सांख्यिकी

शाब्दिक रूप में सांख्यिकी शब्द अंग्रेजी के शब्द statistics का हिन्दी रूपान्तर है जो लैटिन भाषा के शब्द स्टेटस (status) तथा जर्मन भाषा शब्द statistik से भी जोड़ते हैं जिसका अर्थ राज्य है। सांख्यिकी का शाब्दिक अर्थ है संख्या से संबंधित शास्त्र। इस प्रकार विषय के रूप में सांख्यिकी ज्ञान की वह शाखा है जिसका संबंध संख्याओं या संख्यात्मक आंकड़ों से हो। सांख्यिकी सिद्धान्तों को वैज्ञानिक रूप में प्रस्तुत करने का श्रेय जर्मन विद्वान गाॅटफ्रायड एचेनवाल को है इसी कारण एकेनवेल को सांख्यिकी का जनक कहा जाता है। वर्तमान युग में सांख्यिकी को विकसित करने में कार्ल पियर्सन का योगदान सबसे अधिक है।

सांख्यिकी की परिभाषा

- 1. बाउले ''समंक किसी अनुसंधान के किसी विभाग में तथ्यों का संख्या के रूप में प्रस्तुतीकरण है, जिन्हें एक दूसरे से सम्बन्धित रूप में प्रस्तुत किया जाता है''।
- 2. कानर "सांख्यिकी किसी प्राकृतिक अथवा सामाजिक समस्या से सम्बन्धित माप की गणना या अनुमान का क्रमबद्ध एवं व्यवस्थित ढंग है जिससे कि अन्तसम्बन्धों का प्रदर्शन किया जा सके"।
- 3. वालिस और राबटस "सांख्यिकी के परिमाणात्मक पहलुओं के संख्यात्मक विवरण है जो मदों की गिनती या माप के रूप में व्यक्त होते हैं"।

सांख्यिकी के प्रकार

सांख्यिकी के मुख्यतः दो प्रकार प्रचलित है -

1. प्राचल सांख्यिकी

प्राचल सांख्यिकी में सभी के किसी एक विशेष प्राचल से संबंधित होता है तथा आंकड़ों के आधार पर प्राचल के संबंध में अनुमान लगाया जाता है। प्राचल सांख्यिकी में जिस प्रकार के आंकड़ों का विश्लेषण किया जाता है वह आंकड़ें न्यादर्श और सामान्य विवरण से संबंधित होते है।

2. अप्राचल सांख्यिकी

अप्राचल सांख्यिकी को वितरण मुक्त सांख्यिकी भी कहा जाता है क्योंकि कुछ आंकड़ें ऐसे भी होते है जहां न तो संयोगिक चयन होता है और न सामान्य वितरण हो। ऐसे आंकड़ों की संख्या कम होने के कारण आकड़ों का स्वरूप रूप बिगड़ा हुआ होता है और इनका एक समग्र के प्राचल से संबंध नहीं होता है। ऐसे आंकड़ों से संबंधित सांख्यिकी विधियां अप्राचल सांख्यिकी में आती हैं। माध्यिका, सहसंबंध, काई टेस्ट, माध्यिका टेस्ट ये प्रमुख सांख्यिकी विधियां है।

व्यावहारिक सांख्यिकी के मुख्यतः दो प्रकारों में बाट कर सकते है।

• वर्णनात्मक सांख्यिकी

• अनुमानिक सांख्यिकी

- 1. वर्णनात्मक सांख्यिकी वर्णनात्मक सांख्यिकी में वे विधियां आती है जिनके प्रयोग से किसी न्यादर्श की विशेषताओं का प्राप्त आंकडों के आधार पर वर्णन किया जाता है। इस प्रकार की सांख्यिकी का प्रयोग सांख्यिकी में प्रदत्तों का संकलन, संगठन, प्रस्तुतीकरण एवं परिकलन से होता हैं इसके अंतर्गत प्रदत्तों का संकलन करके सारणीबद्ध किया जाता है और प्रदत्तों की विशेषता स्पष्ट करने के लिए कुछ सरल सांख्यिकीय मानों की गणना की जाती है- जैसे केन्द्रीय प्रवृत्ति के मापकों, विचलन मापकों तथा सहसंबंध आदि का प्रयोग वर्ग की प्रकृति तथा स्थित आदि जानने के लिए किया जाता है।
- 2. अनुमानिक सांख्यिकी अनुमानिक सांख्यिकी विधियां का प्रयोग किसी जनसंख्या से लिये गए न्यादर्श के विशेष में तथ्य एकत्र करके उसके आधार पर जनसंख्या के विषय में निष्कर्ष निकालने के लिए किया जाता है। बहुधा इस सांख्यिकी की सहायता से परिणामों की वैधता जांच की जाती है। बहुधा अनुमान के लिए अपेक्षाकृत उच्च सांख्यिकी विधियों का प्रयोग किया जाता है जैसे सम्भावना नियम, मानक त्रुटि, सार्थकता, परीक्षण आदि। चूंकि समूह विस्तृत होते है तथा इनके सदस्यों की संख्या अधिक होती है अतः अध्ययनकत्र्ता अध्ययन के लिए इन बड़े समूहों से न्यादर्श को चुनकर समस्या का अध्ययन से प्राप्त निष्कर्ष सम्पूर्ण समूह का प्रतिनिधित्व करते है।

सांख्यिकी की विशेषताएं:

- 1. तथ्यों के किसी समूह अथवा उस पर आधारित निष्कर्ष को सांख्यिकी कहा जाता है। उदाहरण- किसी एक व्यक्ति की महीने की आय सांख्यिकी नहीं है बल्कि बहुत से लोगों की महीने की आय से प्राप्त औसत आय को सांख्यिकी आँकड़ा कहा जाता है।
- 2. सांख्यिकी उपयोग किसी तथ्य की गुणात्मक महत्व अर्थात अच्छा, बुरा, उचित अथवा अनुचित को व्यक्त नहीं करता है। इसके विपरीत प्रत्येक निष्कर्ष को प्रतिशत, अनुपात, औसत अथवा विचलन के रूप में संख्या के द्वारा व्यक्त किया जाता है। वास्तविक अर्थों में सांख्यिकी संख्यात्मक आँकड़ों का समूह होता है। किसी उद्योग क्षेत्र के प्रबन्धक का वेतन श्रमिकों से ज्यादा होता है, इस तथ्य द्वारा सांख्यिकी प्रकृति प्रदर्शित नहीं होती है, जबिक विभिन्न श्रेणियों के कार्मिकों की औसत मासिक आय की परस्पर तुलना तथ्यों को सांख्यिकी रूप में प्रस्तुत करेगी।
- 3. सांख्यिकी में आँकड़ों समंको का संकलन एक पूर्व निश्चित उद्देश्य को दृष्टिगत रखकर किया जाता है। सांख्यिकीय समंक यत्र-तत्र अव्यवस्थित नहीं होते लेकिन यह अति व्यवस्थित एवं योजनाबद्ध रूप में होते हैं। किसी पूर्व निर्धारित उद्देश्य की अनुपस्थिति में प्राप्त किये जाने वाले तथ्यों को संख्या कहा जा सकता है लेकिन वह आँकड़ों की श्रेणी में नहीं आते है।। जैसे किसी औद्योगिक क्षेत्र में श्रमिकों की सामाजिक आर्थिक स्थिति का अध्ययन किया जाना है तो पहले में ही उद्देश्य निर्धारित किया जाता है कि तथ्यों का संग्रहीकरण किस लक्ष्य के लिए किया जा रहा है। इस लक्ष्य के लिए कार्य घण्टे, दैनिक मजदूरी, स्वास्थ्य दशाएं, परिवार का आकार, शैक्षणिक स्तर आदि तथ्य एकत्र किये जा सकते है।

- 4. सांख्यिकी का संबंध उन आँकड़ों से भी होता है जो एक दूसरे के साथ तुलना योग्य होते है। तुलनात्मक अध्ययन के लिए तुलना की श्रेणियों में सजातीय एकरूपता का होना अनिवार्य है। उदाहरण के लिए यदि व्यक्तियों की आय की तुलना वृक्षारोपण के आँकड़ों से की जायेगी तो समरूपता न होने का कारण उन्हें सांख्यिकी मे नहीं रखा जा सकता है। उक्त उदाहरण से स्पष्ट होता है कि आँकड़ों के केवल उन समूहों को सांख्यिकी कहा जा सकता है जो परस्पर तुलना योग्य हों।
- 5. ऑकड़ों में पर्याप्त शुद्धता की उपस्थित सांख्यिकी की एक विशेष आवश्यकता होती है। इसका आशय यह है कि अध्ययन विषय की प्रकृति तथा अनुसंधान का उद्देश्य शुद्ध होना चाहिए। आँकड़ों की शुद्धता का संबंध विषय की प्रकृति एवं विशिष्ट परिस्थिति से होता है। इस परिशुद्धता का निर्धारण संमको की मात्रा अथवा संख्या से किया जाता है जिसके आधार पर एक उपयोगी निष्कर्ष निरूपित किया जा सकता है।
- 6. सांख्यिकी की इस विशेष के तहत तथ्यों का संकलन योजनापूर्ण तरीके से किया जाता है क्योंकि अव्यवस्थित आँकड़े किसी भी निष्कर्ष को वस्तुनिष्ठतापूर्वक निरूपित नहीं कर सकते हैं।
- 7. यह मालूम है कि विज्ञान होने के कारण सांख्यिकी से संबंधित आँकड़े अनेक कारणों अथवा कारकों से प्रभावित होते है। सांख्यिकी का संबंध किसी एक पक्ष मात्र के विष्लेशण से ही नहीं बल्कि उन सभी कारकों के आंकलन अथवा विवेचन से भी होता है जो किसी विशेष दशा में परिवर्तन उत्पन्न करते हैं, साथ ही घटनाओं के मध्य परस्पर सह-संबंध को व्यक्त करते हैं।
- 8. सांख्यिकी मे निहित आँकड़ों का संकलन कई पद्धतियों एवं तकनीक पर आधारित होते है। उद्देश्यपूर्ण विधि से संकलित संगणना व निदर्शन आधारित आँकड़े सांख्यिकी की विशेषता को स्पष्ट करते हैं। सीमित अनुसंधान क्षेत्र में संमको का एकत्रीकरण संगणना विधि तथा विस्तृत अनुसंधान क्षेत्र में आँकड़ों का संकलन निदर्शन अर्थात् संबधित पूर्ण इकाइयों में से कुछ प्रतिनिधि इकाइयों का चयन करके किया जाता है।
- 9. विशेष रूप से सांख्यिकी एक ऐसा विज्ञान है जो आँकड़ों के आधार पर किसी विषय से संबंधित सामान्य प्रवृत्तियों को स्पष्ट करता है। सांख्यिकी की आधारभूत मान्यता यह है कि कितपय संख्याओं के आधार पर निरूपित निष्कर्ष दूसरी संख्याओं पर लागू होता है। जैसे- यिद किसी विशेष समाज में कार्यदशाओं, स्वास्थ्य- स्तर, मासिक आय, जन्म दर, मृत्यु दर आदि आँकड़े एकत्रित कर लिये जाये तो उनके आधार पर उसी प्रकार के अन्य समाजों के लिए भी जनसंख्या संबंधी सामानय प्रवृत्तियों को समझा जा सकता है।

वर्गीकृत आंकड़े

अपरिष्कृत आँकड़ों को वर्गीकृत करने का उद्देश्य उन्हें व्यवस्थित करना है, ताकि उन्हें आसानी से आगे के सांख्यिकीय विशलेषण के योग्य बनाया जा सके। समूह या वर्ग बन जाता है।

वर्गीकृत आँकड़ों का माध्य

यदि प्रेक्षणों x_1, x_2, \ldots, x_n की बारंबारताएँ क्रमशः f_1, f_2, \ldots, f_n हों, तो इसका अर्थ है कि प्रेक्षण x_1, f_1 बार आता है प्रेक्षण x_2, f_2 बार आता है, इत्यादि।

अब, सभी प्रेक्षणों के मानों का योग = $f_1x_1+f_2x_2+\ldots+f_nx_n$ है तथा प्रेक्षणों की संख्या $f_1+f_2+\ldots+f_n$ है।

अतः, इनका माध्य x निम्नलिखित द्वारा प्राप्त होगा:

$$\mathbf{x} = rac{\mathbf{f}^1 \mathbf{x}^1 + \mathbf{f}^2 \mathbf{x}^2 + \dots + \mathbf{f_n} \mathbf{x_n}}{\mathbf{f}^1 + \mathbf{f}^2 + \dots + \mathbf{f_n}}$$
 या माध्य $\mathbf{x} = rac{\sum f_i \mathbf{x}_i}{\sum f_i}$

इसे और अधिक संक्षिप्त रूप में, $_{\rm X}=\frac{\Sigma_{\rm fix_i}}{\Sigma_{\rm fi}}$

लिखते हैं, यह समझते हुए कि i का मान 1 से n तक विचरण करता है।

हल

अब, माध्य
$$_{X}=rac{\Sigma \; f_{i}x_{i}}{\Sigma f_{i}}$$
 1779

$$=\frac{1779}{30}$$

वर्ग अंतराल

उदाहरण 1 के अवर्गीकृत आँकड़ों को चौड़ाई, मान लीजिए, 15 के वर्ग अंतराल बनाकर वर्गीकृत आँकड़ों में बदलें। याद रखिए कि वर्ग अंतरालों की बारंबारताएँ निर्दिष्ट करते समय, किसी उपिर वर्ग सीमा में आने वाले प्रेक्षण अगले वर्ग अंतराल में लिए जाते हैं। उदाहरणार्थ, अंक 40 प्राप्त करने वाले 4 विद्यार्थियों को वर्ग अंतराल 25-40 में न लेकर अंतराल 40-55 में लिया जाता है। इस परंपरा को ध्यान में रखते हुए, आइए इनकी एक वर्गीकृत बारंबारता सारणी बनाएँ:

