W U



Brabec, Bronauer, Kolev, Shkola Vienna, January, 2025

# **Team Overview**

# W







S

# Algorithmic Trading



Tomislav Kolev

**Associate** 

- Strategy
- Python Coding



roadsurfe/Cc



Emma Bronauer

**Analyst** 

- Strategy Research
- Slidesdeck



Denys Shkola

**Fellow Analyst** 

- Python Coding
- Strategy
- Project Planning



BSc. Mathematics – 3<sup>rd</sup> Sem.



**Karel Brabec** 

**Fellow Analyst** 

- Macro Research
- Strategy



MSc. Qfin – 3<sup>rd</sup> Sem. BSc. Finance

BSc. BBE – 5<sup>th</sup> Sem.

BSc. BBE – 3<sup>rd</sup> Sem.

# Introduction to Pairs Trading and Mean Reversion







Basics of pairs trading and mean reversion.

## What is Pairs Trading?

- Pairs trading involves buying one asset (long) and selling another (short) simultaneously.
- Targets highly correlated assets with similar price patterns.
- Aims to minimize exposure to market-wide trends while profiting from temporary price deviations.
- Relies on identifying pairs with stable historical relationships.



#### What is Mean Reversion?

- Mean reversion is the theory that prices or returns tend to return to their long-term average over time.
- Significant deviations from the mean create opportunities to buy undervalued assets and sell overvalued ones.
- It underpins strategies like pairs trading and statistical arbitrage.
- Common indicators include moving averages, Bollinger Bands, and RSI.

## Mean Reversion in Pairs Trading

**Objective**: Profit from the convergence of the price ratio to its historical mean.

#### **Execution:**

- Take a long position in the undervalued asset (below the mean).
- Take a short position in the overvalued asset (above the mean).

## Challenges:

- Requires precise pair selection.
- Market corrections may take longer than anticipated, impacting returns.

# The Ornstein-Uhlenbeck (OU) Process

Understanding the stochastic process behind the strategy.

#### What is the OU Process?

- The OU process is a **stochastic model** used to describe **mean-reverting behavior**. It describes how a variable  $X_t$  fluctuates around a long-term mean  $\theta$ , influenced by unpredictable market fluctuations (random noise).
- The process for modeling portfolio value is defined as:

$$dX_t = \mu(\theta - X_t) dt + \sigma dB_t$$

- ∘  $X_t$  = Value of process at time t ∘  $\sigma$  = Volatility

 $\theta$  = Long-term mean

- $\circ$   $B_t$  = Standard Brownian Motion
- $_{\circ}$   $\mu$  = Rate of mean reversion

## **Understanding the Dynamics:**

- The OU process illustrates how price spreads tend to revert to their average over time, making it foundational for pairs trading strategies.
- Maximum Likelihood Estimation is used to estimate the parameters  $\mu.\theta$  and  $\sigma$ . optimizing portfolio decisions based on observed mean-reversion behavior.
- Mean Reversion:
  - When  $X_t > \theta$ , the term  $\mu(\theta X_t)$  becomes negative, pulling  $X_t$  back toward  $\theta$
  - $_{\circ}$  When  $X_t < \theta$ , the term  $\mu(\theta X_t)$  becomes positive, pushing  $X_t$  back toward θ

## **Portfolio**

• A **mean-reverting portfolio** is constructed by holding a long position in  $\alpha$  shares of asset  $S^{(1)}$  and a short position in  $\beta$  shares of asset  $S^{(2)}$ :

$$X_t^{\alpha,\beta} = \alpha S_t^{(1)} - \beta S_t^{(2)}$$

- $\alpha$  = Long position in  $S^{(1)}$  and  $\beta$  = Short position in  $S^{(2)}$
- $X_t$  = The value of the portfolio at time t
- **Scaling the Portfolio**: Fixing  $\alpha = 1$  simplifies adjustments to  $\beta$ .
- **Example**: Setting  $\beta = B / S_0^{(2)}$  optimizes the portfolio based on available cash B.



# **Python Implementation**

W U T I S

Key Functions in the Trading Workflow.

