Chapitre 2 : Indépendance - probabilité conditionnelle

Définition

Soit (Ω, \mathbb{P}) un espace de probabilités et soit A un événement tel que $\mathbb{P}(A) > 0$. On définit \mathbb{P}_A la probabilité conditionnelle sachant A par : pour tout événement B,

$$\mathbb{P}_A(B) = \frac{\mathbb{P}(B \cap A)}{\mathbb{P}(A)}.$$

On note aussi $\mathbb{P}_A(B) = \mathbb{P}(B|A)$.

Définition

Une partition de Ω est une famille $(A_i)_{i\in I}$, avec I fini ou dénombrable, d'événements non vides, 2 à 2 incompatibles $(i \neq j \Rightarrow A_i \cap A_j = \emptyset)$ telle que $\Omega = \bigcup_{i \in I} A_i$.

Formule des probabilités totales

Soit $(A_i)_{i\in I}$ une partition de Ω avec $\mathbb{P}(A_i) > 0$ pour tout $i \in I$. Alors

$$\mathbb{P}(B) = \sum_{i \in I} \mathbb{P}_{A_i}(B) \mathbb{P}(A_i).$$

Formule de Bayes

Soit $(A_i)_{i\in I}$ une partition de Ω avec $\mathbb{P}(A_i)>0$ pour tout $i\in I$ et B un événement de probabilité non nulle. Alors

$$\mathbb{P}_B(A_j) = \frac{\mathbb{P}(A_j \cap B)}{\mathbb{P}(B)} = \frac{\mathbb{P}_{A_j}(B)\mathbb{P}(A_i)}{\sum_{i \in I} \mathbb{P}_{A_i}(B)\mathbb{P}(A_i)}.$$

Définition (Indépendance)

Soit (Ω, \mathbb{P}) un espace de probabilités.

1) Deux événements A et B sont indépendants pour \mathbb{P} lorsque

$$\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B).$$

2) Soit $n \geq 2$. A_1, \ldots, A_n sont mutuellement indépendants si pour toute partie $I \subset \{1, \ldots, n\}$,

$$\mathbb{P}(\cap_{i\in I} A_i) = \prod_{i\in I} \mathbb{P}(A_i).$$