Tema 1: Sistemas dinámicos discretos Primera parte: ecuación en diferencias lineal de primer orden

Lidia Fernández

Departamento de Matemática Aplicada Universidad de Granada

Curso 2020/21

Introducción

2 Ecuaciones en diferencias: definiciones y primeros ejemplos

- 3 La ecuación en diferencias lineal de primer orden
 - Comportamiento asintótico de las soluciones
 - Fluctuaciones en el precio de un producto: modelos de telaraña
 - Modelos discretos en dinámica de poblaciones: modelo de Malthus

Contenidos

- Introducción
- 2 Ecuaciones en diferencias: definiciones y primeros ejemplos
- 3 La ecuación en diferencias lineal de primer orden
 - Comportamiento asintótico de las soluciones
 - Fluctuaciones en el precio de un producto: modelos de telaraña
 - Modelos discretos en dinámica de poblaciones: modelo de Malthus

Sistemas dinámicos

Los sistemas dinámicos estudian la evolución de una magnitud a lo largo del tiempo.

- Sistemas dinámicos continuos: el tiempo como variable continua.
- Sistemas dinámicos discretos: el tiempo como variable discreta.

En este tema nos centraremos en el estudio de sistemas dinámicos discretos.

Primeros ejemplos

Algunos ejemplos de sistemas dinámicos discretos ya conocidos:

- Las progresiones aritméticas $x_{n+1} = x_n + b$
- Las progresiones geométricas $x_{n+1} = a x_n$
- Repetición de una operación en la calculadora. Pulsar una teclar repetidamente (sen, cos, ...)

Primeros ejemplos

Ejemplo

Supongamos que depositamos una cantidad C_0 en un banco que nos proporciona un interés anual de r%.

- Capital inicial C_0
- ullet Capital transcurrido un año $C_1=C_0+rac{r}{100}C_0=(1+rac{r}{100})C_0$
- Capital transcurridos dos años $C_2=C_1+rac{r}{100}C_1=(1+rac{r}{100})C_1$
- . . .
- \bullet Capital transcurridos n+1 años $C_{n+1}=C_n+\frac{r}{100}C_n=(1+\frac{r}{100})C_n$

La ecuación

$$C_{n+1} = \left(1 + \frac{r}{100}\right)C_n$$

es una ecuación en diferencias. Ahora daremos una definición formal. Podemos expresar el capital en el año n en función del inicial

$$C_n = \left(1 + \frac{r}{100}\right)^n C_0.$$

Lidia Fernández

Contenidos

- Introducción
- 2 Ecuaciones en diferencias: definiciones y primeros ejemplos
- 3 La ecuación en diferencias lineal de primer orden
 - Comportamiento asintótico de las soluciones
 - Fluctuaciones en el precio de un producto: modelos de telaraña
 - Modelos discretos en dinámica de poblaciones: modelo de Malthus

Ecuaciones en diferencias

Ecuación en diferencias

Ecuación en la que intervienen un número fijo de términos consecutivos de una sucesión

$$F(x_{n+k}, x_{n+k-1}, \dots, x_{n+1}, x_n, n) = 0$$

- F función de varias variables
- $\{x_n\}_{n\in\mathbb{N}}$ sucesión (incógnita)
- k orden de la ecuación

Ejemplos

- Progresión geométrica: $x_{n+1} = 5 x_n$ (orden 1)
- 2 Sucesión de Fibonacci: $F_{n+2} = F_{n+1} + F_n$ (orden 2)
- $x_{n+2} n x_{n+1} + n^2 x_n = 0$ (orden 2)

Ecuaciones en diferencias

Definición

Cuando n no aparece explícitamente en la ecuación en diferencias se dice que es una ecuación autónoma.

Solución de una ecuación en diferencias

Una solución de una ecuación en diferencias es una sucesión $\{x_n\}_{n\in I}$ (donde I es un intervalo de números naturales) que verifica la ecuación para todo valor de $n \in I$.

Ejemplo

¿Cuál(es) son soluciones de la ecuación $x_{n+1} - 5x_n = 4n - 1$?

$$\Box x_n = 5^n$$

$$\square x_n = n^2$$

$$\square x_n = -n$$

$$\square x_n = 5^n$$
 $\square x_n = n^2$ $\square x_n = -n$ $\square x_n = 5^n - n$

Ecuaciones en diferencias

Resolver una ecuación en diferencias

Hallar la forma explícita de todas las sucesiones que satisfacen la igualdad (solución general). Una solución concreta de la ecuación se llama solución particular.

Ejemplo: $x_{n+1} = r x_n$

Si empezamos por ejemplo en $x_0=1$, observamos que una solución

$$\{1, r, r^2, r^3, \dots\}$$

es decir, una solución particular de la ecuación es $x_n = r^n$.

