Math 341: Homework 4

Daniel Ko

Spring 2020

§1 A

Let V be a vector space having dimension n, and let S be a subset of V that generates V.

a. Prove that there is a subset of S that is a basis for V. (Be careful not to assume that S is finite).

Proof.

Since V is finite dimensional, there exists a basis for V.

$$B = \{v_1, v_2, \dots, v_n\}$$

Any $v \in B$ can be expressed as a linear combination of S because span(S) = V.

Let the subset of S that generates v_i be S_i

$$v_i = \sum_{j=1}^{m^k} a_j^k s_j^k$$
 where $a \in F$ and $s \in S_i$

The span of the union of the sets that generates v, span($\bigcup_{i=1}^{n} S_i$) = V

Corollary 2(a) of Theorem 1.10 states that a generating set for V that contains exactly n vectors is a basis for V. The set above, which is a subset of S, contains exactly n vectors and generates V. Therefore, there is subset of S that is a basis for V. \Box

b. Prove that S contains at least n vectors.

Proof.

From (a) we know there is a subset of S that forms a basis. Since that subset contains n vectors, S must contain n or more vectors. \Box

§2 B

Let f(x) be a polynomial of degree n in $P_n(R)$. Prove that for any $g(x) \in P_n(R)$ there exists scalars c_0, c_1, \dots, c_n such that

$$g(x) = c_0 f(x) + c_1 f'(x) + c_2 f''(x) + \dots + c_n f^{(n)}(x)$$

Proof.

If $\{f, f', f'', \dots, f^{(n)}\}$ form a basis we can express any $g(x) \in P_n(R)$ as seen above (a linear combination).

§3 C

$$W_1 = \{(a_1, a_2, \dots, a_n) \in F^n : a_n = 0\}$$

 $W_2 = \{(a_1, a_2, \dots, a_n) \in F^n : a_1 = a_2 = \dots = a_{n-1} = 0\}$
Show $F^n = W_1 \oplus W_2$

Proof. Definition of direct sum is $W_1 \cap W_2 = \{0\}$ and $W_1 + W_2 = F^n$

a.
$$W_1 \cap W_2 = \{0\}$$

Let $v \in W_1, W_2$
 $v = (a_1, a_2, \dots, a_n)$

$$v = (a_1, a_2, \dots, a_n)$$

 $v \in W_1 \Rightarrow a_n = 0$

$$v \in W_2 \Rightarrow a_1 = a_2 = \dots = a_{n-1} = 0$$

 $\therefore v = (0, 0, \dots, 0) \Rightarrow W_1 \cap W_2 = \{0\}$

b.
$$W_1 + W_2 = F^n$$

Let
$$v \in F^n$$

 $v = (a_1, a_2, \dots, a_n)$
Let $w_1 \in W_1$ and $w_2 \in W_2$

$$w_1 = (a_1, a_2, \dots, a_{n-1}, 0)$$

 $w_2 = (0, 0, \dots, a_n)$

$$w_1 + w_2 = (a_1, a_2, \dots, a_n) = v$$

Thus, any vector in F^n can be expressed as a sum of vectors in W_1 and W_2 . $W_1 + W_2 = F^n$

$$\therefore F^n = W_1 \oplus W_2$$

§4 D

In $M_{m \times n}(F)$ $W_1 = \{A \in M_{m \times n}(F) : A_{i,j} = 0 \text{ whenever } i > j\}$

 $W_2 = \{B \in M_{m \times n}(F) : B_{i,j} = 0 \text{ whenever } i \le j\}$

Show that $M_{m \times n}(F) = W_1 \oplus W_2$

Proof.