वर्ग अंतराल	विद्यार्थियों की संख्या
10-25	2

25-40	3
40-55	7
55-70	6
70-85	6
85-100	6

मध्य बिंदु

अब, प्रत्येक वर्ग अंतराल के लिए, हमें एक ऐसे बिंदु (मान) की आवश्यकता है, जो पूरे अंतराल का प्रतिनिधित्व करे। यह मान लिया जाता है कि प्रत्येक वर्ग अंतराल की बारंबारता उसके मध्य-बिंदु के चारों ओर केंद्रित होती है। अतः, प्रत्येक वर्ग के मध्य-बिंदु या वर्ग चिह्न को उस वर्ग में आने वाले सभी प्रेक्षणों का प्रतिनिधि माना जा सकता है। याद कीजिए कि हम एक वर्ग अंतराल का मध्य बिंदु (या वर्ग चिह्न) उसकी उपिर और निचली सीमाओं का औसत निकालकर ज्ञात करते हैं। अर्थात्

वर्ग चिह्न =
$$\frac{(3 \text{पर वर्ग सीमा + निचली वर्ग सीमा})}{2}$$

उदाहरण के लिए वर्ग 10-25 के लिए वर्ग चिह्न $X_i=\frac{10-25}{2}=17.5$ है। इसी प्रकार अन्य वर्गों के लिए वर्ग चिह्न प्राप्त कर सकते हैं।

इससे हमें प्रत्येक वर्ग के लिए fixi प्राप्त हो जायेगा।

अतः, दिए हुए आँकड़ों का माध्य x, नीचे दर्शाए अनुसार प्राप्त होता है:

$$X = \frac{\sum f_i X_i}{\sum f_i} = \frac{1860}{30}$$

= 62

नोट: माध्य ज्ञात करने की इस नयी विधि को प्रत्यक्ष विधि कहा जा सकता है।

कल्पित माध्य

कभी-कभी जब x_i और f_i के मान बड़े होते हैं, तो x_i और f_i के गुणनफल ज्ञात करना जटिल हो जाता है तथा इसमें समय भी अधिक लगता है। अतः, ऐसी स्थितियों के लिए, आइए इन परिकलनों को सरल बनाने कल्पित माध्य विधि

का सहारा लेते हैं। हम fi के साथ कुछ नहीं कर सकते, परंतु हम प्रत्येक xi को एक छोटी संख्या में बदल सकते हैं, जिससे हमारे परिकलन सरल हो जाएँगे।

इसमें पहला चरण यह हो सकता है कि प्राप्त किए गए सभी x_i में से किसी x_i को किएपत माध्य के रूप में चुन लें तथा इसे "a" से व्यक्त करें। साथ ही, अपने परिकलन कार्य को और अधिक कम करने के लिए, हम "a" को ऐसा x_i ले सकते हैं जो x_1, x_2, \ldots, x_n के मध्य में कहीं आता हो। अतः, हम a=47.5 या a=62.5 चुन सकते हैं। आइए a=47.5 चुनें।

अगला चरण है कि a और प्रत्येक x_i के बीच का अंतर d_i ज्ञात किया जाए, अर्थात् प्रत्येक x_i से "a" का विचलन ज्ञात किया जाए।

अर्थात्
$$d_i = x_i - a$$

तीसरा चरण है कि प्रत्येक di और उसके संगत fi का गुणनफल ज्ञात करके सभी fi di का योग ज्ञात किया जाए।

विचलनों का माध्य
$$d = \frac{\Sigma \; f_i d_i}{\Sigma \; f_i}$$

या माध्य
$$d = \sum rac{f_i \left(x_i - a
ight)}{\Sigma_{f_i}}$$

अर्थात्
$$_{X}=rac{\left(a+\Sigma \ f_{i}d_{i}
ight) }{\Sigma \ f_{i}}$$

नोट: माध्य ज्ञात करने की उपरोक्त विधि कल्पित माध्य विधि कहलाती है।

वर्गीकृत आंकड़ों का बहुलक

बहुलक दिए हुए प्रेक्षणों में वह मान है जो सबसे अधिक बार आता है, अर्थात् उस प्रेक्षण का मान जिसकी बारंबारता अधिकतम है।

उदाहरण:

किसी गेंदबाज़ द्वारा 10 क्रिकेट मैचों में लिए गए विकिटों की संख्याएँ निम्नलिखित हैं:

2, 6, 4, 5, 0, 2, 1, 3, 2, 3

इन आँकड़ों का बहुलक ज्ञात कीजिए।

हल

आइए उपरोक्त आँकड़ों के लिए, एक बारंबारता बंटन सारणी बनाएँ, जैसा कि नीचे दर्शाया गया है:

विकेटों की संख्या	क्रिकेट मैचों की संख्या
0	1
1	1
2	3
3	2
4	1
5	1
6	1

स्पष्ट है कि गेंदबाज़ ने अधिकतम मैचों (3) में 2 विकिट लिए हैं। अतः, इन आँकड़ों का बहुलक 2 है।

बहुलक वर्ग

एक वर्गीकृत बारंबारता बंटन में, बारंबारताओं को देखकर बहुलक ज्ञात करना संभव नहीं है। यहाँ, हम केवल वह वर्ग ज्ञात कर सकते हैं जिसकी बारंबारता अधिकतम है। इस वर्ग को बहुलक वर्ग कहते हैं। बहुलक इस बहुलक वर्ग के अंदर कोई मान है, जिसे निम्नलिखित सूत्र द्वारा ज्ञात किया जाता है:

बहुलक =
$$1 + \frac{(f_1 - f_0)}{(2f_1 - f_0 - f_2)} \times h$$

जहाँ 1 = बहुलक वर्ग की निम्न (निचली) सीमा

h = वर्ग अंतराल की माप (यह मानते हुए कि सभी अंतराल बराबर मापों के हैं)

 $\mathbf{f_1} = \mathbf{a}$ हुलक वर्ग की बारंबारता

 $\mathbf{f_0} = \mathbf{a}$ हुलक वर्ग से ठीक पहले वर्ग की बारंबारता तथा

 $\mathbf{f_2} = \mathbf{a}$ बुलक वर्ग के ठीक बाद में आने वाले वर्ग की बारंबारता है।

उदाहरण:

विद्यार्थियों के एक समूह द्वारा एक मोहल्ले के 20 परिवारों पर किए गए सर्वेक्षण के परिणामस्वरूप विभिन्न परिवारों के सदस्यों की संख्या से संबंधित निम्नलिखित आँकड़े प्राप्त हुए:

परिवार माप	परिवारों की संख्या
1-3	7
3-5	8
5-7	2
7-9	2
9-11	1

इन आँकड़ों का बहुलक ज्ञात कीजिए।

हल

यहाँ, अधिकतम वर्ग बारंबारता 8 है तथा इस बारंबारता का संगत वर्ग 3-5 है। अतः, बहुलक वर्ग 3-5 है। अब, बहुलक वर्ग =3-5, बहुलक वर्ग की निम्न सीमा (1)=3 तथा वर्ग माप (h)=2 है। बहुलक वर्ग की बारंबारता $(f_1)=8$

बहुलक वर्ग से ठीक पहले वाले वर्ग की बारंबारता $(f_0) = 7$ तथा

बहुलक वर्ग के ठीक बाद में आने वाले वर्ग की बारंबारता $(f_2) = 2$ है।

आइए इन मानों को सूत्र में प्रतिस्थापित करें। हमें प्राप्त होता है:

ৰাষ্ট্ৰলেক =
$$1 + \frac{(f_1 - f_0)}{(2f_1 - f_0 - f_2)} \times h$$

= $3 + \frac{8 - 7}{2 \times 8 - 7 - 2} \times 2$
= $3 + \frac{1}{7} \times 2$
= $\frac{23}{7} = 3.286$

अतः, उपरोक्त आँकड़ों का बहुलक 3.286 है।

वर्गीकृत आँकड़ों का माध्यक

माध्यक (उमकपंद) केंद्रीय प्रवृत्ति का ऐसा मापक है, जो आँकड़ों में सबसे बीच के प्रेक्षण का मान देता है। अवर्गीकृत आँकड़ों का माध्यक ज्ञात करने के लिए, पहले हम प्रेक्षणों के मानों को आरोही क्रम में व्यवस्थित करते हैं। अब, यदि n विषम है, तो माध्यक (n+1)/2 वें प्रेक्षण का मान होता है। यदि n सम है, तो माध्यक n वें और n/2+1 वें प्रेक्षणों के मानों का औसत (माध्य) होता है।

संचयी बारंबारता

वर्गीकृत आँकड़ों का माध्य ज्ञात करने के लिए, यह कल्पना की जाती है कि प्रत्येक वर्ग अंतराल की बारंबारता उसके मध्य-बिंदु पर केंद्रित होती है। माध्य (x) = 0, जहाँ x, (वर्ग चिह्न) n वें वर्ग अंतराल का मध्य-बिंदु है तथा f उसकी संगत बारंबारता है।

माध्यक वर्ग

इस अंतराल को ज्ञात करने के लिए, हम सभी वर्गों की संचयी बारंबारताएँ और n/2 ज्ञात करते हैं। अब, हम वह वर्ग खोजते हैं जिसकी संचयी बारंबारता n/2 से अधिक और उसके निकटतम है। इस वर्ग को माध्यक वर्ग कहते हैं।

माध्यक वर्ग ज्ञात करने के बाद, हम निम्नलिखित सूत्र का प्रयोग करके माध्यक ज्ञात करते हैं:

माध्यक = $1 + (n/2 - cf)/f \times h$

जहाँ 1 = माध्यक वर्ग की निम्न सीमा

n = प्रेक्षणों की संख्या

cf = माध्यक वर्ग से ठीक पहले वाले वर्ग की संचयी बारंबारता

f = माध्यक वर्ग की बारंबारता

h = वर्ग माप (यह मानते हुए कि वर्ग माप बराबर हैं)

माध्यक का उदाहरण

1. किसी स्कूल की कक्षा ग् की 51 लड़िकयों की ऊँचाइयों का एक सर्वेक्षण किया गया और निम्नलिखित आँकड़े प्राप्त किए गए:

ऊंचाई (cm) में लड़िकयों की संख्या

- 140 से कम 4
- 145 से कम 11
- 150 से कम 29
- 155 से कम 40

- 160 से कम 46
- o 165 से कम 51

माध्यक ऊँचाई ज्ञात कीजिए।

हल

माध्यक ऊँचाई ज्ञात करने के लिए, हमें वर्ग अंतराल और उनकी बारंबारताओं की आवश्यकता है। चूँिक दिया हुआ बंटन कम प्रकार का है, इसलिए हमें वर्ग अंतरालों की उपिर सीमाएँ 140, 145, 150,, 165 प्राप्त होती हैं तथा इनके संगत वर्ग अंतराल क्रमशः 140 से कम, 140-145, 145-150,, 160-165 हैं। दिए हुए बंटन से, हम देखते हैं कि ऐसी 4 लड़िकयाँ हैं जिनकी ऊँचाई 140 से कम है, अर्थात् वर्ग अंतराल 140 से कम की बारंबारता 4 है। अब 145 cm से कम ऊँचाई वाली 11 लड़िकयाँ हैं और 140 cm से कम ऊँचाई वाली 4 लड़िकयाँ हैं। अतः, अंतराल 140 – 145 में ऊँचाई रखने वाली लड़िकयों की संख्या 11 – 4 = 7 होगी। अर्थात् वर्ग अंतराल 140 – 145 की बारंबारता 7 है। इसी प्रकार, 145 – 150 की बारंबारता 29 – 11 = 18 है, 150 – 155 की बारंबारता 40 – 29 = 11 है, इत्यादि। अतः संचयी बारंबारताओं के साथ हमारी बारंबारता बंटन सारणी निम्नलिखित रूप की हो जाती है:

वर्ग अंतराल बारंबारता संचयी बारंबारता

- 140 से कम 4 4
- 0 140 145 7 11
- 0 145 -150 18 29
- 0 150 155 11 40
- 0 155 160 6 46
- 0 160 165 5 51

अब n = 51 है। अत:, n/2 = 51/2 = 25.5 है। यह प्रेक्षण अंतराल 145 – 150 में आता है। तब, 1 (निम्न सीमा) = 145, माध्यक वर्ग 145 – 150 के ठीक पहले वर्ग की संचयी बारंबारता (cf) = 11,

माध्यक वर्ग 145 - 150 की बारंबारता f = 18 तथा वर्ग माप h = 5 है।

सूत्र, माध्यक = $1 + (n/2 - cf)/f \times h$ का प्रयोग करने पर, हमें प्राप्त होता है:

माध्यक = $145 + (25.5 - 11)/18 \times 5$

= 145 + 72.5/18 = 149.03

अतः, लड़िकयों की माध्यक ऊँचाई 149.03 cm है।

इसका अर्थ है कि लगभग 50% लड़िकयों की ऊँचाइयाँ 149.03 cm से कम या उसके बराबर है तथा शेष 50% की ऊँचाइयाँ 149.03 cm से अधिक है।

2. विधार्थियों के एक समूह द्वारा अपने पर्यावरण संचेतना अभियान के अन्तर्गत एक सर्वेक्षण किया गया, जिसमें उन्होंने एक मोहल्ले के 20 घरों में लगे हुए पौधों से संबंधित निम्नलिखित आँकड़े एकत्रित किए | प्रति घर पौधों की संख्या ज्ञात कीजिए |

पौधों की संख्या	0-2	2-4	4-6	6-8	8-10	10-12	12-14
घरों की संख्या	1	2	1	5	6	2	3

माध्य ज्ञात करने के लिए आपने किस विधि का प्रयोग किया और क्यों ?

