Autoregressive Models, Variational Autoencoders, and ... Diffusion Models

Intelligent Visual Computing
Evangelos Kalogerakis

How to generate visual data?

- Encoder-Decoders
- Generative Adversarial Networks
- Autoregressive models
 - PixelRNN / PixelCNN
 - VQGAN
 - PolyGen
- Variational Autoencoders
- Diffusion models

Explicitly models data distribution by assuming that **our** data consists of individual elements

$$X = \{x_1, x_2, x_3, x_4...\}$$

e.g., an image consists of a (flattened) series of pixels, or a mesh consists of a series of triangles ...

Explicitly models data distribution by assuming that **our** data consists of individual elements

$$X = \{x_1, x_2, x_3, x_4...\}$$

e.g., an image consists of a (flattened) series of pixels, or a mesh consists of a series of triangles ...

Data distribution is modeled as:

$$P(\mathbf{X}) = P(\mathbf{x}_1) \cdot P(\mathbf{x}_2 \mid \mathbf{x}_1) \cdot P(\mathbf{x}_3 \mid \mathbf{x}_1, \mathbf{x}_2) \cdot P(\mathbf{x}_4 \mid \mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3) \dots$$

Explicitly models data distribution by assuming that **our** data consists of individual elements

$$X = \{x_1, x_2, x_3, x_4...\}$$

e.g., an image consists of a (flattened) series of pixels, or a mesh consists of a series of triangles ...

Data distribution is modeled as:

$$P(\mathbf{X}) = \prod_{t=0}^{T} P(\mathbf{x}_{t+1} | \mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, ..., \mathbf{x}_t)$$

Explicitly models data distribution by assuming that **our** data consists of individual elements

$$X = \{x_1, x_2, x_3, x_4...\}$$

e.g., an image consists of a (flattened) series of pixels, or a mesh consists of a series of triangles ...

Data distribution is modeled as:

$$P(\mathbf{X}) = \prod_{t=0}^{T} P(\mathbf{x}_{t+1} \mid \mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, ..., \mathbf{x}_t)$$

... a generative model conditioned on previous input model it with a network (what network?)

One idea (?)

Output:
$$P(x_{t+1} \mid x_1, x_2,...)$$

$$\varphi(\mathbf{W}^{(3)} \cdot \mathbf{h}^{(2)})$$
Representation $\mathbf{h}^{(2)}$

$$\varphi(\mathbf{W}^{(2)} \cdot \mathbf{h}^{(1)})$$
Representation $\mathbf{h}^{(1)}$

$$\varphi(\mathbf{W}^{(1)} \cdot \mathbf{x}[1:t])$$
Concatenate previous inputs

One idea (?)

How many previous inputs one should use?
Large input => Can be too complex model to learn

Introduces a loop allowing information to pass from previous inputs

Note: RNNs are not autoregressive since the previous x's are not provided explicitly – instead outputs depend on previous inputs via some hidden state

Another way to see this network is to unroll it Predictions can now be done like in a typical forward pass!

Similarly, all parameters can be learned through backpropagation!

Note: the parameters are shared by all time steps in the network - the gradient of each output depends on the calculations of the current time step + previous steps.

We can define losses, given ground-truth outputs at each time step

How to generate visual data?

- Encoder-Decoders
- Generative Adversarial Networks
- Autoregressive models
 - PixelRNN / PixelCNN
 - VQGAN
 - PolyGen
- Variational Autoencoders
- Diffusion models

Generate image pixels one at a time, starting at the upper left corner

Compute a hidden state for each pixel that depends on hidden states and RGB values from the pixel on the left and from the one above

$$\mathbf{h}_{\mathbf{x},\mathbf{y}} = f(\mathbf{h}_{\mathbf{x}-1,\mathbf{y}}, \, \mathbf{h}_{\mathbf{x},\mathbf{y}-1}; \mathbf{W})$$

Generate image pixels one at a time, starting at the upper left corner

Compute a hidden state for each pixel that depends on hidden states and RGB values from the pixel on the left and from the one above

$$\mathbf{h}_{\mathbf{x},\mathbf{y}} = f(\mathbf{h}_{\mathbf{x}-1,\mathbf{y}}, \, \mathbf{h}_{\mathbf{x},\mathbf{y}-1}; \mathbf{W})$$

Generate image pixels one at a time, starting at the upper left corner

Compute a hidden state for each pixel that depends on hidden states and RGB values from the pixel on the left and from the one above

$$\mathbf{h}_{\mathbf{x},\mathbf{y}} = f(\mathbf{h}_{\mathbf{x}-1,\mathbf{y}}, \, \mathbf{h}_{\mathbf{x},\mathbf{y}-1}; \mathbf{W})$$

