

第7周小结

数组

● 数组的两个基本操作?

- 按照给定的下标,取(读)相应的元素值
- 按照给定的下标,存(写)相应的元素值

② 为什么说数组是线性表的推广或扩展,而不说数组就是一种线性表呢?

从逻辑结构的角度看,一维数组是一种线性表。

二维数组可以看成数组元素为一维数组的一维数组,所以二维数组 是线性结构,可以看成是线性表。

但就二维数组的形状而言,它又是非线性结构,因此将二维数组看成是线性表的推广更准确。

三维及以上维的数组亦如此。

③ 计算数组中给定元素的地址

- 数组的存储方式(按行或者按列优先存放)
- 计算给定元素的前面的元素个数s
- 每个元素的存储空间k
- 该元素地址=起始元素地址+s×k

设二维数组a[10][20],每个数组元素占用1个存储单元,若按列优先顺序存放数组元素,a[0][0]的存储地址为200,则a[6][2]的存储地址是多少?

解: a数组的行下标为0~9, 列行下标为0~19。

元素a[6][2]前面有列下标为 $0 \sim 1$ 两列,每列10个元素,计 $2 \times 10 = 20$ 。 在下标为2的列中,元素a[6][2]前面有行下标为 $0 \sim 5$ 的6个元素。

⇒ a[6][2]前面有s=20+6=26个元素。

 $LOC(a[6][2])=LOC(a[0][0])+26\times 1=200+26=226$.

设某二维数组a[10][20]采用顺序存储方式,每个数组元素占用1个存储单元,a[0][0]的存储地址为200,a[6][2]的存储地址是322,则该数组_()。

A.只能按行优先存储

B.只能按列优先存储

C.按行优先存储或按列优先存储均可

D.以上都不对

解:这里有m=10, n=20, k=1, 一个m行n列的二维数组的顺序存储方式只能按行优先或列优先存放。

假设按行优先存放,有LOC $(a_{i,j})$ =LOC $(a_{0,0})$ + $(i \times n+j) \times k$,对于a[6][2]元素,其地址LOC(a[6][2])=LOC(a[0][0])+ $[6 \times 20+2] \times 1=322$ 。

假设按列优先存放,有LOC $(a_{i,j})$ =LOC $(a_{0,0})$ + $(j \times m+i) \times k$,对于a[6][2]元素,其地址LOC(a[6][2])=LOC(a[0][0])+ $[2 \times 10+6] \times 1=226$ 。

a[6][2]的存储地址是322 ⇒ 只能按行优先存储, A

2

特殊矩阵

大分和矩阵大分子</l

- 都是方阵
- 元素下标 (i, j) 可以确定元素的位置

● 什么是特殊矩阵的压缩存储?为什么需要压缩存储?

压缩存储:

提供二维数组的逻辑操作: A[i][j]

特殊矩阵采用压缩存储的目的是节省存储空间.

❷ 特殊矩阵压缩存储后具有随机存取特性吗?

这里讨论的特殊矩阵A都是二维的方阵,采用一维数组B 压缩存储:

$$A[i][j] \Leftrightarrow B[k]$$
 $k = f(i, j)$ f 函数的执行时间为 $O(1)$ 所以,压缩存储后具有随机存取特性。

❸ 在计算对称矩阵的压缩存储时应注意什么问题?

在计算对称矩阵A的压缩存储时应注意以下几点:

- 对称矩阵是按上三角还是按下三角存放。
- 对称矩阵元素是按行还是按列优先存放。
- B数组的下标从1开始还是从0开始。

设 $n \times n$ 的上三角矩阵A[0..n-1, 0..n-1]已压缩到一维数组B[0..m]中,若按列为主序存储,则A[i][j]对应的B中存储位置k为多少,给出推导过程。

解: A、B的下标都从0开始。

对于上三角部分的A[i][j] ($i \le j$) 元素,按列为主序存储时:前面有 $0 \sim j$ -1共j列,第0列有1个元素,第1列有2个元素,…,第j-1列有j个元素,所以这j列的元素个数= $1+2+\cdots+j=j(j+1)/2$;

在第j列中,A[i][j]元素前有A[0..i-1, j]共i个元素。所以A[i][j]元素前有j(j+1)/2+i个元素,则在B中的位置k=j(j+1)/2+i。

3 稀疏矩阵

- 从特殊元素分布看,稀疏矩阵和特殊矩阵相比有什么不同?
 - 特殊矩阵中的特殊元素(相同元素、常数元素)分 布有规律性
 - 稀疏矩阵中的特殊元素(非0元素)分布没有规律性,即随机的

② 稀疏矩阵压缩存储后具有随机存取特性吗?

- 稀疏矩阵用十字链表作存储结构自然失去了随机存取的功能。
- 即便用三元组表的顺序存储结构,存取下标为i和j的元素时,要扫描三元组表,时间复杂度为O(t),因此也失去了随机存取的功能。