

ANÁLISE DE SENSIBILIDADE EM PROGRAMAÇÃO LINEAR

Prof. Dr. Claudio Barbieri da Cunha

Escola Politécnica

cbcunha@usp.br

Para que serve a análise de sensibilidade?

- Para ajudar a responder às seguintes perguntas:
- POR QUE tal variável não faz parte da solução ótima?
 - O que é preciso fazer/melhorar para que a solução ótima a inclua?
- O que aconteceria com a solução ótima obtida SE o coeficiente de uma variável de decisão na função objetivo fosse 10% maior/menor?
- O que aconteceria com a solução ótima obtida SE a disponibilidade de um recurso fosse 20% maior/menor?

SEM PRECISAR RODAR NOVAMENTE O MODELO A CADA PERGUNTA!

ANÁLISE DE SENSIBILIDADE EM PL

- Todos os softwares de Programação Linear permitem ao usuário obter mais informações do que apenas os valores das variáveis de decisão e da função objetivo para a solução ótima.
- O relatório de análise de sensibilidade permite avaliar para que condições a solução obtida é valida e também o que acontece se variarmos:
 - o coeficiente de cada variável de decisão na função objetivo
 - o coeficiente do lado direito (RHS = right hand side) de cada restrição
- A análise de sensibilidade permite avaliar consequências de variação de um parâmetro de cada vez, sem necessidade de processar novamente o modelo.
- Mudanças simultâneas em mais de um parâmetro não podem ser analisadas através de relatório de análise de sensibilidade e requerem um novo processamento do modelo de otimização
- APENAS PARA MODELOS LINEARES, SEM VARIÁVEIS INTEIRAS

Conceitos

Custo Reduzido (Reduced Cost)

- é definido <u>um custo reduzido para cada variável de decisão</u>
- representa o quanto precisa variar ou "melhorar" o seu coeficiente da função objetivo, de tal forma que a variável de decisão passe a fazer parte da solução ótima
- pode ainda ser interpretado como uma penalidade unitária ao se introduzir a variável na solução que não faz parte da mesma; ou seja, o quanto piora a solução para cada unidade da variável fora da solução que for aumentada
- portanto, o custo reduzido das variáveis que fazem parte da solução ótima é sempre igual a zero, uma vez que não é necessária nenhuma "melhoria" para que ela passe a fazer parte da solução

Preços Sombra (Shadow Prices)

- também conhecidos como preços duais (dual prices)
- É definido <u>um preço sombra para cada restrição</u> do modelo
- O preço dual ou sombra pode ser interpretado como o valor que a função objetivo "melhora" a partir do acréscimo de uma unidade na disponibilidade de recurso da restrição.
- Naturalmente, quando houver folga na restrição o preço sombra é nulo, uma vez que um aumento na disponibilidade do recurso (que já é abundante e não é limitante) não contribui para melhorar a solução ótima.
- Os preços duais são também chamados de preços sombra porque eles definem quanto se estaria disposto a pagar por uma unidade adicional do recurso

Folga (Slack)

- Folga está relacionada a restrições de menor ou igual (≤)
- significa quanto abaixo se está do limite da restrição (falta)

Excesso (Surplus)

- Excesso se refere a restrições de maior ou igual (≥).
- significa quanto abaixo se está do limite da restrição (sobra)
- **Exemplo:** $x1 = 1 \times 2 = 5$; x3 = 2
 - na restrição: 3x1 + 2x2 + x3 ≤ 20 ⇒ 3(1)+2(5)+1(2) = 15 < 20 ⇒
 ⇒ folga de (20-15) = 5
 - na restrição: 2x1 + x2 + 3x3 ≥ 16 ⇒ 2(1)+1(5) +3(2) = 13 > 16 ⇒
 ⇒ excesso de (16-13) = 5

Retomando o exemplo do Problema de Carregamento do Navio...

Para a solução ótima: x1= 1500 e x2 = 3500

Qual a folga na restrição de peso ? (x1 + x2 ≤ 5000)

Qual a folga na restrição de volume ? (2,4x1 + 0,8x2 ≤ 9600)

• Existe excesso em alguma restrição ?

