Micro Instructions

```
//FETCH ANY INSTRUCTION
T0 PC_OUT,MAR_IN,READ,Y_IN,INC,Z_IN
T1 Z_OUT,PC_IN
T2 MDR_OUT,IR_IN
T3 BRANCH
//
Clocks #4
Memory access #1
//FETCH (SRC/DST)
T0 (SRC/DST)_OUT,(SRCTMP/DSTTMP)_IN
//
Clocks #1
Memory access #0
//FETCH (SRC/DST)+
T0 (SRC/DST)_OUT,MAR_IN,READ,Y_IN,INC,Z_IN
T1 Z OUT, (SRC/DST) IN
T2 MDR_OUT,(SRCTMP/DSTTMP)_IN
//
Clocks #3
Memory access #1
//FETCH -(SRC/DST)
T0 (SRC/DST)_OUT,Y_IN,DEC,Z_IN
T1 Z_OUT,(SRC/DST)_IN,MAR_IN,READ
T2 MDR_OUT,(SRCTMP/DSTTMP)_IN
//
Clocks #3
Memory access #1
//FETCH @(SRC/DST)
T0 (SRC/DST)_OUT,MAR_IN,READ
T1 MDR_OUT,(SRCTMP/DSTTMP)_IN
//
Clocks #2
Memory access #1
//FETCH @(SRC/DST)+
T0 (SRC/DST)_OUT,MAR_IN,READ,Y_IN,INC,Z_IN
T1 Z_OUT,(SRC/DST)_IN
T2 MDR_OUT,MAR_IN,READ
T3 MDR_OUT,(SRCTMP/DSTTMP) IN
//
Clocks #4
Memory access #2
```

```
//FETCH @-(SRC/DST)
T0 (SRC/DST)_OUT,Y_IN,DEC,Z_IN
T1 Z_OUT,(SRC/DST)_IN,MAR_IN,READ
T2 MDR OUT, MAR IN, READ
T3 MDR_OUT,(SRCTMP/DSTTMP)_IN
Clocks #4
Memory access #2
//FETCH X(SRC/DST)
T0 PC_OUT,MAR_IN,READ,Y_IN,INC,Z_IN
T1 Z OUT,PC IN
T2 (SRC/DST)_OUT,Y_IN
T3 MDR_OUT,ADD,Z_IN
T4 Z_OUT,MAR_IN,READ
T5 MDR_OUT,(SRCTMP/DSTTMP)_IN
//
Clocks #6
Memory access #2
//FETCH @X(SRC/DST)
T0 PC_OUT,MAR_IN,READ,Y_IN,INC,Z_IN
T1 Z_OUT,PC_IN
T2 (SRC/DST) OUT,Y IN
T3 MDR_OUT,ADD,Z_IN
T4 Z_OUT,MAR_IN,READ
T5 MDR_OUT,MAR_IN,READ
T6 MDR OUT, (SRCTMP/DSTTMP) IN
//
Clocks #7
Memory access #3
//EXECUTE (MOV)
T0 SRCTMP_OUT, DSTTMP_IN
//
Clocks #1
Memory access #0
//EXECUTE (AND,OR,XNOR,ADD,ADC,SUB,SBC,INC,DEC,CLR,INV,ROR,RRC,ASR,LSL,.....)
T0 DSTTMP_OUT,Y_IN
T1 SRCTMP_OUT,(AND,OR,XOR,INC,DEC,CLR,INV,ROR,RRC,ASR,LSL,.....),Z_IN
T2 Z_OUT, DSTTMP_IN
//
Clocks #3
Memory access #0
```

```
//STORE DST
T0 DSTTMP_OUT,DST_IN
//
Clocks #1
Memory access #0
//STORE DST+,-DST,@DST,@DST+,@-DST,X(DST),@X(DST)
TO DSTTMP_OUT,MDR_IN,WRITE
//
Clocks #1
Memory access #1
//END
Clocks #1
Memory access #0
                                      1-OP
//FETCH ANY INSTRUCTION
//FETCH DST(ADDRESSING MODES ABOVE )
//EXECUTE (INC,DEC,CLR,INV,LSR,ROR,RRC,ASR,LSL...)
//STORE LIKE ABOVE
//END
                                    BRANCH
//FETCH ANY INSTRUCTION
//
T0 IR_OFFSET,Y_IN IF(!condition) then END
T1 PC_OUT,ADD,Z_IN
T2 Z_OUT,PC_IN
Clocks #3 if(condition) #1 if(!condition)
Memory access #0
//END
                                      NOP
//FETCH ANY INSTRUCTION
                                      HLT
//FETCH ANY INSTRUCTION
//loop
```

