# Лабораторная работа 1.2.5 Исследование вынужденной регулярной прецессии гироскопа

Михаил Колтаков

5 октября 2020 г.

#### Цель работы

Исследовать вынужденную прецессию гироскопа; установить зависимость скорости вынужденной прецессии от величины момента сил, действующих на ось гироскопа; определить скорость вращения ротора гироскопа и сравнить её со скоростью, рассчитанной по скорости прецессии.

### Оборудование

Гироскоп в карданном подвесе, секундомер, набор грузов, отдельный ротор гироскопа, цилиндр известной массы и диаметра, крутильный маятник, штангенциркуль, линейка.

#### Теория к работе

Уравнения движения твёрдого тела можно записать в виде

$$\frac{d\vec{P}}{dt} = \vec{F} \tag{1}$$

$$\frac{d\vec{L}}{dt} = \vec{M} \tag{2}$$

Здесь (1) выражает закон движения центра масс тела, а (2) – уравнение моментов. Если сила  $\vec{F}$  не зависит от угловой скорости, а момент сил  $\vec{M}$  – от скорости поступательного движения, то уравнения (1) и (2) можно рассматривать независимо. В нашем случае так и происходит, поэтому для описания движения гироскопа потребуется только уравнение (2). Момент импульса вращающегося твёрдого тела можно выразить по формуле

$$\vec{L} = \vec{i}I_x\omega_x + \vec{j}I_y\omega_y + \vec{k}I_z\omega_z,$$

где  $I_x, I_y, I_z$  – главные моменты инерции, а  $\omega_x, \omega_y, \omega_z$  – компоненты вектора угловой скорости  $\vec{\omega}$ . Если произведение момента по какой-то оси на компоненту угловой скорости по этой же оси много больше, чем другие такие произведения, то такое вращающееся тело называется гироскопом.

Приращение момента импульса можно выразить по формуле

$$\Delta \vec{L} = \int \vec{M} dt$$

Если момент внешних сил прикладывается в течение короткого промежутка времени, то из интеграла следует, что  $|\Delta \vec{L}| \ll |\vec{L}|$ . С этим связана устойчивость гироскопа после приведения его в быстрое вращение.

Если к оси гироскопа прикладывать небольшой момент силы, то он будет вращаться с угловой скоростью  $\Omega$ , и при этом  $L_{\Omega} \ll L_{\omega_0}$ , где  $\omega_0$  – угловая скорость вращения гироскопа в основном направлении.

Из этого можно вывести формулу

$$\frac{d\vec{L}}{dt} = \vec{M} = \vec{\Omega} \times \vec{L}$$

Из этого уравнения можно вывести уравнение для угловой скорости прецессии  $\Omega$  с учётом массы подвешенных грузов и расстояния до них.

$$\Omega = \frac{mgl}{I_z \omega_0}$$

m - масса груза, l - расстояние от центра карданного подвеса до точки подвеса груза,  $I_z$  - момент инерции гироскопа относительно основной оси вращения,  $\omega_0$  - угловая скорость вращения гироскопа относительно основной оси вращения(скорость вращения вала мотора)

Момент инерции  $I_z$  можно рассчитать с помощью крутильного маятника, подвесив к нему сначала цилиндр известной массы и диаметра, т.е. момент которого мы знаем, а потом гироскоп. Тогда

$$I_z = I_{\pi} \frac{T_z^2}{T_{\pi}^2}$$

 $T_{\rm ц}$  — период крутильных колебаний цилиндра, а  $T_z$  — период крутильных колебаний гироскопа

#### Ход работы

Проведём измерения для грузов 5 различных масс, проведя по 5 измерений для каждой массы и занесём результаты измерений в таблицу.

