

Vamos refletir?

Você sabia que a programação linear pode ser utilizada no planejamento de investimentos, na priorização de atendimentos de pedidos e na definição de rotas?

Pesquisa operacional: contexto histórico

Segunda Guerra Mundial

Fonte: anfibii/ adobe.stock.com.

- Início: na Segunda Grande Guerra Mundial.
- Militares necessitavam gerenciar seus recursos de forma eficiente até os campos de batalha, considerando a quantidade e gasto mínimo possível.
- Nesse contexto, governos britânico e americano solicitaram a cientistas e matemáticos a realização de pesquisas sobre as operações militares e como otimiza-las.

Pesquisa operacional: definição

Engrenagens de um problema

Fonte: apinan/ adobe.stock.com.

- Área de estudos que faz uso de métodos analíticos para auxílio na tomada de decisão.
- Busca a solução ótima ou quase ótima, sendo a melhor combinação das variáveis.
- Utiliza técnicas de programação, matemática e estatística.
- Ciência alavancada pelo crescimento do uso de computadores.

Pesquisa operacional

Fases de um estudo em pesquisa operacional

Fonte: elaborada pela autora.

Programação linear

- Programação linear está contida na pesquisa operacional como uma de suas diversas técnicas.
- Técnica de otimização, que busca a solução ótima.
- Consiste na representação das características de um problema em forma de um conjunto de equações lineares.

Fonte: elaborada pela autora.

Programação linear

- Usa a matemática básica na etapa de elaboração dessas equações, que chamamos de modelagem do problema.
- A modelagem é a construção de um modelo que represente a situação que se quer estudar ou resolver.
- Geralmente, os problemas de otimização com o uso de programação linear têm como objetivo minimizar custos ou maximizar lucros ou faturamento, pois esses são objetivos comuns das organizações.

Modelagem

Fonte: adaptada de Arenales, Morabito e Armentano (2011).

Modelo de Programação Linear

Exemplo

Uma fábrica de brinquedos de madeira produz caminhões e carrinhos. Cada caminhão é vendido a R\$ 27,00, tem um gasto com matéria-prima de R\$ 10,00 e sua produção aumenta os custos diretos de mão de obra e os custos indiretos, em R\$ 14,00. O carrinho é vendido a R\$ 21,00, tem R\$ 9,00 de matéria- prima e aumenta R\$ 10,00 os custos de mão de obra e custos indiretos. A fabricação do caminhão requer duas horas do carpinteiro e uma hora do pintor, enquanto o carrinho demanda uma hora de cada profissional. A matéria-prima é obtida em quantidade necessária toda semana, mas apenas cem horas disponível para a pintura e oitenta para a carpintaria. A demanda para os carrinhos é ilimitada, mas a de caminhões é de no máximo quarenta horas por semana.

Considerando que a fábrica quer maximizar o lucro semanal, encontre um modelo em programação linear para o problema apresentado.

Exemplo

Variáveis de decisão: • x_1 : produção semanal de caminhões.

• x_{2} : produção semanal de carrinhos.

Função Objetivo z: lucro semanal[R\$/semana].

•
$$z = 27x_1 - 10x_1 - 14x_1 + 21x_2 - 9x_2 - 10x_2$$

•
$$z = 3x_1 + 2x_2$$

Restrições

• $x_1 + x_2 \le 80(carpintaria)$.

•
$$2x_1 + x_2 \le 100(pintura)$$
.

- $x_1 \cdot x_2 \ge 0$ (não negatividade).
- x₁ ≤ 40(demanda máxima de caminhões).

Método gráfico: exemplo

Representação gráfica

Fonte: elaborada pela autora.

Método simplex

- Desenvolvido em 1947, por George Dantzig.
- É o primeiro método geral para solucionar um Problema de Programação Linear (PPL).
- Busca a obtenção da solução ótima do PPL e utiliza como base a Álgebra Linear.
- O algoritmo parte de uma solução viável do sistemas de equações, que representam as restrições do PPL, solução essa normalmente extrema (vértice), e, a partir dessa solução inicial, identifica novas soluções viáveis.
- É capaz de indicar em sua execução, caso exista solução, se o problema tem solução única, solução ilimitada, se possui infinitas soluções ou se não possui nenhuma solução.

Categorias

Simplex algébrico ou simplex analítico.

Forma matricial.

Forma tabular.

