Hardy-Muckenhoupt Bounds for Laplacian Eigenvalues

Alex Wang

June 14, 2019

Based on joint work with Gary Miller, Noel Walkington

1 Introduction

② Dirichlet problem Muckenhoupt's inequality

3 Neumann problem

4 Generalizations

Introduction: graphs and the Laplacian

- Weighted connected graph, $G = (V, E, \mu, \kappa)$
- Mass, $\mu \in \mathbb{R}^V_{>0}$
- Spring constants, $\kappa \in \mathbb{R}^{E}_{>0}$

• Degrees, $d_v = \sum_{u \sim v} \kappa_{u,v}$

Introduction: graphs and the Laplacian

- Laplacian, L = D A
- Degree matrix, $D = diag(d_v)$
- Adjacency matrix, $A_{u,v} = \kappa_{u,v}$

Introduction: graphs and the Laplacian

- Let $x \in \mathbb{R}^V$
- As a linear map

$$(Lx)_{v} = (Dx)_{v} - (Ax)_{v}$$

$$= \left(\sum_{u \sim v} \kappa_{u,v}\right) x_{v} - \sum_{u \sim v} \kappa_{u,v} x_{u}$$

$$= \sum_{u \sim v} \kappa_{u,v} (x_{v} - x_{u})$$

As a quadratic form

$$x^{\top} L x = \dots$$

$$= \sum_{(u,v) \in E} \kappa_{u,v} (x_u - x_v)^2$$

Introduction: spring mass systems

• Let's embed G on \mathbb{R} as $v \mapsto x_v \in \mathbb{R}$

- Force acting on v is $\sum_{u \sim v} \kappa_{(u,v)}(x_u x_v) = -(Lx)_v$
- Standing wave equation

$$-\mathrm{acceleration}_{v} = \lambda x_{v}, \qquad \forall v \in V$$

$$\frac{(Lx)_{v}}{\mu_{v}} = \lambda x_{v}, \qquad \forall v \in V$$

$$(Lx)_{v} = \lambda \mu_{v} x_{v}, \qquad \forall v \in V$$

$$Lx = \lambda Mx$$

• $\sqrt{\lambda} \propto$ frequency

Introduction: spring mass systems

- $Lx = \lambda Mx$ has eigenvalues $0 \le \lambda_1 \le \lambda_2 \le \lambda_3 \le \cdots \le \lambda_{|V|}$
- 1 is eigenvector with eigenvalue 0
- Neumann problem is to find λ_2
- Courant-Fischer,

$$\implies \lambda_2 = \min_{x} \left\{ \frac{x^{\top} L x}{x^{\top} M x} \,\middle|\, x^{\top} M 1 = 0 \right\}$$

Rayleigh quotient,

$$\frac{x^{\top}Lx}{x^{\top}Mx} = \frac{\sum_{(u,v)\in E} \kappa_{u,v} (x_u - x_v)^2}{\sum_{v\in V} \mu_v x_v^2}$$

Introduction: λ_2

- Mixing time of random walks
- Markov chains
- Laplacian solvers
- Image segmentation
- Uncertainty principles
- Heat flow

Introduction: cuts and Cheeger's inequality

Sparsest cut of G,

$$S-CUT(G) = \min_{A} \left\{ \frac{\sum_{e \in E(A,\bar{A})} \kappa_{e}}{\min(\mu(A), \mu(\bar{A}))} \,\middle|\, A, \bar{A} \neq \varnothing \right\}$$

- ullet Numerator small pprox A and $ar{A}$ are sparsely connected
- Denominator large pprox A and $ar{A}$ both have a lot of mass

Introduction: cuts and Cheeger's inequality

Cheeger's inequality:

Theorem

If $\mu_{\rm v}={\it d}_{\rm v}$, then

$$\frac{\lambda_2}{2} \le S\text{-}CUT \le \sqrt{2\lambda_2}$$

or equivalently

$$\frac{S\text{-}CUT^2}{2} \le \lambda_2 \le 2S\text{-}CUT$$

Both sides are tight (up to constants)

Introduction: our work

• Neumann content, Ψ_2

$$\Psi_{2} \approx \min_{A,B} \left\{ \frac{\kappa_{\text{eff}}(A,B)}{\min(\mu(A),\mu(B))} \,\middle|\, A,B \neq \varnothing,\, A \cap B = \varnothing \right\}$$

