

Lecture 12: Recursion

Susan L. Epstein

HUNTER

1

Last time

- ★ Strong mathematical induction is a special case of mathematical induction
- Strong mathematical induction relies on a sequence of consecutive integers for its basis
- Strong mathematical induction can reference any of its bases during proof
- Multiple ways to construct a proof

Fall 2023 CSCI 150 2/24

Today's outline

- Sequences and recursion
- · Solution of recurrence relations by iteration

Fall 2023 CSCI 150 3/24

3

Factorial

For any $n \in \mathbb{Z}^+$, n! (read n factorial) is the product of all positive integers $\leq n$

$$n! = \prod_{i=1}^n i = n \cdot (n-1) \cdots 3 \cdot 2 \cdot 1$$

• By convention, 0! = 1

$$\frac{10!}{9!} = \frac{10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1} = 10 = \frac{10(9!)}{9!}$$

$$\frac{n!}{(n-1)!} = \frac{n((n-1)!)}{(n-1)!} = n$$

$$n! = n(n-1)!$$

$$\frac{(n+2)!}{n!} = \frac{(n+2)(n+1)n!}{n!} = (n+2)(n+1)$$

Fall 2023 CSCI 150 4/25

Δ

Recurrence relations

- In the sequence $a_0,a_1,a_2,...,a_n$ the predecessors of term a_k are those that come before it $a_0,a_1,a_2,...,a_{k-1}$ where $i\in \mathbf{Z}, k-i\geq 0$
- Recurrence relation for a sequence a₁, a₂, ..., a_n is a formula that defines each term through its predecessors

$$a_k = 5a_{k-1} \; \forall \; \text{integers} \; k \geq 2$$

- · Initial conditions for a recurrence relation specify either
 - if $i \in N$ is fixed, values of $a_0, a_1, a_2, ..., a_{i-1}$
 - if i depends on k, values of $a_0, a_1, a_2, ..., a_m$ for $m \in \mathbb{N}, m \ge 0$ \forall integers $k \ge 2$, define sequence $c_0, c_1, c_2, ...$ with $c_k = c_{k-1} + kc_{k-2} + 1$ and $c_0 = 1, c_1 = 2$ $c_2 = c_{2-1} + 2c_0 + 1 = 2 + 2(1) + 1 = 5$

$$c_2 = c_{2-1} + 2c_0 + 1 = 2 + 2(1) + 1 = 5$$

 $c_3 = c_{3-1} + 3c_{3-2} + 1 = 5 + 3(2) + 1 = 12$
so sequence begins 1,2,5,12,33,...

 Different initial conditions can generate different sequences even with the same recurrence relation

 $\forall \ \text{integers} \ k \geq 2, a_k = 5a_{k-1} \ \text{with} \ a_1 = 2 \ \text{yields} \ 2,10,50,250, \dots \ \text{for} \ a_1, a_2, \dots \\ \text{while} \ \forall \ \text{integers} \ k \geq 2, \ b_k = 5b_{k-1} \ \text{with} \ b_1 = 3 \ \text{yields} \ 3,15,45,135, \dots \ \text{for} \ b_1, b_2, \dots$

Fall 2023 CSCI 150 5/24

5

Recursive definition for addition

- $\begin{array}{ll} \bullet & \text{Summation for any } m \in \mathbf{Z}, & \sum_{k=m}^{m} a_k = a_m \\ & \text{and for } n > m & \sum_{k=m}^{n} a_k = \sum_{k=m}^{n-1} a_k + a_n \\ & \sum_{i=1}^{n+1} \frac{1}{i^3} = \sum_{i=1}^{n} \frac{1}{i^3} + \frac{1}{(n+1)^3} & \sum_{k=1}^{n} 3^k + 3^{n+1} = \sum_{k=1}^{n+1} 3^k \end{array}$
- Note that this definition specifies an order for computation
- Algebra often simplifies computation before you code

Because
$$\frac{1}{k} - \frac{1}{k+1} = \frac{(k+1)-k}{k(k+1)} = \frac{1}{k(k+1)}$$
 we can simplify $\sum_{k=1}^n \frac{1}{k(k+1)} = \sum_{k=1}^n \left(\frac{1}{k} - \frac{1}{k+1}\right) = \left(\frac{1}{1} - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \left(\frac{1}{3} - \frac{1}{4}\right) + \dots + \left(\frac{1}{n-1} - \frac{1}{n}\right) + \left(\frac{1}{n} - \frac{1}{n+1}\right) = 1 - \frac{1}{n+1}$

Eliminating an addition loop entirely!

