第2618988号

布許费甲

(24) 登魯日 平成9年(1997) 3月11日 技格表示箇所 20 11/04 1/41 H04N 广内盛理器号 9185-5C (45)発行日 平成9年(1997)6月11日 1/41 H04N 11/04

(51) lat Q.

協求項の数5(全13頁)

	*	+		#					
66666666	キセノン様式会社 江京総大田区下丸子3丁目3042号	的木 良行 攻攻都大田区下丸于3丁目30经2号 キ	ヤノン株式会社内の単一の単一では	以京都大田区下丸子3丁目3052号 キ	ヤノン株式会社内	弁理士 大权 京松 (外1名)	40木 班		
(73) 特許松塔 99999999		(72) 発明者	#田秋(04)	# 636 / O		(74)代理人	卷套官		
特因昭3-141826	昭和33年(1988) 6月10日	徐因平1-311786	平成1年(1989)12月15日						
(21) 出回路号	(22) ALC:18	(65)公园各号	(43)公院日						

(54) 【発明の名称】 カラー国際伸長独位

(51) [特許額状の范囲]

は、前配最大明度値及び最小明度値をプロック内の明度 情報の勾配を演算するために用いることを特徴とする請

【請求項3】前記2つの明度情報と色度情報の相関は、

水項 1 に配成のカラー画像伸長装置。

【粉状項1】複数画素からなるブロックの単位で、明度 情報とこのブロックを代表する色度情報とを含む圧縮カ ラー面像データを伸長するカラー画像伸長装置であっ

情報の2つの代表値との関係から得られる核プロックに おける明度情報と色度情報の相関及び前配明度復元手段 により復元される画楽毎の明度情報の分布に基づき、前 記プロック内の画菜毎の色度情報を復元する色度復元主 前記圧縮カラー画像データに含まれるプロック内の明度 前記ブロック内における明度情報の2つの代表値と色度 惰報を画案毎の明度情報に復元する明度復元手段と、 段とを備えることを特徴とするカラー画像伸長装置。

(請水項5)更に、圧縮されたカラー画像が明度情報に 関して平坦であるか否かを判定する判定手段と、単一の 上配判定手段により平坦であると判定された場合は、復 【請求項4】前記明度復元手段は圧縮された明度情報か 前記明度情報の勾配と色度情報の勾配の比率であること ちエッジを抽出する手段を含む事を特徴とする請求項: 色度情報から色度を復元する単一色度復元手段とを有 を特徴とする請求項1に記域のカラー画像伸長装置。 乃至3のいずれかに配做のカラー画像伸長装配。

元された単一色度を選択する選択手段とを備えた事を特

【額水項2】 前記明度情報の2つの代表値はプロック内 の最大明度値及び最小明度値であり、前記色度復元手段、

徴とする請求項1乃至4のいずれかに記載のカラー画像

[発明の詳細な説明] [産業上の利用分野]

ロックの単位で、明度情報とこのブロックを代表する色 度情報とを含む圧縮カラ一面像データを、伸長するカラ 本発明は、カラ一画像を、特に、複数画素からなるブ 一画像仲長装置に関する。

従来、カラー画像データの色度情報の圧縮方式の一つ として、ブロツク内の色度情報を2つの色度に代表させ は、圧縮単位をある程度の微細なプロツクに限れば、そ のブロツク内の色度は2つある程度で、人間の視覚特性 ることで圧縮を実現する方式が提案されている。これ から見て充分であるという前提にたったものである。

る。尚、無1図において、カラー画像データは4×4画 素を単位として分割されているとし、さらに、明度・色 り、また、取り扱う画像データは全てL*a*b*の均 等色空間に変換されたもので、0~255のレベル範囲で 度信号としてのCIEのL*a*b*空間に変換されてお この従来の圧縮方式の概要を第7図を用いて説明す 正規化されているものとする。

