DataSet Kaggle

1.0 Caricamento e Visualizzazione dei Dati dei Titoli Netflix

```
In [99]: # Importa le librerie, carica il file csv nel dataframe e lo stampa
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
percorso_file_csv = "C:\\Users\\zetam\\Desktop\\2 Superiore\\Robotica\\netflix_titles.cs
df = pd.read_csv(percorso_file_csv)
print(df)
```

```
type
     show_id
                                         title
                                                       director
0
          s1
                Movie
                         Dick Johnson Is Dead
                                               Kirsten Johnson
1
          s2
              TV Show
                                Blood & Water
2
          s3
              TV Show
                                    Ganglands
                                                Julien Leclercq
                        Jailbirds New Orleans
3
          s4
              TV Show
4
          s5
              TV Show
                                 Kota Factory
                                                            NaN
. . .
         . . .
                   . . .
                                                             . . .
       s8803
                                       Zodiac
                                                  David Fincher
                Movie
8802
8803
       s8804
              TV Show
                                  Zombie Dumb
                                   Zombieland
                                              Ruben Fleischer
8804
       s8805
                Movie
8805
       s8806
                Movie
                                          Zoom
                                                   Peter Hewitt
8806
       s8807
                Movie
                                       Zubaan
                                                    Mozez Singh
                                                     cast
                                                                  country \
0
                                                           United States
                                                      NaN
1
      Ama Qamata, Khosi Ngema, Gail Mabalane, Thaban...
                                                            South Africa
2
      Sami Bouajila, Tracy Gotoas, Samuel Jouy, Nabi...
                                                                      NaN
3
                                                                      NaN
4
      Mayur More, Jitendra Kumar, Ranjan Raj, Alam K...
                                                                    India
. . .
      Mark Ruffalo, Jake Gyllenhaal, Robert Downey J...
8802
                                                           United States
8803
                                                                      NaN
8804
      Jesse Eisenberg, Woody Harrelson, Emma Stone, ...
                                                           United States
8805
      Tim Allen, Courteney Cox, Chevy Chase, Kate Ma...
                                                           United States
8806
      Vicky Kaushal, Sarah-Jane Dias, Raaghav Chanan...
                                                                    India
              date_added release_year rating
                                                  duration
0
      September 25, 2021
                                   2020 PG-13
                                                    90 min
1
      September 24, 2021
                                   2021
                                         TV-MA
                                                2 Seasons
2
      September 24, 2021
                                   2021
                                         TV-MA
                                                  1 Season
3
      September 24, 2021
                                   2021
                                         TV-MA
                                                  1 Season
4
      September 24, 2021
                                   2021
                                         TV-MA
                                                2 Seasons
. . .
                                    . . .
                                            . . .
       November 20, 2019
                                   2007
                                              R
                                                   158 min
8802
8803
            July 1, 2019
                                   2018
                                         TV-Y7
                                                 2 Seasons
        November 1, 2019
8804
                                   2009
                                                    88 min
                                              R
8805
        January 11, 2020
                                   2006
                                             PG
                                                    88 min
                                                   111 min
8806
           March 2, 2019
                                   2015
                                         TV-14
                                                listed_in \
0
                                            Documentaries
1
        International TV Shows, TV Dramas, TV Mysteries
2
      Crime TV Shows, International TV Shows, TV Act...
3
                                  Docuseries, Reality TV
4
      International TV Shows, Romantic TV Shows, TV ...
. . .
                          Cult Movies, Dramas, Thrillers
8802
8803
                 Kids' TV, Korean TV Shows, TV Comedies
                                 Comedies, Horror Movies
8804
8805
                     Children & Family Movies, Comedies
8806
         Dramas, International Movies, Music & Musicals
                                              description
0
      As her father nears the end of his life, filmm...
1
      After crossing paths at a party, a Cape Town t...
2
      To protect his family from a powerful drug lor...
3
      Feuds, flirtations and toilet talk go down amo...
4
      In a city of coaching centers known to train I...
. . .
      A political cartoonist, a crime reporter and a...
8802
      While living alone in a spooky town, a young g...
8803
      Looking to survive in a world taken over by zo...
8804
      Dragged from civilian life, a former superhero...
8805
     <u>A scrappy</u> but poor boy worms his way into a ty...
```

