1. (taylorerror:expatapoint)

Find a bound on the error of the approximation of $e^{\frac{1}{3}}$ by $1 + \frac{1}{3} + \frac{1}{3^2 2!} + \frac{1}{3^2 2!}$ $\frac{1}{3^3(3!)}$.

2. (taylorerror:sinconvergence)

Find a bound for $R_n^0 \sin(x)$ and use this to show that $T_n^0 \sin(x) \rightarrow$ $\sin(x)$ for all x as $n \to \infty$.

3. (taylorerror:sin3convergence)

Find a bound for $R_n^0 \sin(3x)$ and use this to show that $T_n^0 \sin(3x) \rightarrow$ $\sin(3x)$ for all x as $n \to \infty$.

4. (taylorerror:exp2convergence) Find a bound on $R_n^0e^{2x}$ and use this to show that for every $x,\,T_n^0e^{2x}\to$ e^{2x} as $n \to \infty$.

5. (taylorerror:sincosconvergence)

Find a bound on $R_n^0(\sin(x) + \cos(x))$ and use this to show that $T_n^0(\sin(x) + \cos(x))$ converges to $\sin(x) + \cos(x)$ as $n \to \infty$.

6. (taylorerror:cosgoodenough)

Find a bound on $|R_n \cos(x)|_{x=1}$ and use this information to find a decimal approximation of $\cos(1)$ with an error of at most .1.