The computation of the join is as follows. Tuple (1,2) from R and (4,5) from S meet the join condition. Since each appears twice in its relation, the number of times the joined tuple appears in the result is 2×2 or 4. The other possible join of tuples — (1,2) from R with (2,3) from S — fails to meet the join condition, so this combination does not appear in the result. \square

5.1.7 Exercises for Section 5.1

Exercise 5.1.1: Let PC be the relation of Fig. 2.21(a), and suppose we compute the projection $\pi_{speed}(PC)$. What is the value of this expression as a set? As a bag? What is the average value of tuples in this projection, when treated as a set? As a bag?

Exercise 5.1.2: Repeat Exercise 5.1.1 for the projection $\pi_{hd}(PC)$.

Exercise 5.1.3: This exercise refers to the "battleship" relations of Exercise 2.4.3.

- a) The expression $\pi_{bore}(\texttt{Classes})$ yields a single-column relation with the bores of the various classes. For the data of Exercise 2.4.3, what is this relation as a set? As a bag?
- ! b) Write an expression of relational algebra to give the bores of the ships (not the classes). Your expression must make sense for bags; that is, the number of times a value b appears must be the number of ships that have bore b.
- ! Exercise 5.1.4: Certain algebraic laws for relations as sets also hold for relations as bags. Explain why each of the laws below hold for bags as well as sets.
 - a) The associative law for union: $(R \cup S) \cup T = R \cup (S \cup T)$.
 - b) The associative law for intersection: $(R \cap S) \cap T = R \cap (S \cap T)$.
 - c) The associative law for natural join: $(R \bowtie S) \bowtie T = R \bowtie (S \bowtie T)$.
 - d) The commutative law for union: $(R \cup S) = (S \cup R)$.
 - e) The commutative law for intersection: $(R \cap S) = (S \cap R)$.
 - f) The commutative law for natural join: $(R \bowtie S) = (S \bowtie R)$.
 - g) $\pi_L(R \cup S) = \pi_L(R) \cup \pi_L(S)$. Here, L is an arbitrary list of attributes.
 - h) The distributive law of union over intersection:

$$R \cup (S \cap T) = (R \cup S) \cap (R \cup T)$$

- i) $\sigma_{C \text{ AND } D}(R) = \sigma_{C}(R) \cap \sigma_{D}(R)$. Here, C and D are arbitrary conditions about the tuples of R.
- !! Exercise 5.1.5: The following algebraic laws hold for sets but not for bags. Explain why they hold for sets and give counterexamples to show that they do not hold for bags.
 - a) $(R \cap S) T = R \cap (S T)$.
 - b) The distributive law of intersection over union:

$$R \cap (S \cup T) = (R \cap S) \cup (R \cap T)$$

c) $\sigma_{C \text{ OR } D}(R) = \sigma_{C}(R) \cup \sigma_{D}(R)$. Here, C and D are arbitrary conditions about the tuples of R.

5.2 Extended Operators of Relational Algebra

Section 2.4 presented the classical relational algebra, and Section 5.1 introduced the modifications necessary to treat relations as bags of tuples rather than sets. The ideas of these two sections serve as a foundation for most of modern query languages. However, languages such as SQL have several other operations that have proved quite important in applications. Thus, a full treatment of relational operations must include a number of other operators, which we introduce in this section. The additions:

- 1. The duplicate-elimination operator δ turns a bag into a set by eliminating all but one copy of each tuple.
- 2. Aggregation operators, such as sums or averages, are not operations of relational algebra, but are used by the grouping operator (described next). Aggregation operators apply to attributes (columns) of a relation; e.g., the sum of a column produces the one number that is the sum of all the values in that column.
- 3. Grouping of tuples according to their value in one or more attributes has the effect of partitioning the tuples of a relation into "groups." Aggregation can then be applied to columns within each group, giving us the ability to express a number of queries that are impossible to express in the classical relational algebra. The grouping operator γ is an operator that combines the effect of grouping and aggregation.
- 4. Extended projection gives additional power to the operator π . In addition to projecting out some columns, in its generalized form π can perform computations involving the columns of its argument relation to produce new columns.

- 5. The sorting operator τ turns a relation into a list of tuples, sorted according to one or more attributes. This operator should be used judiciously, because some relational-algebra operators do not make sense on lists. We can, however, apply selections or projections to lists and expect the order of elements on the list to be preserved in the output.
- 6. The *outerjoin* operator is a variant of the join that avoids losing dangling tuples. In the result of the outerjoin, dangling tuples are "padded" with the null value, so the dangling tuples can be represented in the output.

