MACHINERY'S DATA SHEETS

REVISED AND RE-ARRANGED IN LIBRARY FORM

No. 6

Bevel, Spiral and Worm Gearing

PRICE 25 CENTS

CONTENTS

Rules and Formulas for Bevel Cear Calculations 4
Strength of Bevel Gears 8
Proportions of Bevel Gears
Bevel Gear Diagrams12
Table for Determining the Outside Diameter of Bevel Gears14
Rules and Formulas for Spiral Gear Calculations
Table Giving Lead of Spiral for Given Angle
Constants for Calculating Spiral Gears20
Diagram for Finding Spiral Gear Cutter Numbers24
Rules and Formulas for Worm Gearing Calculations25
Worms and Worm Gearing26
Worm Thread Helix Angles

YC 6682

The Industrial Press, 49-55 Lafayette Street, New York
Publishers of MACHINERY

COPYRIGHT, 1910, THE INDUSTRIAL PRESS, NEW YORK

MACHINERY'S DATA SHEET SERIES

COMPILED FROM MACHINERY'S MONTHLY DATA SHEETS AND ARRANGED WITH EXPLANATORY MATTER

No. 6

Bevel, Spiral and Worm Gearing

CONTENTS

Rules and Formulas for Bevel Gear Calculations	. 4
Strength of Bevel Gears	. 8
Proportions of Bevel Gears	. 9
Bevel Gear Diagrams	.12
Table for Determining the Outside Diameter of Bevel Gears	.14
Rules and Formulas for Spiral Gear Calculations	.17
Table Giving Lead of Spiral for Given Angle	.18
Constants for Calculating Spiral Gears	.20
Diagram for Finding Spiral Gear Cutter Numbers	.24
Rules and Formulas for Worm Gearing Calculations	. 25
Worms and Worm Gearing	. 26
Worm Thread Helix Angles	.28

424

In the following pages are compiled a number of diagrams and concise tables relating to bevel, spiral and worm gearing, carefully selected from Machinery's monthly Data Sheets, issued as supplements to the Engineering and Railway editions of Machinery since September, 1898. A number of additional tables also are included which are published here for the first time.

In order to enhance the value of the tables and diagrams, brief explanatory notes have been provided. In these notes references are made to articles which have appeared in Machinery, and to matter published in Machinery's Reference Series, giving additional information on the subject. These references will be of considerable value to readers who wish to make a more thorough study of the subject. In a note at the foot of each table reference is made to the page on which the explanatory note relating to the table appears.

BEVEL, SPIRAL AND WORM GEARING

Formulas for Bevel Gears

On pages 4 to 7, inclusive, are given complete rules and formulas for the calculation of bevel gearing, whether the shafts be at a right angle, at an acute angle, or at an obtuse angle with each other. Specific formulas for miter bevel gearing are also given, as well as for crown gears and internal bevel gearsthe latter on page 7. The notation used in the formulas is easily understood by comparing the formula with the corresponding rule. The numbers given in the left-hand column are for convenient reference to any particular rule. The rules and formulas are given in the order in which they would ordinarily be used by a designer of bevel gearing.

Internal bevel gearing should be avoided except in cases where cast gears will be satisfactory, because it is practically impossible to cut internal bevel gearing. It may be possible on some forms of templet planing machines to produce internal bevel gears, if the pitch cone angle is not too great, but it is impossible on any form of generating machine. Internal bevel gearing can usually be avoided, and be replaced by external bevel gearing, by extending one of the shafts between which motion is to be transmitted, and mounting the gears in such a position that the required motion can be transmitted by a pair of ordinary bevel gears.

The following exceptions to, and modifications of, the rules given should be noted:

1. The Brown & Sharpe Mfg. Co. recommends that for shaping bevel gear teeth with a formed cutter, the cutting angle be determined by subtracting the ad-

dendum angle from the pitch cone angle, instead of subtracting the dedendum angle, as in Rule 15, page 5. In other words, the clearance at the bottom of the tooth is made uniform instead of tapering toward the vertex. This gives a somewhat closer approximation to the desired shape. This applies, of course, also to Rule 25.

2. In generating machines (such as the Bilgram and the Gleason) it is often advisable to depart from the standard dimensions of gear teeth as given by Rules and Formulas 1 to 44. For instance, where the pinion is made of bronze and the gear of steel, the teeth of the former can be made wider and those of the latter correspondingly thinner, so as to somewhat nearly equalize the strength of the two. Again, where the pinion has few teeth and the gear many, it may be advisable to make the addendum on the pinion larger and the dedendum correspondingly smaller, reversing this on the gear, making the addendum smaller and the dedendum larger. This is done to avoid interference and consequent undercut on the flanks of pinions having a small number of teeth. changes are easily effected on generating machines, and instructions for doing this for any case will usually be furnished by the makers of the various machines. [Machinery, February, 1910, Derivation of Bevel Gear Formulas; Machinery's Reference Series No. 37. Bevel Gearing, Chapter I.1

Strength of Bevel Gears

A table, rules and formulas for the strength of bevel gears are given on page 8. The table and formulas are (Continued on page 11.)

RULES AND FORMULAS FOR BEVEL GEAR CALCULATIONS-I

Bevel Gears with Shafts at Right Angles.

Use Rules and Formulas 1-21 in the order given.

No.		To Find	Ryle	Formula
1	Pitci Edge	h Cone Angle (or Angle) of Pinion	Divide the number of teeth in the pinion by the number of teeth in the gear to get the tangent	$Tan \alpha_p = \frac{N_p}{N_q}$
2		h Cone Angle (or Angle) of Gear	Divide the number of teeth in the gear by the number of teeth in the pinion to get the tangent	$7an \alpha_g = \frac{N_g}{N_p}$
3		f of Calculations itch Cone Angles	The sum of the pitch cone angles of the pinion and gear equals 90 degrees	$\alpha_p + \alpha_g = 90^\circ$
4	Pitc	h Diameter	Divide the number of teeth by the diametral pitch; or multiply the number of teeth by the circular pitch and divide by 3.1416	$D - \frac{N}{P} = \frac{NP'}{\pi}$
5	noinin	Addendum	Divide 1.0 by the diametral pitch; or multiply the circular pitch by 0.318	$5 = \frac{7.0}{P} = 0.3/8P'$
6	randp	Dedendum	Divide 1.157 by the diametral pitch; or multiply the circular pitch by 0.368	5+A-1.157-0.368P1
.7	th gea	Whole Depth of Tooth Space	Divide 2.157 by the diametral pitch; or multiply the circular pitch by 0.687	$W = \frac{2.157}{P} = 0.687P'$
8	for be	Thickness of Divide 1.571 by the diametral pitch; or divide		$T = \frac{4.571}{P} = \frac{P'}{2}$
9	same	Pitch Cone Radius	Divide the pitch diameter by twice the sine of the pitch cone angle	$C = \frac{D}{2 \times \sin \alpha}$
10	s are the	Addendum at Small End of Tooth	Subtract the width of face from the pitch cone radius, divide the remainder by the pitch cone radius and muitiply by the addendum	$s=5 \times \frac{C-F}{C}$
11	dimension	Thickness of Tooth at Pitch Line at Small End	Subtract the width of face from the pitch cone rad- ius, divide the remainder by the pitch cone radius and multiply by the thickness of the tooth at the pitch line	$\bar{t} = T \times \frac{C - F}{C}$
12	These di	Addendum Angle	Divide the addendum by the pitch cone radius to get the tangent	Tan $\theta = \frac{5}{C}$
13	77	Dedendum Angle	Divide the dedendum by the pitch cone radius to get the tangent	Tan $\varphi = \frac{5+A}{C}$

RULES AND FORMULAS FOR BEVEL GEAR CALCULATIONS-11

		ars with Shafts at Right Angles. (Continu	
No.	To Find	Rule	Formula
14		8-90°-(α+θ)	
15	Cutting Angle	5=α-p	
16	Angular Addendum	Multiply the addendum by the cosine of the pitch cone angle	K=5 x Cos ∝
17	Outside Diameter	Add twice the angular addendum to the pitch diameter	0=D+2K
18	Apex Distance	Multiply one-half the outside diameter by the tangent of the face angle	$J = \frac{0}{2} \times Tan \delta$
19	Apex Distance at Small End of Tooth	Subtract the width of face from the pitch cone radius, divide the remainder by the pitch cone radius and multiply by the apex distance.	$j = J \times \frac{C - F}{C}$
20	Number of Teeth in Equivalent Spur Gear	Divide the number of teeth by the cosine of the pitch cone angle	$N'=\frac{N}{\cos\alpha}$
21	Proof of Calculations by Rules Nos. 9, 12, 14, 16 and 17	The outside diameter equals twice the pitch cone radius multiplied by the cosine of the face angle and divided by the cosine of the addendum angle	

Mitre Bevel Gearing.

Use Rules and Formulas 22, 4-8, 23, 10-13, 24-26, 17-19, 27 and 21 in the order given. All dimensions thus obtained are the same for both gears of a pair

No.	To Find	Rule	Formula
22	Pitch Cone Angle	Pitch cone angle equals 45 degrees	∝ = 45°
23	Pitch Cone Radius	Multiply the pitch diameter by 0.707	C=0.707D
24	Face Angle	Subtract the addendum angle from 45°	δ=45°-θ
25	Cutting Angle	Subtract the dedendum angle from 45 degrees	5=45°-9
26	Angular Addendum	Multiply the addendum by 0.707	K=0.7075
27	Number of Teeth in Equivalent Spur Gear	Multiply the number of teeth by 1.41	N'=1.41N

RULES AND FORMULAS FOR BEVEL GEAR CALCULATIONS-III

RULES AND FORMULAS FOR BEVEL GEAR CALCULATIONS-IV

STRENGTH OF BEVEL GEARS

List of Reference Letters.

D = pitch diameter of gear in inches.

R = revolutions per minute.

V = velocity in ft. per min. at pitch diameter.

Ss = allowable static unit stress for material.

S = allowable unit stress for material at given velocity.

F = width of face.

N'= No. of teeth in equivalent spur gear (See diagram).

Y = outline factor (see table below)

P=diametral pitch (if circular pitch is given, divide 3.1416 by circular pitch to obtain diametral pitch).

C = pitch cone radius.

W=maximum safe tangential load in pounds at pitch diameter.

H.P. = maximum safe horse power.

 $N' = \frac{Number of teeth}{\cos \alpha}$ (Rule No. 20)

	Table	of Outline	e Factors	(Y) to	r 142 and 2	20°Involute
		Outline I	Factor = Y		Outline F	-actor=Y
	N'	14½° Involute (5td.)	20° Involute	N'	14½° Involute (Std.)	20° Involute
	12	0.210	0.245	27	0.314	0.349
	13	0.220	0.264	30	0.320	0.358
	14	0.226	0.276	34	0.327	0.37/
	15	0.236	0.289	38	0.336	0.383
	.16	0.242	0.295	43	.0.346	0.396
	17	0.251	0.302	50	0.352	0.408
	18	0.261	0.308	60	0.358	0.421
	19	0.273	0.314	75	0.364	0.434
	20	0.283	0.320	100	0.37/	0.446
	2/	0.289	0.327	150	0.377	0.459
	23	0.295	0.333	300	0.383	0.471
,	25	0.305	0.339	Rack	0.390	0.484

Use rules and formulas 45-48 in the order given

No.	To Find	Rule	Formula
45	Velocity in ft. per min. at the pitch diameter	Multiply the product of the diameter in inches and the number of revolutions per minute, by 0.262	V='0.262 DR
46	Allowable unit stress at given velocity	Multiply the allowable static stress by 600 and divide the result by the velocity in feet per minute plus 600	$S = S_5 \times \frac{600}{600 + V}$
47	Maximum sate tan- gential load at pitch diameter	Multiply together the allowable stress for the given velocity, the width of face, the tooth outline factor and the difference between the pitch cone valus and the width of face; divide the result by the product of the diametral pitch and the pitch cone radius	$W = \frac{SFY(C-F)}{PC}$
48	Maximum safe Horse Power	Multiply the safe load at the pitch line by the velocity in teef per minute, and divide the result by 33,000	$HP = \frac{WV}{33,000}$

PROPORTIONS OF BEVEL GEARS

BEVEL GEARS.

 $B = A + .25 \times Pitch$

 $C = \text{At least .25} \times L$

 $D = .48 \times \text{Pitch}$

 $E = 1.875 \times Bore$

F = Bore

 $G = .4375 \times Bore$

 $H = .45 \times Pitch$

 $I = .25 \times \text{Pitch}$

 $J = 2.30 \times \text{Pitch}$

 $J = 2.30 \times Pitch$

 $K = .40 \times \text{Pitch}$

 $L = J + \frac{3}{4}$ inch per foot of Length

 $M = .25 \times J$

For Hub, See Upper Left-hand Sketch

For Number of Arms, See Upper Left-hand Sketch

 $B' = A + .05 \times Diameter$

 $= 1 + 0.90 \times \text{pitch}$

 $L = 1\% \times \text{bore}$

 $M = 0.40 \times \text{pitch}$ $O = 0.25 \times \text{pitch}$ $N = 0.40 \times \text{pitch}$

For hub and keyseat, see $P = 0.25 \times \text{pitch}$

Pitch is at large end of tooth.

Pitch diameter at large end of tooth.

