

Teoría de Algoritmos I

Primer Cuatrimestre 2017 Trabajo Práctico 3

Integrante	Padrón	Correo electrónico
Rodrigo De Rosa	97799	rodrigoderosa@outlook.com
Marcos Schapira	_	schapiramarcos@gmail.com
Facundo Guerrero	_	facundoiguerrero@gmail.com

${\rm \acute{I}ndice}$

1.	Programación Dinámica	1
	1.1. Algoritmo	
	1.1.1. Funcionamiento	1
	1.1.2. Ecuación de recurrencia	1
2.	Algoritmos Randomizados	2
	2.1. Algoritmo	2
	2.1.1. Funcionamiento	2
	2.1.2. Categoría de randomización	2
3.	Algoritmos Aproximados	3
	3.1. Algoritmo	3
	3.1.1. Funcionamiento	3
4.	Ejecución de programas	_

1. Programación Dinámica

En esta sección se analiza una solución al problema de la predcción de acciones a través de la programación dinámica.

1.1. Algoritmo

1.1.1. Funcionamiento

El algoritmo utilizado para resolver el problema planteado funciona de la siguiente forma:

- Determina un día de compra, un día de venta, un día de compra auxiliar, una ganancia máxima y una ganancia temporal.
- Itera sobre todos los días (valores diferentes de acciones) verificando si en el día actual es más o menos favorable comprar acciones que en el día en el que se pretendía hacerlo hasta el momento, determinando el día de compra auxiliar.
- A partir del día que determinó, calcula la ganancia temporal como la que se obtendría si las acciones fueran vendidas el día actual y verifica si es mayor a la ganancia máxima hasta el momento.
- En tal caso, determina el día de venta como el actual, el día de compra como el que previamente era el día de compra auxiliar y la ganancia máxima como la que era la ganancia temporal.
- Al finalizar la iteración, queda determinado el día de compra más conveniente, el día de venta más conveniente y la ganancia máxima obtenible.

1.1.2. Ecuación de recurrencia

La ecuación de recurrencia del algoritmo utilizado es la siguiente: $R(n,m)=\dots$

2. Algoritmos Randomizados

En esta sección se analiza una solución al problema de hallar el corte global mínimo en un grafo no dirigido a través de un algoritmo randomizado.

2.1. Algoritmo

Para resolver este problema se utilizó el algoritmo de Karger descripto en la bibliografía proporcionada por la cátedra.

2.1.1. Funcionamiento

Este algoritmo

2.1.2. Categoría de randomización

Pertenece a la categoría X porque

3. Algoritmos Aproximados

En esta sección se analiza una solución al problema de la suma de subconjuntos a través de un algoritmo aproximado.

3.1. Algoritmo

Para resolver este problema se utilizó la estrategia polinómica descripta en la bibliografía proporcionada por la cátedra.

3.1.1. Funcionamiento

Este algoritmo

4. Ejecución de programas

Para correr cada algoritmo, se debe ejecutar el archivo principal de cada uno. Esto se hace de la siguiente forma:

En la carpeta Programación Dinámica abrir la consola y ejecutar python main.py En la carpeta Algoritmos Randomizados abrir la consola y ejecutra python main.py En la carpeta Algoritmos Aproximados abrir la consola y ejecutra python main.py