# Task 1: PyTorch Basic Implementation

lab0的代码和报告在 ./lab0\_cifar\_classification 中

增加数据增强操作

Accuracy of class 8: 98.87% Accuracy of class 9: 99.50%

```
transform_train = transforms.Compose([
     # Random affine transformation
     transforms.RandomAffine(degrees=15, translate=(0.1, 0.1), scale=(0.8, 1.2)),
     transforms.ToTensor(),
     transforms.Normalize((0.5,),(0.5,))
 ])
运行方法
 python mnist.py
运行结果
 Epoch [1/10], Loss: 0.5223, Dur: 7.861893896013498
 Epoch [2/10], Loss: 0.1826, Dur: 7.3599243350327015
 Epoch [3/10], Loss: 0.1362, Dur: 7.120721081271768
 Epoch [4/10], Loss: 0.1165, Dur: 7.185883884318173
 Epoch [5/10], Loss: 0.1025, Dur: 7.234354291576892
 Epoch [6/10], Loss: 0.0902, Dur: 7.4026127038523555
 Epoch [7/10], Loss: 0.0861, Dur: 7.299837604165077
 Epoch [8/10], Loss: 0.0791, Dur: 7.223206660244614
 Epoch [9/10], Loss: 0.0785, Dur: 7.219135090243071
 Epoch [10/10], Loss: 0.0720, Dur: 7.253873430658132
 Total training time: 73.16208029631525s.
 Accuracy of the network on the 10000 test images: 99.19%
 Accuracy of class 0: 99.49%
 Accuracy of class 1: 99.91%
 Accuracy of class 2: 98.45%
 Accuracy of class 3: 99.60%
 Accuracy of class 4: 98.27%
 Accuracy of class 5: 98.88%
 Accuracy of class 6: 99.37%
 Accuracy of class 7: 99.42%
```



# Task 2: PyTorch Parallel Practice

## 并行准备

确认训练环境,检测当前可用的GPU数量

```
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print("Let's use", torch.cuda.device_count(), "GPUs!")
# 8个H100
```

# 数据并行

将数据分给不同的GPU,进行同步更新,以并行计算

## 使用DistributedDataParallel

代码实现

- 用DDP包装整个模型
- 用 DistributedSampler 确保每个卡拿到不同的数据,此时dataloader的batchsize应定义为 batch\_size//world\_size
- 在backward之后,进程间(gpu)通过 all-reduce 同步,同时除以 world\_size 取平均
- 同步后,每个卡上的梯度一致,运行 optimizer.step() 更新模型参数

#### 运行方法

```
torchrun --standalone --nproc_per_node=8 mnist.py
```

#### 运行结果

```
Epoch [1/10], Loss: 0.5043, Dur: 3.078787858132273
Epoch [2/10], Loss: 0.1707, Dur: 2.6075569330714643
Epoch [3/10], Loss: 0.1265, Dur: 2.4371133111417294
Epoch [4/10], Loss: 0.1048, Dur: 2.6616126243025064
Epoch [5/10], Loss: 0.0928, Dur: 2.646245092153549
Epoch [6/10], Loss: 0.0837, Dur: 2.5374715737998486
Epoch [7/10], Loss: 0.0790, Dur: 2.4879325507208705
Epoch [8/10], Loss: 0.0729, Dur: 2.6630166387185454
Epoch [9/10], Loss: 0.0710, Dur: 2.453670894727111
Epoch [10/10], Loss: 0.0687, Dur: 2.538908055983484
Total training time: 26.113313526380807s.
Accuracy of the network on the 10000 test images: 98.93%
Accuracy of class 0: 99.39%
Accuracy of class 1: 99.74%
Accuracy of class 2: 99.42%
Accuracy of class 3: 99.11%
Accuracy of class 4: 99.19%
Accuracy of class 5: 99.33%
Accuracy of class 6: 98.75%
Accuracy of class 7: 98.74%
Accuracy of class 8: 99.38%
Accuracy of class 9: 96.23%
```



