Лаборатроная работа №1

Основы инфомационной безопасности

Астраханцева А. А.

Содержание

1	Цель работы	4
2	Задание	5
3	Выполнение лабораторной работы 3.1 Домашнее задание	6 16
4	Выводы	21

Список иллюстраций

3.1	Тип и имя ОС	6
3.2	Объем памяти	7
3.3	Жесткий диск	7
3.4	Тип жесткого диска	8
3.5	Формат хранения	8
3.6	Имя и размер жесткого диска	9
3.7	Установка контроллера IDE	9
3.8	Выбор языка системы	10
3.9	1	10
3.10		11
3.11		11
3.12		12
3.13		12
3.14	, ,	13
3.15		13
3.16	r	14
3.17		14
3.18	Установка ОС	15
3.19	Подключение образа диска дополнений гостевой ОС	15
3.20	Подключение образа диска дополнений гостевой ОС	16
3.21	Проверка имени хоста	16
3.22	Анализ последовательности загрузки системы	17
3.23	Версия ядра Linux	17
3.24	Частота процессора	17
3.25		17
3.26		18
3.27	Тип обнаруженного гипервизора	18
3.28	Тип файловой системы и последовательность монтирования	18

1 Цель работы

Целью данной работы является приобретение практических навыков установки операционной системы на виртуальную машину, настройки минимально необходимых для дальнейшей работы сервисов.

2 Задание

Установка операционной системы Linux, дистрибутив Rocky.

3 Выполнение лабораторной работы

Начимаем создание новой виртуальной машины, указываем тип и имя ОС. В моем случае имя ОС такое же как логин для работы в ДК. (рис. 3.1).

Рис. 3.1: Тип и имя ОС

Указываем объем памяти. Указываем 2048 МБ. (рис. 3.2).

Рис. 3.2: Объем памяти

Создаем новый виртуальный жесткий диск (рис. 3.3).

Рис. 3.3: Жесткий диск

Указываем тип виртуального жесткого диска (рис. 3.4).

Рис. 3.4: Тип жесткого диска

Указываем формат хранения (рис. 3.5).

Рис. 3.5: Формат хранения

Указываем имя и размер нового виртуального жесткого диска. Выбираем 40 ГБ (рис. 3.6).

Рис. 3.6: Имя и размер жесткого диска

Далее необходимо было в настройках в разделе "Ностители" выбрать контроллер IDE. Для этого нужно было предварительно установить Rocky в dvd формате. (рис. 3.7).

Рис. 3.7: Установка контроллера IDE

Заупскаем виртуальную машину. Выбираем английский язык по умолчанию для всей системы (рис. 3.8).

Рис. 3.8: Выбор языка системы

Настраиваем часовой пояс (рис. 3.9).

Рис. 3.9: Настройка часового пояса

Добавляем русскую раскладку клавиатуры. Настроиваем сочетание клавиш для переключения между клавиатурами (рис. 3.10).

Рис. 3.10: Настройка клавиатуры

В разделе выбора программ указываем в качестве базового окружения Server with GUI , а в качестве дополнения — Development Tools (рис. 3.11).

Рис. 3.11: Выбор программ

Отключаем КDUMP (рис. 3.12).

Рис. 3.12: Отключение КDUMP

Место установки ОС оставляем без изменения (рис. 3.13).

Рис. 3.13: Место установки ОС

Включаем сетевое соединение и в качестве имени узла указываем user.localdomain, где вместо user указываем имя пользователя в соответствии с соглашением об именовании. (рис. 3.14).

Рис. 3.14: Включение сетевого соединения

Указываем пароль для root-пользователя (рис. 3.15).

Рис. 3.15: Пароль для гоот-пользователя

Указываем пароль для обычного пользователя (рис.3.16).

Рис. 3.16: Пароль для обычного пользователя

Далее запускаем установку операционной системы и после этого перезагружаем виртуальную машину (рис.3.17).

Рис. 3.17: Установка ОС

Далее нужно проверить, что в настройках в разделе "Носители" в контроллее IDE пусто (рис. 3.18).

Рис. 3.18: Установка ОС

Далее после входа в ОС в меню Устройства виртуальной машины подключаем образ диска дополнений гостевой ОС (рис.3.19).

Рис. 3.19: Подключение образа диска дополнений гостевой ОС

Рис. 3.20: Подключение образа диска дополнений гостевой ОС

Далее проверяем, что имя хоста установлено верно (рис.3.21).

Рис. 3.21: Проверка имени хоста

3.1 Домашнее задание

После загрузки графического окружения открываем терминал. В окне терминала с помощью команды dmesg анализируем последовательность загрузки системы. (рис. 3.22).

