ElGamal Signature

- KeyGen (1ⁿ); choose a large prime
$$p$$
 and $g \stackrel{L}{\Leftarrow} \mathbb{Z}_p^*$.

choose a secret key $s \stackrel{L}{\Leftarrow} \mathbb{Z}_p^*$.

compute $y = g^s \mod p$.

output $pk = (p, g, y)$ and $sk = (s)$.

- Sign (sk, m); choose a roundom
$$r \leftarrow \mathbb{Z}_r^k$$
.

compute $\sigma_i = g^r \mod p$

$$\sigma_2 = r^{-1}(m - s \cdot \sigma_i) \mod p - 1 \cdot m = s\sigma_1 + r\sigma_2 \quad (p-1)$$
output (m, σ) where $r = (\sigma_i, \sigma_2)$.

- Verify (pk. m. v); compute
$$g_1 = y^{01} \cdot 0$$
; $g_2 = g^m \mod p$
if $g_1 \equiv g_2 \mod p$, output 1.
if $g_1 \neq g_2 \mod p$, output 0.

$$g_2 \equiv g^m \equiv g^{sor+ros}$$

$$g_3 \equiv g^m \equiv g^{sor+ros} \mod p$$
.

Suppose the same random r is used to generate (signatures for $m_1 \neq m_{20}$.

Then, σ_1 is the same in both signature.

Since σ_2 is different, call them σ_2 and σ_2' .

Then, $\sigma_1 = -s\sigma_1 = \sigma_2'r - m_2 \mod p-1$. $\sigma_2 = \sigma_2' = m_1 - m_2 \mod p-1$.

Let $\sigma_2 = \sigma_2 = \sigma_1 = \sigma_2 = \sigma_2$