E - Subset Coloring

原案·解説 ReiVindicatio(@RVindicatio)

2022年3月19日

K=1 のとき、全て同じ色で塗っても条件を満たせるので、答えは 1 です.

また, $K \geq 3$ の時, 全ての部分集合を異なる色で塗らなければならないため答えは 2^N となります. もし $A, B \in \mathcal{Q}$ が同じ色で塗られていた場合, $A \cup B \cup P = P$ であり, 明らかに条件に反するためです.

以下, K=2 とします.

解の下界を考えます. P の要素から i を除いた部分集合を $A_i:=P\setminus\{i\}\in\mathcal{Q}$ として定義します. 例えば, $A_1=\{2,3,4,\cdots,N\},A_3=\{1,2,4,\cdots,N\}$ などとなります.

このとき, P,A_1,A_2,\cdots,A_N のどの二つを選んでも和集合は明らかに P になります. このためこれら N+1 個の要素は異なる色で塗らなければならず, 解の下界は N+1 であることがわかります.

次に、この下界が常に構築できることを示します。 P,A_1,A_2,\cdots,A_N をそれぞれ色 C_0,C_1,C_2,\cdots,C_N の N+1 色で塗ることにします。上記以外の Q の要素 $B\in Q$ の大きさは N-2 以下であり,B は $1,\cdots,N$ の中で必ず含まない自然数 j を持ちます。この時,B を色 C_j で塗ることにすれば,色 C_j で塗られている集合は必ず要素 j を含まなくなるので,和集合は P とはならず条件を満たすことができます。

以上により常に構築できるので, K=2 の時の解は N+1 となります.

計算量は $K \leq 2$ のとき $O(1), K \geq 3$ の時は累乗を適切に実装すれば $O(\log N)$ ですが O(N) も許容されています.