Московский Государственный Университет им. М.В. Ломоносова Факультет Вычислительной Математики и Кибернетики Кафедра Суперкомпьютеров и Квантовой Информатики

Курс: Практикум Параллельная программа на MPI, которая реализует однокубитное квантовое преобразование.

Работу выполнил Мокров К.С. 323 группа

Задание

- 1. Реализовать параллельную программу на C++ с использованием MPI, которая выполняет однокубитное квантовое преобразование над вектором состояний длины 2n, где n количество кубитов, по указанному номеру кубита k. Описание однокубитного преобразования дано ниже в разделе методические рекомендации[1]. Для работы с комплексными числами возможно использование стандартной библиотеки шаблонов[2].
- 2.Определить максимальное количество кубитов, для которых возможна работа программы на системе Regatta. Выполнить теоретический расчет ипроверить его экспериментально.
- 3.Протестировать программу на системе Polus. В качестве теста использовать преобразование Адамара по номеру кубита: а) который соответствует Вашему номеру в списке группы плюс 1. b) 1 c) n

Начальное состояние вектора должно генерироваться случайным образом. Заполнить таблицу и построить график зависимости ускорения параллельной программы от числа процессоров для каждого из случаев a)-c)

4.Написать отчет, который будет содержать листинг программы, а так же результаты выполнения пунктов 2-3.

Результат

		Время работы программы			Ускорение		
		Номер кубита					
	Количество	7	1	n	7	1	n
о кубитов	процессоров	-	_				
25	1	2,666340	2,707620			1	1
	2	1,378200	1,578510	1,767550	1,934653896	1,715301138	1,637136149
	4	0,924407	0,917461	0,829507	2,88437885	2,951209915	3,488481713
	8	0,517099	0,566123	0,357998	5,156343369	4,78274156	8,083061917
26	1	5,285600	5,468810	5,672110	1	1	1
	2	2,759780	3,185580	2,923220	1,915225127	1,716739181	1,940363709
	4	1,691980	1,720890	1,582470	3,123913994	3,177896321	3,584339672
	8	0,983440	1,043460	0,707491	5,374603433	5,241034635	8,017218594
27	1	10,312600	10,310700	10,724600	1	1	1
	2	5,417020	6,386260	6,371510	1,903740433	1,614513033	1,683211672
	4	3,378200	3,390360	3,428550	3,052690782	3,041181467	3,128027884
	8	1,687910	1,829150	1,742930	6,109685943	5,636880518	6,153201792

Как видно программа действительно начинает работать быстрее при увеличении количества процессов и показывает увеличение ускорения почти пропорционально увеличению количества процессов.