座棋値で代表させることにより、色度データの圧縮を行 各領域のそれぞれの色度の平均値をこの各領域の代表値 と、より高い明度を有する領域(第7図では斜め左上領 原信号である。まず、し*データのプロツク内の平均値 およびも*データも同様の境界で分割する。 a*および として採用する方式を示している。更に具体的に説明す の太線を境界とした2つの領域に分割し、さらに、a * b*データ夫々の分割された夫々の領域を、1つの色度 低い明度を有する領域の代表色度はa*1,b*1) = (1 L*meunを求める。これを閾値として、プロツクを図示 坂) の代表色度は (a *U,b*U) = (138,119)、より なうというものである。即ち、第7図で示した例では れば、L*mean=151をこのプロツクの平均明度とする 第7図の (A) は、RGBからL*a*b*変換された 56,104) となる。

[発明が解決しようとしている課題]

このように16画案の色度信号を2つの色度信号に代表 情報が完全に復元される予測符号化方式のような情報保 させることにより情報量の圧縮は達成される。また、さ れる。尚、第7図の例では、L*については、伸長後の いる。一方、明度情報し*についても圧縮、伸長が施さ 別に歪が生じる可能性がある。例えば、第7図の(B) の例では、これらの代表色度に(â*u, b*u) = (13 2,116), (â*L, b*L) = (164,100) と強が生じて らに圧縮率を上げることも可能である。この場合は、 存型の圧縮方式がとられた場合を示している。

ち、圧縮の場合と同様の考えに基づいて復号化されたし 従来における色度情報の伸長は次のようにする。即

プロックを2つの領域に分割し、夫々の領域に復号化し *データを平均明度〔*mean=151を閾値として、画案 (3*L, 5*L) = (164,100)を夫々割り当てて、 た2つの代表色度(â*u, 5*u) = (132,116) 長ブロックとする。

さて、前述したように第7図の例では明度の圧縮伸長 縮方式を採用して復号化した場合には、明度ブロツクに **蚕が生じてしまい、分割された2つの質板の境界が圧縮** 時と伸長時とで一致せずに、これによりさらに色度情報 では歪が生じていないので圧縮時の領域境界と、伸長後 の領域境界は一致している。しかし、情報非保存型の圧 の歪が大きくなる場合がある。

てはその再現画像において不充分な場合が発生すること 考えられる。また、復元された明度信号に歪がある場合 は前述したように境界が変化することも劣化の原因と考 と、復元されたブロツクの色度情報は2つの状態しか取 らないことになる。これは、処理する画像の稻類によつ を意味する。例えば、特に、原画像が色文字画像のよう な場合は、そのエンジ部分がギザンいたりして、良好な 再生画像が得られない。 つまり、色度レベルが2つしか ないために、エツジ部の変化が急激であることが原因と しかし、いずれの場合についても、この方式による れられる。

本発明は上述の問題を改善するために提案されたもの ク内の色度情報を復元することにより、プロック内にお ができると共に、プロック内における画紫毎の色度情報 で、ブロック内における明度情報と色度情報との相関及 び復元された画素毎の明度情報の分布に基づき、ブロッ ける画素毎の色度情報を、圧縮カラー画像データに含ま せる必要性を無くならせしめて圧縮率を向上させること を可能な限り復元可能なカラー画像伸長装置を提案する ことを目的としている。

[課題を解決するための手段]

らなるブロックの単位で、明度情報とこのブロックを代 上記牒題を達成するための本発明に係る、複数画案か 表する色度情報とを含む圧縮カラー画像データを伸長す るカラー画像伸長装置は、

前記圧縮カラー画像データに含まれるブロック内の明 度情報を固素毎の明度情報に復元する明度復元手段と、

前記プロック内における明度情報の2つの代表値と色 度情報の2つの代表値との関係から得られる版プロック における明度情報と色度情報の相関及び前記明度復元手 前記プロック内の画楽毎の色度情報を復元する色度復元 段により復元される画楽毎の明度情報の分布に基づき、 主段とを備えることを特徴とする。

以下本発明に係る実施例を説明する。 く実施例の原理>

は、明度信号と色度信号にかなり相関性があることに注 この実施例では、色文字のようなカラー画像において

€

ツク内の各画菜の色度信号を復元するようにする。 色度 色度間を変換する信号として再生することが可能とな で、色度信号も明度信号と同様に、滑らかに2つの代表 との相関性を利用することによる。このようにすること を明度に比例するようにするのも、色度情報と明度情報 関性を利用する意味で、明度信号に比例するようにプロ 来と同僚に、2つの代表色度情報を抽出し、伸長時には 目する。圧縮時には、圧縮効率を低下させないよう、従 この2つの代表色度情報を基準として、明度情報との相