F1 (3 bit)

000	No transfer
001	P_OUT
010	MDR_OUT
011	Z_OUT
100	SRC_OUT
101	DST_OUT
110	SRCTMP_OUT
111	DSTTMP_OUT

F2 (3 bit)

000	No transfer
001	PC_IN
010	IR_IN
011	Z_IN
100	SRC_IN
101	DST_IN

F3 (2 bit)

00	No transfer
01	MAR_IN
10	MDR_IN

F4 (2 bit)

00	No transfer
01	Y_IN
10	SCRTMP_IN
11	DSTTMP_IN

F5 (5 bit)

00000	No action
00001	ADD
00010	SUB
00011	No action
00100	SBC
00101	AND
00110	OR
00111	XNOR
01000	ADC
10000	INC
10001	DEC
10010	CLR
10011	INV
10100	LSR
10101	ROR
10110	RRC
10111	ASR
11000	LSL
11001	ROL
11010	RLC

F6 (2 bit)

00	No action
01	READ
10	WRITE
11	IR_OFFSET

F7 (5 bit)

00000	NO OPERATION
00001	OR_OPERAND
00010	OR_2_OPERAND
00011	OR_BRANCH
00100	OR_DSTMOD
00101	OR_EXMOV
00110	OR_SRCIND
00111	OR_DSTIND
01000	OR_STOR
01001	OR_EXOP
01010	OR_EX2OP
01011	OR_EX1OP
01100	OR_CMP
01101	OR_BEQ
01110	OR_BNE
01111	OR_BLO
10000	OR_BLS
10001	OR_BHI
10010	OR_BHS
10011	OR_HLT

F8 NEXT ADDRESS (7 bit)

IR Structure

2 operand

OP CODE	MODE	SRC	MODE	DST
1512	119	86	53	20

1 operand

OP CODE MODE DST

Branch

OP CODE	OFFSET
---------	--------

Mode Opcode

Addressing modes

000	Register
001	Auto increment
010	Auto decrement
011	Index
100	Register indirect
101	Auto increment indirect
110	Auto decrement indirect
111	Index indirect

Instruction Opcode

Op code

ADC	0 000
ADD	0 001
SUB	0 010
MOV	0 011

SBC	0 100
AND	0 101
OR	0 110
XNOR	0111
CMP	101 0
INC	110 0000000
DEC	110 0000001
CLR	110 0000010
INV	110 0000011
LSR	110 0000100
ROR	110 0000101
RRC	110 0000110
ASR	110 0000111
LSL	110 0001000
ROL	110 0001001
RLC	110 0001010
BR	11110 000
BEQ	11110 001
BNE	11110 010
BLO	11110 011
BLS	11110 100
ВНІ	11110 101
BHS	11110 110
HLT	1001
NOP	1000

ROM

0000000	PC_OUT,MAR_IN,READ,Y_IN,INC,Z_IN	0000001	
0000001	Z_OUT,PC_IN	0000010	
0000010	MDR_OUT,IR_IN, OR_OPERAND	00001 00 bit or (IR15 & IR14), (!IR15 + !IR13)	
0000011	HLT	0000011	
0000100	NOP, OR_HLT	00000 00 bit or (IR12), (IR12)	
0000101	2 operand, OR_2_OPERAND	0001 000 bit or (IR11&!IR10&!IR9), (IR10), (IR9)	
0000110	1 operand, OR_DSTMOD	0010 000 bit or (IR5&!IR4&!IR3), (IR4), (IR3)	
0000111	branch, OR_BRANCH	01001 000 bit or (IR10), (IR9), (IR8)	
00 01 000	SRC_OUT,SRCTMP_IN,OR_DSTMOD	0010 000 bit or (IR5&!IR4&!IR3), (IR4), (IR3)	
00 01 001	SRC_OUT,MAR_IN,READ,Y_IN,INC,Z_IN	0010111	
00 01 010	SRC_OUT,Y_IN,DEC,Z_IN	0011011	
00 01 011	PC_OUT,MAR_IN,READ,Y_IN,INC,Z_IN	0001110	
00 01 100	SRC_OUT,MAR_IN,READ	0001101	
0001101	MDR_OUT,SRCTMP_IN,OR_DSTMOD	0010 000 bit or (IR5&!IR4&!IR3), (IR4), (IR3)	
0001110	Z_OUT,PC_IN	0001111	
0001111	SRC_OUT,Y_IN	0011010	
00 10 000	DST_OUT,DSTTMP_IN,OR_EXMOV	G	
00 10 001	DST_OUT,MAR_IN,READ,Y_IN,INC,Z_IN	0100011	
00 10 010	DST_OUT,Y_IN,DEC,Z_IN	0100111	
00 10 011	PC_OUT,MAR_IN,READ,Y_IN,INC,Z_IN	0010110	

