Corrigé exercice 94:

1. Les coordonnées de \overrightarrow{AB} sont $\begin{pmatrix} 1 \\ -3 \\ 4 \end{pmatrix}$ et \overrightarrow{u} , vecteur directeur de la droite d, a pour coordonnées $\begin{pmatrix} 2 \\ -6 \\ 8 \end{pmatrix}$. Ainsi, $\overrightarrow{AB} = 2\overrightarrow{u}$ donc d et (AB) sont parallèles.

L'affirmation est vraie.

2. \overrightarrow{v} , vecteur directeur de la droite d', a pour coordonnées $\begin{pmatrix} 1 \\ -3 \\ 6 \end{pmatrix}$. De plus, on a \overrightarrow{AB} $\begin{pmatrix} 1 \\ -3 \\ 4 \end{pmatrix}$ et \overrightarrow{AC} $\begin{pmatrix} 1 \\ -3 \\ 2 \end{pmatrix}$. d' est parallèle au plan (ABC) si, et seulement si, les vecteurs \overrightarrow{v} , \overrightarrow{AB} et \overrightarrow{AC} sont coplanaires, c'est-à-dire si, et seulement si, il existe des réels a et b tels que $\overrightarrow{v} = a\overrightarrow{AB} + b\overrightarrow{AC}$ \Leftrightarrow $\begin{cases} a+b=1 \\ -3a-3b=-3 \\ 4a+2b=6 \end{cases}$ \Leftrightarrow $\begin{cases} a=2 \\ b=-1 \end{cases}$. $\overrightarrow{v} = 2\overrightarrow{AB} - \overrightarrow{AC}$ où \overrightarrow{v} est un vecteur directeur de la droite d'

donc d' est parallèle au plan (ABC).

L'affirmation est vraie.

3. On a $\overrightarrow{AB}\begin{pmatrix} 1\\ -3\\ 4 \end{pmatrix}$ et $\overrightarrow{CD}\begin{pmatrix} 1\\ 0\\ 0 \end{pmatrix}$. $\overrightarrow{CD} \neq \overrightarrow{AB}$ donc D n'est pas l'image de C par la translation de vecteur \overrightarrow{AB} .

L'affirmation est fausse.

4. On a $\overrightarrow{AB}\begin{pmatrix} 1\\ -3\\ 4 \end{pmatrix}$, $\overrightarrow{AC}\begin{pmatrix} 1\\ -3\\ 2 \end{pmatrix}$ et $\overrightarrow{AD}\begin{pmatrix} 2\\ -3\\ 2 \end{pmatrix}$. $(A;\overrightarrow{AB},\overrightarrow{AC},\overrightarrow{AD})$ est un repère de l'espace si, et seulement si, $(\overrightarrow{AB},\overrightarrow{AC},\overrightarrow{AD})$ est une base de l'espace c'est-à-dire si, et seulement si, les vecteurs \overrightarrow{AB} , \overrightarrow{AC} et \overrightarrow{AD} sont linéairement indépendants soit si, et seulement si, $a\overrightarrow{AB}+b\overrightarrow{AB}+c\overrightarrow{AC}=\overrightarrow{0}\Leftrightarrow \begin{cases} a=0\\b=0\\c=0 \end{cases}$. On a :

$$a\overrightarrow{AB} + b\overrightarrow{AB} + c\overrightarrow{AC} = \overrightarrow{0} \Leftrightarrow \begin{cases} a+b+2c = 0\\ -3a-3b-3c = 0\\ 4a+2b+2c = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} a+b+2c = 0\\ 3c = 0\\ 4a+2b+2c = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} a = 0\\ c = 0\\ b = 0 \end{cases}$$

 $(A; \overrightarrow{AB}, \overrightarrow{AC}, \overrightarrow{AD})$ est donc bien un repère de l'espace. L'affirmation est vraie.

5.	D'après la première question, les L'affirmation est vraie.	droites	(AB) et	d sont pa	rallèles.	Elles sont	donc copla	${ m naires.}$