Multiple Lineare Regression

Peter von Rohr

27 Februar 2017

Outline

- ▶ Das Modell
- Stochastische Komponente: Zufälliger Rest
- ► Methode der kleinsten Quadrate Least Squares
- Annahmen und Eigenschaften
- Tests und Konfidenzintervalle
- Analyse der Residuen
- Modellwahl

Das lineare Modell

- Gegeben: Zielgrösse (response variable) y_i für Individuum i. Entspricht einer Beobachtung oder Messung, welche zu i gehört.
- ▶ Gegeben: mehrere **erklärende Variablen** (predictors or covariables) $x_{i,1}, x_{i,2}, ..., x_{i,p}$, welche Eigenschaften von i beschreiben
- ► Zusammengefasst wissen wir von Individuum i: $(x_{i,1}, x_{i,2}, ..., x_{i,p}, y_i)$
- Multiple lineare Regression sagt:

Zielgrösse = lineare Funktion der erklärenden Variablen + Rest

Das Modell als Formel

$$y_i = \beta_1 x_{i,1} + \beta_2 x_{i,2} + \dots + \beta_p x_{i,p} + \epsilon_i$$

- ▶ In einer Population mit *n* Individuen, können wir *n* solche Gleichungen aufstellen, wobei die *i* von 1 bis *n* laufen
- Zur Vereinfachung wird eine Matrix-Vektor Schreibweise verwendet

$$\mathbf{y} = \mathbf{X}\beta + \epsilon \tag{1}$$

wobei:

- y Vektor mit Beobachtungen (Länge n)
- β Vektor mit Parametern (Länge p)
- **X** Matrix mit erklärenden Variablen (Dimension $n \times p$)
- ϵ Vektor mit zufälligen Resten (Länge n)

Stochastisches Modell

- ▶ Zufällige Komponente ϵ im Lineares Modell (siehe Gleichung (1))
- ► Somit ist die Zielgrösse (y) auch zufällig
- ▶ In unserem Beispiel sind die erklärenden Variablen als fix angenommen
- ▶ In gewissen Anwendungen können auch erklärende Variablen als zufällig angenommen werden (BLUP-Zuchtwertschätzung)
- ▶ Verschiedene Einflüsse auf ϵ : Messfehler, unbekannte Einflussfaktoren
- ▶ Annahme: unbekannte Faktoren haben sich im "Mittel" auf \rightarrow $E(\epsilon) = \mathbf{0}$
- Streuung wird quantifiziert mit: $var(\epsilon) = \mathbf{I} * \sigma^2$

Beispiel

Einfluss des Geburtsgewichts (BW) und Zunahme vor dem Absetzen (WWG) auf Zunahme nach dem Absetzen (PWG)

Calf	BW	WWG	PWG
1	35.0	0.90	1.36
2	25.3	0.58	1.00
3	34.2	0.78	1.36
4	31.2	0.70	1.20
5	38.7	1.00	1.50

Identifikation der Komponenten des Modells

Komponenten als Formeln

$$\mathbf{y} = \begin{bmatrix} 1.36 \\ 1.00 \\ 1.36 \\ 1.20 \\ 1.50 \end{bmatrix}, \mathbf{X} = \begin{bmatrix} 35.00 & 0.90 \\ 25.30 & 0.58 \\ 34.20 & 0.78 \\ 31.20 & 0.70 \\ 38.70 & 1.00 \end{bmatrix}, \boldsymbol{\beta} = \begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix}, \boldsymbol{\epsilon} = \begin{bmatrix} \epsilon_1 \\ \epsilon_2 \\ \epsilon_3 \\ \epsilon_4 \\ \epsilon_5 \end{bmatrix}$$
(2)

 \blacktriangleright Achsenabschnitt: **y** und ϵ ändern sich nicht

$$\mathbf{X} = \begin{bmatrix} 1 & 35.00 & 0.90 \\ 1 & 25.30 & 0.58 \\ 1 & 34.20 & 0.78 \\ 1 & 31.20 & 0.70 \\ 1 & 38.70 & 1.00 \end{bmatrix}, \beta = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \end{bmatrix}$$
(3)