 $C = 0.30 \times \text{pitch}$ $D = 0.30 \times \text{pitch}$ $B = 2.3 \times \text{pitch}$ $A = \frac{1}{4} \times B$

 $E = about 0.40 \times pitch$ $\frac{7}{16} \times \text{bore}$

G =face KF = A

= face $K + \frac{1}{20}$ of pitch $= 0.48 \times \text{pitch}$ $J = 0.48 \times \text{pitch}$ diameter

K =face

BEVEL MORTISE GEARS

 $= 0.32 \times \text{pitch}$

 $= 0.55 \times \text{pitch}$

C-

founded on the Lewis method, and make it possible to quickly calculate the strength of bevel gears. The formulas given are based on the use of the diametral pitch of the gear, and the constants Y given in the table for use in the formulas are valid only when the diametral pitch is employed. If the circular pitch is given, it should be transformed into diametral pitch by dividing 3.1416 by the circular pitch. The formulas 45 to 48 make it possible to determine the horsepower which can be transmitted by a gear of a given pitch diameter and a given diametral pitch, when the number of revolutions per minute at which the gear is running is known. The formulas should be used in the order given. The only tactor that need be assumed in these calculations is the allowable static unit stress for the material in the gear. For ordinary workmanship this factor may be assumed to be 6000 pounds per square inch for cast iron, 9000 for phosphor-bronze, and 15,000 for steel. For high-grade workmanship these factors may be increased to 8000, 12,000 and 20,000, respectively.

As an example, assume that it is required to find the horsepower which it is permissible to transmit by a bevel gear having 15-inch pitch diameter, 4 diametral pitch, making 100 revolutions per minute, and having a width of face of 11/2 inch, if the teeth are cut according to the 141/2-degree involute system. The gear is made of steel and the allowable static unit stress for the material may, therefore, be assumed to be 15,000 pounds per square inch. We now first insert the values of the pitch diameter and the revolutions per minute in Formula (45) and thus find the velocity in feet per minute at the pitch diameter. We then insert this velocity, as found in Formula (45), together with the allowable static unit stress, in Formula (46), and find then the allowable unit stress at the given velocity. This unit stress is now inserted in Formula (47)

together with the width of face, the outline factor Y (which is found from the outline table to be 0.358 for 60

teeth), the factor $\frac{C-F}{C}$, and the diam-

etral pitch, and in this way we find the maximum safe tangential load W. Finally, by inserting the value of W just found and the value of V found from Formula (45), in Formula (48), we determine the maximum safe horsepower which can be transmitted by the gear. The numerical calculations are easily carried out, and it is not necessary to repeat them here.

Those familiar with the Lewis formula will note that Rule and Formula (47) is the same as for spur gears with the C-F exception of the additional factor

This factor is an approximate one which expresses the ratio of the strength of a bevel gear to that of a spur gear of the same pitch and number of teeth, the decrease being due to the fact that the pitch grows finer toward the vertex. This factor is approximate only, and should not be used for cases in which F is more than 1/3 C; but since no bevel gears should be made in which F is more than 1/3 C, the rule is of universal application for good practice. As the width of face is made greater in proportion to the pitch cone radius, the increase of strength obtained thereby grows proportionately smaller and smaller, as may be easily proved by analysis and calculation. Actually, the advantage of increasing the width of face is even less than is indicated by calculation, since the unavoidable deflection of the shaft is sure at one time or another to throw practically the whole load on the weak inner ends of the teeth, which thus have to carry the load without help from the large pitch at the outer ends. [MACHINERY, December, 1906, Strength of Gears; MACHIN-ERY'S Reference Series No. 37, Bevel Gearing, Chapter IV.]

BEVEL GEAR DIAGRAMS-I

Curve Sheet for obtaining the outside diameter of cut bevel gears

Standard addendum = $\frac{1}{p}$ = 0.3183 p'

P = diametral pitch

p' = circular pitch

BEVEL GEAR DIAGRAMS-II

Diagram for obtaining the face angle of cut bevel gears

Standard addendum = 0.3183 x circular pitch

TABLE FOR DETERMINING THE OUTSIDE DIAMETER OF BEVEL GEARS-I

Tables I and II are the diameter increments for standard right angle bevel gears, which added to the pitch diameter (D and DI) give the outside diameters (O and OI). The tables are calculated for I diametral pitch, standard involute teeth, and cover the ratios from miters to gears and pinions of 10 to I. With the pitch and numbers of teeth known the outside diameters of a pair of standard bevel gears are found by simple

calculation, using the factors here given. To find the diameter increments, first get the ratio between the bevel gear and pinion, and then divide the increments for that ratio by the given pitch.

For example: Find the outside diameters of apair of berel gears of 75 and 20 teeth, 6 diametral pitch. Dividing the number of teeth in the gear by the number of teeth in the pinion gives a ratio of 3.75 to 1. In table II the diameter increments for agear and pinion of 1 diametral pitch of this ratio are 0.515 and 1.933. Dividing each by 6 gives 0.86 and 0.322 respectively. The pitch diameter of the gear is 12.500 inches and of the pinion 3.333 inches. Adding the diameter increments to the gear and pinion pitch diameters gives 12.586 inches for outside diameter of the gear and 3.655 inches for the outside diameter of the pinion.

				Table I.				
Ratio	Gear	Pinion	Ratio	Gear	Pinion	Ratio	Gear	Pinion
1.000	1.414	1.414	1.400	1.162	1.627	1.800	0.97/	1.748
1.025	1.396	1.431	1.425	1.149	1.636	1.825	0.961	1.754
1.050	1.380	1.448	1.450	1.135	1.646	1.850	0.95/	1.760
1.075	1.362	1.464	1.475	1.122	1.655	1.875	0.941	1.765
1.100	1.345	1.480	1.500	1.109	1.664	1.900	0.931	1.770
1.125	1.328	1.494	1.525	1.096	1.672	1.925	0.922	1.775
1.150	1.312	1.509	1.550	1.084	1.680	1.950	0.912	1.780
1.175	1.296	1.523	1.575	1.072	1.688	1.975	0.903	1.784
1.200	1.280	1.536	1.600	1.060	1.696	2.000	0.894	1.790
1.225	1.264	1.549	1.625	1.047	1.703	2.025	0.885	1.793
1.250	1.249	1.561	1.650	1.036	1.710	2.050	0.876	1.797
1.275	1.234	1.573	V.675	1.025	1.717	2.075	0.868	1.801
1.300	1.219	1.585	1.700	1.014	1.723	2.100	0.860	1.805
1.325	1.204	1.596	1.725	1.003	1.730	2./25	0.851	1.809
1.350	1.190	1.607	1.750	0.992	1.736	2.150	0.843	1.813
1.375	1.176	1.617	1.775	0.982	1.742	2.175	0.835	1.817

TABLE FOR DETERMINING THE OUTSIDE DIAMETER OF BEVEL GEARS-II

1					Table II				
1	Ratio	Gear	Pinion	Ratio	Gear	Pinion	Ratio	Gear	Pinion
1	2.200	0.828	1.821	3.90	0.497	1.937	6.50	0.304	1.977
1	2.225	0.820	1.824	3.95	0.491	1.940	6.60	0.299	1.977
1	2.250	0.8/2	1.827	4.00	0.485	1.940	6.70	0.295	1.978
1	2.275	0.805	1.831	4.05	0.479	1.941	6.80	0.291	1.979
	2.30	0.797	1.834	4.10	0.473	1.943	6.90	0.287	1.979
1	2.35	0.783	1.840	4.15	0.468	1.944	7.00	0.283	1.980
	2.40	0.770	1.846	4.20	0.463	1.945	7.10	0.279	1.980
	2.45	0.755	1.851	4.25	0.458	1.947	7.20	0.275	1.981
	2.50	0.743	1.857	4.30	0.453	1.948	7.30	0.27/	1.981
	2.55	0.730	1.862	4.35	0.448	1.949	7.40	0.268	1.982
	2.60	0.7/8	1.867	4.40	0.443	1.950	7.50	0.264	1.982
	2.65	0.706	1.87/	4.45	0.438	1.951	7.60	0.261	1.983
	2.70	0.694	1.875	4.50	0.434	1.952	7.70	0.257	1.983
	2.75	0.683	1.880	4.55	0.429	1.953	7.80	0.254	1.983
	2.80	0.672	1.883	4.60	0.425	1.954	7.90	0.251	1.984
	2.85	0.662	1.887	4.65	0.420	1.955	8.00	0.248	1.984
	2.90	0.652	1.890	4.70	0.416	1.956	8.10	0.245	1.985
	2.95	0.642	1.894	4.75	0.411	1.957	8.20	0.242	1.985
	3.00	0.632	1.897	4.80	0.407	1.958	8.30	0.239	1.985
	3.05	0.623	1.900	4.85	0.404	1.959	8.40	0.236	1.986
	3.10	0.614	1.903	4.90	0.400	1.960	8.50	0.234	1.986
	3.15	0.605	1.906	5.00	0.392	1.961	8.60	0.23/	1.986
	3.20	0.596	1.909	5.10	0.385	1.962	8.70	0.228	1.986
	3.25	0.588	1.911	5.20	0.377	1.964	8.80	0.225	1.987
	3.30	0.580	1.914	5.30	0.370	1.965	8.90	0.223	1.987
	3.35	0.57/	1.916	5.40	0.364	1.966	9.00	0.220	1.987
	3.40	0.564	1.918	5.50	0.357	1.967	9.10	0.218	1.988
	3.45	0.557	1.921	5.60	0.351	1.968	9.20	0.216	1.988
	3.50	0.550	1.923	5.70	0.345	1.970	9.30	0.2/3	1.988
	3.55	0.542	1.925	5.80	0.340	1.971	9.40	0.211	1.988
	3.60	0.535	1.927	5.90	0.334	1.972	9.50	0.209	1.989
	3.65	0.528	1.929	6.00	0.329	1.973	9.60	0.207	1.989
	3.70	0.521	1.931	.6.10	0.323	1.974	9.70	0.205	1.989
	3.75	0.515	1.933	6.20	0.318	1.975	9.80	0.203	1.989
	3.80	0.509	1.934	6.30	0.313	1.975	9.90	0.201	1.990
	3.85	0.503	1.936	6.40	0.309	1.976	10.00	0.198	1.990
10	Charles I					A Tour			

Contributed by Archie Baxter, Machinery's Data Sheet No. 102. Explanatory note: Page 27.

Proportions of Bevel Gears

Various forms may be given to the blanks or wheels on which bevel gear teeth are cut, depending on the size, material, service, etc., to be provided for. The pinion type of blank is mostly used for gears of a small number of teeth and small pitch cone angle. When the diameter of the bore comes too near to the bottoms of the teeth at the small end, it is customary to omit the usual recess in the front face. For gears of a larger number of teeth, the web type is appropriate. This does not require to be finished all over, as the sides of the web, the outside diameter of the hub, and the under side of the rim may be left rough if desired.

A gear suitable for very heavy work should have the web reinforced by ribs. The web may be cut out so that the rim is supported by T-shaped arms, as shown in the engraving on page 9. This makes a very stiff wheel and at the same time a very light one, when its strength is considered. Where the pitch cone angle is so great that the strengthening rib would be rather narrow at the flange, it may be given the rounded form shown, the radius A being equal to the face of the teeth.

The question of alignment of the shafts should be considered in deciding on the width of face of the gear. Making the width of the face more than onethird of the pitch cone radius adds practically nothing to the strength of the gear even theoretically, since the added portion is progressively weaker as the tooth is lengthened, as has already been explained. In addition to this, there is the danger that through springing of the shafts or poor workmanship, the load will be thrown onto the weak end of the tooth, thus fracturing it. For this reason it may be laid down as a definite rule that there is nothing to be gained by making the face of the bevel gear more than one-third of the pitch cone radius.

The Brown & Sharpe Mfg. Co., in one

of its publications, gives a rule for the maximum width of face allowable for a given pitch. The width of face should not exceed five times the circular pitch, or 16 divided by the diametral pitch. This rule is also rational since the danger to the teeth from the misalignment of the shaft increases both with the width of face and with the decrease of the size of the tooth, so that both of these should be reckoned with. In designing gearing it is well to check the width of face from the rule relating to the pitch cone radius and that relating to the pitch as well, to see that it does not exceed the maximum allowed by either.

On page 9 are given formulas for the proportioning of bevel gears. The dimensions found by these formulas may, of course, have to be varied for individual requirements, but the formulas will serve as a guide for ordinary conditions. On the same page are also given dimensions for shrouded spur gears which will be found suitable for ordinary requirements. On page 10 are given proportions for miter gears, and for both spur and bevel mortise gears with wooden teeth. Gears of this latter type are, of course, seldom used in modern designs. [MACHINERY'S Reference Series No. 37, Bevel Gearing, Chapter V. Design of Bevel Gears.]

Diagrams for Bevel Gear Dimensions

Such data as the angle of increment, the outside diameter and the projection of the extreme edge of the teeth beyond the pitch circle in bevel gears may conveniently be found from the diagrams given on pages 12 and 13. The best way of explaining the diagrams is to take an example, such for instance, as the following: Find the ouside diameter, face angle, and "backing" b of a bevel gear with 40 teeth, whose pitch angle is 56 degrees 59 minutes, 2 diametral pitch, and 20 inches pitch diameter.

(Continued on page 27.)

