10.73. В ртутном диффузионном насосе в единицу времени испаряется масса $m_{\rm r}=100$ г/мин ртути. Каково должно быть сопротивление R нагревателя насоса, если он включается в сеть напряжением U=127 В? Удельная теплота парообразования ртути q=296 кДж/кг.

Решение:

Количество тепла, необходимое для испарения ртути, Q = qm — (1). С другой стороны, по закону Джоуля — Ленца $Q = IU\tau$ — (2). Приравниваем правые части уравнений (1) и (2) $qm = IU\tau$, отслода сила тока нагревателя насоса $I = \frac{qm}{U\tau} = \frac{qm_\tau}{U}$. Из закона Ома для участка цепи

сопротивление нагревателя насоса
$$R = \frac{U}{I} = \frac{U^2}{qm_r} = 32,69 \, \text{Om}.$$

10.74. В цепь, состоящую из медного провода площадью поперечного сечения $S_1 = 3 \text{ мм}^2$, включен свинцовый предохранитель площадью поперечного сечения $S_2 = 1 \text{ мм}^2$. На какое повышение температуры Δt_1 медного провода при коротком замыкании цепи рассчитан предохранитель? Считать, что при коротком замыкании вследствие кратковременности процесса все выделившееся тепло идет на нагревание цепи. Начальная температура предохранителя $t_0 = 17^{\circ}$ С.

Решение:

В медном проводе выделится количество теплоты $Q_1 = m_1 c_1 \Delta T_1 = \rho_1 l_1 S_1 c_1 \Delta T_1$ — (1), где ρ_1 — плотность меди, l_1 — длина провода, c_1 — удельная теплоемкость меди. В свинцовом предохранителе выделится количество теплоты $Q_2 = m_2 c_2 \Delta T_2 + m_2 r = \rho_2 l_2 S_2 (c_2 (T_{nn} - T_0) + r)$ — (2), где ρ_2 — плотность свинца, l_2 — длина предохранителя, c_2 — удельная теплоемкость свинца, r— удельная теплота плавления свинца. По закону Джоуля— Ленца $Q_1 = I_1^2 R_1 t$,

 $Q_2 = I_2^2 R_2 t$. Поскольку провод и предохранитель включены в цепь последовательно, то $I_1 = I_2$, тогда $\frac{Q_1}{Q_2} = \frac{R_1}{R_2} = \frac{\rho_1' l_1 S_2}{\rho_2' l_2 S_1}$ — (3), где ρ_1' и ρ_2' — удельные сопротивления меди и свинца. Из уравнений (1) — (3) найдем $\frac{\rho_1 l_1 S_1 c_1 \Delta T_1}{\rho_2 l_2 S_2 \left(c_2 \left(T_{\text{п:1}} - T_0\right) + r\right)} = \frac{\rho_1' l_1 S_2}{\rho_2' l_2 S_1}$, откуда $\Delta T_1 = \frac{\rho_2 \rho_1' S_2^2 \left(c_2 \left(T_{\text{п:1}} - T\right)_0 + r\right)}{\rho_2' \rho_1 S_1^2 c_1}$. Подставляя числовые данные, получим $\Delta T_1 = 1.8$ К.

10.75. Найти количество теплоты $Q_{\rm r}$, выделившееся в единицу времени в единице объема медного провода при плотности тока $j = 300~{\rm kA/m}^2$.

Решение:

Согласно закону Джоуля — Ленца за время τ в проводнике выделяется количество теплоты $Q=I^2R\tau$. Тогда в единицу времени в единице объема проводника выделится количество теплоты $Q_{\rm r}=\frac{I^2R}{V}$. Имеем $R=\rho\frac{l}{S};\ V=Sl$, тогда $Q_{\rm r}=\frac{I^2}{S^2}\rho$, где $\rho=0.017\cdot 10^{-6}\,{\rm Om\cdot m}$ — удельное сопротивление меди. Плотность тока $j=\frac{I}{S}$, отсюда $Q_{\rm r}=j^2\rho=1.5\cdot 10^3\,{\rm Дж/(m^3\cdot c)}.$

10.76. Найти токи $I_{\rm r}$ в отдельных ветвях мостика Уитстона при условии, что через гальванометр идет ток $I_{\rm r}=0$. Э.д.с. эле-

мента $\varepsilon = 2 \,\mathrm{B}$, сопротивления $R_1 = 30 \,\mathrm{Om}$, $R_2 = 45 \,\mathrm{Om}$ и $R_3 = 200 \,\mathrm{Om}$.

