





### MBA em DATA SCIENCE

STATISTICS FUNDAMENTALS





**Dra. Regina Tomie Ivata Bernal**Cientista de Dados na área da Saúde

Formação Acadêmica:

**Estatístico - UFSCar** 

Mestre em Saúde Pública - FSP/USP

Doutor em Ciências - Epidemiologia - FSP/USP

profregina.bernal@fiap.com.br reginabernal@terra.com.br **Atividades Profissionais:** 

Professora de pós-graduação na FIAP

Consultora externa da SVS/MS

Cientista de Dados em Saúde



### Aula 2 Noções de Probabilidade



### NOÇÕES DE **PROBABILIDADE**



Fenômenos aleatórios: situação ou acontecimentos cujos resultados não podem ser previstos com certeza.

#### Exemplos:

- Condições climáticas no próximo domingo.
- Faturamento da empresa no próximo mês.
- Quantidade de clientes cancelados nos próximos seis meses.
- Taxa de inflação no próximo mês.







Frequência é uma estimativa da probabilidade de ocorrência de certos eventos de interesse.

• Exemplo: Qual a probabilidade de um cliente ser atendido entre 4 e 5 minutos na agência Z? E na agência Y? E na agência K?





#### Propriedades:

- 1. Para cada experiência define-se um espaço amostral
- 2. Probabilidade de um evento E: 0 ≤ P(E) ≤ 1
- 3. P(S) = Soma das probabilidades dos eventos simples = 1



#### Definição 1:

"A probabilidade simplesmente determina qual é a chance de algo acontecer."

"Toda vez que não temos certeza sobre o resultado de algum evento, estamos tratando da probabilidade de certos resultados acontecerem—ou quais as chances de eles acontecerem."

Fonte: https://pt.khanacademy.org/math/probability/probability-geometry/probability-basics/a/probability-the-basics/probability-basics/a/probability-the-basics/probability-basics/a/probability-basics/a/probability-basics/a/probability-basics/a/probability-basics/a/probability-basics/a/probability-basics/a/probability-basics/a/probability-basics/a/probability-basics/a/probability-basics/a/probability-basics/a/probability-basics/a/probability-basics/a/probability-basics/a/probability-basics/a/probability-basics/a/probability-basics/a/probability-basics/a/probability-basics/a/probability-basics/a/probability-basics/a/probability-basics/a/probability-basics/a/probability-basics/a/probability-basics/a/probability-basics/a/probability-basics/a/probability-basics/a/probability-basics/a/probability-basics/a/probability-basics/a/probability-basics/a/probability-basics/a/probability-basics/a/probability-basics/a/probability-basics/a/probability-basics/a/probability-basics/a/probability-basics/a/probability-basics/a/probability-basics/a/probability-basics/a/probability-basics/a/probability-basics/a/probability-basics/a/probability-basics/a/probability-basics/a/probability-basics/a/probability-basics/a/probability-basics/a/probability-basics/a/probability-basics/a/probability-basics/a/probability-basics/a/probability-basics/a/probability-basics/a/probability-basics/a/probability-basics/a/probability-basics/a/probability-basics/a/probability-basics/a/probability-basics/a/probability-basics/a/probability-basics/a/probability-basics/a/probability-basics/a/probability-basics/a/probability-basics/a/probability-basics/a/probability-basics/a/probability-basics/a/probability-basics/a/probability-basics/a/probability-basics/a/probability-basics/a/probability-basics/a/probability-basics/a/probability-basics/a/probability-basics/a/probability-basics/a/probability-basics/a/probability-basics/a/probability-basics/a/probability-basics/a/probability-basics/a/probability-basics/a/probability-basics/a/probability-basics/a/probability-bas



#### Definição 2:

"As frequências relativas são estimativas de probabilidade de ocorrência de certos eventos de interesse. Com suposições adequadas, e sem observamos diretamente o fenômeno aleatório de interesse, podemos criar um modelo teórico que reproduza de maneira razoável a distribuição das frequências, quando o fenômeno é observado diretamente. Tais modelos são chamados de modelos probabilísticos."

(Bussab, WO e Morettin, PA, Estatística Básica. 5 ed. São Paulo: Saraiva, 2002, página 103).

• •

□ · · • •



## Noções de Probabilidade

### Exemplo 1:

De um grupo de duas mulheres (M) e três homens (H), uma pessoa será sorteada para presidir uma reunião. Queremos saber as probabilidades de o presidente ser do sexo masculino ou feminino.

