香港考試及評核局 HONG KONG EXAMINATIONS AND ASSESSMENT AUTHORITY

2005年香港中學會考 HONG KONG CERTIFICATE OF EDUCATION EXAMINATION 2005

數學 試卷一 MATHEMATICS PAPER 1

本評卷參考乃香港考試及評核局專爲今年本科考試而編寫,供閱卷員參考之用。閱卷員在完成閱卷工作後,若將本評卷參考提供其任教會考班的本科同事參閱,本局不表反對,但須切記,在任何情況下均不得容許本評卷參考落入學生手中。學生若索閱或求取此等文件,閱卷員/教師應嚴詞拒絕,因學生極可能將評卷參考視爲標準答案,以致但知硬背死記,活剝生吞。這種落伍的學習態度,既不符現代教育原則,亦有違考試着重理解能力與運用技巧之旨。因此,本局籲請各閱卷員/教師通力合作,堅守上述原則。

This marking scheme has been prepared by the Hong Kong Examinations and Assessment Authority for markers' reference. The Authority has no objection to markers sharing it, after the completion of marking, with colleagues who are teaching the subject. However, under no circumstances should it be given to students because they are likely to regard it as a set of model answers. Markers/teachers should therefore firmly resist students' requests for access to this document. Our examinations emphasise the testing of understanding, the practical application of knowledge and the use of processing skills. Hence the use of model answers, or anything else which encourages rote memorisation, should be considered outmoded and pedagogically unsound. The Authority is counting on the co-operation of markers/teachers in this regard.

考試結束後,各科評卷參考將存放於教師中心,供教師參閱。 After the examinations, marking schemes will be available for reference at the teachers' centre.

©香港考試及評核局 保留版權 Hong Kong Examinations and Assessment Authority All Rights Reserved 2005

2005-CE-MATH 1-1

只限教師參閱 FOR TEACHERS' USE ONLY

ACHERS' USE ONLY
Provided by dse.life

FOR TEACHERS' USE ONLY

Hong Kong Certificate of Education Examination Mathematics Paper 1

General Marking Instructions

- It is very important that all markers should adhere as closely as possible to the marking scheme. In many cases, however, candidates will have obtained a correct answer by an alternative method not specified in the marking scheme. In general, a correct answer merits all the marks allocated to that part, unless a particular method has been specified in the question. Makers should be patient in marking alternative solutions not specified in the marking scheme
- 2. In the marking scheme, marks are classified into the following three categories:

'M' marks

awarded for correct methods being used;

'A' marks

awarded for the accuracy of the answers;

Marks without 'M' or 'A'

awarded for correctly completing a proof or arriving

at an answer given in a question.

In a question consisting of several parts each depending on the previous parts, 'M' marks should be awarded to steps or methods correctly deduced from previous answers, even if these answers are erroneous. However, 'A' marks for the corresponding answers should NOT be awarded (unless otherwise specified).

- 3. For the convenience of markers, the marking scheme was written as detailed as possible. However, it is still likely that candidates would not present their solution in the same explicit manner, e.g. some steps would either be omitted or stated implicitly. In such cases, markers should exercise their discretion in marking candidates' work. In general, marks for a certain step should be awarded if candidates' solution indicated that the relevant concept/technique had been used.
- 4. Use of notation different from those in the marking scheme should not be penalized.
- In marking candidates' work, the benefit of doubt should be given in the candidates' favour.
- 6. Marks may be deducted for wrong units (u) or poor presentation (pp).
 - a. The symbol (u-1) should be used to denote 1 mark deducted for u. At most deduct 1 mark for u in Section A. Do not deduct any marks for u in Section B.
 - b. The symbol (pp-1) should be used to denote 1 mark deducted for pp. At most deduct 1 mark for pp in each of Section A and Section B. For similar pp, deduct 1 mark for the first time that it occurs. Do not penalize candidates twice in the paper for the same pp.
 - At most deduct 1 mark in each question. Deduct the mark for u first if both marks for u and pp may be deducted in the same question.
 - d. In any case, do not deduct any marks for pp or u in those steps where candidates could not score any marks.
- 7. Marks entered in the Page Total Box should be the NET total scored on that page.
- In the marking scheme, 'r.t.' stands for 'accepting answers which can be rounded off to', 'f.t.' stands for 'follow through' and 'or equivalent' means 'accepting equivalent forms of the equation which has been simplified and without uncollected like terms'. Steps which can be skipped are shaded whereas alternative answers are enclosed with rectangles. All fractional answers must be simplified.

