Математическое ожидание и дисперсия

А. Макаров, Д. Тен

Клуб теории вероятностей ФЭН ВШЭ

9 октября 2021

Мотивация

- Одни из основных объектов ТВ;
- Первое применение интеграла Лебега в нашем клубе;

Введение матожидания

Определение (Математическое ожидание)

Говорится, что случайная величина f имеет конечное мат. ожидание, если $f\in\mathcal{L}(\Omega,\mathbb{P})$. Тогда мы можем обозначить следующим образом $\mathbb{E} f=\int_{\Omega}f\ d\mathbb{P}$

Введение дисперсии

Определение (Дисперсия)

Говорится, что случайная величина f имеет конечную дисперсию, если $f\in\mathcal{L}^2(\Omega,\mathbb{P})$. Тогда $var(f)=\int_{\Omega}(f-\mathbb{E}f)^2\,d\mathbb{P}=\mathbb{E}(f-\mathbb{E}f)^2$

Замечание 1

А кто сказал, что дисперсия вообще существует? Может, такой интеграл равен бесконечности?

Постоянная с.в. 1 является квадратично-интегрируемой по Лебегу, поэтому, по неравенству Коши-Буняковского-Шварца, если $f\in\mathcal{L}^2$, то f - интегрируема по Лебегу. Из этого следует интегрируемость такого выражения $(f-\mathbb{E}f)^2$

Напоминание

Напомним, что можно задать меру на $\mathcal{B}(\mathbb{R})$ через функцию распределения: $\mu((-\infty,a])=F_f(a)=Prob(f\leq a)$ Заметим, что $\mu(A)=Prob(f\in A)=\mathbb{P}(f^{-1}(A))$ Это значит, что мы теперь можем рассматривать $\int_{\mathbb{R}} x\,d\mu=\int_{\mathbb{R}} x\,dF_f$

Важная теорема

Утверждение

Пусть функция f имеет конечное матожидание.

Тогда $\mathbb{E} f = \int_{\mathbb{R}} x \, dF_f$

Важнейшая теорема

Утверждение

Пусть $f:\mathbb{R} \to \mathbb{R}$ - борелевская функция и ξ - случайная величина.

Тогда $\mathbb{E} f(\xi)) = \int_{\mathbb{R}} f(x) \, dF_{\xi}$

Следствие из важнейшей теоремы

Утверждение

Для случайной величины ξ выполнено следующее утверждение: $var(\xi) = \int_{\mathbb{R}} (x - \mathbb{E}(\xi))^2 dF_{\xi}$

Доказательство: положим $g(x) = (x - \mathbb{E}(\xi))^2$

Не менее важная теорема

Утверждение

Пусть у нас есть случайная величина ξ с функцией распределения вида $F_{\xi}(a)=\int_{(-\infty,a]}\phi(x)\,dx$ с какой-то неотрицательной борелевской функцией ϕ , для которой выполнено $\int_{\mathbb{R}}\phi(x)\,dx=1$, где x - мера Лебега на \mathbb{R} .

Тогда для борелевской фукнции $g:\mathbb{R} \to \mathbb{R}$ выполнено $\mathbb{E} g(\xi)) = \int_{\mathbb{D}} g(x) \phi(x) \, dx$

Замечание 2

Если g(x)f(x) интегрируема по Риману, то $\int_{\mathbb{R}} g(x)\phi(x)\,dx$ принимает одно и то же значение и по Риману, и по Лебегу, поэтому можно применить формулу из школы(а потом забыть, это помойка истории)

Абсолютно непрерыная случайная величина

Определение (Абсолютно непрерыная случайная величина)

Говорится, что случайная величина ξ является абсолютно непрерывной, если её функция распределения имеет вид: $F(\xi) = \int_{-}^{\infty} \infty^{\times} \phi(t) \, dt$ с некоторой неотрицательной функцией ϕ , заданной на \mathbb{R} , для которой выполнено $\int_{\mathbb{R}}^{\infty} \phi(t) \, dt = 1$

Если ϕ абсолютно непрервна, тогда $F_\phi:\mathbb{R} o[0,1]$ непрерывна