Jointly Modelling the Body and Tail of Bivariate Data

Lídia André

Supervisors: Jennifer Wadsworth and Adrian O'Hagan

November 21st, 2022

Problem

Sometimes we may be interested in not only modelling the extremes but also the bulk of the distribution accurately - e.g. environmental applications

Univariate Framework

 There have been proposed parametric, semi-parametric and non-parametric models

Figure 1: Taken from Scarrott and MacDonald (2012)

Introduction to Copulas

In a multivariate setting we are also concerned about the dependence between variables. A way of measuring it is by using **copulas**

A copula C is a **joint distribution** of a random vector (X_1, \ldots, X_d)

$$F(x_1,...,x_d) = C(F_{X_1}(x_1),...,F_{X_d}(x_d)), \quad d \geq 2$$

Multivariate Framework

Aulbach et al. (2012) model the whole data set by fitting one copula to the body and another to the upper tail

- It sometimes doesn't offer a smooth transition between the two copulas
- It requires the choice of thresholds
- The likelihood of the model doesn't have a closed form so no inference was done

For $(u^*, v^*) \in [0, 1]^2$, we define the density c^* as

$$c^*(u^*, v^*; \gamma) = \frac{\pi(u^*, v^*; \theta)c_t(u^*, v^*; \alpha) + [1 - \pi(u^*, v^*; \theta)]c_b(u^*, v^*; \beta)}{K(\gamma)}$$

¹For more details see André et al. (2022)

For $(u^*, v^*) \in [0, 1]^2$, we define the density c^* as

$$c^*(u^*, v^*; \gamma) = \frac{\pi(u^*, v^*; \theta)c_t(u^*, v^*; \alpha) + [1 - \pi(u^*, v^*; \theta)]c_b(u^*, v^*; \beta)}{K(\gamma)}$$

ullet $c_t,\ c_b o$ copula densities tailored to the tail and body, respectively.

¹For more details see André et al. (2022)

For $(u^*, v^*) \in [0, 1]^2$, we define the density c^* as

$$c^*(u^*, v^*; \gamma) = \frac{\pi(u^*, v^*; \theta)c_t(u^*, v^*; \alpha) + [1 - \pi(u^*, v^*; \theta)]c_b(u^*, v^*; \beta)}{K(\gamma)}$$

- ullet $c_t,\ c_b o$ copula densities tailored to the tail and body, respectively.
- $\pi(u^*, v^*; \theta) \rightarrow$ dynamic weighting function, defined in $[0, 1]^2$ and increasing in u^* and v^*

¹For more details see André et al. (2022)

For $(u^*, v^*) \in [0, 1]^2$, we define the density c^* as

$$c^*(u^*, v^*; \gamma) = \frac{\pi(u^*, v^*; \theta)c_t(u^*, v^*; \alpha) + [1 - \pi(u^*, v^*; \theta)]c_b(u^*, v^*; \beta)}{K(\gamma)}$$

- ullet $c_t,\ c_b o$ copula densities tailored to the tail and body, respectively.
- $\pi(u^*, v^*; \theta) \to \text{dynamic weighting function, defined in } [0, 1]^2$ and increasing in u^* and v^*
- $\gamma = (\theta, \alpha, \beta) o$ vector of model parameters
- $K(\gamma) \rightarrow$ normalising constant ¹

¹For more details see André et al. (2022)

- Doesn't require a choice of threshold
- Offers a smooth transition between the body and tail copulas
- However, it is also hard to perform inference on it

Inference

The inference on the model was achieved by fitting the copula of the density c^* via numerical integration as follows

$$c(u, v; \gamma) = \frac{c^* \left(F_{U^*}^{-1}(u), F_{V^*}^{-1}(v); \gamma \right)}{f_{U^*} \left(F_{U^*}^{-1}(u) \right) f_{V^*} \left(F_{V^*}^{-1}(v) \right)}$$

where

$$F_{U^*}(u^*) = P[U^* \le u^*] = \int_0^{u^*} \int_0^1 c^*(u, v) dv du$$
 $f_{U^*}(u^*) = \int_0^1 c^*(u^*, v) dv, \qquad v \in (0, 1)$

Extremal Dependence Properties

It is important to know if extreme values of the variables are likely to occur together (asymptotic dependence) or not (asymptotic independence)

$$\chi = \lim_{r \to 1} P[F_Y(y) > r \mid F_X(x) > r],$$

$$P[F_Y(y) > r \mid F_X(x) > r] \sim \mathcal{L}(1 - r)(1 - r)^{\frac{1}{\eta} - 1} \quad \text{as } r \to 1$$

- Asymptotic Dependence: $\chi > 0$ and $\eta = 1$
- Asymptotic Independence: $\chi=0$ and $\eta\neq 1$

Extremal Dependence Properties

Figure 2: Weight function: $\pi(u^*, v^*; \theta) = (u^*v^*)^{\theta}$.