हल

वर्ग चिन्ह (xi) =
$$\frac{5 \pi u}{2} \frac{3 \pi u}{2} \frac{3 \pi u}{2}$$
 fixi = (fi) × (xi) \Rightarrow 1 × 1 = 1

पौधों की संख्या C-I	घरों की संख्या (fi)	Xi	fixi
0 - 2	1	1	1
2 - 4	2	3	6
4 - 6	1	5	5
6-8	5	7	35
8 - 10	6	9	54
10 - 12	2	11	22
12 - 14	3	13	39
Total	$\sum fi = 20$		$\sum fixi = 162$

माध्य
$$(\overline{X}) = \frac{\sum fixi}{\sum fi} = \frac{162}{20} = 8.1$$

किसी फैक्ट्री के 50 श्रमिकों मज़दूरी के निम्नलिखित बंटन पर विचार कीजिए :

दैनिक मज़दूरी (रुपयों में)	100-120	120-140	140-160	160 - 180	180 - 200
श्रमिकों की संख्या	12	14	8	6	10

एक उपयुक्त विधि का प्रयोग करते हुए, इस फैक्ट्री के श्रमिकों की माध्य दैनिक मज़दूरी ज्ञात कीजिए | हल : प्रत्येक अंतराल के लिए वर्ग-चिन्ह को इस सूत्र से ज्ञात करेंगे

दैनिकमजदूरी (रुपयों में)	श्रमिकों की संख्या	xi	di = xi - a	fidi
100 - 120	12	110	110 - 150 = - 40	- 480
120 - 140	14	130	130 - 150 = - 20	- 280
140 - 160	8	a =150	150 - 150 = 0	0
160 - 180	6	170	170 - 150 = 20	120
180 - 200	10	190	190 - 150 = 40	400
कुल (Total)	Σfi = 50			Σfidi = -240

कल्पित माध्य विधि (Assume mean Method) से

$$\Sigma$$
fidi = $-480 + -280 + 0 + 120 + 400 = -760 + 520 = -240$

$$\Sigma fi = 50$$
 और $a = 150$

माध्य
$$(\overline{X}) = a + \frac{\sum fixi}{\sum fi}$$

$$= 150 + \frac{-240}{50}$$

$$= 150 + \frac{-24}{5}$$

$$= 150 + (-4.8)$$

$$= 145.2$$

1. निम्नलिखित बंटन एक मोहल्ले के बच्चों के दैनिक जेबखर्च दर्शाता है | माध्य जेबखर्च 18 रू है | लुप्त बारंबारता f ज्ञात कीजिए :

वैनिक जेब भत्ता (रुपयों में)	11 - 13	13 - 15	15-17	17-19	19-21	21-23	23-25
बच्चों की संख्या	7	6	9	13	f	5	4

हल :

दैनिक जेब भत्ता (रुपयों में)	बच्चों की संख्या	Xi	$d_i = x_i - a$	fidi
11 - 13	7	12	12 - 18 = - 6	- 42
13 - 15	6	14	14 - 18 = - 4	- 24
15 - 17	9	16	16 - 18 = - 2	- 18
17 - 19	13	a = 18	18 - 18 = 0	0
19 - 21	f	20	20 - 18 = 2	2f
21 - 23	5	22	22 - 18 = 4	20
23 - 25	4	24	24 - 18 = 6	24
कुल (Total)	$\Sigma f_i = 44 + f$			2f - 40

किल्पत माध्य विधि (Assume mean Method) से

 $\Sigma fidi = 2f - 40, \ \Sigma fi = 44 + f$ और a = 18,

माध्य जेब खर्च
$$(\overline{X}) = ₹18$$
माध्य $(\overline{X}) = a + \frac{\sum fixi}{\sum fi}$

$$18 = 18 + \frac{2f - 40}{44 + f}$$

$$18 - 18 = \frac{2f - 40}{44 + f}$$

$$\frac{0}{1} = \frac{2f - 40}{44 + f}$$

$$2f - 40 = 0$$

$$2f = 40$$

$$f = \frac{40}{2} = 20$$

$$f = 20$$

अतः लुप्त बारंबारता 20 है |

3. किसी अस्पताल में, एक डॉक्टर द्वारा 30 महिलाओं की जाँच की गई और उनके हृदय स्पंदन (beat) की प्रति मिनट संख्या नोट करके नीचे दर्शाए अनुसार संक्षिप्त रूप में लिखी गई। एक उपयुक्त विधि चुनते हुए, इन महिलाओं के हृदय स्पंदन की प्रति मिनट माध्य संख्या ज्ञात कीजिए :

हृदय स्पंदन की प्रति मिनट संख्या	65 - 68	68 - 71	71-74	74-77	77-80	80 - 83	83 - 86
महिलाओं की संख्या	2	4	3	8	7	4	2

हल:

ह्रदय स्पंदन की प्रति मिनट संख्या	महिलाओं की संख्या (fi)	x_i	$d_i = x_i - a$	f_id_i
65 - 68	2	66.5	- 9	- 18
68 - 71	4	69.5	- 6	- 24
71 - 74	3	72.5	- 3	- 9
74 - 77	8	a = 75.5	0	0
77 - 80	7	78.5	3	21
80 - 83	4	81.5	6	24
83 - 86	2	84.5	9	18
Total	$\Sigma f_i = 30$		5	12

कल्पित माध्य विधि (Assume mean Method) से

$$\Sigma$$
fidi = 12, Σ fi = 30 और $a = 75.5$,

माध्य
$$(\overline{X}) = a + \frac{\sum fixi}{\sum fi}$$

$$= 75.5 + \frac{12}{30}$$

$$= 75.5 + \frac{4}{10}$$

$$= 75.5 + 0.4$$

$$= 75.9$$

अत: महिलाओं के ह्रदय स्पंदन की प्रति मिनट माध्य संख्या = 75.9 है |

4. किसी फुटकर बाज़ार में, फल विक्रेता पेटियों में रखे आम बेच रहें थे | इन पेटियों में आमों की संख्याएँ भिन्न – भिन्न थी | पेटियों की संख्या के अनुसार, आमों का बंटन निम्नलिखित था :

आमों की संख्या	50-52	53-55	56-58	59-61	62-64
पेटियों की संख्या	15	110	135	115	25

एक पेटी में रखे आमों की माध्य संख्या ज्ञात कीजिए | आपने माध्य ज्ञात करने की किस विधि का प्रयोग किया है ?

हल:

दी गयी श्रृंखला समावेशी (inclusive) है जहाँ वर्ग-अंतरालों में 1 का अंतर है | अत: दी गयी श्रृंखला को अपवर्जी (exclusive) श्रृंखला में बदलेंगे |

$$53 - 52 = 1$$

अत: $\frac{1}{2}$ = 0.5 और अब निम्न सीमा में से 0.5 घटाने और उच्च सीमा में 0.5 जोड़ने पर :

आमों की संख्या	पेटियों की संख्या (/¡)	x_i	$d_i = x_i - a$	$u_i = \frac{di}{h}, \ h = 3$	f_id_i
49.5 - 52.5	15	51	- 6	$\frac{-6}{3} = -2$	- 30
52.5 - 55.5	110	54	- 3	$\frac{-3}{3} = -1$	- 110
55.5 - 58.5	135	a = 57	0	$\frac{0}{3} = 0$	0
58.5 - 61.5	115	60	3	$\frac{3}{3} = 1$	115
61.5 - 64.5	25	63	6	$\frac{6}{3} = 2$	50
Total	400				25

पग-विचलन विधि (Step-deviation Method) से माध्य :

$$\Sigma fiui = 25, \Sigma fi = 400, h = 3, a = 57$$

पग-विचलन विधि के सूत्र में उपरोक्त मानों (values) को रखने पर

ਸਾध्य
$$\overline{(X)}$$
 = $a + \left(\frac{\sum fiui}{\sum fi}\right) \times h$
= $57 + \left(\frac{25}{400}\right) \times 3$
= $57 + \left(\frac{1}{16}\right) \times 3$
= $57 + \left(\frac{3}{16}\right)$

$$= 57 + 0.1875$$

आमों की माध्य संख्या = 57.19

5. निम्नलिखित सारणी किसी मोहल्ले के 25 परिवारों में भोजन पर हुए दैनिक व्यय को दर्शाती है:

दैनिक व्यय (रुपयों में)	100-150	150-200	200-250	250-300	300-350
परिवारों की संख्या	4	5	12	2	2

एक उपयुक्त विधि द्वारा भोजन पर हुआ माध्य व्यय ज्ञात कीजिए।

हल:

दैनिक ट्यय (रुपयों में)	परिवारों की संख्या (fi)	x_i	$d_i = x_i - a$	$u_i = \frac{di}{h},$ $h = 50$	f_id_i
100 - 150	4	125	- 100	$\frac{-100}{50} = -2$	- 8
150 - 200	5	175	- 50	$\frac{-50}{50} = -1$	- 5
200 - 300	12	a = 225	0	$\frac{0}{50} = 0$	0
300 - 350	2	275	50	$\frac{50}{50} = 1$	2
350 - 400	2	325	100	$\frac{100}{50} = 2$	4
Total	25				- 7

पग-विचलन विधि (Step-deviation Method) से माध्य :

$$\Sigma$$
fiui = -7, Σ fi = 25, h = 50, a = 225

पग-विचलन विधि के सूत्र में उपरोक्त मानों (values) को रखने पर

माध्य
$$(\overline{X})$$
 = $a + \left(\frac{\sum fiui}{\sum fi}\right) \times h$
= $225 + \left(\frac{-7}{25}\right) \times 50$
= $225 + (-14)$
= 211

भोजन पर हुआ माध्य व्यय = ₹211

6. वायु में सल्फर डाई – ऑक्साइड (SO) की सान्द्रता (भाग प्रति मिलियन में) को ज्ञात करने के लिए, एक नगर के मोहल्लों से आँकड़े एकत्रित किए गये, जिन्हें नीचे प्रस्तुत किया गया है :

SO₂ की सांद्रता	बारंबारता
0.00 - 0.04	4
0.04-0.08	9
0.08 - 0.12	9
0.12 - 0.16	2
0.16 - 0.20	4
0.20 - 0.24	2

वायु में SO_2 की सांद्रता का माध्य ज्ञात कीजिए |

हल:

SO₂ की सांद्रता	बारंबारता (<i>fi</i>)	x_i	$d_i = x_i - a$	$u_i = \frac{di}{h}, \ h = 0.04$	f_id_i
0.00 - 0.04	4	0.02	- 0.12	$\frac{-0.12}{0.04} = -3$	- 12
0.04 - 0.08	9	0.06	- 0.08	$\frac{-0.08}{0.04} = -2$	- 18
0.08 - 0.12	9	0.10	- 0.04	$\frac{-0.04}{0.04} = -1$	- 9
0.12 - 0.16	2	a = 0.14	0	0	0
0.16 - 0.20	4	0.18	0.04	$\frac{0.04}{0.04} = 1$	4
0.20 - 0.24	2	0.22	0.08	$\frac{0.08}{0.04} = 2$	4
Total	30				- 31

पग-विचलन विधि (Step-deviation Method) से माध्य :

$$\Sigma fiui = -31$$
, $\Sigma fi = 30$, $h = 0.04$, $a = 0.14$

पग-विचलन विधि के सूत्र में उपरोक्त मानों (values) को रखने पर

माध्य
$$(\overline{X}) = a + \left(\frac{\sum fiui}{\sum fi}\right) \times h$$

$$= 0.14 + \left(\frac{-31}{30}\right) \times 0.04$$

$$= 0.14 + (-0.04133)$$

$$= 0.14 - 0.041$$

$$= 0.099$$

वायु में सल्फर डाई-ऑक्साइड (SO) की सान्द्रता का माध्य = 0.099

किसी कक्षा अध्यापिका ने पुरे सत्र के लिए अपनी कक्षा के 40 विधार्थियों कि अनुपस्थिति निम्नलिखित रूप में रिकॉर्ड (record) की | एक विधार्थी जितने दिन अनुपस्थित रहा उनका माध्य ज्ञात कीजिए :

दिनों की संख्या	0-6	6-10	10-14	14-20	20-28	28 - 38	38-40
विद्यार्थियों की संख्या	11	10	7	4	4	3	1

हल:

दिनों की संख्या	विद्यार्थियों की संख्या (fi)	x_i	$d_i = x_i - a$	f_id_i
0 – 6	11	3	- 14	- 154
6 –10	10	8	- 9	- 90
10 – 14	7	12	- 5	- 35
14 – 20	4	a = 17	0	0
20 – 28	4	24	7	28
28 - 38	3	33	16	48
38 – 40	1	39	22	22
Total	$\Sigma f_i = 40$			- 181

