

Vietnam School of Biology VSBO4

Dr. Hao Chung The

ICISE, Quy Nhon, Vietnam

5th September 2025

Outline

- 16S rRNA sequencing library preparation
- Note on wet-lab: low biomass samples
- Practical example: microbiome of tumour samples
- Rough look of sequencing data and QC check
- DADA2
- Phyloseq
- Exploratory analyses: alpha-div, beta-div, note on compositionality and sparsity
- Differential abundance analysis

16S rRNA sequencing

Why is 16S rRNA sequencing still relevant?

- Samples with high level of host DNA or and/or low bacterial biomass
- Generally cheaper
- Less computational demanding
- Broad taxonomic information is concerned
- Paired with inter-kingdom analysis (ITS sequencing, virome RNA sequencing).

Factors affecting the choice of primers

- Nature of the sample's microbiome
- Harmonisation with previous studies
- Choice of sequencing platform

Notes on wet lab

V3-V4 and V4 regions are the most commonly sequenced 16S rRNA gene region

Credit: Oregon State University CQLS 16S sequencing protocol https://docs.hpc.oregonstate.edu/cqls/tips/16s-sequencing/

V3-V4: PE 300 bp V4: PE 150bp – 250bp

- Use of high-fidelity polymerases (i.e. KAPA)
- Optimise PCR conditions for primary amplification (15 – 25 cycles) to reduce chimeric amplifications
- Downstream cleaning, normalisation and pooling need close attention

Low biomass microbiome

Fierer et al., Nat Microbiology, 2025

Experimental design Sampling **DNA** extraction Library preparation **DNA** sequencing Data analysis

Stage of experiment:

Recommended practice:

- Randomize sample types and treatment groups to prevent influences of batch/day-level variation of contaminant DNA or other confounding variables
- · Record batch numbers for reagents
- Wear cleansuit; clean gloves; face mask
- Use sampling blank controls
- Wear cleansuit; clean gloves; face mask
- Decontaminate working area before use
- Perform lab work in a controlled environment (cabinet), physically isolated from post-PCR facilities
- Use DNA extraction blank controls
- Wear cleansuit; clean gloves; face mask
- Decontaminate working area before use
- Perform lab work in a controlled environment (cabinet)
- Use no-template amplification controls
- · Ensure use of unique redundant barcodes
- · Report taxa found in negative controls
- Comparison of taxa found in controls to those identified in biological samples
- Use of subtractive filtering to remove contaminants from biological samples [68–71]

Opinion

Contamination in Low Microbial Biomass Microbiome Studies: Issues and Recommendations

Common laboratory contamination genera Ralstonia, Pseudomonas, Acinetobacter, Enhydrobacter, etc.

Eisenhofer et al., Trends in Microbiology, 2019

Understand what you would expect from your samples

What to expect from 16S sequencing?

Raw sequences \rightarrow merge \rightarrow classify \rightarrow taxonomy \rightarrow sample x taxa table \rightarrow downstream analyses

Credit: NCI Bioinformatic training
https://bioinformatics.ccr.cancer.gov/docs/qiime2/Lesson3/

Feature	OTU (Operational Taxonomic Unit)	ASV (Amplicon Sequence Variant)
Definition	Sequences with similarity (commonly ≥97%) grouped into an OTU	Infers exact biological sequences by denoising and error correction
Resolution	May group several closely related species together	Higher chance for species classification
Reproduci bility	Poor – OTU clustering is study specific	High – ASV represents consistent sequences reproducible

Revised from ChatGPT output

Exact sequence variants should replace operational taxonomic units in marker-gene data analysis

Benjamin J Callahan¹, Paul J McMurdie² and Susan P Holmes³

ASV approach

DADA2 algorithm includes three main steps:

- Divisive partitioning by sequence comparison
- Error model construction
- Alternating consistency until consistency

DADA2: High-resolution sample inference from Illumina amplicon data

DADA2 recovers additional sequence variation compared to UPARSE

Data: Kopylova, et al. mSystems, 2016.

Callahan et al., Brief Comms, 2016 - >30,000 citations

Data for tutorial

Rationale and study design

- Colorectal cancer microbiome is well-studied in Western developed settings, but under-explored in developing settings
- Enrolled 43 CRC patients (cases) and 25 patients with colorectal polyps (controls) in Ho Chi Minh City
- Collected saliva, tissues from gut (excised tumour and nontumour sites for cases; polyp and non-polyp biopsy from controls)

ARTICLE OPEN

Tran et al., npj Biofilms and Microbiomes, 2022

Tumour microbiomes and *Fusobacterium* genomics in Vietnamese colorectal cancer patients