Extremal Dependence Properties

Figure 3: Weight function: $\pi(u^*, v^*; \theta) = \exp\{-\theta(1 - u^*)(1 - v^*)\}.$

- Temperature may influence the levels of Ozone concentration in the air
- ullet The legal thresholds for O_3 levels in the UK might then be found in the body and not just in the tails of the data

UK legal thresholds:

Levels		Moderate	0	Very High
$O_3 \left(\mu g/m^3\right)$	[0, 100]	[101, 160]	[161, 240]	> 240

We applied our model to the summers between 2011 and 2019 of Blackpool, UK

Apart from the upper tail, the variables seem to be negative correlated

Fitting a single copula

AIC
2.0
-28.6
-15.8
-143.6
-97.4
-52.8
0.1
-99.1
-99.0
-95.9

None of the single copulas showed negative correlation

Fitting the weighted copula model with

$$\pi(u^*, v^*; \theta) = (u^*v^*)^{\theta}$$

Model		Parameters			AIC
c_b	c_t	$\hat{\beta}$	\hat{lpha}	$\hat{\theta}$	AIC
Gaussian	Hüsler-Reiss	-0.40	1.24	0.35	-176.1
Gaussian	Galambos	-0.41	0.79	0.34	-172.1
Gaussian	Coles-Tawn	-0.33	0.35, 2.86	0.43	-158.4
Frank	Coles-Tawn	-2.52	0.33, 4.80	0.37	-163.2
Frank	Joe	-4.11	1.61	0.18	-184.9

The models with the best AIC all show negative correlation in the copulas tailored to the body

Fitting the weighted copula model with

$$\pi(u^*, v^*; \theta) = \exp\{-\theta(1 - u^*)(1 - v^*)\}$$

Model		Parameters			AIC
c_b	Ct	\hat{eta}	â	$\hat{\theta}$	AIC
Gaussian	Hüsler-Reiss	-0.74	1.33	3.32	-240.1
Gaussian	Galambos	-0.72	0.90	3.55	-237.2
Gaussian	Coles-Tawn	-0.74	0.85, 0.79	3.25	-234.8
Frank	Coles-Tawn	-4.51	0.87, 1.02	4.33	-235.7
Frank	Joe	-6.49	1.72	2.45	-232.9

Other diagnostics

Models	Kendall's $ au$	$P[T \ge 24, O_3 \ge 100]$	$P[O_3 \ge 100 \mid 22 \le T \le 23]$
Empirical	0.0812	0.0302	0.1330
(95% CI)	(0.0173, 0.1867)	(0.0147, 0.0544)	(0.0227, 0.1944)
Model 1	0.0690	0.0246	0.1441
Model 2	0.0663	0.0250	0.1412
Model 3	0.0770	0.0251	0.1429
Model 4	0.0779	0.0262	0.1392
Model 5	0.0718	0.0267	0.1366

Conclusions

- Our model provides a better fit than just fitting a single copula to the data
- It is flexible it is able to capture different structures within the same data set
- However, it is computationally expensive
- Further Steps:
 - Account for non-stationarity incorporate covariates

Questions?

Thank you all for listening!

References I

- André, L. M., Wadsworth, J. L., and O'Hagan, A. (2022). Joint modelling of the body and tail of bivariate data (preprint).
- Aulbach, S., Bayer, V., and Falk, M. (2012). A Multivariate Piecing-Together Approach with an Application to Operational Loss Data. *Bernoulli*, 18:455–475.
- Scarrott, C. and MacDonald, A. (2012). A Review of Extreme Value Threshold Estimation and Uncertainty Quantification. *Revstat Statistical Journal*, 10:33–60.