Device Modeling Report

COMPONENTS: OPERATIONAL AMPLIFIER

PART NUMBER:NJM2732

MANUFACTURER: NEW JAPAN RADIO CO.,LTD

Bee Technologies Inc.

Spice Model


```
*$
*PART NUMBER: NJM2732
*MANUFACTURER: NEW JAPAN RADIO
*OPAMP
*All Rights Reserved Copyright (c) Bee Technologies Inc. 2007
.Subckt NJM2732 OUT1 -IN1 +IN1 V- +IN2 -IN2 OUT2 V+
X U1
       +IN1 -IN1 V+ V- OUT1 NJM2732 S
X U2
       +IN2 -IN2 V+ V- OUT2 NJM2732 S
.ends njm2732
.subckt njm2732_S 12345
 c1 11 12 8.6603E-12
 c2 6 7 30.000E-12
 dc 5 53 dv
 de 54 5 dy
 dlp 90 91 dx
 dln 92 90 dx
 dp 4 3 dx
 egnd 99 0 poly(2) (3,0) (4,0) 0 .5 .5
 fb 7 99 poly(5) vb vc ve vlp vln 0 3.4037E6 -1E3 1E3 3E6 -3E6
 ga 6 0 11 12 215.07E-6
 gcm 0 6 10 99 66.995E-9
 iee 3 10 dc 12.129E-6
 hlim 90 0 vlim 1K
 q1 11 2 13 qx1
 q2 12 1 14 qx2
 r2 6 9 100.00E3
 rc1 4 11 4.6496E3
 rc2 4 12 4.6496E3
 re1 13 10 346.78
 re2 14 10 346.78
 ree 10 99 16.489E6
 ro1 8 5 50
 ro2 7 99 25
 rp 3 4 50.006
 vb 9 0 dc 0
 vc 3 53 dc .945
 ve 54 4 dc .9488
 vlim 7 8 dc 0
 vlp 91 0 dc 20
 vln 0 92 dc 20
.model dx D(Is=800.00E-18)
.model dy D(Is=800.00E-18 Rs=1m Cjo=10p)
.model qx1 PNP(Is=800.00E-18 Bf=112.24)
.model qx2 PNP(Is=850.7231E-18 Bf=131.31)
.ends
*$
```

Output Voltage Swing

Simulation result

Evaluation circuit

Output Voltage Swing	Measurement	Simulation	%Error
VOH (V)	4.85	4.8504	0.008
VOL (V)	0.15	0.150	0

Input Offset Voltage

Simulation result

Evaluation circuit

	Measurement	Simulation	%Error
Vos (mV)	1	1.0082	0.82

Slew Rate

Simulation result

Evaluation circuit

	Measurement	Simulation	%Error
Slew Rate(v/us)	0.4	0.398	-0.5

Input current

Simulation result

Evaluation circuit

	Measurement	Simulation	%Error
lb(nA)	50	50.061	0.122
lio(nA)	5	5.0025	0.050

Open Loop Voltage Gain vs. Frequency

Simulation result

Evaluation circuit

	Measurement	Simulation	%Error
f-0dB(MHz)	1	1	0
Av-dc	85	84.992	-0.009

Common-Mode Rejection Voltage gain

Simulation result

Evaluation circuit

CMRR=20*LOG(17766.423/(3.3913/0.6)) = 69.948 dB

	Measurement	Simulation	%Error
CMRR(dB)	70	69.948	-0.074

Remark Output Voltage Swing

Before

Remark Input Offset Voltage

Before

Remark Slew Rate

Before

Remark Input current

Before

Remark Open Loop Voltage Gain vs. Frequency

Before

Remark Common-Mode Rejection Voltage gain

Before

