

Universidad Tecnológica de la Mixteca

Clave DGP 509394

Ingeniería en Diseño

PROGRAMA DE ESTUDIOS

NOMBRE DE LA ASIGNATURA Álgebra Lineal

CICLO	CLAVE DE LA ASIGNATURA	TOTAL DE HORAS
Segundo Semestre	035025	85

OBJETIVO(S) GENERAL(ES) DE LA ASIGNATURA

Conocer los métodos de solución de sistema s de ecuaciones para su aplicación en problemas de Ingeniería.

TEMAS Y SUBTEMAS

1. Sistemas de ecuaciones lineales

- 1.1 Sistemas de ecuaciones lineales
- 1.2 Definición de matriz
- 1.3 Eliminación gaussiana
- 1.4 Eliminación de Gauss Jordan
- 1.5 Sistemas homogéneos
- 1.6 Aplicaciones

2. Matrices y determinantes

- 2.1 Álgebra de matrices
- 2.2 Inversa de una matriz
- 2.3 Matrices especiales: transpuesta, diagonal, triangular, simétrica y anti simétrica
- 2.4 Determinante de una matriz
- 2.5 Propiedades de los determinantes y sus aplicaciones

3. Espacios Vectoriales

- 3.1 Vectores en R^n y sus operaciones
- 3.2 Espacios vectoriales
- 3.3 Sub espacios de espacios vectoriales
- 3.4 Combinaciones lineales
- 3.5 Conjuntos generadores
- 3.6 Dependencia e independencia lineal
- 3.7 Base y dimensión
- 3.8 Espacio renglón, espacio columna, rango, espacio nulo y nulidad
- 3.9 Cambio de base

Proyecciones en Rⁿ y mínimos cuadradados

- 4.1 Proyecciones
- 4.2 Aproximación por mínimos cuadrados
- 4.3 Aplicaciones

5. Transformaciones lineales

- 5.1 Definición de una transformación lineal
- 5.2 Propiedades de transformaciones lineales
- 5.3 Representación matricial de una transformación lineal
- 5.4 Núcleo e imagen de una transformación lineal
- 5.5 Rango y nulidad
- 5.6 Composición de transformaciones lineales

6. Diagonalización de Matrices

- 6.1 Valores y vectores propios
- 6.2 Matrices semejantes y diagonalización
- 6.3 Diagonalización de matrices simétricas

ACTIVIDADES DE APRENDIZAJE

Sesiones Dirigidas por el profesor y desarrolladas utilizando medios didácticos como cañón, computadora, pizarrones electrónicos y pantallas táctiles. Se desarrollarán y resolverán problemas en clase. Se construirán modelos de sistemas en equilibrio a escala.

CRITERIOS Y PROCEDIMIENTOS DE EVALUACIÓN Y ACREDITACIÓN

Al inicio del curso el profesor deberá indicar el procedimiento de evaluación, que deberá comprender, evaluaciones parciales que tendrán una equivalencia del 50% de la calificación final y un examen ordinario que equivaldrá al restante 50%

Las evaluaciones podrán ser escritas y/o prácticas y cada una consta de un examen teórico-práctico, tareas y proyectos. La parte práctica de cada evaluación deberá estar relacionada con la ejecución exitosa y la documentación de la solución de problemas sobre temas del curso.

Pueden ser consideradas otras actividades como: el trabajo extra clase y la participación durante las sesiones del curso. El examen tendrá un valor mínimo de 50%, las tareas, proyectos y otras actividades, un valor máximo de 50%.

BIBLIOGRAFÍA (TIPO, TÍTULO, AUTOR, EDITORIAL Y AÑO)

Básica

- 1.Ron Larson. Fundamentos de Álgebra Lineal. Séptima edición, Cengage Learning, 2013
- 2.David C. Lay. Álgebra lineal y sus aplicaciones. Cuarta edición. Pearson, 2012.
- 3. Stanley I. Grossman. Álgebra lineal. Séptima edición. M cGraw -Hill, 2012.

De Consulta

- 1. Bernard Kolman, David R. Hill. Álgebra lineal, octava edición, Pearson, 2006.
- 2. Seymour, Lipschutz. Álgebra lineal, cuarta edición, McGra w-Hill, 2009.
- **3.** Sergio Argomedo Cornejo, Juan Herrera Tobar, Katherina Malina Alfara, Santiago Relos Paco. Álgebra lineal para ingeniería, primera edición, Proyecto LATin, 2014.

PERFIL PROFESIONAL DEL DOCENTE

Estudios mínimos de Maestría en Matemáticas o en Matemáticas Aplicadas.

Vo.Bo. Autorizó

I.D. Eruvid Cortés Camacho Jefe de Carrera Dr. Agustín Santiago Alvarado Vice-Rector Académico