Решение:

. T. к. $I_r = 0$, то потенциалы в точках 1 и 2 одинаковые, следовательно, можно рассматривать упрощенную эквивалентную схему. По первому правилу Кирхгоффа для узла 1 имеем: $I = I_1 + I_3$ — (1). По второму правилу Кирхгоффа для контуров KLBCMN и KLADMN соответ**ств**енно имеем: $\varepsilon = I_1(R_1 + R_2)$ — (2) и $\varepsilon = I_2(R_2 + R_4)$ — (3). Поскольку $U_{AD} = U_{BC}$, а также $I_1 = I_2$ и $I_3 = I_4$, то падения потенциалов на **с**опротивлениях R_2 и R_4 равны между собой, то $I_1R_2 = I_3R_4$ — (4). Из уравнения (2) находим, что $I_1 = I_2 = \frac{\varepsilon}{R_1 + R_2}$ — (5). Подставляя

числовые данные, получим $I_1 = I_2 = 26.7$ мА. Из уравнения

(3) находим, что
$$I_3 = \frac{\varepsilon}{R_3 + R_4}$$
 — (6), а из уравнения (4) на-

ходим, что $R_4 = \frac{I_1 R_2}{I_3}$ — (7). Подставляя (5) в (7), получаем

$$R_4 = \frac{R_2 \varepsilon}{I_3 (R_1 + R_2)}$$
 — (8). Решая совместно уравнения (6) и

(8) и учитывая, что $I_3 = I_4$, окончательно получаем

$$I_3 = I_4 = \frac{R_1 \varepsilon}{R_3 (R_1 + R_2)} = 4 \text{ MA}.$$

10.77. Э.д.с. элементов $\varepsilon_1=2,1\,\mathrm{B}$ и $\varepsilon_2=1,9\,\mathrm{B}$, сопротивления $R_1=45\,\mathrm{Om},\ R_2=10\,\mathrm{Om}$ и $R_3=10\,\mathrm{Om}.$ Найти токи I_i во всех участках цепи.

Решение:

На рисунке стрелками указано выбранное направление токов. Для узла A согласно первому правилу Кирхгоффа имеем $I_1+I_2=I_3$. Для контуров ABC и ACD по второму правилу Кирхгоффа имеем $I_3R_3+I_1R_1=\varepsilon_1$, $I_1R_1-I_2R_2=\varepsilon_2$. Подставляя числовые данные, получим систему уравнений: $I_3=I_1+I_2$,

 $10I_3+45I_1=2.1$, $45I_1-10I_2=1.9$. Решая эту систему, получим $I_1=0.04$ A, $I_2=-0.01$ A, $I_3=0.03$ A. Знак «минус» у тока I_2 указывает на то, что его направление противоположно выбранному.

10.78. Какая разность потенциалов U получается на зажимах двух элементов, включенных параллельно, если их э.д.с. $\varepsilon_1=1.4~{\rm B}$ и $\varepsilon_2=1.2~{\rm B}$ и внутреннее сопротивление $r_1=0.6~{\rm CM}$ и $r_2=0.4~{\rm CM}$?

Решение:

Согласно закону Ома для неоднородного участка цепи $I=\frac{\varepsilon_1+\left(\varphi_1-\varphi_2\right)}{r_1}$; $I=\frac{-\varepsilon_2+\left(\varphi_1-\varphi_2\right)}{r_2}.$ Таким образом, $\frac{\varepsilon_1+U}{r_2}=\frac{-\varepsilon_2+U}{r_2}, \text{ откуда } r_2(\varepsilon_1-U)=$

$$= r_1(U - \varepsilon_2); \qquad r_2 \varepsilon_1 - r_2 U = r_1 U - r_1 \varepsilon_2; \qquad U = \frac{r_2 \varepsilon_1 + r_1 \varepsilon_2}{r_1 + r_2};$$

$$U = 1,28 \text{ B}.$$

10.79. Два элемента с одинаковыми э.д.с. $\varepsilon_1 = \varepsilon_2 = 2\,\mathrm{B}$ и внутренними сопротивлениями $r_1 = 1 \text{ Ом } \text{ и } r_2 = 2 \text{ Ом }$ замкнуты на внешнее сопротивление R . Через элемент с э.д.с. ε_1 течет ток $I_1 = 1$ А. Найти сопротивление R и ток I_2 , текущий через элемент с э.д.с. ε_2 . Какой ток I течет через сопротивление R?

Решение:

Выберем и рассмотрим два контура ABCD и ABMN. Для каждого из Предположительно определим направление токов в каждом из элементов схемы. По второму правилу Кирхгоффа для контура АВСО имеем $\varepsilon_2 - \varepsilon_1 = I_2 r_2 - I_1 r_1$ — (1); для

контура ABMN имеем $-\varepsilon_1 = -I_1r_1 - IR$ — (2). По первому правилу Кирхгоффа для узла N имеем $I = I_1 + I_2$ — (3).

Из уравнения (1) ток
$$I_2 = \frac{\varepsilon_2 - \varepsilon_1 + I_1 r_1}{r_2} = 0.5$$
 А. Решаем сис-

тему уравнений методом подстановки, т. к. у нас есть три уравнения и три неизвестных. Подставив найденное значение тока I_2 в уравнение (3), найдем ток $I = I_1 + I_2 = 1.5$ А.

Из уравнения (2) сопротивление
$$R = \frac{\varepsilon_1 - I_1 R}{I} = 0.66 \, \text{Ом}.$$

10.80. Решить предыдущую задачу, если $\varepsilon_1 = \varepsilon_2 = 4 \, \mathrm{B}$, $r_1 = r_2 = 0.5 \text{ OM H } I_1 = 2 \text{ A}.$

Решение:

Т. к. внутренние сопротивления источников э.д.с. равны, то токи (см. задачу 10.79) $I_1 = I_2 = 2 \text{ A}$, а, следовательно,

$$I = 2I_1 = 4$$
 A, тогда сопротивление $R = \frac{\varepsilon_1 - I_1 r_1}{I} = 0.75$ Ом.

