Semilinear elliptic equations with a critical Sobolev exponent and a non-homogeneous term

Kazune Takahashi

24 January 2015

1 概要

N を 3 以上の自然数とする。 $\Omega \subset \mathbb{R}^N$ を有界領域とする。p = (N+2)/(N-2) とする。 $f \in H^{-1}(\Omega)$ は、 $f \geq 0$ 、 $f \not\equiv 0$ をみたすとする。 $a,b \in L^\infty(\Omega)$ とする。 κ_1 を $-\Delta$ の Ω におけるディリクレ条件下での第 1 固有値とする。 $\kappa > -\kappa_1$ が存在して、 $a \geq \kappa$ となると仮定する。また、 $b \geq 0$ 、 $b \not\equiv 0$ と仮定する。 $\lambda \geq 0$ をパラメータとする。以下の方程式を考察する。

$$\begin{cases}
-\Delta u + au = bu^p + \lambda f & \text{in } \Omega, \\
u > 0 & \text{in } \Omega, \\
u = 0 & \text{on } \partial\Omega
\end{cases}$$
 $(\spadesuit)_{\lambda}$

定理 1.1. $(\spadesuit)_{\lambda}$ には minimal solution が存在する。

定理 1.2. $(\spadesuit)_{\lambda}$ には extremal solution が存在する。とくに、 $\lambda = \overline{\lambda}$ における $(\spadesuit)_{\lambda}$ の minimal solution が存在する。また、b>0 in Ω ならば、 $(\spadesuit)_{\lambda}$ の extremal solution は、 $\lambda = \overline{\lambda}$ における $(\spadesuit)_{\lambda}$ の minimal solution に限る。

定理 1.3. $0<\lambda<\overline{\lambda}$ とする。b は Ω 上のある点 p で最大値 $M_1=\|b\|_{L^\infty}$ $(\Omega)>0$ を達成するものと仮定する。 $r_0>0$ が存在し、 $\{|x-p|<2r_0\}\subset\Omega$ 、かつ、 $\{|x-p|< r_0\}$ 上

$$b(x) = M_1 - M_2 |x - p|^q,$$

$$a(x) = m_1 + m_2 |x - p|^{q'}$$

であると仮定する。ここで q,q'>0、 $M_2>0$ 、 $m_1>\kappa$ 、 $m_2\neq 0$ は定数である。さらに、以下の (i) - (iv) のいずれかの成立を仮定する。

- (i) $m_1 < 0$ 、かつ、 $N \ge 3$ 。
- (ii) $m_1>0$ 、かつ、N=3,4,5。
- (iii) $m_1=0$ 、かつ、 $m_2<0$ 、かつ、 $N\geq 3$ 。
- (iv) $m_1 = 0$ 、かつ、 $m_2 > 0$ 、かつ、 $3 \le N < 6 + 2q'$ 。

このとき、 $(\spadesuit)_{\lambda}$ は、minimal solution \underline{u}_{λ} 以外の弱解 $\overline{u}_{\lambda} \in H_0^1(\Omega)$ をもつ。

1.1 記号

ルベーグ空間を $L^q(\Omega)$ $(1 \leq q \leq \infty)$ と表記する。ソボレフ空間 $W^{1,2}(\Omega)$ を $H^1(\Omega)$ と表記する。トレースの意味で $u|_{\partial\Omega}=0$ が成立する $u\in H^1(\Omega)$ 全体を $H^1(\Omega)$ と表記する。ヘルダー空間を $C^{k+\alpha}(\Omega)$ $(k\in\mathbb{N},\ 0<\alpha<1)$ と表記する。コンパクト台を持つ Ω 上の C^∞ 級関数全体を $C^\infty_c(\Omega)$ と表記する。

ノルム空間 X のノルムを $\|\cdot\|_X$ と表記する。ノルム空間 X の双対空間を X^* と表記する。 $H^1_0(\Omega)^*$ を $H^{-1}(\Omega)$ と表記す

る。 $f\in H^{-1}$ の $u\in H^1_0(\Omega)$ への作用を $\langle f,u \rangle$ と表記する。 $H^1_0(\Omega)$ 上のノルム $\|\cdot\|_{\kappa}$ を、 $w\in H^1_0(\Omega)$ に対し、

$$||w||_{\kappa} = \left(\int_{\Omega} (|Dw|^2 + \kappa w^2) dx\right)^{1/2}$$

と定める。 $\kappa > -\kappa_1$ 、 Ω が有界領域であることにより、ポアンカレの不等式から $\|\cdot\|_{\kappa}$ は $\|\cdot\|_{H^1_0(\Omega)}$ と同値なノルムである。また、 $H^1_0(\Omega)$ 上のノルム $\|\cdot\|$ を、 $w\in H^1_0(\Omega)$ に対し、

$$||w|| = \left(\int_{\Omega} |Dw|^2 dx\right)^{1/2}$$

と定める。やはりポアンカレの不等式から $\|\cdot\|$ は $\|\cdot\|_{H^1_0(\Omega)}$ と同値なノルムであることがしたがう。

2 minimal solution の存在と性質

本節では、(♠)_{\lambda} の解のうち、minimal solution について取り扱う。まずは minimal solution を定義する。

記号 2.1. $\lambda > 0$ に対し、

$$S_{\lambda} = \{ u \in H_0^1(\Omega) \mid u \text{ it } (\spadesuit)_{\lambda} \text{ の弱解である } \}$$

と定める。

定義 2.2. $\underline{u}_{\lambda} \in S_{\lambda}$ が minimal solution であるとは、任意の $u \in S_{\lambda}$ に対し、 $\underline{u}_{\lambda} \leq u$ in Ω が成立することをいう。

記号 2.3. $(\spadesuit)_{\lambda}$ の minimal solution を \underline{u}_{λ} と表記する。

2.1 $H_0^1(\Omega)$ の原点付近における様子

minimal solution を調べる第一歩として、 $\lambda>0$ が十分小さいときに、 $(\spadesuit)_\lambda$ が弱解を持つことを、陰関数定理を用いて示す。

$$||u_{\lambda}||_{H_0^1(\Omega)} \to 0 \ (\lambda \searrow 0).$$

2. さらに、 $f \in C^{\alpha}(\overline{\Omega})$ を仮定する。このとき、1. の弱解 u_{λ} は、 $u_{\lambda} \in C^{2+\alpha}(\Omega)$ をみたし、次が成立する。

$$||u_{\lambda}||_{C^{2+\alpha}(\Omega)} \to 0 \ (\lambda \searrow 0).$$

証明. 1. $\Phi \colon [0,\infty) \times H_0^1(\Omega) \to H^{-1}(\Omega)$ を

$$\Phi(\lambda, u) = -\Delta u + au - b(u_{+})^{p} - \lambda f \tag{1}$$

とする。 Φ の u についてのフレッシェ微分は、 $w \in H_0^1(\Omega)$ に対し、

$$\Phi_u(\lambda, u) \colon w \mapsto -\Delta w + aw - bp(u_+)^{p-1}w. \tag{2}$$

と書かれる。特に、

$$\Phi_u(0,0)w = -\Delta w + aw.$$

が成立する。 $a>-\kappa_1$ により、 $\Phi_u(0,0)\colon H^1_0(\Omega)\to H^{-1}(\Omega)$ は可逆である。ゆえに、陰関数定理より、 $\lambda_0>0$ と $H^1_0(\Omega)$ の原点の近傍 U が存在して、 $0<\lambda\leq\lambda_0$ に対し、 $\Phi(\lambda,u_\lambda)=0$ をみたす $u_\lambda\in U$ が唯一つ存在し、次をみたす。

$$\lim_{\lambda \searrow 0} \|u_{\lambda}\|_{H_0^1(\Omega)} = 0.$$

つまり、 u_{λ} は、以下の方程式の弱解である。

$$\begin{cases}
-\Delta u + au = b(u_+)^p + \lambda f & \text{in } \Omega, \\
u = 0 & \text{on } \partial\Omega.
\end{cases}$$
(3)