Generate image pixels one at a time, starting at the upper left corner

Compute a hidden state for each pixel that depends on hidden states and RGB values from the pixel on the left and from the one above

$$\mathbf{h}_{\mathbf{x},\mathbf{y}} = f(\mathbf{h}_{\mathbf{x}-1,\mathbf{y}}, \, \mathbf{h}_{\mathbf{x},\mathbf{y}-1}; \mathbf{W})$$

Generate image pixels one at a time, starting at the upper left corner

Compute a hidden state for each pixel that depends on hidden states and RGB values from the pixel on the left and from the one above

$$\mathbf{h}_{\mathbf{x},\mathbf{y}} = f(\mathbf{h}_{\mathbf{x}-1,\mathbf{y}}, \, \mathbf{h}_{\mathbf{x},\mathbf{y}-1}; \mathbf{W})$$

Generate image pixels one at a time, starting at the upper left corner

Compute a hidden state for each pixel that depends on hidden states and RGB values from the pixel on the left and from the one above

$$\mathbf{h}_{\mathbf{x},\mathbf{y}} = f(\mathbf{h}_{\mathbf{x}-1,\mathbf{y}}, \, \mathbf{h}_{\mathbf{x},\mathbf{y}-1}; \mathbf{W})$$

Generate image pixels one at a time, starting at the upper left corner

Compute a hidden state for each pixel that depends on hidden states and RGB values from the pixel on the left and from the one above

$$\mathbf{h}_{\mathbf{x},\mathbf{y}} = f(\mathbf{h}_{\mathbf{x}-1,\mathbf{y}}, \, \mathbf{h}_{\mathbf{x},\mathbf{y}-1}; \mathbf{W})$$

Generate image pixels one at a time, starting at the upper left corner

Note that each pixel value is affected from all pixels above and to the left:

Generate image pixels one at a time, starting at the upper left corner

Note that each pixel value is affected from all pixels above and to the left:

Generate image pixels one at a time, starting at the upper left corner

Note that each pixel value is affected from all pixels above and to the left:

Problem: Very slow during both training and testing; N x N image generation requires lots of sequential steps

Still generate image pixels starting from corner

Dependency on previous pixels is modeled using a convnet with **masked convolution** filters capturing a context region

Still generate image pixels starting from corner

Dependency on previous pixels is modeled using a convnet with **masked convolution** filters capturing a context region

Two types of masks

1	1	1
1	0	0
0	0	0

For the first layer (connected to the input)

1	1	1
1	1	0
0	0	0

All other conv layers

Still generate image pixels starting from corner

Output generates a probability distribution

over pixel intensities [0,1,...,255]

Softmax loss

Training is faster than PixelRNN (parallelize convolutions)

Generation must still proceed sequentially (slow) starting from top left

32x32 ImageNet

Transformer Decoders

The decoder transformer can alternatively be used for auto-regressive prediction.

Its self-attention layer is only allowed to attend to earlier positions in the output sequence (also done by masking inputs)

How to generate visual data?

- Encoder-Decoders
- Generative Adversarial Networks
- Autoregressive models
 - PixelRNN / PixelCNN
 - VQGAN
 - PolyGen
- Variational Autoencoders
- Diffusion models

Autoregressive predictions of latents

VQGAN result

How to generate visual data?

- Encoder-Decoders
- Generative Adversarial Networks
- Autoregressive models
 - PixelRNN / PixelCNN
 - VQGAN
 - PolyGen
- Variational Autoencoders
- Diffusion models

Transformers for 3D mesh generation

Generated vertices as an ordered list (ordered by lowest to highest z-coordinate), then generates faces conditioned on the generated points and previous faces

Vertex Model Face Model

Generated Meshes

PolyGen: An Autoregressive Generative Model of 3D Meshes, ICML 2020

How to generate visual data?

- Encoder-Decoders
- Generative Adversarial Networks
- Autoregressive models
- Variational Autoencoders
- Diffusion models

Train such that features can reconstruct original data best they can!

After pre-training with a reconstruction loss, fine-tune encoder for a supervised task with **few amounts of data!**

Example: 3D point cloud pre-training

Unsupervised Point Cloud Pre-training via Occlusion Completion, ICCV 2021

Allow us to generate data!

Assume training data is generated from underlying unobserved latent representation z

At test time:

Allow us to generate data!

Assume training data is generated from underlying unobserved latent representation z

At test time:

How to train this model?