10.81. Батарен имеют э.д.с. $\varepsilon_1 = 110 \,\mathrm{B}$ и $\varepsilon_2 = 220 \,\mathrm{B}$, сопротивления $R_1 = R_2 = 100 \,\text{Om}, R_3 = 500 \,\text{Om}.$ Найти показание амперметра.

Решение:

Выберем и рассмотрим два контура ABCD и ABMN, для каждого из них выберем направление обхода. Предположительно определим направление токов в каждом сопротивлении. По второму правилу Кирхгоффа для контура ABMNимеем $\varepsilon_1 = I_3 R_3 + I_4 R_4$ — (1); для контура ABCD имеем $\varepsilon_2 - \varepsilon_1 =$

 $=I_{2}R_{2}-I_{1}R_{1}$ — (2). Согласно первому правилу Кирхгоффа для узла M имеем $I_3 = I_1 + I_2$ — (3). Из уравнения (1) ток $I_3 = \frac{\varepsilon_1 - I_1 R_1}{R_2}$, а из уравнения (2) ток $I_2 = \frac{\varepsilon_2 - \varepsilon_1 + I_1 R_1}{R_2}$

Амперметр покажет ток через сопротивление R_i , который из уравнения (3) $I_1 = I_3 - I_2 = \frac{\varepsilon_1 - I_1 R_1}{R_2} - \frac{\varepsilon_2 - \varepsilon_1 + I_1 R_1}{R_2}$ или

окончательно $I_1 = \frac{\varepsilon_1 R_2 - \varepsilon_2 R_3 + \varepsilon_1 R_3}{R_2 R_3 + R_1 R_2 + R_1 R_3} = -0.4 \text{ A.}$ Знак «ми-

нус» означает, что мы ошиблись в выборе направления тока I_1 , т. е. он течет в противоположном направлении.

10.82. Батарен имеют э.д.с. $\varepsilon_1 = 2$ В и $\varepsilon_2 = 4$ В, сопротивление $R_1 = 0.5$ Ом (см. рисунок к задаче 10.81). Падение потенциала на сопротивлении R_2 равно $U_2 = 1$ В (ток через R_2 направлен справа налево). Найти показание амперметра.

Решение:

Выберем и рассмотрим два контура NMCD и ABMN . Для каждого из них выберем направление обхода. Предположительно определим направление токов в каждом из элементов схемы. По второму правилу Кирхгоффа для контура ABMN имеем $I_1R_1+I_3R_3=\varepsilon_1$, для контура NMCD имеем $I_3R_3+I_2R_2=\varepsilon_2$. Падение сопротивления на R_2 : $U_2=I_2R_2$. Подставляя числовые данные, получим систему уравнений $\begin{cases} 0.5I_1-I_3R_3=-2, \\ I_3R_3+1=4. \end{cases}$ Решив эту систему, получим $I_1=2$ A.

10.83. Батареи имеют э.д.с. $\varepsilon_1 = 30\,\mathrm{B}$ и $\varepsilon_2 = 5\,\mathrm{B}$, сопротивления $R_2 = 10\,\mathrm{Om}$, $R_3 = 20\,\mathrm{Om}$ (см. рисунок к задаче 10.81). **Через** амперметр течет ток $I = 1\,\mathrm{A}$, направленный от R_3 к R_1 . **На**йти сопротивление R_1 .

Решение:

Воспользуемся результатами задачи 10.81

$$\begin{split} I_{\rm I} &= \frac{\varepsilon_1 R_2 - \varepsilon_2 R_3 + \varepsilon_1 R_3}{R_2 R_3 + R_1 R_2 + R_1 R_3} \;. \; \text{Преобразуем это выражение и вы-} \\ \mathbf{pазим} \;\; \text{из него} \;\; R_{\rm I} : \;\; I_1 R_2 R_3 + I_1 R_1 R_1 + I_1 R_1 R_3 = \varepsilon_1 R_2 - \varepsilon_2 R_3 + \\ &+ \varepsilon_1 R_3 - I_1 R_2 R_3 \;; \qquad R_{\rm I} I_1 \big(R_2 + R_3 \big) = R_2 \big(\varepsilon_1 - I_1 R_3 \big) + R_3 \big(\varepsilon_1 - \varepsilon_2 \big) \;; \\ R_{\rm I} &= \frac{\big(\varepsilon_1 - \varepsilon_2 \big) R_2 + \big(\varepsilon_1 - R_2 I_1 \big) R_3}{I_1 \big(R_2 + R_3 \big)} = \frac{100 + 500}{30} = 20 \; \text{Ом}. \end{split}$$

10.84. Батарей имеют э.д.с. $\varepsilon_1=2~\mathrm{B}$ и $\varepsilon_2=3~\mathrm{B}$, сопротивления $R_1=1~\mathrm{кOm},~R_2=0.5~\mathrm{кOm}$ и $R_3=0.2~\mathrm{кOm},$ сопротивление амперметра $R_4=0.2~\mathrm{кOm}.$ Найти показание амперметра.

