Методы оптимизации
 Лекция 3: Отделимость и проекция

Александр Катруца

Московский физико-технический институт

17 февраля 2021 г.

Отделимость

Определение

▶ Множества \mathcal{A}, \mathcal{B} называются отделимыми, если существует гиперплоскость $\{\mathbf{x} \mid \mathbf{a}^{\top}\mathbf{x} = b\}$ такая что $\mathbf{a}^{\top}\mathbf{x} \leq b \leq \mathbf{a}^{\top}\mathbf{y}$ для всех $\mathbf{x} \in \mathcal{A}$ и $\mathbf{y} \in \mathcal{B}$ и $\mathbf{a}^{\top}\mathbf{z} \neq b$ для произвольного $\mathbf{z} \in \mathcal{A} \cup \mathcal{B}$

Отделимость

Определение

- ▶ Множества \mathcal{A}, \mathcal{B} называются отделимыми, если существует гиперплоскость $\{\mathbf{x} \mid \mathbf{a}^{\top}\mathbf{x} = b\}$ такая что $\mathbf{a}^{\top}\mathbf{x} \leq b \leq \mathbf{a}^{\top}\mathbf{y}$ для всех $\mathbf{x} \in \mathcal{A}$ и $\mathbf{y} \in \mathcal{B}$ и $\mathbf{a}^{\top}\mathbf{z} \neq b$ для произвольного $\mathbf{z} \in \mathcal{A} \cup \mathcal{B}$
- Множества \mathcal{A}, \mathcal{B} называются **строго** отделимыми, если существует гиперплоскость $\{\mathbf{x} \mid \mathbf{a}^{\top}\mathbf{x} = b\}$ и числа $b_1 < b < b_2$ такие что $\mathbf{a}^{\top}\mathbf{x} \le b_1 < b_2 \le \mathbf{a}^{\top}\mathbf{y}$ для всех $\mathbf{x} \in \mathcal{A}$ и $\mathbf{y} \in \mathcal{B}$

Теорема

Пусть \mathcal{A},\mathcal{B} непустые подмножества \mathbb{R}^n . Тогда

- 1. \mathcal{A} и \mathcal{B} отделимы iff найдётся вектор \mathbf{c} такой что $\sup_{\mathbf{x} \in \mathcal{A}} \langle \mathbf{c}, \mathbf{x} \rangle \leq \inf_{\mathbf{y} \in \mathcal{B}} \langle \mathbf{c}, \mathbf{y} \rangle$ и $\inf_{\mathbf{x} \in \mathcal{A}} \langle \mathbf{c}, \mathbf{x} \rangle < \sup_{\mathbf{y} \in \mathcal{B}} \langle \mathbf{c}, \mathbf{y} \rangle$
- 2. \mathcal{A} и \mathcal{B} **строго** отделимы iff найдётся вектор \mathbf{c} такой что $\sup_{\mathbf{x} \in \mathcal{A}} \langle \mathbf{c}, \mathbf{x} \rangle < \inf_{\mathbf{y} \in \mathcal{B}} \langle \mathbf{c}, \mathbf{y} \rangle$

Теорема

Пусть \mathcal{A},\mathcal{B} непустые подмножества \mathbb{R}^n . Тогда

- 1. \mathcal{A} и \mathcal{B} отделимы iff найдётся вектор \mathbf{c} такой что $\sup_{\mathbf{x} \in \mathcal{A}} \langle \mathbf{c}, \mathbf{x} \rangle \leq \inf_{\mathbf{y} \in \mathcal{B}} \langle \mathbf{c}, \mathbf{y} \rangle$ и $\inf_{\mathbf{x} \in \mathcal{A}} \langle \mathbf{c}, \mathbf{x} \rangle < \sup_{\mathbf{y} \in \mathcal{B}} \langle \mathbf{c}, \mathbf{y} \rangle$
- 2. \mathcal{A} и \mathcal{B} **строго** отделимы iff найдётся вектор \mathbf{c} такой что $\sup_{\mathbf{x} \in \mathcal{A}} \langle \mathbf{c}, \mathbf{x} \rangle < \inf_{\mathbf{y} \in \mathcal{B}} \langle \mathbf{c}, \mathbf{y} \rangle$

Теорема

Пусть \mathcal{A},\mathcal{B} непустые подмножества \mathbb{R}^n . Тогда

- 1. \mathcal{A} и \mathcal{B} отделимы iff найдётся вектор \mathbf{c} такой что $\sup_{\mathbf{x} \in \mathcal{A}} \langle \mathbf{c}, \mathbf{x} \rangle \leq \inf_{\mathbf{y} \in \mathcal{B}} \langle \mathbf{c}, \mathbf{y} \rangle$ и $\inf_{\mathbf{x} \in \mathcal{A}} \langle \mathbf{c}, \mathbf{x} \rangle < \sup_{\mathbf{y} \in \mathcal{B}} \langle \mathbf{c}, \mathbf{y} \rangle$
- 2. \mathcal{A} и \mathcal{B} **строго** отделимы iff найдётся вектор \mathbf{c} такой что $\sup_{\mathbf{x} \in \mathcal{A}} \langle \mathbf{c}, \mathbf{x} \rangle < \inf_{\mathbf{y} \in \mathcal{B}} \langle \mathbf{c}, \mathbf{y} \rangle$

Доказательство

▶ Пусть выполнены условия в 1. Тогда выберем b что $\sup_{\mathbf{x} \in \mathcal{A}} \langle \mathbf{c}, \mathbf{x} \rangle \leq b \leq \inf_{\mathbf{y} \in \mathcal{B}} \langle \mathbf{c}, \mathbf{y} \rangle$

Теорема

Пусть \mathcal{A}, \mathcal{B} непустые подмножества \mathbb{R}^n . Тогда

- 1. \mathcal{A} и \mathcal{B} отделимы iff найдётся вектор \mathbf{c} такой что $\sup_{\mathbf{x} \in \mathcal{A}} \langle \mathbf{c}, \mathbf{x} \rangle \leq \inf_{\mathbf{y} \in \mathcal{B}} \langle \mathbf{c}, \mathbf{y} \rangle$ и $\inf_{\mathbf{x} \in \mathcal{A}} \langle \mathbf{c}, \mathbf{x} \rangle < \sup_{\mathbf{y} \in \mathcal{B}} \langle \mathbf{c}, \mathbf{y} \rangle$
- 2. \mathcal{A} и \mathcal{B} **строго** отделимы iff найдётся вектор \mathbf{c} такой что $\sup_{\mathbf{x} \in \mathcal{A}} \langle \mathbf{c}, \mathbf{x} \rangle < \inf_{\mathbf{y} \in \mathcal{B}} \langle \mathbf{c}, \mathbf{y} \rangle$

- ▶ Пусть выполнены условия в 1. Тогда выберем b что $\sup_{\mathbf{x} \in \mathcal{A}} \langle \mathbf{c}, \mathbf{x} \rangle \leq b \leq \inf_{\mathbf{y} \in \mathcal{B}} \langle \mathbf{c}, \mathbf{y} \rangle$
- ▶ Тогда $\langle \mathbf{c}, \mathbf{x} \rangle \leq b$ и $\langle \mathbf{c}, \mathbf{y} \rangle \geq b$ для всех $\mathbf{x} \in \mathcal{A}$ и $\mathbf{y} \in \mathcal{B}$

Теорема

Пусть \mathcal{A},\mathcal{B} непустые подмножества \mathbb{R}^n . Тогда

- 1. \mathcal{A} и \mathcal{B} отделимы iff найдётся вектор \mathbf{c} такой что $\sup_{\mathbf{x} \in \mathcal{A}} \langle \mathbf{c}, \mathbf{x} \rangle \leq \inf_{\mathbf{y} \in \mathcal{B}} \langle \mathbf{c}, \mathbf{y} \rangle$ и $\inf_{\mathbf{x} \in \mathcal{A}} \langle \mathbf{c}, \mathbf{x} \rangle < \sup_{\mathbf{y} \in \mathcal{B}} \langle \mathbf{c}, \mathbf{y} \rangle$
- 2. \mathcal{A} и \mathcal{B} **строго** отделимы iff найдётся вектор \mathbf{c} такой что $\sup_{\mathbf{x} \in \mathcal{A}} \langle \mathbf{c}, \mathbf{x} \rangle < \inf_{\mathbf{y} \in \mathcal{B}} \langle \mathbf{c}, \mathbf{y} \rangle$

