Pan Jing Bin

MA5249 Project Presentation Part 2

Outline

The Method of Chaining

2 Wasserstein Law of Large Numbers Revisited

3 Lower Bounds for Gaussian Processes

The key idea is to **decompose** the supremum

$$\sup_{t \in T} X_t \leq \sup_{t \in T} \left\{ X_t - X_{\pi(t)} \right\} + \sup_{t \in T} X_{\pi(t)}$$

and use the **Lipschitz property** $|X_s - X_t| \lesssim d(s,t)$ to control the **remainder**.

The key idea is to **decompose** the supremum

$$\sup_{t \in T} X_t \leq \sup_{t \in T} \left\{ X_t - X_{\pi(t)} \right\} + \sup_{t \in T} X_{\pi(t)}$$

and use the **Lipschitz property** $|X_s - X_t| \lesssim d(s,t)$ to control the **remainder**.

Problem: The Lipschitz property must hold **almost surely** and is far too restrictive!

The key idea is to **decompose** the supremum

$$\sup_{t \in T} X_t \leq \sup_{t \in T} \left\{ X_t - X_{\pi(t)} \right\} + \sup_{t \in T} X_{\pi(t)}$$

and use the **Lipschitz property** $|X_s - X_t| \lesssim d(s, t)$ to control the **remainder**.

Problem: The Lipschitz property must hold **almost surely** and is far too restrictive! What if we only require the Lipschitz property to hold in probability instead?

$$\mathbb{E}\big[X_t - X_{\pi(t)}\big] \lesssim \epsilon.$$

The key idea is to **decompose** the supremum

$$\sup_{t \in T} X_t \leq \sup_{t \in T} \left\{ X_t - X_{\pi(t)} \right\} + \sup_{t \in T} X_{\pi(t)}$$

and use the **Lipschitz property** $|X_s - X_t| \lesssim d(s,t)$ to control the **remainder**.

Problem: The Lipschitz property must hold **almost surely** and is far too restrictive! What if we only require the Lipschitz property to hold in probability instead?

$$\mathbb{E}\big[X_t - X_{\pi(t)}\big] \lesssim \epsilon.$$

Another problem: Cannot control the remainder directly. For example, the maximum of M i.i.d standard normal variables is asymptotically $\gtrsim \log M$.

The key idea is to **decompose** the supremum

$$\sup_{t \in T} X_t \leq \sup_{t \in T} \left\{ X_t - X_{\pi(t)} \right\} + \sup_{t \in T} X_{\pi(t)}$$

and use the **Lipschitz property** $|X_s - X_t| \lesssim d(s, t)$ to control the **remainder**.

Problem: The Lipschitz property must hold **almost surely** and is far too restrictive! What if we only require the Lipschitz property to hold in probability instead?

$$\mathbb{E}\big[X_t - X_{\pi(t)}\big] \lesssim \epsilon.$$

Another problem: Cannot control the remainder directly. For example, the maximum of M i.i.d standard normal variables is asymptotically $\gtrsim \log M$.

We are seemingly back at where we started...

All hope is not lost: The magnitude of the remainder term $X_t - X_{\pi(t)}$ is smaller than the original process.

All hope is not lost: The magnitude of the remainder term $X_t - X_{\pi(t)}$ is **smaller** than the original process.

Key idea: We repeat the same process but with a **finer** ϵ -net. If N' is an $\epsilon/2$ -net, then

$$\sup_{t \in T} \left\{ X_t - X_{\pi(t)} \right\} \leq \sup_{t \in T} \left\{ X_t - X_{\pi'(t)} \right\} + \sup_{t \in T} \left\{ X_{\pi'(t)} - X_{\pi(t)} \right\}.$$

All hope is not lost: The magnitude of the remainder term $X_t - X_{\pi(t)}$ is smaller than the original process.

