1. Дефиниции за краен ориентиран (мулти)граф и краен неориентиран (мулти)граф.

- краен неориентиран граф

Определение 1: Граф, върхове и ребра

 $\Gamma pa\phi$ е наредена двойка G = (V, E), където V е непразно множество, чиито елементи се наричат $\theta \sigma pxo \theta e$, E е множество, чиито елементи се наричат $\rho e \delta pa$, като

$$E \subseteq \{X \subseteq V : |X| = 2\}$$

Конвенция 1

Когато става дума за графи, буквата n означава броя на върховете, освен ако не е дефинирана иначе, и буквата m означава броя на ребрата, освен ако не е дефинирана иначе. Типичен запис е $V = \{v_1, v_2, \dots, v_n\}$ и $E = \{e_1, e_2, \dots, e_m\}$.

Конвенция 2

Друга полезна конвенция е, ако е дадено името на графа, да кажем G, но имената на множеството от върховете и на множеството от ребрата са неизвестни, да ги означаваме съответно с "V(G)" и "E(G)".

Определение 2: Празен и тривиален граф.

Нека G = (V, E) е граф. Ако $E = \emptyset$, казваме, че G е празен граф. Ако $E \neq \emptyset$, G е непразен. Ако |V| = 1, казваме, че G е тривиален граф.

- краен неориентиран мултиграф

Определение 13: Мултиграф

Мултиграф е наредена тройка $G=(V,E,f_G)$, където V е непразно множество, чиито елементи се наричат *върхове*, E е множество, чиито елементи се наричат *ребра*, $V \cap E = \emptyset$ и

$$f_G: E \rightarrow \{X \subseteq V: |X| = 2\}$$

е свързващата функция.

- краен ориентиран граф

Определение 79: Ориентиран граф

Oриентиран граф е наредена двойка G = (V, E), където V е непразно множество, чиито елементи се наричат върхове, E е множество, чиито елементи се наричат pebpa, като

$$E \subseteq (V \times V) \backslash \{(u, u) \mid u \in V\}$$

Конвенция 10

Ако кажем само "граф", разбираме неориентиран граф. За да кажем, че имаме предвид ориентиран граф, трябва да кажем експлицитно "ориентиран".

- краен ориентиран мултиграф

Определение 86: Ориентиран мултиграф

Ориентиран мултиграф е наредена тройка $G=(V,E,f_G)$, където V е непразно множество, чиито елементи се наричат *върхове*, E е множество, чиито елементи се наричат *ребра*, $V \cap E=\emptyset$ и

$$f_G: E \to V \times V$$

е свързващата функция.

2. Дефиниции за път (цикъл) в ориентиран и неориентиран мултиграф.

Определение 16: Път.

Нека G = (V, E) е граф. $\Pi \overline{s} m$ в G наричаме всяка алтернираща редица от върхове и ребра, за някое $t \geqslant 0$:

$$p = (u_{i_0}, e_{k_0}, u_{i_1}, e_{k_1}, u_{i_2}, \dots, u_{i_{t-1}}, e_{k_{t-1}}, u_{i_t})$$

където $u_{i_p} \in V$ за $0 \leqslant p \leqslant t$, $e_{k_p} \in E$ за $0 \leqslant p \leqslant t-1$, и освен това е изпълнено $e_{k_p} = (u_{i_p}, u_{i_{p+1}})$ за $0 \leqslant p \leqslant t-1$. Върховете u_{i_0} и u_{i_t} се наричат *краищата на пътя*. Останалите върхове са *вътрешните върхове на пътя*. Още казваме, че p е път *межеду* u_{i_0} и u_{i_t} и в общия случай нямаме право да разменим u_{i_0} с u_{i_t} .

Дължината на пътя е броят на ребрата в него. Ще бележим дължината на пътя с $|\mathfrak{p}|$. В случая, $|\mathfrak{p}|=\mathfrak{t}$.

Ако всички елементи на пътя—върхове и ребра—са уникални, казваме, че $\mathfrak p$ е npocm $n \overline{\sigma} m$.

Определение 18: Цикъл.

Нека G = (V, E) е граф и p е път в него, където:

$$p = (u_{i_0}, e_{k_0}, u_{i_1}, e_{k_1}, u_{i_2}, \dots, u_{i_{t-1}}, e_{k_{t-1}}, u_{i_t})$$

3. Свързаност и свързани компоненти на граф.

