PA3

Clustering

Jack, Felicia and Joost

Talk About the Data Itself

Numeric Features:

- Administrative
- Informational
- Product Related
- Administrative Duration
- Informational Duration
- Product Related Duration
- Bounce Rates
- Page Values
- Special Day

Categorical Features:

- Traffic Type
- Visitor Type
- Operating Systems
- Browser
- Region
- Month
- Weekend
- Revenue

Visualization Comparing Browser 13 and Others

Comparing trends between Browser 13 and others for Categorical Features

Visualization Comparing Browser 13 and Others

Comparing trends between Browser 13 and others for Numeric Features

Preprocessing Method (?

Normalized

Suppose that if We're An E-commercial...

Different type of sites will have positive correlation with their duration time.

But types won't affect any to bounce rate or page values

Correlation Heatmap of Numerical Features

About browser 13

- Operating system 8
- Region 9
- Traffic type 20
- Visitor type other

Also

Operating system 8 has high positive correlation with traffic type 20, visitor type other

Clustering Algorithms 1 - Affinity Propagation

Model	Silhouette score	Davies-Bouldier Score	Calinsky-Harabasz Score		
Affinity Propagation	0.307416	0.963267	4668.185766		

Affinity Propagation Clustering

Clustering Algorithms 2 - DBSCAN Clustering

Model	Silhouette Score	Davies-Boudlin Score	Calinsky-Harabasz Score
DBSCAN	0.401499	2.608033	5524.599755

DBSCAN Clustering

Clustering Algorithms 3 - Birch Clustering

Birch Clustering

PC1

Score		1.5		·			Birch_Cluster
0.474736		1					2.5
0.641019		0.5	3			N.	2
12667.449132	PC2	0	200				1.5
	-	-0.5				10	1
		-1			250	4.00	0.5
			-1 -0.5	0	0.5	1	0
	0.474736	0.474736 0.641019 12667.449132	0.474736 0.641019 12667.449132	0.474736 0.641019 12667.449132	0.474736 0.641019 12667.449132	0.474736 0.641019 12667.449132	0.474736 0.641019 12667.449132

DBSCAN - Parameters Explored

- Investigated the impact of eps and min samples parameters
- eps measures the distance for outlier determination
- min_samples specifies the minimum
 neighboring points for an outlier/main point
- Utilized the silhouette score for performance assessment
- Lowering eps significantly enhances performance
- These parameters are highly dependent on the data, but provide a rough overview of the spacing between main points and outliers

DBSCAN - Euclidean distance function

- It measures the straight-line or "as-the-crow-flies" distance between two points.
- It is sensitive to outliers because it squares the differences.

DBSCAN - Manhattan distance function

- It measures the distance as if you are moving through a grid-like path (like city blocks) between two points.
- It is less sensitive to outliers compared to the Euclidean distance because it uses the absolute differences.

DBSCAN - Cosine similarity distance function

- It ranges between -1 and 1. A value of 1 indicates that the vectors are identical, 0 means they are orthogonal (unrelated), and -1 means they are diametrically opposed.
- It ignores the magnitude of the vectors and focuses on their orientation in the vector space.
- It is useful when you want to measure similarity in terms of the angle between vectors and not their absolute distance.

Euclidean

Manhattan

Cosine

We Preferred...

- Euclidean performed better using all scoring methods
- Notably, all distance functions received almost the exact same DB-Score

Cluster Evaluation Scores for Different Distance Metrics

