# Faculdade SENAI Fatesg. Bacharelado em Engenharia de Software - 3° Período. Componente Curricular: Fundamentos Matemáticos II. Professor: Ujeverson Tavares Sampaio.

# Calculadora de Derivadas e Integrais Especificação de Requisitos de Sistema (ERS)

#### Alunos:

Gabriella Pio Correa Matheus Bastos Pedro Moreira Gilberto Borges Luiz Gustavo Rocha

Goiânia, 28 de maio de 2025.



# Tabela de Conteúdos

| 1. Introdução                    | 2  |
|----------------------------------|----|
| 2. Interface Gráfica             | 3  |
| TELA INICIAL (HOME)              | 3  |
| PESQUISA                         | 4  |
| TELA DERIVADA (ORDEM 1, 2 E 3)   | 4  |
| TELA PARA INTEGRAL               | 6  |
| TELA PARA DÚVIDAS (AJUDA)        | 7  |
| 3. Funcionalidades               | 7  |
| 3. Bibliotecas Utilizadas        | 8  |
| SymPy                            | 8  |
| customtkinter                    | 8  |
| re                               | 8  |
| 4. Métodos e Funções Utilizadas  | 8  |
| 1. preprocessar_entrada          | 8  |
| 2. formatar_expressao            | 9  |
| 3. derivar                       | 10 |
| 4. integrar                      | 10 |
| 5. integrar_definida             | 11 |
| 6. mostrar_ajuda                 | 12 |
| 7. limpar_tudo                   | 12 |
| 5. Aplicações                    | 13 |
| Conceitos de Derivadas Aplicados | 13 |
| Integrais Aplicadas              | 13 |
| 6. Manual do Usuário             | 14 |
| Calculando Derivadas             | 14 |
| Calculando Integral Indefinida   | 15 |
| Calculando Integral Definida     | 16 |
| Regras para Entrada              | 18 |
| Mensagens de Erro                | 18 |



# 1. Introdução

Esta especificação documenta o desenvolvimento de uma calculadora de derivadas e integrais, abordando o método utilizado, o código desenvolvido e como os conceitos de cálculo diferencial foram aplicados. O software foi implementado em Python utilizando a biblioteca SymPy para manipulações matemáticas simbólicas e a biblioteca customtkinter para a interface gráfica.



# 2. Interface Gráfica

A interface gráfica foi planejada para ser acessível e eficiente, priorizando a usabilidade e clareza. A seguir, detalhamos as telas desenvolvidas e suas funcionalidades com base no protótipo desenvolvido no Figma, disponível neste link.

TELA INICIAL (HOME)



#### Descrição:

Esta é a tela principal da calculadora, onde o usuário realiza as interações iniciais. A interface é simples e direta, com os seguintes elementos, na interface representados por botões na cor azul:

Campo de entrada de função: Localizado na parte superior, é onde o usuário insere a função desejada, seguindo as regras de escrita (ex.: multiplicação escrita como 2\*x ou 2x, exponenciação como x^2 ou x\*\*2).

**Botões de operações:** Abaixo do campo de entrada, os botões azuis permitem selecionar a operação desejada (Derivadas de 1ª, 2ª e 3ª ordem, integral definida ou indefinida).

**Botão de ajuda:** Representado por um ícone de interrogação (?), que abre um pop-up com instruções detalhadas.



#### **PESQUISA**



#### Descrição:

Nesta tela, o usuário digita a função no campo de entrada superior. A multiplicação pode ser escrita por asterisco (2\*x) ou vazio (2x), a exponenciação pode ser escrita por dois asteriscos em sequência (x\*\*2), acento circunflexo (x^2) ou sobrescrito (x²).

#### TELA DERIVADA (ORDEM 1, 2 E 3)

Descrição (aplicável às três ordens): Tendo sua função digitada, o usuário pode clicar em qualquer das operações de fácil visualização, que estão na cor azul. Na tela abaixo é possível verificar 1°, 2° derivadas е 3° ordem. as de 0 resultado aparece área superior. na O usuário tem liberdade para clicar em qualquer outra operação a qualquer momento para fazer um cálculo com a mesma função já inserida.







