

Table of Contents

#1 Feature Engineering (1) Manipulate and transform the raw data to simplify it so EDA can be done Find out the characteristics of the dataset. #2 EDA as well as spot patterns and anomalies #3 Feature Engineering (2) Further preprocess the data for modeling Train, select and evaluate models based on #4 ML Modeling the objective of the task **#5 Model Interpretation** Interpret and explain the model's decision

making

Information

- This dataset contains prices of different PCs and its configurations such as its brand, type and weight among many other features
- This task is a regression task to predict the price of a PC, given the information about its configurations

Objectives

 Build a favourable model to estimate prices of PC, by minimising Mean Squared Error

Drop columns

Does not have any relationship with target variable: ProductID

Numeric features

Made features numeric by removing the units: RAM (GB), Weight (kg), CPU Clock Speed (GHz)

Extracted features using regex

Extracted from existing features: CPU Brand, GPU Brand, CPU Clock Speed, Touchscreen, Screen Specs, Screen Resolution

Cleaned up Hard Disk feature

Split up all different types of Hard Disks and made the columns numeric

Initial Summary

No missing data, a lot of object data type columns,

New feature: Pixels Per Inch

PPI = diagonal in pixels /
diagonal in inches
PPI measures pixel density of
a computer screen

Before:

	Product ID	Brand	Туре	Screen Size	Screen Specs	СРИ	RAM	Hard Disk	GPU	Operating System	Weight	Price (\$)
0		Apple	Ultrabook	13.3	IPS Panel Retina Display 2560x1600	Intel Core i5 2.3GHz	8GB	128GB SSD	Intel Iris Plus Graphics 640	macOS	1.37kg	3568.93416
1		Apple	Ultrabook	13.3	1440x900	Intel Core i5 1.8GHz	8GB	128GB Flash Storage	Intel HD Graphics 6000	macOS	1.34kg	2394.77616
2	2	НР	Notebook	15.6	Full HD 1920x1080	Intel Core i5 7200U 2.5GHz	8GB	256GB SSD	Intel HD Graphics 620	No OS	1.86kg	1531.80000
3		Apple	Ultrabook	15.4	IPS Panel Retina Display 2880x1800	Intel Core i7 2.7GHz	16GB	512GB SSD	AMD Radeon Pro 455	macOS	1.83kg	6759.76680
4	4	Apple	Ultrabook	13.3	IPS Panel Retina Display 2560x1600	Intel Core i5 3.1GHz	8GB	256GB SSD	Intel Iris Plus Graphics 650	macOS	1.37kg	4804.79040

After:

	Brand	Туре	Screen Size	Screen Specs	СРИ	RAM (GB)	GPU	Operating System	Weight (kg)	Price (\$)	Flash Storage	HDD	Hybrid	SSD	Touchscreen	CPU Clock Speed (GHz)	CPU Brand	GPU Brand	ppi
0	Apple	Ultrabook	13.3	IPS Panel Retina Display	Intel Core i5		Intel Iris Plus Graphics 640	macOS	1.37	3568.93416	0.0	0.0	0.0	128.0	No	2.3	Intel	Intel	226.983005
1	Apple	Ultrabook	13.3	None	Intel Core i5		Intel HD Graphics 6000	macOS	1.34	2394.77616	128.0	0.0	0.0	0.0	No	1.8	Intel	Intel	127.677940
2	НР	Notebook	15.6	None	Intel Core i5 7200U		Intel HD Graphics 620	No OS	1.86	1531.80000	0.0	0.0	0.0	256.0	No	2.5	Intel	Intel	141.211998
3	Apple	Ultrabook	15.4	IPS Panel Retina Display	Intel Core i7	16	AMD Radeon Pro 455	macOS	1.83	6759.76680	0.0	0.0	0.0	512.0	No	2.7	Intel	AMD	220.534624
4	Apple	Ultrabook	13.3	IPS Panel Retina Display	Intel Core i5		Intel Iris Plus Graphics 650	macOS	1.37	4804.79040	0.0	0.0	0.0	256.0	No	3.1	Intel	Intel	226.983005

Exploratory Data Analysis

Skewness of Target Feature

Distribution of target variable
Price is positively skewed, this may
affect the predictions as the
outliers of target variable may
affect how the model fits the
dataset

Multicollinearity

Bivariate linear correlation can be observed between some numerical features.

