පිළිතුරු

දර්ශක හා ලසුගණක I

පුනරීක්ෂණ අභාගාසය

1. සුළු කර අගය සොයන්න.

a.
$$2^2 \times 2^3$$
 b. $(2^4)^2$ **c.** 3^{-2}

b.
$$(2^4)^2$$

d.
$$\frac{5^3 \times 5^2}{5^5}$$
 e. $\frac{3^5 \times 3^2}{3^6}$ **f.** $(5^2)^2 \div 5^3$

e.
$$\frac{3^5 \times 3^2}{3^6}$$

f.
$$(5^2)^2 \div 5^2$$

g.
$$\frac{(2^2)^3 \times 2^4}{2^8}$$
 h. $\frac{5^{-3} \times 5^2}{5^0}$ **i.** $(5^2)^{-2} \times 5 \times 3^0$

h.
$$\frac{5^{-3} \times 5}{5^0}$$

i.
$$(5^2)^{-2} \times 5 \times 3^0$$

1. a.
$$2^2 \times 2^3$$

= 2^{2+3}
= 2^5
= 32

b.
$$(2^4)^2$$

= $2^{4\times 2}$
= 2^8
= 256

c.
$$3^{-2}$$

$$= \frac{1}{3^2}$$

$$= \frac{1}{9}$$

c.
$$3^{-2}$$
 d. $\frac{5^3 \times 5^2}{5^5}$

$$= \frac{1}{3^2} = \frac{5^{3+2}}{5^5}$$

$$= \frac{1}{9} = \frac{5^5}{5^5} = 5^{5-5} = 5^0$$

$$= 1$$

e.
$$\frac{3^{5} \times 3^{2}}{3^{6}}$$
$$= \frac{3^{5+2}}{3^{6}}$$
$$= \frac{3^{7}}{3^{6}}$$
$$= 3^{7-6}$$
$$= 3^{1}$$
$$= 3$$

f.
$$(5^2)^2 \div 5^3$$

= $5^{2 \times 2} \div 5^3$
= $5^4 \div 5^3$
= 5^{4-3}
= 5^1
= 5

g.
$$\frac{(2^{2})^{3} \times 2^{4}}{2^{8}}$$

$$= \frac{2^{2 \times 3} \times 2^{4}}{2^{8}}$$

$$= \frac{2^{6} \times 2^{4}}{2^{8}}$$

$$= \frac{2^{6+4}}{2^{8}}$$

$$= \frac{2^{10}}{2^{8}}$$

$$= 2^{10-8}$$

$$= 2^{2}$$

$$= \frac{4}{2^{8}}$$

h.
$$\frac{5^{-3} \times 5^{2}}{5^{0}}$$

$$= \frac{5^{-3+2}}{1}$$

$$= 5^{-1} = \frac{1}{5^{3}}$$

$$= \frac{1}{5}$$

h.
$$\frac{5^{-3} \times 5^{2}}{5^{0}}$$

$$= \frac{5^{-3+2}}{1}$$

$$= 5^{-1} = \frac{1}{5^{1}}$$

$$= \frac{1}{5}$$

$$i. (5^{2})^{-2} \times 5 \times 3^{0}$$

$$= 5^{-4} \times 5 \times 1$$

$$= 5^{-4+1}$$

$$= 5^{-4+1}$$

$$= 5^{-3}$$

$$= \frac{1}{5^{3}}$$

$$= \frac{1}{125}$$

2. සුළු කරන්න.

a.
$$a^2 \times a^3 \times a$$
 b. $a^5 \times a \times a^0$ **c.** $(a^2)^3$

b.
$$a^5 \times a \times a^6$$

c.
$$(a^2)^3$$

d.
$$(x^2)^3 \times x^2$$
 e. $(xy)^2 \times x^0$ **f.** $(2x^2)^3$

e.
$$(xy)^2 \times x^0$$

f.
$$(2x^2)^3$$

$$\mathbf{g.} \quad \frac{2pq \times 3p}{6p^2}$$

$$h. \quad 2x^{-2} \times 5xy$$

g.
$$\frac{2pq \times 3p}{6p^2}$$
 h. $2x^{-2} \times 5xy$ **i.** $\frac{(3a)^{-2} \times 4a^2b^2}{2ab}$

a.
$$a^2 \times a^3 \times a$$
 b. $a^5 \times a \times a^0$ c. $(a^2)^3$ d. $(x^2)^3 \times x^2$ e. $(xy)^2 \times x^0$ = a^{2+3+1} = a^{5+1+0} = $a^{2\times3}$ = $x^{2\times3} \times x^2$ = $x^2y^2 \times 1$

$$=a^{5+1+0}$$

c.
$$(a^2)^3$$

d.
$$(x^2)^3 \times x^2$$

e.
$$(xy)^2 \times x^0$$

$$= a^{2}$$

$$=a^{3+1+1}$$

$$=a^{2\times}$$

$$= a^{2\times 3} \qquad = x^{2\times 3} \times x^2 \qquad = x^2 y^2 \times 1$$

$$- x^2 y^2 \times 1$$

$$=\underline{a}^6$$

$$=\underline{\underline{a}^6}$$

$$=a^{\alpha}$$

$$=\underline{\underline{a}^6} \qquad = x^{6+2} \qquad = \underline{x^2y^2}$$

$$= x^2y^2 \times$$

$$= \underline{\underline{a}}$$

$$=x^8$$

$$= x^2y^2$$

f.
$$(2x^2)^3$$

= $2^3x^{2\times 3}$
= $8x^6$

g.
$$\frac{2pq \times 3p}{6p^2}$$

$$=\frac{6p^2q}{6p^2}$$

$$=\underline{q}$$

$$h. \quad 2x^{-2} \times 5xy$$

$$=10x^{-2+1}y$$

$$=10x^{-1}y$$

$$=\frac{10y}{x}$$

h.
$$2x^{-2} \times 5xy$$
 i. $\frac{(3a)^{-2} \times 4a^2b^2}{2ab}$

$$=\frac{4a^2b^2}{(3a)^2\times 2ab}$$

$$=\frac{4a^2b^2}{9a^2 \times 2ab}$$

$$=\frac{2b}{9a}$$

3. සුළු කරන්න.

a.
$$lg 25 + lg 4$$

b.
$$\log_2 8 - \log_2 4$$

$$\log_5 50 + \log_5 2 - \log_5 4$$

$$\mathbf{d.} \quad \log_a 5 + \log_a 4 - \log_a 2$$

e.
$$\log_x 4 + \log_x 12 - \log_x 3$$
 f. $\log_p a + \log_p b - \log_p c$

$$\mathbf{f.} \qquad \log_{n} a + \log_{n} b - \log_{n} c$$

a.
$$\lg 25 + \lg 4$$

b.
$$\log_2 8 - \log_2$$

b.
$$\log_2 8 - \log_2 4$$

a.
$$\log_2 8 + \log_2 4$$
 b. $\log_2 8 - \log_2 4$ c. $\log_5 50 + \log_5 2 - \log_5 4$

$$= \lg 25 \times 4$$

$$= \log_2 2^3 - \log_2 2^2 \qquad = \log_2 \left(\frac{8}{4}\right) \qquad = \log_5 \left(\frac{50 \times 2}{4}\right)$$

