

The Basics of Linear Regulator and Switching Regulator

The Basics of Linear & Switching Regulator

AGENDA

Linear Regulator Basics

- Operating Principles
- Types and Circuit Configuration
- Advantages vs
 Disadvantages, and
 Applications
- Important Specifications
- Efficiency and Thermal Calculation

2. Switching Regulator Basics

- Types of Switching Regulator
- Advantages vs Disadvantages, and Comparison with Linear Regulator
- Operating Principles of Buck Converter
- Differences between Synchronous and Nonsynchronous Rectifying
- Efficiency Improvements at Light Load for the Synchronous Converter
- Control Methods (Voltage Mode, Current Mode, Hysteresis Control)
- Protective and Sequencing Functions
- Considerations on Switching Frequencies

Linear Regulator Basics

1. Linear Regulator Basics

- Operating Principles
- Types and Circuit Configuration
- Advantages vs Disadvantages, and Applications
- Important Specifications
- Efficiency and Thermal Calculation

Operating Principles of Linear Regulator

- Composed of an error amp, a voltage
- reference, and an output transistor
- Same operation as an inverting amp
- V_{OUT} is set by the ratio between R_1 and R_2 , because the voltage of non-inverting input (= V_{REF}). is equal to V_{REF}

$$V_{O} = \frac{V_{REF}}{R_{2}} \times (R_{1} + R_{2})$$
$$= \frac{R_{1} + R_{2}}{R_{2}} \times V_{REF}$$

EX:
$$V_{REF}=1.0V$$
, $V_{O}=3.3V$, $R_{2}=10k\Omega$
$$3.3V=\frac{1.0V}{10k\Omega}\times(R_{1}+10k\Omega)$$

$$100\mu A$$

$$100\mu A\times33k\Omega=3.3V$$
 Therefor $R1=23k\Omega$

Types of Linear Regulator

Linear Regulators

- Positive Voltage (Fixed/Adjustable)
- Conventional
- LDO

- Negative Voltage (Fixed/Adjustable)
- Conventional
- LDO

- Naming of linear regulator: Series regulator, 3-terminal regulator,
- Dropper, or LDO
- LDO is a modification to 1V or less of a conventional dropout
- Adjustable types require the output setting resistors, as opposed to that fixed output types include the resistors
- Generally, bipolar process linear regulators have higher voltage tolerant than CMOS, but the supply current is larger than CMOS
- Package type is various and lowthermal-resistance is required

Circuit Configuration of Linear Regulator

For the control transistor, bipolar NPN/PNP transistor or Pch/Nch MOSFET with varying dropout voltages and performance characteristics is used.

- Dropout voltages vary with the type of the control transistor
- But operating principles as basically same
- NPN conventional configuration is used for 0.5A to 1A regulators like 78xx/79xx
- NPN LDO can supply larger Iout than
 5A.
- PNP LDO is a standard of LDO
- Pch/Nch MOSFET achieves lower dropout voltage than PNP LDO

Control Transistor	Dropout Voltage
NPN Conventional	Approx. 3V
NPN LDO	1V~2V
PNP LDO	0.5V or less
MOSFET LDO	0.5V or less

Advantages vs Disadvantages, and Applications

Advantages

- ✓ Simplicity of design
- ✓ Lower parts count
- ✓ Space savings (unless a heat sink is used)
- ✓ Low noise
- √ Fast transient response
- ✓ Low cost

AV devices

- RF, radio, communication devices
- Medical equipment
- Measurement devices
- Small-power supply

Disadvantages

- ✓ Low efficiency if input-output difference is large
- ✓ Low efficiency = significant heat dissipation
- ✓ May require a heat sink
- ✓ Capable exclusively of step-down operations

Applications

- ✓ Input voltage range
- ✓ Output voltage range
- ✓ Output (VREF) accuracy
- ✓ Output current
- ✓ Dropout voltage
- ✓ Transient response characteristics
- √ Ripple rejection ratio

Basic Verification Points in a Data Sheet

- Always check the absolute maximum rating
- Verify temperature and voltage conditions (Do they represent real-life conditions?)
- Using a graph, verify continuous characteristics beyond guaranteed values
- Determine which value, Typ, Min, or Max, must be used as a starting point

Example table of specifications

• Electrical Characteristics (Unless otherwise noted, Ta=25°C, EN=3V, V_{CC}=3.3V, R₁=16kΩ, R₂=7.5kΩ)