Loading [MathJax]/extensions/Safe.js

1.1 Identificazione del Tipo di Programma più Frequente nei Titoli Netflix

```
In [41]: # Conta quante volte compare ogni tipo di programma e stampa quello con il numero maggio
# utilizzando il metodo idmax
import pandas as pd
percorso_file_csv = "C:\\Users\\zetam\\Desktop\\2 Superiore\\Robotica\\netflix_titles.cs
df = pd.read_csv(percorso_file_csv)
tipo_programma = df['type'].value_counts().idxmax()
print(tipo_programma)
Out[41]: 'Movie'
```

1.2 Conteggio dei Programmi Netflix per Anno di Rilascio

```
In [11]: |
         # Conta quanti programmi ci sono per ogni anno e stampa i numeri
         import pandas as pd
         anno_programma = df['release_year'].value_counts()
         print(anno_programma)
         release_year
         2018
                1147
         2017
                 1032
         2019
              1030
         2020
                953
         2016
                 902
         1959
                  1
         1925
                    1
                    1
         1961
         1947
                    1
         Name: count, Length: 74, dtype: int64
```

1.3 Identificazione dell'Anno con il Maggior Numero di Programmi Netflix

```
In [12]: # Conta quanti programmi ci sono per ogni anno e stampa l'anno che ne ha di più
import pandas as pd
anno_prog = df['release_year'].value_counts().idxmax()
print(anno_prog)
```

1.4 Visualizzazione della Distribuzione dei Tipi di Programmi Netflix nel Corso degli Anni

```
In [38]: # Grafico a dispersione che mostra la distribuzione dei tipi di programmi negli anni
import matplotlib.pyplot as plt
plt.plot(df['type'],df['release_year'], marker='o', linestyle='', color='lightblue')
plt.title('tipo di programma')
plt.ylabel('anno del programma')
Loading [MathJax]/extensions/Safe.js tation=90)
```

plt.grid(True, axis="y")
plt.show()

1.5 Identificazione e Stampa delle Righe con Valori Mancanti nel DataFrame

```
In [40]: # identifica le righe con valori mancanti e lo stampa
    righe_con_dati_mancanti = df[df.isnull().any(axis=1)]
    righe_con_dati_mancanti
```

Out[40]:	show_ic		type	title	director	cast	country	date_added	release_year	rating	duration	
	0	s1	Movie	Dick Johnson Is Dead	Kirsten Johnson	NaN	United States	September 25, 2021	2020	PG- 13	90 min	D
	1	s2	TV Show	Blood & Water	NaN	Ama Qamata, Khosi Ngema, Gail Mabalane, Thaban	South Africa	September 24, 2021	2021	TV- MA	2 Seasons	1
	2	s3	TV Show	Ganglands	Julien Leclercq	Sami Bouajila, Tracy Gotoas, Samuel Jouy, Nabi	NaN	September 24, 2021	2021	TV- MA	1 Season	1
	3	s4	TV Show	Jailbirds New Orleans	NaN	NaN	NaN	September 24, 2021	2021	TV- MA	1 Season	
	4	s5	TV Show	Kota Factory	NaN	Mayur More, Jitendra Kumar, Ranjan Raj, Alam K	India	September 24, 2021	2021	TV- MA	2 Seasons	
	8795	s8796	TV Show	Yu-Gi-Oh! Arc-V	NaN	Mike Liscio, Emily Bauer, Billy Bob Thompson, 	Japan, Canada	May 1, 2018	2015	TV-Y7	2 Seasons	J
	8796	s8797	TV Show	Yunus Emre	NaN	Gökhan Atalay, Payidar Tüfekçioglu, Baran Akbu	Turkey	January 17, 2017	2016	TV- PG	2 Seasons	1
	8797	s8798	TV Show	Zak Storm	NaN	Michael Johnston, Jessica Gee- George, Christin	United States, France, South Korea, Indonesia	September 13, 2018	2016	TV-Y7	3 Seasons	
	8800	s8801	TV Show	Zindagi Gulzar Hai	NaN	Sanam Saeed, Fawad Khan, Ayesha Omer, Mehreen	Pakistan	December 15, 2016	2012	TV- PG	1 Season	
	8803	s8804	TV Show	Zombie Dumb	NaN	NaN	NaN	July 1, 2019	2018	TV-Y7	2 Seasons	

