CSE 431/531: Algorithm Analysis and Design (Fall 2024) Dynamic Programming

Lecturer: Kelin Luo

Department of Computer Science and Engineering University at Buffalo

Outline

Weighted Interval Scheduling

Subset Sum Problem

Knapsack Problem

How Can We Recover the Optimum Schedule?

```
1: sort jobs by non-decreasing order of
    finishing times
2: compute p_1, p_2, \cdots, p_n
3: opt[0] \leftarrow 0
 4: for i \leftarrow 1 to n do
         if opt[i-1] > v_i + opt[p_i] then
 5:
             opt[i] \leftarrow opt[i-1]
 6:
 7:
         else
 8:
             opt[i] \leftarrow v_i + opt[p_i]
 9:
10:
```

How Can We Recover the Optimum Schedule?

```
1: sort jobs by non-decreasing order of
    finishing times
 2: compute p_1, p_2, \cdots, p_n
 3: opt[0] \leftarrow 0
 4: for i \leftarrow 1 to n do
         if opt[i-1] > v_i + opt[p_i] then
 5:
              opt[i] \leftarrow opt[i-1]
 6:
              b[i] \leftarrow \mathsf{N}
 7:
         else
 8:
              opt[i] \leftarrow v_i + opt[p_i]
 9:
              b[i] \leftarrow Y
10:
```

How Can We Recover the Optimum Schedule?

```
1: sort jobs by non-decreasing order of
     finishing times
 2: compute p_1, p_2, \cdots, p_n
 3: opt[0] \leftarrow 0
 4: for i \leftarrow 1 to n do
         if opt[i-1] \ge v_i + opt[p_i] then
 5:
              opt[i] \leftarrow opt[i-1]
 6:
             b[i] \leftarrow \mathsf{N}
 7:
         else
 8:
              opt[i] \leftarrow v_i + opt[p_i]
 9:
              b[i] \leftarrow Y
10:
```

```
1: i \leftarrow n, S \leftarrow \emptyset

2: while i \neq 0 do

3: if b[i] = \mathbb{N} then

4: i \leftarrow i - 1

5: else

6: S \leftarrow S \cup \{i\}

7: i \leftarrow p_i
```

i	opt[i]	b[i]
0	0	
1	80	
2	100	
3	100	
4	105	
5	150	
6	170	
7	185	
8	220	
9	220	

i	opt[i]	b[i]
0	0	
1	80	Υ
2	100	
3	100	
4	105	
5	150	
6	170	
7	185	
8	220	
9	220	

i	opt[i]	b[i]
0	0	上
1	80	Υ
2	100	Y
3	100	
4	105	
5	150	
6	170	
7	185	
8	220	
9	220	

i	opt[i]	b[i]
0	0	上
1	80	Υ
2	100	Y
3	100	N
4	105	
5	150	
6	170	
7	185	
8	220	
9	220	

i	opt[i]	b[i]
0	0	上
1	80	Υ
2	100	Υ
3	100	N
4	105	Υ
5	150	
6	170	
7	185	
8	220	
9	220	

i	opt[i]	b[i]
0	0	上
1	80	Υ
2	100	Υ
3	100	N
4	105	Υ
5	150	Υ
6	170	
7	185	
8	220	
9	220	

i	opt[i]	b[i]
0	0	上
1	80	Υ
2	100	Υ
3	100	N
4	105	Υ
5	150	Υ
6	170	Υ
7	185	
8	220	
9	220	

i	opt[i]	b[i]
0	0	上
1	80	Υ
2	100	Υ
3	100	N
4	105	Υ
5	150	Υ
6	170	Υ
7	185	Υ
8	220	
9	220	

i	opt[i]	b[i]
0	0	\perp
1	80	Υ
2	100	Y
3	100	N
4	105	Υ
5	150	Υ
6	170	Υ
7	185	Υ
8	220	Υ
9	220	

i	opt[i]	b[i]
0	0	\perp
1	80	Υ
2	100	Y
3	100	N
4	105	Υ
5	150	Υ
6	170	Υ
7	185	Y
8	220	Υ
9	220	N

i	opt[i]	b[i]
0	0	\perp
1	80	Υ
2	100	Y
3	100	N
4	105	Υ
5	150	Υ
6	170	Υ
7	185	Y
8	220	Υ
9	220	N

i	opt[i]	b[i]
0	0	
1	80	Υ
2	100	Υ
3	100	N
4	105	Υ
5	150	Υ
6	170	Υ
7	185	Υ
8	220	Υ
9	220	N