Mnist DDP training curve

# 使用DataParallel

设置Data parallel

```
model = nn.DataParallel(model)
```

#### 打印模型输入数据的大小

```
class LeNet(nn.Module):
    ...
    def forward(self, x):
        ...
        print("\tIn Model: output size", x.size())
        return x
# In Model: output size torch.Size([4, 10])
# Batch_size设置为32, 在串行训练时输入数据大小即为32条
# Data parallel数据均匀分给每个GPU,并行计算,同步更新
```

#### 运行方法

#### 运行结果

```
Let's use 8 GPUs!
Epoch [1/10], Loss: 0.5163, Dur: 26.228063262999058
Epoch [2/10], Loss: 0.1740, Dur: 14.841202991083264
Epoch [3/10], Loss: 0.1309, Dur: 15.105411913245916
Epoch [4/10], Loss: 0.1116, Dur: 15.011387773323804
Epoch [5/10], Loss: 0.0993, Dur: 14.954337451141328
Epoch [6/10], Loss: 0.0892, Dur: 14.776632377877831
Epoch [7/10], Loss: 0.0828, Dur: 15.171749539207667
Epoch [8/10], Loss: 0.0781, Dur: 14.937090698163956
Epoch [9/10], Loss: 0.0756, Dur: 15.113445749040693
Epoch [10/10], Loss: 0.0700, Dur: 14.742029211949557
Total training time: 160.88189983181655s.
Accuracy of the network on the 10000 test images: 98.94%
Accuracy of class 0: 100.00%
Accuracy of class 1: 99.47%
Accuracy of class 2: 99.03%
Accuracy of class 3: 98.51%
Accuracy of class 4: 98.68%
Accuracy of class 5: 98.54%
Accuracy of class 6: 98.75%
Accuracy of class 7: 98.44%
Accuracy of class 8: 98.87%
Accuracy of class 9: 99.01%
```



# 性能对比

#### 对比并行化前后的训练速度和准确率

- 1. 从准确率上看, baseline 、 DataParallel 和 DistributedDataParallel 训练得到的模型表现相仿
- 2. 从训练速度上看, DataParallel 训练速度反而变慢,而 DistributedDataParallel 相比 baseline 训练速度更快

| Method                  | Accuracy | Time |
|-------------------------|----------|------|
| Baseline                | 99.19%   | 73s  |
| DistributedDataParallel | 98.93%   | 26s  |
| DataParallel            | 98.94%   | 161s |

## DDP加速训练的原因

#### 数据并行并没有提高训练速度

- 理论上只起一个进程做数据并行,应该与 baseline 一致
- 实际上, 反而训练速度比八个卡数据并行还要快

# 尝试只起一个进程

torchrun --standalone --nproc\_per\_node=1 mnist.py

# Total training time: 20.265355579089373s.

# Accuracy of the network on the 10000 test images: 99.09%

# 先前运行八个进程

torchrun --standalone --nproc\_per\_node=8 mnist.py

# Total training time: 26.113313526380807s.

# Accuracy of the network on the 10000 test images: 98.93%

# DataLoader加载数据集速度决定整体的训练速度,而且受到 num\_workers 参数的影响

• 运行baseline程序,修改num\_workers参数,同时测量加载数据集,即 for data, labels in train\_loader: 这一行代码所需时间,和梯度计算与更新模型的时间 python mnist.py --mode base --num\_workers 4

- 当设置dataloader参数 num\_workers = 0 时,训练速度与先前一致,而其中每个循环中,加载数据的时间是计算与更新模型所需时间的**六倍**
- 当设置dataloader参数 num\_workers = 4 时,训练速度略快于 DDP ,而其中每个循环中,加载数据的时间**显著小于**计算与更新模型所需时间

| num_workers | Load Time | Update Time | Total Training Time | Accuracy(%) |
|-------------|-----------|-------------|---------------------|-------------|
| 0           | 0.0064    | 0.0011      | 72.80               | 99.08       |
| 2           | 0.0043    | 0.0012      | 34.96               | 99.10       |
| 4           | 0.0005    | 0.0012      | 18.47               | 99.07       |