Existe alguma variável com custo reduzido diferente de zero ?

- Por quê ?
- Porque todas as variáveis de decisão (x1 e x2) fazem parte da solução ótima

Quais os preços sombra das restrições ?

Peso: preço sombra = $80 \Rightarrow$ quanto aumenta o lucro para cada unidade adicional de capacidade de peso que for possível obter (folga = 0)

Volume: preço sombra = $0 \Rightarrow$ há sobra de volume (3200); portanto não adianta nada aumentar o volume disponível

Quantidade máxima da carga 2: preço sombra = $20 \Rightarrow$ quanto aumenta o lucro se houver mais carga 2 para transportar

questões adicionais

- Para que valores de frete unitário da carga de castanhas o mix de carga da solução ótima se mantém ?
- Idem em relação à carga de fios
- O que aconteceria se a tonelagem do navio fosse ampliada ou reduzida ?
- Idem em relação ao volume útil do navio

Faixas possíveis de variações nos parâmetros do modelo

	Reports Window					
	RANGES IN V	WHICH THE BASIS I	S UNCHANGED:			
Variáveis			BJ_COEFFICIENT_RAI	NGES		
de decisão	VARIABLE	CURRENT	ALLOWABLE	ALLOWABLE		
		COEF	INCREASE	DECREASE		
	QCAST	80.000000	20.000000	80.000000		
	QFIO	100.000000	INFINITY	20.000000		
Restrições		<i></i>	RIGHTHAND SIDE RAN	GES		
	ROW	CURRENT	ALLOWABLE	ALLOWABLE		
		RHS	INCREASE	DECREASE		
	PES0	5000.000000	1333.333252	1500.000000		
	VOL	9600.000000	INFINITY	3200.000000		
	MAXCAST	6000.000000	INFINITY	4500.000000		
	MAXFIO	3500.000000	1500.000000	2000.000000		
	L		Aumento	Diminuição		

Quanto pode variar o frete da carga 1 sem que a solução se altere ?

- Valor corrente: \$ 80/t
- Diminuir de qualquer valor (até zero !)
- Aumentar de \$20/t, ou seja, de \$80/t para \$100/t acima disso, a solução muda, ou seja, é mais vantajoso transportar mais carga 1

Quanto pode variar o frete da carga 2 sem que a solução se altere ?

- Valor corrente: \$ 100/t
- Aumentar de qualquer valor acima de \$ 100/t (até infinito)
- Diminuir de \$20/t, ou seja, de \$100/t para \$80//t abaixo disso, a solução muda, ou seja, é mais vantajoso transportar mais carga 1

Quanto pode variar o peso a ser transportado ?

- Pode aumentar de 1333t (de 5000t até 6333t)
 acima disso a restrição de volume passa a ser dominante e não adianta poder transportar mais peso
- Pode diminuir de 1500t (de 5000t para 3500t)
 abaixo disso a solução muda pois a restrição de quantidade máxima de carga 2 deixa de ser ativa

Quanto pode variar o volume a ser transportado ?

- Pode aumentar infinitamente, já que o navio não lota por peso
- Pode diminuir de 3200t (de 9600t para 6400t), que corresponde à folga de volume;
- abaixo disso a solução muda pois a restrição de volume passa a ser dominante

Problema exemplo

A Companhia Monet produz quatro tipos diferentes de molduras para quadros, denominados 1 a 4.

Os modelos diferem em tamanho, forma e materiais utilizados.

Cada um deles requer uma certa quantidade de mão-de-obra e de materiais (metal e vidro) para ser produzido:

	Quantidad	les p/ produzir			
	Horas	Metal (oz)	Vidro (oz)	Lucro (\$/unid)	Quantidade máxima
Moldura 1	2	4	6	\$6	1000
Moldura 2	1	2	2	\$ 2	2000
Moldura 3	3	1	1	\$ 4	500
Moldura 4	2	2	2	\$ 3	1000

