FLS 6441 - Methods III: Explanation and Causation

Week 1 - Review of Regression

Jonathan Phillips

February 2019

Course Objectives

- 1. Change how you think about quantitative methods, *explaining* politics, and not just describing it
- 2. Understand the 'toolkit' of methods used in top journals
- 3. Apply those methods to your own research questions

Course Website

Course Topics

- 1. Review of Regression
- 2. A Framework for Explanation
- 3. Field Experiments
- 4. Survey and Lab Experiments
- 5. Randomized Natural Experiments
- 6. Instrumental Variables
- 7. Discontinuities
- 8. Difference-in-Differences
- 9. Controlling for Confounding
- 10. Matching
- 11. Comparative Cases and Process Tracing
- 12. Generalizability, Reproducibility and Mechanisms

Course Schedule

- ► Wednesday 18h Submit Replication Task
- ► Thursday 14h-16h Class
- ► Thursday 16.15-17.30 Lab
- ► Friday 10h-12h Office Hours (DCP 2061)

Project

- ► Quality > Quantity
- ► Max 15 pages, English or Portuguese
- ► Submit paper and code by email to me by 30th June 2019
- ▶ Use at least one of the methods studied in class
- ► Pick a simple question and dataset

Today's Objectives

- 1. What Does Regression Actually Do?
- 2. Guide to 'Smart' Regression
- 3. What Does Regression NOT Do?

Section 1

What Does Regression Actually Do?

Data

1. We work with variables, which VARY!

	Variable
1	0.39
2	1.69
3	-1.05
4	-1.38
5	0.81
6	2.01
7	0.06
8	0.98
9	-0.98
10	-0.39

What Does Regression Actually Do?

- Regression as Least Squares
- 2. Regression as Conditional Expectation
- Regression as (Partial) Correlation

► Regression identifies the line through the data that minimizes the sum of squared vertical distances

- Regression identifies the line through the data that minimizes the sum of squared vertical distances
- $y_i = \alpha + \beta D_i + \epsilon_i$

- Regression identifies the line through the data that minimizes the sum of squared vertical distances
- $\rightarrow y_i = \alpha + \beta D_i + \epsilon_i$

Sum of Squared Residuals = 29.6 30 sum_resid_sq 15 10

0.5

coef

1.5

- Regression identifies the line through the data that minimizes the sum of squared vertical distances
- $\rightarrow y_i = \alpha + \beta D_i + \epsilon_i$

Slope = 0.50 X Sum of Squared Residuals = 21.6 30 sum_resid_sq 15 10

0.5

coef

0.0

1.5

- Regression identifies the line through the data that minimizes the sum of squared vertical distances
- $y_i = \alpha + \beta D_i + \epsilon_i$

- ► Regression identifies the line through the data that minimizes the sum of squared vertical distances
- $\rightarrow y_i = \alpha + \beta D_i + \epsilon_i$

Slope = 1.5

Sum of Squared Residuals =

- Regression identifies the line through the data that minimizes the sum of squared vertical distances
- $\triangleright v_i = \alpha + \beta D_i + \epsilon_i$

Sum of Squared Residuals = 25.5 30 sum_resid_sq 15 10 0.5 1.5

coef

0.0

- Regression identifies the line through the data that minimizes the sum of squared vertical distances
- $\rightarrow y_i = \alpha + \beta D_i + \epsilon_i$

- If we add pure noise to y, our estimate of β is unchanged
 The residual error increases
- $y_i = \alpha + \beta D_i + \epsilon_i$

Sum of Squared Residuals = 63.9

- Dummy control variables remove variation associated with specific levels or categories
 - The same for fixed effects

$$y_{ij} = \alpha + \beta_1 D_{ij} + \epsilon_i$$

Ignoring the dummy control variable, the slope coefficient is 1

- Dummy control variables remove variation associated with specific levels or categories
 - ► The same for fixed effects

$$\rightarrow y_{ij} = \alpha + \beta_1 D_{ij} + \epsilon_i$$

But the data points really represent two very different groups, blues and reds

- Dummy control variables remove variation associated with specific levels or categories
 - The same for fixed effects

What if we treated each group separately?

