

SEQUENCE LISTING

<110> LEY, Arthur C. GUTERMAN, Sonia K. MARKLAND, William KENT, Rachel B. ROBERTS, Bruce L. LADNER, Robert C. <120> ITI-D1 KUNITZ DOMAIN MUTANTS AS HNE INHIBITORS <130> D0617.7005US01 <140> 10/038,722 <141> 2002-01-08 <150> US 08/849,406 <151> 1999-07-21 <150> PCT/US95/16349 <151> 1995-12-15 <150> US 08/358,160 <151> 1994-12-16 <150> US 08/133,031 <151> 1992-02-28 <160> 143 <170> PatentIn version 3.1 <210> 1 <211> 276 <212> DNA <213> Artificial Sequence <220> <223> IIIsp::bpti::matureIII (initial fragment) gtgaaaaaat tattattcgc aattccttta gttgttcctt tctattctgg cgcccgtccg 60 gatttctgtc tcgagccacc atacactggg ccctgcaaag cgcgcatcat ccgctatttc 120 tacaatgcta aagcaggcct gtgccagacc tttgtatacg gtggttgccg tgctaagcgt 180 aacaacttta aatcggccga agattgcatg cgtacctgcg gtggcgccgc tgaaactgtt 240 276 qaaagttgtt tagcaaaacc ccatacagaa aattca <210> 2 <211> 92 <212> PRT

<220>

<213> Artificial Sequence

<223> IIIsp::bpti::matureIII (initial fragment) <400> 2 Met Lys Lys Leu Leu Phe Ala Ile Pro Leu Val Val Pro Phe Tyr Ser Gly Ala Arg Pro Asp Phe Cys Leu Glu Pro Pro Tyr Thr Gly Pro Cys Lys Ala Arg Ile Ile Arg Tyr Phe Tyr Asn Ala Lys Ala Gly Leu Cys Gln Thr Phe Val Tyr Gly Gly Cys Arg Ala Lys Arg Asn Asn Phe Lys Ser Ala Glu Asp Cys Met Arg Thr Cys Gly Gly Ala Ala Glu Thr Val Glu Ser Cys Leu Ala Lys Pro His Thr Glu Asn Ser <210> 3 <211> 285 <212> DNA <213> Artificial Sequence <220> <223> IIIsp::itiD1::mature III fusion gene <400> 3 gtgaaaaaat tattattcgc aattccttta gttgttcctt tctattctgg cgccaaagaa 60 gactcttgcc agctgggcta ctcggccggt ccctgcatgg gaatgaccag caggtatttc 120 tataatggta catccatggc ctgtgagact ttccagtacg gcggctgcat gggcaacggt 180 aacaacttcg tcacagaaaa ggagtgtctg cagacctgcc gaactgtggg cgccgctgaa 240 285 actgttgaaa gttgtttagc aaaaccccat acagaaaatt cattt <210> 4 <211> 95 <212> PRT <213> Artificial Sequence <220> <223> IIIsp::itiD1::mature III fusion gene <400> 4 Met Lys Lys Leu Leu Phe Ala Ile Pro Leu Val Val Pro Phe Tyr Ser Gly Ala Lys Glu Asp Ser Cys Gln Leu Gly Tyr Ser Ala Gly Pro Cys

Met Gly Met Thr Ser Arg Tyr Phe Tyr Asn Gly Thr Ser Met Ala Cys

Glu Thr Phe Gln Tyr Gly Gly Cys Met Gly Asn Gly Asn Asn Phe Val

Thr Glu Lys Glu Cys Leu Gln Thr Cys Arg Thr Val Gly Ala Ala Glu

Thr Val Glu Ser Cys Leu Ala Lys Pro His Thr Glu Asn Ser Phe 90

<210> 5

<211> 58 <212> PRT <213> Artificial Sequence

<220>

<223> Consensus Kunitz domain

<400> 5

Arg Pro Asp Phe Cys Leu Leu Pro Ala Glu Thr Gly Pro Cys Arg Ala

Met Ile Pro Arg Phe Tyr Tyr Asn Ala Lys Ser Gly Lys Cys Glu Pro

Phe Ile Tyr Gly Gly Cys Gly Gly Asn Ala Asn Asn Phe Lys Thr Glu

Glu Glu Cys Arg Arg Thr Cys Gly Gly Ala

<210> 6

<211> 58

<212> PRT

<213> Bos Taurus

<400> 6

Arg Pro Asp Phe Cys Leu Glu Pro Pro Tyr Thr Gly Pro Cys Lys Ala

Arg Ile Ile Arg Tyr Phe Tyr Asn Ala Lys Ala Gly Leu Cys Gln Thr

Phe Val Tyr Gly Gly Cys Arg Ala Lys Arg Asn Asn Phe Lys Ser Ala

Glu Asp Cys Met Arg Thr Cys Gly Gly Ala

<210> 7 <211> 58

<212> PRT <213> Artificial Sequence

<220>

<223> Epi-HNE-1

<400> 7

Arg Pro Asp Phe Cys Leu Glu Pro Pro Tyr Thr Gly Pro Cys Ile Ala

Phe Phe Pro Arg Tyr Phe Tyr Asn Ala Lys Ala Gly Leu Cys Gln Thr

Phe Val Tyr Gly Gly Cys Met Gly Asn Gly Asn Asn Phe Lys Ser Ala

Glu Asp Cys Met Arg Thr Cys Gly Gly Ala

<210> 8

<211> 62 <212> PRT <213> Artificial Sequence

<220>

<223> Epi-HNE-2

<400> 8 .

Glu Ala Glu Ala Arg Pro Asp Phe Cys Leu Glu Pro Pro Tyr Thr Gly

Pro Cys Ile Ala Phe Phe Pro Arg Tyr Phe Tyr Asn Ala Lys Ala Gly

Leu Cys Gln Thr Phe Val Tyr Gly Gly Cys Met Gly Asn Gly Asn Asn

Phe Lys Ser Ala Glu Asp Cys Met Arg Thr Cys Gly Gly Ala 55

<210> 9

<211> 58

<212> PRT

<213> Artificial Sequence

<220>

<223> EpiNE7

<400> 9

Arg Pro Asp Phe Cys Leu Glu Pro Pro Tyr Thr Gly Pro Cys Val Ala

Met Phe Pro Arg Tyr Phe Tyr Asn Ala Lys Ala Gly Leu Cys Gln Thr 20 25

Phe Val Tyr Gly Gly Cys Met Gly Asn Gly Asn Asn Phe Lys Ser Ala 40

Glu Asp Cys Met Arg Thr Cys Gly Gly Ala

<210> 10

<211> 58 <212> PRT <213> Artificial Sequence

<220>

<223> EpiNE3

<400> 10

Arg Pro Asp Phe Cys Leu Glu Pro Pro Tyr Thr Gly Pro Cys Val Gly 10

Phe Phe Ser Arg Tyr Phe Tyr Asn Ala Lys Ala Gly Leu Cys Gln Thr

Phe Val Tyr Gly Gly Cys Met Gly Asn Gly Asn Asn Phe Lys Ser Ala

Glu Asp Cys Met Arg Thr Cys Gly Gly Ala

<210> 11

<211> 58

<212> PRT

<213> Artificial Sequence

<220>

<223> EpiNE6

<400> 11

Arg Pro Asp Phe Cys Leu Glu Pro Pro Tyr Thr Gly Pro Cys Val Gly

Phe Phe Gln Arg Tyr Phe Tyr Asn Ala Lys Ala Gly Leu Cys Gln Thr

Phe Val Tyr Gly Gly Cys Met Gly Asn Gly Asn Asn Phe Lys Ser Ala

Glu Asp Cys Met Arg Thr Cys Gly Gly Ala

<210> 12 <211> 58

<211> 36 <212> PRT <213> Artificial Sequence

```
<220>
```

<223> EpiNE4

<400> 12

Arg Pro Asp Phe Cys Leu Glu Pro Pro Tyr Thr Gly Pro Cys Val Ala

Ile Phe Pro Arg Tyr Phe Tyr Asn Ala Lys Ala Gly Leu Cys Gln Thr

Phe Val Tyr Gly Gly Cys Met Gly Asn Gly Asn Asn Phe Lys Ser Ala

Glu Asp Cys Met Arg Thr Cys Gly Gly Ala

<210> 13

<211> 58 <212> PRT

<213> Artificial Sequence

<220>

<223> EpiNE8

<400> 13

Arg Pro Asp Phe Cys Leu Glu Pro Pro Tyr Thr Gly Pro Cys Val Ala

Phe Phe Lys Arg Ser Phe Tyr Asn Ala Lys Ala Gly Leu Cys Gln Thr

Phe Val Tyr Gly Gly Cys Met Gly Asn Gly Asn Asn Phe Lys Ser Ala

Glu Asp Cys Met Arg Thr Cys Gly Gly Ala 55

<210> 14

<211> 58

<212> PRT

<213> Artificial Sequence

<220>

<223> EpiNE5

<400> 14

Arg Pro Asp Phe Cys Leu Glu Pro Pro Tyr Thr Gly Pro Cys Ile Ala

Phe Phe Gln Arg Tyr Phe Tyr Asn Ala Lys Ala Gly Leu Cys Gln Thr

Phe Val Tyr Gly Gly Cys Met Gly Asn Gly Asn Asn Phe Lys Ser Ala

45 40 35

Glu Asp Cys Met Arg Thr Cys Gly Gly Ala 55

<210> 15

<211> 58

<213> Artificial Sequence

<220>

<223> EpiNE2

<400> 15

Arg Pro Asp Phe Cys Leu Glu Pro Pro Tyr Thr Gly Pro Cys Ile Ala

Leu Phe Lys Arg Tyr Phe Tyr Asn Ala Lys Ala Gly Leu Cys Gln Thr

Phe Val Tyr Gly Gly Cys Met Gly Asn Gly Asn Asn Phe Lys Ser Ala

Glu Asp Cys Met Arg Thr Cys Gly Gly Ala

<210> 16

<211> 58

<212> PRT

<213> Homo sapiens

<400> 16

Lys Glu Asp Ser Cys Gln Leu Gly Tyr Ser Ala Gly Pro Cys Met Gly

Met Thr Ser Arg Tyr Phe Tyr Asn Gly Thr Ser Met Ala Cys Glu Thr 25

Phe Gln Tyr Gly Gly Cys Met Gly Asn Gly Asn Asn Phe Val Thr Glu

Lys Asp Cys Leu Gln Thr Cys Arg Thr Val 55

<210> 17 <211> 58

<212> PRT

<213> Artificial Sequence

<220>

<223> BITI-E7-141

<400> 17

Arg Pro Asp Phe Cys Gln Leu Gly Tyr Ser Ala Gly Pro Cys Val Ala

Met Phe Pro Arg Tyr Phe Tyr Asn Gly Thr Ser Met Ala Cys Gln Thr

Phe Val Tyr Gly Gly Cys Met Gly Asn Gly Asn Asn Phe Val Thr Glu

Lys Asp Cys Leu Gln Thr Cys Arg Gly Ala

<210> 18

<211> 58 <212> PRT <213> Artificial Sequence

<220>

<223> MUTT26A

<400> 18

Arg Pro Asp Phe Cys Gln Leu Gly Tyr Ser Ala Gly Pro Cys Val Ala 10

Met Phe Pro Arg Tyr Phe Tyr Asn Gly Ala Ser Met Ala Cys Gln Thr

Phe Val Tyr Gly Gly Cys Met Gly Asn Gly Asn Asn Phe Val Thr Glu

Lys Asp Cys Leu Gln Thr Cys Arg Gly Ala

<210> 19

<211> 58

<212> PRT

<213> Artificial Sequence

<220>

<223> MUTQE

<400> 19

Arg Pro Asp Phe Cys Gln Leu Gly Tyr Ser Ala Gly Pro Cys Val Ala

Met Phe Pro Arg Tyr Phe Tyr Asn Gly Thr Ser Met Ala Cys Glu Thr

Phe Val Tyr Gly Gly Cys Met Gly Asn Gly Asn Asn Phe Val Thr Glu

Lys Asp Cys Leu Gln Thr Cys Arg Gly Ala

<210> 20

```
-9-
<211> 58
<212> PRT
<213> Artificial Sequence
<220>
<223> MUT1619
<400> 20
Arg Pro Asp Phe Cys Gln Leu Gly Tyr Ser Ala Gly Pro Cys Val Gly 1 10 15
Met Phe Ser Arg Tyr Phe Tyr Asn Gly Thr Ser Met Ala Cys Gln Thr
Phe Val Tyr Gly Gly Cys Met Gly Asn Gly Asn Asn Phe Val Thr Glu
Lys Asp Cys Leu Gln Thr Cys Arg Gly Ala
<210> 21
<211> 58
<212> PRT
<213> Artificial Sequence
<220>
<223> ITI-D1E7
<400> 21
Lys Glu Asp Ser Cys Gln Leu Gly Tyr Ser Ala Gly Pro Cys Val Ala
Met Phe Pro Arg Tyr Phe Tyr Asn Gly Thr Ser Met Ala Cys Glu Thr
Phe Gln Tyr Gly Gly Cys Met Gly Asn Gly Asn Asn Phe Val Thr Glu
Lys Asp Cys Leu Gln Thr Cys Arg Gly Ala
<210> 22
<211> 58
<212> PRT
```

