Contents

Assessing the effect of priors on BLUPs	1
Priors	1
Run models	2
Model Diagnostics	3
Extract raneffs	13
Compare MCMC priors	13
Posterior modes	13
Variance of blups	16

Assessing the effect of priors on BLUPs

```
load("data/analyses_data/pca.RData")
library(tidyr)
library(dplyr)
library(MCMCglmm)
library(pander)
set.alignment('right', row.names = 'left')

doc_data <- pca_data %>% filter(!is.na(docil))
agg_data <- pca_data %>% filter(!is.na(misPC1))
act_data <- pca_data %>% filter(!is.na(ofPC1))
```

Priors

From a post to r-sig-me by Ned Dochterman

- 1. Parameter expanded
- 2. Another parameter expanded just to see if results vary across runs
- 3. Parameter expanded variance = docility variance
- 4. Parameter expanded really high variance
- 5. Inverse Wishart
- 6. Inverse Gamma
- 7. Flat, uniform, prior for just a variance
- 8. Flat improper prior, equivalent to REML fitting.

```
priors <- list(
    list(
        G=list(G1=list(V=1, nu=1, alpha.mu = 0, alpha.V = 10000)),
        R=list(V=1, nu=1)
    ),
    list(
        G=list(G1=list(V=1, nu=1, alpha.mu = 0, alpha.V = 10000)),</pre>
```

```
R=list(V=1, nu=1)
  ),
  list(
    G=list(
     G1=list(
        V=var(doc_data$docil, na.rm = TRUE), nu=1, alpha.mu = 0,
          alpha.V = 10000
      )
   ),
   R=list(V=var(doc_data$docil, na.rm = TRUE), nu=1)
  ),
  list(
    G=list(G1=list(V=1000, nu=1, alpha.mu = 0, alpha.V = 1000)),
    R=list(V=1000, nu=1)
  ),
  list(G=list(G1=list(V=1, nu=1)), R=list(V=1, nu=1)),
  list(G=list(G1=list(V=1, nu=0.002)), R=list(V=1, nu=0.002)),
  list(G=list(G1=list(V=1e-16, nu=-2)), R=list(V=1e-16, nu=-2)) ,
  list(G=list(G1=list(V=1,nu=0)), R = list(V=1, nu = 0))
Run models
library(foreach)
## foreach: simple, scalable parallel programming from Revolution Analytics
## Use Revolution R for scalability, fault tolerance and more.
## http://www.revolutionanalytics.com
library(doMC)
## Loading required package: iterators
## Loading required package: parallel
registerDoMC(cores = 8)
thin <- 100
burnin <- thin * 100
nitt <- burnin + thin * 1000
time_start <- Sys.time()</pre>
m_priors <- foreach(i = 1:length(priors)) %dopar% {</pre>
 MCMCglmm(docil ~ julian + Obs + handlevent_year + I(handlevent_year^2),
                                    random = ~ ID,
                                    prior = priors[[i]],
                                     pr = TRUE,
                                    data = doc_data,
                                    thin = thin,
                                    burnin = burnin,
                                    nitt = nitt,
```

```
verbose = FALSE
}
print(paste("Approx. models run time: ", format(Sys.time() - time_start)))
## [1] "Approx. models run time: 8.042 mins"
save(m_priors, file = "data/analyses_data/m_priors.RData")
Model Diagnostics
load("data/analyses_data/m_priors.RData")
ad <- list()
gd <- list()
hd <- list()
for(i in 1:length(priors)){
  ad[[i]] <- autocorr.diag(m_priors[[i]]$VCV)</pre>
  gd[[i]] <- geweke.diag(m_priors[[i]]$VCV)</pre>
 hd[[i]] <- heidel.diag(m_priors[[i]]$VCV)
}
ad
## [[1]]
##
                  ID
                       units
            1.00000 1.00000
## Lag 0
## Lag 100 -0.02922 -0.03013
## Lag 500
           0.01560 0.02187
## Lag 1000 -0.05264 -0.03655
## Lag 5000 0.01480 0.01472
##
## [[2]]
##
                   ID
                          units
## Lag 0
            1.000000 1.000000
## Lag 100 -0.038620 -0.005688
## Lag 500 -0.038033 0.062510
## Lag 1000 0.041033 0.021035
## Lag 5000 0.008467 -0.030301
##
## [[3]]
##
                   ID
                          units
             1.000000 1.000000
## Lag 0
## Lag 100 -0.047543 0.048670
## Lag 500
           0.003440 -0.002852
## Lag 1000 -0.005587 0.011396
## Lag 5000 0.003182 0.007828
##
## [[4]]
##
                    ID
                          units
```

```
## Lag 0 1.0000000 1.00000
## Lag 100 0.0004055 -0.02710
## Lag 500 0.0480595 -0.03198
## Lag 1000 0.0189893 0.02511
## Lag 5000 -0.0272179 0.01032
##
## [[5]]
##
                 ID
                     units
            1.00000 1.00000
## Lag 0
## Lag 100 0.06009 -0.03227
## Lag 500 0.06123 0.02975
## Lag 1000 0.01682 -0.01543
## Lag 5000 -0.05175 0.03395
##
## [[6]]
##
                  ID
