ON THE VANISHING OF THE LOWER K-THEORY OF THE HOLOMORPH OF A FREE GROUP ON TWO GENERATORS

VASSILIS METAFTSIS AND STRATOS PRASSIDIS

ABSTRACT. We show that the holomorph of the free group on two generators satisfies the Farrell–Jones Fibered Isomorphism Conjecture. As a consequence, we show that the lower K-theory of the above group vanishes.

1. Introduction

Certain obstructions that appear in problems of topological rigidity of manifolds are elements of algebraic K-groups, specially lower K-groups. For this reason, the calculation of the lower K-groups has implications in geometric topology.

The main modern tool for calculating lower K-groups (and other geometrically interesting obstruction groups) is the Farrell–Jones Fibered Isomorphism Conjecture. The Conjecture provides an inductive method for calculating the obstruction groups of a group from those of certain subgroups. More specifically, if a group satisfies the Fibered Isomorphism Conjecture for a specific theory, then the obstruction groups can be calculated from the obstruction groups of the $virtually \ cyclic \ subgroups$. The last class of subgroups consists the finite subgroups and groups that are virtually infinite cyclic. The virtually infinite cyclic groups are of two types:

- Groups V that surject onto the infinite cyclic group $\mathbb Z$ with finite kernel, i.e. $V=H\rtimes \mathbb Z$ with H finite.
- Groups W that surject onto the infinite dihedral group D_{∞} with finite kernel, i.e. $W = A *_B C$ with B finite and [A : B] = [C : B] = 2.

Obstruction groups that can be calculated this way are pseudoisotopy groups, K-groups of group rings, K-groups of C^* -algebras, $L^{-\infty}$ -groups.

The fundamental work of Farrell–Jones ([8]) deals with the Fibered Isomorphism Conjecture for the pseudoisotopy spectrum. It should be noted that if a group satisfies the Fibered Isomorphism Conjecture for pseudoisotopies, then it satisfies the Isomorphism Conjecture for the lower K-groups. The reason for this is that the lower homotopy groups of the pseudoisotopy spectrum and the K-theory spectrum are isomorphic. For K-groups there is a refinement of the Conjecture that was given in [6]. They showed that finite and virtually infinite cyclic subgroups of the first type suffice in detecting the K-theory of the group.

Our main interest is in computing the lower K-groups of the holomorph of F_2 , the free group on two generators. For a group G, the holomorph of G is the universal split extension of G. Thus, it fits into a split exact sequence:

$$1 \to G \to \operatorname{Hol}(G) \to \operatorname{Aut}(G) \to 1.$$

The main result of the paper is the following:

Theorem (Main Theorem). The group $\operatorname{Hol}(F_2)$ satisfies the Fibered Isomorphism Conjecture for pseudoisotopies. Furthermore, if $\Gamma < \operatorname{Hol}(F_2)$ then

$$Wh(\Gamma) = \widetilde{K}_0(\mathbb{Z}\Gamma) = K_i(\mathbb{Z}\Gamma) = 0, \text{ for } i \leq -1.$$

Notice that $Hol(F_2)$ is equipped with a sequence of surjections:

$$\operatorname{Hol}(F_2) \to \operatorname{Aut}(F_2) \to \operatorname{GL}_2(\mathbb{Z}).$$

The second surjection is induced by sending an automorphism of F_2 to an automorphism of its abelianization \mathbb{Z}^2 . Notice that the kernel of both surjections is isomorphic to F_2 . To show that $\operatorname{Hol}(F_2)$ satisfies the Fibered Isomorphism Conjecture, we use the fact that every automorphism of F_2 is geometric, i.e. it can be realized by a diffeomorphism on a surface with boundary. That allows us to show first that $\operatorname{Aut}(F_2)$ satisfies the Conjecture and using the same fact again that $\operatorname{Hol}(F_2)$ does also.

The group $\mathrm{GL}_2(\mathbb{Z})$ splits as an amalgamated free product of finite dihedral groups:

$$\operatorname{GL}_2(\mathbb{Z}) = D_4 *_{D_2} D_6.$$

Thus both $\operatorname{Aut}(F_2)$ and $\operatorname{Hol}(F_2)$ split as amalgamated free products. Using this fact and the properties of elements of finite order in $\operatorname{Aut}(F_2)$ given in [16, 7], we determine the finite and the virtually infinite cyclic subgroups of $\operatorname{Aut}(F_2)$ and $\operatorname{Hol}(F_2)$, up to isomorphism. The list of groups is short and their lower K-theory vanishes. The Main Theorem follows from this observation.

The authors would like to thank Tom Farrell for asking the question on the lower K-theory of $Aut(F_2)$.

2. Preliminaries

Let G be a discrete group. By a class of subgroups of G we wean a collection of subgroups of G that is closed under taking subgroups and conjugates. In our application we consider the following classes of subgroups:

- $\mathcal{F}in$, the class of finite subgroups of G.
- \mathcal{FBC} for the class of finite by cyclic subgroups. Those are subgroups H < G such that

$$1 \to A \to H \to C \to 1$$

where C is cyclic (finite or infinite) group and A is finite. Notice that \mathcal{FBC} contains $\mathcal{F}in$ and subgroups $H = A \rtimes \mathbb{Z}$, when C is the infinite cyclic group.

- \mathcal{VC} for the class of virtually cyclic subgroups of G. For a such a subgroup H either $H \in \mathcal{F}in$, $H \in \mathcal{FBC}$, or $H = A *_B C$, where A, B, C are finite and [A:B] = [C:B] = 2.
- \mathcal{ALL} for the class of all subgroups of G.