<213> Artificial Sequence

<220>

<223> AMINO1

<400> 22

Lys Glu Asp Phe Cys Gln Leu Gly Tyr Ser Ala Gly Pro Cys Val Ala 1 5 10 15

Met Phe Pro Arg Tyr Phe Tyr Asn Gly Thr Ser Met Ala Cys Glu Thr 25

Phe Gln Tyr Gly Gly Cys Met Gly Asn Gly Asn Asn Phe Val Thr Glu 40

Lys Asp Cys Leu Gln Thr Cys Arg Gly Ala

<210> 23

<211> 58

<212> PRT <213> Artificial Sequence

<220>

<223> AMINO2

<400> 23

Lys Pro Asp Ser Cys Gln Leu Gly Tyr Ser Ala Gly Pro Cys Val Ala

Met Phe Pro Arg Tyr Phe Tyr Asn Gly Thr Ser Met Ala Cys Glu Thr 25

Phe Gln Tyr Gly Gly Cys Met Gly Asn Gly Asn Asn Phe Val Thr Glu

Lys Asp Cys Leu Gln Thr Cys Arg Gly Ala

<210> 24

<211> 58

<212> PRT

<213> Artificial Sequence

<220>

<223> MUTP1

<400> 24

Arg Pro Asp Phe Cys Gln Leu Gly Tyr Ser Ala Gly Pro Cys Ile Gly

Met Phe Ser Arg Tyr Phe Tyr Asn Gly Thr Ser Met Ala Cys Glu Thr

Phe Gln Tyr Gly Gly Cys Met Gly Asn Gly Asn Asn Phe Val Thr Glu

Lys Asp Cys Leu Gln Thr Cys Arg Gly Ala

<210> 25

<211> 58 <212> PRT <213> Homo sapiens

<400> 25

Thr Val Ala Ala Cys Asn Leu Pro Ile Val Arg Gly Pro Cys Arg Ala 1 5 10 15

Phe Ile Gln Leu Trp Ala Phe Asp Ala Val Lys Gly Lys Cys Val Leu 20 25 30

Phe Pro Tyr Gly Gly Cys Gln Gly Asn Gly Asn Lys Phe Tyr Ser Glu 35 40 45

Lys Glu Cys Arg Glu Tyr Cys Gly Val Pro 50 55

<210> 26

<211> 56

<212> PRT

<213> Artificial Sequence

<220>

<223> Epi-HNE-3

<400> 26

Ala Ala Cys Asn Leu Pro Ile Val Arg Gly Pro Cys Ile Ala Phe Phe 1 5 10 15

Pro Arg Trp Ala Phe Asp Ala Val Lys Gly Lys Cys Val Leu Phe Pro 20 25 30

Tyr Gly Gly Cys Gln Gly Asn Gly Asn Lys Phe Tyr Ser Glu Lys Glu 35 40 45

Cys Arg Glu Tyr Cys Gly Val Pro 50 55

<210> 27

<211> 56

<212> PRT

<213> Artificial Sequence

<220>

<223> Epi-HNE-4

<400> 27

Glu Ala Cys Asn Leu Pro Ile Val Arg Gly Pro Cys Ile Ala Phe Phe 1 5 10 15

Pro Arg Trp Ala Phe Asp Ala Val Lys Gly Lys Cys Val Leu Phe Pro

Tyr Gly Gly Cys Gln Gly Asn Gly Asn Lys Phe Tyr Ser Glu Lys Glu

45 35 40

Cys Arg Glu Tyr Cys Gly Val Pro

<210> 28

<211> 58

<212> PRT

<213> Homo sapiens

<400> 28

Val Arg Glu Val Cys Ser Glu Gln Ala Glu Thr Gly Pro Cys Arg Ala

Met Ile Ser Arg Trp Tyr Phe Asp Val Thr Glu Gly Lys Cys Ala Pro

Phe Phe Tyr Gly Gly Cys Gly Gly Asn Arg Asn Asn Phe Asp Thr Glu

Glu Tyr Cys Met Ala Val Cys Gly Ser Ala

<210> 29

<211> 58

<212> PRT

<213> Artificial Sequence

<220>

<223> DPI.1.1

<400> 29

Val Arg Glu Val Cys Ser Glu Gln Ala Tyr Thr Gly Pro Cys Ile Ala

Phe Phe Pro Arg Tyr Tyr Phe Asp Val Thr Glu Gly Lys Cys Gln Thr

Phe Val Tyr Gly Gly Cys Met Gly Asn Gly Asn Asn Phe Asp Thr Glu 40

Glu Tyr Cys Met Ala Val Cys Gly Ser Ala

<210> 30

<211> 58

<212> PRT <213> Artificial Sequence

<220>

<223> DPI.1.2

<400> 30

Val Arg Glu Val Cys Ser Glu Gln Ala Glu Thr Gly Pro Cys Ile Ala 10

Met Phe Ser Arg Trp Tyr Phe Asp Val Thr Glu Gly Lys Cys Ala Pro

Phe Val Tyr Gly Gly Cys Gly Gly Asn Arg Asn Asn Phe Asp Thr Glu

Glu Tyr Cys Met Ala Val Cys Gly Ser Ala

<210> 31

<211> 58

<212> PRT

<213> Artificial Sequence

<220>

<223> DPI.1.3

<400> 31

Val Arg Glu Val Cys Ser Glu Gln Ala Glu Thr Gly Pro Cys Ile Ala

Phe Phe Ser Arg Trp Tyr Phe Asp Val Thr Glu Gly Lys Cys Ala Thr

Phe Val Tyr Gly Gly Cys Met Gly Asn Arg Asn Asn Phe Asp Thr Glu

Glu Tyr Cys Met Ala Val Cys Gly Ser Ala

<210> 32

<211> 58 <212> PRT <213> Homo sapiens

<400> 32

Asn Ala Glu Ile Cys Leu Leu Pro Leu Asp Tyr Gly Pro Cys Arg Ala

Leu Leu Arg Tyr Tyr Tyr Asp Arg Tyr Thr Gln Ser Cys Arg Gln

Phe Leu Tyr Gly Gly Cys Glu Gly Asn Ala Asn Asn Phe Tyr Thr Trp

Glu Ala Cys Asp Asp Ala Cys Trp Arg Ile

<210> 33

<211>

<211> 36
<212> PRT
<213> Artificial Sequence

```
<220>
```

<223> DPI.2.1

<400> 33

Asn Ala Glu Ile Cys Leu Leu Pro Leu Tyr Thr Gly Pro Cys Ile Ala

Phe Phe Pro Arg Tyr Tyr Asp Arg Tyr Thr Gln Ser Cys Gln Thr

Phe Val Tyr Gly Gly Cys Met Gly Asn Ala Asn Asn Phe Tyr Thr Trp

Glu Ala Cys Asp Asp Ala Cys Trp Arg Ile

<210> 34 <211> 58 <212> PRT

<213> Artificial Sequence

<220>

<223> DPI.2.2

<400> 34

Asn Ala Glu Ile Cys Leu Leu Pro Leu Asp Tyr Gly Pro Cys Ile Ala

Leu Phe Leu Arg Tyr Tyr Tyr Asp Arg Tyr Thr Gln Ser Cys Arg Gln

Phe Val Tyr Gly Gly Cys Glu Gly Asn Ala Asn Asn Phe Tyr Thr Trp

Glu Ala Cys Asp Asp Ala Cys Trp Arg Ile

<210> 35

<211> 58

<212> PRT

<213> Artificial Sequence

<220>

<223> DPI.2.3

<400> 35

Asn Ala Glu Ile Cys Leu Leu Pro Leu Asp Thr Gly Pro Cys Ile Ala

Phe Phe Leu Arg Tyr Tyr Tyr Asp Arg Tyr Thr Gln Ser Cys Gln Thr

25 . 20 30

Phe Val Tyr Gly Gly Cys Met Gly Asn Ala Asn Asn Phe Tyr Thr Trp 40

Glu Ala Cys Asp Asp Ala Cys Trp Arg Ile

<210> 36

<211> 61

<212> PRT

<213> Homo sapiens

<400> 36

Val Pro Lys Val Cys Arg Leu Gln Val Ser Val Asp Asp Gln Cys Glu

Gly Ser Thr Glu Lys Tyr Phe Phe Asn Leu Ser Ser Met Thr Cys Glu

Lys Phe Phe Ser Gly Gly Cys His Arg Asn Arg Ile Glu Asn Arg Phe

Pro Asp Glu Ala Thr Cys Met Gly Phe Cys Ala Pro Lys

<210> 37

<211> 58

<212> PRT

<213> Artificial Sequence

<220>

<223> DPI.3.1

<400> 37

Val Pro Lys Val Cys Arg Leu Gln Val Val Arg Gly Pro Cys Ile Ala

Phe Phe Pro Arg Trp Phe Phe Asn Leu Ser Ser Met Thr Cys Val Leu 25

Phe Pro Tyr Gly Gly Cys Gln Gly Asn Gly Asn Arg Phe Pro Asp Glu

Ala Thr Cys Met Gly Phe Cys Ala Pro Lys

<210> <211> 38

61

<212> PRT

<213> Artificial Sequence

<220>

<223> DPI.3.2

<400> 38

Val Pro Lys Val Cys Arg Leu Gln Val Ser Val Asp Asp Gln Cys Ile

Gly Ser Phe Glu Lys Tyr Phe Phe Asn Leu Ala Ser Met Thr Cys Glu

Thr Phe Val Ser Gly Gly Cys His Arg Asn Arg Ile Glu Asn Arg Phe

Pro Asp Glu Ala Thr Cys Met Gly Phe Cys Ala Pro Lys

<210> 39

<211> 58

<212> PRT

<213> Artificial Sequence

<220>

<223> DPI.3.3

<400> 39

Val Pro Lys Val Cys Arg Leu Gln Val Val Ala Gly Pro Cys Ile Gly

Phe Phe Lys Arg Tyr Phe Phe Ala Leu Ser Ser Met Thr Cys Glu Thr

Phe Val Ser Gly Gly Cys His Arg Asn Arg Asn Arg Phe Pro Asp Glu

Ala Thr Cys Met Gly Phe Cys Ala Pro Lys

<210> 40

<211> 58 <212> PRT <213> Homo sapiens

<400> 40

Ile Pro Ser Phe Cys Tyr Ser Pro Lys Asp Glu Gly Leu Cys Ser Ala

Asn Val Thr Arg Tyr Tyr Phe Asn Pro Arg Tyr Arg Thr Cys Asp Ala

Phe Thr Tyr Thr Gly Cys Gly Gly Asn Asp Asn Asn Phe Val Ser Arg

Glu Asp Cys Lys Arg Ala Cys Ala Lys Ala

<210> 41 <211> 58

<212> PRT <213> Artificial Sequence

<220>

<223> DPI.4.1

<400> 41

Ile Pro Ser Phe Cys Tyr Ser Pro Lys Ser Ala Gly Pro Cys Val Ala

Met Phe Pro Arg Tyr Tyr Phe Asn Pro Arg Tyr Arg Thr Cys Glu Thr

Phe Val Tyr Gly Gly Cys Met Gly Asn Gly Asn Asn Phe Val Ser Arg 40

Glu Asp Cys Lys Arg Ala Cys Ala Lys Ala 55

<210> 42

<211> 58

<212> PRT

<213> Artificial Sequence

<220>

<223> DPI.4.2

<400> 42

Ile Pro Ser Phe Cys Tyr Ser Pro Lys Asp Glu Gly Leu Cys Ile Ala

Phe Phe Thr Arg Tyr Tyr Phe Asn Pro Arg Tyr Arg Thr Cys Asp Ala 30

Phe Thr Tyr Thr Gly Cys Gly Gly Asn Asp Asn Asn Phe Val Ser Arg

Glu Asp Cys Lys Arg Ala Cys Ala Lys Ala

<210> 43 <211> 58 <212> PRT

<213> Artificial Sequence

<220>

<223> DPI.4.3

<400> 43

Ile Pro Ser Phe Cys Tyr Ser Pro Lys Asp Thr Gly Pro Cys Ile Ala

10 1 Phe Phe Thr Arg Tyr Tyr Phe Asn Pro Arg Tyr Arg Thr Cys Asp Thr 25 Phe Val Tyr Gly Gly Cys Gly Gly Asn Asp Asn Asn Phe Val Ser Arg Glu Asp Cys Lys Arg Ala Cys Ala Lys Ala <210> 44 <211> 58 <212> PRT <213> Homo sapiens <400> 44 Met His Ser Phe Cys Ala Phe Lys Ala Asp Asp Gly Pro Cys Lys Ala Ile Met Lys Arg Phe Phe Phe Asn Ile Phe Thr Arg Gln Cys Glu Glu Phe Ile Tyr Gly Gly Cys Glu Gly Asn Gln Asn Arg Phe Glu Ser Leu Glu Glu Cys Lys Lys Met Cys Thr Arg Asp <210> 45 <211> 58 <212> PRT <213> Artificial Sequence <220> <223> DPI.5.1 <400> 45 Met His Ser Phe Cys Ala Phe Lys Ala Ser Ala Gly Pro Cys Val Ala Met Phe Pro Arg Tyr Phe Phe Asn Ile Phe Thr Arg Gln Cys Glu Thr Phe Val Tyr Gly Gly Cys Met Gly Asn Gly Asn Arg Phe Glu Ser Leu Glu Glu Cys Lys Lys Met Cys Thr Arg Asp 55 <210> 46 <211> 58

<212> PRT

<220>

<213> Artificial Sequence

3

<223> DPI.5.2

<400> 46

Met His Ser Phe Cys Ala Phe Lys Ala Asp Asp Gly Pro Cys Ile Ala

Ile Phe Lys Arg Phe Phe Phe Asn Ile Phe Thr Arg Gln Cys Glu Glu

Phe Ile Tyr Gly Gly Cys Glu Gly Asn Gln Asn Arg Phe Glu Ser Leu

Glu Glu Cys Lys Lys Met Cys Thr Arg Asp

<210> 47

<211> 58

<212> PRT

<213> Artificial Sequence

<220>

<223> DPI.5.3

<400> 47

Met His Ser Phe Cys Ala Phe Lys Ala Tyr Thr Gly Pro Cys Ile Ala

Phe Phe Lys Arg Phe Phe Phe Asn Ile Phe Thr Arg Gln Cys Glu Thr

Phe Ile Tyr Gly Gly Cys Glu Gly Asn Gln Asn Arg Phe Glu Ser Leu

Glu Glu Cys Lys Lys Met Cys Thr Arg Asp

55 50

<210> 48 <211> 58

<212> PRT

<213> Homo sapiens

<400> 48

Lys Pro Asp Phe Cys Phe Leu Glu Glu Asp Pro Gly Ile Cys Arg Gly

Tyr Ile Thr Arg Tyr Phe Tyr Asn Asn Gln Thr Lys Gln Cys Glu Arg

Phe Lys Tyr Gly Gly Cys Leu Gly Asn Met Asn Asn Phe Glu Thr Leu

Glu Glu Cys Lys Asn Ile Cys Glu Asp Gly

```
<210> 49
<211> 58
<212> PRT
<213> Artificial Sequence
<220>
<223> DPI.6.1
<400> 49
Lys Pro Asp Phe Cys Phe Leu Glu Glu Ser Ala Gly Pro Cys Val Ala
Met Phe Pro Arg Tyr Phe Tyr Asn Asn Gln Thr Lys Gln Cys Glu Thr
Phe Val Tyr Gly Gly Cys Met Gly Asn Gly Asn Asn Phe Glu Thr Leu
Glu Glu Cys Lys Asn Ile Cys Glu Asp Gly
<210> 50
<211> 58
<212> PRT
<213> Artificial Sequence
<220>
<223> DPI.6.2
<400> 50
Lys Pro Asp Phe Cys Phe Leu Glu Glu Asp Pro Gly Ile Cys Val Gly
Tyr Phe Thr Arg Tyr Phe Tyr Asn Asn Gln Thr Lys Gln Cys Glu Arg
Phe Lys Tyr Gly Gly Cys Leu Gly Asn Met Asn Asn Phe Glu Thr Leu
Glu Glu Cys Lys Asn Ile Cys Glu Asp Gly
                         55
```

```
<210> 51
<211> 58
<212> PRT
<213> Artificial Sequence
<220>
<223> DPI.6.3
```

```
<400> 51
```

Lys Pro Asp Phe Cys Phe Leu Glu Glu Asp Pro Gly Ile Cys Val Gly

Phe Phe Thr Arg Tyr Phe Tyr Asn Asn Gln Thr Lys Gln Cys Glu Arg 25

Phe Val Tyr Gly Gly Cys Leu Gly Asn Met Asn Asn Phe Glu Thr Leu

Glu Glu Cys Lys Asn Ile Cys Glu Asp Gly

<210> 52

<211> 58

<212> PRT

<213> Artificial Sequence

<220>

<223> DPI.6.4

<400> 52

Lys Pro Asp Phe Cys Phe Leu Glu Glu Asp Pro Gly Ile Cys Val Gly

Phe Phe Thr Arg Tyr Phe Tyr Asn Ala Gln Thr Lys Gln Cys Glu Arg

Phe Val Tyr Gly Gly Cys Leu Gly Asn Met Asn Asn Phe Glu Thr Leu 40

Glu Glu Cys Lys Asn Ile Cys Glu Asp Gly

<210> 53

<211> 58 <212> PRT

<213> Artificial Sequence

<220>

<223> DPI.6.5

<400> 53

Lys Pro Asp Phe Cys Phe Leu Glu Glu Asp Pro Gly Pro Cys Val Gly

Phe Phe Gln Arg Tyr Phe Tyr Asn Ala Gln Thr Lys Gln Cys Glu Arg

Phe Val Tyr Gly Gly Cys Gln Gly Asn Met Asn Asn Phe Glu Thr Leu

Glu Glu Cys Lys Asn Ile Cys Glu Asp Gly 55

```
<210> 54
<211> 58
<212> PRT
<213> Artificial Sequence
<220>
<223> DPI.6.6
<400> 54
Lys Pro Asp Phe Cys Phe Leu Glu Glu Asp Pro Gly Pro Cys Val Gly
                                    10
Phe Phe Thr Arg Tyr Phe Tyr Asn Asn Gln Thr Lys Gln Cys Glu Arg
Phe Val Tyr Gly Gly Cys Gln Gly Asn Met Asn Asn Phe Glu Thr Leu
Glu Glu Cys Lys Asn Ile Cys Glu Asp Gly
<210> 55
<211> 58
<212> PRT
<213> Artificial Sequence
<220>
<223> DPI.6.7
<400> 55
Lys Pro Asp Phe Cys Phe Leu Glu Glu Asp Pro Gly Pro Cys Ile Gly
Phe Phe Pro Arg Tyr Phe Tyr Asn Asn Gln Thr Lys Gln Cys Glu Arg
Phe Val Tyr Gly Gly Cys Gln Gly Asn Met Asn Asn Phe Glu Thr Leu
        35
                             40
                                                 45
Glu Glu Cys Lys Asn Ile Cys Glu Asp Gly
                        55
<210> 56 <211> 58
<212> PRT
<213> Homo sapiens
```

Asn Glu Asn Arg Phe Tyr Tyr Asn Ser Val Ile Gly Lys Cys Arg Pro

Gly Pro Ser Trp Cys Leu Thr Pro Ala Asp Arg Gly Leu Cys Arg Ala

<400> 56

20

Phe Lys Tyr Ser Gly Cys Gly Gly Asn Glu Asn Asn Phe Thr Ser Lys 40

Gln Glu Cys Leu Arg Ala Cys Lys Lys Gly

<210> 57

<211> 58 <212> PRT <213> Artificial Sequence

<220>

<223> DPI.7.1

<400> 57

Gly Pro Ser Trp Cys Leu Thr Pro Ala Val Arg Gly Pro Cys Ile Ala

Phe Phe Pro Arg Trp Tyr Asn Ser Val Ile Gly Lys Cys Val Leu

Phe Pro Tyr Gly Gly Cys Gln Gly Asn Gly Asn Asn Phe Thr Ser Lys

Gln Glu Cys Leu Arg Ala Cys Lys Lys Gly

<210> 58

<211> 58

<212> PRT

<213> Artificial Sequence

<220>

<223> DPI.7.2

<400> 58

Gly Pro Ser Trp Cys Leu Thr Pro Ala Asp Arg Gly Leu Cys Val Ala

Asn Phe Asn Arg Phe Tyr Tyr Asn Ser Val Ile Gly Lys Cys Arg Pro

Phe Lys Tyr Ser Gly Cys Gly Gly Asn Glu Asn Asn Phe Thr Ser Lys

Gln Glu Cys Leu Arg Ala Cys Lys Gly

<210> 59

<211> 58 <212> PRT <213> Artificial Sequence

```
<220>
```

<223> DPI.7.3

<400> 59

Gly Pro Ser Trp Cys Leu Thr Pro Ala Asp Arg Gly Leu Cys Val Ala

Phe Phe Asn Arg Phe Tyr Tyr Asn Ser Val Ile Gly Lys Cys Arg Pro

Phe Lys Tyr Ser Gly Cys Gly Gly Asn Glu Asn Asn Phe Lys Ser Lys 40

Gln Glu Cys Leu Arg Ala Cys Lys Lys Gly

<210> 60

<211> 58 <212> PRT <213> Artificial Sequence

<220>

<223> DPI.7.4

<400> 60

Gly Pro Ser Trp Cys Leu Thr Pro Ala Val Arg Gly Pro Cys Val Ala 1 $$ 5 $$ 10 $$ 15

