Electrical Engineering HSLU, Semester 2

Matteo Frongillo

Last update: March 10, 2025

Contents

L	•••						
L	•••						
	1.1 Cu	urrent strength or current "I"					
	1.2 Cu	urrent density "J"					
	1.3 Te	emperature dependence of the resistance					
		bject properties					
		eciprocal quantities					
		5.1 Specific resistance					
	1.5	5.2 Conductance					
	1.5	5.3 Specific conductivity					
	Gravitational fields						
	2.1 Be	etween bodies					
		etween particles					
		2.1 Coulomb's law					
	2.3 El	ectric field and force on a charge Q					
		3.1 Homogeneous electric fields					
		3.2 Force on a point charge					
	Capacitance and Capacitor						
		apacitor					
		apacitance					
		2.1 Capacitance of a plate capacitor					
		2.2 Energy in a capacitor					
		apacitors in parallel connection					
	3.4 Cε	apacitors in series connection					
		Transient Analysis in RC Circuits					
		harging of a Capacitor					
	4.2 Di	ischarging of a Capacitor					
	4.3 Tr	ransitional phase					
	Additional Topics						
	5.1 Er	nergy Stored in a Capacitor					
	5.2 Cł	harge-Voltage Relationship					
	Electromagnetic fields						
	6.1 Ha	ans Christian Ørsted Observation					
	6.2 De	efinitions and formuals					
		2.1 Magnetomotive force					
	6.2	2.2 Ampère's circuital law					
	6.2	2.3 Magnetic field in a coil					
		2.4 Magnetic flux density					

	6.2.5	Magnetic field strength in coil with iron core	1(
	6.2.6	Magnetic relative permeability μ	1(
	6.2.7	Coils with and without iron core	11
	6.2.8	Law of induction and inductance	11
	6.2.9	Inductance and induction	12
	6.2.10	Inductivity of a very long coil	12
	6.2.11	Energy stored in an inductor	12
	6.2.12	Current-voltage relationship of an inductor	13
		Transient analysis	
6.3	Examp	lles	14
	6.3.1	Charging an inductor in a RL-network	14
	6.3.2	Discharging an inductor in a RL-network	15

Part I

• • •

1 ...

1.1 Current strength or current "I"

$$I[A] = \frac{\text{el. charge}}{t}$$

1.2 Current density "J"

The current density indicates how large the current per cross-sectional area (F) is:

$$J\ [\frac{A}{mm^2}] = \frac{I}{F}$$

1.3 Temperature dependence of the resistance

Depending on the material, the resistance can increase, remain the same or decrease with temperature. In ET+L we calculate using the linear approach.

$$R(\vartheta) = R_{20}(1 + \alpha(\vartheta - 20^{\circ}C)) = R_{20}(1 + \alpha\Delta T)$$

1.4 Object properties

The resistance indicates the voltage required for a current. In addition to the material, the cross-sectional area and also the length are decisive factors.

$$R = \frac{U}{I}$$

1.5 Reciprocal quantities

1.5.1 Specific resistance

To describe material properties, the resistance per length and cross-sectional area is specified (precondition: homogeneous conductor, direct current):

$$\rho \; [\frac{\Omega \cdot mm^2}{m}] = R \cdot \frac{A}{l}$$

1.5.2 Conductance

1.5.3 Specific conductivity

2 Gravitational fields

2.1 Between bodies

$$F_1 = F_2 = G \frac{m_1 m_2}{d^2}$$

2.2 Between particles

2.2.1 Coulomb's law

It calculates the amount of force between two electrically charged particles at rest:

$$F = \frac{1}{4\pi\varepsilon_0} \cdot \frac{q_1 q_2}{r^2}$$

where:

- F: Force [N];
- q: Charge [As];
- ε_0 : absolute permittivity = $8.8542 \cdot 10^{-12}$ [As/Vm].

2.3 Electric field and force on a charge Q

2.3.1 Homogeneous electric fields

$$E = \frac{U}{d}$$

where:

- E: electric field strength [V/m];
- *U*: voltage [V];
- d: distance of the electrodes [m].

2.3.2 Force on a point charge

$$F = Q \cdot E$$

where:

- E: electric field strength [V/m];
- Q: charge [As];
- *F*: force [N].

3 Capacitance and Capacitor

3.1 Capacitor

A capacitor is a device in which the capacitance is used.

3.2 Capacitance

Capacitance C is the **capability** to store electric charge. It is measured by the charge divided by the applied voltage:

$$C = \frac{Q}{U}$$

where:

- *Q*: charge [As];
- *U*: voltage [V];
- C: capacitance [As/V = F (Farad)].