- Dummy control variables remove variation associated with specific levels or categories
 - The same for fixed effects

Dummy control variables remove the average Y differences between blues and reds

- Dummy control variables remove variation associated with specific levels or categories
 - ► The same for fixed effects

The new regression line for the full data now has a slope of zero

- ▶ Dummy control variables remove variation associated with specific levels or categories
 - ► The same for fixed effects

$$y_{ij} = \alpha + \beta_1 D_{ij} + \beta_2 X_j + \epsilon_i$$

Equivalently, dummy control variables restrict comparisons to **within the same group**:

- 1. How much does *X* affect *Y* within the blue group? Zero
- 2. How much does *X* affect *Y* within the red group? Zero
- What's the average of (1) and
 (2) (weighted by the number of units in each group)? Zero

- Continuous control variables remove variation based on how much the control explains y
- $y_i = \alpha + \beta_1 D_i + \epsilon_i$

The coefficient β_1 is 2.267 Real effect = 1

- Continuous control variables remove variation based on how much the control explains y
- $y_i = \alpha + \beta_1 D_i + \epsilon_i$

The coefficient β_1 is 2.267 Real effect = 1

- Continuous control variables remove variation based on how much the control explains y
- $y_i = \alpha + \beta_1 D_i + \beta_2 X_i + \epsilon_i$

The coefficient β_1 is 1.024 Real effect = 1

► Regression is also a **Conditional Expectation Function**

- ▶ Regression is also a Conditional Expectation Function
- ► Conditional on x, what is our expectation (mean value) of y?

$$y_i = \alpha + \beta_1 D_i + \epsilon_i$$

- Regression is also a Conditional Expectation Function
- ► Conditional on *x*, what is our expectation (mean value) of *y*?

$$y_i = \alpha + \beta_1 D_i + \epsilon_i$$

$$Attitude_i = \alpha + \beta_1 Income_i + N(0, \sigma^2)$$

- Regression is also a Conditional Expectation Function
- ► Conditional on x, what is our expectation (mean value) of y?

$$y_i = \alpha + \beta_1 D_i + \epsilon_i$$

$$Attitude_i = \alpha + \beta_1 Income_i + N(0, \sigma^2)$$

$$Attitude_i = 2.235 - 0.000818 * Income_i + N(0, 2.38)$$

- Regression is also a Conditional Expectation Function
- ► Conditional on x, what is our expectation (mean value) of y?

$$y_i = \alpha + \beta_1 D_i + \epsilon_i$$

$$Attitude_i = \alpha + \beta_1 Income_i + N(0, \sigma^2)$$

$$Attitude_i = 2.235 - 0.000818 * Income_i + N(0, 2.38)$$

ightharpoonup E(y|x),

- ► Regression is also a **Conditional Expectation Function**
- ► Conditional on x, what is our expectation (mean value) of y?

$$y_i = \alpha + \beta_1 D_i + \epsilon_i$$

$$Attitude_i = \alpha + \beta_1 Income_i + N(0, \sigma^2)$$

$$Attitude_i = 2.235 - 0.000818 * Income_i + N(0, 2.38)$$

- ightharpoonup E(y|x), E(Attitude|Income)
 - ▶ When income is 3000, the average attitude is -0.22
 - ▶ When income is 6000, the average attitude is -2.67
- ► E(attitude|income, age, gender, municipality)

ightharpoonup How do we work out the conditional expectation? We estimate eta

- ▶ How do we work out the conditional expectation? We estimate β
- ▶ But we **NEVER** know the exact value of β

- ▶ How do we work out the conditional expectation? We estimate β
- **But** we **NEVER** know the exact value of β
- Regression estimates a distribution for β

- ▶ How do we work out the conditional expectation? We estimate β
- **But** we **NEVER** know the exact value of β
- Regression estimates a distribution for β
 - \blacktriangleright That's why every β comes with a standard error

