Foundations of Mathematics YOUR NAME

Math 300 Sections 902, 905

Seventh Homework:

Due 2 November 2020

- 1. [14] Do all parts of Problem 12 in the Exercises for Section 5.3 in the Sundstrom book.
- 2. [16] Sketch a picture (with labels) of each of the following in the Cartesian plane \mathbb{R}^2 with the usual conventions (the first coordinate is horizontal, while the second is vertical):
 - (a) $[0,2] \times [1,3]$

(b) $(0,2) \times (1,3]$

(c) $[2,3] \times \{1\}$

(d) $\{2\} \times [3, 4]$

(e) $\mathbb{R} \times (2,4)$

(f) $(1,3] \times \mathbb{R}$

(g) $\mathbb{R} \times \{-1\}$

- (h) $\{-1\} \times [1, \infty)$
- 3. [10] Is the following proposition true or false? Justify your conclusion.

Let A, B, and C be sets with $A \neq \emptyset$. If $A \times B = A \times C$, then B = C.

Explain where the assumption $A \neq \emptyset$ is needed. What happens when $A = \emptyset$?

4. [10] For each positive integer $n \in \mathbb{N}$, let $A_n := (-\frac{1}{n}, 1 - \frac{1}{n}) \subset \mathbb{R}$.

 $\bigcap A_k$ Determine each of

and $\bigcup \{A_{\ell} \mid \ell \in \mathbb{N}\}.$

5. [8] Let ν be the function from N to N whose value at a positive integer n is the number of digits in the American English spelling of the number n. For example $\nu(0) = 4$, as '0' is written zero with four letters. Similarly, $\nu(22) = 9$, as twentytwo has nine letters.

If we restrict the domain of ν to $\{1, 2, \dots, 20\}$, what is its range?

- 6. [10] A real function is one whose domain and codomain are subsets of \mathbb{R} . For each of the following real functions, determine their largest possible domain and their range.
 - (a) The function f defined by $f(x) = x/(x^2 3x 2)$.
 - (b) The function g defined by $g(x) = \ln(1 \cos(x))$.
- 7. [8] Let $s: \mathbb{N} \to \mathbb{N}$ be the function whose value s(n) at a number n is the sum of the distinct natural number divisors of n. Compute the values of s on the set $\{1, \ldots, 10\}$. Is the function s injective? Is it surjective? Justify your conclusions.
- 8. [8] Let $d: \mathbb{N} \to \mathbb{N}$ be the function whose value d(n) at a number n is the number of distinct natural number divisors of n. Compute the values of d on the set $\{1, \ldots, 10\}$. Is the function d injective? Is it surjective? Justify your conclusions.
- 9. [8] Let $h: \mathbb{R} \times \mathbb{R}$ be the function defined for $(x,y) \in \mathbb{R} \times \mathbb{R}$ by $h(x,y) := x^2y + 3xy 2y + 3$. Is the function h injective? Is it surjective? Justify your conclusions.
- 10. [8] Define $\varphi \colon \mathbb{N} \to \mathbb{Z}$ be the function defined for $n \in \mathbb{N}$ by $f(n) = \frac{1 + (-1)^n (2n-1)}{4}$. Is the function φ injective? Is it surjective? Justify your conclusions.