5/10

	Free Response Question	Anthony
		Jones
	a) Solve the ode via seperation of vou	
7	$\frac{dy}{dx} = e^{x-2y}$	
	dy = ex-24	
	$dy = e^{x}e^{-2y}dx$	
	$e^{2y}dy = e^{x}dx$	
	Integrate both sides:	
	Serdy = exdx	
	1 2 2 = e + c.	
	Solve For y:	
	24 x	
	e = 2e + Co	
	24 = In(2ex+Co)	
	1 = In (2ex+co)	
	<u> </u>	
		•
	The solution to the ode is	
	1n(2ex+co)	
	y= 2 Nice 206	

Free Respanse Question Anthong Jones 8/27/20 b) Verify your solution. dy = ex-29, y= In (2ex+60) y = - In (2e"+ C.) dy = 1/2ex+co) (2ex) Jubstitution for y: - In (2ex+co) The solution presented is a valid solution because the derivative expressed in terms of x equates to taking the desirable of our Joluban.