Deep Generative Models

(Fall 2024)

CS HUFS

Energy-Based Models

- Parameterizing probability distributions
- Energy-based model
- Applications of energy-based models
- Deep Boltzmann machines
- Learning and inference of energy-based models

CS HUFS 3

Recap.

 $x_i \sim P_{\text{data}}$ i = 1, 2, ..., n

- Model families
 - Autoregressive Models: $p_{\theta}(\mathbf{x}) = \prod_{i=1}^{n} p_{\theta}(x_i | \mathbf{x}_{< i})$

 - $\begin{array}{ll} \bullet & \text{Variational Autoencoders:} & p_{\theta}(\mathbf{x}) = \int p(\mathbf{z}) \, p_{\theta}(\mathbf{x} \mid \mathbf{z}) d\mathbf{z} \\ \bullet & \text{Normalizing Flow Models:} & p_{\theta}(\mathbf{x}) = p_z \left(\mathbf{f}_{\theta}^{-1}(\mathbf{x})\right) \left| \det \left(\frac{\partial \mathbf{f}_{\theta}^{-1}(\mathbf{x})}{\partial \mathbf{x}}\right) \right| \\ \end{array}$

Cons: Model architectures are restricted.

Recap.

- Generative Adversarial Networks (GANs).
 - $\min_{\theta} \max_{\phi} E_{\mathbf{x} \sim p_{\text{data}}}[\log D_{\phi}(\mathbf{x})] + E_{\mathbf{z} \sim p(\mathbf{z})}[\log(1 D_{\phi}(G_{\theta}(\mathbf{z})))].$
 - Two sample tests. Can (approximately) optimize f-divergences (e.g. KL divergence, Jensen-Shannon divergence) or Wasserstein distance.
 - Very flexible model architectures. But likelihood is intractable, training is unstable, hard to evaluate, and has mode collapse issues.

Today's lecture

Energy-based models (EBMs).

- Very flexible model architectures.
- Stable training.
- Relatively high sample quality.
- Flexible composition.

Parameterizing probability distributions

Probability distributions p(x) are a key building block in generative modeling.

- **1** non-negative: $p(x) \ge 0$
- 2 sum-to-one: $\sum_{x} p(x) = 1$ (or $\int p(x) dx = 1$ for continuous variables)

Coming up with a non-negative function $p_{\theta}(\mathbf{x})$ is not hard. Given any function $f_{\theta}(\mathbf{x})$, we can choose

- $q_{\theta}(\mathbf{x}) = f_{\theta}(\mathbf{x})^2$
 - $g_{\theta}(\mathbf{x}) = \exp(f_{\theta}(\mathbf{x}))$
 - $g_{\theta}(\mathbf{x}) = |f_{\theta}(\mathbf{x})|$
 - $g_{\theta}(\mathbf{x}) = \log(1 + \exp(f_{\theta}(\mathbf{x})))$
 - etc.

Parameterizing probability distributions

Probability distributions $p(\mathbf{x})$ are a key building block in generative modeling.

1 non-negative: $p(\mathbf{x}) \ge 0$ 2 sum-to-one: $\sum_{\mathbf{x}} p(\mathbf{x}) = 1$ (or $\int p(\mathbf{x}) d\mathbf{x} = 1$ for continuous variables)

Sum-to-one is key:

Total "volume" is fixed: increasing $p(x_{train})$ quarantees that x_{train} becomes relatively more likely (compared to the rest).

Problem:

- $g_{\theta}(\mathbf{x}) \ge 0$ is easy, but $g_{\theta}(\mathbf{x})$ might not sum-to-one.
- $\sum_{\mathbf{x}} g_{\theta}(\mathbf{x}) = Z(\theta) \neq 1$ in general, so $g_{\theta}(\mathbf{x})$ is not a valid probability $\overline{\text{m}}$ as function or density (for continuous case, $\int g_{\theta}(\mathbf{x}) d\mathbf{x} \neq 1$)

Parameterizing probability distributions

Problem: $g_{\theta}(\mathbf{x}) \ge 0$ is easy, but $g_{\theta}(\mathbf{x})$ might not be normalized **Solution**:

$$p_{\theta}(\mathbf{x}) = \frac{1}{Z(\theta)} g_{\theta}(\mathbf{x}) = \frac{1}{\int g_{\theta}(\mathbf{x}) d\mathbf{x}} g_{\theta}(\mathbf{x}) = \frac{1}{Volume(g_{\theta})} g_{\theta}(\mathbf{x})$$

Then by definition, $\int p_{\theta}(\mathbf{x}) d\mathbf{x} = \int \frac{g_{\theta}(\mathbf{x})}{Z(\theta)} d\mathbf{x} = \frac{Z(\theta)}{Z(\theta)} = 1$. **Example**: choose $g_{\theta}(\mathbf{x})$ so that we know the volume *analytically* as a function of θ .