ここで $b(u_+)^p + \lambda f \ge 0$ であり、 $a > -\kappa_1$ であるから、強最大値原理により、 $u_{\lambda} > 0$ in Ω が成立する。よって、 u_{λ} は $(\spadesuit)_{\lambda}$ の U における唯一の弱解である。

2. $f \in C^{\alpha}(\overline{\Omega})$ のとき、 $\Phi \colon [0,\infty) \times C^{2+\alpha}(\overline{\Omega}) \to C^{\alpha}(\overline{\Omega})$ を、(1) で定義する。以下、1. の証明と同様にすると、 $u_{\lambda} \in C^{2+\alpha}(\Omega)$ と $\|u_{\lambda}\|_{C^{2+\alpha}(\Omega)} \to 0$ $(\lambda \searrow 0)$ が示される。

以下では基本的に、1. の結果を使用し、弱解の枠組みで議論する。2. の結果は、§5で使用する。

2.2 優解との関係

続いて、ある $\lambda = \hat{\lambda}$ で $(\spadesuit)_{\lambda}$ が優解をもつときに、 $0 < \lambda \leq \hat{\lambda}$ で minimal solution が存在することを示す。

補題 2.5. $\hat{\lambda} > 0$ とする。以下をみたす $\hat{u} \in H_0^1(\Omega)$ が存在すると仮定する。

$$\begin{cases} \Delta \widehat{u} + a\widehat{u} \ge b\widehat{u}^p + \widehat{\lambda}f & \text{in } \Omega, \\ \widehat{u} > 0 & \text{in } \Omega \end{cases}$$
(4)

このとき、 $\lambda \in (0, \widehat{\lambda}]$ に対し、 $(\spadesuit)_{\lambda}$ の minimal solution \underline{u}_{λ} が存在する。また、 $\underline{u}_{\lambda} < \widehat{u}$ in Ω が成立する。

証明. $H^1_0(\Omega)$ の点列 $\{u_n\}_{n=0}^\infty$ を、次の通りに帰納的に定める。 $u_0\equiv 0$ とする。 u_n が定まっているときに、線形方程式

$$\begin{cases}
-\Delta u_{n+1} + au_{n+1} = bu_n^p + \lambda f & \text{in } \Omega, \\
u_{n+1} = 0 & \text{on } \partial\Omega
\end{cases}$$
(5)

の唯一の弱解を $u_{n+1} \in H_0^1(\Omega)$ と定める。

(5) が唯一の弱解であることを確かめる。ソボレフ埋め込みにより、 $u_n \in H^1_0(\Omega) \subset L^{p+1}(\Omega)$ だから、 $u_n^p \subset L^{(p+1)/p}(\Omega) = L^{2N/(N+2)}(\Omega) \subset H^{-1}(\Omega)$ である。 $b \in L^\infty(\Omega)$ 、 $f \in H^{-1}(\Omega)$ より、 $bu_n^p + \lambda f \in H^{-1}(\Omega)$ である。 $a > -\kappa_1$ と合わせて、(5) には唯一の弱解が存在する。

ここで、次の事実を、nについての数学的帰納法を用いて証明する。

$$0 = u_0 < u_1 < \dots < u_n < \hat{u} \text{ in } \Omega. \tag{6}$$

n=0 のときは、 $\widehat{u}>0$ in Ω であることから、(6) が成立する。 $n\in\mathbb{N}$ とする。n における (6) の成立を仮定し、n+1 における (6) の成立を示す。

$$-\Delta u_{n+1} + au_{n+1} = bu_n^p + \lambda f,$$

$$-\Delta u_n + au_n = bu_{n-1}^p + \lambda f$$

の両辺を引くと、次が成立する。

$$-\Delta(u_{n+1} - u_n) + a(u_{n+1} - u_n) = b(u_n^p - u_{n-1}^p).$$

右辺は仮定により 0 以上である。ゆえに強最大値原理より、 $u_{n+1} > u_n$ in Ω である。また、

$$\begin{split} -\Delta \widehat{u} + a \widehat{u} &> b \widehat{u}^p + \lambda f, \\ -\Delta u_{n+1} + a u_{n+1} &= b u_n^p + \lambda f \end{split}$$

の両辺を引いて同様にすると、 $\hat{u} > u_{n+1}$ in Ω もしたがう。以上により、(6) は n+1 でも正しい。数学的帰納法により、任意の $n \in \mathbb{N}$ について (6) の成立が示された。

続いて、 $\{u_n\}$ が $H^1_0(\Omega)$ における有界列であることを示す。 u_{n+1} は (5) の弱解であるから、任意の $\psi \in H^1_0(\Omega)$ に対し、次が成立する。

$$\int_{\Omega} (Du_{n+1} \cdot D\psi + au_{n+1}\psi)dx = \int_{\Omega} bu_n^p \psi dx + \lambda \int_{\Omega} f\psi dx \tag{7}$$

 $\psi = u_{n+1}$ とすると、次が成立する。

$$\int_{\Omega} (|Du_{n+1}|^2 + a|u_{n+1}|^2) dx = \int_{\Omega} b u_n^p u_{n+1} dx + \lambda \int_{\Omega} f u_{n+1} dx.$$

ここで、右辺は、次の通りに評価される。

(右辺)
$$\leq \int_{\Omega} b\widehat{u}^{p+1} dx + \lambda \int_{\Omega} f\widehat{u} dx < \infty.$$
 (8)

ここで $\hat{u} \in H^1_0(\Omega) \subset L^{p+1}(\Omega)$ に注意した。また左辺について、

(左辺)
$$\geq \int_{\Omega} (|Du_{n+1}|^2 + \kappa |u_{n+1}|^2) dx = ||u_{n+1}||_{H_0^1(\Omega)}$$
 (9)

もわかる。 $\|\cdot\|_{\kappa}$ は $\|\cdot\|_{H^1_0(\Omega)}$ と同値なノルムである。したがって、(8) および (9) より、 $\{u_n\}$ は $H^1_0(\Omega)$ の有界列である。ゆえに、必要ならば部分列をとることにより、 $u\in H^1_0(\Omega)$ が存在して、 $n\to\infty$ とすると、以下が成立する。

$$u_n \longrightarrow u \text{ weakly in } H_0^1(\Omega),$$
 (10)

$$u_n \longrightarrow u$$
 in $L^q(\Omega)$ $(q < p+1)$,

$$u_n \longrightarrow u \text{ a.e. in } \Omega.$$
 (11)

ここでuが $(\spadesuit)_{\lambda}$ の弱解であることを示す。(10)により、次が成立する。

$$\int_{\Omega} (Du_{n+1} \cdot D\psi + au_{n+1}\psi) dx \xrightarrow{n \to \infty} \int_{\Omega} (Du \cdot D\psi + au\psi) dx.$$

 $\sharp \, \mathcal{L}, b \in L^{\infty}(\Omega), \widehat{u}, \psi \in H_0^1(\Omega) \subset L^{p+1}(\Omega) \, \sharp \, \mathcal{V},$

$$|bu_n\psi| \leq b\widehat{u}^p|\psi|$$
 a. e. in Ω

の右辺は可積分である。(11)より、優収東定理から、次を得る。

$$\int_{\Omega} bu_n^p \psi dx \xrightarrow{n \to \infty} \int_{\Omega} bu^p \psi dx.$$

したがって、(7) で $n \to \infty$ とすると次を得る。

$$\int_{\Omega} (Du \cdot D\psi + au\psi) dx = \int_{\Omega} bu^p \psi dx + \lambda \int_{\Omega} f\psi dx. \tag{12}$$

 $\psi \in H_0^1(\Omega)$ は任意であるから、 $u \in H_0^1(\Omega)$ は $(\spadesuit)_{\lambda}$ の弱解である。

最後に、u は $(\spadesuit)_{\lambda}$ の minimal solution であることを示す。 $\widetilde{u} \in H^1_0(\Omega)$ を $(\spadesuit)_{\lambda}$ の弱解とする。このとき、(6) と同様の議論により、 $\widetilde{u} > u_n$ in Ω が数学的帰納法で示される。 $n \to \infty$ として、 $\widetilde{u} \ge u$ in Ω となる。よって u は $(\spadesuit)_{\lambda}$ の minimal solution である。

