STA302/1001: Methods of Data Analysis

Instructor: Fang Yao

Chapter 2: Simple Linear Regression (Part II)

Comparing Models

- known as Analysis of Variance (ANOVA)
- a simple example: comparing two regression models

$$\mathrm{E}(Y|X=x)=\beta_0$$
 v.s. $\mathrm{E}(Y|X=x)=\beta_0+\beta_1x$

- which one to use?
- first model: a horizontal line
 - it says the slope is zero, or
 - cannot help predict Y given X, or
 - X and Y are not related ...

The First Model

- The model is assumed as $E(Y|X=x)=\beta_0$
- β_0 can be estimated by minimizing $\sum (y_i \beta_0)^2$, that is, by OLS with only the intercept parameter
- thus $\hat{\beta}_0 = \overline{y}$, the sample mean of $\{y_1, \dots, y_n\}$.
- residual sum of squares is

$$\sum (y_i - \hat{\beta}_0)^2 = \sum (y_i - \overline{y})^2 = \frac{SYY}{}$$

with n-1 degrees of freedom

Which One to Use?

- call $\widehat{\mathrm{E}(Y|X)} = \hat{\beta}_0$ fitted model 1 call $\widehat{\mathrm{E}(Y|X)} = \hat{\beta}_0 + \hat{\beta}_1 x$ fitted model 2
- use fitted model 1 or fitted model 2?
- ullet one method is to compare RSS's from two models
- $RSS_1 = SYY$, $RSS_2 = SYY \frac{(SXY)^2}{SXX}$
- we know $RSS_2 \leq RSS_1$
- the idea is, if adding the slope β_1 does not help much, then RSS_2 should not be much smaller than RSS_1 .

Which One to Use? (cont...)

- key question: how small is small?
- we calculate the difference between RSS_1 and RSS_2 , called "sum of squares due to regression" (SSreg):

$$SSreg = RSS_1 - RSS_2$$

$$= SYY - \left(SYY - \frac{(SXY)^2}{SXX}\right)$$

$$= \frac{(SXY)^2}{SXX}$$

$$= \frac{(SXY)^2}{SXX}$$

$$= \frac{(SSS_1)^2}{SSS_1} - df \text{ for } RSS_2$$

$$= \frac{(SSS_1)^2}{SSS_2}$$

 $df ext{ for } SSreg = df ext{ for } RSS_1 - df ext{ for } RSS_2 / \\ = (n-1) - (n-2) = 1$ $due ext{ to restriction of the given parameters}$

The ANOVA Table

- essentially we compare the "standardized version of SSreg" v.s. "standardized version of RSS_2 "
- we will summarize our comparison in an ANOVA table

_						_
	Source	df	SS	MSE F	p-value	
after Litting	Regression	1	SSreg	$SSreg/1$ \longrightarrow $MSreg/\hat{\sigma}^2$	getr	TOW D by tow
linear		n-2	RSS	$\hat{\sigma}^2 = RSS/(n-2)$	•	3 -roule
with	Total	n-1	SYY			-

SS: sum of squares $MSE' \longrightarrow SS$ $MSE' \longrightarrow SS$ $MSE' \longrightarrow SS$

*. If slope helps, RSS2 Should < RSS, =>SSreg=RSS1-RSS2 relatively large

we need to standardize by scale.

F-test For Regression

类比: Normal 5-> 5 Tn-9 ; F 5-> chi-square

if the slope
$$\beta_1$$
 is "useful", then
$$RSS_2 \ll RSS_1 \Rightarrow SSreg \text{ will be relatively large} = \# \text{chi-square}$$

 $\Rightarrow F = \frac{SSreg/1}{RSS/(n-2)} \text{ will be large}$ $F \text{ is a rescaled version of } \frac{SSreg = RSS_1 - RSS_2}{SS_1 - RSS_2}$

์ recall F -distribution: $F \sim F_{(1,n-2)}$, given $\beta_1 = 0$

what we are doing is a statistical test correspondence to 7^2 **NH** : $E(Y|X = x) = \beta_0$ v.s. **AH** : $E(Y|X = x) = \beta_0 + \beta_1 x$ F-dist: 2 indpt r.u. F(a,b) = RSSa/a RSSb/b, a&b are of

F-test For Regression (cont...)

we compare "the observed value of F" calculated from the sample to the critical value, $F_{(\alpha,1,n-2)}$, the upper- α

quantile or
$$100(1-\alpha)$$
th percentile of $F_{(1,n-2)}$

• if $F_{obs} > F_{(\alpha,1,n-2)}$, reject NH, use model 2.

