Б)

Nº	x_i ; x_{i+1}	$x_i' = \frac{x_i + x_{i+1}}{2}$	n_i	$W_i = \frac{n_i}{n}$	$\frac{W_i}{h}$
1	14 — 15	14,5	8	0,08	0,08
2	15 — 16	15,5	10	0,1	0,1
3	16 — 17	16,5	9	0,09	0,09
4	17 — 18	17,5	15	0,15	0,15
5	18 — 19	18,5	16	0,16	0,16
6	19 — 20	19,5	12	0,12	0,12
7	20 — 21	20,5	12	0,12	0,12
8	21 — 22	21,5	11	0,11	0,11
9	22 — 23	22,5	7	0,07	0,07

Γ)

m_i	x_i ; x_{i+1}	x_i'	n_i	$n_i x_i'$	$(x_i')^2$	$n_i(x_i')^2$
1	14 — 15	14,5	8	116	210,25	1682
2	15 — 16	15,5	10	155	240,25	2402,5
3	16 — 17	16,5	9	148,5	272,25	2450,25
4	17 — 18	17,5	15	262,5	306,25	4593,75
5	18 — 19	18,5	16	296	342,25	5476
6	19 — 20	19,5	12	234	380,25	4563
7	20 - 21	20,5	12	246	420,25	5043
8	21 — 22	21,5	11	236,5	462,25	5084,75
9	22 - 23	22,5	7	157,5	506,25	3543
			100	1852		34839

д)
$$\bar{x} = \frac{1852}{100} = 18,52$$
; $D_{\text{в}} = \frac{34839}{100} - (18,52)^2 = 5,3996$; $\sigma_{\text{в}} = \sqrt{5,3996} \approx 2,32$

	$x_i; x_{i+1}$				z_i ;	z_{i+1}
i	x_i	x_{i+1}	$x_i - \bar{x}$	$x_{i+1} - \bar{x}$	$z_i = \frac{x_i - \bar{x}}{\sigma_{\scriptscriptstyle B}}$	$z_{i+1} = \frac{x_{i+1} - \bar{x}}{\sigma_{\scriptscriptstyle B}}$
1	14	15	_	-3,52	_	-1,52
2	15	16	-3,52	-2,52	-1,52	-1,09
3	16	17	-2,52	-1,52	-1,09	-0,66
4	17	18	-1,52	-0,52	-0,66	-0,22
5	18	19	-0,52	0,48	-0,22	0,21
6	19	20	0,48	1,48	0,21	0,64
7	20	21	1,48	2,48	0,64	1,07
8	21	22	2,48	3,48	1,07	1,50
9	22	23	3,48	_	1,50	_

	$egin{array}{ c c c c c c c c c c c c c c c c c c c$						
i			$\Phi(z_i) \Phi(z_{i+1})$		$P_i = \Phi(z_{i+1}) - \Phi(z_i)$	$n_i' = 100P_i$	
1	_	-1,52	-0,5000	-0,4357	0,0643	6,43	
2	-1,52	-1,09	-0,4357	-0,3621	0,0736	7,36	
3	-1,09	-0,66	-0,3621	-0,2454	0,1167	11,67	
4	-0,66	-0,22	-0,2454	-0,0871	0,1583	15,83	
5	-0,22	0,21	-0,0871	0,0832	0,1703	17,03	
6	0,21	0,64	0,0832	0,2389	0,1557	15,57	
7	0,64	1,07	0,2389	0,3577	0,1188	11,88	
8	1,07	1,50	0,3577	0,4332	0,0755	7,55	
9	1,50	_	0,4332	0,5000	0,0668	6,68	

i	n_i	n'_i	$n_i - n'_i$	$(n_i - n_i')^2$	$(n_i - n_i')^2$	n_i^2	n_i^2
					$\overline{n'_i}$		$\overline{n'_i}$
1	8	6,43	1,57	2,4649	0,3833	64	9,9533
2	10	7,36	2,64	6,9696	0,9470	100	13,5870
3	9	11,67	-2,67	7,1289	0,6109	81	6,9409
4	15	15,83	-0,83	0,6889	0,0435	225	14,2135
5	16	17,03	-1,03	1,0609	0,0623	256	15,0323
6	12	15,57	-3,57	12,7449	0,8186	144	9,2486
7	12	11,88	0,12	0,0144	0,0012	144	12,1212
8	11	7,55	3,45	11,9025	1,5765	121	16,0265
9	7	6,68	0,32	0,1024	0,0153	49	7,3353
	100	100			4,4586		104,4586

контроль:
$$\frac{\sum n_i^2}{n_i^{'}}-n=\frac{\sum (n_i-n_i^{'})^2}{n}=104$$
,4586 — $100=4$,4586

ид3-19.2:

X	2,2	3,6	5,0	6,4	7,8	9,2	10,6	12	m_{χ}
200	5	3	4	_	_	_	_	_	12
360	_	7	8	_	_	_	_	_	15
520	_	_	9	10	14	_	_	_	33
680	_	_	_	8	7	6	_	_	21
840	_	_	_	_	2	3	2	_	7
1000	_	_	_	_	_	_	6	6	12
m_{ν}	5	10	21	18	23	9	8	6	100

13	$x_i \sum_{j=1}^k m_{yj} y_j$	8360	23472	113464	109480	54096	135600	444472				
12	$x_i^2 m_{xi}$	480000	194400	892320	971040	493920	120000	379968				/
11	$\sum_{j=1}^{k} m_{yj} y_j$	41,8	65,2	218,2	161	64,4	135,6	686,2				
10	m_{xi} $m_{xi}x_i$	2400	5400	17160	14280	2880	12000	57120		,		
6	m_{xi}	12	15	33	21	7	12	100	686,2	57120	5340	444472
8	12	ı	ı	ı	ı	ı	9	9	72	0009	864	72000
7	10,6	_	_	_	I	7	9	8	84,8	7680	88'868	81408
9	9,2	_	_	_	9	3	_	6	87,8	0099	761,76	60720
2	7,8	I	I	14	7	2	1	23	179,4	13720	1399,32	107016
4	6,4	1	1	10	8	1	1	18	115,2	10640	737,28	96089
3	5,0	4	8	6	ı		-	21	105	8360	525	41800
2	3,6	3	7	I	I	I	I	10	36	3120	129,6	11232
1	2,2	2	I	I	ı	I	I	2	11	1000	24,2	2200
j	*	200	360	520	089	840	1000	m_{yj}	$m_{\mathcal{Y}j}\mathcal{Y}_j$	$\sum_{j=1}^k m_{ij} x_i$	$y_i^2 m_{ij}$	$y_j \sum_{j=1}^k m_{ij} x_i$
		1	2	3	4	2	9	7	∞	6	10	11