20:00 准时开播

还没有课件 PPT 的同学,扫码添加 欣然助教 获取

大语言模型的量化推理加速 技术基础

陈晓宇

2024.03.26

一、LLM基础概念

LLM 模型结构

- LLM 的模型结构主要由 Transformer 中的 Decoder 部分堆叠而成,Decoder 层包括 **Attention** 和 **FFN** 两部分。
- LLM 模型的推理过程 (平均 1 个 token 可以表示 1.5 个汉字):

景点

?

有哪些

北京

好

玩的

有很多

北京

好

玩的

- Prefill 预填充阶段:一次性接收 prompt 的输入,生成首字输出。
- **Decode 解码阶段**: 自回归过程,当前输出依赖之前的输出,只能一个 token 一个 token 输出。

LLM 推理的关键指标

指标	说明	影响因素	优化方法	
首字延迟 (TTFT,Time To First Token)	Pretill MirF分科/TH/IIIIII		优化计算、降低访存	
解码单个输出的时间 (TPOT,Time Per Output Token)	Decode 阶段生成单个 token 的时间。	batch_size	降低访存	
时延 (Latency)	生成响应的总时间。时延 = TTFT + TPOT * token数。	batch_size、输入和输出长度	优化 prompt 设置或微 调模型优化输出长度	
吞吐量(Throughput)	服务器在所有用户请求中每秒可生成的 decoding token 数。	batch_size、输入长度	Continuous Batching	

KV cache

计算 Q、K、V: $Q = XW^Q, K = XW^K, V = XW^V$

计算 Attention:

 $\operatorname{Attention}(Q, K, V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$

在模型推理时,由于是自 回归模式,需要一个 token 一 个 token 的计算,在计算当前 token 时, 前面 token 的 QKV 在之前的步骤已经算过了, 不需要再次计算,只需要将 其保存提供给当前步的 Attention 计算使用,这一方 法称为 KV Cache。

KV cache

计算 Q、K、V:
$$Q = XW^Q, K = XW^K, V = XW^V$$

计算 Attention:

$$\operatorname{Attention}(Q, K, V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$

在模型推理时,由于是自 回归模式,需要一个 token 一 个 token 的计算,在计算当前 token 时, 前面 token 的 QKV 在之前的步骤已经算过了, 不需要再次计算,只需要将 其保存提供给当前步的 Attention 计算使用,这一方 法称为 KV Cache。

KV cache

计算 Q、K、V:
$$Q = XW^Q, K = XW^K, V = XW^V$$

计算 Attention:

$$Attention(Q, K, V) = softmax(\frac{QK^T}{\sqrt{d_k}})V$$

在模型推理时,由于是自 回归模式,需要一个 token 一 个 token 的计算,在计算当前 token 时, 前面 token 的 QKV 在之前的步骤已经算过了, 不需要再次计算,只需要将 其保存提供给当前步的 Attention 计算使用,这一方 法称为 KV Cache。

GPU 架构

- **SM**: GPU 由多个流式多处理器 (SM) 组成,其中每个 SM 具有多个运算处理核心。
- L1 Cache: 每个 SM 具有一个 L1 缓存,可以缓存 L2 缓存中经常访问的数据。
- L2 Cache: 由所有 SM 共享,缓存全局内存中经常访问的数据以减少延迟。
- DRAM/HBM:高容量的 GPU 片外全局内存。

Nvidia A100:

- 108 **个** SM
- fp16 张量核心: 每秒 312 万亿次浮点运算 (312 TFLOPS)
- DRAM 空间 80G, 带宽 2.039TB/s
- L2 缓存空间 40M, 带宽 4TB/s
- L1 缓存空间 192KB*108=20MB (每个 SM 192KB) , 带宽 19TB/s

模型推理时:

- 内存访问:从 DRAM 加载模型权重到 L2 缓存,然后传输到 SM。
- 计算:在 SM 中执行矩阵乘法, SM 请求张量核心执行计算。
- 最后将计算的结果数据写回到 DRAM 中。

