An overview of ICS vulnerabilities, threats, and security measures

Based on three real-world power plants security concerns

Silvio Ranise

Riccardo Gennaro Studente

Corso di Laurea in Informatica

Trento, 2 dicembre 2022

Indice

- Introduzione
- 2 Metodologia
- 3 Casi di studio
 - Progetto
 - Impianto 1
 - Impianti 2 e 3
- 4 Conclusioni

L'evoluzione dell'architettura degli **Industrial Control Systems** (ICS) avvenuta negli ultimi cinquant'anni, non è andata di pari passo con lo sviluppo della loro sicurezza.

Questo ha permesso ad attori come stati-nazioni e gruppi terroristici di creare danni irreparabili sia ad infrastrutture che a persone.

La necessità di approcci preventivi sia attivi che passivi si fa sempre più evidente.

L'evoluzione dell'architettura degli **Industrial Control Systems** (ICS) avvenuta negli ultimi cinquant'anni, non è andata di pari passo con lo sviluppo della loro sicurezza.

Questo ha permesso ad attori come **stati-nazioni e gruppi terroristici** di creare danni irreparabili sia ad infrastrutture che a persone.

La necessità di approcci preventivi sia attivi che passivi si fa sempre più evidente.

L'evoluzione dell'architettura degli **Industrial Control Systems** (ICS) avvenuta negli ultimi cinquant'anni, non è andata di pari passo con lo sviluppo della loro sicurezza.

Questo ha permesso ad attori come **stati-nazioni e gruppi terroristici** di creare danni irreparabili sia ad infrastrutture che a persone.

La necessità di approcci preventivi sia attivi che passivi si fa sempre più evidente.

Area IT (Informazionale)

- Comunicazione e scambio di informazioni
- Soluzioni di sicurezza consolidate
- Buon livello di manutenzione e patching

Area OT (Operazionale)

- Controllo di apparecchiatura industriale
- Mancanza di soluzioni standardizzate
- Difficoltà in mantenimento e aggiornamento

Area IT (Informazionale)

- Comunicazione e scambio di informazioni
- Soluzioni di sicurezza consolidate
- Buon livello di manutenzione e patching

Area OT (Operazionale)

- Controllo di apparecchiatura industriale
- Mancanza di soluzioni standardizzate
- Difficoltà in mantenimento e aggiornamento

Area IT (Informazionale)

- Comunicazione e scambio di informazioni
- Soluzioni di sicurezza consolidate
- Buon livello di manutenzione e patching

Area OT (Operazionale)

- Controllo di apparecchiatura industriale
- Mancanza di soluzioni standardizzate
- Difficoltà in mantenimento e aggiornamento

Trends

Negli ultimi anni si rilevano i seguenti trend relativi ai sistemi trattati

- Necessità di aumento nell'efficienza dei processi produttiva
- Aumento della criminalità cibernetica
- Introduzione e revisione di framework e standard

Problema

Trends

Negli ultimi anni si rilevano i seguenti trend relativi ai sistemi trattati

- Necessità di aumento nell'efficienza dei processi produttivi
- Aumento della **criminalità** cibernetica
- Introduzione e revisione di framework e standard

Problema

Trends

Negli ultimi anni si rilevano i seguenti trend relativi ai sistemi trattati

- Necessità di aumento nell'efficienza dei processi produttivi
- Aumento della **criminalità** cibernetica
- Introduzione e revisione di framework e standard

Problema

Trends

Negli ultimi anni si rilevano i seguenti trend relativi ai sistemi trattati

- Necessità di aumento nell'efficienza dei processi produttivi
- Aumento della **criminalità** cibernetica
- Introduzione e revisione di framework e standard

Problema

Trends

Negli ultimi anni si rilevano i seguenti trend relativi ai sistemi trattati

- Necessità di aumento nell'efficienza dei processi produttivi
- Aumento della **criminalità** cibernetica
- Introduzione e revisione di framework e standard

