p-adic Hodge tate talk

Arun Soor

February 2022

Abstract

Let me know if there are mistakes and typos

Contents

1	Recap]
2	The equivalence of categories 2.1 The category $\operatorname{Rep}_{\mathbb{Q}_p}^{HT}(G_K)$	4
3	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	

1 Recap

Let K be a p-adic field. Recall the 1-d Tate module $\mathbb{Z}_p(1)$ with a choice of generator $t \in \mathbb{Z}_p(1)$. It is a G_K -module, with action given by:

$$g(t) = \chi(g)t,\tag{1}$$

and $\mathbb{Z}_p(i)$ $(i \in \mathbb{Z})$ is the free \mathbb{Z}_p -module with generator t^i where G_K acts by χ^i . Recall also, if $M \in G_K$ – mod we define its Tate twist $M(i) = M \otimes_{\mathbb{Z}_p} \mathbb{Z}_p(i)$.

Set $\mathbb{C}_K := \widehat{\overline{K}}$, which is a G_K -module since G_K can be identified with the group of isometric isomorphisms of \mathbb{C}_K . With this in mind, define the *Hodge-Tate period ring* B_{HT} :

$$B_{HT} = \bigoplus_{q \in \mathbb{Z}} \mathbb{C}_K(q) \simeq \mathbb{C}_K[t, t^{-1}]. \tag{2}$$

It is a graded ring, the multiplication comes from the maps $\mathbb{C}_K(q) \otimes \mathbb{C}_K(q') \to \mathbb{C}_K(q+q')$. The second isomorphism is the map from $c \otimes t^i \to ct^i$. You can see the G_K -action respects the grading. That $(B_{HT})^{G_K} \simeq K$ follows from:

Theorem 1.1 (Tate-Sen). For i = 0, 1 and any continuous character $\eta : G_K \to \mathbb{Z}_p^{\times}$, we have:

$$H^{i}(G_{K}, \mathbb{C}_{K}(\eta)) \cong \begin{cases} 0 \text{ if } \eta(I_{K}) \text{ infinite,} \\ K \text{ if } \eta(I_{K}) \text{ finite.} \end{cases}$$
 (3)

Of particular use is:

$$H^{i}(G_{K}, \mathbb{C}_{K}(n)) \cong \begin{cases} 0 & \text{if } n \neq 0 \\ K & \text{if } n = 0. \end{cases}$$

$$\tag{4}$$

2 The equivalence of categories

We define the category:

$$\operatorname{\mathsf{Rep}}_{\mathbb{C}_K}(G_K) = \left\{ \begin{array}{l} \text{f.d. } \mathbb{C}_K\text{-vector spaces } W \text{ equipped with} \\ \text{a continuous } \mathbb{C}_K\text{-semilinear } G_K\text{-action.} \end{array} \right\}$$
 (5)

It is an abelian category endowed with tensors, direct sums, and duality satisfying all the usual properties. Semilinear means g(cw) = g(c)g(w), for $c \in \mathbb{C}_K$ and $w \in W$. We define:

$$W\{q\} \coloneqq W(q)^{G_K},\tag{6}$$

this is a K-vector space. By left exactness of $(-)^{G_K}$ and the flat extension of scalars $K(-q) \otimes_K -$, we get an injection (K-linear, G_K -equivariant, where it's acting diagonally):

$$K(-q) \otimes_K W\{q\} \hookrightarrow K(-q) \otimes W(q) \simeq W,$$
 (7)

the last isomorphism is from multiplication. Extending further to \mathbb{C}_K , we get maps $\mathbb{C}_K(-q) \otimes_K W\{q\} \hookrightarrow W$. Lastly, summing over all q, we get a map:

$$\xi_W : \bigoplus_q \mathbb{C}_K(-q) \otimes_K W\{q\} \to W.$$
 (8)

The important lemma is:

Lemma 2.1 (Serre-Tate). ξ_W is injective.

Therefore, $\sum_{q} \dim_{K} W\{q\} \leq \dim_{\mathbb{C}_{K}} W$, and you see that equality here is the same as ξ_{W} being an isomorphism.