从内存中读写一个数的时间, GPU 可以做近百次运算。

计算量和访存量

- **计算量:** 模型进行一次完整的前向传播所发生的运算次数。浮点计算次数写作 FLOPs (Floating Point Operations),定点计算次数常见的用 TOPS (Tera Operations Per Second)、GOPS (Giga Operations Per Second)来表示。
- **访存量**: 输入单个样本,模型完成一次前向传播过程中所发生的内存交换总量。在理想情况下(不考虑片上缓存),模型的访存量就是模型各层权重参数的内存占用(**参数访存**)与每层所输出的特征图的内存占用(**激活访存**)之和,如果用了 KV cache 方案,还需加上 **KV cache** 的大小。举例来说,权重用 fp32 存储的 7B 模型的参数访存是 7*10^9*4 Byte。

计算访存比

计算量越小,模型推理就越快吗?不是。

模型的计算强度
$$I = \frac{模型计算量 (FLOPs)}{模型访存量 (Bytes)}$$

模型的理论性能 P: 模型在芯片上所能达到的每秒 浮点运算次数(理论值)。单位是 FLOPS。

$$P = egin{cases} eta \cdot I, & when & I < I_{max} & \mathbf{Memory\ Bound} & \mathbf{带宽瓶颈} \colon$$
 性能卡在带宽,需要减少模型的访存量来加快推理速度。 $\pi, & when & I \geqslant I_{max} & \mathbf{Compute\ Bound} & \mathbf{tfama} \colon$ 性能卡在计算,需要减少模型的计算量来加快推理速度。

LLM 模型计算量、访存量

- 端侧 batch_size = 1, 计算量大头在 QKV 和 FFN 中的 linear; 访存量 90% 都是参数访存。
- 计算访存比 = 13.408 / 5.371 = 2.5

$n_{input} = 1024$	计算量	Llama2 7B 计算量
QKV	$3*2*n_{heads}*(1*d_{model}*d_{head}) = 6d_{model}^{2}$	100663296 = 100M
Attention		16777216 = 16.8M
Projection	$2*(1*d_{model}*d_{model}) = 2d_{model}^2$	33554432 = 33.6M
FFN	$2*(1*d_{model}*(4*d_{model})+1*(4*d_{model})*d_{model})=16d_{model}^{2}$	268435456 = 268.4M
Total	$n_{layers} * (24d_{model}^2 + 4n_{input}d_{model})$	0,419G * 32 = 13.408G

$n_{input} = 1024$	参数访仔	激洁访存	KV cache 访存	总访存	7B 参数访存	7B 激沽访存	7B KV cache 访存	7B 忌访存
QKV	$3d_{model}^2$	$(2n_{input} + 1)d_{model}$	$2(n_{input} - 1)d_{model}$	$3d_{model}^2 + 4n_{input}d_{model} - d_{model}$	50,331,648	8,392,704	8,380,416	67,104,768
Attention	0	$3d_{model} + 2n_{head}$	0	$3d_{model} + 2n_{head}$	0	12,352	0	12,352
Projection	d_{model}^2	d_{model}	0	$d_{model}^2 + d_{model}$	16,777,216	4096	0	16,781,312
FFN	$8d_{model}^2$	$9d_{model}$	0	$8d_{model}^2 + 9d_{model}$	134,217,728	36,864	0	134,254,592
Total	$n_{layers} \ * 12 d_{model}^2$	$egin{aligned} n_{layers} \ * & ((2n_{input} \ + & 14) d_{model} \ & + & 2n_{head}) \end{aligned}$	2n _{layers} (n _{input} – 1)d _{model}	$\begin{array}{l} n_{layers} \\ * \left(12 d_{model}^2 + 4 n_{input} d_{model} + 12 d_{model} \right. \\ + \left. 2 n_{head} \right) \end{array}$	151,045,923 * 32 = 4.833G	8,446,016 * 32 = 0.27G	8,380,416 * 32 = 0.268G	5.371G

LLM 模型计算强度

• LLM 模型计算强度

解码阶段的计算密度:
$$\frac{n_{layers}*(24d_{model}^2+4n_{input}d_{model})}{n_{layers}*(12d_{model}^2+4n_{input}d_{model})} \approx 2$$

• 3090/4090/A100 显卡的计算强度

显卡	算力 (fp16)	带宽 (GPU)	计算强度
3090	35.58 TFLOPS	936.2 GB/s	152
4090	330 TFLOPS	1 TB/s	1320
A100	312 TFLOPS	2 TB/s	624

结论: LLM 模型在 decode 解码阶段都是带宽瓶颈。 推理加速的关键是:

- 降低访存量,相比于 fp16 模型和推理,理论上 int4 速度可以提升 4 倍。
- 提升计算量: 增大 batch_size, 但端侧场景的 batch_size 一般为 1。