Problema

- ▶ Lvl 5: Enterprise Network
- ▶ Lvl 4: Business planning
- ▶ DMZ
- ▶ Lvl 3: Site Operations
- ▶ Lvl 2: Supervisory Control
- ▶ Lvl 1: Basic Control
- ▶ Lvl 0: Physical Process

- ▶ Lvl 5: Enterprise Network
- ▶ Lvl 4: Business planning
- ▶ DMZ
- ▶ Lvl 3: Site Operations
- ▶ Lvl 2: Supervisory Control
- ▶ Lvl 1: Basic Control
- ▶ Lvl 0: Physical Process

- ▶ Lvl 5: Enterprise Network
- ▶ Lvl 4: Business planning
- ► DMZ
- ▶ Lvl 3: Site Operations
- ▶ Lvl 2: Supervisory Control
- ▶ Lvl 1: Basic Control
- ▶ Lvl 0: Physical Process

- ▶ Lvl 5: Enterprise Network
- ▶ Lvl 4: Business planning
- ► DMZ
- ▶ Lvl 3: Site Operations
- ▶ Lvl 2: Supervisory Control
- ▶ Lvl 1: Basic Control
- ▶ Lvl 0: Physical Process

- ▶ Lvl 5: Enterprise Network
- ▶ Lvl 4: Business planning
- ▶ DMZ
- ▶ Lvl 3: Site Operations
- ▶ Lvl 2: Supervisory Control
- ▶ Lvl 1: Basic Control
- ▶ Lvl 0: Physical Process

- ▶ Lvl 5: Enterprise Network
- ▶ Lvl 4: Business planning
- ▶ DMZ
- ▶ Lvl 3: Site Operations
- ▶ Lvl 2: Supervisory Control
- ▶ Lvl 1: Basic Control
- ▶ Lvl 0: Physical Process

- ▶ Lvl 5: Enterprise Network
- ▶ Lvl 4: Business planning
- ▶ DMZ
- ▶ Lvl 3: Site Operations
- ▶ Lvl 2: Supervisory Control
- ▶ Lvl 1: Basic Control
- ▶ Lvl 0: Physical Process

- ▶ Lvl 5: Enterprise Network
- ▶ Lvl 4: Business planning
- ▶ DMZ
- ▶ Lvl 3: Site Operations
- ▶ Lvl 2: Supervisory Control
- ▶ Lvl 1: Basic Control
- ▶ Lvl 0: Physical Process

Attack Vectors

Attack on hardware

Nel momento in cui l'attaccante ha accesso ad un *field device*, questi può manipolare i valori delle variabili generate e lette da questo device.

Attack on software

Tecniche comuni sono False Data Injection Attack (FDIA), tramite SQL-Injection contro gli historian, oppure privilege escalation e buffer overflow sui field device.

Attack on communication

Molti protocolli scrivono in chiaro. Spesso non è necessario compromettere un set di dispositivi, ma risulta sufficiente interferire con la loro comunicazione.

Attack Vectors

Attack on hardware

Nel momento in cui l'attaccante ha accesso ad un *field device*, questi può manipolare i valori delle variabili generate e lette da questo device.

Attack on software

Tecniche comuni sono False Data Injection Attack (FDIA), tramite SQL-Injection contro gli historian, oppure privilege escalation e buffer overflow sui field device.

Attack on communication

Molti protocolli scrivono in chiaro. Spesso non è necessario compromettere un set di dispositivi, ma risulta sufficiente interferire con la loro comunicazione.

Attack Vectors

Attack on hardware

Nel momento in cui l'attaccante ha accesso ad un *field device*, questi può manipolare i valori delle variabili generate e lette da questo device.

Attack on software

Tecniche comuni sono False Data Injection Attack (FDIA), tramite SQL-Injection contro gli historian, oppure privilege escalation e buffer overflow sui field device.

Attack on communication

Molti protocolli scrivono in chiaro. Spesso non è necessario compromettere un set di dispositivi, ma risulta sufficiente interferire con la loro comunicazione.

