STAT 3008: Applied Regression Analysis 2019-20 Term 2 Assignment #2 Solutions

Problem 1:

Coefficient Table								
Variable	Coefficient	Std. Error	t-statistic	p-value				
Constant	-23.4325	12.74	-1.839	0.0824				
X	1.2713	0.1528	8.320	1.396E-07				

ANOVA Table											
Source	df	SS	MS	F	p-value						
Regression	1	1848.76	1848.760	69.222	1.396E-07						
Residuals	18	480.74	26.708								
Total	19	2329.50									

(a)

(b) R2 = SSreg/SStotal = 1848.76/2329.5 = 79.36%, $r = (0.7936)^{1/2} = 0.8909$

(c) **Hypotheses**: H_0 : $\beta_o = -10$ vs H_1 : $\beta_o \neq -10$

Test Statistic: $t_0 = (-23.4325 - (-10))/12.74 = -1.054$

Decision: Since *p*-value = $2Pr(t_{18}>1.054)=2(0.1529131)=0.3058>\alpha=0.05$, we do not reject H₀ at $\alpha=0.05$.

Conclusion: We do not have sufficient evidence that β_o is different from -10.0.

Problem 2:

$$E(\hat{\mathbf{Y}}'\hat{\mathbf{Y}}) = tr\Big(E\Big(\Big[\mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y}\Big]\Big[\mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y}\Big]\Big)$$

$$= tr(E(\mathbf{Y}'\mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y}))$$

$$= tr(\mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'E(\mathbf{Y}\mathbf{Y}'))$$

$$= tr(\mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'E(\mathbf{X}\boldsymbol{\beta}\boldsymbol{\beta}'\mathbf{X}'+\mathbf{e}\mathbf{e}'+2\mathbf{X}\boldsymbol{\beta}\boldsymbol{\beta}'))$$

$$= tr(\mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'(\mathbf{X}\boldsymbol{\beta}\boldsymbol{\beta}'\mathbf{X}'+\boldsymbol{\sigma}^{2}\mathbf{I}_{\mathbf{n}}+\mathbf{0}))$$

$$= tr(\mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{X}\boldsymbol{\beta}\boldsymbol{\beta}'\mathbf{X}') + tr(\mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\boldsymbol{\sigma}^{2}\mathbf{I}_{\mathbf{n}}) + 0$$

$$= \boldsymbol{\beta}'\mathbf{X}'\mathbf{X}\boldsymbol{\beta} + tr(\boldsymbol{\sigma}^{2}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{X}) = \boldsymbol{\beta}'\mathbf{X}'\mathbf{X}\boldsymbol{\beta} + (p+1)\boldsymbol{\sigma}^{2}$$

(b)
$$E(\mathbf{Y'Y}) = \operatorname{tr}(E(\mathbf{\beta'X'X\beta} + \mathbf{e'e} + 2\mathbf{X'\beta'e})) = \operatorname{tr}(\mathbf{\beta'X'X\beta} + \sigma^2\mathbf{I_n} + 0) = \mathbf{\beta'X'X\beta} + \operatorname{tr}(\sigma^2\mathbf{I_n}) = \mathbf{\beta'X'X\beta} + n\sigma^2$$

Hence,

$$\sum_{i=1}^{n} E(y_i^2) = E(\mathbf{Y'Y}) = \beta XX\beta + (p+1)\sigma^2 + (n-p-1)\sigma^2 = E(\hat{\mathbf{Y'Y}}) + E(\hat{\mathbf{e'e}}) = \sum_{i=1}^{n} E(\hat{y}_i^2) + \sum_{i=1}^{n} E(\hat{e}_i^2).$$

Problem 3:

(a) From the R Codes, SYY=716.8889, RSS=200.2901, SSreg=516.5988, $\hat{\sigma}^2$ =33.38168. R^2 = 0.7206

$$\hat{\boldsymbol{\beta}} = \begin{pmatrix} 11.6819 \\ 0.323155 \\ 2.15267 \end{pmatrix}, \ \hat{\boldsymbol{Y}} = \begin{pmatrix} 19.10941 \\ 19.10941 \\ 11.35878 \\ 29.01272 \\ 33.64122 \\ 21.58524 \\ 14.15776 \end{pmatrix}, \ \hat{\boldsymbol{e}} = \begin{pmatrix} 1.89059 \\ -8.96438 \\ -3.06107 \\ 4.89059 \\ -2.35878 \\ 6.98728 \\ 2.35878 \\ 2.41476 \\ -4.15776 \end{pmatrix}, \ \hat{\boldsymbol{V}}ar(\hat{\boldsymbol{\beta}}) = \begin{pmatrix} 13.0524 & 4.8983 & -6.7103 \\ 4.8983 & 21.4617 & -21.4900 \\ -6.7103 & -21.4900 & 21.9147 \end{pmatrix}$$