	Solution	Marks	Remarks
1.	P = ab + 2bc + 3ac $ab + 3ac = P - 2bc$ $a(b+3c) = P - 2bc$	1M 1M	for putting <i>a</i> on one side for factorization
	$a = \frac{P - 2bc}{b + 3c}$	1A (3)	or equivalent
2.	$\frac{(x^3y)^2}{y^5}$		
	$\begin{bmatrix} x^6y^2 \\ y^5 \\ x^6 \end{bmatrix}$	1M	for $(ab)^n = a^n b^n$ or $(a^m)^n = a$
	$=\frac{x^6}{y^{5-2}}$ $=\frac{x^6}{y^3}$	1M 1A	for $\frac{b^m}{b^n} = b^{m-n}$ or $\frac{b^m}{b^n} = \frac{1}{b^{n-m}}$
		(3)	
3	(a) $4x^2 - 4xy + y^2$ = $(2x - y)^2$	1A	or equivalent
ie.	(b) $4x^{2} - 4xy + y^{2} - 2x + y$ $= (2x - y)^{2} - 2x + y (by (a))$ $= (2x - y)^{2} - (2x - y)$	1M	for using the result of (a)
	=(2x-y)(2x-y-1)	1A (3)	or equivalent
4.	$\frac{-3x+1}{4} > x-5$ $-3x+1 > 4x-20$		·
	-7x > -21 7x < 21 x < 3	1M 1A	for putting x on one side
	For $2x+1 \ge 0$, we have $x \ge \frac{-1}{2}$. Therefore, the solution of $\frac{-3x+1}{4} > x-5$ and $2x+1 \ge 0$ is $\frac{-1}{2} \le x < 3$.		
	Thus, all integers which satisfy both the inequalities $\frac{-3x+1}{4} > x-5$ and $2x+1 \ge 0$ are 0, 1 and 2	1A (3)	
3005	-CE-MATH 1–3		

Solution	Marks	Remarks
$5. \qquad n - 18 = \frac{2n}{5} + 18$	1A+1M	1A for $\frac{2n}{5}$ + 1M for equating
$\frac{3n}{5} = 36$		
n = 60	1A	
Suppose that Susan and Teresa have 5k marbles and 2k marbles respectively	1A	for 5k and 2k
5k - 18 = 2k + 18	1M	pp-1 for any undefined symbol for equating
3k = 36	1111	Tor oquating
k = 12 $n = 5k$		
n = 60	1A	
	(3)	
(a) Let x be the marked price of the calculator. Then, we have $x = 160(1+25\%)$	1A	
x = 200	1A	
Thus, the marked price of the calculator is \$200.		u–1 for missing unit
Let x be the marked price of the calculator. Then, we have		
$\left(\frac{x-160}{160}\right)(100\%) = 25\%$	1A	accept without 100%
x - 160 = 40 $x = 200$	1 A	
Thus, the marked price of the calculator is \$200.		u-1 for missing unit
(b) The selling price of the calculator		
= 200 (90%) = \$180	1M	for (a)(90%)
The percentage profit		
$= (\frac{180 - 160}{160})(100\%)$	1 4	
= 12.5%	1A	
The selling price of the calculator = 200 (90%)	1M	for (a)(90%)
= \$180		
The percentage profit		
$= (\frac{180 - 160}{200 - 160})(25\%)$		
= 12.5%	1A	
	(4)	
The common difference $= 8-5=3$	1 A	can be absorbed
$\frac{n}{2}((2)(5) + (n-1)(3)) = 3925$	1M	for $\frac{n}{2}((2)(5) + (n-1)(d)) = 3925$
$3n^2 + 7n - 7850 = 0$	1M	in the form $k_1 n^2 + k_2 n + k_3 = 0$ where $k_1 \neq 0$
$n = 50$ or $n = \frac{-157}{3}$ (rejected since <i>n</i> is a positive integer)	1A	
Thus, we have $n = 50$.	(4)	
	(-7)	
005-CE-MATH 1–4		

FOR TEACHERS' USE ONLY

	Solution	Marks	Remarks
	180(6-2)		
x =	$=\frac{180(6-2)}{6}$		
	= 120	1A	u-1 for having unit
ν =	$=\frac{180-x}{2}$		
	2	·	
=	$=\frac{180-120}{2}$	1M	
	30	1A	u-1 for having unit
z =	180 - 2y		
	180 – (2)(30)	1M	
	120	1A	u-1 for having unit
z =	(180)(5-2)-2x-2(x-y)		<u> </u>
1	540-4x+2y		
	540 – (4)(120) + (2)(30)	1M	
4	120	1A	u-1 for having unit
		(5)	
()	2 (24)(100)	137	c 100
(a)	$2\pi (OA)(\frac{100}{360}) = 10\pi$	1 M	for $\frac{100}{360}$
	OA = 18 cm	1A	u-1 for missing unit
	$(0.0)(100\pi)$	137	ς 100π
	$(OA)(\frac{100\pi}{180}) = 10\pi$	1M	for $\frac{100\pi}{180}$
	OA = 18 cm	1A	u-1 for missing unit
(b)	The area of sector OABC		
	$=\frac{100}{360}\pi(18)^2$	IM	for $\frac{100}{360}\pi(a)^2$
			360
	$\approx 282.7433388 \text{ cm}^2$		
	The area of $\triangle OAC$		1 -
	$=\frac{1}{2}(18)^2\sin 100^\circ$	1 M	for $\frac{1}{2}(a)^2 \sin 100^\circ$
	$\approx 159.538856 \text{ cm}^2$	·	2
	The required area		
	$\approx 282.7433388 - 159.538856$		
	≈ 123,2044828		
	$\approx 123 \text{ cm}^2$	1A	u-1 for missing unit r.t. 123 cm ²
			1.t. 125 CIII
	The area of sector OABC		1 , 100
	$=\frac{1}{2}(18)^2(\frac{100}{180}\pi)$	1M	for $\frac{1}{2}(a)^2(\frac{100}{180}\pi)$
	$\approx 282.7433388 \text{ cm}^2$		
	The area of $\triangle OAC$		1
	$=\frac{1}{2}(2(18\sin 50^\circ))(18\cos 50^\circ)$	1 M	for $\frac{1}{2}(2((a)\sin 50^\circ))((a)\cos 50^\circ)$
	$\approx 159.538856 \text{ cm}^2$		-
	The required area		
	≈ 282.7433388 – 159.538856 ≈ 123.2044828		
	≈ 123 cm ²	1A	u-1 for missing unit
			r.t. 123 cm ²
		(5)	

