

© Covariance

(ovariance

(ovariance)

Co+ Variance

Var(x) =
$$\frac{x}{(x-x)}(x-x)^2$$
 $\Rightarrow \frac{x}{(x-x)}(x-x)$

Variance was spread of data \Rightarrow relationship of a feature with stable of a feature with stable of a feature with respect to the medical the relationship of a feature with respect to the feature.

(ov mean, your are trying to understand the relationship of a feature with respect to the medical feature.

(ov mean, your are trying to understand the relationship of a feature with respect to the medical feature.

(ov mean, your are trying to understand the relationship of a feature with respect to the content of a feature with respect to the content of the co

rebled.

X Y
$$(ov(x,y)) = \frac{2}{2}(x-\overline{x})(y-\overline{y})$$

2 3

 $(ov(x,y)) = \frac{2}{2}(x-\overline{x})(y-\overline{y})$
 $(ov(x,y)) = \frac{2}{3}(x-\overline{x})(y-\overline{y})$
 $(ov(x,y)) = \frac{2}{3}(x-\overline{x})(y-\overline{y})$

Advantage

Advantage

(av(x,y)) = 50

(a

transaction hight begit (RS)

Cov (trant, let)
$$\Rightarrow$$
 RS: ft \Rightarrow 450 Re. ft

Cov (hught, wit) \Rightarrow ft.kg \Rightarrow 600 ft.kg

 \Rightarrow We can not (surpasse two different dimension

X Y Z

Cov(MN) Cov(MN2)

Not (conformable \Rightarrow deffected dimension

Y Colh

The state of the surpasse of

Sort the no - Highest no will be rank !

 $\frac{\text{Nateset}}{\text{Nateset}} \rightarrow \frac{1000 \text{ feature}}{\text{Nateset}}$ $\frac{\text{Nateset}}{\text{Nateset}} \rightarrow \frac{1000 \text{ feature}}{\text{Nateset}}$ $\frac{\text{Nateset}}{\text{Nateset}} \rightarrow \frac{1000 \text{ feature}}{\text{Nateset}}$

Cor = 0