- ► How do we work out the conditional expectation? We estimate β
- ▶ But we **NEVER** know the exact value of β
- Regression estimates a distribution for β
 - ▶ That's why every β comes with a standard error

	Dependent variable:	
redist		
income	-0.000818*** (0.000078)	
Constant	2.234719*** (0.361477)	
Observations	1,000	
Note:	*p<0.1; **p<0.05; ***p<0.01	

- ► How do we work out the conditional expectation? We estimate β
- ▶ But we **NEVER** know the exact value of β
 - Regression estimates a distribution for β
 - ▶ That's why every β comes with a standard error

	Dependent variable:	
	redist	
income	-0.000818*** (0.000078)	
Constant	2.234719*** (0.361477)	
Observations	1,000	
Note:	*p<0.1; **p<0.05; ***p<0.01	

- ▶ How do we work out the conditional expectation? We estimate β
- ▶ But we **NEVER** know the exact value of β
- Regression estimates a distribution for β
 - ▶ That's why every β comes with a standard error

	Dependent variable:	
	redist	
income	-0.000818*** (0.000078)	
Constant	2.234719*** (0.361477)	
Observations	1,000	
Note:	*p<0.1; **p<0.05; ***p<0.01	

- ► How do we work out the conditional expectation? We estimate β
- ▶ But we **NEVER** know the exact value of β
- Regression estimates a distribution for β
 - ▶ That's why every β comes with a standard error

	Dependent variable:	
	redist	
income	-0.000818*** (0.000078)	
Constant	2.234719*** (0.361477)	
Observations	1,000	
Note:	*p<0.1; **p<0.05; ***p<0.01	

 Regression with two variables is very similar to calculating correlation

- Regression with two variables is very similar to calculating correlation
- $\blacktriangleright \hat{\beta} = cor(x, y) * \frac{\sigma_Y}{\sigma_X}$

- Regression with two variables is very similar to calculating correlation
- $\hat{\beta} = cor(x, y) * \frac{\sigma_Y}{\sigma_X}$

► Regression with two variables is very similar to calculating correlation:

$$\hat{\beta} = cor(x, y) * \frac{\sigma_Y}{\sigma_X}$$

► Correlation is 0.781

► Regression with two variables is very similar to calculating correlation:

$$\hat{\beta} = cor(x, y) * \frac{\sigma_Y}{\sigma_X}$$

- ► Correlation is 0.781
- ► Regression Results:

	term	estimate
1	(Intercept)	0.006
2	X	1.008

Regression with two variables is very similar to calculating correlation:

$$\hat{\beta} = cor(x, y) * \frac{\sigma_Y}{\sigma_X}$$

- ► It's identical if we standardize both variables first $(\frac{(x-\bar{x})}{a})$
- ► Correlation is 0.781
- Standardized Regression Results:

	term	estimate
1	(Intercept)	0.000
2	X	0.781

► Regression with **multiple** variables is very similar to calculating **partial** correlation

- Regression with multiple variables is very similar to calculating partial correlation

- Regression with multiple variables is very similar to calculating partial correlation
- $y_i = \alpha + \beta_1 x_1 + \beta_2 x_2 + \epsilon_i$
- Just a small difference in the denominator (how we standardize the measure)

- Regression with multiple variables is very similar to calculating partial correlation
- Just a small difference in the denominator (how we standardize the measure)

$$\beta_{x_1} = \frac{r_{yx_1} - r_{yx_2} r_{x_1 x_2}}{1 - r_{x_1 x_2}^2}$$

$$r_{yx_1|x_2} = \frac{r_{yx_1} - r_{yx_2} r_{x_1 x_2}}{\sqrt{(1 - r_{yx_2}^2)(1 - r_{x_1 x_2}^2)}}$$

► There is no magic in regression, it's just 'extra' correlation

Section 2

Guide to 'Smart' Regression

1. We will use regression throughout this course

- 1. We will use regression throughout this course
- 2. But in a very **precise** way for each methodology

