

DEX-0315

BN

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

#703
(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
31 January 2002 (31.01.2002)

PCT

(10) International Publication Number
WO 02/08278 A2

(51) International Patent Classification⁷: C07K 14/47

Clara, CA 95050 (US). CHEN, Seiyu [/US]; 160 Mira Street, Foster City, CA 94404 (US).

(21) International Application Number: PCT/US01/22949

(74) Agents: LICATA, Jane, Massey et al.; Licata & Tyrrell P.C., 66 E. Main Street, Marlton, NJ 08053 (US).

(22) International Filing Date: 20 July 2001 (20.07.2001)

(81) Designated States (*national*): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(25) Filing Language: English

(84) Designated States (*regional*): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

(26) Publication Language: English

Published:

— without international search report and to be republished upon receipt of that report

(30) Priority Data:
60/219,834 21 July 2000 (21.07.2000) US

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(63) Related by continuation (CON) or continuation-in-part (CIP) to earlier application:

US 60/219,834 (CIP)
Filed on 21 July 2000 (21.07.2000)

(71) Applicant (for all designated States except US): DI-ADEXUS, INC. [US/US]; 343 Oyster Point Boulevard, South San Francisco, CA 94080 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): MACINA, Roberto, A. [AR/US]; 4118 Crescendo Avenue, San Jose, CA 95136 (US). NAIR, Manoj [US/US]; 2491 Ramke Place, Santa

WO 02/08278 A2

(54) Title: COMPOSITIONS AND METHODS RELATING TO LUNG SPECIFIC GENES

(57) Abstract: The invention relates to LSG polypeptides, polynucleotides encoding the polypeptides, methods for producing the polypeptides, in particular by expressing the polynucleotides, and agonists and antagonists of the polypeptides. The invention further relates to methods for utilizing such polynucleotides, polypeptides, agonists and antagonists for applications, which relate, in part, to research, diagnostic and clinical arts.

DEK-0514

**COMPOSITIONS AND METHODS
RELATING TO LUNG SPECIFIC GENES**

INTRODUCTION

This application claims the benefit of priority from 5 U.S. Provisional Application Serial No. 60/219,834, filed July 21, 2000, which is herein incorporated in its entirety.

FIELD OF THE INVENTION

The present invention relates to newly identified 10 nucleic acids and polypeptides present in normal and neoplastic lung cells, including fragments, variants and derivatives of the nucleic acids and polypeptides. The present invention also relates to antibodies to the polypeptides of the invention, as well as agonists and 15 antagonists of the polypeptides of the invention. The invention also relates to compositions comprising the nucleic acids, polypeptides, antibodies, variants, derivatives, agonists and antagonists of the invention and methods for the use of these compositions. These uses 20 include identifying, diagnosing, monitoring, staging, imaging and treating lung cancer and non-cancerous disease states in lung, identifying lung tissue, monitoring and modifying lung embryonic development and differentiation, and identifying and/or designing agonists and antagonists 25 of polypeptides of the invention. The uses also include gene therapy, production of transgenic animals and cells, and production of engineered lung tissue for treatment and research.

- 2 -

BACKGROUND OF THE INVENTION

Throughout the last hundred years, the incidence of lung cancer has steadily increased, so much so that now in many countries, it is the most common cancers. In fact, 5 lung cancer is the second most prevalent type of cancer for both men and women in the United States and is the most common cause of cancer death in both sexes. Lung cancer deaths have increased ten-fold in both men and women since 1930, primarily due to an increase in cigarette smoking, 10 but also due to an increased exposure to arsenic, asbestos, chromates, chloromethyl ethers, nickel, polycyclic aromatic hydrocarbons and other agents. See Scott, Lung Cancer: A Guide to Diagnosis and Treatment, Addicus Books (2000) and Alberg et al., in Kane et al. (eds.) Biology of Lung 15 Cancer, pp. 11-52, Marcel Dekker, Inc. (1998). Lung cancer may result from a primary tumor originating in the lung or a secondary tumor which has spread from another organ such as the bowel or breast. Although there are over a dozen types of lung cancer, over 90% fall into two categories: 20 small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC). See Scott, *supra*. About 20-25% of all lung cancers are characterized as SCLC, while 70-80% are diagnosed as NSCLC. *Id.* A rare type of lung cancer is mesothelioma, which is generally caused by exposure to 25 asbestos, and which affects the pleura of the lung. Lung cancer is usually diagnosed or screened for by chest x-ray, CAT scans, PET scans, or by sputum cytology. A diagnosis of lung cancer is usually confirmed by biopsy of the tissue. *Id.*

30 SCLC tumors are highly metastatic and grow quickly. By the time a patient has been diagnosed with SCLC, the cancer has usually already spread to other parts of the body, including lymph nodes, adrenals, liver, bone, brain and bone marrow. See Scott, *supra*; Van Houtte et al. 35 (eds.), Progress and Perspective in the Treatment of Lung

- 3 -

Cancer, Springer-Verlag (1999). Because the disease has usually spread to such an extent that surgery is not an option, the current treatment of choice is chemotherapy plus chest irradiation. See Van Houtte, *supra*. The stage 5 of disease is a principal predictor of long-term survival. Less than 5% of patients with extensive disease that has spread beyond one lung and surrounding lymph nodes, live longer than two years. *Id.* However, the probability of five-year survival is three to four times higher if the 10 disease is diagnosed and treated when it is still in a limited stage, i.e., not having spread beyond one lung.

Id.

NSCLC is generally divided into three types: squamous cell carcinoma, adenocarcinoma and large cell 15 carcinoma. Both squamous cell cancer and adenocarcinoma develop from the cells that line the airways; however, adenocarcinoma develops from the goblet cells that produce mucus. Large cell lung cancer has been thus named because the cells look large and rounded when viewed 20 microscopically, and generally are considered relatively undifferentiated. See Yesner, *Atlas of Lung Cancer*, Lippincott-Raven (1998).

Secondary lung cancer is a cancer initiated elsewhere in the body that has spread to the lungs. Cancers that 25 metastasize to the lung include, but are not limited to, breast cancer, melanoma, colon cancer and Hodgkin's lymphoma. Treatment for secondary lung cancer may depend upon the source of the original cancer. In other words, a lung cancer that originated from breast cancer may be more responsive to breast cancer treatments and a lung cancer 30 that originated from the colon cancer may be more responsive to colon cancer treatments.

The stage of a cancer indicates how far it has spread and is an important indicator of the prognosis. In 35 addition, staging is important because treatment is often

- 4 -

decided according to the stage of a cancer. SCLC is divided into two stages: limited disease, i.e., cancer that can only be seen in one lung and in nearby lymph nodes; and extensive disease, i.e., cancer that has spread outside the lung to the chest or to other parts of the body. For most patients with SCLC, the disease has already progressed to lymph nodes or elsewhere in the body at the time of diagnosis. See Scott, *supra*. Even if spreading is not apparent on the scans, it is likely that some cancer cells may have spread away and traveled through the bloodstream or lymph system. In general, chemotherapy with or without radiotherapy is often the preferred treatment. The initial scans and tests done at first will be used later to see how well a patient is responding to treatment.

In contrast, non-small cell cancer may be divided into four stages. Stage I is highly localized cancer with no cancer in the lymph nodes. Stage II cancer has spread to the lymph nodes at the top of the affected lung. Stage III cancer has spread near to where the cancer started. This can be to the chest wall, the covering of the lung (pleura), the middle of the chest (mediastinum) or other lymph nodes. Stage IV cancer has spread to another part of the body. Stage I-III cancer is usually treated with surgery, with or without chemotherapy. Stage IV cancer is usually treated with chemotherapy and/or palliative care.

A number of chromosomal and genetic abnormalities have been observed in lung cancer. In NSCLC, chromosomal aberrations have been described on 3p, 9p, 11p, 15p and 17p, and chromosomal deletions have been seen on chromosomes 7, 11, 13 and 19. See Skarin (ed.), *Multimodality Treatment of Lung Cancer*, Marcel Dekker, Inc. (2000); Gemmill et al., pp. 465-502, in Kane, *supra*; Bailey-Wilson et al., pp. 53-98, in Kane, *supra*. Chromosomal abnormalities have been described on 1p, 3p, 5q, 6q, 8q, 13q and 17p in SCLC. *Id.* In addition, the

- 5 -

loss of the short arm of chromosome 3p has also been seen in greater than 90% of SCLC tumors and approximately 50% of NSCLC tumors. *Id.*

A number of oncogenes and tumor suppressor genes have 5 been implicated in lung cancer. See Mabry, pp. 391-412, in Kane, *supra* and Sclafani et al., pp. 295-316, in Kane, *supra*. In both SCLC and NSCLC, the p53 tumor suppressor gene is mutated in over 50% of lung cancers. See Yesner, *supra*. Another tumor suppressor gene, FHIT, which is found 10 on chromosome 3p, is mutated by tobacco smoke. *Id.*; Skarin, *supra*. In addition, more than 95% of SCLCs and approximately 20-60% of NSCLCs have an absent or abnormal retinoblastoma (Rb) protein, another tumor suppressor gene. The ras oncogene (particularly K-ras) is mutated in 20-30% 15 of NSCLC specimens and the c-erbB2 oncogene is expressed in 18% of stage 2 NSCLC and 60% of stage 4 NSCLC specimens. See Van Houtte, *supra*. Other tumor suppressor genes that are found in a region of chromosome 9, specifically in the region of 9p21, are deleted in many cancer cells, including 20 p16^{INK4A} and p15^{INK4B}. See Bailey-Wilson, *supra*; Sclafani et al., *supra*. These tumor suppressor genes may also be implicated in lung cancer pathogenesis.

In addition, many lung cancer cells produce growth factors that may act in an autocrine fashion on lung cancer 25 cells. See Siegfried et al., pp. 317-336, in Kane, *supra*; Moody, pp. 337-370, in Kane, *supra* and Heasley et al., 371-390, in Kane, *supra*. In SCLC, many tumor cells produce gastrin-releasing peptide (GRP), which is a proliferative growth factor for these cells. See Skarin, *supra*. Many 30 NSCLC tumors express epidermal growth factor (EGF) receptors, allowing NSCLC cells to proliferate in response to EGF. Insulin-like growth factor (IGF-I) is elevated in greater than 95% of SCLC and greater than 80% of NSCLC tumors; it is thought to function as an autocrine growth

- 6 -

factor. *Id.* Finally, stem cell factor (SCF, also known as steel factor or kit ligand) and c-Kit (a proto-oncoprotein tyrosine kinase receptor for SCF) are both expressed at high levels in SCLC, and thus may form an autocrine loop
5 that increases proliferation. *Id.*

Although the majority of lung cancer cases are attributable to cigarette smoking, most smokers do not develop lung cancer. Epidemiological evidence has suggested that susceptibility to lung cancer may be
10 inherited in a Mendelian fashion, and thus have an inherited genetic component. Bailey-Wilson, *supra*. Thus, it is thought that certain allelic variants at some genetic loci may affect susceptibility to lung cancer. *Id.* One way to identify which allelic variants are likely to be
15 involved in lung cancer susceptibility, as well as susceptibility to other diseases, is to look at allelic variants of genes that are highly expressed in lung.

The lung is also susceptible to a number of other debilitating diseases, including, without limitation,
20 emphysema, pneumonia, cystic fibrosis and asthma. See Stockley (ed.), Molecular Biology of the Lung, Volume I: Emphysema and Infection, Birkhauser Verlag (1999), hereafter Stockley I, and Stockley (ed.), Molecular Biology of the Lung, Volume II: Asthma and Cancer, Birkhauser
25 Verlag (1999), hereafter Stockley II. The cause of many these disorders is still not well understood and there are few, if any, good treatment options for many of these noncancerous lung disorders. Thus, there remains a need to understand various noncancerous lung disorders and to
30 identify treatments for these diseases.

In yet another aspect, the development and differentiation of the lung tissue is important during embryonic development. All of the epithelial cells of the respiratory tract, including those of the lung and bronchi,
35 are derived from the primitive endodermal cells that line

- 7 -

the embryonic outpouching. See Yesner, *supra*. During embryonic development, multipotent endodermal stem cells differentiate into many different types of specialized cells, which include ciliated cells for moving inhaled particles, goblet cells for producing mucus, Kulchitsky's cells for endocrine function, and Clara cells and type II pneumocytes for secreting surfactant protein. *Id.* Improper development and differentiation may cause respiratory disorders and distress in infants, particularly in premature infants, whose lungs cannot produce sufficient surfactant when they are born. Further, some lung cancer cells, particularly small cell carcinomas, appear multipotent, and can spontaneously differentiate into a number of cell types, including small cell carcinoma, adenocarcinoma and squamous cell carcinoma. *Id.* Thus, a better understanding of lung development and differentiation may help facilitate understanding of lung cancer initiation and progression.

Accordingly, there is a great need for more sensitive and accurate methods for predicting whether a person is likely to develop lung cancer, for diagnosing lung cancer, for monitoring the progression of the disease, for staging the lung cancer, for determining whether the lung cancer has metastasized and for imaging the lung cancer. There is also a need for better treatment of lung cancer. Further, there is also a great need for diagnosing and treating noncancerous lung disorders such as emphysema, pneumonia, lung infection, pulmonary fibrosis, cystic fibrosis and asthma. There is also a need for compositions and methods of using them that can be used to identify lung tissue for forensic purposes and for determining whether a particular cell or tissue exhibits lung-specific characteristics.

In the present invention, methods are provided for detecting, diagnosing, monitoring, staging, prognosticating, imaging and treating lung cancer via lung

- 8 -

specific genes referred to herein as LSGs. For purposes of the present invention, LSG refers, among other things, to native protein expressed by the gene comprising a polynucleotide sequence of SEQ ID NO:1, 2, 3, 4, 5, 6, 7, 5 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, or 22 or a contig of SEQ ID NO: 19 or 21 as depicted in SEQ ID NO: 37, or 38, respectively. By "LSG" it is also meant herein polynucleotides which, due to degeneracy in genetic coding, comprise variations in nucleotide sequence as 10 compared to SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 37, 38, 39 or 40 but which still encode the same polypeptide. Exemplary amino acid sequences for LSG polypeptides are set forth in SEQ ID NO: 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 15 51, 52, 53, 54, 55 and 56. In the alternative, what is meant by LSG as used herein, means the native mRNA encoded by the gene comprising the polynucleotide sequence of SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19; 20, 21 or 22, levels of the gene comprising 20 the polynucleotide sequence of SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19; 20, 21, or 22 or levels of a polynucleotide which is capable of hybridizing under stringent conditions to the antisense sequence of SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 25 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 37, or 38.

Other objects, features, advantages and aspects of the present invention will become apparent to those of skill in the art from the following description. It should be understood, however, that the following description and 30 the specific examples, while indicating preferred embodiments of the invention are given by way of illustration only. Various changes and modifications within the spirit and scope of the disclosed invention will become readily apparent to those skilled in the art from

- 9 -

reading the following description and from reading the other parts of the present disclosure.

SUMMARY OF THE INVENTION

Toward these ends, and others, it is an object of the 5 present invention to provide LSGs comprising a polynucleotide of SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 37 or 38 a protein expressed by a polynucleotide of SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 10 19, 20, 21, 22, 37 or 38 or a variant thereof which expresses the protein; or a polynucleotide which is capable of hybridizing under stringent conditions to the antisense sequence of SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 37 or 38. 15 Exemplary LSG polypeptides of the present invention are depicted in SEQ DI NO: 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55 or 56.

It is another object of the present invention to provide a method for diagnosing the presence of lung cancer 20 by analyzing for changes in levels of LSG in cells, tissues or bodily fluids compared with levels of LSG in preferably the same cells, tissues, or bodily fluid type of a normal human control, wherein a change in levels of LSG in the patient versus the normal human control is associated with 25 lung cancer.

Further provided is a method of diagnosing metastatic lung cancer in a patient having lung cancer which is not known to have metastasized by identifying a human patient suspected of having lung cancer that has metastasized; 30 analyzing a sample of cells, tissues, or bodily fluid from such patient for LSG; comparing the LSG levels in such cells, tissues, or bodily fluid with levels of LSG in preferably the same cells, tissues, or bodily fluid type of a normal human control, wherein an increase in LSG levels

- 10 -

in the patient versus the normal human control is associated with lung cancer which has metastasized.

Also provided by the invention is a method of staging lung cancer in a human which has such cancer by identifying 5 a human patient having such cancer; analyzing a sample of cells, tissues, or bodily fluid from such patient for LSG; comparing LSG levels in such cells, tissues, or bodily fluid with levels of LSG in preferably the same cells, tissues, or bodily fluid type of a normal human control 10 sample, wherein an increase in LSG levels in the patient versus the normal human control is associated with a cancer which is progressing and a decrease in the levels of LSG is associated with a cancer which is regressing or in remission.

15 Further provided is a method of monitoring lung cancer in a human having such cancer for the onset of metastasis. The method comprises identifying a human patient having such cancer that is not known to have metastasized; periodically analyzing a sample of cells, 20 tissues, or bodily fluid from such patient for LSG; comparing the LSG levels in such cells, tissue, or bodily fluid with levels of LSG in preferably the same cells, tissues, or bodily fluid type of a normal human control sample, wherein an increase in LSG levels in the patient 25 versus the normal human control is associated with a cancer which has metastasized.

Further provided is a method of monitoring the change in stage of lung cancer in a human having such cancer by looking at levels of LSG in a human having such cancer. 30 The method comprises identifying a human patient having such cancer; periodically analyzing a sample of cells, tissues, or bodily fluid from such patient for LSG; comparing the LSG levels in such cells, tissue, or bodily fluid with levels of LSG in preferably the same cells, 35 tissues, or bodily fluid type of a normal human control

- 11 -

sample, wherein an increase in LSG levels in the patient versus the normal human control is associated with a cancer which is progressing and a decrease in the levels of LSG is associated with a cancer which is regressing or in
5 remission.

Further provided are methods of designing new therapeutic agents targeted to a LSG for use in imaging and treating lung cancer. For example, in one embodiment, therapeutic agents such as antibodies targeted against LSG
10 or fragments of such antibodies can be used to treat, detect or image localization of LSG in a patient for the purpose of detecting or diagnosing a disease or condition. In this embodiment, an increase in the amount of labeled antibody detected as compared to normal tissue would be
15 indicative of tumor metastases or growth. Such antibodies can be polyclonal, monoclonal, or omniclonal or prepared by molecular biology techniques. The term "antibody", as used herein and throughout the instant specification is also meant to include aptamers and single-stranded
20 oligonucleotides such as those derived from an *in vitro* evolution protocol referred to as SELEX and well known to those skilled in the art. Antibodies can be labeled with a variety of detectable and therapeutic labels including, but not limited to, radioisotopes and paramagnetic metals.
25 Therapeutic agents such as small molecules and antibodies which decrease the concentration and/or activity of LSG can also be used in the treatment of diseases characterized by overexpression of LSG. Such agents can be readily identified in accordance with teachings herein.
30 Other objects, features, advantages and aspects of the present invention will become apparent to those of skill in the art from the following description. It should be understood, however, that the following description and the specific examples, while indicating preferred
35 embodiments of the invention, are given by way of

- 12 -

illustration only. Various changes and modifications within the spirit and scope of the disclosed invention will become readily apparent to those skilled in the art from reading the following description and from reading the
5 other parts of the present disclosure.

GLOSSARY

The following illustrative explanations are provided to facilitate understanding of certain terms used frequently herein, particularly in the examples. The
10 explanations are provided as a convenience and are not limitative of the invention.

ISOLATED means altered "by the hand of man" from its natural state; i.e., that, if it occurs in nature, it has been changed or removed from its original environment, or
15 both.

For example, a naturally occurring polynucleotide or a polypeptide naturally present in a living animal in its natural state is not "isolated," but the same polynucleotide or polypeptide separated from the coexisting
20 materials of its natural state is "isolated", as the term is employed herein. For example, with respect to polynucleotides, the term isolated means that it is separated from the chromosome and cell in which it naturally occurs.

25 As part of or following isolation, such polynucleotides can be joined to other polynucleotides, such as DNAs, for mutagenesis, to form fusion proteins, and for propagation or expression in a host, for instance. The isolated polynucleotides, alone or joined to other
30 polynucleotides such as vectors, can be introduced into host cells, in culture or in whole organisms. When introduced into host cells in culture or in whole organisms, such DNAs still would be isolated, as the term is used herein, because they would not be in their

- 13 -

naturally occurring form or environment. Similarly, the polynucleotides and polypeptides may occur in a composition, such as media formulations, solutions for introduction of polynucleotides or polypeptides, for 5 example, into cells, compositions or solutions for chemical or enzymatic reactions, for instance, which are not naturally occurring compositions, and, therein remain isolated polynucleotides or polypeptides within the meaning of that term as it is employed herein.

10 OLIGONUCLEOTIDE(S) refers to relatively short polynucleotides. Often the term refers to single-stranded deoxyribonucleotides, but it can refer as well to single- or double-stranded ribonucleotides, RNA:DNA hybrids and double-stranded DNAs, among others.

15 Oligonucleotides, such as single-stranded DNA probe oligonucleotides, often are synthesized by chemical methods, such as those implemented on automated oligonucleotide synthesizers. However, oligonucleotides can be made by a variety of other methods, including in 20 vitro recombinant DNA-mediated techniques and by expression of DNAs in cells and organisms.

Initially, chemically synthesized DNAs typically are obtained without a 5' phosphate. The 5' ends of such oligonucleotides are not substrates for phosphodiester bond 25 formation by ligation reactions that employ DNA ligases typically used to form recombinant DNA molecules. Where ligation of such oligonucleotides is desired, a phosphate can be added by standard techniques, such as those that employ a kinase and ATP.

30 The 3' end of a chemically synthesized oligonucleotide generally has a free hydroxyl group and, in the presence of a ligase such as T4 DNA ligase, readily will form a phosphodiester bond with a 5' phosphate of another polynucleotide, such as another oligonucleotide. 35 As is well known, this reaction can be prevented

- 14 -

selectively, where desired, by removing the 5' phosphates of the other polynucleotide(s) prior to ligation.

POLYNUCLEOTIDE(S) generally refers to any polyribonucleotide or polydeoxribonucleotide and is 5 inclusive of unmodified RNA or DNA as well as modified RNA or DNA. Thus, for instance, polynucleotides as used herein refers to, among other things, single- and double-stranded DNA, DNA that is a mixture of single- and double-stranded regions, single- and double-stranded RNA, and RNA that is 10 mixture of single- and double-stranded regions, hybrid molecules comprising DNA and RNA that may be single-stranded or, more typically, double-stranded or a mixture of single- and double-stranded regions. In addition, polynucleotide, as used herein, refers to triple-stranded 15 regions comprising RNA or DNA or both RNA and DNA. The strands in such regions may be from the same molecule or from different molecules. The regions may include all of one or more of the molecules, but more typically involve only a region of some of the molecules. One of the 20 molecules of a triple-helical region often is an oligonucleotide.

As used herein, the term polynucleotide is also inclusive of DNAs or RNAs as described above that contain one or more modified bases. Thus, DNAs or RNAs with 25 backbones modified for stability or for other reasons are "polynucleotides" as that term is intended herein. Moreover, DNAs or RNAs comprising unusual bases, such as inosine, or modified bases, such as tritylated bases, to name just two examples, are polynucleotides as the term is 30 used herein.

It will be appreciated that a great variety of modifications have been made to DNA and RNA that serve many useful purposes known to those of skill in the art. The term polynucleotide as it is employed herein embraces such 35 chemically, enzymatically or metabolically modified forms

- 15 -

of polynucleotides, as well as chemical forms of DNA and RNA characteristic of viruses and cells, including simple and complex cells, inter alia.

POLYPEPTIDES, as used herein, includes all 5 polypeptides as described below. The basic structure of polypeptides is well known and has been described in innumerable textbooks and other publications in the art. In this context, the term is used herein to refer to any peptide or protein comprising two or more amino acids 10 joined to each other in a linear chain by peptide bonds. As used herein, the term refers to both short chains, which also commonly are referred to in the art as peptides, oligopeptides and oligomers, for example, and to longer chains, which generally are referred to in the art as 15 proteins, of which there are many types. It will be appreciated that polypeptides often contain amino acids other than the 20 amino acids commonly referred to as the 20 naturally occurring amino acids, and that many amino acids, including the terminal amino acids, may be modified 20 in a given polypeptide, either by natural processes such as processing and other post-translational modifications, or by chemical modification techniques which are well known to the art. Even the common modifications that occur naturally in polypeptides are too numerous to list 25 exhaustively here, but they are well described in basic texts and in more detailed monographs, as well as in a voluminous research literature, and they are well known to those of skill in the art.

Modifications which may be present in polypeptides of 30 the present invention include, to name an illustrative few, acetylation, acylation, ADP-ribosylation, amidation, covalent attachment of flavin, covalent attachment of a heme moiety, covalent attachment of a nucleotide or nucleotide derivative, covalent attachment of a lipid or 35 lipid derivative, covalent attachment of

- 16 -

phosphotidylinositol, cross-linking, cyclization, disulfide bond formation, demethylation, formation of covalent cross-links, formation of cystine, formation of pyroglutamate, formylation, gamma-carboxylation, glycosylation, GPI anchor formation, hydroxylation, iodination, methylation, myristoylation, oxidation, proteolytic processing, phosphorylation, prenylation, racemization, selenoylation, sulfation, transfer-RNA mediated addition of amino acids to proteins such as arginylation, and ubiquitination.

Such modifications are well known to those of skill and have been described in great detail in the scientific literature. Several particularly common modifications including, but not limited to, glycosylation, lipid attachment; sulfation, gamma-carboxylation of glutamic-acid residues, hydroxylation and ADP-ribosylation are described in most basic texts, such as, for instance PROTEINS STRUCTURE AND MOLECULAR PROPERTIES, 2nd Ed., T. E. Creighton, W. H. Freeman and Company, New York (1993). Many detailed reviews are available on this subject, such as, for example, those provided by Wold, F., Posttranslational Protein Modifications: Perspectives and Prospects, pgs. 1-12 in POSTTRANSLATIONAL COVALENT MODIFICATION OF PROTEINS, B. C. Johnson, Ed., Academic Press, New York (1983); Seifter et al., Analysis for protein modifications and nonprotein cofactors, Meth. Enzymol. 182: 626-646 (1990) and Rattan et al., Protein Synthesis: Posttranslational Modifications and Aging, Ann. N.Y. Acad. Sci. 663: 48-62 (1992).

It will be appreciated that the polypeptides of the present invention are not always entirely linear. Instead, polypeptides may be branched as a result of ubiquitination, and they may be circular, with or without branching, generally as a result of posttranslation events including natural processing event and events brought about by human manipulation which do not occur naturally. Circular,

- 17 -

branched and branched circular polypeptides may be synthesized by non-translation natural processes and by entirely synthetic methods, as well.

Modifications can occur anywhere in a polypeptide,
5 including the peptide backbone, the amino acid side-chains
and the amino or carboxyl termini. In fact, blockage of
the amino and/or carboxyl group in a polypeptide by a
covalent modification is common in naturally occurring and
synthetic polypeptides and such modifications may be
10 present in polypeptides of the present invention, as well.
For instance, the amino terminal residue of polypeptides
made in *E. coli*, prior to proteolytic processing, almost
invariably will be N-formylmethionine.

The modifications that occur in a polypeptide often
15 will be a function of how it is made. For polypeptides
made by expressing a cloned gene in a host, for instance,
the nature and extent of the modifications, in large part,
will be determined by the host cell posttranslational
modification capacity and the modification signals present
20 in the polypeptide amino acid sequence. For instance, as
is well known, glycosylation often does not occur in
bacterial hosts such as *E. coli*. Accordingly, when
glycosylation is desired, a polypeptide can be expressed in
a glycosylating host, generally a eukaryotic cell. Insect
25 cells often carry out the same posttranslational
glycosylations as mammalian cells. Thus, insect cell
expression systems have been developed to express
efficiently mammalian proteins having native patterns of
glycosylation, *inter alia*. Similar considerations apply to
30 other modifications.

It will be appreciated that the same type of
modification may be present in the same or varying degrees
at several sites in a given polypeptide. Also, a given
polypeptide may contain many types of modifications.

- 18 -

In general, as used herein, the term polypeptide encompasses all such modifications, particularly those that are present in polypeptides synthesized by expressing a polynucleotide in a host cell.

5 VARIANT(S) of polynucleotides or polypeptides, as the term is used herein, are polynucleotides or polypeptides that differ from a reference polynucleotide or polypeptide, respectively.

With respect to variant polynucleotides, differences
10 are generally limited so that the nucleotide sequences of the reference and the variant are closely similar overall and, in many regions, identical. Thus, changes in the nucleotide sequence of the variant may be silent. That is, they may not alter the amino acids encoded by the
15 polynucleotide. Where alterations are limited to silent changes of this type a variant will encode a polypeptide with the same amino acid sequence as the reference. Alternatively, changes in the nucleotide sequence of the variant may alter the amino acid sequence of a polypeptide
20 encoded by the reference polynucleotide. Such nucleotide changes may result in amino acid substitutions, additions, deletions, fusions and truncations in the polypeptide encoded by the reference sequence.

With respect to variant polypeptides, differences are
25 generally limited so that the sequences of the reference and the variant are closely similar overall and, in many region, identical. For example, a variant and reference polypeptide may differ in amino acid sequence by one or more substitutions, additions, deletions, fusions and
30 truncations, which may be present in any combination.

RECEPTOR MOLECULE, as used herein, refers to molecules which bind or interact specifically with LSG polypeptides of the present invention and is inclusive not only of classic receptors, which are preferred, but also
35 other molecules that specifically bind to or interact with

- 19 -

polypeptides of the invention (which also may be referred to as "binding molecules" and "interaction molecules," respectively and as "LSG binding or interaction molecules". Binding between polypeptides of the invention and such 5 molecules, including receptor or binding or interaction molecules may be exclusive to polypeptides of the invention, which is very highly preferred, or it may be highly specific for polypeptides of the invention, which is highly preferred, or it may be highly specific to a group 10 of proteins that includes polypeptides of the invention, which is preferred, or it may be specific to several groups of proteins at least one of which includes polypeptides of the invention.

Receptors also may be non-naturally occurring, such 15 as antibodies and antibody-derived reagents that bind to polypeptides of the invention.

DETAILED DESCRIPTION OF THE INVENTION

The present invention relates to novel lung specific polypeptides and polynucleotides, referred to herein as 20 LSGs, among other things, as described in greater detail below.

Polynucleotides

In accordance with one aspect of the present invention, there are provided isolated LSG polynucleotides 25 which encode LSG polypeptides.

Using the information provided herein, such as the polynucleotide sequences set out in SEQ ID NO:1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 37 or 38 a polynucleotide of the present invention 30 encoding a LSG may be obtained using standard cloning and screening procedures, such as those for cloning cDNAs using mRNA from cells of a human tumor as starting material.

Polynucleotides of the present invention may be in the form of RNA, such as mRNA, or in the form of DNA,

- 20 -

including, for instance, cDNA and genomic DNA obtained by cloning or produced by chemical synthetic techniques or by a combination thereof. The DNA may be double-stranded or single-stranded. Single-stranded DNA may be the coding strand, also known as the sense strand, or it may be the non-coding strand, also referred to as the anti-sense strand.

The coding sequence which encodes the polypeptides may be identical to the coding sequence of the polynucleotides of SEQ ID NO:1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 37 or 38. It also may be a polynucleotide with a different sequence, which, as a result of the redundancy (degeneracy) of the genetic code, encodes the same polypeptides as encoded by SEQ ID NO:1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 37 or 38.

Polynucleotides of the present invention, such as SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 37 or 38 which encode these polypeptides may comprise the coding sequence for the mature polypeptide by itself. Polynucleotides of the present invention may also comprise the coding sequence for the mature polypeptide and additional coding sequences such as those encoding a leader or secretory sequence such as a pre-, or pro- or prepro-protein sequence. Polynucleotides of the present invention may also comprise the coding sequence of the mature polypeptide, with or without the aforementioned additional coding sequences, together with additional, non-coding sequences. Examples of additional non-coding sequences which may be incorporated into the polynucleotide of the present invention include, but are not limited to, introns and non-coding 5' and 3' sequences such as transcribed, non-translated sequences that play a role in transcription, mRNA processing including, for example, splicing and polyadenylation signals, ribosome

binding and stability of mRNA, and additional coding sequence which codes for amino acids such as those which provide additional functionalities. Thus, for instance, the polypeptide may be fused to a marker sequence such as a 5 peptide which facilitates purification of the fused polypeptide. In certain preferred embodiments of this aspect of the invention, the marker sequence is a hexa-histidine peptide, such as the tag provided in the pQE vector (Qiagen, Inc.), among others, many of which are 10 commercially available. As described in Gentz et al. (Proc. Natl. Acad. Sci., USA 86: 821-824 (1989)), for instance, hexa-histidine provides for convenient purification of the fusion protein. The HA tag corresponds to an epitope derived of influenza hemagglutinin protein (Wilson et al., 15 Cell 37: 767 (1984)).

In accordance with the foregoing, the term "polynucleotide encoding a polypeptide" as used herein encompasses polynucleotides which include a sequence encoding a polypeptide of the present invention, 20 particularly SEQ ID NO:1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 37 or 38. Exemplary polypeptides encoded by the polynucleotides are depicted in SEQ ID NO: 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, or 56. The term 25 encompasses polynucleotides that include a single continuous region or discontinuous regions encoding the polypeptide (for example, interrupted by introns) together with additional regions, that also may contain coding and/or non-coding sequences.

30 The present invention further relates to variants of the herein above described polynucleotides which encode for fragments, analogs and derivatives of the LSG polypeptides. A variant of the polynucleotide may be a naturally occurring variant such as a naturally occurring allelic 35 variant, or it may be a variant that is not known to occur

- 22 -

naturally. Such non-naturally occurring variants of the polynucleotide may be made by mutagenesis techniques, including those applied to polynucleotides, cells or organisms.

5 Among variants in this regard are variants that differ from the aforementioned polynucleotides by nucleotide substitutions, deletions or additions. The substitutions, deletions or additions may involve one or more nucleotides. The variants may be altered in coding or
10 non-coding regions or both. Alterations in the coding regions may produce conservative or non-conservative amino acid substitutions, deletions or additions.

Among the particularly preferred embodiments of the invention in this regard are polynucleotides encoding 15 polypeptides having the same amino acid sequence encoded by a LSG polynucleotide comprising SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 37 or 38; variants, analogs, derivatives and fragments thereof, and fragments of the variants, analogs and
20 derivatives. Exemplary polypeptides encoded by these polynucleotides are depicted in SEQ ID NO:39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55 or 56. Further particularly preferred in this regard are LSG polynucleotides encoding polypeptide variants, analogs,
25 derivatives and fragments, and variants, analogs and derivatives of the fragments, in which several, a few, 5 to 10, 1 to 5, 1 to 3, 2, 1 or no amino acid residues are substituted, deleted or added, in any combination.

Especially preferred among these are silent substitutions, 30 additions and deletions, which do not alter the properties and activities of the LSG. Also especially preferred in this regard are conservative substitutions. Most highly preferred are polynucleotides encoding polypeptides having the amino acid sequences as polypeptides encoded by SEQ ID

- 23 -

NO: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 37 or 38 without substitutions.

Further preferred embodiments of the invention are LSG polynucleotides that are at least 70% identical to a 5 polynucleotide of SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 37 or 38 and polynucleotides which are complementary to such polynucleotides. More preferred are LSG polynucleotides that comprise a region that is at least 80% identical to a 10 polynucleotide of SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 37 or 38. In this regard, LSG polynucleotides at least 90% identical to the same are particularly preferred, and among these particularly preferred LSG polynucleotides, those with at 15 least 95% are especially preferred. Furthermore, those with at least 97% are highly preferred among those with at least 95%, and among these those with at least 98% and at least 99% are particularly highly preferred, with at least 99% being the most preferred.

20 Particularly preferred embodiments in this respect, moreover, are polynucleotides which encode polypeptides which retain substantially the same biological function or activity as the mature polypeptides encoded by a polynucleotide of SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 25 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 37 or 38.

The present invention further relates to polynucleotides that hybridize to the herein above-described LSG sequences. In this regard, the present invention especially relates to polynucleotides which 30 hybridize under stringent conditions to the herein above-described polynucleotides. As herein used, the term "stringent conditions" means hybridization will occur only if there is at least 95% and preferably at least 97% identity between the sequences.

- 24 -

As discussed additionally herein regarding polynucleotide assays of the invention, for instance, polynucleotides of the invention as described herein, may be used as a hybridization probe for cDNA and genomic DNA 5 to isolate full-length cDNAs and genomic clones encoding LSGs and to isolate cDNA and genomic clones of other genes that have a high sequence similarity to these LSGs. Such probes generally will comprise at least 15 bases. Preferably, such probes will have at least 30 bases and may 10 have at least 50 bases.

For example, the coding region of LSG of the present invention may be isolated by screening using an oligonucleotide probe synthesized from the known DNA sequence. A labeled oligonucleotide having a sequence 15 complementary to that of a gene of the present invention is used to screen a library of human cDNA, genomic DNA or mRNA to determine which members of the library the probe hybridizes with.

The polynucleotides and polypeptides of the present 20 invention may be employed as research reagents and materials for discovery of treatments and diagnostics to human disease, as further discussed herein relating to polynucleotide assays, *inter alia*.

The polynucleotides may encode a polypeptide which is 25 the mature protein plus additional amino or carboxyl-terminal amino acids, or amino acids interior to the mature polypeptide (when the mature form has more than one polypeptide chain, for instance). Such sequences may play a role in processing of a protein from precursor to a mature 30 form, may facilitate/protein trafficking, may prolong or shorten protein half-life or may facilitate manipulation of a protein for assay or production, among other things. As generally is the case *in situ*, the additional amino acids 35 may be processed away from the mature protein by cellular enzymes.

- 25 -

A precursor protein having the mature form of the polypeptide fused to one or more prosequences may be an inactive form of the polypeptide. When prosequences are removed, such inactive precursors generally are activated.

5 Some or all of the prosequences may be removed before activation. Generally, such precursors are called proproteins.

In sum, a polynucleotide of the present invention may encode a mature protein, a mature protein plus a leader sequence (which may be referred to as a preprotein), a precursor of a mature protein having one or more prosequences which are not the leader sequences of a preprotein, or a preproprotein, which is a precursor to a proprotein, having a leader sequence and one or more prosequences, which generally are removed during processing steps that produce active and mature forms of the polypeptide.

Polypeptides

The present invention further relates to LSG 20 polypeptides, preferably polypeptides encoded by a polynucleotide of SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 37 or 38. Exemplary polypeptides are depicted in SEQ ID NO: 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55 25 or 56. The invention also relates to fragments, analogs and derivatives of these polypeptides. The terms "fragment," "derivative" and "analog" when referring to the polypeptides of the present invention means a polypeptide which retains essentially the same biological function or 30 activity as such polypeptides. Thus, an analog includes a proprotein which can be activated by cleavage of the proprotein portion to produce an active mature polypeptide.

The polypeptide of the present invention may be a recombinant polypeptide, a natural polypeptide or a .

synthetic polypeptide. In certain preferred embodiments it is a recombinant polypeptide.

The fragment, derivative or analog of a polypeptide of or the present invention may be (I) one in which one or 5 more of the amino acid residues are substituted with a conserved or non-conserved amino acid residue (preferably a conserved amino acid residue) and such substituted amino acid residue may or may not be one encoded by the genetic code; (ii) one in which one or more of the amino acid 10 residues includes a substituent group; (iii) one in which the mature polypeptide is fused with another compound, such as a compound to increase the half-life of the polypeptide (for example, polyethylene glycol); or (iv) one in which the additional amino acids are fused to the mature 15 polypeptide, such as a leader or secretory sequence or a sequence which is employed for purification of the mature polypeptide or a proprotein sequence. Such fragments, derivatives and analogs are deemed to be within the scope of those skilled in the art from the teachings herein.

20 Among preferred variants are those that vary from a reference by conservative amino acid substitutions. Such substitutions are those that substitute a given amino acid in a polypeptide by another amino acid of like characteristics. Typically seen as conservative 25 substitutions are the replacements, one for another, among the aliphatic amino acids Ala, Val, Leu and Ile; interchange of the hydroxyl residues Ser and Thr, exchange of the acidic residues Asp and Glu, substitution between the amide residues Asn and Gln, exchange of the basic 30 residues Lys and Arg and replacements among the aromatic residues Phe, Tyr.

The polypeptides and polynucleotides of the present invention are preferably provided in an isolated form, and preferably are purified to homogeneity.

- 27 -

The polypeptides of the present invention include the polypeptides encoded by the polynucleotide of SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 37 or 38 (in particular the mature polypeptide) as well as polypeptides which have at least 75% similarity (preferably at least 75% identity), more preferably at least 90% similarity (more preferably at least 90% identity), still more preferably at least 95% similarity (still more preferably at least 95% identity), 10 to a polypeptide encoded by SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 37 or 38. Also included are portions of such polypeptides generally containing at least 30 amino acids and more preferably at least 50 amino acids. Exemplary polypeptides 15 are depicted in SEQ ID NO:39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55 or 56.

As known in the art "similarity" between two polypeptides is determined by comparing the amino acid sequence and its conserved amino acid substitutes of one 20 polypeptide sequence with that of a second polypeptide.

Fragments or portions of the polypeptides of the present invention may be employed for producing the corresponding full-length polypeptide by peptide synthesis; therefore, the fragments may be employed as intermediates 25 for producing the full-length polypeptides. Fragments or portions of the polynucleotides of the present invention may be used to synthesize full-length polynucleotides of the present invention.

Fragments

Also among preferred embodiments of this aspect of the present invention are polypeptides comprising fragments of a polypeptide encoded by a polynucleotide of SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 37 or 38. In this regard a fragment is 35 a polypeptide having an amino acid sequence that entirely

- 28 -

is the same as part but not all of the amino acid sequence of the aforementioned LSG polypeptides and variants or derivatives thereof.

Such fragments may be "free-standing," i.e., not part 5 of or fused to other amino acids or polypeptides, or they may be contained within a larger polypeptide of which they form a part or region. When contained within a larger polypeptide, the presently discussed fragments most preferably form a single continuous region. However, 10 several fragments may be comprised within a single larger polypeptide. For instance, certain preferred embodiments relate to a fragment of a LSG polypeptide of the present comprised within a precursor polypeptide designed for expression in a host and having heterologous pre- and pro- 15 polypeptide regions fused to the amino terminus of the LSG fragment and an additional region fused to the carboxyl terminus of the fragment. Therefore, fragments in one aspect of the meaning intended herein, refers to the portion or portions of a fusion polypeptide or fusion 20 protein derived from a LSG polypeptide.

As representative examples of polypeptide fragments of the invention, there may be mentioned those which have from about 15 to about 139 amino acids. In this context "about" includes the particularly recited range and ranges 25 larger or smaller by several, a few, 5, 4, 3, 2 or 1 amino acid at either extreme or at both extremes. Highly preferred in this regard are the recited ranges plus or minus as many as 5 amino acids at either or at both extremes. Particularly highly preferred are the recited 30 ranges plus or minus as many as 3 amino acids at either or at both the recited extremes. Especially preferred are ranges plus or minus 1 amino acid at either or at both extremes or the recited ranges with no additions or deletions. Most highly preferred of all in this regard are 35 fragments from about 15 to about 45 amino acids.

Among especially preferred fragments of the invention are truncation mutants of the LSG polypeptides. Truncation mutants include LSG polypeptides having an amino acid sequence encoded by a polynucleotide of SEQ ID NO: 1, 2, 3, 5 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 37 or 38 or variants or derivatives thereof, except for deletion of a continuous series of residues (that is, a continuous region, part or portion) that includes the amino terminus, or a continuous series of 10 residues that includes the carboxyl terminus or, as in double truncation mutants, deletion of two continuous series of residues, one including the amino terminus and one including the carboxyl terminus. Fragments having the size ranges set out herein also are preferred embodiments 15 of truncation fragments, which are especially preferred among fragments generally.

Also preferred in this aspect of the invention are fragments characterized by structural or functional attributes of the LSG polypeptides of the present 20 invention. Preferred embodiments of the invention in this regard include fragments that comprise alpha-helix and alpha-helix forming regions ("alpha-regions"), beta-sheet and beta-sheet-forming regions ("beta-regions"), turn and turn-forming regions ("turn-regions"), coil and coil-forming regions ("coil-regions"), hydrophilic regions, 25 hydrophobic regions, alpha amphipathic regions, beta amphipathic regions, flexible regions, surface-forming regions and high antigenic index regions of the LSG polypeptides of the present invention. Regions of the 30 aforementioned types are identified routinely by analysis of the amino acid sequences encoded by the polynucleotides of SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 37 or 38. Preferred regions include Garnier-Robson alpha-regions, beta-regions, 35 turn-regions and coil-regions, Chou-Fasman alpha-regions,

- 30 -

beta-regions and turn-regions, Kyte-Doolittle hydrophilic regions and hydrophilic regions, Eisenberg alpha and beta amphipathic regions, Karplus-Schulz flexible regions, Emini surface-forming regions and Jameson-Wolf high antigenic index regions. Among highly preferred fragments in this regard are those that comprise regions of LSGs that combine several structural features, such as several of the features set out above. In this regard, the regions defined by selected residues of a LSG polypeptide which all 10 are characterized by amino acid compositions highly characteristic of turn-regions, hydrophilic regions, flexible-regions, surface-forming regions, and high antigenic index-regions, are especially highly preferred regions. Such regions may be comprised within a larger 15 polypeptide or may be by themselves a preferred fragment of the present invention, as discussed above. It will be appreciated that the term "about" as used in this paragraph has the meaning set out above regarding fragments in general.

20 Further preferred regions are those that mediate activities of LSG polypeptides. Most highly preferred in this regard are fragments that have a chemical, biological or other activity of a LSG polypeptide, including those with a similar activity or an improved activity, or with a 25 decreased undesirable activity. Highly preferred in this regard are fragments that contain regions that are homologs in sequence, or in position, or in both sequence and to active regions of related polypeptides, and which include lung specific-binding proteins. Among particularly 30 preferred fragments in these regards are truncation mutants, as discussed above.

It will be appreciated that the invention also relates to polynucleotides encoding the aforementioned fragments, polynucleotides that hybridize to 35 polynucleotides encoding the fragments, particularly those

- 31 -

that hybridize under stringent conditions, and polynucleotides such as PCR primers for amplifying polynucleotides that encode the fragments. In these regards, preferred polynucleotides are those that 5 correspond to the preferred fragments, as discussed above.

Fusion Proteins

In one embodiment of the present invention, the LSG polypeptides of the present invention are preferably fused to other proteins. These fusion proteins can be used for a 10 variety of applications. For example, fusion of the present polypeptides to His-tag, HA-tag, protein A, IgG domains, and maltose binding protein facilitates purification. (See also EP A 394,827; Traunecker, et al., Nature 331: 84-86 15 (1988)) Similarly, fusion to IgG-1, IgG-3, and albumin increases the halflife time *in vivo*. Nuclear localization signals fused to the polypeptides of the present invention can target the protein to a specific subcellular 20 localization, while covalent heterodimer or homodimers can increase or decrease the activity of a fusion protein. 25 Fusion proteins can also create chimeric molecules having more than one function. Finally, fusion proteins can increase solubility and/or stability of the fused protein compared to the non-fused protein. All of these types of fusion proteins described above can be made in accordance with well known protocols.

For example, a LSG polypeptide can be fused to an IgG molecule via the following protocol. Briefly, the human Fc portion of the IgG molecule is PCR amplified using primers that span the 5' and 3' ends of the sequence. These 30 primers also have convenient restriction enzyme sites that facilitate cloning into an expression vector, preferably a mammalian expression vector. For example, if pC4 (Accession No. 209646) is used, the human Fc portion can be ligated into the BamHI cloning site. In this protocol, the 35 3' BamHI site must be destroyed. Next, the vector

containing the human Fc portion is re-restricted with BamHI thereby linearizing the vector, and a LSG polynucleotide of the present invention is ligated into this BamHI site. It is preferred that the polynucleotide is cloned without a 5 stop codon, otherwise a fusion protein will not be produced.