当从预处理步骤中去除随机仿射变换之后,发现加载和预处理数据集的时间显著缩短,可见每一 批次数据的加载和预处理是实时进行的,而且在此处是主要耗时的步骤

num\_workers=0

预处理包括随机仿射变换

time of load: 0.006419152021408081

预处理去除随机仿射变换

time of load: 0.00330487173050642

#### 结论

1. 在手写数字分类这个训练任务中, batch\_size 较小,每个循环的计算量小,所以从内存中加载下一批次的数据,然后进行预处理等操作需要的时间决定了整个训练的速度,所以通过并行计算每

个batch梯度提升运算速度的数据并行,并没有显著影响整体的训练速度。在大模型训练中, batch size 是百兆量级,数据并行会起到较大的加速作用。

- 2. DataLoader 的 num\_workers 参数,在默认情况下, num\_workers = 0 ,即数据加载是由主进程单线程完成的。当 num\_workers > 0 时,可以启动多个子进程并行加载和预处理数据。这样一则可以加快加载和预处理的速度,一则可以与模型训练并行进行,进而减少主进程在等待数据时的空闲时间,特别是在数据预处理和从磁盘读取数据的情况下。
- 3. 先前实验中 DDP 快于 baseline 是因为 DDP 的dataloader设置 num\_workers = 4,而 baseline 则采用默认参数,即 num\_workers = 0,**训练速度提高的原因是数据集加载和预处理能够并行化加速**。 当调整 baseline 的dataloader设置为 num\_workers = 4 后,其训练用时为18s,快于 DDP 训练用时26s,说明数据并行带来了额外的 overhead,并不适用于Mnist手写数字分类,这样一个模型简单、batch size小、计算量小的任务情景。

| Method             | num_workers | Total Training Time (s) | Accuracy on Test<br>Images |
|--------------------|-------------|-------------------------|----------------------------|
| DDP with 1 process | 0           | 75.58                   | 99.09%                     |
| Baseline           | 0           | 72.80                   | 99.08%                     |
| DDP with 1 process | 4           | 20.27                   | 99.09%                     |
| Baseline           | 4           | 18.47                   | 99.07%                     |

#### DP训练速度变慢的原因

经过检验 outputs = model(inputs)确实将一个batch的数据均匀分给每张卡进行计算,并将计算结果 gather到 cuda:0 上,进行后续计算。查看gpu占用情况,可以看到运行过程中每张卡显存占用比较均衡,但运算负载主要集中在 cuda:0 上,这是因为 cuda:0 在收集每张卡计算结果后,要计算loss、 gradient并更新权重,然后将新权重发送到其他卡上。

- # 每张卡显存占用相似
- # gpu利用率在cuda:0为8%, 在其他卡均为1%

watch -n 1 nvidia-smi

与之对比,DDP中每张卡gpu利用率均可达到40-60%。因此,DP训练速度慢,一则因为DP只起了一个进程,通讯和数据传输的负担较大,相对而言对较小的 batch 做数据并行对运算速度提升作用小,一则因为DP本身没能充分利用gpu的算力,存在优化问题。

# **Task 3: Custom Implementation**

## 整体思路

- 1. 为了充分利用作业四的自动微分框架,我定义 Conv2D 和 MaxPooling 两个继承自 TensorOp 的算子,其中 compute 正向传播和 gradient 反向传播均使用作业三编译好的卷积层和池化层的cuda实现(MaxPooling 反向传播在作业三没有实现CUDA版本,在此处我实现了 for-loop 和 CUDA 两个版本,并进行实验比较)。
- 2. 利用作业五的优化器,实现三种模型架构:两层线性层的 pure\_linear 架构、一层卷积层两层线性层的 simple\_conv 架构、 LeNet 模型架构。具体来讲,对于每种架构,需要在 set\_structure 中增加模型权重,更改 forward 函数,在优化器中更新每一层的权重。
- 3. 为了适配各种模型架构,避免模型架构改变之后需要相应改变优化器的权重更新代码,我通过遍历模型所有权重,实现适配所有模型架构的更一般的参数更新策略。
- 4. 实验发现我写的for-loop版本池化层反向传播耗时较多,所以我实现了CUDA并行的池化层反向传播,实验发现能显著提高运行速度。

