Élargissement des capacités de LATEX en matière de couleur : l'extension xcolor

Dr. Uwe Kern

v2.12 (11/05/2016) *

Résumé

L'extension xcolor met à disposition, simplement et indépendamment des pilotes graphiques, à de multiples types de couleurs, teintes, nuances, tons et mélanges de couleurs arbitraires par le biais d'expressions dédiées comme \color{red!50!green!20!blue}. Elle permet de sélectionner un modèle de couleur cible à l'échelle du document et offre des outils d'assortiment de couleurs automatiques, de conversion des couleurs entre douze modèles colorimétriques, d'utilisation de couleurs alternées pour des lignes de tableau, de mélange et de masque de couleur, de séparation de couleur et de calculs de cercle chromatique.

Table des matières

1	Intr	roduction	5
	1.1	Objectif de cette extension	5
	1.2	Terminologie des couleurs pour ce document	6
	1.3	Modèles colorimétriques	6
	1.4	Cercles chromatiques et accords de couleurs	7
2	L'in	terface utilisateur	9
	2.1	Préparation	9
		2.1.1 Installation de l'extension	9
		2.1.2 Options de l'extension	9
		2.1.3 Éxecution de commandes additionnelles à l'initialisation	10
	2.2	Modèles colorimétriques	10
		2.2.1 Modèles colorimétriques supportés	10
		2.2.2 Substitution de modéles colorimétriques individuels	14
		2.2.3 Changement du modèle colorimétrique cible dans un document	14
	2.3	Arguments et terminologie	14

^{*}Cette extension peut être téléchargée à partir de CTAN/macros/latex/contrib/xcolor/. Un site Internet dédié à xcolor existe égalemetn : www.ukern.de/tex/xcolor.html. N'hésitez à envoyer vos constats d'erreur et suggestions d'amélioration à l'auteur : xcolor@ukern.de.

	2.3.1	Remarques additionnelles et restrictions sur les arguments . 14
	2.3.2	Signification des expressions de couleur standards 18
	2.3.3	Signification des expressions de couleur étendues 19
	2.3.4	Fonctions de couleur
2.4	Coule	ırs prédéfinies
	2.4.1	Couleurs qui sont toujours disponibles
	2.4.2	Ensembles additionnels de couleurs
2.5	Défini	tion de couleur
	2.5.1	Couleurs ordinaires et nommées
	2.5.2	Définition de couleur dans xcolor
	2.5.3	Définition d'ensembles de couleur
	2.5.4	Définitions immédiates et différées
	2.5.5	Définitions de couleur globales
2.6	Utilisa	tion de la couleur
	2.6.1	Commandes de couleur standards
	2.6.2	Colored boxes
	2.6.3	Using the current color
	2.6.4	Color testing
2.7	Color	blending
2.8	Color	masks and separation
2.9	Séries	de couleurs
	2.9.1	Définition d'une série de couleurs
	2.9.2	Initialisation d'une série de couleurs
	2.9.3	Utilisation d'une série de couleurs
	2.9.4	Différences entre couleurs et séries de couleurs
		ır d'encadrement d'hyperliens
		ications de couleurs additionnelles le monde de pstricks 35
		ır dans des tableaux
		nation sur la couleur
		rsion de couleur $\ldots 34$
2.15		emes et solutions
		Name clashs between dvipsnames and svgnames 3
		Page breaks and pdfTEX
	2.15.3	Change color of included .eps file
Exe	mples	3'
	_	
	·	Name 4
4.1		colors (always available)
4.2		via dvipsnames option
4.3	Colors	via svgnames option
4.4	Colors	via x11names option

5	Tec	nical Supplement	17
	5.1	_ 	47
	5.2	How xcolor handles driver-specific color models	47
	5.3		48
	5.4		48
	_		
6			50
	6.1		50
	6.2	<u> </u>	50
		8	52
			52
	6.3	-	53
		3	54
			56
			57
			58
		3.3.5 The $\mathbf{Hsb} \bmod \mathbb{I}$	60
		5.3.6 The tHsb model	60
		5.3.7 The gray model	60
		3.3.8 The RGB model	61
		5.3.9 The HTML model	61
			61
			61
		6.3.12 The wave model	62
Re	éfére	ces	34
Δ 1	nnex		35
7 1 1			65
			65
		•	65
			65
	11150	ique	Je
In	\mathbf{dex}	•	71
т :	: a t a	dag tablaarer	
L.	iste	des tableaux	
	1	Options de l'extension	11
	2	Ordre de chargement des extensions	12
	3	ě	12
	4		15
	5		47
	6		49
	7		±3 51
	8		51 51

Table des figures

1	Color spectrum
2	Color testing
3	Progressing from one to another color
4	Target color model
5	Standard color expressions
6	Standard color expressions
7	Current color
8	Color series
9	Color masking
10	Alternating row colors in tables: \rowcolors vs. \rowcolors* 4
11	Hsb and tHsb : hue° in 15° steps
12	Color harmony 4:

1 Introduction

1.1 Objectif de cette extension

L'extension color met à disposition un outil puissant et stable pour manipuler les couleurs dans (pdf)LATEX de façon cohérente, indépendamment des pilotes graphiques, tout en supportant différents modèles colorimétriques (de manière un peu plus dépendante des pilotes).

Néanmoins, il est parfois un peu laborieux de l'utiliser, particulièrement dans les cas où de légères variations de couleur, des mélanges de couleur ou des conversions de couleur sont en jeu : ceci impose d'habitude l'utisation d'un autre programme qui calcule les paramètres souhaités, paramètres alors copiés dans une commande \definecolor dans LATEX. Assez fréquemment, une calculatrice de poche est également impliquée dans le traitement de problèmes comme ceux indiqués ci-après :

- Ma société a défini une couleur d'entreprise et le service des impressions m'a dit combien il est coûteux d'utiliser plus de deux couleurs dans notre nouveau brochure, alors même que toutes les teintes de notre couleur (par exemple, une version à 75%) peuvent être utilisées sans aucun surcoût. Comment accéder à ces variations de couleur avec LATEX?
 - (Réponse : \color{CouleurEntreprise!75} etc.)
- Mon ami utilise une belle couleur que je souhaiterais appliquer à mes propres documents; malheureusement, elle est définie avec le modèle hsb qui n'est pas accepté par mon application pdfLATEX favorite. Que faire alors?
 - (Réponse : utiliser tout simplement les définitions ${\bf hsb}$, xcolor fera les calculs nécessaires.)
- Qu'affiche le mélange de 40% de vert (*green*) et de 60% de jaune (*yellow*)? (Réponse : 40% + 60% = —, soit \color{green!40!yellow})
- Et quelle est l'aspect de sa couleur complémentaire? (Réponse : ____, accessible via \color{-green!40!yellow})
- Maintenant, je souhaite mélanger trois mesures de la dernière couleur avec deux mesures de sa complémentaire et une mesure de rouge (red). Qu'est-ce que cela donne?
- Je sais qu'un rayonnement de longueur d'onde de 485nm appartient au spectre visible. Mais quelle couleur a-t-il?
 - (Réponse : approximativement ____, via \color [wave] {485})
- Mon service des impressions souhaite que toutes les définitions de couleur dans mon document soit basculées en modèle cmyk¹. Comment puis-je faire ces calculs efficacement?
 - (Réponse : \usepackage[cmyk] {xcolor} ou \selectcolormodel{cmyk})
- J'ai un tableau de 50 lignes. Comment puis-je obtenir des lignes de tableau avec deux couleurs alternées (A pour les lignes paires et B pour les lignes impaires) sans recourir à la copie de 50 commandes \rowcolor? Ce motif

^{1.} NdT : CMJN en français.

alterné devrait d'ailleurs commencer à partir de la troisième ligne. (Réponse : grosso modo \rowcolors{3}{CouleurA}{CouleurB})

Ceci répresente quelques uns des problème résolus par l'extension xcolor. Son objectif peut être résumé en la conservation des caractéristiques de color, tout en apportant des fonctionnalités additionnelles et de la flexibilité avec des interfaces simples d'utilisation (avec un peu de chance).

1.2 Terminologie des couleurs pour ce document

Sur la base de [15] nous définissons les termes suivants ²:

- **couleur éclaircie** : une couleur à laquelle est ajoutée du blanc (*white*);
- **couleur assombrie** : une couleur à laquelle est ajoutée du noir (black);
- **couleur assourdie** : une couleur à laquelle est ajoutée du gris (gray).

Ce sont des cas spéciaux d'une fonction plus générale mélange(C, C', p) qui construit une nouvelle couleur, composée de p mesures de la couleur C et de 1-p mesures de la couleur C', où $0 \le p \le 1$. Aussi, nous posons

$$\acute{\text{eclaicie}}(C, p) := \acute{\text{mélange}}(C, \texttt{white}, p) \tag{1}$$

$$assombrie(C, p) := m\'elange(C, black, p)$$
 (2)

$$\operatorname{assourdie}(C, p) := \operatorname{m\'elange}(C, \operatorname{gray}, p) \tag{3}$$

où white, black, et gray sont des constantes dépendantes des modèles, comme présentées en table 7 page 51. Par la suite, nous définissons le terme :

— couleur complémentaire : une couleur C^* qui génère du blanc (white) si elle est mélangée avec la couleur d'origine C,

sachant qu'il existe également différents concepts de complémentarité (par exemple des couleurs opposées sur les *cercles chromatiques*). Voir la section 6.3 page 53 pour le détail des calculs et la section 1.4 page suivante pour certaines remarques sur les cercles chromatiques.

1.3 Modèles colorimétriques

Un modèle colorimétrique est un outil décrivant ou représentant un certain ensemble de couleurs d'une manière compatible avec l'appareil cible souhaité, par exemple un écran ou une imprimante. Il existe des modèles propriétaires (comme Pantone ou HKS) qui fournissent des ensembles finis de couleurs (chaque couleur étant appelés ton direct), dans lequel l'utilisateur doit piocher sans se soucier des paramétrages; à l'inverse, se trouvent des modèles paramétriques comme gray, rgb, et cmyk, dont le but est de représenter de larges ensembles finis ou même infinis (théoriquement) de couleurs, construits sur de très petits sous-ensembles de couleurs de base et de règles permettant de construire d'autres couleurs à partir des couleurs de base. Par exemple, un large ensemble de couleurs peut être

^{2.} N.D.T. : ces termes ne sont pas l'exacte traduction des termes anglais car les notions de teinte (tint), nuance (shade) et ton (tone) utilisées par l'auteur sont bien trop polysémiques en français. Nous conservons ici juste la notion de « teinte » à laquelle nous adjoignons des adjectifs bien moins sujets à discussion, en évitant ici les adjectifs « rompu », « rabattu » ou « désaturé ».

construit par combinaison linéaire des couleurs de base rouge (red), vert (green) et bleu (blue). En contrepartie, un ton direct ne peut souvent être qu'approximé par des valeurs de paramètres dans les modèles comme \mathbf{cmyk} ou \mathbf{rgb} ; les couleurs originales se mélangent physiquement et dépendent aussi du type de papier retenu. Enfin, il existe certaines couleurs comme l'or (gold) ou l'argent (silver) qui sont difficilement reproductibles par des modèles paramétriques avec des encres standards ou des imprimantes laser.

1.4 Cercles chromatiques et accords de couleurs

Il s'est développé une longue histoire du placement de couleurs (les teintes saturées) sur des cercles pour discuter de problèmes théoriques ou pratiques sur les couleurs (par exemple Isaac Newton, Johann Wolfgang von Goethe). Une explication de ceci pourrait être que le cercle lui-même est un outil tout naturel pour illustrer des relations communes aussi bien que des propriétés opposées.

De nos jours, une certaine confusion portant sur les notions associées aux couleurs existe, dans la mesure où deux grands domaines qui y sont liés — l'art et le design graphique d'une part, la théorie scientifique de la couleur de l'autre — tendent à utiliser des termes identiques pour décrire des propriétés de la couleur bien qu'en décrivant parfois des faits très différents! Ainsi, l'apparence des cercles chromatiques diffère autant que la signification de concepts comme couleurs « primaires » ou « complémentaires ».

Construction d'un cercle chromatique typique Tout d'abord, trois couleurs primaires sont placées sur le cercle à 0°, 120°, 240° (les artistes choisissent souvent le triplet rouge (red), jaune (yellow), bleu (blue), tandis que les scientifiques spécialistes de la couleur préféreront le triplet rouge (red), vert (green), bleu (blue). Ensuite, les trois couleurs secondaires sont placées à 60°, 180°, 300°. Puis, six couleurs tertiaires pourront être placées au milieu de chaque arc (30°, 90°, ...). C'est pourquoi les cercles chromatiques sont fréquemment décrits par douze couleurs équidistantes bien que l'algorithme puisse être prolongé à merci.

Harmonies de couleur issues du cercle Nous commençons avec un cercle chromatique quelconque :

- les **couleurs complémentaires** sont situées à une distance de 180° sur le cercle :
- les **triades** correspondent à trois couleurs séparées par 120°;
- les **tétrades** correspondent à quatre couleurs séparées par 90°.

Nous supposons maintenant que le cercle est décomposé en 2n secteurs de taille égale :

- les **couleurs complémentaires adjacentes** d'une couleur donnée sont les deux voisines immédiates de la couleur complémentaire, caractérisées par les positions $\frac{n\pm 1}{2n} \cdot 360^{\circ}$,
- les positions $\frac{n\pm 1}{2n} \cdot 360^{\circ}$,
 les **couleurs analogues** d'une couleur donnée sont les deux ou quatre voisines, caractérisées par les positions $\pm \frac{1}{2n} \cdot 360^{\circ}$ and $\pm \frac{2}{2n} \cdot 360^{\circ}$.

Compte tenu des méthodes utilisées pour générer des accords de couleur, nous concluons que les résultats dépendent fortement de la manière dont nous construisons le cercle! Qui plus est, le choix de n affecte le résultat visuel. Des exemples sont donnés en figure 12 page 43.

2 L'interface utilisateur

2.1 Préparation

2.1.1 Installation de l'extension

Il faut tout d'abord placer xcolor.sty et tous les fichiers .def dans un répertoire où (pdf)LATEX les trouvera. Un emplacement classique selon la structure des répertoires de TEX³ serait le répertoire texmf/tex/latex/xcolor, où texmf est à remplacer par le répertoire principal de votre installation de TEX. De plus, il faut placer xcolor.pro à un endroit où dvips le trouvera, typiquement texmf/dvips/xcolor. Normalement, vous devez lancer une mise à jour de votre base de noms de fichiers afin que ces fichiers soient connus et facilement retrouvables dans l'arborescence TEX. Par la suite, il suffit simplement d'utiliser xcolor (au lieu de color) dans votre document. Pour cela, la commande générale d'appel est \usepackage[\langle options \rangle] \{xcolor}\ dans le préambule du document. La table 2 page 12 montre dans quel ordre certaines extensions doivent alors être chargées.

2.1.2 Options de l'extension

En général, plusieurs types d'options existent :

- les options qui déterminent le pilote graphique comme expliqué dans [5] et [6], soit actuellement : dvips, xdvi, dvipdf, dvipdfm, dvipdfmx, luatex, pdftex, dvipsone, dviwindo, emtex, dviwin, oztex, textures, pctexps, pctexwin, pctexhp, pctex32, truetex, tcidvi, vtex, xetex;
- les options qui déterminent le modèle colorimétrique cible ⁴ (natural, rgb, cmy, cmyk, hsb, gray, RGB, HTML, HSB, Gray) ou qui génèrent une sortie avec des couleurs désactivées (monochrome);
- les options qui contrôlent si certains ensembles de couleurs prédéfinies sont chargés et comment : dvipsnames, dvipsnames*, svgnames, svgnames*, x11names, x11names*;
- les options qui déterminent quelles autres extensions doivent être chargées ou supportées : table, fixpdftex, hyperref;
- les options qui influencent le comportement d'autres commandes : prologue, kernelfbox, xcdraw, noxcdraw, fixinclude, showerrors, hideerrors;
- les options obsolètes : pst, override, usenames, nodvipsnames.

\GetGinDriver \GinDriver

Toutes les options de l'extension (hors les sélections des pilotes et les options obsolètes) sont listées en table 1 page 11. Afin de faciliter la coopération avec l'extension hyperref, il existe une commande \GetGinDriver⁵ qui récupère le nom du pilote effectivement utilisé et qui le place dans la commande \GinDriver. Ce dernier peut alors être utilisé au sein de l'extension hyperref (ou toute autre

^{3.} N.D.T.: TEX Directory Structure (TDS)

 $^{4.\ \,}$ La section 2.2.3 page 14 explique comment ce paramétrage peut être annulé n'importe où dans un document.

^{5.} Cette commande est exécutée automatiquement si l'option d'extension hyperref est sélectionnée.

extension), voir l'exemple de code en page 13. S'il n'y a pas d'option hyperref correspondante, l'option hypertex sera prise par défaut.

Attention: il y a une différence substantielle entre xcolor et color dans la façon de manier l'option dvips. L'extension color appelle implicitement l'option dvipsnames dès qu'un des pilotes dvips, oztex ou xdvi est sélectionné. Ceci rend les documents moins portables dans la mesure où, à chaque fois qu'une des couleurs est utilisée sans l'appel explicite de l'option dvipsnames, les autres pilotes comme pdftex renvoient un message d'erreur pour cause de couleur inconnue. C'est pourquoi xcolor doit toujours recevoir explicitement l'option dvipsnames pour utiliser ces noms — qui fonctionnent alors pour tous les pilotes.

2.1.3 Éxecution de commandes additionnelles à l'initialisation

\xcolorcmd

Voici un moyen simple pour passer des commandes devant être exécutées à la fin de l'extension extension xcolor (immédiatement avant que l'initialisation de \color{black} ne soit traitée). Indiquez juste \def\xcolorcmd{\commandes\} avant le chargement de xcolor.

Exemple : en supposant que a.tex soit un document LATEX complet, une commande comme « latex \def\xcolorcmd{\colorlet{black}{red}}\input{a} » saisie en invite de commande génère un fichier a.dvi avec toutes les occurences de noir (black) remplacées par du rouge (red), sans besoin de modifier le fichier source lui-même (la ligne de commande peut varier selon les systèmes d'exploitation et les distributions de T_EX).

2.2 Modèles colorimétriques

2.2.1 Modèles colorimétriques supportés

La liste des modèles colorimétriques et les plages de valeur de leurs paramètres sont données en table 3 page 12. Notez bien que le support de ces couleurs est indépendant du pilote graphique choisi.

Ce support permet d'ailleurs de spécifier des couleurs directement avec leurs paramètres, par exemple avec \textcolor[cmy]{0.7,0.5,0.3}{toto} (toto) ou \textcolor[HTML]{AFFE90}{toto} (toto).

\adjustUCRBG

rgb, cmyk, hsb, gray Ce sont les modèles supportés directement par PostScript. C'est pourquoi nous vous renvoyons à [1] pour une description de leurs propriétés et relations. Il existe une commande spécifique pour régler finement les mécanismes de * undercolor-removal * et * black-generation * durant la conversion vers le modèle cmyk, voir section 6.3.2 page 56 pour plus de détails.

cmy Il s'agit principalement d'un modèle pour les étapes de calcul intermédiaire. De ce fait, il s'agit d'un simple complément à **rgb**. En terme d'affichage, **cmy** est traité comme **cmyk** avec k=0.

Table 1 – Options de l'extension

Option	Description		
natural	(valeur par défaut.) Garde toutes les couleurs dans leur modèle, à l'exception de RGB (converti en rgb), HSB (converti en hsb), et Gray (converti en gray).		
rgb	Convertit toutes les couleurs en modèle rgb .		
cmy	Convertit toutes les couleurs en modèle cmy.		
cmyk	Convertit toutes les couleurs en modèle cmyk .		
hsb	Convertit toutes les couleurs en modèle hsb .		
gray	Convertit toutes les couleurs en modèle gray . Particulièrement utile pour simuler un rendu en noir et blanc d'une imprimante monochrome.		
RGB	Convertit toutes les couleurs en modèle RGB (et ensuite en rgb).		
HTML	Convertit toutes les couleurs en modèle HTML (et ensuite en rgb).		
HSB	Convertit toutes les couleurs en modèle HSB (et ensuite en hsb).		
Gray	Convertit toutes les couleurs en modèle Gray (et ensuite en gray).		
dvipsnames, dvipsnames*	Charge un ensemble de couleurs prédéfinies ¹ .		
svgnames, svgnames*	Charge un ensemble de couleurs prédéfinies selon la sépcification SVG 1.1^1 .		
x11names, x11names*	Charge un ensemble de couleurs prédéfinies selon la norme $\mathrm{Unix}/\mathrm{X}11^1.$		
table	Charge l'extension colortbl contenant les outils de colorisation des lignes, colonnes et cellules dans des tables.		
fixpdftex	Charge l'extension pdfcolmk permettant d'améliorer la gestion des couleurs de pdftex (voir section 2.15.2 page 35).		
hyperref	Permet de prendre en charge l'extension hyperref pour les expressions de couleur en définissant des clés additionnelles (voir section 2.10 page 32).		
prologue	Écrit des informations en début de fichier .xcp pour chaque définition de couleur (comme décrit en section 2.5.1 page 21).		
kernelfbox	Utilise la méthode du noyau LATEX pour dessiner des boîtes \f(rame)box ² .		
xcdraw	Utilise des commandes propres aux pilotes pour dessiner les encadrements et boîtes de couleur 2 .		
noxcdraw	(Valeur par défaut.) Utilise un code générique pour dessiner les encadrements et boîtes de couleur ² .		
fixinclude	Empêche la réinitialisation de couleur de dvips avant l'inclusion de fichier .eps (voir section 2.15.3 page 35).		
showerrors	(Valeur par défaut.) Affiche un message d'erreur si une couleur non définie est utilisée (comportement identique à celui de l'extension color originale).		
hideerrors	Affiche seulement une alerte en cas d'utilisation d'une couleur non définie et remplace cette couleur par du noir $(black)$.		
¹ Voir sect	tion 2.4.2 page 20. ² Voir section 2.6.2 page 26.		

${\it Chargement/Extension}$	colortbl	pdfcolmk	hyperref	pstricks	color	pstcol
Avant xcolor	non	non	permis	$permis^1$	non	non
Avec l'option xcolor	table	fixpdftex	_	_	_	_
Après xcolor	non	permis	permis	permis	non	non

¹ Les versions récentes de pstricks chargent xcolor par défaut.

Table 2 – Ordre de chargement des extensions

Table 3 – Modèles colorimétriques supportés

Gray wave	Gris lambda (nm)	$\{0, 1, \dots, N\}$ $[363, 814]$	N = 15
HSB	Teinte, Saturation, Luminosité	$\{0, 1, \dots, M\}^3$	M = 240
HTML	RRGGBB	$\{\texttt{000000}, \dots, \texttt{FFFFFF}\}$	
RGB	Rouge, Vert, Bleu	$\{0,1,\ldots,L\}^3$	L = 255
gray	gris	[0, 1]	
tHsb	teinte°, saturation, luminosité	$[0,H]\times[0,1]^2$	H = 360
Hsb	teinte°, saturation, luminosité	$[0,H]\times[0,1]^2$	H = 360
hsb	teinte, saturation, luminosité	$[0,1]^3$	
cmyk	cyan, magenta, jaune, noir	$[0,1]^4$	
cmy	cyan, magenta, jaune	$[0,1]^3$	
rgb	rouge, vert, bleu	$[0,1]^3$	
Nom	Couleurs de base/notions	Intervalle de valeur	Par défaut

L,M,N sont des nombres entiers positifs; H est un entier réel positif

HTML Ce modèle est dérivé de **rgb** afin de permettre l'entrée de paramètres de couleurs pour les pages web ou les fichiers CSS. Aussi, ce n'est pas un modèle colorimétrique en tant que tel mais plutôt une interface utilisateur commode. Il est important de mentionner que **HTML** accepte toutes les combinaisons de caractères 0–9, A–F, a–f, tant que la chaîne de caractères a une longueur de 6 caractères exactement. Cependant, les résultats de conversion en **HTML** consisteront en des nombres et des lettres *majuscules*.

Hsb, tHsb Premièrement, **Hsb** est un modèle « interface utilisateur » transformant $teinte \in [0,1]$ en $teinte^{\circ} \in [0,H]$, où H est donné par \def\rangeHsb{ $\langle H \rangle$ }. Aussi, si H=360, nous pouvons penser à un cercle ou une roue pour $\ref{decrire}$ le paramètre $teinte^{\circ}$.

Deuxièmement, **Hsb** est la base du **tHsb**, également nommé **Hsb** *réglé*, qui permet à l'utilisateur d'appliquer une transformation linéaire par morceaux sur *teinte*° en

\rangeHsb

\rangetHsb

déplaçant la $teinte^{\circ}$ sélectionnée en avant ou en arrière sur le cercle. La transformation est définie par \def\rangetHsb{ $x_1, y_1; x_2, y_2; \ldots$ } qui indique que $hue^{\circ} = x_1$ dans **tHsb** signifie $hue^{\circ} = y_1$ dans **Hsb**, etc. Par exemple, le jaune (yellow) est placé à 60° dans le cercle **Hsb** (le rouge (red) étant à 0°); cependant dans la plus plupart des cercles chromatiques servant aux artistes, le jaune (yellow) est à 120° . Ainsi, une entrée « 120, 60 » ferait sens si nous avions décidé de répliquer un cercle chromatique d'artiste par le biais de **tHsb**. Voir la section 6.3.6 page 60 pour la formule exacte de la transformation et les restrictions avancées, et la section 1.4 page 7 pour les cercles chromatiques et les accords de couleur. La figure 11 page 42 peut servir pour effectuer des comparaisons.

