

NHD-0216K1Z-FSW-FBW-L

Character Liquid Crystal Display Module

NHD- Newhaven Display 0216- 2 lines x 16 characters

K1Z- Model

F- Transflective

SW- Side White LED Backlight

F- FSTN(+) B- 6:00 view

W- Wide Temperature (-20°C~+70°C)

L- Low Power 20mA RoHS Compliant

Newhaven Display International, Inc.

2511 Technology Drive, Suite 101 Elgin IL, 60124

Ph: 847-844-8795 Fax: 847-844-8796

www.newhavendisplay.com

nhtech@newhavendisplay.com nhsales@newhavendisplay.com

Document Revision History

Revision	Date	Description	Changed by
0	10/5/2007	Initial Release	-
1	12/16/2009	User Guide Reformat	BE
2	1/7/2010	Optical revised	BE
3	1/6/2011	Alternate controller information updated	AK

Functions and Features

- 2 lines x 16 characters
- Built-in controller (SPLC780D or ST7066U)
- +5.0V Power Supply
- 1/16 duty, 1/5 bias
- RoHS compliant

Mechanical Drawing

Pin Description and Wiring Diagram

Pin No.	Symbol	External	Function Description
	•	Connection	·
1	VSS	Power Supply	Ground
2	VDD	Power Supply	Supply Voltage for logic (+5.0V)
3	V0	Adj Power Supply	Power supply for contrast (approx. 0.5V)
4	RS	MPU	Register select signal. RS=0: Command, RS=1: Data
5	R/W	MPU	Read/Write select signal, R/W=1: Read R/W: =0: Write
6	E	MPU	Operation enable signal. Falling edge triggered.
7-10	DB0 – DB3	MPU	Four low order bi-directional three-state data bus lines. These four
			are not used during 4-bit operation.
11-14	DB4 – DB7	MPU	Four high order bi-directional three-state data bus lines.
15	LED+	Power Supply	Power supply for LED Backlight (+5.0V via on-board resistor)
16	LED-	Power Supply	Ground for Backlight

Recommended LCD connector: 2.54mm pitch pins **Backlight connector:** --- **Mates with:** ---

Electrical Characteristics

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Operating Temperature Range	Тор	Absolute Max	-20	-	+70	°C
Storage Temperature Range	Tst	Absolute Max	-30	-	+80	°C
Supply Voltage	VDD		4.7	5.0	5.5	V
Supply Current	IDD	Ta=25°C, VDD=5.0V	ı	1.5	2.5	mA
Supply for LCD (contrast)	VDD-V0	Ta=25°C	ı	4.5	ı	V
"H" Level input	Vih		2.2	-	VDD	V
"L" Level input	Vil		0	-	0.6	V
"H" Level output	Voh		2.4	-	-	V
"L" Level output	Vol		-	-	0.4	V
Backlight Supply Voltage	Vled	-	-	5.0	ı	V
Backlight Supply Current	lled	Vled=5.0V	-	20	ı	mA

Optical Characteristics

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Viewing Angle – Vertical (top)	AV	Cr ≥ 3	-	20	-	0
Viewing Angle – Vertical (bottom)	AV	Cr ≥ 3	-	50	-	0
Viewing Angle – Horizontal (left)	AH	Cr ≥ 3	-	30	-	0
Viewing Angle – Horizontal (right)	AH	Cr ≥ 3	-	30	-	0
Contrast Ratio	Cr		3	5	-	-
Response Time (rise)	Tr	-	-	150	250	ms
Response Time (fall)	Tf	-	-	150	250	ms

Controller Information

Built-in SPLC780D. Download specification at http://www.newhavendisplay.com/app_notes/SPLC780D.pdf

Built-in ST7066U. Download specification at http://www.newhavendisplay.com/app notes/ST7066U.pdf

Display character address code:

I	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
I	00	01	02	03	04	05	06	07	08	09	0A	0B	0C	0D	0E	0F
I	40	41	42	43	44	45	46	47	48	49	4A	4B	4C	4D	4E	4F

Built-in Font Table

Upper 4																
Lower Bits	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
xxxx0000	CG RAM (1)			0	a	P	`	P				_	9	Ę	α	р
xxxx0001	(2)		!	1	A	Q	а	9			0	7	チ	4	ä	q
xxxx0010	(3)		Ш	2	В	R	Ь	r			Г	1	ij	×	f	0
xxxx0011	(4)		#	3	C	5	C	s			L	¢	Ŧ	ŧ	ε	60
xxxx0100	(5)		\$	4	D	T	d	t			ν.	I	ŀ	þ	Н	υ
xxxx0101	(6)		%	5	E	U	e	u			•	7	t	l	Œ	ü
xxxx0110	(7)		&	6	F	Ų	f	V			7	Ħ	_	3	ρ	Σ
xxxx0111	(8)		,	7	G	W	9	W			7	#	Z	ラ	9	π
xxxx1000	(1)		(8	H	X	h	X			4	7	末	IJ	J	×
xxxx1001	(2))	9	Ι	Υ	i	4			Ċ	ኃ	J	ΙĿ	-1	y
xxxx1010	(3)		*		J	Z	j	Z			I		ń	V	j	¥
xxxx1011	(4)		+	;	K		k	{			7	Ħ	L		*	F
xxxx1100	(5)		,	<	L	¥	1				t	Ð	7	7	4	Ħ
xxxx1101	(6)			=	M]	M	}			ュ	Z	^	ン	Ł	÷
xxxx1110	(7)		•	>	И	^	n	+			3	t	#	*	ħ	
xxxx1111	(8)		•	?	0		0	+			ייַי	y	7		Ö	