Definition 2.2. $W \in \mathsf{Rep}_{\mathbb{C}_K}(G_K)$ is Hodge-Tate if ξ_W is an isomorphism. $\mathsf{Rep}_{\mathbb{C}_K}^{HT}(G_K)$ is the full subcategory of Hodge-Tate objects.

In which case, we define the Hodge-Tate weights $h_q = \dim_K W\{q\}$ for all q where this isn't 0.

[Aside: choosing a basis in each $W\{q\}$ gives a (non-canonical) isomorphism

$$W \cong \bigoplus_{q} \mathbb{C}_K(-q)^{h_q}. \tag{9}$$

The Tate-Sen theorem then shows that this can be taken as a definition of Hodge-Tate. By this description, it's easy to see that $\mathsf{Rep}_{\mathbb{C}_K}^{HT}(G_K)$ is closed under tensors and direct sums. The dual has the negated weights.]

As usual, we are going to translate $\mathsf{Rep}_{\mathbb{C}_K}^{HT}(G_K)$ into "semilinear algebraic data". For $W \in \mathsf{Rep}_{\mathbb{C}_K}^{HT}(G_K)$ consider

$$\underline{D}(W) = (B_{HT} \otimes W)^{G_K} = \bigoplus_{q} W\{q\}.$$
(10)

This defines a functor, and the description on the left, together with Lemma 2.1, shows us what the target category is:

$$\underline{D}: \mathsf{Rep}_{\mathbb{C}_K}^{HT}(G_K) \to \mathsf{Gr}_{K,f} \coloneqq \left\{ \begin{array}{c} \text{f.d. } \mathbb{Z}\text{-graded } K\text{-vector spaces } D, \\ \text{morphisms are grading preserving linear maps.} \end{array} \right\}$$
 (11)

We can go back in the reverse direction. Let $D \in \mathsf{Gr}_{K,f}$. Then $B_{HT} \otimes_K D$ is a graded \mathbb{C}_K -vector space¹, and we set:

$$\underline{V}(D) = \operatorname{gr}^{0}(B_{HT} \otimes_{K} D) = \bigoplus_{q} \mathbb{C}_{K}(-q) \otimes_{K} D_{q}, \tag{12}$$

which gives an exact functor $\underline{V}: \mathsf{Gr}_{K,f} \to \mathsf{Rep}_{\mathbb{C}_K}^{HT}(G_K)$. Now, we consider $\underline{V}(\underline{D}(-))$. Let $W \in \mathsf{Rep}_{\mathbb{C}_K}^{HT}(G_K)$, and consider first the following composite, γ_W :

$$\gamma_W : B_{HT} \otimes_K \underline{D}(W) \hookrightarrow B_{HT} \otimes_K (B_{HT} \otimes_{\mathbb{C}_K} W) \to B_{HT} \otimes_{\mathbb{C}_K} W$$

$$a \otimes b \otimes w \mapsto ab \otimes w. \tag{13}$$

It is G_K -equivariant, and grading preserving. Now consider this map in degree 0. It takes:

$$\underline{V}(\underline{D}(W)) = \operatorname{gr}^{0}(B_{HT} \otimes_{K} D) = \bigoplus_{q} \mathbb{C}_{K}(-q) \otimes W\{q\} \to W, \tag{14}$$

exactly as ξ_W . Therefore, by Lemma 2.1 it is an isomorphism. Even more: you can see that in degree n, γ_W is the $\mathbb{Z}_p(n)$ -twist of ξ_W , and so γ_W is an isomorphism.

