PICBOT FIRMWARE

Documentation for PicBot Project using the Motorola PIC 16F877 microcontroller

by Miki R. Marshall 2018.05.29

Describes the design of the Microchip PIC programming, the usage of the pins, how it is setup, the protocol used to communicate with it, and all that good stuff. See other documents for the physical hardware layouts and schematics of the circuit design, although this does have a close correlation with the firmware shown here.

All information in this document is copyright ©2018 Miki R. Marshall and her own original design of the hardware, firmware design of the project, as well as her current understanding of the PIC architecture.

Table of Contents

Table of Contents	1
PicBoot	3
Introduction	3
Protocol	3
Reset Responses	3
PicBoot Commands	
PicBoot Responses	
Responses During Upload	3
Pin Usage	
Port A	
Port B	
Port C	
Port D	
Port E	
SCI_FIFO Buffer	
Design	
SCI - Protocol	6
Current Commands	6
(A) Analog/Digital	6
(E) Error Status	6
(I) Digital Input	6
(O) Digital Output	
(P) PIC System Commands	6
(S) Servó	6
Miscellaneous	6
Future Commands	
(D) SPI Data	
(T) Timer	
(X) External Interrupts	
(M) Motor Control*	
Future Specializations	7
A/D Setup Notes	
Sample Code	
Setup for sample	
Program Paging	
Call	
SCall	9
Call	
ISCall	
(Bootload) Jump	9
Shared Special Register Settings	10
00h,80h,100h,180h (Ind. Addr.)	10
01h,101h TMR0	10
81h,181h OPTION REG	
02h,82h,102h,182h PCL	
03h,83h,103h,183h STATUS	
	1

04h,84h,104h,184h FSR	
0Ah,8Ah,10Ah,18Ah PCLATH	10
Special Register Settings	
00h, 01h, 02h, 03h, 04h (shared)	
05h PORTA	
06h PORTB	
07h PORTC	
08h PORTD	10
09h PORTE	
0Ah, 0Bh (shared)	
0Ch PIR1	
0Dh PIR2	
0Eh TMR1L 0Fh TMR1H	
10h T1CON	
11h TMR2	
12h T2CON.	
13h SSPBUF	
14h SSPCON	
15h CCPR1L	
16h CCPR1H	
17h CCP1CON	
18h RCSTA	
19h TXREG	
1Ah RCREG	
1Bh CCPR2L	
1Ch CCPR2H	
1Eh ADRESH	
1Fh ADCONO	
Bank 1	
80h, 81h, 82h, 83h, 84h (shared)	
85h TRISA	
86h TRISB	12
87h TRISC	12
88h TRISD	
89h TRISE	
8Ah, 8Bh (shared)	
8Ch PIE1	
8Dh PIE2	
8Eh PCON	
91h SSPCON2	
92h PR2	
93h SSPADD.	
94h SSPSTAT	12
95h, 96h, 97h	
98h TXSTA	12
99h SPBRG	
9Ah, 9Bh, 9Ch, 9Dh	
9Eh ADRESL	
9Fh ADCON1	
Bank 2	
100h, 101h, 102h, 103h, 104h (shared)	
106h PORTB.	
107h, 108h, 109h	
10Ah, 10Bh (shared)	
10Ch EEDATA	
10Dh EEADR	
10Eh EEDATH	13
10Fh EEADRH	
Bank 3	
100h, 101h, 102h, 103h, 104h (shared)	
105h	
106h TRISB	
107h, 108h, 109h	
18Ah, 18Bh (shared)	
18Ch EECON1	
18Eh, 18Fh (reserved)	
General Purpose Registers	
Octional Larpose (registers	14

PicBoot

INTRODUCTION

PicBoot is separate from PicBot in that it is not loaded at the same time and resides in a dedicated space at the end of Page3. PicBoot is used to load the PicBot program. It then can run the PicBot program, just as PicBot can jump to PicBoot to have a new PicBot hex file downloaded into it. The two programs do not interact otherwise.

