Nano-Blatt 8

Christian Gommeringer

24. Juni 2023

1 a)

Zunächst sollen die Intentsitätsdaten in Abhängigkeit von der Wellenlänge für verschidene Brechungsindizes geplottet werden.

Abbildung 1: Achsenbeschriftung wurde vergessen, auf der y-Achse ist eine normierte Intensität aufgetragen und auf der x-Achse die Wellenlänge in nm.

1 b)

Maxima dieser Resonanz kurven wurden durch einen Fit in Form einer Lorentz Kurve bestimmt.

$$I(\lambda) = \frac{c}{(\lambda - \lambda_{\max})^2 + (\frac{\gamma}{2})^2}$$

Es ergaben sich folgende Werte

n	λ_{\max} in nm	γ in nm
1.0	795.1	179.94
1.33	817.26	194.06
1.485	834.77	209.59

Tabelle 1: Ergebnisse für die Fitparameter

800

820

840

860

880

Abbildung 2: Daten mit Regression. Achsenbeschriftung wie oben

1 d)

Wenn man λ_{\max} gegenüber des Brechungsindizes aufträgt kann aus der Steigung die Sensitivität zu $S=79.5\,nm/RUI$

Abbildung 3: Lineare Regression für $\lambda_{\max}(n)$

1 e)

Die Größe FOM lässt sich bestimmen über

FOM =
$$S/\gamma(1) = 0.44 \, 1/RUI$$

1 f)

Ein Beispiel für in der Praxis realisierte FOM' liefert K. Lodewijks et al. (2012), die für Gold disks and Gold rings, respektive FOM's von 2.1 und 2.71/RUI erreicht haben.

¹K. Lodewijks W. Van Roy G. Borghs L. Lagae und P. Van Dorpe. "Boosting the Figure Of Merit of LSPR-based refractive index sensing by phase-sensitive measurements". In: (2012).