: 当 VPP 引脚电压达到烧录电压时, ERV 置高。

相关指令:

TBLP k

MOVP

其中 TBLP k 是将寄存器 work 中的数据写到以 EADRH,EADRL 的内容作为 OTP 的写地址中,烧录时间是 K 个指令周期。

MOVP 是将 EADRH 和 EADRL 的内容作为 OTP 的读地址,读出的数据的低 8 位放到寄存器 work中。

操作方式:

在线烧录 OTP 时,

- 1. 把基准打开(ENVB 置高)。
- 2. 将 VLCDX 置为 11。
- 3. 将电荷泵使能信号打开(ENPMPL 置高)。
- 4. 将 CHP VPP 置高,然后等待 200ms 时间检测 ERV 寄存器。
- 5. 延时 50ms,检查 ERV 电压值是否达到烧录电压,如果检查未达到烧录电压延时 50ms 再检查一次。
- 6. 将烧录地址写入 EADRH, EADRL 寄存器。
- 7. 将烧录的数据写入 work 寄存器。
- 8. 用在线烧录指令(TBLP)烧录,数据写入对应 OTP 地址的低 8 位。烧录指令中的时间选择(k)参见表 3-17 在线烧录时间选择寄存器。

烧录完一个后,必须从步骤5开始烧录下一个。

序号 时钟源(KHz) M3_CK M2_CK M1_CK 指令周期(KHz) k(十进制) 1 **ICK** 16000 0 125 0 0 25 **ICK** 0 2 16000 0 1 62.5 13 3 **ICK** 16000 0 1 0 500 100 4 **ICK** 16000 0 1 1 250 50 5 **ICK** 16000 0 0 250 1 50 **ICK** 16000 0 125 25 6 1 1 7 **ICK** 16000 1 0 1000 200 8 **ICK** 1 100 16000 1 1 500

表 3-17 在线烧录时间选择寄存器

在线读 OTP 数据时

- 1. 将读 OTP 地址的写入 EADRH 和 EADRL 寄存器。
- 2. 用在线读 OTP 指令(MOVP)读出 OTP 数据,执行该指令后,数据的低 8 位存放在 work 寄存器。

如果使用 MOVP 对程序代码区进行查表时,要注意指令是以 word(16 位)寻址,在线读 OTP 是以 word(16 位)进行寻址。下面的例子只能查询到低 8 位数据 75H,查询不到高 8 位数据 26H。

Example:		
ORG 158H		
OW 2675H		

4 MCU 指令集

表 4-1 MCU 指令集

指令	操作	指令周期	标志位
ADDLW k	[W]←[W]+k	1	C,DC,Z
ADDPCW	[PC] ←[PC]+1+[W]	1	~
ADDWF f,d	$[Destination] \leftarrow [f] + [W]$	1	C,DC,Z
ADDWFC f,d	$[Destination] \leftarrow [f] + [W] + C$	1	C,DC,Z
ANDLW k	[W]←[W] AND k	1	Z
ANDWF f,d	$[Destination] \leftarrow [W] AND [f]$	1	Z
BCF f,b	[f]←0	1	~
BSF f,b	[f]←1	1	~
BTFSC f,b	Jump if[f]=0	Л	~
BTFSS f,b	Jump if[f]=1	1	~
CALL k	Push PC+1 and Goto K	1	~
CLRF f	[f]←0	1	Z
CLRWDT	Clear watch dog timer	1	~
COMF f,d	[f]←NOT([f])	1	Z
DECF f,d	[Destination] \leftarrow [f] -1	1	Z
DECFSZ f,d	[Destination] ←[f] -1,jump if the result is zero	1	~
GOTO k	PC←k	1	~
HALT	CPU Stop	1	~
INCF f,d	[Destination] \leftarrow [f]+1	1	Z
INCFSZ f,d	[Destination] \leftarrow [f]+1,jump if the result is zero	1	~
IORLW k	[W]←[W] OR k	1	Z
IORWF f,d	$[Destination] \leftarrow [W] OR [f]$	1	Z
MOVP	[EADRL]->WORK	2	~
MOVFW f	[W]←[f]	1	~
MOVLW k	[W]←k	1	~
MOVWF k	[f]←[W]	1	~
NOP	No operation	1	~
RETFIE	Pop PC and GIE =1	1	~
RETLW k	RETURN and W=k	1	~
RETURN	POP PC	1	~
RLF f,d	$[Destination < n+1 >] \leftarrow [f < n >]$	1	C,Z
RRF f,d	$[Destination < n-1>] \leftarrow [f < n>]$	1	C,Z
SLEEP	STOP OSC	1	PD