कल्पित माध्य विधि (Assume mean Method) से

$$\Sigma f_i d_i = -181$$
, $\Sigma f_i = 40$ और $a = 17$,

माध्य
$$(\overline{X}) = a + \frac{\sum fixi}{\sum fi}$$

$$= 17 + \frac{-181}{40}$$

$$= 17 + (-4.525)$$

$$= 12.475$$

$$= 12.48$$

विद्यार्थी की अनुपस्थित का माध्य = 12.48 दिन

निम्नलिखित सारणी 35 नगरों कि साक्षरता दर (प्रतिशत में) दर्शाती है | माध्य साक्षरता दर ज्ञात कीजिए :

साक्षरता दर (% में)	45-55	55-65	65-75	75-85	85-95
नगरों की संख्या	3	10	11	8	3

हल :

साक्षरता दर (%) में	नगरों की संख्या (fi)	x_i	$d_i = x_i - a$	$u_i = \frac{di}{h}, \ h = 10$	f_id_i
45 – 55	3	50	- 20	-2	- 6
55 – 65	10	60	- 10	- 1	- 10
65 – 75	11	a= 70	-0	0	0
75 – 85	8	80	10	1	8
85 – 95	3	90	20	2	6
Total	35				-2

विचलन विधि (Step-deviation Method) से माध्य :

$$\Sigma$$
fiui = -2 , Σ fi = 35 , $h = 10$, $a = 70$

पग-विचलन विधि के सूत्र में उपरोक्त मानों (values) को रखने पर

माध्य
$$(\overline{X}) = a + \left(\frac{\sum fiui}{\sum fi}\right) \times h$$

$$= 70 + \left(\frac{-2}{35}\right) \times 10$$

$$= 70 + \left(\frac{-4}{7}\right)$$

$$= 70 + (-0.57)$$

$$= 70 - 0.57$$

$$= 69.43$$

अत: माध्य साक्षरता दर = 69.43 %

1. विधार्थियों के एक समूह द्वारा अपने पर्यावरण संचेतना अभियान के अन्तर्गत एक सर्वेक्षण किया गया, जिसमें उन्होंने एक मोहल्ले के 20 घरों में लगे हुए पौधों से संबंधित निम्नलिखित आँकड़े एकत्रित किए | प्रति घर पौधों की संख्या ज्ञात कीजिए |

पौधों की संख्या	0-2	2-4	4-6	6-8	8-10	10-12	12-14
घरों की संख्या	1	2	1	5	6	2	3

माध्य ज्ञात करने के लिए आपने किस विधि का प्रयोग किया और क्यों ?

हल :

वर्ग चिन्ह (xi) =
$$\frac{5\pi u}{2}$$
 सीमा + निम्न सीमा $\frac{3\pi u}{2}$ fixi = (fi) × (xi) \Rightarrow 1 × 1 = 1

पौधों की संख्या C-I	घरों की संख्या (fi)	Xi	fixi
0 - 2	1	1	1
2 - 4	2	3	6
4 - 6	1	5	5
6-8	5	7	35
8 - 10	6	9	54
10 - 12	2	11	22
12 - 14	3	13	39
Total	$\sum fi = 20$		$\sum fixi = 162$

माध्य
$$(\overline{X}) = \frac{\sum fixi}{\sum fi} = \frac{162}{20} = 8.1$$

किसी फैक्ट्री के 50 श्रमिकों मज़दूरी के निम्नलिखित बंटन पर विचार कीजिए :

दैनिक मज़दूरी (रुपयों में)	100-120	120-140	140 - 160	160 - 180	180 - 200
श्रमिकों की संख्या	12	14	8	6	10

एक उपयुक्त विधि का प्रयोग करते हुए, इस फैक्ट्री के श्रमिकों की माध्य दैनिक मज़दूरी ज्ञात कीजिए।

हल : प्रत्येक अंतराल के लिए वर्ग-चिन्ह को इस सूत्र से ज्ञात करेंगे

दैनिकमजदूरी (रुपयों में)	श्रमिकों की संख्या	xi	di = xi - a	fidi
100 - 120	12	110	110 - 150 = - 40	- 480
120 - 140	14	130	130 - 150 = - 20	- 280
140 - 160	8	a =150	150 - 150 = 0	0
160 - 180	6	170	170 - 150 = 20	120
180 - 200	10	190	190 - 150 = 40	400
कुल (Total)	Σfi = 50			Σfidi = -240

कल्पित माध्य विधि (Assume mean Method) से

$$\Sigma$$
fidi = $-480 + -280 + 0 + 120 + 400 = -760 + 520 = -240$

$$\Sigma fi = 50$$
 और $a = 150$

माध्य
$$(\overline{X}) = a + \frac{\sum fixi}{\sum fi}$$

$$= 150 + \frac{-240}{50}$$

$$= 150 + \frac{-24}{5}$$

$$= 150 + (-4.8)$$

$$= 145.2$$

निम्नलिखित बंटन एक मोहल्ले के बच्चों के दैनिक जेबखर्च दर्शाता है | माध्य जेबखर्च 18 रू है | लुप्त बारंबारता f ज्ञात कीजिए :

वैनिक जेब भत्ता (रुपयों में)	11 - 13	13 - 15	15-17	17-19	19-21	21-23	23-25
बच्चों की संख्या	7	6	9	13	f	5	4

हल:

दैनिक जेब भत्ता (रुपयों में)	बच्चों की संख्या	X i	$d_i = x_i - a$	fidi
11 - 13	7	12	12 - 18 = - 6	- 42
13 - 15	6	14	14 - 18 = - 4	- 24
15 - 17	9	16	16 - 18 = - 2	- 18
17 - 19	13	a = 18	18 - 18 = 0	0
19 - 21	f	20	20 - 18 = 2	2f
21 - 23	5	22	22 - 18 = 4	20
23 - 25	4	24	24 - 18 = 6	24
कुल (Total)	$\Sigma f_i = 44 + f$			2f - 40

किल्पत माध्य विधि (Assume mean Method) से

$$\Sigma$$
 fidi = 2f - 40, Σ fi = 44 + f और $a = 18$,

माध्य
$$(\overline{X}) = a + \frac{\sum fixi}{\sum fi}$$

$$18 = 18 + \frac{2f - 40}{44 + f}$$

$$18 - 18 = \frac{2f - 40}{44 + f}$$

$$\frac{0}{1} = \frac{2f - 40}{44 + f}$$

$$2f - 40 = 0$$

$$2f = 40$$

$$f = \frac{40}{2} = 20$$

$$f = 20$$

अतः लुप्त बारंबारता 20 है |

किसी अस्पताल में, एक डॉक्टर द्वारा 30 महिलाओं की जाँच की गई और उनके ह्रदय स्पंदन (beat) की प्रित मिनट संख्या नोट करके नीचे दर्शाए अनुसार संक्षिप्त रूप में लिखी गई | एक उपयुक्त विधि चुनते हुए, इन महिलाओं के ह्रदय स्पंदन की प्रित मिनट माध्य संख्या ज्ञात कीजिए :

हृदय स्पंदन की प्रति मिनट संख्या	65 - 68	68-71	71-74	74-77	77 - 80	80-83	83 - 86
महिलाओं की संख्या	2	4	3	8	7	4	2

हल:

ह्रदय स्पंदन की प्रति मिनट संख्या	महिलाओं की संख्या (fi)	x_i	$d_i = x_i - a$	f_id_i
65 - 68	2	66.5	- 9	- 18
68 - 71	4	69.5	- 6	- 24
71 - 74	3	72.5	- 3	- 9
74 - 77	8	a = 75.5	0	0
77 - 80	7	78.5	3	21
80 - 83	4	81.5	6	24
83 - 86	2	84.5	9	18
Total	$\Sigma f_i = 30$		is.	12

कल्पित माध्य विधि (Assume mean Method) से

$$\Sigma$$
fidi = 12, Σ fi = 30 और $a = 75.5$,

माध्य
$$(\overline{X}) = a + \frac{\sum fixi}{\sum fi}$$

$$= 75.5 + \frac{12}{30}$$

$$= 75.5 + \frac{4}{10}$$

$$= 75.5 + 0.4$$

$$= 75.9$$

अत: महिलाओं के ह्रदय स्पंदन की प्रति मिनट माध्य संख्या = 75.9 है |

किसी फुटकर बाज़ार में, फल विक्रेता पेटियों में रखे आम बेच रहें थे | इन पेटियों में आमों की संख्याएँ भिन्न – भिन्न थी | पेटियों की संख्या के अनुसार, आमों का बंटन निम्नलिखित था :

आमों की संख्या	50-52	53 - 55	56-58	59-61	62-64
पेटियों की संख्या	15	110	135	115	25

एक पेटी में रखे आमों की माध्य संख्या ज्ञात कीजिए | आपने माध्य ज्ञात करने की किस विधि का प्रयोग किया है ? हल:

दी गयी श्रृंखला समावेशी (inclusive) है जहाँ वर्ग-अंतरालों में 1 का अंतर है | अत: दी गयी श्रृंखला को अपवर्जी (exclusive) श्रृंखला में बदलेंगे |

$$53 - 52 = 1$$

अतः $\frac{1}{2} = 0.5$ और अब निम्न सीमा में से 0.5 घटाने और उच्च सीमा में 0.5 जोड़ने पर :

आमों की संख्या	पेटियों की संख्या (fi)	x_i	$d_i = x_i - a$	$u_i = \frac{di}{h}, \ h = 3$	f_id_i
49.5 - 52.5	15	51	- 6	$\frac{-6}{3} = -2$	- 30
52.5 - 55.5	110	54	- 3	$\frac{-3}{3} = -1$	- 110
55.5 - 58.5	135	a = 57	0	$\frac{0}{3} = 0$	0
58.5 - 61.5	115	60	3	$\frac{3}{3} = 1$	115
61.5 - 64.5	25	63	6	$\frac{6}{3} = 2$	50
Total	400				25

पग-विचलन विधि (Step-deviation Method) से माध्य :

$$\Sigma fiui = 25, \Sigma fi = 400, h = 3, a = 57$$

पग-विचलन विधि के सूत्र में उपरोक्त मानों (values) को रखने पर

ਸਾਇਬ
$$(\overline{X})$$
 = $a + \left(\frac{\sum fiui}{\sum fi}\right) \times h$
= $57 + \left(\frac{25}{400}\right) \times 3$
= $57 + \left(\frac{1}{16}\right) \times 3$
= $57 + \left(\frac{3}{16}\right)$

$$57 + 0.1875$$

आमों की माध्य संख्या = 57.19

निम्नलिखित सारणी किसी मोहल्ले के 25 परिवारों में भोजन पर हुए दैनिक व्यय को दर्शाती है:

वैनिक व्यय (रुपयों में)	100-150	150-200	200-250	250-300	300-350
परिवारों की संख्या	4	5	12	2	2

एक उपयुक्त विधि द्वारा भोजन पर हुआ माध्य व्यय ज्ञात कीजिए |

हल :

दैनिक ट्यय (रुपयों में)	परिवारों की संख्या (fi)	x_i	$d_i = x_i - a$	$u_i = \frac{di}{h},$ $h = 50$	f_id_i
100 - 150	4	125	- 100	$\frac{-100}{50} = -2$	- 8
150 - 200	5	175	- 50	$\frac{-50}{50} = -1$	- 5
200 - 300	12	a = 225	0	$\frac{0}{50} = 0$	0
300 - 350	2	275	50	$\frac{50}{50} = 1$	2
350 - 400	2	325	100	$\frac{100}{50} = 2$	4
Total	25				-7

पग-विचलन विधि (Step-deviation Method) से माध्य :

$$\Sigma$$
fiui = -7, Σ fi = 25, h = 50, a = 225

पग-विचलन विधि के सूत्र में उपरोक्त मानों (values) को रखने पर

माध्य
$$(\overline{X})$$
 = $a + \left(\frac{\sum fiui}{\sum fi}\right) \times h$
= $225 + \left(\frac{-7}{25}\right) \times 50$
= $225 + (-14)$
= 211

भोजन पर हुआ माध्य व्यय = ₹211

वायु में सल्फर डाई – ऑक्साइड (SO) की सान्द्रता (भाग प्रति मिलियन में) को ज्ञात करने के लिए, एक नगर के मोहल्लों से ऑकड़े एकत्रित किए गये, जिन्हें नीचे प्रस्तुत किया गया है:

SO₂ की सांद्रता	वारंवारता
0.00 - 0.04	4
0.04 - 0.08	9
0.08 - 0.12	9
0.12 - 0.16	2
0.16 - 0.20	4
0.20 - 0.24	2

वायु में SO_2 की सांद्रता का माध्य ज्ञात कीजिए |

हल :

SO ₂ की सांद्रता	बारंबारता (<i>fi</i>)	x_i	$d_i = x_i - a$	$u_i = \frac{di}{h}, \ h = 0.04$	f_id_i
0.00 - 0.04	4	0.02	- 0.12	$\frac{-0.12}{0.04} = -3$	- 12
0.04 - 0.08	9	0.06	- 0.08	$\frac{-0.08}{0.04} = -2$	- 18
0.08 - 0.12	9	0.10	- 0.04	$\frac{-0.04}{0.04} = -1$	- 9
0.12 - 0.16	2	a = 0.14	0	0	0
0.16 - 0.20	4	0.18	0.04	$\frac{0.04}{0.04} = 1$	4
0.20 - 0.24	2	0.22	0.08	$\frac{0.08}{0.04} = 2$	4
Total	30				- 31