Phe Phe Asn Arg Phe Tyr Tyr Asn Ser Val Ile Gly Lys Cys Arg Pro

Phe Lys Tyr Gly Gly Cys Gly Gly Asn Glu Asn Asn Phe Lys Ser Lys

Gln Glu Cys Leu Arg Ala Cys Lys Gly

<210> 61

<211> 58

<212> PRT

<213> Artificial Sequence

<220>

<223> DPI.7.5

<400> 61

Gly Pro Ser Trp Cys Leu Thr Pro Ala Asp Arg Gly Pro Cys Ile Ala

Phe Phe Pro Arg Trp Tyr Tyr Asn Ser Val Ile Gly Lys Cys Gln Thr

```
Phe Val Tyr Gly Gly Cys Gly Gly Asn Glu Asn Asn Phe Ala Ser Lys
                            40
```

Gln Glu Cys Leu Arg Ala Cys Lys Lys Gly

<210> 62

<211> 58 <212> PRT <213> Homo sapiens

<400> 62

Glu Thr Asp Ile Cys Lys Leu Pro Lys Asp Glu Gly Thr Cys Arg Asp 1 5 10 15 Phe Ile Leu Lys Trp Tyr Tyr Asp Pro Asn Thr Lys Ser Cys Ala Arg

Phe Trp Tyr Gly Gly Cys Gly Gly Asn Glu Asn Lys Phe Gly Ser Gln

Lys Glu Cys Glu Lys Val Cys Ala Pro Val 55

<210> 63

<211> 58

<212> PRT

<213> Artificial Sequence

<220>

<223> DPI.8.1

<400> 63

Glu Thr Asp Ile Cys Lys Leu Pro Lys Val Arg Gly Pro Cys Ile Ala

Phe Phe Pro Arg Trp Tyr Tyr Asp Pro Asn Thr Lys Ser Cys Val Leu

Phe Pro Tyr Gly Gly Cys Gln Gly Asn Gly Asn Lys Phe Gly Ser Gln

Lys Glu Cys Glu Lys Val Cys Ala Pro Val

<210> 64

<211> 58

<212> PRT

<213> Artificial Sequence

<220>

<223> DPI.8.2

<400> 64

Glu Thr Asp Ile Cys Lys Leu Pro Lys Asp Glu Gly Thr Cys Ile Ala

Phe Phe Leu Lys Trp Tyr Tyr Asp Pro Asn Thr Lys Ser Cys Ala Arg

Phe Val Tyr Gly Gly Cys Gly Gly Asn Glu Asn Lys Phe Gly Ser Gln

Lys Glu Cys Glu Lys Val Cys Ala Pro Val

<210> 65

<211> 58

<212> PRT

<213> Artificial Sequence

<220>

<223> DPI.8.3

<400> 65

Glu Thr Asp Ile Cys Lys Leu Pro Lys Asp Glu Gly Pro Cys Ile Ala

Phe Phe Leu Arg Trp Tyr Tyr Asp Pro Asn Thr Lys Ser Cys Ala Arg

Phe Val Tyr Gly Gly Cys Gly Gly Asn Glu Asn Lys Phe Gly Ser Gln

Lys Glu Cys Glu Lys Val Cys Ala Pro Val

<210> 66

<211> 58

<212> PRT

<213> Homo sapiens

<400> 66

Leu Pro Asn Val Cys Ala Phe Pro Met Glu Lys Gly Pro Cys Gln Thr

Tyr Met Thr Arg Trp Phe Phe Asn Phe Glu Thr Gly Glu Cys Glu Leu

Phe Ala Tyr Gly Gly Cys Gly Gly Asn Ser Asn Asn Phe Leu Arg Lys

Glu Lys Cys Glu Lys Phe Cys Lys Phe Thr

<210> 67

<211> 58

<212> PRT <213> Artificial Sequence

```
<220>
```

<223> DPI.9.1

<400> 67

Leu Pro Asn Val Cys Ala Phe Pro Met Val Arg Gly Pro Cys Ile Ala 1 5 10 15

Phe Phe Pro Arg Trp Phe Phe Asn Phe Glu Thr Gly Glu Cys Val Leu 20 . 25 30

Phe Val Tyr Gly Gly Cys Gln Gly Asn Gly Asn Asn Phe Leu Arg Lys 35 40 45

Glu Lys Cys Glu Lys Phe Cys Lys Phe Thr 50 55

<210> 68

<211> 58

<212> PRT

<213> Artificial Sequence

<220>

<223> DPI.9.2

<400> 68

Leu Pro Asn Val Cys Ala Phe Pro Met Glu Lys Gly Pro Cys Ile Ala 1 5 10 15

Tyr Phe Thr Arg Trp Phe Phe Asn Phe Glu Thr Gly Glu Cys Glu Leu 20 25 30

Phe Ala Tyr Gly Gly Cys Gly Gly Asn Ser Asn Asn Phe Leu Arg Lys 35 40 45

Glu Lys Cys Glu Lys Phe Cys Lys Phe Thr 50 55

<210> 69

<211> 58

<212> PRT

<213> Artificial Sequence

<220>

<223> DPI.9.3

<400> 69

Leu Pro Asn Val Cys Ala Phe Pro Met Glu Lys Gly Pro Cys Ile Ala 1 5 10 15

Tyr Phe Pro Arg Trp Phe Phe Asn Phe Glu Thr Gly Glu Cys Val Leu

20 25 30

Phe Val Tyr Gly Gly Cys Gly Gly Asn Ser Asn Asn Phe Leu Arg Lys 35 40 45

Glu Lys Cys Glu Lys Phe Cys Lys Phe Thr 50 55

<210> 70

<211> 8157

<212> DNA

<213> Artificial Sequence

<220>

<223> Plasmid pHIL-D2

<400> 70 agatcgcggc cgcgatctaa catccaaaga cgaaaggttg aatgaaacct ttttgccatc 60 cgacatccac aggtccattc tcacacataa gtgccaaacg caacaggagg ggatacacta 120 gcagcagacc gttgcaaacg caggacctcc actcctcttc tcctcaacac ccacttttgc 180 240 categaaaaa ccageccagt tattgggett gattggaget egeteattee aatteettet 300 attaggctac taacaccatg actttattag cctgtctatc ctggcccccc tggcgaggtc atgtttgttt atttccgaat gcaacaagct ccgcattaca cccgaacatc actccagatg 360 420 agggetttet gagtgtgggg teaaatagtt teatgtteee aaatggeeea aaactgaeag 480 tttaaacgct gtcttggaac ctaatatgac aaaagcgtga tctcatccaa gatgaactaa 540 gtttggttcg ttgaaatgct aacggccagt tggtcaaaaa gaaacttcca aaagtcgcca taccgtttgt cttgtttggt attgattgac gaatgctcaa aaataatctc attaatgctt 600 660 agcqcaqtct ctctatcqct tctgaacccg gtggcacctg tgccgaaacg caaatgggga aacaacccgc tttttggatg attatgcatt gtcctccaca ttgtatgctt ccaagattct 720 ggtgggaata ctgctgatag cctaacgttc atgatcaaaa tttaactgtt ctaaccccta 780 840 cttgacaggc aatatataaa cagaaggaag ctgccctgtc ttaaaccttt ttttttatca 900 tcattattag cttactttca taattgcgac tggttccaat tgacaagctt ttgattttaa 960 cqacttttaa cqacaacttq agaagatcaa aaaacaacta attattcgaa acgaggaatt cgccttagac atgactgttc ctcagttcaa gttgggcatt acgagaagac cggtcttgct 1020 1080 agattctaat caagaggatg tcagaatgcc atttgcctga gagatgcagg cttcattttt gatacttttt tatttgtaac ctatatagta taggattttt tttgtcattt tgtttcttct 1140 cgtacgagct tgctcctgat cagcctatct cgcagctgat gaatatcttg tggtaggggt 1200

ttgggaaaat cattcgagtt tgatgttttt cttggtattt cccactcctc ttcagagtac

1260

agaagattaa	gtgagaagtt	cgtttgtgca	agcttatcga	taagctttaa	tgcggtagtt	1320
tatcacagtt	aaattgctaa.	cgcagtcagg	caccgtgtat	gaaatctaac	aatgcgctca	1380
tcgtcatcct	cggcaccgtc	accctggatg	ctgtaggcat	aggcttggtt	atgccggtac	1440
tgccgggcct	cttgcgggat	atcgtccatt	ccgacagcat	cgccagtcac	tatggcgtgc	1500
tgctagcgct	atatgcgttg	atgcaatttc	tatgcgcacc	cgttctcgga	gcactgtccg	1560
accgctttgg	ccgccgccca	gtcctgctcg	cttcgctact	tggagccact	atcgactacg	1620
cgatcatggc	gaccacaccc	gtcctgtgga	tctatcgaat	ctaaatgtaa	gttaaaatct	1680
ctaaataatt	aaataagtcc	cagtttctcc	atacgaacct	taacagcatt	gcggtgagca	1740
tctagacctt	caacagcagc	cagatccatc	actgcttggc	caatatgttt	cagtccctca	1800
ggagttacgt	cttgtgaagt	gatgaacttc	tggaaggttg	cagtgttaac	tccgctgtat	1860
tgacgggcat	atccgtacgt	tggcaaagtg	tggttggtac	cggaggagta	atctccacaa	1920
ctctctggag	agtaggcacc.	aacaaacaca	gatccagcgt	gttgtacttg	atcaacataa	1980
gaagaagcat	tctcgatttg	caggatcaag	tgttcaggag	cgtactgatt	ggacatttcc	2040
aaagcctgct	cgtaggttgc	aaccgatagg	gttgtagagt	gtgcaataca	cttgcgtaca	2100
atttcaaccc	ttggcaactg	cacagcttgg	ttgtgaacag	catcttcaat	tctggcaagc	2160
tccttgtctg	tcatatcgac	agccaacaga	atcacctggg	aatcaatacc	atgttcagct	2220
tgagcagaag	gtctgaggca	acgaaatctg	gatcagcgta	tttatcagca	ataactagaa	2280
cttcagaagg	cccagcaggc	atgtcaatac	tacacagggc	tgatgtgtca	ttttgaacca	2340
tcatcttggc	agcagtaacg	aactggtttc	ctggaccaaa	tattttgtca	cacttaggaa	2400
cagtttctgt	tccgtaagcc	atagcagcta	ctgcctgggc	gcctcctgct	agcacgatac	2460
acttagcacc	aaccttgtgg	gcaacgtaga	tgacttctgg	ggtaagggta	ccatccttct	2520
taggtggaga	tgcaaaaaca	atttctttgc	aaccagcaac	tttggcagga	acacccagca	2580
tcagggaagt	ggaaggcaga	attgcggttc	caccaggaat	atagaggcca	actttctcaa	2640
taggtcttgc	aaaacgagag	cagactacac	cagggcaagt	ctcaacttgc	aacgtctccg	2700
ttagttgagc	ttcatggaat	ttcctgacgt	tatctataga	gagatcaatg	gctctcttaa	2760
cgttatctgg	caattgcata	agttcctctg	ggaaaggagc	ttctaacaca	ggtgtcttca	2820
aagcgactcc	atcaaacttg	gcagttagtt	ctaaaagggc	tttgtcacca	ttttgacgaa	2880
cattgtcgac	aattggtttg	actaattcca	taatctgttc	cgttttctgg	ataggacgac	2940
gaagggcatc	ttcaatttct	tgtgaggagg	ccttagaaac	gtcaattttg	cacaattcaa	3000
tacgaccttc	agaagggact	tctttaggtt	tggattcttc	tttaggttgt	tccttggtgt	3060

atcctggctt	ggcatctcct	ttccttctag	tgacctttag	ggacttcata	tccaggtttc	3120
tctccacctc	gtccaacgtc	acaccgtact	tggcacatct	aactaatgca	aaataaaata	3180
agtcagcaca	ttcccaggct	atatcttcct	tggatttagc	ttctgcaagt	tcatcagctt	3240
cctccctaat	tttagcgttc	aacaaaactt	cgtcgtcaaa	taaccgtttg	gtataagaac	3300
cttctggagc	attgctctta	cgatcccaca	aggtgcttcc	atggctctaa	gaccctttga	3360
ttggccaaaa	caggaagtgc	gttccaagtg	acagaaacca	acacctgttt	gttcaaccac	3420
aaatttcaag	cagtctccat	cacaatccaa	ttcgataccc	agcaactttt	gagttcgtcc	3480
agatgtagca	cctttatacc	acaaaccgtg	acgacgagat	tggtagactc	cagtttgtgt	3540
ccttatagcc	tccggaatag	actttttgga	cgagtacacc	aggcccaacg	agtaattaga	3600
agagtcagcc caaaatttca	accaaagtag ctgacaggga	tgaatagacc actttttgac	atcggggcgg atcttcagaa	tcagtagtca agttcgtatt	aagacgccaa cagtagtcaa	3660 3720
ttgccgagca	tcaataatgg	ggattatacc	agaagcaaca	gtggaagtca	catctaccaa	3780
ctttgcggtc	tcagaaaaag	cataaacagt	tctactaccg	ccattagtga	aacttttcaa	3840
atcgcccagt	ggagaagaaa	aaggcacagc	gatactagca	ttagcgggca	aggatgcaac	3900
tttatcaacc	agggtcctat	agataaccct	agcgcctggg	atcatccttt	ggacaactct	3960
ttctgccaaa	tctaggtcca	aaatcacttc	attgatacca	ttatacggat	gactcaactt	4020
gcacattaac	ttgaagctca	gtcgattgag	tgaacttgat	caggttgtgc	agctggtcag	4080
cagcataggg	aaacacggct	tttcctacca	aactcaagga	attatcaaac	tctgcaacac	4140
ttgcgtatgc	aggtagcaag	ggaaatgtca	tacttgaagt	cggacagtga	gtgtagtctt	4200
gagaaattct	gaagccgtat	ttttattatc	agtgagtcag	tcatcaggag	atcctctacg	4260
ccggacgcat	cgtggccggc	atcaccggcg	ccacaggtgc	ggttgctggc	gcctatatcg	4320
ccgacatcac	cgatggggaa	gatcgggctc	gccacttcgg	gctcatgagc	gcttgtttcg	4380
gcgtgggtat	ggtggcaggc	cccgtggccg	ggggactgtt	gggcgccatc	tccttgcatg	4440
caccattcct	tgcggcggcg	gtgctcaacg	gcctcaacct	actactgggc	tgcttcctaa	4500
tgcaggagtc	gcataaggga	gagcgtcgag	tatctatgat	tggaagtatg	ggaatggtga	4560
tacccgcatt	cttcagtgtc	ttgaggtctc	ctatcagatt	atgcccaact	aaagcaaccg	4620
gaggaggaga	tttcatggta	aatttctctg	acttttggtc	atcagtagac	tcgaactgtg	4680
agactatctc	ggttatgaca	gcagaaatgt	ccttcttgga	gacagtaaat	gaagtcccac	4740
caataaagaa	atccttgtta	tcaggaacaa	acttcttgtt	tcgaactttt	tcggtgcctt	4800
gaactataaa	atgtagagtg	gatatgtcgg	gtaggaatgg	agcgggcaaa	tgcttacctt	4860
ctggaccttc	aagaggtatg	tagggtttgt	agatactgat	gccaacttca	gtgacaacgt	4920