LLM 加速方法

• 加速方法分类和概要

LLM 在不同场景下的优化

• 服务端

- batch_size 越大越好,重点关注吞吐量指标。
- 服务端小模型推理,重点是 kv cache 量化。服务端大模型推理,kv cache 和 weight 都要量化。
- weight-only 量化在服务端较大 batch_size 时没有加速效果,该场景需要加速计算,weight-only 压缩访存是无效的。可以通过 int8 计算代替 fp16 来加速计算。

• 端侧

- batch_size = 1, 重点关注延迟指标。
- weight 是大头,占比超过 90%,重点是 weight 量化。

二、LLM量化

为什么要做量化

- LLM 模型主要是带宽瓶颈,需要减少访存量来加速推理。(权重量化)
 - 参数访存占用量最大,占比 90% (batch_size = 1, cache_size = 1024) ,最重要的是减少参数访存。需要将 fp32/fp16 的权重参数量化到更低比特位,如 int8/int4,以减少参数访存量大小。
 - 在端侧 (batch_size = 1, cache_size = 1024) KV cache 访存量占比 5%, KV cache 在端侧场景下的访存优化不是重点。
- 芯片上的定点算力一般比浮点强, LLM 模型推理时考虑使用更多定点算力。 (激活值量化)

量化分类

对称量化 quantize 过程:

$$s = \frac{\alpha}{2^{b-1} - 1}$$

(a) Affine quantizatior 非对称量化

(b) Scale quantization 对称量化

 $x_q = \text{quantize}(x, b, s) = \text{clamp}(\text{round}\left(\frac{x}{s}\right), -2^{b-1} + 1, 2^{b-1} - 1)$

式中, s 是 scale factor, 浮点数表示的范围是 $[-\alpha, \alpha]$, b 是量化位数, x 是需要量化的浮点数, x_a 是量化后 的定点数。

对称量化 dequantize 过程:

$$\hat{x} = \text{dequantize}(x_q, s) = s \cdot x_q$$

Quantize:

$$-0.39 / s = -12.3825$$

$$4.00 / s = 127.0$$

$$3.72 / s = 118.11$$

$$-3.00 / s = -95.25$$

$$1.56 / s = 49.53$$

以 int8 量化举例,有符号对称量化的整形范围是 [-127, 127]

量化分类

非对称量化 quantize 过程:

$$s = \frac{\alpha - \beta}{2^b - 1}$$

$$z = -\text{round}\left(\frac{\beta}{s}\right) - 2^{b-1}$$

(a) Affine quantizatior 非对称量化

(b) Scale quantization 对称量化

以 int8 量化举例,有符号非对称量化的整形范围是 [-128, 127]

 $x_q = \text{quantize}(x, b, s, z) = \text{clamp}(\text{round}\left(\frac{x}{s}\right) + z, -2^{b-1}, 2^{b-1} - 1)$

式中, s是 scale factor, z是 zero-point, 浮点数表示

的范围是 $[\beta, \alpha]$ 。

非对称量化 dequantize 过程:

 $\hat{x} = \text{dequantize}(x_q, s, z) = s \cdot (x_q - z)$

Quantize:

$$-0.39 / s + z = -33.21$$

$$4.00 / s + z = 126.71$$

$$3.72 / s + z = 116.51$$

$$-3.00 / s + z = -128.29$$

$$1.56 / s + z = 37.83$$

$$\beta = -3.00$$

$$\alpha = 4.00$$

$$s = 7.00 / 255 = 0.027450$$

z = 109 - 128 = -19

$$(-33 - z) * s = -0.3843$$

$$(127 - z) * s = 4.0078$$

$$(117 - z) * s = 3.7333$$

$$(-128 - z) * s = -2.9922$$

$$(38 - z) * s = 1.5647$$

矩阵乘法量化

-5.00

1.55

3.72

4.00

1.58

-3.32

-2.50

3.16

7.4302

127

50

79

5943

对称量化

-0.38

$$\alpha_1 = 5.00$$

$$s_1 = 5.0 / 127 = 0.039370$$

2.47

对称量化

$$\alpha_2 = 4.00$$

最终反量化结果:

94

-10

63

-127

39

$$5943 * s_1 * s_2 = 7.3693$$

量化阶段

- PTQ (Post Training Quantization,训练后量化): PTQ 将训练后的浮点模型直接量化为定点模型,无需对原始的浮点模型进行任何额外的训练。
- QAT (Quantization Aware Training,量化感知训练):QAT 在模型训练时加入了伪量化节点,用于模拟模型量化时引起的误差。
 - 首先在数据集上以 FP32 精度进行模型训练,得到训练好的 baseline 模型;
 - 在 baseline 模型中插入伪量化节点,得到 QAT 模型,并且在数据集上对 QAT 模型进行 finetune;
 - 伪量化节点会模拟推理时的量化过程并且保存 finetune 过程中计算得到的量化参数;
 - finetune 完成后,使用上一步中得到的量化参数对 QAT 模型进行量化得到 INT8 模型,并部署至推理框架中进行推理。

量化粒度

对于线性层 $Y = XW^T$,输入的维度为 $[B, T, D_{in}]$,权重的维度为 $[D_{out}, D_{in}]$,输出为 $[B, T, D_{out}]$,有以下三种不同的量化粒度:

- per-tensor:整个 tensor 取绝对值的最大值来计算 scale,每个元素使用同一个 scale p_out 量化。
- per-channel: tensor 在 D_{out} 的维度上划分为 D_{out} 个 channel, 各自取绝对值的最大值来计算 scale,每个 channel 使用同一个scale 量化。
- per-block: 在 per-channel 的基础上,每个 channel 划分为 D_{in} / block_size 个 block,
 每个 block 使用同一个 scale 量化。

量化粒度

激活值的量化粒度,可以分为 per-tensor、per-token、per-channel、per-block 四种量化方式:

- per-tensor: tensor 中的每个元素使用同
 一个 scale 量化。
- per-token: tensor 在 T (序列长度) 的维度上划分为 T 组,各自取绝对值的最大值来计算 scale,每组使用同一个 scale量化。
- per-channel: tensor 在 D_{in} 的维度上划分为 D_{in} 个 channel, 各自取绝对值的最大值来计算 scale,每个 channel 使用同一个 scale 量化。
- per-block: 在 vector-wise 的基础上,每
 个 vector 划分为 D_{in}/ block_size 个 block,
 每个 block 使用同一个 scale 量化。

量化粒度

per-channel 一般针对权重, per-token 一般针对激活。

从 input channel (D_{in}) 的维度进行量化在硬件加速中不能很好实现,因为如果从 D_{in} 矩阵乘加,需要相加的数的量化 scale 都不一样,不能直接相加。

量化粒度

- 激活值 A: per-tensor > per-token > per-block
- 权重 W: per-tensor > per-channel > per-block
- 常见的组合:
 - W per-tensor + A per-tensor
 - W per-tensor + A per-token
 - W per-channel + A per-tensor
 - W per-channel + A per-token
 - W per-block + A per-block
 - W per-channel + A fp16
 - W per-block + A fp16

动态量化/静态量化

所有模型权重都是提前量化的,只有激活值可以提前量化,或者在推理过程中动态量化。

- 静态量化:在模型推理前提前计算好量化参数。如果运行时的数据产生的中间输出值和校准数据产生的值差别较大,则会出现很大的量化误差。
 - 使用小部分无标签校准数据对 FP32 baseline 模型进行 calibration,这一步主要是得到网络各层 weights 以及 activation 的数据分布特性 (比如统计最大最小值);
 - 根据上一步中的数据分布特性, 计算出网络各层量化参数;
 - 使用上一步中的量化参数对 FP32 baseline 进行量化得到 INT8 模型,并将其部署至推理框架进行推理。
- 动态量化:在模型推理的过程中动态计算量化参数,对于不同的输入值x,量化的参数都是推理时计算。

LLM 中量化的算子

- 并非所有算子都进行 int8 量化,例如, layernorm、softmax 等算子必须浮点计算, 因为这些量化损失太大。
- 在实现中,一般只量化 linear 和 matmul 部分,其他部分采用浮点计算。

量化方案

Weight Only 量化: 把权重量化为 INT8/INT4 等更低比特的类型,在模型推理时反量化为浮点数,再参与计算。适用于浮点算力较强的芯片。

Weight + Activation 量化:提前量化权重,同时在模型推理时,将某个 op 的输入进行量化,该 op 进行定点计算。

量化算法

• SmoothQuant: 权重和激活值量化。由于权重很容易量化,而激活较难量化,引入平滑因子 s 来平滑激活异常值,通过数学上等效的变换将量化难度从激活转移到权重上。

$$\mathbf{Y} = (\mathbf{X}diag(\mathbf{s})^{-1}) \cdot (diag(\mathbf{s})\mathbf{W}) = \widehat{\mathbf{X}}\widehat{\mathbf{W}}$$

