

Grounds-up LLM Development

Ayush Maheshwari Sr. Solutions Architect, NVIDIA

https://github.com/ayushbits/llm-development

ayushbits.github.io

Sessions

Cluster health-check using NCCL, MLPerf, HPL (1 hour) Understand the hardware and its performance on multiple GPUs. Ensure that your training performance aligns with the h/w benchmarks Evaluate the cluster to ensure platform fits within your needs. Large scale data curation for LLM training (1 hour) Deep-dive into aspects of data curation Mixed-precision training Distributed and stable LLM training on a large-scale cluster (1.5 hour) Parallelism techniques Frameworks and wrappers Recipes and best practices Post-training and evaluation of pre-trained LLM (1 hour) Sync between training data and expected performance Algorithms and frameworks Fine-tuning and deployment (1 hour) Dynamic and static batching, state management, inference server Best practices for optimizing model

Cluster Health Check using NCCL, MLPerf and HPL

Ayush Maheshwari

https://github.com/ayushbits/llm-development

Why should you care?

- Understand the hardware and its performance on multiple GPUs.
- Ensure that your training performance aligns with the h/w benchmarks
- Evaluate the cluster to ensure platform fits within your needs.
- Take advantage of new techniques for multi-GPU computing.

Multi-GPU Computing

NCCL: NVIDIA Collective Communication Library
Inter-GPU communication on PCI, NVLink, IB/RoCE, and other networks.

Agenda

- Multi-GPU Computing in DL
- Hardware and Performance
- ML Perf Benchmarks
- HPL for effective GEMM
- Summary

Multi-GPU Computing in DL

		Data Parallelism / FSDP	All-reduce, all-gather, reduce-scatter
		Tensor Parallelism	All-reduce, all-gather, reduce-scatter
		Pipeline Parallelism	Send / receive
		Expert Parallelism	All-to-all

Agenda

- Multi-GPU Computing in DL
- Hardware and Performance
- System design
- Recent improvements
- Future

Checking System Topology (A100) `nvidia-smi topo-m`

nahayu	@scn6∐−m	n:~/nccl	-tests\$	nvidia-s	mi topo	_m								
iidi.idy d	GPU0	GPU1	GPU2	GPU3	GPU4	GPU5	GPU6	GPU7	NIC0	NIC1	NIC2	NIC11	CPU Affinity	NUMA Affinity
GPU0	X	NV12	NV12	NV12	NV12	NV12	NV12	NV12	PXB	PXB	SYS	SYS	48-63,176-191	3
GPU1	NV12	Χ	NV12	NV12	NV12	NV12	NV12	NV12	PXB	PXB	SYS	SYS	48-63,176-191	3
GPU2	NV12	NV12	Χ	NV12	NV12	NV12	NV12	NV12	SYS	SYS	PXB	SYS	16-31,144-159	1
GPU3	NV12	NV12	NV12	Χ	NV12	NV12	NV12	NV12	SYS	SYS	PXB	SYS	16-31,144-159	1
GPU4	NV12	NV12	NV12	NV12	Χ	NV12	NV12	NV12	SYS	SYS	SYS	SYS	112-127,240	-255 7
GPU5	NV12	NV12	NV12	NV12	NV12	Χ	NV12	NV12	SYS	SYS	SYS	SYS	112-127,240	-255 7
GPU6	NV12	NV12	NV12	NV12	NV12	NV12	Χ	NV12	SYS	SYS	SYS	SYS	80-95,208-2	23 5
GPU7	NV12	NV12	NV12	NV12	NV12	NV12	NV12	Χ	SYS	SYS	SYS	SYS	80-95,208-2	23 5
VIC0	PXB	PXB	SYS	SYS	SYS	SYS	SYS	SYS	Χ	PXB	SYS	SYS		
NIC1	PXB	PXB	SYS	SYS	SYS	SYS	SYS	SYS	PXB	Χ	SYS	SYS		
NIC2	SYS	SYS	PXB	PXB	SYS	SYS	SYS	SYS	SYS	SYS	Х	SYS		
NIC3	SYS	SYS	PXB	PXB	SYS	SYS	SYS	SYS	SYS	SYS	PXB	SYS		
NIC4	SYS	SYS	SYS	SYS	SYS	SYS	SYS	SYS	SYS	SYS	SYS	SYS		
NIC5	SYS	SYS	SYS	SYS	SYS	SYS	SYS	SYS	SYS	SYS	SYS	SYS		
VIC6	SYS	SYS	SYS	SYS	PXB	PXB	SYS	SYS	SYS	SYS	SYS	SYS		
NIC7	SYS	SYS	SYS	SYS	PXB	PXB	SYS	SYS	SYS	SYS	SYS	SYS		
NIC8	SYS	SYS	SYS	SYS	SYS	SYS	PXB	PXB	SYS	SYS	SYS	SYS		
NIC9	SYS	SYS	SYS	SYS	SYS	SYS	PXB	PXB	SYS	SYS	SYS	SYS		
NIC10	SYS	SYS	SYS	SYS	SYS	SYS	SYS	SYS	SYS	SYS	SYS	PIX		
NIC11	SYS	SYS	SYS	SYS	SYS	SYS	SYS	SYS	SYS	SYS	SYS	Х		
_egend	:													
Х	= Self													
SYS	= Conne	ction tr	aversing	PCIe as	well as	the SMP	interco	nnect be	tween NU	MA nodes	(e.g.,	1		
NODE	= Conne	ction tr	aversing	PCIe as	well as	the int	erconnec	t betwee	n PCIe H	ost Brid	ges with	n:		
PHB	= Conne	ction tr	aversing	PCIe as	well as	a PCIe	Host Bri	dge (typ	ically t	he CPU)				
PXB	PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)													
PIX	= Conne	ction tr	aversing	at most	a singl	e PCIe b	ridge							
NV#	= Conne	ction tr	aversing	, a bonde	d set of	# NVLin	ks							
X SYS NODE PHB PXB PIX	SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., (NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges with: PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)													

