統計学の整理帳

tomixy

2025年7月26日

目次

第	1章	一次元ラ	データの	代表值	と散	女らに	ばり									2
	データの	の中心の打	指標:平	均值											•	2
	データの	のばらつき	きの指標	桌:偏身	alla .										•	2
	データの	のばらつき	きの指標	冥:分散	女と村	票準	扁差								•	4
	分散公式	£													•	5
	データの	の変換に。	よる平均	りと分散	女の多	变化									•	5
	データの	D標準化						•							•	7
第	2章	二次元ラ	データの	相関												9
	変量のホ	目互関係	: 相関												•	9
	相関の数	效値化:	共分散													10

第1章

一次元データの代表値と散らばり

データの中心の指標:平均値

「データを 1 つの値で要約するならばこれ」といった指標を代表値という。

最もよく使われる代表値が平均値 (mean) であり、データの中心を表す指標として広く用いられる。

平均値は、データをすべて足し合わせて、データの数で割ることで求まる。

平均 N 個の観測値 x_1, \ldots, x_N の総和をデータのサイズ N で割ったものを平均値という。

$$\overline{x} \coloneqq rac{1}{\mathsf{N}} \sum_{i=1}^{\mathsf{N}} x_i$$

データのばらつきの指標: 偏差

代表値はデータを 1 つの値で要約する指標であり、データのばらつきや偏りは表現しきれない。 そこで、新たにデータのばらつきを表す指標を考える。 各データが、平均からどれくらい離れているかを表す指標を偏差(deviation)という。

偏差 N 個の観測値 x_1, \ldots, x_N の平均値を \overline{x} とするとき、各観測値 x_i の偏差は次のように定義される。

$$d_i := x_i - \overline{x}$$

ここで、 d_i は i 番目のデータの偏差を表す。

偏差の平均値で全体をみる

全データの偏差 d_1, \ldots, d_N の平均値を求めることで、データ全体が平均からどれくらい離れて分布しているか(どれくらいばらついているか)を表すことができそうである。

しかし、偏差の平均値は、次のように常に 0 になってしまう。

$$egin{aligned} rac{1}{N} \sum_{i=1}^N d_i &= rac{1}{N} \sum_{i=1}^N (x_i - \overline{x}) \ &= rac{1}{N} \left(\sum_{i=1}^N x_i - \sum_{i=1}^N \overline{x}
ight) = rac{1}{N} \left(\sum_{i=1}^N x_i - N \overline{x}
ight) \ &= \sum_{i=1}^N rac{1}{N} x_i - \overline{x} = \overline{x} - \overline{x} = 0 \end{aligned}$$

そこで、単なる平均との差ではなく、平均との距離を考えることにする。 偏差に絶対値をつけたものの平均を<mark>平均偏差</mark>という。

ightharpoonup 平均偏差 ightharpoonup N 個の観測値 $ightharpoonup x_1, \dots, x_N$ の平均値を $ightharpoonup x_N$ とするとき、 $ightharpoonup x_N$ とするとき、 $ightharpoonup x_N$ ように定義する。

$$d := rac{1}{N} \sum_{i=1}^{N} |x_i - \overline{x}|$$

データのばらつきの指標:分散と標準偏差

平均偏差では、データと平均値の距離として絶対値を用いたが、絶対値は次のような理由で計算が 面倒である。

- 絶対値は微分できない点がある
- 正負を判定する条件分岐処理が入り、コンピュータでの計算速度が落ちる

そこで、絶対値の代わりに二乗を用いた、分散(variance)という指標を定義する。

ightharpoonup 分散 <math>
ightharpoonup N 個の観測値 x_1, \ldots, x_N の平均値を \overline{x} とするとき、分散を次のように定義する。

