专题练习 1

填空题:

- 1. 已知全集 $U = \{1, 2, 3, 4, 5\}$,集合 $M = \{1, 2\}, N = \{3, 4\}$,则 $\overline{M \cup N} = \{5\}$ 解析 根据并集的运算可知 $M \cup N = \{1, 2, 3, 4\}$, 故其补集 $\overline{M \cup N} = \{5\}$ 注: 看清楚运算符号!
- 2. 设集合 $A = \{1, 4, x\}, B = \{1, x^2\}, 且 A \cap B = B, 则 x = 0或 2或2$ 解析 首先对条件进行转换, $A \cap B = B$ 即 $B \subseteq A$, 根据集合中元素的无序性可知需要进行分类 讨论。
 - (1) $x^2 = x$ 此时对应于 x = 0或1, 但是经过检验发现 x = 1 使得集合中元素违背互异性。
 - (2) $x^2 = 4$ 此时对应于 x = 2或 -2,均不违背互异性。

综上, x = 0或 - 2或 2

3. 设集合 $A = \{1, 2, m\}$, 其中 m 为实数, 令 $B = \{a^2 | a \in A\}$, $C = A \cup B$ 。若 C 中所有元素之和为 6,则 C 中所有元素之积为 -8

解析 $B = \{1, 4, m^2\}$,则在**不违背互异性的前提下**有 $C = \{1, 2, 4, m, m^2\}$ 。根据 C 中元素和为 6, 而 1+2+4>6,又因为 $m^2+m>-1$ 恒成立,故应有 m<0 且 $m^2\in\{1,2,4\}$ 。故可知 m=-1, $C = \{1, 2, 4, -1\}$, 因此 C 中所有元素之积为-8.

4. 已知集合 $A = \{a | x = \frac{383a^2 + a}{2a + 1}, x \in \mathbf{Z}, a \in \mathbf{Z}\}, A$ 中最大的元素为<u>190</u>

解析 由于 $\frac{383a^2+a}{2a+1}$ 为二次比一次的形式,因此应考虑利用多项式除法来分离。为了方便运算,应考虑进行换元。

令 t=2a+1,因此 t 应为奇数, $a=\frac{t-1}{2}$ 。故 $\frac{383a^2+a}{2a+1}=\frac{383(\frac{t-1}{2})^2+(\frac{t-1}{2})}{t}=\frac{1}{4}[\frac{383(t-1)^2+2(t-1)}{t}]=\frac{1}{4}[\frac{383t^2-764t+381}{t}]=\frac{1}{4}[383t+\frac{381}{t}]-191$ 易知可以先检验 t=381,此时原式为整数,而当 t>381 易知原式不是整数,因此 t 最大值为 381, 此时对应于 a = 190

- 5. 若集合 $A = \{x | (a-1)x^2 + 3x 2 = 0\}$ 仅有一个真子集,实数 a = 1或 $-\frac{1}{6}$ 解析 由于只有一个真子集,故集合中只有一个元素。因为二次项系数有参数 a,所以需要分类讨 论
 - (1) a=1,此时方程退化回一次方程,只有一个实根,满足题意
 - (2) $a \neq 1$, 此时方程为二次方程, 若只有一个实根, 则判别式为 0, 即 9+8(a-1)=0, 得 $a=-\frac{1}{8}$
- 6. 已知集合 $A = \{y | x^2 + mx y + 2 = 0, x \in R\}, B = \{y | x + y + 1 = 0, 0 \le x \le 1\}, 苦 A \cap B \ne \emptyset,$ m 的取值范围是 $(-\infty, -2\sqrt{3}] \cup [2\sqrt{3}, +\infty)$.

解析 首先可以判断出来 $B = \begin{bmatrix} -2, -1 \end{bmatrix}$, 而 A 是函数 $y = x^2 + mx + 2$ 的函数值的取值范围。由 于函数 $y = x^2 + mx + 2$ 的开口向上, 欲使 $A \cap B \neq \emptyset$, 则应有其函数值最小值小于等于-1。即 $\frac{m^2}{4} - \frac{m^2}{2} + 2 \leq -1$, 解得 $m \in (-\infty, -2\sqrt{3}] \cup [2\sqrt{3}, +\infty)$

1

7. 已知集合 $A = \{x|\frac{x-2}{x+1} < 0\}, \ x \in A$ 的一个必要条件是 $x \geqslant a$,则实数 a 的取值范围是 $\underline{a \leqslant -1}$ 解析 A = (-1,2),故 $a \leqslant -1$