補題 2.5 から、次の事実がしたがう。

補題 2.6. 1. $\lambda_0 > 0$ が存在して、 $S_{\lambda_0} \neq \emptyset$ とする。このとき、 $0 < \lambda < \lambda_0$ に対し、 $S_{\lambda} \neq \emptyset$ となる。

- 2. $\lambda > 0$ とする。 $S_{\lambda} \neq \emptyset$ ならば、 $(\spadesuit)_{\lambda}$ には minimal solution $\underline{u}_{\lambda} \in S_{\lambda}$ が存在する。
- $3. \quad 0<\lambda_1<\lambda_2$ とする。 $S_{\lambda_1}
 eq\emptyset$ 、 $S_{\lambda_2}
 eq\emptyset$ ならば、 $\underline{u}_{\lambda_1}\in S_{\lambda_1}$ $\underline{u}_{\lambda_2}\in S_{\lambda_2}$ について、 $\underline{u}_{\lambda_1}<\underline{u}_{\lambda_2}$ in Ω が成立する。
- 4. 補題 2.4 における $(\spadesuit)_{\lambda}$ の弱解を u_{λ} とする。このとき、 $u_{\lambda} = \underline{u}_{\lambda}$ である。

証明. 1. $u_{\lambda_0} \in S_{\lambda_0}$ とする。 $\widehat{u} = u_{\lambda_0}$ とし補題 2.5 を適用すると結論が得られる。

- 2. $u_{\lambda} \in S_{\lambda}$ とする。 $\hat{u} = u_{\lambda}$ として補題 2.5 を適用すると、 $(\spadesuit)_{\lambda}$ の minimal solution \underline{u}_{λ} が得られる。
- 3. $\hat{u} = \underline{u}_{\lambda_2}$ として、補題 2.5 (6) を適用すると、 $\underline{u}_{\lambda_1} \leq \underline{u}_{\lambda_2}$ in Ω が得られる。

$$-\Delta \underline{u}_{\lambda_1} + a\underline{u}_{\lambda_1} = b\underline{u}_{\lambda_1}^p + \lambda_1 f,$$

$$-\Delta \underline{u}_{\lambda_2} + a\underline{u}_{\lambda_2} = b\underline{u}_{\lambda_2}^p + \lambda_2 f$$

の両辺を引くと、次が成立する。

$$-\Delta(\underline{u}_{\lambda_2} - \underline{u}_{\lambda_1}) + a(\underline{u}_{\lambda_2} - \underline{u}_{\lambda_1}) = b(\underline{u}_{\lambda_2}^p - \underline{u}_{\lambda_2}) + (\lambda_2 - \lambda_1)f.$$

右辺が 0 以上であること、および、 $a>-\kappa_1$ により、強最大値原理を用いると、 $\underline{u}_{\lambda_1}<\underline{u}_{\lambda_2}$ in Ω がしたがう。

4. $u_{\lambda} \in S_{\lambda}$ より、 $S_{\lambda} \neq \emptyset$ である。したがって、2. より、 $(\spadesuit)_{\lambda}$ は minimal solution \underline{u}_{λ} をもつ。よって、(12) で $u = \psi = \underline{u}_{\lambda}$ とおくと、以下が得られる。

$$\int_{\Omega} \left(|D\underline{u}_{\lambda}|^2 + a|\underline{u}_{\lambda}|^2 \right) dx = \int_{\Omega} b\underline{u}_{\lambda}^p dx + \lambda \int_{\Omega} f\underline{u}_{\lambda} dx. \tag{13}$$

ここで、minimal solution の $H^1_0(\Omega)$ ノルムが、 $\lambda \searrow 0$ のとき、0 に収束することを示す。

$$((13) \, \mathcal{O} 左辺) \ge \int_{\Omega} \left(|D\underline{u}_{\lambda}|^2 + \kappa |\underline{u}_{\lambda}|^2 \right) dx \ge C \, \|\underline{u}_{\lambda}\|_{H_0^1(\Omega)}^2 \, .$$

中辺は $\|\underline{u}_{\lambda}\|_{\kappa}^{2}$ であり、 $\|\cdot\|_{\kappa}$ は $\|\cdot\|_{H_{0}^{1}(\Omega)}$ と同値であるから、C>0 は $\|\cdot\|_{H_{0}^{1}(\Omega)}$ の中身によらない定数であることに注意されたい。また、 $\underline{u}_{\lambda}\leq u_{\lambda}$ in Ω より、次がしたがう。

ここで、C',C''>0 は、 $\|\cdot\|_{H^1_0(\Omega)}$ の中身によらない定数である。以上より、以下が成立する。

$$C \|u\|_{H_0^1(\Omega)} \le C' \|u_\lambda\|_{H_0^1(\Omega)}^{p+1} + C'' \|u_\lambda\|_{H_0^1(\Omega)}.$$

補題 2.4 より、 $\lambda \searrow 0$ のとき、 $\|u_{\lambda}\|_{H_0^1(\Omega)} \searrow 0$ が成立する。ゆえに、 $\|\underline{u}_{\lambda}\|_{H_0^1(\Omega)} \searrow 0$ となる。再び補題 2.4 によると、 $\lambda > 0$ が十分小さいとき、 u_{λ} は (\spadesuit) $_{\lambda}$ の唯一の弱解であった。したがってこのことは $u_{\lambda} = \underline{u}_{\lambda}$ を示している。

2.3 **解が存在する** λ **の有界性**

補題 2.4 により、 $\lambda > 0$ が存在して、 $(\spadesuit)_{\lambda}$ の解が存在する。補題 2.6 により、 $(\spadesuit)_{\lambda}$ の解が存在する λ が見つかれば、それより小さい λ については、 $(\spadesuit)_{\lambda}$ の解が存在する。そこで、 $(\spadesuit)_{\lambda}$ の解が存在する λ がどこまで大きくなるのかを調べる。そのために次の記号を置く。

記号 2.7. $\overline{\lambda} = \sup\{\lambda \geq 0 \mid S_{\lambda} \neq \emptyset\}$ と定める。

ここから先は、 $\overline{\lambda}<\infty$ を示すことを目標に議論を進める。その準備として、 $\lambda>0$ によらない $H^1_0(\Omega)$ の元 g_0 を用意する。

記号 2.8. $g_0 \in H_0^1(\Omega)$ を

$$\begin{cases}
-\Delta g_0 + ag_0 = f & \text{in } \Omega, \\
g_0 = 0 & \text{on } \partial\Omega
\end{cases}$$
(14)

の唯一の弱解と定める。

 g_0 について、次の補題を示す。

補題 2.9. 固有值問題

$$-\Delta \phi + a\phi = \mu b(g_0)^{p-1} \phi$$
 in Ω , $\phi \in H_0^1(\Omega)$

の第 1 固有値を μ_1 とする。このとき、 $\mu_1>0$ である。また、 μ_1 に付随する固有関数 ϕ_1 のうち、 $\phi_1>0$ in Ω をみたすものがある。

証明. μ_1 はレーリッヒ商により、

$$\mu_1 = \inf_{\psi \in H_0^1(\Omega), \psi \not\equiv 0} \frac{\int_{\Omega} (|D\psi|^2 + a|\psi|^2) \, dx}{\int_{\Omega} b(g_0)^{p-1} \psi^2 dx}$$
(15)

と特徴付けられる。また、(15) の右辺の下限を達成する関数 $\phi\in H^1_0(\Omega)$ があるとすれば、 ϕ が μ_1 に付随する固有関数である。

(15) より、以下が成立する $H_0^1(\Omega)$ の点列 $\{\psi_n\}$ が存在する。

$$\int_{\Omega} b(g_0)^{p-1} \psi_n^2 dx = 1, \tag{16}$$

$$\int_{\Omega} \left(|D\psi_n|^2 + a|\psi_n|^2 \right) dx \searrow \mu_1. \tag{17}$$

 $a>\kappa$ であるから、(17) の左辺は $\|\psi_n\|_\kappa^2$ 以下である。 $\|\cdot\|_\kappa$ は $\|\cdot\|_{H_0^1(\Omega)}$ と同値なノルムであるから、 $\{\psi_n\}$ は $H_0^1(\Omega)$ の有界列である。

