Introduction

# Programming with Big Data in R Workshop I Introduction and Basics

Whoever

Whenever, 2013





pbdDMAT

Introduction

# The pbdR Core Team

http://r-pbd.org

Wei-Chen Chen<sup>1</sup>, George Ostrouchov<sup>1,2</sup>, Pragneshkumar Patel<sup>2</sup>, Drew Schmidt<sup>1</sup>

Ostrouchov, Patel, and Schmidt were supported in part by the project "NICS Remote Data Analysis and Visualization Center" funded by the Office of Cyberinfrastructure of the U.S. National Science Foundation under Award No. ARRA-NSF-OCI-0906324 for NICS-RDAV center.

Chen and Ostrouchov were supported in part by the project "Visual Data Exploration and Analysis of Ultra-large Climate Data" funded by U.S. DOE Office of Science under Contract No. DE-AC05-00OR22725.

Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN





http://r-pbd.org pbdR Core Team pbdR Workshop I: Basics

pbdDMAT

Break

# About This Presentation

#### "Course Notes"

Introduction

The content of this presentation is largely based on the **pbdDEMO** vignette:

https://github.com/wrathematics/pbdDEMO/blob/master/inst/doc/pbdDEMO-guide.pdf?raw=true

It contains more examples, and sometimes more detail. Loosely, it is this presentation's lecture notes.



# About This Presentation

### Conventions

Introduction

- We use "•" as a decimal mark, not "•". E.g., "one thousand and one half" is written "1,000.5", not "1.000,5".
- We will use special suffixes to denote distributed objects (ones not stored entirely on a single processor).
  - .spmd denotes a distributed object, while
  - .dmat denotes a distributed object which is of class ddmatrix No suffix means the object is global (common to all
  - processors)

Neither of these suffices carries semantic meaning.



# Contents

Introduction

- Introduction
- 2 Introduction to MPI
- 3 pbdMPI Examples
- **Brief Intermission**
- Introduction to pbdDMAT
- 6 pbdDMAT Examples
- Dénouement



# Contents

Introduction

- Introduction
  - Problems with R and a Concise Introduction to Parallelism
  - The pbdR Project
  - pbdR Focus and Paradigms



Problems with R and a Concise Introduction to Parallelism

### Problems with R

- Slow.
- ② If you don't know what you're doing, it's really slow.
- 3 Performance improvements usually for small machines.
- Very ram intensive.
- Chokes on big data.



http://r-pbd.org pbdR Core Team pbdR Workshop I: Basics 1/51

### What is Parallelism?

Introduction

Broadly, doing more than one thing at a time.

- Task Parallelism: Many really small tasks.
   e.g. Make one sandwich for every person on earth to eat.
- Data Parallelism: One really big task.
   e.g. Make one sandwich so large that every person on earth could eat from it.

### More Common Terms

- Embarrassingly Parallel: Obvious how to make parallel; lots of independence in computations.
- 2 *Tightly Coupled*: Opposite of embarrassingly parallel; lots of dependence in computations.
- 3 Implicit parallelism: parallel details hidden from user
- Explicit parallelism: some assembly required...



http://r-pbd.org pbdR Core Team pbdR Workshop I: Basics 2 / 51

Problems with R and a Concise Introduction to Parallelism

# (Data) Parallelism





DAK UDGE

http://r-pbd.org pbdR Core Team pbdR Workshop I: Basics 3 / 51

 Introduction
 Intro to MPI
 pbdMPI Eg's
 Break
 pbdDMAT
 pbdDMAT Eg's
 Dénouement

 000€0
 000000
 0000
 0000
 0000
 0000

 000
 000
 0000
 0000
 0000
 0000

Problems with R and a Concise Introduction to Parallelism

### R and Parallelism

The solution to many of R's problems is parallelism. However . . .

### What we have

- Mostly serial.
- Parallelism mostly not distributed (foreach, parallel/snow/multicore, . . . )
- 3 Data parallelism mostly explicit (Rmpi, R+Hadoop, ...)