3.2.1 Capacitance of a plate capacitor

$$C = \varepsilon \cdot \frac{A}{d}$$

where:

- A: plate area (one side) [m^2];
- d: distance between plates [m];
- C: capacitance [F].

Permittivity

$$\varepsilon = \varepsilon_r \cdot \varepsilon_0$$

- ε_r : relative permittivity of the dielectric, relative to the air;
- ε_0 : absolute permittivity [As/Vm].

3.2.2 Energy in a capacitor

If a capacitor is discharged with a constant current, the voltage decreases linearly:

$$\int_0^{t_{\text{empty}}} U(t) \cdot I \, dt = I \cdot U_0 = \frac{I \cdot U_0 \cdot t_{\text{empty}}}{2}$$

Or, simplified:

$$W = \frac{1}{2}C \cdot U_0^2$$

where:

- W: energy [J or Ws];
- U_0 : initial voltage [V];
- C: capacitance [F].

3.3 Capacitors in parallel connection

Capacitances connected in parallel add up:

$$C_{\text{tot}} = \frac{\sum_{n} Q_n}{U} = \sum_{n} C_n$$

or

$$C = \frac{\varepsilon \cdot (\sum_{n} A_n)}{d} = \sum_{n} C_n$$

3.4 Capacitors in series connection

In a series connection, the reciprocal of the total capacitance is the sum of the reciprocals of the individual capacitances:

$$\boxed{\frac{1}{C_{\rm tot}} = \sum_{n} \frac{1}{C_{n}}}$$

where:

- C_{tot} : total capacitance [F];
- C_n : capacitance of the *n*-th capacitor [F].

4 Transient Analysis in RC Circuits

4.1 Charging of a Capacitor

When a capacitor is charged through a resistor, the voltage across it increases exponentially:

$$U_C(t) = U_0 \cdot \left(1 - e^{-t/(R \cdot C)}\right)$$

with the time constant defined as:

$$\tau = R \cdot C$$

where:

- $U_C(t)$: voltage across the capacitor at time t [V];
- U_0 : applied voltage [V];
- R: resistance $[\Omega]$;
- C: capacitance [F];
- τ : time constant [s].

4.2 Discharging of a Capacitor

When a charged capacitor discharges through a resistor, the voltage decays exponentially:

$$U_C(t) = U_0 \cdot e^{-t/(R \cdot C)}$$

and the discharging current is:

$$I(t) = \frac{U_0}{R} \cdot e^{-t/(R \cdot C)}$$

4.3 Transitional phase

$$f(t) = A + \Delta \cdot (1 - e^{t/\tau}) = A + (B - A) \cdot (1 - e^{1/\tau})$$

5 Additional Topics

5.1 Energy Stored in a Capacitor

The energy stored in a capacitor is given by:

$$W = \frac{1}{2}C \cdot U_0^2$$

where:

• W: energy [J];

• C: capacitance [F];

• U_0 : voltage [V].

5.2 Charge-Voltage Relationship

For an ideal capacitor, the relationship between charge and voltage is:

$$\boxed{Q = C \cdot U}$$

Moreover, the current is the time derivative of the charge:

$$I = \frac{dQ}{dt} = C \cdot \frac{dU}{dt}$$

Note that the voltage across an ideal capacitor cannot change instantaneously.

6 Electromagnetic fields

6.1 Hans Christian Ørsted Observation

- 1. The magnetic field lines encircle the current-carrying conductor;
- 2. The magnetic field lines lie in a plane perpendicular to the current-carrying wire;
- 3. If the direction of the current is reversed, the direction of the magnetic field lines is also reversed;
- 4. The strength of the field is directly proportional to the magnitude of the current;
- 5. The strength of the field at any point is inversely proportional to the distance of the point from the wire.

6.2 Definitions and formulas

6.2.1 Magnetomotive force

$$\theta = N \cdot I$$

6.2.2 Ampère's circuital law

$$\theta = \oint \overrightarrow{H(s)} \cdot d\vec{s}$$

6.2.3 Magnetic field in a coil

6.2.4 Magnetic flux density

$$B = \frac{\Phi}{A} = \mu \cdot H = \mu_0 \mu_r \cdot H$$

where:

• B: magnetic flux density [T = Vs/m²];

• Φ: magnetic flux [Wb];

• A: area [m²];

• μ : magnetic permeability [H/m = Vs/Am];

• *H*: magnetic field strength [A/m];

• μ_0 : magnetic constant $[4\pi \cdot 10^{-7} \text{ Vs/Am}]$;

• μ_r : relative permeability.

