ECE 6553: Optimal Control Notes

Klaus Z. Okkelberg

Spring 2017

Chapter 1

Parameter Optimization

1.1 What is optimal control?

Optimal Maximize/minimize cost (subject to constraints): $\min_u g(u)$ With constraints,

$$\min_{u} g(u)$$
s.t.
$$\begin{cases}
h_1(u) = 0 \\
h_2(u) \le 0
\end{cases}$$

First-order necessary condition (FONC):

$$\frac{\partial g}{\partial u}(u^*) = 0$$

Optimality can be

- $\bullet\,$ local vs global
- max vs min

Control control design: pick u such that specifications are satisfied:

$$\dot{x} = f(x, u), \qquad \dot{x} = Ax + Bu,$$

where $x(t) \in \mathbb{R}^n$ is the state, $u(t) \in \mathbb{R}^m$ is the control, and $f(\cdot)$ is the dynamics. Actually, x and u are signals:

$$x:[0,T]\to\mathbb{R}^n, \qquad u:[0,T]\to\mathbb{R}^m$$

Optimal control find the "best" u!

For "best" to mean anything, we need a cost. The big/deep question is

$$\frac{\partial \text{"cost"}}{\partial u} = 0$$

Example

Suppose we have a car with position p. Its acceleration \ddot{p} is controlled by the gas/brake input u ($\ddot{p} = u$). In order to express the dynamics of the system in the form $\dot{x} = f(x, u)$, we introduce state variables:

$$\begin{array}{c} x_1 = p \\ x_2 = \dot{p} \end{array} \Longrightarrow \begin{cases} \dot{x}_1 = x_2 \\ \dot{x}_2 = u \end{cases}$$

The task is to move the car from its initial position to a stop at a distance c away.

Minimum energy problem

$$\min_{u} \int_{0}^{T} u^{2}(t) dt$$
s.t.
$$\begin{cases}
\dot{x}_{1} = x_{2} \\
\dot{x}_{2} = u
\end{cases}$$

$$x_{1}(0) = 0, x_{2}(0) = 0$$

$$x_{1}(T) = c, x_{2}(T) = 0$$

Minimum time problem

$$\min_{u,T} T = \int_{0}^{T} dt$$
s.t.
$$\begin{cases}
\dot{x}_{1} = x_{2} \\
\dot{x}_{2} = u
\end{cases}$$

$$x_{1}(0) = 0, x_{2}(0) = 0$$

$$x_{1}(T) = c, x_{2}(T) = 0$$

$$u(t) \in [u_{\min}, u_{\max}]$$

The general optimal control problem we will solve will look like

$$\min_{u,T} \int_0^T L(x(t), u(t), t) dt + \Psi(x(T))$$
s.t. $\dot{x}(t) = f(x(t), u(t), t), t \in [0, T]$

$$x(0) = x_0$$

$$x(T) \in S$$

$$u(t) \in \Omega, t \in [0, T]$$

where $\Psi(\cdot)$ is the terminal cost and S is the terminal manifold. This is a so-called **Bolza Problem**.

What tools do we need to solve this?

- 1. optimality conditions $\partial \cos t/\partial u = 0$
- 2. some way of representing the optimal signal $u^*(x,t)$
- 3. some way of actually finding/computing the optimal controllers

1.2 Unconstrained Optimization

Let the decision variable be $u = [u_1, \dots, u_m]^T \in \mathbb{R}^m$. The cost is $g(u) \in C^1$ (C^k means k times continuously differentiable). The problem is

$$\min_{u} g(u), \quad g: \mathbb{R}^m \to \mathbb{R}$$

For u^* to be a minimizer, we need

$$\frac{\partial g}{\partial u}(u^*) = 0$$

Definition. u^* is a (local) minimizer to q if $\exists \delta > 0$ s.t.

$$g(u^*) \le g(u) \quad \forall u \in B_{\delta}(u^*)$$

$$B_{\delta}(u^*) = \{u \mid ||u - u^*|| \le \delta\}$$

Note:

• $\frac{\partial g}{\partial u}(u^*)\delta u \in \mathbb{R}$ and δu is $m \times 1$, so $\frac{\partial g}{\partial u}$ is a $1 \times m$ row vector. For the column vector,

$$\nabla g = \frac{\partial g^{\mathrm{T}}}{\partial u} \in \mathbb{R}^m$$

• $\frac{\partial g}{\partial u} \delta u$ is an inner product

$$\langle \nabla g, \delta u \rangle = \left\langle \frac{\partial g^{\mathrm{T}}}{\partial u}, \delta u \right\rangle$$

• $o(\varepsilon)$ encodes higher-order terms

$$\lim_{\varepsilon \to 0} \frac{o(\varepsilon)}{\varepsilon} = 0 \qquad \text{``faster than linear''}$$

This is opposed to big-O notation:

$$\lim_{\varepsilon \to 0} \frac{\mathcal{O}(\varepsilon)}{\varepsilon} = c$$

• δu has direction and scale so we could write it as

$$\delta u = \varepsilon v, \quad \varepsilon \in \mathbb{R}, \ v \in \mathbb{R}^m$$

Theorem. For u^* to be a minimizer, we need

$$\frac{\partial g}{\partial u}(u^*) = 0$$

or, equivalently,

$$\frac{\partial g}{\partial u}(u^*)v = 0 \quad \forall v \in \mathbb{R}^m$$

Proof. Let u^* be a minimizer. Evaluating the cost g(u) in the ball and using Taylor's expansion,

$$g(u^* + \delta u) = g(u^*) + \frac{\partial g}{\partial u}(u^*)\delta u + o(\|\delta u\|) = g(u^*) + \varepsilon \frac{\partial g}{\partial u}(u^*)v + o(\varepsilon)$$

Assume that $\frac{\partial g}{\partial u} \neq 0$. Then we could pick $v = -\frac{\partial g^{\mathrm{T}}}{\partial u}(u^*)$, i.e.

$$g(u^* + \varepsilon v) = g(u^*) - \varepsilon \left\| \frac{\partial g^{\mathrm{T}}}{\partial u}(u^*) \right\|^2 + o(\varepsilon)$$

Note that the second term is negative per our assumptions. So, for ε sufficiently small, we have

$$g\left(u^* - \varepsilon \frac{\partial g^{\mathrm{T}}}{\partial u}(u^*)\right) < g(u^*)$$

This contradicts u^* being a minimizer. \times (crossed swords)

Definition (Positive definite). $M = M^{T} \succ 0$ if

$$z^{\mathrm{T}}Mz > 0 \quad \forall z \neq 0, \ z \in \mathbb{R}^m$$

 $\iff M$ has real and positive eigenvalues

Theorem. If $g \in C^2$, then a sufficient condition for u^* to be a (local) minimizer is

$$1. \ \frac{\partial g}{\partial u}(u^*) = 0$$

2.
$$\frac{\partial^2 g}{\partial u^2}(u^*) \succ 0$$
 (the Hessian is positive definite)

Definition. $g: \mathbb{R}^m \to \mathbb{R}$ is convex if

$$g(\alpha u_1 + (1 - \alpha)u_2) \le \alpha g(u_1) + (1 - \alpha)g(u_2) \quad \forall \alpha \in [0, 1], \ u_1, u_2 \in \mathbb{R}^m$$