Fall 2023 CSCI 150 6/24

Recursive definition for multiplication

- $\begin{array}{ll} \bullet & \text{Multiplication for any } m \in \mathbf{Z}, \quad \prod_{k=m}^m a_k = a_m \text{ and} \\ & \text{and for } n > m \qquad \qquad \prod_{k=m}^n a_k = \left(\prod_{k=m}^{n-1} a_k\right) \cdot a_k \\ & \prod_{k=2}^4 k = 2 \cdot 3 \cdot 4 = 24 \qquad \qquad \prod_{i=1}^1 \frac{i}{i+10} = \frac{1}{11} \end{array}$
- Note that this definition also specifies an order for computation
- · Factorial was defined as

$$n! = \prod_{i=1}^{n} i = n \cdot (n-1) \cdots 3 \cdot 2 \cdot 1$$

but it also has a recursive definition

$$n! = \begin{cases} 1 & \text{if } n = 0 \\ n \cdot (n-1)! & \text{if } n \ge 1 \end{cases}$$

Fall 2023 CSCI 150 7/24

7

The recursive paradigm

Break down a problem into smaller, easier to solve subproblems and then combine their answers to make a solution to the original problem

The Tower of Hanoi

On the steps of the altar in the temple of Benares, for many, many years Brahmins have been moving a tower of 64 golden disks from one pole to another; one by one, never placing a larger on top of a smaller. When all the disks have been transferred the Tower and the Brahmins will fall, and it will be the end of the world.

8

Fall 2023

9

```
Tower of Hanoi recursively
m_k = 2 m_{k-1} + 1 \text{ where } m_1 = 1
The terms of the sequences: 1,3,7,15,31,63 ...
   def TowerOfHanoi(n, source, destination, intermediate):
         print("Move disc 1 from pole", source,"to pole", destination)
      TowerOfHanoi(n-1, source, intermediate, destination)
      print("Move disc",n,"from pole", source," intermediate ", destination)
      TowerOfHanoi(n-1, intermediate, destination, source)
Worried about the world ending? Call TowerOfHanoi(64, a, b, c):
If they move 1 disk / second.
   m_{64} \cong 1.844674 \times 10^{19} \text{ seconds}
         \approx 5.84542 \times 10^{11} \text{ years}
         ≅ 584.5 billion years
The universe is 13.8 ± 0.059 billion years old
Fall 2023
                                  CSCI 150
                                                                        10/24
```

Fibonacci numbers [1202]

A pair of (one male, one female) rabbits is born on 1/1.

Rabbits are not fertile during their first month of life.

Then they give birth to 1 new male/female pair at the end of each month. Rabbits do not die.

How many rabbits will there be on 12/31?

Recursion! Note that rabbits born in month k-2 do not add to the population until month k.

Let F_n = # pairs alive at end of month n

 $F_0 = 1$, $F_1 = 1$ and $F_k = F_{k-1} + F_{k-2}$ for all integers $k \ge 2$.

What is F_{12} ?

1,1,2,3,5,8,13,21,34,55,89,144,233, ...

Counting pairs so there will be 466 rabbits.

Fall 2023 CSCI 150 11/24

11

Recursion for \$\$\$

The day you were born your fairy godmother invested \$100K at 4% for you.

Today you are 21 and if you can tell her the current value you can have it!

The interest is compounded annually.

Let A_n = amount of money at end of year n

 A_0 initial amount of money = 100K

 A_1 amount at end of year 1 = 100K + 0.04(100K) = 100K(1.04)

 A_2 amount at end of year $2 = 100K(1.04)^2$

 A_3 amount at end of year $3 = 100K(1.04)^3$

...

 A_{21} amount at end of year $21 = 100K(1.04)^{21} \cong $227,876.81$

Fall 2023 CSCI 150 12/24

Interest more generally...

Interest is often paid more often than annually, say *k* times a year.

An annual rate of r% paid k times a year accrues at rate $\frac{r}{k}$.

3% compounded quarterly pays $\frac{0.03}{4} = 0.0075$

Let P_k = money on deposit at the end of the kth period $k, k \ge 1$.

