import pandas as pd import numpy as np from sklearn.preprocessing import LabelEncoder

liver\_df= pd.read\_csv('/content/indian\_liver\_patient.csv') liver\_df.head()

| $\rightarrow$ |   | Age | Gender | Total_Bilirubin | Direct_Bilirubin | Alkaline_Phosphotase | Alamine_Aminot |
|---------------|---|-----|--------|-----------------|------------------|----------------------|----------------|
|               | 0 | 65  | Female | 0.7             | 0.1              | 187                  |                |
|               | 1 | 62  | Male   | 10.9            | 5.5              | 699                  |                |
|               | 2 | 62  | Male   | 7.3             | 4.1              | 490                  |                |
|               | 3 | 58  | Male   | 1.0             | 0.4              | 182                  |                |
|               | 4 | 72  | Male   | 3.9             | 2.0              | 195                  |                |
|               |   |     |        |                 |                  |                      |                |

Next steps:

Generate code with liver\_df



View recommended plots

liver\_df.head()

|   | Age   | Gender                                                        | Total_Bilirubin                                                                  | Direct_Bilirubin                                                                                                                                           | Alkaline_Phosphotase                                                                                                                                                                               | Alamine_Aminot                                                                                                                                                               |
|---|-------|---------------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 65    | Female                                                        | 0.7                                                                              | 0.1                                                                                                                                                        | 187                                                                                                                                                                                                |                                                                                                                                                                              |
| 1 | 62    | Male                                                          | 10.9                                                                             | 5.5                                                                                                                                                        | 699                                                                                                                                                                                                |                                                                                                                                                                              |
| 2 | 62    | Male                                                          | 7.3                                                                              | 4.1                                                                                                                                                        | 490                                                                                                                                                                                                |                                                                                                                                                                              |
| 3 | 58    | Male                                                          | 1.0                                                                              | 0.4                                                                                                                                                        | 182                                                                                                                                                                                                |                                                                                                                                                                              |
| 4 | 72    | Male                                                          | 3.9                                                                              | 2.0                                                                                                                                                        | 195                                                                                                                                                                                                |                                                                                                                                                                              |
|   | 1 2 3 | <ul><li>0 65</li><li>1 62</li><li>2 62</li><li>3 58</li></ul> | <ul> <li>65 Female</li> <li>62 Male</li> <li>62 Male</li> <li>58 Male</li> </ul> | 0       65       Female       0.7         1       62       Male       10.9         2       62       Male       7.3         3       58       Male       1.0 | 0       65       Female       0.7       0.1         1       62       Male       10.9       5.5         2       62       Male       7.3       4.1         3       58       Male       1.0       0.4 | 1       62       Male       10.9       5.5       699         2       62       Male       7.3       4.1       490         3       58       Male       1.0       0.4       182 |

Next steps:

Generate code with liver\_df



View recommended plots

liver\_df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 583 entries, 0 to 582 Data columns (total 11 columns):

| # | Column | Non-Null Count | Dtype  |
|---|--------|----------------|--------|
|   |        |                |        |
| 0 | Age    | 583 non-null   | int64  |
| 1 | Gender | 583 non-null   | object |

```
Total Bilirubin
                                583 non-null
                                                float64
3
   Direct_Bilirubin
                                                float64
                                583 non-null
4
   Alkaline_Phosphotase
                                583 non-null
                                                int64
   Alamine Aminotransferase
                                583 non-null
                                                int64
   Aspartate Aminotransferase 583 non-null
                                                int64
7
   Total_Protiens
                                583 non-null
                                                float64
8
   Albumin
                                583 non-null
                                                float64
9
   Albumin_and_Globulin_Ratio 579 non-null
                                                float64
10 Dataset
                                583 non-null
                                                int64
```

dtypes: float64(5), int64(5), object(1)