Exemple: '\def\rangetHsb{60,30;120,60;180,120;210,180;240,240}' correspond en fait au paramétrage par défaut de xcolor.

wave Avec ce modèle nous essayons de transformer les longueurs d'onde en un modèle de colorimétrique standard afin de réaliser une approximation de l'apparence visuelle des ondes lumineuses. Tandis que le spectre visible couvre un intervalle de valeur de 400 à 750 nm, l'implémentation dans xcolor permet de traiter toutes les longueurs d'onde qui ont une valeur absolue inférieur à 16383.99998 (le plus grand nombre que TEX puisse considérer comme une dimension). Toutefois, la probabilité d'obtenir une couleur différente du noir hors de plage de valeur [363, 814] est très précisément nulle. Aussi, la figure 1 page 37 illustre seulement l'intervalle de valeur mention ci-dessus. Notez qu'il n'est pas possible de convertir fidèlement les autres modèles en wave puisque ce dernier ne couvre qu'un ensemble limité de couleurs.

\rangeRGB \rangeHSB \rangeGray RGB, HSB, Gray Ce sont des modèles dérivés, transformant la plage de valeurs continue [0,1] des paramètres de **rgb**, **hsb** et **gray** en un ensemble de valeurs finies; ce qui nous nous fait les désigner par le terme de modèles entiers. Les constantes L, M, N de la table 3 sont définies par les commandes $\{L, M, N\}$, and $\{L, M\}$, and $\{L, M\}$. La modification de ces constantes peut être fait avant ou après que l'extension xcolor ait été chargée, par exemple :

```
\documentclass{article}
...
\def\rangeRGB{15}
\usepackage[dvips]{xcolor}
...
\GetGinDriver
\usepackage[\GinDriver]{hyperref}
...
\begin{document}
...
\def\rangeRGB{63}
```

2.2.2 Substitution de modéles colorimétriques individuels

\substitutecolormodel

 ${\langle mod\`ele\ source \rangle} {\langle liste\ de\ mod\`eles\ cibles \rangle}$

Substitue le $\langle mod\`ele\ source \rangle$ par le premier modèle disponible apparaissant dans la $\langle liste\ de\ mod\`eles\ cibles \rangle$. Seuls les modèles de type $\langle mod\`ele\ num\'erique \rangle$ sont possibles; tous les changements sont locaux au groupe courant, mais un \xspace préfixé est respecté.

Exemple: supposons que le pilote actuel a une implémentation incorrecte de **hsb** tandis que **rgb** paraît correct. Alors \substitutecolormodel{hsb}{rgb} pourrait être un bon choix puisqu'il convertit — à partir de ce point — toutes les définitions des couleurs **hsb** en spécifications du modèle **rgb** par le biais des algorithmes de xcolor, sans toucher aux autres modèles.

2.2.3 Changement du modèle colorimétrique cible dans un document

\selectcolormodel

 $\{\langle num\ model \rangle\}$

Définit le modèle cible au $\langle modèle numérique \rangle$, où ce dernier est un des noms de modèles autorisés comme option de l'extension (autrement dit, natural, rgb, cmy, cmyk, hsb, gray, RGB, HTML, HSB, Gray), voir figure 4 page 39 pour un exemple. Il y a deux possibilités pour rendre possible la conversion au modèle cible :

\ifconvertcolorsD

— au moment de la *définition* des couleurs ⁶ (autrement dit dans \definecolor et ses assimilées); ceci est contrôlé par la bascule \ifconvertcolorsD;

\ifconvertcolorsU

— au moment de l'utilisation des couleurs (immédiatement avant que la couleur soit affichée, ce qui traite qui ont été définies dans d'autres modèles ou qui ont été définies directement comme avec \color[rgb]{.1,.2,.3}); ceci est contrôlé par la bascule \ifconvertcolorsU.

Les deux bascules valent « vrai » en sélectionnant n'importe quel modèle, à l'exception de natural qui leur donne la valeur « faux ». Ceci autorise d'autres choix grâce à une option d'extension ou à \selectcolormodel. Pourquoi ne convertissonsnous pas toutes les couleurs au moment de l'utilisation? Si de nombreuses couleurs sont impliquées, cela peut économiser du temps de traitement lorsque les conversions sont déjà faites au moment des définitions. De meilleures performances peuvent être obtenues par \usepackage[rgb,...]{xcolor}\convertcolorsUfalse, ce qui est en fait la façon dont xcolor fonctionnait jusqu'à la version 1.07.

2.3 Arguments et terminologie

Avant de décrire en détail les commandes liées aux couleurs de xcolor, nous définissons plusieurs éléments ou identifiants qui apparaissent de façon répétée dans les arguments de ces commandes. Une vue générale de la syntaxe est donnée dans la table 4 page suivante.

2.3.1 Remarques additionnelles et restrictions sur les arguments

Chaînes basiques et nombres Ces arguments ne nécessitent pas beaucoup

 $\langle vide
angle \ \langle moins
angle \ \langle plus
angle \ \langle ent
angle \ \langle num
angle \ \langle déc
angle \ \langle div
angle$

6. Ceci signifie que toute couleur nouvellement définie sera d'abord convertie dans le modèle cible, puis sauvegardée.

Table 4 – Arguments et terminologie

Élement	Chaîne de remplacement	
$\langle vide \rangle$	\rightarrow chaîne vide ''	
$\langle moins \rangle$	\rightarrow chaîne non vide contenant un ou plusieurs signes '-'	
$\langle plus \rangle$	\rightarrow chaîne non vide contenant un ou plusieurs signes '+'	
$\langle ent \rangle$	\rightarrow nombre entier	(entier)
$\langle num \rangle$	\rightarrow nombre entier positif	(nombre)
$\langle d\acute{e}c angle$	\rightarrow nombre réel	$(d\acute{e}cimal)$
$\langle div \rangle$	\rightarrow nombre réel non nul	(diviseur)
$\langle pct \rangle$	\rightarrow nombre réel dans l'intervalle $[0, 100]$	(pourcentage)
$\langle id \rangle$	\rightarrow chaîne non vide contenant des lettres et des chiffres	(identifiant)
$\langle id \acute{e}tendu \rangle$	$\begin{array}{l} \rightarrow \langle id \rangle \\ \rightarrow \langle id \rangle_1 = \langle id \rangle_2 \end{array}$	
$\langle liste\text{-}id \rangle$	$ ightarrow$ $\langle id$ étendu $ angle_1$, $\langle id$ étendu $ angle_2$, \ldots , $\langle id$ étendu $ angle_l$	
$\langle nom \rangle$	$\rightarrow \langle id \rangle$ \rightarrow '.'	$(nom\ explicite) \ (nom\ implicite)$
$\langle mod\`{e}le\ central \rangle$	$\rightarrow \texttt{`rgb'}, \texttt{`cmy'}, \texttt{`cmyk'}, \texttt{`hsb'}, \texttt{`gray'}$	$(mod\`{e}les\ centraux)$
$\langle mod\`ele\ num\'erique \rangle$		(modèles entiers) (modèles décimaux)
$\langle mod\`{e}le \rangle$	$ ightarrow \langle mod\`ele\; num angle$	$(mod\`{e}les\ num\'{e}riques)$
	\rightarrow 'named'	$(pseudo-mod\`{e}le)$
$\langle liste-mod\`ele \rangle$	$ \rightarrow \langle mod \grave{e} e \rangle_1 / \langle mod \grave{e} e \rangle_2 / \dots / \langle mod \grave{e} e \rangle_m $ $ \rightarrow \langle mod \grave{e} e central \rangle : \langle mod \grave{e} e \rangle_1 / \langle mod \grave{e} e \rangle_2 / \dots / \langle mod \grave{e} e \rangle_n / \langle mod \grave$	$(mod\`{e}les\ multiples)$
$\langle sp\'ec angle$	\rightarrow liste de valeurs numériques séparées par des virgules \rightarrow liste de valeurs numériques séparées par des virgules \rightarrow nom d'une couleur « nommée »	(spécification explicite) (spécification explicite) (spécification implicite)
$\langle liste\text{-}sp\'{e}c \rangle$	$\rightarrow \langle sp\acute{e}c \rangle_1 / \langle sp\acute{e}c \rangle_2 / \dots / \langle sp\acute{e}c \rangle_m$	$(sp\'{e}cifications\ multiples)$
$\langle type \rangle$	$ ightarrow \langle vide angle \ ightarrow $ 'named', 'ps'	
$\langle expr \rangle$	$ ightarrow \langle pr\'efixe angle \langle nom angle \langle expr \ de \ m\'elange angle \langle suffixe angle$	(expression de couleur standard)
$\langle pr\!\acute{e}\!f\!ixe \rangle$	$ ightarrow \langle vide angle \\ ightarrow \langle moins angle$	$(indicateur\ compl\'ementaire)$
$\langle expr\ de\ m\'elange \rangle$	$ \rightarrow !\langle pct \rangle_1 !\langle nom \rangle_1 !\langle pct \rangle_2 !\langle nom \rangle_2 ! \dots !\langle pct \rangle_n !\langle nom \rangle_n $ $ \rightarrow !\langle pct \rangle_1 !\langle nom \rangle_1 !\langle pct \rangle_2 !\langle nom \rangle_2 ! \dots !\langle pct \rangle_n $	(expression de mélange complète) (expression de mélange incomplète)
$\langle suffixe \rangle$		(* series step *) (* series access *)
$\langle expr \ \'etendue \rangle$		
$\langle expr\ fonctionnellle \rangle$		expression fonctionnelle de couleur)
$\langle fonction \rangle$	→ 'wheel', 'twheel'	(fonctions de couleur)
$\langle couleur \rangle$	$\rightarrow \langle expr \ de \ couleur \rangle \langle expr \ fonctionnelle \rangle_1 \langle expr \ fonctionnelle \rangle_2 \langle expr \ fonctionnel$	
$\langle expr \ de \ couleur \rangle$.5 ,
Remarques:	chaque \rightarrow indique une chaîne de remplacement possible gauche; cependant, des restrictions avancées dépendant Voir le texte principal pour plus de détails. La chaîne 'to les apostrophes. i,j,k,l,m,n indiquent des entiers positi	es du contexte peuvent s'appliquer. to' doit toujours être comprise sans

d'explications. Cependant, dans la mesure où nous traitons ici des valeurs numériques, il est important de noter que les nombres réels dans (La) T_EX — tant qu'ils sont utilisés pour des longueurs, dimensions ou espaces — sont limités à une valeur maximale inférieure strictement à 16384. Cette contrainte, dans l'enchainement des calculs numériques, doit aussi être respectée par tous les résultats intermédiaires, ce qui implique généralement des restrictions plus larges. Comme xcolor utilise énormément les registres internes de dimension de T_EX pour la plupart des calculs, ce point doit être gardé à l'esprit à chaque fois que des expressions $\langle expr$ étendue \rangle doivent être utilisées.

⟨nom⟩ Noms de couleur Un ⟨nom⟩ indique le nom déclaré (ou le nom qui va être déclaré) d'une couleur ou d'une ★ série de couleur ★; il peut être déclaré explicitement par l'une des commandes suivantes : \definecolor, \providecolor, \colorlet, \definecolorset, \providecolorset, \definecolorseries, \definecolors, \providecolors. Par ailleurs, le nom de couleur réservé '.' est déclaré implicitement et indique la couleur actuelle. En fait, au-delà des chiffres et lettres, certains autres caractères peuvent également être utilisés pour les déclarations de ⟨nom⟩ mais les restrictions données évitent les incompréhensions et garantissent la compatibilité avec les futures évolutions de xcolor.
Exemples : 'red', 'MonVertSpecial1980', '.'.

 $\langle mod\`{e}le \; central
angle \ \langle mod\`{e}le \; num\'{e}rique
angle \ \langle mod\`{e}le
angle$

Modèles colorimétriques

La différence faite entre les modèles centraux (rgb, cmy, cmyk, hsb, gray), les modèles entiers (RGB, HTML, HSB, Gray), les modèles décimaux (Hsb, tHsb, wave) et les pseudo-modèles (actuellement 'named', 'ps') s'explique simplement : les modèles centraux avec leurs paramètres basés sur l'intervalle unité [0,1] permettent de faire plus aisément tout type de calculs, tandis que le but des modèles entiers est principalement de faciliter la saisie des paramètres en entrée (transformés ensuite en ceux d'un des modèles centraux). Enfin, les modèles décimaux Hsb et tHsb sont des versions de hsb pensés pour des buts spécifiques, tandis que wave et le pseudo-modèle 'named' ont un statut spécial dans la mesure où ils ne sont pas pensés pour des calculs : s'il est normalement possible de convertir une couleur de ces modèles en une d'un autre modèle, l'inverse ne l'est pas. La situation est bien pire pour le pseudo-modèle 'ps' : ces couleurs contenant du code PostScript ne sont pas transparentes pour TeX.

Spécifications de couleur L'argument (spéc) — qui spécifie les paramètres d'une couleur — dépend évidemment du modèle colorimétrique sous-jacent. Une différence est faite entre les spécifications explicite et implicite, la première faisant référence à des paramètres numériques comme expliqué en table 3 page 12, la seconde — idéalement — faisant référence à des noms définis par le pilote graphique. Exemples: '.1,.2,.3', '.1 .2 .3', '0.56789', '89ABCD', 'ForestGreen'.

 $\langle liste-mod\`{e}le \rangle$ $\langle liste-sp\'{e}c \rangle$ Modèles et spécifications multiples Ces arguments apparaissent toujours par paires (explicites ou implicites) dans les commandes de définition de couleur

suivantes: \definecolor, \providecolor, \definecolorset, \providecolorset. Tout d'abord, $\langle mod\`ele\text{-}sp\'ec \rangle$ est réconcilié avec le modèle cible courant (fixé par exemple avec une option de l'extension ou la commande \selectcolormodel; dans le cas où il n'existe de modèle correspondant, le premier modèle de la liste est choisi. Ensuite, la spécification de couleur correspondante sera sélectionnée dans $\langle liste\text{-}sp\'ec \rangle$, de telle façon à ce que le traitement aboutisse à une paire $(\langle mod\`ele \rangle, \langle sp\'ec \rangle)$ cohérente. Ceci explique pourquoi il n'y a plus d'ambiguité possible dans la définition de couleur réellement suivie. La forme étendue $\langle mod\`ele \rangle$ central \rangle : $\langle mod\`ele \rangle_1 / \langle mod\`ele \rangle_2 / \dots / \langle mod\`ele \rangle_m$ provoque la conversion immédiate de la $\langle sp\'ec \rangle$ adéquate au $\langle mod\`ele$ central \rangle ; un modèle inconnu sera tout simplement ignoré ici, sans aucun commentaire.

Exemples: 'rgb/cmyk/named/gray', '0,0,0/0,0,0,1/Black/0', 'rgb:cmy/hsb'.

(type) L'argument de type Ceci est utilisé uniquement dans le contexte de commandes de définition de couleur, voir la description de \definecolor et assimilées.

 $\langle expr \rangle \ \langle pr\'efixe \rangle \ \langle expr \ de \ m\'elange \rangle \ \langle suffixe \rangle$

Expressions standards de couleur Ces expressions servent d'outils pour spécifier facilement une certaine forme de mélange de couleur en cascade, par ailleurs décrit en détail en section 2.3.2. L'argument $\langle préfixe \rangle$ détermine si la couleur à retenir est celle qui suit ou sa complémentaire : un nombre impair de signes négatifs indique que la couleur résultant de l'expression préfixée doit être convertie en sa couleur complémentaire. Une expression de mélange incomplète est une juste une abbréviation d'une expression de mélange complère avecc $\langle nom \rangle_n = \text{white}$, afin d'éviter quelques saisies dans le cas des teintes. La chaîne $\langle suffixe \rangle$ est généralement vide mais elle offre quelques fonctionnalités additionnelles dans le cas de \approx color series \approx : les cas où la chaîne n'est pas vide demandent à ce que

- le $\langle nom \rangle$ indique le nom d'une \times color series \times ;
- l'\(\expr de m\'elange\) est complète.

Exemples: 'red', '-red', '--red!50!green!12.345', 'red!50!green!20!blue', 'truc!!+', 'truc!![7]', 'truc!25!red!!+++', 'truc!25!red!70!green!![7]'.

 $\langle expr \ \'etendue \rangle$

Expressions de couleur étendues Ces expressions fournissent une autre méthode pour mélanger des couleurs, voir section 2.3.3 page 19 pour plus d'informations. La forme raccourcie

$$\langle mod\`ele\ central \rangle : \langle expr \rangle_1, \langle d\'ec \rangle_1; \langle expr \rangle_2, \langle d\'ec \rangle_2; \dots; \langle expr \rangle_k! \langle d\'ec \rangle_k$$

est une abbréviation pour le cas spécial (et probablement plus courant)

$$\langle mod\`ele\ central \rangle$$
, $\langle div \rangle$: $\langle expr \rangle_1$, $\langle d\'ec \rangle_1$; $\langle expr \rangle_2$, $\langle d\'ec \rangle_2$; ...; $\langle expr \rangle_k$! $\langle d\'ec \rangle_k$

avec la définition suivante (impliquant une somme non nulle de tous les coefficients $\langle d\acute{e}c\rangle_{\kappa})$:

$$\langle div \rangle := \langle d\acute{e}c \rangle_1 + \langle d\acute{e}c \rangle_2 + \dots + \langle d\acute{e}c \rangle_k \neq 0.$$

Exemples: 'rgb:red,1', 'cmyk:red,1;-green!25!blue!60,11.25;blue,-2'.

 $\langle expr \ fonctionnelle \rangle \ \langle fonction \rangle$

Expressions fonctionnelles Ces expressions étendent les fonctionnalités des expressions standards ou étendues en récupérant le résultat de ces expressions pour effectuer des calculs complémentaires. Le nombre d'arguments peut varier entre les différentes fonctions, voir section 2.3.4 page suivante pour plus d'informations. Exemples: '>wheel,30', '>wheel,30', '>twheel,1,12', '>twheel,-11,12'.

 $\langle couleur \rangle$ $\langle expr \ de \ couleur \rangle$ Couleurs Au final, $\langle couleur \rangle$ est un argument générique recouvrant les différents concepts de spécification des couleurs. Ceci signifie qu'à chaque fois qu'un argument $\langle couleur \rangle$ est utilisable, la totalité des noms et expressions vues ci-dessus peuvent être utilisées.

2.3.2 Signification des expressions de couleur standards

Est expliquée maintenant comme l'expression

```
\langle pr\'efixe \rangle \langle name \rangle! \langle pct \rangle_1! \langle name \rangle_1! \langle pct \rangle_2! \dots! \langle pct \rangle_n! \langle name \rangle_n \langle suffixe \rangle
```

est interprêtée et traitée :

- 1. Tout d'abord, le modèle et les paramètres de couleur de $\langle nom \rangle$ sont extraits pour définir une couleur temporaire $\langle temp \rangle$. Si $\langle suffixe \rangle$ est de la forme '!! $[\langle num \rangle]$ ', alors $\langle temp \rangle$ sera la couleur correspondante $\langle num \rangle$ (en accès direct) de la série de couleur $\langle nom \rangle$.
- 2. Alors un mélange de couleur, consistant en $\langle pct \rangle_1 \%$ de la couleur $\langle temp \rangle$ et $(100 \langle pct \rangle_1)\%$ de la couleur $\langle nom \rangle_1$ est calculé; ce dernier devient la nouvelle couleur temporaire $\langle temp \rangle$.
- 3. L'étape précédente est répétée pour toutes les paires de paramètres restantes. $(\langle pct \rangle_2, \langle nom \rangle_2), \ldots, (\langle pct \rangle_n, \langle nom \rangle_n)$.
- 4. Si $\langle préfixe \rangle$ contient un nombre impair de signes négactifs '-', alors $\langle temp \rangle$ sera changée en sa couleur complémentaire.
- 5. Si $\langle suffixe \rangle$ est de la forme '!!+', '!!++', '!!+++', etc. un nombre de step commands (= nombre de signes '+') sont effectuées sur la série de couleur sous-jacente $\langle nom \rangle$. Ceci est sans conséquence pour la couleur $\langle temp \rangle$.
- 6. La couleur $\langle temp \rangle$ est enfin affichée ou sert comme donnée en entrée pour d'autres opérations, selon la commande utilisée.

Notez que, dans une expression $\langle temp \rangle ! \langle pct \rangle_{\nu} ! \langle nom \rangle_{\nu}$ typique de l'étape 2, si $\langle pct \rangle_{\nu} = 100$, la couleur $\langle temp \rangle$ est directement utilisée sans plus de transformation. Si $\langle pct \rangle_{\nu} = 0$, c'est alors la couleur $\langle name \rangle_{\nu}$ qui est utilisée. Dans les cas de véritables mélanges $(0 < \langle pct \rangle_{\nu} < 100)$, les deux couleurs impliquées peuvent être définies dans des modèles colorimétriques différents, par exemple $\langle definecolor\{foo\}\{rgb\}\{...\}$ et $\langle definecolor\{bar\}\{cmyk\}\{...\}$. En général, la seconde couleur, $\langle name \rangle_{\nu}$, est convertie dans le modèle de la première couleur, $\langle temp \rangle$, puis le mélange est calculé dans le modèle ⁷ Ainsi, $\langle temp \rangle ! \langle pct \rangle_{\nu} ! \langle nom \rangle_{\nu}$ et

^{7.} Exception : afin d'éviter des résultats inattendus, cette règle est inversée si $\langle temp \rangle$ est issue du modèle **gray** ; dans ce cas, elle est convertie dans le modèle associé à $\langle nom \rangle_{\nu}$.

 $\langle nom \rangle_{\nu}! \langle 100-pct \rangle_{\nu}! \langle temp \rangle$ qui devraient être théoriquement équivalents, peuvent ne pas avoir des résultats visuels identiques.

Les figures 5 à 6 page 39 montrent de premières applications des couleurs et expressions. D'autres exemples sont donnés en figure 3 page 38. Par ailleurs, un grand nombre d'exemples peuvent être trouvé dans [9].

2.3.3 Signification des expressions de couleur étendues

Une expression de couleur étendue

$$\langle core\ model \rangle : \langle expr \rangle_1$$
, $\langle dec \rangle_1$; $\langle expr \rangle_2$, $\langle dec \rangle_2$; ...; $\langle expr \rangle_k$, $\langle dec \rangle_k$

imite la manière dont les peintres mélangent les couleurs : en indiquant une liste de couleurs, chaque couleur étant associée à un facteur $\langle d\acute{e}c \rangle$. Dans une telle $\langle expr$ étendue \rangle , chaque expression standard de couleur $\langle expr \rangle_{\kappa}$ sera convertie dans le $\langle modèle\ central \rangle$ et le vecteur résultant est multiplié par $\langle d\acute{e}c \rangle_{\kappa}/\langle div \rangle$, où

$$\langle div \rangle := \langle d\acute{e}c \rangle_1 + \langle d\acute{e}c \rangle_2 + \dots + \langle d\acute{e}c \rangle_k.$$

Ensuite, la somme de tous ces vecteurs est calculée.

Exemple: mélanger 4 parts de red (rouge), 2 parts de vert (green), et une part de jaune (yellow) permet d'obtenir par le biais de \color{rgb:red,4;green,2;yellow,1}. Essayer le même mélange en mettant -1 part de jaune (yellow) au lieu d'une fait obtenir. Notez que ce mécanisme peut être aussi utilisé pour afficher une (expression de) couleur individuelle dans un certain modèle colorimétrique: \color{rgb:yellow,1} permet une telle conversion. La forme générale

$$\langle mod \grave{e} le \; central \rangle$$
, $\langle div \rangle$: $\langle expr \rangle_1$, $\langle d\acute{e}c \rangle_1$; $\langle expr \rangle_2$, $\langle d\acute{e}c \rangle_2$; ...; $\langle expr \rangle_k$, $\langle d\acute{e}c \rangle_k$

exécute la même opération avec pour seule différence que le diviseur $\langle div \rangle$ est spécifié au lieu d'être calculé. Dans l'exemple ci-dessus, nous obtenons une version plus sombre par le biais de \color{rgb,9:red,4;green,2;yellow,1}. Notez qu'il n'est pas interdit de spécifier un argument $\langle div \rangle$ qui soit plus petit que la somme de tous les $\langle dec \rangle_{\kappa}$, de telle façon à ce que certains des paramètres de spécification des couleurs puissent être hors de l'intervalle [0, 1]. Le traitement de l'équation 7 gère ce type de cas.

2.3.4 Fonctions de couleur

Les fonctions de couleur utilisent une liste d'arguments séparés par des virgules et elles servent à transformer la *couleur donnée* (autrement dit le résultat des calculs précédant l'appel de la fonction) en une nouvelle couleur.

wheel Calculs associés aux cercles chromatiques Ces fonctions permettent de détwheel terminer des couleurs liées par des relations harmoniques basées sur les cercles chromatiques (voir section 1.4 page 7). Les arguments sont ici $\langle angle \rangle$ ou $\langle angle \rangle$, $\langle cercle\ complet \rangle$, le premier servant d'abbréviation à $\langle angle \rangle$, \backslash rangeHsb. Le second argument $\langle cercle\ complet \rangle$ indique de combien d'unités un cercle complet est constitué tandis que le premier argument indique de combien d'unités doit être faite la rotation à appliquer à la couleur donnée. Pour cela, la couleur donnée est tout d'abord convertie en **Hsb** (dans le cas de wheel), ce qui génère les paramètres $teinte^\circ$, saturation, et $luminosit\acute{e}$. Ensuite,

$$teinte^{\circ} := teinte^{\circ} + \frac{\langle angle \rangle}{\langle cercle\ complet \rangle} \cdot H, \qquad teinte := u\left(\frac{teinte^{\circ}}{H}\right)$$
 (4)

où u est la fonction de réduction d'intervalle de l'équation 7 et H = rangeHsb. La saturation et la luminosité étant laissées inchangées, le modèle final est **hsb**. La fonction twheel fonctionne de façon similaire, mais ces arguments se basent sur **tHsb** au lieu de **Hsb**. Des exemples sont présentés en figure 12 page 43.