1.6 Calcolo e Stampa del Numero Totale di Righe con Dati Mancanti

In [42]: # calcola il numero totale di righe con dati mancanti e lo assegna alla variabile tot_da
 alla variabile tot_dati_mancanti
 tot_dati_mancanti = righe_con_dati_mancanti.shape[0]
 tot_dati_mancanti

Out[42]: 3475

1.7 Identificazione e Rimozione delle Righe con Valori Mancanti dal DataFrame

Out[43]:		show_id	type	title	director	cast	country	date_added	release_year	rating	duration
	7	s8	Movie	Sankofa	Haile Gerima	Kofi Ghanaba, Oyafunmike Ogunlano, Alexandra D	United States, Ghana, Burkina Faso, United Kin	September 24, 2021	1993	TV- MA	125 mir
	8	s9	TV Show	The Great British Baking Show	Andy Devonshire	Mel Giedroyc, Sue Perkins, Mary Berry, Paul Ho	United Kingdom	September 24, 2021	2021	TV-14	g Seasons
	9	s10	Movie	The Starling	Theodore Melfi	Melissa McCarthy, Chris O'Dowd, Kevin Kline, T	United States	September 24, 2021	2021	PG- 13	104 mir
	12	s13	Movie	Je Suis Karl	Christian Schwochow	Luna Wedler, Jannis Niewöhner, Milan Peschel,	Germany, Czech Republic	September 23, 2021	2021	TV- MA	127 mir
	24	s25	Movie	Jeans	S. Shankar	Prashanth, Aishwarya Rai Bachchan, Sri Lakshmi	India	September 21, 2021	1998	TV-14	166 mir
	8801	s8802	Movie	Zinzana	Majid Al Ansari	Ali Suliman, Saleh Bakri, Yasa, Ali Al-Jabri, 	United Arab Emirates, Jordan	March 9, 2016	2015	TV- MA	96 mir
	8802	s8803	Movie	Zodiac	David Fincher	Mark Ruffalo, Jake Gyllenhaal, Robert Downey J	United States	November 20, 2019	2007	R	158 mir
	8804	s8805	Movie	Zombieland	Ruben Fleischer	Jesse Eisenberg, Woody Harrelson, Emma Stone,	United States	November 1, 2019	2009	R	88 mir
	8805	s8806	Movie	Zoom	Peter Hewitt	Tim Allen, Courteney Cox, Chevy Chase, Kate Ma	United States	January 11, 2020	2006	PG	88 mir
	8806	s8807	Movie	Zubaan	Mozez Singh	Vicky Kaushal, Sarah-Jane Dias, Raaghav Chanan	India	March 2, 2019	2015	TV-14	111 mir

1.8 Creazione di una Matrice Booleana per Indicare Valori Mancanti nel DataFrame

```
In [44]: # Utilizza il metodo isnull() sul DataFrame df  per creare una matrice booleana (vslori
    # missing_matrix che indica se c'è un valore mancante (NaN) in ciascuna posizione del Da
    import pandas as pd
    import seaborn as sns
    import matplotlib.pyplot as plt
    import numpy as np
    missing_matrix = df.isnull()
    missing_matrix
```

]:		show_id	type	title	director	cast	country	date_added	release_year	rating	duration	listed_in	desc
	0	False	False	False	False	True	False	False	False	False	False	False	
	1	False	False	False	True	False	False	False	False	False	False	False	
	2	False	False	False	False	False	True	False	False	False	False	False	
	3	False	False	False	True	True	True	False	False	False	False	False	
	4	False	False	False	True	False	False	False	False	False	False	False	
	8802	False	False	False	False	False	False	False	False	False	False	False	
	8803	False	False	False	True	True	True	False	False	False	False	False	
	8804	False	False	False	False	False	False	False	False	False	False	False	
	8805	False	False	False	False	False	False	False	False	False	False	False	
	8806	False	False	False	False	False	False	False	False	False	False	False	

