Контрольная работа № 1

Задание 1

Решить задачу. Вариант выбираем по номеру в журнале.

Вариант 1

Определить наибольшую площадь прямоугольника с периметром 4a.

Вариант 2

Определить наибольшую площадь прямоугольника, вписанного в круг радиуса a.

Вариант 3

Найти наибольший объем конуса с данной образующей $\it l$.

Вариант 4

Найти наименьшую боковую поверхность конуса, имеющего данный объем V.

Вариант 5

Определить наибольшую площадь прямоугольника, у которого одна сторона лежит на основании a данного треугольника, а две вершины — на боковых сторонах треугольника, если треугольник имеет высоту h.

Вариант 6

Периметр равнобедренного треугольника равен 2p. Какими должны быть его стороны, чтобы объем тела, полученного от вращения этого треугольника вокруг его основания, был наибольшим.

Вариант 7

Цилиндр завершен сверху полушаром того же радиуса. Дан объем всего тела V. При каком радиусе полнах поверхность тела будет наименьшей?

Вариант 8

Найти наибольшую площадь прямоугольника, вписанного симметрично в сектор круга радиуса α с центральным углом 2α .

Вариант 9

Найти наибольший объем цилиндра, вписанного в шар радиуса a.

Вариант 10

Найти наибольший объем цилиндра, у которого периметр осевого сечения равен 6m.

Вариант 11

Найти наибольшую боковую поверхность цилиндра, вписанного в шар радиуса a.

Вариант 12

Найти наибольший объем цилиндра, вписанного в данный конус.

Вариант 13

Найти наибольший объем цилиндра, вписанного в сегмент параболоида $az = x^2 + y^2$, a > 0, ограниченный плоскостью z = h > 0.

Вариант 14

Найти наибольший объем конуса, вписанного в шар радиуса a.

Вариант 15

Найти наименьший объем конуса, описанного около полушара радиуса a.

Вариант 16

Найти наименьший объем конуса, описанного около шара радиуса a.

Вариант 17

Найти наибольший объем цилиндра, ось которого проходит по диагонали куба с ребром a, а основания которого касаются граней куба.

Вариант 18

Найти наибольшую площадь прямоугольника, вписанного симметрично в сектор круга радиуса a с центральным углом 2α .

Вариант 19

Найти наибольший объем цилиндра, вписанного в шар радиуса a.

Вариант 20

Найти наибольший объем цилиндра, у которого периметр осевого сечения равен 6m.

Вариант 21

Найти наибольшую боковую поверхность цилиндра, вписанного в шар радиуса a.

Вариант 22

Найти наибольший объем цилиндра, вписанного в данный конус.

Вариант 23

Найти наибольший объем цилиндра, вписанного в сегмент параболоида $az = x^2 + y^2$, a > 0, ограниченный плоскостью z = h > 0.

Вариант 24

Найти наибольший объем конуса, вписанного в шар радиуса a.

Вариант 25

Найти наименьший объем конуса, описанного около полушара радиуса a.

Вариант 26

Найти наименьший объем конуса, описанного около шара радиуса a.

Вариант 27

Найти наибольший объем цилиндра, ось которого проходит по диагонали куба с ребром a, а основания которого касаются граней куба.

Задание 2

Найти точки экстремумов функции аналитически.

$$f(x, y) = \frac{ax + by + c}{\sqrt{x^2 + y^2 + 1}}$$

Значения а, b, с выбираем по номеру в журнале:

				•	a						100			b	
1	4	-1	2	6	1	3	-4 4 2 -3 3	11	-2	4	1	16	2	3	**
2	4	2	-1	7	-1	3	4	12	4	-2	-1	17	3	1	4
3	1	2	4	8	2	5	2	13	6	1	6	18	6	-1	-:
4	3	1	2	9	1	3	-3	14	6	1	-6	19	1	5	4
5	3	-1	-2	10	2	1	3	15	4	6	-1	20	1	-1	_/

Задание 3

Найти точки экстремумов функции

$$f(x, y) = ax^2 + 2xy + by^2$$
 при условии $4x^2 + cy^2 = 9$:

Значения а, b, с выбираем по номеру в журнале:

	a	b	c		a	ь	c		a	b	c		a	ь	•
1	1	1	3	6	3	2	2	11	5	8	6	16	7	4	2
2	3	4	3 5	7	5 3		2 3	12	5 9	8 3 7	2	17 18	13 7 9 7	4 4 11 5 13	1 6 2 7
3	1	1	2	8	3	5	6	13	9	3	1	18	7	11	€
4	1	2	6	9	7	9	5		9	7	3	19	9	5	2
5	1	1	1	10	5	4 5 9 2	1	14 15	3	6	7	20	7	13	7

Задание 4.

Описать указанный метод поиска минимума функции на примере любой функции на любом отрезке, выполнить две итерации вручную.

Варианты 1-3 Метод методом половинного деления (функция одной переменной)

Варианты 4-6 Метод золотого сечения (функция одной переменной)

Варианты 7-9 Метод хорд (функция одной переменной)

Варианты 9-11 Метод Ньютона

Варианты 12-14 Метод квадратичной аппроксимации (функция одной переменной)

Варианты 15-19 Метод покоординатного спуска (функция двух переменных)

Варианты 20-24 Метод наискорейшего спуска (функция двух переменных)

Варианты 25-30 Метод градиентного спуска (функция двух переменных)