PicBoot is loaded (hopefully) once upon acquiring a new chip, currently using the 2-Bit parallel port program. Once this is complete, bootloading the PicBot program is a simple matter of connecting the SCI to the serial port of a PC and sending the hex file as a text file using a simple terminal program, or the downloader I've built into the MainBot (Qbasic) module.

PROTOCOL

This is how to interact with the PIC while in "BootLoad" mode.

Reset Responses

(A4 pin high on reset, or after a "PB" command)

"PR" - PicBot is running (Reset just occurred).

"PB" - PicBoot mode activated.

This means that if DosBot suddenly receives a "PB", it knows the PIC is in Boot Mode and can switch to that mode itself, prompting the user for a file, command, etc. To cause a reboot within PicBot, GOTO address 1FFF, which contains a GOTO instruction for the beginning of PicBoot code.

PicBoot Commands

(Commands recognized in the PicBoot mode)

- ":" Start of each record in a valid HEX file. Starts the loading of a new record.
- "R" Entered at the "PB" prompt, this activates a check to ensure that user code exists, and if so, runs it.
- "{Esc}"- Aborts a load (part of original Karl Lunt code, not sure if it works because it seems to have to fall at the beginning of a record...). Returns to "PB" prompt.

PicBoot Responses

- "E0" Unexpected command character received (first character in line).
- "E1" Checksum error during upload.
- "E2" Reset vector code not found first in user code.
- "E3" Boot code overrun by user code.
- "E4" Run command failed no user code to run.
- "OK" Load successful.

All of the status messages above immediately jump back to the PicBoot prompt "PB".

Responses During Upload

All characters received during the upload are automatically echoed back to the sender. Since the sender (a PC) runs SO much faster than the PIC (at 20 MHz), this echoing performs a sort of protocol and error checking function. The PC should not send the next character until it receives the echo of the last character (handshaking) and checks to make sure the echoed character is identical to the one sent (error checking).

Pin Usage

Intended uses for all I/O pins on the PIC 16F877. Many may have multiple uses and are listed in order of preference or expected use (the first being the default). This is the current design and will probably change over time.

See <u>PicBot SCI Protocol</u> for a description for the use of each Port Pin Address.

<u>Addre</u>	<u>ess</u>	<u>Pin</u>	<u>Principal</u> <u>Use</u>	<u>Alternate Uses</u>	S		
	Port A						
A0 A1 A2 A3 T0 A4	A0 A1 A2 A3 A4 A5	A/D Input A/D Input A/D Input A/D Input Timer A/D Input					
				Port B			
10 11 12 13 14 15 16	B0 B1 B2 B3 B4 B5 B6 B7	Digita Digita Digita Digita Digita Digita	Input Input Input Input	INT on Change (X1) INT on Change (X2) INT on Change (X3) INT on Change (X4)	PGM PGC PGD		
	Port C						
T1 S3 S4 	C0 C1 C2 C3 C4 C5 C6 C7	Timer Servo Servo SPI-Ck SPI-Da SPI-Da SCI-Tx SCI-Rx	ita In ita Out	Digital Output Digital Output Digital Output Digital Output Digital Output Digital Output			
				Port D			
00 01 02 03 04 05 06 07	D0 D1 D2 D3 D4 D5 D6 D7	Digital Digital Digital Digital Digital Digital	Output Output Output Output Output Output Output Output	Motor 0, 0* Motor 0, 1* Motor 0, 2* Motor 0, 3* Motor 1, 0* Motor 1, 1* Motor 1, 2* Motor 1, 3*			
				Port E			
S0 S1 S2	E0 E1 E2	Servo Servo Servo		Digital Output Digital Output Digital Output			

^{*} Obsolete. Remove when code is permanently removed.

SCI FIFO Buffer

The SCI First-In-First-Out Buffer, a well-oiled machine that has given me not a lick of trouble since I designed the thing. Here's how I did it.

DESIGN

The following graphic attempts to describe not only the dataflow and interrupts, but also the pages in which each part reside.

SCI - Protocol

SCI stands for the Serial Communication Interface (I think), which in this prototype is the interface between the PIC and the Host CPU (PC, Palm, ...). The PIC utilizes the MAX232 chip to convert TTL to Serial Port levels over a 3-wire link. See other documentation for any information I might have on that; and the Setup portion of this manual for the setup of the SCI port on the PIC.