Next, consider $\underline{D}(\underline{V}(D))$. Since $\underline{V}(D)$ is Hodge-Tate, we get an isomorphism $(G_K$ -equivariant, grading preserving):

$$\gamma_{\underline{V}(D)}: B_{HT} \otimes_K \underline{D}(\underline{V}(D)) \simeq B_{HT} \otimes_{\mathbb{C}_K} \underline{V}(D). \tag{15}$$

Now pass to G_K -invariants. We get the chain of equalities:

$$\underline{D}(\underline{V}(D)) \simeq \bigoplus_{r} (\underline{V}(D) \otimes_{\mathbb{C}_{K}} \mathbb{C}_{K}(r))^{G_{K}}$$

$$= \bigoplus_{r} (\bigoplus_{q} \mathbb{C}_{K}(r-q) \otimes_{K} D_{q})^{G_{K}}$$

$$= \bigoplus_{r} D_{r} = D,$$
(16)

where we used the Tate-Sen theorem going from the second to the third line. Therefore:

Theorem 2.3. The functors \underline{D} and \underline{V} are quasi-inverses, setting up an equivalence of categories:

$$\underline{D}: \mathsf{Rep}_{\mathbb{C}_K}^{HT}(G_K) \rightleftarrows \mathsf{Gr}_{K,f} : \underline{V}. \tag{17}$$

2.1 The category $Rep_{\mathbb{Q}_p}^{HT}(G_K)$.

Recall that $\mathsf{Rep}_{\mathbb{Q}_p}(G_K)$ is the category of continuous representations of G_K into f.d. \mathbb{Q}_p vector spaces. (The formalism of admissible representations is directly applicable in this case but not directly for \mathbb{C}_K , because of the semilinearity).

Definition 2.4. $V \in \mathsf{Rep}_{\mathbb{Q}_p}(G_K)$ is called Hodge-Tate if $\mathbb{C}_K \otimes_{\mathbb{Q}_p} V \in \mathsf{Rep}_{\mathbb{C}_K}(G_K)$ is Hodge-Tate. The full subcategory is denoted $\mathsf{Rep}_{\mathbb{Q}_p}^{HT}(G_K)$.

¹Set grⁿ $(B_{HT} \otimes_K D) = \bigoplus_q \mathbb{C}_K (n-q) \otimes_K D_q$.

We define $D_{HT}: \mathsf{Rep}_{\mathbb{Q}_p}^{HT} \to \mathsf{Gr}_{K,f}$ by:

$$D_{HT}(V) = \underline{D}(\mathbb{C}_K \otimes_{\mathbb{Q}_p} V) = (B_{HT} \otimes_{\mathbb{Q}_p} V)^{G_K}. \tag{18}$$

The functor D_{HT} is faithful, but it is not full. To see this, by the Tate-Sen theorem (see talk 4), it follows that for any finitely ramified character η , $D_{HT}(\mathbb{Q}_p) \cong D_{HT}(\mathbb{Q}_p(\eta))$ but \mathbb{Q}_p , $\mathbb{Q}_p(\eta)$ admit no maps in $\mathsf{Rep}_{\mathbb{Q}_p}(G_K)$.

2.2 Properties of D and V

I would say to probably read Brinon and Conrad if you are interested in the details of these first two.

Proposition 2.5 (Exactness). $\mathsf{Rep}_{\mathbb{C}_K}(G_K)$ (and so $\mathsf{Rep}_{\mathbb{Q}_p}(G_K)$) are stable under subobjects and quotients, and \underline{D} (resp. D_{HT}) is exact on $\mathsf{Rep}_{\mathbb{C}_K}^{HT}(G_K)$ (resp. $\mathsf{Rep}_{\mathbb{Q}_p}^{HT}(G_K)$).

Proposition 2.6 (Compatibility with tensors and duals). For W, $W' \in \mathsf{Rep}_{\mathbb{C}_K}^{HT}$, there are natural isomorphisms $\underline{D}(W \otimes W') \cong \underline{D}(W) \otimes \underline{D}(W')$ and a natural isomorphism $D(W^{\vee}) \cong D(W)^{\vee}$. Pretty much the same holds for D_{HT} .

The above has all implicitly depended on the base field K. In the next proposition we make this explicit with the notation $\underline{D} = \underline{D}_K : \mathsf{Rep}_{\mathbb{C}_K}(G_K) \to \mathsf{Gr}_{K,f}$. Let K'/K be finite and $\widehat{K^{un}}$ be as usual, all contained in a fixed $\overline{K} \subset \mathbb{C}_K$.