tgctatttcg	ttcaaaccat	tccgaatcca	gagaaatcaa	agttgtttgt	ctactattga	4980
tccaagccag	tgcggtcttg	aaactgacaa	tagtgtgctc	gtgttttgag	gtcatctttg	5040
tatgaataaa	tctagtcttt	gatctaaata	atcttgacga	gccaaggcga	taaataccca	5100
aatctaaaac	tcttttaaaa	cgttaaaagg	acaagtatgt	ctgcctgtat	taaaccccaa	5160
atcagctcgt	agtctgatcc	tcatcaactt	gaggggcact	atcttgtttt	agagaaattt	5220
gcggagatgc	gatatcgaga	aaaaggtacg	ctgattttaa	acgtgaaatt	tatctcaaga	5280
tcgcggccgc	gatctcgaat	aataactgtt	atttttcagt	gttcccgatc	tgcgtctatt	5340
tcacaatacc	aacatgagtc	agcttatcga	tgataagctg	tcaaacatga	gaattaattc	5400
gatgataagc	tgtcaaacat	gagaaatctt	gaagacgaaa	gggcctcgtg	atacgcctat	5460
ttttataggt gaaatgtgcg	taatgtcatg cggaacccct	ataataatgg atttgtttat	tttcttagac ttttctaaat	gtcaggtggc acattcaaat	acttttcggg atgtatccgc	5520 5580
tcatgagaca	ataaccctga	taaatgcttc	aataatattg	aaaaaggaag	agtatgagta	5640
ttcaacattt	ccgtgtcgcc	cttattccct	tttttgcggc	attttgcctt	cctgtttttg	5700
ctcacccaga	aacgctggtg	aaagtaaaag	atgctgaaga	tcagttgggt	gcacgagtgg	5760
gttacatcga	actggatctc	aacagcggta	agatccttga	gagttttcgc	cccgaagaac	5820
gttttccaat	gatgagcact	tttaaagttc	tgctatgtgg	cgcggtatta	tcccgtgttg	5880
acgccgggca	agagcaactc	ggtcgccgca	tacactattc	tcagaatgac	ttggttgagt	5940
actcaccagt	cacagaaaag	catcttacgg	atggcatgac	agtaagagaa	ttatgcagtg	6000
ctgccataac	catgagtgat	aacactgcgg	ccaacttact	tctgacaacg	atcggaggac	6060
cgaaggagct	aaccgctttt	ttgcacaaca	tgggggatca	tgtaactcgc	cttgatcgtt	6120
gggaaccgga	gctgaatgaa	gccataccaa	acgacgagcg	tgacaccacg	atgcctgcag	6180
caatggcaac	aacgttgcgc	aaactattaa	ctggcgaact	acttactcta	gcttcccggc	6240
aacaattaat	agactggatg	gaggcggata	aagttgcagg	accacttctg	cgctcggccc	6300
ttccggctgg	ctggtttatt	gctgataaat	ctggagccgg	tgagcgtggg	tctcgcggta	6360
tcattgcagc	actggggcca	gatggtaagc	cctcccgtat	cgtagttatc	tacacgacgg	6420
ggagtcaggc	aactatggat	gaacgaaata	gacagatcgc	tgagataggt	gcctcactga	6480
ttaagcattg	gtaactgtca	gaccaagttt	actcatatat	actttagatt	gatttaaatt	6540
gtaaacgtta	atattttgtt	aaaattcgcg	ttaaattttt	gttaaatcag	ctcattttt	6600
aaccaatagg	ccgaaatcgg	caaaatccct	tataaatcaa	aagaatagac	cgagataggg	6660
ttgagtgttg	ttccagtttg	gaacaagagt	ccactattaa	agaacgtgga	ctccaacgtc	6720
aaagggcgaa	aaaccgtcta	tcagggcgat	ggcccactac	gtgaaccatc	accctaatca	6780

agttttttgg ggtcgaggtg ccgtaaagca ctaaa	tegga accetaaagg gageeeega 6840						
tttagagctt gacggggaaa gccggcgaac gtggc	gagaa aggaagggaa gaaagcgaaa 6900						
ggagcgggcg ctagggcgct ggcaagtgta gcggt	cacge tgegegtaae caccacacee 6960						
gccgcgctta atgcgccgct acagggcgcg taaaaa	ggatc taggtgaaga tcctttttga 7020						
taatctcatg accaaaatcc cttaacgtga gtttt	cgttc cactgagcgt cagaccccgt 7080						
agaaaagatc aaaggatctt cttgagatcc ttttt	ttctg cgcgtaatct gctgcttgca 7140						
aacaaaaaaa ccaccgctac cagcggtggt ttgtt	tgccg gatcaagagc taccaactct 7200						
ttttccgaag gtaactggct tcagcagagc gcaga	tacca aatactgtcc ttctagtgta 7260						
gccgtagtta ggccaccact tcaagaactc tgtag	caccg cctacatacc tcgctctgct 7320						
aatcctgtta ccagtggctg ctgccagtgg cgata							
aagacgatag ttaccggata aggcgcagcg gtcgg							
gcccagcttg gagcgaacga cctacaccga actga							
aagcgccacg cttcccgaag ggagaaaggc ggaca							
aacaggagag cgcacgaggg agcttccagg gggaa	acgcc tggtatcttt atagtcctgt 7620						
cgggtttcgc cacctctgac ttgagcgtcg atttt	tgtga tgctcgtcag gggggcggag 7680						
cctatggaaa aacgccagca acgcggcctt tttac	ggttc ctggcctttt gctggccttt 7740						
tgctcacatg ttctttcctg cgttatcccc tgatt	ctgtg gataaccgta ttaccgcctt 7800						
tgagtgagct gataccgctc gccgcagccg aacga	ccgag cgcagcgagt cagtgagcga 7860						
ggaagcggaa gagcgcctga tgcggtattt tctcc	ttacg catctgtgcg gtatttcaca 7920						
ccgcatatgg tgcactctca gtacaatctg ctctg	atgcc gcatagttaa gccagtatac 7980						
actccgctat cgctacgtga ctgggtcatg gctgc	gcccc gacacccgcc aacacccgct 8040						
gacgcgccct gacgggcttg tctgctcccg gcatc	cgctt acagacaagc tgtgaccgtc 8100						
tccgggagct gcatgtgtca gaggttttca ccgtc	atcac cgaaacgcgc gaggcag 8157						
<210> 71 <211> 8584 <212> DNA <213> Artificial Sequence							
<pre><223> Plasmid pHIL-D2 (MFalphaPrePro::EPI-HNE-3)</pre>							

agatcgcggc cgcgatctaa catccaaaga cgaaaggttg aatgaaacct ttttgccatc 60

<400> 71

120 cgacatccac aggtccattc tcacacataa gtgccaaacg caacaggagg ggatacacta qcagcagacc gttgcaaacg caggacctcc actcctcttc tcctcaacac ccacttttgc 180 240 catcgaaaaa ccagcccagt tattgggctt gattggagct cgctcattcc aattccttct 300 attaggctac taacaccatg actttattag cctgtctatc ctggcccccc tggcgaggtc atgtttgttt atttccgaat gcaacaagct ccgcattaca cccgaacatc actccagatg 360 agggetttet gagtgtgggg teaaatagtt teatgtteee aaatggeeea aaactgaeag 420 480 tttaaacgct gtcttggaac ctaatatgac aaaagcgtga tctcatccaa gatgaactaa 540 gtttggttcg ttgaaatgct aacggccagt tggtcaaaaa gaaacttcca aaagtcgcca 600 taccgtttgt cttgtttggt attgattgac gaatgctcaa aaataatctc attaatgctt 660 agogoagtot ototatogot totgaacoog gtggcacotg tgccgaaacg caaatgggga aacaacccgc tttttggatg attatgcatt gtcctccaca ttgtatgctt ccaagattct 720 780 ggtgggaata ctgctgatag cctaacgttc atgatcaaaa tttaactgtt ctaaccccta cttgacaggc aatatataaa cagaaggaag ctgccctgtc ttaaaccttt ttttttatca 840 900 tcattattag cttactttca taattgcgac tggttccaat tgacaagctt ttgattttaa 960 cgacttttaa cgacaacttg agaagatcaa aaaacaacta attattcgaa acgatgagat tcccatctat cttcactgct gttttgttcg ctgcttcctc tgctttggct gctccagtta 1020 acaccactac tgaagacgag actgctcaaa ttcctgctga ggctgtcatc ggttactctg 1080 1140 acttggaagg tgacttcgac gtcgctgttt tgccattctc taactctact aacaacggtt 1200 tgttgttcat caacactacc atcgcttcta tcgctgctaa ggaggaaggt gtttccttgg acaagagagc tgcttgtaac ttgccaatcg tcagaggtcc atgcattgct ttcttcccaa 1260 gatgggcttt cgacgctgtt aagggtaagt gcgtcttgtt cccatacggt ggttgtcaag 1320 1380 gtaacggtaa caagttctac tctgagaagg agtgtagaga gtactgtggt gttccatagt aagaattogo ottagacatg actgttooto agttoaagtt gggcattaog agaagacogg 1440 1500 tcttgctaga ttctaatcaa gaggatgtca gaatgccatt tgcctgagag atgcaggctt 1560 1620 ttottotogt acgagottgo tootgatoag octatotogo agotgatgaa tatottgtgg 1680 taggggtttg ggaaaatcat tcgagtttga tgtttttctt ggtatttccc actcctcttc 1740 agagtacaga agattaagtg agaagttcgt ttgtgcaagc ttatcgataa gctttaatgc ggtagtttat cacagttaaa ttgctaacgc agtcaggcac cgtgtatgaa atctaacaat 1800 1860 gegeteateg teatectegg cacegteace etggatgetg taggeatagg ettggttatg 1920 ccggtactgc cgggcctctt gcgggatatc gtccattccg acagcatcgc cagtcactat

ggcgtgctgc	tagcgctata	tgcgttgatg	caatttctat	gcgcacccgt	tctcggagca	1980
ctgtccgacc	gctttggccg	ccgcccagtc	ctgctcgctt	cgctacttgg	agccactatc	2040
gactacgcga	tcatggcgac	cacacccgtc	ctgtggatct	atcgaatcta	aatgtaagtt	2100
aaaatctcta	aataattaaa	taagtcccag	tttctccata	cgaaccttaa	cagcattgcg	2160
gtgagcatct	agaccttcaa	cagcagccag	atccatcact	gcttggccaa	tatgtttcag	2220
tccctcagga	gttacgtctt	gtgaagtgat	gaacttctgg	aaggttgcag	tgttaactcc	2280
gctgtattga	cgggcatatc	cgtacgttgg	caaagtgtgg	ttggtaccgg	aggagtaatc	2340
tccacaactc	tctggagagt	aggcaccaac	aaacacagat	ccagcgtgtt	gtacttgatc	2400
aacataagaa	gaagcattct	cgatttgcag	gatcaagtgt	tcaggagcgt	actgattgga	2460
catttccaaa	gcctgctcgt	aggttgcaac	cgatagggtt	gtagagtgtg	caatacactt	2520
		gcaactgcac tatcgacagc				2580 2640
ttcagcttga	gcagaaggtc	tgaggcaacg	aaatctggat	cagcgtattt	atcagcaata	2700
actagaactt	cagaaggccc	agcaggcatg	tcaatactac	acagggctga	tgtgtcattt	2760
tgaaccatca	tcttggcagc	agtaacgaac	tggtttcctg	gaccaaatat	tttgtcacac	2820
ttaggaacag	tttctgttcc	gtaagccata	gcagctactg	cctgggcgcc	tcctgctagc	2880
acgatacact	tagcaccaac	cttgtgggca	acgtagatga	cttctggggt	aagggtacca	2940
tccttcttag	gtggagatgc	aaaaacaatt	tctttgcaac	cagcaacttt	ggcaggaaca	3000
cccagcatca	gggaagtgga	aggcagaatt	gcggttccac	caggaatata	gaggccaact	3060
ttctcaatag	gtcttgcaaa	acgagagcag	actacaccag	ggcaagtctc	aacttgcaac	3120
gtctccgtta	gttgagcttc	atggaatttc	ctgacgttat	ctatagagag	atcaatggct	3180
ctcttaacgt	tatctggcaa	ttgcataagt	tcctctggga	aaggagcttc	taacacaggt	3240
gtcttcaaag	cgactccatc	aaacttggca	gttagttcta	aaagggcttt	gtcaccattt	3300
tgacgaacat	tgtcgacaat	tggtttgact	aattccataa	tctgttccgt	tttctggata	3360
ggacgacgaa	gggcatcttc	aatttcttgt	gaggaggcct	tagaaacgtc	aattttgcac	3420
aattcaatac	gaccttcaga	agggacttct	ttaggtttgg	attcttcttt	aggttgttcc	3480
ttggtgtatc	ctggcttggc	atctcctttc	cttctagtga	cctttaggga	cttcatatcc	3540
aggtttctct	ccacctcgtc	caacgtcaca	ccgtacttgg	cacatctaac	taatgcaaaa	3600
taaaataagt	cagcacattc	ccaggctata	tcttccttgg	atttagcttc	tgcaagttca	3660
tcagcttcct	ccctaatttt	agcgttcaac	aaaacttcgt	cgtcaaataa	ccgtttggta	3720
taagaacctt	ctggagcatt	gctcttacga	tcccacaagg	tgcttccatg	gctctaagac	3780

cctttgattg	gccaaaacag	gaagtgcgtt	ccaagtgaca	gaaaccaaca	cctgtttgtt	3840
caaccacaaa	tttcaagcag	tctccatcac	aatccaattc	gatacccagc	aacttttgag	3900
ttcgtccaga	tgtagcacct.	ttataccaca	aaccgtgacg	acgagattgg	tagactccag	3960
tttgtgtcct	tatagcctcc	ggaatagact	ttttggacga	gtacaccagg	cccaacgagt	4020
aattagaaga	gtcagccacc	aaagtagtga	atagaccatc	ggggcggtca	gtagtcaaag	4080
acgccaacaa	aatttcactg	acagggaact	ttttgacatc	ttcagaaagt	tcgtattcag	4140
tagtcaattg	ccgagcatca	ataatgggga	ttataccaga	agcaacagtg	gaagtcacat	4200
ctaccaactt	tgcggtctca	gaaaaagcat	aaacagttct	actaccgcca	ttagtgaaac	4260
ttttcaaatc	gcccagtgga	gaagaaaaag	gcacagcgat	actagcatta	gcgggcaagg	4320
atgcaacttt	atcaaccagg	gtcctataga	taaccctagc	gcctgggatc	atcctttgga	4380
	tgccaaatct cattaacttg			_		4440 4500
tggtcagcag	catagggaaa	cacggctttt	cctaccaaac	tcaaggaatt	atcaaactct	4560
gcaacacttg	cgtatgcagg	tagcaaggga	aatgtcatac	ttgaagtcgg	acagtgagtg	4620
tagtcttgag	aaattctgaa	gccgtatttt	tattatcagt	gagtcagtca	tcaggagatc	4680
ctctacgccg	gacgcatcgt	ggccggcatc	accggcgcca	caggtgcggt	tgctggcgcc	4740
tatatcgccg	acatcaccga	tggggaagat	cgggctcgcc	acttcgggct	catgagcgct	4800
tgtttcggcg	tgggtatggt	ggcaggcccc	gtggccgggg	gactgttggg	cgccatctcc	4860
ttgcatgcac	cattccttgc	ggcggcggtg	ctcaacggcc	tcaacctact	actgggctgc	4920
ttcctaatgc	aggagtcgca	taagggagag	cgtcgagtat	ctatgattgg	aagtatggga	4980
atggtgatac	ccgcattctt	cagtgtcttg	aggtctccta	tcagattatg	cccaactaaa	5040
gcaaccggag	gaggagattt	catggtaaat	ttctctgact	tttggtcatc	agtagactcg	5100
aactgtgaga	ctatctcggt	tatgacagca	gaaatgtcct	tcttggagac	agtaaatgaa	5160
gtcccaccaa	taaagaaatc	cttgttatca	ggaacaaact	tcttgtttcg	aactttttcg	5220
gtgccttgaa	ctataaaatg	tagagtggat	atgtcgggta	ggaatggagc	gggcaaatgc	5280
ttaccttctg	gaccttcaag	aggtatgtag	ggtttgtaga	tactgatgcc	aacttcagtg	5340
acaacgttgc	tatttcgttc	aaaccattcc	gaatccagag	aaatcaaagt	tgtttgtcta	5400
ctattgatcc	aagccagtgc	ggtcttgaaa	ctgacaatag	tgtgctcgtg	ttttgaggtc	5460
atctttgtat	gaataaatct	agtctttgat	ctaaataatc	ttgacgagcc	aaggcgataa	5520
atacccaaat	ctaaaactct	tttaaaacgt	taaaaggaca	agtatgtctg	cctgtattaa	5580
accccaaatc	agctcgtagt	ctgatcctca	tcaacttgag	gggcactatc	ttgttttaga	5640

