Machine learning under physical constraints Wavelet scattering representations

Sixin Zhang (sixin.zhang@toulouse-inp.fr)

Outline

Wavelet scattering representations

Rotational invariance

Stability properties

Outline

Wavelet scattering representations

Adversarial attacks in deep learning

Small perturbations of input lead to big changes on output.

Instability of Fourier representation

- ► Fourier representation $Φ(x) = |\hat{x}|$ is invariant to translations, but unstable to deformations of $x ∈ L^2(\mathbb{R})$.
- **Example:** deform a high-frequency signal $x(u) = e^{i\xi u}\theta(u)$.
 - Scale x by deformation: $\tau(u) = su$, 0 < s < 1
 - $x_{\tau}(u) = x(u \tau(u)) = x((1 s)u) = e^{i\xi(1-s)u}\theta((1 s)u)$
 - $\hat{x}_{\tau}(\omega) = \hat{\theta}(\omega/(1-s))/(1-s)$ has little support overlap with $\hat{x}(\omega)$ if $|\xi|$ is big.
- ► This lecture: construct stable and informative representations by wavelet scattering transform in 1d,2d,3d.

Wavelet scattering in 1d

- \blacktriangleright Wavelet transform in 1d: dilate a wavelet ψ with a scale sequence $(2^j)_{i\in\mathbb{Z}}$.
- ▶ High-frequency information captured by $\psi_i(u)$ for i < J.
- **Low-frequency** information captured by $\phi_I(u)$.

$$Wx = \{\underbrace{x \star \psi_j}_{W_j x}, \underbrace{x \star \phi_J}_{A_J x}\}_{j < J}$$

- **Zero-th order** scattering invariant: $\int A_J x(u) du$.
- ▶ Unfortunaly, $\int W_i x(u) du = 0$, which has no information of x.

First-order and second-order scattering

▶ Idea: apply a non-linear operator ρ to $W_j x$ to capture information beyond zero-th order. Let

$$U_j x(u) = \rho(W_j x(u)) = \rho(x \star \psi_j(u))$$

First-order scattering invariant:

$$\int U_j x(u) du = \int \rho W_j x(u) du$$

- ▶ This captures the average of $U_j x(u)$ (at Fourier frequency 0): more than the zero-th order.
- ▶ But it loses high-frequency information in U_ix .

First-order and second-order scattering

- ▶ Question: How to capture high-frequency information in $U_j x$?
- ► Compute the wavelet transform of $U_{j_1}x$ at scale j_2 ,

$$W_{j_2}U_{j_1}x$$

ightharpoonup Second-order scattering transform: apply ho

$$U_{j_1,j_2}x = \rho W_{j_2}U_{j_1}x = \rho W_{j_2}\rho W_{j_1}x$$

Second-order scattering invariant:

$$\int U_{j_1,j_2}x(u)du$$

Choice of non-linear operator ρ

- ▶ Choose ρ so that $U_i x$ captures informative information.
- Example: Modulus

$$\rho(z) = |z|^p$$

e.g. p=1 and p=2: $\int U_i x(u) du$ captures ℓ_1 and ℓ_2 norms of the wavelet coefficients $W_i x$.

Example: Generalized rectifier

$$\rho_{\alpha}(z) = \text{Relu}(\text{Real}(e^{i\alpha}z)), \quad \alpha \in [0, 2\pi]$$

Similar to Relu in neural networks, this captures the phase information in $W_i x$.

m-th order scattering

In general ,we compute for all $(j_1, \dots, j_m) \in \{0, 1, \dots, J-1\}^m$,

$$U_{j_1,j_2,\cdots,j_m}x=\rho W_{j_m}\cdots\rho W_{j_2}\rho W_{j_1}x.$$

- Problem with ρ : If $\rho(z) = |z|^2$, then it is hard to control the stability of $\rho W_{j_m} \cdots \rho W_{j_2} \rho W_{j_1} x$ as its amplitude may grow quickly with m.
- To control the amplitude, we use the modulus non-linearity (or generalized rectifier): $\rho(z) = |z|$.

