LECTURE 5

GLOBAL STATE AND CHECKPOINTS

Prof. D. S. Yadav Department of Computer Science IET Lucknow

INTRODUCTION

- ☐ Recording the global state of a distributed system on-the-fly is an important paradigm.
- ☐ The lack of globally shared memory, global clock and unpredictable message delays in a distributed system make this problem non-trivial.
- ☐ We first defines consistent global states and discusses issues to be addressed to compute consistent distributed snapshots.
- ☐ Then several algorithms to determine on-the-fly such snapshots are presented for several types of networks.

BANKING EXAMPLE: FUND TRANSFER

BANKING EXAMPLE: FUND TRANSFER

BANKING EXAMPLE: FUND TRANSFER

SNAPSHOT ALGORITHM: BANKING EXAMPLE

SNAPSHOT ALGORITHM: BANKING EXAMPLE

SYSTEM MODEL

- The system consists of a collection of n processes $p_1, p_2, ..., p_n$ that are connected by channels.
- There are no globally shared memory and physical global clock and processes communicate by passing messages through communication channels.
- C_{ij} denotes the channel from process p_i to process p_j and its state is denoted by SC_{ij} .
- The actions performed by a process are modeled as three types of events: Internal events, the message send event and the message receive event.

For a message m_{ij} that is sent by process p_i to process p_j , let $send(m_{ij})$ and

 $rec(m_{ij})$ denote its send and receive events.

SYSTEM MODEL

- At any instant, the state of process p_i , denoted by LS_i , is a result of the sequence of all the events executed by p_i till that instant.
- For an event e and a process state LS_i , $e \in LS_i$ iff e belongs to the sequence of events that have taken process p_i to state LS_i .
- For an event e and a process state LS_i , $e \notin LS_i$ iff e does not belong to the sequence of events that have taken process p_i to state LS_i .
- For a channel C_{ij} , the following set of messages can be defined based on the local states of the processes p_i and p_j

Transit: $transit(LS_i, LS_j) = \{m_{ij} \mid send(m_{ij}) \in LS_i \land rec(m_{ij}) \in LS_j\}$

GLOBAL STATE COLLECTION

- Applications:
 - Checking "stable" properties, checkpoint & recovery
- Issues:
 - Need to capture both node and channel states
 - system cannot be stopped
 - no global clock

NOTATIONS

Some notations:

- LS_i: Local state of process I
- send(m_{ij}): Send event of message m_{ij} from process i to process j
- rec(m_{ij}): Similar, receive instead of send
- time(x): Time at which state x was recorded
- time (send(m)): Time at which send(m) occurred

DEFINITIONS

- $send(m_{ij}) \in LS_i$ iff $time(send(m_{ij})) < time(LS_i)$
- $rec(m_{ij}) \in LS_j$ iff $time(rec(m_{ij})) < time(LS_j)$
- transit(LS_i, LS_j)
 = { m_{ii} | send(m_{ii}) ∈ LS_i and rec(m_{ii}) ∉ LS_i }
- inconsistent(LS_i, LS_j)
 = { m_{ii} | send(m_{ii}) ∉ LS_i and rec(m_{ii}) ∈ LS_i }

DEFINITIONS

Global state: collection of local states

GS is consistent iff

for all i, j,
$$1 \le i$$
, $j \le n$,
inconsistent(LSi, LSj) = Φ

GS is transitless iff

for all i, j,
$$1 \le i, j \le n$$
,
transit(LSi, LSj) = Φ

GS is strongly consistent if it is consistent and transitless.

MODELS OF COMMUNICATION

□Recall, there are three models of communication: FIFO, non-FIFO, and CO.

□In FIFO model, each channel acts as a first-in first-out message queue and thus, message ordering is preserved by a channel.

□In non-FIFO model, a channel acts like a set in which the sender process adds messages and the receiver process removes messages from it in a random order.

□A system that supports causal delivery of messages satisfies the following property:

"For any two messages m_{ij} and m_{ki} ,

 $\textbf{if } \textbf{send } (\textbf{m}_{ij}) \rightarrow \textbf{send } (\textbf{m}_{kj}), \ \ \textbf{then } \textbf{rec } (\textbf{m}_{ij}) \rightarrow \textbf{rec } (\textbf{m}_{kj}) ".$

CONSISTENT GLOBAL STATE

- The global state of a distributed system is a collection of the local states of the processes and the channels.
- Notationally, global state GS is defined as,

$$GS = \{ U_i LS_i, U_{i,i} SC_{ij} \}$$

• A global state GS is a consistent global state iff it satisfies the following two conditions:

```
C1: \operatorname{send}(m_{ij}) \in LS_i \Rightarrow m_{ij} \in SC_{ij} \oplus \operatorname{rec}(m_{ij}) \in LS_j.

(\oplus is Ex-OR operator.)
```

C2: $\operatorname{send}(m_{ij}) \notin LS_i \Rightarrow m_{ij} \notin SC_{ij} \land \operatorname{rec}(m_{ij}) \notin LS_j$.

INTERPRETATION IN TERMS OF CUTS

- □A cut in a space-time diagram is a line joining an arbitrary point on each process line that slices the space-time diagram into a PAST and a FUTURE.
- □A consistent global state corresponds to a cut in which every message received in the PAST of the cut was sent in the PAST of that cut.
- □Such a cut is known as a *consistent cut*.
- □ For example, consider the space-time diagram for the computation illustrated in Figure 1.
- □Cut C1 is inconsistent because message m1 is flowing from the FUTURE to the PAST.
- \square Cut C2 is consistent and message m4 must be captured in the state of channel C_{21} .

Figure 1: An Interpretation in Terms of a Cut.