Calculus II

1 Vectors

 $\mathbb R$ represents the set of real numbers.

 \mathbb{R}^2 represents a 2 dimensional real plane.

Normally elements of $\mathbb R$ are known as scalers.

- \cdot add (or subtract) two vectors
- \cdot if $c \in \mathbb{R}$ and $v \in \mathbb{R}^2$, $c\vec{v}$

1.1 Dot Product

$$u = (u_1, u_2)$$
 and $v = (v_1, v_2)$

$$u.v = u_1.v_1 + u_2.v_2$$

Theorem

$$u.v = |u||v|\cos(\theta)$$

where θ is the angle between \vec{u} and \vec{v} and |u| is the length of vector \vec{u}

Proof:

$$w^2 = u^2 + v^2 - 2|u||v|\cos(\theta)\dots(1)$$

$$\vec{w} = \vec{v} - \vec{u}$$

$$w = (v_1 - u_1, v_2 - u_2)$$

$$w^2 = (v_1 - u_1)^2 + (v_2 - u_2)^2$$

$$w^2 = v_1^2 - 2v_1u_1 + u_1^2 + v_2^2 - 2v_2u_2 + u_2^2$$

$$w^2 = v^2 + u^2 - 2v_1u_1 - 2v_2u_2 \dots (2)$$

$$\text{now, as } (1) = (2)$$

$$u^2 + v^2 - 2|u||v|\cos(\theta) = v^2 + u^2 - 2v_1u_1 - 2v_2u_2$$

$$|u||v|\cos(\theta) = v_1u_1 + v_2u_2$$

$$|u||v|\cos(\theta) = \vec{u}.\vec{v}$$

Hence proved.

Extending the above theorem to \mathbb{R}^n : Consider $\vec{u}=(u_1,u_2,\ldots,u_n), \vec{v}=(v_1,v_2,\ldots,v_n)\in\mathbb{R}$

$$\vec{u}.\vec{v} = u_1v_1 + u_2v_2 + \dots + u_nv_n$$

1.2 Unit Vectors

If $\vec{v} \in \mathbb{R}^2$ is a vector. then,

$$\hat{v} = \frac{\vec{v}}{|\vec{v}|}$$

1.3 Projections

If \vec{u} and \vec{v} are vectors in \mathbb{R}^2 and θ is the angle between them:

let \vec{w} be the projection of \vec{u} on \vec{v}

$$\vec{w} = |u|\cos(\theta)\hat{v}$$

$$\vec{w} = \frac{|u|\cos(\theta)|v|\vec{v}}{|v|^2}$$

$$\vec{w} = \frac{\vec{u}.\vec{v}}{|\vec{v}|^2}\vec{v}$$

1.4 Cross Product

Consider the vectors, u, v. Then the cross-product of u and v is defined as:

$$u \times v = |u||v|\sin(\theta)\hat{n}$$

where \hat{n} is the unit vector perpendicular to the plane containing u and v, and also $(\vec{u}, \vec{v}, \hat{n})$ form a right handed system.

Properties of Cross Product:

- $\vec{u} \times \vec{v} = -(\vec{v} \times \vec{u})$
- $(r\vec{u}) \times (s\vec{v}) = rs\vec{u} \times \vec{v}$
- $\vec{u} \times (\vec{v} + \vec{w}) = \vec{u} \times \vec{v} + \vec{u} \times \vec{w}$

 \vec{u} and \vec{v} can also be represented as:

$$\vec{u} = u_1\hat{i} + u_2\hat{j} + u_3\hat{k}$$

$$\vec{v} = v_1 \hat{i} + v_2 \hat{j} + v_3 \hat{k}$$

$$\vec{u} \times \vec{v} = (u_2v_3 - u_3v_2)\hat{i} + (u_3v_1 - u_1v_3)\hat{i} + (u_1v_2 - u_2v_1)\hat{k}$$

$$ec{u} imes ec{v} = egin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ \end{pmatrix}$$

the above formula is only symbolic and meant to represent a cross product.

2 Multi-Variable Calculus

let $r: \mathbb{R} \to \mathbb{R}^3$ be a function. (It could be to any \mathbb{R}^n) for $t \in \mathbb{R}$, r(t) is a vector in \mathbb{R}^3

$$r(t) = f(t)\hat{\imath} + g(t)\hat{\jmath} + h(t)\hat{k}$$

2.1 Continuity

r is continuous at a if:

$$\lim_{t \to a} r(t) = r(a)$$

i.e. $\forall \epsilon > 0, \exists \delta > 0$ such that $|t-a| < \delta \implies |r(t)-r(a)| < \epsilon$ or, if f, g and h are continuous at a, r is continuous at a.