#### Calculate Likelihood

**Objective**: Estimate optimal OU model parameters  $(\beta, \theta, \mu, \sigma)$  by maximizing log-likelihood using historical data.

- Optimize Portfolio Weights (β): Identify the hedge ratio that maximizes the model's likelihood.
- **2. Maximize Log-Likelihood**: Select the β that results in the highest likelihood, ensuring the model is most aligned with historical data.
- 3. **Parameter Refinement**: After finding the optimal  $\beta$ , recalculate the OU parameters  $(\mu, \theta, \sigma)$  for precise modeling.
- Output Optimal Parameters: Generate optimized parameters and log-likelihood metrics.

## **Setup Model**

**Objective**: Initialize the model with historical price data and compute key parameters for the OU trading strategy.

- 1. Establish the **initial price levels** of both assets for spread calculations.
- 2. Estimate the OU process **parameters** ( $\mu$ ,  $\sigma$ ,  $\theta$ ) to model the mean-reverting behavior.
- 3. Compute the **hedge ratio** ( $\beta$ ) for optimizing the portfolio.
- 4. Set the **upper and lower trading thresholds** based on statistical properties of the spread.

#### **Set Thresholds**

**Objective:** Define critical trading thresholds to signal entry and exit points based on market conditions.

- 1. Threshold Calculation: Compute upper/lower bounds for the spread using  $\theta$ ,  $\mu$ ,  $\sigma$ .
- Account for Transaction Costs: Incorporate real-world constraints when setting thresholds.
- 3. Set Trading Thresholds

#### **Recalculate Amounts**

**Objective:** Dynamically adjust portfolio holdings based on asset price changes to maintain a mean-reverting hedge.

- **1. Transaction Cost Management:** Deduct transaction costs from the capital, ensuring realistic portfolio management.
- 2. Reallocation of Capital: Calculate the optimal number of shares to hold for each asset to maintain the portfolio's hedged position.

# **Python Implementation**

W U T I S

Key Functions in the Trading Workflow.

## **Trading Function**

```
def trade(self, prices):
    Execute trading logic based on the current prices of the assets.
       prices (list): Current prices of the two assets.
        Exception: If the model is not set up with initial prices.
    signal = False
    if self.init prices is None:
        raise Exception("Model not setup")
    # Calculate the spread index based on initial prices and hedge ratio
    self.index = prices[0] / self.init prices[0] - self.beta * prices[1] / self.init prices[1]
    # Update portfolio value based on price changes and current positions
    if self.amount a is not None and self.amount b is not None:
        if self.is long: # Long position
           self.p_a += (prices[0] - self._last_a) * self.amount_a
           self.p_b += (self._last_b - prices[1]) * self.amount_b
       else: # Short position
           self.p_a += (self._last_a - prices[0]) * self.amount_a
           self.p_b += (prices[1] - self._last_b) * self.amount_b
    # Update total capital
    if self.update_capital and self.p_a is not None and self.p_b is not None:
        self.capital = self.p_a + self.p_b
    # Check if trading thresholds are crossed and adjust positions
    if self.index <= self.l threshold and (self.is long is None or not self.is long): # buy signal (long)
        self.recalculate_amounts(prices)
       signal = True
        self.is_long = True
    if self.index >= self.u threshold and (self.is long is None or self.is long):
        self.recalculate_amounts(prices)
       signal = True
        self.is_long = False
    # Store the last prices
    self._last_a, self._last_b = prices
    # New variable to track order signals
    return signal
```

## **Purpose and Core Objectives**

**Objective**: Implement a robust trading strategy for mean-reverting pairs using the Ornstein-Uhlenbeck (OU) process.

- **1. Spread index Calculation**: Computes the relative price difference between assets, adjusted by the hedge ratio (β).
- 2. Portfolio Value Update: Reflects gains or losses based on price changes and current positions (long or short).
- Signal Generation: Identifies trading opportunities based on upper/lower thresholds.
- 4. Capital Tracking: Monitors portfolio capital to reflect real-time price changes...

## **Trading Logic and Execution**

- Trading Signal Logic:
  - Buy Signal (Long): Triggered when the spread index crosses below the lower threshold, indicating an undervalued condition.
  - Sell Signal (Short): Triggered when the spread index exceeds the upper threshold, indicating an overvalued condition.
- Output: Returns True if a trade signal is generated, otherwise False.