#### TELA PARA INTEGRAL

#### Descrição:

Tendo sua função digitada, o usuário pode clicar em qualquer das operações de fácil visualização, que estão na cor azul. Na tela abaixo é possível verificar as integrais indefinida e definida. O resultado aparece na área superior. O usuário tem liberdade para clicar em qualquer outra operação a qualquer momento para fazer um cálculo com a mesma função já inserida. Observação: Para calcular a integral definida é preciso informar os limites inferior e superior.





# TELA PARA DÚVIDAS (AJUDA)

Objetivo do Programa: Este programa calcula derivadas e integrais de funções matemáticas. Instruções Gerais: \* Use 'x' como variável principal. \* Para potências, use ^, \*\*, ou sobrescritos (2, 3, etc.). \* Evite usar espaços desnecessários na entrada. Exemplos Válidos:  $* x^2 + 2x + 1$  $* x^3 - 4x^2 + x - 7$  $* x^2 + 3x$ \* x\*\*3 + 5 Integral Definida: \* Digite a função no campo principal. \* Insira o limite inferior no campo correspondente. \* Insira o limite superior no campo correspondente. **Erros Comuns:** \* 'Digite uma função antes de derivar': Nenhuma expressão foi inserida para o cálculo. \* 'Digite a função e os limites inferior e superior': Alguma informação necessária para a integral definida está faltando. Para outras dúvidas: Consulte a documentação ou peça ajuda ao desenvolvedor.

#### Descrição:

O botão de interrogação (?) localizado ao lado do campo de entrada abre uma janela pop-up com informações úteis:

**Instruções:** Explica como usar a calculadora, com exemplos claros e objetivos.

**Erros comuns:** Fornece orientações para corrigir entradas inválidas ou equações mal formatadas.

O design foi pensado para oferecer suporte ao usuário de maneira rápida e eficiente, garantindo uma experiência positiva.

Essas telas foram projetadas para facilitar o uso do sistema, permitindo que o usuário foque nas operações desejadas sem complicações. O protótipo detalhado no Figma serve como referência para a implementação fiel da interface.

# 3. Funcionalidades

- **Derivadas:** Calcula derivadas simbólicas na ordem especificada.
- Integrais:
- o Indefinida: Apresenta a integral simbólica.
- o Definida: Calcula o valor numérico entre os limites especificados.
- **Limpar Tudo:** Remove todas as informações inseridas e os resultados exibidos, reiniciando a

#### tela.

Ajuda: Exibe instruções, exemplos e dicas de uso.



# 3. Bibliotecas Utilizadas

## SymPy

 SymPy é uma biblioteca para cálculo matemático simbólico, criada para manipulações algébricas, cálculo diferencial e integral, equações diferenciais e muito mais. No contexto deste projeto, ela é utilizada para realizar as operações matemáticas principais.
 Documentação SymPy

#### • Funções:

- o symbols: Declara variáveis simbólicas.
- o diff: Calcula derivadas.
- o integrate: Calcula integrais.
- sympify: Converte strings em expressões matemáticas simbólicas, validando e corrigindo erros simples na entrada. Por exemplo, sympify('2x + x\*\*2') converte para 2\*x + x\*\*2, pronta para manipulação pelo SymPy.

#### customtkinter

A biblioteca customtkinter é uma extensão moderna da tradicional tkinter. Ela foi projetada para criar interfaces gráficas mais atrativas, com suporte a temas e designs contemporâneos. No projeto, customtkinter foi usada para implementar os elementos da interface, como botões, campos de entrada e rótulos. Documentação customtkinter

#### Elementos:

- o CTk: Janela principal.
- CTkButton: Botões para interações.
- o CTkEntry: Campos de entrada para funções e limites.
- o CTkLabel: Exibição de resultados e mensagens.

re

A biblioteca re (regular expressions) é usada para manipular e validar expressões inseridas pelo usuário. Ela permite realizar substituições dinâmicas e padronizar entradas, garantindo compatibilidade com o formato aceito pelo SymPy. <u>Documentação re</u>

#### Uso no Projeto:

- Identificar e substituir potências escritas como x^2 ou sobrescritos x² para o formato x\*\*2.
- o Adicionar multiplicadores implícitos (ex.: transforma 2x em 2\*x).

