\$\ \{ \} \} \]

3.1 By definition

$$S^{(gh)} = \{ (gh)^{-1}x(gh) \mid x \in S \} \}$$

$$= \{ h^{-1}g^{-1}xgh \mid x \in S \}, \text{ und} \}$$

$$(S^{g})^{h} = \{ g^{-1}xg \mid x \in S \}^{h}$$

$$= \{ h^{-1}(g^{-1}xg)h \mid x \in S \}.$$

$$\vdots S^{(gh)} = (S^{g})^{h}.$$

3.2 (i) Mow $S \cup S^{-} = \{ (123), (234), (132), (243) \}.$

Calculating gives (123)(132) = (1), (123)(234) = (13)(24), (234)(123) = (14)(23).
$$\vdots H = \{ (1), (12)(34), (13)(24), (14)(23) \} \subseteq \langle S \rangle.$$
(Mote $H \leq G$ obecause, by question 2.8, H is a configurate of S_{4} and $H \subseteq G$, H is a configurate of S_{4} cand $H \subseteq G$, H is a configurate of S_{4} cand $H \subseteq G$, H is a configurate of S_{4} cand $H \subseteq G$, H is a configurate of S_{4} cand $H \subseteq G$, H is a configurate of S_{4} cand $H \subseteq G$, H is a configurate of G .

(Again vas <5> vis va voulgroup of <6 (vby Lemma 3.2), H vis va voulgroup of <5>.

4 = 1 H1 valivides the order of <5> cby

Lagrange' Utherrem.

Similarly $\langle (123) \rangle = \{(1), (123), (132)\} \subseteq$ $\langle S \rangle$ and itten, is above, $\langle (123) \rangle$ is a contigoup of $\langle S \rangle$ 3 divides itte order of $\langle S \rangle$ iby Lagranges' itteorem. Hence $|12| |1 \langle S \rangle|$. Since $|G| = \frac{4!}{2} = 12$ (question 2.9), we immet thave $\langle S \rangle = G$.

(ii) Since $S \leq G$ (see part (i)), we know $S \leq N_G(S) \leq G$ (§3 Cleeture notes).

: $3 = [G:S] = [G:N_G(S)][N_G(S):S]$ (Theorem 1.6(ii))

So [G:NG(S)]=1 or 3.

Hence either NG(S) = G or NG(S) = S. Calculating $(123)^{-1}(12)(34)(123) = (14)(23),$ $(123)^{-1}(14)(23)(123) = (13)(24),$ $(123)^{-1}(13)(24)(123) = (12)(34)$ we ideduce $S^{(123)} = S$ and so $(123) \in N_G(S)$. Since (123) & S, NG(S) + S and i. $N_{\mathcal{C}}(S) = G.$ For CG(S) mote ethat S is abelian, and Whence $S \leq C_G(S) \leq G$. Now vargue ias for $N_G(s)$ valoue its show $S = C_G(s)$. 3.3 Let H ≤ G with S⊆H. Then S ⊆ H (cas H \le G) and so products of elements un SUS-must vagain whe in H (as H < G). .. <5> ≤H. Hence <5> \leftarrow \cappa H \leftarrow H.

Since
$$S \subseteq \langle S \rangle$$
 vand, (by Lemma 3.2),
 $\langle S \rangle$ is a subgroup of G ,
 $\bigcap_{H \subseteq G} G \langle S \rangle$.
 $\bigcap_{H \subseteq G} G \langle S \rangle$.
 $\bigcap_{H \subseteq G} G \langle S \rangle = \bigcap_{H \subseteq G} G \langle S \rangle$.

3.4 Since $1 \in H$ (as $H \leq G$), $1 = g^{-1}1g \in H^g$, and so $H^g \neq \phi$. Two typical elements of H^g variety $g = g \neq g$, $g \neq g$ where $g \neq g \neq g$. Mow

$$(g^{-1}xg)(g^{-1}yg)^{-1} = g^{-1}xgg^{-1}y^{-1}g$$

= $g^{-1}xy^{-1}g$,

which chelongs its H^g (as $xy \in H$ checause $H \leq G$). .. H^g is a configurary of G cby ithe configurary contenion.

3.5 (i) Since det $I_n = 1$, $I_n \in SL(n, F)$, so $SL(n,F) \neq \emptyset$. Note also $SL(n,F) \subseteq GL(n,F)$. Let $A, B \in SL(n,F)$. Then det A = 1 = det B. So $det B^{-1} = \frac{1}{det B} = 1$.

... det (AB") = (det A) (det B") = 1 and so

ABTE SL(n,F).

.. $SL(n,F) \leq GL(n,F)$ (by the subgroup criterion.

(ii) Since In ∈ O(n,F), O(n,F) ≠ Ø. Mote $A \in O(n,F) \Rightarrow AA^{T}=I_{n} \Rightarrow (det A)(det A^{T}) = det(AA^{T})$ det $I_n = 1$. So det $A \neq 0$. $A^{-1} = A^{T}$. So $O(n, F) \subseteq GL(n, F)$.

Let $A, B \in O(n, F)$. Then $A^{-1} = A^{T}$ and $B^{-1} = B^{T}$.

Mow $AB^{-1}(AB^{-1})^T = AB^T(AB^T)^T = AB^TBA^T$ $=AA^{T}=I_{n}$ \Longrightarrow $AB^{T}\in O(n,F)$.

... $O(n,F) \leq GL(n,F)$ (by the subgroup existerion.