Решение:

Выберем и рассмотрим два контура, для каждого из них выберем направление обхода. Предположительно определим направление токов в каждом сопротивлении и амперметре. Для каждого контура запишем уравнение по второму правилу Кирх-

гоффа $\varepsilon_2=I_3R_3+I_1R_1+I_AR_A$ — (1); $\varepsilon_1-\varepsilon_2=I_2R_2-I_3R_3-I_AR_A$ — (2). С учетом $I_A=I_3$ уравнения (1) и (2) можно переписать следующим образом: $\varepsilon_2=I_A(R_3+R_A)+I_1R_1$ или $I_1=\frac{\varepsilon_2-I_A(R_3+R_A)}{R_1}$ — (5); $\varepsilon_1-\varepsilon_2=I_2R_2-I_A(R_3-R_A)$ или $I_2=\frac{\varepsilon_1-\varepsilon_2+I_A(R_3+R_A)}{R_2}$ — (6). Из уравнения (3), с учетом уравнений (5) и (6), имеем $I_A=I_2-I_1=\frac{\varepsilon_1-\varepsilon_2+I_A(R_3+R_A)}{R_2}$ — $\frac{\varepsilon_2-I_A(R_3+R_A)}{R_1}$, откуда ток через амперметр $I_A=\frac{(\varepsilon_1-\varepsilon_2)R_1-\varepsilon_2R_2}{R_2R_3-(R_3+R_A)(R_1-R_2)}=-0.45$ А. Знак

10.85. Батарен имеют э.д.с. $\varepsilon_1=2~\mathrm{B}$ и $\varepsilon_2=3~\mathrm{B}$, сопротивление $R_3=1.5~\mathrm{кOM}$, сопротивление амперметра $R_3=0.5~\mathrm{кOM}$. Падение потенциала на сопротивлении R_2 равно $U_2=1~\mathrm{B}$ (ток через R_2 направлен сверху вниз). Найти показание амперметра.

«минус» означает, что направление тока I_{A} противо-

положно направлению, указанному на рисунке.

Решенне:

выберем контур, направление обхода по нему и запишем для него уравнение по второму правилу Кирхгоффа $\varepsilon_1-\varepsilon_2=U_2-I_3R_3-I_AR_A$. Кроме того, по первому правилу Кирхгоффа $I_1=I_2+I_A$. Отсюда показание амперметра $I_A=\frac{U_2-\varepsilon_1+\varepsilon_2}{R_1+R_2}=1\,\mathrm{MA}.$

10.86. Батарен имеют э.д.с. $\varepsilon_1 = 2$ В, $\varepsilon_2 = 4$ В и $\varepsilon_3 = 6$ В, сопротивления $R_1 = 4$ Ом, $R_2 = 6$ Ом и $R_3 = 8$ Ом. Найти токи I, во всех участках цепи.

Решение:

Выберем и рассмотрим два контура, для каждого из них выберем направление обхода. Предположительно определим направление токов в каждом сопротивлении. Для каждого контура запишем уравнение по второму правилу Кирхгоффа $\varepsilon_3 - \varepsilon_1 = I_1 R_1 - I_3 R_3$ — (1);

 $\varepsilon_2 - \varepsilon_1 = I_2 R_2 + I_1 R_1$ — (2). Согласно первому правилу Кирхгоффа $I_2 = I_1 + I_3$ — (3). Подставим (3) в (2), тогда $\varepsilon_2 - \varepsilon_1 = I_1 R_2 + I_3 R_2 + I_1 R_1$, откуда $I_3 = \frac{\varepsilon_2 - \varepsilon_1 - I_1 R_2 - I_1 R_1}{R_2}$ — (4). После подстановки (4) в (1) получаем $I_1 = \frac{(\varepsilon_3 - \varepsilon_1)R_2 + (\varepsilon_2 - \varepsilon_1)R_3}{R_1 R_2 + R_2 R_3 + R_1 R_3} = 385 \,\mathrm{MA}$. Подставляя найден-

ное значение тока I_1 в уравнение (4), получаем $I_3 = -308\,\mathrm{mA}$. Знак «минус» означает, что направление тока

 I_3 противоположно указанному на рисунке направлению. Подставляя найденное значение токов I_1 и I_3 в уравнение (3), находим $I_2 = 77$ мА.

10.87. Батареи имеют э.д.с. $\varepsilon_1=\varepsilon_2=\varepsilon_3=6$ В, сопротивления $R_1=20$ Ом, $R_2=12$ Ом. При коротком замыкании верхнего узла схемы с отрицательным зажимом батарей через замыкающий провод течет ток I=1,6 А. Найти токи I_r во всех участках цепи и сопротивление R_3 .

Решение:

И Для контура ABFE по второму правилу Кирхгоффа при направлении обхода по часовой стрелке имеем $\varepsilon_1 - \varepsilon_2 = I_1R_1 - I_2R_2$ и т. к. $\varepsilon_1 = \varepsilon_2$, то $I_1R_1 = I_2R_2$ — (1). Для контура FCDE по второму правилу Кирхгоффа, при направлении обхода по часовой стрелке, имеем $\varepsilon_2 - \varepsilon_3 = I_2R_2 - I_3R_3$, т. к.