00 10 100 DTS_OUT,MAR_IN,READ		0010101
0010101	MDR_OUT,DSTTMP_IN,OR_EXMOV	G
0010110	Z_OUT,PC_IN	0011110

0010111	Z_OUT,SRC_IN,OR_SRCIND	001100 0 bit or (! IR11)	
0011000	MDR_OUT,MAR_IN,READ	0011001	
0011001	MDR_OUT,SRCTMP_IN,OR_DSTMOD	0010 000 bit or (IR5&!IR4&!IR3), (IR4), (IR3)	
0011010	MDR_OUT,ADD,Z_IN	0011111	
0011011	Z_OUT,SRC_IN,MAR_IN,READ, OR_SRCIN D	001110 0 bit or (! IR11)	
0011100	MDR_OUT,MAR_IN,READ	0011101	
0011101	MDR_OUT,SRCTMP_IN,OR_DSTMOD	0010 000 bit or (IR5&!IR4&!IR3), (IR4), (IR3)	
0011110	DST_OUT,Y_IN	0100010	
0011111	Z_OUT,MAR_IN,READ, OR_SRCIND	010000 0 bit or (! IR11)	
0100000	MDR_OUT,MAR_IN,READ	0100001	
0100001	MDR_OUT,SRCTMP_IN,OR_DSTMOD	0010 000 bit or (IR5&!IR4&!IR3), (IR4), (IR3)	
0100010	MDR_OUT,ADD,Z_IN	0100110	
0100011	Z_OUT,DST_IN, OR_DSTIND	010010 0 bit or (! IR5)	
0100100	MDR_OUT,MAR_IN,READ	0100101	
0100101	MDR_OUT,DSTTMP_IN,OR_EXMOV	G	
0100110	Z_OUT,MAR_IN,READ, OR_DSTIND	010101 0 bit or (! IR5)	
0100111	Z_OUT,DST_IN,MAR_IN,READ, OR_DSTIND	010100 0 bit or (! IR5)	
0101000	MDR_OUT,MAR_IN,READ	0101001	
0101001	MDR_OUT,DSTTMP_IN,OR_EXMOV	G	

0101010	MDR_OUT,MAR_IN,READ	0101011
0101011	MDR_OUT,DSTTMP_IN,OR_EXMOV	G

0101100	END	000000
0101101	Z_OUT,DSTTMP_IN,OR_STOR	010111 0 bit or (IR5 IR4 IR3)
0101110	DSTTMP_OUT,DST_IN	0101100
0101111	DSTTMP_OUT,MDR_IN,WRITE	0101100
0110000		
0110001		
0110010		
0110011	DSTTMP_OUT,Y_IN,OR_EXOP	011010 0 bit or (IR15 & IR14)
0110100	2 OPERAND, OR_EX2OP	1000 000 bit or (IR14), (IR13), (IR12)
0110101	1 OPERAND, OR_EX1OP	101 0000 bit or (IR9), (IR8), (IR7), (IR6)
0110110		
0110111		
0111000		
0111001		
0111010		
0111011		
0111100		
0111101		
0111110		
0111111		

