Symulowanie Procesów Losowych - Algorytm Insert Sort

Jakub Kogut

1 Wstęp

Sprawodzanie do zadania domowego 3, zadanie 2. – Sortowanie przez wstawianie losowych danych.

2 Opis Zadania

Zadanie polegało na zaimplementowaniu algorytmu sortowania przez wstawianie oraz przeprowadzeniu symulacji dla różnych wartości n.

Celem zadania było wyznaczenie ilości przestawień oraz porównań w poszczególnych powtórzeniach działania alorytmu.

3 Metodologia

Podana była ustalona wartość k=50 powtórzeń eksperymentu dla każdego n. Wartość n miała pochodzić ze zbioru $\{k\times 10^2:k\in\{1,...,10^2\}\}$. Dla każdego n wyznaczano średnią z k powtórzeń eksperymentu. Następnie wyznaczano odpowiednio wartość cmp(n) oraz s(n) dla każdego n.

4 Wnioski

Na podstawie przeprowadzonych symulacji można zauważyć, że obydwie wartości cmp(n) oraz s(n) rosną kwadratowo. Koncentracja poszczególnych wyników wokół średniej wartości jest wysoka.

4.1 Porównania cmp(n)

Na wykresie można zauważyć, że wartość cmp(n) rośnie kwadratowo. Wartość cmp(n) jest zależna od ilości porównań w algorytmie. Asymptotyke jasno można określić jako $O(n^2)$ przyglądając się wykresowi.

4.2 Przestawienia s(n)

Na wykresie można zauważyć, że wartość s(n) rośnie kwadratowo. Wartość s(n) jest zależna od ilości przestawień w algorytmie. Asymptotyke jasno można określić jako $O(n^2)$ przyglądając się wykresowi.

5 Podsumowanie

6 Wykresy

Rysunek 1: Wykres watosci $\operatorname{cmp}(n)$

Rysunek 2: Wykres watosci $\boldsymbol{s}(n)$

Rysunek 3: Wykres wartości $\frac{s(n)}{n}$

Rysunek 4: Wykres wartości ${\cal L}_n^{(2)}$

Rysunek 5: Wykres wartości $\frac{cmp(n)}{n}$

Rysunek 6: Wykres wartości $\frac{cmp(n)}{n^2}$