ゆえに、必要ならば部分列をとることにより、 $\phi_1 \in H^1_0(\Omega)$ が存在して、 $n \to \infty$ とすると、以下が成立する。

$$\psi_n \longrightarrow \phi_1 \text{ weakly in } H_0^1(\Omega),$$
 (18)

$$\psi_n \longrightarrow \phi_1 \text{ in } L^q(\Omega) \quad (q < p+1),$$
 (19)

$$\psi_n \longrightarrow \phi_1 \text{ a.e. in } \Omega.$$
 (20)

(18) より、 $H_0^1(\Omega)$ ノルムの弱下半連続性から、次が成立する。

$$\liminf_{n \to \infty} \|\psi_n\|_{H_0^1(\Omega)} \ge \|\phi_1\|_{H_0^1(\Omega)}.$$

ゆえに、(19) と合わせて、以下が成立する。

$$\mu_1 \ge \int_{\Omega} \left(|D\phi_1|^2 + a|\phi_1|^2 \right) dx.$$
 (21)

また、ソボレフ埋め込み $H^1_0(\Omega)\subset L^{p+1}(\Omega)$ より、 $H^1_0(\Omega)$ の有界列 $\{\psi_n\}$ は $L^{p+1}(\Omega)$ の有界列である。したがって、 $\{\psi_n^2\}$ は $L^{N/(N-2)}(\Omega)$ の有界列である。よって、必要なら部分列をとると、 $\{\psi_n^2\}$ は $L^{N/(N-2)}(\Omega)$ の弱収束列となる。一方 (20) から、 $\{\psi_n^2\}$ は ϕ_1^2 に Ω 上ほとんどいたるところ収束する。したがって、次が成立する。

$$\psi_n^2 \longrightarrow \phi_1^2$$
 weakly in $L^{N/(N-2)}(\Omega)$.

 $g_0\in L^{p+1}(\Omega)$ より、 $b(g_0)^{p-1}\in L^{N/2}(\Omega)$ である。 $\left(L^{N/(N-2)}(\Omega)\right)^*\cong L^{N/2}(\Omega)$ より、次が成立する。

$$\int_{\Omega} b(g_0)^{p-1} \psi_n^2 dx \xrightarrow{n \to \infty} \int_{\Omega} b(g_0)^{p-1} \phi_1^2 dx. \tag{22}$$

(22) の証明は、[Wil96] の Lemma 2.13 によった。(21) と (22) により、次がしたがう。

$$\mu_1 \ge \frac{\int_{\Omega} \left(|D\phi_1|^2 + a|\phi_1|^2 \right) dx}{\int_{\Omega} b(g_0)^{p-1} \phi_1^2 dx}.$$
 (23)

(15) により、(23) の不等号は実際には等号が成立する。すなわち、(15) の右辺の下限は $\phi_1\in H^1_0(\Omega)$ により達成される。よって $\mu_1>0$ である。

(15) の右辺の形から、 ϕ_1 が (15) の右辺の下限を達成するならば、 $|\phi_1|$ も下限を達成する。すなわち、 $\phi_1 \geq 0$ in Ω となる第 1 固有関数がある。この ϕ_1 について、次が成立する。

$$-\Delta \phi_1 + a\phi_1 = \mu_1 b(g_0)^{p-1} \phi_1 \ge 0 \text{ in } \Omega.$$

ゆえに、強最大値原理により、 $\phi_1 > 0$ in Ω となる。

q₀を用いて、次の命題を証明する。

命題 2.10. $\overline{\lambda}$ を記号 2.7 のものとする。 $0 < \overline{\lambda} < \infty$ である。

証明. 補題 2.4 により、 $\lambda_0 > 0$ が存在し、 $0 < \lambda < \lambda_0$ に対して、 $(\spadesuit)_{\lambda}$ の解が存在する。ゆえに $\overline{\lambda} > 0$ である。そこで、 $\overline{\lambda} < \infty$ を示せば証明が完了する。

 $\lambda > 0$ は、 $S_{\lambda} \neq \emptyset$ をみたすものとする。 $u \in S_{\lambda}$ とし、 $v = u - \lambda g_0$ とする。このとき、次が成立する。

$$-\Delta v + av = bu^p \ge 0$$

したがって、強最大値原理より、v>0 in Ω である。つまり、 $u>\lambda g_0$ in Ω がしたがう。よって、以下が成立する。

$$-\Delta u + au \ge bu^p \ge b\lambda^{p-1}(g_0)^{p-1}u \text{ in } \Omega.$$
(24)

一方、補題 2.9 により、以下が成立する $\mu_1 > 0$ 、 $\phi_1 \in H_0^1(\Omega)$ 、 $\phi_1 > 0$ in Ω が存在する。

$$-\Delta \phi_1 + a\phi_1 = \mu_1 b(g_0)^{p-1} \phi_1 \text{ in } \Omega.$$
 (25)

そこで、 $(24) \times \phi_1 - (25) \times u$ を Ω 上積分すると、次を得る。

$$0 \ge (\lambda^{p-1} - \mu_1) \int_{\Omega} b(g_0)^{p-1} u \phi_1 dx.$$

ここで、 $b \geq 0$ in Ω 、 $b \not\equiv 0$ 、 $g_0, u, \phi_1 > 0$ in Ω であるから、右辺の積分は正である。ゆえに、 $\lambda^{p-1} - \mu_1 \leq 0$ である。つまり、 $\lambda \leq \mu_1^{1/(p-1)}$ となる。 $\lambda > 0$ は $S_\lambda \not= \emptyset$ をみたす任意の正の数であるから、 $\overline{\lambda} \leq \mu_1^{1/(p-1)} < \infty$ がしたがう。

証明 (定理 1.1). 命題 2.10 により、

2.4 minimal solution に関する線形化固有値問題

(♠)_λの minimal solution についての線形化固有値問題

$$-\Delta \phi + a\phi = \mu p b(\underline{u}_{\lambda})^{p-1} \phi \text{ in } \Omega, \quad \phi \in H_0^1(\Omega)$$
(26)

を考察する。特に第1固有値、第1固有関数について論ずる。

記号 2.11. $(\spadesuit)_{\lambda}$ の minimal solution $\underline{u}_{\lambda} \in S_{\lambda}$ に関する線形化固有値問題 (26) の第 1 固有値を $\mu_1(\lambda)$ とかく。

補題 2.12. $0 < \lambda < \overline{\lambda}$ とする。このとき、以下が成立する。

- 1. $\mu_1(\lambda) > 0$ である。また、 $\mu_1(\lambda)$ に付随する固有関数 ϕ_1 のうち、 $\phi_1 > 0$ in Ω をみたすものが存在する。
- 2. 任意の $\psi \in H_0^1(\Omega)$ に対し、次が成立する。

$$\int_{\Omega} (|D\psi|^2 + a|\psi|^2) dx \ge \mu_1(\lambda) \int_{\Omega} pb(\underline{u}_{\lambda})^{p-1} \psi^2 dx.$$
(27)

証明. 1. 補題 2.9 と同様である。

2. $\mu_1(\lambda)$ のレーリッヒ商による特徴付け

$$\mu_1(\lambda) = \inf_{\psi \in H_0^1(\Omega), \psi \not\equiv 0} \frac{\int_{\Omega} \left(|D\psi|^2 + a|\psi|^2 \right) dx}{\int_{\Omega} pb(\underline{u}_{\lambda})^{p-1} \psi^2 dx}$$
(28)

から (27) が成立する。

補題 2.12 から即座に、 $0 < \lambda < \overline{\lambda}$ ならば $\mu_1(\lambda) > 0$ であることがわかる。次の補題では、方程式 $(\spadesuit)_{\lambda}$ に着目し、 $\mu_1(\lambda)$ についてより多くの情報を引き出す。