Let \mathcal{C} be a class of subgroups of G. The *classifying space* for \mathcal{C} , $E_{\mathcal{C}}G$ is a G-CW-complex such that the isotropy groups of the actions are in \mathcal{C} and, for each $H \in \mathcal{C}$, the fixed point set of H is contractible (for more details [5], [13]).

Remark 2.1. For $Aut(F_2)$ the classifying space for finite groups is the auter space ([10], [11]).

The Fibered Isomorphism Conjecture (FIC) was stated by Farrell–Jones ([8]). For the groups that holds, it provides an inductive method for computing obstruction groups in geometric topology (for a review see [14]). If G satisfies the FIC then the natural map

$$H_n^G(E_{\mathcal{VC}}G; \mathbb{KZ}^{-\infty}) \to H_n^G(E_{\mathcal{ALL}}G; \mathbb{KZ}^{-\infty}) = K_n(\mathbb{Z}G)$$

is an isomorphism for $n \leq 1$. Notice that the left hand side of the isomorphism can be computed from the virtually cyclic subgroups of G.

In general, there are "forgetful maps"

$$H_n^G(E_{\mathcal{F}in}G; \mathbb{K}\mathbb{Z}^{-\infty}) \to H_n^G(E_{\mathcal{FBC}}G; \mathbb{K}\mathbb{Z}^{-\infty}) \to H_n^G(E_{\mathcal{VC}}G; \mathbb{K}\mathbb{Z}^{-\infty})$$

The difference between the class $\mathcal{F}in$ and the class \mathcal{VC} is that the second class can be captured by the Waldhausen and Bass–Farrell Nil-groups of the infinite virtually cyclic subgroups. In [4] and [6], it was shown that the second map is an isomorphism. Essentially, the authors proved that the Waldhausen's Nil-groups that appear in the K-theory of virtually infinite cyclic subgroups can be detected by the Bass–Farrell Nil-groups that appear in the \mathcal{FBC} class.

The FIC is known to hold for certain classes of groups. One class of interest for this paper is the class of *strongly poly-free groups*. A group Γ is called strongly poly-free if there is a filtration:

$$\Gamma = \Gamma_0 \ge \Gamma_1 \ge \cdots \ge \Gamma_n = \{1\}.$$

such that:

- (1) Γ_i is normal in Γ for each i.
- (2) Γ_i/Γ_{i+1} is finitely generated free for all $0 \le i \le n-1$.
- (3) For each $\gamma \in \Gamma$ there is a compact surface S and a diffeomorphism $f: S \to S$ such that the induced homomorphism f_* on $\pi_1(S)$ is equal to c_γ in $\operatorname{Out}(\pi_1(S))$, where c_γ is the action of γ on Γ_i/Γ_{i+1} by conjugation and $\pi_1(S)$ is identified with Γ_i/Γ_{i+1} via a suitable isomorphism.

In [2] and [9] it was shown that a finite extension of a strongly poly-free group satisfies the FIC.

Remark 2.2. Let Γ be a group that satisfies (1) and (2) above. We assume that $\Gamma_i/\Gamma_{i+1} \cong F_2$. Then G is strongly poly-free. For this, let T^2 be the torus and $p = (1,1) \in T^2$. Then $\pi_1(T^2 \setminus \{p\}, x) = F_2$. In this case,

$$\operatorname{Out}(F_2) = \operatorname{Aut}(F_2)/\operatorname{Inn}(F_2) = \operatorname{GL}_2(\mathbb{Z})$$

where $\operatorname{Aut}(F_2)$ denotes the automorphism group of F_2 . Let c_{γ} be an induced homomorphism as in (3) above. Then the image of c_{γ} to $\operatorname{Out}(F_2)$ can be represented by a diffeomorphism f of T^2 that fixes p. After an isotopy starting at the identity on T^2 , we can assume that f fixes a small open disk D around p. Then f induces a diffeomorphism on the compact surface

$$f: T^2 \setminus D \to T^2 \setminus D$$
,

that fixes the boundary. Thus $f_* = c_{\gamma}$ in $\operatorname{Out}(F_2)$.

Start with an exact sequence of groups.

$$1 \to A \to B \xrightarrow{r} C \to 1$$
.

In the Appendix of [8], it was shown the FIC holds for B if:

• It holds for C.

• For each virtually cyclic subgroup V of C, it holds for $r^{-1}(V)$.

Using this result we show the following

Proposition 2.3. Let

$$1 \to F_2 \to G \xrightarrow{r} H \to 1$$

be an exact sequence. If the FIC holds for H, then it holds for G.

Proof. Using the result in [8], it is enough to show that the FIC holds for $r^{-1}(V)$, where V is a virtually cyclic subgroup of H.

If V is finite, then $r^{-1}(V)$ is a finite extension of F_2 and $r^{-1}(V)$ is a finite extension of a free group. The result follows from Remark 2.2.

If V is infinite, then V contains an infinite cyclic normal subgroup W of finite index. Then $r^{-1}(W)$ is a normal subgroup of $r^{-1}(V)$ and fits into an exact sequence:

$$1 \to F_2 \to r^{-1}(W) \to W \to 1.$$

Then there is a filtration $r^{-1}(W) > F_2 > \{1\}$, with the first quotient being an infinite cyclic group. Obviously, every homomorphism of \mathbb{Z} is realized by a diffeomorphism of $S^1 \times [0,1]$. Using Remark 2.2, we see that $r^{-1}(W)$ is strongly poly-free. Therefore, $r^{-1}(V)$ is a finite extension of a strongly poly-free group. By [9], it satisfies the FIC, completing the proof of the proposition.