Key idea: We repeat the same process but with a **finer** ϵ -net. If N' is an $\epsilon/2$ -net, then

$$\sup_{t \in T} \left\{ X_t - X_{\pi(t)} \right\} \leq \sup_{t \in T} \left\{ X_t - X_{\pi'(t)} \right\} + \sup_{t \in T} \left\{ X_{\pi'(t)} - X_{\pi(t)} \right\}.$$

We can repeat this process any number of times:

$$\sup_{t \in T} X_t \leq \sup_{t \in T} \underbrace{\left\{ X_t - X_{\pi_n(t)} \right\}}_{\sim 2^{-n}} + \sum_{k=1}^n \sup_{t \in T} \underbrace{\left\{ X_{\pi_k(t)} - X_{\pi_{k-1}(t)} \right\}}_{\sim 2^{-k}} + \sup_{t \in T} X_{\pi_0(t)}.$$

All hope is not lost: The magnitude of the remainder term $X_t - X_{\pi(t)}$ is smaller than the original process.

Key idea: We repeat the same process but with a **finer** ϵ -net. If N' is an $\epsilon/2$ -net, then

$$\sup_{t \in T} \left\{ X_t - X_{\pi(t)} \right\} \leq \sup_{t \in T} \left\{ X_t - X_{\pi'(t)} \right\} + \sup_{t \in T} \left\{ X_{\pi'(t)} - X_{\pi(t)} \right\}.$$

We can repeat this process any number of times:

$$\sup_{t \in T} X_t \leq \sup_{t \in T} \underbrace{\{X_t - X_{\pi_n(t)}\}}_{\sim 2^{-n}} + \sum_{k=1}^n \sup_{t \in T} \underbrace{\{X_{\pi_k(t)} - X_{\pi_{k-1}(t)}\}}_{\sim 2^{-k}} + \sup_{t \in T} X_{\pi_0(t)}.$$

If we can control the **telescoping series** and ensure that the remainder term **vanishes**, then a good estimate can still be obtained!

Subgaussian Separable Processes

Definition 5.1. (Subgaussian process)

A random process $\{X_t\}_{t\in T}$ on the metric space (T,d) is **subgaussian** if $\mathbb{E}[X_t]=0$ and

$$\mathbb{E}\big[e^{\lambda(X_s-X_t)}\big] \leq e^{\frac{\lambda^2 d(s,t)^2}{2}} \quad \text{ for all } s,t \in T \text{ and } \lambda \geq 0.$$

Subgaussian Separable Processes

Definition 5.1. (Subgaussian process)

A random process $\{X_t\}_{t\in\mathcal{T}}$ on the metric space (\mathcal{T},d) is **subgaussian** if $\mathbb{E}[X_t]=0$ and

$$\mathbb{E}\big[e^{\lambda(X_s-X_t)}\big] \leq e^{\frac{\lambda^2 d(s,t)^2}{2}} \quad \text{ for all } s,t \in \mathcal{T} \text{ and } \lambda \geq 0.$$

Definition 5.3. (Separable process)

A random process $\{X_t\}_{t\in T}$ is **separable** if there exists a countable subset $T_0\subseteq T$ and an event E of probability 1 such that for all $\omega\in E$ and $t\in T$, there exists a sequence $(t_k)_{k=1}^{\infty}$ in T_0 satisfying

$$\lim_{k\to\infty} X_{t_k}(\omega) = X_t(\omega).$$

Dudley Chaining Argument

$$\sup_{t \in T} X_t \leq \sup_{t \in T} \underbrace{\left\{ X_t - X_{\pi_n(t)} \right\}}_{\sim 2^{-n}} + \sum_{k=1}^n \sup_{t \in T} \underbrace{\left\{ X_{\pi_k(t)} - X_{\pi_{k-1}(t)} \right\}}_{\sim 2^{-k}} + \sup_{t \in T} X_{\pi_0(t)}.$$

With the separability and subgaussian assumptions, we have

Dudley Chaining Argument

$$\sup_{t \in T} X_t \leq \sup_{t \in T} \underbrace{\left\{ X_t - X_{\pi_n(t)} \right\}}_{\sim 2^{-n}} + \sum_{k=1}^n \sup_{t \in T} \underbrace{\left\{ X_{\pi_k(t)} - X_{\pi_{k-1}(t)} \right\}}_{\sim 2^{-k}} + \sup_{t \in T} X_{\pi_0(t)}.$$