 $arepsilon_2 = arepsilon_3$, то $I_3 R_3 = I_2 R_2$ — (2). При коротком замыкании узлов E и F получаем контур KLMN, для которого по второму правилу Кирхгоффа имеем $arepsilon_2 = I_2 R_2$ — (3),

откуда ток через сопротивление R_2 равен $I_2 = \frac{\mathcal{E}_2}{R_2} = 0.5 \, \mathrm{A}.$

По первому правилу Кирхгоффа для узла F имеем $I_1 + I_2 + I_3 = I$ — (4). Из уравнения (1) с учетом (3) $I_1R_1 = \varepsilon_2$ находим ток через сопротивление R_1 :

 $I_1 = \frac{\varepsilon_2}{R_1} = 0.3 \, \mathrm{A}$. Из уравнения (4) находим ток через сопро-

тивление R_3 : $I_3 = I - I_1 - I_2 = 0.8$ А. Из уравнения (2) с учетом (3) сопротивление $R_3 = \frac{\varepsilon_2}{I_3} = 7.5$ Ом.

10.88. В схеме, изображенной на рисунке к задаче 10.86, токи I_1 и I_3 направлены справа налево, ток I_2 — сверху вниз. Падения потенциала на сопротивлениях R_1 , R_2 и R_3 равны $U_1 = U_2 = U_3 = 10$ В. Найти э.д.с. ε_2 и ε_3 , если э.д.с. $\varepsilon_1 = 25$ В.

Решение:

Рассмотрим контур ABCD. По второму правилу Кирхгоффа $U_1-U_2=\varepsilon_2-\varepsilon_2$ и $U_1=2U_2$, отсюда $\varepsilon_2=U_1-\frac{U_1}{2}+\varepsilon_1=\frac{U_1}{2}+\varepsilon_1$; $\varepsilon_2=30\,\mathrm{B}.$ Аналогично рассмотрим контур CDFE. По второму правилу Кирхгоффа $U_3+U_2=\varepsilon_3-\varepsilon_2$ и $U_3=2U_2$, откуда $\varepsilon_3=\frac{U_3}{2}+U_3+\varepsilon_2$; $\varepsilon_3=45\,\mathrm{B}.$

10.89. Батарен имеют э.д.с. $\varepsilon_1=\varepsilon_2=100\,\mathrm{B}$, сопротивления $R_1=20\,\mathrm{Om},\ R_2=10\,\mathrm{Om},\ R_3=40\,\mathrm{Om}$ и $R_4=30\,\mathrm{Om}.$ Найти показание амперметра.

Решение:

Выберем и рассмотрим два контура, для каждого из них выберем направление обхода. Предположительно определим направление токов в каждом сопротивлении. Для каждого контура запишем уравнение по второму правилу Кирхгоффа $\varepsilon_1 = I_3 R_3 + I_{14} R_{14} - (1)$;

 $arepsilon_1+arepsilon_2=I_2R_2+I_{14}R_{14}$ — (2), где $R_{14}=\frac{R_1R_4}{R_1+R_4}$ — (3), т. к. сопротивления R_1 и R_4 соединены параллельно. Согласно первому правилу Кирхгоффа $I_{14}=I_3+I_2$ — (4), где I_{14} — ток, который покажет амперметр. Из уравнений (1) и (2) находим токи $I_3=\frac{arepsilon_1-I_{14}R_{14}}{R_3}$ и $I_2=\frac{arepsilon_1+arepsilon_2-I_{14}R_{14}}{R_2}$ и подставляем их в уравнение (4), тогда $I_{14}=\frac{arepsilon_1-I_{14}R_{14}}{R_3}+\frac{arepsilon_1+arepsilon_2-I_{14}R_{14}}{R_2}$ — (5). Из уравнения (5) с

учетом (3) окончательно получаем

указанному на рисунке.

$$I_{14} = \frac{\varepsilon_1 R_2 + (\varepsilon_1 + \varepsilon_2) R_3}{R_3 R_2 + R_1 R_4 (R_2 + R_3) / (R_1 + R_4)} = -9$$
 мА. Знак «минус» означает, что ток I_{14} имеет направление, противоположное

10.90. Батареи имеют э.д.с. $\varepsilon_1=2\varepsilon_2$, сопротивления $R_1=R_3=20~{\rm Om},~R_2=15~{\rm Om}$ и $R_4=30~{\rm Om}.$ Через амперметр течет ток $I=1,5~{\rm A},$ направленный снизу вверх. Найти э.д.с. ε_1 и

 $arepsilon_2$, а также токи I_2 и I_3 , текущие через сопротивления R_2 и

Решение:

 R_{i} .

Т. к. по условию батареи имеют э.д.с. $\varepsilon_1 = 2\varepsilon_2$, то уравнения по второму правилу Кирхгоффа (см. задачу 10.89) запишутся следующим образом: $2\varepsilon_2 = I_3R_3 + IR_{14}$ — (1) и $3\varepsilon_2 = I_2R_2 + IR_{14}$ — (2), где I — показание амперметра, $R_{14} = \frac{R_1R_4}{R_1+R_4}$ — (3) — общее со-

противление R_1 и R_4 , т. к. они соединены параллельно. **Т.** к. $I = I_3 + I_2$ — (4), то $I_2 = I - I_3$ — (5), следовательно, после подстановки (5) в (2) имеем $3\varepsilon_2 = (I - I_3)R_2 + IR_{14}$ или $I_2 = \frac{I(R_2 + R_{14}) - 3\varepsilon_2}{R_2}$ — (6). Подставив (6) и (3) в (1),

найдем э.д.с. $\varepsilon_2 = \frac{I[R_2R_3 + R_1R_4(R_3 + R_2)/(R_1 + R_4)]}{2R_2 + 3R_3} = 12 \text{ B},$

тогда $\varepsilon_1 = 2\varepsilon_2 = 24$ В. Подставив в уравнение (6) найденное значение ε_2 , находим ток $I_3 = 0.3$ А; после чего из уравнения (5) ток $I_2 = 1.2$ А.