Checking System Topology (H100)

`nvidia-smi topo -m`

	GPU0	GPU1	GPU2	GPU3	GPU4	GPU5	GPU6	GPU7	NIC0	NIC1	NIC2	NIC3	NIC4	NIC
D														
PU0	X	NV18	NV18	NV18	NV18	NV18	NV18	NV18	PXB	NODE	NODE	NODE	NODE	NOD
PU1	NV18	Х	NV18	NV18	NV18	NV18	NV18	NV18	NODE	NODE	NODE	PXB	NODE	NOD
PU2	NV18	NV18	Х	NV18	NV18	NV18	NV18	NV18	NODE	NODE	NODE	NODE	PXB	NOD
PU3	NV18	NV18	NV18	Х	NV18	NV18	NV18	NV18	NODE	NODE	NODE	NODE	NODE	PXB
204	NV18	NV18	NV18	NV18	Х	NV18	NV18	NV18	SYS	SYS	SYS	SYS	SYS	SYS
PU5	NV18	NV18	NV18	NV18	NV18	Х	NV18	NV18	SYS	SYS	SYS	SYS	SYS	SYS
PU6	NV18	NV18	NV18	NV18	NV18	NV18	X	NV18	SYS	SYS	SYS	SYS	SYS	SYS
7 07	NV18	NV18	NV18	NV18	NV18	NV18	NV18	Х	SYS	SYS	SYS	SYS	SYS	SYS
CO	PXB	NODE	NODE	NODE	SYS	SYS	SYS	SYS	X	NODE	NODE	NODE	NODE	NOD
[C1	NODE	NODE	NODE	NODE	SYS	SYS	SYS	SYS	NODE	Х	PIX	NODE	NODE	NOE
C2	NODE	NODE	NODE	NODE	SYS	SYS	SYS	SYS	NODE	PIX	Х	NODE	NODE	NO
C3	NODE	PXB	NODE	NODE	SYS	SYS	SYS	SYS	NODE	NODE	NODE	Х	NODE	NO
C4	NODE	NODE	PXB	NODE	SYS	SYS	SYS	SYS	NODE	NODE	NODE	NODE	Х	NOI
C5	NODE	NODE	NODE	PXB	SYS	SYS	SYS	SYS	NODE	NODE	NODE	NODE	NODE	Х
C6	SYS	SYS	SYS	SYS	PXB	NODE	NODE	NODE	SYS	SYS	SYS	SYS	SYS	SYS
.C7	SYS	SYS	SYS	SYS	NODE	NODE	NODE	NODE	SYS	SYS	SYS	SYS	SYS	SYS
C8	SYS	SYS	SYS	SYS	NODE	NODE	NODE	NODE	SYS	SYS	SYS	SYS	SYS	SYS
C9	SYS	SYS	SYS	SYS	NODE	PXB	NODE	NODE	SYS	SYS	SYS	SYS	SYS	SYS
C10	SYS	SYS	SYS	SYS	NODE	NODE	PXB	NODE	SYS	SYS	SYS	SYS	SYS	SYS
C11	SYS	SYS	SYS	SYS	NODE	NODE	NODE	PXB	SYS	SYS	SYS	SYS	SYS	SYS
gend:	:													
X	= Self													
		ction tr	raversing	PCIe as	well as	the SMP	interco	nnect be	tween NU	MA nodes	(e.a	OPI/UPI)	i	
			raversing											
			raversing								· 5			
			raversing								Bridge)			
						e PCIe b				010 11000	DITTUGES			

