Bias, Variance and Parsimony in Regression Analysis ECS 256 Winter 2014

Christopher Patton, cjpatton@ucdavis.edu
Alex Rumbaugh, aprumbaugh@ucdavis.edu
Thomas Provan,tcprovan@ucdavis.edu
Olga Prilepova, prilepova@gmail.com
John Chen, jhochen@ucdavis.edu

ECS 256, Winter 2014

UC Davis

March 12, 2014

Introduction

California Housing Data

- Derived from 1990 Census
- Response Variable: median house value
- Predictor Variables: median income, housing median age, total rooms, total bedrooms, population, households, latitude, and longitude

Parsimony

Method	Parsimony	Parsimony	Sig Test
	(k=0.01)	(k=0.05)	
Columns Deleted	Total Rooms	Total Rooms	None
	Total Bedrooms	Total Bedrooms	
		Median Age	
Adjusted R ²	0.6321316	0.6218261	0.6369649

Regression Coefficients

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept)
               -3.594e+06
                            6.254e+04 -57.468
                                                < 2e-16 ***
Median.Income
                4.025e+04
                            3.351e+02 120.123
                                                < 2e-16 ***
Median.Age
                1.156e+03
                            4.317e+01
                                       26.787
                                                < 2e-16 ***
Total.Rooms
               -8.182e+00
                            7.881e-01 -10.381
                                                < 2e-16 ***
Total.Bedrooms
                1.134e+02
                            6.902e+00
                                       16.432
                                                < 2e-16 ***
               -3.854e+01
                            1.079e+00 -35.716
                                                < 2e-16 ***
Population
Households
                4.831e+01
                            7.515e+00
                                         6.429
                                               1.32e-10 ***
               -4.258e+04
Latitude
                            6.733e+02 -63.240
                                                < 2e-16 ***
                                                < 20-16 ***
Longitude
               -4.282e+04
                            7.130e+02 -60.061
```

Latitude & Longitude

```
Latitude -4.258e+04 6.733e+02 -63.240 < 2e-16 ***
Longitude -4.282e+04 7.130e+02 -60.061 < 2e-16 ***
```

- "Center of Gravity"
- Avoid Overfitting

Understanding

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept)
                                                <2e-16 ***
              -32165.268
                            2167.358
                                      -14.84
Median.Income
               43094.918
                             284.263
                                      151.60
                                                <2e-16 ***
                2000.544
                              45.080
                                       44.38
Median.Age
                                                <2e-16 ***
Population
                 -43.045
                               1.127
                                      -38.20
                                                <2e-16 ***
Households
                 152.700
                               3.344
                                       45.66
                                                <2e-16 ***
```


Census Based on 1994

Age

Im(age ~ Self.emp.not.inc + Assoc.acdm + Never.married + Widowed + Own.chil ...

Census Based on 1994

Census Based on 1994

predicted vs actual age of 15% test

PAC delta contributions

Figure:

```
Predictors: X = X_1, ..., X_10
Response: Y drawn from U(m_{Y;X}(t) - 1, m_{Y;X}(t) + 1)
where m_{Y,X}(t) = t_1 + t_2 + t_3 + 0.1t_4 + 0.01t_5
```

		prsm(k=0.01)	prsm(k=0.05)	sig test
n=100	Run 1	X_1, X_2, X_3, X_9	X_1, X_2, X_3	X_1, X_2, X_3
	Run 2	X_1, X_2, X_3	X_1, X_2, X_3	X_1, X_2, X_3
	Run 3	X_1, X_2, X_3	X_1, X_2, X_3	X_1, X_2, X_3
n=1000	Run 1	X_1, X_2, X_3	X_1, X_2, X_3	X_1, X_2, X_3, X_4
	Run 2	X_1, X_2, X_3	X_1, X_2, X_3	X_1, X_2, X_3
	Run 3	X_1, X_2, X_3	X_1, X_2, X_3	X_1, X_2, X_3
n=10K	Run 1	X_1, X_2, X_3	X_1, X_2, X_3	X_1, X_2, X_3, X_4
	Run 2	X_1, X_2, X_3	X_1, X_2, X_3	X_1, X_2, X_3, X_4
	Run 3	X_1, X_2, X_3	X_1, X_2, X_3	X_1, X_2, X_3, X_4, X_9
n=100K	Run 1	X_1, X_2, X_3	X_1, X_2, X_3	X_1, X_2, X_3, X_4
	Run 2	X_1, X_2, X_3	X_1, X_2, X_3	X_1, X_2, X_3, X_4, X_9
	Run 3	X_1, X_2, X_3	X_1, X_2, X_3	X_1, X_2, X_3, X_4, X_9