gaaatttgcg	gagatgcgat	atcgagaaaa	aggtacgctg	attttaaacg	tgaaatttat	5700
ctcaagatcg	cggccgcgat	ctcgaataat	aactgttatt	tttcagtgtt	cccgatctgc	5760
gtctatttca	caataccaac	atgagtcagc	ttatcgatga	taagctgtca	aacatgagaa	5820
ttaattcgat	gataagctgt	caaacatgag	aaatcttgaa	gacgaaaggg	cctcgtgata	5880
cgcctatttt	tataggttaa	tgtcatgata	ataatggttt	cttagacgtc	aggtggcact	5940
tttcggggaa	atgtgcgcgg	aacccctatt	tgtttatttt	tctaaataca	ttcaaatatg	6000
tatccgctca	tgagacaata	accctgataa	atgcttcaat	aatattgaaa	aaggaagagt	6060
atgagtattc	aacatttccg	tgtcgccctt	attccctttt	ttgcggcatt	ttgccttcct	6120
gtttttgctc	acccagaaac	gctggtgaaa	gtaaaagatg	ctgaagatca	gttgggtgca	6180
cgagtgggtt	acatcgaact	ggatctcaac	agcggtaaga	tccttgagag	ttttcgcccc	6240
	ttccaatgat ccgggcaaga					6300 6360
gttgagtact	caccagtcac	agaaaagcat	cttacggatg	gcatgacagt	aagagaatta	6420
tgcagtgctg	ccataaccat	gagtgataac	actgcggcca	acttacttct	gacaacgatc	6480
ggaggaccga	aggagctaac	cgcttttttg	cacaacatgg	gggatcatgt	aactcgcctt	6540
gatçgttggg	aaccggagct	gaatgaagcc	ataccaaacg	acgagcgtga	caccacgatg	6600
cctgcagcaa	tggcaacaac	gttgcgcaaa	ctattaactg	gcgaactact	tactctagct	6660
teceggeaac	aattaataga	ctggatggag	gcggataaag	ttgcaggacc	acttctgcgc	6720
tcggcccttc	cggctggctg	gtttattgct	gataaatctg	gagccggtga	gcgtgggtct	6780
cgcggtatca	ttgcagcact	ggggccagat	ggtaagccct	cccgtatcgt	agttatctac	6840
acgacgggga	gtcaggcaac	tatggatgaa	cgaaatagac	agatcgctga	gataggtgcc	6900
tcactgatta	agcattggta	actgtcagac	caagtttact	catatatact	ttagattgat	6960
ttaaattgta	aacgttaata	ttttgttaaa	attcgcgtta	aatttttgtt	aaatcagctc	7020
attttttaac	caataggccg	aaatcggcaa	aatcccttat	aaatcaaaag	aatagaccga	7080
gatagggttg	agtgttgttc	cagtttggaa	caagagtcca	ctattaaaga	acgtggactc	7140
caacgtcaaa	gggcgaaaaa	ccgtctatca	gggcgatggc	ccactacgtg	aaccatcacc	7200
ctaatcaagt	tttttggggt	cgaggtgccg	taaagcacta	aatcggaacc	ctaaagggag	7260
cccccgattt	agagcttgac	ggggaaagcc	ggcgaacgtg	gcgagaaagg	aagggaagaa	7320
agcgaaagga	gcgggcgcta	gggcgctggc	aagtgtagcg	gtcacgctgc	gcgtaaccac	7380
cacacccgcc	gcgcttaatg	cgccgctaca	gggcgcgtaa	aaggatctag	gtgaagatcc	7440
tttttgataa	tctcatgacc	aaaatccctt	aacgtgagtt	ttcgttccac	tgagcgtcag	7500

accccgtaga	aaagatcaaa	ggatcttctt	gagatccttt	ttttctgcgc	gtaatctgct	7560
gcttgcaaac	aaaaaaacca	ccgctaccag	cggtggtttg	tttgccggat	caagagctac	7620
caactctttt	tccgaaggta.	actggcttca	gcagagcgca	gataccaaat	actgtccttc	7680
tagtgtagcc	gtagttaggc	caccacttca	agaactctgt	agcaccgcct	acatacctcg	7740
ctctgctaat	cctgttacca	gtggctgctg	ccagtggcga	taagtcgtgt	cttaccgggt	7800
tggactcaag	acgatagtta	ccggataagg	cgcagcggtc	gggctgaacg	gggggttcgt	7860
gcacacagcc	cagcttggag	cgaacgacct	acaccgaact	gagataccta	cagcgtgagc	7920
attgagaaag	cgccacgctt	cccgaaggga	gaaaggcgga	caggtatccg	gtaagcggca	7980
gggtcggaac	aggagagcgc	acgagggagc	ttccaggggg	aaacgcctgg	tatctttata	8040
gtcctgtcgg	gtttcgccac	ctctgacttg	agcgtcgatt	tttgtgatgc	tcgtcagggg	8100
	atggaaaaac tcacatgttc					8160 8220
ccgcctttga	gtgagctgat	accgctcgcc	gcagccgaac	gaccgagcgc	agcgagtcag	8280
tgagcgagga	agcggaagag	cgcctgatgc	ggtattttct	ccttacgcat	ctgtgcggta	8340
tttcacaccg	catatggtgc	actctcagta	caatctgctc	tgatgccgca	tagttaagcc	8400
agtatacact	ccgctatcgc	tacgtgactg	ggtcatggct	gcgccccgac	acccgccaac	8460
acccgctgac	gcgccctgac	gggcttgtct	gctcccggca	tccgcttaca	gacaagctgt	8520
gaccgtctcc	gggagctgca	tgtgtcagag	gttttcaccg	tcatcaccga	aacgcgcgag	8580
gcag						8584

<210> 72

<220>

<223> Plasmid pHIL-D2 (MFalphaPrePro::EPI-HNE-3)

<400> 72

Met Arg Phe Pro Ser Ile Phe Thr Ala Val Leu Phe Ala Ala Ser Ser 10

Ala Leu Ala Ala Pro Val Asn Thr Thr Glu Asp Glu Thr Ala Gln 25

Ile Pro Ala Glu Ala Val Ile Gly Tyr Ser Asp Leu Glu Gly Asp Phe 40

Asp Val Ala Val Leu Pro Phe Ser Asn Ser Thr Asn Asn Gly Leu Leu 50

Phe Ile Asn Thr Thr Ile Ala Ser Ile Ala Ala Lys Glu Glu Gly Val 70 75 Ser Leu Asp Lys Arg Ala Ala Cys Asn Leu Pro Ile Val Arg Gly Pro Cys Ile Ala Phe Phe Pro Arg Trp Ala Phe Asp Ala Val Lys Gly Lys Cys Val Leu Phe Pro Tyr Gly Gly Cys Gln Gly Asn Gly Asn Lys Phe

Tyr Ser Glu Lys Glu Cys Arg Glu Tyr Cys Gly Val Pro

<210> 73 <211> 444 <212> DNA <213> Artificial Sequence

<220>

<223> BstBI-AatII-EcoRI cassette for expression of Epi-HNE-4 <400> 73 ttcgaaacga tgagattccc atctatcttc actgctgttt tgttcgctgc ttcctctgct

ttggctgctc cagttaacac cactactgaa gacgagactg ctcaaattcc tgctgaggct 120 gtcatcggtt actctgactt ggaaggtgac ttcgacgtcg ctgttttgcc attctctaac 180 tctactaaca acggtttgtt gttcatcaac actaccatcg cttctatcgc tgctaaggag 240 300 qaaqqtgttt ccttggacaa gagagaggct tgtaacttgc caatcgtcag aggtccatgc 360 attgctttct tcccaagatg ggctttcgac gctgttaagg gtaagtgcgt cttgttccca 420 tacqqtqqtt qtcaaggtaa cggtaacaag ttctactctg agaaggagtg tagagagtac

60

444

tgtggtgttc catagtaaga attc

<210> 74

<211> 141 <212> PRT

<213> Artificial Sequence

<220>

<223> BstBI-AatII-EcoRI cassette for expression of Epi-HNE-4

<400> 74

Met Arg Phe Pro Ser Ile Phe Thr Ala Val Leu Phe Ala Ala Ser Ser

Ala Leu Ala Ala Pro Val Asn Thr Thr Glu Asp Glu Thr Ala Gln

30 20 25 Ile Pro Ala Glu Ala Val Ile Gly Tyr Ser Asp Leu Glu Gly Asp Phe 40 Asp Val Ala Val Leu Pro Phe Ser Asn Ser Thr Asn Asn Gly Leu Leu Phe Ile Asn Thr Thr Ile Ala Ser Ile Ala Ala Lys Glu Glu Gly Val Ser Leu Asp Lys Arg Glu Ala Cys Asn Leu Pro Ile Val Arg Gly Pro Cys Ile Ala Phe Phe Pro Arg Trp Ala Phe Asp Ala Val Lys Gly Lys Cys Val Leu Phe Pro Tyr Gly Gly Cys Gln Gly Asn Gly Asn Lys Phe Tyr Ser Glu Lys Glu Cys Arg Glu Tyr Cys Gly Val Pro <210> 75 8590 <211> <212> DNA <213> Artificial Sequence <220> pD2pick (MFalphaPrePro::EPI-NHE-3) circular dsDNA <223> <400> agatcgcggc cgcgatctaa catccaaaga cgaaaggttg aatgaaacct ttttgccatc 60 120 cgacatccac aggtccattc tcacacataa gtgccaaacg caacaggagg ggatacacta gcagcagacc gttgcaaacg caggacctcc actcctcttc tcctcaacac ccacttttgc 180 catcgaaaaa ccagcccagt tattgggctt gattggagct cgctcattcc aattccttct 240 attaggctac taacaccatg actttattag cctgtctatc ctggcccccc tggcgaggtc 300 360 atgtttgttt atttccgaat gcaacaagct ccgcattaca cccgaacatc actccagatg agggctttct gagtgtgggg tcaaatagtt tcatgttccc aaatggccca aaactgacag 420 tttaaacgct gtcttggaac ctaatatgac aaaagcgtga tctcatccaa gatgaactaa 480 gtttggttcg ttgaaatgct aacggccagt tggtcaaaaa gaaacttcca aaagtcgcca 540

taccgtttgt cttgtttggt attgattgac gaatgctcaa aaataatctc attaatgctt

agegeagtet etetateget tetgaaceeg gtggeacetg tgeegaaaeg caaatgggga

aacaacccgc tttttggatg attatgcatt gtcctccaca ttgtatgctt ccaagattct

ggtgggaata ctgctgatag cctaacgttc atgatcaaaa tttaactgtt ctaaccccta

cttgacaggc aatatataaa cagaaggaag ctgccctgtc ttaaaccttt tttttatca

600

660

720

780

840

tcattattag	cttactttca	taattgcgac	tggttccaat	tgacaagctt	ttgattttaa	900
cgacttttaa	cgacaacttg	agaagatcaa	aaaacaacta	attattcgaa	acgatgagat	960
tcccatctat	cttcactgct	gttttgttcg	ctgcttcctc	tgctttggct	gctccagtta	1020
acaccactac	tgaagacgag	actgctcaaa	ttcctgctga	ggctgtcatc	ggttactctg	1080
acttggaagg	tgacttcgac	gtcgctgttt	tgccattctc	taactctact	aacaacggtt	1140
tgttgttcat	caacactacc	atcgcttcta	tcgctgctaa	ggaggaaggt	gtttccttgg	1200
acaagagagc	tgcttgtaac	ttgccaatcg	tcagaggtcc	atgcattgct	ttcttcccaa	1260
gatgggcttt	cgacgctgtt	aagggtaagt	gcgtcttgtt	cccatacggt	ggttgtcaag	1320
gtaacggtaa	caagttctac	tctgagaagg	agtgtagaga	gtactgtggt	gttccatagt	1380
aagaattcgc	cttagacatg	actgttcctc	agttcaagtt	gggcattacg	agaagaccgg	1440
tcttgctaga	ttctaatcaa	gaggatgtca	gaatgccatt	tgcctgagag	atgcaggctt	1500
catttttgat ttcttctcgt	acttttttat acgagcttgc	ttgtaaccta tcctgatcag	tatagtatag cctatctcgc	gattttttt agctgatgaa	gtcattttgt tatcttgtgg	1560 1620
taggggtttg	ggaaaatcat	tcgagtttga	tgtttttctt	ggtatttccc	actcctcttc	1680
agagtacaga	agattaagtg	agaagttcgt	ttgtgcaagc	ttatcgataa	gctttaatgc	1740
ggtagtttat	cacagttaaa	ttgctaacgc	agtcaggcac	cgtgtatgaa	atctaacaat	1800
gcgctcatcg	tcatcctcgg	caccgtcacc	ctggatgctg	taggcatagg	cttggttatg	1860
ccggtactgc	cgggcctctt	gcgggatatc	gtccattccg	acagcatcgc	cagtcactat	1920
ggcgtgctgc	tagcgctata	tgcgttgatg	caatttctat	gcgcacccgt	tctcggagca	1980
ctgtccgacc	gctttggccg	ccgcccagtc	ctgctcgctt	cgctacttgg	agccactatc	2040
gactacgcga	tcatggcgac	cacacccgtc	ctgtggatct	atcgaatcta	aatgtaagtt	2100
aaaatctcta	aataattaaa	taagtcccag	tttctccata	cgaaccttaa	cagcattgcg	2160
gtgagcatct	agaccttcaa	cagcagccag	atccatcact	gcttggccaa	tatgtttcag	2220
tccctcagga	gttacgtctt	gtgaagtgat	gaacttctgg	aaggttgcag	tgttaactcc	2280
gctgtattga	cgggcatatc	cgtacgttgg	caaagtgtgg	ttggtaccgg	aggagtaatc	2340
tccacaactc	tctggagagt	aggcaccaac	aaacacagat	ccagcgtgtt	gtacttgatc	2400
aacataagaa	gaagcattct	cgatttgcag	gatcaagtgt	tcaggagcgt	actgattgga	2460
catttccaaa	gcctgctcgt	aggttgcaac	cgatagggtt	gtagagtgtg	caatacactt	2520
gcgtacaatt	tcaacccttg	gcaactgcac	agcttggttg	tgaacagcat	cttcaattct	2580
ggcaagctcc	ttgtctgtca	tatcgacagc	caacagaatc	acctgggaat	caataccatg	2640
ttcagcttga	gcagaaggtc	tgaggcaacg	aaatctggat	cagcgtattt	atcagcaata	2700

actagaactt	cagaaggccc	agcaggcatg	tcaatactac	acagggctga	tgtgtcattt	2760
tgaaccatca	tcttggcagc	agtaacgaac	tggtttcctg	gaccaaatat	tttgtcacac	2820
ttaggaacag	tttctgttcc	gtaagccata	gcagctactg	cctgggcgcc	tcctgctagc	2880
acgatacact	tagcaccaac	cttgtgggca	acgtagatga	cttctggggt	aagggtacca	2940
tccttcttag	gtggagatgc	aaaaacaatt	tctttgcaac	cagcaacttt	ggcaggaaca	3000
cccagcatca	gggaagtgga	aggcagaatt	gcggttccac	caggaatata	gaggccaact	3060
ttctcaatag	gtcttgcaaa	acgagagcag	actacaccag	ggcaagtctc	aacttgcaac	3120
gtctccgtta	gttgagcttc	atggaatttc	ctgacgttat	ctatagagag	atcaatggct	3180
ctcttaacgt	tatctggcaa	ttgcataagt	tcctctggga	aaggagcttc	taacacaggt	3240
gtcttcaaag	cgactccatc	aaacttggca	gttagttcta	aaagggcttt	gtcaccattt	3300
tgacgaacat	tgtcgacaat	tggtttgact	aattccataa	tctgttccgt	tttctggata	3360
ggacgacgaa	gggcatcttc gaccttcaga	aatttcttgt	gaggaggcct	tagaaacgtc	aattttgcac	3420 3480
	ctggcttggc					3540
	ccacctcgtc					3600
						3660
	cagcacattc					3720
	ccctaatttt					3780
	ctggagcatt					3840
	gccaaaacag					3900
	tttcaagcag					3960
	tgtagcacct					4020
	tatagcctcc					4080
	gtcagccacc					4140
	aatttcactg					
	ccgagcatca					4200
	tgcggtctca					4260
	gcccagtgga					4320
	atcaaccagg					4380
					tacggatgac	4440
					gttgtgcagc	4500
tggtcagcag	r catagggaaa	cacggctttt	cctaccaaac	tcaaggaatt	atcaaactct	4560

gcaacacttg	cgtatgcagg	tagcaaggga	aatgtcatac	ttgaagtcgg	acagtgagtg	4620
tagtcttgag	aaattctgaa	gccgtatttt	tattatcagt	gagtcagtca	tcaggagatc	4680
ctctacgccg	gacgcatcgt	ggccggcatc	accggcgcca	caggtgcggt	tgctggcgcc	4740
tatatcgccg	acatcaccga	tggggaagat	cgggctcgcc	acttcgggct	catgagcgct	4800
tgtttcggcg	tgggtatggt	ggcaggcccc	gtggccgggg	gactgttggg	cgccatctcc	4860
ttgcatgcac	cattccttgc	ggcggcggtg	ctcaacggcc	tcaacctact	actgggctgc	4920
ttcctaatgc	aggagtcgca	taagggagag	cgtcgagtat	ctatgattgg	aagtatggga	4980
atggtgatac	ccgcattctt	cagtgtcttg	aggtctccta	tcagattatg	cccaactaaa	5040
gcaaccggag	gaggagattt	catggtaaat	ttctctgact	tttggtcatc	agtagactcg	5100
aactgtgaga	ctatctcggt	tatgacagca	gaaatgtcct	tcttggagac	agtaaatgaa	5160
gtcccaccaa	taaagaaatc	cttgttatca	ggaacaaact	tcttgtttcg	cgaacttttt	5220
cggtgccttg gcttaccttc	aactataaaa tggaccttca	tgtagagtgg agaggtatgt	atatgtcggg agggtttgta	taggaatgga gatactgatg	gcgggcaaat ccaacttcag	5280 5340
tgacaacgtt	gctatttcgt	tcaaaccatt	ccgaatccag	agaaatcaaa	gttgtttgtc	5400
tactattgat	ccaagccagt	gcggtcttga	aactgacaat	agtgtgctcg	tgttttgagg	5460
tcatctttgt	atgaataaat	ctagtctttg	atctaaataa	tcttgacgag	ccaaggcgat	5520
aaatacccaa	atctaaaact	cttttaaaac	gttaaaagga	caagtatgtc	tgcctgtatt	5580
aaaccccaaa	tcagctcgta	gtctgatcct	catcaacttg	aggggcacta	tcttgtttta	5640
gagaaatttg	cggagatgcg	atatcgagaa	aaaggtacgc	tgattttaaa	cgtgaaattt	5700
atctcaagat	cgcggccgcg	atctcgaata	ataactgtta	tttttcagtg	ttcccgatct	5760
gcgtctattt	cacaatacca	acatgagtca	gcttatcgat	gataagctgt	caaacatgag	5820
aattaattcg	atgataagct	gtcaaacatg	agaaatcttg	aagacgaaag	ggcctcgtga	5880
tacgcctatt	tttataggtt	aatgtcatga	taataatggt	ttcttagacg	tacgtcaggt	5940
ggcacttttc	ggggaaatgt	gcgcggaacc	cctatttgtt	tatttttcta	aatacattca	6000
aatatgtatc	cgctcatgag	acaataaccc	tgataaatgc	ttcaataata	ttgaaaaagg	6060
aagagtatga	gtattcaaca	tttccgtgtc	gcccttattc	ccttttttgc	ggcattttgc	6120
cttcctgttt	ttgctcaccc	agaaacgctg	gtgaaagtaa	aagatgctga	agatcagttg	6180
ggtgcacgag	tgggttacat	cgaactggat	ctcaacagcg	gtaagatcct	tgagagtttt	6240
cgccccgaag	aacgttttcc	aatgatgagc	acttttaaag	ttctgctatg	tggcgcggta	6300
ttatcccgtg	ttgacgccgg	gcaagagcaa	ctcggtcgcc	gcatacacta	ttctcagaat	6360
gacttggttg	agtactcacc	agtcacagaa	aagcatctta	cggatggcat	gacagtaaga	6420

