Somach finden wir:

DER PHYSIK UND CHEMIE.

durch den Harrissellant XIX tunisalization of daugh

I. Vom dynamischen Gleichgewicht der Elektricität in einer Ebene oder einem Körper; vom Dr. VV. Smaasen in Utrecht.

W enn die Elektricität durch einen Draht in eine Ebene oder einen Körper überströmt, und sie kann sich daselbst frei ausbreiten, so ist die Vertheilung im ersten Moment eine veränderliche, von der Zeit abhängige; allein bald geht dieser Zustand in einen anderen über, der, wiewohl er auch nach den Coordinaten verschieden sevn kann, doch von der Zeit unabhängig ist. Dieser Beharrungszustand, den wir dynamisches Gleichgewicht nennen wollen, ist es, mit dem wir uns insbesondere beschäftigen werden. Zuvörderst werde ich suchen, die zum dynamischen Gleichgewicht der Elektricität in einer Ebene oder einem Körper erforderlichen Bedingungen anzugeben, um sie zweitens auf die Vertheilung der Elektricität in einer unbegränzten Ebene anzuwenden, eine Aufgabe, deren Lösung zuerst von Hru. Kirchhoff in einer schönen Abhandlung in diesen Annalen (Bd. 64, S. 497) geliefert worden ist.

 Von den Fundamentalgleichungen des dynamischen Gleichgewichts der Elektricität in einer Ebene oder einem Körper.

Betrachten wir zunächst die Elektricitätsmenge Γ , welche in der Zeiteinheit einen unendlich kleinen Querschnitt eines Körpers durchströmt. Wir nennen sie Elektricitätsfluth, nach Analogie mit dem Ausdruck "flux de chaleur", den Poisson in die mathematische Physik eingeführt hat. Sey d der unendlich kleine Querschnitt winkelrecht auf der Lime, welche die beiden Molecule E und E' verbindet.

Wir können diese von solcher Größe annehmen, daß die durch den Durchschnitt d strömende Elektricität nur aus ihrer Wirkung entspringt. Die durch d strömende Elektricität ist proportional erstlich einer unbekannten Function α der Coordinaten E(x, y, z) und $E'(x+\Delta x, y+\Delta y, z+\Delta z)$, zweitens dem Unterschiede $\Delta \varphi$ ihrer Spannungen, und drittens den Volumen M und M' der Molecüle.

Sonach finden wir:

$$\Gamma = \alpha M M' A \varphi$$

Wenn der Spannungsunterschied $\Delta q=1$ ist, so wird die Elektricitätsfluth $\alpha MM'$ seyn, und das Product aus dieser Fluth in den Abstand δ der Molecüle wird vorstellen, was man Leitungsfähigkeit (k) der Materie nennt; denn es ist klar, dass die Leitungsfähigkeit in demselben Verhältniss wachsen wird als der Abstand δ , wenn die Quantität der fortgepflanzten Elektricität dieselbe bleibt. Sonach ist:

$$k = \alpha M M' \delta$$

$$\Gamma = \frac{k \Delta \varphi}{\delta}$$

und man hat auch:

$$\Delta \varphi = \frac{d\varphi}{dx} \Delta x + \frac{d\varphi}{dy} \Delta y + \frac{d\varphi}{dz} \Delta z$$
.

Seyen α , β , γ die Winkel, welche die Normale des Querschnitts d mit den drei Coordinataxen macht. Dann hat man:

$$\frac{dx}{\delta} = -\cos\alpha , \frac{dy}{\delta} = -\cos\beta , \frac{dz}{\delta} = -\cos\gamma.$$

folglich:

$$\Gamma = -k \left\{ \frac{d\varphi}{dz} \cos \alpha + \frac{d\varphi}{dy} \cos \beta + \frac{d\varphi}{dz} \cos \gamma \right\}$$

Daraus ergiebt sich leicht die Gleichung des dynamischen Gleichgewichts der Elektricität in einem Körper:

$$\frac{d^2\varphi}{dx^2} + \frac{d^2\varphi}{dy^2} + \frac{d^3\varphi}{dx^2} = 0$$
und in einer Ebene:
$$\frac{d^2\varphi}{dx^2} + \frac{d^2\varphi}{dy^3} = 0$$
(1)

Will man die äußere Leitungsfähigkeit oder die der Ebene von der Luft entzogene Elektricitätsmenge berück-

sichtigen, und dabei diese Menge proportional der Spannung irgend eines Punkts der Ebene setzen, so findet man für das dynamische Gleichgewicht die Gleichung:

a. At 9 and the master
$$\frac{d^2\varphi}{dx^2} + \frac{d^2\varphi}{dy^2} = 1^3q$$
 and slipt . In talk (2)

wo λ² ein Bruch ist, der zum Zähler die äußere Leitungsfähigkeit hat, und zum Nenner das Product aus der inneren Leitungsfähigkeit in den Abstand der Ebenen, zwischen welchen die Elektricität circulirt.

Es ist leicht zu beweisen, dass die sich bewegende Elektricität betrachtet werden kann als zertheilt in eine Unendlichkeit secundärer Ströme. Um diess zu zeigen, beschreiben wir um irgend einen Punkt P (Taf. II, Fig. 7), dessen Coordinaten x, y sind, als Centrum einen Kreis mit einem unendlich kleinen Radius $= \varrho$; sey φ die Spannung des Punktes P und φ' die Spannung eines Punkts Q auf dem Umfang des Kreises. Sey PR parallel der Axe der x und sey der Winkel $RPQ = \vartheta$, so werden die Coordinaten des Punktes Q seyen:

und die Spannung des Punktes Q wird gegeben durch die Formel:

$$\varphi' = \varphi + \frac{d\varphi}{dx} \varrho \cos \vartheta + \frac{d\varphi}{dy} \sin \varrho \sin \vartheta.$$

Die Linie PQ kann man so wählen, dass der Spannungsunterschied $\varphi'-\varphi$ der Punkte P und Q ein Maximum ist; der Winkel ϑ wird dann gegeben durch die Formel:

then
$$y = 0$$
 and $y = 0$ and

Läfst man die Coordinataxen sich solchergestalt drehen, dass die Linie PR zusammensällt mit PQ, so hat man $\theta = 0$ und $\frac{d\varphi}{dy} = 0$, und die Spannung φ'' eines Punktes Q', des-

sen Radius vector den Winkel &' mit PR macht, wird name irgend ainer Punkts der Ebene setzen, so finder:nyes

80

da

die

M

lei

sch

nu

die

che

au

ma die

ch

Fu

üb

ein

pe

Ele

zei

nie

de

ma

de

ch

du

un

 $\varphi'' = \varphi + \frac{d\,\varphi}{d\,x}\,\varphi\cos\,\vartheta'.$

Klar ist, dass die diess- und jenseits der Linie PR, in gleichem Abstand vom Punkte Q liegenden Punkte gleiche Spannung besitzen, weil q" dasselbe bleibt, wenn man 3' in - 9' verwandelt. Es giebt also keinen Grund, weshalb die Elektricität sich von P lieber nach M als nach M' fortpflanzen solle, wenn diese Punkte gleichen Abstand vom Punkte Q besitzen, so dass die Elektricität sich nur längs der Linie PO fortpflanzen wird. Deshalb wird die Linie PO die Richtung des elektrischen Stroms in dem Punkte P seyn, und der Winkel 3, welchen diese mit der Axe der x macht, wird durch die Formel (3) gegeben.

Ist der Punkt Q' so gewählt, dass 3'=±90°, so hat man $\varphi' = \varphi$. Geht man also von einem gegebenen Punkte aus, so läfst sich eine Reihe von Punkten ziehen, welche gleiche Spannung besitzen, und deshalb Linien gleicher Spanat and sev det Winkel RFO= nung heifsen.

Die Linien gleicher Spannung und die elektrischen Ströme bilden demnach zwei Systeme rechtwinklicher Curven.

Eben so kann man beweisen, dass in einem Körper die Elektricität sich in Linien fortpflanzt, die man elektrische Ströme nennt. Um einen Punkt M (Taf. II, Fig. 8), dessen Coordinaten x, y, z sind, wollen wir als Centrum eine Kugel von dem Radius p construiren. Ziehen wir durch diesen Punkt drei Axen parallel den gegebenen Axen. Sey q die Spannung des Punktes M, q' die eines Punktes P, welcher so gewählt ist, dass $\varphi' - \varphi$ ein Maximum sev. Ist 9 der Winkel der Linie MP mit der Ebene der xy und y der Winkel, welchen die Projection der Linie MP auf die Ebene der xy mit der Axe der x macht, so hat man:

and
$$\frac{dq}{dy} = 0$$
, upo $\frac{(\mathbf{q} - \mathbf{q})\mathbf{b}}{\mathbf{q}\mathbf{b}} = (\mathbf{q} - \mathbf{q})\mathbf{b}$ es Punktes Q , des

so findet man:

we define the man
$$\frac{d\varphi}{dx}$$
 of the land $\frac{d\varphi}{dx}$ of $\frac{d\varphi}{d$

Auf dieselbe Weise wie oben läst sich nun zeigen, das die Linie MP die Richtung des elektrischen Stroms im Punkte M ist; also wird die Richtung des Stroms durch die Winkel \mathcal{G} und γ bestimmt. Legt man durch den Punkt M eine Ebene winkelrecht auf die Linie MP, so kann man leicht erweisen, das alle Punkte, welche in dem Durchschnitt dieser Ebene mit der Kugel liegen, dieselbe Spannung haben, wie der Punkt M; mithin wird diese Ebene die Richtung der durch den Punkt M gehenden Fläche gleicher Spannung anzeigen, und letztere also winkelrecht seyn auf dem elektrischen Strom.

nuncen, von denen dieser Suost afficirt seva winde, wenn

Bei den meisten Fragen der mathematischen Physik muß man noch Rücksicht nehmen auf andere Bedingungen, wie die, welche ausgedrückt wird durch die Fundamentalgleichung (1), deren allgemeines Integral durch unbestimmte Functionen gegeben wird. So muss man, bei der Frage über die Vertheilung der Elektricität in einer Ebene oder einem Körper, die Gränzen dieser Ebene oder dieses Körpers in Rechnung ziehen; man muss ausdrücken, dass die Elektricität sich nicht über diese Gränze hinaus fortpflanzen könne; man genügt ihr durch die Annahme, dass die Linien gleicher Spannung winkelrecht seven an den Gränzen der Ebene. Seven α und β die Winkel, welche die Normale der die Gränze der Ebene bestimmenden Curve mit den Axen der x und y macht, und 3 der Winkel, welchen die Tangente mit der Axe der x bildet, so hat man trode durch die der zweiten ge durch die Formel (3):

und die Bedingung der Gränzen ist:

 $\frac{d\varphi}{dx}\cos\alpha+\frac{d\varphi}{dy}\cos\beta=0\,,$

zu welcher man noch die Gleichung der Gränzcurve hinzufügen muß.

hi

co

tre

fli

80

die

Sp

tre

E

be

fü

gr

du

w

se

pl

Zweitens wird die Spannung der Elektrode eine gegebene Größe seyn, und man wird behaupten können, daß diese Größe im Allgemeinen, wegen der Kleinheit der Elektrode, für alle Punkte die nämliche Constante seyn werde. Wenn ihre Größe nicht mehr wegen der Dimensionen der Ebene zu vernachlässigen wäre, würde man nicht mehr dieselbe Voraussetzung machen können, und die Aufgabe würde verwickelter werden.

en win dar Punkt & milhin wird diese Ebene

Theorem. Wenn die Elektricität zu gleicher Zeit aus mehren Elektroden fließt, so wird die Spannung an irgend einem Punkte bestimmt durch eine Linearfunction der Spannungen, von denen dieser Punkt afficirt seyn würde, wenn die Elektricität nur aus jeden dieser Elektroden einzeln flösse.

Setzen wir, um dieses Thermo zu erweisen, dass die Elektricität nur aus einer einzigen Elektrode flösse, deren Spannung μ ist. Sey die Spannung irgend einer Ebene $= \varphi$; dieselbe wird eine Function dieser Coordinaten x, y und überdies der Größe μ proportional seyn, so dass man haben wird:

 $\varphi = \mu F(x, y).$

Sey φ , die Spannung desselben Punkts, wenn die Elektricität aus einer anderen Elektrode flösse, deren Spannung μ , ist; dann hat man:

 $\varphi = \mu_i F_i(x, y).$

Nun ist klar, dass wenn die Elektricität zugleich aus beiden Elektroden flösse, die Spannung der ersten Elektrode durch die der zweiten geändert werden würde, und so umgekehrt. Wenn man aber annimmt, dass die Grösse der Elektroden zu vernachlässigen sey vermöge ihres Abstandes, so sieht man, dass die Grösse, um welche die Spannung eines jeden Punkts der Elektrode erhöht oder geschwächt seyn würde, eine constante Grösse ist, die nur von dem

Abstande der Mittelpunkte beider Elektroden abhängt; mithin bleibt die Spannung eines jeden Punkts der Elektrode constant, wenn die Elektricität zugleich durch mehre Elektroden fliefst.

Wenn die Elektricität zugleich aus zwei Elektroden fliefst, so verändern sich die Constanten μ und μ_i in μ' und μ' , sobald die Spannung der ersteren um die Größe $\mu' - \mu$ und die der zweiten um $\mu'_i - \mu_i$ zunimmt. In diesem Fall wird die Spannung des Punktes x, y durch die Wirkung jeder Elektrode insbesondere bestimmt durch die Formeln:

 $\varphi = \mu' F(x, y)$, $\varphi_i = \mu'_i F_i(x, y)$. . . (a)

Die Gleichung (2) des dynamischen Gleichgewichts der Elektricität in einer Ebene ist linear, und vermöge einer bekannten Eigenschaft wird die Summe zweier Werthe, die für sich der Differentialgleichung genügen, noch ein Integral derselben seyn. Man genügt also der Gleichung (2) durch die Formel:

 $\Phi = \mu' F(x, y) + \mu', F, (x, y)$ (b) wo Φ die Spannung des Punktes x, y durch gleichzeitige Wirkung beider Elektroden vorstellt.

Diese Formel wird der Bedingung der Gränzen genügen, wenn die Gleichungen (a) ihr für sich genügen; denn, wenn α und β die Winkel der Normale an der Gränzcurve der Ebene mit den Axen der x und y bezeichnen, wird man haben:

$$\frac{dF}{dx}\cos\alpha + \frac{dF}{dy}\cos\beta = 0 \quad ; \quad \frac{dF_{i}}{dx}\cos\alpha + \frac{dF_{i}}{dy}\cos\beta = 0 \, ,$$

welchen wird genügt seyn müssen, wenn x, y die Coordinaten der Gränzcurve sind. Nimmt man die Summe dieser Gleichungen, nachdem man sie mit μ' und μ' , multiplicirt hat, so findet man:

$$\left\{\mu'\frac{dF}{dx} + \mu', \frac{dF}{dx}\right\}\cos\alpha + \left\{\mu'\frac{dF}{dy} + \mu', \frac{dF}{dy}\right\}\cos\beta = 0$$

oder vielmehr:

$$\frac{d\Phi}{dx}\cos\alpha+\frac{d\Phi}{dy}\cos\beta=0.$$

Die Constanten μ' und μ' , bestimmt man auf folgende Weise. Seyen a und b die Coordinaten der ersten, und a und b die der zweiten Elektrode, so hat man durch die Formeln (a):

gen

tes

gun

aus

Bee

dig

der

ner

Ele

so

Ze

ma

mu

üb

de

tro

mı

Es

F

üb

E

sc

di

d

k

S

F

P

constant, went $\mathbf{1} = (a, b) + \mathbf{1}$ and $\mathbf{1} = (a, b) + \mathbf{1}$ where Elek-

Nun sind die Spannungen der beiden Elektroden gegebene Constanten $=\mu$ und μ , setzt man also successiv in der Formel (b) für x, y die Coordinaten der ersten und der zweiten Elektrode, so hat man:

and the day we have $\mu'_i F_i(a_i, b) + \mu'_i = \mu$. (c) the extraction with the solid ratios $\mu'_i F_i(a_{(i)}b_i) + \mu'_i = \mu_i$

Die Constanten μ' und μ' , sind also bestimmt in Function der Constanten μ , μ , a, b, a, b, und mithin wird die Function Φ eine lineare Function der Functionen φ und φ , seyn. Dasselbe Theorem kann man auf den Fall ausdehnen, dass die Elektricität durch mehre Elektroden entweder in eine Ebene oder in einen Körper sliesse. Die Zahl der Gleichungen (c) wird gleich seyn der Zahl der Elektroden.

§. 5.

Wenn die Elektricität aus einer einzigen Elektrode A in eine Ebene fliesst, so wird die Spannung irgend eines Punktes x, y bestimmt seyn durch die Formel:

analy engines also sol q = F(x, y).

Wenn die Elektricität von mehren anderen Elektroden aussliefst, wird die Spannung φ , dieses selben Punktes durch die blosse Wirkung der letzteren bestimmt durch:

 $q_i = F_i(x, y).$

Man kann sich eine solche Combination dieser Elektroden denken, dass die Zunahme der Spannung von A durch deren Wirkung Null sey, oder dass sie von ihr eine gleiche Menge positiver und negativer Elektricität erhält. In diesem Fall findet man die Spannung & des Punktes x, y durch gleichzeitige Wirkung aller Elektroden:

 $\Phi = F(x, y) + F_{a}(x, y),$

wo $F_{\mu}(x, y)$ eine aus den partiellen Functionen von $F_{\mu}(x, y)$ gebildete lineare Function ist.

Es wird aber nicht allein die Größe φ , sondern eben so Φ den Bedingungen des bisher betrachteten Problems genügen, nämlich 1) der Gleichung des dynamischen Gleicht-

gewichts, 2) der Bedingung, dass die Spannung des Punktes A eine gegebene Constante sey, und 3) der Bedingung der Gränzen.

Allein wegen Unbestimmtheit der Größe $F_a(x,y)$ folgt aus den angegebenen Betrachtungen, daß die drei genannten Bedingungen nicht die alleinigen Erfordernisse zur vollständigen Lösung des Problems sind, daß man noch eine andere hinzufügen muß, um das Glied $F_a(x,y)$ zu entfernen, welches von den von der Elektrode A unabhängigen Elektroden herstammt.

Ziehen wir eine krumme Linie rings um den Punkt A, so muß die Elektricitätsmenge, welche dieselbe in gleicher Zeit überschreitet, eine constante Größe seyn, oder, wenn man die äußere Leitungsfähigkeit in Betracht ziehen will, muß man zu der Elektricitätsmenge, welche die Curve überschreitet, diejenige Menge hinzufügen, welche die Luft der Ebene entzogen haben würde in der Zeit von der Elektrode bis zur Curve. Liegt die Curve außerhalb A, so muß die sie überschreitende Elektricitätsmenge Null seyn. Es ist klar, daß bei Anwendung dieses Princips das Glied $F_n(x, y)$ verschwinden und für die Lösung des Problems q = F(x, y)

übrig bleiben wird.

II. Von der Vertheilung der Elektricität in einer unendlichen Ebene.

and die durch E (Tal. II, Fig. 9);

Es fragt sich, wie wird die Elektricität auf einer unbegränzten Ebene vertheilt seyn, wenn sie von einer einzigen Elektrode aussliefst. Wenn man keine Rücksicht nimmt auf die äußere Leitungsfähigkeit, wird offenbar kein dynamisches Gleichgewicht stattfinden, als im Fall man setzt, daß die Spannung eines jeden Punktes gleich sey der Spannung der Elektrode. Allein da man die äußere Leitungsfähigkeit, wie klein sie auch sey, nicht vernachlässigen kann, so wird die Spannung eines jeden Punkts eine variable Function seyn, die nur abhängt von dem Abstande dieses Punkts vom Centrum der Elektrode, so daß die Spannung in dem Umfang eines um das Centrum der Elektrode beschriebenen Kreises gleichen Werth haben wird. Wir werden annehmen, die äußere Leitungsfähigkeit sey proportional der Spannung eines jeden Punkts der Ebene.

res

hal

de

ha

Gl

N

fit

Sey ϱ der Radius der Elektrode, die wir als kreisrund voraussetzen, und deren Centrum wir zum Anfang der Coordinaten nehmen; sey μ ihre Spannung. Seyen ferner k' und k die Coëfficienten der äußeren und inneren Leitungsfähigkeit, φ die Spannung eines Punktes x, y, dessen Radius vector r ist, ω der Winkel zwischen zwei anliegenden Radiis vectoris, und δ der Abstand zweier parallelen Ebenen, zwischen denen die Elektricität circulirt.

Dann wird man haben:

$$\Gamma = -k' \left\{ \frac{d\varphi}{dx} \frac{x}{r} + \frac{d\varphi}{dy} \frac{y}{r} \right\},\,$$

allein da

$$\frac{x^2 + y^2 = r^2}{dx} = \frac{d\varphi}{dr} \frac{dr}{dx} = \frac{d\varphi}{dr} \frac{x}{r} ; \quad \frac{d\varphi}{dy} = \frac{d\varphi}{dr} \frac{dr}{dy} = \frac{d\varphi}{dr} \frac{y}{r}$$

wird:

$$\Gamma = -k' \frac{d\varphi}{dr}.$$

Die Elektricitätsfluth durch D wird seyn:

und die durch E (Taf. II, Fig. 9):

$$\Gamma \omega \delta(r+dr) + \frac{d\Gamma}{dr} dr (r+dr) \omega \delta$$
,

so wie die Menge, welche die Luft von CD fortnimmt:

Und da die in *CD* eintretende Menge auch von ihr austreten muss, so muss die Summe der zweiten und dritten Größe gleich seyn der ersten. Man wird also für die Gleichung des dynamischen Gleichgewichts erhalten:

$$\frac{d^2\varphi}{dr^2} + \frac{1}{r}\frac{d\varphi}{dr} - \lambda^2\varphi = 0 \quad . \quad . \quad . \quad . \quad (1)$$

oder:

$$\lambda^2 = \frac{k}{k' \delta}.$$
 From the small state in [1]

Die Riccati'sche Gleichung kann auf die folgende Form gebracht werden:

$$\frac{d^2\varphi}{dr^2} + \frac{m-1}{m} \frac{d\varphi}{dr} \frac{1}{r} - \lambda^2 \varphi = 0 \quad . \quad . \quad (2)$$

Hr. Lobatto hat von dieser Gleichung ein particuläres Integral gegeben; indem man es =q, setzt, wird man haben:

$$q = a \int_{0}^{1} (e^{\lambda tr} + e^{-\lambda tr}) (1 - t^{2})^{-\frac{m+1}{2m}} dt.$$

Die ersten Glieder der Gleichungen (1) und (2) werden gleiche Form erhalten, wenn man $m=\infty$ setzt: man hat also als erstes Integral der Gleichung (1):

$$\varphi_i = \alpha \int_0^1 \left(e^{\lambda tr} + e^{-\lambda tr} \right) \frac{dt}{\sqrt{1 - t^2}}.$$

Es lässt sich leicht beweisen, dass dieser Werth der Gleichung (1) genügt, denn durch Substitution findet man:

$$\int_0^1 \lambda^2 t^3 \left(e^{\lambda tr} + e^{-\lambda tr}\right) \frac{dt}{\sqrt{1 - t^3}} + \frac{\lambda}{r} \int_0^1 \left(e^{\lambda tr} - e^{-\lambda tr}\right) \frac{t dt}{\sqrt{1 - t^3}} - \lambda^2 \int_0^1 \left(e^{\lambda tr} + e^{-\lambda tr}\right) \frac{dt}{\sqrt{1 - t^2}} = 0.$$

Nimmt man die Summe des ersten und letzten Gliedes, so findet man:

$$-\lambda^2 \int_0^1 \left(e^{\lambda tr} + e^{-\lambda tr}\right) \sqrt{1-t^2} dt$$

und wenn man das zweite Glied-stückweise integrirt, so erhält man den folgenden Werth:

$$-\frac{\lambda}{r}\sqrt{1-t^2}\left(e^{\lambda tr}-e^{-tr}\right)+\lambda^2\int_0^1\left(e^{\lambda tt}+e^{-\lambda tr}\right)\sqrt{1-t^2}\,dt;$$

allein die Größe außerhalb des Zeichens \int reducirt sich an den Gränzen 0 und 1 auf Null; die übrig bleibenden Glieder sind gleich und von entgegengesetztem Zeichen, mithin genügt φ , der Gleichung (1).

¹⁾ Moigno, Traité de catcul Integral, 38e Leçon. — Journal für die reine und angewandte Mathematik, Bd. 17, S. 369.

Man findet ferner an der citirten Stelle, daß $r\varphi$, ein zweites particuläres Integral der Gleichung (1) ist, wenn man m in -m verwandelt. Aber dieser Werth genügt nicht mehr, wenn man m=x setzt, weil in diesem Fall die Gleichung nicht mehr als aus der Riccati'schen entsprungen angesehen werden kann. Um also das zweite particuläre Integral zu finden, sey:

wo α_i eine Function von r bezeichnet. Man findet dann leicht:

$$\alpha_i = \beta \int_{-r}^{r} \frac{dr}{rq_i^2} + \beta'$$

und das vollständige Integral der Gleichung (1) wird seyn:

Gleichung (1) genögi
$$\frac{1}{r_{q_j}} \int_{\gamma_{q_j}} \frac{dr}{r_{q_j}} \eta$$
ntion findet man:

wo β und β' willkührliche Constanten sind, und φ_i das oben gegebene particuläre Integral, in welchem man $\alpha=1$ setzt.

Nun muss φ , wenn man $r = \infty$ setzt, sich auf Null reduciren; in diesem Fall findet man $\varphi = \infty$, also $\beta = 0$. Eben so reducirt sich das andere Glied auf Null, wenn man die untere Gränze des Integrals $= \infty$ setzt. Denn da, für $r = \infty$, $\varphi = \infty$ ist, so wird die Größe:

$$q \int_{\infty}^{r} \frac{dr}{r \, q_i^2} = \frac{\int_{\infty}^{r} \frac{dr}{r \, q_i^2}}{\frac{1}{q_i}},$$

ein Bruch seyn, der unter der Form & auftritt, wenn man $r = \infty$ setzt. Leicht findet man durch die bekannten Regeln, das ihr wahrer Werth wird:

welcher für r= o verschwindet. Man hat sonach:

$$d = \rho q \int_{\infty}^{\infty} \frac{dt}{r q^2}$$
 ish a latitus nidlim

Die Constante β bestimmt sich, wenn man bemerkt, daßs $q = \mu$, wenn $r = \varrho$, so daßs man haben wird:

was

troci in stim

tun For

ver

Ele nen kre star mö

mö

tige

Str der Da

HEL

de

un

$$\beta = \frac{\mu}{\int_{0}^{1} \left(e^{\lambda t} \xi + e^{-\lambda t} \xi\right) \frac{dt}{\sqrt{1 - t^{2}}} \int_{\infty}^{\xi} \frac{dr}{r \varphi_{i}^{2}}},$$

was die vollständige Lösung des Problems ist.

Bemerken wir, dass, wenn man setzt $\varrho=0$, man haben wird $\mu=\infty$, denn die Spannung wird nahe bei der Elektrode dem Radius vector umgekehrt proportional seyn, und in diesem Fall wird die Größe β , folglich auch φ unbestimmt. Mithin wird man die Größe der Elektroden nicht vernachlässigen können.

Eben so wird φ unendlich, wenn man die äußere Leitungsfähigkeit vernachlässigt oder $\lambda = 0$ setzt; mithin ist die Formel nur auf den Fall der Natur anwendbar.

Wir wollen uns nun vornehmen, die Vertheilung der Elektricität in dem Fall zu finden, dass die Ebene von einem galvanischen Strom durchlausen wird, der durch zwei kreisrunde Elektroden von dem Radius $= \varrho$ und dem Abstand 2a eintritt. Sey φ' die Spannung eines Punkts vermöge blosser Wirkung der ersten Elektrode, φ'' die vermöge der der zweiten, und φ die vermöge der gleichzeitigen Wirkung beider Elektroden, oder des galvanischen Stroms. Seyen r' und r'' die Radii vectores, gezogen von den Mittelpunkten der Elektroden zu dem Punkte x, y. Dann wird man haben:

$$q' = \beta' \int_0^1 \left(e^{\lambda t} e' + e^{-\lambda t} r' \right) \frac{dt}{\sqrt{1 - t^2}} \int_{-\infty}^{r'} \frac{dr}{r \varphi_1^3}$$
 means defined as
$$q'' = \beta'' \int_0^1 \left(e^{\lambda t} r'' + e^{-\lambda t} r'' \right) \frac{dt}{\sqrt{1 - t^2}} \int_{-\infty}^{r''} \frac{dr}{r \varphi_1^3}$$
 means defined as
$$\Phi = \alpha' \varphi' + \alpha'' \varphi''.$$

In dieser letzten Gleichung nimmt man $\beta' = \beta'' = 1$, indem man sie in α und α' mit umfaßt. Nun hat man:

$$\Phi = \mu$$
 wenn $r' = \varrho$ und $r'' = 2a$
 $\Phi = -\mu$ wenn $r'' = \varrho$ und $r' = 2a$

und die Gleichungen (c) des §. 4 nehmen die Form an:

$$\alpha' \int_{0}^{1} \left(e^{\lambda t r} + e^{-\lambda t r}\right) \frac{dt}{\sqrt{1 - t^2}} \int_{\infty}^{\ell} \frac{dr}{r q_i^2}$$

$$+ \alpha'' \int_{0}^{1} \left(e^{2\lambda t a} + e^{-2\lambda t a}\right) \frac{dt}{\sqrt{1 - t^2}} \int_{\infty}^{2a} \frac{dr}{r q_i^2} = \mu$$

$$\alpha' \int_{0}^{1} \left(e^{2\lambda t a} + e^{-2\lambda t a}\right) \frac{dt}{\sqrt{1 - t^2}} \int_{\infty}^{2a} \frac{dr}{r q_i^2}$$

$$\alpha'' \int_{0}^{1} \left(e^{2\lambda t q} + e^{-2\lambda t q}\right) \frac{dt}{\sqrt{1 - t^2}} \int_{\infty}^{2a} \frac{dr}{r q_i^2} = -\mu,$$

aus welchem sich leicht ergiebt $\alpha' + \alpha'' = 0$. Und daher:

$$\alpha' = -\alpha'' = \frac{\mu}{N},$$

fr

di

wo N gleich:

$$\int_0^1 \left(e^{\lambda t \ell} + e^{-\lambda t \ell}\right) \frac{dt}{V 1 - t^2} \int_{-\infty}^{\ell} \frac{dr}{r q_i^2}$$

$$- \int_0^1 \left(e^{2\lambda t a} + e^{-2\lambda t a}\right) \frac{dt}{V 1 - t^2} \int_{-\infty}^{2a} \frac{dr}{r q_i^2}.$$

Setzt man diesen Werth in Φ , so hat mau die Spannung der Punkte r' und r'' vermöge des galvanischen Stroms und mit Rücksicht auf die äußere Leitungsfähigkeit.

Allein eben so wie uns die Analyse bei Lösung der vorhergehenden Aufgabe gezeigt hat, dass man die äußere Leitungsfähigkeit nicht vernachlässigen darf, eben so zeigt uns die Analyse im gegenwärtigen Fall, dass man von ihr absehen kann; denn, setzt man $\lambda=0$, so kann man den Nenner des vorstehenden Bruches unter folgender Form schreiben:

$$2\int_{0}^{1} \frac{dt}{\sqrt{1-t^{2}}} \left\{ \int_{\infty}^{\xi} \frac{dr}{r \varphi_{i}^{2}} - \int_{\xi}^{\xi} \frac{dr}{r \varphi_{i}^{2}} - \int_{\xi}^{2a} \frac{dr}{r \varphi_{i}^{2}} \right\} = -\pi \int_{\xi}^{2a} \frac{dr}{r \varphi_{i}^{2}},$$

wenn aber $\lambda = 0$, hat man $\varphi_i = \pi$; also:

$$\alpha' = -\alpha'' = -\frac{\mu \pi}{\log \frac{2a}{a}},$$

so dass man finden wird:

$$\phi = -\frac{\mu \pi^{2}}{\log \frac{2a}{\varrho}} \left[\int_{-\pi}^{4r} \frac{dr}{r \varphi_{i}^{2}} - \int_{-\pi}^{3r''} \frac{dr}{r \varphi_{i}^{2}} \right] = \frac{\mu \pi}{\log \frac{2a}{\varrho}} \int_{-r'}^{3r''} \frac{dr}{r \varphi_{i}^{2}}$$

$$= \frac{\mu}{\log \frac{2a}{\varrho}} \log \frac{r''}{r'} = \frac{\mu}{\log \frac{2a}{\varrho}} \log \sqrt{\frac{y^{2} + (x+a)^{3}}{y^{3} + (x-a)^{3}}},$$

wenn die Axe der x die Linie ist, welche die Centra beider Elektroden vereint, und in ihrer positiven Richtung durch die Elektrode von der Spannung μ geht; und die Axe der y die Linie, welche den Abstand der Centra der Elektroden in gleiche Theile theilt.

Bemerkung. Man kann diese Lösung auf folgende Weise betrachten. Führt man freie positive Elektricität durch die erste Elektrode, welche die Spannung $+\mu+J\mu$ hat, und freie negative Elektricität durch die andere Elektrode von der Spannung $-\mu-J\mu$, so kann man $J\mu$ bestimmen, so dafs die Spannung der ersten $+\mu$ wird durch den Einfluß der zweiten, und ebenso die der zweiten $-\mu$. Diese beiden Elektricitäten nun, die sich in der Ebene vereinigen, müssen darin denselben Effect hervorbringen, wie die Elektricität, welche aus dem galvanischen Strom entspringt, weil man einen galvanischen Strom hervorbringen kann, wenn man einen Bogen von den beiden Reibungs-Elektricitäten durchlaufen läßst.

§. 8.