पग-विचलन विधि (Step-deviation Method) से माध्य :

$$\Sigma fiui = -31,\, \Sigma fi = 30,\, h = 0.04$$
 , $a = 0.14$

पग-विचलन विधि के सूत्र में उपरोक्त मानों (values) को रखने पर

माध्य
$$(\overline{X}) = a + \left(\frac{\sum fiui}{\sum fi}\right) \times h$$

$$= 0.14 + \left(\frac{-31}{30}\right) \times 0.04$$

$$= 0.14 + (-0.04133)$$

$$= 0.14 - 0.041$$

$$= 0.099$$

वायु में सल्फर डाई-ऑक्साइड (SO) की सान्द्रता का माध्य = 0.099

किसी कक्षा अध्यापिका ने पुरे सत्र के लिए अपनी कक्षा के 40 विधार्थियों कि अनुपस्थिति निम्नलिखित रूप में रिकॉर्ड (record) की | एक विधार्थी जितने दिन अनुपस्थित रहा उनका माध्य ज्ञात कीजिए :

दिनों की संख्या	0-6	6-10	10-14	14-20	20-28	28 - 38	38-40
विद्यार्थियों की संख्या	11	10	7	4	4	3	1

हल:

दिनों की संख्या	विद्यार्थियों की संख्या (fi)	x_i	$d_i = x_i - a$	f_id_i
0 – 6	11	3	- 14	- 154
6 –10	10	8	- 9	- 90
10 – 14	7	12	- 5	- 35
14 – 20	4	a = 17	0	0
20 – 28	4	24	7	28
28 - 38	3	33	16	48
38 – 40	1	39	22	22
Total	$\Sigma f_i = 40$			- 181

कल्पित माध्य विधि (Assume mean Method) से

$$\Sigma f_i d_i = -181$$
, $\Sigma f_i = 40$ और $a = 17$,

माध्य
$$(\overline{X}) = a + \frac{\sum fixi}{\sum fi}$$

$$= 17 + \frac{-181}{40}$$

$$= 17 + (-4.525)$$

$$= 12.475$$

$$= 12.48$$

विद्यार्थी की अनुपस्थित का माध्य = 12.48 दिन

निम्नलिखित सारणी 35 नगरों कि साक्षरता दर (प्रतिशत में) दर्शाती है | माध्य साक्षरता दर ज्ञात कीजिए :

साक्षरता दर (% में)	45-55	55-65	65-75	75-85	85-95
नगरों की संख्या	3	10	11	8	3

हल :

साक्षरता दर (%) में	नगरों की संख्या (fi)	x_i	$d_i = x_i - a$	$u_i = \frac{di}{h}, \ h = 10$	f _i d _i
45 – 55	3	50	- 20	-2	- 6
55 – 65	10	60	- 10	– 1	- 10
65 – 75	11	a= 70	- 0	0	0
75 – 85	8	80	10	1	8
85 – 95	3	90	20	2	6
Total	35				-2

पग-विचलन विधि (Step-deviation Method) से माध्य :

$$\Sigma \text{fiui} = -2, \ \Sigma \text{fi} = 35, \ h = 10, \ a = 70$$

पग-विचलन विधि के सूत्र में उपरोक्त मानों (values) को रखने पर

माध्य
$$(\overline{X}) = a + \left(\frac{\sum fiui}{\sum fi}\right) \times h$$

$$= 70 + \left(\frac{-2}{35}\right) \times 10$$

$$= 70 + \left(\frac{-4}{7}\right)$$

$$= 70 + (-0.57)$$

$$= 70 - 0.57$$

$$= 69.43$$

अत: माध्य साक्षरता दर = 69.43 %

निम्नलिखित बारंबारता बंटन किसी मोहल्ले के 68 उपभोक्ताओं की बिजली कि मासिक खपत दर्शाता है | इन ऑकड़ों के Ex माध्यक, माध्य और बहुलक ज्ञात कीजिए | इनकी तुलना कीजिए |

मासिक खपत (इकाइयों में)	उपभोक्ताओं की संख्या
65 - 85	4
85 - 105	5
105 - 125	13
125 - 145	20
145 - 165	14
165 - 185	8
185 - 205	4

हल :

मासिक खपत (इकाइयों में)	उपभोक्ताओं की संख्या	X i	संचयी बारंबारता (c.f)	$d_i = \mathbf{x}_i - \mathbf{a}$	$u_i = \frac{d_i}{h},$ $h = 20$	f _i u _i
65 - 85	4	75	4	- 60	- 3	- 12
85 - 105	5	95	4 + 5 = 9	- 40	- 2	- 10
105 - 125	13 = f _o	115	9 + 13 = 22	- 20	- 1	- 13
125 - 145	$20 = f_1$	135=a	22 + 20 = 42	0	0	0
145 - 165	$14 = f_2$	155	42 + 14 = 56	20	1	14
165 - 185	8	175	56 + 8 = 64	40	2	16
185 - 205	4	195	64 + 4 = 68	60	3	12
total	N=68		\$-	9	2	7

माध्यक (Median) के लिए:

$$N = 68$$
 और $\frac{N}{2} = \frac{68}{2} = 34$

34 संचयी बारंबारता के 42 में शामिल है |

इसलिए, माध्यक वर्ग 125 – 145 है |

अत: $l=125,\,f=20,\,cf=22$ (माध्यक वर्ग से ठीक ऊपर वाला संचयी बारंबारता) और $h=20,\,$

माध्यक (Median) =
$$l + \left(\frac{\frac{N}{2} - c.f}{f}\right) \times h$$

$$= 125 + \left(\frac{34 - 22}{20}\right) \times 20$$

$$= 125 + 12$$

$$= 137$$

माध्य के लिए:

a = 135,
$$\Sigma f_i u_i = 7$$
, $\Sigma f_i = 68$, h = 20

माध्य / Mean
$$(\overline{X})$$
 = $a + \left(\frac{\sum f_i u_i}{\sum f_i}\right) \times h$
= $135 + \left(\frac{7}{68}\right) \times 20$
= $135 + \frac{140}{68}$
= $135 + 2.058$
= 137.058

बहुलक के लिए:

सारणी से हमें ज्ञात होता है कि वर्ग 125-145 की बारंबारता सबसे अधिक है इसलिए बहुलक वर्ग 125-145 है अत: $l=125,\,f0=13,\,f1=20,\,f2=14$ और h=20

बहुलक (Mode) =
$$l + \left(\frac{f_{1-f_0}}{2f_1 - f_0 - f_2}\right) \times h$$

= $125 + \left(\frac{20-13}{2 \times 20 - 13 - 14}\right) \times 20$
= $125 + \left(\frac{7}{40 - 27}\right) \times 20$
= $125 + \frac{140}{13}$
= $125 + 10.76$
= 135.76

माध्यक = 137, माध्य = 137.058 और बहुलक = 135.76

यदि नीचे दिए हुए बंटन का माध्यक 28.5 हो तो \mathbf{x} और \mathbf{y} के मान ज्ञात कीजिए :

वर्ग अंतराल	बारंबारता
0-10	5
10-20	x
20-30	20
30-40	15
40 - 50	у
50 - 60	5
योग	60

हल :

वर्ग-अन्तराल	बारंबारता	संचयी बारंबारता
0 - 10	5	5
10 - 20	Х	5 + x
20 - 30	20	25 + x
30 - 40	15	40 + x
40 - 50	y	40 + x + y
50 - 60	5	45 + x + y
योग	60	45 + x + y = 60

दिया है, माध्यक = 28.5,

अत: 28.5 वर्ग-अन्तराल 20 – 30 में शामिल है _|

इसलिए, 1 = 20, f = 20, h = 10 और cf = 5 + x

N = 60,

अत:
$$\frac{N}{2} = \frac{60}{2} = 30$$

माध्यक (Median) =
$$l + \left(\frac{\frac{N}{2} - c.f}{f}\right) \times h$$

$$28.5 = 20 + \left(\frac{30 - (5 + x)}{20}\right) \times 10$$

$$28.5 = 20 + \left(\frac{30 - 5 - x}{20}\right) \times 10$$

$$28.5 - 20 = \left(\frac{25 - x}{2}\right)$$

$$8.5 = \left(\frac{25 - x}{2}\right)$$

$$17 = 25 - x$$

$$x = 25 - 17$$

$$x = 8$$
 (1)

अब,
$$45 + x + y = 60$$

अथवा
$$x + y = 60 - 45$$

$$x + y = 15$$

$$8 + y = 15$$
 समी \circ (1) से

$$y = 15 - 8$$

$$y = 7$$

$$x = 8$$
, और $y = 7$

निम्नलिखित बंटन किसी फैक्ट्री के 50 श्रमिकों कि दैनिक आय दर्शाता है:

दैनिक आय (रुपर्यो में)	100 - 120	120 - 140	140 - 160	160 - 180	180 - 200
श्रमिकों की संख्या	12	14	8	6	10

उपरोक्त बंटन को एक कम प्रकार ' के संचयी बारंबारता बंटन में बदलिए और उसका तोरण खींचिए | हल : 'से कम प्रकार' का संचयी बारंबारता बंटन सारणी :

दैनिक आय	श्रमिकों की	संचयी
	संख्या	बारबारता
120 से कम	12	12
140 से कम	14	26
160 से कम	8	34
180 से कम	6	40
200 से कम	10	50

से कम प्रकार' के तोरण के लिए क्रमित युग्म (order pairs): (120, 12), (140, 26), (160, 34), (180, 40) और (200, 50)

NCERT SOLUTIONS प्रश्नावली 14.1 (पृष्ठ संख्या 296-298)

प्रश्न 1 विधार्थियों के एक समूह द्वारा अपने पर्यावरण संचेतना अभियान के अन्तर्गत एक सर्वेक्षण किया गया, जिसमें उन्होंने एक मोहल्ले के 20 घरों में लगे हुए पौधों से संबंधित निम्नलिखित आँकड़े एकत्रित किए। प्रति घर पौधों की संख्या ज्ञात कीजिए।

पौधों की संख्या	0-2	2-4	4-6	6-8	8-10	10-12	12-14
घरों की संख्या	1	2	1	5	6	2	3

माध्य ज्ञात करने के लिए आपने किस विधि का प्रयोग किया और क्यों?

उत्तर-

$$fixi = (fi) \times (xi)$$

$$\Rightarrow 1 \times 1 = 1$$

पौधों की संख्या C-I	घरों की संख्या (fi)	Xi	fixi
0-2	1	1	1
2-4	2	3	6
4-6	1	5	5
6-8	5	7	35
8-10	6	9	54
10-12	2	11	22
12-14	3	13	39
Total	\sum fi = 20		\sum fixi = 162

माध्य
$$ar{ ext{X}} = rac{ ext{fixi}}{\sum ext{fi}} = rac{162}{20} = 8.1$$

प्रश्न 2 किसी फैक्ट्री के 50 श्रमिकों मज़दूरी के निम्नलिखित बंटन पर विचार कीजिए:

दैनिक मज़दूरी (रुपयों में)	100-120	120-140	140-160	160-180	180-200
श्रमिकों की संख्या	12	14	8	6	10

एक उपयुक्त विधि का प्रयोग करते हुए, इस फैक्ट्री के श्रमिकों की माध्य दैनिक मज़दूरी ज्ञात कीजिए।

उत्तर- प्रत्येक अंतराल के लिए वर्ग-चिन्ह को इस सूत्र से ज्ञात करेंगे

कल्पित माध्य विधि से

जहाँ कल्पित माध्य a = 150 है।

दैनिक मज़दूरी (रुपयों में)	श्रमिकों की संख्या	xi	di = xi - a	fidi
100-120	12	110	110 - 150 = -40	-480
120-140	14	130	130 - 150 = -20	-280
140-160	8	a = 150	150 - 150 = 0	0
160-180	6	170	170 - 150 = 20	120
180-200	10	190	190 - 150 = 40	400
कुल (Total)	\sum fi = 50			\sum fidi = -240

कल्पित माध्य विधि से

$$\sum {
m fidi} = -480 + (-280) + 0 + 120 + 400 = -760 + 520 = -240$$
 $\sum {
m fi} = 50$ और ${
m a} = 150$
ਸਾध्य $ar{
m X} = {
m a} + rac{\sum {
m fixi}}{\sum {
m fi}}$
 $= 150 + rac{-240}{50}$

$$=150+\tfrac{-24}{5}$$

$$=150+(-4.8)$$

$$= 145.2$$

प्रश्न 3 निम्नलिखित बंटन एक मोहल्ले के बच्चों के दैनिक जेबखर्च दर्शाता है। माध्य जेबखर्च 18 रू है। लुप्त बारंबारता f ज्ञात कीजिए:

दैनिक जेब भत्ता (रुपयों में)	11-13	13-15	15-17	17-19	19-21	21-23	23-25
बच्चों की संख्या	7	6	9	13	f	5	4

उत्तर-

दैनिक जेब भत्ता (रुपयों में)	बच्चों की संख्या	xi	di = xi - a	fidi
11-13	7	12	12 - 18 = -6	-42
13-15	6	14	14 - 18 = -2	-24

(37)

15-17	9	16	16 - 18 = -2	-18
17-19	13	a = 18	18 - 18 = 0	0
19-21	f	20	20 - 18 = 2	2f
21-23	5	22	22 - 18 = 4	20
23-25	4	24	24 - 18 = 6	24
कुल (Total)	$\sum fi = 44 + f$			2f - 40

कल्पित माध्य विधि से,

$$\sum \mathrm{fidi} = 2\mathrm{f} - 40, \sum \mathrm{fi} = 44 + \mathrm{f}$$
 और $\mathrm{a} = 18,$