- 1. We will use regression throughout this course
- 2. But in a very **precise** way for each methodology
- 3. There are fundamental best practices that apply to all the methodologies

 Choose Variables and Measures: To test a specific hypothesis

- Choose Variables and Measures: To test a specific hypothesis
- 2. **Choose a Model/Link Function:** To match the data type of your outcome variable

- Choose Variables and Measures: To test a specific hypothesis
- Choose a Model/Link Function: To match the data type of your outcome variable
- 3. Choose Covariates: To match your strategy of inference

- Choose Variables and Measures: To test a specific hypothesis
- Choose a Model/Link Function: To match the data type of your outcome variable
- 3. Choose Covariates: To match your strategy of inference
- Choose Fixed Effects: To focus on comparisons at a specific level

- Choose Variables and Measures: To test a specific hypothesis
- Choose a Model/Link Function: To match the data type of your outcome variable
- 3. Choose Covariates: To match your strategy of inference
- Choose Fixed Effects: To focus on comparisons at a specific level
- Choose Error Structure: To match known dependencies/clustering in the data or sampling

- Choose Variables and Measures: To test a specific hypothesis
- Choose a Model/Link Function: To match the data type of your outcome variable
- 3. Choose Covariates: To match your strategy of inference
- Choose Fixed Effects: To focus on comparisons at a specific level
- Choose Error Structure: To match known dependencies/clustering in the data or sampling
- 6. **Interpret the Coefficients:** To match the type/scale of the explanatory variable, outcome variable and model

- Choose Variables and Measures: To test a specific hypothesis
- Choose a Model/Link Function: To match the data type of your outcome variable
- 3. Choose Covariates: To match your strategy of inference
- Choose Fixed Effects: To focus on comparisons at a specific level
- Choose Error Structure: To match known dependencies/clustering in the data or sampling
- 6. **Interpret the Coefficients:** To match the type/scale of the explanatory variable, outcome variable and model
- Predict Meaningful Comparisons: To communicate your findings

1. Variables and Measures

► For the research question "Does income affect attitudes to redistribution?"

1. Variables and Measures

- ► For the research question "Does income affect attitudes to redistribution?"
- ▶ What measure of income should we use?

1. Variables and Measures

- ► For the research question "Does income affect attitudes to redistribution?"
- ► What measure of income should we use?
 - Pre-tax, post-tax, after government benefits?
- ▶ It depends on the theory we are testing

2. Regression Models

The Regression Model reflects the data type of the outcome variable:

- Continuous -> Ordinary Least Squares
 - Pick a precise number that reflects your attitude to redistribution
- ► Binary -> Logit
 - Do you support redistribution, yes or no?
- Unordered categories -> Multinomial logit
 - Do you think redistribution is a western, oriental or african concept?
- ► Ordered categories -> Ordered logit
 - ▶ Do you want a lot more, more, the same, less, or a lot less redistribution?
- ► Count -> Poisson
 - In the past year, how many times have you complained about redistribution?

► Which covariates should we include?

- ▶ Which covariates should we include?
- ▶ Which comparisons do we want to make?

- ► Which covariates should we include?
- ▶ Which comparisons do we want to make?
- ► Control for gender if we want to compare men with men, women with women

- ► Which covariates should we include?
- Which comparisons do we want to make?
- ► Control for gender if we want to compare men with men, women with women
- ► Most crucial where there is theory or evidence that this variable could be an **omitted variable**

 Data are usually hierarchical: countries, states, municipalities, neighbourhoods, families, individuals

- ▶ Data are usually hierarchical: countries, states, municipalities, neighbourhoods, families, individuals
- ► A fixed effect for countries means we only compare people within the same country

- ► Data are usually hierarchical: countries, states, municipalities, neighbourhoods, families, individuals
- ► A fixed effect for countries means we only compare people within the same country
- ► Removing *ALL* the variation between countries
 - If rich countries have stronger attitudes to redistribution, we control for this

- Data are usually hierarchical: countries, states, municipalities, neighbourhoods, families, individuals
- ► A fixed effect for countries means we only compare people within the same country
- ► Removing *ALL* the variation between countries
 - If rich countries have stronger attitudes to redistribution, we control for this
- ► Our question becomes: How do variations within income in the same country affect attitudes to redistribution?

