

Software Engineering

Landscape depending parameter tuning for search-based software testing

by Kevin Haack

Thesis Supervisor: Dr. Thomas Vogel

Overview

- 1. Introduction
- 2. Fundamentals
- 3. Experimental setup
- 4. Adaptive parameter control
- 5. Evaluation
- 6. Conclusion

- 1. Introduction
- 2. Fundamentals
- 3. Experimental setup
- 4. Adaptive parameter control
- 5. Evaluation
- 6. Conclusion

Introduction

- software tests are essential
- target: maximize coverage (line, branch, exception)
- lack of sufficient tests
- costly and time-consuming
- using search-based software testing

Search-based software testing

- automatically generating unit tests
- sequence of method calls as search space
- maximizing coverage
- treat as: optimization problem
- using genetic algorithms

Motivation

- many tools solve this problem
- EvoSuite one of the bests in competitions [Panichella et al., 2020]
 - algorithm: DynaMOSA
 - fairly good, but not perfect [Arcuri and Briand, 2014]
- optimal only with optimal parameters (configuration)
- No Free Lunch theorem [Wolpert and Macready, 1997]
 - impossible to find optimal configuration

Research goal

- EvoSuite
 - good at: wide variety of problem-cases
 - bad at: some problem-cases
- concept landscape depending adaptive parameter control
- increase coverage of EvoSuite

State-of-the-art

- [Wetzler, 2020]: DynaMOSA sensitive for adaptive parameter control
- [Paterson et al., 2015]: parameter control can have a negative impact
- [Shamshiri and Rojas, 2015]: random can out-perform a genetic algorithm
- [Albunian, 2020]: landscape characteristics
 - Information Content (IC)
 - Neutrality Volume (NV)

Delimitation

- focus on DynaMOSA
- only implemented parameter
- limit the experiment size
- use landscape features from the literature

- 1. Introduction
- 2. Fundamentals
- 3. Experimental setup
- 4. Adaptive parameter control
- 5. Evaluation
- 6. Conclusion

Fitness function

- function for e.g. branch distance
- guidance for search algorithms


```
void bar(int x) {
   if (x == 1) {
      // uncovered code
```

Fitness landscape

- metaphor for the search space
- fitness value as height
- input as depth and width
- search for minima

[Harman, 2007]

Random Walk

- [Kauffman and Levin, 1987]
- used to describe landscape
- walk over landscape
- random unbiased steps

Long Jump

- [Kauffman and Levin, 1987]
- multiple steps
- landscape approximation

Genetic algorithm

- test = individual
- multiple tests = population
- start with random population
- iterate till termination condition
 - mutate and crossover
- return last generation

DynaMOSA

- [Panichella et al., 2017]
- genetic algorithm
- multiple target
- archive: keep track of target covering individuals

- dynamic target update
- archive update
- select by rank
- return archive as last generation

Parameter tuning and control

[Eiben et al., 1999]

- 1. Introduction
- 2. Fundamentals
- 3. Experimental setup
- 4. Adaptive parameter control
- 5. Evaluation
- 6. Conclusion

Corpus

SF110

- 110 open-source Java projects
- 23,894 Java Classes
- trivial and non-trivial

Panichella et al.

- 117 open-source Java projects
- 346 Java Classes
- non-trivial and complex
- often used

Samples

 S_1

- for training prediction
- corpus: SF110
- randomly selected
- 709 Java Classes
- 9.8 days

 S_2

- for evaluation
- corpus: Panichella
- all classes
- 346 Java Classes
- 4.8 days

 S_3

- for parameter search
- corpus: SF110
- high stdev
- 20 Java Classes
- 6.6 hours

Comparisons

- multiple experiments
- executed on 3 identical machines
- 30 repeats for every Java Class
- Mann-Whitney U-test
- Vargha-Delaney effect size \hat{A}_{12}

- 1. Introduction
- 2. Fundamentals
- Experimental setup
- 4. Adaptive parameter control
- 5. Evaluation
- 6. Conclusion

Concept

- use the beginning of the search to explore the search space
- classify the current search
 - percentage of classification (POC)
 - two classes: "adjust" and "default"
- use configuration depending on class

Configuration selection

Components

Landscape features

Landscape approximation

- random walk is time-consuming
- instead: using the first generations
- "long jump" instead a step [Kauffman and Levin, 1987]
- approximation of the landscape

Fitness

- ratio between:
 - current fitness value
 - maximum observed value
- range of [0, 1]
- high ratio: good performing
- low ratio: bad performing

Gradient branches

- [Shamshiri and Rojas, 2015]
- Byte-code analysis
- branch distance to be covered
- some branches without distance
- ratio between:
 - branches with gradient
 - branches without gradient
- range of [0, 1]
- high ratio: guidance
- low ratio: no guidance

Neutrality Volume

- [Albunian, 2020]
- neutral: no guidance
- based on fitness sequence S
- NV
 - fitness changes in S
 - depending on steps
- *NV*_{Ratio}:
 - range of [0, 1]

