1 Mathe-Umgebung

Inline

Hallo f = a.

Hallo f = a.

Mehrzeilig

$$f = g \qquad y$$

$$\implies a = b + c \quad x$$
 \begin{Eq*} \sep f = g & y \\ \Implies \sep a = b + c & x \\ \end{Eq*}

Mehrzeilig benannt

$$f = a$$

$$\Rightarrow a = b$$

$$\begin{Eq} \\ & \propto f = a \\ & \propto f = a$$

2 Symbole

α	\alpha	λ	\lambda	σ	\sigma	φ	\varphi	Φ	\Phi
β	\beta	μ	\mu	au	\tau	$\overline{\omega}$	\varpi	Π	\Pi
χ	\chi	ν	\nu	θ	\theta	ϱ	\varrho	Ψ	\Psi
δ	\delta	0	0	v	\upsilon	ς	\varsigma	Σ	\Sigma
ϵ	\epsilon	ω	\omega	ξ	\xi	ϑ	\vartheta	Θ	\Theta
η	\eta	ϕ	\phi	ζ	\zeta	Δ	\Delta	Υ	Υ
γ	\gamma	π	\pi	F	\digamma	Γ	\Gamma	Ξ	\Xi
ι	\iota	ψ	\psi	ε	\varepsilon	Λ	\Lambda		
κ	\kappa	ho	\rho	\varkappa	\varkappa	Ω	\Omega		

${\bf Meta\text{-}Logik}$

${\bf Universen}$

\Longrightarrow	\Implies	\mathbb{R}	\UR
\Leftarrow	\RImplies	\mathbb{N}	\UN
\iff	\Iff	${\mathbb Z}$	\UZ
		\mathbb{Q}	\UQ
		\mathbb{C}	\UC
		\mathbb{B}	\UB

Logic

Mengen

Functions

$$x o y$$
 x \to y $x \mapsto y$ x \mapsto y $f \circ g$ f \circ g $f * g$ f \ast g \hat{f} \hat{f}

Vergleiche

$$a=b$$
 a = b
 $a < b$ a < b
 $a > b$ a > b
 $a \le b$ a \leq b
 $a \ge b$ a \leq b
 $a \ne b$ a \neq b
 $a \equiv b$ a \equiv b
 $a \approx b$ a \approx b
 $a \sim b$ a \sim b

Arithmetik

Vectorräume

$\pm a$	\pm a	$x \times y$	x \times y
$\lfloor a floor$	\lfloor a \rfloor	/1	
$\lceil a \rceil$	\lceil a \rceil	$\begin{pmatrix} 2 \\ 2 \end{pmatrix}$	\Vector{1 \\ 2 \\ 3}
$\sqrt{a+b}$	\sqrt{a + b}	$\sqrt{3}$	
$\sqrt[3]{a+b}$	\sqrt[3]{a + b}	$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$	\begin{Matrix} 1 & 2 \\ 3 & 4 \end{Matrix}
$x \cdot y$	x \cdot y	(1)	
$\sum_{x \in X} a + x$	$\sum_{x \in X} a + x$	$\begin{pmatrix} \vdots & b \end{pmatrix}$	\begin{Matrix} 1 & \dots\\ \vdots& b Matr
y		Det(x)	\Det(x)
$\sum a + i$	$\sum_{i = x}^y a + i$	A + B	A + B
i=x		A*B	A * B
$\prod_{\mathbf{x}} a + i$	$\displaystyle \frac{x \in X}{a + i}$	$A \oplus B$	A \oplus B
$x inX$ $\min(a, b)$	\min(a, b)	$A\otimes B$	A \otimes B
$\max(a,b)$	\max(a, b)	A/B	A / B
$\max(a, b)$	(max(a, b)	A^{\perp}	A^\perp
		$\langle A \rangle$	\langle A \rangle
		$\dim(A)$	\dim(A)

Lina & AZ

Ana

$a \bmod b$	a \mod b	$\mathrm{d}x$	\dd x
$a \mid b$	a \mid b	$\frac{\mathrm{d}f}{\mathrm{d}x}$	\frac{\dd f}{\dd x}
$a \nmid b$	a \nmid b		Traction if the x
$a \parallel b$	a \parallel b	$\frac{\partial f}{\partial x}$	\frac{\partial f}{\partial x}
$a \perp b$	a \perp b	ſ	
ggT(x,y)	$\ggT(x, y)$	$\int x \mathrm{d}x$	\int x \dd x
kgV(x,y)	\kgV(x, y)	$\int_{-\infty}^{\infty} x \mathrm{d}x$	\int_0^\infty x \dd x
[x]	<pre>\big[x \big]</pre>	$\int_0^{\infty} dx dx$	VIIIC_O VIIII CY X VOC X
$\mathbb E$	\neutral	$[x]_0^y$	<pre>\big[x \big]_0^y</pre>
\triangleright	\normdevider	$\lim_{x \nearrow a} f(x)$	<pre>\lim_{x \nearrow a} f(x)</pre>
\trianglerighteq	\normdevidereq	*	<pre>\lim_{x \searrow a} f(x)</pre>
\triangleright	\rnormdevider	$\lim_{x \searrow a} f(x)$	(lim_(x (Seallow a) 1(x)
⊵	\rnormdevidereq	$\lim_{x \to a} f(x)$	$\lim_{x \to a} f(x)$
⊲	\lnormdevider	f'	f^\prime
⊴	\lnormdevidereq	f''	f^{\prime\prime}
		\dot{f}	\dot f
		\ddot{f}	\ddot f
		∇f	\nabla f

3 Layout

$$f(x) = \begin{cases} 1 & x = 0 \\ 0 & \text{sonst} \end{cases} \quad \text{f(x) = \begin{cases} 1 \& x = 0 \ \ 0 \& \text{text{sonst}} \ \ \text{end{cases}} \end{cases}$$

4 Weiteres

Einen eigenen Binär-Operator definieren

Am Anfang des Dokuments definieren:

\def\bin{\newbinaryop{bin}}

Dann kann dieser wie folgt genutzt werden:

 $a \sin b$ a \bin b

Einen eigenen Funktion definieren

Am Anfang des Dokuments definieren:

 $\left(\int \int \int \int dx dx \right)$

Dann kann dieser wie folgt genutzt werden:

fn(a,b) \fn(a, b)