Job No.:
 2405053 - 4
 Address:
 270 Mt Heslington Road, Brightwater, New Zealand
 Date:
 22/07/2024

 Latitude:
 -41.403304
 Longitude:
 173.101144
 Elevation:
 82 m

General Input

Roof Live Load	0.25 KPa	Roof Dead Load	0.25 KPa	Roof Live Point Load	1.1 Kn
Snow Zone	N0	Ground Snow Load	0 KPa	Roof Snow Load	0 KPa
Earthquake Zone	2	Subsoil Category	D	Exposure Zone	В
Importance Level	1	Ultimate wind & Earthquake ARI	100 Years	Max Height	7.2 m
Wind Region	NZ2	Terrain Category	2.0	Design Wind Speed	40.91 m/s
Wind Pressure	1 KPa	Lee Zone	NO	Ultimate Snow ARI	50 Years
Wind Category	High	Earthquake ARI	100		

Note: Wind lateral loads are governing over Earthquake loads, So only wind loads are considered in calculations

Pressure Coefficients and Pressues

Shed Type = Gable Enclosed

For roof Cp, i = -0.3

For roof CP,e from 0 m To 2.67 m Cpe = -0.9272 pe = -0.84 KPa pnet = -0.84 KPa

For roof CP,e from 2.67 m To 5.34 m Cpe = -0.8864 pe = -0.80 KPa pnet = -0.80 KPa

For wall Windward $Cp_i = -0.3$ side Wall $Cp_i = -0.3$

For wall Windward and Leeward CP,e from 0 m To 19.6 m Cpe = 0.7 pe = 0.63 KPa pnet = 0.63 KPa

For side wall CP,e from 0 m To 5.34 m Cpe = pe = -0.59 KPa pnet = -0.59 KPa

Maximum Upward pressure used in roof member Design = 0.84 KPa

Maximum Downward pressure used in roof member Design = 0.28 KPa

Maximum Wall pressure used in Design = 0.63 KPa

Maximum Racking pressure used in Design = 0.91 KPa

Design Summary

Purlin Design

Purlin Spacing = 700 mm Purlin Span = 4850 mm Try Purlin 150x50 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and does not remain in continuous wet condition after installation)

K1 Short term = 1 K1 Medium term = 0.8 K1 Long term = 0.6 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward =0.56 S1 Downward =9.63 S1 Upward =22.25

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

M1.35D	0.69 Kn-m	Capacity	1.26 Kn-m	Passing Percentage	182.61 %
M1.2D+1.5L 1.2D+Sn 1.2D+WnDn	1.95 Kn-m	Capacity	1.68 Kn-m	Passing Percentage	86.15 %
$M_{0.9 D ext{-W} n Up}$	-1.27 Kn-m	Capacity	-1.18 Kn-m	Passing Percentage	262.22 %
V _{1.35D}	0.57 Kn	Capacity	7.24 Kn	Passing Percentage	1270.18 %

Second page

 $V_{1.2D+1.5L~1.2D+Sn~1.2D+WnDn}$ 1.15 Kn Capacity 9.65 Kn Passing Percentage 839.13 % $V_{0.9D-WnUp}$ -1.04 Kn Capacity -12.06 Kn Passing Percentage 1159.62 %

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3 considering at least 4 members acting together

k2 for Long Term Loads = 2

Deflection under Dead and Live Load = 30.81 mm

Limit by Woolcock et al, 1999 Span/240 = 20.00 mm

Deflection under Dead and Service Wind = 32.87 mm

Limit by Woolcock et al, 1999 Span/100 = 48.00 mm

Reactions

Maximum downward = 1.15 kn Maximum upward = -1.04 kn

Number of Blocking = 0 if 0 then no blocking required, if 1 then one midspan blocking required

Intermediate Design Sides

Intermediate Spacing = 2570.0003855000577 mm Intermediate Span = 6376 mm Try Intermediate 2x250x50 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 0.97

K8 Upward =1.00 S1 Downward =12.68 S1 Upward =1.07

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

Mwind+Snow 4.11 Kn-m Capacity 11.66 Kn-m Passing Percentage 283.70 % Vo.9D-WnUp 2.58 Kn Capacity 40.2 Kn Passing Percentage 1558.14 %

Deflections

Modulus of Elasticity = 5400 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 49.555 mm Limit by Woolcock et al, 1999 Span/100 = 63.76 mm

Reactions

Maximum = 2.58 kn

Girt Design Front and Back

Girt's Spacing = 1300 mm Girt's Span = 2500 mm Try Girt 150x50 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward = 0.86 S1 Downward = 9.63 S1 Upward = 16.05

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

MWind+Snow Capacity

3/5

 0.64 Kn-m
 1.80 Kn-m
 Passing Percentage
 281.25 %

 V_{0.9D-WnUp}
 1.02 Kn
 Capacity
 12.06 Kn
 Passing Percentage
 1182.35 %

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 4.42 mm

Limit by Woolcock et al, 1999 Span/100 = 25.00 mm

Sag during installation = 2.37 mm

Reactions

Maximum = 1.02 kn

Girt Design Sides

Girt's Spacing = 1300 mm

Girt's Span = 2570 mm

Try Girt 150x50 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward = 0.85 S1 Downward = 9.63 S1 Upward = 16.28

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

$M_{Wind+Snow}$	0.68 Kn-m	Capacity	1.78 Kn-m	Passing Percentage	261.76 %
V _{0.9D-WnUp}	1.05 Kn	Capacity	12.06 Kn	Passing Percentage	1148.57 %

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 4.94 mm

Limit by Woolcock et al. 1999 Span/100 = 25.70 mm

Sag during installation = 2.65 mm

Reactions

Maximum = 1.05 kn

Uplift Check

Density of Concrete = 24 Kn/m3

Density of Timber Pole = 5 Kn/m3

Due to cast in place pile, the surface interaction between soil and pile will be rough thus angle of friction between both is taken equal to soil angle of internal friction

Ks (Lateral Earth Pressure Coefficient) for cast into place concrete piles = 1.5

Formula to calculate Skin Friction = Safecty factor (0.55) x Density of Soil(18) x Height of Pile(1600) x Ks(1.5) x 0.5 x tan(30) x Pi x Dia of Pile(0.6) x Height of Pile(1600)

Skin Friction = 20.68 Kn

Weight of Pile + Pile Skin Friction = 24.34 Kn

Uplift on one Pile = 24.60 Kn

Uplift is ok