Maximum likelihood:

$$p_{\theta}(x) = \int_{z} p_{\theta}(z) p_{\theta}(x|z) dz$$

Sample from complex cond. distribution $P(x \mid z)$

(a neural network with learned param θ)

How to train this model?

Maximum likelihood:

$$p_{ heta}(x) = \int_{z}^{\infty} p_{ heta}(z) p_{ heta}(x|z) dz$$

Simple Gaussian Prior

Sample from complex cond. distribution $P(x \mid z)$

(a neural network with learned param θ)

How to train this model?

Maximum likelihood:

$$p_{ heta}(x) = \int_{z} p_{ heta}(z) p_{ heta}(x|z) dz$$

Sample from complex cond. distribution $P(x \mid z)$

Decoder Neural Network

(a neural network with learned param θ)

How to train this model?

Maximum likelihood:

$$p_{ heta}(x) = \int_{z} p_{ heta}(z) p_{ heta}(x|z) dz$$
 Intractable to compute for every z

Sample from complex cond. distribution $P(x \mid z)$

(a neural network with learned param θ)

How to train this model?

Maximum likelihood:

$$p_{ heta}(x) = \int_{z} p_{ heta}(z) p_{ heta}(x|z) dz$$
 Intractable to compute for every z

Sample from complex cond. distribution $P(x \mid z)$

(a neural network with learned param θ)

Sample from simple distribution P(z) (a Gaussian)

Posterior density is also intractable: $p_{ heta}(z|x) = p_{ heta}(x|z)p_{ heta}(z)/p_{ heta}(x)$

How to train this model?

Maximum likelihood:

$$p_{ heta}(x) = \int_{z} p_{ heta}(z) p_{ heta}(x|z) dz$$
 Intractable to compute for every z

Sample from complex cond. distribution $P(x \mid z)$

(a neural network with learned param θ)

Sample from simple distribution P(z) (a Gaussian)

Solution: approximate $p_{\theta}(z \mid x)$ with a tractable distribution $q_{\theta}(z \mid x)$

Posterior density is also intractable: $p_{\theta}(z|x) = p_{\theta}(x|z)p_{\theta}(z)/p_{\theta}(x)$

How to train this model?

Maximum likelihood:

$$p_{ heta}(x) = \int_{z} p_{ heta}(z) p_{ heta}(x|z) dz$$
 Intractable to compute for every z

Sample from complex cond. distribution $P(x \mid z)$

(a neural network with learned param θ)

Sample from simple distribution P(z) (a Gaussian)

Solution: approximate $p_{\theta}(z \mid x)$ with a neural network $q_{\phi}(z \mid x)$ [encoder]

Posterior density is also intractable: $p_{\theta}(z|x) = p_{\theta}(x|z)p_{\theta}(z)/p_{\theta}(x)$

Since we are modeling probabilistic generation of data, encoder and decoder networks are probabilistic (they model Gaussian distributions)

Forward pass during training

Forward pass during training

Forward pass during training

$$-\mathbf{E}_{z \sim q_{\phi}(z|x)} \log \left(p_{\theta}(x|z) \right) + KL \left(q_{\phi}(z|x) \| p_{\theta}(z) \right)$$

$$-\mathbf{E}_{z \sim q_{\phi}(z|x)} \log \left(p_{\theta}(x|z) \right) + KL \left(q_{\phi}(z|x) \| p_{\theta}(z) \right)$$
Reconstruction Loss

(outputs should be as close as possible to input)

reduces to $(x - \mu_{x|z})^2$ for fixed output covariance

$$-\mathbf{E}_{z \sim q_{\phi}(z|x)} \log \left(p_{\theta}(x|z) \right) + KL \left(q_{\phi}(z|x) \| p_{\theta}(z) \right)$$

Regularization term

Make distribution of the latent space produced by the encoder close to a standard Gaussian.

KL divergence

A measure of how one probability distribution is different from a second:

$$KL\left(q_{\phi}\left(z|x\right) \middle\| p_{\theta}(z)\right) = \int_{z} q_{\phi}\left(z|x\right) \log \frac{q_{\phi}\left(z|x\right)}{p_{\theta}(z)}$$

In our case, we want our latent space $p_{\theta}(z)$ to be N(0, I)

$$-\mathbf{E}_{z \sim q_{\phi}(z|x)} \log \left(p_{\theta}(x|z) \right) + KL \left(q_{\phi}(z|x) \| p_{\theta}(z) \right)$$

$$\lambda (x - \mu_{x|z})^{2} + \sum_{d=1}^{D} (\sigma_{z|x}^{2}[d] + \mu_{z|x}^{2}[d] - \log \sigma_{z|x}[d] - 1)$$

(where λ is a weighting term)

Backpropagation!

