Banus question: lecture 6: Q: What's the R* when channel isn't full rank channel (R* will not be proportional to I anymore) Assume the rank of channel is r, then the optimal covariance matrix is R^* , $R^* = U_W \Lambda U_W^{\dagger}$ where $\Lambda = \frac{P}{r} I_r$, $I_r = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ the first r diagonal elements are l. to generate this signal with covariance matrix R*, assume channel matrix H, nxm matrix, H= UEVIT VH= Uw, and W=HTH generate mxl independent signal & with iid. Gausslan entries and independent to each other, namely, EISST] = I with variance 八= FI, SON SON PHONE PHON This is how to generate R* and do processing, we form reigenmodes, but is it true that we allocate no power to eigenmode j? cj>r)

sigen mode.

```
Q: MIMO capacity: Camlog P + log 1W1

When m=1, equivalently: C = log p+ log 1hill

Which one is beffer?
```

Because we are in high-SNR regime, we only consider the dominant factor mlogh or log P, notice mlogh, P/m < P, but itst it's inside logarism, attenuation is small, and the factor in the front, m, is dominant, the influence of P/m is small, so we approximately say that mlogh 1s linearly growing with m, we can know mflisbetter.

Q, Consider free-space propagation at far field: hig = 1 for all 2.1, compare C, C, Cb

Isotropic signaling: $R_{x} = \frac{P}{m}I$ then $C = \log(1+\lambda w, \lambda_{1}) = 74\log(1+\frac{P}{m} \cdot mn) = \log(1+nP)$ SISO: $C_{1} = \log(1+P)$

beamforming; Cb = log(It mnP)

So Cb>C>Ci

Oz assume H = I and compare 3 capacities. $C = m \log C + \frac{R}{m}$ $C_1 = \log C + P$ $C_2 = \log C + P$

So C > C1 = C6

O3 high SNR regime is defined when all eigenmodes are active, derive a condition on SNR for this to be the case We assume all eigenvalues of W= H+H is arranged $\frac{1}{2}$: closed- ithen $\int function F(\mu) = \int f$ $P > \frac{m}{\lambda wm}$ if we want all eigenmode to be active, we need $-\sum_{i=1}^{m} \overline{\lambda_{w_{i}}} \qquad \text{when } F(\mu_{i}) = P, \quad \mu_{i} = F^{-1}(P)$ then we need $F^{-1}(P) > \overline{\lambda_{w_{i}}}, \quad F^{-1}(P) < \overline{\lambda_{w_{i}}}$ (we normalize noise so P= Y) Q4, when Wis rant deficient, find an equivalent of (4) answered at the beginning Q1: Using the WF solution, show that r=rank(H)=rank(W) Frank (H) = rank(W), we assume the rank to be r, then accordi assume we we waterfilling algorithm, and only have r eigenmodes, this means R*= Uw A Uwt and A = diag{ 2, ,... 2, o, ... of for each li, if 1,...r, we can we di to and Y & bo denote it, li= at & dir, capacity: (= 5 log(1+ Dwi Zi) = 5 log (1+ 20 Zwidiy) multiplexing gain g= lim C -lims log(I+ lwi air) = \frac{x}{1 = r}, because limbog (1+ 7wi &i \gamma) => 1 then g=rank(H)=rank(W) Milroy

Q2 when is beamforming optimal at high SNIR? when rank of channel is 1 Q: Low SNR Regime: compare Just and 1/11/29: We know x+Wx < 7,(W) 1x12, let x= [1,0,0,...0] then we have $W_1 \leq \lambda w_1$ and $W_1 = \sum_{i=1}^{n} |h_{ii}|^2 > |h_{ii}|^2$ so we have ----- > h112 then C = JwiP > C1 = 1/11/2P Q1: consider free-space propagation at far field: hig = 1 for all i.j. Compare C, C, Cb MIMO capacity: C= ZwiP= mnp beam forming capacity: Co = Zw. P = mnp which makes sense because in low-SNR regime MIMO. we are cloing beamforming. SISO: (= |h.12p= P So C = Cb > C1 (m>1, n>1) Qz: Assume H=I, compare 3 capacities C= Zw.P=P=Cb, C,=P SO C= C6 = C4