- 1) Espaço amostral: { M, H}
- 2) Modelo teórico:

| Sexo               | М   | Н   | Total |
|--------------------|-----|-----|-------|
| Frequência teórica | 2/5 | 3/5 | 1     |

Fonte: Exemplo extraído do livro Estatística Básica página 108



## \*Noções de Probabilidade

Qual a probabilidade de ganhar o prêmio máximo da Mega Sena com um único jogo de seis dezenas?

| [01]   | [02]     | [03]     | [04]    | [05]     | [06] | [07] | [08] | [09] | [10 |
|--------|----------|----------|---------|----------|------|------|------|------|-----|
| [11]   | [12]     | [13]     | [14]    | [15]     | [16] | [17] | [18] | [19] | 120 |
| [21]   | [22]     | [23]     | [24]    | [25]     | [26] | [27] | [28] | [29] | 130 |
| [31]   | [32]     | [33]     | [34]    | [35]     | [36] | [37] | [38] | [39] | [40 |
| [41]   | [42]     | [43]     | [44]    | [45]     | [46] | [47] | [48] | [49] | 150 |
| [51]   | [52]     | [53]     | [54]    | [55]     | [56] | [57] | [58] | [59] | [60 |
| Para a | anular e | este jog | o, marq | que ao l | ado: |      |      |      | 1   |

O jogo da Mega-sena consiste em escolher seis dezenas dentre as 60 dezenas.

## \*Noções de Probabilidade

• Qual a probabilidade de ganhar o prêmio máximo da Mega Sena com um único jogo de seis dezenas?

Lembrando que o jogo da Mega-sena consiste em escolher seis dezenas dentre as 60 dezenas.

Espaço amostral consiste da enumeração de todos os resultados possíveis do jogo.

$$\Omega = \{ (1,2,3,4,5,6), (1,2,3,4,5,7), (1,2,3,4,5,8), \dots \}$$

1

- 1

3

п . .

## Noções de Probabilidade

\* Evento A = ganhar o prêmio máximo da Mega Sena com um único jogo de seis dezenas

Análise Combinatória Simples : 
$$C_{(n,p)} = \binom{n}{p} = \frac{n!}{(n-p)! \, p!}$$

n=60 e p= 6

$$\Omega = \binom{60}{6} = \frac{60!}{(60-6)! \cdot 6!} = \frac{60!}{54! \cdot 6!} = \frac{60.59.58....3.2.1}{(54.533...3.2.1).6.5.4.3.2.1} = 50.063.860$$

Probabilidade(A) = 
$$\frac{A}{(\Omega)} = \frac{1}{\binom{60}{6}} = \frac{1}{50.063.860}$$

## \*Noções de Probabilidade

#### Análise Combinatória e Probabilidade

Fatorial: 
$$n! = n.(n-1).(n-2)...3.2.1$$

Permutação: P = n!

Arranjo: 
$$C_{(n,p)} = \frac{n!}{(n-p)!}$$

Análise Combinatória Simples : 
$$C_{(n,p)} = \binom{n}{p} = \frac{n!}{(n-p)! \, p!}$$

#### Exemplo 2:

O jogo da Mega-sena consiste em escolher seis dezenas dentre as 60 dezenas (01, 02, 03, ..., 60). O jogador pode marcar num cartão de 6 a 15 dezenas. Os custos em reais (R\$) de cada jogo estão relacionados abaixo.

| Dezenas | Custo (R\$) |
|---------|-------------|
| 6       | 4,50        |
| 7       | 31,50       |
| 8       | 126,00      |
| 9       | 378,00      |
| 10      | 945,00      |
| 11      | 2.079,00    |
| 12      | 4.158,00    |
| 13      | 7.722,00    |
| 14      | 13.513,50   |
| 15      | 22.522,50   |

$$\binom{60}{6} = \frac{60!}{(60-6)!*6!} = 50.063.860$$
 possibilidades

Com um único jogo a probabilidade de ganhar o prêmio máximo é  $\frac{1}{\binom{60}{6}}$ , isto é, aproximadamente uma chance em 50 milhões.

Fonte: Exemplo extraído do livro Estatística Básica página 109. O custo e a probabilidade foram atualizadas.

 $\hfill\Box$  . .