Определение 19: Свързаност в граф. Свързан граф.

Определение 20: Свързани компоненти.

Нека G = (V, E) е граф и Q_G е релацията на достижимост върху G. Подграфите на G, индуцирани от класовете на еквивалентност на Q_G , се наричат свързаните компоненти на G.

Определение 21: Свързани компоненти, алтернативно определение.

Свързаните компоненти на граф са максималните по включване свързани подграфи.

4. Дефиниция на дърво и кореново дърво.

Определение 43: Дърво, не-индуктивна дефиниция.

Дърво е всеки граф, който е свързан и ацикличен.

Определение 44: Дърво, индуктивна дефиниция.

Множеството от дърветата се дефинира така:

- О База Всеки тривиален граф е дърво.
- **9** Индуктивна стъпка Ако T = (V, E) е дърво и u е връх в T и w е връх, който не е в T, то $T' = (V \cup \{w\}, E \cup \{(u, w)\})$ е дърво.

Лема 9

Граф е дърво тогава и само тогава, когато между всеки два негови върха има точно един път.

Определение 47: Кореново дърво, глобална дефиниция. Родител и дете.

Нека T = (V, E) е дърво. Избираме произволен връх $r \in V$ и го наричаме *корен*. След избора на корен T става *кореново дърво*. Изборът на корен еднозначно определя релация на *родителство* върху всяко ребро. Нека $e \in E$ е произволно ребро и нека e = (u, v). Съгласно Лема 9, съществува точно един път p между r и u и съществува точно един път p между r и v. Нещо повече.

• Или $V(p) = V(q) \cup \{u\}$, в който случай ν е предпоследният връх преди u в p и казваме, че ν е родителят на u, а u е дете на ν :

• или $V(q) = V(p) \cup \{v\}$, в който случай и е предпоследният връх преди v в q и казваме, че и e родителят на v, а v e deme на u.

Определение 49: Предшественици и наследници на връх.

Нека T е кореново дърво с корен r и u е произволен връх в него. За всеки връх v казваме, че ν е предшественик на u, ако ν е връх от u-r пътя. За всеки връх ν казваме, че ν е наследник на u, ако u е предшественик на ν .

Определение 55: Кореново дърво, първа индуктивна дефиниция.

- **0** База Всеки тривиален граф ($\{u\}$, \emptyset) е кореново дърво с корен u, множество от листа $\{u\}$, разклоненост 0 и височина 0.
- **②** Индуктивна стъпка Нека $T_1 = (V_1, E_1), \ldots, T_k = (V_k, E_k)$ са коренови дървета, които две по две нямат общи върхове, с корени съответно r_1, \ldots, r_k , множества от листа съответно W_1, \ldots, W_k , разклонености съответно b_1, \ldots, b_k и височини съответно h_1, \ldots, h_k . Нека r е връх, който не се намира в никое от тях. Нека $E' = \{(r, r_i) \mid 1 \le i \le k\}$. Тогава

$$T = \left(\{r\} \cup \bigcup_{i=1}^k V_i, E' \cup \bigcup_{i=1}^k E_i \right)$$

е кореново дърво с корен r, множество от листа $\bigcup_{i=1}^k W_i$, разклоненост $\max\{k,b_1,\ldots,b_k\}$ и височина $\max\{h_1,\ldots,h_k\}+1$.

Определение 56: Кореново дърво, втора индуктивна дефиниция.

- **0** База Всеки тривиален граф ($\{u\}$, \emptyset) е кореново дърво с корен u, множество от листа $\{u\}$, разклоненост 0 и височина 0.
- **②** Индуктивна стъпка Нека $T_1 = (V_1, E_1)$, и $T_2 = (V_2, E_2)$ са дървета, които нямат общи върхове, с корени съответно \mathfrak{r}_1 и \mathfrak{r}_2 , множества от листа съответно W_1 и W_2 , разклонености съответно \mathfrak{b}_1 и \mathfrak{b}_2 и височини съответно \mathfrak{h}_1 и \mathfrak{h}_2 . Нека $\mathfrak{v} \in V_1$, нека \mathfrak{v} има $\mathfrak{f}_{\mathfrak{v}}$ деца и нека дълбочината на \mathfrak{v} е $\mathfrak{t}_{\mathfrak{v}}$. Тогава

$$T = (V_1 \cup V_2, E_1 \cup E_2 \cup \{(\nu, r_2)\})$$

е кореново дърво с корен r_1 . Множеството от листата на T е $(W_1 \setminus \{v\}) \cup W_2$, разклонеността му е $\max\{b_1, b_2, f_v + 1\}$, а височината му е $\max\{h_1, t_v + 1 + h_2\}$.

