Κρυπτογραφία: Οργανωτικά

Χειμερινό Εξάμηνο 2015 - 2016

Οργανωτικά

- Μαθήματα:
 - Τρίτη: 17:00 19:00
 - Παρασκευή: 16:00 18:00
 - Αίθουσα 005, Νέα Κτήρια ΗΜΜΥ
- Έναρξη μαθημάτων: 2015-10-06
- 13 εβδομάδες, 26 μαθήματα

Υπεύθυνοι καθηγητές

- Άρης Παγουρτζής (σε εκπαιδευτική άδεια)
- Παναγιώτης Τσανάκας
- Στάθος Ζάχος

Διδασκαλία

- Παναγιώτης Γροντάς <u>pgrontas@gmail.com</u>
- Πέτρος Ποτίκας ppotik@cs.ntua.gr
- Διονύσης Ζήνδρος dionyziz@gmail.com

Βοηθοί διδασκαλίας: crypto-class.gr project

- Αλέξης Μπρέζας <u>abresas@gmail.com</u>
- Κωνσταντίνος Κανελλής kkanelli@gmail.com
- Κωστής Καραντίας <u>karantiaskostis@gmail.com</u>
- Πλάτων Κιορπελίδης <u>platwnace@gmail.com</u>
- Σωκράτης Βίδρος <u>sokratis.vidros@gmail.com</u>

Βοηθοί διδασκαλίας: Θεωρητικές ασκήσεις

- Ζέτα Αβαρικιώτη zavarikioti@gmail.com
- Χαρά Ποδηματά charapod@gmail.com

Βοηθοί διδασκαλίας: Πρακτικές ασκήσεις

- Δημήτρης Καρακώστας <u>dimit.karakostas@gmail.com</u>
- Λευτέρης Ιωαννίδης <u>elefthei@mit.edu</u>

Επισκέπτης διδάσκοντας

• Γιώργος Τσουκαλάς (ψηφιακές ψηφοφορίες)

Βοηθοί διδασκαλίας: Βιντεοσκόπηση

- Νικόλας Κορασίδης renelvon@gmail.com
- Βασίλης Γκούμας bgoumas@gmail.com
- Κωνσταντίνος Μόι

Προαπαιτούμενες γνώσεις

- Μαθηματική ωριμότητα
 - Διακριτά μαθηματικά
 - Λογική
 - Επαγωγή
- Αλγόριθμοι
 - Πολυπλοκότητα και Ο(.)
 - Γράφους
- Προγραμματισμός
 - Ανεση σε μία γλώσσα της επιλογής σου
- Επικοινωνίες
 - Πώς δουλεύουν πρωτόκολλα επικοινωνιών και δίκτυα

Κοινό

Επίσημο μάθημα

- Φοιτητές ΗΜΜΥ ΕΜΠ
 - Ακόμη και μικρότερων ετών
- Φοιτητές ΜΠΛΑ
- Φοιτητές ΣΕΜΦΕ ΕΜΠ

Ως crypto-class.gr project

- Ανοιχτό σε όλους: Φοιτητές, μαθητές, επαγγελματίες...
- Στόχος η δημιουργία υλικού που θα είναι επαναχρησιμοποιήσιμο

Ροές

- Το μάθημα πλέον ανήκει στη ροή Λ
- Για εισακτέους πριν από φέτος, το μάθημα εντάσσεται ακόμη στο ροή Μ

Αλλαγές στο μάθημα

- Το μάθημα διατηρεί το δυνατό θεωρητικό και ακαδημαϊκό του χαρακτήρα
- Προστίθενται **εφαρμογές** της κρυπτογραφίας
 - Κρυπτογραφία στο web (HTTPS, HSTS)
 - Επιθέσεις side-channel
 - Κρυπτογράφηση επικοινωνιών (GPG, OTR)
 - Ψηφιακές ψηφοφορίες
 - Blockchain και bitcoin

Ασκήσεις

- Δύο ειδών
 - Πρακτικές ασκήσεις
 - Θεωρητικές ασκήσεις
- Περίπου 1 άσκηση για κάθε μάθημα

Θεωρητικές ασκήσεις

- Παραδοσιακές μαθηματικές «αποδεικτικές» ασκήσεις
- Θεωρητικός σχεδιασμός πρωτοκόλλων
- Παραδίδονται σε μορφή PDF
 - Σκανάρισμα χειρόγραφων λύσεων που έχουν μετατραπεί σε PDF επιτρέπονται
- Συνεργασίες πρέπει να αναγράφονται στη λύση
- Κάθε μαθητής που θα συνεργαστεί πρέπει να στείλει την κοινή λύση

Πρακτικές ασκήσεις

- Απαιτούν να γράψετε κώδικα για να βρείτε τη λύση
- Συχνά χρειάζονται τη χρήση μεγάλων αριθμών
- Μπορείτε να χρησιμοποιήσετε έτοιμες βιβλιοθήκες
- Οι συνεργασίες επιτρέπονται και ενθαρρύνονται
- Διαδραστικό σύστημα: Ξέρετε αν έχετε στείλει τη σωστή λύση

crypto-class.gr project

- Φέτος υλοποιείται το crypto-class.gr project
- Για την παρακολούθηση του μαθήματος απαιτείται η εγγραφή στο website
 - Επισκευθείτε το <u>www.crypto-class.gr</u> και γραφτείτε με τον αριθμό μητρώου σας
- Οι εργασίες παραδίδονται μόνο μέσω του website. Δεν γίνονται δεκτές:
 - Λύσεις στο χαρτί (τυπωμένες ή χειρόγραφες)
 - Λύσεις μέσω e-mail, CD, κλπ.

