

UNIVERSITY OF ASIA PACIFIC

Department of Computer Science & Engineering

Course Title - Artificial Intelligence and Expert Systems Lab.

Course Code - CSE-404.

Project - Implementation of Multivariable Linear Regression Using A Public

Dataset

SUBMITTED BY

SUBMITTED TO

Shawan Das.

Dr. Nasima Begum

ID - **19101020**

University of Asia Pacific

Section - A1

Date of Submission - 25-10-2022

Problem Title: Implement Multivariable Linear Regression Using a Public Dataset

Problem Description: Implementation of Linear Regression model with a dataset. The Dataset must be multivariant. At the basis of other parameters, we have to predict another parameter.

Objective: There are several approach in Machine Learning to predict a data at the basis of other data. In this project we are going to implement "Linear Regression"- model to predict data.

For this approach, I'm going to use a game(Call of Duty) dataset which is about (1558, 19) in size. But we will only use (1558,15) data for independent(X) axis and (1558,) data for dependent(y) axis.

Dataset: Call of Duty

Dataset Info:

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1558 entries, 0 to 1557
Data columns (total 19 columns):
    Column
                   Non-Null Count Dtype
                   1558 non-null
                                   object
0
   name
1
    wins
                    1558 non-null
                                   int64
    kills
                   1558 non-null
                                   int64
2
    kdRatio
killstreak
                   1558 non-null
                                   float64
                   1558 non-null
                                   int64
    level
                   1558 non-null
                                   int64
6
   losses
                   1558 non-null
                                   int64
    prestige
hits
                    1558 non-null
                                   int64
    hits
                   1558 non-null
                                   int64
8
    timePlayed
                   1558 non-null
                                   int64
9
10 headshots
                   1558 non-null
                                   int64
11 averageTime
                   1558 non-null
                                   float64
12 gamesPlayed
                    1558 non-null
                                   int64
13 assists
                    1558 non-null
                                   int64
14 misses
15 xp
                   1558 non-null
                                   int64
                    1558 non-null
                                   int64
   scorePerMinute 1558 non-null
                                   float64
                   1558 non-null
                                   int64
17 shots
                                   int64
18 deaths
                   1558 non-null
dtypes: float64(3), int64(15), object(1)
memory usage: 231.4+ KB
```

Processed Data:

```
dataset.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1558 entries, 0 to 1557
Data columns (total 16 columns):
    Column
                    Non-Null Count
                                   Dtype
    wins
                    1558 non-null
                                    int64
 0
 1
    kdRatio
                    1558 non-null
                                    float64
    killstreak
                    1558 non-null
                                    int64
 2
    level
                    1558 non-null
                                   int64
    losses
                    1558 non-null
 4
                                    int64
    prestige
                    1558 non-null
                                   int64
    hits
                    1558 non-null
                                    int64
    timePlayed
                    1558 non-null
                                   int64
 8
    headshots
                    1558 non-null
                                    int64
    averageTime
                    1558 non-null
                                    float64
 10 gamesPlayed
                    1558 non-null
                                   int64
                                    int64
 11
    assists
                    1558 non-null
                                   int64
 12 misses
                    1558 non-null
 13
                    1558 non-null
                                    int64
    хp
 14 scorePerMinute 1558 non-null
                                    float64
 15 shots
                    1558 non-null
                                    int64
dtypes: float64(3), int64(13)
memory usage: 194.9 KB
```

for x axis, we will use 'wins', 'kdRatio', 'killstreak', 'level', 'losses', 'prestige', 'hits', 'timePlayed', 'averageTime', 'gamesPlayed', 'assists', 'misses', 'xp', 'scorePerMinute', 'shots' – data

and for y-axis I will use "headShots" data. So basically I'm going to predict the Headshot values.

But before implementation, I've to normalize those data for better prediction.

After Normalizing Data:

	wins	kdRatio	killstreak	level	losses	prestige	hits	timePlayed	headshots	averageTime	gamesPlayed	assists	misses	хр	scorePerMinute	shots
0	0.000000	0.000000	0.0	0.000000	0.0	0.000000	0.0	0.000000	0.000000	0.000000	0.0	0.000000	0.0	0.000000	0.0	0.0
1	0.000000	0.000000	0.0	0.000000	0.0	0.940171	0.0	0.000936	0.000000	0.005189	0.0	0.000000	0.0	0.000047	0.0	0.0
2	0.000000	0.343750	0.0	0.018433	0.0	0.940171	0.0	0.004279	0.001365	0.023721	0.0	0.000069	0.0	0.003226	0.0	0.0
3	0.000853	0.133333	0.0	0.000000	0.0	0.000000	0.0	0.000401	0.000000	0.002224	0.0	0.000000	0.0	0.000077	0.0	0.0
4	0.000000	0.066667	0.0	0.000000	0.0	0.940171	0.0	0.000669	0.000085	0.003706	0.0	0.000000	0.0	0.000067	0.0	0.0

Plot Some Data:

Tools & Languages:

- Language Python
- IDE: Google Collab

Predictions Graph:

Source Code: SKLearn, Manual, Manual(2)

Challenges & Conclusion:

SkLearn implementation part was easier than the Manual approach. SkLearn model provided around 95.04%. But the manual part is incomplete because of some space errors.