► After all of our controls and fixed effects, we need to think about the errors - the bit we cannot explain

- After all of our controls and fixed effects, we need to think about the errors - the bit we cannot explain
- An assumption of regression analysis is that the errors are independent
 - Knowing the value of one error tells you nothing about the value of the next error
- ► But your attitudes to redistribution are probably very similar to everyone you live with, even after controlling for income etc.

- After all of our controls and fixed effects, we need to think about the errors - the bit we cannot explain
- ▶ An assumption of regression analysis is that the errors are independent
 - Knowing the value of one error tells you nothing about the value of the next error
- But your attitudes to redistribution are probably very similar to everyone you live with, even after controlling for income etc.
- ▶ So we don't really have 2 observations, we have closer to 1 'independent' observation
- \blacktriangleright So the standard errors for our β 's are over-optimistic (too small)

- After all of our controls and fixed effects, we need to think about the errors - the bit we cannot explain
- An assumption of regression analysis is that the errors are independent
 - Knowing the value of one error tells you nothing about the value of the next error
- But your attitudes to redistribution are probably very similar to everyone you live with, even after controlling for income etc.
- So we don't really have 2 observations, we have closer to 1 'independent' observation
- ▶ So the standard errors for our β 's are *over-optimistic* (too small)
- We need to adjust for these dependencies with clustered standard errors
 - Created by the underlying structure of the data
 - Or by our data sampling process

6. Interpreting Regression Results

- ➤ Difficult! It depends on the scale of the explanatory variable, scale of the outcome, the regression model we used, and the presence of any interaction
- ► Basic OLS:
 - 1 [unit of explanatory variable] change in the explanatory variable is associated with a β [unit of outcome variable] change in the outcome

6. Interpreting Regression Results

- ➤ Difficult! It depends on the scale of the explanatory variable, scale of the outcome, the regression model we used, and the presence of any interaction
- ► Logit:
 - 1 [unit of explanatory variable] change in the explanatory variable is associated with a β [unit of outcome variable] change in the outcome

► The coefficient on the regression of income on attitude to redistribution is -0.000818

- ► The coefficient on the regression of income on attitude to redistribution is -0.000818
 - So??? What do we learn from this?

- The coefficient on the regression of income on attitude to redistribution is -0.000818
 - So??? What do we learn from this?
 - Coefficients are hard to interpret, and depend on how we measure each variable
 - And p-values are arbitrary

- ► The coefficient on the regression of income on attitude to redistribution is -0.000818
 - So??? What do we learn from this?
 - Coefficients are hard to interpret, and depend on how we measure each variable
 - And p-values are arbitrary
- Better to make specific predictions of how changes in X produce changes in Y

$$Attitude_i = \alpha + \beta_1 \text{ Income}_i + \epsilon_i$$

$$Attitude_i = \alpha + \beta_1 \text{ Income}_i + \epsilon_i$$

$$Attitude_i = 2.235 - 0.000818 \text{ Income}_i + N(0, 2.378)$$

$$Attitude_i = \alpha + \beta_1 \operatorname{Income}_i + \epsilon_i$$

 $Attitude_i = 2.235 - 0.000818 \text{ Income}_i + N(0, 2.378)$

If Income is 3000:

$$Attitude_i = 2.235 - 0.000818 * 3000 + N(0, 2.378)$$

$$Attitude_i = -0.219 + N(0, 2.378)$$

$$Attitude_i = \alpha + \beta_1 \operatorname{Income}_i + \epsilon_i$$

 $Attitude_i = 2.235 - 0.000818 \text{ Income}_i + N(0, 2.378)$

If Income is 6000:

$$Attitude_i = 2.235 - 0.000818 * 6000 + N(0, 2.378)$$

$$Attitude_i = -2.673 + N(0, 2.378)$$

$$Attitude_i = \alpha + \beta_1 \text{ Income}_i + \epsilon_i$$

$$Attitude_i = 2.235 - 0.000818 \text{ Income}_i + N(0, 2.378)$$

Increasing Income from 3000 to 6000:

$$\Delta Attitude_i = (2.235-0.000818*6000)-(2.235-0.000818*3006)$$

$$\Delta Attitude_i = -2.673-0.219$$

$$\Delta Attitude_i = -2.454$$

- ► The regression model matters because the wrong model makes non-sensical predictions
- ► Consider a binary outcome: $Gender_i = \alpha + \beta Income_i + \epsilon_i$
- ► Compare the OLS and Logit regression tables:

	Dependent variable:
	as.numeric(as.character(gender))
income	0.0003*** (0.00001)
Constant	-0.696*** (0.066)
Observations	1,000
Note:	*p<0.1: **p<0.05: ***p<0.01

	Dependent variable:
	as.numeric(as.character(gender))
income	0.001*** (0.0001)
Constant	-6.360*** (0.457)
Observations	1,000
Note:	*p<0.1; **p<0.05; ***p<0.01

What Does Regression Actually Do?

- ► The regression model matters because the wrong model makes non-sensical predictions
- ► Consider a binary outcome: Gender_i = $\alpha + \beta Income_i + \epsilon_i$
- ► Compare the OLS and Logit **predictions** of gender for an income of R\$3000:

Section 3

What Does Regression NOT Do?

- Remember, regression is just fancy correlation
- Even after following all this guidance, Regression does NOT:
 - 1. Explain anything
 - Make bad data better
 - Tell you which model is 'best'
 - 4. Guarantee you are making sensible comparisons
- These all require research design, theory and assumptions

► Correlation is not causation

- ► Correlation is not causation
 - ▶ If we look hard enough we can always find correlations

► Correlation is not causation

- If we look hard enough we can always find correlations
- By chance...

Correlation is not causation

- If we look hard enough we can always find correlations
- ► By chance...
- Due to complex social patterns...

Correlation is not causation

- If we look hard enough we can always find correlations
- ▶ By chance...
- Due to complex social patterns...
- ▶ But we cannot conclude that D causes or explains Y

Correlation is not causation

- If we look hard enough we can always find correlations
- ▶ By chance...
- Due to complex social patterns...
- But we cannot conclude that D causes or explains Y
- More data will not help

▶ Correlation is not causation

- If we look hard enough we can always find correlations
- ▶ By chance...
- Due to complex social patterns...
- ▶ But we cannot conclude that D causes or explains Y
- ► More data will not help
- ► The problem is the *type* of data; it does not allow us to answer the causal question

Divorce rate in Maine

correlates with

Per capita consumption of margarine

tylervigen.com

Worldwide non-commercial space launches

correlates with

Sociology doctorates awarded (US)

ylervigen.com

US crude oil imports from Norway

correlates with

Drivers killed in collision with railway train

tylervigen.com

Letters in Winning Word of Scripps National Spelling Bee

correlates with

Number of people killed by venomous spiders

tylervigen.com

Figure 1. Correlation between Countries' Annual Per Capita Chocolate Consumption and the Number of Nobel Laureates per 10 Million Population.

What Does Regression NOT Do?

- ► Lots of things can go 'wrong' with regression:
 - 1. Omitted Variable Bias
 - 2. Reverse Causation
 - 3. Selection Bias
 - 4. Measurement Bias
 - 5. Lack of Overlap, Model Dependence

0

1

gender

0

1

2. Reverse Causation

► Significant regression coefficients just reflect the values in our dataset moving together

2. Reverse Causation

- Significant regression coefficients just reflect the values in our dataset moving together
- ► Does the 'direction' of regression matter? I.e. Does regression treat *X* and *Y* differently?

2. Reverse Causation

- Significant regression coefficients just reflect the values in our dataset moving together
- ► Does the 'direction' of regression matter? I.e. Does regression treat *X* and *Y* differently?
- Yes!

