Typ oscilátoru	differenciální rovnice	řešení $x(t)$	poznámka k řešení	frekvence	trajektorie
obyčejný harmonický oscilátor	$\ddot{x} + \frac{k}{m}x = 0$	$x = A\sin(\omega_0 t + \varphi_0)$		$\omega_0 = \sqrt{\frac{k}{m}}$	ye old sinusoida
buzený harmonický oscilátor	$\ddot{x} + \frac{k}{m}x = F_0 e^{i\Omega t}$	$x(t) = x_o + x_p = $ $\hat{x_o}e^{i\omega_0 t} + \hat{x_p}e^{i\Omega t} $ $\hat{x_p} = \frac{F_0}{m(\omega_0^2 - \Omega^2)} $	Obecné řešení je běžná oscilace harmonického oscilátoru, je nezávislá na partikulárním řešení a probíhá zároveň. Komplexní amplitudu $\hat{x_o}$ případně amplitudu a fázi A a φ_0 se získají z úvodních podmínek.	přirozená frekvence w_0 a nezávisle na ní budící frekvence Ω	součet dvou sinusovek o různé fázi, frekvenci i amplitudě.
tlumený harmonický oscilátor	$\ddot{x} + \frac{h}{m}\dot{x}\frac{k}{m}x + = 0$ $2\delta \equiv \frac{h}{m}$	Aperiodický pohyb $\delta^2 - \omega_0^2 > 0$ $x(t) = C_1 e^{\alpha_1 t} + C_2 e^{\alpha_2 t}$ $\alpha_{1,2} = -\delta \pm \sqrt{\delta^2 - \omega_0^2}$ mezní aperiodický pohyb $\delta^2 - \omega_0^2 = 0$ $x(t) = C_1 e^{-\delta t} + C_2 t e^{-\delta t}$	C_1, C_2 respektive A, φ_0 se získávají z počátečních podmínek.	ω_0	Aperiodický pohyb: výchylka se pomalu vrátí do rovnovážné polohy. Mezní aperiodický pohyb: výchylka se vrátí do rovnovážné polohy rychle. tlumený harmonický pohyb: tlumená sinusovka.
		tlumený harmonický pohyb $\delta^2 - \omega_0^2 < 0$ $Ae^{-\delta t} \sin(\omega_0 + \varphi_0)$			
Tlumený buzený oscilátor	$\ddot{x} + \frac{h}{m}\dot{x}\frac{k}{m}x + = F_0e^{i\Omega t}$	$x_p = A_0 e^{i\vartheta} e^{i\Omega t}$ $A_0 = \frac{F_0}{m} \frac{1}{\sqrt{(\omega_0^2 - \Omega^2)^2 + 4\delta^2 \Omega^2}}$ $\tan \vartheta = \frac{-2\delta\Omega}{\omega_0^2 - \Omega^2}$	Kromě vlevo napasného partikulárního řešení bude přítomné i nezávislé, obecné řešení (stejně jako u buzeného oscilátoru). Obecné řešení je ale přítomné jenom na začátku a pak se utlumí.	Ω	2 fáze: tranzitní (Podobná buzenému, netlumenému oscilátoru. Přítomné jsou 2 sinusovky. Neučili jsem se popisovat.) a ustálená (obecné řešení je již vytlumeno a máme tu obyč sinusovku)