Man kann auch von demselben Problem die folgende Lösung geben, die mir indess nicht so streng wie die erste erscheint. Die Gleichung des dynamischen Gleichgewichts der Elektricität in einer Ebene ist:

$$\frac{d^2\varphi}{dx^2} + \frac{d^2\varphi}{d^2y} = 0,$$

deren allgemeines Integral ist:

 $q = F(y+x\sqrt{-1}) + F(y-x\sqrt{-1})$

Gebraucht man dieselben Coordinaten wie vorhin, so ist klar, dass man haben wird q=0, wenn x=0, wie auch y sey. Man hat also:

nom and Fy+F,y=0, thind rabell orgins

oder vielmehr: siet sile anders Add vale nottengrague fait

$$F(y-x^{\gamma}-1)+F_{\gamma}(y-x^{\gamma}-1)=0$$

und, wenn man F, eliminirt, findet man:

$$q = F(y+x\sqrt{-1}) - F(y-x\sqrt{-1}) \dots (1)$$

Setzt man die Spannungen der beiden Elektroden = u und $=-\mu$, so hat man $\varphi=\mu$, wenn $y=\sqrt{\varrho^2-(x-a)^2}$. Die Gleichung (1) wird also:

$$F\left\{V_{e^2-(x-a)^2+xV-1}\right\} - F\left\{V_{e^2-(x-a)^2+xV-1}\right\} = \rho.$$
Setzen wir:

Setzen wir:

$$F(y+x)'-1) = M \cdot \log \frac{y+b'+(x+a')\sqrt{-1}}{y+b'+(x-a')\sqrt{-1}}$$

$$F(y-x^{1/2}-1) = M.\log \frac{y+b'-(x-a')\sqrt{-1}}{y+b'-(x+a')\sqrt{-1}},$$

Klar ist, dass wenn man für y seinen Werth no sahamball ambus $\sqrt{q^2-(x-a)^2}$ satisfic axitagor aird.

setzt, die Größe x-a sehr klein seyn wird, man wird also x=a und y=o setzen, im Fall a' und b' Größen von solcher Ordnung sind, dass die von der Ordnung o vernachlässigt werden können. Die vorstehende Gleichung missen daria dencelben Effect berrurbringen, wie die Shriw

$$F \left\{ V_{\varrho^{2}-(x-a)^{2}} + xV - 1 \right\} - F \left\{ V_{\varrho^{2}-(x-a)^{2}} + xV - 1 \right\}$$

$$= M \cdot \log \frac{b' + (a+a')V - 1}{b' + (a-a')V - 1} \times \frac{b' - (a+a')V - 1}{b' - (a-a')V - 1}.$$

Vernachlässigt man also die Größen von der Ordnung o, so wird der Function F (v) genügt durch die Formel: Lösung geben, die mir illute Bien so streng wie die erste

$$M \log \frac{v+m}{v+m'}$$

wo M, m und m' constante Größen sind, zwar willkührliche, aber nicht von der Ordnung o. Man hat demnach;

$$\varphi = \sum M . \log \frac{(y+b')^2 + (x+a')^2}{(y+b')^2 + (x-a')^2},$$

wo das Zeichen Z eine Summe von Brüchen bedeutet, in derer jedem M, a' und b' einen verschiedenen Werth ha-Gebraucht man dieselben Coordinaten wiensunds, nad

Man muste nun die im §. 5 angezeigte vierte Bedingung anwenden; allein man kann die für die Frage fremdartigen Glieder leichter entfernen, wenn man erwägt, dass bei Superposition der Elektroden die Größe p für alle

Punk-

Pu

be

ka

ma

w

na

ne

ar

SC

ge

se

D

n ü

di

m

Punkte der Ebene verschwinden muß. Diesem genügt man, wenn man setzt a'=a. Dann muß φ denselben Werth behalten, wenn man -y statt y schreibt, was man nicht kann, wenn nicht b'=0. Man hat also:

$$q = M \cdot \log \frac{y^2 + (x+a)^2}{y^2 + (x-a)^2}$$

Die Constante M bestimmt sich, wenn man erwägt, daßs man hat $\varphi = \mu$, wenn $y^2 + (x - a)^2 = \varrho^2$; daraus folgt $y^2 + (x+a)^2 = \varrho^2 + 4ax = 4a^2$, sobald man die Glieder von der Ordnung ϱ vernachlässigt. Man hat also:

$$M = \frac{\mu}{\log \frac{4a^2}{a^2}}$$

Bemerkung. Gesetzt, die Radien der Elektroden hätten irgend eine Größe $= \varrho$, und die Spannung aller ihrer Punkte wäre constant $= \mu$, so würde man, ohne etwas zu vernachlässigen, haben:

$$q = \frac{\mu}{\log \frac{a + Va^{3} - \varrho^{2}}{a - Va^{2} - \varrho^{2}}} \log \frac{y^{2} + (x + Va^{2} - \varrho)}{y^{2} + (x - Va^{2} - \varrho)^{2}}.$$

$$\S. \quad 9.$$

Auf folgende Weise bestimmt man den Widerstand einer unbegränzten Ebene, wenn sie von einem galvanischen Strom durchlaufen wird. Seyen AB und A'B' zwei einander unendlich nahe partielle Ströme. Der Raum zwischen ihnen wird der Weg seyn, den die Elektricität einschlägt, wenn sie von der einen Elektrode zur anderen geht. Der Widerstand des Raumes AA'B'BB' wird gleich seyn der Summe der Widerstände der partiellen Elemente. Der Widerstand eines partiellen Elements ist ein Bruch, dessen Zähler proportional der Länge, und dessen Nenner proportional dem Querschnitt dieses Elements ist. Sey überdies:

 $F(x, y, \theta)$

die Gleichung eines galvanischen Stroms; θ ist ein Parameter, welcher von Curve zu Curve variirt und sieh folgendermaßen definiren läßt: jeder partielle Strom beginnt an einer der Elektroden und endet an der andern; man nenne & den Winkel, welchen die Tangente der Curve des partiellen Stroms am Punkte, wo sie an der Elektrode endet, mit der Axe der x bildet. Sey MM' eine Normale der beiden aneinanderliegenden Curven, so hat, wenn NM der Axe der y parallel ist:

$$tg M' M N = \frac{dy}{dx}$$

$$M M' = N M \cos N M M' = N M \frac{dx}{ds}.$$

Man wird von einer Curve zur anderen übergeben, wenn man y und ϑ in $y + \delta y$ und $\vartheta + \delta \vartheta$ verwandelt, und hat also dann:

$$\frac{dF}{dy} \delta y + \frac{dF}{do} \delta \theta = 0$$

$$\delta y = N M = -\frac{dF}{dF} \delta \theta \quad \text{und} \quad M M' = -\frac{dF}{d\theta} \frac{dx}{ds} \delta \theta.$$

Sey k der Widerstand der Ebene, wenn der Strom die Einheit der Länge und Breite zurücklegt. Dann findet man für den Widerstand eines Elements, dessen Länge NM' =ds und dessen Querschnitt MM' ist:

is bunderable? The order that
$$\frac{dF}{dy} dx^2 = x^2 N^2$$
 shought but and since $\frac{dF}{dy} dx^2 = \frac{d^2}{dy} dx^2 = \frac{d^$

allein da man hat:

$$ds = \frac{\sqrt{\left(\frac{dF}{dx}\right)^2 + \left(\frac{dF}{dy}\right)^2}}{\frac{dF}{dx}} dy \quad \text{and} \quad dx = -\frac{\frac{dF}{dy}}{\frac{dF}{dx}} dy,$$

so findet man für den Widerstand w des Raumes zwischen zwei anliegenden Curven:

$$w = \frac{2k}{\delta \vartheta} \int \frac{\left(\frac{dF}{dx}\right)^2 + \left(\frac{dF}{dy}\right)^2}{\frac{dF}{d\vartheta} \cdot \frac{dF}{dx}} dy$$

Die untere Gränze der Integration wird seyn: y=o sin 9 und die obere der Werth von y für den Fall, dass man x=0 setzt.

Man muß sich wohl hüten Null für die untere Gränze der Integration zu nehmen, oder vielmehr die Größe der Elektroden zu vernachlässigen, denn dann würde das Integral unendlich werden, weil der Querschnitt ein unendlich kleines der zweiten Ordnung, die Länge des Elements aber ein unendlich Kleines der ersten Ordnung seyn würde.

Wenn die Elektricität mehre Drähte von den Widerständen λ , λ' , etc. durchläuft, um von der einen zur anderen Elektrode zu gelangen, so wird der gesammte Widerstand L des Systems gegeben seyn durch die Formel:

$$\frac{1}{L} = \frac{1}{\lambda} + \frac{1}{\lambda'} + \ldots = \sum_{\lambda} \frac{1}{\lambda}.$$

Man hat also in diesem Fall:

$$\lambda = \frac{2k}{\delta \theta} \int_{0}^{2} \frac{\left(\frac{dF}{dx}\right)^{2} + \left(\frac{dF}{dy}\right)^{2}}{\frac{dF}{dx} \cdot \frac{dF}{dx}} dy$$

mithin:

$$\frac{1}{L} = \frac{1}{k} \int_{0}^{\pi} \int \frac{\left(\frac{dF}{dx}\right)^{2} + \left(\frac{dF}{dy}\right)^{2}}{\frac{dF}{dO} \cdot \frac{dF}{dx}} dy$$

Um diese Formel auf den Widerstand der unbegränzten Ebene anzuwenden, hat man zunächst für die Differentialgleichung der Curven der partiellen Ströme:

$$\frac{dy}{dx} = \frac{\frac{d\varphi}{dy}}{\frac{d\varphi}{dx}} = \frac{2xy}{x^2 - y^2 - a^2}$$

welche unter die Form:

$$\frac{2yx\,dx - x^2\,dy}{y^2} + dy + \frac{a^2\,dy}{y^2} = 0$$

gebracht werden kann, und deren Integral ist:

$$x^2 + y^3 - a^2 = \alpha y$$
.

Wenn man α in Function des oben erwähnten Parameters ϑ bestimmt, hat man $y=\varrho\sin\vartheta$, wenn $x=a-\varrho\cos\vartheta$; man findet also, bei Vernachlässigung der Größen von der Ordnung ϱ :

und die Gleichung der gesuchten Curve wird seyn: $F(x, y, \theta) = (x^2 + y^2 - a^2) t g \theta + 2 a y = 0,$

ferner findet man leicht:

$$w = -\frac{2ak}{\delta \theta} \int \frac{dy}{y\sqrt{\frac{a^2}{\sin^2 \theta} - \left(y + \frac{a}{ig\theta}\right)^2}}$$

Indem man setzt:

$$y + a \cos \theta = \frac{a}{\sin \theta} \cos \psi$$

wo
$$\psi$$
 eine neue Variable ist, wird man finden:

$$w = \frac{2k \sin \vartheta}{d\vartheta} \int \frac{d\psi}{\cos \psi - \cos \vartheta} = \frac{2k}{d\vartheta} \log \frac{1 - \cos \psi \cos \vartheta + \sin \psi \sin \vartheta}{\cos \psi - \cos \vartheta},$$

Die Gränzen der Integration sind $y = \rho \sin \theta$ und y = $a\frac{1-\cos\vartheta}{\sin\vartheta}$, oder vielmehr $\cos\psi = \frac{\varrho\sin^2\vartheta}{a} + \cos\vartheta$, und $\cos \psi = 1$. Mithin ist:

$$w = \frac{2k}{a\theta} \log \frac{\sin^2 \theta - \frac{\theta}{a} \sin^2 \theta \cos \theta + \sin \theta \sqrt{1 - \left(\frac{\theta}{a} \sin^2 \theta + \cos \theta\right)^2}}{\frac{\theta}{a} \sin^2 \theta}$$

Das Integral verschwindet für die obere Gränze. Man hat also, wenn man im Nenner die mit o multiplicirten Glieder vernachlässigt:

$$w = \frac{2k}{d\theta} \log \frac{2a}{\theta},$$

so dass der Widerstand der Ebene seyn wird:

$$\frac{k}{\pi}\log\frac{2a}{\varrho}$$
.

Wents and it in Publication des often organism Para-

Galvanische und elektromagnetische Versuche; von M. H. Jacobi 1).

Zweite Reihe. Erste Abtheilung. Ueber die Leitung galvanischer Ströme durch Flüssigkeiten.

20.

Im ersten Hefte von Poggendorff's Annalen vom Jahr 1845, S. 54, befindet sich ein interessanter, vom Herausgeber angestellter Versuch beschrieben. Hr. Poggendorff nahm einen Platindraht, und spannte denselben in der Axe eines 3½ Zoll weiten aufrechtstehenden Glascylinders aus, den er bis zur Höhe von 80,5 Linien mit verdünnter Schwefelsäure anfüllte. Wurde nun der Widerstand des Drahts erst ohne die Flüssigkeit, dann mit der Flüssigkeit bestimmt, so wurde er in beiden Fällen genau gleich groß gefunden. Hr. Poggendorff fügt hinzu, von einer Seitenausbreitung des Stromes aus dem Metall in die Flüssigkeit, wie sie zwischen zwei metallischen und selbst zwischen zwei flüssigen Leitern statt hat, sey hier keine Spur vorhanden. Dieser Versuch interessirte mich um so mehr, da ich schon früher bei meinen galvanoplastischen Arbeiten, obwohl unter einer ganz anderen Form, Fälle von Seitenströmungen gefunden, und auch im 10. Bande des Bulletin scientifique, p. 265, erwähnt hatte. Ich war daher begierig, den Poggendorff'schen Versuch unter einigen veränderten Bedingungen zu wiederholen, besonders da es mir nothwendig schien, außer den Messungen der Leitungswiderstände und den Angaben des Galvanometers, diesen Versuch noch einer anderen Controle zu unterwerfen.

Uebersandt vom Hrn. Verf. aus den Bull. phys. math. d. St. Petersb. Acad. T. V., No. 6. — Die erste Reihe dieser Versuche findet sich in den Annal. Bd. 66, S. 207.

Es leuchtet ein, dass eine Seitenausbreitung des Stroms unter der im vorigen Artikel erwähnten Form, nur wahrgenommen werden kann, wenn man sich einer besonders gut leitenden Flüssigkeit und eines Drahtes bedient, der einen großen Widerstand darbietet. Ich wählte einen durch Marineleim sorgfältig wasserdicht gemachten Holzkasten von 20" Länge, '34" Breite und 4" Höhe, und spannte darin, indem die schmalen Seitenwände durchbohrt wurden, einen 20" langen Neusilberdraht straff aus. Der Draht, dessen Dicke No. 23 der im Handel gebräuchlichen englischen Drahtmaase entsprach, befand sich nicht in der Mitte des Kastens, sondern auf nur etwa drei Viertel-Zoll vom Boden ab, weil es mir vorkam, als müsse die Dicke der Flüssigkeitsschicht, wenn auch nur von einer Seite, bei diesem Versuche von Belang seyn.

22.

Bei den Beobachtungen selbst bediente ich mich meiner höchst empfindlichen Sinusbussole, an welcher ich durch Mikroskope Abweichungen von 15" bis 30" noch mit Bequemlichkeit wahrnehmen kann, und der von Kirchhoff im 64. Bande der Poggendorff'schen Annalen, S. 513, beschriebenen Methode, wonach die Beobachtungen immer in der vortheilhaftesten Lage der Nadel, im magnetischen Meridiane nämlich, angestellt werden können. Diese Methode, die mir von Hrn. Poggendorff besonders empfohlen worden ist, hat vor der von Wheatstone angegebenen den Vorzug einer beinahe unbegränzten Empfindlichkeit, indem die zu messenden Widerstände mit jedem beliebigen Factor multiplicirt werden können. Sind nämlich bei der in Taf. II, Fig. 11, gezeichneten Drahtverbindung die Widerstände der Drähte ab, bc, cd und da so regulirt, dass ab.cd=bc.ad, so wird die Nadel des in bd eingeschalteten Multiplicators keine Abweichung erfahren. Ist nun der zu messende Widerstand y, in bc, und das Agometer mit den Windungen x, in ab eingeschaltet, so hat man $\frac{y \, d \, d}{d \, c} = x$. Bei der von mir getroffenen Einrichtung beträgt nach einer angestellten Messung $\frac{a \, d}{d \, c} = 9,6$ in runden Zahlen, so dass also jede Veränderung von y sich am

Agometer beinahe verzehnfacht.

Nachdem nun der oben erwähnte, im Holzkasten ausgespannte Neusilberdraht bei v eingeschaltet und das Agometer x so weit gedreht worden, bis die Nadel sich genau wieder einstellte, wurde während der Beobachtung selbst von meinem Gehülfen eine völlig saturirte Kupfervitriollösung in den Kasten gegossen. Die Nadel erfuhr sogleich eine Ablenkung von etwa 14 Minute, und das Agometer musste von seinem früheren Stande 14,209 auf 14,143 zurückgedreht werden, um das Gleichgewicht wieder herzustellen. Es hat also allerdings hier durch Hinzugießen der Flüssigkeit eine Veränderung des Leitungswiderstandes stattgefunden. Spätere Versuche indessen machen mich geneigt, obige geringe Abweichung der Nadel nur als zufällig zu betrachten, und vielleicht dem Umstande zuzuschreiben, dass die Kupfervitriollösung, die in der Kälte gestanden hatte, eine niedrigere Temperatur als der Draht besessen, und so dessen Widerstand vermindert hatte. Da nun aber die obige Abweichung ganz im Sinne der Theorie gewesen, so war keine Veranlassung vorhanden, es abzuwarten, ob sich das Gleichgewicht nicht vielleicht ganz von selbst, ohne Zurückdrehen des Agometers, wieder hergestellt hätte.

24

Nach Beendigung dieser Messung wurde der in Kupfervitriollösung ausgespannte Neusilberdraht mit einem kräftig geladenen, etwa drei Viertel-Quadratfus darbietenden Grove'schen Elemente verbunden. Nach einer etwa halbstündigen Wirkung wurde die Flüssigkeit abgegossen und der Draht an dem mit dem Zink verbundenen Ende durch einen Kupferüberzug stark geröthet, das mit dem Platin ver-

L

hu

di

ur

sie

V

de

ha

da

dr

te

ste

D

de

ge

er

be

N

lö

ah

än

dr

bi

ch

ZU

V

gr

ch

V

ne

au

se

de

bundene Ende aber stark geschwärzt befunden. Die Flüssigkeit wurde wieder hinzugegossen, aber nach etwa drittehalb Stunden unterbrach sich der Versuch, indem das Platinende des Drahts dicht an der Wand des Kastens durchgefressen worden war. Das Zinkende fand man mit einem Kupferüberzuge bedeckt, der an der Wand des Kastens am stärksten war, und sich über die Mitte des Drahts hinaus bis in's Unmerkliche verlief. Eine scharf abgeschnittene Gränze zwischen der Oxydation und Reduction hatte nicht stattgefunden; eine kurze Strecke des Drahts war ganz blank geblieben. Es geht also aus diesem Versuche hervor, dafs allerdings ein Theil des Stroms durch die Flüssigheit hindurch und von einem Theile des Drahts zum andern gegangen war. An den Extremen desselben war offenbar die Wirkung am stärksten gewesen.

25.

In der Absicht das Zerfressen des Drahts zu vermeiden und so eine dickere reducirte Kupferschicht zu erhalten, an der man das allmälige Verlaufen der Dicke besser wahrnehmen, ja vielleicht messen könne, wiederholte ich den im vorigen Artikel beschriebenen Versuch ganz auf dieselbe Weise mit einem Platindrahte, dessen Dicke der No. 24 des Drahtmaasses entsprach. Nachdem dieser Draht bei y eingeschaltet und mit dem Agometer x aequilibrirt worden war, ergab sich durch Eingiefsen der Kupfervitriollösung eine solche Ablenkung, dass das Agometer von seinem früheren Stande 9,602 auf 9,664 vorwärts gedreht werden musste. Demnach wäre also der Widerstand des Platindrahts, statt geringer, im Gegentheil etwas größer geworden. Hierauf wurde der Platindraht mit demselben Platinelemente wie der frühere Neusilberdraht verbunden. Er erwärmte sich hierdurch bedeutend, aber nach einer zweistündigen Wirkung war noch keine Spur von Kupferreduction an demselben bemerklich. Als nun der Strom durch ein zweites Platinelement verstärkt worden war, zeigte sich nach mehrstündiger Wirkung ein höchst schwacher Kupferüberzug an dem äußersten Zinkende, der sich aber schon auf etwa 1"

Länge ganz in's Unmerkliche verlief. Da die Gasentwicklung bei der Platinbatterie lästig geworden war, so wurde dieselbe durch sechs Daniell'sche Elemente ersetzt. Aber ungeachtet einer vier und zwanzigstündigen Wirkung hatte sich der Kupferüberzug nicht im mindesten ausgebreitet. Von einer Gasentwicklung, die doch eigentlich an dem mit dem negativen Elemente verbundenen Ende stattgefunden haben mußte, war keine Spur sichtbar. Ob der Grund, daß der Platindraht sich anders verhält als der Neusilberdraht, allein in dem größeren Leitungswiderstande des letzteren zu suchen sey, muß wohl vorläufig noch dahin gestellt bleiben.

26.

Es war unterdessen eine Veränderung an der in dem Diagramm verzeichneten Drahtverbindung vorgenommen worden, wodurch das Verhältnifs $\frac{ad}{dc}$, welches früher geringer gewesen, bis auf die früher, Art. 22, erwähnte Zahl 9,6 erhöht worden war. Derselbe Platindraht wurde wieder bei y eingeschaltet, und entsprach 14,957 Windungen des Neusilberagometers. Beim Hinzugießen der Kupfervitriollösung während der Beobachtung selbst, blieb diesesmal aber der Gleichgewichtswiderstand der Nadel völlig unverändert. Hierauf wurde noch ein Kupferdraht dem Platindrahte parallel in dem Troge ausgespannt, und die Verbindung mit einem Daniell'schen Paare auf die gewöhnliche Weise bewerkstelligt, um den Platindraht mit Kupfer zu überziehen. Ich beabsichtigte nämlich mir auf diese Weise einen Kupferdraht zu verschaffen, der bei einem großen Leitungswiderstande zugleich eine große Oberfläche darböte, um mit demselben den Versuch anzustellen. Vielleicht dass die Wirkungslosigkeit des Platins von seiner größeren Polarisation hergerührt haben mochte. Nach 8 bis 10 Stunden Wirkung wurde die Kupfervitriollösung aus dem Troge entfernt, und der Leitungswiderstand dieses mit Kupfer überzogenen Drahts auf 7,288 Windungen des Agometers bestimmt. Beim Wiederhinzugießen der Flüssigkeit fand auch hier nicht die geringste Ablenkung statt. Dieser mit Kupfer überzogene Platindraht wurde nun mit der aus sechs Daniell'schen Elementen bestehenden Batterie auf die frühere Weise verbunden. Aber nach mehr als 24stündiger Wirkung war nicht die mindeste Veränderung an dessen Oberstäche wahrnehmbar. Weder hatte sich das Kupferende geschwärzt, noch das Zinkende, dem Augenscheine nach, mit einem dickeren Ueberzuge belegt. Ein ähnlicher Versuch mit einem, mit noch dünnerem Kupferüberzuge versehenen Platindrahte wäre indessen gelegentlich zu wiederholen.

27.

Ich habe den obigen Versuch, §. 23, mit einem ganz ähnlichen Neusilberdrahte wiederholt, diesesmal aber ebenfalls beim Hinzugießen der Flüssigkeit nicht die mindeste Ablenkung der Magnetnadel bemerkt. Die Verbindung dieses Drahts mit einer Daniell'schen Batterie von vier Elementen wurde wie früher bewerkstelligt, aber die Höhe der Flüssigkeit über dem Drahte betrug diesesmal nur etwa ½". Auch bei diesem Versuche röthete sich das Zinkende des Drahts sehr bald, es dauerte aber diesesmal 5 bis 6 Stunden, ehe das entgegengesetzte Ende durchgefressen war. Auch hatte sich die Schwärzung des Drahts, eben so wie dessen Röthung auf der Zinkseite, nicht so weit wie früher ausgebreitet, und die Kupferschicht war, wie es schien, dünner geblieben.

28.

SI

Endlich will ich noch folgenden Versuch berichten. In der Axe einer etwa ½" weiten, 38" langen Barometerröhre, die mit Kupfervitriollösung gefüllt war, wurde ein Neusilberdraht straff ausgespannt. Nachdem die Verbindung mit einer sechsplattigen Daniell'schen Batterie gemacht worden war (vier Paare waren unwirksam gewesen), röthete sich das Zinkende schnell, der Ueberzug schien aber nach mehreren Stunden sich nicht weiter ausgebreitet zu haben. Nach einer 8- bis 10stündigen Wirkung, während welcher man nicht nachgesehen hatte, wurde aber Folgendes wahr-

genommen. Das Zinkende hatte sich nur auf etwa 1½" Länge mit einem schwachen Kupferüberzuge bedeckt, das weniger die bekannte hellrosenrothe Farbe, als vielmehr einen Stich in's Bräunliche darbot. Am Kupferende dagegen war der Draht ganz dicht beim Pfropfen durchgefressen. Der Draht hatte hierdurch seinen Zusammenhang verloren, und die diesem Kupferende gegenüberstehende Bruchstelle hatte sich, da der Strom nun unmittelbar durch die Flüssigkeit ging und das Zinkende als Kathode wirkte, ebenfalls auf etwa 1" Länge mit Kupfer bedeckt.

29.

Als Resultat dieser Versuche geht nun hervor:

1) daß auch bei einem gerade ausgespannten Drahte ein Nebenstrom, obwohl von sehr geringer Stärke, durch die Flüssigkeit hindurch stattfindet;

2) daß die Wirkung dieses Stroms an den Extremen des Drahts am stärksten ist:

3) dafs die Ausbreitung dieser Wirkung weniger von der Stärke des Stroms, als von den verhältnifsmäfsigen Dimensionen und Widerständen des Drahts und der Flüssigkeit abhängt.

Unwahrscheinlich ist es, besonders nach dem letzten Versuche, wo bei einer nur $_{\tau^{1}\sigma^{''}}$ dicken Flüssigkeitsschicht die um 38" entfernten Extreme des Drahts am stärksten afficirt wurden, dass die Ausbreitung dieser Nebenströme in bogenartigen Curven geschieht, wie dieses wohl angenommen zu werden pflegt.

III. Galvanische und elektromagnetische Versuche; von M. H. Jacobi 1).

Zweite Reihe. Zweite Abtheilung. Ueber magneto-elektrische Maschinen.

30.

Bei meinem im vorigen Jahre auf Befehl Sr. Kaiserl. Hoheit des Großfürsten Michael Pawlowitsch unternommenen wissenschaftlichen Ausfluge nach Deutschland, sah ich mit großer Freude bei Hrn. Mechanikus Stöhrer in Leipzig die von ihm construirten magneto-elektrischen Maschinen. Dieselben befinden sich zwar im 61. Bande von Poggendorff's Annalen beschrieben, jedoch construirt sie Hr. Stöhrer jetzt mit einigen Verbesserungen, und namentlich in größeren Dimensionen. Die Wirkungen dieser Maschinen sind in der That wundervoll, und wahrhaft zauberhaft glänzen die Funkenströme, welche sich beim jedesmaligen Unterbrechen des Stroms entwickeln. Aber ich erinnerte mich hierbei recht lebhaft des ersten schwachen, beinahe unsichtbaren magnetischen Funkens, zu dessen Wahrnehmung es eines dunkeln Zimmers und einer Menge anderer Kunstgriffe bedurfte. Die jüngere Generation, welche diesen ersten Funken nicht erlebte und nicht kennt, entbehrt natürlich auch der Freude an dieser rapiden Entwicklung, welche die ältere Generation empfindet. Bei den in den Cabinetten verbreiteten Clark e'schen Maschinen wird bekanntlich nur durch die Intensitätsarmatur angesäuertes Wasser zersetzt, indessen darf man hierzu gewöhnlich als Elektroden nur feine zugespitzte Platindrähte nehmen, denn bei Anwendung dicker Drähte oder kleiner Platinplatten gelingt es nur in selteneren Fällen eine Was-

8

d

u

d

Ucbersandt vom Hrn. Verf. aus dem Bull. phys. math. d. St. Petersb. Acad. V., p. 7 und 8.

serzersetzung zu bewirken. Bei der Stöhrer'schen Maschine dagegen, die ich sah, findet eine höchst lebhafte Gasentwicklung an Platinelektroden von bedeutender Oberfläche statt.

31.

An diesen energischen chemischen Effect, dessen ich die magneto-elektrischen Maschinen kaum für fähig gehalten hätte, knüpften sich mir nun folgende Betrachtungen. Ich habe bei einer früheren Gelegenheit (Bulletin, T. X. p. 71) den gegenwärtigen Standpunkt der elektro-magnetischen Maschinen bezeichnet. Abgesehen von manchen technischen und constructiven Schwierigkeiten, die sich überwinden lassen, resumirt sich das, was der Einführung dieser Maschinen in die Industrie entgegensteht, in dem einfachen Satze: dass die chemische Kraft bis jetzt noch theurer ist, als die mechanische. Ich meine nämlich die chemische Kraft, wie sie in den bisher gebräuchlichen galvanischen Batterien nach einer Ansicht, der ich beistimme, als Begleiterin, nach einer anderen Ansicht aber als Ursache des galvanischen Stroms thätig ist; auf welchen Meinungsunterschied übrigens, in Bezug auf das Resultat, nicht so gar viel ankommt. Denn wie dem auch sev, ein galvanischer Strom bedingt die chemische Umwandlung mehr oder weniger kostbarer Stoffe, in der Art, dass der Werth des nutzbaren Products, die mechanischen Effecte mit eingerechnet, mit den Haupt- und Nebenkosten des Materials noch nicht in das gehörige Verhältnis gebracht ist.

32.

Schon in den Anfangsgründen der Logik wird gelehrt, man könne keinen Satz ohne Beweis rein umkehren. Auch der im vorigen Artikel aufgestellte Satz unterliegt dieser Beschränkung. Denn wenn auch die Thatsache feststeht, dass galvanische Kräfte auf mechanischem Wege durch Vermittlung der Magneto Elektricität erzeugt werden können, so bedürfte doch die Frage, ob eine solche Erzeugung zweckmäsig oder ökonomisch sey, noch einer sorgfältigen Erörterung. Aber diese Erörterung theoretisch und practisch

durchzuführen, wäre nicht nur von hohem wissenschaftlichen, sondern auch von industriellem Interesse, da die galvanischen Kräfte auf dem breiten Wege, den ihnen die Galvanoplastik eröffnet hat, bereits ihren glorreichen Einzug in die Werkstätten der Industrie gehalten haben, und dort in colossalem Maafsstabe verwendet werden. Ihre wohlfeile und bequeme Hervorbringung ist eine Angelegenheit von hoher Wichtigkeit geworden.

ti

lä

w

d

n

ti

V

b

w

di

V

K

V

w

al

b

al

de

ni

di

m

zi

er

W

di

u

di

tu

attelling a richemondal 33. monthly made but will del

Bereits vor einigen Jahren hat ein Engländer, Woolrich, ein Patent genommen, um mittelst der magneto-elektrischen Maschine zu vergolden und zu versilbern. Dieses Patent hat weiter kein Aufsehen erregt, und, wie es scheint, auch keinen bedeutenden Erfolg gehabt, da Jedermann weiß, wie die zu obigen Zwecken gewöhnlich verwendeten alkalischen Gold- und Silbersolutionen zu ihrer Zersetzung nur die schwächsten, zu anderen Zwecken oft völlig unbrauchbaren galvanischen Batterien bedürfen, ja, um gute Resultate zu erlangen, solche Batterien geradezu fordern. Die Unbequemlichkeit, eine solche Maschine beständig drehen zu müssen, konnte keinen Ersatz liefern für die geringe, zum Vergolden und Versilbern erforderliche Quantität Zink oder Eisen.

selection of the desired and a state of the desired residence very state of the desired residence of the desired residenc

Der Fabrikant, welchem man von der Einführung der magnetischen Maschine, z. B. zu galvanoplastischen Zwecken, spräche, indem man zu ihrer Betreibung auf eine Dampfmaschine hinwiese, würde sogleich fragen, wie viel Kohlen zur galvanoplastischen Reduction von 1 Pud Kupfer erforderlich wären. Die Antwort auf diese Frage wäre leicht, wenn es in der Wissenschaft erlaubt wäre voreilig zu verfahren '). Es wäre nämlich nur nöthig, alle vermittelnden Momente, welche zwischen den beiden chemischen Processen, dort im Feuerungsraume des Dampfkessels, hier im galvanoplastischen Zersetzungstroge stattfinden, es wäre nur nöthig alle diese complicirten Zwischenglieder zu übersprin-

¹⁾ Siehe Liebig's chemische Briefe, S. 116.

gen, diese wahrhaft gordischen Knoten, ohne Alexander zu sevn, geradezu zu durchbauen und ein Resultat zu anticipiren, das einen der größten Fortschritte in unserer Erkenntniss der Dinge bezeichnen würde, wenn es jemals gelänge es gründlich zu erweisen. Ich meine nämlich, man würde das relative Atomengewicht des Kohlenstoffs und des Kupfers anführen, und nur an das bekannte Verhältnifs zwischen Ursache und Wirkung appelliren, um die Natürlichkeit oder das Sichvonselbstverstehen einer definitiven Wirkung auch hier zu erweisen. 71 Pfund Kohle seven das chemische Aequivalent von 1 Pud Kupfer. Durch Verbrennung von 74 Pfund Kohlen hebe man ein gewisses Gewicht auf eine gewisse Höhe. Ließe man dieses Gewicht wieder herunterfallen, so müste man vermittelst der hierdurch gewonnenen mechanischen Kraft, die zur Bewegung von Magneten verwendet würde, natürlich auch ein Pud Kupfer galvanisch reduciren können, denn Ursache und Wirkung seven sich überall gleich - aequivalent. Bisher wäre zur Reduction von diesem Pud Kupfer etwas mehr als ein Pud Zink erforderlich gewesen, was wegen der Unbrauchbarkeit des Zinksalzes weit höher zu stehen komme als obige 7! Pfund Kohle. Der Vortheil liege also auf der Hand. Wir können indessen die Anwendung mechanischer Kräfte zur Erzeugung galvanischer Ströme nicht durch solche oberflächliche Argumente rechtfertigen, wir müssen vielmehr eingestehen, dass wir bisher in dieser Beziehung nur sehr geringe Anhaltpunkte haben.

have region mondered only of an 35.

Aus den Gesetzen der elektro-magnetischen Maschinen, welche ich bei einer früheren Gelegenheit entwickelt habe, erlaube ich mir folgenden schönen und einfachen Satz zu wiederholen: Man denke sich eine galvanische Batterie, die vermittelst eines langen Leitungsdrahts geschlossen ist und in einer gewissen Zeit eine Quantität Zink consumire, die man mit Z bezeichnen möge. Nimmt man diesen Leitungsdraht und windet ihn um die Eisenstäbe einer elektromagnetischen Maschine, so ändert sich die Zinkconsumtion

ge

n

B

M

al

w

ni

ve

va

sc

ha

M

W

zie

zu

w

T

In

de

de

M

sel

ma

ko

nis

ZW

ma

WE

eii

WE

tu

au

scl

nicht, so lange die Maschine in Ruhe verharrt. Sobald dieselbe aber zu gehen anfängt, vermindert sich die Zinkconsumtion, und wird desto geringer, jemehr der Gang der Maschine sich beschleunigt. Belastet man dieselbe, um ihre Geschwindigkeit zu vermindern, so vermehrt sich die Zinkconsumtion wieder. Nun weiß man, daß die sogenannte mechanische Arbeit dem Producte aus der Geschwindigkeit in die Belastung oder der Kraft proportional ist. Es wird also das Verhältniss zwischen Kraft und Geschwindigkeit so gewählt werden können, dass das Product beider sich zum Maximo erhebt. Hat man nun eine solche Anordnung getroffen, so findet man, dass die Zinkconsumtion jetzt nur 1 Z beträgt. Es lassen sich an diese Erscheinung eine Menge interessanter Betrachtungen knüpfen, welche wir aber für jetzt übergehen wollen. Als zunächst liegende und uns bekannte Ursache dieser, beim Gange der elektromagnetischen Maschinen eintretenden Verminderung der elektrolytischen Kraft ist nun die magneto-elektrische Reaction zu betrachten, welche einen entgegengesetzten Strom erzeugt, der also für sich unbedingt im Stande gewesen wäre, in derselben Zeit einen dem 1 Z proportionalen elektrolitischen Effect hervorzubringen. Hier treten wir nun allerdings auf das Gebiet bekannterer Verhältnisse, so dass die nachstehende Folgerung vielleicht nicht zu übereilt erscheint. Gesetzt man hätte eine ähnliche Maschine, wie die vorausgesetzte elektro-magnetische, wobei aber, statt der Elektromagnete, permanente Magnete von gleicher Stärke angebracht wären, so würde die Drehung einer solchen magnetischen Maschine mit der dem früher erwähnten Maximo entsprechenden Geschwindigkeit, einen Aufwand von Arbeit erfordern, welcher der Arbeit jener elektromagnetischen Maschine gleich käme, und eben so würden die elektrolytischen Zersetzungen in beiden Fällen gleich seyn, d. h. dort würde 1 Z consumirt werden, um die Arbeit T zu erzeugen, hier würde die Arbeit T aufgewendet werden, um ½ Z galvanisch aufzulösen. Die durchgreifende Reciprocităt, welche Elektro-Magnetismus und Magneto-ElekElektricität auf dem Gebiete geometrischer Phänomene zeigen, lassen erwarten, dass diese Reciprocität auch in dynamischer Beziehung stattfinden werde; nur lässt sich der Beweis nicht so leicht führen, da es beinahe gänzlich an Mitteln fehlt, mechanische Kräfte genau zu messen. Ist also in dem einen Falle, wie wir gleich anfangs gesagt, und wie uns und Andern mühselige Erfahrungen gelehrt haben. ist also in dem einen Falle $\frac{T}{1 \cdot Z}$ dem industriellen Interesse nicht entsprechend, so ist eine große Wahrscheinlichkeit vorhanden, es werde in Fällen, wo von Anwendung galvanischer Kräfte im Großen die Rede ist, der öconomische Effect der magnetischen Maschinen $\frac{\frac{1}{T}Z}{T}$ ein vortheilhafterer seyn. Aus den in den Cabinetten gebräuchlichen Maschinen, die etwa nur zeitweise zu Experimenten benutzt werden, lassen sich freilich diese Folgerungen noch nicht ziehen, denn bei ihnen absorbirt die Unvollkommenheit des zur Hervorbringung der schnell rotirenden Bewegung gewöhnlich angewandten Mechanismus offenbar den größten Theil der zur Drehung verwandten mechanischen Arbeit. Indessen bietet der große Reichthum mechanischer Organe. den wir besitzen, Mittel genug dar, die durch die Organe der Bewegung selbst entstehenden Nebenhindernisse auf ihr Minimum herabzubringen. In größeren Anstalten, wo sonst schon bedeutende bewegende Kräfte, Wasserfälle, Dampfmaschinen u. s. w., zu anderen Zwecken verwendet werden, kommt es gewöhnlich auf eine Pferdekraft mehr oder weniger nicht an, und es steht kaum zu bezweifeln, dass bei zweckmäßiger Anordnung eine solche Menge eiserner Armaturen durch diese eine Pferdekraft in Rotation versetzt werden können, um dadurch als reichliches Aequivalent eine ansehnliche elektrochemische Kraft zu beliebiger Verwendung zu erhalten. Ich breche diese allgemeine Betrachtung jetzt ab, mit dem Vorsatze, sie namentlich in Bezug auf die vortheilhafteste Anordnung der magneto-elektrischen Maschinen mit nächstem wieder aufzunehmen. Ich

erlaube mir aber der Academie einige messende und vergleichende Versuche vorzulegen, welche mit einer magnetoelektrischen Maschine angestellt worden sind, die ich schon vor geraumer Zeit habe construiren lassen. D

ter

Pi

W

de

te

br

N

de

ne

ne

ne

w

v(2"

vi

be

m

SC

tr

ZI

V

w

g

n H

b

N

fl N

Agriculta delah, marangalan a. 36. diengen no messen. Ist

Die Fig. 12. Taf. II, zeigt die allgemeine Anordnung dieser Maschine. Sie besitzt zwei combinirte Magnete, von denen jeder aus acht Lamellen besteht, die 1 dick, 11 breit, und von den Polen bis zur äußeren Linie des Buges 103" lang sind. Die innere Schenkelweite dieser Lamellen beträgt 21". Diesen Magneten gegenüber rotiren zwei Cylinder von weichem Eisen, welche 2;" lang sind und 13" im Durchmesser haben. Die sie umgebenden Inductorrollen sind etwas kürzer, und haben den doppelten, nämlich 23" Durchmesser. Sie bestehen jede aus 210 Windungen eines doppelt mit Seide besponnenen Kupferdrahts von No. 17 und 18 der gewöhnlichen englischen Drahtmaasse. Diese Rollen sind neben einander verbunden, so dass man sie gewissermassen betrachten kann, als beständen sie zusammen aus 210 Windungen eines Drahts von doppeltem Querschnitte. Die Axe läuft in Spitzen und trägt eine kleine Schnurrolle und einen Commutator, dessen Theile durch Elfenbein getrennt sind, und der bei jeder Umdrehung den Strom zwei Mal wechselt, so dass man einen inducirten Strom nach einer Richtung erhält. Die andern meist bekannten Einrichtungen sind zum Theil durch die anfängliche particuläre Bestimmung dieser Maschine bedingt worden, und bieten weiter nichts Eigenthümliches dar. Zu dieser Maschine gehört noch eine andere Axe mit zwei, aus äußerst feinem Drahte bestehenden Inductorrollen, von denen bei den nachstehenden Versuchen aber nicht die Rede seyn wird.

