Homework Assignment 7

Hopf algebras - Spring Semester 2018

April 24th, 2018

Exercise 1

Let k be a field with characteristic 0. Consider the Weyl alebra

$$A = k < x, y|xy - yx = 1 > .$$

- a) Show that A is a simple algebra. That is, the only two-sided ideals of A are 0 and A.
- b) Let k[t] be the polynomial algebra with indeterminate t. We define the endomorphisms $\hat{t}, d \in \operatorname{End}_k(k[t])$ by

$$\hat{t}(t^n)=t^{n+1},\ n\geq 0\,.$$

$$d(t^n)=nt^{n-1},\ n\geq 0\ \mathrm{and}\ d(1)=0\,.$$

Consider the subalgebra $k[\hat{t}, d] \subseteq \operatorname{End}(k[t])$. Show that $A \simeq k[\hat{t}, d]$.

Exercise 2

Compute the Lie algebras $Lie(SL_n)$ and $Lie(O_n)$.

Exercise 3

Consider a group G and let k[G] denote the corresponding group algebra. Let A be an algebra over k and $(A_g)_{g \in G}$ a family of linear subspaces $A_g \subset A$. We say $(A, (A_g)_{g \in G})$ is a graded algebra if the following conditions hold:

- If 1_G is the identity of G and 1_A the unit of the algebra, then $1_A \in A_{1_G}$.
- We have that $A = \bigoplus_g A_g$
- For any $g, h \in G$, we have $A_g A_h \subset A_{gh}$.

For any comodule algebra structure $\delta: A \to A \otimes k[G]$ we may define a family $(A_g)_{g \in G}$

$$A_g = \{ a \in A \mid \delta(a) = a \otimes g \}$$

for all $g \in G$. Show that this yields a bijection between k[G]-comodule algebra structures on A and gradings $\{A_g \mid g \in G\}$ of G.

Exercise 4

Consider a group G, k[G] the group algebra and A an algebra over k. Recall from the previous exercise the definition of G-graded algebra. Additionally, if A is an H-comodule algebra let $A^{co\ H} = \{v \in A | \delta(v) = v \otimes 1\}$ denote the *H*-coinvariants.

Such G-graded algebra is said to be strongly graded if $A_g A_h = A_{gh}$. Show that $A^{\operatorname{co} k[G]} \subset A$ is a k[G] Galois extension if and only if the grading $(A_g)_{g \in G}$ is strong.

Hint: We can take an expression of $1 \in A_g A_{g^{-1}}$. Use this to show that $A_g \otimes A_h \to A_{gh}$ is an isomorphism.