## 代码结构

- CUDA代码在 ./MyTensor 中,运行 python setup.py develop 即可编译
- 模型训练的代码位于 ./task1\_optimizer.py 中,运行 python task1\_optimizer.py --model simple\_conv 可训练具有一层卷积层两层线性层的 simple conv 架构的模型, --model 还可以选择 pure linear 和 LeNet 模型架构

# 运行方法与结果

如果出现报错,可以尝试 cd ./MyTensor 运行 python setup.py develop 重新编译

### pure\_linear

python task1\_optimizer.py --model pure\_linear

| Epoch | Train Loss | Train Err | Test Loss | Test Err | Epoch Time |
|-------|------------|-----------|-----------|----------|------------|
| 0     | 0.22435    | 0.06470   | 0.22508   | 0.06670  | 0.94579    |
| 1     | 0.14339    | 0.04090   | 0.15038   | 0.04400  | 0.73822    |
| 2     | 0.10491    | 0.02972   | 0.11988   | 0.03450  | 0.73497    |
| 3     | 0.08210    | 0.02337   | 0.10400   | 0.03100  | 0.67366    |

| Epoch | Train Loss | Train Err | Test Loss | Test Err | Epoch Time |
|-------|------------|-----------|-----------|----------|------------|
| 4     | 0.06755    | 0.01910   | 0.09560   | 0.02900  | 0.66912    |
| 5     | 0.05743    | 0.01633   | 0.09076   | 0.02730  | 0.73319    |
| 6     | 0.05035    | 0.01430   | 0.08808   | 0.02680  | 0.69270    |
| 7     | 0.04512    | 0.01305   | 0.08606   | 0.02610  | 0.70101    |
| 8     | 0.04096    | 0.01138   | 0.08459   | 0.02540  | 0.67365    |
| 9     | 0.03789    | 0.01022   | 0.08348   | 0.02480  | 0.68011    |
| 10    | 0.03506    | 0.00897   | 0.08228   | 0.02400  | 0.69014    |
| 11    | 0.03228    | 0.00802   | 0.08065   | 0.02410  | 0.66409    |
| 12    | 0.02955    | 0.00692   | 0.07888   | 0.02290  | 0.67286    |
| 13    | 0.02747    | 0.00615   | 0.07734   | 0.02260  | 0.74242    |
| 14    | 0.02596    | 0.00552   | 0.07636   | 0.02260  | 0.69701    |
| 15    | 0.02488    | 0.00525   | 0.07582   | 0.02270  | 0.64889    |
| 16    | 0.02410    | 0.00498   | 0.07548   | 0.02210  | 0.65099    |
| 17    | 0.02358    | 0.00487   | 0.07537   | 0.02200  | 0.72380    |
| 18    | 0.02325    | 0.00473   | 0.07532   | 0.02200  | 0.68885    |
| 19    | 0.02304    | 0.00465   | 0.07533   | 0.02200  | 0.69484    |