37.

Bei Anwendung der zuerst beschriebenen Inductorrollen wird, wenn die Drähte hinter einander verbunden sind, ein ½" langer, sehr dünner Platindraht nicht, oder nur äuserst schwach glühend. Werden die Inductorrollen aber neben einander verbunden, so tritt das Glühen desselben Drahts schon bei ganz langsamer Drehung ein, bei schnellerer Drehung verbrennt der Draht. Ein Zoll desselben Platindrahts kann noch weißglühend gemacht werden; größere Längen werden nur dunkelroth glühend oder nur erwärmt. 700 Fuß Draht von derselben Dicke wie der, aus dem die Inductorrollen bestehen, in die Kette eingeschaltet, erlauben noch den ½ langen Draht zum Glühen zu bringen; dasselbe ist der Fall, wenn zwei Drähte zwischen No. 17 und 18, jeder von 1400 Fuß Länge, neben einander eingeschaltet werden.

Mit nicht zu dünnem Drahte bewickelte Hufeisen können durch diese Maschine zu äußerst kräftigen Elektro-Magneten gemacht werden.

38

Zu meinen gewöhnlichen Versuchen und auch zu kleineren galvanoplastischen Reductionen bediene ich mich gewöhnlich Daniell'scher Elemente, deren hauptsächlichste Dimensionen ich angeben will. Ein äußerer Kupfercylinder von 6" Höhe und 3" Durchmesser. Ein Thonbecher von 2" innerem Durchmesser und 6" innerer Höhe; darin ein viereckiges Stück Zink, in frischem Zustande 11 breit, 3" dick und 61" hoch. Kupfervitriolkrystalle im Vorrathe befinden sich in einem mit dem Kupfercylinder auf zweckmäßige Weise verbundenen Reservoir. Zwischen einem solchen Daniell'schen Elemente und meiner magneto-elektrischen Maschine war es mir wichtig einen Vergleich anzustellen, in der Art, wie ich es früher zwischen den Grove'schen und den Daniell'schen Batterien gethan habe. Ich wählte zu diesem Zwecke meine alte Nervander'sche Tangentenbussole, deren ich mich zu einem großen Theile meiner früheren Arbeiten, zum Theil auch gemeinschaftlich mit Hrn. Lenz bedient hatte. Es ist ein glücklicher Umstand bei dieser Bussole, dass die allerdings nicht ganz leichte Nadel, welche einen in ein Oelgefäss tauchenden Platinflügel trägt, bei regelmässiger Drehung der magnetischen Maschine, nach einigen Schwingungen still steht, und durch die beim Wechsel der Stromesrichtungen eintretenden Unterbrechungen des Stroms nicht im mindesten afficirt wird.

ui

m

ni

re

SC

b

ve

di

S

g

ei fo

D

cl

w

tr

di

n

g

D

d

Durch vorhergegangene Messungen mit dem Agometer waren der Leitungswiderstand der Multiplicatorrolle, inclusive eines Hülfsdrahts L=40,923, der Inductorrollen M=14,026, und eines zweiten Hülfsdrahts L'=48,113 bestimmt worden. Setzen wir die elektromotorische Kraft der Maschine =A, so läfst sich dieselbe schon durch eine Messung erhalten, und zwer ergab sich:

-madia median argued
$$\frac{A}{54,949} = tg \, 37^{\circ} \, 12^{\circ}$$
,

oder:

$$A = 41.71$$
.

Aus einer zweiten Messung, wobei der Hülfsdraht L' eingeschaltet worden war, erhielt man:

$$\frac{A}{103,062} = \lg 24^{\circ} 12',$$

oder:

$$A = 46,33.$$

Ich will hierbei bemerken, das die angegebenen Winkelmessungen die Mittel aus mehreren, wenig von einander abweichenden Beobachtungen sind, die auf beiden Seiten der Gleichgewichtslage der Nadel angestellt worden waren, und dass eine directe Einwirkung der in ansehnlicher Entfernung befindlichen Maschine auf die Nadel nicht stattgefunden hat. Bei diesem Versuche konnte, einiger zufälligen Unbequemlichkeiten wegen, die noch stattfanden und die später abgeändert wurden, die Maschine nicht mit der gehörigen Geschwindigkeit gedreht werden, so das etwa nur 1105 Wechsel in der Minute oder 18,4 Wechsel in der Secunde stattfanden.

39

Bei der Messung des oben beschriebenen Daniell'schen Paares, zu dessen Zinkflüssigkeit Schwefelsäure von 20facher Verdünnung genommen worden war, befand sich der Draht der Inductorrollen nicht mit in der Kette; wir haben daher aus den folgenden beiden Messungen:

$$A = \frac{A}{F + 40,923} = 29^{\circ} 32'$$

anthorsether a clitch owns. If rabte shouldershould be I wine too bour

$$\frac{A}{F + 89,036} = 15^{\circ} 46^{\circ} 10^{\circ} 25^{\circ} 10^{\circ} 10$$

A und F auf die bekannte Weise abzuleiten, nämlich:

A = 27,08 und F = 6,876.

Man ersieht also hieraus, dass die elektromotorische Kraft der magnetischen Maschine bedeutend größer ist als die eines Daniell'schen Plattenpaares, dass aber der Widerstand des letzteren geringer ist als der Widerstand der Inductorrollen.

che, hinne von Unstanden ich deren wale ehelulich piela

Aus dieser vergleichenden Bestimmung lassen sich nun schon jetzt die meisten Fragen über den relativen Werth beider Apparate beantworten. Wäre z. B. die Rede davon, sich statt der Daniell'schen Batterie meiner Maschine zu galvanoplastischen Reductionen zu bedienen, so würde dieses, ihrer hohen Intensität wegen, nur dann mit Erfolg geschehen können, wenn man den magneto-elektrischen Strom durch mehrere Zersetzungsapparate hinter einander gehen ließe. Dagegen würde sie denjenigen Zwecken mehr entsprechen, die mehrere Plattenpaare hinter einander erfordern. Stellt man sich nun die Frage: wie wäre die Drahtumwicklung dieser Maschine einzurichten, um der Wirkungsweise eines einfachen Daniell'schen Paares zu entsprechen, so kann man auch diese Frage leicht beantworten, wenn man vorläufig noch die bekannten Gesetze der Elektro-Magnete, nach denen unter gleichen Umständen die elektromotorischen Kräfte sich verhalten, wie die Anzahl der in der Inductorrolle enthaltenen Windungen, als richtig betrachtet und zu Hülfe nimmt. Wir werden daher einen der Daniell'schen Batterie analogen Effect erhalten, wenn wir der Inductorrolle, statt 210, nur etwa 123 Windungen geben, da 46 : 27=210 : 123. Dabei kann man den Durchmesser der Inductorrolle beibehalten und dieselbe aus dickerem Drahte bestehen lassen. Da nun aber die Leitungswiderstände der um gleiche Rollen gewickelten Drähte sich verhalten wie die Quadrate aus der Anzahl der Windungen, so hat man für den Leitungswiderstand einer aus entsprechend dickerem Drahte bestehenden Inductorrolle nach Artikel 38 und 40:

g

se

tr

si

86

d

drillada , na fish $\frac{123^2}{210^2}$, 14,026 = 4,8.

Die Leistung unserer Maschine würde alsdann der einer einfachen Daniell'schen Batterie gleichkommen, deren Oberfläche sich zu der des oben beschriebenen Elements wie ungefähr 7:5 verhielte. Welche von beiden Anordnungen der Inductorrolle galvanoplastischen Zwecken am besten entspräche, hinge von Umständen ab, deren wahrscheinlich nicht ganz leichte Erörterung vorläufig bei Seite liegen bleiben muß. Ich habe mir übrigens vorgenommen diese Abänderungen zu treffen, und den Durchmesser der Inductorrollen durch Hinwegnahme des zwischen denselben befindlichen Stückes der Axe noch um etwas zu vermehren. Von den damit angestellten Versuchen werde ich mir erlauben der Academie zur Zeit Rechenschaft abzulegen.

durch reduces Zowell mesappoints binter die

Ich habe bisher absichtlich den Umstand mit Stillschweigen übergangen, dass sich aus den Art. 38 gegebenen Beobachtungen zwei Werthe für die elektromotorische Kraft der magnetischen Maschine, nämlich 41,7 und 46,3, ergeben, deren Unterschied durch die wahrscheinlichen Beobachtungsfehler sich keineswegs rechtfertigen lasse. Der Leitungswiderstand der Inductorrollen war nur gemessen worden, um eine Controle zu haben: würden wir nun aber aus den beiden oben gegebenen Beobachtungen die Ohm'schen Elemente berechnet haben, so hätten wir für den Leitungswiderstand der Inductorrollen, statt der durch Messungen bestimmten Zahl 14,026, die Zahl 28,914, und für die elektromotorische Kraft, statt 46,3, sogar 53 erbalten, welche Berechnung also durchaus falsche Resultate gegeben hätte. Erwähnen will ich bei dieser Gelegenheit, dass, nach der vortrefflichen Arbeit W. Weber's über die Stöhrer'sche Maschine zu schließen, bei letzterer, eine, mit Vergrößerung des aufserwesentlichen Widerstandes, eintretende Erhöhung der elektromotorischen Kraft nicht wahrgenommen worden ist. (Poggend. Annal. Bd. 61, S. 431)

Ich werde sogleich weitere Versuche über diesen Gegenstand anführen, vorher aber eine kleine Bemerkung einschalten, die, so viel ich mich erinnere, von Andern noch nicht gemacht worden ist. Berechnet man nämlich die elektromotorische Kraft auf die gewöhnliche Weise, so erhält man bekanntlich:

$$A = \frac{xx'(L'-I)}{x-x'},$$

wo x, x' die respectiven, den eingeschalteten und gemessenen Widerständen L, L' entsprechenden Stromesstärken sind. Nähme man nun an, dafs sich durch die Messung selbst die elektromotorische Kraft verändert habe, so erhielte man aus:

$$\frac{A}{F+L} = x \text{ und } \frac{nA}{F+L'} = x'$$

$$A = \frac{xx'(L'-L)}{nx-x'},$$

woraus sich ergiebt:

$$A(x-x') = A(nx-x'),$$

oder:

$$A=nA+\frac{A(n-1)x'}{x-x'},$$

d. h. dass in allen Fällen, wo die elektromotorische Kraft von einer Beobachtung zur andern, und zwar durch Verringerung der Stromesstärke, gewachsen ist (alsdann ist n>1 und x>x'), die Resultate der auf die gewöhnliche Weise angestellten Berechnung immer zu hoch, und zwar höher noch, als die höchste der wirklich stattgehabten elektromotorischen Kräfte, ausgefallen sind.

42.

Bei den magneto-elektrischen Maschinen läßt sich nun übrigens leicht übersehen, daß durch Vermehrung des Leitungswiderstands in der Kette die elektromotorische Kraft in der That wachsen müsse. Abgesehen von dem Einflusse, welchen die Geschwindigkeit der Rotation und die Beschaffenheit der Inductorrolle auf die elektromotorische Kraft haben, wird dieselbe bedingt durch die Intensität des im Eisenkerne erregten Magnetismus, oder vielmehr durch die

aı

cl

A

ne

B

86

d

Differenz der Intensitäten, die einerseits von der Stärke des permanenten Magneten, andererseits von der Stärke des magneto-elektrischen Stroms selbst abhängig sind. Die Wirkung des magneto-elektrischen Stroms ist nun bekanntlich immer eine solche, dass sie eine der Richtung der Bewegung entgegengesetzte Kraft hervorruft. Nähert sich der Eisenkern dem Südpole des Magneten, so wird hierdurch in ersterem Nordmagnetismus, durch den magneto-elektrischen Strom aber Südmagnetismus erzeugt. Die Differenz beider ist aber wahrscheinlich der elektromotorischen Kraft proportional. Diese nähme also mit der Stärke des magnetoelektrischen Stroms ab, mit dessen Schwächung hingegen Sie wäre am schwächsten, wenn die Inductorrolle unmittelbar in sich geschlossen ist. Es wäre demnächst auch nicht unwahrscheinlich, dass das Gesetz, wonach die elektromotorischen Kräfte sich wie die Anzahl der Windungen verhalten, für die magneto-elektrischen Maschinen nicht streng gültig sey. Sorgfältige Versuche würden indessen bald hierüber entscheiden.

43.

In der Tabelle I habe ich eine Reihe von Versuchen zusammengestellt, welche die gemachte Annahme zu bestätigen scheinen. Ich muß indess hierbei bemerken, dass die angegebenen elektromotorischen Kräfte mit den früher angegebenen nicht verglichen werden können, weil die Widerstände nach einem anderen Maasse gemessen worden sind. Die Geschwindigkeit der Rotation war wie die frühere, nämlich ungefähr 18,4 Wechsel in der Secunde; aber es muss bemerkt werden, dass die Versuchsreihe sich gewissermaßen in zwei Perioden theilt, die jedoch in sich eine regelmäßige Zunahme der elektromotorischen Kraft zeigen. Es war nämlich nach dem Versuche 5 die Schnur gerissen, und ebenso war die Axe in ihren Spitzenlagern lose geworden. Es konnte also wohl eine geringe Verrückung der Eisenkerne gegen die Magnetpole stattgefunden haben. Eben so war bei dem Versuche 7 hin und wieder ein Gleiten der Schnur auf dem Rade bemerkt worden, da man

aus Besorgnifs, die Versuchsreihe wiederum zu unterbrechen, ein zu starkes Anspannen der Schnur vermieden hatte. Aus diesem Grunde behalte ich es mir vor, in der Folge noch andere Versuchsreihen beizubringen, um eine sicherere Basis zu haben für die Entwicklung eines empirischen Gesetzes, welches die gegenseitige Beziehung ausspräche, in welcher bei den magneto-elektrischen Maschinen die beiden Ohm'schen Elemente zu einander stehen.

Ich will noch erwähren der Weelbe Anzahl Weelsel

No. der Versuche.		Ablenkung an der Tangentenbussole.	
100	67	37° 20'	51,10
2	77,6	35	54,34
3	88,2	32 30	56,19
4	98,8	29 40	56,28
5	109,4	27 50	57,76
6	120	24 20	54,27
7	130,8	22 30	54,18
8	147	20 50	55,94
9	174	18 30	58,22
10	201,5	16 30	59,69
11	229	14 40 7	59,94
12	285	12 10	61,45
13	342	10 20	62,36
14	400	9 20	65,76

Durch einige an dem Bewegungsapparate vorgenommene Abänderungen war es gelungen, in der Minute, statt früher 85. jetzt 150 Umdrehungen, oder in der Secunde 32.5 Wechsel mit Bequemlichkeit bewirken zu können 1). Man erhielt hieraus, als Mittel zweier auf beiden Seiten des magnetischen Meridians angestellten Beobachtungen bei Einschaltung der früheren, Art. 38 angewandten Leitungswiderstände:

$$\frac{A}{54,949} = tg \ 46^{\circ} \ 45'$$

$$\frac{A}{103,062} = tg \ 33^{\circ} \ 30',$$

¹⁾ Das Verhältnis des Schnurrades zur Schnurrolle ist wie 1 : 6,5.

woraus sich ergiebt: www.ll.bre/bucate / orb. Allegenes II aus

estud instruction and a second of the second

d

c

B

fa

b

d

k

n

ti

n

E

d

d

und:

4 = 68.42

Es hat sich also auch hier eine bedeutende Vergrößerung der elektromotorischen Kraft bei den durch Vermehrung des Leitungswiderstands erhaltenen schwächeren Strömen ergeben. den Oluaischen Edemente zu zunntaler etchen

Ich will noch erwähnen, dass dieselbe Anzahl Wechsel in der Secunde, bei einem Voltameter mit Platinplatten von ungefähr 1 Quadratzoll Oberfläche, 0,47 engl. Kubikzoll Knallgas in der Minute, und bei einem anderen Voltameter mit ungefähr 3 Quadratzoll Oberfläche 0,66 Kubikzoll Gas in der Minute lieferte. Nach Hrn. Stöhrer's Angabe aber giebt seine früher construirte kleinere Maschine, bei Anwendung von 100 Quadratmillimeter =1,5 Quadratzoll haltenden Platinelektroden, eine etwas geringere Gasquantität, nämlich in 110 Secunden 1 Kubikzoll.

Als Vergleichungspunkt kann dienen, dass drei Daniell'sche Elemente, von den oben erwähnten Dimensionen und auf oben erwähnte Weise geladen, mit den kleineren Elektroden 0,30 Kubikzoll, mit den größeren Elektroden 0,46 Kubikzoll Knallgas, also bedeutend weniger als meine magnetische Maschine lieferten. Dagegen erhielt man durch vier solcher Elemente mit den kleineren Elektroden 0,57 Kubikzoll, mit den größeren Elektroden 0,76 Kubikzoll Knallgas in der Minute.

Der aus meinen obigen Versuchen sich ergebende Umstand: dass bei den magnetischen Maschinen mit der Einschaltung größerer Widerstände zugleich eine Erhöhung der elektromotorischen Kraft eintritt, scheint nicht allein auf diese eine Quelle galvanischer Ströme beschränkt zu seyn. Auch bei hydrogalvanischen Ketten ist eine Vergrößerung der elektromotorischen Kraft, bei Einschaltung größerer Leitungswiderstände, nicht nur mir, sondern auch anderen Physikern - ich führe namentlich Hrn. Poggendorff an, mit dem ich vorigen Sommer über diesen Gegenstand gesprochen — auffallend gewesen. Diese Erhöhung ist zwar gewöhnlich nicht ansehnlich, und kann da, wo es sich um Befriedigung etwaiger practischer Bedürfnisse handelt, allenfalls außer Acht gelassen werden, aber sie ist doch immer zu bedeutend, um nicht, namentlich schon ihrer Regelmäßigkeit wegen, zu wissenschaftlicher Beachtung aufzufordern.

Schon Fechner im Grunde hat diesen Umstand bemerkt, seine Winke in dieser Beziehung sind aber theils in Vergessenheit gerathen, theils haben die früheren Arbeiten dieses ausgezeichneten Physikers an Werth verlieren müssen, der Verbesserungen wegen, welche nicht nur die Hydroketten, sondern auch die galvanischen Messwerkzeuge und Messmethoden seitdem erfahren haben. Aber dennoch kann man nicht wohl behaupten, dass die experimentelle Bestätigung des Ohm'schen Gesetzes für Hydroketten (mit Thermoketten sind ohnehin seit langer Zeit keine Messungen angestellt worden) mit diesen Verbesserungen gleichen Schritt gehalten hätte. Man findet immer Unterschiede zwischen Beobachtung und Rechnung, welche nicht den Charakter der Zufälligkeit an sich tragen, und die größer sind als die wahrscheinlichen Fehler der Messung selbst. Vielleicht daß die Ohm'sche Formel fähig ist die Vorgänge der geschlossenen Kette in sich aufzunehmen, welche die Schuld dieser Abweihung tragen; vielleicht aber, dass diese Formel ihr Verhältniss zur Wissenschaft bereits erledigt hat, so dass sie auf die weitere Entwicklung nur hemmend wirkte. Der practische Nutzen derselben kann aber keineswegs in Abrede gestellt werden, ein Nutzen, den sie da, wo es darauf ankommt, ungefähr die zweckmäßigsten Anordnungen zu treffen oder auffallende Phänomene ungefähr zu erklären, vielfach bewährt hat und noch bewährt. Die nachstehenden, in Tabelle II enthaltenen Versuche, die ich mit einer einfachen Daniell'schen Batterie schon vor längerer Zeit angestellt hatte, um deren Ohm'sche Elemente bei verschiedenen Stromesstärken zu bestimmen, machen nur Ansprüche darauf, das oben Gesagte zu bestätigen.

dem ich vorigen Som II silsedaTe tiegenstand.

Die Daniell'sche Batterie besteht aus einem Kupfercylinder, 6" weit, 7" hoch, und einen Zinkcylinder, 4" weit, 6" hoch, beide getrennt durch einem porösen Thoncylinder. Ladung: statuirte Kupfervitriollösung, verdünnte Schwefelsäure, Ton dem Volumen nach.

No. der Versuche.	Gesammter aufserwesentli- cher Leitungswi- derstand.	Ablenkung an der Tangenten- bussole.	Elektromotori- sche Kraft.	VVesentlich, Leitungswi- derstand der Kette.		
more the	3,659	35° 20') I man ilsi	0 700		
2	11,268	14 41	3162	0,798		
3	3,659 16,948	35 14 10 10	3192	0,860		
5	3,659	35 10	, minute is place	The second Law		
6	22,501	7 50	3214	0,901		
a61-97 91	3,659	35 9	3236	0,933		
8	28,292	6 20	1	0,000		
9	3,659	35 6	3236	0,944		
10	33,683	5 21		31477.38(11)		
11	3,659 67,114	35 1	3350	1,128		
13	3,659	35 1) 9053	0.000		
14	33,683	5 22	3251	0,986		
15"	3,659	35 1	3243	0,975		
16	28,292	6 21	5 0240	0,515		
17	3,659	35 1	3229	0,954		
18	22,501	7 51	5 3220	0,334		
19	3,659	35 1	3192	0,901		
20	16,948	10 10) 0132	0,301		
21 22	3,659 11,268	35 1 14 40	3177	0,880		

whattorrographic Making bay 47; all the nonlinewing orthogon

Die Beobachtungen sind in der Reihenfolge, wie sie in der Tabelle stehen, angestellt worden, und zwar so, dass man immer wieder auf denselben Leitungswiderstand zurückging. Ferner ist die zweite Hälfte der Reihe von 12 bis 22 in umgekehrter Ordnung als die erste Hälfte von 1 bis 12 angestellt worden, woraus denn ersichtlich ist, dass die gleichweit von 12 abstehenden Versuche sehr nahezu dieselben Resultate geliefert haben. Die regelmäßige Erhöhung der elektromotorischen Kraft ist daher nicht wohl einer permanenten Veränderung der Kette zuzuschreiben,

sondern scheint gleich mit dem Schlusse derselben einzutreten, und von der Stärke des Stroms selbst abhängig zu seyn. Andere Fälle, die mir vorgekommen sind, wo mit verminderter Leitungsfähigkeit der Flüssigkeit gewöhnlich ebenfalls eine Erhöhung der elektromotorischen Kraft eintrat, will ich hier weiter nicht anführen. Die Erhöhung der elektromotorischen Kraft wird noch sichtbarer, wenn man die dem geringsten Leitungswiderstande 3,659 entsprechenden Beobachtungen wegläfst, und die Berechnung so anstellt, wie es die Tabelle III zeigt.

hend and me mehr ab girl of a a restimming deses low

No. der Versuche.	Gesammter aufserwesentli- cher Leitungswi- derstand.	Ablenkung an der Tangenten- bussole.	Elektromotori- sche Kraft.	Wesentlich. Leitungswi- derstand der Kette.		
10 12 14 16 18 20 22	11,268 16,948 22,501 28,292 33,683 67,114 33,683 28,292 22,501 16,948 11,268	14° 41' 10 10 7 50 6 20 5 21 2 49 5 22 6 21 7 51 10 10 14 40	3214 3334 3273 3296 3420 3436 3319 3298 3342 3214	1,00 1,63 1,02 1,43 2,88 2,71 1,64 1,29 1,77 0,96		

Nehmen wir die aus beiden Tabellen hervorgehenden Extreme der elektromotorischen Kraft, so verhalten sich dieselben wie 3162: 3436=100: 108, welcher Unterschied allerdings höher ist, als sich der Theorie nach rechtfertigen läfst.

48

Ich erlaube mir noch folgende Bemerkung hinzuzufügen. Die oben, Artikel 40, gemachte Vergleichung zwischen der Daniell'schen Batterie und meiner magneto-elektrischen Maschine scheint, in Bezug auf die Methode, allen Forderungen vollkommen zu entsprechen. Wären nämlich, wie ich es schon früher in meinem Aufsatze über das chemische und magnetische Galvanometer (Bullet. sc. T. V., No. 23, 24)

IV

tie

gl

ti

te

al

fe

e

a

vorgeschlagen '), Weber's Multiplicator und der meinige auf elektrolytische Einheiten bezogen gewesen, hätten wir ferner unsere Leitungswiderstände ebenfalls nach einem bestimmten Maafse ausgedrückt, so würden auch unsere magnetoelektrische Maschinen (Poggend. Annal. Bd. 61) in allen verschiedenen Momenten ihrer Leistungen auf die leichteste Weise mit einander haben verglichen werden können. Man könnte, so scheint es mir, recht wohl auf bekannterem und zugänglicherem Boden bleiben, ohne dass es nöthig wäre. den an sich veränderlichen, nach absolutem Maasse immer von Neuem zu bestimmenden Erdmagnetismus hineinzuziehen, um so mehr, da die Mittel zur Bestimmung dieses letzteren nicht Jedermann und jeder Localität zustehen. Die Beziehung eines Multiplicators dagegen, dessen Gesetz auf eine oder die andere Weise bekannt ist, die Beziehung eines solchen Multiplicators auf eine zweckmäßig gewählte elektrolytische Thätigkeit, würde dagegen viel begiemer seyn, und bliebe ein- für allemal, wenn sie einmal gemacht wäre. Die Größe eines, in jedem Querschnitte einer geschlossenen Kette stattfindenden Stromes ist, wenn dieselbe auf eine elektrolytische Thätigkeit reducirt ist, ein so absolutes Maass als irgend eins der sonst in der Physik gebräuchlichen Maasse, und hat zugleich den Vorzug häusiger practischer Beziehungen. Wenn die Physiker mit einander durch Barometer und Thermometer sprechen, so verstehen sie sich volikommen, und es wäre in der That zu wünschen, das ein solches Verständnis auch recht bald bei galvanischen Untersuchungen einträte.

In the relation of the metalogoude is necessary linearity of the relation of Article 10, some day Vertical out a weaken der Daniellischen Italian (malemenner magnete olektrischen Magnetien scholer, an die magnet des Methode, allen Forderungen vollkenamen en en en en ehen. Waren näudich nie ich de sehen früher in menen Anfarte nier das chenteche und de sehen früher in menen Anfarte nier das chenteche und

¹⁾ Annalen, Bd. 48, S. 26.

IV. Galvanische und elektro-magnetische Versuche; con M. H. Jacobi 1).

lieben chemischen Regerionen zu stugmt, und die nur son

Dritte Reihe. Erste Abtheilung.
Ueber einige neue Volta'sche Combinationen.

all will the radio period that terrestrate and the Allen of the Allen

on widerland, sondern derekontartibrorie genals gustu-

In der Sitzung vom 21. August 1844 habe ich der Klasse eine kurze Notiz über einige neue Volta'sche Combinationen gegeben, welche, außer dem wissenschaftlichen, zugleich ein practisches Interesse darbieten, und welche Notiz ich mir jetzt zu vervollständigen erlaube.

Es ist bekannt, dass die Metalle, je nach den Flüssigkeiten, in denen sie tauchen, ein verschiedenes elektromotorisches Verhalten zeigen, und dass in dieser Beziehung auf dem Gebiete des Hydrogalvanismus keine absolute Reihefolge der Metalle aufgestellt werden kann. Eben so weiß man es schon seit längerer Zeit, dass zwei in Bezug auf eine Flüssigkeit weit auseinanderstehende Metalle, in einer anderen Flüssigkeit, sogar ein umgekehrtes Verhalten zeigen, wobei man gewöhnlich als Beispiel Eisen oder Zink und Kupfer in Schwefelleberlösung anführt, wo die ersteren Metalle negativ gegen Kupfer auftreten, das hier stark positiv erscheint. Die chemische Theorie des Galvanismus hat, der Contacttheorie gegenüber, aus diesem sonderbaren Verhalten der Metalle in Flüssigkeiten ihre Hauptargumente geschöpft. Aber ich habe schon bei einer anderen Gelegenheit geäußert: man müsse die Sache so ansehen, als brächten verschiedene Flüssigkeiten an der Oberfläche der Metalle, welche bei den meisten Volta'schen Phänomenen eigentlich nur zur Sprache kommen, gewisse instantane Veränderungen hervor, für welche die gewöhn-

¹⁾ Uebersandt vom Hrn. Verfasser aus dem Builet. phys. math. d. St. Petersb. Acud. T. V., No. 14.

lichen chemischen Reactionen zu stumpf, und die nur am Galvanometer wahrnehmbar wären. Platin, von alkalischen Flüssigkeiten umgeben, sey, Volta'sch betrachtet, ein ganz anderes Metall als Platin, das z. B. in concentrirte Salpetersäure tauche. Es verlohnte sich kaum der Mühe, die zahlreichen, bisweilen höchst sinnreichen, von Faraday und Daniell zur Unterstützung der chemischen Theorie angestellten Versuche einzeln durchzunehmen und — nicht zu widerlegen, sondern der Contacttheorie gemäß auszulegen. Es ist kein einziger dieser Versuche, welcher einer solchen Auslegung widerstände. Aber es wäre hierdurch nichts gewonnen, der Streit keineswegs entschieden, da jeder auf seinem Boden das Recht für sich in Anspruch nehmen kann.

50.

Unter den Volta'schen Combinationen, welche in neuerer Zeit ein besonderes Interesse erregt haben, weil bei ihnen nur ein durch verschiedene Flüssigkeiten zu bedeutender elektromotorischer Differenz gesteigertes Metall zur Anwendung kommt, will ich hier nur die folgenden anführen:

- + Platin, Aetzkalilösung conc. Salpetersäure, Platin -
- + Gold, Salzsäure - Gold -
- + Eisen, Schwefelsäure Eisen -

Eine zweckmäßige Benutzung dieser Eigenschaften der Metalle bietet nun die Mittel dar, theils zur Bildung neuer merkwürdiger Volta'scher Combinationen, theils zur Unterstützung gewisser elektro-chemischer Processe.

ren Verhelten der Weislie,16 Flüssigkeiten ihre Hauptar

Im Sommer 1844 hatte ich zu einem Zwecke, der weiter nicht hierher gehört, folgenden Versuch angesetzt: Ein poröser Thonbecher, gefüllt mit einer salpetersauren Silberauflösung, wurde in ein Gefäfs gestellt, das eine ebenfalls verdünnte, auf die bekannte Weise bereitete Auflösung von Kalium-Silbercyanür enthielt. In letztere tauchte eine Kupferplatte, in den Thonbecher aber eine Silberplatte. Von einer Daniell'schen Batterie wurde das Zink

eines einzelnen Elements mit der Kupferplatte, das Kupfer aber mit der Silberplatte verbunden. Letztere war also als Anode, dagegen erstere als Kathode zu betrachten. Eine in den Kreis eingeschaltete Bussole, die aber nur mit einem einfachen Drahte, also nur mit einer halben Windung versehen war, zeigte bei dieser Verbindung mit einem einfachen Elemente nur eine Ablenkung von 1° bis 2°. Zwei Daniell'sche Elemente, nach dem Schema der Kette verbunden, gaben anfänglich 11°, die Wirkung sank aber bald bis auf 7°½ herab. Bei der guten Leitungsfähigkeit der im Zersetzungsapparate befindlichen Flüssigkeiten war eine so geringe Stromesstärke in der That auffallend.