		Solution	Marks	Remarks
10. (a)	Let	$f(x) = ax^3 + bx$, where a and b are non-zero constants.	1A	
		e $f(2) = -6$, we have 8a + 2b = -6 4a + b = -3 (1) e $f(3) = 6$, we have 27a + 3b = 6 9a + b = 2 (2)	> 1M	for substitution (either one)
	Solv	ing (1) and (2), we have	1M	for solving simultaneous equations and can be absorbed
		$\begin{cases} a = 1 \\ b = -7 \end{cases}$	1A	for both correct
	Thus	s, we have $f(x) = x^3 - 7x$.	(4)	
(b)	(i)	g(x) = f(x) - 6 $g(3) = f(3) - 6 = 6 - 6 = 0$ Thus, by Factor Theorem, $x - 3$ is a factor of $g(x)$.	1A	
		$g(x) = x^3 - 7x - 6$ $g(3) = 3^3 - 7(3) - 6 = 0$ Thus, by Factor Theorem, $x - 3$ is a factor of $g(x)$.	1A	accept using division correctly
	(ii)	$g(x) = (x-3)(x^2+3x+2)$ $= (x-3)(x+1)(x+2)$	1M+1A 1A (4)	1M for $(x-3)(ax^2 + bx + c)$
005-CE-1	матн	1–6		

FOR TEACHERS' USE ONLY

			Solution	Marks	Remarks
11.	(a)	The required probability $= \frac{1}{2}$		1A	0.5
	(b)	The required probability		(1)	
		$= \left(\frac{1}{2}\right) \left(\frac{1}{2}\right) \left(\frac{1}{2}\right)$		1M	for (a) $p_1 p_2$, $0 < p_1, p_2 < 1$
		$=\frac{1}{8}$		1A	0.125
,	(a)	The required probability			
((c)	The required probability $= \left(1 - \frac{1}{2}\right) + \left(\frac{1}{2}\right) \left(1 - \frac{1}{2}\right)$		1M+1M	
	-	$=\frac{3}{4}$		1A	0.75
		The required probability $= 1 - \left(\frac{1}{2}\right) \left(\frac{1}{2}\right)$		1M+1M	1M for $(1 - p_3) + 1$ M for $p_3 = (a)p_4$ $0 < p_3, p_4 < 1$
		$=\frac{3}{4}$		1A	0.75
	(d)	The required probability $= \left(\frac{1}{2}\right) \left(\frac{1}{2}\right) \left(\frac{1}{2}\right)$			for (a) $p_4 \left(\frac{1}{2}\right)$, $0 < p_4 < 1$
		$=\frac{1}{8}$		1A (2)	0.125
7005-C	F_M	ATH 1-7			

	Solution	Marks	Remarks
2. (a)	Since the volume of the right circular cone is equal to the volume of the hemisphere, we have		
	$\frac{1}{3}\pi (h-4)^2 h = \frac{2}{3}\pi (h-4)^3$	1M+1M	$1M \text{ for } \frac{\pi}{3}r^2h + 1M \text{ for } \frac{2}{3}\pi r^3$
	$h = 2(h-4) \qquad (:: h \neq 4)$ $h = 8$	1A (3)	u-1 for having unit
(b)	The length of the slant edge of the right circular cone $= \sqrt{8^2 + 4^2}$ $= \sqrt{80}$	1 M	for $\sqrt{(a)^2 + ((a) - 4)^2}$
	$= 4\sqrt{5} \text{ cm}$ The total surface area of the solid $= \text{the curved surface area of the cone} + \text{the surface area of the hemisphere}$		
	= the curved surface area of the cone + the surface area of the hemisphere $= \pi(4)(4\sqrt{5}) + 2\pi(4^{2})$ $= 16(\sqrt{5} + 2)\pi$	1 M	for $\pi((a)-4)l+2\pi((a)-4)^2$
	≈ 212.9280006 ≈ 213 cm ²	1A (3)	u–1 for missing unit
(c)	The increase in the total surface area $= 2\left(\frac{(8)(8)}{2} + \frac{\pi(4^2)}{2}\right)$	1M	for $\left(\frac{(a)(2(a)-8)}{2} + \frac{\pi((a)-4)^2}{2}\right)$
	≈ 114.2654825 $\approx 114 \text{ cm}^2$	1A (2)	u–1 for missing unit
		` `	
05 CE N			