Indice

- Introduzione
- 2 Metodologia
- 3 Casi di studio
 - Progetto
 - Impianto 1
 - Impianti 2 e 3
- 4 Conclusioni

Problem statement

Dato un subset di una rete di automazione con bassa visibilità sull'asset, si vuole

- Operare un asset inventory
- Analizzare le vulnerabilità dell'asset scoperto
- Proporre mitigazioni

Problem statement

Problem statement

Dato un subset di una rete di automazione con bassa visibilità sull'asset, si vuole

- Operare un asset inventory
- Analizzare le vulnerabilità dell'asset scoperto
- Proporre mitigazioni

Problem statement

Problem statement

Dato un subset di una rete di automazione con bassa visibilità sull'asset, si vuole

- Operare un asset inventory
- Analizzare le vulnerabilità dell'asset scoperto
- Proporre mitigazioni

Problem statement

Problem statement

Dato un subset di una rete di automazione con bassa visibilità sull'asset, si vuole

- Operare un asset inventory
- Analizzare le vulnerabilità dell'asset scoperto
- Proporre mitigazioni

Problem statement

Problem statement

Dato un subset di una rete di automazione con bassa visibilità sull'asset, si vuole

- Operare un asset inventory
- Analizzare le vulnerabilità dell'asset scoperto
- Proporre mitigazioni

Problem statement

ID		Name	Type	OS/Firmware	IP	MAC
103b724d-d	79d-453e-89d5	HMI-A102	computer	Windows XP SP3	172.16.40.0	09:00:09:00:01:12
089f901d-cl	58-4055-9652	ACMEincHQ_SW1	switch	Firmware: h.10.38	192.168.0.0	00:16:b9:49:b6:40
e393a902-6	8fb-4567-b2d1	Modicon M340 BMX P34 20	PLC	Firmware: v2.9	172.16.1.0	00:60:78:00:69:f8

Table: Esempio di asset table

Raccolta dati

Attraverso uno scan passivo si raccolgono i dati sull'asset, che comprendono

- asset properties, ossia IP, MAC, CPE code / Firmware version, tipo di device mappato sul Purdue model, ove possibile.
- communication properties, ossia protocolli usati, traffico di rete, IP di sender e receiver.

ID	Name	Type	OS/Firmware	IP	MAC
103b724d-d79d-453e-89d5	HMI-A102	computer	Windows XP SP3	172.16.40.0	09:00:09:00:01:12
089f901d-cb58-4055-9652	ACMEincHQ_SW1	switch	Firmware: h.10.38	192.168.0.0	00:16:b9:49:b6:40
e393a902-68fb-4567-b2d1	Modicon M340 BMX P34 20	PLC	Firmware: v2.9	172.16.1.0	00:60:78:00:69:f8

Table: Esempio di asset table

Raccolta dati

Attraverso uno scan passivo si raccolgono i dati sull'asset, che comprendono

- asset properties, ossia IP, MAC, CPE code / Firmware version, tipo di device mappato sul Purdue model, ove possibile.
- communication properties, ossia protocolli usati, traffico di rete, IP di sender e receiver.

ID	Name	Type	OS/Firmware	IP	MAC
103b724d-d79d-453e-89d5	HMI-A102	computer	Windows XP SP3	172.16.40.0	09:00:09:00:01:12
089f901d-cb58-4055-9652	ACMEincHQ_SW1	switch	Firmware: h.10.38	192.168.0.0	00:16:b9:49:b6:40
e393a902-68fb-4567-b2d1	Modicon M340 BMX P34 20	PLC	Firmware: v2.9	172.16.1.0	00:60:78:00:69:f8

Table: Esempio di asset table

Raccolta dati

Attraverso uno scan passivo si raccolgono i dati sull'asset, che comprendono

- asset properties, ossia IP, MAC, CPE code / Firmware version, tipo di device mappato sul Purdue model, ove possibile.
- communication properties, ossia protocolli usati, traffico di rete, IP di sender e receiver.