Parameter	Symbol	Limits			I I la la	O d'ili
		Min.	Тур.	Max.	Unit	Conditions
Circuit current at shutdown mode	I _{SD}	8.5	0	5	μA	V _{EN} =0V, OFF mode
Bias current	Icc	-	250	500	μA	- Control of the cont
Line regulation	Reg.I	-1	72	1	%	V _{CC} =(V _O +0.6V)→5.5V
Load regulation	Reg Io	-1.5		1.5	%	I ₀ =0→0.5A
Minimum dropout voltage1	V _{CO1}	6.5	0.1	0.15	٧	V _{CC} =3.3V, I _O =125mA
Minimum dropout voltage2	V _{CO2}	-	0.2	0.30	٧	V _{CC} =3.3V, I _O =250mA
Minimum dropout voltage3	V _{CO3}	72	0.3	0.45	٧	V _{CC} =3.3V, I _O =375mA
Minimum dropout voltage4	V _{CO4}		0.4	0.60	٧	V _{CC} =3.3V, I _O =500mA
Output reference voltage(Variable type)	V _{FB}	0.792	0.800	0.808	٧	I _O =0A

- Input Voltage Range
 - Meaning: A voltage that may be applied to the input terminal
 - Check if input voltage range guarantees adequate operation or fulfillment of specifications, or if it is a maximum rating value
 - Normally comply with the recommended conditions
 - Minimum operating input voltage is *Vo + dropout voltage* or higher.
 - Due to Tj_{MAX} factor, the input voltage range is limited by Vo, Io, and Ta conditions
- Output Voltage Range
 - Meaning: Range of output voltages (a fixed value for the fixed type)
 - V_{REF} to (V_{INMAX} V_{DROPOUT})
 - Normally comply with the recommended range
 - Due to ${\sf Tj}_{\sf MAX}$ factor, the output range is subject to limits by Vo, Io, and Ta conditions
- Output accuracy (V_{REF} accuracy)
 - Meaning: the extent of error indicated by +/- %
 - For the fixed type, a fixed value (V_O) ; for the adjustable type, V_{REF}

Output Current

- Meaning: A current that can be output (capability)
- The expression current limit is also used in some cases
- Caution: Make sure if the term refers to a maximum or minimum value
- Any specifications on short-circuit current should also be considered

V_{DROPOUT}

• Due to Tj_{MAX} , output current is subject to limits by V_O , I_O , and Ta

Dropout Voltage

- Meaning: Voltage difference between input and output necessary to regulate the output
- Also referred to as input/output voltage difference or loss voltage
- If the difference is further reduced, the regulator ceases to operate
- The LDO has a small dropout voltage

VDROPOUT vs I_{o.} Ta

Io [A]

Input Voltage

V_{IN MAX} -

Effective Input

Voltage Range

Range

Ta [°C]

- Transient Response Characteristics
 - Meaning: Time to settle the fluctuations of an V_{OUT} by rapid load current changes
 - Load current changes occur such when a large-power load (ex CPU) wakes up
 - Must be considered separately from a shift in output voltage due to continuous increase and decrease in load.
 - Basically there are no specification values; transient response characteristics must be verified in terms of a graph.
 - Transient response characteristics are affected not only by the IC performance but also by the output capacitance (of the capacitor).

Example of Transient Response Characteristics

Ripple Rejection Ratio

- Meaning: The percentage of ripples (pulsation) contained in the input voltage that is rejected from the output voltage. Expressed as dB in most cases
- Also called PSRR (power supply voltage ripple rejection) or input voltage ripple rejection, they refer to the same thing
- Note that the rejection ratio depends on the ripple frequency
- If the linear regulator is used as a post regulator of the switching regulator, the ripple rejection capability can reduce the output ripple of switching regulator when rectification and smoothing of the switching regulator are not sufficient

Example of Ripple Rejection Ratio

Efficiency and Thermal Calculation

Definition for Efficiency

• Efficiency =
$$\frac{\text{Output Power}}{\text{Input Power}} \times 100 \text{ (\%)}$$

- Input Power = $V_{IN} \times I_{IN}$ Where: $I_{IN} = I_O + I_{CC}$
- Output Power = $V_O \times I_O$

EX:
$$V_{IN} = 5V$$
, $V_{O} = 3.3V$, $I_{O} = 0.2A$, $I_{CC} = 5mA$

$$\frac{3.3V \times 0.2A}{5V \times (0.2A + 5mA)} \times 100 = 64\%$$

• Factor: The smaller the input/output voltage ratio, the lower is efficiency

◆ Thermal calculation

- T_j = Power Loss × Thermal Resistance θ_{ja} + T_a
 - Power Loss = $(V_{IN} V_O) \times I_{IN}$ EX: Above condition, $\theta_{ja} = 50^{\circ}\text{C/W}$, $T_a = 40^{\circ}\text{C}$ $\{(5V - 3.3V) \times (0.2A + 5mA)\} \times 50^{\circ}\text{C/W} + 40^{\circ}\text{C} = 57^{\circ}\text{C}$ At $T_{imax} = 125^{\circ}\text{C}$, 68°C margin is given
- Make sure Tjmax is not exceeded
- Factor: Heating increases as input/output voltage difference and I_o rise.

