AR16

CODE: 16BS1001 SET-1

ADITYA INSTITUTE OF TECHNOLOGY AND MANAGEMENT, TEKKALI (AUTONOMOUS)

I B.Tech I Semester Regular Examinations, December, 2016

ENGINEERING MATHEMATICS – I

(Common to CE, EEE, ME. ECE, CSE & IT Branches)

Time: 3 Hours Max Marks: 70M

Answer ONE Question from each Unit All Questions Carry Equal Marks

All parts of the question must be answered at one place

UNIT-I

1. a) Solve the differential equation $(x+2y^3)\frac{dy}{dx} = y$. 7M

b) If the temperature of the air is 30° c and the substance cools from 100° c to 70° c in 15 minutes, find when the temperature will be 40° c.

(OR)

2. a) Find the orthogonal trajectories of the family of confocal conics $\frac{x^2}{a^2} + \frac{y^2}{a^2 + \lambda} = 1$, where λ is the parameter.

b) Solve $(x^4e^x + 2mxy^2)dx + 2mx^2ydy = 0.$ 7M

UNIT-II

3. a) Solve by the method of variation of parameters $y''-2y'+y=e^x \log x$.

b) Solve $\frac{d^3y}{dx^3} + 2\frac{d^2y}{dx^2} + \frac{dy}{dx} = e^{-x} + \sin 2x$.

(OR)

4. a) Solve $(D^3 + 2D^2 + D)y = x^2 e^{2x}$.

b) Solve $x^2 \frac{d^2 y}{dx^2} - 4x \frac{dy}{dx} + 6y = x^2$.

UNIT-III

5. a) If $u = x^2 + y^2 + z^2$, v = xy + yz + zx, w = x + y + z, find $\frac{\partial(u, v, w)}{\partial(x, y, z)}$.

b) Expand $e^x \sin y$ at $\left(-1, \frac{\pi}{4}\right)$ up to third degree terms using Taylor's theorem.

(OR)

- 6. Find the maximum and minimum values of $x^3 + 3xy^2 15x^2 15y^2 + 72x$.

 UNIT-IV
- 7. a) Evaluate $\iint xy \, dx \, dy$, over the positive quadrant of the circle $x^2 + y^2 = a^2$.
 - b) Evaluate $\int_{0}^{a} \int_{0}^{x} \int_{0}^{x+y+z} e^{x+y+z} dz dy dx.$ 7M

(OR)

- 8. a) By changing the order of integration evaluate $\int_{0}^{1} \int_{2}^{2-x} xy \, dy dx$. 7M
 - b) Evaluate $\iint r^3 dr d\theta$ over the area bounded by the circles 7M $r = 2\sin\theta$ and $r = 4\sin\theta$.

UNIT-V

- 9. a) Find the angle between the surfaces $x^2 + y^2 + z^2 = 9$ and $z = x^2 + y^2 3$ at the point (2, -1, 2).
 - b) Show that $\operatorname{div}(\operatorname{grad} r^n) = n(n+1)r^{n-2}$, where $r = |\vec{r}|$.

(OR)

10. Verify Gauss divergence theorem for the function $\overline{F} = y\overline{i} + x\overline{j} + z^2\overline{k}$ over the cylindrical region bounded by $x^2 + y^2 = 9$, z = 0 and z = 2.

2 of 2