$$\sigma^2 := \frac{1}{N} \sum_{i=1}^N (x_i - \overline{x})^2$$

もとのデータと同じ単位を持ったばらつきの指標

分散では二乗を用いるため、単位に注意が必要である。

もとのデータの単位が [x] であれば、分散の単位は $[x]^2$ となる。

たとえば、点数を表すデータを扱っているとすると、その分散の単位は「点 2 」となり、直観的に理解しづらい。

そこで、単位をもとのデータと揃えるために、分散の平方根をとった形がよく用いられる。 分散の平方根を標準偏差(standard deviation)という。

□ 標準偏差 分散 $σ^2$ の平方根をとったものを標準偏差として定義する。

$$\sigma := \sqrt{\sigma^2}$$

分散公式

分散は、次のように計算することもできる。

$$\sigma^2 = rac{1}{\mathcal{N}} \sum_{i=1}^{\mathcal{N}} x_i^2 - \overline{x}^2$$

証明

分散の定義に基づいて、次のように計算する。

$$\sigma^{2} = \frac{1}{N} \sum_{i=1}^{N} (x_{i} - \overline{x})^{2}$$

$$= \frac{1}{N} \sum_{i=1}^{N} (x_{i}^{2} - 2x_{i}\overline{x} + \overline{x}^{2})$$

$$= \frac{1}{N} \sum_{i=1}^{N} x_{i}^{2} - 2\overline{x} \frac{1}{N} \sum_{i=1}^{N} x_{i} + \overline{x}^{2}$$

$$= \frac{1}{N} \sum_{i=1}^{N} x_{i}^{2} - 2\overline{x}^{2} + \overline{x}^{2}$$

$$= \frac{1}{N} \sum_{i=1}^{N} x_{i}^{2} - \overline{x}^{2}$$

データの変換による平均と分散の変化

データの変換(スケーリングやシフト)を行うと、平均や分散はどのように変化するのだろうか。

データのスケーリング

まず、データを定数 a 倍する変換を考える。

すなわち、各データ x_i を $y_i = ax_i$ に変換すると、平均と分散は次のように変化する。

$$\overline{y} = a\overline{x}$$
 $\sigma_y^2 = a^2\sigma_x^2$

☎ 証明

各データ x_i を $y_i = ax_i$ に変換すると、平均は次のように変化する。

$$\overline{y} = rac{1}{\mathsf{N}} \sum_{i=1}^{\mathsf{N}} a y_i = a \cdot rac{1}{\mathsf{N}} \sum_{i=1}^{\mathsf{N}} y_i = a \overline{y}$$

また、分散は次のように変化する。

$$\sigma_y^2 = rac{1}{N} \sum_{i=1}^N (ax_i - a\overline{x})^2 = rac{1}{N} \sum_{i=1}^N (a(x_i - \overline{x}))^2$$

$$= a^2 \cdot rac{1}{N} \sum_{i=1}^N (x_i - \overline{x})^2 = a^2 \sigma_x^2$$

データのシフト

次に、データを定数 b だけシフトする変換を考える。

すなわち、各データ x_i を $y_i = x_i + b$ に変換すると、平均と分散は次のように変化する。

$$\overline{y} = \overline{x} + b$$
$$\sigma_y^2 = \sigma_x^2$$

・データのシフトによる平均と分散の変化 観測値に b を加えると、平均は b だけ増えるが、分散は変化しない。

証明

各データ x_i を $y_i = x_i + b$ に変換すると、平均は次のように変化する。

$$\overline{y} = \frac{1}{N} \sum_{i=1}^{N} (x_i + b) = \frac{1}{N} \sum_{i=1}^{N} x_i + b = \overline{x} + b$$

また、分散は次のように変化しない。

$$\sigma_y^2 = \frac{1}{N} \sum_{i=1}^N (x_i + b - (\overline{x} + b))^2 = \frac{1}{N} \sum_{i=1}^N (x_i - \overline{x})^2 = \sigma_x^2$$

このように、データの変換によって平均と分散は異なる影響を受けることがわかる。

データの標準化

たとえば、平均点が 30 点のテストでとった 60 点と、平均点が 80 点のテストでとった 60 点とでは、相対的な出来が異なる。このように、点数というデータはそのテストの平均や分散によって評価が変わってしまう。