# **Python Implementation**

W U T I S

Real-Time Data Handling and Trading Execution using Alpaca.

#### Connect to API, Search Pairs and Stream Data

```
1 if __name__ == '__main__':
        with open("config.yaml") as stream:
                data = yaml.safe_load(stream)
                api_key = data['api_key']
                secret_key = data['secret_key']
            except yaml.YAMLError as exc:
                print(exc)
10
        trading_client = TradingClient(api_key=api_key,
11
                                       secret_key=secret_key,
12
                                       paper=True,
13
                                       url override=base url)
14
        account = trading_client.get_account()
15
        print('Account cash:',account.cash)
16
        model = OU_Trading_Model(int(account.cash)*0.1)
17
18
        search_params = GetAssetsRequest(asset_class=AssetClass.US_EQUITY)
19
        assets = trading_client.get_all_assets(search_params)
20
21
        symbols = [asset.symbol for asset in assets if asset.tradable and asset.shortable]
22
        print(symbols)
23
        price_data = get_price_data(symbols,api_key,secret_key,test=True)
24
        result = analyze tickers(price data, dt)[:10]
25
26
        for i,out in enumerate(result):
27
            print(f"{i+1}. {out['t1']}-{out['t2']}: {out['likl']}")
28
29
        ind = input('Choose pair:')
30
        try:
31
            ind = int(ind)-1
32
            print(f"Trading pair: {result[ind]['t1']}-{result[ind]['t2']}")
33
34
            pair = [result[ind]['t1'], result[ind]['t2']]
35
            stream = StockDataStream(api key, secret key)
36
            stream.subscribe_bars(quote_data_handler, *pair)
37
            stream.run()
38
        except ValueError:
39
            print('Not an integer.')
```

## **Trading function triggered by API-Stream**

```
1 async def quote_data_handler(data):
        global pair,work_data,dt_from_start,model,status,past_data,trading_client,capital
        with open("config.yaml") as stream:
                data = yaml.safe_load(stream)
                interval = data['interval']
                window = data['window']
            except yaml.YAMLError as exc:
11
                print(exc)
13
        tickers = list(work_data.keys())
14
15
        if not data.symbol in tickers:
16
            work_data[data.symbol] = [data.close]
17
18
            work_data[data.symbol].append(data.close)
19
20
        status[data.symbol] = True
21
22
        if len(tickers) == 2 and all(list(status.values())):
23
            n_closes = len(past_data)
24
            dt_from_start += 1
25
26
            prices = [work_data[tickers[0]][-1], work_data[tickers[1]][-1]]
27
            print(prices)
28
            past_data.append(prices)
29
30
            model.capital = trading_client.get_account().portfolio_value
31
32
            if n_closes >= window and dt_from_start % interval == 0:
33
                print('setup',past_data)
34
                model.setup(past_data)
35
36
                signal = model.trade(prices)
37
38
                    spread(pair,model.is_long,[model.amount_a,model.amount_b])
39
                print('trade', signal, model.is_long)
40
41
42
43
            for ticker in tickers:
                status[ticker] = False
```

# **Results for GLD-SLV**



Analysing Strategy Performance: Results and Insights.





## **Implementation**

- The strategy was backtested using historical price data for GLD and SLV.
- Timeframe: From March 2013 to August 2024.
- Parameters recalculated every 20 days.
- Source: Historical ETF data, processed through the OU trading model.
- Trades Executed: 110 trades were executed during the backtesting period.

#### Results

- Annualized Return: 6.11% (reasonable returns)
- Annualized Volatility: 13.01% (standard volatility)
- Strengths: Effective signal generation and steady capital growth.
- Limitations: Returns were modest compared to benchmarks like broader indices.