5.2.1 Duplicate Elimination

Sometimes, we need an operator that converts a bag to a set. For that purpose, we use $\delta(R)$ to return the set consisting of one copy of every tuple that appears one or more times in relation R.

Example 5.8: If R is the relation

A	B
1	2
3	4
1	2
1	2

from Fig. 5.1, then $\delta(R)$ is

$$\begin{array}{c|c}
A & B \\
\hline
1 & 2 \\
3 & 4
\end{array}$$

Note that the tuple (1,2), which appeared three times in R, appears only once in $\delta(R)$. \square

5.2.2 Aggregation Operators

There are several operators that apply to sets or bags of numbers or strings. These operators are used to summarize or "aggregate" the values in one column of a relation, and thus are referred to as *aggregation* operators. The standard operators of this type are:

- 1. SUM produces the sum of a column with numerical values.
- 2. AVG produces the average of a column with numerical values.
- 3. MIN and MAX, applied to a column with numerical values, produces the smallest or largest value, respectively. When applied to a column with character-string values, they produce the lexicographically (alphabetically) first or last value, respectively.

4. COUNT produces the number of (not necessarily distinct) values in a column. Equivalently, COUNT applied to any attribute of a relation produces the number of tuples of that relation, including duplicates.

Example 5.9: Consider the relation

A	B
1	2
3	4
1	2
1	2

Some examples of aggregations on the attributes of this relation are:

- 1. SUM(B) = 2 + 4 + 2 + 2 = 10.
- 2. AVG(A) = (1+3+1+1)/4 = 1.5.
- 3. MIN(A) = 1.
- 4. MAX(B) = 4.
- 5. COUNT(A) = 4.

5.2.3 Grouping

Often we do not want simply the average or some other aggregation of an entire column. Rather, we need to consider the tuples of a relation in groups, corresponding to the value of one or more other columns, and we aggregate only within each group. As an example, suppose we wanted to compute the total number of minutes of movies produced by each studio, i.e., a relation such as:

$\underline{studioName}$	sum Of Lengths
Disney	12345
MGM	54321

Starting with the relation

Movies(title, year, length, genre, studioName, producerC#)

from our example database schema of Section 2.2.8, we must group the tuples according to their value for attribute studioName. We must then sum the length column within each group. That is, we imagine that the tuples of Movies are grouped as suggested in Fig. 5.4, and we apply the aggregation SUM(length) to each group independently.

 studioName	
Disney Disney Disney	
 MGM MGM	

Figure 5.4: A relation with imaginary division into groups

5.2.4 The Grouping Operator

We shall now introduce an operator that allows us to group a relation and/or aggregate some columns. If there is grouping, then the aggregation is within groups.

The subscript used with the γ operator is a list L of elements, each of which is either:

- a) An attribute of the relation R to which the γ is applied; this attribute is one of the attributes by which R will be grouped. This element is said to be a *grouping attribute*.
- b) An aggregation operator applied to an attribute of the relation. To provide a name for the attribute corresponding to this aggregation in the result, an arrow and new name are appended to the aggregation. The underlying attribute is said to be an aggregated attribute.

The relation returned by the expression $\gamma_L(R)$ is constructed as follows:

- 1. Partition the tuples of R into groups. Each group consists of all tuples having one particular assignment of values to the grouping attributes in the list L. If there are no grouping attributes, the entire relation R is one group.
- 2. For each group, produce one tuple consisting of:
 - i. The grouping attributes' values for that group and
 - ii. The aggregations, over all tuples of that group, for the aggregated attributes on list L.

Example 5.10: Suppose we have the relation

StarsIn(title, year, starName)

δ is a Special Case of γ

Technically, the δ operator is redundant. If $R(A_1,A_2,\ldots,A_n)$ is a relation, then $\delta(R)$ is equivalent to $\gamma_{A_1,A_2,\ldots,A_n}(R)$. That is, to eliminate duplicates, we group on all the attributes of the relation and do no aggregation. Then each group corresponds to a tuple that is found one or more times in R. Since the result of γ contains exactly one tuple from each group, the effect of this "grouping" is to eliminate duplicates. However, because δ is such a common and important operator, we shall continue to consider it separately when we study algebraic laws and algorithms for implementing the operators.

