Tópicos de Matemática

Exercícios -

2. Teoria elementar de conjuntos

2.1 Considere o conjunto $A = \{1, -1, \frac{1}{4}, 2, 0, -\frac{1}{2}\}$. Indique todos os elementos de cada um dos conjuntos seguintes.

(a)
$$\{a \in A \mid a^2 \in \mathbb{Z}\}$$

(b)
$$\{a \in A \mid a \ge 0 \land \sqrt{a} \in A\}$$

(c)
$$\{a^2 \in \mathbb{R} \mid a \in A \land a^2 \in A\}$$

(c)
$$\{a^2 \in \mathbb{R} \mid a \in A \land a^2 \in A\}$$
 (d) $\{x \in \mathbb{R} \mid \exists a \in A \quad a^2 \in A \land a \ge 0 \land x = \sqrt{a}\}$

(e)
$$\{b \in \mathbb{Z} \mid \exists a \in A \ b = a^2\}$$

(e)
$$\{b \in \mathbb{Z} \mid \exists a \in A \ b = a^2\}$$
 (f) $\{b \in \mathbb{R} \mid \exists a \in A \ b^2 = a\}$

2.2 Descreva, por compreensão, cada um dos conjuntos que se seguem:

(a)
$$A = \{-1, 1\}$$

(b)
$$B = \{3, 6, 9, 12, 15, \ldots\}$$

(c)
$$C = \{2, 3, 5, 7, 11, 13, 17, \ldots\}$$
 (d) $D = \{4, 9, 16, 25\}$

(d)
$$D = \{4, 9, 16, 25\}$$

2.3 De entre os conjuntos que se seguem, indique aqueles que são iguais.

(a)
$$\{x \in \mathbb{R} \mid x^2 - 3x + 2 = 0\}, \{1, 2\} \in \{n \in \mathbb{N} \mid 0 < n^2 \le 4\}.$$

(b)
$$\{r, t, s\}, \{s, t, r, s\}, \{t, s, t, s\} \in \{s, t, r, t\}.$$

(c)
$$\emptyset$$
, $\{0\}$, $\{\emptyset\}$ e $\{\}$.

2.4 Seja $A = \{5, 11, \{5, 11\}, \{0\}, \emptyset\}$. Diga, justificando, se cada uma das afirmações que se seguem é ou não verdadeira.

(a)
$$5 \in A$$

(b)
$$\{5\} \in A$$

(b)
$$\{5\} \in A$$
 (c) $\{5, 11\} \in A$ (d) $A \subseteq \mathbb{R}$

(d)
$$A \subseteq \mathbb{R}$$

(e)
$$\{5,11\} \subseteq A$$

(f)
$$0 \in A$$

(g)
$$\emptyset \in A$$

(h)
$$\{0, 5, 11\} \subset A$$

2.5 Investigue a veracidade de cada uma das seguintes proposições.

(a)
$$\emptyset \in \{\emptyset\}$$

(b)
$$\emptyset \subseteq \{\emptyset\}$$

$$(c) \emptyset \neq \emptyset$$

(a)
$$\emptyset \in \{\emptyset\}$$
 (b) $\emptyset \subseteq \{\emptyset\}$ (c) $\emptyset \notin \emptyset$ (d) $\emptyset \in \{\{\emptyset\}\}$

2.6 Considere que A é um subconjunto de B e que B é um subconjunto de C. Considere ainda que $a \in A$, $b \in B$, $c \in C$ e que $d \notin A$, $e \notin B$ e $f \notin C$. Quais das afirmações seguintes são necessariamente verdadeiras?

- (a) $a \in C$
- (b) $b \in A$ (c) $c \notin A$

- (d) $d \in B$
- (e) $e \notin A$ (f) $f \notin A$

2.7 Dê exemplos de conjuntos A e B tais que se tenha simultaneamente:

- (a) $A \subseteq B \in A \notin B$ (b) $A \not\subset B \in A \in B$
- c) $A \not\subset B$ e $A \notin B$
- (d) $A \subseteq B \in A \in B$

2.8 Diga, justificando, se cada uma das afirmações que se seguem é verdadeira para quaisquer conjuntos $A, B \in C$.

(a) Se
$$A \in B$$
 e $B \subseteq C$ então $A \in C$.