memory usage: 50.2+ KB

### liver\_df.describe(include='all')

| <b>→</b> | Age    |            | Gender | Total_Bilirubin | Direct_Bilirubin | Alkaline_Phosphotase | Ala |
|----------|--------|------------|--------|-----------------|------------------|----------------------|-----|
|          | count  | 583.000000 | 583    | 583.000000      | 583.000000       | 583.000000           |     |
|          | unique | NaN        | 2      | NaN             | NaN              | NaN                  |     |
|          | top    | NaN        | Male   | NaN             | NaN              | NaN                  |     |
|          | freq   | NaN        | 441    | NaN             | NaN              | NaN                  |     |
|          | mean   | 44.746141  | NaN    | 3.298799        | 1.486106         | 290.576329           |     |
|          | std    | 16.189833  | NaN    | 6.209522        | 2.808498         | 242.937989           |     |
|          | min    | 4.000000   | NaN    | 0.400000        | 0.100000         | 63.000000            |     |
|          | 25%    | 33.000000  | NaN    | 0.800000        | 0.200000         | 175.500000           |     |
|          | 50%    | 45.000000  | NaN    | 1.000000        | 0.300000         | 208.000000           |     |
|          | 75%    | 58.000000  | NaN    | 2.600000        | 1.300000         | 298.000000           |     |
|          | max    | 90.000000  | NaN    | 75.000000       | 19.700000        | 2110.000000          |     |
|          |        |            |        |                 |                  |                      |     |

#### liver\_df.columns

# liver\_df.isnull().sum()

| $\rightarrow$ | Age                  | 0 |
|---------------|----------------------|---|
|               | Gender               | 0 |
|               | Total_Bilirubin      | 0 |
|               | Direct_Bilirubin     | 0 |
|               | Alkaline_Phosphotase | 0 |

```
Alamine_Aminotransferase 0
Aspartate_Aminotransferase 0
Total_Protiens 0
Albumin 0
Albumin_and_Globulin_Ratio 4
Dataset 0
dtype: int64
```

pd.get\_dummies(liver\_df['Gender'], prefix = 'Gender').head()

| <b>→</b> |   | Gender_Female | Gender_Male |     |
|----------|---|---------------|-------------|-----|
|          | 0 | True          | False       | ıl. |
|          | 1 | False         | True        |     |
|          | 2 | False         | True        |     |
|          | 3 | False         | True        |     |
|          | 4 | False         | True        |     |

liver\_df = pd.concat([liver\_df,pd.get\_dummies(liver\_df['Gender'], prefix = 'Gender')], axis

liver\_df.head()

| $\overline{\Rightarrow}$ |   | Age | Gender | Total_Bilirubin | Direct_Bilirubin | Alkaline_Phosphotase | Alamine_Aminot |
|--------------------------|---|-----|--------|-----------------|------------------|----------------------|----------------|
|                          | 0 | 65  | Female | 0.7             | 0.1              | 187                  |                |
|                          | 1 | 62  | Male   | 10.9            | 5.5              | 699                  |                |
|                          | 2 | 62  | Male   | 7.3             | 4.1              | 490                  |                |
|                          | 3 | 58  | Male   | 1.0             | 0.4              | 182                  |                |
|                          | 4 | 72  | Male   | 3.9             | 2.0              | 195                  |                |

liver\_df.describe()



|       | Age        | Total_Bilirubin | Direct_Bilirubin | Alkaline_Phosphotase | Alamine_Amir |
|-------|------------|-----------------|------------------|----------------------|--------------|
| count | 583.000000 | 583.000000      | 583.000000       | 583.000000           |              |
| mean  | 44.746141  | 3.298799        | 1.486106         | 290.576329           |              |
| std   | 16.189833  | 6.209522        | 2.808498         | 242.937989           |              |
| min   | 4.000000   | 0.400000        | 0.100000         | 63.000000            |              |
| 25%   | 33.000000  | 0.800000        | 0.200000         | 175.500000           |              |
| 50%   | 45.000000  | 1.000000        | 0.300000         | 208.000000           |              |
| 75%   | 58.000000  | 2.600000        | 1.300000         | 298.000000           |              |
| max   | 90.000000  | 75.000000       | 19.700000        | 2110.000000          |              |

liver\_df[liver\_df['Albumin\_and\_Globulin\_Ratio'].isnull()]

| <b>→</b> |     | Age | Gender | Total_Bilirubin | Direct_Bilirubin | Alkaline_Phosphotase | Alamine_Amin |
|----------|-----|-----|--------|-----------------|------------------|----------------------|--------------|
|          | 209 | 45  | Female | 0.9             | 0.3              | 189                  |              |
|          | 241 | 51  | Male   | 0.8             | 0.2              | 230                  |              |
|          | 253 | 35  | Female | 0.6             | 0.2              | 180                  |              |
|          | 312 | 27  | Male   | 1.3             | 0.6              | 106                  |              |
|          |     |     |        |                 |                  |                      |              |

liver\_df["Albumin\_and\_Globulin\_Ratio"] = liver\_df.Albumin\_and\_Globulin\_Ratio.fillna(liver\_d