- ▶ Пусть выполнены условия в 1. Тогда выберем b что $\sup_{\mathbf{x} \in \mathcal{A}} \langle \mathbf{c}, \mathbf{x} \rangle \leq b \leq \inf_{\mathbf{y} \in \mathcal{B}} \langle \mathbf{c}, \mathbf{y} \rangle$
- ▶ Тогда $\langle \mathbf{c}, \mathbf{x} \rangle \leq b$ и $\langle \mathbf{c}, \mathbf{y} \rangle \geq b$ для всех $\mathbf{x} \in \mathcal{A}$ и $\mathbf{y} \in \mathcal{B}$
- ▶ Также в силу второго условия $\langle \mathbf{c}, \mathbf{x} \rangle \neq b$ для $\mathbf{x} \in \mathcal{A} \cup \mathcal{B}$. Таким образом, множества отделимы

Теорема

Пусть \mathcal{A},\mathcal{B} непустые подмножества \mathbb{R}^n . Тогда

- 1. \mathcal{A} и \mathcal{B} отделимы iff найдётся вектор \mathbf{c} такой что $\sup_{\mathbf{x} \in \mathcal{A}} \langle \mathbf{c}, \mathbf{x} \rangle \leq \inf_{\mathbf{y} \in \mathcal{B}} \langle \mathbf{c}, \mathbf{y} \rangle$ и $\inf_{\mathbf{x} \in \mathcal{A}} \langle \mathbf{c}, \mathbf{x} \rangle < \sup_{\mathbf{y} \in \mathcal{B}} \langle \mathbf{c}, \mathbf{y} \rangle$
- 2. \mathcal{A} и \mathcal{B} **строго** отделимы iff найдётся вектор \mathbf{c} такой что $\sup_{\mathbf{x} \in \mathcal{A}} \langle \mathbf{c}, \mathbf{x} \rangle < \inf_{\mathbf{y} \in \mathcal{B}} \langle \mathbf{c}, \mathbf{y} \rangle$

- ▶ Пусть выполнены условия в 1. Тогда выберем b что $\sup_{\mathbf{x} \in \mathcal{A}} \langle \mathbf{c}, \mathbf{x} \rangle \leq b \leq \inf_{\mathbf{y} \in \mathcal{B}} \langle \mathbf{c}, \mathbf{y} \rangle$
- ▶ Тогда $\langle \mathbf{c}, \mathbf{x} \rangle \leq b$ и $\langle \mathbf{c}, \mathbf{y} \rangle \geq b$ для всех $\mathbf{x} \in \mathcal{A}$ и $\mathbf{y} \in \mathcal{B}$
- ▶ Также в силу второго условия $\langle \mathbf{c}, \mathbf{x} \rangle \neq b$ для $\mathbf{x} \in \mathcal{A} \cup \mathcal{B}$. Таким образом, множества отделимы
- ▶ Пусть множества \mathcal{A}, \mathcal{B} отделимы. Тогда $\langle \mathbf{c}, \mathbf{x} \rangle \leq b$ и $\langle \mathbf{c}, \mathbf{y} \rangle \geq b$ для всех $\mathbf{x} \in \mathcal{A}$ и $\mathbf{y} \in \mathcal{B}$

Теорема

Пусть \mathcal{A}, \mathcal{B} непустые подмножества \mathbb{R}^n . Тогда

- 1. \mathcal{A} и \mathcal{B} отделимы iff найдётся вектор \mathbf{c} такой что $\sup_{\mathbf{x} \in \mathcal{A}} \langle \mathbf{c}, \mathbf{x} \rangle \leq \inf_{\mathbf{y} \in \mathcal{B}} \langle \mathbf{c}, \mathbf{y} \rangle$ и $\inf_{\mathbf{x} \in \mathcal{A}} \langle \mathbf{c}, \mathbf{x} \rangle < \sup_{\mathbf{v} \in \mathcal{B}} \langle \mathbf{c}, \mathbf{y} \rangle$
- 2. \mathcal{A} и \mathcal{B} **строго** отделимы iff найдётся вектор \mathbf{c} такой что $\sup_{\mathbf{x} \in \mathcal{A}} \langle \mathbf{c}, \mathbf{x} \rangle < \inf_{\mathbf{y} \in \mathcal{B}} \langle \mathbf{c}, \mathbf{y} \rangle$

- ▶ Пусть выполнены условия в 1. Тогда выберем b что $\sup_{\mathbf{x} \in \mathcal{A}} \langle \mathbf{c}, \mathbf{x} \rangle \leq b \leq \inf_{\mathbf{y} \in \mathcal{B}} \langle \mathbf{c}, \mathbf{y} \rangle$
- ▶ Тогда $\langle \mathbf{c}, \mathbf{x} \rangle \leq b$ и $\langle \mathbf{c}, \mathbf{y} \rangle \geq b$ для всех $\mathbf{x} \in \mathcal{A}$ и $\mathbf{y} \in \mathcal{B}$
- ▶ Также в силу второго условия $\langle \mathbf{c}, \mathbf{x} \rangle \neq b$ для $\mathbf{x} \in \mathcal{A} \cup \mathcal{B}$. Таким образом, множества отделимы
- ▶ Пусть множества \mathcal{A}, \mathcal{B} отделимы. Тогда $\langle \mathbf{c}, \mathbf{x} \rangle \leq b$ и $\langle \mathbf{c}, \mathbf{y} \rangle \geq b$ для всех $\mathbf{x} \in \mathcal{A}$ и $\mathbf{y} \in \mathcal{B}$
- lacktriangle Так как $\langle \mathbf{c}, \mathbf{z} \rangle
 eq b$, $\mathbf{z} \in \mathcal{A} \cup \mathcal{B}$, то найдутся $\mathbf{x}_1 \in \mathcal{A}, \mathbf{y}_1 \in \mathcal{B}$, что $\langle \mathbf{c}, \mathbf{x}_1 \rangle < \langle \mathbf{c}, \mathbf{y}_1 \rangle$ и выполнено второе условие

▶ Пусть выполнены условия 2. Тогда выберем b так что $\sup_{\mathbf{x} \in \mathcal{A}} \langle \mathbf{c}, \mathbf{x} \rangle < b < \inf_{\mathbf{y} \in \mathcal{B}} \langle \mathbf{c}, \mathbf{y} \rangle$

- ▶ Пусть выполнены условия 2. Тогда выберем b так что $\sup_{\mathbf{x} \in \mathcal{A}} \langle \mathbf{c}, \mathbf{x} \rangle < b < \inf_{\mathbf{y} \in \mathcal{B}} \langle \mathbf{c}, \mathbf{y} \rangle$
- ightharpoonup Значит можно найти числа b_1, b_2 , для которых будет выполнено условие в определении строгой отделимости

- ▶ Пусть выполнены условия 2. Тогда выберем b так что $\sup_{\mathbf{x} \in \mathcal{A}} \langle \mathbf{c}, \mathbf{x} \rangle < b < \inf_{\mathbf{y} \in \mathcal{B}} \langle \mathbf{c}, \mathbf{y} \rangle$
- ightharpoonup Значит можно найти числа b_1, b_2 , для которых будет выполнено условие в определении строгой отделимости
- ▶ Пусть множества \mathcal{A}, \mathcal{B} строго отделимы. Тогда из определения сразу следует выполнение условия 2

Теорема

Пусть $\mathcal X$ выпуклое множество и $\mathbf a
ot\in \mathrm{cl}\,(\mathcal X).$ Тогда $\mathcal X$ строго отделима от $\mathbf a$

Теорема

Пусть $\mathcal X$ выпуклое множество и $\mathbf a
ot\in \mathrm{cl}\,(\mathcal X).$ Тогда $\mathcal X$ строго отделима от $\mathbf a$

Теорема

Пусть $\mathcal X$ выпуклое множество и $\mathbf a
ot\in \mathrm{cl}\,(\mathcal X).$ Тогда $\mathcal X$ строго отделима от $\mathbf a$

Доказательство

▶ Если гиперплоскость строго отделяет \mathbf{a} от $\mathrm{cl}\,(\mathcal{X})$, то она строго отделяет \mathbf{a} от \mathcal{X}

Теорема

Пусть $\mathcal X$ выпуклое множество и $\mathbf a
ot\in \mathrm{cl}\,(\mathcal X).$ Тогда $\mathcal X$ строго отделима от $\mathbf a$

- ightharpoonup Если гиперплоскость строго отделяет ${f a}$ от ${
 m cl}\,({\mathcal X})$, то она строго отделяет ${f a}$ от ${\mathcal X}$
- lacktriangle Рассматриваем ${\mathcal X}$ выпуклое и замкнутое

Теорема

Пусть $\mathcal X$ выпуклое множество и $\mathbf a
ot\in \mathrm{cl}\,(\mathcal X).$ Тогда $\mathcal X$ строго отделима от $\mathbf a$