注: 小范围可以推出大范围

- 8. 已知 $x \in \mathbb{R}$, " $(x-2)(x-3) \le 0$ " 是"|x-2| + |x-3| = 1 成立"的<u>充要</u>条件. 解析 $(x-2)(x-3) \le 0$ 解集为 [2,3] |x-2| + |x-3| = 1 解集为 [2,3] (平底锅函数,三角不等式)
- 9. " $x + y \neq 3$ " 是 " $x \neq 1$ 或 $y \neq 2$ " 成立的<u>充分非必要</u>条件. 解析 " $x + y \neq 3$ " 对应了平面上除了直线 x + y = 3 的区域 " $x \neq 1$ 或 $y \neq 2$ " 对应了平面上除了点 (1,2) 的区域
- 10. " $x + y \neq 5$ " 是 " $x \neq 2 \exists y \neq 3$ " 成立的<u>既非充分也非必要</u>条件. 解析 " $x + y \neq 5$ " 对应了平面上除了直线 x + y = 5 的区域 " $x \neq 2 \exists y \neq 3$ " 对应了平面上除了直线 x = 2 和直线 y = 3 的区域
- 12. 不等式 $\frac{x+5}{x^2+2x+5} \ge 1$ 的解集为 [-1,0]

解析 因为 $x^2 + 2x + 5 > 0$ 恒成立,因此可以转化为 $x + 5 \ge x^2 + 2x + 5$,解集为 [-1,0] 注: 先判断分母是否恒正或者恒负,再考虑移项通分.

- 13. 不等式 $\frac{x^2(x+2)(x^2-x+1)}{x^2-5x+4} > 0$ 的解集为 $(-2,0) \cup (0,1) \cup (4,+\infty)$ 解析 注: 穿针引线法求解,奇穿偶回,**偶次方根绝对不能丢弃,且易出错**.
- 14. 定义区间 (c,d),[c,d),(c,d],[c,d] 的长度均为 d-c(d>c)。已知实数 a>b,则满足 $\frac{1}{x-a}+\frac{2}{x-b}\geqslant 3$ 的 x 构成的区间长度之和为____1

解析 首先通分有 $\frac{3x-2a-b}{(x-a)(x-b)} \geqslant 3$, 易知移项通分运算量很大。因此考虑分类讨论乘分母

- (1) x > a 或 x < b 此时不等式可以转化为 $3x 2a b \ge 3(x b)(x a)$
- (2) a > x > b此时不等式可以转化为 $3x - 2a - b \le 3(x - b)(x - a)$

绘制 y = 3(x-b)(x-a) 和 y = 3x-2a-b 的草图可知不等式的解集为 $(b,x_1) \cup (a,x_2)$,其中 x_1,x_2 是方程 3(x-b)(x-a) = 3x-2a-b 的两根。根据韦达定理可知解集的区间长度和为 $x_1+x_2-a-b=1$

注: 本题也可以通过绘制 $y = \frac{1}{x-a} + \frac{2}{x-b}$ 的草图,分析其单调区间,值域来解决。本质是一样的。

- 15. 若 a < b,且 $a < \frac{1}{x^2 3x + 2} < b$ 的解集为 Ø,则 b a 的最大值为____4

 解析 $\frac{1}{x^2 3x + 2} \in (-\infty, -4] \cup (0, +\infty)$,故 b a 取最大值的时候为 b = 0, a = -4
- 16. |x+1| < 3-2x 的解集是 $(-\infty, \frac{2}{3})$

解析 解集为 $(-\infty, \frac{2}{2})$

注: 1. |f(x)| > g(x) 的充要条件是 f(x) > g(x) 或 f(x) < -g(x) 2. |f(x)| < g(x) 的充要条件是

-g(x) < f(x) < g(x)

注: **此处绝对不能平方处理**,否则等价于 |x+1| < |3-2x| 会得到 $(-\infty, \frac{2}{3}) \cup (4, +\infty)$; 当不等式 两侧均含有绝对值时才适合平方去绝对值.