ID	Name	Type	OS/Firmware	IP	MAC
103b724d-d79d-453e-89d5	HMI-A102	computer	Windows XP SP3	172.16.40.0	09:00:09:00:01:12
089f901d-cb58-4055-9652	ACMEincHQ_SW1	switch	Firmware: h.10.38	192.168.0.0	00:16:b9:49:b6:40
e393a902-68fb-4567-b2d1	Modicon M340 BMX P34 20	PLC	Firmware: v2.9	172.16.1.0	00:60:78:00:69:f8

Table: Esempio di asset table

Raccolta dati

Attraverso uno scan passivo si raccolgono i dati sull'asset, che comprendono

- asset properties, ossia IP, MAC, CPE code / Firmware version, tipo di device mappato sul Purdue model, ove possibile.
- communication properties, ossia protocolli usati, traffico di rete, IP di sender e receiver.

Analisi delle vulnerabilità

ID	asset_id	cve_code	matching_cpes	cve_summary	cve_score
4f[]c1	103b724d-[]-89d5	CVE-2000-1218	cpe:/o:microsoft:windows_xp:-:sp3:-	The default configuration []	7.5
62[]3b	089f901d-[]-9652	CVE-2013-6926	cpe:/o:siemens:ruggedcom_system:-:-:	The integrated HTTPS server []	8

Table: Esempio di table di vulnerabilità

Analisi delle vulnerabilità

A partire dai dati raccolti nella prima parte vengono prodotte analisi su

- asset, analizzando le vulnerabilità usando CVSS 2.0 e individuando i sistemi più vulnerabili. Una table con le CVE riscontrate è prodotta
- architettura di rete, dove possibile, analizzando i protocolli usati, livello di network hardening, ed eventuali violazioni di standard

Analisi delle vulnerabilità

ID	asset_id	cve_code	matching_cpes	cve_summary	cve_score
4f[]c1	103b724d-[]-89d5	CVE-2000-1218	cpe:/o:microsoft:windows_xp:-:sp3:-	The default configuration []	7.5
62[]3b	089f901d-[]-9652	CVE-2013-6926	cpe:/o:siemens:ruggedcom_system:-:-:	The integrated HTTPS server []	8

Table: Esempio di table di vulnerabilità

Analisi delle vulnerabilità

A partire dai dati raccolti nella prima parte vengono prodotte analisi su

- asset, analizzando le vulnerabilità usando CVSS 2.0 e individuando i sistemi più vulnerabili. Una table con le CVE riscontrate è prodotta
- architettura di rete, dove possibile, analizzando i protocolli usati, livello di network hardening, ed eventuali violazioni di standard

Analisi delle vulnerabilità

ID	asset_id	cve_code	matching_cpes	cve_summary	cve_score
4f[]c1	103b724d-[]-89d5	CVE-2000-1218	cpe:/o:microsoft:windows_xp:-:sp3:-	The default configuration []	7.5
62[]3b	089f901d-[]-9652	CVE-2013-6926	cpe:/o:siemens:ruggedcom_system:-:-:	The integrated HTTPS server []	8

Table: Esempio di table di vulnerabilità

Analisi delle vulnerabilità

A partire dai dati raccolti nella prima parte vengono prodotte analisi su

- asset, analizzando le vulnerabilità usando CVSS 2.0 e individuando i sistemi più vulnerabili. Una table con le CVE riscontrate è prodotta
- architettura di rete, dove possibile, analizzando i protocolli usati, livello di network hardening, ed eventuali violazioni di standard

Proposte di mitigazione

ID	alert_type	time	description	risk	protocol	ip_src	ip_dst
84[]b7	SIGN:MALWARE-DETECTED	2022-03-25 12:12:27.120	Suspicious transferring []	10	smb	192.168.2.0	192.168.1.0
84[]d4	SIGN:ACCESS-DENIED	2022-03-27 14:34:23.97	Unsuccessful login []	8.5	smb	192.168.2.0	192.168.1.0
54[]c5	SIGN:SYN-FLOOD	2022-03-27 15:32:21.105	A suspicious []	7	tcp	192.168.1.0	192.168.0.0

Table: Esempio di table di allerte

A partire dall'analisi delle vulnerabilità, delle proposte e osservazioni su come migliorare la sicurezza della rete sono effettuate.