Oz. Perive a condition on the SNR that only one eigenme
is active, which eigenmode is active?
The state of the s
Assume eigenvalues of Wand R* are ranked in a
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
then when we only have one activate eigenmode,
descendent order, Aw. 7 Aw. Hien when we only have one activate eigenmode, the first eigenmode is active,
$P = \lambda_1 = \frac{1}{\lambda_1} - \frac{1}{\lambda_{w_1}}$
$P = \lambda_1 = \frac{1}{\lambda} - \frac{1}{\lambda w_1}$ $\frac{1}{\lambda w_1} < \frac{1}{\lambda} < \frac{1}{\lambda w_2} \implies o < P < \frac{1}{\lambda w_2} - \frac{1}{\lambda w_1}$
Q4: Is it possible for low and high SNR regimes to overlap
Q4: Is it possible for low and high SNR regimes to overlap i.e. the SNR is high but only I eigenmode is active?
When we are doing beam forming, nomatter how high is the SNR, only 1 eigenmode is active.
is the SNR, only I eigenmode is active.
Q5, Justify the definition "wideband regime"
In SISO channel, C= of log(It Px/No if) (bit/s)
when of $\rightarrow \infty$, $C \approx af \cdot (\frac{P_X}{Noof}) = P_X/N_o$ (bibls)
then spectral efficiency $C = P_x = \gamma$ (bit/s/Hz)
this is exactly the form of low-SNR regime
with antenna gain = 1
channel

```
Optimal covariance matrix R* for key hade channel:
  H= hrht, W= HtH = 1hd2 heht
     C= max log ( I+ WR ) = max log | I+ |h+|2 h+ Rh+
   h_{t}^{+}Rh_{t} \leq \lambda_{i}(R) |h_{t}|^{2}, and
       R*= P ht ht
[ht] [ht]
Q1 Show that 1. Iso tropic signaling is optimal:
        (= max min (=9 |I+ HRH+)
  where SH := {H: trH++>G}
   so we assume W=H+H=Uw AwUwt, and
      Aw= diag { Iw, --- Iwm} all of them are variables.
      R= UR NUR N=diag{ As1, 22, --- 7m3
 O Assume: W = \Lambda_w, and R = \Lambda, we have
      CH= min log | I+ NWM = min & log (1+ Nwi Ami)
   we want to minimize CH, use KKT !
      1 2L =0 = 72 - 11 - 12 =0
         M( = 7wi - G-7=0, 7wiM1=0 bi,
        Twito, Eliwit Gr
```

Assume Juk >0, we have UK=0, TWE = (M-1 - 7/4)+ , assume E Twi 74 then $\mu = 0$, $\eta_{wk} = \infty$, doesn't make sense, so & Dwi = G, Thus, CH= Elog (H-17i) > log Cu-17m) Am is the smallest eigenvalue of R. equality is achieved when only Twm to, others are zero, then we maximize CH, we need to maximize the smallest eigenvalue of R, the best we can do is to let R= P/m I so the smallest eigenvalue is maximized. X. The solution for general case isn't found Q2 the capacity in this scenario is i C = log (1+ 7wm 7m) = log (1+ 4m) because Edwi = Cor and only Dwm #0. Q3, Compared with high SNR regime, we are using isotropic signaling but capacity is still SISO capacity. Q: Show that for any SNR, Cz (Y) \(C_1(Y) \(C_2(mY) \) We normalize south, then use P to denote SINR Y, low SNR scheme is proved, in high SNR case,

```
full CSI: C= E log (I+ Dwi )i) & mlog fm + log /w)
 no CSI: Cz= Log | I+ # W | 2 /9 / W =
     mlogin +log/W/ Cz =1,
 in rank deficioncy case, rank(W)=r,
      Ci= rlog + Elog hur
  \begin{array}{ll} (z=r\log\frac{P}{m}+\sum\limits_{i=1}^{r}\log\lambda wr\\ & \text{then} & (z(m)^{2})=r\log^{p}+\sum\limits_{i=1}^{r}\log\lambda wr\\ & (1\leq C_{2}\;Cmp)\;,\;\;\text{equality}\;\;\text{is achieved when}\;\;\;r=1 \end{array}
general case: general SNR,
    full CSI: C= Elog(1+ Ai Twi)
   no CSI: Cz = log / I+ Li WI = E log (I+ Li Dwi)
   because Ci is minimized form of Cz,

Cz \( \int \), the equality achieves when all \( \frac{\gamma\text{wiss}}{2} \)
              C2 (mP) = Elog (1+ P)wi)
      because di & P vi, then (og (1+ Awi di)
     < log(1+12 awi) C1 = Eilog(1+ awi ai)
    < (2(mp) = Elog (1+ p)wi)
      the equality holds when rank CW)=1
        So | ≤ GECSI ≤ M
```

```
max-SNR/MMSE Beamformer
Q2 i Consider the special case of R3 = 62 I
  When Rz= G2I, we can write z as }, where
   \mathbb{E}(33^{+}) = 6^{2} \mathbb{I}, and
 y=hx+#} this is SIMO

channel we already known, and best beamformer:
      w=2R2h = 2h and this result is exactly
       the best beamformer in SIMO case
SIC Rx (V-BLAST) Q1: show optimal Rx cancels interference
from all yet-to-be detected signals
proof: R3 = (\subsection \text{F3 h3 h3 + 62] we let eg to be the
  unit unitary vector of by and legi=1,
    then we form a matrix U = [e_1, --e_m] notice
    that &j exti ... em are direction vectors for hkti-hm
    and we complete other vectors, and to form a
    unitary matrix, because hkhy = 0 & 3>k, the direction
   vector \underline{e} is also in U.

w^* = R_3^{-1} h_k \quad \text{write} \quad R_3^{-1} \quad \text{as} \quad \frac{U(\Lambda + 6c^2 I) U^{\dagger}}{V^{\dagger}}
  1 = diag [ 0, 0, ---, PK+1 | hK+1 | 2, ---, Pm | hm | 2]
                 WE + hj = ht R3 hj = ht U(1+63 I) Uthj
   hk U = [0,0,...,|h_K|,0...0] U^{\dagger}h_{J}^{\dagger} = [0,0,...,1h_{J}|,0,-0,] with non-zero entry on the kth and yth entry respectively,
      then withy = ((1+632 I)-1) kg holy where (1kg 1s
      kyth dement of a matrix, so if k#3,
        then wet his =0
```