# 4. Métodos e Funções Utilizadas

#### 1. preprocessar entrada

- Objetivo: Adaptar a entrada do usuário para um formato compatível com o SymPy.
- Operações:
  - Remove espaços e substitui ^ por \*\*, que é o formato de potências reconhecido pelo SymPy.



- Adiciona multiplicadores implícitos entre números e variáveis (ex.: transforma 2x em 2\*x).
- Converte sobrescritos (ex.: x²) para o formato normal (ex.: x\*\*2).

#### Como Funciona:

- Utiliza a biblioteca re para identificar padrões como variáveis seguidas de sobrescritos ou números sem operador de multiplicação.
- Realiza substituições por meio de expressões regulares, garantindo que o SymPy interprete corretamente a expressão.
- **Formato Final:** A expressão processada segue as regras do SymPy e está pronta para ser manipulada simbolicamente.

```
# Função para pré-processar a entrada do usuário

def preprocessar_entrada(expr):
    """

Formata a entrada do usuário para cálculos:
    - Remove espaços desnecessários.
    - Substitui "^" por "**" (sintaxe de potência no Python).
    - Converte expoentes sobrescritos para o formato padrão.
    - Adiciona multiplicações implícitas ausentes (ex: 2x -> 2*x).
    """

    expr = expr.replace(" ", "").replace("^", "**")
    expr = re.sub(
        r'([a-zA-Z])([-0123456789]+)',
        lambda m: m.group(1) + '**' + ''.join(sobrescritos_para_normais.get(c, c) for c in m.group(2)),
        expr
    )
    expr = re.sub(r'(\d)([a-zA-Z])', r'\1*\2', expr)
    expr = re.sub(r'([a-zA-Z])([a-zA-Z])', r'\1*\2', expr)
    return expr
```

#### 2. formatar expressao

Objetivo: Formatar a saída das expressões para exibição amigável.

#### • Operações:

- o Converte potências no formato \*\* para sobrescritos, melhorando a legibilidade.
- o Remove multiplicadores implícitos adicionados durante o pré-processamento, apresentando a expressão de forma mais natural para o usuário.

#### • Como Funciona:

- Utiliza re para localizar padrões como potências no formato \*\* e converte para sobrescritos Unicode.
- o Remove simbolismos desnecessários (ex.: transforma 2\*x novamente para 2x).
- **Formato Final:** Exibição clara e acessível, semelhante ao que seria escrito manualmente, garantindo uma experiência amigável ao usuário.



#### 3. derivar

- Objetivo: Calcular derivadas de diferentes ordens.
- Operações:
  - Usa diff do SymPy para calcular a derivada na ordem desejada.
  - o Itera o processo de derivação caso seja solicitada uma ordem maior que 1.
  - o Formata a saída com formatar expressao para exibição amigável.
- Exemplo: Para x^2 + 3x + 1, a derivada de 1ª ordem é 2x + 3.

#### 4. integrar

- Objetivo: Calcular integrais indefinidas.
- Operação:
  - o Usa integrate para calcular a integral indefinida e adiciona + C ao resultado.



```
# Função para calcular a integral indefinida
def integrar():
    """
    Calcula a integral indefinida da função inserida.
    - Exibe o resultado formatado na interface.
    """
    entrada_raw = entrada.get().strip()
    if not entrada_raw:
        resultado_label.configure(text=" ! Digite uma função antes de integrar.")
        return
    try:
        expr = preprocessar_entrada(entrada_raw)
        funcao = sympify(expr)
        integral = integrate(funcao, x)
        resultado_label.configure(text=f"Integral:\n{formatar_expressao(str(integral))} + C")
    except Exception as e:
        resultado_label.configure(text=f"Erro: {e}")
```

# 5. integrar\_definida

- Objetivo: Calcular integrais definidas entre dois limites.
- Operações:
  - o Recebe os limites inferior e superior do usuário.
  - Converte os limites para números reais (float) e valida a entrada.
  - o Usa integrate do SymPy para calcular o valor da integral definida.
  - o Formata o resultado para duas casas decimais antes de exibi-lo ao usuário.

