

## CLAIMS

1        1. A method for preventing passive release of interrupts within a computer sys-  
2 tem, the computer system having at least one processor for servicing the interrupts, one or  
3 more input/output (I/O) devices configured to issue interrupts, and an I/O bridge having a  
4 plurality of ports to which I/O devices are coupled and configured to interface between  
5 the I/O devices and the processor, the method comprising the steps of:

6            asserting an interrupt signal by a subject I/O device coupled to a given port of the  
7 I/O bridge;

8            forwarding an interrupt message corresponding to the interrupt signal to the proc-  
9 essor for servicing;

10          setting an interrupt pending flag in response to assertion of the interrupt signal;  
11          in response to the interrupt being serviced, generating a first ordered message, the  
12 first ordered message notifying the subject I/O device that the interrupt has been serviced;

13          generating a second ordered message for clearing the interrupt pending flag;

14          sending the first ordered message to the given port of the I/O bridge;

15          sending the second ordered message to the given port of the I/O bridge after the  
16 first message has been sent;

17          deasserting the interrupt signal in response to the first message; and

18          clearing the interrupt pending flag at the interrupt file in response to the second  
19 ordered message.

1        2. The method of claim 1 further comprising the step of forwarding the first or-  
2 dered message from the given I/O bridge port to the subject I/O device.

1        3. The method of claim 2 wherein the step of deasserting the interrupt signal is  
2 performed by the subject I/O device following its receipt of the first ordered message.

1        4. The method of claim 3 wherein the I/O bridge further includes an interrupt port  
2 and the interrupt pending flag is disposed at the interrupt port, the method further com-

3 prising the step of forwarding the second ordered message from the given I/O bridge port  
4 to the interrupt port.

1       5. The method of claim 4 wherein  
2           the interrupt pending flag is implemented through a register of the interrupt port;  
3           and  
4           the second ordered message is a write transaction to the register for clearing the  
5           interrupt pending flag.

1       6. The method of claim 5 further comprising the steps of:  
2           periodically collecting a set of information regarding the assertion of interrupt  
3           signals by I/O devices; and  
4           after the step of clearing the interrupt pending flag, waiting a predetermined time  
5           before collecting a next set of information regarding the assertion of interrupt signals.

1       7. The method of claim 6 wherein the step of periodically collecting is performed  
2           through one or more serial data transfer operations.

1       8. The method of claim 1 wherein the steps of generating the first and second or-  
2           dered messages are performed by the processor.

1       9. The method of claim 8 wherein the computer system includes (1) a plurality of  
2           processors at least one of which is designated to service interrupts from the subject I/O  
3           device, and (2) a plurality of I/O bridges each I/O bridge coupled to a plurality of I/O de-  
4           vices configured to assert respective interrupt signals.

1       10. The method of claim 1 wherein the interrupt signals are level sensitive inter-  
2           rupts (LSIs).

1       11. A computer system comprising:

2           a plurality of input/output (I/O) devices configured to assert and deassert respec-  
3       tive interrupt signals;

4           at least one processor for servicing interrupts from the I/O devices; and  
5           an I/O bridge configured to interface between the I/O devices and the at least one  
6       processor, the I/O bridge having a plurality of ports to which the I/O devices are coupled  
7       and an interrupt controller configured to detect the assertion and deassertion of the inter-  
8       rupt signals, wherein

9           the interrupt controller, in response to assertion of an interrupt signal by a subject  
10      I/O device coupled to a given I/O bridge port, issues an interrupt message to the proces-  
11      sor and sets an interrupt pending flag;

12           the processor, upon servicing the interrupt, sends first and second ordered mes-  
13      sages to the given port of the I/O bridge, the first ordered message notifying the subject  
14      I/O device that the interrupt has been serviced, and the second ordered message clearing  
15      the interrupt pending flag;

16           the subject I/O device deasserts the interrupt signal in response to the first mes-  
17      sage; and

18           the interrupt pending flag is cleared in response to the second ordered message.

1           13. The computer system of claim 12 wherein

2           the I/O bridge further includes an interrupt port at which the interrupt controller is  
3       disposed, and

4           the given port of the I/O bridge forwards the second ordered message to the inter-  
5       rupt port after forwarding the first ordered message to the subject I/O device.

1           14. The computer system of claim 13 wherein the interrupt port of the I/O bridge  
2       includes at least one register at which the interrupt pending flag is implemented.

1           15. The computer system of claim 12 wherein

2           the I/O bridge port includes a read cache for buffering messages received from the  
3       at least one processor, and an ordering engine operatively coupled to a read cache, and

4           the ordering engine is configured to release ordered messages buffered in the read  
5       cache in the same order as which they were received.

1           <sup>6</sup> 16. The computer system of claim 12 further comprising an interrupt collector  
2       having a parallel-load shift register for receiving the interrupt signals from the I/O de-  
3       vices, the serial shift register configured to transfer information indicating the assertion or  
4       deassertion of interrupt signals to the interrupt controller through one or more serial shift  
5       operations.

1           <sup>7</sup> 17. The computer system of claim 16 wherein  
2       the interrupt collector transfers the information in response to a request from the  
3       interrupt controller, and  
4       the interrupt controller is configured to limit the number of serial shift operations  
5       performed by the interrupt collector so as to receive only information associated with in-  
6       terrupt signals that have been enabled.

1           <sup>8</sup> 18. The computer system of claim 12 wherein the interrupt signals are level sen-  
2       sitive interrupts (LSIs).