2.4 Couleurs prédéfinies

2.4.1 Couleurs qui sont toujours disponibles

Dans le fichier xcolor.sty, les noms de couleur suivants sont définis : red (,) green (,) blue (,) cyan (,) magenta (,) yellow (,) black (,) gray (,) darkgray (,) lightgray (,) brown (,) lime (,) olive (,) orange (,) pink (,) purple (,) teal (,) violet (.)

Cet ensemble de base de couleurs peut être utilisé sans aucune restriction dans tout type d'expression de couleur, comme expliqué en section 2.3 page 14.

2.4.2 Ensembles additionnels de couleurs

Il existe également des ensembles de noms de couleur qui peuvent être chargés par le biais d'options d'extension, toujours disponibles en deux variantes : une version « normale » (par exemple, dvipsnames) et une version « étoilée » (par exemple, dvipsnames*). La première variante définit toutes les couleurs immédiatement, tandis que la seconde applique le mécanisme de la définition différée. Dans ce dernier cas, les noms de couleur individuels doivent être activés par les commandes \definecolors ou \providecolors, comme décrit dans la section 2.5.4 page 24, avant de pouvoir être appliqués dans un document.

- dvipsnames/dvipsnames* charge un ensemble de 68 noms de couleur cmyk telles que définies par le pilote dvips. Cependant, ces couleurs peuvent être utilisées avec tous les pilotes supportés.
- svgnames/svgnames* charge un ensemble de 151 noms de couleur ⁸ rgb respectant la spécification SVG 1.1 [17] ⁹, augmenté de 4 noms tirés du fichier rgb.txt appartenant aux distributions Unix/X11. Notez que HTML4

 $^{8.\,}$ En fait, les noms chargés représentent 141 couleurs différentes.

^{9.} Plus exactement, la spécification indiquée liste uniquement les noms écrits en minuscules. De plus, les définitions originales sont données en paramètres **RGB** et ont été converties en **rgb** par l'auteur.

- accepte un sous-ensemble de 16 noms de couleur (en utilisant des spécifications identiques), voir [16] et la section 4 page 44.
- x11names/x11names* charge un ensemble de 317 noms de couleur ¹⁰ rgb qui sont une simple variation sur un sous-ensemble de l'ensemble SVG mentionné précédemment, respectant le fichier rgb.txt appartenant aux distributions Unix/X11 ¹¹. Pour obtenir les 752 noms de couleur de rgb.txt sans trop d'effort :
 - chargez x11names ainsi que svgnames;
 - mettez les initiales en majuscule et supprimez les espaces : DarkSlate-Gray () au lieu de dark slate gray () par exemple;
 - les noms X11 sans les nombres sont identiques aux couleurs SVG sauf dans 5 cas : utilisez Gray0 (), Grey0 (), Green0 (), Maroon0 (), Purple0 () au lieu de Gray (), Grey (), Green (), Maroon (), Purple () pour obtenir les couleurs X11 d'origine;
 - pour $N=0,1,\ldots,100$, utilisez '[gray] $\{N/100\}$ ' ou 'black! 100-N' au lieu de grayN () ou greyN ().

Les noms des couleurs ainsi que leur visualisation sont présentés en section 4 page 44. La section 2.15.1 page 34 décrit comment traiter les doublons de noms lors de l'utilisation conjointe de svgnames et dvipsnames dans un même document. Voir également [9] avec son ensemble systématique de couleurs et des exemples de mélange.

2.5 Définition de couleur

2.5.1 Couleurs ordinaires et nommées

Dans l'extension color il y a une distinction entre les « couleurs » (définies par la commande \definecolor) et les « couleurs nommées » (définies par \DefineNamedColor, ce qui est autorisé uniquement dans le préambule). Chaque fois qu'une couleur ordinaire est utilisée dans un document, elle est déposée dans une commande \special qui contient une description numérique de la couleur — dépendante du pilote — et qui est écrite dans le fichier .dvi. Les couleurs nommées, elles, présentent l'opportunité de stocker les valeurs numériques à une place centrale tandis que, pendant leur utilisation, les couleurs peuvent être identifiées par leur nom, ce qui permet des traitements ultérieurs si nécessaire par le périphérique de sortie.

Tous les pilotes livrés avec l'extension standard graphics supportent le formalisme de la définition et de l'appel de « couleurs nommées ». Cependant, le support réel du concept derrière cela, autrement dit employer des noms au lieu des paramètres, va d'« inexistant » à « total ». Voici une illustration de la situation actuelle avec trois pilotes différents.

dvips traite très bien le concept de « couleur nommée » ; les équivalents
 PostScript des noms de couleur définis par dvipsnames sont chargés — à

 $^{10.\ {\}rm Ces}$ noms représentent 315 couleurs différentes.

^{11.} Une nouvelle fois, les définitions originales sont données en paramètres **RGB** et ont été converties en **rgb** par l'auteur.

moins qu'ils ne soient désactivés — automatiquement par dvips. Cependant les noms additionnels doivent être défini à l'interpréteur PostScript par une sorte de fichier de préambule. Depuis la version 2.01, xcolor propose une solution intégrée pour effectuer cette tâche : en utilisant l'option d'extension prologue, un fichier de préambule PostScript xcolor.pro est chargé par dvips. En complément, avec cette option, chaque commande de définition de couleur 12 (\definecolor, \colorlet, etc.) génère un code PostScript enregistré dans un fichier auxiliaire d'extension .xcp (abbréviation de « xcolor prologue »). Ce fichier est également chargé par dvips comme préambule, rendant ainsi disponibles tous les noms de couleur à l'interpréteur PostScript Bien entendu, le fichier .xcp peut être édité avant que dvips ne l'utilise, ce qui permet de changer les paramètres de couleur spécifiques au pilote à un endroit central. Notez que le code PostScript est constitué de façon similaire à color.pro : seuls les nouveaux noms sont définis. Ceci permet de précharger d'autres fichiers de préambule avec des définitions de couleur qui ne sont pas détruites par xcolor. En contrepartie, ceci impose à l'utilisateur de prendre soin de la redéfinition des noms de couleur.

Exemple : $\colorlet{foo}{red}\colorlet{foo}{blue}\color{foo} va basculer la couleur à bleu (blue) dans la logique usuelle de xcolor, bien que le fichier .ps va afficher rouge (red) (à moins que foo n'ait été défini différemment avant).$

Il faut souligner que ce mécanisme est employé uniquement avec l'option prologue. Sans cela, les couleurs « nommées » prédéfinies activées par l'option dvipsnames (sans employer aucune teinte, nuance, expression de couleur, etc.) peuvent être utilisées de cette manière, toutes les autres couleurs « nommées » sont inconnues de PostScript.

- dvipdfm supporte seulement les couleurs dvipsnames standard car elles sont décrites dans le programme dvipdfm lui-même; il ne semble pas y avoir de façon de charger un fichier de préambule défini par l'utilisateur.
- pdftex ne permet pas le support conceptuel, toutes les couleurs « nommées » étant converties immédiatement en leur représentation numérique. En conséquence, ceci permet d'utiliser des définitions et un usage des couleurs nommées sans restriction (même si cela n'offre aucune valeur ajoutée ici).

Typiquement, un visualisateur .dvi aura des difficulés à afficher les couleurs « nommées » définies par l'utilisateur. Par exemple, le visualisateur de MiKTEX, Yap, affiche actuellement uniquement les couleurs « nommées » de l'ensemble dvipsnames. Aussi, à chaque fois que l'option prologue est utilisée en lien avec l'option dvips, toutes les autres couleurs sont restituées en noir. Cependant, après le traitement par dvips, un visualisateur PostScript affichera les bonnes couleurs.

^{12.} Ceci est vrai non seulement pour le préambule du document mais aussi pour tout le corps du document.

2.5.2 Définition de couleur dans xcolor

\definecolor

 $[\langle type \rangle] \{\langle nom \rangle\} \{\langle liste-mod\`{e}le \rangle\} \{\langle liste-sp\'{e}c \rangle\}^{13}$

Il s'agit d'une des commandes qui peut être utilisée pour assigner un $\langle nom \rangle$ à une couleur spécifique. La couleur est ensuite connue du système (dans le groupe où elle est définie) et peut être utilisée dans toute expression de expression, comme expliquée en section 2.3 page 14. La commande remplace à la fois \DefineNamedColor et \definecolor de color. Notez que la définition d'un $\langle nom \rangle$ de couleur existant déjà est écrasée. La variable \tracingcolors contrôle si cet écrasement est indiqué dans le fichier « log » ou pas (voir section 2.13 page 33 pour plus d'informations). Les arguments sont décrits en section 2.3 page 14. Aussi, des expressions valides définissant des couleurs sont, par exemple :

- \definecolor{red}{rgb}{1,0,0},
- \definecolor{red}{rgb/cmyk}{1,0,0/0,1,1,0},
- \definecolor{red}{hsb:rgb/cmyk}{1,0,0/0,1,1,0},
- \definecolor[named]{Black}{cmyk}{0,0,0,1},
- \definecolor{myblack}{named}{Black},

où la dernière commande est équivalente à \colorlet{myblack}{Black} (voir ci-dessous); la deuxième commande définit rouge (red) dans le modèle rgb ou cmyk selon la paramètre actuel du modèle cible, tandis que la troisième convertit la couleur au modèle hsb avant d'être enregistré. Notez qu'il existe une version spéciale associée à pstricks, comme décrit en section 2.11 page 32.

\providecolor

 $[\langle type \rangle] \{\langle nom \rangle\} \{\langle liste-mod\`{e}le \rangle\} \{\langle liste-sp\'{e}c \rangle\}$

Cette commande est similaire à \definecolor à ceci près que la couleur $\langle nom \rangle$ est définie seulement si elle n'existe pas déjà.

\colorlet

 $[\langle type \rangle] \{\langle nom \rangle\} [\langle modèle\ num\'erique \rangle] \{\langle couleur \rangle\}$

Cette commande copie la couleur obtenue avec $\langle couleur \rangle$ dans $\langle name \rangle$. Si $\langle modèle num\'erique \rangle$ n'est pas vide, $\langle couleur \rangle$ est tout d'abord converti dans le modèle spécifié avant que $\langle name \rangle$ ne soit défini. Le pseudo-modèle 'named' n'est pas autorisé ici mais il peut cependant être spécifié dans l'argument $\langle type \rangle$. Notez qu'une couleur nommée $\langle nom \rangle$ définie auparavant sera écrasée.

Exemple : \colorlet{tableheadcolor}{gray!25} a été utilisé dans le préambule du document. Dans la plupart des tables, la première ligne est mise en forme en utilisant la commande \rowcolor{tableheadcolor}.

2.5.3 Définition d'ensembles de couleur

\definecolorset

 $[\langle type \rangle] \{\langle liste-mod\`ele \rangle\} \{\langle t\^ete \rangle\} \{\langle queue \rangle\} \{\langle ensemble-sp\'ec \rangle\}$

Cette commande facilite la construction d'un ensemble de couleurs, autrement dit un ensemble (potentiellement vaste) de couleurs individuelles ayant en commun une même $\langle liste-mod\`ele \rangle$ et un même $\langle type \rangle$. Ici, $\langle ensemble-sp\'ec \rangle = \langle nom \rangle_1, \langle liste-sp\'ec \rangle_1; \ldots; \langle nom \rangle_l, \langle liste-sp\'ec \rangle_l$ ($l \geq 1$ nom/paires de liste de sp\'ecification). Les couleurs individuelles sont construites par des commandes

^{13.} Avant la version 2.00, cette commande était appelée \xdefinecolor, cette dernière restant disponible pour des raisons de compatibilité.

 $\label{eq:color_define} $$ \definecolor[\langle type \rangle] {\langle t\hat{e}te \rangle \langle nom \rangle_{\lambda} \langle queue \rangle} {\langle liste-mod\hat{e}le \rangle} {\langle liste-sp\acute{e}c \rangle_{\lambda}} $$$

où $\lambda = 1, \ldots, l$. Par exemple,

- \definecolorset{rgb}{}{red,1,0,0;green,0,1,0;blue,0,0,1} peut être utilisé pour définir les couleurs de base rouge (red), vert (green), et bleu (blue); 14
- \definecolorset{rgb}{x}{10}{red,1,0,0;green,0,1,0;blue,0,0,1}
 définit les couleurs xred10 (), xgreen10 () et xblue10 ().

\providecolorset

 $[\langle type \rangle] \{\langle liste-mod \hat{e}le \rangle\} \{\langle t\hat{e}te \rangle\} \{\langle queue \rangle\} \{\langle ensemble-sp\'ec \rangle\}$

Cette commande, similaire à \definecolorset, se base sur \providecolor; ainsi les couleurs individuelles ne sont définies que si elles n'existent pas déjà.

2.5.4 Définitions immédiates et différées

Traditionnellement, la définition d'une couleur comme décrit ci-dessus conduit à la construction immédiate d'une commande contenant au moins l'information nécessaire au pilote pour afficher la couleur souhaitée. Ainsi, définir par exemple 300 couleurs en chargeant un large ensemble de couleurs prédéfinies va créer 300 nouvelles commandes, bien que la plupart d'entre elles — sauf dans des documents listant délibérément les couleurs — ne soient pas utilisées. Avec le développement de la mémoire des ordinateurs — augmentation en taille, diminution du prix — les récentes implémentations de TFX ont augmenté leur capacité de mémoire interne disponible pour les chaînes, commandes, etc. Cependant, la mémoire restant finie, il peut être toujours utile (ou occasionnellement nécessaire) de disposer d'une méthode permettant de réduire un peu les besoins de mémoire. C'est ici qu'intervient la définition de couleur différée. Son principe est simple : pour chaque définition de ce type (par exemple avec \preparecolor), tout l'information nécessaire est sauvée dans une pile de définitions globale dédiée où elle peut être récupérée par la suite (par exemple avec \definecolors) afin de construire la commande souhaitée.

Notez que les commandes suivantes doivent être utilisées uniquement dans le préambule du document car la pile de définitions de couleur pour les définitions différées est supprimée au début du corps du document — afin d'économiser de la mémoire.

\preparecolor

 $[\langle type \rangle] \{\langle nom \rangle\} \{\langle liste-mod\`{e}le \rangle\} \{\langle liste-sp\'{e}c \rangle\}$

Similaire à \definecolor, cette commande ne définit pas cependant la couleur $\langle nom \rangle$: les arguments $\langle liste-modèle \rangle$ et $\langle list-sp\'ec \rangle$ sont évalués immédiatement puis tous les paramètres nécessaires ($\langle type \rangle$, $\langle nom \rangle$, $\langle modèle \rangle$ et $\langle sp\'ec \rangle$) sont mis sur la pile de définitions pour un usage ultérieur.

\preparecolorset \ifdefinecolors

 $[\langle type \rangle] \{\langle liste-mod\`{e}le \rangle\} \{\langle t\^{e}te \rangle\} \{\langle queue \rangle\} \{\langle ensemble-sp\'{e}c \rangle\}$

Cette commande est similaire à \definecolorset mais dépend de la bascule

^{14.} En fait, xcolor utilise une variante plus complexe pour fournir les couleurs de base pour les différents modèles sous-jacents (voir le code source pour observer la commande intégrale) : \definecolorset{rgb/hsb/cmyk/gray}{}{red,1,0,0/0,1,1/0,1,1,0/.3;green,...}.

\ifdefinecolors: si elle vaut « true », la commande \definecolor est appliquée à chaque élément de l'ensemble (ce qui revient à une définition immédiate); sinon la commande \preparecolor est appliquée (ce qui donne une définition différée). Par exemple, l'option d'extension svgnames réalise quelque chose comme \definecolorstrue\preparecolorset, tandis que svgnames* agit comme \definecolorsfalse\preparecolorset. Les deux options imposent à leur fin \definecolorstrue, de façon à ce que les autres commandes disposent d'une situation initiale propre.

\DefineNamedColor

 $\{\langle type \rangle\}\{\langle nom \rangle\}\{\langle liste-mod\`ele \rangle\}\{\langle liste-sp\'ec \rangle\}$ Cette commande est principalement fournie pour des raisons de compatibilité, particulièrement pour permettre le support de couleurs prédéfinies dans dvipsnam.def. Elle est équivalente à $\langle commande \rangle [\langle type \rangle] \{\langle nom \rangle\}\{\langle mod\`ele \rangle\}\{\langle sp\'ec \rangle\}\}$, où $\langle commande \rangle$ est soit $\langle commande \rangle$ est restrictions de colorpour l'utilisation de $\langle commande \rangle$ est soit de restrictions de colorpour l'utilisation de $\langle commande \rangle$ est soit de du document ont été abolies dans xcolor.

\definecolors

 $\{\langle list\text{-}id\rangle\}$

Il faut ici se rappeler que $\langle liste-id \rangle$ est de la forme $\langle id\text{-}\acute{e}tendu \rangle_1, \ldots, \langle id\text{-}\acute{e}tendu \rangle_l$ où chaque $\langle id\text{-}\acute{e}tendu \rangle_\lambda$ est soit un identifiant $\langle id \rangle_\lambda$ ou une équivalence $\langle id \rangle_{\lambda'} = \langle id \rangle_\lambda$. Le premier cas est considéré comme un raccourci pour $\langle id \rangle_\lambda = \langle id \rangle_\lambda$, ce qui amène à la description générale suivante : la pile de définitions est parcourue pour trouver le nom $\langle id \rangle_\lambda$ et ses paramètres de couleur associés; s'il n'y a pas de correspondance, rien ne se passe; si le nom $\langle id \rangle_\lambda$ est dans la pile et que ses paramètres de couleur sont $\langle type \rangle_\lambda$, $\langle modèle \rangle_\lambda$, et $\langle spec \rangle_\lambda$, alors la commande $\langle definecolor[\langle type \rangle_\lambda] \{\langle id \rangle_{\lambda'}\} \{\langle modèle \rangle_\lambda\} \{\langle spéc \rangle_\lambda\}$ est exécutée. Ainsi, l'utilisateur peut contrôler sous quels noms les couleurs préparées peuvent être appelées dans le document. Notez que l'entrée $\langle id \rangle_\lambda$ n'est pas retranchée de la pile de façon à ce qu'elle puisse être utilisée plusieurs fois (y compris dans une même commande $\langle definecolors \rangle$.

\providecolors

 $\{\langle list\text{-}id \rangle\}$

Similaire à \definecolors, cette commande se base sur \providecolor ce qui fait que les couleurs sont définies si elles n'existent pas déjà.

2.5.5 Définitions de couleur globales

\ifglobalcolors

Par défaut, les définitions faites avec \definecolor, \providecolor, ... sont seulement disponibles dans le groupe courant. En utilisant \globalcolorstrue, toutes ces définitions deviennent disponibles globalement — jusqu'à ce que le groupe courant prenne fin ¹⁵. Une autre méthode pour indiquer qu'une définition de couleur individuelle doit être globale revient à la préfixer avec \xglobal, soit, par exemple, \xglobal\definecolor{toto}....

\xglobal

^{15.} Cette bascule peut être placée aussi dans le préambule pour contrôler le document dans son ensemble.

2.6 Utilisation de la couleur

2.6.1Commandes de couleur standards

Voici la liste des commandes appliquant les couleurs qui se retrouvent dans l'extension coloret qui bénéficient ici de la syntaxe étendue pour les couleurs comme vu ci-dessus :

\color

 $\{\langle couleur \rangle\}$

 $[\langle liste-mod \hat{e}le \rangle] \{\langle liste-sp\acute{e}c \rangle\}$

Cette commande fait passer à la couleur donnée soit par nom/expression, soit par modèle/spécification. La couleur restera active jusqu'à la fin du groupe courant. $\{\langle couleur \rangle\}\{\langle texte \rangle\}$

\textcolor

 $[\langle liste-mod \hat{e}le \rangle] \{\langle liste-sp\acute{e}c \rangle\} \{\langle texte \rangle\}$

La commande est ici juste une syntaxe alternative à \color, cette syntaxe précisant le groupe de façon explicite. Ainsi, le \(\lambda texte\rangle\) apparaît dans la couleur spécifiée puis la couleur reprend sa valeur précédente. Par ailleurs, elle fait appel à \leavevmode pour garantir le démarrage du mode horizontal.

\pagecolor

 $\{\langle couleur \rangle\}$

 $[\langle liste-mod \hat{e}le \rangle] \{\langle liste-sp\acute{e}c \rangle\}$

Cette commande spécifie la couleur de fond pour la page courante comme les suivantes. Il s'agit d'une déclaration globale qui ne tient pas compte des groupes

Note : toutes ces commandes, à l'exception de \color demandent à ce que les arguments $\langle color \rangle$ ou $\langle sp\acute{e}c \rangle$ soient mis dans accolades $\{\}$, même s'ils sont enfouis dans les commandes.

Par exemple, une fois posé \def\toto{red}, il est possible d'écrire \color\toto dans le document mais il vaut mieux toujours écrire \textcolor{\toto}{truc} au lieu de \textcolor\foo{truc} pour éviter des résultats étranges.

Notez que les commandes dédiées aux couleurs tirées d'autres extensions peuvent avoir des résultats inattendus si elles sont directement confrontées à des expressions de couleur (par exemple, \sethlcolor et similaires issues de l'extension soul). Cependant, il est possible de passer l'expression en un nom par le biais de \colorlet et d'essayer d'utiliser ce nom à la place.

\nopagecolor

Contrairement à \pagecolor, cette commande retire la commande de fond de page en restaurant le fond transparent usuel. Cette commande n'est pas supportée par toutes les options de pilote et génère donc une alerte s'il n'existe pas de définition dans le fichier du pilote.

2.6.2Boîtes colorées

```
\langle colorbox \{\langle couleur \rangle\} \{\langle texte \rangle\}
                              [\langle liste-mod \hat{e}le \rangle] \{\langle liste-sp\acute{e}c \rangle\} \{\langle texte \rangle\}
```

★Takes the same argument forms as \textcolor, but the color specifies the background color of the box.

\fcolorbox

```
{\langle frame\ color \rangle} {\langle background\ color \rangle} {\langle text \rangle}
[\langle liste-mod\`{e}le \rangle] \{\langle frame\ liste-sp\'{e}c \rangle\} \{\langle background\ liste-sp\'{e}c \rangle\} \{\langle text \rangle\}
[\langle fr. \ liste-mod\`{e}le \rangle] \{\langle fr. \ liste-sp\'{e}c \rangle\} [\langle backgr. \ liste-mod\`{e}le \rangle] \{\langle backgr. \ liste-sp\'{e}c \rangle\} \{\langle text \rangle\}
```

 $\{\langle frame\ color \rangle\} [\langle background\ liste-modèle \rangle] \{\langle background\ liste-spéc \rangle\} \{\langle text \rangle\}$ Puts a frame of the first color around a box with a background specified by the second color. If only the first optional argument is given, it specifies the color model for both colors. Besides the possibility to specify color expressions as arguments, \fcolorbox now offers more flexibility for its arguments than the color version:

- test \fcolorbox{gray}{yellow}{test},
- ____test_\fcolorbox[cmyk]{0,0,0,0.5}{0,0,1,0}{test},
- _ test \fcolorbox[gray]{0.5}[wave]{580}{test},
- test \fcolorbox{gray}[wave]{580}{test}.

Additionally, $\footnote{Tcolorbox}$ uses a new approach to frame drawing, which is an extension of Donald Arseneau's suggestion in bug report latex/3655 [2]. The main difference to LaTeX's implementation is that box construction and frame drawing are split into separate operations, such that the frame is drawn *after* the box contents has been constructed. This ensures that the frame is always on top of the box. Donald Arseneau improved speed as well as memory requirements of this approach. Furthermore, a new macro is introduced:

\boxframe

 ${\langle width \rangle} {\langle height \rangle} {\langle depth \rangle}$

Draws a frame with a linewidth of **\fboxrule**. Returns a **\hbox** with outer dimensions $\langle width \rangle$, $\langle height \rangle$, $\langle depth \rangle$. By this approach, a frame-primitive may also be provided by a driver file, in order to exploit driver-specific drawing facilities (see below). Again, this macro was optimised by Donald Arseneau.

The new frame approach is used for \fcolorbox as well as LATEX's \fbox and \framebox commands, unless the kernelfbox option is specified, which returns to LATEX's original definitions of \f(rame)box.

Option xcdraw uses PostScript commands to draw frames and color boxes in case of the dvips driver and PDF code to draw frames in case of the pdftex and dvipdfm drivers. This is still experimental code that may confuse .dvi viewers. The opposite option noxcdraw forces usage of the generic (driver-independent) code.

2.6.3 Using the current color

Within a color expression, '.' serves as a placeholder for the current color. See figure 7 page 39 for an example.

It is also possible to save the current color for later use, e.g., via the command \colorlet{foo}{.}.

Note that in some cases the current color is of rather limited use, e.g., the construction of an \fcolorbox implies that at the time when the $\langle background\ color \rangle$ is evaluated, the current color equals the $\langle frame\ color \rangle$; in this case '.' does not refer to the current color outside the box.