माध्य जेब खर्च $ar{ extbf{X}}=$ ₹18

माध्य
$$ar{ extbf{X}} = extbf{a} + rac{\sum ext{fixi}}{\sum ext{fi}}$$

$$18 = 18 + \frac{2f-40}{44+f}$$

$$18 - 18 = \frac{2f - 40}{44 + f}$$

$$\frac{0}{1} = \frac{2f-40}{44+f}$$

$$2f - 40 = 0$$

$$2f = 40$$

$$f = \frac{40}{2} = 20$$

$$f = 20$$

अतः लुप्त बारंबारता 20 है।

प्रश्न 4 किसी अस्पताल में, एक डॉक्टर द्वारा 30 महिलाओं की जाँच की गई और उनके हृदय स्पंदन (beat) की प्रति मिनट संख्या नोट करके नीचे दर्शाए अनुसार संक्षिप्त रूप में लिखी गई। एक उपयुक्त विधि चुनते हुए, इन महिलाओं के हृदय स्पंदन की प्रति मिनट माध्य संख्या ज्ञात कीजिए:

हृदय स्पंदन की प्रति मिनट संख्या	65-68	68-71	71-74	74-77	77-80	80-83	83-86
महिलाओं की संख्या	2	4	3	8	7	4	2

उत्तर-

हृदय स्पंदन की प्रति मिनट संख्या	महिलाओं की संख्या	xi	di = xi - a	fidi
65-68	2	66.5	-9	-18
68-71	4	69.5	-6	-24
71-74	3	72.5	-3	-9
74-77	8	a = 75.5	0	0
77-80	7	78.5	3	21
80-83	4	81.5	6	24
83-86	2	84.5	9	18
Total	\sum fi = 30			12

कल्पित माध्य विधि से

$$\Sigma ext{fidi} = 12, \Sigma ext{fi} = 30$$
 और $ext{a} = 75.5,$

माध्य
$$ar{\mathbf{X}} = \mathbf{a} + rac{\sum \mathrm{fixi}}{\sum \mathrm{fi}}$$

$$=75.5+\frac{12}{30}$$

$$=75.5+\frac{4}{10}$$

$$=75.5+0.4$$

$$= 75.9$$

अत: महिलाओं के ह्रदय स्पंदन की प्रति मिनट माध्य संख्या = 75.9 है।

प्रश्न 5 किसी फुटकर बाज़ार में, फल विक्रेता पेटियों में रखे आम बेच रहें थे। इन पेटियों में आमों की संख्याएँ भिन्न-भिन्न थी। पेटियों की संख्या के अनुसार, आमों का बंटन निम्नलिखित था:

आमों की संख्या	50-52	53-55	56-58	59-61	62-64

पेटियों की संख्या	15	110	135	115	25

एक पेटी में रखे आमों की माध्य संख्या ज्ञात कीजिए। आपने माध्य ज्ञात करने की किस विधि का प्रयोग किया है?

उत्तर- दी गयी श्रृखला समावेशी है जहाँ वर्ग-अंतरालों में 1 का अंतर है। अत: दी गयी श्रृंखला को अपवर्जी श्रृंखला में बदलेंगे।

53 - 52 = 1

अतः $\frac{1}{2} = 0.5$ और अब निम्न सीमा में से 0.5 घटाने और उच्च सीमा में 0.5 जोड़ने पर:

आमों की संख्या	पेटियों की संख्या (fi)	хi	di = xi - a	$u_1=rac{\mathrm{di}}{\mathrm{h}}, \mathrm{h}=3$	fidi
49.5-52.5	15	51	-6	$\frac{-6}{3} = -1$	-30
52.5-55.5	110	54	-3	$\frac{-3}{3} = -1$	-110
55.5-58.5	135	a = 57	0	$\frac{0}{3}=0$	0
58.5-61.5	115	60	3	$\frac{3}{3} = 1$	115
61.5-64.5	25	63	6	$rac{6}{3}=2$	50
Total	400				25

पग-विचलन विधि से माध्य:

$$\sum fiui = 25, \sum fi = 400, h = 3, a = 57$$

पग-विचलन विधि के सूत्र में उपरोक्त मानों को रखने पर,

माध्य
$$ar{\mathbf{X}} = \mathbf{a} + \left(rac{\sum \mathrm{fiui}}{\sum \mathrm{fi}}\,
ight) imes \mathbf{h}$$

$$=57+\left(rac{25}{400}
ight) imes3$$

$$=57+\left(rac{1}{16}
ight) imes3$$

$$=57+\left(\frac{3}{16}\right)$$

$$=57+0.1875$$

$$=57.1875$$
 या 57.19

आमों की माध्य संख्या 57.19

प्रश्न 6 निम्नलिखित सारणी किसी मोहल्ले के 25 परिवारों में भोजन पर हुए दैनिक व्यय को दर्शाती है:

दैनिक व्यय (रुपये में)	100-150	150-200	200-250	250-300	300-350
परिवारों की संख्या	4	5	12	2	2

एक उपयुक्त विधि द्वारा भोजन पर हुआ माध्य व्यय ज्ञात कीजिए।

उत्तर-

दैनिक व्यय (रुपयों में)	परिवारों की संख्या (fi)	(x _i)	$\mathbf{d_i} = \mathbf{x_i} - 225$	$u_i = \frac{d_i}{50}$	f _i u _i
100 - 150	4	125	-100	-2	-8
150 - 200	5	175	-50	-1	-5

200 - 250	155	a = 225	0	0	0
250 - 300	2	275	50	1	2
300 - 350	2	325	100	2	4
	$\Sigma fi = 25$				Σ fiui = -7

पग-विचलन विधि से माध्य:

$$\Sigma fiui=\!\!-7, \Sigma fi=25, h=50, a=225$$

पग-विचलन विधि के सूत्र में उपरोक्त मानों को रखने पर,

माध्य
$$ar{\mathbf{X}} = \mathbf{a} + \left(rac{\sum \mathrm{fiui}}{\sum \mathrm{fi}}\,
ight) imes \mathbf{h}$$

$$=225+\left(rac{-7}{25}
ight) imes 50$$

$$=225+(-14)$$

= 211

भोजन पर हुआ माध्य व्यय = ₹211

प्रश्न 7 वायु में सल्फर डाई-ऑक्साइड (SO) की सान्द्रता (भाग प्रति मिलियन में) को ज्ञात करने के लिए, एक नगर के मोहल्लों से आँकड़े एकत्रित किए गये, जिन्हें नीचे प्रस्तुत किया गया है:

SO_2 की सांद्रता	बारंबारता
0.00-0.04	4
0.04-0.08	9
0.08-0.12	9
0.12-0.16	2
0.16-0.20	4
0.20-0.24	2

वायु में SO2 की सांद्रता का माध्य ज्ञात कीजिए।

उत्तर-

so ₂ की सांद्रता	बारंबारता (fi)	xi	di = xi - a	$\mathrm{ui}=rac{\mathrm{di}}{\mathrm{h}}$. $\mathrm{h}=0.04$	fidi
0.00-0.04	4	0.02	-0.12	$\frac{-0.12}{0.04} = -3$	-12
0.04-0.08	9	0.06	-0.08	$\frac{-0.08}{0.04} = -2$	-18
0.08-0.12	9	0.10	-0.04	$\frac{-0.04}{0.04} = -1$	-9
0.12-0.16	2	a = 0.14	0	0	0
0.16-0.20	4	0.18	0.04	$\frac{0.04}{0.04} = 1$	4
0.20-0.24	2	0.22	0.08	$\frac{0.08}{0.04} = 2$	4
Total	30				-31

पग-विचलन विधि से माध्य:

$$\Sigma \text{fiui} = -31, \Sigma \text{fi} = 30, \text{h} = 0.04, \text{a} = 0.14$$

पग-विचलन विधि के सूत्र में उपरोक्त मानों को रखने पर,

माध्य
$$ar{\mathbf{X}} = \mathbf{a} + \left(rac{\sum \mathrm{fiui}}{\sum \mathrm{fi}}\,
ight) imes \mathbf{h}$$

$$=0.14+\left(rac{-31}{30}
ight) imes0.04$$

$$=0.14+(-0.04133)$$

$$=0.14-0.041$$

$$= 0.099$$

वायु में सल्फर डाई-ऑक्साइड (SO) की सान्द्रता का माध्य =0.099

प्रश्न 8 किसी कक्षा अध्यापिका ने पुरे सत्र के लिए अपनी कक्षा के 40 विधार्थियों कि अनुपस्थिति निम्नलिखित रूप में रिकॉर्ड की। एक विधार्थी जितने दिन अनुपस्थित रहा उनका माध्य ज्ञात कीजिए:

दिनों की संख्या	0-6	6-10	10-14	14-20	20-28	28-38	38-40
विधार्थियों की संख्या	11	10	7	4	4	3	1

उत्तर-

दिनों की संख्या	विधार्थियों की संख्या (fi)	xi	di = xi - a	fidi
0-6	11	3	-14	-154
6-10	10	8	-9	-90
10-14	7	12	-5	-35
14-20	4	a = 17	0	0
20-28	4	24	7	28
28-38	3	33	16	48
38-40	1	39	22	22
Total	$\sum fi = 40$			-181

कल्पित माध्य विधि से,

$$\sum \mathrm{fidi} = -181, \sum \mathrm{fi} = 40$$
 और $\mathrm{a} = 17,$

माध्य
$$ar{\mathbf{X}} = \mathbf{a} + rac{\sum \mathbf{fixi}}{\sum \mathbf{fi}}$$

$$=17+\frac{-181}{40}$$

$$=17+(-4.525)$$

$$= 12.475$$

$$= 12.48$$

विधार्थियों की अनुपस्थित का माध्य =12.48 दिन

प्रश्न 9 निम्नलिखित सारणी 35 नगरों कि साक्षरता दर (प्रतिशत में) दर्शाती है। माध्य साक्षरता दर ज्ञात कीजिए:

साक्षरता दर (% में)	45-55	55-65	65-75	75-85	85-95
नगरों की संख्या	3	10	11	8	3

उत्तर-

साक्षरता दर (% में)	नगरों की संख्या (fi)	xi	di = xi - a	$ui = \frac{di}{h}, h = 10$	fidi
45-55	3	50	-20	-2	-6
55-65	10	60	-10	-1	-10
65-75	11	a = 70	-0	0	0
75-85	8	80	10	1	8
85-95	3	90	20	2	6
Total	35				-2

पग-विचलन विधि से माध्य:

$$\Sigma fiui = -2, \Sigma fi = 35, h = 10, a = 70$$

पग-विचलन विधि के सूत्र में उपरोक्त मानों को रखने पर,

माध्य
$$ar{\mathbf{X}} = \mathbf{a} + \left(rac{\sum \mathrm{fiui}}{\sum \mathrm{fi}} \,
ight) imes \mathbf{h}$$

$$=70+\left(rac{-2}{35}
ight) imes10$$

$$=70+\left(rac{-4}{7}
ight)$$

$$=70+(-0.57)$$

$$=7-0.57$$

69.43

अत: माध्य साक्षरता दर=69.43%

प्रश्नावली 14.2 (पृष्ठ संख्या 302-303)

प्रश्न 1 निम्नलिखित सारणी किसी अस्पताल में एक विशेष वर्ष में भर्ती हुए रोगियों की आयु को दर्शाते है:

आयु (वर्षो में)	5-15	15-25	25-35	35-45	45-55	55-65
रोगियों की संख्या	6	11	21	23	14	5

उपरोक्त आंकड़ो के बहुलक और माध्य ज्ञात कीजिए। दोनों केंद्रीय प्रवृत्ति की मापों की तुलना कीजिए और उनकी व्याख्या कीजिए।

उत्तर- कल्पित माध्य विधि और बहुलक के लिए सारणी:

आयु (वर्षो में)	रोगियों की संख्या (fi)	वर्ग-चिन्ह xi	di = xi - a	fidi
5-15	6	10	-20	-120
15-25	11	20	-10	-110
25-35	$21 = f_0$	a = 30	0	0
1 = 35-45	$23 = f_1$	40	10	230
45-55	$14 = f_2$	50	20	280
55-65	5	60	30	150
Total	\sum fi = 80			\sum fixi = 430

बहुलक के लिए सारणी से:

बहुलक वर्ग =35-45

 $\therefore l = 35$

बहुलक वर्ग की बारंबारता $(\mathrm{f}_1)=23,$

$$(f_0) = 21, (f_2) = 14,$$

वर्ग-आकार
$$(h) = 10$$

ৰচ্বলক
$$= 1 + \left(rac{f_1 - f_0}{2f_1 - f_0 - f_2}
ight) imes h$$

$$35 + \left(\frac{23-21}{2(23)-21-24}\right) imes 10$$

$$=35+\left(rac{2}{46-35}
ight) imes10$$

$$=35+\frac{20}{11}$$

$$=35+1.81$$

$$= 36.8$$

कल्पित माध्य विधि से माध्य

$$\sum f_1 x_1 = 430, \sum f_1 = 80, a = 30$$

माध्य
$$=a+rac{\sum \mathrm{fidi}}{\sum \mathrm{fi}}$$

$$=30+\frac{430}{80}$$

$$=30+5.375$$

$$= 35.375$$

$$= 35.38$$

प्रश्न 2 निम्नलिखित आँकड़े, 225 बिजली के उपकरणों के प्रेक्षित जीवन कल (घंटो में) कि सुचना देते है:

जीवनकाल (घंटो में)	0-20	20-40	40-60	60-80	80-100	100-120
बारंबारता	10	35	52	61	38	29

उपकरणों का बहुलक जीवनकाल ज्ञात कीजिए।

उत्तर-

जीवनकाल (घंटो में)	बारंबारता (fi)
0-20	10
20-40	35
40-60	52
60-80	61
80-100	38
100-120	29