$$= \lg 100$$

$$= \log_2 2 - \log_2 2$$

$$=\log_2\left(\frac{8}{4}\right)$$

$$= \log_5\left(\frac{50\times 2}{4}\right)$$

$$= \lg 10^2$$

$$= 3\log_2 2 - 2\log_2 2$$

$$= 3\log_2 2 - 2\log_2 2$$
 $= \log_2 2$ $= \log_5 25$

$$= 2lg 10$$

$$= 3 \times 1 - 2 \times 1 \qquad \qquad = \underline{\underline{1}}$$

$$=\log_5 5^2$$

$$= 2 \times 1$$

= 2

$$= 3-2$$

$$= 2 \log_5 5$$

$$=2\times1$$

d.
$$\log 5 + \log 4 - \log 2$$

e.
$$\log_{x} 4 + \log_{x} 12 - \log_{x} 3$$

$$=\log_a(\frac{5\times4}{2})$$

 $=\log_a 10$

$$=\log_x(\frac{4\times12}{3})$$

f.
$$\log_p a + \log_p b - \log_p c$$

$$=\log_p(\frac{a\times b}{c})$$

$$=\log_p\left(\frac{ab}{c}\right)$$

d.
$$\log_a 5 + \log_a 4 - \log_a 2$$
 e. $\log_x 4 + \log_x 12 - \log_x 3$ f. $\log_p a + \log_p b - \log_p c$

$$g_a\left(\frac{5\times4}{2}\right)$$

$$=\log_x 16$$

4. පහත දැක්වෙන සමීකරණ විසඳන්න.

a.
$$\log_5 x = \log_5 4 + \log_5 2$$

c.
$$\log_a 2 + \log_a x = \log_a 10$$

e.
$$\lg 5 - \lg x + \lg 8 = \lg 4$$

a.
$$\log_5 x = \log_5 4 + \log_5 2$$
$$\log_5 x = \log_5 (4 \times 2)$$
$$\log_5 x = \log_5 8$$

x = 8

c.
$$\log_{a} 2 + \log_{a} x = \log_{a} 10$$

 $\log_{a} 2x = \log_{a} 10$
 $2x = 10$
 $x = 5$

e.
$$\lg 5 - \lg x + \lg 8 = \lg 4$$
$$\lg \left(\frac{5 \times 8}{x}\right) = \lg 4$$
$$\left(\frac{40}{x}\right) = 4$$
$$x = \frac{40}{4}$$
$$x = 10$$

b.
$$\log_5 4 - \log_5 2 = \log_5 x$$

d.
$$\log_3 x + \log_3 10 = \log_3 5 + \log_3 6 - \log_3 2$$

f.
$$\log_x 12 - \log_5 4 = \log_5 3$$

b.
$$\log_5 4 - \log_5 2 = \log_5 x$$
$$\log_5 \left(\frac{4}{2}\right) = \log_5 x$$
$$\log_5 2 = \log_5 x$$
$$x = 2$$

d.
$$\log_3 x + \log_3 10 = \log_3 5 + \log_3 6 - \log_3 2$$

 $\log_3 10x = \log_3 (\frac{5 \times 6}{2})$
 $\log_3 10x = \log_3 15$
 $10x = 15$
 $x = \frac{15}{10} = \frac{3}{2} = 1\frac{1}{2}$

f.
$$\log_x 12 - \log_5 4 = \log_5 3$$

 $\log_x 12 = \log_5 4 + \log_5 3$
 $\log_x 12 = \log_5 4 \times 3$
 $\log_x 12 = \log_5 12$
 $\underline{x = 5}$

2.1 අභාගාසය

1. මූල ලකුණ සහිතව ලියන්න.

a.
$$p^{\frac{1}{3}}$$

b.
$$a^{\frac{2}{3}}$$

•
$$x^{-\frac{2}{3}}$$

d.
$$m^{\frac{4}{5}}$$

e.
$$y^{-\frac{3}{4}}$$

f.
$$x^{-\frac{5}{3}}$$

a.
$$p^{\frac{1}{3}} = \sqrt[3]{p}$$

b.
$$a^{\frac{2}{3}} = (a^2)^{\frac{1}{3}} = \sqrt[3]{a^2}$$

b.
$$a^{\frac{2}{3}} = (a^2)^{\frac{1}{3}} = \sqrt[3]{a^2}$$
 c. $x^{\frac{2}{3}} = (x^{-2})^{\frac{1}{3}} = \sqrt[3]{x^{-2}}$

d.
$$m^{\frac{4}{5}} = (m^4)^{\frac{1}{5}} = \sqrt[5]{m^4}$$

e.
$$y^{-\frac{3}{4}} = (y^{-3})^{\frac{1}{4}} = \sqrt[4]{y^{-3}}$$
 f. $x^{-\frac{5}{3}} = (x^{-5})^{\frac{1}{3}} = \sqrt[3]{x^{-5}}$

f.
$$x^{-\frac{5}{3}} = (x^{-5})^{\frac{1}{3}} = \sqrt[3]{x^{-5}}$$

2. ධන දර්ශක සහිතව ලියන්න.

a.
$$\sqrt{m^{-1}}$$

b.
$$\sqrt[3]{x^{-1}}$$

c.
$$\sqrt[5]{p^{-2}}$$

a.
$$\sqrt{m^{-1}}$$
 b. $\sqrt[3]{x^{-1}}$ **c.** $\sqrt[5]{p^{-2}}$ **d.** $(\sqrt{a})^{-3}$ **e.** $\sqrt[4]{x^{-3}}$

e.
$$\sqrt[4]{x^{-3}}$$

f.
$$(\sqrt[3]{p})^{-5}$$

$$\mathbf{g.} \quad \frac{1}{\sqrt{x^{-3}}}$$

h.
$$\sqrt[3]{a^{-2}}$$

i.
$$2\sqrt[3]{x^{-2}}$$

g.
$$\frac{1}{\sqrt{x^{-3}}}$$
 h. $\sqrt[3]{a^{-2}}$ **i.** $2\sqrt[3]{x^{-2}}$ **j.** $\frac{1}{3\sqrt{a^{-5}}}$

a.
$$\sqrt{m^{-1}} = (m^{-1})^{\frac{1}{2}}$$

$$= m^{-\frac{1}{2}}$$

$$= \frac{1}{m^{\frac{1}{2}}}$$

b.
$$\sqrt[3]{x^{-1}} = (x^{-1})^{\frac{1}{3}}$$

$$= x^{-\frac{1}{3}}$$

$$= \frac{1}{x^{\frac{1}{3}}}$$

c.
$$\sqrt[5]{p^{-2}} = (p^{-2})^{\frac{1}{5}}$$

$$= p^{-\frac{2}{5}}$$

$$= \frac{1}{p^{\frac{2}{5}}}$$

d.
$$(\sqrt{a})^{-3} = (a^{\frac{1}{2}})^{-3}$$

= $a^{-\frac{3}{2}}$
= $\frac{1}{a^{\frac{3}{2}}}$

e.
$$\sqrt[4]{x^{-3}} = (x^{-3})^{\frac{1}{4}}$$

$$= x^{-\frac{3}{4}}$$

$$= \frac{1}{x^{\frac{3}{4}}}$$

f.
$$(\sqrt[3]{p})^{-5} = (p^{\frac{1}{3}})^{-5}$$

= $p^{-\frac{5}{3}}$
= $\frac{1}{p^{\frac{5}{3}}}$

g.
$$\frac{1}{\sqrt{x^{-3}}} = \frac{1}{(x^{-3})^{\frac{1}{2}}}$$
$$= \frac{1}{x^{-\frac{3}{2}}}$$
$$= \underline{x^{\frac{3}{2}}}$$