- - 2 $g_{\lambda}(x) = e^{-\lambda x}$. Volume is: $\int_0^{+\infty} e^{-\lambda x} dx = \frac{1}{\lambda}$. \rightarrow Exponential 3 $g_{\theta}(x) = h(x) \exp\{\theta \cdot T(x)\}$. Volume is $\exp\{A(\theta)\}$, where
 - **3** $g_{\theta}(x) = h(x) \exp\{\theta \cdot T(x)\}$. **Volume** is $\exp\{A(\theta)\}$, where $A(\theta) = \log \int h(\mathbf{x}) \exp\{\theta \cdot T(\mathbf{x})\} d\mathbf{x}$. \rightarrow **Exponential family**
 - Normal, Poisson, exponential, Bernoullibeta, gamma, Dirichlet, Wishart, etc.

Function forms $g_{\theta}(\mathbf{x})$ need to allow *analytical* integration. Despite being restrictive, they are very useful as building blocks for more complex distributions.

Likelihood based learning

Problem: $g_{\theta}(\mathbf{x}) \geq 0$ is easy, but $g_{\theta}(\mathbf{x})$ might not be normalized **Solution**:

$$\rho_{\theta}(\mathbf{x}) = \frac{1}{Volume(g_{\theta})} g_{\theta}(\mathbf{x}) = \frac{1}{\int g_{\theta}(\mathbf{x}) d\mathbf{x}} g_{\theta}(\mathbf{x}) = \frac{1}{Z(\theta)} g_{\theta}(\mathbf{x})$$

Typically, choose $g_{\theta}(\mathbf{x})$ so that we know the volume *analytically*. More complex models can be obtained by combining these building blocks.

1 Autoregressive: Products of normalized objects $p_{\theta}(\mathbf{x})p_{\theta(\mathbf{x})}(\mathbf{y})$:

$$\int_{\mathbf{x}} \int_{\mathbf{y}} \rho_{\theta}(\mathbf{x}) \rho_{\theta'(\mathbf{x})}(\mathbf{y}) d\mathbf{x} d\mathbf{y} = \int_{\mathbf{x}} \rho_{\theta}(\mathbf{x}) \underbrace{\int_{\mathbf{y}} \rho_{\theta'(\mathbf{x})}(\mathbf{y}) d\mathbf{y}}_{\mathbf{y}} d\mathbf{x} = \int_{\mathbf{x}} \rho_{\theta}(\mathbf{x}) d\mathbf{x} = 1$$

2 Latent variables: Mixtures of normalized objects $\alpha p_{\theta}(\mathbf{x}) + (1 - \alpha)p_{\theta}(\mathbf{x}) : \int_{\mathbf{x}} \alpha p_{\theta}(\mathbf{x}) + (1 - \alpha)p_{\theta}(\mathbf{x}) d\mathbf{x} = \alpha + (1 - \alpha) = 1$

How about using models where the "volume"/normalization constant of $g_{\theta}(\mathbf{x})$ is not easy to compute analytically?

Energy-based model

$$p_{\theta}(\mathbf{x}) = \frac{1}{\int \exp(f_{\theta}(\mathbf{x}))d\mathbf{x}} \exp(f_{\theta}(\mathbf{x})) = \frac{1}{Z(\theta)} \exp(f_{\theta}(\mathbf{x}))$$

The volume/normalization constant

$$Z(\theta) = \int \exp(f_{\theta}(\mathbf{x})) d\mathbf{x}$$

is also called the partition function. Why exponential (and not e.g. $f_{\theta}(\mathbf{x})^2$)?