Let $Hol(F_2)$ denote the holomorph of F_2 , namely, the universal split extension of F_2 :

$$1 \to F_2 \to \operatorname{Hol}(F_2) \xrightarrow{p} \operatorname{Aut}(F_2) \to 1.$$

Notice that there is an exact sequence

$$1 \to \operatorname{Inn}(F_2) \to \operatorname{Aut}(F_2) \xrightarrow{q} \operatorname{GL}_2(\mathbb{Z}) \to 1$$

that is induced by mapping the automorphisms of F_2 to the automorphisms of its abelianization. That induces an exact sequence:

$$1 \to F_2 \to \operatorname{Aut}(F_2) \xrightarrow{q} \operatorname{GL}_2(\mathbb{Z}) \to 1.$$

Proposition 2.4. The FIC holds for $Aut(F_2)$ and $Hol(F_2)$.

Proof. The group $GL_2(\mathbb{Z})$ contains a subgroup of finite index that is isomorphic to F_2 . In fact, the following short exact sequence is known to hold, as a result of the standard action that $GL_2(\mathbb{Z})$ admits on the upper half plane:

$$1 \to F_2 \to \operatorname{GL}_2(\mathbb{Z}) \to D_{12} \to 1$$

(see for example [7]). Thus the FIC holds for $GL_2(\mathbb{Z})$. Now $Aut(F_2)$ fits into an exact sequence:

$$1 \to F_2 \to \operatorname{Aut}(F_2) \to \operatorname{GL}_2(\mathbb{Z}) \to 1.$$

By Proposition 2.3, the FIC holds for $Aut(F_2)$. Also, $Hol(F_2)$ fits into an exact sequence:

$$1 \to F_2 \to \operatorname{Hol}(F_2) \to \operatorname{Aut}(F_2) \to 1.$$

By Proposition 2.3 again, the FIC holds for $Hol(F_2)$.

3. Infinite Finite-by-Cyclic Subgroups of $Hol(F_2)$

Since there is an exact sequence

$$1 \to \operatorname{Inn}(F_2) \to \operatorname{Aut}(F_2) \xrightarrow{p} \operatorname{GL}_2(\mathbb{Z}) \to 1$$

and $F_2 = \langle a, b \rangle$ is torsion free, every finite subgroup of $\operatorname{Aut}(F_2)$ maps isomorphically to a finite subgroup of $\operatorname{GL}_2(\mathbb{Z})$. On the other hand, $\operatorname{GL}_2(\mathbb{Z})$ admits a decomposition as an amalgamated free product of the form

$$GL_2(\mathbb{Z}) = D_4 *_{D_2} D_6$$

where D_2 , D_4 and D_6 are dihedral groups of orders 4, 8 and 12 respectively. Hence, any finite subgroup of $GL_2(\mathbb{Z})$ is a subgroup of a conjugate of either D_2 or D_4 or D_6 and hence, so is every finite subgroup of $Aut(F_2)$.

Now a presentation for $Aut(F_2)$ is given by

$$\langle p, x, y, \tau_a, \tau_b \mid x^4 = p^2 = (px)^2 = 1, (py)^2 = \tau_b, x^2 = y^3 \tau_b^{-1} \tau_a,$$
$$p^{-1} \tau_a p = x^{-1} \tau_a x = y^{-1} \tau_a y = \tau_b, p^{-1} \tau_b p = \tau_a, x^{-1} \tau_b x = \tau_a^{-1}, y^{-1} \tau_b y = \tau_a^{-1} \tau_b \rangle$$

where τ_a, τ_b are the inner automorphism of F_2 corresponding to a, b respectively (see for example [15]). Moreover, a presentation for $GL_2(\mathbb{Z})$ is given by

$$GL_2(\mathbb{Z}) = \langle P, X, Y \mid X^4 = P^2 = (PX)^2 = (PY)^2 = 1, X^2 = Y^3 \rangle$$

and G maps onto $GL_2(\mathbb{Z})$ by $p \mapsto P$, $x \mapsto X$, $y \mapsto Y$, $\tau_a, \tau_b \mapsto 1$.

As shown in [16], if g is an element of finite order in $\operatorname{Aut}(F_2)$, then g is conjugate in $\operatorname{Aut}(F_2)$, to one of the following elements $p, px, px\tau_a, x^2, y^2\tau_b^{-1}$ or x with orders 2, 2, 2, 2, 3 or 4 respectively. This fact implies that $\operatorname{Aut}(F_2)$ cannot contain finite subgroups isomorphic to D_6 . Moreover, any element of $\operatorname{Aut}(F_2)$ can be written uniquely in the form $p^r u(x, y) x^{2s} w(\tau_a, \tau_b)$ where $r, s \in \{0, 1\}, w(\tau_a, \tau_b)$ is a reduced word in $\operatorname{Inn}(F_2)$ and u(x, y) is a reduced word where x, y, y^{-1} are the only powers of x, y appearing (see [16, 15]).

