This is a title Henry Linder mhlinder@gmail.com October 31, 2016

A citation: Gelman, Carlin, Stern, & Rubin (2014)

A classical (frequentist) approach

Consider a simple linear regression of tree height y_i on age x_i

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i \tag{1}$$

where ϵ_i are independent $N(0, \sigma^2)$ errors. For how it will pertain to the Bayesian analysis, note two things: first, we can equivalently write

$$y_i \sim N(\beta_0 + \beta_1 x_i, \sigma^2) \tag{2}$$

and second, this implies that the likelihood function for the data $\mathbf{y} = (y_1, \dots, y_n)'$ is $f(\mathbf{y}|\theta, \mathbf{x})$ where the data $\mathbf{x} = (x_1, \dots, x_n)'$ is assumed known and the parameter vector is $\theta = (\beta_0, \beta_1)'$.

A regression fit is given by

```
m <- lm(height ~ age, data = Loblolly)
summary(m)</pre>
```

```
##
## Call:
## lm(formula = height ~ age, data = Loblolly)
##
## Residuals:
##
                1Q Median
                                        Max
## -7.0207 -2.1672 -0.4391 2.0539
                                    6.8545
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.31240
                           0.62183
                                    -2.111
                                              0.0379 *
                2.59052
                           0.04094
                                    63.272
                                              <2e-16 ***
## ---
                   0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
##
## Residual standard error: 2.947 on 82 degrees of freedom
```

```
## Multiple R-squared: 0.9799, Adjusted R-squared: 0.9797 ## F-statistic: 4003 on 1 and 82 DF, p-value: < 2.2e-16
```

Note, in particular, that the regression coefficient β_1 is highly significant, the R^2 is high, and a QQ plot indicates the residuals are approximately normal:

A Bayesian approach

A conventional, convenient, and conjugate choice in Bayesian regression gives independent normal priors to β_0 and β_1 . For simplicity, let $\beta_0 \sim N(0,1)$ and $\beta_1 \sim N(0,1)$. A Bayesian analysis revolves around the fundamental relationship between the prior distribution $p(\theta)$ and the posterior distribution $p(\theta|\mathbf{y})$ of the parameter vector $\theta = (\beta_0, \beta_1)'$:

$$p(\theta|\mathbf{y}) \propto f(\mathbf{y}|\theta, \mathbf{x})p(\theta)$$
 (3)

where $f(\mathbf{y}|\theta, \mathbf{x})$ is the likelihood of the observed data, and we take \mathbf{x} as given. In the present case, we can write the likelihood as

$$f(\mathbf{y}|\theta, \mathbf{x}) = \prod_{i=1}^{n} f(y_i|\theta, x_i) \propto \exp\left[-\frac{1}{2\sigma^2} \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2\right]$$
(4)

where we omit the constant of proportionality for clarity.

Too, the prior for θ is

$$p(\theta) = p(\beta_0)p(\beta_1) \propto \exp\left[-\frac{1}{2}\left(\beta_0^2 + \beta_1^2\right)\right]$$
 (5)

So, we can find the posterior distribution as

$$p(\theta|\mathbf{y}) \propto p(\beta_0|\mathbf{y})p(\beta_1|\mathbf{y})$$
 (6)

References

Gelman, A., Carlin, J. B., Stern, H. S., & Rubin, D. B. (2014). *Bayesian data analysis* (Vol. 2). Chapman & Hall/CRC Boca Raton, FL, USA.