Robotics Seminar on Multi Agent Path Finding (236824)

Oren Salzman

Computer Science Department, Technion

Today's lecture

- What is the seminar about?
- Learning objectives
- Admin + Class structure
- Brief introduction to algorithmic approaches
 - SAT-based methods
 - Search-based methods

Some of the slides are adapted from slides by Sven Koenig-http://mapf.info/index.php/Main/Tutorials and the slides are adapted from slides by Sven Koenig-http://mapf.info/index.php/Main/Tutorials are adapted from slides from the slide from the

Motivation—Amazon fulfillment centers

- 2003 Kiva Systems founded
- 2012 Amazon acquires Kiva Systems for \$775 million
- 2015 Kiva Systems becomes Amazon Robotics

 $\bullet > 3,000$ robots on > 110,000 square meters in Tracy, California

Motivation—Amazon fulfillment centers

MAPF—problem formulation

Simplifying assumptions:

- Point robots
- No kinematic constraints
- Discretized environment

MAPF—problem formulation (cont.)

 Each agent moves N, E, S, or W into an adjacent unblocked cell

Vertex collision

Edge collision

Optimization criteria

Definition

The sum of costs of a MAPF problem is the summation, over all agents, of the number of time steps required to reach the goal

Definition

The makespan of a MAPF problem is the total time until the last agent reaches its destination (i.e., the maximum of the individual costs)

Multi Agent Pickup & Delivery (MAPD)

- Agents have to attend to a stream of delivery tasks
- One agent has to be assigned to each delivery task
- This agent has to first move to a given pickup location and then to a given delivery location while avoiding collisions with other agents

MAPF and MAPD in academia

- Active research topic with publications in
 - Al conferences (AAAI, IJCAI, ICAPS, SoCS, ECAI, AAMAS and more)
 - Robotic conferences (IROS, ICRA, MRS, RSS and more)
 - Leading journals (RaL, TRo, JAIR, JAAMAS, Al and more)
- Strong Israeli presence (specifically the research group from BGU)
- Vibrant community with communal resources—http://mapf.info/
 - Benchmarks
 - Publications
 - Researchers
 - Software
 - Tutorials

MAPF and MAPD in academia

- Active research topic with publications in
 - Al conferences (AAAI, IJCAI, ICAPS, SoCS, ECAI, AAMAS and more)
 - Robotic conferences (IROS, ICRA, MRS, RSS and more)
 - Leading journals (RaL, TRo, JAIR, JAAMAS, Al and more)
- Strong Israeli presence (specifically the research group from BGU)
- Vibrant community with communal resources—http://mapf.info/
 - Benchmarks
 - Publications
 - Researchers
 - Software
 - Tutorials

MAPF and MAPD in academia

- Active research topic with publications in
 - Al conferences (AAAI, IJCAI, ICAPS, SoCS, ECAI, AAMAS and more)
 - Robotic conferences (IROS, ICRA, MRS, RSS and more)
 - Leading journals (RaL, TRo, JAIR, JAAMAS, Al and more)
- Strong Israeli presence (specifically the research group from BGU)
- Vibrant community with communal resources—http://mapf.info/
 - Benchmarks
 - Publications
 - Researchers
 - Software
 - Tutorials

(some) Key publications

- Peter R. Wurman, Raffaello D'Andrea, Mick Mountz:
 Hundreds of Cooperative, Autonomous Vehicles in Warehouses.

 Al Magazine 29(1):9-20 (2008)
- Guni Sharon, Roni Stern, Ariel Felner, Nathan R. Sturtevant: Conflict-based search for optimal multi-agent pathfinding. Artif. Intell. 219: 40-66 (2015)
- Hang Ma, Jiaoyang Li, T. K. Satish Kumar, Sven Koenig: Lifelong Multi-Agent Path Finding for Online Pickup and Delivery Tasks. AAMAS 2017: 837-845

(some) Key publications

- Peter R. Wurman, Raffaello D'Andrea, Mick Mountz:
 Hundreds of Cooperative, Autonomous Vehicles in Warehouses.

 Al Magazine 29(1):9-20 (2008)
- Guni Sharon, Roni Stern, Ariel Felner, Nathan R. Sturtevant:
 Conflict-based search for optimal multi-agent pathfinding. Artif.
 Intell. 219: 40-66 (2015)
- Hang Ma, Jiaoyang Li, T. K. Satish Kumar, Sven Koenig: Lifelong Multi-Agent Path Finding for Online Pickup and Delivery Tasks. AAMAS 2017: 837-845

(some) Key publications

- Peter R. Wurman, Raffaello D'Andrea, Mick Mountz:
 Hundreds of Cooperative, Autonomous Vehicles in Warehouses.