Formulação matemática

variáveis de decisão:

x1, x2, x3, x4 = quantidades semanais produzidas das molduras 1,2, 3 e 4

max
$$L = 6x_1 + 2 x_2 + 4 x_3 + 3 x_4$$
 sujeito a:

$$2x_{1} + 1 x_{2} + 3 x_{3} + 2 x_{4} \leq 4000$$

$$4x_{1} + 2 x_{2} + 1 x_{3} + 2 x_{4} \leq 6000$$

$$6x_{1} + 2 x_{2} + 1 x_{3} + 2 x_{4} \leq 10000$$

$$x_{1} \leq 1000$$

$$x_{2} \leq 2000$$

$$x_{3} \leq 500$$

$$x_{4} \leq 1000$$

 x_1 , x_2 , x_3 , $x_4 \ge 0$

Estruturação no Lindo

```
🚟 LINDO
<u>File Edit Solve Reports Window Help</u>
   |%|⊠|⊪|∑
                                                           👺 C:\PMSC\SPREAD~1\PRODUCAO.LTX
! Problema de produção de molduras
   MAX 6x1 + 2x2 + 4x3 + 3x4
SUBJECT TO
MO) 2x1 + 1x2 + 3x3 + 2x4 <= 4000
MET) 4x1 + 2x2 + 1x3 + 2x4 <= 6000
VID)
       6x1 + 2x2 + 1x3 + 2x4 \le 10000
Qmax1)
                            <= 1000
       x1
Qmax2)
        x2
                            <= 2000
                   x3
                            <= 500
Qmax3)
Qmax4)
                         x4 \le 1000
! não é necessário garantir não negatividade das variáveis
END
```

Relatório de resultados - Lindo

Variáveis de decisão

LP OPTIMUM FOUND AT STEP 4

0.000000

OBJECTIVE FUNCTION VALUE

1) 9200.000

X4

VARIABLE VALUE REDUCED COST
X1 1000.000000 0.0000000
X2 800.000000 0.000000
X3 400.000000 0.000000

0.200000

Quanto precisa "melhorar" para fazer parte da solução

Restrições

ROW	SLACK OR SURPLUS	DUAL PRICES			
MO)	0.00000	1.200000			
MET)	0.00000	0.40000			
VID)	2000.000000	0.000000			
QMAX1)	0.000000	2.00000			
QMAX2)	1200.000000	0.000000			
QMAX3)	100.00000	0.000000			
QMAX4)	1000.00000	0.000000			
NO. ITERATIONS= 4					

Folga/Excesso

Quanto "melhora" a função objetivo caso aumente uma unidade do recurso

RANGES IN WHICH THE BASIS IS UNCHANGED:

OBJ COEFFICIENT RANGES

VARIABL	E CURRENT	ALLOWABLI	E ALLOWABLE
	COEF	INCREASE	DECREASE
X1	6.000000	INFINITY	2.000000
X2	2.000000	1.000000	0.250000
X3	4.000000	2.000000	0.500000
X4	3.000000	0.200000	INFINITY

RIGHTHAND SIDE RANGES

ROW	CURRENT	ALLOWABLE	ALLOWABLE
	RHS	INCREASE	DECREASE
MO	4000.000000	250.000000	1000.000000
MET	6000.000000	1999.999878	500.00000
VID	10000.000000	INFINITY	2000.000000
QMAX1	1000.000000	400.000000	600.000000
QMAX2	2000.000000	INFINITY	1200.000000
QMAX3	500.000000	INFINITY	100.000000
QMAX4	1000.000000	INFINITY	1000.000000

Faixas de variação

Quanto pode variar (aumentar/diminuir) cada coeficiente da função objetivo sem alterar a solução

Quanto pode variar (aumentar/diminuir) cada coeficiente de restrição sem alterar a solução

Estruturação no Solver

	Ā	В	C	D	É	F	G	Н
1	Problema de Mix d	le Produ	ção con	ı outra s	olução p	ossível		
2								
3	Dados de Entrada							
4			Tipo de	Produto				
5		1	2	3	4	Total usado		Total disponível
6	M.O por unidade prod	2	1	3	2	4000	<=	4000
7	Metal (oz) por unidade	4	2	1	2	5000	<=	6000
8	Vidro (oz) por unidade	6	2	1	2	7000	<=	10000
9						Lucro total		
10	Lucro unitário	\$6,00	\$2,00	\$4,00	\$3,00	\$8.750,00		
11								
12	Plano de produção							
13			Frame	Type				
14		1	2	3	4			
15	Quantidade produzida	1000	0	500	250			
16		<=	<=	<=	<=			
17	Produção máxima	1000	2000	500	1000			
18	_							
19								
20								
0,4		,			,	1-1-		