Inoltre, la rete è sottoposta a monitoraggio continuo tramite un IDS/SIEM per raccogliere le allerte causate da deviazioni dalla baseline delle comunicazioni.

Proposte di mitigazione

ID	alert_type	time	description	risk	protocol	ip_src	ip_dst
84[]b7	SIGN:MALWARE-DETECTED	2022-03-25 12:12:27.120	Suspicious transferring []	10	smb	192.168.2.0	192.168.1.0
84[]d4	SIGN:ACCESS-DENIED	2022-03-27 14:34:23.97	Unsuccessful login []	8.5	smb	192.168.2.0	192.168.1.0
54[]c5	SIGN:SYN-FLOOD	2022-03-27 15:32:21.105	A suspicious []	7	tcp	192.168.1.0	192.168.0.0

Table: Esempio di table di allerte

A partire dall'analisi delle vulnerabilità, delle proposte e osservazioni su come migliorare la sicurezza della rete sono effettuate.

Inoltre, la rete è sottoposta a monitoraggio continuo tramite un IDS/SIEM per raccogliere le allerte causate da deviazioni dalla baseline delle comunicazioni.

Indice

- Introduzione
- 2 Metodologia
- 3 Casi di studio
 - Progetto
 - Impianto 1
 - Impianti 2 e 3
- 4 Conclusioni

Atos

- Valutazione e miglioramento della security posture di centrali
- Marzo 2022 Aprile 2022

Atos

- Atos SpA Milano Multinazionale francese area servizi IT e consulenza.
- Valutazione e miglioramento della security posture di centrali
- Marzo 2022 Aprile 2022

AtoS

- Atos SpA Milano Multinazionale francese area servizi IT e consulenza.
- Valutazione e miglioramento della security posture di centrali elettriche di terze parti.

AtoS

- Atos SpA Milano Multinazionale francese area servizi IT e consulenza.
- Valutazione e miglioramento della security posture di centrali elettriche di terze parti.
- Marzo 2022 Aprile 2022

Basic control implementato via sistemi Windows NT 4

- Sitemi obsoleti
- Non specific-purpose

$Basic\ control$ implementato via sistemi Windows NT4

 $Basic\ control$ implementato via sistemi Windows NT4

- Sitemi obsoleti

 $Basic\ control$ implementato via sistemi Windows NT4

- Sitemi obsoleti
- Non specific-purpose

Sistemi livello 2 e 3

CPE	IP Count
Windows 2003	4
Windows Server 2003 SP2	2
Windows Server 2003 R2 SP2	1
Windows 7	1
Windows 2000	25
Windows XP SP2	24
Windows XP SP3	7
Not mapped	24

Sistemi livello 2 e 3

CPE	IP Count
Windows 2003	4
Windows Server 2003 SP2	2
Windows Server 2003 R2 SP2	1
Windows 7	1
Windows 2000	25
Windows XP SP2	24
Windows XP SP3	7
Not mapped	24

Site Operations e Supervisory Control gestiti da sistemi EOL, spesso non aggiornati alla loro ultima versione.

Protocolli

Lo scambio di variabili per la gestione del processo avviene tramite SMB (Samba).

Protocol	Link Count
netbios-ns	661
smb	286
browser	207
netbios-ssn	80
dce-rpc	55
lldp	40
opc	33
igmp	16
ssdp	11
telnet	6
modbus	3
others	57
Not mapped	333

- Due router sono esposti all'Internet. Protezione VPN-based
- Violazione RFC 1918 (separazione IP pubblici e privati)
- Impropria segmentazione tra VLAN 172.31.0.0/24 e 192.168.2.0/24

- Due router sono esposti all'Internet. Protezione VPN-based

- Due router sono esposti all'Internet. Protezione VPN-based
- Violazione RFC 1918 (separazione IP pubblici e privati)
- Impropria segmentazione tra VLAN 172.31.0.0/24 € 192.168.2.0/24

- Due router sono esposti all'Internet. Protezione VPN-based
- Violazione RFC 1918 (separazione IP pubblici e privati)
- Impropria segmentazione tra VLAN 172.31.0.0/24 e 192.168.2.0/24

