

REPASO DE PROBABILIDAD Y ESTADÍSTICA I

ALAN REYES-FIGUEROA
ELEMENTS OF MACHINE LEARNING

(AULA 02) 12.ENERO.2023

Construcción. Punto de partida: un experimento

• Resultado del experimento es $\omega \in \Omega \leadsto$ espacio muestral.

Construcción. Punto de partida: un experimento

- Resultado del experimento es $\omega \in \Omega \iff$ espacio muestral.
- Interés en ciertos eventos A

$$ightsquigarrow \sigma-$$
álgebra

Construcción. Punto de partida: un experimento

- Resultado del experimento es $\omega \in \Omega \leadsto$ espacio muestral.
- Interés en ciertos eventos A $\sim \sigma$ -álgebra
- Una probabilidad $\mathbb P$ es una función sobre ciertos eventos $\mathbb P: A \mapsto \mathbb R$.

Construcción. Punto de partida: un experimento

- Resultado del experimento es $\omega \in \Omega \leadsto$ espacio muestral.
- Interés en ciertos eventos A $\sim \sigma \acute{a}lgebra$
- Una probabilidad $\mathbb P$ es una función sobre ciertos eventos $\mathbb P: A \mapsto \mathbb R$.

Ejemplo 1

Experimento: lanzar un dado.

Construcción. Punto de partida: un experimento

- Resultado del experimento es $\omega \in \Omega \leadsto$ espacio muestral.
- Interés en ciertos eventos A $\sim \sigma$ -álgebra
- Una probabilidad $\mathbb P$ es una función sobre ciertos eventos $\mathbb P$: $\mathsf A \mapsto \mathbb R$.

Ejemplo 1

Experimento: lanzar un dado.

$$\Omega = \{\text{1}, \text{2}, \text{3}, \text{4}, \text{5}, \text{6}\} = [\text{1}..6]$$

Construcción. Punto de partida: un experimento

- Resultado del experimento es $\omega \in \Omega \leadsto$ espacio muestral.
- Interés en ciertos eventos A $\sim \sigma$ -álgebra
- Una probabilidad $\mathbb P$ es una función sobre ciertos eventos $\mathbb P$: $\mathsf A \mapsto \mathbb R$.

Ejemplo 1

Experimento: lanzar un dado.

$$\Omega = \{1, 2, 3, 4, 5, 6\} = [1..6]$$

Algunos eventos

Representación	Evento
$A_1 = \{2, 4, 6\}$	obtener un número par
$A_2 = \{3\}$	obtener 3
$A_3 = \{1, 2, 4, 5\}$	obtener un número no múltiplo de 3

Construcción. Punto de partida: un experimento

- Resultado del experimento es $\omega \in \Omega \leadsto$ espacio muestral.
- Interés en ciertos eventos A $\sim \sigma$ -álgebra
- Una probabilidad $\mathbb P$ es una función sobre ciertos eventos $\mathbb P$: $\mathsf A \mapsto \mathbb R$.

Ejemplo 1

Experimento: lanzar un dado.

$$\Omega = \{1, 2, 3, 4, 5, 6\} = [1..6]$$

Algunos eventos

Representación	Evento
$A_1 = \{2, 4, 6\}$	obtener un número par
$A_2 = \{3\}$	obtener 3
$A_3 = \{1, 2, 4, 5\}$	obtener un número no múltiplo de 3

Ejemplo 2

Experimento: lanzar dos dados.

Ejemplo 2

Experimento: lanzar dos dados.

$$\Omega = \{(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),\ldots,(5,6),(6,6)\}$$

Ejemplo 2

Experimento: lanzar dos dados.

$$\Omega = \{(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),\ldots,(5,6),(6,6)\}$$

Probablemente aquí sea más simple representarlo como

$$\Omega = \{(a, b) : a, b \in [1..6]\} = [1..6] \times [1..6]$$

Ejemplo 2

Experimento: lanzar dos dados.

$$\Omega = \{(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),\dots,(5,6),(6,6)\}$$

Probablemente aquí sea más simple representarlo como

$$\Omega = \{(a,b) : a,b \in [1..6]\} = [1..6] \times [1..6]$$

Algunos eventos

Representación	Evento
$A_1 = \{(1,6), (2,5), (3,4), \dots, (6,1)\}$	que los dados sumen 7
$A_2 = \{(1,3), (3,1), \ldots, (6,3), (3,6)\}$	que aparezca al menos un 3

Ejemplo 2

Experimento: lanzar dos dados.

$$\Omega = \{(1,1), (1,2), (1,3), (1,4), (1,5), (1,6), (2,1), \dots, (5,6), (6,6)\}$$

Probablemente aquí sea más simple representarlo como

$$\Omega = \{(a,b) : a,b \in [1..6]\} = [1..6] \times [1..6]$$

Algunos eventos

Representación	Evento
$A_1 = \{(1,6), (2,5), (3,4), \dots, (6,1)\}$	que los dados sumen 7
$A_2 = \{(1,3), (3,1), \ldots, (6,3), (3,6)\}$	que aparezca al menos un 3

Otros espacios asociados: $\Omega_1 = [1..6]$, ¿Cuál es el mínimo de los dos dados?