Определение 57: Кореново дърво, трета индуктивна дефиниция.

- Ваза Всеки тривиален граф ({u}, ∅) е кореново дърво с корен u, множество от листа {u}, разклоненост 0 и височина 0.
- **②** Индуктивна стъпка Нека $T = (V_T, E_T)$, е коренови дървета с корен съответно r, множества от листа W, разклоненост b и височини съответно h. Нека z_1, \ldots, z_q са врърхове, които не са във V_T , и нека $\ell \in W$. Тогава

$$D = (V_T \cup \{z_1, \ldots, z_q\}, E_T \cup \{(\ell, z_1), \ldots, (\ell, z_q)\})$$

е кореново дърво с корен r и множество от листа $(W\setminus\{\ell\})\cup\{z_1,\ldots,z_q\}$. Разклонеността на D е max $\{b,q\}$. Височината на D е или h, ако дълбочината на ℓ в T е по-малка от h, или h+1, ако ℓ в T е h.

5. Доказателство, че всяко кореново дърво е дърво и |V|=|E|+1.

Лема 11

Във всяко дърво, m = n - 1.

Доказателство: Със структурна индукция. В базовия случай на Определение 44, очевидно за графа с един връх и нула ребра, твърдението е вярно. ✓

Нека твърдението е вярно за дървото T от индуктивната стъпка. С други думи, допускаме, че

$$|E(T)| = |V(T)| - 1$$
 (2.11)

Трябва да докажем, че твърдението е вярно за дървото Т'. С други думи, да докажем, че

$$|E(T')| = |V(T')| - 1$$
 (2.12)

Но това е съвършено очевидно предвид факта, че |E(T')| = |E(T)| + 1 и |V(T')| = |V(T)| + 1; ако заместим |E(T')| с |E(T)| + 1 и |V(T')| с |V(T)| + 1 в (2.12), ще получим равенство, еквивалентно на (2.11).

Лема 8 казва, че дърво с поне два върха има поне два висящи върха. Лема 12 дава точния брой на висящите върхове, изразен чрез броя на върховете от степен поне 3. Забележете, че върховете от степен 2 нямат значение за броя на висящите върхове; в сумата бихме могли да сумираме и по тях, понеже, ако d(v) = 2, очевидно d(v) - 2 = 0, така че техният "принос" би бил нула.

6. Покриващо дърво на граф.

Определение 59: Покриващо дърво.

Нека G=(V,E) е свързан граф. Покриващо дърво на G е всяко дърво T=(V,E'), където $E'\subseteq E.$

7. Обхождане на граф в ширина и дълбочина.

- BFS

Как работи BFS. Много общо казано, той започва от дадения стартов връх, обхожда неговите съседи, като при това обхожда ребрата, с които ги достига, после обхожда съседите на съседите (различни от стартовия връх), и така нататък, обхождайки върховете по нарастване на разстоянията от стартовия връх. Версията на BFS, която ще разгледаме, ползва не две, а три състояния за всеки връх і:

- i е непосетен. Всички върхове в началото са непосетени. Условно казваме, че непосетените върхове са бели.
- i е посетен, но още не сме приключили с него. В метафората с лабиринта, такова е състоянието на стая, в която вече сме били, но все още не сме използвали всички врати, водещи навън от нея; с други думи, не сме обходили коридорите, излизащи от нея. Условно казваме, че върховете в това състояние са сиби.
- i е посетен и вече сме приключили с него. В метафората с лабиринта, това е стая, в която сме били и освен това сме обходили всички коридори, излизащи от нея. Условно казваме, че върховете в това състояние са черни.

И така, BFS, който ще разгледаме, ползва масив colour[1, ..., n], всеки елемент от който има точно една от стойностите white, grey и black.

- DFS

DFS е алгоритъмът за обхождане на графи в дълбочина. Името идва от **D**epth-**F**irst **S**earch. За разлика от BFS, който е построен директно върху Схема 1 с реализация на множеството **S** чрез опашка, DFS не се получава от Схема 1 директно – факт, който обосноваваме на стр. 303. Въпреки че DFS не се получава директно от Схема 1, ние ще ползваме нейното доказателство за коректност и за него.