#### Exemplo 2:

O jogo da Mega-sena consiste em escolher seis dezenas dentre as 60 dezenas (01, 02, 03, ..., 60). O jogador pode marcar num cartão de 6 a 15 dezenas. Os custos em reais (R\$) de cada jogo estão relacionados abaixo.

| Dezenas | Custo (R\$) | Probabilidade de acerto (1 em) Sena |
|---------|-------------|-------------------------------------|
| 6       | 4,50        | 50.063.860                          |
| 7       | 31,50       | 7.151.980                           |
| 8       | 126,00      | 1.787.995                           |
| 9       | 378,00      | 595.998                             |
| 10      | 945,00      | 238.399                             |
| 11      | 2.079,00    | 108.363                             |
| 12      | 4.158,00    | 54.182                              |
| 13      | 7.722,00    | 29.175                              |
| 14      | 13.513,50   | 16.671                              |
| 15      | 22.522,50   | 10.003                              |

Fonte: Exemplo extraído do livro Estatística Básica página 109. O custo e a probabilidade foram atualizadas.

□ · · • •



## \*Noções de Probabilidade

#### **Artigos:**

https://mundoeducacao.uol.com.br/matematica/anagrama.htm

https://mundoeducacao.uol.com.br/matematica/combinacao-simples.htm

https://mundoeducacao.uol.com.br/matematica/permutacao-envolvendo-elementos-repetidos.htm

https://mundoeducacao.uol.com.br/matematica/principio-fundamental-contagem-fatorial.htm

https://mundoeducacao.uol.com.br/matematica/arranjos-simples.htm +



## DISTRIBUIÇÃO DE PROBABILIDADE

#### Exemplo:

- Construir o modelo preditivo a fim de prever o resultado de partidas do campeonato brasileiro.
- Considerando que a quantidade de gols marcados (K) em uma partida de futebol do Campeonato Brasileiro de Futebol (Brasileirão) em 2018 seja uma variável aleatória que segue a distribuição de Poisson com média de gols igual a  $\lambda$ .
- Calcule a probabilidade de ocorrer k = 0, 1, 2, 3, 4, 5, 6 e 7

### Distribuição de Poisson

A probabilidade de existam exatamente k ocorrências é:

$$P(K=k) = \frac{e^{-\lambda}\lambda^k}{k!}$$

 $k = 0, 1, 2, 3 \dots$  (número inteiro positivo)

e = 2.71828

k! = k.(k-1).(k-2)...3.2.1

 $\lambda$  = média do valor esperado de k



### Dados históricos

https://github.com/henriquepgomide/caRtola/tree/master/data

| game | round | date | home_team          | score              | away_team | gol_m | gol_v | gols | arena            | Lcal                                |
|------|-------|------|--------------------|--------------------|-----------|-------|-------|------|------------------|-------------------------------------|
|      | 1     | 1    | 14/04/2018 - 16:00 | Cruzeiro - MG      | 0 x 1     | 0     | 1     | 1    | Grêmio - RS      | Mineirão - Belo Horizonte - MG      |
|      | 2     | 1    | 15/04/2018 - 19:00 | Atlético - PR      | 5 x 1     | 5     | 1     | 6    | Chapecoense - SC | Arena da Baixada - Curitiba - PR    |
|      | 3     | 1    | 15/04/2018 - 11:00 | América - MG       | 3 x 0     | 3     | 0     | 3    | Sport - PE       | Independência - Belo Horizonte - MG |
|      | 4     | 1    | 14/04/2018 - 19:00 | Vitória - BA       | 2 x 2     | 2     | 2     | 4    | Flamengo - RJ    | Manoel Barradas - Salvador - BA     |
|      | 5     | 1    | 15/04/2018 - 16:00 | Vasco da Gama - RJ | 2 x 1     | 2     | 1     | 3    | Atlético - MG    | São Januário - Rio de Janeiro - RJ  |
|      | 6     | 1    | 16/04/2018 - 20:00 | Botafogo - RJ      | 1 x 1     | 1     | 1     | 2    | Palmeiras - SP   | Nilton Santos - Rio de Janeiro - RJ |
|      | 7     | 1    | 16/04/2018 - 20:00 | São Paulo - SP     | 1 x 0     | 1     | 0     | 1    | Paraná - PR      | Morumbi - Sao Paulo - SP            |

λ = média do número de gols em uma partida de futebol do Brasileirão.



