

FLOWER RECOGNITION USING DEEP-LEARNING

Machine Learning
Insaf CHAIBI & Rania BEN GHARSSALLAH

What is Deep-Learning?

CMWs Dd Transfer

Learning

Architecture

Data-mining Life

Cycle

0

4

What is Deep-Learning?

What is Deep-Learning?

- Deep-Learning is a type of machine learning based on artificial neural networks in which multiple layers of processing are used to extract progressively higher level features from data.
- Deep learning models can recognize complex patterns in pictures, text, sounds, and other data to produce accurate insights and predictions.

Deep-Learning Algorithms

02 ML Vs DL

DL Libraries or Frameworks

- TensorFlow: Developed by Google, TensorFlow is a versatile deep learning library known for its scalability, flexibility, and comprehensive ecosystem. It offers both high-level APIs, such as Keras for easy model development, and low-level APIs for fine-grained control over model architecture and training process.
- PyTorch: Created by Facebook's AI Research lab, PyTorch is a dynamic deep learning framework favored by researchers and developers for its intuitive interface and Pythonic syntax. PyTorch employs dynamic computation graphs, allowing for more flexibility in model construction and debugging. Its simplicity and ease of use make it ideal for rapid experimentation and prototyping of novel deep learning architectures.

Supervised Learning

Unsupervised Learning

Semi-supervised Learning

Reinforcement Learning

Classification Types

03 CNN and Transfer Learning Architecture

CNN Architecture

• A Convolutional Neural Network (CNN) is a type of deep learning algorithm primarily used for image recognition and processing tasks. It is inspired by the human visual system and consists of multiple layers of neurons that analyze visual data. CNNs are adept at automatically learning features from raw input data, making them highly effective in tasks such as image classification, object detection, and facial recognition.

Transfer Learning Architecture

 Transfer learning, is the reuse of a pre-trained model on a new problem. In transfer learning, a machine exploits the knowledge gained from a previous task to improve generalization about another.
 For example, in training a classifier to predict whether an image contains plants, you could use the knowledge it gained during training to recognize flowers.

Transfer Learning Architecture

Domain

Source

Transfer

Target Domain

Transfer Learning's Advantages

- Reducing training time,
- Improving performance with limited data,
- Aiding generalization to new tasks,
- Facilitating domain adaptation,
- Avoiding overfitting.

04 Data-mining Life Cycle

Data-mining Life Cycle

Data collection

Data preprocessing

Models learning

Evaluation

Integration

5 classes of flower types

- Daisy
- Dandelion
- Rose
- Sunflower
- Tulip

Data-mining Life Cycle

Data preprocessing

Models learning

Evaluation

Integration

CNN + Transfer learning

- VGG16
- ResNet50

Data preprocessing

Models learning

Evaluation

Integration

Comparison		Accurac	Precision	Recall	F1-score	Loss
between CNN and Transfer	CNN	y 0.78	0.79	0.78	0.78	1.59
Learning models	InceptionV 3	0.62	0.64	0.61	0.60	1.18
(Macro AVG)	VGG16	0.69	0.69	0.68	0.68	1.13
3/11/2024	ResNet50	0.88	0.87	0.86	0.88	² 0.3

Data preprocessing

Models learning

Evaluation

Integration

Overfitting

Data preprocessing

Models learning

Evaluation

Integration

23

Overfitting solutions bata Augmentation

- Regularization:L1 and L2 Regularization
- Dropout

- Early Stopping
- Simplifying the Model
- Cross-Validation
- Transfer learning

System Architecture

Deep Learning System Flower Classification Python

Web Application

HTML & CSS

Flask

API

References

- https://www.kaggle.com/datasets/alxmamaev/flowers-recognition/data
- https://www.tensorflow.org/tutorials/images/cnn?hl=fr
- https://builtin.com/data-science/transfer-learning
- https://www.v7labs.com/blog/overfitting-vs-underfitting#:~:text=lt%20is% 20different%20from%20overfitting,the%20input%20and%20the%20output.
- https://www.simplilearn.com/tutorials/artificial-intelligence-tutorial/ai-vs-machine-learning-vs-deep-learning#:~:text=The%20major%20difference%20between%20deep,layers%20of%20artificial%20neural%20networks.

3/11/2024 28

DO YOU HAVE ANY QUESTIONS