i	opt[i]	b[i]
0	0	\perp
1	80	Υ
2	100	Υ
3	100	N
4	105	Υ
5	150	Υ
6	170	Υ
7	185	Y
8	220	Υ
9	220	N

i	opt[i]	b[i]
0	0	
1	80	Υ
2	100	Υ
3	100	N
4	105	Υ
5	150	Υ
6	170	Υ
7	185	Y
8	220	Υ
9	220	N

i	opt[i]	b[i]
0	0	\perp
1	80	Υ
2	100	Υ
3	100	N
4	105	Υ
5	150	Υ
6	170	Υ
7	185	Y
8	220	Υ
9	220	N

i	opt[i]	b[i]
0	0	上
1	80	Υ
2	100	Υ
3	100	N
4	105	Υ
5	150	Υ
6	170	Υ
7	185	Υ
8	220	Υ
9	220	N

Dynamic Programming

- Break up a problem into many overlapping sub-problems
- Build solutions for larger and larger sub-problems
- Use a table to store solutions for sub-problems for reuse

Outline

Weighted Interval Scheduling

Subset Sum Problem

Mapsack Problem

Input: an integer bound W > 0

a set of ${\color{red}n}$ items, each with an integer weight ${\color{red}w_i}>0$

Output: a subset S of items that

$$\text{maximizes } \sum_{i \in S} w_i \qquad \text{s.t.} \sum_{i \in S} w_i \leq W.$$

Input: an integer bound W > 0

a set of n items, each with an integer weight $w_i > 0$

Output: a subset S of items that

$$\text{maximizes } \sum_{i \in S} w_i \qquad \text{s.t.} \sum_{i \in S} w_i \leq W.$$

 \bullet Motivation: you have budget W, and want to buy a subset of items, so as to spend as much money as possible.

Input: an integer bound W > 0

a set of n items, each with an integer weight $w_i > 0$

Output: a subset S of items that

$$\text{maximizes } \sum_{i \in S} w_i \qquad \text{s.t.} \sum_{i \in S} w_i \leq W.$$

ullet Motivation: you have budget W, and want to buy a subset of items, so as to spend as much money as possible.

Example:

•
$$W = 35, n = 5, w = (14, 9, 17, 10, 13)$$

Input: an integer bound W > 0

a set of n items, each with an integer weight $w_i > 0$

Output: a subset S of items that

ullet Motivation: you have budget W, and want to buy a subset of items, so as to spend as much money as possible.

Example:

- W = 35, n = 5, w = (14, 9, 17, 10, 13)
- Optimum: $S = \{1, 2, 4\}$ and 14 + 9 + 10 = 33

Candidate Algorithm:

- Sort according to non-increasing order of weights
- \bullet Select items in the order as long as the total weight remains below ${\cal W}$

Candidate Algorithm:

- Sort according to non-increasing order of weights
- \bullet Select items in the order as long as the total weight remains below ${\cal W}$

Q: Does candidate algorithm always produce optimal solutions?

Candidate Algorithm:

- Sort according to non-increasing order of weights
- \bullet Select items in the order as long as the total weight remains below W

Q: Does candidate algorithm always produce optimal solutions?

A: No. W = 100, n = 3, w = (51, 50, 50).

Candidate Algorithm:

- Sort according to non-increasing order of weights
- \bullet Select items in the order as long as the total weight remains below W

Q: Does candidate algorithm always produce optimal solutions?

A: No. W = 100, n = 3, w = (51, 50, 50).

Q: What if we change "non-increasing" to "non-decreasing"?

Candidate Algorithm:

- Sort according to non-increasing order of weights
- \bullet Select items in the order as long as the total weight remains below ${\cal W}$

Q: Does candidate algorithm always produce optimal solutions?

A: No. W = 100, n = 3, w = (51, 50, 50).

Q: What if we change "non-increasing" to "non-decreasing"?

A: No. W = 100, n = 3, w = (1, 50, 50)

- Consider the instance: $i, W', (w_1, w_2, \cdots, w_i)$;
- opt[i, W']: the optimum value of the instance

Q: The value of the optimum solution that does not contain *i*?

- Consider the instance: $i, W', (w_1, w_2, \cdots, w_i)$;
- ullet opt[i,W']: the optimum value of the instance

Q: The value of the optimum solution that does not contain *i*?

A: opt[i-1, W']

- Consider the instance: $i, W', (w_1, w_2, \cdots, w_i)$;
- ullet opt[i,W']: the optimum value of the instance

Q: The value of the optimum solution that does not contain *i*?