### Dados históricos

https://github.com/henriquepgomide/caRtola/tree/master/data

| game | round | date | home_team          | score              | away_team | gol_m | gol_v | gols | arena            | Lcal                                |
|------|-------|------|--------------------|--------------------|-----------|-------|-------|------|------------------|-------------------------------------|
|      | 1     | 1    | 14/04/2018 - 16:00 | Cruzeiro - MG      | 0 x 1     | 0     | 1     | 1    | Grêmio - RS      | Mineirão - Belo Horizonte - MG      |
|      | 2     | 1    | 15/04/2018 - 19:00 | Atlético - PR      | 5 x 1     | 5     | 1     | 6    | Chapecoense - SC | Arena da Baixada - Curitiba - PR    |
|      | 3     | 1    | 15/04/2018 - 11:00 | América - MG       | 3 x 0     | 3     | 0     | 3    | Sport - PE       | Independência - Belo Horizonte - MG |
|      | 4     | 1    | 14/04/2018 - 19:00 | Vitória - BA       | 2 x 2     | 2     | 2     | 4    | Flamengo - RJ    | Manoel Barradas - Salvador - BA     |
|      | 5     | 1    | 15/04/2018 - 16:00 | Vasco da Gama - RJ | 2 x 1     | 2     | 1     | 3    | Atlético - MG    | São Januário - Rio de Janeiro - RJ  |
|      | 6     | 1    | 16/04/2018 - 20:00 | Botafogo - RJ      | 1 x 1     | 1     | 1     | 2    | Palmeiras - SP   | Nilton Santos - Rio de Janeiro - RJ |
|      | 7     | 1    | 16/04/2018 - 20:00 | São Paulo - SP     | 1 x 0     | 1     | 0     | 1    | Paraná - PR      | Morumbi - Sao Paulo - SP            |

λ = média do número de gols em uma partida de futebol do Brasileirão.



## Distribuição de Probabilidade

### Dados históricos





➤ mean(cartola2018\$gols)

**>** [1] 2.18

### Distribuição de Poisson

A probabilidade de existam exatamente k ocorrências é:

$$P(K=k) = rac{e^{-\lambda} \lambda^k}{k!}$$
  $\lambda$  = média de 2.18 gols

Qual a probabilidade de ocorrer 0 gol?

$$P(K = 0) = \frac{e^{-\lambda}\lambda^k}{k!} = \frac{e^{-2.18}2.18^0}{0!} = 0.135$$

Qual a probabilidade de ocorrer 1 gol?

$$P(K=1) = \frac{e^{-\lambda}\lambda^k}{k!} = \frac{e^{-2.18}2.18^1}{1!} = 0.271$$

### • Distribuição de Poisson

A probabilidade de existam exatamente k ocorrências é:

$$P(K = k) = \frac{e^{-\lambda} \lambda^k}{k!}$$

 $\lambda$  = média de 2.18 gols

| Probabilidade |
|---------------|
| 0.14          |
| 0.27          |
| 0.27          |
| 0.18          |
| 0.09          |
| 0.04          |
| 0.01          |
| 0.00          |
| 1.00          |
|               |





### **TABELAS ESTATÍSTICAS**



### Tabelas Estatísticas

### Afinal, o que são as tabelas estatísticas?

Probabilidade é a base dos modelos teóricos para buscar determinar a chance de eventos acontecerem, sejam eventos simples ou compostos.

### Por que elas são uteis?

Os valores das probabilidades encontram-se em tabelas estatísticas que podem ser facilmente utilizadas para análise de teste de hipóteses, análise de associação e saídas de modelos preditivos.

Exemplo: Qual a probabilidade de um determinado time ganhar? Use a distribuição de Poisson.

https://www.goal.com/br/not%C3%ADcias/como-calcular-a-probabilidade-de-gols-marcados-para-apostas/bhonn6lceb171ohkvmh2rn4xa

https://www.youtube.com/watch?v=a6dRG3V5l6s



- - DISTRIBUIÇÃO **de Poisson**



Exercícios



#### DISTRIBUIÇÃO **NORMAL**



#### CARACTERÍSTICAS:

- A) A variável pode assumir qualquer valor no conjunto real.
- B) O gráfico da distribuição é uma curva em forma de sino, simétrica em torno da média  $\mu$ , que é igual à mediana e à moda.
- C) A área sob a curva é igual a 1, e corresponde à probabilidade de a variável assumir valores entre [-∞ .....+∞].
- D)  $\mu,\sigma$  (Mi e Sigma) representam os parâmetros de posição e dispersão da distribuição.
- E) Os pontos de inflexão da curva ocorrem nos valores definidos por ( $\mu-\sigma$  e  $\mu+\sigma$ ).
- F) A expressão da função densidade de probabilidade é:

$$f(X) = \frac{1}{\sigma\sqrt{2\pi}} e^{-1/2[(X-\mu)/\sigma]^2}$$

. . ·



Qual a probabilidade de ocorrer valores entre 0 e 1?

