Linear Algebra

Cody Vig

January 2022

We make the following definitions.

Definition 1 (Sum). If S_1 and S_2 are nonempty subsets of a vector space V, then the sum of S_1 and S_2 is $S_1 + S_2 := \{x + y \mid x \in S_1, y \in S_2\}$.

Definition 2 (Direct sum). A vector space V is called the direct sum of W_1 and W_2 if W_1 and W_2 are subspaces of V with $W_1 \cap W_2 = \{0\}$ and $W_1 + W_2 = V$. We denote the V is the direct sum of W_1 and W_2 by writing $V = W_1 \oplus W_2$.

Problem Set 1: Vector Spaces

- 1. Let W_1 and W_2 be subspaces of a vector space V. Prove that $W_1 \cap W_2$ is a subspace of V. (Note that $\{0\}$ is a subspace of every vector space.)
 - Solution. Note that $0 \in W$ for any subspace W of V, and so $0 \in W_1 \cap W_2$ and hence $W_1 \cap W_2$ is not empty. It remains to be shown that $W_1 \cap W_2$ is closed under addition and scalar multiplication. Suppose x_1, x_2 are elements of $W_1 \cap W_2$ and c is an element of \mathbb{F} . Then by definition, x_1, x_2 are elements of both W_1 and W_2 , from which it follows that $x_1 + x_2$ and cx_1 are elements of W_1 and W_2 , since W_1 and W_2 are vector spaces. Hence $x_1 + x_2$ and cx_1 are elements of $W_1 \cap W_2$, which shows $W_1 \cap W_2$ is closed under addition and scalar multiplication. This completes the proof.
- 2. Let W_1 and W_2 be subspaces of a vector space V. Prove that $W_1 \cup W_2$ is a subspace of V if and only if either $W_1 \subseteq W_2$ or $W_2 \subseteq W_1$.

Solution.

- (\Longrightarrow) Let $W_1 \cup W_2$ be a subspace of V, and assume by way of contradiction that $W_1 \not\subseteq W_2$ and $W_2 \not\subseteq W_1$. Then there exists an element x_1 in $W_1 \cup W_2$ which is in W_1 but not in W_2 , and there exists an x_2 in $W_1 \cup W_2$ which is not in W_1 and is in W_2 . Since $W_1 \cup W_2$ is closed under addition, $x_1 + x_2 \in W_1 \cup W_2$, which implies $x_1 + x_2$ is in at least one of W_1 or W_2 . Suppose without loss of generality $x_1 + x_2 \in W_1$. Since $x_1 \in W_1$, there exists a $-x_1 \in W_1$ for which $x_1 x_1 = 0$, and so $(x_1 + x_2) x_1 = x_2 + (x_1 x_1) = x_2 \in W_1$, which is a contradiction. Hence either $W_1 \subseteq W_2$ or $W_2 \subseteq W_1$.
- (\iff) Suppose without loss of generality that $W_1 \subseteq W_2$. Then $W_1 \cup W_2 = W_2$, which is a subspace of V by assumption.
- 3. Let W_1 and W_2 be subspaces of a vector space V.
 - (a) Prove that $W_1 + W_2$ is a subspace of V that contains both W_1 and W_2 . Solution. We need to show that $x \in W_1$ or $x \in W_2$ implies $x \in W_1 + W_2$. Suppose $x \in W_1$. Then put x = x + 0 for $x \in W_1$ and $0 \in W_2$. Hence $x \in W_1 + W_2$. Similarly, $W_2 \ni x = 0 + x$ implies $x \in W_1 + W_2$, and so $W_1 + W_2$ contains W_1 and W_2 .

Problem Set 01 Linear Algebra

(b) Prove that any subspace of V that contains both W_1 and W_2 must also contain $W_1 + W_2$. Solution. Suppose W is a subspace of V which contains W_1 and W_2 . In particular, $w_1 \in W_1$ and $w_2 \in W_2$ implies $w_1, w_2 \in W$. Since W is closed under addition, $w_1 + w_2 \in W$, and so $W_1 + W_2$ is contained within W.

