Assignment 2

Problem 1

Construct histograms for the islands vector (it is a built-in vector in R, simply type "islands") using breaks based on Sturges's and Scott's rules. Which one looks more informative to you?

islands

##	Africa	Antarctica	Asia	Australia
##	11506	5500	16988	2968
##	Axel Heiberg	Baffin	Banks	Borneo
##	16	184	23	280
##	Britain	Celebes	Celon	Cuba
##	84	73	25	43
##	Devon	Ellesmere	Europe	Greenland
##	21	82	3745	840
##	Hainan	Hispaniola	Hokkaido	Honshu
##	13	30	30	89
##	Iceland	Ireland	Java	Kyushu
##	40	33	49	14
##	Luzon	Madagascar	Melville	Mindanao
##	42	227	16	36
##	Moluccas	New Britain	New Guinea	New Zealand (N)
##	29	15	306	44
##	New Zealand (S)	Newfoundland	North America	Novaya Zemlya
##	58	43	9390	32
##	Prince of Wales	Sakhalin	South America	Southampton
##	13	29	6795	16
##	Spitsbergen	Sumatra	Taiwan	Tasmania
##	15	183	14	26
##	Tierra del Fuego	Timor	Vancouver	Victoria
##	19	13	12	82

hist(islands, breaks = "Sturges", main = "Sturges's Rule")

Sturges's Rule

hist(islands, breaks = "Scott", main = "Scott's Rule")

Scott's Rule


```
\# Even though Scott's rule has more bins overall, Sturges's rule creates two bars per bin \# Especially in the 0-5000 bin which makes most of the dataset, Sturge's rule is clearer \# With Scott's rule, the dataset looks even more skewed to the right, which is accurate
```

Problem 2

Construct a Q-Q plot for both islands and its log against a normal distribution. Which follows a normal distribution more closely?

```
par(mfrow = c(1, 2)) # 1x2 layout makes it better for direct comparison
qqnorm(islands, main = "Q-Q Plot")
qqnorm(log(islands), main = "Logarithmic Q-Q Plot")
```



```
# neither truly follows a normal distribution upon inspection
# but logarithmic plot resembles more the bell-shaped normal distribution curve
```

Problem 3

Generate 1000 Uniform(0, 1) pseudorandom variables using the runif() function, assigning them to a vector called U. Use the seed 09062024.

```
set.seed(09062024) # for future reference
U <- runif(1000)

sample_mean <- mean(U)
sample_variance <- var(U)
sample_sd <- sd(U)
sample_mean</pre>
```

[1] 0.5079104

sample_variance

[1] 0.07865998

```
sample\_sd
```

[1] 0.2804639

```
# For Uniform(0,1), the theoretical mean is 0.5

# Theoretical variance is (1-0)^2 / (12) = 1 / 12 = 0.083333...

# Naturally, it follows that theoretical sd would be sqrt(12) = 0.2887

# Sample mean is greater, sample variance is smaller, and sample sd is smaller

proportion_less_than <- mean(U < 0.6)
proportion_less_than
```

[1] 0.594

```
# theoretical probability that a Uniform(0, 1) random variable < 0.6 is 0.6
# so the theoretical probability is greater

expected_value <- mean(1 / (U + 1)) # EV is just another way of saying the mean expected_value</pre>
```

[1] 0.6879805

```
hist(U, main = "Histogram of U", xlab = "U")
```

Histogram of U

Histogram of 1/(U + 1)


```
par(mfrow = c(1, 1)) # change back settings to original

plot(density(U), main = "Density Estimate")
curve(dunif(x, min = 0, max = 1), add = TRUE)
```

Density Estimate

Problem 4

Let X be a Binomial(20, 0.3) random variable. Use built-in R functions (not a math formula) to find the exact numerical values of the following quantities:

```
p_less <- pbinom(5, size = 20, prob = 0.3)
p_less

## [1] 0.4163708

p_equals <- dbinom(5, size = 20, prob = 0.3)
p_equals

## [1] 0.1788631

p_range <- pbinom(7, size = 20, prob = 0.3) - pbinom(4, size = 20, prob = 0.3)
p_range

## [1] 0.534764

quantile_90 <- qbinom(0.9, size = 20, prob = 0.3)
quantile_90</pre>
```

[1] 9

Problem 5

Generate 30 Binomial(20, 0.3) random variables. (You can use any random seed.)

```
set.seed(123)
data <- rbinom(30, size = 20, prob = 0.3)</pre>
data_quantile_90 <- quantile(data, 0.9)</pre>
data_quantile_90
## 90%
## 9.1
quantile_90
## [1] 9
# so sample quantile from data is slightly greater
prop_less_than_equal_5 <- mean(data <= 5)</pre>
prop_less_than_equal_5
## [1] 0.3
p_less
## [1] 0.4163708
# theoretical proportion is greater
plot(ecdf(data), main = "Empirical CDF of data")
rug(data)
```

Empirical CDF of data

