WHAT IS CLAIMED IS:

1	1. A method of screening an individual for increased risk of low				
2	folate status, said method comprising detecting a mutation in a human glutamate				
3	carboxypepidase II (GCPII) gene in a biological sample from said individual, wherein				
4	detection of the mutation is indicative of decreased ability to hydrolyse a terminal				
5	glutamate residue of a folypoly-y-glutamate, which decreased ability is associated with				
6	low folate status.				
1	2. The method of claim 1, wherein the mutation is a single nucleotide				
2	polymorphism.				
1	3. The method of claim 3, wherein the single nucleotide				
2	polymorphism causes an amino acid substitution of H475Y.				
1	4. A method of claim 1 wherein the mutation is detected by				
2	(a) amplifying the GCPII gene, or a portion thereof containing the				
3	mutation, with a set of primers to provide an amplified product,				
4	(b) sequencing the amplified product to obtain a sequence, and				
5	(c) comparing the sequence of the amplified product with a known				
6	sequence of a wild-type GCPII gene,				
7	wherein a difference between the sequence of the amplified product and				
8	the sequence of the wild-type GCPII gene indicates the presence of a mutation.				
1	5. A method of claim 4, wherein said amplification is by polymerase				
2	chain reaction.				
1	6. A method of claim 4, wherein said sequencing is performed by				
2	detecting the incorporation of a nucleotide into a strand complementary to a template				
3	strand by detecting the presence of a pyrophosphate released from the incorporated				
4	nucleotide.				
1	7. A method of claim 1 wherein the mutation is detected by				
2	(a) amplifying exon 13 of the GCPII gene with a set of primers to				
3	provide an amplified product,				
Λ	(h) sequencing the amplified product to obtain a sequence, and				

5	(c) comparing the sequence of the amplified product with	a known			
6	sequence of exon 13 of a wild-type GCPII gene,				
7	wherein a difference between the sequence of the amplified product and				
8	the sequence of the wild-type GCPII gene indicates the presence of a mutation.				
1	8. A method of claim 7, wherein said primers are				
2	5'-CATTCTGGTAGGAATT TAGCA-3' and 5'-AAACACCACCTATGTTTAACA-3'.				
1	9. A method of claim 7, wherein said amplification is by pol	ymerase			
2	chain reaction.				
1	10. A method of claim 7, wherein said sequencing is performed	ed by			
2	detecting the incorporation of a nucleotide into a strand complementary to a template				
3	strand by detecting the presence of a pyrophosphate released from the incorporated				
4	nucleotide.				
1	11. A method of claim 1, wherein said mutation is detected by	y			
2	hybridizing DNA from said individual to a test nucleic acid under stringent conditions.				
1	12. A method of claim 11, wherein either said DNA from said	1			
2	individual or said test nucleic acid is immobilized on a solid support.				
1	13. A method of claim 1, wherein said mutation is detected by	y			
2	(a) amplifying exon 13 said GCPII gene,				
3	(b) subjecting said amplified exon 13 to digestion by rest	riction			
4	enzymes,				
5	(c) separating the resulting restriction products to form a	pattern of			
6	restriction fragment lengths, and				
7	(d) comparing the pattern of restriction fragment lengths	to a			
8	pattern of restriction fragment lengths formed by subjecting amplified exon 13 of	f a wild-			
9	type GCPII gene to the same restriction enzymes.				
1	14. A method of claim 13, wherein said separation of the rest	riction			
2	products is by gel electrophoresis.				
1	15. A method of claim 13, wherein the restriction enzyme is A	AccI.			

1	16. A method of claim 15, wherein the pattern of restriction fragments				
2	of exon 13 of the GCPII gene of the individual shows restriction fragments selected from				
3	the group consisting of: 141 bases and 103 bases.				
1	17. A method of claim 1, wherein said mutation is detected by				
2	specifically binding an antibody to a truncated product of the GCPII gene, wherein the				
3	specific binding of the antibody to the truncated gene product is indicative of a mutation				
4	impairing the ability of the GCPII gene product to digest a dietary folate.				
1	18. A method of claim 17, wherein detection of said specific binding of				
2	said antibody and said truncated gene product is by ELISA.				
1	A method of screening an individual for increased risk of low				
2	folate status comprising				
3	(a) performing reverse transcriptase-PCR on mRNA from intestinal cells				
4	of the individual to amplify products of a GCPII gene, and				
5	(b) determining the ratio of a variant product in which 93 bases of exon 18				
6	are deleted to a normal product of the GCPII gene,				
7	wherein a ratio of the variant form to the normal form greater than 1:3				
8	indicates the individual is at increased risk of low folate status.				
1	20. A mutation in a GCPII gene which impairs the ability of a product				
2	of the gene to hydrolyse a conjugated folate to release folic acid compared to a product of				
3	a wild-type GCPII gene.				
1	21. A mutation of claim 20, wherein the ability of a product of the gene				
2	to hydrolyse a conjugated folate is reduced by 20 percent or more compared to a product				
3	of a wild-type GCPII gene.				
1	22. A mutation of claim 20, wherein the mutation is a 93-base deletion				
2	resulting from the elimination of exon 18.				
1	23. The mutation of claim 20, wherein the mutation is a single				
2	nucleotide polymorphism.				

1		24.	The mutation of claim 23, wherein the single nucleotide			
2	polymorphism causes an amino acid substitution of: H475Y.					
1		25.	A kit for the detection of a woman at increased risk for bearing a			
2	child with a neural tube defect, comprising:					
3		(a) a container, and				
4		(b) p	rimers for amplifying a GCPII gene or portion thereof.			
1		26.	A kit of claim 25, further comprising instructions for detecting a			
2	mutation in the GCPII gene resulting in decreased ability of a product of the GCPII gene					
3	to hydrolyze a conjugated folate compared to the product of a wild-type GCPII gene.					
1		27.	A kit of claim 25, further comprising an AccI restriction enzyme.			
1		28.	A kit for the detection of an individual at increased risk for low			
2	folate status, o	folate status, comprising:				
3		(a) a	container, and			
4		(b) pr	imers for amplifying a GCPII gene or portion thereof.			
1		29.	A kit of claim 28, further comprising instructions for detecting a			
2	mutation in th	e GCP	II gene resulting in decreased ability of a product of the GCPII gene			
3	to hydrolyze a conjugated folate compared to a product of a wild-type GCPII, wherein					
4	detection of su	ich a n	nutation indicates the individual is at increased risk for low folate			
5	status.					
1		30.	A kit of claim 28, further comprising an AccI restriction enzyme.			