- $\kappa_{\text{eff}}(A, \bar{A}) = \sum_{e \in E(A, \bar{A})} \kappa_e$
- S-CUT must partition, Ψ_2 may leave out vertices

Introduction: our work

Theorem (Main theorem)

Let G be a weighted connected graph. Then,

$$\frac{\psi_2}{4} \leq \lambda_2 \leq \psi_2$$

Introduction

2 Dirichlet problem Muckenhoupt's inequality

Neumann problem

4 Generalizations

Dirchlet problem: the path graph

- Vertices, $\{v_0, v_1, v_2, \dots, v_n\}$
- Edges, $\{(v_{i-1}, v_i) | i \in [n]\}$
- Mass of vertex v_i is $\mu_i > 0$
- Spring constant of edge (v_{i-1}, v_i) is $\kappa_i > 0$
- Want to solve standing wave equation where v_0 is held at 0

Dirchlet problem: the path graph

• Dirichlet problem is to find λ

$$\lambda = \min_{x} \left\{ \frac{x^{\top} L x}{x^{\top} M x} \middle| x_0 = 0 \right\}$$
$$= \min_{x} \left\{ \frac{\sum_{i=1}^{n} \kappa_i (x_i - x_{i-1})^2}{\sum_{i=1}^{n} \mu_i x_i^2} \middle| x_0 = 0 \right\}$$

Dirchlet problem: for two node graphs

• Suppose *n* = 1,

$$\lambda = \min_{x_0, x_1} \left\{ \frac{\kappa_1 (x_1 - x_0)^2}{\mu_0 x_0^2 + \mu_1 x_1^2} \, \middle| \, x_0 = 0 \right\}$$

$$= \min_{x_1} \left\{ \frac{\kappa_1 x_1^2}{\mu_1 x_1^2} \right\}$$

$$= \frac{\kappa_1}{\mu_1}$$

D. problem: effective spring constants and the D. content

- Pick $k \in [n]$, let $A_k = \{v_k, v_{k+1}, \dots, v_n\}$
- Consider graph G_k

- $u_0 \sim u_{A_k}$
- $\bullet \ \mu(u_{A_k}) = \mu(A_k)$
- $\kappa(u_0, u_{A_k}) = \kappa_{\text{eff}}(v_0, v_k) = \left(\sum_{i=1}^k \kappa_i^{-1}\right)^{-1}$
- $\lambda(G_k) = \frac{\kappa_{\text{eff}}(v_0, v_k)}{\mu(A_k)}$

D. problem: effective spring constants and the D. content

Define Dirichlet content.

$$\Psi = \min_{k} \lambda(G_k) = \min_{k} \frac{\kappa_{\text{eff}}(v_0, v_k)}{\mu(A_k)}$$

Corollary (Muckenhoupt, 1972)

Let $\mu, \kappa \in \mathbb{R}^n_{>0}$. Let C be the smallest constant such that for all $y \in \mathbb{R}^n$,

$$\sum_{i=1}^n \mu_i \left(\sum_{j=1}^i y_j \right)^2 \le C \sum_{i=1}^n \kappa_i y_i^2.$$

Let

$$B = \max_{1 \le k \le n} \left(\sum_{i=1}^k \kappa_i^{-1} \right) \left(\sum_{i=k}^n \mu_i \right).$$

Then $B \leq C \leq 4B$.

Corollary (Muckenhoupt, 1972)

Let $\mu, \kappa \in \mathbb{R}^n_{>0}$. Let C be the smallest constant such that for all $y \in \mathbb{R}^n$,

$$\sum_{i=1}^n \mu_i \left(\sum_{j=1}^i y_j \right)^2 \le C \sum_{i=1}^n \kappa_i y_i^2.$$

Let

$$B = \max_{1 \le k \le n} \left(\sum_{i=1}^k \kappa_i^{-1} \right) \left(\sum_{i=k}^n \mu_i \right).$$

Then $B \leq C \leq 4B$.

Suppose $x \in \mathbb{R}^V$ with $x_0 = 0$ and define $y_i = x_i - x_{i-1}$.

