

Midterm ELEC 275 Winter 2024 - B

Principles of Electrical Engineering (Concordia University)

Scan to open on Studocu

ELEC275: Principles of Electrical Engineering

Midterm EXAM Version B

Date: Tuesday March 5 5.45pm -8.30pm, 2024

Notes:

- 1. Each problem: 10 marks, and Total marks: 40
- 2. Start a new page of the booklets for every problem
- 3. Attach this page **only** with your booklets4. Only ENCS calculator allowed.
- 5. Closed book exam

	0 " "
Your name:	Concordia ID:

(

Problem 1. In the circuit shown in Fig.1, R_1 =2.5 Ω, R_2 =15 Ω, R_3 =6 Ω, R_4 =12 Ω, R_5 =60 Ω, R_6 =20 Ω, R_7 =80 Ω,

- (a) Calculate the equivalent resistance observed between nodes a and d, when switch S₁ is closed but S₂ and S₃ are open. (4 marks)
- (b) Calculate the equivalent resistance observed between nodes **a** and **c**, when S₁ and S₃ are open but S₂ is closed. (4 marks)
- (c) When all switches are closed, what is the total resistance observed between terminals c and d? (2 marks)

Fig. 1

Problem 2. Using mesh current method (KVL), calculate the current through resistance R_1 in the circuit shown in Fig. 2 and identify the direction of its flow. First write down the mesh current equation(s), and then solve the problem. R_1 =10 Ω , R_2 =5 Ω , R_3 =3 Ω , IS=7 A, and VS=10 V (5 marks)

Fig.2.

Problem 3. A circuit shown in Fig. 3 has $R_1=15 \Omega$, $R_2=8 \Omega$, $R_3=4 \Omega$, $R_4=4 \Omega$, $R_5=2 \Omega$, $V_5=10 V$, $I_1=2A$ and $I_2=3A$. Using nodal voltage method (KCL) to find the voltage across the current source I_1 , and to indicate the polarity of the voltage. First write down the mesh current equations, and then solve them to find the answer. (10 marks)

Fig. 3

Problem 4. For the circuit depicted in Fig. 4: R_1 =1 Ω, R_2 =0.5 Ω, R_3 =1 Ω, R_4 =0.5 Ω, R_5 =0.5 Ω, R_6 =100 Ω, V_{S1} =6 V, V_{S2} =15 V, I_{S1} =2 A, I_{S2} =2 A, and I_{S3} =15 A. RL is the load.

- (a) Find the Thévenin voltage ($V_{th} = V_{ab}$) by first writing circuit equations with only variables, and then find V_{th} . (8 marks)
- (b) What is the load value to have a maximum power transfer? and what is the maximum amount of power deliverable to a load? (2 marks)

Fig. 4

)