Секция «Математика и механика»

О применении марковских случайных полей в шумоочистке Петюшко Александр Александрович

Acnupahm

Mосковский государственный университет имени M.B. Ломоносова, Mеханико-математический факультет, Mосква, Pоссия E-mail: petsan@newmail.ru

Пусть $S = \{1, 2, ..., N\}$ - множество индексов, $X = (X_1, ..., X_N)$ - многомерная случайная величина (для простоты полагается, что $\forall j \ X_j$ дискретны и множество их значений x_j - конечно (например, из конечного множества A)). Введенная т.о. случайная величина X называется случайным полем (СП) на S. Совместное событие ($X_1 = x_1, ..., X_N = x_N$), кратко X = x, - конфигурация X. Множество всех возможных конфигураций - $X_1 = \{x_1, ..., x_N \mid x_i \in A \ \forall i \in S\}$.

Определение марковского случайного поля (МСП) дается через систему соседства [2]. Для дальнейших результатов важно понятие клики как полного графа с вершинами из S, любые две вершины которого являются соседями (любое одноэлементное подмножество S также считается кликой).

Пусть x_c - набор значений X_i , где $i \in c$ (c - клика). Потенциальная функция $V_c(x_c)$ - любая действительнозначная функция от x_c . Потенциал U(x) - это $\sum_{c \in C} V_c(x_c)$, где суммирование ведется по множеству всех клик C на S. Фундаментальный результат в теории МСП дает следующая

Теорема (Hammersley-Clifford). X - $MC\Pi\Leftrightarrow \mathbf{P}(X=x)$ - распределение Гиббса, m.e. имеет вид $\mathbf{P}(X=x)=\frac{1}{Z}\exp(-U(x))$, где $Z=\sum\limits_{x\in\chi}\exp(-U(x))$. **Теорема**. Пусть в введенных обозначениях N - $C\Pi$, заданное на множестве ин-

Теорема. Пусть в введенных обозначениях N - $C\Pi$, заданное на множестве индексов S, n - его конфигурация, m.ч. $n_i \in N(\mu, \sigma^2)$ - независимые компоненты Гауссова шума. Пусть $D = (d_1, ..., d_N), d_i = x_i + n_i, i \in S$ - $C\Pi$ на S. Тогда $\mathbf{P}(X = x | D = d) = \frac{1}{Z_1} \exp\left(-U(x) - \frac{1}{2\sigma^2} \sum_{i \in S} (\mu - (d_i - x_i))^2\right)$.

Т.о., вид распределения условного $MC\Pi$, зашумленного Гауссовым шумом, такой же, как и у исходного $MC\Pi$ $(\frac{1}{2\sigma^2}(\mu-(d_i-x_i))^2$ можно понимать как потенциал на одноэлементной клике $\{i\}$). Значит, оправдано использование датчика Гиббса [1] для выдачи реализации $MC\Pi$, учитывая следующее: 0) картинка считается монохромной; 1) параметры зашумления (μ,σ) заранее известны; 2) в качестве всех потенциальных функций на кликах берется хог; 3) в качестве начального приближения берется зашумленная картинка.

Проведенные эксперименты показали, что, в случае текстурного анализа, для удаления 90% шума достаточно 30-50 итераций датчика Гиббса.

Литература

- 1. Geman S., Geman D. Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images // IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 6 (6), 1984, pp. 721–741.
- 2. Li S.Z. Markov Random Field Modeling In Image Analysis. Springer, 2009.