Corollary

Let $\mu, \kappa \in \mathbb{R}^n_{>0}$. Let C be the smallest constant such that for all $x \in \mathbb{R}^V$ with $x_0 = 0$,

$$\frac{1}{C} \leq \frac{\sum_{i=1}^{n} \kappa_i (x_i - x_{i-1})^2}{\sum_{i=1}^{n} \mu_i x_i^2}.$$

Let

$$B = \max_{1 \le k \le n} \left(\sum_{i=1}^k \kappa_i^{-1} \right) \left(\sum_{i=k}^n \mu_i \right).$$

Then $B \leq C \leq 4B$.

Corollary

Let $\mu, \kappa \in \mathbb{R}^n_{>0}$. Let C be

$$\frac{1}{C} = \min_{\mathbf{x} \in \mathbb{R}^V} \left\{ \frac{\sum_{i=1}^n \kappa_i (x_i - x_{i-1})^2}{\sum_{i=1}^n \mu_i x_i^2} \, \middle| \, x_0 = 0 \right\}.$$

Let

$$\frac{1}{B} = \min_{1 \le k \le n} \frac{\left(\sum_{i=1}^k \kappa_i^{-1}\right)^{-1}}{\sum_{i=k}^n \mu_i}.$$

Then $\frac{1}{4}\frac{1}{B} \leq \frac{1}{C} \leq \frac{1}{B}$.

$$\frac{1}{C} = \lambda$$
 and $\frac{1}{B} = \Psi$

Corollary

Let G be a weighted connected path graph. Let λ be the Dirichlet eigenvalue and let Ψ be the Dirichlet content of G. Then,

$$\frac{\Psi}{4} \le \lambda \le \Psi$$
.

$$\sum_{i} \mu_{i} x_{i}^{2}$$

Goal:
$$\leq \frac{4}{\Psi} \sum_{i} \kappa_i (x_i - x_{i-1})^2$$
.

$$\sum_{i} \mu_{i} x_{i}^{2} = \sum_{i} \mu_{i} \left(\sum_{j=1}^{i} (x_{j} - x_{j-1}) \right)^{2}$$

Goal:
$$\leq \frac{4}{W} \sum_{i} \kappa_i (x_i - x_{i-1})^2$$
.

$$\sum_{i} \mu_{i} x_{i}^{2} = \sum_{i} \mu_{i} \left(\sum_{j=1}^{i} (x_{j} - x_{j-1}) \right)^{2}$$

$$\leq \sum_{i} \mu_{i} \left(\sum_{j=1}^{i} (x_{j} - x_{j-1})^{2} \right) \left(\sum_{j=1}^{i} 1^{2} \right)$$

Goal:
$$\leq \frac{4}{\Psi} \sum_{i} \kappa_i (x_i - x_{i-1})^2$$
.

$$\sum_{i} \mu_{i} x_{i}^{2} = \sum_{i} \mu_{i} \left(\sum_{j=1}^{i} (x_{j} - x_{j-1}) \right)^{2}$$

$$\leq \sum_{i} \mu_{i} \left(\sum_{j=1}^{i} (x_{j} - x_{j-1})^{2} \right) \left(\sum_{j=1}^{i} 1^{2} \right)$$

$$\bigcirc$$

Goal:
$$\leq \frac{4}{\Psi} \sum_{i} \kappa_i (x_i - x_{i-1})^2$$
.

$$\sum_{i} \mu_{i} x_{i}^{2}$$

Goal:
$$\leq \frac{4}{\Psi} \sum_{i} \kappa_i (x_i - x_{i-1})^2$$
.

$$\sum_{i} \mu_{i} x_{i}^{2} = \sum_{i} \mu_{i} \left(\sum_{j=1}^{i} (x_{j} - x_{j-1}) \frac{\sqrt{\kappa_{j}}}{\sqrt{\kappa_{j}}} \right)^{2}$$

Goal:
$$\leq \frac{4}{W} \sum_{i} \kappa_i (x_i - x_{i-1})^2$$
.

$$\sum_{i} \mu_{i} x_{i}^{2} = \sum_{i} \mu_{i} \left(\sum_{j=1}^{i} (x_{j} - x_{j-1}) \frac{\sqrt{\kappa_{j}}}{\sqrt{\kappa_{j}}} \right)^{2}$$

$$\leq \sum_{i} \mu_{i} \left(\sum_{j=1}^{i} \kappa_{j} (x_{j} - x_{j-1})^{2} \right) \left(\sum_{j=1}^{i} \frac{1}{\kappa_{j}} \right)$$