(c) Prove that $V = W_1 \oplus W_2$ if and only if each vector in V can be uniquely written as $x_1 + x_2$ where $x_1 \in W_1$ and $x_2 \in W_2$.

Solution.

(\Longrightarrow) Let $V=W_1\oplus W_2$. Then $V=W_1+W_2$ and $W_1\cap W_2=\{0\}$. Since $V=W_1+W_2$, every $v\in V$ can be written in the form x_1+x_2 for $x_1\in W_1$ and $x_2\in W_2$. Suppose $x_1+x_2=v=y_1+y_2$ for $x_1,\,y_1\in W_1$ and $x_2,\,y_2\in W_2$. Then, $0=(x_1-y_1)+(x_2-y_2)$. Since $W_1\cap W_2=\{0\},\,-y_1\notin W_2$ and $-y_2\notin W_1$ unless $y_1=y_2=0=x_1=x_2$ (if $0\neq -y_1\in W_2$ or $0\neq -y_2\in W_1$, then by closure $y_1\in W_2$ or $y_2\in W_1$, which contradicts the assumption that $W_1\cap W_2=\{0\}$). Otherwise, it must be the case that $x_1-y_1=0=x_2-y_2$, and so $x_1=y_1$ and $x_2=y_2$. Hence, any $v\in V$ can be written uniquely as x_1+x_2 where $x_1\in W_1$ and $x_2\in W_2$.

(\Leftarrow) Suppose each $v \in V$ can be written uniquely as $x_1 + x_2$ for $x_1 \in W_1$ and $x_2 \in W_2$. This implies $V = W_1 + W_2$. Further, if $x \in W_1$, we can write x = x + 0 for $0 \in W_2$ (and similarly for $y \in W_2$), which implies $W_1 \cap W_2 = \{0\}$ (not \varnothing , since $V \ni 0 = 0 + 0$ is of the form $x_1 + x_2$ where $0 = x_1 \in W_1$ and $0 = x_2 \in W_2$). Hence $V = W_1 \oplus W_2$.

4. Suppose V is a finite dimensional vector space and $U_1, U_2, ..., U_m$ are subspaces of V such that $V = U_1 \oplus U_2 \oplus \cdots \oplus U_m$. Prove dim $V = \dim U_1 + \cdots + \dim U_m$.

Notation. We use the following notation for direct sums:

$$\bigoplus_{i=1}^{m} U_{u} \equiv \bigoplus_{i} U_{i} := U_{1} \oplus U_{2} \oplus \cdots \oplus U_{m}$$

Solution. From Problem 3(c), we have that $V = \bigoplus_i U_i$ if and only if each $v \in V$ can be written uniquely as $v = \sum_i u_i$ for $u_i \in U_i$. Let $\beta_j := \{v_{j1}, \dots, v_{jn_j}\}$ be a basis for U_j and write $u_i = \sum_{j=1}^{n_i} a_{ij}v_{ij}$ for scalars a_{ij} . Then, we have

$$v = \sum_{i=1}^{m} u_i = \sum_{i=1}^{m} \sum_{j=1}^{n_i} a_{ij} v_{ij}.$$

Hence, every vector v in V can be written as a unique linear combination of the $\{v_{ij}\}$. By a theorem from Lecture 1, this implies $\{v_{ij}\}$ is a basis for V, and so

$$\dim(V) = |\{v_{ij}\}| = |\{v_{11}, \dots, v_{1n_1}, v_{21}, \dots, v_{2n_2}, \dots, v_{m1}, \dots, v_{mn_m}\}|$$

$$= n_1 + n_2 + \dots + n_m = \dim U_1 + \dim U_2 + \dots + \dim U_m,$$

which completes the proof.

- 5. Suppose U_1 , U_2 , and U_3 are subspaces of a vector space V.
 - (a) Prove

$$\dim(U_1 + U_2) = \dim U_1 + \dim U_2 - \dim(U_1 \cap U_2).$$

This may convince you that the law of inclusion-exclusion holds for vector spaces.