Weshalb ein Achsenabschnitt

Quadratische Regression und Transformationen

▶ Wichtig: Auch das sind lineare Regressionen

$$\mathbf{X} = \begin{bmatrix} 1 & x_1 & x_1^2 \\ 1 & x_2 & x_2^2 \\ 1 & x_3 & x_3^2 \\ 1 & x_4 & x_4^2 \\ 1 & x_5 & x_5^2 \end{bmatrix}, \mathbf{X} = \begin{bmatrix} 1 & log(x_{12}) & sin(x_{13}) \\ 1 & log(x_{22}) & sin(x_{23}) \\ 1 & log(x_{32}) & sin(x_{33}) \\ 1 & log(x_{42}) & sin(x_{43}) \\ 1 & log(x_{52}) & sin(x_{53}) \end{bmatrix}$$
(4)

 \rightarrow Modell $\mathbf{y}=\mathbf{X}\beta+\epsilon$ heisst **lineares** Modell, weil es linear in den Koeffizienten β ist.

Ziele einer Regression

- ► **Anpassung**: Möglichst kleine Abweichungen der angepassten Ebenen und der Zielgrösse
- Gute Schätzung der unbekannten Parameter: Sollen Änderungen der Zielgrösse in Abhängigkeit der Änderung der erklärenden Variablen darstellen
- Gute Voraussage: Soll neue Zielgrössen als Funktion von neuen Werten der erklärenden Variablen voraussagen können.
 Achtung: keine Extrapolation
- ▶ **Unsicherheit** bei der Schätzung: Vertrauensintervallen und statistische Tests als gute Werkzeuge

Keine Extrapolation

Schätzung der Parameter

- Methode der kleinsten Quadrate (Least Squares)
- ▶ Suche einer guten Schätzung für β , so dass die Abweichungen oder Reste möglichst klein sind
- ▶ Mathematische Formulierung: Abweichungen entsprechen

$$L = ||\mathbf{y} - \mathbf{X}\beta||^2 = (\mathbf{y} - \mathbf{X}\beta)^T (\mathbf{y} - \mathbf{X}\beta)$$

- Möglichst kleine Abweichung: Minimierung durch Ableiten und die Ableitung 0 setzen
- lacktriangle Somit ist der Least Squares Schätzer \hat{eta} definiert als

$$\hat{\beta} = \operatorname{argmin}_{\beta} ||\mathbf{y} - \mathbf{X}\beta||^2$$

Normalgleichungen

lacktriangle Der Schätzer \hat{eta} berechnet sich als p dimensionaler Gradient

$$\frac{\partial L}{\partial \beta} = (-2)\mathbf{X}^{T}(\mathbf{y} - \mathbf{X}\hat{\beta})$$

► Daraus folgen die Normalgleichungen

$$(\mathbf{X}^T\mathbf{X})\hat{eta} = \mathbf{X}^T\mathbf{y}$$

• Auflösung nach \hat{eta}

$$\hat{eta} = (\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{y}$$

Restvarianz

- ightharpoonup Least Squares liefert eigentlich keine Schätzung für die Restvarianz σ^2
- ▶ Aufgrund der Residuen $r_i = y_i \mathbf{x}_i^T \hat{\beta}$, ergibt sich die Schätzung

$$\hat{\sigma}^2 = \frac{1}{n - p} \sum_{i=1}^{n} r_i^2$$

- Schätzung ist plausible, da sie auf der Momentenmethode basiert
- ▶ Ungewöhnlicher Faktor 1/(n-p) so gewählt, dass:

$$E(\hat{\sigma}^2) = \sigma^2$$

ightharpoonup Dieser Schätzer wird oft als Least-Squares Schätzer für σ^2 bezeichnet

Annahmen für ein lineares Modell

- ▶ Ausser, dass die Matrix **X** vollen Rang hat (p < n) wurden bis jetzt keine Annahmen gemacht
- ▶ Lineares Modell ist korrekt $\rightarrow E(\epsilon) = \mathbf{0}$
- ▶ Die Werte in X sind exakt
- ▶ Die Varianz der Fehler ist konstant ("Homoskedazidität") für alle Beobachtungen $\rightarrow Var(\epsilon) = \mathbf{I} * \sigma^2$
- Die Fehler sind unkorreliert
- Weitere Eigenschaften folgen, falls die Fehler normal verteilt sind