वर्ग 60-80 की सबसे अधिक बारंबारता 61 है, अतः बहुलक वर्ग 60-80 है।

इसलिए,
$$I = 60$$
, $f_1 = 61$, $f_0 = 52$, $f_2 = 38$ और $h = 20$

ৰচ্বল
$$= l + \left(rac{f_1 - f_0}{2f_1 - f_0 - f_2}
ight) imes h$$

$$=60+\left(\frac{61-52}{2(61)-52-38}\right)\times20$$

$$=60+\left(rac{9}{122-90}
ight) imes20$$

$$=60+\left(\frac{9\times20}{32}\right)$$

$$=60+\left(\frac{9\times5}{8}\right)$$

$$=\left(\frac{45}{8}\right)$$

$$=60+5.625$$

$$=65.625$$

अतः उपकरणों का बहुलक जीवनकाल 65.63 है।

प्रश्न 3 निम्नलिखित आँकड़े किसी गाँव के 200 परिवारों के कुल मासिक घरेलू व्यय के बंटन को दर्शाते है। इन परिवारों का बहुलक मासिक व्यय ज्ञात कीजिए। साथ ही माध्य मासिक व्यय भी ज्ञात कीजिए।

व्यय (रुपयों में)	परिवारों की संख्या
1000-1500	24
1500-2000	40
2000-2500	33
2500-3000	28
3000-3500	30
3500-4000	22
4000-4500	16
4500-5000	7
Total (कुल)	200

उत्तर-

व्यय (रुपयों में)	परवारो की संख्या	xi	xi - a	$ui = \frac{i}{h}$, $h = 500$	fiui
1000-1500	$24 = f_0$	1250	-1500	-3	-72
1=1500-2000	$40 = f_1$	1750	-1000	-2	-80
2000-2500	$33 = f_2$	2250	-500	-1	-33
2500-3000	28	2750 = a	0	0	0
3000-3500	30	3250	500	1	30
3500-4000	22	3750	1000	2	44
4000-4500	16	4250	1500	3	48
4500-5000	7	4750	2000	4	28
Total (कुल)	200				-35

बहुलक के लिए:

वर्ग 1500-2000 की बारंबारता सबसे आधिक 40 बार है अतः 1 = 1500

$$f_1=40\\$$

$$f_0=24$$

$$f_2 = 33$$

$$h = 500$$

ৰচ্বলক
$$l = \left(\frac{f_1 - f_0}{2f_1 - f_0 - f_2}\right) \times h$$

$$= 1500 + \left(\frac{40 - 24}{2(40) - 24 - 33}\right) \times 500$$

$$= 1500 + \left(\frac{16}{80 - 57}\right) \times 500$$

$$= 1500 + \left(\frac{8000}{23}\right)$$

$$= 1847.826$$

= 1847.83

अतः परिवारों का बहुलक मासिक व्यय 1847.83 माध्य के लिए पग-विचलन विधि से:

माध्य
$$ar{X}=a+\left(rac{\sum f_i u_i}{\sum f_i}
ight) imes h$$
 $=2750+rac{-35}{200} imes 500$
 $=2750+rac{-17500}{200}$
 $=2750+rac{-175}{2}$
 $=2750+(-87.5)$
 $=2662.5$

अतः मासिक मध्य खर्च = ₹2662.5

प्रश्न 4 निम्नलिखित बंटन भारत के उच्चतर माध्यमिक स्कूलों में, राज्यों के अनुसार, शिक्षक-विद्यार्थी अनुपात को दर्शाता है। इन आँकड़ो के बहुलक और माध्य ज्ञात कीजिए। दोनों मापकों की व्याख्या कीजिए।

प्रति शिक्षक विद्यार्थियों की संख्या	राज्य/ संघीय क्षेत्रों की संख्या
15-20	3
20-25	8

25-30	9
30-35	10
35-40	3
40-45	0
45-50	0
50-55	2

उत्तर-

प्रति शिक्षक विद्यार्थियों	राज्य/ संघीय क्षेत्रों	xi	$\mathbf{d_i} = \mathbf{x_i} -$	$ui = \frac{x_i - a}{h}, h = 5$	f _i u _i
की संख्या	की संख्या (f _i)		a	h , \perp	
15-20	3	17.5	-15	-3	-9
20-25	8	22.5	-10	-2	-16
25-30	$9 = f_0$	27.5	-5	-1	-9
1 = 30-35	$10 = f_1$	a = 32.5	0	0	0
35-40	$3 = f_2$	37.5	5	1	3
40-45	0	42.5	10	2	0
45-50	0	47.5	15	3	0
50-55	2	52.5	20	4	8
Total	35				-23

उपरोक्त सारणी के अनुसार

$$l=30, f_0=9, f_1=10, f_2=3h=5,$$
অন্তল্য $=l+\left(rac{f_1-f-0}{2f_1-f_0-f_2}
ight) imes h$
 $=30+\left(rac{10-9}{2(10)-9-3}
ight) imes 5$
 $=30+\left(rac{1}{20-12}
ight) imes 5$

$$=30+0.625$$

$$= 30.625$$

बहुलक
$$=30.6$$

माध्य के लिए:
$$m a=32.5, Sf_iu_i=-23, Sf_i=35, h=5$$

माध्य
$$ar{\mathbf{X}} = \mathbf{a} + \left(rac{\sum f_i \mathbf{u}_i}{\sum f_i}
ight) imes \mathbf{h}$$

$$=32.5+\left(rac{-23}{35}
ight) imes 5$$

$$=32.5+\left(rac{-23}{7}
ight)$$

$$=32.5+(-3.28)$$

$$=32.5-3.28$$

$$= 29.22$$

अतः आँकड़ो का माध्य =29.22 और बहुलक =30.6

प्रश्न 5 दिया हुआ बंटन विश्व के कुछ श्रेष्टतम बल्लेबाजों द्वारा एकदिवसीय अंतर्राष्ट्रीय क्रिकेट मैचों बनाये गए रनों को दर्शाते है:

बनाए गए रन	बल्लेबाजों की संख्या
3000-4000	4
4000-5000	18
5000-6000	9
6000-7000	7
7000-8000	6
8000-9000	3
9000-10,000	1

इन आंकड़ों का बहुलक ज्ञात कीजिए।

उत्तर-

बनाए गए रन	बल्लेबाजों की संख्या
3000-4000	$4 = f_0$
1 = 4000-5000	$18 = f_1$
5000-6000	$9 = f_2$
6000-7000	7
7000-8000	6
8000-9000	3
9000-10,000	1
10,000-11.000	1

वर्ग 4000-5000 की आवृति सबसे अधिक बात हुई है इसलिए,

बहुलक वर्ग 4000-5000 है और

$$1 = 4000, f_1 = 18, f_0 = 4, f_2 = 9$$
 और $h = 1000$

ৰচ্বলক
$$=1+\left(rac{f_1-f_0}{2f_1-f_0-f_2}
ight) imes h$$

$$=4000+\left(rac{18-4}{2(18)-4-9}
ight) imes 1000$$

$$=4000+\left(rac{14}{36-13}
ight) imes 1000$$

$$=4000+\left(\frac{14000}{23}\right)$$

$$=4000+608.695$$

=4608.695

अतः दिए, गए आँकड़ो का बहुलक=4608.695 रन।

प्रश्न 6 एक विद्यार्थी ने एक सड़क के किसी स्थान से होकर जाती हुए कर की संख्या नोट कि और उन्हें निचे दी हुई सारणी के रूप में व्यक्त किया। सारणी में दिया प्रत्येक प्रेक्षण 3 मिनट के अंतराल में उस स्थान से होकर जाने वाले कारों कि संख्याओं से संबंधित है। ऐसे 100 अंतरालों पर प्रक्षेण लिए गए। इन आँकड़ो का बहुलक ज्ञात कीजिए।

कारों की संख्या	0-10	10-20	20-30	30-40	40-50	50-60	60-70	70-80
बारम्बारता	7	14	13	12	20	11	15	8

उत्तर-

वर्ग 40-50 की आवृति सबसे अधिक 20 हुई है इसलिए,

बहुलक वर्ग 40-50 है और

l = 40,
$$f_1$$
 = 20, f_0 = 12, f_2 = 11 और h = 10

ৰচ্বলক
$$= l = \left(rac{f_1 - f_0}{2f_1 - f_0 - f_2}
ight) imes h$$

$$= 40 + \left(\frac{20-12}{2(20)-12-11}\right) \times 10$$

$$= 40 + \left(\frac{8}{40-23}\right) \times 10$$

$$= 40 + \left(\frac{80}{17}\right)$$

$$= 40 + 4.7$$

$$= 44.7$$

अतः दिए गए आँकड़ो का बहुलक=44.7 कारें।

प्रश्नावली 14.3 (पृष्ठ संख्या 314-316)

प्रश्न 1 निम्नलिखित बारंबारता बंटन किसी मोहल्ले के 68 उपभोक्ताओं की बिजली कि मासिक खपत दर्शाता है। इन आँकड़ों के Ex माध्यक, माध्य और बहुलक ज्ञात कीजिए। इनकी तुलना कीजिए।

मासिक खपत (इकाइयों में)	उपभोक्ताओँ की संख्या
65-85	4
85-105	5
105-125	13
125-145	20
145-165	14
165-185	8
185-205	4

उत्तर-

मासिक खपत (इकाइयों में)	उपभोक्ताओ	Xi	संचयी बारंबारता	$\mathbf{d_i} = \mathbf{x_i} - 1$	$u_i = \frac{d_i}{d_i}$, $h = 20$	f _i u _i
(इकाइया म)	की संख्या		(C.F)		h h	
65-85	4	75	4	-60	-3	-12
85-105	5	95	4 + 5 = 9	-40	-2	-10
105-125	$13 = f_0$	115	9 + 13 = 22	-20	-1	-13
125-145	$20 = f_1$	135 = a	22 + 20 = 42	0	0	0

145-165	$14 = f_2$	155	42 + 14 = 56	20	1	14
165-185	8	175	56 + 8 = 64	40	2	16
185-205	4	195	64 + 4 = 68	60	3	12
Total	N = 68					7

माध्यक के लिए:

$$N=68$$
 और $rac{N}{2}=rac{68}{2}=34$

34 संचयी बारंबारता के 42 में शामिल है।

इसलिए, माध्यक वर्ग 125 - 145 है।

अत: I = 125, f = 20, cf = 22 (माध्यक वर्ग से ठीक ऊपर वाला संचयी बारंबारता) और h = 20,

माध्यक
$$= l + \left(rac{rac{N}{2} - ext{C.F.}}{ ext{f}}
ight) imes h$$

$$=125\Bigl(rac{34-22}{20}\Bigr) imes20$$

$$= 125 + 12$$

$$= 137$$

माध्य के लिए:

$$a = 135, \sum f_i u_i = 7, \sum f_i = 68, h = 20$$

माध्य
$$ar{X} = a + \left(rac{\sum f_i u_i}{\sum f_i}
ight) imes h$$

$$=135+\left(rac{7}{68}
ight) imes20$$

$$=135+\frac{140}{68}$$

$$=135+2.058$$

$$= 137.058$$

बहुलक के लिए:

सारणी से हमें ज्ञात होता है कि वर्ग 125 - 145 की बारंबारता सबसे अधिक है इसलिए बहुलक वर्ग 125 - 145 है

ৰচ্বলক
$$= l + \left(rac{f_1 - f_0}{2f_1 - f_0 - f_2}
ight) imes h$$

$$=125+\left(rac{20-13}{2 imes 20-13-14}
ight) imes 20$$

$$=125+\left(rac{7}{40-27}
ight) imes20$$

$$=125+\frac{140}{13}$$

$$=125+10.76$$

$$= 135.76$$

माध्यक = 137, माध्य = 137.058 और बहुलक = 135.76

प्रश्न 2 यदि नीचे दिए हुए बंटन का माध्यक 28.5 हो तो x और y के मान ज्ञात कीजिए:

वर्ग अंतराल	बारंबारता

0-10	5
10-20	X
20-30	20
30-40	15
40-50	у
60-50	5
योग	60

उत्तर-

वर्ग-अंतराल	बारंबारता	संचयी बारंबारता
0-10	5	5
10-20	X	x + 5
20-30	20	25 + x
30-40	15	40 + x
40-50	У	40 + x + y
50-60	5	45 + x + y = 60

दिया है, माध्यक = 28.5,

अत: 28.5 वर्ग-अन्तराल 20 - 30 में शामिल है

इसलिए, 1 = 20, f = 20, h = 10 और cf = 5 + x

N = 60,

अतः
$$rac{ ext{N}}{2}=rac{60}{2}=30$$

माध्यक
$$= l + \left(rac{rac{N}{2} - \mathrm{C.F.}}{\mathrm{f}}
ight) imes h$$

$$28.5 = 20 + \left(rac{30 - (5 + x)}{20}
ight) imes 10$$

$$28.5 = 20 + \left(\frac{30 - 5 - x}{20}\right) \times 10$$

$$28.5 - 20 = \left(\frac{25 - x}{2}\right)$$

$$8.5 = \left(\frac{25-x}{2}\right)$$

$$17 = 25 - x$$

$$x = 25 - 17$$

$$x = 8 ...(i)$$

$$x + y = 15$$

$$y = 15 - 8$$

$$y = 7$$

प्रश्न 3 एक जीवन बीमा एजेंट 100 पॉलिसी धारकों कि आयु के बंटन के निम्नलिखित आँकड़े ज्ञात करता है। माध्यक आयु परिकलित कीजिए, यदि पॉलिसी केवल उन्हीं व्यक्तियों को दी जाती है, जिनकी आयु 18 वर्ष या उससे अधिक हो, 60 वर्ष से कम हो,

