MODULE 3: Boolean Algebra and Digital Logic

Lecture 3.1 Boolean Algebra

Prepared By:

- Scott F. Midkiff, PhD
- · Luiz A. DaSilva, PhD
- Kendall E. Giles, PhD

Electrical and Computer Engineering
Virginia Tech

Lecture 3.1 Objectives

- Define the AND, OR, and NOT Boolean operations
- Evaluate a Boolean expressions to create a truth table
- Derive a Boolean expression from a truth table
- Enumerate the basic properties of Boolean algebra
- Manipulate Boolean expressions using the basic properties of Boolean algebra

Computer Systems and Boolean Algebra

- Computer systems hardware and software are based on binary ("0" or "1") logic values
- We need to be able to analyze and manipulate such representations and to realize functions of binary logic values
- Boolean algebra provides a "toolbox" to analyze and manipulate logic expressions
- Logic gates provide a means to realize logic functions in hardware
- Logic functions provide a means to realize logic functions in software

Logic Values

- Binary logic values take one of two discrete values
 - "0" (or "LOW" or "FALSE")
 - "1" (or "HIGH" or "TRUE")
- Such a system is "digital" since values are taken from a finite set, {0, 1} in this
 case
- Analog values could take values from a continuous set consisting of an infinite number of possible values

Truth Table

- A truth table is one way to completely specify a logic function that depends only on the current inputs
- Each row of the table is associated a possible combination of input values
 - If there are *n* inputs, then there are 2ⁿ possible combinations of input values
 - For example, for n=3 there are 2^3 =8 possible combinations: $i_2 i_1 i_0 = 000, 001, 010, 011, 100, 101, 110, 111$
- The "output" column of the table specifies the value of the output for each possible input combination

Truth Table Example

- Three inputs: a, b, and c
- One output, f, which should be 1 if and only if (iff) there are an even number of 1's among a, b, and c (otherwise, f is 0)

Boolean Algebra

- Boolean algebra is an algebra defined using values {0, 1} and basic operations {AND, OR, NOT}
- Basic properties are known
- Utility:
 - Manipulate logic expressions to simplify them
 - Manipulate logic expressions to change the form of logic expressions
 - Manipulate logic expressions to show logical equivalency

As a checkpoint of your understanding, please pause the video and make sure you can do the following:

• If you had n = 4 inputs on your truth table, how many possible input combinations are there?

Answer:

• If you had n = 4 input variables, then your truth table would have $2^4 = 16$ input combinations or rows.

If you have any difficulties, please review the lecture video before continuing.

Boolean Operations

- There are three principal Boolean operations
 - AND
 - OR
 - NOT (INVERT)
- There are other operations that are realized from combining these operations
- Any function can be expressed as a combination of AND, OR, and NOT (really just AND and NOT, or just OR and NOT)

AND Operation

Output is TRUE ("1") if and only if all inputs are TRUE ("1")

$$F = a \cdot b = ab$$

OR Operation

- Output is TRUE ("1") if and only if at least one or more input is TRUE ("1")
- Sometimes called "Inclusive OR"

$$F = a+b$$

NOT Operation

• Output is TRUE ("1") if and only if the input is FALSE ("0")

$$F = a' = a$$

As a checkpoint of your understanding, please pause the video and make sure you can:

Write out by hand the truth tables for the AND, OR, and NOT operations.

If you have any difficulties, please review the lecture video before continuing.

Boolean Logic Expressions

- The basic logic expressions (AND, OR, NOT) can be used to construct more complex logic expressions
- Example:

<u>a</u>	b	С	f
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

$$f(a,b,c) = a'b + c$$

Basic Properties of Boolean Algebra (1)

- Commutative property (order of variables is not important)
 - -AB = BA
 - -A+B=B+A
- Distributive property (how a variable is distributed)
 - A(B+C) = AB + AC
 - A + BC = (A+B) (A+C)
- Identity property
 - 1 A = A
 - 0 + A = A

Basic Properties of Boolean Algebra (2)

- Complement property
 - A A' = 0
 - A + A' = 1
- "Zero and one" properties
 - -0A = 0
 - -1+A=1
- Idempotence property
 - -AA=A
 - -A+A=A

Basic Properties of Boolean Algebra (3)

- Associative property (order of operations is not important)
 - -A(BC) = (AB)C
 - -A + (B + C) = (A + B) + C
- Involution property
 - (A')' = A
- DeMorgan's Theorem
 - (AB)' = A' + B'
 - (A+B)' = A' B'

Basic Properties of Boolean Algebra (4)

- Consensus Theorem
 - -AB + A'C + BC = AB + A'C
 - -(A+B)(A'+C)(B+C) = (A+B)(A'+C)
- Absorption Theorem
 - -A(A+B) = A
 - -A+AB=A

Example Proof

- Let's prove one form of the Absorption Theorem for two variables, A (A+B) = A
- We'll use "perfect induction" (or exhaustive proof)

Computational Completeness

- A set of operations is "computationally complete" or "functionally complete" if any Boolean logic expression can be realized using these operations
- Considering gates, a computationally complete set of gates allows any logic function to be realized
- Some computationally complete sets of gates:
 - {AND,OR,NOT}
 - {AND,NOT}
 - {OR,NOT}
 - {NAND}
 - {NOR}

As a checkpoint of your understanding, please pause the video and make sure you can:

 Confirm your understanding of the Absorption Theorem by working out the proof of the theorem's correctness by hand.

If you have any difficulties, please review the lecture video before continuing.

Summary

- Logic values normally have values:
 - 0 (LOW, FALSE)
 - 1 (HIGH, TRUE)
- Truth tables can be used to specify a logic function
- Boolean logic expressions can also be used to specify a logic function
- Boolean logic functions are made up of simple logic functions, such as {AND, OR, NOT}
- A logic expression can be written that expresses the function of a logic gate realization
- Boolean algebra can be used to manipulate Boolean logic expressions (and, thus, transform the associated logic gate realization)

MODULE 3: Boolean Algebra and Digital Logic

Lecture 3.1 Boolean Algebra

Prepared By:

- Scott F. Midkiff, PhD
- · Luiz A. DaSilva, PhD
- Kendall E. Giles, PhD
 Electrical and Computer Engineering
 Virginia Tech

