Confronto tra approcci VB e Orbitali Molecolari (OM)

L'approccio VB è immediato e strettamente correlato alla descrizione di Lewis. I legami sono visti come coppie di e- essenzialmente localizzate tra due atomi. Buoni valori d'energia e geometria di legame.

OM-LCAO (Combinaz. Lineare Orb. Atom.) meno immediato (uso tutti gli orbitali atomici di simmetria opportuna). I legami sono visti a edelocalizzati su \sim tutti gli atomi della molecola, ma con distribuzione disomogenea. La delocalizzazione è spesso molto importante per edin orbitali p o π , meno per σ .

OM-LCAO va meglio per descrivere proprietà elettroniche: stati eccitati, reattività (HOMO = Highest Occupied Molecular Orbital e LUMO = Lowest Unoccupied Molecular Orbital) spettroscopia, conducibilità, magnetismo, etc.)

Approcci misti: OM σ e π nel butadiene

Scheletro localizzato σ di legami C-C e C-H costruito per ciascun C da 3 orbitali sp². Dai 4 orbitali p rimasti \rightarrow 4 OM π delocalizzati. Se legami C-C semplici e doppi sono alternati si dice che il sistema è coniugato

π^* Orbitali p

Orbitali molecolari delocalizzati

2 antileganti piani nodali

$$\pi_4 = p_1 - p_2 + p_3 - p_4 \qquad 3$$

$$\pi_3 = p_1 - p_2 - p_3 + p_4$$
 2

2 leganti

$$\pi_2 = p_1 + p_2 - p_3 - p_4$$
 1

$$\pi_1 = p_1 + p_2 + p_3 + p_4 \qquad \qquad 0$$

Benzene: Delocalizzazione elettronica

Sistema coniugato. Scheletro localizzato σ di legami C-C e C-H costruito per ciascun C da 3 orbitali sp². Dai 6 orbitali primasti costruisco 6 MO π delocalizzati

Orbitali molecolari nel benzene

da 6 orbitali p costruisco 6 MO π -delocalizzati: sistemi coniugati ben descritti con orbitali π -delocalizzati

$\pi_6 = p_1 - p_1$	$p_2 + p_3$	$-p_4+p$	₅ - p ₆
---------------------	-------------	----------	--------------------------------------

$$\pi_5 = p_1 - p_3 + p_4 - p_6$$

$$\pi_{5} = \mathbf{p_{1}} - \mathbf{p_{3}} + \mathbf{p_{4}} - \mathbf{p_{6}}$$

$$\pi_{4} = \mathbf{p_{1}} - \mathbf{p_{2}} + \mathbf{p_{3}} + \mathbf{p_{4}} - \mathbf{p_{5}} + \mathbf{p_{6}}$$

piani nodali

3 leganti

$$\pi_{3} = \mathbf{p}_{1} - \mathbf{p}_{3} - \mathbf{p}_{4} + \mathbf{p}_{6}$$

$$\pi_{2} = \mathbf{p}_{1} + \mathbf{p}_{2} + \mathbf{p}_{3} - \mathbf{p}_{4} - \mathbf{p}_{5} - \mathbf{p}_{6}$$

$$\pi_{1} = \mathbf{p}_{1} + \mathbf{p}_{2} + \mathbf{p}_{3} + \mathbf{p}_{4} + \mathbf{p}_{5} + \mathbf{p}_{6}$$

$$0$$

Aromaticità: forma particolarmente efficiente di risonanza (delocalizzazione di e^- in orbitali π) in molecole cicliche a legami alternati singoli/doppi = coniugati. Forte stabilizzazione simile a quella in uno strato completo di un gas nobile.

Si ha aromaticità per sistemi coniugati ciclici con 4n + 2 elettroni: regola di Hückel.