Nach einer etwa 20stündigen Wirkung betrug die Ablenkung nur noch 6°. Der Zersetzungsapparat, unter Hinweglassung der Batterie in sich geschlossen, gab eine Ablenkung von 10° in entgegengesetzter Richtung, wonach also das Silber in der Silbernitratauflösung sich negativ gegen die in der alkalischen Silberlösung befindliche silberbedeckte Kupferplatte verhielt. An dieser letzteren hatten sich während der oben genannten Zeit 137 Doli Silber reducirt; aufgelöst hatten sich von der Silberplatte 122 Doli. An der inneren Wandung des porösen Thonbechers aber hatten sich einzelne Silberkrystalle reducirt, welche, weil sie zum Theil in den Thonbecher eingewachsen waren, nicht gut gewogen werden konnten.

all , sintermollanders, ogia Ja 52. Last Jol 3. modallbather test

Ein ähnlicher Versuch wie der vorstehende, wobei aber eine größere Kupferkathode und ebenfalls eine größere Silberanode genommen worden war, bot ähnliche Resultate dar. Mit zwei Daniell'schen Elementen erhielt man eine Ablenkung von 10°; nach einer dreitägigen Wirkung, wobei aber die Ablenkung beinahe bis auf Null herabgesunken war, konnte man mit vier frisch geladenen Elementen doch nur zu einer Ablenkung von 6° bis 7° gelangen. Das Innere des porösen Thonbechers war über und über mit Silberkrystallen bedeckt. Die obige geringe, ungeachtet einer so starken Batterie stattfindende Ablenkung liefs auf

eine bedeutende Polarisation der Elektroden schließen. In der That gab der in sich geschlossene Zersetzungsapparat allein sogleich eine Ablenkung von 35°4 in entgegengesetzter Richtung, die nicht nur nicht schnell abnehmend war, wie es soust bei den Polarisationen, z. B. der Platinplatten in Säuren, gewöhnlich der Fall ist, sondern die sogar allmälig zunehmend war, indem die Ablenkung nach etwa einer Stunde bis auf 38° gestiegen war. Mit dieser Polarisation trat zugleich eine starke Silberreduction an der in der Silbernitratauflösung befindlichen Silberplatte ein. Nach 4 bis 5 Stunden war indessen die Ablenkung bis auf 20° herabgesunken. Nachdem die Verbindung mit der 4plattigen Batterie wieder hergestellt worden war, erhielt man eine Ablenkung von 21° in der früheren Richtung, also im Sinne der Batterie; eine Ablenkung, die aber nach 24 Stunden bis auf 30 gefallen war. Die Polarisationsablenkung dagegen betrug 280 4. Idontariarodik ada ad ad is ab osla gen die in der alkalischen gaberlösung belindliche silber

Um zu schen, ob obige bedeutende Wirkung durch eine mit der Zeit eingetretene Veränderung der Elektroden, oder durch die eigenthümliche Wirkung der Flüssigkeiten entstanden war, wurden zwei neue sorgfaltig gereinigte Silberplatten genommen, die aber geringere Dimensionen als die früheren Elektroden hatten. Man erhielt vermittelst derselben eine Ablenkung von 15°. An der im Silbernitrat befindlichen Elektrode fand eine Reduction statt, die in der alkalischen Silberlösung befindliche Platte aber löste sich auf. Wir hatten hier also eine sehr wirksame Volta'sche Combination erhalten, die sich folgendermaßen dardar. Mit zwei Damell'schen Elementen erhielt marglists

+ Silber, Kalium-Silbercyanur Silbernitrat, Silber -Bei dieser Combination kommt also auch nur ein Metall, und zwar eins der sogenannten edeln Metalle, zur Anwendung, das sich in einer Flüssigkeit - der alkalischen auflöst, in der andern aber metallisch reducirt.

Wurde, statt des - Silber, Platin genommen, so steigerte sich die Ablenkung von 15° auf 20° 1, und stieg, Programm's April 15t. LXUX

ungeachtet sich die Platinplatte sogleich mit Silber dedeckte, bis auf 24°.

Verstärkt wird diese Kette, wenn man statt des Kalium-Silbercyanürs eine ziemlich concentrirte Cyankaliumlösung nimmt, jedoch vermindert sich die elektromotorische Kraft und mit ihr die Stärke des Stroms in dem Maasse, als die Flüssigkeit mehr Silber aufnimmt.

reits früher erreifigten Bussall batrug 25

Eine zweite sehr interessante Combination stellt sich so dar:

+ Silber, Cyankalium Kupfervitriol, Kupfer -

Hierbei findet also eine Umkehrung der gewöhnlichen elektromotorischen Verhältnisse statt, nach denen Silber negativer als Kupfer ist. Zum Gelingen dieses Versuches, und damit derselbe practisches Interesse erhalte, sind indessen einige Vorsichtsmaßregeln erforderlich. Durch die Wirkung der Endosmose nämlich findet durch den porösen Thonbecher hindurch ein Vermischen des Kupfervitriols mit dem Cyankalium statt, wodurch, theils im Innern der Wände des Bechers, theils an seiner Oberfläche, die Bildung unauflöslicher Kupferverbindungen stattfindet, welche den Durchgang des Stroms hindern und eine schnelle Wirkungsabnahme desselben bewirken. Man umgebe daher den mit Kupfervitriol gefüllten Thonbecher, welcher eine Kupfer- oder eine Platinplatte enthält, mit einem zweiten porösen Thonbecher, der mit Kochsalzlösung oder mit einer gut leitenden Auflösung irgend eines andern Neutralsalzes gefüllt ist, welches weder in Kupfervitriol, noch in Cyankalium eine chemische Zersetzung bewirkt. Das Ganze stelle man dann in das Gefäs, in welches sich die Cyankaliumauflösung und die aufzulösende Silberplatte befindet. Das Schema dieser Verbindung stellt sich nun so dar:

+ Silber, Cyankalium Kochsalzlösung Kupfervitriol, Kupfer

Hussigkeit, die oben erchlegen Wirkungen der Endorn

Zur näheren Beschreibung der Wirkungsweise dieser Volta'schen Combination diene Folgendes. In I. befand

sich eine Auflösung von 24 Solotnik Cvankalium in 16 Unzen Wasser, in II. eine ziemlich concentrirte Kochsalzlösung, in III. eine völlig gesättigte Kupfervitriolauflösung, mit einem kleinen Behälter, worin sich Kupfervitriolkrystalle im Vorrathe befanden. Die Kupferplatte in III. wog 3 Sol. 14 Dol., die Silberplatte in I. 12 Sol. 66 Dol. Die anfängliche Ablenkung der in die Kette eingeschalteten, bereits früher erwähnten Bussole betrug 250 1. Nach ungefähr 8 Stunden ununterbrochener Wirkung war diese Ablenkung aber bis auf 19° herabgesunken. Durch Zusatz von etwas freier Schwefelsäure zum Kupfervitriol wurde aber die Ablenkung wieder bis auf 24° erhöht. Nach etwa 3 Stunden, so dass die Kette also im Ganzen 11 Stunden gearbeitet hatte, betrug die Ablenkung nur noch 15° 4. Während dieser Zeit hatten sich 177 Doli Kupfer reducirt und 627 Doli Silber aufgelöst. Nach der Rechnung entsprächen aber 627 Doli Silber 184 Doli Kupfer, was also, da nur ein Unterschied von 7 Doli stattfindet, mit dem Versuche sehr gut übereinstimmt. Das Kupfer besaß übrigens nicht die schöne rosenrothe Farbe der gewöhnlichen. aus Kupfersulphat oder Kupfernitrat bewirkten Reductionen, sondern war dunkel braunroth und brüchig wie das Kupfer, das man beinahe aus allen anderen Kupfersolutionen, mit Ausnahme der beiden oben genannten, erhält.

notice of the character of and the character we che

Die beim obigen Versuche angewandte Cyankaliumlösung, die schon 6 Sol. 51 Dol. Silber aufgenommen hatte, wurde zu einem neuen Versuche benutzt, den man dahin abänderte, daß, statt Kupfer und Kupfervitriol, Platin und concentrirte Salpetersäure genommen wurde, Das Schema dieser Combination ist also:

+ Silber, Cyankalium Kochsalz conc. Salpetersäure, Platin - Zu bemerken ist hierbei, dass bei Anwendung der concentrirten Salpetersäure, und bei Hinweglassung der Zwischenflüssigkeit, die oben erwähnten Wirkungen der Endosmose auch hier einen nachtheiligen Einflus aussiben. Dieser nimmt zwar mit der Verdünnung der Salpetersäure ab, es tritt

aber hierdurch der Nachtheil ein, dass sich mit dieser Ver dünnung zugleich eine verminderte negative Polarisation der Platin, und mithin eine verminderte Stromstärke einstellt.

Statt der bei dem vorigen Versuche, 8, 55, gebrauchter Silberanode, die sich noch nicht ganz aufgelöst hatte, wurde eine stark mit Silber bedeckte Platinplatte genommen, die 25 Solotnik 66 Doli wog. Die anfängliche Stromesstärke dieser Combination war äußerst bedeutend, denn die Ablenkung an der Bussole betrug nahe an 40°. Nach etwa 2 Stunden war dieselbe aber bis auf 28° gefallen. In dieser Zeit hatten sich 2 Sol. 66 Doli Silber aufgelöst. Am andern Morgen, also nach einer etwa 11stündigen Wirkung betrug die Ablenkung nur noch 2°. Die Silberanode hatte im Ganzen 4 Sol. 66 Doli verloren, und war über und über mit in heifsem Wasser leicht auflöslichen Krystallen des Doppelcyanür von Silber bedeckt, denen zum Theil auch obige bedeutende Wirkungsabnahme zuzuschreiben ist. Etwas Aehnliches findet bekanntlich auch bei den gewöhnlicher galvanoplastischen Processen statt. Ist die Kupfervitriollö sung nicht hinlänglich verdünnt, so bedeckt sich gewöhnlich die Anode allein, aber nie die Kathode, mit Krystallen von Kupfervitriol, welche den Durchgang des Stroms hindern und so die Wirkung schwächen. Nachdem mar durch Reinigen der Silberplatte und durch Umrühren der Flüssigkeit die Ablenkung wieder bis auf etwa 10° gebracht hatte, liefs man den Apparat noch etwa 24 Stunden geschlossen, nach welcher Zeit die Ablenkung bis auf Null herabgesunken war. Aufgelöst hatten sich im Ganzen 6 Sol. 40 Doli Silber. Rechnet man hierzu die im vorigen Versuche, §. 55, aufgelösten 6 Sol. 51 Doli, so hatten die in der Auflösung enthaltenen 24 Solotnik Cyankalium im Ganzen 12 Sol. 91 Doli, also mehr als die Hälfte ihres Gewichts an Silber aufgenommen, was ein für die Praxis nicht unwichtiges Resultat ist.

57.

Bei einem zweiten, nach dem vorhergehenden Schema angestellten Versuche, wobei ebenfalls Platin und Salpetersäure, aber, statt der silberhaltigen, gleich anfangs eine reine, in dem früher (§. 55) angegebenen Verhältnisse bereitete Cvankaliumauflösung genommen worden war, hatten sich in etwa 4 Stunden 9 Sol. 19 Doli Silber aufgelöst. Die Ablenkung der Bussole hatte anfänglich 43° 1 betragen, und war in der angegebenen Zeit auf 35° herabgesunken. Die Silberplatte hatte sich bei diesem, so wie bei den früheren Versuchen, mit einem schwärzlichen Pulver bedeckt, das hin und wieder mit einem Pinsel entfernt wurde, weil es der Gleichmäßigkeit und Stärke des Stroms Eintrag that. hatten wich 2 Sol. .86 Doli Silber anfrelöst.

Es ist wohl keinem Zweifel unterworfen, dass die obigen Volta'schen Combinationen, besonders die letztere, wenn man sie mit Umsicht und Kenntniss der Dinge anwendet, mit Vortheil zur Bereitung von Silbersolutionen, auch im Großen, benutzen werden könne. Man würde durch Herrichtung eines solchen, nach dem obigen Schema zusammengesetzten Apparats, der in ununterbrochener Thätigkeit verbliebe, und der nur einer geringen Aufsicht bedürfte, manche Handarbeit und alle die lästigen chemischen Processe ersparen, welche sonst erforderlich sind. Das Wichtigste möchte aber seyn, dass man mit einer solchen, auf rein galvanischem Wege bereiteten Silbersolution nicht nur eine viel schönere Versilberung erhält, sondern daß das galvanoplastische Silber selbst, wenn es stark genug reducirt ist, um von der Kathode abgelöst zu werden, sich als von ganz vorzüglicher Beschaffenheit erweist, was wahrscheinlich durch den Umstand erklärt werden kann, dass diese Silbersolution rein, und nicht, wie die auf gewöhnliche Weise bereiteten, durch Kalinitrat oder Kaliumchlorür verunreinigt ist. In der That bediene ich mich schon seit 1844 bei den Versuchen, die ich hin und wieder anstelle, nur solcher auf galvanischem Wege bereiteten Silberauflösungen, die mir in jeder Beziehung die befriedigendsten Resultate gegeben haben.

59.

Die obige Combination läfst sich mit Vortheil anwenden, um die Silbersolutionen, die man mit der positiven Elektrode, d. h. mit einer Silberanode, bearbeitet, in einem höheren Grade der Sättigung zu erhalten. Es ist nämlich bekannt, dass sich bei der gewöhnlichen Behandlungsweise immer mehr Silber an der Kathode reducirt, als sich von der Anode auflöst, weshalb denn die Silbersolution bald erschöpft wird und wieder erneuert werden muß. Ich setzte daher einen Apparat zusammen, wie er in der Fig. 13 Taf. II dargestellt ist. ABCD ist ein mit verdünnter Cyansilbersolution gefülltes Glasgefäß, efgh und iklm sind poröse Thonbecher, von denen der erstere mit Kochsalzlösung. der andere mit Kupfervitriollösung oder Salpetersäure gefüllt ist. In ersterem Falle kann man zur Kathode C' eine Kupferplatte nehmen, im andern Falle aber ist es nöthig sich einer Platinplatte zu bedienen. KZ ist eine auf gewöhnliche Weise zusammengesetzte, aus einem oder zwei Elementen bestehende Daniell'sche Batterie. S, S' sind Silberplatten, C ist eine Kupferform, auf welche das Silber reducirt werden soll. In einem solchen Apparate lösten sich nicht nur die Silberanoden S, S' mit Leichtigkeit auf, sondern man erhielt auch an der Kathode C, die einige Male aus Platin, andere Male aus Kupfer bestand, in etwa 14 Stunden ungefähr 10 Solotnik Silber von solcher Schönheit und Geschmeidigkeit, daß es in nichts dem gewalzten Silber nachstand. Leider konnten, zufälliger Umstände wegen, bei diesem Versuche keine weiteren Maafsbestimmungen gemacht werden. Der obige Apparat kann sich vereinfachen, wenn man statt zweier Silberanoden nur eine nimmt. In diesem Falle verbindet man, wie die punktirte Linie zeigt, C unmittelbar mit S. Erwähnen will ich noch, dass man bei diesem Schema, so wie bei dem früher erwähnten (§. 54), statt des Kupfervitriols in dem Thonbecher iklm, mit Vortheil auch eine Auflösung von salpetersaurem Kupfer anwenden kann. Die Stromesstärke scheint hierdurch etwas vermehrt zu werden.

pler reducirty day Kundelan 00 days our um 190 Dall

Um zu sehen, wie sich Silber in Gyankalium dem Zink gegenüber verhält, stellte ich einige Versuche an, die sich durch folgende Combinationen darstellen:

men boliegen Grodo der Saitten van orbeiten. Da ist nam-

D

u

d

T

H

d

si

N

te

d

d

a

li

b

0

le

d

A

d

d

li

ti

- Silber, Cyankalium Kochsalzlösung Zinkvitriol, Zink +

this the minuter obodial nob 2.10

- Silber . verd. Schwefelsaure, Zink + hald crachople wird und vigelog cracourt werden senla. Jele

+ Silber, verd. Salpetersuure, Zink -

Die Stromesstärken sind sowohl bei No. 1 und 2, als auch bei No. 3 äußerst gering, indem die Ablenkungen nach einer oder der anderen Richtung nur 2º bis 3º, bei No. I aber nur etwa 1 betrugen. Durch Verstärkung der Salpetersäure, die anfänglich höchst verdünnt genommen war, verstärkte sich zwar die Negativität des Zinks, indessen findet zugleich eine rapide Auflösung desselben statt. Eine den obigen Schemas entsprechende Combination von Silber und Zink scheint daher gewissermaßen auf der Gränze zu stehen, indem schon geringe Schwankungen in der elektromotorischen Kraft, oder der Polarisation des einen oder des andern Metalls, die Stärke des Stroms zu annulliren oder die Richtung desselben umzukehren vermögen. Amalgamirtes Zink ist auch in diesen Combinationen etwas po-Standen ungefahr 16 Saluta sitiver als unamalgamirtes. heit mid the churchigh cit, dein es in melle den gewelzten

Interessant ist noch folgende Combination:

+ Kupfer, Cyankalium Kochsalzauflösung Kupfervitriol, Kupfer -Auch hier wird, wie beim Silber, dasselbe Metall auf der einen Seite aufgelöst, auf der anderen aber reducirt. Die Wirkung, bei Anwendung einer Auflösung von 12 Solotnik Cyankalium in 8 Unzen Wasser, war anfänglich höchst energisch, indem die Bussole eine Ablenkung von 27° zeigte, die nach etwa 20 Minuten noch bis auf 33° stieg. Von da ab verminderte sich aber die Stromesstärke so bedeutend, dass sie nach etwa 18 Stunden bis auf Null herabgesunken war. Auf der Kathode hatten sich 100 Doli Kupfer reducirt; die Kupferanode dagegen war um 190 Doli, also beinahe um das Doppelte leichter geworden. Ein Theil dieses Kupfers war aber als bräunliches Oxydul theils zu Boden gefallen, theils bedeckte es die Anode schlammartig. Dass diese große Differenz der Oxydation auf der einen und der Reduction auf der anderen Seite der selbstständigen Auflösung des Kupfers in Cyankalium zum größten Theile zuzuschreiben sey, ist wohl keinem Zweifel unterworfen. Man wird zwar bei diesem Versuche an die Abweichungen vom Faraday'schen Gesetze erinnert, welche Hr. James Napier gefunden haben will (Archives de l'Electricité, No. 17, T. V, p. 159) 1), indessen kann man wohl der Ansicht De la Rive's über diesen Gegenstand beistimmen, dass nämlich die elektro-chemische Auflösung des Metalls, aus dem die positive Elektrode besteht, zugleich die Oberflähhe dieses Metalls gewissermaßen zu einer leichteren Auflöslichkeit im Cyankalium disponire. Es ist in der That nicht unmöglich, dass in dieser Beziehung der galvanische Strom eben so wirkt, wie die Wärme, und wie diese das Aufschließen des Metalls befördert.

Eine noch kräftigere Combination erhält man, wenn man Platin in concentrirter Salpetersäure als negatives Element anwendet. Eine solche Combination eignet sich vortrefflich zur Bereitung einer Kupfer-Kaliumcyanürauflösung, die bei dem galvanoplastischen Ueberziehen von Eisen, Stahl oder Zink mit einer Kupferschicht ganz vorzügliche Dienste leistet.

Bei allen diesen Combinationen ist sehr zu empfehlen, immer eine Bussole einzuschalten, indem man dadurch am besten den Gang der ganzen Operation verfolgen kann. Ninmt man z. B. in den späteren Stadien der Wirksamkeit eine Wirkungsabnahme wahr, so kann man entweder durch Umrühren der Flüssigkeit, oder durch Reinigen der Anode, oder durch Zusatz von Cyankalium, oder endlich durch Hinzufügung einer oder zweier Daniell'scher Elemente die ursprüngliche Stromesstärke wieder herstellen, und sich so immer eine gleichförmige Wirkung erhalten. Es ist nämlich zu bemerken, was ich auch schon früher erwähnt habe, dass die positive Reaction des Cyankaliums auf die Metalle in dem Maasse abnimmt, als sich die Auflösung mehr und mehr mit dem Metalle sättigt. Von überaus großsem

¹⁾ Annalen, Bd. 65, S. 480.

de

lie

fli

V(

Z

di

D

m

be

d

V

d

a

1

il

11

Nutzen indessen ist es, wenn die Grade der eingeschalteten Bussole zugleich auf eine feste elektrolytische Action bezogen sind. Nicht nur würde man alsdann den Strom als ein bestimmtes, nach einer conventionellen Einheit gemessenes Quantum aussprechen, sondern auch jede Abweichung von dem Faraday'schen Gesetze würde alsdann am leichtesten wahrgenommen, ihrer Ursache nachgespürt, die Entwicklung der Elektrochemie auf diese Weise gefördert, und dieser jungen Wissenschaft eine breite und sichere Basis verschafft werden können. Eine für practische Zwecke brauchbare Bussole zu construiren, ist ein Desideratum, dessen Erreichung schon manche Mühe und Arbeit gewidmet worden ist.

der That mide unmarklich, d. 63 in dieser Herichtung der cal-

Bei Anwendung einer Goldanode statt der Silberanode in Cyankalium erhält man, besonders wenn man Platin in Salpetersäure als negatives Element anwendet, ebenfalls eine kräftige Combination, deren Schema sich also darstellt: + Gold, Cyankalium Kochsalzauflösung Salpetersäure, Platin -Die Wirkungsabnahme dieser Combination ist indessen sehr bedeutend. Bei einem Versuche, den ich anstellte, sank die Ablenkung schon nach einigen Minuten von 35° auf 11°. Nach Hinzufügung eines Daniell'schen Bechers stieg die Ablenkung wieder bis auf 35°, und nahm sehr allmälig ab, so dass dieselbe nach etwa 7 Stunden noch 25° betrug. In dieser Zeit hatten sich bei Anwendung einer Auflösung von 24 Solotn. Cyankalium in 16 Unzen Wasser 5 Solotn. 29 Doli Gold aufgelöst. Bei einer 12 Stunden lang fortgesetzten Wirkung nahm diese Flüssigkeit zuletzt nur noch 1 Sol. 8 Doli Gold mehr auf. Die Auflösung des Goldes hörte aber von da ab gänzlich auf, obgleich die Kette über 30 Stunden lang geschlossen geblieben, und die Ablenkung der Nadel von 26° allmälig, aber doch nur bis auf 10° gesunken war. Gleich anfangs hatte sich die Cyankaliumlösung tief dunkelbraun, bis zur völligen Undurchsichtigkeit gefärbt, und es war, besonders in den späteren Stadien der Wirkung, ein schwarzes, nach

dem Trocknen dunkelbraun erscheinendes Pulver in reichlicher Menge theils zu Boden gefallen, theils an der Oberfläche der Anode sitzen geblieben. Da dieses Pulver sich vollkommen in concentrirter Schwefelsäure auflöste, durch Zusatz von Wasser sich aber wieder ausschied, so muß dasselbe unzweifelhaft als Paracyan angesprochen werden. Die Bildung dieses merkwürdigen Körpers auf elektro-chemischem Wege scheint übrigens den Chemikern bis jetzt nicht bekannt gewesen zu seyn.

Erwähnen will ich übrigens noch, dass die auf obige Weise zubereitete Goldauslösung zur galvanischen Vergoldung nicht zu gebrauchen ist, indem die damit angestellten Versuche nur sehr unbefriedigende Resultate geben.

64.

Es ist keinem Zweifel unterworfen, dass auf dem angedeuteten Wege noch zahlreiche andere Combinationen auch aus den anderen Metallen gebildet werden können, die ich gegenwärtig nicht weiter zur Untersuchung gezogen habe. Der Erfolg solcher Combinationen lässt sich übrigens, was ihr elektromotorisches Verhalten betrifft, in vielen Fällen voraussehen. Einerseits kann man die Reihe zu Hülfe nehmen, nach welcher Hr. Poggendorff (Ann. Bd. 66, S. 598) die Metalle in Cyankalium angeordnet hat, andererseits aber die Erfahrung, dass Zink in Säuren oder verdünnten Neutralsalzen ziemlich gleich ist dem Silber in Cyankalium. Auf diese Weise ist, der besseren Uebersicht wegen, die folgende Tabelle gebildet worden, bei welcher sich die in den Feldern befindlichen Zeichen auf die Metalle in Cyankalium beziehen. Bei den unausgefüllten Feldern würde das elektromotorische Verhalten noch durch besondere Versuche zu ermitteln seyn. Wenn man statt der Salpetersäure schwächere Säuren oder verdünnte Auflösungen von Neutralsalzen anwendet, so werden allerdings einige Modificationen eintreten, indessen werden dieselben, besonders bei den gebräuchlicheren, auf den Extremen stehenden Metallen, sich häufiger auf die Größe der elektromotorischen Kräfte, als auf ihre Richtung beziehen. Im Uebrigen bedarf der Gebrauch dieser Tabelle wohl weiter keiner Erläuterung.

darsh atalling arous Cyankalium,

proclusive proclusive and relative	Za.	Ca.	Ca.	Sn.	Ag.	N.	Sb.	PI.	Hg.	Pd.	Bi.	Fe.	Pt.	Fe+C 7.	C
Zn	1+	+	1+	+	1	-	1		-	1	-	-	1	-	-
Cu	-	-	1+		Maria Carlos		1	1-40	1	1	-	100	1		T
lun Cd &	1	1+	1+	1+	1+	112	111	10	i	11	111	17	(1)		
/ Ten Snigg	+	1+	1	1+	1+	al		1	10	0	01	611		refe	
Ag	主	1	1+	1+	1+	İ	i	1	1	İ	I	1			Ī
and Ni	sexus.	-	1+	-	-	-	İ	1	Ī	Ī	Ī	i	1	1	
Sb	- Contraction	Carrier .	1	-	-	-	-	-	-	1	1	i	1	1	-
PI	-	-	-					-	i	1	T	İ	1	i	-
Hg									H			1	1	1	1
Pd									1+		i	13	1	VI	ì
Bi									1+			1		1	
Fe				-	-		-	-		-		-	1+	+	H
Pt														+	
Fe + C 1)	Pontage.	-	-	-	-	-		-	-	-		-	-	+	-
C	+														

Anmerkung. Die Zeichen beziehen sich auf die im Cyankalium befindlichen Metalle.

Es hätte keine großen Schwierigkeiten, bei der obigen Tabelle die Felder, statt mit Zeichen, zugleich mit Zahlen auszufüllen, welche die Größe der elektromotorischen Kräfte ausdrückten, indessen wären solche Zahlen, mit wenigen Ausnahmen, von keinem bedeutenden wissenschaftlichen oder practischen Interesse. Die elektromotorischen Kräfte nämlich werden gerade bei diesen Combinationen durch die secundären chemischen Producte, deren Bildung durch den galvanischen Strom eingeleitet wird, so bedeutend modificirt, daß solche Zahlen nur für die ersten Wirkungsmomente der geschlossenen Kette allenfalls einigen Werth hätten. In Bezug auf diese Nebenproducte und den Einfluß, den sie ausüben, fehlt es überhaupt noch sehr an Vorarbeiten.

¹⁾ Durch Fe+C ist Gusseisen bezeichnet.

deeldi Platinplatte ale Anode diano, stieg die Ablenkung

eine Reduction on der

Aus meinem Beobachtungsjournale vom August 1842 entnehme ich noch folgenden vereinzelten Versuch, den ich damals öfters wiederholte, so dass von keinem Irrthume die Rede seyn kann. Er mag hier eine passende Stelle finden, weil er ein merkwürdiges Beispiel von Polarisation abgiebt.

Dieser Versuch bestand darin, dass aus einer verdünnten Goldchloridauflösung das Gold zwischen schmalen Platinelektroden, unter Mitwirkung eines schwach geladenen Daniell'schen Paares, langsam reducirt werden sollte. Mit Hülfe einer, in den Kreis eingeschalteten sehr empfindlichen Bussole, deren Multiplicator aus einer ansehnlichen Anzahl Windungen dicken Drahts bestand, wurde der Gang der Operation beobachtet und controlirt. Die anfängliche Ablenkung war 48°, und nahm äußerst langsam ab, so daß sie nach 24 Stunden noch 45° betrug. In dieser Zeit batten sich beiläufig 40 Doli Gold von fester Beschaffenheit und schöner hellgelber, matter Farbe auf der Kathode niedergeschlagen. Nachdem letztere gewogen worden war. wurde dieselbe wieder in die Flüssigkeit gehängt, und, bei Weglassung der Daniell'schen Batterie, die Verbindung der Elektroden allein mit dem Multiplicator bewerkstelligt. Die mit Gold bedeckte Platinplatte zeigte sich der reinen Platinplatte gegenüber stark positiv, so dass man eine Ablenkung in einer der früheren entgegengesetzten Richtung von 35° erhielt, eine Ablenkung, die ziemlich constant war, und die nach 10 Stunden noch 21° betrug. Wir hatten bier also eine kräftige Combination, deren ostensible Wirkung sich indessen nur auf die Ablenkung der Nadel beschränkte, denn nach dieser ganzen 10stündigen Wirkung war an der Platinplatte keine Spur von reducirtem Golde sichtbar, und eben so wenig hatte die mit Gold bedeckte Platinplatte das Mindeste an Gewicht verloren. Es hat hier also ein starker Strom bestanden, ohne eine Zersetzung des Goldchlorids zu bewirken. Als man die Verbindung mit dem Da-

niell'schen Paare in der Weise herstellte, dass die goldbedeckte Platinplatte als Anode diente, stieg die Ablenkung bis auf 55°, und es fand sogleich eine Reduction an der Kathode und eine Auflösung an der Anode statt. Nachdem durch Umkehren des Stroms das Gold wieder von der Kathode abgelöst worden war, stellte man, mit Beibehaltung der Daniell'schen Batterie, die frühere Richtung wieder her, schwächte aber durch eingeschaltete Leitungswiderstände den Strom so weit, dass er nur noch 16° am Multiplicator zeigte. Aber augenblicklich bedeckte sich, ungeachtet dieses schwachen Stroms, die Kathode mit einem Goldüberzuge. Dieser Versuch wurde deshalb angestellt, um der Erklärung dieses Phänomens zu begegnen, als sey ein Strom von 31° an meinem Multiplicator zu schwach, um überhaupt eine Zersetzung des Goldchlorids zu bewirken. Die richtigere Erklärung aber möchte wohl seyn, dass dieser starke Polarisationsstrom entstand, einerseits durch das an der Goldplatte adharirende Wasserstoffgas, andererseits durch das an der Platinplatte haftende Chlorgas. Werden die Elektroden in sich geschlossen, so entwickelt sich an der positiven Goldplatte Chlor, das sich mit dem Wasserstoff, und an der negativen Platinplatte Wasserstoff, der sich mit dem Chlor verbindet. Es ist hier eine Analogie von dem vorhanden, was bei dem Polarisationsstrome von Platinelektroden vor sich geht, die zur Zersetzung von durch Schwefelsäure angesäuertem Wasser gedient haben. Nur ist es zu verwundern, dass in unserem Falle der Strom so stark und so andauernd war. Ein gewöhnliches gewalztes Goldblech zeigte in derselben Goldchloridlösung, einer reinen Platinplatte gegenüber, nur eine Ablenkung von 1° 4 in dem Sinne von + Gold - Platin. denn nich dieser mozen Toständigen Wirkung war an der

W

m

ve

m

de

v

da

V

de

ch

se

()

je

g

g

tr

al

is

C

denn auch dieser gauzen Helfandigen Wakung war an der Platinplatte keine Spor von reducirtesa Golde richbar, und aben so wenig harte die mit Gold bedeckte Platinplatte das Mindeste un Gewieht verloren. Es hat hier also ein starher Sirom bestanden, ohne eine Zersetzung des Goldehlorids zu bewehre. Als man die Verbradung mit den Do

V. Untersuchung über die Vertheilung und Bindung der Elektricität;

con P. S. Munck of Rosenschold.

der Scheiben g. (17 stiet nev Buldat) eilenden W.

gen der beiden ibnigen Scheibert B and Caul ennah

Aus dem hier Angeführten erhellt, dass die in den Lehrbüchern vorgetragene Theorie der elektrischen Bindung der Wahrheit annähernd genügt, obgleich sie nicht als vollkommen genau gelten kann. Die Ursache liegt darin, dass die vertheilende Wirkung einer der Scheiben nicht vollkommen constant bleibt, wenn der elektrische Zustand der anderen eine Veränderung erleidet, ein Umstand, der doch vorausgesetzt wird. Man hat jedoch nicht zu befürchten, dass die Glieder der obigen Reihen immer mehr von der Wahrheit abweichen, je weiter die Reihen fortgesetzt werden. Denn gesetzt, dass die wahre Elektricitätsmenge, welche A nach der ersten Berührung von B in dieser bindet, sey -mE, und m(m+w)E der genaue Werth der Elektricitätsmenge, welche B in A zurück bindet, so wird (1-m(m+w))E genau die freie Elektricität in A. Wird jetzt A ableitend berührt, so steht A nothwendig in derselben Beziehung zu B, wie B vorher zu A. Also ist m2 E genau die gebundene Elektricitätsmenge in A, und (1-m2)E genau die abgeleitete freie. Wenn man also nur die Elektricitätsmengen berücksichtigt, welche jede Scheibe bei der ableitenden Berührung verliert oder noch zurück hat, so ist obige Theorie vollkommen genau, selbst wenn die Dicke der Scheiben bedeutend ist. Nur wird der Vertheilungscoëfficient m bei zunehmender Dicke der Scheiben etwas verändert, d offich red doug hale nedering sews into a slais

In dem Folgenden nehme ich an, dafs der vertheilend auf einander wirkenden Scheiben drei sind, ein Fall, der weit complicirter ist, als der vorhergehende.

Wenn der Scheiben nur zwei, A und B, sind, so kommen nur zwei vertheilende Wirkungen in Betracht, nämlich die Wirkung von A auf B, und die Wirkung von B

auf A. Sind dagegen der Scheiben drei, die ich A. B. C nenne, so sind jene Wirkungen sechs an der Zahl. A wirkt nämlich auf B und B auf A. A wirkt auf C und C auf A, endlich wirkt B auf C und C auf B. Eine jede der Scheiben, z. B. A, ist also den vertheilenden Wirkungen der beiden übrigen Scheiben B und C auf einmal ausgesetzt. In diesem Falle ist die gebundene Elektricität der Scheibe A, mag sich diese zwischen B und C oder nicht befinden, dem S. 54 angeführten allgemeinen Beweise zufolge, und mit Berücksichtigung des S. 70 Erwähnten, die Summe (algebraische) der Elektricitätsmengen, die B und C, jede für sich, in A binden. Nennt man also E, E', E" die Elektricitätsmengen in A, B und C, und m, m', m" die Vertheilungscoëfficienten, die den Abständen zwischen A und B, B und C, und A und C entsprechen, so werden -(mE'+m''E''), -(mE+m'E'') und - (m' E' + m" E), die gebundenen Elektricitätsmengen in A, B und C. Die freie Elektricität jeder Scheibe ist gleich dem Unterschiede ihrer absoluten Elektricitätsmenge und der gebundenen, jede mit dem ihr eigenen Vorzeichen genommen. In C z. B. ist die freie Elektricitätsmenge E'' + m' E' + m'' E, und diese wird also größer als E", wenn E und E' mit E" gleichartig sind. Wird eine der Scheiben ableitend berührt, so verschwindet fast nur ihre freie Elektricität, denn aus dem Vorigen erhellt, daß die vertheilenden Wirkungen der übrigen Scheiben durch diese Veränderung des elektrischen Zustands jener nur wenig verändert werden.

Es ist offenbar, dass zwischen den Vertheilungscoöfficienten m, m', m'' eine solche Beziehung stattfinden muß, dass wenn zwei gegeben sind, auch der dritte bestimmt ist. Also muß m'' z. B. eine gewisse Function von m und m' seyn. Man ersieht auch, dass eine gewisse Relation zwischen den Entsernungen und Vertheilungscoöfficienten stattfinden muß. Welche ist aber diese Relation, und welche ist die Form der erwähnten Function? Es soll hier versucht werden, über diesen Gegenstand einiges Licht zu verbreiten.

Oben, S. 63, ist bemerkt worden, dass die elektrische Wirkung in elektrischen Schatten eines vertheilten Leiters fast einerlei ist mit der Wirkung derjenigen Elektricität des Leiters, die von dem vertheilenden Körper nicht gebunden wird, oder mit Rücksicht auf diesen frei ist. Ich nehme hier an, dass B zwischen A und C gestellt ist. Durch die vertheilende Wirkung von A wird in B gebunden - mE und +mE wird frei. Also ist E +mE die Elektricitätsmenge, deren Wirkung auf C den vereinigten Wirkungen der Elektricitäten in A und B auf C als gleich betrachtet werden kann, nachdem C genau im elektrischen Schatten von B ist. Jene Elektricität bindet aber -m'E'-mm'Ein C. Oben ist gezeigt worden, dass A und B zusammen -m' E'-m" E in C binden. Vergleicht man beide Ausdrücke, so sind schon die beiden ersten Glieder einerlei, und folglich sind auch die zweiten gleich, oder man hat m'' E = mm' E, woraus m'' = mm'. Diesem zufolge ist also der Vertheilungscoëfficient der Entfernung zwischen A und C gleich dem Producte der Vertheilungscoëfficienten der Entfernungen zwischen A und B, und B und C. Die Entfernung zwischen A und C ist aber gleich der Summe der Entfernungen zwischen A und B, und B und C, Wenn es also erlanbt ist den kleinen Unterschied zwischen m" und mm' zu übersehen, so ist die Relation zwischen den Entfernungen und Vertheilungscoëfficienten von der Art, dass das Product dieser der Summe jener entspricht, oder anders ausgedrückt, die Entfernungen sind Logarithmen der Vertheilungscoëfficienten. Dasselbe soll noch überzeugender auf folgende, etwas abweichende Weise gezeigt werden.