 Al Magazine 29(1):9-20 (2008)
- Guni Sharon, Roni Stern, Ariel Felner, Nathan R. Sturtevant: <u>Conflict-based search for optimal multi-agent pathfinding</u>. Artif. <u>Intell.</u> 219: 40-66 (2015)
- Hang Ma, Jiaoyang Li, T. K. Satish Kumar, Sven Koenig:
 Lifelong Multi-Agent Path Finding for Online Pickup and Delivery
 Tasks. AAMAS 2017: 837-845

(some) Key publications (cont.)

- Hang Ma, Sven Koenig: Al buzzwords explained: multi-agent path finding (MAPF). Al Matters 3(3): 15-19 (2017)
- Roni Stern, Nathan R. Sturtevant, Ariel Felner, Sven Koenig, Hang Ma, Thayne T. Walker, Jiaoyang Li, Dor Atzmon, Liron Cohen, T. K. Satish Kumar, Roman Bartak, Eli Boyarski: Multi-Agent Pathfinding: Definitions, Variants, and Benchmarks. SOCS 2019: 151-159
- Oren Salzman, Roni Stern: Research Challenges and Opportunities in Multi-Agent PathFinding and Multi-Agent Pickup and Delivery Problems, AAMAS 2020 (to appear).

(some) Key publications (cont.)

- Hang Ma, Sven Koenig: Al buzzwords explained: multi-agent path finding (MAPF). Al Matters 3(3): 15-19 (2017)
- Roni Stern, Nathan R. Sturtevant, Ariel Felner, Sven Koenig, Hang Ma, Thayne T. Walker, Jiaoyang Li, Dor Atzmon, Liron Cohen, T. K. Satish Kumar, Roman Bartak, Eli Boyarski: Multi-Agent Pathfinding: Definitions, Variants, and Benchmarks. SOCS 2019: 151-159
- Oren Salzman, Roni Stern: Research Challenges and Opportunities in Multi-Agent PathFinding and Multi-Agent Pickup and Delivery Problems, AAMAS 2020 (to appear).

Learning objectives

- Exposure to state-of-the-art in MAPF and MAPD
- Academic presentation skills
- Identifying research opportunities in the field of MAPF and MAPD

Admin & Seminar mechanics

- Office hours: Just shoot me an email.
- Requirements:
 - Mini introductory project
 - Presenting 1 scientific paper
 - Attendance in at least 80% of the oral presentations
 - Active participation
 - Writing a report at the end of the course
- Prerequisites: Intro to AI (236501) or willingness to learn A* independently

Admin & Seminar mechanics (cont.)

Grade structure:

- 20%—CBS project
- 50%—Paper presentation
 - 17.5%—Clarity of oral presentation
 - 17.5%—Depth of presentation: insights, design considerations, connection to big picture
 - 7.5%—Response to QnA
 - 7.5%—Scholarship (references, formatting, typos, consistency in formatting etc.)
- 30%—Final report (submission by 12.7, no late submissions)

CBS Project

- Hands-on project in Python
- Based on http://idm-lab.org/project-p/project.html

Date	Week	Presentor	Topic / paper	Task	Deliverables	
				(1) Read papers [1-3]		
				(2) Review A* if needed (e.g., using [4-6])		
18.3	1	Oren Salzman	Introduction to MAPF	(3) Implement Task (0) and (1) in [7]	Post questions / problems on [0] by 24.3	
				(1) Read papers [8-9]		
				(2) Post CBS-related questions on [0] by 31.3		
25.3	2	Oren Salzman / Class	Reviewing tasks (0) and (1)	(3) Implement Task (2.1-2.2) in [7]	Submit answers for tasks (0) and (1) by 29.3	
			Go over CBS			
1.4	3	Oren Salzman / Class	Review task (2)	(1) Implement Task (3) in [7]	Submit answers for task 2 (2.1-2.5) by 7.4	
8.4	8.4 Passover Break					
15.4	Passov	er Break				
			Go over CBS			
22.4	4	Oren Salzman / Class	Review task (3)	(1) Implement Tasks (4) and (5) in [7]	Submit answers for task (3) by 26.4	
29.4 Independence Day						
		Student presentation (1)				
6.5	5	Student presentation (2)			Submit answers for task (4) and (5) by 3.5	

Presentation guidelines

- Presentation topic
 - Pick any paper(s) from http://mapf.info/index.php/Main/Publications
 - If you find relevant work not in that list, great!
 - Regardless, get the topic approved it in advance.
- Presentation structure
 - Roughly 30 min talk + 10 min QnA (interleaved)
 - Roughly 10 min feedback
- Fit the talk to the time, not the other way around
 - It is more than fine to go over more than one paper
 - It is even better to dive deeply into less than one paper