1000000	SRCTMP OUT,ADC,Z IN	0101101	
1000001	ADD	0101101	
1000010	SRCTMP_OUT,SUB,Z_IN,OR_CMP	010110 0 bit or (!IR15)	
1000011	SRCTMP_OUT,DSTTMP_IN,OR_STOR	010111 0 bit or (IR5 IR4 IR3)	
1000100	SBC	0101110 bit of (IKS IK4 IK3)	
1000100	AND	0101101	
1000101	OR	0101101	
1000111	XNOR	0101101	
1001000	IR_OFFSET,Y_IN //BR1	1011100	
1001001	IR_OFFSET,Y_IN,OR_BEQ //BEQ	000 1100 bit or (z), (!z), (z)	
1001010	IR_OFFSET,Y_IN,OR_BNE //BNE	000 1100 bit or (!z), (z), (!z)	
1001011	IR_OFFSET,Y_IN,OR_BLO //BLO	000 1100 bit or (!c), (c), (!c)	
1001100	IR_OFFSET,Y_IN,OR_BLS //BLS	000 1100 bit or (z !c), (!z&c), (z !c)	
1001101	IR_OFFSET,Y_IN, OR_BHI //BHI	000 1100 bit or (c), (!c), (c)	
1001110	IR_OFFSET,Y_IN,OR_BHS //BHS	000 1100 bit or (z c), (!z&!c), (z c)	
1001111			
1010000	INC	0101101	
1010001	DEC	0101101	
1010010	CLR	0101101	
1010011	INV	0101101	
1010100	LSR	0101101	
1010101	ROR	0101101	
1010110	RRC	0101101	
1010111	ASR	0101101	

1011000	LSL	0101101
1011001	ROL	0101101
1011010	RLC	0101101
1011011		
1011100	PC_OUT,ADD,Z_IN	1011101
1011101	Z_OUT,PC_IN	0101100

G=> **000**0011 bit or (! IR15 & ! IR14 & IR13 & IR12), !(! IR15 & ! IR14 & IR13 & IR12), !(! IR15 & ! IR14 & IR13 & IR12),

