COT 2000 Foundations of Computing

Summer 2024

Lecture 4 – part 1

Homework 1 - Due:05/24/24 Lab 2 Exam 1 - 05/31/24 Lecture 4 – part 2

Review

Review

- Logic
- Statements or propositions
- Compound statements
- Compound statements notation for inequalities
- Negation (not), Conjunction (and), Disjunction (or)
- Truth tables
- Propositional forms, example: $(p \lor q) \land \sim (p \land q)$
- Exclusive OR

Statements or propositions

Definition

A **statement** (or **proposition**) is a sentence that is true or false but not both.

Compound Statements

$$\sim p \land q = (\sim p) \land q$$

$$p \land q \lor r$$

$$(p \land q) \lor r \text{ or } p \land (q \lor r)$$

The symbol ~denotes *not*,

A denotes *and*,

and V denotes *or*.

Notation for Inequalities

$$x \le a$$
 means $x < a$ or $x = a$
 $a \le x \le b$ means $a \le x$ and $x \le b$.

Truth Values

Negation (\sim) (not)

Definition

If p is a statement variable, the **negation** of p is "not p" or "It is not the case that p" and is denoted $\sim p$. It has opposite truth value from p: if p is true, $\sim p$ is false; if p is false, $\sim p$ is true.

Conjunction (∧) (and)

Definition

If p and q are statement variables, the **conjunction** of p and q is "p and q," denoted $p \wedge q$. It is true when, and only when, both p and q are true. If either p or q is false, or if both are false, $p \wedge q$ is false.

Disjunction (V) (or)

Definition

If p and q are statement variables, the **disjunction** of p and q is "p or q," denoted $p \vee q$. It is true when either p is true, or q is true, or both p and q are true; it is false only when both p and q are false.

Truth Table for $\sim p$

p	~ <i>p</i>
T	F
F	T

Truth Table for $p \land q$

p	\boldsymbol{q}	$p \wedge q$
T	T	T
T	F	F
F	T	F
F	F	F

Truth Table for $p \lor q$

p	\boldsymbol{q}	$p \lor q$
T	T	T
T	F	T
F	T	T
F	${f F}$	\mathbf{F}

Propositional forms

$$(p \lor q) \land \sim (p \land q)$$

Definition

A **statement form** (or **propositional form**) is an expression made up of statement variables (such as p, q, and r) and logical connectives (such as \sim , \wedge , and \vee) that becomes a statement when actual statements are substituted for the component statement variables. The **truth table** for a given statement form displays the truth values that correspond to all possible combinations of truth values for its component statement variables.

Lecture 4 – part 3

More on Logic of Compound Statements

Truth Table for (p \wedge q) V \sim r

р	q	r	р∧q	~r	(p ∧ q) V ~r

Logical Equivalence

6 is greater than 2 and 2 is less than 6

(1) Dogs bark and cats meow and (2) Cats meow and dogs bark

 $p q p \wedge q q \wedge p$

Logical Equivalence

6 is greater than 2 and 2 is less than 6

(1) Dogs bark and cats meow and (2) Cats meow and dogs bark

p	\boldsymbol{q}	$p \wedge q$	$q \wedge p$
T	Т	Т	T
T	F	F	F
F	T	F	F
F	F	F	F

• Are $\sim (p \land q)$ and $\sim p \land \sim q$ logically equivalent?

|--|

• Are $\sim (p \land q)$ and $\sim p \land \sim q$ logically equivalent?

p	\boldsymbol{q}	~ <i>p</i>	~ q	$p \wedge q$	$\sim (p \wedge q)$		$\sim p \wedge \sim q$
T	T	F	F	T	F		F
T	F	F	T	F	T	\neq	F
F	Т	T	F	F	T	\neq	F
F	F	T	T	F	T		T

 $\sim (p \wedge q)$ and $\sim p \wedge \sim q$ have different truth values in rows 2 and 3,

so they are not logically equivalent

De Morgan's Laws

"John is tall and Jim is redheaded"

"John is not tall or Jim is not redheaded."

 $\sim (p \land q)$ and $\sim p \lor \sim q$ are logically equivalent

		p	q	~ <i>p</i>	$\sim q$	$p \wedge q$	$\sim (p \wedge q)$	$\sim p \vee \sim q$
--	--	---	---	------------	----------	--------------	---------------------	----------------------

De Morgan's Laws

"John is tall and Jim is redheaded"

"John is not tall or Jim is not redheaded."

