

Automated reverse engineering Active state machine learning

Introduction

L* Algorithm

Description

Overview

Applications
Implementation testing
Botnet C&C model analysis

Conclusion

Manual Reverse Engineering

Manual Reverse Engineering and Software Testing has some problems:

- ► Analyzing complicated binary can be time consuming
- ► Obfuscated code is hard to analyze

What is active state machine learning

Given a software implementation get a software specification.

The problem that active state ML tries to solve is:

► Find the smallest deterministic finite-state automaton (DFA) that is consistent with the data

Input:

- 1. Labeled data
- 2. Positive and negative traces

Introduction

L* Algorithm

Description Overview

Applications
Implementation testing
Botnet C&C model analysis

Conclusion

What is L*?

*L** is one of the most popular algorithms used to construct system's behavioral model

We will talk about L_M^* - L^* algorithm adapted for Mealy machines

Requirements:

- Predefined set of actions (input alphabet)
- ► All actions are executed separately

L* overview

Exploration phase - sequences of symbols (*membership queries*) are executed to form a first hypothesis about SUL's behavior.

Validation phase - check whether hypothesis from exploration phase models system's behavior correctly (*equivalence query*).

L* Overview - Output

An output of the L^* is an Observation Table

A cell contains the outcome of executing the concatenation of a prefix and a suffix on the system

Introduction

L* Algorithm

Description

Overview

Applications

Implementation testing Botnet C&C model analysis

Conclusion

Applications

Active state machine learning has many different uses and can be used in a wide range of applications. Especially in the field of **black-box testing** and **protocol inference**.

Both applications are ideal to perform with active state machine learning because these methods are originally:

- 1. Labor intensive
- 2. Error-prone
- 3. Time-consuming

Active machine learning can automate these applications and efficiently solve them.

Protocol state fuzzing of TLS implementations

J. de Ruiter and E. Poll used active state machine learning to find vulnerabilities within TLS implementations.

- Used LearnLib, implementation of L* Algorithm
- Input alphabet is composed of valid TLS messages

- Tested popular implementations such as:
 - mbed TLS (PolarSSL)
 - openSSL
 - ▶ JSSE
- Equivalence query by: Chow's method: Testing correctness of state-model

De Ruiter, Joeri, and Erik Poll. "Protocol state fuzzing of TLS implementations." USENIX Security. 2015

UNIVERSITY OF TWENTE.

State diagrams

Botnet C&C model analysis

Y. Cho, et all. theorized that knowing more about the internal state model of a C&C systems of a botnet that it would be easier to perform a successful takedown attempt.

The researched was performed on the MegaD botnet, which is mainly used for spamming.

Using the L* Algorithm Y. Cho, et all. researched the following properties:

- 1. Identifying Critical Links
- 2. Identifying Design Flaws
- 3. identifying Background-Channels
- 4. Identifying Implementation Differences

Cho, Chia Yuan, Eui Chul Richard Shin, and Dawn Song. "Inference and analysis of formal models of botnet command and control protocols."

UNIVERSITY OF TWENTE.

Setup

UNIVERSITY OF TWENTE.

Automated reverse engineering

Results

Every bot relies on the same template server. Therefore it is more efficient to only takedown templates servers.

2. Identifying Design Flaws

It is possible to retrieve the new spamming templates prior to other bots, thereby creating valid spamming filters.

3. identifying Background-Channels

There does exists background-channel because states were different when bot visited master node prior to connecting to template server.

4. Identifying Implementation Differences

The state models of the botnet SMTP protool difference from default Postfix SMTP 2.5.5 state model.

Introduction

L* Algorithm

Description

Overview

Applications
Implementation testing
Botnet C&C model analysis

Conclusion

Active state machine learning is a very useful technique for multiple applications. Especially in the field of black-box testing and protocol inference

Conclusion

Active state machine learning is a very useful technique for multiple applications. Especially in the field of black-box testing and protocol inference

And although it requires some effort in applying Active state machine learning in a specific situation, it has shown that the uncovered security vulnerabilities are worth the effort.

Questions!

Backup slides - Mealy Machine

In the theory of computation, a Mealy machine is a finite-state machine whose output values are determined both by its current state and the current inputs.