Postulado 2	(a) x + 0 = x	(b) $x \cdot 1 = x$
Postulado 5	(a) $x + x' = 1$	(b) $x \cdot x' = 0$
Teorema 1	(a) $x + x = x$	(b) $x \cdot x = x$ (b) $x \cdot 0 = 0$
Teorema 2	(a) x + 1 = 1	(b) $x \cdot 0 = 0$
Teorema 3, involución	(x')'=x	(b) $xy = yx$
Postulado 3, conmutativo (a) $x + y = y + x$		
Teorema 4, asociativo	(a) $x + (y + z) = (x + y) + z$	(b) $x + yz = (x + y)(x + z)$
	o (a) $x(y+z) = xy + xz$	(b) $(xy)' = x' + y'$
Teorema 5, DeMorgan	(a) $(x + y)' = x'y'$	(b) $x(x + y) = x$
Teorema 6, absorción	(a) $x + xy = x$	(0) 20(21 . 3)

TEOREMA 1(a): x + x = x.

$$x + x = (x + x) \cdot 1$$
 del postulado: 2(b)
 $= (x + x)(x + x')$ 5(a)
 $= x + xx'$ 4(b)
 $= x + 0$ 5(b)
 $= x$ 2(a)

TEOREMA 1(b): $x \cdot x = x$.

$$x \cdot x = xx + 0$$
 del postulado: 2(a)
 $= xx + xx'$ 5(b)
 $= x(x + x')$ 4(a)
 $= x \cdot 1$ 5(a)
 $= x$ 2(b)

Nótese que el teorema 1(b) es el dual del teorema 1(a) y que cada paso de la prueba en parte (b) es el dual de la parte (a). Cualquier teorema dual puede derivarse similarmente de la prueba de un par correspondiente.

TEOREMA 2(a): x + 1 = 1.

$$x + 1 = 1 \cdot (x + 1)$$
 del postulado: 2(b)
 $= (x + x')(x + 1)$ 5(a)
 $= x + x' \cdot 1$ 4(b)
 $= x + x'$ 2(b)
 $= 1$ 5(a)

TEOREMA 2(b): $x \cdot 0 = 0$ por dualidad.

TEOREMA 3: (x')' = x. Del postulado 5, se tiene x + x' = 1 y $x \cdot x' = 0$, lo cual define el complemento de x. El complemento de x' es x y es también (x')'. Así como el complemento es único tendremos que (x')' = x.