Invariant scattering coefficients

Rewrite scattering coefficients using a path variable $p \in \{\emptyset, (j_1), (j_1, j_2), (j_1, j_2, j_3), \dots\}.$

$$\bar{S}x(p)=\int U_px(u)du$$

- ightharpoonup Order 0: $p = \emptyset$
- ▶ Order 1: $p = (j_1)$
- ▶ Order 2: $p = (j_1, j_2)$
- ▶ Order *m*: $p = (j_1, j_2, \dots, j_m)$

Locally invariant scattering coefficients

► To analyze data which are only locally invariant (e.g. MNIST classification), we use the low-pass filter Φ_J to compute

$$S_J x(p, u) = U_p x \star \phi_J(u)$$

- Since $A_J x = x \star \phi_J$, we write $S_J x(p, u) = A_J U_p x(u)$.
- ▶ Relation with invariant $\bar{S}x(p)$ as $J \to \infty$

$$\forall u \in \mathbb{R}, \quad 2^J S_J x(p, u) \to \phi(0) \bar{S} x(p)$$

i.e. local invariance becomes global invariance as J grows.

Relation with CNN in deep learning

Scattering coefficients can be computed using a convolutional neural network (CNN).

CNN 3. pt
$$X \longrightarrow S \times (\phi)$$

[X* $\psi_{3:1}$]

Longer 1 $U_{3:1} \times \cdots \longrightarrow S_{3} \times (j_{1})$

[U $_{j_{1}} \times * \psi_{j_{1}}$]

Layer 2 ... $U_{j_{1},j_{2}} \times \cdots \longrightarrow S_{3} \times (j_{1},j_{2})$

Cutputs.

- ▶ Convolutional kernels: $\{\psi_i\}$.
- Non-linearity: $\rho(z) = |z|$.
- ▶ Pooling layer: $S_J x(p) = A_J U_p x$.

Issue of Scattering

- ▶ **Issue**: the size of the tree grows in the order J^m as m grows.
- ▶ In practice, how to reduce the size?

Scattering in practice: order limitation

▶ High-order scattering coefficients tend to be very small, i.e. for m > 2,

$$\int |U_p x(u)|^2 du \approx 0, \quad p = (j_1, j_2, j_3, \cdots j_m)$$

Thus only order m = 1 and m = 2 are used in practice.

Scattering in practice: scale limitation

For m=2, one further select the scale $j_2 \geq j_1 + 1$ based on the frequency support overlap of $U_h x = |x \star \psi_h|$ and ψ_h , e.g. x is Dirac.

Scattering in 2d

► Morlet wavelet transform: $Wx = \{x \star \psi_{j,\ell}, x \star \phi_J\}$

Top to bottom: increasing j < J. Left to right: increasing $\ell < L$.

▶ Define a similar path trajectory: $p \in \{\emptyset, (j_1, \ell_1), (j_1, \ell_1, j_2, \ell_2), (j_1, \ell_1, j_2, \ell_2, j_3, \ell_3), \dots\}$

Scattering in 2d

Define a similar scattering propagator

$$U_{p}x(u) = \begin{cases} x(u) & \text{if } p = \emptyset; \\ |x \star \psi_{j_{1},\ell_{1}}(u)| & \text{if } p = (j_{1},\ell_{1}); \\ ||x \star \psi_{j_{1},\ell_{1}}| \star \psi_{j_{2},\ell_{2}}(u)| & \text{if } p = (j_{1},\ell_{1},j_{2},\ell_{2}); \\ \cdots \end{cases}$$

- ▶ Invariant scattering coefficients $\bar{S}x(p) = \int U_p x(u) du$.
- ▶ Local scattering coefficients $S_J x(p) = A_J U_p x = U_p x \star \phi_J$.

Scattering 2d in practice

- ▶ Usually we take m = 2, as in scattering 1d.
- ► Choice of scales j_1, j_2 : $j_2 \ge j_1 + 1$.
- ▶ Choice of angles ℓ_1, ℓ_2 :
 - To compute rotational invariant coefficients, we choose all $0 \le \ell_1 < 2L$ and $0 \le \ell_2 < 2L$.
 - We may also consider (ℓ_1, ℓ_2) such that they are nearby angles (recall $\theta_{\ell_1} = \frac{\pi \ell_1}{L}$ and $\theta_{\ell_2} = \frac{\pi \ell_2}{L}$).