P(0 < Z < 1.00) = ?

3,3

3,4

#### • • + • □

3,3

3,4

### DISTRIBUIÇÃO **NORMAL**

| Cor                                         | Tabela III — Distribuição Normal Padrão $Z \sim N(0,1)$ Corpo da tabela dá a probabilidade $p$ , tal que $p = P(0 < Z < Z)$ |       |       |                |            |                |       |       |       |        |                                             |  |   |   |   |
|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-------|-------|----------------|------------|----------------|-------|-------|-------|--------|---------------------------------------------|--|---|---|---|
|                                             |                                                                                                                             |       |       |                |            |                | -     | _     |       | 0 Z    | ž                                           |  |   |   |   |
| parte in-<br>teira e<br>primeira<br>decimal |                                                                                                                             |       |       | 100            | nda decimo |                |       |       |       |        | parte in-<br>teira e<br>primeira<br>decimal |  |   |   |   |
| de Z                                        | 0                                                                                                                           | 3.    | 2     | 3              | 4          | .5             | 6     | 7     | 8     | 9      | de Z                                        |  |   |   |   |
| 0,0                                         | p=0                                                                                                                         | 00000 | 00798 | 03307          | OT FOR     | manne          | 00000 | 00700 | 00100 | nnen.  |                                             |  |   |   |   |
| 0,0                                         | 00000                                                                                                                       | 00399 | 04776 | 01197          | 01595      | 01994          | 02392 | 02790 | 03188 | 03586  | 0,0                                         |  |   |   |   |
| 0,1                                         | 07926                                                                                                                       | 08317 | 08706 | 09095          | 09483      | 09871          | 10257 | 10642 | 11026 | 07535  | 0,1                                         |  |   |   |   |
| 0,3                                         | 11791                                                                                                                       | 12172 | 12552 | 12930          | 13307      | 13683          | 14058 | 14431 | 14803 | 15173  | 0,3                                         |  |   |   |   |
| 0,4                                         | 15542                                                                                                                       | 15910 | 16276 | 16640          | 17003      | 17364          | 17724 | 18082 | 18439 | 18793  | 0,4                                         |  |   |   |   |
| 0.5                                         | 19146                                                                                                                       | 19497 | 19847 | 20194          | 20540      | 20884          | 21226 | 21566 | 21904 | 22240  | 0,5                                         |  |   |   |   |
| 0.6                                         | 22575                                                                                                                       | 22907 | 23237 | 23565          | 23891      | 24215          | 24537 | 24857 | 25175 | 25490  | 0,6                                         |  |   |   |   |
| 0,7                                         | 25804                                                                                                                       | 26115 | 26424 | 26730          | 27035      | 27337          | 27637 | 27935 | 28230 | 28524  | 0.7                                         |  |   |   |   |
| 8,0                                         | 28814                                                                                                                       | 29103 | 29389 | 29673          | 29955      | 30234          | 30511 | 30785 | 31057 | 31327  | 8,0                                         |  |   |   |   |
| 0,9                                         | 31594                                                                                                                       | 31859 | 32121 | 32381          | 32639      | 32894          | 33147 | 33398 | 33646 | 33891  | 0,9                                         |  |   |   |   |
| 1,0                                         | 34134                                                                                                                       | 34375 | 34614 | 34850          | 35083      | 35314          | 35543 | 35769 | 35993 | 36214  | 1,0                                         |  |   |   |   |
| 1,1                                         | 36433                                                                                                                       | 36650 | 36864 | 37076          | 37286      | 37493          | 37698 | 37900 | 38100 | 38298  | 1,1                                         |  |   |   |   |
| 1,2                                         | 38493                                                                                                                       | 38686 | 38877 | 39065          | 39251      | 39435          | 39617 | 39796 | 39973 | 40147  | 1,2                                         |  |   |   |   |
| 1,3                                         | 40320                                                                                                                       | 40490 | 40658 | 40824          | 40988      | 41149          | 41309 | 41466 | 41621 | 41774  | 1,3                                         |  |   |   |   |