	Dependent variable:	
	redist	
income	-0.011 (0.029)	
gender1	-1.201*** (0.058)	
Constant	0.589*** (0.038)	
Observations	1,000	
Note:	*p<0.1; **p<0.05; ***p<0.01	

	Dependent variable:
	income
redist	-0.013 (0.034)
gender1	0.993 * * * (0.069)
Constant	-0.487*** (0.043)
Observations	1,000
Note:	*n<0.1 · **n<0.05 · ***n<0.01

- ► Remember, regression measures the *vertical* (not diagonal) distances to the regression line
 - It minimizes the prediction errors for Y
- But that doesn't mean it identifies the direction of causation!

- ► There are four selection risks:
 - 1. Selection into existence
 - 2. Selection into survival
 - 3. Selection into the dataset
 - 4. Selection into treatment
- In each case, we don't see the full relationship between X and Y
- So our regression estimates are biased

► Imagine we do not see 'rich' units with high income (above R\$4000)

► Imagine we do not see 'rich' units with high income (above R\$4000)

- ► There are four selection risks:
 - 1. Selection into existence:
 - Where do units (eg. political parties) come from?
 - Probably only parties that have a chance of success are formed
 - Does forming a party cause electoral success? Not for most people!

► There are four selection risks:

2. Selection into survival:

 Certain types of units disappear, so the units we see don't tell the full story

- Where would additional armour protect bombers?
- ► Returned bombers got hit
- ▶ But we do not know where bombers that did not return got hit

- ► There are four selection risks:
 - 3. Selection into the dataset:
 - Our dataset may not be representative
 - Only units with particular values of X and Y enter the dataset
 - Eg. If survey respondents who refuse are different from those who respond

- ► There are four selection risks:
 - 4. Selection into treatment:
 - All units are in our dataset, but they choose their treatment value
 - ► Who chooses treatment? Those with the most to benefit, i.e. depending on Y!
 - Applying treatment to the others would probably have a very different effect

► What happens if we measure our variables wrongly?

Effects of Measurement Error

	Measured with Bias	Measured with Random Noise
Outcome Variable	Effect biased	No bias but wider stan- dard errors
Treatment Variable	Effect biased	Effect biased to zero

- ► What happens if we measure our variables wrongly?
- ► No extra noise:

	Dependent variable:	
	redist	
income	-0.818*** (0.078)	
Constant	2.235 * * * (0.361)	
Observations	1,000	
Note:	*p<0.1; **p<0.05; ***p<0.01	

- ▶ What happens if we measure our variables wrongly?
- ► Noise in the **outcome variable**:

	Dependent variable:	
	redist	
income	-0.831*** (0.144)	
Constant	2.272*** (0.665)	
Observations	1,000	
Note:	*p<0.1; **p<0.05; ***p<0.01	

- ▶ What happens if we measure our variables wrongly?
- ► Noise in the **explanatory** variable:

	Dependent variable:	
	redist	
income	-0.187*** (0.037)	
Constant	-0.620*** (0.183)	
Observations	1,000	
Note:	*p<0.1; **p<0.05; ***p<0.01	

- Regression normally helps us pick appropriate comparisons
 - Eg. Comparing only among men, what is the effect of income on attitudes to redistribution?
- ▶ But what if there are no women with high income?
- ► Regression *creates* comparisons for us
 - How? That's where the functional for of the regression comes in
 - A linear regression interpolates/extrapolates linearly to 'create' comparison cases
- Lack of overlap probably means we cannot explain outcomes with this data

gender

U

1

gender

- With more than a few variables, lack of overlap is guaranteed
- 6 variables with 10 categories each = 10⁶ = 1,000,000 possibilities, and a sample of maybe 5,000?
 Common datasets have 0% counterfactuals present in the
- Common datasets have 0% counterfactuals present in the data (King 2006)
 - How many 45 year-old female accountants with a PhD and a cat who live in Centro are there?
 - And we need some that are low-income and some that are high-income
- A problem of multi-dimensionality
- And of model dependence our results depend on the functional form in our regression model