Introduction to Data Science

Dr. Irfan Yousuf

Department of Computer Science (New Campus)

UET, Lahore

(Week 16; May 06 – 10, 2024)

Outline

- Confusion Matrix for Multiclassification
- Graph Data Science

Types of Classification

- Binary Classification: It is a process or task of classification, in which a given data is classified into two classes. It's basically a kind of prediction about which of two groups the thing belongs to.
- Multi-class Classification: Multi-class classification is the task of classifying data into more than two classes.

Confusion Matrix

Predicted Values

Positive

Negative

Actual Values

True

False

True Negative (TN): You predicted negative and it's true.

False Positive (FP): You predicted positive and it's false.

False Negative (FN): You predicted negative and it's false.

Actual Labels

Person has Coronavirus

Yes No

Positive

Negative

True Positive (TP):

Person with coronavirus tested positive

False Positive (FP):

Person without coronavirus tested positive

Test Results

False Negative (FN):

Person with coronavirus tested negative

True Negative (TN):

Person without coronavirus tested negative

Confusion Matrix for Multi-class classification

	(Actual	Classes	
		a	b	С	d
Predicted Classes	a	50	3	0	0
	b	26	8	0	1
	С	20	2	4	0
Pre	d	12	0	0	1

We can separate each class in a single confusion matrix to make calculations and visualizations easier


```
H # Classes
  C = "Cat"
  D = "Dog"
  W = "Wolf"
  T = "Tiger"
  # True values
  Y true = [C,C,T,D,D,C,W,T,C,D,W,C,C,T,D,C,W,T,D,T,W,D,C,W,T,W,D,C,D,T,D,W,W,T,C,D,T]
  # Predicted values
  y pred = [C,C,C,D,W,T,D,T,C,D,D,T,C,C,D,T,W,T,C,D,D,C,W,C,D,D,W,C,D,D,W,T,W,C,C,W,T]
# Print the confusion matrix
  print('The Confusion matrix is: \n', metrics.confusion matrix(Y true, y pred))
  print('
  # Print the precision and recall, among other metrics
  print(metrics.classification_report(Y_true, y_pred, digits=3))
```


Macro-average: Computes metrics independently for each class and then averages them. Each class is treated equally.

Micro-average: Aggregates the contributions of all classes to compute the average metric. It gives equal weight to each instance.

Recall = $TP/(TP+FN) = 6/(6+4) = 0.6 \rightarrow Out of 10 actual cats, the model captured 6 cats correctly.$

Precision = $TP/(TP+FP) = 6/(6+6) = 0.5 \rightarrow Out of 12 captured cats, there are 6 actual cats.$

The F1-Score = 2 * (Precision * Recall)/(Precision + Recall) = 0.545.

Expected Predicted

Class	Precision (%)	Recall (%)	F1-Score (%)
1	81. 25	86. 67	83.87
2	87. 50	82. 35	84.85
3	56.82	58.14	57. 47
4	78. 43	74. 07	76.19

Graph Data Science

Graph Data Science

- A branch of data science that focuses on the analysis of data presented as graphs.
- Numerous types of data, such as social networks, transportation networks, biological networks, and others, can be represented using graphs.
- To glean insights from such data, graph algorithms and machine learning methods are used in graph data science.

Graph

- A graph is a common data structure that consists of a finite set of nodes (or vertices) and a finite set of edges (or links) connecting them.
- A pair (x,y) is referred to as an edge, which communicates that the x vertex connects to the y vertex.
- Graphs are used to solve real-life problems that involve representation of the problem space as a network.
- For example, a single user in Facebook can be represented as a node (vertex) while their connection with others can be represented as an edge between nodes.

Types of Graphs

- Undirected Graphs: In an undirected graph, nodes are connected by edges that are all bidirectional. For example, if an edge connects node 1 and 2, we can traverse from node 1 to node 2, and from node 2 to 1.
- **Directed Graphs:** In a directed graph, nodes are connected by directed edges they only go in one direction.

- Adjacency List: To create an Adjacency list, an array of lists is used. The size of the array is equal to the number of nodes.
- A single index, array[i] represents the list of nodes adjacent to the i-th node.

Undirected Graph

- Adjacency List: To create an Adjacency list, an array of lists is used. The size of the array is equal to the number of nodes.
- A single index, array[i] represents the list of nodes adjacent to the ith node.

