Divide and Conquer Algorithms

Introduction

- Solves computational problem by
 - Dividing it into subproblems of smaller size
 - Solve each problem recursively
 - Merging solutions to sub-problems to produce solution
- e.g.,
 - Merge Sort
 - Quick Sort
- Complexity analyzed using recurrence relations

Divide and Conquer

Divide Step:

- If input size smaller than certain threshold solve by straightforward method
- Divide input data into two or more disjoint subsets

Recur:

- Recursively solve subproblems associated with the subsets
- Conquer
 - Take the solutions to the subproblems and merge them into a solution to the original problem

Sorting

- Merge Sort
 - Divide: Trivial
 - Conquer: Recursively Sort each sub-array
 - Combine: Linear-time merge
- Quick Sort
 - Divide: Split array based on pivot
 - Conquer: Recursively split
 - Combine: Trivial

Powering a Number

- Compute an
- Naive algorithm: $\Theta(n)$
- Divide and Conquer Algorithm
 - $a^{n} = \begin{cases} a^{n/2} \cdot a^{n/2} & \text{if n is even} \\ a^{(n-1)/2} \cdot a^{n/2} & \text{if n is odd} \end{cases}$
 - $T(n) = T(n/2) + \Theta(1) \Longrightarrow T(n) = \Theta(\lg n)$

Matrix Multiplication

- Input: $X = [x_{ij}], Y = [y_{ij}], i,j = 1,2,3,...,n$
- Output: $Z = [z_{ij}] = XxY$
 - $z_{ij} = \sum_{k=1}^{n} x_{ik} \cdot y_{kj}$
 - $\Theta(n^3)$
- Divide and conquer can reduce cost

Idea

- \blacksquare n x n matrix = 2x2 matrix of (n/2)x(n/2) submatrices
- Rewrite $Z = X \times Y$ as
- $\begin{pmatrix} i & j \\ k & l \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \times \begin{pmatrix} e & f \\ g & h \end{pmatrix}$
- i= ae+bg
- = j= af+bh
- = k= ce+dg
- \blacksquare 1= cf+dh

- Analysis
 - 8 multiplications of $(n/2)\times(n/2)$ submatrices
 - \blacksquare 4 additions of $(n/2)\times(n/2)$ submatrices
- $T(n) = 8T(n/2) + \Theta(n^2)$
- This is $\Theta(n^3)$ not better than brute force

Strassen's Method

Multiply 2×2matrices with 7 recursive multiplications

$$\blacksquare$$
 P1= a · (f–h)

$$P2 = (a+b) \cdot h$$

$$\blacksquare$$
 P3= (c+d) · e

$$P4= d \cdot (g-e)$$

$$P5 = (a+d) \cdot (e+h)$$

$$-P6 = (b-d) \cdot (g+h)$$

$$-P7 = (a-c) \cdot (e+f)$$

$$r = P5 + P4 - P2 + P6$$

$$=$$
 s=P1+ P2

$$=$$
 t=P3+ P4

- 7 multiplications, 18 adds/subs
- No reliance on commutativity of multiplication

Strassen's Algorithm

- Partition: A and B into $(n/2)\times(n/2)$ submatrices.
 - Form terms to be multiplied using + and –.
- Conquer: Perform 7 multiplications of $(n/2)\times(n/2)$ submatrices recursively
- Combine: Form C using +and –on $(n/2)\times(n/2)$ submatrices.
- $T(n) = 7T(n/2) + \Theta(n^2)$
- This is $\Theta(n^{2.81})$

Closest Pair Problem

- Input: n points in a plane, each given by a pair of real numbers
- Output: Pair of points with shortest distance between them
- Brute Force
 - Compute distance between every pair and find the minimum distance pair
 - $\Theta(n^2)$
- Apply divide and conquer

- Idea
 - Draw a vertical line that has n/2 points on each side
 - Apply algorithm recursively to find closest pair on each side
- Finding the correct vertical line
 - Sort points by x-coordinate and pick median coordinate line
 - Points on this line assigned to one side
 - Sort points also by y-coordinate to improve performance
 - $\Theta(n \log n)$
- Closest pair may involve one point on each side of the line

- Checking pairs that cross the line
 - Consider a pair that crosses the line iff its distance is lesser than the smallest distance that does not cross the line
 - Finding the set of points satisfying this by x-axis alone is costly
 - Sort the identified points along y-axis as well
 - Then only O(n) points have to be checked
 - Initially sorting the points by y-axis helps improve cost
- Complexity: $T(n) = 2T(n/2) + \Theta(n)$

Problems

Given an array having first n ints and next n chars

$$A = i1 \ i2 \ i3 \dots in, c1 \ c2 \ c3 \dots cn$$

Write an in-place algorithm to rearrange the elements of the array as: $A = i1 \ c1 \ i2 \ c2 \dots in \ cn$

• Give an algorithm to divide an integer array into 2 subarrays s.t their averages are equal i.e average of values of left array must be same as average of right array