Matematika

Polona Oblak

Fakulteta za računalništvo in informatiko Univerza v Ljubljani

Kaj je funkcija?

Funkcija je predpis, ki vsakemu elementu x iz definicijskega območja $\mathcal{D}_f \subset \mathbb{R}$ priredi natanko določeno število $f(x) \in \mathbb{R}$.

$$f: \mathcal{D}_f \rightarrow \mathbb{R}$$
 $x \mapsto f(x)$

Če \mathcal{D}_f ni podano, je največja množica, kjer ima predpis f smisel.

- x neodvisna spremenljivka
- ightharpoonup y = f(x) odvisna spremenljivka
- ▶ $f(A) = \{f(x) ; x \in A\}$ slika množice $A \subset \mathcal{D}_f$
- $\mathcal{Z}_f = f(\mathcal{D}_f)$ zaloga vrednosti funkcije f

Graf

Graf funkcije $f: \mathcal{D}_f \to \mathbb{R}, \ \mathcal{D}_f \subset \mathbb{R}$ je krivulja v ravnini:

$$\Gamma(f) = \{(x, f(x)) ; x \in \mathcal{D}_f\} \subset \mathbb{R} \times \mathbb{R}$$

- ► Graf funkcije f je krivulja v ravnini.
- ► Graf funkcije seka poljubno navpično premico največ v eni točki.
- lacktriangle Projekcija grafa na os x je \mathcal{D}_f , projekcija grafa na os y pa je \mathcal{Z}_f .

Primera

1. f(x) = |x|

$$\mathcal{D}_f = \mathbb{R}, \ \mathcal{Z}_f = [0, \infty)$$

$$g(x) = \operatorname{sign}(x) = \begin{cases} 1, & x \\ 0, & x \end{cases}$$

$$\mathcal{D}_f = \mathbb{R}, \ \mathcal{Z}_f = [0, \infty)$$
2. $g(x) = \operatorname{sign}(x) = \begin{cases} 1, & x > 0 \\ 0, & x = 0 \\ -1, & x < 0 \end{cases}$

$$\mathcal{D}_f = \mathbb{R}$$
, $\mathcal{Z}_f = \{-1,0,1\}$

Sode in lihe funkcije

Funkcija f(x) je

- ▶ *soda*, če je f(-x) = f(x) za vsak $x \in D$
- ▶ *liha*, če je f(-x) = -f(x) za vsak $x \in D$.

Primeri:

- f(x) = |x|, $g(x) = x^{2k}$, $k \in \mathbb{Z}$ $h(x) = \cos x$ so sode funkcije
- ▶ f(x) = sign(x), $g(x) = x^{2k+1}$, $k \in \mathbb{Z}$, h(x) = sin x so lihe funkcije
- $f(x) = e^x$, $g(x) = \ln x$, $h(x) = x^2 + 2x + 1$ niso ne sode in ne lihe funkcije

Sode in lihe funkcije

Velja:

- graf sode funkcije je simetričen glede na os y, graf lihe pa glede na koordinatno izhodišče
- vsota sodih funkcij je soda funkcija, vsota lihih je liha funkcija
- produkt dveh sodih ali dveh lihih funkcij je soda funkcija, produkt lihe in sode funkcije je liha funkcija

Injektivne in surjektivne funkcije

Funkcija $f: \mathcal{D}_f \to \mathbb{R}$ je *injektivna*, če različni točki $x \neq y \in \mathcal{D}_f$ preslika v različni vrednosti $f(x) \neq f(y) \in \mathcal{Z}_f$.

 Graf injektivne funkcije seka poljubno vodoravno premico v največ eni točki.

Funkcija $f: \mathcal{D}_f \to \mathbb{R}$ je *surjektivna*, če je $\mathcal{Z}_f = \mathbb{R}$.

 Vsaka vodoravna premica seka graf surjektivne funkcije v vsaj eni točki.

Funkcija $f: \mathcal{D}_f \to \mathbb{R}$ je *bijektivna*, če je injektivna in surjektivna.

Kompozitum ali sestavljena funkcija

Naj bo $f: \mathcal{D}_f \to \mathbb{R}$ in $g: \mathcal{D}_g \to \mathbb{R}$. Če je $Z_f \subseteq \mathcal{D}_g$, potem funkcijo $g \circ f: \mathcal{D}_f \to \mathbb{R}$, definirano s predpisom

$$(g \circ f)(x) = g(f(x)),$$

in imenujemo kompozitum funkcij g in f.

V splošnem $f \circ g \neq g \circ f$.

Inverzna funkcija

Naj bo $f: \mathcal{D}_f \to \mathbb{R}$ injektivna funkcija. Potem funkcijo $f^{-1}: \mathcal{Z}_f \to \mathcal{D}_f$, za katero velja

$$(f^{-1}\circ f)(x)=x$$

za vsak $x \in \mathcal{D}_f$, imenujemo *inverzna funkcija* funkcije f.

- ▶ Ekvivalentno: $f^{-1}(x) = y \Leftrightarrow f(y) = x$.
- Definicijsko območje in zaloga vrednosti se zamenjata: $D_{f^{-1}} = Z_f, \quad Z_{f^{-1}} = D_f.$
- Inverzno funkcijo f^{-1} eksplicitno podane funkcije f izračunamo tako, da zamenjamo vlogi spremenljivk y = f(x), torej x = f(y), in nato izrazimo y kot funkcijo x.
- ▶ Graf inverzne funkcije f^{-1} dobimo tako, da prezrcalimo graf funkcije f prek simetrale lihih kvadrantov.