# \maketitle

Tutorial on Tree Transducers

Hendrik Jan Hoogeboom LIACS Leiden

CSL/GAMES
Lausanne, sept 07

#### from tree to tree



symbolic /
syntax-directed translation

- compiler theory
- natural language
- document transformation

# history

| 1960 Irons    | syntax      | x-directed translation |
|---------------|-------------|------------------------|
| 1968 Knuth    |             | attribute grammar      |
| 1968 Thatcher | '& Rounds   | top-down, bottom-up    |
| 1980 Aho& Ull | man         | tree-walking tr.       |
| 1985 Engelfri | et& Vogler  | macro tree tr.         |
| 2000 Milo& Su | ıciu& Vianu | pebble tree tr. XML    |

Fülöp& Vogler Maneth book tree transducers Tarragona lectures

#### contents

- 1. automata on trees
- 2. transducers
- 3. regular models
- 4. context-free tree grammars
- 5. macro tree transducers
- 6. pebble tree transducers

#### two views

#### 



 $\begin{array}{c} \text{ranked alphabet} \\ & (\Sigma, \text{rank}) \\ & \text{rank} : \Sigma \to \mathbb{N} \\ & \Sigma_k & \text{rank k} \end{array}$ 

 $\mathsf{T}_\Sigma$  trees over  $\Sigma$ 



 $\begin{aligned} & f \in \Sigma_k \\ f(x_1 x_2 ... x_k) \\ fx_1 x_2 ... x_k \end{aligned}$ 

#### tree automata







top-down *grammatica1* 



tree-walking navigation

'parallel'

# bottom-up



#### formalization



$$\begin{array}{ccc} \sigma(q_1...q_k) & \to & q \\ & \sigma & \to & q \end{array}$$

$$rank(\sigma)=0$$

acceptance by final state (at root)



$$egin{array}{ccc} {\sf F} & 
ightarrow 0 \ {\sf T} & 
ightarrow 1 \ ee 11 & 
ightarrow 1 \end{array}$$

F,T 
$$\in \Sigma_0$$
  $\vee$  ,  $\wedge$   $\in \Sigma_2$ 

# top-down

#### derivation tree

 $p_1$ : A  $\rightarrow$  AaB

 $p_2$ :  $A \rightarrow a$ 

 $p_3$ :  $B \rightarrow Bb$ 

 $p_4$  : B  $\rightarrow$  A

regular tree grammar



rewriting at leaves







### regular tree languages

#### REG

#### natural!

- bottom-up (det/nondet)
  - top-down (nondet)
  - MSO logic
  - regular tree grammars

- closed under intersection, complementation
- decidable emptiness
   (equivalence)

# walking along the tree



cf. two-way finite state automaton

## tree walking automaton

example: tree traversal

**TWA** 



walk along edges, moves based on

- state
  - node label lab
- child number ch(= incoming edge)

#### tree automata







bottom-up
 evaluation

top-down
grammatica1

tree-walking navigation

REG

 $\supseteq$ 

**TWA** 

"twa easily loose their way"

# 'branching structure' of even length

Bojańczyk & Colcombet



# 'branching structure' of even length

Bojańczyk & Colcombet



### adding nested pebbles

pebble: marks a node



- fixed number for automaton
- can be distinguished & reused

nested lifetimes LIFO



'regular' extension



# selected papers on pebble automata

- J.Engelfriet, H.J.Hoogeboom. Tree-walking pebble automata, *Jewels are forever*, 1999.
- M.Bojańczyk, T.Colcombet. Tree-walking automata do not recognize all regular languages, STOC'05.
- J.Engelfriet, H.J.Hoogeboom. Nested pebbles and transitive closure, LMCS, 2007.
- M.Bojańczyk, M.Samuelides, T.Schwentick, L.Segoufin. On the expressive power of pebble automata, ICALP'06.