RULES AND FORMULAS FOR SPIRAL GEAR CALCULATIONS

	δ - a	L=Lead of The Land	of Helix
No.	To Find	Rule	Formula
1	Relation between Shaft and Tooth Angles	The sum of the tooth angles of a pair of mating helical gears is equal to the shaft angle.	$\gamma = a_{\alpha} + a_{b}$
2	Pitch Diameter	Divide the number of teeth by the product of the normal pitch and the cosine of the tooth angle.	
3	Center Distance	Add together the pitch diameters of the two gears and divide by 2.	$C = \frac{D_{\alpha} + D_{b}}{2}$
4	Checking Calculations in (2) and (3)	To prove the calculations for pitch diameters and center distance, multiply the number of teeth in the first gear by the tangent of the tooth angle of that gear, and add the number of teeth in the second gear to the product; the sum should equal twice the product of the center distance multiplied by the normal diametral pitch, multiplied by the sine of the tooth angle of the first gear.	$N_b + (N_a \times tan a_a) = 2CP_n \times sin a_a$
5	No. of Teeth for which to Select Cutter	Divide the number of teeth in the gear by the cube of the cosine of the tooth angle.	$N' = \frac{N}{(\cos \alpha)^3}$
6	Lead of Tooth Helix	Multiply the pitch diameter by 3.1416 times the cotangent of the tooth angle.	L=11 Dxcota
7	Addendum	Divide I by the normal diametral pitch.	$S = \frac{1}{P_n}$
8	Whole Depth of Tooth	Divide 2.157 by the normal diametral pitch.	$W = \frac{2.157}{P_n}$
9	Normal Tooth Thickness at Pitch Line	Divide 1.571 by the normal diametral pitch.	$T_{n} = \frac{1.571}{P_{n}}$
10	Outside Diameter	Add twice the addendum to the pitch diameter.	0=D + 25

TABLE GIVING LEAD OF SPIRAL FOR GIVEN ANGLE-I

									18.			
Deg.	0'	6'	12'	18'	241	30'	361	42'	46'	54'	60'	
Deg.			12	,0		for di			1 70	07	00	
0	Infin.	1800.001	899.997	599.994		359.992			224.986	199.983	179.982	89
1	179.982	163.616	149.978	138.438	128.545	119.973	112.471	105.851	99.967	94.702	89.964	88
2	89.964	85.676	81.778	78.219	74.956	71.954	69.183	66.617	64.235	62.016	59.945	87
3	59.945		56.191	54.485	52.879	51.365	49.934	48.581	47.299	46.082	44.927	86
4	44.927	43.827	42.780	41.782	40.829	39.918	39.046	38.2/2	37.412	36.645	35.909	
5	35.909	35.201	34.520	33.866	33.235	32.627	32.040	31.475	30.928	30.400	29.890	84
6	29.890	29.397	28.919	28.456	28.008	27.573	27.152	26.743	26.346	25.961	25.586	83
7	25.586	25.222	24.868	24.524	24.189	23.863	23.545	23.236	22.934	22.640		82
8	22.354	22.074	21.801	21.535	21.275	21.021	20.773	20.530	20.293	20.062	19.835	8/
9	19.835	19.614	19.397	19.185	18.977	18.773	18.574	18.379	18.188	18.000	17.817	80
10	17.817	17.637	17.460	17.287	17.117	16.950	16.787	16.626	16.469	16.314	16.162	79
		77				15.441	15.305	15.170	15.038	14.908	14.780	
12	16.162	16.013	15.866	15.722	15.581	14.171	14.055	13.940	13.828	13.717	13.608	-
	14.780	14.654	14.530	14.409	14.289							
13	13.608	13.500	13.394	13.290	13.187	13.086	12.986	12.887	12.790		12.600	_
14	12.600	12.507	12.415	12.325	12.237	12.148	12.061	11.975	11.890	11.807	11.725	75
15	11.725	11.643	11.563	11.484	11.405	11.328	11.252	11.177	11.102	11.029	10.956	74
16	10.956	10.884	10.813	10.743	10.674	10.606	10.538	10.471	10.405	10.340	10.276	73
17	10.276	10.212	10.149	10.086	10.025	9.964	9.904	9.844	9.785	9.727	9.669	72
18	9.669	9.612	9.555	9.499	9.444	9.389	9.335	9.281	9.228	9.176	9.124	71
19	9.124	9.072	9.021	8.971	8.921	8.872	8.823	8.774	8.726	8.679	8.631	70
20	8.631	8.585	8.539	8.493	8.447	8.403	8.358	8.314	8.270	8.227	8.184	69
21	8.184	8.142	8.099	8.058	8.016	7.975	7.935	7.894	7.855	7.815	7.776	68
22	7.776	7.737	7.698	7.660	7.622	7.584	7.547	7.510	7.474	7.437	7.401	67
23	7.401	7.365	7.330	7.295	7.260	7.225	7.191	7.157	7.123	7.089	7.056	66
24	7.056	7.023	6.990	6.958	6.926	6.894	6.862	6.830	6.799	6.768	6.737	65
25	6.737	6.707	6.676	6.646	6.617	6.586	6.557	6.528	6.499	6.470	6.441	64
26	6.441	6.413	6.385	6.357	6.329	6.300	6.274	6.246	6.219	6.192	6.166	63
27	6.166	6.139	6.113	6.087	6.061	6.035	6.009	5.984	5.959	5.933	5.908	62
28	5.908	5.884	5.859	5.835	5.810	5.786	5.762	5.738	5.715	5.691	5.668	61
29	5.668	5.644	5.621	5.598	5.575	5.553	5.530	5.508	5.486	5.463	5.441	60
30	5.441	5.420	5.398	5.376	5.355	5.333	5.312	5.291	5.270	5.249	5.228	59
31	5.228	5.208	5.187	5.167	5.147	5.127	5.107	5.087	5.067	5.047	5.028	58
32	5.028	5.008	4.989	4.969	4.950	4.931	4.912	4.894	4.875	4.856	4.838	57
33	4.838	4.819	4.801	4.783	4.764	4.746	4.728	4.711	4.693	4.675	4.658	56
34	4.658	4.640	4.623	4.605	4.588	4.571	4.554	4.537	4.520	4.503	4.487	55
35	4.487	4.470	4.453	4.437	4.421	4.404	4.388	4.372	4.356	4.340	4.324	54
36	4.324	4.308	4.292	4.277	4.261	4.246	4.230	4.215	4.199	4.184	4.169	53
37	4.169	4.154	4.139	4.124	4.109	4.094	4.079	4.065	4,050	4.036	4.021	52
38	4.021	4.007	3.992	3.978	3.964	3.950	3.935	3.921	3.907	3.893	3.880	51
39	3.880	3.866	3.852	3.838	3.825	3.811	3.798	3.784	3.771	3.757	3.744	50
40	3.744	3.731	3.7/8	3.704	3.691	3.678	3.665	3.652	3.640	3.627	3.614	49
41	3.614	3.601	3.589	3,576	3.563	3.551	3.538	3.526	3.514	3.501	3.489	48
42	3.489	3.477	3.465	3.453	3.440	3.428	3.416	3.405	3.393	3.381	3.369	47
43	3.369	3.358	3.346	3.334	3.322	3.311	3.299	3.287	3.276	3.265	3.253	46
44	3.253	3.242	3.23/	3.219	3.208	3.197	3.186	3.175	3.164	3.153	3.142	45
1	60'	541	48'	421	36'	30'	24'	18'	121	6'		Deg.
-		,										-3.

To find the lead for a given angle of spiral, with the axis of the work, read the degrees in the left-hand column and the minutes at the top, and the lead will be found opposite the number of degrees, under the column headed by the given minutes. To find the lead for a given angle of spiral, with a line at right angles to the axis of the work, read the degrees in the right-hand column and the minutes at the bottom.

TABLE GIVING LEAD OF SPIRAL FOR GIVEN ANGLE-II

Dea	0'	6'	12"	18'	24'	. 30'	361	421	48'	54'	60'	
Deg.	0	0	12			for dic		-1.	40	04	00	-
100	7 140	7 /7/	7 /00		3.098	3.087	3.076	3.066	3.055	3.044	3.034	44
45	3.142	3./3/	3.120	3.109		Co. S. Park S. W. C. S.					2.930	44
46	3.034	3.023	3.013	3.002	2.992	2.98/	2.97/	2.960	2.950	2.940		
47	2.930	2.919	2.909	2.899	2.889	2,879	2.869	2.859	2.849	2.839	2.829	1
48	2.829	2.819	2.809	2.799	2.789	2.779	2.770	2.760	2.750	2.741	2.731	41
49	2.731	2.721	2.7/2	2.702	2.693	2.683	2.674	2.664	2.655	2.645	2.036	40
50	2.636	2.627	2.617	2.608	2.599	2.590	2.581	2.571	2.562	2.553	2.544	-
51	2.544	2.535	2.526	2.517	2.508	2.499	2.490	2.481	2.472	2.463	2.454	38
52	2.454	2.446	2.437	2.428	2.419	2.411	2.402	2.393	2.385	2.376	2.367	37
53	2.367	2.359	2.350	2.342	2.333	2.325	2.3/6	2.308	2.299	2.291	2.282	1
54	2.282	2.274	2.266	2.257	2.249	2.241	2.233	2.224	2.216	2.208	2.200	
55	2.200	2.192	2.183	2.175	2.167	2.159	2.151	2.143	2.135	2.127	2.119	34
56	2.119	2.111	2.103	2.095	2.087	2.079	2.072	2.064	2.056	2.048	2.040	
57	2.040	2.032	2.025	2.017	2.009	2.001	1.994	1.986	1,978	1.971	1.963	32
58	1.963	1.955	1.948	1.940	1.933	1.925	1.918	1.910	1.903	1.895	1.888	31
59	1.888	1.880	1.873	1.865	1.858	1.851	1.843	1.836	1.828	1.821	1.814	30
60	1.814	1.806	1.799	1.792	1.785	1.777	1.770	1.763	1.756	1.749	1.741	29
61	1.741	1.734	1.727	1.720	1.7/3	1.706	1.699	1.692	1.685	1.677	1.670	28
62	1.670	1.663	1.656	1.649	1.642	1.635	1.628	1.621	1.615	1.608	1.601	27
63	1.601	1.594	1.587	1.580	1.573	1.566	1.559	1.553	1.546	1.539	1.532	26
64	1.532	1.525	1.519	1.512	1.505	1.498	1.492	1.485	1.478	1.472	1.465	25
65	1.465	1.458	1.452	1.445	1.438	1.432	1.425	1.418	1.412	1.405	1.399	24
66	1.399	1.392	1.386	1.379	1.372	1.366	1.359	1.353	1.346	1.340	1.334	23
67	1.334	1.327	1.321	1.314	1.308	1.301	1.295	1.288	1.282	1.276	1.269	22
68	1.269	1.263	1.257	1.250	1.244	1.237	1.231	1.225	1.219	1.212	1.206	21
69	1.206	1.200	1.193	1.187	1.181	1.175	1.168	1.162	1.156	1.150	1.143	20
70	1.143	1.137	1.131	1.125	1.119	1.112	1.106	1.100	1.094	1.088	1.082	19
71	1.082	1.076	1.069	1.063	1.057	1.051	1.045	1.039	1.033	1.027	1.021	18
72	1.021	1.015	1.009	1.003	0.997	0.991	0.985	0.978	0.972	0.966	0.960	-0
73	0.960	0.954	0.948	0.943	0.937	0.931	0.925	0.919	0.913	0.907	0.901	16
74	0.901	0.895	0.889	0.883	0.877	0.871	0.865	0.859	0.854	0.848	0.842	15.
75	0.842	0.836	0.830	0.824	0.818	0.812	0.807	0.801	0.795	0.789	0.783	14
76	0.783	0.777	0.772	0.766	0.760	0.754	0.748	0.743	0.737	0.731	0.725	
77	0.725	0.720	0.714	0.708	0.702	0.696	0.691	0.685	0.679	0.673	0.668	12
78	0.668	0.662	0.656	0.651	0.645	0.639	0.633	0.628	0.622	0.616	0.611	11
79	0.611	0.605	0.599	0.594	0.588	0.582	0.577	0.571	0.565	0.560	0.554	10
80	0.554	0.548	0.543	0.537	0.531	0.526	0.520	0.514	0.509	0.503	0.498	1
81	0.498	0.492	0.486	0.481	0.475	0.469	0.464	0.458	0.453	0.447	0.441	8
82	0.441	0.436	0.430	0.425	0.419	0.414	0.408	0.402	0.397	0.391	0.386	7
83	0.386	0.380	0.430	0.369	0.363	0.414	0.408	0.402	0.341	0.336	0.330	6
	0.330		0.319	0.309	0.308	0.302	0.332	0.291	0.286	0.280	0.275	5
84	0.330	0.325		0.258	0.253	0.302	0.242	0.236	0.231	0.225	0.220	4
			0.264				151					3
86	0.220	0.2/4	0.209	0.203	0.198	0.192	0.187	0.181	0.176	0.170	0.165	
87	0.165	0.159	0.154	0.148	0.143	0.137	0.132	0.126	0.121	0.115	0.110	2
88	0.110	0.104	0.099	0.093	0.088	0.082	0.077	0.07/	0.066	0.060	0.055	/
89	0.055	0.049	0.044	0.038	0.033	0.027	0.022	0.016	0.011	0.005	0.000	0
	60'	54'	48'	42'	36'	30'	24'	18'	12'	6'	0'	Deg.

 $Lead = \frac{\eta T}{tan. \infty}$

Table gives lead L for a diameter = 1.