Example Initialization Program

```
8-bit Initialization:
/***********************
void command(char i)
{
     P1 = i;
                             //put data on output Port
    D_I = 0;
                             //D/I=LOW : send instruction
                             //R/W=LOW : Write
    R_W = 0;
    E = 1;
    Delay(1);
                             //enable pulse width >= 300ns
     E = 0;
                             //Clock enable: falling edge
void write(char i)
     P1 = i;
                             //put data on output Port
                             //D/I=LOW : send data
    D_I = 1;
    R_W = 0;
                             //R/W=LOW : Write
    E = 1;
    Delay(1);
                             //enable pulse width >= 300ns
    E = 0;
                             //Clock enable: falling edge
void init()
{
     E = 0;
     Delay(100);
                             //Wait >15 msec after power is applied
     command(0x30);
                             //command 0x30 = Wake up
                             //must wait 5ms, busy flag not available
     Delay(30);
                             //command 0x30 = Wake up #2
     command(0x30);
     Delay(10);
                             //must wait 160us, busy flag not available
     command(0x30);
                             //command 0x30 = Wake up #3
                            //must wait 160us, busy flag not available
//Function set: 8-bit/2-line
     Delay(10);
     command(0x38);
     command(0x10);
                             //Set cursor
     command(0x0c);
                             //Display ON; Cursor ON
     command(0x06);
                             //Entry mode set
```

```
4-bit Initialization:
/**********************
void command(char i)
                                //put data on output Port
     P1 = i;
     D_I = 0;
                                //D/I=LOW : send instruction
     R_W = 0;
                                //R/W=LOW : Write
                                //Send lower 4 bits
     Nybble();
     i = i << 4;
                                //Shift over by 4 bits
     P1 = i;
                                //put data on output Port
     Nybble();
                                //Send upper 4 bits
void write(char i)
     P1 = i;
                                //put data on output Port
                                //D/I=HIGH : send data
     D_I = 1;
     R_W = 0;
                                //R/W=LOW : Write
     Nybble();
                                //Clock lower 4 bits
                                //Shift over by 4 bits
     i = i << 4;
     P1 = i;
                                //put data on output Port
     Nybble();
                                //Clock upper 4 bits
/***********************************
void Nybble()
     E = 1;
     Delay(1);
                                //enable pulse width >= 300ns
     E = 0;
                                //Clock enable: falling edge
/***********************************
void init()
     P1 = 0;
     P3 = 0;
     Delay(100);
                                //Wait >15 msec after power is applied
     P1 = 0x30;
                                //put 0x30 on the output port
     Delay(30);
                                //must wait 5ms, busy flag not available
     Nybble();
                                //command 0x30 = Wake up
     Delay(10);
                                //must wait 160us, busy flag not available
                                //command 0x30 = Wake up #2
     Nybble();
                                //must wait 160us, busy flag not available
     Delay(10);
     Nybble();
                                //command 0x30 = Wake up #3
                                //can check busy flag now instead of delay
     Delay(10);
                                //put 0x20 on the output port
     P1 = 0x20;
     Nybble();
                                //Function set: 4-bit interface
     command(0x28);
                                //Function set: 4-bit/2-line
     command(0x10);
                                //Set cursor
                                //Display ON; Blinking cursor
     command(0x0F);
     command(0x06);
                                //Entry Mode set
/**********************
```

Quality Information

Test Item	Content of Test	Test Condition	Note
High Temperature storage	Endurance test applying the high	+80°C , 48hrs	2
	storage temperature for a long time.		
Low Temperature storage	Endurance test applying the low storage	-30°C , 48hrs	1,2
	temperature for a long time.		
High Temperature	Endurance test applying the electric stress	+70°C 48hrs	2
Operation	(voltage & current) and the high thermal		
	stress for a long time.		
Low Temperature	Endurance test applying the electric stress	-20°C , 48hrs	1,2
Operation	(voltage & current) and the low thermal		
	stress for a long time.		
High Temperature /	Endurance test applying the electric stress	+40°C, 90% RH, 48hrs	1,2
Humidity Operation	(voltage & current) and the high thermal		
	with high humidity stress for a long time.		
Thermal Shock resistance	Endurance test applying the electric stress	0°C,30min -> 25°C,5min ->	
	(voltage & current) during a cycle of low	50°C,30min = 1 cycle	
	and high thermal stress.	10 cycles	
Vibration test	Endurance test applying vibration to	10-55Hz , 15mm amplitude.	3
	simulate transportation and use.	60 sec in each of 3 directions	
		X,Y,Z	
		For 15 minutes	
Static electricity test	Endurance test applying electric static	VS=800V, RS=1.5kΩ, CS=100pF	
	discharge.	One time	

Note 1: No condensation to be observed.

Note 2: Conducted after 4 hours of storage at 25°C, 0%RH.

Note 3: Test performed on product itself, not inside a container.

Precautions for using LCDs/LCMs

See Precautions at www.newhavendisplay.com/specs/precautions.pdf

Warranty Information and Terms & Conditions

http://www.newhavendisplay.com/index.php?main_page=terms