# simple\_conv

 $python\ task1\_optimizer.py\ --model\ simple\_conv$ 

| Epoch | Train Loss | Train Err | Test Loss | Test Err | Epoch Time |
|-------|------------|-----------|-----------|----------|------------|
| 0     | 0.22450    | 0.06557   | 0.22500   | 0.06870  | 4.74313    |
| 1     | 0.14129    | 0.04207   | 0.14670   | 0.04590  | 3.82161    |
| 2     | 0.10393    | 0.03257   | 0.11608   | 0.03600  | 4.41619    |
| 3     | 0.07885    | 0.02458   | 0.09998   | 0.03100  | 3.74715    |
| 4     | 0.06369    | 0.02007   | 0.09137   | 0.02800  | 3.64345    |

| Epoch | Train Loss | Train Err | Test Loss | Test Err | Epoch Time |
|-------|------------|-----------|-----------|----------|------------|
| 5     | 0.05231    | 0.01648   | 0.08724   | 0.02600  | 4.47715    |
| 6     | 0.04462    | 0.01400   | 0.08595   | 0.02530  | 4.18614    |
| 7     | 0.03778    | 0.01160   | 0.08470   | 0.02450  | 3.89238    |
| 8     | 0.03306    | 0.01043   | 0.08597   | 0.02510  | 3.80926    |
| 9     | 0.02982    | 0.00972   | 0.08827   | 0.02500  | 3.72024    |
| 10    | 0.02689    | 0.00833   | 0.08952   | 0.02460  | 4.40014    |
| 11    | 0.02264    | 0.00687   | 0.08822   | 0.02400  | 3.86780    |
| 12    | 0.01881    | 0.00515   | 0.08613   | 0.02290  | 3.90654    |
| 13    | 0.01623    | 0.00425   | 0.08498   | 0.02230  | 3.68627    |
| 14    | 0.01437    | 0.00360   | 0.08466   | 0.02190  | 3.52239    |
| 15    | 0.01296    | 0.00313   | 0.08437   | 0.02200  | 3.93964    |
| 16    | 0.01189    | 0.00277   | 0.08417   | 0.02200  | 3.79612    |
| 17    | 0.01113    | 0.00247   | 0.08417   | 0.02170  | 3.68573    |
| 18    | 0.01063    | 0.00225   | 0.08426   | 0.02180  | 4.57585    |
| 19    | 0.01031    | 0.00215   | 0.08432   | 0.02180  | 3.90759    |

## LeNet

python task1\_optimizer.py --model LeNet

| Epoch | Train Loss | Train Err | Test Loss | Test Err | Epoch Time |
|-------|------------|-----------|-----------|----------|------------|
| 0     | 0.12592    | 0.04002   | 0.11623   | 0.03650  | 273.73302  |
| 1     | 0.07156    | 0.02250   | 0.07054   | 0.02180  | 271.74698  |
| 2     | 0.05404    | 0.01745   | 0.05941   | 0.02020  | 272.00233  |
| 3     | 0.05036    | 0.01662   | 0.06030   | 0.01930  | 272.11799  |
| 4     | 0.03622    | 0.01162   | 0.05037   | 0.01680  | 272.21837  |
| 5     | 0.03278    | 0.01103   | 0.05229   | 0.01790  | 259.61811  |

| Epoch | Train Loss | Train Err | Test Loss | Test Err | Epoch Time |
|-------|------------|-----------|-----------|----------|------------|
| 6     | 0.02956    | 0.01058   | 0.05080   | 0.01600  | 225.49822  |
| 7     | 0.02046    | 0.00718   | 0.04375   | 0.01330  | 227.44083  |
| 8     | 0.01514    | 0.00523   | 0.04190   | 0.01190  | 228.30170  |
| 9     | 0.01241    | 0.00428   | 0.04323   | 0.01140  | 229.07684  |
| 10    | 0.00949    | 0.00317   | 0.04298   | 0.01080  | 225.78679  |
| 11    | 0.00867    | 0.00290   | 0.04391   | 0.01150  | 228.54179  |
| 12    | 0.00779    | 0.00245   | 0.04425   | 0.01120  | 232.68834  |
| 13    | 0.00618    | 0.00183   | 0.04338   | 0.01130  | 226.14438  |
| 14    | 0.00507    | 0.00148   | 0.04325   | 0.01060  | 228.71153  |
| 15    | 0.00424    | 0.00113   | 0.04321   | 0.01010  | 230.34282  |
| 16    | 0.00348    | 0.00090   | 0.04283   | 0.01030  | 226.27458  |
| 17    | 0.00281    | 0.00062   | 0.04210   | 0.01000  | 228.54181  |
| 18    | 0.00234    | 0.00038   | 0.04137   | 0.00950  | 232.39875  |
| 19    | 0.00204    | 0.00028   | 0.04076   | 0.00930  | 228.27878  |