補題 2.13. $0 < \lambda < \overline{\lambda}$ とする。このとき、 $\mu_1(\lambda) > 1$ である。

証明. $\hat{\lambda}$ を $0<\lambda<\hat{\lambda}<\overline{\lambda}$ をみたすものとする。 $z=\underline{u}_{\hat{\lambda}}-\underline{u}_{\lambda}$ とおく。補題 2.6.3 より、z>0 in Ω である。

$$-\Delta \underline{u}_{\widehat{\lambda}} + a\underline{u}_{\widehat{\lambda}} = b\underline{u}_{\widehat{\lambda}}^p + \widehat{\lambda}f,$$

$$-\Delta \underline{u}_{\lambda} + a\underline{u}_{\lambda} = b\underline{u}_{\lambda}^p + \lambda f$$

の両辺を引いて、次を得る。

$$-\Delta z + az = b(\underline{u}_{\widehat{\lambda}}^p - \underline{u}_{\lambda}^p) + (\widehat{\lambda} - \lambda)f.$$

 $x \ge 0$ に対し、 $x \mapsto x^p$ は下に凸であるから、次がしたがう。

$$\underline{u}_{\widehat{\lambda}}^{p} - \underline{u}_{\lambda}^{p} > p\underline{u}_{\lambda}^{p-1}(\underline{u}_{\widehat{\lambda}} - \underline{u}_{\lambda}) = p\underline{u}_{\lambda}^{p-1}z.$$

 $(\hat{\lambda} - \lambda)f > 0$ と合わせて、次を得る。

$$-\Delta z + az > bp\underline{u}_{\lambda}^{p-1}z \text{ in } \Omega. \tag{29}$$

 $\mu_1 = \mu_1(\lambda)$ とする。補題 2.12 より、 $\phi_1 > 0$ in Ω があって、

$$-\Delta\phi_1 + a\phi_1 = \mu p b \underline{u}_{\lambda}^{p-1} \phi_1 \text{ in } \Omega$$
 (30)

 $(29) \times \phi_1 - (30) \times z$ を Ω 上積分すると、

$$0 > (1 - \mu_1) p \int_{\Omega} b \underline{u}_{\lambda}^{p-1} \phi_1 z dx$$

となる。ここで、 $b\geq 0$ in Ω 、 $b\not\equiv 0$ 、 $\underline{u}_{\lambda},z,\phi_1>0$ in Ω であるから、右辺の積分は正である。ゆえに、 $1-\mu_1<0$ である。 つまり $\mu_1>1$ である。

2.5 extremal solution の存在

以下では、 $\lambda = \overline{\lambda}$ における (\spadesuit)_{λ} を考察する。

定義 2.14. $\bar{\lambda}$ を記号 2.7 のものとする。 $\lambda = \bar{\lambda}$ における $(\spadesuit)_{\lambda}$ の弱解を $(\spadesuit)_{\lambda}$ の extremal solution という。

本小節では、 $(\spadesuit)_{\lambda}$ の extremal solution が存在することを示す。このために、まず以下の集合を考察する。

$$K = \{ \underline{u}_{\lambda} \in H_0^1(\Omega) \mid 0 < \lambda < \overline{\lambda} \}. \tag{31}$$

補題 2.15. (31) の K は $H_0^1(\Omega)$ の有界集合である。

証明. $g_0\in H^1_0(\Omega)$ を記号 2.8 のものとする。 $v_\lambda=\underline{u}_\lambda-\lambda g_0$ と定める。すると、次が成立する。

$$-\Delta v_{\lambda} = \underline{u}_{\lambda} - \lambda g_0 \quad \text{in } \Omega.$$

ゆえに、 $\psi \in H_0^1(\Omega)$ とすると、次が成立する。

$$\int_{\Omega} (Dv_{\lambda} \cdot D\psi + av_{\lambda}\psi) dx = \int_{\Omega} b(v_{\lambda} + \lambda g_0)^p \psi dx.$$

 $\psi = v_{\lambda}$ とおくと、次を得る。

$$\int_{\Omega} \left(|Dv_{\lambda}|^2 + a|v_{\lambda}|^2 \right) dx = \int_{\Omega} b(v_{\lambda} + \lambda g_0)^p v_{\lambda} dx. \tag{32}$$

ここで、次の事実を示す。任意の $\epsilon>0$ に対し、C>0 が存在し、任意の $s,t\geq0$ に対し、次式が成立する。

$$(t+s)^{p} \le (1+\epsilon)(t+s)^{p-1}t + Cs^{p}. \tag{33}$$

まず、 $(t+s)^{p-1}s$ にヤングの不等式を用いる。q,r>1 は、 $q^{-1}+r^{-1}=1$ をみたすものとする。任意の $0<\tilde{\epsilon}<1$ に対し、 $\tilde{C}>0$ が存在し、次が成立する。

$$(t+s)^{p-1}s \le \widetilde{\epsilon} \left((t+s)^{p-1} \right)^q + \widetilde{C}s^r.$$

ここで q = p/(p-1) とおくと、r = p である。ゆえに、以下が成立する。

$$\begin{split} (t+s)^{p-1}s &\leq \widetilde{\epsilon}(t+s)^p + \widetilde{C}s^p \\ &= \widetilde{\epsilon}(t+s)^{p-1}t + \widetilde{\epsilon}(t+s)^{p-1}s + \widetilde{C}s^p, \\ (t+s)^{p-1}s &\leq \frac{\widetilde{\epsilon}}{1-\widetilde{\epsilon}}(t+s)^{p-1}t + \frac{\widetilde{C}}{1-\widetilde{\epsilon}}s^p. \end{split}$$

任意の $\epsilon>0$ に対し、 $\epsilon=\widetilde{\epsilon}/(1-\widetilde{\epsilon})$ となる $0<\widetilde{\epsilon}<1$ は存在する。この $\widetilde{\epsilon}$ に対し、 $C=\widetilde{C}/(1-\widetilde{\epsilon})$ とすると、次が成立する。

$$(t+s)^{p-1}s \le \epsilon(t+s)^{p-1}t + Cs^p.$$

 $(t+s)^p=(t+s)^{p-1}s+(t+s)^{p-1}t$ より、(33) が得られる。以上の (33) の証明は [NS07] の Lemma 4.1 によった。 (32) の左辺を I とおく。(33) より、次式が成立する。

$$\int_{\Omega} b(v_{\lambda} + \lambda g_0)^p v_{\lambda} dx \le (1 + \epsilon) \int_{\Omega} b\underline{u}_{\lambda}^{p-1} v_{\lambda}^2 dx + C\lambda^p \int_{\Omega} bg_0^p v_{\lambda} dx. \tag{34}$$

ここで、補題 2.12.2、補題 2.13 から、次式を得る。

$$I \le \mu_1 p \int_{\Omega} b(\underline{u}_{\lambda})^{p-1} \underline{v}_{\lambda}^2 dx > p \int_{\Omega} b(\underline{u}_{\lambda})^{p-1} \underline{v}_{\lambda}^2 dx.$$

すなわち、次を得る。

$$\int_{\Omega} b(\underline{u}_{\lambda})^{p-1} v_{\lambda}^{2} dx < \frac{I}{p} \tag{35}$$

また、 $g_0, v_\lambda \in H^1_0(\Omega) \subset L^{p+1}(\Omega)$ 、及び、ヘルダーの不等式、ソボレフの不等式から、次式を得る。

$$\int_{\Omega} b g_0^p v_{\lambda} dx \le \|b\|_{L^{\infty}(\Omega)} \|g_0\|_{L^{p+1}(\Omega)}^p \|v_{\lambda}\|_{L^{p+1}(\Omega)} \le C \|v_{\lambda}\|_{H_0^1(\Omega)} \le C' \|v_{\lambda}\|_{\kappa}. \tag{36}$$

ここでC, C' > 0 は λ によらない。

(32)、(35)、(36) から、次式がしたがう。

$$I \le \frac{1+\epsilon}{p} I + \overline{\lambda}^p C \|v_\lambda\|_{\kappa}.$$

