Computational Neuroscience

Rajesh P. N. Rao
Adrienne Fairhall
University of Washington, Seattle, USA

Our 3-pound universe

Understanding the Brain using Computational Models

- **♦** *Descriptive Models of the Brain*
 - ⇒ How do neurons respond to external stimuli and how do we describe this quantitatively with a neural *encoding* model?
 - ⇒ How can we extract information from neurons (*decoding*)?
- → Mechanistic Models of Brain Cells and Networks
 - ⇒ How can we *simulate* the behavior of a *single neuron* on a computer?
 - ⇒ How do we simulate a *network* of neurons?
- → Interpretive (or Normative) Models of the Brain
 - *♦ Why* do brain circuits operate the way they do?
 - ⇒ What are the *computational principles* underlying their operation?

Recommended Textbooks

★ Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems by P. Dayan & L. Abbott

→ Tutorial on Neural Systems Modelling by T. Anastasio

Course Goals: What you can expect to learn

- **♦** At the end of the course, you will be able to:
 - 1. Quantitatively describe what a biological neuron or network of neurons is doing given experimental data
 - 2. Simulate on a computer the behavior of neurons and networks
 - 3. Formulate computational principles underlying the operation of neurons and networks in the brain

Computational Neuroscience

Rajesh P. N. Rao
Adrienne Fairhall
University of Washington, Seattle, USA