

唐老狮系列教程

持持法法

WELCOME TO THE UNITY SPECIALTY COURSE STUDY

on desce @162 or

主要讲解内容

WELCOME TO THE UNITY SPECIALTY COURSE STUDY

主要讲解内容

- 1. 折射效果是什么
- 2. 折射效果的原理
- 3. 折射效果注意点

WELCOME TO THE UNITY SPECIALTY COURSE STUDY

折射效果是什么

WELCOME TO THE UNITY SPECIALTY COURSE STUDY

折射效果是什么

折射效果指光的折射,是一种光学现象。

指光从一种透明介质斜射入另一种透明介质时,传播方向一般会发生变化,这种现象叫光的折射。

<u>光的折射与光的反射一样</u>都是<u>发生在两种介质的交界处</u>,只是<u>反射光返回原介质中</u>,而<u>折射光则</u> 进入到另一种介质中,由于光在两种不同的物质里传播速度不同,故在两种介质的交界处传播方 向发生变化,这就是光的折射。

WELCOME TO THE UNITY SPECIALTY COURSE STUDY

折射效果是什么

在Unity Shader中,折射效果模拟了光线通过透明或半透明材质时的弯曲行为。

一般用来模拟水面、透明玻璃球、眼镜、钻石、水晶球、空气扰动等等效果

它一般会配合其他表现效果一起使用

WELCOME TO THE UNITY SPECIALTY COURSE STUDY

折射效果的原理

WELCOME TO THE UNITY SPECIALTY COURSE STUDY

折射效果的原理

折射效果的原理还是利用 立方体纹理 (CubeMap) 进行环境映射 我们利用摄像机看向物体表面顶点的方向向量作为入射向量,结合顶点法线向量算出折射向量 然后利用折射方向向量在立方体纹理中进行采样,得到最终反射的颜色。

WELCOME TO THE UNITY SPECIALTY COURSE STUDY

折射效果的原理

我们在计算折射方向时,会用到

斯涅耳定律 (Snell's Law):

当光从介质1沿着表面法线夹角为θ1的方向斜射入介质2时

我们可以利用数学公式 $n1sin\theta1=n2sin\theta2$ 计算出折射光线和法线的夹角 $\theta2$

其中n1和n2为两种介质的折射率

WELCOME TO THE UNITY SPECIALTY COURSE STUDY

折射效果注意点

WELCOME TO THE UNITY SPECIALTY COURSE STUDY

折射效果注意点

斯涅耳定律 (Snell's Law):

 $n1\sin\theta 1 = n2\sin\theta 2$

对于其中的折射率来说,不同物体的折射率各不相同

我们在制作时,可以在搜索引擎中搜索 常用折射率表 来获取对应物体的折射率

WELCOME TO THE UNITY SPECIALTY COURSE STUDY

折射效果注意点

我们在Unity中处理**折射效果**的做法是**直接用得到的折射方向对立方体纹理进行采样** 这样做其实不符合物理规律,因为对于一个透明物体来说,更准确的模拟方式应该是进行两侧折射,一次是光线进入内部,一次是光线从物体内部射出。但是,在实时渲染中模拟第二次折射方向较为复杂,而我们**仅模拟一次折射得到的效果在视觉上看起来也是可以接受的!** 因此,在实时渲染中,我们通常仅模拟第一次折射来得到最终的结果!

法线方向 η1 η2 Hyprical 折射方向

WELCOME TO THE UNITY SPECIALTY COURSE STUDY

总结

WELCOME TO THE UNITY SPECIALTY COURSE STUDY

主要讲解内容

1. 折射效果是什么

折射效果模拟了光线通过透明或半透明材质时的弯曲行为。

- 一般用来模拟水面、透明玻璃球、眼镜、钻石、水晶球、空气扰动等等效果
- 2. 折射效果的原理

折射效果的原理还是利用 立方体纹理(CubeMap)进行环境映射 利用斯涅耳定律计算折射向量进行立方体纹理采样

3. 折射效果注意点

不同物体的折射率不同;我们仅模拟第一次折射来得到最终表现效果

WELCOME TO THE UNITY SPECIALTY COURSE STUDY

唐老狮系列教程

排您的您的年

WELCOME TO THE UNITY SPECIALTY COURSE

STUDY