Also, due to the decomposition (1) of $GL_2(\mathbb{Z})$, $Aut(F_2)$ is also an amalgamated free product of the form

$$Aut(F_2) = B *_D C$$

where B, C and D fit into the following short exact sequences

$$1 \to \operatorname{Inn}(F_2) \to B \to D_4 \to 1$$
$$1 \to \operatorname{Inn}(F_2) \to C \to D_6 \to 1$$
$$1 \to \operatorname{Inn}(F_2) \to D \to D_2 \to 1.$$

Moreover, since every one of B, C and D are free-by-finite groups they admit an action on a tree with finite quotient graph and finite vertex and edge stabilizers (as a corollary of the Almost Stability Theorem of Dicks and Dunwoody [7]). In fact, they are also amalgamated free products of the form

(3)
$$B = D_4 *_{\mathbb{Z}/2\mathbb{Z}} D_2 = \langle x, p \rangle *_{\langle px \rangle} \langle px, x^2 \tau_b \rangle$$

$$C = D_3 *_{\mathbb{Z}/2\mathbb{Z}} D_2 = \langle y^2 \tau_b^{-1} \tau_a, p \rangle *_{\langle p \rangle} \langle p, x^2 \rangle$$

$$D = D_2 *_{\mathbb{Z}/2\mathbb{Z}} = \langle p, x^2 \rangle *_{\mathbb{Z}/2\mathbb{Z}} \rangle.$$

Once again, the elements of finite order are $p, px, x^2\tau_b, px^3\tau_b, x^2, px^2, y^2\tau_b^{-1}\tau_a$ and x. To be in accordance with Meskin, we see that $x^2(y^2t_b^{-1}\tau_a)x^2 = y^3\tau_b^{-1}\tau_a(y^2\tau_b^{-1}\tau_a)\tau_a^{-1}\tau_by^{-3} = y^2\tau_b^{-1}, \ \tau_a^{-1}x^{-1}(px^3\tau_b)x\tau_a = px\tau_a, \ y(x^2\tau_b)y^{-1} = x^2 \ \text{and that} \ x^{-1}(px^2)x = p.$

By definition, $G = \text{Hol}(F_2)$ is the universal split extension of $\text{Aut}(F_2)$ and thus it fits to the split exact sequence

$$1 \to F_2 \to \operatorname{Hol}(F_2) \to \operatorname{Aut}(F_2) \to 1.$$

So $\text{Hol}(F_2) = F_2 \rtimes \text{Aut}(F_2)$. Hence, the above presentation for $\text{Aut}(F_2)$ provides us with a presentation for $\text{Hol}(F_2)$. Namely,

$$\operatorname{Hol}(F_2) = \langle p, x, y, \tau_a, \tau_b, a, b \mid x^4 = p^2 = (px)^2 = 1, (py)^2 = \tau_b, x^2 = y^3 \tau_b^{-1} \tau_a,$$

$$p^{-1} \tau_a p = x^{-1} \tau_a x = y^{-1} \tau_a y = \tau_b, p^{-1} \tau_b p = \tau_a, x^{-1} \tau_b x = \tau_a^{-1}, y^{-1} \tau_b y = \tau_a^{-1} \tau_b,$$

$$\tau_a^{-1} a \tau_a = a, \tau_a^{-1} b \tau_a = a^{-1} b a, \tau_b^{-1} a \tau_b = b^{-1} a b, \tau_b^{-1} b \tau_b = b, p^{-1} a p = b, p^{-1} b p = a,$$

$$x^{-1} a x = b, x^{-1} b x = a^{-1}, y^{-1} a y = b, y^{-1} b y = a^{-1} b \rangle.$$

Moreover, the decomposition (2) of $Aut(F_2)$ provides an amalgamated free product decomposition for $Hol(F_2)$:

(4)
$$\operatorname{Hol}(F_2) = (F_2 \rtimes B) *_{F_2 \rtimes D} (F_2 \rtimes C)$$

and based on (3) we have

(5)
$$F_{2} \rtimes B = (F_{2} \rtimes D_{4}) *_{F_{2} \rtimes \mathbb{Z}/2\mathbb{Z}} (F_{2} \rtimes D_{2})$$
$$F_{2} \rtimes C = (F_{2} \rtimes D_{3}) *_{F_{2} \rtimes \mathbb{Z}/2\mathbb{Z}} (F_{2} \rtimes D_{2})$$
$$F_{2} \rtimes D = (F_{2} \rtimes D_{2}) * (F_{2} \rtimes \mathbb{Z}/2\mathbb{Z})$$

Based again on the Almost Stability Theorem, we see that every vertex group in the above graphs of groups is a free-by-finite group so, it also admits a decomposition as a graph of groups with finite vertex groups. An analysis, based on the presentations and also on the fact that the action of x, y, p on a, b is the same as that on τ_a, τ_b , would give us the following: In $F_2 \rtimes B$,

$$F_2 \rtimes D_4 = D_4 *_{\mathbb{Z}/2\mathbb{Z}} D_2 = \langle x, p \rangle *_{\langle px \rangle} \langle px, x^2 b \rangle$$

$$F_2 \rtimes D_2 = D_2 *_{\mathbb{Z}/2\mathbb{Z}} D_2 *_{\mathbb{Z}/2\mathbb{Z}} D_2 = \langle px, x^2 \tau_b \rangle *_{\langle px \rangle} \langle px, x^2 \tau_b b^{-1} \rangle *_{\langle x^2 \tau_b b^{-1} \rangle} \langle pxa, x^2 \tau_b b^{-1} \rangle$$

$$F_2 \rtimes \mathbb{Z}/2\mathbb{Z} = (\mathbb{Z}/2\mathbb{Z} *_b) * \mathbb{Z}/2\mathbb{Z} = (\langle px \rangle *_b) * \langle pxa \rangle.$$
In $F_2 \rtimes C$,

$$F_2 \rtimes D_3 = D_3 *_{\mathbb{Z}/2\mathbb{Z}} D_3 = \langle y^2 \tau_b^{-1}, p \rangle *_{\langle p \rangle} \langle y^2 \tau_b^{-1} a, p \rangle$$

$$F_2 \rtimes D_2 = D_2 *_{\mathbb{Z}/2\mathbb{Z}} = \langle p, x^2 \rangle *_{\mathbb{Z}/2\mathbb{Z}} \langle x^2 b \rangle$$

$$F_2 \rtimes_{\mathbb{Z}/2\mathbb{Z}} = (\mathbb{Z}/2\mathbb{Z} *_{\mathbb{Z}/2\mathbb{Z}}) *_a = (\langle p \rangle *_{\mathbb{Z}/2\mathbb{Z}}) *_a.$$

