

CLAIMS

What is claimed is:

- 1 1. A method of integrated circuit design, said method comprising the steps of:
2 a) identifying critical paths in an integrated circuit design;
3 b) weighting edges in identified said critical paths
4 c) assigning net criticality to each weighted edge responsive to edge
5 weight; and
6 d) re-placing and wiring nets according to edge criticality.
- 1 2. A method as in claim 1, further comprising before the step (a) of identifying
2 critical paths, the step of:
3 a1) placing and wiring said integrated circuit design.
- 1 3. A method as in claim 2 wherein the step (a) of identifying critical paths
2 further comprises removing non-critical paths from consideration.
- 1 4. A method as in claim 3 wherein step (b) of identifying critical paths
2 comprises forming a slack graph indicating path slack and edges within said critical
3 paths, non-critical paths being deleted from said slack graph.
- 1 5. A method as in claim 4 wherein step (c) of weighting edges comprises the
2 steps of:
3 i) traversing said critical paths from front to back, an input path weight
4 being assigned to each edge encountered in said traversal;
5 ii) traversing each critical path from back to front, an output path weight
6 being assigned to each encountered edge in said reverse traversal; and
7 iii) summing said assigned input path weight and said assigned output
8 path weight for each edge.
- 1 6. A method as in claim 5 wherein assigning net criticality value comprises:
2 sorting nets according to edge weight;

3 grouping sorted nets; and
4 assigning a criticality value to each group.

1 7. A method as in claim 6 wherein the step (c) of re-placing and wiring nets
2 comprises:

- 3 i) selecting an edge having a highest criticality value;
4 ii) adjusting cell placement and net wiring for said selected edge; and
5 iii) checking for remaining critical edges and repeating steps i-ii until no
6 critical edges are found.

1 8. A method as in claim 7 further including prior to the step (iii) of checking for
2 remaining critical edges the step of:

- 3 iiiA) checking to determine if exit criteria are met and ending if said exit
4 criteria are met.

1 9. A computer-readable medium having stored thereon a plurality of
2 instructions, the plurality of instructions including instructions which, when
3 executed by a processor, cause the processor to:

- 4 a) identify critical paths in an integrated circuit design;
5 b) weight edges in identified said critical path;
6 c) assign net criticality to each weighted edge responsive to edge
7 weight; and
8 d) re-place and wire nets according to edge criticality.

1 10. A computer readable medium as in claim 9, identifying critical paths of step
2 (a) causing the processor to:

- 3 a1) place and wire said integrated circuit design.

1 11. A computer readable medium as in claim 10 wherein the step (a) of
2 identifying critical paths removes non-critical paths from consideration.

1 12. A computer readable medium as in claim 11 wherein identifying critical
2 paths comprises forming a slack graph indicating path slack and edges within said
3 critical paths, non-critical paths being deleted from said slack graph.

1 13. A computer medium as in claim 12 wherein step (c) of weighting edges
2 causes the processor to:

- 3 i) traverse said critical paths from front to back and assign an input path
4 weight to each edge encountered in said traversal;
- 5 ii) traverse each critical path from back to front and assign an output
6 path weight to each encountered edge in said reverse traversal; and
- 7 iii) sum said assigned input path weight and said assigned output path
8 weight for each edge.

1 14. A computer readable medium as in claim 13 wherein assigning criticality
2 causes the processor to:

- 3 sort nets according to edge weight;
- 4 group sorted nets; and
- 5 assign a criticality value to each group.

1 15. A computer readable medium as in claim 14 wherein re-placing and wiring
2 nets causes the processor to:

- 3 i) select an edge having a highest criticality value;
- 4 ii) adjust cell placement and net wiring for said selected edge; and
- 5 iii) check for remaining critical edges and repeat i-ii until no critical
6 edges are found.

1 16. A computer medium as in claim 15 wherein if exit criteria are met, said
2 processor is caused to end prior to selecting and adjusting all critical edges.