Université Paris Dauphine U.F.R. Mathématiques de la Décision DU2 - Statistique

Feuille de Travaux Dirigés 3

Convergence de variables aléatoires indépendantes

Exercice 1

Soient X_1, \ldots, X_n , n variables aléatoires indépendantes de même loi $\mathcal{N}(0,1)$. On pose $U = \left|\frac{1}{n}\sum_{i=1}^n X_i\right|$ et $V = \frac{1}{n}\sum_{i=1}^n |X_i|$. Comparer $\mathbb{E}(U)$ et $\mathbb{E}(V)$ et les calculer.

Exercice 2

Soit X_n une variable aléatoire suivant une loi géométrique de paramètre p/n. Quid de la convergence en loi de X_n/n ?

Exercice 3

On définit la fonction réelle f_n par $f_n(x) = \frac{n}{\pi (1 + n^2 x^2)}, n \in \mathbb{N}.$

- **1** Démontrer que f_n est la densité d'une variable aléatoire X_n . Que peut-on dire de $\mathbb{E}(X_n)$ et $\mathbb{V}(X_n)$?
- **2** Montrer que X_n converge en probabilité vers 0 lorsque $n \to \infty$.

Exercice 4

Soit X_1, \ldots, X_n une suite de variables aléatoires indépendantes de même loi $\mathcal{B}(n,p)$. Montrer que $\frac{X_n - np}{\sqrt{np(1-p)}}$ converge en loi vers $\mathcal{N}(0,1)$ lorsque $n \to \infty$.

Exercice 5

Soit X_n une suite de variables aléatoires indépendantes de même loi $\mathcal{P}(1)$. Quelle la loi de $X_1 + \ldots + X_n$? Que vaut $\mathbb{P}(X_1 + \ldots + X_n \leq n)$? Utiliser le théorème central limite pour montrer que la limite de

$$\left(\exp(-n)\sum_{k=1}^n n^k/k!\right)$$
 lorsque $n\to\infty$ est égale à 1/2.

Exercice 6

Une suite de variables aléatoires X_n converge en loi vers une variable aléatoire X, et une autre suite Y_n indépendante des X_n converge en probabilité vers la variable certaine égale à $a \in \mathbb{R}$.

1 On pose, pour tout entier n, $Z_n = X_n + Y_n$. Quelle est la limite en loi de la suite Z_n ?

2 Soit Y_n une variable aléatoire dont la loi est définie par $\mathbb{P}(Y_n=0)=1-1/n$ et $\mathbb{P}(Y_n=1)=1/n$. Montrer que la suite Y_n converge en probabilité vers 0. Construire une suite de variables aléatoires Z_n possédant un moment d'ordre 2 et qui converge en loi vers la variable aléatoire Z normale centrée réduite, sans que la variance de Z_n tende vers 1.

Exercice 7

Soit $(X_n)_n$ une suite de variables aléatoires telle que

$$P(X_n = -1) = P(X_n = 1) = \frac{1}{2}.$$

On pose

$$Y_n = \sum_{k=1}^n \frac{X_k}{2^k}$$

et soit Y une variable aléatoire uniformement distribuée sur [-1,1]. Montrer que $(Y_n)_n$ converge en loi vers Y.

Exercice 8

Soit U une variable aléatoire de loi uniforme sur [0,1]. On considère la suite de $U_n = U1_{[1/n,1]}(U)$. Montrer que $(U_n)_n$ converge presque sûrement vers U losrque $n \to +\infty$.