This may be a issue in a regression task as features are assumed independence

High Cardinality

CPU and GPU features have very high cardinality (93 and 110 unique values respectively). Feature selection may need to be done to reduce the number of features in order to avoid the 'Curse of Dimensionality'

#1 Operating System Feature

Log Transformation

#3 Multicollinearity in nominal variables (Cramer's V)

#4 (Variance Inflation Factor + Pearson Correlation)

#5 One Hot Encoding

Feature Selection (Recursive Feature Elimination

#1 Operating System Feature

Grouped different versions of Windows Operating Systems under 1 category 'Windows OS' and did the same process on all Mac OSes

#2 Log Transformation

Natural log transformation is done on price to set it to near-normal distribution so the outliers would not have a huge impact on the model during training

About Multicollinearity

- When building a regression model, it is assumed that all explanatory variables are independent of each other
- if independent features are highly correlated, change in 1 feature may affect the other features
- This can lead to the model making bad predictions and can also affect the interpretability of the model
- For nominal features, Cramer's V test will be used to determine the strength of association
- For continuous features, Pearson's correlation (bivariate) and Variance Inflation Factor (multivariate) will be used

* All inference is made only with training set to minimize data leakage

#3 Multicollinearity in nominal variables (Cramer's V)

- Cramer's V is a statistical test to determine the strength of association between 2 variables which has more than 2x2 rows and columns.
- It is only used when chi-square has determined that there is association between the 2 variables.
- For ALL combinations 2 nominal variables, p-values are 0 which is smaller than α= 0.05, thus chi-square test determined that there is association between all combinations of variables

	variable_1	variable_2	p-value	cramer_v
24	CPU	CPU Brand	0.0	1.0
29	GPU	GPU Brand	0.0	1.0
28	GPU	CPU Brand	0.0	0.9348
35	CPU Brand	GPU Brand	0.0	0.81
25	CPU	GPU Brand	0.0	0.807
12	Туре	Touchscreen	0.0	0.7777
10	Туре	GPU	0.0	0.6863
15	Screen Specs	CPU	0.0	0.6861
22	CPU	Operating System	0.0	0.6511
1	Brand	Screen Specs	0.0	0.641
16	Screen Specs	GPU	0.0	0.6301
17	Screen Specs	Operating System	0.0	0.594
21	CPU	GPU	0.0	0.593
9	Туре	CPU	0.0	0.5926
4	Brand	Operating System	0.0	0.5238
2	Brand	CPU	0.0	0.5148
26	GPU	Operating System	0.0	0.5094
27	GPU	Touchscreen	0.0	0.451
23	CPU	Touchscreen	0.0	0.4502
3	Brand	GPU	0.0	0.428
14	Туре	GPU Brand	0.0	0.4178
7	Brand	GPU Brand	0.0	0.3392
0	Brand	Туре	0.0	0.3279
5	Brand	Touchscreen	0.0	0.2963

- A heatmap is plotted using Cramer V's test scores. There is a strong correlation between CPU-CPU Brand and GPu-GPU Brand
- Although there might be some hidden relationship between the CPU and GPU type and the price, I decide to drop CPU and GPU features from the dataset due to its very high cardinality
- As the score for GPU brand to CPU brand is 0.801, I printed out the crosstab to analyse it further
- From the crosstab, it is seen that the CPU brand can be deduced just from looking at the GPU brands. All Nvidia GPUs are only paired with Intel CPUs, Intel GPUs are only paired with Intel CPUs, ARM GPUs are only paired with Samsung CPUs, and AMD GPUs are only paired with either AMD or Intel CPUs.
- Hence I decided to drop CPU brand column due to its high association with GPU brand column

