Webinars with BBB - Etiquette

Audio and Video

- Find a suitable space:
 - W/o. interruptions
 - W/o. background noise
 - Have good lighting on your face
- Use a headset if available
- Turn ON your camera unless you are experiencing connection problems
- Turn OFF your microphone and only unmute it if you want to participate

Participation

- Click on your Name and "Set status" -"Raise"
- I will call your name
- Ask questions in the Shared Notes.
 Write "+1" if you have the same question.
- Lectures (Audio, Video, all Chats) will be recorded. If you do not like to appear in the recording, let me know

Do NOT hesitate to participate! You will get used to the system very quickly!

Review of required background - Corona Quiz Edition!

Communication in Distributed Systems

2 Review of required background - Corona Quiz Edition!

▲ Dr.-Ing. Michael Rademacher

Discussion of the Reading

MANET Simulation Studies: The Incredibles *

 Stuart Kurkowski
 Tracy Camp
 Michael Colagrosso

 skurkows@mines.edu
 tcamp@mines.edu
 mcolagro@mines.edu

 MCS Department. Colorado School of Mines. Golden. Colorado. USA

Talking Points:

- What is the goal of this paper?
- What is the issue with "did not identify the simulator used in the research"
- What is an unbiased simulation study?
- What is a terminating and a steady-state simulation?
- What is the problem with Scenario Development? What is the main statement of Figure 2? How should we fix the problem?
- What is the main challenge when Analyzing the Output of a simulation?
- What did you learn for your paper?

Today is Quiz Time!

- We will use the BigBlueButton poll feature for a little self-assessment
- The results of this self-assessment will not be relevant for your final grade
- The questions are examples for knowledge we expect you to have
- Do Not Guess, do not Google
- You need a pen and a paper
- I will add some explanations after each question when needed
- If you have problems answering the questions review some background by yourself

Andrew S Tanenbaum - Computer Networks

The _____ Layer handles transmission errors and regulates the flow of data on a point-to-point link.

Д

Transport

В

Network

C

Data Link

D

Physical

The _____ Layer handles transmission errors and regulates the flow of data on a point-to-point link.

Δ

Transport

C

Data Link

В

Network

L

Physical

https://securitystack.co/2019/02/08/security-stack-sheet-39/

https://commons.wikimedia.org/wiki/File:Osi-model-jb.svg

IPv4 is a ____ protocol.

A

reliable

C

both A and B

В

connection-oriented

D

none of the above

IPv4 is a protocol.

reliable

both A and B

В

connection-oriented

none of the above

Additional Explanation

Reliability:

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5		_	
Version IHL Type of Service	Total Length	i	
	Flags Fragment Offset	-	
Time to Live Protocol	Header Checksum	i	
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+			
Destination Address			
Options	Padding	ĺ	

Example Internet Datagram Header

https://tools.ietf.org/html/rfc791

A **reliable** protocol **notifies** the sender whether the delivery of data to intended recipients was **successful**.

Connection-oriented / Connection-less:

- Connection-oriented:
 - Usually operates in three distinct phases
 - 1. Connection setup to initialize a state
 - 2. Data unit transfer
 - 3. Connection release
- Connection-less:
 - Immediate data unit transfer
 - No connection setup
 - Packets can arrive out-of-order through different paths

In _____ transmission, the channel capacity is shared by both communicating devices at all times.

simplex

full-duplex

half-duplex

half-simplex

In _____ transmission, the channel capacity is shared by both communicating devices at all times.

simplex

half-duplex

full-duplex

half-simplex

A client-server system uses a satellite network, with the satellite at a height of 30,000 km. What is the best-case round-trip delay in response to a request. Provide a reasonable estimation.

A client-server system uses a satellite network, with the satellite at a height of 30,000 km. What is the best-case round-trip delay in response to a request. Provide a reasonable estimation.

$$2*\frac{30\,000\,\text{km}}{3\times10^5\,\text{km/s}} = 2*\frac{3\,\text{km}}{30\,\text{km/s}} = 2*0.1\,\text{s} = 0.2\,\text{s} = 200\,\text{ms}$$

Route	Distance	Time in vacuum	Time in fiber	RTT in fiber
New York to San Francisco	4,148 km	14 ms	21 ms	42 ms
New York to London	5,585 km	19 ms	28 ms	56 ms
New York to Sydney	15,993 km	53 ms	80 ms	160 ms
Equatorial circumference	40,075 km	133.7 ms	200 ms	200 ms

How long does it take to transmit a 1 Gigabyte^a file using a link with a goodput of 50 Mbps.

 a Assume the decimal definition, i.e. 1000 bytes = 1 kilobyte.

