Digital Logic Design Part 4

Random Access Memories

• Static random access memories (SRAM) use D latches

- Register file idea won't scale up; decoder and multiplexors too big
- Fix multiplexor problem by using three-state buffers
- Fix decoder problem by using two-level decoding
- This type of memory is **not** clocked

Three-state buffer or transmission gate

 Has three outputs 0, 1, and floating (connected to neither power or ground)

- \bullet C = 1, then
 - NMOS gate passes 0 well
 - $-\bar{C} = 0$ and PMOS gate passes 1 well
- C=0, then $\bar{C}=1$ and both transistors are off (output is floating). High Impedance : No data passage

If C=0 Both Transistors are off

Signal X does not pass at all

If C=1 Both Transistors are on.

X passes through both of them to Output F

Using Three-State Buffers

- High-impedance outputs can be "tied together" without problems
- Normally, do not tie output lines together

Making Multiplexors from Three-State Buffers

IMPORTANT: Must ensure that at most one select input is 1, or short-circuit may result (physical meltdown)

Example of SRAM Structure

Note:

There are 3 state —
Buffers tied to each
Output
In order to allow
The columns
To share the
Same output
Lines

Does this design scale up well?

Large Memories Use a Two Level Addressing Process
Where the Address Bits are split across One Decoder and One Multiplexor (two Level decoding)

Design of 4Mx1 DRAM

All the data from one row Is sent through the columns latches

Two Level Decoding:

Address Bits: 11 go into the Decoder

11 bits go into the MUX to select the column

4M = Total 22 Bits

The bits A3 A2 A1 A0 represent a 4 bit address of a location in memory Label the input bits on the Decoder and the Select Line bits on the Multiplexor with A3 A2 A1 A0.

Dynamic RAM

- Our SRAM cell uses a lot of transistors Pair of inverting gates keep
- A better implementation uses six transistors data
- This is still too expensive
- Alternative: use a capacitor to store a charge to represent 1
- Problem: charge leaks away, must be refreshed

Dynamic: Capacitor is storing charge to represent 0 or 1 charge leaks away

Unique about Capacitor: It takes on the charge of whatever it is connected to. Whether that is a battery, or a voltage. It charges to that value and slowly dissipates this charge.

If capacitor connected to 0V, its charge leaks away and is thereby set to 0.

A Single DRAM Bit: One Capacitor One Transistor.

Cheaper But Slower

Transistor will allow us to write a charge or read a charge To the capacitor

Single Chip Memory Controller: Dedicated to refreshing the charges on the capacitors within DRAM takes up only 1-2% of active clock cycles. Maximum 4%

SRAM: Expensive but Fast CACHES

DRAM: Cheaper But Slower. Always need to refresh the

Capacitors

Also a read from a capacitor will dissipate the charge therefore

Read is even slower than write:

Read you need to read the charge and write it back

Designing Using Finite-State Machines

High-level circuit implementation of finite-state machine

Cannot simply define Sequential Logic using Truth Table

Designing Using Finite-State Machines

Example: Traffic Light

- Output signals: NSlight, EWlight
- Input signals: NScar, EWcar
- State names: NSgreen, EWgreen (no yellow for now)
- Functionality: want light to change only if car is waiting at red light

Otherwise the light should continue to show green in the direction that the last car crossed The intersection

Graphical Representation of Traffic Light Controller

Within the Nsgreen
State the NSlite (output)
Is asserted.

Therefore Output depends on Current state (Moore FSM)

- Names of states outside ovals
- Output in given state inside oval
- Transition arc labelled with Boolean formula of inputs

Electronic Implementation of Finite-State Controller

Extending the Traffic-Light Controller

- Add 4-second yellow light
- Assume 0.25Hz clock
- need to add 28-second timer We decide we want green light to stay on 28 seconds
- - Timer input: TimerReset (TR)
 - Timer output: TimerSignal (TS)
- Behaviour of system
 - Stay green in one direction (red in other direction) until car arrives or 32 seconds elapse, whichever happens last
 - Green turns to yellow for 4 seconds; red in other direction stays
 - Yellow turns to red, red in other direction turns to green