Directed Graph

- Adjacency Matrix: An Adjacency Matrix is a 2D array of size V x V where V is the number of nodes in a graph.
- A slot matrix[i][j] = 1 indicates that there is an edge from node i to node j.

Adjacency Matrix

- Adjacency Matrix: An Adjacency Matrix is a 2D array of size V x V where V is the number of nodes in a graph.
- A slot matrix[i][j] = 1 indicates that there is an edge from node i to node j.

Directed Graph

• Edge List: A graph is represented as a list of edges.

Graph Representations

node list - lists the nodes connected to each node

edge list - lists each of the edges as a pair of nodes undirected edges may be listed twice XY and YX in order to simplify algorithm implementation

adjacency matrix - for an n-node graph we build an nxn array with 1's indicating edges and 0's no edge the main diagonal of the matrix is unused unless a node has an edge connected to itself. If graph is weighted, 1's are replaced with edge weight values

node list							eage	HSt		
A-BCDEF B-ACEH C-ABDEH D-ACFGH E-ABCFG F-ADEGH G-DEFH H-BCDFG						AB AC AE A A B B B B B	EA EB EF EG FD FE FG			
	ŝ	adj	ace	nc	y m	atr	ix		CA	FH
A B C D E F G H	- 1 1	1 - 1	C 1 1 1 0 0	D 1 0 1 - 0 1 1 1	1 1	1 0 0	G 0 0 1 1 1 -	H 0 1 1 0 1 1	C D C C D C D C D D D D D D	G D G E G H H C H D H F H G

tail anha

node liet

- Two vertices joined by an edge are called the <u>end vertices</u> or endpoints of the edge.
- If an edge is directed its first endpoint is called the <u>origin</u> and the other is called the destination.
- Two vertices are said to be <u>adjacent</u> if they are endpoints of the same edge.
- An edge is said to be <u>incident</u> on a vertex if the vertex is one of the edges endpoints.
- The <u>outgoing</u> edges of a vertex are the directed edges whose origin is that vertex.
- The <u>incoming</u> edges of a vertex are the directed edges whose destination is that vertex

Degree: Number of edges incident on a node

In-degree: Number of edges entering a node

Out-degree: Number of edges leaving a node

Degree = In-degree + Out-degree

The degree of B is 2.

The in degree of 2 is 2 and the out degree of 2 is 3.

- **Path:** A path is a sequence of vertices such that there is an edge from each vertex to its successor.
- A path is simple if each vertex is distinct.
- A circuit is a path in which the terminal vertex coincides with the initial vertex

Simple path: [1, 2, 4, 5]

Path: [1, 2, 4, 5, 4]

Circuit: [1, 2, 4, 5, 4, 1]

- A path from a vertex to itself is called a cycle.
- A graph is called cyclic if it contains a cycle;
 - otherwise, it is called acyclic

- Connected: There exists at least one path between any two vertices.
- **Disconnected**: Otherwise

• Clustering coefficient is a measure of the degree to which nodes in a graph tend to cluster together.

Clustering coefficient C_i for each node i is

$$C_i = \frac{2n_i}{k_i(k_i - 1)}$$

k, Degree of node i

 n_i is the number of edges among neighbors of i

Average Clustering Coefficient:

$$\bar{C} = \frac{1}{n} \sum_{i=1}^{n} C_i$$

Vertex	Neighbors	# Links connecting the Neighbors	Max. possible # Links connecting the Neighbors	Local Clustering Coefficient
1	2,4	0	2(1)/2 = 1	0/1 = 0.0
2	1, 3, 5, 6	2	4(3)/2 = 6	2/6 = 0.33
3	2, 6	1	2(1)/2 = 1	1/1 = 1.0
4	1, 5	0	2(1)/2 = 1	0/1 = 0.0
5	2, 4, 6	1	3(2)/2 = 3	1/3 = 0.33
6	2, 3, 5	2	3(2)/2 = 3	2/3 = 0.67

Networks

- Network Analysis (NA) is a set of integrated techniques to depict relations among actors and to analyze the social structures that emerge from the recurrence of these relations.
- Network Science is an academic field which studies complex networks such as telecommunication networks, computer networks, biological networks, cognitive and semantic networks, and social networks.

Network as a Graph

- We can represent any network in the form of a graph.
- Nodes become the users and an Edge between two nodes shows their relationship.

Social Networks as Graphs

• A social network graph is a graph where the **nodes represent people** and the lines between nodes, called edges, **represent social connections** between them, such as friendship or working together on a project.