h.
$$\frac{1}{\sqrt[3]{a^{-2}}} = \frac{1}{(a^{-2})^{\frac{1}{3}}}$$

$$= \frac{1}{a^{-\frac{2}{3}}}$$

$$= \underline{a^{\frac{2}{3}}}$$

$$i. \ 2 \sqrt[3]{x^{-2}} = 2(x^{-2})^{\frac{1}{3}}$$
$$= 2x^{-\frac{2}{3}}$$
$$= \frac{2}{x^{\frac{2}{3}}}$$

j.
$$\frac{1}{3\sqrt{a^{-5}}} = \frac{1}{3(a^{-5})^{\frac{1}{2}}}$$
$$= \frac{1}{3a^{-\frac{5}{2}}}$$
$$= \underline{a^{\frac{5}{2}}}$$

- 3. අගය සොයන්න.
 - **a.** $\sqrt{25}$

b. ∜16

c. $(\sqrt{4})^5$

d. $(\sqrt[3]{27})^2$

e. $\sqrt[4]{81^3}$

f. $\sqrt[3]{1000}^2$

g. $\left(\frac{27}{125}\right)^{\frac{2}{3}}$

h. $\left(\frac{81}{10000}\right)^{\frac{3}{4}}$

i. $\left(\frac{1}{64}\right)^{\frac{5}{6}}$

j. $\left(\frac{27}{64}\right)^{\frac{2}{3}}$

k. $(0.81)^{\frac{3}{2}}$

- 1. $(0.125)^{\frac{2}{3}}$
- **m.** $\left(\frac{4}{25}\right)^{\frac{1}{2}} \times \left(\frac{3}{4}\right)^{-1} \times 2^{0}$ **n.** $\left(\frac{9}{100}\right)^{\frac{5}{2}} \times \left(\frac{4}{25}\right)^{\frac{5}{2}}$ **o.** $(27)^{1\frac{1}{3}} \times (81)^{-1\frac{1}{4}}$

- $\mathbf{p.} \quad \left(11\frac{1}{9}\right)^{\frac{1}{2}} \times \left(6\frac{1}{4}\right)^{\frac{3}{2}} \qquad \mathbf{q.} \quad \left(0.125\right)^{\frac{1}{3}} \times \left(0.25\right)^{\frac{3}{2}} \quad \mathbf{r.} \quad (\sqrt[3]{8})^2 \times \sqrt[4]{16^3}$

- a. $\sqrt{25}$ b. $\sqrt[4]{16}$ c. $(\sqrt{4})^5$ d. $(\sqrt[3]{27})^2$
- e. $\sqrt[4]{81^3}$ f. $\sqrt[3]{1000^2}$
- $=25^{\frac{1}{2}} \qquad =16^{\frac{1}{4}} \qquad =\left(4^{\frac{1}{2}}\right)^5 \qquad =\left(27^{\frac{1}{3}}\right)^2 \qquad =\left(81^3\right)^{\frac{1}{4}} \qquad =\left(1000^2\right)^{\frac{1}{3}}$
- $=5^{2\times\frac{1}{2}} \qquad =2^{4\times\frac{1}{4}} \qquad =\left(2^{2\times\frac{1}{2}}\right)^5 \qquad =\left(3^{3\times\frac{1}{3}}\right)^2 \qquad =(3^4)^{\frac{3}{4}}$

- $=(1000)^{\frac{2}{3}}$

- = 5
- = 2
- $=2^{5}$ $=3^{2}$
- $= 3^3$
- $=(10^3)^{\frac{2}{3}}$ $= 10^2$

- = 32
- = 9 = 27
- = 100
- $= \left(\frac{3^3}{5^3}\right)^{\frac{2}{3}} \qquad = \left(\frac{3^4}{10^4}\right)^{\frac{3}{4}} \qquad = \left(64\right)^{\frac{5}{6}} \qquad = \left(\frac{64}{27}\right)^{\frac{2}{3}} \qquad = \left(\frac{81}{100}\right)^{\frac{3}{2}} \qquad = \left(\frac{125}{1000}\right)^{-\frac{2}{3}} = \left(\frac{1}{8}\right)^{-\frac{2}{3}}$
- g. $\left(\frac{27}{125}\right)^{\frac{2}{3}}$ h. $\left(\frac{81}{10000}\right)^{\frac{3}{4}}$ i. $\left(\frac{1}{64}\right)^{-\frac{5}{6}}$ j. $\left(\frac{27}{64}\right)^{-\frac{2}{3}}$ k. $(0.81)^{\frac{3}{2}}$ l. $(0.125)^{-\frac{2}{3}}$

- $= \frac{3^{3 \times \frac{2}{3}}}{5^{3 \times \frac{2}{3}}} \qquad = \left(\frac{3^{4 \times \frac{3}{4}}}{10^{4 \times \frac{3}{4}}}\right)^{\frac{2}{3}} \qquad = \left(\frac{4^{3}}{10^{2}}\right)^{\frac{2}{3}} \qquad = \left(\frac{9^{2}}{10^{2}}\right)^{\frac{3}{2}} \qquad = \left(\frac{1000}{125}\right)^{\frac{2}{3}} = 8^{\frac{2}{3}}$ $= \frac{3^{2}}{5^{2}} = \frac{3^{3}}{10^{3}} = \frac{2^{5}}{10^{3}} = \frac{4^{2}}{10^{3}} = \frac{9^{3}}{10^{3}} = \frac{10^{2}}{10^{3}} = \frac{2^{3 \times \frac{2}{3}}}{10^{3}} = \frac{2^{3 \times \frac{2}{3}}}{10^{3}} = \frac{10^{2}}{10^{3}} = \frac{10^{2}}{$ $= \frac{10^2}{5^2} \\ = \frac{100}{25}$
- $= \frac{9}{25} = \frac{27}{1000}$
- $= \frac{16}{9}$
- $=\frac{729}{1000}$

m. $\left(\frac{4}{25}\right)^{\frac{1}{2}} \times \left(\frac{3}{4}\right)^{-1} \times 2^0$	n. $\left(\frac{9}{100}\right)^{-\frac{3}{2}} \times \left(\frac{4}{25}\right)^{\frac{3}{2}}$	0.
$= \left(\frac{2^2}{5^2}\right)^{\frac{1}{2}} \times \left(\frac{4}{3}\right) \times 1$	$= \left(\frac{100}{9}\right)^{\frac{3}{2}} \times \left(\frac{4}{25}\right)^{\frac{3}{2}}$	=
$= \frac{2}{5} \times \frac{4}{3}$	$= \left(\frac{10^2}{3^2}\right)^{\frac{3}{2}} \times \left(\frac{2^2}{5^2}\right)^{\frac{3}{2}}$	=
$=\frac{8}{15}$	$= \frac{10^3}{3^3} \times \frac{2^3}{5^3}$	=
=	$= \frac{1000}{27} \times \frac{8}{125}$	=
	$=\frac{64}{27}$	=