Célula de Destino

Cell	Name	Valor Original	Valor Final
\$F\$10 Lucro	Total	\$0,00	\$9.200,00

Células Ajustáveis

Cell	Name	Valor Original	Valor Final
\$B\$15	Molduras tipo 1 produzidas	0	1000
\$C\$15	Molduras tipo 2 produzidas	0	800
\$D\$15	Molduras tipo 3 produzidas	0	400
\$E\$15	Molduras tipo 4 produzidas	0	0

Relatório de resultados Solver

Limitante ou não

Folga ou Excesso

Restrições

Célula	Nome	Valor da célula	Formula	Status	Transigência
\$F\$6	M.Obra	4000	\$F\$6<=\$H\$6	Agrupar	0
\$F\$7	Metal (oz.)	6000	\$F\$7<=\$H\$7	Agrupar	0
\$F\$8	Vidro (oz.)	8000	\$F\$8<=\$H\$8	Sem agrupar	2000
\$B\$15	Tipo 1 molduras-não negatividade	1000	\$B\$15>=0	Sem agrupar	1000
\$C\$15	Tipo 2 molduras-não negatividade	800	\$C\$15>=0	Sem agrupar	800
\$D\$15	Tipo 3 molduras-não negatividade	400	\$D\$15>=0	Sem agrupar	400
\$E\$15	Tipo 4 molduras-não negatividade	0	\$E\$15>=0	Agrupar	0
\$B\$15	Maximo molduras tipo 1	1000	\$B\$15<=\$B\$17	Agrupar	0
\$C\$15	Maximo molduras tipo 2	800	\$C\$15<=\$C\$17	Sem agrupar	1200
\$D\$15	Maximo molduras tipo 3	400	\$D\$15<=\$D\$17	Sem agrupar	100
\$E\$15	Maximo molduras tipo 4	0	\$E\$15<=\$E\$17	Sem agrupar	1000

Análise de sensibilidade

Quanto precisa "melhorar" para fazer parte da solução

Células Ajustáveis

		Valor	Reduzido	Objetivo	Permissível	Permissível
Célula	Nome	Final	Custo /	Coeficiente	Acréscimo	Decréscimo
\$B\$15	Molduras tipo 1 produzidas	1000	2	6	1E+30	2
\$C\$15	Molduras tipo 2 produzidas	800	0	2	6	0,25
\$D\$15	Molduras tipo 3 produzidas	400	0	4	2	0,5
\$E\$15	Molduras tipo 4 produzidas	0	-0,2	3	0,2	1E+30

Restrições

		Valor	Sombra	Restrição	Permissível	Permissível
Célula	Nome	Final	Preço	Lateral R.H.	Acréscimo	Decréscimo
\$F\$6	M.Obra	4000	1,2	4000	250	1000
\$F\$7	Metal (oz.)	6000	/ 0,4	6000	2000	500
\$F\$8	Vidro (oz.)	8000	/ 0	10000	1E+30	2000

Quanto "melhora" a função objetivo caso aumente uma unidade do recurso

Por que o Solver só considera três restrições no relatório de análise de sensibilidade?

Restrições

		Valor	Sombra	Restrição	Permissível	Permissível
Célula	Non	ne Final	Preço	Lateral R.H.	Acréscimo	Decréscimo
\$F\$6	M.Obra	4000	1,2	4000	250	1000
\$F\$7	Metal (oz.)	6000	0,4	6000	2000	500
\$F\$8	Vidro (oz.)	8000	0	10000	1E+30	2000

RIGHTHAND SIDE RANGES											
ROW	CURRENT	ALLOWABLE	ALLOWABLE								
	RHS	INCREASE	DECREASE								
MO	4000.000000	250.000000	1000.000000								
MET	6000.000000	1999.999878	500.000000								
VID	10000.000000	INFINITY	2000.000000								
QMAX1	1000.000000	400.000000	600.000000								
QMAX2	2000.000000	INFINITY	1200.000000								
QMAX3	500.000000	INFINITY	100.000000								
QMAX4	1000.00000	INFINITY	1000.000000								

