LECTURE 28 – GROUPS, SYMMETRY, SUBGROUPS GROUP:

A GROUP < G , *> IS AN ALGEBRAIC SYSTEM IN WHICH * ON G SATISFIES FOUR CONDITION

> Closure Property

For all
$$x$$
, $y \in G$
 $x * y \in G$

> Associative Property

For all
$$x, y, z \in G$$

 $x * (y * z) = (x * y) * z$

> Existence of Identity element

There exists an element $e \in G$ such that for any $a \in G$

$$x * e = x = e * x$$

Existence of Inverse Element

For every $x \in G$, there exists an element denoted by $a^{-1} \in G$ such that

$$X^{-1} * X = X * X^{-1} = e$$

THE ORDER OF A GROUP G IS THE NUMBER OF ELEMENTS IN G AND THE ORDER OF AN ELEMENT IN A GROUP IS THE LEAST POSITIVE INTEGER N SUCH THAT AN IS THE IDENTITY ELEMENT OF THAT GROUP G.

THEOREM 1: LET E BE AN IDENTITY ELEMENT IN GROUP < G , * > , THEN E IS UNIQUE PROOF:

- ⇒ LET e AND e`ARE TWO IDENTITY IN G
- \Rightarrow e e' = e IF e' IS IDENTITY
- \Rightarrow e e' = e' IF E IS IDENTITY
- ⇒ SINCE ee` IS UNIQUE ELEMENT IN G
- $\Rightarrow e = e$

THEOREM 2 : INVERSE OF EACH ELEMENT OF A GROUP < G, * > IS UNIQUE PROOF :

```
⇒ LET a BE ANY ELEMENT OF G AND E THE IDENTITY OF G
\RightarrowSUPPOSE B AND C ARE TWO DIFFERENT INVERSE OF A IN G.
\Rightarrowa * b = e = b * a (IF b IS AN INVERSE OF a)
\Rightarrow a * c = e = c * a (IF c IS AN INVERSE OF a)
\Rightarrow NOW, b = b * e
          = p * (a * c)
          = (p * a) * c
          = 6 * C = C
```

THUS a HAS UNIQUE INVERSE

Theorem 3: if a^{-1} is the inverse of an element a of group < G, * > then $(a^{-1})^{-1}=a$ Proof:

- \Rightarrow Let e be the identity of Group < G , * >
- \Rightarrow a⁻¹ * a = e
- \Rightarrow $(a^{-1})^{-1} * (a^{-1} * a) = (a^{-1})^{-1} * e$
- $\Rightarrow ((a^{-1})^{-1} * a^{-1}) * a = (a^{-1})^{-1}$
- $\Rightarrow e * a = (a^{-1})^{-1}$
- \Rightarrow (a⁻¹)⁻¹ = a

Theorem 4: If < G , * > be a group then for any two elements a and b of < G , * > prove that (a * b)⁻¹ = $b^{-1} * a^{-1}$ rule of reversal

Proof:

⇒ Let a⁻¹ and b⁻¹ are inverse of a and b respectively and e be the identity

$$\Rightarrow a * a^{-1} = e = a^{-1} * a$$

$$\Rightarrow b * b^{-1} = e = b^{-1} * b$$

$$\Rightarrow (a * b) * (b^{-1} * a^{-1}) = [(a * b) * b^{-1}] * a^{-1}$$

$$\Rightarrow = [a * (b * b^{-1})] * a^{-1}$$

$$\Rightarrow = [a * e] * a^{-1}$$

$$= a * a^{-1}$$

$$= e$$

$$\Rightarrow$$
 Similarly, $(b^{-1} * a^{-1}) * (a * b) = e$

- ⇒ This show that b⁻¹ and a⁻¹ is inverse of b and a
- \Rightarrow Hence, $(a * b)^{-1} = b^{-1} * a^{-1}$

b = c

```
Cancellation Property: if a, b and cbe any three elements of a group \langle G, \bullet \rangle then
  ab = ac \Rightarrow b = c \text{ left cancellation}
  ba = ca \Rightarrow b = c \text{ right cancellation}
Proof:
\Rightarrow Let a \in G and also a^{-1} \in G
\Rightarrow aa<sup>-1</sup> = e = a<sup>-1</sup>a
⇒ where e is identity of G
\Rightarrow Now, ab = ac
\Rightarrow a^{-1}(ab) = a^{-1}(ac)
\Rightarrow (a^{-1} a) b = (a^{-1} a) c
\Rightarrow e.b = e.c
              b = c
    similarly, ba = ca
```

EXAMPLES:

THE SET OF N×N NON-SINGULAR MATRICES FORM A GROUP UNDER MATRIX MULTIPLICATION OPERATION.

- THE PRODUCT OF TWO N×N NON-SINGULAR MATRICES IS ALSO AN N×N NON-SINGULAR MATRIX WHICH HOLDS CLOSURE PROPERTY.
- MATRIX MULTIPLICATION ITSELF IS ASSOCIATIVE. HENCE, ASSOCIATIVE PROPERTY HOLDS.
- THE SET OF N×N NON-SINGULAR MATRICES CONTAINS THE IDENTITY MATRIX HOLDING THE IDENTITY ELEMENT PROPERTY.