- Due router sono esposti all'Internet. Protezione VPN-based
- Violazione RFC 1918 (separazione IP pubblici e privati)
- Impropria segmentazione tra VLAN 172.31.0.0/24 e 192.168.2.0/24

Common Weakness Enumeration	Percentage	Most recurring CVE	CVSS2
CWE-20: Improper Input Validation	18.9	CVE-2005-0050	10.0
CWE-119: Buffer Overflow	18.8	CVE-2005-1987	7.5
CWE-264: Broken Access Control	13.3	CVE-2010-0232	7.2
CWE-399: Resource Management Errors	12.2	CVE-2010-0269	10.0
CWE-94: Code Injection	9.9	CVE-2008-4835	10.0
CWE-362: Race Condition	6.1	CVE-2010-0021	7.1
CWE-189: Numeric Errors	5.2	CVE-2009-2511	7.5
CWE-200: Information Exposure	3.8	CVE-2009-0086	10.0
CWE-16: Configuration	1.7	CVE-2008-4609	7.1

- Multipli OPC network scar
- Multipli Profinet network scan
- Richieste di accesso negate a share MS SMB ad alta frequenza
- Richieste multiple di apertura di share MS SMB anonime

- Multipli OPC network scan
- Multipli Profinet network scan
- Richieste di accesso negate a share MS SMB ad alta frequenza
- Richieste multiple di apertura di share MS SMB anonime

- Multipli OPC network scan
- Multipli Profinet network scan
- Richieste di accesso negate a share MS SMB ad alta frequenza
- Richieste multiple di apertura di share MS SMB anonime

- Multipli OPC network scan
- Multipli Profinet network scan
- Richieste di accesso negate a share MS SMB ad alta frequenza
- Richieste multiple di apertura di share MS SMB anonime

- Multipli OPC network scan
- Multipli Profinet network scan
- Richieste di accesso negate a share MS SMB ad alta frequenza
- Richieste multiple di apertura di share MS SMB anonime

- Firewall setup sul perimetro esposto di VLAN 10.0.28.0/24 e VLAN 192.168.2.0/24
- Revisione della politica di segmentazione, come in paradigma "zones and conduits" di IEC 62443
- Correggere la violazione dell'uso di IP pubblici come privati
- Mantenere offline le workstation (EWS) quando non necessarie

- Firewall setup sul perimetro esposto di VLAN 10.0.28.0/24 e VLAN 192.168.2.0/24
- Revisione della politica di segmentazione, come in paradigma "zones and conduits" di IEC 62443
- Correggere la violazione dell'uso di IP pubblici come privati
- Mantenere offline le workstation (EWS) quando non necessarie

- Firewall setup sul perimetro esposto di VLAN 10.0.28.0/24 e VLAN 192.168.2.0/24
- Revisione della politica di segmentazione, come in paradigma "zones and conduits" di IEC 62443
- Correggere la violazione dell'uso di IP pubblici come privati
- Mantenere offline le workstation (EWS) quando non necessarie

- Firewall setup sul perimetro esposto di VLAN 10.0.28.0/24 e VLAN 192.168.2.0/24
- Revisione della politica di segmentazione, come in paradigma "zones and conduits" di IEC 62443
- Correggere la violazione dell'uso di IP pubblici come privati
- Mantenere offline le workstation (EWS) quando non necessarie

- Firewall setup sul perimetro esposto di VLAN 10.0.28.0/24 e VLAN 192.168.2.0/24
- Revisione della politica di segmentazione, come in paradigma "zones and conduits" di IEC 62443
- Correggere la violazione dell'uso di IP pubblici come privati
- Mantenere offline le workstation (EWS) quando non necessarie

Asset

Figure: Impianto 2

Figure: Impianto 3

Link Count
246
116
113
113
113
110
91
86
82
76
315
260

Protocol	Link Count
http	120
netbios-ns	73
igmp	71
ssh	53
modbus	49
dns	45
ssdp	40
browser	33
rdp	28
$_{ m llmnr}$	20
Not specified	74
Other	156

