HOMEWORK 9

MATH 2001

QI WANG

ABSTRACT. This is the first homework assignment. The problems are from Hammack [?, Ch. 11, $\S11.1$]:

• **Chapter 11 Section 11.1**, Exercises: 2, 6, 10.

CONTENTS

Chapter 11 Section 11.1	1
Ch.11, §11.1, Exercise 2	1
Ch.11, §11.1, Exercise 6	2
Ch.1. §1.1. Exercise 18	2

CHAPTER 11 SECTION 11.1

Ch.11, §**11.1, Exercise 2.** Consider the relation $R = \{(a, b), (a, c), (c, b), (b, c)\}$ on set $A = \{a, b, c\}$. Is R reflexive? Symmetric? Transitive? If a property does not hold, say why.

Date: April 2, 2020.

2 QI

Solution to Ch.11, §11.1, Exercise 2.

- **1.** The graph is not reflexive, because $(a, a) \notin R$.
- **2.** The graph is not Symmetric, because $(a, b) \in R$ and $(b, a) \notin R$. The Graph is trasitive.

Ch.11, §**11.1, Exercise 6.** Consider the relation $R = \{(x, x) : x \in \mathbb{Z}\}$ on \mathbb{Z} . Is R reflexive? Symmetric? Transitive? If Property does not hold, say why.

Solution to Ch.11, §11.1, Exercise 6.

The Graph is reflexive. There is no path that could prove it is transitive or symmetric. \Box

Ch.1, §**1.1, Exercise 18.** Write the following set in set-builder notation:

$$\{0,4,16,36,64,100,\dots\}$$

Solution to Ch.1, §1.1, Exercise 18.

University of Colorado, Department of Mathematics, Campus Box 395, Boulder, CO 80309-0395

Email address: casa@math.colorado.edu