8807 rows × 12 columns

Out[44]

1.9 Selezione e Stampa dei Nomi delle Colonne Numeriche del DataFrame

```
In [49]: # selezioa le colonne del Df che contengono dati numerici e le mette nella variabile num
numeric_cols = df.select_dtypes(include=['number'])
numeric_cols.columns

Out[49]: Index(['release_year'], dtype='object')
```

2.0 Calcolo del Numero di Valori Mancanti per Ogni Colonna in un DataFrame

```
In [51]: # calcola il numero di valori mancanti per ogni colonna
    df.isnull().sum()
```

```
show_id
                             0
Out[51]:
         type
                             0
         title
                            0
         director
                          2634
         cast
                          825
         country
                          831
         date_added
                           10
         release_year
                            0
         rating
                            4
         duration
                            3
         listed_in
                            0
                             0
         description
         dtype: int64
```

2.1 Calcolo della Percentuale di Valori Mancanti per Ogni Colonna in un DataFrame

```
In [53]: # calcola per ogni colonna la percentuale di valori mancanti su tutte le righe del dataf
         missing_percent = df.isnull().sum() / len(df) * 100
         missing_percent
         show_id
                         0.000000
Out[53]:
         type
                         0.000000
         title
                         0.000000
         director
                       29.908028
         cast
                        9.367549
                        9.435676
         country
         date_added
                       0.113546
         release_year
                       0.000000
         rating
                         0.045418
         duration
                         0.034064
         listed_in
                         0.000000
         description
                         0.000000
         dtype: float64
```

2.2 Calcolo della Percentuale di Valori Mancanti per Ogni Colonna in un DataFrame e Creazione del Grafico a Barre Corrispondente

```
In [62]: # calcola per ogni colonna la percentuale di valori mancanti su tutte le righe del dataf
missing_percent= (df.isnull().sum()) / len(df) * 100
plt.figure(figsize=(10,6))
missing_percent.plot(kind='bar', color='orange', alpha=0.8)
plt.xlabel('Variabile')
plt.ylabel('% di missing values')
plt.title('missing values per colonna')
plt.xticks(rotation=90)
plt.show()
```


2.3 Visualizzazione dell'Andamento dei Paesi Produttori nel Tempo tramite un Grafico Lineare e un Box Plot

```
# Visualizza un grafico dei paesi produttori nel tempo
In [66]:
         plt.figure(figsize=(2^16, 2^16))
         sns.lineplot(x='country', y='release_year', data=df)
         plt.title('Andamento dei paesi produttori nel tempo')
         plt.xlabel('country')
         plt.ylabel('anni')
         plt.xticks(rotation=90)
         plt.show()
         # Visualizza una box plot dei paesi produttori nel tempo
         plt.figure(figsize=(2^16, 2^16))
         sns.boxplot(x='country', y='release_year', data=df)
         plt.title('Box Plot dei paesi produttori negli anni')
         plt.xlabel('paesi')
         plt.ylabel('anni')
         plt.xticks(rotation=90)
         plt.show()
```


paesi

2.4 Suddivisione del Dataset in Training e Test Set, Creazione di un Grafico a Dispersione e Stampa delle Dimensioni dei Set

```
In [70]:
         import numpy as np
         import matplotlib.pyplot as plt
         from sklearn.model_selection import train_test_split
         # Suddivisione del dataset in training set (70%) e test set (30%)
         X_train, X_test, y_train, y_test = train_test_split(df['release_year'],df['type'],test_s
         # Creazione di un grafico a dispersione
         plt.figure(figsize=(2^16, 2^16))
         plt.scatter(X_train, y_train, label='Training Set', color='blue', alpha=0.7)
         plt.scatter(X_test, y_test, label='Test Set', color='orange', alpha=0.7)
         plt.xlabel('anno di produzione')
         plt.ylabel('paese')
         plt.title('Relazione tra tipo programma e anno di produzione')
         plt.legend()
         plt.grid(True)
         plt.show()
         # Stampare le dimensioni dei training set e test set
         print("Dimensioni del Training Set (tipo programma e anno di produzione):",X_train.shape
         print("Dimensioni del Test Set (tipo programma e anno di produzione):",X_test.shape, y_t
```


