

Digital Logic Design

Chapter 8 – Memory Basics

浙江大学计算机学院 王总辉 zhwang@z ju. edu. cn

http://course.zju.edu.cn 2021年10月

Overview

- Memory definitions
- Random Access Memory (RAM)
- Static RAM (SRAM) integrated circuits
 - Cells and slices
 - Cell arrays and coincident selection
- Arrays of SRAM integrated circuits
- Dynamic RAM (DRAM) integrated circuits
- DRAM Types
 - Synchronous (SDRAM)
 - Double-Data Rate (DDR SRAM)
 - RAMBUS DRAM (RDRAM)
- Arrays of DRAM integrated circuits

Memory Definitions

- Memory A collection of storage cells together with the necessary circuits to transfer information to and from them.
- Memory Organization the basic architectural structure of a memory in terms of how data is accessed.
- Random Access Memory (RAM) a memory organized such that data can be transferred to or from any cell (or collection of cells) in a time that is not dependent upon the particular cell selected.
- Memory Address A vector of bits that identifies a particular memory element (or collection of elements).

Memory Definitions (Continued)

- Typical data elements are:
 - □ bit a single binary digit
 - byte a collection of eight bits accessed together
 - word_ a collection of binary bits whose size is a typical unit of access for the memory. It is typically a power of two multiple of bytes (e.g., 1 byte, 2 bytes, 4 bytes, 8 bytes, etc.)
- Memory Data a bit or a collection of bits to be stored into or accessed from memory cells.
- Memory Operations operations on memory data supported by the memory unit. Typically, read and write operations over some data element (bit, byte, word, etc.).

Memory Organization

IBM 360

Corporation PDP-8 – used a

bit words.

24-bit address to add

4,194,304 32-bit words.

□ Intel 8080 – (8-bit predecessor to the 8 processors) used a 16-bit address to a

Memory Block Diagram

 A basic memory system is shown here:

k address lines are decoded to address 2k words of memory.

■ Each word is n bits.

■ Read and Write are single Write control lines defining the simplest of memory operations.

n Data Input Lines Memory k Address Lines Unit 2^k Words n Bits per Word

Read

n Data Output Lines

Memory Organization Example

Example memory contents: A memory with 3 address bits & 8 data bits has:

- k = 3 and n = 8 so $2^3 = 8$ addresses labeled 0 to 7.
- \square 2³ = 8 <u>words</u> of 8-bit data

Memor	y Address	Memory
Binary	Decimal	Content
000	0	10001111
0 0 2	1	11111111
010) 2	10110001
011	L 3	0000000
100) 4	10111001
101	L 5	10000110
110) 6	00110011
111	L 7	11001100

Basic Memory Operations

• Memory operations require the following:

- □ Data data written to, or read from, memory as required by the operation.
- □ Address specifies the memory location to operate on.
 The address lines carry this information into the memory.
 Typically: n bits specify locations of 2ⁿ words.
- □ An operation Information sent to the memory and interpreted as control information which specifies the type of operation to be performed.
 - Typical operations are READ and WRITE.
 - Others are READ followed by WRITE and a variety of operations associated with delivering blocks of data.
 - Operation signals may also specify timing info.

Basic Memory Operations (continued)

Read Memory — an operation that reads a data value

stored in memory:

Place a valid address on the
address lines.

Wait for the read data to)
become stable.	

Chip select CS	Read/Write R/W	Memory operation
0		None
1	0	Write to selected word
1	1	Read from selected word

- Write Memory an operation that writes a data value to memory:
 - □ Place a valid address on the address lines and valid data on the data lines.
 - □ Toggle the memory write control line
- Sometimes the read or write enable line is defined as a clock with precise timing information (e.g. Read Clock, Write Strobe).
 - □ Otherwise, it is just an interface signal.
 - Sometimes memory must acknowledge that it has completed the operation.

Memory Operation Timing

- Most basic memories are asynchronous
 - Storage in latches or storage of electrical charge
 - No clock
- Controlled by control inputs and address
- Timing of signal changes and data observation is critical to the operation
- Read timing:

Memory Operation Timing

Write timing:

- Critical times measured with respect to edges of write pulse (1-0-1):
 - Address must be established at least a specified time before 1-0 and held for at least a specified time after 0-1 to avoid disturbing stored contents of other addresses
 - □ Data must be established at least a specified time before 0-1 and held for at least a specified time after 0-1 to write correctly

RAM Integrated Circuits

Types of random access memory

- □ Static information stored in latches
- Dynamic information stored as electrical charges on capacitors
 - Charge "leaks" off
 - Periodic refresh of charge required