(b)
$$\mathbf{x}_* = (1, -1, 1), \tilde{y} = \mathbf{x}_* \hat{\boldsymbol{\beta}} = 13.51145$$
, $t_{6,0.025} = 2.4469$, sepred $(y \mid \mathbf{x}_*) = \hat{\sigma} \sqrt{1 + x_*(X'X)^{-1}x_*} = 10.46773$

A 95% PI for the response is $\widetilde{\mathbf{y}} \pm t_{6,0.025} \operatorname{sepred}(y \,|\, \mathbf{x}_*) =$ (-12.10217 , 39.12507)

(c) Hypotheses H_0 : $E(Y|X) = \beta_0 + \beta_1 x_1$ vs H_1 : $E(Y|X) = \beta_0 + \beta_1 x_1 + \beta_2 x_2$

Source	df	SS	MS	F ₀	<i>p</i> -value
Regression	1	0.16	0.16	0.00479	0.9470
Residual	6	200.29	33.38		
Total	7	200.45			

Decision: Since *p*-value = 0.9470 > α = 0.05, we do not reject H_o at α = 0.05.

Conclusion: We do not have sufficient evidence that $E(Y|X) = \beta_0 + \beta_1 x_1 + \beta_2 x_2$ is the

appropriate mean function vs E (Y | X) = $\beta_0 + \beta_1 x_1$.

Note on Problem 3: Since the vectors $\mathbf{X_1}$ and $\mathbf{X_2}$ are close to each other. Multicollinearity exists and therefore the diagonal elements of $\hat{\mathbf{V}}_{ar}(\hat{\boldsymbol{\beta}})$ are all large. Hence, (i) the PI in part(b) is WIDE, and (ii) the ANOVA table in part (c) suggests that it's preferred to use only one EV (namely $\mathbf{X_2}$) instead of both.

R Codes for Problem #3

Problem 3(a)

y<-c(21,25,21,24,9,36,36,24,10); x1<-c(3,9,5,3,-1,7,8,4,1)

x2<-c(3,9,5,3,0,7,9,4,1)

n<-length(y); x<-rep(1,n); X<-cbind(x,x1,x2)</pre>

beta.hat<-solve(t(X)%*%X)%*%t(X)%*%y; beta.hat

yhat<-X%*%beta.hat; yhat

res<-y-yhat; res

SYY<-sum(y^2)-n*mean(y)^2; SYY

RSS <- as.numeric(t(y)%*%y-t(y)%*%X%*%solve(t(X)%*%X)%*%t(X)%*%y); RSS

SSreg<-SYY-RSS;SSreg

sigma2.hat<-RSS/(n-2-1); sigma2.hat

var.hat.beta.hat<-sigma2.hat*solve(t(X)%*%X); var.hat.beta.hat

R2<-1-RSS/SYY; R2

Problem 3(b)

xstar<-c(1,-1,1)

xstar%*%beta.hat

xstar%*%beta.hat+c(-1,1)*qt(0.975,length(y)-2-1)*sqrt(sigma2.hat)*sqrt(1+t(xstar)%*%solve(t(X)%*%X)%*%xstar)

Problem 3(c) ### (NOT Required – but the ANOVA function will provide the answers right away)

 $fit0 < -lm(y^x2)$

anova(fit0)

Analysis of Variance Table

Response: y

Df Sum Sq Mean Sq F value Pr(>F) x2 1 516.44 516.44 18.035 0.003809 ** Residuals 7 200.45 28.64 $fit1 < -lm(y^x1 + x2)$

anova(fit0,fit1)

Analysis of Variance Table

Model 1: y ~ x2

Model 2: y ~ x1 + x2

Res.Df RSS Df Sum of Sq F Pr(>F)

