MATH 210 Assignment 2

Logic, Loops and Functions

INSTRUCTIONS

- ♦ Create a new Jupyter notebook and set the kernel to Python 3
- ♦ Present your solutions in a single Jupyter notebook and clearly label the solutions
- ♦ Your solutions should include clear explanations (including proper use of markdown language and LATEX) and your functions should include comments
- ♦ There are 30 total points: each question is worth 4 points and 2 points will be awarded for the overall presentation of your notebook
- ♦ Each question is graded out of 4 points according to the rubric:
 - 4 The function performs its tasks correctly and includes comments which properly explain the code
 - 3 The function performs its tasks correctly but needs more comments to explain the code
 - 2 The function performs its tasks somewhat correctly
 - 1 The solution needs improvement
- ♦ Submit the .ipynb file to Connect by 11pm Friday January 22
- ♦ You may work on these problems with others but you must write your solutions on your own

QUESTIONS

- 1. Write a function called **roots** which takes 3 numerical inputs a, b and c (which represent the polynomial $ax^2 + bx + c$) and does the following:
 - \diamond if the roots of $ax^2 + bx + c$ are real and distinct, return a Python list consisting of the two roots
 - \diamond if the roots of $ax^2 + bx + c$ are real and repeated, return the single root
 - \diamond if the roots of $ax^2 + bx + c$ are complex, return a list of length 2 such that both entries of the list are lists which give the real part and the imaginary part of each root. In other words, if r_1 and r_2 are the complex roots, then the function returns:

[Real part of r_1 , Imaginary part of r_1], [Real part of r_2 , Imaginary part of r_2]

For example:

(a) If a = 1, b = 0 and c = -1, then the function returns [1.0,-1.0], the roots of $x^2 - 1$.

- (b) If a = 1, b = 2 and c = 1, then the function returns -1.0, the only root of $x^2 + 2x + 1$.
- (c) If a = 1, b = 0 and c = 1, then the function returns [[0.0,1.0],[0.0,-1.0]] which represents i and -i, the roots of $x^2 + 1$.
- (d) If a = 1, b = 2 and c = 2, then the function returns [[-1.0,1.0],[-1.0,-1.0]] which represents 1 + i and 1 i, the roots of $x^2 + 2x + 2$.
- 2. Write a function called fibonacci_less_than which takes an integer N and computes the largest Fibonacci number less than (or equal to) N. Use your function to find the largest Fibonacci number which is less than 1,000,000.
- 3. Write a function called **divisors** which takes an integer N and returns a Python list of all its (positive) divisors. For example, if N = 12 then the function returns [1, 2, 3, 4, 6, 12].
- 4. In number theory, the sum of divisors function $\sigma_k(n)$ is

$$\sigma_k(n) = \sum_{d|n} d^k$$

where the sum is taken over the positive divisors of n. For example, $\sigma_2(12)$ is the sum

$$\sigma_2(12) = 1^2 + 2^2 + 3^2 + 4^2 + 6^2 + 12^2$$
.

Use the function divisors from previous question to write a function called sum_of_divisors which takes 2 inputs k and n and returns $\sigma_k(n)$.

- 5. Write a function called is_prime which takes an integer N and returns the Boolean value True if N is prime and False if N is not prime.
- 6. Use the function is_prime from the previous question to write a function called primes_up_to which takes an integer N and returns a Python list of all primes $p \leq N$.
- 7. Twin primes are a pair of prime numbers whose difference is 2. For example, 3 and 5 are a pair of twin primes and so is the pair 11 and 13. Write a function called twin_primes which takes an integer N and returns a list of twin primes (given as a list of length 2) less than (or equal to) N. For example:
 - (a) if N = 15, then the function returns [[3, 5], [5, 7], [11, 13]]
 - (b) if N = 35, then the function returns [[3, 5], [5, 7], [11, 13], [17, 19], [29, 31]]
 - (c) if N = 43, then the function returns [[3, 5], [5, 7], [11, 13], [17, 19], [29, 31], [41, 43]]

(The Twin Prime Conjecture states that there are infinitely many twin primes. The conjecture is still an open problem in number theory.)