# HAETAE: Rejecting on Hyperballs

Jung Hee Cheon<sup>1,2</sup>, <u>Hyeongmin Choe</u><sup>1</sup>, Julien Devevey<sup>3</sup>, Tim Güneysu<sup>4</sup>, Dongyeon Hong<sup>2</sup>, Markus Krausz<sup>4</sup>, Georg Land<sup>4</sup>, Junbum Shin<sup>2</sup>, Damien Stehlé<sup>2</sup>, MinJune Yi<sup>1</sup>

 $^1$ Seoul National University,  $^2$ CryptoLab Inc.,  $^3$ École Normale Supérieure de Lyon,  $^4$ Ruhr Universität Bochum,

KIAS-JBNU KpqC Workshop May 18-19, 2023



# Table of Contents

#### 1. Brief Introduction to HAETAE:

- Recap and summarizing HAETAE
- "Fiat-Shamir with Aborts" paradigm

### 2. Rejection Sampling:

- What is "Rejection Sampling?"
- Rejection sampling in FS signatures
- Rejection sampling in HAETAE

#### 3. HAETAE updates:

#### 1. Brief Introduction to HAETAE:

- Recap and summarizing HAETAE
- "Fiat-Shamir with Aborts" paradigm

### 2. Rejection Sampling

- What is "Rejection Sampling?"
- Rejection sampling in FS signatures
- Rejection sampling in HAETAE

#### 3. HAETAE updates

### **HAETAE**

- Digital signature scheme, submitted to KpqC competition.
- Secure against quantum attacks
  - based on lattice hard problems, MLWE and MSIS
  - follows Fiat-Shamir with aborts framework, secure in QROM
- Goal:

#### Push Fiat-Shamir Signatures to the Limits!

| Scheme      | LvI. | Sig.   | vk     | ConstT.                  | Maskable   |
|-------------|------|--------|--------|--------------------------|------------|
| Falcon-512  | 1    | 666B   | 897B   | ✓ [Por19]                | ✗ [Pre23]  |
| Dilithium-2 | 2    | 2,420B | 1,312B | √ [DKL <sup>+</sup> 18a] | √ [MGTF19] |
| HAETAE-120  | 2    | 1,463B | 992B   | <b>√</b>                 | ✓          |

Table: NIST security level, signature size, verification key size, and implementation security, with respect to constant-time and masking of selected signature schemes.

### **HAETAE**

- Simple but short
  - simpler than Falcon<sup>1</sup> & shorter than Dilithium<sup>1</sup>
  - optimal rejection rate with simple rejection condition
- Design rationale: We combine the recent approaches,
  - Fiat-Shamir with Aborts framework
  - Bimodal rejection sampling
  - randomness sampling from Hyperball distribution

#### with the NEW techniques.

- secret key rejection sampling: efficient and easily maskable
- verification key truncation: in bimodal setting
- signature compression: in hyperball setting
- discretized hyperball sampling: a fixed-point implementation

<sup>&</sup>lt;sup>1</sup>NIST 2022 PQC signature standards

#### 1. Brief Introduction to HAETAE:

- Recap and summarizing HAETAE
- "Fiat-Shamir with Aborts" paradigm

#### 2. Rejection Sampling

- What is "Rejection Sampling?"
- Rejection sampling in FS signatures
- Rejection sampling in HAETAE

#### 3. HAETAE updates

# Lattice-based signatures

#### Fiat-Shamir with Aborts



#### Hash-and-Sign



# Fiat-Shamir with Aborts

From an interactive identification protocol, FS transform provides a non-interactive ID protocol, say signature. E.g. Schnorr ID protocol  $\stackrel{FS}{\longrightarrow}$  Schnorr signature.

#### Basic "Fiat-Shamir with aborts" framework [Lyu09, Lyu12]

KeyGen: output (sk = s, vk = A), where  $t = As \mod q$  and s is short.

 $\begin{aligned} \operatorname{Sign}(\mathsf{sk} = \mathbf{s}, \ m) : \ \text{for short } \mathbf{y}, \ \text{compute } c = H(\mathbf{A}\mathbf{y} \bmod q, \ m) \ \text{and} \\ \mathbf{z} = \mathbf{y} + c\mathbf{s}, \ \text{then output } (c, \ \mathbf{z}) \ \text{via rejection sampling}. \end{aligned}$ 

Verify(vk =  $\mathbf{A}$ , m): check  $c = H(\mathbf{Az} - c\mathbf{t} \mod q, m)$  and  $\mathbf{z}$  is short.