| Aniceesia peejvistatsi nemepeimin si taovinaji. |              |                 |                                                     |                                                                |              |                                                        |                                                        |  |  |
|-------------------------------------------------|--------------|-----------------|-----------------------------------------------------|----------------------------------------------------------------|--------------|--------------------------------------------------------|--------------------------------------------------------|--|--|
| $m, \Gamma$                                     | <i>T</i> , c | Кол-во оборотов | $\Omega \cdot 10^2$ , $\frac{\text{pag}}{\text{c}}$ | $\overline{\Omega} \cdot 10^2$ , $\frac{\text{pag}}{\text{c}}$ | Верт. ∠, рад | $\Omega_{\mu} \cdot 10^3  \frac{\text{pag}}{\text{c}}$ | $\Omega_{\mu} \cdot 10^3, \frac{\text{рад}}{\text{c}}$ |  |  |
| 142                                             | 335          | 4               | 7,6                                                 |                                                                | 0,46         | 1,4                                                    |                                                        |  |  |
|                                                 | 329          | 4               | 7,4                                                 |                                                                | 0,44         | 1,4                                                    |                                                        |  |  |
|                                                 | 333          | 4               | 7,6                                                 | 7,6                                                            | 0,46         | 1,4                                                    | 1,4                                                    |  |  |
|                                                 | 331          | 4               | 7,5                                                 |                                                                | 0,42         | 1,3                                                    |                                                        |  |  |
|                                                 | 322          | 4               | 7,8                                                 |                                                                | 0,43         | 1,3                                                    |                                                        |  |  |
| 176                                             | 272          | 4               | 9,3                                                 |                                                                | 0,45         | 1,6                                                    |                                                        |  |  |
|                                                 | 269          | 4               | 9,2                                                 |                                                                | 0,45         | 1,7                                                    |                                                        |  |  |
|                                                 | 271          | 4               | 9,3                                                 | 9,3                                                            | 0,45         | 1,6                                                    | 1,6                                                    |  |  |
|                                                 | 274          | 4               | 9,4                                                 |                                                                | 0,46         | 1,6                                                    |                                                        |  |  |
|                                                 | 272          | 4               | 9,3                                                 |                                                                | 0,46         | 1,7                                                    |                                                        |  |  |
| 220                                             | 273          | 5               | 11,6                                                |                                                                | 0,57         | 2,0                                                    |                                                        |  |  |
|                                                 | 271          | 5               | 11,6                                                |                                                                | 0,58         | 2,1                                                    |                                                        |  |  |
|                                                 | 269          | 5               | 11,5                                                | 11,6                                                           | 0,58         | 2,0                                                    | 2,0                                                    |  |  |
|                                                 | 275          | 5               | 11,7                                                |                                                                | 0,57         | 2,0                                                    |                                                        |  |  |
|                                                 | 270          | 5               | 11,5                                                |                                                                | 0,57         | 2,0                                                    |                                                        |  |  |
| 273                                             | 222          | 5               | 14,4                                                |                                                                | 0,57         | 2,5                                                    |                                                        |  |  |
|                                                 | 219          | 5               | 14,3                                                |                                                                | 0,58         | 2,6                                                    |                                                        |  |  |
|                                                 | 220          | 5               | 14,3                                                | 14,3                                                           | 0,58         | 2,6                                                    | 2,6                                                    |  |  |
|                                                 | 217          | 5               | 14,2                                                |                                                                | 0,57         | 2,5                                                    |                                                        |  |  |
|                                                 | 224          | 5               | 14,4                                                |                                                                | 0,58         | 2,6                                                    |                                                        |  |  |
| 342                                             | 213          | 6               | 17,7                                                |                                                                | 0,70         | 3,3                                                    |                                                        |  |  |
|                                                 | 210          | 6               | 17,5                                                |                                                                | 0,68         | 3,2                                                    |                                                        |  |  |
|                                                 | 214          | 6               | 17,8                                                | 17,7                                                           | 0,70         | 3,3                                                    | 3,3                                                    |  |  |
|                                                 | 212          | 6               | 17,6                                                |                                                                | 0,69         | 3,3                                                    |                                                        |  |  |
|                                                 | 216          | 6               | 17,9                                                |                                                                | 0,70         | 3,3                                                    |                                                        |  |  |

Для каждого грузика можно рассчитать момент, который он создаёт по формуле  $\vec{M}=ml\vec{g}$ 

