NetCamps

Metodyki Projektów Teleinformatycznych 2023/2024

https://github.com/janek1842/NetCamps

Plan prezentacji

- 1. Wprowadzenie ogólne
- 2. Struktura produktu
- 3. Prezentacja poszczególnych funkcjonalności produktu
- 4. Metody komercjalizacji produktu
- 5. Podsumowanie procesu tworzenia

NetCamps - wprowadzenie

Głównym przeznaczeniem produktu jest wykorzystanie go w obszarze projektowania, konfiguracji, symulacji, testowania oraz dokumentacji sieci komputerowych

NetCamps może być wykorzystany w zależności od potrzeb jego użytkownika

- Dostarczenie przykładowej topologii, konfiguracji oraz dokumentacji kampusowej sieci komputerowej razem z wykorzystanymi narzędziami
- Źródło potrzeb biznesowych użytkowników (use-cases) oraz ich rozwiązań
 zidentyfikowanych przez twórców produktu, które z dużym prawdopodobieństwem wyjdą
 podczas tworzenia sieci lub oferty produktowej innych przedsiębiorstw
- Prezentowanie szczegółowej listy sprzętu oraz kosztów budowy sieci kampusowej
- Dostarczanie instruktażowych materiałów edukacyjnych do nauki zagadnień z obszaru networkingu lub szkoleń związanych z budowaniem sieci

Struktura produktu (portfolio)

- campus map diagramy sieci oraz infrastruktury
- configs trzon produktu agregujący use-casy biznesowe, konfigurację oraz demonstracje działania sieci

- cost register skoroszyt strukturyzujący koszty sprzętu ponoszone przez potencjalnych klientów produktu
- docs dokumentacja produktowa mogąca stanowić podstawę do tworzenia Functional Description lub User Guide rozwiązań klientów

Cost register & Documentation

Contents 1 Document description 2 Abbreviations 3 Preface 4 Overview 5 Supported use cases 5.1 Layer 3 (OSI/ISO) connectivity between campus network end-devices . 5.2 Link Redundancy and VLAN subnetting configuration 6 Topology design 6.1 Campus map Configuration analysis 8 Cost analysis 9 Summary

Mapa budynku

Topologia logiczna

Fizyczny projekt sieci

VLAN

Każdy akademik posiada dwa Vlany tworzone przez dwa switche (każdy switch ma jeden vlan).

Switche posiadają łącza trunkowe do routera dla wszystkich vlanów dla sieci akademikowej

Link redundacy

Przetestowaliśmy możliwość dodania kolejnych switchy i połączenia ich wieloma linkami z innymi switchami.

W istniejącej sieci nie posiadamy takich połączeń ale istnieje szybka możliwość ich implementacji.

FTP

Serwer FTP umieszczony w sieci akademikowej umożliwia (przy znajomości hasła) komputerom w sieci wysyłanie i pobieranie plików.

IoT

We wszystkich akademikach zostały dodane urządzenia IoT (lampy, drzwi okna i wentylatory). Każdy z akademików ma dodatkowo własną funkcję automatyczną np. gdy zostanie wykryty wiatr to wszystkie okna ulegają zamknięciu i posiadają indywidualne (dla każdego akademika) urządzenia dzięki którym jest to możliwe.

IoT security

Każdy akademik posiada własną sieć IoT WiFi z zabezpieczeniem WPA2. Monitorowanie i zarządzanie siecią możliwe jest tylko z komputera administratora.

MAIL

W sieci akademikowej istnieje serwer E-mail umożliwiający zakładanie kont w domenie MPT.com

Firewall

W sieci został umieszczony firewall Cisco ASA 5506-X.

Zabrania użytkownikowi PC-Alfa-O dostępu do akademickiej strony internetowej.

VOIP

W każdym pokoju w akademikach został umieszczony telefon VoIP. Możliwe jest wykonywanie połączeń między wszystkimi użytkownikami.

SNMP

Na wszystkich routerach i switchach został uruchomiony serwer SNMP, umożliwiając zdalny monitoring i zarządzanie każdego z nich poprzez modyfikację odpowiednich obiektów drzewa MIB.

Layer 3

Została zaplanowana adresacja w sieci.

Został wdrożony protokół routingu OSPF.

Został postawiony i skonfigurowany serwer DHCP

Web

Został postawiony serwer hostujący stronę www dla mieszkańców oraz serwer DNS.

Wi-Fi

Na każdym piętrze podłączono dodatkowy AP oraz dodano kontroler do ich obsługi. Każdy AP rozgłasza odpowiednia sieć dla danej przestrzeni.

Metody komercjalizacji produktu

 Sprzedaż w modelu subskrypcyjnym przy mocnym akcencie na potrzebę współpracy pomiędzy klientem oraz twórcami (co również pociąga zyski dla twórców produktu)

• Elementem produktu jest również wiedza i umiejętności tworzących go osób

 Poszczególne moduły mogą stanowić osobne podprodukty, którymi zainteresowany jest klient (np. tylko sieć Wi-Fi, IoT lub zapewnienie działania sieci szkieletowej)

 Produkt stanowi demonstrację działania, które można przenieść na swój specyficzny obszar działalności biznesowej (np. działalności edukacyjnej)

Podsumowanie przebiegu projektu

• Wszystkie cele sprintu zostały zrealizowane terminowo.

• 97% zadań było dostarczone na czas.

80% zadań było dobrze oszacowane.

Dziękujemy za uwagę

https://github.com/janek1842/NetCamps