#### What we want

- Mostly parallel.
- Mostly distributed.
- Mostly implicit.



http://r-pbd.org pbdR Core Team pbdR Workshop I: Basics 4/51

Problems with R and a Concise Introduction to Parallelism

Introduction

00000

### Why We Need Parallelism

- Saves time (long term).
- 2 Data size is skyrocketing.
- Necessary for many problems.
- Like it or not, it's coming.
- 1t's really cool.



http://r-pbd.org pbdR Core Team pbdR Workshop I: Basics 5 / 51

Introduction

0000

# Programming with Big Data in R (pbdR)

Goals: Productivity, Portability, Performance

### Our Approach:

- Series of *free*<sup>a</sup> R packages.
- Enables SPMD style programming.
- Scalable, big data analytics with high-level syntax.
- Implicit management of distributed data details.
- Methods have syntax identical to R.
- Powered by state of the art numerical libraries (MPI, ScaLAPACK, PBLAS, BLACS, LAPACK, BLAS, ...)



http://r-pbd.org pbdR Core Team pbdR Workshop I: Basics 6 / 51

<sup>&</sup>lt;sup>a</sup>GPL and BSD licensed

The pbdR Project

Introduction

0000

### pbdR Packages pbdR pbdDEMO pbdDMAT pbdADIOS pbdBASE pbdSLAP pbdNCDF4 pbdMPI High Performance Libraries MKL, libsci ACML, MKL, ScaLAPACK Parallel LAPACK MPI 1/0 PBLAS BLAS BLACS



http://r-pbd.org pbdR Core Team pbdR Workshop I: Basics 7/51

 Intro to MPI
 pbdMPI Eg's
 Break
 pbdDMAT
 pbdDMAT Eg's
 Dénouement

 0000000
 0000
 0000
 0000
 0000

 000
 0000
 0000
 0000
 0000

The pbdR Project

Introduction

0000

# pbdR Packages

- pbdMPI: MPI bindings (explicit, low-level)
- pbdSLAP: Foreign library (just install it, nothing to use)
- pbdBASE/pbdDMAT: Distributed matrices (mostly implicit, high-level)
- pbdNCDF4: Parallel NetCDF4 reader (mostly implicit, mid-level)
- pbdADIOS: Interface to ADIOS I/O middleware (mostly explicit, low-level)
- pbdDEMO: Package demonstrations, examples, lengthy vignette

Beginners should focus on pbdDEMO, pbdMPI, and pbdDMAT



http://r-pbd.org pbdR Core Team pbdR Workshop I: Basics 8 / 51

The pbdR Project

# Example Syntax

```
1 x <- x[-1, 2:5]

2 x <- log(abs(x) + 1)

3 xtx <- t(x) %*% x

4 ans <- chol(solve(xtx))
```

Look familiar?

The above runs on 1 core with R or 10,000 cores with pbdR



http://r-pbd.org pbdR Core Team pbdR Workshop I: Basics 9 / 51

Intro to MPI pbdMPI Eg's Break pbdDMAT pbdDMAT Eg's Dénouement

pbdR Focus and Paradigms

Introduction

•0000

### pbdR Focus: Distributed Machines

### **Shared Memory Machines**

Thousands of cores



Nautilus, University of Tennessee

1024 cores

# Distributed Memory Machines Hundreds of thousands of cores



112,896 cores



http://r-pbd.org pbdR Core Team pbdR Workshop I: Basics 10/51

pbdR Focus and Paradigms

# pbdR Paradigms

Programs that use pbdR are meant to utilize the:

- Data Parallelism method
- Single Program/Multiple Data (SPMD) style



http://r-pbd.org pbdR Core Team pbdR Workshop I: Basics 11/51

pbdR Focus and Paradigms

### pbdR Paradigms: Data Parallelism

With data parallelism:

- No one processor/node owns all the data.
- Processors own local pieces of a (conceptually) global object



http://r-pbd.org pbdR Core Team pbdR Workshop I: Basics 12/51

# pbdR Paradigms: SPMD

- Natural extension of writing serial codes.
- Different from Manager/Worker.
- No one processor is in charge. Each thinks it's the boss ("it's like academia").
- One program written, executed independently by all processors.
- Each processor owns a local sub-piece of data from the (conceptual) whole.