# 分析

- 从loss和err的变化,可以看到在模型变得更加复杂后,过拟合现象有所减弱,在测试集的表现也逐渐增强
- 从每个epoch的用时可以看出,加入卷积层后耗时明显变长。测量前向传播和反向传播的耗时可以看出,反向传播速度明显慢于前向传播,而反向传播过程中耗时主要集中在两个池化层的反向传播。这是因为在作业三中我们没有用CUDA实现并行的池化层反向传播,我在 MaxPooling 算子类中,用 for-loop 写的反向传播效率很低,导致耗时较长

Using LeNet & for-loop version max-pooling backpropagation

forward: 0.005983706563711166 back pool: 0.1325874626636505 back pool: 0.2950657308101654

back: 0.4422866702079773

# 优化: 池化层反向传播的CUDA实现

• 将池化层反向传播写成cuda并行,代码实现位于 ./MyTensor/max\_pooling.cu 。实验发现,池化层 反向传播速度显著加快

Using LeNet & CUDA version max-pooling backpropagation

forward: 0.005050960928201675s back pool: 0.00039035454392433167s back pool: 0.00021830201148986816s backward: 0.011350210756063461s

• 运行结果: LeNet 运行速度显著提升

| Epoch | Train Loss | Train Err | Test Loss | Test Err | Epoch Time |
|-------|------------|-----------|-----------|----------|------------|
| 0     | 0.12182    | 0.03867   | 0.11171   | 0.03810  | 12.43567   |
| 1     | 0.09300    | 0.02955   | 0.09290   | 0.03130  | 10.14336   |
| 2     | 0.06708    | 0.02175   | 0.07414   | 0.02490  | 10.56740   |
| 3     | 0.04720    | 0.01587   | 0.05948   | 0.02000  | 11.49345   |
| 4     | 0.03722    | 0.01222   | 0.05350   | 0.01740  | 9.54382    |
| 5     | 0.02723    | 0.00885   | 0.04619   | 0.01460  | 10.21054   |
| 6     | 0.02569    | 0.00862   | 0.04632   | 0.01440  | 10.71043   |
| 7     | 0.02027    | 0.00713   | 0.04293   | 0.01300  | 9.08935    |
| 8     | 0.01958    | 0.00703   | 0.04597   | 0.01310  | 10.70305   |
| 9     | 0.01724    | 0.00625   | 0.04619   | 0.01250  | 10.34052   |
| 10    | 0.01540    | 0.00542   | 0.05072   | 0.01230  | 8.74703    |
| 11    | 0.01436    | 0.00493   | 0.05529   | 0.01270  | 9.36119    |
| 12    | 0.01031    | 0.00353   | 0.05160   | 0.01110  | 9.06001    |
| 13    | 0.00801    | 0.00277   | 0.05111   | 0.01030  | 9.56766    |
| 14    | 0.00547    | 0.00182   | 0.04967   | 0.01020  | 9.85894    |
| 15    | 0.00370    | 0.00125   | 0.04940   | 0.00970  | 10.34537   |
| 16    | 0.00264    | 0.00053   | 0.04929   | 0.00960  | 9.43985    |
| 17    | 0.00200    | 0.00035   | 0.04883   | 0.00970  | 10.09448   |

| Epoch | Train Loss | Train Err | Test Loss | Test Err | Epoch Time |
|-------|------------|-----------|-----------|----------|------------|
| 18    | 0.00163    | 0.00028   | 0.04859   | 0.00950  | 10.13023   |
| 19    | 0.00144    | 0.00018   | 0.04830   | 0.00960  | 9.29091    |