o.
$$(27)^{1\frac{1}{3}} \times (81)^{-1\frac{1}{4}}$$
 p. $(11\frac{1}{9})^{\frac{1}{2}} \times (6\frac{1}{4})^{-\frac{3}{2}}$

$$= (27)^{\frac{4}{3}} \times (81)^{-\frac{5}{4}} = (\frac{100}{9})^{\frac{1}{2}} \times (\frac{25}{4})^{-\frac{3}{2}}$$

$$= 3^{3 \times \frac{4}{3}} \times 3^{4 \times (-\frac{5}{4})} = (\frac{9}{100})^{\frac{1}{2}} \times (\frac{4}{25})^{\frac{3}{2}}$$

$$= 3^{4} \times 3^{-5} = (\frac{3^{2}}{10^{2}})^{\frac{1}{2}} \times (\frac{2^{2}}{5^{2}})^{\frac{3}{2}}$$

$$= 3^{-1} = \frac{3}{10} \times \frac{2^{3}}{5^{3}}$$

$$= \frac{3}{10} \times \frac{8}{125}$$

$$= \frac{12}{625}$$

q.
$$(0.125)^{\frac{1}{3}} \times (0.25)^{\frac{3}{2}}$$
 r. $(\sqrt[3]{8})^2 \times \sqrt[4]{16^3}$
= $(\frac{1}{8})^{-\frac{1}{3}} \times (\frac{1}{4})^{\frac{3}{2}}$ = $(8^{\frac{1}{3}})^2 \times (16^3)^{\frac{1}{4}}$
= $8^{\frac{1}{3}} \times (\frac{1}{4})^{\frac{3}{2}}$ = $(2^{3 \times \frac{1}{3}})^2 \times (2^{4 \times 3})^{\frac{1}{4}}$
= $2^{3 \times \frac{1}{3}} \times \frac{1}{2^{2 \times \frac{3}{2}}}$ = $2^2 \times 2^3$
= $2 \times \frac{1}{2^3}$ = 2^5
= $\frac{1}{2^2}$
= $\frac{1}{4}$

4. සුළු කර ධන දර්ශක සහිතව ලියන්න.

a.
$$\sqrt[3]{a^{-1}} \div \sqrt[3]{a}$$

b.
$$\sqrt[5]{a^{-3}} \div \sqrt[5]{a^7}$$

c.
$$\sqrt[3]{a^2} \div \sqrt[3]{a^{-3}}$$

d.
$$(\sqrt[3]{x^5})^{\frac{1}{2}} \times \sqrt[6]{x^{-5}}$$

e.
$$\{(\sqrt{a^3})^{-2}\}^{\frac{-1}{2}}$$

$$\mathbf{f.} \quad \left(\sqrt{x^2y^2}\right)^{-6}$$

g.
$$\sqrt{\frac{4a^{-2}}{9x^2}}$$

h.
$$(\sqrt[3]{27x^3})^{-2}$$

$$i. \qquad \left(\frac{xy^{-1}}{\sqrt{x^5}}\right)^{-2}$$

a.
$$\sqrt[3]{a^{-1}} \div \sqrt[3]{a}$$

$$= (a^{-1})^{\frac{1}{3}} \div (a)^{\frac{1}{3}}$$

$$= a^{-\frac{1}{3}} \div a^{\frac{1}{3}}$$

$$= a^{-\frac{1}{3} - \frac{1}{3}}$$

$$= a^{-\frac{2}{3}}$$

$$= \frac{1}{a^{\frac{2}{3}}}$$

$$= (a^{-3})^{\frac{1}{5}} \div (a^{7})^{\frac{1}{5}}$$

$$= a^{-\frac{3}{5}} \div a^{\frac{7}{5}}$$

$$= a^{-\frac{3}{5} - \frac{7}{5}}$$

$$= a^{-\frac{10}{5}} = a^{-2}$$

$$= \frac{1}{a^{2}}$$

b.
$$\sqrt[5]{a^{-3}} \div \sqrt[5]{a^{7}}$$
 c. $\sqrt[3]{a^{2}} \div \sqrt[3]{a^{-3}}$ d. $(\sqrt[3]{x^{5}})^{\frac{1}{2}} \times \sqrt[6]{x^{-5}}$

$$= (a^{-3})^{\frac{1}{5}} \div (a^{7})^{\frac{1}{5}} = (a^{2})^{\frac{1}{3}} \div (a^{-3})^{\frac{1}{3}} = \{(x^{5})^{\frac{1}{3}}\}^{\frac{1}{2}} \times (x^{-\frac{1}{3}})^{\frac{1}{3}} = (x^{\frac{1}{3}})^{\frac{1}{3}} \times (x^{-\frac{1}{3}})^{\frac{1}{3}} \times (x^{-\frac{1}{3}})^{\frac{1}{3}} = (x^{\frac{1}{3}})^{\frac{1}{3}} \times (x^{-\frac{1}{3}})^{\frac{1}{3}} \times (x^{-\frac{1}{3}})^{\frac{1}{3}} \times (x^{-\frac{1}{3}})^{\frac{1}{3}} = (x^{\frac{1}{3}})^{\frac{1}{3}} \times (x^{-\frac{1}{3}})^{\frac{1}{3}} \times (x^{\frac{1}{3}})^{\frac{1}{3}} \times ($$

d.
$$(\sqrt[3]{x^5})^{\frac{1}{2}} \times \sqrt[6]{x^{-5}}$$

 $= \{(x^5)^{\frac{1}{3}}\}^{\frac{1}{2}} \times (x^{-5})^{\frac{1}{6}}$
 $= x^{\frac{5}{6}} \times x^{-\frac{5}{6}}$
 $= x^{\frac{5}{6} - \frac{5}{6}}$
 $= x^0$
 $= 1$

e. $\{(\sqrt{a^3})^{-2}\}^{-\frac{1}{2}}$	f. $(\sqrt{x^2y^2})^{-6}$	g. $\sqrt{\frac{4a^{-2}}{9x^2}}$	h. $(\sqrt[3]{27x^3})^{-2}$	$i. \left(\frac{xy^{-1}}{\sqrt{x^5}}\right)^{-2}$
$= \left(\sqrt{a^3}\right)^{-2 \times \left(-\frac{1}{2}\right)}$	$= \left(\sqrt{(xy)^2}\right)^{-6}$	$= \sqrt{\frac{2^2 a^{-2}}{3^2 x^2}}$	$= \left(\sqrt[3]{(3x)^3}\right)^{-2}$	$= \left(\frac{\sqrt{x^5}}{xy^{-1}}\right)^2$
$=\sqrt{a^3}$	$= \left((xy)^{2 \times \frac{1}{2}} \right)^{-6}$	$=\sqrt{\frac{(2a^{-1})^2}{(3x)^2}}$	$=\left[(3x)^{3\times\frac{1}{3}}\right]^{-2}$	
$= a^{3 \times \frac{1}{2}}$	$= (xy)^{-6}$	$= \left(\frac{(2a^{-1})^2}{(3x)^2}\right)^{\frac{1}{2}}$	$= (3x)^{-2}$	$= \left(\frac{x^{5 \times \frac{1}{2}}}{xy^{-1}}\right)^2$
$=\underline{a^{\frac{3}{2}}}$	$=\frac{1}{(xy)^6}$		$= \frac{1}{(3x)^2}$	$= \frac{x^{5 \times \frac{1}{2} \times 2}}{x^2 y^{-2}}$
	$= \frac{1}{x^6 y^6}$	$= \frac{2a^{-1}}{3x}$	$= \frac{1}{9x^2}$	$=\frac{x^5y^2}{x^2} = x^3y^2$
		$= {3ax}$		$=\frac{x^2}{x^2}=x^3y^2$

