Minimum Cut Problem

Shusen Wang

Inputs

• Graph: G = (V, E).

• Source: $s \in \mathcal{V}$.

• Sink: $t \in \mathcal{V}$.

• Split $\mathcal V$ into two subsets: $\mathcal S$ and $\mathcal T$.

•
$$S \cup T = V$$
 and $S \cap T = \emptyset$.

•
$$s \in S$$
 and $t \in T$.

• The pair (S, T) is called s-t cut.

- Split $\mathcal V$ into two subsets: $\mathcal S$ and $\mathcal T$.
 - $S \cup T = V$ and $S \cap T = \emptyset$.
 - $s \in S$ and $t \in T$.

• The pair (S, T) is called s-t cut.

- Split $\mathcal V$ into two subsets: $\mathcal S$ and $\mathcal T$.
 - $S \cup T = V$ and $S \cap T = \emptyset$.
 - $s \in S$ and $t \in T$.

• The pair (S, T) is called s-t cut.

- Capacity(S, T) = sum of weights of the edges leaving S.
- In the figure, three edges leave \mathcal{S} .
- Capacity(S, T) = 2 + 2 + 2 = 6.

S-T Cut: Another Example

- Subset $S = \{s, v_1, v_2, v_4\}.$
- Subset $\mathcal{T} = \{t, v_3\}$.

S-T Cut: Another Example

- Subset $S = \{s, v_1, v_2, v_4\}.$
- Subset $T = \{t, v_3\}.$

- In the figure, two edges leave \mathcal{S} .
- Capacity(S, T) = 2 + 1 = 3.

Minimum S-T Cut Problem

Definition: Min-Cut

The s-t cut (S, T) that minimizes Capacity (S, T).

Not min-cut

- In a flow network, the maximum amount of flow from s to t is equal to the capacity of the minimum s-t cut.
- In short, amount of max-flow = capacity of min-cut.

Reference

• L. R. Ford and D. R. Fulkerson. Flows in Networks. *Princeton University Press*, 1962.

Capacity of min-cut = 3

Capacity of min-cut = 3

Amount of max-flow = 3

Find Min-Cut

Algorithm

- 1. Run any max-flow algorithm to obtain the final residual graph.
 - E.g., Edmonds–Karp algorithm or Dinic's algorithm.
 - Ignore the backward edges on the final residual graph.

Algorithm

- 1. Run any max-flow algorithm to obtain the final residual graph.
 - E.g., Edmonds–Karp algorithm or Dinic's algorithm.
 - Ignore the backward edges on the final residual graph.
- 2. Find the minimum s-t cut (S, T):
 - a. On the residual graph, find paths from source s to all the other vertices.
 - b. $S \leftarrow$ all the vertices that has finite distance. (Reachable from S.)
 - c. $\mathcal{T} \leftarrow$ all the remaining vertices. (Not reachable from s.)

Example 1

Original Graph

Example 1: Run a max-flow algorithm

Original Graph

Residual Graph

Example 1: Find the min-cut

- Find vertices reachable from s.
- Subset $S = \{s, v_1, v_2, v_4\}.$

Residual Graph

Example 1: Find the min-cut

- Find vertices reachable from s.
- Subset $S = \{s, v_1, v_2, v_4\}.$

- The remaining vertices: t and v_3 .
- Subset $\mathcal{T} = \{t, v_3\}$.

Example 2

Original Graph

Example 2: Run a max-flow algorithm

Original Graph

Residual Graph

Example 2: Find the min-cut

- Find vertices reachable from s.
- Subset $S = \{s, v_2\}$.

Example 2: Find the min-cut

- Find vertices reachable from s.
- Subset $S = \{s, v_2\}$.

- The remaining vertices: t, v_1 , v_3 , v_4 .
- Subset $\mathcal{T} = \{t, v_1, v_3, v_4\}.$

Questions

Q1: What is the min-cut?

This is the final residual graph found by Dinic's algorithm.

Q2: What is the capacity of the min-cut?

Hint: The min-cut is the same to the previous page.

Thank You!