Theorem. If $\frac{\partial^2 g}{\partial u^2}(u) \succeq 0 \ \forall u \in \mathbb{R}^m$, then g is convex. \iff for $g \in C^2$)

Example $\min_{u} u^{\mathrm{T}} Q u - b^{\mathrm{T}} u$ where $Q = Q^{\mathrm{T}} \succ 0$ (positive definite matrix)

$$\frac{\partial g}{\partial u} = \frac{\partial}{\partial u} (u^{\mathrm{T}} Q u - b^{\mathrm{T}} u)
= u^{\mathrm{T}} Q^{\mathrm{T}} + u^{\mathrm{T}} Q - b^{\mathrm{T}}
= 2u^{\mathrm{T}} Q - b^{\mathrm{T}}
\frac{\partial^2 g}{\partial u^2} = 2Q
\frac{\partial^2 g}{\partial u^2} = \begin{bmatrix} \frac{\partial^2 g}{\partial u_1^2} & \dots & \frac{\partial^2 g}{\partial u_1 \partial u_m} \\ \vdots & \ddots & \vdots \\ \frac{\partial^2 g}{\partial u_m \partial u_1} & \dots & \frac{\partial^2 g}{\partial u_m^2} \end{bmatrix}$$

From $\frac{\partial g}{\partial u} = 2u^{\mathrm{T}}Q - b^{\mathrm{T}} = 0$,

$$u = \frac{1}{2}Q^{-1}b$$

To see whether this is a minimizer, consider the Hessian. Since $Q \succ 0$, it follows that $\frac{\partial^2 g}{\partial u^2}(u^*) \succ 0$ and $u^* = \frac{1}{2}Q^{-1}b$ is a (local) minimizer. Additionally, since $\frac{\partial^2 g}{\partial u^2} \succ 0$, g is convex and u^* is a global minimizer. In fact, since we have strict convexity ($\succ 0$ rather than $\succeq 0$), it is the unique global minimizer.

In optimal control, *local* is typically all we can ask for. In optimization, we can do better! But wait, just because we know $\frac{\partial g}{\partial u} = 0$, it doesn't follow that we can actually find u^* ...

1.3 Numerical Methods

Idea: $u_{k+1} = u_k + \text{step}_k$. What should step_k be? For small step_k = $\gamma_k v_k$,

$$g(u_k \cdot \operatorname{step}_k) = g(u_k) + \frac{\partial g}{\partial u}(u_k) \cdot \operatorname{step}_k + o(\|\operatorname{step}_k\|) = g(u_k) + \gamma_k \frac{\partial g}{\partial u}(u_k)v_k + o(\gamma_k)$$

A perfectly reasonable choice of step direction is

$$v_k = -\frac{\partial g^{\mathrm{T}}}{\partial u}(u_k),$$

known as the steepest descend direction. This produces

$$g\left(u_k - \gamma_k \frac{\partial g}{\partial u}(u_k)\right) = g(u_k) - \gamma_k \left\| \frac{\partial g}{\partial u}(u_k) \right\|^2 + o(\gamma_k)$$

Steepest descent

$$u_{k+1} = u_k - \gamma_k \frac{\partial g^{\mathrm{T}}}{\partial u}(u_k)$$

Note:

• What should γ_k be?

• This method "pretends" that g(u) is linear. If we pretend g(u) is quadratic, we get

$$u_{k+1} = u_k - \left(\frac{\partial^2 g}{\partial u^2}(u_k)\right)^{-1} \frac{\partial g^{\mathrm{T}}}{\partial u}(u_k),$$

i.e. Newton's Method

This course: steepest descent

Step-size selection?

• Choice 1: $\gamma_k = \gamma$ "small" $\forall k$; will get close to a minimizer if u_0 is close enough and γ small enough

Problems:

- You may not converge! (but you'll get close)
- You may go off to infinity (diverge)

• Choice 2: Reduce γ_k as a function of k; will get close to a minimizer if u_0 is close enough

Problem: slow

Theorem. If u_0 is close enough to u^* and γ_k satisfies

$$-\sum_{k=0}^{\infty} \gamma_k = \infty$$
$$-\sum_{k=0}^{\infty} \gamma_k^2 < \infty$$

e.g. $\gamma_k = c/k$, then $u_k \to u^*$ as $k \to \infty$.

• Choice 3: **Armijo step-size:** Take as big a step as possible, but no larger Pick $\alpha \in (0,1)$, $\beta \in (0,1)$. Let *i* be the smallest non-negative integer such that

$$g\left(u_k - \beta^i \frac{\partial g^{\mathrm{T}}}{\partial u}(u_k)\right) - g(u_k) < -\alpha\beta^i \left\| \frac{\partial g}{\partial u}(u_k) \right\|^2$$
$$u_{k+1} = u_k - \beta^i \frac{\partial g^{\mathrm{T}}}{\partial u}(u_k)$$

This will get to a minimizer blazingly fast if u_0 is close enough.

1.4 Constrained Optimization

Equality constraints:

$$\min_{u \in \mathcal{R}^m} g(u)$$
s.t. $h(u) = \mathbf{0}$

Consider $u \in \mathbb{R}^2$, $h: \mathbb{R}^2 \to \mathbb{R}$

So u is (locally) optimal if $\nabla g \parallel$ (is parallel to) the normal vector to tangent plane to h.

Fact: (HW# 1)

 $\nabla h \perp Th$ (tangent plane to h)

We need $\nabla g \parallel \nabla h$ at u^* for optimality, i.e.

$$\frac{\partial g}{\partial u}(u^*) = \alpha \frac{\partial h}{\partial u}(u^*), \text{ for some } \alpha \in \mathbb{R}$$

or $(\lambda = -\alpha)$,

$$\frac{\partial g}{\partial u}(u^*) + \lambda \frac{\partial h}{\partial u}(u^*) = 0$$

or

$$\frac{\partial}{\partial u} (g(u^*) + \lambda h(u^*)) = 0$$
, for some $\lambda \in \mathbb{R}$

More generally,

$$\min_{u \in \mathcal{R}^m} g(u)$$

s.t. $h(u) = \mathbf{0}, \quad h : \mathbb{R}^m \to \mathbb{R}^k$

Note that $h(u) = [h_1(u), ..., h_k(u)]^{T}$.

