

MUHAMMAD FARID BIN JAFRI (2111633)

LOCOMOTION MECHANISMS

1. Fixed-Wing

- Generates lift through forward motion and wing aerodynamics.
- High endurance, large range.
- Requires a runway or catapult for takeoff.

2. Rotary-Wing (Multirotor)

- Vertical lift through spinning rotors.
- It can hover and take off/land vertically.
- Lower endurance than fixed-wing.

3. Flapping-Wing (Ornithopter)

- Mimics bird/insect flight via wing flapping.
- Highly maneuverable, very small scale.
- Low payload and endurance.

4. Hybrid VTOL

- Combines rotary and fixed-wing.
- Vertical takeoff + long-distance flight.
- Complex control system.

KEY DESIGN ISSUES

KEY DESIGN	EXPLAINATION
Weight and Lift Balance	 Must ensure total lift ≥ total weight. Trade-off between structural strength and weight reduction.
Power Management	 Batteries limit endurance. Design must optimize for energy efficiency and rechargeability. Integration of solar or hybrid power in some systems.
Flight Stability and Control	 Need for real-time dynamic stabilization via sensors (IMU, gyroscope). Handling disturbances (wind gusts, obstacles).
Environmental Adaptability	 Operating altitude, wind resistance, and weatherproofing. Temperature/humidity tolerance affects electronics and lift.

ATTRIBUTES OF AERIAL ROBOTS

Common Attributes:

Degrees of Freedom (DOF): Typically 6 (x, y, z, pitch, yaw, roll)

Autonomy Levels:

- Manual (RC)
- Semi-autonomous (waypoint following)
- Fully autonomous (adaptive navigation)

Sensors:

- Inertial Measurement Unit (IMU)
- GPS / RTK
- Cameras (optical, IR)
- LIDAR/radar

Communications:

- Line-of-sight (radio)
- Beyond Visual Line of Sight (BVLOS) via satellite/5G

Real-Time Feedback:

Telemetry data for monitoring and diagnostics

THEORETICAL MODEL OF AERIAL ROBOT

Quadrotor Case

Physical Model Assumptions:

- Rigid body, symmetrical structure.
- Actuation through four rotors with known thrust/torque constants.

Translational Dynamics:

- Based on Newton's Second Law:
 - mx" = -mgz + RFt
- where R is the rotation matrix from the body to the inertial frame.

Rotational Dynamics:

- Euler's Equations:
 - \circ Iw÷w×(Iw)= τ
- where τ is the net torque from rotors.

Control Inputs:

- Thrust (up/down), pitch (forward/back), roll (left/right), yaw (rotation).
- Differential speeds on rotors allow complete control in 3D space.

PAYLOAD CONSIDERATIONS

What is Payload?

 The additional equipment/mass carried by the aerial robot beyond its own structure and propulsion.

Factors Affecting Payload Capacity:

- Rotor thrust and motor power
- Battery capacity and flight duration
- Center of gravity and aerodynamic stability

Types of Payload:

- Sensing: Cameras, LIDAR, multispectral sensors
- Delivery: Parcels, emergency supplies
- Communication: Relays, antennas
- Weapons (military use): Guided munitions, surveillance pods

Trade-off:

 Higher payload reduces flight time and maneuverability.

DJI MATRICE 300 RTK

- Type:
 - Multirotor hexacopter
- Applications:
 - Industrial inspection, public safety, and agriculture
- Payload Capacity:
 - Up to 2.7 kg
- Key Features:
 - Al tracking
 - Dual operator mode
 - RTK GNSS precision (cm-level accuracy)
 - Max flight time ~55 minutes

MQ-9 REAPER

- Type:
 - Fixed-wing, long-endurance UAV
- Use Case:
 - Military surveillance and strike
- Payload:
 - Up to 1700 kg (missiles, sensors, fuel)
- Key Features:
 - Satellite communications for BVLOS control
 - Endurance: 27+ hours
 - Altitude: Up to 50,000 ft
 - EO/IR and synthetic aperture radar (SAR)

PARROT ANAFI AI

- Type:
 - Multirotor
- Application:
 - 3D mapping, construction inspection
- Payload:
 - Integrated 48 MP camera with 6x zoom
- Key Features:
 - 4G LTE connectivity for long-range control
 - Autonomous flight planning
 - Real-time terrain following

ROBOBEE (HARVARD)

- Type:
 - Flapping-wing micro aerial vehicle
- Purpose:
 - Research, insect-mimic flight
- Payload:
 - Minimal (lightweight sensors)
- Key Features:
 - Weighs ~80 mg
 - Electrostatic adhesion for vertical landing
 - High maneuverability in confined spaces

WINGCOPTER 198

- Type:
 - Hybrid VTOL fixed-wing
- Application:
 - Medical delivery, remote logistics
- Payload:
 - Up to 5 kg
- Key Features:
 - 3-package system, dynamic release
 - Range: Up to 75 km
 - Weather-resistant design
 - VTOL takeoff and landing

CONCLUSION

- Aerial robots exhibit diverse locomotion systems tailored to specific missions.
- Design involves trade-offs between payload, flight time, and maneuverability.
- Real-world examples show how ARs are solving modern challenges in military, logistics, industry, and research.
- Understanding theoretical models aids in building control systems and flight algorithms.
- Future work includes swarming, AI-enhanced autonomy, and extended endurance systems.

REFERENCE

- 1.DJI. (n.d.). Matrice 300 RTK Support. DJI. Retrieved May 22, 2025, from https://www.dji.com/support/product/matrice-300
- 2. General Atomics Aeronautical Systems. (n.d.). MQ-9A Reaper (Predator B). Retrieved May 22, 2025, from https://www.ga-asi.com/remotely-piloted-aircraft/mq-9a
- 3.General Atomics Aeronautical Systems. (n.d.). MQ-9 Reaper/Predator B Datasheet [PDF]. Retrieved May 22, 2025, from https://www.ga-asi.com/airforce/img/downloads/Predator B MQ-9 Reaper datasheet.pdf
- 4. Harvard University Wyss Institute. (n.d.). Next-generation cockroach-inspired robot is small but mighty. Retrieved May 22, 2025, from https://wyss.harvard.edu/news/next-generation-cockroach-inspired-robot-is-small-but-mighty/