Example: Neutrality Volume

$$S = \{1, 1, 0, 1, 1, 1, 1, 1\}$$
 (1)

$$NV = 3$$
 (2)

$$NV_{Ratio} = \frac{NV}{\#ofsteps} = \frac{3}{8} = 0.375$$
 (3)

Information Content

- [Vassilev et al., 2000]
- lacktriangle how many information is needed to construct S

Classification target

Targets

- Coverage improvement by parameter
 - example: *pop* = 125
 - time-consuming experiments necessary
- instead: use data of one experiment
- targets approximations
 - Low end coverage
 - High standard deviation
 - Relative low coverage

Targets

target	n in class
cov. < max(cov.) * 0.8	447
endcov. < 0.8	6687
<i>stdev</i> > 0.1	541
stdev > 0	6046
p = 125	1735
stdev > 0.1 & cov. < max(cov.) * 0.8	256
stdev > 0 & cov. < max(cov.) * 0.8	447
stdev > 0.1 & endcov. < 0.8	391
$_{\text{APC}}$, $p_{\text{APC}} = 125 \ \& \ cov. < max(cov.) * 0.8$	254

Classification

Length of Exploration Phase

- compare landscape features ever 10%
- using Euclidean distance
- trade-off between
 - time for exploration
 - time for adjusted configuration
- between 20 and 40% from search (percentage of classification)

Machine learning algorithm

- binary classification
- supervised learning
- fast classification
- few features
- decision tree

Hyper-parameter search

- only apply on as many as possible
 - TPR > 80%
- only apply if positive effect
 - FPR < 5%
- percentage of classification (POC)
- construction criteria (Gini Impurity, Entropy or Log-Loss)
- depth of decision tree

Component selection

Decision tree

■ *stdev* > 0.1&*cov.max*(*cov.*) * 0.8

■ depth of decision tree: 2

■ Gini Impurity

■ POC: 30%

Parameter selection

Parameter selection

- many EvoSuite parameter
- nearly infinite possible combinations
- small-scale experiments
- using small sample S₃

Influence on runtime

Event probability

- runtime in relation to event probability
 - insert
 - mutate
 - crossover
- trade-off
 - fitness evaluation
 - event occurrence

$$P_{adj}(e) = \frac{n_1 P_1(e) + n_2 P_2(e)}{n_1 + n_2}$$
(4)

$$\hat{P}(e) = \sum_{i=k}^{n} \frac{n!}{i!(n-i)!} P_{adj}(e)^{i} (1 - P_{adj}(e))^{n-i}$$
 (5)

Component selection

			P_{adj}			\hat{P} for	k = 5			
configuration	gen.	n	mut.	cross.	ins.	mut.	cross.	ins.	<i>n</i> _+	n
default	853	9	0.95	0.68	0.05	1.0	0.87	0.0		
p = 25	1,263	13	0.96	0.69	0.04	1.0	1.0 /	0.0	0	0
p = 125	572	6	0.95	0.68	0.04	0.77	0.15	0.0	3	0
cr = 0.0	841	8	0.95	0.0	0.05	1.0	0.0	0.0	1	0
cr = 1.0	849	8	0.95	0.95	0.05	1.0	1.0 /	0.0	0	0
bias = 2.0	912	9	0.95	0.68	0.05	1.0	0.88 /	0.0	1	0
bias = 1.01	824	8	0.95	0.68	0.05	1.0	0.77	0.0	0	0
pti = 0.0	1,154	12	1.0	0.75	0.0	1.0	1.0 /	0.0	0	4
pti = 0.2	770	8	0.92	0.63	0.08	1.0	0.66	0.0	0	0
p = 10, $pti = 5.0$	912	9	0.58	0.13	0.42	0.69	0.0	0.31 /	3	0
p = 25, pti = 1.0	777	8	0.75	0.38	0.25	0.89	0.14	0.03 /	4	0

- 1. Introduction
- 2. Fundamentals
- 3. Experimental setup
- 4. Adaptive parameter control
- 5. Evaluation
- 6. Conclusion

Classification

Known sample S₁

- \blacksquare trained on S_1
- test on S_1
- TPR of 86%
- FPR of 8%
- acceptable reliability

Unknown sample S₂

- trained on S₁
- \blacksquare test on S_2
- TPR of 21%
- FPR of 7%
- not reliability