VAE Loss (skipping proofs...)

$$-\mathbf{E}_{z \sim q_{\phi}(z|x)} \log \left(p_{\theta}(x|z) \right) + KL \left(q_{\phi}(z|x) \| p_{\theta}(z) \right)$$

Minimize upper bound $\geq -\log p_{\theta}(x)$ on loss we care about!

Backpropagation!

Test time

Sample z from $z \sim \mathcal{N}(0, I)$

VAE Latent space

Diagonal prior on z => independent latent variables

Different dimensions of z encode interpretable factors of variation

Vary z₁

(degree of smile)

Data manifold for 2-d z

Vary z₂

(head pose)

VAE useful literature

 Understanding Variational Autoencoders: https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73

 Tutorial on Variational Autoencoders https://arxiv.org/pdf/1606.05908.pdf

 Today VAEs are mostly used to produce a low-dimensional latent space of data – latent diffusion models operate on this space...

How to generate visual data?

- Encoder-Decoders
- Generative Adversarial Networks
- Variational Autoencoders
- Autoregressive Models
- Diffusion models

Review: VAEs

Explicit generative model i.e., parameterizes data distribution: $P(x) = P(z) P(x \mid z)$, where P(z) and $P(x \mid z)$ are Gaussians

Review: VAEs

Many advantages e.g., fast sampling, no mode collapse, effective compression of input data, yet poor quality in generated samples

Review: VAEs

Many advantages e.g., fast sampling, no mode collapse, effective compression of input data, yet poor quality in generated samples

Diffusion models

Follow a more gradual, multi-step reconstruction approach

Diffusion models

Follow a more gradual, multi-step reconstruction approach

Diffusion models

Follow a more gradual, multi-step reconstruction approach

Diffusion models

Follow a more gradual, multi-step reconstruction approach

Diffusion models

Follow a more gradual, multi-step reconstruction

approach

Let's go from data x_0 to noise gradually, step-by-step with a simple process: add standard Gaussian noise ε at each step

 $q(x_t | x_{t-1}) = gaussian(previous image, some variance)$

q(
$$x_t | x_{t-1}$$
) = $N(x_{t-1}, \beta_t I)$

(where I is the diagonal matrix, i.e., add noise with diagonal covariance scaled by β_t)

q(
$$\mathbf{x_t} \mid \mathbf{x_{t-1}}) = N(\sqrt{a_t} \mathbf{x_{t-1}}, \beta_t \mathbf{I})$$

Scale down input and set: $a_t = 1 - \beta_t$... Why?

In the final step: $z = x_T \sim N(0, I)$

We destroyed the input making it unit Gaussian!

We now need to a way to map noise back to the data!

Remember that the forward process was:

 $q(x_t | x_{t-1}) = gaussian(previous image, some variance)$

Reverse the process? Complex... depends on entire dataset! $q(x_{t-1} \mid x_t) = not \ a \ gaussian!$

Use a neural network to approximate it in each small step $q(x_{t-1} \mid x_t) \approx gaussian(mean, variance)$

Given current noisy version x_t and time t, the network predicts mean & covariance based on learned parameters θ :

$$q(\mathbf{x}_{\mathsf{t-1}} \mid \mathbf{x}_{\mathsf{t}}) = N \; (\mu_{\theta}(\mathbf{x}_{\mathsf{t}}, \mathsf{t}), \; \Sigma_{\theta}(\mathbf{x}_{\mathsf{t}}, \mathsf{t}))$$

Need to learn these parameters θ ...

$$q(\mathbf{x}_{t-1} \mid \mathbf{x}_t) = N \left(\mu_{\theta}(\mathbf{x}_t, \mathbf{t}), \ \Sigma_{\theta}(\mathbf{x}_t, \mathbf{t}) \right)$$

$$q(x_{t-1} \mid x_t, x_0)$$

$$q(x_{t-1} \mid x_t, x_0) = N(\widetilde{\mu}_t, \widetilde{\Sigma}_t) \le computable distribution$$

$$q(\mathbf{x}_{t-1} \mid \mathbf{x}_t, \mathbf{x}_0) = N \ (\widetilde{\mu}_t, \ \widetilde{\Sigma}_t \) <= computable distribution$$

$$Argh...$$

$$\widetilde{\boldsymbol{\mu_t}} = (\frac{\sqrt{\alpha_t}}{\beta_t} \mathbf{x}_t + \frac{\sqrt{\bar{\alpha}_t}}{1 - \bar{\alpha}_t} \mathbf{x}_0) / (\frac{\alpha_t}{\beta_t} + \frac{1}{1 - \bar{\alpha}_t} \frac{\sqrt{\alpha_t}(1 - \bar{\alpha}_{t-1})}{1 - \bar{\alpha}_t} \mathbf{x}_t + \frac{\sqrt{\bar{\alpha}_{t-1}}\beta_t}{1 - \bar{\alpha}_t} \mathbf{x}_0)$$