Presentation guidelines

- Presentation topic
 - Pick any paper(s) from http://mapf.info/index.php/Main/Publications
 - If you find relevant work not in that list, great!
 - Regardless, get the topic approved it in advance.
- Presentation structure
 - Roughly 30 min talk + 10 min QnA (interleaved)
 - Roughly 10 min feedback
- Fit the talk to the time, not the other way around
 - It is more than fine to go over more than one paper
 - It is even better to dive deeply into less than one paper

Presentation guidelines

- Presentation topic
 - Pick any paper(s) from http://mapf.info/index.php/Main/Publications
 - If you find relevant work not in that list, great!
 - Regardless, get the topic approved it in advance.
- Presentation structure
 - Roughly 30 min talk + 10 min QnA (interleaved)
 - Roughly 10 min feedback
- Fit the talk to the time, not the other way around
 - It is more than fine to go over more than one paper
 - It is even better to dive deeply into less than one paper

Presentation tips

- Each presentation should be as self-contained as possible
- Hourglass
- Language—English is preferred (both written and oral)
- Sensory channels—2 visual (you and slides / board) + audio
- More is not always better (beware of input overload)—keep it simple
- What is the take-home message from your talk?

Feedback

- Giving feedback—what was good? what could be improved?
 - Concrete
 - Concise
 - Constructive
- Receiving feedback
 - Listen, Listen
 - Don't be defensive
 - Thank the feedback provider

Feedback

- Giving feedback—what was good? what could be improved?
 - Concrete
 - Concise
 - Constructive
- Receiving feedback
 - Listen, Listen
 - Don't be defensive
 - Thank the feedback provider

- Pick a paper / topic that you did not present
- Summarize the paper in your own words
- Beyond summary—what are the key takeaways? insights? missing details? direction for future work?
- Design in detail a project around the paper
 - What are the outcomes (implement the approach is not a good project)?
 - What are the expected results?
 - What tools are required to implement the project?
 - Sanity check
 - Would you be excited to do this project (feasible, challenging, interesting)
 - Is it clear what needs to be done and how?

- Pick a paper / topic that you did not present
- Summarize the paper in your own words
- Beyond summary—what are the key takeaways? insights? missing details? direction for future work?
- Design in detail a project around the paper
 - What are the outcomes (implement the approach is not a good project)?
 - What are the expected results?
 - What tools are required to implement the project?
 - Sanity check
 - Would you be excited to do this project (feasible, challenging, interesting)
 - Is it clear what needs to be done and how?

- Pick a paper / topic that you did not present
- Summarize the paper in your own words
- Beyond summary—what are the key takeaways? insights? missing details? direction for future work?
- Design in detail a project around the paper
 - What are the outcomes (implement the approach is not a good project)?
 - What are the expected results?
 - What tools are required to implement the project?
 - Sanity check
 - Would you be excited to do this project (feasible, challenging, interesting)
 - Is it clear what needs to be done and how?

- Pick a paper / topic that you did not present
- Summarize the paper in your own words
- Beyond summary—what are the key takeaways? insights? missing details? direction for future work?
- Design in detail a project around the paper
 - What are the outcomes (implement the approach is not a good project)?
 - What are the expected results?
 - What tools are required to implement the project?
 - Sanity check
 - Would you be excited to do this project (feasible, challenging, interesting)
 - Is it clear what needs to be done and how?

- 15-puzzle and its generalizations are NP hard [Goldreich 11, Ratner, Warmuth 90]
- Even if an agent can move to a vertex that is being left by another agent the problem is still NP hard [Surynek 10, Yu, LaValle 13]

Figure adapted from https://en.wikipedia.org/wiki/15_puzzle.

- 15-puzzle and its generalizations are NP hard [Goldreich 11, Ratner, Warmuth 90]
- Even if an agent can move to a vertex that is being left by another agent the problem is still NP hard [Surynek 10, Yu, LaValle 13]

- 15-puzzle and its generalizations are NP hard [Goldreich 11, Ratner, Warmuth 90]
- Even if an agent can move to a vertex that is being left by another agent the problem is still NP hard [Surynek 10, Yu, LaValle 13]

- 15-puzzle and its generalizations are NP hard [Goldreich 11, Ratner, Warmuth 90]
- Even if an agent can move to a vertex that is being left by another agent the problem is still NP hard [Surynek 10, Yu, LaValle 13]

SAT-based methods [Surynek 14]