Recursively, $P_k = P_{k-1} + P_{k-1} \frac{r}{k} = P_{k-1} \left(1 + \frac{r}{k}\right)$

If you deposit \$10K for a year with 3% interest compounded quarterly, you will have $P_4=1.0075\ P_3$

 $= 1.075^2 P_2$

 $= 1.075^3 P_1$

 $= 1.075^4 P_0 \cong 10{,}303.39$ an effective interest rate of .030339 = 3.0339%

13/24 Fall 2023 **CSCI 150**

13

Today's outline

- Sequences and recursion
- Solution of recurrence relations by iteration

recursive solution may speed computation

14/24 Fall 2023 **CSCI 150**

Motivation

Although a recurrence relation may be relatively simple to understand, its computation can become burdensome

A skydiver's speed increases at about 32.1522 feet/second as they fall. If there were no air resistance how fast would they be falling in 2 minutes? $a_k = a_{k-1} + 32.1522 \text{ ft/sec } k \in \textit{N}, \textit{k} \geq \textbf{1}$

You could compute 120 terms of the sequence (0, 32.1522, 64.3044,...) In 2 minutes they would be falling about 44 miles/hour...

Observe, however, that if you repeatedly substitute into a_4 $a_4=a_3$ +32.1522, $a_3=a_2$ +32.1522, $a_2=a_1$ +32.1522, $a_1=32.1522$ $a_0=0$ $a_4=a_2$ +32.1522 +32.1522 = a_1 +32.1522 +32.1522 = a_0 +32.1522 +32.1522 +32.1522 = a_0 +4(32.1522)

It looks like $a_k = a_0 + k \cdot 32.1522...$

Fall 2023 CSCI 150 15/24

15

Solution for an arithmetic sequence

Solution of a recursively defined sequence = an explicit non-recursive form for its terms

- Consider the recurrence relation $a_k = a_{k-1} + b$ for $k \in \mathbb{N}, k \ge 0$
- The terms of the arithmetic sequence a, a+b, a+2b, ... can be computed as $a_k = a_0 + (k-1)b$ for, $k \ge 0$
- This is also the solution to the recurrence relation
- Induction on recurrence relations allows us to prove equations like $\sum_{i=1}^n (a_i + b_i) = \sum_{i=1}^n a_i + \sum_{i=1}^n b_i$

Fall 2023 CSCI 150 16/24

Solution for a geometric sequence

Recall a geometric sequence $a, ar, ar^2, ...$ has formula $a_k = ar^k$ for $k \ge 0$. The day you were born your fairy godfather invested \$100 at 4% for you. The interest is compounded annually. How much is it worth on your 4th birthday?

Again, by repeated substitution into a_4

```
\begin{aligned} a_4 &= a_3(1.04), \, a_3 = a_2(1.04), \, a_2 = a_1(1.04), \, a_1 = a_0(1.04), \, a_0 = 100 \\ a_4 &= a_2(1.04)(1.04) = a_1(1.04)(1.04)(1.04) = \\ a_0(1.04) \, (1.04)(1.04)(1.04) = 100(1.04)^4 \\ a_k &= a_0(1.04)^4 \, k \in \mathit{N}, \, k \geq 1 \end{aligned}
```

It looks like the terms of the geometric sequence a, ar, ar^2 , ... can be computed directly as $a_k = a_0 r^k$ for, $k \ge 0$

Fall 2023 CSCI 150 17/24

17

Proof skeleton

Theorem: (copy the statement here)

Proof:

Let/Assume/Suppose: Name variables and state what they stand for

be general: any state any assumptions

We must show that...

multiple grammatically correct sentences

Clarify your logic with a reason for every assertion Thus Then

Therefore So Hence Consequently It follows that

By definition of By substitution Because Since

Display equations and inequalities clearly

QED

Fall 2023 CSCI 150 18/24

Sum of an arithmetic sequence

Theorem: The sum of the first n terms of an arithmetic sequence defined by (a, a + b, a + 2b, ...) is $an - bn + \frac{nb(n-1)}{2}$.

Proof (algebraic):

We must show that $\sum_{i=1}^{n} (a + (i-1)b) = an - bn + \frac{nb(n-1)}{2}$

$$\sum_{i=1}^{n} (a + (i-1)b) = \sum_{i=1}^{n} ((a-b) + ib) = \sum_{i=1}^{n} (a-b) + \sum_{i=1}^{n-1} ib$$

Since (a - b) and b are constants, the left term is n(a - b).

The sum of the first n integers was proved in Slide set 10 to be $\frac{n(n+1)}{2}$, so the right term is $b \sum_{i=1}^{n-1} i = b \frac{(n-1)n}{2}$.