                        units
## Lag 0
           1.0000000 1.00000
## Lag 100 0.0002831 -0.03890
## Lag 500 0.0032093 -0.02185
## Lag 1000 -0.0009037 0.05010
## Lag 5000 -0.0424693 -0.02452
##
## [[7]]
##
                  ID
                      units
## Lag 0 1.000000 1.00000
## Lag 100 0.025706 0.03615
## Lag 500 -0.018627 0.02782
## Lag 1000 0.007562 0.05121
## Lag 5000 -0.035466 -0.02292
##
## [[8]]
##
                 ID
                      units
## Lag 0
          1.00000 1.000000
## Lag 100 -0.02928 -0.006564
## Lag 500 -0.05204 0.022471
## Lag 1000 -0.01659 0.063554
## Lag 5000 -0.01517 -0.023190
gd
## [[1]]
##
## Fraction in 1st window = 0.1
## Fraction in 2nd window = 0.5
##
##
      ID units
## 0.5828 0.5301
##
##
## [[2]]
```

```
## Fraction in 1st window = 0.1
## Fraction in 2nd window = 0.5
##
##
       ID
            units
## -0.02447 -1.64978
##
##
## [[3]]
## Fraction in 1st window = 0.1
## Fraction in 2nd window = 0.5
##
      ID units
## -0.4845 2.2787
##
## [[4]]
##
## Fraction in 1st window = 0.1
## Fraction in 2nd window = 0.5
##
##
     ID units
## 2.160 1.382
##
##
## [[5]]
## Fraction in 1st window = 0.1
## Fraction in 2nd window = 0.5
##
      ID units
##
## -0.4190 -0.1041
##
##
## [[6]]
## Fraction in 1st window = 0.1
## Fraction in 2nd window = 0.5
##
       ID units
## 0.1051 -1.3288
##
##
## [[7]]
## Fraction in 1st window = 0.1
## Fraction in 2nd window = 0.5
##
##
       ID units
## -0.07847 -2.51430
##
```

```
##
## [[8]]
##
## Fraction in 1st window = 0.1
## Fraction in 2nd window = 0.5
##
##
     ID units
## -0.3845 -0.1387
hd
## [[1]]
##
##
        Stationarity start p-value
##
        test iteration
                             0.794
## ID
      passed
                   1
## units passed
                             0.321
##
        Halfwidth Mean Halfwidth
##
##
       test
     passed 19.3 0.0880
## ID
## units passed 33.5 0.0514
##
## [[2]]
##
        Stationarity start
                             p-value
##
        test
                   iteration
## ID
        passed
                    1
                             0.2942
                             0.0967
## units passed
                    1
##
##
        Halfwidth Mean Halfwidth
##
       test
               19.3 0.0896
## ID passed
## units passed
               33.5 0.0500
##
## [[3]]
##
##
        Stationarity start p-value
##
        test iteration
        passed
## ID
                   1
                             0.800
## units passed
                   1
                             0.387
##
##
        Halfwidth Mean Halfwidth
        test
      passed
## ID
                 19.2 0.0906
                 33.5 0.0537
## units passed
##
## [[4]]
##
##
        Stationarity start p-value
##
                  iteration
```

```
## ID passed 101 0.0706
## units passed
                   301
                            0.1075
##
##
       Halfwidth Mean Halfwidth
       test
## ID passed 19.2 0.0928
## units passed 33.7 0.0623
##
## [[5]]
##
       Stationarity start p-value
##
##
       test iteration
                            0.572
## ID
       passed
                  1
## units passed
                  1
                            0.723
##
##
       Halfwidth Mean Halfwidth
##
       test
## ID passed 19.2 0.0943
## units passed 33.5 0.0501
## [[6]]
##
##
       Stationarity start
                         p-value
              iteration
##
       test
## ID
      passed
                  1 0.278
## units passed
                 1
                           0.102
##
       Halfwidth Mean Halfwidth
       test
##
## ID passed 19.2 0.0878
## units passed 33.5 0.0495
##
## [[7]]
##
##
       Stationarity start p-value
##
       test
                 iteration
## ID
       passed
                            0.784
                   1
## units passed
                   1
                           0.487
##
##
       Halfwidth Mean Halfwidth
##
       test
## ID passed
              19.4 0.0895
## units passed 33.5 0.0513
##
## [[8]]
##
                           p-value
##
       Stationarity start
##
       test iteration
## ID passed
## units passed
                 1 0.535
## units passed
                 1
                            0.958
```