Ich nehme an, dass B mit der Erde in Verbindung stehe, während C isolirt, und nicht elektrisirt diesem bis auf eine gewisse Entfernung genähert wird, und nenne, wie zuvor, E die Elektricitätsmenge in A. Durch die vertheilende Wirkung von A auf B und C wird — mE in B und — m''E in C gebunden. Die Elektricitätsmenge — mE in B bindet +mm'E in C, und also ist — m''E+mm'E die in C gebundene Menge. Weil aber B mit der Erde in Ver-

bindung gesetzt worden, und C in dem elektrischen Schatten von B ist, so wird, der Erfahrung nach, die vertheilende Wirkung auf C sehr klein seyn. Betrachtet man also die in C gebundene Elektricität als Null, wird -m''E +mm'E=0, oder m''=mm', wie oben.

Aus dem eben Erwähnten erhellt also, dass für die Fälle, in welchen die Scheibe C in den elektrischen Schatten der nicht isolirten Scheibe B gestellt, als nicht durch Vertheilung elektrisirt betrachtet werden kann, oder genauer, wenn m"-mm' gegen m, m' und m" verschwindet, so ist die Relation zwischen den Entfernungen und den Vertheilungscoëfficienten eine logarithmische. Wird also innerhalb der Gränzen der Entfernungen, für welche diess stattfindet, die Entfernung zweier Scheiben verdoppelt, verdreifacht u. s. w., so wird der entsprechende Vertheilungscoëfficient ziemlich zur zweiten, dritten u. s. w. Potenz erhoben. Weil die Vertheilungscoëfficienten immer kleiner als die Einheit sind, so werden ihre Logarithmen immer negativ; man findet aber leicht, dass es gleichgültig ist, ob man die Entfernungen selbst als negativ, oder nur den negativen Logarithmen proportional ansieht. Der wirkliche Vertheilungscoëfficient einer gegebenen Entfernung kann nur durch Versuche gefunden werden. Nur in zwei Fällen ist dieser im Vorans bekannt, nämlich für die unendlich kleine und unendlich große Entfernung. Es ist nämlich klar, dass die gebundene Elektricität mit der bindenden gleich groß ist, wenn die Entfernung gleich Null ist, dagegen in Vergleich mit dieser unendlich klein, wenn sie unendlich groß ist, und daher entspricht jenem Falle der Vertheilungscoëfficient 1. und dem zweiten Null. Diefs stimmt vollkommen mit der Annahme einer logarithmischen Relation überein; denn der Logarithmus der Einheit ist Null, und der Logarithmus der Null ist das Unendliche. Hierbei ist jedoch zu erinnern, daß der zweite Fall auch den umgekehrten quadratischen und vielen anderen Relationen zwischen Entfernungen und Vertheilungscoëfficienten entspricht. Der Vertheilungscoëfficient beruht übrigens nicht nur auf dem Abstande, sondern auch

auf der Größe der Scheiben, und wird bei zunehmendem Durchnesser, wie unten gezeigt werden soll, größer. Dagegen influirt die Dicke, wenn sie nur gering ist, sehr wenig.

Obgleich die bekannten Werthe der Vertheilungscoëfficienten der beiden Extreme der Entfernungen, der Null und des Unendlichen, der Annahme einer logarithmischen Relation zwischen Vertheilungscoëfficienten und Entfernungen Genüge leisten, so sieht man doch leicht ein, dass diels nicht einmal annäherungsweise für jeden Fall gelten könne. Denn gesetzt die Entfernung der beiden Scheiben sev so getroffen, dass die Menge der gebundenen Elektricität gerade die Hälfte der bindenden sey, so ist der Vertheilungscoëfficient, bei dieser Entfernung, die ich a nennen will . Wenn obige Relation für alle Entfernungen geltend wäre, so würden bei doppelter, dreifacher u. s. w. Entfernung die entsprechenden Vertheilungscoëfficienten 1, 4 u. s. w. seyn, oder für jede neue Vervielfältigung der Entfernung a, der Vertheilungscoëfficient auf die Hälfte des vorigen Werthes reducirt werden. Gesetzt aber, daß die Entfernung bis auf na vervielfältigt sey, wo n eine so große Zahl bedeutet, daß a gegen na sehr klein ist. Wird jetzt die Entfernung noch mit einem a vermehrt, oder auf (n+1)a gebracht, so würde der Vertheilungscoëfficient bei dieser Entfernung, obiger Relation zufolge, nur die Hälfte des vorigen seyn, oder es wurde eine nur halb so große Menge von Elektricität bei der Entfernung (n+1)a. als bei na gebunden, welches ungereimt ist, da (n+1) a und na als gleich große Entfernungen gelten können, und also fast die gleichen Mengen in beiden Fällen gebunden werhier die Rode ist, zu Grunde gelegt werden z.nessilm neb

Durch die vorige Betrachtung erhellt also, das wenn die Entsernungen zweier Scheiben in einer arithmetischen Progression mit gleichen Zunahmen fortgehen, die entsprechenden Vertheilungscoëssichen keine genaue geometrische Reihe bilden, sondern eine solche, deren Exponent von Glied zu Glied immer größer wird, und sich der Einheit nach und nach näbert. Hieraus folgt, dass der wahre

Vertheilungscoëfficient, bei einer gegebenen Vervielfältigung der Entfernung, größer ist als das der Ordnung nach entsprechende Glied der rein geometrischen Reihe, welches Glied mit der Entfernung genau in logarithmischer Relation steht. Diess stimmt auch mit der Erfahrung überein; denn nachdem B ableitend berührt worden, wird immer die vertheilende Wirkung von A auf C die Wirkung von B auf C überwiegen, und man hat daher immer m'' > mm'. Man stelle sich hier vor, dass na und n'a die Entfernungen seven zwischen den Scheiben A und B. B und C. wo n und n' ganze Zahlen bedeuten. Nimmt man m' = mm, an, so wird m > m'. Aber m ist das Verhältnifs des Gliedes der Reihe der Vertheilungscoëfficienten, dessen Ordnungszahl n+n'+1 ist, zu dem Gliede, dessen Ordnungszahl durch n+1 ausgedrückt wird, m' aber drückt das Verhältnifs des Gliedes, der Ordnung nach n'+1, zu dem ersten Gliede (der Einheit) aus, und daher nimmt das Verhältniss zweier Glieder der Reihe (des nachfolgenden zu dem vorhergehenden), die gleich weit von einander (hier n' Glieder) abstehen, desto mehr zu, je höher ihre Ordnungszahlen werden; woraus also folgt, dass der Exponent der Reihe immer größer wird, je weiter man diese fortsetzt.

Nachdem also Erfahrung auf der einen Seite, und Nachdenken auf der andern, darin übereinkommen, dass mm' in der That mehr oder minder von m' abweicht, soll hier untersucht werden, innerhalb welchen Gränzen der Entfernungen die Annahme der Gleichheit beider Größen der Wahrheit nahe genug komme, um, ohne großen Fehler, der Erklärung der Vertheilungs-Erscheinungen, von welchen hier die Rede ist, zu Grunde gelegt werden zu können.

Wie oben erinnert worden, wäre für jeden Fall m"

mm', und die Entfernungen wären genau die Logarithmen
der Vertheilungscoëfficienten, wenn, wie von Einigen behauptet worden, die elektrische Wirkung im elektrischen
Schatten eines ableitend berührten Leiters vollkommen Null
wäre. Diess ist aber, wie die Ersahrung zeigt, nicht der
Fall, und kann nicht der Fall seyn. Es wird also gestagt,

wie man aus den für einige besondere Fälle beobachteten Mengen der in der Scheibe C gebundenen Elektricität, nachdem B ableitend berührt worden, allgemein über den ganzen Gegenstand schließen könne. Das Folgende enthält die Betrachtungen, die ich über die Sache angestellt habe.

Man bezeichne durch E, wie vorher, die Menge von Elektricität in A, und durch e die gebundene Menge in C. nachdem B ableitend berührt worden, so hat man e == -(m''-mm')E, oder wenn $e=-\mu E$ und m''=mm, so ist $\mu = m(m - m')$. Nimut man in dieser Formel m als constant an, und lässt m und m' variiren, so tritt der Fall ein, wo man, bei unverrückter Stellung von A und B, die Scheibe C auf und nieder bewegt. Je mehr C der B genähert wird, desto mehr nähern sich auch, wie leicht zu ersehen ist, m und m' der Einheit, und u wird immer kleiner und zuletzt unmerklich. Wird aber C von B bedeutend entfernt, verschwinden m und m' allmälig, und u nähert sich wieder der Null. Es erhellt also, dass, bei einer gewissen Entfernung der Scheibe C von B, ein Maximum der Wirkung eintreten muss, welches auch mit der Erfahrung vollkommen übereinstimmt. Wie auch die Entfernung zwischen A und B sey, so habe ich doch immer die in C gebundene Elektricität in der Nähe von B unmerklich gefunden. Wurde C allmälig von B entfernt, nahm die Wirkung bis zu einer gewissen Größe langsam zu, wurde dann nach und nach kleiner, und zuletzt wieder unmerklich 1). Diess ist natürlich, weil bei großen Entfernungen die Wirkungen von A und B jede für sich verschwinden. Damit aber dieser Versuch gelinge, ist nothwendig, dass B und C nicht auf einmal berührt werden, denn geschieht diefs, geht, wie vorher bemerkt worden, bei kleinen Entfernungen, der größte Theil von der auf der Rückseite von B gebunde-

Wenn dieser Versuch aus freier Hand gemacht wird, ist es schwer die bewegte Scheibe genau in dem elektrischen Schatten zu halten; ich habe mich aber überzeugt, dass eine geringe Abweichung von der, S. 63, angegebenen Lage das Resultat überhaupt kaum merklich ändert.

nen Elektricität in C über, und die Wirkung wird gerade bei größter Nähe die stärkste seyn. Der ableitende Draht muß daher zuerst B und nachher C berühren; weil es aber zu befürchten ist, daß die Elektricität in A während der Zeit abnehme, werden beide Berührungen schnell nach einander vorgenommen. Die hier über die Ursache der Verschiedenbeit bei beiden Arten von Berührungen geäußerte Ansicht ist nur eine Betrachtungsweise. Der wahre Grund dieser Erscheinung ist die Rückwirkung von C auf B, und soll in dem Folgenden näher erklärt werden.

Ich nehme zweitens an, daß, bei unveränderter Stellung von B und C. nur A hin und her bewegt werde. Für diesen Fall muss man, in der Formel $\mu = m(m - m')$, m' constant, m und m aber veränderlich annehmen. Wird A der B immer näher gebracht, so nähert sich m der Einheit, m. aber dem m', und folglich m(m - m') der Null. Also wird die vertheilende Wirkung auf C bei großer Nähe der Scheiben A und B unmerklich. Diess ist au sich klar, denn die entgegengesetzten Elektricitäten in A und B sind in diesem Falle an Menge beinahe gleich, und wirken in fast gleicher Entferning auf C. Stellt man dagegen A in große Entfernung von B und C, so wird m sehr klein, und der Ausdruck m(m,-m') wird abermals von Null nur wenig abweichen. Die Wirkung auf C vorschwindet also, wie leicht zu ersehen ist. Auch für diesen Fall tritt daher ein Maximum ein bei einer gewissen Entfernung zwischen A und B.

Ein dritter Fall verdient noch mehr als die beiden vorhergehenden eine nähere Erwägung. Dieser Fall ist derjenige, wobei die Entfernung zwischen A und C dieselbe bleibt, während B zwischen beiden bewegt wird. Betrachtet man hier die Formel $\mu = m'' - mm'$, so hat man m'' constant, m und m' veränderlich. Wird B der A immer näher gebracht, so nähert sich m der Einheit, m' aber dem m'', woraus erhellt, daß μ immer kleiner wird und zuletzt verschwindet. Dieß ist auch der Fall, wenn B der C genähert wird, denn dann nähert sich m' der Einheit und m dem m''. Weil also die Wirkung auf C in beiden Fällen

verschwindet, wird offenbar ein Maximum bei einer gewissen Stellung von B zwischen A und C stattfinden. Um die Entfernung von A zu bestimmen, für welche die Wirkung auf C, d. h. e ein Maximum wird, nehme ich an, dass die Entfernung von A nach C in die gerade Anzahl 2n gleicher Theile a getheilt sey. Es seyen p, , p, , p, , p, die immer zunehmenden Exponenten der Reihe der Vertheilungscoëfficienten, die den Entfernungen von a bis auf 2na entsprechen. Weil m" der Vertheilungscoëfficient des Abstandes 2na ist, wird also $m''=p_1p_2p_3...p_2$. Ich nehme an, dass B in die Mitte zwischen A und C, also in die Entfernung na von beiden gestellt sey. Für diese Entfernung wird $m=m'=p_1p_2p_3...p_n$, und folglich mm' $=m^2=p_1^2p_2^2p_3^2\ldots p_4^2$. Jetzt nehme ich an, dass B um ein a weiter gegen C fortgerückt werde, und also in der Entfernung (n+1)a von A abstehe. Für diesen Fall wird $m = p_1 p_2 p_3 \dots p_{n+1}$ and $m' = p_1 p_2 p_3 \dots p_{n-1}$ and folglich $mm' = p_1^2 p_2^2 p_3^2 \dots p_{n-1}^2 p_n p_{n+1}$. Vergleicht, man diesen Werth von mm' mit dem vorigen, so ergiebt sich, dass beide Werthe den gemeinschaftlichen Factor p? p? p. $p_{n-1}^2 p_n$ haben. Nennt man diesen R, so wird, für die Mitte zwischen A und C, mm'=Rp und für die Entfernung (n+1)a von A, $mm'=Rp_{n+1}$. Aber p_{n+1} ist größer als p_a , and folglich ist mm' bei (n+1)a Entfernung von A größer als bei der mittleren na. Rückt B noch um ein a der C näher, nämlich bis zu (n+2) a von A, so wird $m = p_1 p_2 p_3 \dots p_{n+2}$ und $m' = p_1 p_2 p_3 \dots p_{n-2}$, woraus man erhält $mm' = p_1^2 p_2^2 p_3^2 \dots p_{n-2}^2 p_{n-1} p_n p_{n+1} p_{n+2}$. Dieser Werth von mm' hat mit dem vorhergehenden, bei (n+1)a Entfernung von A, den Factor $p_1^2 p_2^2 p_3^2 \dots$ $p_{n-2}^2 p_{n-1} p_n p_{n+1}$ gemein. Nennt man diesen, der Kürze wegen, R', so wird bei der Entfernung (n+1)a von A, $mm' = R'p_{n-1}$ und bei (n+2)a Entfernung $mm' = R'p_{n+3}$.

Weil aber $p_{n+2} > p_{n-1}$, so folgt hieraus, dass $R'p_{n+2} > R'p_{n-1}$. Auf die gleiche Art kann bewiesen werden, dass bei weiterem Fortrücken der Scheibe B gegen C mm' immer größer wird. Wenn B, von der mittleren Entsernung na, gegen A auf eine ähnliche Weise fortgerückt wird, so sieht man leicht ein, dass m und m' nur ihre Werthe vertauschen, und also wird das Product mm', bei gleichen Entsernungen in beiden Fällen von der Mitte, gleich groß. Hieraus folgt also, dass mm' seinen kleinsten Werth hat, wenn B gerade in der Mitte zwischen A und C steht, und folglich hat m''-mm' bei dieser Stellung von B sein Maximum.

Die hier theoretisch für die drei erwähnten Fälle hergeleiteten Resultate sind schon von Fechner in seiner interessanten Untersuchung über Elektricität durch Vertheilung (Annal. (Bd. 51, S. 321) auf experimentellem Wege, obwohl nicht ganz unter denselben Umständen wie hier, nachgewiesen. Fechner fand für den dritten Fall das Maximum der Wirkung in der Mitte, oder beinahe in der Mitte, wenn er statt der Scheibe C das Elektroskop selbst in den elektrischen Schatten der nicht isolirten Scheibe stellte, und diese hin und her, zwischen der elektrisirten Scheibe und dem Elektroskope, bewegte (S. 329). Ganz ähnliche Resultate habe auch ich selbst mit den drei gleich großen Scheiben erhalten.

Nachdem also Theorie und Erfahrung darin übereinstimmen, daß mm' am meisten von m'' abweicht, wenn die ableitend berührte Scheibe B in die Mitte zwischen A und C gestellt ist, hat man nur nöthig die Größe der Abweichung für diesen Fall zu bestimmen, um daraus schließen zu können, ob beide Größen auch bei anderen Stellungen von B zwischen A und C so wenig verschieden sind, daß mm' statt m'' gebraucht werden könne. Setzt man, wie vorher, $m''-mm'=\mu$, so wird $m''=mm'+\mu$. Wenn hier μ gegen mm' sehr klein ist, kann man μ übersehen und einfach m''=mm' annehmen. Alles beruht also dar-

auf, ob das Verhältnifs $\frac{\mu}{mm}$, gegen die Einheit ein hinreichend kleiner Bruch sey. Die Größe mm' unmittelbar zu bestimmen, ist aber unbequem, und ich habe daher vorgezogen, u mit m" selbst zu vergleichen. In dieser Absicht habe ich Versuche mit Scheiben von verzinntem Eisenblech, 6 und 3 schwed. Zoll im Durchmesser, die so eben als möglich gehämmert waren, angestellt. Eine dieser Scheiben A wurde auf einer Siegellackstange, die auf dem einen Ende einer 17 Zoll langen, vertical gestellten Glasröhre eingeschmolzen war, in horizontaler Stellung isolirt. Auf diese Scheibe wurden drei schmale, gleich hohe Säulen von guter Lackcomposition durch Einschmelzen befestigt, und darüber eine andere Scheibe B gelegt. Auf diese wurden ebenfalls drei, mit den vorigen gleich hohe Säulen auf dieselbe Art befestigt, und darüber eine dritte Scheibe C, mit einem langen isolirenden Handgriffe von Siegellack versehen, gelegt. Dann wurde A durch augenblickliche Berührung von unten her, nahe bei dem Rande, mit der Kugel einer geladenen und erwärmten Leidener Flasche elektrisirt, und, nachdem die Flasche entfernt worden, C mit einem langen Drahte berührt. Gleich darauf wurde C isolirt aufgehoben und auf ein Strohhalmelektrometer so gestellt, dass die Mitte der Scheibe den Gipfel berührte, Nachher wurden A und B von ihrer Elektricität befreit, dann A auf's Neue mit Hülfe der Flasche elektrisirt, und nach deren Entfernung zuerst B und gleich darauf C ableitend berührt. Nach dem Aufheben wurde C mit seiner Mitte auf den Deckel eines Goldblattelektrometers gestellt. Die Skale des Elektrometers war auf beiden Seiten des Nullpunkts in Linien getheilt, und die nachfolgenden Divergenzen sind auf die doppelte Linie als Einheit bezogen. Bei allen diesen Versuchen war die Flasche so stark geladen, dass die elektrisirte Scheibe das zweite (weniger empfindliche) Strohhalmelektrometer auf 19° bis 22° brachte.

Wenn die Entfernung der sechszölligen Scheiben A und C 9 Lin. betrug, fand ich, dass die Scheibe C, wenn sie

allein berührt worden, dem zweiten Strohhalmelektrometer so viel Elektricität mittheilte, dass die Pendel 13° 4 divergirten. Wurde aber nicht nur C, sondern auch vorher B berührt, so war die auf das Goldblattelektrometer übertragene Elektricität so schwach, dass die Goldblätter nur 0°,8 divergirten. Jene Divergenz rührte von der Elektricitätsmenge -m"E her, die A allein in C band, denn die Wirkung der nicht berührten Scheibe B kann hier als Null betrachtet werden 1). Diese dagegen war nur eine Folge des Unterschieds uE der Wirkungen der Scheiben A und B, nachdem B berührt worden. Wie man auch die Abhäugigkeit der Divergenzen von den Elektricitätsmengen bei Pendelelektrometern betrachten mag, so wird wohl von Niemand in Abrede gestellt werden, dass diese wenigstens eben so schnell als iene zunehmen. Durch Versuche fand ich, dass dieselbe Menge von Elektricität einer der Scheiben, die das Goldblattelektrometer auf 3°, das erste (empfindlichere) Strobhalmelektrometer beinahe auf 3º 4 brachte. Also wird 0°.8 auf jenem, ungefähr 0°.9 auf diesem ergeben. Aber 13" des zweiten Strobhalmelektrometers würde, nach dem Maafse des ersten geschätzt, 67% betragen. Hieraus folgt also, dass m" E wenigstens 75 Mal größer ist als - e oder μ E. Also wird der Bruch $\frac{-e}{m''E} = \frac{\mu}{m''}$ gewiß $\frac{1}{15}$ nicht bersteigen. Er wird aber noch viel kleiner, wenn die Scheibe B der Scheibe A oder C näher gebracht wird, wie aus dem Vorhergehenden erhellt, und daraus folgt, dass schon bei der Entfernung von 9 Lin. zwischen den sechs-

ist, gegen m" wird vernachlässigt werden können.

Hiernach wurden A und C auf die Hälfte der vorigen
Entfernung gebracht. Ich fand die Divergenz, wenn nur

zölligen Scheiben A und C der Unterschied zwischen m"
und mm', wenn von keiner großen Genauigkeit die Rede

¹⁾ Bei anderen Versuchen wurde die Scheibe A gegen eine andere vertauscht, auf welcher Säulen von der doppelten Höhe befestigt wurden, und B ganz weggelassen. Das Resultat war, wie man erwarten konnte, von dem vorigen nicht merklich verschieden.

C berührt worden, am zweiten Strohhalmelektrometer 16° , und wenn B und C beide berührt, nur 0° ,3 am Goldblattelektrometers. Weil 16° des zweiten Strohhalmelektrometers, nach dem Maaße des ersten geschätzt, 80° , und 0° ,3 des Goldblattelektrometers ungefähr 0° ,34 betragen würde, s cwird $\frac{\mu}{m''}$ gewiß $\frac{0.34}{80} = \frac{1}{235}$ nicht übersteigen, welcher Bruch weit kleiner ist, als der vorige $(\frac{1}{15})$. Also begeht man einen noch viel geringeren Febler, weun man, bei 4° Lin. Entfernung zwischen den Scheiben A und C, m'' = mm' aunimmt, als bei 9 Lin. Entfernung.

Ich hielt nicht für nöthig die Versuche bei noch kleineren Entfernungen der Scheiben fortzusetzen. Man ersieht nämlich leicht, daß das Verhältniß $\frac{\mu}{m^n}$ immer kleiner werden muß, je näher die Scheiben an einander gebracht werden, denn man hat $\frac{\mu}{m^n} = \frac{m^n - m^2}{m^n} = 1 - \frac{m}{m}$, in welchem Ausdrucke m und m, bei abnehmender Entfernung sich der Einheit immer mehr nähern.

Ganz anders verhielt sich die Sache, wenn die Scheiben in bedeutend größere Entfernungen gestellt wurden. Wenn der Abstand zwischen A und C 2 Fuß betrug, war die in C gebundene Elektricitätsmenge, wenn B nicht berührt worden, so klein, daß die Goldblättehen nur 19,5 divergirten, obgleich die Flasche eben so stark als vorher geladen war. Wurde auch B berührt, betrug die Divergenz noch 0°,9, also mehr als die Hälfte der vorigen. Obgleich also der Unterschied der Größen m" und mm' an sich immer sehr klein ist, wird er doch bei großen Entfernungen der Scheiben relativ sehr bedeutend.

Achnliche Versuche habe ich auch mit dreizölligen Scheiben angestellt. Hier fand ich bei denselben Entfernungen das Verhältnifs zwischen μ und m größer als bei den sechszölligen Scheiben. Wenn die Flasche so stark geladen war, daß sie der Scheibe A eine Elektricitätsmenge mittheilte, die das zweite Strohhalmelektrometer ungefähr

auf 22^n brachte, erhielt C, deren Entfernung von A 9 Lin. betrug, wenn sie allein berührt wurde, so viel Elektricität, dass die Strohhälmehen dadurch 11^o divergirten. Wurde auch B berührt, gingen die Goldblättehen nur 1^o ,8 aus einander. Das Verhalten dieser Divergenzen, beide auf dasselbe Maass gebracht, beträgt beinahe $\frac{1}{2^n}$, also bedeutend mehr, als bei den sechszölligen Scheiben, bei derselben Entsernung. Wurden A und C auf 2 Fus Entsernung gebracht, so wurde die von C gebundene Elektricität, durch die Berührung von B, nur unbedeutend geschwächt. Ich erhielt bei der einsachen Berührung 0^o ,8, und bei der doppelten 0^o ,7 am Goldblattelektrometer. Hier nähert sich also der Bruch $\frac{\mu}{m^o}$ sehr der Einheit, und dies wird noch mehr bei noch größeren Entsernungen der Fall seyn.

Dem Vorigen gemäß wird also das Verhältniß $\frac{\mu}{m''}$, wenn B in der Mitte zwischen A und C steht, oder wenn m=m', immer kleiner, je näher die Scheiben einander gebracht werden. Dagegen nähert sich $\frac{\mu}{m^n}$, den Versuchen gemäß, nach und nach der Einheit, wenn die Entfernungen immer größer werden. Dasselbe kann auch theoretisch gefolgert werden, wie unten gezeigt werden soll. Wenn B nicht in die Mitte, sondern A oder C näher gestellt wird, so ist m' von m verschieden, und man hat $\frac{\mu}{m''} = \frac{m'' - mm'}{m''} = 1 - \frac{m'}{m}.$ Wird hier B der A oder C genähert, nähern sich m' und m in beiden Fällen der Gleichheit, und also $\frac{\mu}{m}$, wie groß auch die Entfernung sey zwischen A und C, der Null. In Betreff des Verhältnisses $\frac{\mu}{mm'}$, so wird es in allen den Fällen klein, in welchen $\frac{\mu}{m^n}$ selbst klein ist, denn man hat $mm'=m^n-\mu$, und folglich $\frac{\mu}{mm'} = \frac{\mu}{m'' - \mu}$. Wenn also μ gegen m'' vernachlässigt werden kann, so geht $\frac{\mu}{mm'}$ in $\frac{\mu}{m''}$ über. Anders verhält sich die Sache, wenn μ in Vergleich mit m'' größer zu werden anfängt. Indem sich μ dem m'' nähert, verschwindet der Nenner $m'' - \mu$ allmälig und $\frac{\mu}{mm'}$ nähert sich dem Unendlichen, oder mit anderen Worten, der umgekehrte Fall tritt ein, daß mm' selbst gegen μ verschwindet.

Es erhellt also, dass man bei Scheiben von 6 Zoll im Durchmesser für gewöhnliche Fälle u gegen mm' vernachlässigen, oder m''=mm' annehmen kann, wenn die Entfernung der äußersten von den drei Scheiben 9 Lin. nicht übersteigt. Ob aber diess auch bei größeren Entsernungen erlaubt sey, beruht auf den Umständen, und muß für jeden Fall untersucht werden. Bei Scheiben von 3 Zoll im Durchmesser verhält sich die Sache schon anders, als bei den sechszölligen, wie die Versuche beweisen, denn hier ist der Vertheilungscoëfficient, bei derselben Entfernung, merklich kleiner. Obige Resultate werden daher unbrauchbar für Scheiben, deren Größe von den hier angegebenen bedeutend abweicht, wenn die Abhängigkeit der Vertheilungscoëfficienten von den Durchmessern der Scheiben nicht bekannt ist. Ich habe mich daher bemüht diese Abhängigkeit auf folgende Weise zu bestimmen.

Ich nehme an, dass zwei gleich große Scheiben, A und B, einander in der Entsernung a gegenüberstehen. Wenn der Scheibe A die Elektricitätsmenge E mitgetheilt worden, und der Vertheilungscoöfficient, der dem a entspricht, m ist, so wird B, nachdem sie ableitend berührt worden, die Menge — mE enthalten. Denkt man sich die Oberstächen von A und B in die sehr große Anzahl n sehr kleiner Theilchen getheilt, so kann man diese Theilchen als einsache Punkte betrachten. Also sind sämmtliche elektrische Kräfte, die von diesen Theilchen ausgehen und auf einen beliebigen elektrischen Punkt P in A oder B wirken, im Gleichgewicht. Weiter seyen A' und B' zwei andere Scheiben von doppelt so großem Durchmesser und Dicke, die einander in der doppelten Entsernung 2a gegenüberstehen.

Ich nehme an, dass der A' die Elektricitätsmenge E, und der B' die Menge -mE mitgetheilt worden, und stelle mir vor, dass diese Elektricitäten gerade so auf den Oberflächen von A' und B', wie von A und B, verbreitet sind. Denkt man sich ferner jene Oberflächen auf die ganz gleiche Weise, wie diese, in die gleich große Anzahl n Theilchen zerlegt, so wird ein jedes dieser Theilchen gerade so viel Elektricität, als das der Lage nach entsprechende Theilchen in A oder B, enthalten. Wenn also P' einen Punkt in A' oder B' bezeichnet, der mit P eine ähnliche Lage hat, so wirken gleich große Mengen von Elektricität in doppelt so großen Entfernungen auf P' als auf P. Eine iede der auf P' wirkenden, von den Theilchen der Oberflächen von A' und B' ausgehenden elektrischen Kräfte, ist daber vier Mal schwächer, als die entsprechende Kraft, die auf P wirkt, und bildet zugleich mit einer durch P' gezogenen festen Linie denselben Winkel, wie diese Kraft mit einer durch P gezogenen Linie, die mit der vorigen eine ähnliche Lage hat. Weil daher die auf P wirkenden Kräfte in Gleichgewicht sind, so ist diess offenbar auch der Fall mit den Kräften, die auf P' wirken. Also bindet die Elektricitätsmenge E in A' die Menge -mE in B', und folglich ist auch für diesen Fall m der Vertheilungscoöfficient. Hieraus folgt unmittelbar, dass der Vertheilungscoefficient, bei einer gegebenen Entfernung zweier Scheiben, gleich groß ist mit dem Vertheilungscoëfficienten bei einer anderen gegebenen Entfernung zweier anderen Scheiben, wenn die Entfernungen der Scheiben sich wie ihre Durchmesser verhalten. Diesem zufolge wird es also leicht, obige Resultate der Versuche mit den sechs- und dreizölligen Scheiben auch für andere Dimensionen zu benutzen. Alles nämlich, was für die sechszölligen Scheiben bei der Entfernung a gilt, gilt bei den 12zölligen bei 2a, bei den 18zölligen bei 3a, bei den 2zölligen bei åa Entfernung u. s. w. Die Dicke kommt nämlich bier wenig in Betracht, wenn sie nur klein ist. Weller seven A and B year andere Melinist.

Nachdem es also erwiesen ist, dass m" nur wenig von

mm' verschieden ist, wenn die Entfernung der Scheiben A und C + bis + ihres Durchmessers nicht übersteigt, und diess bei jeder Stellung der Scheibe B zwischen A und C gilt, so ist klar, dass die Entfernungen innerhalb derselben Gränzen ohne großen Fehler als Logarithmen der Vertheilungscoëfficienten betrachtet werden können. Schon der Umstand, dass der Vertheilungscoëfficient sich der Einheit nähert, wenn die Entfernung sich der Null nähert, deutet dahin, denn ein solches Verhalten ist mit keiner Relation zwischen jenen Größen, der logarithmischen ausgenommen, verträglich. Mit Rücksicht auf ein gegebenes logarithmisches System werden die Entfernungen den Logarithmen der Vertheilungscoëfficienten proportional. Nennt man also M den bei der Entfernung b beobachteten Vertheilungscoëfficienten, und m den Vertheilungscoëfficienten bei der Entferning a, wird $a:b=\log m:\log M$, woraus $\log m$

 $=\frac{a}{b}\log M$. Betrachtet man hier b als Einheit der Entfer-

nung, so wird einfach log m = a log M. Diese Formel, die bei kleinen Entfernungen Genüge leistet, wird immer ungenauer, je größer a genommen wird, und zuletzt unbrauchbar. Es ist also zu vermuthen, dass die logarithmische Relation zwischen Entfernungen und Vertheilungscoëfficienten nach und nach in eine andere übergehe, die für sehr große Entfernungen genau wird. Es wird nicht schwer seyn diese Relation aufzufinden. Ich nehme an, dass die nicht isolirte Scheibe B in so großer Entfernung von A gestellt sev, dass der Durchmesser beider Scheiben in Vergleich mit dieser als verschwindende Größe betrachtet werden kann. Wird A elektrisirt, so wirken alle, von den elektrisirten Punkten in A ausgehenden Kräfte auf einen Punkt P in B fast in derselben Richtung lothrecht gegen B, und ihre Resultante wird die Summe aller Kräfte seyn. Die Resultante der elektrischen Kräfte, die von der Elektricität in B herrühren, und auf denselben Punkt P wirken, wird daher auch lothrecht gegen B in entgegengesetzter Richtung wirken. Wird jetzt B auf die doppelte Entfernung gebracht,

ändert sich, wie man leicht einsieht, die Richtung der von A ausgehenden auf P wirkenden Kräfte nicht merklich, und ihre Resultante wird daher in der vorigen Richtung, aber vier Mal so schwach wirken. Stellt man sich hier vor. dass B nur 4 der vorigen Elektreitätsmenge enthält, die auf die gleiche Weise wie diese auf der Oberfläche verbreitet ist, so ist klar, dass die Resultante der auf P wirkenden Kräfte, die von dieser Elektricität ausgehen, der vorigen der Richtung nach gleich, der Größe aber nur den vierten Theil von dieser beträgt, und daher wird sie genau aufgewogen durch die Resultante der von A ausgehenden Kräfte, die auf denselben Punkt wirken. Also wird bei der doppelten Entfernung zwischen A und B vier Mal weniger Elektricität, als bei den einfachen gebunden, oder allgemeiner ausgedrückt, die Vertheilungscoëfficienten verhalten sich umgekehrt wie die Quadrate der Entfernungen, wenn diese gegen den Durchmesser der Scheiben sehr groß sind.

Hieraus kann gefolgert werden, dass bei großen Entfernungen zwischen den Scheiben A und C die in der Mitte eingeschaltete nicht isolirte Scheibe B die Wirkung von A auf C fast gar nicht schwächen wird, oder was damit einerlei ist, dass das Verhältnis $\frac{\mu}{m''}$ nur sehr wenig von der Einheit abweicht, welcher Umstand schon auf experimentellem Wege erwiesen worden ist. Man hat nämlich für diesen Fall $\frac{\mu}{m''} = \frac{m'' - m^2}{m''} = 1 - \frac{m}{m'}$. Hier ist $m_i = \frac{m''}{m}$ oder das Verhältnis der in C von A gebundenen Elektricität zu der in B gebundenen. Dem vorigen Beweise zufolge ist aber jene bei großen Abständen der Menge nach vier Mal kleiner als diese, also $m'' = \frac{1}{4}m$, woraus $\frac{m''}{m} = m$,

 $=\frac{1}{4}$. Also wird $\frac{\mu}{m''}=1-4m$, welcher Ausdruck von 1 nur sehr wenig verschieden ist, da m und sogar auch 4m gegen die Einheit hier sehr klein ist.

Ein besonderer Fall mit Bezug auf die drei Scheiben

verdient hier genauer untersucht zu werden, wenn nämlich eine der Scheiben, A. elektrisirt worden, während die beiden andern, B und C, auf entgegengesetzten Seiten von A gestellt, mit dem Erdboden vereinigt werden. Wie viel Elektricität in diesem Falle in B und C gebunden wird, erhellt nicht sogleich. Oben ist gezeigt, dass die Elektricitätsmenge in B die Summe der Elektricitätsmengen ist, welche A und C in B binden, und die Menge gebundener Elektricität in C die Summe der Mengen die A und B in C binden. Folglich kann man die eine dieser Elektricitätsmengen unmittelbar nicht bestimmen, wenn man nicht die andere im Voraus kennt. Bezeichnet man daher die in B und C gebundenen Elektricitätsmengen, als unbekannt, mit x und v. und nennt die Vertheilungscoëfficienten, die den Entfernungen zwischen A und B, A und C, B und C entsprechen, m, n, r, und E die Elektricitätsmenge in A, so wird B die Menge -rx in C, und die Menge -ry in B binden. A aber bindet -mE in B, und -nE in C, woraus man

$$x = -mE - ry$$
, $y = -nE - rx$.

