中国人民公安大学

物理实验报告

实验名称:基本测量

实验日期: 2022年3月23日

姓名: 白浩远

专业: 网络安全与执法

学号: 202121450044

年级: 2021 级

指导教师: 尹晓英

目录

一 、	实验内容3
二、	实验目的和要求3
三、	实验设备3
四、	实验原理3
	游标卡尺原理3
	螺旋测微器原理5
五、	实验方法及步骤6
	使用螺旋测微器测量钢球直径6
	使用游标卡尺测量实心柱、空心柱的直径和高6
六、	实验数据记录与处理6
	实验数据处理6
	相关公式6
	表一:基本测量实验结果6
	体积及偏差计算7
	相关公式7
	表二: 体积及偏差数据10
七、	实验结果及分析10
八、	实验总结11
九、	参考资料11

一、实验内容

- 1. 测量球、实心柱、空心柱的直径 h 与高 d 并记录在表格内
- 2. 计算每一个基本数据的算数平均值 \bar{x} ,算数平均偏差 $\bar{\Delta x}$,计算出三个物体的体积V,体积绝对偏差 ΔV ,体积相对偏差 $\frac{\Delta V}{v}$

二、实验目的和要求

- 1. 掌握游标卡尺和千分尺(螺旋测微器)的使用方法
- 2. 培养正确记录处理数据,进行偏差计算的能力

三、实验设备

编号	实验设备名称	数量	主要参数(型号,	测量范围,	测量精度等)
1	游标卡尺	1			
2	螺旋测微器	1			

四、实验原理

游标卡尺原理

游标卡尺是由米尺(最小刻度为1毫米,称为主尺)上面附加一个能滑动的有刻度的小尺(称为游标或副尺)构成(如图1)。当主尺的米尺读到毫米位后,后面位不能准确读出,如果副尺刻度与主尺不同,利用主副尺一格差可以准确读出毫米以下位数。

图 1 游标卡尺结构图1

具体如下: 副尺上总刻度称游标卡尺的分度 m,副尺 m 格总长等于主尺上 (m-1) 格的长,这样可知主副尺一格之差为 $1-\frac{m-1}{m}=\frac{1}{m}$ 毫米。当测量时(图 2) 先在主尺读出整毫米数 l_1 ,再找到主副尺对齐的第 n 格,则小数部分 $\Delta l=n\cdot\frac{1}{m}$

图 2 十分度卡尺读数示意图2

 $^{^1\,}https://www.wendangwang.com/doc/d13759d60494f968e4fc4314/3$

² https://www.mianfeiwendang.com/doc/7dd964c4d65fb59ca46667d1

螺旋测微器原理

螺旋测微器是依据螺旋放大的原理制成的,即螺杆在螺母中旋转一周,螺杆便沿着旋转轴线方向前进或后退一个螺距的距离。因此,沿轴线方向移动的微小距离,就能用圆周上的读数表示出来。螺旋测微器的精密螺纹的螺距是 0.5mm,可动刻度有 50 个等分刻度,可动刻度旋转一周,测微螺杆可前进或后退 0.5mm,因此旋转每个小分度,相当于测微螺杆前进或后退这 0.5/50=0.01mm。可见,可动刻度每一小分度表示 0.01mm,所以以螺旋测微器可准确到 0.01mm。由于还能再估读一位,可读到毫米的千分位,故又名千分尺3

图 3 螺旋测微器读数示意图4

$$L = l + 0.5n + 0.01m \tag{2}$$

³ https://blog.csdn.net/hainan16/article/details/6816821

 $^{^4\} http://study.chinaedu.com/public/experiments/gzwl/200809/19-143.jsp$

五、实验方法及步骤

使用螺旋测微器测量钢球直径

- 1. 取出钢球与螺旋测微器
- 2. 将螺旋测微器调至零点处,记录零点误差
- 3. 转动大旋钮令测杆和测砧间距稍大于钢球,放入钢球,旋动保护旋钮直至棘轮发出声音
- 4. 拨动固定旋钮固定测杆后读数并记录

使用游标卡尺测量实心柱、空心柱的直径和高

- 1. 取出实心柱、空心柱与游标卡尺
- 2. 检查主尺和副尺零刻度是否重合,若未重合读出误差值
- 3. 使用游标卡尺测量待测物体,保证游标卡尺水平后旋转锁止螺母进行锁止,取出游标卡尺
- 4. 读数并记录