- ightharpoonup Если гиперплоскость строго отделяет ${f a}$ от ${
 m cl}\,({\mathcal X})$, то она строго отделяет ${f a}$ от ${\mathcal X}$
- lacktriangle Рассматриваем ${\mathcal X}$ выпуклое и замкнутое
- ▶ Пусть $d(\mathbf{x}) = \|\mathbf{x} \mathbf{a}\|_2^2$

Теорема

Пусть $\mathcal X$ выпуклое множество и $\mathbf a
ot\in \mathrm{cl}\,(\mathcal X).$ Тогда $\mathcal X$ строго отделима от $\mathbf a$

- ightharpoonup Если гиперплоскость строго отделяет ${f a}$ от ${
 m cl}\,({\mathcal X})$, то она строго отделяет ${f a}$ от ${\mathcal X}$
- lacktriangle Рассматриваем ${\mathcal X}$ выпуклое и замкнутое
- ightharpoonup Пусть $d(\mathbf{x}) = \|\mathbf{x} \mathbf{a}\|_2^2$
- lacktriangle Выберем r>0 так, чтобы шар $B({f a},r)$ пересекал ${\cal X}$

Теорема

Пусть $\mathcal X$ выпуклое множество и $\mathbf a
ot\in \mathrm{cl}\,(\mathcal X).$ Тогда $\mathcal X$ строго отделима от $\mathbf a$

- ightharpoonup Если гиперплоскость строго отделяет ${f a}$ от ${
 m cl}\,({\mathcal X})$, то она строго отделяет ${f a}$ от ${\mathcal X}$
- ightharpoonup Рассматриваем $\mathcal X$ выпуклое и замкнутое
- ightharpoonup Пусть $d(\mathbf{x}) = \|\mathbf{x} \mathbf{a}\|_2^2$
- lacktriangle Выберем r>0 так, чтобы шар $B(\mathbf{a},r)$ пересекал $\mathcal X$
- lacktriangle Тогда множество $\mathcal{X}\cap B(\mathbf{a},r)$ является компактом

Теорема

Пусть $\mathcal X$ выпуклое множество и $\mathbf a
ot\in \mathrm{cl}\,(\mathcal X).$ Тогда $\mathcal X$ строго отделима от $\mathbf a$

- ightharpoonup Если гиперплоскость строго отделяет ${f a}$ от ${
 m cl}\,({\mathcal X})$, то она строго отделяет ${f a}$ от ${\mathcal X}$
- lacktriangle Рассматриваем ${\mathcal X}$ выпуклое и замкнутое
- ightharpoonup Пусть $d(\mathbf{x}) = \|\mathbf{x} \mathbf{a}\|_2^2$
- lacktriangle Выберем r>0 так, чтобы шар $B(\mathbf{a},r)$ пересекал $\mathcal X$
- lacktriangle Тогда множество $\mathcal{X}\cap B(\mathbf{a},r)$ является компактом
- lacktriangle Функция $d(\mathbf{x})$ принимает на нём минимальное значение в точке \mathbf{x}_0

Теорема

Пусть $\mathcal X$ выпуклое множество и $\mathbf a
ot\in \mathrm{cl}\,(\mathcal X).$ Тогда $\mathcal X$ строго отделима от $\mathbf a$

- ightharpoonup Если гиперплоскость строго отделяет ${f a}$ от ${
 m cl}\,({\mathcal X})$, то она строго отделяет ${f a}$ от ${\mathcal X}$
- lacktriangle Рассматриваем ${\mathcal X}$ выпуклое и замкнутое
- ightharpoonup Пусть $d(\mathbf{x}) = \|\mathbf{x} \mathbf{a}\|_2^2$
- lacktriangle Выберем r>0 так, чтобы шар $B({f a},r)$ пересекал ${\cal X}$
- lacktriangle Тогда множество $\mathcal{X}\cap B(\mathbf{a},r)$ является компактом
- lacktriangle Функция $d(\mathbf{x})$ принимает на нём минимальное значение в точке \mathbf{x}_0
- ▶ Значит $d(\mathbf{x}) \ge d(\mathbf{x}_0)$ для всех $\mathbf{x} \in \mathcal{X}$

Теорема

Пусть $\mathcal X$ выпуклое множество и $\mathbf a
ot\in \mathrm{cl}\,(\mathcal X).$ Тогда $\mathcal X$ строго отделима от $\mathbf a$

- ightharpoonup Если гиперплоскость строго отделяет ${f a}$ от ${
 m cl}\,({\mathcal X})$, то она строго отделяет ${f a}$ от ${\mathcal X}$
- ightharpoonup Рассматриваем $\mathcal X$ выпуклое и замкнутое
- ▶ Пусть $d(\mathbf{x}) = \|\mathbf{x} \mathbf{a}\|_2^2$
- lacktriangle Выберем r>0 так, чтобы шар $B({f a},r)$ пересекал ${\cal X}$
- lacktriangle Тогда множество $\mathcal{X}\cap B(\mathbf{a},r)$ является компактом
- lacktriangle Функция $d(\mathbf{x})$ принимает на нём минимальное значение в точке \mathbf{x}_0
- ▶ Значит $d(\mathbf{x}) \ge d(\mathbf{x}_0)$ для всех $\mathbf{x} \in \mathcal{X}$
- ▶ Покажем, что для $\mathbf{c}=\mathbf{a}-\mathbf{x}_0$ выполнено $\langle \mathbf{c},\mathbf{x}-\mathbf{x}_0\rangle\leq 0$ для всех $\mathbf{x}\in\mathcal{X}$

lacktriangle Пусть найдётся ${f x}_1 \in \mathcal{X}$ такой что $\langle {f c}, {f x}_1 - {f x}_0
angle > 0$

- ▶ Пусть найдётся $\mathbf{x}_1 \in \mathcal{X}$ такой что $\langle \mathbf{c}, \mathbf{x}_1 \mathbf{x}_0 \rangle > 0$
- ▶ Рассмотрим точку $\mathbf{x}(\alpha) = \alpha \mathbf{x}_1 + (1-\alpha)\mathbf{x}_0 \in \mathcal{X}$, $\alpha \in [0,1]$

- lacktriangle Пусть найдётся $\mathbf{x}_1 \in \mathcal{X}$ такой что $\langle \mathbf{c}, \mathbf{x}_1 \mathbf{x}_0 \rangle > 0$
- ▶ Рассмотрим точку $\mathbf{x}(\alpha) = \alpha \mathbf{x}_1 + (1-\alpha)\mathbf{x}_0 \in \mathcal{X}$, $\alpha \in [0,1]$
- ▶ Тогда $f(\alpha) = d(\mathbf{x}(\alpha)) = \|\mathbf{x}(\alpha) \mathbf{a}\|_2^2$

- lacktriangle Пусть найдётся $\mathbf{x}_1 \in \mathcal{X}$ такой что $\langle \mathbf{c}, \mathbf{x}_1 \mathbf{x}_0
 angle > 0$
- ▶ Рассмотрим точку $\mathbf{x}(\alpha) = \alpha \mathbf{x}_1 + (1-\alpha)\mathbf{x}_0 \in \mathcal{X}$, $\alpha \in [0,1]$
- ▶ Тогда $f(\alpha) = d(\mathbf{x}(\alpha)) = \|\mathbf{x}(\alpha) \mathbf{a}\|_2^2$
- ▶ Вычислим $f'(0) = -2\langle \mathbf{c}, \mathbf{x}_1 \mathbf{x}_0 \rangle < 0$

- lacktriangle Пусть найдётся $\mathbf{x}_1 \in \mathcal{X}$ такой что $\langle \mathbf{c}, \mathbf{x}_1 \mathbf{x}_0
 angle > 0$
- ▶ Рассмотрим точку $\mathbf{x}(\alpha) = \alpha \mathbf{x}_1 + (1-\alpha)\mathbf{x}_0 \in \mathcal{X}$, $\alpha \in [0,1]$
- ▶ Тогда $f(\alpha) = d(\mathbf{x}(\alpha)) = \|\mathbf{x}(\alpha) \mathbf{a}\|_2^2$
- ▶ Вычислим $f'(0) = -2\langle \mathbf{c}, \mathbf{x}_1 \mathbf{x}_0 \rangle < 0$
- lacktriangle Значит для достаточно малого lpha выполнено $d(\mathbf{x}(lpha)) < d(\mathbf{x}_0)$ противоречие

