	MATH3411 Information Codes and Ciphers lester 2, 2012 TEST 1 VERSION A
Tim	ne Allowed: 45 minutes
que For	r the multiple choice questions, circle the correct answer ; each multiple choice estion is worth 2 marks. r the true/false and written answer questions, use extra paper. aple everything together at the end.
	Consider a binary channel with bit-error probability p , where errors in different positions are independent (that is, white noise). Suppose that a codeword \mathbf{x} is sent from a binary linear code with weight 4 and codewords of length 10, and the word \mathbf{y} is received. Then the probability that an error is detected, using a pure error detection strategy, is (a) Assignment project Exam Help $1-p-p^2$
2.	(d) $10p(1-p)^9 + 45p^2(1-p)^8$ (e) none of these A binary line $10p(1-p)^9 + 45p^2(1-p)^8$ (e) none of these
	(a) 1 (b) 2 (c) 4 (d) 6 (e) 12 Add WeChat powcoder Consider a code with codewords $\mathbf{c}_1 = 00$, $\mathbf{c}_2 = 10$, $\mathbf{c}_3 = 1100$, $\mathbf{c}_4 = ?$, where \mathbf{c}_4 is to be chosen from the list of four possibilities below. Which choice of \mathbf{c}_4 , if any, makes the resulting code uniquely decodable?
	(a) $\mathbf{c}_4 = 0000$, (b) $\mathbf{c}_4 = 1011$, (c) $\mathbf{c}_4 = 1010$, (d) $\mathbf{c}_4 = 11$, (e) none of
	A binary UD-code of has codewords lengths (not necessarily in order) 2, 2, 3, 4, 4, ℓ What is the minimum value must ℓ take in order for the code to exist?
	(a) $\ell = 1$ (b) $\ell = 2$ (c) $\ell = 3$ (d) $\ell = 4$ (e) none of these.
	A Markov source $S = \{s_1, s_2, s_3\}$ has transition matrix M . The Huffman code for the equilibrium distribution is $\operatorname{Huff}_E = [1, 00, 01]$. (That is, $\mathbf{c}_1 = 1$, $\mathbf{c}_2 = 00$ and $\mathbf{c}_3 = 01$.) Huffman codes for the columns of M are given by $\operatorname{Huff}_1 = [00, 1, 01]$ $\operatorname{Huff}_2 = [0, 10, 11]$ and $\operatorname{Huff}_3 = [11, 10, 0]$. Given the string of source symbols

6. [10 marks] For each of the following, say whether the statement is true or false, giving a brief reason or showing your working. You will get one mark for a correct true/false answer, and if your true/false answer is correct then you will get one mark for a good reason.

Begin each answer with the word "true" or "false".

- i) The code 0-01-616376-2 is a valid ISBN-11 number.
- ii) The 8-character 8-bit ASCII burst code can detect all triple errors in a block.
- iii) It is possible to construct a binary linear code C with |C| = 12 and codewords of length 9 and that can correct 2 errors.
- iv) The two binary I-codes {0, 100, 110, 1010, 1110} and {1,000,001,0100,0101} are equivalent.
- v) If S is a source with two symbols of probabilities $\frac{5}{7}$ and $\frac{2}{7}$ then a binary Huffman coding of S^2 has average length per original source symbol less than 1.
- 7. [10 marks] Let C be the binary linear code with check matrix

Assignment Project Exam Help $H = \begin{pmatrix} 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 & 0 \end{pmatrix},$ where the last three columns correspond to information bits.

- (i) Find a generator matrix G for the code C.
- (ii) Find a based the Wde Chat powcoder
- (iii) Encode 011 with this code C
- (iv) Define the minimum distance d(C) of a code C and calculate d(C) for the code above, with explanation.

Name:	Student Id:	Tutorial
UNSW	School of Mathematics and Statistics	
MATH3411	Information Codes and	d Ciphers
Semester 2, 2012	$\mathbf{TEST} 1$	VERSION B

• Time Allowed: 45 minutes

For the multiple choice questions, **circle the correct answer**; each multiple choice question is worth 2 marks.

For the true/false and written answer questions, use extra paper.

Staple everything together at the end.

