

Índice

- TV-Tree
- 2. SR-Tree
- 3. OS-Tree

(Telescoping vector tree)

TV-Tree

TV-Tree

D1: Center (2) Radius 1 D2: Center (7, 6) Radius 2

(a)

D1: Center (2,6) Radius 2

D2: Center (7,4) Radius 1

(b)

S1: Center (2,6) Radius 2

S2: Center (7,4) Radius 1

(c)

Number of active dimensions = 1

Number of active dimensions = 2

Number of active dimensions = 2

Denotes extend indefinitely along the direction

SR-Tree

(Sphere/Rectangle-tree)

SR-Tree

$$x_i = \frac{\sum_{k=1}^n n_k c_i^k}{\sum_{k=1}^n n_k} \qquad \begin{array}{c} 1 \leq k \leq n \quad \text{indices de los hijos.} \\ 1 \leq i \leq D \quad \text{indices de las dimensiones} \end{array}$$

Radio del círculo

$$r = \min(d_s, d_r)$$

$$d_S = \max_{1 \le k \le n} (x - c_k + r_k)$$

$$d_r = \max_{1 \le k \le n} (\text{MaxDist}(x, \mathbf{R}_k))$$

(Overlapped-Split tree)

OS-Tree

Hiperplanos paralelos que limitan las coberturas

OS-Tree

OS-Tree requiere que tengamos el diagrama Voronoi construida

OS-Tree

Sin embargo.....

Es poco eficiente para d≥3

:C

- Puntos de datos (S)
- Puntos de entrenamiento (T)

1) Elegir los puntos que componen los subconjuntos S_{al} y S_{ar}

2) Elegir un plano de partición I_a para la celda correspondiente a a.

1) Elegir los puntos que componen los subconjuntos S_{al} y S_{ar}

Buscamos el plano ortogonal a la dirección de la mayor variación de los datos.

2) Elegir un plano de partición I_a para la celda correspondiente a a.

Minimizar el grado en que las regiones de Voronoi se superponen al lado contrario

1) Elegir los puntos que componen los subconjuntos S_{al} y S_{ar}

Buscamos el plano ortogonal a la dirección de la mayor variación de los datos.

PCA!

2) Elegir un plano de partición I_a para la celda correspondiente a a.

Minimizar el grado en que las regiones de Voronoi se superponen al lado contrario

SVM!

1) Elegir los puntos que componen los subconjuntos S_{al} y S_{ar}

1) Elegir los puntos que componen los subconjuntos S_{al} y S_{ar}

2) Elegir un plano de partición I_a para la celda correspondiente a a