10.91. Два одинаковых элемента имеют э.д.с. $\varepsilon_1 = \varepsilon_2 = 2$ В и внутренние сопротивления $r_1 = r_2 = 0.5$ Ом. Найти токи I_1 и I_2 , текущие через сопротивления $R_1 = 0.5$ Ом и $R_2 = 1.5$ Ом, а также ток I через элемент с э.д.с. ε_1 .

Решение:

Для контура KLMN по второму правилу Кирхгоффа при направлении обхода по часовой стрелке имеем $\boldsymbol{\varepsilon}_1 = I_1R_1 + I_1'r_1$ — (1). Аналогично для контура $ABCD: \boldsymbol{\varepsilon}_1 - \boldsymbol{\varepsilon}_2 = I_1R_1 + I_2'r_2 + I_1'r_1$ — (2). По первому правилу Кирхгоффа для узлов L и M соответственно получаем $I_1' = I_1 + I_2$ —

(3) и $I_1' = I_1 + I_2$ — (4). Из уравнений (3) и (4) следует, что $I_2' = I_2$. Т. к. $\varepsilon_1 = \varepsilon_2$, то из уравнения (2) с учетом (4) по-

лучаем
$$I_2(R_2+r_2)=-I_1'r_1$$
, откуда ток $I_2=-\frac{I_1'r_1}{R_2+r_2}$ — (5), а

из уравнения (1) ток $I_1 = \frac{\varepsilon_1 - I_1' r_1}{R_1}$ — (6). Подставляя (5) и

(6) в (3), получаем
$$I_1' = \frac{\varepsilon_1 - I_1' r_1}{R_1} - \frac{I_1' r_1}{R_2 + r_2}$$
, откуда ток через $\varepsilon \left(R_2 + r_2 \right)$

элемент
$$\varepsilon_1$$
 равен $I_1' = \frac{\varepsilon_1(R_2 + r_2)}{R_1R_2 + R_1r_2 + r_1R_2 + r_1r_2 + r_1R_1} = 1,78$ А.

Из уравнения (5) ток через сопротивление R_2 равен $I_2 = -0.46$ А. Из уравнения (3) ток через сопротивление R_1 равен $I_1 = I_1' - I_2 = 2.24$ А.

10.92. Батареи имеют э.д.с. $\varepsilon_1 = \varepsilon_2$, сопротивления $R_2 = 2R_1$. Во сколько раз ток, текущий через вольтметр, больше тока, текущего через сопротивление R_2 ?

Решение:

Выберем и рассмотрим два контура, для каждого из них выберем направление обхода. Предположительно определим направление токов в каждом сопротивлении и в вольтметре. По второму правилу Кирхгоффа для каждого контура имеем $\varepsilon_1 = I_1 R_1 + I_V R_V - (1)$ и $\varepsilon_2 = I_2 R_2 + I_V R_V - (2)$

и т. к. по условию $R_2=2R_1$, то уравнение (2) можно переписать в виде $\varepsilon_2=2I_1R_1+I_\nu R_\nu$ — (3). Согласно первому правилу Кирхгоффа $I_\nu=I_1+I_2$ — (4), откуда $I_1=I_{1'}-I_2$ — (5). Вычтем из (3) (1), тогда $\varepsilon_2-\varepsilon_1=2I_2R_1-I_1R_1=0$, т. к. по условию $\varepsilon_2=\varepsilon_1$, следовательно, с учетом (5) $2I_2R_1=(I_\nu-I_2)R_1$, откуда $I_\nu=3I_2$.

10.93. Батареи имеют э.д.с. $\varepsilon_1 = \varepsilon_2 = 110\,\mathrm{B}$, сопротивления $R_1 = R_2 = 0.2\,\mathrm{kOm}$, сопротивление вольтметра $R_1 = 1\,\mathrm{kOm}$ (см. рисунок к задаче 10.92). Найти показание вольтметра.

Решение:

По второму правилу Кирхгоффа (см. задачу 10.92) $\varepsilon_1 = I_1 R_1 + U$ — (1) $\varepsilon_2 = I_2 R_2 + U$ — (2), rge $U = I_{\nu} R_{\nu}$ показание вольтметра. Т. к. по условию $\varepsilon_1 = \varepsilon_2$ и $R_1 = R_2$, то из уравнений (1) и (2) следует, что $I_1 = I_2$. Согласно первому правилу Кирхгоффа $I_{V} = I_{1} + I_{2} = 2I_{1}$, тогда $U = 2I_1R_V$ или $I_1 = \frac{U}{2R_V} + U = U\left(\frac{R_1}{2R_V} + 1\right)$, откуда показание вольтметра $U = \frac{2R_V \mathcal{E}_1}{R_V + 2R_V} = 100 \text{ B}.$

10.94. Батарен имеют э.д.с. $\varepsilon_1 = \varepsilon_2$, сопротивления $R_1 = R_2 = 100 \,\text{Om}$, сопротивление вольтметра $R_{1'} = 150 \,\text{Om}$ (см. рисунок к задаче 10.93). Показание вольтметра $U = 150 \,\mathrm{B}$. Найти э.д.с. ε_1 и ε_2 батарей.

