

Analista Universitario en Sistemas Informáticos Análisis Matemático y Numérico - Examen Final - 2° año

En todos los ejercicios, deje asentados los cálculos que permiten dar respuesta a las consignas y cuando utilice software adjunte las capturas de pantalla.

1) Una empresa fabrica 2 productos (I y II) teniendo disponible para su fabricación un total de 200000 unidades del recurso 1, 130000 unidades del recurso 2 y 1200 unidades del recurso 3. Para tener terminado cada producto se requiere:

Producto	I	II
Unid. Recurso I	150	200
Unid. Recurso II	100	100
Unid. Recurso III	1	1
Ganancia \$/Unidad	450	560

- a) Escriba la función objetivo para obtener la máxima ganancia y el sistema de inecuaciones correspondientes a las restricciones.
- b) Construya la tabla simplex inicial (no la resuelva!!)

Sabiendo que la siguiente, es la tabla final aplicando el método simplex, responda a las siguientes preguntas:

x_1	x_2	h_1	h_2	h_3	b	
0	1	0	5	-4	400	x_2
1	0	0	-5	5	800	x_1
0	0	1	-5/2	1/2	0	h_3
0	0	0	-550	-10	z-584000	

donde x_1 y x_2 corresponden a la cantidad de unidades de cada producto, respectivamente; h_1 , h_2 y h_3 las correspondientes variables de holgura y b la columna de términos independientes.

- c) ¿Cuántas unidades deben vender de cada producto para maximizar las ganancias?
- d) ¿Cuál es la ganancia máxima que puede obtenerse?
- e) ¿Hay sobrantes de recursos? ¿Cuántos de cada uno?

2) La siguiente es la gráfica de la función $f(x) = ax^2 + bx + c$. Sabiendo que pasa por los puntos señalados:

- a) Determine los valores de a, b y c, justificando su respuesta.
- b) Indique el conjunto imagen de f.
- c) Determine: $\lim_{h\to 0} \frac{f(4+h)-f(4)}{h} =$
- 3) Las sustancias radiactivas tienen la propiedad de desintegrarse al emitir espontáneamente partículas alfa, electrones y rayos gamma, por lo que pierden masa a medida que pasa el tiempo. En un laboratorio se observa una sustancia radioactiva que pierde el 3 % de su masa cada día. En un principio, la masa de dicha sustancia es de 200 mg.
 - a) Determine una función exponencial que permita modelar la cantidad C(t) (en mg) de la sustancia transcurridos t días.
 - b) ¿Cuánto tiempo debe transcurrir para que la cantidad de la sustancia se reduzca a la mitad de la cantidad inicial?
 - c) Calcule C'(2) e indique su significado en la situación. (Ojo! Dice "C prima")
 - d) Según Google habrá un tormentón a las 0hs, ¿se desintegrará por completo la sustancia radiactiva?
- **4)** Dada la función $f(x) = \frac{x}{2x^2 + x}$
 - a) Determine su dominio.
 - ${f b}$) Plantee y resuelva los límites que permiten justificar la existencia de asíntotas horizontales y/o verticales. Escriba la ecuación de dichas asíntotas en caso de existir.
 - c) Determine si la función varía más rápido en x=3 o en x=6. Justifique su respuesta.