# **Results for LCID-AMC**



Analysing Strategy Performance: Results and Insights.

|     | Capital    | Α          | В          | AmountA    | AmountB   | Upper    | Lower    | Index    | Signal | Side  |
|-----|------------|------------|------------|------------|-----------|----------|----------|----------|--------|-------|
| 0   | 99.993000  | 23.046109  | 76.946891  | 1.291099   | 0.596488  | 0.983223 | 0.804373 | 0.591541 | True   | True  |
| 175 | 137.636758 | 16.616438  | 121.027320 | 6.235893   | 1.041394  | 0.402247 | 0.345539 | 0.443125 | True   | False |
| 180 | 151.367571 | 24.411304  | 126.963267 | 4.814368   | 1.569484  | 0.525254 | 0.462156 | 0.458459 | True   | True  |
| 286 | 162.481054 | 6.646287   | 155.841767 | 6.979786   | 2.526683  | 0.326311 | 0.271202 | 0.328970 | True   | False |
| 290 | 173.340200 | 15.231424  | 158.115775 | 7.747187   | 2.804482  | 0.326311 | 0.271202 | 0.251462 | True   | True  |
| 322 | 261.310898 | 12.364966  | 248.952932 | 32.445746  | 5.126428  | 0.417822 | 0.381480 | 0.424699 | True   | False |
| 336 | 274.604568 | 39.294933  | 235.316635 | 40.362250  | 6.377235  | 0.417822 | 0.381480 | 0.372656 | True   | True  |
| 494 | 207.348142 | -59.592581 | 266.947723 | 63.721395  | 3.950726  | 0.430543 | 0.338437 | 0.438699 | True   | False |
| 503 | 225.114944 | -46.211086 | 271.333030 | 79.143212  | 0.079143  | 0.435836 | 0.383774 | 0.380093 | True   | True  |
| 539 | 269.370259 | -1.890873  | 271.268133 | 65.792171  | 8.750359  | 0.467823 | 0.406938 | 0.508930 | True   | False |
| 556 | 293.324538 | 24.426002  | 268.905536 | 76.062738  | 13.158854 | 0.542477 | 0.489303 | 0.479593 | True   | True  |
| 568 | 336.651383 | 68.542384  | 268.115999 | 64.083304  | 21.403823 | 0.584676 | 0.532346 | 0.642206 | True   | False |
| 508 | 376.776485 | 125.576516 | 251.206969 | 101.638644 | 24.494913 | 0.510514 | 0.471838 | 0.419022 | True   | True  |
| 553 | 411.297025 | 159.117260 | 252.186765 | 110.745913 | 18.383822 | 0.618523 | 0.555039 | 0.670356 | True   | False |

# 

### **Implementation**

- The strategy was backtested using historical price data for LCID and AMC.
- Timeframe: From May 2022 to January 2025.
- Parameters recalculated every 20 days.
- Source: Historical ETF data, processed through the OU trading model.
- Trades Executed: 14 trades were executed during the backtesting period.

#### Results

- Annualized Return: 67.37% (exceptional returns)
- Annualized Volatility: 93.55% (extremely high risk)
- Strengths: The strategy showed strong growth, with signal generation capturing profits during volatility.
- **Limitations**: High volatility risks profitability, with returns sensitive to parameters and market conditions.

# **Results for Synthetic Data**

W U T I S

Analysing Strategy Performance: Results and Insights.





## **Implementation**

- The strategy was implemented using a generated synthetic dataset to simulate market conditions.
- The Simulated stocks are almost perfectly correlated and follow the OU process.
- Timeframe: The 3500 days represent approximately 14 years of trading days.
- Parameters recalculated every 100 days.
- Source: Self-created.
- Trades Executed: 102 trades were executed during the backtesting period.

#### Results

- Annualized Return: 13.74% (high returns)
- Annualized Volatility: 6,56% (high risk)
- **Strengths**: Capital grew steadily, showcasing the trading model's effectiveness in a controlled environment.
- Limitations: Simulated results might not reflect real-world complexities.

# Conclusion



Key Insights and Recommendations.

## **Key Strengths**

The Ornstein-Uhlenbeck trading model demonstrated **strong performance and steady capital growth** across various datasets, including real-world pairs (GLD-SLV, LCID-AMC) and simulated data.