Definition

The time expansion graph of depth μ of a graph G = (V, E) is a graph $G_{\mu} = (V_{\mu}, E_{\mu})$ such that

$$V_{\mu} = \{u_j^t \mid t \in \{0, \dots, \mu\} \text{ and } u_j \in V\}$$

and

$$E_{\mu} = \{(u_i^t, u_j^{t+1}) \mid t \in \{0, \dots, \mu - 1\} \text{ and } (u_i, u_j) \in E\}$$

SAT-based methods [Surynek 14]

SAT Encoding for bounded MAPF under makespan

- Define propositional variables $x_{j,k}^t$ s.t. $x_{j,k}^t$ is assigned true if agent k appears at vertex v_i at time step t
- Define constraints modeling validity conditions
 - An agent *k* is placed in exactly one vertex at each time step *t*
 - At most one agent k is placed in each vertex j at each time step t
 - An agent k relocates to some of its neighbors or makes no move at every time step t
- Obtain a conjunctive normal form (CNF)
- Solve by trying for bounds $\mu = 1, 2, ...$ until the optimal makespan is encountered

- Define propositional variables $x_{j,k}^t$ s.t. $x_{j,k}^t$ is assigned true if agent k appears at vertex v_i at time step t
- Define constraints modeling validity conditions
 - An agent k is placed in exactly one vertex at each time step t
 - At most one agent k is placed in each vertex j at each time step t
 - An agent k relocates to some of its neighbors or makes no move at every time step t
- Obtain a conjunctive normal form (CNF)
- Solve by trying for bounds $\mu = 1, 2, ...$ until the optimal makespan is encountered

- Define propositional variables $x_{j,k}^t$ s.t. $x_{j,k}^t$ is assigned true if agent k appears at vertex v_i at time step t
- Define constraints modeling validity conditions
 - An agent k is placed in exactly one vertex at each time step t

$$igwedge_{j
eq \ell} \left(
eg x_{j,k}^t \lor
eg x_{\ell,k}^t
ight)$$
 for every time t and every agent k

$$\bigvee_{j=1}^{n} x_{j,k}^{t}$$
 for every time t and every agent k

- At most one agent k is placed in each vertex j at each time step t
- An agent k relocates to some of its neighbors or makes no move at every time step t
- Obtain a conjunctive normal form (CNF)
- Solve by trying for bounds $\mu = 1, 2, \ldots$ until the optimal makespan is encountered

- Define propositional variables $x_{j,k}^t$ s.t. $x_{j,k}^t$ is assigned true if agent k appears at vertex v_i at time step t
- Define constraints modeling validity conditions
 - An agent k is placed in exactly one vertex at each time step t
 - At most one agent k is placed in each vertex j at each time step t

$$\bigwedge_{k \neq h} \left(\neg x_{j,k}^t \lor \neg x_{j,h}^t \right) \qquad \text{for every time } t \text{ and every vertex } j$$

- An agent k relocates to some of its neighbors or makes no move at every time step t
- Obtain a conjunctive normal form (CNF)
- Solve by trying for bounds $\mu = 1, 2, ...$ until the optimal makespan is encountered

- Define propositional variables $x_{j,k}^t$ s.t. $x_{j,k}^t$ is assigned true if agent k appears at vertex v_j at time step t
- Define constraints modeling validity conditions
 - An agent k is placed in exactly one vertex at each time step t
 - At most one agent k is placed in each vertex j at each time step t
 - An agent k relocates to some of its neighbors or makes no move at every time step t

$$x_{j,k}^t \Rightarrow \bigvee_{\ell:(v_j,v_\ell)\in E} x_{\ell,k}^{t+1}$$
 for every time t and every agent k

$$x_{j,k}^{t+1} \Rightarrow \bigvee_{\ell:(v_\ell,v_j)\in E} x_{\ell,k}^t$$
 for every time t and every agent k

- Obtain a conjunctive normal form (CNF)
- Solve by trying for bounds $\mu = 1, 2, \ldots$ until the optimal makespan is encountered

- Define propositional variables $x_{j,k}^t$ s.t. $x_{j,k}^t$ is assigned true if agent k appears at vertex v_i at time step t
- Define constraints modeling validity conditions
 - An agent k is placed in exactly one vertex at each time step t
 - At most one agent k is placed in each vertex j at each time step t
 - An agent k relocates to some of its neighbors or makes no move at every time step t
- Obtain a conjunctive normal form (CNF)
- Solve by trying for bounds $\mu = 1, 2, ...$ until the optimal makespan is encountered


```
 \begin{array}{ll} \textbf{Con: } \{ \} \\ \textbf{Sol:} & \textbf{B: } D7, E7 \rightarrow E1, F1 \\ \textbf{O: } D1, E1 \rightarrow E13, F13 \\ \textbf{Cost: } 8 + 14 = 22 \\ \end{array}
```



```
 \begin{array}{ll} \textbf{\underline{Con:}} \; \{\} \\ \textbf{\underline{Sol:}} & \textbf{B:} \; D7, E7 \to E1, F1 \\ \textbf{\underline{O:}} \; D1, E1 \to E13, F13 \\ \textbf{\underline{Cost:}} \; 8+14=22 \end{array}
```


