RELATÓRIO 08: MÉTODOS DE PARTIDA DE MOTORES SÍNCRONOS

Batista, H.O.B.¹, Alves, W. F. O.²
Matriculas: 96704¹, 96708²
Departamento de Engenharia Elétrica,
Universidade Federal de Viçosa, Viçosa - MG.
e-mails: hiago.batista@ufv.br¹, werikson.alves@ufv.br²

I. Introdução

A máquina síncrona, apesar de suas vantagens tem um problema: não possui torque de partida. Devido a inercia do rotor, quando o campo magnético girando passa pelo rotor, com o rotor magnetizado, ele não consegue acompanhar o campo magnético girante, pois o campo está muito rápido e estão ele não parte, apenas vibra e aquece. Portanto nesta prática iremos conhecer três métodos de partida de motores síncronos:

- Fazer o paralelo do motor com a rede elétrica como se fosse um gerador síncrono;
- Partida por meio de enrolamentos amortecedores;
- Utilização do inversor de frequência.

II. OBJETIVOS GERAIS E ESPECÍFICOS

Esta aula tem por objetivo analisar os métodos utilizados para a partida de um motor síncrono e analisar o seu comportamento quando uma carga variável é conectada no seu eixo.

III. Materiais

- Duas máquinas de corrente contínua e duas máquinas síncronas;
- Duas fontes de tensão contínua, 220 V/10 A;
- Duas fontes de tensão contínua, 220 V/ 1 A;
- Dois reostatos 500 $\Omega/1$ A;
- Um tacômetro;
- Seis lâmpadas de 220 V;
- Três wattímetros monofásicos;
- Um inversor de frequência;
- Multímetros;
- 1 disjuntor tripolar;
- Fios de ligação;

IV. DESENVOLVIMENTO

Das três máquinas disponíveis no laboratório apenas uma tem enrolamentos amortecedores, portanto para partir as outras duas deverá fazer o paralelo com a rede ou utilizar o inversor de frequência.

A. Partida Pelo Enrolamento Amortecedor

Para partir com enrolamentos amortecedores, primeiramente devemos fechar um curto no enrolamento de campo, pois ira evitar altas tensões induzidas em cima do enrolamento de campo, e também o enrolamento de campo em curto auxilia no torque de partida; após realizado o curto iremos alimentar o estator da máquina. Assim que o rotor atingir a velocidade próxima da nominal basta remover o curto circuito e energizar o rotor com tensão contínua. Neste momento o rotor entra em sincronismo com o campo girante e os enrolamentos ficam inoperantes.

B. Partida Pelo Paralelo com a Rede

Neste método iremos iniciar a máquina como gerador e fazer o paralelo dele com a rede, ou seja, devemos seguir as seguintes regras:

- Mesmo valor eficaz;
- Mesma sequência de fase;
- Mesma forma de onda;
- Mesma frequência.

Fazendo o paralelo com o auxilio das lâmpadas, assim que elas se apagarem o paralelo está feito, depois disto, basta remover a maquina primária e a partir daí a máquina síncrona ira atuar como um motor síncrono.

C. Simulação com Carga Variável

Após estes experimentos será feito o ensaio do motor síncrono com carga variável no seu eixo. Para simular a carga no eixo o motor síncrono é acoplado ao eixo da máquina de corrente contínua, que estará funcionando como gerador de corrente contínua shunt. O motor síncrono é de quatro pólos, portanto a velocidade de acionamento do gerador de corrente contínua é 1800 RPM. Com esta velocidade a corrente do enrolamento de campo da máquina de corrente contínua é ajustada, para que a tensão nos terminais de armadura seja de 127 V.

V. Resultados e Discussões

A partir dos testes realizados em laboratório foi obtido a Tabela I, onde foi variada a carga no eixo da máquina.

Tabela I Dados Obtidos no Laboratório

Carga		VL (V)	IA (A)	ICC (A)	Rotação (rpm)
vazio	660	220	1,15	-	1800
carga	840	220	1,25	-	1800
carga	960	220	1,37	-	1800
carga	1080	220	1,51	-	1800
carga	1200	220	1,65	-	1800
carga	1320	220	1,82	-	1800
carga	1440	220	1,95	-	1800
carga	1560	220	2,09	-	1800
carga	1680	220	2,24	-	1800
carga	1740	220	2,35	-	1800
carga	2040	220	2,76	-	1800
carga	2640	220	2,59	-	1800

VI. Conclusões

Com a realização desta prática, foi possível perceber o fato da ausência de conjugado de partida em motores síncronos, o que não permite a partida convencional que era abordada até o presente momento. Assim, discutimos e aplicamos métodos específicos para realização da partida de um motor síncrono, além de avaliar a eficácia de cada um deles. Os dados comprovaram a utilização de cada método, bem como os cálculos realizados.

Referências

- [1] Stephen J Chapman. Fundamentos de máquinas elétricas.
- AMGH editora, 2013.

 J. T. Resende. Laboratorio de Máquinas Elétricas 2 Pratica 08.
 D.E.L.-UFV, 2022.