Diese beiden Gleichungen bestimmen x und y. Wird der Werth von y aus der zweiten Gleichung in die erste eingeführt, so wird $x=-mE+nrE+r^2x$, woraus:

$$x = -\frac{m - nr}{1 - r^2}E \qquad (1)$$

Auf gleiche Weise erhält man:

$$y = -\frac{n - mr}{1 - r^2} E$$
 (2)

Durch die Rückwirkung der in B und C gebundenen Elektricitäten wird in A gebunden -mx-ny, und also wird die freie Elektricität, die in A zurückbleibt, E+mx+ny. Nennt man diese z, und substituirt die eben gefundenen Werthe von x und y, erhält man:

$$z = \frac{1 - m^2 - n^3 - r^2 + 2mnr}{1 - r^2} E (3)$$

Weil r in diesen Formeln der Vertheilungscoëfficient der Summe der Entfernungen ist, deren Vertheilungscoëfficienten m und n sind, so wird der Genauigkeit wenig ge-

schadet, wenn man, bei kleinen Entfernungen zwischen B und C, mn statt r einführt. Bei größeren Entfernungen, besonders wenn B und C ungefähr gleich weit von A abstehen, wird r-mn, d. h. μ mit mn verglichen, zwar bedeutender, aber je kleiner m und n werden, desto mehr verschwindet in der Formel (1) nr gegen m, und r2 gegen 1, denn man hat immer r kleiner als m und n. Wenn bei unveränderter Stellung von B und C, nur A der B im-

mer näher gebracht wird, so wird $\frac{\mu}{mn}$, wie oben gezeigt

worden, nach und nach kleiner, m nimmt im Zähler der Formel (1) zu, nr dagegen ab, während der Nenner constant bleibt. Also wird der Fehler immer geringer, wenn man mn statt r einführt. Diess ist aber nicht der Fall, wenn die mittlere Scheibe A der C genähert wird, denn dann nimmt m ab, nr aber zu, und wenn die Entfernung zwischen C und A unbeträchtlich ist gegen die Entfernung zwischen B und A, so wird r von m nur wenig verschieden sevn. Substituirt man also m für r in der Formel (1) und vernachlässigt r^2 im Nenner, wird x=-m(1-n)E. Wird mn statt r in (1) eingeführt und r^2 vernachlässigt, so geht xüber in $-m(1-n^2)E$. Nennt man diesen Werth x', wird $x': x = 1 - n^2: 1 - n = 1 + n: 1$, und beide Werthe weichen also merkbar von einander ab. Wenn man daher diesen einzigen Fall ausnimmt, kann man ohne großen Fehler r=mn in der Formel (1) bei jeder Stellung der Scheiben A, B und C annehmen. Was hier von der ersten Formel geäußert worden, gilt auch von der zweiten, wenn man nur m gegen n, B gegen C vertauscht. in die dritte Formel mn für r eingeführt, so ist der Fehler für jeden Fall nur gering, denn bei kleinen Entfernungen zwischen B und C ist r von mn nur wenig verschieden, und bei größeren verschwinden r^2 und 2mnr mehr oder minder gegen die Einheit.

Wird mn statt r in die drei Formeln eingeführt, so gehen sie in folgende über:

$$x = -\frac{m(1-n^2)}{1-m^2n^2}E\dots(4) \qquad y = -\frac{n(1-m^2)}{1-m^2n^2}E\dots(5)$$

$$E = \frac{(1 - m^2)(1 - n^2)}{1 - m^2 n^2} E$$
 (6)

Weil $n^2 < 1$, $m^2 < 1$ und $m^2 n^2 < 1$, so sind Zähler und Nenner in allen drei Formeln positiv. Also sind die in B und C gebundenen Elektricitäten, wie leicht zu vermuthen ist, immer ungleichartig, die freie in A dagegen mit E gleichartig. Weil $m^2 n^2 < n^2$, so ist $\frac{1-n^2}{1-m^2n^2} < 1$ und $\frac{m(1-n^2)}{1-m^2 n^2} E < mE$, oder die Menge der in B gebundenen Elektricität ist kleiner als die Menge von Elektricität, die in B gebunden wird, nachdem C entfernt worden. Auf die gleiche Weise kann bewiesen werden, dass $\frac{n(1-m^2)}{1-m^2n^2}E < nE$. Jemehr die eine Scheibe B der Scheibe A genähert wird, desto mehr nimmt ihre gebundene Elektricität zu, denn m im Zähler der Formel (4) wird größer, und $1 - m^2 n^2$ im Nenner kleiner. Dagegen nimmt die gebundene Elektricität in C ab, denn $1-m^2$ im Zähler der Formel (5) nähert sich der Null, während 1-m2 n2 im Nenner sich $1-n^2$ nähert. Weil $(1-m^2)E$ in der Formel (6) mit $\frac{1-n^2}{1-m^2n^2}$ multiplicirt ist, so folgt, dass die freie Elektricitätsmenge in A kleiner ist als die Menge, die in A frei wird, nachdem C weggenommen worden. Daraus ist auch ersichtlich, dass wenn C der A genähert oder

ben Verhältnisse wie die in B gebundene ab- oder zunimmt. Wenn in den Formeln (1), (2), (3) oder (4), (5), (6), m oder n gleich Null angenommen werden, so erhält man die Formeln wieder, die für den Fall gelten, wenn die Scheiben nur zwei sind. Ist m=n, oder B and C von A gleich weit entfernt, so gehen die Formeln (4), (5),

davon entfernt wird, die freie Elektricität in A in demsel-

(6) über in
$$x=y=-\frac{m(1-m^2)}{1-m^4}E=-\frac{m}{1+m^2}E$$
, und $z=\frac{(1-m^2)^2}{1-m^4}E=\frac{1-m^2}{1+m^2}E$. Weil $1+m^2<2$, ist

 $\frac{m}{1+m^2}E > \frac{1}{4}mE$ und $\frac{2mE}{1+m^2} > mE$. Wenn also die Scheiben B und C gleich weit von A entfernt sind, so ist die Summe der in beiden gebundenen Elektricitätsmengen immer größer als die Elektricitätsmenge, die nur in der einen gebunden wird, nachdem die andere weggenommen worden. Ist m sehr klein, so nähert sich $\frac{2m}{1+m^2}E$ sogar 2mE, und beinahe doppelt so viel Elektricität wird im ersten als im zweiten Falle gebunden. Weil $1+m^2$ zugleich Nenner in dem entsprechenden Werthe von z ist, so erhellt, daß die freie Elektricitätsmenge für diesen Fall größer ist als die Hälfte der freien Elektricitätsmenge in A, wenn nur die eine der Scheiben B und C vorhanden ist. Uebrigens nähert sie sich mehr und mehr der Null, je weiter B und C gegen A fortrücken.

Werden die Formeln (4) und (5) addirt, so erhält man $x + y = -\frac{m(1-n^2)+n(1-m^2)}{1-m^2n^2}E = -\frac{m+n}{1+mn}E$. Nimmt man hier den einen der Vertheilungscoöfficienten

n als constant an, und differentiirt mit Rücksicht auf den andern m, so wird $d.(x+y) = -\frac{1-n^2}{(1+mn)^2} E dm$. Weil

m nicht im Zähler vorkommt, so wird der Differentialcoëfficient niemals Null, und weder Maximum noch Minimum tritt ein. Hieraus folgt, dass die Summe x+y unaufhörlich wachsen muß, wenn m von Null bis auf 1 zunimmt. Wenn aber m=0, wird x+y=-nE, und wenn m=1, wird x+y=-E. Also ist die Summe der in B und C gebundenen Elektricitätsmengen immer größer als die Menge, die nur in einer der Scheiben gebunden wird, nachdem die andere weggenommen worden, kleiner aber als die Menge von Elektricität in A.

Wenn m=n, wird $x+y=-\frac{2m}{1+m^2}E$, und d(x+y) $=-\frac{2(1-m^2)}{(1+m^2)^2}Edm$. Hier wird der Differentialcoëfficient

Null, wenn $1-m^2=0$, woraus $m=\pm 1$. Also findet ein Maximum statt, wenn m=1, oder bei vollkommener Berührung der Scheiben B und C mit A. Wird in obige Formel statt m die Einheit eingeführt, so geht x+y in -E über. Weil aber dieser Werth einem Maximum entspricht, so wird die Summe der in B und C gebundenen Elektricitäten nur sehr wenig von -E abweichen, wenn beide Scheiben, mit Beibehalten des gleichen Abstands von A, in der Nähe von A bewegt werden. Gesetzt $m=\frac{3}{4}$, so wird $x+y=-\frac{2}{1}\frac{4}{3}E$, also nur $\frac{1}{2}$ 3 geringer als bei vollkommener Berührung.

Wenn die Scheiben B und C, isolirt in gegebenen Entfernungen von A gestellt, abwechselnd berührt werden, so nähert sich der elektrische Zustand der Scheiben nach und nach demjenigen Zustande, welcher augenblicklich eintritt, wenn B und C auf einmal ableitend berührt werden. Berechnet man die successiven Veränderungen der freien und gebundenen Elektricitäten der Scheiben, die bei jeder Berührung erfolgen, unter der Voraussetzung, das die Elektricität, die von der einen Seite in A gebunden wird, nach der anderen Seite unwirksam ist, so entstehen abnehmende geometrische Reihen, deren gemeinschaftlicher Exponent ist $m^2 n^2$. Durch Summirung dieser Reihen erhält man genau die Formeln wieder, die mit (4), (5) und (6) bezeichnet sind; weil aber die Berechnung etwas langwierig ist, so übergehe ich sie hier.

Die Formeln (1), (2) und (3) gelten auch, wenn B und C auf dieselbe Seite von A gestellt werden, wenn man nur gehörig Rücksicht darauf nimmt, dass r für diesen Fall einen ganz anderen Werth annimmt; denn hier wird r nicht der Vertheilungscoëssicient der Summe, sondern des Unterschieds der Abstände, deren Vertheilungscoëssicienten m und n sind. Nimmt man hier an, dass C weiter als B von A abstehe, so steht C im elektrischen Schatten von B, und die Formel (2) drückt die Menge von Elektricität aus, die bei der gleichzeitigen Berührung der beiden Scheiben in C gebunden wird. Weil hier der Zähler n-m r dieselbe

Größe ist, die in dem Vorhergehenden durch u bezeichnet worden ist, und der Nenner $1-r^2 < 1$, so ist immer y>- μE, oder mehr Elektricität wird bei der gleichzeitigen, als bei der abwechselnden Berührung von B und C in C gebunden. Weil $\frac{y}{-\mu E} = \frac{y}{e} = \frac{1}{1-r^2}$, so erhellt, dass y und e beinahe gleich groß sind, wenn C so weit von B entfernt ist, dass r2 von Null nur wenig verschieden ist. Je mehr aber C der Scheibe B genähert wird, desto mehr nähert sich r der Einheit und $1-r^2$ der Null. Bei großer Nähe verschwindet daher e fast ganz gegen v. welchen Umstand auch die Erfahrung bestätigt, wie vorher gezeigt worden ist (S. 63). Weil das Verhältnis von m unabhängig ist, so muss es dasselbe bleiben, wenn B und C, ohne ihre gegenseitige Stellung zu verändern, der Scheibe A genähert oder von A entfernt werden. Die Erfahrung zeigt, dass y sehr langsam abnimmt, wenn C, bei unveränderter Stellung von A und B, von der Scheibe B entfernt wird. Die Ursache liegt darin, dass sowohl der Zähler n-mr, als der Nenner $1-r^2$ in solchem Falle nach und nach größer werden. Die Formel (1) giebt die Menge von Elektricität an, die in B bei der gleichzeitigen Berührung von B und C gebunden wird. Weil -mEdie Menge der in B bei der abwechselnden Berührung gebundenen Elektricität ist, so wird $\frac{x}{-mE} = \frac{m-nr}{m-mr^3}$. Da n > mr, so ist $nr > mr^2$, and $m - nr < m - mr^2$. Folglich ist auch x < -mE, d. h. weniger Elektricität wird in B bei der gleichzeitigen, als bei der abwechselnden Berührung von B und C gebunden. Je weiter C von A und Bentfernt wird, desto mehr nähern sich x und -mE der Gleichheit, denn nr und mr^2 verschwinden immer mehr gegen m.

Je mehr die Scheiben B und C einander genähert werden, desto mehr nähern sich m und n der Gleichheit, und r der Einheit. Zuletzt tritt wirkliche Berührung ein, und

beide Scheiben sind nur als eine einzige Scheibe zu betrachten, deren Elektricität nur auf den auswendigen Flächen angesammelt ist. Es erhellt also, dass, wenn eine nicht isolirte Scheibe B' der elektrisirten Scheibe A gegenübersteht, man sich vorstellen kann, die der A zugekehrte Fläche von B' sey B, die abgekehrte dagegen C. Wenn man also die Dicke der Scheibe B' als die Entfernung zwischen den Scheiben B und C, die hier unendlich dünn angenommen werden, ansieht, so werden die Elektricitätsmengen der beiden Oberslächen von B' durch die Formeln (1) und (2) repräsentirt. Wenn man daher in diesen m=n annimmt, so scheint es, dass die daraus hervorgehenden Werthe von x und y diese Mengen desto genauer ausdrücken würden, je dünner die Scheibe ist. Wenn aber m=n, ist auch r=1, und obige Formeln gehen in $x=-\frac{0}{6}$, $y=-\frac{0}{6}$ über. Setzt man in der Formel (2) n=mm, so wird $y=-\frac{m(m-r)}{1-r^2}E$, in welchem Ausdrucke m von der Einheit um so weniger verschieden ist, je näher B und C einander stehen. Gesetzt $1-r=\omega$, und $1-m=\omega'$, so ist $r=1-\omega$, und $m=1-\omega'$. Werden diese Werthe in die letzte Formel eingeführt, und der Ausdruck auf der rechten Seite in Factoren zerlegt, so geht sie über in $y = -\frac{m}{2-\omega} \cdot \frac{\omega - \omega'}{\omega}$. E. Hier ist der Werth des Factors $\frac{m}{2-\omega}$ immer bestimmt, und nur der andere $\omega - \omega'$ geht in $\frac{\alpha}{\sigma}$ über, wenn r = 1. Je mehr sich r der Einheit nähert, desto kleiner wird, wie ziemlich leicht zu ersehen ist, ω' gegen ω . Also muſs das Verhältniſs $\frac{\omega}{\omega}$, indem ω und ω' in Null übergehen, eine Gränze erreichen, die kleiner ist als die Einheit, und folglich ist der entsprechende Gränzwerth von $\frac{\omega - \omega'}{\omega} = 1 - \frac{\omega'}{\omega}$ zwischen 0 und der Einheit eingeschlossen. Nennt man q die Gränze von

 $\frac{\omega'}{\omega}$, und y' den Werth von y, der dieser Gränze entspricht, so wird $y' = -\frac{m}{2}(1-q)E$, also $y' < -\frac{m}{2}E$. Das obige stimmt mit der Erfahrung gut überein, denn wie dünn auch die Scheibe B' sev, so ist doch, bei nicht zu großen Entfernungen, die Elektricitätsmenge in der abgewandten Fläche immer viel kleiner, als in der zugewandten, und verändert sich nicht merklich, wenn die Dicke über einen gewissen Grad abgenommen hat. Jene wird daher für diesen Fall sehr nahe durch $-\frac{m}{2}(1-q)E$ ausgedrückt, in welchem Ausdruck 1-q gewöhnlich viel kleiner ist als die Einheit, und folglich q dieser ziemlich nahe ist. Je näher die Scheibe B' der A gebracht wird, desto mehr nimmt ω' zu, und nähert sich dem ω , und folglich 1-q der Null. Bei sehr kleinen Entfernungen kann man also die auf der Rückseite von B' angehäufte Elektricität als Null ansehen. Wird die Entfernung vermehrt, nimmt ω' immer ab, während ω unverändert bleibt, und jene verschwindet fast völlig gegen ω bei sehr großen Abständen. Also nimmt die Gränze q allmälig ab, und die auf der Rückseite von B' gebundene Elektricität nähert sich $-\frac{m}{2}$ E. Dasselbe folgt auch aus der Formel $y = -\frac{n - mr}{1 - r^2}$, denn sind B und C von A bedeutend entfernt, so kann man m und n als gleich groß annehmen, obgleich r von der Einheit merklich ab-Innerhalb der Gränzen der Entfernungen zwischen B und C, für welche diess erlaubt ist, wird also $y = -\frac{m(1-r)}{1-r^2}E = -\frac{m}{1+r}E$, welcher Ausdruck der Größe $-\frac{m}{2}E$ um so näher kommt, je weniger r von der Einheit abweicht. Weil aber die ganze Menge der in B'gebundenen Elektricität - mE ist, so ist auch die Elektricitätsmenge der zugekehrten Fläche $-\frac{m}{2}E$, und folglich nähern sich die Elektricitäten beider Flächen um so mehr der Gleichheit, je weiter B' von A entfernt wird. Diess wird auch durch die Ersahrung bestätigt, wie schon S. 65 bemerkt worden.

Macht man in der Formel (1) dieselben Substitutionen, wie in (2), so geht sie über in $x = -\frac{m}{2-m}$ $\omega + \omega' - \omega \omega'$. E. Hier ist der eine Factor $\frac{m}{2-\omega}$ immer bestimmt, wie im vorigen Fall, und nur der andere $\omega + \omega' - \omega \omega'$ geht in $^{\circ}_{\sigma}$ über, wenn ω und ω' verschwinden. Indem die Entfernung zwischen B und C immer kleiner wird, verschwindet $\omega \omega'$ gegen ω und ω' , und ω gegen 2 allmälig, $rac{\omega'}{\omega}$ aber erreicht die Gränze q, die kleiner ist als die Einheit, und folglich ist der Gränzwerth von $\frac{\omega + \omega'}{\omega} = 1 + q$ immer >1, aber <2. Nennt man x' den Werth von x, der dieser Gränze entspricht, so wird $x' = -\frac{m}{2}(q+1)E$, und also ist die Elektricitätsmenge der zugewandten Fläche von B' immer größer, als die Hälfte der ganzen Menge, die in B' gebunden wird. Bei sehr kleinen Entfernungen zwischen B' und A ist 1 die Gränze von $\frac{\omega'}{\omega}$, und bei sehr großen geht es in Null über. Im ersten Falle wird also x' = -mE = -E, oder alle Elektricität sammelt sich auf der vorderen Fläche von B', und im zweiten wird $x' = -\frac{m}{2}E$, oder gleich der halben Gesammtmenge von Elektricität in B', wie zu erwarten war.

Summirt man die beiden transformirten Werthe von x und y, so wird $x+y=-\frac{m(2\omega-\omega\omega')}{(2-\omega)\omega}$. $E=-\frac{m(2-\omega')}{2-\omega}$. E. Wenn B und C einander sehr nahe sind, so verschwinden ω und ω' gegen 2, und man erhält x+y=-mE. Stehen sie dagegen sehr weit von einander ab, so kann man ω und ω' gleich der Einheit annehmen, und man erhält wie-

der x+y=-mE. Für alle anderen Entfernungen ist aber x+y>-mE, denn $\omega>\omega'$, und folglich $\frac{2-\omega'}{2-\omega}>1$. Weil aber ω und ω' sich mehr und mehr der Gleichheit nähern, je größer sie werden, so erhellt, daß $\frac{2-\omega'}{2-\omega}$ bei zunehmender Entfernung nur wenig von der Einheit, und folglich x+y nur wenig von -mE abweichen könne. Wenn also C in der Nähe der nicht isolirten Scheibe B berührt wird, kann man sich vorstellen, daß ein Theil von der Elektricität dieser Scheibe in C übergeht, wie schon vorher bemerkt worden ist.

In dem Vorhergehenden ist vorausgesetzt worden, dass die leitenden Scheiben eine kreisrunde Form haben. Sollten sie aber viereckig oder anders gestaltet seyn, so sind die Erscheinungen der elektrischen Vertheilung, wie die Erfahrung zeigt, der Hauptsache nach dieselben, wenn die Scheiben nur gleich groß sind und so gestellt werden, daß die geraden Linien, welche ähnlich liegende Punkte verbinden, gegen die Oberflächen rechtwinklig sind. Selbst wenn die Oberflächen gekrümmt sind, ist die S. 70 und 223 vorgetragene Theorie, und sogar die Gleichungen (1) bis (6) noch anwendbar, wenn nur die Entfernung der gegenüberstehenden Flächen klein und überall dieselbe ist. Wenn die elektrisirte Scheibe ein Nichtleiter ist, so wirkt sie fast auf dieselbe Weise wie eine leitende Scheibe vertheilend auf die ableitend berührten Scheiben, wenn nur die Elektricität ihrer Oberfläche ziemlich gleichmäßig verbreitet ist. denn bei kleinen Entfernungen verbreitet sich auch die Elektricität der Oberfläche einer leitenden Scheibe fast gleichmäßig, und bei größeren Abständen ist die Verbreitung beinahe gleichgültig.

Die oben mit Rücksicht auf drei Scheiben aufgestellte Vertheilungstheorie enthält den Grund der Erklärung der Erscheinungen des Elektrophors, wie hier kürzlich gezeigt werden soll. Der Elektrophor besteht bekanntlich aus drei Theilen, nämlich dem elektrisirten Harzkuchen, der unteren Belegung oder Form, und einer leitenden Scheibe, genannt der Deckel. Der Harzkuchen steht hier in der Mitte, und wirkt vertheilend, sowohl auf die Form, als den Deckel. Es erhellt also, dass dieser Fall mit demjenigen analog ist, in welchem die Scheiben B und C auf entgegengesetzte Seiten von A gestellt sind. Es stelle daher A den Harzkuchen vor, oder vielmehr dessen obere Fläche, B die uutere Belegung und C den Deckel, die ich beide von gleicher oder beinahe gleicher Größe mit der Harzfläche annehme.

Ich nehme an, dass in dem Harzkuchen durch Reiben. wie gewöhnlich, negative Elektricität erregt sev, die ich mit - E bezeichne. Diese bindet in der unteren Belegung die Elektricitätsmenge mE, und mE bindet zurück in der oberen Harzfläche $-m^2 E$. Also wird hier frei $-(1-m^2) E$. Wird der Deckel C isolirt auf den Harzkuchen gelegt, so kann man sich vorstellen, dass nur die freie Elektricität $-(1-m^2)E$ vertheilend auf diesen einwirkt, weil die gebundenen Elektricitäten in A und B ihre Wirkungen in C beinahe aufheben, wie oben gezeigt worden. In dem Dekkel wird also gebunden $n(1-m^2)E$, welche Elektricität von $(1-m^2)E$ nur sehr wenig abweicht, weil n wegen der großen Nähe gleich der Einheit angenommen werden kann. Diess vorausgesetzt, wird im Deckel frei -(1-m2) E. Wird der Deckel ableitend berührt, geht negative Elektricität weg, und die gebundenen Elektricitätsmengen der unteren Belegung und des Deckels werden durch die Formeln (3) und (4) vorgestellt, wenn nur das Zeichen auf der rechten Seite umgekehrt wird. Wenn aber n=1, wird x=0, und y=E, woraus erhellt, dass die gebundene Elektricität der unteren Belegung durch die Berührung beinahe verschwindet, während die gebundene Menge des Deckels mit der Elektricitätsmenge des Harzkuchens fast gleich groß wird. Weil also der Deckel negative und die untere Belegung positive Elektricität verliert, fühlt man einen elektrischen Schlag durch die plötzliche Vereinigung der entgegengesetzten Elektricitäten, wenn die Verbindung beider mit der Hand gemacht wird. Hebt man den ableitend berührten Deckel isolirt in die Höhe, so wird seine gebundene positive Elektricitätsmenge E frei, und er giebt einem genäherten Leiter einen starken Funken.

Wenn die Basis des Elektrophors vor dem Aufsetzen des Deckels isolirt ist, so wird in diesem, wie vorher, $(1-m^2)E$ gebunden und $-(1-m^2)E$ frei. Wird der Deckel allein berührt, so verschwindet die freie $-(1-m^2)E$ und die zurückbleibende gebundene bindet zurück im Harzkuchen $-(1-m^2)E$, und also wird hier alle Elektricität gebunden. Weil aber $(1-m^2)E$ im Deckel und $-(1-m^2)E$ in der Harzfläche ihre Wirkungen in der unteren Belegung aufheben, so wirkt nur $-m^2 E$ in der Harzfläche vertheilend auf diese, und bindet $+ m^3 E$. Aber die ganze Menge von Elektricität in der unteren Belegung ist mE, und also wird hier frei $mE - m^3E = m(1 - m^2)E$. Hebt man jetzt den Deckel isolirt in die Höhe, so wird nur seine gebundene Elektricität $(1-m^2)E$ frei, und folglich ist der Deckel bedeutend schwächer elektrisirt, als im vorigen Fall. Setzt man den Deckel wieder isolirt auf den Harzkuchen, und berührt diesen und die untere Belegung zugleich, so ist der elektrische Zustand aller drei Theile gerade derselbe, wie vor der Isolirung der Basis. Hebt man also den Deckel isolirt auf, so wird in ihm +E frei, aber sogleich bindet -E im Harzkuchen wieder +mE in der unteren Belegung. und -mE wird hier in Freiheit gesetzt. Es erhellt also, dass ie dicker der Harzkuchen ist, um so kleiner auch die freie negative Elektricitätsmenge der unteren Belegung ist, im Vergleich mit der freien positiven des aufgehobenen Deckels. Weil die entgegengesetzten Elektricitäten mE und -mE der unteren Belegung ihre Wirkungen beinahe aufheben. so wird fast die ganze Menge von Elektricität im Harzkuchen frei, nachdem der Deckel aufgehoben worden, welches man daraus erkennt, dass er weit stärkere Funken gegen genäherte Leiter schlägt, als im nicht isolirten Zustande der Basis.

Wenn der Deckel die elektrisirte Harzfläche nicht genau berührt, oder die genaue Berührung durch absichtlich gelegte kleine nicht leitende Zwischenkörper verhindert wird. so kann n und noch mehr n' merklich kleiner als die Einheit seyn, und die Elektricität des ableitend berührten und nachher isolirt aufgehobenen Deckels wird, im Falle der Nichtisolirung der Basis des Elektrophors, durch $\frac{n(1-m^2)}{1-m^2n^2}E$ ausgedrückt. Setzt man bier $n=1-\omega$, und substituirt diesen Werth von n im vorigen Ausdrucke, so geht er, wenn man ω^2 übersieht, über in $\frac{(1-\omega)(1-m^2)}{1-m^2+2\omega m^2}E$. hier n der Einheit so nahe ist, dass nicht nur ω gegen diese, sondern auch $2\omega m^2$ gegen $1-m^2$ vernachlässigt werden kann, so geht der Ausdruck in E über, und eine noch genauere Berührung des Deckels mit der Harztläche vermehrt die Wirkung nicht merklich. Wenn aber m selbst von der Einheit nicht bedeutend verschieden ist, so kann ω gegen diese sehr klein sevn, obgleich doch $2\omega m^2$, mit $1-m^2$ verglichen, erheblich genug ist. Hieraus folgt also, dass die nicht genaue Berührung des Deckels mit der Harzsläche der Wirkung des Elektophors um so mehr schadet, je dünner der Harzkuchen ist. Uebrigens giebt ein dünnerer Kuchen eben so viel Elektricität als ein dickerer, und ist, wegen der geringeren Menge freier Elektricität fähiger seine Wir-

Zuletzt will ich nur eine kurze Anwendung des Vorigen auf das elektrische Ladungsglas hinzufügen. Wenn E die Elektricitätsmenge bezeichnet, die die eine Belegung A einer belegten Glasscheibe durch Verbindung mit dem ersten Leiter einer in Thätigkeit gesetzten elektrischen Maschine erhält, wenn die andere Belegung B isolirt ist, so wird $(1-m^2)E$ die freie Elektricität jener, wenn diese, nach aufgehobener Verbindung der Scheibe mit dem Conductor, ableitend berührt wird; vorausgesetzt nämlich, daß m der Vertheilungscoëfficient ist, der der Dicke des Glases entspricht. Wird A von Neuem mit dem ersten Leiter verbunden, während B mit dem Erdboden in Verbindung steht, so nimmt A weit mehr Elektricität an, und die

kung beizubehalten.

in A wieder E ist. Diess ist nämlich daraus klar, dass die Verbreitung der freien Elektricität im ersten Leiter, und A von den in A und B gebundenen Elektricitäten beinahe unabhängig ist. Nennt man E' die ganze Menge zugeströmter Elektricität in A, so wird $E=(1-m^2)E'$, woraus $E' = \frac{E}{1 - m^2}$. Diesem zufolge wird $-\frac{mE}{1 - m^2}$ die Menge von Elektricität, die E' in B bindet. Ich nehme jetzt an, daß eine mit der vorigen ganz gleiche belegte Glasscheibe auf diese so gelegt werde, dass die inneren Belegungen einander genau bedecken. Werden die beiden äußeren Belegungen leitend verbunden, so entsteht ein doppeltes Ladungsglas, in welchem die den inneren Belegungen mitgetheilte Elektricität nach beiden Seiten vertheilend wirkt, und entgegengesetzte Elektricität in den beiden äußeren bindet. Werden jene mit dem ersten Leiter der Maschine vereinigt, während diese isolirt sind, so erhalten sie die Elektricitätsmenge E. Berührt man, nach abgebrochener Verbindung mit dem Conductor, die äußeren Belegungen ableitend, so wird, bei gleicher Dicke und Beschaffenheit der Gläser, $\frac{1-m^2}{1+m^2}E$ die freie Elektricität der inneren Belegungen (S. 243). Werden diese, bei fortdauernder Nichtisolirung der äußeren Belegungen, mit dem Conductor wieder vereinigt, so nehmen sie neue Mengen von Elektricität an, bis die freie Elektricität wieder E ist. Wenn also E" die Gesammtmenge von Elektricität der inneren Belegungen bezeichnet, so wird $E = \frac{1-m^2}{1+m^2}E''$ und $E'' = \frac{1+m^2}{1-m^2}E$. Wie aber S. 244 gezeigt worden, ist $\frac{2m}{1+m^2}E''$ die Summe der gebundenen Elektricitäten der beiden äußeren Belegungen. Wird hier statt E'' sein Werth $\frac{1+m^2}{1-m^2}E$ eingeführt, so geht der Ausdruck der obigen Summe in $-\frac{2m}{1-m^2}$ E

über. Weil aber die gebundene Elektricität der einfachen Glasscheibe, in der Belegung B, $-\frac{m}{1-m^2}E$ war, so erhellt, dass in dem doppelten Ladungsglase genau die doppelte Menge von Elektricität gebunden wird, woraus also folgt, dass die Wirkung doppelt so groß wird.

Eine solche Einrichtung der elektrischen Ladungsgläser scheint mir bei großen elektrischen Batterien vortheilhaft zu seyn. Wenn nämlich mehrere ähnliche Paare Glasscheiben dicht an einander gestellt werden, so wird eine bedeutende Menge belegtes Glas in einen sehr kleinen Raum eingeschlossen.

VI. Ueber die Veränderung des Leitungswiderstandes der Flüssigkeiten durch Erhöhung der Temperatur, nebst Angabe der Construction eines Differentialgalvanometers; von Hankel.

Bei einer gewissen, vor längerer Zeit angefangenen, ausgedehnten Untersuchung war es auch nothwendig die Veränderung des Leitungswiderstandes durch die Erhöhung der Temperatur genauer zu bestimmen, da alle bis jetzt vorliegenden Versuche nur im Allgemeinen das Resultat geben, dass wirklich der Leitungswiderstand durch die Erhöhung der Temperatur vermindert wird (Ohm, in diesen Annalen, Bd. 63, S. 204, und Henrici, Bd. 64, S. 174). Als einfachstes und zugleich sicherstes Mittel für diese Messung bot sich mir folgendes dar.

Ich brachte die zu untersuchende Flüssigkeit in eine U förmig gebogene graduirte Röhre, und verband zwei Punkte dieser Flüssigkeitssäule durch Drähte, welche mit Metallplatten in die Flüssigkeit tauchten, mit dem Multiplicator. Die Werthe einer Theilung der Röhre der geraden Schenkel waren in Beziehung auf Länge und Weite genau bestimmt. Der Werth des gebogenen Theiles wurde durch Versuche ausgemittelt. Da die folgenden Versuche mit Kupfer- und Zinklösungen angestellt wurden, so waren die Platten, welche in die Flüssigkeit tauchten, von Kupfer oder von Zink, und wurden öfter durch eine Feile blank geschabt; sie waren so groß, als es der Durchmesser der Röhre erlaubte.

Das Differentialgalvanometer.

Zur Messung des Leitungswiderstandes construirte ich mir ein Differentialgalvanometer, das wirklich als brauchbar zu betrachten ist. Es ergab sich durch eine Reihe von Versuchen, dass der Grund, warum bei dem bisher construirten Differentialgalvanometer zwei gleiche Ströme, welche durch die beiden Drähte nach entgegengesetzten Richtungen geleitet werden, die Magnetnadel des Instruments nicht auf dem Nullpunkte stehen lassen, sondern rechts und links, je nachdem die Nadel zufällig in Schwankungen geräth, ablenken und auf Weiten von 5° bis 10° festhalten, allein in der einseitigen Wirkung der Drähte, namentlich der vertical vor der Nadel vorbeigehenden, auf einen Pol zu suchen ist. Es lassen sich die Drahtwindungen nicht so regelmäßig legen, daß dieser Einfluß verschwindet. Ich wickelte also den übersponnenen Kupferdraht auf einen großen Ring von 3 Fuß Durchmesser, der auf einem besonderen Tische befestigt war, und hing in die Mitte desselben an einem Coconfaden einen kleinen Magnetstab von 3 Zoll Länge auf. In dem von mir construirten Differentialgalvanometer waren zwei Drähte von 0,11789 Par. Zoll Durchmesser (jeder von 286 Fuß Länge und 28 Umwindungen) um den Ring gewickelt. Die Magnetnadel hing an einem Coconfaden, der von oben an der Innenseite des Ringes angebracht war, und wurde durch einen Glaskasten sorgfältig vor Luftströmungen geschützt. Dieser Glaskasten befand sich auf einem hölzernen Brette, welches etwas unterhalb des Mittelpunkts des Ringes befestigt war. Um die Empfindlichkeit des Instruments zu erhöhen, wurde die RichtRichtkraft des kleinen Magnetstabes durch einen im Meridian befindlichen Stabmagnet beliebig geschwächt, und um jede kleine Aenderung an der Stellung des kleinen Magnetstabes wahrnehmen zu können, trug er einen kleinen Spiegel von Glas, in welchem nach bekannter Weise mittelst eines Fernrohrs eine unter demselben befindliche Scale beobachtet wurde.

Durch ein, zwei und drei Daniell'sche Elemente wurde nun ein galvanischer Strom erregt, und nachdem er durch einen ganz einfach construirten Commutator gegangen war. in zwei Theile gespalten, so dass der eine Zweigstrom den einen Draht des Galvanometers in der einen Richtung, der andere in der entgegengesetzten durchlaufen musste. Da durch stärkeres Anspannen des einen Drahtes in demselben ein etwas größerer Widerstand entstanden war, so wurden an den andern einige Fuss desselben Drahts angefügt, his die Magnetnadel bei dem Durchgange dieser beiden Ströme durch das Galvanometer ganz unbewegt blieb. In den einen Zweigstrom wurde nun die Flüssigkeitssäule, in den andern dagegen Spiralen von dünnen Eisendrähten, deren Widerstand genau bekannt war, eingeschaltet, und die letztere so lange abgeändert, bis sie einen der Flüssigkeitssäule gleichen Widerstand darboten, d. h. bis die Nadel auf Null stehen blieb, wenn die Kette geschlossen wurde. Um aber eine und dieselbe Füllung der Röhre zu allen Versuchen gebrauchen zu können, wurde der Strom nicht fortwährend hindurchgelassen, sondern nur auf Augenblicke. wenn die nöthigen Einschaltungen gemacht waren; die Kette war deshalb für gewöhnlich geöffnet, und nur wenn durch die Niederdrückung eines Hebels mittelst des Fusses eine damit in Verbindung stehende kupferne Metallfeder in Ouecksilber getaucht wurde, geschlossen. Durch diese nur sehr kurze Zeit dauernden Ströme wurde auch eine Erwärmung der Platten und Flüssigkeitssäulen verhindert. Um jede Polarisation der Platte zu zerstören, war der Commutator eingeschaltet, der deshalb nach jeder Schliefsung der Kette umgestellt wurde. Jede Polarisation verräth sich bei dem Instrumente übrigens augenblicklich beim Oeffnen, indem nach dem Oeffnen der Daniell'schen Kette die beiden Drähte des Multiplicators mit der Flüssigkeitssäule und dem Eisendrahte noch einen geschlossenen Kreis bilden, in welchem die beiden Drähte des Multiplicators jetzt nicht in entgegengesetztem, sondern in gleichem Sinne durchlaufen werden.

