Metody numeryczne zadanie 2

Bartosz Kucypera

19 listopada 2023

Niech $A \in \mathbb{R}^{N \times N}$ będzie nieosobliwą macierzą trójdiagonalną.

Rozkład QR macierzy A przekształceniami Householdera

Wykorzystam zywkły algorytm znajdujący rozkład QR macierzy (o którego poprawności wiemy już z ćwiczeń) i wykorzystam specyficzną strukturę A by działał on w $O(N^2)$.

Wyzerowanie pierwszej kolumny pod diagonalą

Niech
$$e = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$
, $\|\cdot\|$ normą euklidesową i x to zerowana kolumna.

Wyliczamy przekształcenie Householdera:

$$\alpha = -\|x\| * \operatorname{sign}(x_1)$$

$$u = x - \alpha e$$

$$v = \frac{u}{\|u\|}$$

$$Q_1 = I - 2vv^T$$

Wektor x miał co najwyżej dwie niezerowe współżędne (pierwszą i drugą), czyli macierz $2vv^T$ ma co najwyżej niezerowy kwadrat 2×2 w lewym górym rogu.

W takim razie domnożenie Q_1 do innej macierzy możemy robić liniowym kosztem.

Po domnożeniu, zmieniają się co najwyżej dwa wiersze (lub dwie kolumny w zależności z której strony domnażamy).

Macierzy Q_1 nie potrzebujemy do niczego innego niż do domnażania jej (raz do macierzy na której pracujemy by uzyskać R i raz na boku by uzyskać całe złożenie przekształceń Householdera, Q), możemy więc trzymać tylko cztery elementy macierczy $-2vv^T$ które mogą być niezerowe i przy domanżania odpowiednio modyfikować macierz.

Algorytm

Zerujemy pierwszą kolumnę przekształceniem Q_1 . $P = Q_1 * A$

$$P = \begin{pmatrix} a_{11} & * & \cdots & * \\ 0 & P' \end{pmatrix}$$

P' dalej jest trójdiagonalna (zmienić mógł jej się tylko pierwszy element na diagonali), więc możemy znaleźć rekurencyjnie jej rozkład QR.

Niech P' = Q'R'.

Wtedy macierz

$$\begin{pmatrix} a_{11} & * & \cdots & * \\ 0 & & R' \end{pmatrix}$$

jest szukaną macierzą R, a macierz

$$\begin{pmatrix} 1 & 0 \\ 0 & Q' \end{pmatrix}^T * Q_1$$

jest szukaną macierzą Q.

Macierz R możemy wyliczać w miejscu, a macierz Q możemy na początku ustawić jako identyczność i w trakcie wykonywania algorytu na bierząco domnażać do niej kolejne przekształcenia Householdera.

Wykonujemy wtedy N kroków i w każdym z nich dwa razy domnażamy macierz przekształcenia Householdera do innej macierzy w czasie O(N) (dzięki jej specyficznej strukturze), co łącznie daje nam czas działania $O(N^2)$.

Implementacja algorytmu w pliku QRHTD.m