| 1,4                                         | 41924                                                                                                                       | 42073 | 42220 | 42364          | 42507      | 42647          | 42786 | 42922 | 43056 | 43189  | 1,4                                         |  |   |   | • |
| 1,5                                         | 43319                                                                                                                       | 43448 | 43574 | 43699          | 43822      | 43943          | 44062 | 44179 | 44295 | 44408  | 1,5                                         |  |   |   |   |
| 3,6                                         | 44520                                                                                                                       | 44630 | 44738 | 44845          | 44950      | 45053          | 45154 | 45254 | 45352 | 45449  | 1,6                                         |  |   |   |   |
| 1.7                                         | 45543                                                                                                                       | 45637 | 45728 | 45818          | 45907      | 45994          | 46080 | 46164 | 46246 | 46327  | 1.7                                         |  |   |   |   |
| 1,8                                         | 46407                                                                                                                       | 46485 | 46562 | 46638          | 46712      | 46784          | 46856 | 46926 | 46995 | 47062  | 1,8                                         |  |   |   |   |
| 1,9                                         | 47128                                                                                                                       | 47193 | 47257 | 47320          | 47381      | 47441          | 47500 | 47558 | 47615 | 47670  | 1,9                                         |  |   |   |   |
| 2.0                                         | 47725                                                                                                                       | 47778 | 47831 | 47882          | 47932      | 47982          | 48030 | 48077 | 48124 | 48169  | 2,0                                         |  |   |   |   |
| 2,1                                         | 48214                                                                                                                       | 48257 | 48300 | 48341          | 48382      | 48422          | 48461 | 48500 | 48537 | 48574  | 2,1                                         |  | + | + |   |
| 2,2                                         | 48610                                                                                                                       | 48645 | 48679 | 48713          | 48745      | 48778          | 48809 | 48840 | 48870 | 48899  | 2,2                                         |  |   |   |   |
| 2,3                                         | 48928                                                                                                                       | 48956 | 48983 | 49010          | 49036      | 49061          | 49086 | 49111 | 49134 | 49158  | 2,3                                         |  |   |   |   |
| 2,4                                         | 49180<br>49379                                                                                                              | 49202 | 49224 | 49245          | 49266      | 49286<br>49461 | 49305 | 49324 | 49343 | 49361  | 2,4                                         |  |   |   |   |
| 2,5                                         | 49534                                                                                                                       | 49547 | 49560 | 49430<br>49573 | 49585      | 49598          | 49609 | 49621 | 49632 | 49643  | 2,5                                         |  |   |   |   |
| 2,7                                         | 49653                                                                                                                       | 49664 | 49674 | 49683          | 49693      | 49702          | 49711 | 49720 | 49728 | 49736  | 2.7                                         |  |   | • |   |
| 2,8                                         | 49744                                                                                                                       | 49752 | 49760 | 49767          | 49774      | 49781          | 49788 | 49795 | 49801 | 49807  | 2,8                                         |  |   |   |   |
| 2,9                                         | 49813                                                                                                                       | 49819 | 49825 | 49831          | 49836      | 49841          | 49846 | 49851 | 49856 | 49861  | 2,9                                         |  |   |   |   |
| 3,0                                         | 49865                                                                                                                       | 49869 | 49874 | 49878          | 49882      | 49886          | 49889 | 49893 | 49897 | 49900  | 3,0                                         |  |   |   | - |
| 3,1                                         | 49903                                                                                                                       | 49906 | 49910 | 49913          | 49916      | 49918          | 49921 | 49924 | 49926 | 49929  | 3,1                                         |  |   | _ |   |
| 3.2                                         | 49931                                                                                                                       | 49934 | 49936 | 49938          | 49940      | 49942          | 49944 | 49946 | 4994B | 499.50 | 3.2                                         |  |   |   |   |

## Distribuição Normal Padronizada

 $Z \sim N(0,1)$ 











$$P[(\mu - 3\sigma) < X < (\mu + 3\sigma)] = 99.74\%$$



- • - -
- DISTRIBUIÇÃO **NORMAL**



Exercícios

□ · · • •

- • - -
- NORMALIZAÇÃO **DOS DADOS** 
  - Distribuição Normal Padronizada

$$X \sim N(\mu, \sigma^2)$$
  $\square > Z = \frac{X - \mu}{\sigma}$   $\square > Z \sim N(0,1)$ 