(b) Se
$$A \in B$$
 e $B \subseteq C$ então $A \subseteq C$.

(c) Se
$$A \subseteq B$$
 e $B \in C$ então $A \in C$.

(d) Se
$$A \subseteq B$$
 e $B \in C$ então $A \subseteq C$.

- 2.9 Sejam $A = \{2, 4, 6, 8\}, B = \{x \in \mathbb{N} \mid \exists y \in \mathbb{N}, x = 2y\} \in C = \{x^2 \mid x \in A\}.$ Determine
 - (a) $A \cup C$
- (b) $A \cup A$
- (c) $A \cup B$
- (d) $C \cup B$

- (e) $B \cup C \cup A$
- (f) $A \cap B$
- (g) $B \cap B$
- (h) $A \setminus B$

- (i) $C \setminus A$
- (j) $B \setminus B$
- 2.10 Sejam $A, B \in C$ subconjuntos de um conjunto X. Prove que
 - (a) $A \cup A = A$

(b) $A \cup B = B \cup A$

(c) $A \cap \emptyset = \emptyset$

(d) se $A \cup B = \emptyset$ então $A = \emptyset$ e $B = \emptyset$

(e) $A \setminus B \subseteq A$

(f) $A \setminus \emptyset = A$

(g) $(A \backslash B) \cap B = \emptyset$

(h) $A \cap (B \setminus C) = (A \cap B) \setminus C$

(i) $A = (A \cap B) \cup (A \setminus B)$

- (j) se $A \subseteq B$ então $A \cup (B \setminus A) = B$
- (k) $X \setminus (A \cup B) = (X \setminus A) \cap (X \setminus B)$
- (1) $X \setminus (X \setminus A) = A$
- 2.11 Sejam $A, B \in C$ conjuntos. Mostre que se $A \cup B = A \cup C$ e $A \cap B = A \cap C$ então B=C.
- 2.12 Diga, justificando, se cada uma das afirmações que se seguem é verdadeira para quaisquer conjuntos $A, B \in C$.
 - (a) Se $C \subseteq A \cup B$, então $C \subseteq A$ e $C \subseteq B$. (b) Se $C \subseteq A$ ou $C \subseteq B$, então $C \subseteq A \cup B$.
- - (c) Se $A \subseteq C$ e $B \subseteq C$, então $A \cup B \subseteq C$. (d) Se $A \cup B \subseteq C$, então $A \subseteq C$ e $B \subseteq C$.
 - (e) Se $A \subseteq C$ ou $B \subseteq C$, então $A \cup B \subseteq C$. (f) Se $C \subseteq A \cap B$, então $C \subseteq A$ e $C \subseteq B$.
 - (g) Se $C \subseteq A$ ou $C \subseteq B$, então $C \subseteq A \cap B$. (h) Se $A \subseteq C$ e $B \subseteq C$, então $A \cap B \subseteq C$.

 - (i) Se $A \cap B \subseteq C$, então $A \subseteq C$ e $B \subseteq C$. (j) Se $A \subseteq C$ ou $B \subseteq C$, então $A \cap B \subseteq C$.
- 2.13 Dê exemplos de conjuntos $A, B \in C$ para os quais se tenha, respectivamente:
 - (a) $A \cup (B \setminus C) \neq (A \cup B) \setminus (A \cup C)$;
 - (b) $A \setminus (B \cap C) \neq (A \setminus B) \cap (A \setminus C)$.
- 2.14 Sejam $A = \{1, 5, 7\}$ e $B = \{\emptyset, 7, \{1, 5, 7\}\}$. Indique $\mathcal{P}(A)$ e $\mathcal{P}(B)$ e diga, justificando, se $A \in \mathcal{P}(B)$, $A \in \mathcal{P}(\mathbb{N})$ ou $\mathcal{P}(A) \subseteq \mathcal{P}(\mathbb{N})$.
- 2.15 Determine todos os elementos de $\mathcal{P}(\mathcal{P}(\mathcal{P}(\emptyset)))$.
- 2.16 Diga, justificando, se cada uma das afirmações seguintes é verdadeira para quaisquer conjuntos $A, B \in C$:
 - (a) $\mathcal{P}(A \cap B) = \mathcal{P}(A) \cap \mathcal{P}(B)$;
 - (b) $\mathcal{P}(A \cup B) = \mathcal{P}(A) \cup \mathcal{P}(B)$.
- 2.17 Considere os conjuntos $A = \{1, 2, 3\}, B = \{a, b\} \in C = \{5\}.$
 - (a) Determine