DFS наистина е свързан със стекова структура (LIFO), но имплементацията, която ще разгледаме, е рекурсивен алгоритъм, който ползва неявно системния стек.

Интуитивно казано, DFS обхожда графа по начин, обратен на BFS. BFS е "предпазливото" обхождане, при което обхождаме слой по слой навън от избрания начален връх. DFS е "смелото" обхождане, при което—ако ползваме аналогията с лабиринта—попадайки в коя да е стая.

- излизаме през първата неползвана врата, ако има такава, и отиваме в стая, в която или не сме били, или вече сме били:
 - ако не сме били, маркираме я като посетена и продължаваме по същия начин,
 - а ако сме били, се връщаме обратно
- ако вече няма неизползвана врата, се връщаме колкото е възможно по-малко и опитваме същото нещо, ако е възможно; когато сме отново в началната стая и вече няма неизползвани врати, прекратяваме алгоритъма.

8. Ойлерови обхождания на мултиграф.

9. Теореми за съществуване на Ойлеров цикъл (с доказателство) и Ойлеров път.

Определение 42: Ойлеров цикъл и Ойлеров път

Ойлеров цикъл в G е цикъл, не непременно прост, който съдържа всяко ребро точно веднъж. Ойлеров път в G е път, не непременно прост, който съдържа всяко ребро точно веднъж. G е Ойлеров, ако има Ойлеров цикъл.

Теорема 20: Ойлеров цикъл в свързан мултиграф

G има Ойлеров цикъл тогава и само тогава, когато всеки връх има четна степен.

Доказателство, І: Първо да допуснем, че G има Ойлеров цикъл c. Ще покажем, че G има върхове само от четна степен. Разглеждаме произволен $\mathfrak{u} \in V(G)$. Очевидно $\mathfrak{u} \in V(c)$.

Да си представим с като кръгова, а не линейна, наредба. Определение 18 говори за цикъла като за линейна наредба, в която първият и последният връх съвпадат, което съвпадане

задава цикличността. Може да си мислим обаче за всеки цикъл с ненулева дължина като за истинска **кръгова наредба**, в която цикличността е естествена; тоест алтерниращата редица от върхове и ребра, по равен брой от всеки вид, е записана върху окръжност. Всяка поява на **u** в **c** отговаря на точно две ребра – това са съседните елементи на **u** в **c**.

Ако и няма примки, няма как два съседни върха в с (естествено, между тях в с има ребро) да са и. Следователно, на всяка поява на и в с съответстват точно две ребра—съседните елементи на и в цикъла—като за всеки две различни появи на и, двете двойки ребра нямат общ елемент. Следователно, множеството от всички тези двойки ребра, върху всички появи на и в с, е точно J(u). Нека и е появява точно t пъти в с. Тогава |J(u)| = 2t. Имайки предвид, че d(u) = |J(u)|, заключаваме, че степента на и е четно число.

Да разгледаме по-общия случай, в който и има примки. Нека и има q примки e_1,e_2,\ldots,e_q . Нека и се появява точно t пъти в c, както в предния случай. Очевидно, t \geqslant q. При наличието на примки на и има съседни появи на и в c (естествено, с ребро между тях, което ребро е някоя от примките). По-точно казано, в c има точно q подредици и e_i и, $1 \leqslant i \leqslant q$ (по една за всяка примка на и), като някои от тези подредици може да имат общ край и. Всяка такава триелементна подредица, отговаряща на дадена примка, има принос +2 към степента на и. Максималните по включване подредици са от вида и $e_{j_1} \cdots e_{j_r}$ и, където $e_{j_1}, \ldots, e_{j_r} \in \{e_1, \ldots, e_q\}$, са точно t-q на брой. Нека E' е множеството от всички ребра, които са вляво и вдясно от всяка от тези подредици. E' е точно множеството от ребрата, инцидентни с и, които не са примки. Тъй като тези максимални по включване подредици никога не са съседни, в смисъл, че между всеки две от тях в с има поне един връх, който не е и, очевидно |E'| = 2(t-q). Имайки предвид, че d(u) е сумата от |E'| и 2q (вж. Определение 15), заключаваме, че d(u) е четно число.

Теорема 21: Ойлеров път, който не е цикъл, в свързан мултиграф

G има Ойлеров път, който не е цикъл, тогава и само тогава, когато точно два върха са от нечетна степен.