Oleart y Chen

Table of Contents

Apartat a	
Apartat c	 ļ
Apartat d)

Apartat a

```
n=3;
m = 600; %De prova
M = mat_lag(n, m);
```

Apartat b

```
m = 600;
n=3;
figure(1)
plot_lag(n, m)
hold off;
```


n = 6; figure(2) plot_lag(n,m) hold off;

n = 9;
figure(3)
plot_lag(n,m)
hold off;

Apartat c

```
n = 8;
M = mat_lag(n, m);
leb = lebesgue(M);
semilogy(z, leb)
```


n = 16;
M = mat_lag(n, m);
leb = lebesgue(M);
semilogy(z, leb)

n = 24;
M = mat_lag(n, m);
leb = lebesgue(M);
semilogy(z, leb)

n = 32;
M = mat_lag(n, m);
leb = lebesgue(M);
semilogy(z, leb)

Apartat d

```
z = generar_punts(m);
fz_j = f(z);
errors = [];
for n = 4:2:60
    x = generar_punts(n);
    M = mat_lag(n, m);
    fx_j = f(x);
    prod = M*fx_j';
    errors = [errors max(abs(fz_j - prod'))];
end

x = 4:2:60;
semilogy(x, errors);
hold on;
semilogy(x, epsil*eps);
```


Published with MATLAB® R2024a