Computational Mechanics by Isogeometric Analysis

Dr. L. Dedè. A.Y. 2015/16

Exercises May 17, 2016

NURBS-based Isogeometric Analysis: Galerkin method. VI Time dependent problems

Let us consider the following time dependent advection-diffusion problem:

$$\operatorname{find} u : \Omega \times (0,T) \to \mathbb{R} : \begin{cases} \rho \frac{\partial u}{\partial t} - \nabla \cdot (\mu \nabla u) + \mathbf{b} \cdot \nabla u = f & \text{in } \Omega \times (0,T), \\ u = g & \text{on } \Gamma_D \times (0,T), \\ \mu \nabla u \cdot \hat{\mathbf{n}} = \phi & \text{on } \Gamma_N \times (0,T), \\ u = u_0 & \text{in } \Omega \times \{t = 0\}, \end{cases}$$

being $\Omega \subset \mathbb{R}^d$, for d=2,3, a bounded open computational domain with regular boundary $\partial \Omega = \Gamma_D \cup \Gamma_N$ such that $\Gamma_D \cap \Gamma_N = \emptyset$ and $\widehat{\mathbf{n}}$ the outward directed unit vector normal to $\partial \Omega$. The diffusion coefficient $\mu \in L^{\infty}(\Omega)$, with $\mu > 0$, the advection term $\mathbf{b} \in [L^{\infty}(\Omega)]^d$, the Dirichlet data $g \in H^{1/2}(\Gamma_D)$, and the Neumann data $\phi \in L^2(\Gamma_N)$ are assigned functions not dependent on time. The source term $f \in L^2(\Omega \times (0,T))$ is time dependent and assumes the following separable form $f = f(t, \mathbf{x}) = f_t(t) f_{\mathbf{x}}(\mathbf{x})$.

Specifically, let us consider the domain Ω reported in the following figure $(\Omega = (1,2) \times (0, \pi/2)$ in polar coordinates (r, θ)) for which $\Gamma_D = \{(x, y) \in \partial\Omega : x = 0\}, \Gamma_N = \partial\Omega \setminus \Gamma_N$.

We set
$$T = 4$$
, $u_0 = 0$, $g = 0$, $\phi = 0$, $\mu = 0.02$, $\mathbf{b} = (\mathbf{y}, -\mathbf{x})^T$, $f_t(t) = \begin{cases} t & \text{if } t < 1, \\ 1 & \text{if } t \ge 1 \text{ and } t < 2, \\ 0 & \text{if } t \ge 2, \end{cases}$

and $f_{\mathbf{x}}(\mathbf{x}, \mathbf{y}) = 100 e^{-500((\mathbf{x} - \mathbf{x}_0)^2 + (\mathbf{y} - \mathbf{y}_0)^2)}$, with $\mathbf{x}_0 = 0.5000$ and $\mathbf{y}_0 = 1.4142$.

For the spatial approximation consider NURBS based Isogeometric Analysis within the framework of the Galerkin method. Solve the problem by using the θ -method with the time step $\Delta t = 0.1$ for different values of $\theta \in [0, 1]$. Plot the approximate solution in one point in Ω vs. the time t and compare the results obtained for different values of θ .