

UNIDADE II: APRENDIZAGEM SUPERVISIONADA

- •Sumário:
 - Introdução
 - Aprendizagem de conceitos e regras
 - •Algoritmo AQ

Objectivos

- Adquirir a noção de regras de decisão
- Adquirir uma noção acerca do processo de aprendizagem de regras mediante estratégias de cobertura sequencial
- Descrever o algoritmo AQ

Aprendizagem de conceitos

- Consiste em encontrar a representação de um conceito, inicialmente desconhecido, a partir de um conjunto de exemplos e contra-exemplos do mesmo
- Pressupõe que os exemplos estão previamente etiquetados (classificados como exemplos positivos e negativos) -> Aprendizagem supervisionada
- Geralmente o conceito é expressado mediante um predicado ou propriedade que serve para caracterizar o espaço de objectos observado

Aprendizagem de conceitos

- Por exemplo o conceito "ser maçã" serve para discriminar se um objecto é ou não uma maçã
- A definição do conceito se descreve a partir das características que descrevem os objectos observados
 - Cor, tamanho, sabor, textura, densidade, tipo de alimento, país de origem...

- Consiste em obter uma descrição geral de um conjunto de exemplos, permitindo a sua agrupação em dois grupos: instancias representantes do conceito buscado (exemplos) e que não são representantes do conceito buscado (contraexemplos)
- A descrição deve ser mais geral que os exemplos observados, permitindo a classificação de novos exemplos

 O conceito aprendido se representa através de um conjunto de regras com a forma:

```
R<sub>1</sub>: antecedente<sub>1</sub> então c<sub>1</sub>
R<sub>2</sub>: antecedente<sub>2</sub> então c<sub>1</sub>
...
R<sub>k</sub>: antecedente<sub>k</sub> então c<sub>1</sub>
R<sub>k+1</sub>: antecedente<sub>k+1</sub> então c<sub>2</sub>
...
R<sub>m</sub>: antecedente<sub>m</sub> então c<sub>n-1</sub>
senão c<sub>n</sub>
```


- A tarefa de aprendizagem se pode definir como:
 - Dados:
 - Um conjunto de instâncias positivas (I+) e/ou negativas (I-) do conceito buscado
 - Determinar uma hipótese (h) que:
 - Descreva todas (ou a maioria) das instâncias positivas
 - Exclua todas (ou a maioria) das instâncias negativas
 - Tenha expectativas de classificar correctamente instâncias ainda não analisadas

- Enfoque seguido consiste em especificar a tarefa como uma busca de uma hipótese desconhecida num espaço de hipóteses a partir dos exemplos disponíveis
- A estratégia seguida consiste em considerar uma classe de cada vez e buscar uma forma de cobrir todas as instâncias pertencentes à mesma e simultaneamente excluir todas as demais instâncias (sequential covering)

Algoritmo AQ

- Constitui uma família de métodos simbólicos derivados do método *estrela* introduzido por Ryszard Michalski (1937 – 2007) nos anos 70
- O objectivo do algoritmo consiste em obter um conjunto de regras de classificação que descrevam todos os exemplos positivos de um conjunto de dados e não descrevam nenhum negativo

Algoritmo AQ

- Entradas
 - Conjunto de dados de treino
 - Função lexicográfica de avaliação (LEF)
- Saídas
 - Conjunto de regras gerais que cobrem todas as instâncias positivas e nenhuma negativa

Função Lexicográfica de Avaliação (LEF)

- A função LEF estabelece uma lista de critérios de preferência de regras
- Toma como entradas um conjunto de regras candidatas à descrição de um exemplo (uma estrela) e selecciona a mais apropriada, tendo em conta uma série de critérios de preferência

Função Lexicográfica de Avaliação (LEF)

- Os critérios podem ser entre outros
 - Cobertura: quantidade de exemplos positivos cobertos pela regra
 - Simplicidade: número de atributos que aparecem nas condições da regra
 - Generalidade: estimada como o número exemplos observados que a regra descreve, dividido pelo número de possíveis exemplos...

Saídas

- Para a representação das saídas utiliza um tipo de cálculo proposicional (VL1)
- Principais conceitos relacionados:
 - Selector: permite realizar perguntas sobre os valores dos atributos de entrada. Sintaxe (Atributo Operador Valor)
 - Complexo (regra): conjunção de selectores
 - Recobrimento (cover): disjunção de complexos

Descrição

- A tarefa se estrutura em duas buscas
 - Na mais externa se busca um conjunto de regras que classifique correctamente a todos os exemplos
 - Na interna, para cada exemplo positivo se busca um conjunto de regras que descrevam ao mesmo e não descreva a nenhum exemplo negativo

Descrição

- Processo levado a cabo de forma iterativa
- Em cada passo
 - Escolhe-se do conjunto de entrada um exemplo positivo, denominado semente (seed)
 - Gera-se mediante a busca interna um conjunto de complexos que o descrevem e não descrevem a nenhum exemplo negativo (conjunto designado *estrela*)
 - Escolhe-se qual desses complexos incluir no recobrimento formado até ao momento, através da função LEF
 - Remove-se do conjunto todos os exemplos positivos cobertos pelo complexo seleccionado

Algoritmo

- Função Estrela
- Entradas
 - P : conjunto de exemplos positivos
 - N : conjunto de exemplos negativos
 - LEF: função lexicográfica
- Saída
 - R : conjunto de regras
- $R := \phi$
- Enquanto $P \neq \phi$
 - semente := escolher_exemplo(P)
 - estrela := determina_estrela(semente, N)
 - complexo := escolher_complexo(estrela, P, N, LEF)
 - $R := R U \{complexo\}$
 - P := P exemplos cobertos por(P, complexo)
- Devolver R

