Amendments To The Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

What is claimed is:

1. (Original) A compound of formula (I)

$$Ar - CHCH_2NHCR^3R^4(CH_2)_m - O - (CH_2)_n$$

$$OH$$

$$(CR^aR^b)_x S(O)_z$$

$$(CR^aR^b)_y (CR^aR^b)_y (CR^$$

or a salt, solvate, or physiologically functional derivative thereof, wherein:

m is an integer of from 2 to 8;
n is an integer of from 3 to 11;
with the proviso that m + n is 5 to 19;
x is zero and y is an integer of 2 or 3 or
y is zero and x is an integer of 2 or 3;
z is zero or an integer of 1 or 2;

R^a and R^b are independently selected from hydrogen and C₁₋₄alkyl;

 R^1 and R^2 are independently selected from hydrogen, C_{1-6} alkyl, C_{1-6} alkoxy, halo, phenyl, and C_{1-6} haloalkyl;

R³ and R⁴ are independently selected from hydrogen and C₁₋₄alkyl with the proviso that the total number of carbon atoms in R³ and R⁴ is not more than 4:

Ar is a group selected from

$$R^6$$
 R^7
 R^8
 R^8

wherein R⁶ represents hydrogen, halogen, -(CH₂)_qOR⁹, -NR⁹C(O)R¹⁰, -NR⁹SO₂R¹⁰, -SO₂NR⁹R¹⁰, -NR⁹R¹⁰, -OC(O)R¹¹ or -OC(O)NR⁹R¹⁰,

and R⁵ represents hydrogen, halogen or C₁₋₄alkyl;

or R⁶ represents –NHR¹² and R⁵ and –NHR¹² together form a 5- or 6-membered heterocyclic ring;

R⁷ represents hydrogen, halogen, –OR⁹ or –NR⁹R¹⁰;

R⁸ represents hydrogen, halogen, haloC₁₋₄ alkyl, -OR⁹, -NR⁹R¹⁰, -OC(O)R¹¹ or -OC(O)NR⁹R¹⁰;

R⁹ and R¹⁰ independently represent hydrogen or C₁₋₄ alkyl or R⁹ and R¹⁰ together with the nitrogen atom to which they are attached form a 5-, 6- or 7-membered nitrogen-containing ring,

R¹¹ represents an aryl (eg phenyl or naphthyl) group which may be unsubstituted or substituted by one or more substituents selected from halogen, C₁₋₄ alkyl,

hydroxy, C₁₋₄ alkoxy or halo C₁₋₄ alkyl; and

q is zero or an integer from 1 to 4.

- 2. (Original) A compound according to claim 1 wherein ${\sf R}^3$ and ${\sf R}^4$ are independently selected from hydrogen and methyl.
- 3. (Currently Amended) A compound according to claim 1 er claim 2 wherein \mathbb{R}^1 and \mathbb{R}^2 each represent hydrogen.
- 4. (Currently Amended) A compound according to <u>claim 1</u> any of claims 1 to 3 wherein the integer m is 4, 5 or 6 and n is 3, 4, 5 or 6.
- 5. (Currently Amended) A compound according to claim 1 any of claims

 1 to 4 wherein the group Ar is selected from groups (a) and (b).

$$R^6$$
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8

6. (Currently Amended) A compound according to claim 5 wherein groups (a) and (b) are selected from the group consisting of following groups (i) to (xxi):

$$H_2NSO_2NH$$
 H_2NSO_2
 $H_2NSO_$

$$(p-CH_3)C_6H_4CO + CC_6H_4(p-CH_3) + CC_6H_5(p-CH_3) + CC_6H_5(p$$

7. (Currently Amended) A compound of formula (I) according to any of claim 6 wherein Ar represents group (i).

- 8. (Currently Amended) A compound of formula (I) according to <u>claim 1</u> any of claims 1 7 wherein z represents 2.
- 9. (Currently Amended) A compound of formula (I) according to claim 1 which is selected from the group consisting of:
 4-[(1R)-2-({6-[4-(1,1-Dioxido-2,3-dihydro-1-benzothien-6-yl)butoxy]hexyl}amino)-1-hydroxyethyl]-2-(hydroxymethyl)phenol;
 4-[(1r)-2-({6-[4-(1,1-dioxido-3,4-dihydro-2h-thiochromen-7-yl)butoxy]hexyl}amino)-1-hydroxyethyl]-2-(hydroxymethyl)phenol;

and salts thereof, solvates thereof and physiologically functional derivatives thereof.

10. (Currently Amended) A method for the prophylaxis or treatment of a clinical condition in a mammal, such as a human, for which a selective β₂-adrenoreceptor agonist is indicated, which comprises administration of administration of administration at the trapeutically effective amount of a compound of formula (I), according to claim 1-any of claims 1-9, or a pharmaceutically acceptable salt, solvate, or physiologically functional derivative thereof.

11-12. (Canceled)

13. (Currently Amended) A pharmaceutical formulation comprising a compound of formula (I), according to <u>claim 1</u> any of claims 1–9, or a pharmaceutically acceptable salt, solvate, or physiologically functional derivative thereof, and a pharmaceutically acceptable carrier or excipient, and optionally one or more other therapeutic ingredients.