http://r-pbd.org pbdR Core Team pbdR Workshop I: Basics 13/51

pbdR Focus and Paradigms

Manager/Worker vs SPMD

Graphics will go here

Manager/Worker: Fascism

SPMD: Democracy



http://r-pbd.org pbdR Core Team pbdR Workshop I: Basics 14/51

# Contents

Introduction

- 2 Introduction to MPI
  - MPI Basics
  - pbdMPI vs Rmpi



**MPI** Basics

Introduction

# Message Passing Interface (MPI)

- MPI: Standard for managing communications (data and instructions) between different nodes/computers.
- Implementations: OpenMPI, MPICH2, Cray MPT, ...
- Enables parallelism on distributed machines.
- Communicator: manages communications between processors.



Introduction

### Common MPI Operations (1 of 2)

- Managing a Communicator: Create and destroy communicators init() — initialize communicator finalize() — shut down communicator(s)
- Rank query: determine the processor's position in the communicator.

```
comm.rank() — "who am I?"
comm.size() — "how many of us are there?"
```

 Barrier: "computation wall"; no processor can proceed until all processors can proceed.
 barrier()



**MPI Basics** 

Introduction

# Quick Example 1

```
library(pbdMPI, quiet = TRUE)
init()

myRank <- comm.rank() + 1 # comm index starts at 0, not 1
print(myRank)

finalize()</pre>
```



pbdDMAT

Introduction

### Common MPI Operations (2 of 2)

- Reduction: each processor has a number x.spmd; add all of them up, find the largest/smallest, .... reduce(x.spmd, op='sum') only one processor gets result allreduce(x.spmd, op='sum') every processor gets result
- Gather: each processor has a number; create a new object on some processor containing all of those numbers.
   gather(x.spmd) only one processor gets result allgather(x.spmd) every processor gets result
- Broadcast: one processor has a number x.spmd that every other processor should also have.
   bcast(x.spmd)



http://r-pbd.org pbdR Core Team pbdR Workshop I: Basics 18/51

**MPI Basics** 

Introduction

# Quick Example 2

```
1 library(pbdMPI, quiet = TRUE)
2 init()
3 
4  n <- sample(1:10, size=1)
5 
6  sm <- allreduce(n) # default op is 'sum'
7  print(sm)
8 
9  gt <- allgather(n)
10  print(gt)
11
12  finalize()</pre>
```



TAMQbdq

**Break** 

Introduction

### pbdMPI Sugar

- Print: printing with control over which processor prints.
   comm.print(x, ...)
- Apply: \*ply-like functions.
   pbdApply(X, MARGIN, FUN, ...) analogue of apply()
   pbdLapply(X, FUN, ...) analogue of lapply()
   pbdSapply(X, FUN, ...) analogue of sapply()

For more details, see the **pbdMPI** Reference Manual: http://goo.gl/9oFRd



**MPI Basics** 

Introduction

# Quick Example 3

```
1  library(pbdMPI, quiet = TRUE)
2  init()
3  
4  n <- 100
5  x <- split((1:n) + n * comm.rank(), rep(1:10, each = 10))
6  sm <- pbdLapply(x, sum)
7  comm.print(unlist(sm))
8  
9  finalize()</pre>
```



