Multiplication 000000000000000

Multiplication

Goldsmiths Computing

January 13, 2019

Motivation

- · working with numbers as a data structure
- · everyone knows how to multiply
- · almost no-one knows how to multiply efficiently

Previously

Numbers as array of digits (binary: bits)

• numbers have a width w, at least $1 + \log_h(n)$

Logical operations

```
and(x,y) return the bitwise logical and of x and y xor(x,y) return the bitwise exclusive-or of x and y
```

Arithmetic operations

```
add(x,y) return the sum of x and y
sub(x,y) return the difference between x and y
shift(x,n) return x multiplied by the base n times
```

Complexity

- until now, Θ(1)
- in fact, $\Theta(w) \sim \Theta(\log(n))$

(logarithmic factor is usually irrelevant, or width is taken as constant)

Problem

Given these basic operations:

- · how do we implement multiplication?
- · how efficient is it?

Example

123×135:

Primary (old-)school multiplication

			1	2	3
×			1	3	5
				1	5
			1	0	
			5		
				9	
			6		
		3			
			3		
		2			
	1				
	1	6	6	0	5

Example

123×135:

Primary school multiplication

×	100	20	3
100	10000	2000	300
30	3000	600	90
5	500	100	15

Complexity analysis

time

For each digit in x

multiply with each digit in y.

Assume x and y are each of width w

$$\Rightarrow \Theta(w^2)$$

Divide and conquer

Write

•
$$x = x_{hi} \times b^{w/2} + x_{lo}$$

•
$$y = y_{hi} \times b^{w/2} + y_{lo}$$

Then $\mathbf{x} \times \mathbf{y} = \mathbf{x}_{hi} \mathbf{y}_{hi} \mathbf{b}^{w} + (\mathbf{x}_{hi} \mathbf{y}_{lo} + \mathbf{x}_{lo} \mathbf{y}_{hi}) \mathbf{b}^{w/2} + \mathbf{x}_{lo} \mathbf{y}_{lo}$

Example

$$x \times y = x_{hi}y_{hi} b^{w} + (x_{hi}y_{lo} + x_{lo}y_{hi})b^{w/2} + x_{lo}y_{lo}$$

$$123 \times 135 = (1 \times 100 + 23) \times (1 \times 100 + 35)$$

$$= 1 \times 1 \times 10000 + (23 \times 1 + 1 \times 35) \times 100 + 23 \times 35$$

$$= 10000 + 5800 + 805$$

123×135

Complexity analysis

time

$$x \times y = x_{hi}y_{hi} b^{w} + (x_{hi}y_{lo} + x_{lo}y_{hi})b^{w/2} + x_{lo}y_{lo}$$

• $T_{w} = 4T_{w/2} + O(w)$

solution

Use the master theorem:

•
$$a = 4$$
, $b = 2$, $c = 1 \Rightarrow case 1$

$$\cdot \log_b a = \log_2(4) = 2$$

$$\Rightarrow T(w) \in \Theta(w^2)$$

Divide and conquer, Karatsuba

Still with

•
$$x = x_{hi} \times b^{w/2} + x_{lo}$$

• $y = y_{hi} \times b^{w/2} + y_{lo}$

Calculate

•
$$z_{hi} = x_{hi} \times y_{hi}$$

• $z_{lo} = x_{lo} \times y_{lo}$
• $z_{c} = (x_{hi} + x_{lo}) \times (y_{hi} + y_{lo})$

Then
$$x \times y = z_{hi} b^w + (z_c - z_{hi} - z_{lo})b^{w/2} + z_{lo}$$

Example

123×135:

•
$$z_{hi} = 1$$
; $z_{lo} = 35 \times 23 = 805$; $z_c = 36 \times 24 = 864$

so:

$$123 \times 135 = 1 \times 10000 + (864 - 805 - 1) \times 100 + 805$$
$$= 10000 + 5800 + 805$$
$$= 16605$$

123×135

Complexity analysis

time

$$x \times y = z_{hi} b^w + (z_c - z_{hi} - z_{lo})b^{w/2} + z_{lo}$$

• $T_w = 3T_{w/2} + O(w)$

solution

Use the master theorem:

•
$$a = 3$$
, $b = 2$, $c = 1 \Rightarrow case 1$

•
$$\log_b a = \log_2(3) = 1.58$$

$$\Rightarrow T(w) \in \Theta(w^{1.58})$$

Work

1. Reading

· CLRS, section 4.2: matrix multiplication