a.
$$W_1 \cap W_2 = \{0\}$$

Let
$$m \in W_1, W_2$$

 $m \in W_1 \Rightarrow m_{i,j} = 0$ whenever $i > j$
 $m \in W_2 \Rightarrow m_{i,j} = 0$ whenever $i \le j$
Thus, $(\forall i, j)(m_{i,j} = 0)$ which is $\{0\}$
 $\therefore W_1 \cap W_2 = \{0\}$

b.
$$W_1 + W_2 = M_{m \times n}(F)$$

Let
$$q \in M_{m \times n}(F)$$

Let $w_1 \in W_1$ and $w_2 \in W_2$
 $w_1 = \{(w_1)_{i,j} = 0 \text{ whenever } i > j\}$
 $w_2 = \{(w_2)_{i,j} = 0 \text{ whenever } i \leq j\}$

 $w_1 + w_2 = \{(w_1)_{i,j} \text{ wherever } i \leq j \text{ and } (w_2)_{i,j} \text{ wherever } i > j\} = q$ Thus, any matrix in $M_{m \times n}(F)$ can be expressed as a sum of matrices in W_1 and W_2 $\therefore W_1 + W_2 = M_{m \times n}(F)$

 $\therefore M_{m \times n}(F) = W_1 \oplus W_2$

§5 E

Let W be a subspace of a vector space V over a field F.

For any $v \in V$ the set $\{v\} + W = \{v + w : w \in W\}$ is the coset W containing v.

a. Prove that v + W is in the subspace of V if and only if $v \in W$.

Proof.

v + W is in the subspace of $V \Rightarrow v \in W$.

 $0 \in v + W$ because v + W is a subspace.

 $0 = v + w, w \in W$

v = -w

 $v \in W$

 $v \in W \Rightarrow v + W$ is in the subspace of V.

i. $0 \in v + W$

 $w \in W$ and let v = -w

v + w = 0

Thus, $0 \in v + W$

ii. $a + b \in v + W$ where $a, b \in v + W$

Let $a = v + w_a$, $w_a \in W$ and $b = v + w_b$, $w_b \in W$

 $a + b = v + w_a + v + w_b$

Because $v \in W$, $w_a + v + w_b \in W$.

Thus, $a + b \in v + W$

iii. $ca \in v + w, a \in v + W, c \in F$

Let $a = v + w_a$, $w_a \in W$

 $ca = c(v + w_a)$

 $= cv + cw_a$

 $= v + cv + cw_a - v$

 $cv + c_w a - v \in W$ by closure under scalar multplication and vector addition.

Thus, $ca \in v + w$

b. Prove that $v_1 + W = v_2 + W$ if and only if $v_1 - v_2 \in W$

Proof.

i. $v_1 + W = v_2 + W \Rightarrow v_1 - v_2 \in W$

Let $w_1, w_2 \in W$

 $v_1 + w_1 = v_2 + w_2$

 $v_1 - v_2 = w_2 - w_1$

Since, $w_2 - w_1 \in W$ (clourse under addition)

Therefore, $v_1 - v_2 \in W$

ii. $v_1 - v_2 \in W \Rightarrow v_1 + W = v_2 + W$

This means $v_1 - v_2 = w$ where $w \in W$ (*)

Now let $x \in v_1 + W$

By definition, $\exists w_x \in W : x = v_1 + w_x$ By (*) $v_1 = v_2 + w$ So, $x = v_2 + w + w_x$ Since, $w + w_x \in W$ (closure under addition) We have $x \in v_2 + W$ So, $v_1 + W \subseteq v_2 + W$ Similarly, we can show $v_2 + W \subseteq v_1 + W$ Therefore, $v_1 + W = v_2 + W$

c. Show that if $v_1 + W = v_1' + W$ and $v_2 + W = v_2' + W$, then $(v_1 + W) + (v_2 + W) = (v_1' + W) + (v_2' + W)$ and $a(v_1 + W) = a(v_1' + W)$ for all $a \in F$

Proof.