Dimensioni del Training Set (tipo programma e anno di produzione): (6164,) (6164,) Dimensioni del Test Set (tipo programma e anno di produzione): (2643,) (2643,)

2.5 Creazione di Tre Subset Casuali da un DataFrame

```
# Creare tre subset di dimensioni simili
  In [100...
            # primo subset: campione causale di 1/3 delle righe del df di partenza
            subset1 = df.sample(frac=1/3)
            # stampa il numero di righe del subset1
            11=len(subset1)
            print(l1)
            df = df.drop(subset1.index)
            # secondo subset: campione casuale con metà delle righe rimanenti (la metà dei 2/3 riman
            subset2 = df.sample(frac=1/2)
            # stampa il numero di righe del subset2
            12=len(subset2)
            print(12)
            df = df.drop(subset2.index)
            # terzo subset: le righe restanti
            subset3 = df
Loading [MathJax]/extensions/Safe.js | umero di righe del subset3
```

```
13=len(subset3)
print(13)

2936
2936
2935
```

2.6 Calcolo delle Percentuali dei Valori Unici per il Paese nel Subset1

```
percentuali_subset1 = subset1['country'].value_counts(normalize=True)
In [101...
          percentuali_subset1
          country
Out[101]:
                                                         0.348907
          United States
          India
                                                         0.114544
                                                         0.061417
          United Kingdom
          Japan
                                                         0.034288
          South Korea
                                                         0.027129
                                                           . . .
          Canada, Australia
                                                         0.000377
          South Korea, Canada, United States, China
                                                         0.000377
          Norway, United States
                                                         0.000377
          Australia, New Zealand, United States
                                                         0.000377
          Taiwan, China, France, United States
                                                         0.000377
          Name: proportion, Length: 304, dtype: float64
```

2.7 Visualizzazione delle Distribuzioni dei Valori 'Country' nei Tre Subset con Grafici a Torta

```
percentuali_subset1 = subset1['country'].value_counts(normalize=True)
In [103...
          percentuali_subset2 = subset2['country'].value_counts(normalize=True)
          percentuali_subset3 = subset3['country'].value_counts(normalize=True)
          # Creare i grafici a torta
         fig, axs = plt.subplots(3, 1, figsize=(6, 12))
          # Subset 1
          axs[0].pie(percentuali_subset1, labels=percentuali_subset1.index, autopct='%1.1f%%', sta
          axs[0].set_title('Subset 1')
          # Subset 2
          axs[1].pie(percentuali_subset2, labels=percentuali_subset2.index, autopct='%1.1f%%', sta
          axs[1].set_title('Subset 2')
          # Subset 3
          axs[2].pie(percentuali_subset3, labels=percentuali_subset3.index, autopct='%1.1f%%', sta
          axs[2].set_title('Subset 3')
          # Mostrare il grafico
          plt.show()
```