 - i) $A \times C$ e $C \times A$ ii) $(A \times C) \setminus (C \times A)$ iv) $A \times \emptyset \times C$ v) C^3
- iii) $A \times B \times C$

- iv) $A \times \emptyset \times C$

- vi) $C^3 \times B$
- (b) Verifique que os conjuntos $C^3 \times B$ e $B \times C^3$ não são iguais.
- (c) Qual o número de elementos dos conjuntos $A^4 \times B \times C^2$ e $C^3 \times B \times A$?

- 2.18 Sejam A, B e C conjuntos. Prove que:

 - (a) se $A \subseteq B$ então $A \times C \subseteq B \times C$ (b) se $A \subseteq B$ então $C \times A \subseteq C \times B$
 - (c) $C \times (A \cup B) = (C \times A) \cup (C \times B)$ (d) $(A \cap B) \times C = (A \times C) \cap (B \times C)$
- 2.19 Sejam A e B conjuntos. Prove que $(A \times A) \setminus (B \times B) = ((A \setminus B) \times A) \cup (A \times (A \setminus B))$.
- 2.20 Sejam A e B conjuntos tais que $A \neq B$. Suponha que C é um conjunto tal que $A \times C = B \times C$. Mostre que $C = \emptyset$.
- 2.21 Seja A um conjunto finito. Qual dos conjuntos $\mathcal{P}(A \times A)$ e $\mathcal{P}(A) \times \mathcal{P}(A)$ tem mais elementos?
- 2.22 Dê exemplo, ou justifique que não existe um exemplo, de conjuntos A, B e C tais que:

 - (a) $\{1\} \in A \in \{1\} \subseteq A$ (b) $B = C \in A \cap B \neq A \cap C$
 - (c) $A \cap \emptyset = A$
- (d) $A \times B \subseteq B \times C$ e $A \nsubseteq B$
- (e) $A \cap B = A \cap C$ e $B \neq C$ (f) $A \times (B \setminus C) = A \times C$ com $B, C \neq \emptyset$
- (g) $\mathcal{P}(A) \cap A \neq \emptyset$
- (h) $\mathcal{P}(A \cup B) = \mathcal{P}(A) \cup \mathcal{P}(B)$ com $A, B \neq \emptyset$
- 2.23 Calcule a união e a interseção das seguintes famílias de conjuntos:
 - (a) $\{A_n\}_{n\in\mathbb{N}}$ em que, para cada $n\in\mathbb{N}$, $A_n=\{z\in\mathbb{Z}:|z|\leq 2n\}$.
 - (b) $\{B_n\}_{n\in\mathbb{N}}$ em que, para cada $n\in\mathbb{N}$, $B_n=\{-n,0,n\}$.
 - (c) $\{C_n\}_{n\in\mathbb{N}}$ em que, para cada $n\in\mathbb{N},$ $C_n=\big\{x\in\mathbb{R}\,|\,1\leq x\leq 1+\frac{1}{n}\big\}.$
 - (d) $\{D_x\}_{x\in\mathbb{R}^+}$ em que, para cada $x\in\mathbb{R}^+$, $D_x=[-x/2,x+2[$.
- 2.24 Dê exemplo de uma família de conjuntos, indexada pelo conjunto N, de tal modo que os conjuntos da família sejam todos diferentes entre si e:
 - (a) a união dos conjuntos da família seja \mathbb{R}^+ e a interseção seja o conjunto vazio.
 - (b) a união dos conjuntos da família seja (2,8) e a interseção seja [3,6].
- 2.25 Sejam A um conjunto A e $\{B_i\}_{i\in I}$ uma família de subconjuntos de A. Mostre que:

 - (a) $\bigcap_{i \in I} B_i \subseteq B_i$, para todo $i \in I$. (b) $\left(\bigcup_{i \in I} B_i\right) \setminus A = \bigcup_{i \in I} (B_i \setminus A)$. (c) $A \setminus \bigcup_{i \in I} B_i = \bigcap_{i \in I} (A \setminus B_i)$. (d) $A \times \bigcap_{i \in I} B_i = \bigcap_{i \in I} (A \times B_i)$.