k=0.01	X_1	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> ₅	<i>X</i> ₆	<i>X</i> ₇	<i>X</i> ₈	X_9	X ₁₀
N = 100	1	1	1	0.24	0.11	0.14	0.21	0.22	0.26	0.28
N = 1000	1	1	1	0.08	0	0	0	0	0	0
N = 10K	1	1	1	0	0	0	0	0	0	0
N = 100K	1	1	1	0	0	0	0	0	0	0
N = 1M	1	1	1	0	0	0	0	0	0	0

k=0.05	X_1	X_2	X ₃	X_4	X_5	X_6	X_7	X ₈	X_9	X_{10}
N = 100	1	1	0.99	0.1	0.02	0.05	0.04	0.03	0.07	0.02
N = 1000	1	1	1	0	0	0	0	0	0	0
N = 10K	1	1	1	0	0	0	0	0	0	0
N = 100K	1	1	1	0	0	0	0	0	0	0
N = 1M	1	1	1	0	0	0	0	0	0	0

Sig Test	X_1	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> ₅	<i>X</i> ₆	<i>X</i> ₇	<i>X</i> ₈	X_9	X ₁₀
N = 100	1	1	1	0.14	0.03	0.05	0.05	0.03	0.09	0.04
N = 1000	1	1	1	0.31	0.02	0.05	0.05	0.05	0.02	0.04
N = 10K	1	1	1	1	0.04	0.01	0.07	0.07	0.03	0.06
N = 100K	1	1	1	1	0.35	0.06	0.09	0.03	0.05	0.03
N = 1M	1	1	1	1	1	0.05	0.03	0.08	0.02	0.03

Small N, Large P

Automobile Data Set:

- UCI Machine Learning Repository
- 195 automobiles,
- 25 attributes per entry.

Goals:

- Determine accurate predictors of vehicle price.
- Gauge characteristics of safe automobiles.

Parsimony: Automobile Prices

- What factors best predict a vehicle's price?
- What are traits that increase price?
- What are the ones that decrease it?

Method	Parsimony (k = 0.01)	Parsimony (k = 0.05)	Significance Testing
Columns Retained	ohcv, twelve-cylinders, en- gine.size, stroke, compres- sion.ratio, peak.rpm	engine.size	bmw, dodge, 'mercedes- benz', mitsubishi, ply- mouth, porsche, saab, std, front, wheel.base, length, width, height, curb.weight, dohc, ohc, engine.size, peak.rpm
AIC	0.8676842	0.7888274	0.9308

Significance Testing: Auto Prices

Results of Significance Testing (Auto Price):

```
-4.234e+04 1.125e+04 -3.764 0.000229 ***
(Intercept)
                9.290e+03. 8.611e+02. 10.788. < 2e-16.***
hmw
dodge
               -1.504e+03 8.532e+02 -1.762 0.079785 .
'mercedes-benz' 6.644e+03 1.003e+03 6.625 4.17e-10 ***
mitsubishi
               -2 628e+03 7 331e+02 -3 585 0 000438 ***
plymouth
               -1.628e+03 8.881e+02 -1.833 0.068485 .
porsche
               4.053e+03 2.238e+03 1.811 0.071936 .
saab
               2.413e+03 1.028e+03 2.347 0.020043 *
std
               -1.109e+03 5.129e+02 -2.162 0.031973 *
               -1.275e+04 2.663e+03 -4.785 3.63e-06 ***
front
wheel.base
               1.141e+02 7.390e+01 1.544 0.124355
length
               -7.918e+01 4.225e+01 -1.874 0.062586 .
width
                                      3.772 0.000222 ***
               7.652e+02 2.029e+02
height
               -1.377e+02 1.164e+02 -1.183 0.238332
               3.781e+00 1.118e+00 3.381 0.000890 ***
curb.weight
dohc
               1.569e+03 8.067e+02
                                      1.944 0.053451 .
ohc
               8.531e+02 4.575e+02
                                      1.865 0.063911 .
                                      7.470 3.74e-12 ***
engine.size
                7.733e+01 1.035e+01
peak.rpm
                1.522e+00 3.938e-01
                                      3.864 0.000157 ***
---
```