i.
$$(v_1 + W) + (v_2 + W) = (v'_1 + W) + (v'_2 + W)$$

Let $q \in (v_1 + W) + (v_2 + W)$
 $q \in (v_1 + v_2) + W$ by definition of vector addition
So, $q = v_1 + v_2 + w_q$ where $w_q \in W$
 $= v_1 + v_2 + w_q + v'_1 - v'_1 + v'_2 - v'_2$
 $= v'_1 + v'_2 + w_q + v_1 - v'_1 + v_2 - v'_2$
From b. i, $v_1 - v'_1$ and $v_2 - v'_2 \in W$
Which means, $(v_1 - v'_1) + (v_2 - v'_2) \in W$
Thus, $w_q + v_1 - v'_1 + v_2 - v'_2 \in W$
So, $q \in (v'_1 + v'_2) + W$
So, $(v_1 + W) + (v_2 + W) \subseteq (v'_1 + W) + (v'_2 + W)$
Similarly, we can show $(v'_1 + W) + (v'_2 + W) \subseteq (v_1 + W) + (v_2 + W)$
Therefore, $(v_1 + W) + (v_2 + W) = (v'_1 + W) + (v'_2 + W)$

ii.
$$a(v_1+W)=a(v_1'+W)$$

Let $q\in a(v_1+W)$
 $q\in av_1+W$ by definition of scalar multplication.
So, $q=av_1+w_q$ where $w_q\in W$
 $=av_1+w_q+av_1'-av_1'$
 $=av_1'+w_q+av_1-av_1'$
 $=av_1'1+a(v_1-v_1')+w_q$
From b. i, $a(v_1-v_1')\in W$
 $a(v_1-v_1')+w_q\in W$ because closure under vector addition.
So, $q\in av_1'+W$
So, $a(v_1+W)\subseteq a(v_1'+W)$
Similarly, we can show $a(v_1'+W)\subseteq a(v_1+W)$
Therefore, $a(v_1+W)=(v_1'+W)$

- d. Prove that the set S is a vector space with the operations defined in (c).
 - i. $0 \in S$ The zero vector in S is $0 = v_0 + W$ Let $s \in S$ So $s = v_s + W$ If the zero vector exists we should be able to show, s + 0 = s $s + 0 = s \Leftrightarrow (v_s + W) + (v_0 + W) = v_s + W$

 $(v_s + v_0) + W = v_s + W$ by definition of addition Thus $v_0 = 0$ and the zero vector is 0 + W which is just WTherefore, the zero vector is W.

ii. $X + Y \in S$ where $X, Y \in S$ This means $X = v_x + W$ $Y = v_y + W$ $X + Y = (v_x + W) + (v_y + W) = (v_x + v_y) + W$ by defintion of addition. $(v_x + v_y) \in V$ by closure under vector addition. Therefore $X + Y \in S$

iii. $aX \in S$ $a \in F$ $aX = a(v_x + W)$ $= av_x + W$ $av_x \in V$ by closure under vector addition. Therefore, $aX \in S$

§6 F

Show that if

$$M_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
, $M_2 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$, $M_3 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$

then the span of $\{M_1, M_2, M_3\}$ is the set of all symmetric 2x2 matrices.

Proof.

$$Sym(M_{2\times 2}(F)) = \{ m \in M_{2\times 2}(F) : m = \begin{pmatrix} a & b \\ b & c \end{pmatrix} \Leftrightarrow m = m^t \}$$

$$m \in span(\{M_1, M_2, M_3\}) \text{ if } m = c_1 \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + c_2 \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} + c_3 \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \text{ where } c_1, c_2, c_3 \in F$$

$$= \begin{pmatrix} c_1 & c_3 \\ c_3 & c_2 \end{pmatrix}$$

$$m^t = \begin{pmatrix} c_1 & c_3 \\ c_3 & c_2 \end{pmatrix}$$

 $Sym(M_{2\times 2}(F)) = span(\{M_1, M_2, M_3\})$

§7 G

Show that if S_1 and S_2 are subsets of the vector space V such that $S_1 \subseteq S_2$ then $\text{span}(S_1) \subseteq \text{span}(S_2)$. In particular, if $S_1 \subseteq S_2$ and $\text{span}(S_1) = V$, deduce that $\text{span}(S_2) = V$

Proof.