One can also see γ as an extension of the projection operator on sets. That is, $\gamma_{A_1,A_2,\ldots,A_n}(R)$ is also the same as $\pi_{A_1,A_2,\ldots,A_n}(R)$, if R is a set. However, if R is a bag, then γ eliminates duplicates while π does not.

and we wish to find, for each star who has appeared in at least three movies, the earliest year in which they appeared. The first step is to group, using starName as a grouping attribute. We clearly must compute for each group the MIN(year) aggregate. However, in order to decide which groups satisfy the condition that the star appears in at least three movies, we must also compute the COUNT(title) aggregate for each group.

We begin with the grouping expression

 $\gamma_{starName, MIN(year) \rightarrow minYear, COUNT(title) \rightarrow ctTitle}(StarsIn)$

The first two columns of the result of this expression are needed for the query result. The third column is an auxiliary attribute, which we have named ctTitle; it is needed to determine whether a star has appeared in at least three movies. That is, we continue the algebraic expression for the query by selecting for ctTitle >= 3 and then projecting onto the first two columns. An expression tree for the query is shown in Fig. 5.5. □

5.2.5 Extending the Projection Operator

Let us reconsider the projection operator $\pi_L(R)$ introduced in Section 2.4.5. In the classical relational algebra, L is a list of (some of the) attributes of R. We extend the projection operator to allow it to compute with components of tuples as well as choose components. In *extended projection*, also denoted $\pi_L(R)$, projection lists can have the following kinds of elements:

1. A single attribute of R.

Figure 5.5: Algebraic expression tree for the query of Example 5.10

- 2. An expression $x \to y$, where x and y are names for attributes. The element $x \to y$ in the list L asks that we take the attribute x of R and rename it y; i.e., the name of this attribute in the schema of the result relation is y.
- 3. An expression $E \to z$, where E is an expression involving attributes of R, constants, arithmetic operators, and string operators, and z is a new name for the attribute that results from the calculation implied by E. For example, $a+b\to x$ as a list element represents the sum of the attributes a and b, renamed x. Element $c\mid d\to e$ means concatenate the presumably string-valued attributes c and d and call the result e.

The result of the projection is computed by considering each tuple of R in turn. We evaluate the list L by substituting the tuple's components for the corresponding attributes mentioned in L and applying any operators indicated by L to these values. The result is a relation whose schema is the names of the attributes on list L, with whatever renaming the list specifies. Each tuple of R yields one tuple of the result. Duplicate tuples in R surely yield duplicate tuples in the result, but the result can have duplicates even if R does not.

Example 5.11: Let R be the relation

A	B	C
0	1	2
0	1	2
3	4	5

Then the result of $\pi_{A,B+C\to X}(R)$ is

The result's schema has two attributes. One is A, the first attribute of R, not renamed. The second is the sum of the second and third attributes of R, with the name X.

For another example, $\pi_{B-A\to X.C-B\to Y}(R)$ is

$$\begin{array}{c|c|c}
X & Y \\
\hline
1 & 1 \\
1 & 1 \\
1 & 1
\end{array}$$

Notice that the calculation required by this projection list happens to turn different tuples (0,1,2) and (3,4,5) into the same tuple (1,1). Thus, the latter tuple appears three times in the result. \Box

5.2.6 The Sorting Operator

There are several contexts in which we want to sort the tuples of a relation by one or more of its attributes. Often, when querying data, one wants the result relation to be sorted. For instance, in a query about all the movies in which Sean Connery appeared, we might wish to have the list sorted by title, so we could more easily find whether a certain movie was on the list. We shall also see when we study query optimization how execution of queries by the DBMS is often made more efficient if we sort the relations first.

The expression $\tau_L(R)$, where R is a relation and L a list of some of R's attributes, is the relation R, but with the tuples of R sorted in the order indicated by L. If L is the list A_1, A_2, \ldots, A_n , then the tuples of R are sorted first by their value of attribute A_1 . Ties are broken according to the value of A_2 ; tuples that agree on both A_1 and A_2 are ordered according to their value of A_3 , and so on. Ties that remain after attribute A_n is considered may be ordered arbitrarily.