State Diagram of Extended Controller

• Inputs: NScar, EWcar, TS

• Outputs: NSg, NSy, NSr, EWg, EWy, EWr, TR

State Diagram of Extended Controller

• Inputs: NScar, EWcar, TS

• Outputs: NSg, NSy, NSr, EWg, EWy, EWr, TR

Next-State Table for Extended Controller

current	i	nputs		next	current	i	nputs		next
state	NS-	EW-		state	state	NS-	EW-		state
$S_2S_1S_0$	car	car	TS	$S_2'S_1'S_0'$	$S_2S_1S_0$	car	car	TS	$S_2'S_1'S_0'$
0 0 0	X	X	0	0 0 0	1 0 0	X	X	0	1 0 0
0 0 0	X	X	1	0 0 1	1 0 0	X	X	1	1 0 1
0 0 1	X	0	X	0 0 1	1 0 1	0	X	X	1 0 1
0 0 1	X	1	X	0 1 0	1 0 1	1	X	X	1 1 0
0 1 0	X	X	X	1 0 0	1 1 0	X	X	X	0 0 0
0 1 1	X	X	X	XXX	1 1 1	X	X	X	XXX

Note unused states, symmetries

Output Table For Extended Controller

- Output table looks like truth table
 - Inputs are State, Outputs are Outputs
- Traffic light outputs: NSg, NSy, NSr, EWg, EWy, EWr, TR
- If output listed in State, then 1 in output table
 - If output not listed in State, then 0 in output table

State Diagram of Extended Controller

• Inputs: NScar, EWcar, TS

• Outputs: NSg, NSy, NSr, EWg, EWy, EWr, TR

S_2	S_1	S_0	NSg	NSy	NSr	EWg	EWy	EWr	TR
0	0	0	1	0	0	0	0	1	0
0	0	1							
0	1	0							
0	1	1							
1	0	0							
1	0	1							
1	1	0							
1	1	1							

State Diagram of Extended Controller

• Inputs: NScar, EWcar, TS

• Outputs: NSg, NSy, NSr, EWg, EWy, EWr, TR

Current State and Outputs

S_2	S_1	S_0	NSg	NSy	NSr	EWg	EWy	EWr	TR
0	0	0	1	0	0	0	0	1	0
0	0	1	1	0	0	0	0	1	0
0	1	0	0	1	0	0	0	1	1
0	1	1	X	Χ	Χ	X	Χ	Χ	X
1	0	0	0	0	1	1	0	0	0
1	0	1	0	0	1	1	0	0	0
1	1	0	0	0	1	0	1	0	1
1	1	1	Χ	Χ	Χ	X	X	Χ	X

current	i	nputs		next	current	i	nputs		next
state	NS-	EW-		state	state	NS-	EW-		state
$S_2S_1S_0$	car	car	TS	$S_2'S_1'S_0'$	$S_2S_1S_0$	car	car	TS	$S_2'S_1'S_0'$
0 0 0	X	X	0	0 0 0	1 0 0	X	X	0	1 0 0
0 0 0	X	X	1	0 0 1	1 0 0	X	X	1	1 0 1
0 0 1	X	0	X	0 0 1	1 0 1	0	X	X	1 0 1
0 0 1	X	1	X	0 1 0	1 0 1	1	X	X	1 1 0
0 1 0	X	X	X	1 0 0	1 1 0	X	X	X	0 0 0
0 1 1	X	X	X	XXX	1 1 1	X	X	X	XXX

Note unused states, symmetries

	S_2	S_1	S_0	NSg	NSy	NSr	EWg	EWy	EWr	TR
	0	0	0	1	0	0	0	0	1	0
	0	0	1	1	0	0	0	0	1	0
	0	1	0	0	1	0	0	0	1	1
	0	1	1	X	X	X	X	X	X	X
_	1	0	0	0	0	1	1	0	0	0
	1	0	1	0	0	1	1	0	0	0
	1	1	0	0	0	1	0	1	0	1
	1	1	1	X	X	X	X	X	X	X

current	i	nputs		next	current	i	nputs		next
state	NS-	EW-		state	state	NS-	EW-		state
$S_2S_1S_0$	car	car	TS	$S_2'S_1'S_0'$	$S_2S_1S_0$	car	car	TS	$S_2'S_1'S_0'$
0 0 0	X	X	0	0 0 0	1 0 0	X	X	0	1 0 0
0 0 0	X	X	1	0 0 1	1 0 0	X	X	1	1 0 1
0 0 1	X	0	X	0 0 1	1 0 1	0	X	X	1 0 1
0 0 1	X	1	X	0 1 0	1 0 1	1	X	X	1 1 0
0 1 0	X	X	X	1 0 0	1 1 0	X	X	X	0 0 0
0 1 1	X	X	X	XXX	1 1 1	X	X	X	XXX

Current state = $S_2S_1S_0$, next state = $S_2'S_1'S_0'$

$$S_0' = \overline{S_1} \, \overline{S_0} \cdot T \, S + \overline{S_2} \, \overline{S_1} \, S_0 \cdot \overline{EWcar} + S_2 \overline{S_1} \, S_0 \cdot \overline{NScar}$$

$$S_1' = \overline{S_2} \overline{S_1} S_0 \cdot EW car + S_2 \overline{S_1} S_0 \cdot NS car$$

