

MIDS W241 Summer 2020 Final Project Preliminary Evaluation

Tina Huang Jeff Li Gunnar Mein

Core Question

Experiment question

Does rote vocalization + writing method improve memorization?

Motivation

- Validate techniques used in classroom
- Rote memorization important part of many fields

Experiment Design

Covariates: Age, gender, prior knowledge, reading level, practice

DiD - Part 1 - Baseline

- 1. Read 2 trivia topic paragraphs (less than 2 mins each) and questions
- 2. Watch 1 minute distraction video
- 3. Answer 4 questions about each topic (5 options multiple choice)

DiD - Part 2 - Control

- 2 new topics
- Rest of steps as in Part 1

DiD - Part 2 - Treatment

- 2 new topics
- Vocalize
- Write
- Rest of steps as in Part 1

Power calculation

- Online calculator:
 - https://www.stat.ubc.ca/~rollin/stats/ssize/n2.html
 - Sigma from binomial distribution
 - \circ P = 0.2 o for right answer
 - o 8 questions,
 - o Sigma = 1.131.
 - 21 samples per group for 80% power
- Overestimated effect size from the outset
 - Performance not random
 - Performance skewed toward correct answers
 - Bug in pilot made pilot results iffy
- Experiment:
 - Final size: ~57 per group

Code, Audience, Timeline

Website/Code

- Custom Java/HTML/JS, records to multiple CSVs
- On Microsoft Azure (small Linux box, \$13 per month)
- Code available at https://github.com/gunnarmein-ucbischool/w241-rote

Audience

- Middle + high school students (emails from school, ask on Teams)
- Shared to connections through social media: LinkedIn, Facebook, etc.

Timeline

- Small size test experiment: 7/21 7/23
- Actual experiment: 7/24 8/1

Implementation problems

- Bug in code severely affected pilot study
- People be cheatin' (back button)
- Email announcement was sent 3 hours before scheduled time
- Email announcement was buried under news

Who completed this test?

Randomization Check - Visual

Randomization check - Regression

Just after assignment:

```
Call:
glm(formula = treat ~ as.numeric(age) + gender + practice + reading +
   total_prior_knowledge, family = binomial(link = "logit"),
   data = df_{cov}
Deviance Residuals:
                  Median
-1.3466 -1.1913
                 0.9992
                           1.1545
                                   1.3134
Coefficients:
                      Estimate Std. Error z value Pr(>|z|)
                     -0.597085
                                 0.819745 -0.728
(Intercept)
as.numeric(age)
                     -0.001914
                                 0.010377 -0.184
                                                     0.854
```

Completed surveys only:

```
genderM
                     -0.226372
                                 0.366925 -0.617
                                                     0.537
genderother
                     -0.092063
                                 1.430418 -0.064
                                                     0.949
practice
                      0.029549
                                 0.182874
                                            0.162
                                                     0.872
reading
                      0.121791
                                 0.185597
                                            0.656
                                                     0.512
total_prior_knowledge 0.038501
                                 0.078087
                                            0.493
                                                     0.622
```

```
Call:
glm(formula = treat.x ~ as.numeric(age) + gender + practice +
    reading + total_prior_knowledge, family = binomial(link = "logit"),
    data = df_completed)
```

Deviance Residuals:

```
Min 1Q Median 3Q Max
-1.304 -1.123 -1.006 1.221 1.479
```

Coefficients:

	Estimate	Std. Error	z value	Pr(> z)
(Intercept)	-2.619e-01	9.426e-01	-0.278	0.781
as.numeric(age)	-8.774e-03	1.347e-02	-0.651	0.515
genderM	-3.255e-01	4.773e-01	-0.682	0.495
genderother	1.589e+01	1.455e+03	0.011	0.991
practice	7.319e-03	2.354e-01	0.031	0.975
reading	-1.316e-02	2.315e-01	-0.057	0.955
total_prior_knowledge	7.226e-02	9.910e-02	0.729	0.466

Potential Interference

- Not a real transferable treatment (interference would mean cheating)
- Potential reasons: Participants taking test together or sharing information
- Potential Impact: Underestimation of the ATE
- Solution:
 - Randomized test questions
 - Clustering by time slot:
 - New cluster randomly assigned every 5 minutes

Results - at a glance

Results - full regression tables

Table 2: Regression Results with Clustered Standard Errors

	Dependent variable: score		
	(1)	(2)	
treat	0.663*	0.659*	
	(0.327)	(0.319)	
age	0.006		
	(0.009)		
prior_knowledge	-0.027		
	(0.077)		
reading	-0.025		
resolution por re y.	(0.184)		
gender2	0.712		
73.8 	(0.399)		
practice	0.153		
	(0.176)		
Constant	0.126	0.660**	
	(0.731)	(0.245)	
Observations	94	97	
Adjusted R ²	0.007	0.029	
Residual Std. Error	1.679 (df = 87)	1.646 (df = 95)	
F Statistic	1.112 (df = 6; 87)	3.884 (df = 1; 95)	

ATET - Average Treatment Effect on Treated

- ATE, ITT not measurable in the face of significant attrition
- ATET = 0.66 (SE 0.33)
- Statistically significant
- Worth the extra effort? You decide.

Heterogeneous Treatment Effects

- Tested for age, gender, reading, practice
- No significant effects were found

Discussion

Things that went wrong::

- Test calibration
- Implementation details
- Attrition
- Initial power calculation

Things that went right:

- Treatment effect!
- Clustering
- Randomization
- Recording
- Cost-effectiveness

Attrition

- 28% drop between submission of covariates and first test
 - o 22% had already dropped off after pressing "start"
 - o 37% drop from submitted covariates by the end
 - o Potential reasons: test is too long, lack of interest, technical difficulties

BerkeleyMIDS

Improvements for Future Research

- Longer pre-study (2-3 weeks)
- Harder questions
- Shorter content
- Hard-code page flow
- Captive audience
- Random order of baseline/treatment?

Thank you for listening!

Questions?

BerkeleyMIDS