2.2 අභාපාසය

1. පහත දැක්වෙන සමීකරණ විසඳන්න.

a.
$$3^x = 9$$

c.
$$4^{3x} = 32$$

e.
$$8^{x-1} = 4^x$$

g.
$$2\sqrt{x} = 6$$

b.
$$3^{x+2} = 243$$

d.
$$2^{5x-2} = 8^x$$

f.
$$x^3 = 216$$

$$2\sqrt{x}=6$$

h.
$$\sqrt[3]{2x^2} = 2$$

a.
$$3^x = 9$$

$$3^x = 3^2$$

$$3 = 3$$
$$x = 2$$

b.
$$3^{x+2} = 243$$

$$3^{x+2} = 3^5$$

$$(2^2)^{3x} = 2^5$$

$$x + 2 = 5$$
$$x = 3$$

$$2^{6x} = 2^5$$

c. $4^{3x} = 32$

$$6x = 5$$

$$x = \frac{5}{2}$$

$$x = \frac{5}{6}$$

d.
$$2^{5x-2} = 8^x$$

$$2^{5x-2} = (2^3)^x$$

$$2^{5x-2} = (2^3)^5$$
$$2^{5x-2} = 2^{3x}$$

$$Z^{**} = Z^{**}$$

$$5x - 2 = 3x$$
$$5x - 3x = 2$$

$$2x = 2$$
$$x = 1$$

e.
$$8^{x-1} = 4^x$$

$$(2^3)^{x-1} = (2^2)^x$$

$$2^{3x-3} = 2^{2x}$$

$$3x - 3 = 2x$$

$$3x - 2x = 3$$

$$\underline{x=3}$$

f.
$$x^3 = 216$$

$$x^3 = 6^3$$

$$x = 6$$

g.
$$2\sqrt{x} = 6$$

$$\sqrt{x} = 3$$

$$x^{\frac{1}{2}} = 9^{\frac{1}{2}}$$

$$x = 9$$

h.
$$\sqrt[3]{2x^2} = 2$$

$$\sqrt[3]{2x^2} = \sqrt[3]{8}$$

$$2x^2 = 8$$

$$x^2 = 4$$

$$x = 2$$

2. පහත දැක්වෙන සමීකරණ විසඳන්න.

a.
$$2^x \times 8^x = 256$$

c.
$$5 \times 25^{2x-1} = 125$$

e.
$$4^x = \frac{1}{64}$$

g.
$$3^{4x} \times \frac{1}{9} = 9^x$$

$$8 \times 2^{x-1} = 4^{x-2}$$

d.
$$3^{2x} \times 9^{3x-2} = 27^{-3x}$$

f.
$$(3^x)^{-\frac{1}{2}} = \frac{1}{27}$$

h.
$$x^2 = \left(\frac{1}{8}\right)^{-\frac{2}{3}}$$

a.
$$2^x \times 8^x = 256$$

$$2^x \times (2^3)^x = 2^8$$

$$2^x \times 2^{3x} = 2^8$$

$$2x+3x$$

$$2^{x+3x}=2^8$$

$$2^{4x} = 2^8$$

$$4x = 8$$

$$x = 2$$

b.
$$8 \times 2^{x-1} = 4^{x-2}$$

$$2^3 \times 2^{x-1} = (2^2)^{x-2}$$

$$2^{3+x-1} = 2^{2x-4}$$

$$2^{x+2} = 2^{2x-4}$$

$$x + 2 = 2x - 4$$

$$2 + 4 = 2x - x$$
$$x = 6$$

c.
$$5 \times 25^{2x-1} = 125$$

$$5^1 \times (5^2)^{2x-1} = 5^3$$

$$5^1 \times 5^{4x-2} = 5^3$$

$$5^{1+4x-2} = 5^3$$

$$5^{4x-1} = 5^3$$

$$4x - 1 = 3$$

$$4x = 4$$

$$x = 1$$

d.
$$3^{2x} \times 9^{3x-2} = 27^{-3x}$$

$$3^{2x} \times (3^2)^{3x-2} = (3^3)^{-3x}$$

$$3^{2x} \times 3^{6x-4} = 3^{-9x}$$

$$3^{2x+6x-4} = 3^{-9x}$$

$$3^{8x-4} = 3^{-9x}$$

$$8x - 4 = -9x$$

$$17x = 4$$

$$x = \frac{4}{17}$$

e.
$$4^x = \frac{1}{64}$$

$$4^x = \frac{1}{4^3}$$

$$4^x = 4^{-3}$$

$$\underline{x} = -3$$

e.
$$4^x = \frac{1}{64}$$
 f. $(3^x)^{\frac{1}{2}} = \frac{1}{27}$

$$3^{x \times (-\frac{1}{2})} = \frac{1}{3^3}$$

$$3^{-\frac{x}{2}} = 3^{-3}$$

$$-\frac{x}{2} = -3$$

$$x = 6$$

g.
$$3^{4x} \times \frac{1}{9} = 9^x$$
 h. $x^2 = (\frac{1}{8})^{\frac{2}{3}}$

$$3^{4x} \times \frac{1}{3^2} = (3^2)^x$$

$$3^{4x} \times 3^{-2} = 3^{2x}$$

$$3^{4x-2} = 3^{2x}$$

$$4x - 2 = 2x$$

$$2x = 2$$

$$x = 1$$

h.
$$x^2 = \left(\frac{1}{8}\right)^{\frac{2}{3}}$$

$$x^2 = 8^{\frac{2}{3}}$$

$$x^2 = (2^3)^{\frac{2}{3}}$$

$$x^2 = 2^2$$

$$x = 2$$

2.3 අභාගාසය

1. අගය සොයන්න.

a.
$$\log_2 32$$

d.
$$\frac{1}{2} \log_5 \sqrt{25}$$

e.
$$\log_3 \sqrt[4]{81}$$

c.
$$\frac{1}{3} \log_3 27$$

f.
$$3 \log_2 \sqrt[3]{8}$$

$$=\log_2 2^5$$

$$= 5 \log_2 2$$

$$= 5 \times 1$$

$$= \lg 10^4$$

$$=4 \times 1$$

c.
$$\frac{1}{3} \log_3 27$$

$$=\frac{1}{3}\log_{3}3^{3}$$

$$= \frac{1}{3} \times 3 \log_3 3$$

$$=\log_3 3$$

d.
$$\frac{1}{2} \log_{5} \sqrt{25}$$

$$= \frac{1}{2} \log_{5} 25^{\frac{1}{2}}$$

$$= \frac{1}{2} \log_5 5^{2 \times \frac{1}{2}}$$

$$= \frac{1}{2} \log_5 5$$

$$=\frac{1}{2}\times 1$$

$$=\frac{1}{2}$$

$$= 4 \lg 10$$

$$=4 \times 1$$

e.
$$\log_{3} \sqrt[4]{81}$$

$$= \log_{3} 81^{\frac{1}{4}}$$

$$= \log_3 3^{4 \times \frac{1}{4}}$$

$$= \log_3 3$$

f.
$$3 \log_2 \sqrt[3]{8}$$

$$= 3 \log_2 8^{\frac{1}{3}}$$

$$= 3 \log_2 2^{3 \times \frac{1}{3}}$$

$$= 3 \log_2 2$$

$$= 3 \times 1$$

2. සුළු කර අගය සොයන්න.

