

Why?

- COVID-19, the disease caused by the virus SARS-CoV2, has had a widespread economic, political, and social impact throughout the world
- We hope to use our training in AI applications to help predict future hot-spots of this disease, and better understand viral evolution

The Dataset

- We used a program called NCBI to visualize our data
- Genomic sequences of 1,538 different strains of SARS-CoV-2
- 16 different countries in 3 different regions around the world
- Each sequence was 29,903 bases long

The magenta location represents a mutation

Preprocessing

- Categorize countries into 3 regions
 - North America
 - Oceania
 - Asia

```
countries to regions dict = {
      'Australia': 'Oceania',
      'China': 'Asia',
      'Hong Kong': 'Asia',
      'India': 'Asia',
      'Nepal': 'Asia',
      'South Korea': 'Asia',
      'Sri Lanka': 'Asia',
      'Taiwan': 'Asia',
      'Thailand': 'Asia',
      'USA': 'North America',
      'Viet Nam': 'Asia'
```


- Balance the dataset
 - Our dataset should contain an equal number of genome sequences from North America, Oceania, and Asia

Feature Extraction

- Converted strings of genome sequences to boolean matrix indicating whether there was an A, C, G,
 T, or missing nucleotide (-) at each location; a 1 (true) means that the sequence has the given base in the given location; a 0 (false) means that it doesn't
- Only 'care about' locations with differences (mutations)

Raw data: genome seguences

Input matrix: row = sequence number; column = <location>_<base>

	0_A	0_Т	0_G	0_C	0	 29902_A	29902_Т	29902_G	29902_C	29902
4	1	0	0	0	0	 1	0	0	0	0
5	1	0	0	0	0	 1	0	0	0	0
6	1	0	0	0	0	 1	0	0	0	0
7	1	0	0	0	0	 1	0	0	0	0
9	1	0	0	0	0	 1	0	0	0	0
10	1	0	0	0	0	 1	0	0	0	0
11	1	0	0	0	0	 1	0	0	0	0
14	1	0	0	0	0	 1	0	0	0	0
15	1	0	0	0	0	 0	0	0	0	1

Genome sequence #15 does not have an A at position 29902, whereas the other genome sequences do have an A

Results and Accuracy

- We used the multinomial class of logistic regression model because we have more than two categories (North America, Oceania, and Asia)
- 95% accuracy
- Our model had trouble with some lineages actually from Asia being predicted as from North America, but lineages from Asia and Oceania were never confused

Accuracy: % 94.92753623188406

	Asia predicted	North America predicted	Oceania predicted
Asia true	23	8	0
North America true	2	210	3
Oceania true	0	1	29

Results and Accuracy, cont.

- Similar to before, except that we predicted based on the country rather than region of origin. Limited data only to countries with >15 sequences.
- Again, we used the multinomial class of the logistic regression model, as there are more than 2 categories (Australia, China, Hong Kong, India, Taiwan, Thailand, USA)
- 95% accuracy

□	Ty Accuracy: 94.52554744525547%							
	72	Australia predicted	China predicted	Hong Kong predicted	India predicted	Taiwan predicted	Thailand predicted	USA predicted
	Australia true	32	0	0	0	0	0	4
	China true	0	2	1	0	0	0	3
	Hong Kong true	9	0	2	0	0	0	1
	India true	0	0	0	2	0	0	1
	Taiwan true	0	1	0	0	2	0	1
	Thailand true	1	0	0	0	0	2	1
	USA true	9	9	1	9	9	9	217

Unsupervised Learning: PCA

Next Steps and Future Directions

- Look into mutations that are regional-specific and study which proteins are changing as a result and how this affects the virulence of the particular lineage
- Collect more data (DNA sequences) to determine with more accuracy the origin of the virus (get data from more countries)
- https://nextstrain.org/ncov/global