Para cada x_0 fijo observamos que una solución de la ecuación es

$$\{x_0, x_0r, x_0r^2, x_0r^3, \dots\}$$

es decir, la solución general es el conjunto de sucesiones $\{x_n\}_{n\in\mathbb{N}}$ con

$$x_n = x_0 r^n$$
.

Lidia Fernández

Contenidos

- Introducción
- 2 Ecuaciones en diferencias: definiciones y primeros ejemplos
- 3 La ecuación en diferencias lineal de primer orden
 - Comportamiento asintótico de las soluciones
 - Fluctuaciones en el precio de un producto: modelos de telaraña
 - Modelos discretos en dinámica de poblaciones: modelo de Malthus

Ecuaciones en diferencias lineales

Ecuación en diferencias lineal

Ecuación en diferencias de la forma

$$a_k(n) x_{n+k} + \ldots + a_1(n) x_{n+1} + a_0(n) x_n = b(n)$$

Si b(n) = 0 la ecuación se dice homogénea

Ecuación en diferencias lineal de coeficientes constantes

Ecuación en diferencias de la forma

$$a_k x_{n+k} + \ldots + a_1 x_{n+1} + a_0 x_n = b(n)$$

Si b(n) = 0 la ecuación se dice homogénea

La ecuación en diferencias lineal de primer orden

Ecuación en diferencias lineal de primer orden

$$x_{n+1} = a x_n + b$$

donde $a, b \in \mathbb{R}$

• Si a=1 obtenemos una progresión aritmética:

$$x_{n+1} = x_n + b$$
, solución: $x_n = x_0 + nb$

• Si b = 0 obtenemos una progresión geométrica:

$$x_{n+1} = a x_n$$
, solución: $x_n = x_0 a^n$

• Si $a \neq 1$ y $b \neq 0$ la sucesión no forma una progresión.

La ecuación en diferencias lineal de primer orden

Para resolver la ecuación

$$x_{n+1} = a x_n + b$$

observamos que:

Si $a \neq 1$, la ecuación tiene una única solución constante.

Buscamos una solución constante x_* , sustituyendo:

$$x_* = a \, x_* + b \qquad \Rightarrow \qquad x_* = \frac{b}{1 - a}$$

Supongamos que $x_n = y_n + x_*$ entonces y_n es solución de $y_{n+1} = a y_n$.

 $\text{Dem: } y_{n+1} = x_{n+1} - x_* = a \, x_n + b - (a \, x_* + b) = a(x_n - x_*) = a \, y_n.$

A partir de aquí deducimos que la solución general de nuestra ecuación completa cuando $a \neq 1$ es:

$$x_n = c a^n + x_*, \qquad c \in \mathbb{R}$$

La ecuación en diferencias lineal de primer orden

Nota 1

Todo el razonamiento anterior es válido si $a,b\in\mathbb{C}$

Definición

Las soluciones constantes se suelen llamar puntos de equilibrio o soluciones estacionarias.

Ejemplo

Calcula la solución general de la ecuación

$$x_{n+1} = 2x_n + 1$$

¿Cuál es la solución que cumple $x_0 = 5$?

Comportamiento asintótico de las soluciones

Teorema (Comportamiento asintótico de las soluciones)

Las soluciones $\{x_n\}_{n\geq 0}$ de la ecuación

$$x_{n+1} = a x_n + b, \qquad a \neq 1$$

verifican

- Si |a| < 1, entonces $\{x_n\} \longrightarrow x_*$
- Si |a| > 1, entonces $\{x_n\}$ no converge.
- Si a=-1, entonces $\{x_n\}$ oscila alrededor de x_* (sin convergencia)

En el caso a=1 la ecuación sería:

$$x_{n+1} = x_n + b$$

- Si $b \neq 0$, la ecuación no tiene soluciones constantes. La solución diverge a $+\infty$ o $-\infty$ dependiendo de que b sea positivo o negativo.
- Si b = 0, todas las soluciones de la ecuación son constantes.

-0.5

-1.0

- El precio de un producto agrícola varía cada año.
- Hay muchos factores que influyen en estas variaciones: clima, competencia, situación económica.
- Nos centraremos en las variaciones debidas a la oferta y la demanda.
- Supondremos que la oferta y la demanda son funciones conocidas del precio

$$O = O(p), \qquad D = D(p)$$

• O(p) es creciente y D(p) es decreciente.