Adaptive parameter control

Known sample S_1

	covera	overage DynaMOSA		ge APC-DynaMOSA			
CUT	mean	std	mean	std	\hat{A}_{12}	p-value	
o.d.j.m.AbstractDBObject	0.951	0.018	0.960	0.039	0.880	0.000	7
d.o.f.g.s.RoundStatsDiagram	0.505	0.466	0.000	0.000	0.935	0.000	>
c.a.a.c.d.t.u.i.p.DHTUDPPacketHandlerStats	0.909	0.010	0.894	0.020	0.917	0.001	>
o.p.g.d.VisualPageListItem	0.112	0.001	0.113	0.002	0.933	0.003	7
n.s.s.c.s.a.RollbackAction	0.170	0.320	0.000	0.000	0.935	0.006	>
f.v.n.m.b.s.p.w.p.GetParametersForm	0.111	0.152	0.219	0.146	0.935	0.008	7
d.h.l.e.i.e.AbstractMessageBasedEventProducer	0.426	0.018	0.439	0.023	0.913	0.020	7
c.i.s.LocalFileBrowser	0.126	0.128	0.194	0.109	0.902	0.034	7
o.j.j.a.c.a.IndexedAceFileDataStore	0.196	0.002	0.195	0.000	0.902	0.042	>
n.s.s.f.g.ErrorDialog	0.021	0.073	0.126	0.138	0.611	0.046	7

Adaptive parameter control I

Unknown sample S₂

	covera	coverage DynaMOSA		ge APC-DynaMOSA			
CUT	mean	std	mean	std	\hat{A}_{12}	p-value	
c.g.f.FtpApplet	0.065	0.066	0.099	0.056	0.567	0.034	7
o.a.c.m.d.DfpDec	0.013	0.038	0.034	0.057	0.278	0.077	
c.g.j.r.j.RecordType	0.835	0.019	0.834	0.012	0.278	0.126	
o.o.s.a.u.UpdateUserPanel	0.009	0.051	0.037	0.097	0.588	0.169	
n.s.j.m.a.q.TemplateUserTitles	0.055	0.064	0.077	0.064	0.750	0.203	
c.g.c.b.Predicates	0.510	0.039	0.519	0.037	0.317	0.414	
c.e.s.j.Room3D	0.083	0.120	0.108	0.126	0.671	0.435	
t.TwitterBaseImpl	0.551	0.010	0.548	0.022	0.720	0.734	
g.a.GroupAgent	0.723	0.075	0.734	0.071	0.700	0.873	

Selected configuration

Unknown sample S₂

	coverage default		coverage adjusted config.				
CUT	mean	std	mean	std	\hat{A}_{12}	p-value	
n.s.s.m.x.TableMeta	0.880	0.048	0.291	0.346	0.902	0.000	$\overline{}$
n.v.a.g.r.RobotRenderer	0.628	0.094	0.729	0.146	0.902	0.004	7
m.s.SSHSCPGUIThread	0.418	0.133	0.527	0.133	0.902	0.000	7
$o.a.c.m.d.f. \\ Multivariate Normal \\ Mixture \\ Expectation \\ Maximization$	0.527	0.028	0.684	0.026	0.902	0.000	7

- Introduction
- 2. Fundamentals
- 3. Experimental setup
- 4. Adaptive parameter control
- 5. Evaluation
- 6. Conclusion

Conclusion

- concept of APC-DynaMOSA
- pre-selected configuration
- pre-trained classification model
- mixed results improved and degraded Java classes

Future work

- "long jump" approach
- landscape feature
- real world use
- Fitness function for guidance

Bibliography I

- Albunian, N. (2020).

 An Investigation of Search Behaviour in Search-Based Unit Test Generation.

 PhD thesis.
- Arcuri, A. and Briand, L. (2014).
 A hitchhiker's guide to statistical tests for assessing randomized algorithms in software engineering.
 Software Testing, Verification and Reliability, 24(3):219–250.
- Eiben, A. E., Hinterding, R., and Michalewicz, Z. (1999). Parameter control in evolutionary algorithms.
- Harman, M. (2007).
 The current state and future of search based software engineering. In Future of Software Engineering (FOSE '07). IEEE.

Bibliography II

- Kauffman, S. and Levin, S. (1987). Towards a general theory of adaptive walks on rugged landscapes, volume 128.
- Panichella, A., Campos, J., and Fraser, G. (2020). Evosuite at the sbst 2020 tool competition. In Proceedings of the IEEE/ACM 42nd International Conference on Software Engineering Workshops, ACM Digital Library, pages 549-552, New York, NY, United States, Association for Computing Machinery,
- Panichella, A., Kifetew, F., and Tonella, P. (2017). Automated test case generation as a many-objective optimisation problem with dynamic selection of the targets. IEEE Transactions on Software Engineering, pages 122–158.

Bibliography III

- Paterson, D., Turner, J., White, T., and Fraser, G. (2015). Parameter control in search-based generation of unit test suites. pages 141-156. Springer, Cham.
- Shamshiri, S. and Rojas, J. M. (2015). Random or genetic algorithm search for object-oriented test suite generation?
- Vassilev, V. K., Fogarty, T. C., and Miller, J. F. (2000). Information characteristics and the structure of landscapes. Evolutionary computation, 8(1):31–60.
- Wetzler, K. (2020). Analyzing parameter control in search-based test case generation techniques.

Bibliography IV

Wolpert, D. H. and Macready, W. G. (1997).

No free lunch theorems for optimization.

IEEE Transactions on Evolutionary Computation, pages 67–82.

