```
In [1]:
```

```
import numpy as np
import pandas as pd
```

In [2]:

```
df = pd.read_csv("HR-Employee-Attrition.csv")
df.shape
```

Out[2]:

(1470, 35)

In [4]:

```
df.head()
```

Out[4]:

	Age	Attrition	BusinessTravel	DailyRate	Department	DistanceFromHome	Education	Educ
0	41	Yes	Travel_Rarely	1102	Sales	1	2	Life
1	49	No	Travel_Frequently	279	Research & Development	8	1	Life
2	37	Yes	Travel_Rarely	1373	Research & Development	2	2	
3	33	No	Travel_Frequently	1392	Research & Development	3	4	Life
4	27	No	Travel_Rarely	591	Research & Development	2	1	

5 rows × 35 columns

In [5]:

from sklearn.preprocessing import LabelEncoder, OneHotEncoder

In [6]:

```
le = LabelEncoder()
```

In [7]:

```
le_count = 0
for col in df.columns[1:]:
    if df[col].dtype == 'object':
        if len(list(df[col].unique())) <= 2:
            le.fit(df[col])
            df[col] = le.transform(df[col])
            le_count += 1
print('{} columns were label encoded.'.format(le_count))</pre>
```

⁴ columns were label encoded.

In [8]:

df.head()

Out[8]:

	Age	Attrition	BusinessTravel	DailyRate	Department	DistanceFromHome	Education	Educ
0	41	1	Travel_Rarely	1102	Sales	1	2	Life
1	49	0	Travel_Frequently	279	Research & Development	8	1	Life
2	37	1	Travel_Rarely	1373	Research & Development	2	2	
3	33	0	Travel_Frequently	1392	Research & Development	3	4	Life
4	27	0	Travel_Rarely	591	Research & Development	2	1	

5 rows × 35 columns

In [10]:

df = pd.get_dummies(df, drop_first=True)

In [11]:

df.dtypes

Out[11]:

Age	int64
Attrition	int64
DailyRate	int64
DistanceFromHome	int64
Education	int64
EmployeeCount	int64
EmployeeNumber	int64
EnvironmentSatisfaction	int64
Gender	int64
HourlyRate	int64
JobInvolvement	int64
JobLevel	int64
JobSatisfaction	int64
MonthlyIncome	int64
MonthlyRate	int64
NumCompaniesWorked	int64
Over18	int64
OverTime	int64
PercentSalaryHike	int64
PerformanceRating	int64
RelationshipSatisfaction	int64
StandardHours	int64
StockOptionLevel	int64
TotalWorkingYears	int64
TrainingTimesLastYear	int64
WorkLifeBalance	int64
YearsAtCompany	int64
YearsInCurrentRole	int64
YearsSinceLastPromotion	int64
YearsWithCurrManager	int64
BusinessTravel_Travel_Frequently	uint8
BusinessTravel_Travel_Rarely	uint8
Department_Research & Development	uint8
Department_Sales	uint8
EducationField_Life Sciences	uint8
EducationField_Marketing	uint8
EducationField_Medical EducationField Other	uint8 uint8
-	
EducationField_Technical Degree JobRole Human Resources	uint8 uint8
JobRole Laboratory Technician	uint8
JobRole_Manager	uint8
JobRole Manufacturing Director	uint8
JobRole Research Director	uint8
JobRole Research Scientist	uint8
JobRole Sales Executive	uint8
JobRole Sales Representative	uint8
MaritalStatus Married	uint8
MaritalStatus Single	uint8
dtype: object	
11 J	

```
In [12]:
df.head()
Out[12]:
   Age Attrition DailyRate DistanceFromHome Education EmployeeCount EmployeeNumber
    41
             1
                   1102
                                       1
                                                 2
                                                               1
                                                                              1
0
                    279
 1
    49
             0
                                       8
                                                 1
                                                                              2
    37
             1
                   1373
                                       2
                                                 2
                                                               1
                                                                              4
2
    33
             0
                   1392
                                       3
                                                 4
                                                               1
                                                                              5
3
    27
                                       2
                                                 1
                                                                              7
             0
                    591
                                                               1
 4
5 rows × 49 columns
In [13]:
target = df['Attrition']
In [15]:
df = df.drop(columns=['Attrition'])
In [16]:
target.shape
Out[16]:
(1470,)
In [17]:
df.shape
Out[17]:
(1470, 48)
In [19]:
df = df.drop(columns =['EmployeeCount', 'EmployeeNumber', 'StandardHours', 'Over18'])
In [20]:
df.shape
Out[20]:
(1470, 44)
```

```
df.head()
Out[25]:
   Age DailyRate DistanceFromHome Education EnvironmentSatisfaction Gender HourlyRate
           1102
                               1
                                        2
                                                            2
                                                                   0
                                                                             94
0
    41
           279
 1
    49
                               8
                                        1
                                                            3
                                                                             61
    37
           1373
                               2
                                        2
                                                                   1
                                                                             92
2
    33
           1392
                               3
                                        4
                                                            4
                                                                   0
                                                                             56
 3
    27
                               2
            591
                                        1
                                                            1
                                                                   1
                                                                             40
 4
5 rows × 44 columns
In [28]:
target.value_counts(normalize = True)
Out[28]:
     0.838776
0
     0.161224
1
Name: Attrition, dtype: float64
In [22]:
from sklearn.model_selection import train_test_split
In [29]:
X_train, X_test, y_train, y_test = train_test_split(df, target, test_size=0.25, rand)
In [30]:
X_train.shape, y_train.shape
Out[30]:
((1102, 44), (1102,))
In [31]:
X_test.shape, y_test.shape
Out[31]:
((368, 44), (368,))
```

In [25]:

```
In [33]:
y_train.value_counts(normalize=True)
Out[33]:
     0.838475
     0.161525
Name: Attrition, dtype: float64
In [34]:
y test.value counts(normalize=True)
Out[34]:
     0.839674
     0.160326
Name: Attrition, dtype: float64
In [35]:
from sklearn.tree import DecisionTreeClassifier
In [61]:
tree = DecisionTreeClassifier(criterion='entropy', max_depth=3, max_features=20)
In [62]:
tree.fit(X_train, y_train)
Out[62]:
DecisionTreeClassifier(criterion='entropy', max_depth=3, max_features=
20)
In [63]:
tree.score(X_train, y_train)
Out[63]:
0.8448275862068966
In [64]:
tree.score(X_test, y_test)
Out[64]:
0.8396739130434783
In [ ]:
In [ ]:
```