Introduction

### pbdMPI vs Rmpi: Overview

- (+) **pbdMPI** is easier to install than **Rmpi**
- (+) pbdMPI is easier to use than Rmpi
- (+) pbdMPI has way better documentation and examples than Rmpi.
- (+) pbdMPI can often outperform Rmpi
- (+) **pbdMPI** integrates with the rest of pbd
- (-) Rmpi can be used with foreach via doMPI
- (-) Rmpi can be used in the master/worker paradigm



http://r-pbd.org pbdR Core Team pbdR Workshop I: Basics 22 / 51

pbdMPI vs Rmpi

Introduction

```
pbdMPI vs Rmpi: Syntax
Rmpi
                                pbdMPI
  # integer data
                                1 # whatever
  mpi.allreduce(x, type =
                                  allreduce(x)
      1)
3
  # double data
  mpi.allreduce(x, type =
      2)
 Think That's Not a Problem?
   > is.integer(1)
   [1] FALSE
   > is.integer(2)
   [1] FALSE
   > is.integer(1:2)
   [1] TRUE
```



pbdMPI vs Rmpi

Introduction

### pbdMPI vs Rmpi: Performance

We compared<sup>a</sup> the performance between **Rmpi** and **pbdMPI** in an allgather() operation on a for  $10000 \times 10000$  distributed matrix

| Cores | Rmpi | pbdMPI | Speedup |
|-------|------|--------|---------|
| 32    | 24.6 | 6.7    | 3.67    |
| 64    | 25.2 | 7.1    | 3.55    |
| 128   | 22.3 | 7.2    | 3.10    |
| 256   | 22.4 | 7.1    | 3.15    |

Table: Runtimes (seconds) for allgather()

<sup>&</sup>lt;sup>a</sup>D. Schmidt, G. Ostrouchov, W.-C. Chen, and P. Patel. *Tight coupling of R and distributed linear algebra for high-level programming with big data*. SC Companion: High Performance Computing, Networking Storage and Analysis. IEEE Computer Society, 2012.



http://r-pbd.org pbdR Core Team pbdR Workshop I: Basics 24/51

pbdDMAT

**Break** 

# Contents

Introduction

- 3 pbdMPI Examples
  - Monte Carlo Simulation
  - Linear Regression
  - Clustering



Introduction

### Example 1: Monte Carlo Simulation

Sample *N* uniform observations  $(x_i, y_i)$  in the unit square  $[0, 1] \times [0, 1]$ . Then

$$\pi pprox 4\left(rac{\#\ \textit{Inside Circle}}{\#\ \textit{Total}}
ight) = 4\left(rac{\#\ \textit{Blue}}{\#\ \textit{Blue} + \#\ \textit{Red}}
ight)$$





http://r-pbd.org pbdR Core Team pbdR Workshop I: Basics 25 / 51

Introduction

### Example 1: Monte Carlo Simulation SPMD Algorithm

- Let n be big-ish; we'll take n = 1000.
- **Q** Generate an  $n \times 2$  matrix x of standard uniform observations.
- 3 Count the number of rows satisfying  $x^2 + y^2 \le 1$
- Ask everyone else what their answer is; sum it all up.
- **5** Take this new answer, multiply by 4 and divide by  $n \times nprocs$
- 1 If my rank is 0, print the result.



http://r-pbd.org pbdR Core Team pbdR Workshop I: Basics 26/51

Monte Carlo Simulation

### Example 1: Monte Carlo Simulation Code

```
1 N.spmd <- 1000
2 X.spmd <- matrix(runif(N.spmd * 2), ncol = 2)
3 r.spmd <- sum(rowSums(X.spmd^2) <= 1)
4 ret <- allreduce(c(N.spmd, r.spmd), op = "sum")
5 PI <- 4 * ret[2] / ret[1]
6 comm.print(PI)</pre>
```



Monte Carlo Simulation

### **Example 1: Monte Carlo Simulation Batch Execution**

Locate the **pbdDEMO** example script monte\_carlo.r and execute:

```
### At the shell prompt, run the demo with 4 processors
### Use Rscript.exe for Windows systems
mpirun -np 4 Rscript monte_carlo.r
```

