

ESS302 Applied Geophysics II

Gravity, Magnetic, Electrical, Electromagnetic and Well Logging

Electrical Wrap-up

Instructor: Dikun Yang Feb – May, 2020

Charge, Force, Field, Potential

- Only positive charge (mass)
- Measure field to infer charge distribution
- External excitation: None (passive)

- Positive and negative charge but they have to be bounded as dipole (no monopole)
- Measure field to infer dipole distribution or susceptibility that gives rise to dipole distribution
- External excitation: geomagnetic field (passive)

- Positive and negative charge that can be arbitrarily located
- Measure field/potential to infer dipole distribution or resistivity that gives rise to charge distribution
- External excitation: artificially injected electrical injection (active)

Electrical Potential

- Current flows radially outwards
- A positive charge at injection point
- Electrical potential decays as 1/r

$$V(r) = \frac{I}{2\pi\sigma r} = \frac{I\rho}{2\pi r}$$

Electrical Resistivity or Conductivity

Resistivity (in
$$\Omega$$
m) $ho=Rrac{A}{\ell},$

or conductivity (in S/m)
$$\sigma=rac{1}{
ho}.$$

- Electrons
- lons

Earth's Resistivity

Measurement of Resistance or Resistivity

Electrical Circuit

Ohm's Law

$$\Delta V = IR$$

Earth Circuit

For the Earth:

$$\Delta V = I \rho G$$

Depends on:

- 1) Earth's resistivity (ρ)
- 2) Geometry of electrodes (G)

Measuring Earth's Materials

Resistivity measurement in the lab

Resistivity survey in the field

Four-electrode Array

$$\rho = \frac{\Delta V}{IG}$$

Calculated earth's resistivity

Four-electrode Array

$$\Delta V = \mathbf{I} \rho_{\mathbf{G}} = \frac{\mathbf{I} \rho}{2\pi} \left\{ \frac{1}{r_{\text{AM}}} - \frac{1}{r_{\text{BM}}} - \frac{1}{r_{\text{AN}}} + \frac{1}{r_{\text{BN}}} \right\}$$

$$\rho = \frac{\Delta V}{IG}$$

Calculated earth's resistivity

Inhomogeneous Earth

Uniform sample

Homogenous earth

Non-uniform sample

Resistive sphere

How would V_{MN} change if a resistor exists?

Finding a Sphere

In Terms of Charges

Charges build-up on boundaries
 From resistor into conductor → negative charges build-up
 From conductor into a resistor → positive charges build-up

Finding a Sphere

Physical Properties

Rock type	Ohm-m
Overburden	12
Host rock	200
Gossan	420
Mineralization (pyritic)	0.6
Mineralization (pyrrhotite)	0.6

• Is the anomalous potential positive or negative at location N?

Electrode Arrays: A Circuit Perspective

How to gain:

- Lateral resolution Profiling
- Depth (vertical) resolution Sounding

Apparent Resistivity on Pseudo-section

$$\Delta V = I \rho_G = \frac{I \rho}{2\pi} \left\{ \frac{1}{r_{\text{AM}}} - \frac{1}{r_{\text{BM}}} - \frac{1}{r_{\text{AN}}} + \frac{1}{r_{\text{BN}}} \right\}$$

$$\rho = \frac{\Delta V}{IG}$$

True resistivity or apparent resistivity

Useful in revealing lateral and vertical variation in resistivity Transform of data – Unit in Ωm but still data!

- ρ₁: Resistivity of the halfspace
- ρ₂: Resistivity of the cylinder
- . xc: x location of cylinder center
- . zc: z location of cylinder center
- · r: radius of cylinder
- · surveyType: Type of survey
- . Run Interact: Use this button to update your plot

Note: The numerical results shown in this plot are generated from a 2d code such that the source is a line of current. This greatly speeds up the computation. Accurate potentials obtained from point current sources require the 2.5D code.

```
In [6]: out = DC2DPseudoWidget()
     display(out)
```


Typical Electrical Surveys along Lines

$$\Delta V = I \rho_G = \frac{I \rho}{2\pi} \left\{ \frac{1}{r_{AM}} - \frac{1}{r_{BM}} - \frac{1}{r_{AN}} + \frac{1}{r_{BN}} \right\} \qquad \qquad \rho = \frac{\Delta V}{IG}$$

$$\rho = \frac{\Delta V}{IG}$$

Physical Intuition of Electrical Anomaly (1)

Physical Intuition of Electrical Anomaly (2)

$$\Delta V = I \rho_G = \frac{I \rho}{2\pi} \left\{ \frac{1}{r_{AM}} - \frac{1}{r_{BM}} - \frac{1}{r_{AN}} + \frac{1}{r_{BN}} \right\}$$

Instrument

Cable

Geop Astron SE front lawn. : dipole-dipole : 38 data Observed Apparent Resistivity

Water Tank Experimen

t

- Known targets
- Validation of numerical solutions
- Optimization of arrays

Geosci-labs/notebooks/dcip/DC_Building_Pseudosections.ipynb

Spacing and Depth

Apparent resistivity is a weighted average of the earth's resistivity as a distributed parameter (volume effect)

- Shallow always has higher weight
- Small spacing enhances weights for shallow
- Large spacing enhances weights for deep

Anomaly of Compact Targets

- Compact bodies: arc signature
- Depth of arc signature: depth of target
- Thickness of arc: size of target
- One block (left): easy to interpret
- Shallow blocks (right): geologic noises mask large buried conductor; hard to interpret

Gradient Array (A and B at infinity)

- Detects lateral variations in resistivity
- Fixed A and B: rapid acquisition of large areas
- Potential field problem

Recall induced magnetic anomaly at equator and discuss:

- Data are the most sensitive to the edges in ____ direction.
- The anomaly from a single block has the pattern of ___ anomaly.

Non-2D Arrays

Rethink Pseudo-sections

- Advantage: Why use apparent resistivity instead of raw voltage?
- Disadvantage: Can horizontal/vertical position of buried conductors/resistors be inferred directly from pseudo-section?

Quantitative Interpretation – Inversion

Goal of **Inversion**:

Find a resistivity (conductivity) model which:

- Explains all the data
- Is representative of the true geology

Pixel/Voxel Inversion

- The earth consists of many small uniform elements
- Resistivity in cells allowed to vary
- Versatile but high ambiguity (volume effect)
 - Does not recover the true model
 - Recovers a geologically approximate model
 - Recovers structures represented in the data

Pseudo-section vs. Inversion

True model

Pseudosection

Inversion model

Characterization of the Earth Using Resistivity

shield

unweathered rocks

weathered layered

glacial sediments

sedimentary rocks

water, aquifers

0.01

Environmental

Karst

- Air-filled
- Water-filled

Oil spill

Hydrocarbon: resistive

Archaeology

Volcano

3D Electrical Imaging for Mining Exploration

4D ERT for Hydrological Monitoring

Summary of Electrical (ERT or dc resistivity)

- Electrical resistivity or conductivity
- Four-electrode arrays: dipole-dipole, pole-pole, Wenner, etc.
- Electrode spacing depth
- Apparent resistivity and pseudo-section
- Electrical data inversion
- Applications: environmental, archaeology, resource, engineering