T.D. I - Suites & Fonctions

I - Suites

I.1 - Suites classiques

Exercice 1. (Suite arithmétique) Soit (u_n) une suite arithmétique. Sachant que $u_{80} = 393$ et $u_{15} = 133$, calculer u_1 .

Exercice 2. Soit $(u_n)_{n\in\mathbb{N}^*}$ la suite définie par $u_0=1$ et, pour tout nentier naturel non nul, $u_{n+1} = \sqrt{4u_n}$.

- 1. Déterminer u_1, \ldots, u_5 en écrivant les résultats sous la forme d'une puissance de 2.
- **2.** Pour tout n entier naturel non nul, on pose $v_n = \ln(u_n) \ln(4)$. Déterminer la nature de la suite (v_n) et en déduire l'expression de v_n en fonction de n.
- 3. Donner l'expression de u_n en fonction de n puis en déduire la limite $de(u_n)$.

Exercice 3. (Une suite arithmético-géométrique) Soit (u_n) la suite définie par $u_0 = 0$ et, pour tout n entier naturel, $u_{n+1} = -\frac{1}{2}u_n + 12$.

1. Déterminer la solution ℓ de l'équation $\ell = -\frac{\ell}{2} + 12$.

Pour tout n entier naturel, on pose $v_n = u_n - \ell$.

- 2. Déterminer la nature de la suite (v_n) .
- **3.** En déduire l'expression de u_n en fonction de n.

Exercice 4. (Une seconde suite arithmético-géométrique) Soit (u_n) la suite définie par $u_0 = 2$ et, pour tout n entier naturel, $u_{n+1} = 3u_n + 4$.

- 1. Déterminer un réel ℓ tel que $\ell = 3\ell + 4$.
- **2.** Pour tout n entier naturel, on pose $v_n = u_n \ell$. Montrer que la suite (v_n) est une suite géométrique.
- 3. En déduire une expression de u_n en fonction de n puis étudier le comportement asymptotique de (u_n) .

Exercice 5. (Une suite homographique) Soit (u_n) la suite définie par $u_0 = 0$ et, pour tout n entier naturel, $u_{n+1} = \frac{2u_n + 3}{u_n + 4}$. Pour tout n entier naturel, on pose $v_n = \frac{u_n - 1}{u_n + 3}$.

- **1.** Déterminer la nature de la suite (v_n) .
- **2.** Exprimer v_n puis u_n en fonction de n.
- **3.** Déterminer la limite de la suite (u_n) .

I.2 - Sommes des termes

Exercice 6. (Sommes classiques) Soit $n \in \mathbb{N}$. Exprimer, en fonction de n les sommes suivantes :

1.
$$\sum_{k=0}^{n} 1$$
.

3.
$$\sum_{k=0}^{n} k$$
. **5.** $\sum_{k=0}^{n} k^3$. **4.** $\sum_{k=0}^{n} k^2$.

5.
$$\sum_{k=0}^{n} k^3$$

2.
$$\sum_{l=1}^{n} 2$$

4.
$$\sum_{k=0}^{n} k^2$$

Exercice 7. (Série harmonique) Pour tout entier naturel n non nul, on pose $H_n = \sum_{k=1}^{n} \frac{1}{k}$.

- 1. Montrer que la suite (H_n) est monotone. Que peut-on en déduire quant à son comportement lorsque n tend vers $+\infty$?
- **2.** Soit $n \in \mathbb{N}^*$. Montrer que $H_{2n} H_n \geqslant \frac{1}{2}$.
- 3. En déduire que (H_n) tend vers $+\infty$.

Exercice 8. Soit $q \in]-1,1[$. On note f la fonction définie pour tout $x \in]-1,1[par f(x) = \sum_{k=0}^{n} x^{k}.$

- 1. Rappeler l'expression de f sans le signe somme. En déduire l'expression de $\lim_{n \to +\infty} \sum_{k=0}^{n} q^k$.
- 2. Montrer que f est dérivable et donner deux expressions pour sa dérivée f'.

3. En déduire $\lim_{n\to+\infty} \sum_{k=1}^{n} kq^{k-1}$.

Exercice 9. Pour tout *n* entier naturel non nul, on pose $S_n = \sum_{k=1}^n \frac{1}{k^2}$.

- 1. Montrer que, pour tout $k \geqslant 2$, $\frac{1}{k^2} \leqslant \frac{1}{k-1} \frac{1}{k}$.
- **2.** Montrer que (S_n) est majorée par 2.
- **3.** En déduire que (S_n) converge.

Exercice 10. (Constante d'Euler) Pour tout n entier naturel non nul, on pose $H_n = \sum_{k=1}^n \frac{1}{k}$.