#### Correctness:

- First,  $\bf y$  and  $\bf s$  are short. Since  $c=H(\cdot)$  is binary,  $c{\bf s}$  is also short. Thus,  ${\bf z}={\bf y}+c{\bf s}$  is short.
- It holds that  $Az ct = A(y + cs) ct = Ay \mod q$  since  $As = t \mod q$ .

# Fiat-Shamir with Aborts

#### Basic "Fiat-Shamir with aborts" framework [Lyu09, Lyu12]

Sign(sk = s, m): for short y, compute  $c = H(\mathbf{Ay} \mod q, m)$  and  $\mathbf{z} = \mathbf{y} + c\mathbf{s}$ , then output  $(c, \mathbf{z})$  via rejection sampling.

#### Security:

- In the interactive setting, the signature  $\mathbf{z} = \mathbf{y} + c\mathbf{s}$  can leak information about  $\mathbf{s}$  if  $\|\mathbf{y}\|$  is small. To avoid this, the noise flooding technique is generally used: setting  $\|\mathbf{y}\| \approx 2^B \cdot \|c\mathbf{s}\|$  for B bit security.
- But using noise flooding makes the signature sizes much larger.
- "Aborting", or "rejection sampling", makes it possible to have a signature distribution independent of the secret, during the FS transforms.

#### 1. Brief Introduction to HAETAE

- Recap and summarizing HAETAE
- "Fiat-Shamir with Aborts" paradigm

### 2. Rejection Sampling:

- What is "Rejection Sampling?"
- Rejection sampling in FS signatures
- Rejection sampling in HAETAE

#### 3. HAETAE updates

# Rejection sampling

- Rejection sampling is a widely studied and used, folklore technique from probabilities<sup>2</sup>.
- In general, the signing procedure is given as:
  - 1  $\mathbf{v} \leftarrow Q_0$
  - $c \leftarrow H(\mathbf{A}\mathbf{y}, m)$
  - 3  $\mathbf{z} \leftarrow \mathbf{y} + c\mathbf{s}$
  - 4 with probability  $\min\Big(1, \frac{P(c,\mathbf{z})}{M\cdot Q(c,\mathbf{z})}\Big)$ , return  $\sigma=(c,\mathbf{z})$
  - 5 if it is not returned, go to step 1

where Q is the probability distribution of  $(c, \mathbf{z})$ .

• Assuming  $R_{\infty}(P\|Q) \leq M$  for some M>0, the distribution of the signature in step 3  $(\sigma \sim Q)$ , turns into a distribution independent of s  $(\sigma \sim P)$ .

<sup>&</sup>lt;sup>2</sup> Julein Devevey, On Rejection Sampling in Lyubashevsky's Signature Scheme, Journées Codage et Cryptographie — Hendaye, 2022.

Rejection sampling strategy can be rewritten as:

Given access to  $X_1, X_2, \cdots \xleftarrow{i.i.d.} Q$ , it is a family of randomized algorithms

$$\mathcal{A}_i : \mathsf{supp}(Q)^i \to [i] \cup \{\bot\},$$

finding the smallest  $i^*$  such that  $X_{i^*}$  is distributed following P, by defining

$$\mathcal{A}_i: (X_1, \cdots, X_i) \mapsto \left\{ egin{array}{l} i ext{ with prob.} & rac{P(X_i)}{R_{\infty}(P||Q) \cdot Q(X_i)}, \\ ot & ext{otherwise}, \end{array} 
ight.$$

from  $i=1,\cdots$ , which ends if  $\mathcal{A}_i \to i (=i^*)$ , then finally outputs  $X_{i^*}$ .

Cf. Short recap on Rényi divergence:  ${}^3$ for  $supp(P) \subseteq supp(Q)$ ,

$$R_{\infty}(P||Q) := \sup_{x \in \text{supp}(P)} P(x)/Q(x).$$

<sup>&</sup>lt;sup>3</sup>We can also consider  $supp(P) \not\subseteq supp(Q)$ , say smooth Rényi, but not here.