Checking System Topology (B200) `nvidia-smi topo -m`

user@u	ser:~\$ r	nvidia-sm	i topo –	m										
	GPU0	GPU1	GPU2	GPU3	GPU4	GPU5	GPU6	GPU7	NIC0	NIC1	NIC2	NIC3	NIC4	NIC5
AMUN	ID													
GPU0	Х	NV18	NV18	NV18	NV18	NV18	NV18	NV18	NODE	NODE	NODE	NODE	PIX	NODE
GPU1	NV18	Х	NV18	NV18	NV18	NV18	NV18	NV18	NODE	NODE	NODE	NODE	NODE	NODE
GPU2	NV18	NV18	Х	NV18	NV18	NV18	NV18	NV18	SYS	SYS	SYS	SYS	SYS	SYS
GPU3	NV18	NV18	NV18	Х	NV18	NV18	NV18	NV18	SYS	SYS	SYS	SYS	SYS	SYS
GPU4	NV18	NV18	NV18	NV18	Х	NV18	NV18	NV18	SYS	SYS	SYS	SYS	SYS	SYS
GPU5	NV18	NV18	NV18	NV18	NV18	X	NV18	NV18	SYS	SYS	SYS	SYS	SYS	SYS
GPU6	NV18	NV18	NV18	NV18	NV18	NV18	Χ	NV18	SYS	SYS	SYS	SYS	SYS	SYS
GPU7	NV18	NV18	NV18	NV18	NV18	NV18	NV18	X	SYS	SYS	SYS	SYS	SYS	SYS
NICO	NODE	NODE	SYS	SYS	SYS	SYS	SYS	SYS	Χ	PIX	PIX	PIX	NODE	NODE
NIC1	NODE	NODE	SYS	SYS	SYS	SYS	SYS	SYS	PIX	Х	PIX	PIX	NODE	NODE
NIC2	NODE	NODE	SYS	SYS	SYS	SYS	SYS	SYS	PIX	PIX	Х	PIX	NODE	NODE
NIC3	NODE	NODE	SYS	SYS	SYS	SYS	SYS	SYS	PIX	PIX	PIX	Х	NODE	NODE
NIC4	PIX	NODE	SYS	SYS	SYS	SYS	SYS	SYS	NODE	NODE	NODE	NODE	Х	NODE
NIC5	NODE	NODE	SYS	SYS	SYS	SYS	SYS	SYS	NODE	NODE	NODE	NODE	NODE	X
NIC6	NODE	NODE	SYS	SYS	SYS	SYS	SYS	SYS	NODE	NODE	NODE	NODE	NODE	PIX
NIC7	NODE	PIX	SYS	SYS	SYS	SYS	SYS	SYS	NODE	NODE	NODE	NODE	NODE	NODE
NIC8	SYS	SYS	PIX	NODE	SYS									
NIC9	SYS	SYS	NODE	PIX	SYS									
NIC10	SYS	SYS	SYS	SYS	PIX	NODE	SYS							
NIC11	SYS	SYS	SYS	SYS	NODE	NODE	SYS							
NIC12	SYS	SYS	SYS	SYS	NODE	NODE	SYS							
NIC13	SYS	SYS	SYS	SYS	NODE	PIX	SYS							
NIC14	SYS	SYS	SYS	SYS	SYS	SYS	PIX	NODE	SYS	SYS	SYS	SYS	SYS	SYS
NIC15	SYS	SYS	SYS	SYS	SYS	SYS	NODE	PIX	SYS	SYS	SYS	SYS	SYS	SYS