Finally, in $F_2 \rtimes D$,

$$F_2 \rtimes D_2 = D_2 * \mathbb{Z}/2\mathbb{Z} = \langle p, x^2 \rangle * \langle x^2 b \rangle$$

$$F_2 \rtimes \mathbb{Z}/2\mathbb{Z} = \mathbb{Z}/2\mathbb{Z} * \mathbb{Z}/2\mathbb{Z} * \mathbb{Z}/2\mathbb{Z} = \langle x^2 \tau_b \rangle * \langle x^2 \tau_b b \rangle * \langle x^2 \tau_b b^{-1} a \rangle.$$

In the above, $S*_t$ denotes the HNN-extension with base group S and stable letter t.

For example, $F_2 \times \langle px, x^2 \tau_b \rangle$ has a presentation of the form

$$\langle \xi_1, \xi_2, a, b \mid \xi_1^2 = \xi_2^2 = 1, [\xi_1, \xi_2] = 1, \xi_1 a \xi_1 = a^{-1}, \xi_1 b \xi_1 = b, \xi_2 a \xi_2 = b^{-1} a^{-1} b, \xi_2 b \xi_2 = b^{-1} \rangle$$
 where $\xi_1 = px$ and $\xi_2 = x^2 \tau_b$. By setting $\zeta_2 = b \xi_2$ and eliminating b, we get

$$\langle \xi_1, \xi_2, a, \zeta_2 \mid \xi_1^2 = \xi_2^2 = \zeta_2^2 = 1, [\xi_1, \xi_2] = 1, \xi_1 a \xi_1 = a^{-1}, \zeta_2 a \zeta_2 = a^{-1}, [\xi_1, \zeta_2] = 1 \rangle.$$

Now by setting $\xi_3 = \xi_1 a$ and eliminating a we get

$$\langle \xi_1, \xi_2, \xi_3, \zeta_2 \mid \xi_1^2 = \xi_2^2 = \xi_2^2 = \xi_3^2 = 1, [\xi_1, \xi_2] = [\zeta_2, \xi_3] = [\xi_1, \zeta_2] = 1 \rangle$$

which is the desired decomposition.

So now we can prove the following result which generalizes the result in [16] on the elements of finite order in $Aut(F_2)$.

Lemma 3.1. An element of finite order in $\operatorname{Hol}(F_2)$ is conjugate to exactly one of $p, px, pxa, px\tau_a, px\tau_a, qx^2, x^2b, y^2\tau_b^{-1}, y^2\tau_b^{-1}a$ and x with orders 2, 2, 2, 2, 2, 2, 3, 3 and 4 respectively.

Proof. Given the above decomposition, every element of finite order is a conjugate of an element of a vertex group. So it suffices to observe the following: $x^2(px^3\tau_bb)x^2 = px\tau_aa, \ x^2(px^3\tau_b)x^2 = px\tau_a, \ x^2(px^3b)x^2 = pxa, \ x(px^2)x^{-1} = p, \ y(x^2\tau_b)y^{-1} = x^2, \ b^{-1}(x^2\tau_bb^{-1})b = x^2\tau_bb, \ x\tau_a^{-1}\tau_by^{-1}(x^2\tau_bb^{-1}a)y\tau_b^{-1}\tau_ax^{-1} = x^2\tau_bb$ and $yb^{-1}x\tau_a^{-1}\tau_by^{-1}(x^2\tau_bb)y\tau_b^{-1}\tau_ax^{-1}by^{-1} = x^2b.$ Notice also that x^2b is no longer conjugate to x^2 since the relation $x^2 = y^3\tau_b^{-1}\tau_a$ has no equivalent for a and b due to the semidirect product structure of G.

From the fact that $\operatorname{Hol}(F_2) = \langle a, b \rangle \rtimes \operatorname{Aut}(F_2)$ we have that every element W of $\operatorname{Hol}(F_2)$ can be written uniquely in the form

$$W = Vz(a, b)$$

where $V \in \text{Aut}(F_2)$ and z(a,b) is a word in the free group $\langle a,b \rangle$. So, the normal form for the elements of $\text{Aut}(F_2)$ implies the existence of a normal form for the elements of $\text{Hol}(F_2)$:

$$W = p^r u(x, y) x^{2s} w(\tau_a, \tau_b) z(a, b)$$

where $w(t_a,t_b)$ is a reduced word in the free group $\langle t_a,t_b\rangle$, u(x,y) is a reduced word where x,y,y^{-1} are the only powers of x,y appearing and $r,s\in\{0,1\}$. Moreover, every vertex group in the decomposition (4) has also a normal form. More specifically, every element in $F_2\rtimes B$ can be written uniquely in the form $p^rx^nx^{2s}w(\tau_a,\tau_b)z(a,b)$ where $r,n,s\in\{0,1\}$ and every element in $F_2\rtimes C$ can be written uniquely in the form $p^ry^nx^{2s}w(\tau_a,\tau_b)z(a,b)$ where $r,s\in\{0,1\}$ and $n\in\{0,1,-1\}$ and $m\in\{0,1,-1\}$ and $m\in\{0,1,-1\}$ and $m\in\{0,1,-1\}$ and $m\in\{0,1,-1\}$ and $m\in\{0,1,-1\}$ is a reduced word in $m\in\{0,1,-1\}$ and $m\in\{0,1,-1\}$ an

Notice that one can define a natural epimorphism

$$\operatorname{Hol}(F_2) \to \operatorname{GL}_2(\mathbb{Z})$$

with kernel $\langle a, b \rangle \rtimes \langle \tau_a, \tau_b \rangle$. In fact, $\text{Hol}(F_2)$ fits into the following short exact sequence

$$1 \to F_2 \rtimes F_2 \to \operatorname{Hol}(F_2) \to \operatorname{GL}_2(\mathbb{Z}) \to 1$$

although such a sequence does not split.