FOR TEACHERS' USE ONLY

(a) Putting $y = 0$ in $2x - y + 4 = 0$, we have $x = -2$. Thus, the coordinates of A are $(-2, 0)$. Putting $x = 0$ in $2x - y + 4 = 0$, we have $y = 4$. Thus, the coordinates of B are $(0, 4)$. (b) \therefore the slope of L_1 is 2 . \therefore the slope of L_2 is $\frac{-1}{2}$. Thus, the equation of L_2 is $y = \frac{-x}{2} + 4$ $x + 2y - 8 = 0$ (c) Putting $y = 0$ in $x + 2y - 8 = 0$, we have $x = 8$. So, the coordinates of C are $(8, 0)$. Therefore, we have $OC: AC = 4:5$. The required ratio $= 4^2: (5^2 - 4^2)$ $= 16:9$ Putting $y = 0$ in $x + 2y - 8 = 0$, we have $x = 8$. So, the coordinates of C are $(8, 0)$. Let the coordinates of C are $(8, 0)$. Let the coordinates of C are $(8, 0)$. Then, we have $C = (8, 0)$. The area of $C = (8, 0)$.	1A 1A 1A 1M 1M+1A (3) 1M 1A 1M 1A	can be absorbed 1M for slope-intercept form or point-slope form + 1A or equivalent
Putting $x = 0$ in $2x - y + 4 = 0$, we have $y = 4$. Thus, the coordinates of B are $(0, 4)$. (b) \therefore the slope of L_1 is 2 . \therefore the slope of L_2 is $\frac{-1}{2}$. Thus, the equation of L_2 is $y = \frac{-x}{2} + 4$ x + 2y - 8 = 0 (c) Putting $y = 0$ in $x + 2y - 8 = 0$, we have $x = 8$. So, the coordinates of C are $(8, 0)$. Therefore, we have $OC:AC = 4:5$. The required ratio $= 4^2:(5^2 - 4^2)$ $= 16:9$ Putting $y = 0$ in $x + 2y - 8 = 0$, we have $x = 8$. So, the coordinates of C are $(8, 0)$. Let the coordinates of C be (a, b) . Then, we have $C = 1$ 0. Solving, the coordinates of $C = 1$ 1. The area of $C = 1$ 2. C = 13. The area of $C = 1$ 3. The area of $C = 1$ 4.	1A(2) 1M 1M+1A (3) 1M 1A 1M 1A	pp-1 for missing '(' or ')' can be absorbed 1M for slope-intercept form or point-slope form + 1A or equivalent for finding the coordinates of (can be absorbed for $OC^2: (AC^2 - OC^2)$) accept 1: s and t:1 with s r.t. 0.563 and t r.t. 1.78
(b) \therefore the slope of L_1 is 2. \therefore the slope of L_2 is $\frac{-1}{2}$. Thus, the equation of L_2 is $y = \frac{-x}{2} + 4$ $x + 2y - 8 = 0$ (c) Putting $y = 0$ in $x + 2y - 8 = 0$, we have $x = 8$. So, the coordinates of C are $(8, 0)$. Therefore, we have $OC: AC = 4:5$. The required ratio $= 4^2: (5^2 - 4^2)$ $= 16:9$ Putting $y = 0$ in $x + 2y - 8 = 0$, we have $x = 8$. So, the coordinates of C are $(8, 0)$. Let the coordinates of C are $(8, 0)$. Let the coordinates of D be (a, b) . Then, we have $b = 2a$ and $a + 2b - 8 = 0$. Solving, the coordinates of D are $(1.6, 3.2)$. The area of $\triangle ODC$ $= \frac{(8)(3.2)}{2}$ $= 12.8$ The area of $\triangle ABC$	1M 1M+1A(3) 1M 1A 1M 1A	can be absorbed 1M for slope-intercept form or point-slope form + 1A or equivalent for finding the coordinates of (can be absorbed for $OC^2:(AC^2-OC^2)$) accept 1: s and t:1 with s r.t. 0.563 and t r.t. 1.78
Thus, the equation of L_2 is $\frac{-1}{2}$. Thus, the equation of L_2 is $y = \frac{-x}{2} + 4$ $x + 2y - 8 = 0$ (c) Putting $y = 0$ in $x + 2y - 8 = 0$, we have $x = 8$. So, the coordinates of C are $(8, 0)$. Therefore, we have $OC: AC = 4:5$. The required ratio $= 4^2: (5^2 - 4^2)$ $= 16:9$ Putting $y = 0$ in $x + 2y - 8 = 0$, we have $x = 8$. So, the coordinates of C are $(8, 0)$. Let the coordinates of D be (a, b) . Then, we have $b = 2a$ and $a + 2b - 8 = 0$. Solving, the coordinates of D are $(1.6, 3.2)$. The area of $\triangle ODC$ $= \frac{(8)(3.2)}{2}$ $= 12.8$ The area of $\triangle ABC$	1M+1A(3) 1M 1A 1M 1A	1M for slope-intercept form or point-slope form + 1A or equivalent for finding the coordinates of C can be absorbed for $C^2:(AC^2-CC^2)$ accept 1: C and C are also as C are also as C and C a
Thus, the equation of L_2 is $y = \frac{-x}{2} + 4$ $x + 2y - 8 = 0$ (c) Putting $y = 0$ in $x + 2y - 8 = 0$, we have $x = 8$. So, the coordinates of C are $(8, 0)$. Therefore, we have $OC: AC = 4:5$. The required ratio $= 4^2: (5^2 - 4^2)$ $= 16:9$ Putting $y = 0$ in $x + 2y - 8 = 0$, we have $x = 8$. So, the coordinates of C are $(8, 0)$. Let the coordinates of D be (a, b) . Then, we have $b = 2a$ and $a + 2b - 8 = 0$. Solving, the coordinates of D are $(1.6, 3.2)$. The area of $\triangle ODC$ $= \frac{(8)(3.2)}{2}$ $= 12.8$ The area of $\triangle ABC$	1M+1A(3) 1M 1A 1M 1A	1M for slope-intercept form or point-slope form + 1A or equivalent for finding the coordinates of C can be absorbed for $C^2:(AC^2-CC^2)$ accept 1: C and C are also as C are also as C and C a
$y = \frac{-x}{2} + 4$ $x + 2y - 8 = 0$ (c) Putting $y = 0$ in $x + 2y - 8 = 0$, we have $x = 8$. So, the coordinates of C are $(8, 0)$. Therefore, we have $OC: AC = 4:5$. The required ratio $= 4^2: (5^2 - 4^2)$ $= 16:9$ Putting $y = 0$ in $x + 2y - 8 = 0$, we have $x = 8$. So, the coordinates of C are $(8, 0)$. Let the coordinates of D be (a, b) . Then, we have $b = 2a$ and $a + 2b - 8 = 0$. Solving, the coordinates of D are $(1.6, 3.2)$. The area of $\triangle ODC$ $= \frac{(8)(3.2)}{2}$ $= 12.8$ The area of $\triangle ABC$	(3) 1M 1A 1M 1A	+1A or equivalent for finding the coordinates of (can be absorbed for $OC^2:(AC^2-OC^2)$ accept 1: s and t:1 with s r.t. 0.563 and t r.t. 1.78
