Instrucciones

Fecha de entrega: 25 de febrero 2019.

Nota: Toda tarea escrita a LaTeX tendrá un ejericio "gratis" de su elección; este ejercicio gratis no es obligatorio y puntúa como un ejericio correctamente resuelto.

1 Divisibilidad

Ejercicio 1.1. Definimos la siguiente relación:

$$a \preccurlyeq b \quad \stackrel{\text{def}}{\Longleftrightarrow} \quad a \mid b.$$

Prueba que \leq es un orden parcial sobre $\mathbb{Z}^+ = \{1, 2, \ldots\}$, es decir que (\mathbb{Z}^+, \leq) . Explica porqué no es un orden parcial sobre \mathbb{Z} .

Ejercicio 1.2. Sobre las unidades de un anillo:

a. Sea A un anillo conmutativo con 1 y $U(A) = \{u \in A \mid \exists v \in A \text{ tal que } uv = 1\}$ su conjunto de unidades. Definimos la siguiente relación:

$$a \sim b \iff \exists u \in U(A) \text{ tal que } a = ub$$

Prueba que \sim es una relación de equivalencia. Si $a \sim b$, decimos que a y b son asociados. ¿Qué conjunto es el espacio cociente $\mathbb{Z}/_{\sim}$?

- b. Sea $p \in \mathbb{Z}$ un número primo. Prueba que $\mathbb{Z}_{(p)} := \{ \frac{a}{b} \in \mathbb{Q} \mid p \not\mid b \}$ es un anillo con las operaciones usuales de \mathbb{Q} y describe el conjunto $U(\mathbb{Z}_{(p)})$.
- c. Prueba que cuales quiera dos elementos primos de $\mathbb{Z}_{(p)}$ son asociados (un elemento q en cualquier anillo conmutativo con 1 es primo si no es una unidad y además cumple que $q \mid ab \Longrightarrow q \mid a$ ó $q \mid b$).
- d. Prueba que si $\frac{a}{b} \in \mathbb{Z}_{(p)}$ no es una unidad, entonces $\frac{a}{b} + 1 \in U(\mathbb{Z}_{(p)})$. Explica porque la prueba de Euclides de la infinitud de los números primos falla para $\mathbb{Z}_{(p)}$.

Ejercicio 1.3. Sean $a, b, c \in \mathbb{Z}$. Prueba las siguientes propiedades:

- a. $a \mid b \Longrightarrow ac \mid bc$ para toda $c \in \mathbb{Z}$ y si $c \neq 0$, entonces $ac \mid bc \Longrightarrow a \mid b$.
- b. Si $a \mid a' y b \mid b'$, entonces $ab \mid a'b'$.
- c. Si $a \mid c, b \mid c$ y (a,b) = 1, entonces $ab \mid c$. Muestra un contraejemplo de esta propiedad si (a,b) > 1.
- d. $(a+n,n) \mid n$ para toda $n \in \mathbb{Z}$.
- e. Si (a, b) = 1 entonces (a + b, a b) = 1 ó 2.
- f. (a+tb,b)=(a,b) para toda $t\in\mathbb{Z}$.
- g. Si $a' \mid a, b' \mid b$ y (a, b) = 1 entonces (a', b') = 1. En palabras esto es: si a y b son primos relativos, entonces sus divisores son primos relativos entre ellos.
- h. Si (a, b) = d entonces $\left(\frac{a}{d}, \frac{b}{d}\right) = 1$.
- i. Si (a, b) = 1 = (a, c), entonces (a, bc) = 1.

j. Sea a_0, a_1, a_2, \ldots la sucesión de Fermat $1, 1, 2, 3, 5, \ldots$ definida recursivamente como $a_{n+1} := a_n + a_{n-1}$ donde $a_0 = 1 = a_1$. Prueba que $(a_n, a_{n+1}) = 1$ para toda n.

Ejercicio 1.4. Un *mínimo común múltiplo* de dos enteros $a, b \in \mathbb{Z}$ se define como un entero m > 0 que cumple las siguientes dos propiedades:

- (\bullet) $a \mid m \ y \ b \mid m$.
- $(\bullet \bullet)$ Si $m' \in \mathbb{Z}$ es tal que $a \mid m' \neq b \mid m'$, entonces $m \mid m'$.

Fija $a, b, c \in \mathbb{Z}$. Prueba las siguientes propiedades del mínimo común múltiplo (mcm):

- a. Prueba que el mcm de a, b es único; gracias a esto lo denotamos por [a, b].
- b. [ab, ac] = a[b, c]
- c. $(a,b) = [a,b] \Longrightarrow a = b$
- d. ab = (a, b)[a, b]
- e. (a + b, [a, b]) = (a, b)

Ejercicio 1.5. Sean $a \in \mathbb{Z}$ y $d \in \mathbb{Z}^+$ fijos y considera el sistema de ecuaciones

$$(\star) \begin{cases} (x,y) = d \\ xy = a \end{cases}$$

Prueba que (\star) tiene una solución $(x_0, y_0) \in \mathbb{Z} \times \mathbb{Z}$ si y solamente si $d^2 \mid a$.

Ejercicio 1.6. Sea D_n el conjunto de divisores positivos de n, ie. $D_n = \{d > 0 : d \mid n\}$. Ahora sea $F: D_a \times D_b \to D_{ab}$ la función definida por F(d, d') = dd'. Prueba que si (a, b) = 1, entonces F es una función bien definida y que es biyectiva. Si (a, b) > 1, ¿deja de ser biyectiva la función? Explica tu respuesta.

Ejercicio 1.7. Sean $n, m, x, y \in \mathbb{Z}$ fijos tales que n = ax + by y m = cx + dy para algunas $a, b, c, d \in \mathbb{Z}$. Si $ad - bc = \pm 1$, prueba que (n, m) = (x, y).

Ejercicio 1.8. Fija tres enteros $a, b, c \in \mathbb{Z}$. Prueba que la ecuación ax + by = c tiene solución si y solamente si $(a, b) \mid c$. Además, si (x_0, y_0) es una solución ¿de qué forma son el resto de las soluciones?

Ejercicio 1.9. Prueba que todo entero mayor que 6 se puede expresar como suma de dos enteros primos relativos.

- (*)**Ejercicio 1.10.** Demuestra que para todo a > 1 y exponentes n, m > 0 se cumple que $(a^n 1, a^m 1) = a^{(n,m)} 1$.
- (*)Ejercicio 1.11. Los números armónicos no son enteros.
 - a. Sean $\frac{a}{b}, \frac{c}{d} \in \mathbb{Q}$ fracciones irreducibles, es decir (a,b)=1=(c,d). Prueba que

$$\frac{a}{b} + \frac{c}{d} \in \mathbb{Z} \implies b = \pm d.$$

b. Los número' armónicos H_n se definen como las sumas parciales de la serie armónica, es decir

$$H_n := \sum_{k=1}^n \frac{1}{k}.$$

Prueba que $H_n \notin \mathbb{Z}$ para toda n > 1.