We are searching for subgroups of $G = \operatorname{Hol}(F_2)$ which are isomorphic to $A \rtimes \mathbb{Z}$ where A is a finite subgroup of G. In our argument we shall make extensive use of the following well known result of Bass-Serre theory [17]. Let M be a group that acts on its standard tree T and $m \in M$ such that m stabilizes two distinct vertices of T. Then m stabilizes the (unique reduced) path that connects the two vertices. In particular, m is an element of every edge stabilizer of every edge that constitute the path that connects the two vertices.

In fact we shall show the following:

Proposition 3.2. The only finite-by-cyclic subgroups of G are $\mathbb{Z}/2\mathbb{Z}\times\mathbb{Z}$.

Proof. Claim 1. The only subgroups isomorphic to $A \rtimes \mathbb{Z}$ with A finite cyclic are isomorphic to $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}$.

One can easily check that $\langle px, b \rangle \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}$ and so $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}$ is a subgroup group of G.

Now the only elements of order three in $\operatorname{Hol}(F_2)$ are conjugates of $y^2\tau_b^{-1}$ or $y^2\tau_b^{-1}a$. Assume that there is a subgroup of G isomorphic to $\mathbb{Z}/3\mathbb{Z} \rtimes \mathbb{Z}$. Then, conjugating if necessary, we may assume that there is an element of infinite order in G, say g, such that $g^{-1}(y^2\tau_b^{-1}a^s)g=(y^2\tau_b^{-1}a^s)^{\pm 1}$ with $s\in\{0,1\}$. Based on the decomposition (4) we see that the above relation implies that $y^2\tau_b^{-1}a^s$ stabilizes both vertices $F_2\rtimes C$ and $g^{-1}(F_2\rtimes C)$ and hence the path that connects them. So it belongs to the edge stabilizer $F_2\rtimes D$, unless $g\in F_2\rtimes C$. But if $g\in F_2\rtimes D$ we have a contradiction since by decomposition (5), $F_2\rtimes D$ cannot contain elements of order 3. Now if $g\in F_2\rtimes C$, then based again on the decomposition (5) of $F_2\rtimes C$, we have that g stabilizes both $F_2\rtimes D_3$ and $g^{-1}(F_2\rtimes D_3)$ and so it belongs to $F_2\rtimes \mathbb{Z}/2\mathbb{Z}$, a further contradiction, unless again $g\in F_2\rtimes D_3$. Finally, by the decomposition of $F_2\rtimes D_3=D_3*_{\mathbb{Z}/2\mathbb{Z}}D_3$ we have again that g has to be an element of either of the two D_3 vertices and hence an element of finite order.

We shall show now that G cannot contain subgroups isomorphic to $\mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}$. Assume that G contains such a subgroup, say A. Then, A is generated by a conjugate of x, since the conjugacy class of x is the only class of elements of order 4, and by an element g of G. Using conjugation if necessary, we may assume the element of order 4 in A is x. Now let $g \in G$ such that $\langle x, g \rangle \cong \mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}$. Then $g^{-1}xg = x^{\pm 1}$. Let G act to the tree that corresponds to the decomposition (4). Then, due to the above relation, x stabilizes both $F_2 \times B$ and $g^{-1}(F_2 \times B)$ and so it stabilizes the path between the two vertices. Hence, $x \in F_2 \times D$ a contradiction, unless $g \in F_2 \times B$. Moreover, using the decomposition (5) we see that g can only be an element of $F_2 \times D_4$ and using the fact that $F_2 \times D_4 = D_4 * \mathbb{Z}/2\mathbb{Z} D_2$ it can only be an element of D_4 and so is of finite order. This completes the proof of claim 1.

Claim 2. There are no subgroups of G of the form $D_2 \rtimes \mathbb{Z}$ or of the form $D_3 \rtimes \mathbb{Z}$. Up to conjugacy, the possible D_2 in G are $\langle x^2, p \rangle$, $\langle px, x^2 \rangle$, $\langle px, x^2b \rangle$, $\langle px, x^2\tau_b \rangle$, $\langle px, x^2\tau_b \rangle$, $\langle px, x^2\tau_b \rangle$, and $\langle pxa, x^2\tau_b b^{-1} \rangle$. Now notice that all last five, $\langle px, x^2 \rangle$, $\langle px, x^2b \rangle$, $\langle px, x^2\tau_b \rangle$, $\langle px, x^2\tau_b \rangle$, $\langle px, x^2\tau_b \rangle$, and $\langle pxa, x^2\tau_b b^{-1} \rangle$ appear only once in the graph of groups decomposition (5) of $\text{Hol}(F_2)$, as vertex groups. Moreover, in all five, none of the generators is conjugate to the other, i.e. there are no $g \in G$ such that $gpxg^{-1} = x^2$ or $gpxg^{-1} = x^2b$ or $gpxg^{-1} = x^2\tau_b b^{-1}$ by Lemma 3.1. Hence, a relation of the form $gD_2g^{-1} = D_2$ implies (repeating again the argument of claim 1) that g is an element of finite order. So the only possibility for a semidirect product $D_2 \rtimes \mathbb{Z}$ lies with $\langle x^2, p \rangle$.