gaattatgca	gtgctgccat	aaccatgagt	gataacactg	cggccaactt	acttctgaca	6480
acgatcggag	gaccgaagga	gctaaccgct	tttttgcaca	acatggggga	tcatgtaact	6540
cgccttgatc	gttgggaacc	ggagctgaat	gaagccatac	caaacgacga	gcgtgacacc	6600
acgatgcctg	cagcaatggc	aacaacgttg	cgcaaactat	taactggcga	actacttact	6660
ctagcttccc	ggcaacaatt	aatagactgg	atggaggcgg	ataaagttgc	aggaccactt	6720
ctgcgctcgg	cccttccggc	tggctggttt	attgctgata	aatctggagc	cggtgagcgt	6780
gggtctcgcg	gtatcattgc	agcactgggg	ccagatggta	agccctcccg	tatcgtagtt	6840
atctacacga	cggggagtca.	ggcaactatg	gatgaacgaa	atagacagat	cgctgagata	6900
ggtgcctcac	tgattaagca	ttggtaactg	tcagaccaag	tttactcata	tatactttag	6960
attgatttaa	attgtaaacg	ttaatatttt	gttaaaattc	gcgttaaatt	tttgttaaat	7020
cagctcattt	tttaaccaat	aggccgaaat	cggcaaaatc	ccttataaat	caaaagaata	7080
gaccgagata ggactccaac	gggttgagtg gtcaaagggc	ttgttccagt gaaaaaccgt	ttggaacaag ctatcagggc	agtccactat gatggcccac	taaagaacgt tacgtgaacc	7140 7200
atcaccctaa	tcaagttttt	tggggtcgag	gtgccgtaaa	gcactaaatc	ggaaccctaa	7260
agggagcccc	cgatttagag	cttgacgggg	aaagccggcg	aacgtggcga	gaaaggaagg	7320
gaagaaagcg	aaaggagcgg	gcgctagggc	gctggcaagt	gtagcggtca	cgctgcgcgt	7380
aaccaccaca	cccgccgcgc	ttaatgcgcc	gctacagggc	gcgtaaaagg	atctaggtga	7440
agatcctttt	tgataatctc	atgaccaaaa	tcccttaacg	tgagttttcg	ttccactgag	7500
cgtcagaccc	cgtagaaaag	atcaaaggat	cttcttgaga	tootttttt	ctgcgcgtaa	7560
tctgctgctt	gcaaacaaaa	aaaccaccgc	taccagcggt	ggtttgtttg	ccggatcaag	7620
agctaccaac	tctttttccg	aaggtaactg	gcttcagcag	agcgcagata	ccaaatactg	7680
tccttctagt	gtagccgtag	ttaggccacc	acttcaagaa	ctctgtagca	ccgcctacat	7740
acctcgctct	gctaatcctg	ttaccagtgg	ctgctgccag	tggcgataag	tcgtgtctta	7800
ccgggttgga	ctcaagacga	tagttaccgg	ataaggcgca	gcggtcgggc	tgaacggggg	7860
gttcgtgcac	acagcccagc	ttggagcgaa	cgacctacac	cgaactgaga	tacctacagc	7920
gtgagcattg	agaaagcgcc	acgcttcccg	aagggagaaa	ggcggacagg	tatccggtaa	7980
gcggcagggt	cggaacagga	gagcgcacga	gggagcttcc	agggggaaac	gcctggtatc	8040
tttatagtcc	tgtcgggttt	cgccacctct	gacttgagcg	tcgatttttg	tgatgctcgt	8100
caggggggcg	gagcctatgg	aaaaacgcca	gcaacgcggc	ctttttacgg	ttcctggcct	8160
tttgctggcc	ttttgctcac	atgttctttc	ctgcgttatc	ccctgattct	gtggataacc	8220
gtattaccgc	ctttgagtga	gctgataccg	ctcgccgcag	ccgaacgacc	gagcgcagcg	8280

agtcagtgag	cgaggaagcg	gaagagcgcc	tgatgcggta	ttttctcctt	acgcatctgt	8340
gcggtatttc	acaccgcata	tggtgcactc	tcagtacaat	ctgctctgat	gccgcatagt	8400
taagccagta	tacactccgc	tatcgctacg	tgactgggtc	atggctgcgc	cccgacaccc	8460
gccaacaccc	gctgacgcgc	cctgacgggc	ttgtctgctc	ccggcatccg	cttacagaca	8520
agctgtgacc	gtctccggga	gctgcatgtg	tcagaggttt	tcaccgtcat	caccgaaacg	8580
cgcgaggcag						8590

<210> 76

<211> 141

<212> PRT

<213> Artificial Sequence

<220>

<223> EPI-HNE-3 fusion protein

<400> 76

Met Arg Phe Pro Ser Ile Phe Thr Ala Val Leu Phe Ala Ala Ser Ser 1 5 10 15

Ala Leu Ala Ala Pro Val Asn Thr Thr Thr Glu Asp Glu Thr Ala Gln 20 25 30

· Ile Pro Ala Glu Ala Val Ile Gly Tyr Ser Asp Leu Glu Gly Asp Phe 35 40 45

Asp Val Ala Val Leu Pro Phe Ser Asn Ser Thr Asn Asn Gly Leu Leu 50 55 60

Phe Ile Asn Thr Thr Ile Ala Ser Ile Ala Ala Lys Glu Glu Gly Val 65 70 75 80

Ser Leu Asp Lys Arg Ala Ala Cys Asn Leu Pro Ile Val Arg Gly Pro 85 90 95

Cys Ile Ala Phe Phe Pro Arg Trp Ala Phe Asp Ala Val Lys Gly Lys 100 105 110

Cys Val Leu Phe Pro Tyr Gly Gly Cys Gln Gly Asn Gly Asn Lys Phe 115 120 125

Tyr Ser Glu Lys Glu Cys Arg Glu Tyr Cys Gly Val Pro 130 135 140

<210> 77

<211> 147

<212> PRT

<213> Homo sapiens

<400> 77

```
Ala Val Leu Pro Gln Glu Glu Glu Gly Ser Gly Gly Gln Leu Val
Thr Glu Val Thr Lys Lys Glu Asp Ser Cys Gln Leu Gly Tyr Ser Ala
Gly Pro Cys Met Gly Met Thr Ser Arg Tyr Phe Tyr Asn Gly Thr Ser
Met Ala Cys Glu Thr Phe Gln Tyr Gly Gly Cys Met Gly Asn Gly Asn
Asn Phe Val Thr Glu Lys Glu Cys Leu Gln Thr Cys Arg Thr Val Ala
Ala Cys Asn Leu Pro Ile Val Arg Gly Pro Cys Arg Ala Phe Ile Gln
Leu Trp Ala Phe Asp Ala Val Lys Gly Lys Cys Val Leu Phe Pro Tyr
Gly Gly Cys Gln Gly Asn Gly Asn Lys Phe Tyr Ser Glu Lys Glu Cys
                                                125
                            120
        115
Arg Glu Tyr Cys Gly Val Pro Gly Asp Gly Asp Glu Glu Leu Leu Arg
Phe Ser Asn
145
<210>
       78
<211>
       249
<212>
       DNA
<213> Artificial Sequence
<220>
      M13 III signal::Human_LACI-D2::mature_M13_III
<400> 78
                                                                       60
atgaagaagc ttctcttcgc cattcctctg gtggtacctt tctattccgg cgccaagcct
gacttctgct tcctcgagga ggatcccggg atttgccgcg gttatattac gcgttatttc
                                                                      120
                                                                      180
tataataacc agactaagca atgtgagcgg ttcaagtatg gtggttgcct aggtaatatg
aacaacttcg agactctaga agagtgtaag aacatatgtg aggatggtgg tgctgagact
                                                                      240
                                                                      249
gttgagtct
       79
<210>
<211>
       83
<212>
       PRT
<213> Artificial Sequence
<220>
<223> LACI-D2 fusion protein
```

- 46 -<400> 79 Met Lys Lys Leu Leu Phe Ala Ile Pro Leu Val Val Pro Phe Tyr Ser Gly Ala Lys Pro Asp Phe Cys Phe Leu Glu Glu Asp Pro Gly Ile Cys Arg Gly Tyr Ile Thr Arg Tyr Phe Tyr Asn Asn Gln Thr Lys Gln Cys Glu Arg Phe Lys Tyr Gly Gly Cys Leu Gly Asn Met Asn Asn Phe Glu Thr Leu Glu Glu Cys Lys Asn Ile Cys Glu Asp Gly Gly Ala Glu Thr Val Glu Ser <210> 80 <211> 189 <212> DNA <213> Artificial Sequence <220> <223> laci-d1 with cloning sites

<400> 80 gcggccgaga tgcattcctt ctgcgctttc aaagctgatg acggtccgtg taaagctatc 60 atgaaacgtt tcttcttcaa cattttcacg cgtcagtgcg aggaattcat ttacggtggt tgtgaaggta accagaaccg gttcgaatct ctagaggaat gtaagaagat gtgcactcgt 180 189 1 gacggcgcc

<210> 81 <211> 63 <212> PRT <213> Artificial Sequence

<223> laci-d1 with linkers

<400> 81

<220>

Ala Ala Glu Met His Ser Phe Cys Ala Phe Lys Ala Asp Asp Gly Pro

Cys Lys Ala Ile Met Lys Arg Phe Phe Phe Asn Ile Phe Thr Arg Gln

Cys Glu Glu Phe Ile Tyr Gly Gly Cys Glu Gly Asn Gln Asn Arg Phe

Glu Ser Leu Glu Glu Cys Lys Lys Met Cys Thr Arg Asp Gly Ala

50 55 60

```
<210> 82
      189
<211>
<212> DNA
<213> Artificial sequence
<220>
<223> LACI-D1 hNE library
<220>
<221> misc_feature
<222>
      (37)..(37)
<223> n is a, c, g, or t
<220>
<221> misc feature
<222> (38)..(38)
<223> n is a or g
<220>
<221> misc_feature
<222> (40)..(40)
<223> n is a or g
<220>
<221> misc_feature
<222> (41)..(41)
<223> n is a, c or g
<220>
<221> misc_feature 
<222> (42)..(42)
<223> n is c or g
<220>
<221> misc_feature
<222> (47)..(47)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222>
       (52)..(52)
<223> n is a or g
<220>
<221> misc feature
<222> (56)..(56)
<223> n is c or g
<220>
<221> misc_feature
       (58)..(58)
<222>
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (64)..(64).
```