Deadlines

- Τα deadlines θα τηρηθούν αυστηρά
- Παρατάσεις δεν θα δοθούν
- Θα έχετε 1 2 εβδομάδες για κάθε άσκηση
- Μετά το deadline:
 - 2 επιπλέον μέρες για παράδοση για το 80% του βαθμού
 - Δυνατότητα παράδοσης αργότερα για το 0% του βαθμού (test mode)

Βαθμολογικό σχήμα

- ΒΘΑ: Βαθμός θεωρητικών ασκήσεων (στα 5)
- ΒΠΑ: Βαθμός πρακτικών ασκήσεων (στα 5)
- ΒΕ: Γραπτός βαθμός τελικής εξέτασης (στα 10)
- ΤΒ: Τελικός βαθμός στο μάθημα (στα 15)

$$TB = BE * (1 + (B\Theta A + B\Pi A) / 20)$$

• Δεν απαιτούνται ειδικά κατώφλια για το 5

Άδεια χρήσης

- Το υλικό μας δημοσιεύεται δωρεάν εντός και εκτός πολυτεχνείου
- Υπό Creative Commons 4.0 BY
 - Διαφάνειες (PDF)
 - Βίντεο
 - Εκφωνήσεις ασκήσεων
- Υπό ΜΙΤ
 - Πρότυπες λύσεις ασκήσεων

Βιβλιογραφία

Επίσημη βιβλιογραφία

- Σημειώσεις Κρυπτογραφίας
 - Στάθης Ζάχου, Άρης Παγουρτζής
- Θεωρία αριθμών
 - Victor Shoup
 - Διαθέσιμο δωρεάν online

Βιβλιογραφία

Επίσης χρήσιμα

- Cryptography I, Coursera
 - Dan Boneh
 - https://www.coursera.org/course/crypto
- https://crypto101.io/ (ημιτελές)
 - CC BY NC 4.0
 - Μπορείτε να βοηθήσετε
- Wikipedia
- Wikis αποκεντρωμένων συστημάτων
 - π.χ. bitcoin wiki https://en.bitcoin.it

Ύλη του εξαμηνιαίου μαθήματος

- Συμμετρική κρυπτογραφία
 - Παραδοσιακά συστήματα
 - One-time pad
 - Block ciphers, AES
 - Stream ciphers, RC4
 - Μαθηματική μοντελοποίηση ασφάλειας μέσω παιγνίων
- Συναρτήσεις hash
 - md5, SHA1, SHA256, δέντρα Merkle
 - ΗΜΑC για πιστοποίηση

Ύλη του εξαμηνιαίου μαθήματος

- Ασύμμετρη κρυπτογραφία
 - RSA
 - DSA, ElGamal
 - Ελλειπτικές καμπύλες / ECDSA
- Θεωρία αριθμών
- Θεωρία ομάδων
- Αποδείξεις μηδενικής γνώσης

Ύλη του εξαμηνιαίου μαθήματος

- Εφαρμογές
 - Οικονομική κρυπτογραφία: Blockchain & bitcoin
 - Διασφάλιση επικοινωνιών: GPG, OTR
 - Ελευθερία του λόγου και του τύπου: Tor
 - Ηλεκτρονική διακυβέρνηση: Εκλογές και ψηφοφορίες
 - Αποκεντρωμένα συστήματα και πολιτικές εφαρμογές

Στόχοι του εξαμηνιαίου μαθήματος

- Να καταλάβετε τις βασικές έννοιες της κρυπτογραφίας
- Να μπορείτε να επιχειρηματολογήσετε για την κρυπτογραφική ασφάλεια ενός συστήματος
- Να μπορείτε να αναλύσετε θεωρητικά ένα κρυπτογραφικό σύστημα
- Να μπορείτε να υλοποιήσετε σε κώδικα τα συστήματα που περιγράφουμε

Ανοιχτά προβλήματα και διπλωματικές

- Η περιοχή είναι ιδιαίτερα ενεργή ερευνητικά
- Αν ενδιαφέρεστε για διπλωματικές, υπάρχουν πολλά θέματα όπως:
 - Βυζαντινό πρόβλημα και επεκτάσεις
 - Ενοποίηση συστημάτων όπως tor + namecoin
 - Πρακτικό «σπάσιμο» αληθινών κρυπτογραφικών πρωτοκόλλων με side-channel μεθόδους
 - Υλοποίηση αμυνών στο παραπάνω