

Advanced Algorithms & Data Structures

Asymptotic efficiency

- Asymptotic efficiency means study of algorithms efficiency for large inputs.
- To compare two algorithms with running times f(n) and g(n), we need a rough measure that characterizes how fast each function grows as n grows.
- <u>Hint:</u> use rate of growth
- Compare functions asymptotically!
 - (i.e., for large values of *n*)

Functions ordered by growth rate

Function	Name
1	Growth is constant
logn	Growth is logarithmic
n	Growth is linear
nlogn	Growth is n-log-n
n ²	Growth is quadratic
n ³	Growth is cubic
2 ⁿ	Growth is exponential
n!	Growth is factorial

 $1 < logn < n < nlogn < n^2 < n^3 < 2^n < n!$

 To get a feel for how the various functions grow with n, you are advised to study the following figs:

Instance characteristic n										
Time	Name	1	2	4	8	16	32			
1	Constant	1	1	1	1	1	1			
$\log n$	Logarithmic	0	1	2	3	4	5			
n	Linear	1	2	4	8	16	32			
$n \log n$	Log linear	0	2	8	24	64	160			
n^2	Quadratic	1	4	16	64	256	1024			
n^3	Cubic	1	8	64	512	4096	32768			
2^{n}	Exponential	2	4	16	256	65536	4294967296			
n!	Factorial	1	2	24	40326	20922789888000	26313×10^{33}			

Figure 1.7 Function values

Figure 1.8 Plot of function values

• The low order terms and constants in a function are relatively insignificant for large n

$$n^2 + 100n + \log_{10}n + 1000 \sim n^2$$

i.e., we say that $n^2 + 100n + \log_{10}n + 1000$ and n^2 have the same rate of growth

Some more examples

•
$$n^4 + 100n^2 + 10n + 50$$
 is n^4

•
$$10n^3 + 2n^2$$
 is n^3

•
$$n^3 - n^2$$
 is n^3

- constants
 - > 10 is ~ 1
 - > 1273 is ~ 1

Asymptotic/order Notations

- Asymptotic/order notation describes the behavior of functions for the large inputs.
- **Big Oh(***O*) notation:
 - The big oh notation describes an upper bound on the asymptotic growth rate of the function f.

Definition: [Big "oh"]

- f(n) = O(g(n)) (read as "f of n is big oh of g of n") iff there exist positive constants c and n_0 such that $f(n) \le cg(n)$ for all $n, n \ge n_0$.

- The definition states that the function f(n) is at most c times the function g(n) except when n is smaller than n₀.
- In other words, f(n) grows slower than or same rate as" g(n).
- When providing an upper –bound function g for f, we normally use a single term in n.

Examples

$$- f(n) = 3n+2$$

• $3n + 2 \le 4n$, for all $n \ge 2$, $\therefore 3n + 2 = O(n)$

$$- f(n) = 10n^2 + 4n + 2$$

•
$$10n^2+4n+2 \le 11n^2$$
, for all $n \ge 5$, : $10n^2+4n+2 = O(n^2)$

$$- f(n)=6*2^n+n^2=O(2^n) /* 6*2^n+n^2 \le 7*2^n \text{ for } n \ge 4*/$$

- It also possible to write $10n^2+4n+2 = O(n^3)$ since $10n^2+4n+2 <=7n^3$ for n>=2
- Although n³ is an upper bound for 10n²+4n+2, it is not a tight upper bound; we can find a smaller function (n²) that satisfies big oh relation.
- But, we can not write $10n^2+4n+2=O(n)$, since it does not satisfy the big oh relation for sufficiently large input.

• *Omega* (Ω) notation:

The omega notation describes a lower bound on the asymptotic growtlength rate of the function f.

Definition: [Omega]

-f(n) = Ω(g(n)) (read as "f of n is omega of g of n' iff there exist positive constants c and n_0 such that f(n) ≥ cg(n) for all n,

$$n \ge n_0$$
.

- The definition states that the function f(n) is at least c times the function g(n) except when n is smaller than n_0 .
- In other words, f(n) grows faster than or same rate as" g(n).

Examples

- f(n) = 3n+2
 - 3n + 2 >= 3n, for all n >= 1, $\therefore 3n + 2 = \Omega(n)$
- $f(n) = 10n^2 + 4n + 2$
 - $10n^2+4n+2 >= n^2$, for all n >= 1, $\therefore 10n^2+4n+2 = \Omega(n^2)$
- It also possible to write $10n^2+4n+2 = \Omega(n)$ since $10n^2+4n+2 >= n$ for n>=0
- Although n is a lower bound for $10n^2+4n+2$, it is not a tight lower bound; we can find a larger function (n^2) that satisfies omega relation.
- But, we can not write $10n^2+4n+2 = \Omega(n^3)$, since it does not satisfy the omega relation for sufficiently large input.

