CHEATSHEET for SCIENCE

1. IMPORTING NUMPY

• import numpy as np

2. CREATING ARRAYS

FROM A LIST:

• arr = np.array([1, 2, 3, 4, 5])

ZEROS AND ONES ARRAYS:

- zeros_arr = np.zeros(5)
- ones_arr = np.ones(5)

RANGE OF VALUES:

range_arr = np.arange(start, stop, step)

RANDOM VALUES:

rand_arr = np.random.rand(3, 3) # 3x3 random array

3. BASIC ARITHMETIC OPERATIONS:

BASIC ARITHMETIC OPERATIONS:

- result = arr1 + arr2
- result = arr1 arr2
- result = arr1* arr2
- result = arr1/arr2

ELEMENT-WISE OPERATIONS:

- result = np.square(arr)
- result = np.sqrt(arr)
- result = np.exp(arr)

DOT PRODUCT:

dot_product = np.dot(arr1, arr2)

4. ARRAY MANIPULATION

RESHAPE:

reshaped_arr = arr.reshape(rows, cols)

TRANSPOSE:

transposed_arr = arr.T

FLATTEN:

flattened arr = arr.flatten()

5. STATISTICAL OPERATIONS

MEAN, MEDIAN, STANDARD DEVIATION:

- mean_val = np.mean(arr)
- median_val = np.median(arr)
- std_dev = np.std(arr)

SUM, MIN, MAX:

total_sum = np.sum(arr) min_val = np.min(arr) max_val = np.max(arr)

6. INDEXING AND SLICING

- element = arr[index]
- sub_array = arr[start:stop]

7. LOGICAL OPERATIONS

• bool_arr = arr> 3

8. BROADCASTING

 result = arr + 5 # Adds 5 to each element of the array

9. CONCATENATION

- combined arr = np.concatenate((arr1, arr2), axis=0) #
- Concatenate along rows (axis=0)

10. STACKING

stacked_arr = np.vstack((arr1arr2)) # Vertically stack arrays

11. LINEAR ALGEBRA

eigenvalues, eigenvectors = np.linalg.eig(matrix)

12. RANDOM SAMPLING

random_sample = np.random.choice(arr, size=3, replace=False)

13. AVOIDING COPY

new_arr = arr.copy()

14. HANDLING NAN

has_nan = np.isnan(arr).any()

15. VECTORIZED OPERATIONS

result = np.sin(arr)

Found the post insightful?

Hit the Like. Comment. Repost.