### tree automata & logic



### \section

macro tree automata on trees

regular models contransducers

#### top-down tree transducer



#### example top-down

$$\Sigma_0 = \{e\}, \ \Sigma_1 = \{a\}$$
 $\Delta_0 = \{e\}, \ \Delta_2 = \{d\}$ 

$$q(a(x)) \rightarrow d(q(x), q(x))$$

$$q(e) \rightarrow e$$

#### example top-down

$$\Sigma_0 = \{e\}, \Sigma_1 = \{a\}$$
  
 $\Delta_0 = \{e\}, \Delta_2 = \{d\}$ 

$$q(a(x)) \rightarrow d(q(x),q(x))$$
  
 $q(e) \rightarrow e$ 

q(a)
$$a \Rightarrow^*$$

$$a$$

$$a$$

$$a$$



exponential size increase

#### top-down

rules are confluent

$$q(a(x_1)) \rightarrow d(q(x_1)q(x_1))$$
  $copy$   
 $q(c(x_1x_2x_3)) \rightarrow d(q(x_1)q(x_2))$   $delete$ 

linear height increase exponential size increase

yield linear input  $\rightarrow$  ETOL more Lindenmayer connections



#### top-down characteristic

'T' copying input, processing copies differently

$$\Sigma_0 = \{e\}, \ \Sigma_1 = \{a, \sigma\}$$
  
 $\Delta_0 = \{e\}, \ \Delta_1 = \{a, b\}, \ \Delta_2 = \{\sigma\}$ 

$$q(\sigma(x)) \rightarrow \sigma(q(x),q(x))$$
  
 $q(a(x)) \rightarrow a(q(x)) \mid b(q(x))$   
 $q(e) \rightarrow e$ 

#### bottom-up characteristic

'B1' copying output after nondet processing input

$$\begin{split} \Sigma_0 &= \{e\}, \ \Sigma_1 = \{a,\sigma\} \\ \Delta_0 &= \{e\}, \ \Delta_1 = \{a,b\}, \ \Delta_2 = \{\sigma\} \end{split}$$
 
$$\begin{matrix} e & \rightarrow q(e) \\ a(q(x)) \rightarrow q(a(x)) \mid q(b(x)) \\ \sigma(q(x)) \rightarrow q(\sigma(xx)) \end{matrix}$$
 
$$\begin{matrix} \sigma & \sigma & \sigma & \sigma \\ \mid & \mid & \mid \\ a & a & a & a \\ \mid & \mid & \mid \\ a & \Rightarrow a \Rightarrow a & \Rightarrow^* & b \Rightarrow b & b \\ \mid & \mid & \mid & \mid \\ a & a & a & b & b & b \\ \mid & & \mid & \mid & \mid \\ a & a & a & b & b & b \\ \mid & & & \mid & \mid \\ a & a & a & b & b & b \\ \mid & & & & \mid & \mid \\ a & a & a & b & b & b \\ \mid & & & & & \mid & \\ a & a & a & b & b & b \\ \mid & & & & & \\ a & a & a & b & b & b \\ \mid & & & & & \\ a & a & a & b & b & b \\ \mid & & & & & \\ a & a & a & b & b & b \\ \mid & & & & & \\ a & a & a & b & b & b \\ \mid & & & & & \\ a & a & a & b & b & b \\ \mid & & & & \\ a & a & a & b & b & b \\ \mid & & & & \\ a & a & a & b & b & b \\ \mid & & & & \\ a & a & a & b & b & b \\ \mid & & & & \\ a & a & a & b & b & b \\ \mid & & & & \\ a & a & a & b & b & b \\ \mid & & & & \\ a & a & a & b & b & b \\ \mid & & & & \\ a & a & a & b & b & b \\ \mid & & & & \\ a & a & b & b & b \\ \mid & & & & \\ a & a & b & b & b \\ \mid & & & & \\ a & a & b & b & b \\ \mid & & & \\ a & a & b & b & b \\ \mid & & & \\ a & b & b & b & b \\ \mid & & \\ a & b & b & b & b \\ \mid & & \\ a & b & b & b \\ \mid & & \\ a & b & b & b \\ \mid & & \\ a & b & b & b \\ \mid & & \\ a & b & b & b \\ \mid & & \\ a & b & b & b \\ \mid & & \\ a & b & b & b \\ \mid & & \\ a & b & b & b \\ \mid & & \\ a & b & b & b \\ \mid & & \\ a & b & b & b \\ \mid & & \\ a & b & b & b \\ \mid & & \\ a & b & b & b \\ \mid & & \\ a & b & b & b \\ \mid & & \\ a & b & b & b \\ \mid & & \\ a & b & b & b \\ \mid & & \\ a & b & b & b \\ \mid & & \\ a & b & b & b \\ \mid & & \\ a & b & b & b \\ \mid & & \\ a & b & b & b \\ \mid & & \\ a & b & b & b \\ \mid & \\ a & b & b & b \\ \mid & \\ a & b & b & b \\ \mid & \\ a & b & b & b \\ \mid & \\ a & b & b & b \\ \mid & \\ a & b & b & b \\ \mid & \\ a & b & b & b \\ \mid & \\ a & b & b & b \\ \mid & \\ a & b & b & b \\ \mid & \\ a & b & b & b \\ \mid & \\ a & b & b & b \\ \mid & \\ a & b & b & b \\ \mid & \\ a & b & b & b \\ \mid & \\ a & b & b & b \\ \mid & \\ a & b & b & b \\ \mid & \\ a & b & b & b \\ \mid & \\ a & b & b & b \\ \mid & \\ a & b & b & b \\ \mid & \\ a & b & b & b \\ \mid & \\ a & b & b & b \\ \mid & \\ a & b & b & b \\ \mid & \\ a & b & b & b \\ \mid & \\ a & b & b & b \\ \mid & \\ a & b & b & b \\ \mid & \\ a & b & b & b$$

