

# Introduction

### Breast Cancer in Hispanic Women

- Second leading cause of cancer death.
- 30% lower diagnosis rate compared to non-Hispanic Whites.
- Increased risk of developing aggressive tumors: HER2+ and triple-negative breast cancer.
- Lack of effective prediction tools for early prevention

#### **Current Studies:**

Genetic and clinical factors integration has improved risk stratification in White women, while underrepresentation
in studies leads to suboptimal risk prediction in Hispanic women.

## Objective

Implement novel **transfer learning** models to improve risk prediction by utilizing estimates from other populations (White and Asian) to benefit Hispanic women, that is, to **enhance the accuracy of breast cancer risk prediction for Hispanic women**.

## Data (Genotype & Phenotype)

- The Multiethnic Cohort Study: a prospective cohort study that was initiated between 1993 and 1996 and includes subjects from various ethnic groups including Hispanics and Japanese-Americans primarily from greater Los Angeles, CA
- The Cancer Genetic Markers of Susceptibility (CGEMS) study: a prospective cohort study by National Cancer Institute (NCI) in European cohort that was provided a blood sample between 1989 and 1990 and were free of diagnosed breast cancer at blood collection and followed for incident disease until May 2004



- Target Data: n=1064 Hispanics (AMR, 520 cases and 544 controls) descent populations from The Multiethnic Cohort Study
- Two source data: n<sub>1</sub>=2287 European (EUR, 1145 cases & 1142 controls) and n<sub>2</sub>=1707 Japanese (JPN, 885 cases & 822 controls) descent populations, from CGEMS and the Multiethnic Cohort Study, respectively
- Both datasets were conducted another preprocessing steps, including outcome (i.e. Breast Cancer)
   normalization, missing data imputation, and Linkage Disequilibrium (LD) Clumping

#### Data



COLUMBIA MAILMAN SCHOOL OF PUBLIC HEALTH

# Method

# Ridge

For each sample in each ethnic group, the linear model takes the form as

• Residualized Breast Cancer (y) ~  $\beta_0$  +  $\beta_1$ \*SNP<sub>1</sub> +  $\beta_2$ \*SNP<sub>2</sub> + ... +  $\beta_{557}$ \*SNP<sub>557</sub> +  $\beta_{558}$ \*PC<sub>1</sub> +  $\beta_{559}$ \*PC<sub>2</sub> + ... +  $\beta_{577}$ \*PC<sub>20</sub> +  $\epsilon$ 

Additionally, with Ridge, the final parameter takes the form as

•  $\widehat{\pmb{\beta}}(\lambda) = argmin_{\pmb{\beta}} \left\{ \sum_{i=1}^{n} (y_i - \beta_0 - \sum_{j=1}^{577} \beta_j x_{ij})^2 + \lambda \sum_{j=1}^{577} \beta_j^2 \right\}$ , where n=1707 for JPN, n=2287 for EUR, n=1064 for AMR



Source Estimates:  $\widehat{m{eta}}_{JPN},\,\widehat{m{eta}}_{EUR}$ 

# Transfer Learning Models



$$\widehat{\boldsymbol{w}}_{distTL} = argmin_{w} \ \frac{1}{n} \|Y_{k} - X_{k}w\|_{2}^{2} + \lambda_{d} \|w - \hat{\beta}_{k}\|^{2}, \text{ where } \lambda_{d} \text{ is the tuning parameters,}$$
 k=1 or 2;  $\widehat{\boldsymbol{\beta}}_{1} = \widehat{\boldsymbol{\beta}}_{JPN}$ ,  $\widehat{\boldsymbol{\beta}}_{1} = \widehat{\boldsymbol{\beta}}_{EUR}$ , or  $\widehat{\boldsymbol{\beta}}_{2} = (\widehat{\boldsymbol{\beta}}_{JPN}, \widehat{\boldsymbol{\beta}}_{EUR})$ 

Distance-based similarity measure:  $||\beta - w||_2 \le h$ 

В

Geometric illustration of the distance-based similarity characterization (A); the angle-based characterization (B).



$$\widehat{\boldsymbol{w}}_{angleTL} = argmin_w \frac{1}{n} \|Y_k - X_k w\|_2^2 + \lambda_a \|w\|^2 - 2\eta \widehat{\boldsymbol{\beta}}_k^T w$$
, where  $\lambda_a$  and  $\eta$  are the tuning parameters, k=1 or 2;  $\widehat{\boldsymbol{\beta}}_1 = \widehat{\boldsymbol{\beta}}_{JPN}$ ,  $\widehat{\boldsymbol{\beta}}_1 = \widehat{\boldsymbol{\beta}}_{EUR}$ , or  $\widehat{\boldsymbol{\beta}}_2 = (\widehat{\boldsymbol{\beta}}_{JPN}, \widehat{\boldsymbol{\beta}}_{EUR})$ 

