<u> </u>	
Roll Number:	
Roll Hallibel.	

Thapar Institute of Engineering & Technology Department of Computer Science and Engineering

AUXILIARY EXAMINATION

B. E. (2nd Year COE/CSE): Sem-IV

16st August, 2024

Monday, 5:30 To 8:30 PM

Time: 3 Hours, Max Marks: 100

Course Code: UCS415

Course Name: Design and Analysis of Algorithms

Name of Faculty: Dr. Tarunpreet Bhatia

Note: Attempt all Questions in sequence. Answer all sub-parts of each question at one place. Do mention Page No. of your attempt at front page of your answer sheet. Assume missing data (if any).

Q.1	<pre>a) Consider the following segment of code (where not the right time complexity using recursion tree methor int fun1(int n){ if (n > 1) { for(int i = 0; i < n; i++) printf ("%d", i); return (n² + fun1(n/2) + fun1(n/4)); } }</pre>		tions fun1.		and calculate	(8)
	b) We are given n-platform and two main running	Train	Arrival	Departure	Platform	(5+5)
	railway track for both direction. Trains which	114111	Time	Time	No.	
	needs to stop at your station must occupy one	1	10:00	10:30	1	
	platform for their stoppage and the trains which	2	10:20	10:50	1	
	need not to stop at your station will run away	3	11:00	11:30	2	
	through either of main track without stopping.	4	11:15	11:45	1	
	Now, each train has three value first arrival time,	5	11:30	12:00	3	
	second departure time and third required	6	10:15	10:45	2	
	platform number. We are given m such trains you	7	10:40	11:00	3	
	have to tell maximum number of train for which	8	11:05	11:35	3	
1	you can provide stoppage at your station. Write an	9	11:25	11:55	2	
	efficient algorithm for this and also apply your	10	11:40	12:10	1	
Q.2	algorithm to the data given in Table 1 . You are an event manager responsible for scheduling event requires a specific time slot, and some events cannot be scheduled simultaneously). You are given a C, where $C[i][j] = 1$ indicates that event E_i confl scheduled at the same time. a) Write the pseudocode for your backtracking soluthe minimum number of time slots required to sevents so that no two conflicting events are assigned time slot. b) Apply your algorithm to the conflict matrix (I determine the minimum number of time slots required to sevents are assigned times.	have co a list of e icts with ation to fi chedule ed the sa Fig. 1) a	inflicting tirvents E_1 , E_2 in event E_j , and all me $C = C$	me requireme $E_1, \dots E_n$ and a comeaning the $\begin{pmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \end{pmatrix}$	nts (i.e., they onflict matrix by cannot be 0 0 1 0 0 0 1 0 0 0 1 1 0 0 0 0 0 1 0 1	(7+8)

2.3	A thief breaks	s into a house inte	nding to rob	it. He has a bag th	at can h	oldaı	maxim	num w	eight	of 8 kg	g. (6	+10)
2.5	A thief breaks into a house intending to rob it. He has a bag that can hold a maximum weight of 8 kg. Inside the house, there are four items, each with a specific weight and value (as shown in Table 2).).				
	The thief can	either take an ent	ire item or le	eave it behind. He	want to	choo	se the	items	to ma	aximiz	е	
	The thief can either take an entire item or leave it behind. He want to choose the items to maximize his profit.											
	Table 2											
		Item	Mirror	Silver nugget	Paintir	ng	Vase					
		Weight (kg)	2	3	4		5					
		Value (\$)	10	20	50		60					
	a) Describe t	he pseudocode to	find maxim	um profit using a	dynami	c prog	gramn	ning a	pproa	ch, an	d	
	calculate its t	ime complexity.										
	b) Demonstrate the intermediate steps to solve the above problem using a dynamic programming								g			
	approach. Yo	u also need to pro	vide the list (of item he should	choose t	o max	kimize	the p	rofit.			
Q.4	Imagine you'	re working on a b	ioinformatic	s project where yo	ou need	to ana	lyze D	NA se	equen	ces. Yo	100	5+12)
	have a long [NA sequence "AB	C ABCDAB A	BCDABCDABDE"	that is n	nillior	is of b	ase pa	airs lo	ng, an	d	
	you need to it	dentify the presen	ce of a specif	ic gene sequence	within th	nis lar	ger DN	NA stra	and. T	he gen	ie	
	sequence voi	i're looking for is	a short patte	rn of nucleotides,	"ABCDA	BD".						
	a) Preproces:	s the pattern " AB	CDABD" to g	enerate the prefix	k table [(J, U, U,	0, 0, 0), U].	NI A	011000		
	b) Apply the	Knuth-Morris-Pr	att algorithr	n to match the p	attern w	vitnin	the Id	ng Di	NA Se	quenc	e.	
	Demonstrate	all intermediates	steps to solve	e the DNA sequen	ce mater	nng pi	robien	11.				
2.5	A palindrome	e is a nonempty st	ring over so	me alphabet that	reads th	e sam	e forw	ard a	nd ba	ckwar	d.	(16)
2.0	Examples of	palindromes are a	all strings of	length 1, civic, an	d raceca	r. For	exam	ple, gi	ven th	ie inpi	at	
	character v	our algorithm sho	ould return c	arac. Consider th	e input	string	= "ch	aract	er". C	ompu	te	
	the longest n	alindrome ("cara	c"here), whi	ch is a subsequen	ce of a gi	ven ir	iput st	ringu	singc	lynam	1C	
	programmin	g. Show the step-	by-step solut	ion for this exam	ple by n	narkin	g the	entrie	es in th	ne tab	le	
	followed by	printing the leng	th and palin	drome sequence.	Also, w	rite re	ecursiv	ve equ	uation	to fir	ıd	
	longest palin	drome subsequer	nce and what	is the running tir	ne of you	ur algo	orithm	1?				
											4.0	
2.6	Imagine you	are working as a l	ogistics coor	dinator for a deliv	ery com	ipany	that n	eeas t	o opti	mize i	ts (12+6)
	delivery rout	tes. The company	has five war	ehouses (A, B, C,	D, and E) locat	ea in	amer	The a	ies, ai	to	
	each wareho	use must be visit	ed exactly or	nce before return	ing to tr	ie stai	dictan	onnt.	n kilo	udi 15 matar	6)	
	find the mos	t efficient route th	nat minimize	s the total travel	uistance	e. The	uistan	ices (i	II KIIO	meter	3)	
	between the warehouses are given in the Table 3 .											
	a) Using th	e branch-and-bou	ind algorithi	n solve the TSP			Tab	le 3				
	for the give	en scenario to fin	d the ontima	al delivery route.								
	Show all th	e steps involved i	n vour calcul	ations, including		A	В	С	D	E		
		tree and boundin			A	8	20	30	10	11		
		the complexity o			A		20	30	10	11		
		within the classes			В	15	00	16	4	2		
		lain why solvin				(24)	(00)			12		
	challenging		the adva	antages of 2-	- C	3	5	00	2	4		
	approximat	, tion over branch-a			D	19	6	18	- 00	3		
					E	16	4	7	16	00		
						1						