Example 5.12: If R is a relation with schema R(A, B, C), then $\tau_{C,B}(R)$ orders the tuples of R by their value of C, and tuples with the same C-value are ordered by their B value. Tuples that agree on both B and C may be ordered arbitrarily. \Box

If we apply another operator such as join to the sorted result of a τ , the sorted order usually becomes meaningless, and the elements on the list should be treated as a bag, not a list. However, bag projections can be made to preserve the order. Also, a selection on a list drops out the tuples that do not satisfy the condition of the selection, but the remaining tuples can be made to appear in their original sorted order.

5.2.7 Outerjoins

A property of the join operator is that it is possible for certain tuples to be "dangling"; that is, they fail to match any tuple of the other relation in the

common attributes. Dangling tuples do not have any trace in the result of the join, so the join may not represent the data of the original relations completely. In cases where this behavior is undesirable, a variation on the join, called "outerjoin," has been proposed and appears in various commercial systems.

We shall consider the "natural" case first, where the join is on equated values of all attributes in common to the two relations. The *outerjoin* $R \stackrel{\circ}{\bowtie} S$ is formed by starting with $R \bowtie S$, and adding any dangling tuples from R or S. The added tuples must be padded with a special *null* symbol, \bot , in all the attributes that they do not possess but that appear in the join result. Note that \bot is written NULL in SQL (recall Section 2.3.4).

A	B	C
1	2	3
4	5	6
7	8	9

(a) Relation U

В	C	D
2	3	10
2	3	11
6	7	12

(b) Relation V

A	В	C	D
1	2	3	10
1	2	3	11
4	5	6	1
7	8	9	
Τ	6	7	12

(c) Result $U \stackrel{\diamond}{\bowtie} V$

Figure 5.6: Outerjoin of relations

Example 5.13: In Fig. 5.6(a) and (b) we see two relations U and V. Tuple (1,2,3) of U joins with both (2,3,10) and (2,3,11) of V, so these three tuples are not dangling. However, the other three tuples — (4,5,6) and (7,8,9) of U and (6,7,12) of V — are dangling. That is, for none of these three tuples is there a tuple of the other relation that agrees with it on both the B and C components. Thus, in $U \stackrel{\triangle}{\otimes} V$, seen in Fig. 5.6(c), the three dangling tuples

are padded with \bot in the attributes that they do not have: attribute D for the tuples of U and attribute A for the tuple of V. \Box

There are many variants of the basic (natural) outerjoin idea. The *left outerjoin* $R \stackrel{\bowtie}{\bowtie}_L S$ is like the outerjoin, but only dangling tuples of the left argument R are padded with \bot and added to the result. The *right outerjoin* $R \stackrel{\bowtie}{\bowtie}_R S$ is like the outerjoin, but only the dangling tuples of the right argument S are padded with \bot and added to the result.

Example 5.14: If U and V are as in Fig. 5.6, then $U \bowtie_L V$ is:

A	B	C	D
1	2	3	10
1	2	3	11
4	5	6	上
7	8	9	1

and $U \stackrel{\diamond}{\bowtie}_R V$ is:

A	B	C	D
1	2	3	10
1	2	3	11
1	6	7	12

In addition, all three natural outerjoin operators have theta-join analogs, where first a theta-join is taken and then those tuples that failed to join with any tuple of the other relation, when the condition of the theta-join was applied, are padded with \bot and added to the result. We use $\stackrel{\triangleright}{\bowtie}_C$ to denote a theta-outerjoin with condition C. This operator can also be modified with L or R to indicate left- or right-outerjoin.

Example 5.15: Let U and V be the relations of Fig. 5.6, and consider

$$U \overset{\diamond}{\bowtie}_{A > VC} V$$

Tuples (4,5,6) and (7,8,9) of U each satisfy the condition with both of the tuples (2,3,10) and (2,3,11) of V. Thus, none of these four tuples are dangling in this theta-join. However, the two other tuples — (1,2,3) of U and (6,7,12) of V — are dangling. They thus appear, padded, in the result shown in Fig. 5.7. \square

A	U.B	U.C	V.B	V.C	D
4	5	6	2	3	10
4	5	6	2	3	11
7	8	9	2	3	10
7	8	9	2	3	11
1	2	3	工	工	1
Τ	Τ	Τ	6	7	12

Figure 5.7: Result of a theta-outerjoin

5.2.8 Exercises for Section 5.2

Exercise 5.2.1: Here are two relations:

```
R(A,B): \{(0,1), (2,3), (0,1), (2,4), (3,4)\}
S(B,C): \{(0,1), (2,4), (2,5), (3,4), (0,2), (3,4)\}
```

