CHAPITRE 16

Dérivation

TABLE DES MATIÈRES

Ι	Définition et premières propriétés	2
II	Théorème de Rolle et accroissements finis	4
III	Dérivées n-ièmes	7
IV	Fonctions à valeurs complexes	10

Première partie

Définition et premières propriétés

Dans ce paragraphe, f désigne une fonction définie sur un intervalle ouvert non vide I à valeurs réelles.

Définition: Soit $a \in I$. On dit que f est <u>dérivable</u> en a si $\frac{f(x) - f(a)}{x - a}$ a une limite qui est finie quand $x \to a$.

Dans ce cas, cette limite est notée f'(a) et est appelée nombre dérivée de f en aOn dit que f est <u>dérivable sur I</u> si f est dérivable en tout $a \in I$.

L'application $I \longrightarrow \mathbb{R}$ est la <u>dérivée de f</u> et est notée f'

Proposition:

f est dérivable en $a \iff f$ a un développement limité d'ordre 1 au voisinage de a

Proposition: Si f est dérivable en a alors f est continue en a.

Proposition: Soient f et g dérivables en a

- 1. f+g est dérivable en a et (f+g)'(a)=f'(a)+g'(a)2. $f\times g$ est dérivable en a et (fg)'(a)=f'(a)g(a)+f(a)g'(a)
- 3. Si $g(a) \neq 0$, alors $\frac{f}{g}$ est dérivable en a et

$$\left(\frac{f}{g}\right)'(a) = \frac{f'(a)g(a) - f(a)g'(a)}{(g(a))^2}$$

Proposition: Soit f dérivable en a et g dérivable en f(a). Alors, $f \circ g$ est dérivable en a et

$$(g \circ f)'(a) = g'(f(a))f'(a)$$

Proposition: On suppose que f est bijective dérivable en a et $f'(a) \neq 0$. Si f^{-1} est continue, alors f^{-1} est dérivable en f(a) et

$$(f^{-1})'(f(a)) = \frac{1}{f'(a)}$$

Deuxième partie

Théorème de Rolle et accroissements finis

Théorème (Théorème de Rolle): Soit $f:[a,b]\to\mathbb{R}$ continue sur [a,b] et dérivable sur]a,b[. On suppose que f(a)=f(b). Alors,

Définition: On dit que f présente un <u>maximum local</u> en a s'il existe $\eta>0$ tel que

$$\forall x \in]a-\eta, a+\eta[, f(x) \leqslant f(a)$$

et un minimum local en as'il existe $\eta>0$ tel que

$$\forall x \in]a - \eta, a + \eta[, f(x) \geqslant f(a)]$$

Un <u>extremum local</u> est un minimum local ou un maximum local.

Proposition: Soit $a \in I$ tel que f(a) est un extremum local de f où f est dérivable en a. Alors, f'(a) = 0

Définition: Soit f dérivable et $a \in I$. On dit que a est un point critique de f si f'(a) = 0. On dit que f(a) est une valeur critique.

Théorème (Théorème des accroissements finis): Soit $f:[a,b]\to\mathbb{R}$ continue sur [a,b] et dérivable sur [a,b].

Alors, il existe $c \in]a, b[$ tel que

$$\frac{f(b) - f(a)}{b - a} = f'(c)$$

5

Proposition: Soit $f: I \to \mathbb{R}$ dérivable avec I un intervalle non vide.

- 1. f est croissante sur $I \iff \forall x \in I, f'(x) \ge 0$
- 2. f est décroissante sur $I \iff \forall x \in I, f'(x) \geqslant 0$ 3. $\forall x \in I, f'(x) > 0 \implies f$ strictement croissante 4. $\forall x \in I, f'(x) < 0 \implies f$ strictement décroissante 5. f constante $\iff \forall x \in I, f'(x) = 0$

Théorème (Théorème de la limite de la dérivée): Soit $f:I\to\mathbb{R}$ continue (sur I), $a \in I$. On suppose f dérivable sur $I \setminus \{a\}$ et que $\lim_{\substack{x \to a \\ \neq}} f'(x)$ existe.

Alors,

$$\frac{f(x) - f(a)}{x - a} \xrightarrow[x \neq a]{x \to a} \lim_{x \to a} f'(a)$$

Proposition: Soit $f:I \to \mathbb{R}$ dérivable. On suppose qu'il existe $M \in \mathbb{R}$ tel que

$$\forall x \in I, |f'(x)| \leqslant M$$

 $\forall x \in I, \left| f'(x) \right| \leqslant M$ Alors f est M -lipschitzienne sur I.