По первому правилу Кирхгоффа

Решение:

По первому правилу $I_1 + I_2 = I_V$. По второму правилу **Кир**хгоффа для контуров ABC и ABD **Соот**ветственно имеем: $I_1R_1 + I_2 = I_1$ $I_2 + I_3 = I_4$ $I_4 + I_4 = I_4$ $I_5 + I_5 = I_5 = I_5$ $I_5 = I_5$ $+I_{\nu}R_{\nu}=arepsilon_{\mathbf{I}}$ и $I_{2}R_{2}+I_{\nu}R_{\nu}=arepsilon_{2}$. По **закону** Ома $I_{\nu}R_{\nu}=U$, отсюда $I_1R_1+U=arepsilon_1$ и $I_2R_2+U=arepsilon_2$. Т. к. $arepsilon_1=arepsilon_2$ и $R_1=R_2$, то $(I_1+I_2)R_1+2U=2\varepsilon_1$; $I_VR_1+2U=2\varepsilon_1$; $\varepsilon_1=\frac{I_VR_1}{2}+U$. No Закону Ома $I_{v} = \frac{U}{R_{v}}$, отсюда $\varepsilon_{l} = \frac{UR_{l}}{2R_{v}} + U = U\left(\frac{R_{l}}{2R_{v}} + 1\right);$ $\varepsilon_1 = \varepsilon_2 = 200 \, \mathrm{B}.$

10.95. Элементы имеют э.д.с. $\varepsilon_1=\varepsilon_2=1,5~\mathrm{B}$ и внутренние сопротивления $r_1=r_2=0,5~\mathrm{Om}$, сопротивления $R_1=R_2=5~\mathrm{Om}$ и $R_3=1~\mathrm{Om}$, сопротивление амперметра $R_A=3~\mathrm{Om}$. Найти показание амперметра.

Решение:

Выберем и рассмотрим три контура, для каждого из них выберем направление обхода. Предположительно определим направление токов в каждом сопротивлении и в амперметре. По второму правилу Кирхгоффа для контура KLCD имеем $\varepsilon_2 = I_1R_1 + I_4R_4 + I_2'r_2$ — (1). Для контура ABCD имеем

 $arepsilon_1 = I_1R_1 + I_AR_A + I_2R_2 + I_1'r_1$ — (2). Для контура ABMN имеем $arepsilon_1 = I_1R_1 + I_3R_3 + I_2R_2 + I_1'r_1$ — (3). По первому правилу Кирхгоффа для узла M $I_1 = I_3 + I_A$ — (4). Для узла N $I_2 = I_3 + I_A$ — (5). Вычитая (3) из (2), найдем $I_AR_A = I_3R_3$ или $3I_A = I_3$. Подставляя это выражение в (4), получим $I_1 = 4I_A$. Вычитая (2) из (1), найдем $I_2' = I_1'$. Из (4) и (5) следует, что $I_1 = I_2 = 4I_A$. Подставляя данное выражение в (1), найдем $19I_A + 0.5I_2' = 1.5$, откуда $I_2' = I_1' = 3 - 38I_A$. Из (5) имеем $4I_A = I_1' + I_2' = 6 - 76I_A$; $80I_A = 6$, отсюда ток, текущий через амперметр, $I_A = 75\,\mathrm{MA}$.

10.96. Элемент имеет э.д.с. ε = 200 B, сопротивления R_1 = 2 кОм и R_2 = 3 кОм, сопротивления вольтметров R_{U1} = 3 кОм и R_{V2} = 2 кОм. Найти показание вольтметров V_1 и V_2 , если ключ K: а) разомкнут, б) замкнут. Задачу решить, применяя законы Кирхгоффа.

Решение:

а) Если ключ разомкнут, то схема принимает упрощенный вид, изображенный на рисунке. Рассмотрим контур ABCD и выберем направление обхода против часовой стрелки. Тогда по второму правилу Кирхгоффа для данного контура

 $\varepsilon = I_1'R_{l'1} + I_2'R_{l'2}$ — (1), но т. к. вольтметры соединены между собой последовательно, то токи $I_1' = I_2'$ — (2). Уравнение (1) с учетом (2) можно переписать следующим образом: $\varepsilon = I_1'(R_{l'1} + R_{l'2})$, откуда ток через вольтметры

 $I_{\rm I}' = \frac{\varepsilon}{R_{l'1} + R_{l'2}}$. Вольтметры в данном случае покажут паде-

ние напряжений на своих собственных сопротивлениях,

T. e.
$$U_1 = I_1' R_{1'1} = \frac{\varepsilon R_{1'1}}{R_{1'1} + R_{1'2}} = 120 \text{ B}; \qquad U_2 = I_1' R_{1'2} = 120 \text{ B};$$

$$= \frac{\varepsilon R_{V2}}{R_{V1} + R_{V2}} = 80 \text{ B}.$$

б) Если ключ замкнут, то схема принимает следующий вид. Укажем предполагаемое направление токов в каждом элементе и рассмотрим контуры КВСМ, АВСО, АКLМ и NLMD. Направление обхода в каждом контуре выберем против часо-