- Since the exposition of CBS, heuristics have been used to push the running time of the algorithm by a factor of 50 [Li et al. 19]
- This has been done by
 - Choosing which conflicts to split on [[Boyarski et al.2015]
 - Heuristically guiding the constraint tree [Felner et al., 2018,Li et al. 19]
 - Relaxing optimality to bounded sub-optimality [Barer 14, Cohen et al. 16]
 - Applying domain knowledge such as adding corridors to the environment [Cohen, Uras and Koening 15]

Discussion and alternative approaches

- Centralized vs. decentralized approaches
- Optimal vs. bounded sub-optimal approaches

- What makes a MAPF problem computationally hard?
 - Number of robots ?
 - "Clutterness" of environment?
 - "Tightness" of passages in environment?
- How can we design effcient MAPF algorithms?
 - Pre-processing
- How can we design environments to maximize MAPD throughput?
 - Understand theoretic limitations
 - Use preprocessing
 - Design optimization

- What makes a MAPF problem computationally hard?
 - Number of robots ?
 - "Clutterness" of environment?
 - "Tightness" of passages in environment?
- How can we design effcient MAPF algorithms?
 - Pre-processing
- How can we design environments to maximize MAPD throughput?
 - Understand theoretic limitations
 - Use preprocessing
 - Design optimization

- What makes a MAPF problem computationally hard?
 - Number of robots ?
 - "Clutterness" of environment?
 - "Tightness" of passages in environment?
- How can we design effcient MAPF algorithms?
 - Pre-processing
- How can we design environments to maximize MAPD throughput?
 - Understand theoretic limitations
 - Use preprocessing
 - Design optimization

- What makes a MAPF problem computationally hard?
 - Number of robots ?
 - "Clutterness" of environment?
 - "Tightness" of passages in environment?
- How can we design effcient MAPF algorithms?
 - Pre-processing
- How can we design environments to maximize MAPD throughput?
 - Understand theoretic limitations
 - Use preprocessing
 - Design optimization

- What makes a MAPF problem computationally hard?
 - Number of robots ?
 - "Clutterness" of environment?
 - "Tightness" of passages in environment?
- How can we design effcient MAPF algorithms?
 - Pre-processing
- How can we design environments to maximize MAPD throughput?
 - Understand theoretic limitations
 - Use preprocessing
 - Design optimization

- What makes a MAPF problem computationally hard?
 - Number of robots ?
 - "Clutterness" of environment?
 - "Tightness" of passages in environment?
- How can we design effcient MAPF algorithms?
 - Pre-processing
- How can we design environments to maximize MAPD throughput?
 - Understand theoretic limitations
 - Use preprocessing
 - Design optimization

- What makes a MAPF problem computationally hard?
 - Number of robots ?
 - "Clutterness" of environment?
 - "Tightness" of passages in environment?
- How can we design effcient MAPF algorithms?
 - Pre-processing
- How can we design environments to maximize MAPD throughput?
 - Understand theoretic limitations
 - Use preprocessing
 - Design optimization

- What makes a MAPF problem computationally hard?
 - Number of robots ?
 - "Clutterness" of environment?
 - "Tightness" of passages in environment?
- How can we design effcient MAPF algorithms?
 - Pre-processing
- How can we design environments to maximize MAPD throughput?
 - Understand theoretic limitations
 - Use preprocessing
 - Design optimization

- What makes a MAPF problem computationally hard?
 - Number of robots ?
 - "Clutterness" of environment?
 - "Tightness" of passages in environment?
- How can we design effcient MAPF algorithms?
 - Pre-processing
- How can we design environments to maximize MAPD throughput?
 - Understand theoretic limitations
 - Use preprocessing
 - Design optimization

- What makes a MAPF problem computationally hard?
 - Number of robots ?
 - "Clutterness" of environment?
 - "Tightness" of passages in environment?
- How can we design effcient MAPF algorithms?
 - Pre-processing
- How can we design environments to maximize MAPD throughput?
 - Understand theoretic limitations
 - Use preprocessing
 - Design optimization