• if
$$F_{obs} \leq F_{(\alpha,1,n-2)}$$
, don't reject NH (don't say accept)

Forbe's data, use R function qf(0.95, 1, 15) to find $F_{0.05,1.15} = 4.543$

Source	df	SS	MS	F	p-value
Regression on $Temp$	1	425.639	425.639	2962.79	(≈0)
Residual	15	2.155	0.144		

If NH is true, test statistic F>Fobs is not conclusion? likely to happen P-value = P(B= 0), → p-value =P(F>Fobs |B=0)20

p-value and Interpretation

• What does it mean? Assuming the NH is true, the probability that the test statistic is at least as extreme as was observed in the sample, e.g., in the previous F-test, p-value= $P(F \ge F_{obs} | \beta_1 = 0) \approx 0$

- a measure of the strength of the evidence against NH in favor of AH, not the probability that NH is true
- compare *p*-value with significance level α , say $\alpha = 0.05$
- statistical significance v.s. scientific significance
- latter needs the former to confirm

Coefficient of Determination, R^2

definition

$$R^{2} = \frac{SSreg}{SYY} \quad \text{"useful" your sope is.}$$
r summary

- scale-free one number summary
- measure the strength of the relationship between x_i and y_i
- to see this, notice that
- SYY: variability in the data
- SSreg: variability in the data explained by the slope

Coefficient of Determination, R^2 (cont...)

Forbes' data

$$R^2 = \frac{425.63910}{427.79402} = 0.995$$

- it means that the straight line model explains 99.5% of the variability in the data
- another way to look at R^2 :

$$R^2 = \frac{SSreg}{SYY} = \frac{(SXY)^2}{SXX \ SYY} = r_{xy}^2$$

ullet the square of sample correlation between X and Y

Confidence Intervals and Tests

• for "simple problems", if $\hat{\theta}$ is an estimate for θ , then a $100(1-\alpha)\%$ confidence interval (C.I.) for θ is

$$(\hat{\theta} - t_{(\frac{\alpha}{2},d)} \operatorname{se}(\hat{\theta}), \quad \hat{\theta} + t_{(\frac{\alpha}{2},d)} \operatorname{se}(\hat{\theta}))$$

where $se(\hat{\theta})$ is the standard error for $\hat{\theta}$, and $t_{(\frac{\alpha}{2},d)}$ is the value that cuts off $\frac{\alpha}{2} \cdot 100\%$ in the upper tail of the t-distribution with df= d

- when to use t-distribution or normal?
- what is the correct way to interpret "a 95% C.I. for θ is (3.5, 5.6)?

Confidence Intervals and Tests for β_0

- key assumption: e_i 's are i.i.d. $N(0, \sigma^2)$
- for the intercept β_0 the C.I. is

$$(\hat{\beta}_0 - t_{(\frac{\alpha}{2}, n-2)} \operatorname{se}(\hat{\beta}_0), \quad \hat{\beta}_0 + t_{(\frac{\alpha}{2}, n-2)} \operatorname{se}(\hat{\beta}_0))$$

where
$$se(\hat{\beta}_0)=\hat{\sigma}(\frac{1}{n}+\frac{\bar{x}^2}{SXX})^{\frac{1}{2}}$$
 instead of Z-test

- Hypothesis test: for a pre-fixed β_0^* , say $\beta_0^* = 0$
 - NH: $\beta_0 = \beta_0^*$, β_1 arbitrary
 - AH: $\beta_0 \neq \beta_0^*$, β_1 arbitrary
- t-statistic $t = \frac{\hat{\beta}_0 \beta_0^*}{se(\hat{\beta}_0)}$ and compare to $t_{(\frac{\alpha}{2}, n-2)}$

Confidence Intervals and Tests for β_1

ullet for the slope eta_1

C.I. :
$$\hat{\beta}_1 \pm t_{(\frac{\alpha}{2},n-2)} \operatorname{se}(\hat{\beta}_1)$$

$$= \hat{\beta}_1 \pm t_{\left(\frac{\alpha}{2}, n-2\right)} \frac{\hat{\sigma}}{\sqrt{SXX}}$$

- Hypothesis test: similar to β_0
- a special case of NH: $\beta_1 = 0$ v.s. AH: $\beta_1 \neq 0$
- same as comparing " $y = \beta_0$ " and " $y = \beta_0 + \beta_1 x$ "