X = liver\_df.drop(['Gender','Dataset'], axis=1)
X.head(3)

| <b>→</b> * |   | Age | Total_Bilirubin | Direct_Bilirubin | Alkaline_Phosphotase | Alamine_Aminotransfera |
|------------|---|-----|-----------------|------------------|----------------------|------------------------|
|            | 0 | 65  | 0.7             | 0.1              | 187                  |                        |
|            | 1 | 62  | 10.9            | 5.5              | 699                  |                        |
|            | 2 | 62  | 7.3             | 4.1              | 490                  |                        |
|            |   |     |                 |                  |                      |                        |

y = liver\_df['Dataset']

liver\_corr = X.corr()
liver\_corr



Next steps:

|                            | Age       | Total_Bilirubin | Direct_Bilirubin | Alkaline_Phosp |
|----------------------------|-----------|-----------------|------------------|----------------|
| Age                        | 1.000000  | 0.011763        | 0.007529         | 0.0            |
| Total_Bilirubin            | 0.011763  | 1.000000        | 0.874618         | 0              |
| Direct_Bilirubin           | 0.007529  | 0.874618        | 1.000000         | 0              |
| Alkaline_Phosphotase       | 0.080425  | 0.206669        | 0.234939         | 1.0            |
| Alamine_Aminotransferase   | -0.086883 | 0.214065        | 0.233894         | 0.             |
| Aspartate_Aminotransferase | -0.019910 | 0.237831        | 0.257544         | 0.             |
| Total_Protiens             | -0.187461 | -0.008099       | -0.000139        | -0.0           |
| Albumin                    | -0.265924 | -0.222250       | -0.228531        | -0.            |
| Albumin_and_Globulin_Ratio | -0.216089 | -0.206159       | -0.200004        | -0             |
| Gender_Female              | -0.056560 | -0.089291       | -0.100436        | 0.0            |
| Gender_Male                | 0.056560  | 0.089291        | 0.100436         | -0.0           |
|                            |           |                 |                  |                |

View recommended plots

```
from sklearn.metrics import accuracy_score
from sklearn.model selection import train test split
from sklearn.metrics import classification_report,confusion_matrix
from sklearn import linear_model
from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVC, LinearSVC
from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier, BaggingClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.linear model import Perceptron
from sklearn.linear_model import SGDClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.neural_network import MLPClassifier
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.30, random_state=101)
print (X_train.shape)
print (y_train.shape)
print (X_test.shape)
print (y_test.shape)
     (408, 11)
     (408,)
     (175, 11)
```

Generate code with liver\_corr

(175,)