With the separability and subgaussian assumptions, we have

Theorem 5.5. (Dudley)

Let $\{X_t\}_{t\in\mathcal{T}}$ be a separable subgaussian process on the metric space (\mathcal{T},d) . Then we have the following estimate:

$$\mathbb{E}\bigg[\sup_{t\in\mathcal{T}}X_t\bigg]\leq 6\sum_{k\in\mathbb{Z}}2^{-k}\sqrt{\log\mathcal{N}(\mathcal{T},d,2^{-k})}.$$

Dudley Chaining Argument

$$\sup_{t \in T} X_t \leq \sup_{t \in T} \underbrace{\left\{X_t - X_{\pi_n(t)}\right\}}_{\sim 2^{-n}} + \sum_{k=1}^n \sup_{t \in T} \underbrace{\left\{X_{\pi_k(t)} - X_{\pi_{k-1}(t)}\right\}}_{\sim 2^{-k}} + \sup_{t \in T} X_{\pi_0(t)}.$$

With the separability and subgaussian assumptions, we have

Theorem 5.5. (Dudley)

Let $\{X_t\}_{t\in\mathcal{T}}$ be a separable subgaussian process on the metric space (\mathcal{T},d) . Then we have the following estimate:

$$\mathbb{E}\bigg[\sup_{t\in\mathcal{T}}X_t\bigg]\leq 6\sum_{k\in\mathbb{Z}}2^{-k}\sqrt{\log\mathcal{N}(\mathcal{T},d,2^{-k})}.$$

Corollary 5.5.1. (Entropy Integral)

$$\mathbb{E}\left[\sup_{t\in\mathcal{T}}X_t\right]\leq 12\int_0^\infty\sqrt{\log N(\mathcal{T},d,\epsilon)}\ d\epsilon.$$

The process $\{X_f\}_{f\in\mathcal{F}}$ is subgaussian with respect to the rescaled metric $d(f,g)=n^{-1/2}\|f-g\|_{\infty}.$

The process $\{X_f\}_{f\in\mathcal{F}}$ is subgaussian with respect to the rescaled metric $d(f,g)=n^{-1/2}\|f-g\|_{\infty}$.

Lemma 3.8.

There exists a constant $c \in \mathbb{R}$ such that

$$\mathit{N}(\mathcal{F}, \|\cdot\|_{\infty}, \epsilon) \leq \mathrm{e}^{c/\epsilon} \ \mathrm{for} \ \epsilon < \frac{1}{2}, \qquad \mathit{N}(\mathcal{F}, \|\cdot\|_{\infty}, \epsilon) = 1 \ \mathrm{for} \ \epsilon \geq \frac{1}{2}.$$

Using the entropy integral inequality and Lemma 3.8, we get

The process $\{X_f\}_{f\in\mathcal{F}}$ is subgaussian with respect to the rescaled metric $d(f,g)=n^{-1/2}\|f-g\|_{\infty}$.

Lemma 3.8.

There exists a constant $c \in \mathbb{R}$ such that

$$\mathit{N}(\mathcal{F}, \|\cdot\|_{\infty}, \epsilon) \leq \mathrm{e}^{c/\epsilon} \ \mathrm{for} \ \epsilon < \frac{1}{2}, \qquad \mathit{N}(\mathcal{F}, \|\cdot\|_{\infty}, \epsilon) = 1 \ \mathrm{for} \ \epsilon \geq \frac{1}{2}.$$

Using the entropy integral inequality and Lemma 3.8, we get

$$\mathbb{E}\left[\sup_{f\in\mathcal{F}}X_{f}\right] = 12\int_{0}^{\infty}\sqrt{\log N(\mathcal{F}, n^{-1/2}\|\cdot\|_{\infty}, \epsilon)} \ d\epsilon$$

$$= \frac{12}{\sqrt{n}}\int_{0}^{\infty}\sqrt{\log N(\mathcal{F}, \|\cdot\|_{\infty}, \epsilon)} \ d\epsilon \leq \frac{12}{\sqrt{n}}\int_{0}^{1/2}\sqrt{\frac{c}{\epsilon}} \ d\epsilon.$$

The process $\{X_f\}_{f\in\mathcal{F}}$ is subgaussian with respect to the rescaled metric $d(f,g)=n^{-1/2}\|f-g\|_{\infty}$.