Otros ejemplos (para pensar)

Especificar un espacio muestral para los siguientes experimentos:

- a) Lanzar una moneda.
- b) Lanzar una moneda hasta que aparezca "cruz".
- c) Distancia recorrida por un automóvil con un litro de gasolina.
- d) Señal de radio que se recibe durante dos segundos.
- e) Juego entre tres jugadores: *P*, *Q* y *R*. El juego consiste en jugar partidas por parejas, comenzando *P* contra *Q*. Quien gane un partida juega con el otro jugador, hasta que uno de los jugadores gane dos partidas consecutivas, ganando entonces el juego.

Pregunta: ¿Cómo definir \mathbb{P} ? ¿Cómo interpretarla?

Pregunta: ¿Cómo definir ℙ? ¿Cómo interpretarla?

Definición (Espacio de probabilidad)

Un **espacio de probabilidad** es una estructura $(\Omega, \mathcal{F}, \mathbb{P})$, donde

- Ω es un conjunto (no vacío). Los elementos $\omega \in \Omega$ se llaman eventos.
- $\mathcal{F} \subseteq \Omega$ es una σ -álgebra.
- $\mathbb{P}: \mathcal{F} \to [0,1]$ es una medida de probabilidad.

Definición

Una σ -**álgebra** $\mathcal F$ sobre un conjunto Ω es una colección de subconjuntos de Ω que satisface:

- $\Omega \in \mathcal{F}$;
- $A \in \mathcal{F} \Rightarrow A^c \in \mathcal{F}$ (es cerrada bajo complementos);
- $A_i \in \mathcal{F}$, para $i = 1, 2, ... \Rightarrow \bigcup_i A_i \in \mathcal{F}$ (es cerrada bajo uniones enum).

Definición

Una σ -**álgebra** $\mathcal F$ sobre un conjunto Ω es una colección de subconjuntos de Ω que satisface:

- $\Omega \in \mathcal{F}$;
- $A \in \mathcal{F} \Rightarrow A^c \in \mathcal{F}$ (es cerrada bajo complementos);
- $A_i \in \mathcal{F}$, para $i = 1, 2, ... \Rightarrow \bigcup_i A_i \in \mathcal{F}$ (es cerrada bajo uniones enum).

Definición

Una función $\mathbb{P}:\mathcal{F}\to [0,1]$ es una **medida de probabilidad** si

- $\mathbb{P}(\emptyset) = 0$, $\mathbb{P}(\Omega) = 1$;
- para cualquier colección enumerable de eventos exclusivos $E_i \in \mathcal{F}$, vale

$$\mathbb{P}\Big(\bigcup E_i\Big) = \sum \mathbb{P}(E_i)$$
 (enumerablemente aditiva).

Axiomas de la probabilidad, introducidos por Kolmogorov en 1933.

Sea $(\Omega, \mathcal{F}, \mathbb{P})$ un espacio de medida con $\mathbb{P}(E)$ la probabilidad de un evento $E \in \mathcal{F}$. Asumimos los siguientes supuestos para \mathbb{P} :

Axiomas

Axiomas de la probabilidad, introducidos por Kolmogorov en 1933.

Sea $(\Omega, \mathcal{F}, \mathbb{P})$ un espacio de medida con $\mathbb{P}(E)$ la probabilidad de un evento $E \in \mathcal{F}$. Asumimos los siguientes supuestos para \mathbb{P} :

Axiomas

1. $\mathbb{P}(E) \geq 0$, $\forall E \in \mathcal{F}$ (no-negativa).

Axiomas de la probabilidad, introducidos por Kolmogorov en 1933.

Sea $(\Omega, \mathcal{F}, \mathbb{P})$ un espacio de medida con $\mathbb{P}(E)$ la probabilidad de un evento $E \in \mathcal{F}$. Asumimos los siguientes supuestos para \mathbb{P} :

Axiomas

- 1. $\mathbb{P}(E) \geq 0$, $\forall E \in \mathcal{F}$ (no-negativa).
- 2. $\mathbb{P}(E)$ es siempre finita, y $\mathbb{P}(\Omega) = 1$ (unitariedad).

Axiomas de la probabilidad, introducidos por Kolmogorov en 1933.