Design and Use of the Microsoft Excel Solver

Daniel Fylstra	Frontline Systems Inc., PO Box 4288, Indine Village, Nevada 89450
LEON LASDON	Department of Management Science and Information Systems, College of Business Administration, University of Texas, Austin, Texas 78712
JOHN WATSON	Software Engines, 725 Magnolia Street, Menlo Park, California 94025
Allan Waren	Computer and Information Science Department, Cleveland State University, Cleveland, Ohio 44115

In designing the spreadsheet optimizer that is bundled with Microsoft Excel, we and Microsoft made certain choices in designing its user interface, model processing, and solution algorithms for linear, nonlinear, and integer programs. We describe some of the common pitfalls users encounter and remedies available in the latest version of Microsoft Excel. The Solver has many applications and great impact in industry and education.

INTERFACES 28: 5 September-October 1998 (pp. 29-55)

The second pitfall relates only to the Sensitivity Report. The Excel Solver recognizes constraints that are simple bounds on the variables and passes them in this form to both the simplex and GRG2 optimizers, where they are handled more efficiently than if they were included as general constraints. If one of these constraints is binding at the solution this actually means that the corresponding decision variable has been driven to its bound. The dual value for this binding constraint will appear as a reduced cost for the decision variable, rather than as a shadow price for the constraint; it will be nonzero if the variable was nonbasic at the solution. (In

fact, constraints that are simple bounds on the variables are never listed in the Constraints section of the Sensitivity Report.)

ANÁLISE DE SENSIBILIDADE A PARTIR DO TABLEAU FINAL

Método Simplex - Problema da Moldura

Tableau Inicial (dado)

		x1	x2	x3	x4	x5	x6	x7	x8	x9	x10	x11	b
		6	2	4	3	0	0	0	0	0	0	0	
x5	0	2	1	3	2	1	0	0	0	0	0	0	4000
x6	0	4	2	1	2	0	1	0	0	0	0	0	6000
x7	0	6	2	1	2	0	0	1	0	0	0	0	10000
x8	0	1	0	0	0	0	0	0	1	0	0	0	1000
x9	0	0	1	0	0	0	0	0	0	1	0	0	2000
x10	0	0	0	1	0	0	0	0	0	0	1	0	500
x11	0	0	0	0	1	0	0	0	0	0	0	1	1000
	delta j												

Método Simplex - Problema da Moldura

Tableau Final

		x 1	x 2	x 3	x4	x5	x6	x7	x8	x9	x10	x11	b
		6	2	4	3	0	0	0	0	0	0	0	
x2	2	0	1	0	0,8	-0,2	0,6	0	-2	0	0	0	800
x10	0	0	0	0	-0,4	-0,4	0,2	0	0	0	1	0	100
x7	0	0	0	0	0	0	-1	1	-2	0	0	0	2000
x 1	6	1	0	0	0	0	0	0	1	0	0	0	1000
x9	0	0	0	0	-0,8	0,2	-0,6	0	2	1	0	0	1200
x3	4	0	0	1	0,4	0,4	-0,2	0	0	0	0	0	400
x11	0	0	0	0	1	0	0	0	0	0	0	1	1000
	delta j	0	0	0	-0,2	-1,2	-0,4	0	-2	0	0	0	

Problema na Forma Matricial

$$\max Z = cx \qquad c = \begin{bmatrix} 6 & 2 & 4 & 3 \end{bmatrix} \quad x = \begin{bmatrix} x1 \\ x2 \\ x3 \\ Ax = b \end{bmatrix}$$

$$x \ge 0$$

$$A = \begin{bmatrix} 2 & 1 & 3 & 2 \\ 4 & 2 & 1 & 2 \\ 6 & 2 & 1 & 2 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$x = \begin{bmatrix} x1 \\ x2 \\ x3 \\ x4 \end{bmatrix}$$

