Math 621 no no let's make ourse we pin Imax Connulas: Lecture 13 10-21-2020 $\frac{n}{2} \left(\frac{n}{3} \right) \left(\frac{1}{3} + \frac{1}{3} +$ 5 f(x) F(x)3-1 (1-F(x))n-5 n! (n-5) f(x) $F(x)^{\frac{1}{2}}$ $(1-F(x))^{n-j-1}$ (n-i-1) $\frac{2}{5-k} \frac{n!}{(5-1)!(n-5)!} f(x) F(x)^{5-1} (1-F(x))^{n-5} - \frac{1}{(5-1)!(n-5)!} f(x)^{5-1} (1-F(x))^{5-1} (1-F(x))^{5-1}$ n = (x) n =(n-(3+1))! Peinbexing trick in Let J = j + 1 = 7 j = J - 1 $= 7 \ \hat{3} = J = 1$ $= 7 \ \hat$ $\frac{n!}{1 = k+1} \frac{f(x) F(x)^{d-1} (1 - F(x))^{n-d}}{(1-1)!(n-1)!}$ note that both sum expressions are exactly the same, so whom we Subtract we're left with just the expression when j=k] n! $f(x)F(x)^{k-1}(1-F(x))^{n-k} = f_{X_{\mathbb{R}}}$

het's marke sure we can uncover the min/max formulas: $f_{X(1)}(x) = \frac{n!}{(1-1)! (n-1)!} f(x) F(x)^{1-1} (1-F(x))^{n-1}$ $= nf(x) \left(1 - F(x) \right)^{n-1} \sqrt{1 - F(x)}$ $f_{(n-1)!}(n-n)! f(x) f(x)^{n-1} (1-f(x))^{n-n}$ = n f(x) f(x)X1, -, Xn ~ U(0,1) = 1 1 xe co,1], F(x)= x CDF of minimum: $F_{X(1)}(x) = 1 - (1 - F(x))^{n} = 1 - (1 - x)^{n}$ $PDF : f_{X(1)}(x) = n(1 - x)$ F(x)CDF of maximum: $f_{X}(n)(x) = F(x)^n = x^n$ CDF of maximum: PDF: $f_{X(n)}(x) = n \times n-1$ f(x) $f_{X(k)}(x) = \frac{n!}{(k-1)!(n-k)!} \chi^{k-1}(1-x)^{n-k} \int_{x \in [0,1]}^{x} \frac{1}{(x-1)!(n-k)!} \chi^{k-1}(1-x)^{n-k} \chi^{k-1}($ $=\frac{\Gamma(n+1)}{\Gamma(k)\Gamma(n-k+1)}\chi^{k-1}$ $\frac{1}{(1-k)^{n-k+1-1}}\chi_{k-1}$ = Beta (K, n-K+1)

 $X \sim Gramma (Z \rangle B)$ independent of (3) $T \sim Gramma (Z \rangle B)$, $T = X + T \sim Gramma (Z \rangle B)$ is Enlang ($Z \sim B$) $T = X + T \sim Gramma (Z \sim B)$ $T = X + T \sim Gramma (Z \sim B)$ $T = X + T \sim Gramma (Z \sim B)$ To prove this, we use a kernels", k(x). Leomonde For any PMF on PDF, we can decompose it into a x constant C & a Kernel k(x). P(x) = (C k(x)) and f(x) = (C k(x))(Proportional) not a function of t => P(X) & K(X), f(X) d k(X) We know, $(1 \pm \sum P(X) = \sum C \times (X))$ $= \sum L = \sum K(X) \Rightarrow C = (\sum K(X))$ $= \sum L = \sum L$ $1 = \int_{SUPPEJ} f(x) dx = \int_{SUPPEJ} (x(x)) dx$ $= \sum_{k} \sum_{x} \sum_$ this means that k(x) is 1-1 with the PMF on PDF. If you know k(x),
you know the distribution of the rv. Let's see some examples: = n! px (1-p) n-x 1/x e so,1,--, n s = n! (1-P) x! (1-P) 1xe 50, - - >n8 K(x)