SUBWF f,d	$[Destinnation] \leftarrow [f]-[W]$	1	C,DC,Z
SUBWFC f,d	$[Destinnation] \leftarrow [f]-[W]+C$	1	C,DC,Z
TBLP k	[EADRL] ←WORK	k+1	~
XORLW k	[W]←[W] XOR k	1	Z
XORWF f,d	$[Destination] \leftarrow [W] XOR [f]$	1	Z

参数说明:

f:数据存储器地址(00H~FFh)

W:工作寄存器

k: 立即数

d:目标地址选择: d=0 结果保存在工作寄存器, d=1: 结果保存在数据存储器 f 单元

b:位选择(0~7)

[f]:f 地址的内容

PC:程序计数器

C:进位标志

DC:半加进位标志

Z:结果为零标志

PD:睡眠标志位

TO:看门狗溢出标志

WDT:看门狗计数器

表 4-2 MCU 指令集描述

1

ADDLW	加立即数到工作寄存器
指令格式	ADDLW K (0<=K<=FFH)
操作	(W)<(W)+K
标志位	C, DC, Z
描述	工作寄存器的内容加上立即数 K 结果保存到工作寄存器中
周期	
	在指令执行之前:
例子	W=08H
ADDLW 08H	在指令执行之后:
	W=10H

2

ADDPCW	将 W 的内容加到 PC 中
指令格式	ADDPCW
操作	(PC)<一(PC)+1+(W) 当(W)<=7FH (PC)<一(PC)+1+(W)-100H 其余
标志位	で (TC) (TC) (TC) (TC) (TC) (TC) (TC) (TC)
描述	将地址 PC+1+W 加载到 PC 中

周期	1
例子 1 ADDPCW	在指令执行之前: W=7FH, PC=0212H 指令执行之后: PC=0292H
例子 2 ADDPCW	在指令执行之前: W=80H, PC=0212H 指令执行之后: PC=0193H
例子 3 ADDPCW	在指令执行之前: W=FEH, PC=0212H 指令执行之后: PC=0211H

ADDWF	加工作寄存器到f
指令格式	ADDWF f,d 0<=f<=FFH d=0,1
操作	[目标地址]<一(f)+(W)
标志位	C, CD, Z
描述	将 f 的内容和工作寄存器的内容加到一起。如果 d 是 0,结果保存到工作寄存器中。如果 d 是 1,结果保存到 f 中。
周期	
例子 1 ADDWF f 0	指令执行之前: f=C2H W=17H 在指令执行之后 f=C2H W=D9H
例子 2 ADDWF f 1	指令执行之前 f=C2H W=17H 指令执行之后 f=D9H W=17H

4

ADDWFC	将Wf和进位位相加
指令格式	ADDWFC f, d 0<=f<=FFH d=0,1
操作	(目标地址)<一(f)+(W)+C
标志位	C, DC, Z
描述	将工作寄存器的内容和 f 的内容以及进位位相加 当 d 为 0 时结果保存到工作寄存器 当 d 为 1 时结果保存到 f 中
周期	1
例子 ADDWFC f,1	指令执行之前 C=1 f=02H W=4DH 指令执行之后 C=0 f=50H W=4DH

ANDLW	工作寄存器与立即数相与
指令格式	ANDLW K 0<=K<=FFH
操作	(W)<(W) AND K
标志位	Z
描述	将工作寄存器的内容与8bit的立即数相与,结果保存到工作寄存器中。
周期	1
例子 ANDLW 5FH	在指令执行之前 W=A3H 在指令执行之后 W=03H

