A Really Catchy Title for My Technical Report

Technical Report

Ann Author and Ben Writing

Date: June 12, 2019

Technical Report: CPSCI-TR-20##-##

Department of Computer Science Hamilton College Clinton, New York 1 INTRODUCTION 1

Abstract

1 Introduction

Why this is important ...

- 1.1 Motivation
- 1.2 Our Results
- 1.3 Organization

In Section 3 we give..., in Section 4...

2 Related Work

Akiba and Iwata [?]...

3 Preliminaries

- 3.1 Something Central to Understanding Your Result
- 3.2 Should Probably Have Another Subsection Too
- 3.2.1 Even More Details on a Specific Method

4 Specific Contribution 1

In this section, we ...

Lemma 1. Consider graph G = (V, E) with some vertex $v \in V$. Let $C = \{C_1, C_2, ..., C_k\}$ be a minimum clique cover of G of size $\theta(G)$. Choose $C_v \in C$ such that $v \in C_v$. We can construct C' from C such that for any $C \in (C' \setminus \{C_v\})$, $C \cap \{v\} = \emptyset$ (i.e., only clique C_v covers v) and $|C'| = |C| = \theta(G)$.

Proof. Let $X \in C$ be a set of cliques such that for all $C \in X$, $v \in C$. Consider some clique $C_x \in (X \setminus \{C_v\})$. By the definition of a clique, $C_x' = C_x \setminus \{v\}$ denotes some clique that covers all $u \in C_x$ and $u \neq v$.

Let $X' = (X \setminus \{C\}) \cup \{C'\}$, and note that the single removal of C and single addition of C' ensures that |X| = |X'|. Since $v \in C_v$, X' covers the same vertices as X.

If we remove v from all $C \in (X \setminus \{C_v\})$, then v is only covered by C_v . Therefore, in $C' = (C \setminus \{X\}) \cup \{X'\}$, v is covered by a single clique. Notice that the single removal of C and single addition of C' ensures that $|C| = |C'| = \theta(G)$, C' is a minimum clique cover of G.

Reduction 1. If graph G = (V, E) contains a vertex $v \in V$ such that the closed neighborhood of v, denoted N[v], is a clique, then N[v] is in some minimum (vertex) clique cover and can be removed from G to form reduced graph $G' = G[V \setminus N[v]]$, where $\theta(G) = 1 + \theta(G')$.

Proof. Let $C = \{C_1, C_2, \dots, C_{\theta(G)}\}$ be a given minimum clique cover for G. Since C is a clique cover, there exists some clique in C that covers v. Let $C_v \in C$ denote some clique such that $v \in C_v$. Let clique N[v] be denoted by X.

If $X \in C$, then X is in a minimum clique cover, as desired. If $X \notin C$, then we argue that we can swap X with C_v and maintain a minimum clique cover of G.

Observe that, by the definition of a clique, C_v consits only of v and vertices $u \in N(v)$. Therefore, $C_v \subset X$. Hence, all $v \in C_v$ are covered by X. Let $C' = (C \setminus \{C_v\}) \cup \{X\}$ and notice that the single removal of C_v and single addition of clique X ensures that $|C'| = |C| = \theta(G)$. Thus, we have a minimum clique cover C' such that $X \in C'$.

If $X = C_v$, then all $v \in X$ reside in a single clique X, as desired. If $X \neq C_v$, then there exists some $u \in N(v)$ such that $u \notin C_v$. Since C is a clique cover, then there exists some clique in C that covers u. Then by Lemma 1, we can pick X to cover u such that in clique cover C'', for any $C \in (C'' \setminus \{X\})$, $u \notin C$ and $|C''| = |C'| = \theta(G)$.

Observe that all $v \in X$ reside in a single clique X. Therefore, we can remove X from G to form reduced graph $G' = G[V \setminus N[v]]$, where $\theta(G) = 1 + \theta(G')$, as desired.