So assume that there is an element $g \in G$ such that $\langle g, p, x^2 \rangle = D_2 \rtimes \mathbb{Z}$. Then, since p and x^2 are not conjugates and px^2 is conjugate to p, the action of g is either $gpg^{-1} = p$ and $gx^2g^{-1} = x^2$, or $gpg^{-1} = px^2$ and $gx^2g^{-1} = x^2$. Let us concentrate to the relation $gpg^{-1} = p$. Given the normal form of $g = p^r u(x, y)x^{2s}w(\tau_a, \tau_b)z(a, b)$ we have that

$$p^{r}u(x,y)x^{2s}w(\tau_{a},\tau_{b})z(a,b)pz^{-1}(a,b)w^{-1}(\tau_{a},\tau_{b})x^{-2s}u^{-1}(x,y)p^{-r}=p.$$

The above relation implies the existence of the following relation in $GL_2(\mathbb{Z})$:

$$P^{r}U(X,Y)X^{2s}PX^{2s}U^{-1}(X,Y)P^{r} = P$$

which is equivalent to

$$UPU^{-1} = P$$
.

By the normal form for the elements of $GL_2(\mathbb{Z})$, we have that U is of the form $U = XY^{e_1} \dots XY^{e_k}$ with $e_i \in \{\pm 1\}$. So the word UPU^{-1} becomes

$$XY^{e_1} \dots XY^{e_k} PY^{-e_k} X^{-1} \dots Y^{-e_1} X^{-1} =$$

 $XY^{e_1} \dots XY^{e_k} Y^{e_k} X \dots Y^{e_1} X \cdot P =$

$$\begin{split} X^2 \cdot XY^{e_1} \dots XY^{e_{k-1}} X \cdot Y^{-1} \cdot XY^{e_{k-1}} \dots Y^{e_1} X \cdot P & \text{if} \quad e_k = 1 \\ X^2 \cdot XY^{e_1} \dots XY^{e_{k-1}} X \cdot Y \cdot XY^{e_{k-1}} \dots Y^{e_1} X \cdot P & \text{if} \quad e_k = -1 \\ XY^{e_1} \dots XY^{\pm 1} X \dots Y^{e_1} XP & \text{if} \quad e_k = 0 \text{ and } e_{k-1} = \mp 1. \end{split}$$

In all cases, the relation $UPU^{-1} = P$ is impossible, since, after deletions of P, the remaining word is reduced as written so is never trivial, unless U = 1. Hence u = 1 and so the only possible $g = p^r x^{2s} w(\tau_a, \tau_b) z(a, b)$. Then the relation $gpg^{-1} = p$ gives

$$x^{2s}w(\tau_a, \tau_b)z(a, b)pz^{-1}(a, b)w^{-1}(\tau_a, \tau_b)x^{2s} = p$$

i.e. $w(\tau_b, \tau_a)w^{-1}(\tau_a, \tau_b) = 1$. One can easily see that if $w(\tau_a, \tau_b)$ is a reduced word in $\operatorname{Inn}(F_2) \cong F_2$ then the word $w(\tau_b, \tau_a)$ is reduced and the word $w(\tau_b, \tau_a)w^{-1}(\tau_a, \tau_b)$ is reduced and cyclically reduced as written. Hence, a relation $w(\tau_b, \tau_a)w^{-1}(\tau_a, \tau_b) = 1$ is impossible unless w = 1. That implies $z(b, a)z^{-1}(a, b) = 1$ and again z = 1. Then $g = p^r x^{2s}$ which has finite order for all possible r, s.

Let us now examine the possibility $gpg^{-1} = px^2$. This implies that

$$p^r u(x,y) x^{2s} w(\tau_a, \tau_b) z(a,b) p z^{-1}(a,b) w^{-1}(\tau_a, \tau_b) x^{-2s} u^{-1}(x,y) p^{-r} = p x^2.$$

Projection to $GL_2(\mathbb{Z})$ gives

$$P^{r}U(X,Y)X^{2s}PX^{2s}U^{-1}(X,Y)P^{r} = PX^{2}$$

which is equivalent to

$$UPU^{-1} = PX^2.$$

Performing the same analysis as above for UPU^{-1} we get that the only possibility is U=X, hence u=x. Then $g=p^rxx^{2s}w(\tau_a,\tau_b)z(a,b)$ and so the relation $p^rxx^{2s}w(\tau_a,\tau_b)z(a,b)pz^{-1}(a,b)w^{-1}(\tau_a,\tau_b)x^{2s}x^{-1}p^r=px^2$ implies again that $w(\tau_b,\tau_a)w^{-1}(\tau_a,\tau_b)=1$ which possible if and only if w=1 and so $z(b,a)z^{-1}(a,b)=1$ which is possible if and only if z=1.

Finally, one can easily check that existence of $g \in G$ such that $gD_3g^{-1} = D_3$ can only occur for g of finite order (using again the previous arboreal argument), so we have that no subgroup of the form $D_3 \rtimes \mathbb{Z}$.

The only case left is subgroups isomorphic to $D_4 \rtimes \mathbb{Z}$. It is easy to see that then it will contain subgroups isomorphic to $D_2 \rtimes \mathbb{Z}$, which is impossible.