6

	The way the where the HIII of the co. Adv. I when I see I w.
ANDWF	将工作寄存器和 f 的内容相与
指令格式	ANDWF f, d 0<=f<=FFH d=0,1
操作	(目标地址)<一(W) AND (f)
标志位	Z
描述	将工作寄存器的内容和 f 的内容相与 如果 d 为 0 结果保存到工作寄存器中 如果 d 为 1 结果保存到 f 中
周期	1
例子 1 ANDWF f,0	在指令执行之前 W=0FH f=88H 在指令执行之后 W=08H f=88H
例子 2 ANDWF f,1	在指令执行之前 W=0FH f=88H 在指令执行之后 W=0FH f=08H

7

BCF	清除f的某一位
指令格式	BCF f, b 0<=f<=FFH 0<=b<=7
操作	(f[b])<-0
标志位	无
描述	F的第 b 位置为 0
周期	1
	指令执行之前:
例子	FLAG=8DH
BCF FLAG 2	指令执行之后:
	FLAG=89H

BSF	F的 b 位置 1
指令格式	BSF f, b 0<=f<=FFH 0<=b<=7
操作	(f[b])<-1
标志位	无
描述	将 f 的 b 位置 1
周期	1
例子 BSF FLAG 2	在指令执行之前 FLAG=89H 在指令执行之后 FLAG=8DH

9

BTFSC	如果 bit 测试为 0 则跳转
指令格式	BTFSC f, b 0<=f<=FFH 0<=b<=7
操作	Skip if (f[b])=0
标志位	无
描述	如果f的bit位是0,下一条取到的指令将被丢到,然后执行一条空指令组成一个两周期的指令。
周期	1
例子 NODE BTFSC FLAG 2 OP1: OP2:	在程序执行以前 PC=address(NODE) 指令执行之后 If(FLAG[2])=0 PC=address(OP2) If(FLAG[2])=1 PC=address(OP1)

10

BTFSS	如果 bit 测试为 1, 则跳转
指令格式	BTFSS f, b 0<=f<=FFH 0<=b<=7
操作	Skip if $(f[b])=1$
标志位	无
描述	如果 f 的 bit 位是 1,下一条取到的指令将被丢到,然后执行一条空指令组成一个两周期的指令。
周期	1
例子 NODE BTFSS FLAG 2 OP1: OP2:	在程序执行以前 PC=address(NODE) 指令执行之后 If(FLAG[2])=0 PC=address(OP1) If(FLAG[2])=1 PC=address(OP2)

CALL	子程序调用
指令格式	CALL K 0<=K<=1FFFH
操作	(top stack)<—PC+1 PC<—K
标志位	无
描述	子程序调用, 先将 PC+1 压入堆栈, 然后把立即数地址下载到 PC 中。
周期	1

12

CLRF	清除 f
指令格式	CLRF f 0<=f<=FFH
操作	(f)<-0
标志位	Z
描述	将f的内容清零
周期	1
例子 CLRF WORK	在指令执行之前 WORK=5AH 在指令执行之后 WORK=00H

^{*}注。当 clrf status 寄存器时,标志位 Z 不会置高

13

CLRWDT	清除看门狗定时器
指令格式	CLRWDT
操作	看门狗计数器清零
标志位	无
描述	清除看门狗定时器
周期	1
例子	指令执行之后
CLRWDT	WDT=0

14

COMF	f取反
指令格式	COMF f, d 0<=f<=FFH d=0,1
操作	(目的地址) <not(f)< td=""></not(f)<>
标志位	Z
描述	将 f 的内容取反, 当 d 为 0 时,结果保存到工作寄存器中, 当 d 为 1 时,结果保存到 f 中。
周期	1

	在指令执行之前
例子	W=88H, f=23H
COMF f, 0	在指令执行之后
	W=DCH, f=23H
	在指令执行之前
例子 2	W=88H, f=23H
COMF f, 1	在指令执行之后
	W=88H, f=DCH

13	
DECF	f减1
指令格式	DECF f, d 0<=f<=FFH d=0,1
操作	(目的地址)<一(f)-1
标志位	Z
描述	F的内容减 1 当 d 为 0 时,结果保存到工作寄存器中 当 d 为 1 时,结果保存到 f 中。
周期	1
例子 DECF f,0	在指令执行之前 W=88H f=23H 在指令执行之后 W=22H f=23H
例子 2 DECF f,1	在指令执行之前 W=88H f=23H 在指令执行之后 W=88H f=22H
16	ZG-X-X-X-X-X-X-X-X-X-X-X-X-X-X-X-X-X-X-X