a.
$$2 \log_2 16 - \log_2 8$$

c.
$$2 \lg 5 + 3 \lg 2 - \lg 2$$

e.
$$\lg 18 - 3 \lg 3 + \frac{1}{2} \lg 9 + \lg 5$$
 f. $4 \lg 2 + \lg \frac{15}{4} - \lg 6$

g.
$$\lg \frac{1}{256} - \lg \frac{125}{4} - 3 \lg \frac{1}{20}$$

i.
$$\lg \frac{12}{5} + \lg \frac{25}{21} - \lg \frac{2}{7}$$

b.
$$\lg 80 - 3 \lg 2$$

d.
$$\lg 75 - \lg 3 + \lg 28 - \lg 7$$

f.
$$4 \lg 2 + \lg \frac{15}{4} - \lg 6$$

h.
$$\log_3 27 + 2 \log_3 3 - \log_3 3$$

j.
$$\lg \frac{3}{4} - 2 \lg \frac{3}{10} + \lg 12 - 2$$

a.
$$2 \log_{2} 16 - \log_{2} 8$$
 b. $\lg 80 - 3 \lg 2$ c. $2 \lg 5 + 3 \lg 2$
 $= 2 \log_{2} 2^{4} - \log_{2} 2^{3}$ = $\lg 80 - \lg 2^{3}$ = $2 \lg 5 + 2 \lg 2$
 $= 2 \times 4 \log_{2} 2 - 3 \log_{2} 2$ = $2 \log 80 - \lg 8$ = $2 \log 5 + 2 \lg 2$
 $= 2 \times 4 \times 1 - 3 \times 1$ = $2 \log 60 \times 1 = 1$ = $2 \log 5 \times 4$ = $2 \log 5 \times 4$

c.
$$2 \lg 5 + 3 \lg 2 - \lg 2$$
 c. $2 \lg 5 + 3 \lg 2 - \lg 2$
 $= 2 \lg 5 + 2 \lg 2$ $= 2 \lg 5 + 2 \lg 2$
 $= \lg 5^2 + \lg 2^2$ $= 2 (\lg 5 + \lg 2)$
 $= \lg 25 + \lg 4$ $= 2 \lg (5 \times 2)$
 $= \lg 100$ $= 2 \times 1$
 $= 2$

d.
$$\lg 75 - \lg 3 + \lg 28 - \lg 7$$

 $= \lg \frac{75 \times 28}{3 \times 7}$
 $= \lg 100$
 $= \lg 10^2$
 $= 2 \lg 10$
 $= 2 \times 1$
 $= 2$

e.
$$\lg 18 - 3 \lg 3 + \frac{1}{2} \lg 9 + \lg 5$$

= $\lg 18 - \lg 3^3 + \frac{1}{2} \lg 3^2 + \lg 5$
= $\lg 18 - \lg 27 + \frac{1}{2} \times 2 \lg 3 + \lg 5$
= $\lg 18 - \lg 27 + \lg 3 + \lg 5$
= $\lg 18 - \lg 27 + \lg 3 + \lg 5$
= $\lg \frac{18 \times 3 \times 5}{27}$
= $\lg 10$
= $\frac{1}{2}$
= $\frac{1}{2}$
1. $4 \lg 2 + \lg \frac{1}{4} - \lg 6$
= $\lg 2^4 + \lg \frac{15}{4} - \lg 6$
= $\lg 16 + \lg \frac{15}{4} - \lg 6$
= $\lg 16 + \lg \frac{15}{4} - \lg 6$
= $\lg \frac{16 \times \frac{15}{4}}{6}$
= $\lg \frac{60}{6}$
= $\lg 10$
= $\frac{1}{2}$

e.
$$\lg 18 - 3 \lg 3 + \frac{1}{2} \lg 9 + \lg 5$$
 f. $4 \lg 2 + \lg \frac{15}{4} - \lg 6$
 $= \lg 18 - \lg 3^3 + \frac{1}{2} \lg 3^2 + \lg 5$ $= \lg 2^4 + \lg \frac{15}{4} - \lg 6$
 $= \lg 18 - \lg 27 + \frac{1}{2} \times 2 \lg 3 + \lg 5$ $= \lg 16 + \lg \frac{15}{4} - \lg 6$
 $= \lg 18 - \lg 27 + \lg 3 + \lg 5$ $= \lg \frac{16 \times \frac{15}{4}}{6}$
 $= \lg 10$ $= \frac{1}{2}$ $= \lg 10$ $= \frac{1}{2}$

g.
$$\lg \frac{1}{256} - \lg \frac{125}{4} - 3 \lg \frac{1}{20}$$

 $= \lg \frac{1}{256} - \lg \frac{125}{4} - \lg \frac{1}{20^3}$
 $= \lg \frac{1}{256} - \lg \frac{125}{4} - \lg \frac{1}{8000}$
 $= \lg \left(\frac{\frac{1}{256}}{\frac{125}{4} \times \frac{1}{8000}}\right)$
 $= \lg \left(\frac{\frac{1}{256}}{\frac{1}{256}}\right)$
 $= \lg 1$
 $= \underline{0}$

g.
$$\lg \frac{1}{256} - \lg \frac{125}{4} - 3 \lg \frac{1}{20}$$
 h. $\log_3 27 + 2 \log_3 3 - \log_3 3$
 $= \lg \frac{1}{256} - \lg \frac{125}{4} - \lg \frac{1}{203}$ $= \log_3 27 + 2 \times 1 - 1$
 $= \lg \frac{1}{256} - \lg \frac{125}{4} - \lg \frac{1}{8000}$ $= \log_3 3^3 + 1$
 $= \lg \left(\frac{\frac{1}{256}}{\frac{125}{4} \times \frac{1}{8000}}\right)$ $= 3 \times 1 + 1$
 $= \lg \left(\frac{1}{256}\right)$ $= 3 \times 1 + 1$
 $= \lg 1$
 $= \frac{1}{256}$ $= \frac{1}{25$