Scattering 2d in practice: angle limitations

 There are redundancies in the scattering coefficients using Morlet wavelets, because

$$\psi_{j,\ell+L}(u)=\psi_{j,\ell}(u)^*.$$

Proof: use $r_{\theta+\pi}u = -r_{\theta}u, \forall u \in \mathbb{R}^2$.

▶ Thus we limit the angles to $0 \le \ell_1 < L$ and $0 \le \ell_2 < L$,

$$|x \star \psi_{j_{1},\ell_{1}}| \star \psi_{j_{2},\ell_{2}}|$$

$$= |x \star \psi_{j_{1},\ell_{1}+L}| \star \psi_{j_{2},\ell_{2}}|$$

$$= |x \star \psi_{j_{1},\ell_{1}}| \star \psi_{j_{2},\ell_{2}+L}|$$

$$= |x \star \psi_{j_{1},\ell_{1}+L}| \star \psi_{j_{2},\ell_{2}+L}|.$$

Scattering 2d in practice: spatial limitations

- In practice, wavelet transform is discretized on a finite grid, i.e. u ∈ [0, N − 1]².
- ▶ The scattering propogator $U_i x$ becomes

$$U_j x(u) = \rho(x \star \psi_j(u)) = \rho\left(\sum_{v \in [0, N-1]^2} x(u-v)\psi_j(v)\right)$$

To remove spatial redundancies in $U_j x(u)$, one can further sub-sample the "image" $U_j x$ by 2^j , by keeping only $u = 2^j n$ for $n \in [0, N/2^j - 1]^2$. Similarly for $S_J x(p, u)$ at $u = 2^J n$ for $n \in [0, N/2^J - 1]^2$.

21 Machine learning under physical constraints

Outline

Wavelet scattering representations

Rotational invariance

Stability properties

Rotational symmetry

- Physical processes which are rotational invariant are called isotropic.
- Materials science: In the study of mechanical properties of materials, "isotropic" means having identical values of a property in all directions.
 - This sand grain made of volcanic glass is isotropic, and thus, stays extinct when rotated between polarization filters on a petrographic microscope.
- ► Fluid dynamics: Fluid flow is isotropic if there is no directional preference (e.g. in fully developed turbulence). See: https://en.wikipedia.org/wiki/Isotropy

Rotational invariant scattering in 2d

- ► Can we compute scattering coefficients which are invariant to rotations of *x* in 2d?
- ▶ Focus on Morlet wavelets: $u \in \mathbb{R}^2$,

$$\psi_{j,\ell}(u) = 2^{-2j} \psi(2^{-j} r_{\theta_{\ell}} u)$$

where $\theta_{\ell} = \frac{\ell \pi}{L}$ with $0 \le \ell < 2L$.

▶ **Question**: Is $\int |x \star \psi_{i,\ell}(u)| du$ rotational invariant?

Rotational invariant scattering in 2d

- Let $\Theta = \{\theta_\ell = \frac{\ell\pi}{L} | 0 \le \ell < 2L \}.$
- ▶ Take $\theta_k \in \Theta$, and apply r_{θ_k} to $x \star \psi_{j,\ell}(u)$. Show

$$(r_{\theta_k}x) \star \psi_{j,\ell}(u) = x \star \psi_{j,\ell-k}(r_{\theta_k}u)$$

Therefore $\int |x \star \psi_{j,\ell}(u)| du$ is not rotational invariant.

 However, the following first-order scattering coefficients are rotational invariant,

$$\frac{1}{2L}\sum_{\ell=0}^{2L-1}\int |x\star\psi_{j,\ell}(u)|du$$

▶ Only need to consider $\ell < L$ due to redundancies. The total number of **first-order coefficients** is J.