16

DECFSZ	f减1如果为0则跳转
指令格式	DECFSZ f, d 0<=f<=FFH d=0,1
操作	(目的地址)<一(f)-1,如果结果为 0 跳转
标志位	无
描述	f的内容减 1。 如果 d 为 0,结果保存到工作寄存器中。 如果 d 为 1,结果保存到 f 中 如果结果为 0,下一条已经取到的指令将被丢掉,然后插入一条 NOP 指令组成 一个两个周期的指令。
周期	1
例子 Node DECFSZ FLAG,1 OP1: OP2:	在指令执行之前 PC=address(Node) 在指令执行之后 (FLAFG)=(FLAG)-1 If(FLAG)=0 PC=address(OP2) If(FLAG)!=0 PC=address(OP1)

GOTO	无条件跳转
指令格式	GOTO K 0<=K<=1FFFH
操作	PC<-K
标志位	无
描述	立即地址载入 PC
周期	1

18

HALT	停止 CPU 时钟
指令格式	HALT
操作	CPU 停止
标志位	无
描述	CPU 时钟停止,晶振仍然工作,CPU 能够通过内部或者外部中断重启。
周期	1

19

INCF	f 加 1
指令格式	INCF f, d 0<=f<=FFH d=0,1
操作	(目的地址)<一(f)+1
标志位	Z
描述	f加1 如果d为0,结果保存到工作寄存器中 如果d为1,结果保存到f中。
周期	1
例子 INCF f, 0	在指令执行之前 W=88H f=23H 在指令执行之后 W=24H f=23H
例子 2 INCF f,1	在指令执行之前 W=88H f=23H 在指令执行之后 W=88H f=24H

20

INCFSZ	f加1,如果结果为0跳转
指令格式	INCFSZ f, d 0<=f<=FFH d=0,1
操作	(目的地址)<一(f)+1 如果结果为 0 就跳转
标志位	无
描述	f的内容加 1。 如果 d 为 0,结果保存到工作寄存器中。

	如果 d 为 1,结果保存到 f 中 如果结果为 0,下一条已经取到的指令将被丢掉,然后插入一条 NOP 指令组成一个两个周期的指令。
周期	1
例子 Node INCFSZ FLAG,1 OP1: OP2:	在指令执行之前 PC=address(Node) 在指令执行之后 (FLAFG)=(FLAG)+1 If(FLAG)=0 PC=address(OP2) If(FLAG)!=0 PC=address(OP1)

IORLW	工作寄存器与立即数或
指令格式	IORLW K 0<=K<=FFH
操作	(W)<(W) K
标志位	Z
描述	立即数与工作寄存器的内容或。结果保存到工作寄存器中。
周期	1
例子 IORLW 85H	在指令执行之前 W=69H 在指令执行之后 W=EDH

22

IORWF	f与工作寄存器或
指令格式	IORWF f, d 0<=f<=FFH d=0,1
操作	(目的地址)<一(W) (f)
标志位	Z
描述	f和工作寄存器或 当d为0时,结果保存到工作寄存器中 当d为1时,结果保存到f中
周期	1
例子 IORWF f,1	在指令执行前 W=88H f=23H 在指令执行后 W=88H f=ABH

23

MOVFW	传送到工作寄存器
指令格式	MOVFW f 0<=f<=FFH
操作	(W)<(f)
标志位	无

描述	将数据从 f 传送到工作寄存器
周期	1
例子 MOVFW f	在指令执行之前 W=88H f=23H 在指令执行之后 W=23H f=23H

MOVLW	将立即数传送到工作寄存器中
指令格式	MOVLW K 0<=K<=FFH
操作	(W) <k< td=""></k<>
标志位	无
描述	将 8bit 的立即数传送到工作寄存器中
周期	1
例子 MOVLW 23H	在指令执行之前 W=88H 在指令执行之后 W=23H

25

MOVP	将 OTP 中的{EADRL}的数据读出放入{WORK}中
指令格式	MOVP K
操作	({WORK})< ({EADRL})
标志位	无
描述	将 OTP 中的{EADRL}的数据读出放入{WORK}中
周期	2
例子 MOVP	在指令执行之前 EPROM: 03H: 07H EADRL=03H 在指令执行之后 W=07H
26	