<223> n is a or c

```
<220>
<221> misc_feature
<222>
      (65)..(65)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222>
      (66)..(66)
<223> n is c or g
<220>
<221> misc_feature
<222>
      (71)..(71)
<223> n is a, g or t
<220>
<221> misc_feature
<222>
      (72)..(72)
<223> n is c or g
<220>
<221> misc_feature
      (100)..(100)
<222>
<223> n is c or g
<220>
<221> misc_feature
<222> (101)..(101)
<223> n is a or t
<220>
<221> misc_feature
<222>
       (103)..(103)
<223> n is a, c or g
<220>
<221> misc feature
<222> (104)..(104)
<223> n is a, c or t
<220>
<221> misc feature
<222> (109)..(109)
<223> n is a, c or g
<220>
<221> misc feature
<222> (110)..(110)
<223> n is a, c or t
<220>
<221> misc_feature
<222> (124)..(124)
<223> n is a, c or g
<220>
<221> misc feature
<222> (125)..(125)
<223> n is a, c or t
```

```
<220>
<221> misc_feature
<222> (128)..(128)
<223> n is c or g
<220>
<221> misc feature
<222> (133)..(133)
<223> n is c or g
<220>
<221> misc_feature
<222>
       (134)..(134)
<223> n is a or g
<400> 82
gcggccgaga tgcattcctt ctgcgctttc aaagctnntn nnggtcnttg tnttgntntc
                                                                        60
ttcnnncgtt nnttcttcaa cattttcacg cgtcagtgen ngnnattcnn atacggtggt
                                                                       120
tgtnnggnta acnngaaccg gttcgaatct ctagaggaat gtaagaagat gtgcactcgt
                                                                       180
                                                                       189
gacggcgcc
<210> 83
<211> 63
<212> PRT
<213> Artificial Sequence
<220>
<223> LACI-D1 hNE library
<220>
<221> misc feature
<222>
       (13)..(13)
<223> Xaa is Cys, Arg, Ser, Gly, Tyr, His, Asp or Asn
<220>
<221> misc_feature
<222> (14)..(14)
<223> Xaa is Thr, Asn, Lys, Arg, Ser, Ala, Glu, Gly or Asp
<220>
<221> misc_feature
<222> (16)..(16)
<223> Xaa is His, Arg, Pro or Leu
<220>
<221> misc_feature
<222>
       (18)..(18)
<223> Xaa is Val or Ile
<220>
<221> misc_feature
<222> (19)..(19)
<223> Xaa is Ala or Gly
<220>
```

```
<221> misc_feature
<222>
      (20)..(20)
<223> Xaa is Phe, Leu, Ile or Val
<220>
<221> misc_feature
<222>
      (22)..(22)
<223> Xaa is Ser, Thr, Asn, Ile, Met, Gln, His, Leu, Pro, Lys or Arg
<220>
<221> misc_feature
<222>
      (24) ... (24)
<223> Xaa is Cys, Tyr, Trp, Phe or Leu
<220>
<221> misc_feature
<222>
      (34)...(34)
<223> Xaa is Leu, Gln, Glu or Val
<220>
<221> misc_feature
<222> (35)..(35)
<223> Xaa is Gln, Leu, Pro, Thr, Lys, Val, Ile, Glu or Ala
<220>
<221> misc feature
<222> (37)..(37)
<223> Xaa is Gln, Leu, Pro, Thr, Lys, Val, Glu, Ile or Ala
<220>
<221> misc_feature
<222>
      (42)..(42)
<223> Xaa is Gln, Leu, Pro, Thr, Lys, Val, Met, Glu or Ala
<220>
<221> misc feature
<222> (43)..(43)
<223> Xaa is Gly or Ala
<220>
<221> misc_feature
<222>
      (45)..(45)
<223> Xaa is Glu, Gly, Gln or Arg
<400> 83
Ala Ala Glu Met His Ser Phe Cys Ala Phe Lys Ala Xaa Xaa Gly Xaa
Cys Xaa Xaa Xaa Phe Xaa Arg Xaa Phe Phe Asn Ile Phe Thr Arg Gln
Cys Xaa Xaa Phe Xaa Tyr Gly Gly Cys Xaa Xaa Asn Xaa Asn Arg Phe
Glu Ser Leu Glu Glu Cys Lys Lys Met Cys Thr Arg Asp Gly Ala
<210> 84
<211> 201
```

```
<212> DNA
<213> Artificial sequence
<220>
<223> LACI-D2 hNE library
<220>
<221> misc feature
<222> (34)..(34)
<223> n is a, c, g, or t
<220>
<221>
      misc_feature
<222>
      (35)..(35)
<223> n is a or g
<220>
<221> misc_feature
<222> (37)..(38)
<223> n is a, c or g
<220>
<221> misc_feature
<222>
      (39)..(39)
<223> n is c or g
<220>
<221> misc_feature
<222> (43)..(43)
<223> n is a or c
<220>
<221> misc_feature
<222>
       (44)..(44)
<223> n is a, c, g, or t
<220>
<221> misc feature
<222> (49)..(49)
<223> n is a or g
<220>
<221> misc_feature
<222>
      (53)..(53)
<223> n is c or g
<220>
<221> misc feature
<222> (55)..(55)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222>
      (56)..(56)
<223> n is a or t
<220>
<221> misc feature
<222> (61)..(61)
<223> n is a or c
```

```
<220>
<221> misc_feature
<222>
      (62)..(62)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (63)..(63)
<223> n is c or g
<220>
<221> misc_feature
<222>
      (68)..(68)
<223> n is a, g or t
<220>
<221> misc_feature
<222> (69)..(69)
<223> n is c or g
<220>
<221> misc_feature
<222>
      (97)..(97)
<223> n is c or g
<220>
<221> misc_feature
<222>
      (98)..(98)
<223> n is a or t
<220>
<221> misc_feature
      (100)..(100)
<222>
<223> n is a, c or g
<220>
<221> misc feature
<222>
      (101)..(101)
<223> n is a, c, g, or t
<220>
<221> misc feature
<222>
      (106)..(106)
<223> n is a, c, or g
<220>
<221> misc_feature
<222> (107)..(107)
<223> n is a, c, or t
<220>
<221>
      misc feature
      (121)..(121)
<222>
<223> n is a, c, or g
<220>
<221> misc_feature
<222> (122)..(122)
<223> n is a, c, or t
<220>
```

```
<221> misc_feature
<222> (125)..(125)
<223> n is c or g
<220>
<221> misc feature
<222>
     (130)..(130)
<223> n is a, c or g
<220>
<221> misc_feature
<222>
      (131)..(131)
<223> n is c, g or t
<400> 84
ggcgccaagc ctgacttctg cttcctcgag gagnntnnng ggnnttgcnt tgntnntttt
                                                                    60
                                                                    120
nnncgttnnt totataataa ccaggotaag caatgtnngn nattonnata tggtggttgo
nnggntaatn ngaacaactt cgagactcta gaagagtgta agaacatatg tgaggatggt
                                                                    201
ggtgctgaga ctgttgagtc t
<210> 85
<211> 67
<212> PRT
<213> Artificial Sequence
<220>
<223> LACI-D2 hNE library
<220>
<221> misc feature
<222>
      (12)..(12)
<223> Xaa is Cys, Arg, Ser, Gly, Tyr, His, Asp or Asn
<220>
<221> misc_feature
<222>
      (13)..(13)
<223> Xaa is Pro, His, Thr, Asn, Lys, Arg, Ser, Ala, Glu, Gly, Asp or
<220>
<221> misc feature
<222> (15)..(15)
<223> Xaa is His, Arg, Pro, Leu, Asn, Ser, Ile or Thr
<220>
<221> misc_feature
<222>
      (17)..(17)
<223> Xaa is Val or Ile
<220>
<221> misc_feature
<222> (18)...(18)
<223> Xaa is Gly or Ala
```

```
<220>
<221> misc_feature
<222>
      (19)..(19)
<223> Xaa is Phe, Leu, Ile, Val, Tyr, His, Asn or Asp
<220>
<221> misc_feature
<222>
      (21)..(21)
<223> Xaa is Ile, Asn, Gln, Met, Leu, His, Lys, Pro, Thr or Arg
<220>
<221> misc_feature
<222>
      (23)..(23)
<223> Xaa is Cys, Phe, Leu, Tyr or Trp
<220>
<221> misc_feature
<222>
      (33)..(33)
<223> Xaa is Leu, Gln, Glu or Val
<220>
<221> misc_feature
<222>
      (34)..(34)
<223> Xaa is Gln, Gly, Leu, Pro, Thr, Lys, Val, Ile, Glu, Ala or Arg
<220>
<221> misc feature
      (36)..(36)
<222>
<223> Xaa is Gln, Leu, Pro, Thr, Val, Glu, Ile, Ala or Lys
<220>
<221> misc_feature
<222>
      (41)..(41)
<223> Xaa is Gln, Pro, Thr, Lys, Val, Met, Glu, Ala or Leu
<220>
<221> misc_feature
<222> (42)..(42)
<223> Xaa is Gly or Ala
<220>
<221> misc_feature
<222>
      (44)..(44)
<223> Xaa is Arg, Gly, Lys, Glu, Leu, Gln, Met or Val
<400> 85
Gly Ala Lys Pro Asp Phe Cys Phe Leu Glu Glu Xaa Xaa Gly Xaa Cys
                                    10
                5
Xaa Xaa Xaa Phe Xaa Arg Xaa Phe Tyr Asn Asn Gln Ala Lys Gln Cys
Xaa Xaa Phe Xaa Tyr Gly Gly Cys Xaa Xaa Asn Xaa Asn Asn Phe Glu
Thr Leu Glu Glu Cys Lys Asn Ile Cys Glu Asp Gly Gly Ala Glu Thr
Val Glu Ser
65
```

```
<210> 86
<211>
      51
<212> PRT
<213> Artificial Sequence
<220>
<223> definition of aprotonin-like Kunitz domain (p. 11)
<220>
<221> misc_feature
<222>
      (2)..(7)
<223> Xaa is any amino acid
<220>
<221> misc_feature
<222>
      (9)..(9)
<223> Xaa is any amino acid
<220>
<221> misc_feature
<222> (11)..(18)
<223> Xaa is any amino acid
<220>
<221> misc_feature
<222> (19)..(19)
<223> Xaa is any Tyr or Phe
<220>
<221> misc_feature
<222>
       (20)..(25)
<223> Xaa is any amino acid
<220>
<221> misc_feature
<222> (27)..(28)
<223> Xaa is any amino acid
<220>
<221> misc_feature <222> (30)..(30)
<223> Xaa is any amino acid
<220>
<221> misc_feature
<222> (31)..(31)
<223> Xaa is Tyr, Trp or Phe
<220>
<221> misc feature
<222>
       (32)..(32)
<223> Xaa is any amino acid
<220>
<221> misc_feature
<222> (35)..(38)
```

<223> Xaa is any amino acid

```
<220>
<221> misc_feature
<222>
      (39)..(39)
<223> Xaa is Asn or Gly
<220>
<221> misc_feature
<222>
     (40)..(40)
<223> Xaa is any amino acid
<220>
<221> misc_feature
<222>
      (41)..(41)
<223> Xaa is Phe or Tyr
<220>
<221> misc_feature
<222>
     (42) . . (46)
<223> Xaa is any amino acid
<220>
<221> misc_feature
<222>
      (48)..(50)
<223>
      Xaa is any amino acid
<400> 86
Cys Xaa Xaa Xaa Xaa Xaa Gly Xaa Cys Xaa Xaa Xaa Xaa Xaa Xaa
                                 10
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Cys Xaa Xaa Phe Xaa Xaa Xaa
                             25
40
                                            45
       35
Xaa Xaa Cys
   50
<210> 87
<211> 58
<212> PRT
<213> Bos Taurus
<400> 87
Arg Pro Asp Phe Cys Leu Glu Pro Pro Tyr Thr Gly Pro Cys Lys Ala
Arg Ile Ile Arg Tyr Phe Tyr Asn Ala Lys Ala Gly Leu Cys Gln Thr
Phe Val Tyr Gly Gly Cys Arg Ala Lys Arg Asn Asn Phe Lys Ser Ala
Glu Asp Cys Met Arg Thr Cys Gly Gly Ala
```

<210> 88

```
<211> 58
```

<212> PRT

<213> Artificial Sequence

<220>

<223> Engineered B-PTI from MARK87

<400> 88

Arg Pro Asp Phe Cys Leu Glu Pro Pro Tyr Thr Gly Pro Thr Lys Ala

Arg Ile Ile Arg Tyr Phe Tyr Asn Ala Lys Ala Gly Leu Cys Gln Thr

Phe Val Tyr Gly Gly Thr Arg Ala Lys Arg Asn Asn Phe Lys Ser Ala

Glu Asp Cys Met Arg Thr Cys Gly Gly Ala

<210> 89 <211> 58 <212> PRT

<213> Artificial Sequence

<220>

<223> Engineered B-PTI from MARK87

<400> 89

Arg Pro Asp Phe Cys Leu Glu Pro Pro Tyr Thr Gly Pro Ala Lys Ala

Arg Ile Ile Arg Tyr Phe Tyr Asn Ala Lys Ala Gly Leu Cys Gln Thr

Phe Val Tyr Gly Gly Ala Arg Ala Lys Arg Asn Asn Phe Lys Ser Ala

Glu Asp Cys Met Arg Thr Cys Gly Gly Ala 55

<210> 90

<211> 67

<212> PRT

<213> Bos taurus (Bovine Colostrum)

<400> 90

Phe Gln Thr Pro Pro Asp Leu Cys Gln Leu Pro Gln Ala Arg Gly Pro

Cys Lys Ala Ala Leu Leu Arg Tyr Phe Tyr Asn Ser Thr Ser Asn Ala

Cys Glu Pro Phe Thr Tyr Gly Gly Cys Gln Gly Asn Asn Asn Asn Phe

35 40 45

Glu Thr Thr Glu Met Cys Leu Arg Ile Cys Glu Pro Pro Gln Gln Thr 55

Asp Lys Ser 65

<210> 91

<211> 60

<212> PRT <213> Bos Taurus (Bovine serum)

<400> 91

Thr Glu Arg Pro Asp Phe Cys Leu Glu Pro Pro Tyr Thr Gly Pro Cys

Lys Ala Ala Met Ile Arg Tyr Phe Tyr Asn Ala Lys Ala Gly Phe Cys

Glu Thr Phe Val Tyr Gly Gly Cys Arg Ala Lys Ser Asn Asn Phe Lys

Ser Ala Glu Asp Cys Met Arg Thr Cys Gly Gly Ala

<210> 92

<211> 58 <212> PRT <213> Artificial Sequence

<220>

<223> Semisynthetic BPTI, TSCH87

<400> 92

Arg Pro Asp Phe Cys Leu Glu Pro Pro Tyr Thr Gly Pro Cys Val Ala 10

Arg Ile Ile Arg Tyr Phe Tyr Asn Ala Lys Ala Gly Leu Cys Gln Thr

Phe Val Tyr Gly Gly Cys Arg Ala Lys Arg Asn Asn Phe Lys Ser Ala

Glu Asp Cys Met Arg Thr Cys Gly Gly Ala

<210> 93

<211> 58

<212> PRT

<213> Artificial Sequence

<220>

<223> Semisynthetic BPTI, TSCH87

<400> 93

Arg Pro Asp Phe Cys Leu Glu Pro Pro Tyr Thr Gly Pro Cys Gly Ala

Arg Ile Ile Arg Tyr Phe Tyr Asn Ala Lys Ala Gly Leu Cys Gln Thr

Phe Val Tyr Gly Gly Cys Arg Ala Lys Arg Asn Asn Phe Lys Ser Ala

Glu Asp Cys Met Arg Thr Cys Gly Gly Ala

<210> 94

<211> 58

<212> PRT

<213> Artificial Sequence

<220>

<223> Semisynthetic BPTI, TSCH87

<400> 94

Arg Pro Asp Phe Cys Leu Glu Pro Pro Tyr Thr Gly Pro Cys Ala Ala 10 Arg Ile Ile Arg Tyr Phe Tyr Asn Ala Lys Ala Gly Leu Cys Gln Thr

Phe Val Tyr Gly Gly Cys Arg Ala Lys Arg Asn Asn Phe Lys Ser Ala

Glu Asp Cys Met Arg Thr Cys Gly Gly Ala

<210> 95 <211> 58

<212> PRT

<213> Artificial Sequence

<220>

<223> Semisynthetic BPTI, TSCH87

<400> 95

Arg Pro Asp Phe Cys Leu Glu Pro Pro Tyr Thr Gly Pro Cys Leu Ala

Arg Ile Ile Arg Tyr Phe Tyr Asn Ala Lys Ala Gly Leu Cys Gln Thr

Phe Val Tyr Gly Gly Cys Arg Ala Lys Arg Asn Asn Phe Lys Ser Ala

Glu Asp Cys Met Arg Thr Cys Gly Gly Ala

50 55

<210> 96

<211> 58

<212> PRT

<213> Artificial Sequence

<220>

<223> Semisynthetic BPTI, TSCH87

<400> 96

Arg Pro Asp Phe Cys Leu Glu Pro Pro Tyr Thr Gly Pro Cys Ile Ala 1 5 10 15

Arg Ile Ile Arg Tyr Phe Tyr Asn Ala Lys Ala Gly Leu Cys Gln Thr 20 25 30

Phe Val Tyr Gly Gly Cys Arg Ala Lys Arg Asn Asn Phe Lys Ser Ala 35 40 45

Glu Asp Cys Met Arg Thr Cys Gly Gly Ala 50 55

<210> 97

<211> 58

<212> PRT

<213> Artificial Sequence

<220>

<223> Engineered BPTI, AUER87

<400> 97

Arg Pro Asp Phe Cys Leu Glu Pro Pro Tyr Thr Gly Pro Cys Lys Ala 1 5 10 15

Arg Ile Ile Arg Tyr Phe Tyr Asn Ala Lys Ala Gly Leu Cys Gln Thr 20 25 30

Phe Val Tyr Gly Gly Cys Arg Ala Lys Arg Asn Asn Phe Lys Ser Ala 35 40 45

Glu Asp Cys Glu Arg Thr Cys Gly Gly Ala 50 55

<210> 98

<211> 60

<212> PRT

<213> Dendroaspis polylepis polylepis (Black mamba venom I)

<400> 98

Gln Pro Leu Arg Lys Leu Cys Ile Leu His Arg Asn Pro Gly Arg Cys 1 5 10 15 Tyr Gln Lys Ile Pro Ala Phe Tyr Tyr Asn Gln Lys Lys Gln Cys 25

Glu Gly Phe Thr Trp Ser Gly Cys Gly Gly Asn Ser Asn Arg Phe Lys

Thr Ile Glu Glu Cys Arg Arg Thr Cys Ile Arg Lys

<210> 99

<211> 57 <212> PRT

<213> Dendroaspis polylepis polylepis (Black mamba venom K)

<400> 99

Ala Ala Lys Tyr Cys Lys Leu Pro Leu Arg Ile Gly Pro Cys Lys Arg

Lys Ile Pro Ser Phe Tyr Tyr Lys Trp Lys Ala Lys Gln Cys Leu Pro

Phe Asp Tyr Ser Gly Cys Gly Gly Asn Ala Asn Arg Phe Lys Thr Ile

Glu Glu Cys Arg Arg Thr Cys Val Gly

<210> 100

<211> 57 <212> PRT

<213> Hemachatus hemachates

<400> 100

Arg Pro Asp Phe Cys Glu Leu Pro Ala Glu Thr Gly Leu Cys Lys Ala

Tyr Ile Arg Ser Phe His Tyr Asn Leu Ala Ala Gln Gln Cys Leu Gln

Phe Ile Tyr Gly Gly Cys Gly Gly Asn Ala Asn Arg Phe Lys Thr Ile

Asp Glu Cys Arg Arg Thr Cys Val Gly

<210> 101 <211> 57

<212> PRT

<213> Naja nivea

<400> 101

Arg Pro Arg Phe Cys Glu Leu Pro Ala Glu Thr Gly Leu Cys Lys Ala

Arg Ile Arg Ser Phe His Tyr Asn Arg Ala Ala Gln Gln Cys Leu Glu

20

Phe Ile Tyr Gly Gly Cys Gly Gly Asn Ala Asn Arg Phe Lys Thr Ile 40

Asp Glu Cys His Arg Thr Cys Val Gly

<210> 102

<211> 60

<212> PRT

<213> Vipera russelli

<400> 102

His Asp Arg Pro Thr Phe Cys Asn Leu Pro Pro Glu Ser Gly Arg Cys

Arg Gly His Ile Arg Arg Ile Tyr Tyr Asn Leu Glu Ser Asn Lys Cys

Lys Val Phe Phe Tyr Gly Gly Cys Gly Gly Asn Ala Asn Asn Phe Glu

Thr Arg Asp Glu Cys Arg Glu Thr Cys Gly Gly Lys

<210> 103

<211> 64 <212> PRT

<213> Caretta sp. (Red sea turtle egg white)

<220>

<221> misc_feature

<222> (1)..(1)

<223> Xaa is Glu or Gln

<400> 103

Xaa Gly Asp Lys Arg Asp Ile Cys Arg Leu Pro Pro Glu Gln Gly Pro

Cys Lys Gly Arg Leu Pro Arg Tyr Phe Tyr Asn Pro Ala Ser Arg Met

Cys Glu Ser Phe Ile Tyr Gly Gly Cys Lys Gly Asn Lys Asn Asn Phe

Lys Thr Lys Ala Glu Cys Val Arg Ala Cys Arg Pro Pro Glu Arg Pro

<210> 104

<211> 58

<212> PRT

<213> Helix pomania

<220>

```
<221> misc_feature
```

<222> (1)..(1) <223> Xaa is Glu or Gln

<400> 104

Xaa Gly Arg Pro Ser Phe Cys Asn Leu Pro Ala Glu Thr Gly Pro Cys

Lys Ala Ser Ile Arg Gln Tyr Tyr Tyr Asn Ser Lys Ser Gly Gly Cys

Gln Gln Phe Ile Tyr Gly Gly Cys Arg Gly Asn Gln Asn Arg Phe Asp

Thr Thr Gln Gln Cys Gln Gly Val Cys Val

<210> 105

<211> 57

<212> PRT

<213> Dendroaspis angusticeps (Eastern green mamba C13 S1 C3 toxin)

