

planetmath.org

Math for the people, by the people.

F-isomorphisms in categories

Canonical name FisomorphismsInCategories

Date of creation 2013-03-22 18:28:36 Last modified on 2013-03-22 18:28:36

Owner joking (16130) Last modified by joking (16130)

Numerical id 7

Author joking (16130) Entry type Definition Classification msc 18A05

Related topic WeakHomotopyDoubleGroupoid Related topic WeakHomotopyAdditionLemma

Related topic ThinEquivalenceRelation

Let \mathcal{C} and \mathcal{D} be categories, $F: \mathcal{C} \to \mathcal{D}$ be a (covariant or contravariant) functor and let $\alpha \in \text{Hom}(A, B)$ be a morphism, where $A, B \in \text{Ob}(\mathcal{C})$.

Definition. A morphism $\alpha: A \to B$ is an F-isomorphism if $F(\alpha)$ is an isomorphism in \mathcal{D} .

Note that each isomorphism in \mathcal{C} is an F-isomorphism for each functor F. The converse is true in the following sense: if α is an F-isomorphism for each functor F then α is an isomorphism. On the other hand there are F-isomorphisms which are not isomorphisms.

Also note, that if $\alpha: X \to Y$ is an F-isomorphism, then there does not have to exist morphism $\beta: Y \to X$ which is "F-inverse" to α . Indeed, there may be no F-isomorphism from Y to X, see examples:

Example. 1) Let X be an object in \mathcal{D} and define $F_X : \mathcal{C} \to \mathcal{D}$ as follows: for $A \in \mathrm{Ob}(\mathcal{C})$ put $F_X(A) = X$ and for $\alpha \in \mathrm{Hom}(A, B)$ put $F_X(\alpha) = \mathrm{id}_X$. This is the constant functor and every morphism in \mathcal{C} is an F_X -isomorphism (although it does not have to be an isomorphism). In particular, it may happen that for some objects X and Y in \mathcal{C} there is a morphism from X to Y but no morphism from Y to X. In this case there is an F_X -isomorphism from X to Y but not vice versa.

2) Let $\mathcal{T}op^*$ be the category of pointed topological spaces and continous maps preserving based point, $\mathcal{S}et$ be the category of sets and functions, $\mathcal{G}r$ be the category of groups and homomorphisms. Consider the functor $\pi: \mathcal{T}op^* \to \mathcal{S}et \times \mathcal{G}r \times \mathcal{G}r \times \cdots$ defined by:

$$\pi(X, x_0) = (\pi_0(X, x_0), \pi_1(X, x_0), \pi_2(X, x_0), \pi_3(X, x_0), \ldots);$$

$$\pi(f) = (\pi_0(f), \pi_1(f), \pi_2(f), \pi_3(f), \ldots),$$

where π_n is the *n*-th homotopy group functor. Then π -isomorphism is a weak homotopy equivalence and it is known (due to Whitehead) that each weak homotopy equivalence between pointed CW-complexes is the homotopy equivalence. On the other hand there are weak homotopy equivalences which are not homotopy equivalences.

The concept of F-isomorphism is especially important in representation theory, where F is the homology functor from category of complexes over an abelian category \mathcal{C} to \mathcal{C} .