Введение в сети хранения данных

Данные

- Рост объемов
- Децентрализация
- Необходимость масштабирования
- Стоимость
- Надежность
- Безопасность
- Сложность управления

Характеристики Систем Хранения Данных

- Объем
- Механизм доступа
- Скорость доступа
- Отказоустойчивость
- Доступность
- Безопасность
- Сложность управления

Отказоустойчивость

- Задачи
 - Сохранность данных
 - Обеспечение доступности
- Методы обеспечения отказоустойчивости:
 - Дублирование узлов
 - Избыточность
 - RAID
 - MultiPath

SCSI

SCSI (англ. Small Computer Systems Interface, произносится скази) — интерфейс, разработанный для объединения на одной шине различных по своему назначению устройств, таких как жёсткие диски, накопители на магнитооптических дисках, приводы CD, DVD, стримеры

Концепции и адресация SCSI устройств

- стандарта SCSI
 - SE single-ended,
 - LVD low-voltage-differential интерфейс дифференциальной шины низкого напряжения (+большая скорость)
 - HVD high-voltage-differential интерфейс дифференциальной шины высокого напряжения (+большое растояние)
- Типы шины
 - Узкий" ("Narrow") 8-битные данные
 - "Широкий" ("Wide") 16-битные данные
- SCSI цепочки
- SCSI терминаторы
- SCSI таргет адреса

7 (более высокий приоритет) -----> 0 ---> 15 ----> 8 (более низкий приоритет)

Адресация SCSI устройств

SCSI/FC HBA (0x00, ...) sometimes called SCSI host scsi0...scsiX used in various commands

Serial Attached SCSI (SAS)

- компьютерный интерфейс, разработанный для обмена данными с такими устройствами, как жёсткие диски, накопители на оптическом диске и т. д.
- SAS использует последовательный интерфейс для работы с непосредственно подключаемыми накопителями (англ. Direct Attached Storage (DAS) devices).
- SAS разработан для замены параллельного интерфейса SCSI и позволяет достичь более высокой пропускной способности, чем SCSI.
- управления SAS-устройствами используются команды SCSI.

Cравнение SAS и параллельного SCSI

- SAS использует последовательный протокол (меньшее количество сигнальных линий)
- Интерфейс SCSI использует общую шину. SAS использует соединения точка-точка
- SAS не нуждается в терминации шины
- SAS поддерживает большое количество устройств (> 16384)
- SAS поддерживает высокие скорости передачи данных (1,5, 3,0 или 6,0 Гбит/с)

Комутация устройств в SAS

Методы подключения дискового пространства

- Прямое подключение к хранилищу DAS
- Сетевая система хранения NAS
- Сеть хранения данных SAN

DAS

DAS (Direct Attached Storage) — решение, когда устройство для хранения данных подключено непосредственно к серверу, либо к рабочей станции. Устройства хранения могут быть подключены по одному из интерфейсов: SCSI, FC или SAS.

В случае этой архитектуры отсутствует централизованное управления ресурсами и возможность разделить ресурсы между серверами.

NAS

- NAS (англ. network attached storage) сетевая система хранения данных.
- используют сетевые протоколы для доступа к файлам (такие как NFS или SMB/CIFS)
- хранилище является удалённым и компьютер запрашивает файл вместо того, чтобы запрашивать блок данных с диска.

SAN

- •Storage Area Network (SAN) это высокоскоростная коммутируемая сеть передачи данных, объединяющая серверы, рабочие станции, дисковые хранилища и ленточные библиотеки.
 - •Для обмена данными чаще всего используется протокол Fibre Channel.
- Fibre Channel оптимизирован для быстрой гарантированной передачи сообщений и позволяет передавать информацию на расстояние от нескольких метров до сотен километров.

DAS

NAS

SAN

Приложение

Файловая система

Дисковое хранилище Приложение

Ethernet файловый ввод вывод

Файловая система

Дисковое хранилище Приложение

Файловая система

Fibre channel блочный ввод вывод

Дисковое хранилище

SAN

Storage Area Network

- Доступ к устройствам (RAW)
- Децентрализация
- Поставщики и потребители объединены сетью
- Возможность использования одного устройства несколькими потребителями

Консолидация серверов и систем хранения

Эффективное управление ёмкостью

- Эффективное использование объема
- Меньше устройств проще управлять

Высокая Доступность

Компоненты SAN

• Коммутаторы

Fibre Channel

- Маршрутизаторы, мосты й шлюзы
- Устройства хранения Disk array (target)
- Серверы Host (initiator)
- Среда передачи

Server

Router

Disk System

Тип сети SAN

Физические интерфейсы:

- Ethernet
- FibreChannel

Протоколы:

- ATA over Ethernet
- iSCSI (Internet Small Computer Systems Interface)
- FC
- iFCP (Internet Fibre Channel Protocol)
- FCIP (Fibre Channel over TCP/IP)

Fibre Channel

- Fibre Channel или FC высокоскоростной интерфейс передачи данных, используемый для взаимодействия рабочих станций, мейнфреймов, суперкомпьютеров и систем хранения данных.
- Топология: Порты устройств могут быть подключены
 - напрямую друг к другу (point-to-point) FC-P2P
 - в управляемую петлю (arbitrated loop) FC-AL
 - публичная петля (public loop)
 - частная петля (private loop)
 - в коммутируемую сеть, называемую «тканью» (англ. fabric. Часто на сленге просто «фабрика») FC_SW
- Можно различать топологию по двум критериям
 - есть ли цикл
 - есть ли комутатор

loop	fabric	topology
yes	no	private (arbitrated) loop
yes	yes	public loop
no	no	direct point-to-point
no	yes	switched point-to-point (*)

Структура и заголовок FC фрейма

Fibre Channel адресация (для FC-SW)

bits 23 08 07 16 15 00 Port * Domain Area

Domain id of **FC-SW** the Switch the switch

Port number on Vendor specific entry*

Domain id of FC-AL the Switch

the switch

Port number on AL-PA of the NL port

24 bit FC ID address field

* Vendor specific field FC-SW

Switch vendor	<i>Port</i> field entry
Brocade	00
McData	13

R_CTL	Destination Address (D_ID)				
CS_CTL	Source Address (S_ID)				
TYPE	Frame Control (F_CTL)				
SEQ_ID	DF_CTL	SEQ_CNT			
OX_ID		RX_ID			
Parameter (Relative Offset)					

Frame Header

Обмен, последовательности и кадр на примере SCSI операции запись

FC контроль передачи

N_Port transmits
Data Frame to
disk target.
Decrements
F_Port buffer
credit count by
one.

F_Port clears occupied buffer. Sends R_RDY to transmitting N_Port to increment buffer count.

F_Port sends
Data Frame on
to link and
decrements
target N_Port
buffer credit
count by one.

N_Port receives Data Frame and sends R_RDY to transmitting F_Port to increment it's buffer count.

R RDY ACK

R_RDY

Transmission complete for Class of Service 3. Class 2 requires target N_Port to send ACK frame in response... Class 2 frame transmission complete:

 Buffer to Buffer Flow Control AND

R RDY

End to End Flow Control

прямое подключение (point-to-point) FC-P2P

+дешего +монопольное использование канала - комутация только двух устройств

управляемая петля (arbitrated loop) FC-AL

Частная петля (Private loop)

Публичная петля (Public loop)

коммутируемая сеть, «ткань» («фабрика») FC SW

Различные топологии «ткани» («фабрики»)

«Одно-коммутаторная» структура Single-switch fabric

Древовидная или Каскадная структура Cascaded fabric

Решётка Meshed fabrics

Кольцо Ring fabric

Core-edge fabric

Избыточность множественные пути к хранилищу

Зонирование «ткани»

Маскирование LUN или выборочная презентация хранилищ (SSP)

