The South African Mathematical Olympiad Third Round 2014 Senior Division (Grades 10 to 12)

Senior Division (Grades 10 to 12)

Time: 4 hours

(No calculating devices are allowed)

- 1. Determine the last two digits of the product of the squares of all positive odd integers less than 2014.
- 2. Given that

$$\frac{a-b}{c-d} = 2 \qquad \text{and} \qquad \frac{a-c}{b-d} = 3$$

for certain real numbers a, b, c, d, determine the value of

$$\frac{a-d}{b-c}$$
.

- 3. In obtuse triangle ABC, with the obtuse angle at A, let D, E, F be the feet of the altitudes through A, B, C respectively. DE is parallel to CF, and DF is parallel to the angle bisector of $\angle BAC$. Find the angles of the triangle.
- 4. (a) Let α, x, y be positive integers. Prove: if $x \neq y$, then also

$$ax + gcd(a, x) + lcm(a, x) \neq ay + gcd(a, y) + lcm(a, y)$$
.

(b) Show that there are no two positive integers a and b such that

$$ab + gcd(a, b) + lcm(a, b) = 2014.$$

- 5. Let n > 1 be an integer. An $n \times n$ -square is divided into n^2 unit squares. Of these unit squares, n are coloured green and n are coloured blue, and all remaining ones are coloured white. Are there more such colourings for which there is exactly one green square in each row and exactly one blue square in each column; or colourings for which there is exactly one green square and exactly one blue square in each row?
- 6. Let O be the centre of a two-dimensional coordinate system, and let A_1, A_2, \ldots, A_n be points in the first quadrant and B_1, B_2, \ldots, B_m points in the second quadrant. We associate numbers a_1, a_2, \ldots, a_n to the points A_1, A_2, \ldots, A_n and numbers b_1, b_2, \ldots, b_m to the points B_1, B_2, \ldots, B_m , respectively. It turns out that the area of triangle OA_jB_k is always equal to the product a_jb_k , for any j and k. Show that either all the A_j or all the B_k lie on a single line through O.