Class 7: Data visualization III

February 13, 2018

Annoucements

- No reading for Thursday's class
- Come talk to me ASAP if...
 - ...you are still experiencing issues with using Github to submit assignments
 - o ...your RStudio installation continues to give you unknown errors
- Website will be updated soon with prior lecture's slides and homework 1

Data visualization with ggplot2

Structure of R commands

Functions in R are often verbs, and then in parantheses are the arguments for those functions.

```
verb(what-you-want-to-apply-verb-to, other-arguments)
```

For example:

Structure of R commands

Functions in R are often verbs, and then in parantheses are the arguments for those functions.

```
verb(what-you-want-to-apply-verb-to, other-arguments)
```

For example:

```
glimpse(mpg) # Glimpse into the mpg dataset
```

Structure of R commands

Functions in R are often verbs, and then in parantheses are the arguments for those functions.

```
verb(what-you-want-to-apply-verb-to, other-arguments)
```

For example:

To use ggplot2 functions, load tidyverse:

library(tidyverse)

To use ggplot2 functions, load tidyverse:

```
library(tidyverse)
```

In ggplot2 the structure of the code for plots can often be summarized as

```
ggplot +
geom_word
```

To use ggplot2 functions, load tidyverse:

```
library(tidyverse)
```

In ggplot2 the structure of the code for plots can often be summarized as

```
ggplot +
  geom_word
```

or, more precisely

To use ggplot2 functions, load tidyverse:

```
library(tidyverse)
```

In ggplot2 the structure of the code for plots can often be summarized as

```
ggplot +
  geom_word
```

or, more precisely

```
ggplot(data = [dataset]) +
  geom_word(mapping = aes(x = [x-variable], y = [y-variable])) +
  other options
```

To use ggplot2 functions, load tidyverse:

```
library(tidyverse)
```

In ggplot2 the structure of the code for plots can often be summarized as

```
ggplot +
  geom_word
```

or, more precisely

```
ggplot(data = [dataset]) +
  geom_word(mapping = aes(x = [x-variable], y = [y-variable])) +
  other options
```

Geoms, short for geometric objects, describe the type of plot you will produce.

About ggplot2

- ggplot2 is the name of the package
- The gg in "ggplot2" stands for Grammar of Graphics
- Inspired by the book **Grammar of Graphics** by Lee Wilkinson
- ggplot() is the main function in ggplot2

Visualizing Star Wars

Star Wars data

Loading tidyverse also loads a dataset called starwars into your RStudio environment:

```
library(tidyverse)
starwars
```

```
## # A tibble: 87 x 13
##
                  name height mass
                                      hair color skin color eye color
##
                 <chr> <int> <dbl>
                                           <chr>
                                                      <chr>>
                                                               <chr>>
         Luke Skywalker
                          172
                                           blond
                                                       fair
                                                                blue
##
   1
                                77
                 C-3P0
                         167 75
##
                                           <NA>
                                                       gold
                                                              vellow
##
   3
                 R2-D2 96
                                32
                                            <NA> white, blue
                                                                 red
##
            Darth Vader
                         202
                                                      white
                                                              vellow
                               136
                                            none
##
   5
            Leia Organa
                         150
                               49
                                           brown
                                                 light
                                                               brown
             Owen Lars
                                                                blue
##
                          178
                               120
                                     brown, grey light
   7 Beru Whitesun lars
                        165
                               75
                                           brown
                                                     light
                                                                blue
##
                        97
                                32
                                                 white, red
                 R5-D4
                                           <NA>
                                                                red
      Biggs Darklighter
                        183 84
                                           black
##
                                                      light
                                                               brown
##
  10
         Obi-Wan Kenobi
                         182 77 auburn, white fair blue-gray
    ... with 77 more rows, and 7 more variables: birth year <dbl>,
      gender <chr>, homeworld <chr>, species <chr>, films <list>,
## #
      vehicles <list>, starships <list>
## #
```

Dataset terminology

What does each row represent? What does each column represent?

```
## # A tibble: 87 x 13
##
                  name height
                                     hair color
                                               skin_color eye_color
                             mass
##
                 <chr> <int> <dbl>
                                          <chr>
                                                     <chr>
                                                              <chr>>
                                          blond
                                                     fair
                                                               blue
##
         Luke Skywalker
                         172
   1
                               77
                 C-3P0
##
                         167 75
                                          <NA>
                                                      gold vellow
                       96
                                          <NA> white, blue
##
                 R2-D2
                               32
                                                                red
##
           Darth Vader
                         202
                             136
                                                    white vellow
                                           none
##
                         150
                             49
                                          brown
                                                    light
           Leia Organa
                                                              brown
                                                               blue
##
             Owen Lars
                         178
                             120
                                                    light
                                    brown, grey
                         165
                             75
                                                    light
                                                               blue
##
   7 Beru Whitesun lars
                                          brown
##
                 R5-D4
                       97
                               32
                                          <NA>
                                                white, red
                                                               red
      Biggs Darklighter
                         183
                               84
                                          black
                                                    light
##
                                                              brown
## 10
        Obi-Wan Kenobi
                         182
                               77 auburn, white
                                                     fair blue-grav
    ... with 77 more rows, and 7 more variables: birth year <dbl>,
## #
    gender <chr>, homeworld <chr>, species <chr>, films <list>,
    vehicles <list>, starships <list>
## #
```