- lacktriangle Пусть найдётся $\mathbf{x}_1 \in \mathcal{X}$ такой что $\langle \mathbf{c}, \mathbf{x}_1 \mathbf{x}_0
 angle > 0$
- ▶ Рассмотрим точку $\mathbf{x}(\alpha) = \alpha \mathbf{x}_1 + (1-\alpha)\mathbf{x}_0 \in \mathcal{X}$, $\alpha \in [0,1]$
- ► Тогда $f(\alpha) = d(\mathbf{x}(\alpha)) = \|\mathbf{x}(\alpha) \mathbf{a}\|_2^2$
- ▶ Вычислим $f'(0) = -2\langle \mathbf{c}, \mathbf{x}_1 \mathbf{x}_0 \rangle < 0$
- lacktriangle Значит для достаточно малого lpha выполнено $d(\mathbf{x}(lpha)) < d(\mathbf{x}_0)$ противоречие
- ▶ Значит $\langle \mathbf{c}, \mathbf{x} \mathbf{x}_0 \rangle \leq 0$ для всех $\mathbf{x} \in \mathcal{X}$

- lacktriangle Пусть найдётся $\mathbf{x}_1 \in \mathcal{X}$ такой что $\langle \mathbf{c}, \mathbf{x}_1 \mathbf{x}_0
 angle > 0$
- ▶ Рассмотрим точку $\mathbf{x}(\alpha) = \alpha \mathbf{x}_1 + (1-\alpha)\mathbf{x}_0 \in \mathcal{X}$, $\alpha \in [0,1]$
- ► Тогда $f(\alpha) = d(\mathbf{x}(\alpha)) = \|\mathbf{x}(\alpha) \mathbf{a}\|_2^2$
- ▶ Вычислим $f'(0) = -2\langle \mathbf{c}, \mathbf{x}_1 \mathbf{x}_0 \rangle < 0$
- lacktriangle Значит для достаточно малого lpha выполнено $d(\mathbf{x}(lpha)) < d(\mathbf{x}_0)$ противоречие
- ▶ Значит $\langle \mathbf{c}, \mathbf{x} \mathbf{x}_0 \rangle \leq 0$ для всех $\mathbf{x} \in \mathcal{X}$
- lacktriangle Следоватиельно, $\langle \mathbf{c}, \mathbf{x}
 angle \leq \langle \mathbf{c}, \mathbf{x}_0
 angle = \langle \mathbf{c}, \mathbf{a}
 angle \|\mathbf{c}\|_2^2$

- lacktriangle Пусть найдётся ${f x}_1 \in {\cal X}$ такой что $\langle {f c}, {f x}_1 {f x}_0
 angle > 0$
- ▶ Рассмотрим точку $\mathbf{x}(\alpha) = \alpha \mathbf{x}_1 + (1 \alpha) \mathbf{x}_0 \in \mathcal{X}$, $\alpha \in [0, 1]$
- ► Тогда $f(\alpha) = d(\mathbf{x}(\alpha)) = \|\mathbf{x}(\alpha) \mathbf{a}\|_2^2$
- ▶ Вычислим $f'(0) = -2\langle \mathbf{c}, \mathbf{x}_1 \mathbf{x}_0 \rangle < 0$
- lacktriangle Значит для достаточно малого lpha выполнено $d(\mathbf{x}(lpha)) < d(\mathbf{x}_0)$ противоречие
- ▶ Значит $\langle \mathbf{c}, \mathbf{x} \mathbf{x}_0 \rangle \leq 0$ для всех $\mathbf{x} \in \mathcal{X}$
- lacktriangle Следоватиельно, $\langle \mathbf{c}, \mathbf{x}
 angle \leq \langle \mathbf{c}, \mathbf{x}_0
 angle = \langle \mathbf{c}, \mathbf{a}
 angle \|\mathbf{c}\|_2^2$
- ightharpoonup И наконец $\sup_{\mathbf{x}\in\mathcal{X}}\langle\mathbf{c},\mathbf{x}
 angle <\langle\mathbf{c},\mathbf{a}
 angle$ критерий сильной отделимости

Лемма Фаркаша

Выполнено одно и только одно из следующих условий

- 1. Множество $\{ \mathbf{x} \mid \mathbf{A}\mathbf{x} = \mathbf{b}, \ \mathbf{x} \ge 0 \}$ непусто
- 2. Существует вектор \mathbf{p} такой что $\mathbf{p}^{\top}\mathbf{A} \geq 0$ и $\mathbf{p}^{\top}\mathbf{b} < 0$

Лемма Фаркаша

Выполнено одно и только одно из следующих условий

- 1. Множество $\{\mathbf{x} \mid \mathbf{A}\mathbf{x} = \mathbf{b}, \ \mathbf{x} \geq 0\}$ непусто
- 2. Существует вектор \mathbf{p} такой что $\mathbf{p}^{\top}\mathbf{A} \geq 0$ и $\mathbf{p}^{\top}\mathbf{b} < 0$

Лемма Фаркаша

Выполнено одно и только одно из следующих условий

- 1. Множество $\{ \mathbf{x} \mid \mathbf{A}\mathbf{x} = \mathbf{b}, \ \mathbf{x} \ge 0 \}$ непусто
- 2. Существует вектор \mathbf{p} такой что $\mathbf{p}^{\top}\mathbf{A} \geq 0$ и $\mathbf{p}^{\top}\mathbf{b} < 0$

Доказательство

▶ Первое условие означает, что ${\bf b}$ лежит в конусе C, образованном столбцами матрицы ${\bf A}=[{\bf a}_1,\dots,{\bf a}_m]$

Лемма Фаркаша

Выполнено одно и только одно из следующих условий

- 1. Множество $\{ \mathbf{x} \mid \mathbf{A}\mathbf{x} = \mathbf{b}, \ \mathbf{x} \ge 0 \}$ непусто
- 2. Существует вектор \mathbf{p} такой что $\mathbf{p}^{\top}\mathbf{A} \geq 0$ и $\mathbf{p}^{\top}\mathbf{b} < 0$

- ▶ Первое условие означает, что ${\bf b}$ лежит в конусе C, образованном столбцами матрицы ${\bf A}=[{\bf a}_1,\ldots,{\bf a}_m]$
- ► Если это не так, то существует гиперплоскость, которая *строго* отделяет конус от точки **b**:

$$\mathbf{c}^{\top}\mathbf{y} < d, \ \mathbf{y} \in C \quad \mathbf{c}^{\top}\mathbf{b} > d.$$

Лемма Фаркаша

Выполнено одно и только одно из следующих условий

- 1. Множество $\{ \mathbf{x} \mid \mathbf{A}\mathbf{x} = \mathbf{b}, \ \mathbf{x} \ge 0 \}$ непусто
- 2. Существует вектор \mathbf{p} такой что $\mathbf{p}^{\top}\mathbf{A} \geq 0$ и $\mathbf{p}^{\top}\mathbf{b} < 0$

Доказательство

- ▶ Первое условие означает, что ${\bf b}$ лежит в конусе C, образованном столбцами матрицы ${\bf A}=[{\bf a}_1,\ldots,{\bf a}_m]$
- ► Если это не так, то существует гиперплоскость, которая *строго* отделяет конус от точки **b**:

$$\mathbf{c}^{\top} \mathbf{y} < d, \ \mathbf{y} \in C \quad \mathbf{c}^{\top} \mathbf{b} > d.$$

▶ Поскольку $0 \in C$, то d > 0. Также $\mathbf{a}_i \in C \Rightarrow \alpha \mathbf{a}_i \in C \ \alpha > 0$

Лемма Фаркаша (Farkas' lemma)

Лемма Фаркаша

Выполнено одно и только одно из следующих условий

- 1. Множество $\{ \mathbf{x} \mid \mathbf{A}\mathbf{x} = \mathbf{b}, \ \mathbf{x} \ge 0 \}$ непусто
- 2. Существует вектор \mathbf{p} такой что $\mathbf{p}^{\top}\mathbf{A} \geq 0$ и $\mathbf{p}^{\top}\mathbf{b} < 0$

- ▶ Первое условие означает, что ${f b}$ лежит в конусе C, образованном столбцами матрицы ${f A}=[{f a}_1,\dots,{f a}_m]$
- ► Если это не так, то существует гиперплоскость, которая *строго* отделяет конус от точки **b**:

$$\mathbf{c}^{\top} \mathbf{y} < d, \ \mathbf{y} \in C \quad \mathbf{c}^{\top} \mathbf{b} > d.$$

- ▶ Поскольку $0 \in C$, то d>0. Также $\mathbf{a}_i \in C \Rightarrow \alpha \mathbf{a}_i \in C \ \alpha > 0$
- ▶ Значит $\mathbf{c}^{\top} \alpha \mathbf{a}_i < d \Rightarrow \mathbf{c}^{\top} \mathbf{a}_i < d / \alpha$. При $\alpha \to \infty$, $\mathbf{c}^{\top} \mathbf{a}_i \leq 0$

Лемма Фаркаша (Farkas' lemma)