Goal:
$$\leq \frac{4}{\Psi} \sum_{i} \kappa_i (x_i - x_{i-1})^2$$
.

$$\sum_{i} \mu_{i} x_{i}^{2} = \sum_{i} \mu_{i} \left(\sum_{j=1}^{i} (x_{j} - x_{j-1}) \frac{\sqrt{\kappa_{j}}}{\sqrt{\kappa_{j}}} \right)^{2}$$

$$\leq \sum_{i} \mu_{i} \left(\sum_{j=1}^{i} \kappa_{j} (x_{j} - x_{j-1})^{2} \right) \left(\sum_{j=1}^{i} \frac{1}{\kappa_{j}} \right)$$

$$\bigcirc$$

Goal:
$$\leq \frac{4}{\Psi} \sum_{i} \kappa_i (x_i - x_{i-1})^2$$
.

$$\sum_{i} \mu_{i} x_{i}^{2}$$

Goal:
$$\leq \frac{4}{\Psi} \sum_{i} \kappa_i (x_i - x_{i-1})^2$$
.

$$\sum_{i} \mu_{i} x_{i}^{2} = \sum_{i} \mu_{i} \left(\sum_{j=1}^{i} (x_{j} - x_{j-1}) \frac{\sqrt{\alpha_{j} \kappa_{j}}}{\sqrt{\alpha_{j} \kappa_{j}}} \right)^{2}$$

Goal:
$$\leq \frac{4}{W} \sum_{i} \kappa_i (x_i - x_{i-1})^2$$
.

$$\sum_{i} \mu_{i} x_{i}^{2} = \sum_{i} \mu_{i} \left(\sum_{j=1}^{i} (x_{j} - x_{j-1}) \frac{\sqrt{\alpha_{j} \kappa_{j}}}{\sqrt{\alpha_{j} \kappa_{j}}} \right)^{2}$$

$$\leq \sum_{i} \mu_{i} \left(\sum_{j=1}^{i} \alpha_{j} \kappa_{j} (x_{j} - x_{j-1})^{2} \right) \left(\sum_{j=1}^{i} \frac{1}{\alpha_{j} \kappa_{j}} \right)$$

Goal:
$$\leq \frac{4}{\Psi} \sum_{i} \kappa_i (x_i - x_{i-1})^2$$
.

(Very sketchy) proof sketch.

$$\sum_{i} \mu_{i} x_{i}^{2} = \sum_{i} \mu_{i} \left(\sum_{j=1}^{i} (x_{j} - x_{j-1}) \frac{\sqrt{\alpha_{j} \kappa_{j}}}{\sqrt{\alpha_{j} \kappa_{j}}} \right)^{2}$$

$$\leq \sum_{i} \mu_{i} \left(\sum_{j=1}^{i} \alpha_{j} \kappa_{j} (x_{j} - x_{j-1})^{2} \right) \left(\sum_{j=1}^{i} \frac{1}{\alpha_{j} \kappa_{j}} \right)$$

Pick $lpha_j$ so that Cauchy-Schwarz is tight when $x_i = \sqrt{\sum_{j=1}^i rac{1}{\kappa_i}}$

Goal:
$$\leq \frac{4}{\Psi} \sum_{i} \kappa_i (x_i - x_{i-1})^2$$
.

D. problem: Muckenhoupt's inequality

(Very sketchy) proof sketch.

Pick $lpha_j$ so that Cauchy-Schwarz is tight when $x_i = \sqrt{\sum_{j=1}^i \frac{1}{\kappa_i}}$

Goal:
$$\leq \frac{4}{\Psi} \sum_{i} \kappa_i (x_i - x_{i-1})^2$$
.