The communication protocol between the PIC and the Host CPU has been designed specifically for the Bot application (as it stands now) and is defined below.

CURRENT COMMANDS

FUTURE COMMANDS

(<u>D) SPI Data</u> Dx Dx""	← ← →	What's up with SPI device x? (Poll device for status.) Send string "" to SPI device x; Device x returns string "".
(<u>T) Timer</u> Tn Tn+ Tn- Tnxx	← ← ←	What is the value of Timer n? Activate Timer n. Deactivate Timer n. The value of Timer n is xx (0=inactive, FF=Overflow).
(X) External Int Xn+ Xn- Xn	errupts ← ← →	Activate external interrupt n. Deactivate external interrupt n. External Interrupt n has occurred.
(M) Motor Cont Mnx	rol* ←	Set motor n to x, where x-bits mean: 7 = direction (0=reverse, 1=forward) 6-0 = speed (0-127)

^{*} Obsolete. Remove when code is permanently removed.

Alternate PIC "Motor Controller"

This is an idea I had once coded into the main PIC but never used, as it took too many data ports to utilize. So I decided it might be best to save the idea for a future sister-PCB (interfaced via the SPI port) that only handles stepping motors. See example code for the original prototype for a fairly neat implementation that even incorporated a simplified ramp-up delay algorithm.

FUTURE SPECIALIZATIONS

I foresee that there is no way that most of the above commands will remain long past the prototyping stage. The reason for this is that the communication will naturally evolve to fit the usage of the chip and each specialization of the I/O pins.

For example, when a proximity detector is connected to pin X, none of the above will apply any longer. Data passing either way regarding pin X will report proximity data, based on timing and distances, and therefore will care less about the actual state of the pin at any given moment.

The same will go for servos, motors (if not given to another chip to handle), and a variety of other locomotion or sensor applications. This is actually a Good Thing, in that the chip will be handling a lot of the details (where it can) locally, and will only bother to send the data that is needed on the other end. Basically an embedded client-server setup.

Therefore, the above setup is meant to facilitate testing and give a coarse control until that time comes. So there.

A/D Setup Notes

Trying to get the A/D register to work as advertised, the following example finally fixes the problem by justifying-left the ADRESH register, using the 8 most-significant bits, and ignoring the least-significant ones in ADRESL.

SAMPLE CODE

SetupAD			
*	bsf	STATUS, RPO	;bank 1
	bcf	STATUS, RP1	
	movlw	H'00'	
	movwf	TRISC	;port C [7-0] output
	clrf	ADCON1	;left-justified, all AD inputs
	bcf	STATUS, RPO	;bank 0
	movlw	B'01000001'	;Fosc/8 [7-6], AD ch0 [S-3], AD ON
	movwf	ADCON0	
Main		75 5 46	
	call	AD_PortC Main	
7D D+C	goto	Main	. Tanada da da ana atana arada
AD_PortC			;Acquisition time wait ;(noncritical for this example)
	bsf	ADCON0,GO	;Start AD conversion
WaitAD	DSI	11000110,00	, Start MD Conversion
Waichb	bt.fsc	ADCON0,GO	;Conversion complete?
	goto	WaitAD	;No loop
	J		,
	movf	ADRESH, W	;Write AD result to PORT C
	movwf	PORTC	;for LED display
	return		

SETUP FOR SAMPLE

```
pin 11 & 32: = 5VDC
pin 12 & 31 = 0VDC (ground)
pin 1 = 5VDC
pin 2 = Analog input (o - 5 VDC); Center tap 20K var. resistor
pin 13 & 14 = 4MHz crystal with 18pf capacitors to 0VDC (ground)
pins 15 - 18, 23 - 26 = (Port C) output each to LED in series with 330 ohm to ground.
```

Program Paging

Since the PIC program memory is divided into pages and those pages are not easily modified on the fly without a serious expenditure of code, the following paging architecture was developed. Each box identifies the page each section of code resides in. Lines indicate which of the four types of subroutine calling macros are used to access one page from another page (believe it or not, this actually is necessary to keep things from getting confused when interrupts are flying around mucking things up):

Keep in mind that the PIC Stack is only 8-deep. Any calls that make more calls cannot go any deeper than 8 or the PIC will become seriously confused. The real danger here is when Main calls a Sub, and whilst in the midst of that call (or another Sub the first Sub called) an Interrupt occurs and then calls a Sub, which then calls a Sub ... You get the picture.

