BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE-PILANI - HYDERABAD CAMPUS FIRST SEMESTER 2019 - 2020 (COURSE HANDOUT PART II)

Date: 17/07/2019

In addition to part-I (general handout for all courses in the time-table), this handout provides the specific details regarding the course.

Course No.: ME G535

Course Title: Advanced Engineering Mathematics

Instructors: Pardha Saradhi Gurugubelli Venkata, K. Ram chandra murthy

Instructor-in-charge: Pardha Saradhi Gurugubelli Venkata

- **1. Course Description:** Vectors, Matrices & Vector Calculus, Ordinary Differential Equations, Laplace Transform, Numerical Methods, Systems of Differential Equations, Partial Differential Equations, Probability & Statistics.
- **2. Scope and Objective:** To equip the students of mechanical engineering with advanced mathematical tools and techniques. Students will be able to: Derive Mathematical models of physical systems, Solve differential equations using appropriate techniques, Apply MATLAB/ Appropriate computer tools to solve Engineering problems, Analyze variety of experimental and observational data by statistical methods

3. Text Book(s):

- T1 Advanced Engineering Mathematics, 4th Edition, Dennis G. Zill and Warren S. Wright, Jones & Bartlett Learning, 2011.
- T2 Advanced Engineering Mathematics, 9th Edition, Erwin Kreyszig, Willey-India Pvt. Ltd., 2011

Reference Book(s) & other resources:

R1 Advanced Engineering Mathematics, 2nd Edition, Michael Greenberg, 2002

4. Course Plan:

Lecture Nos.	Learning Objectives	Topics to be covered Data Representation. Average. Spread, Experiments, Outcomes				
1-1	Data Analysis					
2-5	Probability Theory	Events, Probability, Permutations and Combinations, Random Variables. Probability Distributions Mean and Variance of a Distribution, Binomial, Poisson, and Hypergeometric Distributions, Normal Distribution				
6-10	Mathematical Statistics	Central Limit Theorem, Random Sampling, Point Estimation of Parameters, Confidence Intervals, Testing Hypotheses. Decisions, Quality Control, Acceptance Sampling, Goodness of Fit, Chi SquareTest, Nonparametric Tests, Regression. Fitting Straight Lines. Correlation: Use of MATLAB for exemplification				
11-13	Vectors, Matrices	Vectors in 2d, 3d, dot product, cross product, lines and planes in 3-space, Matrix Algebra, Systems of linear algebraic equations, Rank				
14-16	Matrices , Vector Calculus	Determinants, Inverse of a matrix, Cramer's rule, Eigen value problem, vector function, motion on a curve, curvature and components of acceleration, Partial derivatives, directional derivatives, tangent planes, normal lines, curl and divergence				
17-18	Introduction to Differential Equations	Modelling using Ordinary Differential Equations				
19-21	First Order Differential Equations: Analytical Methods	Solution curves, separable equations, linear equations, exact equations, solution by substitutions, linear and nonlinear models, modelling with system of first order differential equations.				
22-24	Higher Order Differential Equations: Analytical Methods	Initial and boundary value problems, reduction of order, homogeneous linear equations with constant coefficients, undetermined coefficients variation of parameters, Cauchy-Euler equations, Non-linear equations, linear models-IVPs, BVPs, Nonlinear models, systems of linear equations				

Lecture Nos.	Learning Objectives	Topics to be covered				
25-26	Integral Transforms for the solution of ODEs	Definition of Laplace Transforms and Laplace Transforms of some standard functions, Translation Theorems				
27-28	Integral Transforms	Additional Operational properties, systems of linear differential equations				
29-30	Numerical methods	Euler method, Runge-Kutta methods: Solution using MATLAB / Excel				
31-32	Systems of Differential Equations	System of linear differential Equations, theory of linear systems, homogeneous systems, solution by diagonalization, Non homogeneous linear systems				
33-35	Orthogonal Functions and Fourier Series	Orthogonal Functions, Fourier Series, Fourier Cosine and sine series. Sturm-Liouville Problem				
36-40	Boundary Value problems & Integral Transform Method	Separable PDEs, classical PDEs, BVPs, Heat Equation, Wave equation, Laplace Equation, Non Homogeneous BVP, Orthogonal Series Expansion, Error function, Applications of the Laplace transform				

5. Evaluation Scheme:

Evaluation Component	Duration	Weightage (%)	Date & Time	Nature of Component
Mid-semester exam	90 min	20	28/9, 11:00 – 12:30 pm	СВ
Tutorial		15	To be announced in the class	ОВ
Lab		15	Continuous	ОВ
Project + Seminar		15	To be announced in the class	ОВ
Comprehensive Exam	3 hours	35	02/12/2019 AN	СВ

- **6. Chamber Consultation Hour**: To be announced in the class room.
- **7. Notices**: All notices concerning this course shall be posted at **CMS**, the institute's web based course management system.
- **8. Make-up Policy**: Make-up for tests needs prior permission and strictly meant only for serious hospitalization cases with proper documents.
- **9. Academic Honesty and Integrity Policy:** Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable.

Instructor-in-charge ME G535