Let $W \in \mathsf{Rep}_{\mathbb{C}_K}(G_K)$. Because $G_{K'} \subset G_K$, we get a natural map $K' \otimes_K \underline{D}_K(W) \to \underline{D}_{K'}(W)$ in $\mathsf{Gr}_{K',f}$, (and the same with $\widehat{K^{un}}$). Recall $G_{\overline{K^{un}}} = I_K$. The below says "Hodge-Tate" is the same if we pass to a finite extension, or restrict to the inertia.

Proposition 2.7 (Scalar extension). The just described maps in $Gr_{K',f}$, $Gr_{\overline{K^{un}},f}$, are isomorphisms.

As a warning note that $\mathsf{Rep}_{\mathbb{C}_K}^{HT}(G_K)$ is not closed under extensions. An elementary proof is available in Brinon and Conrad but it might be best explained using Sen theory.

2.3 Why is it called p-adic Hodge theory?

Faltings proved:

Theorem 2.8. If X is a smooth proper scheme over K, then the étale cohomology $H^i_{\acute{e}t}(X_{\overline{K}},\mathbb{Q}_p) \in \mathsf{Rep}^{HT}_{\mathbb{Q}_p}(G_K)$, and $D_{HT}(H^i_{\acute{e}t}(X_{\overline{K}},\mathbb{Q}_p)) \cong \bigoplus_q H^{i-q}(X,\Omega^q_{X/K})$, the Hodge cohomology.

This is a p-adic analogue of the comparison between de Rham and singular cohomology for a smooth manifold (where the isomorphism comes from integration over cycles, Stokes's theorem).

3 Sen theory

The main idea of Sen theory is to differentiate the Galois action to get an operator called the Sen operator ϕ , and then seen how this controls the decomposition. It appears to be independent of the period ring formalism. We will see that being Hodge-Tate is the same as ϕ acting semisimply with integer eigenvalues.

3.1 Setup

We begin with the following simple result:

Proposition 3.1. Let G be a top. group and let B be a top. ring with $G \sim B$ continuously. There is a natural bijection:

$$H^1_{\text{cont}}(G, GL_d(B)) \stackrel{\text{1:1}}{\longleftrightarrow} \left\{ \begin{array}{c} \text{Isoclasses of free continuous } B\text{-semilinear} \\ G\text{-representations of rank } d. \end{array} \right\}$$
 (19)

Proof. Let V be such a representation, and let $\alpha(g)$ be the matrix of g with respect to some basis. What I mean is that

$$g(e_i) = \sum_j a_{ij}(g)e_j, \text{ for some } a_{ij}(g) \in B,$$
 (20)

and $\alpha(g) = (a_{ij}(g))$. Then $\alpha(gh) = \alpha(g)g(\alpha(h))$ (cocycle condition). If α' is the matrix wrt. some other basis, and P is the change of basis matrix, then $P\alpha'(g) = \alpha(g)g(P)$ (coboundary condition). Lastly, any cocycle defines a representation into B^d .

First, notation. K_{∞}/K is a ramified \mathbb{Z}_p -extension living inside \overline{K} , $H:=G_{K_{\infty}}$, $\Gamma:=\mathrm{Gal}(K_{\infty}/K)$, with topological generator γ , $\chi:\Gamma\to\mathbb{Z}_p^{\times}$ is multiplicative character, $\Gamma_m:=\Gamma^{p^m}$ with topological generator $\gamma_m:=\gamma^{p^m}$, and $K_m:=K_{\infty}^{\Gamma_m}$. The most important example of this would be a cyclotomic extension. Here is a picture:

$$K = K_1 = K_2 = K_\infty = K_\infty = K_\infty$$
 (21)

Because of Proposition 3.1 we will start looking at various homology groups. Firstly, a "strong version" of Hilbert's theorem 90:

Proposition 3.2. $H^1_{\text{cont}}(H, GL_d(\mathbb{C}_K)) = 1$. Therefore, by an "inflation-restriction" exact sequence (see Weibel 6.7.3), we get an iso:

$$j: H^1_{\text{cont}}(\Gamma, GL_d(\widehat{K_\infty})) \simeq H^1_{\text{cont}}(G_K, GL_d(\mathbb{C}_K))$$
 (22)

We also have a "decompletion" result:

Proposition 3.3. The natural map

$$\iota: H^1_{\text{cont}}(\Gamma, GL_d(K_\infty)) \to H^1_{\text{cont}}(\Gamma, GL_d(\widehat{K_\infty}))$$
 (23)

is an isomorphism, and any cocycle in $H^1_{cont}(\Gamma, GL_d(K_\infty))$ is cohomologous to a cocycle with values in $GL_d(K_r)$, if we take r large enough.

