Approximation Algorithms and Local Search for CVRP

CSCI29510: Foundations of Prescriptive Analytics

Hammad Izhar (carlisle)

May 13th, 2024

Brown University

Implementation Overview

- \sim 700 lines of Rust code
- TSP Approximation Algorithm to determine an initial feasible solution
- Naive Local Search Heuristics


```
pub fn chirstofides(&self) -> Vec<ClientId> {
   // Step 1: Compute the minimum spanning tree of the graph
   let mst = self.mst();
   let odd_clients = extract_odd_degree_vertices(&mst);
```

```
pub fn chirstofides(&self) -> Vec<ClientId> {
   // Step 1: Compute the minimum spanning tree of the graph
   let mst = self.mst();
   let odd_clients = extract_odd_degree_vertices(&mst);
   // Step 2: Find a minimum weight perfect matching of the odd degree vertices
   let matching = self.find_minimum_weight_matching(&odd_clients);
```

```
pub fn chirstofides(&self) -> Vec<ClientId> {
   // Step 1: Compute the minimum spanning tree of the graph
   let mst = self.mst();
   let odd_clients = extract_odd_degree_vertices(&mst);
   // Step 2: Find a minimum weight perfect matching of the odd degree vertices
   let matching = self.find_minimum_weight_matching(&odd_clients);
   // Step 3: Find an Eulerian tour of the MST-matching multigraph
   let eulerian_tour =
       VehicleRoutingGraph::find_eulerian_tour(&mst, &matching);
```

```
pub fn chirstofides(&self) -> Vec<ClientId> {
// Step 1: Compute the minimum spanning tree of the graph
let mst = self.mst():
let odd_clients = extract_odd_degree_vertices(&mst);
// Step 2: Find a minimum weight perfect matching of the odd degree vertices
let matching = self.find_minimum_weight_matching(&odd_clients);
// Step 3: Find an Eulerian tour of the MST-matching multigraph
let eulerian tour =
  VehicleRoutingGraph::find_eulerian_tour(&mst, &matching);
// Step 4: Convert the Eulerian tour into a Hamiltonian circuit
let circuit =
  VehicleRoutingGraph::convert eulerian tour to circuit(&eulerian tour);
circuit
```

• $\frac{3}{2}$ -Approximation Algorithm for TSP

```
pub fn chirstofides(&self) -> Vec<ClientId> {
// Step 1: Compute the minimum spanning tree of the graph
let mst = self.mst():
let odd_clients = extract_odd_degree_vertices(&mst);
// Step 2: Find a minimum weight perfect matching of the odd degree vertices
let matching = self.find_minimum_weight_matching(&odd_clients);
// Step 3: Find an Eulerian tour of the MST-matching multigraph
let eulerian tour =
  VehicleRoutingGraph::find_eulerian_tour(&mst, &matching);
// Step 4: Convert the Eulerian tour into a Hamiltonian circuit
let circuit =
  VehicleRoutingGraph::convert eulerian tour to circuit(&eulerian tour);
circuit
```

• Runs in $\mathcal{O}(mn^2)$ time, where n is the the number of vertices in the graph and m is the number of edges

```
pub fn chirstofides(&self) -> Vec<ClientId> {
// Step 1: Compute the minimum spanning tree of the graph
let mst = self.mst():
let odd_clients = extract_odd_degree_vertices(&mst);
// Step 2: Find a minimum weight perfect matching of the odd degree vertices
let matching = self.find_minimum_weight_matching(&odd_clients);
// Step 3: Find an Eulerian tour of the MST-matching multigraph
let eulerian_tour =
  VehicleRoutingGraph::find_eulerian_tour(&mst, &matching);
// Step 4: Convert the Eulerian tour into a Hamiltonian circuit
let circuit =
  VehicleRoutingGraph::convert eulerian tour to circuit(&eulerian tour);
circuit
```

- Runs in $\mathcal{O}(mn^2)$ time, where n is the number of vertices in the graph and m is the number of edges
- Limited by the runtime of determining a perfect matching

Minimum Spanning Tree Algorithm

For dense graphs

Minimum Spanning Tree Algorithm

For dense graphs, Prim's algorithm computes MST faster compared to Kruskal's

Minimum Spanning Tree Algorithm

For dense graphs, Prim's algorithm computes MST faster compared to Kruskal's

```
fn mst() {
 let mut included clients = HashSet::new([0]):
 let mut pg = PriorityQueue::new();
 let mut tree = Vec::new():
 // Push into pg all of the incident edges to the depot
 . . .
 while included_clients.len() < self.clients.len() {</pre>
     let (edge, _) = pq.pop().unwrap();
     // The fringe vertex we include by adding this edge
     let new client = ...
     . . .
     tree.push(edge);
     for client in O., self.clients.len() {
       // Add edges to vertices not yet visited in the tree
 tree
```

Claim: The number of vertices with odd degree in the minimum spanning tree is even

Claim: The number of vertices with odd degree in the minimum spanning tree is even

Proof.