• Running time: the expected run-time is  $\mathbb{E}[i^*]$  since it ends when  $\mathcal{A}_i$  outputs i. A quick computation shows  $\mathbb{E}[i^*] = R_{\infty}(P||Q)$ :

$$\begin{split} \Pr[\mathcal{A}_i \to i] &= \sum_{x_i} Q(x_i) \cdot \frac{P(x_i)}{R_{\infty}(P\|Q) \cdot Q(x_i)} = R_{\infty}(P\|Q)^{-1} (\mathsf{let}, = p), \\ \mathbb{E}[i^*] &= \sum_{i \geq 1} i \cdot \Pr[i^* = i] \\ &= \sum_{i \geq 1} i \cdot \Pr[(\mathcal{A}_1, \cdots, \mathcal{A}_{i-1} \to \bot) \wedge (\mathcal{A}_i \to i)] \\ &= \sum_{i \geq 1} i \cdot p \cdot (1 - p)^{i-1} = p^{-1} = R_{\infty}(P\|Q). \end{split}$$

• Distribution of final output  $X_{i^*}$ : the probability density function of the final output becomes P:

$$\begin{aligned} \mathsf{pdf}[X_{i^*} = x] &= \sum_{i \geq 1} \Pr[\mathcal{A}_1, \cdots, \mathcal{A}_{i-1} \to \bot] \cdot \Pr[(\mathcal{A}_i \to i) \land (X_i = x)] \\ &= \sum_{i \geq 1} (1 - p)^{i-1} \cdot Q(x) \cdot \frac{P(x)}{R_{\infty}(P \parallel Q) \cdot Q(x)} \\ &= P(x) \cdot \sum_{i \geq 1} p(1 - p)^{i-1} = P(x). \end{aligned}$$

So far, the transcripts (the final output) and the run-time (the number of iterations) of the rejection sampling strategy and that of the following algorithm are indistinguishable:

Given access to  $X \leftarrow P$ , it samples  $X \leftarrow P$ , and outputs X with probability  $R_{\infty}(P||Q)^{-1}$ , else re-sample it and repeat.

- run-time:  $R_{\infty}(P\|Q)$ ,
- final output:  $X \leftarrow P$ .

#### Three simple facts:

- the same thing holds in the continuous domain,
- the Rényi divergence in the denominator can be replaced by M>0 such that  $R_{\infty}(P\|Q) \leq M$ ,
- more analysis is needed if we set a bound on  $i^*$ , say **bounded rejection**.

Hence, if  $R_{\infty}(P||Q) \leq M < \infty$ , the following two games are indistinguishable:

| $\mathcal{A}^{real}$ :                                                                | $\mathcal{A}^{ideal}$ :                         |
|---------------------------------------------------------------------------------------|-------------------------------------------------|
| 1: $\mathbf{x} \leftarrow Q$                                                          | 1: $\mathbf{x} \leftarrow P$                    |
| 2: Return $\mathbf{x}$ with probability $\frac{P(\mathbf{x})}{M \cdot Q(\mathbf{x})}$ | 2: Return ${f x}$ with probability ${1\over M}$ |
| 3: Else repeat 1–2                                                                    | 3: Else repeat 1–2                              |

### Imperfect rejection:

- Similar thing holds also for  $M \approx R_{\infty}(P\|Q)$  or for smooth-Rényi divergence, i.e., when  $\operatorname{supp}(P) \not\subseteq \operatorname{supp}(Q)$ , with some statistical distance between the outputs.
- Since the fraction could have a value larger than 1, it should be replaced by  $\min\left(\frac{P(\mathbf{x})}{M\cdot Q(\mathbf{x})},1\right)$ .

Cf. HAETAE uses the perfect, unbounded rejection.

