

Low Power Op Amp and Reference

FEATURES

- Guaranteed Operation at +1.2V
- Op Amp and Reference on Single Chip
- Low Supply Current 400µA
- Capable of Floating Mode Operation
- Low Reference Drift 20ppm/°C
- Low Offset Voltage
- Output Swings to Within 15mV of Rails

APPLICATIONS

- Remote Signal Conditioner / Transmitter
- Battery Operated Instruments
- Precision Current Regulators
- Precision Voltage Regulators
- Thermocouple Transmitter

DESCRIPTION

The LM10 combines a precision reference, a reference buffer amplifier and an independent, high quality op amp on a single chip. The device is capable of operation from a single supply as low as 1.1V, from dual supplies up to \pm 20V and typically draws 270μ A supply current. Input voltage range for the op amp includes ground, while the unloaded output can swing to within 15mV of each rail. Further, the LM10 will deliver 20mA output current and still swing within \pm 400mV of the supply rails.

With its low operating current and floating operation capability, the LM10 is ideal for two wire analog transmitter circuits where the processed signal is carried on the same line used for power. The LM10 is suggested for portable battery powered equipment and is fully specified for operation from a single 1.2V battery. Other applications include precision current and voltage regulators, operating from very low voltages to several hundred volts.

ABSOLUTE MAXIMUM RATINGS

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{llllllllllllllllllllllllllllllllllll$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Output Short Circuit Duration Indefinite
Operating Temperature Range (Note 2)
$LM10 \dots -55^{\circ}C \leq T_{A} \leq 125^{\circ}C$
$LM10B/LM10BL \dots -25^{\circ}C \leq T_{A} \leq 85^{\circ}C$
LM10C/LM10CL 0°C ≤T _A ≤70°C
Storage Temperature Range -65° C \leq TA \leq 150 $^{\circ}$ C
Lead Temperature (Soldering, 10 sec.) 300°C

PACKAGE/ORDER INFORMATION

OP AMP ELECTRICAL CHARACTERISTICS (Note 3)

SYMBOL	PARAMETER	CONDITIONS		LM MIN	10/LM Typ	10B Max	MIN	LM100 TYP	; Max	UNITS
V _{os}	Input Offset Voltage		•		0.3	2.0 3.0		0.5	4.0 5.0	mV mV
$\Delta V_{0S} \over \Delta Temp$	Average Offset Voltage Drift		•		2.0			5.0		μV/°C
los	Input Offset Current	(Note 4)	•		0.25	0.7 1.5		0.4	2.0 3.0	пА nA
$\Delta I_{OS} \over \Delta Temp$	Offset Current Drift		•		2.0			5.0		pA/°C
18	Input Bias Current		•		10	20 30		12	30 40	nA nA
ΔI _B ΔTemp	Bias Current Drift		•		60			90		pA/°C
A _{VOL}	Large Signal Voltage Gain	$V_S = \pm 20V$, $I_{OUT} = 0$, $V_{OUT} = \pm 19.95V$	•	120 80	400		80 50	400		V/mV V/mV
		$V_S = \pm 20V$, $V_{OUT} = \pm 19.4V$ $I_{OUT} = \pm 20$ mA $I_{OUT} = \pm 15$ mA	•	50 20	130		25 15	130	-	V/mV V/mV
		$V_S = \pm 0.6V$, $I_{OUT} = \pm 2mA$ $V_{OUT} = \pm 0.4V$, $V_{CM} = -0.4V$		1.5	3.0		1.0	3.0		V/mV
		$V_S = \pm 0.65V$, $I_{OUT} = \pm 2mA$ $V_{OUT} = \pm 0.3V$, $V_{CM} = -0.4V$	•	0.5			0.75			V/mV
	Shunt Gain (Note 5)	0.1mA \leq $I_{OUT} \leq$ 5mA, $R_L = 1.1k\Omega$ 1.2V \leq $V_{OUT} \leq$ 40V 1.3V \leq $V_{OUT} \leq$ 40V	•	14 6	33		10 6	33	_	V/mV V/mV
		0.1mA ≤ I_{OUT} ≤ 20mA, $R_L = 250Ω$ 1.5V ≤ V^+ ≤ 40V	•	8	25		6 4	25		V/mV V/mV

OP AMP ELECTRICAL CHARACTERISTICS (Note 3)

SYMBOL	PARAMETER	CONDITIONS		LM MIN	10/LM TYP	I10B Max	MIN	LM10C TYP	MAX	UNITS
CMRR	Common-Mode Rejection Ratio	$V_S = \pm 20V$ - 20V \le V _{CM} \le 19.15V - 20V \le V _{CM} \le 19V	•	93 87	102		90 87	102		dB dB
PSRR	Power Supply Rejection Ratio	$-0.2V \ge V^- \ge -39V$ $V^+ = 1.0V$ $V^+ = 1.1V$	•	90 84	96		87 84	96		dB dB
		$V^{-} = -0.2V$ $1.0V \le V^{+} \le 39.8V$ $1.1V \le V^{+} \le 39.8V$	•	96 90	106		93 90	106		dB dB
R _{IN}	Input Resistance	(Note 6)	•	250 150	500		150 115	400		kΩ kΩ
Is	Supply Current		•		270	400 500		300	500 570	μA μA
Δl _S	Supply Current Change	$1.2V \le V_S \le 40V$ $1.3V \le V_S \le 40V$	•		15	75 75		15	75 75	μΑ μΑ