Algoritmo

Função determina_estrela

Entradas

– p : exemplo positivo

N : conjunto de exemplos negativos

Saída

E : estrela ou conjunto de regras

 $E := \phi$

L := ([])

S := gerar_todos_os_selectores(p)

Enquanto $L \neq \phi$

 $L := \{x \wedge y \mid x \in L, y \in S\} - \{E \cup L\}$

– Para cada complexo $C_i \in L'$

T := T

Devolver estrela E

Exemplo

#	Ante nas	Cau das	Núc leos	Corpo	Classe
1	1	0	2	Riscas	Normal
2	1	0	1	Branco	Cancerígena
3	1	2	0	Riscas	Normal
4	0	2	1	Riscas	Normal
5	1	1	1	Riscas	Cancerígena
6	2	2	1	Riscas	Cancerígena
7	0	2	2	Riscas	Normal

• S={ $(A_1=1)$, $(A_2=0)$, $(A_3=2)$, $(A_4=Riscas)$ }

$$C_{11}: A_1 = 1 \Longrightarrow N$$

$$C_{12}:A_2=0 \Rightarrow N$$

$$C_{13}: A_3 = 2 \Rightarrow N$$

$$C_{14}: A_4 = R \Longrightarrow N$$

. . .

$$C_{111}: A_1 = 1 \land A_2 = 0 \Longrightarrow N$$

$$C_{112}: A_1 = 1 \land A_3 = 2 \Rightarrow N$$

$$C_{113}: A_1 = 1 \land A_4 = R \Longrightarrow N$$

. .

Exemplo

#	Ante nas	Cau das	Núc leos	Corpo	Classe
1	1	0	2	Riscas	Normal
2	1	0	1	Branco	Cancerígena
3	1	2	0	Riscas	Normal
4	0	2	1	Riscas	Normal
5	1	1	1	Riscas	Cancerígena
6	2	2	1	Riscas	Cancerígena
7	0	2	2	Riscas	Normal

. . .

$$C_{13}: A_3 = 2 \Rightarrow N$$

$$C_{1111}: A_1 = 1 \land A_2 = 0 \land A_3 = 2 \Rightarrow N$$

$$C_{1112}: A_1 = 1 \land A_2 = 0 \land A_4 = R \Rightarrow N$$

$$C_{112}: A_1 = 1 \land A_3 = 2 \Rightarrow N$$

$$C_{112}: A_1 = 1 \land A_4 = R \land A_3 = 2 \Rightarrow N$$

$$C_{1132}: A_1 = 1 \land A_4 = R \land A_3 = 2 \Rightarrow N$$

$$C_{122}: A_2 = 0 \land A_3 = 2 \Rightarrow N$$

$$C_{123}: A_2 = 0 \land A_4 = R \Rightarrow N$$

$$C_{143}: A_4 = R \wedge A_3 = 2 \Longrightarrow N$$

LEF={(cobertura, 1), (# premissas, 2)} $R = \left\{C_{13}\right\}$

Exemplo

• LEF = {(cobertura, 1), (# premissas, 3)}

$$C_{13}: A_3 = 2 \Rightarrow N$$

$$C_{1111}: A_1 = 1 \land A_2 = 0 \land A_3 = 2 \Rightarrow N$$

$$C_{1112}: A_1 = 1 \land A_2 = 0 \land A_4 = R \Rightarrow N$$

$$-C_{112}: A_1 = 1 \land A_3 = 2 \Longrightarrow N$$

$$C_{1132}: A_1 = 1 \land A_4 = R \land A_3 = 2 \Rightarrow N$$

$$-C_{122}: A_2 = 0 \land A_3 = 2 \Rightarrow N$$

$$C_{123}: A_2 = 0 \land A_4 = R \Rightarrow N$$

$$-C_{143}: A_4 = R \wedge A_3 = 2 \Rightarrow N$$

$$R = \left\{ C_{13} \right\}$$

#	Ante nas	Cau das	Núc leos	Corpo	Classe
2	1	0	1	Branco	Cancerígena
3	1	2	0	Riscas	Normal
4	0	2	1	Riscas	Normal
5	1	1	1	Riscas	Cancerígena
6	2	2	1	Riscas	Cancerígena

Vantagens

- As descrições geradas são simbólicas, sendo úteis quando se deseja que os utilizadores conheçam uma descrição de alto nível dos exemplos
- O utilizador pode proporcionar como entrada que tipo de descrição prefere, através da função LEF
- É possível definir diferentes estratégias de busca da estrela, de forma que se pode tornar mais eficiente o processo de busca

Desvantagens

 Na sua versão original, não trata com exemplos com atributos contínuos ou com dados com ruído

Variantes

- Várias variantes:
 - Umas realizam tratamento de atributos com valores contínuos
 - Outras diferem na forma em que se realiza a busca interna
 - Outras geram conjuntos de regras ordenadas (listas de decisão)...
- CN2, AQ11, AQ15, ...

Tarefa

 Seguir exemplo e verificar qual deve ser o recobrimento final

Bibliografia

- Mitchell, pg. 20 25
- Borrajo Millán
- Sierra Araujo
- Leitura da semana
 - Michalski, The AQ Family of Learning Programs,
 Ler abstract, Epígrafes 1 e 2. Epígrafe 3 ver de maneira geral diferentes variantes