Decompondo o problema na forma matricial

Variáveis *x* podem ser divididas em dois grupos:

 x^{B} = variáveis básicas (m) x^{N} = variáveis não básicas (n-m)

Idem, custos c podem ser divididos em:

 c^{B} = custos das variáveis básicas c^{N} = custos das variáveis não básicas

Matriz de coeficientes A pode ser dividida em duas sub-matrizes:

B = matriz dos coeficientes das variáveis básicas $A^N =$ matriz dos coeficientes das variáveis não básicas

$$\max Z = cx = c^{B}x^{B} + c^{N}x^{N}$$

$$sa$$

$$Ax = b \Rightarrow Bx^{B} + A^{N}x^{N} = b$$

$$x \ge 0$$

$$\max \begin{bmatrix} c^B & c^N \end{bmatrix} \times \begin{bmatrix} x^B \\ x^N \end{bmatrix}$$

sa

$$\begin{bmatrix} B & A^N \end{bmatrix} \times \begin{bmatrix} x^B \\ x^N \end{bmatrix} = b$$

Reescrevendo as restrições

$$Ax = b$$

$$Bx^B + A^N x^N = b$$

Multiplicando por B^{-1}

$$B^{-1}Bx^{B} + B^{-1}A^{N}x^{N} = B^{-1}b$$

$$\underbrace{B^{-1}B}_{I}X^{B} + \underbrace{B^{-1}A}_{\overline{A}^{N}}X^{N} = \underbrace{B^{-1}b}_{\overline{b}}$$

$$x^B + \overline{A}^N x^N = \overline{b}$$

Reescrevendo a função objetivo

$$\max Z = cx = c^B x^B + c^N x^N$$
$$Z = c^B \left(\overline{b} - \overline{A}^N x^N\right) + c^N x^N$$

$$Z = c^B \overline{b} + (c^N - c^B \overline{A}^N) x^N$$

$$Z = \underbrace{c^{B}B^{-1}b}_{Z_{0}} + \underbrace{\left(c^{N} - c^{B}B^{-1}A^{N}\right)}_{\overline{c}^{N}} x^{N}$$

$$-Z + \overline{c}^{N} x^{N} = -Z_0$$

Condição de Otimalidade

Analisando o sinal de
$$\overline{c}^N = (c^N - c^B B^{-1} A^N) = (c^N - c^B \overline{A}^N)$$
:

Se
$$\bar{c}^N = (c^N - c^B B^{-1} A^N) = (c^N - c^B \bar{A}^N) \le 0$$

então a solução é ótima para maximização

Se
$$\bar{c}^N = (c^N - c^B B^{-1} A^N) = (c^N - c^B \bar{A}^N) \ge 0$$

então a solução é ótima para minimização

Como determinar B⁻¹?

- Demonstra-se que, em qualquer tableau, B-1 corresponde às colunas daquele tableau que correspondem às variáveis básicas do tableau inicial.
- Exemplo: problema da moldura
 - Variáveis básicas do tableau inicial: x5, x6, x7, x8, x9, x10, x11

Tableau Final

													•
		x 1	x2	x3	x4	x5	x6	x7	x8	x9	x10	x11	b
		6	2	4	3	0	0	0	0	0	0	0	
x2	2	0	1	0	0,8	-0,2	0,6	0	-2	0	0	0	800
x10	0	0	0	0	-0,4	-0,4	0,2	0	0	0	1	0	100
x7	0	0	0	0	0	0	-1	1	-2	0	0	0	2000
x1	6	1	0	0	0	0	0	0	1	0	0	0	1000
x9	0	0	0	0	-0,8	0,2	-0,6	0	2	1	0	0	1200
x3	4	0	0	1	0,4	0,4	-0,2	0	0	0	0	0	400
x11	0	0	0	0	1	0	0	0	0	0	0	1	1000
	delta j	0	0	0	-0,2	-1,2	-0,4	0	2	0	_ 0	0	