Analysis

ADD, ADC, SUB, SBC, AND, OR, XNOR

```
FETCH INSTRUCTION Clocks #4, Memory access #1
EXECUTE Clocks #3, Memory access #0
STORE DST Clocks #1, (Memory access #0 OR Memory access #1)
ENDClocks #1, Memory access #0
FETCH (SRC/DST)Clocks #1, Memory access #0
FETCH (SRC/DST)+,-(SRC/DST) Clocks #3, Memory access #1
FETCH @(SRC/DST)Clocks #2, Memory access #1
FETCH @(SRC/DST)+,@-(SRC/DST)Clocks #4, Memory access #2
FETCH X(SRC/DST)Clocks #6, Memory access #2
FETCH @X(SRC/DST)Clocks #7, Memory access #3
SRC,DST Clocks #9+1+1=11,Memory access #1
SRC,(DST+,-DST) Clocks #9+1+3=13,Memory access #1+1+1=3
SRC,@DST Clocks #9+1+2=12,Memory access #1+1+1=3
SRC,(@DST+,@-DST) Clocks #9+1+4=14, Memory access #1+1+2=4
SRC, XDST Clocks #9+1+6=16, Memory access #1+1+2=4
SRC,@XDST Clocks #9+1+7=17, Memory access #1+1+3=5
(SRC+,-SRC),DST Clocks #9+3+1=13,Memory access #1+1=2
(SRC+,-SRC),(DST+,-DST) Clocks #9+3+3=15,Memory access #1+1+1+1=4
(SRC+,-SRC),@DST Clocks #9+3+2=14,Memory access #1+1+1+1=4
(SRC+,-SRC),(@DST+,@-DST) Clocks #9+3+4=16,Memory access #1+1+1+2=5
(SRC+,-SRC),XDST Clocks #9+3+6=18,Memory access #1+1+1+2=5
(SRC+,-SRC),@XDST Clocks #9+3+7=19,Memory access #1+1+1+3=6
@SRC,DST Clocks #9+2+1=12,Memory access #1+1=2
@SRC,(DST+,-DST) Clocks #9+2+3=14, Memory access #1+1+1+1=4
@SRC,@DST Clocks #9+2+2=13,Memory access #1+1+1+1=4
@SRC,(@DST+,@-DST) Clocks #9+2+4=15, Memory access #1+1+1+2=5
@SRC,XDST Clocks #9+2+6=17,Memory access #1+1+1+2=5
@SRC,@XDST Clocks #9+2+7=18,Memory access #1+1+1+3=6
(@SRC+@,-SRC),DST Clocks #9+4+1=14,Memory access #1+2=3
(@SRC+@,-SRC),(DST+,-DST) Clocks #9+4+3=16,Memory access #1+2+1+1=5
(@SRC+@,-SRC),@DST Clocks #9+4+2=15,Memory access #1+2+1+1=5
(@SRC+@,-SRC),(@DST+,@-DST) Clocks #9+4+4=17, Memory access #1+2+1+2=6
(@SRC+@,-SRC),XDST Clocks #9+4+6=19,Memory access #1+2+1+2=6
(@SRC+@,-SRC),@XDST Clocks #9+4+7=20,Memory access #1+2+1+3=7
```

```
XSRC,DST Clocks #9+6+1=16,Memory access #1+2=3
XSRC,(DST+,-DST) Clocks #9+6+3=18, Memory access #1+2+1+1=5
XSRC,@DST Clocks #9+6+2=17, Memory access #1+2+1+1=5
XSRC,(@DST+,@-DST) Clocks #9+6+4=19, Memory access #1+2+1+2=6
XSRC,XDST Clocks #9+6+6=21,Memory access #1+2+1+2=6
XSRC,@XDST Clocks #9+6+7=22,Memory access #1+2+1+3=7
@XSRC,DST Clocks #9+7+1=17,Memory access #1+3=4
@XSRC,(DST+,-DST) Clocks #9+7+3=19, Memory access #1+3+1+1=6
@XSRC,@DST Clocks #9+7+2=18,Memory access #1+3+1+1=6
@XSRC,(@DST+,@-DST) Clocks #9+7+4=20, Memory access #1+3+1+2=7
@XSRC,XDST Clocks #9+7+6=22,Memory access #1+3+1+2=7
@XSRC,@XDST Clocks #9+7+7=23,Memory access #1+3+1+3=8
CMP
FETCH INSTRUCTION Clocks #4, Memory access #1
EXECUTE Clocks #3, Memory access #0
ENDClocks #1, Memory access #0
FETCH (SRC/DST)Clocks #1, Memory access #0
FETCH (SRC/DST)+,-(SRC/DST) Clocks #3, Memory access #1
FETCH @(SRC/DST)Clocks #2, Memory access #1
FETCH @(SRC/DST)+,@-(SRC/DST)Clocks #4, Memory access #2
FETCH X(SRC/DST)Clocks #6, Memory access #2
FETCH @X(SRC/DST)Clocks #7, Memory access #3
SRC,DST Clocks #8+1+1=10,Memory access #1
SRC,(DST+,-DST) Clocks #8+1+3=12, Memory access #1+1=2
SRC,@DST Clocks #8+1+2=11,Memory access #1+1=2
SRC,(@DST+,@-DST) Clocks #8+1+4=13, Memory access #1+2=3
SRC,XDST Clocks #8+1+6=15,Memory access #1+2=3
SRC,@XDST Clocks #8+1+7=16, Memory access #1+3=4
(SRC+,-SRC),DST Clocks #8+3+1=12,Memory access #1+1=2
(SRC+,-SRC),(DST+,-DST) Clocks #8+3+3=14,Memory access #1+1+1=3
(SRC+,-SRC),@DST Clocks #8+3+2=13,Memory access #1+1+1=3
(SRC+,-SRC),(@DST+,@-DST) Clocks #8+3+4=15,Memory access #1+1+2=4
(SRC+,-SRC), XDST Clocks #8+3+6=17, Memory access #1+1+2=4
(SRC+,-SRC),@XDST Clocks #8+3+7=18,Memory access #1+1+3=5
```

```
@SRC,DST Clocks #8+2+1=11,Memory access #1+1=2
@SRC,(DST+,-DST) Clocks #8+2+3=13,Memory access #1+1+1=3
@SRC,@DST Clocks #8+2+2=12,Memory access #1+1+1=3
@SRC,(@DST+,@-DST) Clocks #8+2+4=14, Memory access #1+1+2=4
@SRC,XDST Clocks #8+2+6=16,Memory access #1+1+2=4
@SRC,@XDST Clocks #8+2+7=17,Memory access #1+1+3=5
(@SRC+@,-SRC),DST Clocks #8+4+1=13,Memory access #1+2=3
(@SRC+@,-SRC),(DST+,-DST) Clocks #8+4+3=15, Memory access #1+2+1=4
(@SRC+@,-SRC),@DST Clocks #8+4+2=14,Memory access #1+2+1=4
(@SRC+@,-SRC),(@DST+,@-DST) Clocks #8+4+4=16,Memory access #1+2+2=5
(@SRC+@,-SRC),XDST Clocks #8+4+6=18,Memory access #1+2+2=5
(@SRC+@,-SRC),@XDST Clocks #8+4+7=19,Memory access #1+2+3=6
XSRC,DST Clocks #8+6+1=15,Memory access #1+2=3
XSRC,(DST+,-DST) Clocks #8+6+3=17, Memory access #1+2+1=4
XSRC,@DST Clocks #8+6+2=16,Memory access #1+2+1=4
XSRC,(@DST+,@-DST) Clocks #8+6+4=18, Memory access #1+2+2=5
XSRC, XDST Clocks #8+6+6=20, Memory access #1+2+2=5
XSRC,@XDST Clocks #8+6+7=21, Memory access #1+2+3=6
@XSRC,DST Clocks #8+7+1=16,Memory access #1+3=4
@XSRC,(DST+,-DST) Clocks #8+7+3=18, Memory access #1+3+1=5
@XSRC,@DST Clocks #8+7+2=17,Memory access #1+3+1=5
```