AS ALL THE MATRICES ARE NON-SINGULAR THEY ALL HAVE INVERSE ELEMENTS WHICH ARE ALSO NON-SINGULAR MATRICES. HENCE, INVERSE PROPERTY ALSO HOLDS.

ABELIAN GROUP:

AN ABELIAN GROUP G IS A GROUP FOR WHICH THE ELEMENT PAIR (a,b)∈G ALWAYS HOLDS COMMUTATIVE LAW.

SO, A GROUP HOLDS FIVE PROPERTIES SIMULTANEOUSLY –

- i) CLOSURE
- ii) ASSOCIATIVE
- iii) IDENTITY ELEMENT
- iv) INVERSE ELEMENT
- v) COMMUTATIVE.

Example

The set of positive integers (including zero) with addition operation is an abelian group.

$$G=\{0,1,2,3,\ldots\}$$

Here closure property holds as for every pair $(a,b)\in S, (a+b)$ is present in the set S. [For example, $1+2=2\in S$ and so on]

Associative property also holds for every element $a,b,c\in S, (a+b)+c=a+(b+c)$ [For example, (1+2)+3=1+(2+3)=6 and so on]

Identity property also holds for every element $a\in S, (a imes e)=a$ [For example, (2 imes 1)=2, (3 imes 1)=3 and so on]. Here, identity element is 1.

Commutative property also holds for every element $a\in S, (a imes b)=(b imes a)$ [For example, (2 imes 3)=(3 imes 2)=3 and so on]

CYCLIC GROUP:

A CYCLIC GROUP IS A GROUP THAT CAN BE GENERATED BY A SINGLE ELEMENT. EVERY ELEMENT OF A CYCLIC GROUP IS A POWER OF SOME SPECIFIC ELEMENT WHICH IS CALLED A GENERATOR. A CYCLIC GROUP CAN BE GENERATED BY A GENERATOR 'g', SUCH THAT EVERY OTHER ELEMENT OF THE GROUP CAN BE WRITTEN AS A POWER OF THE GENERATOR 'g'.

Example

The set of complex numbers $\{1,-1,i,-i\}$ under multiplication operation is a cyclic group.

There are two generators - i and -i as $i^1=i, i^2=-1, i^3=-i, i^4=1$ and also

$$(-i)^1=-i,(-i)^2=-1,(-i)^3=i,(-i)^4=1$$
 which covers all the elements of the group.

Hence, it is a cyclic group.

Note – A **cyclic group** is always an abelian group but not every abelian group is a cyclic group. The rational numbers under addition is not cyclic but is abelian.

SUBGROUP:

A SUBGROUP H IS A SUBSET OF A GROUP G (DENOTED BY H≤G) IF IT SATISFIES THE FOUR PROPERTIES SIMULTANEOUSLY – CLOSURE, ASSOCIATIVE, IDENTITY ELEMENT, AND INVERSE.

A SUBGROUP H OF A GROUP G THAT DOES NOT INCLUDE THE WHOLE GROUP G IS CALLED A PROPER SUBGROUP (DENOTED BY H<G). A SUBGROUP OF A CYCLIC GROUP IS CYCLIC AND A ABELIAN SUBGROUP IS ALSO ABELIAN.

Example

Let a group $G = \{1, i, -1, -i\}$

Then some subgroups are $H_1=\{1\}, H_2=\{1,-1\}$,

This is not a subgroup – $H_3=\{1,i\}$ because that $(i)^{-1}=-i$ is not in H_3

SEMIGROUP & MONOID:

example, (1+2)+3=1+(2+3)=5

A FINITE OR INFINITE SET 'S' WITH A BINARY OPERATION 'o' (COMPOSITION) IS CALLED SEMIGROUP IF IT HOLDS FOLLOWING TWO CONDITIONS SIMULTANEOUSLY –

- CLOSURE FOR EVERY PAIR $(a,b) \in S$, $(a \circ b)$ HAS TO BE PRESENT IN THE SET S.
- ASSOCIATIVE FOR EVERY ELEMENT a, b, $c \in S$, $(a \circ b) \circ c = a \circ (b \circ c)$ MUST HOLD.

Example

The set of positive integers (excluding zero) with addition operation is a semigroup. For example, $S=\{1,2,3,\ldots\}$

Here closure property holds as for every pair $(a,b)\in S, (a+b)$ is present in the set S. For example, $1+2=3\in S$

Associative property also holds for every element $\ a,b,c\in S, (a+b)+c=a+(b+c)$. For

Monoid

A monoid is a semigroup with an identity element. The identity element (denoted by e or E) of a set S is an element such that (aoe)=a, for every element $a\in S$. An identity element is also called a **unit element**. So, a monoid holds three properties simultaneously – **Closure, Associative, Identity element**.

