ELEC2146

Electrical Engineering Modelling and Simulation

Parameter Estimation

Dr Ray Eaton

S2, 2016

Overview

- Estimators
 - What are they ?
 - Properties
 - Examples
- Method of moments
- Maximum likelihood
- Other estimators
 - MMSE
 - Jackknife
 - Bayesian

Motivation

- Have already seen problems where
 - Model structure is known, or assumed
 - Have (experimental) data of some kind
 - Usually inputs/outputs
 - Parameter values are unknown
- Stochastic models
 - Correct framework for parameter estimation
 - Data almost always noisy (contains random or stochastic component)

Parameter Estimation

Objective

Determine a statistic

$$\hat{\Theta} = h(X_1, X_2, ..., X_n)$$

- $-X_1, X_2, ..., X_n$ are random variables representing samples from an overall population X
- h is estimation function (no numerical value)
- $-\hat{\Theta}$ is an estimator
- The observed *estimate* of parameter θ is

$$\hat{\theta} = h(x_1, x_2, ..., x_n)$$

- This is a numerical value
- $X_1, X_2, ..., X_n$ are the observed samples

Estimator Properties

Bias

– An estimator $\hat{\Theta}$ is unbiased for θ if

$$E(\hat{\Theta}) = \theta$$

- otherwise biased, with bias $b(\theta) = E(\hat{\Theta}) \theta$
- i.e. if on average, $\hat{\Theta}$ is close to the true parameter value θ
- i.e. sampling distribution of the estimator is centred over the parameter being estimated

Estimator Properties

Minimum variance

- Would like the sampling distribution of an estimator to have minimum variance
 - Estimates fall close to θ
- An unbiased minimum-variance estimator $\hat{\Theta}$ has the property

 $\operatorname{var}(\hat{\Theta}) < \operatorname{var}(\widetilde{\Theta})$

- for all other estimators $\stackrel{\sim}{\Theta}$ of θ for the same sample
- In practise:
 - Want variance as small as possible
 - $\stackrel{\bullet}{\theta}$ Comparing biased and unbiased estimators: use MSE between $\hat{\theta}$ and θ

Estimator Properties

Consistency

– An estimator $\hat{\Theta}$ is a consistent estimator for θ if

$$\lim_{n\to\infty} P(|\hat{\Theta} - \theta| \ge \varepsilon) = 0 \quad \forall \varepsilon > 0$$

- i.e. estimator converges to the true parameter value θ when more observed data are used during estimation
- i.e. sampling distribution of the estimator is centred over the parameter being estimated
- An unbiased estimator is consistent if

$$\lim_{n\to\infty} \operatorname{var}(\hat{\Theta}) = 0$$

Example Estimators

- Estimator: \overline{X} Estimate: $\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$
 - Sample mean
 - Uses entire observed sample
- Estimator: \widetilde{X} Estimate: $\widetilde{x} = \frac{1}{|M|} \sum_{M} x_i$, $M \subset \{1,2,...,n\}$ Uses some part of the sample
- Estimator: $\frac{1}{2}(\min(X_i) + \max(X_i))$ Estimate: $\frac{1}{2}(\min(X_i) + \max(X_i))$
- Estimator: $\overline{X}_{tr(\alpha)}$ Estimate:
 - mean of observed sample excluding smallest and largest α %, i.e. excluding extreme values

What is likelihood?

- If $x_1, x_2, ..., x_n$ are n independent sample values, the likelihood is defined as:

$$L(\theta \mid x_1, x_2, ..., x_n) = f(x_1 \mid \theta) f(x_2 \mid \theta) ... f(x_n \mid \theta) = \prod_{i=1}^n f(x_i \mid \theta)$$

- Same for discrete random variable with pmf $P_X(x)$
- Since by definition

$$f(x_i \mid \theta) \le 1$$

L is small number; very small if n is large

Often we use the log likelihood instead

$$\log L(\theta \mid x_1, x_2, ..., x_n) = \log f(x_1 \mid \theta) + ... + \log f(x_n \mid \theta) = \sum_{i=1}^{n} \log f(x_i \mid \theta)$$

L has no meaning, only use it for comparison

- Chooses estimate $\hat{\theta}$ of θ that maximises L
 - i.e. $\theta = \arg\max_{\theta} \left\{ L(\theta \mid x_1, x_2, ..., x_n) \right\}$
 - How ?
 - Differentiate L wrt θ , set to zero

$$\frac{dL(\hat{\theta} \mid x_1, x_2, ..., x_n)}{d\hat{\theta}} = 0$$

- Alternatively, differentiate $\ln \left(L(\hat{\theta} \mid x_1, x_2, ..., x_n) \right)$ if this is easier
 - Maximum occurs at same value $\hat{\theta}$