By the Handshaking Lemma,

$$\sum_{v \in V(G)} \deg v = 2|E(G)|$$

Claim: The number of vertices with odd degree in the minimum spanning tree is even

Proof.

By the Handshaking Lemma,

$$\sum_{v \in V(G)} \deg v = 2|E(G)|$$

ullet For complete graphs, this can be done in $\mathcal{O}(mn^2)$ time using the Blossom Algorithm

Claim: The number of vertices with odd degree in the minimum spanning tree is even

Proof.

By the Handshaking Lemma,

$$\sum_{v \in V(G)} \deg v = 2|E(G)|$$

- \bullet For complete graphs, this can be done in $\mathcal{O}(mn^2)$ time using the Blossom Algorithm
 - At a high-level, find augmenting paths while contracting odd cycles (a.k.a blossoms) along the way

Claim: The number of vertices with odd degree in the minimum spanning tree is even

Proof.

By the Handshaking Lemma,

$$\sum_{v \in V(G)} \deg v = 2|E(G)|$$

- \bullet For complete graphs, this can be done in $\mathcal{O}(mn^2)$ time using the Blossom Algorithm
 - At a high-level, find augmenting paths while contracting odd cycles (a.k.a blossoms) along the way
- Can be viewed as a generalization of the Ford-Fulkerson Max-Flow algorithm to find maximum matchings in bipartite graphs

Eulerian Tour (Hierholzer's) Algorithm

```
pub fn find_eulerian_tour(mst: &[Edge], matching: &[Edge]) -> Vec<ClientId> {
   let mut vertex_to_edges = HashMap::new();
   // Associate each edge to its endpoints
   . . .
   let mut eulerian_tour = Vec::new();
   let mut stack = vec![mst[0].first];
   while !stack.is_empty() {
       let edges = vertex_to_edges.get_mut(stack.last()).unwrap();
       if edges.is_empty() {
           eulerian_tour.push(stack.pop().unwrap());
       } else {
           let edge = *edges.iter().next().unwrap();
           // The next vertex in the path
           let next_vertex = ...
           stack.push(next_vertex);
   eulerian tour
```

• The computed Eulerian tour most likely revisits vertices many times, however, our TSP (and VRP) tours should not!

- The computed Eulerian tour most likely revisits vertices many times, however, our TSP (and VRP) tours should not!
- Since our graph is complete, we can move from any one vertex to any other vertex

- The computed Eulerian tour most likely revisits vertices many times, however, our TSP (and VRP) tours should not!
- Since our graph is complete, we can move from any one vertex to any other vertex
- Since we are working in Euclidean space, by the triangle inequality shortcutting our Eulerian tour isn't increasing the length of the tour!

- The computed Eulerian tour most likely revisits vertices many times, however, our TSP (and VRP) tours should not!
- Since our graph is complete, we can move from any one vertex to any other vertex
- Since we are working in Euclidean space, by the triangle inequality shortcutting our Eulerian tour isn't increasing the length of the tour!
- The TSP tour isn't a valid routing plan for our vehicles

- The computed Eulerian tour most likely revisits vertices many times, however, our TSP (and VRP) tours should not!
- Since our graph is complete, we can move from any one vertex to any other vertex
- Since we are working in Euclidean space, by the triangle inequality shortcutting our Eulerian tour isn't increasing the length of the tour!
- The TSP tour isn't a valid routing plan for our vehicles
- The instances are too constrained to use a naive partitioning approach

- The computed Eulerian tour most likely revisits vertices many times, however, our TSP (and VRP) tours should not!
- Since our graph is complete, we can move from any one vertex to any other vertex
- Since we are working in Euclidean space, by the triangle inequality shortcutting our Eulerian tour isn't increasing the length of the tour!
- The TSP tour isn't a valid routing plan for our vehicles
- The instances are too constrained to use a naive partitioning approach
- We pack the clients into k "bins" where k is the number of vehicles we have access to using a first-fit strategy

- The computed Eulerian tour most likely revisits vertices many times, however, our TSP (and VRP) tours should not!
- Since our graph is complete, we can move from any one vertex to any other vertex
- Since we are working in Euclidean space, by the triangle inequality shortcutting our Eulerian tour isn't increasing the length of the tour!
- The TSP tour isn't a valid routing plan for our vehicles
- The instances are too constrained to use a naive partitioning approach
- We pack the clients into k "bins" where k is the number of vehicles we have access to using a first-fit strategy
- Works for all but a couple of instances! For these remaining couple, a random solution is generated

• Inter-Route Swap Heuristic picks two random clients in two different and swaps them

- Inter-Route Swap Heuristic picks two random clients in two different and swaps them
- The vertices are placed in the position that minimizes the cost of the new route

- Inter-Route Swap Heuristic picks two random clients in two different and swaps them
- The vertices are placed in the position that minimizes the cost of the new route
- Only neighboring solutions with strictly better costs are ever accepted

- Inter-Route Swap Heuristic picks two random clients in two different and swaps them
- The vertices are placed in the position that minimizes the cost of the new route
- Only neighboring solutions with strictly better costs are ever accepted
- Runs for all remaining available time