 $\epsilon>0$ を $(1+\epsilon)/p<1$ となるよう小さくとれば、 $I\leq C \|v_\lambda\|_\kappa$ となる。ここで $I\geq \|v_\lambda\|_\kappa^2$ 、 $v_\lambda\not\equiv 0$ であるから、 $\|v_\lambda\|_\kappa\leq C$ である。 $\|\cdot\|_\kappa$ と $\|\cdot\|_{H^1_0(\Omega)}$ は同値であるから、 $\{v_\lambda\in H^1_0(\Omega)\mid 0<\lambda<\overline{\lambda}\}$ は $H^1_0(\Omega)$ の有界集合である。 v_λ の定め方から $\underline{u}_\lambda=v_\lambda+\lambda g_0$ であるため、次の式が成立する。

$$\|\underline{u}_{\lambda}\|_{H_0^1(\Omega)} \le \|v_{\lambda}\|_{H_0^1(\Omega)} + \overline{\lambda} \|g_0\|_{H_0^1(\Omega)}.$$

右辺は λ によらない定数で抑えられる。従って、(31)のKは、 $H^1_0(\Omega)$ の有界集合である。

 $\lambda \nearrow \overline{\lambda}$ のときの \underline{u}_{λ} の極限をとることで、 $(\spadesuit)_{\lambda}$ の extremal solution を構成する。

- 命題 2.16. 1. (\spadesuit) $_{\lambda}$ の extremal solution が存在する。とくに、 $\lambda = \overline{\lambda}$ における (\spadesuit) $_{\lambda}$ の minimal solution $\underline{u}_{\overline{\lambda}}$ が存在する。
 - 2. $\lambda > 0$ とする。 $\lambda \nearrow \overline{\lambda}$ のとき、 $\underline{u}_{\lambda} \nearrow \underline{u}_{\overline{\lambda}}$ a. e. in Ω となる。
- **証明.** 1. 正の数の列 $\{\lambda_n\}_{n=0}^{\infty}$ は、 $\lambda_n \nearrow \overline{\lambda}$ をみたすものとする。 $u_n = \underline{u}_{\lambda_n}$ とかく。 u_n は $\lambda = \lambda_n$ における $(\spadesuit)_{\lambda}$ の 弱解であるから、任意の $\psi \in H^1_0(\Omega)$ に対し、次が成立する。

$$\int_{\Omega} (Du_n \cdot D\psi + au_n \psi) dx = \int_{\Omega} bu_n^p \psi dx + \lambda \int_{\Omega} f \psi dx.$$
 (37)

補題 2.15 より、 $\{u_n\}$ は $H^1_0(\Omega)$ の有界列である。ゆえに、必要ならば部分列をとることにより、 $u\in H^1_0(\Omega)$ が存在して、 $n\to\infty$ とすると、以下が成立する。

$$u_n \longrightarrow u \text{ weakly in } H_0^1(\Omega),$$
 (38)

$$u_n \longrightarrow u$$
 in $L^q(\Omega)$ $(q < p+1)$,

$$u_n \longrightarrow u$$
 a. e. in Ω . (39)

u が $(\spadesuit)_{\lambda}$ の extremal solution であることを示す。(38) により、次が成立する。

$$\int_{\Omega} (Du_n \cdot D\psi + au_n \psi) dx \xrightarrow{n \to \infty} \int_{\Omega} (Du \cdot D\psi + au\psi) dx.$$

補題 2.6.3 と (39) により、 $u_n \leq u$ in Ω となる。とくに、u>0 in Ω である。また、 $b\in L^\infty(\Omega)$ 、 $u,\psi\in H^1_0(\Omega)\subset L^{p+1}(\Omega)$ より、

$$|bu_n^p\psi| \le b\widehat{u}^p|\psi|$$
 a. e. in Ω

の右辺は可積分である。(39)より、優収束定理から、次を得る。

$$\int_{\Omega} bu_n^p \psi dx \xrightarrow{n \to \infty} \int_{\Omega} bu^p \psi dx.$$

したがって、(37) で $n \to \infty$ とすると次を得る。

$$\int_{\Omega} (Du \cdot D\psi + au\psi) dx = \int_{\Omega} bu^p \psi dx + \overline{\lambda} \int_{\Omega} f\psi dx.$$

 $\psi \in H_0^1(\Omega)$ は任意であるから、 $u \in H_0^1(\Omega)$ は $(\spadesuit)_\lambda$ の extremal solution である。すなわち、 $(\spadesuit)_\lambda$ の extremal solution が存在する。補題 2.5.2 より、特に $\lambda = \overline{\lambda}$ における $(\spadesuit)_\lambda$ の minimal solution $\underline{u}_{\overline{\lambda}}$ が存在する。

2. 補題 2.5.3 より、 $u_n = \underline{u}_{\lambda_n} < \underline{u}_{\overline{\lambda}}$ in Ω である。 $n \to \infty$ とすると、 $u \le \underline{u}_{\overline{\lambda}}$ in Ω を得る。 $u \in S_{\overline{\lambda}}$ であり、 $\underline{u}_{\overline{\lambda}}$ は $\lambda = \overline{\lambda}$ における (♠) $_{\lambda}$ の minimal solution であるから、 $u = \underline{u}_{\overline{\lambda}}$ である。したがって、 $n \to \infty$ のとき、 $\underline{u}_{\lambda_n} \nearrow \underline{u}_{\overline{\lambda}}$ a. e. in Ω となる。 $\{\lambda_n\}$ の任意性により、 $\lambda \nearrow \overline{\lambda}$ のとき、 $\underline{u}_{\lambda} \nearrow \underline{u}_{\overline{\lambda}}$ a. e. in Ω となる。

2.6 extremal solution の一意性

前小節では、 $(\spadesuit)_{\lambda}$ の extremal solution の存在を示した。本小節では、 $(\spadesuit)_{\lambda}$ の extremal solution が b>0 in Ω のとき は唯一つに限ることを示す。

鍵となるのは、(26) の第 1 固有値 $\mu_1(\lambda)$ である。補題 2.13 では、 $0<\lambda<\overline{\lambda}$ において $\mu_1(\lambda)>1$ となることを示した。 b>0 in Ω $\lambda=\overline{\lambda}$ において、この不等式が成立しなくなることを示す。

補題 2.17. λ_1, λ_2 は、

補題 2.18. 1. $\lambda \nearrow \overline{\lambda}$ のとき、 $\mu_1(\lambda) \searrow \mu_1(\overline{\lambda})$ である。

- 2. b>0 in Ω abording abording abording abording abording abording abording abording abording abording
- **証明.** 1. $\phi_1 \in H^1_0(\Omega)$ を、 $\mu_1(\overline{\lambda})$ に付随する $\phi_1 > 0$ in Ω をみたす固有関数とする。正の実数列 $\{\lambda_n\}_{n=0}^\infty$ を λ_n を、 λ_n $\nearrow \overline{\lambda}$ をみたすものとする。単調収束定理より、次式が成立する。

$$\int_{\Omega} bp(\underline{u}_{\lambda_n})^{p-1} \phi_1^2 dx \nearrow \int_{\Omega} bp(\underline{u}_{\overline{\lambda}})^{p-1} \phi_1^2 dx \quad (n \to \infty).$$

 $\{\lambda_n\}$ の任意性より、次式が成立する。

$$\int_{\Omega} bp(\underline{u}_{\lambda})^{p-1} \phi_1^2 dx \nearrow \int_{\Omega} bp(\underline{u}_{\overline{\lambda}})^{p-1} \phi_1^2 dx \quad (\lambda \nearrow \overline{\lambda}). \tag{40}$$

 $\epsilon > 0$ とする。(40) より、 $\delta > 0$ が存在し、 $0 < \overline{\lambda} - \lambda < \delta$ ならば、

$$0 < \frac{\int_{\Omega} \left(|D\phi_1|^2 + a\phi_1^2 \right) dx}{\int_{\Omega} bp(\underline{u}_{\overline{\lambda}})^{p-1} \phi_1^2 dx} - \frac{\int_{\Omega} \left(|D\phi_1|^2 + a\phi_1^2 \right) dx}{\int_{\Omega} bp(\underline{u}_{\lambda})^{p-1} \phi_1^2 dx} < \epsilon \tag{41}$$