आयु (वर्षो में)	पॉलिसी धारको की संख्या
20 से कम	2
25 से कम	6
30 से कम	24
35 से कम	45
40 से कम	78
45 से कम	89
50 से कम	92
55 से कम	98
60 से कम	100

उत्तर-

आयु (वर्षो में)	पॉलिसी धारकों की संख्या	संचयी आवृति
20 से कम	2	2
25 से कम	6	6
30 से कम	24	24
35 से कम	45	45
40 से कम	78	78
45 से कम	89	89
50 से कम	92	92
55 से कम	98	98
60 से कम	100	100

यहाँ n = 100,

$$\tfrac{n}{2}=\tfrac{30}{2}=15$$

अवलोकन कक्षा 35 - 40 में निहित है

निचली सीमा (I) = 35

cf - अंतराल को आगे बढ़ाने वाले वर्ग की संचयी आवृत्ति 35 - 40 = 45 है माध्यिका वर्ग की आवृत्ति (f) 35 - 40 = 33

वर्ग आकार (h) = 5

माध्य
$$= l + \left(rac{rac{n}{2} - \mathrm{C.F}}{\mathrm{f}}
ight) imes h$$

$$=35+\left(rac{50-45}{33}
ight) imes 5$$

$$=35+\tfrac{5}{33}\times 5$$

$$= 35.76$$

∴ औसत आयु 35.76 वर्ष है।

प्रश्न 4 एक पौधे कि 40 पत्तियों कि लंबाइयाँ निकटतम मिलीमीटरों में मापी जाती है तथा प्राप्त आँकड़ों को निम्नलिखित सारणी के रूप में निरुपित किया जाता है:

लम्बाई(मिमी में)	पतियों की संख्या
118-126	3
127-135	5
136-144	9
145-153	12
154-162	5
163-171	4
172-180	2

पत्तियों की माध्यक लंबाई ज्ञात कीजिए।

संकेत: माध्यक ज्ञात करने के लिए, आँकड़ों को सतत वर्ग अंतरालों में बदलना पड़ेगा, क्योंकि सूत्र में वर्ग अंतरालों को सतत मन गया है। तब ये वर्ग 117.5 - 126.5 - 135.5,... 171.5 - 180.5 में बदल जाते हैं।

उत्तर-

लम्बाई (मिमी में)	लम्बाई (मिमी में) निरंतर कक्षा	पत्तियों की संख्या
118-126	117.5 - 126.5	3
127-135	126.5 - 135.5	5
136-144	135.5 - 144.5	9
145-153	144.5 - 153.5	12
154-162	153.5 - 162.5	5
163-171	162.5 - 171.5	4
172-180	171.5 - 180.5	2
	$\sum f = 40$	

अब,

$$n=40, \tfrac{n}{2}=\tfrac{40}{2}=20$$

माध्यक
$$= l + \left(rac{rac{n}{2} - C.F}{f}
ight) imes h$$

$$=144.5+\left(rac{20-17}{12}
ight) imes 9$$

$$=144.5+\left(rac{3}{12}
ight) imes 9$$

$$=144.5+\frac{27}{12}$$

$$=144.5+2.25$$

= 146.75 मिमी

∴ पत्तियों की औसत लम्बाई =146.75 मिमी।

प्रश्न 5 निम्नलिखित सारणी 400 नियाँन लैंपों के जीवनकालों को प्रदर्शित करती है:

जीवन कल (घंटो में)	लैंपों की संख्या
1500-2000	14
2000-2500	56
2500-3000	60
3000-3500	86

3500-4000	74
4000-4500	62
4500-5000	48

एक लैंप का माध्यक जीवन काल ज्ञात कीजिए।

उत्तर-

जीवनकाल (घंटो में)	दीपक की संख्या	संचयी आवृति
1500-2000	14	14
2000-2500	56	14 + 56 = 70
2500-3000	60	70 + 60 = 130
3000-3500	86	130 + 86 = 216
3500-4000	74	216 + 74 = 290
4000-4500	62	290 + 62 = 352
4500-5000	48	352 + 48 = 400
	$\sum f = 400$	

अब,

$$n=\textstyle\sum f_i=400$$

$$\frac{n}{2} = \frac{400}{2} = 200$$

इस प्रकार अवलोकन कक्षा 3000-3500 में निहित है,

माध्य
$$= l + \left(rac{rac{n}{2} - \mathrm{C.F.}}{f}
ight) imes h$$

जहां वर्ग की कम सीमा = 3000

f = माध्यिका वर्ग की आवृत्ति = 86

cf = संचयी आवृत्ति माध्यिका वर्ग = 130

h - वर्ग आकार = 500

माध्य
$$=3000+\left(rac{200-130}{86}
ight) imes 500$$

$$=3000+\frac{70}{86}\times500$$

$$=3000+406.98$$

= 3406.98

इस प्रकार एक दीपक का औसत जीवनकाल 3406.98 घंटे है।

प्रश्न 6 एक स्थानीय टेलीफ़ोन निर्देशिका से 100 कुल नाम लिए और उनमें प्रयुक्त अंग्रेज़ी वर्णमाला के अक्षरों की संख्या का निम्नलिखित बारंबारता बंटन प्राप्त हुआ:

अक्षरों कि संख्या	1-4	4-7	7-10	10-13	13-16	16-19
कुल नामों की संख्या	6	30	40	16	4	4

कुल नामों में माध्यक अक्षरों कि संख्या ज्ञात कीजिए। कुल नामों में माध्य अक्षरों कि संख्या ज्ञात कीजिए। साथ ही, कुल नामों का बहुलक ज्ञात कीजिए।

उत्तर-

अक्षरों की संख्या	उपनामों की संख्या	संचयी आवृति
1-4	6	6
4-7	30	6 + 30 = 36
7-10	40	36 + 40 = 76
10-13	16	16 + 76 = 92
13-16	4	4 + 92 = 96
16-19	4	4 + 96 = 100
	100	

अब,

$$n=100, \frac{n}{2}=50$$

यहाँ अवलोकन कक्षा 7 - 10 में है

f - माध्येका वर्ग की आवृत्ति (1 - 10) = 40

cf - (कक्षा की कार्यवाही का संचयी फुट समीकरण) (7 - 1 0) = 36

माध्य
$$=$$
 $l+\left(rac{rac{n}{2}-C.F.}{f}
ight) imes h$ $=7+\left(rac{50-36}{40}
ight) imes 3$ $=7+\left(rac{14}{40}
ight) imes 3$ $=7+1.05$

$$= 8.05$$

उपनामों में अक्षरों की संख्या =8.05

चलिए कदम विचलन विधि का उपयोग करते हुए माध्य की गणना करते हैं:

अक्षरों की	उपनामों की	कक्षा का आकर	$x_i - A x_i - 11.5$	$\mathbf{f_i}\mathbf{u_i}$
संख्या	संख्या f _i	(\mathbf{x}_{i})	$u_i = \frac{}{h} = \frac{}{3}$	
1-4	6	2.5	-3	-18
4-7	30	5.5	-2	-60
7-10	40	8.5	-1	-40
10-13	16	11.5	0	0
13-16	4	14.5	1	4
16-19	4	17.5	2	8
				∑fiui=-106

इस उपनाम में अक्षरों की संख्या = 8.32 माध्य

$$\begin{split} \bar{X} &= A + \left(\frac{\sum f_i u_i}{\sum f_i}\right) \times h \\ &= 11.5 + \left(\frac{-106}{100}\right) \times 3 \\ &= 11.5 - 3.18 \\ &= 8.32 \end{split}$$

अब हमें उपनामों के सामान्य आकार का पता लगाना होगा

अक्षरों की संख्या	उपनामों की संख्या f
1-4	6
4-7	30
7-10	40
10-13	16
13-16	4
16-19	4

यहाँ अधिकतम आवृत्ति 40 है। इस आवृत्ति के अनुरूप वर्ग 7 - 10 है।

1 = मॉडल वर्ग की निचली सीमा = 7

मोडल वर्ग की आवृत्ति $(f_1) = 40$

मोडल वर्ग = 30 को आगे बढ़ाने वाले वर्ग की आवृत्ति (f_0)

आवृत्ति (f_2) वर्ग की सफल कक्षा मोडल = 16

वर्ग का आकार (h) = 3

ਸਾध्य
$$= 1 + \left(\frac{f_1 - f_0}{2f_1 - f_0 - f_2}\right) imes h$$
 $= 7 + \left(\frac{40 - 30}{2(40) - 30 - 16}\right) imes 3$
 $= 7 + \left(\frac{10}{80 - 30 - 16}\right) imes 3$
 $= 7 + \left(\frac{10}{34}\right) imes 3 = 7 + 0.88$
 $= 7.88$

 \therefore उपनामों का मॉडल =7.88

प्रश्न 7 नीचे दिया हुआ बंटन एक कक्षा के 30 विधार्थियों के भार दर्शा रहा है। विधार्थियों का माध्यक भार ज्ञात कीजिए:

भार (किलोग्राम में)	40-45	45-50	50-55	55-60	60-65	65-70	70-75
विधयर्थियो की संख्या	2	3	8	6	6	3	2

उत्तर-

वजन (किलोग्राम में)	विद्यार्थियों की संख्या	संचयी आवृति
40-45	2	2
45-50	3	2 + 3 = 5
50-55	8	5 + 8 = 13
55-60	6	13 + 6 = 19
60-65	6	19 + 6 = 25
65-70	3	25 + 3 = 28
70-75	2	2 + 28 = 30

अब,

$$n = 30, = \frac{n}{2} = \frac{30}{2} = 15$$

यहाँ अवलोकन कक्षा 55-60 में निहित है

निचली सीमा (I) = 55

f (माध्येका वर्ग की आवृत्ति) = 6

cf (कक्षा की संचयी आवृत्ति मंझला वर्ग = 13 को आगे बढ़ाती है

माध्य
$$= 1 + \left(\frac{\frac{n}{2} - \text{C.F.}}{f} \right) imes h$$

$$=55+\left(rac{15-13}{6}
ight) imes 5$$

$$=55+\left(rac{5}{3}
ight) imes 5$$

$$=55+1.67$$

=56.67 किलोग्राम

प्रश्नावली 14.4 (पृष्ठ संख्या 320-321)

प्रश्न 1 निम्नलिखित बंटन किसी फैक्ट्री के 50 श्रमिकों कि दैनिक आय दर्शाता है:

दैनिक आय (रुपयों में)	100-120	120-140	140-160	160-180	180-200
श्रमिक की संख्या	12	14	8	6	10

'उपरोक्त बंटन को एक कम प्रकार' के संचयी बारंबारता बंटन में बदलिए और उसका तोरण खींचिए।

उत्तर- से कम प्रकार' का संचयी बारंबारता बंटन सारणी:

दैनिक आय	श्रमिकों की संख्या	संचयी बारंबारता
120	12	12
140	14	26
160	8	34

180	6	40
800	10	50

'से कम प्रकार' के तोरण के लिए क्रमित युग्म (order pairs):

(120, 12), (140, 26), (160, 34), (180, 40) और (200, 50)

प्रश्न 2 किसी कक्षा के 35 विधार्थियों कि मेडिकल जाँच के समय, उनके भार निम्नलिखित रूप में रिकॉर्ड किए गए:

भार (किलोग्राम में)	विद्यार्थियों की संख्या
38 से कम	0
40 से कम	3
42 से कम	5
44 से कम	9
46 से कम	14
48 से कम	28
50 से कम	32
52 से कम	35

उपरोक्त आँकड़ों के 'लिए कम प्रकार का तोरण' खींचिए। इसके बाद माध्यक भार ज्ञात कीजिए।

उत्तर- 'से कम प्रकार के' तोरण के लिए संचयी बारंबारता सारणी

भार (किलोग्राम में)	विद्यार्थियों की संख्या
38 से कम	0

40 से कम	3
42 से कम	5
44 से कम	9
46 से कम	14
48 से कम	28
50 से कम	32
52 से कम	35

से कम प्रकार' के तोरण के लिए के लिए क्रमित युग्म (Order pairs):

(38, 0), (40, 3), (42, 5), (44, 9), (46, 14), (48, 28), (50, 32), (52, 35)

प्रश्न 3 निम्नलिखित सारणी किसी गाँव के 100 फार्मों में हुआ प्रति हेक्टेयर (ha) गेंहूँ का उत्पादन दर्शाते हैं:

उत्पादन (किलोग्राम/ हेक्टेयर)	50-55	55-60	60-65	65-70	70-75	75-80
फार्मों की संख्या	2	8	12	24	38	16

इस बंटन को 'अधिक के प्रकार के' बंटन में बदलिए और फिर उसका तोरण खींचिए।

उत्तर- 'से अधिक प्रकार के' तोरण के लिए संचयी बारंबारता सारणी:

भार (किलोग्राम में)	संचयी बारंबारता
50	2 + 8 + 12 + 24 + 38 + 16 = 100
55	8 + 12 + 24 + 38 + 16 = 98
60	12 + 24 + 38 + 16 = 90

65	24 + 38 + 16 = 78
70	38 + 16 = 54
75	+ 16 = 16

'से अधिक प्रकार' के तोरण के लिए के लिए क्रमित युग्म (Order pairs):

(50, 100), (55, 98), (60, 90), (65, 78), (70, 54), (75, 16)