Let $z_1 \in \operatorname{span}(S_1)$

So $z_1 = \sum_{i=1}^{n} a_i x_i$ where $a \in F$ and $x \in S_1$

If $S_1 \subseteq S_2$, then $x \in S_2$

So $z_1 \in \text{span}(S_2)$ because we can write z_1 as a linear combination of S_2

Therefore, if $S_1 \subseteq S_2$ then $span(S_1) \subseteq span(S_2)$ (*)

Defined in the problem, span $(S_1) = V$

By (*), span $(S_1) = V \subseteq \text{span}(S_2)$

Using theorem 1.5, $\operatorname{span}(S_2) \subseteq V$ Therefore, $\operatorname{span}(S_2) \subseteq V \subseteq \operatorname{span}(S_2) \Leftrightarrow V = \operatorname{span}(S_2)$

§8 H

Show that $P_n(F)$ is generated by $\{1, x, \dots, x^n\}$

Proof.

Definition of generates is span($\{1, x, \dots, x^n\}$) = $P_n(F)$

First let's show that span $(\{1, x, \dots, x^n\}) \subseteq P_n(F)$ By theorem 1.5, this is true because $\{1, x, \dots, x^n\} \subset P_n(F)$

Now let's show that $P_n(F) \subseteq \operatorname{span}(\{1,x,\cdots,x^n\})$ Let $w \in P_n(F)$ $w = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_0 x^0$ where $a \in F$ Let $v \in \operatorname{span}(\{1,x,\cdots,x^n\})$ where $b \in F$ $v = b_0 1 + b_2 x + \cdots + b_n x^n$ Any w can be expressed as a v, if we fix $a_0 = b_0, \cdots, a_n = b_n$. Thus, $P_n(F) \subseteq \operatorname{span}(\{1,x,\cdots,x^n\})$

Therefore, $P_n(F)$ is generated by $\{1, x, \dots, x^n\}$

§9 1

In $M_{m \times n}(F)$, let E^{ij} denote the matrix whose only nonzero entry is 1 in the *i*th row and *j*th column. Prove that $\{E^{ij}: 1 \le i \le m, 1 \le j \le n\}$ is linearly independent.

Proof

If E^{ij} is linearly independent then $a_{1,1}E^{1,1}+\cdots+a_{m,n}E^{m,n}\neq 0$

This sum can only equal the 0 matrix if all a are 0.

Therefore, E^{ij} is linearly independent.

§10 J

Let u and v be distinct vectors in a vector space V. Show that $\{u, v\}$ is linearly dependent if and only if u or v is a multiple of the other.

Proof.

Let's first show that if u or v is a multiple of the other then $\{u, v\}$ is linearly dependent.

Being a muliple means u = nv or v = nu where $n \in F$

If $\{u, v\}$ is linearly dependent then $a_1u + a_2v = 0$ where $a \in F$

Using definition of mutiple $a_1u + a_2nu = 0$

Factoring, $u(a_1 + a_2 n) = 0$

This means $(a_1 + a_2 n) = 0$

So, $n = \frac{-a_1}{a_2}$ which is a solution for linearly dependency.

Without loss of generality, we can prove the case where v = nu

Therefore, $\{u, v\}$ is linearly dependent.

Now let's show that if $\{u, v\}$ is linearly dependent then u or v is a multiple of the other.

If $\{u,v\}$ is linearly dependent then $a_1u+a_2v=0$ where $a\in F$ We can rewrite the equation above as $a_1u=-a_2v$

$$u = \frac{-a_2}{a_1} v$$

 $u = \frac{-a_2}{a_1}v$ Thus, u is a multiple of v.

Without loss of generality, we can prove v is a multiple of u.

Therefore, u or v is a mutiple of the other.