1. Pour tout $x \ge 0$, montrer les inégalités

$$ln(1+x) \leqslant x \text{ et } \frac{x}{1+x} \leqslant \ln(1+x).$$

2. Montrer que, pour tout $k \ge 1$,

$$\frac{1}{k+1} \leqslant \ln(k+1) - \ln(k) \leqslant \frac{1}{k}.$$

3. En déduire que, pour tout $n \ge 1$,

$$H_{n+1} - 1 \leqslant \ln(n+1) \leqslant H_n.$$

4. En déduire que, pour tout $n \ge 1$,

$$\ln(n+1) \leqslant H_n \leqslant 1 + \ln(n).$$

Pour tout $n \ge 2$, on pose $c_n = H_{n-1} - \ln(n)$.

- **5.** Calculer $c_{n+1} c_n$ et en déduire le sens de variation de la suite (c_n) .
- **6.** Montrer que, pour tout $n \ge 2$, $c_n \le 1 + \ln(n-1) \ln(n)$.
- 7. En déduire que la suite (c_n) est convergente.

I.3 - Suites définies par récurrence

Exercice 11. Soit (u_n) la suite définie par $u_0 = 1$ et $u_{n+1} = u_n + e^{-u_n}$.

- 1. Montrer que (u_n) est croissante.
- **2.** En supposant que (u_n) est majorée, aboutir à une contradiction.
- **3.** En déduire la limite de la suite (u_n) .

Exercice 12. On définit la suite définie par récurrence par $u_0 \ge -1$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = \sqrt{1 + u_n}$. On pose $f : x \mapsto \sqrt{1 + x}$.

- **1.** Montrer que, pour tout $n \in \mathbb{N}^*$, $u_n \ge 0$.
- **2.** On pose $g: x \mapsto f(x) x$. Étudier les variations puis le signe de g.
- **3.** On suppose que $u_0 \in \left[-1, \frac{1+\sqrt{5}}{2}\right]$.
 - a) Montrer que, pour tout $n \in \mathbb{N}$, $u_n \leqslant \frac{1+\sqrt{5}}{2}$.
 - **b)** En utilisant la fonction g, montrer que (u_n) est croissante.
 - c) En déduire que (u_n) converge et déterminer sa limite.
- **4.** Reprendre les questions précédentes lorsque $u_0 \geqslant \frac{1+\sqrt{5}}{2}$.

I.4 - Suites définies implicitement

Exercice 13. Soit $n \in \mathbb{N}$.

- **1.** Étudier les variations de la fonction $f_n: x \mapsto x^5 + nx 1$.
- **2.** En déduire qu'il existe un unique réel $u_n \in \mathbb{R}_+$ tel que $u_n^5 + nu_n 1 = 0$.
- **3.** En étudiant le signe de $f_{n+1}(u_n)$, montrer que la suite (u_n) est décroissante et minorée.
- **4.** En déduire que (u_n) converge et déterminer sa limite.
- **5.** En utilisant la question précédente, étudier la limite de la suite (nu_n) et en déduire un équivalent simple de u_n .
- **6.** On pose $\varepsilon_n = nu_n 1$. Exprimer ε_n en fonction de n et de u_n et en déduire un équivalent simple de ε_n .

7. En déduire qu'il existe une suite (δ_n) satisfaisant $\lim_{n \to +\infty} \delta_n = 0$ telle que

$$\forall n \in \mathbb{N}, u_n = \frac{1}{n} - \frac{1}{n^6} + \frac{1}{n^6} \delta_n.$$

Exercice 14. Soit f la fonction définie sur \mathbb{R}_+^* par $f(x) = x - \ln x$.

- **1.** Dresser le tableau de variations de f.
- **2.** Montrer que pour tout $n \in \mathbb{N}^*$, il existe un unique $u_n \in]0,1]$ tel que $f(u_n) = n.$
- **3.** Montrer que (u_n) est strictement décroissante et converge vers 0.
- **4.** En utilisant la question précédente, montrer que $u_n \sim e^{-n}$.
- 5. Montrer que $u_n e^{-n} = e^{-n}(e^{u_n} 1)$ et en déduire un équivalent simple de $(u_n - e^{-n})$.
- **6.** En déduire qu'il existe une suite (δ_n) satisfaisant $\lim_{n\to+\infty}\delta_n=0$ et telle que : $\forall n \in \mathbb{N}, u_n = e^{-n} + e^{-2n} + e^{-2n} \delta_n$

II - Fonctions

II.1 - Calculs de développements limités

Exercice 15. Déterminer un équivalent simple en $+\infty$ de chacune des fonctions suivantes:

1.
$$f_1(x) = \frac{x^5 + 4x^4 + 2}{2x^3 + x + 1}$$
.