Туре	Edge
Friendship graph	Friendship between users
Interaction graph	Visible interaction, such as posting on a wall
Latent graph	Latent interaction, such as browsing profile
Following graph	Subscribe to receive all messages

Social Network Analysis

- Social network analysis (SNA) is the process of **investigating social structures** through the use of network analysis and graph theory.
- It characterizes networked structures in terms of **nodes** (individual actors, people, or things within the network) and the ties, **edges**, or links (relationships or interactions) that connect them.

Centrality Measures in Social Network Analysis

- Centrality Measures: Centrality is a <u>collection of metrics</u> used to quantify how **important and influential** a specific node is to the network as a whole.
- It is important to remember that centrality measures are used **on specific nodes within the network**, and do not provide information on a network level.

Centrality Measures in Social Network Analysis

- These algorithms / measures use graph theory to calculate the importance of any given node in a network.
- Each measure has its own definition of 'importance', so you need to understand how they work to find the best one for your needs.
 - Degree Centrality
 - Betweenness Centrality
 - Closeness centrality
 - Eigen Centrality
 - PageRank Centrality

Degree Centrality

- Degree centrality assigns an importance score based simply on the number of links held by each node.
- What it tells us: How many direct, 'one hop' connections each node has to other nodes in the network.
- When to use it: For finding very connected individuals, popular individuals, individuals who are likely to hold most information or individuals who can quickly connect with the wider network.

Degree Centrality: Undirected Graphs

The degree centrality of a vertex v, for a given graph G:=(V,E) with |V| vertices and |E| edges, is defined as

$$C_{D}(v) = deg(v)$$

Degree Centrality: Directed Graphs

- The nodes with higher outdegree is more central (choices made).
- The nodes with higher indegree is more prestigious (choices received).

- Betweenness centrality measures the number of times a node lies on the shortest path between other nodes.
- What it tells us: This measure shows which nodes are 'bridges' between nodes in a network. It does this by identifying all the shortest paths and then counting how many times each node falls on one.
- When to use it: For finding the individuals who influence the flow around a system.

- The betweenness of a vertex v in a graph G := (V, E) with V vertices is computed as follows:
 - For each pair of vertices (s,t), compute the shortest paths between them.
 - For each pair of vertices (s, t), determine the fraction of shortest paths that pass through the vertex in question (here, vertex v).
 - Sum this fraction over all pairs of vertices (s, t).
- More compactly the betweenness can be represented as:

$$Betwenness(v) = \sum_{s \neq v \neq t \in V} \frac{\sigma_{st}(v)}{\sigma_{st}}$$

• where σ_{st} is total number of shortest paths from node s to node t and $\sigma_{st}(v)$ is the number of those paths that pass through v.

Consider a node v and two other nodes s and t.

- Each shortest path between s and t shown in green doesn't pass through node v.
- Each shortest path between s and t shown in red passes through node v.

Consider the ratio
$$\frac{\sigma_{st}(v)}{\sigma_{st}}$$
 :

- This gives the fraction of s-t shortest paths passing through v.
- The larger the ratio, the more important v is with respect to the pair of nodes s and t.
- To properly measure the importance of a node v, we need to consider all pairs of nodes (not involving v).

Find the betweenness centrality of node 2.

• The betweenness may be normalized by dividing through the number of pairs of vertices not including v, which for directed graphs is (n-1)(n-2) and for undirected graphs is (n-1)(n-2)/2.

Closeness Centrality

- Closeness centrality scores each node based on their 'closeness' to all other nodes in the network.
- What it tells us: This measure calculates the shortest paths between all nodes, then assigns each node a score based on its sum of shortest paths.
- When to use it: For finding the individuals who are best placed to influence the entire network most quickly.

Closeness Centrality

- Closeness centrality measures **how short** the shortest paths are from node x to all nodes.
- It is usually expressed as the normalised inverse of the sum of the topological distances in the graph.

$$\textit{Closeness Centrality Score}(u) = \frac{\textit{number of nodes} - 1}{\sum \left(\textit{distance from } u \; \textit{to all other nodes}\right)}$$

$$CC(i) = \frac{N-1}{\sum_{j} d(i,j)}$$

Closeness Centrality

$$CC(i) = \frac{N-1}{\sum_{j} d(i,j)}$$

where

i#j,

 d_{ij} is the length of the shortest path between nodes i and j in the network,

N is the number of nodes.

Summary

- Confusion Matrix
- Graph Data Science