あげることができる。 の種類によって本方式を適応的に採用することで効果を ば、本実施例は色文字情報に適した方式であり、原画像 に大きな相関性があるのは、色文字画像においては、そ されているためと考えることで説明できる。逆に含え 白色と色文字の色とのいわゆる無彩色と有彩色とで森皮 の色エツジを含むブロツクは多くの場合、地色としての なお、そもそも相関性が小さいとされる明度と色度間

さてかかる上記の原理を以下3つの実施例に適用して

<解1 供摘室>

長部に対して行なわれることもあるが、一旦、記憶装置 化伸長部である。圧縮部から伸長部への伝送は、直接伸 る。図中、1~11が符号化圧縮部であり、13~23が復号 12に記憶されてから、伸長部で伸長される場合もある。 第1図は、第1実施例の構成を示すプロツク図であ

0~255のレベル範囲で正規化されているものとする。 は全てL*a*b*の均等色空間に変換されたもので、 れる。なお、本実施例の説明では、取り扱う画像データ 画像データのブロツク化も、この変換的1においてなさ 入力され、RGB→L*a*b*変換部1によつてL*a * b *の明度および色度信号に変換される。このとき、 カラー画像データはRGBの 3 原色信号として圧縮部に

部6において、1つのコードCh2に符号化される。 の色度信号は、色度符号化部5、および色度コード合成 max, b*max) , (a *min, b*min) を抽出する。これら 力される。色度信号抽出部3では、[L*max]及び 符号化される。同時に、し*の最大・最小検知部2にお [L*min] が示玄画案位置に対応した色度信号 (a* 検知され、その最大値/最小値の画案の位置を示す信号 いて、プロツク内のL*データの最大値および最小値が [L*max] および [L*min] が色度信号抽出部 3 に出 まずし*信号はし*符号化部4においてコードLooに

情報圧縮はある程度達成されているから、これ以上の圧 から2つの色度をプロツクの代表として抽出することで 説明のところでも述べたように、16画案夫々の色度情報 ドとして取り扱えば良い。またさらに圧縮をする場合 符号化部5について若干説明を付け加える。従来例の

> 成して100コードCh2として出力する。 度を別々に圧縮する場合を想定した例で、夫々の色度符 容易に実現できる。第1図の実施例では、2つの代表色 用いた方式などが考えられ、これはROM等の記憶素子で 号化部5で生成されたコードを色度コード合成部6で合 は、ここでは詳細は省略するが、マツピングテープルを

の画案に対して復元するのである。 々の平均値 a * mean, b * meanを求め、これをこのプロシ 坦であるような場合に、復号化された色度信号の誤差を は、L*に関係なく、1つの色度でプロツク内のすべて 8で圧縮する。この代表色度をCh1と表わす。伸長の際 用懲している。つまり、平均値算出部7で、a*,b*夫 度で代表させてしまういというもう一つの色度圧縮法を がある。そこで、第1実施例では、プロツクを1つの色 増大させる可能性があり、著しい再生像劣化を招く恐れ 例復元を適用すると、例えば、プロツクの明度信号が平 度情報に比例するように色度情報を復元しようとするも 色度情報の符号化方式 (第1図の7.8) が用意されてい クの代表色度(a *aean, b*aean)として色度符号化部 のであるが、全ての画像データに対して、この色度の比 **表色度2つを抽出し、伸長時にはそれらを基準にして明**

施すことで容易に実現できる。 変換若しくはアダマール変換といつた変換を明度信号に であるかどうかの判定法は種々考えられるが、フーリエ は、Chzを選択する。尚、プロツクが明度に関して平坦 は、1代表色度コードChiを選択し、平坦でない場合 で判定され、この判定信号をセレクタ10の切換信号とし て用いる。そこで、プロツクが平坦と判定された場合