perantenna stream SNR
$$Y_k = \frac{|Y_{SK}|^2}{|Y_{NK}|^2}$$

$$= \frac{|Y_k| |W_k^k h_k|^2}{|W_k^k R_k^{N_k} h_k|} = \frac{|Y_k| |W_k^k R_k^{N_k} h_k|}{|W_k^k R_k^{N_k} h_k|}} = \frac{|Y_k| |W_k^k R_k^{N_k} h_k|}{|W_k^k R_k^{N_k} h_k|} = \frac{|Y_k| |W_k^k R_k^{N_k} h_k|}{|W_k^k R_k^{N_k} h_k|}} = \frac{|Y_k| |W_k^k R_k^{N_k} h_$$

then,
$$H^{\dagger}R_{1}^{\dagger}H = V\Sigma^{\dagger}U^{\dagger}U\left(\begin{bmatrix}\Sigma_{1}V^{\dagger}Rx_{3}V\Sigma_{1} & 0\\ 0 & 0\end{bmatrix} + 6z^{2}I\right)U^{\dagger}U\Sigma^{\dagger}V^{\dagger}$$

$$= V\Sigma^{\dagger}\left(\begin{bmatrix}\Sigma_{1}V^{\dagger}Rx_{3}V\Sigma_{1} & 0\\ 0 & 0\end{bmatrix} + 6z^{2}I\right)^{-1}\Sigma^{\dagger}V^{\dagger}$$

$$= \left(\Sigma_{1}V^{\dagger}Rx_{3}V\Sigma_{1} & 0\end{bmatrix} + 6z^{2}I\right)^{-1} = \begin{bmatrix}A & D\\ 0 & 6z^{3}I_{2}\end{bmatrix}$$

We let $I_{1} = \text{oliag}\{1,1,\dots,1\}$ an $m\times m$ unit $m \times m$ unit $m \times m$ and $I_{2} = (n-m)\times(n-m)$ identity $m \times m$.