# top-down vs. bottom-up

top-down

bottom-up



copy

bottom-up<sup>2</sup>

copy

top-down<sup>2</sup>

relabel

copying input, processing copies differently

copying output after 'B1' nondet processing input

#### some properties

#### TDT and BUT

- ... have REG domains
- ... REG closed under inverse
- ... are incomparable
- ... are not closed under composition



#### linear transducers

$$q(a(x_1)) \rightarrow d(q(x_1)q(x_1))$$

lin-BUT

= lin-TD + regular look-ahead



- ... is closed under composition
- ... REG closed under lin-BUT

#### \section

macro tree automata on trees

regular models context-free tree grammars

### [Knuth68]

$$2^{1}+2^{2}+2^{4}$$

S: 
$$S \rightarrow N$$
  
p0:  $N \rightarrow N0$   
p1:  $N \rightarrow N1$   
e:  $N \rightarrow 1$ 

handle context!

# regular vs. context-free

**STRINGS** 

$$B \rightarrow bA$$

$$aaba\underline{B} \Rightarrow aaba\underline{bA}$$

$$B \rightarrow BbA$$
 $aaBbaA \Rightarrow aaBbAbaA$ 



# regular vs. context-free

**STRINGS** 

$$B \rightarrow bA$$
 $aaba\underline{B} \Rightarrow aaba\underline{bA}$ 

$$B \rightarrow BbA$$

$$aa\underline{B}baA \Rightarrow aa\underline{B}b\underline{A}baA$$

**TREES** 





how to handle subtrees?

#### context-free tree grammars

• regularB  $\rightarrow$  t  $\in$  T $_{\Sigma}[N]$  N nonterminals B $\in$ N

• context-free





# cf tree grammar

$$s \rightarrow \begin{bmatrix} F & F \\ I & I \\ a & b \end{bmatrix}$$

$$y \rightarrow y$$



yield { ww |  $w \in \{a,b\}^*$  } not context-free

## (life is simple ...)

S,A 
$$\in$$
 N<sub>0</sub> F  $\in$  N<sub>1</sub> a,b  $\in$   $\Sigma_0$  +  $\in$   $\Sigma_2$ 

## (... no it isn't)

cfg: leftmost vs. unrestricted derivations



OI outside-in top-down 'lazy' unrestriced inside-out bottom-up 'eager'