#### 1. Brief Introduction to HAETAE

- Recap and summarizing HAETAE
- "Fiat-Shamir with Aborts" paradigm

### 2. Rejection Sampling:

- What is "Rejection Sampling?"
- Rejection sampling in FS signatures
- Rejection sampling in HAETAE

#### 3. HAETAE updates

# Rejection sampling in FS signatures

- The **FS signatures** are commonly given as follows:
  - 1  $\mathbf{y} \leftarrow Q_0$
  - $\mathbf{2} \ c \leftarrow H(\mathbf{A}\mathbf{y}, m)$
  - 3  $\mathbf{z} \leftarrow \mathbf{y} + c\mathbf{s}$
  - 4 with probability  $\min\left(1, \frac{P(c, \mathbf{z})}{M \cdot Q(c, \mathbf{z})}\right)$ , return  $\sigma = (c, \mathbf{z})$ , else go to step 1
- The ideal signing can be given as:
  - 1  $c \leftarrow U(\mathcal{C})$
  - $\mathbf{z} \leftarrow P^z$
  - 3 with probability 1/M, return  $(c, \mathbf{z})$ , else go to step 1
- In the simulation-based proofs, the hash can be reprogrammed, and the challenge sampling can be treated as  $c \leftarrow U(\mathcal{C})$ .
- Then, it can be seen as  $Q = Q_{cs} \otimes U(\mathcal{C})$  and  $P = P^z \otimes U(\mathcal{C})$ .
- Then, the real and ideal signing algorithms are indistinguishable.

# Rejection sampling in FS signatures

- The **FS signatures** are commonly given as follows:
  - 1  $\mathbf{y} \leftarrow Q_0$
  - 2  $c \leftarrow H(\mathbf{A}\mathbf{y}, m)$
  - 3  $\mathbf{z} \leftarrow \mathbf{y} + c\mathbf{s}$
  - 4 with probability  $\min\Big(1, \frac{P(c,\mathbf{z})}{M\cdot Q(c,\mathbf{z})}\Big)$ , return  $\sigma=(c,\mathbf{z})$ , else go to step 1
- The ideal signing can be given as:
  - 1  $c \leftarrow U(\mathcal{C})$
  - 2  $\mathbf{z} \leftarrow P^z$
  - 3 with probability 1/M, return  $(c, \mathbf{z})$ , else go to step 1
- Remark 1. The aborted transcripts can even be simulated [DFPS23].
- Remark 2. The rewinding and reprogramming can not be directly treated in the QROM (see [KLS18, GHHM21, DFPS23]).

# Rejection sampling in FS signatures

One important thing in practice is accepting a signature with probability  $\frac{P(c,\mathbf{z})}{M\cdot Q(c,\mathbf{z})} = \frac{P^z(\mathbf{z})}{M\cdot Q_{cs}(\mathbf{z})}$ , which is also a challenging point.

• In [Lyu09] and Dilithium [DKL<sup>+</sup>18b], the uniform distributions in hypercubes are used both for  $Q_0$  and  $P^z$ , making it

$$\frac{P(c,\mathbf{z})}{M\cdot Q(c,\mathbf{z})} = \frac{\frac{1}{|I|^n}\cdot \chi(\mathbf{z}\in I^n)}{M\cdot \frac{1}{|J|^n}\cdot \chi(\mathbf{z}\in (J^n+c\mathbf{s}))} = \left\{ \begin{array}{l} 1 & \text{if } \mathbf{z}\in I^n\cap (J^n+c\mathbf{s}) \\ 0 & \text{otherwise} \end{array} \right.,$$

where I and J are appropriate intervals, and  $\chi$  is a characteristic function.

 In [Lyu12] and Bliss [DDLL13]<sup>4</sup>, the n-dimensional discrete Gaussian distributions are used. As a result, aborting the signature with Gaussian probability makes it hard to implement (see [EFGT17]).

In fact, a bit different due to bimodal distribution

#### 1. Brief Introduction to HAETAE

- Recap and summarizing HAETAE
- "Fiat-Shamir with Aborts" paradigm

### 2. Rejection Sampling:

- What is "Rejection Sampling?"
- Rejection sampling in FS signatures
- Rejection sampling in HAETAE

#### 3. HAETAE updates

# Hyperball bimodal rejection sampling

In HAETAE, we instead, use  $uniform\ hyperball\ distribution\ for\ sampling\ y$  following [DFPS22];

- $Q_{cs}$  becomes a uniform distribution over a union of hyperballs with an intersection,  $\mathcal{HB}_{-cs}(B) \cup \mathcal{HB}_{cs}(B)$ ,
- P becomes a hyperball uniform distribution,  $\mathcal{HB}_{-c\mathbf{s}}(B')$ ,

as shown below.