							•
x5	x6	x7	x8	x9	x10	x11	
0	0	0	0	0	0	0	
-0,2	0,6	0	-2	0	0	0	
-0,4	0,2	0	0	0	1	0	
0	-1	1	-2	0	0	0	2
0	0	0	1	0	0	0	1
0,2	-0,6	0	2	1	0	0	1.
0,4	-0,2	0	0	0	0	0	
0	0	0	0	0	0	1	1
-1,2	-0,4	_ 0_	- 2	0	0	0	
	0 -0,2 -0,4 0 0 0,2 0,4	0 0 -0,2 0,6 -0,4 0,2 0 -1 0 0 0,2 -0,6 0,4 -0,2 0 0	0 0 0 -0,2 0,6 0 -0,4 0,2 0 0 -1 1 0 0 0 0,2 -0,6 0 0,4 -0,2 0 0 0 0	0 0 0 0 -0,2 0,6 0 -2 -0,4 0,2 0 0 0 -1 1 -2 0 0 0 1 0,2 -0,6 0 2 0,4 -0,2 0 0 0 0 0 0	0 0 0 0 0 -0,2 0,6 0 -2 0 -0,4 0,2 0 0 0 0 -1 1 -2 0 0 0 0 1 0 0,2 -0,6 0 2 1 0,4 -0,2 0 0 0 0 0 0 0 0	0 0 0 0 0 0 -0,2 0,6 0 -2 0 0 -0,4 0,2 0 0 0 1 0 -1 1 -2 0 0 0 0 0 1 0 0 0,2 -0,6 0 2 1 0 0,4 -0,2 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 -0,2 0,6 0 -2 0 0 0 -0,4 0,2 0 0 0 1 0 0 -1 1 -2 0 0 0 0 0 0 1 0 0 0 0,2 -0,6 0 2 1 0 0 0,4 -0,2 0 0 0 0 0 0 0 0 0 0 0 1

B⁻¹=

-0,2	0,6	0	-2	0	0	0
-0,4	0,2	0	0	0	1	0
0	-1	1	-2	0	0	0
0	0	0	1	0	0	0
0,2	-0,6	0	2	1	0	0
0,4	-0,2	0	0	0	0	0
0	0	0	0	0	0	1

Faixa de variação de coeficientes na função objetivo

Células Ajustáveis

Célula	Nome	Valor Final	Reduzido Custo	Objetivo Coeficiente	Permissível Acréscimo	Permissível Decréscimo
\$B\$15	Molduras tipo 1 produzidas	1000	2	6	1E+30	2
\$C\$15	Molduras tipo 2 produzidas	800	0	2	6	0,25
\$D\$15	Molduras tipo 3 produzidas	400	0	4	2	0,5
\$E\$15	Molduras tipo 4 produzidas	0	-0,2	3	0,2	1E+30

Lembrando que

Se
$$\bar{c}^N = (c^N - c^B B^{-1} A^N) = (c^N - c^B \bar{A}^N) \le 0$$

então a solução é ótima para maximização

No Tableau Final

Tableau Final

		x1	x2	x3	x4	x5	х6	x7	x8	x9	x10	x11	b
		6	$2 + \Delta$	4	3	0	0	0	0	0	0	0	
x2	$2 + \Delta$	0	1	0	0,8	-0,2	0,6	0	-2	0	0	0	800
x10	0	0	0	0	-0,4	-0,4	0,2	0	0	0	1	0	100
x7	0	0	0	0	0	0	-1	1	-2	0	0	0	2000
x1	6	1	0	0	0	0	0	0	1	0	0	0	1000
x9	0	0	0	0	-0,8	0,2	-0,6	0	2	1	0	0	1200
x3	4	0	0	1	0,4	0,4	-0,2	0	0	0	0	0	400
x11	0	0	0	0	1	0	0	0	0	0	0	1	1000
	delta j	0	0	0	-0,2	-1,2	-0,4	0	-2	0	0	0	

$$x_4$$

$$3-0.8(2+\Delta)-0.4(4) \le 0$$

$$3-1.6-0.8\Delta-1.6 \le 0$$

$$-0.2-0.8\Delta \le 0$$

$$0.8\Delta \ge -0.2$$

$$\Delta \ge 0.25$$

$$\mathcal{X}_5$$

 $0-(-0,2)(2+\Delta)-0,4(4) \le 0$
 $0,4+0,2\Delta-1,6 \le 0$
 $0,2\Delta \le 1,2$
 $\Delta \le 6$

$$x_6$$
 $0-0, 6(2+\Delta)-(-0,2)(4) \le 0$
 $0, 2\Delta-0, 4 \le 0$
 $\Delta \le 2$
 x_8
 $0-2(2+\Delta) \le 0$
 $-4-2\Delta \le 0$
 $\Delta \ge -2$