Compute the following: a) $\pi_{A+B,A^2,B^2}(R)$; b) $\pi_{B+1,C-1}(S)$; c) $\tau_{B,A}(R)$; d) $\tau_{B,C}(S)$; e) $\delta(R)$; f) $\delta(S)$; g) $\gamma_{A,\; \mathrm{SUM}(B)}(R)$; h) $\gamma_{B,\mathrm{AVG}(C)}(S)$; ! i) $\gamma_{A}(R)$; ! j) $\gamma_{A,\mathrm{MAX}(C)}(R\bowtie S)$; k) $R\bowtie_L S$; l) $R\bowtie_R S$; m) $R\bowtie_S S$; n) $R\bowtie_{R.B< S.B} S$.

- ! Exercise 5.2.2: A unary operator f is said to be *idempotent* if for all relations R, f(f(R)) = f(R). That is, applying f more than once is the same as applying it once. Which of the following operators are idempotent? Either explain why or give a counterexample.
 - a) δ ; b) π_L ; c) σ_C ; d) γ_L ; e) τ .
- ! Exercise 5.2.3: One thing that can be done with an extended projection, but not with the original version of projection that we defined in Section 2.4.5, is to duplicate columns. For example, if R(A,B) is a relation, then $\pi_{A,A}(R)$ produces the tuple (a,a) for every tuple (a,b) in R. Can this operation be done using only the classical operations of relation algebra from Section 2.4? Explain your reasoning.

5.3 A Logic for Relations

As an alternative to abstract query languages based on algebra, one can use a form of logic to express queries. The logical query language *Datalog* ("database logic") consists of if-then rules. Each of these rules expresses the idea that from certain combinations of tuples in certain relations, we may infer that some other tuple must be in some other relation, or in the answer to a query.

5.3.1 Predicates and Atoms

Relations are represented in Datalog by *predicates*. Each predicate takes a fixed number of arguments, and a predicate followed by its arguments is called an *atom*. The syntax of atoms is just like that of function calls in conventional programming languages; for example $P(x_1, x_2, \ldots, x_n)$ is an atom consisting of the predicate P with arguments x_1, x_2, \ldots, x_n .

In essence, a predicate is the name of a function that returns a boolean value. If R is a relation with n attributes in some fixed order, then we shall also use R as the name of a predicate corresponding to this relation. The atom $R(a_1, a_2, \ldots, a_n)$ has value TRUE if (a_1, a_2, \ldots, a_n) is a tuple of R; the atom has value FALSE otherwise.

Notice that a relation defined by a predicate can be assumed to be a set. In Section 5.3.6, we shall discuss how it is possible to extend Datalog to bags. However, outside that section, you should assume in connection with Datalog that relations are sets.

Example 5.16: Let R be the relation

$$\begin{array}{c|c}
A & B \\
\hline
1 & 2 \\
3 & 4
\end{array}$$

Then R(1,2) is true and so is R(3,4). However, for any other combination of values x and y, R(x,y) is false. \square

A predicate can take variables as well as constants as arguments. If an atom has variables for one or more of its arguments, then it is a boolean-valued function that takes values for these variables and returns TRUE or FALSE.

Example 5.17: If R is the predicate from Example 5.16, then R(x,y) is the function that tells, for any x and y, whether the tuple (x,y) is in relation R. For the particular instance of R mentioned in Example 5.16, R(x,y) returns TRUE when either

1.
$$x = 1$$
 and $y = 2$, or

2.
$$x = 3$$
 and $y = 4$

and returns FALSE otherwise. As another example, the atom R(1,z) returns TRUE if z=2 and returns FALSE otherwise. \Box

5.3.2 Arithmetic Atoms

There is another kind of atom that is important in Datalog: an arithmetic atom. This kind of atom is a comparison between two arithmetic expressions, for example x < y or $x + 1 \ge y + 4 \times z$. For contrast, we shall call the atoms introduced in Section 5.3.1 relational atoms; both kinds are "atoms."

Note that arithmetic and relational atoms each take as arguments the values of any variables that appear in the atom, and they return a boolean value. In effect, arithmetic comparisons like < or \ge are like the names of relations that contain all the true pairs. Thus, we can visualize the relation "<" as containing all the tuples, such as (1,2) or (-1.5,65.4), whose first component is less than their second component. Remember, however, that database relations are always finite, and usually change from time to time. In contrast, arithmetic-comparison relations such as < are both infinite and unchanging.