2.2 Differentiability

let $r: \mathbb{R} \to \mathbb{R}^3$ be a function. (We are taking $mathbbR^3$ here, but it could be any \mathbb{R}^n)

the derivative of r at a is defined as:

$$r'(a) = \lim_{t \to a} \frac{r(t) - r(a)}{t - a}$$

if

$$r(t) = f(t)\hat{i} + g(t)\hat{j} + h(t)\hat{k}$$

$$r'(t) = f'(t)\hat{i} + g'(t)\hat{j} + h'(t)\hat{k}$$

2.3 Integration

let $f:[a,b]\to\mathbb{R}$ be a function.

the integral of f from a to b is defined as:

$$\int_a^b f(x)dx = \text{Area under the curve } y = f(x) \text{ from } x = a \text{ to } x = b$$

Anti-derivative let $f:[a,b] \to \mathbb{R}$ be a function.

$$\int f(t)dt = F(t) + c$$

such that F'(t) = f(t) and c is an arbitrary constant

Fundamental Theorem of Calculus let $f:[a,b]\to\mathbb{R}$ be a function and F be its anti-derivative.

$$\int_{a}^{b} f(t)dt = F(b) - F(a)$$

2.3.1 Extending to a Vector Valued Function

Consider a function $r: \mathbb{R} \to \mathbb{R}^3$ (we are taking \mathbb{R}^3 as an example, it could be any \mathbb{R}^n)

$$\begin{split} r(t) &= f(t)\hat{i} + g(t)\hat{j} + h(t)\hat{k} \\ \int_a^b r(t)dt &= \int_a^b f(t)dt\hat{i} + \int_a^b g(t)dt\hat{j} + \int_a^b h(t)dt\hat{k} \end{split}$$

Anti-derivative

$$\int r(t)dt = \left(\int f(t)dt + c_1\right)\hat{i} + \left(\int g(t)dt + c_2\right)\hat{j} + \left(\int h(t)dt + c_3\right)\hat{k}$$

$$\int r(t)dt = R(t) + C$$

where R'(t) = r(t) and C is an arbitrary constant vector.

$$R(t) = F(t)\hat{i} + G(t)\hat{j} + H(t)\hat{k}$$

where F'(t) = f(t), G'(t) = g(t) and H'(t) = h(t)

2.3.2 Length of a Curve

let $r:[a,b]\to\mathbb{R}^3$ be a function. (As usual, we are taking \mathbb{R}^3 , but it can be any \mathbb{R}^n)

the length of the curve l from a to b is defined as:

$$l = \int_{a}^{b} |r'(t)| dt$$

3 Multi-Variable Functions

let $f:D\to\mathbb{R}$ be a function. Let $D\subseteq\mathbb{R}^n.$ Then f is called a Multi Variable Function

Eg:

$$f(x,y) = \frac{1}{x^2 + y^2}$$

Domain of f is $\mathbb{R}^2 - \{(0,0)\}$

3.1 Limits

let $f:D\to\mathbb{R}$ be a function. and $D\subseteq\mathbb{R}^2$. (we are taking \mathbb{R}^2 but it can be extended to any \mathbb{R}^n)

$$\lim_{(x,y)\to(x_1,y_1)} f(x,y) = L$$

if $\forall \epsilon > 0, \exists \delta > 0$ such that $|(x,y) - (x_1,y_1)| < \delta \implies |f(x,y) - L| < \epsilon$

Eg:

$$\lim_{(x,y)\to(0,0)} \frac{x^2 - xy}{\sqrt{x} - \sqrt{y}}$$

$$\lim_{(x,y)\to(0,0)} \frac{x(x-y)}{\sqrt{x}-\sqrt{y}}$$

$$\lim_{(x,y)\to(0,0)} x(\sqrt{x} + \sqrt{y})$$

$$\therefore \lim_{(x,y)\to(0,0)} \frac{x^2 - xy}{\sqrt{x} - \sqrt{y}} = 0$$

Eg:

$$\lim_{(x,y)\to(0,0)} \frac{2x^2y}{x^4 + y^2}$$

this limit does not exist.

3.2 Derivatives

The usual definition of derivatives can't be extended to multi-variable functions. Eg:

$$f(x,y) = x$$
$$f'(x) = \lim_{(x,y)\to(x_1,y_1)} \frac{f(x,y) - f(x_1,y_1)}{|(x,y) - (x_1,y_1)|}$$

if we keep y constant, Then the above limit becomes:

$$f'(x, y_0) = \lim_{(x, y_0) \to (x_1, y_0)} \frac{x - x_1}{|x - x_1|}$$

which does not exist.

Hence, we define partial derivatives.

let $f: D \to \mathbb{R}$ be a function. and $D \subseteq \mathbb{R}^2$. (we are taking \mathbb{R}^2 but it can be extended to any \mathbb{R}^n)

the partial derivative of f with respect to x at (x_0, y_0) is defined as:

$$\frac{\partial f}{\partial x}\Big|_{(x_0, y_0)} = \frac{f(x, y) - f(x_0, y_0)}{x - x_0}$$