If the naturally occurring signal sequence is used to produce the secreted protein, pC4 does not need a second signal peptide. Alternatively, if the naturally occurring 10 signal sequence is not used, the vector can be modified to include a heterologous signal sequence. (See, e. g., WO 96/34891.)

Diagnostic Assays

The present invention also relates to diagnostic 15 assays and methods, both quantitative and qualitative for detecting, diagnosing, monitoring, staging and prognosticating cancers by comparing levels of LSG in a human patient with those of LSG in a normal human control. For purposes of the present invention, what is meant by LSG 20 levels is, among other things, native protein expressed by a gene comprising the polynucleotide sequence of SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 37 or 38. Exemplary polypeptides encoded by these polynucleotides are depicted in SEQ ID 25 NO:39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55 or 56. By "LSG" it is also meant herein polynucleotides which, due to degeneracy in genetic coding, comprise variations in nucleotide sequence as compared to 30 SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 37 or 38 but which still encode the same protein. The native protein being detected may be whole, a breakdown product, a complex of molecules or chemically modified. In the alternative, what is meant by LSG as used herein, means the native mRNA encoded by a 35 polynucleotide sequence of SEQ ID NO: 1, 2, 3, 4, 5, 6, 7,

- 33 -

8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, or
22, or a contig of SEQ ID NO:19 or 21, depicted as SEQ ID
NO: 37 or 38, respectively, levels of the gene comprising
the polynucleotide sequence of SEQ ID NO: 1, 2, 3, 4, 5, 6,
5 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, or
22, or levels of a polynucleotide which is capable of
hybridizing under stringent conditions to the antisense
sequence of SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 37 or 38. Such
10 levels are preferably determined in at least one of cells,
tissues and/or bodily fluids, including determination of
normal and abnormal levels. Thus, for instance, a
diagnostic assay in accordance with the invention for
diagnosing overexpression of LSG protein compared to normal
15 control bodily fluids, cells, or tissue samples may be used
to diagnose the presence of lung cancer.

All the methods of the present invention may
optionally include determining the levels of other cancer
markers as well as LSG. Other cancer markers, in addition
20 to LSG, useful in the present invention will depend on the
cancer being tested and are known to those of skill in the
art.

The present invention provides methods for diagnosing
the presence of lung cancer by analyzing for changes in
25 levels of LSG in cells, tissues or bodily fluids compared
with levels of LSG in cells, tissues or bodily fluids of
preferably the same type from a normal human control,
wherein an increase in levels of LSG in the patient versus
the normal human control is associated with the presence of
30 lung cancer.

Without limiting the instant invention, typically,
for a quantitative diagnostic assay a positive result
indicating the patient being tested has cancer is one in
which cells, tissues or bodily fluid levels of the cancer
35 marker, such as LSG, are at least two times higher, and

- 34 -

most preferably are at least five times higher, than in preferably the same cells, tissues or bodily fluid of a normal human control.

The present invention also provides a method of
5 diagnosing metastatic lung cancer in a patient having lung cancer which has not yet metastasized for the onset of metastasis. In the method of the present invention, a human cancer patient suspected of having lung cancer which may have metastasized (but which was not previously known
10 to have metastasized) is identified. This is accomplished by a variety of means known to those of skill in the art.

In the present invention, determining the presence of LSG levels in cells, tissues or bodily fluid, is particularly useful for discriminating between lung cancer
15 which has not metastasized and lung cancer which has metastasized. Existing techniques have difficulty discriminating between lung cancer which has metastasized and lung cancer which has not metastasized and proper treatment selection is often dependent upon such knowledge.

20 In the present invention, the cancer marker levels measured in such cells, tissues or bodily fluid is LSG, and are compared with levels of LSG in preferably the same cells, tissue or bodily fluid type of a normal human control. That is, if the cancer marker being observed is
25 just LSG in serum, this level is preferably compared with the level of LSG in serum of a normal human control. An increase in the LSG in the patient versus the normal human control is associated with lung cancer which has metastasized.

30 Without limiting the instant invention, typically, for a quantitative diagnostic assay a positive result indicating the cancer in the patient being tested or monitored has metastasized is one in which cells, tissues or bodily fluid levels of the cancer marker, such as LSG,
35 are at least two times higher, and most preferably are at

- 35 -

least five times higher, than in preferably the same cells, tissues or bodily fluid of a normal patient.

Normal human control as used herein includes a human patient without cancer and/or non cancerous samples from 5 the patient; in the methods for diagnosing or monitoring for metastasis, normal human control may preferably also include samples from a human patient that is determined by reliable methods to have lung cancer which has not metastasized.

10 *Staging*:

The invention also provides a method of staging lung cancer in a human patient. The method comprises identifying a human patient having such cancer and analyzing cells, tissues or bodily fluid from such human 15 patient for LSG. The LSG levels determined in the patient are then compared with levels of LSG in preferably the same cells, tissues or bodily fluid type of a normal human control, wherein an increase in LSG levels in the human patient versus the normal human control is associated with 20 a cancer which is progressing and a decrease in the levels of LSG (but still increased over true normal levels) is associated with a cancer which is regressing or in remission.

Monitoring

25 Further provided is a method of monitoring lung cancer in a human patient having such cancer for the onset of metastasis. The method comprises identifying a human patient having such cancer that is not known to have metastasized; periodically analyzing cells, tissues or 30 bodily fluid from such human patient for LSG; and comparing the LSG levels determined in the human patient with levels of LSG in preferably the same cells, tissues or bodily fluid type of a normal human control, wherein an increase in LSG levels in the human patient versus the normal human 35 control is associated with a cancer which has metastasized.

- 36 -

In this method, normal human control samples may also include prior patient samples.

Further provided by this invention is a method of monitoring the change in stage of lung cancer in a human patient having such cancer. The method comprises identifying a human patient having such cancer; periodically analyzing cells, tissues or bodily fluid from such human patient for LSG; and comparing the LSG levels determined in the human patient with levels of LSG in preferably the same cells, tissues or bodily fluid type of a normal human control, wherein an increase in LSG levels in the human patient versus the normal human control is associated with a cancer which is progressing in stage and a decrease in the levels of LSG is associated with a cancer which is regressing in stage or in remission. In this method, normal human control samples may also include prior patient samples.

Monitoring a patient for onset of metastasis is periodic and preferably done on a quarterly basis.

However, this may be done more or less frequently depending on the cancer, the particular patient, and the stage of the cancer.

Prognostic Testing and Clinical Trial Monitoring

The methods described herein can further be utilized as prognostic assays to identify subjects having or at risk of developing a disease or disorder associated with increased levels of LSG. The present invention provides a method in which a test sample is obtained from a human patient and LSG is detected. The presence of higher LSG levels as compared to normal human controls is diagnostic for the human patient being at risk for developing cancer, particularly lung cancer.

The effectiveness of therapeutic agents to decrease expression or activity of the LSGs of the invention can also be monitored by analyzing levels of expression of the

- 37 -

LSGs in a human patient in clinical trials or in *in vitro* screening assays such as in human cells. In this way, the gene expression pattern can serve as a marker, indicative of the physiological response of the human patient, or 5 cells as the case may be, to the agent being tested.

Detection of genetic lesions or mutations

The methods of the present invention can also be used to detect genetic lesions or mutations in LSG, thereby determining if a human with the genetic lesion is at risk 10 for lung cancer or has lung cancer. Genetic lesions can be detected, for example, by ascertaining the existence of a deletion and/or addition and/or substitution of one or more nucleotides from the LSGs of this invention, a chromosomal rearrangement of LSG, aberrant modification of LSG (such as 15 of the methylation pattern of the genomic DNA), the presence of a non-wild type splicing pattern of a mRNA transcript of LSG, allelic loss of LSG, and/or inappropriate post-translational modification of LSG protein. Methods to detect such lesions in the LSG of this 20 invention are known to those of skill in the art.

For example, in one embodiment, alterations in a gene corresponding to a LSG polynucleotide of the present invention are determined via isolation of RNA from entire families or individual patients presenting with a phenotype 25 of interest (such as a disease) is be isolated. cDNA is then generated from these RNA samples using protocols known in the art. See, e.g. Sambrook et al. (*MOLECULAR CLONING: A LABORATORY MANUAL*, 2nd Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (1989)), which is 30 illustrative of the many laboratory manuals that detail these techniques. The cDNA is then used as a template for PCR, employing primers surrounding regions of interest in SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 37 or 38. PCR conditions 35 typically consist of 35 cycles at 95°C for 30 seconds; 60-

- 38 -

120 seconds at 52-58°C; and 60-120 seconds at 70°C, using buffer solutions described in Sidransky, D., et al., Science 252: 706 (1991). PCR products are sequenced using primers labeled at their 5' end with T4 polynucleotide kinase, employing SequiTTM Polymerase (Epicentre Technologies). The intron-exon borders of selected exons are also determined and genomic PCR products analyzed to confirm the results. PCR products harboring suspected mutations are then cloned and sequenced to validate the results of the direct sequencing. PCR products are cloned into T-tailed vectors as described in Holton, T. A. and Graham, M. W., Nucleic Acids Research, 19 : 1156 (1991) and sequenced with T7 polymerase (United States Biochemical). Affected individuals are identified by mutations not present in unaffected individuals.

Genomic rearrangements can also be observed as a method of determining alterations in a gene corresponding to a polynucleotide. In this method, genomic clones are nick-translated with digoxigenin deoxy-uridine 5'-triphosphate (Boehringer Manheim), and FISH is performed as described in Johnson, C. et al., Methods Cell Biol. 35: 73-99 (1991). Hybridization with a labeled probe is carried out using a vast excess of human DNA for specific hybridization to the corresponding genomic locus. Chromosomes are counterstained with 4,6-diamino-2-phenylidole and propidium iodide, producing a combination of C-and R-bands. Aligned images for precise mapping are obtained using a triple-band filter set (Chroma Technology, Brattleboro, VT) in combination with a cooled charge-coupled device camera (Photometrics, Tucson, AZ) and variable excitation wavelength filters (Johnson et al., Genet. Anal. Tech. Appl., 8: 75 (1991)). Image collection, analysis and chromosomal fractional length measurements are performed using the ISee Graphical Program System (Inovision Corporation, Durham, NC). Chromosome

alterations of the genomic region hybridized by the probe are identified as insertions, deletions, and translocations. These alterations are used as a diagnostic marker for an associated disease.

5 Assay Techniques

Assay techniques that can be used to determine levels of gene expression (including protein levels), such as LSG of the present invention, in a sample derived from a patient are well known to those of skill in the art. Such assay methods include, without limitation, 10 radioimmunoassays, reverse transcriptase PCR (RT-PCR) assays, immunohistochemistry assays, *in situ* hybridization assays, competitive-binding assays, Western Blot analyses, ELISA assays and proteomic approaches: two-dimensional gel 15 electrophoresis (2D electrophoresis) and non-gel based approaches such as mass spectrometry or protein interaction profiling. Among these, ELISAs are frequently preferred to diagnose a gene's expressed protein in biological fluids.

An ELISA assay initially comprises preparing an 20 antibody, if not readily available from a commercial source, specific to LSG, preferably a monoclonal antibody. In addition a reporter antibody generally is prepared which binds specifically to LSG. The reporter antibody is attached to a detectable reagent such as radioactive, 25 fluorescent or enzymatic reagent, for example horseradish peroxidase enzyme or alkaline phosphatase.

To carry out the ELISA, antibody specific to LSG is incubated on a solid support, e.g. a polystyrene dish, that binds the antibody. Any free protein binding sites on the 30 dish are then covered by incubating with a non-specific protein such as bovine serum albumin. Next, the sample to be analyzed is incubated in the dish, during which time LSG binds to the specific antibody attached to the polystyrene dish. Unbound sample is washed out with buffer. A reporter 35 antibody specifically directed to LSG and linked to a

- 40 -

detectable reagent such as horseradish peroxidase is placed in the dish resulting in binding of the reporter antibody to any monoclonal antibody bound to LSG. Unattached reporter antibody is then washed out. Reagents for 5 peroxidase activity, including a colorimetric substrate are then added to the dish. Immobilized peroxidase, linked to LSG antibodies, produces a colored reaction product. The amount of color developed in a given time period is proportional to the amount of LSG protein present in the 10 sample. Quantitative results typically are obtained by reference to a standard curve.

A competition assay can also be employed wherein antibodies specific to LSG are attached to a solid support and labeled LSG and a sample derived from the host are 15 passed over the solid support. The amount of label detected which is attached to the solid support can be correlated to a quantity of LSG in the sample.

Using all or a portion of a nucleic acid sequence of LSG of the present invention as a hybridization probe, 20 nucleic acid methods can also be used to detect LSG mRNA as a marker for lung cancer. Polymerase chain reaction (PCR) and other nucleic acid methods, such as ligase chain reaction (LCR) and nucleic acid sequence based amplification (NASBA), can be used to detect malignant 25 cells for diagnosis and monitoring of various malignancies. For example, reverse-transcriptase PCR (RT-PCR) is a powerful technique which can be used to detect the presence of a specific mRNA population in a complex mixture of thousands of other mRNA species. In RT-PCR, an mRNA 30 species is first reverse transcribed to complementary DNA (cDNA) with use of the enzyme reverse transcriptase; the cDNA is then amplified as in a standard PCR reaction. RT-PCR can thus reveal by amplification the presence of a single species of mRNA. Accordingly, if the mRNA is highly

- 41 -

specific for the cell that produces it, RT-PCR can be used to identify the presence of a specific type of cell.

Hybridization to clones or oligonucleotides arrayed on a solid support (i.e. gridding) can be used to both 5 detect the expression of and quantitate the level of expression of that gene. In this approach, a cDNA encoding the LSG gene is fixed to a substrate. The substrate may be of any suitable type including but not limited to glass, nitrocellulose, nylon or plastic. At least a portion of 10 the DNA encoding the LSG gene is attached to the substrate and then incubated with the analyte, which may be RNA or a complementary DNA (cDNA) copy of the RNA, isolated from the tissue of interest. Hybridization between the substrate bound DNA and the analyte can be detected and quantitated 15 by several means including but not limited to radioactive labeling or fluorescence labeling of the analyte or a secondary molecule designed to detect the hybrid.

Quantitation of the level of gene expression can be done by comparison of the intensity of the signal from the analyte 20 compared with that determined from known standards. The standards can be obtained by *in vitro* transcription of the target gene, quantitating the yield, and then using that material to generate a standard curve.

Of the proteomic approaches, 2D electrophoresis is a 25 technique well known to those in the art. Isolation of individual proteins from a sample such as serum is accomplished using sequential separation of proteins by different characteristics usually on polyacrylamide gels. First, proteins are separated by size using an electric 30 current. The current acts uniformly on all proteins, so smaller proteins move farther on the gel than larger proteins. The second dimension applies a current perpendicular to the first and separates proteins not on the basis of size but on the specific electric charge 35 carried by each protein. Since no two proteins with

- 42 -

different sequences are identical on the basis of both size and charge, the result of a 2D separation is a square gel in which each protein occupies a unique spot. Analysis of the spots with chemical or antibody probes, or subsequent 5 protein microsequencing can reveal the relative abundance of a given protein and the identity of the proteins in the sample.

The above tests can be carried out on samples derived from a variety of cells, bodily fluids and/or tissue 10 extracts such as homogenates or solubilized tissue obtained from a patient. Tissue extracts are obtained routinely from tissue biopsy and autopsy material. Bodily fluids useful in the present invention include blood, urine, saliva or any other bodily secretion or derivative thereof. 15 By blood it is meant to include whole blood, plasma, serum or any derivative of blood.

In Vivo Targeting of LSG/Lung Cancer Therapy

Identification of this LSG is also useful in the rational design of new therapeutics for imaging and 20 treating cancers, and in particular lung cancer. For example, in one embodiment, antibodies which specifically bind to LSG can be raised and used *in vivo* in patients suspected of suffering from lung cancer. Antibodies which specifically bind LSG can be injected into a patient 25 suspected of having lung cancer for diagnostic and/or therapeutic purposes. Thus, another aspect of the present invention provides for a method for preventing the onset and treatment of lung cancer in a human patient in need of such treatment by administering to the patient an effective 30 amount of antibody. By "effective amount" it is meant the amount or concentration of antibody needed to bind to the target antigens expressed on the tumor to cause tumor shrinkage for surgical removal, or disappearance of the tumor. The binding of the antibody to the overexpressed 35 LSG is believed to cause the death of the cancer cell

- 43 -

expressing such LSG. The preparation and use of antibodies for in vivo diagnosis and treatment is well known in the art. For example, antibody-chelators labeled with Indium-111 have been described for use in the

5 radioimmunoscintographic imaging of carcinoembryonic antigen expressing tumors (Sumerdon et al. Nucl. Med. Biol. 1990 17:247-254). In particular, these antibody-chelators have been used in detecting tumors in patients suspected of having recurrent colorectal cancer (Griffin et al. J. Clin.

10 Onc. 1991 9:631-640). Antibodies with paramagnetic ions as labels for use in magnetic resonance imaging have also been described (Lauffer, R.B. Magnetic Resonance in Medicine 1991 22:339-342). Antibodies directed against LSG can be used in a similar manner. Labeled antibodies which

15 specifically bind LSG can be injected into patients suspected of having lung cancer for the purpose of diagnosing or staging of the disease status of the patient. The label used will be selected in accordance with the imaging modality to be used. For example, radioactive

20 labels such as Indium-111, Technetium-99m or Iodine-131 can be used for planar scans or single photon emission computed tomography (SPECT). Positron emitting labels such as Fluorine-19 can be used in positron emission tomography. Paramagnetic ions such as Gadlinium (III) or Manganese (II)

25 can be used in magnetic resonance imaging (MRI). Presence of the label, as compared to imaging of normal tissue, permits determination of the spread of the cancer. The amount of label within an organ or tissue also allows determination of the presence or absence of cancer in that

30 organ or tissue.

Antibodies which can be used in in vivo methods include polyclonal, monoclonal and omniclonal antibodies and antibodies prepared via molecular biology techniques. Antibody fragments and aptamers and single-stranded

35 oligonucleotides such as those derived from an in vitro

- 44 -

evolution protocol referred to as SELEX and well known to those skilled in the art can also be used.

Screening Assays

The present invention also provides methods for
5 identifying modulators which bind to LSG protein or have a modulatory effect on the expression or activity of LSG protein. Modulators which decrease the expression or activity of LSG protein are believed to be useful in treating lung cancer. Such screening assays are known to
10 those of skill in the art and include, without limitation, cell-based assays and cell free assays.

Small molecules predicted via computer imaging to specifically bind to regions of LSG can also be designed, synthesized and tested for use in the imaging and treatment
15 of lung cancer. Further, libraries of molecules can be screened for potential anticancer agents by assessing the ability of the molecule to bind to the LSGs identified herein. Molecules identified in the library as being capable of binding to LSG are key candidates for further
20 evaluation for use in the treatment of lung cancer. In a preferred embodiment, these molecules will downregulate expression and/or activity of LSG in cells.

Adoptive Immunotherapy and Vaccines

Adoptive immunotherapy of cancer refers to a
25 therapeutic approach in which immune cells with an antitumor reactivity are administered to a tumor-bearing host, with the aim that the cells mediate either directly or indirectly, the regression of an established tumor. Transfusion of lymphocytes, particularly T lymphocytes,
30 falls into this category and investigators at the National Cancer Institute (NCI) have used autologous reinfusion of peripheral blood lymphocytes or tumor-infiltrating lymphocytes (TIL), T cell cultures from biopsies of subcutaneous lymph nodules, to treat several human cancers
35 (Rosenberg, S. A., U.S. Patent No. 4,690,914, issued Sep.

- 45 -

1, 1987; Rosenberg, S. A., et al., 1988, N. England J. Med. 319:1676-1680).

The present invention relates to compositions and methods of adoptive immunotherapy for the prevention and/or treatment of primary and metastatic lung cancer in humans using macrophages sensitized to the antigenic LSG molecules, with or without non-covalent complexes of heat shock protein (hsp). Antigenicity or immunogenicity of the LSG is readily confirmed by the ability of the LSG protein or a fragment thereof to raise antibodies or educate naive effector cells, which in turn lyse target cells expressing the antigen (or epitope).

Cancer cells are, by definition, abnormal and contain proteins which should be recognized by the immune system as foreign since they are not present in normal tissues.

However, the immune system often seems to ignore this abnormality and fails to attack tumors. The foreign LSG proteins that are produced by the cancer cells can be used to reveal their presence. The LSG is broken into short fragments, called tumor antigens, which are displayed on the surface of the cell. These tumor antigens are held or presented on the cell surface by molecules called MHC, of which there are two types: class I and II. Tumor antigens in association with MHC class I molecules are recognized by cytotoxic T cells while antigen-MHC class II complexes are recognized by a second subset of T cells called helper cells. These cells secrete cytokines which slow or stop tumor growth and help another type of white blood cell, B cells, to make antibodies against the tumor cells.

In adoptive immunotherapy, T cells or other antigen presenting cells (APCs) are stimulated outside the body (*ex vivo*), using the tumor specific LSG antigen. The stimulated cells are then reinfused into the patient where they attack the cancerous cells. Research has shown that using both cytotoxic and helper T cells is far more

- 46 -

effective than using either subset alone. Additionally, the LSG antigen may be complexed with heat shock proteins to stimulate the APCs as described in U.S. Patent No. 5,985,270.

5 The APCs can be selected from among those antigen presenting cells known in the art including, but not limited to, macrophages, dendritic cells, B lymphocytes, and a combination thereof, and are preferably macrophages. In a preferred use, wherein cells are autologous to the
10 individual, autologous immune cells such as lymphocytes, macrophages or other APCs are used to circumvent the issue of whom to select as the donor of the immune cells for adoptive transfer. Another problem circumvented by use of autologous immune cells is graft versus host disease which
15 can be fatal if unsuccessfully treated.

In adoptive immunotherapy with gene therapy, DNA of the LSG can be introduced into effector cells similarly as in conventional gene therapy. This can enhance the cytotoxicity of the effector cells to tumor cells as they
20 have been manipulated to produce the antigenic protein resulting in improvement of the adoptive immunotherapy.

LSG antigens of this invention are also useful as components of lung cancer vaccines. The vaccine comprises an immunogenically stimulatory amount of a LSG antigen.
25 Immunogenically stimulatory amount refers to that amount of antigen that is able to invoke the desired immune response in the recipient for the amelioration, or treatment of lung cancer. Effective amounts may be determined empirically by standard procedures well known to those skilled in the art.

30 The LSG antigen may be provided in any one of a number of vaccine formulations which are designed to induce the desired type of immune response, e.g., antibody and/or cell mediated. Such formulations are known in the art and include, but are not limited to, formulations such as those
35 described in U.S. Patent 5,585,103. Vaccine formulations

- 47 -

of the present invention used to stimulate immune responses can also include pharmaceutically acceptable adjuvants.

Vectors, host cells, expression

The present invention also relates to vectors which 5 include polynucleotides of the present invention, host cells which are genetically engineered with vectors of the invention and the production of polypeptides of the invention by recombinant techniques.

Host cells can be genetically engineered to 10 incorporate LSG polynucleotides and express LSG polypeptides of the present invention. For instance, LSG polynucleotides may be introduced into host cells using well known techniques of infection, transduction, transfection, transvection and transformation. The LSG 15 polynucleotides may be introduced alone or with other polynucleotides. Such other polynucleotides may be introduced independently, co-introduced or introduced joined to the LSG polynucleotides of the invention.

For example, LSG polynucleotides of the invention may 20 be transfected into host cells with another, separate, polynucleotide encoding a selectable marker, using standard techniques for co-transfection and selection in, for instance, mammalian cells. In this case, the polynucleotides generally will be stably incorporated into 25 the host cell genome.

Alternatively, the LSG polynucleotide may be joined to a vector containing a selectable marker for propagation in a host. The vector construct may be introduced into host cells by the aforementioned techniques. Generally, a 30 plasmid vector is introduced as DNA in a precipitate, such as a calcium phosphate precipitate, or in a complex with a charged lipid. Electroporation also may be used to introduce LSG polynucleotides into a host. If the vector is a virus, it may be packaged *in vitro* or introduced into 35 a packaging cell and the packaged virus may be transduced

- 48 -

into cells. A wide variety of well known techniques conducted routinely by those of skill in the art are suitable for making LSG polynucleotides and for introducing LSG polynucleotides into cells in accordance with this 5 aspect of the invention. Such techniques are reviewed at length in reference texts such as Sambrook et al., previously cited herein.

Vectors which may be used in the present invention include, for example, plasmid vectors, single- or double- 10 stranded phage vectors, and single- or double-stranded RNA or DNA viral vectors. Such vectors may be introduced into cells as polynucleotides, preferably DNA, by well known techniques for introducing DNA and RNA into cells. The vectors, in the case of phage and viral vectors, also may 15 be and preferably are introduced into cells as packaged or encapsidated virus by well known techniques for infection and transduction. Viral vectors may be replication competent or replication defective. In the latter case viral propagation generally will occur only in 20 complementing host cells.

Preferred vectors for expression of polynucleotides and polypeptides of the present invention include, but are not limited to, vectors comprising cis-acting control regions effective for expression in a host operatively 25 linked to the polynucleotide to be expressed. Appropriate trans-acting factors either are supplied by the host, supplied by a complementing vector or supplied by the vector itself upon introduction into the host.

In certain preferred embodiments in this regard, the 30 vectors provide for specific expression. Such specific expression may be inducible expression or expression only in certain types of cells or both inducible and cell-specific. Particularly preferred among inducible vectors are vectors that can be induced to express by environmental 35 factors that are easy to manipulate, such as temperature

- 49 -

and nutrient additives. A variety of vectors suitable to this aspect of the invention, including constitutive and inducible expression vectors for use in prokaryotic and eukaryotic hosts, are well known and employed routinely by 5 those of skill in the art.

The engineered host cells can be cultured in conventional nutrient media which may be modified as appropriate for, *inter alia*, activating promoters, selecting transformants or amplifying genes. Culture 10 conditions such as temperature, pH and the like, previously used with the host cell selected for expression, generally will be suitable for expression of LSG polypeptides of the present invention.

A great variety of expression vectors can be used to 15 express LSG polypeptides of the invention. Such vectors include chromosomal, episomal and virus-derived vectors. Vectors may be derived from bacterial plasmids, from bacteriophage, from yeast episomes, from yeast chromosomal elements, from viruses such as baculoviruses, papova 20 viruses, such as SV40, vaccinia viruses, adenoviruses, fowl pox viruses, pseudorabies viruses and retroviruses, and from combinations thereof such as those derived from plasmid and bacteriophage genetic elements, such as cosmids and phagemids. All may be used for expression in accordance 25 with this aspect of the present invention. Generally, any vector suitable to maintain, propagate or express polynucleotides to express a polypeptide in a host may be used for expression in this regard.

The appropriate DNA sequence may be inserted into the 30 vector by any of a variety of well-known and routine techniques. In general, a DNA sequence for expression is joined to an expression vector by cleaving the DNA sequence and the expression vector with one or more restriction endonucleases and then joining the restriction fragments 35 together using T4 DNA ligase. Procedures for restriction

- 50 -

and ligation that can be used to this end are well known and routine to those of skill. Suitable procedures in this regard, and for constructing expression vectors using alternative techniques, which also are well known and 5 routine to those skill, are set forth in great detail in Sambrook et al. cited elsewhere herein.

The DNA sequence in the expression vector is operatively linked to appropriate expression control sequence(s), including, for instance, a promoter to direct 10 mRNA transcription. Representative promoters include the phage lambda PL promoter, the *E. coli* lac, trp and tac promoters, the SV40 early and late promoters, and promoters of retroviral LTRs, to name just a few of the well-known promoters. It will be understood that numerous promoters 15 not mentioned are also suitable for use in this aspect of the invention and are well known and readily may be employed by those of skill in the manner illustrated by the discussion and the examples herein.

In general, expression constructs will contain sites 20 for transcription initiation and termination, and, in the transcribed region, a ribosome binding site for translation. The coding portion of the mature transcripts expressed by the constructs will include a translation initiating AUG at the beginning and a termination codon 25 appropriately positioned at the end of the polypeptide to be translated.

In addition, the constructs may contain control regions that regulate as well as engender expression. Generally, in accordance with many commonly practiced 30 procedures, such regions will operate by controlling transcription, such as repressor binding sites and enhancers, among others.

Vectors for propagation and expression generally will include selectable markers. Such markers also may be 35 suitable for amplification or the vectors may contain

- 51 -

additional markers for this purpose. In this regard, the expression vectors preferably contain one or more selectable marker genes to provide a phenotypic trait for selection of transformed host cells. Preferred markers 5 include dihydrofolate reductase or neomycin resistance for eukaryotic cell culture, and tetracycline or ampicillin resistance genes for culturing in *E. coli* and other bacteria.

The vector containing the appropriate DNA sequence as 10 described elsewhere herein, as well as an appropriate promoter, and other appropriate control sequences, may be introduced into an appropriate host using a variety of well known techniques suitable to expression therein of a desired polypeptide. Representative examples of 15 appropriate hosts include bacterial cells, such as *E. coli*, *Streptomyces* and *Salmonella typhimurium* cells; fungal cells, such as yeast cells; insect cells such as *Drosophila S2* and *Spodoptera Sf9* cells; animal cells such as CHO, COS and Bowes melanoma cells; and plant cells. Hosts for a 20 great variety of expression constructs are well known, and those of skill will be enabled by the present disclosure readily to select a host for expressing a LSG polypeptide in accordance with this aspect of the present invention.

More particularly, the present invention also 25 includes recombinant constructs, such as expression constructs, comprising one or more of the sequences described above. The constructs comprise a vector, such as a plasmid or viral vector, into which such LSG sequence of the invention has been inserted. The sequence may be 30 inserted in a forward or reverse orientation. In certain preferred embodiments in this regard, the construct further comprises regulatory sequences, including, for example, a promoter, operably linked to the sequence. Large numbers of suitable vectors and promoters are known to those of skill

- 52 -

in the art, and there are many commercially available vectors suitable for use in the present invention.

The following vectors, which are commercially available, are provided by way of example. Among vectors 5 preferred for use in bacteria are pQE70, pQE60 and pQE-9, available from Qiagen; pBS vectors, Phagescript vectors, Bluescript vectors, pNH8A, pNH16a, pNH18A, pNH46A, available from Stratagene; and ptrc99a, pKK223-3, pKK233-3, pDR540, pRIT5 available from Pharmacia. Among preferred 10 eukaryotic vectors are PWLNEO, pSV2CAT, pOG44, pXT1 and pSG available from Stratagene; and pSVK3, pBPV, pMSG and pSVL available from Pharmacia. These vectors are listed solely by way of illustration of the many commercially available 15 and well known vectors that are available to those of skill in the art for use in accordance with this aspect of the present invention. It will be appreciated by those of skill in the art upon reading this disclosure that any other plasmid or vector suitable for introduction, maintenance, propagation and/or expression of a LSG 20 polynucleotide or polypeptide of the invention in a host may be used in this aspect of the invention.

Promoter regions can be selected from any desired gene using vectors that contain a reporter transcription unit lacking a promoter region, such as a chloramphenicol 25 acetyl transferase ("cat") transcription unit, downstream of a restriction site or sites for introducing a candidate promoter fragment; i.e., a fragment that may contain a promoter. As is well known, introduction into the vector of a promoter-containing fragment at the restriction site 30 upstream of the cat gene engenders production of CAT activity detectable by standard CAT assays. Vectors suitable to this end are well known and readily available. Two such vectors are pKK232-8 and pCM7. Thus, promoters 35 for expression of LSG polynucleotides of the present invention include, not only well known and readily

- 53 -

available promoters, but also promoters that readily may be obtained by the foregoing technique, using a reporter gene.

Among known bacterial promoters suitable for expression of polynucleotides and polypeptides in accordance with the present invention are the *E. coli* lacI and lacZ promoters, the T3 and T7 promoters, the gpt promoter, the lambda PR, PL promoters and the trp promoter. Among known eukaryotic promoters suitable in this regard are the CMV immediate early promoter, the HSV thymidine kinase promoter, the early and late SV40 promoters, the promoters of retroviral LTRs, such as those of the Rous sarcoma virus ("RSV"), and metallothionein promoters, such as the mouse metallothionein-I promoter.

Selection of appropriate vectors and promoters for expression in a host cell is a well known procedure and the requisite techniques for expression vector construction, introduction of the vector into the host and expression in the host are routine skills in the art.

The present invention also relates to host cells containing the above-described constructs. The host cell can be a higher eukaryotic cell, such as a mammalian cell, or a lower eukaryotic cell, such as a yeast cell. Alternatively, the host cell can be a prokaryotic cell, such as a bacterial cell.

Introduction of the construct into the host cell can be effected by calcium phosphate transfection, DEAE-dextran mediated transfection, cationic lipid-mediated transfection, electroporation, transduction, infection or other methods. Such methods are described in many standard laboratory manuals, such as Davis et al. *BASIC METHODS IN MOLECULAR BIOLOGY*, (1986).

Constructs in host cells can be used in a conventional manner to produce the gene product encoded by the recombinant sequence. Alternatively, LSG polypeptides

- 54 -

of the invention can be synthetically produced by conventional peptide synthesizers.

Mature proteins can be expressed in mammalian cells, yeast, bacteria, or other cells under the control of 5 appropriate promoters. Cell-free translation systems can also be employed to produce such proteins using RNAs derived from the DNA constructs of the present invention. Appropriate cloning and expression vectors for use with prokaryotic and eukaryotic hosts are described by Sambrook 10 et al. cited elsewhere herein.

Generally, recombinant expression vectors will include origins of replication, a promoter derived from a highly-expressed gene to direct transcription of a downstream structural sequence, and a selectable marker to 15 permit isolation of vector containing cells after exposure to the vector. Among suitable promoters are those derived from the genes that encode glycolytic enzymes such as 3-phosphoglycerate kinase ("PGK"), α -factor, acid phosphatase, and heat shock proteins, among others. 20 Selectable markers include the ampicillin resistance gene of *E. coli* and the *trpl* gene of *S. cerevisiae*.

Transcription of DNA encoding the LSG polypeptides of the present invention by higher eukaryotes may be increased by inserting an enhancer sequence into the vector. 25 Enhancers are cis-acting elements of DNA, usually about from 10 to 300 base pairs (bp) that act to increase transcriptional activity of a promoter in a given host cell-type. Examples of enhancers include the SV40 enhancer, which is located on the late side of the 30 replication origin at bp 100 to 270, the cytomegalovirus early promoter enhancer, the polyoma enhancer on the late side of the replication origin, and adenovirus enhancers.

A polynucleotide of the present invention, encoding a heterologous structural sequence of a LSG polypeptide of 35 the present invention, generally will be inserted into the

- 55 -

vector using standard techniques so that it is operably linked to the promoter for expression. The polynucleotide will be positioned so that the transcription start site is located appropriately 5' to a ribosome binding site. The 5 ribosome binding site will be 5' to the AUG that initiates translation of the polypeptide to be expressed. Generally, there will be no other open reading frames that begin with an initiation codon, usually AUG, lying between the ribosome binding site and the initiating AUG. Also, 10 generally, there will be a translation stop codon at the end of the polypeptide and there will be a polyadenylation signal and a transcription termination signal appropriately disposed at the 3' end of the transcribed region.

Appropriate secretion signals may be incorporated 15 into the expressed polypeptide for secretion of the translated protein into the lumen of the endoplasmic reticulum, into the periplasmic space or into the extracellular environment. The signals may be endogenous to the polypeptide or they may be heterologous signals.

20 The polypeptide may be expressed in a modified form, such as a fusion protein, and may include not only secretion signals but also additional heterologous functional regions. Thus, for instance, a region of additional amino acids, particularly charged amino acids, 25 may be added to the N-terminus of the polypeptide to improve stability and persistence in the host cell during purification or during subsequent handling and storage. A region also may be added to the polypeptide to facilitate purification. Such regions may be removed prior to final 30 preparation of the polypeptide. The addition of peptide moieties to polypeptides to engender secretion or excretion, to improve stability and to facilitate purification, among others, are familiar and routine techniques in the art.

- 56 -

Suitable prokaryotic hosts for propagation, maintenance or expression of LSG polynucleotides and polypeptides in accordance with the invention include *Escherichia coli*, *Bacillus subtilis* and *Salmonella typhimurium*. Various species of *Pseudomonas*, *Streptomyces*, and *Staphylococcus* are suitable hosts in this regard. Many other hosts also known to those of skill may also be employed in this regard.

As a representative, but non-limiting example, useful expression vectors for bacterial use can comprise a selectable marker and bacterial origin of replication derived from commercially available plasmids comprising genetic elements of the well known cloning vector pBR322. Such commercial vectors include, for example, pKK223-3 (Pharmacia Fine Chemicals, Uppsala, Sweden) and GEM1 (Promega Biotec, Madison, Wis., USA). These pBR322 "backbone" sections are combined with an appropriate promoter and the structural sequence to be expressed. Following transformation of a suitable host strain and growth of the host strain to an appropriate cell density, where the selected promoter is inducible it is induced by appropriate means (e.g., temperature shift or exposure to chemical inducer) and cells are cultured for an additional period. Cells typically then are harvested by centrifugation, disrupted by physical or chemical means, and the resulting crude extract retained for further purification. Microbial cells employed in expression of proteins can be disrupted by any convenient method, including freeze-thaw cycling, sonication, mechanical disruption, or use of cell lysing agents, such methods are well known to those skilled in the art.

Various mammalian cell culture systems can be employed for expression, as well. An exemplary mammalian expression system is the COS-7 line of monkey kidney fibroblasts described in Gluzman et al., Cell 23: 175

- 57 -

(1981). Other mammalian cell lines capable of expressing a compatible vector include for example, the C127, 3T3, CHO, HeLa, human kidney 293 and BHK cell lines. Mammalian expression vectors comprise an origin of replication, a 5 suitable promoter and enhancer, and any ribosome binding sites, polyadenylation sites, splice donor and acceptor sites, transcriptional termination sequences, and 5' flanking non-transcribed sequences that are necessary for expression. In certain preferred embodiments in this regard 10 DNA sequences derived from the SV40 splice sites, and the SV40 polyadenylation sites are used for required non-transcribed genetic elements of these types.

LSG polypeptides can be recovered and purified from recombinant cell cultures by well-known methods including 15 ammonium sulfate or ethanol precipitation, acid extraction, anion or cation exchange chromatography, phosphocellulose chromatography, hydrophobic interaction chromatography, affinity chromatography, hydroxylapatite chromatography and lectin chromatography. Most preferably, high performance 20 liquid chromatography ("HPLC") is employed for purification. Well known techniques for refolding proteins may be employed to regenerate active conformation when the polypeptide is denatured during isolation and/or purification.

25 LSG polypeptides of the present invention include naturally purified products, products of chemical synthetic procedures, and products produced by recombinant techniques from a prokaryotic or eukaryotic host, including, for example, bacterial, yeast, higher plant, insect and 30 mammalian cells. Depending upon the host employed in a recombinant production procedure, the LSG polypeptides of the present invention may be glycosylated or may be non-glycosylated. In addition, LSG polypeptides of the invention may also include an initial modified methionine

- 58 -

residue, in some cases as a result of host-mediated processes.

LSG polynucleotides and polypeptides may be used in accordance with the present invention for a variety of 5 applications, particularly those that make use of the chemical and biological properties of the LSGs. Additional applications relate to diagnosis and to treatment of disorders of cells, tissues and organisms. These aspects of the invention are illustrated further by the following 10 discussion.

Polynucleotide assays

As discussed in some detail *supra*, this invention is also related to the use of LSG polynucleotides to detect complementary polynucleotides such as, for example, as a 15 diagnostic reagent. Detection of a mutated form of LSG associated with a dysfunction will provide a diagnostic tool that can add to or define a diagnosis of a disease or susceptibility to a disease which results from under-expression, over-expression or altered expression of a LSG, 20 such as, for example, a susceptibility to inherited lung cancer.

Individuals carrying mutations in a human LSG gene may be detected at the DNA level by a variety of techniques. Nucleic acids for diagnosis may be obtained 25 from a patient's cells, such as from blood, urine, saliva, tissue biopsy and autopsy material. The genomic DNA may be used directly for detection or may be amplified enzymatically using PCR prior to analysis (Saiki et al., Nature, 324: 163-166 (1986)). RNA or cDNA may also be used 30 in a similar manner. As an example, PCR primers complementary to a LSG polynucleotide of SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 37 or 38 can be used to identify and analyze LSG expression and mutations. For example, 35 deletions and insertions can be detected by a change in

- 59 -

size of the amplified product in comparison to the normal genotype. Point mutations can be identified by hybridizing amplified DNA to radiolabeled LSG RNA or alternatively, radiolabeled LSG antisense DNA sequences. Perfectly matched sequences can be distinguished from mismatched duplexes by RNase A digestion or by differences in melting temperatures.

Sequence differences between a reference gene and genes having mutations also may be revealed by direct DNA sequencing. In addition, cloned DNA segments may be employed as probes to detect specific DNA segments. The sensitivity of such methods can be greatly enhanced by appropriate use of PCR or another amplification method. For example, a sequencing primer is used with double-stranded PCR product or a single-stranded template molecule generated by a modified PCR. The sequence determination is performed by conventional procedures with radiolabeled nucleotide or by automatic sequencing procedures with fluorescent-tags.

Genetic testing based on DNA sequence differences may be achieved by detection of alterations in electrophoretic mobility of DNA fragments in gels, with or without denaturing agents. Small sequence deletions and insertions can be visualized by high resolution gel electrophoresis. DNA fragments of different sequences may be distinguished on denaturing formamide gradient gels in which the mobilities of different DNA fragments are retarded in the gel at different positions according to their specific melting or partial melting temperatures (see, e.g., Myers et al., Science, 230: 1242 (1985)).

Sequence changes at specific locations also may be revealed by nuclease protection assays, such as RNase and S1 protection or the chemical cleavage method (e.g., Cotton et al., Proc. Natl. Acad. Sci., USA, 85: 4397-4401 (1985)).

- 60 -

Thus, the detection of a specific DNA sequence may be achieved by methods such as hybridization, RNase protection, chemical cleavage, direct DNA sequencing or the use of restriction enzymes, (e.g., restriction fragment length polymorphisms ("RFLP")) and Southern blotting of genomic DNA. In addition to more conventional gel-electrophoresis and DNA sequencing, mutations also can be detected by *in situ* analysis.

Chromosome assays

The LSG sequences of the present invention are also valuable for chromosome identification. There is a need for identifying particular sites on the chromosome and few chromosome marking reagents based on actual sequence data (repeat polymorphisms) are presently available for marking chromosomal location. Each LSG sequence of the present invention is specifically targeted to and can hybridize with a particular location on an individual human chromosome. Thus, the LSGs can be used in the mapping of DNAs to chromosomes, an important first step in correlating sequences with genes associated with disease.

In certain preferred embodiments in this regard, the cDNA herein disclosed is used to clone genomic DNA of a LSG of the present invention. This can be accomplished using a variety of well known techniques and libraries, which generally are available commercially. The genomic DNA is used for *in situ* chromosome mapping using well known techniques for this purpose.

In some cases, sequences can be mapped to chromosomes by preparing PCR primers (preferably 15-25 bp) from the cDNA. Computer analysis of the 3' untranslated region of the gene is used to rapidly select primers that do not span more than one exon in the genomic DNA, thus complicating the amplification process. These primers are then used for PCR screening of somatic cell hybrids containing individual human chromosomes. Only those hybrids containing the human

- 61 -

gene corresponding to the primer will yield an amplified fragment.

PCR mapping of somatic cell hybrids is a rapid procedure for assigning a particular DNA to a particular 5 chromosome. Using the present invention with the same oligonucleotide primers, sublocalization can be achieved with panels of fragments from specific chromosomes or pools of large genomic clones in an analogous manner. Other mapping strategies that can similarly be used to map to its 10 chromosome include *in situ* hybridization, prescreening with labeled flow-sorted chromosomes and preselection by hybridization to construct chromosome specific-cDNA libraries.

Fluorescence *in situ* hybridization ("FISH") of a cDNA 15 clone to a metaphase chromosomal spread can be used to provide a precise chromosomal location in one step. This technique can be used with cDNA as short as 50 or 60 bp. This technique is described by Verma et al. (*HUMAN CHROMOSOMES: A MANUAL OF BASIC TECHNIQUES*, Pergamon Press, 20 New York (1988)).

Once a sequence has been mapped to a precise chromosomal location, the physical position of the sequence on the chromosome can be correlated with genetic map data. Such data are found, for example, in V. McKusick, MENDELIAN 25 INHERITANCE IN MAN, available on line through Johns Hopkins University, Welch Medical Library. The relationship between genes and diseases that have been mapped to the same chromosomal region are then identified through linkage analysis (coinheritance of physically adjacent genes).

30 Next, it is necessary to determine the differences in the cDNA or genomic sequence between affected and unaffected individuals. If a mutation is observed in some or all of the affected individuals but not in any normal individuals, then the mutation is likely to be the 35 causative agent of the disease.

- 62 -

With current resolution of physical mapping and genetic mapping techniques, a cDNA precisely localized to a chromosomal region associated with the disease could be one of between 50 and 500 potential causative genes. (This 5 assumes 1 megabase mapping resolution and one gene per 20 kb).

Polypeptide assays

As described in some detail *supra*, the present invention also relates to diagnostic assays such as 10 quantitative and diagnostic assays for detecting levels of LSG polypeptide in cells and tissues, and biological fluids such as blood and urine, including determination of normal and abnormal levels. Thus, for instance, a diagnostic assay in accordance with the present invention for detecting 15 over-expression or under-expression of a LSG polypeptide compared to normal control tissue samples may be used to detect the presence of neoplasia. Assay techniques that can be used to determine levels of a protein, such as a LSG polypeptide of the present invention, in a sample derived 20 from a host are well-known to those of skill in the art. Such assay methods include radioimmunoassays, competitive-binding assays, Western Blot analysis and ELISA assays. Among these ELISAs frequently are preferred.

For example, antibody-sandwich ELISAs are used to 25 detect polypeptides in a sample, preferably a biological sample. Wells of a microtiter plate are coated with specific antibodies, at a final concentration of 0.2 to 10 µg/ml. The antibodies are either monoclonal or polyclonal and are produced by methods as described herein. The wells 30 are blocked so that non-specific binding of the polypeptide to the well is reduced. The coated wells are then incubated for > 2 hours at room temperature with a sample containing the LSG polypeptide. Preferably, serial dilutions of the sample should be used to validate results. 35 The plates are then washed three times with deionized or

- 63 -

distilled water to remove unbounded polypeptide. Next, 50 µl of specific antibody-alkaline phosphatase conjugate, at a concentration of 25-400 ng, is added and incubated for 2 hours at room temperature. The plates are again washed 5 three times with deionized or distilled water to remove unbounded conjugate. 4-methylumbelliferyl phosphate (MUP) or p-nitrophenyl phosphate (NPP) substrate solution (75µl) is then added to each well and the plate is incubated 1 hour at room temperature. The reaction is measured by a 10 microtiter plate reader. A standard curve is prepared using serial dilutions of a control sample, and polypeptide concentration is plotted on the X-axis (log scale) while fluorescence or absorbance is plotted on the Y-axis (linear scale). The concentration of the LSG polypeptide in the 15 sample is interpolated using the standard curve.

Antibodies

As discussed in some detail *supra*, LSG polypeptides, their fragments or other derivatives, or analogs thereof, or cells expressing them can be used as an immunogen to 20 produce antibodies thereto. These antibodies can be polyclonal or monoclonal antibodies. The present invention also includes chimeric, single chain, and humanized antibodies, as well as Fab fragments, or the product of an 25 Fab expression library. Various procedures known in the art may be used for the production of such antibodies and fragments.

A variety of methods for antibody production are set forth in Current Protocols, Chapter 2.