MOVWF	将工作寄存器的值传送到 f 中
指令格式	MOVWF f 0<=f<=FFH
操作	(f)<(W)
标志位	无
描述	将工作寄存器的值传送到 f 中
周期	1
例子 MOVWF f	在指令执行之前 W=88H f=23H 在指令执行之后 W=88H f=88H

NOP	无操作
指令格式	NOP
操作	无操作
标志位	无
描述	无操作
周期	1

28

RETFIE	从中断返回
指令格式	RETFIE
操作	(Top Stack)=>PC Pop Stack 1=>GIE
标志位	无
描述	PC 从堆栈顶部得到,然后出栈,设置全局中断使能位为1
周期	1

29

RETLW	返回,并将立即数送到工作寄存器中
指令格式	RETLW K 0<=K<=FFH
操作	(W)<—K (Top Stack)=>PC Pop Stack
标志位	无
描述	将 8bit 的立即数送到工作寄存器中,PC 值从栈顶得到,然后出栈
周期	1

30

RETURN	从子程序返回
指令格式	RETURN
操作	(Top Stack)=>PC Pop Stack
标志位	无
描述	PC 值从栈顶得到,然后出栈
周期	1

31

RLF	带进位左移
指令格式	RLF f, d 0<=f<=FFH d=0,1
操作	(目标地址[n+1])<一(f[n])

	(目标地址[0])<一C
	C<-(f[7])
标志位	C, Z
描述	F 带进位位左移一位 如果 d 为 0,结果保存到工作寄存器 如果 d 为 1,结果保存到 f 中
周期	1
例子 RLF f,1	在指令执行之前 C=0 W=88H f=E6H 在指令执行之后 C=1 W=88H f=CCH

RRF	带进位右移
指令格式	RRF f, d 0<=f<=FFH d=0,1
操作	(目标地址[n-1])<一(f[n]) (目标地址[7])<一C C<一(f[0])
标志位	C
描述	F 带进位位右移一位 如果 d 为 0,结果保存到工作寄存器 如果 d 为 1,结果保存到 f 中
周期	1
例子 RRFf,0	在指令执行之前 C=0 W=88H f=95H 在指令执行之后 C=1 W=4AH f=95H

33

SLEEP	晶振停止
指令格式	SLEEP
操作	CPU 晶振停止
标志位	PD
描述	CPU 晶振停止。CPU 通过外部中断源重启
周期	1

34

SUBLW	立即数减工作寄存器的值
指令格式	SUBLW K 0<=K<=FFH
操作	(W) <k-(w)< td=""></k-(w)<>
标志位	C, DC, Z
描述	8bit 的立即数减去工作寄存器的值,结果保存到工作寄存器中
周期	1

例子 SUBLW 02H	在指令执行之前 W=01H 在指令执行之后 W=01H C=1(代表没有借位) Z=0(代表结果非零)
例子 2 SUBLW 02H	在指令执行之前 W=02H 在指令执行之后 W=00H C=1(代表没有借位) Z=1(代表结果为零)
例子 2 SUBLW 02H	在指令执行之前 W=03H 在指令执行之后 W=FFH C=0(代表有借位) Z=0(代表结果非零)

SUBWF	f的值减工作寄存器的值
指令格式	SUBWF f, d 0<=f<=FFH d=0,1
操作	(目标地址)<一(f)-(W)
标志位	C, DC, Z
描述	f的值减去工作寄存器的值。 如果 d 为 0,结果保存到工作寄存器 如果 d 为 1,结果保存到 f 中
周期	1
例子 SUBWF f,1	在指令执行之前 f=33H W=01H 在指令执行之后 f=32H C=1 Z=0
例子 2 SUBWF f,1	在指令执行之前 f=01H W=01H 在指令执行之后 f=00H C=1 Z=1
例子 3 SUBWF f,1	在指令执行之前 f=04H W=05H 在指令执行之后 f=FFH C=0 Z=0

36

SUBWFC	带借位的减法
指令格式	SUBWFC f, d 0<=f<=FFH d=0,1
操作	(目标地址)<一(f)-(W)-1+C
标志位	C, DC, Z
描述	f 的值减去工作寄存器的值 如果 d 为 0,结果保存到工作寄存器 如果 d 为 1,结果保存到 f 中
周期	1
例子 SUBWFC f,1	在指令执行之前 W=01H f=33H C=1

	在指令执行之后 f=32H C=1 Z=0
例子 2 SUBWFC f,1	在指令执行之前 W=01H f=02H C=0 在指令执行之后 f=00H C=1 Z=1
例子 3 SUBWFC f,1	在指令执行之前 W=05H f=04H C=0 在指令执行之后 f=FEH C=0 Z=0

TBLP	将 OTP 的{EADRL}的地址写入{WORK}中的数据
指令格式	TBLP k
操作	OTP({EADRL})<—({WORK})
标志位	无
描述	将 OTP 的{EADRL}的地址写入{WORK}中的数据
周期	与工作时钟有关
例子 TBLP 100	在指令执行之前 OTP memory: 17H= FFH EADRL = 17H WORK = 05H 在指令执行之后 OTP memory: 17H = 05H
38	

XORLW	工作寄存器的值与立即数异或
指令格式	XORLW K 0<=K<=FFH
操作	(W)<-(W)^K
标志位	Z
描述	8bit 的立即数与工作寄存器的值异或,结果保存在工作寄存器中
周期	1
	在指令执行之前
例子	W=ACH
XORLW 5FH	在指令执行之后
	W=F3H

39

XORWF	f的值与工作寄存器的值异或		
指令格式	XORWF f, d 0<=f<=FFH d=0,1		
操作	(目标地址)<一(W)^(f)		
标志位	Z		

描述	F的值与工作寄存器的值异或, 当 d 为 0 时,结果保存到工作寄存器中 当 d 为 1 时,结果保存到 f 中
周期	1
例子 XORWF f,1	在指令执行之前 W=ACH f=5FH 在指令执行之后 f=F3H

5 电气特性

5.1 最大极限值

表 5-1 CSU8RP1185D 最大极限值

参数	范围	单位
电源 DVDD,AVDD	2.4~3.6	V
引脚输入电压	-0.3~DVDD+0.3 -0.3~AVDD+0.3	V
工作温度	-40~+85	C
存贮温度	-55~+150	C

5.2 直流特性 (DVDD, AVDD = 3.3V, T_A = 25 ℃, 如无其他说明则都是此条件)

表 5-2 CSU8RP1185D 直流特性

符号	参数	测试条件	最小值	典型值	最大值	单位
VDD	工作电源		2.4	3	3.6	V
IDD1	电源电流 1	指令周期 = 500KHz 电荷泵、ADC 打开		1.5		mA
ISLEEP	睡眠模式下电源电流	睡眠指令		1.5		uA
VIH	数字输入高电平	PT2.0\ PT2.1	0.7*VDD			V
VIL	数字输入低电平	PT2.0\ PT2.1			0.3*VDD	V
VIH	数字输入高电平	PT1,PT2(除 PT2.0\ PT2.1)	0.6*VDD			V
VIL	数字输入低电平	PT1,PT2(除 PT2.0\ PT2.1)			0.4*VDD	V
IPU	上拉电流	PT1,2 Vin = 0		30		uA
ЮН	高电平输出电流	VOH=0.9*DVDD (除 PT2.2、PT2.3)		3		mA
IOL	低电平输出电流	VOL=0.1*DVDD (除 PT2.2、PT2.3)		3		mA
ЮН	高电平输出电流	VOH=0.9*DVDD (PT2.2、PT2.3)		8		mA
IOL	低电平输出电流	VOL=0.1*DVDD (PT2.2、PT2.3)		10		mA
IREG	VS 稳压器输出电流	AVDD=3.3V VS=2.35V		2		mA
VLREF	用于低电压检测的内 部参考电压			1.20		V
TCLRE F	用于低电压检测的 内部参考电压温度系 数	TB _{AB} = -40~80 °C		50		ppm/°
		SILB[2:0]=000		2.4		
VLBAT	低电池检测电压	SILB[2:0]=001		2.5		V
		SILB[2:0]=010		2.6		

		SILB[2:0]=011	2.7	
		SILB[2:0]=100	2.8	
		SILB[2:0]=101	3.6	
		SILB[2:0]=110	1.20	
		SILB[2:0]=111	3.6	
FRC	内置 RC 振荡器		16	MHz
FWDT	内置看门狗时钟		3.2	KHz

5.3 ADC 的特性 (VREF= 3V, T_A = 25 ℃, 如无其他说明则都是此条件)

表 5-3 CSU8RP1185D ADC 的特性

参数		条件	最小值	典型值	最大值	单位
	模拟输入范围		AGND-0.1		AVDD+0.1	V
模拟 共模输入电压			VREF/3		VREF*2/3	V
输入	满幅输入电压 (AIN+)-(AIN-)		4		±VREF/PGA	V
	差分输入阻抗			8/PGA		ΜΩ
	分辨率	无失码		24		Bits
	输入噪声(rms)	增益=1		9		uv
	棚八噪戸(rms) 	增益=64	7.	290		nV
系统	积分线性度	增益=64		±0.02		% of FS
性能	失调误差	增益=64		86		uV
	失调误差漂移	增益=64		-0.03		uV/℃
	增益误差	增益=64		-8		%
	增益误差漂移	增益=64 TEMPC=11100000		-100		ppm/℃
		LDOS[1:0]= 11		2.35		
	VC	LDOS[1:0]= 10		2.45		V
参考	VS	LDOS[1:0]= 01		2.8		V
电压		LDOS[1:0]= 00		3.0		
	参考电压温度系 数			100		ppm/°C

6 Bonding 说明

6.1 PIN 排布

注意:衬底必须接到 DGND

36pin-die

X=1310um Y=1210um

PAD 大小: 70um*70um

其中 DVDD pad 上方有箭头标示:

6.2 Pin 坐标

No.	PAD Name	(x,y)	
1	DVDD	53,1155	
2	DGND	53,955	
3	VPP	50,550	
4	AGND	50,450	
5	AVDD	50,233	

6	VS/REF	52 120
7		53,128
	AIN0	151,53
8	AIN1	251,53
9	PT2[4]/RX/INT1	426,53
10	PT2[5]/TX/INT1	526,53
11	PT1[4]/LPD	626,53
12	PT1[5]/INT0	726,53
13	PT1[6]	826,53
14	PT1[7]	926,53
15	PT2[0]/RX/INT0	1026,53
16	PT2[1]/TX/INT1	1126,53
17	PT2[2]	1257,196
18	PT2[3]/BZ	1257,296
19	PT2[6]	1257,396
20	PT2[7]/BZ	1257,496
21	SEG12	1257,606
22	SEG11	1257,712
23	SEG10	1257,815
24	SEG9	1257,920
25	SEG8	1257,1026
26	SEG7	1130,1157
27	SEG6	1033,1157
28	SEG5	938,1157
29	SEG4	842,1157
30	SEG3	745,1157
31	SEG2	650,1157
32	SEG1	553,1157
33	COM4	455,1157
34	COM3	360,1157
35	COM2	264,1157
36	COM1	169,1157

7 单片机产品命名规则

7.1 产品型号说明

标示符	封装类型
BD	Bonding
DI	DIP
SD	SDIP
SO	SOP
SS	SSOP
TS	TSSOP
QF	QFP
LQ	LQFP
TQ	TQFP
QN	QFN

8 包装方式

产品用晶粒盘装,每层晶粒盘上加盖黑色导电纸,再用上盖逐层叠起完成一络,每络最多不大于 5 盘。数量未满整盘的尾数盘,放置于最上层。

每络用透明胶带呈"十"字型缠绕于晶粒盘上,标签贴于最上盖。

将贴好标签的两络产品分别放入防静电袋内并抽真空,再分别将真空袋产品直排统一放入 PE 袋后封口,并贴标签在 PE 袋上。

将装入 PE 袋的产品放入纸箱,纸箱内部用气泡垫填充,纸箱外部贴标签。

从里到外包装数量明细见下表:

晶粒盘规格 (mil*mil-mil)	粒装/盘	盘/络	数量/络	数量 EA/真空袋	数量 EA/PE 袋
55*65-16	400	5	2000	4000	100000