вой стрелки. Напишем уравнение по второму правилу Кирхгоффа для каждого из контуров: $\varepsilon = I_1'R_{1'1} + I_2'R_{1'2} - \cdots$ (1); $\varepsilon = I_1R_1 + I_2R_2 - \cdots$ (2). Поскольку контуры AKLM и NLMD не содержат источников э.д.с., то для них $I_1R_1 - I_1'R_{1'1} = 0 - \cdots$ (3); $I_2R_2 - I_2'R_{1'2} = 0 - \cdots$ (4). По первому правилу Кирхгоффа для узла L имеем $I_1 + I_1' = I_2 + I_2' - \cdots$ (5). Из уравнений (3) и (4) соответственно получим

$$I_1' = \frac{I_1 R_1}{R_{V1}}$$
 — (6) и $I_2' = \frac{I_2 R_2}{R_{V2}}$ — (7). Подставляя (6) и (7) в

(3), получаем
$$I_1 \left(1 + \frac{R_1}{R_{V1}} \right) = I_2 \left(1 + \frac{R_2}{R_{V2}} \right)$$
, откуда ток

$$I_1 = \frac{I_2(R_{\nu_1} + R_2)R_{\nu_1}}{(R_{\nu_1} + R_1)R_{\nu_2}}$$
 — (8). Подставим (8) в (2), тогда

$$\varepsilon = \frac{I_2(R_{V2} + R_2)R_{V1}R_1}{(R_{V1} + R_1)R_{1'2}} + I_2R_2$$
, отсюда ток

$$I_{2} = \frac{\varepsilon R_{V2} (R_{V1} + R_{1})}{(R_{V2} + R_{2}) R_{V1} R_{1} + R_{2} R_{V2} (R_{V1} + R_{1})} - (9).$$

Следовательно, показание второго вольтметра

$$U_2 = I_2 R_2 = \frac{\varepsilon R_2 R_{V2} (R_{V1} + R_1)}{(R_{V2} + R_2) R_{V1} R_1 + R_2 R_{V2} (R_{V1} + R_1)} = 100 \text{ B}.$$

Подставив (9) в (8), находим ток

$$I_{1} = \frac{\varepsilon R_{1'1} (R_{1'2} + R_{2})}{(R_{1'2} + R_{2}) R_{1'1} R_{1} + R_{2} R_{1'2} (R_{1'1} + R_{1})},$$

тогда показание первого вольтметра

$$U_{1} = I_{1}R_{1} = \frac{\varepsilon R_{1}R_{V1}(R_{V2} + R_{2})}{(R_{V2} + R_{2})R_{V1}R_{1} + R_{2}R_{V2}(R_{V1} + R_{1})} = 100 \text{ B}.$$

Применение правил Кирхгоффа к решению данной задачи авторы книги считают нерациональным. Читателю предлагается самостоятельно решить данную задачу, используя законы Ома для участка цепи и для полной цепи.

10.97. За какое время τ при электролизе водного раствора хлорной меди (CuCl₂) на катоде выделится масса меди m=4.74 г, если ток I=2 A?

Решение:

Согласно первому закону Фарадея $m = KI\tau$ — (1)-

Электрохимический эквивалент хлорной меди $K = \frac{1}{F} \frac{A}{Z}$,

где $A=64\cdot 10^{-3}\,\mathrm{K}$ л/моль — постоянная Фарадея. Отсюда $K=332.8\cdot 10^{-9}\,\mathrm{k}$ г/Кл. Из (1) $\tau=\frac{m}{KI}$. Подставляя числовые данные, получим $\tau\approx 2\,\mathrm{ч}$.

10.98. За какое время τ при электролизе медного купороса масса медной пластинки (катода) увеличится на $\Delta m = 99$ г? Площадь пластинки S = 25 см², плотность тока j = 200 A/м². Найти толщину d слоя меди, образовавшегося на пластинке.

Решение:

Согласно первому закону Фарадея $\Delta m = KI\tau$. Молярная масса меди $A = 64 \cdot 10^{-3}$ кг/моль, валентность меди в CuSO₄ равна Z = 2. Отсюда электрохимический эквивалент $K = \frac{1}{F} \frac{A}{Z} = 332,8 \cdot 10^{-9}$ кг/Кл. Сила тока I = jS.

Тогда $\Delta m = KjS\tau$, откуда $\tau = \frac{\Delta m}{KjS} = 595 \, \mathrm{c} \approx 10 \, \mathrm{мин}$. Объем

образовавшегося слоя меди $V = Sd = \frac{\Delta m}{\rho}$, отсюда $d = \frac{\Delta m}{\rho S} = 4.6 \cdot 10^{-6} \text{ м}.$

10.99. При электролизе медного купороса за время $\tau = 1$ ч выделилась масса меди m = 0.5 г. Площадь каждого электрода S = 75 см². Найти плотность тока j.

Решение:

Имеем $m = KjS\tau$ (см. задачу 10.98), откуда $j = \frac{m}{KS\tau} = 55.6 \text{ A/M}^2$.