We need $\frac{\partial g}{\partial u}(u^*)$ to be a linear combination of $\frac{\partial h_i}{\partial u}(u^*)$, $i=1,\ldots,k$, for exactly the same reasons, i.e.

$$\frac{\partial g}{\partial u}(u^*) = \sum_{i=1}^k \alpha_i \frac{\partial h_i}{\partial u}(u^*)$$

or $(\lambda = -[\alpha_1, \dots, \alpha_k]^T)$

$$\frac{\partial g}{\partial u}(u^*) + \lambda^{\mathrm{T}} \frac{\partial h}{\partial u}(u^*) = 0$$

or

$$\frac{\partial}{\partial u} \big(g(u^*) + \lambda^{\mathrm{T}} h(u^*) \big) = 0, \quad \text{for some } \lambda \in \mathbb{R}^k$$

Theorem. If u^* is a minimizer to

$$\min_{u \in \mathcal{R}^m} g(u)$$
s.t. $h(u) = \mathbf{0}, \quad h : \mathbb{R}^m \to \mathbb{R}^k$

then $\exists \lambda \in \mathbb{R}^k \ s.t.$

$$\begin{cases} \frac{\partial L}{\partial u}(u^*, \lambda) = 0\\ \frac{\partial L}{\partial \lambda}(u^*, \lambda) = 0 \end{cases}$$

where the Lagrangian L is given by

$$L(u, \lambda) = g(u) + \lambda^T h(u)$$

8

Note:

- λ are the Lagrange multipliers
- $\frac{\partial L}{\partial \lambda} = 0$ is fancy speak for $h(u^*) = 0$

Example

$$\min_{u \in \mathbb{R}^m} \frac{1}{2} ||u||^2$$
s.t. $Au = b$

where A is $k \times m$, $k \leq m$. Assume $(AA^{T})^{-1}$ exists (constraints are linearly independent, none of the constraints are "duplicates", all the constraints are essential).

$$L = \frac{1}{2}u^{\mathrm{T}}u + \lambda^{\mathrm{T}}(Au - b)$$
$$\frac{\partial L}{\partial u} = u^{\mathrm{T}} + \lambda^{\mathrm{T}}A = 0$$
$$u^* = -A^{\mathrm{T}}\lambda$$

Using the equality constraint,

$$Au^* = b$$

$$-AA^{T}\lambda = b$$

$$\lambda = -(AA^{T})^{-1}b$$

$$u^* = A^{T}(AA^{T})^{-1}b$$

Example

$$\min \ u_1 u_2 + u_2 u_3 + u_1 u_3$$
s.t. $u_1 + u_2 + u_3 = 3$

$$L = u_1 u_2 + u_2 u_3 + u_1 u_3 + \lambda (u_1 + u_2 + u_3 - 3)$$

$$\begin{cases} \frac{\partial L}{\partial u_1} = u_2 + u_3 + \lambda = 0 \\ \frac{\partial L}{\partial u_2} = u_1 + u_3 + \lambda = 0 \\ \frac{\partial L}{\partial u_3} = u_2 + u_1 + \lambda = 0 \\ \frac{\partial L}{\partial \lambda} = u_1 + u_2 + u_3 = 3 \end{cases} \implies \begin{cases} u_1^* = 1 \\ u_2^* = 1 \\ u_3^* = 1 \\ \lambda = -2 \end{cases}$$
 optimal solution

Note: This was actually the worst we can do—maximize! Even weirder: no local minimizer!

1.4.1 Equality Constraints

$$\min_{u \in \mathcal{R}^m} g(u)$$

s.t. $h(u) = \mathbf{0}, \quad h : \mathbb{R}^m \to \mathbb{R}^k$

Theorem. If u^* is a minimizer/maximizer then $\exists \lambda \in \mathbb{R}^k$ s.t.

$$\frac{\partial L}{\partial u}(u^*, \lambda) = 0$$

$$\frac{\partial L}{\partial \lambda}(u^*, \lambda) = 0 \qquad (\iff h(u^*) = 0)$$

where $L(u, \lambda) = g(u) + \lambda^T h(u)$.

Example [Entropy Maximization]

Given $S = \{x_1, \ldots, x_n\}$ and a distribution over S such that it takes the value x_j with probability p_j . The entropy is

$$E(p) = \sum_{j=1}^{n} (-p_j \ln p_j).$$

The mean is

$$m = \sum_{j=1}^{n} p_j x_j.$$

Problem: Given m, find p such that E is maximized.

$$\min_{p} - \sum_{j=1}^{n} p_{j} \ln p_{j}$$
s.t.
$$\sum_{j=1}^{n} p_{j} x_{j} = m$$

$$\sum_{j=1}^{n} p_{j} = 1$$

$$p_{j} \ge 0, \ j = 1, \dots, n \quad \text{(ignore this...)}$$

$$L = -\sum p_j \ln p_j + \lambda_1 \left[\sum p_j x_j - m \right] + \lambda_2 \left[\sum p_j - 1 \right]$$

$$\frac{\partial L}{\partial p_j} = -\ln p_j - 1 + \lambda_1 x_j + \lambda_2 = 0$$

$$p_j = e^{\lambda_2 - 1 + \lambda_1 x_j}, \quad j = 1, \dots, n \qquad (p_j \ge 0 \text{ so we're ok with ignoring that})$$

$$\sum e^{\lambda_2 - 1 + \lambda_1 x_j} x_j = m$$

$$\sum e^{\lambda_2 - 1 + \lambda_1 x_j} = 1$$
 $n + 2$ equations and $n + 2$ unknowns...

No analytical solution, but numerically "solvable"

1.4.2 Inequality Constraints

$$\min_{u \in \mathcal{R}^m} g(u)$$
s.t. $h(u) \le \mathbf{0}, \quad h : \mathbb{R}^m \to \mathbb{R}^k$

We need:

- if $h(u^*) < 0$ then $\frac{\partial g}{\partial u}(u^*) = 0$
- if $h(u^*) = 0$ then we need either

$$\frac{\partial g}{\partial u}(u^*) = 0$$

or

 $\frac{\partial g}{\partial u}(u^*) = -\lambda \frac{\partial h}{\partial u}(u^*) \text{ for } \lambda > 0$

Or, even better,

$$\frac{\partial}{\partial u}(g(u^*) + \lambda h(u^*)) = 0$$
 for $\lambda \ge 0$,

where $\lambda h(u^*) = 0$. $(h < 0 \rightarrow \lambda = 0, h = 0 \rightarrow \lambda \ge 0)$

In general, if $u \in \mathbb{R}^m$ and $h : \mathbb{R}^m \to \mathbb{R}^k$, we have that u^* , if optimal, has to satisfy

$$\frac{\partial}{\partial u} L(u^*, \lambda) = 0$$
$$h(u^*) \le \mathbf{0}$$
$$\lambda^{\mathrm{T}} h(u^*) = 0$$
$$\lambda \ge \mathbf{0}$$

where the Lagrangian is $L(u, \lambda) = g(u) + \lambda^{T} h(u)$. Note that if we're maximizing, the same holds except we need $\lambda \leq 0$.