Exemplos de aplicações da normalização dos dados:

Convolutional Neural Networks (CNNs) e Algoritmos de Machine Learning (Regressão, SVM, Cluster e outros)

\_ · · • •



NORMALIZAÇÃO **DOS DADOS** 

#### Distribuição Normal



Fonte: Pesquisa Nacional de Saúde 2013 - População adulta

□ · · • •

### NORMALIZAÇÃO **dos dados**

$$X \sim N(\mu, \sigma^2)$$
  $\Longrightarrow$   $Z = \frac{X - \mu}{\sigma}$   $\Longrightarrow$   $Z \sim N(0,1)$ 

#### Exemplo: Ingestão de sal estimada na população adulta. PNS, 2013





#### DISTRIBUIÇÃO **NORMAL PADRONIZADA**



$$X \sim N(\mu, \sigma^2)$$
  $\Rightarrow$   $Z = \frac{X - \mu}{\sigma}$   $\Rightarrow$   $Z \sim N(0,1)$ 

Exemplo: Ingestão de sal estimada na população adulta. PNS, 2013

Ingestão de sal (X) 
$$z = \frac{8.56 - 9.14}{2.31} = -0.25$$
4.54 
$$z = \frac{(4.54 - 9.14)/2.31}{2.31} = -1.99 \sim -2 dp$$

$$z = \frac{(13.7 - 9.14)/2.31}{2.31} = +1.97 \sim +2 dp$$

• • + • [

NORMALIZAÇÃO **DOS DADOS** 

Distribuição Normal Padronizada

$$X \sim N(\mu, \sigma^2)$$
  $\square$   $Z = \frac{X - \mu}{\sigma}$   $\square$   $Z \sim N(0,1)$ 

Máximo e Mínimo

$$X_{p} = \frac{X - X_{m\text{inimo}}}{X_{m\text{aximo}} - X_{m\text{inimo}}}$$

. .



## PROBABILIDADE CONDICIONAL



INFERÊNCIA BAYESIANA -> PROBABILIDADES SUBJETIVAS

#### Exemplo 3:

Considere o evento A = chover em SP no dia 12 de janeiro do próximo ano.

Suponha que uma pessoa morando em Fortaleza tenha que calcular essa probabilidade. Se ela não tiver informação sobre o tempo em São Paulo, poderá atribuir a probabilidade de%. Já o morador de São Paulo tem informações adicionais, como por exemplo, ele saberá que janeiro, fevereiro e março são os meses mais chuvosos e poderá arriscar uma probabilidade de 2/3 de ocorrer o evento A.

Fonte: Exemplo extraído do livro Estatística Básica página 121.

□ · · • •





O fenômeno aleatório pode ser separado em etapas. A informação que ocorreu em uma determinada etapa pode influenciar nas probabilidades de ocorrências das etapas sucessivas.

#### Definição:

Dados dois eventos A e B, a probabilidade condicional de A dado que ocorreu B é representado por P(A/B) e dada por:

$$P(A/B) = \frac{P(A \cap B)}{P(B)}, P(B) > 0$$

Fonte: Exemplo extraído do livro Noções de Probabilidade e Estatística página 41.

□ · · • •

- • -

#### Exemplo 4:

O São Paulo Futebol Clube ganha com probabilidade 0,7 se chove e com 0,8 se não chove.

Em Setembro a probabilidade de chuva é de 0,3. O São Paulo ganhou uma partida em Setembro, qual a probabilidade de ter chovido nesse dia?



Fonte: Exemplo extraído e adaptado do livro Noções de Probabilidade e Estatística página 41.

•



A técnica de Basket Analysis utiliza a probabilidade condicional para encontrar cestas de produtos.

#### Um Exemplo de Sucesso!



- ✓ Descobriu-se que homens entre trinta e quarenta e cinco anos, que <u>compram</u> <u>cervejas</u>, nas sextas-feiras, após as dezesseis horas, <u>também compram fraldas!</u>
- Resultado: apenas mudando os produtos de lugar, colocando as fraldas ao lado de cervejas nos pontos de venda, obteve-se um aumento de mais de quarenta por cento nas vendas de fraldas.
- O que acha de possuir uma informação como essa?

