Notes

Week 1

Introduction to gret1

Data edits:

- Dataset used: Country data.gdt
- Load with ctrl+o
- Rename your Descriptive label for easy interpretation each Variable name to remember what data a variable contains.
 - Left click on variable -> Variable -> Edit attributes
 - Edit the gdp description to GDP per capita USD from GDP per capital
- To see what commands the GUI introduces, go to Tools -> Command log
- Can highlight multiple variable with ctrl+left click or shift+up and down cursor
- Highlight country and gdp -> right click -> Display values
- View -> Icon view -> double click on Data set to see the spreadsheet view
- File -> Session files -> Save session to save results output.

gret1 scripting:

- Scripting not required for the course, but is cool
- Commenting is good: starts with #
- File -> Script files -> New script -> gretl script
- ctrl+r / gears button to Run script
- Can also highlight and run just the highlighted script
- Example first command:

eval 5+5

• Doesn't care about spaces:

```
eval 5 + 5
```

- But is case-sensitive:
- Eval 5+5
 - Other examples

```
eval 5^2
eval log(1) # Natural log
eval sqrt(25)
eval exp(1) # e^1, the inverse of the natural log

# I want a new variable that is equal to the natural log of gdp
# Generate a variable named lndp; lower case letters for
# convention, but don't use periods; underscores are ok; don't start with
# numeric;
# Creates a new variable in the dataset
genr lngdp = ln(gdp) # ln is same as log, which is natural log
genr urban_prop = urban / 100
genr constant10 = 10 # Doesn't generate a new variable
list todelete = lngdp uban_prop constant10 # New list
delete todelete # deletes the list
```

```
# More specific than genr:
series lngdp = ln(gdp)
scalar constant10 = 1

rename lngdp ln_gdpd # Renames a variable
print ln_gdp country # Display the series values
```

We are interested in the relationship between female life expectancy and # doctor availability (note the UNITS OF MEASURMENT: Doctors per 10000 people)

print ln_gdp country --byobs # Display the series values, by observation

- ^ Be more specific than genr if can be
- ctrl+left click lifeexpf and docs -> View -> Summary statistics -> Ok -> Show full statistics:

	Mean	Median	Minimum	Maximum
lifeexpf	66.311	68.000	41.000	83.000
docs	10.521	6.3052	0.18800	42.918
	Std. Dev.	C.V.	Skewness	Ex. kurtosis
lifeexpf	11.285	0.17019	-0.34994	-1.1100
docs	11.108	1.0557	0.94567	-0.33877
	٦٠/	05%	TO	Minning along
	5% perc.	95% perc.	IQ range	Missing obs.
lifeexpf	47.150	81.000	20.000	0
docs	0.33624	31.550	15.654	1

- kurtosis thickness of tales; less or more likely to generate outliers compared to the Normal Distribution
- With code:

summary lifeespf docs
summary lifeexpf docs --simple

- Scatter plot:
 - View -> Graph specified variables -> X-Y Scatter, docs on X, lifeexpf on Y
 - Via code

gnuplot lifeexpf docs --fit=none --output=display # No line fit; show graph
graphl <- gnuplot lifeexpf docs --fit=none # Save into View -> Icon View, graph1
Can now Save session to save results

- Correlation coefficient between two variables:
 - View -> Correlation Matrix -> choose variables, Ok
 - Via code:

corr lifeexpf docs

- Distribution:
 - Highlight region -> Variable -> Frequency distribution
 - Via code:
 - # Frequency disbribution for qualitative variable region: freq region # \mathbb{W}/o graph

freq region --plot=display # W/graph

- Cross-tabulation: for a relationship between two categorical/qualitative variables, two-way table:
 - Can point and click
 - Via code (develop is 0 for "developed", 1 for "developing"):
 xtab region develop

• Summary stats by categories of a categorical variables:

summary lifeexpf --by=develop

• Create a binary variable for when a country is in Africa:

We are going to create a new variable that indicates if country is in Africa: print country region --byobs # Print country and regions:

Discover that regions 1 through 5 are African:
dataset sortby region # Sort by region, because regions are grouped by number
print country region --byobs # Print country and regions:

Create the new binary variable:
series africa = region<=5</pre>

Frequency table, b/c categorical variable:
freq africa

summary lifeexpf docs --simple --by=africa

Output:

africa = 0 (n = 80):

	Mean	Median	S.D.	Min	Max
lifeexpf	71.38	74.00	9.334	43.00	83.00
docs	14.76	12.02	11.27	0.3704	42.92
africa = 1 (n = 42):				
	Mean	Median	S.D.	Min	Max
lifeexpf	56.67	55.50	7.916	41.00	74.00

3.624

0.1880

16.23

0.7747

Restrict sample to only African countries: smpl africa==1 --restrict summary lifeexpf docs --simple

2.242

Or for full:

lifeexpf docs

smpl --full