Example

min
$$2u_1^2 + 2u_1u_2 + u_2^2 - 10u_1 - 10u_2$$

s.t.
$$\begin{cases} u_1^2 + u_2^2 \le 5\\ 3u_1 + u_2 \le 6 \end{cases}$$

$$L = 2u_1^2 + 2u_1u_2 + u_2^2 - 10u_1 - 10u_2 + \lambda_1(u_1^2 + u_2^2 - 5) + \lambda_2(3u_1 + u_2 - 6)$$

FONC:

i)
$$\partial L/\partial u_1 = 4u_1 + 2u_2 - 10 + 2\lambda_1 u_1 + 3\lambda_2$$

ii)
$$\partial L/\partial u_2 = 2u_1 + 2u_2 - 10 + 2\lambda_1 u_2 + \lambda_2$$

iii)
$$u_1^2 + u_2^2 \le 5$$

iv)
$$3u_1 + u_2 \le 6$$

v)
$$\lambda_1(u_1^2 + u_2^2 - 5) = 0$$

vi)
$$\lambda_2(3u_1 + u_2 - 6) = 0$$

vii)
$$\lambda_1 \geq 0$$

viii)
$$\lambda_2 \geq 0$$

To solve, assume different constraints are active/inactive:

1. Both constraints are inactive $(u_1^2 + u_2^2 < 5, 3u_1 + u_2 < 6) \Longrightarrow \lambda_1 = \lambda_2 = 0$

$$\begin{cases} 4u_1 + 2u_2 - 10 = 0 \\ 2u_1 + 2u_2 - 10 = 0 \end{cases} \implies \begin{cases} u_1 = 0 \\ u_2 = 5 \end{cases}$$

Note: iii) $0^2 + 5^2 \nleq 5$

Not feasible

2. Assume constraint 1 is active and constraint 2 is inactive $(u_1^2 + u_2^2 = 5, \lambda_2 = 0)$

$$\begin{cases} 4u_1 + 2u_2 - 10 + 2\lambda_1 u_1 = 0 \\ 2u_1 + 2u_2 - 10 + 2\lambda_1 u_2 = 0 \\ u_1^2 + u_2^2 = 5 \end{cases} \implies \begin{cases} u_1 = 1 \\ u_2 = 2 \\ \lambda_1 = 1 \end{cases}$$

This is a local minimizer

- 3. Assume constraint 2 is active and constraint 1 is inactive
- 4. Assume both constraints are active

Kuhn-Tucker Conditions (KKT conditions, Karush-Kuhn-Tucker)

Problem:

$$\min_{u \in \mathbb{R}^m} g(u)$$
s.t.
$$\begin{cases}
h_1(u) = 0, & h_1 : \mathbb{R}^m \to \mathbb{R}^p \\
h_2(u) \le 0, & h_2 : \mathbb{R}^m \to \mathbb{R}^k
\end{cases}$$
(1.1)

Theorem. Let u^* be feasible $(h_1 = 0, h_2 \le 0)$. If u^* is a minimizer to (1.1) than there exists vectors $\lambda \in \mathbb{R}^p$, $\mu \in \mathbb{R}^k$ with $\mu \ge \mathbf{0}$ such that

$$\begin{cases} \frac{\partial g}{\partial u}(u^*) + \lambda^T \frac{\partial h_1}{\partial u}(u^*) + \mu^T \frac{\partial h_2}{\partial u}(u^*) = 0\\ \mu^T h_2(u^*) = 0 \end{cases}$$

Looking ahead: $\min \operatorname{cost}(u(\cdot))$ s.t. $\dot{x} = f(x, u)$ (dynamics), where u is a function. Note the equality constraint.

Question: How do we go from $u \in \mathbb{R}^m$ to $u \in \mathcal{U}$ (function space)?

Note: Function space is a set of functions of a given kind from a set X to a set Y

- 1. linear function
- 2. square-integrable functions: $L_2[0,T]: \int_0^T \|u(t)\|^2 dt < \infty$
- 3. $C^{\infty}(\mathbb{R})$

What would ∂ "cost" $/\partial u$ mean?

1.5 Directional Derivatives

Recall: To minimize g(u), let u^* be a candidate minimizer and pitch a perturbation on u^* of εv , where ε is the scale and v is the direction. Taking Taylor's expansion at the perturbation produces

$$g(u^* + \varepsilon v) = g(u^*) + \varepsilon \frac{\partial g}{\partial u}(u^*)v + o(\varepsilon)$$

FONC: $\frac{\partial g}{\partial u}(u^*) = 0$

Note: $\frac{\partial g}{\partial u}(u^*)v$ tells us how much g(u) increases/decreases in the direction of v.

Definition. The directional (Gateaux) derivative is given by

$$\delta g(u; v) = \lim_{\varepsilon \to 0} \frac{g(u + \varepsilon v) - g(u)}{\varepsilon}$$

Example

$$g(u) = \frac{1}{2}u_1^2 - u_1 + 2u_2, \quad g: \mathbb{R}^2 \to \mathbb{R}$$

Let's consider $e_1 = [1 \ 0]^T$, $e_2 = [0 \ 1]^T$. What is $\delta g(u; e_i)$, i = 1, 2?

$$\begin{split} \delta g(u;v) &= \lim_{\varepsilon \to 0} \frac{g(u+\varepsilon v) - g(u)}{\varepsilon} \\ &= \lim_{\varepsilon \to 0} \frac{g(u) + \varepsilon \frac{\partial g}{\partial u}(u)v + o(\varepsilon) - g(u)}{\varepsilon} \\ &= \frac{\partial g}{\partial u}(u)v \end{split}$$

$$\frac{\partial g}{\partial u}(u) = [u_1 - 1 \ 2]$$

$$\delta g(u; e_1) = [u_1 - 1 \ 2]e_1 = u_1 - 1$$

$$\delta g(u; e_2) = [u_1 - 1 \ 2]e_2 = 2$$

But the beauty of directional derivatives is that they generalize beyond vectors, $u \in \mathbb{R}^m$, to function spaces (\mathcal{U}) or other "objects" like matrices.

Example $M \in \mathbb{R}^{n \times n}, F(M) = M^2$

What is $\frac{\partial F}{\partial M}$? (ponder at home...)

We can easily compute $\delta F(M; N)!$

$$F(M + \varepsilon N) = (M + \varepsilon N)(M + \varepsilon N) = M^{2} + \varepsilon MN + \varepsilon NM + \varepsilon^{2}N^{2}$$
$$\delta F(M; N) = \lim_{\varepsilon \to 0} \frac{F(M + \varepsilon N) - F(M)}{\varepsilon}$$
$$= \lim_{\varepsilon \to 0} \frac{\varepsilon MN + \varepsilon NM + \varepsilon^{2}N^{2}}{\varepsilon} = MN + NM$$

Infinite Dimensional Optimization Let $u \in \mathcal{U}$ (function space) and let J(u) be the cost:

$$\min_{u \in \mathcal{U}} J(u)$$

Theorem. If $u^* \in \mathcal{U}$ is a (local) minimizer then

$$\delta J(u^*; v) = 0, \quad \forall v \in \mathcal{U}$$

Example Find minimizer u^* to

$$J(u) = \int_0^T L(u(t)) \, \mathrm{d}t$$

$$J(u+\varepsilon v) - J(u) = \int_0^T L(u(t) + \varepsilon v(t)) dt - \int_0^T L(u(t)) dt, \quad u, v \in \mathcal{U}$$

$$= \int_0^T \left[L(u(t)) + \varepsilon \frac{\partial L}{\partial u}(u(t))v(t) + o(\varepsilon) - L(u(t)) \right] dt$$

$$\delta J(u^*; v) = \lim_{\varepsilon \to 0} \frac{J(u+\varepsilon v) - J(u)}{\varepsilon}$$

$$= \lim_{\varepsilon \to 0} \frac{\int_0^T \varepsilon \frac{\partial L}{\partial u}(u(t))v(t) dt + o(\varepsilon)}{\varepsilon}$$

$$= \int_0^T \frac{\partial L}{\partial u}(u(t))v(t) dt$$

 u^* optimizer:

$$\delta J(u^*; v) = \int_0^T \frac{\partial L}{\partial u}(u(t))v(t) dt = 0 \quad \forall v \in \mathcal{U}$$

$$\updownarrow$$

$$\frac{\partial L}{\partial u}(u(t)) = 0 \quad \forall t \in [0, T]$$

But, we want optimal control! We want our cost to look like

$$\int_0^T L(x(t), u(t)) dt$$
$$\dot{x} = f(x, u)$$

1.6 Calculus of Variations

What happens to x(t) when u(t) changes to $u(t) + \varepsilon v(t)$? Let the system be given by

$$\begin{cases} \dot{x} = f(x, u) \\ x(0) = x_0 \end{cases}$$

After perturbation of u, the new system is

$$\begin{cases} \dot{\hat{x}} = f(\hat{x}, u + \varepsilon v) \\ x(0) = x_0 \end{cases}$$

Figure 1.1: Variation in u causes a variation in x.