Introduction

Dirichlet problem Muckenhoupt's inequality

3 Neumann problem

4 Generalizations

Neumann problem: the path graph

Neumann problem is to find

$$\lambda_{2} = \min_{x} \left\{ \frac{x^{\top} L x}{x^{\top} M x} \left| x^{\top} M 1 = 0 \right. \right\}$$
$$= \min_{x} \left\{ \frac{\sum_{i=2}^{n} \kappa_{(i,i-1)} (x_{i} - x_{i-1})^{2}}{\sum_{i=1}^{n} \mu_{i} x_{i}^{2}} \left| \sum \mu_{i} x_{i} = 0 \right. \right\}$$

Neumann problem: the path graph

• Suppose n = 2. Then,

$$\begin{split} \lambda_2 &= \min_{x_1, x_2} \left\{ \frac{\kappa_{1,2} (x_1 - x_2)^2}{\mu_1 x_1^2 + \mu_2 x_2^2} \, \middle| \, \mu_1 x_1 + \mu_2 x_2 = 0 \right\} \\ &= \dots \\ &= \frac{\kappa_{1,2}}{(\mu_1^{-1} + \mu_2^{-1})^{-1}} \\ &\approx \frac{\kappa_{1,2}}{\min(\mu_1, \mu_2)} \end{split}$$

Neumann problem: the N. content

- Pick $1 < \ell < r < n$
- Consider graph $G_{\ell,r}$

- $\mu(u_\ell) = \sum_{i=1}^{\ell} \mu_i$ $\mu(u_r) = \sum_{i=r}^{\ell} \mu_i$
- $\kappa(u_{\ell}, u_{r}) = \kappa_{\text{eff}}(v_{\ell}, v_{r})$
- $\lambda_2(G_{\ell,r}) \approx \frac{\kappa_{\text{eff}}(v_l, v_r)}{\min(\mu_\ell, \mu_r)}$

Neumann problem: the path graph and the N. content

Define N. content.

$$\begin{split} \Psi_2 &= \min_{1 \leq \ell < r \leq n} \lambda_2(G_{\ell,r}) \\ &\approx \min_{1 \leq \ell < r \leq n} \frac{\kappa_{\text{eff}}(u_\ell, u_r)}{\min(\mu(u_\ell), \mu(u_r))} \end{split}$$

Neumann problem: as two Dirichlet problems

- Pick pinch point $p \in (1, n)$
- Then, split into two path graphs G₋, G₊

Lemma

$$\lambda_2(G) = \min_{p \in (1,n)} \max (\lambda(G_-), \lambda(G_+))$$

(Hint: use Courant-Fischer)

Neumann problem: proof of main theorem

Theorem

$$\Psi_2/4 \le \lambda_2 \le \Psi_2$$
.

Proof sketch.

$$\begin{split} \lambda_2 &= \min_{p \in (1,n)} \max \left(\lambda(\textit{G}_{-}), \lambda(\textit{G}_{+}) \right) \\ & \asymp \min_{p \in (1,n)} \min_{1 \leq \ell$$

Introduction

② Dirichlet problem Muckenhoupt's inequality

Neumann problem

4 Generalizations

Generalizations: arbitrary connected graphs

Theorem (Dirichlet on a graph)

Let G be a weighted connected graph. Let $S \subseteq V$ be a proper nonempty set. Let $\lambda(G,S)$ be the Dirichlet eigenvalue and let $\Psi(G,S)$ be the Dirichlet content of G. Then

$$\frac{\Psi}{4} \le \lambda \le \Psi$$
.

Theorem (Neumann on a graph)

Let G be a weighted connected graph. Let $\lambda_2(G)$ be the Neumann eigenvalue and let $\Psi_2(G)$ be the Neumann content of G. Then

$$\frac{\Psi_2}{4} \le \lambda_2 \le \Psi_2.$$

Generalizations: p-Laplacian

Theorem

Let G be a weighted connected graph. Let $\lambda_2(G)$ be the Neumann eigenvalue of the p-Laplacian and let $\Psi_2(G)$ be the p-Neumann content of G. Then

$$\frac{\Psi_2}{pq^{p/q}} \le \lambda_2 \le \Psi_2.$$

Summary

- Muckenhoupt's weighted Hardy inequality
- Neumann content,

$$\Psi_2 \approx \min_{A,B} \left\{ \frac{\kappa_{\text{eff}}(A,B)}{\min(\mu(A),\mu(B))} \,\middle|\, A,B \neq \varnothing,\, A \cap B = \varnothing \right\}$$

Showed

$$\frac{\Psi_2}{4} \le \lambda_2 \le \Psi_2$$

Approximation algorithms?