For other diameters, If angle and diameter are given, lead = Lx diameter If angle and lead are given, diameter = lead ÷ L

If diameter and lead are given, L = lead ÷ diameter, and the angle corresponding

-to L is found in the table.-

CONSTANTS FOR CALCULATING SPIRAL GEARS-I

-																									
5.9085	1.45	1.1326	28		6.7278	0.1616	5.5953	5.0290	4.4627	3.8964	5.6/33	3.5302	3.0470	2.9526	2.7639	2.5751	2.4807	2.3864	2.3392	2.1976	62	2.1300	9.71	1.6704	
6.1657	1.41	1.1223	12		6.7/30	6.1518	5.7188 5.6799 5.6490 5.6251 5.6078 5.5965 5.5910 5.5907 5.5953	5.1867 5.1443 5.1097 5.0819 5.0605 5.0449 5.0347 5.0295 5.0290	5.3017 5.1586 5.0377 4.9350 4.8472 4.7125 4.7087 4.6545 4.6087 4.5704 4.5388 4.5132 4.4332 4.4784 4.4683 4.4627	4.0607 4.7885 4.6433 4.5207 4.4148 4.3243 4.2467 4.1799 4.1224 4.0731 4.0311 3.9956 3.9659 3.9415 3.9221 3.9072 3.8964	4.5319 4.3857 4.2613 4.1547 4.0629 3.9839 3.9155 3.8564 3.8054 3.7615 3.7240 3.6922 3.6657 3.6440 3.6266 3.6133	10 4 44495 4.275 4.1281 4.0024 3.8946 3.8015 3.7210 3.6510 3.5903 3.5376 3.4919 3.4524 3.4186 3.3898 3.3858 3.3865 3.3862 3.3862	2 to 7 4.1939 4.0187 3.8706 3.7436 3.6346 3.5401 3.4581 3.3866 3.3243 3.2698 3.2222 3.1808 3.1449 3.1140 3.0877 3.0654 3.0470	4.1087 3.9332 3.7845 3.6573 3.5479 3.4529 3.3705 3.2985 3.2356 3.1805 3.1824 3.0903 3.0537 3.0520 2.9949 2.9719 2.9526	3.9388 3.7622 3.6127 3.4848 3.3145 3.2187 3.1953 3.1222 3.0582 3.0020 2.9526 2.9092 2.8173 2.8382 2.8095 2.7849 2.7849	3.7080 3.5911 3.4409 3.3123 3.2011 3.1044 3.0200 2.9460 2.8809 2.8234 2.7728 2.7282 2.6888 2.6543 2.6241 2.5978 2.5751	3.6828 3.5056 3.3551 3.2260 3.1144 3.0173 2.9324 2.8579 2.1322 2.1342 2.6830 2.6376 2.5976 2.5623 2.5314 2.5043 2.4807	3.5976 3.4201 3.2692 3.1397 3.0277 2.9301 2.8448 2.7697 2.7035 2.6449 2.5931 2.5471 2.5064 2.4707 2.4387 2.4108 2.3864	3.5550 3.3773 3.2262 3.0966 2.9844 2.8866 2.8010 2.7256 2.6592 2.6003 2.5481 2.5018 2.4608 2.4244 2.3923 2.3640 2.3392		63	2.2027	10.7	0.7253 0.7833 0.8418 0.9008 0.9605 1.0208 1.0817 1.1434 1.2059 1.2693 1.3335 1.3937 1.4649 1.5322 1.6007	
6.4412	1.37	1.1126	26		6.7025 6.6999 6.7036	6.2509 6.2155 6.1882 6.1683 6.1552 6.1482 6.1473	5.5910	5.0347	4.4784	3.9221	3.6440	3.3658	3.0877	2.9949	2.8095	2.6241	2.5314	2.4387	2.3923	2.3660 2.3239 2.2865 2.2532 2.2237	64	2.2812	11.9	1.5322	
6.7372	1.34	1.0946 1.1034	25		6.6999	6.1482	5.5965	5.0449	4.4932	3.9415	3.6657	5.3898	3.1140	3.0220	2.8382	2.6543	2.5623	2.4707	2.4244	2.2865	65	2.3662	13.3	1.4649	
7.0561	1.31		24		6.7025	6.1552	5.6078	5.0005	4.5132	5.9659	3.6922	3,4186	3.1449	3.0537	2.8713	2.6888	2.5976	2.5064	2.4608	2.3239	99	2.4586	14.9	1.3987	
7. 4011	1.28	1.0864	23		6.7115	6.1683	5.6251	5.0819	4.5388	3.9956	3.7240	3,4524	3.1808	3.0903	2.9092	2.7282	2.6376	2.5471	2.5018	2.3660	67	2.6695 2.5593 2.4586	16.8	1.3335	F
1.7757 7.4011	1.25	1.0785	22	nion. *	6.7275	6.1882	5.6490	5.1097	4.5704	4.0311	3.7615	3.4919	3.2222	3.1324	2.9526	2.7728	2.6830	2.5931	2.5481	2.4664 2.4133	89	2.6695	13.1	1.2693	
8.1841	1.23	11101	. 12	Ct = center distance per tooth of pinion.	6.7511	6.2155	5.6799	5.1443	4.6087	4.0731	3.8054	3.5376	3.2698	3.1805	3.0020	2.8234	2.7342	2.6449	2.6003	2.4664	69	2.7904	21.7	1.2059	
8.6315	1.20	1.0642	50	er tooti	6.7830	6.2509	5.7188	5.1867	4.6545	4.1224	3.8564	3.5903	3.3243	3.2350	3.0582	2.8809	2.7922	2.7035	2.6592	2.5261	70	2.9238	25.0	1.1434	
9.1238	1.18	1.0515 1.0576	61	tance p	6.8754 6.8240		5.7663	5.2375	4.7087	4.1799	3.9155	3.6510	3.3866	3.2985	3.1222	2.9460	2.8579	2.7697	2.7256	2.5934	//	3.0715	28.9	1.0817	
9.6688	1.16		18	nter dis	6.8754	6.3497 6.2951	5.8239	5.2982	4.7725	4.2467	3.9839	3.7210	3.4581	3.3705	3.1953	3.0200	2.9324	2.8448	2.8010	2.6695	72	3.2361	33.9	1.0208	
10.2757	1.14	1.0457	17.	Ct = cer	6.9385	6.7047 6.5907 6.4954 6.4157	5.8928	5,6739 5,5554 5,4551 5,3700 5,2982 5,2375	4.8472	4.3243	4.0629	3.8015	3.5401	3.4529	3.2787	3.1044	3.0173	2.9301	2.8866	2.7558 2.6695 2.5934 2.5261	73	3.4203 3.2361	40.0	0.9605	
10.9560	1.12	1.0403	16		7.1083 7.0156	6.4954	5.9753	5.4551	4.9350	4.4148	4.1547	3.8946	3.6346	3.5479	3.3745	3.2011	3.1144	3.0277	2.9844	2.8543	74	3.6280	47.8	0.9008	
11.7246	117	1.0353	15		7.1083	6.5907	6.0730	5.5554	5.0377	4.5201	4.2613	4.0024	3.7436	3.6573	3.4848	3.3123	3.2260	3,1397	3.0966	2.9672	22	3.8637	57.8	0.8418	
12.6002 11.7246	1.09	1.0306	14		7.2199	6.7047	6.1892	5.6739	5.1586	4.6433	4.3857	4.1281	3.8706	3.7845	3.6127	3,4409	3.3551	3.2692	3.2262	3.0974	76	4.1336	70.6	0.7833	
13.6077	1.08	1.0263	13		7.3543 7.2199	6.8412	6.4942 6.3280 6.1892 6.0730 5.9753 5.8928 5.8239 5.7663	5.8148	5.3017	4.7885	4.53/9	4.2753	4.0187	3.9332	3.7622	3.5911	3.5056	3.4201	3.3773	3.2490	77	4.4454	87.9	0.7253	
14.780	1.07	1.0223	1/2		7.5166	7.0054		5.9831	5.4719	4.9607	4.7051	4.4495	4.1939	4.1087			3.6828	3.5976	3.5550	3.4272	28	4.8097	111.0	0.6678	
7	1	S	A	Speed	1 10 10	1 40 9	1 10 8	1 10 7	1 40 6	1 105	2 to 9	1 10 4	2 to 7	3 to 10	1 10 3	3 to 8	2 40 5	3 to 7	4 10 9	1 40 2	A	70:	4	7 1	×

A = angle of tooth helix, U = unit diameter per tooth, F = cutter factor, L = lead of spiral per inch pitch * Factors Cz do not apply for shafts at other than right angles.

diameter, P_d = diametral pitch, D = pitch diameter, N = number of teeth (in either gear), N_a = number of teeth in pinion, C = center distance C_t = center distance per tooth of pinion (1 diametral pitch). UXN = D; Na G = C; L x D = lead of helix; F x N = number of teeth for which to select cutter.

(Explanatory notes confinued in Table II).

Contributed by C. W. Pitman, Machinery's Data Sheet No. 106. Explanatory note: Page 31

CONSTANTS FOR CALCULATING SPIRAL GEARS—II

																					N			
3.1416	2.83	1.3902 1.4/42	45		7.7782	7.0711	6.3640	5.6569	5.9497	4.2426	3.8891	3,5355	3.1820	3.0641	2.8284	2.5927	2.4749	2.3570	2.2981	2.121.5	45	1.4142	2.83	3.1416
3.2552	2.69	1.3902	44		7.6706	6.9755	6.2805	5.5854	5.8903	4.1952	3.8477	3.5001	3.1526	3.0368	2.8051	2.5734	2.4575	2.3417	2.2838	2.1100	40	1.4396	2.98	3.0338
3.3689	2.56	1.3673	43		7.5699	6.8862	6.2025	5.5/89	5.8352	4.1515	3.8097	3.4678	3.1260	3.0121	2.7842	2.5563	2.4424	2.3284	2.2714	2.1005	47	1.4663	3.15	2.9296
3.4891	2.44	1.3456 1.3673	42		7.4755	6.8027	6.1298	5.4570	5.7842	4.1114	3,7750	3,4385	3.1022	2.9900	2.7657	2.5415	2.4293	2.3/72	2.2611	2.0929	48	1.4945	3.34	2.8287
	2.33	1.3250	41		6.8739 6.9252 6.9755 7.0311 7.0916 7.1573 7.2283 7.3050 7.3872 7.4755 7.5699 7.6706	6.7247	6.0622	5.3997	5.7372	4.0747	3.7434	3.4/2/	3.0809	2.9705	2.7496	2.5288	2.4184	2.3080	2.2528	2.0871	49	1.6243 1.5890 1.5557 1.5242 1.4945 1.4663 1.4396	3.54	2.7302
3.7439	2.23	1.2868 1.3054 1.3250	40		7.3050	6.6522	5.9995	5.3468	5.6941	4.0414	3.7151	3.3887	3.0624	2.9536	2.7360	2.5184	2.4097	2.3009	2.2465	2.0833	50	1.5557	3.77	2.6361
3.8795	2./3	1.2868	39	*	7.2283	6.5849	5.9415	5.2981	5.6548	4.0114	3.6897	3.3680	3.0463	2.9391	2.7246	2.5102	2.4030	2.2957	2.2421	2.08/3	15	1.5890	4.01	2.5440
4.0211	2.04	1.2690	38		7.1573	6.5228	5.8882	5.2537	5.6192	3.9847	3.6675	3.3502	3.0330	2.9272	2.7157	2.5042	2.3985	2.2927	2.2398	2.08/2	25	1.6243	4.29	2.4545
4.1690	1.96	1.2521	3.7	ooth of	7.0916	6.4055	5.8394	5.2/33	4.5873	3.9612	3.6482	3.3351	3.0221	2.9177	2.7090	2.5004	2.3960	2.2917	2.2395	2.0830	53	1.6616	4.59	2.3673
4.3240	1.88	1.2361	36	e per t	7.0311	6.4131	5.7950	5.1770	4.5589	3.9409	3.63/9	3.3228	3.0/38	2.9108	2.7048	2.4988	2.3958	2.2928	2.24/3	2.0868	54	1.7013	4.93	2.2825
4.4867	1.81	1.2208 1.2361	35	distanc	6.9755	6.3651	5.7547	5.1444	4.5340	3.9230	3.6184	3.3/32	3.0081	2.3063	2.7029	2.4994	2.3977	2.2959	2.2451	2.0925	55	1.7434	5.30	2.1997
4.6576	1.75	1.2062	34	Ct = center distance per tooth of pinion.	6.9252	6.3221	5.7190	5.1159	4.5128	3.9097	3.6081	3.3066	3.0050	2.9045	2.7035	2.5024	2.4019	2.30/4	2.2512	2.1004	56	1.7883	5.72	2.1190
4.8376	1.69	1.1924	33	- to	6.8799	6.2837	5.6875	5.0914	4.4952	3.8990	3.6009	3.3028	3.0047	2.9054	2.7066	2.5079	2.4085	2.3092	2.2595	2.1104	57	1.8361	6.18	2.0402
5.0276	1.64	1.1792	32		6.8395	6.2499	5.6603	5.0707	4.4811	3.8915	3.5967	3.30/9	3.0071	2.9089	2.7/23	2.5158	2.4176	2.3/93	2.2702	2.1227	58	1.8871	6.72	1.9631
5.2282	1.59	1.1666	31		6.7738 6.8040 6.8395	6.2207	5.6373	5.0540	4.4707	3.8874	3.5958	3.3041	3.0124	2.9152	2.7208	2.5263	2.4291	2.33/9	2.2833	2.1374	65	1.9416	7.31	1.8877
5,6676 5.4414 5.2282 5.0276 4.8376 4.6576 4.4867 4.3240 4.1690 4.0211 3.8735 3.7439 3.6139	1.54	1.1547	30		6.7738	6.1764 (6.1964 (6.2207 (6.2499 (6.2837 (6.322) (6.3651 (6.4151 (6.4655 (6.5228 (6.5849 (6.6522 (6.7247 (6.8027 (6.8062 (6.3755 7.071)	5.6048 5.6190 5.6373 5.6603 5.6875 5.7190 5.7547 5.7950 5.8334 5.8882 5.9415 5.9935 6.0622 6.1298 6.2025 6.2805 6.3640	5.0331 5.0416 5.0540 5.0707 5.0914 5.1159 5.1444 5.1770 5.2133 5.2537 5.2981 5.3468 5.3997 5.4570 5.5189 5.5854 5.6569	4.4614 4.4643 4.4707 4.4811 4.4952 4.5128 4.5128 4.5589 4.5813 5.6192 5.6548 5.6941 5.1372 5.1842 5.8352 5.8903 5.9497	3.8897 3.8869 3.8874 3.8915 3.8990 3.9097 3.9236 3.9409 3.9612 3.9847 4.0114 4.0414 4.047 4.1114 4.1515 4.1952 4.2426	3.6039 3.5982 3.5963 3.5967 3.6009 3.6081 3.6184 3.6319 3.6482 3.6615 3.6897 3.1151 3.7434 3.7150 3.8097 3.8471 3.8991	3.3095 3.3041 3.3019 3.3028 3.3026 3.3132 3.3228 3.3501 3.3502 3.3680 3.3887 3.4121 3.4385 3.4678 3.5001 3.5355	3.0322 3.0208 3.0124 3.0071 3.0047 3.0050 3.0081 3.0128 3.0221 3.0330 3.0462 3.0824 3.0809 3.1022 3.1260 3.1526 3.1820	2.9246 [2.9/52 [2.9089 [2.9064 [2.9064 [2.9065 [2.9108 [2.917] [2.9272 [2.9359 [2.9556 [2.9505 [2.9505 [3.0767 [3.0564]	2.7464 2.7321 2.7208 2.7123 2.7056 2.7035 2.7029 2.7048 2.7090 2.7157 2.7246 2.7360 2.7456 2.7456 2.7457 2.7442 2.3057 2.8284	2.5558 2.5397 2.5263 2.5158 2.5079 2.5024 2.4994 2.4998 2.5004 2.5004 2.5002 2.5102 2.5104 2.5288 2.5288 2.5363 2.5734 2.5927	2.4606 [2.4435] 2.4291 [2.4176 [2.4085 [2.4019 [2.3977 [2.3958 [2.3980 [2.3985 [2.4037 [2.4097 [2.4184 [2.4293] 2.4424 [2.4575] 2.4799	2.3472 2.33/9 2.3193 2.3092 2.3094 2.2959 2.2928 2.2917 2.2927 2.2957 2.3009 2.3080 2.3172 2.3284 2.3417 2.3570	2.2991 2.2833 2.2702 2.2595 2.2512 2.2451 2.2413 2.2395 2.2398 2.2421 2.2465 2.2528 2.2611 2.2714 2.2038 2.2981	2.1548 2.1374 2.1227 2.1104 2.1004 2.0925 2.0868 2.0850 2.0812 2.0813 2.0833 2.0837 2.0829 2.1005 2.1100 2.1213	09	2.0000	8.00	1.74/4 1.8138 1.8877 1.9631 2.0402 2.1190 2.1997 2.2825 2.3673 2.4545 2.5440 2.6361 2.7302 2.8287 2.9296 3.0338 3.1416
5.6676	1.49	1.1433	53		6.7481	6.1764	5.6048		4.4614	3.8897	3.6039	3.3181	3.0322	2.9370	2.7464	2.5558		2.3653	2.3176	2.1747	19	2.0627	8.79	1.74/4
7	L.	5	4	peed Ratio	1 to 10	140	1 108	1 10 7	1 to 6	1 to 5	to 9	1 10 4	to 7	to 10	to 3	\$ 04	to 5	107	604	1 102	A	7	K	7
	-	-	_	2)							N		2	10	-	3	N	3	4			00	iui	7

