5/23/2021 les6_homework

GeekBrains, ML in Business

Lesson 6 Homework

Импорт библиотек

```
import numpy as np
import pandas as pd

import catboost as ctb

from sklearn.model_selection import train_test_split
from sklearn.metrics import recall_score, precision_score, roc_auc_score, accuracy_score, f1_score
```

Классы и функции для задания

Задание 1

Взять любой набор данных для бинарной классификации (можно скачать один из модельных с https://archive.ics.uci.edu/ml/datasets.php).

Решение Задания 1

Kaggle Dataset - HR Analytics: Job Change of Data Scientists:

https://www.kaggle.com/arashnic/hr-analytics-job-change-of-data-scientists

```
In [3]:
          df = pd.read_csv("data/aug_train.csv")
           df.head()
Out[3]:
             enrollee_id
                             city_development_index gender relevent_experience enrolled_university education_level major_discipline experience company_s
                                                                          Has relevent
                   8949 city_103
                                                   0.920
                                                            Male
                                                                                            no_enrollment
                                                                                                                 Graduate
                                                                                                                                     STEM
                                                                                                                                                  >20
                                                                                                                                                                Ν
                                                                            experience
                                                                           No relevent
                  29725
                          city_40
                                                   0.776
                                                            Male
                                                                                            no_enrollment
                                                                                                                 Graduate
                                                                                                                                     STEM
                                                                                                                                                   15
                                                                                                                                                               50-
                                                                            experience
                                                                           No relevent
          2
                  11561
                         city_21
                                                   0.624
                                                            NaN
                                                                                           Full time course
                                                                                                                 Graduate
                                                                                                                                     STEM
                                                                                                                                                    5
                                                                            experience
                                                                           No relevent
                  33241 city_115
          3
                                                   0.789
                                                            NaN
                                                                                                    NaN
                                                                                                                           Business Degree
                                                                                                                 Graduate
                                                                            experience
                                                                          Has relevent
                                                                                            no_enrollment
                    666 city_162
                                                   0.767
                                                            Male
                                                                                                                  Masters
                                                                                                                                     STEM
                                                                                                                                                  >20
                                                                            experience
           df.shape
          (19158, 14)
Out[4]:
In [5]:
           df.info()
          <class 'pandas.core.frame.DataFrame'>
```

```
RangeIndex: 19158 entries, 0 to 19157
Data columns (total 14 columns):
                           Non-Null Count Dtype
    Column
                            -----
    enrollee_id
0
                            19158 non-null int64
1
    city
                            19158 non-null
                                           object
2
    city_development_index 19158 non-null
                                           float64
                            14650 non-null object
    gender
3
                            19158 non-null object
    relevent experience
    enrolled university
                            18772 non-null object
    education level
                            18698 non-null object
6
                            16345 non-null object
    major_discipline
                            19093 non-null object
    experience
```

5/23/2021 les6_homework

```
company_size
                                     13220 non-null
                                                     object
                                     13018 non-null
         10 company_type
                                                     object
                                     18735 non-null
         11 last_new_job
                                                     object
                                                     int64
         12 training_hours
                                     19158 non-null
                                     19158 non-null float64
         13 target
        dtypes: float64(2), int64(2), object(10)
        memory usage: 2.0+ MB
        Ненужный признак
In [6]:
         df = df.drop(columns=['enrollee_id'])
        Конвертируем таргет в int
In [7]:
         df['target'] = df['target'].astype(int)
        Смотрим баланс таргета
In [8]:
         df['target'].value_counts()
             14381
Out[8]:
              4777
        Name: target, dtype: int64
```

Задание 2

Сделать feature engineering.

Решение Задания 2

Просто заменяем все на самое частое значение (моду), т.к. все признаки с пропущенными значениями категориальные.

```
for col in df.select_dtypes('object').columns:
    df[col] = df[col].fillna(df[col].value_counts().index[0])
```

Делим данные на трейн и тест.

```
In [10]: X_train, X_test, y_train, y_test = train_test_split(df.drop(columns=['target']), df['target'], test_size=0.2, random_state=42)
```

Задание 3

Обучить любой классификатор (какой вам нравится).

Решение Задания 3

Задание 4

Далее разделить ваш набор данных на два множества: P (positives) и U (unlabeled). Причем брать нужно не все положительные (класс 1) примеры, а только лишь часть.