1. Consider a binary channel with bit-error probability p, where errors in different positions are independent (that is, white noise). Suppose that a codeword \mathbf{x} is sent from a binary linear code with weight 5 and codewords of length 10, and the word \mathbf{y} is received. Then the probability that any errors are **correctly corrected** with the standard strategy is

$$\text{(a)} \\ \mathbf{A} \\ \mathbf{S} \\ \mathbf{S} \\ \mathbf{I} \\ \mathbf{g} \\ \mathbf{n} \\ \mathbf{n} \\ \mathbf{0} \\ p \\ \mathbf{1} \\ \mathbf{0} \\ \mathbf{p} \\ \mathbf{1} \\ \mathbf{1} \\ \mathbf{1} \\ \mathbf{1} \\ \mathbf{1} \\ \mathbf{2} \\ \mathbf{0} \\ \mathbf{1} \\ \mathbf{$$

2. Consider a code with codewords $\mathbf{c}_1 = 01$, $\mathbf{c}_2 = 11$, $\mathbf{c}_3 = 1011$, $\mathbf{c}_4 = ?$, where \mathbf{c}_4 is to be chosen from the positive of \mathbf{c}_4 , if any, makes the resulting code uniquely decodable?

(a) $\mathbf{c}_4 = 0111$, (b) $\mathbf{c}_4 = 10$, (c) $\mathbf{c}_4 = 10$, (d) $\mathbf{c}_4 = 100$, (e) $\mathbf{c}_4 = \text{none of these.}$ 3. A radix 3 instantaneous code (I-code) has codeword lengths (not necessarily in

3. A radix 3 instantaneous code (I-code) has codeword lengths (not necessarily in order) 1, 3, 4, 4, 4, ℓ and K = 4/9. Then ℓ is given by

(a) $\ell=1$ (b) $\ell=2$ (c) $\ell=3$ (d) $\ell=4$ (e) $\ell=5$

4. Let $S = \{s_1, s_2\}$ be a source with probabilities $p_1 = \frac{5}{8}$, $p_2 = \frac{3}{8}$. The average length per original symbol of a **radix 3** Huffman code for the **second extension** $S^{(2)}$ of this source (constructed with the usual strategies) is

(a) $\frac{127}{128}$ (b) $\frac{103}{64}$ (c) $\frac{11}{8}$ (d) $\frac{103}{128}$ (e) $\frac{11}{16}$

5. A Markov source $S = \{s_1, s_2, s_3\}$ has transition matrix M. The Huffman code for the equilibrium distribution is $\operatorname{Huff}_E = [1, 00, 01]$. (That is, $\mathbf{c}_1 = 1$, $\mathbf{c}_2 = 00$ and $\mathbf{c}_3 = 01$.) Huffman codes for the columns of M are given by $\operatorname{Huff}_1 = [00, 1, 01]$, $\operatorname{Huff}_2 = [0, 10, 11]$ and $\operatorname{Huff}_3 = [11, 10, 0]$. The string 001101100 decodes under the Markov Huffman encoding as

(a) $s_2s_1s_1s_3s_1s_1$ (b) $s_2s_3s_3s_1s_1$ (c) $s_3s_3s_1s_3s_2s_2s_2$ (d) $s_2s_2s_1s_2s_3$

6. [10 marks] For each of the following, say whether the statement is true or false and give a brief reason or showing your working. You will get one mark for a correct true/false answer, and if your true/false answer is correct then you will get one mark for a good reason.

Begin each answer with the word "true" or "false".

- i) The code 0-00-716376-2 is a valid ISBN-11 number.
- ii) The 8-character 8-bit ASCII burst code cannot detect all quadruple errors in a block.
- iii) A binary code C with |C| = 12 that can correct 2 errors must have codewords of length at least 9.
- iv) The binary linear code C with basis $\{1010101010101, 01010101010101\}$ has weight 5.
- v) The two binary I-codes $\{0, 100, 110, 1010, 1110\}$ and $\{0, 101, 110, 1000, 1111\}$ are equivalent.
- 7. [10 marks] Let C be the binary linear code with check matrix

where the last three columns correspond to information bits.

- (i) Reduce H to row reduced complon form and hence find a generator matrix G for the code of Welchar powcoder
- (ii) Hence or otherwise encode 101 with the code C.
- (iii) Define the minimum distance d(C) of a code C and calculate d(C) for the code above, with explanation.