Лемма Фаркаша

Выполнено одно и только одно из следующих условий

- 1. Множество $\{ \mathbf{x} \mid \mathbf{A}\mathbf{x} = \mathbf{b}, \ \mathbf{x} \ge 0 \}$ непусто
- 2. Существует вектор \mathbf{p} такой что $\mathbf{p}^{\top}\mathbf{A} \geq 0$ и $\mathbf{p}^{\top}\mathbf{b} < 0$

- Первое условие означает, что b лежит в конусе C,
 образованном столбцами матрицы $\mathbf{A} = [\mathbf{a}_1, \dots, \mathbf{a}_m]$
- ► Если это не так, то существует гиперплоскость, которая *строго* отделяет конус от точки **b**:

$$\mathbf{c}^{\top} \mathbf{y} < d, \ \mathbf{y} \in C \quad \mathbf{c}^{\top} \mathbf{b} > d.$$

- ▶ Поскольку $0 \in C$, то d>0. Также $\mathbf{a}_i \in C \Rightarrow \alpha \mathbf{a}_i \in C \ \alpha > 0$
- ▶ Значит $\mathbf{c}^{\top} \alpha \mathbf{a}_i < d \Rightarrow \mathbf{c}^{\top} \mathbf{a}_i < d / \alpha$. При $\alpha \to \infty$, $\mathbf{c}^{\top} \mathbf{a}_i \leq 0$
- lacktriangle Таким образом, ${f p}=-{f c}$ и выполнено второе условие

Критерий отделимости выпуклых множеств

Теорема

Два выпуклых множества отделимы, iff их относительные внутренности не пересекаются

Критерий отделимости выпуклых множеств

Теорема

Два выпуклых множества отделимы, iff их относительные внутренности не пересекаются

Признак отделимости

Пусть $\mathcal A$ и $\mathcal B$ — выпуклые и непересекающиеся множества. Тогда существует разделяющая их гиперплоскость.

Опорная гиперплоскость

Определение

Гиперплоскость называется опорной в точке \mathbf{x}_0 к множеству \mathcal{X} , если она отделяет множество и точку, то есть выполнено $\langle \mathbf{c}, \mathbf{x}_0 \rangle = \inf_{\mathbf{x} \in \mathcal{X}} \langle \mathbf{c}, \mathbf{x} \rangle$ и $\langle \mathbf{c}, \mathbf{x}_0 \rangle < \sup_{\mathbf{x} \in \mathcal{X}} \langle \mathbf{c}, \mathbf{x} \rangle$

Опорная гиперплоскость

Определение

Гиперплоскость называется опорной в точке \mathbf{x}_0 к множеству \mathcal{X} , если она отделяет множество и точку, то есть выполнено $\langle \mathbf{c}, \mathbf{x}_0 \rangle = \inf_{\mathbf{x} \in \mathcal{X}} \langle \mathbf{c}, \mathbf{x} \rangle$ и $\langle \mathbf{c}, \mathbf{x}_0 \rangle < \sup_{\mathbf{x} \in \mathcal{X}} \langle \mathbf{c}, \mathbf{x} \rangle$

Критерий существования

Если $\mathbf{x}_0 \in \mathcal{X}$ точка относительной границы множества, \mathcal{X} выпуклое множество, тогда существует опорная гиперплоскость в точке \mathbf{x}_0 к множеству \mathcal{X} .

Главное в первой части

- Отделимость множеств
- Лемма Фаркаша
- Опорная гиперплоскость

Определение

Проекцией точки $\mathbf{a} \in \mathbb{R}^n$ на множество $\mathcal{X} \subset \mathbb{R}^n$ по норме $\|\cdot\|$ будем называть такую точку $\pi_{\mathcal{X}}(\mathbf{a}) \in X$, что $\pi_{\mathcal{X}}(\mathbf{a}) = \operatorname*{arg\ min}_{\mathbf{y} \in \mathcal{X}} \|\mathbf{a} - \mathbf{y}\|$

Определение

Проекцией точки $\mathbf{a} \in \mathbb{R}^n$ на множество $\mathcal{X} \subset \mathbb{R}^n$ по норме $\|\cdot\|$ будем называть такую точку $\pi_{\mathcal{X}}(\mathbf{a}) \in X$, что $\pi_{\mathcal{X}}(\mathbf{a}) = \operatorname*{arg\ min}_{\mathbf{y} \in \mathcal{X}} \|\mathbf{a} - \mathbf{y}\|$

Теорема о существовании проекции

Проекция точки ${\bf a}$ на непустое замкнутое множество всегда существует.

Определение

Проекцией точки $\mathbf{a} \in \mathbb{R}^n$ на множество $\mathcal{X} \subset \mathbb{R}^n$ по норме $\|\cdot\|$ будем называть такую точку $\pi_{\mathcal{X}}(\mathbf{a}) \in X$, что $\pi_{\mathcal{X}}(\mathbf{a}) = \operatorname*{arg\ min}_{\mathbf{y} \in \mathcal{X}} \|\mathbf{a} - \mathbf{y}\|$

Теорема о существовании проекции

Проекция точки ${\bf a}$ на непустое замкнутое множество всегда существует.

Определение

Проекцией точки $\mathbf{a} \in \mathbb{R}^n$ на множество $\mathcal{X} \subset \mathbb{R}^n$ по норме $\|\cdot\|$ будем называть такую точку $\pi_{\mathcal{X}}(\mathbf{a}) \in X$, что $\pi_{\mathcal{X}}(\mathbf{a}) = \operatorname*{arg\ min}_{\mathbf{v} \in \mathcal{X}} \|\mathbf{a} - \mathbf{y}\|$

Теорема о существовании проекции

Проекция точки ${\bf a}$ на непустое замкнутое множество всегда существует.

Доказательство

lacktriangle Пусть $\mathbf{a}
ot\in \mathcal{X}$, иначе очевидно

Определение

Проекцией точки $\mathbf{a} \in \mathbb{R}^n$ на множество $\mathcal{X} \subset \mathbb{R}^n$ по норме $\|\cdot\|$ будем называть такую точку $\pi_{\mathcal{X}}(\mathbf{a}) \in X$, что $\pi_{\mathcal{X}}(\mathbf{a}) = \arg\min_{\mathbf{y} \in \mathcal{X}} \|\mathbf{a} - \mathbf{y}\|$

Теорема о существовании проекции

Проекция точки ${\bf a}$ на непустое замкнутое множество всегда существует.

- lacktriangle Пусть $\mathbf{a}
 ot\in \mathcal{X}$, иначе очевидно
- lacktriangle Пусть $f(\mathbf{x}) = \|\mathbf{x} \mathbf{a}\|$, где $\mathbf{x} \in \mathcal{X}$ и $f(\mathbf{x}) > 0 \ orall \mathbf{x} \in \mathcal{X}$

Определение

Проекцией точки $\mathbf{a} \in \mathbb{R}^n$ на множество $\mathcal{X} \subset \mathbb{R}^n$ по норме $\|\cdot\|$ будем называть такую точку $\pi_{\mathcal{X}}(\mathbf{a}) \in X$, что $\pi_{\mathcal{X}}(\mathbf{a}) = \arg\min_{\mathbf{v} \in \mathcal{X}} \|\mathbf{a} - \mathbf{y}\|$

Теорема о существовании проекции

Проекция точки ${\bf a}$ на непустое замкнутое множество всегда существует.

- ▶ Пусть $\mathbf{a} \not\in \mathcal{X}$, иначе очевидно
- lacktriangle Пусть $f(\mathbf{x}) = \|\mathbf{x} \mathbf{a}\|$, где $\mathbf{x} \in \mathcal{X}$ и $f(\mathbf{x}) > 0 \ \forall \mathbf{x} \in \mathcal{X}$
- lacktriangle Выберем точку $\mathbf{x}_0 \in \mathcal{X}$ и зададим $\mathcal{Y} = \{\mathbf{x} \mid f(\mathbf{x}) \leq f(\mathbf{x}_0)\}$

Определение

Проекцией точки $\mathbf{a} \in \mathbb{R}^n$ на множество $\mathcal{X} \subset \mathbb{R}^n$ по норме $\|\cdot\|$ будем называть такую точку $\pi_{\mathcal{X}}(\mathbf{a}) \in X$, что $\pi_{\mathcal{X}}(\mathbf{a}) = \arg\min_{\mathbf{v} \in \mathcal{X}} \|\mathbf{a} - \mathbf{y}\|$

Теорема о существовании проекции

Проекция точки ${\bf a}$ на непустое замкнутое множество всегда существует.