Lemma 2. Consider a graph G = (V, E) with minimum degree two. Let $P = \{v_1, v_2, \ldots, v_\ell\}$ be the set of vertices in a maximal, degree two path in G such that $|P| \ge 5$ is odd. Let $v_a = v_{\ell-4}, v_b = v_{\ell-3}, v_c = v_{\ell-2}, v_d = v_{\ell-1}, v_e = v_\ell$ be the last five vertices in P. Then, we can contract $\{v_b, v_c, v_d\} \in P$ into a single vertex v', giving us a new graph G' = (V', E') with vertex set $V' = (V \setminus \{v_b, v_c, v_d\}) \cup \{v'\}$ and edge set $E' = (E \setminus \{\{x, y\} | x \in \{v_b, v_c, v_d\} \lor y \in \{v_b, v_c, v_d\}\}) \cup \{\{x, v'\} | x \in \{v_a, v_e\}\}$. Then $\theta(G) = \theta(G') + 1$, and letting C(G') be a minimum vertex clique cover of G', we have two cases:

- (a) if $\{v_a, v'\} \in C(G')$, then $(C(G') \setminus \{\{v_a, v'\}\}) \cup \{\{v_a, v_b\}, \{v_c, v_d\}\}\}$ is a minimum clique cover of G, and
- (b) otherwise $\{v', v_e\} \in C(G')$, and $(C(G') \setminus \{\{v, v_e\}\}) \cup \{\{v_b, v_c\}, \{v_d, v_e\}\}\}$ is a minimum clique cover of G.

Proof. We perform a proof in three parts. First, we show that for any clique cover C' of G', there is a clique cover C of G of size |C| = |C'| + 1. Then we show that $\theta(G) = \theta(G') + 1$. This then

implies that if $|C'| = \theta(G)$ (i.e., C' is a minimum clique cover of G'), then $|I| = \theta(G)$ (i.e., C is a minimum clique cover of G). We then conclude by constructing a minimum clique cover of G from a minimum clique cover of G'.

Claim 1. Let C' be a clique cover of of G', we show there exists a clique cover C of G with size |C| = |C'| + 1.

There are two cases.

Case 1 ($\{v_a, v'\} \in C'$). Then v_a is in some clique $\{v_a, x\}$ where $x \in v'$. Since P is degree two, only $v_b \in v'$ is in the neighborhood of v_a . Thus $\{v_a, v_b\}, \{v_c, v_d\} \in C$. Therefore, $C = (C' \setminus \{\{v_a, v'\}\}) \cup \{\{v_a, v_b\}, \{v_c, v_d\}\}$ is a clique cover of G with size |C| = |C'| - 1 + 2 = |C'| + 1.

Case 2 ($\{v', v_e\} \in C'$). Since P is degree two, we can make a symmetric argument to case one, |C| = |C'| + 1.

Claim 2. $\theta(G) = \theta(G') + 1$.

We show that $\theta(G) = \theta(G') + 1$ by showing that $\theta(G) \le \theta(G') + 1$ and $\theta(G) \ge \theta(G') + 1$.

Case 1 ($\theta(G) \le \theta(G') + 1$). Let C(G') be a minimum clique cover of G'. Then by Claim 1, there is a clique cover C of G of size $|C| = |C(G')| + 1 = \theta(G') + 1$. Since any clique cover of G has size at least $\theta(G)$, we have that $\theta(G) \le |C| = \theta(G') + 1$.

Case $2(\theta(G) \ge \theta(G') + 1)$. Let C(G) be a minimum clique cover of G. Then either $\{v_a, v_b\} \in C(G)$ or $\{v_d, v_e\} \in C(G)$.

- Case 2a. Suppose $\{v_a, v_b\} \in C(G)$. Then, we have that $\{v_c, v_d\} \in C(G)$. Let $X = C(G) \setminus \{v_c, v_d\}$ and observe that |C(G)| = |X| + 1. We note that $C(G') = ((C(G) \setminus \{v_c, v_d\}) \setminus \{v_a, v_b\}) \cup \{v_a, v'\})$ is a clique cover of G' with size |C(G')| = |C(G)| 2 + 1 = |C(G)| 1 = |X|. Therefore $\theta(G) = |C(G)| = |X| + 1 = |C(G')| + 1 \ge \theta(G') + 1$.
- Case 2b. Suppose $\{v_d, v_e\} \in C(G)$, then we can make a symmetrical argument to case 2a, $\theta(G) \geq \theta(G') + 1$.