### Sample output:

```
1 COMM.RANK = 0
2 [1] 3.171
```



http://r-pbd.org pbdR Core Team pbdR Workshop I: Basics 28 / 51

Linear Regression

### Example 2: Linear Regression

Find  $\beta$  such that

$$y = X\beta + \epsilon$$

When **X** is full rank,

$$\hat{\boldsymbol{\beta}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$



http://r-pbd.org pbdR Core Team pbdR Workshop I: Basics 29/51

## Example 2: Linear Regression SPMD Algorithm

- Compute  $tx = x^T$
- 2 Compute  $A = tx \times x$ . Ask everyone else what they got for this and sum all the answers up.
- **3** Compute  $B = tx \times yx$ . Ask everyone else what they got for this and sum all the answers up.
- Compute  $A^{-1} \times B$



http://r-pbd.org pbdR Core Team pbdR Workshop I: Basics 30 / 51

Linear Regression

## Example 2: Linear Regression Code

```
t.X.spmd <- t(X.spmd)
A <- allreduce(t.X.spmd %*% X.spmd, op = "sum")
B <- allreduce(t.X.spmd %*% y.spmd, op = "sum")

solve(matrix(A, ncol = ncol(X.spmd))) %*% B</pre>
```



Linear Regression

### Example 2: Linear Regression Batch Execution

Locate the **pbdDEMO** example script ols.r and execute:

```
### At the shell prompt, run the demo with 4 processors
### Use Rscript.exe for Windows systems
mpirun -np 4 Rscript ols.r
```

### Sample output:

```
1 COMM.RANK = 0

[,1]

3 [1,] 0.9652591

4 [2,] 2.0166145
```



http://r-pbd.org pbdR Core Team pbdR Workshop I: Basics 32 / 51

 Introduction
 Intro to MPI
 pbdMPI Eg's
 Break
 pbdDMAT
 pbdDMAT Eg's
 Dénouement

 0000
 0000
 0000
 0000
 0000

 000
 000
 0000
 0000

Clustering

Example 3: Clustering



# **Brief Intermission**

Introduction

### **Brief Intermission**

Questions? Comments?

Don't forget to talk to us at our discussion group:

http://group.r-pbd.org/



# Contents

Introduction

- Introduction to pbdDMAT
  - Distributed Matrices
  - Generating Data
  - Reading Distributed Matrices



 Introduction
 Intro to MPI
 pbdMPI Eg's
 Break
 pbdDMAT
 pbdDMAT Eg's
 Dénouement

 ○○○○
 ○○○○
 ○○○○
 ○○○
 ○○○○

 ○○○
 ○○○
 ○○○
 ○○○

**Distributed Matrices** 

#### Distributed Matrices

- ddmatrix: distributed analogue of R's matrix class.
- No single processor holds all of the data (unless you messed up)



http://r-pbd.org pbdR Core Team pbdR Workshop I: Basics 34/51

**Distributed Matrices** 

### Distributed Matrices: The Data Structure

ddmatrix is an S4 class object containing a block-cyclically distributed data onto a 2-dimensional processor grid.

## with prototype

$$\label{eq:new("ddmatrix")} \begin{split} \text{new("ddmatrix")} &= \begin{cases} \text{Data} &= \text{matrix}(0) \\ \text{dim} &= \text{c}(1,1) \\ \text{ldim} &= \text{c}(1,1) \\ \text{bldim} &= \text{c}(1,1) \\ \text{CTXT} &= 0 \end{cases} \end{split}$$