A: opt[i-1, W']

Q: The value of the optimum solution that contains *i*?

- Consider the instance: $i, W', (w_1, w_2, \cdots, w_i)$;
- ullet opt[i,W']: the optimum value of the instance

Q: The value of the optimum solution that does not contain *i*?

A: opt[i-1, W']

Q: The value of the optimum solution that contains *i*?

A: $opt[i-1, W'-w_i] + w_i$

- Consider the instance: $i, W', (w_1, w_2, \cdots, w_i)$;
- ullet opt[i,W']: the optimum value of the instance

$$opt[i, W'] = \begin{cases} i = 0 \\ i > 0, w_i > W' \\ i > 0, w_i \le W' \end{cases}$$

- Consider the instance: $i, W', (w_1, w_2, \cdots, w_i)$;
- opt[i, W']: the optimum value of the instance

$$opt[i, W'] = \begin{cases} 0 & i = 0 \\ i > 0, w_i > W' \\ i > 0, w_i \le W' \end{cases}$$

- Consider the instance: $i, W', (w_1, w_2, \dots, w_i)$;
- ullet opt[i,W']: the optimum value of the instance

$$opt[i, W'] = \begin{cases} 0 & i = 0 \\ opt[i - 1, W'] & i > 0, w_i > W' \\ & i > 0, w_i \le W' \end{cases}$$

- Consider the instance: $i, W', (w_1, w_2, \dots, w_i)$;
- ullet opt[i,W']: the optimum value of the instance

$$opt[i, W'] = \begin{cases} 0 & i = 0\\ opt[i-1, W'] & i > 0, w_i > W'\\ \max\left\{ \begin{array}{c} opt[i-1, W']\\ opt[i-1, W'-w_i] + w_i \end{array} \right\} & i > 0, w_i \leq W' \end{cases}$$

```
1: for W' \leftarrow 0 to W do
2: opt[0, W'] \leftarrow 0
3: for i \leftarrow 1 to n do
4: for W' \leftarrow 0 to W do
5: opt[i, W'] \leftarrow opt[i-1, W']
6: if w_i \leq W' and opt[i-1, W'-w_i] + w_i \geq opt[i, W'] then
7: opt[i, W'] \leftarrow opt[i-1, W'-w_i] + w_i
8: return opt[n, W]
```

Recover the Optimum Set

```
1: for W' \leftarrow 0 to W do
    opt[0, W'] \leftarrow 0
 3: for i \leftarrow 1 to n do
        for W' \leftarrow 0 to W do
 4:
             opt[i, W'] \leftarrow opt[i-1, W']
 5:
             b[i, W'] \leftarrow \mathsf{N}
 6:
         if w_i < W' and opt[i-1, W'-w_i] + w_i > opt[i, W']
 7:
    then
                 opt[i, W'] \leftarrow opt[i-1, W'-w_i] + w_i
 8:
                 b[i, W'] \leftarrow Y
 9:
10: return opt[n, W]
```

Recover the Optimum Set

```
1: i \leftarrow n, W' \leftarrow W, S \leftarrow \emptyset

2: while i > 0 do

3: if b[i, W'] = Y then

4: W' \leftarrow W' - w_i

5: S \leftarrow S \cup \{i\}

6: i \leftarrow i - 1

7: return S
```

```
1: for W' \leftarrow 0 to W do

2: opt[0,W'] \leftarrow 0

3: for i \leftarrow 1 to n do

4: for W' \leftarrow 0 to W do

5: opt[i,W'] \leftarrow opt[i-1,W']

6: if w_i \leq W' and opt[i-1,W'-w_i] + w_i \geq opt[i,W'] then

7: opt[i,W'] \leftarrow opt[i-1,W'-w_i] + w_i

8: return opt[n,W]
```

```
1: for W' \leftarrow 0 to W do
2: opt[0, W'] \leftarrow 0
3: for i \leftarrow 1 to n do
4: for W' \leftarrow 0 to W do
5: opt[i, W'] \leftarrow opt[i-1, W']
6: if w_i \leq W' and opt[i-1, W'-w_i] + w_i \geq opt[i, W'] then
7: opt[i, W'] \leftarrow opt[i-1, W'-w_i] + w_i
8: return opt[n, W]
```

• Running time is O(nW)

```
1: for W' \leftarrow 0 to W do
2: opt[0, W'] \leftarrow 0
3: for i \leftarrow 1 to n do
4: for W' \leftarrow 0 to W do
5: opt[i, W'] \leftarrow opt[i-1, W']
6: if w_i \leq W' and opt[i-1, W'-w_i] + w_i \geq opt[i, W'] then
7: opt[i, W'] \leftarrow opt[i-1, W'-w_i] + w_i
8: return opt[n, W]
```