### Logistic Regression

```
logreg = LogisticRegression()
logreg.fit(X_train, y_train)
/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_logistic.py:458: Converge
    STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
    Increase the number of iterations (max iter) or scale the data as shown in:
         https://scikit-learn.org/stable/modules/preprocessing.html
    Please also refer to the documentation for alternative solver options:
         https://scikit-learn.org/stable/modules/linear model.html#logistic-regression
       n iter i = check optimize result(
     ▼ LogisticRegression
     LogisticRegression()
log_predicted= logreg.predict(X_test)
logreg score = round(logreg.score(X train, y train) * 100, 2)
logreg score test = round(logreg.score(X test, y test) * 100, 2)
print('Logistic Regression Training Score: \n', logreg score)
print('Logistic Regression Test Score: \n', logreg_score_test)
print('Coefficient: \n', logreg.coef_)
print('Intercept: \n', logreg.intercept_)
print('Accuracy: \n', accuracy_score(y_test,log_predicted))
print('Confusion Matrix: \n', confusion matrix(y test,log predicted))
print('Classification Report: \n', classification_report(y_test,log_predicted))
→ Logistic Regression Training Score:
      72.06
    Logistic Regression Test Score:
      68.0
    Coefficient:
      [[-0.00994992 -0.0985122 -0.30688724 -0.00082939 -0.01078827 -0.00275598
       -0.23899684 0.40208926 0.59475501 0.2533529
                                                        0.0911599 ]]
    Intercept:
      [0.36100669]
    Accuracy:
      0.68
    Confusion Matrix:
      [[107 17]
      [ 39 12]]
    Classification Report:
                   precision recall f1-score
                                                    support
                1
                        0.73
                                  0.86
                                            0.79
                                                       124
                        0.41
                                  0.24
                                            0.30
                                                        51
```

```
accuracy 0.68 175
macro avg 0.57 0.55 0.55 175
weighted avg 0.64 0.68 0.65 175
```

```
coeff_df = pd.DataFrame(X.columns)
coeff_df.columns = ['Feature']
coeff_df["Correlation"] = pd.Series(logreg.coef_[0])
pd.Series(logreg.coef_[0])
```

coeff\_df.sort\_values(by='Correlation', ascending=False)

| <b>→</b> |    | Feature                    | Correlation |     |
|----------|----|----------------------------|-------------|-----|
|          | 8  | Albumin_and_Globulin_Ratio | 0.594755    | ılı |
|          | 7  | Albumin                    | 0.402089    |     |
|          | 9  | Gender_Female              | 0.253353    |     |
|          | 10 | Gender_Male                | 0.091160    |     |
|          | 3  | Alkaline_Phosphotase       | -0.000829   |     |
|          | 5  | Aspartate_Aminotransferase | -0.002756   |     |
|          | 0  | Age                        | -0.009950   |     |
|          | 4  | Alamine_Aminotransferase   | -0.010788   |     |
|          | 1  | Total_Bilirubin            | -0.098512   |     |
|          | 6  | Total_Protiens             | -0.238997   |     |
|          | 2  | Direct_Bilirubin           | -0.306887   |     |

# Gaussian Naive Bayes

```
gaussian = GaussianNB()
gaussian.fit(X_train, y_train)
gauss_predicted = gaussian.predict(X_test)

gauss_score = round(gaussian.score(X_train, y_train) * 100, 2)
gauss_score_test = round(gaussian.score(X_test, y_test) * 100, 2)
print('Gaussian Score: \n', gauss_score)
print('Gaussian Test Score: \n', gauss_score_test)
print('Accuracy: \n', accuracy_score(y_test, gauss_predicted))
print(confusion_matrix(y_test,gauss_predicted))
print(classification_report(y_test,gauss_predicted))
```

```
Gaussian Score:
 56.13
Gaussian Test Score:
 53.14
Accuracy:
 0.5314285714285715
[[44 80]
 [ 2 49]]
                         recall f1-score
               precision
                                                support
           1
                    0.96
                              0.35
                                         0.52
                                                    124
                    0.38
                              0.96
                                         0.54
                                                     51
                                         0.53
                                                    175
    accuracy
                    0.67
                              0.66
                                         0.53
                                                    175
   macro avg
weighted avg
                    0.79
                              0.53
                                         0.53
                                                    175
```

#### Random Forest

```
random_forest = RandomForestClassifier(max_depth=3,n_estimators=56,criterion='entropy')
random_forest.fit(X_train, y_train)
```

RandomForestClassifier

RandomForestClassifier(criterion='entropy', max\_depth=3, n\_estimators=56)

rf\_predicted = random\_forest.predict(X\_test)

```
random_forest_score = round(random_forest.score(X_train, y_train) * 100, 2)
random_forest_score_test = round(random_forest.score(X_test, y_test) * 100, 2)
print('Random Forest Score: \n', random_forest_score)
print('Random Forest Test Score: \n', random_forest_score_test)
print('Accuracy: \n', accuracy_score(y_test,rf_predicted))
print(confusion_matrix(y_test,rf_predicted))
print(classification_report(y_test,rf_predicted))
```