http://r-pbd.org pbdR Core Team pbdR Workshop I: Basics 35 / 51

 Intro to MPI
 pbdMPI Eg's
 Break
 pbdDMAT
 pbdDMAT Eg's
 Dénouement

 ○○○○○○
 ○○○○
 ○○○
 ○○○
 ○○○
 ○○○
 ○○○
 ○○○
 ○○○
 ○○○
 ○○○
 ○○○○
 ○○○
 ○○○
 ○○○○
 ○○○
 ○○○
 ○○○○
 ○○○
 ○○○○
 ○○○○
 ○○○○
 ○○○○
 ○○○○
 ○○○○
 ○○○○
 ○○○○
 ○○○○
 ○○○○
 ○○○○
 ○○○○
 ○○○○
 ○○○○
 ○○○○
 ○○○○
 ○○○○
 ○○○○
 ○○○○
 ○○○○
 ○○○○
 ○○○○
 ○○○○
 ○○○○
 ○○○○
 ○○○○
 ○○○○
 ○○○○
 ○○○○
 ○○○○
 ○○○○
 ○○○○
 ○○○○
 ○○○○
 ○○○○
 ○○○○
 ○○○○
 ○○○○
 ○○○○
 ○○○○
 ○○○○
 ○○○○
 ○○○○
 ○○○○
 ○○○○
 ○○○○
 ○○○○
 ○○○○
 ○○○○
 ○○○○
 ○○○○
 ○○○○
 ○○○○
 ○○○○
 ○○○○
 ○○○○
 ○○○○
 ○○○○
 ○○○○○
 ○○○○○○
 ○○○○○
 ○○○○○○
 ○○○○○
 ○○○○○
 ○○○○○

**Distributed Matrices** 

Introduction

### Distributed Matrices: The Data Structure

Example: an  $11 \times 9$  matrix is distributed with a "block-cycling" factor of  $3 \times 2$  on a  $2 \times 3$  processor grid:



$$= \begin{cases} \textbf{Data} &= \texttt{matrix}(\ldots) \\ \textbf{dim} &= \texttt{c}(11, 9) \\ \textbf{Idim} &= \texttt{c}(\ldots) \\ \textbf{bIdim} &= \texttt{c}(3, 2) \\ \textbf{CTXT} &= 0 \end{cases}$$

See http://acts.nersc.gov/scalapack/hands-on/datadist.html



http://r-pbd.org pbdR Core Team pbdR Workshop I: Basics 36/51

 Introduction
 Intro to MPI
 pbdMPI Eg's
 Break
 pbdDMAT
 pbdDMAT Eg's
 Dénouement

 ○○○○
 ○○○○
 ○○○
 ○○○
 ○○○

 ○○○○
 ○○○
 ○○○
 ○○○

**Distributed Matrices** 

# Pros and Cons of This Data Structure

#### Pros

 Fast for distributed matrix computations

#### Cons

Literally everything else

This is why we hide most of the distributed details.



http://r-pbd.org pbdR Core Team pbdR Workshop I: Basics 37 / 51

#### Distributed Matrix Methods

The **pbdBASE** and **pbdDMAT** packages have nearly 100 (and counting) methods with identical syntax to core R, including:

- `[`, rbind(), cbind(), ...
- lm.fit(), prcomp(), cov(), ...
- `%\*%`, solve(), svd(), norm(), ...
- median(), mean(), rowSums(), ...



**Generating Data** 

Introduction

### Generating Random Data

Using randomly generated matrices is the best way to "get your feet wet" with the pbd tools. You can do this in 2 ways:

- Global matrix → distributed matrix
- Generate locally only what is needed



http://r-pbd.org pbdR Core Team pbdR Workshop I: Basics 39/51

## Example 1: Random Distributed Matrix Generation

```
# Common global --> distributed
set.seed(1234)
x <- matrix(rnorm(100), nrow=10, ncol=10)
dx <- as.ddmatrix(x)

# Global on process 0 --> distributed
if (comm.rank()==0){
    x <- matrix(rnorm(100), nrow=10, ncol=10)
} else {
    x <- NULL
}
dx <- as.ddmatrix(x)</pre>
```



http://r-pbd.org pbdR Core Team pbdR Workshop I: Basics 40 / 51

**Generating Data** 

# Example 2 : Random Distributed Matrix Generation

```
# Using pbdDEM0
comm.set.seed(diff = TRUE) # good seeds via rlecuyer
dx <- Hnorm(dim=c(10, 10))</pre>
```



 Introduction
 Intro to MPI
 pbdMPI Eg's
 Break
 pbdDMAT
 pbdDMAT Eg's
 Dénouement

 00000
 00000
 0000
 0000
 0000

 0000
 0000
 0000
 0000
 0000

Reading Distributed Matrices

### Distributed Matrices

**.** 



# Contents

Introduction

- 6 pbdDMAT Examples
  - Compression with Principal Components Analysis
  - Predictions with Linear Regression