Example of use of tables:- Required number of feeth, diameters, and center distance for a pair of gears; helix angle of pinion, 60 degrees; of gears; helix angle of pinion, 60 degrees; of gear, 30 degrees; speed ratio 2 to 5; 6 diametral pitch. From table, $C_1 = 2.4435$, and by formula $N_0 = \frac{2.435}{16.45} = 0.40725$. Assume a required center distance of approximately 5 inches:make $N_0 = 12$; then 0.40725 x 12 = 4.887 = $C_1 = 12$ to $C_2 = 12$ then 0.40725 x 12 = 4.887 = $C_2 = 12$ to $C_3 = 12$ then 0.40725 x 12 = 4.887 = $C_3 = 12$ to $C_3 = 12$ then 0.40725 x 12 = 4.887 = $C_3 = 12$ to $C_3 = 12$ the same $C_3 = 12$ to $C_3 = 12$ the same $C_3 = 12$ to $C_3 = 12$ to $C_3 = 12$ the same $C_3 = 12$ to $C_3 = 12$ to $C_3 = 12$ the same $C_3 = 12$ to $C_3 = 12$ to $C_3 = 12$ to $C_3 = 12$ the same $C_3 = 12$ to $C_3 = 12$ to $C_3 = 12$ to $C_3 = 12$ the same $C_3 = 12$ to $C_3 = 1$ formulas are used for finding the pitch diameter, lead and cutter for gear. (Explanatory notes continued in Table III) * Factors Ct do not apply for shafts at other than right angles.

Contributed by C. W. Pitman, MACHINERY'S Data Sheet No. 106. Explanatory note: Page 31.

CONSTANTS FOR CALCULATING SPIRAL GEARS-III

																									_
5.9085	1.45	1.1326	28		2.0843	2.0560	2.0088	11167	1.9145	1.8740	1.8578	1.8201	1.7931	1.7729	1.7446	1.7257	1.7122	1.7021	1.6942	1.6313	62	2.1300	9.71	1.6704	
6.1657	1.41	1.1223 1.1326	27		2.1115	2.0834	2.0367	26661	1.9431	1.9030	1.8870	1.8496	1.8229	1.8028	1.7748	1.7561	1.7427	1.7327	1.7249	1.6625	63	2.2027	10.7	1.6007	
6.4412	1.37	1.1126	56		2.1420	2.1142	2.0678	2.0307	13761	1. 9253	1.9195	1.8824	1.8559	1.8360	1.8082	1.7897	1.7764	1.7665	1.7587	1.6969	64	2.2812	6.11	1.5322	
6.7372	1.34	1.1034	25		2.1762	2.1486	2.1026	2.0658	2.0107	1.9712	1.9555	1.9187	1.8924	1.8727	1.8451	1.8268	1.8136	1.8038	1.7961	1.7348	65	2.3662	13.3	1.4649	
1.0507	1.31	1.0946	24		2.2145	2.1871	2.1415	2.1050	2.0502	2.0112	1.9956	16561	1.9330	1.9135	1.8861	1.8679	1.8548	1.8451	1.8375	1.7766	99	2.4586	14.9	1.3987	
7.4011		1.0864	23	米	2.2574	2.2302	2.1850	2.1488	2.0945	2.0556	2.0401	2.0039	1.9781	1.9587	1.9315	1.9/34	1.9004	8068	1.8832	(8229	67	2.5593	16.8	1.3335	
7.7757	1.25 1.28	1.0785	22	pinion.	2.3055	2.2785	2.2336	2.1976	2.1437	2501.3	8680.2	2.0538	2.0281	2.0089	1.9819	1.9639	11561	1.9415	1.9340	1.8740	89	2.6695	1.61	1.2693	
8.1841	-	11101	21	oth of	2.3593	2.3325	2.2879	2.2522	2.1986	2.1603	2.1450	2.1093	2.0838	2.0647	2.0379	2.0201	2.0073	1.9978	1.9903	1.9308	69	2.7904	21.7 19.1	1.2059	
8.6315	1.18 1.20 1.23	1.0642	20	Ct = center distance per tooth of pinion. **	2.4197	2.3931	2.3488	2.3/33	2.2601	2.2221	2.2069	2.1714	2.1461	2.1271	2.1005	2.0827	2.0701	2.0005	2.0532	1.9940	70	2.9238	25.0	1.1434	
9.1238	1.18	1.0576	61	listance	2.4877	2.4612	2.4171	2.3819	2.3290	2.29/2	2.2761	2.2409	2.2157	2.1968	2.1704	2.1527	2.1401	2.1307	2.1234	2.0646	11	3.0715	28.9	1.0817	
9.6688		1.0515	18	enter a	2.5644	2.5381	2,4943	2.4593	2.4067	2.3691	2.3541	2.3190	2.2940	2.2752	2.2490	2.23/4	2.2189	2.2095	2.2022	2.1438	72	3.2361.	33.9	1.0208	
10.2757	1.14 1.16	1.0457	17	0=4	2.6513	2.6251	2.5816	2.5467	2.4944	2.4571	2.4421	2.4073	2.3824	2.3637	2.3376	2.3201	2.3077	2.2984	2.2911	2.2330	7.3	3.4203	40.0	0.9605	
10.9560	1.12	1.0403	91		2.7503	2.7243	2.6810	2.6463	2.5943	2.5571	2.5422	2.5076	2.4828	2.4642	2.4382	2.4209	2.4085	2.3992	2.3920	2.3342	74	3.6280	47.8	0.9008	
11.7246	1111	1.0353	15		2.8636	2.8372	2.7346	2.7601	2.7083	2.67/3	2.6566	2.6221	2.5974	2,5789	2.5532	2.5358	2.5235	2.5142	2.5070	2.4495	75	3.8637	57.8	0.8418	
12.6002	1.09	1.0306	14		2.9943	2.9686	2.9256	2.89/2	2.8397	2.8028	2.7882	2.7539	2.7293	2.7109	2.6836	2.6680	2.6557	2.6465	2.6393	2.5821	76	4.1336	70.6	0.7833	
L 14,180 13,6071 12,6002 11,724 10,2506 10,2557 1,668 19,123 8,6315 8,1841 1,7757 7,401 7,0561 6,7372 6,4412 6,1657 5,9085	1.08	U 1.0223 1.0263 1.0306 1.0353 1.0403 1.0457 1.0515 1.0576 1.0642 1.0711 1.0785 1.0864 1.0946 1.1034 1.1126	13		3.3249 5.1465 2.9943 2.8636 2.1503 2.6513 2.5644 2.4877 2.4197 2.4593 2.3055 2.2574 2.2145 2.1762 2.1420 2.1115 2.0943	4 10 7 3.2994 3.1207 2.9686 2.8372 2.7243 2.6251 2.5381 2.4612 2.3931 2.3325 2.2705 2.2302 2.1871 2.1486 2.1142 2.08342.0560	3 10 5 12568 3.0779 2.9256 2.1946 2.6810 2.5816 2.4943 2.4171 2.3488 2.2879 2.2356 2.1850 2.1415 2.1026 2.0678 2.036712.0088	3.2237 3.0437 2.8912 2.7601 2.6463 2.5467 2.4593 2.3819 2.3133 2.2522 2.1976 2.1488 2.1050 2.0658 2.0307 1.9992 1.9711	2 to 3 3.1713 2.9984 2.8337 2.7083 2.5943 2.4944 2.4067 2.3230 2.2601 2.1986 2.1437 2.0945 2.0502 2.0107 1.3757 1.9431 1.9145	7 40 10 3.1422 2.3558 2.8028 2.6713 2.5571 2.3631 2.2912 2.2221 2.1603 2.1052 2.0556 2.0112 1.9712 1.3163 1.9030 1.8740	5107 3,1205 2,9411 2,7882 2,6566 2,5422 2,4421 2,3541 2,2761 2,2069 2,1450 2,0898 2,0401 1,9956 1,9555 1,9195 1,8870 1,8578	3 to 4 3.0864 2.9069 2.7539 2.6221 2.5076 2.4073 2.3190 2.2409 2.1714 2.1093 2.0538 2.0538 1.9591 1.9187 1.8824 1.8496 1.8201	7 to 9 5.0621 2.8825 2.7293 2.5974 2.4828 2.3824 2.2940 2.2167 2.1461 2.0838 2.0281 1.9781 1.9350 1.8924 1.8559 1.8229 1.7931	4 to 5 3.0438 2.8641 2.7109 2.5789 2.4642 2.3637 2.2752 2.3689 2.1271 2.0647 2.0069 1.3587 1.9135 1.8727 1.8360 1.8028 1.7729	5 70 6 3.0183 2.8385 2.8386 2.5532 2.4382 2.3376 2.2490 2.1704 2.1005 2.0379 1.9819 1.9315 1.8861 1.8461 1.8082 1.1748 1.746	6 40 7 3.0013 2.8214 2.6680 2.5358 2.4209 2.3201 2.2314 2.1527 2.0827 2.0201 1.9639 1.9134 1.8679 1.8268 1.3897 1.7561 1.7561	R. 3891 [2,8091 2.6557 [2.5235 [2,4085 2.3077 2.2189 2.1401 2.0701 2.0013 3.951 1.9004 3.8548 1.8136 1.7164 1.7421 1.7122	8 to 9 2.9799 2.8000 2.6465 2.5142 2.3992 2.2984 2.2095 2.1307 2.0605 1.9978 1.9415 1.8908 1.8451 1.8038 1.7665 1.7327 1.7021	9 40 10 2.9728 2.1929 2.6333 2.5070 2.3920 2.2911 2.2022 2.1234 2.0532 1.9903 1.9340 1.8832 1.8375 1.7981 1.7587 1.7587 1.7249 1.6942	10 2.9160 2.7358 2.3821 2.4495 2.3342 2.2330 2.1438 2.0646 1.9940 1.9308 1.8740 1.8229 1.7766 1.7348 1.6969 1.66251.6313	77	4,8097 4,4454 4,1336 3,8637 3,6280 3,4203 3,2361 3,0715 2,9238 2,7904 2,6695 2,5593 2,4586 2,3662 2,2812 2,2027 2,1300	87.9	0.6678 0.7253 0.7833 0.8418 0.9008 0.9605 1.0208 1.0817 1.1434 1.2059 1.2693 1.3335 1.3987 1.4649 1.5322 1.6007 1.6704	
14.780	1.07	1.0223	12	111111111111111111111111111111111111111		3.2994	3.2568	3.2257	3.1713	3.1422	3.1205	3.0864	3.0621	3.0438	3.0183	3.0013	2.9891	2.9799	2.9728	2.9160	7.8	4,8097	111.0	0.6678	
7	4	-	4	Speed	5409	107	504	5 to 8	63	0104	10.1	to 4	604	to 5	to 6	107	7 108	60	to 10	101	A	2	4	7	-
	מנ	25	9	30	0	4	W	0	N	1	6	M	7	4	0	0	1	0	0	-	L	וְסוִ	uic	1	1

angle; gear, 32 teeth, 35 degree helix angle. $\frac{U \times N \alpha}{P_d} = \frac{1.1547 \times 8}{8} = 1.1547 \text{ inch, diameter of pinion; } \frac{1.2208 \times 32}{8} = 4.8832 \text{ inches, diameter of gear; } C = \frac{1.1547 + 4.8632}{2} = 3.0189 \text{ inches.}$ Example: Shaff angle 65 degrees; speed ratio 1 to 4; 8 pitch. Assume pinion, 8 teeth, 30 degree helix While factors Ct do not apply for shafts at other then right angles, factors U, F and L are universal. * Factors C+ do not apply for shafts at other than right angles.