2.
$$f_2(x) = \frac{e^x + e^{-x}}{2}$$
.

3.
$$f_3(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$
.

4.
$$f_4(x) = \ln(1+x^2)$$
.

5.
$$f_5(x) = \frac{e^{-x} + 3x + 2}{x^2 + 1}$$

6.
$$f_6(x) = \frac{(x^5 + 3x + 1)e^{-x}}{12x + 3}$$
.

7.
$$f_7(x) = \frac{(x+25)\ln(x)}{e^x + e^{-x}}$$
.

8.
$$f_8(x) = \frac{\ln(x+1)e^x}{2x+5}$$
.

9.
$$f_9(x) = \frac{(3x+12)\ln(1+\frac{1}{x})}{5x^4+2}$$
.

10.
$$f_{10}(x) = \frac{x}{e^x + e^{-x}}$$
.

11.
$$f_{11}(x) = \frac{x^2}{e^x - e^{-x}}$$
.

12.
$$f_{12}(x) = \frac{e^x + e^{-x}}{x^2(e^x - e^{-x})}$$
.

13.
$$f_{13}(x) = \frac{x^4(e^x + e^{-x})}{e^x - e^{-x}}$$
.

14.
$$f_{14}(x) = \frac{\sqrt{x}}{e^x - e^{-x}}$$
.

15.
$$f_{15}(x) = \frac{x^3 e^{-2\sqrt{x}}}{1+x^3+x^4}$$
.

Exercice 16. Déterminer un équivalent simple en 0 de chacune des fonctions suivantes:

1.
$$f_1(x) = \frac{(x^5 + 3x + 1)e^{-x}}{12x + 3}$$
.

2.
$$f_2(x) = \frac{(x+25)\ln(x)}{e^x + e^{-x}}$$
.

3.
$$f_3(x) = \frac{\ln(x+1)e^x}{2x+5}$$
.

4.
$$f_4(x) = \frac{(3x+12)\ln(1+\frac{1}{x})}{5x^4+2}$$
.

5.
$$f_5(x) = \frac{x}{e^x + e^{-x}}$$
.

6.
$$f_6(x) = \frac{x^2}{e^x - e^{-x}}$$
.

7.
$$f_7(x) = \frac{e^x + e^{-x}}{x^2(e^x - e^{-x})}$$
.

8.
$$f_8(x) = \frac{x^4(e^x + e^{-x})}{e^x - e^{-x}}$$
.

9.
$$f_9(x) = \frac{\sqrt{x}}{e^x - e^{-x}}$$
.

Exercice 17. (Calculs de limites en 0) Déterminer les limites 0 des fonctions suivantes:

1.
$$\frac{\ln(1+2x)}{\sqrt{x}-1}$$
.

2.
$$\frac{\ln(1+2x)}{\sqrt{1+x}-1}$$
.

3.
$$\frac{e^x - 1}{r}$$
.

4.
$$\frac{\ln(1+2x)}{\sqrt{1+2x}-1}$$

4.
$$\frac{\ln(1+2x)}{\sqrt{1+2x}-1}$$
.
5. $\frac{e^{3x}-1-3x}{x^2}$.

Exercice 18. Déterminer un équivalent en 1 de chacune des fonctions suivantes:

1.
$$f_1(x) = \frac{1}{\sqrt{x^2 - 1}}$$
.

2.
$$f_2(x) = \frac{\ln(1+x)}{\sqrt{x^2-1}}$$
.

3.
$$f_3(x) = \frac{\ln(x)}{\sqrt{x^2-1}}$$
.

4.
$$f_4(x) = \frac{\sqrt[3]{x}-1}{\sqrt{x}-1}$$
.

5.
$$f_5(x) = \frac{\ln(1-x)}{\sqrt{x^2-1}}$$
.

Exercise 19. (Calculs de limites en $+\infty$) Soit $\alpha \in \mathbb{R}$. Déterminer

1.
$$\lim_{n\to+\infty} \left(1+\frac{\alpha}{n}\right)^n$$
.

2.
$$\lim_{x \to +\infty} x \left(e^{3/x} - 1 \right)$$
.

Exercice 20. (Calculs de développements limités) Déterminer le développement limité, à l'ordre 2, en 0 de :

1.
$$\frac{e^x - 1}{x}$$
.

3

2.
$$\frac{1}{1+\ln(1+x)}$$
.