$$j. \lg \frac{3}{4} - 2\lg \frac{3}{10} + \lg 12 - 2$$

$$= \lg \frac{3}{4} - \lg \frac{3^2}{10^2} + \lg 12 - 2$$

$$= \lg \frac{3}{4} - \lg \frac{9}{100} + \lg 12 - 2$$

$$= \lg \frac{\binom{3}{4} \times 12}{\binom{9}{100}} - 2$$

$$= \lg \left(\frac{9}{\frac{9}{100}}\right) - 2$$

$$= \lg \left(9 \times \frac{100}{9}\right) - 2$$

$$= \lg 100 - 2$$

$$= 2 - 2$$

$$= \frac{0}{100}$$

- 3. විසඳන්න.
 - **a.** $\lg x + \lg 4 = \lg 8 + \lg 2$
 - **b.** $4 \lg 2 + 2 \lg x + \lg 5 = \lg 15 + \lg 12$
 - **c.** $3 \lg x + \lg 96 = 2 \lg 9 + \lg 4$
 - **d.** $\lg x = \frac{1}{2} (\lg 25 + \lg 8 \lg 2)$
 - **e.** $3 \lg x + 2 \lg 8 = \lg 48 + \frac{1}{2} \lg 25 \lg 30$
 - **f.** $\lg 125 + 2 \lg 3 = 2 \lg x + \lg 5$
- a. $\lg x + \lg 4 = \lg 8 + \lg 2$ $\lg (x \times 4) = \lg (8 \times 2)$ $\lg 4x = \lg 16$ 4x = 16x = 4
- c. $3 \lg x + \lg 96 = 2 \lg 9 + \lg 4$ $\lg x^3 + \lg 96 = \lg 9^2 + \lg 4$ $\lg x^3 + \lg 96 = \lg 81 + \lg 4$ $\lg (x^3 \times 96) = \lg (81 \times 4)$ $x^3 \times 96 = 81 \times 4$ $x^3 = \frac{81 \times 4}{96}$ $x^3 = \frac{27}{8}$ $x^3 = \frac{3^3}{2^3}$ $x = \frac{3}{2}$
- e. $3 \lg x + 2 \lg 8 = \lg 48 + \frac{1}{2} \lg 25 \lg 30$ $3 \lg x = \lg 48 + \frac{1}{2} \lg 25 - \lg 30 - 2 \lg 8$ $\lg x^3 = \lg 48 + \lg 25^{\frac{1}{2}} - \lg 30 - \lg 8^2$ $\lg x^3 = \lg 48 + \lg 5^{2 \times \frac{1}{2}} - \lg 30 - \lg 8^2$ $\lg x^3 = \lg 48 + \lg 5 - \lg 30 - \lg 64$ $\lg x^3 = \lg \left(\frac{48 \times 5}{30 \times 64}\right)$ $\lg x^3 = \lg \frac{1}{8}$ $x^3 = \frac{1}{8}$ $x^3 = \frac{1}{2}$ $x = \frac{1}{2}$

- b. $4 \lg 2 + 2 \lg x + \lg 5 = \lg 15 + \lg 12$ $\lg 2^4 + \lg x^2 + \lg 5 = \lg 15 + \lg 12$ $\lg 16 + \lg x^2 + \lg 5 = \lg 15 + \lg 12$ $\lg (16 \times x^2 \times 5) = \lg (15 \times 12)$ $16 \times x^2 \times 5 = 15 \times 12$ $x^2 = \frac{15 \times 12}{16 \times 5}$ $x^2 = \frac{15 \times 12}{16 \times 5}$ $x^2 = \frac{9}{4}$ $x = \frac{3}{2}$
 - d. $\lg x = \frac{1}{2} (\lg 25 + \lg 8 \lg 2)$ $\lg x = \frac{1}{2} \lg \left(\frac{25 \times 8}{2}\right)$ $\lg x = \frac{1}{2} \lg 100$ $\lg x = \frac{1}{2} \lg 10^2$ $\lg x = \frac{1}{2} \times 2 \lg 10$ $\lg x = \lg 10$ x = 10
 - f. $\lg 125 + 2 \lg 3 = 2 \lg x + \lg 5$ $\lg 125 + 2 \lg 3 - \lg 5 = 2 \lg x$ $\lg 125 + \lg 3^2 - \lg 5 = \lg x^2$ $\lg x^2 = \lg \frac{125 \times 9}{5}$ $\lg x^2 = \lg 225$ $g x^2 = 225$ $g x^2 = 15$

මිශු අභාපාසය

1. අගය සොයන්න.

a.
$$(\sqrt[3]{8})^2 \times \sqrt[3]{\frac{1}{27}}$$

b.
$$(\sqrt{125})^3 \times \sqrt{\frac{1}{20}} \times 10$$

c.
$$\frac{32^{-\frac{2}{5}} \times 216^{\frac{2}{3}}}{81^{\frac{3}{4}} \times \sqrt[3]{8^0} \times \sqrt[3]{27^{-2}}}$$

$$\mathbf{d.} \quad \sqrt{\frac{18 \times 5^2}{8}}$$

e.
$$\left(\frac{1}{8}\right)^{\frac{1}{3}} \times 5^{-2} \times 100$$

f.
$$27^{\frac{2}{3}} - 16^{\frac{3}{4}}$$

a.
$$(\sqrt[3]{8})^2 \times \frac{1}{\sqrt[3]{27}}$$
 b. $(\sqrt{125})^3 \times \frac{1}{\sqrt[3]{27}}$ b. $(\sqrt{125})^3 \times \frac{1}{27^{\frac{1}{3}}}$ b. $(\sqrt{125})^3 \times \frac{127^{\frac{1}{3}}}$ b. $(\sqrt{125})^3 \times \frac{1}{27^{\frac{1}{3}}}$ b. $(\sqrt{125})^3 \times \frac{1}{27^{\frac{1}{3}}}$ b. $(\sqrt{125})^3 \times \frac{1}{27^{\frac{1}{3}}}$ b. $(\sqrt{125})^3 \times \frac{1}{27^{\frac{1}{3}}}$ b. $(\sqrt{125})^3 \times \frac{1}{27^{\frac{3}}}$ b. $(\sqrt{125})^3 \times \frac{1}{27^{\frac{3}}}$ b. $(\sqrt{125})^3 \times \frac{1}{27^$

a.
$$(\sqrt[3]{8})^2 \times \frac{1}{\sqrt[3]{27}}$$
 b. $(\sqrt{125})^3 \times \frac{1}{\sqrt{20}} \times 10$

$$= (8^{\frac{1}{3}})^2 \times \frac{1}{27^{\frac{1}{3}}}$$

$$= (2^{3 \times \frac{1}{3}})^2 \times \frac{1}{3^{3 \times \frac{1}{3}}}$$

$$= 2^2 \times \frac{1}{3}$$

$$= \frac{4}{3}$$

$$= 5^{\frac{9}{2}} \times 5^{\frac{1}{2}}$$

c.
$$\frac{32^{-\frac{2}{5}} \times 216^{\frac{2}{3}}}{81^{\frac{3}{4}} \times \sqrt[3]{8^0} \times \sqrt[3]{27^{-2}}}$$

$$= \frac{(2^5)^{-\frac{2}{5}} \times 6^{3 \times \frac{2}{3}}}{3^{4 \times \frac{3}{4}} \times \sqrt[3]{1} \times (3^3)^{-2}}^{\frac{1}{3}}$$

$$= \frac{2^{-2} \times 6^2}{3^3 \times 1 \times 3^{-2}}$$

$$= \frac{\frac{1}{4} \times 36}{3^1}$$

$$= \frac{9}{3}$$

$$= 3$$

d.
$$\sqrt{\frac{18 \times 5^2}{8}}$$
 e. $(\frac{1}{8})^{\frac{1}{3}}$
$$= 8^{\frac{1}{3}} \times$$

$$= \sqrt{\frac{9 \times 5^2}{4}}$$

$$= 2^{3 \times \frac{1}{3}}$$

$$= 2 \times 4$$

$$= \frac{3 \times 5}{2^2}$$

$$= \frac{3 \times 5}{2}$$

$$= \frac{15}{2}$$

$$= \frac{15}{2}$$

$$= \frac{7\frac{1}{2}}{2}$$

f.
$$27^{\frac{2}{3}} - 16^{\frac{3}{4}}$$

 $= 3^{3 \times \frac{2}{3}} - 2^{4 \times \frac{3}{4}}$
 $= 3^2 - 2^3$
 $= 9 - 8$
 $= 1$