@XSRC,(@DST+,@-DST) Clocks #8+7+4=19, Memory access #1+3+2=6

@XSRC,XDST Clocks #8+7+6=21,Memory access #1+3+2=6 @XSRC,@XDST Clocks #8+7+7=22,Memory access #1+3+3=7

MOV

```
FETCH INSTRUCTION Clocks #4, Memory access #1
EXECUTE Clocks #1, Memory access #0
STORE DST Clocks #1, (Memory access #0 OR Memory access #1)
ENDClocks #1, Memory access #0
FETCH (SRC/DST)Clocks #1, Memory access #0
FETCH (SRC/DST)+,-(SRC/DST) Clocks #3, Memory access #1
FETCH @(SRC/DST)Clocks #2, Memory access #1
FETCH @(SRC/DST)+,@-(SRC/DST)Clocks #4, Memory access #2
FETCH X(SRC/DST)Clocks #6, Memory access #2
FETCH @X(SRC/DST)Clocks #7, Memory access #3
SRC,DST Clocks #7+1+1=9,Memory access #1
SRC,(DST+,-DST) Clocks #7+1+3=11,Memory access #1+1+1=3
SRC,@DST Clocks #7+1+2=10,Memory access #1+1+1=3
SRC,(@DST+,@-DST) Clocks #7+1+4=12, Memory access #1+1+2=4
SRC, XDST Clocks #7+1+6=14, Memory access #1+1+2=4
SRC,@XDST Clocks #7+1+7=15,Memory access #1+1+3=5
(SRC+,-SRC),DST Clocks #7+3+1=11,Memory access #1+1=2
(SRC+,-SRC),(DST+,-DST) Clocks #7+3+3=13,Memory access #1+1+1+1=4
(SRC+,-SRC),@DST Clocks #7+3+2=12,Memory access #1+1+1+1=4
(SRC+,-SRC),(@DST+,@-DST) Clocks #7+3+4=14,Memory access #1+1+1+2=5
(SRC+,-SRC),XDST Clocks #7+3+6=16,Memory access #1+1+1+2=5
(SRC+,-SRC),@XDST Clocks #7+3+7=17, Memory access #1+1+1+3=6
@SRC,DST Clocks #7+2+1=10,Memory access #1+1=2
@SRC,(DST+,-DST) Clocks #7+2+3=12, Memory access #1+1+1+1=4
@SRC,@DST Clocks #7+2+2=11,Memory access #1+1+1+1=4
@SRC,(@DST+,@-DST) Clocks #7+2+4=13, Memory access #1+1+1+2=5
@SRC,XDST Clocks #7+2+6=15,Memory access #1+1+1+2=5
@SRC,@XDST Clocks #7+2+7=16,Memory access #1+1+1+3=6
(@SRC+@,-SRC),DST Clocks #7+4+1=12,Memory access #1+2=3
(@SRC+@,-SRC),(DST+,-DST) Clocks #7+4+3=14,Memory access #1+2+1+1=5
(@SRC+@,-SRC),@DST Clocks #7+4+2=13,Memory access #1+2+1+1=5
(@SRC+@,-SRC),(@DST+,@-DST) Clocks #7+4+4=15,Memory access #1+2+1+2=6
(@SRC+@,-SRC),XDST Clocks #7+4+6=17,Memory access #1+2+1+2=6
(@SRC+@,-SRC),@XDST Clocks #7+4+7=18,Memory access #1+2+1+3=7
```

```
XSRC,DST Clocks #7+6+1=14,Memory access #1+2=3
XSRC,(DST+,-DST) Clocks #7+6+3=16,Memory access #1+2+1+1=5
XSRC,@DST Clocks #7+6+2=15,Memory access #1+2+1+1=5
XSRC,(@DST+,@-DST) Clocks #7+6+4=17,Memory access #1+2+1+2=6
XSRC,XDST Clocks #7+6+6=19,Memory access #1+2+1+2=6
XSRC,@XDST Clocks #7+6+7=20,Memory access #1+2+1+3=7
@XSRC,DST Clocks #7+7+1=15,Memory access #1+3=4
```