17. 若关于 x 的不等式 k|x| > |x-2| 恰有 4 个整数解,则实数 k 的取值范围是 $(\frac{3}{5}, \frac{2}{3}]$

解析 易知 x=0 不是不等式的解, 故 k|x|>|x-2| 进行参变分离, 同解变形 $k>|\frac{x-2}{x}|$, 即 $k>|1-\frac{2}{x}|$

由函数 $f(x) = |1 - \frac{2}{x}|$ 的图像可知整根的集合为 $\{2, 3, 4, 5\}$, 故 $f(5) < k \le f(6)$, 即 $k \in (\frac{3}{5}, \frac{2}{3}]$ 注: 解决整根问题的第一步往往是确认整根的集合

18. 已知关于 x 的不等式组 $\left\{ \begin{array}{l} \frac{x-a}{x-1+a} < 0 \\ x+3a > 1 \end{array} \right.$ 的整数解恰有两个,则实数 a 的取值范围是___(1,2]___

解析 首先可以确定第一个不等式的解集为 (a,1-a) 或 (1-a,a), 因为 a 和 1-a 关于 $\frac{1}{2}$ 对称,因此 $\frac{1}{2}$ 必然在该不等式的解集中。而第二个不等式的解集为 $(1-3a,+\infty)$

- ① $\exists a \in [0,1]$, 则 (a,1-a) 或 (1-a,a) 没有整数解, 故整个不等式组的解集中也没有整数解.
- ② 若 a < 0, 则 a < 0 < 1 < 1 a < 1 3a, 则整个不等式组解集为空集.
- ③ 若 a > 1,则 1 3a < 1 a < 0 < 1 < a 整个不等式组的解集为 (1 a, a),此时解集中必有两个整数解 0, 1,故当 $a \in (1, 2]$ 时,满足要求.

综上, $a \in (1,2]$

注: 本题画数轴可以更方便分析, 本题判断出 a 和 1-a 关于 $\frac{1}{2}$ 对称后可以猜测到两个整根是 0 和 1.

19. 已知不等式组 $\left\{\begin{array}{ll} x^2-x+a-a^2<0\\ x+2a>1 \end{array}\right.$ 的整数解恰好有两个,a 的取值范围是___(1,2]__

解析 设函数 $f(x)=x^2-x$,则第一个不等式即 f(x)< f(a),根据函数的性质可知不等式即 $|x-\frac{1}{2}|<|a-\frac{1}{2}|$,故 $\frac{1}{2}-|a-\frac{1}{2}|< x<\frac{1}{2}+|a-\frac{1}{2}|$,故第一个不等式解集为 (1-a,a) 或 (a,1-a),第二个不等式解集为 $(1-2a,+\infty)$

- ① $a \in [0,1]$, 此时第一个不等式中不含有两个整数解,不符合要求.
- ② a < 0,第一个不等式解集为 (a, 1 a),而 1 a < 1 2a,故不等式组解集为空集,不符合要求.
- ③ a > 1, 第一个不等式解集为 (1 a, a), 故不等式解集为 (1 a, a), 当 $a \in (1, 2]$ 满足要求.
- 20. 若不等式 $x^2 + px > 4x + p 3$,当 $0 \le p \le 4$ 时恒成立,则 x 的取值范围是___($-\infty$, -1) \cup (3, $+\infty$) 解析
 - (1) 方法 1: 看做是关于 p 的一元一次不等式求解 不等式移项得到 $x^2 - 4x + 3 > (1 - x)p$ 。

因式分解有 (x-1)(x-3) > -p(x-1)

下面根据 x 的取值范围进行分类讨论:

- ① x > 1, 不等式转化为 x 3 > -p, 故 $x \in (3, +\infty)$
- ② x = 1,这种情况不成立
- ③ x < 1,不等式转化为 x 3 < -p,故 $x \in (-\infty, -1)$

综上, 当 $x \in (-\infty, -1) \cup (3, +\infty)$ 时不等式恒成立。

(2) 方法 2: 看做是关于 x 的一元二次不等式求解 不等式移项得到 $x^2 + (p-4)x + (3-p) > 0$ 。即 (x-(3-p))(x-1) > 0 因此根据两解可以写出不等式的解集为 $\begin{cases} (-\infty, 3-p) \cup (1, +\infty) & 4 \geqslant p \geqslant 2 \\ (-\infty, 1) \cup (3-p, +\infty) & 0 \leqslant p < 2 \end{cases}$ 要使得不等式在 p 取到 [0,4] 内任意值时成立,则应取所有 p 所对应的解集的交集,故当 $x \in (-\infty, -1) \cup (3, +\infty)$ 时不等式恒成立。

注: 通过对比可知以 p 为主元更容易理解和推广。

解答题:

1. 已知集合 $A = \{(x,y)|x^2 + mx - y + 2 = 0, x \in R\}$, $B = \{(x,y)|x + y + 1 = 0, 0 \le x \le 1\}$, 若 $A \cap B \ne \emptyset$, 求 m 的取值范围.