Método simplex – Forma tabular

Primeiro passo: transformação da forma canônica para a forma - padrão

Forma canônica:

Maximizar:

$$Z = 5x_1 - 2x_2$$

Sujeito a:

$$x_1 \leq 3(a)$$

$$x_2 \le 4(b)$$

$$x_1 + 2x_2 \le 9(c)$$

$$x_1, x_2 \ge 0(d)$$

Forma padrão:

Minimizar:

$$-Z = -5x_1 + 2x_{2-} + 0x_3 + 0x_4$$

Sujeito a:

$$x_1 + x_2 + x_3 = 4(a)$$

$$2x_1 + 3x_2 + x_4 = 9(b)$$

$$x_1, x_2 \ge 0(c)$$

Método simplex – Forma tabular

Segundo passo: tabulação do problema

	Coeficientes				
Variáveis	x_1	x_2	x_3	x_4	Constantes
	-5	2	0	0	0
	1	1	1	0	4
	2	3	0	1	9

Terceiro passo: identificação das variáveis que compõe a solução

	Coeficientes					
Variáveis	x_1	x_2	<i>x</i> ₃	<i>x</i> ₄	Constantes	C ÷ coluna pivô
Z	-5	2	0	0	0	
x_3	1	1	1	0	5	$\frac{4}{1}=4$
x_4	2	3	0	1	0	$\frac{9}{2} = 4,5$

Fonte: elaborado pela autora.

Método simplex – Forma tabular

Quarto passo: interação para realizar a mudança de dados

	Constantes			
$ \begin{array}{c} -5 - (-5 \cdot 1) \\ = 0 \end{array} $	$2 - (-5 \cdot 1)$ $= 7$	$0 - (-5 \cdot 0)$ $= 5$	$0 - (-5 \cdot 0) = 0$	$0 - (-5 \cdot 4)$ $= 20$
$\frac{1}{1} = 1$	$\frac{1}{1} = 1$	$\frac{0}{1} = 0$	$\frac{0}{1} = 0$	$\frac{4}{1}=4$
$2 - (2 \cdot 1)$ $= 0$	$3 - (2 \cdot 1)$ $= 1$	$0 - (2 \cdot 1)$ $= -2$	$1 - (2 \cdot 1)$ $= 1$	$9 - (2 \cdot 4)$ $= 1$

Fonte: elaborado pela autora.

A resposta que maximiza a função objetivo é 20, sendo que, para isso, a variável de decisão e atendendo restrições do problema.

Reflita sobre a seguinte situação

Você trabalha em uma empresa de alimentos, que tem dois núcleos de distribuição: Apolo I e Apolo II. Tem também três principais mercados consumidores nas cidades de Contagem, Belo Horizonte e Vitória. Sabe-se que o custo de transporte unitário, para fazer o transporte de uma unidade do produto de cada um dos núcleos de distribuição, se encontra no quadro a seguir, assim como as demandas de cada núcleo e a quantidade máxima de cada produto em cada cidade. Assim, caberá a você determinar a função objetivo, considerando a minimização do custo total de transporte.

Reflita

Núcleo de distribuição	Cidade	Estoque		
	Contagem	Belo Horizonte	Vitória	
Apolo I	4	2	5	1000
Apolo II	11	7	4	1200
Demanda	500	400	900	

Fonte: elaborado pela autora.

Norte para a resolução

Solução: determinar a função objetivo.

Variáveis de decisão: quais estão envolvidas no problema?

Objetivo:
maximização
ou
minimização?

Restrições:
 quais
 condições
 de
 existência
 das
inequações?

Norte para a resolução

1° passo - Definir as variáveis de decisão:

- x_{ij} = quantidade total de unidades de produtos transportados do centro de distribuição i ao mercado j.
- Para i = 1 (Apolo I).
- Para i = 2 (Apolo II).
- Para j = 1 (Contagem).
- Para j = 2 (Belo Horizonte).
- Para j = 3 (Vitória).
- Logo, temos as seguintes variáveis: x_{11} , x_{12} , x_{13} , x_{21} , x_{22} , x_{23} .

Norte para a resolução

• Minimizar $z = 4x_{11} + 2x_{12} + 5x_{13} + 11x_{21} + 7x_{22} + 4x_{23}$.

Como informado, existem algumas restrições especificas para os números de distribuição, são elas:

- Apolo I: $x_{11} + x_{12} + x_{13} \le 800$
- Apolo II : $x_{21} + x_{22} + x_{23} \le 1000$

Também há restrições com a demanda do mercado, são elas:

- Contagem: $x_{11} + x_{21} = 500$
- Belo Horizonte: $x_{12} + x_{22} = 800$
- Vitória: $x_{13} + x_{23} = 900$

Por fim, há restrições com relação ao domínio das variáveis, logo, estas devem ser não negativas:

$$x_{11} \ge 0, x_{12} \ge 0, x_{13} \ge 0, x_{21} \ge 0, x_{22} \ge 0, x_{23} \ge 0$$

