Групповой проект. Тема: Рост дендритов

Этап 3

Артамонов Т. Е., Федорина Э. В., Морозов М. Е., Коротун И. И., Маслова А. С. 7 марта 2024

Российский Университет Дружбы Народов, Moscow, Russian Federation

Состав исследовательской команды

Студенты группы НКНбд-01-21

- Артамонов Тимофей Евгеньевич
- Федорина Эрнест Васильевич
- Морозов Михаил Евгеньвич
- Коротун Илья Игоревич
- Маслова Анастасия Сергеевна

Вводная часть

Вводная часть

На третьем этапе группового проекта нужно описание программную реализацию проекта. На прошлом этапе мы уже рассмотрели алогритм по которому мы будем двигаться при выполнении этого этапа. Приступим к описанию кода.

Шаг 0 Используемые библиотеки

- using Plots: Библиотека для визуализации данных. В данном коде используем для создания тепловой карты, отображающей состояние сетки после симуляции роста дендритов.
- using LinearAlgebra: Библиотека для работы с линейной алгеброй. Используем, для операций с векторами и матрицами в вычислениях.

using Plots
using LinearAlgebra

Шаг 1 Параметры модели

Указываем основные параметрыры моделирования:

N: размер сетки, представляющий собой квадратную сетку N x N, на которой будет происходить моделирование. T_melt: температура плавления, определяющая порог, при котором материал начинает затвердевать. growth_chance: увеличенный шанс роста дендритов в соседние ячейки, это вероятность, с которой новые дендриты будут расти в окружающие зоны с пониженной температурой. steps: количество шагов симуляции, определяющее, сколько раз будет произведено обновление состояния сетки.

```
N = 100
T_melt = 1.0
growth_chance = 0.005
steps = 8000
```

Шаг 2 Инициализация сетки

Создаем матрицу T размером N x N, инициализируя ее нулями. Задаем начальную затравочную область в виде круга с заданным радиусом и центром.

```
T = zeros(N, N)
# Увеличение размера начальной затравочной области
center = div(N. 2)
radius = 1 # Радиус затравочной области
for i in (center-radius):(center+radius)
    for j in (center-radius):(center+radius)
        T[i, j] = T melt
    end
end
```

Шаг 3 Параметры для условия Стефана

Определяем коэффициенты теплопроводности, плотности, латентной теплоты и температуру на границе. Используем эти парамметры для вычисления скорости роста кристалла по условию Стефана.

```
κ = 0.1 # Теплопроводность
ρ = 1.0 # Плотность
L = 1.0 # Латентная теплота
Tb = T_melt # Температура на границе
```

Шаг 4 Функция роста

Эта функция выполняет основную часть моделирования роста дендритов. Она итерирует указанное количество шагов по сетке и обновляет ее состояние в соответствии с правилами роста кристалла и уравнением теплопроводности.

Уравнение теплопроводности: 1.Создается временная копия текущего состояния сетки Т. 2.Перебираются все внутренние ячейки сетки. 3.Если температура в ячейке равна температуре плавления, вычисляется градиент температуры в соседних ячейках. 4.Для каждой соседней ячейки вычисляется градиент температуры и скорость роста кристалла по условию Стефана. 5.Если случайное число меньше произведения шанса роста на скорость роста, ячейка затвердевает на следующем шаге, и это отражается во временной копии сетки.

Шаг 4 Функция роста

Обновление основной сетки: После завершения всех шагов симуляции, основная сетка Т обновляется копией T_temp.

```
function grow crystals stefan!(T)
    for step in 1:steps
        T temp = copy(T) # Создаем временную копию для текущего шага
        for i in 2:N-1
            for j in 2:N-1
                if T[i, j] == T melt
                    for di in -1:1
                        for dj in -1:1
                            if T[i+di, j+dj] == 0
                                # Вычисляем градиенты температуры в соседних
                                T_s = [T[i+di, j+dj] - T[i, j]  for (di, di)
```

 $\begin{bmatrix} T & 1 & - & Th &$

```
# Умножаем градиенты для диагональных элемент
    T_s[1] /= 2
    T_s[2] /= 2
    # Вычисляем вектор нормали к границе затверде
    n = [di + dj for (di, dj) in [(-1, 0), (1, 0)]
    # Вычисляем скорость роста кристалла по услов
    V = \kappa / (\rho * L) * dot(n, \sqrt{T_s} - \sqrt{T_l})
    if rand() < growth chance * v</pre>
        T temp[i+di, j+dj] = T melt # Затвердева
    end
end
```

end

end

end

10/13

Шаг 5 Визуализация итогового состояния

#Выполнение симуляции

После выполнения симуляции функцией роста, код строит тепловую карту (heatmap) для визуализации конечного состояния сетки Т.

```
grow_crystals_stefan!(T)

#Визуализация итогового состояния

p = heatmap(T, color=:ice, aspect_ratio=1, title="Модель роста дендритов с ус display(p)
```

График модели

Рис. 1: plot

Вывод

Модель роста дендритов, реализованная с использованием условия Стефана и уравнения теплопроводности, позволяет имитировать процесс затвердевания материала и формирования кристаллических структур.После завершения всех шагов симуляции, модель предоставляет визуализацию итогового состояния сетки с помощью тепловой карты.