そのため、平均や分散に依存せずにデータの相対的な位置関係がわかるようにできたら便利である。

特に、平均が 0、標準偏差が 1 になるようにデータを変換することを標準化(standardization) という。

 $y_i = ax_i + b$ というデータの変換を考えよう。

これは、データをa倍してbだけシフトする変換である。

このとき、平均と標準偏差は次のように変化する。

- 平均は a 倍され、b だけ増える
- 標準偏差は a 倍される (分散が a^2 倍される)

数式で表すと、

$$\overline{y} = a\overline{x} + b$$
$$\sigma_y = a\sigma_x$$

そこで、平均 \overline{y} が0、標準偏差 σ_y が1になるように、aとbを次のように設定する。

$$a = \frac{1}{\sigma_x}$$
, $b = -\frac{\overline{x}}{\sigma_x}$

このようにすると、たしかに $\overline{y}=0$ 、 $\sigma_y=1$ となる。

このとき、変換後のデータ y_i は次のように表される。

$$y_i = ax_i + b = rac{x_i - \overline{x}}{\sigma_x}$$

■ 標準化 各データから平均を引き、標準偏差で割ることで、平均が 0、標準偏差が 1 になるように変換することを標準化という。

各データ x_i を標準化したデータを y_i とすると、次の関係が成り立つ。

$$y_i = rac{x_i - \overline{x}}{\sigma_x}$$

第 2 章

二次元データの相関

変量の相互関係:相関

2 次元データ (x, y) において、2 つの変量 x と y の間に相互関係がみられるとき、x と y の間には相関 (correlation) 関係があるという。

 \bullet 正の相関:x が大きいほど、y も大きくなる傾向がある

 \bullet 負の相関:x が大きいほど、y は小さくなる傾向がある

● 無相関:どちらにも当てはまらない(直線的な関係がない)

相関の数値化:共分散

グラフを描いて視覚的に相関を確認することはできるが、客観的に表現するために、数値で判断で きるようにしたい。

そのために、x, y の平均 $(\overline{x}, \overline{y})$ を原点とする新たな座標軸を考える。

すると、正の相関か負の相関かに応じて、データが多く分布する象限 (座標軸で切り分けた領域) が異なることがわかる。

正の相関の場合は、第一象限と第三象限にデータが多く分布することがわかる。

 \bullet 第一象限: $x>\overline{x}$ かつ $y>\overline{y}$ である範囲

ullet 第三象限: $x<\overline{x}$ かつ $y<\overline{y}$ である範囲

負の相関の場合は、第二象限と第四象限にデータが多く分布することがわかる。

 \bullet 第二象限: $x < \overline{x}$ かつ $y > \overline{y}$ である範囲

• 第四象限: $x > \overline{x}$ かつ $y < \overline{y}$ である範囲

この場合分けは、次のようにまとめることができる。

- \bullet 正の相関の場合、 $x-\overline{x}$ と $y-\overline{y}$ の符号が同じになる点が多い
- \bullet 負の相関の場合、 $x-\overline{x}$ と $y-\overline{y}$ の符号が反対になる点が多い

さらに、符号が同じものの積は正、符号が反対のものの積は負になることから、

- 正の相関の場合、 $(x-\overline{x})(y-\overline{y}) > 0$ となる点が多い
- 負の相関の場合、 $(x-\overline{x})(y-\overline{y}) < 0$ となる点が多い

各データについて $(x_i - \overline{x})(y_i - \overline{y})$ を求め、全データの平均をとることで、相関を判定できそうである。このような考え方で相関を数値化したものを共分散(covariance)という。

⇒ 共分散 N 個の観測値 $(x_1, y_1), \ldots, (x_N, y_N)$ の平均をそれぞれ $\overline{x}, \overline{y}$ とするとき、共分散を次のように定義する。

$$\sigma_{xy} \coloneqq rac{1}{\mathsf{N}} \sum_{i=1}^{\mathsf{N}} (x_i - \overline{x}) (y_i - \overline{y})$$