Is the efficiency of LDO really low?

If $V_{IN} = 3.6V$ at the left conditions,

$$\frac{3.3V \times 0.2A}{3.6V \times 0.205A} \times 100 = 89\%$$

Almost Same as Switching Regulators!

The Basics of Linear & Switching Regulator

2. Switching Regulator Basics

- Types of Switching Regulators
- Advantages vs Disadvantages, and Comparison with Linear Regulator
- Operating Principles of Buck Converter
- Differences between Synchronous and Nonsynchronous Rectifying
- Efficiency Improvements at Light Load for the Synchronous Converter
- Control Methods (Voltage Mode, Current Mode, Hysteresis Control)
- Protective and Sequencing Functions
- Considerations on Switching Frequencies

Types of Switching Regulators

DC/DC Converter

Non Isolated

Non-synchronous

Synchronous

Isolated

Flyback

Forward

Push-Pull

Half/Full bridge

Switching Regulator Buck **Boost PWM** Buck/Boost **PFM** Inverting **Operating Modes** for Output Voltage Current mode Control Voltage mode Hysteresis Feedback Control for Output Regulation

AC/DC Converter

Non isolated Isolated

- **Application**: consumer, industrial, domestic, overseas. . .
- Input/Output Conditions: AC, DC, battery. . .
- Requirements: power, efficiency, accuracy. . .
- **Limitations**: size, cost, restrictions. . .

Advantages vs Disadvantages, & Comparison

Advantages

- ✓ Capable of Boost, Buck, Inverting and Buck/Boost
- √ High efficiency
- ✓ Low thermal dissipation
- ✓ Can handle a large output current

- ✓ Complicated design
- ✓ High parts count
- ✓ Switching noise and ripple exist
- ✓ Cost factor

Comparison	with	Linear	Regulator
------------	------	--------	-----------

	Linear Regulator	Switching Regulator
Buck Boost Buck/Boost Inverting	Possible Impossible Impossible Impossible	Possible Possible Possible Possible
Efficiency	V _O /V _{IN} Mostly low	Approx. 95% Usually high
Output Power	Generally several watts Depending on thermal design	Large power possible
Noise	Low	Switching noise exists
Design	Simple	Complicated
ВОМ	Low count	High count
Cost	Low	Relatively high

Operating Principles of Buck Converter

Buck Conversion Operating Principles

- When S1 is on and S2 off, VIN is applied to L1.
- •When S1 is off and S2 on, L1 is connected to GND.
- •VIN (DC) is converted to VIN/GND level pulses.
- •The voltage is averaged in C1 and converted to DC.

Operating Principles of Buck Converter

Basic Circuit for Nonsynchronous (diode) DC/DC Conversion

- S1: normal transistor element
- D1: denotes as S2 in the preceding page
- Red line: a current path when S1 is on; green line, when S1 is off

Operating Principles of Buck Converter

- 1 The comparison circuit (error amp) compares the output voltage with the reference voltage to determine if it is equal to a set voltage.
- If the output voltage is less than the set voltage, the switch (MOSFET) is turned on, supplying power from the input to the output.
- ③ In this case, magnetic energy is accumulated in the inductor.
- 4 When the output voltage exceeds the set voltage, the switch is turned off.
- 5 The magnetic energy stored in the inductor is supplied to the output load in the form of current, and it returns to the inductor.
- When the magnetic energy in the inductor is depleted and the output voltage declines, the switch turns on again.

Differences between Synchronous & Nonsynchronous

Nonsynchronous (diode) Rectifying

Synchronous rectifying

- When S1 is on, no current flows to D1 (off)
- When S1 is off, a forward current flows to D1 (on)
- In an actual circuit, S1 comprises a transistor, and D1 a Schottky diode
- In efficiency, the nonsynchronous rectifying type trails the synchronous type
- The circuit is relatively simple

- When S1 is on, S2 is turned off
- When S1 is off, S2 is turned on
- Same current path as nonsynchronous, but the switches are controlled by the control circuit
- A transistor is actually used for the switch
- High efficiency, but it requires special provisions to boost its efficiency at low load
- More complex circuitry to the nonsynchronous

Differences between Synchronous & Nonsynchronous

Nonsynchronous (diode) Rectifying

- When the step-down ratio is high, D1 has a long conduction time
- A low Vo value increases dropout by V_F of D1

Synchronous rectifying

- Under light load, the inductor current remains at 0A for some time
- In the nonsynchronous, a current flows through the diode only in one direction, resulting in a discontinuous operation and a ringing condition
- In the synchronous, a current can flow in a reverse direction in the transistor, for a continuously regulation, but lower efficiency

Efficiency Improvements at Light Load

1. Addition of a Discontinuous Mode

Improving the efficiency of the synchronous rectifying involves the addition of a function that operates in discontinuous mode during the light load state.