##

```
## Halfwidth Mean Halfwidth
## test
## ID passed 19.2 0.0883
## units passed 33.5 0.0515

for(i in 1:length(priors)){
   plot(m_priors[[i]]$VCV)
}
```


Density of ID

N = 1000 Bandwidth = 0.3716

Trace of units

Density of units

Trace of ID

Density of ID

Trace of units

Density of units

Density of ID

N = 1000 Bandwidth = 0.3846

Trace of units

Density of units

Trace of ID

Density of ID

Trace of units

Density of units

N = 1000 Bandwidth = 0.2102

Density of ID

N = 1000 Bandwidth = 0.3811

Trace of units

Density of units

Trace of ID

Density of ID

Trace of units

Density of units

N = 1000 Bandwidth = 0.2126

Density of ID

N = 1000 Bandwidth = 0.3843

Trace of units

Density of units

Trace of ID

Density of ID

Trace of units

Density of units

N = 1000 Bandwidth = 0.2214

Extract raneffs

```
extractMCMCglmmBLUPs <- function(x, value, ptype = "1"){</pre>
  p_modes <- posterior.mode(x$Sol) ## Get posterior_modes of the BLUPs</pre>
  p_{modes} \leftarrow p_{modes}[grep("ID", names(p_modes))] ## Get all the ID rows
  p_modes <- stack(p_modes)</pre>
  names(p_modes) <- c(value, "ID")</pre>
  p_modes$type <- paste("mcmc.mode", ptype, sep = '.')</pre>
  p_modes$ID <- gsub("ID\\.", "", p_modes$ID)</pre>
  p_modes$itt <- NA
  sols <- data.frame(x$Sol) ## Get BLUPs</pre>
  sols <- sols[ ,grep("ID", names(sols))] ## Get all the ID columns</pre>
  sols <- stack(sols)</pre>
  names(sols) <- c(value, "ID")</pre>
  sols$itt <- 1:1000 ## Just an index for each MCMC sample
  sols$type = paste("mcmc", ptype, sep = '.')
  sols$ID <- gsub("ID\\.", "", sols$ID)</pre>
  rbind(sols, p_modes)
}
doc_mcmc <- list()</pre>
for(i in 1:length(priors)){
  doc_mcmc[[i]] <- extractMCMCglmmBLUPs(m_priors[[i]],</pre>
    value = "docility", ptype = i)
}
mcmc_priors <- do.call("rbind", doc_mcmc)</pre>
```

Compare MCMC priors

Comparing the effect of priors on the posterior distributions.