A Wall-Mart soube tirar bom proveito dela!

#### Medidas estatísticas

Support (frequência)

$$(A \cap B \Rightarrow C) = \%$$

Confidence (probabilidade condicional)

$$(A \cap B \Rightarrow C) = \frac{P(A \cap B \cap C)}{P(A \cap B)}$$

Lift(associação)

$$(A\&B \Rightarrow C) = \frac{P(A \cap B \cap C)}{P(A \cap B)P(C)} + +$$



### MARKET BASKET ANALYSIS

É uma técnica estatística para identificar cestas de produtos, por meio de regras de associação, a qual relaciona todos os produtos adquiridos em uma mesma transação/ticket disponível na base de dados.

Essa técnica é muito utilizada na área de Marketing para identificar hábitos de compra de clientes. O exemplo clássico, citado na literatura, é a associação encontrada entre fralda e cerveja pela rede de supermercados americana WalMart.



Graph-based visualization of the top ten rules in terms of lift.





#### Técnica Descoberta de Sequências

Quais associações são significativas ?



























#### 3.o produto



+ .

. . •



- A pizzaria XPTO vendeu 2000 pizzas:
  - 100 de cogumelos, 150 de pepperoni, 200 com extra queijo
  - 400 de cogumelos e pepperoni, 300 de cogumelos e extra queijo, 200 de pepperoni e extra queijo
  - 100 de cogumelos, pepperoni e extra queijo
  - 500 outros
- Cálculo da probabilidade das combinações dos itens:

#### Pepperoni



$$frequência = \frac{850}{2000} * 100 = 42.5\%$$



Cálculo da probabilidade das combinações dos itens:



$$frequência = \frac{900}{2000} * 100 = 45\%$$

Pepperoni



$$frequência = \frac{850}{2000} * 100 = 42.5\%$$

Queijo



$$frequência = \frac{800}{2000} * 100 = 40\%$$





Cálculo da probabilidade das combinações dos itens:

#### Cogumelo e Pepperoni



$$frequência = \frac{500}{2000} * 100 = 25\%$$

#### Cogumelo e Queijo



$$300 + 100 = 400$$
 pizzas

$$frequência = \frac{400}{2000} * 100 = 20\%$$

#### Pepperoni e Queijo



$$200 + 100 = 300$$
 pizzas

$$frequência = \frac{300}{2000} * 100 = 15\%$$





## Market Basket Analysis

• Cálculo da probabilidade das combinações dos itens:



Cogumelo, Pepperoni e Queijo



100 pizzas

$$frequência = \frac{100}{2000} * 100 = 5\%$$

• • +

Regra 1 com os três itens:



Se pizza de Cogumelo e Pepperoni então Queijo



| Estatísticas                                                                           | Valor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Support = $(A \cap B \Rightarrow C)$                                                   | <del>\$\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\de</del> |
| Confidence = $(A \cap B \Rightarrow C)$ = $\frac{P(A \cap B \cap C)}{P(A \cap B)}$     | $\frac{48 + 48 + 25}{45 + 48} = \frac{5\%}{25\%} = 0.20$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Improvement/lift $ (A\&B \Rightarrow C) = \frac{P(A \cap B \cap C)}{P(A \cap B)P(C)} $ | $\frac{3}{4} + 3 + \frac{5}{4} = \frac{5\%}{25\% \times 40\%} = 0.5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |



Três regras com os três itens:

Se pizza de Cogumelo e Pepperoni então Queijo



Support = 0.05 Confidence = 0.20 Improvement/lift = 0.5

Se pizza de Cogumelo e Queijo então Pepperoni



Support = 0.05 Confidence = 0.25 Improvement/lift = 0.588

Se pizza de Queijo e Pepperoni então Cogumelo



Support = 0.05 Confidence = 0.33 Improvement/lift = 0. Exemplo



# O que você achou da aula de hoje?

#### Pelo aplicativo da FIAP

(Entrar no FIAPP, e no menu clicar em Experience Survey)







# A grande finalidade do conhecimento não é conhecer, mas agir.

T. Huxley

# OBRIGADO





Copyright © 2022 | Professora Dra. Regina Tomie Ivata Bernal
Todos os direitos reservados. Reprodução ou divulgação total ou parcial deste documento, é expressamente
proibido sem consentimento formal, por escrito, do professor/autor.

• • • + — +

• • •

. .

+

. .