Consider

$$\tilde{x} = x + \varepsilon \eta$$
,

where

$$\dot{x} = f(x, u),$$
 $x(0) = x_0$
 $\dot{\eta} = \frac{\partial f}{\partial x}(x, u)\eta + \frac{\partial f}{\partial u}(x, u)v,$ $\eta(0) = 0$

Theorem. If f is continuously differentiable in x and u then

$$\hat{x}(t) = \tilde{x}(t) + o(\varepsilon)$$

Proof.

i) Initial conditions:

$$\hat{x}(0) = x_0$$

$$\tilde{x}(0) = x(0) + \varepsilon \eta(0) = x_0$$

ii) Dynamics:

$$\begin{split} \dot{\hat{x}} &= f(\hat{x}, u + \varepsilon v) \\ \dot{\hat{x}} &= \dot{x} + \varepsilon \dot{\eta} = f(x, u) + \varepsilon \frac{\partial f}{\partial x}(x, u) \eta + \varepsilon \frac{\partial f}{\partial u}(x, u) v \\ &= f(x + \varepsilon \eta, u + \varepsilon v) + o(\varepsilon) \\ &= f(\tilde{x}, u + \varepsilon v) + o(\varepsilon) \end{split}$$

We can see that the dynamics of $\hat{x}(t)$ are equal to those of $\tilde{x}(t)$ plus higher order terms:

$$\dot{\tilde{x}} = f(\tilde{x}, u + \varepsilon v) + o(\varepsilon)$$
$$\dot{\hat{x}} = f(\hat{x}, u + \varepsilon v)$$

Therefore, if our perturbation is small enough, we can model $\hat{x}(t)$ as $\tilde{x}(t)$.

Note: Taylor expansion with two elements is

$$h(w + \varepsilon v, z + \varepsilon y) = h(w, z + \varepsilon y) + \frac{\partial h}{\partial w}(w, z + \varepsilon y)\varepsilon v + o(\varepsilon)$$

$$= \left\{h(w, z) + \frac{\partial h}{\partial z}(w, z)\varepsilon y + o(\varepsilon)\right\}$$

$$+ \left\{\frac{\partial h}{\partial w}(w, z)\varepsilon v + \underbrace{\frac{\partial^2 h}{\partial z\partial w}\varepsilon v \odot \varepsilon y}_{o(\varepsilon)} + o(\varepsilon)\right\}$$

$$= h(w, z) + \frac{\partial h}{\partial z}\varepsilon y + \frac{\partial h}{\partial w}\varepsilon v + o(\varepsilon)$$

Last class:

1. $u \in \mathcal{U}$ (space of functions), $J: \mathcal{U} \to \mathbb{R}$ (cost).

FONC: If u^* is optimal, then

$$\delta J(u; \nu) = 0 \quad \forall \nu \in \mathcal{U},$$

where the directional derivative is given by

$$\delta J(u;\nu) = \lim_{\varepsilon \to 0} \frac{J(u+\varepsilon\nu) - J(u)}{\varepsilon}.$$

2. If

$$\begin{cases} \dot{x} = f(x, u) \\ x(0) = x_0 \end{cases}$$

then a variation in u:

$$u \longmapsto u + \varepsilon \nu$$

results in a variation in x:

$$x \longmapsto x + \varepsilon \eta + o(\varepsilon)$$

See Figure 1.1. Note $\eta(0) = 0$.

1.6.1 An (Almost) Optimal Control Problem

Let $\dot{x} = f(x)$, $x(0) = x_0$. Note we get to pick the initial condition!

Problem

$$\min_{x_0 \in \mathbb{R}^m} J(x_0) = \int_0^T L(x(t)) dt$$
 s.t.
$$\begin{cases} \dot{x}(t) = f(x(t)) & \text{the } constraint! \text{ (equality)} \\ x(0) = x_0 \end{cases}$$

Note every constraint needs a Lagrange multiplier. We have infinitely many constraints:

$$\dot{x}(t) = f(x(t)) \quad \forall t \in [0, T]$$

We need $\lambda(t)$ as a function of t. Also, the sum in the Lagrangian has to become an integral. The continuous-time Lagrangian thus becomes

$$\tilde{J}(x_0, \lambda) = \int_0^T \left[L(x(t)) + \lambda^{\mathrm{T}}(t) (f(x(t)) - \dot{x}(t)) \right] dt$$

The task is to perturb x_0 as $x_0 \mapsto x_0 + \varepsilon \nu$, $\nu \in \mathbb{R}^m$ and compute

$$\delta \tilde{J}(x_0; \nu) = \lim_{\varepsilon \to 0} \frac{\tilde{J}(x_0 + \varepsilon \nu) - \tilde{J}(x_0)}{\varepsilon}$$

and make this equal to $0 \ \forall \nu \in \mathbb{R}^m$. The variation in x is

Note:

 x_0 decision variable

 η variation in x_0

x(t) trajectory starting at x_0

 $\eta(t)$ change in trajectory resulting from ν -variation in x_0

 $\lambda(t)$ time-varying Lagrange multiplier

$$\begin{split} \tilde{J}(x_0 + \varepsilon \nu) &= \int_0^T \left\{ L(x(t)) + \lambda^{\mathrm{T}}(t) [f(x(t) + \varepsilon \eta(t)) - \dot{x}(t) - \varepsilon \dot{\eta}(t)] \right\} \mathrm{d}t + o(\varepsilon) \\ &= \int_0^T \left[L(x) + \varepsilon \frac{\partial L}{\partial x}(x) \eta + \lambda^{\mathrm{T}} \left(f(x) + \varepsilon \frac{\partial f}{\partial x}(x) \eta - \dot{x} - \varepsilon \dot{\eta} \right) \right] \mathrm{d}t + o(\varepsilon) \\ \tilde{J}(x_0 + \varepsilon \nu) - \tilde{J}(x_0) &= \int_0^T \left[\varepsilon \frac{\partial L}{\partial x}(x) \eta + \lambda^{\mathrm{T}} \left(\varepsilon \frac{\partial f}{\partial x} \eta - \varepsilon \dot{\eta} \right) \right] \mathrm{d}t + o(\varepsilon) \\ \delta \tilde{J}(x_0; \nu) &= \int_0^T \left[\frac{\partial L}{\partial x}(x) \eta + \lambda^{\mathrm{T}} \left(\frac{\partial f}{\partial x} \eta - \dot{\eta} \right) \right] \mathrm{d}t \end{split}$$

A powerful idea: we want $\delta \tilde{J}(x_0; \nu) = 0 \ \forall \nu$. Somehow get this in the form

$$\int_0^T \left(\operatorname{stuff}(t) \right) \eta(t) \, \mathrm{d}t = 0$$

We can pick stuff $(t) = 0 \ \forall t \in [0, T]$.