- ▶ Пусть $\mathbf{a} \not\in \mathcal{X}$, иначе очевидно
- lacktriangle Пусть $f(\mathbf{x}) = \|\mathbf{x} \mathbf{a}\|$, где $\mathbf{x} \in \mathcal{X}$ и $f(\mathbf{x}) > 0 \ \forall \mathbf{x} \in \mathcal{X}$
- lacktriangle Выберем точку $\mathbf{x}_0 \in \mathcal{X}$ и зададим $\mathcal{Y} = \{\mathbf{x} \mid f(\mathbf{x}) \leq f(\mathbf{x}_0)\}$
- lacktriangle Тогда $\mathcal{G} = \mathcal{X} \cap \mathcal{Y}$ является компактом

Определение

Проекцией точки $\mathbf{a} \in \mathbb{R}^n$ на множество $\mathcal{X} \subset \mathbb{R}^n$ по норме $\|\cdot\|$ будем называть такую точку $\pi_{\mathcal{X}}(\mathbf{a}) \in X$, что $\pi_{\mathcal{X}}(\mathbf{a}) = \arg\min_{\mathbf{v} \in \mathcal{X}} \|\mathbf{a} - \mathbf{y}\|$

Теорема о существовании проекции

Проекция точки ${\bf a}$ на непустое замкнутое множество всегда существует.

- lacktriangle Пусть $\mathbf{a}
 ot\in \mathcal{X}$, иначе очевидно
- lacktriangle Пусть $f(\mathbf{x}) = \|\mathbf{x} \mathbf{a}\|$, где $\mathbf{x} \in \mathcal{X}$ и $f(\mathbf{x}) > 0 \ orall \mathbf{x} \in \mathcal{X}$
- lacktriangle Выберем точку $\mathbf{x}_0 \in \mathcal{X}$ и зададим $\mathcal{Y} = \{\mathbf{x} \mid f(\mathbf{x}) \leq f(\mathbf{x}_0)\}$
- lacktriangle Тогда $\mathcal{G}=\mathcal{X}\cap\mathcal{Y}$ является компактом
- $ightharpoonup f(\mathbf{x})$ достигает на $\mathcal G$ своего минимального значение, которое и будет проекцией.

Теорема

Пусть $\mathcal X$ выпуклое замкнутое множество. Тогда проекция любой точки на это множество существует и единственна

Теорема

Пусть $\mathcal X$ выпуклое замкнутое множество. Тогда проекция любой точки на это множество существует и единственна

Теорема

Пусть $\mathcal X$ выпуклое замкнутое множество. Тогда проекция любой точки на это множество существует и единственна

Доказательство

▶ Существование следует из предыдущей теоремы

Теорема

Пусть $\mathcal X$ выпуклое замкнутое множество. Тогда проекция любой точки на это множество существует и единственна

- ▶ Существование следует из предыдущей теоремы
- lacktriangle Пусть есть две точки $m{\pi}_1\in\mathcal{X}$ и $m{\pi}_2\in\mathcal{X}$, которые являются проекциями точки $f{a}$, тогда $\|m{\pi}_1-f{a}\|_2=\|m{\pi}_2-f{a}\|_2$

Теорема

Пусть $\mathcal X$ выпуклое замкнутое множество. Тогда проекция любой точки на это множество существует и единственна

- ▶ Существование следует из предыдущей теоремы
- ▶ Пусть есть две точки $m{\pi}_1 \in \mathcal{X}$ и $m{\pi}_2 \in \mathcal{X}$, которые являются проекциями точки $m{a}$, тогда $\|m{\pi}_1 m{a}\|_2 = \|m{\pi}_2 m{a}\|_2$
- lacktriangle Рассмотрим $\mathbf{c}=rac{1}{2}oldsymbol{\pi}_1+rac{1}{2}oldsymbol{\pi}_2\in\mathcal{X}$ в силу выпуклости

Теорема

Пусть $\mathcal X$ выпуклое замкнутое множество. Тогда проекция любой точки на это множество существует и единственна

- Существование следует из предыдущей теоремы
- ▶ Пусть есть две точки $m{\pi}_1 \in \mathcal{X}$ и $m{\pi}_2 \in \mathcal{X}$, которые являются проекциями точки $m{a}$, тогда $\|m{\pi}_1 m{a}\|_2 = \|m{\pi}_2 m{a}\|_2$
- lacktriangle Рассмотрим ${f c}=rac{1}{2}m{\pi}_1+rac{1}{2}m{\pi}_2\in {\cal X}$ в силу выпуклости
- ▶ Тогда $\|\mathbf{c} \mathbf{a}\|_2 = \left\|\frac{1}{2}(\boldsymbol{\pi}_1 \mathbf{a}) + \frac{1}{2}(\boldsymbol{\pi}_2 \mathbf{a})\right\|_2 < \frac{1}{2}\|\boldsymbol{\pi}_1 a\|_2 + \frac{1}{2}\|\boldsymbol{\pi}_2 \mathbf{a}\|_2 = \|\boldsymbol{\pi}_1 \mathbf{a}\|_2$ противоречие

Теорема

Пусть $\mathcal X$ выпуклое замкнутое множество. Тогда проекция любой точки на это множество существует и единственна

- Существование следует из предыдущей теоремы
- ▶ Пусть есть две точки $m{\pi}_1 \in \mathcal{X}$ и $m{\pi}_2 \in \mathcal{X}$, которые являются проекциями точки $m{a}$, тогда $\|m{\pi}_1 m{a}\|_2 = \|m{\pi}_2 m{a}\|_2$
- lacktriangle Рассмотрим ${f c}=rac{1}{2}m{\pi}_1+rac{1}{2}m{\pi}_2\in {\cal X}$ в силу выпуклости
- ▶ Тогда $\|\mathbf{c} \mathbf{a}\|_2 = \left\|\frac{1}{2}(\boldsymbol{\pi}_1 \mathbf{a}) + \frac{1}{2}(\boldsymbol{\pi}_2 \mathbf{a})\right\|_2 < \frac{1}{2}\|\boldsymbol{\pi}_1 a\|_2 + \frac{1}{2}\|\boldsymbol{\pi}_2 \mathbf{a}\|_2 = \|\boldsymbol{\pi}_1 \mathbf{a}\|_2$ противоречие
- Значит проекция единственна

Теорема

Дана точка ${\bf a}$ и выпуклое замкнутое множество ${\cal X}$. Тогда точка ${\bf y}\in{\cal X}$ есть проекция ${\bf a}$ iff $\langle {\bf y}-{\bf a},{\bf x}-{\bf y}
angle \geq 0$ для всех ${\bf x}\in{\cal X}$

Теорема

Дана точка ${\bf a}$ и выпуклое замкнутое множество ${\cal X}$. Тогда точка ${\bf y}\in{\cal X}$ есть проекция ${\bf a}$ iff $\langle {\bf y}-{\bf a},{\bf x}-{\bf y}\rangle\geq 0$ для всех ${\bf x}\in{\cal X}$

Теорема

Дана точка ${\bf a}$ и выпуклое замкнутое множество ${\cal X}$. Тогда точка ${\bf y}\in{\cal X}$ есть проекция ${\bf a}$ iff $\langle {\bf y}-{\bf a},{\bf x}-{\bf y}\rangle\geq 0$ для всех ${\bf x}\in{\cal X}$

Доказательство

1. Пусть неравенство выполнено для всех $\mathbf{x} \in \mathcal{X}$

Теорема

Дана точка ${\bf a}$ и выпуклое замкнутое множество ${\cal X}$. Тогда точка ${\bf y}\in{\cal X}$ есть проекция ${\bf a}$ iff $\langle {\bf y}-{\bf a},{\bf x}-{\bf y}
angle \geq 0$ для всех ${\bf x}\in{\cal X}$

- 1. Пусть неравенство выполнено для всех $\mathbf{x} \in \mathcal{X}$
 - Рассмотрим $\|\mathbf{x} \mathbf{a}\|_2^2 = \|\mathbf{x} \mathbf{y} + \mathbf{y} \mathbf{a}\|_2^2 = \|\mathbf{x} \mathbf{y}\|_2^2 + \|\mathbf{y} \mathbf{a}\|_2^2 + 2\langle \mathbf{y} \mathbf{a}, \mathbf{x} \mathbf{y}\rangle$

Теорема

Дана точка ${\bf a}$ и выпуклое замкнутое множество ${\cal X}$. Тогда точка ${\bf y}\in{\cal X}$ есть проекция ${\bf a}$ iff $\langle {\bf y}-{\bf a},{\bf x}-{\bf y}
angle \geq 0$ для всех ${\bf x}\in{\cal X}$