II.2 - Étude de courbes

Exercice 21. (Inégalités classiques)

- 1. Démontrer puis représenter graphiquement les inégalités suivantes :
 - a) $\forall u \in]-1, +\infty[, \ln(1+u) \leq u.$
 - **b)** $\forall u \in \mathbb{R}. 1 + u \leq e^u$.
- **2.** Montrer que $\forall u \ge 0, u \frac{u^2}{2} \le \ln(1+u)$.

Exercice 22. (e^{π} ou π^{e} ?)

- **1.** Étudier la fonction $x \mapsto \frac{\ln x}{x}$.
- 2. Sans calculatrice, parmi les réels e^{π} et π^{e} , lequel est le plus petit?

Exercice 23. Déterminer l'équation de la tangente ainsi que la position (locale) de la courbe représentative par rapport à cette tangente aux points précisés :

1. e^x en 0.

2. e^x en 2.

4. $x e^x \text{ en } 0.$ 5. $\frac{e^x - 1}{x} \text{ en } 0.$

3. ln(x) en 1.

Exercice 24. On considère la fonction $f: x \mapsto x + \sqrt{x^2 - 1}$.

- 1. Déterminer le domaine de définition \mathcal{D} de f.
- **2.** Étudier les limites de f en $+\infty$ et en $-\infty$.
- **3.** Montrer que, pour tout $x \in D \setminus \{-1, 1\}$, f'(x) et f(x) sont de même signe.
- **4.** Déterminer les variations de f sur $[1, +\infty[$.
- 5. Montrer que, pour tout $x \in D$, f(x)f(-x) = -1 et en déduire les variations de f sur $]-\infty,-1]$.
- **6.** On note \mathscr{C}_f la courbe représentative de f. Montrer que la droite Δ d'équation y = 2x est asymptote à \mathscr{C}_f en $+\infty$.
- 7. Tracer \mathscr{C}_f et Δ .

II.3 - Équations fonctionnelles

Exercice 25. (Isométries de \mathbb{R}) Soit f une fonction définie sur \mathbb{R} et à valeurs réelles telle que

$$\forall (x,y) \in \mathbb{R}^2, |f(x) - f(y)| = |x - y|.$$

1. Montrer qu'il existe une fonction $\varepsilon : \mathbb{R} \to \{-1, 1\}$ telle que

$$\forall x \in \mathbb{R}, f(x) = \varepsilon(x) \cdot x + f(0).$$

- **2.** Soit x un réel non nul. En calculant de deux manières $(f(x) f(1))^2$, montrer que $\varepsilon(x)\varepsilon(1)=1$. En déduire que $\varepsilon(x)=\varepsilon(1)$.
- 3. En déduire l'ensemble des fonctions de $\mathbb R$ dans $\mathbb R$ qui satisfont la relation:

$$\forall x, y \in \mathbb{R}, |f(x) - f(y)| = |x - y|.$$

Exercice 26. Soit f une fonction définie sur \mathbb{R} et à valeurs réelles telle que

$$\forall x, y \in \mathbb{R}, f(x)f(y) = f(x) + f(y)$$

- **1.** Montrer que $f(0) \in \{0, 2\}$.
- **2.** Si f(0) = 0, montrer que f est la fonction nulle.
- 3. Si f(0) = 2, montrer que f est la fonction constante égale à 2.
- **4.** En déduire l'ensemble des fonctions f qui satisfont la relation :

$$\forall x, y \in \mathbb{R}, f(x)f(y) = f(x) + f(y).$$

Exercice 27. Soit f une fonction définie sur \mathbb{R} et à valeurs réelles telle que

$$\forall x, y \in \mathbb{R}, f(x+y) = f(x) + f(y)$$

1. Montrer que f(0) = 0.

- **2.** Soit $x \in \mathbb{R}$. Montrer que pour tout $n \in \mathbb{N}$, f(nx) = nf(x).
- ${\bf 3.}\,$ En déduire que, si f est une fonction bornée, alors f est la fonction nulle.
- **4.** Montrer que f est une fonction impaire.
- **5.** Montrer que, pour tout n entier naturel,

$$f(n) = nf(1)$$
 et $f(-n) = -nf(1)$.

- **6.** Montrer que, pour tout $(p,q) \in \mathbb{Z} \times \mathbb{N}^*$, $f\left(\frac{p}{q}\right) = \frac{p}{q}f(1)$.
- 7. On suppose que, pour tout x réel, il existe deux suites d'entiers $(p_n)_{n\in\mathbb{N}}$ et $(q_n)_{n\in\mathbb{N}}$ telles que $\lim_{n\to+\infty}\frac{p_n}{q_n}=x$.

Montrer que, si f est une fonction continue, alors f(x) = xf(1).

5