For example, cells expressing a LSG polypeptide of 30 the present invention can be administered to an animal to induce the production of sera containing polyclonal antibodies. In a preferred method, a preparation of the secreted protein is prepared and purified to render it substantially free of natural contaminants. This 35 preparation is then introduced into an animal in order to

- 64 -

produce polyclonal antisera of greater specific activity. The antibody obtained will bind with the LSG polypeptide itself. In this manner, even a sequence encoding only a fragment of the LSG polypeptide can be used to generate 5 antibodies binding the whole native polypeptide. Such antibodies can then be used to isolate the LSG polypeptide from tissue expressing that LSG polypeptide.

Alternatively, monoclonal antibodies can be prepared. Examples of techniques for production of monoclonal 10 antibodies include, but are not limited to, the hybridoma technique (Kohler, G. and Milstein, C., Nature 256: 495-497 (1975), the trioma technique, the human B-cell hybridoma technique (Kozbor et al., Immunology Today 4: 72 (1983) and (Cole et al., pg. 77-96 in MONOCLONAL ANTIBODIES AND CANCER 15 THERAPY, Alan R. Liss, Inc. (1985). The EBV-hybridoma technique is useful in production of human monoclonal antibodies.

Hybridoma technologies have also been described by Khler et al. (Eur. J. Immunol. 6: 511 (1976)) Khler et al. 20 (Eur. J. Immunol. 6: 292 (1976)) and Hammerling et al. (in: Monoclonal Antibodies and T-Cell Hybridomas, Elsevier, N. Y., pp. 563-681 (1981)). In general, such procedures involve immunizing an animal (preferably a mouse) with LSG 25 polypeptide or, more preferably, with a secreted LSG polypeptide-expressing cell. Such cells may be cultured in any suitable tissue culture medium; however, it is preferable to culture cells in Earle's modified Eagle's medium supplemented with 10% fetal bovine serum (inactivated at about 56°C), and supplemented with about 10 30 g/l of nonessential amino acids, about 1,000 U/ml of penicillin, and about 100 µg/ml of streptomycin. The splenocytes of such mice are extracted and fused with a suitable myeloma cell line. Any suitable myeloma cell line may be employed in accordance with the present invention; 35 however, it is preferable to employ the parent myeloma cell

- 65 -

line (SP20), available from the ATCC. After fusion, the resulting hybridoma cells are selectively maintained in HAT medium, and then cloned by limiting dilution as described by Wands et al. (Gastroenterology 80: 225-232 (1981).).
5 The hybridoma cells obtained through such a selection are then assayed to identify clones which secrete antibodies capable of binding the polypeptide.

Alternatively, additional antibodies capable of binding to the polypeptide can be produced in a two-step
10 procedure using anti-idiotypic antibodies. Such a method makes use of the fact that antibodies are themselves antigens, and therefore, it is possible to obtain an antibody which binds to a second antibody. In accordance with this method, protein specific antibodies are used to
15 immunize an animal, preferably a mouse. The splenocytes of such an animal are then used to produce hybridoma cells, and the hybridoma cells are screened to identify clones which produce an antibody whose ability to bind to the protein-specific antibody can be blocked by the
20 polypeptide. Such antibodies comprise anti-idiotypic antibodies to the protein specific antibody and can be used to immunize an animal to induce formation of further protein-specific antibodies.

Techniques described for the production of single
25 chain antibodies (U.S. Patent 4,946,778) can also be adapted to produce single chain antibodies to immunogenic polypeptide products of this invention. Also, transgenic mice, as well as other nonhuman transgenic animals, may be used to express humanized antibodies to immunogenic
30 polypeptide products of this invention.

It will be appreciated that Fab, F(ab')₂ and other fragments of the antibodies of the present invention may also be used according to the methods disclosed herein. Such fragments are typically produced by proteolytic
35 cleavage, using enzymes such as papain (to produce Fab

- 66 -

fragments) or pepsin (to produce F(ab')₂ fragments). Alternatively, secreted protein-binding fragments can be produced through the application of recombinant DNA technology or through synthetic chemistry.

5 For *in vivo* use of antibodies in humans, it may be preferable to use "humanized" chimeric monoclonal antibodies. Such antibodies can be produced using genetic constructs derived from hybridoma cells producing the monoclonal antibodies described above. Methods for
10 producing chimeric antibodies are known in the art (See, for review, Morrison, Science 229: 1202 (1985); Oi et al., BioTechniques 4: 214 (1986); Cabilly et al., U. S. Patent 4,816,567; Taniguchi et al., EP 171496; Morrison et al., EP 173494; Neuberger et al., WO 8601533; Robinson et al., WO
15 8702671; Boulian et al., Nature 312: 643 (1984); Neuberger et al., Nature 314: 268 (1985).)

The above-described antibodies may be employed to isolate or to identify clones expressing LSG polypeptides or purify LSG polypeptides of the present invention by
20 attachment of the antibody to a solid support for isolation and/or purification by affinity chromatography. As discussed in more detail *supra*, antibodies specific against a LSG may also be used to image tumors, particularly cancer of the lung, in patients suffering from cancer. Such
25 antibodies may also be used therapeutically to target tumors expressing a LSG.

Preferred exemplary antigenic epitopes of LSGs of the present invention which have been identified are depicted below. The antigenicity index (AI avg) used is Jameson-Wolf. In some embodiment, it may be preferred to raise antibodies against these regions of the LSGs.

LSG of SEQ ID NO:39

	positions	AI avg	length
35	176-220	1.37	45
	399-410	1.18	12
	301-317	1.13	17

- 67 -

370-391	1.13	22
23-34	1.07	12
149-174	1.00	26
51-67	1.00	17

5 LSG of SEQ ID NO:42

	positions	AI avg	length
	453-465	1.25	13
	399-409	1.25	11
	572-584	1.20	13
10	874-887	1.18	14
	226-235	1.15	10
	30-51	1.09	22
	910-920	1.07	11
	991-1010	1.06	20
15	655-668	1.06	14
	362-373	1.00	12

LSG of SEQ ID NO:44

	positions	AI avg	length
	134-160	1.23	27
20	415-436	1.17	22
	485-515	1.16	31
	459-474	1.10	16
	200-210	1.08	11
	535-562	1.04	28
25	91-115	1.04	25
	523-532	1.02	10
	8-20	1.01	13

LSG of SEQ ID NO:45

	positions	AI avg	length
30	563-586	1.19	24
	395-408	1.09	14
	130-139	1.04	10
	117-127	1.02	11
	165-189	1.01	25

35 LSG of SEQ ID NO:46

	positions	AI avg	length
	122-137	1.10	16

LSG of SEQ ID NO:47

	positions	AI avg	length
40	1045-1054	1.12	10
	845-880	1.10	36
	919-945	1.10	27
	1376-1418	1.10	43
	144-164	1.10	21
45	814-835	1.09	22
	706-755	1.06	50
	401-416	1.05	16
	445-491	1.04	47
	1061-1085	1.03	25
50	422-442	1.02	21

LSG of SEQ ID NO:48

- 68 -

	positions	AI avg	length
5	340-362	1.05	23
	155-164	1.01	10
	228-240	1.00	13
	3-14	1.00	12
	LSG of SEQ ID NO:49		
	positions	AI avg	length
	189-204	1.08	16
	LSG of SEQ ID NO:50		
10	positions	AI avg	length
	134-143	1.21	10
	23-45	1.01	23
	LSG of SEQ ID NO:51		
	positions	AI avg	length
15	53-68	1.14	16
	LSG of SEQ ID NO:53		
	positions	AI avg	length
	367-392	1.32	26
	491-504	1.07	14
20	14-35	1.04	22
	275-284	1.03	10
	208-219	1.03	12
	439-456	1.02	18
	LSG of SEQ ID NO:54		
25	positions	AI avg	length
	1671-1681	1.35	11
	453-465	1.26	13
	1748-1759	1.23	12
	1725-1738	1.19	14
30	1804-1825	1.15	22
	1644-1655	1.13	12
	1281-1295	1.12	15
	1532-1545	1.11	14
	1351-1369	1.07	19
35	1040-1062	1.06	23
	1334-1347	1.05	14
	145-155	1.05	11
	1121-1132	1.05	12
	1307-1318	1.02	12
40	1376-1408	1.02	33
	650-660	1.01	11
	802-823	1.00	22
	714-735	1.00	22
	1885-1898	1.00	14
45	1967-1976	1.00	10
	LSG of SEQ ID NO:55		
	positions	AI avg	length
	297-311	1.31	15
	328-344	1.25	17
50	16-25	1.20	10
	96-113	1.12	18

- 69 -

	381-393	1.12	13
	236-250	1.10	15
	354-364	1.09	11
	441-451	1.07	11
5	274-291	1.00	18
	LSG of SEQ ID NO:56		
	positions	AI avg	length
	197-210	1.03	14
	318-328	1.02	11

10

LSG binding molecules and assays

This invention also provides a method for identification of molecules, such as receptor molecules, that bind LSGs. Genes encoding proteins that bind LSGs, such as receptor proteins, can be identified by numerous methods known to those of skill in the art. Examples include, but are not limited to, ligand panning and FACS sorting. Such methods are described in many laboratory manuals such as, for instance, Coligan et al., Current Protocols in Immunology 1(2): Chapter 5 (1991).

Expression cloning may also be employed for this purpose. To this end, polyadenylated RNA is prepared from a cell responsive to a LSG of the present invention. A cDNA library is created from this RNA and the library is divided into pools. The pools are then transfected individually into cells that are not responsive to a LSG of the present invention. The transfected cells then are exposed to labeled LSG. LSG polypeptides can be labeled by a variety of well-known techniques including, but not limited to, standard methods of radio-iodination or inclusion of a recognition site for a site-specific protein kinase. Following exposure, the cells are fixed and binding of labeled LSG is determined. These procedures conveniently are carried out on glass slides. Pools containing labeled LSG are identified as containing cDNA that produced LSG-binding cells. Sub-pools are then prepared from these positives, transfected into host cells and screened as described above. Using an iterative sub-pooling and re-

- 70 -

screening process, one or more single clones that encode the putative binding molecule, such as a receptor molecule, can be isolated.

Alternatively a labeled ligand can be photoaffinity linked to a cell extract, such as a membrane or a membrane extract, prepared from cells that express a molecule that it binds, such as a receptor molecule. Cross-linked material is resolved by polyacrylamide gel electrophoresis ("PAGE") and exposed to X-ray film. The labeled complex containing the ligand-receptor can be excised, resolved into peptide fragments, and subjected to protein microsequencing. The amino acid sequence obtained from microsequencing can be used to design unique or degenerate oligonucleotide probes to screen cDNA libraries to identify genes encoding the putative receptor molecule.

Polypeptides of the invention also can be used to assess LSG binding capacity of LSG binding molecules, such as receptor molecules, in cells or in cell-free preparations.

20 *Agonists and antagonists - assays and molecules*

The invention also provides a method of screening compounds to identify those which enhance or block the action of a LSG on cells. By "compound", as used herein, it is meant to be inclusive of small organic molecules, peptides, polypeptides and antibodies as well as any other candidate molecules which have the potential to enhance or agonize or block or antagonize the action of LSG on cells. As used herein, an agonist is a compound which increases the natural biological functions of a LSG or which functions in a manner similar to a LSG, while an antagonist, as used herein, is a compound which decreases or eliminates such functions. Various known methods for screening for agonists and/or antagonists can be adapted for use in identifying LSG agonist or antagonists.

- 71 -

For example, a cellular compartment, such as a membrane or a preparation thereof, such as a membrane-preparation, may be prepared from a cell that expresses a molecule that binds a LSG, such as a molecule of a 5 signaling or regulatory pathway modulated by LSG. The preparation is incubated with labeled LSG in the absence or the presence of a compound which may be a LSG agonist or antagonist. The ability of the compound to bind the binding molecule is reflected in decreased binding of the 10 labeled ligand. Compounds which bind gratuitously, i.e., without inducing the effects of a LSG upon binding to the LSG binding molecule are most likely to be good antagonists. Compounds that bind well and elicit effects that are the same as or closely related to LSG are 15 agonists. LSG-like effects of potential agonists and antagonists may be measured, for instance, by determining activity of a second messenger system following interaction of the candidate molecule with a cell or appropriate cell preparation, and comparing the effect with that of LSG or 20 molecules that elicit the same effects as LSG. Second messenger systems that may be useful in this regard include, but are not limited to, AMP guanylate cyclase, ion channel or phosphoinositide hydrolysis second messenger systems.

Another example of an assay for LSG antagonists is a 25 competitive assay that combines LSG and a potential antagonist with membrane-bound LSG receptor molecules or recombinant LSG receptor molecules under appropriate conditions for a competitive inhibition assay. LSG can be 30 labeled, such as by radioactivity, such that the number of LSG molecules bound to a receptor molecule can be determined accurately to assess the effectiveness of the potential antagonist.

Potential antagonists include small organic 35 molecules, peptides, polypeptides and antibodies that bind

- 72 -

to a LSG polypeptide of the invention and thereby inhibit or extinguish its activity. Potential antagonists also may be small organic molecules, a peptide, a polypeptide such as a closely related protein or antibody that binds the 5 same sites on a binding molecule, such as a receptor molecule, without inducing LSG-induced activities, thereby preventing the action of LSG by excluding LSG from binding.

Potential antagonists include small molecules which bind to and occupy the binding site of the LSG polypeptide 10 thereby preventing binding to cellular binding molecules, such as receptor molecules, such that normal biological activity is prevented. Examples of small molecules include but are not limited to small organic molecules, peptides or peptide-like molecules.

15 Other potential antagonists include antisense molecules. Antisense technology can be used to control gene expression through antisense DNA or RNA or through triple-helix formation. Antisense techniques are discussed, for example, in Okano, J. Neurochem. 56: 560 (1991);

20 OLIGODEOXYNUCLEOTIDES AS ANTISENSE INHIBITORS OF GENE EXPRESSION, CRC Press, Boca Raton, Fla. (1988). Triple helix formation is discussed in, for instance Lee et al., Nucleic Acids Research 6: 3073 (1979); Cooney et al., Science 241: 456 (1988); and Dervan et al., Science 251:

25 1360 (1991). The methods are based on binding of a polynucleotide to a complementary DNA or RNA. For example, the 5' coding portion of a polynucleotide that encodes a mature LSG polypeptide of the present invention may be used to design an antisense RNA oligonucleotide of from about 10

30 to 40 base pairs in length. A DNA oligonucleotide is designed to be complementary to a region of the gene involved in transcription thereby preventing transcription and the production of a LSG polypeptide. The antisense RNA oligonucleotide hybridizes to the mRNA *in vivo* and blocks 35 translation of the mRNA molecule into a LSG polypeptide.

- 73 -

The oligonucleotides described above can also be delivered to cells such that the antisense RNA or DNA may be expressed *in vivo* to inhibit production of a LSG.

Compositions

5 The present invention also relates to compositions comprising a LSG polynucleotide or a LSG polypeptide or an agonist or antagonist thereof.

For example, a LSG polynucleotide, polypeptide or an agonist or antagonist thereof of the present invention may 10 be employed in combination with a non-sterile or sterile carrier or carriers for use with cells, tissues or organisms, such as a pharmaceutical carrier suitable for administration to a subject. Such compositions comprise, for instance, a media additive or a therapeutically 15 effective amount of a polypeptide of the invention and a pharmaceutically acceptable carrier or excipient. Such carriers may include, but are not limited to, saline, buffered saline, dextrose, water, glycerol, ethanol and combinations thereof. The formulation should suit the mode 20 of administration.

Compositions of the present invention will be formulated and dosed in a fashion consistent with good medical practice, taking into account the clinical condition of the individual patient (especially the side 25 effects of treatment with the polypeptide or other compound alone), the site of delivery, the method of administration, the scheduling of administration, and other factors known to practitioners. The "effective amount" for purposes herein is thus determined by such considerations.

30 As a general proposition, the total pharmaceutically effective amount of secreted polypeptide administered parenterally per dose will be in the range of about 1, $\mu\text{g}/\text{kg}/\text{day}$ to 10 $\text{mg}/\text{kg}/\text{day}$ of patient body weight, although, as noted above, this will be subject to therapeutic 35 discretion. More preferably, this dose is at least 0.01

- 74 -

mg/kg/day, and most preferably for humans between about 0.01 and 1 mg/kg/day for the hormone. If given continuously, the polypeptide or other compound is typically administered at a dose rate of about 1 μ g/kg/hour 5 to about 50 mg/kg/hour, either by 1-4 injections per day or by continuous subcutaneous infusion, for example, using a mini-pump. An intravenous bag solution may also be employed. The length of treatment needed to observe changes and the interval following treatment for responses to occur 10 appears to vary depending on the desired effect.

Pharmaceutical compositions containing the secreted protein of the invention are administered orally, rectally, parenterally, intracistemally, intravaginally, intraperitoneally, topically (as by powders, ointments, 15 gels, drops or transdermal patch), buccally, or as an oral or nasal spray. "Pharmaceutically acceptable carrier" refers to a non-toxic solid, semisolid or liquid filler, diluent, encapsulating material or formulation auxiliary of any type. The term "parenteral" as used herein refers to 20 modes of administration which include intravenous, intramuscular, intraperitoneal, intrasternal, subcutaneous and intraarticular injection and infusion.

The polypeptide or other compound is also suitably administered by sustained-release systems. Suitable 25 examples of sustained-release compositions include semipermeable polymer matrices in the form of shaped articles, e. g., films, or microcapsules. Sustained-release matrices include polylactides (U.S. Patent 3,773,919 and EP 58481), copolymers of L-glutamic acid and gamma-ethyl-L- 30 glutamate (Sidman, U. et al., Biopolymers 22: 547-556 (1983)), poly (2-hydroxyethyl methacrylate) (R. Langer et al., J. Biomed. Mater. Res. 15: 167-277 (1981), and R. Langer, Chem. Tech. 12: 98-105 (1982)), ethylene vinyl acetate (R. Langer et al.) and poly-D- (-)-3-hydroxybutyric 35 acid (EP 133,988). Sustained-release compositions also

- 75 -

include liposomally entrapped polypeptides. Liposomes containing the polypeptide or other compound are prepared by well known methods (Epstein et al., Proc. Natl. Acad. Sci. USA 82: 3688-3692 (1985); Hwang et al., Proc. Natl. Acad. Sci. USA 77: 4030-4034 (1980); EP 52322; EP 36676; EP 88046; EP 143949; EP 142641; Japanese Pat. Appl. 83-118008; U.S. Patent 4,485,045 and 4,544,545; and EP 102324). Ordinarily, the liposomes are of the small (about 200-800 Angstroms) unilamellar type in which the lipid content is greater than about 30 mol. percent cholesterol, the selected proportion being adjusted for the optimal therapy.

For parenteral administration, in one embodiment, the polypeptide or other compound is formulated generally by mixing it at the desired degree of purity, in a unit dosage injectable form (solution, suspension, or emulsion), with a pharmaceutically acceptable carrier, i.e., one that is non-toxic to recipients at the dosages and concentrations employed and is compatible with other ingredients of the formulation.

For example, the formulation preferably does not include oxidizing agents and other compounds that are known to be deleterious to the polypeptide or other compound.

Generally, the formulations are prepared by contacting the polypeptide or other compound uniformly and intimately with liquid carriers or finely divided solid carriers or both. Then, if necessary, the product is shaped into the desired formulation. Preferably the carrier is a parenteral carrier, more preferably a solution that is isotonic with the blood of the recipient. Examples of such carrier vehicles include water, saline, Ringer's solution, and dextrose solution. Non-aqueous vehicles such as fixed oils and ethyl oleate are also useful herein, as well as liposomes.

The carrier suitably contains minor amounts of additives such as substances that enhance isotonicity and

- 76 -

chemical stability. Such materials are non-toxic to recipients at the dosages and concentrations employed, and include buffers such as phosphate, citrate, succinate, acetic acid, and other organic acids or their salts;

5 antioxidants such as ascorbic acid; low molecular weight (less than about ten residues) polypeptides, e. g., polyarginine or tripeptides; proteins, such as serum albumin, gelatin, or immunoglobulins; hydrophilic polymers such as polyvinylpyrrolidone; amino acids, such as glycine,

10 glutamic acid, aspartic acid, or arginine; monosaccharides, disaccharides, and other carbohydrates including cellulose or its derivatives, glucose, mannose, or dextrins; chelating agents such as EDTA; sugar alcohols such as mannitol or sorbitol; counterions such as sodium; and/or

15 nonionic surfactants such as polysorbates, poloxamers, or PEG.

The polypeptide or other compound is typically formulated in such vehicles at a concentration of about 0.1 mg/ml to 100 mg/ml, preferably 1-10 mg/ml, at a pH of about 20 3 to 8. It will be understood that the use of certain of the foregoing excipients, carriers, or stabilizers will result in the formation of polypeptide salts or salts of the other compounds.

Any polypeptide to be used for therapeutic administration should be sterile. Sterility is readily accomplished by filtration through sterile filtration membranes (e. g., 0.2 micron membranes). Therapeutic polypeptide compositions generally are placed into a container having a sterile access port, for example, an 25 intravenous solution bag or vial having a stopper pierceable by a hypodermic injection needle.

Polypeptides ordinarily will be stored in unit or multi-dose containers, for example, sealed ampules or vials, as an aqueous solution or as a lyophilized 30 formulation for reconstitution. As an example of a

- 77 -

lyophilized formulation, 10-ml vials are filled with 5 ml of sterile-filtered 1 % (w/v) aqueous polypeptide solution, and the resulting mixture is lyophilized. The infusion solution is prepared by reconstituting the lyophilized 5 polypeptide using bacteriostatic Water-for-Injection.

Kits

The invention further relates to pharmaceutical packs and kits comprising one or more containers filled with one or more of the ingredients of the aforementioned 10 compositions of the invention. Associated with such container(s) can be a notice in the form prescribed by a governmental agency regulating the manufacture, use or sale of pharmaceuticals or biological products, reflecting approval by the agency of the manufacture, use or sale of 15 the product for human administration.

Administration

LSG polypeptides or polynucleotides or other compounds, preferably agonists or antagonists thereof of the present invention may be employed alone or in 20 conjunction with other compounds, such as therapeutic compounds.

The pharmaceutical compositions may be administered in any effective, convenient manner including, for instance, administration by topical, oral, anal, vaginal, 25 intravenous, intraperitoneal, intramuscular, subcutaneous, intranasal or intradermal routes among others.

The pharmaceutical compositions generally are administered in an amount effective for treatment or prophylaxis of a specific indication or indications. In 30 general, the compositions are administered in an amount of at least about 10 µg/kg body weight. However, it will be appreciated that optimum dosage will be determined by standard methods for each treatment modality and indication, taking into account the indication, its

- 78 -

severity, route of administration, complicating conditions and the like.

It will be appreciated that conditions caused by a decrease in the standard or normal expression level of a LSG polypeptide in an individual can be treated by administering the LSG polypeptide of the present invention, preferably in the secreted form, or an agonist thereof. Thus, the invention also provides a method of treatment of an individual in need of an increased level of a LSG polypeptide comprising administering to such an individual a pharmaceutical composition comprising an amount of the LSG polypeptide or an agonist thereof to increase the activity level of the LSG polypeptide in such an individual. For example, a patient with decreased levels of a LSG polypeptide may receive a daily dose 0.1-100 µg/kg of a LSG polypeptide or agonist thereof for six consecutive days. Preferably, if a LSG polypeptide is administered it is in the secreted form.

Compositions of the present invention can also be administered to treating increased levels of a LSG polypeptide. For example, antisense technology can be used to inhibit production of a LSG polypeptide of the present invention. This technology is one example of a method of decreasing levels of a polypeptide, preferably a secreted form, due to a variety of etiologies, such as cancer. A patient diagnosed with abnormally increased levels of a polypeptide can be administered intravenously antisense polynucleotides at 0.5, 1.0, 1.5, 2.0 and 3.0 mg/kg day for 21 days. This treatment is preferably repeated after a 7-day rest period if the treatment was well tolerated.

Compositions comprising an antagonist of a LSG polypeptide can also be administered to decrease levels of LSG in a patient.

Gene therapy

- 79 -

The LSG polynucleotides, polypeptides, agonists and antagonists that are polypeptides may be employed in accordance with the present invention by expression of such polypeptides *in vivo*, in treatment modalities often referred to as "gene therapy."

Thus, for example, cells from a patient may be engineered with a polynucleotide, such as a DNA or RNA, encoding a polypeptide *ex vivo*, and the engineered cells then can be provided to a patient to be treated with the polypeptide. For example, cells may be engineered *ex vivo* by the use of a retroviral plasmid vector containing RNA encoding a polypeptide of the present invention. Such methods are well-known in the art and their use in the present invention will be apparent from the teachings herein.

Similarly, cells may be engineered *in vivo* for expression of a polypeptide *in vivo* by procedures known in the art. For example, a polynucleotide of the invention may be engineered for expression in a replication defective retroviral vector, as discussed *supra*. The retroviral expression construct then may be isolated and introduced into a packaging cell transduced with a retroviral plasmid vector containing RNA encoding a polypeptide of the present invention such that the packaging cell now produces infectious viral particles containing the gene of interest. These producer cells may be administered to a patient for engineering cells *in vivo* and expression of the polypeptide *in vivo*. These and other methods for administering a polypeptide of the present invention would be apparent to those skilled in the art upon reading the instant application.

Retroviruses from which the retroviral plasmid vectors herein above mentioned may be derived include, but are not limited to, Moloney Murine Leukemia Virus, spleen necrosis virus, retroviruses such as Rous Sarcoma Virus,

- 80 -

Harvey Sarcoma Virus, avian leukosis virus, gibbon ape leukemia virus, human immunodeficiency virus, adenovirus, Myeloproliferative Sarcoma Virus, and mammary tumor virus. In one embodiment, the retroviral plasmid vector is derived 5 from Moloney Murine Leukemia Virus.

Such vectors will include one or more promoters for expressing the polypeptide. The selection of a suitable promoter will be apparent to those skilled in the art from the teachings contained herein. However, examples of 10 suitable promoters which may be employed include, but are not limited to, the retroviral LTR, the SV40 promoter, the human cytomegalovirus (CMV) promoter described in Miller et al., Biotechniques 7: 980-990 (1989), and eukaryotic cellular promoters such as the histone, RNA polymerase III, 15 and beta-actin promoters. Other viral promoters which may be employed include, but are not limited to, adenovirus promoters, thymidine kinase (TK) promoters, and B19 parvovirus promoters. Additional promoters which may be used include respiratory syncytial virus (RSV) promoter, 20 inducible promoters such as the MMT promoter, the metallothionein promoter, heat shock promoters, the albumin promoter, the ApoAI promoter, human globin promoters, viral thymidine kinase promoters such as the Herpes Simplex thymidine kinase promoter, retroviral LTRs, the beta-actin 25 promoter, and human growth hormone promoters. The promoter also may be the native promoter which controls the gene encoding the polypeptide.

The nucleic acid sequence encoding the polypeptide of the present invention will be placed under the control of a 30 suitable promoter.

In one embodiment, the retroviral plasmid vector is employed to transduce packaging cell lines to form producer cell lines. Examples of packaging cells which may be transfected include, but are not limited to, the PE501, 35 PA317, Y-2, Y-AM, PA12, T19-14X, VT-19-17-H2, YCRE, YCRIP,

- 81 -

GP+E-86, GP+envAm12, and DAN cell lines as described in Miller, A., Human Gene Therapy 1: 5-14 (1990). The vector may be transduced into the packaging cells through any means known in the art. Such means include, but are not limited to, electroporation, the use of liposomes, and CaPO₄ precipitation. Alternatively, the retroviral plasmid vector may be encapsulated into a liposome, or coupled to a lipid, and then administered to a host. The producer cell line will generate infectious retroviral vector particles which are inclusive of the nucleic acid sequence(s) encoding the polypeptides. Such retroviral vector particles then may be employed to transduce eukaryotic cells, either *in vitro* or *in vivo*. The transduced eukaryotic cells will express the nucleic acid sequence(s) encoding the polypeptide. Eukaryotic cells which may be transduced include, but are not limited to, embryonic stem cells, embryonic carcinoma cells, as well as hematopoietic stem cells, hepatocytes, fibroblasts, myoblasts, keratinocytes, endothelial cells, and bronchial epithelial cells.

An exemplary method of gene therapy involves transplantation of fibroblasts which are capable of expressing a LSG polypeptide or an agonist or antagonist thereof onto a patient. Generally fibroblasts are obtained from a subject by skin biopsy. The resulting tissue is placed in tissue-culture medium and separated into small pieces. Small chunks of the tissue are placed on a wet surface of a tissue culture flask, approximately ten pieces are placed in each flask. The flask is turned upside down, closed tight and left at room temperature over night. After 24 hours at room temperature, the flask is inverted and the chunks of tissue remain fixed to the bottom of the flask and fresh media (e. g., Ham's F12 media, with 10% FBS, penicillin and streptomycin) is added. The flasks are then incubated at 37°C for approximately one week. At this

- 82 -

time, fresh media is added and subsequently changed every several days. After an additional two weeks in culture, a monolayer of fibroblasts emerge. The monolayer is trypsinized and scaled into larger flasks. pMV-7

5 (Kirschmeier, P. T. et al., DNA, 7: 219-25 (1988)), flanked by the long terminal repeats of the Moloney murine sarcoma virus, is digested with EcoRI and HindIII and subsequently treated with calf intestinal phosphatase. The linear vector is fractionated on agarose gel and purified, using

10 glass beads. The cDNA encoding a LSG polypeptide of the present invention or an agonist or antagonist thereof can be amplified using PCR primers which correspond to their 5' and 3' end sequences respectively. Preferably, the 5' primer contains an EcoRI site and the 3' primer includes a

15 HindIII site. Equal quantities of the Moloney murine sarcoma virus linear backbone and the amplified EcoRI and HindIII fragment are added together in the presence of T4 DNA ligase. The resulting mixture is maintained under conditions appropriate for ligation of the two fragments.

20 The ligation mixture is then used to transform bacteria HB 101, which are then plated onto agar containing kanamycin for the purpose of confirming that the vector has the gene of interest properly inserted. Amphotropic pA317 or GP+aml2 packaging cells are grown in tissue culture to

25 confluent density in Dulbecco's Modified Eagles Medium (DMEM) with 10% calf serum (CS), penicillin and streptomycin. The MSV vector containing the gene is then added to the media and the packaging cells transduced with the vector. The packaging cells now produce infectious

30 viral particles containing the gene (the packaging cells are now referred to as producer cells). Fresh media is added to the transduced producer cells, and subsequently, the media is harvested from a 10 cm plate of confluent producer cells. The spent media, containing the infectious

35 viral particles, is filtered through a millipore filter to

remove detached producer cells and this media is then used to infect fibroblast cells. Media is removed from a sub-confluent plate of fibroblasts and quickly replaced with the media from the producer cells. This media is removed 5 and replaced with fresh media. If the titer of virus is high, then virtually all fibroblasts will be infected and no selection is required. If the titer is very low, then it is necessary to use a retroviral vector that has a selectable marker, such as neo or his. Once the 10 fibroblasts have been efficiently infected, the fibroblasts are analyzed to determine whether protein is produced. The engineered fibroblasts are then transplanted onto the host, either alone or after having been grown to confluence on cytodex 3 microcarrier beads.

15 Alternatively, *in vivo* gene therapy methods can be used to treat LSG related disorders, diseases and conditions. Gene therapy methods relate to the introduction of naked nucleic acid (DNA, RNA, and antisense DNA or RNA) sequences into an animal to increase or 20 decrease the expression of the polypeptide.

For example, a LSG polynucleotide of the present invention or a nucleic acid sequence encoding an agonist or antagonist thereto may be operatively linked to a promoter or any other genetic elements necessary for the expression 25 of the polypeptide by the target tissue. Such gene therapy and delivery techniques and methods are known in the art, see, for example, WO 90/11092, WO 98/11779; U.S. Patents 5,693,622, 5,705,151, and 5,580,859; Tabata H. et al. (1997) Cardiovasc. Res. 35 (3): 470-479, Chao J et al. 30 (1997) Pharmacol. Res. 35 (6): 517-522, Wolff J. A. (1997) Neuromuscul. Disord. 7 (5): 314-318, Schwartz B. et al. (1996) Gene Ther. 3 (5): 405-411, Tsurumi Y. et al. (1996) Circulation 94 (12): 3281-3290 (incorporated herein by reference). The polynucleotide constructs may be delivered 35 by any method that delivers injectable materials to the

- 84 -

cells of an animal, such as, injection into the interstitial space of tissues (heart, muscle, skin, lung, liver, intestine and the like). The polynucleotide constructs can be delivered in a pharmaceutically acceptable liquid or aqueous carrier.

The term "naked" polynucleotide, DNA or RNA, refers to sequences that are free from any delivery vehicle that acts to assist, promote, or facilitate entry into the cell, including viral sequences, viral particles, liposome formulations, lipofectin or precipitating agents and the like. However, polynucleotides may also be delivered in liposome formulations (such as those taught in Felgner P. L. et al. (1995) Ann. NY Acad. Sci. 772: 126-139 and Abdallah B. et al. (1995) Biol. Cell 85 (1): 1-7) which can be prepared by methods well known to those skilled in the art.

The polynucleotide vector constructs used in the gene therapy method are preferably constructs that will not integrate into the host genome nor will they contain sequences that allow for replication. Any strong promoter known to those skilled in the art can be used for driving the expression of DNA. Unlike other gene therapies techniques, one major advantage of introducing naked nucleic acid sequences into target cells is the transitory nature of the polynucleotide synthesis in the cells. Studies have shown that non-replicating DNA sequences can be introduced into cells to provide production of the desired polypeptide for periods of up to six months.

The polynucleotide construct can be delivered to the interstitial space of tissues within the an animal, including of muscle, skin, brain, lung, liver, spleen, bone marrow, thymus, heart, lymph, blood, bone, cartilage, pancreas, kidney, gall bladder, stomach, intestine, testis, ovary, uterus, rectum, nervous system, eye, gland, and connective tissue. Interstitial space of the tissues

- 85 -

comprises the intercellular fluid, mucopolysaccharide matrix among the reticular fibers of organ tissues, elastic fibers in the walls of vessels or chambers, collagen fibers of fibrous tissues, or that same matrix within connective tissue ensheathing muscle cells or in the lacunae of bone. It is similarly the space occupied by the plasma of the circulation and the lymph fluid of the lymphatic channels. Delivery to the interstitial space of muscle tissue is preferred. The polynucleotide construct may be conveniently delivered by injection into the tissues comprising these cells. They are preferably delivered to and expressed in persistent, non-dividing cells which are differentiated, although delivery and expression may be achieved in non-differentiated or less completely differentiated cells, such as, for example, stem cells of blood or skin fibroblasts. *In vivo* muscle cells are particularly competent in their ability to take up and express polynucleotides.

For the naked polynucleotide injection, an effective dosage amount of DNA or RNA will be in the range of from about 0.05 µg/kg body weight to about 50 mg/kg body weight. Preferably the dosage will be from about 0.005 mg/kg to about 20 mg/kg and more preferably from about 0.05 mg/kg to about 5 mg/kg. Of course, as the artisan of ordinary skill will appreciate, this dosage will vary according to the tissue site of injection. The appropriate and effective dosage of nucleic acid sequence can readily be determined by those of ordinary skill in the art and may depend on the condition being treated and the route of administration. The preferred route of administration is by the parenteral route of injection into the interstitial space of tissues. However, other parenteral routes may also be used, such as, inhalation of an aerosol formulation particularly for delivery to lungs or bronchial tissues, throat or mucous membranes of the nose. In addition, naked polynucleotide

- 86 -

constructs can be delivered to arteries during angioplasty by the catheter used in the procedure.

The dose response effects of injected polynucleotide in muscle *in vivo* is determined as follows. Suitable 5 template DNA for production of mRNA coding for polypeptide of the present invention is prepared in accordance with a standard recombinant DNA methodology. The template DNA, which may be either circular or linear, is either used as naked DNA or complexed with liposomes. The quadriceps 10 muscles of mice are then injected with various amounts of the template DNA.

Five to six week old female and male Balb/C mice are anesthetized by intraperitoneal injection with 0.3 ml of 2.5% Avertin. A 1.5 cm incision is made on the anterior 15 thigh, and the quadriceps muscle is directly visualized. The template DNA is injected in 0.1 ml of carrier in a 1 cc syringe through a 27 gauge needle over one minute, approximately 0.5 cm from the distal insertion site of the muscle into the knee and about 0.2 cm deep. A suture is 20 placed over the injection site for future localization, and the skin is closed with stainless steel clips.

After an appropriate incubation time (e.g., 7 days) muscle extracts are prepared by excising the entire quadriceps. Every fifth 15 μ m cross-section of the 25 individual quadriceps muscles is histochemically stained for protein expression. A time course for protein expression may be done in a similar fashion except that quadriceps from different mice are harvested at different times. Persistence of DNA in muscle following injection 30 may be determined by Southern blot analysis after preparing total cellular DNA and HIRT supernatants from injected and control mice.

The results of the above experimentation in mice can be used to extrapolate proper dosages and other treatment 35 parameters in humans and other animals using naked DNA.

Nonhuman Transgenic Animals

The LSG polypeptides of the invention can also be expressed in nonhuman transgenic animals. Nonhuman animals of any species, including, but not limited to, mice, rats, 5 rabbits, hamsters, guinea pigs, pigs, micro-pigs, goats, sheep, cows and non-human primates, e. g., baboons, monkeys, and chimpanzees, may be used to generate transgenic animals. Any technique known in the art may be used to introduce the transgene (I. e., polynucleotides of 10 the invention) into animals to produce the founder lines of transgenic animals. Such techniques include, but are not limited to, pronuclear microinjection (Paterson et al., Appl. Microbiol. Biotechnol. 40: 691-698 (1994); Carver et al., Biotechnology (NY) 11: 1263-1270 (1993); Wright et 15 al., Biotechnology (NY) 9: 830-834 (1991); and Hoppe et al., U.S. Patent 4,873,191); retrovirus mediated gene transfer into germ lines (Van der Putten et al., Proc. Natl. Acad. Sci., USA 82: 6148-6152 (1985)), blastocysts or embryos; gene targeting in embryonic stem cells (Thompson et al., Cell 56: 313-321 (1989)); electroporation of cells 20 or embryos (Lo, 1983, Mol. Cell. Biol. 3: 1803-1814 (1983)); introduction of the polynucleotides of the invention using a gene gun (see, e.g., Ulmer et al., Science 259: 1745 (1993)); introducing nucleic acid 25 constructs into embryonic pluripotent stem cells and transferring the stem cells back into the blastocyst; and sperm mediated gene transfer (Lavitrano et al., Cell 57: 717-723 (1989)). For a review of such techniques, see Gordon, "Transgenic Animals," Intl. Rev. Cytol. 115: 171-229 30 (1989), which is incorporated by reference herein in its entirety.

Any technique known in the art may be used to produce transgenic clones containing polynucleotides of the invention, for example, nuclear transfer into enucleated 35 oocytes of nuclei from cultured embryonic, fetal, or adult

- 88 -

cells induced to quiescence (Campell et al., Nature 380: 64-66 (1996); Wilmut et al., Nature 385: 810813 (1997)).

The present invention provides for transgenic animals that carry the transgene in all their cells, as well as 5 animals which carry the transgene in some, but not all their cells, i.e., mosaic or chimeric animals. The transgene may be integrated as a single transgene or as multiple copies such as in concatamers, e. g., head-to-head tandems or head-to-tail tandems. The transgene may also be 10 selectively introduced into and activated in a particular cell type by following, for example, the teaching of Lasko et al. (Lasko et al., Proc. Natl. Acad. Sci. USA 89: 6232-6236 (1992)). The regulatory sequences required for such a 15 cell-type specific activation will depend upon the particular cell type of interest, and will be apparent to those of skill in the art. When it is desired that the polynucleotide transgene be integrated into the chromosomal site of the endogenous gene, gene targeting is preferred. Briefly, when such a technique is to be utilized, vectors 20 containing some nucleotide sequences homologous to the endogenous gene are designed for the purpose of integrating, via homologous recombination with chromosomal sequences, into and disrupting the function of the nucleotide sequence of the endogenous gene. The transgene 25 may also be selectively introduced into a particular cell type, thus inactivating the endogenous gene in only that cell type, by following, for example, the teaching of Gu et al. (Science 265: 103-106 (1994)). The regulatory sequences required for such a cell-type specific 30 inactivation will depend upon the particular cell type of interest, and will be apparent to those of skill in the art.

Once transgenic animals have been generated, the expression of the recombinant gene may be assayed utilizing 35 standard techniques. Initial screening may be accomplished

- 89 -

by Southern blot analysis or PCR techniques to analyze animal tissues to verify that integration of the transgene has taken place. The level of mRNA expression of the transgene in the tissues of the transgenic animals may also 5 be assessed using techniques which include, but are not limited to, Northern blot analysis of tissue samples obtained from the animal, *in situ* hybridization analysis, and reverse transcriptase-PCR (rt-PCR). Samples of transgenic gene-expressing tissue may also be evaluated 10 immunocytochemically or immunohistochemically using antibodies specific for the transgene product.

Once the founder animals are produced, they may be bred, inbred, outbred, or crossbred to produce colonies of the particular animal. Examples of such breeding 15 strategies include, but are not limited to: outbreeding of founder animals with more than one integration site in order to establish separate lines; inbreeding of separate lines in order to produce compound transgenics that express the transgene at higher levels because of the effects of 20 additive expression of each transgene; crossing of heterozygous transgenic animals to produce animals homozygous for a given integration site in order to both augment expression and eliminate the need for screening of animals by DNA analysis; crossing of separate homozygous 25 lines to produce compound heterozygous or homozygous lines; and breeding to place the transgene on a distinct background that is appropriate for an experimental model of interest.

Transgenic animals of the invention have uses which 30 include, but are not limited to, animal model systems useful in elaborating the biological function of LSG polypeptides of the present invention, studying conditions and/or disorders associated with aberrant expression of LSGs, and in screening for compounds effective in

- 90 -

ameliorating such LSG associated conditions and/or disorders.

Knock-Out Animals

Endogenous gene expression can also be reduced by 5 inactivating or "knocking out" the gene and/or its promoter using targeted homologous recombination (e. g., see Smithies et al., Nature 317: 230-234 (1985); Thomas & Capecchi, Cell 51: 503512 (1987); Thompson et al., Cell 5: 313-321 (1989); each of which is incorporated by reference 10 herein in its entirety). For example, a mutant, non-functional LSG polynucleotide of the invention (or a completely unrelated DNA sequence) flanked by DNA homologous to the endogenous LSG polynucleotide sequence (either the coding regions or regulatory regions of the 15 gene) can be used, with or without a selectable marker and/or a negative selectable marker, to transfect cells that express polypeptides of the invention *in vivo*. In another embodiment, techniques known in the art are used to generate knockouts in cells that contain, but do not 20 express the gene of interest. Insertion of the DNA construct, via targeted homologous recombination, results in inactivation of the targeted gene. Such approaches are particularly suited in research and agricultural fields where modifications to embryonic stem cells can be used to 25 generate animal offspring with an inactive targeted gene (e. g., see Thomas & Capecchi 1987 and Thompson 1989, *supra*). This approach can also be routinely adapted for use in humans provided the recombinant DNA constructs are directly administered or targeted to the required site in 30 vivo using appropriate viral vectors that will be apparent to those of skill in the art.

In further embodiments of the invention, cells that are genetically engineered to express the LSG polypeptides of the invention, or alternatively, that are genetically 35 engineered not to express the LSG polypeptides of the

- 91 -

invention (e. g., knockouts) are administered to a patient *in vivo*. Such cells may be obtained from the patient or a MHC compatible donor and can include, but are not limited to, fibroblasts, bone marrow cells, blood cells (e. g., 5 lymphocytes), adipocytes, muscle cells, and endothelial cells. The cells are genetically engineered *in vitro* using recombinant DNA techniques to introduce the coding sequence of polypeptides of the invention into the cells, or alternatively, to disrupt the coding sequence and/or 10 endogenous regulatory sequence associated with the polypeptides of the invention, e. g., by transduction (using viral vectors, and preferably vectors that integrate the transgene into the cell genome) or transfection procedures, including, but not limited to, the use of 15 plasmids, cosmids, YACs, naked DNA, electroporation, liposomes, etc.

The coding sequence of the LSG polypeptides of the invention can be placed under the control of a strong constitutive or inducible promoter or promoter/enhancer to 20 achieve expression, and preferably secretion, of the LSG polypeptides of the invention. The engineered cells which express and preferably secrete the LSG polypeptides of the invention can be introduced into the patient systemically, e.g., in the circulation, or intraperitoneally.

25 Alternatively, the cells can be incorporated into a matrix and implanted in the body, e.g., genetically engineered fibroblasts can be implanted as part of a skin graft or genetically engineered endothelial cells can be implanted as part of a lymphatic or vascular graft (see, 30 for example, U.S. Patent 5,399,349 and U.S. Patent 5,460,959 each of which is incorporated by reference herein in its entirety).

When the cells to be administered are non-autologous or non-MHC compatible cells, they can be administered using 35 well known techniques which prevent the development of a

- 92 -

host immune response against the introduced cells. For example, the cells may be introduced in an encapsulated form which, while allowing for an exchange of components with the immediate extracellular environment, does not 5 allow the introduced cells to be recognized by the host immune system.

Transgenic and "knock-out" animals of the invention have uses which include, but are not limited to, animal model systems useful in elaborating the biological function 10 of LSG polypeptides of the present invention, studying conditions and/or disorders associated with aberrant LSG expression, and in screening for compounds effective in ameliorating such LSG associated conditions and/or disorders.

15 The following nonlimiting example is provided to further illustrate the present invention.

EXAMPLE

The following Example is carried out using standard techniques, which are well known and routine to those of 20 skill in the art, except where otherwise described in detail. Routine molecular biology techniques of the following example can be carried out as described in standard laboratory manuals, such as Sambrook et al., MOLECULAR CLONING: A LABORATORY MANUAL, 2nd Ed.; Cold 25 Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (1989).

Introduction and background for Microarray analysis

cDNA microarrays are prepared by high-speed robotic printing of thousands of distinct cDNAs in an ordered array 30 on glass microscope slides. They are used to measure the relative abundance of specific sequences in two complex samples (Schena et al, 1995; Shalon et al, 1996).

- 93 -

In the microarray procedure, mRNA is isolated from tissues of interest, either from a tumor or control (normal or normal adjacent tissue). mRNA (200-600 ng) from cancer tissue or control is reverse transcribed to incorporate the 5 fluorescent nucleotides Cy5 (red) or Cy3 (green), respectively. The two populations of fluorescently labeled cDNA are mixed together and hybridized simultaneously to a microarray bearing approximately 10,000 cDNA elements in a 2cm x 2cm area on a glass slide (Microarrays hybridization 10 service: Incyte Genomics, Fremont, CA, USA). After hybridization, the slides are scanned with a scanning laser confocal microscope.

The scanned image is used to generate the intensity and local background measurements for each spot on the 15 array (GEMtools software, Incyte Genomics). For each spot, representing one EST, the ratio of the normalized Cy5/Cy3 intensities generates a quantitation of the gene's expression in one tissue relative to the control, in this case, the expression in cancer tissue versus either normal 20 or normal adjacent tissue. For example, a gene that shows a Cancer-Cy5 intensity of 3000 and a Normal-Cy3 intensity of 1000 is expressed 3-fold more in cancer tissue. Advanced analysis software is used to sort and decipher 25 patterns of gene expression from the data (Cluster and Treeview programs, Stanford University; Eisen et al, 1998; Alizadeh et al, 2000). However, the reproducibility study from Incyte shows that the level of detectable differential expression is calculated to be approximately plus or minus 1.74. Consequently, any elements with observed ratios 30 greater than or equal to 1.8 between cancer and normal are deemed differentially expressed.

References:

1. Schena, M., D. Shalon, R.W. Davis, and P.O. Brown. 1995. Quantitative monitoring of gene expression patterns

- 94 -

with a complementary cDNA microarray. *Science* 270: 467-470.

2. Shalon, D., S.J. Smith, and P.O. Brown. 1996. A DNA Microarray System for Analyzing Complex DNA samples Using 5 Two-color Fluorescent Probe Hybridization. *Genome Research* 6: 639-645.

3. Eisen, M.B., P.T. Spellman, P.O. Brown, and D. Botstein. 1998. "Cluster analysis and display of genome-wide expression patterns". *PNAS* 95: 14863-14868.