REFERENCE AMPLIFIER ELECTRICAL CHARACTERISTICS (Note 3)

SYMBOL	PARAMETER	CONDITIONS		LM MIN	10/LM TYP	10B Max	MIN	LM10C TYP	MAX	UNITS
V _{REF}	Feedback Sense Voltage	Voltage at Pin 1 with Pin 1 Connected to Pin 8	•	195 194	200 200	205 206	190 189	200 200	210 211	mV mV
ΔV _{REF} ΔTemp	Reference Drift		•		0.002			0.003		%/°C
	Feedback Current	Current into Pin 8	•		20	50 65		22	75 90	nA nA
	Line Regulation	$0 \le I_{REF} \le 1 \text{mA}, V_{REF} = 200 \text{mV}$ $1.2 \text{V} \le \text{V}_S \le 40 \text{V}$ $1.3 \text{V} \le \text{V}_S \le 40 \text{V}$	•			0.003 0.006		0.001 0.001	0.008 0.01	%/V %/V
	Load Regulation	$0 \le I_{REF} \le 1 \text{mA}$ $V^+ - V_{REF} \ge 1.0 \text{V}$ $V^+ - V_{REF} \ge 1.1 \text{V}$	•		0.01 0.01	0.1 0.15		0.01 0.01	0.15 0.20	% %
	Reference Amplifier Gain	0.2V ≤ V _{REF} ≤ 35V	•	50 23	75		25 15	70		V/mV V/mV

OP AMP ELECTRICAL CHARACTERISTICS (Note 3)

SYMBOL	PARAMETER	CONDITIONS		MIN	LM10B TYP	L MAX	MIN	LM10C Typ	L MAX	UNITS
V _{OS}	Input Offset Voltage				0.3	2.0 3.0		0.5	4.0 5.0	mV mV
ΔV _{OS} ΔTemp	Average Offset Voltage Drift		•		2.0			5.0		μV/°C
I _{0S}	Input Offset Current	(Note 4)	•		0.1	0.7 1.5		0.2	2.0 3.0	nA nA
Δl _{OS} ΔTemp	Offset Current Drift		•	_	2.0			5.0		pA/°C
IB	Input Bias Current		•		10	20 30		12	30 40	nA nA
$\frac{\Delta I_{B}}{\Delta Temp}$	Bias Current Drift		•		60			90		pA/°C
A _{VOL}	Large Signal Voltage Gain	$V_S = \pm 3.25V$, $I_{OUT} = 0$, $V_{OUT} = \pm 3.2V$	•	60 40	300		40 25	300		V/mV V/mV
		$V_S = \pm 3.25V$, $V_{OUT} = \pm 2.75V$ $I_{OUT} = \pm 10mA$	•	10 4	25		5 3	25	_	V/mV V/mV
		$I_{OUT} = \pm 2\text{mA}, V_{CM} = -0.4\text{V}$ $V_S = \pm 0.6\text{V}, V_{OUT} = \pm 0.4\text{V}$ $V_S = \pm 0.65\text{V}, V_{OUT} = \pm 0.3\text{V}$	•	1.5 0.5	3.0		1.0 0.75	3.0		V/mV V/mV
	Shunt Gain (Note 5)	$0.1 \text{mA} \le I_{0UT} \le 10 \text{mA}, R_L = 500\Omega$ $1.5 \text{V} \le \text{V}^+ \le 6.5 \text{V}$	•	8 4	30		6 4	30		V/mV V/mV
CMRR	Common-Mode Rejection Ratio	$V_S = \pm 3.25V$ $-3.25V \le V_{CM} \le 2.4V$ $-3.25V \le V_{CM} \le 2.25V$	•	89 83	102		80 74	102		dB dB
PSRR	Power Supply Rejection Ratio	$-0.2V \ge V^- \ge -5.4V$ $V^+ = 1.0V$ $V^+ = 1.2V$	•	86 80	96		80 74	96		dB dB
PSRR		$V^{-} = -0.2V$ $1.0V \le V^{+} \le 6.3V$ $1.1V \le V^{+} \le 6.3V$	•	94 88	106		80 74	106		dB dB
R _{IN}	Input Resistance	(Note 6)	•	250 150	500	****	150 115	400		kΩ kΩ
Is	Supply Current		•		260	400 500		280	500 570	μA μA

REFERENCE AMPLIFIER ELECTRICAL CHARACTERISTICS (Note 3)