が成立する。ここで、 $\widetilde{\mu}(\lambda)$ を

$$\widetilde{\mu}(\lambda) = \frac{\int_{\Omega} \left(|D\phi_1|^2 + a\phi_1^2 \right) dx}{\int_{\Omega} bp(\underline{u}_{\overline{\lambda}})^{p-1} \phi_1^2 dx}$$

と定めると、(41) は $0 < \widetilde{\mu}(\lambda) - \mu_1(\overline{\lambda}) < \epsilon$ と書き直される。(28) より、 $\mu_1(\lambda) \leq \widetilde{\mu}(\lambda)$ である。補題 2.17 より $\mu_1(\overline{\lambda}) \leq \mu_1(\lambda)$ である。したがって、 $0 < \overline{\lambda} - \lambda < \delta$ ならば、 $0 \leq \mu_1(\lambda) - \mu_1(\overline{\lambda}) \leq \widetilde{\mu}(\lambda) - \mu_1(\overline{\lambda}) < \epsilon$ となる。以上より、 $\lambda \nearrow \overline{\lambda}$ のとき、 $\mu_1(\lambda) \searrow \mu_1(\overline{\lambda})$ である。

2. 補題 2.13 および 1. より、 $\mu_1(\overline{\lambda}) \geq 1$ である。 $\mu_1(\overline{\lambda}) = 1$ を背理法を用いて示す。 $\mu_1(\overline{\lambda}) > 1$ であると仮定する。 $\Phi \colon [0,\infty) \times H_0^1(\Omega) \to H^{-1}(\Omega)$ を (1) の通りに定める。(2) より、 $w \in H_0^1(\Omega)$ に対し

$$\Phi_u(\overline{\lambda}, \underline{u}_{\overline{\lambda}})w = -\Delta w + aw - bp(\underline{u}_{\overline{\lambda}})^{p-1}w. \tag{42}$$

となる。

ここで、
$$\Phi_u(\overline{\lambda},\underline{u}_{\overline{\lambda}})$$
 が可逆であることを示す。 $f\in H^{-1}(\Omega)$ とする。

命題 2.19. b>0 in Ω と仮定する。 $(\spadesuit)_{\lambda}$ の extremal solution は、 $\lambda=\overline{\lambda}$ における $(\spadesuit)_{\lambda}$ の minimal solution $\underline{u}_{\overline{\lambda}}$ に限る。

3 second solution **の存在** 1 — **命題** 3.4 **の証明**

本節と次節で、定理 1.3 を証明する。本節と次節を通し、 $0 < \lambda < \overline{\lambda}$ とする。

 $(\spadesuit)_{\lambda}$ の minimal solution 以外の解 \overline{u}_{λ} を見出すために、以下の方程式 $(\heartsuit)_{\lambda}$ を考察する。

$$\begin{cases}
-\Delta v + av = b\left((v + \underline{u}_{\lambda})^{p} - (\underline{u}_{\lambda})^{p}\right) & \text{in } \Omega, \\
v > 0 & \text{in } \Omega, \\
v = 0 & \text{on } \partial\Omega
\end{cases}$$
 $(\heartsuit)_{\lambda}$

方程式 $(\heartsuit)_{\lambda}$ を考察するために、以下の記号をおく。

記号 ${f 3.1.}$ 1. $\mathbb{R} imes \mathbb{R} imes \Omega$ を定義域とする実数値関数 q,G を以下の通りに定める。

$$g(t,s,x) = b(x) ((t_{+} + s)^{p} - s^{p}) at_{+},$$

$$G(t,s,x) = \int_{0}^{t_{+}} g(t,s,x) dt$$

$$= b(x) \left(\frac{1}{p+1} (t_{+} + s)^{p+1} - \frac{1}{p+1} s^{p+1} - s^{p} t_{+} \right) - \frac{1}{2} a(x) t_{+}^{2}.$$
(43)

 $g(v,\underline{u}_{\lambda},x)$ を $g(v,\underline{u}_{\lambda})$ と表記する。 $G(v,\underline{u}_{\lambda},x)$ を $G(v,\underline{u}_{\lambda})$ と表記する。

2. $I_{\lambda}: H_0^1(\Omega) \to \mathbb{R}$ を以下の通りに定める。

$$I_{\lambda}(v) = \frac{1}{2} \int_{\Omega} |Dv|^2 dx - \int_{\Omega} G(v, \underline{u}_{\lambda}) dx. \tag{45}$$

 $(\heartsuit)_{\lambda}$ の考察を始める前に、 $(\spadesuit)_{\lambda}$ と $(\heartsuit)_{\lambda}$ の関係、および、 $(\heartsuit)_{\lambda}$ と I_{λ} の関係を明らかにする。

補題 3.2. 1. 以下の(1),(2)は同値である。

- (1) $(\spadesuit)_{\lambda}$ の minimal solution \underline{u}_{λ} 以外の弱解 $\overline{u}_{\lambda} \in H^1_0(\Omega)$ が存在する。
- (2) $(\heartsuit)_{\lambda}$ の弱解 $v \in H_0^1(\Omega)$ が存在する。
- $2. \quad v \in H^1_0(\Omega)$ は (45) で定まる I_λ の臨界点であると仮定する。このとき、v は $(\heartsuit)_\lambda$ の弱解である。

ここで次の記号を置く。

記号 3.3. $V \subset \mathbb{R}^N$ を領域とする。

$$S = \inf_{u \in H_0^1(V), u \neq 0} \frac{\|Du\|_{L^2(V)}^2}{\|u\|_{L^{p+1}(V)}^2}$$
(46)

と定める。

S は V には依存しないことが知られている。

次の2つの命題を証明することにより、定理1.3を証明する。

命題 3.4. $0 < \lambda < \overline{\lambda}$ とする。 $v \ge 0$ in Ω 、 $v_0 \ne 0$ 、かつ、

$$\sup_{t>0} I_{\lambda}(tv_0) <= \frac{1}{NM^{(n-2)/2}} S^{N/2} \tag{47}$$

をみたす $v_0 \in H^1_0(\Omega)$ が存在することを仮定する。このとき、 $(\heartsuit)_\lambda$ の弱解 $v \in H^1_0(\Omega)$ が存在する。

命題 3.5. 定理 1.3 の仮定のもとで、 $v_0 \ge 0$ in Ω 、 $v_0 \ne 0$ 、および、(47) をみたす $v_0 \in H^1_0(\Omega)$ が存在する。

命題 3.4 の証明は本節、命題 3.5 の証明は次節でおこなう。

4 second solution **の存在** 2 — **命題** 3.5 **の証明**

本節では、命題 3.5 を証明する。本節を通し、定理 1.3 の仮定をおく。必要ならば Ω を平行移動することにより、p=0 としてよい。以降 p=0 とする。

4.1 タレンティー関数の考察

本小節では、命題 3.5 の証明の鍵となるタレンティー関数を考察する。命題 3.5 の v_0 は、タレンティー関数を加工することにより得られる。そこで本小節では、次小節で必要となる具体的計算を実行する。

まずは、タレンティー関数を定義する。

定義 4.1. タレンティー関数 $U: \mathbb{R}^N \to \mathbb{R}$ を

$$U(x) = \frac{1}{(1+|x|^2)^{(N-2)/2}}$$

と定める。

U について、以下の事実が知られている。

補題 4.2. タレンティー関数 U について、次式が成立する。

$$S = \frac{\|DU\|_{L^2(\mathbb{R}^N)}^2}{\|U\|_{L^{p+1}(\mathbb{R}^N)}^2}.$$
(48)

すなわち、(46) の右辺の下限は、 $V = \mathbb{R}^N$ のとき、U により達成される。

記号 4.3. Ω 上の cut off function η を、 $\eta \in C_c^\infty(\Omega)$ 、 $0 \le \eta \le 1$ in Ω 、 $\{|x| \le r_0\}$ 上 $\eta \equiv 1$ 、 $\{|x| \ge 2r_0\}$ 上 $\eta \equiv 0$ となるものとする。 $\epsilon > 0$ とする。 Ω 上の関数 u_ϵ, v_ϵ を、

$$u_{\epsilon}(x) = \frac{\eta(x)}{(\epsilon + |x|^2)^{(N-2)/2}},$$

$$v_{\epsilon}(x) = \frac{u_{\epsilon}(x)}{\|b^{1/(p+1)}u_{\epsilon}\|_{L^{p+1}(\Omega)}}$$

