Lecture 6: Generating random variables -

Ciaran Evans

transformations

Previously

Methods to generate $U \sim Uniform(0,1)$:

- Linear congruential generator
- Mersenne twister
- lots of other variants and alternatives

Now we want to generate random variables with *other* distributions.

Question: If I have a uniform random variable, how can I get other random variables?

Example

Suppose we want to generate $X \sim \textit{Exponential}(\theta)$

Discrete case

Suppose that we want to generate $X \sim \textit{Bernoulli}(p)$

Generating a Normal random variable

Suppose we want to simulate $X \sim N(0,1)$

$$f_X(x) = \frac{1}{\sqrt{2\pi}} \exp\left\{-\frac{1}{2}x^2\right\}$$
 $F_X(t) = ?$

Box-Muller Transformation

Box-Muller in practice

```
# generate 1000 samples
u1 <- runif(1000)
u2 <- runif(1000)
v1 \leftarrow sqrt(-2*log(u1)) * cos(2*pi*u2)
v2 \leftarrow sqrt(-2*log(u1)) * sin(2*pi*u2)
    0.8
    9.0
    0.4
                                                Empirical cdf Y1
                                                N(0, 1) cdf
```

Box-Muller in practice

Other Normals

Suppose that $Z \sim N(0,1)$. How do I get $X \sim N(\mu, \sigma^2)$?

A few other transformations

- ▶ If $X \sim N(\mu, \sigma^2)$, then $e^X \sim Lognormal(\mu, \sigma^2)$
- ▶ If $Z_1,...,Z_k \stackrel{iid}{\sim} N(0,1)$, then

$$\sum_{i=1}^k Z_i^2 \sim ?$$

▶ If $V_1 \sim \chi^2_{d_1}$ and $V_2 \sim \chi^2_{d_2}$ are independent, then

$$\frac{V_1/d_1}{V_2/d_2}\sim?$$

Your turn

Practice questions on the course website:

https://sta379-s25.github.io/practice_questions/pq_6.html

- Practice with inverse transform method
- Start in class. You are welcome to work with others
- Practice questions are to help you practice. They are not submitted and not graded
- Solutions are posted on the course website