@XSRC,DST Clocks #7+7+1=15,Memory access #1+3=4

@XSRC,(DST+,-DST) Clocks #7+7+3=17,Memory access #1+3+1+1=6

@XSRC,@DST Clocks #7+7+2=16,Memory access #1+3+1+1=6

@XSRC,(@DST+,@-DST) Clocks #7+7+4=18,Memory access #1+3+1+2=7

@XSRC,XDST Clocks #7+7+6=20,Memory access #1+3+1+2=7

@XSRC,@XDST Clocks #7+7+7=21,Memory access #1+3+1+3=8

INC,DEC,CLR,INV,LSR,ROR,RRC,ASR,LSL,ROL,RLC

FETCH INSTRUCTION Clocks #4, Memory access #1
EXECUTE Clocks #3, Memory access #0
STORE DST Clocks #1, (Memory access #0 OR Memory access #1)
ENDClocks #1, Memory access #0

FETCH (SRC/DST)Clocks #1, Memory access #0
FETCH (SRC/DST)+,-(SRC/DST) Clocks #3, Memory access #1
FETCH @(SRC/DST)Clocks #2, Memory access #1
FETCH @(SRC/DST)+,@-(SRC/DST)Clocks #4, Memory access #2
FETCH X(SRC/DST)Clocks #6, Memory access #2
FETCH @X(SRC/DST)Clocks #7, Memory access #3

DST Clocks #9+1=10,Memory access #1
(DST+,-DST) Clocks #9+3=12,Memory access #1+1+1=3
@DST Clocks #9+2=11,Memory access #1+1+1=3
(@DST+,@-DST) Clocks #9+4=13,Memory access #1+1+2=4
XDST Clocks #9+6=15,Memory access #1+1+2=4
@XDST Clocks #9+7=16,Memory access #1+1+3=5

BR,BEQ,BNE,BLO,BLS,BHI,BHS

FETCH INSTRUCTION Clocks #4, Memory access #1 EXECUTE Clocks #3, Memory access #0 ENDClocks #1, Memory access #0

NOP,HLT

FETCH INSTRUCTION Clocks #4, Memory access #1

Cycles per Instruction (CPI)

Number of instructions = 448(ADD,ADC..)+64(CMP)+64(MOV)+88(INC,DEC..)+7(BR,BEQ..)+2(NOP,HLT) = 673 instruction

Sum(clock cycles of all instructions) = 7392(ADD,ADC..)+992(CMP)+928(MOV)+1122(INC,DEC..)+56(BR,BEQ..)+8(NOP,HLT) = 10498 clock

Average number of clock cycles per instruction= 10498/673 = 15.59881129 clock per instruction

3			
- 5	Ro	of the state of th	IR
eral Pur Pose mesi	Ri	\$ 5	MAR
25	R2	0)	MDR
2	R3		Ela gregester
720	R4	7 6	SACTMP,
7	Rs	2	DSTTMP
0	R6	special parpos	() Lagran
200	R7	a v	ch site at a
	16		
¥	MAR		
J			
	anned with mScanner		