Confidence Intervals and Tests – t and F

doing the *t*-test

NH: $\beta_1 = 0$ vs AH: $\beta_1 \neq 0$ is the same as comparing " $y = \beta_0$ " and " $y = \beta_0 + \beta_1 x$ " with an F-test

- t-statistic: $t = \frac{\hat{\beta}_1 0}{se(\hat{\beta}_1)} = \frac{\hat{\beta}_1}{\hat{\sigma}/\sqrt{SXX}}$
- $t^2 = \frac{\hat{\beta}_1^2}{\hat{\sigma}^2/SXX} = \frac{\hat{\beta}_1^2SXX}{\hat{\sigma}^2} = F$ -statistic from ANOVA Table
- that is, there is a one-to-one correspondence here
- from the fact that the square of t_d is $F_{(1,d)}$
- \blacksquare (then why do we study both the t and the F tests?)

F is more like a global test t is like for single parameter.

Prediction and Fitted Values have different variance

first, a simple question

• if $X_1, X_2, \cdots, X_m \sim \text{i.i.d. } N(\mu, \sigma^2)$, what is Var(X)?

• should it be smaller or larger than $Var(X_i)$?

ullet prediction: predict the value of y given a new value of x

• You have done 16 years of education. How much x_* is known but y_* is not x_* is known but y_* is not x_* income x_* inc expected to earn? have nothing to do with the formula

> So 10+20x16 is a prediction. But Maybe 400 is your fitted value.

> > STA302/1001 Lectures – p. 16/22

Prediction

- $\tilde{y}_* = \hat{\beta}_0 + \hat{\beta}_1 x_*$
- $x_* = 16, \ \tilde{y}_* = 100 + 200 \times 16 = 3300$
- You are expected to earn \$3300 a month
- \tilde{y}_* predicts unbiasedly the unobserved y_* (verify)

$$\operatorname{Var}(\tilde{y}_* - y_*) \mathbb{X}, x_*) = \operatorname{Var}(y_* | x_*) + \operatorname{Var}(\tilde{y}_* | \mathbb{X}, x_*)$$
The notation on
$$= \sigma^2 + \sigma^2(\frac{1}{n} + \frac{(x_* - \bar{x})^2}{SXX})$$
book is incorrect.

sepred
$$(\tilde{y}_* - y_* | X, x_*) = \hat{\sigma} (1 + \frac{1}{n} + \frac{(x_* - \bar{x})^2}{SXX})^{\frac{1}{2}}$$

• we can construct a prediction interval for y_* :

$$\tilde{y}_* \pm t_{(\frac{\alpha}{2},n-2)} \operatorname{sepred}(\tilde{y}_*|\mathbb{X},x_*)$$

Fitted Values

- same "income years of education" example
- what is the average income of <u>all</u> people who have done 16 years of education?
- this is an estimation problem, not prediction
- estimated by the fitted value

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$$
 with $x = 13$

- its standard error is $\operatorname{sefit}(\hat{y}|\mathbb{X},x) = \hat{\sigma}(\frac{1}{n} + \frac{(x-\bar{x})^2}{SXX})^{\frac{1}{2}}$
- compare $\operatorname{sefit}(\hat{y}|\mathbb{X},x)$ with $\operatorname{sepred}(\tilde{y}_*|\mathbb{X},x)$
- notation in text is a bit confusing

only effective for Xx

Fitted Values (cont...)

confidence interval:

$$(\hat{\beta}_0 + \hat{\beta}_1 x) \pm \operatorname{sefit}(\hat{y}|\mathbb{X}, x)[2F(\alpha; 2, n-2)]$$

- note: we are using a F-distribution, not t
- why? another course will tell you...

The Residuals

- definition: $\hat{e}_i = y_i \hat{y}_i$
- plots can show problems in our modeling
- a useful plot: residuals v.s. fitted values
- Forbes' data

The Residuals (cont...)

- Case 12: possible outlier
- remove Case 12 and re-do the regression
- Summary Statistics for Forbes' Data with All Data and with Case 12 deleted

Quantity	All Data	Delete Case 12	
\hat{eta}_0	-42.138	-41.308	
$\hat{\beta}_1$	0.895	0.891	
$se(\hat{eta}_0)$	3.340	1.001	
$se(\hat{eta}_1)$	0.016	0.005	
$\hat{\sigma}$	0.379	0.113	
R^2	0.995	1.000	

A "Good" Residual Plot from Heights Data