CALL

Local calls within the same page require the standard RISK statement "Call".

SCALL

Calls from Main (Page 0) to a subroutine (Page 1) need to save the PCLATH, otherwise a simple Return will restore the PCL without restoring the PCLATH, which handles what page we are in. SCall takes care of this.

ICALL

This call should only truly occur from the Interrupt Vector section at the beginning of the Main program. ICall does some important register saves before switching to Page 2, as there is no way of knowing at what point of the program (nor even what Page) we have interrupted *from*. And then a full restore of these registers before releasing the Interrupt and returning to wherever we got here from.

ISCALL

Interrupts calling subroutines. Basically saves the same important registers as ICall, but sets the PCLATH accordingly to get to Page 1 from Page 2. Beware of calling a subroutine that may already be called when the interrupt occurred (why Rx/Tx routines should always temporarily disable interrupts). Also, make sure that Interrupts do not share any variables that may be used in any of the subroutines, as changes will confuse the a subroutine we may have just Interrupted out of...

(BOOTLOAD) JUMP

Since the Bootloader simply does its thing and resets the PIC, all it needs to do is do a simple Jump to the beginning of Page 0 to run the Main code.

Shared Special Register Settings

00H,80H,100H,180H (IND. ADDR.)

(Setting or retrieving a value from this register automatically accesses the location pointed to in the FSR register)
[7 6 5 4 3 2 1 0]

01H,101H TMR0

OPTION REG

(Accumulation register for Timer 0) [7 6 5 4 3 2 1 0]

21 | 121 |

	016,1016	OF HON_KEG	
7	RBPU	1	
6	ĪNTEDG	1	
5	T0CS	0	
4	T0SE	0	
3	PSA	0	
2	PS2	0	
1	PS1	0	
0	PS0	0	

02H,82H,102H,182H PCL

(Program Counter, least significant bits) [7 6 5 4 3 2 1 0]

03H,83H,103H,183H STATUS

(Status Register, set as computations are made)

7	IRP	Indirect Bank Addressing
6	RP1	Bank Addressing
5	RP0	Bank Addressing
4	_TO	
3	_PD	
2	Ž	Zero
1	DC	
0	С	Carry

04H,84H,104H,184H FSR

(Indirect data memory address pointer, used to indirectly address and access data via the Ind. Addr. register)

[76543210]

0AH,8AH,10AH,18AH PCLATH

(Sets upper five bits of Program Counter, including page addressing)
[X X X 4 3 2 1 0]

	.10BH.18BH	INTCON
VDII.UDII	. IVDII. IVDII	

(Inte	errupt Controller)	
7	GIE	0,1
6	PEIE	1
5	TOIE	0
4	INTE	1
3	RBIE	0
2	TOIF	?
1	INTF	?
0	RBIF	?

Special Register Settings

BANK 0

00h, 01h, 02h, 03h, 04h (shared)

<u>05h PORTA</u> (Port A data values - in/out) [X X 5 4 3 2 1 0]

<u>06h</u> <u>PORTB</u> (Port B data values - in/out) [7 6 5 4 3 2 1 0]

<u>07h PORTC</u> (Port C data values - in/out) [76543210]

<u>08h PORTD</u> (Port D data values - in/out) [7 6 5 4 3 2 1 0]

O9h PORTE
(Port E data values - in/out)
[X X X X X 2 1 0]

