Transportation Problem

Goods are produced at m different supply centers i = 1, 2, ..., m. The supply produced at supply center i is S_i , i = 1, 2, ..., m. The demand for the good comes from n different demand centers, d_j j = 1, 2, ..., n. Cost of shipping one unit from supply center i to demand center j is c_{ij} . Variables x_{ij} define the number of units shipped from supply center i to demand center j.

Feasibility condition

$$\sum_{j=1}^{n} d_j \le \sum_{i=1}^{m} S_i$$

Math Formulation

$$\sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} \cdot x_{ij} \tag{1}$$

$$\sum_{i=1}^{n} x_{ij} \le S_i \qquad i = 1, 2, ..., m \tag{2}$$

$$\sum_{i=1}^{m} x_{ij} = d_j \qquad j = 1, 2, ..., n$$
(3)

$$x_{ij} \ge 0$$
 $i = 1, 2, ..., m, j = 1, 2, ..., n$ (4)

In this problem you can also assume that variables x_{ij} take on integer values (and non-negative ones), it depends on the good you are dealing with.