Troisième partie

Dérivées *n*-ièmes

Définition: On dit que f est une fois dérivable si f est dérivable. Dans ce cas, on note $f^{(1)}$ la fonction f'.

Pour $n \in \mathbb{N}_*$, on dit que f est <u>dérivable</u> n fois si f est dérivable n-1 fois et $f^{(n-1)}$ est dérivable une fois. Dans ce cas, $f^{(n)} = \left(f^{(n-1)}\right)'$.

Remarque (Convention):

$$f^{(0)} = f$$

Définition: f est de <u>classe</u> \mathscr{C}^n si f est dérivables n fois et $f^{(n)}$ est continue.

Proposition: Soit f dérivable n fois et $k \leq n$. Alors f est dérivables k fois et $f^{(n)} = \left(f^{(k)}\right)^{(n-k)}$

Proposition: Soit f et g deux fonctions dérivables n fois en a. Alors, f+g est dérivable n fois en a et

$$(f+g)^{(n)}(a) = f^{(n)}(a) + g^{(n)}(a)$$

Si f et g sont de classe \mathscr{C}^n , alors, f+g est de classe \mathscr{C}^n

Proposition (Leibniz): Soient f et g dérivables n fois en a. Alors, $f \times g$ est dérivables n fois en a. et

(*):
$$(f \times g)^{(n)}(a) = \sum_{k=0}^{n} {n \choose k} f^{(n)}(a)g^{(n-k)}(a)$$

Si f et g sont de classe \mathscr{C}^n alors $f \times g$ est de classe \mathscr{C}^n .

Proposition: Soient f et g dérivables n fois (resp. de classe \mathscr{C}^n). On suppose $g(a) \neq 0$. Alors, $\frac{f}{g}$ est dérivables n fois (resp. \mathscr{C}^n) en a.

Proposition: Soit f dérivable n fois en a et g dérivable n fois en f(a) (resp. f et g de classe \mathscr{C}^n).

Alors, $g \circ f$ est dérivable n fois en a (resp. de classe \mathscr{C}^n).

Définition: On dit que f est de classe \mathscr{C}^{∞} si f est de classe \mathscr{C}^{n} pour tout $n \in \mathbb{N}$, i.e.

f est dérivable une infinité de fois.

Proposition (formule de Taylor avec reste intégral): Soit $f:I\to\mathbb{R}$ de classe \mathscr{C}^{n+1} et $a\in I$. Alors

(*)
$$\forall x \in I, f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^k + \int_a^x f^{(n+1)}(t) \frac{(x-t)^n}{n!} dt$$

Proposition (Inégalité de Taylor-Lagrange): Soit $f:I\to\mathbb{R}$ de classe \mathscr{C}^{n+1} et $M\in\mathbb{R}$ tel que

$$\forall x \in I, \left| f^{(n+1)}(x) \right| \leqslant M$$

Alors, pour tout $a \in I$,

$$\forall x \in I, \left| f(x) - \sum_{k=0}^{n} \frac{(x-a)^k}{k!} f^{(k)}(a) \right| \leqslant M \frac{|x-a|^{n+1}}{(n+1)!}$$

9

Quatrième partie

Fonctions à valeurs complexes

 $\begin{array}{ll} \textbf{D\'efinition:} & \text{Soient } f:I\to\mathbb{C},\, (I \text{ intervalle de }\mathbb{R}) \text{ et } a\in I.\\ f \text{ est } \underline{\text{d\'erivable en } a} \text{ si } \lim_{\substack{x\to a\\ \neq}} \frac{f(x)-f(a)}{x-a} \in \mathbb{C} \end{array}$

Proposition:

f est dérivable en $a\iff \mathfrak{Re}(f)$ et $\mathfrak{Im}(f)$ sont dérivables en a

Dans ce cas,
$$f'(a) = \Re \mathfrak{e}(f)'(a) + i\Im \mathfrak{m}(f)'(a)$$

Proposition: La somme, le produit, de fonctions dérivables sont dérivables ; le quotient également si le dénominateur ne s'annule pas. \Box

Proposition: idem avec les dérivées n-ièmes

Remarque (Attention $\underline{\wedge}$): Le théorème de Rolle n'est plus vraie.

$$f: \mathbb{R} \longrightarrow \mathbb{C}$$

$$t \longmapsto e^{it}$$

$$f(0)=f(2\pi)=1$$
 f est continue sur $[0,2\pi]$ et dérivable sur $]0,2\pi[$ $\forall t,f'(t)=ie^{it}\neq 0$

Proposition: La formule de Taylor avec reste intégral et l'inégalité de Taylor-Lagrange sont aussi vrais dans $\mathbb C$.