が、コード合成部11で1つのコードに合成されて、復号 セレクタ10の出力信号Chと明度信号の圧縮コードLco

可変長であつても問題ない。さらに、ChiとChzとで、ど で、復号化されたしから、平坦か否かが識別できれば、 うしても固定長にするためには、(a *max, b*max), (a *min, b*min) の下位ピジトを問引いてもなされ 尚、ChiとChzとは、Chzが2つの色度情報を含むため ドは、プロツク毎に可変長のものとなるが、彼号化部 コード長が異なる。即ち、合成部11で合成されたコ

分割部13で、明度情報のコードLooと色度コードChとに さて、復号部に伝送されて来たコードは、まずコード

16,17で夫々の代表色度(â*mx, b*mx)と(â* 2つの代表色毎のコードに分割され、夫々色度復号化部 元される。一方、色度コードChは色度コード分割部14で 明度コードLodはL*復号化部15で明度信号L*に復

第1 実施例では、明度情報に基づかない、もう一つの これは、この実施例の方式の特徴が、プロツタの代

プロツクが平坦であるかどうかは、L*平坦判定部9

ain, 6*ain) が再生される。一方、明度信号C*はし *最大最小検知部19で、プロツク内の最大値Ը***** および最小値Ը*minが出力される。 8 "2 [n] =

> 度信号〔*に比例するように色度信号を復元する。すな 比例配分部20では、これらのデータを基準として、明

L "[n] - L " min Lu[n] - Lunin (A "nex" & "min) + X a m a x -

式に示された処理が比例配分部20で行なわれ、色度信号 **≜*2, 5*2が復元される。** ここで、nはブロツクのn番目の画案に対応する。上記

時に復号化される。即ち、ここで代表色度(â * mean, らないから、これ用の色度復号化部18でこのコードも同 ある場合は、色度コードChは1色度コードでなくてはな ら*mean)が復元される。 一方、圧縮時と同様にプロツクが明度に関して平坦で

が平坦であるか否かの判定結果によつて、(â*mean, 併せて、L*a*b*/RGB変換部23によつてRGB信号に される。そして、これらの色度信号と明度信号〔*とが 太選択されて、最終的な色度信号 à*, 6*として出力 6*mean) と (&*2, 6*2) とがセレクタ22で切り換 そして、圧縮時と同様に、L*平坦判部21による明度

ある。L*信号はまずL*最大最小検知部2で、 ある。第2図の(A)はL*a*b*空間での原信号で 第2図は、第1実施例による圧縮伸長結果の具体例で

る。そして、その面素信号 最大値L*max=198, 最小値L*min;=125と検知され

が出力され、その画案位置に対応する色度が、夫々、 $[L*_{max}] = 1, [L*_{min}] = 16$

として、色度信号抽出部2で抽出される。これらのデー $b *_{max} = 126, b *_{min} = 98$ a *mex=127, a*min=175,

å *max=128, å *min=172,

夕がさらに圧縮され、彼号部において、

めらかになっているのがわかる。 と、歪が軽減されており、2つの代表色度間の変化がな る。この第2図(B)と第7図の従来例とを比較する に基づいて、明度信号じ*に比例するように、第2図の として彼号され、これらのデータを基準として、上記式 $b*_{max}=124, b*_{min}=96$ (B) に示したような色度信号 B*, B*が復元され

第3図は第2実施例の構成を示すプロツク図である。

様であり、色度情報の復号化も、第1実施例と同じくし 象画案となる。上記式のように色差色差を計算の容易さ が求められ、そのうちの最大値を与える2つの画案が対 $\Delta E_m = |a*[m] - a*[n]|$ を有する2画案を求めるために、全ての2画案 (m,n) を考慮してである。それ以外の構成は第1の実施例と同 +|b* [m] - b* [n] | (但し、m<n) 組合せについて、色差ΔΕ である。即ち、ブロツク内の画案のうち互いに最大色差 色差を有するような2画素の色度を代表色度とするもの 検知部31により、プロツク内の2画案のうち互いに最大 閻の色度を代表色としたが、この第2実施例では、色差 第1実施例では最大明度と最小明度を有する夫々画案位 という点で、前配第1実施例と異している。すなわち、 この第2実施例は、プロツクの2つの代表色度の抽出法