- 1. Пусть неравенство выполнено для всех $\mathbf{x} \in \mathcal{X}$
 - Рассмотрим $\|\mathbf{x} \mathbf{a}\|_2^2 = \|\mathbf{x} \mathbf{y} + \mathbf{y} \mathbf{a}\|_2^2 = \|\mathbf{x} \mathbf{y}\|_2^2 + \|\mathbf{y} \mathbf{a}\|_2^2 + 2\langle \mathbf{y} \mathbf{a}, \mathbf{x} \mathbf{y} \rangle$
 - lacktriangle Значит $\|\mathbf{x}-\mathbf{a}\|_2 \geq \|\mathbf{y}-\mathbf{a}\|_2$ для всех $\mathbf{x} \in \mathcal{X}$, значит по определению $\mathbf{y}=\pi_{\mathcal{X}}(\mathbf{x})$

Теорема

Дана точка ${\bf a}$ и выпуклое замкнутое множество ${\cal X}$. Тогда точка ${\bf y}\in{\cal X}$ есть проекция ${\bf a}$ iff $\langle {\bf y}-{\bf a},{\bf x}-{\bf y}
angle \geq 0$ для всех ${\bf x}\in{\cal X}$

- 1. Пусть неравенство выполнено для всех $\mathbf{x} \in \mathcal{X}$
 - Рассмотрим $\|\mathbf{x} \mathbf{a}\|_2^2 = \|\mathbf{x} \mathbf{y} + \mathbf{y} \mathbf{a}\|_2^2 = \|\mathbf{x} \mathbf{y}\|_2^2 + \|\mathbf{y} \mathbf{a}\|_2^2 + 2\langle \mathbf{y} \mathbf{a}, \mathbf{x} \mathbf{y} \rangle$
 - ▶ Значит $\|\mathbf{x} \mathbf{a}\|_2 \ge \|\mathbf{y} \mathbf{a}\|_2$ для всех $\mathbf{x} \in \mathcal{X}$, значит по определению $\mathbf{y} = \pi_{\mathcal{X}}(\mathbf{x})$
- 2. Пусть $\mathbf{y} = \pi_{\mathcal{X}}(\mathbf{a})$

Теорема

Дана точка ${\bf a}$ и выпуклое замкнутое множество ${\cal X}$. Тогда точка ${\bf y}\in{\cal X}$ есть проекция ${\bf a}$ iff $\langle {\bf y}-{\bf a},{\bf x}-{\bf y}
angle \geq 0$ для всех ${\bf x}\in{\cal X}$

- 1. Пусть неравенство выполнено для всех $\mathbf{x} \in \mathcal{X}$
 - Рассмотрим $\|\mathbf{x} \mathbf{a}\|_2^2 = \|\mathbf{x} \mathbf{y} + \mathbf{y} \mathbf{a}\|_2^2 = \|\mathbf{x} \mathbf{y}\|_2^2 + \|\mathbf{y} \mathbf{a}\|_2^2 + 2\langle \mathbf{y} \mathbf{a}, \mathbf{x} \mathbf{y} \rangle$
 - ▶ Значит $\|\mathbf{x} \mathbf{a}\|_2 \ge \|\mathbf{y} \mathbf{a}\|_2$ для всех $\mathbf{x} \in \mathcal{X}$, значит по определению $\mathbf{y} = \pi_{\mathcal{X}}(\mathbf{x})$
- 2. Пусть $\mathbf{y} = \pi_{\mathcal{X}}(\mathbf{a})$
 - f L Для произвольного ${f x}\in {\cal X}$ рассмотрим ${f z}_{\lambda}=\lambda {f x}+(1-\lambda)\pi_{\cal X}({f a})\in {\cal X}$

Теорема

Дана точка ${\bf a}$ и выпуклое замкнутое множество ${\cal X}$. Тогда точка ${\bf y}\in{\cal X}$ есть проекция ${\bf a}$ iff $\langle {\bf y}-{\bf a},{\bf x}-{\bf y}
angle \geq 0$ для всех ${\bf x}\in{\cal X}$

- 1. Пусть неравенство выполнено для всех $\mathbf{x} \in \mathcal{X}$
 - Рассмотрим $\|\mathbf{x} \mathbf{a}\|_2^2 = \|\mathbf{x} \mathbf{y} + \mathbf{y} \mathbf{a}\|_2^2 = \|\mathbf{x} \mathbf{y}\|_2^2 + \|\mathbf{y} \mathbf{a}\|_2^2 + 2\langle \mathbf{y} \mathbf{a}, \mathbf{x} \mathbf{y} \rangle$
 - lacktriangle Значит $\|\mathbf{x}-\mathbf{a}\|_2 \geq \|\mathbf{y}-\mathbf{a}\|_2$ для всех $\mathbf{x} \in \mathcal{X}$, значит по определению $\mathbf{y}=\pi_{\mathcal{X}}(\mathbf{x})$
- 2. Пусть $\mathbf{y} = \pi_{\mathcal{X}}(\mathbf{a})$
 - f L Для произвольного ${f x}\in {\cal X}$ рассмотрим ${f z}_{\lambda}=\lambda {f x}+(1-\lambda)\pi_{\cal X}({f a})\in {\cal X}$
 - ► Тогда $\|\pi_{\mathcal{X}}(\mathbf{a}) \mathbf{a}\|_{2}^{2} \leq \|\mathbf{z}_{\lambda} \mathbf{a}\|_{2}^{2} = \|\pi_{\mathcal{X}}(\mathbf{a}) \mathbf{a} + \lambda(\mathbf{x} \pi_{\mathcal{X}}(\mathbf{a}))\|_{2}^{2} = \|\pi_{\mathcal{X}}(\mathbf{a}) \mathbf{a}\|_{2}^{2} + \lambda^{2}\|\mathbf{x} \pi_{\mathcal{X}}(\mathbf{a})\|_{2}^{2} + 2\lambda\langle\pi_{\mathcal{X}}(\mathbf{a}) \mathbf{a}, \mathbf{x} \pi_{\mathcal{X}}(\mathbf{a})\rangle$

Теорема

Дана точка ${\bf a}$ и выпуклое замкнутое множество ${\cal X}$. Тогда точка ${\bf y}\in{\cal X}$ есть проекция ${\bf a}$ iff $\langle {\bf y}-{\bf a},{\bf x}-{\bf y}
angle \geq 0$ для всех ${\bf x}\in{\cal X}$

Доказательство

- 1. Пусть неравенство выполнено для всех $\mathbf{x} \in \mathcal{X}$
 - Рассмотрим $\|\mathbf{x} \mathbf{a}\|_2^2 = \|\mathbf{x} \mathbf{y} + \mathbf{y} \mathbf{a}\|_2^2 = \|\mathbf{x} \mathbf{y}\|_2^2 + \|\mathbf{y} \mathbf{a}\|_2^2 + 2\langle \mathbf{y} \mathbf{a}, \mathbf{x} \mathbf{y} \rangle$
 - lacktriangle Значит $\|\mathbf{x}-\mathbf{a}\|_2 \geq \|\mathbf{y}-\mathbf{a}\|_2$ для всех $\mathbf{x} \in \mathcal{X}$, значит по определению $\mathbf{y}=\pi_{\mathcal{X}}(\mathbf{x})$
- 2. Пусть $\mathbf{y} = \pi_{\mathcal{X}}(\mathbf{a})$
 - f L Для произвольного ${f x}\in {\cal X}$ рассмотрим ${f z}_{\lambda}=\lambda {f x}+(1-\lambda)\pi_{\cal X}({f a})\in {\cal X}$
 - ► Тогда $\|\pi_{n}(\mathbf{a}) \mathbf{a}\|^{2}$

$$\begin{aligned} &\|\pi_{\mathcal{X}}(\mathbf{a}) - \mathbf{a}\|_{2}^{2} \leq \|\mathbf{z}_{\lambda} - \mathbf{a}\|_{2}^{2} = \|\pi_{\mathcal{X}}(\mathbf{a}) - \mathbf{a} + \lambda(\mathbf{x} - \pi_{\mathcal{X}}(\mathbf{a}))\|_{2}^{2} = \\ &\|\pi_{\mathcal{X}}(\mathbf{a}) - \mathbf{a}\|_{2}^{2} + \lambda^{2} \|\mathbf{x} - \pi_{\mathcal{X}}(\mathbf{a})\|_{2}^{2} + 2\lambda \langle \pi_{\mathcal{X}}(\mathbf{a}) - \mathbf{a}, \mathbf{x} - \pi_{\mathcal{X}}(\mathbf{a}) \rangle \end{aligned}$$

 $2\langle \pi_{\mathcal{X}}(\mathbf{a}) - \mathbf{a}, \mathbf{x} - \pi_{\mathcal{X}}(\mathbf{a}) \rangle + \lambda \|\mathbf{x} - \pi_{\mathcal{X}}(\mathbf{a})\|_{2}^{2} \ge 0$