GPU Brand						
GPU Brand	AMD	ARM	Intel	Nvidia	All	
CPU Brand						
AMD	576	0	0	0	576	
Intel	1096	0	6816	3757	11669	
Samsung	0	11	0	0	11	
All	1672	11	6816	3757	12256	

#4 Multicollinearity in continuous variables (VIF + Pearson's Correlation)

Variance Inflation Factor (VIF) is used to detect for collinearity exists in a regression model. It measures how much the correlation coefficient is inflated due to collinearity

Screen Size has a very large VIF of 66, thus it should be dropped. Dropping Screen Size would not affect the model's predictive power much as its linear correlation with target variable price is only 0.038.

After dropping Screen Size. VIF of other features dropped significantly. I decided to not drop anymore numerical features as VIF is < 20 for all features and there are no bivariate correlations of above 0.8 for all numerical features

	variables	VIF
0	Screen Size	66.410563
1	RAM (GB)	9.555751
2	Weight (kg)	30.650716
3	Flash Storage	1.168355
4	HDD	3.115334
	Hybrid	1.075008
6	SSD	5.749792
7	CPU Clock Speed (GHz)	27.612514
8	ppi	16.366771

	variables	VIF
0	RAM (GB)	8.890992
1	Weight (kg)	15.187743
2	Flash Storage	1.156830
3	HDD	3.115079
4	Hybrid	1.070046
5	SSD	5.733217
6	CPU Clock Speed (GHz)	19.488171
7	ррі	10.959962

#5 One Hot Encoding #6 Feature Selection (Recursive Feature Elimination

All nominal features are One-Hot Encoded. After One Hot Encoding there are 43 columns.

In order to reduce the dimensionality of the dataset and achieve a more interpretable model, recursive feature elimination is used with randomforestregressor as the estimator and mean squared error as the scoring metric

RFE recommended 19 features as the optimal number of features.

By fitting another RandomForestRegressor separately, the feature importance can be shown.

ML Modeling

Dummy Regressor

Serves as a reference point for model selection

	Model	5-fold cv Negative MSE	test_mse	5_fold cv R^2 (%)	test_r2
0	Linear Regression	-0.094927	0.094683	75.226097	0.758440
1	K-Nearest Neighbors	-0.001873	0.001702	99.511219	0.995658
2	Elastic Net	-0.175617	0.175613	54.175750	0.551968
3	Decision Tree	-0.001229	0.001589	99.679399	0.995947
4	Random Forest	-0.001243	0.001584	99.675600	0.995959
5	ExtraTreesRegressor	-0.001229	0.001589	99.679399	0.995947
6	AdaBoost	-0.072906	0.072704	80.981059	0.814515
7	Gradient Boosting	-0.038590	0.039369	89.932129	0.899559
8	Bagging Regressor	-0.001281	0.001602	99.665730	0.995914

Baseline Model Selection

The tree-based models and Bagging Regressor both performed really well, having R^2 of over 99% and low mean squared errors of below 0.002

Interpretations

The learning curve for DecisionTreeRegressor shows that the model did not show any signs of overfitting, as the training score and cross validation score curves converged at one point to form a horizontal asymptote.

From the feature importances:

	feature	importance
18	x5_Nvidia	0.212989
6	ррі	0.182471
4	SSD	0.148652
1	Weight (kg)	0.096040
5	CPU Clock Speed (GHz)	0.084903
0	RAM (GB)	0.060364
11	x1_Notebook	0.038130
15	x3_Windows	0.031286
14	x2_None	0.028476
12	x1_Ultrabook	0.028344
3	HDD	0.017975
9	x0_HP	0.010597
10	x0_Lenovo	0.010459
13	x1_Workstation	0.010154
7	x0_Asus	0.010151
8	x0_Dell	0.010120
16	x4_Yes	0.009412
17	x5_Intel	0.007568
2	Flash Storage	0.001909

The model finds whether the PC contains Nvidia GPU or not as the most important, followed by ppi and SSD size.