(c) Putting $y = 0$ in $x + 2y - 8 = 0$, we have $x = 8$. So, the coordinates of C are $(8, 0)$. Therefore, we have $OC: AC = 4:5$. The required ratio $= 4^2: (5^2 - 4^2)$ $= 16:9$ Putting $y = 0$ in $x + 2y - 8 = 0$, we have $x = 8$. So, the coordinates of C are $(8, 0)$. Let the coordinates of D be (a, b) . Then, we have $b = 2a$ and $a + 2b - 8 = 0$. Solving, the coordinates of D are $(1.6, 3.2)$. The area of $\triangle ODC$ $= \frac{(8)(3.2)}{2}$ $= 12.8$ The area of $\triangle ABC$	(3) 1M 1A 1M 1A	+1A or equivalent for finding the coordinates of (can be absorbed for $OC^2:(AC^2-OC^2)$ accept 1: s and t:1 with s r.t. 0.563 and t r.t. 1.78
(c) Putting $y = 0$ in $x + 2y - 8 = 0$, we have $x = 8$. So, the coordinates of C are $(8, 0)$. Therefore, we have $OC : AC = 4 : 5$. The required ratio $= 4^2 : (5^2 - 4^2)$ $= 16 : 9$ Putting $y = 0$ in $x + 2y - 8 = 0$, we have $x = 8$. So, the coordinates of C are $(8, 0)$. Let the coordinates of D be (a, b) . Then, we have $b = 2a$ and $a + 2b - 8 = 0$. Solving, the coordinates of D are $(1.6, 3.2)$. The area of $\triangle ODC$ $= \frac{(8)(3.2)}{2}$ $= 12.8$ The area of $\triangle ABC$	1M 1A 1M 1A	for finding the coordinates of C can be absorbed for $OC^2:(AC^2-OC^2)$ accept 1: S and $t:1$ with S r.t. 0.563 and t r.t. 1.78
So, the coordinates of C are $(8, 0)$. Therefore, we have $OC:AC=4:5$. The required ratio $= 4^2:(5^2-4^2)$ $= 16:9$ Putting $y=0$ in $x+2y-8=0$, we have $x=8$. So, the coordinates of C are $(8, 0)$. Let the coordinates of D be (a, b) . Then, we have $b=2a$ and $a+2b-8=0$. Solving, the coordinates of D are $(1.6, 3.2)$. The area of $\triangle ODC$ $= \frac{(8)(3.2)}{2}$ $= 12.8$ The area of $\triangle ABC$	1M 1A 1M 1A	for finding the coordinates of C can be absorbed for $OC^2:(AC^2-OC^2)$ accept 1: S and C :1 with C :
So, the coordinates of C are $(8, 0)$. Therefore, we have $OC: AC = 4:5$. The required ratio $= 4^2: (5^2 - 4^2)$ $= 16:9$ Putting $y = 0$ in $x + 2y - 8 = 0$, we have $x = 8$. So, the coordinates of C are $(8, 0)$. Let the coordinates of D be (a, b) . Then, we have $b = 2a$ and $a + 2b - 8 = 0$. Solving, the coordinates of D are $(1.6, 3.2)$. The area of $\triangle ODC$ $= \frac{(8)(3.2)}{2}$ $= 12.8$ The area of $\triangle ABC$	1A 1M 1A	can be absorbed for $OC^2:(AC^2 - OC^2)$ accept 1:s and t:1 with s r.t. 0.563 and t r.t. 1.78
Therefore, we have $OC: AC = 4:5$. The required ratio $= 4^2: (5^2 - 4^2)$ $= 16:9$ Putting $y = 0$ in $x + 2y - 8 = 0$, we have $x = 8$. So, the coordinates of C are $(8, 0)$. Let the coordinates of D be (a, b) . Then, we have $b = 2a$ and $a + 2b - 8 = 0$. Solving, the coordinates of D are $(1.6, 3.2)$. The area of $\triangle ODC$ $= \frac{(8)(3.2)}{2}$ $= 12.8$ The area of $\triangle ABC$	1M 1A	for $OC^2 : (AC^2 - OC^2)$ accept 1: s and t:1 with s r.t. 0.563 and t r.t. 1.78
Putting $y = 0$ in $x + 2y - 8 = 0$, we have $x = 8$. So, the coordinates of C are $(8, 0)$. Let the coordinates of D be (a, b) . Then, we have $b = 2a$ and $a + 2b - 8 = 0$. Solving, the coordinates of D are $(1.6, 3.2)$. The area of $\triangle ODC$ $= \frac{(8)(3.2)}{2}$ $= 12.8$ The area of $\triangle ABC$	1A	accept 1:s and t :1 with s r.t. 0.563 and t r.t. 1.78
Putting $y = 0$ in $x + 2y - 8 = 0$, we have $x = 8$. So, the coordinates of C are $(8, 0)$. Let the coordinates of D be (a, b) . Then, we have $b = 2a$ and $a + 2b - 8 = 0$. Solving, the coordinates of D are $(1.6, 3.2)$. The area of $\triangle ODC$ $= \frac{(8)(3.2)}{2}$ $= 12.8$ The area of $\triangle ABC$		s r.t. 0.563 and t r.t. 1.78
So, the coordinates of C are $(8, 0)$. Let the coordinates of D be (a, b) . Then, we have $b = 2a$ and $a + 2b - 8 = 0$. Solving, the coordinates of D are $(1.6, 3.2)$. The area of $\triangle ODC$ $= \frac{(8)(3.2)}{2}$ $= 12.8$ The area of $\triangle ABC$	1M	for finding the coordinates of C
So, the coordinates of C are $(8, 0)$. Let the coordinates of D be (a, b) . Then, we have $b = 2a$ and $a + 2b - 8 = 0$. Solving, the coordinates of D are $(1.6, 3.2)$. The area of $\triangle ODC$ $= \frac{(8)(3.2)}{2}$ $= 12.8$ The area of $\triangle ABC$	1141	Tor many the coordinates or C
Solving, the coordinates of D are $(1.6, 3.2)$. The area of $\triangle ODC$ $= \frac{(8)(3.2)}{2}$ $= 12.8$ The area of $\triangle ABC$		
$= \frac{12.8}{2}$ = 12.8 The area of $\triangle ABC$	1A	can be absorbed
The area of $\triangle ABC$		
(10)(4)		
$=\frac{\sqrt{2}\sqrt{3}}{2}$ $=20$		
The required ratio		
= 12.8:(20-12.8) $= 12.8:7.2$	1M	
= 16:9	1A	accept 1:s and t:1 with s r.t. 0.563 and t r.t. 1.78
Let the coordinates of D be (a, b) . Then, we have $b = 2a$ and $a + 2b - 8 = 0$.		
Solving, the coordinates of D are $(1.6, 3.2)$	1A	can be absorbed for either one
$OD^2 = (1.6)^2 + (3.2)^2 = 12.8$ and $AB^2 = 2^2 + 4^2 = 20$	1M	TOT CHILCE OHE
The required ratio = 12.8: (20 - 12.8)	1 M	
= 16:9	1A	accept 1: s and t :1 with s r.t. 0.563 and t r.t. 1.78

