

Description

The VST10N180 uses **Super Trench** technology that is uniquely optimized to provide the most efficient high frequency switching performance. Both conduction and switching power losses are minimized due to an extremely low combination of $R_{\text{DS(ON)}}$ and Q_g . This device is ideal for high-frequency switching and synchronous rectification.

General Features

- V_{DS} =100V, I_D =45A $R_{DS(ON)}$ =18m Ω (typical) @ V_{GS} =10V $R_{DS(ON)}$ =22m Ω (typical) @ V_{GS} =4.5V
- Excellent gate charge x R_{DS(on)} product(FOM)
- Very low on-resistance R_{DS(on)}
- 150 °C operating temperature
- Pb-free lead plating
- 100% UIS tested

Application

- DC/DC Converter
- Ideal for high-frequency switching and synchronous rectification

TO-263

Schematic Diagram

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VST10N180-T3	VST10N180	TO-263	-	-	-

Absolute Maximum Ratings (T_C=25 ℃unless otherwise noted)

Parameter	Symbol	Limit	Unit
Drain-Source Voltage	V _{DS}	100	V
Gate-Source Voltage	V _G s	±20	V
Drain Current-Continuous (Silicon Limited)	I _D	45	А
Drain Current-Continuous(T _C =100°C)	I _D (100℃)	31.8	Α
Pulsed Drain Current (Package Limited)	I _{DM}	180	А
Maximum Power Dissipation	P _D	110	W
Derating factor		0.73	W/℃
Single pulse avalanche energy (Note 5)	E _{AS}	200	mJ
Operating Junction and Storage Temperature Range	T_{J}, T_{STG}	-55 To 175	$^{\circ}$

Thermal Characteristic

Thermal Resistance, Junction-to-Case ^(Note 2)	Rejc	1.36	°C/W
--	------	------	------

Electrical Characteristics (T_C=25°C unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics						
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250μA	100		-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =100V,V _{GS} =0V	-	-	1	μA
Gate-Body Leakage Current	I _{GSS}	$V_{GS}=\pm20V, V_{DS}=0V$	-	-	±100	nA
On Characteristics (Note 3)						
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	1.2	2.0	2.8	V
Danie Course On Otata Danietana		V _{GS} =10V, I _D =20A	-	18	23	mΩ
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =4.5V, I _D =20A	-	22	27	mΩ
Forward Transconductance	g _{FS}	V _{DS} =5V,I _D =20A	-	35	-	S
Dynamic Characteristics (Note4)			<u>'</u>	•		
Input Capacitance	C _{Iss}	V _{DS} =50V,V _{GS} =0V,	-	1600	-	PF
Output Capacitance	Coss		-	139	-	PF
Reverse Transfer Capacitance	C _{rss}	F=1.0MHz	-	11	-	PF
Switching Characteristics (Note 4)			<u>'</u>	l		
Turn-on Delay Time	t _{d(on)}		-	6	-	nS
Turn-on Rise Time	t _r	$V_{DD} = 50V, I_{D} = 20A$	-	2	-	nS
Turn-Off Delay Time	t _{d(off)}	V_{GS} =10 V , R_{G} =1.6 Ω	-	18	-	nS
Turn-Off Fall Time	t _f		-	2	-	nS
Total Gate Charge	Qg	\/ F0\/ O0 A	-	26	-	nC
Gate-Source Charge	Q _{gs}	$V_{DS}=50V,I_{D}=20A,$	-	7.4		nC
Gate-Drain Charge	Q_{gd}	V _{GS} =10V	-	3.8		nC
Drain-Source Diode Characteristics			•			
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =45A	-		1.2	V
Diode Forward Current (Note 2)	Is		-	-	45	Α
Reverse Recovery Time	t _{rr}	T _J = 25°C, I _F = 20A	-		26	nS
Reverse Recovery Charge	Qrr	$di/dt = 500A/\mu s^{(Note3)}$	-		98	nC

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board, t ≤ 10 sec.
- 3. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2%.
- 4. Guaranteed by design, not subject to production
- 5. EAS condition : Tj=25 $^{\circ}\text{C}$,V_DD=20V,V_G=10V,L=0.5mH,Rg=25 Ω

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

Figure 3 Rdson-Drain Current

Figure 4 Rdson-Junction Temperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

Figure 7 Capacitance vs Vds

Figure 9 Power De-rating

Figure 8 Safe Operation Area

Figure 10 Current De-rating

Figure 11 Normalized Maximum Transient Thermal Impedance