Dependence on Power Supply

- □ Volatile loses stored information when power turned off
- □ *Non-volatile* retains information when power turned off

Static RAM Cell

Array of storage cells used to implement static RAM

- Storage Cell
 - □ SR Latch
 - Select input for control
 - □ Dual Rail Data Inputs B and B
 - □ Dual Rail Data
 Outputs C and C

Basic cell

SRAM:

- □ value is stored on a pair of inverting gates
- very fast but takes up more space than DRAM (4 to 6 transistors)

(b) SRAM equivalent structure

(a) the basic structure of SRAM

Static RAM - Bit Slice

Represents all circuitry that is required for 2ⁿ 1-bit

words

- Multiple RAM cells
- Control Lines:
 - Word select i
 - one for each word
 - Read/Write
 - Bit Select
- □ Data Lines:
 - Data in
 - Data out

Word selected control line too much

2ⁿ-Word × 1-Bit RAM IC

- To build a RAM IC from a RAM slice, we need:
 - Decoder decodes
 the n address lines to
 2ⁿ word select lines
 - A 3-state buffer
 - on the data output permits RAM ICs to be combined into a $\stackrel{Me}{\stackrel{ena}{\sim}}$ RAM with c × 2ⁿ words

(b) Block diagram

Cell Arrays and Coincident Selection

- Memory arrays can be very large =>
 - Large decoders
 - □ Large fanouts for the bit lines
 - \blacksquare The decoder size and fanouts can be reduced by approximately \sqrt{n} by using a coincident selection in a 2-dimensional array
 - Uses two decoders, one for words and one for bits
 - Word select becomes Row select
 - □ Bit select becomes Column select
- See next slide for example
 - \blacksquare A₃ and A₂ used for Row select
 - \square A₁ and A₀ for Column select

Cell Arrays and Coincident Selection (continued)

RAM ICs with > 1 Bit/Word

- Word length can be quite high.
- To better balance the number of words and word length, use ICs with > 1 bit/word
- See Figure 8-8 for example
 - 2 Data input bits
 - 2 Data output bits
 - □ Row select selects 4 rows
 - Column select selects 2 pairs of columns

Making Larger Memories: Word extension

- Using the CS lines, we can make larger memories from smaller ones by tying all address, data, and R/W lines in parallel, and using the decoded higher order address bits to control CS.
- Using the 4-Word by 1-Bit memory from before, we construct a 16-Word by 1-Bit memory. ⇒

$64K \times 8RAM$

Using 64K×8RAM construct

256K×8RAM

on, Inc. es R. Kime

196,608-262,143 Output data

Making Wider Memories: Bit extension

A0

CS

To construct wider memories from narrow ones, we tie the address and control lines in parallel and keep the data lines separate.

For example, to make a 4word by 4-bit memory from 4, 4-word by 1-bit memories **A1**

Note: Both 16x1 and 4x4 memories take 4-chips and hold 16 bits of data.

Using 64K×8RAM construct

SRAM For SWORD: CY7C1061DV33

SWORD Onboard memory-SRAM

Memory Organization:

 \square CY7C1061G30-10 \times 3 for 1M \times 48bit(6MB)

Dynamic RAM (DRAM)

- Basic Principle: Storage of information on capacitors.
- Charge and discharge of capacitor to change stored value
- Use of transistor as "switch" to:
 - Store charge
 - □ Charge or discharge
- Refresh
 - □ 集中式刷新: 16~64ms
 - □ 分散式刷新: 15.6µs

Dynamic RAM (continued)

Dynamic RAM - Bit Slice

- C is driven by 3-state drivers
- Sense amplifier is used to change the small voltage change on C into H or L
- In the electronics, B, C, and the sense amplifier output are connected to make destructive read into nondestructive read

- Block Diagram See Figure 8-14 in text
- Refresh Controller and Refresh Counter
- Read and Write Operations
 - □ Application of row address: RAS
 - □ Application of column address: CAS
 - Why is the address split?
 - □ Why is the row address applied first?