 La hipótesis más simple es que las funciones de oferta y demanda son funciones afines

$$O(p) = a + b p, \quad b > 0$$

$$D(p) = c - dp, \quad d > 0$$

- En economía se denomina
 - b marginal de la oferta
 - ▶ d marginal de la demanda

- En la teoría estática se hace la hipótesis de equilibrio: la oferta y la demanda se igualan
- El precio ideal o de equilibrio p_* será el punto de corte de las rectas O(p) y D(p):

$$O(p_*) = D(p_*) \implies p_* = \frac{c-a}{b+d}$$

- De ahora en adelante supondremos c > a.
- También es importante que la cantidad ofertada y demandada asociada con el precio de equilibrio sea positiva (ad + bc > 0)

Lidia Fernández

- En la práctica hay un desfase entre la oferta y la demanda: la decisión de sembrar se toma un año antes.
- Así tenemos

$$D(p_n) = O(p_{n-1})$$

Lo que da lugar a la ecuación en diferencias lineal de primer orden

$$p_n = \frac{c-a}{d} - \frac{b}{d}p_{n-1}$$

• Como $-b/d \neq 1$ (puesto que b, d > 0) existe una solución constante

$$p_* = \frac{c - a}{b + d}$$

el precio de equilibrio.

La solución general es

$$p_n = p_* + k \left(-\frac{b}{d}\right)^n, \qquad k \in \mathbb{R}$$

Evolución a largo plazo

- Si b < d se tiene $\{p_n\} \to p_*$ para toda solución. Los precios oscilan y tienden a estabilizarse en el precio de equilibrio.
- ② Si b>d (y $c\neq 0$), la solución llega a hacerse negativa y el modelo carece de sentido.
- $oldsymbol{3}$ Si b=d caso de transición. Si k
 eq 0 la solución es un 2-ciclo.

b > d

b = d

Lidia Fernández

Dinámica de poblaciones: la ecuación de Malthus

- Modeliza la evolución de la población de una determinada especie en un hábitat sin limitación de alimentos.
- x_n : número de individuos en el periodo de tiempo n.
- ullet α_N tasa de fertilidad o natalidad por individuo

 $\alpha_N x_n =$ número de nacimientos en el periodo n

• α_M tasa de mortalidad por individuo

 $\alpha_M x_n = \text{número de muertes en el periodo } n$

• Número de individuos en el periodo n+1

$$x_{n+1} = (1 + \alpha_N - \alpha_M) x_n$$
 $n = 0, 1, ...$

La ecuación de Malthus

$$x_{n+1} = (1 + \alpha_N - \alpha_M) x_n$$
 $n = 0, 1, ...$

Se trata de una ecuación en diferencias lineal de primer orden, denominada ecuación de Malthus, propuesta en el siglo XIX, para estimar la evolución de la población humana.

Razón de crecimiento

$$R = 1 + \alpha_N - \alpha_M$$

Se cumple $R = x_{n+1}/x_n$.

• Tasa de crecimiento

$$\alpha = \alpha_N - \alpha_M$$

Representa la variación del tamaño de la población por individuo

$$\alpha = \frac{x_{n+1} - x_n}{x_n}$$

La ecuación de Malthus

$$x_{n+1} = (1 + \alpha) x_n = R x_n$$
 $n = 0, 1, ...$

Conociendo el valor de α (o de R) se conoce la dinámica o evolución de la población.

- Si $\alpha>0$ (R>1), la población crecerá sin límite (los valores de x_n crecen en progresión geométrica y se disparan de forma exponencial)
- Si $-1 \le \alpha < 0$ (R < 1), la población decrece hasta la extinción.
- Si $\alpha = 0$, la población se mantiene constante.

El modelo de Verhulst

- Sea y_k la población en el instante k. Naturalmente el *hábitat* sólo puede soportar un número máximo de individuos, digamos M.
- El crecimiento relativo de la población en cada intervalo de tiempo será

$$\frac{y_{k+1} - y_k}{y_k}$$

• Según las hipótesis de Verhulst (1845), es proporcional a $M-y_k$.

$$\frac{y_{k+1} - y_k}{y_k} = \alpha(M - y_k)$$

- Despejando: $y_{k+1} = (1 + \alpha M)y_k \alpha y_k^2$
- El término no lineal αy_k^2 representa la competencia entre individuos.
- Este es un modelo de ecuación en diferencias de orden 1, autónoma y no lineal.

La ecuación logística

Si ahora en la ecuación

$$y_{k+1} = (1 + \alpha M)y_k - \alpha y_k^2,$$

hacemos $\mu=1+\alpha M$ y $x_k=\frac{\alpha}{\mu}y_k$ la ecuación se reduce a

$$x_{k+1} = \mu x_k (1 - x_k), \quad \mu > 0$$

que es la denominada ecuación logística discreta (May, 1970)