双样本不同均值不同方差检验

设 $(X_{i1},...,X_{in_i})$, i=1,2 是分别从 $N\left(\mu_i,\sigma_i^2\right)$ 抽取的两组独立随机样本,其中所有参数均未知。 定义 $\theta=\mu_1-\mu_2$, \bar{X}_i 和 S_i^2 分别为第 i 组样本的样本均值和样本方差 (i=1,2)。

(i) 证明 $R(X,\theta)$ 是渐近枢轴量,并使用 $R(X,\theta)$ 构造 θ 的 $1-\alpha$ 渐近置信区间。 给定

$$R(X, heta) = rac{ar{X}_1 - ar{X}_2 - heta}{\sqrt{n_1^{-1}S_1^2 + n_2^{-1}S_2^2}}$$

证明:

注意

$$R(X, heta) = rac{ar{X}_1 - ar{X}_2 - heta}{\sqrt{n_1^{-1}\sigma_1^2 + n_2^{-1}\sigma_2^2}} \cdot rac{\sqrt{\sigma_1^2 + (n_1/n_2)\sigma_2^2}}{\sqrt{S_1^2 + (n_1/n_2)S_2^2}}$$

- $1.\,ar{X}_1 ar{X}_2$ 的分布为 $N\left(heta, n_1^{-1}\sigma_1^2 + n_2^{-1}\sigma_2^2
 ight)$ 。
- 2. 根据 $S_i^2 \to_p \sigma_i^2 (i=1,2)$,有

$$rac{\sqrt{\sigma_1^2 + (n_1/n_2)\sigma_2^2}}{\sqrt{S_1^2 + (n_1/n_2)S_2^2}}
ightarrow_p 1$$

因此, $R(X,\theta) \rightarrow_d N(0,1)$, 即 $R(X,\theta)$ 是渐近枢轴量。

渐近置信区间:

利用 $R(X,\theta)$, θ 的 $1-\alpha$ 渐近置信区间为

$$\left[\bar{X}_{1}-\bar{X}_{2}-z_{\alpha/2}\sqrt{n_{1}^{-1}S_{1}^{2}+n_{2}^{-1}S_{2}^{2}},\bar{X}_{1}-\bar{X}_{2}+z_{\alpha/2}\sqrt{n_{1}^{-1}S_{1}^{2}+n_{2}^{-1}S_{2}^{2}}\right]$$

其中 z_{α} 是标准正态分布 N(0,1) 的 $(1-\alpha)$ 分位数。

证毕.

(ii) 证明 $t(X, \theta)$ 是渐近枢轴量,给定

$$t(X, heta) = rac{\left(ar{X}_1 - ar{X}_2 - heta
ight)/\sqrt{n_1^{-1} + n_2^{-1}}}{\sqrt{\left[(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2
ight]/\left(n_1 + n_2 - 2
ight)}}$$

证明:

如果 $\sigma_1^2 = \sigma_2^2$,则 $t(X,\theta)$ 的分布为自由度 $n_1 + n_2 - 2$ 的 t 分布。

若 $\sigma_1 \neq \sigma_2$ 但 $n_1/n_2 \rightarrow 1$,注意

$$t(X, heta) = rac{ar{X}_1 - ar{X}_2 - heta}{\sqrt{n_1^{-1}\sigma_1^2 + n_2^{-1}\sigma_2^2}} \cdot g(X)$$

其中

$$g(X) = rac{\sqrt{n_1 + n_2 - 2} \sqrt{\sigma_1^2 + (n_1/n_2)\sigma_2^2}}{\sqrt{n_1 + n_2} \sqrt{[(n_1 - 1)/n_2]S_1^2 + [(n_2 - 1)/n_1]S_2^2}}$$

根据 $n_1/n_2
ightarrow 1$ 和 $S_i^2
ightarrow_p \sigma_i^2$,可得 $g(X)
ightarrow_p 1$ 。

因此, $t(X,\theta) \rightarrow_d N(0,1)$, 即 $t(X,\theta)$ 是渐近枢轴量。