10 4. Alizadeh, A.A., et al, 2000. "Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling." *Nature*, 403: 503-511.

5. GEM Microarray Reproducibility Study. Technical specifications from Incyte Genomics.

15 Lung diaDexus microarray candidates

Following is a list of "diaDexus microarray candidates" sequences for lung cancer, also referred to herein as lung specific genes or LSGs:

	Sequences	Gene ID/ Clone ID/ ddxid
20	1	1040286/ 2746236/ 18867
	2	198406/ 2639142/ 12801
	3	441298/ 1877647/ 8255
	4	244318/ 3032060/ 7048
	5	429368/ 2890670/ 4002
25	6	975386/ 289582/ 5018
	7	480710/ 1911471/ 12153
	8	1040699/ 1899557/ 13678
	9	1040383/ 1556335/ 3273
	10	108494/ 3130429/ 3126
30	11	331878/ 2445607/ 3070
	12	233442/ 1959959/ 18837
	13	255993/ 1670828/ 7873
	14	897843 / 1823610/ 16315
	15	414885/ 2655867/ 21009

- 95 -

	16	1100375/ 690306/ x
	17	6133/ 3993331/ x
	18	257782/ 3032060A/ 7048A
	19	347005/ 1911471A/ 12153A
5	20	332710/ 3130429A/ 3126A
	21	255828/ 2445607A/ 3070A
	22	328565/ 3993331A/ x

Table 1 depicts numbers which are ratios indicating the levels of expression of the Clone IDs in the cancer tissue sample (labeled with Cy5) relative to the normal tissue, or the normal adjacent tissue control (labeled with Cy3) used in that experiment. The Cy5/Cy3 ratio of the normalized fluorescent intensities in each channel is used as a measure of relative gene expression. A positive number represents overexpression in cancer relative to the normal control. A negative number represents higher expression in the normal adjacent sample compared to the cancer tissue sample used in that experiment. X means no experiment was performed for the particular tissue sample.

20 **Table 1:**

	CloneID	LN.A143 Vs. Apool	LN.A160 Vs. Apool	LN.A182 Vs. Apool
	2746236	5.3	2.6	1.5
	2639142	1.9	1.7	x
25	1877647	1.6	1.5	x
	3032060	2.1	1.2	x
	2890670	2.6	1.0	2.7
	289582	1.5	1.1	x
30	CloneID	LN.A213 Vs. Apool	LN.A288 Vs. Apool	LN.A323 Vs. Apool
	2746236	4.6	8.9	3.7
	2639142	2.9	x	4.5
	1877647	2	x	5.0
	3032060	2.3	x	4.8
35	2890670	x	4.8	4.6
	289582	2.4	x	1.8
	CloneID	LN.A339	LN.A345	

- 96 -

	Vs. Apool	Vs. Apool
2746236	2.9	2.9
2639142	1.7	1.2
1877647	1.9	1.2
5 3032060	1.2	1.2
2890670	2.4	1.9
289582	2.4	1.9

Absolute values greater than or equal to 1.8 are considered to be above background levels, and are, therefore 10 significant (Source: Incyte Genomics: GEM microarray technical specifications). The relative levels of expression in Table 1 show that Clone ID 2746236 mRNA expression is higher than background in 7 of the cancer tissue samples out of a total of 8 experiments. Clone ID 15 2639142 mRNA expression is higher than background in 3 of the cancer tissue samples out of a total of 6 experiments. Clone ID 1877647 mRNA expression is higher than background in 3 of the cancer tissue samples out of a total of 6 experiments. Clone ID 3032060 mRNA expression is higher 20 than background in 3 of the cancer tissue samples out of a total of 6 experiments. Clone ID 2890670 mRNA expression is higher than background in 5 of the cancer tissue samples out of a total of 6 experiments. Clone ID 289582 mRNA expression is higher than background in 4 of the cancer 25 tissue samples out of a total of 6 experiments.

An additional 16 clones have also been identified by the same type of experiments. These additional clones all show from 30% to 80 % overexpression in cancer tissue samples. The sequences of these LSGs are also disclosed 30 herein.

Semi-quantitative Polymerase Chain Reaction

Semi-quantitative Polymerase Chain Reaction (SQ-PCR) is a method that utilizes end point PCR on serial dilutions of cDNA samples in order to determine relative expression 35 patterns of genes of interest in multiple samples. Using

- 97 -

random hexamer primed Reverse Transcription (RT) cDNA panels are created from total RNA samples. Gene specific primers are then used to amplify fragments using Polymerase Chain Reaction (PCR) technology from four 10x serial cDNA dilutions in duplicate. Relative expression levels of 0, 1, 10, 100 and 1000 are used to evaluate gene expression.

5 A positive reaction in the most dilute sample indicates the highest relative expression value. This is determined by analysis of the sample reactions on a 2-4% agarose gel.

10 The tissue samples used include 12 normal, 12 cancer and 6 pairs tissue specific cancer and matching samples.

Of the list of "diaDexus microarray candidates" sequences for lung cancer, the following sequences were analyzed by semi-quantitative PCR and found to be

15 upregulated in lung adenocarcinoma/carcinoma.

Example#	SEQ ID NO:	Gene ID	Clone ID	ddxid	SQLng code
20	1	1040286	2746236	18867	Sqlng042
	2	441298	1877647	8255	Sqlng040
	3	331878	2445607	3070	Sqlng046
	4	328565	3993331A	x	Sqlng050

Example 1 - SEQ ID NO:1

Semi quantitative PCR was done using the following primers:

25 Sqlng042 forward:

5' CCAGAGCCCAAATCTTGTGAC 3' (SEQ ID NO:23)

Sqclng042 reverse:

5' GCGGCTTGTCTTGGCATTA 3' (SEQ ID NO:24)

Table 2 shows absolute numbers which are relative levels of

30 expression of Sqlng042 in 12 normal samples from 12 different tissues. These RNA samples are individual samples or are commercially available pools, originated by pooling samples of a particular tissue from different

- 98 -

individuals. Using Polymerase Chain Reaction (PCR) technology expression levels were analyzed from four 10x serial cDNA dilutions in duplicate. Relative expression levels of 0, 1, 10, 100 and 1000 are used to evaluate gene 5 expression. A positive reaction in the most dilute sample indicates the highest relative expression value.

Table 2:

	Tissue	Normal
10	Breast	1000
	Colon	1000
	Endometrium	1000
	Kidney	1000
15	Liver	10
	Lung	1000
	Ovary	1000
	Prostate	100
20	Small Intestine	1000
	Stomach	1000
	Testis	1000
	Uterus	100

Relative levels of expression in Table 2 show that normal breast, colon, endometrium, kidney, lung, ovary, small intestine, stomach and testis show high expression of SqLNG042. Moderate levels of expression are apparent in 25 prostate and uterus. Low levels of expression are apparent in normal liver.

Table 3 shows absolute numbers which are relative levels of expression of SqLNG042 in 12 cancer samples from 12 different tissues. Using Polymerase Chain Reaction 30 (PCR) technology expression levels were analyzed from four 10x serial cDNA dilutions in duplicate. Relative expression levels of 0, 1, 10, 100 and 1000 are used to evaluate gene expression. A positive reaction in the most dilute sample indicates the highest relative expression 35 value.

Table 3:

Tissue	Cancer
bladder	1000
breast	1000

- 99 -

	colon	1000
	kidney	1
	liver	100
	lung	1000
5	ovary	1
	pancreas	1000
	prostate	10
	stomach	1000
	testes	1
10	uterus	1000

Relative levels of expression in Table 3 show that Sqlng042 is expressed in low levels in kidney, ovary, and testis carcinomas. Sqlng042 is expressed in high levels in other tissue carcinomas.

15 Table 4 shows absolute numbers which are relative levels of expression of Sqlng042 in 6 lung cancer matching samples. A matching pair is formed by mRNA from the cancer sample for a particular tissue and mRNA from the normal adjacent sample for that same tissue from the same
20 individual.

Using Polymerase Chain Reaction (PCR) technology expression levels were analyzed from four 10x serial cDNA dilutions in duplicate. Relative expression levels of 0, 1, 10, 100 and 1000 are used to evaluate gene expression.
25 A positive reaction in the most dilute sample indicates the highest relative expression value

Table 4:

	Sample ID	Tissue	Cancer	NAT
	9702C115RB	lung	1	1
30	9502C032	lung	1000	1000
	8894A	lung	1	1000
	9704C060RA	lung	1	1
	11145B	lung	1	1000
	9502C109R	lung	1000	1000

35 Relative levels of expression in Table 4 show that Sqlng042 is expressed in high levels in two of the six lung cancer samples. However, high levels of expression was observed in the matching normal adjacent tissue (NAT).

- 100 -

Example 2 - SEQ ID NO:3

Semi quantitative PCR was done using the following primers:

Sqlng040 forward:

5' ATTGCCATCCCAGTGACAGTG 3' (SEQ ID NO:25)

Sqclng040 reverse:

5' TTGGGAGATGTGGGTGATGAG 3' (SEQ ID NO:26)

Table 5 shows absolute numbers which are relative levels of expression of Sqlng040 in 12 normal samples from 12 different tissues. These RNA samples are individual samples or are commercially available pools, originated by pooling samples of a particular tissue from different individuals. Using Polymerase Chain Reaction (PCR) technology expression levels were analyzed from four 10x serial cDNA dilutions in duplicate. Relative expression levels of 0, 1, 10, 100 and 1000 are used to evaluate gene expression. A positive reaction in the most dilute sample indicates the highest relative expression value.

Table 5:

	Tissue	Normal
	Breast	0
	Colon	0
	Endometrium	1
	Kidney	0
20	Liver	0
	Lung	10
	Ovary	1
	Prostate	10
	Small Intestine	1
25	Stomach	1
	Testis	100
	Uterus	1

Relative levels of expression in Table 5 show that normal lung and prostate show moderate expression of Sqlng040. High level expression is only apparent in testis. Low levels of expression are apparent in endometrium, ovary, small intestine and uterus.

- 101 -

Table 6 shows absolute numbers which are relative levels of expression of SqIng040 in 12 cancer samples from 12 different tissues. Using Polymerase Chain Reaction (PCR) technology expression levels were analyzed from four 5 10x serial cDNA dilutions in duplicate. Relative expression levels of 0, 1, 10, 100 and 1000 are used to evaluate gene expression. A positive reaction in the most dilute sample indicates the highest relative expression value.

10 **Table 6:**

	Tissue	Cancer
	bladder	0
	breast	10
	colon	0
15	kidney	10
	liver	0
	lung	100
	ovary	100
	pancreas	100
20	prostate	10
	stomach	10
	testes	10
	uterus	10

Relative levels of expression in Table 6 show that SqIng040 25 is expressed in moderate to high levels in breast, kidney, lung, ovary, pancreas, prostate, stomach, testis and uterus carcinomas.

Table 7 shows absolute numbers which are relative levels of expression of SqIng040 in 6 lung cancer matching 30 samples. A matching pair is formed by mRNA from the cancer sample for a particular tissue and mRNA from the normal adjacent sample for that same tissue from the same individual. Using Polymerase Chain Reaction (PCR) technology expression levels were analyzed from four 10x 35 serial cDNA dilutions in duplicate. Relative expression levels of 0, 1, 10, 100 and 1000 are used to evaluate gene

- 102 -

expression. A positive reaction in the most dilute sample indicates the highest relative expression value.

Table 7:

	Sample ID	Tissue	Cancer	NAT
5	9702C115RB	lung	100	10
	9502C032	lung	100	1
	8894A	lung	10	0
	9704C060RA	lung	10	10
	11145B	lung	10	100
10	9502C109R	lung	100	10

Relative levels of expression in Table 7 show that SqLNG040 is expressed in moderate levels in four of the six lung cancer samples compared with the expression in the matching normal adjacent tissue (NAT).

15 Example 3 - SEQ ID NO:11

Semi quantitative PCR was done using the following primers:

SqLNG046 forward:

5' CCTGCCCTGGTATGTTTTCTT 3' (SEQ ID NO:27)

20 SqLNG046 reverse:

5' CAGCCCACAAATGCCTTCTAC 3' (SEQ ID NO:28)

Table 8 shows absolute numbers which are relative levels of expression of SqLNG046 in 12 normal samples from 12 different tissues. These RNA samples are individual samples or are commercially available pools, originated by pooling samples of a particular tissue from different individuals. Using Polymerase Chain Reaction (PCR) technology expression levels were analyzed from four 10x serial cDNA dilutions in duplicate. Relative expression levels of 0, 1, 10, 100 and 1000 are used to evaluate gene expression. A positive reaction in the most dilute sample indicates the highest relative expression value.

Table 8:

	Tissue	Normal
35	Breast	0

- 103 -

	Colon	10
	Endometrium	1
	Kidney	10
	Liver	1
5	Lung	10
	Ovary	10
	Prostate	0
	Small Intestine	0
	Stomach	0
10	Testis	10
	Uterus	1

Relative levels of expression in Table 8 show that normal colon, kidney, lung, and ovary show moderate expression of Sqlng046. Low levels of expression are apparent in 15 endometrium and liver. No expression is apparent in other tissues.

Table 9 shows absolute numbers which are relative levels of expression of Sqlng046 in 12 cancer samples from 12 different tissues. Using Polymerase Chain Reaction (PCR) technology expression levels were analyzed from four 10x serial cDNA dilutions in duplicate. Relative expression levels of 0, 1, 10, 100 and 1000 are used to evaluate gene expression. A positive reaction in the most dilute sample indicates the highest relative expression 25 value.

Table 9:

	Tissue	Cancer
	bladder	1
	breast	1
30	colon	0
	kidney	1
	liver	1
	lung	0
	ovary	0
35	pancreas	10
	prostate	0
	stomach	1
	testes	1
	uterus	1

40 Relative levels of expression in Table 9 show that Sqlng046 is expressed in low levels in bladder, breast, kidney,

- 104 -

liver, stomach, testis and uterus carcinomas. Sqlng046 is expressed in moderate levels only in pancreatic carcinoma.

Table 10 shows absolute numbers which are relative levels of expression of Sqlng046 in 6 lung cancer matching samples. A matching pair is formed by mRNA from the cancer sample for a particular tissue and mRNA from the normal adjacent sample for that same tissue from the same individual. Using Polymerase Chain Reaction (PCR) technology expression levels were analyzed from four 10x serial cDNA dilutions in duplicate. Relative expression levels of 0, 1, 10, 100 and 1000 are used to evaluate gene expression. A positive reaction in the most dilute sample indicates the highest relative expression value.

Table 10:

	Sample ID	Tissue	Cancer	NAT
15	9702C115RB	lung	10	10
	9502C032	lung	100	100
	8894A	lung	10	1
	9704C060RA	lung	10	10
20	11145B	lung	1	10
	9502C109R	lung	100	1

Relative levels of expression in Table 10 show that Sqlng046 is expressed in higher levels in two of the six lung cancer samples compared with the expression in matching normal adjacent tissue (NAT).

Example 4 - SEQ ID NO:22

Semi quantitative PCR was done using the following primers:

Sqlng050 forward:

30 5' CCACTAGGATTATTCCAGCATAA 3' (SEQ ID NO:29)

Sqclng050 reverse:

5' GGTGTGAAAATATCTGGTCCACTT 3' (SEQ ID NO:30)

Table 12 shows absolute numbers which are relative levels of expression of Sqlng050 in 12 normal samples from

- 105 -

12 different tissues. These RNA samples are individual samples or are commercially available pools, originated by pooling samples of a particular tissue from different individuals. Using Polymerase Chain Reaction (PCR) 5 technology expression levels were analyzed from four 10x serial cDNA dilutions in duplicate. Relative expression levels of 0, 1, 10, 100 and 1000 are used to evaluate gene expression. A positive reaction in the most dilute sample indicates the highest relative expression value.

10 Table 12:

Tissue	Normal
Breast	100
Colon	1000
Endometrium	100
Kidney	100
Liver	100
Lung	100
Ovary	1000
Prostate	1000
Small Intestine	100
Stomach	100
Testis	10
Uterus	100

Relative levels of expression in Table 12 show that normal 25 colon, ovary, and prostate show high expression of SqLNG050. Moderate levels of expression are apparent in breast, endometrium, kidney, liver, lung, small intestine, stomach and uterus. Low levels of expression are apparent in normal testis

30 Table 13 shows absolute numbers which are relative levels of expression of SqLNG050 in 12 cancer samples from 12 different tissues. Using Polymerase Chain Reaction (PCR) technology expression levels were analyzed from four 10x serial cDNA dilutions in duplicate. Relative 35 expression levels of 0, 1, 10, 100 and 1000 are used to evaluate gene expression. A positive reaction in the most dilute sample indicates the highest relative expression value.

- 106 -

Table 13:

	Tissue	Cancer
5	bladder	10
	breast	100
	colon	100
	kidney	10
	liver	100
	lung	100
10	ovary	100
	pancreas	100
	prostate	100
	stomach	100
	testes	100
	uterus	1000

15 Relative levels of expression in Table 13 show that SqLNG050 is expressed in low to moderate levels in 11 out of 12 different tissue carcinomas. SqLNG050 is only expressed in high level in uterus carcinoma.

Table 14 shows absolute numbers which are relative 20 levels of expression of SqLNG050 in 6 lung cancer matching samples. A matching pair is formed by mRNA from the cancer sample for a particular tissue and mRNA from the normal adjacent sample for that same tissue from the same individual. Using Polymerase Chain Reaction (PCR) 25 technology expression levels were analyzed from four 10x serial cDNA dilutions in duplicate. Relative expression levels of 0, 1, 10, 100 and 1000 are used to evaluate gene expression. A positive reaction in the most dilute sample indicates the highest relative expression value.

30 **Table 14:**

Sample ID	Tissue	Cancer	NAT
9702C115RB	lung	100	100
35	9502C032	1000	1000
	8894A	100	1
	9704C060RA	100	10
	11145B	100	1000
	9502C109R	100	10

Relative levels of expression in Table 14 show that SqLNG050 is expressed in higher levels in three of the six

- 107 -

lung cancer samples compared to the expression level in the matching normal adjacent tissue (NAT).

Relative Quantitation of Gene Expression

Real-Time quantitative PCR with fluorescent Taqman probes is a quantitation detection system utilizing the 5'-3' nuclease activity of Taq DNA polymerase. The method uses an internal fluorescent oligonucleotide probe (Taqman) labeled with a 5' reporter dye and a downstream, 3' quencher dye. During PCR, the 5'-3' nuclease activity of Taq DNA polymerase releases the reporter, whose fluorescence can then be detected by the laser detector of the Model 7700 Sequence Detection System (PE Applied Biosystems, Foster City, CA, USA).

Amplification of an endogenous control is used to standardize the amount of sample RNA added to the reaction and normalize for Reverse Transcriptase (RT) efficiency. Either cyclophilin, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) or 18S ribosomal RNA (rRNA) is used as this endogenous control. To calculate relative quantitation between all the samples studied, the target RNA levels for one sample were used as the basis for comparative results (calibrator). Quantitation relative to the "calibrator" can be obtained using the standard curve method or the comparative method (User Bulletin #2: ABI PRISM 7700 Sequence Detection System).

The tissue distribution and the level of the target gene were examined for every example in normal and cancer tissue. Total RNA was extracted from normal tissues, cancer tissues, and from cancers and the corresponding matched adjacent tissues. Subsequently, first strand cDNA was prepared with reverse transcriptase and the polymerase chain reaction was done using primers and Taqman probe specific to each target gene. The results are analyzed using the ABI PRISM 7700 Sequence Detector. The absolute

- 108 -

numbers are relative levels of expression of the target gene in a particular tissue compared to the calibrator tissue.

Example 1 - SEQ ID NO: 3

5 Table 15 shows absolute numbers which are relative levels of expression of the LSG of SEQ ID NO:3 in 24 normal different tissues. All the values are compared to normal small intestine (calibrator). These RNA samples are commercially available pools, originated by pooling samples
 10 of a particular tissue from different individuals.

Table 15:

	Tissue	NORMAL
15	Adrenal Gland	0.56
	Bladder	0.03
	Brain	2.57
	Cervix	0.42
	Colon	0.33
	Endometrium	5.12
20	Esophagus	0.06
	Heart	0.08
	Kidney	1.2
	Liver	1.38
	Lung	5.54
25	Mammary Gland	3.96
	Muscle	0.44
	Ovary	1.29
	Pancreas	7.94
	Prostate	5.21
	Rectum	1.36
30	Small Intestine	1
	Spleen	36.89
	Stomach	2.8
	Testis	10.16
	Thymus	179.15
35	Trachea	3.08
	Uterus	1.04
	0=negative	

The relative levels of expression in Table 15 show that mRNA expression of the LSG of SEQ ID NO:3 is very high
 40 in thymus (179.15) compared with all the other normal tissues analyzed. The expression level of the LSG of SEQ ID NO:3 is moderate in normal lung. Small intestine, the

- 109 -

calibrator, has a relative expression level of 1. These results demonstrated that mRNA expression of the LSG of SEQ ID NO:3 is relatively specific for lung.

The absolute numbers in Table 15 were obtained 5 analyzing pools of samples of a particular tissue from different individuals. They can not be compared to the absolute numbers originated from RNA obtained from tissue samples of a single individual in Table 16.

Table 16 shows absolute numbers which are relative 10 levels of expression of the LSG of SEQ ID NO:3 in 79 pairs of matching samples and 2 normal blood samples. All the values are compared to normal small intestine (calibrator). A matching pair is formed by mRNA from the cancer sample for a particular tissue and mRNA from the normal adjacent 15 sample for that same tissue from the same individual.

Table 16:

	Sample ID	Cancer Type	Tissue	NORMAL	CANCER	MATCHING NORMAL ADJACENT
20	Lng60L	Adenocarcinoma	Lung 1		1.32	0.95
	Lng143L	Adenocarcinoma	Lung 2		9.29	0.96
	Lng60XL	Adenocarcinoma	Lung 3		41.5	13.18
	LngAC82	Adenocarcinoma	Lung 4		60.97	2.04
	LngAC88	Adenocarcinoma	Lung 5		50.21	31.89
25	LngAC66	Adenocarcinoma	Lung 6		1.42	0.72
	LngAC69	Adenocarcinoma	Lung 7		2.3	0.73
	LngAC11	Adenocarcinoma	Lung 8		2.41	1.95
	LngAC32	Adenocarcinoma	Lung 9		3.9	0.69
	LngAC94	Adenocarcinoma	Lung 10		2.65	0.77
30	LngAC90	Adenocarcinoma	Lung 11		16.85	0.57
	Lng223L	Adenocarcinoma	Lung 12		1.48	0.06
	LngAC39	Adenocarcinoma	Lung 13		139.1	1.52
	LngBR26	Bronchio-alveolar carcinoma	Lung 14		41.79	8.57
35	LngBA641	Bronchio-alveolar carcinoma	Lung 15		37.14	16
	LngSQ45	Squamous cell carcinoma	Lung 16		4.92	4.01
	LngSQ14	Squamous cell carcinoma	Lung 17		7.06	15.19
40	LngSQ9X	Squamous cell carcinoma	Lung 18		38.32	1.78
	LngSQ56	Squamous cell carcinoma	Lung 19		55.72	33.01
45	LngSQ80	Squamous cell carcinoma	Lung 20		34.42	4.3
	LngSQ32	Squamous cell carcinoma	Lung 21		69.55	21.86
	LngSQ16	Squamous cell carcinoma	Lung 22		1.7	0.22
50						

- 110 -

	LngSQ79	Squamous cell carcinoma	Lung 23	4.71	3.04
	Lng47XQ	Squamous cell carcinoma	Lung 24	35.26	1.42
5	LngBR94	Squamous cell carcinoma	Lung 25	138.62	0.19
	LngC20X	Squamous cell carcinoma	Lung 26	3.05	0.18
10	LngSQ44	Squamous cell carcinoma	Lung 27	7.06	3.97
	Lng90X	Squamous cell carcinoma	Lung 28	1.49	0.66
	LngSQ43	Squamous cell carcinoma	Lung 29	97.01	1.71
15	LngLC71	Large cell carcinoma	Lung 30	27.86	16.22
	LngLC109	Large cell carcinoma	Lung 31	102.89	20.25
20	LngLC80	Large cell carcinoma	Lung 32	34.66	10.13
	Lng77L	Large cell carcinoma	Lung 33	1.03	9.22
	Lng315L	Lung carcinoma	Lung 34	36.25	50.39
25	Lng528L	Lung carcinoma	Lung 35	21.48	6.54
	Lng75XC	Metastatic from Osteogenic Sarcoma	Lung 36	3.53	4.55
	LngMT67	Metastatic from renal cell cancer	Lung 37	8.2	3.97
30	LngMT71	Metastatic from melanoma	Lung 38	13.93	19.23
	Bld46XK		Bladder 1	0	0
	BldTR14		Bladder 2	1.57	0.78
	B5		Blood 1	154.34	
	B6		Blood 2	177.91	
35	CvxKS52		Cervix 1	11.96	2.27
	CvxKS83		Cervix 2	92.09	8.66
	ClnAS43		Colon 1	4.03	0.29
	ClnAS45		Colon 2	0.28	0.17
	ClnAS46		Colon 3	0.38	0.59
40	Cln AS67		Colon 4	0.62	1.78
	Cln AS89		Colon 5	0.09	0.05
	Endo28XA		Endometrium 1	15.51	4.77
	Endo10479		Endometrium 2	24	7.14
	Endo68X		Endometrium 3	13.13	14.42
45	Kid10XD		Kidney 1	3.07	2.07
	Kid109XD		Kidney 2	8.22	7.24
	Liv15XA		Liver 1	0.17	0.09
	Liv174L		Liver 2	0.15	0.32
	Mam355		Mammary 1	2.63	0.15
50	Mam173M		Mammary 2	6.87	7.67
	Mam220		Mammary 3	0.29	0.87
	Mam976M		Mammary 4	0.19	0.91
	Ovr180B		Ovary 1	25.72	0
	OvrA084		Ovary 2	2.7	1.97
55	Pan77X		Pancreas 1	8.11	3.25
	Pan92X		Pancreas 2	27.28	21.78
	Pro101XB		Prostate 1	6.99	4.68
	Pro109XB		Prostate 2	1.42	1.16
	Pro125XB		Prostate 3	2.24	1.71
60	Pro13XB		Prostate 4	0.41	1.59
	Skn39A		Skin 1	3.71	0.35
	Skn816S		Skin 2	25.81	0.34
	SmInt21XA		Sm. Int. 1	4.35	1.17

- 111 -

	SmIntH89	Sm. Int. 2	13.93	3.16
	Sto115S	Stomach 1	4.59	5.17
	Sto264S	Stomach 2	6.39	4.16
	Sto288S	Stomach 3	5.01	0.46
5	Thr270T	Thyroid 1	6.39	4.58
	Thr939T	Thyroid 2	0.86	1.55
	Tst647T	Testis 1	2.49	0.43
	Tst663T	Testis 2	9.16	3.89
	Utr135XO	Uterus 1	0.34	0.43
10	Utr141XO	Uterus 2	2.51	0.63

In the analysis of matching samples, the higher levels of expression were in lung showing a high degree of tissue specificity for lung tissue. These results confirm the tissue specificity results obtained with normal pooled samples (Table 15).

Furthermore, the levels of mRNA expression in cancer samples and the isogenic normal adjacent tissue from the same individual were compared. This comparison provides an indication of specificity for the cancer stage (e.g. higher levels of mRNA expression in the cancer sample compared to the normal adjacent). Table 16 shows overexpression of the LSG of SEQ ID NO:3 in 26 lung cancer tissues compared with their respective normal adjacent (lung samples #2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 14, 15, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 30, 31, and 32). There is overexpression in the cancer tissue for 68% of the lung matching samples tested (total of 38 lung matching samples).

Altogether, the relative high level of lung tissue specificity, plus the mRNA overexpression in 68% of the lung carcinoma matching samples tested are believed to make the LSG of SEQ ID NO:3 a good diagnostic marker for lung cancer.

Primers used for expression analysis are:

Forward

35' AGCCATTGCCATCCCAGT 3' (SEQ ID NO:31)

Reverse

5' ATGTTCTTCACGCTTTCGC 3' (SEQ ID NO:32)

Probe

- 112 -

5' AGGAAGTGCTGGAAGAGGGCTGGCT 3' (SEQ ID NO:33)

Example 2 - SEQ ID NO: 15

Table 17 shows absolute numbers which are relative levels of expression of the LSG of SEQ ID NO:15 in 24 normal different tissues. All the values are compared to normal brain (calibrator). These RNA samples are commercially available pools, originated by pooling samples of a particular tissue from different individuals.

Table 17:

	Tissue	NORMAL
10	Adrenal Gland	67.65
	Bladder	39.67
	Brain	1.00
15	Cervix	677.93
	Colon	1287.18
	Endometrium	162.58
	Esophagus	1034.70
	Heart	4.81
20	Kidney	25.02
	Liver	194.01
	Lung	4705.07
	Mammary Gland	840.44
	Muscle	12.91
25	Ovary	608.87
	Pancreas	20.89
	Prostate	858.10
	Rectum	4435.87
	Small Intestine	2149.82
	Spleen	5595.30
30	Stomach	14115.57
	Testis	64.67
	Thymus	2187.40
	Trachea	2866.35
	Uterus	193.34
35	0=negative	

The relative levels of expression in Table 17 show that mRNA expression of the LSG of SEQ ID NO:15 is very high in stomach (14115.57) compared with all the other normal tissues analyzed. Expression levels of this LSG are moderate in normal lung (4705.07) Brain, the calibrator, has a relative expression level of 1. These results

- 113 -

demonstrate that mRNA expression of the LSG of SEQ ID NO:15 is relatively specific for lung.

The absolute numbers in Table 17 were obtained analyzing pools of samples of a particular tissue from 5 different individuals. They can not be compared to the absolute numbers originated from RNA obtained from tissue samples of a single individual in Table 18.

Table 18:

	Sample ID	Cancer Type	Tissue	NORMAL	CANCER	MATCHING NORMAL ADJACENT
10	Lng60L	Adenocarcinoma	Lung 1		18561.17	5732.70
	Lng143L	Adenocarcinoma	Lung 2		28.54	1.57
	LngAC66	Adenocarcinoma	Lung 3		16555.24	3408.69
	LngAC69	Adenocarcinoma	Lung 4		18116.29	1891.09
	LngAC11	Adenocarcinoma	Lung 5		4389.98	5732.70
	LngAC32	Adenocarcinoma	Lung 6		18179.19	10015.87
	LngAC94	Adenocarcinoma	Lung 7		10623.71	309.76
	Lng223L	Adenocarcinoma	Lung 8		8393.17	491.14
	LngBR26	Bronchio-alveolar carcinoma	Lung 9		13.98	20.68
	LngBA641	Bronchio-alveolar carcinoma	Lung 10		34.78	10.13
15	LngSQ45	Squamous cell carcinoma	Lung 11		9184.59	8995.58
	LngSQ14	Squamous cell carcinoma	Lung 12		2.82	32.11
	LngSQ80	Squamous cell carcinoma	Lung 13		68.12	4.07
	LngSQ16	Squamous cell carcinoma	Lung 14		3373.43	86.22
20	LngSQ79	Squamous cell carcinoma	Lung 15		19215.37	81245.48
	Lng90X	Squamous cell carcinoma	Lung 16		5.19	1.14
	LngSQ43	Squamous cell carcinoma	Lung 17		24.17	2.12
	LngLC71	Large cell carcinoma	Lung 18		67.42	25.37
25	LngLC109	Large cell carcinoma	Lung 19		12.38	3.96
	LngMT71	Metastatic from melanoma	Lung 20		13.00	9.45
	Bld46XK		Bladder 1		131.60	5.90
30	BldTR14		Bladder 2		8306.36	7009.03
	CvxKS52		Cervix 1		24.85	8.91
	ClnAS43		Colon 1		1590.21	8335.19
	ClnAS45		Colon 2		1458.23	1820.35
	ClnAS46		Colon 3		2418.67	3019.30
35	ClnAS67		Colon 4		365.82	823.14
	ClnAS89		Colon 5		2304.12	75.32
	Endo28XA		Endometrium 1		10.70	0.49
	Kid10XD		Kidney 1		0.38	0.21
40	Liv15XA		Liver 1		19.16	115.76
	Mam355		Mammary 1		16.56	0.18
	Pan77X		Pancreas 1		0.15	0.07

- 114 -

	Pro101XB	Prostate 1	2.46	1.05
	Skn816S	Skin 1	0.28	0.10
	SmInt21XA	Sm. Int. 1	6.43	12.04
	Sto288S	Stomach 1	7.41	14.32
5	Thr270T	Thyroid 1	0.99	0.14
	Tst647T	Testis 1	1217.75	15.62
	Utr135XO	Uterus 1	237.21	55.14
	0=negative			

In the analysis of matching samples, the level of mRNA expression in cancer samples and the isogenic normal adjacent tissue from the same individual were compared. This comparison provides an indication of specificity for the cancer stage (e.g. higher levels of mRNA expression in the cancer sample compared to the normal adjacent). Table 18 shows overexpression of the LSG of SEQ ID NO:15 in 14 lung cancer tissues compared with their respective normal adjacent (lung samples #1, 2, 3, 4, 6, 7, 8, 10, 13, 14, 16, 17, 18, and 19). There is overexpression in the cancer tissue for 70% of the lung matching samples tested (total 20 of 20 lung matching samples).

Altogether, the relative high level of lung tissue specificity, plus the mRNA overexpression in 70% of the lung carcinoma matching samples tested are believed to make the LSG of SEQ DI NO:15 a good diagnostic marker for lung cancer.

Primers used for expression analysis in this example are as follows:

Forward

5' AAGGGAGCACCGTGGAGAA 3' (SEQ ID NO:34)

30 Reverse

5' AGGGCTGGATGACTTGGGA 3' (SEQ ID NO:35)

Probe

5' TTCCCAACTCTAACCCCACCCACG 3' (SEQ ID NO:36)

- 115 -

What is claimed is:

1. A LSG comprising:

(a) a polynucleotide of SEQ ID NO:1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 5 22, 37 or 38 or a variant thereof;

(b) a polypeptide expressed by a polynucleotide of SEQ ID NO:1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 37 or 38 or a variant thereof; or

10 (c) a polynucleotide which is capable of hybridizing under stringent conditions to the antisense sequence of SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 37 or 38.

2. The LSG of claim 1 wherein the polypeptide 15 comprises SEQ ID NO: 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, or 56.

3. A method for diagnosing the presence of lung cancer in a patient comprising:

(a) determining levels of a LSG of claim 1 in cells, 20 tissues or bodily fluids in a patient; and

(b) comparing the determined levels of LSG with levels of LSG in cells, tissues or bodily fluids from a normal human control, wherein a change in determined levels of LSG in said patient versus normal human control is 25 associated with the presence of lung cancer.

4. A method of diagnosing metastases of lung cancer in a patient comprising:

(a) identifying a patient having lung cancer that is not known to have metastasized;

30 (b) determining levels of a LSG of claim 1 in a sample of cells, tissues, or bodily fluid from said patient; and

- 116 -

(c) comparing the determined LSG levels with levels of LSG in cells, tissue, or bodily fluid of a normal human control, wherein an increase in determined LSG levels in the patient versus the normal human control is associated
5 with a cancer which has metastasized.

5. A method of staging lung cancer in a patient having lung cancer comprising:

(a) identifying a patient having lung cancer;
(b) determining levels of a LSG of claim 1 in a
10 sample of cells, tissue, or bodily fluid from said patient; and

(c) comparing determined LSG levels with levels of LSG in cells, tissues, or bodily fluid of a normal human control, wherein an increase in determined LSG levels in
15 said patient versus the normal human control is associated with a cancer which is progressing and a decrease in the determined LSG levels is associated with a cancer which is regressing or in remission.

6. A method of monitoring lung cancer in a patient
20 for the onset of metastasis comprising:

(a) identifying a patient having lung cancer that is not known to have metastasized;
(b) periodically determining levels of a LSG of claim
1 in samples of cells, tissues, or bodily fluid from said
25 patient; and

(c) comparing the periodically determined LSG levels with levels of LSG in cells, tissues, or bodily fluid of a normal human control, wherein an increase in any one of the periodically determined LSG levels in the patient versus
30 the normal human control is associated with a cancer which has metastasized.

- 117 -

7. A method of monitoring a change in stage of lung cancer in a patient comprising:

- (a) identifying a patient having lung cancer;
- (b) periodically determining levels of a LSG of claim 1 in cells, tissues, or bodily fluid from said patient; and
- (c) comparing the periodically determined LSG levels with levels of LSG in cells, tissues, or bodily fluid of a normal human control, wherein an increase in any one of the periodically determined LSG levels in the patient versus the normal human control is associated with a cancer which is progressing in stage and a decrease is associated with a cancer which is regressing in stage or in remission.

8. A method of identifying potential therapeutic agents for use in imaging and treating lung cancer comprising screening compounds for an ability to bind to or decrease expression of a LSG of claim 1 relative to the LSG in the absence of the compound wherein the ability of the compound to bind to the LSG or decrease expression of the LSG is indicative of the compound being useful in imaging and treating lung cancer.

9. An antibody which specifically binds a polypeptide encoded by a LSG of claim 1.

10. The antibody of claim 9 wherein the polypeptide comprises SEQ ID NO:39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55 or 56.

11. A method of imaging lung cancer in a patient comprising administering to the patient an antibody of claim 9.

12. The method of claim 11 wherein said antibody is labeled with paramagnetic ions or a radioisotope.

- 118 -

13. A method of treating lung cancer in a patient comprising administering to the patient a compound which downregulates expression or activity of a LSG of claim 1.

14. A method of inducing an immune response against 5 a target cell expressing a LSG of claim 1 comprising delivering to a human patient an immunogenically stimulatory amount of a LSG polypeptide so that an immune response is mounted against the target cell.

15. The method of claim 14 wherein the LSG 10 polypeptide comprises SEQ ID NO:39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55 or 56.

16. A vaccine for treating lung cancer comprising a LSG of claim 1.

SEQUENCE LISTING

<110> Macina, Roberto A
Nair, Manoj
Chen, Seiyu
diaDexus, Inc.

<120> Compositions and Methods Relating to Lung Specific Genes

<130> DEX-0215

<140>
<141>

<150> 60/219,834

<151> 2000-07-21

<160> 56

<170> PatentIn Ver. 2.1

<210> 1
<211> 1449
<212> DNA
<213> Homo sapiens

<400> 1
ctgggagtgg atttcataaca ttcgtggagg tggtagagg atatactacg cagactctgt 60
gagggggccga ttacccgtct ccagggacaa cgccaagaac tcactctatc tgcaaatgaa 120
cagcctgaga gccgaggaca cggctgtta tttctgtgcg agagagccac cagcacccaa 180
ttactttgac tgctggagcc agggAACCTT ggtcaccgtc tcctcagctt ccaccaaggg 240
cccatcggtc ttccccctgg cgcctgctc caggagcacc tctggggca cagcggccct 300
gggctgcctg gtcaaggact acttccccga accggtgacg gtgtcgtgga actcaggcgc 360
cctgaccagc ggcgtgcaca cttcccccgc tgtcctacag tcctcaggac tctactccct 420
cagcagcgtg gtgaccgtgc cttccagcag cttggcacc cagacctaca cctgcaacgt 480
gaatcacaag cccagcaaca ccaaggtgga caagagagtt gagctaaaa ccccacttgg 540
tgacacaact cacacatgcc cacgggtccc agagccaaa tcttgtgaca cacctcccc 600
atgcccacgg tgcccagagc ccaaattttg tgacacaccc ccccatgcc cacgggtccc 660
agcacctgaa ctccctggag gaccgtcagt ctcccttcc ccccaaaac ccaaggatac 720
ccttatgatt tcccgagacc ctgaggtcac gtgcgtggg gtggacgtga gccacgaaga 780
ccccgaggc cagttcaagt ggtacgtgga cggcgtggag gtgcataatg ccaagacaaa 840
gcccggggag gacgagttca acagcacgtt cctgtggc agcgtcctca cctgtcgtca 900
ccaggactgg ctgaacggca aggatcacaa gtgcaaggc tccaacaaag ccccccac 960
ccccatcgag aaaaccatct ccaaaaccaa aggacagccc cgagaaccac aggtgtacac 1020
cctgccccca tcccgaggag agatgaccaa gaaccaggc agcctgaccc gcctggtaa 1080
aggcttctac cccagcgaca tcgcccgtgga gtgggagagc agcgggcagc cggagaacaa 1140
ctacaacacc acgcctccca tgctggactc cgacggctcc ttcttcctct acagcaagct 1200

caccgtggac aagagcaggt ggcagcaggg gaacatcttc tcatgctccg tgatgcatga 1260
ggctctgcac aaccgcttca cgagaagag cctctccctg tctccggta aatgagtgcg 1320
acggccggca agcccccgct cccgggctc tcggggtcgc gcgaggatgc ttggcacgta 1380
ccccgtgtac atacttcccggc acggaaataa agcaccacggc gctgccctgg 1440
gccccctgac 1449

<210> 2
<211> 3825
<212> DNA
<213> Homo sapiens

<220>
<221> unsure
<222> (428)

<220>
<221> unsure
<222> (430)

<220>
<221> unsure
<222> (1997) .. (1998)

<400> 2
ttagtcacgt gaaaaccat cagggaaatta aacttgatga tagcaacatt ctcctccct 60
ctttaaaaac acgcccacccg tcaccaactt ttatcacaat agaatctact gcccacgaa 120
cagaaaaccc tactaagaac gagtttctc agtcccctaa aaaggacagt tatgttgaac 180
ccccaccaag aaggcccattg tcgaaaaat ctgaaattca cagagcaaac acttccctt 240
ctccacccag gagtcgtct gaacaacttg tcagactcaa agacaccact gcaaagttat 300
ccaaaggggc catccatgt ccagcagcaa ccccggttcc aattgttagag aagaggtctg 360
aaatcatcat gtctcctgca acacttcgtc gtcaaattaa gatagaaaact cgtggtaggg 420
actctccnan ctacaatcac aataccatgta aatataaattc atgctgctag tggttccttc 480
agagaatctg tggacgctca agaggaaatc aggaaagtgg agaagagagc tacttatgtt 540
cataaaagatg gactaaattc cactgatcac atggtgcccg acactgaaag ttatgatgca 600
gttggaaatca tccgcaaggt tgcagtgcct cctcgctgt cagagcacac acagagatat 660
gaagcggcca accgaactgt tcaaattggct gaaaatttcg tgaatgaccc tgaaaatgaa 720
ataaaacagat ggttcagggta atttgagcat ggcccagttt ctgaagcaaa gtcaaataaga 780
agagtttatg caaaggggaga aacaaaaccat aacatacaac aaggaaagtgc tacattttgt 840
aaggaggaat ttggatataac atcttttagga aacacgagtt ttacagactt ttcttgcaaa 900
catcctagag aactgcgaga aaagattccct gttaagcagc ccaggatctg ctctgaaaacc 960
aggctctcaa gtgaacattt ctcaggcatg gatgcattt agagtcaaat tggtagtgc 1020
aagatgaaaaa cctcttcattt acatagctca gaagctggca aatctggctg tgacttcaag 1080
catgccccac caaccttatga ggtatgtcatt gctggacata ttttagatat ctctgattca 1140
cctaaagaag taagaaaaaa ttttcaaaag acgtggcaag agagtggaaag agtttttaaa 1200
ggcctggat atgcaaccgc agatgcttct gcaactgaga tgagaaccac cttccaagag 1260
aatctgcat ttataagtga agtgcgtct ccaagacaag gaaatatgta tactttgtca 1320
aaagacagtt tatccaatgg agtgcctagt ggcagacaag cagaattttc ataagtccctg 1380

cttccgatgc caccattgca acagtaaaact aagtttggga aattatgcac cacttcatgg 1440
 acaaatac tgtaaacctc actttaaaca acttttcaaa tccaaaggaa attatgtga 1500
 aggtttgga cataaggcgc ataaagatag atggaactgc aaaaacccaaa gcagatcagt 1560
 ggactttatt cctaatacgaa aaccaaataat gtgtaaaaat attgcagaaa acacccttgt 1620
 acctggagat cgtaatgaac atttagatgc tggtaacagt gaaggggcaaa ggaatgattt 1680
 gagaaaatta ggggaaaggg gaaaattaaa agtcatttg cctcattcca aggagatccc 1740
 taagaaaacc ttaccctttg aggaagagct caaaatgagt aaacctaagt ggcacactga 1800
 aatgacaacc ctgctatccc ctgaattaa aagtgaatct ctgctagaag atgttagaac 1860
 tccagaaaat aaaggacaaa gacaagatca cttccattt ttgcagcattt atctacagtc 1920
 caccatgtt tgtcagaaag aggatgttat aggaatcaaa gaaatgaaaa tgcctgaagg 1980
 aagaaaaagat gaaaagnngg aaggaaggaa gaatgtgcaa gataggccga gtgaagctga 2040
 agacacaaaag agtaacacgaa aaagtgcattt ggcattttt gacaacaata atgtgattgt 2100
 gcagagtgc gaaaaggaga aaaatgaaaa aactaaccac actaatggtg cagaagttt 2160
 acaggtaact aacactgatg atgagatgtat gccagaaaat cataaagaaa atttgaataa 2220
 gaataataat aacaattatg tagcagtctc atatctgaat aattgcagggc agaagacatc 2280
 tatttttagaa tttcttgatc tattaccctt gtcagtgaa gcaaatgaca ctgcaatga 2340
 atatgaaatt gagaagtttag aaaatacatc tagaatctca gagttacttg gtatatttga 2400
 atctgaaaag acttattcga ggaatgtact agcaatggct ctgaagaaaac agactgacag 2460
 agcagctgct ggcagtcctg tgcagcctgc tccaaaacca agcctcagcc agaggcctta 2520
 tggtaaagggg gggaaagttca atcatctctc ctgatacaaa tctcttaaac attaaaggaa 2580
 gcccattcaaa gagcaaaaat ttacactttt tctttctaa caccgtgaaa atcactgcat 2640
 tttccaagaa aaatgagaac attttcaattt gtgatttaat agattctgtat gatcaaattt 2700
 aaacaacaga agctgcccgc aataatgaaa acacagggtt tgatgctctg agccatgaat 2820
 gtacagctaa gcctttgtt cccagagtgg aggtgcagtc agaacaactc acgggtggaaag 2880
 agcagattaa aagaaacagg tgctacagtg acactgagta aaatatctat ggcactgac 2940
 agtccacact taggcactga gagatattga tggtaatggaa taagattttt tgaatttgg 3000
 taccccttttggc aggaacttgc tgtaaacatc tggttcagaa atctcgatc tatctcaatc 3060
 ggtatattct tggatattcacat cttgtcattt ttttcacaat ttatattacat ctactttgt 3120
 ttgaaactggc atgaagagat gaaacactat ggatatgttt tccattcaaa tggcacttta 3180
 gcatattgtt ctgtttcct gtaaaacatc atgggtgtga tttttataact gctgctgctt 3240
 gtcacaattttt tataacttc tctgtatattt cctctgaaat aaaattgtat cacctgaggt 3300
 gcaaaaccaaa atacttctgt aactttttt gatataact gtcttctaa gtacatatac 3360
 tccttgcac ttggaaagta tttgtcttgc ggcaagtattt taccacccac actaaaataa 3420
 tgctgaaaaa aataaaatac taaactgaaat gcacagtattt attagaaagt gtaacatttt 3480
 cattttctt tttactccac attttaaaga tacgagggtt attgttcttgc aaataattac 3540
 ctatattttt tataacttgcat atgtgtctat aaacatttgc cggaaaatgt tgatatttgc 3600
 ccagaataat gtgaagtccat tactcagaaa ttaacttagaa aggttttaga cattactaa 3660
 ataaattttt tataacttgcat ttgtatttgc tgctctgtt aatggataag tataacaatc 3720
 atatcactac agtttgcac gttttcttctt tataacttgcat gatgaatattt aagttttctt 3780
 gttatgaaaaa catattccctc taaaatttgg cttctaaattt ttcttgc 3825