Solution		Marks	Remarks
(a) $\sin 30^\circ = \frac{BE}{\cos^2 \cos^2 \cos^2 \cos^2 \cos^2 \cos^2 \cos^2 \cos^2 \cos^2 \cos^2 $			
120			
BE = 60 cm		1A	
$\cos 30^{\circ} = \frac{CE}{120}$			
$CE = 60\sqrt{3}$ cm		1A	r.t. 104 cm
		(2)	$CE \approx 103.9230485 \text{ cm}$
		(2)	
(b) By sine formula, we have			
$\frac{AB}{\sin 40^{\circ}} = \frac{120}{\sin 60^{\circ}}$ and	$\frac{AC}{} = \frac{120}{}$	1M	for either one
	$\frac{1}{\sin 80^{\circ}} = \frac{1}{\sin 60^{\circ}}$		
$AB \approx 89.06726388$ and	$AC \approx 136.4589651$ $AC \approx 136 \text{ cm}$	1A+1A	AB r.t. 89.1 cm
$AB \approx 89.1 \text{ cm}$ and	AC ≈ 150 cm	IATIA	AC r.t. 136 cm
		(3)	
$(c) CD = \sqrt{AC^2 - AD^2}$			
$CD \approx \sqrt{136.4589651^2 - 100^2}$		1M	
<i>CD</i> ≈ 92.84960504 cm			
$DE = \sqrt{AB^2 - (AD - BE)^2}$			
$DE \approx \sqrt{89.06726388^2 - (100 - 60)^2}$	(hv (a))	1M	for $\sqrt{AB^2 - (100 - BE)^2}$
$DE \approx \sqrt{89.06/26388}$ - (100 - 60) $DE \approx 79.58000688$ cm	(by (a))	1101	$ \begin{vmatrix} 101 & \sqrt{AB} & -(100 - BE) \end{vmatrix} $
By cosine formula, we have			
$\cos \angle CDE = \frac{DE^2 + CD^2 - CE^2}{2DE \cdot CD}$			
$2DE \cdot CD$	200012 (00 50)		
$\cos \angle CDE \approx \frac{79.58000688^2 + 92.845}{2(79.58000688)(}$	$\frac{960504^{2} - (60\sqrt{3})}{62.84060504}$ (by (a))	1M	
$\angle CDE \approx 73.67434913^{\circ}$	92.84900304)		
$\angle CDE \approx 73.07434913$		1A	r.t. 73.7°
2022 1011			
The required distance			
= $CD \sin \angle CDE$ $\approx 92.84960504 \sin 73.67434913^{\circ}$		1M	
≈ 92.84960304 Sm /3.67434913 ≈ 89.10586658		1141	
≈ 89.1 cm		1A	r.t. 89.1 cm
Let x cm be the shortest distance from C	to DE. Then, we have		
$\frac{1}{2}(x)(DE) = \frac{1}{2}(CD)(DE)\sin\angle CDE$			
$x = CD \sin \angle CDE$			
$x \approx 92.84960504 \sin 73.67434913^{\circ}$		1M	
$x \approx 89.10586658$. 00 1
$x \approx 89.1$ Thus, the required distance is 80.1 cm.		1A	r.t. 89.1
Thus, the required distance is 89.1 cm.		(6)	
5-CE-MATH 1–10			