2.8 Divisione dei Subset in Training e Test Set e Visualizzazione delle Distribuzioni dei Valori 'Country' con Grafici a Torta

```
In [108... # Dividere ciascun subset in training set e test set
            train_subset1, test_subset1 = train_test_split(subset1, test_size=0.2,random_state=42)
            train_subset2, test_subset2 = train_test_split(subset2, test_size=0.2, random_state=42)
            train_subset3, test_subset3 = train_test_split(subset3, test_size=0.2,random_state=42)
            # Creare il grafico con 6 torte
            fig, axs = plt.subplots(3, 2, figsize=(10, 12))
            # Funzione per disegnare una torta con etichette
            def draw_pie(ax, data, title):
                ax.pie(data, labels=data.index, autopct='%1.1f%%', startangle=90)
                ax.set_title(title)
            # Prima riga di torte (Subset 1)
            draw_pie(axs[0, 0], train_subset1['country'].value_counts(normalize=True), 'TrainSubset
            draw_pie(axs[0, 1], test_subset1['country'].value_counts(normalize=True), 'TestSubset 1'
            # Seconda riga di torte (Subset 2)
            draw_pie(axs[1, 0], train_subset2['country'].value_counts(normalize=True), 'TrainSubset
            draw_pie(axs[1, 1], test_subset2['country'].value_counts(normalize=True), 'TestSubset 2'
            # Terza riga di torte (Subset 3)
            draw_pie(axs[2, 0], train_subset3['country'].value_counts(normalize=True), 'TrainSubset
            draw_pio/oxo[2, 1], test_subset3['country'].value_counts(normalize=True), 'TestSubset 3'
Loading [MathJax]/extensions/Safe.js
```

```
# Regolare lo spaziamento tra i subplots
plt.tight_layout()
# Mostrare il grafico
plt.show()
```

C:\Users\zetam\AppData\Local\Temp\ipykernel_4484\827625130.py:22: UserWarning: Tight lay out not applied. tight_layout cannot make axes width small enough to accommodate all axe s decorations

plt.tight_layout()

2.9 Identificazione degli Outliers nell'Anno di Rilascio

```
import pandas as pd
In [121...
          import matplotlib.pyplot as plt
          # Lista con outliers da entrambi i lati
          # Calcola la media e la deviazione standard
         mean_value = df['release_year'].mean()
         print('media anno:')
          print(mean_value)
          std_dev = df['release_year'].std()
          print('deviazione standard:')
          print(std_dev)
          # Identifica gli outliers considerando ±3 * dev_std dalla media
          outliers = df[(df['release_year'] > mean_value + 3 * std_dev) | (df['release_year'] < me
          outliers
         media anno:
         2014.2047700170358
```

Loading [MathJax]/extensions/Safe.js

deviazione standard: 8.581060874548479

Out[121]:		show_id	type	title	director	cast	country	date_added	release_year	rating	duration
	155	s156	Movie	Labyrinth	Jim Henson	David Bowie, Jennifer Connelly, Frank Oz, Kevi	United Kingdom, United States	September 1, 2021	1986	PG	101 min
	166	s167	Movie	Once Upon a Time in America	Sergio Leone	Robert De Niro, James Woods, Elizabeth McGover	Italy, United States	September 1, 2021	1984	R	229 min
	529	s530	Movie	Return of the Prodigal Son	Youssef Chahine	Majida El Roumi, Souheir El Morshidy, Shoukry	Egypt	July 6, 2021	1976	TV- MA	124 min
	670	s671	Movie	Mobile Suit Gundam II: Soldiers of Sorrow	Yoshiyuki Tomino, Yoshikazu Yasuhiko	Toru Furuya, Shuichi Ikeda, Hirotaka Suzuoki, 	NaN	June 19, 2021	1981	TV-14	133 min
	1126	s1127	Movie	My Fair Lady	George Cukor	Audrey Hepburn, Rex Harrison, Stanley Holloway	United States	April 1, 2021	1964	G	173 min
	8569	s8570	Movie	The Young Vagabond	Sze Yu Lau	Chia-Hui Liu, Wong Yu, Jason Pai Piao, Lung We	Hong Kong	August 16, 2018	1985	TV-14	85 min
	8635	s8636	Movie	True Grit	Henry Hathaway	John Wayne, Glen Campbell, Kim Darby, Jeremy S	United States	January 1, 2020	1969	G	128 min
	8640	s8641	Movie	Tunisian Victory	Frank Capra, John Huston, Hugh Stewart, Roy Bo	Burgess Meredith	United States, United Kingdom	March 31, 2017	1944	TV-14	76 min
	8660	s8661	Movie	Undercover: How to Operate Behind Enemy Lines	John Ford	NaN	United States	March 31, 2017	1943	TV- PG	61 min
pading [MathJax]/	8739	s8740	Movie	Why We Fight: The Battle of Russia	Frank Capra, Anatole Litvak	NaN	United States	March 31, 2017	1943	TV- PG	82 min

In []: