바이러스

백준 2606 (실버 3) DFS - 연결된 요소 찾기 유형

0. 문제 소개

신종 바이러스인 웜 바이러스는 네트워크를 통해 전파된다. 한 컴퓨터가 윔 바이러스에 걸리면 그 컴퓨터와 네트워크 상에서 연결되어 있는 모든 컴퓨터는 윔 바이러스에 걸리게 된다.

예를 들어 7대의 컴퓨터가 <그림 1>과 같이 네트워크 상에서 연결되어 있다고 하자. 1번 컴퓨터가 웜 바이러스에 걸리면 웜 바이러스는 2번과 5번 컴퓨터를 거쳐 3번과 6번 컴퓨터까지 전파되어 2, 3, 5, 6 네 대의 컴퓨터는 웜 바이러스에 걸리게 된다. 하지만 4번과 7번 컴퓨터는 1번 컴퓨터와 네트워크상에서 연결되어 있지 않기 때문에 영향을 받지 않는다.

N:컴퓨터의 수(5≤N≤100)

0. 문제 소개

신종 바이러스인 웜 바이러스는 네트워크를 통해 전파된다. 한 컴퓨터가 윔 바이러스에 걸리면 그 컴퓨터와 **네트워크 상에서 연결되어 있는 모든 컴퓨터**는 윔 바이러스에 걸리게 된다.

예를 들어 7대의 컴퓨터가 <그림 1>과 같이 <u>네트워크 상에서 연결되어</u> **있다**고 하자. 1번 컴퓨터가 웜 바이러스에 걸리면 웜 바이러스는 2번과
5번 컴퓨터를 거쳐 3번과 6번 컴퓨터까지 전파되어 2, 3, 5, 6 네 대의
컴퓨터는 웜 바이러스에 걸리게 된다. 하지만 4번과 7번 컴퓨터는 1번
컴퓨터와 네트워크상에서 연결되어 있지 않기 때문에 영향을 받지 않는다.

N:컴퓨터의 수(5≤N≤100)

1. 풀이 개념 설명

N	7
М	6

M개의 간선 정보						
1	2					
2	3					
1	5					
5	2					
5	6					
4	7					

graph	0	1	2	3	4	5	6	7
0								
1								
2								
3								
4								
5								
6								
7								

visit					4			
ed	0	0	0	0	0	0	0	0

2. 풀이 이해하기

N	7
М	6

M개의 간선 정보					
1	2				
2	3				
1	5				
5	2				
5	6				
4	7				

graph	0	1	2	3	4	5	6	7
0								
1			1			1		
2		1		1		1		
3			1					
4								1
5		1	1				1	
6						1		
7					1			

visit	0	1	2	3	4	5	6	7
ed	0	1	1	1	0	1	1	0

3. 재귀 함수 기록 방법

graph	0	1	2	3	4	5	6	7
0								
1			1			1		
2		1		1		1		
3			1					
4								1
5		1	1				1	
6						1		
7					1			

재귀 함수 Depth									
O(main)	1	2	3	4					
1									

4. 정리

- 1. "네트워크 상에서 연결" ⇒ DFS / BFS
- 2. 서로 연결되었다는 정보를 어떻게 하나의 자료구조로 통합할까?
- 3. 이미 방문한 지점을 다시 방문하지 않으려면 어떤 자료구조를 사용해야 될까?

감사합니다

도움이 되셨다면 구독과 좋아요

풀이를 원하시는 문제가 있다면 <u>댓글</u> 남겨주세요