	Solution	Marks	Remarks
5. (a)	The mean = 122 marks	1 A	
	The mean deviation $= \frac{38+36+32+29+22+19+(3)(2)+1+(2)(12)+14+15+22+(3)(24)+36}{20}$ = 18.3 marks	1M 1A	
	The standard deviation		
	= 22 marks	1A (4)	
(b)	The total number of the top 20% students in the music test = (20)(20%) = 4	1A	can be absorbed
	The least score for the top 20% students in the music test = 146 marks		
	The score obtained by Mary = 122 + (22)(1) = 144	1M	
	< 146 Thus, Mary is not one of the top 20% students in the music test.	1A	must show reasons
	The total number of the top 20% students in the music test = (20)(20%) = 4	1A	can be absorbed
	The least score for the top 20% students in the music test = 146 marks		
	The standard score of the least score for the top 20% students in the music test $= \frac{146 - 122}{22}$	1M	
	$=\frac{12}{11}$ > 1		·
	Thus, Mary is not one of the top 20% students in the music test.	1A (3)	must show reasons
		(3)	
(c)	(i) The required probability $= \frac{1}{20}$	1 A	0.05
	(ii) The required probability $= 2\left(\frac{1}{20}\right)\left(\frac{1}{19}\right) + \left(\frac{1}{20}\right)\left(\frac{1}{19}\right)$	1M+1M	1M for $(\frac{1}{n})(\frac{1}{n-1})$ where $n \ge 1$
	$=\frac{1}{95}$	1A	+ 1M for the four cases r.t. 0.0105
		(4)	
)5-CE-N	1ATH 1-11		