(Explanatory notes .continued in Table IV).

Contributed by C. W. Pitman, Machinery's Data Sheet No. 106. Explanatory note: Page 31.

CONSTANTS FOR CALCULATING SPIRAL GEARS-IV

	_		_	_	-	-		_	_	-			_	_		_			-	_					-
	0/4/6	1.4/42	45		1.9799	1.9446	1.8856	1.8385	1.7678	1.7/73	1.6971	1.6499	1.6163	01657	1.5556	1.5321	1.5153	1.5026	1.4928	1.4142	45	1.4142	2.83	3.1416	
	1.54 1.59 1.64 1.69 1.75 1.81 1.88 1.96 2014 2015 2015 2015 3.863	1.2208 1.2361 1.2521 1.2690 1.2868 1.3054 1.3250 1.3456 1.3673 1.39021.442	44		2.0604 2.0333 2.0208 2.0048 1.9312 1.9738 1.9624 1.9632 1.9543 1.9543 1.9528 1.9528 1.9546 1.9584 1.9534 1.9710 1.9799	to 7. 2.0318 2.0104 1.9916 1.9154 1.9614 1.9496 1.9359 1.9326 1.9265 1.9206 1.9204 1.9207 1.9207 1.9296 1.9362 1.9406	1.3842 1.9623 1.9430 1.9262 1.9117 1.8993 1.8890 1.8807 1.8143 1.8697 1.8668 1.8657 1.8667 1.8667 1.8667 1.8667 1.8788 1.8856	1.9238 1.9041 1.8869 1.8720 1.8591 1.8483 1.8396 1.8326 1.8274 1.8239 1.8222 1.8221 1.8238 1.8231 1.83201.8385	1.8889 1.8661 1.8458 1.8280 1.8124 1.7385 1.7873 1.775 1.7699 1.7536 1.7596 1.7599 1.7559 1.7556 1.7587 1.7657 1.7658 1.7687	4.8481 (1.8249) (1.8041 (1.859) (1.7557 (1.757) (1.735) (1.735) (1.7136) (1.7136) (1.7136) (1.7085) (1.7085) (1.7085) (1.7085) (1.7135)	1,8317 1,8084 1,7875 1,7690 1,7527 1,7385 1,7263 1,7053 1,7005 1,6953 1,6971 1,6896 1,6903 1,6903 1,6929 1,697	1.7936 1.7639 1.7486 1.7237 1.7130 1.6983 1.6856 1.6747 1.6656 1.6582 1.6524 1.6482 1.6455 1.6444 1.6447 1.6466 1.6439	1. T664 1. 7424 1. 7208 1. 7016 1. 6846 1. 6896 1. 6505 1. 6453 1. 6358 1. 6210 1. 6217 1. 6171 1. 6139 1. 6123 1. 6122 1. 6135 1. 6163	1,7460 1,7217 1,6999 1,6806 1,6605 1,6638 1,6347 1,6232 1,6134 1,6053 1,5987 1,5938 1,5903 1,5883 1,5887 1,5910	1.7174 (16929 1.6708 1.6511 1.6335 1.6179 1.6042 1.5923 1.5921 1.5736 1.5666 1.5611 1.5571 1.5547 1.5536 1.5536 1.5556	1,6983 1,636 1,6314 1,6314 1,6136 1,5978 1,5317 1,5612 1,5324 1,5451 1,5394 1,5351 1,5328 1,5308 1,5328 1,5328	1.6847 1.6599 1.6375 1.6174 1.5994 1.5834 1.5693 1.5570 1.5463 1.5375 1.5298 1.5238 1.5163 1.5162 1.5145 1.5142 1.5153	1.6745 (20406 1.6271 1.6060 1.5888 1.5727 1.5584 1.5460 1.5352 1.5260 1.5183 1.5182 1.5075 1.5045 1.5028 1.5018 1.5026	1,6416 1,6190 1,5987 1,5805 1,5643 1,5499 1,5354 1,5265 1,5172 1,5034 1,5031 1,4983 1,4949 1,4928 1,4921 1,4928	1,5774 1,5532 1,5143 1,5143 1,4821 1,4837 1,4569 1,4467 1,4579 1,456 1,4246 1,4201 1,4168 1,4142 1,4142	40	1.7013 1.6616 1.6243 1.5890 1.5557 1.5242 1.4945 1.4663 1.4396 1.4142	2.98	1.8138 1.8877 1.9631 2.0402 2.1190 2.1997 2.2825 2.3673 2.4545 2.5440 2.6361 2.7302 2.8287 2.9296 3.0338 3.1416	
1	2.3003	1.3673	43		1.9638	1.9296	1.8726	1.8271	1.7587	1.7099	1.6903	1.6447	1.6122	1.5878	1.5536	1.5308	1.5145	1.5023	1.4928	1.4168	47	1.4663	3.15	2.9296	
1007	2,4031	1.3456	42		1.9584	1.9247	1.8687	1.8238	1.7565	1.7085	1.6892	1.6444	1.6123	1.5883	1.5547	1.5322	1.5162	1.5042	1.4949	1.4201	48	1.4945	3.34	2.8287	
0277	3.0133	1.3250	41		1.9546	1.9215	1.8662	1.8221	1.7559	1.7086	1.6896	1.6455	1.6139	1.5903	1.5571	1.5351	1.5193	1.5075	1.4983	1.4246	49	1.5242	3.54	2.7302	
0	5.1439	1.3054	40	*.	1.9528	1.9201	1.8657	1.8222	1.7569	1.7103	1.6917	1.6482	1.6171	1.5938	1.5611	1.5394	1.5238	1.5122	1.5031	1.4306	20	1.5557	3.77	2.6361	
0000	2,0/33	1.2868	39	f pinior	1.9526	1.9204	1.8668	1.8239	1.7596	1.7136	1.6953	1.6524	1.6217	1.5987	1.5666	1.5451	1.5298	1.5183	1.5094	1.4379	15	1.5890	4.01	2.5440	
	2.04	1.2690	38	tooth o.	1.9543	1.9226	1.8697	1.8274	1.7639	1.7186	1.7005	1.6582	1.6280	1.6053	1.5736	1.5524	1.5373	1.5260	1.5172	1.4467	52	1.6243	4.29	2.4545	
00000	196	1.2521	37	ce per	1.9578	1.9265	1.8743	1.8326	1.7699	1.7252	1.7073	1.6656	1.6358	1.6134	1.5821	1.5612	1.5463	1.5352	1.5265	1.4569	53	1.6616	4.59	2.3673	
0 20 40	1.88	1,2361	36	- distan	1.9632	1.9322	1.8807	1.8396	1.7778	1.7336	1.7159	1.6747	1.6453	1.6232	1.5923	1.5717	1.5570	1.5460	1.5374	1.4687	54	1.7013	4.93	2.2825	
4 4000	181	1.2208	35	Ct = center distance per tooth of pinion, *	1.9704	1.9399	06887	1.8483	1.7873	1.7437	1.7263	1.6856	1.6565	1.6347	1.6042	1.5838	1.5693	1.5584	1.5499	1.4821	55	1.7434	5.30	7661.3	
40070	1.75	1.2062	34	3	1.9798	1.9496	1.8993	1.8591	1.7988	1.7557	1.7385	1.6983	1.6696	1.6481	1.6179	1.5978	1.5834	1.5727	1.5643	1.4973	56	1.8361 1.7883 1.7434	5.72	2.1190	
10776	1.69	11	33		1.9912	1.9614	1.9117	1.8720	1.8124	1.7698	1.7527	1.7130	1.6846	1.6633	1.6335	1.0136	1.5994	1.5888	1.5805	1.5143	57	1.8361	6.18	2.0402	
27003	1.64	1	32		2.0048	1.9754	1.9262	1.8869	1.8280	1.7859	1.7690	1.7297	1.7016	1.6806	1.0511	1.6314	1.6174	1.6069	1.5987	1.5332	58	1.8871	6.72	1.9631	
50000	1.59	1	31		2.0208	1.9916	1.9430	1.9041	1.8458	1.8041	1.7875	1.7486	1.7208	1.6999	1.6708	1.6514	1.6375	1.6271	1.6190	1.5541	59	2.0000 1.9416	7.3/	1.8877	
		1.1547	30		2.0393	2.0104	1.9623	1.9238	1.8661	1.8249	1.8084	1.7699	1.7424	1.7217	1.6929	1.6736	1.6599	1.6496	1.6416	1.5774	00	2.0000	8.00	1.8138	
6 6676	1.49	1.1433	53		2.0004	2.0318		1.9461		1.8481	1.8317	1.7936	1.7664			1.6983	1.6847	1.6745	9 to 10 1.6666	1.6031	19	2.0627	8.79	1.7414	
	1 1	בו	A	Speed	5 to 9	4 to 7.	345	5 to 8	2 to 3	7 1010	5 40 7	3 to 4	7 709	4 70 5	5 40 6	6 to 7	7 108	8 40 9	9 40 10	101	A	0	II.	7	

Example: Parallel shafts, speed ratio 1 to 5, helix angle 15 degrees; 8 diametral pitch. Assume 14 and 70 feeth for pinion and gear, respectively. $\frac{UX/Na}{Pa} = D; \frac{1.0353 \times 14}{8} = 1.812 \text{ inch, diameter of pinion;}$ pinion; $\frac{1.0353 \times 70}{8} = 9.059 \text{ inches, diameter of gear; } C = \frac{1.812 + 9.059}{2} = 5.436 \text{ inches.}$ *Factors G do not apply tor shafts at other than right angles.

Contributed by C. W. Pitman, MACHINERY'S Data Sheet No. 106. Explanatory note: Page 31.

DIAGRAM FOR FINDING SPIRAL GEAR CUTTER NUMBERS

80

85

Angle of Teeth with Axis of Gear.

gears are standard spur gear cutters, the number defined by the angle (with axis) and normal of a cutter and its pitch for a given case being pitch. This diagram gives the numbers of the cutters only, the pitch having been pre-The cutters used for milling spiral or helical

designated cutter number. and numbers of teeth covered by each intersection of the combinations of angles area between the curves being the field of thereon were plotted by the formula, the ner of the diagram. formula given in the lower right-hand cor-The selection of the cutter is fixed by the The delimiting curves

an angle of 37 degrees with its axis. a 48-tooth spiral gear having the teeth of and the number of teeth is 48. within the area marked "Cutter No. 2" (representing the angle) intersect, falls ing the tooth number), and the vertical line A, at which the horizontal line (representteeth of a gear is 37 degrees mithits axis, Therefore, a No. 2 cutter is required to cut For example, suppose the angle of the The point

RULES AND FORMULAS FOR WORM GEARING CALCULATIONS

		480	dius of Curvature of Throat=U	
	X	1001		f Tooth
	0	1	RED 8 0 g usually 142°=	
	ners)	0-	Tinear P. Creaking the Mines I St. Whole St. W	atch=P' at End=E' At A
	Diam. (to sharp corners)	E E	Wheel Williams Willia	1/1 1 10
	shar,	Diam.		Botton, Diam.=b Pitch Diam.=d Outside
	n. (10	Pitch L		000 000
	outside	Pin	He	lix Angle = B
	Outside			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	Y.			
	******		K of Worm = ½ X	
	No.	To Find	Rule	Formula
		Linear	Divide the lead by the number of threads.— It is understood, of course, that by the number of	-, Z
	1	Pitch	It is understood, of course, that by the number of threads is meant, not the number of threads per inch, but the number of threads in the whole worm—one, it it is single-threaded, four, if it is quadruple-threaded, the	$P' = \frac{7}{n}$
	-	Addendum of		
	2	Worm Tooth Pitch Diam.	Multiply the linear pitch by 0.3183. Subtract twice the addendum from the out-	5=0.3183 P'
	3	of Worm	side diameter.	d=0-25
	4	Pitch Diam. of Worm-Wheel	Multiply the number of teeth in the wheel by the linear pitch of the worm, and divide the product by 3.1416.	$D = \frac{NP'}{3.1416}$
	5	Center Distance between Worm	and the pitch diameter of the worm-wheel and	$C = \frac{D+d}{2}$
	-	and Gear Whole Depth of	divide the sum by 2.	~
	6	Worm Tooth Bottom Diam.	Multiply the linear pitch by 0.6866. Subtract twice the whole depth of tooth from	w=0.6866P'
	7	of Worm	the outside diameter.	b=0-2w
	8	Helix Angle of Worm	Multiply the pitch diameter of the worm by 3.1416, and divide the product by the lead; the quotient	$\cot \beta = \frac{3.1416d}{l}$
-	0	Width of Thread	15 the cotangent of the tooth angle of the worm.	
-	9	Tool at End Throat Diam.	Multiply the linear pitch by 0.31. Add twice the addendum of the worm tooth to	t'=0.31P'
-	10	of Worm-Wheel Radius of Worm-	the pitch diameter of the worm-wheel.	0=D+25
	//	Wheel Throat	from half the outside diameter of the worm.	$U = \frac{o}{2} - 2s$
	12	Diam. of Worm-Wheel	Multiply the throat radius by the cosine of half the face angle, subtract this quantity from the throat radius, multiply the remainder by 2, and add the product to the throat diameter of the worm-wheel.	0'= 2 (U-U
	12	to Sharp Corners	radius, multiply the remainder by 2, and add the product to the throat diameter of the worm-wheel.	$\cos \frac{\delta}{2} + 0$
	134	Minimum	Subtract four times the addendum of the worm thread from the throat diameter of the	
	13	Length of Worm for	wheel, square the remainder, and subtract the result from the square of the throat diameter	$x = \sqrt{0^2 - (0 - 45)^2}$
		Complete	of the wheel. The square root of the result is the minimum length of worm advisable.	
-	11	Outside Diam.	Add together the pitch diameter and twice	$\sigma = d + 25$
-	14	of Worm Pitch Diam.	the addendum.	
	15	of Worm	Subtract the pitch diameter of the worm- wheel from twice the center distance.	d=2C-D

WORMS AND WORM CEARING.

