Introduction to Machine Learning

Entropy II

Learning goals

- Further properties of entropy and joint entropy
- Understand that uniqueness theorem justifies choice of entropy formula
- Maximum entropy principle

ENTROPY OF BERNOULLI DISTRIBUTION

Let X be Bernoulli / a coin with $\mathbb{P}(X = 1) = s$ and $\mathbb{P}(X = 0) = 1 - s$.

$$H(X) = -s \cdot \log_2(s) - (1-s) \cdot \log_2(1-s).$$

We note: If the coin is deterministic, so s=1 or s=0, then H(s)=0; H(s) is maximal for s=0.5, a fair coin. H(s) increases monotonically the closer we get to s=0.5. This all seems plausible.

JOINT ENTROPY

• The **joint entropy** of two discrete random variables *X* and *Y* is:

$$H(X,Y) = H(p_{X,Y}) = -\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x,y) \log_2(p(x,y))$$

- Intuitively, the joint entropy is a measure of the total uncertainty in the two variables X and Y. In other words, it is simply the entropy of the joint distribution p(x, y).
- There is nothing really new in this definition because H(X, Y) can be considered to be a single vector-valued random variable.
- More generally:

$$H(X_1, X_2, ..., X_n) = -\sum_{x_1 \in \mathcal{X}_1} ... \sum_{x_n \in \mathcal{X}_n} p(x_1, x_2, ..., x_n) \log_2(p(x_1, x_2, ..., x_n))$$

ENTROPY IS ADDITIVE UNDER INDEPENDENCE

Entropy is additive for independent RVs.

Let *X* and *Y* be two independent RVs. Then:

$$\begin{split} H(X,Y) &= -\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x,y) \log_2(p(x,y)) \\ &= -\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p_X(x) p_Y(y) \log_2(p_X(x) p_Y(y)) \\ &= -\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p_X(x) p_Y(y) \log_2(p_X(x)) + p_X(x) p_Y(y) \log_2(p_Y(y)) \\ &= -\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p_X(x) p_Y(y) \log_2(p_X(x)) - \sum_{y \in \mathcal{Y}} \sum_{x \in \mathcal{X}} p_X(x) p_Y(y) \log_2(p_Y(y)) \\ &= -\sum_{x \in \mathcal{X}} p_X(x) \log_2(p_X(x)) - \sum_{y \in \mathcal{Y}} p_Y(y) \log_2(p_Y(y)) = H(X) + H(Y) \end{split}$$

THE UNIQUENESS THEOREM

▶ Khinchin, 1957 showed that the only family of functions satisfying

- H(p) is continuous in probabilities p(x)
- adding or removing an event with p(x) = 0 does not change it
- is additive for independent RVs
- is maximal for a uniform distribution.

is of the following form:

$$H(p) = -\lambda \sum_{x \in \mathcal{X}} p(x) \log p(x)$$

where λ is a positive constant. Setting $\lambda=1$ and using the binary logarithm gives us the Shannon entropy.

THE MAXIMUM ENTROPY PRINCIPLE

Assume we know M properties about a discrete distribution p(x) on \mathcal{X} , stated as "moment conditions" for functions $g_m(\cdot)$ and scalars α_m :

$$\mathbb{E}[g_m(X)] = \sum_{x \in \mathcal{X}} g_m(x) p(x) = \alpha_m \text{ for } m = 0, \dots, M$$

Maximum entropy principle Jaynes, 2003: Among all feasible distributions satisfying the constraints, choose the one with maximum entropy!

- Motivation: ensure no unwarranted assumptions on p(x) are made beyond what we know.
- MEP follows similar logic to Occam's razor and principle of insufficient reason

THE MAXIMUM ENTROPY PRINCIPLE

Can be solved via Lagrangian multipliers (here with base e)

Finding critical points $p^*(x)$:

$$\frac{\partial L}{\partial p(x)} = -\log(p(x)) - 1 + \lambda_0 + \sum_{m=1}^{M} \lambda_m g_m(x) \stackrel{!}{=} 0 \iff p^*(x) = \exp(\lambda_0 - 1) \exp\left(\sum_{m=1}^{M} \lambda_m g_m(x)\right)$$

This is a maximum as -1/p(x) < 0. Since probs must sum to 1 we get

$$1 \stackrel{!}{=} \sum_{x \in \mathcal{X}} p^*(x) = \frac{1}{\exp(1 - \lambda_0)} \sum_{x \in \mathcal{X}} \exp\left(\sum_{m=1}^{M} \lambda_m g_m(x)\right) \Rightarrow \exp(1 - \lambda_0) = \sum_{x \in \mathcal{X}} \exp\left(\sum_{m=1}^{M} \lambda_m g_m(x)\right)$$

Plugging $\exp(1 - \lambda_0)$ into $p^*(x)$ we obtain the constrained maxent distribution:

$$p^*(x) = \frac{\exp \sum_{m=1}^{M} \lambda_m g_m(x)}{\sum_{x \in \mathcal{X}} \exp \sum_{m=1}^{M} \lambda_m g_m(x)}$$

THE MAXIMUM ENTROPY PRINCIPLE

We now have: functional form of our distribution, up to M unknowns, the λ_m . But also: M equations, the moment conditions. So we can solve.

Example: Consider discrete RV representing a six-sided die roll and the moment condition $\mathbb{E}(X) = 4.8$. What is the maxent distribution?

• Condition means $g_1(x) = x$, $\alpha_1 = 4.8$. Then for some λ solution is

$$p^*(x) = \frac{\exp(\lambda g(x))}{\sum_{j=1}^6 \exp(\lambda g(x_j))} = \frac{\exp(\lambda x)}{\sum_{j=1}^6 \exp(\lambda x_j)}$$

• Inserting into moment condition and solving (numerically) for λ :

$$4.8 \stackrel{!}{=} \sum_{j=1}^{6} x_{j} p^{*}(x_{j}) = \frac{e^{\lambda} + \ldots + 6(e^{\lambda})^{6}}{e^{\lambda} + \ldots + (e^{\lambda})^{6}} \Rightarrow \lambda \approx 0.5141$$

Х	1	2	3	4	5	6
$p^*(x)$	3.22%	5.38%	9.01%	15.06%	25.19%	42.13%