where
$$\bar{\alpha}_t = \prod_{i=1}^T \alpha_i$$

$$q(\mathbf{x}_{t-1} \mid \mathbf{x}_t, \mathbf{x}_0) = N \ (\widetilde{\mu}_t, \ \widetilde{\Sigma}_t \) <= computable distribution$$

$$Argh...$$

$$\widetilde{\boldsymbol{\mu_t}} = (\frac{\sqrt{\alpha_t}}{\beta_t} \mathbf{x}_t + \frac{\sqrt{\bar{\alpha}_t}}{1 - \bar{\alpha}_t} \mathbf{x}_0) / (\frac{\alpha_t}{\beta_t} + \frac{1}{1 - \bar{\alpha}_t} \frac{\sqrt{\alpha_t} (1 - \bar{\alpha}_{t-1})}{1 - \bar{\alpha}_t} \mathbf{x}_t + \frac{\sqrt{\bar{\alpha}_{t-1}} \beta_t}{1 - \bar{\alpha}_t} \mathbf{x}_0)$$

$$\widetilde{\Sigma}_{t} = \widetilde{\beta}_{t} I$$
 and $\widetilde{\beta}_{t} = \frac{1 - \bar{\alpha}_{t-1}}{1 - \bar{\alpha}_{t}} \cdot \beta_{t}$

where
$$\bar{\alpha}_t = \prod_{i=1}^T \alpha_i$$

Basic idea: make the network predict these previous means & covariances as closely as possible using KL divergence...

$$q(\mathbf{x}_{\mathsf{t-1}} \mid \mathbf{x}_{\mathsf{t}}) = N \; (\mu_{\theta}(\mathbf{x}_{\mathsf{t}}, \mathsf{t}), \; \Sigma_{\theta}(\mathbf{x}_{\mathsf{t}}, \mathsf{t}))$$

One more helpful trick. Instead of predicting the mean...

$$q(\mathbf{x}_{t-1} \mid \mathbf{x}_t) = N \left(\mu_{\theta}(\mathbf{x}_t, \mathbf{t}), \ \Sigma_{\theta}(\mathbf{x}_t, \mathbf{t}) \right)$$

...predict the noise component (think of it as a residual)

$$q(\mathbf{x}_{t-1} \mid \mathbf{x}_t) = N \left(\alpha_t' \mathbf{x}_t - \gamma_t' \mathbf{\epsilon}_{\theta}(\mathbf{x}_t, \mathbf{t}), \ \Sigma_{\theta}(\mathbf{x}_t, \mathbf{t}) \right)$$

Diffusion models - training summary

1. Sampling step: generate noisy versions of the input image for a random step

2. Gradient descent step: Make the network predict the noise components for that step

Conditional Diffusion models

At test time predict the noise component $\varepsilon_{\theta}(\mathbf{x_t}, \mathbf{t}, \mathbf{c})$ conditioned on some input c e.g., class label, text embedding or...

Conditional Diffusion models

At test time predict the noise component $\varepsilon_{\theta}(\mathbf{x_t}, \mathbf{t}, \mathbf{c})$ conditioned on some input c e.g., class label, text embedding

or...

Predict instead $\varepsilon_{\theta}(\mathbf{x_t}, \mathbf{t}, \mathbf{c}) - \varepsilon_{\theta}(\mathbf{x_t}, \mathbf{t})$ i.e., push the diffusion towards the direction of the input c and away from the direction of input-agnostic noise

GLIDE results

"a green train is coming down the tracks"

"a group of skiers are preparing to ski down a mountain."

"a small kitchen with a low ceiling"

"a group of elephants walking in muddy water."

"a living area with a television and a table"

"a hedgehog using a calculator"

"a corgi wearing a red bowtie and a purple party hat"

"robots meditating in a vipassana retreat"

"a fall landscape with a small cottage next to a lake"

See also Dall-E 2: https://cdn.openai.com/papers/dall-e-2.pdf

LION: Latent Point Diffusion Models for 3D Shape Generation

Training only on 3D data?

3D datasets are limited in size

 Image diffusion models e.g., Dall-E dataset is 250M images!

Can we train 3D deep models based on 2D supervision?

DreamFusion!

Create 3D models that look like good images when rendered!

=> Last lectures: Differentiable Rendering