Distribution of  $Q_{cs}$  and P.

Remark. The purple hyperball should be included in **every**  $\mathcal{HB}_{-cs}(B) \cup \mathcal{HB}_{cs}(B)$  for the perfect rejection.

# Hyperball bimodal rejection sampling

The use of hyperball distribution makes it possible

- ullet to exploit optimal rejection rate,  $\mathbb{E}[i^*]$ ,
- ullet to reduce signature sizes,  $\mathbb{E}[\|\mathbf{x}\|]$ ,





Figure: Distribution of P and Q

### and use the bimodal approach [DDLL13];

- for more compact signature sizes,
- but with a simpler rejection condition, which leads to the easier implementation of secure rejection.

# Hyperball bimodal rejection sampling: detailed analysis

The distributions can be expressed as follows:

• 
$$Q_{c\mathbf{s}}(\mathbf{z}) = \frac{1}{2} \cdot \frac{1}{\text{vol}(\mathcal{HB}(B))} \cdot \chi(\|\mathbf{z} - c\mathbf{s}\| < B) + \frac{1}{2} \cdot \frac{1}{\text{vol}(\mathcal{HB}(B))} \cdot \chi(\|\mathbf{z} + c\mathbf{s}\| < B),$$

• 
$$P(\mathbf{z}) = \frac{1}{\text{vol}(\mathcal{HB}(B))} \cdot \chi(\|\mathbf{z}\| < B').$$

This leads to

$$\begin{split} \frac{P(\mathbf{z})}{M \cdot Q_{c\mathbf{s}}(\mathbf{z})} &= \frac{\chi(\|\mathbf{z}\| < B')}{\chi(\|\mathbf{z} - c\mathbf{s}\| < B) + \chi(\|\mathbf{z} + c\mathbf{s}\| < B)} \\ &= \begin{cases} 0 & \text{if } \mathbf{z} \notin \mathcal{HB}(B'), \\ 1/2 & \text{if } \mathbf{z} \in \mathcal{HB}(B') \cap \mathcal{HB}_{c\mathbf{s}}(B) \cap \mathcal{HB}_{-c\mathbf{s}}(B), \\ 1 & \text{if } \mathbf{z} \in \mathcal{HB}(B') \setminus (\mathcal{HB}(B, c\mathbf{s}) \cap \mathcal{HB}(B, -c\mathbf{s})) \end{cases} \end{split}$$

for some M > 0.

# Hyperball bimodal rejection sampling

That is, we return  $\mathbf{x} = (c, \mathbf{z})$  with probability

- 0: if  $\|\mathbf{z}\| \ge B'$ ,
- 1/2: else if  $\|\mathbf{z} c\mathbf{s}\| < B$  and  $\|\mathbf{z} + c\mathbf{s}\| < B$ ,
- 1: otherwise.

Since  $\mathbf{z} = \mathbf{y} + (-1)^b c\mathbf{s}$ , we can do this without using  $\mathbf{s}$ ,

ng s, 0 1

- if  $\|\mathbf{z}\| \geq B'$ , reject,
- else if  $||2\mathbf{z} \mathbf{y}|| < B$ , reject with probability 1/2,
- otherwise, accept,

resulting in a signature, distributed uniform in a hyperball  $\mathcal{HB}(B')$ .

 $<sup>^{5}\{\</sup>mathbf{z}\pm c\mathbf{s}\} = \{\mathbf{y}, 2\mathbf{z} - \mathbf{y}\} \text{ and always } \|\mathbf{y}\| < B.$ 

#### 1. Brief Introduction to HAETAE:

- Recap and summarizing HAETAE
- "Fiat-Shamir with Aborts" paradigm

### 2. Rejection Sampling:

- What is "Rejection Sampling?"
- Rejection sampling in FS signatures
- Rejection sampling in HAETAE

### 3. HAETAE updates:

# **Updates**

After submitting to KpqC Round 1, we had many further improvements, consisting of

- Missing parts inclusion: rANS encoding, rejection sampling for secret key sampling,
- $\bullet$  New compressions: public key truncation and updated signature (especially the hint vector h) compression,
- New secret key rejection: security was underestimated due to a non-tight bound for  $\|c\mathbf{s}\|$ ,
- Fully discretized hyperball: bound the statistical distance between 'continuous' and 'discretized' hyperballs and their effects on security,
- and some minor updates, adapted from Dilithium and others.

