MSU CSC 285

Handout: Arrays, lw and sw instruction

Java	MIPS assembly
int grades[] = {92, 79, 86, 82, 95};	.data grades: .word 92, 79, 86, 82, 95
grades.length has value 5 Valid indices are 0, 1, 2, 3, 4 (That is, 0 to grades.length - 1) Invalid indices cause exception	No equivalent operation! No boundary checking! • Programmer's responsibility to use valid indices
<pre>nextValue = grades[0]; nextValue = grades[1]; nextValue = grades[2]; OR nextValue = grades[i]; The expresssion "grades[i]" contains two variables (grades and i)</pre>	la \$s7, grades lw \$s0, 0(\$s7) # grades[0] lw \$s0, 4(\$s7) # grades[1] lw \$s0, 8(\$s7) # grades[2] • The expresssion "0(\$s7)" contains one variable (\$s7) and one constant • The register is called the "base register" and holds the "base address" • The constant is the "offset" • The address of the element we're accessing is (base address + offset) • The constant is "always" a multiple of 4 because there are four bytes in a word
<pre>int sum = 0; for (i = 0; i < grades.length; i++) { sum += grades[i]; } The variable grades stays the same and the variable i changes value</pre>	add \$s2, \$zero, \$zero # sum = 0 la \$s7, grades # top of loop lw \$s0, 0(\$s7) # next element add \$s2, \$s2, \$s0 # sum += g[i] addi \$s7, \$s7, 4 #increment addr. # bottom of loop • In the expresssion "O(\$s7)" it's the constant that stays the same, and the address in the register that changes! • In effect, we're always accessing element 0 but the array is in a different place!
grades[4] = 88;	<pre>la \$s7, grades addi \$s0, \$zero, 88 sw \$s0, 16(\$s7) # grades[4] = 88 • The order of operands to sw is the same as the order of operands to lw</pre>

 $\mbox{\#}$ First MIPS program, shows MIPS registers and operations $\mbox{\#}$ -----

.data

array: .word 0x100

.text

addi \$s0, \$zero, 42

la \$s1, array

sw \$s0, 4(\$s1)