PROBLEM SET 2 (T-445-GRTH)

You need to collect **65** points to get a full score **but** you cannot get more than **X** points (in total) from a problem section with annotation **max X**.

Please make sure to:

- 1. Write your name/email(s) on your work (replace my name above).
- 2. Write your answers in \begin{solution} ... \end{solution} blocks given after each problem. Turn in a single LATEX-generated pdf.
- 3. Write clear and concise proofs: points may be deducted for vagueness.

1. More on Trees (max 40)

1 (5 points) Show that every tree T has at least $\Delta(T)$ leaves, where $\Delta(T)$ denotes the maximum degree of T.

Solution. \Box

2 (15 points) State necessary and sufficient conditions on an ordered n-tuple of positive integers (d_1, \ldots, d_n) with $d_1 \leq d_2 \leq \cdots \leq d_n$ in order that there be a tree T on vertices u_1, \ldots, u_n with $\deg_T(u_i) = d_i$ for each $i \in \{1, \ldots, n\}$.

Solution. \Box

3 (10 points) Let $\Delta \geq 3$, and let $d_{\Delta}(n)$ be the maximum number of nodes of degree Δ that a tree on n vertices may have. Use induction to show that:

$$d_{\Delta}(n) \le \left\lfloor \frac{n-2}{\Delta-1} \right\rfloor.$$

Solution. \Box

- 4 a (10 points) Show that if a tree T has a longest path of even length, then the mid-vertex of one such longest path is the mid-vertex of every longest path in T. Hint: First show that two such paths can't be vert.-disjoint.
 - **b** (5 points) Prove that the common vertex is a center of T.

Solution. \Box

5 (5 points) A full ternary tree is an ordered rooted tree where each vertex, except the leaves, has exactly 3 children. Hence, all of the internal vertices have degree four, except the root which has degree 3. Prove the Full Ternary Tree Theorem which states that a regular ternary tree has n = 3k + 1 vertices, k of them internal and 2k + 1 of them leaves.

Solution.

2. Spanning Trees (max 15)

6 (7 points) Describe a procedure for finding a spanning tree in a graph. Prove that it indeed finds a spanning tree in every connected graph. Apply it to the graph from the following exercise.

Solution. \Box

7 (10 points) How many different spanning trees does the following graph contain?

Solution. \Box

3. Eulerian Graphs (max 25)

- 8 Consider the 3×3 chessboard, and let Q denote the 9 squares of the board. Let $H_{3,3} = (Q, E)$ denote the simple graph on vertex set Q so that $(q_1, q_2) \in E$ if and only if a rook at square q_1 can reach q_2 in a single move (a rook can move horizontally and vertically arbitrary distance).
 - a (5 points) Run Fleury's algorithm for computing an Eulerian circuit on $H_{3,3}$. The algorithm on a simple graph G=(V,E) is as follows: Pick a vertex v_1 arbitrarily. Having picked v_1,\ldots,v_k , set $G_k=G-\{e_{1,2},e_{2,3},\ldots,e_{k-2,k-1},e_{k-1,k}\}$, where $e_{i,j}$ denotes an edge connecting v_i to v_j . If there is a nonbridge (in G_k) edge connecting v_k to a vertex u then let $v_{k+1}=u$. Otherwise, let v_{k+1} be any neighbor of v_k in G_k . If the degree of v_k in G_k is 0 then terminate. Repeat.
 - **b** (5 points) Consider the general $n \times m$ chessboard, for $n, m \ge 1$, and similarly the graph $H_{n,m}$ so that two vertices (squares) are adjacent if and only if a rook can get from one to the other in one move. For which values n, m does the graph $H_{m,n}$ contain a Euler circuit?
 - **c** (10 points) Prove that Fleury's algorithm always finds an Eulerian circuit if there is one.

Solution. \Box

- **9** (10 points) For an integer k, let G be a connected graph that contains 2k vertices of odd degree. Show that there exist k edge-disjoint subgraphs G_1, \ldots, G_k such that
 - $E(G) = E(G_1) \cup E(G_2) \cup \cdots \cup E(G_k)$,
 - each G_i has an Eulerian trail.

Hint: Add k edges to G so that it becomes Eulerian.

Solution.	

10 (5 points) Prove that a balanced weakly connected graph is strongly connected.

Solution.
$$\Box$$

4. Hamiltonian Graphs (max 20)

11 (10 points) Let m and n be positive integers. Consider the grid graph $G_{m,n} = (V, E)$ with vertex set $V = \{1, \ldots, m\} \times \{1, \ldots, n\}$, where vertices $u = (x, y) \in V$ and $v = (x', y') \in V$ are adjacent if and only if |x - x'| + |y - y'| = 1. Find necessary and sufficient conditions that m and n must satisfy in order for the graph $G_{m,n}$ to be Hamiltonian.

Solution.
$$\Box$$

12 (10 points) Prove that the following graph is not Hamiltonian.

Solution.

5. Connectivity (max 30)

13 (5 points) Show that a vertex u in a graph G is a cut-vertex if, and only if, there are vertices $v, w \in V(G) \setminus \{u\}$ such that every path between v and w contains the vertex u.

Solution.
$$\Box$$

14 (10 points) Show that if G is a graph on n vertices and m edges, we have:

$$\kappa(G) \le \kappa'(G) \le \left\lfloor \frac{2m}{n} \right\rfloor.$$

Solution. \Box

15 (10 points) Let G be a connected graph. Show that if $C \subseteq E(G)$ has an even number of edges in common with every edge cut of G, then C is an edge-disjoint union of cycles.

Solution.
$$\Box$$

16 (5 points) For a tree T on n vertices and with maximum degree Δ , what is the minimum number of vertices in its block-cutpoint graph BC(T)?

Solution.	