4. Vanishing of lower K-theory of $Hol(F_2)$

We will prove the main result of the paper. For a group G, we write

$$\operatorname{Wh}_q(G) = \left\{ \begin{array}{ll} \operatorname{Wh}(G), & \text{if } q = 1, \\ \tilde{K}_0(\mathbb{Z}G), & \text{if } q = 0, \\ K_q(\mathbb{Z}G), & \text{if } q < 0. \end{array} \right.$$

Theorem 4.1. Let $\Gamma < \text{Hol}(F_2)$. Then for all $q \leq 1$, $Wh_q(\Gamma) = 0$.

Proof. We will show the theorem for $G = \operatorname{Hol}(F_2)$. The proof for $\operatorname{Aut}(F_2)$ is similar. By Proposition 2.4, G satisfies the FIC. Let $\Gamma < \operatorname{Hol}(F_2)$. Then by [8], Γ also satisfies the FIC. Thus the maps

$$H_q^G(E_{\mathcal{FBC}}\Gamma; \mathbb{KZ}^{-\infty}) \to \operatorname{Wh}_q(\mathbb{Z}\Gamma), \qquad q \leq 1,$$

are isomorphisms. There is a spectral sequence that computes the left hand side of such an isomorphism:

$$E_{i,i}^2 = H_i^G(E_{\mathcal{FBC}}\Gamma; \operatorname{Wh}_i(V)) \Longrightarrow \operatorname{Wh}_{i+i}(\Gamma),$$

where V is in \mathcal{FBC} . Now, by the decomposition of $Hol(F_2)$ and Proposition 3.2:

(1) If V is finite, V will isomorphic to one of the following groups: $\mathbb{Z}/2\mathbb{Z}$, $\mathbb{Z}/3\mathbb{Z}$, $\mathbb{Z}/4\mathbb{Z}$, D_2 , D_4 . But in this case from the lists in [1] and [12]

$$Wh_q(V) = 0,$$
 for $q \le 1$.

(2) If V is infinite, then $V = \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}$. Using the Bass-Heller-Swan Formula and the calculations of the Nil-groups in [3], we have that:

$$Wh_q(V) = 0,$$
 for $q \le 1$.

Thus $\operatorname{Wh}_q(\Gamma) = 0$ for all $q \leq 1$.

References

- A. Alves, P. Ontaneda, A formula for the Whitehead group of a three-dimensional crystallographic group, Topology 45 (2006), 1–25.
- [2] C. S. Aravinda, F. T. Farrell and S. K. Roushon, Algebraic K-theory of pure braid groups, Asian J. Math. 4 (2000), 337–344.
- [3] H. Bass, Algebraic K-theory, W. A. Benjamin, Inc., New York-Amsterdam 1968.
- [4] J. F. Davis, Some remarks on Nil-groups in algebraic K-theory, arXiv:0803.1641.
- [5] J. F. Davis and W. Lück, Spaces over a category and assembly maps in isomorphism conjectures in K- and L-theory, K-Theory, 15 (1998), 201–252.
- [6] J. F. Davis, Q. Khan, and A. Ranicki, Algebraic K-theory over the infinite dihedral group, arXiv:0803.1639.
- [7] W. Dicks and M.J. Dunwoody, Groups acting on graphs, Cambridge Studies in Advanced Mathematics, 17. Cambridge University Press, Cambridge, 1989.
- [8] F. T. Farrell and L. E. Jones, Isomorphism conjectures in algebraic K-theory, J. Amer. Math. Soc. 6 (1993), 249–297.
- [9] F. T. Farrell, S. K. Roushon, The Whitehead groups of braid groups vanish, Internat. Math. Res. Notices 2000, no. 10, 515–526.
- [10] A. Hatcher, K. Vogtmann, Cerf theory for graphs, J. London Math. Soc. (2) 58 (1998), 633–655.
- [11] C. A. Jensen, Contractibility of fixed point sets of auter space, Topology Appl. 119 (2002), 287–304.
- [12] J.-F. Lafont, B. A. Magurn, and I. J. Ortiz, Lower algebraic K-theory of certain reflection groups arXiv: 0904.0054.
- [13] W, Lück, Survey on classifying spaces for families of subgroups, in "Infinite groups: geometric, combinatorial and dynamical aspects" (Progr. Math. 248), 269–322, Birkäuser. Basel 2005.
- [14] W. Lück and H. Reich, The Baum-Connes and the Farrell-Jones conjectures in K- and L-theory, in "Handbook of K-theory", Vol. 2", 703–842, Springer-Verlag, Berlin 2005.
- [15] W. Magnus, A. Karrass, and D. Solitar, Combinatorial group theory: Presentations of groups in terms of generators and relations, Interscience Publishers [John Wiley & Sons, Inc.], New York-London-Sydney 1966.
- [16] S. Meskin, Periodic automorphisms of the two-generator free group, Proceedings of the Second International Conference on the Theory of Groups (Australian Nat. Univ., Canberra, 1973), pp. 494–498. Lecture Notes in Math., Vol. 372, Springer, Berlin, 1974.

[17] J-P. Serre, Trees. Translated from the French by John Stillwell. Springer-Verlag, Berlin-New York, 1980.

University of the Aegean School of Sciences Department of Mathematics Gr-83200 Karlovassi, Samos, Greece

 $E\text{-}mail\ address{:}\ \mathtt{vmet@aegean.gr}$

Department of Mathematics and Statistics, Canisius College, Buffalo, New York 14208, U.S.A

 $E\text{-}mail\ address: \verb"prasside@canisius.edu"$