1 7 200.45

2 6 200.29 1 0.16243 0.0049 0.9467

Problem 4: (a) $\mathbf{X}'\mathbf{X} = \begin{bmatrix} n & 0 & 0 \\ 0 & SUU & 0 \\ 0 & 0 & SVV \end{bmatrix}$. Hence

$$\hat{\boldsymbol{\beta}} = \begin{bmatrix} \hat{\beta}_0 \\ \hat{\beta}_1 \\ \hat{\beta}_2 \end{bmatrix} = (\mathbf{X'X})^{-1}\mathbf{X'Y} = \begin{bmatrix} n & 0 & 0 \\ 0 & SUU & 0 \\ 0 & 0 & SVV \end{bmatrix}^{-1} \begin{bmatrix} \sum y_i \\ SUY \\ SVY \end{bmatrix} = \begin{bmatrix} \overline{y} \\ SUY / SUU \\ SVY / SVV \end{bmatrix}$$

(b)
$$\hat{\boldsymbol{\alpha}} = \begin{bmatrix} \hat{\alpha}_0 \\ \hat{\alpha}_1 \end{bmatrix} = \begin{bmatrix} \overline{y} - SUY/SUU(\overline{x}) \\ SUY/SUU \end{bmatrix} = \begin{bmatrix} \overline{y} \\ SUY/SUU \end{bmatrix}$$
, which are the same as those in part (a).

Problem 5:

(a) Since $\hat{\alpha} = (X'X)^{-1}X'Y$, $E(\hat{\alpha}) = (X'X)^{-1}X'E(Y) = (X'X)^{-1}X'X$,

(b) Since
$$\mathbf{X'X_2} = \begin{bmatrix} n & \sum x_i \\ \sum x_i & \sum x_i^2 \end{bmatrix} = \begin{bmatrix} n & n\overline{x} \\ n\overline{x} & n\overline{x}^2 \end{bmatrix}$$
 and $\mathbf{X'X_2} = \begin{bmatrix} n & \sum x_i^2 \\ \sum x_i & \sum x_i^3 \end{bmatrix} = \begin{bmatrix} n & n\overline{x}^2 \\ n\overline{x} & n\overline{x}^3 \end{bmatrix}$

$$(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{X}_{2}\boldsymbol{\beta} = \frac{1}{n(\overline{x^{2}} - \overline{x}^{2})} \begin{bmatrix} \overline{x^{2}} & -\overline{x} \\ -\overline{x} & 1 \end{bmatrix} \begin{bmatrix} n & n\overline{x^{2}} \\ n\overline{x} & n\overline{x^{3}} \end{bmatrix} \begin{bmatrix} \beta_{0} \\ \beta_{1} \end{bmatrix} = \frac{1}{\overline{x^{2}} - \overline{x}^{2}} \begin{bmatrix} (\overline{x^{2}} - \overline{x}^{2})\beta_{0} + ((\overline{x^{2}})^{2} - \overline{x}\overline{x^{3}})\beta_{1} \\ (\overline{x^{3}} - \overline{x}\overline{x^{2}})\beta_{1} \end{bmatrix} = \begin{bmatrix} \beta_{0} + \frac{(\overline{x^{2}})^{2} - \overline{x}\overline{x^{3}}}{\overline{x^{2}} - \overline{x}^{2}}\beta_{1} \\ (\underline{x^{3}} - \overline{x}\overline{x^{2}})\beta_{1} \end{bmatrix} = \begin{bmatrix} E(\hat{\alpha}_{0}) \\ E(\hat{\alpha}_{1}) \end{bmatrix}$$

$$E(\hat{\alpha}_0) = \beta_0 + \frac{(\overline{x^2})^2 - \overline{x}\overline{x^3}}{\overline{x^2} - \overline{x}^2} \beta_1 \to \beta_0 + \frac{\sigma_x^4}{\sigma_x^2} \beta_1 = \beta_0 + \sigma_x^2 \beta_1 \neq \beta_0$$
(c) As $n \to \infty$,
$$E(\hat{\alpha}_1) = \left(\frac{\overline{x^3} - \overline{x}\overline{x^2}}{\overline{x^2} - \overline{x}^2}\right) \beta_1 \to \frac{\kappa_x \sigma_x^3}{\sigma_x^2} \beta_1 = \kappa_x \sigma_x \beta_1 \neq \beta_1$$