Universidade Federal de Santa Catarina

Programa de Pós-Graduação em Engenharia Elétrica

Modelagem Dinâmica de Conversores Estáticos

Resolução da Tarefa 4

Data: 11/06/2022

Discente: Eduardo Eller Behr

Tarefa 4

Para o conversor boost quadrático ilustrado abaixo, utilizando a metodologia por espaço de estados, pede-se:

I) A função de transferência que relaciona a tensão de saída com a razão cíclica;

II) A função de transferência que relaciona a tensão de saída com a razão cíclica considerando perdas nos indutores, capacitores, diodos e interruptores.

Valide os modelos por simulações.

 $[0 \ 0 \ 0 \ 1]$


```
In [ ]: from matplotlib import pyplot as plt
import control as ctl
import numpy as np
import sympy as sp
```

I) Função de Transferência $\frac{v_o(s)}{d(s)}$ (sem perdas)

```
In []: iL1, iL2, vC1, vC2 = sp.symbols("i_{L1} i_{L2} v_{C1} v_{C2}")
    d, vi, s = sp.symbols("d v_i s")
    R, L1, L2, C1, C2 = sp.symbols("R L_1 L_2 C_1 C_2")

U = sp.Matrix([
        [vi]
])

# Considerando que vo = 1*vC2
C = sp.Matrix([[0, 0, 0, 1]])

# display('X=', X);
display('U=', U); display('C=', C)

'U='
[vi]
'C='
```

a) 1ª etapa de operação


```
In [ ]: A1 = sp.Matrix([
                                                           0,
1/L2,
                                       Θ,
                                                                               0
                    [0,
                                       Θ,
                                                                                                  ],
                    [0,
                                       -1/C1,
                    [0,
                                                 Θ,
                                                                     0
                                                                                                  ],
                                                                               -1/(R*C2)
                                                                                                  ],
                    [0,
                                       Θ,
                                                           Θ,
                L1
                              L2
                                                                     C2
                                                 C1
          ])
          B1 = sp.Matrix([
                    [1/L1 ], # iL1
                                               # iL2
                                       ],
                    [0
                                       ],
                                               # vC1
                    [0
                                               # vC2
          ])
          display('A1=', A1)
display('B1=', B1)
```

$$\begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{L_2} & 0 \\ 0 & -\frac{1}{C_1} & 0 & 0 \\ 0 & 0 & 0 & -\frac{1}{C_2 R} \end{bmatrix}$$

 $\begin{bmatrix} \frac{1}{L_1} \\ 0 \end{bmatrix}$

 $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$

b) 2ª Etapa de operação


```
In []: A2 = sp.Matrix([
                                             -1/L1,
               [0,
                       0,
                                                    -1/L2
               [0,
                                            1/L2,
                                                                   ], # iL2
                                                                   ], # vC1
               [1/C1, -1/C1, 0,
                              1/C2,
                                                    -1/(R*C2)
                                                                   1, # vC2
               [0,
                      L2
       #
                                     C1
       ])
       B2 = sp.Matrix([
                            # iL1
               [1/L1 ],
               [ 0
                             ],
                                     # iL2
               [0
                             ],
                                     # vC1
               [0
                                     # vC2
       ])
       display('A2=', A2)
       display('B2=', B2)
```

$$\begin{bmatrix} 0 & 0 & -\frac{1}{L_1} & 0 \\ 0 & 0 & \frac{1}{L_2} & -\frac{1}{L_2} \\ \frac{1}{C_1} & -\frac{1}{C_1} & 0 & 0 \\ 0 & \frac{1}{C_2} & 0 & -\frac{1}{C_2R} \end{bmatrix}$$

$$\begin{bmatrix} \frac{1}{L_1} \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

c) Média das duas etapas

O ponto de operação em regime permanente é dado por:

$$X = -A^{-1}BU$$

$$Y = (-CA^{-1}B + E)U$$

A função de transferencia é obtida com:

$$\boldsymbol{G}(s) = \frac{\hat{\boldsymbol{y}}(s)}{\hat{d}(s)} = \boldsymbol{C}(s\boldsymbol{I} - \boldsymbol{A})^{-1} \Big[(\boldsymbol{A}_{\!\scriptscriptstyle 1} - \boldsymbol{A}_{\!\scriptscriptstyle 2}) \boldsymbol{X} + (\boldsymbol{B}_{\!\scriptscriptstyle 1} - \boldsymbol{B}_{\!\scriptscriptstyle 2}) \boldsymbol{U} \Big]$$

```
In []: A = d*A1 + (1-d)*A2

B = d*B1 + (1-d)*B2

X = -A**-1*B*U

G = C*((s*sp.eye(4)-A)**-1)*((A1-A2)*X + (B1-B2)*U)
```

In []: display('Gvd=', G[0].factor(s))

```
 \begin{array}{l} \text{'Gvd='} \\ v_i \left( -d^7 + 7d^6 - 21d^5 + 35d^4 - 35d^3 + 21d^2 - 7d + 1 \right) \left( C_1L_1L_2s^3 - 2Rd^4 + 8Rd^3 - 4s^2 \left( -C_1L_1Rd^2 + 2C_1L_1Rd - C_1L_1R \right) + s \left( 2L_1 + L_2d^2 - 2L_2d + L_2 \right) \right) \\ \hline \left( 1-d \right) \left( d^2 - 2d + 1 \right) \left( d^3 - 3d^2 + 3d - 1 \right) \left( d^4 - 4d^3 + 6d^2 - 4d + 1 \right) \left( C_1C_2L_1L_2Rs^2 - 4Rd^3 + 6Rd^2 - 4Rd + R \right) \\ + s^2 \left( C_1L_1Rd^2 - 2C_1L_1Rd + C_1L_1R + C_2L_1R + C_2L_2Rd^2 - 2C_2L_2Rd + C_2L_2R \right) \\ + s \left( L_1 + L_2d^2 - 2L_2d + L_2 \right) \end{array}
```

Substituindo os valores numéricos

```
In [ ]: params = {
                 L1: 1000e-6,
                 L2: 100e-6,
                 C1: 2e-6,
                 C2: 20e-6,
                  R: 50,
                  d: 0.55,
                  vi: 48
            Gvd = G.subs(params)
            Gvd = Gvd[0].factor(s).simplify()
            display('Gvd=',Gvd.evalf(3)); display('X=', X.subs(params).evalf(6))
            'Gvd='
            \frac{-5.14 \cdot 10^{-11} s^3 + 5.2 \cdot 10^{-6} s^2 - 0.519 s + 1.05 \cdot 10^3}{9.76 \cdot 10^{-17} s^4 + 9.75 \cdot 10^{-14} s^3 + 5.07 \cdot 10^{-7} s^2 + 0.000498 s + 1.0}
            ' X= '
              23.4111
               10.535
              106.667
              237.037
```

Convertendo para objeto TransferFunction

```
In [ ]: def sympy_rational_to_control_tf(rational):
    numerator, denominator = rational.as_numer_denom()
    num, den = sp.Poly(numerator).all_coeffs(), sp.Poly(denominator).all_coeffs()
    for i, _n in enumerate(num):
        num[i] = float(num[i])

    for i, _d in enumerate(den):
        den[i] = float(den[i])

    return ctl.TransferFunction(num, den)

Gvd_tf = sympy_rational_to_control_tf(Gvd)
Gvd_tf
```

$$\frac{-5.138\times 10^{-11}s^3 + 5.202\times 10^{-6}s^2 - 0.519s + 1053}{9.755\times 10^{-17}s^4 + 9.755\times 10^{-14}s^3 + 5.075\times 10^{-7}s^2 + 0.0004976s + 1}$$