• AWQ: 仅权重量化。保留 1% 的重要权重来改进 LLM 量化,通过激活感知缩放保护重要权重,将重要权重的 scale 单独再乘以一个 >1 的系数。

GPTQ: 仅权重量化。将权重分组,对每个组内的参数逐个量化后,使用校准数据算出的 Hessian 矩阵的值,更新剩余的权重(图中蓝色部分)。

OmniQuant:可学习权重裁剪 (LWC):将 min-max 量化方法的最大值最小值进行缩放,缩放因子是可学习的,超过范围的当作离群点;可学习等效变换 (LET):类似 SmoothQuant,但平滑因子是可学习的。

LLM 量化评估指标和实验结果

• 评估指标:

• 使用 PPL (perplexity 困惑度) 指标用于衡量量化之后的精度损失。一般 PPL 越小,量化损失越小。

实验结论:

- 量化粒度越细,精度越好。比特数越高,精度越好。
- 权重 int4 量化,需要 per-block 级别的细粒度量化才能保证精度。权重 int8 量化,不需要 per-block 级别的量化。

量化方案	动态量化	W 量化粒度	A 量化粒度	block_size	wikitext2 ppl	量化损失
fp16	-	fp16	fp16	-	7.0768	-
W.int8 weight-only	-	per-channel	-	-	7.0848	0.11%
Wint8_Aint8	yes	per-channel	per-token	-	7.1231	0.65%
Wint8_Aint8	yes	per-channel	per-tensor	-	21.8230	208.37%
Wint4 weight-only	-	per-channel	-	-	9.7104	37.21%
Wint4 weight-only	yes	per-block	per-block	32	7.3820	4.31%
Wint4_Aint16	yes	per-channel	per-token	-	9.7149	37.28%
Wint4_Aint8	yes	per-channel	per-token	-	10.2520	44.87%
Wint4_Aint8	yes	per-block	per-block	32	7.3856	4.36%
GPTQ Wint4 weight-only	yes	per-block	-	128	8.3339	17.76%
AWQ Wint4 weight-only	yes	per-block	-	128	7.2618	2.61%

参考资料

- 1. Transformers KV Caching Explained: https://medium.com/@joaolages/kv-caching-explained-276520203249
- 2. 语言大模型推理性能工程: 最佳实践: https://mp.weixin.qq.com/s/mniKrBWkDE1tWWb2wQBDCA
- 3. 迈向100倍加速:全栈Transformer推理优化: https://mp.weixin.qq.com/s/1QIZ d4BrAcD9YE9BEdyYg
- 4. Roofline Model与深度学习模型的性能分析: https://zhuanlan.zhihu.com/p/34204282
- 5. 分析transformer模型的参数量、计算量、中间激活、KV cache: https://zhuanlan.zhihu.com/p/624740065
- 6. Integer Quantization for Deep Learning Inference: Principles and Empirical Evaluation: https://arxiv.org/pdf/2004.09602.pdf
- 7. 大语言模型推理加速: https://www.bilibili.com/video/BV128411v7us
- 8. SmoothQuant: Accurate and Efficient Post-Training Quantization for Large Language Models: https://arxiv.org/pdf/2211.10438.pdf
- 9. GPTQ: Accurate Post-Training Quantization for Generative Pre-trained Transformers: https://arxiv.org/pdf/2210.17323.pdf
- 10. AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration: https://arxiv.org/pdf/2306.00978.pdf
- 11. OmniQuant: Omnidirectionally Calibrated Quantization for Large Language Models: https://arxiv.org/pdf/2308.13137.pdf

Q&A

《深度神经网络模型压缩》

你将获得

- ▼ 难出其右的导师阵容

 业界顶级模型工具链团队亲授一线实操技巧
- ☑ 即学即做,四轮项目实践 理论+案例分析+Project实践+讲评反馈
- ▼ 全程答疑+1V1 代码批改, 你只需负责学!

担心课程质量低? 买贵了?

_{开班7天内可}无理由退款

课程价格699, 现在前150名可享 立减50元超前优惠, 仅售¥649元!

扫码咨询 了解课程详情