66. Les dues boles de la figura xoquen i reboten tal com s'indica a la figura. (Dades: $m_1 = 800g$, $m_2 = 500g$, $v_{01} = 30 \, \text{cm/s}$, i $v_{02} = 50 \, \text{cm/s}$. (a) Quina és la velocitat final de l bola m_2 si la bola m_1 te una velocitat final $v_{f1} = 15 \, \text{cm/s}$, en la direcció indicada? (b) és el xoc elàstic?

a)

Prenem les velocitats inicials com v_{0i} , les finals com v_{0f} , l'angle de 30° com θ_{1} , i l'altre com θ_{2} .

A tots els xocs,
$$\Delta p = 0$$
 \Rightarrow $m_1 \vec{v}_{01} + m_2 \vec{v}_{02} = m_1 \vec{v}_{f1} + m_2 \vec{v}_{f2}$

Per components, OX:
$$m_1 v_{01} - m_2 v_{02} = m_1 v_{f1} \cos \theta_1 - m_2 v_{f2} \cos \theta_2$$
 (1)

OY:
$$0 = -m_1 v_{f1} \sin \theta_1 + m_2 v_{f2} \sin \theta_2$$
 (2)

Aïllant
$$v_{f2}$$
 a les dues equacions, de (1) $\Rightarrow v_{f2} = \frac{0.22}{\cos \theta_2}$ (3)

$$i de(2) \Rightarrow v_{f2} = \frac{0.12}{\sin \theta_2}$$
 (4)

combinant (3) i (4), obtenim que $\theta_2 \approx 28.6^{\circ}$ i substituïnt-ho a (3) o a (4), $v_{f2} = 25 \text{ cm/s}$

b)

Com el moviment és en un pla, podem dir que la energia potencial sempre és zero.

Llavors,

$$\Delta E_C = E_{Cf} - E_{C0} = \frac{1}{2} m_1 v_{f1}^2 + \frac{1}{2} m_2 v_{f2}^2 - \frac{1}{2} m_1 v_{01}^2 - \frac{1}{2} m_2 v_{02}^2 = -0.074 J$$

67. Una vagoneta de ferrocarril de 20 tones és en repòs dalt d'un turó de 5m d'alçada amb els frens posats. Es deixen anar els frens i la vagoneta cau fins a la part inferior del turó, on xoca amb una latr vagoneta de 10 tones que és en repòs i que no te frens. Les vagonetes s'acoblen i roden juntes per la via fins una alçada H. Trobeu H.

Entre dalt del turó i la part inferior, la vagoneta de 20 tones converteix tota la seva energia potencial en cinètica. Quan estigui a punt de xocar amb l'altra vagoneta, arribarà amb una velocitat:

$$E_{P1} = E_{C1}$$
 \Rightarrow $M_1gh = \frac{1}{2}M_1v_1^2$ \Rightarrow $v_1 = \sqrt{2gh} = 10 \text{ m/s}$

A partir del moment del xoc, els dos vagons enganxats, es mouran amb la velocitat del centre de masses:

$$v_{CM} = \frac{M_1 v_1 + M_2 v_2}{M_1 + M_2} = \frac{M_1}{M_1 + M_2} v_1 = 6.67 \,\text{m/s}$$

on $v_2 = 0$ ja que està inicialment en repòs

Les vagonetes tenen prou energia per superar un altre turó d'alçada H. La màxima alçada H del turó que podrien pujar és la que els hi farà gastar tota la seva energia potencial.

$$E_{C,CM} = E_{P,CM} \implies \frac{1}{2} (M_1 + M_2) v_{CM}^2 = (M_1 + M_2) gH \implies H = \frac{v_{CM}^2}{2g} = 2.22 \,\text{m}$$