Логические типы портов

- Порты узлов:
 - N_Port (Node port), порт устройства с поддержкой топологии «Точка-Точка».
 - NL_Port (Node Loop port), порт устройства с поддержкой топологии «Ткань» (Fabric).
- Порты коммутатора/маршрутизатора (только для топологии FC-SW):
 - F_Port (Fabric port), порт ткани. Используется для подключения портов типа N_Port к коммутатору.
 - FL_Port (Fabric Loop port), порт ткани с поддержкой петли.
 Используется для подключения портов типа NL_Port к коммутатору.
 - E_Port (Expansion port), порт расширения. Используется для соединения коммутаторов. Может быть соединён только с портом типа E_Port.
 - G_port (Generic port)

Уникальный адрес устройства

Каждое устройство имеет уникальный 8-байтовый адрес, называемый NWWN (Node World Wide Name), состоящий из нескольких компонент:

Fibre Channel WWN

- WWN может использоваться для
 - Зонирования для описания членства портов устройств в зонах.
 - Маскирования LUN для определения доступности хостам LUN на системе хранения
- WWN не используется для адресации и доставки фрейма внутри фабрики

Collecting port WWN (RHEL)

Verifying LUN presentation (RHEL)

fdisk -l

If no new LUNS detected, use:

```
echo "- - -" > /sys/class/scsi_host/hostX/scan where X is HBA number checked earlier and try again with fdisk -1
```

```
[root@WB227 ~]# echo "- - -" > /sys/class/scsi host/host0/scan
[root@WB227 ~]# echo "- - -" > /sys/class/scsi host/host1/scan
[root@WB227 ~]# fdisk -1
Disk /dev/cciss/c0d0: 73.3 GB, 73372631040 bytes
255 heads, 63 sectors/track, 8920 cylinders
Units = cylinders of 16065 * 512 = 8225280 bytes
           Device Boot
                           Start
                                         End
                                                  Blocks
                                                           Id System
 /dev/cciss/cOdOp1
                               1
                                          13
                                                  104391
                                                           83 Linux
 dev/cciss/c0d0p2
                                        8920
                               14
                                                71545477+ 8e Linux LVM
Disk /dev/sda: 1073 MB, 1073741824 bytes
34 heads, 61 sectors/track, 1011 cylinders
Units = cylinders of 2074 * 512 = 1061888 bytes
```

Сетевая модель Fibre Channel

Сетевая модель Fibre Channel

- FC-0 Описывает среду передачи, трансиверы, коннекторы и типы используемых кабелей.
- FC-1 Описывает процесс 8b/10b Кодирования (каждые 8 бит данных кодируются в 10-битовый символ (Transmission Character)), специальные символы и контроль ошибок.
- FC-2 Описывает сигнальные протоколы. На этом уровне происходит разбиение потока данных на кадры и сборка кадров. Определяет правила передачи данных между двумя портами, классы обслуживания
- FC-3 Определяет такие особенности, как: расщепление потока данных (striping), шифрования, компрессия, избыточность
- FC-4 Предоставляет возможность переноса других протоколов (SCSI, ATM, IP, HIPPI FDDI, Token Ring, AV, VI, IBM SBCCS и многих других.)

Стек протоколов iSCSI

OSI Model		iSCSI
		SCSI Applications (File Systems, Databases)
Application	SCSI Device-Type Commands	SCSI Block Commands
	SCSI Generic Commands	SCSI Commands, Data, and Status
Presentation	SCSI Transport Protocols	iSCSI
Session		
Transport		ТСР
Network		IP
Data Link		Ethernet
Physical		Linemet

iSCSI сеть

FCIP туннелирование

FC frame

SOF FC Hdr FC payload CRC EOF

FCIP frame

OSI Stack

FCoE Stack

FC Stack

Application

Presentation

Session

Transport

Network

Data Link

Link

ULP Scsi-3

FC-4

FC-3

FC-2

FCoE Mapping

Mac

Link

ULP Scsi-3

FC-4

FC-3

FC-2

FC-1

FC-0

FCoE инкапсуляция

Lossless Ethernet

FC uses BB Credits to guarantee a lossless fabric

Ethernet uses PAUSE to guarantee a lossless fabric