Transformer-XL

Attentive Language Model beyond a Fixed-Length Context

Language Modeling

Given a text sequence X, estimate the probability distribution P(x)

$$p(\mathbf{x}) = \prod_{t=1}^{T} p(x_t \mid \mathbf{x}_{< t})$$

Similar LM Models

Not Seq2Seq unlike the original Transformer

Predecessor & Successor

Deep transformer model with fixed context (AR)

Character-Level Language Modeling with Deeper Self-Attention (Al-Rfou et al.)

Transformer XL (AR)

Tranformer-XL: Attentive Language Models Beyond a Fixed-Length Context (Dai et al.)

XLNet (AR+AE)

XLNet: Generalized Autoregressive Pretraining for Language Understanding (Yang et al.)

64 transformer layers (235 mil params)

Fixed-context of 512 characters

Vanilla Transformer LM: Training Phase

Vanilla Transformer LM: Training Phase

Short dependency length

Upper-bounded by the segment length (a few hundred chars)

Context Fragmentation

Non-semantic chunking

Lacks necessary contextual info to predict the first few symbols

Vanilla Transformer LM: Evaluation Phase

Vanilla Transformer LM: Evaluation Phase

Expensive

Need to process a new segment from scratch every position

Transformer XL

Segment-Level Recurrence

Relative Positional Encoding

Segment-Level Recurrence

Re-introduce recurrence, but at the segment level

Cache the hidden states of the previous segment

Pass them as keys/values for the next

Segment-Level Recurrence

The n-th layer Key, Value are backed by the previous segment's n-1th hidden state

Segment-Level Recurrence

Relative Position Encoding

Absolute Position Encoding leads to [0, ..., L] [0, ..., L]

Incoherence in representing position

Relatively less temporal info given longer context

To reuse the previous states effectively

Need to manage the positional information coherent

Absolute Position Encoding

$$PE_{(pos,2i)} = sin(pos/10000^{2i/d_{model}}) \ PE_{(pos,2i+1)} = cos(pos/10000^{2i/d_{model}})$$

Reparameterization

$$\mathbf{A}_{i,j}^{\text{abs}} = \underbrace{\mathbf{E}_{x_i}^{\top} \mathbf{W}_q^{\top} \mathbf{W}_k \mathbf{E}_{x_j}}_{(a)} + \underbrace{\mathbf{E}_{x_i}^{\top} \mathbf{W}_q^{\top} \mathbf{W}_k \mathbf{U}_j}_{(b)}$$
$$+ \underbrace{\mathbf{U}_i^{\top} \mathbf{W}_q^{\top} \mathbf{W}_k \mathbf{E}_{x_j}}_{(c)} + \underbrace{\mathbf{U}_i^{\top} \mathbf{W}_q^{\top} \mathbf{W}_k \mathbf{U}_j}_{(d)}.$$

$$A_{i,j} = q_i^T k_j + q_i^T k_{U,j}$$
$$+ q_{u,i}^T k_j + q_{u,i}^T k_{u,j}$$

- (a) content_based addressing
- (b) content-dependent positional bias
- (c) global content bias
- (d) global positional bias

Relative Position Encoding

Relative Position Encoding
$$\mathbf{A}_{i,j}^{abs} = \mathbf{E}_{x_i}^{\top} \mathbf{W}_q^{\top} \mathbf{W}_k \mathbf{E}_{x_j} + \mathbf{E}_{x_i}^{\top} \mathbf{W}_q^{\top} \mathbf{W}_k \mathbf{U}_j \\ + \mathbf{U}_i^{\top} \mathbf{W}_q^{\top} \mathbf{W}_k \mathbf{E}_{x_j} + \mathbf{U}_i^{\top} \mathbf{W}_q^{\top} \mathbf{W}_k \mathbf{U}_j.$$

$$\mathbf{A}_{i,j} = \mathbf{q}_i^{\top} \mathbf{k}_j + \mathbf{q}_i^{\top} \mathbf{k}_{U,j} \\ + \mathbf{q}_{u,i}^{\top} \mathbf{k}_j + \mathbf{q}_{u,i}^{\top} \mathbf{k}_l$$