<210> 3

<211> 2315

<212> DNA

<213> Homo sapiens

<400> 3

gtaagcagca gttgattttaga attaaatgag cttgaatttg attctgacat tcataatttat 60
ttgtccccc ctcaaaaaac accctgagta tggacaggc ttcccactc tgcagactac 120
acgccgtcca tgagcagtgc ccaggtgtca ttacctgccc atgagatgtg acctggcag 180
gggtccccac ctgtaccctt gggcccccagg agggaaagccc agcatgttag gctgaagcgg 240
gggtcttcc agagatggcc atgcagagca gccctcccgcc tctgggtctt gaggccccgc 300
tcagtggtcc ccccaactctg cagaatgtgc accccccagct ctgatgtctc ttccaggtga 360
aatccgggtc cccggccgtg ctggcattcg caaaggagaaa gtcttttggg tggcccagct 420
tcatcacata cacgggtggc gtctcgacc cccggctgg cagccaaggg cctctgtcca 480
ctaccctgac ctctccagc cccgtgacca accaagccat tgccatccca gtgacagtgg 540
cttttgtat ggatcgccgt gggccggcctt cttatggagc cagcccttcc cagcaacttcc 600
tggattccca ccaggtcatg ttcttcacgc tttcgccctt gttggctggg acagcggtca 660
tgcatacatgc ctaccacact gtctgcacgc cccgggatct tgctgtgcct gcagccctca 720
cgcctcgagc cagccctggg acacagcccc cactatttcg ctgcctcatc acccacatct 780
cccaatgcat tgccctctgc tcgcaaagcc agccctccct cagggctgtg gagcccaggc 840
ctatggctc ccactagggc cgcgtgaagg ttcccggagg atggggtctc agccgagct 900
cggtcaacc cccaagatgg aacatccctt gtcgcattca cactggaaca agcccttcca 960
gatgagtgcc cccggcccccag gccagcttca ctgcctgtctc ttcacacaga gctgttagttt 1020
cggtctgccc cattagctca ttttatgttag gagttttaaa tgtgtttttt tttcccttcca 1080
agtcttacaa agctaagact tttggtctca ttcccttttgc catggttgc tagggtttct 1140
ggacaatgtg ctgttgcatt tttatttcc tagccttgct aaaatcttcc cttctcaag 1200
actttgagca gttagaagtgc ctcttttagaa gttgtctgtg ggtgtatgtt ctgttagtgg 1260
ctcaggaaaa ggattgtccca gttacctttag ggggtttttt gtggggttttt tccccctgtg 1320
aaaacttaact ttgcccctag tctggctgtc gctaggactt ctgaggagca atggggacatg 1380
agtgtccctg tatctgcgcc actgcccaca gggaaagcctc aggaaccagc acctggagggc 1440
caggatagcc aagccctggg tgagcgagag gctggagaac acaggagctc acccagggt 1500
gctgccaac catggggccac tgtgaacaga cttcagtcct ctgttttgc ttcataagcc 1560
gttgagacat ctgatggact tggcttaggc cctgctggg catcccacgt gtgatccctt 1620
tcactccatc aggacaccag gactgtcattt agggaaaatgt cttgagatg gcagcaggag 1680
tcataattttc tttgtgtgtg tttcgaaaag cccgtgtgtc ctgcctcagc acaaagaccc 1740
agtgtcattt gctcctctgt ttccctgtgcc actccagaac ctcagcagat ctgagccacc 1800
gcctgcccagt gtgagaggcg gccacttca tggcagctca tcaggcgcag ggccccagac 1860
agcttcccag caggccctag agcccccctt gggccaaatgt tggagggcgg ccgcccagccc 1920
agggcctgccc catccagaag ggactccccca gggcctgggg gaggagaccc ttggaaaagt 1980
cctctttcc cagctcctga ttctggatct gagattctca gatcacagggc ccctgtgtc 2040
caggccgagg ctgggcttacc ctcagggaga tccagagact catgcccattt gccatccatg 2100
cgtggacgct gtgtggagag tccaggatgtc cgggatcccc cacaagctcc cttcagtcct 2160
tcagggttgg gccatgtgtt aaagctggag aaaggaagaa ttgtgccttgc 2220
catattactt gagcttaaac tgacaacctg gatgtaaata ggagccttcc tactggttt 2280
tttaataaaag ttctatgtga tttttaaaaaaa aaaaaa 2315

2315

<210> 4

<211> 300

<212> DNA

<213> Homo sapiens

<220>

<221> unsure

<222> (8)

<400> 4

agcatganaa aggtgaaggc tgccgggtggc acggggctcg gatctgctgc cggggccgacc 60
tgggagagcc atgaggctgt atgtgatggg gcacctctg ggtgcacact ttggatgaca 120
agtccccca agaggagcca gggctggctg cagtgaggcc ccaggagggtt ctccaggggc 180
gtcctgcttc agctcaaggg gcttaggaata gggaaacga tgcagggaag ccaatggccc 240
aagtggctcc ctcactgact gttacttgct gtgtatgtct ctttcttttc tttttttcc 300

<210> 5

<211> 4347

<212> DNA

<213> Homo sapiens

<400> 5

gcgggtgcggc ggcggggaggc ggaggcgagg gtgcgatggc gcggagcccg ggacgcgcgt 60
acgcctgct gcttctcctg atctgctta acgttggaaag tggacttcac ttacagggtct 120
taagcacaag aaatgaaaat aagctgcttc ctaaacatcc tcatttagtg cggcaaaagc 180
gcccctggat caccggcccc gtggcttcc gggagggaga ggtctgtcc aagaagaatc 240
caattgccaa gatacattct gatcttgcag aagaaagagg actcaaaatt acttacaaat 300
acactggaaa agggattaca gagccacctt ttggtatatt tgtcttaac aaagataactg 360
gagaactgaa tggattaccagg attcttgcattt gagaagaaac accatttttt ctgctaacag 420
gttacgctt ggatgcaaga gggaaacaatg tagagaaacc ctttagagcta cgcatthaagg 480
ttcttgatat caatgacaac gaaccagtgt tcacacagga tgtctttgtt gggctgtttg 540
aagagttgag tgcagcacat actcttgcata tgaaaatcaa tgcaacagat gcagatgagc 600
ccaataccct gaattcgaaa atttcctata gaatcgatc tctggagccct gcttattcctc 660
cagtttcta cctaaataaa gatacaggag agatttatac aaccagtgtt accttggaca 720
gagagaaaca cagcagctac actttgacag tagaagcaag agatggcaat ggagaagtt 780
cagacaaacc tggaaaacaa gctcaagttc agattcgat tttggatgtc aatgacaata 840
tacctgttagt agaaaataaa tggcttgcag ggatgggttga agaaaatcaa gtcaacgttag 900
aagttacgctg cattaaatgt ttcgtatgcag atgaaatagg ttctgataat tggctggcaa 960
attttacatt tgcattcaggaa aatgaaggag gttatccatcatgaaaca gatgctcaaa 1020
ctaacgaagg aattgtgacc cttattaagg aagtagat tgaagaaatg aagaatctt 1080
acttcgtgt tattgtcgat aataaagcag cttttcacaa gtcgatttagg agtaaataca 1140
agcctacacc cattcccatc aaggtcaaa tgaaaaatgt gaaagaaggc attcatttt 1200
aaagcagcgt catctcaatt tatgttagcg agagcatgga tagatcaagc aaaggccaaa 1260
taattggaaa tttcaaggt tttgtatgagg acactggact accagcccat gcaagatatg 1320
taaaattaga agatagagat aattggatct ctgtggattc tgtcacatct gaaattaaac 1380
ttgcaaaact tcctgatattt gaatcttagat atgttcaaaa tggcacatac actgtaaaga 1440
ttgtggccat atcagaagat tatccttagaa aaaccatcac tggcacagtc cttatcaatg 1500
ttgaagacat caacgacaac tgtcccacac tgatagagcc tgtgcagaca atctgtcactg 1560
atgcagagta tggatgtt actgcagagg acctggatgg acacccaaac agtggccctt 1620
tcagttctc cgtcattgac aaaccacctg gcatggcaga aaaatggaaa atagcagc 1680
aagaaagtac cagtgtgtcg ctgcaacaaa gtgagaaaaa gcttgggaga agtgaattc 1740
agttcctgat ttcagacaat cagggttttga gttgtcctga aaagcaggtc cttacactca 1800
cagtttgcgt gttgtctgcgt ggcagcggct gcagggaaac acagcatgac tcctatgtgg 1860

cgctgggacc cgccggcaatt ggcgtcatga tttggcctt tctgctcctg ctattggatc 1920
cactttact gctgatgtgc cattgcggaa agggcgccaa aggcttacc cccatacctg 1980
gcaccataga gatgctgcat ccttggata atgaaggagc accacctgaa gacaagggtgg 2040
tgccatcatt tctgccagt gatcaagggg gcagtcgtt aggaagaaaat ggagtagggag 2100
gtatggccaa ggaagccacg atgaaaggaa gtagctctgc ttccattgtc aaagggcaac 2160
atgagatgtc cgagatggat ggaaggtggg aagaacacag aagcctgctt tctggtagag 2220
ctacccagtt tacaggggcc acaggcgcta tcatgaccac tgaaaccacg aagaccgcaa 2280
gggccacagg ggcttccaga gacatggccg gagctcaggc agctgtgtt gcactgaacg 2340
aagaattctt aagaaattat ttcaactgata aagcggcctc ttacactgag gaagatgaaa 2400
atcacacagc caaagattgc cttctggttt attctcagga agaaactgaa tcgctgaatg 2460
cttctattgg ttgttgcagt tttattgaag gagagctaga tgaccgcttc ttagatgatt 2520
tgggacttaa attcaagaca ctatgtgaag tttgcctggg tcaaaaaata gatataaata 2580
aggaaattga gcagagacaa aaacctgcca cagaaaacaag tatgaacaca gcttcacatt 2640
cactctgtga gcaaactatg gttatttcg agaataccta ctcctctggc agtagcttcc 2700
cagttccaaa atctttgaa gaagccaatg cagagaaaatg aactcaggaa atagtcactg 2760
aaagatctgt gtcttctagg caggcgcaaa aggtagctac acctcttcct gacccaatgg 2820
cttctagaaa tgtgatagca acagaaaactt cctatgtcac agggtccact atgcccaccaa 2880
ccactgtgat cctgggtcct agccagccac agagccttat tttgtacagag agggtgtatg 2940
ctccagcttc taccttggta gatcagcctt atgtataatga aggtacagtt gtggtcactg 3000
aaagagataat acagcctcat ggggggtggat cgaatcctct ggaaggcact cagcatcttc 3060
aagatgtacc ttacgtcatg gtgagggaaa gagagagctt ctttcccccc agtcaggtg 3120
tgcagcctac tctggccatg cctaataatag cagtaggaca gaatgtgaca gtgacagaaa 3180
gagttcttagc acctgcttcc actctgcaat ccagttacca gattccact gaaaattcta 3240
tgacggctag gaacaccacg gtgtctggag ctggagtcctt tggccctctg ccagattttg 3300
gtttagagga atctggtcat tctaattcta ccataaccac atcttccacc agagtcacca 3360
agcatagcac tgtacagcat tcttactcct aaacagcagt cagccacaaa ctgacccaga 3420
gtttaatttag cagtactaa tttcatgttt ccaatgtacc tgattttca tgagccttac 3480
agacacacac agacacatac acattgtatct taaaattttt ctcagtcact gatatgaaa 3540
ggaccacact gtctctgctt ccaggagtt ttttagaaatg ttccacaatt tactgaagac 3600
atagagatga tgctgctgct taggtgcctt ttagcaagct atgcaaaacaa tcctgataaaa 3660
acaagataca tagagagtca atctggcttc tgagaattta ccaagtgaac agagtaccta 3720
gttcatcagc cgccggatcaa agcaacccac gaaaactgact gggtctctt gcctaccgta 3780
ttaacattaa acattgtatgt tctgtattct gtactttact gcacccagca gactttcaac 3840
aactcattga cccaaagtgc tgggattaca ggcgtgagcc actgcgcccc gccacattca 3900
gttcttatca aagaaataac ccagacttaa tcttgaatga tacgattatg cccaaatatta 3960
agtaaaaaat ataagaaaag gttatcttaa atagatctt ggcaaaatac cagctgatga 4020
aggcatctga tgccttcattc tggtcagtca totccaaaaa cagtaaaaat aaccactttt 4080
tggtggccaa tatgaaattt ttaaaggagt agaataccaa atgatagaaa cagactgcct 4140
gaattgagaa ttttatttc ttaaagtgtg tttctttcta aattgtgtt ccttaatttg 4200
attaatttaa ttcatgtatt atgattaaat ctgaggcaga tgagcttaca agtattgaaa 4260
taattactaa ttaatcacaat atgtgaagtt atgcattatg taaaataac aaacattctca 4320
attaaaggct ttgcaacaca aaaaaaaa 4347

<210> 6

<211> 2116

<212> DNA

<213> Homo sapiens

WO 02/08278

<400> 6

tagcgaccc tcgcaggaa agtcagcgac ggc当地aaagc ctccgggatc ggaatgagga 60
 ggctgcttga gaagttgtt tctccaaaaa gggattatcc caggcgacca cggtcattac 120
 acgcccggaa cgctcagtcg gtgcgggtac ccctgggcaag ggccagcccc gcattccagg 180
 ttctccatgt gcctagaaga cagtaatcga cggtatagca acagatctga ctgctaacat 240
 gcgaaaaccga tcagtagtag cagtagcacc agcaacagca gcacgaaaag caaaaactaat 300
 ctaaacggcc ctcagggtct aagcaggccc gacgaagact cgcccatccg gtcgccagaa 360
 aactgggagt cccgcccgc tttccggcac tgaaacgcga tcggccctgc ctggtaccgc 420
 atcctctctc tgacccacc tacactacga cgacggacgc tcgagaacgc ggc当地ccgc 480
 cccgcaggaa gtgc当地ccctt gggcggaaagc ttctgagcgt gatatacggg aagtgccttc 540
 tcttccggtc tttctggctc cggccgcaga agcgagatga cgaaggaaac gtc当地cggtt 600
 gggaaagcgac gcaataagac gcacacgttg tgccgcccgt gtggctctaa ggc当地accac 660
 cttcagaagt cgacctgtgg caaatgtggc taccctgcca agc当地aaagag aaagtataac 720
 tggagtgcca aggctaaaag acgaaaatacc accggaaactg gtc当地atgag gca当地aaaaa 780
 attgtatacc gcagatttag gcatggattc cgtgaaggaa caacacctaa acccaagagg 840
 gcagctgtt cagcatccag ttcatcttaa gaatgtcaac gattagtc当地 gca当地aaatg 900
 ttctggttt aaaaaataca tatctggtt tggtaaggta ttttaatca attaggctt 960
 tagtacgt gaaatactgt aggtttaggg actgggcttag cttcatatca gatttactt 1020
 ttaagtgact gtttggaaat gtttactttt ggactgggtt tgtaacacgg ttaaaggcaa 1080
 tgagaaacaa gcagaattcc aggagtcctt gaagcagagg gcactggaag acaatatacg 1140
 agattaaaat agcacagctc atgtggcata ggtgggtatt ttagatgtt gagtaaattt 1200
 gaaagagtat gatgtttaaa ttacctttag caacatgtt c atctgctatg ctgtcatgac 1260
 taggggatg attattatgc acatagagct tgggagtagc actggaaacg tatgggtagg 1320
 agtttaggtg gtttctgtt ttcaaaaat gatcttatacc tagtacgtt aatgctact 1380
 tggcacaccc gacttgtgg ctgtgtgtaa ggtggctagc taagtaaaaa aagcctgcta 1440
 ggtgtgagtc aacttaagaa tatgtaaata ggtttgagaa aaagttagggc ttgggtgcaa 1500
 gtaaagattt agcagggaaat aaaggaaaat caagtataat ccctgagatt ttagattaa 1560
 aggcaatgtat gtgggactac ttggtc当地at ttttttagcc ctcaacttgg taattgggtg 1620
 tttctgtgtt aaagcactga aacttgc当地t cgtgc当地tcc tagtttctgt ggtttattga 1680
 cagggttggg gttttttt gttttttttaa aatgaaggaa caaagtcaac tggactgctg 1740
 agttagaggg caggggcagt tgaaggaaac atgaattgtt ggaacagcta cataaaaatag 1800
 ttagtgc当地tcc aacttgc当地t ggtttttttaa ctccataattt acccttcagg 1860
 tctcagcttcc agaacattca ttatataaga aaccctgctg attaaatctc tcttgggctt 2040
 cctcccgaaa tgtgagacta tactttaaag atgtatggtt agagtccaaat tgccattgcc 2100
 tttcttggttt acagat 2116

<210> 7

<211> 4474

<212> DNA

<213> Homo sapiens

<220>

<221> unsure

<222> (9)

<400> 7

cgccccggnc gggggggcaa gatggccggcg gcagtagggg ttcgtggccg gtacgagctg 60
ccgccttgct ccggcccagg ctggctcctc agccttccg cttgctgag tgtggcggca 120
cgagggggcct tcgccaccac gcactgggtc gtcacggagg acggaaaaat ccagcagcag 180
gtggattcac caatgaactt gaagcatcct catgacctag tcataattaat gagacaagaa 240
gcaacagtta actacctaagaa agaatttagag aaacaattag ttgctaaaaa aattcacata 300
gaagagaatg aggacagaga cacaggactg gaacagagac ataataaaga agacccagac 360
tgcataaag ccaaggtgcc cttagggac ctggatctat atgatggcac atacataact 420
ttggagagca aagacatcag tcctgaagat tatatagaca cagaatctcc tgtccctcca 480
gacccagagc aacctgattt tactaaaatt ctagaacttc catatagtat acatgcttt 540
cagcacttga gaggtgtaca ggagagagtt aatctttctg cacctctgct acctaaagaa 600
gacccaatct tcacatattt atctaaacgg ttaggaagga gtatagatga cataggtcac 660
ctcattcatg aaggcctaca gaagaacact tcctcggtt tactgtataa catggcttca 720
ttttactgga gaattaagaa tgagccatat caggttagtag aatgtgccat gcgagcactt 780
cacttcctt ccaggcacaa taaagacatt gccctggta acctgcaaa cgttctacac 840
agagcacact tctctgctga tgctgctgac gtggccatg cagctctgga tgacagtgac 900
ttcttcacca gctattacac tttggaaat atatatgca tgcttggga atataaccac 960
tcagtgtct gtatgacca cgcttgcag gccagacctg ggttttagca agctataaag 1020
aggaagcatg ctgtcctatg tcagaaaaaa ctggagcaga aattggaggc tcagcataga 1080
tctctccagc gaacactgaa tgagttaaaaa gagtatcaaa agcagcatga ccactacctg 1140
agacagcagg aaatctaga aaaacataaa ctgattcagg aggagcaaat cttaaaaaat 1200
atcattcatg agactcagat ggcaaaagag gcacaattag gaaatcatca gatatgccg 1260
ctggtaacc agcagcatag tttacattgc cagtggtacc agcctgtacg ctatcatcgt 1320
ggagatatct ttgaaaatgt ggactatgtt cagttgggt aggattcatc aacctccagt 1380
atgatgtctg tgaactttga tggtaatca aatcagatgt atatcaatga ttcggtcaag 1440
tcttctcccg tagccccattc tattctctgg atttggggca gggactctga tgcataatagg 1500
gacaaacagc atattctatg gcctaaaaga gcagattgta cagaaagcta ccctagatc 1560
cctgttggtg ggaattgccc aacgtatccc ctgcctccgg aaaacaaagg actcaggatc 1620
cacgaactca gcagtgtatgaa ttattctaca gaagaagagg cccaaacccc tgactgttcc 1680
ataactgact tcagaaaaag ccacactctg tcctacttag tcaaaagaaatt agagggttcgc 1740
atggatctga aagccaaaat gccagatgac catgcacgaa aaattttgtt ttcccgtatt 1800
aataactata ctatcccaga agaagaaatt gggcttttct tatttcatgc tattaataag 1860
ccaaatgtc ctatctggct catactcaat gaagctggac tatactggag agcagtaggaa 1920
aatagcaattt ttgctattgc ctgtcctcag agggctttga atttagctcc atttcaatac 1980
caagatgttc ctcttgtcaa cttggccaaac ctttggattt accacggct tcatcttgat 2040
gccactaagc tgctacttca agcttggcc atcaatagct ctgagcctct gaccttttg 2100
agcctggaa atgcttaccc tgcgttgcag aatatcagtg gggcacttga ggcctttaga 2160
caggccctgaa aattaaccac caaatgtccaa gagggtgaaa acagcctgaa gttgatccgc 2220
tgtatgcagt ttatcctt tctgtacaac atcaattttt ctgttgcag tggtagcggt 2280
gttgaggaga gcaatgggttc tgatgagatg gagaattcag atgaaacccaa aatgtcagaa 2340
gaaatactgg ctttgggtggaa tgaatttcaaa caggcatgac ctttggagg ctttgggggt 2400
gcactagaga tgaaagggcg gcgtctagac ttacaaggaa tacgggtgct gaagaaagg 2460
ccccaggatg gagggtggcc aagcttgc tatggagact gcagaagtga agatgtgaa 2520
gcaacagaat ggattacatt ccaggtcaaa cgtgtaaaga aacccaaagg agatcataag 2580
aaaactcctg gaaaaaaagt agaaacaggt cagatagaaa atggacatcg ttaccaagca 2640
aacctagaga tcactggccc caaggtggca tctcctggc cacaaggaaa aaaacgtgac 2700
taccagcgtc tggatggcc cagccggac gaatgcctca aactccgctg ggttagagctg 2760

<210> 8
<211> 777
<212> DNA
<213> Homo sapiens

<220>
<221> unsure
<222> (269) .. (439)

<220>
<221> unsure
<222> (715) .. (716)

<220>
<221> unsure
<222> (743)

<220>
<221> unsure
<222> (750)

<220>
<221> unsure
<222> (753)

<400> 8

aaataaaataa ataaaaattt gattaattt ctgttatatt tttatataaa ctagacata 60
agtataaaaca aaaaaataga ataagtaaat aaataaataa aatttagatt aatttgctgt 120
tacattttta tataagctat gttatgaca gactttccta taatattctt atcataatgt 180
tcctgcactt gaaagaatgt gcattctgca gttgtgtcga ggtgttatgt gtatttcaac 240
tgggtcaagt ttgttaatca gggtggcnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn 300
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn 360
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn 420
nnnnnnnnnn nnnnnnnnnna cgtttctgg tagagtgaac ctttattat gtgaaatggc 480
tttctctacc actcacagtg gtatttttt cacttcccc cttattttg aatttcagt 540
gttcttataa tgatgtcatg tctctgaat agagttgtt taatcaagtc tgtcaatttt 600
tgtctttgt gtatccgtg aatttacatt tattgttaatt actgatatacg ttgtgttcat 660
aaataccatc ttactattt tttccattt gtcttaccca ttttgttt tattnnttc 720
ttttctgttgc ctttccctt cengattaan ttnttaattt ccgtttcccc ccccccta 777

<210> 9
<211> 3195
<212> DNA
<213> Homo sapiens

<400> 9

ctctttta gtgtcaactgt caatggcgct acatggactt tgtaataacc ctttggggca 60
catagctggg tgccatgttag aacatgtatc tggtacgata agtgtgtgcc caagaaatca 120
gaagaatgga cttaatctc atttttagaaa gtatgtatatt aaatgatttta cccaagccat 180
acttcagggtt aatgacacga tagaaagctag tacctgtgtc tctcaaattt ttctaaact 240
tttatcttc cgatcagggtt tgtgcagggg aaactcagtg gagaggaaga tatatatccc 300
cttaaataaa acagctccct gtgttcgcct gctcaacgcc actcatcaga ttggctgcc 360
gtctcaatt agtggagaca caggggttat ccacgtagta gagaaagagg aggacctaca 420
gtgggtattt actgtatggcc ccaaaaaaaaa ttacatggtt ctgctggaga gcaagcattt 480
taccaggat ttaatggaga agctgaaagg gagaaccacg cgaattgtcg gtcttcgtt 540
gtccttgacc aagcccaagtc ctgcctcagg cttctctctt agtgtacagt gcccaaatga 600
tgggttttgtt gttaactcca attcctatgg gccagagttt gctcaactgca gagaaataca 660
gtgaaattcg ctggcaatg gtttggctta tgaagacttt agttccca tctttcttct 720
tgaagatgaa aatgaaacca aagtcatcaa gcagtgtat caagatcaca acctgagtc 780
gaatggctca gcaccaacct tcccactatg tgccatgcag ctctttcac acatgcacgc 840
tgtcatcagc actgccaccc gcatgcggcg cagctccatc caaagcacct tcagcatcaa 900
cccagaaatc gtctgtgacc ccctgtctga ttacaatgtg tggagcatgc taaagcctat 960
aaatacaact gggacattaa agcctgacga cagggttgtg gttgtgtcca cccggctgga 1020
tagtcgttcc ttttctgga atgtggcccc aggggctgaa agcgcagtgg cttccttctt 1080

caccgcgtg gctgctgctg aagctttgca aaaggcacct gatgtgacca ccctgccccg 1140
 caatgtcatg tttgtcttct ttcaagggga aacttttgac tacattggca gctcgaggat 1200
 ggtctacgt atggagaagg gcaagttcc cgtgcagttt gagaatgtt actcatttgt 1260
 ggagctggga caggtggcct taagaacttc attagagctt tggatgcaca cagatcctgt 1320
 ttctcagaaa aatgagtctg tacggAACCA ggtggaggat ctcctggcca cattggagaa 1380
 gagtgggtctt ggtgtccctg ctgtcatacct caggaggcca aatcagtccc agcctctccc 1440
 accatcttcc ctgcagcgat ttcttcgagc tcgaaacatc tctggcggtt ttctggctga 1500
 ccactctggc gccttcata acaaataatc ccagagtatt tacgacactg ctgagaacat 1560
 taatgtgago tatcccgaat ggctyagccc tgaagaggac ctgaactttg taacagacac 1620
 tgccaaggcc ctggcagatg tggccacgg gctgggacgt gctctgtatg agcttgcagg 1680
 aggaaccaac ttcagcgaca cagttcaggg tgatccccaa acggttaccc gcctgctcta 1740
 tgggttcctg attaaagcca acaactcatg gttccagttt atcctcaggg aggacctaag 1800
 gtcctacttg ggtgacgggc ctcttcaaca ttacatcgct gtctccagcc ccaccaacac 1860
 cacttatgtt gtacagtatg cttggcaaa tttgactggc acagtggtca acctcaccgg 1920
 agagcagtgc caggatccaa gtaaagtccc aagtgaaaac aaggatctgt atgagtactc 1980
 atgggtccag ggcccttgc atttaatga gacggaccg ctccccggg gtgtgcgttc 2040
 tactgcacga ttagccaggg ctttgcgttcc tgcctttgaa ctgagtcagt ggagctctac 2100
 tgaataactct acatggactg agagccgctg gaaagatatc cgtgccccggg tatttctcat 2160
 cgccagcaaa gagcttgagt tgatcaccct gacagtggc ttccggatcc tcattttctc 2220
 cctcatcgatc acctactgca tcaatgcca a gctgatgtc ctttccattt cttccggg 2280
 gccaggagct gtgtcataact gaggaggacc ccagttttc ttgcagctc agcagttcac 2340
 ttcttagagc atctgtccca ctgggacaca accactaatt tgtaactggg acctccctgg 2400
 gcctgtctca gattgggatt aacataaaag agtggaaacta tccaaaagag acaggggagaa 2460
 ataaataaat tgcctccctt cttccgcgtcc ctttcccat cacccttcc ccattttctc 2520
 ttcccttctt actcatgcca gattttggg ttacaatag aagcttcttgc ttccctgttta 2580
 actccctagt tacccaccc aatttgcct tcaggaccct tctactttt cttccctggc 2640
 ctgtacctct ctctgcgttcc cacccttccacc cttgtacccca gccacccgttcc tgactgggaa 2700
 ggacataaaa ggttaatgt cagggtaaaa ctacattgag cccctgagga caggggcaccc 2760
 tctgggctga gcctactgtc ttcttccacc ttgtttttcc ccaggccctc agatggcaca 2820
 ttagggtggg cgtgctgcgg gtgggtatcc cacctccaggc ccacagtgtc cagttgtact 2880
 ttttattaag ctgtatatac tattttgtt tttgttttt ttcttttattt tttttgtaaa 2940
 tatatatata atgagttca ttaaaaataga ttatcccaca cgacttgcac tgctagttat 3000
 tcttcccagg ccacccgtt cagcgagccct agactggaaag tcacatggat atctttatg 3060
 ctatcatctt gggctccaga ggacccaaagg agtaaggctc tgtcaaaaac agttgaagtc 3120
 ctttcaaattt gcagagccgtt gttccctct tgtaagaaca atgtaaacat agtttcttct 3180
 cactttgtaa tgaac

3195

<210> 10
 <211> 949
 <212> DNA
 <213> Homo sapiens

<400> 10
 agcctccacc ctggcgatgg ctccctggtc ctactttctc tctcaaactg gctttttctc 60
 attccttga ctccgccaga cttccctcgcc cccatgaccc ggtgtgtgt ctgatcaccc 120
 caacattccct ggctgccccaa tggggggcaaa tgaagacccc agtgaaggaa tgctagatgt 180
 tgtgaaaatgt gaggacgcat cgtcaaaagga cacctgagga cgtctcaaag aagctcgccg 240

ggagagctga ggcgctcgaa gaacccaagaa tcatctcttt taaaaaatcg attcatcaaa 300
tgaatcttca gccaacaact gttcaagaag gattcaaata tcacaggttc caagaagtaa 360
agctttggag gtcacaaaat tagcaataga agctgggttc cgccatatacg attctgctca 420
tttatacaat aatgaggagc aggttggact ggcacatccga agcaagattg cagatggcag 480
tgtgaagaga gaagacatat tctacacttc aaagcttggt ccactttca tcgaccagag 540
ttggtccgac cagccttggaa aaactcactg aaaaaagctc aattggacta tggacacctc 600
tatcttattt attctccaaat gtctctaaag ccaggtgagg aactttcacc aacagatgaa 660
caagtggcaa aagtaatatt tgacatagtg gatctctgtt ccaccctggg agggcatgga 720
gaaagtgtaa ggatggcagg aattggggca agtccattgg ggtgtcacac ttcaacccgc 780
aggcgctggg gatgagtctc aaaaagcagg aatccagttt aagcggtctg caccctgttga 840
gtgtcccgatt taccgggtaa tgctgattcg gcagccagaa atgttggtgc aaagctgggg 900
ccccacaaaat gggccccccc ccgtgtggg ccctgggttga aaaaccctg 949

<210> 11
<211> 14917
<212> DNA
<213> *Homo sapiens*

<400> 11
gctcgagatc catttgctc taaaggtgaa aagacctaga tggtagaagg caagcagtgg 60
aatgtgtctg ggtatccgag aaatatacag aaagcactta agagaactta atcatttttt 120
tctcccttc ctttagattga atagggaaaa cctgctttct gcaaacaact gaaaaagctg 180
catttagaaa ctgcttctt ggccctcatc gagaagctgg aacttgaatt gttaggcccc 240
ttatggaca agctctcaac tgctgatcac ccagtattg acaccatggc cagcaagagg 300
aaatccacca caccatgcat gatcccagt aagactgtgg tggcaaga tgccagcatg 360
gaggcccagc ccgctgagac cttgcctgaa ggaccccagc aggatctgcc cccagaagca 420
tctgctgcca gcagtggc agcacagaac cccagcgtt ctgatggctc tacactggcc 480
aatgggcatc ggagcactt agatggatat ttatattct gtaaaatactg cgatttcaga 540
tcccatgaca tgacccaatt tggggacat atgaactcag agcacacaga cttaataaaa 600
gacccaaacct ttgtatgcag tgggtcagt ttctggcaa aaacccctga gggctttcc 660
ttgcacaatg ccacatgtca ctccggggaa gccagcttg tggaaacgt ggccaagcca 720
gacaatcatg tgggtgtgga gcagagcatt cctgagagca ccagcactcc tgacctagcg 780
ggtagccca gtgtgaagg ggctgatgga caggcagaaa tcattcattac caaaactcc 840
atcatgaaga taatgaaagg caaagctgaa gccaaaaaaaaa ttccatacact caaggagaat 900
gtccctagcc agcctgtggg tgagggctta ccaaagctgt cgactggaga aatggaggtg 960
agagaggggg accattcatt catcaatggg gcagttccag tcagccagcc atctgcccagc 1020
tctgcaaaaa acccccatgc cgccaaacggg cccctgatag gaacagtgcc agtttgcca 1080
gctggcatag cacagttctt ctccctccag cagcagcccc cagtgcatgc ccaacaccat 1140
gtccaccaggc cactgcccac ggccaaggcc ttcccaaag tgatgatccc cctgagcagc 1200
attccaaacgt acaatgcagc catggactct aacagcttcc tgaagaactc ttccacaag 1260
ttccccatcc ccaccaaagg cgagctctgc tatttactg tggtaaccaa gtatccagaa 1320
gaacagctca agatctgggtt cacagccaa aggctgaagc aggggatcag ctggccccct 1380
gaggagattt agatgccccg gaaaaagatg ttcaatacag tcattccatc tggccctcag 1440
cccacaatta cggttctaaa taccctactc gtggccagtg ctggcaatgt ccagcatctc 1500
atccaggccg ctcttccagg tcacggttg gggcagccag aggttacagg agggggactt 1560
ctggtcactc agccattgtat ggccaatggg ttgcaagcaa caagttcccc tctcccccctc 1620
acggtgacat ccgtccccaa gcagccagggt gtggcaccca ttaacactgt gtgtcaaat 1680

acaacgtcag ctgtgaagg ggtcaatgcg gcccagtcgc tcctcacggc ctgccccagc 1740
ataaacctccc aagccttcct tgatgttagc atctacaaaa ataagaaaatc tcatgaacag 1800
ctgtcagctc tgaaagggag cttctgtcg aaccagtcc cagggcagag cgaagttgaa 1860
catctcacaa aagtgacggg cctcagtacc agagaggtgc ggaaatggg cagtgtcgt 1920
agataccact gccggaacctt gaagggtcc agagcgatga tacctggaga tcacagtcc 1980
atcatcattt actctgtgcc agaggttcc ttctccccat cgtccaaggt ccctgaggta 2040
acctgcattt cgacaacagc cacactagca acccaccctt ctgccaaacg acaatcttgg 2100
caccagactc ctgacttcac accaaccaaa tacaaggaga gagccctga gcagctcaga 2160
gccctggaga gcagtttgc acaaaccctt ctcccttgc atgaggaact ggaccgcctg 2220
agaagtgaaa ccaaaaatgac cgacagagaa attgatagtt gttttcaga gagacggaaa 2280
aaagtgaatg ctgaggagac caagaaggct gaggagaatg cctctcagga ggaagaggag 2340
gctgtgagg atgagggtgg agaagaggat ttggccagtg agctaagggt ctctggtaa 2400
aatggcttc tgaaaatgcc cagcagccat atcttggcag agcgaaagt cagccccatt 2460
aaaatcaacc tgaagaacctt gagggtcact gaagccatgt gcaggaacga gattccaggg 2520
ctgggtgcct gtgaccctga ggtatgttag tcaaacaac tggcagagca gctcccaggc 2580
aaagttagct gcaaaaaagac tgcccagcag cgccacttgc tgccgcagct ctttgtccag 2640
acacagtggc caagcaacca ggactatgac tccatcatgg cccagacggg tctgcccacgg 2700
ccagaggtgg tgcgctggtt tggagatagc agtacgcac tgaagaacgg ccaactcaaa 2760
tggtacgaag actataagcg aggcaacttc ccaccaggc tactggtcat tgccccctggc 2820
aaccgggagc tcctgcagga ctattacatg acacacaaga tgctgtatga agaggacctg 2880
cagaacctct gtgacaagac ccagatgagc tcccagcagg tcaagcagt gttgtcttag 2940
aaaatggggg aggagaccag agccgtggca gacacaggca gtgaggacca gggccctgg 3000
actggtgac tcacagcagt tcacaaaggg atgggtgaca cttttcaga ggtgtcttag 3060
aacagttagt cgtgggagcc ccgtgtccctt gaggccagct cagaccctt tgacacatcg 3120
agtccccagg ctggacgtca gctcgaaca gactgaattt gatctgatta atgtgaagga 3180
ctggccagtc tggaaaccgg cctgcccacgt ggaagagcca aaccgcactc tctgctgcca 3240
catgccgttc ccatgcccgg ctgctggca cttccaggag cttccagaat cctcgcagac 3300
agcccagacg ctgcccctac cctcggctg cccaccacca agcaagcagc aagcaagatg 3360
gggttctcat cagttcttcc tcccacaatg taggacctt cttttaccc ccaatggata 3420
aaatagttca gagttcatag tcattttcat agacacagaa tcaagctttt aacatataca 3480
tccacctcta tatgttaaat aaaacatcag attatcaaca ctgtcattttc gtagaaactt 3540
tggtagcca agcagtgtcat tgctcattttc gtcatctcta aaaatgaccc gttgtctgtc 3600
tctgggatt gctgggtcac aggtgcccctt caccttccac agtcaggcag ggaagttata 3660
ggcacaaaagc tacgtctggc accccctttgt gccccctttg tggccctaa ggaagcagta 3720
cctttgaaga gatctctgtc gcattaagtg atgaccggct acgtttcatg tcaggcttgc 3780
tttgccttgc gggctactca gtgcagaacc tgctgttaacc ctcagttcaa aaaatggact 3840
ggcaatgtga ttagcgttgg atgctttacc attctttta gttgttaccg taattctgtc 3900
ttttcatggg agtttgaatc atggaccata acttttcagt tatcagatca actaaagaaa 3960
cattttgtt taaggctaat gtgtgtaccc atgtgcctgc attttttttta taatcttagac 4020
atgtttggag tgagagaaaag atggaaaaaa gacatggggt agggacgtaa gtggaaatct 4080
atagccacag cctgaagctt tgaccactgc ggtttcaga gccccttctc cacactcatt 4140
tcagagccctc ctatggttt ggaaggaata acacactggc ccatttagtaa gggtaaggc 4200
tggagggatt tggacttc ttggaaattt cagaggttagg gtggctttta gcacaaagac 4260
ttgcatgcag agatccctgg cagaacaccc agagtgcggc tggctccac cccagggtct 4320
ggccgggtgtc ctggatgcattt gcccagggt gctggcattt actggcttgc ttgtggatgc 4380
ttttaaagtt ttatattttt gtcctttaac ttggaaacaa gaactctact tttagcctaacc 4440
cctcatgtcc tttttgaat tgagaaaattt acaggaaaatg gtgccttgc aaatttagaaa 4500
acttgcttac agagctgttc taaaatggtaa atcctcaatt tccccaagac cggttqctct 4560

ggagtagct ggttaaaggagg ggcgaactaa agacctgtcc acctgtagct ccgcgtcattt 4620
cttagaaaacc acctgcttcc cagagtgccca agccacaagt accaggcttc gtgggcacag 4680
acacccctcg ggctgggcag agtgcacagt ctagaagacc ccagagagag ggcaggggct 4740
ttgggcaaga agcaactggtg gtgttttagg gaccgtcctt ctcccctacc caaggactg 4800
gacctggcag ggcaccgtgc tcatgtggct ccaaggacaa gcatggcggt ggcccccttc 4860
gccttccagg agaggtcttg ctgttggaaac caaaatcatg ttcttctaaa gtgtcatctt 4920
ctgcccctcc tgcccataa gggaccacat ctatttgtc tcaaacadggg acttgtgagt 4980
acttggcaag ttttgcagcc tattttgtt ttcttaattt ggggagtaaa gatgtttgg 5040
ctcaaaaaacc tttgaggaat tgccaagaat ggcgagtgtat tgcttcctt cagagaacag 5100
acacttgaa ttttcctt tagtgtttat atacgtgcag attaatttat atatatataat 5160
atacacacac acatatacag tataaataact catttgattc tcgtaaaacg cgcatctggc 5220
gtgtgcagtt gagaacttg gtggcacatg ggtgttgggg gagtagctg tggggaggg 5280
acaccagtgc actaggcago tggggcggcc caggctgaag ccattcccggt ggtctgaga 5340
aaccacccag tgccctcacct ccagatctg ctggcatcac ctccagagcc ctgcacatgcac 5400
tggctgaaga gttggctgtt ggagaggatt ttcttggta cttgtattca cggtaattt 5460
acaacccaaa cagcaaaaaca cagttggtgg acaagttcat gcaggaccta cagtgaccca 5520
gccatgggca ctagctcatc tttcaggtgg aaaagtacag tgctgcctgc cctggtatgt 5580
ttttcttata gatgttagcc ctgcccaca gccaggctta cactacaaaa ggcaagaatg 5640
cccatgtaaag gagcccagca gtctggacag atccttcttc ctctgctgtt ggatgagagt 5700
gagtgagttat gctctggacc ttatccttga aagatgtca aaagcgatga tgagggaggg 5760
agtcatcagc caggtgctta aagggacatt gttaggaggtt ctcaagggtt tgggggcaaa 5820
accctgaatc cagccagtcg tgcacagaga cacacccaca ctggccagt ggcaactggg 5880
gatgtggat ggcagcagcc aggtatgttag ccctgtcaca ggacagctca ctgtggttt 5940
gcacactgcc taagggttaa attgtgtgt tgccttcagt agaaggcatt tggggctgc 6000
agagttgaga gttgggtgag gttagtcctt cctgaagaaa aagcctataa aaagtggcta 6060
atcttataccc ttttctctgt atcagttgg actcgtcaga gatagaaaa tcatctttt 6120
gtgtttttt gttgctgatg tcttgcaccc attgttttt tacatgggt ttagatcga 6180
gttctcaaag gtgaaaccag atgatcattc tgataaaagga aatttaaatt tgatacatat 6240
gctttgtata ttttGattttc ttgtttctgt ttttgcattaa aaaggagctt ttttattttt 6300
ggaggggagg agtgcattt ttgagaatct tgggttcctg aaaaagaacg ccctagttgg 6360
atggctgccc agggccttgg gttttggtag tgattgtaca acttaaagct ctttctctt 6420
ggctgagtga caggtggctg ttcaggtggaa ccaaagcacc ttgacacaag gactccacac 6480
tgtgctctt agtagcacaa ggaggaagtt ggacagaaca ttgggttagt cttgcgggc 6540
tcacacatgt actagtggtc tcatctccag ctggccttgg gaggccgtcc caccaggaaa 6600
tctctctatt ccgtacgctg agatgtcccc ttgtgggtt tattctgctc agtcagtggc 6660
ctagggcag gtccctgttt ctctccctct ctctccgttgc tctggacat ctgtccctgg 6720
ctgccttca tggaggaagg acactggct ttctgggtt atgctgtgt gatgctctt 6780
gcttgcgcct cgtggctctt tgcattttt tggaccaata tcctcagatt ggtgcagctt 6840
tttcaggatca gatatcacac cccaaatggaa taaaggcaac ttgcaggaga ggagagccag 6900
ccaaagaagaa aattttaaaaa ccaaaccctcg tttaggattt tcctaaagtc atcttctctt 6960
ttttctgtct cagagtttac ctgggagatt tcaccagttt gactcaccat ttgcagatgt 7020
gctttgtat taaattttaa ttttccacata tcacatccat tctcaaggtt gtttatatgt 7080
ggagaagaaa aatcctctag acacatgaag gcccacatag tcaagtcttc cagggcaaaag 7140
ccagcagccc acccaggtca ggtagccagc agggctcagt tcccctcaact ccagacacagg 7200
accctctcttca tcagggtctc ttgacccagc ttcttctctt cttttacct gagagcacag 7260
acctctctca gccagcctgc ccagaccacg gggggctact cccatgttagt ttggggagca 7320
cttgatctca gaaaagctcc attgtctgag caaatggca gttgtggagc tcaaggcttt 7380
ctcctgtgtctt caagtccctt ccccaagcaa ggcttcaacc tcacatctacc accatgttagt 7440

tttctctggc catttaagtg gggccgcagg gacatgggt ggcacatgccca caccagggtc 7500
 ggtgaggcaa ccagtttga ttttgacaga gtggctggag gaaaagtggc aatcaagggtg 7560
 ctgcttgggt tgctctgagt gcaaatggaa ccaacagggt tctgctgaa tctgtgtgtt 7620
 cccagtgcga ggtcacacca ggaggggtgg ggcagggtca accaagtggt ctctgaactc 7680
 accgagcgtc tgcacttggt tgtgaagttt atgggagttc agagagcgtc tggccttgg 7740
 gaggggttga gaggcctcctt tttgggttctt cattcctgag ctctgcctg cccacaaaatc 7800
 tgacctctt gaatggggac gcagtccttc aacagagaag tttctatggc aaagaagttt 7860
 ctattnagct ctagatccag cagagtcatc cattctaact gccctgaagt cttagagcagg 7920
 ggagggaaacc cagaggctgg ggttggact aggccagaccc tggtttaccat atggacaagg 7980
 acaggggaaa gcaccccccctt cctcaatttc tggaaagtttctt atctttgggt tcgcaggact 8040
 ttgaggatga taaagaacat ataggtacta gcttgggtt gctgtccaa agcttccaca 8100
 gcccggagaa tttggcttcc tggctgctc tggcagctga gccaaggggag gaaggcagcc 8160
 gctctgggtt ggactctagg caccccccctt gctgtccact tggataggcg gtgagcccc 8220
 gggtaactgag aggagcctga gcatttaccc tggcattagtg cctccctt caggagactg 8280
 gcttggaaacg tgtgttcatg tgcgcgtgca cacacacaca tgagcacctg tatgtgtttaa 8340
 tgaatagttt ttcttggta atgtttttt acttctgttc ctggcgtaa gtggatgatt 8400
 caaaaattaac gtgacttggc tggcgcaagt ggctcacacc tggatccca gcaatttggg 8460
 aggccaaggc cacccagata aacagccaca ggtcagaagg ctgctgagtg cccctggaaag 8520
 cagaatagct gggcaatggg tccttgactc tctgaaatct cctcattac tgctgaaagg 8580
 ggaaaaatgac aagaatagttt tatcccagaa agcatttctc tacgttgc tggatgggg 8640
 tgagtctgag agaggcgtgc tggtcaccat gacaacagag acaggccccg actctgaggt 8700
 gaagaaagct caggaggagg ccccgagca gcccggact gctggcgctg tgaccacccc 8760
 tgtgaccctt gcaggccacg gcccacccaga gggcaactcc aatgagaagc atccatccca 8820
 gcaggacacg cggcctgctg aacagagcct agacatggag gagaaggact acagtggggc 8880
 cgatggcctt tggagaggg ccacgcccag caaggccccag aaatccccca agaagattgc 8940
 caagaaatac aagagtggca tctgggggtt cactctgtt gatgcctgg agtatgagtg 9000
 tgaggtggag aaacatggcc gggggcaggt gctgtttgac ctggctgtt aacacctcaa 9060
 cttcccttagag aaggactact tggcctgac cttctgtt gctgacagcc agaagaactg 9120
 gctggacccc tccaaggaga tcaagaagca gatccggagt ggtggctt tggatgggg 9180
 ggaggtgggtt agcccttggaa attttgcctt cacagtcaag ttctaccctgc ctgatccctgc 9240
 ccagctgaca gaagacatca caagatacta cctgtgcctg cagctgcggg cagacatcat 9300
 cacggggccgg ctggccatgtt ctttgcac gcatgcctt ctggcttcc acgctgtgca 9360
 ggctgagctg ggtgactatg atgttgcac gcatgtggc aactatgtca gcgagctccg 9420
 ctcccccctt aaccagaccc gggagctggg ggagaggatc atggagctgc ataagacata 9480
 tagggggatg accccgggg aagcagaaat ccacttctt gagaatggca agaagctttc 9540
 catgtacgga gtagacctgc accatgcca ggttgcact ggcacatgc tcatgtttagg 9600
 cgtttgcctt aatggcctgc tcatctaccg ggaccggctg agaatcaacc gctttgcctt 9660
 gcccacacatc ctcaagatct ctttgcactt ggttgcactt ttttgcctt 9720
 ggagttatgag caatttggaga gcacaattgg cttaagactc ccaaccacc ggttgcctt 9780
 gagactgtgg aaggctgtca tcgagcatca tacattctt cggctgggtt cccctgggg 9840
 cccacccaaag ggcttgcctt tgatggggctc caagttccgg tacagtggga gacccgggg 9900
 acagactcgc caggccagcg cccttgcatttga ccggcctgca cccttctttt agcgttcttc 9960
 cagccaaacgg tacaccatgtt cccgcacccct tgatggggctc gagtttgcctt gcccacccctc 10020
 ggtcagcgag aaccatgtt gggccctgca cgggttgcacaaag cggatggagg atggcgagtc 10080
 tggggggcaa cggtcagagg ctgaggaggaggg agaggttcagg actccaaacca agatcaaggaa 10140
 gctaaaatgtt ttagacaagc cagaagatgtt ctgttgcactt caccaggcca gcatcaatgtt 10200
 gctaaaagg accctgaagg agcccaacag ctttgcactt caccggggatc gagactgggg 10260
 acggggagcgc aggctgcctt cttccccccttcc cccaaaggcga cccctgagaa 10320

