2023-2024 第二学期数学类实变函数期末考试试卷

授课老师: 陈婷

(回忆者的注:题目顺序可能与原卷不同.)

- 1. 设 $E \subseteq \mathbb{R}$. 若 E 被一个开集族 $\{G_{\lambda}\}_{\lambda \in \Lambda}$ 所覆盖,求证 E 被 $\{G_{\lambda}\}_{\lambda \in \Lambda}$ 的一个可数子族所覆盖.
 - 2. $\{E_n\}_{n\geqslant 1}$ 是可测集列. 求证 $m(\liminf_{n\to\infty}E_n)\leqslant \liminf_{n\to\infty}m(E_n)$.
 - 3. g 是 E 上几乎处处有限的可测函数. f 是 ℝ 上的连续函数.
 - (1) 求证 $f \circ g$ 在 E 上可测. (2) $g \circ f$ 一定可测吗? 说明理由.
- 4. $\{E_i\}_{i=1}^n$ 是 [0,1] 中的 n 个可测集. 若 [0,1] 中的每一点至少属于这 n 个集合中的 k 个,求证: 这些集合至少有一个的测度不小于 $\frac{k}{n}$.
 - 5. $f \in L(\mathbb{R})$. 求证 $\sum_{n=-\infty}^{+\infty} |f(x+n)|^2$ 几乎处处收敛. (回忆者的注: 这里比作业题多了个平方.)
- 6. $f, f_k(k \ge 1)$ 是 E 上非负可积函数,且 $f_k(x) \to f(x)$,a.e.,以及 $\int_E f_k(x) \mathrm{d}x \to \int_E f(x) \mathrm{d}x$. 求证对 E 的任一可测子集 e,有 $\int_e f_k(x) \mathrm{d}x \to \int_e f(x) \mathrm{d}x$.
 - 7. f_n 是 E 上一列可积函数, 满足:
 - $(1) f_n$ 在 E 上依测度收敛于 f;
 - (2) 存在 $g \in L(E)$, 使得 $|f_n| \leq g, \forall n$. 求证 $f \in L(E)$ 且 $\int_E f(x) dx = \lim_{n \to \infty} \int_E f_n(x) dx$.
 - 8. f,g 在 [a,b] 上有界变差. 求证 fg 在 [a,b] 上有界变差.