#### IO mode

S,A 
$$\in$$
 N<sub>0</sub> F  $\in$  N<sub>1</sub> a,b  $\in$   $\Sigma_0$  +  $\in$   $\Sigma_2$ 

yield 
$$\{ w^2 \mid w \in a^*ba^* \}$$

#### cf tree languages

IO-CFT and OI-cft incomparable

IO generates more equal copies
OI is lazy: unsuccessful subtrees

 $OI \equiv unrestricted$ 

postpone 'inner' steps
context-free property

yield REG = CFL
yield OI-CFT = Indexed

#### \section

# macro tree transducers

regular models conficient ransducers

# selected papers on macro tree transducers

J.Engelfriet, H.Vogler. Macro tree transducers, JCSS, 1985.

#### macro tree transducers

top-down tree transducers (input) &
context-free tree grammars (output)

regular



$$q(\sigma(x_1 ... x_k)) \rightarrow t \in T_{\Delta}[Q(x_k)]$$
 rank $(\sigma)=k$ 

#### macro tree transducers

top-down tree transducers (input) &
context-free tree grammars (output)



#### mtt for linear trees

$$\begin{array}{c} \mathsf{q}_0\langle \mathsf{a}(\mathsf{x}_1)\rangle \to \mathsf{q}(\mathsf{x}_1)\,(\mathsf{q}(\mathsf{x}_1)\ \mathsf{e}) \\ \mathsf{q}\langle \mathsf{a}(\mathsf{x}_1)\,,\mathsf{y}_1\rangle \to \mathsf{q}(\mathsf{x}_1)\,(\mathsf{q}(\mathsf{x}_1)\ (\mathsf{y}_1)) \\ \mathsf{q}\langle \mathsf{e}\,,\mathsf{y}_1\rangle \to \mathsf{a}(\mathsf{y}_1) \end{array}$$

$$\begin{array}{c} q_0 \\ a \\ \downarrow \\ x \end{array} \rightarrow \begin{array}{c} q(x) \\ \downarrow \\ q(x) \\ \downarrow \\ y \end{array}$$

$$q_0(aae) \Rightarrow$$
 $q(ae)q(ae)e \Rightarrow$ 
 $q(e)q(e)q(ae)e \Rightarrow$ 
 $aq(e)q(ae)e \Rightarrow$ 
 $aaq(ae)e \Rightarrow$ 
 $aaq(e)q(e)e \Rightarrow$ 
 $aaq(e)q(e)e \Rightarrow$ 
 $aaaq(e)e \Rightarrow$ 

exponential size-to-height double exponentional size-to-size

#### MTT properties

- unrestricted ≡ OI
- OI-MTT and IO-MTT incomparable
- MTT has regular look-ahead bottom-up inspection
- REG closed under inverse MTT  $T^{-1}(R) \in REG$

#### \section

macro tree automata on trees

corpebble tree ree transducers

### selected papers on pebble tree transducers

T.Milo, D.Suciu, V.Vianu. Typechecking for XML transformers, JCSS, 2003.

J.Engelfriet, S.Maneth. A comparison of pebble tree transducers with macro tree transducers, Acta Inf, 2003.

#### pebble tree transducers

tree-walking automata Aho& Ullman 71

```
Milo etal. 2000: 
'all XML query languages can be modeled by k-pebble tree transducers'
```

```
great for navigation, but:
k-PTT cannot test all regular domains
```

comparison pebbles vs. macro:

- $n-dPTT \subseteq 0-dPTT^{n+1} \subseteq dMTT^{n+1}$
- $dMTT \subseteq 0-dPTT^3$
- $\Rightarrow$  same composition closure

# (1) logic to nested pebbles





'classic' pebbles

comparison pebbles vs. macro:

- $n-dPTT \subseteq 0-dPTT^{n+1} \subseteq dMTT^{n+1}$
- $dMTT \subseteq 0-dPTT^3$

introducing invisible pebbles ve

issues - decomposition

- complexity per pebble



# XML Transformation by Tree-Walking Transducers with Invisible Pebbles

Joost Engelfriet
Hendrik Jan Hoogeboom
Bart Samwel
(Leiden University, NL)