agccaatgag tcccagagga cccaggacat ctctcagcgg gacttggtag ctgagcctgg 10380
 'agcagccgca ggcttggaa tgttcactca gaaaagcctc gcagcatctc ctgagggttc 10440
 agagcattgg gtatttataa aaagagagta cactaggcca gaagagctcg gtctcctaaa 10500
 agtgaccacc atgcagcagg aagaaaggca ggcaggcctt gctggtatcc ttgccaacgg 10560
 cagactctcc aaggtagacg ttctgttgg caagttcaaa gtggaagtgg ccacagaaga 10620
 aatgtggga aacagaagag caaacaccca gcaacaaggaa aaaatgattg caagtcctga 10680
 agactttgag tcagtggggg aggaaggccc ctggatcagg gaaagcccag gaggggctgc 10740
 cctggcttcc gccgcacat tggcagaaaa gctcctcgag ggctctgagc tcagggcaga 10800
 caccagagag gcaaccatca ggaaccgctg catgtcagat gtcagccgg agggccagac 10860
 agagctgagg aaggggctgg aggacctca cacttgtgg agacccactg ctccaggac 10920
 cagggcagca gaggtggacg tcctcttcc acgcctccgac aagggaggac tccagtcgtt 10980
 tctattggat ccagcccacg cagaagccag agctgagttg agcaatgaaa ctgatacttc 11040
 ctttgcagag aggagcttc atttaaatta tgaagaaaaa gactcagaag accaagtctt 11100
 ccctccaccc ctggaggaga gaaaaggcg cctggatgcc cctcccgag gtgagccag 11160
 gccgacgctg aattccttag acctgagggt ttctgctgt gcttccagca ggagcaagga 11220
 cgaagccac atgacttccc caaaggaagg ggcagggacc cccaaagaacc atggaggacc 11280
 tggtgcacctg aaggatctc cgcaggaca gacgtttgtt gaaggctggg aagatgccc 11340
 gtggggagtg gaaggagagt ttccccaccc gacagccagc gcagcccgag aggaaggac 11400
 cccctgtgagt ggagatitgc tggaaaaggc tgaggaaagt cccacagagg aactgaagaa 11460
 gcacccttcc cacagaggac agggcgtgca tcccacccc caggcctcgcc cccttcctcg 11520
 ggcacatccct ctgaatgtca ggaagccagt caaaccagac agaggcaact tcccacccaa 11580
 agagagggga gtggttccca cccagaaagg aggggctgag ctgaaggacc gcgaggcttc 11640
 agcatttctt cacaatggagg tgatcattcc cctgccagcc tcccctggtc attctgagga 11700
 cctggcagct ctggaggaaag cttctccaag cccacccctcc catgggtcag gggagccctc 11760
 ggagctcagg gagcccttcc tttagacatgt ccatacttcg aaagccagcc cagagcccaa 11820
 ggaccaagta gggtttgg tgccttgc cacaggaggt gagcgcaggc ctcctccat 11880
 caccagcaga aagcccagag tagtccctga agaagctgag gggcgcatac ctctggggtt 11940
 tgggttccct tcagggaaagc gaaggagat gaccttttc caggctgggg accaagaggg 12000
 ctccctagaa gatattagca agacccatgt ggccaacaaa attccggatatt ttgagaccca 12060
 cggagctgaa actcgccgaa tgagtggagg tgaagcaagg tcccttccaa atgacgtatc 12120
 ttcagaggca cccgtggac aagcagagca gcagcggagt acgtctcag acctggcctt 12180
 cgcccaactc cagccccccag gggactttgc cagccccaaa gccacacatt ccacagtgtat 12240
 acctctggctt accagacact tcagggagga cacttctgca tcctaccagg aagcacacac 12300
 ggaactagag cccgtgtccc ccaattcagg ctgtgaaacc acgctggcag aagctactgg 12360
 aactggggta actggccgca acaaattccgg agatgcgtc agggaaagaga agcgctccac 12420
 caacttagca gccaacacccc ctgggaaggg ggggcgcctg agatttgcac gcccctcggt 12480
 ccctcagaga gcagggctga gggagggctc cgaggagaaa gtcaaaccac cacgtccccg 12540
 ggcacccagag agtgacacag gcgatgagga ccaggaccag gagaggacac cgggtttcct 12600
 gaaggacaac cacctggcca ttgagcgcaa gtgtccacgc atcacggtca gctctacgtc 12660
 tagcctggag gctgagggtgg acttcacggt cattgggtac taccatggca gcgccttcga 12720
 agacttctcc cgcagcctgc ctgagctgca ccgggacaaa agcgactcgg acactgaggg 12780
 cctgctgttc tcccgggatc tcaacaaggg gggcccccagc caggatgtat agtctggggg 12840
 cattgaggac agcccgatc gaggggcctg ctccaccccg gatatcccc agtttggagcc 12900
 cgtgaaaaca gaaaccatga ctgtcagcag tctggccatt agaaaagaaga ttgagccgga 12960
 ggcgcgtactg cagaccagag tctccgcata ggtataacacc caggttgtat ggagtgcctc 13020
 agtggggagg gagttcatag caaccactcc ctccatcacc acgagagacca tatcgaccac 13080
 catggagaac agtctcaagt ccggaaaggg ggcagctgac atgatccac gcccacagac 13140
 ggtggccacg gaaatccgtt ctcttctcc gatcatcgaa aaagatgtcc tcaccagcac 13200

ctacggcgcc actgcggaaa ccctctcaac ctccaccacc acccatgtca caaaaactgt 13260
 gaaaggaggg ttttctgaga caaggatcga gaagcgaatc atcattactg gggatgaaga 13320
 tgcgtatcaa gaccaggccc tggcttggc catcaaggag gccaaactgc agcatcctga 13380
 tatgtctggta accaaagctg tcgtatacag agaaacagac ccatccccag aggagaggg 13440
 caagaagcca cagaagctaa aacgagaaaac taagaataac aaaaggcaac cttgcatccg 13500
 gcggAACCTG caggcacggg ccattcttc cgcgaccagg ggctctgcgg gaccgcttcc 13560
 cccgtcgctc cagttagacg ccaaagctgg agaacttccg gtgcgttcc gctgtaccgg 13620
 aacgtggggc gaggcgctgt tcatcaaaga aaaagggttcc ttgttgcac ccaccactgg 13680
 ccccatggct gccgtcgaga tggatcctga gctagccaaag cgccctttct ttgaaggggc 13740
 cactgtggtc atcctgaaca tgcccaaggg aacagagttt gggattgact ataactcctg 13800
 ggaggtcgccc cccaagttcc ggggcgtgaa gatgatccct ccaggtatcc acttcctcca 13860
 ctacagctct gtggacaagg ctaatccgaa ggaagtaggc cctcgatgg gtttcttcc 13920
 tagcctgcac cagcgggggc tgacagtgtc ggcgtggagc acactcagg aagaggtaga 13980
 cctgtccccca gccccagagt ctgagggtgaa ggccatgagg gccaacctcc aggagctgga 14040
 ccagttctcg gggccttacc catatgccac cctgaagaag tggatctcac tcaccaactt 14100
 catcagcgaa gcccacagtgg agaagctaca gcccggaaat cgacagatct gtgccttttc 14160
 cgatgtgcta cctgtgctct ccataaagca caccaggac cgctggggc agaatctacc 14220
 ccgctgtggc attgagtgca aaagctacca agagggcctg gcccggctac cagagatgaa 14280
 gcccagagcc gggacagagaga tccgcttcc agagctgccc acgcagatgt tcccagaggg 14340
 tgccacgcca gctgagataa ccaagcacag catggacccctg agctatgccc tggagactgt 14400
 gctcaacaag cagttccccca gcagccccca ggatgtgtt ggtgaactcc agtttgctt 14460
 tgtgtgttcc ctgctggggc atgtgtacga ggcatttgag catttggaaagc ggctctgaa 14520
 cccctgtgc cggtcagaag cagccatgtat gaaggccacc accctctaca tcaacctcat 14580
 ctccatctcg taccaccacc ttggtagat ccccgctgac ttcttcgttag acattgtctc 14640
 ccaagacaac ttccctcacca gcaccatcaca gaaaggattt ttgattgaca tcagtgaaga 14700
 cttcatcgag gtcctgttcc tcagaggtac agaacgcctt tctaaagcca acctactgtt 14760
 ggtatgtcc ctcattgcgc tgatgccac cctgagaaag aaagctgaaa agttccaagc 14820
 tcacctgacc aagaagttcc ggtggactt tgctgcggaa cctgaggact gtgcgggg 14880
 ggtgggtggag ctccctgagg gcatcgagat gggctaa 14917

<210> 12

<211> 1823

<212> DNA

<213> Homo sapiens

<400> 12

cccacttccg gagacctcac acaagatggc ggcacccgag gaacacgatt ctccgaccga 60
 agcgtccccag cccgattgtg gaagaggagg aaactaaaac atttaaagac ctgggtgtga 120
 cagatgtgtt gtgtgaagct tgcgttccat tggatggac aaaaccacc aagatccaga 180
 ttgaagctat tcccttggcc ttacaaggcgt gtgatatcat tgggcttgcgaaactggct 240
 ctggaaagac aggccctt gctttgccc ttctaaacgc actgctggag accccgcagc 300
 gtttgggttgc cctagttctt accccgactc gggagctggc ctttcagatc tcagagcagt 360
 ttgaagccct ggggtcctct attggagtgc agagtgtgtt gattgttagt ggaattgatt 420
 caatgtctca atctttggcc cttgcaaaaaa aaccacatata aataatagca actcctggc 480
 gactgattga ccacttggaa aatacggaaat gttcaactt gagagctctc aataacttgg 540
 tcacggatga agccgaccga atactgaata tggatgttgc gacagaggtt gacaagatcc 600
 tcaaagtgtat tcctcgagat cggaaaacat tcctcttcc tgccaccatg accaagaagg 660

ttcaaaaact tcagcgagca gctctgaaga atcctgtgaa atgtgccgtt tcctctaaat 720
 accagacagt tgaaaaatttta cagcaatatt atatttttat tccctctaaa ttcaaggata 780
 cctacctggt ttatattcta aatgaattgg ctggaaactc ctttatgata ttctgcagca 840
 cctgtataaa tacccagaga acagcttgc tactgcgaaa tcttgcttc actgcacatcc 900
 ccctccatgg acaaattgagt cagagaaggc gccttaggatc ccttaataag tttaaggcca 960
 aggcccgttc cattttctca gcaactgacg ttgccagccg aggttggac atacctcatg 1020
 tagatgtggt tgtcaacttt gacattccta cccattccaa ggattacatc catcgagtag 1080
 gtcgaacagc tagagctggg cgctccggaa aggctattac ttttgcaca cagttatgtg 1140
 tggaaacttcc ccagcgcata gaacacttaa ttggaaagaa actaccaggat tttccaacac 1200
 aggtatgtga ggttatgtatc ctgacagaac gcgtcgctga agcccaaagg tttgcccggaa 1260
 tggagttaaag ggagcatgga gaaaagaaga aacgctcgcg agaggatgct ggagataatg 1320
 atgacacaga gggtgctatt ggtgtcagga acaagggtggc tggagaaaaa atgaagaagc 1380
 ggaaaggccg ttaatcactt ttatgaaggc tcgagttctg ctgttctgta aaagagaatt 1440
 ggagaatgaa acctgctcca acagagatca tgagactgaa attggcaga attgtgtcca 1500
 gaatgtgctc agctaattca gtattttcc ccattctggg ttggagttta ctgcagagata 1560
 attcttacag tgctgtatgtc aagactgtta ctgttcttcg actttgattc cttgctcatg 1620
 acatgagtag ggtgtgctct tctgtcactt cacacagacc ttttgcctt ttagctgca 1680
 agtcaaggac taggttgatg atgccccatga cctgtataattg taaagaagct tggacatctg 1740
 caaatgatat ttaaaccatc ttggcttgcg ctttattcaa actaatgtga aacaataaat 1800
 ttaaatatta tttttaaaaaaa aaa 1823

<210> 13
 <211> 869
 <212> DNA
 <213> Homo sapiens

<400> 13
 cagcattgca gcagctccac catggcctgg gtcctctgc tcctcaccct cctcagtctc 60
 ctcacagggt ccctctccca gcctatcttgc actcagccac cttctgcac 120
 ggagcctcggtc acatcactcgtc gtgcagtgtc agcagcgaact acaagaatct tgaagtggac 180
 tggtttcagc agagaccagg gaagggcccc cgtttgtca tgcgagtggg cactgggtggc 240
 gttgtggat tcagaggggc tgacatccct gatcgctttt cagtctcggtc ctcaggccctg 300
 aatcggtttc tgaccatcag gaacatcgaa gaagaggatg agagtgacta ccactgtggg 360
 acggaccccttgc agtggggac cagttcgtc tcttgggtgt tcggcgagg gaccaagttg 420
 accgtcctaa gtcagccaa ggctgcccccc tcggtcactc tgttcccgcc ctcctctgag 480
 gagcttcaag ccaacaaggc cacactgggtc tgtctcataa gtgacttctt cccggagcc 540
 gtgacagtgg cctggaaaggc agatagcagc cccgtcaagg cgggagtggc gaccaccaca 600
 ccctccaaac aaagcaacaa caagtacgcg gccagcagct atctgagccct gacgcctgag 660
 cagttggaaatg ccaacagaag ctacagctgc caggtcacgc atgaagggag caccgtggag 720
 aagacagtgg cccctacaga atgttcatag gttctaaacc ctcacccccc ctacgggaga 780
 ctagagctgc aggttcccg gggaggggtg tctcctccca cccgcaaggc gtcaaggccct 840
 tctccctgca ctcataacc gatcgaata 869

<210> 14
 <211> 799
 <212> DNA

<213> Homo sapiens

<400> 14

ccctgctcag ctcttggggc cgctaattgt ctgggtccct gtgcagagat tgtgatgacc 60
 cagactccac ttccttgtc tatcacccct ggagagcagg cctccatgtc ctgcaggct 120
 agtcagagcc tcctgcata gatggatac acctattttt attggtttct gcagaaagcc 180
 aggccagtct ccacagctcc tgatctatga agtttccaac cggttctctg gatgtcacc 240
 attaggttca gtggcagcgg gtccgggaga gaattcacat tgagaatcag ccgggtggag 300
 gctgacgatg ctggagttta ctactgcata caaactacac agactccgaa cacttttggc 360
 caggggacga ggctggagat caaacgaact gtggctgac catctgtctt catcttcccg 420
 ccatctgtatg agcagttgaa atcttgaact gcctctgtt tgtgcctgct gaataacttc 480
 tatcccagag aggccaaagt acagtggaaag gtggataacg ccctccaatc gggtaactcc 540
 cagagagtg tcacagagca ggacagcaag gacagcacct acagcctcag cagcacccctg 600
 acgctgagca aagcagacta cgagaaacac aaactctacg cctgcgaagt cacccatcag 660
 ggctcgtact cccccgtcac aaagagcttc aacaggggag agtggtagag ggagaagtgc 720
 ccccacctgc tcctcaggta cagctgacc ccctccatc ctggcctc tgacccttt 780
 tccacagggg acctacccc 799

<210> 15

<211> 1731

<212> DNA

<213> Homo sapiens

<400> 15

tttttttttt ttgggttgtca ttgaggatat ttattggggt ttcatgagtg cagggagaag 60
 ggctggatga cttggggatgg ggagagagac ccctccctg ggatctgca gtcggcggct 120
 cccgtgggtg gggtagagt tggaaaccta tgaacattct gtaggggcca ctgtcttctc 180
 cacggtgctc cttcatgtcg tgacctggca gctgttagott ctgtggact tccactgctc 240
 gggcgtcagg ctcaggtagc tgctggccgc gtacttggtt ttgctctgtt tggagggttt 300
 ggtggctcc actccccctc tgacggggct gccatctgcc ttccaggcca ctgtcacagc 360
 tccgggttag aagtcaactga tcagacacac tagtggcc ttgtggctt ggagctccctc 420
 agaggagggc gggAACAGAG tgacagtggg gttggcctt ggctgacctg tggggacagg 480
 gaaggggggtg agagaggggca gacagaatac cgggggtttt tggagccctt ctctctgtct 540
 aaagtctctg ggagggttca cagtgtggcc atccggtcca cccgggggttctc 600
 tttcccccata cttccactc atgcctgtg gagagcagac agctctgtgc cttcccttaga 660
 gcccctccaa gtcacccccc acagggtgtcc tggcccagcc cctctccctt acagcctcaa 720
 tttctccata tacccagggtc aggctgtgtt ctttcttctc tgggtttttt cttctctgtat 780
 ctctggagtc tgagtttata atctggcctt gaccccttggaa tccctcattt ccattccctat 840
 acccccccctcc atcacccact ttattcttcc aggacctaga gcctccctccg tgaactgtgg 900
 gtcccccgtct catcctgttag gactgtctgt gcaggcagtg tgggggaga cccaaaggctg 960
 ctttgaactg gagttccata tccctcacag gcacccggct ctgcggcagc ccagcccact 1020
 tggctctctt ggcaaggagt gggctccacc tagacaagcc tcagggtctc tctggggctc 1080
 tgagatgttt cctgtcttcca caagccccac cacagaaccc ttcacccatgtc ctgttccctgg 1140
 ggctgctccc acagactatg agactcagca gccccccagcc ccaccccccagc agcctgtat 1200
 gacccaaac ttcacctgggt agccatggag ttctctgtc ac ccctcattca ctcccccctctg 1260
 gtcatttcctt gagtctaaca tgcccttga ggaaggcagg aggcccgttcc gtgaacagag 1320
 agacactggg cccccagaggt gacggggctc cagggacaga cacatctctg cccttaagaga 1380

ctgtctcctt tctggtgact gtcctggag ggttggattc tggcacctca cccagtctca 1440
 cccgtccctc tgtgtccccca tgtcctcatg acccagcaca ggccacagag ctgcagccta 1500
 gaccaggagc cctctctgtg ccctccattg gtctccctt ggggtgacct ctgtgtcacc 1560
 aggccgtgtg gcctcccag gctgattggc atccagtcct cagcctagac cctcagctgt 1620
 tcttgggct gctcccctag actatgagac tcagcagctc ccaggcccac cccagcagcc 1680
 tctgtccttg accccaggag tcactggca atgtccctaa ggacactgca g 1731

<210> 16
<211> 662
<212> DNA
<213> Homo sapiens

<400> 16
 gccaaagagt tccaggccca caagaggact ggctatgagg aagagacctg gaatctgaag 60
 gaatgtgttgc ggcgttgtgc aaaccctaac gtaaatttcc tgacaaaggt agaaaagccct 120
 ggcgtgttc agaggtgggg cctcctccta tgtcgacggg attctagatt cacaccatgg 180
 cagaaaaatct atttcaggaa cttcaggaac attttcaagc tctgacggca acattaaacc 240
 tcagaaatat ccttttctac ctttaacaaa tgcgtgtgatt ctttggact ggttagattat 300
 catggagtat ctttttgttgc tctggtagta gtaggtataa gtttacttag gatttcccag 360
 tatttacttc tgcgtttta tgcgttcc tgatgtgttta attaccctc acctatacgca 420
 aaagctgtac ctccggccgg gtgcagtggc ccataaggaa attttctaacc tataatgaaact 480
 gaagggccat ggcttctaca gaaaatatgt ttacatcaaatacatacttgc ggaagaataa 540
 aaaatagctc tcctattcct tacagggaaag gctataaaca atattttattt gtactgtttt 600
 tataaccaga gtaaaccttggattgtc atggattgaa ttgtgtacc gcaaaaattta 660
 ta 662

<210> 17
<211> 336
<212> DNA
<213> Homo sapiens

<220>
<221> unsure
<222> (268)

<400> 17
 tttaaaaaaaaa atccatctta gtatcttgc ccccaccctt cacccactca cagagaagcc 60
 cacatgagga aacagggttat gtctggaca tctctgtccc cctcagtgtc tggtatagtg 120
 actgacacac agcatgttctt caagaaatgt ttgaatcaca gtacattgaa tcagtaacag 180
 tctgactgac ccccaggcgag aaaatgcaga ggcattttt ctctcttattc cagatttcag 240
 ctgtgcctc ttgttaattctt catattgnntt ttcaatcacc agaattgatt tccctcatcc 300
 ctcttcccgat ggtcatctcc agtgaactgt attaat 336

<210> 18
<211> 3300

<212> DNA

<213> Homo sapiens

<220>

<221> unsure

<222> (892)

<400> 18

gagcccgagc cgccgcaccc cgcctggcca tggctttgc aagttccgc cgcatcctgg 60
ccttgtctac ctgcagaag agaaagtccc gcgaatatga gcacgtccgc cgcgacctgg 120
accccaacga ggtgtggag tatcgtggc gagctggcg acggcgtctt tcggaatgg 180
ttacaaggcc aagaataagg agacgggtgc tttggctgct gcaatagtca ttgaaaccaa 240
gagtgaggag gagctggagg actacatcg tggagatttag atcctggcca cctgcgacca 300
cccc tacatt gtgaagctcc tgggagccta ctatcacgac gggaaagctgt ggatcatgat 360
tgagttctgt ccagggggag ccgtggacgc catcatgctg gagctggaca gaggcctcac 420
ggagccccag atacaggtagg tttggcccca gatgcttagaa gccctcaact tcctgcacag 480
caagaggatc atccaccgag atctgaaagc tggcaacgtg ctgatgaccc tcgagggaga 540
catcaggctg gctgactttg gtgtgtctgc caagaatctg aagactctac agaaacgaga 600
ttccttcatac ggcacgcctt actggatggc ccccgagggt gtcatgtgtg agaccatgaa 660
agacacgccc tacgactaca aagccgacat ctggccctg ggcacacgc tgattgagat 720
ggcccgatc gagccgccac accacgagct caaccccatg cgggtccctgc taaagatcgc 780
caagtcaagac cctccacgc tgctcacgccc ctccaagtgg tctgttagagt tccgtgactt 840
cctgaagata gccctggata agaaccggaga aacccgaccc agtggccgc antgctggag 900
catcccttcg tcagcagcat caccagtaac aaggctctgc gggagctggt ggctgaggcc 960
aaggccgagg ttagtggaaaga gatcaagac ggccgggatg agggggaaaga ggaggacgcc 1020
gtggatgtg cctccaccc ggagaaccat actcagaact cctctgaggt gtagccgc 1080
agcctcaatg ctgacaagcc tctcgaggag tcacccctca ccccgctggc acccagccag 1140
tctcaggaca gtgtgaatga gccctgcgc cagccctctg gggacagatc cctccaaacc 1200
accagtcccc cagtcgtggc ccctggaaat gagaacggcc tggcagtgcc tggccctg 1260
cggaagtccc gacccgtgtc aatggatgcc agaattcagg tagcccagga gaagcaagtt 1320
gctgagcagg gtggggacct cagcccagca gccaacagat ctcaaaaaggc cagccagagc 1380
cgccccaaaca gcagcgcctt ggagacccctt ggtggggaga agctggccaa tggcagccctg 1440
gagccacccgt cccaggcagc tccagggcct tccaagaggg actcggactg cagcagccctc 1500
tgcacccctg agagcatgga ctatggtacc aatctctca ctgacccgtc gctgaacaaa 1560
gagatggct ctctgtccat caaggacccg aaactgtaca aaaaaacctc aagcggacac 1620
gcaaatgtt ggtggatgtt gtggaggtga gcatcaccac ctccaaagatc atcagcgaag 1680
atgagaagaa ggtatggaggat atgagatttc tcaggcgcca ggaactccga gagcttcggc 1740
tgctccagaa agaagagcat cggaaccaga cccagctgag taacaagcat gagctgcagc 1800
tggagcaaat gcatcaaaatgtt ttgtacccagg aatcaacgc caagaagaag ttctttgaca 1860
cggaattaga gaaacctggag cgtcagcaaa agcagcaagt ggagaagatg gagcaagacc 1920
atgcccgtgcg cccggggag gaggccagcc ggtatccgcct ggagcaggat cgggactaca 1980
ccaggttcca agagcagctc aaactgtatga agaaagaggt gaagaacgag gtggagaagc 2040
tcccccgaca gcagcggaaag gaaagcatga agcagaagat ggaggagcac acgcagaaaa 2100
agcagcttct tgaccggac tttgtagcca agcagaagga ggacccgtgg ctggccatga 2160
agaggctcac caccgacaac aggccggaga tctgtgacaa ggagcgcgag tgcctcatga 2220
agaagcagga gtccttcga gacccggaaag cagccctgtg ggagatggaa gagcaccagc 2280
tgcaggagag gacccagctg gtgaagcgc agctcaaaga ccagtaactc ctccagccggc 2340
acgagctgct gcgcaagcat gagaaggagc gggagcagat gcagcgtac aaccagcgc 2400

tgatagagca gctgaagggtg cggcagcaac aggaaaaggc gcccgtgccc aagatccaga 2460
ggagtgggg caagacgcgc atggccatgt acaagaagag cccccctgtaa actggagttg 2520
ctggggca gcccgttcc ctgcattggaa ctggagctgt atggagttga cgacaagttc 2580
tacagcaagc tggatcaaga ggatgcgc tcctggctcaccctgtaga tgacggctgc 2640
cgcatccacg tcattgacca cagtggcgcc cgccttggtg agtatgagga cgtgtccccc 2700
gtggagaagt acacgatctc acaagaagcc tacgaccaga ggcaagacac ggtccgctct 2760
ttcctgaagc gcagcaagct cggccggtaac aacgaggagg agcgggctca gcaggaggcc 2820
gaggccgccc agcgcctggc cgaggagaag gcccaggcca gctccatccc cgtgggcagc 2880
cgctgtgagg tgcggggcggc gggacaatcc ctcgcgggg gcaccgtcat gtatgttaggt 2940
ctcacagatt tcaaggctgg ctactggatt ggtgtccgct atgatgagcc actggggaaa 3000
aatgatggca gtgtgaatgg gaaacgctac ttcgaatgcc aggccaagta tggcgccctt 3060
gtcaagccag cagtcgtgac ggtgggggac ttcccggagg aggactacgg gttggacgag 3120
atatgacacc taaggaattt ccctgcttca gctccctagct cagccactga ctgcccctcc 3180
tgtgtgtgcc catggccctt ttctcctgac cccattttaa ttttattcat ttttccttt 3240
gccattgatt ttgagactc atgcattaaa ttcactagaa acccagaaaa aaaaaaaaaa 3300

<210> 19
<211> 349
<212> DNA
<213> Homo sapiens

<220>
<221> unsure
<222> (6)

<220>
<221> unsure
<222> (14)

<220>
<221> unsure
<222> (25)

<220>
<221> unsure
<222> (28)

<220>
<221> unsure
<222> (30)

<220>
<221> unsure
<222> (32)

<220>
<221> unsure

<222> (34)

<220>
<221> unsure
<222> (54)

<220>
<221> unsure
<222> (60)

<220>
<221> unsure
<222> (66) .. (67)

<220>
<221> unsure
<222> (83)

<220>
<221> unsure
<222> (85)

<220>
<221> unsure
<222> (92)

<220>
<221> unsure
<222> (95)

<220>
<221> unsure
<222> (103) .. (104)

<220>
<221> unsure
<222> (145)

<220>
<221> unsure
<222> (152)

<220>
<221> unsure
<222> (160)

<220>
<221> unsure

<222> (179)

<220>

<221> unsure

<222> (197)

<220>

<221> unsure

<222> (222)

<220>

<221> unsure

<222> (238)

<220>

<221> unsure

<222> (246)

<220>

<221> unsure

<222> (249)

<220>

<221> unsure

<222> (258)

<220>

<221> unsure

<222> (266)

<220>

<221> unsure

<222> (273) .. (274)

<220>

<221> unsure

<222> (276)

<220>

<221> unsure

<222> (284)

<220>

<221> unsure

<222> (286)

<220>

<221> unsure

<222> (290)

<220>
<221> unsure
<222> (298)

<220>
<221> unsure
<222> (324)

<220>
<221> unsure
<222> (328)

<220>
<221> unsure
<222> (335)

<220>
<221> unsure
<222> (347)

```
<400> 19
ttaaaanattt aaanatatta aggtntcntn tncngctcat cttcacagga aaanaattan 60
attccnnaca aacaccctttc aantnttacc cngnaagct gtnngaactg gaccttgaag 120
aaggaaatac ttcttgactc attgnaattt gntatagtca nagtaagtaa ggcacaaaant 180
ttgaagataa acttggnaca gtatgttagtg cctttgtta tnnaaatgcaa ctggggnga 240
ttactngana tttttcntc ataganttac tannanaagt tttnanaatn ttactgatna 300
ccactqttt tgatttqct attnttnca aattnactat atatqanqt 349
```

<210> 20
<211> 4665
<212> DNA
<213> Homo

```
<400> 20
agcggggagg gccccgagcg gcgcagatag ggaggttggg gctgtcccc gcggcgccg 60
gcctgccact gcgcaggcgc ctcaggaaga gctcggcattc gcccctttc ctccagggtcc 120
cccttccccg caacttcca cgagtccag gtgccgcag cgccgagttc cgccattgg 180
aaagaagcga ccgcggcggc tggAACCTG attgtgtcc ttcaacgtgt tcattatgaa 240
gttatttagta atacttttgt tttctggact tataactggt tttagaagtg actcttcctc 300
tagtttgcca cctaagttac tactagtatc ctttgatggc ttcaagagctg attatctgaa 360
gaactatgaa ttccctcatc tccagaattt tatcaaagaa ggtgtttgg tagagcatgt 420
taaaaatgtt ttatcacaa aaacattcc aaaccactac agtattgtga caggtttgt 480
tgaagaaagc catggcattt tggctaatcc catgttatgtatc gcagtcacaa agaaacactt 540
ttctgactct aatgacaagg atcccttttgc gtgaaatgag gcagtcacca tttgggtgac 600
caatcagctt cagaaaaaca gatcaagtgc tqctqctatg tggctqgtt ctqatqtacc 660
```

cattcacat accatctttt cctatggat gaattacaac tcctcagtgt catttgagga 720
 aagactaaat aatattacta tgtggctaaa caattcgAAC ccaccAGTC cctttgcaac 780
 actatattgg gaagaaccag atgcAGTGG ccACAAATAC ggACCTGAAG atAAAGAAAA 840
 catgagcaga gtgttggaaa aaatAGATGA tcttatcggt gacttagtcc aaagactcaa 900
 gatgttaggg ctatggggaa atcttaatgt gatcattaca agtgatcatg ggatgacc 960
 gtgttctcag gacagactga taaaccttgg ttcctgcATC gatcattcat actacactt 1020
 tatagatttg agcccAGTTG ctgcAATACT tcccaAAATA aatAGAACAG aggtttataa 1080
 caaactgaaa aactgttagcc ctcatatgaa tgTTTATCTC aaAGAACAGA ttccTAACAG 1140
 attttattac caacataatg atcgaATTCA gcccATTATT ttggTTGCCG atgaaggCTG 1200
 gacaattgtg ctaaatgaat catcacaaaa attaggtgac catggttatg ataattctt 1260
 gccttagtatg catccATTTC tagctGCCA cggacCTGCA tttcacAAAG gctacaAGCA 1320
 tagcacaatt aacattgtgg atatttatCC aatgtatgtc cacatCCTGG gattAAAACC 1380
 acatccccat aatgggacct ttggcatac taagtgcTTG ttagttgacc agtggTgcAT 1440
 taatctcccA gaAGCCATCG cgattgttA CGGTTCACTC ttggTgttAA ccatgctaAC 1500
 atgcctcata ataatcatgc agaataGACT ttctgtacct cgtccatttt ctcgacttca 1560
 gctacaAGAA gatgatgtg atcctttaat tgggtgacat gtgcTAGGGC ttatacAAAG 1620
 tgtctttgat taatcacaaa actaAGAAATA catccAAAGA atagtgTTGT aactatgaaa 1680
 aagaatactt tgaaAGACAA agaacttaga ctaAGCATGT taaaatttatt actttgtttt 1740
 ctttgtttt tgTTTcGGTG catttgctAA taagataACG ctgaccatAG taaaatttGTT 1800
 agtaaatcat taggtAACAT ctTGTGGTAG gaaatcatta ggtaACATCA atcctaACTA 1860
 gaaatactaa aaatggcTT tgagaaaaat acttcctcTG ctTGTATTtT gCGatGAAGA 1920
 tgtgatacat ctTAAATGA aaatatacca aaatTTAGTA ggcATgtttt tctaataAA 1980
 ttatatatTT gtAAAGAAAA caacAGAAAT ctTATGCA A ttgtGAATT ttgttatTTA 2040
 gggaggaaaaa gcttcctata ttTTTtatTT tacctttaat tagTTGtAT ctcaAGTacc 2100
 ctctgaggt aggAAATGCT ctgtgatggT aaataAAATT ggAGCAGACA gaaaAGATAT 2160
 agcaaATGAA gaaatTTTT aaggAAACCT atttgaaaaa AAAAGCAAAG accatttGAT 2220
 aaaAGCCTGA gttgtcacca ttatgtctTA agctgttagt cttaaAGATT attgttAAAAA 2280
 aattcagaAG aAAAGAGAGA caAGTGTCTCT tctctctATC tatgtcttaat gcctttatgt 2340
 aagttaCTTA gttgtttcG gttgcctgtG caAGTGTGTT tttgtgtgt tttgtggaca 2400
 ttatgtgatt tactatataa ggaggtcaga gatggactgt ggccaggcTT ccacattcCT 2460
 gaagcacaca gatctcagga aaggTTATTt ttgcacttca tatttgTTA ctTCTCCTA 2520
 actcacaAGT taaaatcata acttaattc attaactTTT atcatttaAC tctctatgt 2580
 ttgttGtaAC ccgaggTATC caaatGCTGC agaaaaATTt atgACCCAA tacaAAATCTC 2640
 aatatgactg ggacagaatg aggaatggag atttttGtAT ttatctttgg gactttatgc 2700
 cttaCTTTT aggctatAGA atagttAAGA aattttAAAC AAAATTTAGT atcttttGgt 2760
 ctTTCACACC attcatatGT taagtggcAG aatAGCCTTA gtgcTACCTC cacttttTC 2820
 tccagtattt gcatcacAGA aataatccCT ctgtttAAca tgTTGTTCA gagCCAAGGG 2880
 ttTATTGtGA agaactGTCA tcctgcCTT gctagCTGGT accttctAGT aatCAAATTT 2940
 aatatGAAGA aacttagGTTG tgacAGACTA gattatATTt agtagGGGAA aaattGGGCT 3000
 caagaaccat tcatcagtac gtgagacaAG cagttAATAG tatgatCTT aaagtTTGA 3060
 caatataAAA taaactGGT aactgttttA caaatataAA AGTATAATAA atatgcAGCC 3120
 cagttAAATA ttgattatCT gtgatGGTAA agaacaACAG tggTGCCTAGT catcaaACAT 3180
 acagtgcGTC ctattgagTC actgctaATT tcttgAGGCTT ggtatttGCT gcctattGTA 3240
 ttTGTGGTTG ttgagaggcA tttcaAAACC ctgtataAAAT aatccatGCT gttggTCATA 3300
 agttaactgt attaAGAACa gtaAAATAAA taaaACCAA tagtactAAT ttgcttAA 3360
 aaaaatttCT aattttttc acataAAACa attatcCTAA aggttaatAG ttgatGAA 3420
 cagaataataa gaaaaatttCT tctttaATTt ccattAAAAA gcaaAATAGCA ttgacacatt 3480
 taaagctttt catttaAGT agtggatgtt ttGAAGTAT ctaAAATAGT agcagaatAT 3540

tttatacttg gtccttgc aa tggtgtgagt ttaatgatt gcattatcgt gattgggtg 3600
 tatgagttc agaaatctat acttggcatc caactcatga gtggattttat ataggatgg 3660
 aacaggaagg tatgtcctgt cagtatctt accctttcaa caagacattt acctatttgt 3720
 ctcccttac gttctcaaaa tattaactcg aattgtaaat taagaaaaaa tgtaaaaagt 3780
 atatgttgc gggacaagaa gaatagtatt tattaataa aacatatatt atattgaact 3840
 atgtgttaat tcatttgat cttttaaaaa attatcactg ttaaagccat tgactcctt 3900
 agtacactga gaaaaatctt atagtaaaac tagccttca cattaagggtt ttgggtgtgt 3960
 ttttggtaaa taactaacat gctgctctat tttctgggtg tagaaagtat ttggctctag 4020
 gaaacatttta cttgtttgtg aaaacaatac cccaaggtaa tagaaaaagt ttgagtttaag 4080
 ttttttaat tcagtcagtg aattcagaat aagtacatttca atgtataaca tagggacagt 4140
 tctgctgctg ttatattat gcaatttcc ttggtaaatag caatagaata aaacatattt 4200
 caatgtttgt gtatagggtt tatatttata ttccacttagg aatggcataa gaattttag 4260
 ataaatttctt gtaacattaa aggattaaaa ttgttttaca ttgttttgg gtgtctcctt 4320
 cttgtccccca tatctgataa gctttatggta ttattgcatt taattcctt tatttggagg 4380
 gtttacttc cttgttaaca tataaaggta taaatgaagg acaaggagga gatggaaaat 4440
 gtgtatttat ttgttaattctt taaaatagtg tgtaaataaa ataacatcag tttgtttaa 4500
 agaaatgtgt atgtgtgcc ttaatttaaa ttaaaatatt tttgactgtt acttgagttc 4560
 agaattaatg actttgttca tgattttaa aatgtgtgt aataaaaatct accaaaaaat 4620
 tcttactgttta attattaaat ataaagttca gtgtcaaaaaa aaaaaa 4665

<210> 21
<211> 437
<212> DNA
<213> Homo sapiens

<400> 21
tagcaacagg cctggagggtg ctgcagtagt gggggaaaat ggaaggtgga ggggtggagtg 60
tttgcgtcag gacagctgag tggagggtgg ggacagggtgc aaactggaga ggcctagaga 120
gctagagaag caagtaaggg ccagggccag agtcggcttc aatggAACAA cagcccagtg 180
ccctaaggcc cctaactctt gctggctgtt tcttgaccgg aagccagggt tgggagtct 240
ctgggcatcc atttttctt aaggaactgg acagagtaca cacagggaaag gaagctgtca 300
ccctcttgc atctggctcc aggggcctcc agtccagcat tcccttttcccttgcatt 360
gggtggggcc acatgatggg cagccaggct ctgggctgtc ccactagagc agctgcaaac 420
acagccatgt ttcagtg 437

<210> 22
<211> 355
<212> DNA
<213> Homo sapiens

<400> 22
caagctggct tctgttnaga tgagctncnn ggagatgcta ctgcatggca caggaagaac 60
gtgtgaccac taggattttt tccacgataa ntggctttgc atggntgaag ttnttagcaat 120
gaatttctat aagccctttt aaaattggaa ttcataaaaca agtctctgtg ctctcacccnt 180
gtggcanttn tttctgctct ttttgggtt tnattgtgtt ctcactgcta cctagctagc 240
atcntgggtt catggaaagtg gaccagatattttcacccattatattctt agatgctgtg 300

ttaagatnca ngacaacnan ntngnnncnn gatgtaaaat tttntagncn gnagg

355

<210> 23

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic

<400> 23

ccagagccca aatcttgtga c

21

<210> 24

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic

<400> 24

gcggctttgt cttggcatta

20

<210> 25

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic

<400> 25

attgccccatcc cagtgacagt g

21

<210> 26

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic

<400> 26

ttgggagatg tgggtgatga g

21

<210> 27

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic

<400> 27

cctgccctgg tatgttttc tt

22

<210> 28

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic

<400> 28

cagccccacaa atgccttcta c

21

<210> 29

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic

<400> 29

ccactaggat tatttccagc ataa

24

<210> 30

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic

<400> 30

ggtgtgaaaa tatctggtcc actt

24

<210> 31

<211> 18

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic

<400> 31

agccattgcc atccccagt

18

<210> 32

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic

<400> 32

atgttcttca cgctcttcgc

20

<210> 33

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic

<400> 33

aggaagtgct ggaagaggct ggct

24

<210> 34

<211> 19

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic

<400> 34

aagggagcac cgtggagaa

19

<210> 35

<211> 19

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic

<400> 35

agggctggat gacttggga

19

<210> 36

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic

<400> 36

ttcccaactc taaccccacc cacg

24

<210> 37

<211> 7444

<212> DNA

<213> Homo sapiens

<400> 37

gtctcctctg gatcttaact actgagcgca atgctgagcc atggagccgg gttggccttg 60
tggatcacac tgagcctgct gcagactgga ctggcggagc cagagagatg taacttcacc 120
ctggcggagt ccaaggcctc cagccattct gtgtctatcc agtggagaat tttgggctca 180
ccctgttaact tttagcctcat ctatagcagt gacaccctgg gggccgcgtt gtgccctacc 240
tttcggatag acaacaccac atacggatgt aaccttcaag atttacaage aggaaccatc 300
tataacttca ggattatttc tctggatgaa gagagaacag tggcttgca aacagatcct 360
ttacctcctg ctaggtttgg agtcagtaaa gagaagacga cttcaaccag cttgcatttt 420
tggtggactc cttcttccgg aaaagtccacc tcatacgagg tgcaattatt tgatgaaaat 480
aacccaaaaga tacagggggt tcaaattcaa gaaagtactt catgaatga atacactttt 540
ttcaatctca ctgctggtag taaatacaat attgccatca cagctgttcc tggagggaaaa 600
cgttctttt cagtttatac caatggatca acagtgccat ctccagtcaa agatattgg 660
atttccacaa aagccaattc tctctgatt tcctggtccc atggttctgg gaatgtggaa 720
cgataccggc ttagtgcataat ggataaaggg atccttagttc atggcggtgt tgtggacaaa 780
catgctactt cctatgcttt tcacgggctg tccccctggct acctctacaa cctcaactgtt 840
atgactgagg ctgcagggtc gcaaaactac aggtggaaac tagtcaggac agccccatg 900

gaagtctcaa atctgaaggt gacaaatgat ggcagttga cctctctaaa agtcaaatgg 960
 caaagacctc ctggaaatgt ggattttac aatatcaccc tgtctcacaa agggaccatc 1020
 aaggaatcca gagtattagc accttggatt actgaaactc actttaaaga gttagtcggcc 1080
 ggtcgacttt atcaagttac tgtcagctgt gtctctggtg aactgtctgc tcagaagatg 1140
 gcagtgggca gaacatttcc agacaaagtt gcaaaccctgg aggcaacaa taatggcagg 1200
 atgaggtctc tttagtgag ctggcgccc cctgctggag actgggagca gtatcgatc 1260
 ctactttca atgattctgt ggtgcgtc aacatcaactg tggaaagga agaaacacag 1320
 tatgtcatgg atgacacggg gctcgtaacc ggaagacagt atgaggtgga agtcattgtt 1380
 gagagtggaa atttgaagaa ttctgagcgt tgccaaggca ggacagtccc cctggctgtc 1440
 ctccagcttc gtgtcaaaca tgccaatgaa acctcaactg gtatcatgtg gcagacccct 1500
 gtagcagaat gggagaaata catcattcc ctagctgaca gagacctctt actgatccac 1560
 aagtcaactc ccaaagatgc caaagaattc actttactg acctggtgcc tggacgaaaa 1620
 tacatggcta cagtcaccag tattagtggaa gactttaaaaa attcotcttc agtaaaagga 1680
 agaacagtgc ctgcccagt gactgacttg catgtggcca accaaggaat gaccágtagt 1740
 ctgtttacta actggaccca ggcacaagga gacgtagaat tttaccaagt cttactgatc 1800
 catgaaaatg tggcattaa aaatgaaagc atctccactg agaccagcag atacagcttc 1860
 cactctctca agtccggcag cctgtactcc gtgggtgtaa caacagttag gggagggatc 1920
 tcttcccgac aagtgggttggagggaaacatggccctt ccagtgtgag tggagtaacg 1980
 gtgaacaatt cggcgttaa tgactaccc acggtttctt ggctcgtggc gccccggagat 2040
 gtggataact atgaggttaac attgtctcat gacggcaagg tggttcagtc cttgtcatt 2100
 gccaagtctg tcaagagaatg ttccctcagc tccctcaccc caggccgcctt ctacaccgtg 2160
 accataacta caaggagtttgg caagtagaa aatcaactc tcagccaaga gcccggacatg 2220
 cctgacaaag tccagggagt cagtttagc aactcagcca ggagtacta tttaagggtt 2280
 tcctgggtgt atgccactgg agactttgat cactatgaag tcaccattaa aaacaaaaac 2340
 aacttcattc aaactaaaag cattcccaag tcagaaaacg aatgtgttatt tggcgtcata 2400
 gtcctggac gttgtacag tgtcactgtt actacaaaaa gtggacaata tgaagccaat 2460
 gaacaaggga atgggagaac aattccagag cctgttaagg atctaaccatt ggcacacagg 2520
 agcactgagg acttgcattgt gacttggca ggagctaatg gggatgtcga ccaatatgag 2580
 atccagctgc tcttcaatga catgaaagta ttccctcctt ttcccttgcata 2640
 accgagtatc gatttacttc cctaacacca ggcgcctt acacaaattct tgccttgacg 2700
 attagcgggg atgtacagca gtcagccctt attgagggtt tcacagttcc tagtgcgtc 2760
 aaaaatattc acatttctcc caatggagca acagatagcc tgacggtaa ctggactcct 2820
 ggtggggag acgttgatcc tcatcgggtg tcggcattca ggcacagtca aaaggttgac 2880
 tctcagacta ttcccaagca cgtctttgag cacacgttcc acagactggaa ggcggggag 2940
 cagtaaccaga tcatgattgc ctcagtcagc gggcccttga agaatcagat aaatgtggtt 3000
 gggccggacag ttccagcatc tgtccaaggaa gtaattgcag acaatgcata cagcagttat 3060
 tccttaatag taagttggca aaaagctgtt ggtgtggcag aaagatatga tattctgttt 3120
 ctaactgaaa atgaaatcct tctgcgcac acatcagagc cagccaccac taagcaacac 3180
 aaatttgaag atctaaccacc aggaagaaa tacaagatac agatcttaac tgcgttgaa 3240
 ggccttta gcaagggaaac ccagactgaa ggcgcacacg tccctcgac tgcaccggc 3300
 ctgaggatca cagagaactc caccaggcac ctgtccctcc gctggaccgc ctcagagggg 3360
 gagctcagct ggtacaacat cttttgtac aacccagatg ggaatctcca ggagagagct 3420
 caagttgacc cactagtcca gagttctctt ttcccagaact tgctacaagg cagaatgtac 3480
 aagatgggtga ttgttaactca cagttgggag ctgtctaattt agtctttcat attttggtaga 3540
 acgtcccag cctctgttag tcatctcagg gggtccaatc ggaacacgac agacagcctt 3600
 tggttcaact ggagtccagc ctctggggac tttgactttt atgagctgat tctctataat 3660
 cccaatggca caaagaagga aaactggaaa gacaaggacc tgacggagtg ggcggttcaa 3720
 ggccttgc tggcaggaa gtacgtctg tgggtggtaa ctacagtggttgg ggtctcagc 3780

aataaaagtca cagcggagag cagaacagct ccaagtcctc ccagtcttat gtcatttgct 3840
gacattgcaa acacatcctt ggccatcact tggaaaggc ccccagactg gacagactac 3900
aacgactttg agctgcagtg gttgccaga gatcactta ctgtctcaa cccctacaac 3960
aacagaaaat cagaaggacg cattgtgtat ggtcttcgtc cagggagatc ctatcaattc 4020
aacgtcaaga ctgtcagttg tgattcctgg aaaacttaca gcaaaccat ttttggatct 4080
gtgaggacaa agcctgacaa gatacaaacc ctgcattgcc ggcctcagaa ctccacggcc 4140
attgcctgtt ctggatccc tcctgattct gactttagt gttatagttat tgaatgccgg 4200
aaaatggaca cccaaagaagt tgagtttcc agaaagctgg agaaagaaaa atctctgctc 4260
aacatcatgta tgcttagtgcc ccataagagg tacctgggtt ccatcaaatg gcagtcggcc 4320
ggcatgacca gcgagggtgt tgaagacagc actatcacaa tgatagaccc cccccctct 4380
ccaccccccac acattcgtgt gaatgaaaag gatgtctaa ttagcaagtc ttccatcaac 4440
tttactgtca actgcagctg gttcagcgac accaatggag ctgtgaaata cttcacagtg 4500
gtggtgagag aggctgatgg cagtgtatgg ctgaagccag agcagcagca ccctctccct 4560
tcctacctgg agtacaggca caatgcctcc attcgggtgt atcagactaa ttattttgcc 4620
agcaaatgtg ccgaaaatcc taacagcaac tccaagagtt ttaacattaa gcttggagca 4680
gagatggaga gcctaggtgg aaaatgcgtat cccactcagc aaaaattctg tgatggacca 4740
ctgaagccac acactgccta cagaatcagc attcgagctt ttacacagct ctttgatgag 4800
gacctgaagg aattcacaaa gccactctat tcagacacat tttttctt acccatcaact 4860
actgaatcag agcccttgtt tggagctatt gaaggtgtga gtgctggctt gtttttaatt 4920
ggcatgttag tggctgtgt tgcccttattt atctcgagac agaaagttag ccatggctga 4980
gaaagacctt ctgcccgtct gagcattcgtt agggatcgac cattatctgt ccacttaaac 5040
ctggggccaga aaggtaaccg gaaaacttct tgcctcaataa aaataaaatca gtttgaaggg 5100
catttcatgta agtacaggg tgactccaa taccttctat ccaaggaata cgaggagttt 5160
aaagacgtgg gccgaaacca gtcatgtgac attgcactct tgccggagaa tagagggaaa 5220
aatcgatataca acaatataatt gccctatgtat gccacgcgag tgaagctctc caatgttagat 5280
gatgatcctt gctctgacta catcaatgcc agtacatcc ctggcaacaa cttcagaaga 5340
gaatacatttgc tcaactcaggg accgcttctt ggcaccaagg atgacttctg gaaaatggtg 5400
tgggaacaaa acgttcacaa catcgctatg gtgaccctgtt gtttggagaa gggccgagta 5460
aagtgtgacc attactggcc agcggaccag gattccctctt actatggga cctcatcctg 5520
cagatgtctt cagagtccgt cctgccttag tggaccatcc gggagtttaa gatatgcgg 5580
gaggaacagc ttgtatgcaca cagactcatc cgccactttc actatacgtt gtggccagac 5640
catggagttc cagaaaaccac ccagtctctg atccagtttgc tgagaactgtt cagggactac 5700
atcaacagaa gcccgggtgc tggggccact gtgggtcact gcagtctgg tgggtttagg 5760
actggaaacct ttattgtcattt ggaccgaatc ctccagcgt tagactccaa agactctgt 5820
gacattttagt gagcagtgtca cgacctaaga cttcacaggg ttcacatgtt ccagactgag 5880
tgtcagtatg tctacctaca tcagtgtgtt agagatgtcc tcagagcaag aaagctacgg 5940
agtgaacaag aaaacccctt gtttccaatc tatgaaaatg tgaatccaga gtatcacaga 6000
gatccagtttctt attcaaggca ttgagaatgtt acctgaagag ctccctggata aaaatttattc 6060
actgtgtatg ttgtttttaa aaacttgcattt catccctac agagggtccca gctatttctg 6120
ttgataactat gtataatttta ttaatctggaa gaatgtttaa aattttatata aatttaaagg 6180
taacagatata tattgtatcat agttgtatattt ttagtttctt tctgtaaata ttttggatct 6240
ataatgttta atattaagct ttatataata ctatcccttcc acactaaagt gttcatgact 6300
tgttctacat aaaactaattt caacctgtat gacaggacta ctggtaaat gcatatggag 6360
gtgggtggcag agacaatcct tcaggccatg ttttcttacctt gttttgatattt tcactggaca 6420
ggaaaaaaggc cagggtctaga gagagcaat actatggctt gatttgcatttgc attgtgtcc 6480
catgaatctt gagagccaaac agacatgtcc taacttgcata ttggacaaa ttttggatct 6540
aaaaaaaaagga ttagagggag ggagaaaaaaa gaattaagca gtacccaaagc tgaactagat 6600
gcttgcgtctt gactagtttgc ctctctctt ctttcttccct tccagggattt caagccaaag 6660

tggtcagctc agggatcatg taacttgcag tgcaagccca ggatggtagg atgcagggtt 6720
 gagggttctg atagagaatg attccaaaca gaagtatgta attccctttg ttaataagat 6780
 gccagctata cccagactgg aaacataaca tgcaaagcac tatctacagt gattagagat 6840
 ccttcattt cattcatggt gtggagtgtg aacatccaca cccatactgt aatgtattta 6900
 tacacactag tttctgtctc attttcagtg gtctccattc ctagaaaagt cacaattatc 6960
 cattctact tgatcccata taaaaagaat attatggtag cagattgtgc ccctcattaa 7020
 aaggcttaat gccaacattt tcataaaaaat gactacaaac atcatatata gtaaatttaa 7080
 aaacaatagc aaaaacaaaa acagttgtct tcagtaaaat tttcaaaact tcttttagta 7140
 aatcaatgaa gtcaaaatgt caagtaatca cccaaagttt catttaataa caaaaggcac 7200
 tacatactgt accaagttt tcttcaatat ttgtgcctta cttaacttga ctataacaaa 7260
 ttccaatgag tcagaaagta ttccatcat caaggtccag ttccgacagc attcctggga 7320
 aaaatttggaa aggagttgt acggaatctt catagatacc tgagaagatg agctggagat 7380
 gtttgcctt ttcacactac aaattttct gtaataaaact tggaaatttag aggtcaaaaa 7440
 aaaa 7444