Rotational invariant scattering in 2d

Similar to the first-order coefficients, we have

$$|(r_{\theta_k}x)\star\psi_{j_1,\ell_1}|\star\psi_{j_2,\ell_2}(u)=|x\star\psi_{j,\ell_1-k}|\star\psi_{j_2,\ell_2-k}(r_{\theta_k}u)$$

 Thus the following second-order scattering coefficients are rotational invariant,

$$\frac{1}{2L} \sum_{k=0}^{2L} \int ||x \star \psi_{j_1,\ell_1-k}| \star \psi_{j_2,\ell_2-k}(u)| du$$

Only need to consider L pairs of (ℓ_1, ℓ_2) due to redundancies. The total number of second-order coefficients is J(J-1)L/2.

Outline

Wavelet scattering representations

Rotational invariance

Stability properties

Lipschitz stability

Consider the robustness property of $\Phi(x)$ to additive perturbations of x to "avoid" adversarial attacks, i.e. we want

For small
$$\epsilon$$
, $\Phi(x + \epsilon) \approx \Phi(x)$.

▶ **Lipschitz stability**: Φ is Lipschitz stable if there is C > 0 such that for all $x, x' \in L^2(\mathbb{R}^d)$,

$$\|\Phi(x) - \Phi(x')\| \le C\|x - x'\|$$

The modulus non-linearity $\rho(z) = |z|$ is also Lipschitz stable with C = 1: for all $z, z' \in \mathbb{C}$,

$$|\rho(z) - \rho(z')| \le |z - z'|$$

Lipschitz stability of wavelet coefficients

Focus on 1d case: assume wavelets satisfy the Littlewood-Paley condition with $0<\epsilon<1$, i.e. $\forall\omega\in\mathbb{R}$,

$$|1-\epsilon \le |\hat{\phi}_J(\omega)|^2 + rac{1}{2} \sum_{j < J} |\hat{\psi}_j(\omega)|^2 + |\hat{\psi}_j(-\omega)|^2 \le 1$$

▶ By Plancherel formula, for any $x \in L^2(\mathbb{R}^1)$, the wavelet transform $Wx = \{x \star \phi_J, x \star \psi_j\}_{j < J}$ satisfies

$$(1 - \epsilon) ||x||^2 \le ||Wx||^2 \le ||x||^2.$$

► As a consequence, the wavelet transform is Lipschitz stable,

$$\|Wx - Wx'\| \le \|x - x'\|$$

Lipschitz stability of local scattering coefficients

- ▶ Is $S_J x = \{S_J x(p)\}_p = \{A_J U_p x\}_p$ Lipschitz stable?
- ► First-order coefficients (order less than or equal to 1):

$$S_J x = \{A_J x, A_J \rho W_j x\}_{j < J}$$

Second-order coefficients (order less than or equal to 2):

$$S_J x = \{A_J x, A_J \rho W_{j_1} x, A_J \rho W_{j_2} \rho W_{j_1} x\}_{j_1, j_2 < J}$$

Lipschitz stability of first-order coefficients

► Show $S_J x = \{A_J x, A_J \rho W_j x\}_{j < J}$ is **Lipschitz stable**

$$||S_J x - S_J x'||^2 \le ||x - x'||^2$$

By definition,

$$||S_J x - S_J x'||^2 = ||A_J x - A_J x'||^2 + \sum_{j < J} ||A_J \rho W_j x - A_J \rho W_j x'||^2$$

- Step 1: As the wavelet transform is Lipschitz stable, so is A_J.
- Step 2: As ρ is also Lipschitz stable, check that $||A_J \rho W_i x A_J \rho W_i x'||^2 \le ||W_i x W_i x'||^2$.
- Step 3: Apply the Lipschitz stability of the wavelet transform to conclude.

