- 1. Assume a sample of n=10 observations was randomly sampled from a normal distribution with $\sigma=5$. Suppose that $\overline{x}=78$.
 - (a) test $H_0: \mu > 80$, assuming $\alpha = 0.05$
 - (b) produce a plot of the standard normal distribution that shows both the rejection region and the sample z-score.
 - (c) compute a 95% confidence interval. Is this interval consistent with your decision in part (a)? Explain.
 - (d) determine the *p*-value.
- 2. Assume a sample of n=49 observations was randomly sampled from a normal distribution with $\sigma=5$. Suppose that $\overline{x}=120$.
 - (a) test $H_0: \mu = 130$, assuming $\alpha = 0.01$.
 - (b) produce a plot of the standard normal distribution that shows both the rejection region and the sample z-score.
 - (c) compute a 99% confidence interval. Is this interval consistent with your decision in part (a)? Explain.
 - (d) determine the *p*-value.
- 3. An antipollution device for cars is claimed to have an average effectiveness of exactly 546. Based on a test of 20 such devices, you find that $\bar{x} = 565$. Assuming normality and that $\sigma = 40$, would you rule out the claim with a Type I error probability of 0.05?
- 4. For n = 36, $\alpha = 0.01$, $\sigma = 8$, and $H_0: \mu \leq 100$, compute the power obtained when $\overline{x} = 103$.
- 5. For n=49, $\alpha=0.05$, $\sigma=10$, and $H_0: \mu=50$, compute the power obtained when $\overline{x}=47$.