		Solution	Marks	Remarks
6. (a)	(i)	The required interest $= (200\ 000)(\frac{6\%}{12})$		
		= \$ 1 000	1A	
	(ii)	The required amount $= 200\ 000 + 1\ 000 - x$	1M	
		= \$ (201000 - x)	1A	pp-1 for missing '(' or ')'
	(iii)	The required amount		
		$=200\ 000\ (1+\frac{6\%}{12})^n-x(1+\frac{6\%}{12})^{n-1}-x(1+\frac{6\%}{12})^{n-2}-\cdots-x$	1A	
		$= 200\ 000\ (1.005)^n - x\left[(1.005)^{n-1} + (1.005)^{n-2} + \dots + 1 \right]$		
		$=200\ 000\ (1.005)^{n}-x\left[\frac{(1.005)^{n}-1}{1.005-1}\right]$	1M	for sum of GP
		$= \$ \left\{ 200\ 000(1.005)^n - 200x[(1.005)^n - 1] \right\}$	1(6)	pp-1 for missing '(', ')', '[', ']', '{' or '}
(b)	(i)	Assume that Peter has not yet fully repaid the loan after paying the n th instalment but the loan is fully repaid after Peter has paid the $(n+1)$ th instalment. Then, by (a)(iii),		
		$0 < 200\ 000\ (1.005)^n - (200)(1800)[(1.005)^n - 1] \le \frac{1800}{1 + \frac{6\%}{12}}$	1M	accept either inequality
		$360\ 000 \le 160\ 000\ (1.005)^{n+1} < 360\ 000\ (1.005)$		
		$2.25 \le (1.005)^{n+1} < 2.26125$		
		$\frac{\log(2.25)}{\log(1.005)} \le n + 1 < \frac{\log(2.26125)}{\log(1.005)}$	1M	for taking log
		$162.5911713 \le n+1 < 163.5911713$ Thus, the required number of the months is 163	1A	
		Let the required time be n months. By (a)(iii), we have $200\ 000(1.005)^n - (200)(1\ 800)[(1.005)^n - 1] \le 0$	1M	accept using (a)(iii) = 0
		$360\ 000 \le 160\ 000\ (1.005)^n$		
		$(1.005)^n \ge \frac{9}{4}$		
		$n \ge \frac{\log\left(2.25\right)}{\log\left(1.005\right)}$	1M	for taking log
		$n \ge 162.5911713$ Thus, the required number of the months is 163.	1A	
	(ii)	By(a)(i), the monthly instalment of \$ 900 is less than the loan interest of \$1 000 for the 1st month.	1M	for comparing the result of (a)(i)
		Therefore, the loan can never be fully repaid. Thus, the bank refuses his request.	1A	for comparing the result of (a)(i)
		If the loan can be fully repaid in m months, then by (a)(iii), $200\ 000(1.005)^m - (200)(900)[(1.005)^m - 1] \le 0$		
		$180\ 000 \le -20\ 000\ (1.005)^m$		
		which has no solution. Therefore, the loan can never be fully repaid. Thus, the bank refuses his request.	1M 1A	for mentioning no solution

FOR TEACHERS' USE ONLY

Solution	Marks	Remarks
7. (a) (i) Note that $\angle QRP = 90^{\circ}$ (\angle in semi-circle) In $\triangle OQR$ and $\triangle ORP$,		[半圓上的圓周角]
in $\triangle OQR$ and $\triangle ORP$, $\therefore \angle QRO = 90^{\circ} - \angle PRO$ $\angle RPO = 90^{\circ} - \angle PRO \qquad (\angle \text{sum of } \Delta)$		 [Δ内角和]
$\therefore \angle QRO = \angle RPO$		[
$\angle QOR = 90^{\circ} = \angle ROP$ (given) $\angle OQR = \angle ORP$ ($\angle Sum \text{ of } \Delta$) Therefore, $\triangle OQR \sim \triangle ORP$ (AAA)		[已知] [Δ内角和] [等角] (AA) (equiangular)
So, we have $\frac{OR}{OQ} = \frac{OP}{OR}$.		
Thus, we can conclude that $OR^2 = OP \cdot OQ$.		
Marking Scheme :	3	
Case 1 Any correct proof with correct reasons. Case 2 Any correct proof without reasons.	3 2	
Case 3 Incomplete proof with any one correct step and one correct reason.	1	-
(ii) In $\triangle MON$ and $\triangle POR$, $\angle MNO = \angle PRO$ (\angle s in the same segment)		 [同弓形內的圓周角] [對同弧的圓周角]
$\therefore \angle MON = 90^{\circ} \qquad (\angle \text{in semi-circle})$ $\angle POR = 90^{\circ} \qquad (\text{given})$		[半圓上的圓周角] [已知]
$ \therefore \angle MON = \angle POR \angle OMN = \angle OPR \text{Therefore, } \Delta MON \sim \Delta POR (AAA) $		│ [△內角和] 「等角] (AA) (equiangular)
Marking Scheme: Case 1 Any correct proof with correct reasons. Case 2 Any correct proof without reasons.	2	
(b) (i) By (a)(i), we have $OR^2 = OP \cdot OQ$ $OR^2 = (4)(9)$	(5)	
OR = 6 Thus, the coordinates of R are $(0, 6)$.	1A	pp-1 for missing '(' or ')'
(ii) Note that $PR = \sqrt{4^2 + 6^2} = \sqrt{52} = 2\sqrt{13}$.	1M	
By (a)(ii), we have $\frac{MN}{2\sqrt{13}} = \frac{3\sqrt{13}}{6}$.	1M	
Therefore, we have $MN = \frac{13}{2}$.		
Hence, the radius of the circle <i>MONR</i> is $\frac{13}{4}$.	1A	3.25
Let the coordinates of the centre of the circle $MONR$ be (a, b) . Then, we have		
$b = \frac{OR}{2} = \frac{6}{2} = 3 \qquad \text{and} \qquad \qquad$	1M	
$a = -\sqrt{\left(\frac{13}{4}\right)^2 - 3^2} = \frac{-5}{4}$	1A	-1.25
* * * * * * * * * * * * * * * * * * *] 1	
So, the coordinates of the centre of the circle <i>MONR</i> are $(\frac{-5}{4}, 3)$.	(6)	pp-1 for missing '(' or ')'

只限教師參閱 FOR TEACHERS' USE ONLY Provided by dse.life