- i. Detect the inductor current falling to almost zero
- Turned off the low-side transistor
- iii. Prevent any reverse current flow

During discontinuous mode at light load, it makes the switching speed reduce and increases the ripple voltage in some cases.

Efficiency Improvements at Light Load

2. Switching from PWM mode to PFM mode

- In pulse-width modulation (PWM), the frequency is constant, and duty cycles are adjusted
 - ✓ Because the frequency remains fixed even during light load conditions, switching loss reduces the efficiency
 - ✓ The fixed frequency facilitates the noise filtering
- In pulse-frequency modulation (PFM), the on- (or off-time) is fixed, and the off- (or on-) time is adjusted
 - ✓ Reduced-frequency operations cut switching loss
 - ✓ The unknown frequency makes noisefiltering difficult, with the result that some noise ends up in an audible band

Illustrative Efficiency

Characteristics of PWM and PFM

The cycle remains constant with a variable on/off time ratio

The on-time is constant with a variable off-time = cycle also fluctuates

Control Methods

Voltage Mode Control

- ✓ A voltage-only feedback loop makes control simple
- ✓ The ability to control shorter on-time
- ✓ High noise tolerance
- ✓ Complex phase compensation circuitry

Current mode control

- ✓ Modified voltage mode control
- ✓ Detects and uses circuit inductor current instead of triangular waves
- ✓ High stability of the feedback loop
- ✓ Substantially simplified phase compensation circuit design
- ✓ Faster load transient response than voltage mode
- Noise to current detection feedback loop must be addressed

Control Methods

Hysteresis (ripple) Control

- ✓ Directly monitors output voltage with a comparator
- ✓ Extremely fast load transient response
- ✓ Highly stable feedback loop
- ✓ Eliminates the need for phase compensation
- ✓ Variable switching frequencies
- ✓ Large jitter
- ✓ Requires a capacitor with a large ESR value to detect ripples

Illustration of Hysteresis Control

Output voltage (output ripple)

Switching on/off

Protective Functions

◆ Thermal Shut Down (TSD)

Operation ceases when IC junction temperature Tj reaches the maximum rating Tjmax±a

◆ Under Voltage Lock Out (UVLO)

Shuts down when input voltage falls below a preset level

Protective Functions

Over Current Protection (OCP)
 Limit the current when output current exceeds a limit value

◆ Short Circuit Protection (SCP)
Shuts off operation when output
voltage falls below a set level

Protective Functions

Over-Voltage Protection (OVP)
 Operation stops when a voltage on output exceeds a set level

Sequencing Functions

<u>Shutdown</u>: On/off the operation of internal control circuit (same as "Enable" function)

<u>Soft start</u>: Prevent inrush current at startup slowly to rise Vout

<u>Power-good output</u>: Raise a flag when the output reaches a set voltage level Notify other devices the power supply has started up

Construct a startup sequence for multiple power supply with the enable function

Sequencing Functions

<u>Tracking</u>: Set the sequence and timing of multiple power supplies at start up

There are 3 types

Tradeoff between Efficiency and Size

Increasing the switching frequency:

permits a reduction in size of external inductor and capacitor reduces efficiency due to switching loss reduces ripples, and tends to cut noise as well, and improves transient response.

Switching Frequency	Up to hundreds kHz	1 MHz or higher
Parts Size	Large	Small
Efficiency	Increases	Diminishes
Noise	Large	Small
Ripple	Large	Small
Transient Response	Slow	Fast

The Basics of Linear & Switching Regulator

AGENDA

1. Linear Regulator Basics

- Operating Principles
- Types and Circuit Configuration
- Advantages vs Disadvantages, and Applications
- Important Specifications
- Efficiency and Thermal Calculation

2. Switching Regulator Basics

- Types of Switching Regulator
- Advantages vs Disadvantages, and Comparison with Linear Regulator
- Operating Principles of Buck Converter
- Differences between Synchronous and Nonsynchronous Rectifying
- Efficiency Improvements at Light Load for the Synchronous Converter
- Control Methods (Voltage Mode, Current Mode, Hysteresis Control)
- Protective and Sequencing Functions
- Considerations on Switching Frequencies

Web Site for Linear Regulator & Switching Regulator ROHID