Considering the above changes, we update the parameters and implementation.

# **Updates**

#### Implementation:

- Fixed-Point and Constant-Time<sup>6</sup>,
- Easily Maskable!: detailed analysis is given in ia.cr/2023/624, and the masked implementation is ongoing,

#### Sizes and Performance:

|                        |      | Sizes (bytes) |     | Cycles (med) |      |        |
|------------------------|------|---------------|-----|--------------|------|--------|
| Param. set             | LvI. | Sig.          | vk  | KeyGen       | Sign | Verify |
| HAETAE-120/Dilithium-2 | 2    | 60%           | 76% | 408%         | 548% | 106%   |
| HAETAE-180/Dilithium-3 | 3    | 71%           | 75% | 383%         | 484% | 123%   |
| HAETAE-260/Dilithium-5 | 5    | 63%           | 80% | 181%         | 363% | 94%    |
| Falcon-512/HAETAE-120  | 1/2  | 46%           | 90% | 3,885%       | 277% | 27%    |
| Falcon-1024/HAETAE-260 | 5    | 44%           | 86% | 9,110%       | 423% | 25%    |

Table: Relative comparison between HAETAE, Dilithium, and Falcon using their constant-time reference implementation<sup>7</sup>.

<sup>&</sup>lt;sup>6</sup>available at HAETAE website: kpqc.cryptolab.co.kr.

<sup>&</sup>lt;sup>7</sup>not yet optimized, yet ongoing with some basic optimizations.

Thanks!

Any question?

### References I

[BG14] Shi Bai and Steven D Galbraith.

An improved compression technique for signatures based on learning with errors.

In Cryptographers' Track at the RSA Conference, pages 28–47. Springer, 2014.

[DDLL13] Léo Ducas, Alain Durmus, Tancrède Lepoint, and Vadim Lyubashevsky. Lattice signatures and bimodal gaussians.
In <u>Annual Cryptology Conference</u>, pages 40–56. Springer, 2013.

[DFPS22] Julien Devevey, Omar Fawzi, Alain Passelègue, and Damien Stehlé.
 On rejection sampling in lyubashevsky's signature scheme.
 Cryptology ePrint Archive, Number 2022/1249, 2022.
 To be appeared in Asiacrypt, 2022. https://eprint.iacr.org/2022/1249.

[DFPS23] Julien Devevey, Pouria Fallahpour, Alain Passelègue, and Damien Stehlé. A detailed analysis of fiat-shamir with aborts. Cryptology ePrint Archive, Paper 2023/245, 2023. https://eprint.iacr.org/2023/245.

# References II

[DKL+18a] Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, Peter Schwabe, Gregor Seiler, and Damien Stehlé.

CRYSTALS-Dilithium: A lattice-based digital signature scheme.

IACR TCHES, 2018(1):238–268, 2018.

https://tches.iacr.org/index.php/TCHES/article/view/839.

[DKL+18b] Léo Ducas, Eike Kiltz, Tancrede Lepoint, Vadim Lyubashevsky, Peter Schwabe, Gregor Seiler, and Damien Stehlé.

Crystals-dilithium: A lattice-based digital signature scheme.

IACR Transactions on Cryptographic Hardware and Embedded Systems, pages 238–268, 2018.

[DLP14] Léo Ducas, Vadim Lyubashevsky, and Thomas Prest.

Efficient identity-based encryption over ntru lattices.

In International Conference on the Theory and Application of Cryptology and Information Security, pages 22–41. Springer, 2014.

### References III

[DP16] Léo Ducas and Thomas Prest.

Fast fourier orthogonalization.

In Proceedings of the ACM on International Symposium on Symbolic and Algebraic Computation, pages 191–198, 2016.

[Duc14] Léo Ducas.

Accelerating bliss: the geometry of ternary polynomials.

Cryptology ePrint Archive, Paper 2014/874, 2014.

https://eprint.iacr.org/2014/874.