Angle-based similarity

## Transfer Learning Models

- Target-Only Model (baseline model using AMR Only):  $\hat{w}_{target} = argmin_w \frac{1}{n} ||Y Xw||_2^2 + \lambda ||w||^2$ ;
  - Testing  $\hat{y}'_{target} = X' \hat{w}_{target} + \epsilon$ ;
- Source-Only Model (directly using JPN or EUR):  $\widehat{w}_{src} = argmin_w \frac{1}{N_k} ||Y_k X_k w||_2^2 + \lambda_k ||w||^2$ ,
  - Testing  $\hat{y}'_{src} = X'\hat{w}_{src} + \epsilon$ ;
- Distance-based Transfer Learning (**DistTL**):  $\widehat{w}_{DistTL} = argmin_w \frac{1}{n} ||Y_k X_k w||_2^2 + \lambda_d ||w \widehat{\beta}_k||^2$ ,
  - Testing  $\widehat{y'}_{DistTL} = X'\widehat{w}_{DistTL} + \epsilon$ ;
- Angle-based Transfer Learning (AngleTL):  $\hat{w}_{AngleTL} = argmin_w \frac{1}{n} ||Y_k X_k w||_2^2 + \lambda_a ||w||^2 2\eta \hat{\beta}_k^T w$ 
  - Testing  $\hat{y}'_{AngleTL} = X'\hat{w}_{AngleTL} + \epsilon$ ;
- Aggregated: Testing  $\widehat{y'}_{weighted} = w_1 * \widehat{y'}_{target} + w_2 * \widehat{y'}_{src-JPN} + w_3 * \widehat{y'}_{src-EUR} + w_4 * \widehat{y'}_{DistTL-JPN} + w_5 * \widehat{y'}_{DistTL-EUR} + w_6 * \widehat{y'}_{DistTL-J\&E} + w_7 * \widehat{y'}_{AngleTL-JPN} + w_8 * \widehat{y'}_{AngleTL-EUR} + w_9 * \widehat{y'}_{AngleTL-J\&E}$ 
  - where weight w is obtained from independent training data from
- $y_{\mathsf{AMR}} = \mathsf{W}_1 * \widehat{y}_{target} + \mathsf{W}_2 * \widehat{y}_{src-JPN} + \mathsf{W}_3 * \widehat{y}_{src-EUR} + \mathsf{W}_4 * \widehat{y}_{DistTL-JPN} + \mathsf{W}_5 * \widehat{y}_{DistTL-EUR} + \mathsf{W}_6 * \widehat{y}_{DistTL-J\&E} + \mathsf{W}_7 * \widehat{y}_{AngleTL-JPN} + \mathsf{W}_8 * \widehat{y}_{AngleTL-EUR} + \mathsf{W}_9 * \widehat{y}_{AngleTL-J\&E}$

## Transfer Learning Models

Comparison

Model Performance Measure:

 $R^2$  = (Correlation between predicted  $\hat{y}'$  and observed  $y'_{AMR}$ )<sup>2</sup>

# Result

#### R<sup>2</sup> across models



AngleTL with JPN source showed a >10% improvement in R<sup>2</sup> values over target-only model

#### R<sup>2</sup> across models



- AngleTL has superior predictive accuracy compared to source-only model and DistTL
- Under the same source, the performance of transfer learning (AngleTL or DistTL) is consistent with source-only.

#### R<sup>2</sup> across models



Models using EUR source all perform poorly, i.e. the similarity between AMR and EUR is low.

# Discussion

#### Discussion

#### SNP Clumping & Data Quality:

- Reduced genetic marker redundancy
- Isolated most representative SNPs for analysis, which improved reliability of subsequent findings

#### Transfer Learning Performance:

- Potential to address risk prediction disparities in underrepresented populations, with utilization of data from wellresearched populations to benefit underserved groups
- Demonstrated potential of transfer learning in genetic research

# Thank you

# Appendix

# Breast Cancer Genotype Data Quality Control (QC)

- Step1: **Genotype Missing Rate < 5%** (--geno 0.05), i.e. removing SNPs with NA accounting for more than 5%
- Step2: Sample Missing Rate < 5% (--mind 0.05), i.e. removing samples with NA accounting for more than 5%
- Step3: Minor Allele Frequency (MAF) > 1% (--maf 0.01), i.e. removing SNPs with MAF < 1%</li>
- Step4: Hardy-Weinberg Equilibrium (HWE) with p-value < 10<sup>-6</sup> (--hwe 0.000001), i.e. removing SNPs with the p-value > 10<sup>-6</sup>