Esempi eterocicli aromatici:

Solidi metallici: anche qui elettroni delocalizzati

Proprietà solidi metallici

- · elevata conducibilità elettrica ($\propto 1/T$) e termica
- · elevata duttilità e malleabilità
- · non trasparenza e lucentezza, colore bianco-grigio
- · strutture cristalline molto compatte (nr.coord. 8-12)

Caratteristiche atomi metallici:

- \cdot Bassi potenziali di ionizzazione, affinità elettronica e χ
- · Relativamente pochi elettroni di "valenza" rispetto al numero di orbitali di valenza a bassa energia a disposizione

Figure 3-47

Shriver & Atkins Inorganic Chemistry, Fourth Edition

© 2006 by D. F. Shriver, P. W. Atkins, T. L. Overton, J. P. Rourke, M. T. Weller, and F. A. Armstrong

Legame metallico:

Cristallo metallico elettricamente neutro descrivibile come:

cationi immersi in un "mare" di elettroni (quelli di valenza - o parte di essi)

in assenza di campo elettrico, il moto degli elettroni è caotico

in presenza di campo elettrico, il moto degli elettroni è unidirezionale (conducibilità)

Es: Na metallico

Ogni Na ha 8 atomi primi vicini Ogni Na possiede 1 elettrone esterno $3s^1$ Gli elettroni in compartecipazione per ogni Na sono: 1e + 8 * 1/8 e = 2e ("completa" sottolivello 3s)

Metallo: possibile scorrimento piani adiacenti ⇒ malleabile, duttile

Solido ionico:
scorrimento piani adiacenti
causa situazioni repulsive

duro, fragile

Elettroni nei solidi: bande di orbitali molecolari

Nella teoria LCAO-MO : Gli elettroni di valenza in una molecola sono condivisi (+ o - !) dagli atomi di tutta la molecola

Nell'approssimazione 'tight-binding' (metalli ma non solo) solido intero ≈ una molecola unica ⇒ elettroni di valenza diffondono su tutto il solido

Il combinarsi di un gran numero di orbitali atomici porta a MO di energie molto simili: non più livelli discreti ma bande continue!

Esempio: cristallo di Na atomi allineati: N orbitali 3s \rightarrow N orbitali molecolari

Legame metallico - le bande

Costruzione di un reticolo metallico (es. Na): solo la zona inferiore della banda 3s sarebbe popolata.

Orbitali delocalizzati nei metalli

Orbitali atomici

Orbitale molecolare

Legame metallico - La teoria delle bande

Formazione di bande avvicinando atomi di Na in un cristallo

Esempio: cristallo atomi allineati (orbitali p) \rightarrow banda p

Il band gap (separazione tra bande) dipende dalla separazione dei livelli energetici s e p nell'atomo isolato ed è correlato alla forza dei legami nello specifico solido covalente (ad es. C, Si, P ...).

Caso (b) atomi vicini - interazioni forti - bande che si sovrappongono (ad es. Be, Mg ...).

Elettronegatività e tipo di legame chimico

Alta X media → banda legante più separata da antilegante;

Triangolo di Ketelaar per composti binari $A_n B_m$

Elettronegatività di Pauling

Conduttori, isolanti e semiconduttori

Conduttore: banda di valenza solo parzialmente riempita oppure banda di valenza satura ma sovrapposta con banda vuota.

Conduttori, isolanti e semiconduttori

Isolante: banda di valenza *satura* e *separata* dalla banda di conduzione da un dislivello (GAP) energetico *molto elevato*. Bande in C_{diam} derivano ~ da OM σ_{b} e σ^* localizzati (χ = 2.6). Costruiti dalla combinazione di 2 OA sp^3 di C adiacenti

legati.

C: $1s^2 2s^2 2p^2 \rightarrow 1s^2 2(sp^3)^4$

 $1eV = 1.602 \ 10^{-19} \ J \Rightarrow 96.48 \ kJ \ mol^{-1}$

Solidi Covalenti: diamante

carboni ibridizzati sp^3 , cristallo unica grande "molecola" altissima conducibilità termica – elettricamente isolante

Conduttori, isolanti e semiconduttori

Semiconduttori: banda di valenza satura e separata dalla banda di conduzione da un dislivello (GAP) energetico piccolo. Scendendo lungo il gruppo diminuisce χ (χ = 2.0), aumenta r, e aumenta il carattere metallico: elettroni meno localizzati