Figure: Impianto 2

Figure: Impianto 3

- Completare il setup per del mirroring del traffico
- Revisionare la policy di connessione delle EWS
- Implementazione di una infrastruttura centralizzata per il patching - WSUS (Windows Server Update Services)
- Disabilitare la retrocompatibilità con versioni obsolete di MS SME
- Modificare la management policy delle allerte

- Completare il setup per del mirroring del traffico
- Revisionare la policy di connessione delle EWS
- Implementazione di una infrastruttura centralizzata per il patching - WSUS (Windows Server Update Services)
- Disabilitare la retrocompatibilità con versioni obsolete di MS SME
- Modificare la management policy delle allerte

- Completare il setup per del mirroring del traffico
- Revisionare la policy di connessione delle EWS
- Implementazione di una infrastruttura centralizzata per il patching WSUS (Windows Server Update Services)
- Disabilitare la retrocompatibilità con versioni obsolete di MS SME
- Modificare la management policy delle allerte

- Completare il setup per del mirroring del traffico
- Revisionare la policy di connessione delle EWS
- Implementazione di una infrastruttura centralizzata per il patching WSUS (Windows Server Update Services)
- Disabilitare la retrocompatibilità con versioni obsolete di MS SMB
- Modificare la management policy delle allerte

- Completare il setup per del mirroring del traffico
- Revisionare la policy di connessione delle EWS
- Implementazione di una infrastruttura centralizzata per il patching WSUS (Windows Server Update Services)
- Disabilitare la retrocompatibilità con versioni obsolete di MS SMB
- Modificare la management policy delle allerte

Indice

- Introduzione
- 2 Metodologia
- 3 Casi di studio
 - Progetto
 - Impianto 1
 - Impianti 2 e 3
- 4 Conclusioni

Conclusioni

La situazione risulta critica. Soprattutto per il secondo e terzo impianto, rimane necessario un ampliamento del mirroring del traffico per delineare un asset inventory completo.

- Rafforzamento perimetrale tramite firewall (whitelist) e cambio a VPN con MFA
- Segmentazione delle reti seguendo il paradigma 'zones and conduits'
- Verifica di access control e separazione dei privilegi sul processo di monitoraggio e controllo remoto
- Mappatura del Basic Control sul processo fisico per poter offrire una metrica di criticità dell'asset

- Rafforzamento perimetrale tramite firewall (whitelist) e cambio a VPN con MFA
- Segmentazione delle reti seguendo il paradigma 'zones and conduits'
- Verifica di access control e separazione dei privilegi sul processo di monitoraggio e controllo remoto
- Mappatura del Basic Control sul processo fisico per poter offrire una metrica di criticità dell'asset

- Rafforzamento perimetrale tramite firewall (whitelist) e cambio a VPN con MFA
- Segmentazione delle reti seguendo il paradigma 'zones and conduits'
- Verifica di access control e separazione dei privilegi sul processo di monitoraggio e controllo remoto
- Mappatura del Basic Control sul processo fisico per poter offrire una metrica di criticità dell'asset

- Rafforzamento perimetrale tramite firewall (whitelist) e cambio a VPN con MFA
- Segmentazione delle reti seguendo il paradigma 'zones and conduits'
- Verifica di access control e separazione dei privilegi sul processo di monitoraggio e controllo remoto
- Mappatura del Basic Control sul processo fisico per poter offrire una metrica di criticità dell'asset

- Rafforzamento perimetrale tramite firewall (whitelist) e cambio a VPN con MFA
- Segmentazione delle reti seguendo il paradigma 'zones and conduits'
- Verifica di access control e separazione dei privilegi sul processo di monitoraggio e controllo remoto
- Mappatura del Basic Control sul processo fisico per poter offrire una metrica di criticità dell'asset

An overview of ICS vulnerabilities, threats, and security measures

Based on three real-world power plants security concerns

Silvio Ranise
Relatore

Riccardo Gennaro Studente

Corso di Laurea in Informatica

Trento, 2 dicembre 2022