14. (Canceled)

15. (Currently Amended) A process for the preparation of a compound of formula (I), according to <u>claim 1</u> any of <u>claims 1-9</u>, or a salt, solvate, or physiologically functional derivative thereof, which comprises:

(a) deprotection of <u>deprotecting</u> a protected intermediate, for example of formula (II):

$$Ar^{1} - CHCH_{2}NP^{2}CR^{3}R^{4}(CH_{2})_{m} - O - (CH_{2})_{n} - (CR^{3}R^{b})_{x} S(O)_{z}$$

$$OP^{1}$$

$$R^{2} - (CR^{3}R^{b})_{y} S(O)_{z}$$

$$R^{2} - (CR^{3}R^{b})_{y} S(O)_{z}$$

$$R^{2} - (CR^{3}R^{b})_{y} S(O)_{z}$$

or a salt or solvate thereof, wherein R^a, R^b, R¹, R², R³, R⁴, m, n, x, y and z are as defined for the compound of formula (I) or (Ia), Ar¹ represents an optionally protected form of Ar; and P¹ and P² are each independently either hydrogen or a protecting group, such that the compound of formula (II) contains at least one protecting group; or

(b) reacting a compound of formula (IV)

(IV)

wherein Ar¹ is as defined above for formula (II) and P¹ and P², each independently represent hydrogen or a protecting group, with a compound of formula (V):

$$\frac{\mathsf{LCR}^{3}\mathsf{R}^{4}(\mathsf{CH}_{2})_{\mathsf{m}}\mathsf{O}(\mathsf{CH}_{2})_{\mathsf{n}}}{\mathsf{R}^{2}}\mathsf{S(O)_{z}}$$

wherein L is a leaving group such as halo or a sulfonate such as an alkylsulfonate an aryl sulfonate or a haloalkylsulfonate, and R^a , R^b , R^d

-(c) reacting a compound of formula (X):

wherein Ar¹ and P¹ are as hereinbefore defined and L is a leaving group as hereinbefore defined, with an amine of formula (XI):

$$\frac{\text{HNP}^2\text{CR}^3\text{R}^4(\text{CH}_2)_m\text{O}(\text{CH}_2)_n}{\text{P}^2} \frac{\text{CR}^3\text{R}^b)_x}{\text{(CR}^3\text{R}^b)_y}$$
(XI)

wherein R^a , R^b , R^1 , R^2 , R^3 , R^4 , P^2 , m, n, x, y and z are as defined for formula (II);

followed by removal of any protecting groups;

wherein said deprotecting step is optionally followed by one or more of the following steps in any order selected from the group consisting of:

- (i) optional removal of removing any protecting groups;
- (ii) optional separation of separating an enantiomer from a mixture of enantiomers;

- (iii) optional conversion of converting one compound of formula
- (I) to a different compound of formula (I); and
- (iv) optional conversion of converting the product to a corresponding salt, solvate, or physiologically functional derivative thereof.

16. (New) A process for the preparation of a compound of formula (I), according to claim 1, or a salt, solvate, or physiologically functional derivative thereof, which comprises reacting a compound of formula (IV):

wherein Ar¹ represents an optionally protected form of Ar; and P¹ and P² each independently represent hydrogen or a protecting group, with a compound of formula (V):

$$LCR^{3}R^{4}(CH_{2})_{m}O(CH_{2})_{n}$$

$$(CR^{8}R^{b})_{x}$$

$$(CR^{8}R^{b})_{y}$$

$$(CR^{8}R^{b})_{y}$$

(V)

wherein L is a leaving group, and R^a, R^b, R¹, R², R³, R⁴, n, m, x, y and z are as defined for compounds of formula (I);

wherein said reacting step is optionally followed by one or more of the following steps in any order selected from the group consisting of:

- (i) removing any protecting groups;
- (ii) separating an enantiomer from a mixture of enantiomers;

(iii) converting one compound of formula (I) to a different compound of formula (I); and

- (iv) converting the product to a corresponding salt, solvate, or physiologically functional derivative thereof.
- 17. (New) A process for the preparation of a compound of formula (I), according to claim 1, or a salt, solvate, or physiologically functional derivative thereof, which comprises reacting a compound of formula (X):

wherein Ar¹ represents an optionally protected form of Ar; P¹ independently represents hydrogen or a protecting group and L is a leaving group, with an amine of formula (XI):

$$HNP^{2}CR^{3}R^{4}(CH_{2})_{m}O(CH_{2})_{n}$$

$$(CR^{a}R^{b})_{x}$$

$$(CR^{a}R^{b})_{y}$$

$$(CR^{a}R^{b})_{y}$$

$$(XI)$$

wherein R^a, R^b, R¹, R², R³, R⁴, m, n, x, y and z are as defined; and P² represents hydrogen or a protecting group;

wherein said reacting step is optionally followed by one or more of the following steps in any order selected from the group consisting of:

- (i) removing any protecting groups;
- (ii) separating an enantiomer from a mixture of enantiomers;
- (iii) converting one compound of formula (I) to a different compound of formula (I); and
- (iv) converting the product to a corresponding salt, solvate, or physiologically functional derivative thereof.

18. (New) The method according to claim 10, wherein the mammal is a human.

- 19. (New) The process according to Claim 16, wherein L is a halo or sulfonate leaving group.
- 20. (New) The process according to Claim 19, wherein L is selected from the group consisting of an alkylsulfonate, an aryl sulfonate, and a haloalkylsulfonate.
- 21. (New) The process according to Claim 17, wherein L is a halo or sulfonate leaving group.
- 22. (New) The process according to Claim 21, wherein L is selected from the group consisting of an alkylsulfonate, an aryl sulfonate, and a haloalkylsulfonate.