Sea $(\Omega, \mathcal{F}, \mathbb{P})$ un espacio de medida con $\mathbb{P}(E)$ la probabilidad de un evento $E \in \mathcal{F}$. Asumimos los siguientes supuestos para \mathbb{P} :

Axiomas

- 1. $\mathbb{P}(E) \geq 0$, $\forall E \in \mathcal{F}$ (no-negativa).
- 2. $\mathbb{P}(E)$ es siempre finita, y $\mathbb{P}(\Omega) = 1$ (unitariedad).
- 3. Cualquier colección enumerable y mutuamente excluyente de eventos $E_i \in \mathcal{F}$, satisface

$$\mathbb{P}\Big(\bigcup_{i=1}^{\infty} E_i\Big) = \sum_{i=1}^{\infty} \mathbb{P}(E_i), \qquad (\sigma\text{-aditiva}).$$

Propiedades

Si \mathbb{P} es una medida de probabilidad sobre Ω , entonces

1. (Monotonicidad) Si $A \subseteq B$ son eventos, entonces $\mathbb{P}(A) \leq \mathbb{P}(B)$.

Propiedades

- 1. (Monotonicidad) Si $A \subseteq B$ son eventos, entonces $\mathbb{P}(A) \leq \mathbb{P}(B)$.
- 2. (Conjunto vacío) $\mathbb{P}(\emptyset) = 0$.

Propiedades

- 1. (Monotonicidad) Si $A \subseteq B$ son eventos, entonces $\mathbb{P}(A) \leq \mathbb{P}(B)$.
- 2. (Conjunto vacío) $\mathbb{P}(\emptyset) = 0$.
- 3. (Complemento) $\mathbb{P}(A^c) = 1 \mathbb{P}(A)$, para todo evento $A \in \mathcal{F}$.

Propiedades

- 1. (Monotonicidad) Si $A \subseteq B$ son eventos, entonces $\mathbb{P}(A) \leq \mathbb{P}(B)$.
- 2. (Conjunto vacío) $\mathbb{P}(\emptyset) = 0$.
- 3. (Complemento) $\mathbb{P}(A^c) = 1 \mathbb{P}(A)$, para todo evento $A \in \mathcal{F}$.
- 4. (Cotas para \mathbb{P}) Para todo evento $E \in \mathcal{F}$, $O \leq \mathbb{P}(E) \leq 1$.

Propiedades

- 1. (Monotonicidad) Si $A \subseteq B$ son eventos, entonces $\mathbb{P}(A) \leq \mathbb{P}(B)$.
- 2. (Conjunto vacío) $\mathbb{P}(\emptyset) = 0$.
- 3. (Complemento) $\mathbb{P}(A^c) = 1 \mathbb{P}(A)$, para todo evento $A \in \mathcal{F}$.
- 4. (Cotas para \mathbb{P}) Para todo evento $E \in \mathcal{F}$, $O \leq \mathbb{P}(E) \leq 1$.
- 5. $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) \mathbb{P}(A \cap B)$.

Sea $\Omega = \{\omega_1, \omega_2, \dots, \omega_k\}$.

Sea $\Omega = \{\omega_1, \omega_2, \dots, \omega_k\}$.

<u>Distribución de conteo o distribución uniforme</u>: Corresponde a elegir un elemento al azar.

Para cada $A \subseteq \Omega$, se tiene

$$\mathbb{P}(A) = |A|/|\Omega| = |A|/k.$$

Sea $\Omega = \{\omega_1, \omega_2, \dots, \omega_k\}$.

<u>Distribución de conteo o distribución uniforme</u>: Corresponde a elegir un elemento al azar.

Para cada $A \subseteq \Omega$, se tiene

$$\mathbb{P}(A) = |A|/|\Omega| = |A|/k.$$

En particular, $\sin A_i = \{\omega_i\}$, entonces

$$\mathbb{P}(\omega_i) = \mathbb{P}(\{\omega_i\}) = 1/k.$$

Sea $\Omega = \{\omega_1, \omega_2, \dots, \omega_k\}$.

<u>Distribución de conteo o distribución uniforme</u>: Corresponde a elegir un elemento al azar.

Para cada $A \subseteq \Omega$, se tiene

$$\mathbb{P}(A) = |A|/|\Omega| = |A|/k.$$

En particular, $\sin A_i = \{\omega_i\}$, entonces

$$\mathbb{P}(\omega_i) = \mathbb{P}(\{\omega_i\}) = 1/k.$$

Caso general: Suponga que $\mathbb{P}(\omega_i) = \mathbb{P}(\{\omega_i\}) = p_i$, para i = 1, 2, ..., k. Entonces

Sea $\Omega = \{\omega_1, \omega_2, \dots, \omega_k\}$.

<u>Distribución de conteo o distribución uniforme</u>: Corresponde a elegir un elemento al azar.

Para cada $A \subseteq \Omega$, se tiene

$$\mathbb{P}(A) = |A|/|\Omega| = |A|/k.$$

En particular, $\sin A_i = \{\omega_i\}$, entonces

$$\mathbb{P}(\omega_i) = \mathbb{P}(\{\omega_i\}) = 1/k.$$

Caso general: Suponga que
$$\mathbb{P}(\omega_i) = \mathbb{P}(\{\omega_i\}) = p_i$$
, para $i = 1, 2, ..., k$. Entonces

$$\mathbb{P}(A) = \sum_{i \in A} p_i$$

Referencias

• Lefebvre. Basic Probability Theory with Applications. Springer.