We now show how to construct a minimum clique cover of G from a minimum clique cover of G'. Let C(G') be a minimum clique cover of G'. Applying Claim 1 with G' = C(G') gives a clique cover G' of G' of size $|G'| = |G'| + 1 = \theta(G') + 1 = \theta(G)$, where the last equality is by Claim 2 and thus G' is a minimum clique cover of G. Then by the proof of Claim 1 we have that

- (a) if $\{v_a, v'\} \in C(G')$, then $(C(G') \setminus \{v_a, v'\}) \cup \{\{v_a, v_b\}, \{v_c, v_d\}\}$ is a minimum clique cover of G, and
- (b) otherwise $\{v', v_e\} \in C(G')$, and $(C(G') \setminus \{v, v_e\}) \cup \{\{v_b, v_c\}, \{v_d, v_e\}\}$ is a minimum clique cover of G.

Lemma 3. Consider a graph G = (V, E) with minimum degree two. Let $P = \{v_1, v_2, ..., v_\ell\}$ be the set of vertices in a maximal, degree two path in G such that $|P| \ge 6$ is even. Let $v_a = v_{\ell-5}$, $v_b = v_{\ell-4}$, $v_c = v_{\ell-3}$, $v_d = v_{\ell-2}$, $v_e = v_{\ell-1}$, $v_f = v_\ell$ be the last six vertices in P. Then, we can contract $\{v_b, v_c, v_d, v_e\} \in P$ into two vertices v'_1 and v'_2 , giving us a new graph G' = (V', E') with

vertex set $V' = (V \setminus \{v_b, v_c, v_d, v_e\}) \cup \{v_1', v_2'\}$ and edge set $E' = (E \setminus \{\{x, y\} | x \in \{v_b, v_c, v_d, v_e\} \lor y \in \{v_b, v_c, v_d, v_e\}\}) \cup \{\{v_a, v_1'\}, \{v_1', v_2'\}, \{v_2', v_f\}\}$. Then $\theta(G) = \theta(G') + 1$, and letting C(G') be a minimum vertex clique cover of G', we have three cases:

- (a) if $\{v_1', v_2'\} \in C(G')$, then $(C(G') \setminus \{v_1', v_2'\}) \cup \{\{v_b, v_c\}, \{v_d, v_e\}\}\$ is a minimum clique cover of G, and
- (b) otherwise $\{v_a, v_1'\}, \{v_2', v_f\} \in C(G'), then(C(G')\setminus \{\{v_a, v_1'\}, \{v_2', v_f\}\}) \cup \{\{v_a, v_b\}, \{v_c, v_d\}, \{v_e, v_f\}\}$ is a minimum clique cover of G.

Proof. We perform a proof in three parts. First, we show that for any clique cover C' of G', there is a clique cover C of G of size |C| = |C'| + 1. Then we show that $\theta(G) = \theta(G') + 1$. This then implies that if $|C'| = \theta(G)$ (i.e., C' is a minimum clique cover of G'), then $|I| = \theta(G)$ (i.e., C is a minimum clique cover of G). We then conclude by constructing a minimum clique cover of G from a minimum clique cover of G'.

Claim 1. Let C' be a clique cover of of G', we show there exists a clique cover C of G with size |C| = |C'| + 1.

There are two cases.

Case $1(\{v_1', v_2'\} \in C')$. Then $v_a, v_f \ni n\{v_1', v_2'\}$, then some minimum clique cover of $\{v_b, v_c, v_d, v_e\} \in C$. Since P is degree two, there is a single unique minimum clique cover of $\{v_b, v_c, v_d, v_e\}$. Thus $\{v_b, v_c\}, \{v_d, v_e\} \in C$. Therefore, $C = (C' \setminus \{\{v_1', v_2'\}\}) \cup \{\{v_b, v_c\}, \{v_d, v_e\}\}$ is a clique cover of G with size |C| = |C'| - 1 + 2 = |C'| + 1.

