Math 110BH Homework 2

George Luan

January 23, 2024

Problem 2.1.2

Proof. For all $s \in G$ and all $x \in X$, e_x is an eigenvector of $\rho(s)$ if and only if $\rho(s)e_x = e_x$, which is equivalent to s * x = x. Thus, $\chi_X(s) = tr(\rho_s)$ is the sum of the eigenvalues of ρ_s counted with geometric multiplicity (the total number of eigenvectors among $(e_x)_{x \in X}$), so $\chi_X(s) = |G(s)|$ as desired.

Problem 2.1.3

Proof. (Uniqueness) Suppose $\rho', \rho^{\#}: G \to GL(V')$ are two linear representations such that $\langle \rho_s x, \rho_s' x' \rangle = \langle x, \rho_s^t \rho_s^{\#} x' \rangle = \langle x, x' \rangle$ for all $s \in G, x \in V, x' \in V'$. Then for all $s \in G, x \in V, x' \in V'$, $\langle x, \rho_s^t \rho_s^{\#} x' \rangle = \langle x, \rho_s^t \rho_s' x' \rangle = \langle x, x' \rangle$ for all $s \in G, x \in V, x' \in V'$, so $\rho_s^t \rho_s' = \rho_s^t \rho_s^{\#} = Id_{V'}$. As a result $\rho^{\#} = \rho_s' = (\rho_s^t)^{-1} = (\rho_s^{-1})^t = (\rho_{s-1})^t$ for all $s \in G$, and $\rho' = \rho^{\#}$ as desired. (Existence) Define ρ' by $\rho'(s) := \rho(s^{-1})^t$ for all $s \in G$.