Posterior modes

```
mcmc_modes <- mcmc_priors[grep("mode", mcmc_priors$type), ]
mcmc_modes$itt <- NULL
mcmc_modes <- spread(mcmc_modes, type, docility)

cov_modes <- cov(mcmc_modes[ ,2:ncol(mcmc_modes)])
cor_modes <- cor(mcmc_modes[ ,2:ncol(mcmc_modes)])

cov_modes[upper.tri(cov_modes)] <- cor_modes[upper.tri(cor_modes)]

pandoc.table(cov_modes)</pre>
```

	mcmc.mode.1	mcmc.mode.2	mcmc.mode.3
mcmc.mode.1	12.03	0.9508	0.9484
mcmc.mode.2	11.5	12.16	0.9524

	mcmc.mode.1	mcmc.mode.2	mcmc.mode.3
mcmc.mode.3	11.55	11.66	12.33
mcmc.mode.4	11.57	11.65	11.71
mcmc.mode.5	11.55	11.62	11.65
mcmc.mode.6	11.51	11.63	11.61
mcmc.mode.7	11.58	11.72	11.72
mcmc.mode.8	11.47	11.56	11.52

Table 1: Table continues below

	mcmc.mode.4	mcmc.mode.5	mcmc.mode.6
mcmc.mode.1	0.9475	0.9488	0.9495
mcmc.mode.2	0.9488	0.9498	0.9542
mcmc.mode.3	0.9473	0.9458	0.9464
mcmc.mode.4	12.4	0.9516	0.9522
mcmc.mode.5	11.76	12.31	0.9463
mcmc.mode.6	11.72	11.6	12.21
mcmc.mode.7	11.76	11.67	11.72
mcmc.mode.8	11.66	11.6	11.58

Table 2: Table continues below

	mcmc.mode.7	mcmc.mode.8
mcmc.mode.1	0.9496	0.9516
mcmc.mode.2	0.9562	0.9536
mcmc.mode.3	0.9497	0.9439
mcmc.mode.4	0.95	0.9524
mcmc.mode.5	0.9463	0.9511
mcmc.mode.6	0.9541	0.953
mcmc.mode.7	12.36	0.9543
mcmc.mode.8	11.66	12.08

```
library(ggplot2)
library(GGally)
ggpairs(mcmc_modes, columns = 3:ncol(mcmc_modes))
```


Ok, the models are all converging on the same point estimates. Why 0.95 correlation???

Variance of blups

```
mcmc_itts <- mcmc_priors[!is.na(mcmc_priors$itt), ]</pre>
tapply(mcmc_itts$docility, mcmc_itts$type, var)
## mcmc.1 mcmc.2 mcmc.3 mcmc.4 mcmc.5 mcmc.6 mcmc.7 mcmc.8
## 19.20 19.30 19.16 19.12 19.20 19.13 19.26 19.14
tapply(mcmc_itts$docility, mcmc_itts$type, range)
## $mcmc.1
## [1] -18.35 18.04
## $mcmc.2
## [1] -20.60 19.28
##
## $mcmc.3
## [1] -20.06 18.31
##
## $mcmc.4
## [1] -20.17 18.76
##
## $mcmc.5
## [1] -19.19 17.83
##
## $mcmc.6
## [1] -19.51 18.44
##
## $mcmc.7
## [1] -18.99 18.26
##
## $mcmc.8
## [1] -22.01 17.66
```

No variation in variances either...