Решение Задания 4

```
In [15]:

def create_unlabeled(df, pos_frac=0.2):
    """
    Cэмплирует долю pos_frac наблюдений класса 1 как positive, остальные как unlabeled.
    """
    sdf = df.copy()
    pos_mask = (df['target'] == 1)
    pos_ind = df[pos_mask].sample(frac=pos_frac).index
    unlab_ind = df[~df.index.isin(pos_ind)].index

# Помечаем данные признаком is_labeled - Positive = 1, Unlabeled = 0
    df.loc[pos_ind, 'is_labeled'] = 1
```

```
df.loc[unlab_ind, 'is_labeled'] = 0
df['is_labeled'] = df['is_labeled'].astype(int)
return df
```

Возьмем 20% наблюдений положительного класса как positive, остальные возьмем как unlabeled.

```
In [17]:
            rns_df = create_unlabeled(df, pos_frac=0.2)
In [18]:
            rns_df.head(3)
Out[18]:
                  city_development_index gender relevent_experience enrolled_university education_level major_discipline experience company_size company
                                                               Has relevent
           0 city_103
                                                                                no enrollment
                                        0.920
                                                 Male
                                                                                                     Graduate
                                                                                                                         STEM
                                                                                                                                      >20
                                                                                                                                                   50-99
                                                                experience
                                                               No relevent
               city_40
                                        0.776
                                                 Male
                                                                                no_enrollment
                                                                                                     Graduate
                                                                                                                         STEM
                                                                                                                                       15
                                                                                                                                                   50-99
                                                                experience
                                                               No relevent
                                                                                                     Graduate
                                                                                                                                         5
                                                                                                                                                   50-99
               city_21
                                        0.624
                                                 Male
                                                                               Full time course
                                                                                                                         STEM
                                                                experience
```

Задание 5

Применить random negative sampling для построения классификатора в новых условиях.

Решение Задания 5

```
In [19]:
          def get_rns_samples(rns_df):
              Создает тренировочную и тестовую выборки для RNS на основе признака is_labeled.
              rns_df = rns_df.sample(frac=1)
              pos_sample = rns_df[rns_df['is_labeled'] == 1]
              neg_sample = rns_df[rns_df['is_labeled'] == 0][:pos_sample.shape[0]]
              train_samples = pd.concat([neg_sample, pos_sample]).sample(frac=1)
              test_samples = rns_df[rns_df['is_labeled'] == 0][pos_sample.shape[0]:]
              return train_samples, test_samples
In [20]:
          train_samples, test_samples = get_rns_samples(rns_df)
In [21]:
          metrics_task5 = evaluate_model(ctb.CatBoostClassifier(cat_features=cat_feats),
                                        train_samples.iloc[:, :-2],
                                        train_samples['is_labeled'],
                                        test_samples.iloc[:, :-2],
                                        test_samples['target'])
In [22]:
          metrics = metrics.append(pd.DataFrame(metrics_task5))
```

Задание 6

Сравнить качество с решением из пункта 4 (построить отчет - таблицу метрик).

Решение Задания 6

```
In [23]: metrics.index = ['normal', 'RNS']

In [24]: metrics

Out[24]: f1 roc-auc precision recall

normal 0.504113 0.669586 0.572000 0.450630

RNS 0.536716 0.728180 0.438287 0.692159
```

RNS справился даже немного лучше, чем обычная модель. Интересно то, что повысился recall и понизилась precision - модели стало сложнее различать между классами, поэтому она начала относить больше наблюдений к положительному классу.

Задание 7

Поэкспериментировать с долей Р на шаге 5 (как будет меняться качество модели при уменьшении/увеличении размера Р).

Решение Задания 7

```
rns_metrics = pd.DataFrame(columns=['f1', 'roc-auc', 'precision', 'recall'])
In [26]:
          fracs = np.linspace(0.1, 0.9, 9)
          for frac in fracs:
              train_samples, test_samples = get_rns_samples(create_unlabeled(df, pos_frac=frac))
              frac_metrics = evaluate_model(ctb.CatBoostClassifier(cat_features=cat_feats),
                                           train_samples.iloc[:, :-2],
                                           train_samples['is_labeled'],
                                           test_samples.iloc[:, :-2],
                                           test_samples['target'])
              rns_metrics = rns_metrics.append(pd.DataFrame(frac_metrics))
In [27]:
          rns_metrics.index = fracs
In [28]:
          rns_metrics
```

Out[28]:		f1	roc-auc	precision	recall
	0.1	0.540461	0.721235	0.424727	0.742891
	0.2	0.532138	0.731384	0.416212	0.737569
	0.3	0.521309	0.739109	0.408261	0.720938
	0.4	0.486726	0.733078	0.371090	0.707051
	0.5	0.444347	0.735743	0.318315	0.735593
	0.6	0.403962	0.740023	0.279491	0.728316
	0.7	0.333607	0.738729	0.215536	0.737750
	8.0	0.259835	0.736042	0.157724	0.736915
	0.9	0.150490	0.730634	0.084099	0.714715

По ROC-AUC, precision и recall лучшая доля сэмплинга - 0.1, по F1 score - 0.6.