• *Theta* (Θ) notation:

 The Theta notation describes a tight bound on the asymptotic growth rate of the function f.

Definition: [Theta]

- $f(n) = \Theta(g(n))$ (read as "f of n is theta of g of n") iff there exist positive constants c_1 , c_2 , and n_0 such that $c_1g(n) \le f(n)$ ≤ $c_2g(n)$ for all n, $n \ge n_0$.

- The definition states that the function f(n) lies between c1 times the function g(n) and c2 times the function g(n) except when n is smaller than n_0 .
- In other words, f(n) grows same rate as" g(n).
- Examples:-
 - f(n) = 3n+2
 - $3n \le 3n + 2 \le 4n$, for all $n \ge 2$, $\therefore 3n + 2 = \Theta(n)$
 - $f(n) = 10n^2 + 4n + 2$
 - $n^2 <= 10n^2 + 4n + 2 <= 11n^2$, for all n >= 5, $\therefore 10n^2 + 4n + 2 = \Theta(n^2)$
- But, we can not write either $10n^2+4n+2=\Theta(n)$ or $10n^2+4n+2=\Theta(n^3)$, since neither of these will satisfy the theta relation.

Big-Oh, Theta, Omega

Tips:

- Think of O(g(n)) as "less than or equal to" g(n)
 - Upper bound: "grows slower than or same rate as" g(n)
- Think of Ω(g(n)) as "greater than or equal to" g(n)
 - Lower bound: "grows faster than or same rate as" g(n)
- Think of Θ(g(n)) as "equal to" g(n)
 - "Tight" bound: same growth rate

• (True for large N)

Example 1 - Iterative sum of n numbers

Statement	s/e	frequency	Total steps
Algorithm sum(a, n)	0		0
{	0		0
s:=0;	1	1	O(1)
for i:=1 to n do	1	n+1	O(n+1)
s:=s+a[i];	1	n	O(n)
return s;	1	1	O(1)
}	0		0
Total			O(n)

Example 2 - Addition of two m×n matrices

Statement	s/e	frequency	Total steps
Algorithm Add(a,b,c,m, n)	0		0
{	0		0
for i:=1 to m do for j:=1 to n do c[i,j]:=a[i,j]+b[i,j]; }	1	m+1	O(m)
	1	m(n+1)	O(mn)
	1	mn	O(mn)
	0		0
Total			O(mn)

Time complexity of Towers of Hanoi

$$- T(n) = T(n-1) + 1 + T(n-1) = 2T(n-1) + 1$$

$$= 2 * (2 * T(n-2) + 1) + 1$$

$$= (2 ^ 2) * T(n-2) + 2^1 + 2^0$$

$$\vdots$$

$$= (2^k) * T(n-k) + 2^k(k-1) + 2^k(k-2) + ... + 2^0$$
Base condition $T(0) = 1$

$$n - k = 0 \Rightarrow n = k;$$

$$put, k = n$$

$$T(n) = 2^n T(0) + 2^k(n-1) + ... + 2^1 + 2^0$$
It is GP series, and sum is $2^k(n+1) - 1$

$$T(n) = O(2^n)$$
 which is exponential.

SAMPLE QUESTIONS

- What are asymptotic notations in algorithm analysis
- Why are they important in evaluating the efficiency of algorithms
- What is the difference between the best-case, worst-case, and average-case time complexities represented by Big O notation
- What is rate of growth
- Provide examples of algorithms and their corresponding time complexity expressed in Big O notation.
- Discuss the properties of Big O notation
- What are the rules for comparing and combining functions represented by Big O notation?
- Explain the concept of Omega notation.
- How does it differ from Big O notation, and what does it represent in terms of lower bounds of time complexity
- What is function value

SAMPLE QUESTIONS CONT..

- What is the purpose of Theta notation
- How does it provide a tighter bound on the time complexity of an algorithm compared to Big O notation?
- Explain the concept of space complexity in asymptotic notations. How can it be represented using Big O notation?
- Discuss the concept of logarithmic time complexity and how it is represented using asymptotic notations.
- Provide examples of exponential time complexity and how it is expressed in asymptotic notations.