[EFG<sup>+</sup>22] Thomas Espitau, Pierre-Alain Fouque, François Gérard, Mélissa Rossi, Akira Takahashi, Mehdi Tibouchi, Alexandre Wallet, and Yang Yu.

Mitaka: A simpler, parallelizable, maskable variant of.

In Annual International Conference on the Theory and Applications of Cryptographic Techniques, pages 222–253. Springer, 2022.

# References IV

[EFGT17] Thomas Espitau, Pierre-Alain Fouque, Benoît Gérard, and Mehdi Tibouchi.

 $Side-channel\ attacks\ on\ BLISS\ lattice-based\ signatures:\ Exploiting\ branch\ tracing\ against\ strongSwan\ and\ electromagnetic\ emanations\ in\ microcontrollers.$ 

In Bhavani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS 2017, pages 1857–1874. ACM Press, October / November 2017.

[ETWY22] Thomas Espitau, Mehdi Tibouchi, Alexandre Wallet, and Yang Yu.

Shorter hash-and-sign lattice-based signatures.

In Yevgeniy Dodis and Thomas Shrimpton, editors, <u>Advances in Cryptology –</u> CRYPTO, 2022.

[FHK+18] Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner, Vadim Lyubashevsky, Thomas Pornin, Thomas Prest, Thomas Ricosset, Gregor Seiler, William Whyte, and Zhenfei Zhang.

Falcon: Fast-fourier lattice-based compact signatures over ntru.

Submission to the NIST's post-quantum cryptography standardization process, 36(5), 2018.

### References V

[GHHM21] Alex B. Grilo, Kathrin Hövelmanns, Andreas Hülsing, and Christian Majenz.

Tight adaptive reprogramming in the QROM.

In Mehdi Tibouchi and Huaxiong Wang, editors, <u>Advances in Cryptology - ASIACRYPT</u>, pages 637–667. Springer, 2021.

[GLP12] Tim Güneysu, Vadim Lyubashevsky, and Thomas Pöppelmann.

Practical lattice-based cryptography: A signature scheme for embedded systems.

In International Workshop on Cryptographic Hardware and Embedded Systems, pages 530–547. Springer, 2012.

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan.

Trapdoors for hard lattices and new cryptographic constructions.

In Proceedings of the fortieth annual ACM symposium on Theory of computing, pages 197–206, 2008.

 $[{
m HHGP}^+03]$  Jeffrey Hoffstein, Nick Howgrave-Graham, Jill Pipher, Joseph H Silverman, and William Whyte.

Ntrusign: Digital signatures using the ntru lattice.

In Cryptographers' track at the RSA conference, pages 122–140. Springer, 2003.

### References VI

[KLS18] Eike Kiltz, Vadim Lyubashevsky, and Christian Schaffner.

A concrete treatment of Fiat-Shamir signatures in the quantum random-oracle model.

In Advances in Cryptology – EUROCRYPT, pages 552–586. Springer, 2018.

[Lyu09] Vadim Lyubashevsky.

Fiat-shamir with aborts: Applications to lattice and factoring-based signatures.

In International Conference on the Theory and Application of Cryptology and Information Security, pages 598–616. Springer, 2009.

[Lyu12] Vadim Lyubashevsky.

Lattice signatures without trapdoors.

In Annual International Conference on the Theory and Applications of Cryptographic Techniques, pages 738–755. Springer, 2012.

[MGTF19] Vincent Migliore, Benoît Gérard, Mehdi Tibouchi, and Pierre-Alain Fouque.

Masking Dilithium - efficient implementation and side-channel evaluation.

In Robert H. Deng, Valérie Gauthier-Umaña, Martín Ochoa, and Moti Yung, editors, ACNS 19, volume 11464 of LNCS, pages 344–362. Springer, Heidelberg, June 2019.

### References VII

[Por19] Thomas Pornin.

New efficient, constant-time implementations of falcon.

Cryptology ePrint Archive, Paper 2019/893, 2019.

[Pre23] Thomas Prest.

A key-recovery attack against mitaka in the t-probing model.

Cryptology ePrint Archive, Report 2023/157, 2023.

https://eprint.iacr.org/2023/157.