Sumarizando

$$x_4 \Rightarrow \Delta \ge 0.25$$

$$x_6 \Longrightarrow \Delta \le 2$$

$$x_5 \Rightarrow \Delta \leq 6$$

$$x_8 \Longrightarrow \Delta \ge -2$$

Considerando-se todas as restrições simultaneamente:

$$0.25 \le \Delta \le 2$$

Faixa de variação de coeficientes do lado direito (RHS) das restrições

Problema da Moldura

Célula		Nome	Valor Final	Sombra Preco	Restrição Lateral R.H.	Permissível Acréscimo	
\$F\$6	M.Obra		4000	1,2	4000	250	1000
\$F\$7	Metal (oz.)		6000	/ 0,4	6000	2000	500
\$F\$8	Vidro (oz.)		8000	/ 0	10000	1E+30	200

• Sabendo-se que $x^B=B^{-1}b$ e que

b=	4000
	6000
	10000
	1000
	2000
	500
	1000

Basta considerar

$$x^{B} = \begin{bmatrix} x_{2} \\ x_{10} \\ x_{7} \\ x_{1} \\ x_{9} \\ x_{3} \\ x_{11} \end{bmatrix} =$$

-0,2 -0,4	0,6 0,2	0	-2 0	0	0 1	0
0	-1	1	-2	0	0	0
0	0	0	1	0	0	0
0,2	-0,6	0	2	1	0	0
0,4	-0,2	0	0	0	0	0
0	0	0	0	0	0	1

b=

$$x_2 \ge 0$$

$$-0, 2(4000 + \Delta) + 0, 6(6000) + 0(10000) - 2(1000) + 0(2000) + 0(500) + 0(1000) \ge 0$$

$$-800 - 0,2\Delta + 3600 - 2000 \ge 0$$

$$-0,2\Delta + 800 \ge 0$$

$$\Delta \le 4000$$

$$x_{10} \ge 0$$

$$-0,4(4000+\Delta)+0,2(6000)+0(10000)+0(1000)+0(2000)+1(500)+0(1000)\geq 0$$

$$-0,4\Delta + 100 \ge 0$$

$$\Delta \le 250$$

Basta considerar

$$x^{B} = \begin{bmatrix} x_{2} \\ x_{10} \\ x_{7} \\ x_{1} \\ x_{9} \\ x_{3} \\ x_{11} \end{bmatrix} =$$

-0,2	0,6	0	-2	0	0	0
-0,4	0,2	0	0	0	1	0
0	-1	1	-2	0	0	0
0	0	0	1	0	0	0
0,2	-0,6	0	2	1	0	0
0,4	-0,2	0	0	0	0	0
0	0	0	0	0	0	1
0 0 0,2	-1 0 -0,6	1 0 0 0 0	-2 1 2 0 0	0 0 1 0	0 0 0 0	

b=

$$x_9 \ge 0$$

$$0, 2(4000 + \Delta) - 0, 6(6000) + 0(10000) + 2(1000) + 1(2000) + 0(500) + 0(1000) \ge 0$$

$$0,2\Delta+1200\geq0$$

$$\Delta \ge -6000$$

$$x_3 \ge 0$$

$$0,4(4000+\Delta)-0,2(6000)+0(10000)+0(1000)+0(2000)+0(500)+0(1000)\geq 0$$

$$+0,4\Delta + 400 \ge 0$$

$$\Delta \ge -1000$$

Sumarizando

$$x_2 \Longrightarrow \Delta \le 4000$$

$$x_9 \Rightarrow \Delta \ge -6000$$

$$x_{10} \Rightarrow \Delta \le 250$$

$$x_3 \Rightarrow \Delta \ge -1000$$

Considerando-se todas as restrições simultaneamente:

$$-1000 \le \Delta \le 250$$