Luke Skywalker

Take a **glimpse** at the data:

```
glimpse(starwars)
```

```
## Observations: 87
## Variables: 13
## $ name <chr> "Luke Skywalker", "C-3PO", "R2-D2", "Darth Vader",
## $ height <int> 172, 167, 96, 202, 150, 178, 165, 97, 183, 182, 188
## $ mass <dbl> 77.0, 75.0, 32.0, 136.0, 49.0, 120.0, 75.0, 32.0, 8
## $ hair color <chr> "blond", NA, NA, "none", "brown", "brown, grey", "b
## $ skin color <chr> "fair", "gold", "white, blue", "white", "light", "l
## $ eye_color <chr> "blue", "yellow", "red", "yellow", "brown", "blue",
## $ birth year <dbl> 19.0, 112.0, 33.0, 41.9, 19.0, 52.0, 47.0, NA, 24.0
## $ gender <chr> "male", NA, NA, "male", "female", "male", "female",
## $ homeworld <chr> "Tatooine", "Tatooine", "Naboo", "Tatooine", "Alder
## $ species <chr> "Human", "Droid", "Droid", "Human", "Human", "Human
## $ films  <list> [<"Revenge of the Sith", "Return of the Jedi", "Th</pre>
## $ vehicles <list> [<"Snowspeeder", "Imperial Speeder Bike">, <>, <>,
## $ starships <list> [<"X-wing", "Imperial shuttle">, <>, <>, "TIE Adva
```

Run the following **in the Console** to view the help

?starwars

Run the following **in the Console** to view the help

?starwars

How many rows and columns does this dataset have?

What does each row represent? What does each column represent?

Run the following **in the Console** to view the help

?starwars

How many rows and columns does this dataset have?

What does each row represent? What does each column represent?

Make a prediction: What relationship do you expect to see between height and mass?

Scatterplots

Mass vs. height (geom_point())

Not all characters have height and mass information (hence 28 of them not plotted)

```
ggplot(data = starwars) +
  geom_point(mapping = aes(x = height, y = mass))
```


Mass vs. height

How would you describe this relationship? What other variables would help us understand data points that don't follow the overall trend?

Mass vs. height

Who is the not so tall but really massive character?

```
ggplot(data = starwars) +
  geom_point(mapping = aes(x = height, y = mass))
```


Mass vs. height

Who is the not so tall but really massive character?

```
ggplot(data = starwars) +
  geom_point(mapping = aes(x = height, y = mass))
```


Additional variables

Can display additional variables with

- aesthetics (like shape, colour, size), or
- faceting (small multiples displaying different subsets)

Aesthetics

Aesthetics options

Visual characteristics of plotting characters that can be mapped to data are

- color
- size
- shape
- alpha (transparency)

Mass vs. height + gender

```
ggplot(data = starwars) +
  geom_point(mapping = aes(x = height, y = mass, color = gender))
```


Aesthetics summary

- Continuous variable are measured on a continuous scale
- Discrete variables are measured (or often counted) on a discrete scale

aesthetics	discrete	continuous
color	rainbow of colors	gradient
size	discrete steps	linear mapping between radius and value
shape	different shape for each	shouldn't (and doesn't) work

Faceting

Faceting options

- Smaller plots that display different subsets of the data
- Useful for exploring conditional relationships and large data

Mass vs. height by gender

```
ggplot(data = starwars) +
  geom_point(mapping = aes(x = height, y = mass)) +
  facet_grid(. ~ gender)
```


In the next few examples, think about what each plot displays. Think about how the code relates to the output.

```
ggplot(data = starwars) +
  geom_point(mapping = aes(x = height, y = mass)) +
  facet_grid(gender ~ .)
```



```
ggplot(data = starwars) +
  geom_point(mapping = aes(x = height, y = mass)) +
  facet_grid(. ~ gender)
```



```
ggplot(data = starwars) +
  geom_point(mapping = aes(x = height, y = mass)) +
  facet_wrap(~ eye_color)
```


Facet summary

- facet_grid(): 2d grid, rows ~ cols, . for no split
- facet_wrap(): 1d ribbon wrapped into 2d

Other geoms

Height vs. mass, take 2

How are these plots similar? How are they different?

Height vs. mass, take 2

How are these plots similar? How are they different?

geom_smooth

To plot a smooth curve, use geom_smooth()

```
ggplot(data = starwars) +
  geom_smooth(mapping = aes(x = height, y = mass))
```


Describing shapes of numerical

- shape:
 - skewness: right-skewed, left-skewed, symmetric (skew is to the side of the longer tail)
 - o modality: unimodal, bimodal, multimodal, uniform
- center: mean (mean), median (median), mode (not always useful)
- spead: range (range), standard deviation (sd), inter-quartile range (IQR)
- unusual observations

Histograms

For numerical variables

```
ggplot(starwars) +
  geom_histogram(mapping = aes(x = height), binwidth = 10)
```


Bar plots

For categorical variables

```
ggplot(starwars) +
  geom_bar(mapping = aes(x = gender))
```


Group Exercises

Form groups with the neighboring students and complete as many of the following exercises in *R for Data Science* as you can before the class period ends:

- Chapter 3.2.4: exercises 4, 5
- Chapter 3.3.1: exercise 3
- Chapter 3.5.1: exercises 1, 2, 6
- Chapter 3.6.1: exercise 5
- Chapter 3.7.1: exercises 2, 5

At the end of the class period, send me the group . Rmd file using Slack.

Credits

• Examples and descriptions were adapted from the Fundamentals of data & data visualization slides developed by Mine Çetinkaya-Rundel and made available under the CC BY license.