 $\begin{array}{lll}
 & \text{Weibull}(k, \lambda) = k\lambda (\lambda y)^{k-1} e^{-(\lambda y)^{k}} 1y = 0 \\
 & = k\lambda^{k} y^{k-1} e^{-(\lambda y)^{k}} 1y = 0 \\
 & = k\lambda^{k} y^{k-1} e^{-(\lambda y)^{k}} 1y = 0 \\
 & = k\lambda^{k} y^{k-1} e^{-(\lambda y)^{k}} 1y = 0 \\
 & = k\lambda^{k} y^{k-1} e^{-(\lambda y)^{k}} 1y = 0 \\
 & = k\lambda^{k} y^{k-1} e^{-(\lambda y)^{k}} 1y = 0 \\
 & = k\lambda^{k} y^{k-1} e^{-(\lambda y)^{k}} 1y = 0 \\
 & = k\lambda^{k} y^{k-1} e^{-(\lambda y)^{k}} 1y = 0 \\
 & = k\lambda^{k} y^{k-1} e^{-(\lambda y)^{k}} 1y = 0 \\
 & = k\lambda^{k} y^{k-1} e^{-(\lambda y)^{k}} 1y = 0 \\
 & = k\lambda^{k} y^{k-1} e^{-(\lambda y)^{k}} 1y = 0 \\
 & = k\lambda^{k} y^{k-1} e^{-(\lambda y)^{k}} 1y = 0 \\
 & = k\lambda^{k} y^{k-1} e^{-(\lambda y)^{k}} 1y = 0 \\
 & = k\lambda^{k} y^{k-1} e^{-(\lambda y)^{k}} 1y = 0 \\
 & = k\lambda^{k} y^{k-1} e^{-(\lambda y)^{k}} 1y = 0 \\
 & = k\lambda^{k} y^{k-1} e^{-(\lambda y)^{k}} 1y = 0 \\
 & = k\lambda^{k} y^{k-1} e^{-(\lambda y)^{k}} 1y = 0 \\
 & = k\lambda^{k} y^{k-1} e^{-(\lambda y)^{k}} 1y = 0 \\
 & = k\lambda^{k} y^{k-1} e^{-(\lambda y)^{k}} 1y = 0 \\
 & = k\lambda^{k} y^{k-1} e^{-(\lambda y)^{k}} 1y = 0 \\
 & = k\lambda^{k} y^{k-1} e^{-(\lambda y)^{k}} 1y = 0 \\
 & = k\lambda^{k} y^{k-1} e^{-(\lambda y)^{k}} 1y = 0 \\
 & = k\lambda^{k} y^{k-1} e^{-(\lambda y)^{k}} 1y = 0 \\
 & = k\lambda^{k} y^{k-1} e^{-(\lambda y)^{k}} 1y = 0 \\
 & = k\lambda^{k} y^{k-1} e^{-(\lambda y)^{k}} 1y = 0 \\
 & = k\lambda^{k} y^{k-1} e^{-(\lambda y)^{k}} 1y = 0 \\
 & = k\lambda^{k} y^{k-1} e^{-(\lambda y)^{k}} 1y = 0 \\
 & = k\lambda^{k} y^{k-1} e^{-(\lambda y)^{k}} 1y = 0 \\
 & = k\lambda^{k} y^{k-1} e^{-(\lambda y)^{k}} 1y = 0 \\
 & = k\lambda^{k} y^{k-1} e^{-(\lambda y)^{k}} 1y = 0 \\
 & = k\lambda^{k} y^{k-1} e^{-(\lambda y)^{k}} 1y = 0 \\
 & = k\lambda^{k} y^{k-1} e^{-(\lambda y)^{k}} 1y = 0 \\
 & = k\lambda^{k} y^{k-1} e^{-(\lambda y)^{k}} 1y = 0 \\
 & = k\lambda^{k} y^{k-1} e^{-(\lambda y)^{k}} 1y = 0 \\
 & = k\lambda^{k} y^{k-1} e^{-(\lambda y)^{k}} 1y = 0 \\
 & = k\lambda^{k} y^{k-1} e^{-(\lambda y)^{k}} 1y = 0 \\
 & = k\lambda^{k} y^{k-1} e^{-(\lambda y)^{k}} 1y = 0 \\
 & = k\lambda^{k} y^{k-1} e^{-(\lambda y)^{k}} 1y = 0 \\
 & = k\lambda^{k} y^{k-1} e^{-(\lambda y)^{k}} 1y = 0 \\
 & = k\lambda^{k} y^{k-1} e^{-(\lambda y)^{k}} 1y = 0 \\
 & = k\lambda^{k} y^{k-1} e^{-(\lambda y)^{k}} 1y = 0 \\
 & = k\lambda^{k} y^{k-1} e^{-(\lambda y)^{k}} 1y = 0 \\
 & = k\lambda^{k} y^{k-1} e^{-(\lambda y)^{k}} 1y = 0$ Y~ Gramma (d,B) independent of Y~ Gramma (d2,B), T=x+y~f+(+)=? Using let $f = (\pm 1) = (\pm 1)$ $2e^{-\beta t}\int_{0}^{t}\chi^{\chi_{1}-1}(t-\chi)^{\alpha_{2}-1}d\chi 11+20$ 1 (0= N = 0 =) (U=0! N X = f = 0 u = 1- B+ x,-1 x2-1 fl x1-1 (1-u) x2-1 + du 1/+20

= e + d, + d2 - 15/ ux - (1-u) 2-1 du 1/20 $de^{-\beta t}$ d_1+d_2-1 d_1+d_2 not a function of d_1 Let's talk about the guibeta function? B(d)(B) = \(u \div (1+u) \beta -1 \)

\[
\begin{align*}
\text{g(u)} & = \text{not a vailable in Closed form.}
\end{align*} The "incomplete beta finetion" is: $B(\alpha) d \beta = \int_{0}^{\infty} u d^{-1} (1-u) du$ The regularized incomplete beta function is; $T_{\alpha}(\alpha,\beta) = B(\alpha,\beta) = 70$ $B(\alpha,\beta) = 70$ Percontage het's derive a beta finction-gamma. - N Giamma ($d_1 + d_2 \cdot \beta$)

= $\beta^{\alpha_1 + \alpha_2} \cdot d_1 + \alpha_2 - 1 - \beta \cdot 1$ $\Gamma(d_1 + d_2) \cdot e^{-\beta \cdot 1} \cdot 1$ BX1+X2

B(X1) A(X2) + X1+X2-1 1/5