$$A = \left(\Sigma_{1}V^{\dagger}Rx_{3}V\Sigma_{1} + 6z^{2}I\right)^{-1}$$

then $V\Sigma^{\dagger} = \begin{pmatrix}A & D\\ 0 & 6z^{3}I_{2}\end{pmatrix}\begin{bmatrix}\Sigma_{1}V^{\dagger}\\ 0 & 0\end{bmatrix} = V\Sigma^{\dagger}_{1}A\Sigma_{1}V^{\dagger}$

$$= \left(\Sigma_{1}V^{\dagger}V^{\dagger}\right)^{-1}A\left(V\Sigma_{1}V^{\dagger}\right)^{-1}$$

$$= \left(V\Sigma_{1}V^{\dagger}\Sigma_{1}V^{\dagger}\right)^{-1}A\left(V\Sigma_{1}V^{\dagger}\right)^{-1}$$

$$= \left(V\Sigma_{1}V^{\dagger}\Sigma_{1}V^{\dagger}\right)^{-1}A\left(V\Sigma_{1}V$$

optimal Bx ? Qz: What about low SNR regime? 60-200? when we = 2hk, equality holds, so optimal Rx: WE = dhk This means if SNR is low, we should point the beam to user k if we want to maximize SNR for user k, SOMA us FDMA: Q2 evaluate Cia, Csa for this example compare to Ci'Cs', comment on the difference Cia = of log (1+10.10) 2 6.6 Mbls Csa = NC1a = 66 Mb/s we can see it doubles the C, and Cs, but improvement is not much, because by increases slowly, and for Ci timear it is propotlonal, it increases much faster. SDMA via Null forming epacity of SDIVA via null forming When we are we SDMA, capacity for werk: Yrk = witte = withkak + wiff, Ck = log (1+ 1wkthkl2 x Pk) The system capacity $C_s = \sum_{k=1}^{m} log(1+\frac{|w_kt_k|^2 P_k}{|w_k|^2 60^2})$ when channel is orthogonal, hithy = 0 vity, the system capacity is optimized,

 $C_s = \sum_{k=1}^{m} \log(1 + \frac{Pk|b_k|^2}{6\delta^2})$ in this case, this is

the favorable propagation in V-BLAST Free-space MAC: 1. Consider free-space MAC, muers C = log | I + & | Pk hk ht | = log | I + mp hht | = log (It mNP) where h is Nx1 vector, h=[;] In this case, we can't use ZF-SDMA 2. Do the same for an orthogonal NAC, 1-1= I (= lg | I+WP| = log | I + IP| = = (g(1+Px) = mlog(It)

SIMO

This is equivalent to m independent channels and me channel gain is 1, K-user MAC Q4: assuming Q3: how does sum capacity & (sum= log | I+WP | = log | I+ 62 \ E P h h h can the two be equal? We can see the K-user MACAIS a special case of full MIMO capacity

C= log/I+ WRX C= max log | I + WRx | if we set Rx to P then we can know the full MIMO capacity is greater equal than MAC capacity, but when transmitting antennas of full MIMO do not corporate with each other, it is equivalent with k independent wer scenario.

so, when MIMO transmitter antennas transmit independent streams, the two capacities are equal. Q4 Assume all per-user channels are orthogonal each other, first we consider 2 user case, we have Base station equipped with Nantennas, rate of user land 2 are Ri and Rz, capacity denoted by C, and Cz R1 < C1 = log (1+ P, 1/2) $R_2 < C_2 = \log (1 + \frac{|^2 |_{\underline{b}} \cdot 2|^2}{6a^2})$ RITRIC LOGIT + 602 E PREME 1/4 1/4 = LogIT + WP where W= H+H= [hr, h2]+[hr,h2] = [|h1|20] ther and P=[0 B] then log [I+WP] = log(1+P,1112/62) +log(1+B1/2/62) we find the infer sections of line $R_1 = (g(1 + P_1 | h_1)^2/6s^2)$ $R_2 = (g(1 + P_2 | h_2 |^2/6s^2)$ and $R_1 + P_2 = (g(1 + P_1 | h_1 |^2/6s^2) + l_2 (1 + P_2 | h_2 |^2/6s^2)$ clearly, It's (R1, R2) = ((1,(2) then capacity region i C_2

We extend the result to the musers, then the hyperplane Sik = Csum intersects planes RK = CK all at one single point: (R,,...Rm) = (C,,...Cm) to achieve the intersection, we multiply wk to received signal X, according to quest the derivation for questions in V-BLAST, when channels are orthogonal, optimal beamformer we has property wthg =o for by the,
then wty = wt 的 hk xk + 多 wtf = totthet xx 'wethen xx + wetf
we apply this to every k, then get every signal xx To achieve other points, just reduce the corresponding user's rate.

Thus, we can know the optimal Rx is just performing SPMA, previously we found rate of SPMA is smaller than rate of MAC, because MAC rate is optimized, how ever in this case they are equal, because in this case, every signal of MAC are independent, we can no longer derive information about one signal from others, it is the same condition with SIMA.