Lipschitz stability of second-order coefficients

 \blacktriangleright By the Lipschitz stability of the wavelet transform and ρ ,

$$||S_{J}x - S_{J}x'||^{2} = ||A_{J}x - A_{J}x'||^{2} + \sum_{j_{1} < J} ||A_{J}\rho W_{j_{1}}x - A_{J}\rho W_{j_{1}}x'||^{2}$$

$$+ \sum_{j_{1} < J, j_{2} < J} ||A_{J}\rho W_{j_{2}}\rho W_{j_{1}}x - A_{J}\rho W_{j_{2}}\rho W_{j_{1}}x'||^{2}$$

$$\leq ||A_{J}x - A_{J}x'||^{2} + \sum_{j_{1} < J} ||W_{j_{1}}x - W_{j_{1}}x'||^{2}$$

$$\leq ||x - x'||^{2}$$

Deformation stability

- ▶ The modulus of Fourier coefficients are not stable to deformations, we study the deformation stability of local scattering coefficients S_{JX} for $X \in L^2(\mathbb{R})$.
- Let τ be a deformation on \mathbb{R} , and $x_{\tau}(u) = x(u \tau(u))$.
- ▶ Main idea: Let $S_J x = A_J U x$, we are going to control the difference between $S_J x_\tau$ and $S_J x$ by the size of τ and U x.
 - ► Order 1: $Ux = \{x, \rho W_j x\}_{j < J}$
 - Order 2: $Ux = \{x, \rho W_{j_1} x, \rho W_{j_2} \rho W_{j_1} x\}_{j_1 < J, j_2 < J}$

Deformation stability of local scattering transform

▶ Assumption 1: for $\tau \in C^2(\mathbb{R})$ with

$$\|\nabla \tau\|_{\infty} = \sup_{u} |\nabla \tau(u)| \le 1/2$$

▶ Assumption 2: for $x \in L^2(\mathbb{R})$,

$$||Ux||_1 = \sum_p ||U_px|| < \infty$$

Deformation stability: There exists a constant C > 0 such that for x and τ satisfying Assumption 1 and 2,

$$||S_J x_\tau - S_J x|| \le C ||Ux||_1 K(\tau)$$

where $K(\tau)$ is a function depending on J and norms of τ .

Deformation stability: proof sketch

- ▶ Let L_{τ} be the deformation such that $L_{\tau}x(u) = x_{\tau}(u)$.
- ► Step 1: verify

$$||S_J L_{\tau} x - S_J x|| \le ||L_{\tau} S_J x - S_J x|| + ||L_{\tau} S_J x - S_J L_{\tau} x||$$

Step 2: verify

$$||L_{\tau}S_{J}x - S_{J}x|| \le ||L_{\tau}A_{J} - A_{J}|| ||Ux||, \quad ||Ux|| \le ||Ux||_{1}$$

► Then use <u>Lemma 1</u>:

$$||L_{\tau}A_J - A_J|| \le C2^{-J}||\tau||_{\infty}$$

From Lemma 2.12 in Group Invariant Scattering, S. Mallat, 2012

Deformation stability: proof sketch

- Let $U_J x = \{A_J x, \rho W_j x\}_{j < J}$ and $\| \triangle \tau \|_{\infty} = \sup_{(u,u') \in \mathbb{R} \times \mathbb{R}} |\tau(u) \tau(u')|.$
- Step 3: verify

$$||L_{\tau}S_{J}x - S_{J}L_{\tau}x|| \le ||Ux||_{1}||U_{J}L_{\tau} - L_{\tau}U_{J}||$$
$$||U_{J}L_{\tau} - L_{\tau}U_{J}|| \le ||WL_{\tau} - L_{\tau}W||$$

Then use Lemma 2:

$$\|WL_{\tau} - L_{\tau}W\| \leq C(\|\nabla \tau\|_{\infty}(\max(\log \frac{\|\triangle \tau\|_{\infty}}{\|\nabla \tau\|_{\infty}}, 1)) + \|\nabla^{2}\tau\|_{\infty})$$

From Lemma 2.14 in Group Invariant Scattering, S. Mallat, 2012. Therefore

$$\mathcal{K}(\tau) = 2^{-J} \|\tau\|_{\infty} + \|\nabla\tau\|_{\infty} (\max(\log\frac{\|\triangle\tau\|_{\infty}}{\|\nabla\tau\|_{\infty}},1)) + \|\nabla^2z\|_{\infty}$$