EEU44C04 / CS4031 / CS7NS3 / EEP55C27 Next Generation Networks

Overview of wireless networks

Nicola Marchetti

nicola.marchetti@tcd.ie

Types of wireless networks

Mobile

- Seamless roaming
- Wireless telephony
- Mobile data services
 - ✓ Email, web
 browsing, short
 message service
 (SMS), videos,
 social content
- Vehicular ad hoc networks
- Location-aware services

Technologies:

- Cellular/PCS (GSM, GPRS, UMTS, LTE, 5G, B5G/6G, etc.)
- IEEE 802.16
- Land mobile radio
- Satellite

Nomadic

- User changes point of connection to the network
 - ✓ Seamless roaming not necessary
- Wireless local area networks (WLAN)
- Hot spots
- Wireless ISPs

Technologies:

- IEEE 802.11
- Bluetooth

OSI reference model

Physical layer (PHY)

- Handles communications impairments (noise, interference, fading, shadowing, path loss, etc.) through coding, diversity, power control, waveform selection, etc.
- Responsible for modulation, frequency selection, signal detection
- Encryption

Physical Frequency selection, modulation, signal detection, encryption

Data link layer

- Responsible for **mediating access** to the wireless medium
- Frame synchronization
- Reliable point-to-point or point-to-multipoint connection

Network layer

- Network-wide addressing, and redirection to deal with mobility
- Handoff (handover) between different networks
- Routing through multiple hops in ad-hoc networks

Transport layer

- Reliable end-to-end transmission
- Flow and congestion control

Application layer

- Application layer protocols may need to be tuned to support the constraints of **mobile** devices (small screen, low power, ...)
- Wireless Application Protocol (WAP)
- Location-aware services
- Wireless web access

United States frequency allocations

Is it tidy?

And btw, what's with the number 3? (3 KHz, 3 MHz etc.)

Broadcast radio and TV

Cellular and PCS

WLANs, WPANs, fixed wireless

Regulators

International Telecommunications Union – Radiocommunication sector (ITU-R) handles **standardization and frequency planning**

Federal Communications ComReg (Ireland) Commission (USA)

Harmonization

- Some degree of harmonization (more rational/efficient re-organization) of spectrum utilization world-wide is desirable
 - ✓ Not easy: a lot of legacy systems (see former slide on US frequency allocations)
 - ✓ But necessary, both for interference avoidance (inter-operability) and for economic reasons (economies of scale)
 - ✓ ITU-R periodically holds the World Radio Conference, where the allocation of the spectrum to different services is decided

Dynamic spectrum access

- Spectrum is not used very efficiently
 - ✓ But it is very difficult to take spectrum back from those licensed to operate in a given band
 - ✓ Counterexample: Spectrum re-farming of TV
 bands due to efficiencies in the switch
 to digital TV
 - ✓ Dynamic spectrum access: allows operation in licensed bands, as long as you don't interfere with holder of the license
 - Cognitive radio networks attempting to make this a reality

Which of the following regions of the spectrum is best suited and in fact used for TV transmission?

- \Box < 1GHz
- ☐ Between 1GHz and 5GHz
- □ >5GHz

Which of the following regions of the spectrum is best suited and in fact used for TV transmission?

- ✓< 1GHz
- ■Between 1GHz and 5GHz
- $\square > 5 \text{GHz}$

Transmissions at lower frequencies attenuate less with distance, which makes these bands ideal for long range transmissions, such as TV ones.

Comment on the complementarity of wired and wireless systems.

- Wireless and optical wireless networks can be thought of as complementary.
- Optical fibre does not reach everywhere, but where it does reach, it provides a very large amount of bandwidth.
- Wireless access networks, on the other hand, potentially reach almost everywhere, but provide a highly bandwidth-constrained transmission channel, susceptible to a variety of impairments.

Given that the user in a certain mobile communication system, is moving with a velocity of 1,000 km/h, which of the following downlink power allocation strategies makes more sense, assuming multiple antennas at the base station?

- (i) The transmit power budget is divided evenly among the base station's antennas.
- (ii) The transmit power budget is divided among the base station's antennas, according to the channel state information feedback provided by the mobile phone to the base station.
- (iii)No transmit power is assigned to the user if it experiences a bad channel condition.

- (i) The transmit power budget is divided evenly among the base station's antennas.
 - →no up-to-date channel state information can be fed back to the transmitter if users are moving very fast, as channel coherence time is shorter than feedback+transmission time.

Given an OFDM transmission link in outer space, which of the following feedback schemes is the most efficient choice to provide channel state information to the transmitter?

- (i) The channel quality is reported for every subcarrier.
- (ii) The channel quality is reported for subchannels of N_s subcarriers, where N_s is greater than one and smaller than the maximum allowed number of subcarriers.
- (iii) The channel quality is reported only once, averaging it out over all the system bandwidth.

- (iii) The channel quality is reported only once, averaging it out over all the system bandwidth.
 - →in outer space there is no multipath (no scatterers) which means no frequency selectivity, therefore channel will have the same gain over all the bandwidth.