

SEARCH FOR
SPATIALLY
EXTENDED
Fermi-LAT
SOURCES USING
TWO YEARS OF
FLIGHT DATA

Joshua Lande SLAC/Stanford joshualande@gmail.com

August 25, 2011

Overview

- ▶ Category II Paper
- ► Contact Authors: J. Lande, M. Ackermann, S. Funk
- ► Full author list being finalized
- Internal Referees: Marianne Lemoine-Goumard and Johann Cohen-Tanugi
- ► Target Journal: ApJ
- Status (something about being submitted to internal referees XXXX)

Paper Outline

- ▶ Description of a new method (pointlike) for analyzing extended sources.
- Monte Carlo calculation of false detection rate for extended sources.
- Calculation of the LAT's sensitivity to spatially extended sources
- Presentation of a new search for spatially extended sources:
 - reanalyzing the extension of the 12 extended sources in 2FGL
 - testing AGN from 2LAC for extension to validate the analysis
 - presenting on the discovery/interpretation of several new extended sources not in 2FGL.

WHAT I AM LEAVING OUT

- ► Monte Carlo Validation
- Sensitivity
- ► Systematic errors on extension
- ► (See presetation at Catalog splinter)

Table. 3

Name	GLON (deg.)	GLAT (deg.)	σ (deg.)	TS	$\mathrm{TS}_{\mathrm{ext}}$	Pos Err (deg.)	$\mathrm{Flux}^{(a)} \\ (\mathrm{ph}~\mathrm{cm}^{-2}\mathrm{s}^{-1})$	Index			
E>1 GeV											
SMC	302.68	-44.81	$1.75 \pm 0.07 \pm 0.02$	94.8	67.4	0.12	3.3 ± 0.4	2.41 ± 0.17			
LMC	279.10	-32.61	$1.74 \pm 0.05 \pm 0.13$	1101.3	860.5	0.05	15.5 ± 0.6	2.48 ± 0.06			
IC443	189.05	3.04	$0.36 \pm 0.01 \pm 0.04$	10719.8	510.4	0.01	64.8 ± 1.2	2.23 ± 0.02			
Vela X	263.34	-3.11	0.88								
Centarus A	309.52	19.42	~ 10								
W28	6.50	-0.27	$0.43 \pm 0.02 \pm 0.03$	1324.8	177.4	0.01	58.0 ± 1.8	2.63 ± 0.03			
W30	8.61	-0.20	$0.36 \pm 0.02 \pm 0.02$	465.4	73.3	0.02	30.7 ± 1.6	2.59 ± 0.04			
W44	34.69	-0.38	$0.36 \pm 0.01 \pm 0.02$	1903.3	217.7	0.01	73.6 ± 1.8	2.68 ± 0.02			
W51C	49.13	-0.45	$0.28 \pm 0.02 \pm 0.05$	1819.5	115.7	0.01	39.3 ± 1.3	2.35 ± 0.03			
Cygnus Loop	74.22	-8.46	$1.72 \pm 0.05 \pm 0.07$	356.5	356.5	0.06	11.1 ± 0.7	2.53 ± 0.11			
E>10 GeV											
MSH 15-52	320.38	-1.22	$0.20 \pm 0.04 \pm 0.03$	76.2	6.5	0.03	0.6 ± 0.7	2.27 ± 0.73			
${\rm HESSJ1825\!-\!137}$	17.56	-0.46	$0.65 \pm 0.03 \pm 0.01$	83.6	55.9	0.05	1.8 ± 0.2	1.74 ± 0.19			

Table. 4

Name	GLON (deg.)	GLAT (deg.)	σ (deg.)	TS	$\mathrm{TS}_{\mathrm{ext}}$	Pos Err (deg.)	$Flux^{(a)}$ (ph cm ⁻² s ⁻¹)	Index	Counterpart		
E>1 GeV											
2FGL J0823.0-4246	260.32	-3.28	$0.37 \pm 0.03 \pm 0.02$	320.9	46.3	0.02	8.5 ± 0.7	2.20 ± 0.09	Puppis A		
$2 {\rm FGL} {\rm J}1627.0 {-} 2425 {\rm c}$	353.08	16.78	$0.41 \pm 0.05 \pm 0.02$	144.5	31.1	0.04	6.5 ± 0.6	2.49 ± 0.14	Ophiuchus		
$2 {\rm FGL} J1712.4 {-} 3941$	347.25	-0.54	$0.56 \pm 0.04 \pm 0.01$	75.0	39.6	0.05	4.2 ± 0.9	1.47 ± 0.12	$\rm RXJ1713.7\!-\!3946$		
E>10 GeV											
2FGL J0851.7-4635	266.29	-1.43	$1.13 \pm 0.08 \pm 0.05$	116.1	87.2	0.07	1.3 ± 0.2	1.76 ± 0.21	Vela Jr.		
$2 {\rm FGL} {\rm J}1615.0 {-} 5051$	332.38	-0.14	$0.33 \pm 0.04 \pm 0.01$	53.4	16.3	0.04	1.1 ± 0.2	2.24 ± 0.28	$\rm HESSJ1616\!-\!508$		
$2 {\rm FGL} {\rm J}1615.2\!-\!5138$	331.66	-0.66	$0.42 \pm 0.03 \pm 0.01$	76.6	48.0	0.05	1.2 ± 0.2	1.77 ± 0.24	$\rm HESSJ1614{-}518$		
$2 {\rm FGL} {\rm J}1632.4 {-}4753 {\rm c}$	336.41	0.22	$0.44 \pm 0.04 \pm 0.03$	127.8	64.5	0.04	1.9 ± 0.2	2.29 ± 0.21	${\rm HESSJ1632{-}478}$		
$\rm 2FGLJ1837.3\!-\!0700c$	25.08	0.13	$0.35 \pm 0.08 \pm 0.03$	46.2	18.8	0.07	1.0 ± 0.2	1.63 ± 0.29	${ m HESSJ1837-069}$		
${\rm 2FGL} {\rm J}2021.5{+}4026$	78.18	2.19	$0.59 \pm 0.03 \pm 0.02$	222.2	116.4	0.04	1.8 ± 0.2	2.31 ± 0.19	γ -Cygni		