<210> 38
<211> 2475
<212> DNA
<213> Homo sapiens

<400> 38
atcacctgca tcctcgagga cagaccttgtt gaagtcagag ctgctacaca ttgaatctca 60
agtcgagctt ctgagattcg atgattcagg aagaaaggat tctgagggtt tgaagcaaaa 120
tgcagtgaac agcaaccaat ccaatgttgt aattgaagac tttgagtctt cacggatctc 180
ttcgtctttg cagcgttagcc cgagtcggc agcgccggag gacctcagca gcatgtcga 240
agccccatag tgaagccggg actgccttca ttccagacccca gcagctgcac gcagccatgg 300
ctgacacatt cctggagcac atgtgccgccc tggacattga ttccaccaccc atcacagccc 360
ggaacactgg catcatctgtt accattgggc ccagcttccc gatcagtgaa gacggttgaag 420
gagatgataa gtctggaaatg aatgtggctc gtctgaattt tctcatggac tcatgagtac 480
catgccccgaga ccatcaagaa tgtgcgcaca gccacggaaa gctttgcctt tgacccccc 540
ctctaccggc ccgttgcgtt ggctctagac actaaaggac ctgagatccc aactgggctc 600
atcaagggca gcggcactgc agaggtggag ctgaagaagg gagccactct caaaatcacg 660
ctggataacg cctacatgga aaagtgtgac gagaacatcc tgtggcttga ctacaagaac 720
atctgcaagg tggtggaaatg gggcagcaag atctacgtgg atgatggct tatttctctc 780
caggtgaagc agaaagggtgc cgacttcctg gtgacggagg tggaaaatgg tggctcctt 840
ggcagcaaga aggggtgtgaa cttccctggg gctgctgtgg acttgcctgc tgtgtcggag 900
aaggacatcc caggatctga aagtttgggg gtcgagcagg atgttgcataatgat ggttttggc 960
gtcattccat cccgcaaaagg catctggatg tcccatggaa ngttttagaa nngtccctggg 1020
gagagaaggg aaaagaaaca tccaaagatta tccagcaaaa tcgagaatca tgagggggtt 1080
cgaggagttt atgaaatctt ggaggccagt gatggatca tggatggctcg tggatgtatcta 1140
ggcattgaga tccctgcaga gaaggcttc ttgctcagaa gatgtatgatt ggacgggtcga 1200
accccgagact gggaaacgtcg tcacatgtgc tactccagat gctggagagc atcgatcaag 1260
aagccccccc ccactcggc tgaaggcagt gatgtggcca atgcagtctt ggtggagcc 1320
gactgcata tgcgtgtctgg agaaacagcc aaaggggact atcctcttggaa ggctgtgcgc 1380
atgcagcacc tgatttgcctt tgaggcagag gctgcctatc accacttgca attatgtttag 1440
gaactccggcc gcctggcgcc cattaccagc gacccacag aagccaccgc cgtgggtgcc 1500
gtggaggcct cttcaagtg ctgcagtggg gccataatcg tcctcaccataa gtcgtggcagg 1560

tctgctcacc aggtggccag ataccgccc cgtccccca tcattgctgt gacccggaaat 1620
 ccccagacag ctcgtcaggc ccacctgtac cgtggcatct tccctgtgct gtgcaaggac 1680
 ccagtccagg aggccctggc tgaggacgtg gacctccggg tgaactttgc catgaatgtt 1740
 ggcaaggccc gaggcttctt caagaaggga gatgtggtca ttgtgctgac cggatggcgc 1800
 cctggctccg gttcaccaa caccatgcgt gttgttcctg tgccgtgatg gaccccgag 1860
 cccctcctcc agccctgtc ccacccctt ccccccagccc atccattagg ccagcaacgc 1920
 ttgtagaact cactctggc tgtaacgtgg cactggtagg ttggacacc agggagaag 1980
 atcaacgcct cactgaaaca tggctgtgtt tgcagcctgc tctagtggga cagcccgag 2040
 cctggctgcc catcatgtgg ccccacccaa tcaagggaaag aaggaggaat gctggactgg 2100
 aggcccctgg agccagatgg caagagggtg acagcttctt ttccctgtgt tactctgtcc 2160
 agttccctta gaaaaaatgg atgcccagag gactcccaac cctggcttgg ggtcaagaaa 2220
 cagccagcaa gagtttagggg ctttagggca ctgggctgtt gttccattga agccgactct 2280
 ggcctggcc ttacttgtt tctctagctc tctaggcctc tccagtttgc acctgtcccc 2340
 accctccact cagctgtcct gcagcaaaca ctccacccctc cacctccat tttccccac 2400
 tactgcagca cttccaggcc tggctata gaggctacct gtatgtcaat aaacaacagc 2460
 tgaagcacca aaaaa 2475

<210> 39

<211> 436

<212> PRT

<213> Homo sapiens

<400> 39

Glu	Trp	Ile	Ser	Tyr	Ile	Arg	Gly	Gly	Gly	Glu	Arg	Ile	Tyr	Tyr	Ala
1															10
															15

Asp	Ser	Val	Arg	Gly	Arg	Phe	Thr	Val	Ser	Arg	Asp	Asn	Ala	Lys	Asn
20															30

Ser	Leu	Tyr	Leu	Gln	Met	Asn	Ser	Leu	Arg	Ala	Glu	Asp	Thr	Ala	Val
35															45

Tyr	Phe	Cys	Ala	Arg	Glu	Pro	Pro	Ala	Pro	Asn	Tyr	Phe	Asp	Cys	Trp
50															60

Ser	Gln	Gly	Thr	Leu	Val	Thr	Val	Ser	Ser	Ala	Ser	Thr	Lys	Gly	Pro
65															80

Ser	Val	Phe	Pro	Leu	Ala	Pro	Cys	Ser	Arg	Ser	Thr	Ser	Gly	Gly	Thr
85															95

Ala	Ala	Leu	Gly	Cys	Leu	Val	Lys	Asp	Tyr	Phe	Pro	Glu	Pro	Val	Thr
100															110

Val	Ser	Trp	Asn	Ser	Gly	Ala	Leu	Thr	Ser	Gly	Val	His	Thr	Phe	Pro
115															125

Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr
130 135 140

Val Pro Ser Ser Ser Leu Gly Thr Gln Thr Tyr Thr Cys Asn Val Asn
145 150 155 160

His Lys Pro Ser Asn Thr Lys Val Asp Lys Arg Val Glu Leu Lys Thr
165 170 175

Pro Leu Gly Asp Thr Thr His Thr Cys Pro Arg Cys Pro Glu Pro Lys
180 185 190

Ser Cys Asp Thr Pro Pro Pro Cys Pro Arg Cys Pro Glu Pro Lys Ser
195 200 205

Cys Asp Thr Pro Pro Pro Cys Pro Arg Cys Pro Ala Pro Glu Leu Leu
210 215 220

Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu
225 230 235 240

Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser
245 250 255

His Glu Asp Pro Glu Val Gln Phe Lys Trp Tyr Val Asp Gly Val Glu
260 265 270

Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr
275 280 285

Phe Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn
290 295 300

Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro
305 310 315 320

Ile Glu Lys Thr Ile Ser Lys Thr Lys Gly Gln Pro Arg Glu Pro Gln
325 330 335

Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys Asn Gln Val
340 345 350

Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val
355 360 365

Glu Trp Glu Ser Ser Gly Gln Pro Glu Asn Asn Tyr Asn Thr Thr Pro
370 375 380

Pro Met Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr
 385 390 395 400

Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Ile Phe Ser Cys Ser Val
 405 410 415

Met His Glu Ala Leu His Asn Arg Phe Thr Gln Lys Ser Leu Ser Leu
 420 425 430

Ser Pro Gly Lys
 435

<210> 40
<211> 168
<212> PRT
<213> Homo sapiens

<400> 40
Pro Gln Leu Ala Cys Leu Phe Gln Val Lys Ser Gly Ser Pro Ala Val
 1 5 10 15

Leu Ala Phe Ala Lys Glu Lys Ser Phe Gly Trp Pro Ser Phe Ile Thr
 20 25 30

Tyr Thr Val Gly Val Ser Asp Pro Ala Ala Gly Ser Gln Gly Pro Leu
 35 40 45

Ser Thr Thr Leu Thr Phe Ser Ser Pro Val Thr Asn Gln Ala Ile Ala
 50 55 60

Ile Pro Val Thr Val Ala Phe Val Met Asp Arg Arg Gly Pro Gly Pro
 65 70 75 80

Tyr Gly Ala Ser Leu Phe Gln His Phe Leu Asp Ser Tyr Gln Val Met
 85 90 95

Phe Phe Thr Leu Phe Ala Leu Leu Ala Gly Thr Ala Val Met Ile Ile
 100 105 110

Ala Tyr His Thr Val Cys Thr Pro Arg Asp Leu Ala Val Pro Ala Ala
 115 120 125

Leu Thr Pro Arg Ala Ser Pro Gly His Ser Pro His Tyr Phe Ala Ala
 130 135 140

Ser Ser Pro Thr Ser Pro Asn Ala Leu Pro Pro Ala Arg Lys Ala Ser
 145 150 155 160

Pro Pro Ser Gly Leu Trp Ser Pro
165

<210> 41
<211> 78
<212> PRT
<213> Homo sapiens

<400> 41
Val Ser Glu Gly Ala Thr Trp Ala Ile Gly Phe Pro Ala Ser Phe Pro
1 5 10 15

Leu Phe Leu Ala Pro Ala Ala Glu Ala Gly Arg Pro Trp Arg Thr Ser
20 25 30

Trp Gly Leu Thr Ala Ala Ser Pro Gly Ser Ser Trp Gly His Leu Ser
35 40 45

Ser Lys Val Cys Thr Gln Glu Val Pro His His Ile Gln Pro His Gly
50 55 60

Ser Pro Arg Ser Ala Arg Gln Gln Ile Arg Ala Pro Cys His
65 70 75

<210> 42
<211> 1118
<212> PRT
<213> Homo sapiens

<400> 42
Met Ala Arg Ser Pro Gly Arg Ala Tyr Ala Leu Leu Leu Leu Ile
1 5 10 15

Cys Phe Asn Val Gly Ser Gly Leu His Leu Gln Val Leu Ser Thr Arg
20 25 30

Asn Glu Asn Lys Leu Leu Pro Lys His Pro His Leu Val Arg Gln Lys
35 40 45

Arg Ala Trp Ile Thr Ala Pro Val Ala Leu Arg Glu Gly Glu Asp Leu
50 55 60

Ser Lys Lys Asn Pro Ile Ala Lys Ile His Ser Asp Leu Ala Glu Glu
65 70 75 80

Arg Gly Leu Lys Ile Thr Tyr Lys Tyr Thr Gly Lys Gly Ile Thr Glu
 85 90 95

Pro Pro Phe Gly Ile Phe Val Phe Asn Lys Asp Thr Gly Glu Leu Asn
 100 105 110

Val Thr Ser Ile Leu Asp Arg Glu Glu Thr Pro Phe Leu Leu Thr
 115 120 125

Gly Tyr Ala Leu Asp Ala Arg Gly Asn Asn Val Glu Lys Pro Leu Glu
 130 135 140

Leu Arg Ile Lys Val Leu Asp Ile Asn Asp Asn Glu Pro Val Phe Thr
 145 150 155 160

Gln Asp Val Phe Val Gly Ser Val Glu Glu Leu Ser Ala Ala His Thr
 165 170 175

Leu Val Met Lys Ile Asn Ala Thr Asp Ala Asp Glu Pro Asn Thr Leu
 180 185 190

Asn Ser Lys Ile Ser Tyr Arg Ile Val Ser Leu Glu Pro Ala Tyr Pro
 195 200 205

Pro Val Phe Tyr Leu Asn Lys Asp Thr Gly Glu Ile Tyr Thr Thr Ser
 210 215 220

Val Thr Leu Asp Arg Glu Glu His Ser Ser Tyr Thr Leu Thr Val Glu
 225 230 235 240

Ala Arg Asp Gly Asn Gly Glu Val Thr Asp Lys Pro Val Lys Gln Ala
 245 250 255

Gln Val Gln Ile Arg Ile Leu Asp Val Asn Asp Asn Ile Pro Val Val
 260 265 270

Glu Asn Lys Val Leu Glu Gly Met Val Glu Glu Asn Gln Val Asn Val
 275 280 285

Glu Val Thr Arg Ile Lys Val Phe Asp Ala Asp Glu Ile Gly Ser Asp
 290 295 300

Asn Trp Leu Ala Asn Phe Thr Phe Ala Ser Gly Asn Glu Gly Gly Tyr
 305 310 315 320

Phe His Ile Glu Thr Asp Ala Gln Thr Asn Glu Gly Ile Val Thr Leu
 325 330 335

Ile Lys Glu Val Asp Tyr Glu Glu Met Lys Asn Leu Asp Phe Ser Val		
340	345	350
Ile Val Ala Asn Lys Ala Ala Phe His Lys Ser Ile Arg Ser Lys Tyr		
355	360	365
Lys Pro Thr Pro Ile Pro Ile Lys Val Lys Val Lys Asn Val Lys Glu		
370	375	380
Gly Ile His Phe Lys Ser Ser Val Ile Ser Ile Tyr Val Ser Glu Ser		
385	390	395
Met Asp Arg Ser Ser Lys Gly Gln Ile Ile Gly Asn Phe Gln Ala Phe		
405	410	415
Asp Glu Asp Thr Gly Leu Pro Ala His Ala Arg Tyr Val Lys Leu Glu		
420	425	430
Asp Arg Asp Asn Trp Ile Ser Val Asp Ser Val Thr Ser Glu Ile Lys		
435	440	445
Leu Ala Lys Leu Pro Asp Phe Glu Ser Arg Tyr Val Gln Asn Gly Thr		
450	455	460
Tyr Thr Val Lys Ile Val Ala Ile Ser Glu Asp Tyr Pro Arg Lys Thr		
465	470	475
480	485	490
Ile Thr Gly Thr Val Leu Ile Asn Val Glu Asp Ile Asn Asp Asn Cys		
495	500	505
Pro Thr Leu Ile Glu Pro Val Gln Thr Ile Cys His Asp Ala Glu Tyr		
510	515	520
Val Asn Val Thr Ala Glu Asp Leu Asp Gly His Pro Asn Ser Gly Pro		
525	530	535
Phe Ser Phe Ser Val Ile Asp Lys Pro Pro Gly Met Ala Glu Lys Trp		
540	545	550
Lys Ile Ala Arg Gln Glu Ser Thr Ser Val Leu Leu Gln Gln Ser Glu		
560	555	560
Lys Lys Leu Gly Arg Ser Glu Ile Gln Phe Leu Ile Ser Asp Asn Gln		
575	565	570
Gly Phe Ser Cys Pro Glu Lys Gln Val Leu Thr Leu Thr Val Cys Glu		
580	585	590

Cys Leu His Gly Ser Gly Cys Arg Glu Ala Gln His Asp Ser Tyr Val
595 600 605

Gly Leu Gly Pro Ala Ala Ile Ala Leu Met Ile Leu Ala Phe Leu Leu
610 615 620

Leu Leu Leu Val Pro Leu Leu Leu Met Cys His Cys Gly Lys Gly
625 630 635 640

Ala Lys Gly Phe Thr Pro Ile Pro Gly Thr Ile Glu Met Leu His Pro
645 650 655

Trp Asn Asn Glu Gly Ala Pro Pro Glu Asp Lys Val Val Pro Ser Phe
660 665 670

Leu Pro Val Asp Gln Gly Gly Ser Leu Val Gly Arg Asn Gly Val Gly
675 680 685

Gly Met Ala Lys Glu Ala Thr Met Lys Gly Ser Ser Ser Ala Ser Ile
690 695 700

Val Lys Gly Gln His Glu Met Ser Glu Met Asp Gly Arg Trp Glu Glu
705 710 715 720

His Arg Ser Leu Leu Ser Gly Arg Ala Thr Gln Phe Thr Gly Ala Thr
725 730 735

Gly Ala Ile Met Thr Thr Glu Thr Thr Lys Thr Ala Arg Ala Thr Gly
740 745 750

Ala Ser Arg Asp Met Ala Gly Ala Gln Ala Ala Ala Val Ala Leu Asn
755 760 765

Glu Glu Phe Leu Arg Asn Tyr Phe Thr Asp Lys Ala Ala Ser Tyr Thr
770 775 780

Glu Glu Asp Glu Asn His Thr Ala Lys Asp Cys Leu Leu Val Tyr Ser
785 790 795 800

Gln Glu Glu Thr Glu Ser Leu Asn Ala Ser Ile Gly Cys Cys Ser Phe
805 810 815

Ile Glu Gly Glu Leu Asp Asp Arg Phe Leu Asp Asp Leu Gly Leu Lys
820 825 830

Phe Lys Thr Leu Ala Glu Val Cys Leu Gly Gln Lys Ile Asp Ile Asn
835 840 845

Lys Glu Ile Glu Gln Arg Gln Lys Pro Ala Thr Glu Thr Ser Met Asn
 850 855 860

Thr Ala Ser His Ser Leu Cys Glu Gln Thr Met Val Asn Ser Glu Asn
 865 870 875 880

Thr Tyr Ser Ser Gly Ser Ser Phe Pro Val Pro Lys Ser Leu Gln Glu
 885 890 895

Ala Asn Ala Glu Lys Val Thr Gln Glu Ile Val Thr Glu Arg Ser Val
 900 905 910

Ser Ser Arg Gin Ala Gln Lys Val Ala Thr Pro Leu Pro Asp Pro Met
 915 920 925

Ala Ser Arg Asn Val Ile Ala Thr Glu Thr Ser Tyr Val Thr Gly Ser
 930 935 940

Thr Met Pro Pro Thr Thr Val Ile Leu Gly Pro Ser Gln Pro Gln Ser
 945 950 955 960

Leu Ile Val Thr Glu Arg Val Tyr Ala Pro Ala Ser Thr Leu Val Asp
 965 970 975

Gln Pro Tyr Ala Asn Glu Gly Thr Val Val Val Thr Glu Arg Val Ile
 980 985 990

Gln Pro His Gly Gly Ser Asn Pro Leu Glu Gly Thr Gln His Leu
 995 1000 1005

Gln Asp Val Pro Tyr Val Met Val Arg Glu Arg Glu Ser Phe Leu Ala
 1010 1015 1020

Pro Ser Ser Gly Val Gln Pro Thr Leu Ala Met Pro Asn Ile Ala Val
 1025 1030 1035 1040

Gly Gln Asn Val Thr Val Thr Glu Arg Val Leu Ala Pro Ala Ser Thr
 1045 1050 1055

Leu Gln Ser Ser Tyr Gln Ile Pro Thr Glu Asn Ser Met Thr Ala Arg
 1060 1065 1070

Asn Thr Thr Val Ser Gly Ala Gly Val Pro Gly Pro Leu Pro Asp Phe
 1075 1080 1085

Gly Leu Glu Glu Ser Gly His Ser Asn Ser Thr Ile Thr Thr Ser Ser
 1090 1095 1100

Thr Arg Val Thr Lys His Ser Thr Val Gln His Ser Tyr Ser
 1105 1110 1115

<210> 43
 <211> 97
 <212> PRT
 <213> Homo sapiens

<400> 43
 Met Thr Lys Gly Thr Ser Ser Phe Gly Lys Arg Arg Asn Lys Thr His
 1 5 10 15

Thr Leu Cys Arg Arg Cys Gly Ser Lys Ala Tyr His Leu Gln Lys Ser
 20 25 30

Thr Cys Gly Lys Cys Gly Tyr Pro Ala Lys Arg Lys Arg Lys Tyr Asn
 35 40 45

Trp Ser Ala Lys Ala Lys Arg Arg Asn Thr Thr Gly Thr Gly Arg Met
 50 55 60

Arg His Leu Lys Ile Val Tyr Arg Arg Phe Arg His Gly Phe Arg Glu
 65 70 75 80

Gly Thr Thr Pro Lys Pro Lys Arg Ala Ala Val Ala Ala Ser Ser Ser
 85 90 95

Ser

<210> 44
 <211> 889
 <212> PRT
 <213> Homo sapiens

<400> 44
 Met Ala Ala Ala Val Gly Val Arg Gly Arg Tyr Glu Leu Pro Pro Cys
 1 5 10 15

Ser Gly Pro Gly Trp Leu Leu Ser Leu Ser Ala Leu Leu Ser Val Ala
 20 25 30

Ala Arg Gly Ala Phe Ala Thr Thr His Trp Val Val Thr Glu Asp Gly
 35 40 45

Lys Ile Gln Gln Gln Val Asp Ser Pro Met Asn Leu Lys His Pro His

50	55	60
Asp Leu Val Ile Leu Met Arg Gln Glu Ala Thr Val Asn Tyr Leu Lys		
65	70	75
Glu Leu Glu Lys Gln Leu Val Ala Gln Lys Ile His Ile Glu Glu Asn		
85	90	95
Glu Asp Arg Asp Thr Gly Leu Glu Gln Arg His Asn Lys Glu Asp Pro		
100	105	110
Asp Cys Ile Lys Ala Lys Val Pro Leu Gly Asp Leu Asp Leu Tyr Asp		
115	120	125
Gly Thr Tyr Ile Thr Leu Glu Ser Lys Asp Ile Ser Pro Glu Asp Tyr		
130	135	140
Ile Asp Thr Glu Ser Pro Val Pro Pro Asp Pro Glu Gln Pro Asp Cys		
145	150	155
Thr Lys Ile Leu Glu Leu Pro Tyr Ser Ile His Ala Phe Gln His Leu		
165	170	175
Arg Gly Val Gln Glu Arg Val Asn Leu Ser Ala Pro Leu Leu Pro Lys		
180	185	190
Glu Asp Pro Ile Phe Thr Tyr Leu Ser Lys Arg Leu Gly Arg Ser Ile		
195	200	205
Asp Asp Ile Gly His Leu Ile His Glu Gly Leu Gln Lys Asn Thr Ser		
210	215	220
Ser Trp Val Leu Tyr Asn Met Ala Ser Phe Tyr Trp Arg Ile Lys Asn		
225	230	235
Glu Pro Tyr Gln Val Val Glu Cys Ala Met Arg Ala Leu His Phe Ser		
245	250	255
Ser Arg His Asn Lys Asp Ile Ala Leu Val Asn Leu Ala Asn Val Leu		
260	265	270
His Arg Ala His Phe Ser Ala Asp Ala Ala Val Val Val His Ala Ala		
275	280	285
Leu Asp Asp Ser Asp Phe Phe Thr Ser Tyr Tyr Thr Leu Gly Asn Ile		
290	295	300
Tyr Ala Met Leu Gly Glu Tyr Asn His Ser Val Leu Cys Tyr Asp His		

305	310	315	320
Ala Leu Gln Ala Arg Pro Gly Phe Glu Gln Ala Ile Lys Arg Lys His			
325	330	335	
Ala Val Leu Cys Gln Gln Lys Leu Glu Gln Lys Leu Glu Ala Gln His			
340	345	350	
Arg Ser Leu Gln Arg Thr Leu Asn Glu Leu Lys Glu Tyr Gln Lys Gln			
355	360	365	
His Asp His Tyr Leu Arg Gln Gln Glu Ile Leu Glu Lys His Lys Leu			
370	375	380	
Ile Gln Glu Glu Gln Ile Leu Arg Asn Ile Ile His Glu Thr Gln Met			
385	390	395	400
Ala Lys Glu Ala Gln Leu Gly Asn His Gln Ile Cys Arg Leu Val Asn			
405	410	415	
Gln Gln His Ser Leu His Cys Gln Trp Asp Gln Pro Val Arg Tyr His			
420	425	430	
Arg Gly Asp Ile Phe Glu Asn Val Asp Tyr Val Gln Phe Gly Glu Asp			
435	440	445	
Ser Ser Thr Ser Ser Met Met Ser Val Asn Phe Asp Val Gln Ser Asn			
450	455	460	
Gln Ser Asp Ile Asn Asp Ser Val Lys Ser Ser Pro Val Ala His Ser			
465	470	475	480
Ile Leu Trp Ile Trp Gly Arg Asp Ser Asp Ala Tyr Arg Asp Lys Gln			
485	490	495	
His Ile Leu Trp Pro Lys Arg Ala Asp Cys Thr Glu Ser Tyr Pro Arg			
500	505	510	
Val Pro Val Gly Gly Glu Leu Pro Thr Tyr Phe Leu Pro Pro Glu Asn			
515	520	525	
Lys Gly Leu Arg Ile His Glu Leu Ser Ser Asp Asp Tyr Ser Thr Glu			
530	535	540	
Glu Glu Ala Gln Thr Pro Asp Cys Ser Ile Thr Asp Phe Arg Lys Ser			
545	550	555	560
His Thr Leu Ser Tyr Leu Val Lys Glu Leu Glu Val Arg Met Asp Leu			

565	570	575
Lys Ala Lys Met Pro Asp Asp His Ala Arg Lys Ile Leu Leu Ser Arg 580	585	590
Ile Asn Asn Tyr Thr Ile Pro Glu Glu Glu Ile Gly Ser Phe Leu Phe 595	600	605
His Ala Ile Asn Lys Pro Asn Ala Pro Ile Trp Leu Ile Leu Asn Glu 610	615	620
Ala Gly Leu Tyr Trp Arg Ala Val Gly Asn Ser Thr Phe Ala Ile Ala 625	630	635
Cys Leu Gln Arg Ala Leu Asn Leu Ala Pro Leu Gln Tyr Gln Asp Val 645	650	655
Pro Leu Val Asn Leu Ala Asn Leu Leu Ile His Tyr Gly Leu His Leu 660	665	670
Asp Ala Thr Lys Leu Leu Gln Ala Leu Ala Ile Asn Ser Ser Glu 675	680	685
Pro Leu Thr Phe Leu Ser Leu Gly Asn Ala Tyr Leu Ala Leu Lys Asn 690	695	700
Ile Ser Gly Ala Leu Glu Ala Phe Arg Gln Ala Leu Lys Leu Thr Thr 705	710	715
Lys Cys Pro Glu Cys Glu Asn Ser Leu Lys Leu Ile Arg Cys Met Gln 725	730	735
Phe Tyr Pro Phe Leu Tyr Asn Ile Thr Ser Ser Val Cys Ser Gly Thr 740	745	750
Val Val Glu Glu Ser Asn Gly Ser Asp Glu Met Glu Asn Ser Asp Glu 755	760	765
Thr Lys Met Ser Glu Glu Ile Leu Ala Leu Val Asp Glu Phe Gln Gln 770	775	780
Ala Trp Pro Leu Glu Gly Phe Gly Gly Ala Leu Glu Met Lys Gly Arg 785	790	795
Arg Leu Asp Leu Gln Gly Ile Arg Val Leu Lys Lys Gly Pro Gln Asp 805	810	815
Gly Val Ala Arg Ser Ser Cys Tyr Gly Asp Cys Arg Ser Glu Asp Asp		

820

825

830

Glu Ala Thr Glu Trp Ile Thr Phe Gln Val Lys Arg Val Lys Lys Pro
 835 840 845

Lys Gly Asp His Lys Lys Thr Pro Gly Lys Lys Val Glu Thr Gly Gln
 850 855 860

Ile Glu Asn Gly His Arg Tyr Gln Ala Asn Leu Glu Ile Thr Gly Pro
 865 870 875 880

Lys Val Ala Ser Pro Gly Pro Gln Gly
 885

<210> 45

<211> 690

<212> PRT

<213> Homo sapiens

<400> 45

Phe Leu Thr Leu Phe Ile Phe Arg Ser Gly Leu Cys Arg Gly Asn Ser
 1 5 10 15

Val Glu Arg Lys Ile Tyr Ile Pro Leu Asn Lys Thr Ala Pro Cys Val
 20 25 30

Arg Leu Leu Asn Ala Thr His Gln Ile Gly Cys Gln Ser Ser Ile Ser
 35 40 45

Gly Asp Thr Gly Val Ile His Val Val Glu Lys Glu Glu Asp Leu Gln
 50 55 60

Trp Val Leu Thr Asp Gly Pro Asn Pro Pro Tyr Met Val Leu Leu Glu
 65 70 75 80

Ser Lys His Phe Thr Arg Asp Leu Met Glu Lys Leu Lys Gly Arg Thr
 85 90 95

Ser Arg Ile Ala Gly Leu Ala Val Ser Leu Thr Lys Pro Ser Pro Ala
 100 105 110

Ser Gly Phe Ser Pro Ser Val Gln Cys Pro Asn Asp Gly Phe Gly Val
 115 120 125

Tyr Ser Asn Ser Tyr Gly Pro Glu Phe Ala His Cys Arg Glu Ile Gln
 130 135 140

Trp Asn Ser Leu Gly Asn Gly Leu Ala Tyr Glu Asp Phe Ser Phe Pro
 145 150 155 160
 Ile Phe Leu Leu Glu Asp Glu Asn Glu Thr Lys Val Ile Lys Gln Cys
 165 170 175
 Tyr Gln Asp His Asn Leu Ser Gln Asn Gly Ser Ala Pro Thr Phe Pro
 180 185 190
 Leu Cys Ala Met Gln Leu Phe Ser His Met His Ala Val Ile Ser Thr
 195 200 205
 Ala Thr Cys Met Arg Arg Ser Ser Ile Gln Ser Thr Phe Ser Ile Asn
 210 215 220
 Pro Glu Ile Val Cys Asp Pro Leu Ser Asp Tyr Asn Val Trp Ser Met
 225 230 235 240
 Leu Lys Pro Ile Asn Thr Thr Gly Thr Leu Lys Pro Asp Asp Arg Val
 245 250 255
 Val Val Ala Ala Thr Arg Leu Asp Ser Arg Ser Phe Phe Trp Asn Val
 260 265 270
 Ala Pro Gly Ala Glu Ser Ala Val Ala Ser Phe Val Thr Gln Leu Ala
 275 280 285
 Ala Ala Glu Ala Leu Gln Lys Ala Pro Asp Val Thr Thr Leu Pro Arg
 290 295 300
 Asn Val Met Phe Val Phe Gln Gly Glu Thr Phe Asp Tyr Ile Gly
 305 310 315 320
 Ser Ser Arg Met Val Tyr Asp Met Glu Lys Gly Lys Phe Pro Val Gln
 325 330 335
 Leu Glu Asn Val Asp Ser Phe Val Glu Leu Gly Gln Val Ala Leu Arg
 340 345 350
 Thr Ser Leu Glu Leu Trp Met His Thr Asp Pro Val Ser Gln Lys Asn
 355 360 365
 Glu Ser Val Arg Asn Gln Val Glu Asp Leu Leu Ala Thr Leu Glu Lys
 370 375 380
 Ser Gly Ala Gly Val Pro Ala Val Ile Leu Arg Arg Pro Asn Gln Ser
 385 390 395 400

Gln Pro Leu Pro Pro Ser Ser Leu Gln Arg Phe Leu Arg Ala Arg Asn
 405 410 415

 Ile Ser Gly Val Val Leu Ala Asp His Ser Gly Ala Phe His Asn Lys
 420 425 430

 Tyr Tyr Gln Ser Ile Tyr Asp Thr Ala Glu Asn Ile Asn Val Ser Tyr
 435 440 445

 Pro Glu Trp Leu Ser Pro Glu Glu Asp Leu Asn Phe Val Thr Asp Thr
 450 455 460

 Ala Lys Ala Leu Ala Asp Val Ala Thr Val Leu Gly Arg Ala Leu Tyr
 465 470 475 480

 Glu Leu Ala Gly Gly Thr Asn Phe Ser Asp Thr Val Gln Ala Asp Pro
 485 490 495

 Gln Thr Val Thr Arg Leu Leu Tyr Gly Phe Leu Ile Lys Ala Asn Asn
 500 505 510

 Ser Trp Phe Gln Ser Ile Leu Arg Gln Asp Leu Arg Ser Tyr Leu Gly
 515 520 525

 Asp Gly Pro Leu Gln His Tyr Ile Ala Val Ser Ser Pro Thr Asn Thr
 530 535 540

 Thr Tyr Val Val Gln Tyr Ala Leu Ala Asn Leu Thr Gly Thr Val Val
 545 550 555 560

 Asn Leu Thr Arg Glu Gln Cys Gln Asp Pro Ser Lys Val Pro Ser Glu
 565 570 575

 Asn Lys Asp Leu Tyr Glu Tyr Ser Trp Val Gln Gly Pro Leu His Ser
 580 585 590

 Asn Glu Thr Asp Arg Leu Pro Arg Cys Val Arg Ser Thr Ala Arg Leu
 595 600 605

 Ala Arg Ala Leu Ser Pro Ala Phe Glu Leu Ser Gln Trp Ser Ser Thr
 610 615 620

 Glu Tyr Ser Thr Trp Thr Glu Ser Arg Trp Lys Asp Ile Arg Ala Arg
 625 630 635 640

 Ile Phe Leu Ile Ala Ser Lys Glu Leu Glu Leu Ile Thr Leu Thr Val
 645 650 655

Gly Phe Gly Ile Leu Ile Phe Ser Leu Ile Val Thr Tyr Cys Ile Asn
660 665 670

Ala Lys Ala Asp Val Leu Phe Ile Ala Pro Arg Glu Pro Gly Ala Val
675 680 685

Ser Tyr

690

<210> 46

<211> 170

<212> PRT

<213> Homo sapiens

<400> 46

Gln Val Pro Arg Ser Lys Ala Leu Glu Val Thr Lys Leu Ala Ile Glu
1 5 10 15

Ala Gly Phe Arg His Ile Asp Ser Ala His Leu Tyr Asn Asn Glu Glu
 20 25 30

Gln Val Gly Leu Ala Ile Arg Ser Lys Ile Ala Asp Gly Ser Val Lys
35 40 45

Arg Glu Asp Ile Phe Tyr Thr Ser Lys Leu Trp Ser Thr Phe His Arg
50 55 60

Pro Gly Glu Glu Leu Ser Pro Thr Asp Glu Gln Val Ala Lys Val Ile
 100 105 110

Phe Asp Ile Val Asp Leu Cys Thr Thr Trp Glu Gly Met Glu Lys Cys
115 120 125

Lys Asp Gly Arg Asn Trp Gly Lys Ser Ile Gly Val Ser His Phe Asn
 130 135 140

Pro Gln Ala Leu Gly Met Ser Leu Gln Lys Ala Gly Ile Gln Leu Lys
147 150 155 160

Arg Ser Ala Pro Val Glu Cys Pro Ile Tyr
167 170

<210> 47
<211> 1596
<212> PRT
<213> Homo sapiens

<400> 47

Met Thr Thr Glu Thr Gly Pro Asp Ser Glu Val Lys Lys Ala Gln Glu
1 5 10 15

Glu Ala Pro Gln Gln Pro Glu Ala Ala Ala Ala Val Thr Thr Pro Val
20 25 30

Thr Pro Ala Gly His Gly His Pro Glu Ala Asn Ser Asn Glu Lys His
35 40 45

Pro Ser Gln Gln Asp Thr Arg Pro Ala Glu Gln Ser Leu Asp Met Glu
50 55 60

Glù Lys Asp Tyr Ser Glu Ala Asp Gly Leu Ser Glu Arg Thr Thr Pro
65 70 75 80

Ser Lys Ala Gln Lys Ser Pro Gln Lys Ile Ala Lys Lys Tyr Lys Ser
85 90 95

Ala Ile Cys Arg Val Thr Leu Leu Asp Ala Ser Glu Tyr Glu Cys Glu
100 105 110

Val Glu Lys His Gly Arg Gly Gln Val Leu Phe Asp Leu Val Cys Glu
115 120 125

His Leu Asn Leu Leu Glu Lys Asp Tyr Phe Gly Leu Thr Phe Cys Asp
130 135 140

Ala Asp Ser Gln Lys Asn Trp Leu Asp Pro Ser Lys Glu Ile Lys Lys
145 150 155 160

Gln Ile Arg Ser Glu Trp Leu Val Val Phe Gly Glu Val Gly Ser Pro
165 170 175

Trp Asn Phe Ala Phe Thr Val Lys Phe Tyr Pro Pro Asp Pro Ala Gln
180 185 190

Leu Thr Glu Asp Ile Thr Arg Tyr Tyr Leu Cys Leu Gln Leu Arg Ala
195 200 205

Asp Ile Ile Thr Gly Arg Leu Pro Cys Ser Phe Val Thr His Ala Leu

210	215	220
Leu Gly Ser Tyr Ala Val Gln Ala Glu Leu Gly Asp Tyr Asp Ala Glu		
225	230	235
Glu His Val Gly Asn Tyr Val Ser Glu Leu Arg Phe Ala Pro Asn Gln		
	245	250
Thr Arg Glu Leu Glu Glu Arg Ile Met Glu Leu His Lys Thr Tyr Arg		
	260	265
270		
Gly Met Thr Pro Gly Glu Ala Glu Ile His Phe Leu Glu Asn Ala Lys		
275	280	285
Lys Leu Ser Met Tyr Gly Val Asp Leu His His Ala Lys Asp Ser Glu		
290	295	300
Gly Ile Asp Ile Met Leu Gly Val Cys Ala Asn Gly Leu Leu Ile Tyr		
305	310	315
320		
Arg Asp Arg Leu Arg Ile Asn Arg Phe Ala Trp Pro Lys Ile Leu Lys		
325	330	335
Ile Ser Tyr Lys Arg Ser Asn Phe Tyr Ile Lys Ile Arg Pro Gly Glu		
340	345	350
Tyr Glu Gln Phe Glu Ser Thr Ile Gly Phe Lys Leu Pro Asn His Arg		
355	360	365
Ser Ala Lys Arg Leu Trp Lys Val Cys Ile Glu His His Thr Phe Phe		
370	375	380
Arg Leu Val Ser Pro Glu Pro Pro Lys Gly Phe Leu Val Met Gly		
385	390	395
400		
Ser Lys Phe Arg Tyr Ser Gly Arg Thr Gln Ala Gln Thr Arg Gln Ala		
405	410	415
Ser Ala Leu Ile Asp Arg Pro Ala Pro Phe Glu Arg Ser Ser Ser		
420	425	430
Lys Arg Tyr Thr Met Ser Arg Ser Leu Asp Gly Ala Glu Phe Ser Arg		
435	440	445
Pro Ala Ser Val Ser Glu Asn His Asp Ala Gly Pro Asp Gly Asp Lys		
450	455	460
Arg Asp Glu Asp Gly Glu Ser Gly Gly Gln Arg Ser Glu Ala Glu Glu		

465	470	475	480
Gly Glu Val Arg Thr Pro Thr Lys Ile Lys Glu Leu Lys Phe Leu Asp			
485	490	495	
Lys Pro Glu Asp Val Leu Leu Lys His Gln Ala Ser Ile Asn Glu Leu			
500	505	510	
Lys Arg Thr Leu Lys Glu Pro Asn Ser Lys Leu Ile His Arg Asp Arg			
515	520	525	
Asp Trp Glu Arg Glu Arg Leu Pro Ser Ser Pro Ala Ser Pro Ser			
530	535	540	
Pro Lys Gly Thr Pro Glu Lys Ala Asn Glu Ser Gln Arg Thr Gln Asp			
545	550	555	560
Ile Ser Gln Arg Asp Leu Val Pro Glu Pro Gly Ala Ala Ala Gly Leu			
565	570	575	
Glu Val Phe Thr Gln Lys Ser Leu Ala Ala Ser Pro Glu Gly Ser Glu			
580	585	590	
His Trp Val Phe Ile Glu Arg Glu Tyr Thr Arg Pro Glu Glu Leu Gly			
595	600	605	
Leu Leu Lys Val Thr Thr Met Gln Gln Glu Glu Arg Gln Ala Gly Leu			
610	615	620	
Ala Gly Ile Leu Ala Asn Gly Arg Leu Ser Lys Val Asp Val Leu Val			
625	630	635	640
Asp Lys Phe Lys Val Glu Val Ala Thr Glu Glu Met Val Gly Asn Arg			
645	650	655	
Arg Ala Asn Thr Gln Gln Gly Lys Met Ile Ala Ser Pro Glu Asp			
660	665	670	
Phe Glu Ser Val Gly Glu Glu Gly Pro Trp Ile Arg Glu Ser Pro Gly			
675	680	685	
Gly Ala Ala Leu Ala Ser Gly Arg Thr Leu Ala Glu Lys Leu Leu Glu			
690	695	700	
Gly Ser Glu Leu Arg Ala Asp Thr Arg Glu Ala Thr Ile Arg Asn Arg			
705	710	715	720
Cys Met Ser Asp Gly Gln Pro Glu Gly Gln Thr Glu Leu Arg Lys Gly			