#### tree model



ranked trees node labels with rank

unbounded number of children (forests) are to be coded [usually] this is no problem

#### background

#### typechecking

decide whether tree (document) generated by transformation  $\mathcal M$  satisfies description



#### Milo Suciu Vianu PODS2000 type checking for XML transformers is decidable

transformers with 'visible' pebbles: finite number of coloured markers on tree

#### contents



- 1. automata with pebbles
- 2. decomposition
- 3. typechecking
- 4. regular trees
- 5. document navigation
- 6. pattern matching
- 7. conclusion

#### tree-walking automata

with pebbles



```
local configuration q state \sigma node label j child number j=0 root (q,\sigma,b,j) \rightarrow b pebble colours b \subseteq C (q',stay) (q',down_i) (q',drop_c) (q',lift_c)
```

- finite set C of pebbles
- nested lifetimes
   stack behaviour
   only topmost can be lifted
- all observable

#### tree-walking pebble automata

with visible pebbles 'colours' used once always observable

- we add invisible pebbles colours used many times only topmost is observable
- © recognize regular & decidable type checking & better complexity

stack behaviour of pebbles!
 (avoid 'counting')



$$(q,\sigma,b,j) \rightarrow (q',stay)$$

b contains-all visible pebbles-invisible when topmost

### automaton defines ...





transformation

#### tree-walking pebble tree *transducers*

recursively generate output



$$(q,\sigma,b,j) \rightarrow \delta(q_1,q_2 \dots q_n)$$



#### tree-walking pebble tree transducers

recursively generate output



output production

$$(q,\sigma,b,j) \rightarrow \delta(q_1,q_2 \dots q_n)$$



#### NOTE

each q works on separate copy input tree

- tdt q<sub>i</sub> point to children (↓)
- twt q<sub>i</sub> point to same node
   q's may move up↑ and down↓ in between

#### tree-walking pebble tree transducers

recursively generate output



#### output production

$$(q,\sigma,b,j) \rightarrow \delta(q_1,q_2 \dots q_n)$$





#### without pebbles

#### example: moving the root



#### wa1k down

$$(\downarrow,b,-,j) \rightarrow (\downarrow,down_1)$$
$$(\downarrow,b,-,j) \rightarrow (\downarrow,down_2)$$

#### copy up

$$(\uparrow,b,-,1) \rightarrow b(\uparrow_1,c_2)$$

$$(\uparrow,b,-,2) \rightarrow b(c_1,\uparrow_2)$$

$$(\uparrow_i,b,-,i) \rightarrow (\uparrow,up)$$

#### copy down

$$(copy,a,-,j) \rightarrow a()$$
  
 $(copy,b,-,j) \rightarrow b(c_1,c_2)$   
 $(c_i,b,-,j) \rightarrow (copy,down_i)$ 

$$j=0,1,2$$
  $i=1,2$ 

#### the power of composition



together: exponential size-to-height

n-PTT: polynomial size increase

#### notation

#### Pebble Tree Transducers

```
V_kI-PTT visible + invisible V_k-PTT k visible pebbles Milo etal. I-PTT invisible only TT tree-walking (no pebbles)
```

#### Pebble Tree Automata

#### contents



- 1. automata with pebbles
- 2. decomposition
- 3. typechecking
- 4. regular trees
- 5. document navigation
- 6. pattern matching
- 7. conclusion

#### decomposition visible pebbles

$$V_kI-dPTT \subseteq dTT \circ V_{k-1}I-dPTT$$



iterate 
$$V_k I - dPTT \subseteq dTT^k \circ I - dPTT$$

# decomposition (1) preprocessing



copying can be done without pebbles

## decomposition (2) simulation



 $\mathcal{M}$ 

drop / lift
first visible pebble

 $\mathcal{M}'$ 

move up /down
into subtree

#### decomposition

THEOREM 
$$V_k$$
-PTT  $\subseteq$  TT<sup>k+1</sup>  $V_k$ I-PTT  $\subseteq$  TT<sup>k+2</sup>