- **1** Want to capture very large variations in probability. log-probability is the natural scale we want to work with. Otherwise need highly non-smooth f_{θ} .
- Exponential families. Many common distributions can be written in this form.
- These distributions arise under fairly general assumptions in statistical physics (maximum entropy, second law of thermodynamics).
 - $-f_{\theta}(\mathbf{x})$ is called the **energy**, hence the name.
 - Intuitively, configurations \mathbf{x} with low energy (high $f_{\theta}(\mathbf{x})$) are more likely.

Energy-based model

$$\rho_{\theta}(\mathbf{x}) = \frac{1}{\int \exp(f_{\theta}(\mathbf{x})) d\mathbf{x}} \exp(f_{\theta}(\mathbf{x})) = \frac{1}{Z(\theta)} \exp(f_{\theta}(\mathbf{x}))$$

Pros:

- extreme flexibility: can use pretty much any function $f_{\theta}(\mathbf{x})$ you want Cons:
- **1** Sampling from $p_{\theta}(\mathbf{x})$ is hard
- 2 Evaluating and optimizing likelihood $p_{\theta}(\mathbf{x})$ is hard (learning is hard)
- No feature learning (but can add latent variables)

Curse of dimensionality: The fundamental issue is that computing $Z(\theta)$ numerically (when no analytic solution is available) scales exponentially in the number of dimensions of \mathbf{x} .

Nevertheless, some tasks do not require knowing $Z(\theta)$

Applications of Energy-based models

$$p_{\theta}(\mathbf{x}) = \frac{1}{\int \exp(f_{\theta}(\mathbf{x}))d\mathbf{x}} \exp(f_{\theta}(\mathbf{x})) = \frac{1}{Z(\theta)} \exp(f_{\theta}(\mathbf{x}))$$

- Given \mathbf{x} , \mathbf{x}' evaluating $p_{\theta}(\mathbf{x})$ or $p_{\theta}(\mathbf{x}')$ requires $Z(\theta)$.
- However, their ratio

$$\frac{p_{\theta}(\mathbf{x})}{p_{\theta}(\mathbf{x}')} = \exp(f_{\theta}(\mathbf{x}) - f_{\theta}(\mathbf{x}'))$$

does not involve $Z(\theta)$.

- This means we can easily check which one is more likely. Applications:
 - anomaly detection
 - denoising

Applications of Energy-based models

Given a trained model, many applications require relative comparisons. Hence $Z(\theta)$ is not needed.

Example: Ising Model

• There is a true image $\mathbf{y} \in \{0,1\}^{3\times 3}$, and a corrupted image $\mathbf{x} \in \{0,1\}^{3\times 3}$. We know \mathbf{x} , and want to somehow recover \mathbf{y} .

• We model the joint probability distribution p(y, x) as

$$p(\mathbf{y}, \mathbf{x}) = \frac{1}{Z} \exp \left(\sum_{i} \psi_{i}(x_{i}, y_{i}) + \sum_{(i,j) \in E} \psi_{ij}(y_{i}, y_{j}) \right)$$

- $\psi_i(x_i, y_i)$: the *i*-th corrupted pixel depends on the *i*-th original pixel
- $\psi_{ij}(y_i, y_j)$: neighboring pixels tend to have the same value
- How did the original image y look like? Solution: maximize p(y|x). Or equivalently, maximize p(y,x).

Example: Product of Experts

- Suppose you have trained several models $q_{\theta_1}(\mathbf{x})$, $r_{\theta_2}(\mathbf{x})$, $t_{\theta_3}(\mathbf{x})$. They can be different models (PixelCNN, Flow, etc.)
- Each one is like an expert that can be used to score how likely an input x is.
- Assuming the experts make their judgments indpendently, it is tempting to ensemble them as

$$p_{\theta_1}(\mathbf{x})q_{\theta_2}(\mathbf{x})r_{\theta_3}(\mathbf{x})$$

To get a valid probability distribution, we need to normalize

$$p_{\theta_1,\,\theta_2,\,\theta_3}(\mathbf{x}) = \frac{1}{Z(\theta_1,\,\theta_2,\,\theta_3)} q_{\theta_1}(\mathbf{x}) r_{\theta_2}(\mathbf{x}) t_{\theta_3}(\mathbf{x})$$

 Note: similar to an AND operation (e.g., probability is zero as long as one model gives zero probability), unlike mixture models which behave more like OR

Example: Product of Experts

Image source: Du et al., 2020.