What is NVLINK?

GPU-to-GPU, CPU-to-GPU High Bandwidth Communication

- NVLINK development start in 2013
- High speed interconnect technology enabling direct GPU-to-GPU communication, bypassing PCIe bottlenecks.
- NVLink allows faster data transfer, higher bandwidth, and lower latency between GPUs
- Supports various memory transactions
- Cacheable (coherent) / Non cacheable (non-coherent) transaction support
- Parallelizable
- Unification of HBMs memories across a pool of GPUs
- Switchable

Ring Algorithm

Tree Algorithm

Tree #1

Tree #2

GPU A Node 7

GPU A Node 2

GPU A Node 1

GPU A Node 5

Input A

Output A

Input C

Input D

Collective Communication Bandwidth

NVLink Evolution

Intra-node Connectivity

System	NVLink Gen	# Links per GPU	Per-Link Bandwidth (bidirectional)	Per-GPU NVLink Bandwidth (bidirectional)	Total GPUs in System	System Aggregate NVLink
DGX B200	NVLink 5	18	100 GB/s	1,800 GB/s (1.8 TB/s)	8	14.4TB/s
DGX H100	NVLink 4	18	50 GB/s	900 GB/s	8	7.2 TB/s
DGX A100	NVLink 3	12	50 GB/s	600 GB/s	8	4.8TB/s

Agenda

- Multi-GPU Computing in DL
- Hardware and Performance
- How-to-NCCL
- MLPerf Benchmarks
 - HPI

NCCL

- The NVIDIA Collective Communications Library (NCCL, pronounced "Nickel") is a library for inter-GPU communication.
- NCCL test is an open-source software to benchmark inter-GPU communication speed.
- When you run deep learning across multiple GPUs, you care about the communication speed among those GPUs.
- By running NCCL tests with various configs, you can check if your hardware can reach the designed performance for each config setting.