Рис. 3.22: Анализ последовательности загрузки системы

Получите следующую информацию:

1. Версия ядра Linux (Linux version) (рис.3.23).

```
Tootgaaastramanceva -] deneg [ tess -
[ Tootgaaastramanceva -] deneg [ grep - i "Linux version" [ 0.000000] Linux version 5.14.0-362.8.1.e19_3.x86_64 (mockbuildgiadl-prod-build001.bld.equ.rockylinux.org) (gcc (GCC) 11.4.1 20230605 (Red Hat 11.4.1-2), GOW Ld version 2.352.242.e19) #1 SMP PREEMPT_DYNAMIC Wed Nov 8 17:36:32 UTC 2023 [ Tootgaaastrakhanceva -] #1 [ T
```

Рис. 3.23: Версия ядра Linux

2. Частота процессора (Detected Mhz processor) (рис. 3.24).

```
[root@aaastrakhanceva ~]# dmesg | grep ~i "Mhz processor"
[ 0.000009] tsc: Detected 2112.000 MHz processor"
[ 0.000009] tsc: Detected 2112.000 MHz processor"
[ 0.000009] tsc: Detected 2112.000 MHz processor
[ 0.184964] smpboot: Total of 1 processors activated (4224.00 BogoMIPS)
[ 0.230167] ACPI: Added _OSI(Processor Device)
[ 0.230168] ACPI: Added _OSI(Processor Aggregator Device)
[ cot@aaastrakhanceva ~]#
```

Рис. 3.24: Частота процессора

3. Модель процессора (CPU0) (рис.3.25).

```
l 0.55580l] intel_pstate: CPU model not supported
[root@aaastrakhanceva ~]≢ dmesg | grep -i "CPU0"
[ 0.184665] smpboot: CPU0: Intel(R) Core(TM) i7-8665U CPU @ 1.90GHz (family: 0x6, model: 0x8e, stepping: 0xc)
[root@aaastrakhanceva ~]≢
```

Рис. 3.25: Модель процессора

4. Объем доступной оперативной памяти (Memory available) (рис. 3.26).

```
ToolBaasatrahanceva -]# deegg | grep -1 "Memory available" ("rootBaasatrahanceva -]# deegg | grep -1 "Memory" ("rootBaasatrahanceva -]# deegg | grep -1 "Memory" ("rootBaasatrahanceva -]# deegg | grep -1 "Memory" ("rootBaasatrahanceva -]# deegg | grep -1 "Memory at [mem 0x7fff007-0x7fff703] ("rootBaasatrahanceva -]# ("rootBaasatr
```

Рис. 3.26: Объем доступной оперативной памяти

5. Тип обнаруженного гипервизора (Hypervisor detected) (рис. 3.27).

```
[ 3.118840] vmwgfx 0000:00:02.0: [drm] Haximum display memory size is 16384 kiB
[root@aaastrakhanceva ~]# dmesg | grep -i "Hypervisor detected"
[ 0.000000] Hypervisor detected: KVM
[root@aaastrakhanceva ~]# |
```

Рис. 3.27: Тип обнаруженного гипервизора

- 6. Тип файловой системы корневого раздела
- 7. Последовательность монтирования файловых систем (рис. 3.28).

Рис. 3.28: Тип файловой системы и последовательность монтирования

Контрольные вопросы

1. Какую информацию содержит учётная запись пользователя?

Ответ: имя пользователя, пароль (зашифрован), индефикационный номер пользоваеля и инфецикационный номер группы пользоваетеля, домашний каталог пользователя, команндный интерпретатор пользователя.

2. Укажите команды терминала и приведите примеры:

Ответ:

для получения справки по команде - man для перемещения по файловой системе - cd - переход в домашний каталог, cd - переход к определенному каталогу для просмотра содержимого каталога - ls для создания каталогов - mkdir для создания файлов - touch для удаления каталогов - rm для удаления файлов - rm - r для задания определённых прав на файл / каталог - chownn для просмотра истории команд - history

3. Что такое файловая система? Приведите примеры с краткой характеристикой.

Файловая система (ФС) - часть операционной системы,представляющая собой совокупность организованных наборов данных, хранящихся на внешних запоминающих устройствах и программных средств,гарантирующих именованный доступ к этим данным и их защиту. Данныеназываются файлами, их имена именами файлов.

Ext2, Ext3, Ext4 - является стандартом для Linux. Как следствие, это самые распространенные системы. Они редко обновляются, но зато стабильны. Ext2 создавалась специально под Linux

JFS - Журналируемая ФС — первая альтернатива для ФС группы Ext. Ее разработали в IBM специально для операционной системы AIX UNIX. Главные плюсы этой системы: стабильность и минимальные требования для работы.

ReiserFS - Подходит исключительно под Linux, чаще всего ее используют в качестве возможной замены Ext3. Главные особенности: увеличенная производительность и более широкие возможности.

XFS - Еще одна журналируемая ФС. Однако, в отличие от аналогов, в логи записывает исключительно те изменения, которые претерпевают метаданные. Разработана для ОС в Silicon Graphics. Важные особенности: быстро работает с файлами сравнительно большого размера, умеет выделять место в отложенном режиме, а также менять размеры разделов в процессе работы.

Btrfs - Современная ФС, главной особенностью которой является высокая отказоустойчивость. Из дополнительных «бонусов»: удобна для сисадминов и поддерживает сравнительно простой процесс восстановления данных.

- 4. Как посмотреть, какие файловые системы подмонтированы в ОС? Ввести комнаду mount
- 5. Как удалить зависший процесс? Ввести команду kill

4 Выводы

В ходе выполнения лабораторной раьоты я приобрела практические навыки установки операционной системы на виртуальную машину, настройки минимально необходимых для дальнейшей работы сервисов.