#### Como Funciona:

- Os limites inferior e superior são convertidos usando float, garantindo compatibilidade com os cálculos matemáticos.
- A função integrate é chamada com três argumentos: a expressão simbólica, o limite inferior e o limite superior.
- O resultado é arredondado para duas casas decimais usando round().
- **Exemplo:** Para a função x^2 com limites 1 e 3, a integral definida é 8.67. O sistema exibe diretamente esse valor formatado ao usuário.

```
# Função para calcular a integral definida

def integrar_definida():
    """
    Calcula a integral definida entre limites inferiores e superiores.
    - Exige que os limites sejam fornecidos pelo usuário.
    """
    entrada_raw = entrada.get().strip()
    limite_inferior = limite_inf.get().strip()
    limite_superior = limite_sup.get().strip()

if not entrada_raw or not limite_inferior or not limite_superior:
    resultado_label.configure(text="! Digite a função e os limites inferior e superior.")
    return

try:
    expr = preprocessar_entrada(entrada_raw)
    funcao = sympify(expr)
    limite_inferior = float(limite_inferior)
    limite_superior = float(limite_superior)
    integral_definida = integrate(funcao, (x, limite_inferior, limite_superior))
    resultado_label.configure(text=f"Integral definida:\n{round(float(integral_definida), 2)}")
    except Exception as e:
    resultado_label.configure(text=f"Erro: {e}")
```



#### 6. mostrar\_ajuda

• **Objetivo:** Exibir um pop-up com instruções sobre o uso da calculadora.

```
# Função para exibir instruções e exemplos de entrada

' def mostrar_ajuda():

"""

Exibe uma janela de ajuda com exemplos e instruções para o usuário.

"""

ajuda = ctk.CTkToplevel(janela)
ajuda.title("Ajuda - Exemplos de entrada")
ajuda.geometry("300x600")
ajuda.attributes('-topmost', True)

> texto = """

ctk.CTkLabel(ajuda, font=fonte_menor, text=texto, justify="left", wraplength=280).pack(padx=10, pady=10)
```

#### 7. limpar tudo

- Objetivo: Remover todas as informações da interface e reiniciar o estado da calculadora.
- Como Funciona:
  - o Define o valor padrão ("") nos campos de entrada e resultados.
  - o Garantia de que o estado inicial é restaurado.

```
# Função para limpar os dados já inseridos
def limpar_tudo():
    entrada.delete(0, 'end')
    limite_inf.delete(0, 'end')
    limite_sup.delete(0, 'end')
    resultado_label.configure(text="")
```



# 5. Aplicações

# Conceitos de Derivadas Aplicados

- Cálculo de Velocidade: Derivadas de 1ª ordem são usadas para calcular a taxa de variação de uma função, como velocidade em relação ao tempo.
- Cálculo de Aceleração: Derivadas de 2ª ordem representam a variação da velocidade (aceleração).

# Integrais Aplicadas

- Área Sob a Curva: Integrais são usadas para calcular a área acumulada.
- Valores Acumulativos: Integrais definidas permitem calcular valores totais em intervalos.



# 6. Manual do Usuário

#### Calculando Derivadas

- 1. **Insira uma Função:** Digite a expressão no campo de entrada.
  - a. Exemplo:  $x^2+2x+1$ .



- 2. Selecione a Operação: Clique em um dos botões:
  - a. Derivar (1<sup>a</sup>, 2<sup>a</sup> ou 3<sup>a</sup> ordem).
  - b. Integral Indefinida.



c. Integral Definida (informe limites inferior e superior).



3. Veja o Resultado: O resultado será exibido na área abaixo ao campo da operação inserida.

# Calculando Integral Indefinida

1. Insira uma Função: Digite a expressão no campo de entrada.

a. Exemplo:  $x^2+2x+1$ .

2. Para calcular a integral indefinida: Clique no botão:

a. Integral Indefinida.





# Calculando Integral Definida

- 1. **Insira uma Função:** Digite a expressão no campo de entrada.
  - a. Exemplo: x<sup>2</sup>+2x+1.





# 2. Para calcular a integral definida:

- a. Digite o limite inferior e, logo após, o limite superior.
- b. Clique no botão Integral Definida.





# Regras para Entrada

- Multiplicação: Pode ser escrita como 2\*x ou 2x.
- Potências: Use ^ ou \*\*.
- Sobrescritos: Aceitos como x² ou x³.

# Mensagens de Erro

- Digite uma função: Insira uma expressão no campo de entrada.
- Digite a função e os limites: Informe os limites corretamente para integrais definidas.