SYMBOL	PARAMETER	CONDITIONS		MIN	LM10BL TYP	MAX	MIN	M10CI TYP	MAX	UNITS
V _{REF}	Feedback Sense Voltage	Voltage at Pin 1 with Pin 1 Connected to Pin 8		195 194	200 200	205 206	190 189	200 200	210 211	mV mV
ΔV _{REF} ΔTemp	Reference Drift		•		0.002			0.003		%/°C
	Feedback Current	Current into Pin 8	•		20	50 65		22	75 90	nA nA
	Line Regulation	$0 \le I_{REF} \le 0.5 \text{mA}, V_{REF} = 200 \text{mV}$ $1.2 \text{V} \le V_{\text{S}} \le 6.5 \text{V}$ $1.3 \text{V} \le V_{\text{S}} \le 6.5 \text{V}$	•		0.001 0.001				0.02 0.03	%/V %/V
	Load Regulation	$0 \le I_{REF} \le 0.5 \text{mA}$ $V^+ - V_{REF} \ge 1.0 \text{V}$ $V^+ - V_{REF} \ge 1.1 \text{V}$	•		0.01 0.01	0.1 0.15		0.01 0.01	0.15 0.20	% %
	Reference Amplifier Gain	$0.2V \le V_{REF} \le 5.5V$	•	30 20	70		20 15	70		V/mV V/mV

The
denotes the specifications which apply over full operating temperature range.

Note 1: The input voltage can exceed the supply voltages as long as the voltage from the input to any other terminal does not exceed the maximum differential voltage, and the maximum junction temperature is not exceeded due to the excess power dissipation that occurs when the input voltage is less than the negative supply voltage.

Note 2: The maximum operating junction temperatures are: 150°C for the LM10; 100°C for the LM10B and LM10BL; and 85°C for the LM10C and LM10CL. Package derating factors will be found on the back page of this data sheet.

Note 3: These specifications apply for the following conditions unless otherwise noted:

at 25°C

(a) $V^- \le V_{CM} \le V^+ - 0.85V$

over temperature $V^- \le V_{CM} \le V^+ - 1.0V$

(b) $1.2V \le V_S \le V_{MAX}$

 $1.3V \leq V_S \leq V_{MAX}$

 V_{REF} = 0.2V and 0 \leq I_{REF} \leq 1.0mA where V_{MAX} = 40V for the LM10, LM10B and LM10C and V_{MAX} = 6.5V for the LM10BL and LM10CL. The specifications do not include errors due to thermal gradients ($\tau_1 \approx$ 20ms), die heating ($\tau_2 \approx$ 0.2 sec) or package heating.

Note 4: For $T_J > 90^{\circ}\text{C}$, I_{OS} may exceed 1.5nA when $V_{CM} = V^{-}$. When the common-mode input voltage is within 100mV of the negative supply and $T_J = 125^{\circ}\text{C}$, the offset current will be less than 5nA.

Note 5: Shunt gain defines the operation in floating applications when the output is connected to the V^+ terminal and input common-mode is referred to V^- (see typical applications). The effects of larger output voltage swing with higher load resistance can be accounted for by adding the positive supply rejection error.

Note 6: Guaranteed by design.

TYPICAL PERFORMANCE CHARACTERISTICS (Op Amp)

TYPICAL PERFORMANCE CHARACTERISTICS (Op Amp)

0.1

OFFSET VOLTAGE CHANGE (mV)

0

-0.1

-0.2

8.0

0.3

TYPICAL PERFORMANCE CHARACTERISTICS

TYPICAL PERFORMANCE CHARACTERISTICS (Reference)

Minimum Supply Voltage

Typical Stability Range

BLOCK DIAGRAM

APPLICATION HINTS

With heavy amplifier loading to V^- , resistance drops in the V^- lead can adversely affect reference regulation.

Lead resistance can approach 1Ω . Therefore, the common to the reference circuitry should be connected as close as possible to the package.

TYPICAL APPLICATIONS

Standard Offset Adjustment

Limited Range Offset Adjustment

Limited Range Offset Adjustment with Boosted Reference

Low Voltage Regulator

T USE ELECTROLYTIC OUTPUT CAPACITORS

Best Regulation

OV to 5V Regulator

Two-Terminal Current Regulator

Shunt Regulator

*REQUIRED FOR CAPACITIVE LOADING

Negative Regulator

Floating Regulator

High Voltage Regulator

6V Battery-Level Indicator

Light Level Sensor

Transducer Amplifier

Thermocouple Transmitter

Flame Detector

*800°C THRESHOLD IS ESTABLISHED BY CONNECTING BALANCE TO VREF

Meter Amplifier

Thermometer

 $\begin{array}{c} \text{Microphone Amplifier} \\ \text{A}_{V} \approx 1 \text{k} \end{array}$

Isolated Voltage Sensor for Switching Regulators

OP AMP SCHEMATIC DIAGRAM

REFERENCE AND INTERNAL REGULATOR SCHEMATIC DIAGRAM

PACKAGE DESCRIPTION