•	Width of Thread at Top.	B = .3354 × C. P.	6708 5869 5869 5869 5869 5869 5869 6777 1118 6070 6070 6070 6070 60719 6	0010.
3	Width of Thread Tool at End.	W = .3148 × C. P.	6296 6296 64722 73935 73935 73935 73936 7393	+/10.
H	Thickness of Tooth on Pitch Line.	II C. P.	1,0000 8750 5500 5500 1,1500 1,1000 1,1010 1,1111 1,1111 1,1010 1,0555 1	1170.
W. D.	Whole Depth of Tooth.	W.D. = D+C	1,3527 1,1837 1,0145 1,0145 1,0145 1,0145 1,0145 1,0145 1,0145 1,0145 1,0145 1,01482 1,01482	+100.
S	Space below Pitch Line.	S = H + C	7161 6266 5371 72685 2387 11432 11432 1193 10795 10795 10597 10447 10398 10398 10398 10298 10298	9610'
0	Clearance.	$c = \% \times \frac{1}{D.P.}$	0795 0696 0696 0696 00099 00079 00079 00079 00033 00033	77.00'
Q	Working Depth of Tooth.	$D = 2 \times \frac{1}{D.P.}$	1,2732 1,1141 9549 7,7958 6366 6366 6366 1,7958 1,1273 1,1273 1,1273 1,1061 1,1061 1,0796 1,0796 1,0530 1,0530 1,0530 1,0530	7650.
I	Tooth above Pitch Line,	$H = \frac{1}{D. P.}$	6366 5570 33183 33183 3183 22387 2122 11592 1073 10707 1061 1073 10707 1	9/10:
D. P.	Diametral Pitch.	D. P. = #	1,5708 1,7952 2,0944 2,5133 3,1416 4,7124 6,2832 7,8540 10,9956 11,572 11,1372 11,1372 15,7080 18,8496 21,9911 25,1327 28,2743 31,4159 37,6992 43,9824 50,2655	56.5488
2	Threads per Inch.	$N = \frac{1}{C. P.}$	2-4-2-4-1-1-2-2-2-2-2-2-2-2-2-2-2-2-2-2-	18
C. P.	Circular Pitch.	C. P. Inches.	2-2-3-4-7-1-10 1-10 1-10 1-10 1-10 1-10 1-10 1-	1-18

MACHINERY'S Data Sheet No. 42. Explanatory note: Page 31.

eter. Referring to the diagram for values of a, page 12, follow a line close to the 57-degree pitch angle line, until it intersects the curve for 2P. Follow from this point the line horizontally to the left where a is found to equal 0.270 inch. The outside diameter will be the sum of the pitch diameter, 20 inches, and 2a, or 20.54 inches. Dimension b may be found from the same diagram in the same manner, except that the complement of the pitch angle must be used as the starting point. The complement angle of 56 degrees 59 minutes is 33 degrees 1 minute, and in the same way as above described we find that b= 0 420 inch.

For finding the angle of increment we follow the line corresponding to 56 degrees 59 minutes on the diagram on page 13 to the intersecting point with the line radiating from zero, and marked 40 teeth. By transferring this point horizontally over to the scale for the angles of increment at the left, we find that this angle in this case equals 2 degrees 23 minutes, the units of the minutes being estimated. This angle added to the pitch angle of 56 degrees 59 minutes gives a face angle of 59 degrees 22 minutes. [MACHINERY, May, 1907, Bevel Gear Diagrams.

Outside Diameter of Bevel Gears

On pages 14 and 15 are given two tables for determining the outside diameter of bevel gears. The explanation on page 14 gives full instructions for the use of these tables as well as a concrete working example. This short-hand method for finding the outside diameters of bevel gears and pinions will be found convenient in many cases, and saves a considerable amount of calculation, at the same time as mistakes are less likely to occur.

Rules and Formulas for Spiral Gearing

The terms "spiral" and "helical," in relation to gears, are used synonomous-

ly, but only the latter expression is correct. However, the expression "spiral gear" is commonly used among mechanics in this connection. This term is, therefore, used in the following for denoting this class of gears.

The following definitions should be clearly understood in order to avoid misunderstandings. The center angle of a pair of spiral gears is the angle made by the two center lines or axes of the gears. The tooth angle is the angle which the direction of the tooth makes with the axis of the gear. The normal diametral pitch is the diametral pitch of the cutter used for cutting the teeth in a spiral gear.

On page 17 are given a set of rules and formulas for calculating spiral gearing. The notation used in the formulas is easily apparent by comparing the formulas with the corresponding rules. The numbers given in the left-hand column are only for convenience in referring to any specific rule. The rules and formulas are given in the same order as they would ordinarily be used by the designer when calculating a pair of spiral gears. The table is arranged similar to that for bevel gear dimensions on pages 4, 5 and 6. [MACHINERY'S Reference Series No. 20, Spiral Gearing, Chapter I.1

Lead of Spiral for Given Angle

On pages 18 and 19 are given two tables for finding the lead of spiral in inches when the spiral angle in degrees and minutes is given. The lead found in the table is for a diameter = 1, and for other diameters the lead equals the value found in the table multiplied by the diameter of the work. As an example, assume that it is required to find the lead corresponding to a spiral angle of 55 degrees and a diameter of 5 inches. From the table on page 19 we find that the lead for diameter 1 and 55 degrees 0 minutes equals 2.200. Multiplying this value by 5 we have $5 \times 2.200 = 11$ (Continued on page 31.)

WORM THREAD HELIX ANGLES-I

10														
Lead			Pitc				eter		Vorm	, Inc	hes.		3	
Worm, Inches	1	18	14	138	1/2	18	134	18	2	2%	24	238	2/2	25/8
4	4 ½	4	3/2	34	3	234	2 / 2	2/2	24	24	2	2	2	13/4
3/8	63	6	5%	5	4 2	44	4	334	3/2	34	3	3	23	22
2	9	8	74	634	6	5/2	54	5	4/2	44	44	4	334	3/2
5/8	114	10	9	84	7/2	7	6/2	6	534	54	5	434	4 2	4/2
3/4	13 %	12	103	10	9	82	73/4	74	634	62	6	534	5%	54
78	15%	14.	122	112	10%	934	9	82	8	72	7	634	62	6
. 1	173	16	144	13	12	114	104	934	9	82	8	734	74	7
18	1934	18	16	143	13 2	12%	11/2	11	104	9 1/2	9	8/2	8	73/4
14	213/4	19 ½	173	164	15	1334	1234	12	114	1034	10	9/2	9	84
13/8	2334	214	194	173	164	15	14	13	12 ½	1134	11	10%	10	9/2
12	25 ½	23	21	1.94	172	162	154	144	132	1234	12	11/2	11	104
15/8	272	244	22/2	204	19	1734	162	15%	142	1334	13	124	113	114
134	29%	262	24	22	20%	19	174	16%	15 2	144	14	134	122	12
178	304	28	25 2	232	2/3	204	19	172	1634	1534	15	144	132	13
2	32 2	294	27	25	23	212	20	19	1734	163	1534	15	144	1334
24	354	323	30	272	25%	24	224	21	193	183	173	17	16	154
2 ½	382	352	32½	30	28	264	242	23	2/3	204	19%	182	173	17
234	414	38	35	322	304	282	262	25	234	222	214	204	194	182
3	433	40%	37½	35 .	322	30%	283	27	25 2	244	23	22	21	20
34	46	424	393	37	342	32 ½	303	29	27/2	26	244	232	22%	21/2
3 ½	484	45	4134	394	3634	342	322	303	294	274	264	254	24	23
334	504	47	434	41	384	362	344	322	31	29 %	28	263/4	25 2	24/2
4	5134	482	454	43	40/2	384	36	344	323	31	292	284	27	26
44	53 2	50½	472	444	424	394	373	36	344	322	31	294	28 ½	274
4 ½	55	52	49	462	434	412	392	372	354	34	322	314	30	2834
43/4	562	532	50½	48	454	43	404	39	374	35½	34	322	314	30
5	574	544	5134	494	463	442	424	40%	384	37	354	34	322	314
54	594	564	534	5034	48	46	434	413	40	384	36½	354	34	322
52	604	574	544	52	49%	474	45	43	414	392	38	362	35	3334
534	614	582	5534	53	503	482	464	444	422	404	394	374	364	35
6	624	593	5.7	544	52	492	47%	4534	434	42	404	39	372	364

Contributed by Albert Clegg. Explanatory note: Page 32.

WORM THREAD HELIX ANGLES-II

_															
	Lead	1	Pitch	Lin	e Dic	amei	'er o	f Wo	rm,	Inch	es. (Con	tinu	ed).	
	Worm, Inches	24	27/8	3	3%	34	338	32	358	334	378	4	48	44	43/8
	4	134	12	1/2	12	1/2	12	1/2	14	14	14	14	14	14	1
	3,80	2 ½	22	24	24	24	2	2	2	2	2	134	134	134	12
	12	34	34	3	3	23/4	23	22	2/2	2 ½	2 / 2	24	24	24	2
	5,190	44	4	334	334	32	3/2	34	34	3	3	23/4	23	23/4	22
3	3/4	5	44	42	4/2	44	44	4	334	334	32	34	34	34	34
	78	534	5 ½	54	5	5	43	4/2	42	44	44	4	4	4	334
	1	634	64	6	534	5%	5%	54	5	5	43/4	4/2	4 1/2	4/2	44
	18	72	74	63	62	64	6	6	534	52	5/2	54	5	5	43
	14	84	8	74	72	7	63	6/2	64	6	6	53/4	5½	5 / 2	54
	13/8	. 9	834	84	8	734	72	7	7	634	62	64	6	6	53
	1.2	10	92	9	84	8/2	8	73	72	74	7	634	634	62	64
	15/8	103	104	934	92	9	83	82	84	8	734	72	74	7	634
	1.34	112	11	10%	10	934	92	9	834	82	84	8	734	7/2	74
	178	124	1134	114	11	10%	.10	934	9 %	9	83	82	84	8	73
	2	134	12%	12	1/2	11	103	10%	10	934	91/2	9	83	82	82
	24	143	14	13 /2	13	122	12	11/2	114	11	10%	104	10	9/2	9 ½
	2 ½	164	15%	15	144	134	13 %	123	12%	12	1134	114	11	1034	10%
	23/4	1734	17	164	153	15	143	14	1334	134	123	124	12	1134	1/2
	3	194	18%	17.3	17	16%	16	154	15	14 1/2	14	13 2	13	13	124
	34	203	1934	19	18 ½	173	.17	16%	16	15%	15	142	144	14	134
	3 2	22	214	20%	19 %	19	184	174	174	163	16	15%	15%	15	144
	334	23 ½	22 ½	2134	21	204	19 2	19	18%	18	174	16%	164	153	154
	4	25	24	23	22	212	203	20	19 2	19	182	172	174	1634	164
	44	264	254	244	23 ½	222	22	214	20%	20	19 %	18%	18%	173	174
	4 ½	272	26 2	25%	24 2	234	23	222	212	21	20%	193	192	18%	184
	43/4	29	274	264	253	25	24	23 2	223	22	2/2	203	20%	19%	194
	5	304	29	28	27	26	254	242	234	23	222	2/3	214	20%	20
	54	312	304	29	284	27	26/2	25%	244	24	23 2	222	22	27/2	21
	5 1/2	324	312	304	294	284	272	26 %	253	254	242	23 ½	23	222	22
	534	334	322	3/2	304	29 2	282	274	27	264	252	242	24	23 ½	23
	6	35	334	322	3/2	30%	29 ½	283	274	27	262	25%	25	244	2334
1			-			-	THE STATE OF	-8-	11111			1000		MIE.	