$$A_{i,j} = q_i^{\ k}_j + q_i^{\ k}_{U,j} + q_{u,i}^{\ T}_{k_{u,j}}$$

$$\mathbf{A}_{i,j}^{\text{rel}} = \underbrace{\mathbf{E}_{x_i}^{\top} \mathbf{W}_q^{\top} \mathbf{W}_{k,E} \mathbf{E}_{x_j}}_{(a)} + \underbrace{\mathbf{E}_{x_i}^{\top} \mathbf{W}_q^{\top} \mathbf{W}_{k,R} \mathbf{R}_{i-j}}_{(b)} \qquad \mathbf{A}_{i,j} = \mathbf{q}_i^{\top} \mathbf{k}_j + \mathbf{q}_i^{\top} \mathbf{k}_{R,i-j} + \underbrace{\mathbf{v}^{\top} \mathbf{W}_{k,E} \mathbf{E}_{x_j}}_{(c)} + \underbrace{\mathbf{v}^{\top} \mathbf{W}_{k,R} \mathbf{R}_{i-j}}_{(d)} \qquad \qquad + \mathbf{u}^{\top} \mathbf{k}_j + \mathbf{v}^{\top} \mathbf{k}_{R,i-j}$$

$$A_{i,j} = q_i^T k_j + q_i^T k_{R,i-j}$$
$$+ u^T k_j + v^T k_{R,i-j}$$

Causal Attention Masking

$q_0^T k_3$	$q_0^T k_2$	$q_0^T k_1$	$q_0^T k_0$	0	0
$q_1^T k_4$	$q_1^T k_3$	$q_1^T k_2$	$q_1^T k_1$	$q_1^T k_0$	0
$q_2^T k_5$	$q_2^T k_4$	$q_2^T k_3$	$q_2^T k_2$	$q_2^T k_1$	$q_2^T k_0$

$q_0^T k_5$	$q_0^T k_4$	$q_0^T k_3$	$q_0^T k_2$	$\mathbf{q_0}^T\mathbf{k_1}$	$\mathbf{q_0}^T\mathbf{k_0}$
$q_1^T k_5$	$q_1^T k_4$	$q_1^T k_3$	$q_1^T k_2$	$\mathbf{q_1}^T\mathbf{k_1}$	$\mathbf{q_1}^T\mathbf{k_0}$
$q_2^T k_5$	$q_2^T k_4$	$q_2^T k_3$	$q_2^T k_2$	$q_2^T k_1$	$q_2^T k_0$

Attention Scores

robot	must	obey	orders	Χ

Keys

obey orders

orders

obey

Scores (before softmax)

	0.11	0.00	0.81	0.79
	0.19	0.50	0.30	0.48
=	0.53	0.98	0.95	0.14
	0.81	0.86	0.38	0.90

Scores (before softmax)

0.11	0.00	0.81	0.79
0.19	0.50	0.30	0.48
0.53	0.98	0.95	0.14
0.81	0.86	0.38	0.90

Apply Attention Mask

Masked Scores (before softmax)

0.11	-inf	-inf	-inf
0.19	0.50	-inf	-inf
0.53	0.98	0.95	-inf
0.81	0.86	0.38	0.90

Scores

Masked Scores (before softmax)

0.11	-inf	-inf	-inf
0.19	0.50	-inf	-inf
0.53	0.98	0.95	-inf
0.81	0.86	0.38	0.90

Softmax (along rows)

1	0	0	0
0.48	0.52	0	0
0.31	0.35	0.34	0
0.25	0.26	0.23	0.26

Result

80% longer than RNNs and 450% longer than vanilla Transformers

Up to 1,800+ times faster than a vanilla Transformer during evaluation

Better performance in perplexity

on long sequences (because of the long-term dependency modeling)

on short sequences (because of the context fragmentation problem)