Теорема

Дана точка ${\bf a}$ и выпуклое замкнутое множество ${\cal X}$. Тогда точка ${\bf y}\in{\cal X}$ есть проекция ${\bf a}$ iff $\langle {\bf y}-{\bf a},{\bf x}-{\bf y}
angle \geq 0$ для всех ${\bf x}\in{\cal X}$

- 1. Пусть неравенство выполнено для всех $\mathbf{x} \in \mathcal{X}$
 - Рассмотрим $\|\mathbf{x} \mathbf{a}\|_2^2 = \|\mathbf{x} \mathbf{y} + \mathbf{y} \mathbf{a}\|_2^2 = \|\mathbf{x} \mathbf{y}\|_2^2 + \|\mathbf{y} \mathbf{a}\|_2^2 + 2\langle \mathbf{y} \mathbf{a}, \mathbf{x} \mathbf{y} \rangle$
 - ▶ Значит $\|\mathbf{x} \mathbf{a}\|_2 \ge \|\mathbf{y} \mathbf{a}\|_2$ для всех $\mathbf{x} \in \mathcal{X}$, значит по определению $\mathbf{y} = \pi_{\mathcal{X}}(\mathbf{x})$
- 2. Пусть $\mathbf{y} = \pi_{\mathcal{X}}(\mathbf{a})$
 - f L Для произвольного ${f x}\in {\cal X}$ рассмотрим ${f z}_{\lambda}=\lambda {f x}+(1-\lambda)\pi_{\cal X}({f a})\in {\cal X}$
 - Тогда

$$\|\pi_{\mathcal{X}}(\mathbf{a}) - \mathbf{a}\|_{2}^{2} \le \|\mathbf{z}_{\lambda} - \mathbf{a}\|_{2}^{2} = \|\pi_{\mathcal{X}}(\mathbf{a}) - \mathbf{a} + \lambda(\mathbf{x} - \pi_{\mathcal{X}}(\mathbf{a}))\|_{2}^{2} = \|\pi_{\mathcal{X}}(\mathbf{a}) - \mathbf{a}\|_{2}^{2} + \lambda^{2}\|\mathbf{x} - \pi_{\mathcal{X}}(\mathbf{a})\|_{2}^{2} + 2\lambda\langle\pi_{\mathcal{X}}(\mathbf{a}) - \mathbf{a}, \mathbf{x} - \pi_{\mathcal{X}}(\mathbf{a})\rangle$$

- $2\langle \pi_{\mathcal{X}}(\mathbf{a}) \mathbf{a}, \mathbf{x} \pi_{\mathcal{X}}(\mathbf{a}) \rangle + \lambda \|\mathbf{x} \pi_{\mathcal{X}}(\mathbf{a})\|_{2}^{2} \ge 0$
- lacktriangleright При $\lambda o 0$ получим требуемое неравенство

Проекция как нерастягивающий оператор

Теорема

Оператор проекции является нерастягивающим.

Доказательство

 ${f 1}.$ По свойству проекции, для любой точки ${f y}_1$

$$\langle \mathbf{y}_1 - \pi_{\mathcal{X}}(\mathbf{y}_1), \mathbf{x} - \pi_{\mathcal{X}}(\mathbf{y}_1) \rangle \le 0, \quad \forall \mathbf{x} \in \mathcal{X}$$

2. Пусть $\mathbf{x} = \pi_{\mathcal{X}}(\mathbf{y}_2)$, тогда

$$\langle \mathbf{y}_1 - \pi_{\mathcal{X}}(\mathbf{y}_1), \pi_{\mathcal{X}}(\mathbf{y}_2) - \pi_{\mathcal{X}}(\mathbf{y}_1) \rangle \le 0$$

 $\langle \pi_{\mathcal{X}}(\mathbf{y}_2) - \mathbf{y}_2, \pi_{\mathcal{X}}(\mathbf{y}_2) - \pi_{\mathcal{X}}(\mathbf{y}_1) \rangle \le 0$

3. Сложим

$$\langle \pi_{\mathcal{X}}(\mathbf{y}_2) - \pi_{\mathcal{X}}(\mathbf{y}_1), \pi_{\mathcal{X}}(\mathbf{y}_2) - \pi_{\mathcal{X}}(\mathbf{y}_1) \rangle \leq \langle \pi_{\mathcal{X}}(\mathbf{y}_2) - \pi_{\mathcal{X}}(\mathbf{y}_1), \mathbf{y}_2 - \mathbf{y}_1 \rangle$$

4. По неравенству КБШ $\|\pi_{\mathcal{X}}(\mathbf{y}_2) - \pi_{\mathcal{X}}(\mathbf{y}_1)\|_2 \le \|\mathbf{y}_2 - \mathbf{y}_1\|_2$

Firmly non-expansiveness

Определение

Оператор f называется firmly non-expansive, если

$$||f(\mathbf{x}) - f(\mathbf{y})||_2^2 \le \langle f(\mathbf{x}) - f(\mathbf{y}), \mathbf{x} - \mathbf{y} \rangle$$

Теорема

Оператор проекции является firmly non-expansive:

$$\|\pi_{\mathcal{X}}(\mathbf{x}) - \pi_{\mathcal{X}}(\mathbf{y})\|_{2}^{2} \le \langle \pi_{\mathcal{X}}(\mathbf{x}) - \pi_{\mathcal{X}}(\mathbf{y}), \mathbf{x} - \mathbf{y} \rangle$$

Определение

Проксимальным оператором для функции f в точке ${\bf x}$ называется такой оператор что

$$\mathbf{y} = \underset{\mathbf{u}}{\operatorname{arg min}} \left(f(\mathbf{u}) + \frac{1}{2\alpha} \|\mathbf{u} - \mathbf{x}\|_{2}^{2} \right) = prox_{\alpha f}(\mathbf{x})$$

Определение

Проксимальным оператором для функции f в точке ${\bf x}$ называется такой оператор что

$$\mathbf{y} = \underset{\mathbf{u}}{\operatorname{arg min}} \left(f(\mathbf{u}) + \frac{1}{2\alpha} \|\mathbf{u} - \mathbf{x}\|_{2}^{2} \right) = prox_{\alpha f}(\mathbf{x})$$

Свойства

Определение

Проксимальным оператором для функции f в точке ${\bf x}$ называется такой оператор что

$$\mathbf{y} = \underset{\mathbf{u}}{\operatorname{arg min}} \left(f(\mathbf{u}) + \frac{1}{2\alpha} \|\mathbf{u} - \mathbf{x}\|_{2}^{2} \right) = prox_{\alpha f}(\mathbf{x})$$

Свойства

 $lack ext{Проекция}$ — частный случай проксимального оператора для $f(\mathbf x)=I_{\mathcal X}(\mathbf x)=egin{cases} 0, & \mathbf x\in \mathcal X \ +\infty, & \mathbf x
ot\in \mathcal X \end{cases}$

Определение

Проксимальным оператором для функции f в точке ${\bf x}$ называется такой оператор что

$$\mathbf{y} = \underset{\mathbf{u}}{\operatorname{arg min}} \left(f(\mathbf{u}) + \frac{1}{2\alpha} \|\mathbf{u} - \mathbf{x}\|_{2}^{2} \right) = prox_{\alpha f}(\mathbf{x})$$

Свойства

- $lack ext{ Проекция}$ частный случай проксимального оператора для $f(\mathbf x)=I_{\mathcal X}(\mathbf x)=egin{cases} 0, & \mathbf x\in \mathcal X \ +\infty, & \mathbf x
 ot\in \mathcal X \end{cases}$
- ightharpoonup Решение задачи $\min f(\mathbf{x})$ для выпуклой функции f является неподвижной точкой проксимального оператора

Определение

Проксимальным оператором для функции f в точке ${\bf x}$ называется такой оператор что

$$\mathbf{y} = \underset{\mathbf{u}}{\operatorname{arg min}} \left(f(\mathbf{u}) + \frac{1}{2\alpha} \|\mathbf{u} - \mathbf{x}\|_{2}^{2} \right) = prox_{\alpha f}(\mathbf{x})$$

Свойства

- $lack ext{Проекция}$ частный случай проксимального оператора для $f(\mathbf x)=I_{\mathcal X}(\mathbf x)=egin{cases} 0, & \mathbf x\in \mathcal X \ +\infty, & \mathbf x
 ot\in \mathcal X \end{cases}$
- Решение задачи $\min f(\mathbf{x})$ для выпуклой функции f является неподвижной точкой проксимального оператора
- Также является нерастягивающим и firmly non-expansiveness

Главное во второй части

▶ Проекция и её существование

Главное во второй части

- ▶ Проекция и её существование
- Критерий проекции

Главное во второй части

- ▶ Проекция и её существование
- Критерий проекции
- ▶ Понятие о проксимальном операторе и его свойствах