Example: Restricted Boltzmann machine (RBM)

- RBM: energy-based model with latent variables
- Two types of variables:
 - $\mathbf{0} \mathbf{x} \in \{0,1\}^n$ are visible variables (e.g., pixel values)
 - $\mathbf{z} \in \{0, 1\}^m$ are latent ones
- The joint distribution is

$$p_{W,b,c}(\mathbf{x},\mathbf{z}) = \frac{1}{Z} \exp\left(\mathbf{x}^T W \mathbf{z} + b \mathbf{x} + c \mathbf{z}\right) = \frac{1}{Z} \exp\left(\sum_{i=1}^n \sum_{j=1}^m x_i z_j w_{ij} + b \mathbf{x} + c \mathbf{z}\right)$$

• Restricted because there are no visible-visible and hidden-hidden connections, i.e., $x_i x_j$ or $z_i z_j$ terms in the objective

Example: Deep Boltzmann Machines

Stacked RBMs are one of the first deep generative models:

- f v Bottom layer variables f v are pixel values. Layers above f (h) represent "higher-level" features (corners, edges, etc).
- Early deep neural networks for supervised learning had to be pre-trained like this to make them work.

Deep Boltzmann Machines: samples

Image source: Salakhutdinov and Hinton, 2009.

Energy-based models: learning and inference

$$p_{\theta}(\mathbf{x}) = \frac{1}{\int \exp(f_{\theta}(\mathbf{x}))} \exp(f_{\theta}(\mathbf{x})) = \frac{1}{Z(\theta)} \exp(f_{\theta}(\mathbf{x}))$$

Pros:

 $\ensuremath{\mathbf{0}}$ can plug in pretty much any function $\ensuremath{\mathit{f}}_\theta(x)$ you want

Cons (lots of them):

- Sampling is hard
- Evaluating likelihood (learning) is hard
- No feature learning

Curse of dimensionality: The fundamental issue is that <u>computing $Z(\theta)$ numerically</u> (when no analytic solution is available) scales exponentially in the number of dimensions of \mathbf{x} .

Computing the normalization constant is hard

As an example, the RBM joint distribution is

$$p_{W,b,c}(\mathbf{x},\mathbf{z}) = \frac{1}{Z} \exp(\mathbf{x}^T W \mathbf{z} + b \mathbf{x} + c \mathbf{z})$$

where

- **1** $\mathbf{x} \in \{0, 1\}^n$ are visible variables (e.g., pixel values)
- 2 $\mathbf{z} \in \{0,1\}^m$ are latent ones
- The normalization constant (the "volume") is

$$Z(W, b, c) = \sum_{\mathbf{x} \in \{0,1\}^n} \sum_{\mathbf{z} \in \{0,1\}^m} \exp(\mathbf{x}^T W \mathbf{z} + b \mathbf{x} + c \mathbf{z})$$

- **Note:** it is a well defined function of the parameters W, b, c, but no simple closed-form. Takes time exponential in n, m to compute. This means that *evaluating* the objective function $p_{W,b,c}(\mathbf{x},\mathbf{z})$ for likelihood-based learning is hard.
- **Observation:** Optimizing the likelihood $p_{W,b,c}(\mathbf{x},\mathbf{z})$ is difficult, but optimizing the un-normalized probability $\exp(\mathbf{x}^T W \mathbf{z} + b \mathbf{x} + c \mathbf{z})$ (w.r.t. trainable parameters W, b, c) is easy.

Training intuition

- Goal: maximize $\frac{\exp\{f_{\theta}(\mathbf{x}_{train})\}}{Z(\theta)}$. Increase numerator, decrease denominator.
- **Intuition**: because the model is not normalized, increasing the un-normalized log-probability $f_{\theta}(\mathbf{x}_{train})$ by changing θ does **not** guarantee that \mathbf{x}_{train} becomes relatively more likely (compared to the rest).
- We also need to take into account the effect on other "wrong points" and try to "push them down" to also make $Z(\theta)$ small.