Hoang N. H. Tran 61,11, Trang Nguyen Hoang Thu^{1,11}, Phu Huu Nguyen², Chi Nguyen Vo^{2,3}, Khanh Van Doan⁴, Chau Nguyen Ngoc Minh¹, Ngoc Tuan Nguyen², Van Ngoc Duc Ta², Khuong An Vu², Thanh Danh Hua², To Nguyen Thi Nguyen¹, Tan Trinh Van¹, Trung Pham Duc¹, Ba Lap Duong², Phuc Minh Nguyen², Vinh Chuc Hoang², Duy Thanh Pham^{1,5}, Guy E. Thwaites^{1,5}, Lindsay J. Hall 66,7,8</sup>, Daniel J. Slade⁹, Stephen Baker¹⁰, Vinh Hung Tran² and Hao Chung The 61

	CRC cases (<i>n</i> = 42)	Controls $(n=21)$	<i>p</i> -value
Age	64 [54–69]	60 [53–66]	0.359
Male sex	62%	76%	0.395
вмі	22.9 [20.85–24.95]	22.2 [21.1–23.4]	0.387
Overweight/obesity ^a	47.60%	33%	0.409
Diabetes	19%	19%	1
High blood pressure	52%	47.60%	0.79
Active smoking in the last two years	21.40%	19%	1
Oral diseases ^b	33%	38%	0.782
Family history of cancer	19%	19%	1
Location of sampled mucosa			0.533
Descending colon	7	3	
Sigmoid colon	28	12	
Rectum	7	6	
Size of tumour/polyp (cm)	5 [4–5.75]	1 [0.7–1.2]	
TNM stage of cancer	II (18), III (20), IV (4)		
Polyp dysplasia grade		Low (4), none (17)	

Poor sequencing quality of 68 gut tissue microbiomes

16S rRNA sequencing:

- V4 region (315F 806R)
- 30 cycles of primary PCR
- Include mock and negative controls
- Library sequenced on Illumina MiSeq (250bp PE)

What is the likely cause of high adapter content?

To remove adapter sequences from raw fastq output

java -jar ~/local/Trimmomatic-0.36/trimmomatic-0.36.jar PE -phred33 \${x}_1.fastq.gz \${x}_2.fastq.gz \${x}_paired_1.fastq.gz \${x}_unpaired_1.fastq.gz \${x}_paired_2.fastq.gz \${x}_unpaired_2.fastq.gz | LLUMINACLIP:NexteraPE-PE.fa:2:30:10:6:true MINLEN:150

Forward reads

Reverse reads

Overview of tutorial data analysis

DADA2 pipeline in practice

Starting material: Paired-end fastq files

Steps:

- Filter and trim: remove low quality sections of reads, and primers
- Denoising: learn errors from own data and infer true sequences
- Merge: combine forward and reverse reads from each sample
- Chimera detection and removal

DADA2 Pipeline Tutorial (1.16)

Here we walk through version 1.16 of the DADA2 pipeline on a small multi-sample dataset. Our starting point is a set of Illumina-sequenced paired-end fastq files that have been split (or "demultiplexed") by sample and from which the barcodes/adapters have already been removed. The end product is an **amplicon sequence variant (ASV) table**, a higher-resolution analogue of the traditional OTU table, which records the number of times each exact amplicon sequence variant was observed in each sample. We also assign taxonomy to the output sequences, and demonstrate how the data can be imported into the popular phyloseg R package for the analysis of microbiome data.

Practical starts now

"If you don't reveal some insights soon, I'm going to be forced to slice, dice, and drill!"

After DADA2, what your output should be

Following each filtering step, the library size is getting shrunk

Filtered sequences are:

- Low sequencing quality
- Forward and reverse reads do not have sufficient overlapping
- Non-bacteria taxa
- PCR chimera

Phyloseq integrates microbiome related data

What should be input:

- OTU table: directly from ASV table after removal of nonbacterial taxa
- Taxonomy table: output from 'assignTaxonomy' function
- Phylogenetic tree: Read in tree built separately
- Sample metadata: csv file with rownames() matching sample_names()

phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data

Paul J. McMurdie, Susan Holmes*

Built-in plotting functions

Overview of tutorial data analysis

After phyloseq, your output should be

otu_table()

OTU	Table:	[5 taxa and 5 samples]					
		1	taxa are o	columns			
	seq00001	seq00002	seq00003	seq00004	seq00005		
B1	811	16	0	155	174		
B10	18108	0	0	6	11		
B11	658	0	0	12	558		
B12	1978	14	0	8480	117		
B13	688	13	0	698	13		

phy_tree()

sample_data()

