

# **How Does LISA Work?**

Ira Thorpe
NASA LISA Project Scientist
AAS 245 LISA Workshop





Broad spectrum of wavelengths / frequencies

Different astrophysical and cosmological sources in each band

Different detection techniques required for each band



### **LISA Concept History**





#### **Measurement Principle**





The LISA instrument is the constellation



#### **Measurement Requirements**



# ESA Mission Requirements Document includes

- Strain requirement
- Mission duration
- Data latency















- Optical Interferometry: use optical phase to measure length changes.
  - 10pm ~ 10μcycles
  - Fundamental limit is photon counting statistics (aka shot noise). Need to transfer sufficient power between SC
- Heterodyne: different frequencies
  - Each arm vertex has its own laser
  - Make a series of one-way measurements, each limited by oscillator noise
  - Combine signals on ground to reject common oscillator noise and retain differential GW signal



- Similar measurement with LRI on GRACE-FO
- Single 300km baseline
- Sub-nm noise floor, limited by oscillator noise

# **Disturbance Reduction: drag-free flight**





LPF Rendering: ESA Medialab











#### **Disturbance Reduction for LISA**





- Each TM is "drag-free" along sensitive axis
  - Electrostatic forcing of TMs in orthogonal directions
  - S/C translates and rotates to follow TMs
- Residual forces on the TM
  - Molecular / pressure
  - Electrostatic
  - Magnetic
  - Gravitational
  - Radiative

#### **Performance Model**













## Why millihertz? Lots of sources and science!



## **Science Highlights**







- How do binary stars evolve?
- Formation history of our galaxy



Survey of massive black hole binaries across the visible universe

- How do black holes and their host galaxies co-evolve?
- Potential multimessenger targets with accreting MBH mergers



Precision tests of extreme gravity

 Does GR accurately describe the most exotic gravitational systems in the universe?