#### contents



- 1. automata with pebbles
- 2. decomposition
- 3. typechecking
- 4. regular trees
- 5. document navigation
- 6. pattern matching
- 7. conclusion

#### type inference

#### inverse type inference

given transducer  $\mathcal{M}$  and regular  $G_{\text{out}}$ ,

construct regular G<sub>in</sub> such that

 $L(G_{in}) = \mathcal{M}^{-1} L(G_{out})$ 



#### Bartha 1982

regular tree grammar G for the domain of tree transducer  $\mathcal M$  can be constructed in *exponential* time

inverse type inference is solvable

- $\Rightarrow$  for TT in exponential time
- $\Rightarrow$  for  $TT^k$  in k-fold exponential time

#### type checking complexity

# type checking

given transducer  $\mathcal{M}$  and regular  $G_{in}$ ,  $G_{out}$ , decide whether  $\mathcal{M}(L(G_{in})) \subseteq L(G_{out})$ 



M(A)⊆B iff 
$$A \cap M^{-1}(B^{C}) = \emptyset$$
  
'typechecking' 'inverse type inference'

$$V_k$$
-PTT  $\subseteq$  TT<sup>k+1</sup>  
 $V_k$ I-PTT  $\subseteq$  TT<sup>k+2</sup>

we can typecheck

- $\Rightarrow$  TT<sup>k</sup> in (k+1)-fold exponential time
- $\Rightarrow$  V<sub>k</sub>-PTT in (k+2)-fold exponential time
- $\Rightarrow$   $V_k$ I-PTT in (k+3)-fold exponential time

invisible pebbles are almost for free!

#### contents



- 1. automata with pebbles
- 2. decomposition
- 3. typechecking
- 4. regular trees
- 5. document navigation
- 6. pattern matching
- 7. conclusion

### regular trees



regular tree language

- bottom-up tree evaluation
- = post-order evalation with stack

#### $REGT \subseteq I-PTA$



postorder evaluation

#### regular trees



$$V_kI-PTT \subseteq TT^{k+2}$$

regular tree language

■ bottom-up tree evaluation

≡ post-order evalation with stack

 $REGT \subseteq I-PTA$ 

REGT  $\not\subseteq V_k$ -PTA Bojańczyk etal.

 $V_kI-PTA \subseteq REGT$ 

#### regular trees



- bottom-up tree evaluation
- = post-order evalation with stack

$$REGT \subseteq I-PTA$$

REGT 
$$\not\subseteq V_k$$
-PTA

 $V_kI-PTT \subseteq TT^{k+2}$ 

$$V_kI-PTA \subseteq REGT$$



I-PTA can

- evaluate *marked* trees
- test their visible configuration

#### contents



- 1. automata with pebbles
- 2. decomposition
- 3. typechecking
- 4. regular trees
- 5. document navigation
- 6. pattern matching
- 7. conclusion

# pattern matching



I-PTA can

- evaluate *marked* trees
- test their visible configuration

#### pattern matching



I-PTA can

- evaluate *marked* trees
- test their <u>visible</u> configuration observable

VI-PTA can test  $\phi(x_1,...,x_n)$  with n-2 visible pebbles (using head)

#### pattern matching

general test  $\phi(x_1,...,x_n)$ 

XQuery for 
$$x_1,...,x_n$$
 with  $\phi_1 \wedge ... \wedge \phi_n$  return t  $\phi_i$  binary

example

$$\varphi_1(x_1,x_2) \wedge \varphi_2(x_3,x_6) \wedge \varphi_3(x_4,x_3) \wedge \varphi_4(x_5,x_6) \wedge \varphi_5(x_1,x_4)$$



only 2 visible pebbles!

#### contents



- 1. automata with pebbles
- 2. decomposition
- 3. typechecking
- 4. document navigation
- 5. pattern matching
- 6. conclusion

#### conclusion

• extends known models

• MSO complete

• invisible pebbles are cheap

# \end{document}