Aus dem Vorstehenden ergiebt sich, dass diess Differentialgalvanometer für Messung der Widerstände ein sehr bequemes und völlig brauchbares Instrument ist; außerdem lässt sich dasselbe auch, wenn man beide Drähte in gleichem Sinne verbindet, als sogenannte Tangentenbussole anwenden. Auch zur Bestimmung der Größe der Polarisation der Platten ist es sehr brauchbar. Ich habe dieses Instrument schon im Jahre 1844 construiren lassen, und die sogleich mitzutheilenden Versuche sind auch schon in den letzten Monaten des genannten Jahres ausgeführt worden '). Ich glaubte immer noch Gelegenheit und Zeit zu größerer Ausdehnung derselben finden zu können: da eine weitere Ausführung derselben aber bis jetzt mir noch nicht möglich gewesen ist, so hoffe ich die Mittheilung dieser Bruchstücke damit entschuldigen zu können, dass bis jetzt keine genaueren Versuche über die Aenderung des Leitungswiderstandes der Flüssigkeiten bekannt geworden sind.

Aenderung der Leitungswiderstände durch Temperaturerhöhung.

Da es bei diesen Bestimmungen auf ein absolutes Maaß nicht ankommt, so lasse ich alle Messungen, die zur Bestimmung eines solchen dienen, hinweg. Die beiden geradlinigen Schenkel der Röhre waren, von einem bestimmten Punkte über der Biegung an, eingetheilt. Die Länge einer cylindrischen Flüssigkeitssäule, welche bei gleicher Dicke wie die geraden Schenkel der Röhre eben so viel Widerstand leistet, als der gebogene Theil der Uförmig gekrümmten Röhre sammt dem Uebergangswiderstande, möge

Eine kurze Erwähnung derselben findet sich in dem Intelligenzblatte der Hallesch. allgem. Literaturzeitung, in dem Berichte über die Sitzung der hiesigen naturforschenden Gesellschaft am 19. Juli 1845.

mit x bezeichnet werden. (Der Widerstand des gekrümmten Theiles allein beträgt ungefähr 17,4 Theilstriche.) -Bei der Abkühlung bis 0° wurde die Röhre in ein Gefäss mit Eis gestellt, bei den übrigen Temperaturen aber in ein Gefäss mit Wasser, das mit heissem Sande oder heissem Wasser nochmals umgeben war, um die Aenderungen der Temperatur während der Dauer eines Versuchs sehr gering Für die geringen Aenderungen wurden die zu machen. nöthigen Correctionen angebracht, um die verschiedenen Beobachtungen auf einerlei Temperatur beziehen zu können. Bei diesen Abweichungen von meistens nur wenigen Zehntheilen eines Grades kann man die Aenderung der Leitungsfähigkeit ohne merklichen Fehler der Aenderung der Temperatur proportional setzen; die Reduction geschah übrigens, um diese Werthe noch zu verkleinern, auf die Temperatur einer mittleren Beobachtung. Um vor größeren Versehen gesichert zu seyn, wurden nämlich stets mehrere Versuche mit verschiedenen Flüssigkeitslängen angestellt. Die Berechnung der Versuche ist sehr einfach. Die erste Columne der folgenden Angaben bedeutet die Länge der Flüssigkeitssäule, und die zweite die einen gleichen Widerstand darbietende Länge der Eisendrähte (in Decimalfussen). Ich habe stets die bei der Einschaltung x (also dem gekrümmten Theile der Röhre) gemachte Messung von den übrigen abgezogen, und dadurch die Widerstände erhalten, welche Flüssigkeitssäulen von der Länge 10, 20, 30 und 40 darbieten. Im Mittel ist dann der Widerstand y für eine Säule von der Länge eines Theilstrichs angegeben. Die Temperatur ist nach R. Graden bestimmt.

Leitungswiderstand einer concentrirten Kupfervitriollösung

A, vom spec. Gew. 1,17, bei der Temperatur:

$x.y = 197,39 0^{\circ}$	x.y = 130,35; 11°,8
(x+10)y=310,58 0	(x+10)y=203,02; 11,8
(x+40)y=645,96 0	(x+20)y=276,37; 11,9
Mittel für y bei 0°=11,26	(x+30)y=352,63; 11,9
2, 80 = Ti-Rd=+(01 + c)	(x+10)y=424,71; 12,0
Mittel The greet of C=1,68.	Mittel für v bei 11°,9=7.33

$$x.y = 80.02$$
; $31^{\circ}.9$
 $(x+20)y = 175.96$; 31.0
Werth für y bei $31^{\circ} = 4.7$.

 $(x+40)y = 177.01$; 66.1
 $(x+40)y = 177.01$; 67.5
Mittel für y bei $66^{\circ}.4 = 3.12$

Leitungswiderstand einer Mischung von 216,359 Th. der vorigen Lösung A mit 123,350 Th. Wasser.

$$x.y = 266.37 ; 0^{\circ}$$

 $(x+20)y = 568.65 ; 0$
 $(x+40)y = 851.22 ; 0$
Mittel für y bei $0^{\circ} = 14.86$.

Dieselbe Mischung war früher bei 12° in einer anderen geraden Röhre untersucht worden; wird diese Messung auf die vorstehenden Einheiten reducirt, so kommt Mittel für u bei 12°=9.8.

Leitungswiderstand einer Mischung von 108,693 Th. der Lösung A mit 185,118 Th. Wasser.

Leitungswiderstand einer ziemlich concentrirten Lösung von salpetersaurem Kupferoxyd; die Lösung reagirte noch schwach sauer.

$$x.y = 88,00$$
; 0° $x.y = 57,58$; 11°,5 $(x+20)y = 185,92$; 0 $(x+20)y = 123,00$; 11,5 $(x+40)y = 283,30$; 0 $(x+40)y = 188,41$; 11,4 Mittel für y bei 0°=4,89. $x.y = 36',82$; 26°,6 $x.y = 18,41$; 65°,3 $(x+20)y = 83$,16; 25,0 $(x+20)y = 39,34$; 67,2 $(x+40)y = 133$,42; 23,2 Mittel für y bei 67°,2=1,64. Mittel für y bei 67°,2=1,64.

Leitungswiderstand einer concentrirten Lösung von Kupferehlorid; (sie enthielt aber auch etwas Chlorür, und die ziemlich hellgrüne Flüssigkeit fürbte sich beim Hindurchleiten des elektrischen Stromes dunkler; die Kupferplatten, welche zur Hineinleitung des Stromes dienten, waren nach jedem Versuche stark angegriffen). Spec. Gewicht = 1.2.

$$x.y = 83.6$$
; 0° $x.y = 66.33$; 10° (od. 9°)
 $(x+20)y = 173.18$; 0 $(x+20)y = 123.00$; 10 (od. 9)
 $(x+40)y = 260.80$; 0 $(x+40)y = 181.81$; 10 (od. 9)
Mittel für y bel 0°=4.47. Mittel für y bei 10°=2.86.

Leitungswiderstand einer gesättigten Lösung B von käuflichem Zinkvitriol (durch Auflösen von Zinkvitriol bei der Temperatur des Zimmers von 12°).

$$x.y = 226,19$$
; 0° $x.y = 151,48$; 9°,6
 $(x+20) = 488,63$; 0 $(x+20)y = 322,56$; 9 ,8
 $(x+40) = 745,62$; 0 $(x+40)y = 489,68$; 10 ,0
Mittel für y bei 0°=13,05. Mittel für y bei 9°,8=8,62.
 $x.y = 79,29$; 28°,9 $x.y = 41,11$; 65°,9
 $(x+20)y = 175,96$; 27,4 $(x+20)y = 85,18$; 67,4
 $(x+40)y = 287,43$; 25,8 $(x+40)y = 128,77$; 68,3
Mittel für y bei 27°,4=4,55. Mittel für y bei 67°,4=2,29.

Leitungswiderstand einer etwas weniger concentrirten Zinklösung von spec. Gew. 1,122.

$$x.y = 189,75$$
; 0° $x.y = 116,33$; 13°,1
 $(x+20)y = 394,21$; 0 $(x+20)y = 249,70$; 13,05
 $(x+40)y = 607,52$; 0 $(x+40)y = 382,66$; 13,05
Mittel für y bei 10°=10,33. Mittel für y bei 13°,1=6,66.

Leitungswiderstand einer Mischung C aus 71,431 Th. der gesättigten Lösung B und 115,677 Th. Wasser; sie war weniger concentrirt als die vorige.

$$x \cdot y = 228,28 \ ; 0^{\circ}$$
 $x \cdot y = 157,33 \ ; 10^{\circ},8$ $(x+20)y=489,68 \ ; 0$ $(x+20)y=331,50 \ ; 11 \ ,1$ $(x+40)y=745,62 \ ; 0$ $(x+40)y=502,42 \ ; 11 \ ,4$ Mittel für y bel $0^{\circ}=13,00$. Mittel für y bel $11^{\circ},1=8,82$. $x \cdot y = 96,99 \ ; 29^{\circ},7$ $x \cdot y = 61,39 \ ; 64^{\circ},0$ $(x+20)y=212,23 \ ; 28 \ ,8$ $(x+40)y=327,67 \ ; 27 \ ,9$ Mittel für y bel $28^{\circ},8=5,57$. Mittel für y bel $65^{\circ},1=3,51$.

Bei diesen letzten Versuchen (bei 65°) fanden sich einige große Blasen einer Gasart unter den Elektroden.

Leitungswiderstand einer Mischung aus 43 Th. der Lösung C mit 68,027 Wasser.

 $x.y = 436,0 : 0^{\circ}$ x.y = 283,30 ; 130,1(x+20)y=611,63;13,2(x+10)y=692,07;0(x+20)y=927,13;0(x+40)y=931,24;13,3Mittel für y bei 13°,2 = 16,30. Mittel für y bei 0°=25,0. $x.y = 195,30 ; 28^{\circ},6$ $x.y = 125,08 : 66^{\circ},7$ (x+20)y=425.72;29.2(x+20)y=270.48:66.5(x+40)y=432,65; 66,7 (x+40)y=656,65; 28,6 Mittel für y bei 29°,2=11,52. Mittel für y bei $66^{\circ}, 7 = 7,45$.

Bei der Einschaltung von (x+40)y des letzten Versuchs fand starke Anhäufung von Blasen an den Elektroden statt; es möchte deshalb wohl der Werth für y aus dem ersten und zweiten Versuche y=7,22 richtiger seyn.

Da ich die Temperatur der Flüssigkeiten nicht bis zum Siedpunkte des Wassers erhöhen konnte, so war es nicht möglich die Temperatur bei ungefähr 66° so constant zu halten, als ich es wünschte. Es finden sich deshalb etwas größere Abweichungen, die jedoch 2°,1 nicht übersteigen; dadurch können allerdings geringe Unterschiede zwischen der Temperatur in der Röhre und in der umgebenden Flüssigkeit, in welcher sich das Thermometer befand, entstehen. Es ist die Aenderung der Leitungsfähigkeit für 1° R. aber bei höheren Temperaturen viel geringer als bei niederen, so daß hier kleine Unrichtigkeiten in der Temperaturbestimmung einen weniger beträchtlichen Einfluß auf das Resultat ausüben.

Aus den oben angeführten Versuchen ergiebt sich, daß der Leitungswiderstand der Flüssigkeiten durch die Erhöhung der Temperatur sehr bedeutend vermindert wird, daß diese Verminderung aber der Temperaturveränderung nicht proportional geht, sondern daß dieselbe für einen bestimmten Temperaturunterschied um so größer ist, je näher die Temperatur dem Nullpunkte ist. Uebrigens scheinen die verschiedenen Flüssigkeiten in diesen Veränderun-

gen einen ziemlich übereinstimmenden Gang darzubieten, und nur darin von einander abzuweichen, das diejenigen Lösungen, welche eine größere Menge der Salze aufgelöst enthalten, auch eine größere Aenderung in ihrer Leitungsfähigkeit für dieselben Temperaturunterschiede erleiden. So ändert sich der Leitungswiderstand des salpetersauren Kupferoxyds, und besonders der ganz gesättigten Lösung des schweselsauren Zinkoxyds mehr als der Widerstand der Kupfervitriollösung und der weniger concentrirten Zinklösungen, und der Widerstand der letzteren wieder mehr als der Widerstand der sehr verdünnten Kupfervitriollösung.

Die Aenderungen, welche in dem Leitungswiderstande der Flüssigkeiten eintreten, sind viele Male größer als die durch dieselben Temperaturerhöhungen bei den Metallen erzeugten. Da die letzteren für die verschiedenen Metalle sehr verschieden sind, so fragt es sich, ob die nahe Uebereinstimmung, die sich bei den hier angewandten Kupferund Zinksalzen zeigt, auch bei der Untersuchung, z. B. der Kali- und Natronsalze, oder der Säure und Alkalien stattfinden werde.

Die größeren Veränderungen, welche sich in den concentrirten Lösungen zeigen, hängen wohl mit einer Erscheinung zusammen, die sich bei den Versuchen mit dem Zinkvitriol sehr deutlich ausspricht, wenn wir z. B. die Leitungswiderstände der verschiedenen Lösungen mit einander vergleichen. Die gesättigte Lösung hat den Widerstand 13,00, eine weniger concentrirte 10,33, eine weiter verdünnte 13,00, und eine noch mehr verdünnte 25.00. Es nimmt also bei der Verdünnung der gesättigten Lösung mit Wasser der Leitungswiderstand erst ab, und dann wieder zu. Es muß die gesättigte Lösung mit mehr als der anderthalbfachen Gewichtsmenge Wasser vermischt werden, ehe der Leitungswiderstand wieder bis zu dem Widerstande der gesättigten Lösung erhöht wird. Die gesättigte Lösung zeigt sich sehr schwerflüssig, und namentlich bei niederen Temperaturen möchte ich sie fast zähflüssig nennen. Durch die Erwärmung verliert sich aber dieser Zustand zum Theil. und damit tritt zugleich eine so außerordentlich starke Verringerung des Widerstandes ein, wie sie keine andere der untersuchten Flüssigkeiten darbietet.

Es steht diese Erscheinung, das eine concentrirte Zinklösung schlechter leitet als eine verdünnte, nicht isolirt, denn z. B. die Schwefelsäure verhält sich ganz eben so; die concentrirte Schwefelsäure leitet schlechter als eine mäsig verdünnte. Aber auch in diesem Falle ist die concentrirte Säure sehr dickslüssig.

Wenn es nun in den Flüssigkeiten nur eine Leitung giebt, in sofern dieselben zersetzbar sind, so erklärt sich die eben erwähnte Erscheinung; durch den schwerflüssigen Zustand ist die Beweglichkeit der Theilchen und hiedurch die Zersetzbarkeit derselben gehemmt. Je mehr aber diese Zersetzbarkeit gehemmt wird, um so größer ist der Widerstand, den die Theilchen dem Durchgange des elektrischen Stroms entgegenstellen, der eben nur in so weit geleitet wird, als er die Flüssigkeitstheilchen zersetzt.

Deshalb ist es mir nicht unwahrscheinlich, dass der Einflus der Wärme auf die Leitungsfähigkeit bei verschiedenen wäsrigen Lösungen nahe derselbe ist, und nur noch Modificationen erleidet in Folge der Aenderung des Flüssigkeitsgrades, wodurch eine concentrirtere Lösung, da ihre Theilchen in der Wärme beweglicher werden, auch um so viel besser leitet.

VII. Magnetische Intensitätsbestimmungen; von Chr. Langberg.

sing winner sunt afters 10:33, days water westimus 13:00

dir securities borne unt avair ib der soderftedblachen

Die in dem Folgenden mitgetheilten Beobachtungen über die horizontale magnetische Intensität an verschiedenen Orten Europa's wurden auf einer, in den Jahren 1843 und 1844 vorgenommenen Reise mittelst des bekannten, für den Reisenden äußerst beguemen Schwingungsapparats von Han-

steen, und eines Chronometers von Arnold ausgeführt. Der Schwingungsapparat war kurz vor meiner Abreise von Christiania von einem beinahe dreijährigen Aufenthalte in Newfoundland zurückgekommen, und der dem Apparate zugehörige magnetische Stahlcylinder hatte sich, wie aus den folgenden Beobachtungen erhellt, als sehr constant gezeigt, da die Schwingungszeit kaum eine halbe Secunde abgenommen hatte auf 1118".4. die Zeit von 300 Schwingungen dieses Cylinders hier in Christiania im Jahre 1839. Eine sorgfältige Vergleichung zwischen der Schwingungszeit des Cylinders und dem gleichzeitigen Stande des Bifilar-Magnetometers im hiesigen magnetischen Observatorium vor meiner Abreise und nach meiner Rückkunft, die Hr. Hansteen die Güte hatte auszuführen, hat gezeigt, dass sich das magnetische Moment des Cylinders auch in dieser Zwischenzeit nur sehr wenig verändert hat, nämlich nur 2" auf einer Schwingungszeit von 1120", eine Abnahme, die so gering ist, dass man sie ohne merkbaren Fehler wohl proportional mit der Zeit annehmen kann. Ich habe übrigens auf der Reise selbst Gelegenheit gehabt, die Unveränderlichkeit des Cylinders zu controliren sowohl in München als in Prag, theils durch angestellte absolute Intensitätsbestimmungen, theils durch Vergleichung mit dem gleichzeitigen Stande des Bifilar-Magnetometers in den dortigen magnetischen Observatorien.

Die Beobachtungen selbst sind nach der von Hansteen angegebenen Methode angestellt worden '). Jedesmal sind nämlich 390 Schwingungen des magnetischen Cylinders beobachtet, und die Zeit nach dem Chronometer bei dem Anfange jeder 10. Schwingung, bis der 390., aufgezeichnet worden; darauf ist der Unterschied genommen zwischen den beobachteten Chronometerzeiten bei den Schwingungen 0 und 300, 10 und 310 u. s. w. bis 90 und 390; von den auf diese Weise gefundenen zehn Zeitunterschieden ist dann ein Mittel berechnet, und dadurch der uncorrigirte Werth der Zeit von 300 Schwingungen erhalten.

¹⁾ Nyt Magazin for Naturcidenskaberne, 3. Bd., S. 96 u. f.

Die Reduction auf unendlich kleine Schwingungsbogen ist nach den von Hansteen gegebenen Formeln berechnet 1). Hat man nämlich p+1 Werthe von n Schwingungen dadurch erhalten, dass man den Unterschied zwischen den beobachteten Uhrzeiten bei den Schwingungen 0 und n, 10 und n+10 u. s. w. bis 10p und n+10p genommen, so berechnet man hieraus das Mittel:

$$\frac{1}{p+1} \Sigma T'.$$

Bedeutet e, die Größe des Schwingungsbogens beim Anfange der Beobachtungen, und ist:

wo folglich r die Schwingung bedeutet, bei welcher die Elongation bis auf die Hälfte desjenigen Werthes e_0 abgenommen hat, den es zu Anfang der Beobachtungen hatte; setzt man ferner:

$$\log h = \frac{1}{r} \log (\frac{1}{4}) = -\frac{1}{r} \log 2$$

und:

$$\frac{1}{2} \cdot \frac{1+h^2}{1-h^2} = A$$
 $\frac{11}{24} \cdot \frac{1+h^4}{1-h^4} = B$

$$\frac{1-h^{2n}}{1-h^{20}}(1-h^{20(p+1)})=P \;\; ; \;\; \frac{1-h^{4n}}{1-h^{40}}(1-h^{40(p+1)})=Q,$$

so ist:

$$\frac{1}{p+1}\Sigma T' = T \left[1 + \frac{1}{n(p+1)} A \cdot P \left(\frac{e_0}{4} \right)^2 + \frac{1}{n(p+1)} B \cdot Q \left(\frac{e_0}{4} \right)^4 + \dots \right]$$

In dieser Formel ist also T' die unmittelbar beobachtete, T die auf verschwindende Bogen reducirte Zeit von n Schwingungen. In unserem Falle ist also p=9, n=300, also:

$$P = \frac{1 - h^{600}}{1 - h^{20}} (1 - h^{200}) \quad ; \quad Q = \frac{1 - h^{1200}}{1 - h^{40}} (1 - h^{400}),$$

folglich:

$$\log T = \log_{10}^{1} \cdot \Sigma T' - \log \left[1 + \frac{1}{3000} A \cdot P \left(\frac{e_0}{4} \right)^2 + \frac{1}{3000} B \cdot Q \left(\frac{e_0}{4} \right)^4 + \right]$$

=
$$\log \frac{1}{10} \Sigma T' - \frac{m A \cdot P}{3000} \left(\frac{e_0}{4}\right)^2 - \frac{m B Q}{3000} \left(\frac{e_0}{4}\right)^4 - \text{ u. s. w.,}$$

¹⁾ t. c. S. 99, Formel B.

in welcher Formel m der Modulus des Brigg'schen Logarithmensystems bezeichnet.

Die Anfangs-Elongation e_0 war bei allen meinen Beobachtungen nach den Umständen entweder 30° oder 20° . Für diese beiden Elongationen und für verschiedene Werthe von r habe ich die entsprechenden Werthe des obigen Reductionslogarithmen berechnet; sie sind in folgender Tabelle enthalten, wo die Zahlen, eine Rechnung mit fünfzifferigen Logarithmen vorausgesetzt, als Einheiten der fünften Decimale von der $\log \frac{1}{10} \sum T'$ zu nehmen sind.

	r.	$e_0 = 30^{\circ}$.	$e_0 = 20^{\circ}$.
	120	-131	-58
2.0	130	-145	-64
1 1	140	-160	-71
11	150	-173	-77
2 5	160	-186	-82
	170	-199	-88
	180	-211	-93
	190	-223	-99

Die Temperatur des Schwingungsapparats wurde zu Anfange und zu Ende jeder Beobachtungsreihe aufgezeichnet. Ist Θ das Mittel dieser beiden Temperaturen, und T die Zeit von n Schwingungen (=nt) bei der Normaltemperatur τ , so ist:

 $log T = log (nt) - 14.9 (\theta^0 - \tau^0),$

wo der Subtractor gleichfalls in Einheiten der fünften Decimalstelle ausgedrückt ist. Die bei allen meinen Beobachtungen angenommene Normaltemperatur τ ist gleich $+7^{\circ}.5$ R.

Ist ferner a Secunden die tägliche Acceleration des Chronometers gegen mittlere Zeit, so muß man, um die beobachtete Schwingungszeit auf mittlere Sonnenzeit-Secunden zu reduciren, $\log T' - \frac{1}{2}a$, statt $\log T'$ nehmen, wo die Correction $\frac{1}{2}a$, wie früher, in Einheiten der fünften Decimalstelle ausgedrückt ist.

Der wagnetische Cylinder war an einem einfachen Coconfaden aufgehängt, dessen Torsion wohl als ohne merkbaren Einflus auf die Schwingungsdauer angesehen werden kann; jedenfalls hat sie keinen Einfluss auf die Größe der gefundenen relativen oder absoluten Intensitäten, da während der ganzen Reise immer dasselbe Aufhängungsfilament benutzt wurde, und die Torsion folglich, wenn sie auch merkbar wäre, doch bei allen Beobachtungen dieselbe Größe behielt. Washindsengelin sib det adam voor

Um das magnetische Moment des Schwingungscylinders zu bestimmen, wurde von Prof. Hansteen im Garten des Observatoriums zu Christiania mehrmals dessen Schwingungsdauer beobachtet, und er fand die Zeit von 300 Schwingungen:

2h 3' Nachm. 1839. April 7. T = 1118''.6Mai 26. 11 23 Vorm. 6 51 Nachm. Mittel

vor der Absendung des Apparats nach Newfoundland.

6, 0h 30' Nachm. T=1118",25 vor meiner Abreise, 1843. Mai 1845, Novbr. 15, 11 40 Vorm. 1120 ,26 nach mein. Rückkunft.

Das magnetische Moment des Cylinders ist also ziemlich unverändert geblieben, da sich die Schwingungsdauer in einer Zwischenzeit von mehr als 6 Jahren nur 2" auf 1120" verändert hat, wenn man den unbedeutenden Zuwachs der horizontalen magnetischen Kraft der Erde außer Retracht setzt.

Nennt man H die horizontale Intensität in absoluten Einheiten nach Gaufs, T die Zeit von 300 Schwingungen (reducirt auf eine bestimmte Normaltemperatur und verschwindend kleine Bogen), a den Inductionscoëfficient für meinen magnetischen Cylinder, oder den Correctionsfactor des durch die inducirende Kraft der Erde veränderten magnetischen Moments des Schwingungscylinders, so ist, wie bekannt: Correction out, we frühm, in Exhelten der fünften Deci-

$$H = \frac{C}{T^2} - \alpha H^2$$
, tel plantagene elletelant

in welcher Formel C eine von dem magnetischen Momente des Cylinders abhängige Größe bezeichnet, die constant ist, so lange dieses Moment sich nicht ändert. Während meines Aufenthalts in München im Jahre 1844 bestimmte ich, unter gefälliger Mitwirkung des Hrn. Lamont, den Inductionscoëfficienten α für meinen Cylinder durch drei verschiedene Beobachtungen, und fand:

$$\alpha = 0.0026601.$$

Zur Bestimmung der Constanten C wurde im hiesigen Observatorium den 6. Mai 1843 und 15. November 1845 gleichzeitig mit den Schwingungsbeobachtungen der Stand des Bifilar-Magnetometers jede fünfte Minute aufgezeichnet, und zugleich wurde von Prof. Hansteen beide Mal eine absolute Intensitätsbestimmung ausgeführt, so das ich wohl annehmen kann, das der hierdurch gefundene Werth der Constanten C sehr zuverlässig ist. Es war:

6. Mai 1843. T=1118",25 , H=1,5509 , log C=6,28945
15. Nvbr. 1845. T=1120 ,26 , H=1,5538 , log C=6,29182

Aenderung von log C in 924 Tagen = 237.

Da diese Aenderung von log C einer Aenderung von H = 85, oder nur 0,0054 der ganzen Kraft entspricht für eine Periode von 924 Tagen oder mehr als 2½ Jahre, so kann man wohl ohne merkbaren Fehler die Aenderung proportional mit der Zeit annehmen, wonach für n Tagen nach dem 6. Mai 1843:

$$\log C = 6,28945 + \frac{237}{924}n = 6,28945 + n.0,256,$$

in welchem Ausdruck die Correction 0,256 n als Einheiten der fünften Decimalstelle des log C zu nehmen ist.

Als Beispiel der Beobachtungs- und Reductionsmethode mag folgende Beobachtung in München am 23. August 1844 angeführt werden:

Anfang 11^b 24'28" Münchener Zeit. Temp. + 13°,0 = Θ' Ende 11 46 24 - +13 ,0 = Θ'' n = 475 $e_o = 30^\circ$ a = -11'',4 $\log C = 6,28945 + 122$ = 6,29067, r = 204, $\frac{\Theta' + \Theta''}{2} = 13^\circ,0$, $\Theta^\circ - \tau^\circ = 5^\circ,5$.

1170				Cohmine	etil/I		16' 50'	0	ich.
				SCHWINE					
	10	-	310	m Till	14	11.00			inthist.
-	20	-	320	- 110			49	,6	STORE
- 3	30	-	330	-			49	,2	
-	40	-	340	1821 40			48	,8	
-	50	-	350	alusta 2			48	,2	7.
1811	60	-	360	-	F PO 11		48	,0	150
(Line	70	5	310	181		ugh	47	,6	SSOCE
واطرا	80	nafo	380	gma m	William.	nah	47	,2	gleich
	90	-	390	3 100			46	,9	des I
1/201	1, 1		11 11 11	H Jor		Mittel	1008"	,62 =	T'
		- 11	los	T'=3	00373	erlatili:	eutouti	l min	fordio
477	für	*	= 2	,	- 239				binnel
		0-	T =	50,5	- 81		1		June 3

$$\begin{array}{rcl} \log T & = 5,00010 \\ 0 & = 204 & -239 \\ 0 & = 5^{\circ},5 & = 81 \\ -\frac{1}{2}a & = +6 \\ & \frac{\log T = 3,00059}{2 \log T = 6,00118} \\ & \log \frac{C = 6,29067}{0,28949} = \log 1,9476 \\ & \alpha H^{2} & = 100 \\ \hline & & H = 1,9376. \end{array}$$

Kopenhagen

an der Holkens Bastion, unweit dem magnetischen Observatorium. 1843, c. 17. Juli.

I.

Anfang $2^h 14' \frac{1}{2}$ Nachm., Ende $2^h 32'$ Nachm. ¹) Götting. Zeit. n=72, a=-39'',2, r=125, $\theta=+18^{\circ},2-18^{\circ},0$, $e_0=30^{\circ}$. Die Beobachtung wurde wegen des starken Windes unterbrochen, und war im Ganzen weniger gut, so daß nur 300 Schwingungen beobachtet wurden. Die unreducirte Zeit von 200 Schwingungen wurde gleich 728'',84 gefunden, und hieraus die reducirte Zeit von 300 Schwingungen:

$$T=1084'',95$$
 , $log C=6,28777$, $H=1,6476$.

II.

19. Juli. Anfang 10^h 31' Vorm., Ende 10^h 54' $\frac{1}{2}$. n=74, a=-39'',2, r=115, $\theta=16^{\circ}$,5-16°,2, $e_0=30^{\circ}$ T'=1089'',98, T=1084'',05, H=1,6503.

1) Die Beobachtungszeiten sind stets in Göttinger mittlerer Zeit angegeben.

for a Del III. Agents

19. Juli. Anfang 11b 6', Ende 11b 29' Vorm. r = 135, $\theta = 16^{\circ} - 16^{\circ}$, $e_{\alpha} = 20^{\circ}$ T'=1086'',99 , T=1082'',63 , H=1,6547.

Das Mittel von diesen drei Beobachtungen giebt also die absolute horizontale Intensität H=1,6508, was sehr gut mit den von Hansteen an derselben Stelle angestellten Beobachtungen stimmt; er fand nämlich 1):

1839. Mitte Juli H = 1.65031840. Ende Juli 1.6517

= 1091".37 . nobdon. 72.11=1.6149

1843. August 13. Hyde-Park.

first seat. (29. Poptendor 1813.

Anfang 1h 4', Ende 1h 28' Nachm. n=99, a=-15'',2, r=165, $\theta=16^{\circ},7-16^{\circ},8$, $e_0=30^{\circ}$ T' = 1071'',12, T = 1063'',19, H = 1,7160.

and a roto all to the and the Anfang 1b 4', Ende 1b 28' Nachm. r = 158, $\theta = 17^{\circ}, 0 - 16^{\circ}, 9$, $e_{0} = 30^{\circ}$ T'=1071'',80 , T=1063'',68 , H=1,7144.

Val. 0 527 | Finds 1 0 1 14/

1843. September 6. An demselben Orte. Anfang 0h 46' 1/2 , Ende 1h 10' Nachm. n=123, a=-16'', r=180, $\theta=18^{\circ},0-18^{\circ},8$, $e_0=30^{\circ}$ T'=1071",81, T=1062",84, H=1,7173.

IV.

Kensington-Gardens, etwas westlich von dem vorigen Orte. 6. September. Anfang 1h 56' 1 Nachm., Ende 2h 20'.

> r = 135, $\theta = 18^{\circ}, 9 - 16^{\circ}, 5$, $e_0 = 30^{\circ}$ T'=1071'',08, T=1063'',77, H=1,7143.

Das Mittel aus diesen vier Beobachtungen giebt also die absolute Intensität in London im August und September 1844 gleich 1,7155. suitate viebt also die absolute horizo

¹⁾ Nyt Mag. for Naturvidenskaberne, Bd. 3, S. 245; - und Gaufs und Weber's Resultate.

Cork in Irland.

1843. August 24. Beaumont-House; in freiem Felde.

0807-99 T-1089 48

Anfang 0b 21' Nachm. , Ende 0b,45'.

n=110, a=-15'',2, r=157, $\theta=15^{\circ},8-16^{\circ},6$, $e_{0}=30^{\circ}$ T' = 1093'',67, T = 1086'',02, H = 1,6450.

Diese Beobachtung war weniger gut als die folgende.

1839. Witte J.II

II == 1.6503

An demselben Orte. Anf. 4h 22' Nachm. Ende 4h 45' 1. r = 135, $\theta = 16^{\circ}, 2 - 15^{\circ}, 0$, $e_0 = 30^{\circ}$ T' = 1091",37, T = 1084",72, H = 1,6489.

Brüssel. 29. September 1843.

1813. Agenta 13. Hawke-Parks

Im magnetischen Observatorium des Hrn. Quetelet, wo damals keine anderen Instrumente aufgestellt waren. = 063', 10 , H = 1,7180.

Anfang 0h 0', Ende 0h 24' Nachm.

n=146, $a=-12^{\circ},7$, r=175, $\Theta=10^{\circ},2-9^{\circ},0$ $e_{\circ}=30^{\circ}$ T'=1053'',58, T=1048'',26, H=1,7654. 1003.08 , R = 1.7144.

Anf. 0^{h} 37', Ende 1^{h} 0. r=185, $\theta=9^{\circ},0-8^{\circ},8$, $e_{0}=30^{\circ}$ T' = 1053",59, T = 1047",97, H = 1,7664. minng 0 16 + 1 inde 1 10 Nachm.

Anf. 1^h 21', Ende 1^h 45'. r=180, $\Theta=8^{\circ},6-8^{\circ},9$, $e_0=30^{\circ}$ T' = 1053''.35, T = 1047''.95, H = 1,7665.

Anf. 2^b 10', Ende 2^b 32' $\frac{1}{2}$. r=190, $\theta=8^{\circ},9-9^{\circ},0$, $e_{0}=20^{\circ}$ T'=1050",67, T=1047",92, H=1,7665.

Anf. $3^h 5'$, Ende $3^h 27' \frac{1}{2}$. r = 190, $\theta = 9^\circ, 0 - 9^\circ, 1$, $e_0 = 20^\circ$ T' = 1050'',03, T = 1047'',22, H = 1,7689.

Das Mittel dieser fünf sehr gut übereinstimmenden Resultate giebt also die absolute horizontale Intensität in Brüssel am 29. September 1843:

H=1,7667. saniharit Carlo VV. hou

Paris

Anf. 1917 , Ende 1939, v=140, 6=10"8-17"7, v=30"

1843. November 9. Im freien Felde, Champs-Elysées.

Der Gang des Chronometers ist nicht ganz sicher: bei Vergleichung mit dem Pendel des Observatoriums zu Brüssel am 2. October und zu Paris am 13. December wurde die tägliche Retardation gleich 4",5 gefunden.

Anf. 3h 16', Ende 3h 38' Nachin. n=187, a=-4",5, r=165 , T'=1031'',63 , T=1028'',11 $\Theta = 5^{\circ}, 0 - 4^{\circ}, 3$, $e_{\circ} = 30^{\circ}$, H=1.8354.

H.

1844. Mai 9. Im magnetischen Pavillon des Hrn. Arago. im Garten des Pariser Observatoriums.

Anfang 1 38' , Ende 2 1' Nachm.

n=369, a=+3'',6, r=185, $\theta=18^{\circ},2-19^{\circ},2$, $e_{0}=30^{\circ}$ T'=1036",38, T=1027",24, H=1,8405. Indeed iff and non all arono

der regelmäleigen täglichen in

Anf. 2h 16' 1/2, Ende 2h 39'. r=188, \(\Theta=19^{\circ},1-19^{\circ},0\), \(e_a=30^{\circ}\) T'=1035'',96, T=1026'',62, H=1,8427.

