1

Assignment 17

Neha Rani EE20MTECH14014

Download the latex-tikz codes from

https://github.com/neharani289/MatrixTheory/Assignment17

1 Problem

(ugcjune/2018/28):

If **A** is a 2×2 matrix over \mathbb{R} with det $(\mathbf{A} + \mathbf{I}) = 1 + \det(\mathbf{A})$, then we can conclude that

- 1) $\det(\mathbf{A}) = 0$
- 2) A = 0
- 3) $tr(\mathbf{A}) = 0$
- 4) A is non singular.

2 Solution

Given	Let A be a 2×2 matrix over \mathbb{R} .
	$\mathbf{A} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$
	$\det \mathbf{A} = \begin{vmatrix} a & b \\ c & d \end{vmatrix}$
	$det \mathbf{A} = ad - bc$
	$tr(\mathbf{A}) = (a+d)$
	Now, $ (\mathbf{A} + \mathbf{I}) = \begin{pmatrix} a+1 & b \\ c & d+1 \end{pmatrix} $
	$\det(\mathbf{A} + \mathbf{I}) = \begin{vmatrix} a+1 & b \\ c & d+1 \end{vmatrix} = (a+1)(d+1) - (bc) $ (2.0.1)

	$1 + \det \mathbf{A} = 1 + (ad - bc) $ (2.0.2)
	Since, $det(\mathbf{A} + \mathbf{I}) = det(\mathbf{A})$
	Equating (2.0.1) and (2.0.2);
	(a+1)(d+1) - (bc) = 1 + (ad - bc)
	$\implies \boxed{(a+d)=0=tr(\mathbf{A})}$
Option 1	Let, $\mathbf{A} = \begin{pmatrix} 0 & 0 \\ 0 & -1 \end{pmatrix}$
	$\det \mathbf{A} = \begin{vmatrix} 0 & 0 \\ 0 & -1 \end{vmatrix} = 0$
	$(\mathbf{A} + \mathbf{I}) = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}$
	$\det\left(\mathbf{A} + \mathbf{I}\right) = \begin{vmatrix} 1 & 0 \\ -1 & 0 \end{vmatrix} = 1$
	$\implies \det (\mathbf{A} + \mathbf{I}) = 1 + \det(\mathbf{A})$ Conclusion:
	$1) tr(\mathbf{A}) = 0$
	$ \begin{array}{l} 2) \det \mathbf{A} = 0 \\ 3) \mathbf{A} \neq 0 \end{array} $
	4) A is non singular.
Option 2	Let, $\mathbf{A} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$
	` '
	$\det \mathbf{A} = 0$
	$\det\left(\mathbf{A} + \mathbf{I}\right) = 1$
	$\implies \det(\mathbf{A} + \mathbf{I}) = 1 + \det(\mathbf{A})$

	Conclusion: 1) $tr(\mathbf{A}) = 0$ 2) $\det \mathbf{A} = 0$ 3) $\mathbf{A} = 0$ 4) \mathbf{A} is singular.
Option 3	Let, $\mathbf{A} = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$
	Eigen value of $\mathbf{A} = \lambda_1, \lambda_2$
	Eigen value of $(\mathbf{A} + \mathbf{I}) = \lambda_1 + 1, \lambda_2 + 1$
	Since, $det(\mathbf{A} + \mathbf{I}) = 1 + det(\mathbf{A})$
	$\implies (\lambda_1 + 1)(\lambda_2 + 1) = 1 + (\lambda_1 \lambda_2)$
	$\implies \lambda_1 + \lambda_2 = 0$
	trace of any matrix is sum of its eigen values.
	$\implies tr(\mathbf{A}) = 0$
Option 4	
	Let, $\mathbf{A} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$
	$\det \mathbf{A} = \begin{vmatrix} 1 & 0 \\ 0 & -1 \end{vmatrix} = -1$
	$(\mathbf{A} + \mathbf{I}) = \begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix}$
	$\det\left(\mathbf{A} + \mathbf{I}\right) = \begin{vmatrix} 2 & 0 \\ 0 & 0 \end{vmatrix} = 0$
	$\implies \det (\mathbf{A} + \mathbf{I}) = 1 + \det(\mathbf{A})$
	Conclusion: 1) $tr(\mathbf{A}) = 0$ 2) $\det \mathbf{A} \neq 0$ 3) $\mathbf{A} \neq 0$ 4) \mathbf{A} is non singular.

Conclusion	In all options, $tr(\mathbf{A}) = 0$ satisfied.
	Thus, Option 3 is correct.

TABLE 1: Solution Summary