In $\delta \tilde{J}(x_0; \nu)$ we have $\dot{\eta}$ (problem!). We can solve this using integration by parts.

$$\int_0^T \lambda^{\mathrm{T}} \dot{\eta} \, \mathrm{d}t = \lambda^{\mathrm{T}}(T) \eta(T) - \lambda^{\mathrm{T}}(0) \eta(0) - \int_0^T \dot{\lambda}^{\mathrm{T}} \eta \, \mathrm{d}t$$

Hence,

$$\delta \tilde{J}(x_0; \nu) = \int_0^T \underbrace{\left(\frac{\partial L}{\partial x} + \lambda^{\mathrm{T}} \frac{\partial f}{\partial x} + \dot{\lambda}^{\mathrm{T}}\right)}_{\text{pick} = 0} \eta \, \mathrm{d}t - \underbrace{\lambda^{\mathrm{T}}(T)}_{\text{pick} = 0} \eta(T) + \lambda^{\mathrm{T}}(0) \underbrace{\eta(0)}_{\nu}$$

We are free to pick λ freely if it gives $\delta \tilde{J} = 0$.

Pick:
$$\begin{cases} \dot{\lambda}(t) = -\frac{\partial L^{\mathrm{T}}}{\partial x}(x(t)) - \frac{\partial f^{\mathrm{T}}}{\partial x}(x(t))\lambda(t) \\ \lambda(T) = 0 \end{cases}$$
 backwards diff. eq:

Under this choice of λ we get

$$\delta \tilde{J}(x_0; \nu) = \lambda^{\mathrm{T}}(0)\nu$$

This is linear in ν so the FONC is $\lambda(0) = 0$.

Moreover, we really have a "normal" optimization problem

$$\min_{x_0 \in \mathbb{R}^m} \tilde{J}(x_0)$$
$$\delta \tilde{J}(x_0; \nu) = \frac{\partial \tilde{J}}{\partial x_0}(x_0)\nu$$

which means that

$$\frac{\partial \tilde{J}}{\partial x_0} = \lambda^{\mathrm{T}}(0)$$

If x_0^* minimizes

$$\int_0^T L(x(t)) dt$$
s.t.
$$\begin{cases} \dot{x}(t) = f(x(t)) \\ x(0) = x_0^* \end{cases}$$

then

$$\lambda(0) = \mathbf{0}$$

where $\lambda(t)$ satisfies

$$\begin{cases} \dot{\lambda}(t) = -\frac{\partial L^{\mathrm{T}}}{\partial x}(x(t)) - \frac{\partial f^{\mathrm{T}}}{\partial x}(x(t))\lambda(t) \\ \lambda(T) = 0 \end{cases}$$

So what? We actually have a two-point boundary value problem.

$$\dot{x} = f(x) \qquad \qquad \dot{\lambda} = -\frac{\partial L^{\mathrm{T}}}{\partial x} - \frac{\partial f^{\mathrm{T}}}{\partial x} \lambda$$

$$x(0) = x_0 \qquad \qquad \lambda(T) = 0$$

$$x_0 \qquad \qquad \lambda(0) \qquad \qquad \lambda$$

We want to find x_0 that gives f(x) such that after solving backwards for $\lambda(t)$, we find that

$$\lambda(0) = \frac{\partial \tilde{J}^{\mathrm{T}}}{\partial x_0} = 0.$$

This leads to the following:

An algorithm

Pick
$$x_{0,0}$$
 $k=1$

repeat

Simulate $x(t)$ from $x_{0,k}$ over $[0,T]$

Simulate $\lambda(t)$ from $\lambda(T)=0$ backwards using $x(t)$

Update $x_{0,k}$ as $x_{0,k+1}=x_{0,k}-\gamma\lambda(0)$
 $\lambda(0)$ is the gradient $\lambda(0)=0$

Example: optinit.m

$$\dot{x} = Ax, \quad L = x^{\mathrm{T}}Qx - q, \quad Q = Q^{\mathrm{T}} \succ 0$$

$$\dot{\lambda} = -2Qx - A^{\mathrm{T}}\lambda$$

$$\lambda(0) = 0$$

1.6.2 Optimal Timing Control

When to switch between modes?

$$\dot{x} = \begin{cases} f_1(x) & \text{if } t \in [0, \tau) \\ f_2(x) & \text{if } t \in [\tau, T] \end{cases}$$

$$(1.2)$$

$$x(0) = x_0$$

$$\min_{\tau} \int_{0}^{T} L(x(t)) dt = J(\tau)$$
 s.t. (1.2) holds

Step 1: Augment cost with constraint

$$\tilde{J} = \int_0^{\tau} \left[L(x) + \lambda^{\mathrm{T}} (f_1(x) - \dot{x}) \right] dt + \int_{\tau}^{T} \left[L(x) + \lambda^{\mathrm{T}} (f_2(x) - \dot{x}) \right] dt$$

Step 2: Variation $\tau \longmapsto \tau + \varepsilon \theta$

Step 3: Compute $\delta \tilde{J}(\tau;\theta)$

$$\tilde{J}(\tau + \varepsilon \theta) = \int_0^{\tau + \varepsilon \theta} \left\{ L(x + \varepsilon \eta) + \lambda^{\mathrm{T}} [f_1(x + \varepsilon \eta) - \dot{x} - \varepsilon \dot{\eta}] \right\} dt
+ \int_{\tau + \varepsilon \theta}^T \left\{ L(x + \varepsilon \eta) + \lambda^{\mathrm{T}} [f_2(x + \varepsilon \eta) - \dot{x} - \varepsilon \dot{\eta}] \right\} dt + o(\varepsilon)$$

Note that $\eta = \dot{\eta} = 0$ on $[0, \tau)$.

$$\tilde{J}(\tau + \varepsilon\theta) = \int_{0}^{\tau} \left\{ L(x) + \lambda^{\mathrm{T}} [f_{1}(x) - \dot{x}] \right\} dt
+ \int_{\tau}^{\tau + \varepsilon\theta} \left\{ \underbrace{L(x + \varepsilon\eta)}_{L(x) + \varepsilon \frac{\partial L}{\partial x} \eta} + \lambda^{\mathrm{T}} \underbrace{\left[f_{1}(x + \varepsilon\eta) - \dot{x} - \varepsilon \dot{\eta} \right]}_{f_{1}(x) + \varepsilon \frac{\partial f_{1}}{\partial x} \eta} + \int_{\tau + \varepsilon\theta}^{T} \left\{ \underbrace{L(x + \varepsilon\eta)}_{L(x) + \varepsilon \frac{\partial L}{\partial x} \eta} + \lambda^{\mathrm{T}} \underbrace{\left[f_{2}(x + \varepsilon\eta) - \dot{x} - \varepsilon \dot{\eta} \right]}_{f_{2}(x) + \varepsilon \frac{\partial f_{2}}{\partial x} \eta} \right\} dt + o(\varepsilon)$$