2.6.4 Color testing

testcolors

 $[\langle num \ models \rangle]$

This is a simple tabular environment in order to test (display) colors in different models, showing both the visual result and the model-specific parameters. The optional $\langle num \ models \rangle$ argument is a comma-separated list of numerical color models (as usual without spaces) which form the table columns; the default list is rgb,cmyk,hsb,HTML. $\{\langle color \rangle\}$

\testcolor

```
[\langle liste-mod\`ele \rangle] \{\langle liste-sp\'ec \rangle\}
```

Each \testcolor command generates a table row, containing a display sample plus the respective parameters for each of the models. If the column-model matches the model of the color in question, its parameters are underlined. Note that this command is only available within the testcolors environment.

For applications see figure 2 page 37 and figures 11, 12.

2.7 Color blending

The purpose of *color blending* is to add some mixing color (expression) to all subsequent explicit color commands. Thus, it is possible to perform such a mix (or blend) operation for many colors without touching the individual commands.

\blendcolors
\blendcolors*

```
\{\langle mix \ expr \rangle\}\
```

Initialises all necessary parameters for color blending. The actual (completed) color blend expression is stored in \colorblend. In the starred version, the argument will be appended to a previously defined blend expression. An empty $\langle mix \; expr \rangle$ argument will switch blending off.

\xglobal

In order to achieve global scope, \blendcolors may be prefixed by \xglobal. Remark: color blending is applied only to explicit color commands, i.e. \color, \fcolorbox and the like. In the previous example the frames are not being blended because their color is set by an driver-internal command (switching back to the 'current color'). Thus, to influence these implicit colors as well, we have to set the current color after the blending: \blendcolors{!50!yellow}\color{black} results in _______, an additional \blendcolors*{!50}\color{black} yields ______.

2.8 Color masks and separation

The purpose of color separation is to represent all colors that appear in the document as a combination of a finite subset of base colors and their tints. Most prominent is **cmyk** separation, where the base colors are (cyan), (magenta), (yellow), and (black), as required by the printers. This can be done by choosing the package option cmyk, such that all colors will be converted in this model, and post-processing the output file. We describe now another — and more general — solution: $color\ masking$. How does it work? Color masking is based on a specified color model $\langle m\text{-model}\rangle$ and a parameter vector $\langle m\text{-spec}\rangle$. Whenever a color is to be displayed in the document, it will first be converted to $\langle m\text{-model}\rangle$, afterwards each component of the resulting color vector will be multiplied by the

corresponding component of $\langle m\text{-}spec \rangle$. For example, let's assume that $\langle m\text{-}model \rangle$ equals cmyk, and $\langle m\text{-}spec \rangle$ equals $(\mu_c, \mu_m, \mu_y, \mu_k)$. Then an arbitrary color foo will be transformed according to

$$foo \mapsto (c, m, y, k) \mapsto (\mu_c \cdot c, \mu_m \cdot m, \mu_y \cdot y, \mu_k \cdot k)$$
 (5)

Obviously, color separation is a special case of masking by the vectors (1,0,0,0), (0,1,0,0), etc. An interesting application is to shade or tint all colors by masking them with (x,x,x) in the **rgb** or **cmy** model, see the last two rows in figure 9 page 41.

\maskcolors

 $[\langle num\ model \rangle] \{\langle color \rangle\}$

\ifmaskcolors

Initialises all necessary parameters for color masking: if $\langle num\ model \rangle$ is not specified (or empty), $\langle m\text{-}model \rangle$ will be set to the natural model of $\langle color \rangle$, otherwise to $\langle num\ model \rangle$; the color specification of $\langle color \rangle$ is extracted to define $\langle m\text{-}spec \rangle$. Additionally, \maskcolorstrue is performed. Color masking can be switched off temporarily by \maskcolorsfalse, or — in a more radical way — by \maskcolors{}, which in addition clears the initialisation parameters. In general, the scope of \maskcolors is the current group (unless it is prefixed by the \xglobal command), but it may be used in the document preamble as well. The final remark of the color blending section applies here similarly.

\xglobal

Now it is easy to separate a complete document without touching the source code: latex \def\xcolorcmd{\maskcolors[cmyk]{cyan}}\input{a} will do the (cyan) part of the job for a.tex.

\colormask

Caution: xcolor has no idea about colors in files that are included via the command \includegraphics, e.g., images of type .eps, .pdf, .jpg, or .png. Such files have to be separated separately. Nevertheless, xcolor offers some basic support by storing the mask color in \colormask, which can be used to decide which file is to be included:

```
\def\temp{cyan}\ifx\colormask\temp \includegraphics{foo_c}\else
\def\temp{magenta}\ifx\colormask\temp \includegraphics{foo_m}\else
...
\fi\fi
```

2.9 Séries de couleurs

Automatic coloring may be useful in graphics or chart applications, where a — potentially large and unspecified — number of colors are needed, and the user does not want or is not able to specify each individual color. Therefore, we introduce the term *color series*, which consists of a base color and a scheme, how the next color is being constructed from the current color.

The practical application consists of three parts: definition of a color series (usually once in the document), initialisation of the series (potentially several times), and application — with or without stepping — of the current color of the series (potentially many times).

×

2.9.1 Définition d'une série de couleurs

×

\definecolorseries

 ${\langle name \rangle} {\langle core\ model \rangle} {\langle method \rangle} {\langle b-model \rangle} {\langle b-spec \rangle} {\langle s-model \rangle} {\langle s-spec \rangle}$ Defines a color series called $\langle name \rangle$, whose calculations are performed within the color model $\langle core\ model \rangle$, where $\langle method \rangle$ selects the algorithm (one of step, grad, last, see below). The method details are determined by the remaining arguments:

- $[\langle b\text{-}model \rangle] \{\langle b\text{-}spec \rangle\}$ specifies the base (= first) color in the algorithm, either directly, e.g., $[rgb] \{1,0.5,0.5\}$, or as a $\langle color \rangle$, e.g., $\{\text{-}yellow!50\}$, if the optional argument is missing.
- $[\langle s\text{-}model \rangle] \{\langle s\text{-}spec \rangle\}$ specifies how the *step* vector is calculated in the algorithm, according to the chosen $\langle method \rangle$:
 - step, grad: the optional argument is meaningless, and $\langle s\text{-}spec \rangle$ is a parameter vector whose dimension is determined by $\langle core \ model \rangle$, e.g., $\{0.1,-0.2,0.3\}$ in case of rgb, cmy, or hsb.
- last : the last color is specified either directly, e.g., [rgb]{1,0.5,0.5}, or as a $\langle color \rangle$, e.g., {-yellow!50}, if the optional argument is missing. This is the general scheme :

$$color_1 := base, \qquad color_{n+1} := U(color_n + step)$$
 (6)

for $n=1,2,\ldots,$ where U maps arbitrary real m-vectors into the unit m-cube :

$$U(x_1, \dots, x_m) = (u(x_1), \dots, u(x_m)), \qquad u(x) = \begin{cases} 1 & \text{if } x = 1 \\ x - [x] & \text{if } x \neq 1 \end{cases}$$
 (7)

Thus, every step of the algorithm yields a valid color with parameters from the interval [0,1].

Now, the different methods use different schemes to calculate the *step* vector :

- step, grad : the last argument, $\{\langle s\text{-}spec\rangle\}$, defines the directional vector grad.
- last : $\{\langle s\text{-}spec\rangle\}\ \text{resp.}\ [\langle s\text{-}model\rangle] \{\langle s\text{-}spec\rangle\}\ \text{defines the color parameter vector } last.$

Then, during \resetcolorseries, the actual step vector is calculated:

$$step := \begin{cases} grad & \text{if } \langle method \rangle = \text{step} \\ \frac{1}{\langle div \rangle} \cdot grad & \text{if } \langle method \rangle = \text{grad} \\ \frac{1}{\langle div \rangle} \cdot (last - base) & \text{if } \langle method \rangle = \text{last} \end{cases}$$
(8)

Please note that it is also possible to use the current color placeholder '.' within the definition of color series. Thus, \definecolorseries{foo}{rgb}{last}{.}{-.} will set up a series that starts with the current color and ends with its complement. Of course, similar to TeX's \left\left\text{let} primitive, the current definition of the current color at the time of execution is used, there is no relation to current colors in any later stage of the document.

2.9.2 Initialisation d'une série de couleurs

×

\resetcolorseries

\colorseriescycle

 $[\langle div \rangle] \{\langle name \rangle\}$

This command has to be applied at least once, in order to make use of the color series $\langle name \rangle$. It resets the current color of the series to the base color and calculates the actual step vector according to the chosen $\langle div \rangle$, a non-zero real number, for the methods grad and last, see equation (8). If the optional argument is empty, the value stored in the macro \colorseriescycle is applied. Its default value is 16, which can be changed by \def\colorseriescycle{\langle}div\rangle}, applied before the extension xcolor is loaded (similar to \rangle RGB and friends). The optional argument is ignored in case of the step method.

×

2.9.3 Utilisation d'une série de couleurs

×

There are two ways to display the current color of a color series: any of the *color expressions* in section 2.3 page 14 used within a \color, \textcolor, ... command will display this color according to the usual syntax of such expressions. However, in the cases when $\langle postfix \rangle$ equals '!!+', \color{ $\langle name \rangle$!!+} etc., will not only display the color, but it will also perform a step operation. Thus, the current color of the series will be changed in that case. An expression \color{ $\langle name \rangle$!![$\langle num \rangle$]} enables direct access to an element of a series, where $\langle num \rangle = 0, 1, 2, \ldots$, starting with 0 for the base color. See figure 8 page 40 for a demonstration of different methods.

×

2.9.4 Différences entre couleurs et séries de couleurs

×

Although they behave similar if applied within color expressions, the objects defined by \definecolor and \definecolorseries are fundamentally different with respect to their scope/availability: like color's original \definecolor command, \definecolor generates local colors, whereas \definecolorseries generates global objects (otherwise it would not be possible to use the stepping mechanism within tables or graphics conveniently). E.g., if we assume that bar is an undefined color, then after saying

```
\begingroup
\definecolorseries{foo}{rgb}{last}{red}{blue}
\resetcolorseries[10]{foo}
\definecolor{bar}{rgb}{.6,.5,.4}
\endgroup
```

commands like \color{foo} or \color{foo!!+} may be used without restrictions, whereas \color{bar} will give an error message. However, it is possible to say

\colorlet{bar}{foo} or \colorlet{bar}{foo!!+} in order to save the current color of a series locally — with or without stepping.

×

2.10 Couleur d'encadrement d'hyperliens

×

The hyperref package offers all kinds of support for hyperlinks, pdfmarks etc. There are two standard ways to make hyperlinks visible (see the package documentation [14] for additional information on how to set up these features):

- print hyperlinks in a different color than normal text, using the keys citecolor, filecolor, linkcolor, menucolor, pagecolor, runcolor, urlcolor with color expressions, e.g., \hypersetup{urlcolor=-green!50};
- display a colored border around hyperlinks, using the keys citebordercolor, filebordercolor, linkbordercolor, menubordercolor, pagebordercolor, runbordercolor, urlbordercolor with explicit numerical rgb parameter specification, e.g., \hypersetup{urlbordercolor={1 0.5 0.25}}.

Obviously, the second method is somewhat inconvenient since it does not allow for color names or even color expressions. Therefore, xcolor provides — via the package option hyperref — a set of extended keys xcitebordercolor, xfilebordercolor, xlinkbordercolor, xmenubordercolor, xpagebordercolor, xrunbordercolor, xurlbordercolor which are being used in conjunction with color expressions, e.g., \hypersetup{xurlbordercolor=-green!50}.

Another new key, xpdfborder, provides a way to deal with a dvips-related problem: for most of the drivers, a setting like pdfborder={0 0 1} will determine the width of the border that is drawn around hyperlinks in points. However, in the dvips case, the numerical parameters are interpreted in relation to the chosen output resolution for processing the .dvi file into a .ps file. Unfortunately, at the time when the .dvi is constructed, nobody knows if and at which resolution a transformation into .ps will take place afterwards. Consequently, any default value for pdfborder may be useful or not. Within hyperref, the default for dvips is pdfborder={0 0 12}, which works fine for a resolution of 600 or 1200 dpi, but which produces an invisible border for a resolution of 8000 dpi, as determined by the command-line switch -Ppdf. On the other hand, setting pdfborder={0 0 80} works fine for dvips at 8000 dpi, but makes a document unportable, since other drivers (or even dvips in a low resolution) will draw very thick boxes in that case. This is were the xpdfborder key comes in handy: it rescales its arguments for the dvips case by a factor 80 (ready for 8000 dpi) and leaves everything unchanged for other drivers. Thus one can say xpdfborder={0 0 1} in a driver-independent way.

×

2.11 Spécifications de couleurs additionnelles le monde de pstricks

×

For pstricks users, there are different ways of invoking colors within command option keys:

- \psset{linecolor=green!50}
- \psset{linecolor=[rgb]{0.5,1,0.5}}
- \psframebox[linecolor={[rgb]{0.5,1,0.5}}]{foo}

Note the additional curly braces in the last case; without them, the optional argument of \psframebox would be terminated too early.

\definecolor

 $[ps]{\langle name \rangle}{\langle core \ liste-mod\`{e}le \rangle}{\langle code \rangle}$

Stores PostScript $\langle code \rangle$ — that should not contain slash '/' characters — within a color. Example: after \definecolor[ps]{foo}{rgb}{bar}, the pstricks command \psline[linecolor=foo]... inserts 'bar setrgbcolor' where the linecolor information is required — at least in case of the dvips driver. See also xcolor2.tex for an illustrative application.

×

2.12 Couleur dans des tableaux

×

\rowcolors
\rowcolors*

One of these commands has to be executed before a table starts. $\langle row \rangle$ tells the number of the first row which should be colored according to the $\langle odd\text{-}row \ color \rangle$ and $\langle even\text{-}row \ color \rangle$ scheme. Each of the color arguments may also be left empty (= no color). In the starred version, $\langle commands \rangle$ are ignored in rows with inactive $rowcolors \ status$ (see below), whereas in the non-starred version, $\langle commands \rangle$ are applied to every row of the table. Such optional commands may be \hline or \noalign{\langle} stuff{\rangle}.

\showrowcolors \hiderowcolors \rownum The rowcolors status is activated (i.e., use coloring scheme) by default and/or \showrowcolors, it is inactivated (i.e., ignore coloring scheme) by the command \hiderowcolors. The counter \rownum may be used within such a table to access the current row number. An example is given in figure 10 page 41. These commands require the table option (which loads the colortbl package).

Note that table coloring may be combined with color series. This method was used to construct the examples in figure 8 page 40.

×

2.13 Information sur la couleur

×

\extractcolorspec

 $\{\langle color \rangle\}\{\langle cmd \rangle\}$

Extracts the color specification of $\langle color \rangle$ and puts it into $\langle cmd \rangle$; equivalent to $\{ \langle model \rangle \} \{ \langle spec \rangle \} \}$.

\extractcolorspecs

 $\{\langle color \rangle\}\{\langle model\text{-}cmd \rangle\}\{\langle color\text{-}cmd \rangle\}$

Extracts the color specification of $\langle color \rangle$ and puts it into $\langle model\text{-}cmd \rangle$ and $\langle color\text{-}cmd \rangle$, respectively.

\tracingcolors :

 $=\langle int \rangle$

Controls the amount of information that is written into the log file:

- $-\langle int \rangle < 0$: no specific color logging.
- $-\langle int \rangle \geq 1$: ignored color definitions due to \providecolor are logged.
- $\langle int \rangle \geq 2$: multiple (i.e. overwritten) color definitions are logged.
- $\langle int \rangle \geq 3$: every command that defines a color will be logged.
- $-\langle int \rangle \geq 4$: every command that sets a color will be logged.

Like TEX's \tracing... commands, this command may be used globally (in the document preamble) or locally/block-wise. The package sets \tracingcolors=0 as default. Remark: since registers are limited and valuable, no counter is wasted for this issue.

Note that whenever a color is used that has been defined via color's \definecolor command rather than xcolor's new \definecolor and friends, a warning message 'Incompatible color definition' will be issued. ¹⁶

×

2.14 Conversion de couleur

×

\convertcolorspec

 ${\langle model \rangle} {\langle spec \rangle} {\langle target\ model \rangle} {\langle cmd \rangle}$

Converts a color, given by the $\langle spec \rangle$ in model $\langle model \rangle$, into $\langle target\ model \rangle$ and stores the new color specification in $\backslash cmd$. $\langle target\ model \rangle$ must be of type $\langle num\ model \rangle$, whereas $\langle model \rangle$ may also be 'named', in which case $\langle spec \rangle$ is simply the name of the color.

×

2.15 Problèmes et solutions

×

2.15.1 Name clashs between dvipsnames and svgnames

Due to the fixed option processing order (which does not depend on the order how the options were specified in the \usepackage command), the svgnames colors will always overrule dvipsnames colors with identical names. This can lead to undesired results if both options are used together. For instance, (Fuchsia) yields under the regime of dvipsnames and with respect to svgnames. However, there is a simple trick — based on deferred color definition — that allows us to use colors from both sets in the desired way:

\usepackage[dvipsnames*,svgnames]{xcolor}
\definecolors{Fuchsia}

^{16.} This should not happen since usually there is no reason to load color in parallel to xcolor.

Now all colors from the SVG set are available (except (Fuchsia)) plus (Fuchsia) from the other set.

2.15.2 Page breaks and pdfT_EX

Since pdfTEX does not maintain a *color stack* — in contrast to *dvips* — a typical problem is the behaviour of colors in the case of page breaks, as illustrated by the following example :

```
\documentclass{minimal}
\usepackage{xcolor}
\begin{document}
black\color{red}red1\newpage red2\color{black}black
\end{document}
```

This works as expected with dvips, i.e., 'red1' and 'red2' being (red), however, with pdftex, 'red2' is displayed in (black). The problem may be solved by using the fixpdftex option which simply loads Heiko Oberdiek's pdfcolmk package [12]. However, its author also lists some limitations:

- Mark limitations : page breaks in math.
- LaTeX's output routine is redefinded.
 - Changes in the output routine of newer versions of LaTeX are not detected.
 - Packages that change the output routine are not supported.
- It does not support several independent text streams like footnotes.

2.15.3 Change color of included .eps file

In general, xcolor cannot change colors of an image that is being included via the \includegraphics command from the graphics or graphicx package. There is, however, a limited opportunity to influence the current color of included PostScript files. Consider the following file foo.eps which draws a framed gray box:

```
%!PS-Adobe-3.0 EPSF-3.0
%%BoundingBox: 0 0 60 12
0 0 60 12 rectfill
0.75 setgray
2 2 56 8 rectfill
```

Now run the following code through LATEX and dvips:

```
\documentclass{minimal}
\usepackage[fixinclude]{xcolor}
\usepackage{graphics}
\begin{document}
\includegraphics{foo} \textcolor{red}{\includegraphics{foo}}
\end{document}
```

The resulting .ps file will display two gray boxes : the first with a black frame, the second with a red frame. If we had omitted the $\mathtt{fixinclude}$ option, the second box would also display a black frame. This is because dvips usually resets the current color to black immediately before including an .eps file.

3 Exemples

Figure 1 – Color spectrum

FIGURE 2 – Color testing

color	rgb	cmyk	hsb	HTML	gray
olive	0.5 0.5 0	0 0 1 0.5	0.16667 1 0.5	808000	0.39
red!50!green	<u>0.5 0.5 0</u>	0 0 0.5 0.5	0.16667 1 0.5	808000	0.445
-cyan!50!magenta	0.5 0.5 0	0 0 0.5 0.5	0.16667 1 0.5	808000	0.445
[cmyk]0,0,1,0.5	0.5 0.5 0	0 0 1 0.5	0.16667 1 0.5	808000	0.39
[cmyk]0,0,.5,.5	0.5 0.5 0	0 0 0.5 0.5	0.16667 1 0.5	808000	0.445
[rgb:cmyk]0,0,.5,.5	0.5 0.5 0	0 0 0.5 0.5	0.16667 1 0.5	808000	0.445

\sffamily
\begin{testcolors}[rgb,cmyk,hsb,HTML,gray]
\testcolor{olive}
\testcolor{red!50!green}
\testcolor{-cyan!50!magenta}
\testcolor[cmyk]{0,0,1,0.5}
\testcolor[cmyk]{0,0,.5,.5}
\testcolor[rgb:cmyk]{0,0,.5,.5}
\end{testcolors}

FIGURE 3 – Progressing from one to another color

100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0

Color Definition/representation (pdftex driver)

MyGreen {0.92 0 0.87 0.09 k 0.92 0 0.87 0.09 K}{cmyk}{0.92,0,0.87,0.09} MyGreen-rgb {0 0.91 0.04001 rg 0 0.91 0.04001 RG}{rgb}{0,0.91,0.04001} MyGreen-cmy {1 0.09 0.95999 0 k 1 0.09 0.95999 0 K}{cmy}{1,0.09,0.95999} MyGreen-hsb {0 0.91 0.03995 rg 0 0.91 0.03995 RG}{hsb}{0.34065,1,0.91}

MyGreen-gray {0.5383 g 0.5383 G}{gray}{0.5383}

FIGURE 4 - Target color model

Figure 5 – Standard color expressions

Figure 6 – Standard color expressions

```
\fboxrule6pt
\fcolorbox
\{red!70!green}\% outer frame
\{yellow!30!blue}\% outer background
\{\fcolorbox
\{-yellow!30!blue}\% inner frame
\{-red!70!green}\% inner background
\{Test\textcolor\{red!72.75\}\{Test}\\color\{-green}\{Test\}\}
```

FIGURE 7 - Current color

Figure 8 – Color series

S_1	S_2	G_1	G_2	L_1	L_2	L_3	L_4	L_5
1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6
7	7	7	7	7	7	7	7	7
8	8	8	8	8	8	8	8	8
9	9	9	9	9	9	9	9	9
10	10	10	10	10	10	10	10	10
11	11	11	11	11	11	11	11	11
12	12	12	12	12	12	12	12	12
13	13	13	13	13	13		13	13
14	14	14	14	14	14	14	14	14
15	15	15	15	15	15	15	15	15
16	16	16	16	16	16	16	16	16

Individual definitions

- $S_1 \setminus \{fgb\}\{step\}[rgb]\{.95,.85,.55\}\{.17,.47,.37\}$
- S_2 \definecolorseries{test}{hsb}{step}[hsb]{.575,1,1}{.11,-.05,0}
- $G_1 \setminus definecolorseries\{test\}\{rgb\}\{grad\}[rgb]\{.95,.85,.55\}\{3,11,17\}$
- $G_2 \quad \texttt{\definecolorseries\{test\}\{hsb\}\{grad\}[hsb]\{.575,1,1\}\{.987,-.234,0\}}$
- L_1 \definecolorseries{test}{rgb}{last}[rgb]{.95,.85,.55}[rgb]{.05,.15,.55}
- $L_2 \qquad \texttt{\definecolorseries\{test\}\{hsb\}\{last\}[hsb]\{.575,1,1\}[hsb]\{-.425,.15,1\}}$
- L_3 \definecolorseries{test}{rgb}{last}{yellow!50}{blue}
- L_4 \definecolorseries{test}{hsb}{last}{yellow!50}{blue}
- $L_5 \qquad \texttt{\definecolorseries\{test\}\{cmy\}\{last\}\{yellow!50\}\{blue\}}$

Common definitions

 $\verb|\resetcolorseries[12]{test}|$

 $\verb|\rowcolors[\hline]{1}{test!!+}{test!!+}|$

\begin{tabular}{c}

\end{tabular}

FIGURE 9 – Color masking

\maskcolors	
{}	
$\dots [\mathtt{cmyk}] \{\mathtt{cyan}\}$	
[cmyk]{magenta}	
[cmyk]{yellow}	
[cmyk]{black}	
$\dots [\mathtt{cmyk}] \{\mathtt{red}\}$	
[cmyk]{green}	
[cmyk]{blue}	
$\dots[rgb]\{red\}$	
$\dots [rgb]\{green\}$	
[rgb]{blue}	
$\dots[\mathtt{hsb}]\{\mathtt{red}\}$	
\dots [hsb]{green}	
[hsb]{blue}	
[rgb]{gray}	
$\dots [\mathtt{cmy}] \{ \mathtt{gray} \}$	

Figure 10 - Alternating row colors in tables : \rowcolors vs. \rowcolors*

 $\label{lower} $$\operatorname{[\hline]}_{3}_{green!25}_{yellow!50} \arrayrulecolor_{red!75!gray} \end{tabular}_{11}$

test & row \number\rownum\\				
<pre>test & row \number\rownum\\</pre>	test	row 1	test	row 1
test & row \number\rownum\\	test	row 2	test	row 2
test & row \number\rownum\\		row 3	test	norr 2
\arrayrulecolor{black}	test	10w 3	test	row 3
test & row \number\rownum\\	test	row 4	test	row 4
<pre>test & row \number\rownum\\</pre>	test	row 5	test	row 5
\rowcolor{blue!25}	test	row 6	test	row 6
test & row \number\rownum\\	test	row 7	test	row 7
test & row \number\rownum\\				
\hiderowcolors	test	row 8	test	row 8
<pre>test & row \number\rownum\\</pre>	test	row 9	test	row 9
<pre>test & row \number\rownum\\</pre>	test	row 10	test	row 10
\showrowcolors	test	row 11	test	row 11
test & row \number\rownum\\	toat	row 12	test	row 12
<pre>test & row \number\rownum\\</pre>	test			
\multicolumn{1}%	test	row 13	test	row 13