Lemma 3.8.

There exists a constant $c \in \mathbb{R}$ such that

$$N(\mathcal{F}, \|\cdot\|_{\infty}, \epsilon) \leq \mathrm{e}^{c/\epsilon} \text{ for } \epsilon < \frac{1}{2}, \qquad N(\mathcal{F}, \|\cdot\|_{\infty}, \epsilon) = 1 \text{ for } \epsilon \geq \frac{1}{2}.$$

Using the entropy integral inequality and Lemma 3.8, we get

$$\mathbb{E}\left[\sup_{f\in\mathcal{F}}X_{f}\right] = 12\int_{0}^{\infty}\sqrt{\log N(\mathcal{F}, n^{-1/2}\|\cdot\|_{\infty}, \epsilon)} \ d\epsilon$$

$$= \frac{12}{\sqrt{n}}\int_{0}^{\infty}\sqrt{\log N(\mathcal{F}, \|\cdot\|_{\infty}, \epsilon)} \ d\epsilon \leq \frac{12}{\sqrt{n}}\int_{0}^{1/2}\sqrt{\frac{c}{\epsilon}} \ d\epsilon.$$

Since the integral converges, we obtain the improved estimate

$$\mathbb{E}\left[\sup_{f\in\mathcal{F}}X_f\right]\lesssim n^{-1/2}$$

which is asymptotically **optimal!**

Question: In general, when are the upper bounds established by our method sharp?

Question: In general, when are the upper bounds established by our method sharp?

One possible approach: Supplement our upper bounds with corresponding lower bounds.

Question: In general, when are the upper bounds established by our method sharp?

One possible approach: Supplement our upper bounds with corresponding lower bounds.

Definition 7.1. (Gaussian process)

The random process $\{X_t\}_{t\in\mathcal{T}}$ is called a **(centered) Gaussian process** if for all $n\in\mathbb{Z}_{\geq 1}$ and indices t_1,\cdots,t_n , the random variables $\{X_{t_1},\cdots,X_{t_n}\}$ are centered (i.e. $\mathbb{E}[X_{t_i}]=0$ for each j) and jointly Gaussian.

Definition 7.3. (Natural distance)

A Gaussian process $\{X_t\}_{t\in T}$ is subgaussian on (T,d) under the natural distance $d(s,t):=\mathbb{E}\big[|X_s-X_t|^2\big]^{1/2}$.

Finite Minima

Guiding philosophy: First study the **finite** case, and then generalise to the **infinite** case.

Finite Minima

Guiding philosophy: First study the **finite** case, and then generalise to the **infinite** case.

Lemma 7.4.

If X_1, \dots, X_n are i.i.d $\mathcal{N}(0, \sigma^2)$ random variables, then

$$c\sqrt{\sigma^2\log n} \leq \mathbb{E}\left[\max_{i\leq n} X_i\right] \leq \sqrt{2\sigma^2\log n}$$

for some universal constant $c \in \mathbb{R}_{\geq 0}$.

Problem: How to reduce a Gaussian random process $\{X_t\}_{t \in T}$ to the case of finitely many **independent** random variables?

Problem: How to reduce a Gaussian random process $\{X_t\}_{t\in\mathcal{T}}$ to the case of finitely many **independent** random variables?

