Algorithm of Finding the Position of Segbot on X-Y Plane

Name: Yifan Yang

NetID: yifany8

The self-balanced Segbot can be considered as a two-wheeled inverted pendulum model shown in Figure 1.

Figure 1 Two-wheeled inverted pendulum

Figure 2 shows the plane view of the two-wheeled inverted pendulum.

Figure 2 Plane view of two-wheeled inverted pendulum

Physical parameters of Segbot are following:

W = 0.182	[m]	:	Distance between the centers of the two wheels
D	[m]	:	Body depth
Н	[m]	:	Body height
$ heta_{l,r}$	[rad]	:	Left/ Right wheel angle
R = 0.0325	[m]	:	Wheel radius
$x_{l,r}$	[m]	:	Left/ Right wheel position in X axis
$y_{l,r}$	[m]	:	Left/ Right wheel position in Y axis
x_m	[m]	:	Wheel axle midpoint position in X axis

 y_m [m]: Wheel axle midpoint position in Y axis x_b [m]: Segbot gravity center position in X axis y_b [m]: Segbot gravity center position in Y axis ϕ [rad]: Body yaw angle (from X axis)

(W is measured manually. R is measured by calculating the wheel angle difference before and after the Segbot move 1ft forward)

Kinematic equations for calculating X, Y position of Segbot (x_m, y_m) is shown below.

$$(\theta, \phi) = \left(\frac{1}{2}(\theta_l + \theta_r) \frac{R}{W}(\theta_l - \theta_r)\right)$$
 (1)

$$(\dot{x_m}, \dot{y_m}) = (R\dot{\theta}\cos\phi \quad R\dot{\theta}\sin\phi) \tag{2}$$

$$(x_m, y_m) = \left(\int \dot{x_m} dt, \int \dot{y_m} dt\right)$$
 (3)

Where θ is the average angle of left and right wheel.

The body yaw angle ϕ is determined by the difference of two wheel angles. $(\theta_l - \theta_r)$ is the angle which the left wheel turns more than the right wheel. Suppose the left wheel move in a circle with the right wheel as the circle center. The Segbot turns $\frac{R}{W}(\theta_l - \theta_r)$ in angle.

 $R\dot{\theta}$ is the moving velocity of the segbot. The projection of velocity on the X axis and Y axis is the subvelocity on the X axis and Y axis. By integrating the two sub-velocity, the coordinates of Segbot on the X-Y plane will be obtained.

Links to references:

NXTway-GS Model-Based Design - Control of self-balancing two-wheeled robot built with LEGO Mindstorms NXT -