Figure $11 - \mathbf{Hsb}$ and $\mathbf{tHsb} : hue^{\circ}$ in 15° steps

color	rgb	cmyk	hsb	Hsb	tHsb
[Hsb]0,1,1	100	0 1 1 0	<u>0 1 1</u>	0 1 1	0 1 1
[Hsb]15,1,1	1 0.25002 0	0 0.74998 1 0	0.04167 1 1	15.00128 1 1	30.00256 1 1
[Hsb]30,1,1	1 0.49998 0	0 0.50002 1 0	<u>0.08333 1 1</u>	29.99872 1 1	59.99744 1 1
[Hsb]45,1,1	<u> </u>	0 0.25 1 0	<u>0.125 1 1</u>	<u> </u>	90 1 1
[Hsb]60,1,1	0.99998 1 0	0.00002 0 1 0	<u>0.16667 1 1</u>	60.00128 1 1	120.00128 1 1
[Hsb]75,1,1	0.75002 1 0	0.24998 0 1 0	0.20833 1 1	74.99872 1 1	134.99872 1 1
[Hsb]90,1,1	0.5 1 0	0.5 0 1 0	0.25 1 1	90 1 1	150 1 1
[Hsb]105,1,1	0.24998 1 0	0.75002 0 1 0	<u>0.29167 1 1</u>	105.00128 1 1	165.00128 1 1
[Hsb]120,1,1	0.00002 1 0	0.99998 0 1 0	0.33333 1 1	119.99872 1 1	179.99872 1 1
[Hsb]135,1,1	0 1 0.25	1 0 0.75 0	<u>0.375 1 1</u>	135 1 1	187.5 1 1
[Hsb]150,1,1	0 1 0.50002	1 0 0.49998 0	0.41667 1 1	150.00128 1 1	195.00064 1 1
[Hsb]165,1,1	0 1 0.74998	1 0 0.25002 0	0.45833 1 1	164.99872 1 1	202.49936 1 1
[Hsb]180,1,1	0 1 1	1000	0.5 1 1	180 1 1	210 1 1
[Hsb]195,1,1	0 0.74998 1	1 0.25002 0 0	0.54167 1 1	195.00128 1 1	217.50064 1 1
[Hsb]210,1,1	0 0.50002 1	1 0.49998 0 0	0.58333 1 1	209.99872 1 1	224.99936 1 1
[Hsb]225,1,1	0 0.25 1	1 0.75 0 0	0.625 1 1	225 1 1	232.5 1 1
[Hsb]240,1,1	0.00002 0 1	0.99998 1 0 0	0.66667 1 1	240.00128 1 1	240.00128 1 1
[Hsb]255,1,1	0.24998 0 1	0.75002 1 0 0	0.70833 1 1	254.99872 1 1	254.99872 1 1
[Hsb]270,1,1	0.5 0 1	0.5 1 0 0	0.75 1 1	270 1 1	270 1 1
[Hsb]285,1,1	0.75002 0 1	0.24998 1 0 0	0.79167 1 1	285.00128 1 1	285.00128 1 1
[Hsb]300,1,1	0.99998 0 1	0.00002 1 0 0	0.83333 1 1	299.99872 1 1	299.99872 1 1
[Hsb]315,1,1	1 0 0.75	0 1 0.25 0	0.875 1 1	315 1 1	315 1 1
[Hsb]330,1,1	1 0 0.49998	0 1 0.50002 0	0.91667 1 1	330.00128 1 1	330.00128 1 1
[Hsb]345,1,1	1 0 0.25002	0 1 0.74998 0	0.95833 1 1	344.99872 1 1	344.99872 1 1
[Hsb]360,1,1	100	0 1 1 0	111	360 1 1	360 1 1
[tHsb]0,1,1	100	0 1 1 0	<u>0 1 1</u>	0 1 1	0 1 1
[tHsb]15,1,1	1 0.12498 0	0 0.87502 1 0	0.02083 1 1	7.49872 1 1	14.99744 1 1
[tHsb]30,1,1	1 0.25002 0	0 0.74998 1 0	0.04167 1 1	15.00128 1 1	30.00256 1 1
[tHsb]45,1,1	1 0.375 0	0 0.625 1 0	0.0625 1 1	22.5 1 1	45 1 1
[tHsb]60,1,1	1 0.49998 0	0 0.50002 1 0	0.08333 1 1	29.99872 1 1	59.99744 1 1
[tHsb]75,1,1	1 0.62502 0	0 0.37498 1 0	0.10417 1 1	37.50128 1 1	75.00256 1 1
[tHsb]90,1,1	1 0.75 0	0 0.25 1 0	0.125 1 1	45 1 1	90 1 1
[tHsb]105,1,1	1 0.87498 0	0 0.12502 1 0	0.14583 1 1	52.49872 1 1	104.99744 1 1
[tHsb]120,1,1	0.99998 1 0	0.00002 0 1 0	0.16667 1 1	60.00128 1 1	120.00128 1 1
[tHsb]135,1,1	0.75002 1 0	0.24998 0 1 0	0.20833 1 1	74.99872 1 1	134.99872 1 1
[tHsb]150,1,1	0.5 1 0	0.5 0 1 0	0.25 1 1	90 1 1	150 1 1
[tHsb]165,1,1	0.24998 1 0	0.75002 0 1 0	0.29167 1 1	105.00128 1 1	165.00128 1 1
[tHsb]180,1,1	0.00002 1 0	0.99998 0 1 0	0.33333 1 1	119.99872 1 1	179.99872 1 1
[tHsb]195,1,1	0 1 0.50002	1 0 0.49998 0	0.41667 1 1	150.00128 1 1	195.00064 1 1
[tHsb]210,1,1	0 1 1	1000	0.5 1 1	180 1 1	210 1 1
[tHsb]225,1,1	0 0.50002 1	1 0.49998 0 0	0.58333 1 1	209.99872 1 1	224.99936 1 1
[tHsb]240,1,1	0.00002 0 1	0.99998 1 0 0	0.66667 1 1	240.00128 1 1	240.00128 1 1
[tHsb]255,1,1	0.24998 0 1	0.75002 1 0 0	0.70833 1 1	254.99872 1 1	254.99872 1 1
[tHsb]270,1,1	0.5 0 1	0.5 1 0 0	0.75 1 1	270 1 1	270 1 1
[tHsb]285,1,1	0.75002 0 1	0.24998 1 0 0	0.79167 1 1	285.00128 1 1	285.00128 1 1
[tHsb]300,1,1	0.99998 0 1	0.00002 1 0 0	0.83333 1 1	299.99872 1 1 315 1 1	299.99872 1 1 315 1 1
[tHsb]315,1,1	1 0 0.75	0 1 0.50002 0	0.875 1 1	330.00128 1 1	330.00128 1 1
[tHsb]330,1,1	1 0 0.49998	0 1 0.74998 0	0.91667 1 1 0.95833 1 1	344.99872 1 1	344.99872 1 1
[tHsb]345,1,1 [tHsb]360,1,1	1 0 0.25002	0 1 0.74998 0	111	360 1 1	360 1 1
[::130]300,1,1	100	0110	<u> </u>	500 1 1	500 1 1

Figure 12 – Color harmony

color	rgb	cmyk	Hsb	tHsb
complementary colors	(two-color harmon	y) :		
yellow>wheel,1,2	0.00002 0 1	0.99998 1 0 0	240.00128 1 1	240.00128 1 1
yellow	<u> </u>	0010	60.00128 1 1	120.00128 1 1
yellow>twheel,1,2	1 0 0.99995	0 1 0.00005 0	300.00256 1 1	300.00256 1 1
color triad (three-colo	r harmony) ·			
yellow>wheel,2,3	1 0 0.99995	0 1 0.00005 0	300.00256 1 1	300.00256 1 1
yellow>wheel,1,3	0 1 1	1000	180 1 1	210 1 1
yellow	110	0010	60.00128 1 1	120.00128 1 1
yellow>twheel,1,3	0.00002 0 1	0.99998 1 0 0	240.00128 1 1	240.00128 1 1
yellow>twheel,2,3	1 0.00012 0	0 0.99988 1 0	0.00714 1 1	0.01428 1 1
-				
color tetrad (four-colo		0.1.0.50002.0	220 00120 1 1	220 00120 1 1
yellow>wheel,3,4 yellow>wheel,2,4	1 0 0.49998	0 1 0.50002 0	330.00128 1 1	330.00128 1 1
yellow>wheel,1,4	0.00002 0 1	0.99998 1 0 0	240.00128 1 1 150.00128 1 1	240.00128 1 1 195.00064 1 1
yellow > wheel, 1, 4	1 1 0	0 0 1 0	60.00128 1 1	120.00128 1 1
yellow>twheel,1,4	0 0.99988 1	1 0.00012 0 0	180.00714 1 1	210.00357 1 1
yellow>twheel,2,4	1 0 0.99995	0 1 0.00005 0	300.00256 1 1	300.00256 1 1
yellow>twheel,3,4	1 0 0.99993	0 0.74998 1 0	15.00128 1 1	30.00256 1 1
-		0 0.74990 1 0	15.00126 1 1	30.00230 1 1
split complementary c				
yellow>wheel,7,12	0.5 0 1	0.5 1 0 0	270 1 1	270 1 1
yellow>wheel,5,12	0 0.49995 1	1 0.50005 0 0	210.00256 1 1	225.00128 1 1
yellow	110	0010	60.00128 1 1	120.00128 1 1
yellow>twheel,5,12	0.50018 0 1	0.49982 1 0 0	270.01099 1 1	270.01099 1 1
yellow>twheel,7,12	1 0 0.49998	0 1 0.50002 0	330.00128 1 1	330.00128 1 1
analogous (adjacent) d	colors :			
yellow>wheel,11,12	1 0.50005 0	0 0.49995 1 0	30.00256 1 1	60.00513 1 1
yellow>wheel,10,12	100	0 1 1 0	360 1 1	360 1 1
yellow>wheel,2,12	0 1 0.00005	1 0 0.99995 0	120.00256 1 1	180.00128 1 1
yellow>wheel,1,12	0.5 1 0	0.5 0 1 0	90 1 1	150 1 1
yellow	110	0010	60.00128 1 1	120.00128 1 1
yellow>twheel,1,12	0.5 1 0	0.5 0 1 0	90 1 1	150 1 1
yellow>twheel,2,12	0 1 0.00021	1 0 0.99979 0	120.013 1 1	180.0065 1 1
yellow>twheel,10,12	1 0.50005 0	0 0.49995 1 0	30.00256 1 1	60.00513 1 1
yellow>twheel,11,12	1 0.75012 0	0 0.24988 1 0	45.00714 1 1	90.01428 1 1

4 Colors by Name

4.1 Base colors (always available)

```
black (
                   darkgray (
                                     lime (
                                                        pink (
                                                                             violet (
blue (
                   gray (
                                       ■) magenta (
                                                          purple (
                                                                              )white (
brown (
                                       olive (
                                                                             )yellow (
                    green (
                                                          red (
)cyan (
                  lightgray (
                                       orange (
                                                         teal (
```

4.2 Colors via dvipsnames option

```
Apricot (
                   Oyan (
                                    Mahogany (
                                                       ProcessBlue (
                                                                        SpringGreen (
Aquamarine (
                    Dandelion (
                                    Maroon (
                                                      Purple (
                                                                        Tan (
                                                                        TealBlue (
                  DarkOrchid (
                                    Melon (
                                                        ■)RawSienna (
Black (
                                    MidnightBlue (
                  Emerald (
                                                      Red (
                                                                        Thistle (
                                                                        Turquoise (
Blue (
                   ForestGreen (
                                    Mulberry (
                                                      RedOrange (
BlueGreen (
                                    NavyBlue (
                                                      RedViolet (
                                                                        Violet (
                  Fuchsia (
                                                                        Violet Red (
)BlueViolet (
)BrickRed (
                                    OliveGreen (
                                                       Rhodamine (
                  Gray (
                                    Orange (
                                                        RoyalBlue (
                                                                          □)White (
Brown (
                   Green (
                                    OrangeRed (
                                                      RoyalPurple (
                                                                        WildStrawberry (
BurntOrange (
                   GreenYellow (
                                    Orchid (
                                                       RubineRed (
                                                                        Yellow (
CadetBlue (
                  JungleGreen (
                                    Peach (
                                                      Salmon (
                                                                        YellowGreen (
                                    Periwinkle (
                                                      SeaGreen (
                                                                        YellowOrange (
CarnationPink (
                  Lavender (
  Cerulean (
                  LimeGreen (
                                    PineGreen (
                                                       ■)Sepia (
 CornflowerBlue (
                  Magenta (
                                    Plum (
                                                       SkyBlue (
```

4.3 Colors via sygnames option

```
AliceBlue (
                        ■)DarkCyan (
                                              DodgerBlue (
                                                                   LemonChiffon (
AntiqueWhite (
                        DarkGoldenrod (
                                              FireBrick (
                                                                   LightBlue (
Aqua (
Aquamarine (
                                              )FloralWhite (
                      DarkGray (
                                                                   LightCoral (
                        DarkGreen (
                                             ForestGreen (
Azure (
                                             Fuchsia (
                      DarkGrey (
                                                                   LightGoldenrod (
Beige (
                      DarkKhaki (
                                                                   LightGoldenrodYellow (
Bisque (
                      DarkMagenta (
                                             GhostWhite (
                                                                   LightGray (
                                             Gold (
                      DarkOliveGreen (
                                                                   LightGreen (
Black (
 BlanchedAlmond (
                        DarkOrange (
                                             Goldenrod (
                                                                   LightGrey (
Blue (
                      DarkOrchid (
                                             Gray (
                                                                   LightPink (
BlueViolet (
                                                                    LightSalmon (
                      DarkRed (
                                             Green (
                                             GreenYellow (
Brown (
                      DarkSalmon (
                                                                    LightSeaGreen (
                                             Grey (
                                                                   LightSkyBlue (
BurlyWood (
                      DarkSeaGreen (
CadetBlue (
                      DarkSlateBlue (
                                             Honeydew (
                                                                   LightSlateBlue (
                      DarkSlateGray (
                                             HotPink (
                                                                   LightSlateGray (
Chartreuse (
                      DarkSlateGrey
                                             IndianRed (
                                                                   LightSlateGrey
Chocolate (
                                                                   LightSteelBlue (
Coral (
                       DarkTurquoise (
                                             Indigo (
                                             Nivory (
                                                                   LightYellow (
                      DarkViolet (
CornflowerBlue (
                                                                   Lime (
LimeGreen (
  Cornsilk (
                         DeepPink (
                                               ■)Khaki (
                       DeepSkyBlue (
 ■)Crimson (
                                             Lavender (
  Cyan (
                       DimGray (
DarkBlue (
                      DimGrey (
                                             LawnGreen (
                                                                     Magenta (
```


4.4 Colors via x11names option

```
AntiqueWhite1 (
                      Burlywood3 (
                                              DarkGoldenrod1 (
                                                                   DeepPink3 (
AntiqueWhite2
                      Burlywood4 (
                                              DarkGoldenrod2
                                                                     DeepPink4 (
AntiqueWhite3 (
                                              ■)DarkGoldenrod3 (
                                                                     DeepSkyBlue1
AntiqueWhite4 (
                                                                   DeepSkyBlue2
                      CadetBlue2
                                            DarkGoldenrod4 (
Aquamarine1 (
                      CadetBlue3 (
                                              DarkOliveGreen1
                                                                    DeepSkyBlue3
Aquamarine2 (
                      CadetBlue4 (
                                            DarkOliveGreen2
                                                                   DeepSkyBlue4 (
Aquamarine3 (
                      Chartreuse1
                                            DarkOliveGreen3
                                                                    DodgerBlue1
Aquamarine4 (
                        Chartreuse2
                                            DarkOliveGreen4 (
                                                                     DodgerBlue2
                      Chartreuse3
                                            DarkOrange1 (
                                                                    DodgerBlue3
Azure1 (
Azure2 (
                      Chartreuse4 (
                                             DarkOrange2
                                                                    ■)DodgerBlue4 (
Azure3 (
                      Chocolate1 (
                                            DarkOrange3 (
                                                                    Firebrick1
                                                                    Firebrick2
Azure4 (
                      Chocolate2
                                             DarkOrange4
                                              DarkOrchid1 (
Bisque1
                        ■)Chocolate3
                                                                     ■)Firebrick3
Bisque2
                      Chocolate4 (
                                            DarkOrchid2
                                                                   Firebrick4 (
Bisque3 (
                      Coral1 (
                                            DarkOrchid3
                                                                   Gold1 (
Bisque4 (
                      Coral2 (
                                            DarkOrchid4 (
                                                                   Gold2
)Blue1 (
Blue2 (
                      Coral3
                                                                   Gold3
                                            DarkSeaGreen2
                      Coral4
                                                                   Gold4 (
                                                                    ■)Goldenrod1 (
 Blue3 (
                      Cornsilk1 (
                                            DarkSeaGreen3 (
 Blue4 (
                      Cornsilk2 (
                                            DarkSeaGreen4 (
                                                                   Goldenrod2 (
                      Cornsilk3
                                                                   Goldenrod3
Brown1
                                            DarkSlateGray1
 Brown2
                      Cornsilk4 (
                                              DarkSlateGray2
                                                                   Goldenrod4 (
Brown3 (
                                            DarkSlateGray3
                       Cyan1 (
                                                                     Green1 (
Brown4 (
                       Cvan2 (
                                            DarkSlateGrav4 (
                                                                    Green2 (
 Burlywood1
                        Cyan3 (
                                              DeepPink1 (
                                                                     Green3 (
Burlywood2 (
                                              DeepPink2 (
                                                                    Green4 (
                       Cyan4 (
```

```
)Honeydew1 (
                     LightSteelBlue3 (
                                          PaleVioletRed1 (
                                                                SlateBlue3 (
Honeydew2
                     LightSteelBlue4 (
                                           PaleVioletRed2
                                                                SlateBlue4
                                           PaleVioletRed3
Honevdew3
                      LightYellow1
                                                                SlateGrav1
Honeydew4 (
                     ____)LightYellow2
                                           PaleVioletRed4 (
                                                                SlateGray2
HotPink1
                                          PeachPuff1 (
                                                                SlateGray3
                     LightYellow3
HotPink2
                     LightYellow4 (
                                          PeachPuff2
                                                                SlateGray4 (
                                          )PeachPuff3
HotPink3
                                                                  \square)Snow1 (
                       Magenta1 (
HotPink4 (
                      Magenta2
                                           PeachPuff4 (
                                                                Snow2
IndianRed1 (
                      Magenta3
                                          Pink1 (
                                                                Snow3
                                          Pink2
                                                                Snow4
IndianRed2
                       ■)Magenta4 (
 ■)IndianRed3
                       Maroon1
                                          Pink3
                                                                 SpringGreen1
                                                                 SpringGreen2
IndianRed4 (
                      Maroon2
                                          Pink4 (
                     Maroon3
                                          Plum1
                                                                  SpringGreen3
Ivory2 (
                                          Plum2
                     Maroon4 (
                                                                SpringGreen4 (
Ivory3 (
                                          Plum3
                       MediumOrchid1 (
                                                                SteelBlue1
                                                                )SteelBlue2
Ivory4 (
                       MediumOrchid2
                                          Plum4
                                           Purple1 (
                                                                SteelBlue3
                     MediumOrchid3
 Mhaki2 (
                     MediumOrchid4
                                           Purple2 (
                                                                SteelBlue4 (
Khaki3 (
                     MediumPurple1 (
                                           Purple3 (
                                                                Tan1 (
                                           Purple4 (
Khaki4
                     MediumPurple2
                                                                Tan2
                     MediumPurple3
                                             Red1 (
                                                                Tan3
                     MediumPurple4 (
                                            Red2
                                                                Tan4
LavenderBlush3 (
                     MistyRose1
                                            Red3
                                                                Thistle1 (
                     MistyRose2
                                                                Thistle2
LavenderBlush4 (
                                           Red4 (
LemonChiffon1
                     MistyRose3
                                          RosyBrown1
                                                                Thistle3
LemonChiffon2 (
                     MistyRose4 (
                                          RosyBrown2
                                                                Thistle4
LemonChiffon3 (
                      NavajoWhite1 (
                                          RosvBrown3 (
                                                                Tomato1
LemonChiffon4 (
                     NavajoWhite2 (
                                          RosyBrown4 (
                                                                Tomato2
                     NavajoWhite3 (
                                           RoyalBlue1 (
LightBlue1 (
                                                                Tomato3
LightBlue2
                     NavajoWhite4 (
                                           RoyalBlue2
                                                                  ■)Tomato4
                                           RoyalBlue3
LightBlue3 (
                     OliveDrab1
                                                                  Turquoise1
LightBlue4 (
                     OliveDrab2
                                           RovalBlue4 (
                                                                 Turquoise2
LightCyan1
                     OliveDrab3 (
                                          Salmon1
                                                                 Turquoise3
                                           Salmon2
                     OliveDrab4 (
LightCyan2
                                                                  ■)Turquoise4
LightCyan3
                       Orange1 (
                                           Salmon3
                                                                  ■)VioletRed1
                                           Salmon4
                     Orange2
                                                                VioletRed2
LightCyan4 (
                     Orange3 (
                                            SeaGreen1 (
                                                                VioletRed3 (
                     Orange4
                                           SeaGreen2
                                                                ■ VioletRed4 (
                      OrangeRed1 (
LightGoldenrod3
                                           SeaGreen3
LightGoldenrod4 (
                       OrangeRed2
                                            SeaGreen4 (
                                                                Wheat2
LightPink1 (
                     OrangeRed3
                                                                )Wheat3
LightPink2 (
                     OrangeRed4 (
                                          Seashell2
                                                                Wheat4
                                                                 Yellow1
                     Orchid1 (
                                          Seashell3
LightPink3 (
                                                                Yellow2
LightPink4 (
                     Orchid2 (
                                           Seashell4 (
LightSalmon1
                     Orchid3 (
                                          Sienna1
                                                                  Yellow3
LightSalmon2 (
                     Orchid4 (
                                          Sienna2
                                                                Yellow4 (
LightSalmon3 (
                     PaleGreen1 (
                                           Sienna3 (
                                                                Gray0 (
                     PaleGreen2 (
                                           Sienna4 (
                                                                 Green0 (
LightSalmon4 (
LightSkyBlue1
                     PaleGreen3
                                            SkyBlue1 (
                                                                Grev0 (
LightSkyBlue2
                     PaleGreen4
                                          SkyBlue2 (
                                                                  ■)Maroon0 (
LightSkyBlue3 (
                     PaleTurquoise1 (
                                           SkyBlue3 (
                                                                Purple0 (
LightSkyBlue4 (
                     PaleTurquoise2 (
                                           SkyBlue4 (
LightSteelBlue1 (
                     PaleTurquoise3
                                            SlateBlue1 (
LightSteelBlue2
                                            SlateBlue2 (
                     PaleTurquoise4 (
```

 $Duplicate \ colors: \ (\mathit{Gray0}) = \ (\mathit{Grey0}), \ (\mathit{Green0}) = \ (\mathit{Green1}).$

5 Technical Supplement

5.1 Color models supported by drivers

Since some of the drivers only pretend to support the **hsb** model, we included some code to bypass this behaviour. The models actually added by xcolor are shown in the log file. Table 5 lists mainly the drivers that are part of current MiKTEX [13] distributions and their color model support. Probably, other distributions behave similarly.

DriverVersioncmyk hsb gray RGB HTML HSB Gray rgb cmy dvipdf 2015/12/30 v3.0kd d n d n i n n n 2015/12/30 v3.0k dvips d n d d d n n n dvipsone 2015/12/30 v3.0kd d n d d i \mathbf{n} n n pctex32 2015/12/30 v3.0k d n d d d i n n n pctexps 2015/12/30 v3.0k d d d d i n pdftex 2011/05/27 v0.06dd d d i \mathbf{n} n \mathbf{n} n n luatex 2016/01/23 v0.01b d n d n d i \mathbf{n} n 1999/9/6 vx.x d d d i dvipdfm \mathbf{n} \mathbf{n} n \mathbf{n} dvipdfmx 2016/04/06 v4.08d d d i n \mathbf{n} n n textures 1997/5/28 v0.3d d i n n \mathbf{n} n 1999/01/14 v6.3d d i vtexn 2016/04/06 v4.08 xetex d d d d i \mathbf{n} \mathbf{n} n n tcidvi 2015/12/30 v3.0k i n i n i d n n n 2015/12/30 v3.0ki dtruetex i n n n n n dviwin 2015/12/30 v3.0k \mathbf{n} n n \mathbf{n} \mathbf{n} \mathbf{n} \mathbf{n} \mathbf{n} 2015/12/30 v3.0k emtex n n n n \mathbf{n} \mathbf{n} n n n pctexhp 2015/12/30 v3.0k \mathbf{n} n \mathbf{n} n n \mathbf{n} n n n pctexwin 2015/12/30 v3.0kn n n n \mathbf{n} dviwindo = dvipsone; oztex = dvips; xdvi = dvips + monochrome

Table 5 – Drivers and color models

5.2 How xcolor handles driver-specific color models

Although there is a variety of drivers that implement different approaches to color visualisation, they all have some features in common, as defined by the original extension color. One of these features is that any color model 'foo' requires a $\texttt{color@foo}\{\langle cmd \rangle\}\{\langle spec \rangle\}$ command in order to translate the 'foo'-dependent color $\langle spec \rangle$ into some driver-specific code that is stored in $\langle cmd \rangle$. Therefore, xcolor in general detects driver-support for the 'foo' model via the existence of color@foo.

Driver's color model support : d = direct, i = indirect, n = none

By this mechanism, xcolor can also change the behaviour of certain models without

touching the driver file itself. A good example is the \substitutecolormodel command which is used during the package initialisation process to provide support for models that are not covered by the actual driver (like hsb for pdftex) or that have incorrect implementations (like hsb for dvipdfm).