Multiple R-squared: 0.9373, Adjusted R-squared: 0.9308 F-statistic: 144.5 on 18 and 174 DF, p-value: < 2.2e-16

Top Predictors - Price

- Engine specifications, machinery
- Adds Value: Luxury Brands (BMW, Porsche)
- Reduces Value: Front-based Engine (Found in lower-end vehicles), economy brands (Mitsubishi, Plymouth)

Parsimony: Auto Safety

- Each auto is rated from -3 to 3 by insurers. -3 is safest, 3 is least safe.
- Use logistic regression to determine attributes of safe vehicles

Method	Parsimony (k = 0.01)	Parsimony (k = 0.05)	Significance Testing
Columns Retained	saab, toyota, volkswagen, turbo, two-doors, hatchback, sedan, 4wd, rwd, rear, wheel.base, length, width, height, curb.weight, l, ohc, ohcf, ohcv, five-cylinders, four-cylinders, twelve-cylinders, engine.size, 2bbl, idi, mfi, mpfi, spdi, bore, stroke, compression.ratio, horsepower, peak.rpm, city.mpg, highway.mpg	saab, toyota, volkswagen, turbo, two-doors, hatchback, sedan, Awd, rwd, rear, wheel.base, length, width, height, curb.weight, l, ohc, ohcf, ohcv, five-cylinders, four-cylinders, twelve-cylinders, engine.size, 2bbl, idi, mfi, mpfi, spdi, bore, stroke, compression.ratio, horsepower, peak.rpm, city.mpg, highway.mpg	audi, saab, volkswagen, diesel, std, four-doors, 4wd, fwd, 1bbl
AIC	74	74	130.24

Significance Testing: Auto Safety

Results of Significance Testing (Auto Safety):

Coefficients:

```
stimate Std. Error z value Pr(>|z|)
(Intercept) E 2.5122
                                1.1216
                                          2.240 0.02510 *
andi
                 20.3574 2027.3521 0.010 0.99199
saah
               17.7446 1985.9220 0.009 0.99287
volkswagen
                1.8112 0.9634 1.880 0.06011 .
diesel -2.0155 1.2716 -1.585 0.11297 std -0.4196 1.0765 -0.390 0.69668 'four-doors' -5.9725 1.1293 -5.288 1.23e-07 ***
               -0.1377 2.1849 -0.063 0.94976
3.3028 1.1093 2.977 0.00291 **
'4wd'
fwd
                 -4.4965 1.4035 -3.204 0.00136 **
'1bbl'
```

Null deviance: 266.06 on 192 degrees of freedom Residual deviance: 110.24 on 183 degrees of freedom AIC: 130.24

Top Predictors - Safety

- A negative z is a safer vehicle.
- The larger four-doored vehicles tend to be safer than two-doored ones.
- Sporty, rear-wheel drive vehicles tend to be more risky.
- prsm() unsuited for dimension reduction in this case not enough data points. Plymouth)

Bias, Variance and Parsimony in Regression Analysis ECS 256 Winter 2014

Christopher Patton, cjpatton@ucdavis.edu
Alex Rumbaugh, aprumbaugh@ucdavis.edu
Thomas Provan,tcprovan@ucdavis.edu
Olga Prilepova, prilepova@gmail.com
John Chen, jhochen@ucdavis.edu

ECS 256, Winter 2014

UC Davis

March 12, 2014