と定める。

さて、[BN83] の p. 444 より、次式が成立する。

$$||Du_{\epsilon}||_{L^{2}(\Omega)}^{2} = ||DU||_{L^{2}(\mathbb{R}^{N})}^{2} \epsilon^{-(N-2)/2} + O(1).$$
(49)

次に、 $\|b^{1/(p+1)}u_{\epsilon}\|_{L^{p+1}(\Omega)}^{2}$ を考察する。

$$\int_{\Omega} b u_{\epsilon}^{p+1} dx = \int_{\Omega} \frac{b(x) \eta(x)^{p+1}}{(\epsilon+|x|^2)^N} dx = O(1) + \int_{\{|x| < r_0\}} \frac{b(x)}{(\epsilon+|x|^2)^N} dx.$$

最左辺の積分をIとおく。ここでqとNの大小により場合分けをする。

q < N のとき:変数変換により、

$$I = \int_{\{|x| < r_0\}} \frac{M_1 - M_2 |x|^q}{(\epsilon + |x|^2)^N} dx = \frac{M_1}{\epsilon^{N/2}} \int_{\left\{|x| < r_0/\sqrt{\epsilon}\right\}} \frac{1}{(1 + |x|^2)^N} dx - \frac{M_2}{\epsilon^{(N-q)/2}} \int_{\left\{|x| < r_0/\sqrt{\epsilon}\right\}} \frac{|x|^q}{(1 + |x|^2)^N} dx$$

である。第1項の積分を $I_1(\epsilon)$ 、第2項の積分を $I_2(\epsilon)$ とおく。 $\epsilon \searrow 0$ のとき、 $I_1(\epsilon) \to \|U\|_{L^{p+1}(\Omega)}^{p+1}$ である。q < N であるから、 $I_2(\epsilon)$ は有限の値に収束する。

$$\left\|b^{1/(p+1)}u_{\epsilon}\right\|_{L^{p+1}(\Omega)}^{2} = \frac{M_{1}^{2/(p+1)}}{\epsilon^{(N-2)/2}}I_{1}(\epsilon)^{1/(p+1)} - \frac{M_{2}^{2/(p+1)}}{\epsilon^{(N-2)(N-q)/2N}}I_{2}(\epsilon)^{1/(p+1)} + O(1)$$

であるから、(49) および(48) より、

$$\lim_{\epsilon \searrow 0} \frac{\|Du_{\epsilon}\|_{L^{2}(\Omega)}^{2}}{\|b^{1/(p+1)}u_{\epsilon}\|_{L^{p+1}(\Omega)}^{2}} = \frac{\|DU\|_{L^{2}(\mathbb{R}^{N})}^{2}}{M_{1}^{2/(p+1)}\|U\|_{L^{p+1}(\mathbb{R}^{N})}^{2}} = \frac{S}{M_{1}^{2/(p+1)}}$$
(50)

と計算される。すなわち、次式がしたがう。

$$\|v_{\epsilon}\|^2 = \|Dv_{\epsilon}\|_{L^2(\Omega)}^2 = \frac{S}{M^{2/(p+1)}} + O(\epsilon^{(N-2)/2}).$$
 (51)

q=N のとき:極座標変換をすると、次式が得られる。

$$\int_{\{|x| < r_0\}} \frac{|x|^q}{(\epsilon + |x|^2)^N} dx = \operatorname{vol}(S^{N-1}) \int_0^{r_0} \frac{r^N}{(\epsilon + r^2)^N} r^{N-1} dr = O(|\log \epsilon|).$$

ここで $\operatorname{vol}(S^{N-1})$ は半径 1 の (N-1) 次元球面の体積である。ゆえに、(50)、(51) が同様にしたがう。

q > N のとき:

$$\int_{\{|x| < r_0\}} \frac{|x|^q}{(\epsilon + |x|^2)^N} dx < \int_{\{|x| < r_0\}} |x|^{q-2N} dx < \infty$$

であるから、最右辺はO(1)である。ゆえに、やはり(50)、(51)がしたがう。いずれの場合でも、

$$\left\| b^{1/(p+1)} u_{\epsilon} \right\|_{L^{p+1}(\Omega)}^{2} = O(\epsilon^{-(N-2)/2})$$
(52)

である。

次に、

$$\int_{\Omega} au_{\epsilon}^{2} dx = O(1) + \int_{\{|x| < r_{0}\}} \frac{m_{1} + m_{2}|x|^{q'}}{(\epsilon + |x|^{2})^{N-2}} dx$$

を考察する。 I_1, I_2 を

$$I_1 = \int_{\{|x| < r_0\}} \frac{1}{(\epsilon + |x|^2)^{N-2}} dx,$$

$$I_2 = \int_{\{|x| < r_0\}} \frac{|x|^{q'}}{(\epsilon + |x|^2)^{N-2}} dx$$

とおく。[BN83] の p. 444 より、次式が成立する。

$$I_1 = \begin{cases} O(\epsilon^{-(N-4)/2}) & (n \ge 5), \\ O(|\log \epsilon|) & (n = 4), \\ O(1) & (n = 3). \end{cases}$$

 I_2 を、N と q'+4 の大小で場合分けして計算する。

N > q' + 4 のとき:変数変換により、

$$I_2 = \frac{1}{\epsilon^{(N-q'-4)/2}} \int_{\{|x| < r_0/\sqrt{\epsilon}\}} \frac{|x|^{q'}}{(1+|x|^2)^{N-2}} dx$$

である。右辺の積分を $I(\epsilon)$ とおく。 N>q'+4 であるから、 $\epsilon \searrow 0$ のとき、 $I(\epsilon)$ は収束する。よって、 $I_1=O(\epsilon^{-(N-q'-4)/2})$ である。

N = q' + 4 のとき:極座標変換により、

$$I_2 = \operatorname{vol}(S^{N-1}) \int_0^{r_0} \frac{|x|^{N-4}}{(\epsilon + |x|^2)^{N-2}} r^{N-1} dr = O(|\log \epsilon|)$$

と計算される。

N < q' + 4 のとき:

$$I_2 = \int_{\{|x| < r_0\}} |x|^{q' - 2(N - 2)} dx < \infty$$

であるから、 $I_2 = O(1)$ である。

よって、 $\epsilon \setminus 0$ のときの I_2 の挙動は次の通りにまとめられる。

$$I_2 = \begin{cases} O(\epsilon^{-(N-q'-4)/2}) & (n > q'+4), \\ O(|\log \epsilon|) & (n = q'+4), \\ O(1) & (n < q'+4). \end{cases}$$

以上の結果と、(52)より、以下が成立する。

$$\begin{cases}
\int_{\Omega} av_{\epsilon} dx = O(1) + m_{1} I'_{1} + m_{2} I'_{2}, \\
I'_{1} = \begin{cases}
O(\epsilon) & (N \geq 5), \\
O(\epsilon | \log \epsilon|) & (N = 4), \\
O(\epsilon^{1/2}) & (N = 3),
\end{cases} \\
I'_{2} = \begin{cases}
O(\epsilon^{1+q'/2}) & (N > q' + 4), \\
O(\epsilon^{(N-2)/2} | \log \epsilon|) & (N = q' + 4), \\
O(\epsilon^{(N-2)/2}) & (N < q' + 4).
\end{cases}$$
(53)

4.2 命題 3.5 の証明

5 $N \geq 6$ かつ $\lambda > 0$ が小さい場合

参考文献

[BN83] Haïm Brézis and Louis Nirenberg. Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. *Comm. Pure Appl. Math.*, Vol. 36, No. 4, pp. 437–477, 1983.

- [NS07] Yūki Naito and Tokushi Sato. Positive solutions for semilinear elliptic equations with singular forcing terms. J. Differential Equations, Vol. 235, No. 2, pp. 439–483, 2007.
- [Wil96] Michel Willem. *Minimax theorems*. Progress in Nonlinear Differential Equations and their Applications, 24. Birkhäuser Boston, Inc., Boston, MA, 1996.