Next State Functions: Determined by Inputs Only And Current State

current	i	nputs		next	current	i	nputs		next
state	NS-	EW-		state	state	NS-	EW-		state
$S_2S_1S_0$	car	car	TS	$S_2'S_1'S_0'$	$S_2S_1S_0$	car	car	TS	$S_2'S_1'S_0'$
0 0 0	X	X	0	0 0 0	1 0 0	X	X	0	1 0 0
0 0 0	X	X	1	0 0 1	1 0 0	X	X	1	1 0 1
0 0 1	X	0	X	0 0 1	1 0 1	0	X	X	1 0 1
0 0 1	X	1	X	0 1 0	1 0 1	1	X	X	1 1 0
0 1 0	X	X	X	1 0 0	1 1 0	X	X	X	0 0 0
0 1 1	X	X	X	XXX	1 1 1	X	X	X	XXX

Current state = $S_2S_1S_0$, next state = $S_2'S_1'S_0'$

$$S_0' = \overline{S_1} \overline{S_0} \cdot TS + \overline{S_2} \overline{S_1} S_0 \cdot \overline{EWcar} + S_2 \overline{S_1} S_0 \cdot \overline{NScar}$$

$$S_1' = \overline{S_2} \overline{S_1} S_0 \cdot EW car + S_2 \overline{S_1} S_0 \cdot NS car$$

In S'₂: Expanded Output function.

Which of the following is a correct Minterm:

D)
$$S_2S_1S_0TS$$

C)
$$S_2\overline{S_1S_0TS}$$

current	i	nputs		next	current	i	nputs		next
state	NS-	EW-		state	state	NS-	EW-		state
$S_2S_1S_0$	car	car	TS	$S_2'S_1'S_0'$	$S_2S_1S_0$	car	car	TS	$S_2'S_1'S_0'$
0 0 0	X	X	0	0 0 0	1 0 0	X	X	0	1 0 0
0 0 0	X	X	1	0 0 1	1 0 0	X	X	1	1 0 1
0 0 1	X	0	X	0 0 1	1 0 1	0	X	X	1 0 1
0 0 1	X	1	X	0 1 0	1 0 1	1	X	X	1 1 0
0 1 0	X	X	X	1 0 0	1 1 0	X	X	X	0 0 0
0 1 1	X	X	X	XXX	1 1 1	X	X	X	XXX

Current state = $S_2S_1S_0$, next state = $S_2'S_1'S_0'$

$$S_0' = \overline{S_1} \overline{S_0} \cdot TS + \overline{S_2} \overline{S_1} S_0 \cdot \overline{EWcar} + S_2 \overline{S_1} S_0 \cdot \overline{NScar}$$

$$S_1' = \overline{S_2} \overline{S_1} S_0 \cdot EW car + S_2 \overline{S_1} S_0 \cdot NS car$$

In S'₂: Expanded Output function.

Which of the following is a correct Minterm:

D)
$$S_2S_1S_0TS$$

Next-State Table for Extended Controller

current	i	nputs		next	current	i	nputs		next
state	NS-	EW-		state	state	NS-	EW-		state
$S_2S_1S_0$	car	car	TS	$S_2'S_1'S_0'$	$S_2S_1S_0$	car	car	TS	$S_2'S_1'S_0'$
0 0 0	X	X	0	0 0 0	1 0 0	X	X	0	1 0 0
0 0 0	X	X	1	0 0 1	1 0 0	X	X	1	1 0 1
0 0 1	X	0	X	0 0 1	1 0 1	0	X	X	1 0 1
0 0 1	X	1	X	0 1 0	1 0 1	1	X	X	1 1 0
0 1 0	X	X	X	1 0 0	1 1 0	X	X	X	0 0 0
0 1 1	X	X	X	XXX	1 1 1	X	X	X	XXX

