1 Delaunay Triangulation, Voronoi Diagram, and Gabriel Graph

Relate the Delaunay triangulation and Voronoi diagram to edges that appear in the Gabriel Graph. (Hint: The Gabriel Graph is a subgraph of the Delaunay triangulation). Don't all edges of a Delaunay triangle cross a Voronoi edge? Prove it in both directions.

(\Rightarrow) For two points $p_i, p_j \in S$, $\overline{p_i p_j}$ is the edge that connects them, and C_{ij} is the circle with $\overline{p_i p_j}$ as the diameter. We say that C_{ij} is an empty circle with no points of S in its interior and therefore $\overline{p_i p_j} \in \mathcal{GG}(S)$; we then consider a third point $p_k \in S$, where $p_k \neq p_i, p_j$ and p_k is not interior to C_{ij} . Either

- 1. p_r is on the circumference of C_{ij} . Therefore, by definition¹, $\Delta p_i p_j p_j$ is a face in the Delaunay triangulation, and so $\overline{p_i p_j} \in \mathcal{DT}(S)$ (as do the other edges formed by the three points).
- 2. p_r is exterior to C_{ij} . Therefore, by definition², $\overline{p_i p_j} \in \mathcal{DT}(S)$.

The $\mathcal{DT}(S)$ is the dual of the $\mathcal{VD}(S)$; by definition, the vertices of $\mathcal{DT}(S)$ are Voronoi sites and the edges of $\mathcal{VD}(S)$ are those that connect those circumcenters in $\mathcal{DT}(S)$ that share a triangle edge (and so, cross that edge). We can conclude that for $\overline{p_ip_j} \in \mathcal{GG}(S)$ if and only if $\overline{p_ip_j} \in \mathcal{DT}(S)$, because $\operatorname{mathcal} GG(S) \subseteq \mathcal{DT}(S)$.

Since $\mathcal{GG}(S) \subseteq \mathcal{DT}(S)$, we can find $\mathcal{GG}(S)$ very easily. First, compute the $\mathcal{DT}(S)$, which can be done in $O(n \log n)$ time and O(n) space³. Then, We can walk the edges of $\mathcal{DT}(S)$ in O(n) time, and check each if the circle with just that edge, $\overline{p_i p_j}$, as the diameter contains an interior point or not. Since this was an edge in the \mathcal{DT} , there is only one potential point that could be interior, the third point in the triangle; so we only need to check if the neighbors of p_i, p_j are interior to C_{ij} . If it has interior points, then discard that edge; otherwise, it is an edge in $\mathcal{GG}(S)$. The total runtime is $O(n \log n)$ due to computing the $\mathcal{DT}(S)$, which is optimal and faster than checking every pair of points with every other point for being interior, which would come out to be $O(n^3)$ time.

a.

 $^{^{1}}$ Theorem 9.6.i [2] pg. 198

²Theorem 9.6.ii [2] pg. 198

³Theorem 9.12 [2] pg. 206

2 Voronoi Diagrams in L_1 and L_{∞} Metrics

Reference: [3], [4]

In an arbitrary d-dimensional plane R^d , for a real number $1 \leq p \leq \infty$, the L_p -distance between two points $q_i(x_{i1}, x_{i2}, ...x_{id})$ and $q_i(x_{j1}, x_{j2}, ...x_{jd})$ is given by the norm:

$$d_p(q_i, q_j) = \left[\sum_{k=1}^{d} \left(|x_k(q_i) - x_k(q_j)| \right) \right]^{\frac{1}{p}}$$

The plane in which the L-p distance is measured is denoted R_p^d .

In a 2D plane R^2 , given two points $q_i(x_i, y_i)$ and $q_j(x_j, y_j)$, the distance between them in the L_1 metric (R_1^2 plane) is given by:

$$d_1(q_i, q_j) = |x_i - x_j| + |y_i - y_j|$$

The distance between them in the L_{∞} metric $(R_{\infty}^2$ plane) is given by:

$$d_{\infty}(q_i, q_j) = \max(|x_i - x_j|, |y_i - y_j|)$$

There exists a linear mapping f from the R_{∞}^2 plane to the R_1^2 plane. For a point $(x,y) \in R_{\infty}^2$, there exists a point $(x',y') \in R_1^2$ where $x' = \frac{y+x}{2}$ and $y' = \frac{y-x}{2}$. The distance between two points $q_i, q_j \in R_{\infty}^2$ is equal to the distance between their images $q'_i, q'_j \in R_1^2$.

For example, let $q_i(x_i, y_i), q_j(x_j, y_j) \in R^2_{\infty}$ and let $x_j > x_i, y_i > y_j$, and $y_j - y_i > x_j - x_i$. So the between them is $d_{\infty}(q_i, q_j) = y_j - y_i$.

The distance between $q_i'(x_i',y_i'),q_j'(x_j',y_j')\in R_1^2$ is equal to $d_\infty(q_i,q_j)$:

$$d_{1}(q'_{i}, q'_{j}) = |x'_{j} - x'_{i}| + |y'_{j} - y'_{i}|$$

$$= \left(\frac{y_{j} + x_{j}}{2} - \frac{y_{i} + x_{i}}{2}\right) + \left(\frac{y_{j} - x_{j}}{2} - \frac{y_{i} - x_{i}}{2}\right)$$

$$= \frac{1}{2}\left((y_{j} - y_{i}) + (x_{j} - x_{i})\right) + \frac{1}{2}\left((y_{j} - y_{i}) - (x_{j} - x_{i})\right)$$

$$= \frac{1}{2}\left(2(y_{i} - y_{j}) + (x_{j} - x_{i}) - (x_{j} - x_{i})\right)$$

$$= y_{i} - y_{j}$$

$$= d_{\infty}(q_{i}, q_{j})$$

a.

3 Three

a.

4 Project

References

- [1] Jake and Diane's office hours, classmates: Stephanie, Alex, Anju with homework problem discussions.
- [2] Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars. 2008. Computational Geometry: Algorithms and Applications (3rd ed. ed.). Springer-Verlag TELOS, Santa Clara, CA, USA.
- [3] D.T Lee and C.K. Wong, "Voronoi Diagrams in L_1 and (L_{∞}) Metrics with 2-Dimentional Storage Applications". SIAM J Comput. Vol. 9, No. 1, 200-212. 1980.
- [4] Yunzhi Shi, "Sarah's Interactive Voronoi Diagram". 2017.