Exercise: Understanding Potential Outcomes

- 1. Generate data on a population of 1,000 people. Specifically, create a variable (a vector) that randomly assigns these people to be male or female (50:50). Hint: In R, try rbinom and in Stata, try rbinomial.
- 2. Now we are going to simulate the potential outcomes a measure of attitudes under control (y_0) for our population. Create another variable of random normally-distributed values with mean of 5 and standard deviation of 1.
- 3. One problem with observational data is that potential outcomes are often correlated with other variables such as gender. Adjust your value of y_0 to add 1 (one) for all units who are male.
- 4. Now simulate potential outcomes under treatment (y_1) for all units. Define a constant treatment effect of c=2 and create another vector $y_1=y_0+c$.
- 5. To compare our two sets of potential outcomes, plot two density charts on the same figure one for y_0 and one for y_1 .
- 6. Next, let us assume a specific **Treatment Assignment Mechanism** where men are more likely than women to receive treatment. First, create a temporary 'latent' variable which consists of two components added together: (i) 0.5 * x (i.e. half the value of the gender variable), and (ii) a random uniform value between zero and one. Finally, create a new vector D which is equal to one when the latent variable is larger than 0.75, and zero otherwise.
- 7. To show that gender and treatment maybe we can think of treatment as low income and high income are related, calculate the correlation between x and D.
- 8. What is the average of the real indvidual treatment effects based on the potential outcomes, $E(y_1 y_0)$?
- 9. The Fundamental Problem of Causal Inference is that we *cannot* calculate (8.) above. Instead, we only observe one value: y_{obs} . Create a new variable y_{obs} which equals y_1 if D = 1 but which equals y_0 if D = 0.
- 10. Based on the observable data, run the basic regression of treatment (D) on observable outcomes (y_{obs}) . Interpret the result. Is this an accurate estimate of the treatment effect that we assumed at the start?
- 11. Re-run all your code above but this time with c = 0 so we are assuming **NO** treatment effect. Run the regression in (10.) again what is the result?
- 12. To see why, let's plot two density charts on the same figure one for the distribution of observable y_{obs} for the treated group $(y_{obs}|D==1)$ and one for the distribution of observable y_{obs} for the control group $(y_{obs}|D==0)$.
- 13. Run your code again for c = 0, but this time assume a larger population of N = 1,000,000. Does that solve the problem?
- 14. For c=0, run the regression of treatment on observable outcomes, but this time controlling for gender.