Bomba Calorimétrica

Índice

Índice de Tablas	. 1
Índice de Figuras	. 1
Siglas	. 1
Preparación de la Muestra y Equipos	. 2
Calibración	. 4
Obligación	. 4
Modos	. 4
Teoría	. 5
Error	. 5
Programa	
Índice de Tablas	
Tabla 1. Siglas	. 1
Tabla 2. Equivalencias de gramos y calorías	
Tabla 3. Condiciones de presión del equipo	
Tabla 4. Número de pastillas para calibrar.	
Tabla 5. Límites de presión	. 6
Índice de Figuras	
Figura 1. Presiones del equipo y de la bala	. 2
Figura 2. Hilo de la Bomba Calorimétrica	
Figura 3. Vaso con presión	. 3
Figura 4. Vaso con la rosca	
Figura 5. Lata.	
Figura 6. Lata con asa.	
Figura 7. Gráfica de como varía la temperatura con el tiempo	. 5

Siglas

Siglas	
VT	Poder Calorífico

Tabla 1. Siglas.

Preparación de la Muestra y Equipos

Hay que hacer pastillas con las muestras para asegurar que se quema completamente. Las balas de oxígeno tiene que estar a 30 bares, es oxígeno puro y cualquier llama produce una explosión.

Existen unas equivalencias de gramos y calorías:

Equivalencias		
Usualmente		
1 Gramo	6000 Calorías	
Escalar con esta regla		
Límite		
	8000 Calorías	
Calorías Desconocidas		
0,2 Gramos	Sino sabes las Calorías que generará	

Tabla 2. Equivalencias de gramos y calorías.

Las condiciones de presión deben ser:

Presión			
28 y 32 Bares	460 PSI		
No subir ni bajarlo, no es seguro			

Tabla 3. Condiciones de presión del equipo.

Las Presiones del equipo y de la Bala deben ser:

Figura 1. Presiones del equipo y de la bala.

Hay que usar todas las cazoletas, no guardar algunas y usar siempre las mismas.

Cuando se acabe el experimento hay despresurizar la bomba con cuidado.

Tiene que tener 1 ml de agua o que esté mojado.

Figura 2. Hilo de la Bomba Calorimétrica.

El hilo se partirá, pero se puede cambiar.

Hay que secar bien la junta.

Figura 3. Vaso con presión.

Bomba bien cerrada

Figura 4. Vaso con la rosca.

No hay que apretar la rosca hasta el tope, si cuesta cerrar cambiar la junta.

Para montar la lata ponerla en el soporte.

La mecha siempre debe ir hacia adentro.

1 Kg de agua del grifo en el vaso.

Figura 5. Lata.

Los electrodos no tienen su sitio, da igual un lado que el otro.

Cuando se empieza y antes de cerrar agita, así que no puede haber ruido ni burbujas dentro. Si ocurriera pulsar en Abort. Además, hasta que no se le mete el peso de la muestra no sigue con el proceso.

Se recomienda no tirar de los cables y tirar del conector. Al final ya se puede meter la mano en el agua y sacar todo.

Figura 6. Lata con asa.

Lavar y secar.

Calibración

10 Pastillas	Por ser Norma ISO
5 Pastillas	Es Suficiente

Tabla 4. Número de pastillas para calibrar.

Para la recta de calibrado siempre coge las 10 últimas calibraciones.

El patrón general es el benzoico, y no se cambia.

Obligación

Cada 500 igniciones mirar y revisar el equipo.

Modos

Estandarización

- Se usa benzoico
- El programa estandarización
 - o Calibración
 - Se puede bloquear
 - Si se cambian piezas hay que volver a calibrar
 - Se pueden poner muestras con calibración
 - o Determinación
 - Medir

El modo dinámico recorta el tiempo a la mitad y es el que se va a usar.

Teoría

Figura 7. Gráfica de como varía la temperatura con el tiempo.

En el modo original agita, quema y después baja la temperatura, pero tardaba 2 o 3 horas mientras se agitaba y se producía el incremento de temperatura

Error

Cada miligramo de la balanza afecta 5 o 6 calorías, pero en medidas de 4000, 5000 calorías no es importante.

Programa

Parrs Offline

• Encuentra puerto

1ª Pestaña

- Backet
 - o Temperatura dentro del agua
- Jacket
 - o Temperatura de la habitación
 - o 1 L de agua 1 o 2 °C debajo de lo que ponga

Hay que tener un termómetro externo para medir la temperatura.

- Bombas
 - o Pueden estar conectadas hasta 8 bombas a la vez
- Estandarización
- Determinación
- Start Preview
 - o Lista de trabajo para el equipo
- Hacer mecha
- Estado
 - Aparece abajo y dice algunos parámetros del equipo

2ª Pestaña

- Modos
 - o Límites de presión

Encima de 5,9	No pasa nada
5,9	Por seguridad
Debajo de 5,9	No es error, es normal

Tabla 5. Límites de presión.

Si está por encima de 5,9 de presión hay que diluir más.

Live Board

No hay que hacer nada, eso es para los técnicos

Calibración

Run Limit

Es donde se hace la calibración.

Control Chat Settings

Nada, solo aparecen unas gráficas.

Si se pone algo o la muestra contiene algo que reste calorías se puede apuntar para que lo tenga en cuenta el equipo, como el algodón socal o si tu muestra tiene azufre.

Speaking

Aquí es donde se apunta lo que puede ayudar a la combustión para que después se reste.

Para volátiles se puede comprar cápsulas para volátiles, donde se mete el polvo y se comprime con 1 o 2 gotas. Luego hay que poner que reste esa ayuda.

Net Dry

Factores

Para nuestros experimentos no nos interesa usar multiplicadores no nos interesa.

Pre Peso

Lista de Trabajo

Start

Hay que pulsar para que empiece.

Report

Donde se revisa los datos de la muestra.