値・最小値とは無関係に抽出されるようになつている。 対応するように、色度信号の復元が行われる。 大値・最小値(Ĺ * max, Ĺ * min)の画素に代表色度が しかし、復号化では第1実施例と同様に、明度信号の最 *に比例するように実現される。 尚、色差検知部31では、代表色度の抽出は明度の最大

つまり、1番目の画染の (a*,b*) = (127,126) て、m=1,n=12の画案が最大色差Emaxを与えている。 いる。この例によると、上記色差を演算する式におい の色度が代表色として抽出される。 と、12群目の眞珠の(a*,b*)=(178、98)の2つ 第4図はこの第2実施例での代表色抽出法を説明して

すると、第4図では、 れないので次のようにする。即ち、明度の大きい方を (a*h,b*H)、小さい方を (a*l,b*L) とすると しかし、このままでは2つの色度の位置関係が確定さ

L*[1]=198>L*[12]=128

 $(a *_{H}, b *_{H}) = (127, 126)$ $(a*_{L},b*_{L}) = (178,98)$

として抽出されることになる。尚、第4図においては、

œ

第2618988号

このようにして抽出された画素に〇を付して安わす。 にならし、 [*minの 国教が (9 *Li 6 * L) に対わす **復号化の際には、L****の画素が(â**4, 6**4)** るようにして、色度情報の復元がなされる。

この2つの色度を洒踏の色度とし、明度に比例してそれ らの両端の固を内棒することで、他の色度信号の復元を このように、第2実施例の、抽出する2つの代表色と して最も違い色度を選択するということは、そもそも、 するという原理に最も良くマツチした方式と甘える。 <第3英版例> さて第5因は第3実施例のプロツク図であり、第6図 プロツクの明度に関するエツジの方向を検知し、検知さ れた夫々のエツジパターンに対応して、予め定められた る。すなわち、この方式では、明度のエッジパターンが 第5図において、エッジ判定部32において、プロック の明度のエツジパターンが判定され、この情報が色度信 号抽出部33に送られる。ここで、夫々のエッジパターン 決まると一意的に代表色を抽出する国森が決定される。 はその代表色抽出部の詳細を説明するための図である。 この第3実施例の特長は、圧縮時の代表色の抽出を、 画業の色度を代表色とすることによりなされる点にあ

に対応した画案の色度信号、

(a*1,b*1), (a*2,b*2) が代表色として出力される。

以後は、復号部まで、前述の第1,第2妻施例と同様の 処理が実行される。

$$= \frac{L^{[n]} - L^{[15]}}{L^{[2]} - L^{[15]}} (8^{[n]} - 8^{[n]}) + 8^{[n]}$$

$$= \frac{L \cdot [n] - L \cdot [15]}{L \cdot [2] - L \cdot [15]} \cdot (\delta \cdot_{1} - \delta \cdot_{2}) +$$

$$= \frac{L^{*}[n] - L^{*}[12]}{L^{*}[5] - L^{*}[12]} (8^{*}_{1} - 8^{*}_{2}) + 8^{*}$$

て (A) : 横エツジ、(B) : 横エツジ、(C) : 斜め (右上から左下の) エツジの、4つのパターンを示して 第6図は、例として明度に関するエンジパターンと いる。夫々の例における代表色度として、

 $(a*_{1},b*_{1}) = (a*[2],b*[2])$; $(a*_{2},b*_{2}) = (a*[15],b*[15])$.. €

 $(a*_{1},b^{*}_{1}) = (a*[5],b^{*}[5])$; (B) :

 $(a *_2, b *_2) = (a * [12], b * [12])$

 $(a*_1,b*_1) = (a*[1],b*[1]);$ $(a*_2,b*_2) = (a*[16],b*[12])$.. (2)

 $(a*_1,b*_1) = (a*[4],b*[4])$; (a*2,b*2) = (a*[13],b*[13])が抽出される

.. <u>@</u>

ツジパターンを判定して、その結果に基づいて、復号化 一方、伸長の場合には、同様に、明度信号し*からエ

とパターンに対応する画案の明度信号とから比例配分を して色度信号の復元を行う。 第6図のパターン例に従う と夫々の場合の復元式は次のようになる。 (8*1, 6*1) , (8*2, 6*2) された色度信号