NCCL Output

A100 (Single Node)

```
mahayu@scn64-mn:~/nccl-tests$ mpirun -mca pml ucx -x UCX_NET_DEVICES -x LD_LIBRARY_PATH | -np 8 | --host scn64-10g:8,scn63-10g:8 -x NCCL
_ALGO=ring -x NCCL_IB_HCA=mlx5_0:1,mlx5_1:1,mlx5_2:1,mlx5_5:1,mlx5_6:1,mlx5_7:1,mlx5_8:1,mlx5_9:1,mlx5_10:1,mlx5_11:1 ./build/all_red
uce_perf -b 512M -e 8G -f 2 -g 1
# nThread 1 nGpus 1 minBytes 536870912 maxBytes 8589934592 step: 2(factor) warmup iters: 5 iters: 20 agg iters: 1 validation: 1 graph
# Using devices
                                   scn64-mn device 0 [0000:07:00] NVIDIA A100-SXM4-40GB
  Rank 0 Group 0 Pid 1705509 on
                                   scn64-mn device 1 [0000:0f:00] NVIDIA A100-SXM4-40GB
  Rank 1 Group 0 Pid 1705510 on
                                   scn64-mn device 2 [0000:47:00] NVIDIA A100-SXM4-40GB
  Rank 2 Group 0 Pid 1705511 on
                                   scn64-mn device 3 [0000:4e:00] NVIDIA A100-SXM4-40GB
   Rank 3 Group 0 Pid 1705512 on
       4 Group 0 Pid 1705513 on
                                   scn64-mn device 4 [0000:87:00] NVIDIA A100-SXM4-40GB
   Rank 5 Group 0 Pid 1705514 on
                                   scn64-mn device 5 [0000:90:00] NVIDIA A100-SXM4-40GB
                                   scn64-mn device 6 [0000:b7:00] NVIDIA A100-SXM4-40GB
   Rank 6 Group 0 Pid 1705515 on
  Rank 7 Group 0 Pid 1705516 on scn64-mn device 7 [0000:bd:00] NVIDIA A100-SXM4-40GB
                                                            out-of-place
                                                                                               in-place
                                                                                                    busbw #wrong
                                                             algbw busbw #wrong
                                                                                             algbw
                                                                                      time
       size
                                     redop
                                                       time
                    count
                              type
                                              root
        (B)
                                                            (GB/s)
                                                                    (GB/s)
                                                                                      (us) (GB/s) (GB/s)
               (elements)
                                                       (us)
                                                            125.59 219.77
                                                                                    4274.2 125.61 219.81
  536870912
                134217728
                                                     4275.0
                             float
                                       sum
                                                     8293.4 129.47 226.57
                                                                                    8290.5 129.51 226.65
 1073741824
                268435456
                             float
                                                -1
                                       sum
                                                      16420
                                                            130.78 228.87
                                                                                     16422 130.77 228.84
 2147483648
                536870912
                             float
                                                -1
                                       sum
                                                            132.30 231.53
                                                                                     32459 132.32 231.56
 4294967296
               1073741824
                             float
                                                      32463
                                                -1
                                       sum
 8589934592
               2147483648
                             float
                                                      64660
                                                            132.85 232.48
                                                                                     64777 132.61 232.06
                                                                                                               0
                                                -1
                                       sum
# Out of bounds values : 0 OK
# Avg bus bandwidth
                     : 227.815
```