Note: Φ is the sum of all B-field lines through the cross section A

6.2.5 Magnetic field strength in coil with iron core

$$H = \frac{N \cdot I}{l_m} = \frac{\Theta}{l_m}$$

where:

• *H*: magnetic field strength [A/m];

• N: number of turns;

• *I*: current [A];

• l_m : median field line length [m];

• Θ : magnetomotive force [A].

6.2.6 Magnetic relative permeability μ

Permeability is a measure for the ability to conduct magnetic field lines:

Material	$\mu_{\mathbf{r}}$
Air	1
Pure iron	up to 250'000
Electrical steel	$500 \dots 7000$
Steel	$40 \dots 7000$
Water	0.99991

6.2.7 Coils with and without iron core

The magnetization curve of a coil without a core is linear, but there is significantly less flux density B than with an iron core.

6.2.8 Law of induction and inductance

Changing magnetic flux generates a voltage

Phenomenon: a changing magnetic flux Φ induces a voltage in a conductor loop around it:

$$U = -N \cdot \frac{\mathrm{d}\Phi}{\mathrm{d}t}$$

6.2.9 Inductance and induction

Inductance L is the capability to generate a magnetic field. It is measured by the voltage divided by the rate of change of current over time. It is a measure of the magnetic "capacity" of an arrangement of conductors (e.g. coil) and can be compared to the capacity C of a capacitor. It indicates how much magnetic flux per ampere is generated.

$$L = \frac{N \cdot \Phi}{I} = \frac{U}{\frac{\Delta I}{\Delta t}}$$

where:

- L: inductance [H = Vs/A];
- N: number of turns;
- Φ: magnetic flux [Wb];
- *I*: current [A];
- *U*: voltage [V].

6.2.10 Inductivity of a very long coil

The inductance of a very long coil can be calculated approximately with:

$$L = \frac{\mu \cdot N^2 \cdot A}{l}$$

where:

- L: inductance [H = Vs/A];
- μ : magnetic permeability [Vs/Am];
- N: number of turns;
- A: cross-section of the coil [m²];
- *l*: length [m].

6.2.11 Energy stored in an inductor

Since a variable magnetic field induces a voltage in which a current can also flow, the magnetic field must contain energy:

$$W = \frac{1}{2}L \cdot I^2$$

where:

- W: work, energy [J = Ws];
- L: inductance [H = Vs/A];
- I: current [A].

6.2.12 Current-voltage relationship of an inductor

The current-voltage relationship of an inductor is:

$$U = L \cdot \frac{\mathrm{d}I}{\mathrm{d}t}$$

Special case:

$$0 = L \cdot \frac{\mathrm{d}I}{\mathrm{d}t} \to u_c = 0$$

6.2.13 Transient analysis

state variable y

Switch action at t = 0

Duration of the transition phase: theoratical $T_{ein}=\infty$ practial $T_{ein}=5\cdot \tau$

1. The state variable y(t) is the variable that cannot change instantaneously. For the inductor, this is $i_L(t)$. The state just before the switch action:

$$y(0^-) = i_L(0^-).$$

2. The starting value is the state immediately before the switch action:

$$y(0^+) = i_L(0) = i_L(0^-).$$

That is, the state variable i_L keeps the value from $t = 0^-$.

3. The final value is the value long after the switch action:

$$y(\infty) = i_L(\infty),$$

which is practically reached after 5τ .

4. The transient is described by the function of time:

$$y(t) = \text{final value} + \left(\text{starting value} - \text{final value}\right) \, \exp\left(-\frac{t}{\tau}\right).$$

Hence,

$$i_L(t) = i_L(\infty) + \left(i_L(0+) - i_L(\infty)\right) \, \exp{\left(-\frac{t}{\tau}\right)}.$$

13

Time constant τ for an inductor

$$\tau = \frac{L}{R}$$

where:

- τ : time constant [s];
- L: inductance [H];
- R: resistance $[\Omega]$.

6.3 Examples

6.3.1 Charging an inductor in a RL-network

For t<0 stationary state, L discharged

Calculations

$$i_{L} = \frac{U}{R} \cdot \left(1 - \exp\left(-\frac{t}{\tau}\right)\right)$$
$$u_{L} = U \cdot \exp\left(-\frac{t}{\tau}\right)$$

Graphical representation

6.3.2 Discharging an inductor in a RL-network

Before t = 0 stationary state: Current in inductor is I_0

Calculations

$$i_{L} = I_{0} \cdot \exp\left(-\frac{t}{\tau}\right)$$

$$u_{L} = -I_{0} \cdot R \cdot \exp\left(-\frac{t}{\tau}\right)$$

${\bf Graphical\ representation}$