- Running time is O(nW)
- Running time is pseudo-polynomial because it depends on value of the input integers.

```
1: for W' \leftarrow 0 to W do

2: opt[0, W'] \leftarrow 0

3: for i \leftarrow 1 to n do

4: for W' \leftarrow 0 to W do

5: opt[i, W'] \leftarrow opt[i-1, W']

6: if w_i \leq W' and opt[i-1, W'-w_i] + w_i \geq opt[i, W'] then

7: opt[i, W'] \leftarrow opt[i-1, W'-w_i] + w_i

8: return opt[n, W]
```

- Running time is O(nW)
- Running time is pseudo-polynomial because it depends on value of the input integers.
- Game's running time: https://courses.csail.mit.edu/6.5440/fall23/

Avoiding Unncessary Computation and Memory Using Memoized Algorithm and Hash Map

```
compute-opt(i, W')
 1: if opt[i, W'] \neq \bot then return opt[i, W']
 2: if i=0 then r \leftarrow 0
 3: else
 4: r \leftarrow \text{compute-opt}(i-1, W')
 5: if w_i < W' then
            r' \leftarrow \text{compute-opt}(i-1, W'-w_i) + w_i
 6:
             if r' > r then r \leftarrow r'
 7:
 8: opt[i, W'] \leftarrow r
 9: return r
```

Use hash map for opt

Outline

Weighted Interval Scheduling

Subset Sum Problem

Mnapsack Problem

Knapsack Problem

Input: an integer bound W > 0

a set of n items, each with an integer weight $w_i > 0$

a value $v_i > 0$ for each item i

Output: a subset S of items that

$$\text{maximizes } \sum_{i \in S} \underline{v_i} \qquad \text{s.t.} \sum_{i \in S} w_i \leq W.$$

Knapsack Problem

Input: an integer bound W>0

a set of n items, each with an integer weight $w_i > 0$

a value $v_i > 0$ for each item i

Output: a subset S of items that

$$\text{maximizes } \sum_{i \in S} \underbrace{\mathbf{v_i}} \qquad \text{s.t.} \sum_{i \in S} w_i \leq W.$$

• Motivation: you have budget W, and want to buy a subset of items of maximum total value

- opt[i,W']: the optimum value when budget is W' and items are $\{1,2,3,\cdots,i\}$.
- If i = 0, opt[i, W'] = 0 for every $W' = 0, 1, 2, \dots, W$.

$$opt[i, W'] = \begin{cases} i = 0\\ i > 0, w_i > W'\\ i > 0, w_i \le W' \end{cases}$$

- opt[i,W']: the optimum value when budget is W' and items are $\{1,2,3,\cdots,i\}$.
- If i = 0, opt[i, W'] = 0 for every $W' = 0, 1, 2, \dots, W$.

$$opt[i, W'] = \begin{cases} 0 & i = 0 \\ i > 0, w_i > W' \\ i > 0, w_i \le W' \end{cases}$$

- opt[i, W']: the optimum value when budget is W' and items are $\{1, 2, 3, \cdots, i\}$.
- If i = 0, opt[i, W'] = 0 for every $W' = 0, 1, 2, \dots, W$.

$$opt[i, W'] = \begin{cases} 0 & i = 0\\ opt[i - 1, W'] & i > 0, w_i > W'\\ & i > 0, w_i \le W' \end{cases}$$

- opt[i, W']: the optimum value when budget is W' and items are $\{1, 2, 3, \cdots, i\}$.
- If i = 0, opt[i, W'] = 0 for every $W' = 0, 1, 2, \dots, W$.

$$opt[i, W'] = \begin{cases} 0 & i = 0 \\ opt[i-1, W'] & i > 0, w_i > W' \\ \max \left\{ \begin{array}{c} opt[i-1, W'] \\ opt[i-1, W' - w_i] + \mathbf{v_i} \end{array} \right\} & i > 0, w_i \leq W' \end{cases}$$

Exercise: Items with 3 Parameters

```
Input: integer bounds W>0, Z>0, a set of n items, each with an integer weight w_i>0 a size z_i>0 for each item i a value v_i>0 for each item i Output: a subset S of items that \max \sum v_i \qquad \text{s.t.}
```

$$\sum_{i \in S} w_i \le W \text{ and } \sum_{i \in S} z_i \le Z$$