Problem Set 01 Linear Algebra

Solution. Let $\beta_1 := \{v_{11}, \dots, v_{1n_1}\}$ be a basis for U_1 and $\beta_2 := \{v_{21}, \dots, v_{2n_2}\}$ be a basis for U_2 . By Problem 7, we can extend each of these bases to a basis for $U_1 + U_2$ to get

$$\gamma_1 = \beta_1 \cup \{u_{11}, \dots, u_{1s_1}\} = \{v_{11}, \dots, v_{1n_1}, u_{11}, \dots, u_{1s_1}\},$$

$$\gamma_2 = \beta_2 \cup \{u_{21}, \dots, u_{2s_2}\} = \{v_{21}, \dots, v_{2n_2}, u_{21}, \dots, u_{2s_2}\}.$$

Hence $\dim(U_1 + U_2) =: n = n_1 + s_1 = n_2 + s_2$, or

$$n = 2n - n = n_1 + n_2 + (s_1 + s_2 - n).$$

Note that $t := n - (s_1 + s_2)$ is the size of the intersection $U_1 \cap U_2$, or the dimension of $U_1 \cap U_2$, and so we get

$$\dim(U_1 + U_2) = n = n_1 + n_2 - (n - s_1 - s_2) = \dim U_1 + \dim U_2 - \dim(U_1 \cap U_2),$$

as expected.

(b) Show that it is not necessarily true that

$$\dim(U_1 + U_2 + U_3) = \dim U_1 + \dim U_2 + \dim U_3$$
$$-\dim(U_1 \cap U_2) - \dim(U_2 \cap U_3) - \dim(U_1 \cap U_3) + \dim(U_1 \cap U_2 \cap U_3)$$

[Hint: Consider $V = \mathbb{R}^2$.] This shows that that the law of inclusion-exclusion does not hold for vector spaces.

Solution. Let $V = \mathbb{R}^2$, $U_1 := \{(x,0) : x \in \mathbb{R}\}$, $U_2 := \{(0,y) : y \in \mathbb{R}\}$, and $U_3 := \{(x,x) : x \in \mathbb{R}\}$. We have dim V = 2 and dim $U_1 = \dim U_2 = \dim U_3 = 1$. Further, $U_1 \cap U_2 = U_1 \cap U_3 = U_2 \cap U_3 = U_1 \cap U_2 \cap U_3 = \{0\}$ and so the dimension of each is 0. Thus,

$$\dim U_1 + \dim U_2 + \dim U_3 - \dim(U_1 \cap U_2) - \dim(U_2 \cap U_3) - \dim(U_1 \cap U_3) + \dim(U_1 \cap U_2 \cap U_3) = 1 + 1 + 1 - 0 - 0 - 0 + 0 = 3$$

whereas $U_1 + U_2 + U_3 = \{(x + x, x + y) : x, y \in \mathbb{R}\} = \{(x, y) : x, y \in \mathbb{R}\} = \mathbb{R}^2$, and so $\dim(U_1 + U_2 + U_3) = 3 \neq 2$, and so the statement fails.

- 6. The techniques we learn about in linear algebra work in any field, but there are pathological properties associated with finite fields that may lead to confusion. Consider the set $S = \{(1,1,0)^{\top},(1,0,1)^{\top},(0,1,1)^{\top}\}$ as a subset of the vector space \mathbb{F}^3 .
 - (a) If $\mathbb{F} = \mathbb{R}$, show that S is a basis for \mathbb{F}^3 .

