

II. ADMINISTRACIÓN DE PROCESOS

2.5 PLANIFICACIÓN

Antes...

- Era sencillo... sólo había que ejecutar el siguiente trabajo.
- Con el tiempo compartido fue más complejo porque había múltiples usuarios esperando por el servicio.
- Las computadoras personales comúnmente existen trabajos en segundo plano.
- a pesar de que las computadoras se han vuelto mucho más rápidas también las aplicaciones tienden a requerir más recursos.

Planificación

- a) CPU-bound process
- b) I/O-bound process

Cuándo planificar

- Absolutamente requerido:
 - Cuando un proceso sale (termina).
 - Cuando un proceso se bloquea en E/S o un semáforo.
- Esto porque el proceso que se había estado ejecutando ya no está listo y se debe ejecutar otro.
- Normalmente requerido:
 - Cuando se crea un nuevo proceso (Reevaluar prioridades)
 - Cuando hay una interrupción de E/S (El dispositivo de E/S ha terminado su trabajo)
 - Cuando hay una interrupción de reloj (Un proceso se ha ejecutado demasiado tiempo)

Categorías

- De acuerdo a cómo lidian con las interrupciones de reloj.
 - No preventiva
 - Elige un proceso y lo deja que se ejecute hasta que se bloquee o libere voluntariamente el CPU.
 - Preventiva
 - Elige un proceso y lo deja que se ejecute por un máximo de tiempo predefinido.
 - Si no ha terminado se suspende y se elige a otro proceso disponible.
 - Debe haber una interrupción de reloj al final de tiempo predefinido para regresar el control del CPU al planificador.

Algoritmos de planificación

De acuerdo al ambiente

- 1. Por lotes.
 - No hay usuarios impacientes en espera de una respuesta rápida.
 - Algoritmos no preventivos, o algoritmos preventivos con largos períodos de tiempo para cada proceso son a menudo aceptables.
 - Reduce los cambios de proceso → mejora el rendimiento.
- 2. Interactivo.
 - La preferencia es esencial para mantener acaparar la CPU con un proceso y negar el servicio a los demás.
 - Incluso si ningún proceso se ejecuta intencionalmente para siempre, debido a un error del programa, podría bloquear a todos los demás indefinidamente.
 - La preferencia es necesaria para evitar este comportamiento.
 - Son de propósito general ejecutados de forma arbitraria, pueden ser no cooperativos o maliciosos.
- 3. Tiempo real.
 - La preferencia no es necesaria porque se sabe que los procesos pueden no se ejecutarse durante largos períodos de tiempo y por lo general hacen su trabajo y bloqueo rápidamente.
 - Sólo ejecutan programas para la aplicación específica.

Objetivo de los algoritmos de planificación

- Todos los sistemas
 - Equidad: dar a cada proceso una parte justa del CPU
 - Cumplimiento de la política: velar por que se lleve a cabo la política establecida
 - Equilibrio: mantener todas las partes del sistema ocupadas
- Sistemas por lotes
 - Rendimiento: maximice los trabajos por hora
 - Tiempo de respuesta: minimice el tiempo entre el envío y la finalización
 - Utilización de la CPU: mantenga la CPU ocupada todo el tiempo
- Sistemas interactivos
 - Tiempo de respuesta: responda a las solicitudes rápidamente
 - Proporcionalidad: satisfacer las expectativas de los usuarios
- Sistemas en tiempo real
 - Cumplir con los plazos: evite perder datos
 - Previsibilidad: evite la degradación de la calidad en los sistemas multimedia

Algoritmos de planificación

- Sistemas por lotes
 - FIFO (First In First Out)
 - Shortest Job First
 - Shortest Remaining Time Next
- Sistemas interactivos
 - Round-Robin Scheduling
 - Priority Scheduling
 - Shortest Process Next
 - Guaranteed Scheduling
 - Lottery Scheduling
 - Fair-Share Scheduling
- Sistemas en tiempo real
 - "Tener la respuesta correcta demasiado tarde es tan malo como no tenerla".
 - Hard Real Time
 - Soft Real Time
 - Eventos periódicos o no periódicos -> Si cumple con su criterio puede ser programable
 - Algoritmos estáticos (antes de iniciar el sistema) o dinámicos (en tiempo de ejecución.)

Planificación de hilos

 Cuando varios procesos tienen múltiples subprocesos, tenemos dos niveles de paralelismo presente: procesos e hilos.

• La planificación en tales sistemas difiere sustancialmente dependiendo de si los subprocesos a nivel de usuario o los subprocesos a nivel de kernel (o ambos) son compatibles. • (a) Posible programación de subprocesos a nivel de usuario con un proceso de 50 mseg. quantum y subprocesos que ejecutan 5 mseg por ráfaga de CPU.

• (b) Posible programación de subprocesos a nivel de kernel con las mismas características que (a).