 Introduction
 Intro to MPI
 pbdMPI Eg's
 Break
 pbdDMAT
 pbdDMAT Eg's
 Dénouement

 ○○○○
 ○○○○
 ○○○○
 ○○○
 ○○○

 ○○○○
 ○○○○
 ○○○
 ○○○

Compression with Principal Components Analysis

## Example 1: PCA

Compute the principal components of a distributed matrix. Retain only a subset of the rotated data, the greatest number of columns which will retain no more than 90% of the variation of the original dataset.



http://r-pbd.org pbdR Core Team pbdR Workshop I: Basics 43/51

### Example 1: PCA SPMD Algorithm

- Set good random seed and generate  $10,000 \times 250 \text{ ddmatrix}$
- 2 Compute PCA rotation with scaling using prcomp().
- 3 Determine the first i columns which retain no more than 90% of the original variation.
- 4 Retain only the first *i* columns of the rotated data.



http://r-pbd.org pbdR Core Team pbdR Workshop I: Basics 44/51

### Example 1: PCA Code



http://r-pbd.org pbdR Core Team pbdR Workshop I: Basics 45 / 51

### Example 1: PCA Batch Execution

Locate the **pbdDEMO** example script pca.r and execute:

```
### At the shell prompt, run the demo with 4 processors
### Use Rscript.exe for Windows systems
mpirun -np 4 Rscript pca.r
```

#### Sample output:



http://r-pbd.org pbdR Core Team pbdR Workshop I: Basics 46 / 51

 Introduction
 Intro to MPI
 pbdMPI Eg's
 Break
 pbdDMAT
 pbdDMAT Eg's
 Dénouement

 ○○○○
 ○○○○
 ○○○○
 ○○○○
 ○○○○

 ○○○
 ○○○
 ○○○
 ○○○

Predictions with Linear Regression

### Example 2: Regression

Fit the linear model  $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$  and make a prediction on new x data using this model.



http://r-pbd.org pbdR Core Team pbdR Workshop I: Basics 47 / 51

### Example 2: Regression SPMD Algorithm

- Set good random seed and generate  $1250 \times 40$  ddmatrix x and  $1250 \times 1$  ddmatrix y
- ② Fit the linear model using lm.fit().
- Generate new x data.
- Compute the estimated  $\hat{y} = x_{\text{new}} * \beta$ .



Predictions with Linear Regression

Introduction

## Example 2: Regression Code

```
comm.set.seed(1234, diff=TRUE)
dx <- Hnorm(c(n, p), bldim=bldim, mean=mean, sd=sd)
dy <- Hunif(c(n, 1), bldim=bldim, min=ymin, max=ymax)

mdl <- lm.fit(dx, dy)

dx.new <- Hnorm(c(1, p), bldim=bldim, mean=mean, sd=sd)

pred <- dx.new %*% mdl$coefficients</pre>
```



http://r-pbd.org pbdR Core Team pbdR Workshop I: Basics 49/51

 Introduction
 Intro to MPI
 pbdMPI Eg's
 Break
 pbdDMAT
 pbdDMAT Eg's
 Dénouement

 ○○○○
 ○○○○○
 ○○○○
 ○○○○
 ○○○○

 ○○○○
 ○○○○
 ○○○○
 ○○○●

Predictions with Linear Regression

### Example 2: Regression Batch Execution

Locate the **pbdDEMO** example script ols\_dmat.r and execute:

```
### At the shell prompt, run the demo with 4 processors
### Use Rscript.exe for Windows systems
```

mpirun -np 4 Rscript ols\_dmat.r

### Sample output:

The predicted y value is: 84.7432227923963



http://r-pbd.org pbdR Core Team pbdR Workshop I: Basics 50 / 51

# Contents

Introduction





Break

### Where to Learn More

Introduction

1 The pbdDEMO vignette: see http://r-pbd.org

② Our Google Group: group.r-pbd.org



## Thanks for coming!

Questions? Comments?

Don't forget to talk to us at our discussion group: http://group.r-pbd.org/



Introduction