4	Α	В	C	D	E	F	G
1	sample_ID	Group	sample_type	Patient	enrol_year	Age	sex
2	B1	control	biopsy	27EN_0001	NA	NA	NA
3	B10	control	biopsy	27EN_0010	2019	73	F
4	B11	control	biopsy	27EN_0011	2019	75	М
5	B12	control	biopsy	27EN_0012	2019	35	М
6	B13	control	biopsy	27EN_0013	2019	67	М

tax_table()

				_											
ID	₩	Kingdom	₩	Phylum	₩	Class	₩	Order	₩	Family	₩	Genus	₩	Species	w
seq00001		Bacteria		Pseudomonadota		Gammaproteobacteri	а	Enterobacterales		Enterobacteriaceae		Escherichia-Shigella		coli	
seq00002		Bacteria		Bacteroidota		Bacteroidia		Bacteroidales		Bacteroidaceae		Bacteroides		fragilis	
seq00003	:	Bacteria		Fusobacteriota		Fusobacteriia		Fusobacteriales		Leptotrichiaceae		Leptotrichia		NA	
seq00004	Ļ	Bacteria		Fusobacteriota		Fusobacteriia		Fusobacteriales		Fusobacteriaceae		Fusobacterium		mortiferu	ım
seq00005	,	Bacteria		Actinomycetota		Coriobacteriia		Coriobacteriales		Coriobacteriaceae		Collinsella		aerofacie	ens
seq00006	ì	Bacteria		Bacillota		Negativicutes		Veillonellales-Selen	on	Selenomonadaceae		Megamonas		NA	
seq00007	,	Bacteria		Pseudomonadota		Gammaproteobacteri	а	Enterobacterales		Enterobacteriaceae		Klebsiella		pneumon	iae
seq00008	;	Bacteria		Bacillota		Bacilli		Staphylococcales		Gemellaceae		Gemella		NA	
seq00009)	Bacteria		Bacteroidota		Bacteroidia		Bacteroidales		Bacteroidaceae		Bacteroides		vulgatus	

Overview of tutorial data analysis

Diversity indices

Alpha-diversity: for within-sample calculation

- Richness: number of taxa present in the sample
- Shannon index: combining richness with evenness

Beta-diversity: between-sample calculation

- Phylogenetic unaware: Bray-Curtis
- Phylogenetic aware: Unifrac, Weighted Unifrac, phylogenetic ILR (PhILR)

Credit: VMI Bootcamp

https://awbrooks19.github.io/vmi_microbiome_bootcamp/rst/4_concepts_of_community_analysis.html

Inspecting alpha-diversity

Beta-diversity

Bray-Curtis distance

Range [0 – 1]
No phylogenetic information

$$BC_d = \frac{\sum |x_i - x_j|}{\sum (x_i + x_j)}$$

Usually presented as a principal component plot

Unifrac distance (unweighted & weighted)

Range [0 – 1]

Accounting for phylogenetic relatedness

Distance is fraction of the total branch length that is unique to any sample

Microbiome data is compositional

Nature of 16S (microbiome) data:

- **Sparsity**: too many zero, usually >90% of the OTU table
- **Compositional**: sequenced reads represent proportion of the sampled microbiome, not absolute abundances
- High-dimensional: Many more taxa compared to samples

Operation	Standard approach	Compositional approach
Normalization	Rarefaction 'DESeq'	CLR ILR ALR
Distance	Bray-Curtis UniFrac Jenson- Shannon	Aitchison
Ordination	PCoA (Abundance)	PCA (Variance)
Multivariate comparison	perManova ANOSIM	perMANOVA ANOSIM
Correlation	Pearson Spearman	SparCC SpiecEasi Φ ρ
Differential abundance	metagenomSeq LEfSe DESeq	ALDEx2 ANCOM

Compositional data analysis

- Compositional data are summed to a fixed number
- Common statistical methods are not fit to be applied to compositional data, thus giving spurious results

Transform data into Euclidean space, suitable for standard statistical inferences

Phylogenetic Isometric log-ratio (PhILR) transform

Differential abundance analysis

- No best method. Each approach take assumptions and model/handle data differently
- Some methods can incorporate models to test for confounders
- Recommended to combine/intersect output from different methods for robustness

Feature	ANCOM-BC	DESeq2
Design	Compositional data	Originally for RNA-Seq
Bias correction	Correct for sampling bias	Count is abundance
False discovery rate	Better control	Prone to have inflated false positives
Model flexibility	Moderate	High with complex design
Sparsity handling	Moderately well	Option to include zero-inflated model (scRNA)

Revised from ChatGPT output

ARTICLE

https://doi.org/10.1038/s41467-022-28034-z

OPEN

Microbiome differential abundance methods produce different results across 38 datasets

Other tools to consider:

- ALDEx2 conservative, compositional
- MaAsLin2 complex study design

Q&A