WORM THREAD HELIX ANGLES-III

Norm Inches 4½ 45 43 47 48 5 56 54 53 55 55 53 53 57 56 6 64 6 6 64 6 6 64 6 6		Lead		Pitch	Line	Dia	mete	rof	Wor	m. In	ches	. (Co.	ntino	ved).	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Worm,	1-					1	7		7		,		1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				-	. 1		1		1						1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		3/80	1/2	1/2	1/2	1/2	1/2	1/2	12	14	14	14	- 14	14	14
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			2	2			2	2	2	134	134	13/4	134	13/4	1/2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			2 ½	2 ½	2 %	2/2	24	24	24	24	24	24			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	li	3/4	3	3	3	3	23/4	23/4	23/4	23/4	2/2	2 ½	24	24	24
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	78	3/2	32	3 2	34	34	34	3	3	3	234	234	23	234
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-	1	4	4	334	334	34	32	3/2	32	34	34	34	34	3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		18	4 2	4 1/2	44	44	44	4	4	33/4	334	334	334	3/2	3 2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			5	5.	43/4	43/4	4 ½	42	. 42	44	44	44	4		334
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		13/8	5/2	5%	54	54	5	5	434	434	4 ½	4/2	4/2	44	44
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		12	6	6	534	52	5%	54	54	5.	5.	434	434	434	42
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		15/8	62	62	64	6	6	54	534	5 ½	5/2	54	54	5	5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		134	7	- 7	634	6½	62	64	6	6	534	534	5%	5½	5克
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		178	72	7 ½	74	7	7	63	6/2	6/2	64	. 6	6	534	53
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		2	84	. 8	73/4	72	74	74	7	634	634	62	62	64	6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		24	9	9	834	8/2	84	8	8	734	7/2	72	74	7	7.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		2 ½	10	10	91/2	94	94	9	834	82	84	84	8	73/4	75
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		234	11	1034	10%	104	10	934	9/2	94	94	9	834	8/2	82
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		3	12	1/2	11/2	11	11	103	10%	104	10	934	92	92	94
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		34	13	12/2	124	12	1134	112	11	11	1034	10%	104	104	10
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		3 ½	14	132	134	13	12/2	124	12	1134	11/2	114	1.1	103	10 2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		334	15	14 ½	144	1334	13/2	13	13	12/2	124	12	113	11/2	114
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		4	16	15%	15	14%	144	14	1334	134	13	13	12/2	124	12
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		44	1634	16%	16	15%	154	15	14%	14	.14	,	132	13	123
5 19 2 19 18 2 18 4 18 17 4 17 16 2 16 4 16 15 2 15 4 15		42	17%	174	17	16%	16	1534	154	15	143	142	144	1334	13%
		434	18%	184	18	174	17	162	16	16	15%	154	15	142	144
54 20 20 19 19 18 184 174 17 17 164 164 16 15		5	19%	19	182	184	18	174	17:	162	164	16	15%	154	
		54	20%	20	192	19	182	184	173	172	17		164	16	153
			212	21	20%	20	192	19	182	184	18	172	17	163	16%
$5\frac{3}{4}$ 22 $21\frac{3}{4}$ 21 $20\frac{1}{2}$ $20\frac{1}{4}$ $19\frac{3}{4}$ $19\frac{1}{2}$ 19 $18\frac{1}{2}$ $18\frac{1}{4}$ $17\frac{3}{4}$ $17\frac{1}{2}$ 17		534	22	213/4	21	20%	204	193	19%	19	18%	184	1734	172	17
6 23 $22\frac{1}{2}$ 22 $21\frac{1}{2}$ 21 $20\frac{1}{2}$ 20 $19\frac{1}{2}$ 19\frac{1}{4} 19 $18\frac{1}{2}$ 18 $17\frac{3}{4}$		6	23	22/2	22	21/2	21	20%	20	19 ½	194	1.9	18%	18	173

Contributed by Albert Clegg. Explanatory note: Page 32.

inches, which is then the required lead of the spiral.

If the lead and the angle are given, the diameter can be found, and if the diameter and lead are given the angle can be found as indicated in the notes beneath the tables. For example, assume that the lead is 8 inches and the diameter 5 inches. Then divide the given lead by the given diameter and find the quotient in the body of the table; $8 \div 5 = 1.6$. The angle corresponding to this lead, which is the lead for diameter 1, is found in the table on page 19 to equal 63 degrees very nearly.

Assume that a spiral angle of 75 degrees 30 minutes and a lead of 4.06 inches are given. Then the diameter is found by dividing the given lead 4.06 with the value of L corresponding to 75 degrees 30 minutes as given in the table, this value being 0.812. The diameter then equals $4.06 \div 0.812 = 5$ inches.

Constants for Calculating Spiral Gears

The calculation of spiral gears is a time-consuming operation and any short-cuts or labor-saving methods are eagerly accepted by designers. On pages 20 to 23, inclusive, are given constants for calculating spiral gears, the use of which will materially reduce the time necessary for the computation of the angles and dimensions of spiral gears. The body of the tables gives constants Ct (= center distance of shafts per tooth of pinion) for each speed ratio given, the shafts being at right angles, while factors U, F and L are equally applicable to gears on shafts at any The constants for unit diamangle. eter of gear per tooth, U, and for unit center distance per tooth of fastest running gear, Ut, are calculated for gears cut with spur gear cutters of one diametral pitch. For any other pitch, divide the constant by the diametral pitch of the cutter used. The factors Ct given in the body of the tables are, it should

be noted, per tooth of fastest running gear, or gear having the smallest number of teeth. All factors are given for each degree from 12 to 78 degrees of angle of tooth helix. While strict accuracy would require interpolation, for angles including a fractional part of a degree, test calculations have shown that a simple proportional value between the factors is sufficiently accurate to meet all practical requirements. The examples of the use of the tables given directly beneath them, together with the formulas in the explanatory note on page 20 will make the use of the tables [MACHINERY, December, 1908, Constants for Calculating Helical Gears.]

Cutters for Milling Spiral Gears

A convenient diagram for finding the cutters for milling the teeth of spiral gears is given on page 24, together with a complete description of the method of using the diagram. As the formula for finding the cutter to use involves the cosine of the tooth angle in the third power, and hence requires considerable calculation, the simplicity of the use of this diagram will be appreciated.

Dimensions of Worm Gearing

In giving names to the dimensions of the worm, there is one point which sometimes causes confusion. This relates to the definitions of the terms "pitch" and "lead." The word "lead" means the distance which a given thread advances in one revolution of the worm, while the "pitch," or more strictly, the "linear pitch," is the distance from center to center of two adjacent threads. It is evident that the lead and linear pitch are equal for a single-threaded worm; for a double-threaded worm the lead is twice the linear pitch, and for a triple-threaded worm it is three times the linear pitch.

When the number of threads in a worm is spoken of, the number of threads per inch is not referred to, but

the number of threads in the whole worm, that is, one if it is single-threaded, four if it is quadruple-threaded, etc.

On page 25 are given rules and formulas for the calculations of the dimensions of worm gearing, arranged in a manner similar to the rules for bevel gearing on pages 4 and 5. The numbers in the columns to the left are given for convenience in referring to the various rules and formulas only. The notation used in the formulas is easily determined by a comparison with the rules written out in words. On page 26 is given a table for worms and worm gearing in general, giving calculated values for the various dimensions. The formulas given at the head of the columns of dimensions are those by means of which the dimensions below have been calculated.

The rules given on page 25 are sometimes departed from. The throat diameter of the wheel and the center distance may have to be altered in some For example, if worm-wheels with small numbers of teeth are made to the dimensions found from the rules and formulas, it will be found that the flanks of the teeth will be partly cut away by the tops of the hob teeth, so that a full bearing area is not available. This latter affects the worm-wheel drive seriously when there are less than twenty-five teeth in the worm-wheel. There are two ways of avoiding this difficulty. One may increase the included angle of the sides of the threadtool by which the hob is cut. This departure from the standard form, however, may be avoided by an increase in the throat diameter of the wheel, and consequently in the center distance. Some designers, again, claim to obtain better results in efficiency and durability by making the throat diameter of the worm-wheel smaller than standard. when it is possible to do so without too much under-cutting. In no case, however, should the throat diameter ever be made so small as to produce more interference than is met with in a standard 25-tooth worm-wheel. IMA-CHINERY, August, 1907, Calculating the dimensions of Worm Gearing; Ma-CHINERY'S Reference Series No. 1, Worm Gearing, Chapter I.]

Worm Thread Helix Angles

In the body of the tables on pages 28 to 30 are given the approximate angles of the thread of worms when the lead of the worm and the pitch line diameter of the worm in inches are given. For example: If the lead of the worm is one inch and its pitch line diameter 2 inches, then the angle of helix is approximately 9 inches, as shown in the table on page 28. These tables can, of course, be used in a reverse order. If the angle in degrees and the pitch line diameter are known, the approximate lead may be found, and if the lead and angle are known the approximate diameter may be located.

THIS BOOK IS DUE ON THE LAST DATE STAMPED BELOW

AN INITIAL FINE OF 25 CENTS

WILL BE ASSESSED FOR FAILURE TO RETURN THIS BOOK ON THE DATE DUE. THE PENALTY WILL INCREASE TO 50 CENTS ON THE FOURTH DAY AND TO \$1.00 ON THE SEVENTH DAY

ADD	THE SEVE	TH DAY
APR 18 1940		
APR 1.9 1940	LIBRAR	USE
	SEP8	1960
	DELO	1000
FEB 12 1944		
- OCT - 15 1942		
OCT 17 1944 RE	C'D LD	
	PLD	
	8 1960	
OZApr'53GC		
APR 1 9 1953 LU		
1933 EU		
	E PER L	-
7Aor 56PT		-
MAR 2 4 1956 LU		
11 Fe'58WJ		
DEC		
REC'D LO		
JAN 29 1958		
958 sq MMO		
LD 21-10	00m-7,'39 (402s	

UNIVERSITY OF CALIFORNIA LIBRARY

No. 16. Machine Tool Drives.—Speeds and Feeds of Machine Tools; Geared or Single Pulley Drives; Drives for High Speed Cutting Tools.

Strength of Cylinders-For-No. 17. mulas, Charts, and Diagrams.

No. 18. Shop Arithmetic for the Machinist.—Tapers; Change Gears; Cutting Speeds; Feeds; Indexing; Gearing for Cutting Spirals; Angles.

No. 19. Use of Formulas in Mechanics. -With numerous applications.

No. 20. Spiral Gearing .- Rules, Formulas, and Diagrams, etc.

Measuring Tools .- History and Development of Standard Measurements; Special Calipers; Compasses; Micrometer Tools; Protractors, etc.

No. 22. Calculation of Elements of Machine Design.—Factor of Safety; Strength of Bolts; Riveted Joints; Keys and Keyways; Toggle-joints.

No. 23. Theory of Crane Design.—Jib Cranes; Calculation of Shaft, Gears, and Bearings; Force Required to Move Crane Trolleys; Pillar Cranes.

Examples of Calculating Designs.—Charts in Designing; Punch and Riveter Frames; Shear Frames; Billet and Bar Passes; etc.

No. 25. Deep Hole Drilling .- Methods of Drilling; Construction of Drills.

No. 26. Modern Punch and Die Construction.—Construction and Use of Subpress Dies; Modern Blanking Die Construction; Drawing and Forming Dies.

No. 27. Locomotive Design, Part I.— Boilers, Cylinders, Pipes and Pistons.

No. 28. Locomotive Design, Part II.— Stephenson Valve Motion; Theory, Calculation and Design of Valve Motion; The Walschaerts Valve Motion.

No. 29. Locomotive Design, Part III.
—Smokebox; Exhaust Pipe; Frames;
Cross-heads; Guide Bars; Connecting-rods; Driving-wheels. Axles; Crank-pins;

Locomotive Design, Part IV .-No. 30. Locomotive Design, Par Springs, Trucks, Cab and Tender.

No. 31. Screw Thread Tools and Gages. No. 32. Screw Thread Cutting.—Lathe Change Gears; Thread Tools; Kinks.

No. 33. Systems and Practice of the Drafting-Room.

No. 34. Care and Repair of Dynamos and Motors.

No. 35. Tables and Formulas for Shop and Drafting-Room.—The Use of Formu-las; Solution of Triangles; Strength of Materials; Gearing; Screw Threads; Tap Drills; Drill Sizes; Tapers; Keys; Jig Bushings etc. Bushings, etc.

Iron and Steel.—Principles of No. 36. Manufacture and Treatment.

Bevel Gearing.—Rules No. 37. reis Formulas; Calculation; Examples of

Foreign Edition, \$3.00 a year.

Tooth Outlines; Strength and Design; Methods of Cutting Teeth.

No. 38. Grinding and Grinding chines.

No. 39. Fans, Ventilation and Head —Fans; Heaters; Shop Heating.

No. 40. Fly-Wheels .- Their Pul Calculation and Design.

No. 41. Jigs and Fixtures, Part Principles of Jig and Fixture Design Drill and Boring Jig Bushings; Locating Points; Clamping Devices.

No. 42. Jigs and Fixtures, Part II.— Open and Closed Drill Jigs.

No. 43. Jigs and Fixtures, Part III .-Boring and Milling Flxtures.

No. 44. Machine Blacksmithing.—Systems, Tools and Machines used.

No. 45. Drop Forging. — Lay-out Plant; Methods of Drop Forging; Dies.

No. 46. Hardening and Tempering.— Hardening Plants; Treating High-Speed Steel; Hardening Gages; Hardening Hardening Hardening Kinks.

Electric Overhead Cranes .-No. 47. Design and Calculation.

No. 48. Files and Filing .- Types of Files; Using and Making Files.

No. 49. Girders for Electric Overhead Cranes.

No. 50. Principles and Practice of Assembling Machine Tools, Part I.

No. 51. Principles and Practice of Assembling Machine Tools, Part II.

No. 52. Advanced Shop Arithmetic for the Machinist.

No. 53. Use of Logar thms and Logarithmic Tables.

Solution of Triangles, Part I. No. 54. -Methods, Rules and Examples.

No. 55. Solution of Triangles, Part II. -Tables of Natural Functions.

No. 56. Ball Bearings .- Principles of Design and Construction.

Metal Spinning .- Machines, Tools and Methods Used.

No. 58. Helical and Elliptic Springs .-Calculation and Design.

No. 59. Machines, Tools and Method of Automobile Manufacture.

Construction and Manufacture No. 60. of Automobiles.

No. 61. Blacksmith Shop Practice.— Model Blacksmith Shop; Welding; Forg-ing of Hooks and Chains; Miscellaneous Appliances and Methods.

No. 62. Hardness and Durability Testing of Metals.

No. 63. Heat Treatment of Steel.— Hardening, Tempering and Case-Harden-

No. 64. Gage Making and Lapping. No. 65. Formulas and Constants for Gas Engine Design.

MACHINERY, the monthly mechanical journal, originator of the Reference and Data Sheet Series, is published in four editions—the Shop Edition, \$1.00 a year; the Engineering Edition, \$2.00 a year; the Railway Edition, \$2.00 a year, and the

The Industrial Press, Publishers of MACHINERY,