EEEN202 Lab 3 Sequential Logic: Counters

Section 3 3.1 – J-K FF

Initial state: Enable: 1, Reset: 0, Clear: 0, J = 1, K = 1, Q = 0

J	K	Q after CLK pulse	Resulting FF
0	0	0	0
0	1	0	0
1	0	1	1
1	1	0	0

- (i) The FF transitions off LO to HI pulse i.e., it's a rising edge FF
- (ii) When enable goes LO, the FF stops operating. The current state of the FF persists
- (iii) When Preset goes HI, nothing changes. If Reset goes HI whilst Preset = HI, the FF transitions to the set state, or FF = 1
- (iv) When Clear/K goes HI, and Q = 1, FF transitions and Q = 0 and /Q = 1. If /Q = 1, then nothing changes
- 3.2 4 Bit asynchronous counter using rising edge J-K FF + 3.3 Timing diagram

CLK Pulse	D	С	В	Α
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0	0	0
9	1	0	0	1
10	1	0	1	0
11	1	0	1	1
12	1	1	0	0
13	1	1	0	1
14	1	1	1	0
15	1	1	1	1
16	0	0	0	0
17	0	0	0	1

CLK Pulse	D	С	В	Α
0	1	1	1	1
1	1	1	1	0
2	1	1	0	1
3	1	1	0	0
4	1	0	1	1
5	1	0	1	0
6	1	0	0	1
7	1	0	0	0
8	0	1	1	1
9	0	1	1	0
10	0	1	0	1
11	0	1	0	0
12	0	0	1	1
13	0	0	1	0
14	0	0	0	1
15	0	0	0	0
16	1	1	1	1
17	1	1	1	0

3.6 – With each additional FF, the CLK frequency is halved. In this case, the output frequency: $f_{out} = \frac{CLK}{MOD}$

$$f_{out} = \frac{CLK}{MOD}$$

Where $MOD = 2^n$ (and n is the number of FFs used. With 4 FFs used, its MOD number is 16; for an input signal of 10 kHz, then the output frequency is 625 kHz.

3.7 - MOD 10 counter

Section 4 4.1 – J-K edge-triggered flip-flop

Inputs before nth CLK pulse		Outputs after nth CLK pulse		
J	K	Q	$ar{Q}$	
0	0	0	1	
0	1	0	1	
1	0	1	0	
1	1	0	1	

4.2

Set line (active low): when pulled to LO, Q of all the FF's gets locked to HI i.e., pulsing the CLK of the first FF does nothing. Pulsing LO sets Q of all FF's to HI, but does not lock it Clear line (active low): when pulled to LO, Q of all the FF's gets locked to LO. Pulsing LO sets Q of all the FF's to LO.

4.3

(i) MOD 12 counter: NAND gate with inputs from D and C (ii) MOD 10 counter: NAND gate with inputs from D and B

4.4

- (i) Down counter: take the $ar{Q}$ output or use a NOT gate for each output
- (ii) Flexible counter: have an XOR gate for each output of an up counter. One input is the output of an FF and the other is tied to a switch. When turned on, the XOR turns into NOT gate, turning the up counter into a down counter. Circuitverse example:

Section 5 5.(i) – 50hz to 1hz converter (Circuitverse sim) MOD 50 counter using the reset AND gate as the output