NCCL Output

A100 (Multi Node)

```
mahayu@scn64-mn:~/nccl-tests$ mpirun -mca pml ucx -x UCX_NET_DEVICES -x LD_LIBRARY_PATH -np 16 --host scn64-10g:8,scn63-10g:8 -x NCC
L_ALGO=ring -x NCCL_IB_HCA=mlx5_0:1,mlx5_1:1,mlx5_2:1,mlx5_5:1,mlx5_6:1,mlx5_7:1,mlx5_8:1,mlx5_9:1,mlx5_10:1,mlx5_11:1 ./build/all_re
duce_perf -b 512M -e 8G -f 2 -g 1 -
# nThread 1 nGpus 1 minBytes 536870912 maxBytes 8589934592 step: 2(factor) warmup iters: 5 iters: 20 agg iters: 1 validation: 1 graph
 Using devices
  Rank 0 Group 0 Pid 1702113 on scn64-mn device 0 [0000:07:00] NVIDIA A100-SXM4-40GB
  Rank 1 Group 0 Pid 1702114 on scn64-mn device 1 [0000:0f:00] NVIDIA A100-SXM4-40GB
  Rank 2 Group 0 Pid 1702115 on scn64-mn device 2 [0000:47:00] NVIDIA A100-SXM4-40GB
  Rank 3 Group 0 Pid 1702116 on
                                  scn64-mn device 3 [0000:4e:00] NVIDIA A100-SXM4-40GB
                                 scn64-mn device 4 [0000:87:00] NVIDIA A100-SXM4-40GB
  Rank 4 Group 0 Pid 1702117 on
  Rank 5 Group 0 Pid 1702118 on
                                  scn64-mn device 5 [0000:90:00] NVIDIA A100-SXM4-40GB
  Rank 6 Group 0 Pid 1702119 on
                                   scn64-mn device 6 [0000:b7:00] NVIDIA A100-SXM4-40GB
                                  scn64-mn device 7 [0000:bd:00] NVIDIA A100-SXM4-40GB
  Rank 7 Group 0 Pid 1702120 on
                                 scn63-mn device 0 [0000:07:00] NVIDIA A100-SXM4-40GB
  Rank 8 Group 0 Pid 3005073 on
                                   scn63-mn device 1 [0000:0f:00] NVIDIA A100-SXM4-40GB
  Rank 9 Group 0 Pid 3005074 on
                                   scn63-mn device 2 [0000:47:00] NVIDIA A100-SXM4-40GB
  Rank 10 Group 0 Pid 3005075 on
                                   scn63-mn device 3 [0000:4e:00] NVIDIA A100-SXM4-40GB
  Rank 11 Group 0 Pid 3005076 on
  Rank 12 Group 0 Pid 3005077 on
                                  scn63-mn device 4 [0000:87:00] NVIDIA A100-SXM4-40GB
  Rank 13 Group 0 Pid 3005078 on
                                 scn63-mn device 5 [0000:90:00] NVIDIA A100-SXM4-40GB
  Rank 14 Group 0 Pid 3005079 on
                                  scn63-mn device 6 [0000:b7:00] NVIDIA A100-SXM4-40GB
  Rank 15 Group 0 Pid 3005080 on
                                  scn63-mn device 7 [0000:bd:00] NVIDIA A100-SXM4-40GB
                                                            out-of-place
                                                                                              in-place
                                                            algbw busbw #wrong
                                                                                     time
                                                                                            algbw busbw #wrong
                                     redop
                                                      time
       size
                    count
                              type
                                             root
        (B)
               (elements)
                                                      (us)
                                                            (GB/s) (GB/s)
                                                                                     (us)
                                                                                           (GB/s)
                                                                                                  (GB/s)
                                                    6728.1
                                                                                   6973.0
                                                                                           76.99 144.36
                134217728
                             float
                                                             79.80
                                                                   149.62
  536870912
                                       sum
                                                     13059
                                                             82.22 154.16
                                                                                    12815
 1073741824
                268435456
                             float
                                                                                           83.79 157.11
                                       sum
                                                     25460
                                                             84.35 158.15
                                                                                           82.77 155.19
 2147483648
                536870912
                             float
                                                -1
                                                                                    25946
                                       sum
 4294967296
               1073741824
                             float
                                                -1
                                                     50963
                                                             84.28 158.02
                                                                                    51689
                                                                                           83.09 155.80
                                       sum
 8589934592
              2147483648
                             float
                                                     101860
                                                             84.33 158.12
                                                                                   101690
                                                                                            84.47 158.38
                                       sum
 Out of bounds values : 0 OK
 Avg bus bandwidth : 154.891
mahayu@scn64-mn:~/nccl-tests$
```

NCCL Interpretation

- Operation Time NCCL tests report the average time (in milliseconds) it takes to complete a collective operation
- Algorithm Bandwidth (algbw) How much data (in GB) is being processed per second by the algorithm. For point-to-point operations (like Send/Receive), this is meaningful and directly reflects throughput.
- Bus Bandwidth (busbw) It adjusts the algorithm bandwidth to reflect the actual hardware bottleneck (e.g., NVLink, PCIe, network), making it possible to compare results regardless of the number of ranks.
- Verify NCCL results by finding peak theoretical bandwidth for
 - Intra-node: NVLink
 - Inter-node: Infiniband/Connect-X Ethernet
- Run NCCL using slurm or mpirun

NCCL Demo

Agenda

- Multi-GPU Computing in DL
- Hardware and Performance
- ML Perf Benchmarks
- HPL for effective GEMM
- Summary

What is MLPerf?

Unbiased AI benchmarks negotiated by a consortium

MLPerf™ benchmarks—developed by MLCommons, a consortium of AI leaders from academia, research labs, and industry—are designed to provide unbiased evaluations of training and inference performance for hardware, software, and services. They are all conducted under prescribed conditions.