II) Função de Transferência $\frac{v_o(s)}{d(s)}$ (com perdas)

a) 1ª Etapa de operação


```
In [ ]: Alp = sp.Matrix([
                 [-(RL1+Ron)/L1, 0,
                                                                     Θ,
                 [-Ron/L2,
                                           -(RC1+RL2+Ron)/L2,
                                                                     1/L2,
                                                                                      0
                                                                              Θ,
                 [0,
                                                    -1/C1,
                                                                                      Θ,
                  [0,
              L1
                                           L2
                                                                              C1
         ])
         # entradas: vi e vd
         B1p = sp.Matrix([
                 [1/L1, -1/L1
                                   ],
                                           # iL1
                  [0,
                                   0
                                                            # iL2
                                                    ],
                                                    Ì,
                                   0
                                                            # vC1
                 [0,
                                   0
                 [0,
                                                             # vC2
                  νi
         ])
         display('Alp=', Alp)
         display('Blp=', Blp)
```

^{&#}x27;A1p='

$$egin{bmatrix} rac{-R_{L1}-R_{on}}{L_1} & 0 & 0 & 0 \ -rac{R_{on}}{L_2} & rac{-R_{C1}-R_{L2}-R_{on}}{L_2} & rac{1}{L_2} & 0 \ 0 & -rac{1}{C_1} & 0 & 0 \ 0 & 0 & -rac{1}{C_2(R+R_{C2})} \end{bmatrix}$$

$$\left[egin{array}{cccc} rac{1}{L_1} & -rac{1}{L_1} \ 0 & 0 \ 0 & 0 \ 0 & 0 \end{array}
ight]$$

b) 2ª Etapa de operação


```
In [ ]: # vo=(vC2+RC2*iL2)/(1-RC2/R)
         \# iC2 = (iL2*(R - 2*RC2) - vC2)/(R - RC2)
         # dvC2/dt = (iL2*(R - 2*RC2)/C2 - vC2/C2)/(R - RC2)
# dvC2/dt = iL2*(R - 2*RC2)/(C2(R - RC2)) - vC2)/(C2(R - RC2))
         A2p = sp.Matrix([
                                             RC1/L1,
                  [-(RL1+RC1)/L1,
                                                      -(RC1+RL2)/L2,
                  [RC1/L2,
                  [1/C1,
                                                      -1/C1,
                                                               (R - 2*RC2)/(C2*(R - RC2)),
                  [0,
               L1
                                                      L2
         ])
         B2p = sp.Matrix([
                  [1/L1, -1/L1 ], # iL1
                                    -1/L2 ],
                                                      # iL2
                  [0,
                                    0
                                                      ],
                                                               # vC1
                  [0,
                  [0,
                                                               # vC2
         ])
         display('A2p=', A2p)
         display('B2p=', B2p)
```

$$egin{bmatrix} rac{-R_{C1}-R_{L1}}{L_1} & rac{R_{C1}}{L_1} & -rac{1}{L_1} & 0 \ rac{R_{C1}}{L_2} & rac{-R_{C1}-R_{L2}}{L_2} & rac{1}{L_2} & -rac{1}{L_2} \ rac{1}{C_1} & -rac{1}{C_1} & 0 & 0 \ 0 & rac{R-2R_{C2}}{C_2(R-R_{C2})} & 0 & -rac{1}{C_2(R-R_{C2})} \ \end{pmatrix}$$

```
\begin{bmatrix} \frac{1}{L_1} & -\frac{1}{L_1} \\ 0 & -\frac{1}{L_2} \\ 0 & 0 \\ 0 & 0 \end{bmatrix}
```

