Objectius.

- Entendre la noció de convergència uniforme d'una successió o una sèrie de funcions.
- Utilitzar els resultats teòrics que relacionen la regularitat de la funció límit amb la regularitat de les funcions de la successió.

Requisits.

- Els resultats teòrics sobre convergència uniforme de funcions contínues.
- El criteri de Weierstrass per sèries uniformement convergents.

ACTIVITATS

1. Estudieu la convergència puntual i uniforme de les successions següents

(a)
$$f_n(x) = \begin{cases} \frac{x}{n} & \text{si } 0 \le x \le n \\ 1 & \text{si } x > n \end{cases}$$
 (b) $f_n(x) = \begin{cases} n - 2n^2 |x - \frac{1}{2n}| & \text{si } 0 \le x \le \frac{1}{n} \\ 0 & \text{si } x \ge \frac{1}{n} \end{cases}$

(c)
$$f_n(x) = \frac{x\sqrt{n}}{1 + nx^2}$$
 (d) $f_n(x) = \inf\{n, \frac{1}{x}\}$ $(x > 0)$

2. Demostreu que les sèries següents són uniformement convergents als intervals indicats

(a)
$$\sum_{n=0}^{\infty} \frac{x\sqrt{n}}{1 + n^4 x^2} \quad \text{a} \quad \mathbb{R}.$$

(b)
$$\sum_{n=0}^{\infty} \frac{x^n(1-x)}{\log(n+1)}$$
 a $[0,1]$.

- **3.** Demostreu que la sèrie $\sum_{n=1}^{\infty} \frac{x^n}{n(1+nx^2)}$ convergeix uniformement a [-1,1] però és divergent a $\mathbb{R} \setminus [-1,1]$.
- 4. Estudieu la convergència puntual, uniforme i absoluta a $[2, \infty)$ de la sèrie de funcions $\sum_{n} \frac{(-1)^n}{nx + (-1)^n}$

- **5.** Sigui $f:[0,\infty)\to\mathbb{R}$ una funció contínua, no idènticament nul.la i tal que $\lim_{x\to\infty} f(x)=0$ i f(0)=0. Definim les successions de funcions f_n i g_n com $f_n(x)=f(nx)$ i $g_n(x)=f(x/n)$, per $x\in[0,\infty)$ i $n\in\mathbb{N}$. Demostreu que:
 - (a) f_n i g_n convergeixen puntualment a zero a $[0,\infty)$ però la convergència no és uniforme en aquest mateix interval.
 - (b) La successió $\{f_ng_n\}$ convergeix uniformement a zero a $[0,\infty)$.
 - (c) Doneu un exemple de dues successions de funcions uniformement convergents però que el seu producte no sigui uniformement convergent.