Оценим погрешность измерения  $\Omega$ : Массы грузов и длина рычага измерены очень точно, поэтому их погрешностью можно пренебречь, значит, моменты сил измерены без погрешностей. Погрешность измерения времени с помощью секундомера - 0.2с. Можем рассчитать угловую скорость вращения вала мотора в гироскопе по формуле

$$\omega_0 = \frac{mgl}{I_z \Omega} \qquad \omega_0 \sim \frac{M}{\Omega}$$

Выходит, искомую угловую скорость можно рассчитать как коэффициент угла наклона графика  $M(\Omega)$  (график в конце работы, кресты погрешностей настолько малы, что ложатся внутри точек)

Рассчитаем момент инерции цилиндра из его массы  $m_{\rm u}=1617, 8\pm0, 2$ г и диаметра  $d_{\rm u}=78, 1\pm0, 1$ мм.

$$I_{\rm u} = rac{m_{
m u} d_{
m u}^2}{8} pprox 1, 2 \cdot 10^{-3} \, {
m kg \cdot m}^2$$

Погрешности измерения  $T_{\mathrm{u}}$  и  $T_{0}=0,2\mathrm{c}$ 

| $t_{\rm ц}, { m c}$ | Кол-во периодов | $t_0, c$ | Кол-во периодов |
|---------------------|-----------------|----------|-----------------|
| 46,5                | 10              | 17,9     | 5               |
| 44,7                | 10              | 17,5     | 5               |
| 44,6                | 10              | 17,6     | 5               |
| 45,1                | 10              | 18,2     | 5               |
| 45,2                | 10              | 17,5     | 5               |

Среднее значение  $T_{\rm u}=4,5$  с, а среднее значение  $T_0=3,5$  с Тогда можно определить

$$I_0 = I_{\pi} \frac{T_0^2}{T_{\pi}^2} = \frac{3,5^2}{4,5^2} \cdot 1.2 \cdot 10^{-3} = 0,73 \cdot 10^{-3} \text{ kg} \cdot \text{m}^2$$

Погрешность при измерении  $I_0$  равна  $0,02\cdot 10^{-3}$  кг $\cdot$ м². Относительная погрешность при измерении угловой скорости прецессии  $\Omega$  имеет порядок  $10^{-3}$ , поэтому ей можно пренебречь. Рассчитаем частоту вращения гироскопа по формуле, указанной выше

| Масса груза, г        | 142  | 176  | 220  | 273  | 342  |
|-----------------------|------|------|------|------|------|
| $\omega_0$ , рад/ $c$ | 3065 | 3098 | 3086 | 3102 | 3123 |

Усреднив, получим  $\overline{\omega_0} = 3095 \pm 28$  рад/с, тогда частота будет равна  $\nu_0 = 492, 6 \pm 4, 5$  Гц. Оценим действие силы трения по скорости опускания рычага

$$M_{ ext{Tp}} = F_{ ext{Tp}}l = rac{m\Omega_{\mu}l^2}{t}$$
 
$$L_{ ext{Tp}} = M_{ ext{Tp}}t$$

При вычислении точных значений моментов силы трения получаются величины порядка  $10^{-8}$ , а при вычислении моментов импульса силы трения получаются величины порядка  $10^{-6}$ . И то, и другое значения много меньше других, поэтому ими можно пренебречь в расчётах.

Другим методом измерения скорости вращения вала мотора является получение стабильного эллипса на экране осцилографа, подключив его к второй обмотке статора гироскопа и к генератору синусоидальных сигналов. Этим методом мы получаем значение  $\nu_{\rm осц}=490,3\Gamma$ ц, погрешностью измерения которого можно пренебречь. Это значение лежит в пределах 0,5% от определённого с помощью подвешивания грузов.

## Вывод

При измерении угловой скорости двумя разными методами результаты совпали с точностью 0,5%. Теория согласуется с практикой, небольшие расхождения можно объяснить трением в осях карданного подвеса, хотя и его момент много меньше моментов других сил. Гипотеза о том, что  $L_{\Omega} \ll L_{\omega_0}$  подтвердилась. В итоге угловую скорость мотора гироскопа можно считать равной  $3095 \pm 28$ рад/с.