(A) : 截エシジ

[u] *, g

L *[n] - L *[12] L *[5] - L *[12]

L * [n] - L * [18]

[1]- [1]- [10]

(D) : 斜め (右下左上) エツジ

$$\frac{L \cdot [n] - L \cdot [13]}{L \cdot [4] - L \cdot [13]} \cdot (a \cdot_{1} - a \cdot_{2}) + a \cdot_{2}$$

$$b \cdot_{2} \cdot [n]$$

$$\frac{L \cdot [n] - L \cdot [13]}{L \cdot [n] - L \cdot [13]} \cdot (b \cdot_{1} - b \cdot_{2}) + b \cdot_{2}$$

C* [4] -C* [13]

て、プロツク中の2つの代数する色度信号を抽出して圧 陥し、伸長においては、明度信号に比例するようにその 代表色度を基準として復元することで高い圧縮効率を保 以上説明したように明度信号と色度信号に変換された ブロツク単位のカラー画像データの圧縮伸長方式とし **ったまま高品位の画像再現が可能となった。**

るようにすることもできる。これは、明度パターンのエ ツジの方向の検知も、平坦検知と同様にフーリエ変換や ところで、この第3実施例では、前の2つの例と同様 に、明度情報が平坦であるかによつて色度の圧縮・伸長 方式を切り換える構成になつている。しかし、この第3 **実施例では、明度の平坦判定をエツジ判定部に共有させ** アダマール変換と言つたような同僚の変換を明度信号に 施し処理することで実現できるからである。

は、いずれも明度信号は圧縮・伸長によつて強が生じな **ろいて判定を行い、これにより圧縮伸長の方式を切り換** 可能性がある。また第3の実施例のエッジパターンンの 判定についても同様である。もしこういうことが起こる いちのとして考えられて来た。しかし、もしこれに留が 生じた場合に、圧縮と伸長とで、独立して明度偕号に基 えているために、圧縮と伸長での判定結果が一致しない 以上30の実施例について説明して来たが、これら とこれは再生画像の大きな劣化となる。

このためには、明度信号の圧縮に情報非保存型の方式 を採用する時は、明度のエツジの状態によって、適応的 にその処理を換えて、あわせてそのエツジの状態もコー ある。こうすることで前述したような判定結果の圧縮部 と伸長的での不一致を防止できるばかりでなく、伸長的 ド化するような圧縮方式を採用すると良い。 たとえば適 **応型のコサイン変数やアダマール変換による圧縮方式が** での判定のための処理を省略することができる。

[発明の効果]

内の色度情報を復元している。従って、プロック内にお き、また、プロック内における画楽毎の色度情報を可能 プロック内における明度情報と色度情報との相関及び復 元された画繋毎の明度情報の分布に基ムいた、ブロック ける画楽毎の色度情報を、圧縮カラー画楽データ中に含 以上説明したように本発明のカラー画像伸長装置は、 ませる必要が無くなり、圧縮率を向上させることがで な限り復元することができる。

第2図は第1実施例の動作を具体的に説明する図、 第1図は第1実施例のプロツク図、 第3図は第2実施例のプロツク図、 [図面の簡単な説明]

第6図は第3の実施例のエツジパターンの例を示した 第4図は第2実施例の動作を具体的に説明する図、 第5図は第3実施例のプロツク図、

第7図は従来例を説明する図である。

(C) : 斜め (右上左下) エッジ

8

9

第2618988房

ç

	198 188 52 137 196 155 142 131 163 143 140 128 155 155 155 155 155 155 155 155 155 15	$\hat{O}_{1}^{*} = 32 32 32 64 64 64 64 64 64 64 6$	
[第7図]	田 豬	⊕ ₩	
	Lmean=151	$a_{U}^{4} = 138$ $a_{L}^{3} = 166$ $a_{L}^{5} = 19$	
	L* 198 88 152 137 196 155 142 131 163 143 140 128 155 133 130 125	127 129 153 160 130 148 157 169 138 159 155 178 140 167 170 175 126 124 110 107 124 115 112 105 120 112 104 98 116 103 97 98	

This Page Blank (uspto)