Definindo valores das variáveis de perdas

```
In [ ]: params.update({
        RL1: 1,
        RL2: 0.1,
        RC1: 0.01,
        RC2: 0.1,
        Vd: 1,
        Ron: 0.05
});
```

c) Média das duas etapas

```
In []: Ap = (d*A1p + (1-d)*A2p).subs(params)
                                                                    Bp = (d*B1p + (1-d)*B2p).subs(params)
                                                                    Xp = -Ap^{**}-1*Bp*Up.subs(params)
                                                                    display('Xp=', Xp.evalf(6))
                                                                    # 0bs: vo=(vC2 + RC2*iL2)/(1-RC2/R)
                                                                    Cp = sp.Matrix([
                                                                                                                                     RC2/(1-RC2/R), 0, 1/(1-RC2/R)]
                                                                                                    [0,
                                                                    ]).subs(params)
                                                                    Gvdp = (Cp*((s*sp.eye(4)-Ap)**-1)*((A1p-A2p).subs(params)*Xp + (B1p-B2p).subs(params)*Xp + (B1p-B2p).subs(params
                                                                    Gvdp = Gvdp.factor(s).simplify()
                                                                    display('Gvdp=', Gvdp.evalf(3))
                                                                    Gvdp tf = sympy rational to control tf(Gvdp)
                                                                      '=qX'
                                                                             15.0244
                                                                                6.76097
                                                                                70.0562
                                                                         \lfloor 151.847 \rfloor
                                                                      'Gvdp='
                                                                      -7.65 \cdot 10^{-28} s^7 + 1.06 \cdot 10^{-22} s^6 - 1.75 \cdot 10^{-17} s^5 + 5.22 \cdot 10^{-13} s^4 - 7.1 \cdot 10^{-8} s^3 - 7.0 \cdot 10^{-10} s^4 + 1.06 \cdot 10^{-10} s^4 - 
                                                                      +221.0
                                                                                                                                                                                                           (6.42 \cdot 10^{-17} s^4 + 2.19 \cdot 10^{-13} s^3 + 3.34 \cdot 10^{-7} s^2 + 0.000677 s + 1.0)
```

Comparação entre modelos com e sem perdas

```
In []: plt.figure(dpi=150, figsize=(6,6))
    ctl.bode(Gvd_tf);
    ctl.bode(Gvdp_tf);
    plt.legend(["Sem perdas", "Com perdas"]);
```



```
In []: plt.figure(dpi=150)

t=np.linspace(0,10e-3, 1000)

Vi = 48
D = 0.55

_, x = ctl.step_response(Gvd_tf,T=t, X0=0);
_, xp = ctl.step_response(Gvdp_tf,T=t, X0=0);
plt.plot(t,x/100); plt.grid(True);
plt.plot(t,xp/100); plt.grid(True);
plt.title("Degrau de 0.55 para 0.56 na razão cíclica");
plt.legend(["Sem perdas", "Com perdas"]);
```

/home/eduardo/.local/lib/python3.10/site-packages/scipy/sparse/linalg/_matf
uncs.py:708: LinAlgWarning: Ill-conditioned matrix (rcond=6.09441e-21): res
ult may not be accurate.
 return solve(Q, P)
/home/eduardo/.local/lib/python3.10/site-packages/scipy/sparse/linalg/_matf
uncs.py:708: LinAlgWarning: Ill-conditioned matrix (rcond=1.78027e-49): res
ult may not be accurate.
 return solve(Q, P)

Degrau de 0.55 para 0.56 na razão cíclica

III) Simulações para validação

Para fins de comparação, foram simulados os seguintes modelos em Ngspice com captura de esquemático e geração de gráficos do KiCad:

- 1. Circuito comutado (sem perdas)
- 2. Circuito comutado (com perdas)

Abaixo está ilustrado o modelo comutado:

A figura abaixo ilustra o resultado do degrau de d=0.55 para d=0.56 aos 15ms da análise transiente para o modelo sem perdas.

Ao considerar as perdas, a resposta ao degrau pode ser visualizada abaixo

Conclusão

A simulação demonstra que a mesma variação da tensão de saída v_o a partir do ponto de operação é obtida pelas funções de transferências encontradas:

- Para o caso sem perdas, o ganho estático de d para v_o é em torno de 1000 (aumento de 0.01 da razão cíclica causa um aumento de 10V na saída)
- Já para o caso com perdas, o ganho estático ficou próximo de 200 (aumento de 0.01 da razão cíclica causa um aumento de 2V na saída)