Current state = $S_2S_1S_0$, next state = $S_2'S_1'S_0'$

$$S_0' = \overline{S_1} \, \overline{S_0} \cdot T \, S + \overline{S_2} \, \overline{S_1} \, S_0 \cdot \overline{EWcar} + S_2 \overline{S_1} \, S_0 \cdot \overline{NScar}$$

$$S_1' = \overline{S_2} \overline{S_1} S_0 \cdot EW car + S_2 \overline{S_1} S_0 \cdot NS car$$

$$S_2' = \overline{S_2} S_1 \overline{S_0} + S_2 \overline{S_1}$$

Next State Functions: Determined by Inputs And Current State

current	i	nputs		next	current	i	nputs		next
state	NS-	EW-		state	state	NS-	EW-		state
$S_2S_1S_0$	car	car	TS	$S_2'S_1'S_0'$	$S_2S_1S_0$	car	car	TS	$S_2'S_1'S_0'$
0 0 0	X	X	0	0 0 0	1 0 0	X	X	0	1 0 0
0 0 0	X	X	1	0 0 1	1 0 0	X	X	1	1 0 1
0 0 1	X	0	X	0 0 1	1 0 1	0	X	X	1 0 1
0 0 1	X	1	X	0 1 0	1 0 1	1	X	X	1 1 0
0 1 0	X	X	X	1 0 0	1 1 0	X	X	X	0 0 0
0 1 1	X	X	X	XXX	1 1 1	X	X	X	X X X

Note unused states, symmetries

OUTPUT FUNCTIONS BASED ON CURRENT STATE

NSg = ?

S_2	S_1	S_0	NSg	NSy	NSr	EWg	EWy	EWr	TR
0	0	0	1	0	0	0	0	1	0
0	0	1	1	0	0	0	0	1	0
0	1	0	0	1	0	0	0	1	1
0	1	1	X	X	Χ	X	X	X	Χ
1	0	0	0	0	1	1	0	0	0
1	0	1	0	0	1	1	0	0	0
1	1	0	0	0	1	0	1	0	1
1	1	1	X	X	X	X	X	X	Χ

S_2	S_1	S_0	NSg	NSy	NSr	EWg	EWy	EWr	TR
0	0	0	1	0	0	0	0	1	0
0	0	1	1	0	0	0	0	1	0
0	1	0	0	1	0	0	0	1	1
0	1	1	X	X	Χ	X	X	X	Χ
1	0	0	0	0	1	1	0	0	0
1	0	1	0	0	1	1	0	0	0
1	1	0	0	0	1	0	1	0	1
1	1	1	X	Χ	X	X	X	X	X

OUTPUT FUNCTIONS

$$NSg = \overline{S_2}\overline{S_1}, EWg = S_2\overline{S_1}$$
 $NSy = \overline{S_2}S_1\overline{S_0}, EWy = S_2S_1\overline{S_0}$
 $NSr = S_2, EWr = \overline{S_2}$

S_2	S_1	S_0	NSg	NSy	NSr	EWg	EWy	EWr	TR
0	0	0	1	0	0	0	0	1	0
0	0	1	1	0	0	0	0	1	0
0	1	0	0	1	0	0	0	1	1
0	1	1	X	X	Χ	X	X	X	Χ
1	0	0	0	0	1	1	0	0	0
1	0	1	0	0	1	1	0	0	0
1	1	0	0	0	1	0	1	0	1
1	1	1	X	X	X	X	X	X	Χ

OUTPUT FUNCTIONS

$$NSg = \overline{S_2}\overline{S_1}, EWg = S_2\overline{S_1}$$
 $NSy = \overline{S_2}S_1\overline{S_0}, EWy = S_2S_1\overline{S_0}$
 $NSr = S_2, EWr = \overline{S_2}$

$$TR = S_1 \overline{S_0}$$

FSM PROBLEM: Train Station Similar to LRT system – Rapid Transit

Given a Problem Definition: We derive the FSM

Specifications: Train going between stations, picking and dropping passengers

*Inputs: B (Buzz-button Pushed to Stop)

S (Train station is coming up yes or no)

P (Passengers waiting to enter the train)

*States: That the train can be in. What are possibilities

*Outputs: C:Train Doors Closed(C=1) Doors Closed (C=0)

 \mathbf{R} :Train is Running(R=1) or not Running(R=0)

Description:

- *Train will keep running. It will receive a signal 'S' that a station is coming up.
- *The Train will only stop at the station if there is also a B signal where a passenger pushed the buzzer OR a P signal indicating that passengers are waiting at the upcoming station.
- *S will always turn high before, B or P.
- Otherwise, if only S is true, the train will keep running
- *Once stopped at the station the Doors are open and the doors remain open as long as passengers keep entering.
- *As soon as there are no more passengers- the train continues to a Running state again.

Extending Train Station FSM

*Inputs: B (Button Pushed to Stop)

S (Train station is coming up yes or no)

P (Passengers waiting to enter the train)

*Outputs: C: Train Doors Open or Closed

R: Train is Running or not Running

Train Must Go Through 3 states when getting to a Station

*First Cycle Door Closed, 2nd Cycle Door Open while passengers coming in

*Third Cycle Standing at Station but door Closed