解析 根据题意,两集合交集非空代表两段函数的图像有交点,即方程 $x^2 + (m+1)x + 3 = 0$ 在 [0,1] 内有根,因为 x = 0 并非原方程的根,故可等价于方程 $-(m+1) = x + \frac{3}{x}$ 在 (0,1] 内有根 $y = x + \frac{3}{x}$ 在 (0,1] 内单调减,故 $-(m+1) \in [4,+\infty)$,故 $m \in (-\infty,-5]$

2. 集合 $A = \{x|x^2 - 8x + 12 = 0\}, B = \{x|ax + 1 = 0\}, 且 A \cup B = A, 求 a 的取值范围.$

解析 $A \cup B = A$ 即 $B \subseteq A$

① a=0, 此时 $B=\varnothing$, 满足要求.

② $a \neq 0$,此时 $B = \{-\frac{1}{a}\}$,因为 $A = \{2,6\}$,若 $B \subseteq A$,则 $-\frac{1}{a} \in A$,因此 $a = -\frac{1}{2}$ 或 $-\frac{1}{6}$ 综上 $a \in \{0,-\frac{1}{2},\frac{1}{a}\}$

3. 对任意实数 x,不等式 $2kx^2 + kx - 3 < 0$ 恒成立,求实数 k 的取值范围.

解析 当 k=0 时,不等式成立。

当 $k \neq 0$,从二次函数的角度看一元二次不等式,要使得不等式恒成立,则应有函数开口向下,即 k < 0,并且有 $\Delta = k^2 + 24k < 0$,因此 $k \in (-24,0)$ 。 综上, $k \in (-24,0]$

4. 若关于 x 的不等式 $ax + 6 + |x^2 - ax - 6| \ge 4$ 恒成立,求实数 a 的取值范围.

解析 原不等式转化为 $|x^2-ax-6| \ge -2-ax$ 恒成立, 即 $x^2-ax-6 \ge -2-ax$ 与 $x^2-ax-6 \le 2+ax$ 解集的并集为 \mathbf{R}

前者解集为 $(-\infty, -2] \cup [2, +\infty)$,后者解集为 $[a - \sqrt{a^2 + 8}, a + \sqrt{a^2 + 8}]$,故 $(-2, 2) \subseteq [a - \sqrt{a^2 + 8}, a + \sqrt{a^2 + 8}]$,因此 $a \in [-1, 1]$

5. 关于实数 x 的不等式 $\left|x - \frac{(a+1)^2}{2}\right| \le \frac{(a-1)^2}{2}$ 与 $|x - a - 1| \le a$ 的解集依次是 A, B,求使得 $A \subseteq B$ 的 a 的取值范围.

解析 $\left|x-\frac{(a+1)^2}{2}\right| \leqslant \frac{(a-1)^2}{2}$ 即 $-\frac{(a-1)^2}{2} \leqslant x-\frac{(a+1)^2}{2} \leqslant \frac{(a-1)^2}{2}$,即 $2a \leqslant x \leqslant a^2+1$ $|x-a-1| \leqslant a$ 即 $-a \leqslant x-a-1 \leqslant a$,即 $1 \leqslant x \leqslant 2a+1$ 由于 $a^2+1 \geqslant 2a$ 恒成立,所以 A 必不为空集,故 $A \subseteq B$ 即 $1 \leqslant 2a, a^2+1 \leqslant 2a+1$,解得 $a \in [\frac{1}{2}, 2]$

6. 已知函数 f(x) = |x-2| + |x-a|,若对于任意的 $x \in [1,2]$, $f(x) \ge |x-4|$ 恒成立,求实数 a 的范围.

解析 当 $x \in [1,2]$, $f(x) \ge |x-4|$ 即 $2-x+|x-a| \ge 4-x$, 整理得 $|x-a| \ge 2$, 由绝对值的几何意义可知 $a \in (-\infty,-1] \cup [4,+\infty)$

注: 有自变量的具体范围的时候,可以先看一下绝对值是否可以直接去掉.

- 7. 已知关于 x 的不等式 $x^2 + 9 + |x^2 3x| \ge kx$ (*)
 - (1) 若 (*) 在区间 [1,5] 上恒成立,求实数 k 的取值范围.
 - (2) 若 (*) 在区间 [1,5] 上有解, 求实数 k 的取值范围.

解析 当 $x \in [1,5]$ 时,原不等式可以转化为 $x + \frac{9}{x} + |x-3| \ge k$

- (1) 不等式恒成立即 k 比左侧最小值小,而易知左侧最小值在 x=3 时取,故 $k \le 6$
- (2) 不等式有解即 k 比左侧最大值小,设 $f(x) = x + \frac{9}{x} + |x 3|$ 易知 f(x) 在 [1,5] 上先减后增,最大值在端点处取. $f(1) = 12, f(5) = \frac{44}{5}$ 故 $k \leq 12$

注: 区分有解问题和恒成立问题.