Example

The set of positive integers (excluding zero) with multiplication operation is a monoid. $S=\{1,2,3,\ldots\}$

Here closure property holds as for every pair $(a,b)\in S, (a imes b)$ is present in the set S. [For example, $1 imes 2=2\in S$ and so on]

Associative property also holds for every element $a,b,c\in S,(a imes b) imes c=a imes (b imes c)$ [For example, (1 imes 2) imes 3=1 imes (2 imes 3)=6 and so on]

Identity property also holds for every element $a\in S, (a imes e)=a$ [For example, (2 imes 1)=2, (3 imes 1)=3 and so on]. Here identity element is 1.

NORMAL SUBGROUP:

LET G BE A GROUP. A SUBGROUP H OF G IS SAID TO BE A NORMAL SUBGROUP OF G IF FOR ALL $H \in H$ AND $X \in G$, $X H X^{-1} \in H$

IF X H X⁻¹ = {X H X⁻¹ | H \in H} THEN H IS NORMAL IN G IF AND ONLY IF XH X⁻¹ \subseteq H, \forall X \in G **STATEMENT**: IF G IS AN ABELIAN GROUP, THEN EVERY SUBGROUP H OF G IS NORMAL IN G. **PROOF**:

LET ANY $H \in H$, $X \in G$, THEN

 $X H X^{-1} = X (H X^{-1})$

 $X H X^{-1} = (X X^{-1}) H$

 $X H X^{-1} = E H$

 $X H X^{-1} = H \in H$

HENCE H IS NORMAL SUBGROUP OF G.

ABELIAN GROUP:

DEFINITION OF ABELIAN GROUP

A GROUP < G , * >IN WHICH THE OPERATION \square IS COMMUTATIVE IS CALLED ABELIAN GROUP i.e. FOR ALL a,b BELONGS TO G , a * b = b * a

EXAMPLE

< Z, + > IS ABELIAN GROUP

< Q , + > IS ABELIAN GROUP

1. A CYCLIC GROUP CAN BE GENERATED BY A/AN	ELEMENT.
A) SINGULAR	
B) NON-SINGULAR	
C) INVERSE	
D) MULTIPLICATIVE	
2. HOW MANY PROPERTIES CAN BE HELD BY A GROUP?	
A) 2	
B) 3	
C) 5	
D) 4	
3. A CYCLIC GROUP IS ALWAYS	
A) ABELIAN GROUP	
B) MONOID	
C) SEMIGROUP	
D) SUBGROUP	

- 4. {1, I, -I, -1} IS _____
- A) SEMIGROUP
- B) SUBGROUP
- C) CYCLIC GROUP
- D) ABELIAN GROUP
- **5.** A GROUP (M,*) IS SAID TO BE ABELIAN IF _____
- A) (X+Y)=(Y+X)
- B) (X*Y)=(Y*X)
- C) (X+Y)=X
- D) (Y*X)=(X+Y)

6. Show that in a Group < G , * > , if for any a, b \in G , (a * b) 2 = a 2 * b 2 , then < G , * > must be abelian

Solution:

Let $\langle G, * \rangle$ be a Group and let $a, b \in G$ $(a * b)^2 = a^2 * b^2$

- $\Rightarrow (a * b) * (a * b) = (a * a) * (b * b)$
- a * (b * a) * b = a * (a * b) * b
- By left and right cancellation property
- \Rightarrow b * a = a * b
- \Rightarrow Thus we have $a * b = b * a . \forall a,b \in G$
- → Hence < G , * >is an abelian Group

7. Show that if every element in a group is its own inverse, then the group must be abelian

Solution:

Let a,
$$b \in G$$

 $\rightarrow a * b \in G$ (by closure property)

Now,
$$a^{-1} = a$$
 and $b^{-1} = b$

$$\Rightarrow$$
 (a * b)⁻¹ = a * b

Now,
$$(a * b)^{-1} = a * b$$

$$\rightarrow$$
 $b^{-1} * a^{-1} = a * b$

$$\Rightarrow$$
 b * a = a * b

- \Rightarrow Thus we have a *b = b * a, $\forall a,b \in G$
- → Hence < G , * >is an abelian Group

8. If < G, * >is an abelian group, then for all a, $b \in G$ show that $(a * b)^n = a^n * b^n$ Solution

$$(a * b)^n = a^n * b^n$$

 $(a * b)^{n+1} = a^{n+1} * b^{n+1}$
 $(a * b)^{n+2} = a^{n+2} * b^{n+2}$

Now,

$$(a^{n} * b^{n}) (a * b) = (a * b)^{n+1}$$

= $(a^{n+1} * b^{n+1})$
 $\Rightarrow (b^{n} * a) = (a * b^{n})$

By cancellation, similarly

$$b^{n+1} * a = a * b^{n+1}$$

Again

$$b^{n+1} * a = b(b^n * a) = b(ab^n)$$

i.e., $ab^{n+1} = b(ab^n)$