

# MAULANA ABUL KALAM AZAD UNIVERSITY OF TECHNOLOGY, WEST BENGAL

Paper Code: CS-303

## **COMPUTER ORGANIZATION**

Time Allotted: 3 Hours

1.

Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

## Group - A

# (Multiple Choice Type Questions)

| Choos | se the correct alternative of the following:                                |     |                          | 1×10=10 |  |  |
|-------|-----------------------------------------------------------------------------|-----|--------------------------|---------|--|--|
| (i)   | The principle of locality justifies the use of                              |     | * * *                    |         |  |  |
|       | (a) Interrupt                                                               | (b) | Polling                  |         |  |  |
|       | (c) DMA                                                                     | (d) | Cache memory             |         |  |  |
| (ii)  | Instruction cycle is                                                        |     |                          |         |  |  |
|       | (a) fetch-decode-execution                                                  | (b) | fetch-execution-decode   |         |  |  |
|       | (c) decode-fetch-execution                                                  | (d) | decode- execution -fetch |         |  |  |
| (iii) | ) How many RAM chips of size (256K ×1 bit) are required to build 1M Memory? |     |                          |         |  |  |
|       | (a) 24                                                                      | (b) | 10                       |         |  |  |
|       | (c) 32                                                                      | (d) | 8                        |         |  |  |
| (iv)  | (iv) Maximum value of $n$ bit 2's complement number is                      |     |                          |         |  |  |
|       | (a) $2^n$                                                                   | (b) | 2 <sup>n</sup> -1        |         |  |  |
|       | (c) $2^{n-1}-1$                                                             | (d) | Cannot be said           |         |  |  |

# CS/B.Tech./CSE/IT/Odd/SEM-3/CS-303/2018-19

2.

3.

(v) Micro instructions are kept in

|                                                                                                           | (a)                                                                                                                          | Main memory                                          | (b) | Control memory    |  |  |  |
|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-----|-------------------|--|--|--|
|                                                                                                           | (c)                                                                                                                          | Cache memory                                         | (d) | Secondary storage |  |  |  |
| (vi)                                                                                                      | The                                                                                                                          | e maximum propagation delay for <i>n</i> -bit CLA is |     |                   |  |  |  |
| ( )                                                                                                       | (a)                                                                                                                          |                                                      | (b) | $\Delta^*$ n      |  |  |  |
|                                                                                                           |                                                                                                                              | 6*Δ                                                  | (d) | n ·               |  |  |  |
|                                                                                                           |                                                                                                                              |                                                      |     |                   |  |  |  |
| (vii)                                                                                                     |                                                                                                                              | e cylinder in a disk pack is                         |     |                   |  |  |  |
|                                                                                                           |                                                                                                                              | collection of all tracks in a surface.               |     |                   |  |  |  |
|                                                                                                           | (b) logical view of same radius tracks on different surfaces of disks.                                                       |                                                      |     |                   |  |  |  |
|                                                                                                           |                                                                                                                              | collection of all sectors in a track.                |     | *                 |  |  |  |
|                                                                                                           | (d)                                                                                                                          | collection of all disks in the pack.                 |     |                   |  |  |  |
| (viii)                                                                                                    | ) For which of the following multiplier numbers in Booth's algorithm maximum no. of additions and subtractions are required? |                                                      |     |                   |  |  |  |
|                                                                                                           | (a)                                                                                                                          | 01001111                                             | (b) | 01111000          |  |  |  |
|                                                                                                           | (c)                                                                                                                          | 00001111                                             | (d) | 01010101          |  |  |  |
| (ix)                                                                                                      | (x) How many memory locations can be addressed by a 32-bit computer?                                                         |                                                      |     |                   |  |  |  |
|                                                                                                           | (a)                                                                                                                          | 64 KB                                                | (b) | 32 KB             |  |  |  |
|                                                                                                           | (c)                                                                                                                          | 4 GB                                                 | (d) | 4 MB              |  |  |  |
| (x)                                                                                                       | (x) The addressing mode of an instruction is resolved by                                                                     |                                                      |     |                   |  |  |  |
|                                                                                                           | (a)                                                                                                                          | ) ALU                                                | (b) | ) DMA controller  |  |  |  |
|                                                                                                           | (c)                                                                                                                          | ) CU                                                 | (d  | ) program         |  |  |  |
|                                                                                                           |                                                                                                                              |                                                      |     |                   |  |  |  |
|                                                                                                           |                                                                                                                              | Group – B                                            |     |                   |  |  |  |
| (Short Answer Type Questions)                                                                             |                                                                                                                              |                                                      |     |                   |  |  |  |
| Answer <i>any three</i> of the following. $5\times 3=15$                                                  |                                                                                                                              |                                                      |     |                   |  |  |  |
| Multiply decimal number (-17) and (-9) using Booth's multiplication method with step by step explanation. |                                                                                                                              |                                                      |     |                   |  |  |  |
| 5                                                                                                         |                                                                                                                              |                                                      |     |                   |  |  |  |
| Explain stack based CPU.                                                                                  |                                                                                                                              |                                                      |     |                   |  |  |  |
|                                                                                                           |                                                                                                                              |                                                      |     |                   |  |  |  |
|                                                                                                           |                                                                                                                              |                                                      |     |                   |  |  |  |

- 4. What is the limitation of direct-mapped cache? Explain with an example, how it can be improved into set-associative cache?

  2+3=5
- 5. Define speedup, efficiency and throughput of a pipelined processor. Design a 4-bit Combinational circuit decrementer using four full adders.

  3+2=5
- 6. Explain with example: Register Direct, Register Indirect and Base register addressing mode. 1½+1½+2=5

#### Group - C

# (Long Answer Type Questions)

### Answer any three of the following.

15×3=45

- 7. (a) Explain the basic block diagram of Computer System. Why do peripherals need interface circuits with them?
  - (b) A block set-associative cache consists of a total of 64 blocks divided into 4 blocks sets. The main memory contains 4096 blocks, each consisting of 128 words. A block set associative cache consists of a total of 64 blocks divided into 4 blocks sets. The main memory contains 4096 blocks, each consisting of 128 words.
    - (i) How many bits are there in a main memory address?
    - (ii) How many bits are there in each of the TAG, SET and Word fields?
  - (c) What are 'write through' and 'write back' policies in cache memory?

3+(2+5)+5=15

- 8. (a) Evaluate the arithmetic statement X = (A\*B)/(C+D) in one, two and three address machines.
  - (b) Represent the decimal value -7.5 in IEEE-754 single precision floating point format. Explain in brief about different memory access methods.
  - (c) Explain Instruction Cycle with suitable flow chart.

6+(3+2)+4=15

- 9. (a) If a CPU has 16 bit address bus and 8 bit data bus draw the connection Diagram for this CPU with four 256 ×8 RAM and one 512 ×8 ROM.
  - (b) Design a 4-bit ALU capable of performing 14 different micro operations including logical, arithmetic and shifting operations.
  - (c) What is the difference between vectored and non-vectored interrupt? Average memory access time depends on which factors?

    6+6+3=15
- 10. (a) Explain memory-hierarchy.
  - (b) Can a Read Only Memory be also a Random Access Memory? Justify your answer.
  - (c) Discuss the concept of associative memory unit using suitable example.
  - (d) Define "latency time" in a memory.

4+2+6+3=15

- 11. Write short notes on any three of the following:
  - (a) Instruction Format
  - (b) Carry Look-ahead Adder
  - (c) Design of 4-bit ALU
  - (d) RISC
  - (e) Overflow in Fixed-point Representation