$$\delta \tilde{J}(\tau;\theta) = \lim_{\varepsilon \to 0} \frac{\tilde{J}(\tau + \varepsilon\theta) - \tilde{J}(\tau)}{\varepsilon}$$

$$\tilde{J}(\tau + \varepsilon\theta) - \tilde{J}(\tau) = \int_{0}^{\tau} 0 \cdot dt + \underbrace{\int_{\tau}^{\tau + \varepsilon\theta} \left[\varepsilon \frac{\partial L}{\partial x} \eta + \lambda^{\mathrm{T}} \left(f_{1}(x) + \varepsilon \frac{\partial f_{1}}{\partial x} \eta - f_{2}(x) - \varepsilon \dot{\eta} \right) \right] dt}_{I_{1}}$$

$$+ \underbrace{\int_{\tau + \varepsilon\theta}^{T} \left[\varepsilon \frac{\partial L}{\partial x} \eta + \lambda^{\mathrm{T}} \left(\varepsilon \frac{\partial f_{2}}{\partial x} \eta - \varepsilon \dot{\eta} \right) \right] dt}_{I_{2}} + o(\varepsilon)$$

Theorem (Mean-value theorem).

$$\int_{t_1}^{t_2} h(t) dt = (t_2 - t_1)h(\xi) \quad \text{for some } \xi \in [t_1, t_2]$$

The first integral is

$$I_{1} = \int_{\tau}^{\tau + \varepsilon \theta} \left[\varepsilon \frac{\partial L}{\partial x} \eta + \lambda^{\mathrm{T}} (f_{1}(x) + \varepsilon \frac{\partial f_{1}}{\partial x} \eta - \varepsilon \dot{\eta} - f_{x}(x)) \right] dt$$
$$= \varepsilon \theta \left\{ \lambda^{\mathrm{T}}(\xi) \left[f_{1}(x(\xi)) - f_{2}(x(\xi)) \right] \right\} + o(\varepsilon)$$

Note that as $\varepsilon \to 0$, $\xi \to \tau$. Using integration by parts, the second integral is

$$\begin{split} \int_{\tau}^{T} \lambda^{\mathrm{T}} \dot{\eta} \, \mathrm{d}t &= \lambda^{\mathrm{T}}(T) \eta(T) - \lambda^{\mathrm{T}}(\tau) \underbrace{\eta(\tau)}_{=0} - \int_{\tau}^{T} \dot{\lambda}^{\mathrm{T}} \eta \, \mathrm{d}t \\ I_{2} &= \int_{\tau}^{T} \left[\varepsilon \frac{\partial L}{\partial x} \eta + \lambda^{\mathrm{T}} \left(\varepsilon \frac{\partial f_{2}}{\partial x} \eta - \varepsilon \dot{\eta} \right) \right] \mathrm{d}t - \underbrace{\int_{\tau}^{\tau + \varepsilon \theta} \left[\varepsilon \frac{\partial L}{\partial x} \eta + \lambda^{\mathrm{T}} \left(\varepsilon \frac{\partial f_{2}}{\partial x} \eta - \varepsilon \dot{\eta} \right) \right] \mathrm{d}t}_{o(\varepsilon)} \\ &= \varepsilon \int_{\tau}^{T} \left[\frac{\partial L}{\partial x} + \lambda^{\mathrm{T}} \frac{\partial f_{2}}{\partial x} + \dot{\lambda}^{\mathrm{T}} \right] \eta \, \mathrm{d}t - \varepsilon \lambda^{\mathrm{T}}(T) \eta(T) + o(\varepsilon) \end{split}$$

Hence,

$$\delta \tilde{J}(\tau;\theta) = \lim_{\varepsilon \to 0} \frac{\tilde{J}(\tau + \varepsilon\theta) - \tilde{J}(\tau)}{\varepsilon}$$
$$= \theta \lambda^{\mathrm{T}}(\tau) \left[f_1(x(\tau)) - f_2(x(\tau)) \right] + \int_{\tau}^{T} \left[\frac{\partial L}{\partial x} + \lambda^{\mathrm{T}} \frac{\partial f_2}{\partial x} + \dot{\lambda}^{\mathrm{T}} \right] \eta \, \mathrm{d}t - \lambda^{\mathrm{T}}(T) \eta(T)$$

Step 4: Select the costate $\lambda(t)$. The key idea is to get rid of any term that has η in it, i.e.

$$\dot{\lambda} = -\frac{\partial L^{\mathrm{T}}}{\partial x} - \frac{\partial f_2^{\mathrm{T}}}{\partial x} \lambda \quad \text{on } [\tau, T]$$
$$\lambda(T) = 0$$

Step 5: With this choice of $\lambda(t)$, we have

$$\delta \tilde{J}(\tau;\theta) = \theta \lambda^{\mathrm{T}}(\tau) \left[f_1(x(\tau)) - f_2(x(\tau)) \right] = \frac{\partial \tilde{J}}{\partial \tau} \theta.$$

Therefore,

$$\frac{\partial \tilde{J}}{\partial \tau} = \lambda^{\mathrm{T}}(\tau) \left[f_1(x(\tau)) - f_2(x(\tau)) \right] = 0 \quad \text{(for optimality)}$$

Algorithm

```
Pick \tau_0
k=0

repeat

Simulate x forward in time from x(0)=x_0

Simulate \lambda backwards from \lambda(T)=0

Update \tau_k as \tau_{k+1}=\tau_k-\gamma\lambda^{\mathrm{T}}(\tau_k)\big[f_1(x(\tau_k))-f_2(x(\tau_k))\big]
k:=k+1

until \|\lambda^{\mathrm{T}}(f_1-f_2)\|<\varepsilon
```

Where are we going? Come up with general principles for $\min_{u \in \mathcal{U}} J(u)$:

- Costate equations
- Optimality conditions
- Algorithms
- Applications

1.6.3 The Bolza Problem

Up until now, we have optimized with respect to finite-dimensional parameters. Today, we will minimize with respect to $u \in \mathcal{U}$.

$$\min_{u \in \mathcal{U}} \int_0^T L(x(t), u(t), t) dt + \underbrace{\Psi(x(T))}_{\substack{\text{terminal cost} \\ (\text{parking cost})}}$$
s.t. $\dot{x}(t) = f(x(t), u(t), t)$

$$x(0) = x_0$$

Assume that f and L are C^1 in x, u and piecewise continuous in t. Then, a small change in u causes small changes in f and L. The variation: $u \mapsto u + \varepsilon v$, $\varepsilon \in \mathbb{R}$, $v \in \mathcal{U}$. See Figure 1.1.