At the level of isoclasses of semilinear reps, this amounts to the following. Let W be a d-dimensional \mathbb{C}_K -semilinear rep of H, and set $\widehat{W}_{\infty} = W^H$. By Proposition 3.2, $W \simeq \widehat{W}_{\infty} \otimes_{\widehat{K_{\infty}}} \mathbb{C}_K$, and by Proposition 3.3, we can chase the isoclass $[\widehat{W}_{\infty}]$ back, to a representation W_r defined over some K_r such that:

$$W_r \otimes_{K_r} \widehat{K}_{\infty} \simeq \widehat{W}_{\infty}.$$
 (24)

(Think of it like, the maps between the H_{cont}^1 's are extension of scalars, (when we view them as the isoclasses), and Galois descent is what undoes this). Now set

$$W_{\infty} = \{ K \text{-finite vectors } w \in \widehat{W}_{\infty} \},$$
 (25)

where K-finite means that $\dim_K K$ -span $(\Gamma w) < \infty$. This is a Γ -stable K_{∞} -vector space, containing W_r , and it is d-dimensional by a short argument using (24). Therefore, we have four d-dimensional semilinear reps over $K_r, K_{\infty}, \widehat{K_{\infty}}, \mathbb{C}_K$, respectively:

$$W_r \to W_\infty \to \widehat{W}_\infty \to W$$
 (26)

where each is isomorphic to the next after extending scalars and inflating to the larger Galois group.

3.2 The Sen operator ϕ

Now, fix a K_r -basis $\{e_1, \ldots, e_d\}$ of W_r . It will also be a K_∞ -basis of W_∞ and a \mathbb{C}_K -basis of W. Let $\rho: \Gamma_r \to GL_d(K_r)$ be the matrix wrt this basis.

Definition 3.4. The Sen operator ϕ associated to W is the linear endomorphism of W_r whose matrix wrt this basis is given by:

$$\Phi = \log(\rho(\gamma_r))/\log(\chi(\gamma_r)), \tag{27}$$

and its linear extensions to W_{∞} , and W.

I am glossing over the fact that you can do these log's (because $\nu(\rho(\gamma_r) - 1) > c + d$, for $c, d \in \mathbb{Z}$ which come from Tate's normalised traces).

The main theorem is the following alternative characterisation:

Theorem 3.5. The Sen operator ϕ is the unique K_{∞} -linear endomorphism of W_{∞} with the following property.

For all $w \in W_{\infty}$, there is an open subgroup Γ_{ω} of Γ such that:

$$\sigma(w) = \exp(\phi \log \chi(\sigma))w \tag{28}$$

for all $\sigma \in \Gamma$.

The expression $\exp(\phi \log \chi(\sigma))$ is a K_{∞} -linear endomorphism.

Proof. Write $w = \lambda_1 e_1 + \dots + \lambda_d e_d$. There are r_1, \dots, r_d such that $\lambda_i \in K_{r_i} = K_{\infty}^{\Gamma_{r_i}}$ (this is where we use the K-finiteness). Set $\Gamma_w = \Gamma_r \cap \Gamma_{r_1} \cap \dots \cap \Gamma_{r_n}$. Every $\sigma \in \Gamma_w$ takes the form $\sigma = \gamma_r^a$ for some $a \in \mathbb{Z}_p$. Because $\rho(\gamma_r)$ takes values in K_r , we have that $\rho(\sigma) = \rho(\gamma_r)^a$. Now, as matrices with entries in K_r , we have:

$$\exp(\Phi \log \chi(\sigma)) = \exp(a \log \rho(\gamma_r)) = \rho(\gamma_r)^a = \rho(\sigma), \tag{29}$$

and because all the λ_i are fixed by σ , it follows that $\exp(\phi \log \chi(\sigma))w = \sigma(w)$, for all $\sigma \in \Gamma_w$. I am omitting uniqueness but it is not hard, maybe you can see it already.