<u>0Ah, 0</u>	Bh	(shared)				6	SSPOV	0
001	5/54					5	SSPEN	0/1
0Ch	PIR1	. = 1 \				4	CKP	0
-		rupt Flags)	_		:	3 2	SSPM3	0
7	PSPIF		?				SSPM2	0
6	ADIF		?			1	SSPM1	0
5	RCIF		? ?			0	SSPM0	0
4	TXIF		?					
3	SSPIF		?			<u>15h</u>	CCPR1L	
2	CCP1IF		?				re/Compare/PWM re	gister 1, LSB)
1	TMR2IF		?			[765	43210]	
0	TMR1IF		?					
					_	16h	CCPR1H	
0Dh	PIR2				((Captu	re/Compare/PWM re-	gister 1, MSB)
(Perip	heral Inter	rupt Flags, con	tinued)				43210]	
7	Χ		0					
6	0		0			17h	CCP1CON	
5	Χ		0		-		Controller)	
4	EEIF		?			7	X	0
3	BCLIF		?			6	X	Ö
2	Χ		0			5	CCP1X	Ö
1	Χ		0			4	CCP1Y	Ö
0	CCP2IF		?			3	CCP1M3	0
-						2	CCP1M2	Ö
0Eh	TMR1L					1	CCP1M1	Ö
		gnificant byte r	anistar	1		0	CCP1M0	0
	5 4 3 2 1 0		cgister	'	,	U	CCI IMO	O
[/ 0]	743210	1				401	D00T4	
051	TMD4					<u>18h</u>	RCSTA	
<u>0Fh</u>							ort, receiver setup)	-
		gnificant byte r	register)		7	SPEN	1
[/65	543210]				6	RX9	0
						5	SREN	0
<u>10h</u>	T1CON					4	CREN	1
(Time	r 1 Control	ler)				3 2	ADDEN	0
7	X		0			2	FERR	?
6	Χ		0			1	OERR	?
5	T1CKPS1			0	(0	RX9D	?
4	T1CKPS(0				
3	T10SCE	N	0		_	<u>19h</u>	TXREG	
2	T1SYNC		0		((SCI Tr	ansmit Data Registe	r)
1	TMR1CS			0		[765	43210]	
0	TMR10N	l		0/1				
						1Ah	RCREG	
11h	TMR2						eceive Data Register)
		ulation register))				43210]	,
	543210		,					
		•				1Bh	CCPR2L	
<u>12h</u>	T2CON						re/Compare/PWM re	nister 2 ISB)
	r 2 Control	ler)					43210]	gister 2, LSD)
7	X	ici /	0		ļ	[/ 0 3	+ 5 Z I O]	
6	TOUTPS:	3	0			10h	CCDD2U	
5	TOUTPS		0			1Ch	CCPR2H	-::-t 2 MCD)
4	TOUTPS		0				re/Compare/PWM re	gister 2, MSB)
3			0			[/65	43210]	
2	TOUTPS		U	0/1				
1	TMR2ON			0/1		<u>1Dh</u>	CCP2CON	
	T2CKPS1			0			Controller)	
0	T2CKPS(J		0		7	X	0
						6	Χ	0
	<u>SSPBUF</u>			- :		5	CCP2X	0
		erial Port Receiv	ve Buffe	er/Transmit		4	CCP2Y	0
Regist		,				3	CCP2M3	0
[/65	543210	1				2	CCP2M2	0
						1	CCP2M1	0
<u>14h</u>	SSPCON	!			(0	CCP2M0	0
	Controller)		_					
7	WCOL		0					

1Eh (A/D	ADRESH Result Register, H	ligh Byte)	5 4	CHS2 CHS1	0 0	
			3	CHS0	0	
1Fh	ADCON0		2	GO/DONE	0/1	
(A/D	Controller)		1	Χ	0	
7	ADCS1	0	0	ADON	0/1	
6	ADCS0	0				