IV.

Anf. 2h 43' 1, Ende 2h 55' Nachm. r=165, 9=190,0-190,1 $e_0 = 20^{\circ}$.

Es wurden nur 200 Schwingungen beobachtet, und hieraus berechnet:

T=1027",0 , H=1,8406.

Mai 14. An demselben Orte.

len alle con I bie VIII Muelobrien Benluchtung

Anf. 11^b5', Ende 11^b27' $\frac{1}{2}$ Vorm. n=374, a=+3'',6, r=170 $\Theta = 15^{\circ}, 2 - 15^{\circ}, 6$, $e_0 = 30^{\circ}$, T' = 1034'', 83, T = 1027'', 30H = 1.8404. Nachmillages

Anf. 11h 39' 1/2, Ende 0h 0' Vorm. r=172, \textit{\theta}=15\circ,8-16\circ,0 $e_0 = 30^{\circ}$, T' = 1035'', 10, T = 1027'', 30, H = 1,8403.

VII. alleri II - II I with

Anf. 0629', Ende 0651'; Nachm. r=170, Θ=16°,0-16°,5 $e_0 = 30^\circ$, T' = 1034'',86', T = 1026'',97', H = 1,8415

VIII.

Anf. 1^h17', Ende 1^h39'. r=180, $\theta=16^{\circ},8-17^{\circ},7$, $e_{o}=30^{\circ}$ T'=1035'',90, T=1027'',40, H=1,8400.

Der Gaug alen Chromomytes ist nicht gang sicher; bei

Anf. $5^{h}52'$, Ende $6^{h}14'$; r=185, $\theta=17'',9-18'',2$, $e_{0}=30''$ T''=1035'',59, T=1026'',67, H=1,8426.

X.

Anf. $6^{h}29^{o}$, Ende $6^{h}51^{o}$, r=180, $\Theta=17^{o},9-17^{o},9$, $e_{o}=30^{o}$ $T=1035^{o},12$, $T=1026^{o},38$, H=1,8436.

XI.

Anf. 7^h 13' 4', Ende 7^h 36': r=180, $\theta=17^{\circ},7-17^{\circ},5$, $e_{\circ}=30^{\circ}$ T'=1035'',43, T=1026'',80, H=1,8421.

In der Regelmäßigkeit, womit die gefundenen Werthe der Intensität von den Vormittags- zu den Nachmittagsbeobachtungen zunehmen, sieht man deutlich die Wirkung der regelmäßigen täglichen Variationen. Da nun das Minimum der horizontalen Intensität Vormittags zwischen 10 und 12 Uhr, das Maximum Abends um 8 oder 9 Uhr stattfindet, so wird also die Intensität aus allen Beobachtungen, die vor ein oder zwei Uhr Nachmittags gemacht worden sind, unter, aus den später angestellten über dem täglichen Mittel gefunden. Das Mittel dieser beiden Werthe wird daher als die mittlere Intensität des Tages angeschen werden können, befreit von dem Einfluss der täglichen regelmässigen Aenderungen. Da der Längenunterschied zwischen Paris und Göttingen gleich 30' 25" ist, so werden also alle, von I bis VIII, angeführten Beobachtungen zu der ersten, die drei folgenden zu der zweiten Gruppe gehören, und man findet aus den Beobachtungen vor 2 Uhr Nachmittags:

am 9. Mai H=1,8405	am 14. Mai H=1,8404
1,8427	1,8403
. 1,8406 We 1,8408.	1,8415
Mittel H=1,8413	1,8405
APRI OWNERS OF LAND	Mittel H=1,8405

und aus den Beobachtungen nach 2 Uhr Nachmittags:

Saft to dained to am 14. Mai H=1,8426 T of all transfillion

Scalembeile. Die .6848, o horizontale Intensität in Embei-

Mittel 1,8427.

Das Mittel aus beiden Gruppen giebt also für die absolute horizontale Intensität in Paris Mitte Maimonats 1844:

H=1,8418.

Brussel. Den 28. Mai 1844.

In dem magnetischen Pavillon des Hrn. Quetelet, an demselben Orte wie früher.

Wird nun jede dieser Zahlen dit dem Guellicienten 0,000356

Anfang 1h 51', Ende 2h 15' Nachm. modelithart

n=388, $a=-5^{\circ},1$, r=184, $\theta=10^{\circ},8-10^{\circ},2$, $e_{\circ}=30^{\circ}$ T'=1052'',99, T=1046'',72, H=1,7731.

H.

Anf. $2^{h} 24'$, Ende $2^{h} 47'$ Nachm. r = 185, $\theta = 10^{\circ}, 1 - 10^{\circ}, 1$ $e_{0} = 30^{\circ}$, T' = 1053'', 50, T = 1047'', 34, H = 1,7709.

arry III.

Anf. $3^h 5'$, Ende $3^h 28'$. r = 184, $\Theta = 10^\circ, 0 - 10^\circ, 1^\circ, e_0 = 30^\circ$ T' = 1052'', 82, T = 1046'', 77, H = 1,7729.

Den Grund dieses ziemlyt bedeutenden Unterschieds

Anf. $3^{b}36'$, Ende $3^{b}59'$. r = 185, $\theta = 10^{o}, 1 - 10^{o}, 1$, $e_{o} = 30^{o}$ T' = 1053'', 25, T = 1046'', 86, H = 1,7726.

Hr. Quetelet hatte die Güte, gleichzeitig mit obigen Beobachtungen den Stand des Bifilar-Magnetometers jede fünfte Minute aufzuzeichnen, und der jeder dieser Beobachtungsreihen entsprechende mittlere Stand des Bifilars wurde gefunden:

während I. 6,38, II. 6,46, III. 6,58, IV. 6,49 Scalentheile. Die Temperatur war die ganze Zeit constant, und gleich 57°,9 F. In den Mémoires de l'academie de Bruxelles pour l'an 1845, p. 36, hat Hr. Quetelet folgende Bemerkungen über sein Bifilar-Magnetometer gegeben:

"Die von dem Collimator augegebenen Zahlen wachsen mit der zunehmenden horizontalen Intensität. Jeder Scalentheil entspricht einem Bogen von 1',093; der Correctionscoëfficient für 1° F. Temperaturzunahme ist gleich -0.102 Scalentheile. Die absolute horizontale Intensität in Einheiten von Gauss ausgedrückt, ist gleich:

 $X_0 + 0.000356 n$

wo n die Scalentheile bedeutet. Hr. Lamont hat gegen das Ende des Jahres 1844 gefunden:

X. = 1,7547."

Hienach würde also der zu dem Schmelzpunkte oder 0° C. reducirte Bifilarstand während meiner Beobachtunin dem sagnetischen Payillon des Hris One insens

I. 3,74 , II. 3,82 , III. 3,94 , IV. 3.85.

Wird nun jede dieser Zahlen mit dem Coëfficienten 0,000356 multiplicirt, so hat man ! shall Anfanc P 51'

1. $H = 1,7731 = X_0 + 0,0013$ 1. $1,7709 = X_0 + 0.0014$ $1,7729 = X_0 + 0,0014$ III. $|V_0| = |V_0| Mittel $1,7724 = X_0 + 0,0014$

oder:

 $X_0 = 1,7710$

Nach Lamont ist aber $X_0 = 1,7547$.63. __ 1016.77 . // = 1,7729.

Den Grund dieses ziemlich bedeutenden Unterschieds zwischen dem von mir und von Lamont gefundenen Resultate kann ich nicht erklären, wenn nicht der Bifilar in der Zeit zwischen meinen und Hrn. Lamont's Beobachtungen eine Veränderung erlitten hat; denn einerseits stimmen meine obigen Beobachtungen sowohl unter einander, als mit den im vorigen Jahre angestellten zu gut, um den Grund des Unterschieds in möglicherweise von mir begangenen Beobachtungsfehlern zu suchen, andererseits habe ich, wie in dem Nachfolgenden gezeigt wird, später in München Gelegenheit gehabt, die mit meinem Apparate gefundene Intensität mit der durch die Apparate von Lamont gleichzeitig bestimmten direct zu vergleichen, und beide Bestimmungen, sind so gut wie identisch.

Vergleicht man die nach meinen Beobachtungen für Paris und Brüssel gefundenen Intensitäten, so findet man für letztgenannten Ort, wenn die Intensität in Paris =1 ge-

am 29. September 1843 0,9591 28. Mai 1844 0,9622 Mittel = 0,9608.

Dieses Resultat stimmt sehr gnt mit der von anderen Beobachtern gefundenen relativen Intensität an beiden Orten. Nach dem Annuaire de l'observ. de Bruxelles, 1843, p. 248, ist nämlich die horizontale Intensität in Brüssel, wenn die in Paris als Einheit angenommen wird:

rade unterhalb a ziemlich star-

OT 2001='V .

Jabr.	Intensität.	Beebachter, III , nadoo / IIIA
h 1828	0,951	des Schlosses, Centionidae
1829	0,958	Quetelet .ashmill ush
1830	0,970	
1831	0,961	Nicollet, Plateau und Quetelet
1832	0,971	Rudberg about . Il lan
1832	0,961	Porbes 6, 11 - 6, 11 = 0
1833	0,969	Quetelet .5306.1 = 11
1837	0,960	Forbes
1838	0,969	Bache
1839	0,961	Ant. 4 38 Ende belle
Mittel	=0,963.	$r_0 = 30^{\circ}, T = 1017^{\circ}.83$

Die Beobachtungsstationen sind für alle diese Beobachtungen dieselben wie für meine, nämlich der magnetische Pavillon des Hrn. Arago in Paris, und der Garten des Observatoriums zu Brüssel. Man sieht, daß die von mir gefundene relative Intensität sehr nahe gleich dem Mittel der aus allen diesen Beobachtungen abgeleiteten ist, was mir noch mehr verbürgt, daß kein Beobachtungsfehler mich die Intensität größer als die von Lamont bestimmte hat finden lassen.

Bonn. 1844, Juni 3.

Im magnetischen Observatorium des Hrn. Argelander, woselbst noch keine Instrumente aufgestellt waren.

Anfang 4^h 43', Ende 5^h 6' Nachm. n=394, a=-5'', r=170, $\theta=12^{\circ},5+12^{\circ},2$, $\epsilon_0=30^{\circ}$ T'=1045'',44, T=1038'',99, H=1,7996, 10 letztegnammen Ort, wenn dill Intensität in Paris =1 cc-

Anf. $5^{h}10'$, Ende $5^{h}32'\frac{1}{2}$ Nachm. r=170, $\theta=12^{0},2-12^{0},0$ $e_{0}=30^{0}$, T'=1045'',28, T=1038'',91, H=1,7998. Setzt man die gefundene Intensität in Paris =1, so wird für Bonn die relative Intensität =0,9770.

Quetelet hat gefunden 1830 und 1839 0,976 Forbes - 1832 und 1837 0,979

.nedo and control and observe de branceles (1843, p. 218, p. 2

Tübingen, 1844, Juni 26.

Am Neckar, in der Promenadenanlage, gerade unterhalb des Schlosses. Centrum oscillirend wegen des ziemlich starken Windes.

I

Anf. 4^h11', Ende 4^h32' Nachm. n=417, a=-6'',0, r=165 $\Theta=17^{\circ},3-17^{\circ},5$, $e_0=30^{\circ}$, T'=1017'',54, T=1009'',70 H=1,9052.

II.

Anf. 4^h 38', Ende 5^h0' Nachm. r = 175, $\Theta = 17^{\circ}, 5 - 17^{\circ}, 1$ $e_0 = 30^{\circ}$, T' = 1017'', 83, T = 1009'', 7, H = 1,9051.

adazilegasar ada Bern. 1844, Juli 9.

Café du Mont, im Garten, unterhalb des Hauses.

für alle diese Beobaci-

n=430, a=-9",0, r=170, $\Theta=14^{\circ},5-14^{\circ},0$, $e_0=30^{\circ}$ T'=1001",62, T=994",83, H=1,9624.

mir noch mehr verblirgt, dalt kein Beobachtungslebler mich die Intensität größer als die von Lamont bestimmte hat

I.

1844. Juli 17. Im Festungsgraben, südlich von dem Observatorium.

Anfang 11h 33', Ende 11h 55' Vorm.

n=438, a=-13'', r=135, $\theta=23^{\circ},0-22^{\circ},1$, $e_0=30^{\circ}$ T'=997'',97, T=989'',54, H=1,9834.

Aufang 1 13' . Inde 5' 6 Nachm.

Im Festungsgraben, etwa 100 Schritte von dem vorigen Orte. Anf. 0435', Ende 0456' Nachm. r=170, 9=220,2-210,1 $e_0 = 30^{\circ}$, T' = 998'', 36, T = 989'', 12, H = 1,9851reren von Hrn. Kreil's abstitten Bestimmingen für den

Juli 19. An demselben Orte. Anf. 2 28', Ende 2 49'4 das von Listing and Sartorias von Wamhard ausen

 $a = -13^{\circ}$, r = 155, $\theta = 18^{\circ}, 0 - 18^{\circ}, 5$, $e_{0} = 30^{\circ}$ T'=997''.42 , T=989''.83 , H=1.9823

Die absolute horizontale Intensität in Genf am 17. und 19. Juli 1844 wird also im Mittel =1.9836 gefunden, oder gleich 1,0766, wenn die für Paris gefundene als Einheit angenommen wird. Gleichzeitig mit mir wurde auch die relative horizontale Intensität zu Genf von Hrn. Bravais beobachtet, und er fand sie, nach einer Mittheilung an Hrn. Quetelet ') gleich 1,075, also nur wenig kleiner als ich. Dagegen harmonirt meine Bestimmung sehr gut mit dem Mittel aus den von früheren Beobachtern gefundenen Werthen der relativen Intensität an demselben Orte. So fand 2)

Quetelet im J. 1830 und 1839 1.075 - - 1832 - 1837 1.076 - - 1837 - 1838 1.086 Bache Mdm Ainsworth 1,072 Das Mittel 1,077, bittel backdrouge us and wenig wenig

schieden von dem aus meinen Beöbachtungen für diese re-Mailand, 1844, Juli 28, tätieneial evital

Im freien Felde unmittelbar vor der Stadt, zwischen der Porta orientale und Porta Tosa.

1511 August S . St. Nicolof de Lido, nawed de jûde

Anfang 0h 48' 1 , Ende 1h 10' Nachm. n = 449, a = -13'', 4, r = 185, $\theta = 21^{\circ}, 5$, $21^{\circ}, 5$, $e_0 = 30^{\circ}$ T'=986'',02, T=976'',59, H=2,0362

Anfang 2º 28' Eqfe 2º 19'; Nachm. Anfang 1h 27', Ende 1h 47' Nkchm. r=180, $\theta=21^{\circ},4-21^{\circ},7$, $e_{\alpha}=30^{\circ}$ T'=986'',52, T=977'',19, H=2,0337.

- 1) Mémoires de l'académie de Bruxelles, 1845, p. 41.
- 2) l. c. T. XIII. Seconde mémoire sur le magnétisme terrestre en Italie par Quetelet, p. 23.

Am 28. Juli war also die horizontale Intensität in Mailand gleich 2,0349. Dieses Resultat, welches sehr gut mit mehreren von Hrn. Kreil's absoluten Bestimmungen für denselben Ort harmonirt, ist dagegen bedeutend größer als das von Listing und Sartorius von Waltershausen gefundene. Aus dreizehn Beobachtungen, worunter zwei absolute Bestimmungen, haben nämlich diese Beobachter die Intensität in Mailand für November 1844 gleich 1,9716 abgeleitet 1), ein Werth, der unter alle mir bekannten Intensitätsbestimmungen für diesen Ort fällt. Hr. Kreithat nämlich gefunden 2) durch viele absolute Bestimmungen:

Mai, Juni, August 1837 2,02598 (10 Observ.)

April and October 1838 2,04231 (10 Observ.)

Mittel = 2,02889.

Setzt man die horizontale Intensität zu Paris =1, so geben die Beobachtungen 3) von

 Quetelet 1830 und 1839
 1,114

 Bache 1837 - 1838
 1,111

 M^{dm} Alnsworth
 1,084

 Mittel = 1,103.

Das Mittel aus diesen Beobachtungen ist nur wenig verschieden von dem aus meinen Beobachtungen für diese relative Intensität gefundenen Werthe 1,1047.

Im freien Felde annuttelbar vor der Sladt, zwischen der Ports ortunale und al. b. o v.a. V

1844. August 8. St. Nicolo de Lido, unweit des jüdischen Begräbnifsplatzes.

Centrum oscillirend wegen des starken Windes. Anfang 2^h 28', Ende 2^h 49', Nachm.

n=460, a=-13'',4, r=190, $\theta=22^{\circ},5-22^{\circ},7$, $e_{\circ}=30^{\circ}$ T'=979'',09, T=969'',22, H=2,0673.

- 1) Gaufs und Weber's Resultate, 1840.
- Osservationi sull' Intensità della forza magnetica etc., Milano, p. 5.

Hair or Burney, or 25

3) Quetelet, l. c. p. 21.

. a . II. a ii 14

Nicht weit von dem vorigen Orte, aber mehr vor dem Winde geschützt.

Anfang 3^{h} $23'\frac{1}{4}$, Ende 3^{h} $44'\frac{1}{4}$ Nachm, r = 185, $\theta = 23^{\circ}, 3 - 24^{\circ}, 1$, $e_{o} = 30^{\circ}$ T' = 979'', 35, T = 969'', 24, H = 2,0672.

Im Mittel ist also H=2,0672, oder wenn die Intensität zu Paris =1 gesetzt wird 1,1222.

Listing und Sartorius haben für Venedig im December 1834 H=2,0310 gefunden; obschon der Unterschied zwischen dieser und meiner Bestimmung hier nur etwa die Hälfte gegen die in Mailand stattfindende beträgt, so ist sie doch größer als sie zusolge eines bloßen Beobachtungssehlers erwartet werden könnte. Die von mir gefundene Intensität ist übrigens auch hier in guter Harmonie mit den früher von anderen Beobachtern erhaltenen Resultaten. So fand ')

Quetelet 1830 und 1839 1,127

Bache 1837 - 1838 1,129

M^{dm} Ainsworth 1,110

Mittel = 1,122.

oder genau wie ich sie gefunden habe.

Observatorion outgezeichnet, dessen Ablesongen He. Lasm ont die Güle 10. 1814, August 10. 2007 Restimmung von ber zu vertfiehren. Auf dieze Weise wurde die horizontale

Im Garten des Grafen Fedrigotti, auf der nächst obersten Terrasse, gegenüber dem Albergo Imperiale.

von Langborg 1,9376 11,9377

Anfang 2^{h} 7' $\frac{1}{1}$, Ende 2^{h} 29' Nachm. n=462 , a=-14'',5 , r=175 , $\theta=17^{\circ},4-17^{\circ},3$, $e_{\circ}=30^{\circ}$ T'=985'',39 , T=977'',58 , H=2,0323.

11. g . l . 1.0377

Anfang 2^{b} 39', Ende 3^{b} 1' Nachm. r = 205; $\theta = 17^{\circ}, 9 - 19^{\circ}, 2$; $e_{0} = 30^{\circ}$ $17^{\circ} = 986^{\circ}, 57$; $T = 977^{\circ}, 60$; H = 2,0322

¹⁾ Am angelührten Orte

München.

Im magnetischen Observatorium des Hrn. Lamont.

1844. August 23. Anf. 11b 18', Ende 11b 40' Vorm. n=475, $a=-11^{\circ},4$, r=204, $\theta=13^{\circ},0-13^{\circ},0$, $e_0=30^{\circ}$ T' = 1008'',62, T - 1001'',36, H = 1,9376.

Anfang 11h 50' 1 Vorm. , Ende 0h 12' 1 Nachm. r=195, $\theta=13^{\circ}, \theta-13^{\circ}, 1$, $e_{0}=30^{\circ}$ T' = 1008'',39, T = 1001'',33, H = 1,9377.

Led stafffed sade betrief.

ciwa dio Hillio genera dan in. III August 28. An demselben Orte.

Anfang 11h 53' Vorm., Ende 0h 14' Nachm. n = 480, $a = -12^{\circ}, 7$, r = 190, $\theta = 11^{\circ}, 9 - 11^{\circ}, 7$, $e_0 = 20^{\circ}$ T' = 1005'',05, T = 1001'',43, H = 1,9373.

IV.

Anfang 0h 25', Ende 0h 47' Nachm. r = 200, $\Theta 11^{\circ}, 7 - 11^{\circ}, 9$, $e_{\circ} = 20^{\circ}$ T' = 1004",97, T = 1001",18, H = 1,9383.

Gleichzeitig mit diesen Schwingungsbeobachtungen wurde der Stand der Differentialinstrumente in dem magnetischen Observatorium aufgezeichnet, dessen Ablesungen Hr. Lamont die Güte hatte durch eine absolute Bestimmung vorher zu verificiren. Auf diese Weise wurde die horizontale Intensität gleichzeitig gefunden:

le,	singul og	odly luap	THOM.	Ht.	IV.
von	Langberg	1,9376	1,9377	1,9373	1,9383
-	Lamont	1,9354	1,9368	1,9386	1,9394
		+22	+9	- 13	-11.

Oder im Mittel hat man für die Intensität den 23. und 24. August

> nach Langberg 1,9377 1.9376 -1.

Die vollkommene Uebereinstimmung dieser Resultate zeigt also, dass die Correction für die Abnahme des magnetischen Momentes meines Schwingungscylinders, die ich aus

den Beobachtungen in Christiania vor meiner Abreise 1843 und nach meiner Rückkunft 1845 abgeleitet habe, vollkommen zuverlässig ist.

Nachmittags am 28. und Vormittags am 29. August wurden die früher besprochenen Versuche zur Bestimmung des Inductionscoöfficienten für meinen Schwingungscylinder angestellt. Weil ich befürchtete, das dessen magnetisches Moment durch die während der Ablenkungsbeobachtungen unvermeidlichen Manipulationen und seine Nähe an dem beweglichen Magneten (dessen Masse freilich viel kleiner war als die meines Cylinders) eine Aenderung erlitten haben könnte, machte ich unmittelbar nach dem letzten Ablenkungsversuche wieder zwei Reihen von Schwingungsbeobachtungen, um dieses Moment auf's Neue zu bestimmen, und erhielt hierbei:

V

29. August. Anfang 3^h 54' ½, Ende 4^h 16' Nachm. $\iota = 481$, u = -12'',7, r = 190, $\theta = 12^{\circ}$,9-12°,6, $e_0 = 30^{\circ}$ T' = 1010'',11, T = 1003'',27, H = 1,9302Lamont = 1,9397

1. 0. 1. -0. 51=0 vill= 1. 1. 1.

Anfang 4^h 25', Ende 4^h 47' Nachm. r=205, $\theta=12^{\circ},5-12^{\circ},3$, $e_{\circ}=20^{\circ}$ T''=1006'',86, T=1002'',86, H=1,9318Lamont =1,9399

Da ich den Stand der Differentialinstrumente nur bei dem Anfange und dem Ende jeder Reihe von Schwingungsbeobachtungen aufzeichnen konnte, so sind freilich diese Vergleichungen nicht ganz so zuverlässig als die vorigen, deuten aber jedenfalls darauf hin, dass der Cylinder durch die Ablenkungsversuche etwas von seinem magnetischen Momente verloren hat. Dass indessen dieser Verlust, wenn er wirklich stattgefunden hat, nur vorübergehend gewesen ist, zeigt deutlich die Vergleichung mit den absoluten Bestimmungen in Christiania nach meiner Rückkunft, die so

gut mit den Münchener Beobachtungen am 23. und 28. August vor den Ablenkungsversuchen harmoniren. Es scheint mir daher am wahrscheinlichsten, dafs die angedeutete Abnahme nur durch die Nähe des Cylinders an der freien Magnetnadel, oder vielleicht zufolge einer durch die verticale Stellung des Cylinders während des letzten Ablenkungsversuchs hervorgerufene Induction veranlafst, und daher nach kurzer Zeit allmälig wieder verschwunden ist.

wie n. Den 16. September 1844.

Im freien Felde im Prater, Südöstlich von der Eisenbahnstation.

Anfang 4^h 46' $\frac{1}{4}$, Ende 5^h 8' Nachm.

n=499 , a=-13'',1 , r=170 , $\theta=15^{\circ},9+14^{\circ},0$, $e_0=30^{\circ}$ T'=998'',68 , T=991'',75 , H=1,9754.

Prag. Den 21. September 1844.

In dem abgesperrten Theile des sogenannten Kaisergartens auf dem Hradschin.

I.

Anfang 9^h 39', Ende 10^h 0' Vorm. n=504, a=-13'',1, r=158, $\theta=13^{\circ}$,9-14°,0, $e_{\circ}=30^{\circ}$ T'=1024'',82, T=1018'',38, H=1,8739.

e e e II e e e

Anfang $10^{\text{h}} 20^{\circ}$, Ende $10^{\text{h}} 42^{\circ}$ Vorm. r=170, $\theta=14^{\circ},8-15^{\circ},4$, $e_0=30^{\circ}$ T'=1025'',65, T=1018'',45, H=1,8737.

Hr. Kreil hatte die Güte gleichzeitig mit diesen Beobachtungen den Stand des Bifilar-Magnetometer in dem magnetischen Observatorium jede fünfte Minute aufzeichnen zu lassen. Dieser wurde im Mittel während der ersten Beobachtungsreihe gleich 355,87, Temp. 4-14°,8, und während der zweiten gleich 360,11, Temp. 14°,9 gefunden. Da für Hrn. Kreil's Bifilar 1° Zunahme der Temperatur einer Abnahme der Intensität von 11 Scalentheilen entspricht, und die Ablesungen der Scale mit wachsenden Intensitäten kleiner werden, so sind die auf 0° Temp. reducirten Werthe

des Bifilarstandes gleich 518,67 und 524,01. Der Scalentheil 542,78 entspricht der Intensität = 1,8705 auf 0° Temp. reducirt, und der Werth eines Scalentheils ist = $\frac{1}{16}\frac{1}{10}$ der ganzen Intensität. Nach diesen Daten findet man die absolute Intensität während meiner Beobachtungen:

Idor	v tilbin bele	J. 1,8282, 1	len, Asuille	an Hand	nen zwei Beo
-sh	taufra / o	Kreil minz	1,8677	1,8683	mile doubles
un.	cohullyas	Langberg			magnetischen
dool	dals led	mahanlagth.	+ 62	+ 54.	29. August, v

Die absoluten Bestimmungen des Hrn. Kreil geben also die Intensität für Prag etwas kleiner, als sie nach den Bestimmungen von Hansteen und Lamont gefunden werden sollte. Herr Kreil hat mir auch mündlich geäufsert, daße er selbst ungefähr denselben Unterschied gefunden hat zwischen seinen Intensitätsbestimmungen im Jahre 1844 (die mittelst des magnetischen Theodoliten von Lamont ausgeführt wurden) und den früher mit anderen Apparaten gefundenen, und glaubte der Unterschied hätte vielleicht seinen Grund in einer nicht ganz scharfen Bestimmung der Constanten seines magnetischen Theodoliten.

dA nonperatorre main que note ne sad de la destidad.

Im freien Felde, an der nordwestlichen Seite des sogenannten großen Gartens vor der Stadt.

I.

Anfang 11^h 22', Ende 11^h 44' $\frac{1}{7}$ Vorm. n=514, a=-13'',4, r=180, $\theta=9^{\circ},9-9^{\circ},5$, $e_0=30^{\circ}$ T'=1037'',01, T=1031'',36, H=1,8274.

Anfang 11 54' Vorm., Ende 0 17' Nachm. r=180, $\theta=9^{\circ},9-10^{\circ},8$, $e_0=30^{\circ}$ T'=1036'',86, T=1030'',95, H=1,8289.

mender var belikken Universillung Faradary häher Damph

Im Augustmonat 1839 wurde von Hansteen die absolute horizontale Intensität in Dresden beobachtet (an dem Platze vor dem neuen Theater), und er fand:

Aug.	15,	8h	58	Vorm.	Mitt.	Zeit	von	Dresden	H=1,8230
-72	18.	10b	9'	7/71	1465		111	totaline to a	1,8223 1,8279
dinta a	20.	5h	42'	Nachm.	1 0		1.	757	1,8279
ap TA	-	6h	4'	Silbaju	aline			der Weet	1,8282
da si			Tab	ten fin	sti u	roll.	in	Mitte	= 1,8252.

Dieses Resultat stimmt sehr gut mit dem Mittel aus meinen zwei Beobachtungen, nämlich 1,8282, und giebt wohl dadurch den Beweis, dass der vermeintliche Verlust des magnetischen Momentes meines Schwingungscylinders am 29. August, wenn er wirklich stattgefunden hat, sich doch bald wieder ausgeglichen haben muß, oder wahrscheinlich nur scheinbar ist, weil der Stand der Differentialinstrumente nur am Anfange und Ende der Schwingungsbeobachtungen aufgezeichnet wurde, und die Vergleichung dadurch weniger zuverlässig ist.

VIII. Die Ursache der Luftelektricität noch unerwiesen; Notiz von P. Riefs.

den hat reviellen somen <u>International Throdoliten von Eu-</u> 1914 (the mattel) des sanguelischen Throdoliten von Eu-

mung der Constunten swires magnetisches Theodoliten Hr. Prof. Reich hat in den so eben erschienenen Abhandlungen bei Begründung der sächsischen Gesellschaft der Wissenschaften, S. 199, interessante Versuche mitgetheilt, aus welchen derselbe folgern zu können glaubt, dass die bisherigen Versuche, die Elektricitätserregung durch Dampfbildung aus reinem, oder aus, andere Substanzen in Auflösung enthaltendem, Wasser nachzuweisen nicht vermögen. Ich wurde durch diese Mittheilung an eigene Versuche erinnert, die ich im Januar 1844, nach dem Erscheinen der vortrefflichen Untersuchung Faraday's über Dampfelektricität, angestellt habe, und in welchen ich zwar die Resultate von Volta, Saussure und Pouillet über die Elektricitätserregung bei Verdampfung bestätigt fand, aber zu der Ueberzeugung kam, dass dieselben nicht in der Verdampfung, sondern in der Reibung von Flüssigkeitstheilchen gegen feste Körper ihren Grund haben. Indem ich die Mehrzahl meiner Versuche, als durch die vollständigeren von Reich überflüssig gemacht, übergehe, nehme ich davon einen Versuch aus, der mir so schlagend die ausgesprochene Meinung zu beweisen schien, daß ich denselben schon damals mehreren Freunden mittheilte, und der leicht und sicher genug ist, um einen Collegienversuch abgeben zu können. Ein Platinlöffel mit runder Höhlung, die 0,24 Grm. Wasser faste, wurde isolirt, und durch einen Draht mit dem Stifte eines Behrens-Fechner'schen Elektroskops verbunden; unter denselben rückte ich eine Berzelius-Lampe, in gewöhnlicher Weise an einem Arme befestigt, der um einen verticalen Stab gedreht werden konnte. Nachdem der Platinlöffel zur Weissgluth gebracht und die Lampe durch eine rasche Bewegung fortgeschnellt war, wurde mit einer Pipette eine bestimmte Menge Kochsalzlösung in den Löffel gebracht, die denselben beinahe anfüllte. Die Flüssigkeit rundete sich ab, rotirte und wurde bei einem gewissen Grade der Abkühlung mit tumultuarischer Verdampfung aus dem Löffel geschleudert. Während dieses ganzen Verlaufs kam im Elektroskope keine Elektricität zum Vorschein. Als ich aber ein Platinblech, das zu einem Cvlinder von 17 Linien Höhe, 5 Linien Breite aufgerollt war, auf die Höhlung des Löffels gestellt hatte und den Versuch wiederholte, wurde bei der gewaltsamen Verdampfung der Flüssigkeit so starke negative Elektricität frei, dass das Goldblatt des Elektroskops an die bezügliche Polplatte anschlug. Dieser Versuch konnte stets mit gleichem Erfolge erhalten werden, wenn die Platinflächen zuvor von dem ausgeschiedenen Salze befreit waren; derselbe lehrt, dass in den bekannten Pouillet'schen Versuchen (diese Annal. Bd. 11, S. 452) nicht die chemische Trennung, welche die Verdampfung begleitet. Ursache der Elektricitätserregung ist, sondern die Reibung der fein zertheilten Flüssigkeit gegen die Tiegelwand, unter der Bedingung, dass die Flüssigkeit über die Wand fortrolle, ohne dieselbe zu benetzen. Bei der allmäligen Verdampfung von zuvor bis zum Sieden erhitzten Wasser in einem Kupferkessel, der mit einem Condensator mehrere Stunden lang in Verbindung blieb, habe ich niemals eine Elektricitätsentwicklung bemerken kön-Schon Saussure fand keine Elektricität bei der freiwilligen Verdampfung (Voyages dans les Alpes, T. II, p. 249). ebenso Erman (Abhandl. phys. Kl. der Academie, Berlin 1818 und 1819, S. 25), und Configliachi vermochte nicht, mit einem empfindlichen Condensator Elektricität nachzuweisen, als er Wasser unter dem Recipienten einer Luftpumpe verdampfen liefs (Gilbert's Ann. Bd. 43, S. 370).

Von den Pouillet'schen Versuchen über Verdampfung wandte ich mich zu denen über den Vegetationsprocess (diese Annal, Bd. 11, S. 430), konnte aber eine Elektricitätserregung durch denselben nicht erkennen in Versuchen, die zwar mit geringerer Pflanzenmenge, dagegen aber mit empfindlicheren Prüfungsmitteln angestellt wurden. Ich füllte eine vollkommen isolirte Messingschale oder häufiger eine Porcellanwanne (letztere mit einer nutzbaren Fläche von nahe 109 Par. Quadratzoll) mit Gartenerde, die feucht gehalten und durch einen Messingdraht mit der messingenen Collectorplatte eines Condensators von 6 Zoll Durchmesser in Verbindung gesetzt wurde. Die abgehobene Collector- oder Condensatorplatte wurde an einem Säulenelektroskope geprüft. Vom März bis zum August 1844 ließ ich eilf Mal Gartenkresse (Lepidium satioum) in der Erde keimen, und untersuchte den Condensator täglich, bis die Kresse die Höhe von 2 Zoll erreicht hatte. Häufig fanden sich Spuren von Elektricität im Condensator, aber nicht von constanter Art (nach Pouillet sollten die Pflanzen negativ clektrisch seyn); einige Controlversuche mit unbesäeter Erde machten es sehr wahrscheinlich, dass iene elektrischen Spuren nicht von der Vegetation herrührten. Selbst in den von Pouillet angestellten Versuchen scheint mir die Annahme einer der Vegetation fremden Ursache der Elektricitätserregung nicht ausgeschlossen zu seyn.

Diese Notiz ist nicht gegen die Meinung gerichtet, dafs Verdampfung und Vegetationsprocess Ursachen der Luftelektricität seyen; ich wünschte nur darauf ausmerksam zu machen, dass eine sichere experimentelle Begründung dieser Meinung nicht vorhanden ist, und neue, auf anderem Wege als bisher, darüber angestellte Versuche mit unzweideutigem Resultate, von großer Wichtigkeit seyn würden.

sigkeit taber the Wand fortrolle, obne dieselbe zu benetzen.

Bei der allmahren Verdampfung von zuwer has zum Sieden erhitzten Wasser in olnem Kupferkeisel, der mit einem Condensator mehrere Stunden lang in Verhändung blieb,
kabe ich niemals eine Elektrichtbreistvirklung hemerken können. Sehon Saussande find keine Elektrichtb bei der freiwilligen Verdampfung (Loyages diese lest stilles, T. II p. 249),
willigen Verdampfung (Loyages diese lest stilles, T. II p. 249),
1518 und 1819, S. 25), und Condensator Kelstrichtst nachzumit einem empfindlichen Condensator Elektrichtst nachzumit einem empfindlichen Condensator Elektrichtst nachzu-