- GLD-SLV: Generated stable returns with a 6.11% annualized return and low volatility.
- **LCID-AMC**: Delivered high returns (67.37%) despite notable volatility, highlighting strong performance in volatile environments.
- Simulated Data: Showed consistent capital growth, validating the model's robustness in controlled conditions.



#### **Critical Considerations**

- Pair Selection: Ensuring the selected pair follows the OU process is critical for success. Thorough analysis of historical data is essential.
- **Assumptions**: The model's reliance on mean-reversion limits its effectiveness to pairs exhibiting this behavior.
- Adaptability: Static thresholds and parameters may hinder performance in dynamic or rapidly changing market conditions.

## **Recommendations for Improvements**

- Pair Selection: Focus on selecting pairs with strong historical evidence of meanreversion to align with the OU process.
- Parameter Adjustment: Conduct market research about the chosen secuurities and carefully assess how often to recalculate the parameters of the OU process.

# Appendix

#### Sources:

- <a href="https://corporatefinanceinstitute.com/resources/career-map/sell-side/capital-markets/pairs-trading/">https://corporatefinanceinstitute.com/resources/career-map/sell-side/capital-markets/pairs-trading/</a>
- https://www.investopedia.com/terms/m/meanreversion.asp#:~:text=Mean%20reversion%20is%20a%20financial,long%2Dterm%20average%20over%20time.
- https://blog.quantinsti.com/pairs-trading-basics/
- https://alpaca.markets/learn/pairs-trading
- https://cdn.shortpixel.ai/spai/q\_lossy+w\_949+to\_webp+ret\_img/algotrading101.com/learn/wp-content/uploads/2020/09/pairs-trading.png

# **Mathematical Framework for the Strategy**

W U T I S

Key formulas and parameter estimation.

#### **Maximum Likelihood Estimation**

- Purpose: Estimate the parameters  $\mu,\,\theta$  and  $\sigma$  of the OU process from observed portfolio values  $X_t$
- Maximized Average log-likelihood defined by:

$$\begin{split} &\ell(\theta,\mu,\sigma|x_0^{\alpha,\beta},x_1^{\alpha,\beta},\ldots,x_n^{\alpha,\beta})\\ &:=\frac{1}{n}\sum_{i=1}^n\ln f^{OU}\left(x_i^{\alpha,\beta}|x_{i-1}^{\alpha,\beta};\theta,\mu,\sigma\right)\\ &=-\frac{1}{2}\ln(2\pi)-\ln(\tilde{\sigma})-\frac{1}{2n\tilde{\sigma}^2}\sum_{i=1}^n[x_i^{\alpha,\beta}-x_{i-1}^{\alpha,\beta}e^{-\mu\Delta t}-\theta(1-e^{-\mu\Delta t})]^2 \end{split}$$



#### **Parameter Estimation**

• The Optimal parameter estimates under the OU model are given explicitly by:

$$\theta^* = \frac{X_y X_{xx} - X_x X_{xy}}{n(X_{xx} - X_{xy}) - (X_x^2 - X_x X_y)},$$

$$\mu^* = -\frac{1}{\Delta t} \ln \frac{X_{xy} - \theta^* X_x - \theta^* X_y + n(\theta^*)^2}{X_{xx} - 2\theta^* X_x + n(\theta^*)^2},$$

$$(\sigma^*)^2 = \frac{2\mu^*}{n(1 - e^{-2\mu^* \Delta t})} (X_{yy} - 2e^{-\mu^* \Delta t} X_{xy} + e^{-2\mu^* \Delta t} X_{xx}$$

$$-2\theta^* (1 - e^{-\mu^* \Delta t}) (X_y - e^{-\mu^* \Delta t} X_x) + n(\theta^*)^2 (1 - e^{-\mu^* \Delta t})^2)$$

#### **Portfolio Optimization**

- Adjust α and β to optimize the portfolio for maximum likelihood of mean-reverting behavior
- For any  $\alpha$ , we choose the strategy  $(\alpha, \beta^*)$ , where

$$\beta^* = \arg\max_{\beta} \hat{\ell}(\theta^*, \mu^*, \sigma^* | x_0^{\alpha, \beta}, x_1^{\alpha, \beta}, \dots, x_n^{\alpha, \beta})$$