2. සුළු කර ධන දර්ශක සහිතව පුකාශ කරන්න.

a.
$$\sqrt{a^2b^{-\frac{1}{2}}}$$

b.
$$(x^{-4})^{\frac{1}{2}} \times \sqrt{\frac{1}{x^{-3}}}$$

c.
$$(x^{\frac{1}{2}} - x^{-\frac{1}{2}}) (x^{\frac{1}{2}} + x^{-\frac{1}{2}})$$

d.
$$(x \div \sqrt[n]{x})$$

d.
$$(x \div \sqrt[n]{x})^n$$
 e. $\left[\left(\sqrt{a^3} \right)^{-2} \right]^{\frac{1}{2}}$

a.
$$\sqrt{a^2b^{-\frac{1}{2}}}$$

= $\left(a^2b^{-\frac{1}{2}}\right)^{\frac{1}{2}}$
= $a^{2\times\frac{1}{2}}b^{-\frac{1}{2}\times\frac{1}{2}}$
= $a\times b^{-\frac{1}{4}}$
= $\frac{a}{b^{\frac{1}{4}}}$

b.
$$(x^{-4})^{\frac{1}{2}} \times \frac{1}{\sqrt{x^{-3}}}$$

 $= x^{-4 \times \frac{1}{2}} \times \frac{1}{x^{-3 \times \frac{1}{2}}}$
 $= x^{-2} \times \frac{1}{x^{-\frac{3}{2}}}$
 $= x^{-2} \times x^{\frac{3}{2}}$
 $= x^{-2 + \frac{3}{2}}$
 $= x^{-\frac{1}{2}}$
 $= \frac{1}{x^{\frac{1}{2}}}$

c.
$$(x^{\frac{1}{2}} - x^{-\frac{1}{2}})(x^{\frac{1}{2}} + x^{-\frac{1}{2}})$$

$$= (x^{\frac{1}{2}})^2 - (x^{\frac{1}{2}})^2$$

$$= x^{\frac{1}{2} \times 2} - x^{\frac{1}{2} \times 2}$$

$$= x - x^{-1}$$

$$= x - \frac{1}{x}$$

$$= \frac{x^2 - 1}{x}$$

d.
$$\left(x \div \sqrt[n]{x}\right)^n$$

 $= \left(x^1 \div x^{\frac{1}{n}}\right)^n$
 $= x^n \div x^{\frac{1}{n} \times n}$
 $= x^n \div x^1$
 $= x^{n-1}$

e.
$$\left(\left(\sqrt{a^3}\right)^{-2}\right)^{\frac{1}{2}}$$

= $\left\{\left(\left(a^3\right)^{\frac{1}{2}}\right)^{-2}\right\}^{\frac{1}{2}}$
= $a^{-\frac{3}{2}}$
= $\frac{1}{a^{\frac{3}{2}}}$

සතහාපනය කරන්න.

a.
$$\lg \left(\frac{217}{38} \div \frac{31}{266} \right) = 2 \lg 7$$

b.
$$\frac{1}{2} \lg 9 + \lg 2 = 2 \lg 3 - \lg 1.5$$

c.
$$\log_3 24 + \log_3 5 - \log_3 40 = 1$$

d.
$$\lg 26 + \lg 119 - \lg 51 - \lg 91 = \lg 2 - \lg 3$$

e.
$$2\log_a 3 + \log_a 20 - \log_a 36 = \log_a 10 - \log_a 2$$

a.
$$\lg\left(\frac{217}{38} \div \frac{31}{266}\right) = 2 \lg 7$$

$$\begin{aligned}
\text{e.e.} &= \lg \left(\frac{217}{38} \div \frac{31}{266} \right) \\
&= \lg \left(\frac{217}{38} \times \frac{266}{31} \right) \\
&= \lg 7^2 \\
&= 2 \lg 7
\end{aligned}$$

$$= \varsigma. e_7.$$

$$\therefore \log \binom{217}{2} \cdot \binom{31}{3} - 2 \log \binom{31}{3}$$

a.
$$\lg\left(\frac{217}{38} \div \frac{31}{266}\right) = 2 \lg 7$$
 b. $\frac{1}{2} \lg 9 + \lg 2 = 2 \lg 3 - \lg 1.5$

$$\begin{array}{lll} \text{ D. Eq. } &=& \lg \left(\frac{217}{38} \div \frac{31}{266} \right) & \text{ D. Eq. } &=& \frac{1}{2} \lg 9 + \lg 2 & \text{ c. Eq. } &=& 2 \lg 3 - \lg 1.5 \\ &=& \lg \left(\frac{217}{38} \times \frac{266}{31} \right) & =& \lg 9^{\frac{1}{2}} + \lg 2 & =& \lg 3^2 - \lg 1.5 \\ &=& \lg 3^{2 \times \frac{1}{2}} + \lg 2 & =& \lg \frac{9}{1.5} \\ &=& \lg 3 + \lg 2 & =& \lg 6 \\ &=& 2 \lg 7 & =& \lg 6 \\ &=& 2 \lg 7 & =& \lg 6 \end{array}$$

$$\therefore \lg\left(\frac{217}{38} \div \frac{31}{266}\right) = 2 \lg 7$$

c.
$$lg_3 24 + lg_3 5 - lg_3 40 = 1$$

$$\begin{aligned} \text{0.07.} &= \lg_3 24 + \lg_3 5 - \lg_3 40 \\ &= \lg_3 \left(\frac{24 \times 5}{40}\right) \\ &= \lg_3 3 \\ &= 1 \\ &= \text{c.07.} \end{aligned}$$

$$\therefore \lg_3 24 + \lg_3 5 - \lg_3 40 = 1$$

d.
$$\lg 26 + \lg 119 - \lg 51 - \lg 91 = \lg 2 - \lg 3$$

$$0.07$$
. = $lg 26 + lg 119 - lg 51 - lg 91$
= $lg \left(\frac{26 \times 119}{51 \times 91}\right)$
= $lg \frac{2}{3}$

$$e_{1} = \lg 2 - \lg 3$$

$$= \lg \frac{2}{3}$$

$$= 0.86$$

$$\therefore \lg 26 + \lg 119 - \lg 51 - \lg 91 = \lg 2 - \lg 3$$

e.
$$2 \lg_a 3 + \lg_a 20 - \lg_a 36 = \lg_a 10 - \lg_a 2$$

$$\begin{array}{l} \text{0.07.} = 2 \lg_{a} 3 + \lg_{a} 20 - \lg_{a} 36 \\ = \lg_{a} 3^{2} + \lg_{a} 20 - \lg_{a} 36 \\ = \lg_{a} \frac{9 \times 20}{36} \\ = \lg_{a} 5 \end{array}$$

$$\xi. \mathfrak{S}_{7}. = \lg_{a} 10 - \lg_{a} 2$$

$$= \lg_{a} \frac{10}{2}$$

$$= \lg_{5} 5$$

$$= \lg_a 5$$