INFORME FINAL: ANÁLISIS ESTADÍSTICO DEL HURACÁN ERIN ROBERT YAREL

Resumen Ejecutivo

El presente informe analiza los efectos del Huracán Erin (simulado) en la región del Caribe durante cinco días, evaluando variables meteorológicas como velocidad máxima del viento, precipitación y distancia al centro urbano sobre la cantidad de cortes de energía. Se aplicaron técnicas de regresión múltiple para predecir los cortes de energía y un contraste de hipótesis para evaluar si la velocidad máxima del viento superó los 50 kt en promedio durante el evento.

Metodología

Datos

- Fuente: Archivo hurricane_erin_case_study.csv.
- Observaciones: 120 registros horarios.
- Variables principales:
- max wind kts: Velocidad máxima del viento (kt)
- rainfall_mm_per_hr: Precipitación (mm/hr)
- distance_to_SantoDomingo_km: Distancia al centro urbano (km)
- power_outages: Cortes de energía

Modelo de Regresión Múltiple

Se seleccionaron tres variables independientes (max_wind_kts, rainfall_mm_per_hr, distance_to_SantoDomingo_km) para explicar los cortes de energía. Se ajustó un modelo de regresión lineal múltiple:

power_outages = -46.32 + 0.66 * max_wind_kts + 0.67 * rainfall_mm_per_hr + 0.024 * distance_to_SantoDomingo_km

Contraste de Hipótesis

Pregunta de investigación: ¿La velocidad máxima del viento superó en promedio los 50 kt durante el evento?

- Hipótesis nula (H_0): $\mu \le 50$ kt
- Hipótesis alternativa (H_1): $\mu > 50$ kt
- Nivel de significancia: $\alpha = 0.05$

- Estadístico de prueba: t ≈ 2.27
- Valor p = $0.013 \rightarrow \text{Rechazamos H}_0$

Resultados y Gráficos

Regresión múltiple

- Significancia global: F = 139.37, p < 0.001
- Coeficientes:
- $max_wind_kts: 0.66 (p < 0.001)$
- rainfall_mm_per_hr: 0.67 (p < 0.001)
- distance_to_SantoDomingo_km: 0.024 (p < 0.001)
- R^2 = 0.783 \rightarrow El modelo explica el 78.3% de la variabilidad de los cortes de energía. Interpretación: La velocidad del viento y la precipitación son las variables que más influyen en los cortes de energía.

Gráficos

Scatterplots y histograma de max_wind_kts:

Conclusiones

- 1. El modelo de regresión múltiple es robusto para explicar los cortes de energía durante el huracán.
- 2. La velocidad máxima del viento y la precipitación tienen un impacto significativo en los cortes de energía, siendo las variables más relevantes.
- 3. El contraste de hipótesis confirma que la velocidad máxima del viento superó en promedio los 50 kt durante el evento.
- 4. Los resultados son consistentes con la teoría de meteorología y gestión de emergencias, y pueden ser útiles para planificar respuestas ante huracanes.