Contrastive Divergence

- Goal: maximize $\frac{\exp\{f_{\theta}(x_{train})\}}{Z(\theta)}$
- Idea: Instead of evaluating $Z(\theta)$ exactly, use a Monte Carlo estimate.
- Contrastive divergence algorithm: sample $x_{sample} \sim p_{\theta}$, take step on $\nabla_{\theta}(f_{\theta}(x_{train}) f_{\theta}(x_{sample}))$. Make training data more likely than typical sample from the model.

Contrastive Divergence

- Maximize log-likelihood: $\max_{\theta} f_{\theta}(x_{train}) \log Z(\theta)$.
- Gradient of log-likelihood:

$$\nabla_{\theta} f_{\theta}(x_{train}) - \nabla_{\theta} \log Z(\theta)$$

$$= \nabla_{\theta} f_{\theta}(x_{train}) - \frac{\nabla_{\theta} Z(\theta)}{Z(\theta)}$$

$$= \nabla_{\theta} f_{\theta}(x_{train}) - \frac{1}{Z(\theta)} \int \nabla_{\theta} \exp\{f_{\theta}(x)\} dx$$

$$= \nabla_{\theta} f_{\theta}(x_{train}) - \frac{1}{Z(\theta)} \int \exp\{f_{\theta}(x)\} \nabla_{\theta} f_{\theta}(x) dx$$

$$= \nabla_{\theta} f_{\theta}(x_{train}) - \int \frac{\exp\{f_{\theta}(x)\}}{Z(\theta)} \nabla_{\theta} f_{\theta}(x) dx$$

$$= \nabla_{\theta} f_{\theta}(x_{train}) - E_{x_{sample}} [\nabla_{\theta} f_{\theta}(x_{sample})]$$

$$\approx \nabla_{\theta} f_{\theta}(x_{train}) - \nabla_{\theta} f_{\theta}(x_{sample}),$$

where $x_{sample} \sim \exp\{f_{\theta}(x_{sample})\}/Z(\theta)$.

How to sample?

Sampling from energy-based models

$$p_{\theta}(\mathbf{x}) = \frac{1}{\int \exp(f_{\theta}(\mathbf{x}))} \exp(f_{\theta}(\mathbf{x})) = \frac{1}{Z(\theta)} \exp(f_{\theta}(\mathbf{x}))$$

- No direct way to sample like in autoregressive or flow models. Main issue: cannot easily compute how likely each possible sample is
- However, we can easily compare two samples x, x'.
- Use an iterative approach called Markov Chain Monte Carlo (MCMC):
 - ① Initialize x^0 randomly, t = 0
 - 2 Let $x' = x^t + \text{noise}$
 - If $f_{\theta}(x') > f_{\theta}(x^t)$, let $x^{t+1} = x'$
 - 2 Else let $x^{t+1} = x'$ with probability $\exp(f_{\theta}(x') f_{\theta}(x'))$
 - Go to step (on the next page)
- Works in theory, but can take a very long time to converge

Sampling from energy-based models

- For any continuous distribution $p_{\theta}(\mathbf{x})$, suppose we can compute its gradient (the **score function**) $\nabla_{\mathbf{x}} \log p_{\theta}(\mathbf{x})$.
- Let $\pi(\mathbf{x})$ be a prior distribution that is easy to sample from.
- Langevin MCMC.
 - $\mathbf{x}^0 \sim \pi(\mathbf{x})$
 - Repeat $\mathbf{x}^{t+1} \sim \mathbf{x}^t + \epsilon \ \nabla_{\mathbf{x}} \log p_{\theta}(\mathbf{x}^t) + \sqrt{2\epsilon} \ \mathbf{z}^t \text{ for } t = 0, 1, 2, \dots, T 1,$ where $\mathbf{z}^t \sim N(0, I)$.
 - If $\epsilon \to 0$ and $T \to \infty$, we have $\mathbf{x}^T \sim p_{\theta}(\mathbf{x})$.
- Note that for energy-based models, the score function is tractable

$$\nabla_{\mathbf{x}} \log p_{\theta}(\mathbf{x}) = \nabla_{\mathbf{x}} f_{\theta}(\mathbf{x}) - \nabla_{\mathbf{x}} \log Z(\theta)$$
$$= \nabla_{\mathbf{x}} f_{\theta}(\mathbf{x})$$

Modern energy-based models

Langevin sampling

Face samples

Image source: Nijkamp et al. 2019

Modern energy-based models

ImageNet samples

Image source: Du et al., 2019