Interpretation

- What is really going on here?
- We can use any estimate we like

e.g.
$$\hat{\theta}_1 = \overline{x} = \frac{1}{n} \sum_{i=1}^n x_i \qquad \hat{\theta}_2 = \widetilde{x} = \frac{1}{|M|} \sum_{i=1}^n x_i$$
$$\hat{\theta}_3 = \frac{1}{2} \left(\min(X_i) + \max(X_i) \right) \quad \hat{\theta}_4 = \overline{X}_{tr(\alpha)}$$

- etc . . .
- Here we find the estimate $\hat{\theta}$ that maximises the likelihood of the observed data $x_1, x_2, ..., x_n$, given the model (whose parameter is θ)

More than one parameter:

$$\frac{\partial L(\hat{\theta}_1, \hat{\theta}_2, \dots, \hat{\theta}_m | x_1, x_2, \dots, x_n)}{\partial \hat{\theta}_j} = 0, \quad j = 1, 2, \dots, m$$

- Some properties:
 - Large sample behaviour ($n \rightarrow \infty$):
 - ML estimator is approximately unbiased
 - ML estimator is approximately the minimum variance estimator

Minimum Mean Square Error

Covered in sufficient detail in LS topic

Jackknife Estimators

- For observed sample values $x_1, x_2, ..., x_n$
 - Compute the *i*th estimator $\hat{\theta}_i$ as a function of all samples except x_i
 - Repeat for i = 1, 2, ..., n, to produce n estimates $\hat{\theta}_1, \hat{\theta}_2, ..., \hat{\theta}_n$
 - The jackknife estimate $\hat{\theta}$ is a linear combination of the n estimates

- Maximum likelihood does not take into account prior information
 - i.e. the distribution of the parameter
- Demonstrate Bayesian estimation by example:
 - Suppose we have a coin, and want to predict the probability of heads, based on our observation of coin tosses
 - The true probability of heads is a random variable P, which could be anywhere from 0 to 1

$$f_P(p) = \begin{cases} 1 & p \in [0,1] \\ 0 & \text{otherwise} \end{cases}$$

- $-f_{P}(p)$ is the marginal density of P
 - Possible outcomes due to variation in P alone
 - "prior" distribution (=what we assume before we observe X)
- Now toss the coin, create a sample X
- Conditional density of X given P = p is

$$f_{X|P}(x \mid p) = p^{x}(1-p)^{1-x}$$

- X = 1 denotes a head
- Probability theory → expression for joint density of X,
 P:

$$f_{X,P}(x,p) = f_{X|P}(x \mid p) f_P(p) = p^x (1-p)^{1-x}$$

Possible outcomes due to variation in X, P

– Also need the marginal density of X:

$$f_X(x) = \int_p f_{X,P}(x,p) dp = \int_p p^x (1-p)^{1-x} dp$$

$$= x \int_0^1 p dp + (1-x) \int_0^1 (1-p) dp = x \frac{1}{2} + (1-x) \frac{1}{2}$$

$$= \frac{1}{2}$$

- Where does all this get us ?
- Want to use prior information to come up with an estimator
- i.e. want conditional density of P given X

Want conditional density of P given X

$$f_{P|X}(p \mid x) = \frac{f_{X|P}(x \mid p)f_{P}(p)}{f_{X}(x)} = \frac{f_{X,P}(x,p)}{f_{X}(x)}$$

- In our example:

$$f_{P|X}(p \mid x = 1) = \frac{p.1}{\frac{1}{2}} = 2p$$

$$f_{P|X}(p \mid x = 0) = \frac{(1-p).1}{\frac{1}{2}} = 2(1-p)$$

- The conditional density allows us, having observed X
 x, to determine the probability of a head p
 - If X = 1, $f_{P|X}(p|x)$ is 'tilted' towards $\uparrow p$
 - If X = 0, $f_{P|X}(p|x)$ is 'tilted' towards $\downarrow p$

- If we toss a coin and observe a head, think a head is more likely
- If we toss a coin and observe a tail, think a tail is more likely
- $-f_{P|X}(p|x)$ reflects what we have seen, what we know, about the coin
- What is the estimate for p?
- E.g. conditional mean:

$$\hat{p} = \int_0^1 p f_{P|X}(p \mid x = 1) dp = \frac{2}{3}$$

$$\hat{p} = \int_0^1 p f_{P|X}(p \mid x = 0) dp = \frac{1}{3}$$