We may use the notation ϕ_W to denote dependence on W. In that case $\phi_{W_1 \oplus W_2} = \phi_{W_1} \oplus \phi_{W_2}$, $\phi_{W_1 \otimes W_2} = \phi_{W_1} \otimes 1 + 1 \otimes \phi_{W_2}$, and $\phi_{\text{Hom}(W_1, W_2)} = (\phi_{W_1})^* - (\phi_{W_2})_*$. Now, it follows from the formula (28) that for $w \in W_{\infty}$:

$$\phi(w) = \frac{1}{\log \chi(\gamma)} \left. \frac{d}{dx} \right|_{x=0} (\gamma^x w) = \frac{1}{\log \chi(\gamma)} \lim_{n \to \infty} \frac{\gamma^{p^n}(w) - w}{p^n}. \tag{30}$$

It follows from this expression that ϕ is Γ -linear on W_{∞} and G_K -linear on W. Also, if $w = t \in \mathbb{C}_K(q)$, then w is K-finite, and we calculate:

$$\phi(w) = \frac{1}{\log(\chi(\gamma))} \left. \frac{d}{dx} \right|_{x=0} (\chi(\gamma)^{qx} w) = qw. \tag{31}$$

So ϕ is just multiplication by q on $\mathbb{C}_K(q)$. Thus we see that ϕ acts semisimply with integer coefficients, if W is Hodge-Tate. We aim to prove the converse.

Theorem 3.6. $\ker \phi = W^{G_K} \otimes_K \mathbb{C}_K$.

Proof. The formula (30) shows that G-invariants belong to the kernel. Because ϕ is G_K -linear, $\ker \phi$ is G_K -stable. So consider $(\ker \phi)_{\infty}$ as before: we have $(\ker \phi)_{\infty} \otimes_{K^{\infty}} \mathbb{C}_K = \ker \phi$, and the Sen operator (which is 0), just comes from the one on $(\ker \phi)_{\infty}$ extended linearly. But by looking at formula (30) for one direction, and Theorem 3.5 for the other, we can see that $\phi(w) = 0$ is equivalent to Γw being finite, equivalently, the Γ-action is continuous for the discrete topology on $(\ker \phi)_{\infty}$, equivalently, the Γ-action factors through an open subgroup Γ_r of Γ. Therefore, combining Hilbert's theorem 90 (that $H^1(\Gamma/\Gamma_r, GL_n(K_{\infty})) = 1$) with Proposition 3.1 shows that $(\ker \phi)_{\infty}$ has a basis of G_K -invariants.

Now, using this, for $q \in \mathbb{Z}$ we can naturally identify $\ker(\phi + qI) = W(q)^{G_K} \otimes_K \mathbb{C}_K = W\{q\}$, whence it follows that:

Theorem 3.7. W is Hodge-Tate iff ϕ acts semisimply with integer eigenvalues.

By applying Theorem 3.6 to the representation $\operatorname{Hom}_{\mathbb{C}_K}(W_1, W_2)$ one can deduce:

Proposition 3.8. $W_1, W_2 \in \mathsf{Rep}_{\mathbb{C}_K}(G_K)$ are isomorphic iff ϕ_{W_1} is similar to ϕ_{W_2} .

Example 3.9. Let ρ be the 2-d representation of G_K on $(\mathbb{C}_K)^2$ with matrix given by:

$$\rho(\sigma) = \begin{pmatrix} 1 & \log \chi(\sigma) \\ 0 & 1 \end{pmatrix}. \tag{32}$$

It is an extension of $\mathbb{C}_K(0)$ by itself. Now, differentiation of $\rho(\sigma)^t$ as in (30), yields:

$$\phi = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix},\tag{33}$$

which isn't semisimple, so ρ isn't Hodge-Tate and we see that $\mathsf{Rep}_{\mathbb{C}_K}^{HT}(G_K)$ isn't closed under extensions.

References