Azzolini Riccardo 2018-10-12

Funzioni

1 Funzione

Una relazione $f \subseteq A \times B$ è una **funzione** da A a B se per ogni elemento $a \in A$ esiste un unico $b \in B$ tale che $(a,b) \in f$ (cioè ogni $a \in A$ è in relazione con un unico $b \in B$).

- L'insieme A si chiama dominio (o campo di esistenza) di f.
- L'insieme B prende il nome di **codominio** di f.
- b si chiama **immagine** di a.

1.1 Notazione

• Per indicare che f è una funzione da A a B si scrive

$$f:A\to B$$

• Per indicare che $(a, b) \in f$, si scrive

$$f(a) = b$$

oppure

$$f: a \mapsto b$$

• Per indicare contemporaneamente il dominio, il codominio e il legame tra un elemento e la sua immagine, si può scrivere

$$f: a \in A \mapsto f(a) \in B$$

Ad esempio, $f: n \in \mathbb{N} \mapsto n+1 \in \mathbb{N}^+$ corrisponde a

$$-f:\mathbb{N}\to\mathbb{N}^+$$

$$-f(n)=n+1$$
, o anche $f:n\mapsto n+1$

1.2 Esempi

$$A = \{a, b, c\}$$
$$B = \{1, 2\}$$

• $f = \{(a,1),(b,1),(c,2)\}$ è una funzione

• $\{(a,1),(a,2),(b,1),(c,2)\}$ non è una funzione perché l'elemento $a\in A$ è in relazione con 2 elementi di B

• $\{(a,2),(b,2)\}$ non è una funzione perché l'elemento $c\in A$ non è in relazione con alcun elemento di B

2 Funzione identica

La funzione $f: A \to A$ tale che f(a) = a per ogni $a \in A$ si chiama funzione **identica** (o **identità**) di A e si denota anche con id_A :

$$id_A = \{(a, a) \mid a \in A\}$$

3 Funzione costante

Fissato un elemento $c \in B$, la funzione $f_c : A \to B$ tale che $f_c(a) = c$ per ogni $a \in A$ si chiama funzione **costante** (o **costantemente uguale** a c):

$$f_c = \{(a, c) \mid a \in A\}$$

4 Funzione iniettiva

Una funzione $f:A\to B$ è **iniettiva** se elementi diversi del dominio hanno immagini diverse:

$$\forall x, y \in A, \quad x \neq y \implies f(x) \neq f(y)$$

4.1 Esempi

• Questa funzione è iniettiva:

• Questa funzione non è iniettiva perché l'elemento $2 \in B$ è immagine di due elementi $a,c \in A$:

5 Funzione suriettiva

Una funzione $f:A\to B$ è **suriettiva** se ogni elemento di B è immagine di un elemento di A:

$$\forall y \in B, \quad \exists x \in A, \quad f(x) = y$$

5.1 Esempi

• Questa funzione è suriettiva:

• Questa funzione non è suriettiva perché l'elemento $3 \in B$ non è immagine di alcun elemento di A:

6 Funzione biettiva

Una funzione è biettiva (o biunivoca) se è sia iniettiva che suriettiva.

Una funzione biettiva è anche detta corrispondenza biunivoca.

6.1 Esempio

7 Esistenza di funzioni iniettive, suriettive e biettive

Se A e B sono insiemi finiti, si ha che:

- se |A| > |B| non esistono funzioni iniettive da A a B
- se |A| < |B| non esistono funzioni suriettive da A a B
- se $|A| \neq |B|$ non esistono funzioni biettive da A a B

Due insiemi $A \in B$ (finiti o infiniti) si dicono **equipotenti** se esiste una funzione biettiva tra $A \in B$. Se sono finiti, $A \in B$ devono quindi avere lo stesso numero di elementi.

8 Numero di funzioni esistenti

Se A e B sono insiemi finiti, esistono $|B|^{|A|}$ funzioni da A a B.

8.1 Esempio

$$A = \{a, b\}$$

$$B=\{1,2\}$$

$$|B|^{|A|} = 2^2 = 4$$

$$f_1 = \{(a,1), (b,1)\}$$

$$f_2 = \{(a,1), (b,2)\}$$

$$f_3 = \{(a, 2), (b, 1)\}$$

$$f_4 = \{(a, 2), (b, 2)\}$$