By substitution $\sum_{i=1}^{n} (a + (i-1)b) = n(a-b) + \frac{nb(n-1)}{2}$ **QED**

See your text for a proof by induction

Fall 2023

CSCI 150

19/24

19

Sum of a geometric sequence

Theorem: The sum of the first n terms of a geometric sequence defined by $(a, ar, ar^2, ...)$ is $a^{\frac{r^{n-1}}{r-1}}$ for any $r \neq 1$ and integer $n \geq 0$.

Proof (algebraic):

We must show that $\sum_{i=0}^{n-1} ar^i = a \frac{r^{n-1}}{r-1}$. Since a is a constant, $\sum_{i=0}^{n-1} ar^i = a \sum_{i=0}^{n-1} r^i$

Since $\sum_{i=1}^{n} r^i = \frac{r^{n+1}-1}{r-1}$ was proved in slide set 11,

by substitution $\sum_{i=0}^{n-1} ar^i = a \sum_{i=0}^{n-1} r^i = a \frac{r^{n-1}}{r!}$... **QED**

What if r = 1? Why?

$$\sum_{i=1}^{n} 1^i = ?$$

Fall 2023

CSCI 150

20/24

Solution for the Tower of Hanoi recurrence

Recall $m_k = 2m_{k-1} + 1$ where $m_1 = 1$

$$m_4 = 2m_3 + 1, m_3 = 2m_2 + 1, m_2 = 2m_1 + 1, m_1 = 1$$

$$m_4 = 2(2m_2 + 1) + 1 = 4m_2 + 2 + 1 = 4(2m_1 + 1) + 2 + 1 =$$

 $8m_1 + 4 + 2 + 1 = 8 + 4 + 2 + 1$

 $m_k = \sum_{i=0}^{k-1} 2^i$ which is the sum of a geometric series so

It looks like $m_k = \frac{2^{n-1}}{2^{-1}} = 2^k - 1$

Confirmation: look back at slide 10 where the sequence were calculated as 1,3,7,15,31,63 ...

Fall 2023 CSCI 150 21/24

21

Proof by mathematical induction skeleton

Theorem: Let P(n) be (copy P(n) here)

Proof by mathematical induction:

We must show that P(n) is true for all $n \ge$ (state the basis value here)

Basis: Prove some initial case P(b) is true (often but not always, P(1)

Inductive step: Assume for some k that P(k) is true.

By substitution (state P(k + 1) here).

We must show that P(k + 1) is true.

(prove that P(k + 1) is true)

Since we have proved the basis step and the inductive step, the theorem is true.

QED

Fall 2023 CSCI 150 22/24

Inductive proof of a recurrence solution

Theorem: Let P(n) be that if $m_1, m_2, m_3, ...$ is the sequence defined by $m_k = 2m_{k-1} + 1$ for all integers $k \ge 1$, and $m_1 = 1$, then $m_n = 2^n - 1$ for all integers $n \ge 1$.

Proof by mathematical induction:

We must show that P(n) is true for all $n \ge 1$.

Basis: P(1) We must show that $m_1 = 2^1 - 1$. The left side, m_1 , is defined as 1 and the right side is calculated as 2 - 1 = 1, so P(1) is true.

Inductive step: Assume for some k that P(k)= if $m_1,m_2,m_3,...$ is the sequence defined by $m_k=2m_{k-1}+1$ for all integers $k\geq 1$, and $m_1=1$, then $m_k=2^k-1$ for all integers $n\geq 1$. By substitution P(k+1) is if $m_1,m_2,m_3,...$ is the sequence defined by $m_k=2m_{k-1}+1$ for all integers $k\geq 1$, and $m_1=1$, then $m_{k+1}=2^{k+1}-1$ for all integers $n\geq 1$.

We must show that P(k+1) is true. By definition of the recurrence relation, $m_{k+1} = 2m_k + 1 = 2(2^k - 1) + 1 = 2^{k+1} - 2 + 1 = 2^{k+1} - 1$ which is the right side of P(k+1).

Since we have proved the basis step and the inductive step, the theorem is true. $\ensuremath{\mathbf{QED}}$

Fall 2023 CSCI 150 23/24

23

What you should know

* A recursive solution may speed computation

- · How to interpret and use recursive definitions
- · Famous examples of recursion
- How to solve a recurrence relation by iteration

Next up: Introduction to set theory

Time to finish up that Opening sheet!

Problem set 11,12 is due on Monday, October 23 at 11PM

Fall 2023 CSCI 150 24/24

-ali 2023

Any questions?