BANK 1

<u>80h, 81</u>	h, 82h, 83h, 84h (shared	<u>0</u>	2	E2	0
			1	E1	0
<u>85h</u>	<u>TRISA</u>		0	E0	0
(Port A	Data Direction Register	·)			
7	X	0	<u>8Ah, 8E</u>	<u>Bh (shared)</u>	
6	X	0			
5	A5	1	8Ch	PIE1	
4	A4	1		neral Interrupt Enabler 1))
3	A3	1	7	PSPIE	0
2	A2	1	6	ADIE	0
1	A1	1	5	RCIE	1
0	A0	1	4	TXIE	0
			3	SSPIE	0
<u>86h</u>	TRISB		2	CCP1IE	0
	Data Direction Register		1	TMR2IE	0
7	B7	1	0	TMR1IE	0
6	B6	1			
5	B5	1	<u>8Dh</u>	PIE2	
4	B4	1		neral Interrupt Enabler 2)	_
3	B3	1	7	X	0
2	B2	1	6	0	0
1	B1	1	5	X	0
0	В0	1	4	EEIE	0
			3	BCLIE	0
<u>87h</u>	TRISC		2	X	0
	Data Direction Register		1	X	0
7	C7	1	0	CCP2IE	0
6	C6	1			
5	C5	0	<u>8Eh</u>	<u>PCON</u>	
4	C4	0	()		
3 2	C3 C2	0		(XXX10]	_
	C1	0	1	_POR	?
1	C0	0	0	BOR	?
0	CU	U			
006	TRICE		<u>8Fh, 90</u>	<u> </u>	
<u>88h</u> (Port D	<u>TRISD</u> Data Direction Register	-)			
7	D7	['] 0			
6	D6	0	91h	SSPCON2	
5	D5	0	-	ontroller 2)	_
4	D4	0	7	GCEN	0
3	D3	0	6	ACKSTAT	0
2	D2	0	5 4	ACKDT	0
1	D1	0	3	ACKEN RCEN	0
0	D0	0	2	PEN	0
-		-	1	RSEN	0
89h	TRISE		0	SEN	0
	Data Direction Register)	U	JLIN	U
7	IBF	['] 0	025	BB2	
6	OBF	0	92h (Timor	PR2	
5	IBOV	0		2 Period Register) 43210]	
4	PSPMODE	0	[/ 0 5	4 2 2 1 0]	
3	X	0			

93h SSPADD (SPI Address Register) [7 6 5 4 3 2 1 0]		1 TRMT 1 0 TX9D 0	
94h SSPSTAT (SPI Status Register) 7 SMP 6 CKE 5 D/A 4 P 3 S 2 R/_W 1 UA 0 BF	0 0 0 0 0 0	99h SPBRG (SCI Baud Rate Generator Registe [7 6 5 4 3 2 1 0] d'129' = 2400 baud, when TXSTA d'129' = 9600 baud, when TXSTA 9Ah, 9Bh, 9Ch, 9Dh 9Eh ADRESL (A/D Result Register, Low Byte)	A:BRGH = 0
95h, 96h, 97h 98h TXSTA (SCI Transmit Setup Register) 7 CSRC 6 TX9 5 TXEN 4 SYNC 3 X 2 BRGH	0 0 1 0 0	[7 6 5 4 3 2 1 0] 9Fh ADCON1 (A/D Controller Register) 7 ADFM 1 6 X 0 5 X 0 4 X 0 3 PCFG3 0 2 PCFG2 0 1 PCFG1 1 0 PCFG0 0	
BANK 2			
100h, 101h, 102h, 103h, 104h	<u>(shared)</u>	<u>10Ch </u>	
105h 106h PORTB (Same as 06h) 107h, 108h, 109h 10Ah, 10Bh (shared)		10Dh EEADR (EEPROM Address Register) [7 6 5 4 3 2 1 0] 10Eh EEDATH (EEPROM Data Register, High Byt [X X 5 4 3 2 1 0] 10Fh EEADRH (EEPROM Address Register, High	
[XXX43210] BANK 3			
100h, 101h, 102h, 103h, 104h (shared) 18Ah, 18Bh (shared)			
<u>105h</u>		<u>18Ch EECON1</u> (EEPROM Controller Register 1) 7 EEPGD ?	
<u>106h TRISB</u> (Same as 86h) 107h, 108h, 109h		6 X ? 5 X ? 4 X ? 3 WRERR ?	
		2 WREN ?	

? WR 1 0 RD

[76543210]

18Dh EECON2 (EEPROM Controller Register 2 – Not a physical register) 18Eh, 18Fh (reserved)

General Purpose Registers

(See source code for current general purpose register settings and use.)