Δ

16 s

В

160 s

C

320 s

D

640 s

How long does it take to transmit a 1 Gigabyte^a file using a link with a goodput of 50 Mbps.

 a Assume the decimal definition, i.e. 1000 bytes = 1 kilobyte.

A

16 s

В

160 s

C

320 s

D

640 s

Wired comm	unication technologies		
Fiber optic	PON	155 Mbps-2.5 Gbps	Up to 60 km
	WDM	40 Gbps	Up to 100 km
	SONET/SDH	10 Gbps	Up to 100 km
DSL	ADSL	1–8 Mbps	Up to 5 km
	HDSL	2 Mbps	Up to 3.6 km
	VDSL	15-100 Mbps	Up to 1.5 km
Coaxial	DOCSIS	172 Mbps	Up to 28 km
Cable			
PLC	HomePlug	14-200 Mbps	Up to 200 m
	Narrowband	10-500 kbps	Up to 3 km
Ethernet	802.3x	10 Mbps-10 Gbps	Up to 100 m
Wireless com	munication technologies		
Z-Wave	Z-Wave	40 kbps	Up to 30 m
Bluetooth	802.15.1	721 kbps	Up to 100 m
ZigBee	ZigBee	250 kbps	Up to 100 m
	ZigBee Pro	250 kbps	Up to 1600 m
WiFi	802.11x	2-600 Mbps	Up to 100 m
WiMAX	802.16	75 Mbps	Up to 50 km
Wireless	Various (e.g., RF mesh, 802.11, 802.15,	Depending on selected	Depending on
Mesh	802.16)	protocols	deployment
Cellular	2G	14.4 kbps	Up to 50 km
	2.5G	144 kbps	
	3G	2 Mbps	
	3.5G	14 Mbps	
	4G	100 Mbps	
Satellite	Satellite Internet	1 Mbps	100–6000 km

https://doi.org/10.1016/j.comnet.2014.03.029

 $time = \frac{size}{goodput}$ $= \frac{8 \times 10^9 \text{ Bit}}{50 \times 10^6 \text{ Bit/s}}$ = 160 s

The _____ identifies a process on a host.

4

physical address

B

IP address

<u>C</u>

port

D

none of the above

The _____ identifies a process on a host.

4

physical address

<u>B</u>

IP address

<u>C</u>

port

D

none of the above

name	port	protoco
http	80	tcp
ipp	631	udp
snmp	161	udp
ntp	123	udp
telnet	23	tcp
https	443	tcp
ftp	21	tcp
smtp	25	tcp
pop3	110	tcp

A periodic signal completes one cycle in $0.001\ \mbox{s.}$ What is the frequency?

A periodic signal completes one cycle in $0.001\ \mbox{s.}$ What is the frequency?

- Period: T = 1/f
- Frequency $f = 1/T = c/\lambda$
- Wavelength $\lambda = c/f$
- Wave Speed $c = \lambda f$

For a _____ channel, we need to use the Shannon–Hartley theorem to find the maximum bit rate.

A

noisy

В

noiseless

C

bandpass

D

low-pass

For a _____ channel, we need to use the Shannon–Hartley theorem to find the maximum bit rate.

A

noisy

В

noiseless

C

bandpass

D

low-pass

$$C = B \log_2(1 + \frac{S_P}{N_0 * B})$$

- C: Capacity (bits/s)
- B: Bandwidth (Hz)
- $\sim N_0$: Noise (W/Hz)
- S_P : Signal power (W)

- Increasing the **SNR** increases the channel capacity
- Increasing the channel bandwith increases the channel capacity
- Depending on wheter B or S_P is more precious, we can increase one and reduce the other, and yet maintain the same capacity
- But, there are limits

Limit of increasing the SNR

Limit of increasing the Bandwidth

- Observation: If $B \to \inf$, C approaches $\frac{SP}{N_0} \log_2(e)$.
- Can you proof this?
 - Write me a mail if you can!

The _____ address, also known as the link address or physical address, is the address of a node as defined by its LAN or WAN.

Д

MAC

В

IΡ

C

port

D

specific

The _____ address, also known as the link address or physical address, is the address of a node as defined by its LAN or WAN.

1

MAC

В

IΡ

C

port

D

specific

The decibel is a way of describing a _____

A

logarithmic / ratio

C

linear / sum

В

linear / ratio

D

logarithmic / sum

The decibel is a way of describing a _____

A

logarithmic / ratio

C

linear / sum

В

linear / ratio

D

logarithmic / sum

dB is a logarithmic ratio of powers

$$\frac{P_1}{P_2}[dB] = 10\log_{10}(\frac{P_1[W]}{P_2[W]})$$

• $P_1 = 2 * P_2$ is equivalent to saying $\frac{P_1}{P_2} = 3dB$, because

$$10\log_{10}(\frac{P_1}{P_2})[dB] = 10\log_{10}(\frac{2*P_2}{P_2}) = 10\log_{10}(2) \approx 3[dB]$$

- dBm and dBW are (logarithmic) units to measure powers
- The ratio of the power you want to express relative to a reference power
- 1W for dBW and 1mW for dBm

A table to remember:

in dB
-10 dB
-3 dB
0 dB
3 dB
10 dB
20 dB

- What is 36 dBm in Watt?
- 20 + 10 + 3 + 3
- 100 * 10 * 2 * 2
- 4000mW = 4W

Using ______, the chance of collision can be reduced since a station senses the medium before trying to use it.

4

TDMA

В

CSMA

C

FDMA

D

CDMA

Using ______, the chance of collision can be reduced since a station senses the medium before trying to use it.

4

TDMA

В

CSMA

C

FDMA

D

CDMA

https://en.wikipedia.org/wiki/Carrier-sense_multiple_access_with_collision_avoidance

Start

Assemble a Frame

Is the

Channel

Idle?

Transmit RTS

CTS Received?

YES

Transmit

Application Data

Not Using IEEE 802.11

RTS/CTS Exchange

https://doi.org/10.1016/B978-0-12-374964-2.10009-8

Wait for Random

Backoff Time

Using IEEE 802.11 RTS/CTS Exchange

Question

IPv4 as best-effort delivery service includes

error checking

datagram acknowledgment

error correction

IPv4 as best-effort delivery service includes _____

Α__

error checking

C

datagram acknowledgment

В

error correction

D

"The type of service is used to specify the treatment of the datagram during its transmission through the internet system."

Example Internet Datagram Header

https://tools.ietf.org/html/rfc791

Question

UDP is called a _____ transport protocol.

A

connectionless, reliable

C

connectionless, unreliable

В

 $connection\mbox{-} oriented, \ unreliable$

D

UDP is called a _____ transport protocol.

4

connectionless, reliable

C

connectionless, unreliable

В

 $connection-oriented,\ unreliable$

D

- UDP is equal to "fire and forget"
- Ordering of packets is not guaranteed
- Lightweight with very few overhead

To avoid Handshakes all TCP connections are converted to UDP

Stay safe - prevent COVID-19/Corona Virus

https://tools.ietf.org/html/rfc768

Question

TCP uses ______ to check the safe and sound arrival of data.

A

an acknowledgment mechanism

C

the services of another protocol

В

out-of-band signalling

D

TCP uses ______ to check the safe and sound arrival of data.

A

an acknowledgment mechanism

C

the services of another protocol

В

out-of-band signalling

D

HTTP over UDP: an Experimental Investigation of QUIC

Gaetano Carlucci
Politecnico di Bari &
Quavlive, Italy
gaetano.carlucci@poliba.it

Luca De Cicco Politecnico di Bari & Quavlive, Italy I.decicco@poliba.it Saverio Mascolo Politecnico di Bari & Quavlive, Italy mascolo@poliba.it

Abstract: It is often said that the Internet is ubiquitous in our daily lives, but this holds true only for those who can easily access it. In fact, billions of people are still digitally disconnected, as bringing connectivity to certain zones does not make a good business case. The only solution for these unsatisfied potential users is to directly undertake the building of the infrastructure required to obtaining access to the Internet, typically forming groups in order to share the corresponding cost. This article presents a global classification and a summary of the main characteristics of different Alternative Network deployments that have arisen in recent years with an aim to provide Internet services in places where mainstream network deployments do not exist or are not adequate solutions. The "Global Access to the Internet for All" Research Group of the Internet Research Task Force, where all authors actively participate, is interested in documenting these emerging deployments. As an outcome of this work, a classification has converged by consensus, where five criteria have been identified and, based on them, four different types of Alternative Networks have been identified and described with real-world examples. Such a classification is useful for a deeper understanding of the common characteristics behind existing and emerging Alternative Networks.[1]

Thank you for your attention. Are there any questions left?

Room K331 Rathausallee 10 Technopark Sankt Augustin

michael.rademacher@h-brs.de www.mc-lab.de https://michael-rademacher.net

References

[1] SALDANA, J., ARCIA-MORET, A., SATHIASEELAN, A., BRAEM, B., PIETROSEMOLI, E., ZENNARO, M., SIMO-REIGADAS, J., KOMNIOS, I., AND REY-MORENO, C.

Alternative Networks: Toward a Global Access to the Internet for All.

IEEE Commun. Mag. (2017), 2-8.

