УЧЕБНЫЙ ЦЕНТР ФИЗИКИ ФТФ

Группа: М32041	К работе допущен
Студенты: Игнатьев, Никитин, Курепин	Работа выполнена
Преподаватель: Лабунцов Виктор	Отчёт принят

Рабочий протокол и отчёт по лабораторной работе № **5.04**

1. Цель работы.

Определение постоянной Ридберга для атомного водорода

2. Объект исследования

Атом водорода.

3. Рабочие формулы и исходные данные.

Длина волны:
$$\lambda = B \frac{n^2}{n^2 - 4}$$

Волновое число:
$$\widetilde{\nu_0} = \frac{1}{\lambda_0}$$

Формула Бора:
$$E_n = -\frac{2\pi^2 m e^4}{h} \cdot \frac{1}{n^2} = -hcR\frac{1}{n^2},$$

Серия Бальмера:
$$\widetilde{\nu} = \left(\frac{R}{4} - \frac{R}{n^2}\right)$$

- 4. Измерительные приборы.
- Монохроматор
- Водородная газоразрядная трубка
- Ртутная лампа
- Источник питания подсветки монохроматора
- Источник питания ртутной лампы и водородной лампы

5. Схема установки

Рис. 1 Принципиальная схема монохроматора

6. Результаты прямых измерений и их обработки (таблицы, примеры расчётов).

ГРАДУИРОВКА МОНОХРОМАТОРА

Цвет линии в спектре ртути	λ, нм	lpha, делений
Красный	690 ± 0.5	3228 ± 5
Красный	671 ± 0.5	3044 ± 5
Оранжевый	623 ± 0.5	2904 ± 5
Желтый	579 ± 0.5	2062 ± 5
Желтый	577 ± 0.5	2052 ± 5
Зеленый	546 ± 0.5	1508 ± 5
Голубой	492 ± 0.5	1454 ± 5
Сине-фиолетовый	436 ± 0.5	1356 ± 5
Фиолетовый	,	1154 ± 5
	408 ± 0.5	
Фиолетовый	$405 \pm 0{,}5$	954 ± 5

УЧЕБНЫЙ ЦЕНТР ФИЗИКИ ФТФ

7. Расчёт результатов косвенных измерений (таблицы, примеры расчётов).

Цвет линии в спектре водорода	λ, нм	α, делений
	637 ± 0.5	3109 ± 5
Красный		
	458 ± 0.5	1420 ± 5
Голубой		
	376 ± 0.5	825 ± 5
Фиолетовый		

v, м-1	1/n2
1569390,61	0,11
2184694,03	0,06
2656606,98	0,04

Значение	R, м-1	Е, эВ
Экспериментальное	1,22E+07 ± 1E+08	-14,45 ± 1
Теоретическое	1,10E+07	-13,61

8. Графики (Приложение 2)

9. Выводы:

Наблюдая весь спектр ртути с помощью Монохроматора УМ-2, мы сняли показания градировочную кривую монохроматора, после заменили лампу на водородную и определили длины волн спектра водорода.

Были определены волновые числа и постоянная Ридберга: R = 1,22E+0,7 м^-1 На основе обобщенной формулы Бальмера мы нашли энергию ионизации атома водорода, находящегося в основном состоянии, и сравнили с теоретическими значениями и получили погрешность в 9 процентов: E = -14,45 зВ