Semiconduttori intrinseci

Scendendo lungo il gruppo diminuisce χ (χ = 2.0), aumenta r e il carattere metallico: elettroni meno localizzati

Isolanti e semiconduttori intrinseci: E_{gap} basso

Materiale	E	\	
	(EV)	kJ mol ⁻¹	E_
C (diamante)	5.47	527	
Carburo di Silicio	3.0	290	μ
Silicio	1.12	108	
Germanio	0.66	64	E,
Arseniuro di Ga (AsGa)	1.42	147	
Arseniuro di Indio (AsIn)	0.36	34	

1eV atom⁻¹= 96.5 kJ (mol di atomi)⁻¹

Band gap correlato a χ media e ad energia di legame:

$$E_{c-c} = 348$$
; $E_{Si-Si} = 326$; $E_{Ge-Ge} = 186$ kJ mol⁻¹

Raggi atomici negli elementi s e p

r dovrebbe crescere all'aumentare del nr di e- nell'atomo.

- Il forte aumento di Z* lungo il periodo contrasta tale effetto:
- 1) lungo i periodi, r decresce da sinistra a destra
- 2) scendendo in un gruppo, r cresce (Z* aumenta, ma prevale effetto repulsivo dei molti elettroni aggiunti, Principio di Pauli)

Semiconduttori intrinseci

Meccanismo di conduzione elettrica nei semiconduttori puri (INTRINSECI)

Conducibilità ∝ T

Semiconduttori estrinseci (semiconduttori drogati)

si ottengono da isolanti, o da semiconduttori ad E_{gap} alto, per doping

Se in un cristallo di Si ho alcuni atomi di As o P (15° gr) in sostituzione di atomi di Si, \Rightarrow eccesso di e- in una banda donatrice (semiconduttori drogati n)

Diminuisce il gap, aumenta il nr di e- di conduzione (a T>OK!) e genero semiconduttori drogati n (portatori di carica negativi)

Se un cristallo di Si ho alcuni atomi di Ga (13° gr) in sostituzione di atomi di Si , \Rightarrow difetto di elettroni in una banda accettrice (drogato p).

Diminuisce il gap, aumenta il nr di e di conduzione (a T>0!) e genero semiconduttori drogati p (portatori di carica positivi = vacanze = holes)

Bande donatrici ed accettrici definite rispetto a sistema non drogato

Drogaggio di semiconduttori

Banda di valenza

Drogaggio di semiconduttori

Solidi Covalenti: grafite

C ibridizzati sp^2 , come benzene - ma C anche al posto di H. Piano: singola grande "molecola". Orbitali π delocalizzati estesi ai piani. Interazioni tra piani: deboli forze dispersive. Conducibilità elettrica nei piani: semi-metallo banda di conduzione a separazione 0 da banda di valenza.

Entalpia di sublimazione di metalli (kJ mol⁻¹): "l'energia del legame" metallico

S		d											р		
Li	Ве														
161	322														
Na	Mg											Al			
108	144											333			
К	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga			
90	179	381	470	515	397	285	415	423	422	339	131	272			
Rb	Sr	Υ	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	ln	Sn		
80	165	420	593	753	659	661	650	558	373	285	112	237	301		
Cs	Ba	La	Hf	Ta	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	
79	185	431	619	782	851	778	790	669	565	368	61	181	195	209	

Punti di fusione degli elementi (°C)

Li	Be								_			В	С	N	0	F
180	1280											2300	3730	-210	-218	-220
Na	Mg											Al	Si	P	S	Cl
97.8	650											660	1410		113	-110
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br
63.7	850	1540	1675	1900	1890	1240	1535	1492	1453	1083	420	29.8	937		217	-7.2
Rb	Sr	Υ	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	ī
38.9	768	1500	1850	2470	2610	2200	2500	1970	1550	961	321	2000	232	630	450	114
Cs	Ва	La	Hf	Та	w	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	
28.7	714	920	2220	3000	3410	3180	3000	2440	1769	1063	13.6	304	327	271	254	

Melting points correlate reasonably with sublimation enthalpy