$$\begin{split} \tilde{J}(u) &= \int_0^T \left[L(x,u,t) + \lambda^{\mathrm{T}} (f(x,u,t) - \dot{x}) \right] \mathrm{d}t + \Psi(x(T)) \\ \tilde{J}(u + \varepsilon v) &= \int_0^T \left[L(x + \varepsilon \eta, u + \varepsilon v, t) + \lambda^{\mathrm{T}} (f(x + \varepsilon \eta, u + \varepsilon v, t) - \dot{x} - \varepsilon \dot{\eta}) \right] \mathrm{d}t \\ &+ \Psi(x(T) + \varepsilon \eta(T)) + o(\varepsilon) \\ \tilde{J}(u + \varepsilon v) - \tilde{J}(u) &= \int_0^T \left[L(x + \varepsilon \eta, u + \varepsilon v, t) - L(x, u, t) \right. \\ &+ \lambda^{\mathrm{T}} \left(f(x + \varepsilon \eta, u + \varepsilon v, t) - f(x, u, t) - \dot{x} - \varepsilon \dot{\eta} + \dot{x} \right) \right] \mathrm{d}t \\ &+ \Psi(x(T) + \varepsilon \eta(T)) - \Psi(x(T)) + o(\varepsilon) \\ &= \int_0^T \left[\frac{\partial L}{\partial x} \varepsilon \eta + \frac{\partial L}{\partial u} \varepsilon v + \lambda^{\mathrm{T}} \left(\frac{\partial f}{\partial x} \varepsilon \eta + \frac{\partial f}{\partial u} \varepsilon v - \varepsilon \dot{\eta} \right) \right] \mathrm{d}t \\ &+ \frac{\partial \Psi}{\partial x} (x(T)) \varepsilon \eta(T) + o(\varepsilon) \end{split}$$

(See Taylor expansion with respect to two variables.)

$$\delta \tilde{J}(u;v) = \int_0^T \left(\frac{\partial L}{\partial u} + \lambda^{\mathrm{T}} \frac{\partial f}{\partial u}\right) v \, \mathrm{d}t + \int_0^T \left[\left(\frac{\partial L}{\partial x} + \lambda^{\mathrm{T}} \frac{\partial f}{\partial x}\right) \eta - \lambda^{\mathrm{T}} \dot{\eta}\right] \mathrm{d}t + \frac{\partial \Psi}{\partial x} (x(T)) \eta(T)$$

Integrating by parts,

$$\begin{split} \int_0^T \lambda^{\mathrm{T}} \dot{\eta} \, \mathrm{d}t &= \lambda^{\mathrm{T}}(T) \eta(T) - \lambda^{\mathrm{T}}(0) \eta(0) - \int_0^T \dot{\lambda}^{\mathrm{T}} \eta \, \mathrm{d}t \\ &= \lambda^{\mathrm{T}}(T) \eta(T) - \int_0^T \dot{\lambda}^{\mathrm{T}} \eta \, \mathrm{d}t \\ \delta \tilde{J}(u; v) &= \int_0^T \left(\frac{\partial L}{\partial u} + \lambda^{\mathrm{T}} \frac{\partial f}{\partial u} \right) v \, \mathrm{d}t + \int_0^T \left(\frac{\partial L}{\partial x} + \lambda^{\mathrm{T}} \frac{\partial f}{\partial x} + \dot{\lambda}^{\mathrm{T}} \right) \eta \, \mathrm{d}t \\ &+ \left(\frac{\partial \Psi}{\partial x}(x(T)) - \lambda^{\mathrm{T}}(T) \right) \eta(T) \end{split}$$

For optimality, we need the directional derivative to be zero for every $v \in \mathcal{U}$, where v represents the direction of the derivative. Therefore, the term $(\frac{\partial L}{\partial u} + \lambda^{\mathrm{T}} \frac{\partial f}{\partial u})$ in the first integral has to be identically zero. Thus, we need

$$\begin{cases} \frac{\partial L}{\partial u} + \lambda^{\mathrm{T}} \frac{\partial f}{\partial u} = 0, & \forall t \in [0, T] \\ \frac{\partial L}{\partial x} + \lambda^{\mathrm{T}} \frac{\partial f}{\partial x} + \dot{\lambda}^{\mathrm{T}} = 0, & \forall t \in [0, T] \\ \frac{\partial \Psi}{\partial x} (x(T)) - \lambda^{\mathrm{T}} (T) = 0 \end{cases}$$

Definition. Let the *Hamiltonian* $H(x, u, t, \lambda)$ be given by

$$H(x, u, t, \lambda) = L(x, u, t) + \lambda^{\mathrm{T}} f(x, u, t)$$

Theorem. For u to solve the Bolza problem, it has to satisfy

$$\frac{\partial H}{\partial u}(x, u, t, \lambda) = 0,$$

where the costate satisfies

$$\begin{cases} \dot{\lambda} = -\frac{\partial H^T}{\partial x}(x, u, t, \lambda) \\ \lambda(T) = \frac{\partial \Psi^T}{\partial x}(x(T)) \end{cases}$$

Example

$$\min_{u} \int_{0}^{1} \frac{1}{2} u^{2}(t) dt + \frac{1}{2} x^{2}(1)$$
s.t.
$$\begin{cases}
\dot{x} = u, & x, u \in \mathbb{R} \\
x(0) = 1
\end{cases}$$

$$H = \frac{1}{2}u^2 + \lambda u$$

$$\frac{\partial H}{\partial u} = u + \lambda = 0 \Longrightarrow u = -\lambda$$

$$\dot{\lambda} = -\frac{\partial H}{\partial x} = 0 \Longrightarrow \lambda(t) = c$$

$$\lambda(T) = c = \frac{\partial \Psi}{\partial x}(x(1)) = x(1)$$

$$\dot{x} = u = -c \Longrightarrow x(t) = -ct + x(0) = -ct + 1$$

$$x(1) = -c + 1$$

$$\lambda(1) = c = x(1) = -c + 1 \Longrightarrow c = \frac{1}{2}$$

$$u^* = -\frac{1}{2}$$

We really used five different equations to solve this!

i)
$$\frac{\partial H}{\partial u} = 0$$

ii)
$$\dot{\lambda} = -\frac{\partial H^{\mathrm{T}}}{\partial x}$$

iii)
$$\lambda(T) = \frac{\partial \Psi^{\mathrm{T}}}{\partial x}(x(T))$$

iv)
$$\dot{x} = f(x, u, t)$$

v)
$$x(0) = x_0$$

There is a sixth condition that is pretty useful if L and f do not depend on t (L(x, u), f(x, u)). This is called a *conservative system*. Then, along optimal trajectories (equations i-v are satisfied), the total time derivative of the Hamiltonian is

$$\frac{\mathrm{d}}{\mathrm{d}t}H = \underbrace{\frac{\partial H}{\partial t}}_{H(x,u,\lambda)} + \underbrace{\frac{\partial H}{\partial x}}_{-\dot{\lambda}^{\mathrm{T}}} \dot{x} + \underbrace{\frac{\partial H}{\partial u}}_{u \text{ is optimal}} \dot{u} + \underbrace{\frac{\partial H}{\partial \lambda}}_{f^{\mathrm{T}} = \dot{x}^{\mathrm{T}}} \dot{\lambda} = -\dot{\lambda}^{\mathrm{T}} \dot{x} + \dot{x}^{\mathrm{T}} \dot{\lambda} = 0$$

Therefore, for conservative systems,

vi) H is constant along optimal trajectories. (Hamilton's Principle in analytical mechanics)

Back to the example,

$$H = \frac{1}{2}u^2 + \lambda u = \frac{1}{2}c^2 - c^2 = -\frac{1}{2}c^2 = -\frac{1}{8}$$