六、实验数据记录与处理

实验数据处理

相关公式

1. 算数平均值

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \tag{3}$$

2. 算数平均偏差

$$\overline{\Delta x} = \frac{1}{n} \sum_{i=1}^{n} |x_i - \bar{x}| \tag{4}$$

表一: 基本测量实验结果

单位(mm)		x_1	x_2	x_3	x_4	x_5	\bar{x}	$\overline{\Delta x}$
球	d	22.155	22.143	22.156	22.160	22.151	22.153	0.005
实心柱	h	40.12	40.20	40.18	40.14	40.12	40.15	0.03
	d	11.70	11.72	11.78	11.76	11.78	11.75	0.03
空心柱	d_1	19.80	19.64	19.70	19.72	19.68	19.71	0.04

单位(mm)		x_1	x_2	<i>x</i> ₃	x_4	<i>x</i> ₅	\bar{x}	$\overline{\Delta x}$
	d_2	14.12	14.14	14.12	14.14	14.18	14.14	0.01
	d_3	15.76	15.82	15.80	15.86	15.78	15.80	0.03
	d_4	10.30	10.22	10.18	10.24	10.22	10.23	0.03
	h_1	19.48	19.50	19.60	19.50	19.54	19.52	0.04
	h_2	11.98	11.96	12.00	12.04	12.00	12.00	0.02
	h_3	18.94	19.38	19.40	19.38	19.42	19.30	0.1
	h_4	26.44	26.92	27.00	26.84	26.96	26.83	0.2

体积及偏差计算

相关公式

3. 相对偏差与绝对偏差的传递公式

$$\overline{\Delta N} = \left| \frac{\partial f}{\partial x} \overline{\Delta x} \right| + \left| \frac{\partial f}{\partial y} \overline{\Delta y} \right| + \left| \frac{\partial f}{\partial z} \overline{\Delta z} \right| + \cdots$$
 (5)

$$\frac{\overline{\Delta N}}{N} = \left| \frac{\partial \ln f}{\partial x} \overline{\Delta x} \right| + \left| \frac{\partial \ln f}{\partial y} \overline{\Delta y} \right| + \left| \frac{\partial \ln f}{\partial z} \overline{\Delta z} \right| + \cdots$$
 (6)

4. 球的体积与偏差公式

$$V = \frac{3}{4}\pi r^3 = \frac{1}{6}\pi d^3 \tag{7}$$

$$\Delta V = \frac{1}{2}\pi d^2 \Delta d \tag{8}$$

$$\frac{\Delta V}{V} = 3\frac{\Delta d}{d} \tag{9}$$

图 4 球 d = 22.153mm

5. 实心柱的体积与偏差公式

$$V = \pi r^2 h = \frac{1}{4} \pi d^2 h \tag{10}$$

$$\Delta V = \frac{1}{2}\pi dh \Delta d + \frac{1}{4}\pi d^2 \Delta h \tag{11}$$

$$\frac{\Delta V}{V} = 2\frac{\Delta d}{d} + \frac{\Delta h}{h} \tag{12}$$

图 5 实心柱 d = 11.75mm h = 40.15mm

6. 空心柱的体积与偏差公式

$$V = \sum_{i=1}^{4} (-1)^{i+1} V_i = \sum_{i=1}^{4} (-1)^{i+1} \frac{1}{4} \pi d_i^2 h_i$$
 (13)

$$\Delta V = \sum_{i=1}^{4} \Delta V_i = \sum_{i=1}^{4} \frac{1}{2} \pi d_i h_i \Delta d_i + \frac{1}{4} \pi d_i^2 \Delta h_i$$
 (14)

$$\frac{\Delta V}{V} = \sum_{i=1}^{4} \frac{\Delta V_i}{V_i} = \sum_{i=1}^{4} 2\frac{\Delta d_i}{d_i} + \frac{\Delta h_i}{h_i}$$

$$\tag{15}$$

图 6 空心柱

表二: 体积及偏差数据

			ΔV
	$V(cm^3)$	$\Delta V(mm^3)$	\overline{V}
球	5.6924	3.7005	0.00065
实心柱	4.354	61.02	0.0041
空心柱	5.650	122.3	0.0331

七、实验结果及分析

在测量结果中螺旋测微器的绝对偏差与相对偏差均远小于游标卡尺,说明螺旋测微器的精密度优于游标卡尺,而空心柱的测量次数较实心柱多,绝对偏差与相对偏差均大于实心柱,说明偏差是会随直接测得数据(多元函数的自变量)的增多而累积的。

八、实验总结

在这次基本测量实验中,我学习了几种测量仪器的使用与基本的实验报告撰写方法,感谢尹老师允许我上交电子版实验报告,在实验过程中我也学会了尊重并严谨地对待实验数据,保证科学研究的实事求是。这是我来到公安大学的第一个物理实验,也是我大学的物理学习的里程碑,希望我能以饱满的热情完成大学物理这门课程的学习,在三年以后给自己一个满意的交待。

九、参考资料

[1]物理实验[].中国人民公安大学编