Theorem 7.5. (Slepian-Fernique)

Let $X \sim \mathcal{N}(0, \Sigma_X)$ and $Y \sim \mathcal{N}(0, \Sigma_Y)$ be *n*-dimensional Gaussian vectors. Suppose that we have

$$\mathbb{E}\big[|X_i - X_j|^2\big] \ge \mathbb{E}\big[|Y_i - Y_j|^2\big] \quad \text{ for all } i, j \in \{1, \cdots, n\}.$$

Then

$$\mathbb{E}\left[\max_{1\leq k\leq n}X_k\right]\geq \mathbb{E}\left[\max_{1\leq k\leq n}Y_k\right].$$

Problem: How to reduce a Gaussian random process $\{X_t\}_{t\in\mathcal{T}}$ to the case of finitely many **independent** random variables?

Theorem 7.5. (Slepian-Fernique)

Let $X \sim \mathcal{N}(0, \Sigma_X)$ and $Y \sim \mathcal{N}(0, \Sigma_Y)$ be *n*-dimensional Gaussian vectors. Suppose that we have

$$\mathbb{E}\big[|X_i-X_j|^2\big] \geq \mathbb{E}\big[|Y_i-Y_j|^2\big] \quad \text{ for all } i,j \in \{1,\cdots,n\}.$$

Then

$$\mathbb{E}\left[\max_{1\leq k\leq n}X_k\right]\geq \mathbb{E}\left[\max_{1\leq k\leq n}Y_k\right].$$

Approach: Find well-separated points $\{X_{t_1}, X_{t_2}, \cdots, X_{t_k}\}$ (i.e. $\mathbb{E}[|X_i - X_j|^2] \ge \delta$) reduce to an **independent** process by choosing the parameters accordingly.

Problem: How to reduce a Gaussian random process $\{X_t\}_{t\in\mathcal{T}}$ to the case of finitely many independent random variables?

Theorem 7.5. (Slepian-Fernique)

Let $X \sim \mathcal{N}(0, \Sigma_X)$ and $Y \sim \mathcal{N}(0, \Sigma_Y)$ be *n*-dimensional Gaussian vectors. Suppose that we have

$$\mathbb{E}\big[|X_i - X_j|^2\big] \ge \mathbb{E}\big[|Y_i - Y_j|^2\big] \quad \text{ for all } i, j \in \{1, \cdots, n\}.$$

Then

$$\mathbb{E}\left[\max_{1\leq k\leq n}X_k\right]\geq \mathbb{E}\left[\max_{1\leq k\leq n}Y_k\right].$$

Approach: Find well-separated points $\{X_{t_1}, X_{t_2}, \cdots, X_{t_k}\}$ (i.e. $\mathbb{E}[|X_i - X_i|^2] \ge \delta$) reduce to an independent process by choosing the parameters accordingly.

Also agrees with our principle that nearby points are highly dependent and points further away are nearly independent.

Theorem 7.6. (Sudakov)

For a Gaussian process $\{X_t\}_{t\in\mathcal{T}}$, we have the lower bound

$$\mathbb{E}\left[\sup_{t\in\mathcal{T}}X_{t}\right]\geq\widetilde{c}\sup_{\epsilon>0}\epsilon\sqrt{\log N(\mathcal{T},d,\epsilon)}$$

for a universal constant $\widetilde{c} \in \mathbb{R}_{\geq 0}$.

Theorem 7.6. (Sudakov)

For a Gaussian process $\{X_t\}_{t\in\mathcal{T}}$, we have the lower bound

$$\mathbb{E}\left[\sup_{t\in\mathcal{T}}X_{t}\right]\geq\widetilde{c}\sup_{\epsilon>0}\epsilon\sqrt{\log N(\mathcal{T},d,\epsilon)}$$

for a universal constant $\widetilde{c} \in \mathbb{R}_{\geq 0}$.

In conclusion:

$$\sup_{\epsilon>0} \epsilon \sqrt{\log \textit{N}(\textit{T},\textit{d},\epsilon)} \lesssim \mathbb{E}\left[\sup_{t\in \textit{T}} \textit{X}_t\right] \lesssim \int_0^\infty \sqrt{\log \textit{N}(\textit{T},\textit{d},\epsilon)} \ \textit{d}\epsilon.$$

The End

Thank you for your attention.