How-to-MLPerf

https://docs.mlcommons.org/inference/

- MLPerf v5.0 (latest) for training and inference
- Reported Benchmark Performance https://mlcommons.org/benchmarks/inference-datacenter/
- Running Inference git clone https://github.com/mlcommons/inference_results_v5.0
- Requirements for running NVIDIA reported benchmarks on DGX systems
 - TRT-LLM Generate optimized TRT engine

Vision	Image classification	Server, Offline
Vision	Object detection	Server, Offline
Vision	Medical image segmentation	Offline
Speech	Speech-to-text	Server, Offline
Language	Language processing	Server, Offline
Language	Summarization	Server, Offline
Language	Question Answering	Server, Offline
Commerce	Recommendation	Server, Offline
Image generation	Text-to-image	Server, Offline
Graph	Node Classification	Offline

NVIDIA CONFIDENTIAL. DO NOT DISTRIBUTE.

MLCommons

https://mlcommons.org/benchmarks/inference-datacenter/

Agenda

- Multi-GPU Computing in DL
- Hardware and Performance
- ML Perf Benchmarks
- HPL for effective GEMM
- Summary

HPL Algorithm Overview

What is HPL?

- HPL is a software package that solves a dense linear system of equations in double precision(64-bit) arithmetic on distributed memory computers
- HPL is an implementation of the Linpack code which measures the single machine's performance. Thus, HPL implements this at scale
- The goal is to measure the system's rate of execution of 64-bit Floating point arithmetic
- HPL result is a single number in Floating Point Operations Per Second (FLOPS)

HPL Algorithm Overview

- Like in reference HPL (+other implementations) matrix is 2D block cyclic.
 - We typically prefer larger matrix blocks, i.e. NB = O(1000).
- The main computation is now entirely on the GPU:
 - Various kernels (factorization, NCCL comm, GEMM, TRSM share SM resources)
- We use a variety of communication libraries NCCL/MPI/NVSHMEM.
- For some comms operations, NCCL is the only library used (e.g. panel broadcast).
- For other operations, there are several options (tuning for best perf depending on scale)
- Parameter file only used to specify N/NB/P/Q/PMAP
 - Most 'advanced' tuning done by environment variables.

HPL Performance

H100

T/V	N	===== NB	===== P	Q	Time	Gflops (per GPU)
WC0	264192	1024	4	2	33.36	3.685e+05 (4.606e+04)

=========	======		======	=====	=========	=======================================
T/V	N	NB	Р	Q	Time	Gflops (per GPU)
WC0	92160	1024	1	1	11.08	4.712e+04 (4.712e+04)

HPL Performance

A100

T/V	N	NB	Р		Time	Gflops (per GPU)
WC0	264192	1024	4	2	106.06	1.159e+05 (1.449e+04)

T/V	N	NB	P	Q	Time	Gflops (per GPU)
WC0	92160	1024	1	1	30.32	1.721e+04 (1.721e+04)

Compare HPL Performance

- Refer datasheet of respective GPUs to see peak theoretical TFlops
- https://resources.nvidia.com/en-us-gpu-resources/h100-datasheet-24306

	H100 SXM	H100 NVL
FP64	34 teraFLOPS	30 teraFLOPS
FP64 Tensor Core	67 teraFLOPS	60 teraFLOPS
FP32	67 teraFLOPS	60 teraFLOPS
TF32 Tensor Core*	989 teraFLOPS	835 teraFLOPS

	A100 40GB PCle	A100 80GB PCIe	A100 40GB SXM	A100 80GB SXM
P64		9.7 TF	LOPS	
P64 Tensor Core		19.5 TI	FLOPS	
-P32		19.5 TI	FLOPS	
ensor Float 32 (TF32)		156 TFLOPS	312 TFL0PS*	!

Summary

Scripts - https://github.com/ayushbits/llm-development

- NCCL test for analysing intercommunication within and among multiple servers.
 - Essential for optimizing distributed training throughput and scalability.
- MLPerf: Industry-standard benchmark for end-to-end machine learning workloads.
 - Evaluates real-world AI training and inference efficiency across platforms.
- HPL: Assesses peak floating-point computing power (FLOPS) of CPU and GPU clusters.
 - Validates overall system performance for high-performance computing tasks.

