	Rrian Davey
	5440 Final Brian Davey bol 395
	$ A \frac{dN_1}{dt} = F(D_2) - \delta_N N_1 \frac{dN_2}{dt} = F(D_1) - \delta_N N_2$
	$\frac{dD_1}{dt} = G(N_1) - \delta_0 D_1 \qquad \frac{dD_2}{dt} = G(N_2) - \delta_0 D_2$
	7 = 75 t t = 75
	$\frac{dN_1}{d\tau} = F(D_2) - \delta_N N_1 \rightarrow \frac{dN_1}{d\tau} = F(D_2) - N\delta_N N_1$
	$\delta_D \frac{dD_i}{d\tau} = G(N_i) - \delta_D D_i \rightarrow \frac{dD_i}{d\tau} = \frac{G(N_i)}{\delta_D} - D_i$
	$\begin{cases} \frac{dN_2}{d\mathcal{T}} = F(D_1) - \delta_N N_2 \rightarrow \frac{dN_2}{d\mathcal{T}} = \frac{F(D_1)}{\delta_D} - \frac{\delta_N}{\delta_D} N_2 \end{cases}$
	$ \frac{dD_2}{dc} = G(N_2) - 80D_2 \rightarrow \frac{dD_2}{dc} = \frac{G(N_2)}{80} - D_2 $
	$V = \frac{\aleph_0}{\aleph_N}$ $g(N_i) = \frac{G(N_i)}{\aleph_0}$ $f(D_i) = \frac{F(D_i)}{\aleph_N}$
substitue	when $\nu \ll 1$: $\frac{\delta n}{\delta \delta} > 0$ l which
->	$\frac{dN_1}{dz} = \frac{1}{y} \left(f(D_2) - N_1 \right) \qquad \frac{dN_1}{dz} = O = \frac{1}{y} \left(f(D_2) - N_1 \right)$
→	$\frac{dD_1}{d\mathcal{R}} = g(N_1) - D_1 \qquad \qquad f(D_2) = N_1$
→	$\frac{dN_2}{dT} = \frac{1}{V} \left(f(D_1) - N_2 \right) \qquad \frac{dN_2}{dT} = 0 = \frac{1}{V} \left(f(D_1) - N_2 \right)$
	$\frac{dD_2}{d\mathcal{T}} = g(N_2) - D_2$
	de

→	substitute into $\frac{dD_1}{dZ}$ and $\frac{dD_2}{dZ}$
	$\frac{dD_{1}}{d\tau} = g(f(D_{2})) - D_{1} = \frac{1}{1 + 10(\frac{D_{2}^{2}}{0.1 + D_{2}^{2}})} - D_{1}$
Siterral	$\frac{dD_2}{d\tau} = g(f(D_1)) - D_2 = \frac{1}{1 + 10\left(\frac{D_1^2}{0.1 + D_1^2}\right)}$ from class notes:
	$f(D_i) = \frac{D_i^2}{0.1 + D_i^2}$ - see Julia code "prob 1b. jl"
	$g(N_i) = \frac{1}{1 + 10N_i^2}$
	Using the phase portrait ("plot 1 b. png") it's evident that the middle steady-state is unstable while the
	the cell with a greater initial Dolta value assumes the primary fate (wins) and the other cell assumes
	the secondary fate. Therefore, lateral inhibition works here similarly as the case discussed in class where $\frac{Y_D}{\delta N} >> 1$.
	The state of the s
	when well and the light of the light of
	the (B) & the first accommendation (L) so only alexander
	State because it was a second

$$ZA$$
.

 $L_{c}(z)$
 $L_{c}(z)$
 ZA
 $L_{c}(z)$
 ZA
 ZA

Steady- State:

2B. transport-limited: Km is small

When transport is limiting, the ligand concentration depends on the cell activity, i.e. binding and unbinding and production.

birding - limited: km is big

When binding is limiting, the ligard concentration (Lc) is only dependent on the bulk concentration, this makes sense because if binding is slow, then Lc would approach the bulk value.

$$R_{s} = R_{s}^{*} \left(k_{r} + k_{e}^{*} \right)$$

$$R_{s} = \frac{R_{s}^{*} \left(k_{r} + k_{e}^{*} \right)}{k_{f} L_{c}}$$

$$L(z) \cdot (L_b = 0) = \frac{k_r R_s^* + q}{\frac{k_m}{n_c} + \frac{k_f}{k_f} \left(\frac{R_s^* (k_r + k_e^*)}{\frac{k_f}{k_f} L_c}\right)}$$

Le =
$$\frac{g - R_s^* ke^*}{r_c}$$
 $R_i^* = \frac{k_c^*}{k_{deg}} R_s^*$

$$P_s^* = \frac{|\mathcal{L}_{ss} L|}{1 + |\mathcal{L}_{ss} L|} \cdot \frac{|\mathcal{V}_{s}|}{|\mathcal{K}_e^*|} \rightarrow |\mathcal{L}_{ss} L| \cdot \frac{|\mathcal{V}_{s}|}{|\mathcal{K}_e^*|} = |\mathcal{R}_s^*| + |\mathcal{R}_i^*|$$

$$|2_{ss}^*| = \frac{|C_{ss}|_{S}}{|K_e^*| \left(\frac{k_m}{n_c V_s} + |K_{ss}|\right)}$$

$$K_{ss} = \frac{k_e \left(k_r + k_e^* \right)}{k_e \left(k_r + k_e^* \right)}$$

Zo. Mitotic activity

from rotes : Y=

mitatic signal (8) slope from Part II-26 notes

$$Y = \frac{100 - 0}{27 - 0} = \frac{100}{27}$$

Normalized rate: 8 PTotal

where
$$|c_m(z)| = \left(\frac{\dot{y}z^2}{D_L}\right) \cdot \frac{D_L}{z}$$

Loranipulation of Sherwood number equation

see "prob 2d. jl"

and "prob 2 db. prg"

for predicted profile

All parameters are in "Parameters. toml"	
36. see "prob3.ipynb" - Julia code, also "plot3b.png	"
3c. As Kp > 1 the pi curve	
goes up as a function of ui. This trend is displayed in "plot 3c. png"	
which shows trajectories for Kp=1,10,100.	
This happens because when more ribosomes	
are reading messages, i.e. when Kp is	
increasing, more protein is able to be	
are reading messages, i.e. when Kp is increasing, more protein is able to be produced by the collective effort.	

4. see "prob4. ipyab" in PH folder.

Results:

A. W, = 0.045

Wz = 98.95

B. Ture Ki and n (Hill parameters) until model fits data

K: 9 × 10-2 mM

n= 4.40

C. see " plot 4c. prg"

Yes, this proposed model can fit the data well.