2010-2011 学年第二学期高等数学期中测试及数学竞赛试卷(2010级)

(参加竞赛的同学全做,其他同学只做一、二大题)

一、填空题(10×6分)

- 1. 设 $\vec{a} = (2,1,-2)$, $\vec{b} = (1,-1,-1)$, 则 $(2\vec{a} 3\vec{b}) \cdot (\vec{a} + 2\vec{b}) = ____$, $(3\vec{a} 5\vec{b}) \times (5\vec{a} 8\vec{b}) = ___$
- 2. 已知平面 π 过直线 l_1 :x=1,y=1+t,z=2+t,且平面 π 平行另一直线 l_2 :x=y=z,则平面 π 的方程为______。
- 3. 设曲面为xOy 坐标面上曲线 $\frac{x^2}{4} \frac{y^2}{9} = 1$ 绕y 轴一周所得,则曲面名称 是______,曲面的方程是_____。
- 4. 直线 L: $\begin{cases} 2x-y+z-1=0 \\ x+y-z+1=0 \end{cases}$ 在平面 $\pi: x+2y-z=0$ 上的投影直线 L_0 的方程
- 5. 设 $z = (1 + xy)^y$,则 $\frac{\partial z}{\partial x}\Big|_{(1,1)} = \underline{\qquad}$, $\frac{\partial z}{\partial y}\Big|_{(1,1)} = \underline{\qquad}$
- 6. 曲线 $x = 1, z = \sqrt{1 + x^2 + y^2}$ 在点 $(1,1,\sqrt{3})$ 处的切线方程为_______
- 7. 设F可微,z = z(x,y)由方程F(x-z,y-z) = 0所确定,则 $\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} =$ _______。
- 8. f 连续且 $f(x,y) = xy + \iint_D f(x,y) dx dy$, $D: y = 0, y = x^2, x = 1$ 所围,则 f(x,y) = 0
- 10. $\int_0^{\frac{1}{\sqrt{2}}} dy \int_0^y e^{-(x^2 + y^2)} dx + \int_{\frac{1}{\sqrt{2}}}^1 dy \int_0^{\sqrt{1 y^2}} e^{-(x^2 + y^2)} dx = \underline{\hspace{1cm}}$

二、计算题(4×10分)

1. 设z = f(xy, g(x)), f 具二阶连续偏导,g(x)可导,且在x = 1处取得极值g(1) = 1,求 $\frac{\partial^2 z}{\partial x \partial y}\Big|_{x=1}$ 。

2. 求二元函数
$$f(x,y) = x^2(2+y^2) + y \ln y$$
 的极值。

3. 计算二重积分
$$\iint_D (x+y)^3 dxdy$$
, 其中 D 由曲线 $x=\sqrt{1+y^2}$ 与直线 $x+\sqrt{2}y=0$ 及 $x-\sqrt{2}y=0$ 围成。

4. 设
$$\Sigma$$
 为下半球面 $z = -\sqrt{R^2 - x^2 - y^2}$ 的下侧 $(R > 0)$, 求 $\iint_{\Sigma} y^2 z^2 dy dz + z dx dy$ 。

三、数学竞赛加题 (5×20 分)

1. 1) 求极限:
$$\lim_{x\to 0} \left(\frac{\ln(1+x)}{x}\right)^{\frac{1}{e^x-1}}$$
;

2) 求导:
$$\begin{cases} x = \ln(1+t^2) \\ y = \int_0^{t^2} \ln(1+u) du \end{cases}, \quad ; \quad ; \frac{d^2y}{dx^2} .$$

2. 设
$$f(x) = \begin{cases} \frac{g(x) - e^{-x}}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$
,其中 $g(x)$ 具二阶连续导数,且 $g(0) = 1$, $g'(0) = -1$, $g''(0) = 3$

,1)求f'(x);2)讨论f'(x)在 $(-\infty,+\infty)$ 内的连续性。

3. 计算 1)设 $\int x f(x) dx = \arcsin x + C$,求 $\int \frac{1}{f(x)} dx$; 2) $\int_0^{\pi^2} \sqrt{x} \cos \sqrt{x} dx$ 。

4. 设 f(x)在 [0,1]上具有连续导数,且 f(0)=0, $f(1)=\frac{1}{3}$,证明:存在 $\xi \in \left(0,\frac{1}{2}\right)$, $\eta \in \left(\frac{1}{2},1\right)$,使得 $f'(\xi)+f'(\eta)=\xi^2+\eta^2$ 。

5. 己知 f(x)在 [0,1]上可导,且 0 < f'(x) < 1, f(0) = 0, 求证: $\left[\int_0^1 f(x) dx \right]^2 > \int_0^1 [f(x)]^3 dx$ 。

参考答案:

2.
$$y - z + 1 = 0$$

3. 第一空 旋转单叶双曲面; 第二空
$$\frac{x^2+z^2}{4} - \frac{y^2}{9} = 1$$

4.
$$\begin{cases} 3x - y + z - 1 = 0 \\ x + 2y - z = 0 \end{cases}$$

$$6. \quad \begin{cases} x = 1 \\ y - \sqrt{3}z + 2 = 0 \end{cases}$$

8.
$$xy + \frac{1}{8}$$

9.
$$\int_0^1 dx \int_0^{\sqrt{2x-x^2}} f(x,y) dy + \int_1^2 dx \int_0^{2-x} f(x,y) dy$$

10.
$$\frac{\pi}{8}\left(1-\frac{1}{e}\right)$$

_,

1.
$$f'_{1(1,1)} + f''_{11(1,1)}$$

2. 极小值
$$f\left(0,\frac{1}{e}\right) = -\frac{1}{e}$$

3.
$$\frac{14}{15}$$

4.
$$\frac{2}{3}\pi R^3$$

三、

1. 1)
$$e^{-\frac{1}{2}}$$
 2) $(1+t^2)[\ln(1+t^2)+1]$

2. 1)
$$f'(x) = \begin{cases} \frac{xg'(x) + xe^{-x} - g(x) + e^{-x}}{x^2}, & x \neq 0 \\ 1, & x = 0 \end{cases}$$
 2) 连续(讨论 $f'(x)$ 在点 $x = 0$ 处的连续性)

3. 1)
$$-\frac{1}{3}(1-x^2)^{\frac{3}{2}}+C$$
 2) -4π