Block Diagram with Refresh Controller

1004 Pearson Education, Inc.

Data in/ Data out

Dynamic RAM Read Timing

Dynamic RAM Write Timing

DRAM Types

Types to be discussed

- Synchronous DRAM (SDRAM)
- Double Data Rate SDRAM (DDR SDRAM)
- RAMBUS® DRAM (RDRAM)

Justification for effectiveness of these types

- DRAM often used as a part of a memory hierarchy (See details in chapter 14)
- Reads from DRAM bring data into lower levels of the hierarchy
- Transfers from DRAM involve multiple consecutively addressed words
- Many words are internally read within the DRAM ICs using a single row address and captured within the memory
- This read involves a fairly long delay

DRAM Types (continued)

- Justification for effectiveness of these types (continued)
 - ☐ These words are then transferred out over the memory data bus using a series of clocked transfers
 - These transfers have a low delay, so several can be done in a short time
 - The column address is captured and used by a synchronous counter within the DRAM to provide consecutive column addresses for the transfers
- burst read the resulting multiple word read from consecutive addresses

Synchronous DRAM

- Transfers to and from the DRAM are synchronize with a clock
- Synchronous registers appear on:
 - Address input
 - Data input
 - Data output
- Column address counter
 - for addressing internal data to be transferred on each clock cycle
 - beginning with the column address counts up to column address + burst size − 1
- Example: Memory data path width: 1 word = 4 bytes

Burst size: 8 words = 32 bytes

Memory clock frequency: 5 ns

Latency time (from application of row address until first word

available): 4 clock cycles

Read cycle time: $(4 + 8) \times 5 \text{ ns} = 60 \text{ ns}$

Memory Bandwidth: $32/(60 \times 10^{-9}) = 533$ Mbytes/sec

THE UNIVERSE

SDRAM burst time-- burst size=4

Double Data Rate Synchronous DRAM

- Transfers data on both edges of the clock
- Provides a transfer rate of 2 data words per clock cycle
- Example: Same as for synchronous DRAM
 - □ Read cycle time = 60 ns
 - □ Memory Bandwidth: $(2 \times 32)/(60 \times 10^{-9}) = 1.066$ Mbytes/sec

DDR3 For SWORD: MT41J128M16JT

 $2^{31}(128M \times 16bit = 2^{27+4}bit)$ memory Cell, 8 BANK, there are 17 address line.

MT41J128M16JT Logical Structure

- 2³¹(128M×16bit=2²⁷⁺⁴bit)个存储单元(Cell),分成8个BANK,共有17根地址线。
- 地址线作为行地址输入时分为二组,其中 A_{13} $^{\circ}A_{0}$ 控制行阵列选择(8个128×128二维单元),和 BA_{2} $^{\circ}BA_{0}$ 控制BANK选择,由RAS控制信号锁存;地址线作为列地址时只用了10根列地址线(A_{9} $^{\circ}A_{0}$),也分为二组,由CAS信号控制锁存)。
- 每一个BANK由16384(2¹⁴)个128×128的二维Cell阵列构成,由14根行地址线 A₁₃~A₀选择,形成由2²⁸个Cell组成的三维立体阵列(16384×128×128),共有 8个三维立体阵列(BANK),由行地址线BA₂~BA₀选择,芯片内部阵列总计2³¹个 Cell。
- 行地址 $A_{13}^{\sim}A_0$ 每次选中所有BANK中的一个二维Cell阵列(128×128),并由 $BA_2^{\sim}BA_0$ 选用其中的一个128×128Cell阵列。
- 选中的二维阵列由列地址A₉~A₃选中其中的一列(128Cell),与FIF0读缓冲器或数据接口模块连接。若是读操作,读出到FIF0读缓冲器,再由列地址A₂~A₀控制

海沙海次输出16位;若是写操作,从128位输入接口模块选择16位写入。

SWORD Onboard memory-DDR3

- Memory Organization
 - \blacksquare H5TQ2G63GFR \times 2 for 128M \times 32bit(512MB)

RAMBUS DRAM (RDRAM)

- Uses a packet-based bus for interaction between the RDRAM ICs and the memory bus to the processor
- The bus consists of:
 - A 3-bit row address bus
 - A 5-bit column address bus
 - A 16 or 18-bit (for error correction) data bus
- The bus is synchronous and transfers on both edges of the clock
- Packets are 4-clock cycles long giving 8 transfers per packet representing:
 - A 12-bit row address packet
 - A 20-bit column address packet
 - □ A 128 or 144-bit data packet
- Multiple memory banks are used to permit concurrent memory accesses with different row addresses
- The electronic design is sophisticated permitting very fast clock speeds

- Similar to arrays of SRAM ICs, but there are differences typically handled by an IC called a DRAM controller:
 - Separation of the address into row address and column address and timing their application
 - □ Providing RAS and CAS and timing their application
 - Performing refresh operations at required intervals
 - Providing status signals to the rest of the system (e.g., indicating whether or not the memory is active or is busy performing refresh)

Thank You!