- 8. 已知不等式 $x^2 + (a-2)x + 3a > 0(*)$
 - (1) 若不等式 (*) 对任意的 $x \in [-1,1]$ 恒成立,求实数 a 的取值范围
 - (2) 若不等式 (*) 对任意的 $a \in [-1,1]$ 恒成立,求实数 x 的取值范围

解析

(1) ① 通解法

 $f(x) = x^2 + (a-2)x + 3a$ 的对称轴为 $x = 1 - \frac{a}{2}$

若 $1-\frac{a}{2}<-1$,即 a>4,此时 f(x) 在 [-1,1] 上单调递增,因此 f(-1)>0,即 1+2-a+3a>0,解得 $a>-\frac{3}{2}$,结合对称轴有 a>4

若 $1-\frac{a}{2}>1$, 即 a<0, 此时 f(x) 在 [-1,1] 上单调递减, 因此 f(1)>0, 即 1+a-2+3a>0, 解得 $a>\frac{1}{4}$,此种情况无解

若 $1-\frac{a}{2}\in[-1,1]$,即 $a\in[0,4]$,此时 f(x) 在 [-1,1] 内最小值在顶点处取,即 $f(1-\frac{a}{2})>0$,整理有 $a^2-16a+4<0$,解得 $a\in(8-2\sqrt{15},8+2\sqrt{15})$,结合对称轴有 $a\in(8-2\sqrt{15},4]$ 综上, $a\in(8-\sqrt{15},+\infty)$

② 参变分离

 $(x+3)a-2x+x^2>0$ 在 $x\in[-1,1]$ 恒成立,即 $a>\frac{2x-x^2}{x+3}$ 在 $x\in[-1,1]$ 恒成立.换元 t=x+3, $t\in[2,4]$,即 $a>\frac{-t^2+8t-15}{t}$ 在 [2,4] 恒成立.进一步变形有 $a>-(t+\frac{15}{t})+8$ 在 [2,4] 恒成立.根据对勾函数性质可知 $-(t+\frac{15}{t})+8\leqslant 8-2\sqrt{15}$ $(t=\sqrt{15}$,即 $x=\sqrt{15}-3$ 时取等号),故 $a\in(8-\sqrt{15},+\infty)$

(2) 将 a 做为主元,即 $(x+3)a-2x+x^2>0$ 在 $a\in[-1,1]$ 恒成立,设 $f(a)=(x+3)a-2x+x^2$,故只需 f(1)>0,f(-1)>0 即可. 解得 $x\in(-\infty,\frac{3-\sqrt{21}}{2})\cup(\frac{3+\sqrt{21}}{2},+\infty)$

注: 恒成立问题, 首先考虑主元应该是谁, 然后考虑是否要参变分离.

- 9. 已知函数 $f(x) = |x + \frac{1}{x} 4|$, 若关于 x 的不等式 $f(x) \ge m^2 m + 2$
 - (1) 在区间 $\left[\frac{1}{6},3\right]$ 总有解,求实数 m 的取值范围.
 - (2) 在区间 $[\frac{1}{4}, 2]$ 总有解,求实数 m 的取值范围.

解析

(1) 首先要意识到不等式的右侧没有 x,因此可以将右侧当做一个整体,直接找 f(x) 在区间 $[\frac{1}{6},3]$ 上的最大值. 根据对勾函数的性质可知 f(x) 在 $[\frac{1}{6},1]$ 上先减后增,在 [1,3] 单调递减. 故最大值会在 $x=\frac{1}{6}$ 或 x=1 处取到. $f(\frac{1}{6})=\frac{13}{6}, f(1)=2$,故 f(x) 的最大值为 $\frac{13}{6}$ 问题转化为求解不等式 $\frac{13}{6} \ge m^2-m+2$,解集为 $[\frac{3-\sqrt{15}}{6},\frac{3+\sqrt{15}}{6}]$.

(2) 同理,需要找 f(x) 在区间 $[\frac{1}{4},2]$ 上的最大值。根据对勾函数的性质可知 f(x) 在 $[\frac{1}{4},1]$ 上先减后增,在 [1,2] 单调递减。故最大值会在 $x=\frac{1}{4}$ 或 x=1 处取到。 $f(\frac{1}{4})=\frac{1}{4},f(1)=2$,故 f(x) 的最大值为 2

问题转化为求解不等式 $2 \ge m^2 - m + 2$,解集为 [0,1].