Case 2 ($\{v_a, v_1'\}, \{v_f, v_2'\} \in C'$). Then v_a is in some clique $\{v_a, x\}$ where $x \in v_1'$ and v_f is in some clique $\{y, v_f\}$ where $y \in v_2'$. Since P is degree two, only $v_b \in v_1'$ is in the neighborhood of v_a and only $v_e \in v_2'$ is in the neighborhood of v_f . Thus $\{v_a, v_b\}, \{v_c, v_d\}, \{v_e, v_f\} \in C$. Therefore, $C = (C' \setminus \{\{v_a, v_1'\}, \{v_2', v_f\}\}) \cup \{\{v_a, v_b\}, \{v_c, v_d\}, \{v_e, v_f\}\}$ is a clique cover of G with size |C| = |C'| - 2 + 3 = |C'| + 1.

Claim 2. $\theta(G) = \theta(G') + 1$.

We show that $\theta(G) = \theta(G') + 1$ by showing that $\theta(G) \le \theta(G') + 1$ and $\theta(G) \ge \theta(G') + 1$.

Case 1 ($\theta(G) \le \theta(G') + 1$). Let C(G') be a minimum clique cover of G'. Then by Claim 1, there is a clique cover C of G of size $|C| = |C(G')| + 1 = \theta(G') + 1$. Since any clique cover of G has size at least $\theta(G)$, we have that $\theta(G) \le |C| = \theta(G') + 1$.

Case 2 ($\theta(G) \ge \theta(G') + 1$). Let C(G) be a minimum clique cover of G. Then either $\{v_b, v_c\}, \{d, e\} \in C(G)$ or $\{v_a, v_b\}, \{v_c, v_d\}, \{v_e, v_f\} \in C(G)$.

- Case 2a. Suppose $\{v_b, v_c\}$, $\{d, e\} \in C(G)$. Let $X = C(G) \setminus \{\{v_c, v_d\}\}$ and observe that |C(G)| = |X| + 1. We note that $C(G') = (C(G) \setminus \{\{v_b, v_c\}, \{v_d, v_e\}\}) \cup \{v_1', v_2'\})$ is a clique cover of G' with size |C(G')| = |C(G)| 2 + 1 = |C(G)| 1 = |X|. Therefore $\theta(G) = |C(G)| = |X| + 1 = |C(G')| + 1 \ge \theta(G') + 1$.
- *Case 2b.* Suppose $\{v_a, v_b\}$, $\{v_c, v_d\}$, $\{v_e, v_f\} \in C(G)$. Let $X = C(G) \setminus \{\{v_c, v_d\}, \{v_e, v_f\}\}$ and observe that |C(G)| = |X| + 2. We note that $C(G') = (C(G) \setminus \{\{v_a, v_b\}, \{v_c, v_d\}, \{v_e, v_f\}\}) \cup \{\{v_a, v_b\}, \{v_c, v_d\}, \{v_e, v_f\}\}\}$

$$\{\{v_a, v_1'\}, \{v_2', v_f\}\}\$$
 is a clique cover of G' with size $|C(G')| = |C(G)| - 3 + 2 = |C(G)| - 1 = |X|$. Therefore $\theta(G) = |C(G)| = |X| + 1 = |C(G')| + 1 \ge \theta(G') + 1$.

We now show how to construct a minimum clique cover of G from a minimum clique cover of G'. Let C(G') be a minimum clique cover of G'. Applying Claim 1 with G' = C(G') gives a clique cover G' of G' of size $|C| = |C'| + 1 = \theta(G') + 1 = \theta(G)$, where the last equality is by Claim 2 and thus G' is a minimum clique cover of G. Then by the proof of Claim 1 we have that

- (a) if $\{v_1', v_2'\} \in C(G')$, then $(C(G') \setminus \{v_1', v_2'\}) \cup \{\{v_b, v_c\}, \{v_d, v_e\}\}$ is a minimum clique cover of G, and
- (b) otherwise $\{v_a, v_1'\}, \{v_2', v_f\} \in C(G')$, then $(C(G') \setminus \{\{v_a, v_1'\}, \{v_2', v_f\}\}) \cup \{\{v_a, v_b\}, \{v_c, v_d\}, \{v_e, v_f\}\}$ is a minimum clique cover of G.

5 Specific Contribution 2

In this section, we ...

5.1 A Subsection Title

6 Experimental Results

In this section...

- item 1
- item 2
- item 3

7 Conclusion

7.1 Contributions

7.2 Future Work

Acknowledgments