II Định nghĩa/Tính chất đại số Boole

Định nghĩa: Hàm Boole thường được biểu diễn bằng cách dùng các biểu thức được tạo bởi các biến và các phép toán Boole

Cho B =
$$\{0,1\}$$
. Một ánh xạ

f:
$$B^n \to B$$

$$(x_1, x_2,...,x_n) \to f(x_1, x_2,...,x_n)$$

 $(x_1,x_2,...,x_n) \rightarrow f(x_1,x_2,...,x_n)$ Gọi là **hàm Boole** bậc n theo n biến $x_1,x_2,...,x_n$

Ví dụ: Hàm Boole 2 biến f(x,y) với giá trị bằng 1 khi x=1, y=0 và bằng 0 với mọi khả năng còn lại của x và y có thể được cho

trong bảng sau

X	y	F(x,y)
0	0	0
0	1	0
1	0	1
1	1	0

Ví dụ: Cử tri A_1 , A_2 , A_3 , tham gia bỏ phiếu trong cuộc bầu cử có ứng cử viên D. Các biến Boole tương ứng là x_1, x_2, x_3

$$\mathbf{V\acute{o}i} \ x_{j} = \begin{cases} 1 \ n \in A_{j} \ b = a \ phi \in a \ cho \ D \\ 0 \ n \in A_{j} \ kh \cap g \ b = a \ phi \in a \ cho \ D \end{cases}$$

 $(1 \le i \ge 3)$

(1-1-0)			
x_1	x_2	x_3	$F(x_1, x_2, x_3)$
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Các hằng đằng thức đại số Boole

Hằng đẳng thức	Tên gọi	
$\mathbf{x} = \mathbf{x}$	luật phần bù kép	
$ \begin{aligned} x + x &= x \\ x &= x \end{aligned} $	luật luỹ đẳng	
$ \begin{aligned} x + 0 &= x \\ x, 1 &= x \end{aligned} $	luật đồng nhất	
$ \begin{aligned} \mathbf{x} + 1 &= 1 \\ \mathbf{x} \cdot 0 &= 0 \end{aligned} $	luật nuốt	
x + y = y + x $xy = yx$	luật giao hoán	
x + (y + z) = (x + y) + z x(yz) = (xy)z	luật kết hợp	
x + yz = (x + y)(x + z) x(y + z) = xy + xz	luật phân phối	
$(\overline{xy}) = \overline{x} + \overline{y}$ $(\overline{x+y}) = \overline{x}.\overline{y}$	luật De Morgan	

Tính đối ngẫu đại số Boole

Định nghĩa: Đối ngẫu của một biểu thức Boole là một biểu thức Boole nhận được bằng cách các tổng và tích Boole đổi chỗ cho nhau, các số 0 và 1 đổi chỗ cho nhau.

Ví du:

Đối ngẫu của $(x.\overline{y})+z$ là $(x+\overline{y}).z$

Đối ngẫu của \bar{x} . $1 + (\bar{y} + z)$ là $(\bar{x} + 0)(\bar{y}.z)$

Nguyên lý đối ngẫu

Định nghĩa: Một hằng đẳng thức giữa các hàm được biểu diễn bởi các biểu thức

Boole vẫn còn đúng nếu ta lấy đối ngẫu 2 vế của nó

Ví dụ: Lấy đối ngẫu 2 vế của hằng đẳng thức

$$x(x+y) = x$$

ta được x+xy=x