725	730	735
Leu Glu Glu Pro His Thr Cys Gly Arg Pro Thr Ala Pro Gly Thr Arg		
740	745	750
Pro Ala Glu Val Asp Val Leu Ser Pro Ala Ser Asp Lys Gly Gly Leu		
755	760	765
Gln Ser Phe Leu Leu Asp Pro Ala His Ala Glu Ala Arg Ala Glu Leu		
770	775	780
Ser Asn Glu Thr Asp Thr Ser Phe Ala Glu Arg Ser Phe Tyr Leu Asn		
785	790	795
Tyr Glu Glu Lys Asp Ser Glu Asp Gln Val Leu Pro Pro Pro Leu Glu		
805	810	815
Glu Arg Lys Gly Arg Leu Asp Ala Pro Pro Gly Gly Glu Pro Arg Pro		
820	825	830
Thr Leu Asn Ser Leu Asp Leu Arg Val Ser Ala Ala Ala Ser Ser Arg		
835	840	845
Ser Lys Asp Glu Ala His Met Thr Ser Pro Lys Glu Gly Ala Gly Thr		
850	855	860
Pro Lys Asn His Gly Gly Pro Gly Asp Leu Lys Gly Ser Pro Ala Gly		
865	870	875
Gln Thr Phe Ala Glu Gly Trp Glu Asp Ala Gln Trp Gly Val Glu Gly		
885	890	895
Glu Phe Pro His Leu Thr Ala Ser Ala Ala Arg Glu Glu Gly Thr Pro		
900	905	910
Val Ser Gly Asp Leu Leu Gly Lys Ala Glu Glu Ser Pro Thr Glu Glu		
915	920	925
Leu Lys Lys His Pro Pro His Arg Gly Gln Gly Val His Pro Asp Pro		
930	935	940
Gln Ala Cys Ala Leu Pro Arg Ala Ile Pro Leu Asn Val Arg Lys Pro		
945	950	955
Val Lys Pro Asp Arg Gly Asn Phe Pro Pro Lys Glu Arg Gly Val Val		
965	970	975
Pro Thr Gln Lys Gly Gly Ala Glu Leu Lys Asp Arg Glu Ala Ser Ala		

980

985

990

Phe Leu His Met Glu Val Ile Ile Pro Leu Pro Ala Ser Pro Gly His
 995 1000 1005

Ser Glu Asp Leu Ala Ala Leu Glu Glu Ala Ser Pro Ser Pro Thr Ser
 1010 1015 1020

His Gly Ser Gly Glu Pro Ser Glu Leu Arg Glu Pro Phe Leu Arg His
 1025 1030 1035 1040

Val His Leu Ser Lys Ala Ser Pro Glu Pro Lys Asp Gln Val Gly Phe
 1045 1050 1055

Val Val Ser Pro Ala Thr Gly Gly Glu Arg Arg Pro Pro Pro Ile Thr
 1060 1065 1070

Ser Arg Lys Pro Arg Val Val Pro Glu Glu Ala Glu Gly Arg Ile Pro
 1075 1080 1085

Leu Gly Phe Gly Phe Pro Ser Gly Lys Arg Arg Glu Met Thr Ser Phe
 1090 1095 1100

Gln Ala Gly Asp Gln Glu Gly Ser Leu Glu Asp Ile Ser Lys Thr Ser
 1105 1110 1115 1120

Val Ala Asn Lys Ile Arg Ile Phe Glu Thr His Gly Ala Glu Thr Arg
 1125 1130 1135

Arg Met Ser Glu Gly Glu Ala Arg Ser Leu Pro Asn Asp Val Ser Ser
 1140 1145 1150

Glu Ala Pro Val Gly Gln Ala Glu Gln Gln Arg Ser Thr Leu Ser Asp
 1155 1160 1165

Leu Gly Phe Ala Gln Leu Gln Pro Pro Gly Asp Phe Ala Ser Pro Lys
 1170 1175 1180

Ala Thr His Ser Thr Val Ile Pro Leu Ala Thr Arg His Phe Arg Glu
 1185 1190 1195 1200

Asp Thr Ser Ala Ser Tyr Gln Glu Ala His Thr Glu Leu Glu Pro Val
 1205 1210 1215

Ser Pro Asn Ser Gly Cys Glu Thr Thr Leu Ala Glu Ala Thr Gly Thr
 1220 1225 1230

Gly Val Thr Gly Arg Asn Lys Ser Gly Asp Ala Val Arg Glu Glu Lys

1235	1240	1245
Arg Ser Thr Asn Leu Ala Ala Asn Thr Pro Gly Lys Gly Gly Arg Leu		
1250	1255	1260
Arg Phe Ala Ser Pro Ser Gly Pro Gln Arg Ala Gly Leu Arg Glu Gly		
1265	1270	1275
Ser Glu Glu Lys Val Lys Pro Pro Arg Pro Arg Ala Pro Glu Ser Asp		
1285	1290	1295
Thr Gly Asp Glu Asp Gln Asp Gln Glu Arg Asp Thr Val Phe Leu Lys		
1300	1305	1310
Asp Asn His Leu Ala Ile Glu Arg Lys Cys Ser Ser Ile Thr Val Ser		
1315	1320	1325
Ser Thr Ser Ser Leu Glu Ala Glu Val Asp Phe Thr Val Ile Gly Asp		
1330	1335	1340
Tyr His Gly Ser Ala Phe Glu Asp Phe Ser Arg Ser Leu Pro Glu Leu		
1345	1350	1355
Asp Arg Asp Lys Ser Asp Ser Asp Thr Glu Gly Leu Leu Phe Ser Arg		
1365	1370	1375
Asp Leu Asn Lys Gly Ala Pro Ser Gln Asp Asp Glu Ser Gly Gly Ile		
1380	1385	1390
Glu Asp Ser Pro Asp Arg Gly Ala Cys Ser Thr Pro Asp Met Pro Gln		
1395	1400	1405
Phe Glu Pro Val Lys Thr Glu Thr Met Thr Val Ser Ser Leu Ala Ile		
1410	1415	1420
Arg Lys Lys Ile Glu Pro Glu Ala Val Leu Gln Thr Arg Val Ser Ala		
1425	1430	1435
Met Asp Asn Thr Gln Val Asp Gly Ser Ala Ser Val Gly Arg Glu Phe		
1445	1450	1455
Ile Ala Thr Thr Pro Ser Ile Thr Thr Glu Thr Ile Ser Thr Thr Met		
1460	1465	1470
Glu Asn Ser Leu Lys Ser Gly Lys Gly Ala Ala Ala Met Ile Pro Gly		
1475	1480	1485
Pro Gln Thr Val Ala Thr Glu Ile Arg Ser Leu Ser Pro Ile Ile Gly		

1490	1495	1500	
Lys Asp Val Leu Thr Ser Thr Tyr Gly Ala Thr Ala Glu Thr Leu Ser			
1505	1510	1515	1520
Thr Ser Thr Thr His Val Thr Lys Thr Val Lys Gly Gly Phe Ser			
1525	1530	1535	
Glu Thr Arg Ile Glu Lys Arg Ile Ile Ile Thr Gly Asp Glu Asp Val			
1540	1545	1550	
Asp Gln Asp Gln Ala Leu Ala Leu Ala Ile Lys Glu Ala Lys Leu Gln			
1555	1560	1565	
His Pro Asp Met Leu Val Thr Lys Ala Val Val Tyr Arg Glu Thr Asp			
1570	1575	1580	
Pro Ser Pro Glu Glu Arg Asp Lys Lys Pro Gln Lys			
1585	1590	1595	
<210> 48			
<211> 455			
<212> PRT			
<213> Homo sapiens			
<400> 48			
Met Ala Ala Pro Glu Glu His Asp Ser Pro Thr Glu Ala Ser Gln Pro			
1	5	10	15
Ile Val Glu Glu Glu Glu Thr Lys Thr Phe Lys Asp Leu Gly Val Thr			
20	25	30	
Asp Val Leu Cys Glu Ala Cys Asp Gln Leu Gly Trp Thr Lys Pro Thr			
35	40	45	
Lys Ile Gln Ile Glu Ala Ile Pro Leu Ala Leu Gln Gly Arg Asp Ile			
50	55	60	
Ile Gly Leu Ala Glu Thr Gly Ser Gly Lys Thr Gly Ala Phe Ala Leu			
65	70	75	80
Pro Ile Leu Asn Ala Leu Leu Glu Thr Pro Gln Arg Leu Phe Ala Leu			
85	90	95	
Val Leu Thr Pro Thr Arg Glu Leu Ala Phe Gln Ile Ser Glu Gln Phe			
100	105	110	

Glu Ala Leu Gly Ser Ser Ile Gly Val Gln Ser Ala Val Ile Val Gly

115

120

125

Gly Ile Asp Ser Met Ser Gln Ser Leu Ala Leu Ala Lys Lys Pro His

130

135

140

Ile Ile Ile Ala Thr Pro Gly Arg Leu Ile Asp His Leu Glu Asn Thr

145

150

155

160

Lys Gly Phe Asn Leu Arg Ala Leu Lys Tyr Leu Val Met Asp Glu Ala

165

170

175

Asp Arg Ile Leu Asn Met Asp Phe Glu Thr Glu Val Asp Lys Ile Leu

180

185

190

Lys Val Ile Pro Arg Asp Arg Lys Thr Phe Leu Phe Ser Ala Thr Met

195

200

205

Thr Lys Lys Val Gln Lys Leu Gln Arg Ala Ala Leu Lys Asn Pro Val

210

215

220

Lys Cys Ala Val Ser Ser Lys Tyr Gln Thr Val Glu Lys Leu Gln Gln

225

230

235

240

Tyr Tyr Ile Phe Ile Pro Ser Lys Phe Lys Asp Thr Tyr Leu Val Tyr

245

250

255

Ile Leu Asn Glu Leu Ala Gly Asn Ser Phe Met Ile Phe Cys Ser Thr

260

265

270

Cys Asn Asn Thr Gln Arg Thr Ala Leu Leu Leu Arg Asn Leu Gly Phe

275

280

285

Thr Ala Ile Pro Leu His Gly Gln Met Ser Gln Ser Lys Arg Leu Gly

290

295

300

Ser Leu Asn Lys Phe Lys Ala Lys Ala Arg Ser Ile Leu Leu Ala Thr

305

310

315

320

Asp Val Ala Ser Arg Gly Leu Asp Ile Pro His Val Asp Val Val Val

325

330

335

Asn Phe Asp Ile Pro Thr His Ser Lys Asp Tyr Ile His Arg Val Gly

340

345

350

Arg Thr Ala Arg Ala Gly Arg Ser Gly Lys Ala Ile Thr Phe Val Thr

355

360

365

Gln Tyr Asp Val Glu Leu Phe Gln Arg Ile Glu His Leu Ile Gly Lys
370 375 380

Lys Leu Pro Gly Phe Pro Thr Gln Asp Asp Glu Val Met Met Leu Thr
385 390 395 400

Glu Arg Val Ala Glu Ala Gln Arg Phe Ala Arg Met Glu Leu Arg Glu
405 410 415

His Gly Glu Lys Lys Arg Ser Arg Glu Asp Ala Gly Asp Asn Asp
420 425 430

Asp Thr Glu Gly Ala Ile Gly Val Arg Asn Lys Val Ala Gly Gly Lys
435 440 445

Met Lys Lys Arg Lys Gly Arg
450 455

<210> 49

<211> 246

<212> PRT

<213> Homo sapiens

<400> 49

Met Ala Trp Ala Pro Leu Leu Leu Thr Leu Leu Ser Leu Leu Thr Gly
1 5 10 15

Ser Leu Ser Gln Pro Ile Leu Thr Gln Pro Pro Ser Ala Ser Ala Ser
20 25 30

Leu Gly Ala Ser Val Thr Leu Thr Cys Ser Val Ser Ser Asp Tyr Lys
35 40 45

Asn Leu Glu Val Asp Trp Phe Gln Gln Arg Pro Gly Lys Gly Pro Arg
50 55 60

Phe Val Met Arg Val Gly Thr Gly Val Val Gly Phe Arg Gly Ala
65 70 75 80

Asp Ile Pro Asp Arg Phe Ser Val Ser Gly Ser Gly Leu Asn Arg Phe
85 90 95

Leu Thr Ile Arg Asn Ile Glu Glu Asp Glu Ser Asp Tyr His Cys
100 105 110

Gly Thr Asp Leu Gly Ser Gly Thr Ser Phe Val Ser Trp Val Phe Gly
115 120 125

Gly Gly Thr Lys Leu Thr Val Leu Ser Gln Pro Lys Ala Ala Pro Ser
 130 135 140

Val Thr Leu Phe Pro Pro Ser Ser Glu Glu Leu Gln Ala Asn Lys Ala
 145 150 155 160

Thr Leu Val Cys Leu Ile Ser Asp Phe Tyr Pro Gly Ala Val Thr Val
 165 170 175

Ala Trp Lys Ala Asp Ser Ser Pro Val Lys Ala Gly Val Glu Thr Thr
 180 185 190

Thr Pro Ser Lys Gln Ser Asn Asn Lys Tyr Ala Ala Ser Ser Tyr Leu
 195 200 205

Ser Leu Thr Pro Glu Gln Trp Lys Ser Asn Arg Ser Tyr Ser Cys Gln
 210 215 220

Val Thr His Glu Gly Ser Thr Val Glu Lys Thr Val Ala Pro Thr Glu
 225 230 235 240

Cys Ser Thr Glu Cys Ser
 245

<210> 50

<211> 228

<212> PRT

<213> Homo sapiens

<400> 50

Ala Asn Ala Leu Gly Pro Cys Ala Glu Ile Val Met Thr Gln Thr Pro
 1 5 10 15

Leu Ser Leu Ser Ile Thr Pro Gly Glu Gln Ala Ser Met Ser Cys Arg
 20 25 30

Ser Ser Gln Ser Leu Leu His Ser Asp Gly Tyr Thr Tyr Leu Tyr Trp
 35 40 45

Phe Leu Gln Lys Pro Gly Gln Ser Pro Gln Leu Leu Ile Tyr Glu Val
 50 55 60

Ser Asn Arg Phe Ser Gly Val Ser Pro Ile Arg Phe Ser Gly Ser Gly
 65 70 75 80

Ser Gly Arg Glu Phe Thr Leu Arg Ile Ser Arg Val Glu Ala Asp Asp

85

90

95

Ala Gly Val Tyr Tyr Cys Met Gln Thr Thr Gln Thr Pro Asn Thr Phe
 100 105 110

Gly Gln Gly Thr Arg Leu Glu Ile Lys Arg Thr Val Ala Ala Pro Ser
 115 120 125

Val Phe Ile Phe Pro Pro Ser Asp Glu Gln Leu Lys Ser Gly Thr Ala
 130 135 140

Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro Arg Glu Ala Lys Val
 145 150 155 160

Gln Trp Lys Val Asp Asn Ala Leu Gln Ser Gly Asn Ser Gln Glu Ser
 165 170 175

Val Thr Glu Gln Asp Ser Lys Asp Ser Thr Tyr Ser Leu Ser Ser Thr
 180 185 190

Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys His Lys Leu Tyr Ala Cys
 195 200 205

Glu Val Thr His Gln Gly Leu Ser Ser Pro Val Thr Lys Ser Phe Asn
 210 215 220

Arg Gly Glu Cys
 225

<210> 51
<211> 106
<212> PRT
<213> Homo sapiens

<400> 51
Gly Gln Pro Lys Ala Asn Pro Thr Val Thr Leu Phe Pro Pro Ser Ser
 1 5 10 15

Glu Glu Leu Gln Ala Asn Lys Ala Thr Leu Val Cys Leu Ile Ser Asp
 20 25 30

Phe Tyr Pro Gly Ala Val Thr Val Ala Trp Lys Ala Asp Gly Ser Pro
 35 40 45

Val Lys Ala Gly Val Glu Thr Thr Lys Pro Ser Lys Gln Ser Asn Asn
 50 55 60

Lys Tyr Ala Ala Ser Ser Tyr Leu Ser Leu Thr Pro Glu Gln Trp Lys
 65 70 75 80
 Ser His Arg Ser Tyr Ser Cys Gln Val Thr His Glu Gly Ser Thr Val
 85 90 95
 Glu Lys Thr Val Ala Pro Thr Glu Cys Ser
 100 105

<210> 52
<211> 56
<212> PRT
<213> Homo sapiens

<400> 52
Arg Thr Gly Tyr Glu Glu Glu Thr Trp Asn Leu Lys Glu Cys Val Gly
 1 5 10 15

Arg Cys Ala Asn Pro Asn Val Asn Phe Leu Thr Lys Val Glu Ser Pro
 20 25 30

Gly Met Val Gln Arg Trp Gly Leu Leu Leu Cys Arg Arg Asp Ser Arg
 35 40 45

Phe Thr Pro Trp Gln Lys Ile Tyr
 50 55

<210> 53
<211> 824
<212> PRT
<213> Homo sapiens

<400> 53
Met Ala Phe Ala Ser Phe Arg Arg Ile Leu Ala Leu Ser Thr Phe Glu
 1 5 10 15

Lys Arg Lys Ser Arg Glu Tyr Glu His Val Arg Arg Asp Leu Asp Pro
 20 25 30

Asn Glu Val Trp Glu Ile Val Gly Glu Leu Gly Asp Gly Ser Phe Gly
 35 40 45

Met Val Tyr Lys Ala Lys Asn Lys Glu Thr Gly Ala Leu Ala Ala Ala
 50 55 60

Ile Val Ile Glu Thr Lys Ser Glu Glu Glu Leu Glu Asp Tyr Ile Val

65	70	75	80
Glu Ile Glu Ile Leu Ala Thr Cys Asp His Pro Tyr Ile Val Lys Leu			
85	90	95	
Leu Gly Ala Tyr Tyr His Asp Gly Lys Leu Trp Ile Met Ile Glu Phe			
100	105	110	
Cys Pro Gly Gly Ala Val Asp Ala Ile Met Leu Glu Leu Asp Arg Gly			
115	120	125	
Leu Thr Glu Pro Gln Ile Gln Val Val Cys Arg Gln Met Leu Glu Ala			
130	135	140	
Leu Asn Phe Leu His Ser Lys Arg Ile Ile His Arg Asp Leu Lys Ala			
145	150	155	160
Gly Asn Val Leu Met Thr Leu Glu Gly Asp Ile Arg Leu Ala Asp Phe			
165	170	175	
Gly Val Ser Ala Lys Asn Leu Lys Thr Leu Gln Lys Arg Asp Ser Phe			
180	185	190	
Ile Gly Thr Pro Tyr Trp Met Ala Pro Glu Val Val Met Cys Glu Thr			
195	200	205	
Met Lys Asp Thr Pro Tyr Asp Tyr Lys Ala Asp Ile Trp Ser Leu Gly			
210	215	220	
Ile Thr Leu Ile Glu Met Ala Gln Ile Glu Pro Pro His His Glu Leu			
225	230	235	240
Asn Pro Met Arg Val Leu Leu Lys Ile Ala Lys Ser Asp Pro Pro Thr			
245	250	255	
Leu Leu Thr Pro Ser Lys Trp Ser Val Glu Phe Arg Asp Phe Leu Lys			
260	265	270	
Ile Ala Leu Asp Lys Asn Pro Glu Thr Arg Pro Ser Ala Ala Ala			
275	280	285	
Leu Glu His Pro Phe Val Ser Ser Ile Thr Ser Asn Lys Ala Leu Arg			
290	295	300	
Glu Leu Val Ala Glu Ala Lys Ala Glu Val Met Glu Glu Ile Glu Asp			
305	310	315	320
Gly Arg Asp Glu Gly Glu Glu Asp Ala Val Asp Ala Ala Ser Thr			

325	330	335
Leu Glu Asn His Thr Gln Asn Ser Ser Glu Val Ser Pro Pro Ser Leu		
340	345	350
Asn Ala Asp Lys Pro Leu Glu Glu Ser Pro Ser Thr Pro Leu Ala Pro		
355	360	365
Ser Gln Ser Gln Asp Ser Val Asn Glu Pro Cys Ser Gln Pro Ser Gly		
370	375	380
Asp Arg Ser Leu Gln Thr Thr Ser Pro Pro Val Val Ala Pro Gly Asn		
385	390	395
Glu Asn Gly Leu Ala Val Pro Val Pro Leu Arg Lys Ser Arg Pro Val		
405	410	415
Ser Met Asp Ala Arg Ile Gln Val Ala Gln Glu Lys Gln Val Ala Glu		
420	425	430
Gln Gly Gly Asp Leu Ser Pro Ala Ala Asn Arg Ser Gln Lys Ala Ser		
435	440	445
Gln Ser Arg Pro Asn Ser Ser Ala Leu Glu Thr Leu Gly Gly Glu Lys		
450	455	460
Leu Ala Asn Gly Ser Leu Glu Pro Pro Ala Gln Ala Ala Pro Gly Pro		
465	470	475
Ser Lys Arg Asp Ser Asp Cys Ser Ser Leu Cys Thr Ser Glu Ser Met		
485	490	495
Asp Tyr Gly Thr Asn Leu Ser Thr Asp Leu Ser Leu Asn Lys Glu Met		
500	505	510
Gly Ser Leu Ser Ile Lys Asp Pro Lys Leu Tyr Lys Lys Thr Leu Lys		
515	520	525
Arg Thr Arg Lys Phe Val Val Asp Gly Val Glu Val Ser Ile Thr Thr		
530	535	540
Ser Lys Ile Ile Ser Glu Asp Glu Lys Lys Asp Glu Glu Met Arg Phe		
545	550	555
Leu Arg Arg Gln Glu Leu Arg Glu Leu Arg Leu Leu Gln Lys Glu Glu		
565	570	575
His Arg Asn Gln Thr Gln Leu Ser Asn Lys His Glu Leu Gln Leu Glu		

580

585

590

Gln Met His Lys Arg Phe Glu Gln Glu Ile Asn Ala Lys Lys Lys Phe
 595 600 605

Phe Asp Thr Glu Leu Glu Asn Leu Glu Arg Gln Gln Lys Gln Gln Val
 610 615 620

Glu Lys Met Glu Gln Asp His Ala Val Arg Arg Arg Glu Glu Ala Arg
 625 630 635 640

Arg Ile Arg Leu Glu Gln Asp Arg Asp Tyr Thr Arg Phe Gln Glu Gln
 645 650 655

Leu Lys Leu Met Lys Lys Glu Val Lys Asn Glu Val Glu Lys Leu Pro
 660 665 670

Arg Gln Gln Arg Lys Glu Ser Met Lys Gln Lys Met Glu Glu His Thr
 675 680 685

Gln Lys Lys Gln Leu Leu Asp Arg Asp Phe Val Ala Lys Gln Lys Glu
 690 695 700

Asp Leu Glu Leu Ala Met Lys Arg Leu Thr Thr Asp Asn Arg Arg Glu
 705 710 715 720

Ile Cys Asp Lys Glu Arg Glu Cys Leu Met Lys Lys Gln Glu Leu Leu
 725 730 735

Arg Asp Arg Glu Ala Ala Leu Trp Glu Met Glu Glu His Gln Leu Gln
 740 745 750

Glu Arg His Gln Leu Val Lys Gln Gln Leu Lys Asp Gln Tyr Phe Leu
 755 760 765

Gln Arg His Glu Leu Leu Arg Lys His Glu Lys Glu Arg Glu Gln Met
 770 775 780

Gln Arg Tyr Asn Gln Arg Met Ile Glu Gln Leu Lys Val Arg Gln Gln
 785 790 795 800

Gln Glu Lys Ala Arg Leu Pro Lys Ile Gln Arg Ser Glu Gly Lys Thr
 805 810 815

Arg Met Ala Met Tyr Lys Lys Ser
 820

<210> 54
<211> 1997
<212> PRT
<213> Homo sapiens

<400> 54
Met Leu Ser His Gly Ala Gly Leu Ala Leu Trp Ile Thr Leu Ser Leu
1 5 10 15

Leu Gln Thr Gly Leu Ala Glu Pro Glu Arg Cys Asn Phe Thr Leu Ala
20 25 30

Glu Ser Lys Ala Ser Ser His Ser Val Ser Ile Gln Trp Arg Ile Leu
35 40 ~ 45

Gly Ser Pro Cys Asn Phe Ser Leu Ile Tyr Ser Ser Asp Thr Leu Gly
50 55 60

Ala Ala Leu Cys Pro Thr Phe Arg Ile Asp Asn Thr Thr Tyr Gly Cys
65 70 75 80

Asn Leu Gln Asp Leu Gln Ala Gly Thr Ile Tyr Asn Phe Arg Ile Ile
85 90 95

Ser Leu Asp Glu Glu Arg Thr Val Val Leu Gln Thr Asp Pro Leu Pro
100 105 110

Pro Ala Arg Phe Gly Val Ser Lys Glu Lys Thr Thr Ser Thr Ser Leu
115 120 125

His Val Trp Trp Thr Pro Ser Ser Gly Lys Val Thr Ser Tyr Glu Val
130 135 140

Gln Leu Phe Asp Glu Asn Asn Gln Lys Ile Gln Gly Val Gln Ile Gln
145 150 155 160

Glu Ser Thr Ser Trp Asn Glu Tyr Thr Phe Phe Asn Leu Thr Ala Gly
165 170 175

Ser Lys Tyr Asn Ile Ala Ile Thr Ala Val Ser Gly Gly Lys Arg Ser
180 185 190

Phe Ser Val Tyr Thr Asn Gly Ser Thr Val Pro Ser Pro Val Lys Asp
195 200 205

Ile Gly Ile Ser Thr Lys Ala Asn Ser Leu Leu Ile Ser Trp Ser His
210 215 220

Gly Ser Gly Asn Val Glu Arg Tyr Arg Leu Met Leu Met Asp Lys Gly
 225 230 235 240

Ile Leu Val His Gly Gly Val Val Asp Lys His Ala Thr Ser Tyr Ala
 245 250 255

Phe His Gly Leu Ser Pro Gly Tyr Leu Tyr Asn Leu Thr Val Met Thr
 260 265 270

Glu Ala Ala Gly Leu Gln Asn Tyr Arg Trp Lys Leu Val Arg Thr Ala
 275 280 285

Pro Met Glu Val Ser Asn Leu Lys Val Thr Asn Asp Gly Ser Leu Thr
 290 295 300

Ser Leu Lys Val Lys Trp Gln Arg Pro Pro Gly Asn Val Asp Ser Tyr
 305 310 315 320

Asn Ile Thr Leu Ser His Lys Gly Thr Ile Lys Glu Ser Arg Val Leu
 325 330 335

Ala Pro Trp Ile Thr Glu Thr His Phe Lys Glu Leu Val Pro Gly Arg
 340 345 350

Leu Tyr Gln Val Thr Val Ser Cys Val Ser Gly Glu Leu Ser Ala Gln
 355 360 365

Lys Met Ala Val Gly Arg Thr Phe Pro Asp Lys Val Ala Asn Leu Glu
 370 375 380

Ala Asn Asn Asn Gly Arg Met Arg Ser Leu Val Val Ser Trp Ser Pro
 385 390 395 400

Pro Ala Gly Asp Trp Glu Gln Tyr Arg Ile Leu Leu Phe Asn Asp Ser
 405 410 415

Val Val Leu Leu Asn Ile Thr Val Gly Lys Glu Glu Thr Gln Tyr Val
 420 425 430

Met Asp Asp Thr Gly Leu Val Pro Gly Arg Gln Tyr Glu Val Glu Val
 435 440 445

Ile Val Glu Ser Gly Asn Leu Lys Asn Ser Glu Arg Cys Gln Gly Arg
 450 455 460

Thr Val Pro Leu Ala Val Leu Gln Leu Arg Val Lys His Ala Asn Glu
 465 470 475 480

Thr Ser Leu Ser Ile Met Trp Gln Thr Pro Val Ala Glu Trp Glu Lys

485

490

495

Tyr Ile Ile Ser Leu Ala Asp Arg Asp Leu Leu Leu Ile His Lys Ser

500

505

510

Leu Ser Lys Asp Ala Lys Glu Phe Thr Phe Thr Asp Leu Val Pro Gly

515

520

525

Arg Lys Tyr Met Ala Thr Val Thr Ser Ile Ser Gly Asp Leu Lys Asn

530

535

540

Ser Ser Ser Val Lys Gly Arg Thr Val Pro Ala Gln Val Thr Asp Leu

545

550

555

560

His Val Ala Asn Gln Gly Met Thr Ser Ser Leu Phe Thr Asn Trp Thr

565

570

575

Gln Ala Gln Gly Asp Val Glu Phe Tyr Gln Val Leu Leu Ile His Glu

580

585

590

Asn Val Val Ile Lys Asn Glu Ser Ile Ser Ser Glu Thr Ser Arg Tyr

595

600

605

Ser Phe His Ser Leu Lys Ser Gly Ser Leu Tyr Ser Val Val Val Thr

610

615

620

Thr Val Ser Gly Gly Ile Ser Ser Arg Gln Val Val Val Glu Gly Arg

625

630

635

640

Thr Val Pro Ser Ser Val Ser Gly Val Thr Val Asn Asn Ser Gly Arg

645

650

655

Asn Asp Tyr Leu Ser Val Ser Trp Leu Val Ala Pro Gly Asp Val Asp

660

665

670

Asn Tyr Glu Val Thr Leu Ser His Asp Gly Lys Val Val Gln Ser Leu

675

680

685

Val Ile Ala Lys Ser Val Arg Glu Cys Ser Phe Ser Ser Leu Thr Pro

690

695

700

Gly Arg Leu Tyr Thr Val Thr Ile Thr Thr Arg Ser Gly Lys Tyr Glu

705

710

715

720

Asn His Ser Phe Ser Gln Glu Arg Thr Val Pro Asp Lys Val Gln Gly

725

730

735

Val Ser Val Ser Asn Ser Ala Arg Ser Asp Tyr Leu Arg Val Ser Trp
740 745 750

Val Tyr Ala Thr Gly Asp Phe Asp His Tyr Glu Val Thr Ile Lys Asn
755 760 765

Lys Asn Asn Phe Ile Gln Thr Lys Ser Ile Pro Lys Ser Glu Asn Glu
770 775 780

Cys Val Phe Val Gln Leu Val Pro Gly Arg Leu Tyr Ser Val Thr Val
785 790 795 800

Thr Thr Lys Ser Gly Gln Tyr Glu Ala Asn Glu Gln Gly Asn Gly Arg
805 810 815

Thr Ile Pro Glu Pro Val Lys Asp Leu Thr Leu Arg Asn Arg Ser Thr
820 825 830

Glu Asp Leu His Val Thr Trp Ser Gly Ala Asn Gly Asp Val Asp Gln
835 840 845

Tyr Glu Ile Gln Leu Leu Phe Asn Asp Met Lys Val Phe Pro Pro Phe
850 855 860

His Leu Val Asn Thr Ala Thr Glu Tyr Arg Phe Thr Ser Leu Thr Pro
865 870 875 880

Gly Arg Gln Tyr Lys Ile Leu Val Leu Thr Ile Ser Gly Asp Val Gln
885 890 895

Gln Ser Ala Phe Ile Glu Gly Phe Thr Val Pro Ser Ala Val Lys Asn
900 905 910

Ile His Ile Ser Pro Asn Gly Ala Thr Asp Ser Leu Thr Val Asn Trp
915 920 925

Thr Pro Gly Gly Asp Val Asp Ser Tyr Thr Val Ser Ala Phe Arg
930 935 940

His Ser Gln Lys Val Asp Ser Gln Thr Ile Pro Lys His Val Phe Glu
945 950 955 960

His Thr Phe His Arg Leu Glu Ala Gly Glu Gln Tyr Gln Ile Met Ile
965 970 975

Ala Ser Val Ser Gly Ser Leu Lys Asn Gln Ile Asn Val Val Gly Arg
980 985 990

Thr Val Pro Ala Ser Val Gln Gly Val Ile Ala Asp Asn Ala Tyr Ser
995 1000 1005

Ser Tyr Ser Leu Ile Val Ser Trp Gln Lys Ala Ala Gly Val Ala Glu
1010 1015 1020

Arg Tyr Asp Ile Leu Leu Thr Glu Asn Gly Ile Leu Leu Arg Asn
1025 1030 1035 1040

Thr Ser Glu Pro Ala Thr Thr Lys Gln His Lys Phe Glu Asp Leu Thr
1045 1050 1055

Pro Gly Lys Lys Tyr Lys Ile Gln Ile Leu Thr Val Ser Gly Gly Leu
1060 1065 1070

Phe Ser Lys Glu Ala Gln Thr Glu Gly Arg Thr Val Pro Ala Ala Val
1075 1080 1085

Thr Asp Leu Arg Ile Thr Glu Asn Ser Thr Arg His Leu Ser Phe Arg
1090 1095 1100

Trp Thr Ala Ser Glu Gly Glu Leu Ser Trp Tyr Asn Ile Phe Leu Tyr
1105 1110 1115 1120

Asn Pro Asp Gly Asn Leu Gln Glu Arg Ala Gln Val Asp Pro Leu Val
1125 1130 1135

Gln Ser Phe Ser Phe Gln Asn Leu Leu Gln Gly Arg Met Tyr Lys Met
1140 1145 1150

Val Ile Val Thr His Ser Gly Glu Leu Ser Asn Glu Ser Phe Ile Phe
1155 1160 1165

Gly Arg Thr Val Pro Ala Ser Val Ser His Leu Arg Gly Ser Asn Arg
1170 1175 1180

Asn Thr Thr Asp Ser Leu Trp Phe Asn Trp Ser Pro Ala Ser Gly Asp
1185 1190 1195 1200

Phe Asp Phe Tyr Glu Leu Ile Leu Tyr Asn Pro Asn Gly Thr Lys Lys
1205 1210 1215

Glu Asn Trp Lys Asp Lys Asp Leu Thr Glu Trp Arg Phe Gln Gly Leu
1220 1225 1230

Val Pro Gly Arg Lys Tyr Val Leu Trp Val Val Thr His Ser Gly Asp
1235 1240 1245

Leu Ser Asn Lys Val Thr Ala Glu Ser Arg Thr Ala Pro Ser Pro Pro

1250 1255

1260

Ser Leu Met Ser Phe Ala Asp Ile Ala Asn Thr Ser Leu Ala Ile Thr

1265 1270 1275 1280

Trp Lys Gly Pro Pro Asp Trp Thr Asp Tyr Asn Asp Phe Glu Leu Gln

1285 1290

1295

Trp Leu Pro Arg Asp Ala Leu Thr Val Phe Asn Pro Tyr Asn Asn Arg

1300 1305

1310

Lys Ser Glu Gly Arg Ile Val Tyr Gly Leu Arg Pro Gly Arg Ser Tyr

1315 1320

1325

Gln Phe Asn Val Lys Thr Val Ser Gly Asp Ser Trp Lys Thr Tyr Ser

1330 1335

1340

Lys Pro Ile Phe Gly Ser Val Arg Thr Lys Pro Asp Lys Ile Gln Asn

1345 1350 1355 1360

Leu His Cys Arg Pro Gln Asn Ser Thr Ala Ile Ala Cys Ser Trp Ile

1365 1370

1375

Pro Pro Asp Ser Asp Phe Asp Gly Tyr Ser Ile Glu Cys Arg Lys Met

1380 1385

1390

Asp Thr Gln Glu Val Glu Phe Ser Arg Lys Leu Glu Lys Glu Lys Ser

1395 1400

1405

Leu Leu Asn Ile Met Met Leu Val Pro His Lys Arg Tyr Leu Val Ser

1410 1415

1420

Ile Lys Val Gln Ser Ala Gly Met Thr Ser Glu Val Val Glu Asp Ser

1425 1430 1435 1440

Thr Ile Thr Met Ile Asp Arg Pro Pro Pro Pro Pro His Ile Arg

1445 1450

1455

Val Asn Glu Lys Asp Val Leu Ile Ser Lys Ser Ser Ile Asn Phe Thr

1460 1465

1470

Val Asn Cys Ser Trp Phe Ser Asp Thr Asn Gly Ala Val Lys Tyr Phe

1475 1480

1485

Thr Val Val Val Arg Glu Ala Asp Gly Ser Asp Glu Leu Lys Pro Glu

1490 1495 1500

Gln Gln His Pro Leu Pro Ser Tyr Leu Glu Tyr Arg His Asn Ala Ser
 1505 1510 1515 1520

 Ile Arg Val Tyr Gln Thr Asn Tyr Phe Ala Ser Lys Cys Ala Glu Asn
 1525 1530 1535

 Pro Asn Ser Asn Ser Lys Ser Phe Asn Ile Lys Leu Gly Ala Glu Met
 1540 1545 1550

 Glu Ser Leu Gly Gly Lys Cys Asp Pro Thr Gln Gln Lys Phe Cys Asp
 1555 1560 1565

 Gly Pro Leu Lys Pro His Thr Ala Tyr Arg Ile Ser Ile Arg Ala Phe
 1570 1575 1580

 Thr Gln Leu Phe Asp Glu Asp Leu Lys Glu Phe Thr Lys Pro Leu Tyr
 1585 1590 1595 1600

 Ser Asp Thr Phe Phe Ser Leu Pro Ile Thr Thr Glu Ser Glu Pro Leu
 1605 1610 1615

 Phe Gly Ala Ile Glu Gly Val Ser Ala Gly Leu Phe Leu Ile Gly Met
 1620 1625 1630

 Leu Val Ala Val Val Ala Leu Leu Ile Cys Arg Gln Lys Val Ser His
 1635 1640 1645

 Gly Arg Glu Arg Pro Ser Ala Arg Leu Ser Ile Arg Arg Asp Arg Pro
 1650 1655 1660

 Leu Ser Val His Leu Asn Leu Gly Gln Lys Gly Asn Arg Lys Thr Ser
 1665 1670 1675 1680

 Cys Pro Ile Lys Ile Asn Gln Phe Glu Gly His Phe Met Lys Leu Gln
 1685 1690 1695

 Ala Asp Ser Asn Tyr Leu Leu Ser Lys Glu Tyr Glu Glu Leu Lys Asp
 1700 1705 1710

 Val Gly Arg Asn Gln Ser Cys Asp Ile Ala Leu Leu Pro Glu Asn Arg
 1715 1720 1725

 Gly Lys Asn Arg Tyr Asn Asn Ile Leu Pro Tyr Asp Ala Thr Arg Val
 1730 1735 1740

 Lys Leu Ser Asn Val Asp Asp Asp Pro Cys Ser Asp Tyr Ile Asn Ala
 1745 1750 1755 1760

Ser Tyr Ile Pro Gly Asn Asn Phe Arg Arg Glu Tyr Ile Val Thr Gln
 1765 1770 1775

Gly Pro Leu Pro Gly Thr Lys Asp Asp Phe Trp Lys Met Val Trp Glu
 1780 1785 1790

Gln Asn Val His Asn Ile Val Met Val Thr Gln Cys Val Glu Lys Gly
 1795 1800 1805

Arg Val Lys Cys Asp His Tyr Trp Pro Ala Asp Gln Asp Ser Leu Tyr
 1810 1815 1820

Tyr Gly Asp Leu Ile Leu Gln Met Leu Ser Glu Ser Val Leu Pro Glu
 1825 1830 1835 1840

Trp Thr Ile Arg Glu Phe Lys Ile Cys Gly Glu Glu Gln Leu Asp Ala
 1845 1850 1855

His Arg Leu Ile Arg His Phe His Tyr Thr Val Trp Pro Asp His Gly
 1860 1865 1870

Val Pro Glu Thr Thr Gln Ser Leu Ile Gln Phe Val Arg Thr Val Arg
 1875 1880 1885

Asp Tyr Ile Asn Arg Ser Pro Gly Ala Gly Pro Thr Val Val His Cys
 1890 1895 1900

Ser Ala Gly Val Gly Arg Thr Gly Thr Phe Ile Ala Leu Asp Arg Ile
 1905 1910 1915 1920

Leu Gln Gln Leu Asp Ser Lys Asp Ser Val Asp Ile Tyr Gly Ala Val
 1925 1930 1935

His Asp Leu Arg Leu His Arg Val His Met Val Gln Thr Glu Cys Gln
 1940 1945 1950

Tyr Val Tyr Leu His Gln Cys Val Arg Asp Val Leu Arg Ala Arg Lys
 1955 1960 1965

Leu Arg Ser Glu Gln Glu Asn Pro Leu Phe Pro Ile Tyr Glu Asn Val
 1970 1975 1980

Asn Pro Glu Tyr His Arg Asp Pro Val Tyr Ser Arg His
 1985 1990 1995

<210> 55

<211> 453

<212> PRT

<213> Homo sapiens

<400> 55

Met Lys Leu Leu Val Ile Leu Leu Phe Ser Gly Leu Ile Thr Gly Phe
1 5 10 15

Arg Ser Asp Ser Ser Ser Leu Pro Pro Lys Leu Leu Leu Val Ser
20 25 30

Phe Asp Gly Phe Arg Ala Asp Tyr Leu Lys Asn Tyr Glu Phe Pro His
35 40 45

Leu Gln Asn Phe Ile Lys Glu Gly Val Leu Val Glu His Val Lys Asn
50 55 60

Val Phe Ile Thr Lys Thr Phe Pro Asn His Tyr Ser Ile Val Thr Gly
65 70 75 80

Leu Tyr Glu Glu Ser His Gly Ile Val Ala Asn Ser Met Tyr Asp Ala
85 90 95

Val Thr Lys Lys His Phe Ser Asp Ser Asn Asp Lys Asp Pro Phe Trp
100 105 110

Trp Asn Glu Ala Val Pro Ile Trp Val Thr Asn Gln Leu Gln Glu Asn
115 120 125

Arg Ser Ser Ala Ala Ala Met Trp Pro Gly Thr Asp Val Pro Ile His
130 135 140

Asp Thr Ile Ser Ser Tyr Phe Met Asn Tyr Asn Ser Ser Val Ser Phe
145 150 155 160

Glu Glu Arg Leu Asn Asn Ile Thr Met Trp Leu Asn Asn Ser Asn Pro
165 170 175

Pro Val Thr Phe Ala Thr Leu Tyr Trp Glu Glu Pro Asp Ala Ser Gly
180 185 190

His Lys Tyr Gly Pro Glu Asp Lys Glu Asn Met Ser Arg Val Leu Lys
195 200 205

Lys Ile Asp Asp Leu Ile Gly Asp Leu Val Gln Arg Leu Lys Met Leu
210 215 220

Gly Leu Trp Glu Asn Leu Asn Val Ile Ile Thr Ser Asp His Gly Met
225 230 235 240

Thr Gln Cys Ser Gln Asp Arg Leu Ile Asn Leu Asp Ser Cys Ile Asp
245 250 255

His Ser Tyr Tyr Thr Leu Ile Asp Leu Ser Pro Val Ala Ala Ile Leu
260 265 270

Pro Lys Ile Asn Arg Thr Glu Val Tyr Asn Lys Leu Lys Asn Cys Ser
275 280 285

Pro His Met Asn Val Tyr Leu Lys Glu Asp Ile Pro Asn Arg Phe Tyr
290 295 300

Tyr Gln His Asn Asp Arg Ile Gln Pro Ile Ile Leu Val Ala Asp Glu
 305 310 315 320

Gly Trp Thr Ile Val Leu Asn Glu Ser Ser Gln Lys Leu Gly Asp His
 325 330 335

Gly Tyr Asp Asn Ser Leu Pro Ser Met His Pro Phe Leu Ala Ala His
340 345 350

Gly Pro Ala Phe His Lys Gly Tyr Lys His Ser Thr Ile Asn Ile Val
355 360 365

Asp Ile Tyr Pro Met Met Cys His Ile Leu Gly Leu Lys Pro His Pro
370 375 380

Asn	Asn	Gly	Thr	Phe	Gly	His	Thr	Lys	Cys	Leu	Leu	Val	Asp	Gln	Trp
385				390					395						400

Cys Ile Asn Leu Pro Glu Ala Ile Ala Ile Val Ile Gly Ser Leu Leu
405 410 415

Val Leu Thr Met Leu Thr Cys Leu Ile Ile Ile Met Gln Asn Arg Leu
420 425 430

Ser Val Pro Arg Pro Phe Ser Arg Leu Gln Leu Gln Glu Asp Asp Asp

Asp Pro Leu Ile Gly

1211

212 BBT

<212> PRI

<400> 56

Met Ser Lys Pro His Ser Glu Ala Gly Thr Ala Phe Ile Gln Thr Gln
1 5 10 15

Gln Leu His Ala Ala Met Ala Asp Thr Phe Leu Glu His Met Cys Arg
20 25 30

Leu Asp Ile Asp Ser Pro Pro Ile Thr Ala Arg Asn Thr Gly Ile Ile
35 40 45

Cys Thr Ile Gly Pro Ala Ser Arg Ser Val Glu Thr Leu Lys Glu Met
50 55 60

Ile Lys Ser Gly Met Asn Val Ala Arg Leu Asn Phe Ser His Gly Thr
65 70 75 80

His Glu Tyr His Ala Glu Thr Ile Lys Asn Val Arg Thr Ala Thr Glu
85 90 95

Ser Phe Ala Ser Asp Pro Ile Leu Tyr Arg Pro Val Ala Val Ala Leu
100 105 110

Asp Thr Lys Gly Pro Glu Ile Arg Thr Gly Leu Ile Lys Gly Ser Gly
115 120 125

Thr Ala Glu Val Glu Leu Lys Lys Gly Ala Thr Leu Lys Ile Thr Leu
130 135 140

Asp Asn Ala Tyr Met Glu Lys Cys Asp Glu Asn Ile Leu Trp Leu Asp
145 150 155 160

Tyr Lys Asn Ile Cys Lys Val Val Glu Val Gly Ser Lys Ile Tyr Val
165 170 175

Asp Asp Gly Leu Ile Ser Leu Gln Val Lys Gln Lys Gly Ala Asp Phe
180 185 190

Leu Val Thr Glu Val Glu Asn Gly Gly Ser Leu Gly Ser Lys Lys Gly
195 200 205

Val Asn Leu Pro Gly Ala Ala Val Asp Leu Pro Ala Val Ser Glu Lys
210 215 220

Asp Ile Pro Gly Ser Glu Ser Leu Gly Val Glu Gln Asp Val Asp Met
225 230 235 240

Val Phe Ala Ser Phe His Pro Ala Lys Ala Ser Gly Cys Pro Met Glu

245	250	255
Ala Leu Gly Ala Val Leu Gly Arg Glu Gly Lys Arg Asn Ile Lys Ile		
260	265	270
Ile Ser Lys Ile Glu Asn His Glu Gly Val Arg Arg Phe Asp Glu Ile		
275	280	285
Leu Glu Ala Ser Asp Gly Ile Met Val Ala Arg Gly Asp Leu Gly Ile		
290	295	300
Glu Ile Pro Ala Glu Lys Val Phe Leu Ala Gln Lys Met Met Ile Gly		
305	310	315
Arg Cys Asn Pro Arg Thr Gly Lys Pro Val Ile Cys Ala Thr Gln Met		
325	330	335
Leu Glu Ser Ile Ile Lys Lys Pro Arg Pro Thr Arg Ala Glu Gly Ser		
340	345	350
Asp Val Ala Asn Ala Val Leu Asp Gly Ala Asp Cys Ile Met Leu Ser		
355	360	365
Gly Glu Thr Ala Lys Gly Asp Tyr Pro Leu Glu Ala Val Arg Met Gln		
370	375	380
His Leu Ile Ala Arg Glu Ala Glu Ala Ala Ile Tyr His Leu Gln Leu		
385	390	395
Phe Glu Glu Leu Arg Arg Leu Ala Pro Ile Thr Ser Asp Pro Thr Glu		
405	410	415
Ala Thr Ala Val Gly Ala Val Glu Ala Ser Phe Lys Cys Cys Ser Gly		
420	425	430
Ala Ile Ile Val Leu Thr Lys Ser Gly Arg Ser Ala His Gln Val Ala		
435	440	445
Arg Tyr Arg Pro Arg Ala Pro Ile Ile Ala Val Thr Arg Asn Pro Gln		
450	455	460
Thr Ala Arg Gln Ala His Leu Tyr Arg Gly Ile Phe Pro Val Leu Cys		
465	470	475
Lys Asp Pro Val Gln Glu Ala Trp Ala Glu Asp Val Asp Leu Arg Val		
485	490	495
Asn Phe Ala Met Asn Val Gly Lys Ala Arg Gly Phe Phe Lys Lys Gly		

500

505

510

Asp Val Val Ile Val Leu Thr Gly Trp Arg Pro Gly Ser Gly Phe Thr
515 520 525

Asn Thr Met Arg Val Val Pro Val Pro
530 535

THIS PAGE BLANK (USPTO)