Random Forest Score:
76.23
Random Forest Test Score:
70.29
Accuracy:
0.7028571428571428
[[117 7]
[ 45 6]]

recall f1-score precision support 1 0.72 0.94 124 0.82 2 0.46 0.12 0.19 51 175 accuracy 0.70

```
macro avg 0.59 0.53 0.50 175 weighted avg 0.65 0.70 0.63 175
```

```
finX = liver_df[['Total_Protiens','Albumin', 'Gender_Male']]
finX.head(4)
```

| <b>→</b> |   | Total_Protiens | Albumin | Gender_Male |     |
|----------|---|----------------|---------|-------------|-----|
|          | 0 | 6.8            | 3.3     | False       | ıl. |
|          | 1 | 7.5            | 3.2     | True        |     |
|          | 2 | 7.0            | 3.3     | True        |     |
|          | 3 | 6.8            | 3.4     | True        |     |

Next steps: Generate code with finX View recommended plots

## Logistic Regression

```
X_train, X_test, y_train, y_test = train_test_split(finX, y, test_size=0.30, random_state=1
logreg = LogisticRegression()

logreg.fit(X_train, y_train)

The LogisticRegression  
    LogisticRegression()
```

log\_predicted= logreg.predict(X\_test)

```
logreg_score = round(logreg.score(X_train, y_train) * 100, 2)
logreg score_test = round(logreg.score(X_test, y_test) * 100, 2)
```

# Equation coefficient and Intercept

```
print('Logistic Regression Training Score: \n', logreg_score)
print('Logistic Regression Test Score: \n', logreg_score_test)
print('Coefficient: \n', logreg.coef_)
print('Intercept: \n', logreg.intercept_)
print('Accuracy: \n', accuracy_score(y_test,log_predicted))
print('Confusion Matrix: \n', confusion_matrix(y_test,log_predicted))
print('Classification Report: \n', classification_report(y_test,log_predicted))
```

```
Logistic Regression Training Score:
 71.08
Logistic Regression Test Score:
 71.43
Coefficient:
 Intercept:
 [-0.20423275]
Accuracy:
 0.7142857142857143
Confusion Matrix:
 [[120 4]
 [ 46
        5]]
Classification Report:
              precision
                          recall f1-score
                                            support
                  0.72
                           0.97
           1
                                     0.83
                                               124
           2
                  0.56
                           0.10
                                                51
                                     0.17
                                     0.71
                                               175
    accuracy
                           0.53
                                     0.50
                                               175
   macro avg
                  0.64
weighted avg
                  0.67
                           0.71
                                     0.63
                                               175
```

**Decision Tree Classifier** 

```
dt=DecisionTreeClassifier()
```

dt.fit(X\_train,y\_train)

y\_pred=dt.predict(X\_test)

dt\_score = round(dt.score(X\_train, y\_train) \* 100, 2)

dt\_test = round(dt.score(X\_test, y\_test) \* 100, 2)

from sklearn.metrics import accuracy\_score

0.6457142857142857

accuracy\_score(y\_test,y\_pred)

from sklearn.metrics import confusion\_matrix
confusion\_matrix(y\_test,y\_pred)

#### Model evaluation

```
models = pd.DataFrame({
    'Model': [ 'Logistic Regression', 'Gaussian Naive Bayes', 'Random Forest', 'Decision Tree']
    'Score': [ logreg_score, gauss_score, random_forest_score,dt_score],
    'Test Score': [ logreg_score_test, gauss_score_test, random_forest_score_test,dt_test]})
models.sort_values(by='Test Score', ascending=False)
```

| <b>→</b> |   | Model                | Score | Test Score |     |
|----------|---|----------------------|-------|------------|-----|
|          | 0 | Logistic Regression  | 71.08 | 71.43      | ılı |
|          | 2 | Random Forest        | 76.23 | 70.29      |     |
|          | 3 | Decision Tree        | 93.38 | 64.57      |     |
|          | 1 | Gaussian Naive Bayes | 56.13 | 53.14      |     |

import pickle

```
filename = 'liver.sav'
pickle.dump(round, open(filename, 'wb'))
```

```
# loading the saved model
loaded_model = pickle.load(open('liver.sav', 'rb'))
```

Start coding or generate with AI.