$\sim (p \land q)$ and $\sim p \lor \sim q$ are logically equivalent

p	q	~ <i>p</i>	~q	$p \wedge q$	$\sim (p \wedge q)$	$\sim p \vee \sim q$
T	T	F	F	T	F	F
T	F	F	T	F	T	T
F	T	T	F	F	T	T
F	F	T	T	F	T	T

 $\sim (p \land q)$ and $\sim p \lor \sim q$ always have the same truth values, so they are logically equivalent

De Morgan's Laws

Symbolically,

$$\sim (p \wedge q) \equiv \sim p \vee \sim q.$$

$$\sim (p \lor q) \equiv \sim p \land \sim q.$$

De Morgan's Laws

The negation of an *and* statement is logically equivalent to the *or* statement in which each component is negated.

The negation of an *or* statement is logically equivalent to the *and* statement in which each component is negated.

https://en.wikipedia.org/wiki/Augustus De Morgan

Use De Morgan's laws to write the negation of $-1 < x \le 4$.

$$-1 < x$$
 and $x \le 4$.

The negation is:

$$-1 \not< x$$
 or $x \not\le 4$,

Equivalent to:

$$-1 \ge x$$
 or $x > 4$.

Tautologies and Contradictions

Example:

The statement form $p \lor \sim p$ is a tautology and the statement form $p \land \sim p$ is a contradiction.

p	~ <i>p</i>	$p \vee \sim p$	$p \wedge \sim p$
T	F	Т	F
F	T	Т	F
		↑	↑
		all T's so	all F's so
		$p \lor \sim p$ is a tautology	$p \land \sim p$ is a contradiction

Definition

A **tautology** is a statement form that is always true regardless of the truth values of the individual statements substituted for its statement variables. A statement whose form is a tautology is a **tautological statement**.

A **contradication** is a statement form that is always false regardless of the truth values of the individual statements substituted for its statement variables. A statement whose form is a contradication is a **contradictory statement**.

If **t** is a tautology and **c** is a contradiction, show that $p \land \mathbf{t} \equiv p$ and $p \land \mathbf{c} \equiv \mathbf{c}$.

Solution

If **t** is a tautology and **c** is a contradiction, show that $p \land \mathbf{t} \equiv p$ and $p \land \mathbf{c} \equiv \mathbf{c}$.

Solution

Logical Equivalences

Theorem 2.1.1 Logical Equivalences

Given any statement variables p, q, and r, a tautology \mathbf{t} and a contradiction \mathbf{c} , the following logical equivalences hold.

1. Commutative laws:
$$p \wedge q \equiv q \wedge p$$
 $p \vee q \equiv q \vee p$

2. Associative laws:
$$(p \land q) \land r \equiv p \land (q \land r)$$
 $(p \lor q) \lor r \equiv p \lor (q \lor r)$

3. Distributive laws:
$$p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$$
 $p \vee (q \wedge r) \equiv (p \vee q) \wedge (p \vee r)$

4. *Identity laws:*
$$p \wedge \mathbf{t} \equiv p$$
 $p \vee \mathbf{c} \equiv p$

5. Negation laws:
$$p \lor \sim p \equiv \mathbf{t}$$
 $p \land \sim p \equiv \mathbf{c}$

6. Double negative law:
$$\sim (\sim p) \equiv p$$

7. Idempotent laws:
$$p \wedge p \equiv p$$
 $p \vee p \equiv p$

8. Universal bound laws:
$$p \lor \mathbf{t} \equiv \mathbf{t}$$
 $p \land \mathbf{c} \equiv \mathbf{c}$

9. De Morgan's laws:
$$\sim (p \land q) \equiv \sim p \lor \sim q$$
 $\sim (p \lor q) \equiv \sim p \land \sim q$

10. Absorption laws:
$$p \lor (p \land q) \equiv p$$
 $p \land (p \lor q) \equiv p$

11. Negations of
$$\mathbf{t}$$
 and \mathbf{c} : $\sim \mathbf{t} \equiv \mathbf{c}$ $\sim \mathbf{c} \equiv \mathbf{t}$

Simplifying Statements Forms

Verify the logical equivalence of:

$$\sim (\sim p \land q) \land (p \lor q) \equiv p.$$

Solution:

$$\sim(\sim p \land q) \land (p \lor q) \equiv (\sim(\sim p) \lor \sim q) \land (p \lor q) \qquad \text{by De Morgan's laws}$$

$$\equiv (p \lor \sim q) \land (p \lor q) \qquad \text{by the double negative law}$$

$$\equiv p \lor (\sim q \land q) \qquad \text{by the distributive law}$$

$$\equiv p \lor (q \land \sim q) \qquad \text{by the commutative law for } \land$$

$$\equiv p \lor \mathbf{c} \qquad \text{by the negation law}$$

$$\equiv p \qquad \text{by the identity law.}$$

Lecture 4 – part 4

Logic Exercises 1