Reflita sobre a seguinte situação

Maximizar:

$$z = 4x_{11} + 2x_{12} + 5x_{13} + 11x_{21} + 7x_{22} + 4x_{23}.$$

Sujeito a:

$$\begin{cases} x_{11} + x_{12} + x_{13} \le 800 \\ x_{21} + x_{22} + x_{23} \le 1000 \\ x_{11} + x_{21} = 500 \\ x_{12} + x_{22} = 800 \\ x_{13} + x_{23} = 900 \\ x_{11} \ge 0, x_{12} \ge 0, x_{13} \ge 0, x_{21} \ge 0, x_{22} \ge 0, x_{23} \ge 0 \end{cases}$$

Consolidando o aprendizado

- Pesquisa operacional.
- Programação linear.
- Modelo de programação linear.
- Modelagem matemática.
- Método gráfico.
- Método simplex Forma tabular.

Técnica que pressupõe a relação linear entre as características do problema relacionadas por meio de uma série de equações lineares, a programação linear busca:

A solução ótima para o problema estudado.

В

A solução por meio da maximização do problema.

A solução por meio da minimização do problema.

D

A solução aproximada para as variáveis do problema.

Técnica que pressupõe a relação linear entre as características do problema relacionadas por meio de uma série de equações lineares, a programação linear busca:

A solução ótima para o problema estudado.

B

A solução por meio da maximização do problema.

A solução por meio da minimização do problema.

D

A solução aproximada para as variáveis do problema.

Quiz – Resolução

Resposta correta: a) A solução ótima para o problema estudado.

A programação linear é uma área de estudos da pesquisa operacional que busca a solução ótima da situação-problema analisada, seja por meio da minimização ou maximização, a depender do contexto.

Leitura Fundamental

Prezado estudante, as indicações a seguir podem estar disponíveis em algum dos parceiros da nossa Biblioteca Virtual (faça o login por meio do seu AVA), e outras podem estar disponíveis em sites acadêmicos (como o SciELO), repositórios de instituições públicas, órgãos públicos, anais de eventos científicos ou periódicos científicos, todos acessíveis pela internet.

Isso não significa que o protagonismo da sua jornada de autodesenvolvimento deva mudar de foco. Reconhecemos que você é a autoridade máxima da sua própria vida e deve, portanto, assumir uma postura autônoma nos estudos e na construção da sua carreira profissional.

Por isso, nós o convidamos a explorar todas as possibilidades da nossa Biblioteca Virtual e além! Sucesso!

Indicação de leitura 1

Neste artigo, os autores exibem uma aplicação prática das técnicas da pesquisa operacional, a programação linear, aplicada na confecção de cestas básicas natalinas. Considerando o objetivo de maximizar a receita de vendas das cestas, controlando os itens que as compõem, assim como apontando possíveis ressuprimentos caso faltassem itens no estoque.

Referência:

CARVALHO, W. dos A. *et al.* Programação linear: um estudo de caso sobre a montagem de cestas básicas. *In:* **Simpósio de Engenharia de Produção (SIMPEP)**, Rio de Janeiro, 2022.

Indicação de leitura 2

As autoras deste artigo partem do objetivo de otimizar a produção agrícola, maximizando o lucro da produção e minimizando os custos de transporte dos produtos, por meio de programação linear. Para isso, consideram concepções da programação linear e seus algoritmos, que podem ser utilizados computacionalmente para obtenção das soluções, como o método simplex.

Referência:

BRESSAN, G. M.; RAMOS, T. A. Aplicação da programação linear e do problema do transporte para otimização da produção agrícola. **CQD-Revista Eletrônica Paulista de Matemática**, [s. l.], v. 19, 2020.

Referências

ARENALES, M. N.; MORABITO, R.; ARMENTANO, V. **Pesquisa** operacional. Rio de Janeiro: Elsevier; ABEPRO, 2011.

BELFIORE, P.; FÁVERO, L. P. **Pesquisa operacional para cursos de administração, contabilidade e economia**. Rio de Janeiro: Elsevier, 2012.

BRESSAN, G. M.; RAMOS, T. A. Aplicação da programação linear e do problema do transporte para otimização da produção agrícola. **CQD-Revista Eletrônica Paulista de Matemática**, [s. l.], v. 19, 2020.

CARVALHO, W. dos A. *et al*. Programação linear: um estudo de caso sobre a montagem de cestas básicas. *In:* **Simpósio de Engenharia de Produção (SIMPEP)**, Rio de Janeiro, 2022.

GOLDBARG, M. C.; LUNA, H. P. L. **Otimização combinatória e programação linear:** modelos e algoritmos. 2. ed. Rio de Janeiro: Elsevier, 2005.

LACHTERMACHER, G. **Pesquisa operacional na tomada de decisões.** São Paulo: LTC, 2016.

Bons estudos!