Solution. Suppose $c_1(1,1,0)^{\top} + c_2(1,0,1)^{\top} + c_3(0,1,1)^{\top} = (0,0,0)^{\top} = 0_{\mathbb{R}^3}$ for some $c_1, c_2, c_3 \in \mathbb{R}$. This vector equation is equivalent to the linear system:

$$c_1 + c_2 = 0,$$

 $c_1 + c_3 = 0,$
 $c_2 + c_3 = 0.$

The first equation requires $c_1 = -c_2$. The third equation requires $c_3 = -c_2$, from which the second becomes $c_1 = c_2$. Hence $c_2 = c_1 = -c_2$ implies $c_2 = 0$, and so $c_1 = c_2 = c_3 = 0$, which implies S is indeed linearly independent in \mathbb{R}^3 . Since dim $\mathbb{R}^3 = 3 = |S|$, this implies S is a basis for \mathbb{R}^3 .

Problem Set 01 Linear Algebra

(b) If $\mathbb{F} = \mathbb{F}_2$ (the field of integers modulo 2), then S is not linearly independent and hence is not a basis for \mathbb{F}^3 .

Solution. Note that $(1,1,0)^{\top} + (1,0,1)^{\top} + (0,1,1)^{\top} = (0,0,0)^{\top} = 0_{\mathbb{F}_2^3}$, and so the vectors in S are not linearly independent. Hence, S is not a basis for \mathbb{F}_2^3 .

- 7. Suppose $S = \{v_1, \ldots, v_m\}$ is a linearly independent subset of a finite dimensional vector space V of dimension n > m. Show that S can be extended to a basis for V; that is, construct a basis for V of the form $\{v_1, \ldots, v_m, v_{m+1}, \ldots v_n\} = S \cup \{v_{m+1}, \ldots v_n\}$.
 - Solution. If dim V=m, there is nothing to prove. Otherwise, let dim V=n>m. We proved in Lecture 1 that if S is linearly independent, then $S\cup\{v\}$ is linearly dependent if and only if $v\in \operatorname{span}(S)$. Hence, if v is not in the span of S, $S\cup\{v\}$ is a strictly larger linearly independent set. This gives us the following algorithm to construct a basis. Set $S_0:=S$ and choose an element $v\in V$. If $v\in \operatorname{span}(S_0)$, choose a new v. Otherwise, set $v_{|S_0|+1}=v_{m+1}:=v$ and set $S_1:=S_0\cup\{v_{|S_0|+1}\}$. Then for $j=1,\ldots,n-m-1$, do the following: choose a new $v\in V$. If $v\in\operatorname{span}(S_j)$, pick a new V. Otherwise, set $v_{|S_j|+1}=v_{m+j+1}:=v$ and set $S_{j+1}:=S_j\cup\{v_{|S_j|+1}\}$. The set $S_{n-m-1}:=\{v_1,\ldots,v_m,v_{m+1},\ldots v_n\}$ is therefore a basis for V.
- 8. Consider the set $V = \{p \in P_3(\mathbb{R}) \mid p'(1) = 0\}$. Prove that V is a subspace of $P_3(\mathbb{R})$ and construct a basis for V. What is its dimension?

Solution. Since $p(t) \equiv 0$ is a polynomial of degree -1, $p \in P_3(\mathbb{R})$. Additionally, p'(1) = 0'(1) = 0, and so $p \in V$ and V is not empty. Suppose p and q are polynomials in V. Then p'(1) = q'(1) = 0. then, (p+q)'(1) = p'(1) + q'(1) = 0 + 0 = 0, and so $p+q \in V$. Additionally, for $c \in \mathbb{R}$, we have $(cp)'(1) = cp'(1) = c \cdot 0 = 0$, and so $cp \in V$. Hence V is a subspace of $P_3(\mathbb{R})$. Next we construct a basis for V. If $p(t) := a + bt + ct^2 + dt^3 \in V$, then

$$p'(1) = b + 2c + 3d = 0 \implies b = -2c - 3d.$$

This allows us to write $p(t) = a + (-2c - 3d)t + ct^2 + dt^3 = a(1) + c(t^2 - 2t) + d(t^3 - 3t)$, and so $p \in \text{span}\{1, t^2 - 2t, t^3 - 3t\} =: \text{span}(S)$. Clearly S generates V. It is straightforward to show that S is linearly independent (c.f., Problem 6a), and so S is a basis for V and dim V = |S| = 3.