5.3 Behind the scenes: internal color representation

Every definition of a color in order to access it by its name requires an internal representation of the color, i.e. a macro that contains some bits of information required by the driver to display the color properly.

color's \definecolor{foo}{...}{...} generates a command \\color@foo ¹⁷ which contains the color definition in a driver-dependent way; therefore it is possible but non-trivial to access the color model and parameters afterwards (see the colorinfo package [11] for a solution).

color's \DefineNamedColor{named}{foo}{...}{...} generates \col@foo ¹⁸ which again contains some driver-dependent information. In this case, an additional \\color@foo will only be defined if the package option usecolors is active.

xcolor's \definecolor{foo}{...}{...} generates ¹⁹ a command \\color@foo as well, which combines the features of the former commands and contains both the driver-dependent and driver-independent information, thus making it possible to access the relevant parameters in a standardised way. Although it has now a different syntax, \\color@foo expands to the same expression as the original command. On the other hand, \col@foo commands are no longer needed and therefore not generated in the 'named' case: xcolor works with a single color data structure (as described).

Table 6 page suivante shows some examples for the two most prominent drivers. See also figure 3 page 38 which displays the definitions with respect to the driver that was used to process this document.

5.4 A remark on accuracy

Since the macros presented here require some computation, special efforts were made to ensure a maximum of accuracy for conversion and mixing formulas — all within TEX's limited numerical capabilities. ²⁰ We decided to develop and include a small set of commands to improve the quality of division and multiplication results, instead of loading one of the packages that provide multi-digit arithmetic and a lot more, like realcalc or fp. The marginal contribution of the latter packages seems not to justify their usage for our purposes. Thus, we stay within a sort of fixed-point arithmetic framework, providing at most 5 decimal digits via TEX's dimension registers.

^{17.} The double backslash is intentional.

^{18.} The single backslash is intentional.

^{19.} This was introduced in version 1.10; prior to that, a command \xcolor@foo with a different syntax was generated.

^{20.} For example, applying the 'transformation' \dimen0=0. $\langle int \rangle$ pt \the\dimen0 to all 5-digit numbers $\langle int \rangle$ of the range 00000...99999, exactly 34464 of these 100000 numbers don't survive unchanged. We are not talking about gobbled final zeros here ...

Table 6 – Driver-dependent internal color representation

dvips driver		
\\color@Plum=macro:	(\definecolor{Plum}{rgb}{.5,0,1})	color
->rgb .5 0 1.		
\\color@Plum=macro:	(\definecolor{Plum}{rgb}{.5,0,1})	xcolor
->\xcolor@ {}{rgb 0.5 0 1}-	[rgb}{0.5,0,1}.	
\col@Plum=macro: (\)	DefineNamedColor{Plum}{rgb}{.5,0,1})	color
->\@nil .		
\\color@Plum=macro:	(with option usenames)	
-> Plum.		
\\color@Plum=macro: (\de:	finecolor[named]{Plum}{rgb}{.5,0,1})	xcolor
->\xcolor@ {named}{ Plum}{1	rgb}{0.5,0,1}.	
pdftex driver		
\\color@Plum=macro:	(\definecolor{Plum}{rgb}{.5,0,1})	color
->.5 0 1 rg .5 0 1 RG.		
\\color@Plum=macro:	(\definecolor{Plum}{rgb}{.5,0,1})	xcolor
->\xcolor@ {}{0.5 0 1 rg 0	.5 0 1 RG}{rgb}{0.5,0,1}.	
\col@Plum=macro: (\)	DefineNamedColor{Plum}{rgb}{.5,0,1})	color
->.5 0 1 rg .5 0 1 RG.		
\\color@Plum=macro:	(with option usenames)	
->.5 0 1 rg .5 0 1 RG.		
\\color@Plum=macro: (\de:	finecolor[named]{Plum}{rgb}{.5,0,1})	xcolor
->\xcolor@ {}{0.5 0 1 rg 0	.5 0 1 RG}{rgb}{0.5,0,1}.	

6 The Formulas

6.1 Color mixing

In general, we use linear interpolation for color mixing:

$$m\'{e}lange(C, C', p) = p \cdot C + (1 - p) \cdot C'$$
(9)

Note that there is a special situation in the **hsb** case: if saturation = 0 then the color equals a gray color of level brightness, independently of the hue value. Therefore, to achieve smooth transitions of an arbitrary color to a specific gray (like white or black), we actually use the formulas

$$éclaicie_{hsh}(C, p) = p \cdot C + (1 - p) \cdot (hue, 0, 1)$$
(10)

assombrie_{hsb}
$$(C, p) = p \cdot C + (1 - p) \cdot (hue, 0, 0)$$
 (11)

assourdie
$$_{\mathsf{hsb}}(C,p) = p \cdot C + (1-p) \cdot \left(hue, 0, \frac{1}{2}\right)$$
 (12)

where C = (hue, saturation, brightness).

From equation (9) and the way how color expressions are being interpreted, as described in section 2.3 page 14, it is an easy proof by induction to verify that a color expression

$$C_0!P_1!C_1!P_2!\dots!P_n!C_n$$
 (13)

with $n \in \{0, 1, 2, \ldots\}$, colors C_0, C_1, \ldots, C_n , and percentages $P_1, \ldots, P_n \in [0, 100]$ will result in a parameter vector

$$C = \sum_{\nu=0}^{n} \left(\prod_{\mu=\nu+1}^{n} p_{\mu} \right) (1 - p_{\nu}) \cdot C_{\nu}$$

$$= p_{n} \cdots p_{1} \cdot C_{0}$$

$$+ p_{n} \cdots p_{2} (1 - p_{1}) \cdot C_{1}$$

$$+ p_{n} \cdots p_{3} (1 - p_{2}) \cdot C_{2}$$

$$+ \cdots$$

$$+ p_{n} (1 - p_{n-1}) \cdot C_{n-1}$$

$$+ (1 - p_{n}) \cdot C_{n}$$
(14)

where $p_0 := 0$ and $p_{\nu} := P_{\nu}/100$ for $\nu = 1, \dots, n$. We note also a split formula :

$$C_0!P_1!C_1!\dots!P_{n+k}!C_{n+k} = p_{n+k}\cdots p_{n+1}\cdot C_0!P_1!C_1!\dots!P_n!C_n$$

$$-p_{n+k}\cdots p_{n+1}\cdot C_n$$

$$+C_n!P_{n+1}!C_{n+1}!\dots!P_{n+k}!C_{n+k}$$
(15)

6.2 Conversion between integer and real models

We fix a positive integer n and define the sets $\mathcal{I}_n := \{0, 1, \dots, n\}$ and $\mathcal{R} := [0, 1]$. The complement of $\nu \in \mathcal{I}_n$ is $n - \nu$, the complement of $x \in \mathcal{R}$ is 1 - x.

Table 7 – Color constants

model/constant	white	black	gray
rgb	(1, 1, 1)	(0, 0, 0)	$(frac{1}{2}, frac{1}{2}, frac{1}{2})$
сту	(0, 0, 0)	(1, 1, 1)	(rac12,rac12,rac12)
cmyk	(0,0,0,0)	(0,0,0,1)	$(0,0,0,\frac{1}{2})$
hsb	(h, 0, 1)	(h, 0, 0)	$(h,0,\frac{1}{2})$
Hsb	$(h^\circ,0,1)$	$(h^\circ,0,0)$	$(h^\circ,0,\frac{1}{2})$
tHsb	$(h^{\circ},0,1)$	$(h^{\circ},0,0)$	$(h^\circ,0, frac12)$
gray	1	0	$\frac{1}{2}$
RGB	(L, L, L)	(0, 0, 0)	$\left(\left\lfloor\frac{L+1}{2}\right\rfloor,\left\lfloor\frac{L+1}{2}\right\rfloor,\left\lfloor\frac{L+1}{2}\right\rfloor\right)$
HTML	FFFFFF	000000	808080
HSB	(H,0,M)	(H, 0, 0)	$(H,0,\lfloor \frac{M+1}{2} \rfloor)$
Gray	N	0	$\lfloor \frac{N+1}{2} \rfloor$

Table 8 – Color conversion pairs

from/to	rgb	cmy	cmyk	hsb	Hsb	tHsb	gray	RGB	HTML	HSB	Gray
rgb	id	*	(cmy)	*	(hsb)	(hsb)	*	*	*	(hsb)	(gray)
cmy	*	id	*	(rgb)	(rgb)	(rgb)	*	(rgb)	(rgb)	(rgb)	(gray)
cmyk	(cmy)	*	id	(cmy)	(cmy)	(cmy)	*	(cmy)	(cmy)	(cmy)	(gray)
hsb	*	(rgb)	(rgb)	id	*	(Hsb)	(rgb)	(rgb)	(rgb)	*	(rgb)
Hsb	(hsb)	(hsb)	(hsb)	*	id	*	(hsb)	(hsb)	(hsb)	(hsb)	(hsb)
tHsb	(Hsb)	(Hsb)	(Hsb)	(Hsb)	*	id	(Hsb)	(Hsb)	(Hsb)	(Hsb)	(Hsb)
gray	*	*	*	*	*	*	id	*	*	*	*
RGB	*	(rgb)	(rgb)	(rgb)	(rgb)	(rgb)	(rgb)	id	(rgb)	(rgb)	(rgb)
HTML	*	(rgb)	(rgb)	(rgb)	(rgb)	(rgb)	(rgb)	(rgb)	id	(rgb)	(rgb)
HSB	(hsb)	(hsb)	(hsb)	*	(hsb)	(hsb)	(hsb)	(hsb)	(hsb)	id	(hsb)
Gray	(gray)	(gray)	(gray)	(gray)	(gray)	(gray)	*	(gray)	(gray)	(gray)	id
wave	(hsb)	(hsb)	(hsb)	*	(hsb)	(hsb)	(hsb)	(hsb)	(hsb)	(hsb)	(hsb)

id = identity function; * = specific conversion function; (model) = conversion via specified model

6.2.1 Real to integer conversion

The straightforward mapping for this case is

$$\Gamma_n : \mathcal{R} \to \mathcal{I}_n, \ x \mapsto \text{round}(n \cdot x, 0) = \left| \frac{1}{2} + n \cdot x \right|$$
 (16)

where round(r, d) rounds the real number r to $d \ge 0$ decimal digits. This mapping nearly always preserves complements, as shown in the next lemma.

Lemma 1 (Preservation of complements). For $x \in \mathcal{R}$,

$$\Gamma_n(x) + \Gamma_n(1-x) = n \iff x \notin \mathcal{R}_n^{\circ} := \left\{ \frac{1}{n} \left(\nu - \frac{1}{2} \right) \mid \nu = 1, 2, \dots, n \right\}. \tag{17}$$

Démonstration. Let $\nu := \Gamma_n(x)$, then from $-\frac{1}{2} \le \eta := n \cdot x - \nu < \frac{1}{2}$ we conclude

$$\Gamma_n(1-x) = \text{round}(n(1-x), 0) = \text{round}(n-\nu - \eta, 0) = \begin{cases} n-\nu & \text{if } \eta \neq -\frac{1}{2} \\ n-\nu + 1 & \text{if } \eta = -\frac{1}{2} \end{cases}$$

Now,
$$\eta = -\frac{1}{2} \iff x = \frac{1}{n} \left(\nu - \frac{1}{2} \right) \iff x \in \mathcal{I}'_n$$
.

Remark : the set \mathcal{R}_n° is obviously identical to the set of points where Γ_n is not continuous.

6.2.2 Integer to real conversion

The straightforward way in this case is the function

$$\Delta_n^*: \mathcal{I}_n \to \mathcal{R}, \ \nu \mapsto \frac{\nu}{n}.$$
 (18)

This is, however, only one out of a variety of solutions : every function $\Delta_n : \mathcal{I}_n \to \mathcal{R}$ that obeys the condition

$$\nu \in \mathcal{I}_n \Rightarrow \Gamma_n(\Delta_n(\nu)) = \nu \tag{19}$$

which is equivalent to

$$\nu \in \mathcal{I}_n \Rightarrow \nu + \frac{1}{2} > n \cdot \Delta_n(\nu) \ge \nu - \frac{1}{2}$$
 (20)

does at least guarantee that all integers ν may be reconstructed from $\Delta_n(\nu)$ via multiplication by n and rounding to the nearest integer. Preservation of complements means now

$$\nu \in \mathcal{I}_n \Rightarrow \Delta_n(\nu) + \Delta_n(n - \nu) = 1 \tag{21}$$

which is obviously the case for $\Delta_n = \Delta_n^*$. If we consider, more generally, a transformation

$$\Delta_n(\nu) = \frac{\nu + \alpha}{n + \beta} \tag{22}$$

with $\beta \neq -n$, then the magic inequality (20) is equivalent to

$$\frac{1}{2} > \frac{\alpha n - \beta \nu}{n + \beta} \ge -\frac{1}{2} \tag{23}$$

which is obeyed by the function

$$\Delta'_{n}: \mathcal{I}_{n} \to \mathcal{R}, \ \nu \mapsto \begin{cases} \frac{\nu}{n+1} & \text{if } \nu \leq \frac{n+1}{2} \\ \frac{\nu+1}{n+1} & \text{if } \nu > \frac{n+1}{2} \end{cases}$$
 (24)

that has the nice feature $\Delta'_n(\frac{n+1}{2}) = \frac{1}{2}$ for odd n.

Lemma 2 (Preservation of complements). For odd n and each $\nu \in \mathcal{I}_n$,

$$\Delta'_n(\nu) + \Delta'_n(n-\nu) = 1 \iff \nu \notin \mathcal{I}_n^\circ := \left\{ \frac{n-1}{2}, \frac{n+1}{2} \right\}. \tag{25}$$

Démonstration. The assertion is a consequence of the following arguments :

$$- \nu < \frac{n-1}{2} \iff n - \nu > \frac{n+1}{2} \text{ and } \frac{n-1}{2} + \frac{n+1}{2} = n;$$

$$- \nu < \frac{n-1}{2} \Rightarrow \Delta'_n(\nu) + \Delta'_n(n-\nu) = \frac{\nu}{n+1} + \frac{n-\nu+1}{n+1} = 1;$$

$$- \nu = \frac{n-1}{2} \Rightarrow \Delta'_n(\nu) + \Delta'_n(n-\nu) = \frac{n-1}{2(n+1)} + \frac{1}{2} = \frac{n}{n+1} \neq 1.$$

For the time being, we choose $\Delta_n := \Delta_n^*$ as default transformation function.

Another variant — which is probably too slow for large-scale on-the-fly calculations — may be used for constructing sets of predefined colors. The basic idea is to minimize the number of decimal digits in the representation while keeping some invariance with respect to the original resolution:

$$\Delta_n'': \mathcal{I}_n \to \mathcal{R}, \ \nu \mapsto \text{round}\left(\frac{\nu}{n}, d_n(\frac{\nu}{n})\right)$$
 (26)

where

$$d_n: [0,1] \to \mathbb{N}, \ x \mapsto \min \{ d \in \mathbb{N} \mid \Gamma_n(\text{round}(\Delta_n^*(\Gamma_n(x)), d)) = \Gamma_n(x) \}$$
 (27)

In the most common case n=255 it turns out that we end up with at most 3 decimal digits; preservation of complements is only violated for $\nu \in \{25, 26, 76, 77, 127, 128, 178, 179, 229, 230\}$ where the corresponding set of decimal numbers is $\{0.098, 0.1, 0.298, 0.3, 0.498, 0.5, 0.698, 0.7, 0.898, 0.9\}$.

6.3 Color conversion and complements

We collect here the specific conversion formulas between the supported color models. Table 8 page 51 gives an overwiew of how each conversion pair is handled. In general, PostScript (as described in [1]) is used as a basis for most of the calculations, since it supports the color models **rgb**, **cmyk**, **hsb**, and **gray** natively. Furthermore, Alvy Ray Smith's paper [15] is cited in [1] as reference for **hsb**-related formulas.

First, we define a constant which is being used throughout the conversion formulas:

$$E := (1, 1, 1) \tag{28}$$

6.3.1The rgb model

Conversion rgb to cmy Source: [1], p. 475.

$$(cyan, magenta, yellow) := E - (red, green, blue)$$
 (29)

Conversion rgb to hsb (1) We set

$$x := \max\{red, green, blue\} \tag{30}$$

$$y := \text{med}\{red, green, blue\}$$
 (31)

$$z := \min\{red, green, blue\}$$
 (32)

(33)

where 'med' denotes the median of the values. Then,

$$brightness := x$$
 (34)

Case x = z:

$$saturation := 0 (35)$$

$$hue := 0 \tag{36}$$

Case $x \neq z$:

$$saturation := \frac{x - z}{x}$$

$$f := \frac{x - y}{x - z}$$
(37)

$$f := \frac{x - y}{x - z} \tag{38}$$

$$hue := \frac{1}{6} \cdot \begin{cases} 1 - f & \text{if } x = red \ge green \ge blue = z \\ 1 + f & \text{if } x = green \ge red \ge blue = z \\ 3 - f & \text{if } x = green \ge blue \ge red = z \\ 3 + f & \text{if } x = blue \ge green \ge red = z \\ 5 - f & \text{if } x = blue \ge red \ge green = z \\ 5 + f & \text{if } x = red \ge blue > green = z \end{cases}$$

$$(39)$$

This is based on [15], RGB to HSV Algorithm (Hexcone Model), which reads

(slightly reformulated):

$$r := \frac{x - red}{x - z}, \qquad g := \frac{x - green}{x - z}, \qquad b := \frac{x - blue}{x - z}$$
 (40)

$$hue := \frac{1}{6} \cdot \begin{cases} 5+b & \text{if } red = x \text{ and } green = z \\ 1-g & \text{if } red = x \text{ and } green > z \\ 1+r & \text{if } green = x \text{ and } blue = z \\ 3-b & \text{if } green = x \text{ and } blue > z \\ 3+g & \text{if } blue = x \text{ and } red = z \\ 5-r & \text{if } blue = x \text{ and } red > z \end{cases}$$

$$(41)$$

Note that the singular case x = z is not covered completely in Smith's original algorithm; we stick here to PostScript's behaviour in real life.

Because we need to sort three numbers in order to calculate x, y, z, several comparisons are involved in the algorithm. We present now a second method which is more suited for $T_{F}X$.

Conversion rgb to hsb (2) Let β be a function that takes a Boolean expression as argument and returns 1 if the expression is true, 0 otherwise; set

$$i := 4 \cdot \beta(red \ge green) + 2 \cdot \beta(green \ge blue) + \beta(blue \ge red),$$
 (42)

and

$$(hue, saturation, brightness) := \begin{cases} \Phi(blue, green, red, 3, 1) & \text{if } i = 1 \\ \Phi(green, red, blue, 1, 1) & \text{if } i = 2 \\ \Phi(green, blue, red, 3, -1) & \text{if } i = 3 \\ \Phi(red, blue, green, 5, 1) & \text{if } i = 4 \\ \Phi(blue, red, green, 5, -1) & \text{if } i = 5 \\ \Phi(red, green, blue, 1, -1) & \text{if } i = 6 \\ (0, 0, blue) & \text{if } i = 7 \end{cases}$$

$$(43)$$

where

$$\Phi(x,y,z,u,v) := \left(\frac{u \cdot (x-z) + v \cdot (x-y)}{6(x-z)}, \frac{x-z}{x}, x\right) \tag{44}$$

The singular case x = z, which is equivalent to red = green = blue, is covered here by i = 7.

It is not difficult to see that this algorithm is a reformulation of the previous method. The following table explains how the transition from equation (39) to equation (43) works:

$6 \cdot hue$	Condition	$red \geq green$	$green \geq blue$	$blue \geq red$	i
1-f	$red \geq green \geq blue$	1	1	*	6/7
1+f	$green \geq red \geq blue$	*	1	*	2/3/6/7
3-f	$green \geq blue \geq red$	*	1	1	3/7
3+f	$blue \geq green \geq red$	*	*	1	1/3/5/7
5-f	$blue \ge red \ge green$	1	*	1	5 /7
5+f	$red \geq blue \geq green$	1	*	*	4/5/6/7

Here, * denotes possible 0 or 1 values. Bold i values mark the main cases where all * values of a row are zero. The slight difference to equation (39) in the last inequality is intentional and does no harm.

Conversion rgb to gray Source: [1], p. 474.

$$gray := 0.3 \cdot red + 0.59 \cdot green + 0.11 \cdot blue \tag{45}$$

Conversion rgb to RGB As described in section 6.2.1 page 52.

$$(Red, Green, Blue) := (\Gamma_L(red), \Gamma_L(green), \Gamma_L(blue))$$
(46)

Conversion rgb to HTML As described in section 6.2.1 page 52. Convert to 6-digit hexadecimal afterwards. Certainly, multiplication and summation can be replaced by simple text concatenation of 2-digit hexadecimals.

$$RRGGBB := (65536 \cdot \Gamma_L(red) + 256 \cdot \Gamma_L(green) + \Gamma_L(blue))_{hex}$$
 (47)

Complement of rgb color We simply take the complementary vector :

$$(red^*, green^*, blue^*) := E - (red, green, blue)$$
 (48)

6.3.2 The cmy model

Conversion cmy to rgb This is simply a reversion of the rgb \rightarrow cmy case, cf. section 6.3.1 page 54.

$$(red, green, blue) := E - (cyan, magenta, yellow)$$
 (49)

Conversion cmy to cmyk This is probably the hardest of our conversion tasks: many sources emphasize that there does not exist any universal conversion algorithm for this case because of device-dependence. The following algorithm is an extended version of the one given in [1], p. 476.

$$k := \min\{cyan, magenta, yellow\} \tag{50}$$

$$cyan := \min\{1, \max\{0, cyan - UCR_c(k)\}\}$$
(51)

$$magenta := \min\{1, \max\{0, magenta - UCR_m(k)\}\}$$
 (52)

$$yellow := \min\{1, \max\{0, yellow - UCR_y(k)\}\}$$
(53)

$$black := BG(k) \tag{54}$$

Here, four additional functions are required:

$$UCR_c, UCR_m, UCR_y : [0,1] \rightarrow [-1,1]$$
 undercolor-removal $BG : [0,1] \rightarrow [0,1]$ black-generation

These functions are device-dependent, see the remarks in [1]. Although there are some indications that they should be chosen as nonlinear functions, as long as we have no further knowledge about the target device we define them linearly:

$$UCR_c(k) := \beta_c \cdot k \tag{55}$$

$$UCR_m(k) := \beta_m \cdot k \tag{56}$$

$$UCR_{y}(k) := \beta_{y} \cdot k \tag{57}$$

$$BG(k) := \beta_k \cdot k \tag{58}$$

 $\verb|\adjustUCRBG|$

where the parameters are given by $\langle def \rangle (\beta_c), \langle \beta_m \rangle, \langle \beta_y \rangle, \langle \beta_k \rangle$ at any point in a document, defaulting to $\{1, 1, 1, 1\}$.

Conversion cmy to gray This is derived from the conversion chain cmy \rightarrow rgb \rightarrow gray.

$$gray := 1 - (0.3 \cdot cyan + 0.59 \cdot magenta + 0.11 \cdot yellow) \tag{59}$$

Complement of cmy color We simply take the complementary vector :

$$(cyan^*, magenta^*, yellow^*) := E - (cyan, magenta, yellow)$$
 (60)

6.3.3 The cmyk model

Conversion cmyk to cmy Based on [1], p. 477, in connection with $rgb \rightarrow cmy$ conversion.

$$cyan := \min\{1, cyan + black\} \tag{61}$$

$$magenta := \min\{1, magenta + black\}$$
 (62)

$$yellow := \min\{1, yellow + black\}$$
 (63)

Conversion cmyk to gray Source: [1], p. 475.

$$gray := 1 - \min\{1, 0.3 \cdot cyan + 0.59 \cdot magenta + 0.11 \cdot yellow + black\}$$
 (64)

Complement of cmyk color The simple vector complement does not yield useful results. Therefore, we first convert C = (cyan, magenta, yellow, black) to the cmy model, calculate the complement there, and convert back to cmyk.

6.3.4 The hsb model

Conversion hsb to rgb

$$(red, green, blue) := brightness \cdot (E - saturation \cdot F)$$
 (65)

with

$$i := |6 \cdot hue|, \qquad f := 6 \cdot hue - i \tag{66}$$

and

$$F := \begin{cases} (0, 1 - f, 1) & \text{if } i = 0\\ (f, 0, 1) & \text{if } i = 1\\ (1, 0, 1 - f) & \text{if } i = 2\\ (1, f, 0) & \text{if } i = 3\\ (1 - f, 1, 0) & \text{if } i = 4\\ (0, 1, f) & \text{if } i = 5\\ (0, 1, 1) & \text{if } i = 6 \end{cases}$$

$$(67)$$

This is based on [15], HSV to RGB Algorithm (Hexcone Model), which reads (slightly reformulated) :

$$m := 1 - saturation \tag{68}$$

$$n := 1 - f \cdot saturation \tag{69}$$

$$k := 1 - (1 - f) \cdot saturation \tag{70}$$

$$(red, green, blue) := brightness \cdot \begin{cases} (1, k, m) & \text{if } i = 0, 6\\ (n, 1, m) & \text{if } i = 1\\ (m, 1, k) & \text{if } i = 2\\ (m, n, 1) & \text{if } i = 3\\ (k, m, 1) & \text{if } i = 4\\ (1, m, n) & \text{if } i = 5 \end{cases}$$

$$(70)$$

Note that the case i=6 (which results from hue=1) is missing in Smith's algorithm. Because of

$$\lim_{f \to 1} (0, 1, f) = (0, 1, 1) = \lim_{f \to 0} (0, 1 - f, 1) \tag{72}$$

it is clear that there is only one way to define F for i=6 in order to get a continuous function, as shown in equation (67). This has been transformed back to equation (71). A similar argument shows that F indeed is a continuous function of hue over the whole range [0,1].

