

Evento	Salão UFRGS 2017: SIC - XXIX SALÃO DE INICIAÇÃO
	CIENTÍFICA DA UFRGS
Ano	2017
Local	Campus do Vale
Título	Localização de Autovalores em Grafos Árvore
Autor	RAFAEL JACOBS KEHL
Orientador	CARLOS HOPPEN

Localização de Autovalores em Grafos Árvore

Rafael Jacobs Kehl (Bolsista PROPESQ - CNPQ) Universidade Federal do Rio Grande do Sul

Carlos Hoppen (Orientador)
Universidade Federal do Rio Grande do Sul

Resumo

A Teoria Espectral de Grafos estuda a relação existente entre o espectro – conjunto de autovalores e suas respectivas multiplicidades algébricas – de matrizes associadas a grafos e propriedades estruturais dos grafos. A matriz mais comumente utilizada para representar um grafo é a matriz de adjacências, cujo espectro é dito espectro do grafo.

Neste contexto, D. P. Jacobs e V. Trevisan desenvolveram o algoritmo Diagonalize(A, x), onde A é a matriz de adjacências de um grafo árvore e x um número real qualquer, que dá como output uma matriz diagonal D congruente a $B_x = A + xI$. Em posse desta ferramenta e da Lei da Inércia de Sylvester, é enunciado o $Teorema\ 1$, que nos dá uma forma eficiente de localizar os autovalores da matriz de adjacências de um grafo árvore qualquer.

Definição Dizemos que duas matrizes R e S são congruentes se existe uma matriz não singular P que satisfaz $R=P^TSP$.

Teorema (Lei da Inércia de Sylvester) Duas matrizes reais simétricas de ordem $n \times n$ são congruentes se e somente se elas têm o mesmo número de autovalores negativos e o mesmo número de autovalores positivos.

Teorema 1. Seja D=Diagonalize(A, -x). Temos então:

- 1. O número de entradas positivas de *D* é o número de autovalores de *A* maiores que *x*.
- 2. O número de entradas negativas de *D* é o número de autovalores de *A* menores que *x*.
- 3. O número de entradas nulas na diagonal de D é a multiplicidade de x como autovalor de A.

Este trabalho tem como objetivo implementar o algoritmo de D. P. Jacobs e V. Trevisan para grafos árvore e apresentar a demonstração do *Teorema 1* fazendo uso da Lei da Inércia de Sylvester.

Referências

D. P. JACOBS, V. TREVISAN (2001). *Locating the Eigenvalues of Trees*. Elsevier. DIESTEL, REINHARDT (2000). *Graph Theory* (2nd ed.). Springer-Verlag. N. ABREU, R. DEL-VECCHIO, V. TREVISAN, C. VINAGRE. *Teoria Espectral de Grafos – Uma Introdução*. IIIº Colóquio de Matemática da Região Sul.