<400> 105

Ala Ala Lys Tyr Cys Lys Leu Pro Val Arg Tyr Gly Pro Cys Lys Lys

Lys Phe Pro Ser Phe Tyr Tyr Asn Trp Lys Ala Lys Gln Cys Leu Pro

Phe Asn Tyr Ser Gly Cys Gly Gly Asn Ala Asn Arg Phe Lys Thr Ile

Glu Glu Cys Arg Arg Thr Cys Val Gly

<210> 106

<211> '59 <212> PRT <213> Dendroaspis angusticeps (Eastern green mamba C13 S2 C3 toxin)

<220>

<221> misc_feature

<222> (1)..(1) <223> Xaa is Glu or Gln

<400> 106

Xaa Pro Arg Arg Lys Leu Cys Ile Leu His Arg Asn Pro Gly Arg Cys

Tyr Asp Lys Ile Pro Ala Phe Tyr Tyr Asn Gln Lys Lys Lys Gln Cys

Glu Arg Phe Asp Trp Ser Gly Cys Gly Gly Asn Ser Asn Arg Phe Lys

40 45 35 Thr Ile Glu Glu Cys Arg Arg Thr Cys Ile Gly 55 <210> 107 <211> 57 <213> Dendroaspis polylepis polylepis (Black mamba B toxin) <400> 107 Arg Pro Tyr Ala Cys Glu Leu Ile Val Ala Ala Gly Pro Cys Met Phe 10 Phe Ile Ser Ala Phe Tyr Tyr Ser Lys Gly Ala Asn Lys Cys Tyr Pro Phe Thr Tyr Ser Gly Cys Arg Gly Asn Ala Asn Arg Phe Lys Thr Ile Glu Glu Cys Arg Arg Thr Cys Val Val 55 <210> 108 <211> 59 <212> PRT <213> Dendroaspis polylepis polylepis (Black mamba E toxin) <400> 108 Leu Gln His Arg Thr Phe Cys Lys Leu Pro Ala Glu Pro Gly Pro Cys Lys Ala Ser Ile Pro Ala Phe Tyr Tyr Asn Trp Ala Ala Lys Lys Cys Gln Leu Phe His Tyr Gly Gly Cys Lys Gly Asn Ala Asn Arg Phe Ser Thr Ile Glu Lys Cys Arg His Ala Cys Val Gly <210> 109 <211> 61 <212> PRT <213> Vipera ammodytes TI toxin <220> <221> misc_feature <222> (1)..(1)<223> Xaa is Glu or Gln

Xaa Asp His Pro Lys Phe Cys Tyr Leu Pro Ala Asp Pro Gly Arg Cys

<400> 109

Lys Ala His Ile Pro Arg Phe Tyr Tyr Asp Ser Ala Ser Asn Lys Cys 20 25 30

Asn Lys Phe Ile Tyr Gly Gly Cys Pro Gly Asn Ala Asn Asn Phe Lys 35 40 45

Thr Trp Asp Glu Cys Arg Gln Thr Cys Gly Ala Ser Ala 50 55 60

<210> 110

<211> 62

<212> PRT

<213> Vipera ammodytes CTI toxin

<400> 110

Arg Asp Arg Pro Lys Phe Cys Tyr Leu Pro Ala Asp Pro Gly Arg Cys 1 5 10 15

Leu Ala Tyr Met Pro Arg Phe Tyr Tyr Asn Pro Ala Ser Asn Lys Cys 20 25 30

Glu Lys Phe Ile Tyr Gly Gly Cys Arg Gly Asn Ala Asn Asn Phe Lys 35 40 45

Thr Trp Asp Glu Cys Arg His Thr Cys Val Ala Ser Gly Ile 50 55 60

<210> 111

<211> 62

<212> PRT

<213> Bungarus fasciatus VIII B toxin

<400> 111

Lys Asn Arg Pro Thr Phe Cys Asn Leu Leu Pro Glu Thr Gly Arg Cys 1 10 15

Asn Ala Leu Ile Pro Ala Phe Tyr Tyr Asn Ser His Leu His Lys Cys 20 25 30

Gln Lys Phe Asn Tyr Gly Gly Cys Gly Gly Asn Ala Asn Asn Phe Lys 35 40 45

Thr Ile Asp Glu Cys Gln Arg Thr Cys Ala Ala Lys Tyr Gly 50 55 60

<210> 112

<211> 59

<212> PRT

<213> Anemonia sulcata

<400> 112

Ile Asn Gly Asp Cys Glu Leu Pro Lys Val Val Gly Pro Cys Arg Ala 1 5 10 15

Arg Phe Pro Arg Tyr Tyr Tyr Asn Ser Ser Ser Lys Arg Cys Glu Lys 20 25

Phe Ile Tyr Gly Gly Cys Gly Gly Asn Ala Asn Asn Phe His Thr Leu

Glu Glu Cys Glu Lys Val Cys Gly Val Arg Ser

<210> 113

<211> 56

<211> SO <212> PRT

<213> Homo sapiens

<400> 113

Lys Glu Asp Ser Cys Gln Leu Gly Tyr Ser Ala Gly Pro Cys Met Gly

Met Thr Ser Arg Tyr Phe Tyr Asn Gly Thr Ser Met Ala Cys Glu Thr 25

Phe Gln Tyr Gly Gly Cys Met Gly Asn Gly Asn Asn Phe Val Thr Glu

Lys Glu Cys Leu Gln Thr Cys Arg

<210> 114 <211> 61

<212> PRT

<213> Homo sapiens

<400> 114

Thr Val Ala Ala Cys Asn Leu Pro Val Ile Arg Gly Pro Cys Arg Ala

Phe Ile Gln Leu Trp Ala Phe Asp Ala Val Lys Gly Lys Cys Val Leu

Phe Pro Tyr Gly Gly Cys Gln Gly Asn Gly Asn Lys Phe Tyr Ser Glu

Lys Glu Cys Arg Glu Tyr Cys Gly Val Pro Gly Asp Glu

<210> 115

<211> 60

<213> Bungarus multicinctus (beta bungarotoxin B1)

<400> 115

Arg Gln Arg His Arg Asp Cys Asp Lys Pro Pro Asp Lys Gly Asn Cys

Gly Pro Val Arg Ala Phe Tyr Tyr Asp Thr Arg Leu Lys Thr Cys Lys 20

Ala Phe Gln Tyr Arg Gly Cys Asp Gly Asp His Gly Asn Phe Lys Thr

Glu Thr Leu Cys Arg Cys Glu Cys Leu Val Tyr Pro

<210> 116 <211> 60

<212> PRT

<213> Bungarus multicinctus (beta bungarotoxin B2)

<400> 116

Arg Lys Arg His Pro Asp Cys Asp Lys Pro Pro Asp Thr Lys Ile Cys

Gln Thr Val Arg Ala Phe Tyr Tyr Lys Pro Ser Ala Lys Arg Cys Val

Gln Phe Arg Tyr Gly Gly Cys Asp Gly Asp His Gly Asn Phe Lys Ser

Asp His Leu Cys Arg Cys Glu Cys Glu Leu Tyr Arg

<210> 117

<211> 58

<212> PRT

<213> Bos taurus

<400> 117

Arg Pro Asp Phe Cys Leu Glu Pro Pro Tyr Thr Gly Pro Cys Lys Ala 10

Lys Met Ile Arg Tyr Phe Tyr Asn Ala Lys Ala Gly Phe Cys Glu Thr

Phe Val Tyr Gly Gly Cys Lys Ala Lys Ser Asn Asn Phe Arg Ser Ala

Glu Asp Cys Met Arg Thr Cys Gly Gly Ala

<210> 118

<211> 61

<212> PRT

<213> Tachypleus tridentatus

<400> 118

Thr Glu Arg Gly Phe Leu Asp Cys Thr Ser Pro Pro Val Thr Gly Pro 1 5 10 $\dot{}$ 15

Cys Arg Ala Gly Phe Lys Arg Tyr Asn Tyr Asn Thr Arg Thr Lys Gln 20 25 30

Cys Glu Pro Phe Lys Tyr Gly Gly Cys Lys Gly Asn Gly Asn Arg Tyr 35 40 45

Lys Ser Glu Gln Asp Cys Leu Asp Ala Cys Ser Gly Phe 50 55 60

<210> 119

<211> 63

<212> PRT

<213> Bombyx mori

<400> 119

Asp Glu Pro Thr Thr Asp Leu Pro Ile Cys Glu Gln Ala Phe Gly Asp 1 5 10 . 15

Ala Gly Leu Cys Phe Gly Tyr Met Lys Leu Tyr Ser Tyr Asn Gl
n Glu 20 25 30

Thr Lys Asn Cys Glu Glu Phe Ile Tyr Gly Gly Cys Gln Gly Asn Asp 35 40 45

Asn Arg Phe Ser Thr Leu Ala Glu Cys Glu Gln Lys Cys Ile Asn 50 55 60

<210> 120

<211> 56

<212> PRT

<213> Bos taurus

<400> 120

Lys Ala Asp Ser Cys Gln Leu Asp Tyr Ser Gln Gly Pro Cys Leu Gly 1 5 10 15

Leu Phe Lys Arg Tyr Phe Tyr Asn Gly Thr Ser Met Ala Cys Glu Thr 20 25 30

Phe Leu Tyr Gly Gly Cys Met Gly Asn Leu Asn Asn Phe Leu Ser Gln 35 40 45

Lys Glu Cys Leu Gln Thr Cys Arg 50 55

<210> 121

<211> 61

<212> PRT

<213> Bos taurus

<400> 121

Thr Val Glu Ala Cys Asn Leu Pro Ile Val Gln Gly Pro Cys Arg Ala

Phe Ile Gln Leu Trp Ala Phe Asp Ala Val Lys Gly Lys Cys Val Arg

Phe Ser Tyr Gly Gly Cys Lys Gly Asn Gly Asn Lys Phe Tyr Ser Gln

Lys Glu Cys Lys Glu Tyr Cys Gly Ile Pro Gly Glu Ala 55

<210> 122

<211> 58

<212> PRT

<213> Artificial Sequence

<220>

<223> Engineered BPTI (KR15, ME52)

<400> 122

Arg Pro Asp Phe Cys Leu Glu Pro Pro Tyr Thr Gly Pro Cys Arg Ala

Arg Ile Ile Arg Tyr Phe Tyr Asn Ala Lys Ala Gly Leu Cys Gln Thr

Phe Val Tyr Gly Gly Cys Arg Ala Lys Arg Asn Asn Phe Lys Ser Ala 40

Glu Asp Cys Glu Arg Thr Cys Gly Gly Ala

<210> 123

<211> 59 <212> PRT

<213> Artificial Sequence

<220>

<223> Isoaprotinin G-1

<220>

<221> misc_feature

<222> (1)..(1)

<223> Xaa is Glu or Gln

<400> 123

Xaa Arg Pro Asp Phe Cys Leu Glu Pro Pro Tyr Thr Gly Pro Cys Lys

Ala Arg Met Ile Arg Tyr Phe Tyr Asn Ala Lys Ala Gly Leu Cys Gln

30 20 25

Pro Phe Val Tyr Gly Gly Cys Arg Ala Lys Ser Asn Asn Phe Lys Ser 40

Ala Glu Asp Cys Met Arg Thr Cys Gly Gly Ala

<210> 124

<211> 58

<212> PRT

<213> Artificial Sequence

<220>

<223> Isoaprotinin 2

<400> 124

Arg Pro Asp Phe Cys Leu Glu Pro Pro Tyr Thr Gly Pro Cys Lys Ala

Arg Ile Ile Arg Tyr Phe Tyr Asn Ala Lys Ala Gly Leu Cys Gln Pro

Phe Val Tyr Gly Gly Cys Arg Ala Lys Arg Asn Asn Phe Lys Ser Ser

Glu Asp Cys Met Arg Thr Cys Gly Gly Ala

<210> 125 <211> 58 <212> PRT

<213> Artificial Sequence

<220>

<223> Isoaprotinin G-2

<400> 125

Arg Pro Asp Phe Cys Leu Glu Pro Pro Tyr Thr Gly Pro Cys Lys Ala

Arg Met Ile Arg Tyr Phe Tyr Asn Ala Lys Ala Gly Leu Cys Gln Pro

Phe Val Tyr Gly Gly Cys Arg Ala Lys Arg Asn Asn Phe Lys Ser Ala

Glu Asp Cys Met Arg Thr Cys Gly Gly Ala

<210> 126

<211> 58

<212> PRT

<213> Artificial Sequence

```
<220>
<223> Isoaprotinin 1
<400> 126
Arg Pro Asp Phe Cys Leu Glu Pro Pro Tyr Thr Gly Pro Cys Lys Ala
                                           10
Lys Met Ile Arg Tyr Phe Tyr Asn Ala Lys Ala Gly Phe Cys Glu Thr
Phe Val Tyr Gly Gly Cys Lys Ala Lys Ser Asn Asn Phe Arg Ser Ala
                                40
Glu Asp Cys Met Arg Thr Cys Gly Gly Ala
<210> 127
<211> 11
<212> DNA
<213> Artificial Sequence
<220>
<223> PfMI restriction site
<220>
<221> misc_feature
<222> (4)..(8)
<223> n is a, c, g or t
<400> 127
                                                                                     11
ccannnnntg g
<210> 128
<211> 15
<212> DNA
<213> Artificial Sequence
<220>
<223> XcmI restriction site
<220>
<221> misc_feature
<222> (4)..(12)
<223> n is a, c, g or t
<400> 128
                                                                                     15
ccannnnnnn nntgg
<210> 129
<211> 9
<212> PRT
<213> Artificial Sequence
```

```
<220>
<223> amino acids 13-21 of EpiNE alpha
<400> 129
Pro Cys Val Ala Met Phe Gln Arg Tyr
                5
<210> 130
<211> 6
<212> PRT
<213> Artificial Sequence
<220>
<223> amino acids 15-20 of EpiNE-7
<400> 130
Val Ala Met Phe Pro Arg
                5
<210> 131
<211> 4
<212> PRT
<213> Artificial Sequence
<220>
<223> amino acids 35-38 of HNE
<400> 131
Tyr Gly Gly Cys
<210> 132
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> amino acids 13-21 of BPTI
<400> 132
Pro Cys Lys Ala Arg Ile Ile Arg Tyr
<210> 133
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
```

```
<223> amino acids 13-21 of EpiNE3
<400> 133
Pro Cys Val Gly Phe Phe Ser Arg Tyr
                5
<210> 134
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> amino acids 13-21 of EpiNE6
<400> 134
Pro Cys Val Gly Phe Phe Gln Arg Tyr
                 5
<210> 135
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> amino acids 13-21 of EpiNE7
<400> 135
Pro Cys Val Ala Met Phe Pro Arg Tyr
     5
<210> 136
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> amino acids 13-21 of EpiNE4
<400> 136
Pro Cys Val Ala Ile Phe Pro Arg Tyr
                 5
<210> 137
<211> 9
<212> PRT
<213> Artificial Sequence
```

```
<220>
<223> amino acids 13-21 of EpiNE8
<400> 137
Pro Cys Val Ala Ile Phe Lys Arg Ser
                5
<210> 138
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> amino acids 13-21 of EpiNE1
<400> 138
Pro Cys Ile Ala Phe Phe Pro Arg Tyr
                5
<210> 139
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> amino acids 13-21 of EpiNE5
<400> 139
Pro Cys Ile Ala Phe Phe Gln Arg Tyr
<210> 140
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> amino acids 13-21 of EpiNE2
<400> 140
Pro Cys Ile Ala Leu Phe Lys Arg Tyr
<210> 141
<211> 58
<212> PRT
<213> Artificial sequence
```

```
<220>
```

<223> BITI

<400> 141

Arg Pro Asp Phe Cys Gln Leu Gly Tyr Ser Ala Gly Pro Cys Met Gly

Met Thr Ser Arg Tyr Phe Tyr Asn Gly Thr Ser Met Ala Cys Glu Thr

Phe Gln Tyr Gly Gly Cys Met Gly Asn Gly Asn Asn Phe Val Thr Glu

Lys Asp Cys Leu Gln Thr Cys Arg Gly Ala

<210> 142

<211> 58 <212> PRT <213> Artificial sequence

<220>

<223> BITI-E7

<400> 142

Arg Pro Asp Phe Cys Gln Leu Gly Tyr Ser Ala Gly Pro Cys Val Ala

Met Phe Pro Arg Tyr Phe Tyr Asn Gly Thr Ser Met Ala Cys Glu Thr

Phe Gln Tyr Gly Gly Cys Met Gly Asn Gly Asn Asn Phe Val Thr Glu

Lys Asp Cys Leu Gln Thr Cys Arg Gly Ala

<210> 143

<211> 58

<212> PRT

<213> Artificial sequence

<220>

<223> BITI-E7-1222

<400> 143

Arg Pro Asp Phe Cys Gln Leu Gly Tyr Ser Thr Gly Pro Cys Val Ala

Met Phe Pro Arg Tyr Phe Tyr Asn Gly Thr Ser Met Ala Cys Glu Thr

Phe Gln Tyr Gly Gly Cys Met Gly Asn Gly Asn Asn Phe Val Thr Glu 35 40 45

Lys Asp Cys Leu Gln Thr Cys Arg Gly Ala 50 55