Conversion hsb to Hsb Only the first component has to be changed.

$$(hue^{\circ}, saturation, brightness) := (H \cdot hue, saturation, brightness)$$
 (73)

Conversion hsb to HSB As described in section 6.2.1 page 52.

$$(Hue, Saturation, Brightness) := (\Gamma_M(hue), \Gamma_M(saturation), \Gamma_M(brightness))$$
 (74)

Complement of hsb color We have not found a formula in the literature, therefore we give a short proof afterwards.

Lemma 3. The **hsb**-complement can be calculated by the following formulas:

$$hue^* := \begin{cases} hue + \frac{1}{2} & \text{if } hue < \frac{1}{2} \\ hue - \frac{1}{2} & \text{if } hue \ge \frac{1}{2} \end{cases}$$
 (75)

$$brightness^* := 1 - brightness \cdot (1 - saturation)$$
 (76)

$$saturation^* := \begin{cases} 0 & \text{if } brightness^* = 0\\ \frac{brightness \cdot saturation}{brightness^*} & \text{if } brightness^* \neq 0 \end{cases}$$

$$(77)$$

Démonstration. Starting with the original color C=(h,s,b), we define color $C^*=(h^*,s^*,b^*)$ by the given formulas, convert both C and C^* to the **rgb** model and show that

$$C_{\mathsf{rgb}} + C_{\mathsf{rgb}}^* = b \cdot (E - s \cdot F) + b^* \cdot (E - s' \cdot F^*) \stackrel{!}{=} E, \tag{78}$$

which means that C_{rgb} is the complement of C^*_{rgb} . First we note that the parameters of C^* are in the legal range [0,1]. This is obvious for h^*, b^* . From $b^* = 1 - b \cdot (1-s) = 1 - b + b \cdot s$ we derive $b \cdot s = b^* - (1-b) \le b^*$, therefore $s^* \in [0,1]$, and

$$b^* = 0 \Leftrightarrow s = 0 \text{ and } b = 1.$$

Thus, equation (78) holds in the case $b^* = 0$. Now we assume $b^* \neq 0$, hence

$$C_{rgb} + C_{rgb}^* = b \cdot (E - s \cdot F) + b^* \cdot \left(E - \frac{b \cdot s}{b^*} \cdot F^*\right)$$
$$= b \cdot E - b \cdot s \cdot F + b^* \cdot E - b \cdot s \cdot F^*$$
$$= E - b \cdot s \cdot (F + F^* - E)$$

since $b^* = 1 - b + bs$. Therefore, it is sufficient to show that

$$F + F^* = E. (79)$$

From

$$h<\frac{1}{2}\Rightarrow h^*=h+\frac{1}{2}\Rightarrow 6h^*=6h+3\Rightarrow i^*=i+3$$
 and $f^*=f$

it is easy to see from (67) that equation (79) holds for the cases i = 0, 1, 2. Similarly,

$$h \ge \frac{1}{2} \Rightarrow h^* = h - \frac{1}{2} \Rightarrow 6h^* = 6h - 3 \Rightarrow i^* = i - 3 \text{ and } f^* = f$$

and again from (67) we derive (79) for the cases i = 3, 4, 5. Finally, if i = 6 then f = 0 and $F + F^* = (0, 1, 1) + (1, 0, 0) = E$.

6.3.5 The Hsb model

Conversion Hsb to hsb Only the first component has to be changed.

$$(hue, saturation, brightness) := (hue^{\circ}/H, saturation, brightness)$$
 (80)

Conversion Hsb to tHsb Under the settings of (82)–(84) we simply have to exchange the letters x and y in equation (85) to get the inverse transformation :

$$hue^{\circ} \in [y_{\eta-1}, y_{\eta}] \Rightarrow hue^{\circ} := x_{\eta-1} + \frac{x_{\eta} - x_{\eta-1}}{y_{\eta} - y_{\eta-1}} \cdot (hue^{\circ} - y_{\eta-1})$$
 (81)

while saturation and brightness are left unchanged.

6.3.6 The tHsb model

$$x_1, y_1; x_2, y_2; \dots; x_{h-1}, y_{h-1}$$
 (82)

where

$$x_0 := 0 < x_1 < x_2 < \dots < x_{h-1} < x_h := H$$
 (83)

$$y_0 := 0 < y_1 < y_2 < \dots < y_{h-1} < y_h := H$$
 (84)

with an integer h>0. Now the x and y values determine a piecewise linear transformation :

$$hue^{\circ} \in [x_{\eta-1}, x_{\eta}] \Rightarrow hue^{\circ} := y_{\eta-1} + \frac{y_{\eta} - y_{\eta-1}}{x_{\eta} - x_{\eta-1}} \cdot (hue^{\circ} - x_{\eta-1})$$
 (85)

while saturation and brightness are left unchanged.

6.3.7 The gray model

Conversion gray to rgb Source: [1], p. 474.

$$(red, green, blue) := gray \cdot E$$
 (86)

Conversion gray to cmy This is derived from the conversion chain gray \rightarrow rgb \rightarrow cmy.

$$(cyan, magenta, yellow) := (1 - gray) \cdot E$$
 (87)

Conversion gray to cmyk Source: [1], p. 475.

$$(cyan, magenta, yellow, black) := (0, 0, 0, 1 - gray)$$
(88)

Conversion gray to hsb This is derived from the conversion chain gray \rightarrow rgb \rightarrow hsb.

$$(hue, saturation, brightness) := (0, 0, gray)$$
(89)

Conversion gray to $\mathsf{Hsb}/\mathsf{tHsb}$ This is derived from the conversion chain $\mathsf{gray} \to \mathsf{hsb} \to \mathsf{Hsb}$, followed by $\mathsf{Hsb} \to \mathsf{tHsb}$ if applicable.

$$(hue^{\circ}, saturation, brightness) := (0, 0, gray)$$
 (90)

Conversion gray to Gray As described in section 6.2.1 page 52.

$$Gray := \Gamma_N(gray)$$
 (91)

Complement of gray color This is similar to the rgb case :

$$gray^* := 1 - gray \tag{92}$$

6.3.8 The RGB model

Conversion RGB to rgb As described in section 6.2.2 page 52.

$$(red, green, blue) := (\Delta_L(Red), \Delta_L(Green), \Delta_L(Blue))$$
 (93)

6.3.9 The HTML model

Conversion HTML to rgb As described in section 6.2.2 page 52 : starting with RRGGBB set

$$(red, green, blue) := (\Delta_{255}(RR_{dec}), \Delta_{255}(GG_{dec}), \Delta_{255}(BB_{dec}))$$
 (94)

6.3.10 The HSB model

Conversion HSB to hsb As described in section 6.2.2 page 52.

$$(hue, saturation, brightness) := (\Delta_M(Hue), \Delta_M(Saturation), \Delta_M(Brightness))$$
(95)

6.3.11 The Gray model

Conversion Gray to gray As described in section 6.2.2 page 52.

$$qray := \Delta_N(Gray)$$
 (96)

6.3.12 The wave model

Conversion wave to rgb Source: based on Dan Bruton's algorithm [4]. Let λ be a visible wavelength, given in nanometers (nm), i.e., $\lambda \in [380, 780]$. We assume further that $\gamma > 0$ is a fixed number ($\gamma = 0.8$ in [4]). First set

$$(r,g,b) := \begin{cases} \left(\frac{440 - \lambda}{440 - 380}, 0, 1\right) & \text{if } \lambda \in [380, 440[\\ \left(0, \frac{\lambda - 440}{490 - 440}, 1\right) & \text{if } \lambda \in [440, 490[\\ \left(0, 1, \frac{510 - \lambda}{510 - 490}\right) & \text{if } \lambda \in [490, 510[\\ \left(\frac{\lambda - 510}{580 - 510}, 1, 0\right) & \text{if } \lambda \in [510, 580[\\ \left(1, \frac{645 - \lambda}{645 - 580}, 0\right) & \text{if } \lambda \in [580, 645[\\ \left(1, 0, 0\right) & \text{if } \lambda \in [645, 780] \end{cases}$$

$$(97)$$

then, in order to let the intensity fall off near the vision limits,

$$f := \begin{cases} 0.3 + 0.7 \cdot \frac{\lambda - 380}{420 - 380} & \text{if } \lambda \in [380, 420[\\ 1 & \text{if } \lambda \in [420, 700] \\ 0.3 + 0.7 \cdot \frac{780 - \lambda}{780 - 700} & \text{if } \lambda \in [700, 780] \end{cases}$$
(98)

and finally

$$(red, green, blue) := ((f \cdot r)^{\gamma}, (f \cdot g)^{\gamma}, (f \cdot b)^{\gamma})$$
(99)

The intermediate colors (r,g,b) at the interval borders of equation (97) are well-known: for $\lambda=380,440,490,510,580,645$ we get (magenta), (blue), (cyan), (green), (yellow), (red), respectively. These turn out to be represented in the **hsb** model by $hue=\frac{5}{6},\frac{4}{6},\frac{3}{6},\frac{2}{6},\frac{1}{6},\frac{0}{6}$, whereas saturation=brightness=1 throughout the 6 colors. Furthermore, these **hsb** representations are independent of the actual γ value. Staying within this model framework, we observe that the intensity fall off near the vision limits — as represented by equation (98) — translates into decreasing brightness parameters towards the margins. A simple calculation shows that the edges $\lambda=380,780$ of the algorithm yield the colors magenta!0.3 γ !black, red!0.3 γ !black, respectively. We see no reason why we should not extend these edges in a similar fashion to end-up with true (black) on either side. Now we are prepared to translate everything into another, more natural algorithm.

Conversion wave to hsb Let $\lambda > 0$ be a wavelength, given in nanometers (nm), and let

$$\rho: \mathbb{R} \to [0, 1], \ x \mapsto (\min\{1, \max\{0, x\}\})^{\gamma}$$
(100)

with a fixed correction number $\gamma > 0$. Then

$$hue := \frac{1}{6} \cdot \begin{cases} 4 + \varrho \left(\frac{\lambda - 440}{380 - 440} \right) & \text{if } \lambda < 440 \\ 4 - \varrho \left(\frac{\lambda - 440}{490 - 440} \right) & \text{if } \lambda \in [440, 490[\\ 2 + \varrho \left(\frac{\lambda - 510}{490 - 510} \right) & \text{if } \lambda \in [490, 510[\\ 2 - \varrho \left(\frac{\lambda - 510}{580 - 510} \right) & \text{if } \lambda \in [510, 580[\\ 0 + \varrho \left(\frac{\lambda - 645}{580 - 645} \right) & \text{if } \lambda \in [580, 645[\\ 0 & \text{if } \lambda > 645 \end{cases} \end{cases}$$

$$(101)$$

$$saturation := 1$$
 (102)

$$brightness := \begin{cases} \varrho \left(0.3 + 0.7 \cdot \frac{\lambda - 380}{420 - 380} \right) & \text{if } \lambda < 420 \\ 1 & \text{if } \lambda \in [420, 700] \\ \varrho \left(0.3 + 0.7 \cdot \frac{\lambda - 780}{700 - 780} \right) & \text{if } \lambda > 700 \end{cases}$$
(103)

For the sake of completeness we note that, independent of γ ,

$$(\textit{hue}, \textit{saturation}, \textit{brightness}) = \begin{cases} \left(\frac{5}{6}, 1, 0\right) & \text{if } \lambda \leq 380 - \frac{3 \cdot (420 - 380)}{7} = 362.857 \dots \\ \left(0, 1, 0\right) & \text{if } \lambda \geq 780 + \frac{3 \cdot (780 - 700)}{7} = 814.285 \dots \end{cases}$$

What is the best (or, at least, a good) value for γ ? In the original algorithm [4], $\gamma = 0.8$ is chosen. However, we could not detect significant visible difference between the cases $\gamma = 0.8$ and $\gamma = 1$. Thus, for the time being, xcolor's implementation uses the latter value which implies a pure linear approach. In the pstricks examples file xcolor2.tex, there is a demonstration of different γ values.

Références

- [1] Adobe Systems Incorporated: « PostScript Language Reference Manual ». Addison-Wesley, troisième édition, 1999. http://www.adobe.com/products/postscript/pdfs/PLRM.pdf
- [2] Donald Arseneau: « Patch so \fbox draws frame on top of text ». LATEX bug report, latex/3655, 18/03/2004.
 - http://www.latex-project.org/cgi-bin/ltxbugs2html?pr=latex/3655
- [3] Donald Arseneau: extension url, « 2005/06/27 ver 3.2 Verb mode for urls, etc. ». CTAN/macros/latex/contrib/misc/url.sty
- [4] Dan Bruton: « Approximate RGB values for Visible Wavelengths », 1996. http://www.physics.sfasu.edu/astro/color/spectra.html
- [5] David P. Carlisle: « Packages in the 'graphics' bundle », 2014. CTAN/macros/latex/required/graphics/grfguide.*
- [6] David P. Carlisle: extension color, "2016/01/03 v1.1b Standard LaTeX Color (DPC)". CTAN/macros/latex/required/graphics/color.dtx
- [7] David P. Carlisle: extension colortbl, « 2001/02/13 v0.1j Color table columns ». CTAN/macros/latex/contrib/colortbl/
- [8] David P. Carlisle, Herbert Voß, Rolf Niepraschk: extension pstcol, « 2005/11/16 v1.2 LaTeX wrapper for 'PSTricks' ». CTAN/macros/graphics/pstricks/latex/pstcol.sty
- [9] Uwe Kern: « Chroma: a reference book of LATEX colors ». CTAN/info/colour/chroma/ et http://www.ukern.de/tex/chroma.html
- [10] Uwe Kern: extension xcolor, « LATEX color extensions ».

 CTAN/macros/latex/contrib/xcolor/ et http://www.ukern.de/tex/xcolor.html
- [11] Rolf Niepraschk : extension colorinfo, < 2003/05/04 v0.3c Info from defined colors >. CTAN/macros/latex/contrib/colorinfo/
- [12] Heiko Oberdiek : extension pdfcolmk, « 2006/02/20 v0.8 PDFtex COLor MarK ». CTAN/macros/latex/contrib/oberdiek/pdfcolmk.*
- [13] Projet MiKTEX: http://www.miktex.org/
- [14] Sebastian Rahtz, Heiko Oberdiek: extension hyperref, « 2006/09/06 v6.75e Hypertext links for LATEX ». CTAN/macros/latex/contrib/hyperref/
- [15] Alvy Ray Smith: « Color Gamut Transform Pairs ». Computer Graphics (ACM SIGGRAPH), Volume 12, Numéro 3, Août 1978. http://alvyray.com/Papers/PapersCG.htm
- [16] World Wide Web Consortium: «HTML4 color keywords». http://www.w3.org/TR/css3-color/#html4
- [17] World Wide Web Consortium: «Scalable Vector Graphics (SVG) 1.1 Specification Basic Data Types and Interfaces ». http://www.w3.org/TR/SVG11/types.html#ColorKeywords

Annexes

Remerciements

Cette extension se base sur [6] (Copyright (C) 1994–1999 David P. Carlisle) et contient du code de cette extension, cette dernière faisant partie de l'« ensemble graphique » du standard LATEX. Bien que de nombreuses commandes et fonctionnalités ont été ajoutées et que la plupart des commandes originales de color ont été réécrites ou adaptées dans xcolor, cette dernière n'existerait pas sans color. Aussi, l'auteur est reconnaissant à David P. Carlisle d'avoir créé color et ses fichiers associés.

Marques déposées

Des Marques déposées apparaissent tout au long de cette documentation sans aucun symbole les dénotant; elles sont la propriété de leur dépositaire respectif. Il n'y a ici aucune intention d'infraction; l'utilisation est au bénéfice du dépositaire de la marque.

Problèmes connus

rowcolors[\hline]... ne fonctionne pas avec longtable.

Historique

11/05/2016 v2.12

- Nouvelles fonctionnalités :
 - \nopagecolor command as introduced in color v1.1a (example added to xcolor3.tex);
 - luatex driver option (code provided by DPC) to fix incompatibilities due to changes in new LuaT_FX version.
- Corrections d'erreur :
 - possible name conflict by \XC@ifxcase
 call:
 - incorrect internal \@hex@@Hex macro.

21/01/2007 v2.11

- Nouvelles fonctionnalités :
 - les noms de couleur (*lime*) et (*teal*) sont ajoutés à l'ensemble des couleurs prédéfinies.
- Correction d'erreur :
 - appel incorrect de \XC@strip@comma dans les options liées à hyperref.

28/11/2006 v2.10

×

- Nouvelles fonctionnalités :
 - fixinclude option prevents dvips from explicitly resetting current color to (black) before actually inserting an . eps file via
 - \color{red}\includegraphics{foo}.
- Changements:
 - \colorbox and \fcolorbox made robust;
 - obsolete package option pst removed;
 - several changes to internal macros.
- Corrections d'erreur :
 - incorrect processing of **cmyk**-type current color '.'.

×

21/12/2005 v2.09

×

- Nouvelles fonctionnalités :
 - \definecolor and \color now accept
 space-separated color specifications,
 e.g., \color [rgb]{1 .5 0};
 - experimental xcdraw option extended to pdftex and dvipdfm drivers.
- Changements:
 - test file xcolor2.tex made compatible with recent changes in pstricks;
 - test file xcolor3.tex extended;
 - driver test file xcolor4.tex extended to demonstrate the different frame

- drawing approaches;
- more efficient implementation of driver-specific code.

×

25/11/2005 v2.08

×

- Nouvelles fonctionnalités :
 - more flexibility for \fcolorbox
 arguments, e.g., \fcolorbox
 [gray] {0.5} [wave] {580} {test};
 - \boxframe returns a frame of given dimensions;
 - new implementation of \f(rame)box and \fcolorbox as an extension of bug report latex/3655 to reduce pixel positioning errors in output devices;
 - kernelfbox option for those who prefer the previous \f(rame)box approach;
 - experimental xcdraw option uses
 PostScript commands to draw frames
 and color boxes in case of dvips.
- Corrections d'erreur :
 - insufficient expression type detection within \colorlet;
 - wrong calculation in the unit interval reduction for negative integers (affecting color series and extended color expressions).

×

12/11/2005 v2.07

×

- Nouvelles fonctionnalités :
 - color model **Hsb** allows to specify *hue* in degrees;
 - color model tHsb (tuned Hsb) for user-defined hue configuration on color wheels;
 - easy generation of color harmonies derived from Hsb or tHsb color wheels, e.g., \color{red>wheel,1,12} yields

- an 'analogous' color to (red) on a 12-spoke wheel;
- additional 317 predefined color names according to rgb.txt, which is part of Unix/X11 distributions;
- svgnames option extended by 4 colors taken from rgb.txt;
- enhanced syntax for immediate
 conversion, e.g., \definecolor
 {foo}{rgb:gray}{0.3} or \color
 [rgb:wave]{478};
- \@ifundefinedcolor and
 \@ifundefinedmodel commands;
- Changements:
 - enhanced documentation;
 - several changes to internal macros.
- Corrections d'erreur :
 - wrong calculation of color series components in some cases of negative step parameters.

×

15/10/2005 v2.06

×

- Nouvelles fonctionnalités :
 - color model wave for (approximate)
 visualisation of light wavelengths, still
 somewhat experimental;
 - pseudo-model 'ps' for colors defined by literal PostScript code in conjunction with pstricks and dvips; an illustrative example for a γ -correction approach is given in xcolor2.tex;
 - \substitutecolormodel command for replacement of missing or faulty driver-specific color models;
 - improved detection and handling of driver-specific color models;
 - dvipdfmx and xetex options to support these drivers;
 - generic driver test file xcolor4.tex.

— Changements:

— \XC@strip@comma doesn't generate a trailing space anymore, which improves also the output of the testcolors environment.

×

30/09/2005 v2.05

×

- Nouvelles fonctionnalités :
 - testcolors environment helps to test colors in different models, showing both the visual result and the model-specific parameters;
 - \extractcolorspecs puts
 model/color specification into two
 separate commands, as opposed to
 \extractcolorspec;
 - color names (pink) and (olive) added to the set of predefined colors.
- Corrections d'erreur :
 - \definecolor{foo}{named}{bar} did not work in v2.04.

×

23/09/2005 v2.04

×

- Nouvelles fonctionnalités :
 - preparation for usage of additional driver-provided – color models;
 - pstricks users may now specify explicit
 color parameters within \psset and
 related commands, e.g.,
 \psset{linecolor=[rgb]{1,0,0}};
 an illustrative example is given in
 xcolor2.tex.

— Changements:

- color model names sanitized (i.e., turned to catcode 12) throughout the package;
- \@namelet command deprecated
 because of name clash with memoir —
 please use \XC@let@cc instead (more
 \XC@let@.. commands are available as
 well);
- simplified color conversion code by using the new \XC@ifxcase command;
- some minor changes to internal macros.

×

06/06/2005 v2.03

×

- Nouvelles fonctionnalités :
 - fixpdftex option loads pdfcolmk package in order to improve pdfTEX's color behaviour during page breaks.
- Changements:
 - some minor changes to internal macros.
- Corrections d'erreur :
 - due to an incorrect \if statement within \XC@info, \colorlet caused trouble whenever its second argument started with two identical letters, e.g., \colorlet{rab}{oof};
 - argument processing of \XC@getcolor caused incompatibility with msc package;
 - prologue option caused incompatibility with preview package.

×

24/03/2005 v2.02

×

- Nouvelles fonctionnalités :
 - \aftergroupedef command to reproduce \aftergroupdef's behaviour prior to v2.01;
 - xcolor's homepage
 www.ukern.de/tex/xcolor.html now
 provides also a ready-to-run
 TDS-compliant archive containing all required files.
- Changements:
 - \rowcolors and friends are solely enabled by the table option;
 - \@ifxempty changed back to more robust variant of v2.00.
- Corrections d'erreur :
 - -- \psset{linecolor=\ifcase\foo
 red\or green\or blue\fi} did not
 work with pstricks (error introduced in
 v2.01).

×

$15/03/2005 \ v2.01$

×

- Nouvelles fonctionnalités :
 - prologue option for comprehensive 'named' color support in conjunction with dvips: on-the-fly generation of PostScript prologue files with all color definitions, ready for dvips inclusion and/or post-processing with device-specific parameters (e.g., spot colors);
 - *dvips* prologue file xcolor.pro to support additional 'named' colors;
 - \colorlet may now also be used to create named colors from arbitrary color expressions;
 - enhanced color definition syntax to allow for target-model specific color parameters, e.g., \definecolor {red}{rgb/cmyk}{1,0,0/0,1,1,0}, facilitating the usage of tailor-made colors both for displays and printers;
 - 'deferred definition' of colors : \preparecolor and \definecolors enable decoupling of color specification and control sequence generation, especially useful (= memory saving) for large lists of colors, of which only a few names are actually used;
 - dvipsnames* and svgnames* options to support deferred definition.

— Changements:

- higher accuracy : most complement calculations are now exact for all5-digit decimals ;
- \rangeRGB and similar variables may now be changed at any point in a document;
- \aftergroupdef now performs only a first-level expansion of its code argument;
- \XCfileversion and similar internal constants removed from .sty and .def

- files;
- improved memory management (reduced generation of 'multiletter control sequences' by \@ifundefined tests);
- several internal macros improved and/or renamed.
- Corrections d'erreur :
 - \XC@getcolor could cause unwanted spaces when \psset was used inside pspicture environments (pstricks);
 - arithmetic overflow could happen when too many decimal digits were used within color parameters, e.g., as a result of fp calculations.

×

04/07/2004 v2.00

×

- Nouvelles fonctionnalités :
 - extended functionality for color expressions : mix colors like a painter;
 - support for color blending: specify color mix expressions that are being blended with every displayed color;
 - \xglobal command for selective control of globality for color definitions, blends, and masks;
 - multiple step operations (e.g.,
 \color{foo!!+++}) and access to
 individual members (e.g.,
 \color{foo!![7]}) in color series;
 - \providecolor command to define only non-existent colors;
 - \definecolorset and \providecolorset commands to facilitate the construction of color sets with common underlying color model;
 - additional 147 predefined color names according to SVG 1.1 specification;
 - *xpdfborder* key for setting the width of hyperlink borders in a more driver-independent way if *dvips* is used.

— Changements:

— extension color now completely

- integrated within xcolor;
- override, usenames, nodvipsnames options and \xdefinecolor command no longer needed;
- dvips and dvipsnames options now independent of each other;
- \tracingcolors's behaviour changed to make it more versatile and reduce log file size in standard cases;
- \rdivide's syntax made more flexible (divide by numbers and/or dimensions);
- code restructured, some internal commands renamed;
- documentation rearranged and enhanced.
- Corrections d'erreur :
 - \definecolor{foo}{named}{bar} did
 not work (error introduced in v1.11);
 - more robust behaviour of conditionals within pstricks key-values.

×

09/05/2004 v1.11

×

- Nouvelles fonctionnalités :
 - switch \ifglobalcolors to control whether color definitions are global or local:
 - option hyperref provides color expression support for the border colors of hyperlinks, e.g., \hypersetup {xurlbordercolor=red!50!yellow};
 - internal hooks \XC@bcolor, \XC@mcolor, and \XC@ecolor for additional code that has to be executed immediately before/after the current color is being displayed.
- Changements:
 - \XC@logcolor renamed to
 \XC@display, which is now the core
 color display command;
 - improved interface to pstricks.

×

27/03/2004 v1.10

×

- Nouvelles fonctionnalités :
 - support for 'named' model;
 - support for *dvips* colors (may now be used within color expressions);
 - internal representation of 'ordinary' and 'named' colors merged into unified data structure;
 - allow multiple '-' signs at the beginning of color expressions.
- Corrections d'erreur :
 - commands like \color[named]{foo} caused errors when color masking or target model conversion were active;
 - incompatibility with soul package : commands \h1, \u1, etc. could yield unexpected results.
- Documentation:
 - added formula for general color expressions;
 - enhanced text and index;
 - removed dependence of index generation on local configuration file.

×

16/02/2004 v1.09

×

- Nouvelles fonctionnalités :
 - color model HTML, a 24-bit hexadecimal RGB variant; allows to specify colors like \color[HTML] {AFFE90};
 - color names (orange), (violet), (purple), and (brown) added to the set of predefined colors.
- Nouvelle page web de xcolor : www.ukern.de/tex/xcolor.html
- Correction d'erreur : \xdefinecolor sometimes did not normalise its parameters.
- Changements:
 - slight improvements of the documentation;

 example file xcolor1.tex reorganised and abridged.

×

04/02/2004 v1.08

×

- New commands:
 - \selectcolormodel to change the target model within a document;
 - \adjustUCRBG to fine-tune undercolor-removal and black-generation during conversion to cmyk.
- Bugfix: color expressions did not work correctly in connection with active '!' character, e.g., in case of \usepackage[frenchb]babel}.
- Code re-organisation:
 - \XC@xdefinecolor merged into \xdefinecolor, making the first command obsolete;
 - several internal commands improved/streamlined.

×

20/01/2004 v1.07

×

- Nouvelle fonctionnalité : support for color masking and color separation.
- Nouvelles commandes :
 - \rmultiply to multiply a dimension register by a real number;
 - \xcolorcmd to pass commands that are to be executed at the end of the package.
- Changements:
 - more consistent color handling:
 extended colors now always take
 precedence over standard colors;
 - several commands improved by using code from the L^AT_EX kernel.
- Documentation : some minor changes.
- Fichiers d'exemples : additional pstricks examples (file xcolor2.tex).

×

15/12/2003 v1.06

- Nouvelle fonctionnalité : expressions de couleur étendues, ce qui permet des opérations de mélange en cascade, par exemple
 - \color{red!30!green!40!blue}.
- Documentation : nouvelle section sur les expressions de couleur.
- Correction d'erreur : l'incrémentation des séries de couleur ne fonctionnait pas correctement dans les commandes sans affichage telle \extractcolorspec{foo!!+} (cette
- erreur a été introduite en in v1.05).

 Commandes renommées :

 \ukfileversion et les constantes internes
- similaires sont renommées en \XCfileversion et ainsi de suite.
- Commandes retranchées : \ifXCpst et
 \ifXCtable sont rendues obsolètes par une simple astuce.

21/11/2003 v1.05

- Corrections d'erreur :
 - l'option d'extension hideerrors fonctionne maintenant comme attendu;
 - l'utilisation de '.' dans la première expression de couleur causait une erreur du fait d'une initialisation incorrecte.
- Réorganisation du code :
 \extractcolorspec utilise maintenant
 \XC@splitcolor, ce qui rend
 \XC@extract obsolète.

09/11/2003 v1.04

 Nouvelle fonctionnalité : accès simplifié à la couleur courante dans les expressions de couleur.

- Nouvelle option : override pour remplacer \definecolor par \xdefinecolor.
- Nouvelle commande : \tracingcolors
 pour afficher dans le fichier journal les
 informations spécifiques aux couleurs.
 information.

21/09/2003 v1.03

- Changement : contournement du comportement étrange de certains pilotes.
- Nouvelle fonctionnalité : partage de pilote avec hyperref.

19/09/2003 v1.02

 Changement : \extractcolorspec et \colorlet acceptent maintenant aussi les séries de couleur comme arguments.

15/09/2003 v1.01

- Nouvelle fonctionnalité :
 \definecolorseries et apparentés.
- Documentation : retrait de certains effets indésirables liés à doc.
- Réorganisation du code : tous les outils de calculs sont placés en un seul endroit.
- Corrections d'erreur :
 - \@rdivide : ajout d'un \relax pour résouder le problème des numérateurs négatifs;
 - \rowc@l@rs : remplacement de \@ifempty par \@ifxempty.

09/09/2003 v1.00

— Première version publiée.

Index

Les numéros en italique renvoient à la page où se trouve l'entrée correspondante; les numéros soulignés renvoient à la ligne de code de la définition; les numéros en romain renvoient aux lignes de code où l'entrée est utilisée.

${f A}$	$\langle mod$ èle numérique $ angle$. 14, 15	citecolor	30
\adjustUCRBG $9, 55$	$\langle mod\`{e}le \rangle$	$fileborder color \dots \dots$	30
arguments	$\langle moins \rangle$	$filecolor \dots \dots$	30
$\langle couleur \rangle$ 14, 17	$\langle nom \rangle$	$linkbordercolor \dots \dots$	30
$\langle d\acute{e}c \rangle$	$\langle num \rangle \dots 13, 14$	linkcolor	30
$\langle div \rangle$	$\langle pct \rangle \dots 13, 14$	menuborder color	30
$\langle ent \rangle$	$\langle plus \rangle$	menucolor	30
$\langle expr \ \'etendue \rangle \ \dots \ 14, \ 16$	$\langle préfixe \rangle \dots 14, 16$	pageborder color	30
$\langle expr\ de\ couleur \rangle\ \dots\ 14,\ 17$	$\langle sp\acute{e}c \rangle$ 14, 15	page color	30
$\langle expr\ de\ m\'elange angle$ 14, 16	$\langle suffixe \rangle \dots 14, 16$	pdfborder	30
$\langle expr \ fonctionnelle \rangle \ \dots \ 17$	$\langle type \rangle \dots 14, 16$	$runborder color \dots \dots$	30
$\langle expr \ fonctionnellle \rangle$ 14	$\langle vide \rangle$	runcolor	30
$\langle expr \rangle$	В	urlbordercolor	30
$\langle fonction \rangle$	\blendcolors 26	urlcolor	30
$\langle id \ \'etendu \rangle \ \dots \ 14$	\blendcolors* 26	xcitebordercolor	30
$\langle id \rangle$	\boxframe 25	x fileborder color	30
$\langle liste-id \rangle$		xlinkbordercolor	30
$\langle liste-mod\`ele \rangle$ 14, 15	${f C}$	xmenubordercolor	30
$\langle liste-sp\'ec \rangle$	clés	xpagebordercolor	30
$\langle mod\`ele\ central \rangle . \ . \ . \ 14,\ 15$	$citeborder color \dots 30$	$xpdfborder \dots 30, 31,$	66

xrunbordercolor 30	${f G}$	Grey0 20
xurlbordercolor 30	$\GetGinDriver \dots 8$	Maroon0 20
\color 24	\GinDriver 8	Purple0 20
color stack		argent 6
\colorbox	Н	black 19, 27, 33, 60, 63
\colorlet 22	\hiderowcolors 31	blanc 6
\colormask 28	HKS 6	bleu 6, 7
\colorseriescycle \dots 29	HTML4 19, 43	blue 19, 21, 23, 60
\convertcolorspec \dots 32	_	brown 19, 67
	I	cyan 19, 27, 60
D	\ifconvertcolorsD 13	darkgray 19
\definecolor 21, 31	\ifconvertcolorsU 13	foo 21, 27
\definecolors 24	\ifdefinecolors 23	gray 19
\definecolorseries 28	\ifglobalcolors 24	green 5, 18, 19, 23, 60
\definecolorset 22	\ifmaskcolors 27	gris 6
\DefineNamedColor 23	N	jaune
definition stack 23, 24	M \maskcolors 27	lightgray 19
${f E}$	•	lime
	MiKTEX 21 modèles colorimétriques	magenta 19, 27, 60
ensemble de couleur 22 environnements :		noir
testcolors 26	Gray . 10–12, 15, 45, 49, 59 HSB 10–12, 15, 45, 49, 57, 59	olive
expression de expression	HTML 9-	orange 19, 67
\extractcolorspec 32	11, 15, 45, 49, 54, 59, 67	or 6
\extractcolorspecs 32	Hsb	pink 19, 65
(ontilderedictorpood ::::: 02		purple 19, 67
	10. 19. 40. 49. 01=09. 04	
${f F}$	15, 19, 40, 49, 57–59, 64 RGB 10–12, 15.	red 18, 19, 21–23, 33, 60, 64
F \fcolorbox 25	RGB 10–12, 15,	
-	RGB 10–12, 15, 19, 20, 45, 49, 54, 59, 67	red 18, 19, 21–23, 33, 60, 64
\fcolorbox	RGB 10–12, 15, 19, 20, 45, 49, 54, 59, 67 cmyk 5, 6, 9–	red 18, 19, 21–23, 33, 60, 64 rouge 5–7, 9, 12 teal 19, 63 vert 6, 7
\fcolorbox	RGB 10–12, 15, 19, 20, 45, 49, 54, 59, 67 cmyk 5, 6, 9– 11, 15, 19, 22, 27, 45,	red 18, 19, 21–23, 33, 60, 64 rouge 5–7, 9, 12 teal 19, 63 vert 6, 7 violet 19, 67
\fcolorbox	RGB 10–12, 15, 19, 20, 45, 49, 54, 59, 67 cmyk 5, 6, 9–	red 18, 19, 21–23, 33, 60, 64 rouge 5–7, 9, 12 teal
\fcolorbox	RGB 10–12, 15, 19, 20, 45, 49, 54, 59, 67 cmyk 5, 6, 9– 11, 15, 19, 22, 27, 45, 49, 51, 54, 55, 59, 63, 68	red 18, 19, 21–23, 33, 60, 64 rouge 5–7, 9, 12 teal 19, 63 vert 6, 7 violet 19, 67
\fcolorbox	RGB 10–12, 15, 19, 20, 45, 49, 54, 59, 67 cmyk 5, 6, 9– 11, 15, 19, 22, 27, 45, 49, 51, 54, 55, 59, 63, 68 cmy 9–11, 15,	red 18, 19, 21–23, 33, 60, 64 rouge 5–7, 9, 12 teal
\fcolorbox	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	red 18, 19, 21–23, 33, 60, 64 rouge
\fcolorbox	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	red 18, 19, 21–23, 33, 60, 64 rouge
\fcolorbox	$\begin{array}{c} \textbf{RGB} \dots 10-12, \ 15, \\ 19, \ 20, \ 45, \ 49, \ 54, \ 59, \ 67 \\ \textbf{cmyk} \dots \dots 5, \ 6, \ 9- \\ 11, \ 15, \ 19, \ 22, \ 27, \ 45, \\ 49, \ 51, \ 54, \ 55, \ 59, \ 63, \ 68 \\ \textbf{cmy} \dots \dots 9-11, \ 15, \\ 27, \ 45, \ 49, \ 52, \ 54, \ 55, \ 58 \\ \textbf{gray} \dots 6, \ 9-12, \ 15, \ 17, \\ 45, \ 49, \ 51, \ 54, \ 55, \ 58, \ 59 \end{array}$	red 18, 19, 21–23, 33, 60, 64 rouge
\fcolorbox	$\begin{array}{c} \textbf{RGB} \dots 10-12, \ 15, \\ 19, \ 20, \ 45, \ 49, \ 54, \ 59, \ 67 \\ \textbf{cmyk} \dots \dots 5, \ 6, \ 9-\\ 11, \ 15, \ 19, \ 22, \ 27, \ 45, \\ 49, \ 51, \ 54, \ 55, \ 59, \ 63, \ 68 \\ \textbf{cmy} \dots \dots 9-11, \ 15, \\ 27, \ 45, \ 49, \ 52, \ 54, \ 55, \ 58 \\ \textbf{gray} \dots 6, \ 9-12, \ 15, \ 17, \\ 45, \ 49, \ 51, \ 54, \ 55, \ 58, \ 59 \\ \textbf{hsb} 5, \ 9-13, \ 15, \ 19, \ 22, \ 45, \end{array}$	red 18, 19, 21–23, 33, 60, 64 rouge
\fcolorbox	$\begin{array}{c} \textbf{RGB} \dots 10-12, \ 15, \\ 19, \ 20, \ 45, \ 49, \ 54, \ 59, \ 67 \\ \textbf{cmyk} \dots \dots 5, \ 6, \ 9-\\ 11, \ 15, \ 19, \ 22, \ 27, \ 45, \\ 49, \ 51, \ 54, \ 55, \ 59, \ 63, \ 68 \\ \textbf{cmy} \dots \dots 9-11, \ 15, \\ 27, \ 45, \ 49, \ 52, \ 54, \ 55, \ 58 \\ \textbf{gray} \dots 6, \ 9-12, \ 15, \ 17, \\ 45, \ 49, \ 51, \ 54, \ 55, \ 58, \ 59 \\ \textbf{hsb} 5, \ 9-13, \ 15, \ 19, \ 22, \ 45, \\ 46, \ 48, \ 49, \ 51-53, \ 56-60 \end{array}$	red 18, 19, 21–23, 33, 60, 64 rouge
\fcolorbox	RGB $10-12$, 15 , 19 , 20 , 45 , 49 , 54 , 59 , 67 cmyk 5 , 6 , $9-11$, 15 , 19 , 22 , 27 , 45 , 49 , 51 , 54 , 55 , 59 , 63 , 68 cmy $9-11$, 15 , 27 , 45 , 49 , 52 , 54 , 55 , 58 gray 6 , $9-12$, 15 , 17 , 45 , 49 , 51 , 54 , 55 , 58 , 59 hsb 5 , $9-13$, 15 , 19 , 22 , 45 , 46 , 48 , 49 , $51-53$, $56-60$ rgb . 6 , $9-13$, 15 , 19 , 20 , 22 , 27 , 30 , 45 , 49 , $51-60$ tHsb 11 , 12 ,	red 18, 19, 21–23, 33, 60, 64 rouge
\fcolorbox	RGB $10-12$, 15 , 19 , 20 , 45 , 49 , 54 , 59 , 67 cmyk 5 , 6 , $9-11$, 15 , 19 , 22 , 27 , 45 , 49 , 51 , 54 , 55 , 59 , 63 , 68 cmy $9-11$, 15 , 27 , 45 , 49 , 52 , 54 , 55 , 58 gray 6 , $9-12$, 15 , 17 , 45 , 49 , 51 , 54 , 55 , 58 , 59 hsb 5 , $9-13$, 15 , 19 , 22 , 45 , 46 , 48 , 49 , $51-53$, $56-60$ rgb . 6 , $9-13$, 15 , 19 , 20 , 22 , 27 , 30 , 45 , 49 , $51-60$	red 18, 19, 21–23, 33, 60, 64 rouge
\fcolorbox	RGB $10-12$, 15 , 19 , 20 , 45 , 49 , 54 , 59 , 67 cmyk 5 , 6 , $9-11$, 15 , 19 , 22 , 27 , 45 , 49 , 51 , 54 , 55 , 59 , 63 , 68 cmy $9-11$, 15 , 27 , 45 , 49 , 52 , 54 , 55 , 58 gray 6 , $9-12$, 15 , 17 , 45 , 49 , 51 , 54 , 55 , 58 , 59 hsb 5 , $9-13$, 15 , 19 , 22 , 45 , 46 , 48 , 49 , $51-53$, $56-60$ rgb . 6 , $9-13$, 15 , 19 , 20 , 22 , 27 , 30 , 45 , 49 , $51-60$ tHsb 11 , 12 , 15 , 19 , 40 , 49 , 58 , 59 , 64 wave . 11 , 12 , 15 , 49 , 60 , 64	red 18, 19, 21–23, 33, 60, 64 rouge
\fcolorbox	RGB $10-12$, 15 , 19 , 20 , 45 , 49 , 54 , 59 , 67 cmyk 5 , 6 , $9 5$, 6 , $9 1$, 15 , 19 , 22 , 27 , 45 , 49 , 51 , 54 , 55 , 59 , 63 , 68 cmy $9-11$, 15 , 27 , 45 , 49 , 52 , 54 , 55 , 58 gray 6 , $9-12$, 15 , 17 , 45 , 49 , 51 , 54 , 55 , 58 , 59 hsb 5 , $9-13$, 15 , 19 , 22 , 45 , 46 , 48 , 49 , $51-53$, $56-60$ rgb . 6 , $9-13$, 15 , 19 , 20 , 22 , 27 , 30 , 45 , 49 , $51-60$ tHsb	red 18, 19, 21–23, 33, 60, 64 rouge
\fcolorbox	RGB $10-12$, 15 , 19 , 20 , 45 , 49 , 54 , 59 , 67 cmyk 5 , 6 , $9-11$, 15 , 19 , 22 , 27 , 45 , 49 , 51 , 54 , 55 , 59 , 63 , 68 cmy $9-11$, 15 , 27 , 45 , 49 , 52 , 54 , 55 , 58 gray 6 , $9-12$, 15 , 17 , 45 , 49 , 51 , 54 , 55 , 58 , 59 hsb 5 , $9-13$, 15 , 19 , 22 , 45 , 46 , 48 , 49 , $51-53$, $56-60$ rgb . 6 , $9-13$, 15 , 19 , 20 , 22 , 27 , 30 , 45 , 49 , $51-60$ tHsb 11 , 12 , 15 , 19 , 40 , 49 , 58 , 59 , 64 wave . 11 , 12 , 15 , 49 , 60 , 64	red 18, 19, 21–23, 33, 60, 64 rouge
\fcolorbox	RGB $10-12$, 15 , 19 , 20 , 45 , 49 , 54 , 59 , 67 cmyk 5 , 6 , $9-11$, 15 , 19 , 22 , 27 , 45 , 49 , 51 , 54 , 55 , 59 , 63 , 68 cmy $9-11$, 15 , 27 , 45 , 49 , 52 , 54 , 55 , 58 gray 6 , $9-12$, 15 , 17 , 45 , 49 , 51 , 54 , 55 , 58 , 59 hsb 5 , $9-13$, 15 , 19 , 22 , 45 , 46 , 48 , 49 , $51-53$, $56-60$ rgb . 6 , $9-13$, 15 , 19 , 20 , 22 , 27 , 30 , 45 , 49 , $51-60$ tHsb 11 , 12 , 15 , 19 , 40 , 49 , 58 , 59 , 64 wave . 11 , 12 , 15 , 49 , 60 , 64 'named' 15 , 22 , 67 'ps' 15 , 64	red 18, 19, 21–23, 33, 60, 64 rouge
\fcolorbox	RGB $10-12$, 15 , 19 , 20 , 45 , 49 , 54 , 59 , 67 cmyk 5 , 6 , $9-11$, 15 , 19 , 22 , 27 , 45 , 49 , 51 , 54 , 55 , 59 , 63 , 68 cmy $9-11$, 15 , 27 , 45 , 49 , 52 , 54 , 55 , 58 gray 6 , $9-12$, 15 , 17 , 45 , 49 , 51 , 54 , 55 , 58 , 59 hsb 5 , $9-13$, 15 , 19 , 22 , 45 , 46 , 48 , 49 , $51-53$, $56-60$ rgb . 6 , $9-13$, 15 , 19 , 20 , 22 , 27 , 30 , 45 , 49 , $51-60$ tHsb 11 , 12 , 15 , 19 , 40 , 49 , 58 , 59 , 64 wave . 11 , 12 , 15 , 49 , 60 , 64 'named' 15 , 22 , 67 'ps' 15 , 64	red 18, 19, 21-23, 33, 60, 64 rouge
\fcolorbox	RGB $10-12$, 15 , 19 , 20 , 45 , 49 , 54 , 59 , 67 cmyk 5 , 6 , $9-11$, 15 , 19 , 22 , 27 , 45 , 49 , 51 , 54 , 55 , 59 , 63 , 68 cmy $9-11$, 15 , 27 , 45 , 49 , 52 , 54 , 55 , 58 gray 6 , $9-12$, 15 , 17 , 45 , 49 , 51 , 54 , 55 , 58 , 59 hsb 5 , $9-13$, 15 , 19 , 22 , 45 , 46 , 48 , 49 , $51-53$, $56-60$ rgb . 6 , $9-13$, 15 , 19 , 20 , 22 , 27 , 30 , 45 , 49 , $51-60$ tHsb 11 , 12 , 15 , 19 , 40 , 49 , 58 , 59 , 64 wave . 11 , 12 , 15 , 49 , 60 , 64 'named' 15 , 22 , 67 'ps' 15 , 64	red 18, 19, 21-23, 33, 60, 64 rouge
\fcolorbox	RGB $10-12$, 15 , 19 , 20 , 45 , 49 , 54 , 59 , 67 cmyk 5 , 6 , $9 5$, 6 , $9 11$, 15 , 19 , 22 , 27 , 45 , 49 , 51 , 54 , 55 , 59 , 63 , 68 cmy $9-11$, 15 , 27 , 45 , 49 , 52 , 54 , 55 , 58 gray 6 , $9-12$, 15 , 17 , 45 , 49 , 51 , 54 , 55 , 58 , 59 hsb 5 , $9-13$, 15 , 19 , 22 , 45 , 46 , 48 , 49 , $51-53$, $56-60$ rgb . 6 , $9-13$, 15 , 19 , 20 , 22 , 27 , 30 , 45 , 49 , $51-60$ tHsb 11 , 12 , 11 , 12 ,	red 18, 19, 21-23, 33, 60, 64 rouge
\fcolorbox	RGB $10-12$, 15 , 19 , 20 , 45 , 49 , 54 , 59 , 67 cmyk 5 , 6 , $9-11$, 15 , 19 , 22 , 27 , 45 , 49 , 51 , 54 , 55 , 59 , 63 , 68 cmy $9-11$, 15 , 27 , 45 , 49 , 52 , 54 , 55 , 58 gray 6 , $9-12$, 15 , 17 , 45 , 49 , 51 , 54 , 55 , 58 , 59 hsb 5 , $9-13$, 15 , 19 , 22 , 45 , 46 , 48 , 49 , $51-53$, $56-60$ rgb . 6 , $9-13$, 15 , 19 , 20 , 22 , 27 , 30 , 45 , 49 , $51-60$ tHsb 11 , 12 , 15 , 19 , 40 , 49 , 58 , 59 , 64 wave . 11 , 12 , 15 , 49 , 60 , 64 'named' 15 , 22 , 67 'ps' 15 , 64	red 18, 19, 21-23, 33, 60, 64 rouge

dvips 8, 9, 20,	usenames 8, 47, 66	PostScript 9, 15, 20, 21,
21, 26, 31, 45, 47, 64–66	P	26, 31, 33, 51, 53, 64, 65
dviwindo 8, 45		\preparecolor
dviwin 8, 45	packages	\preparecolorset 23
emtex 8, 45	colorinfo	Programmes Yap
fixinclude 8, 10, 34, 63	colortbl 10, 11, 31, 62	
fixpdftex 8, 10, 11, 33, 65	color	dvipdfm
gray 8, 10, 13	6, 8–11, 20, 22, 24, 25,	dvips 8, 20, 21,
hideerrors 8, 10, 68	30, 32, 45-47, 62, 63, 66	30, 31, 33, 34, 63, 65-67
hsb 8, 10, 13	doc	\providecolor 22
hyperref 8, 10, 30, 67	fp	\providecolors 24
hypertex 8	graphics 20, 33, 45	\providecolorset 23
kernelfbox 8, 10, 25, 64	graphicx 33	R
monochrome $\ldots 8, 45$	hyperref	
natural 8, 10, 13	8, 10, 11, 30, 62, 63, 69	\rangeGray 12 \rangeHSB 12
noxcdraw 8, 10, 26	longtable 63	-
oztex	memoir	\rangeHsb
pctex32 $\dots 8, 45$	msc 65	\rangeRGB
pctexhp $\dots 8, 45$	pdfcolmk 10, 11, 33, 62, 65	\rangetHsb 11, 58 \resetcolorseries 29
pctexps $\dots 8, 45$	preview 65	\rowcolors 31
pctexwin $\ldots 8, 45$	pstcol	\rowcolors* 31
pdftex	pstricks 11, 22, 31, 61, 63–68	\rownum
. 8, 21, 26, 36, 45–47, 63	realcalc	(TOWITUM
prologue 8, 10, 21, 65	soul	S
rgb 8, 10, 13	url 62	\selectcolormodel 13
showerrors 8, 10	xcolor	\showrowcolors 31
svgnames* 8, 10, 19, 23, 66	5, 6, 8, 9, 11–13, 15,	\substitutecolormodel 12
$svgnames \dots 8,$	21, 23, 24, 28–30, 32,	SVG 10, 19, 20, 33, 62, 66
10, 19, 20, 23, 32, 42, 64	33, 45-47, 61-63, 65-67	, , , , ,
table 8, 10, 11, 31, 65	\pagecolor 24	${f T}$
tcidvi 8, 45	Pantone 6	teinte 6
textures 8, 45	PDF 26	\testcolor 26
truetex 8, 45	personnes	testcolors (environnement) 26
usecolors	Arseneau, Donald 25, 62	\textcolor 24
vtex 8, 45	Bruton, Dan 60, 62	ton 6
x11names* 8, 10, 20	Carlisle, David P 62, 63	ton direct $\dots 6$
x11names 8, 10, 20, 43	Goethe, Johann Wolfgang	\tracingcolors 32
xcdraw 8, 10, 26, 63, 64	von	
xdvi 8, 45	Kern, Uwe 62	${f U}$
xetex 8, 45, 64	Newton, Isaac	Unix 10, 19, 20, 43, 64
options d'extension (obso-	Niepraschk, Rolf 62	
lètes)	Oberdiek, Heiko 62	X
nodvipsnames 8, 66	Rahtz, Sebastian 62	X11 10, 19, 20, 43, 64
override 8, 66, 68	Smith, Alvy Ray 51, 62	\xcolorcmd 9
pst 8, 63	Voß, Herbert 62	\xglobal 24, 27