5.3.3 Datalog Rules and Queries

Operations similar to those of relational algebra are described in Datalog by rules, which consist of

- 1. A relational atom called the *head*, followed by
- 2. The symbol \leftarrow , which we often read "if," followed by
- 3. A *body* consisting of one or more atoms, called *subgoals*, which may be either relational or arithmetic. Subgoals are connected by AND, and any subgoal may optionally be preceded by the logical operator NOT.

Example 5.18: The Datalog rule

```
LongMovie(t,y) \leftarrow Movies(t,y,1,g,s,p) AND 1 \geq 100
```

defines the set of "long" movies, those at least 100 minutes long. It refers to our standard relation Movies with schema

```
Movies(title, year, length, genre, studioName, producerC#)
```

The head of the rule is the atom LongMovie(t, y). The body of the rule consists of two subgoals:

- 1. The first subgoal has predicate Movies and six arguments, corresponding to the six attributes of the Movies relation. Each of these arguments has a different variable: t for the title component, y for the year component, l for the length component, and so on. We can see this subgoal as saying: "Let (t,y,l,g,s,p) be a tuple in the current instance of relation Movies." More precisely, Movies(t,y,l,g,s,p) is true whenever the six variables have values that are the six components of some one Movies tuple.
- 2. The second subgoal, $l \ge 100$, is true whenever the length component of a Movies tuple is at least 100.

The rule as a whole can be thought of as saying: LongMovie(t, y) is true whenever we can find a tuple in Movies with:

a) t and y as the first two components (for title and year),

Anonymous Variables

Frequently, Datalog rules have some variables that appear only once. The names used for these variables are irrelevant. Only when a variable appears more than once do we care about its name, so we can see it is the same variable in its second and subsequent appearances. Thus, we shall allow the common convention that an underscore, _, as an argument of an atom, stands for a variable that appears only there. Multiple occurrences of _ stand for different variables, never the same variable. For instance, the rule of Example 5.18 could be written

LongMovie(t,y)
$$\leftarrow$$
 Movies(t,y,1,_,_,) AND 1 \geq 100

The three variables g, s, and p that appear only once have each been replaced by underscores. We cannot replace any of the other variables, since each appears twice in the rule.

- b) A third component l (for length) that is at least 100, and
- c) Any values in components 4 through 6.

Notice that this rule is thus equivalent to the "assignment statement" in relational algebra:

LongMovie :=
$$\pi_{title,year}(\sigma_{length \geq 100}(Movies))$$

whose right side is a relational-algebra expression.

A query in Datalog is a collection of one or more rules. If there is only one relation that appears in the rule heads, then the value of this relation is taken to be the answer to the query. Thus, in Example 5.18, LongMovie is the answer to the query. If there is more than one relation among the rule heads, then one of these relations is the answer to the query, while the others assist in the definition of the answer. When there are several predicates defined by a collection of rules, we shall usually assume that the query result is named Answer.

5.3.4 Meaning of Datalog Rules

Example 5.18 gave us a hint of the meaning of a Datalog rule. More precisely, imagine the variables of the rule ranging over all possible values. Whenever these variables have values that together make all the subgoals true, then we see what the value of the head is for those variables, and we add the resulting tuple to the relation whose predicate is in the head.

For instance, we can imagine the six variables of Example 5.18 ranging over all possible values. The only combinations of values that can make all the subgoals true are when the values of (t, y, l, q, s, p) in that order form a tuple of Movies. Moreover, since the $l \ge 100$ subgoal must also be true, this tuple must be one where l, the value of the length component, is at least 100. When we find such a combination of values, we put the tuple (t, y) in the head's relation LongMovie.

There are, however, restrictions that we must place on the way variables are used in rules, so that the result of a rule is a finite relation and so that rules with arithmetic subgoals or with negated subgoals (those with NOT in front of them) make intuitive sense. This condition, which we call the safety condition, is:

• Every variable that appears anywhere in the rule must appear in some nonnegated, relational subgoal of the body.

In particular, any variable that appears in the head, in a negated relational subgoal, or in any arithmetic subgoal, must also appear in a nonnegated, relational subgoal of the body.

Example 5.19: Consider the rule

LongMovie(t,y)
$$\leftarrow$$
 Movies(t,y,1,_,_,) AND 1 \geq 100

from Example 5.18. The first subgoal is a nonnegated, relational subgoal, and it contains all the variables that appear anywhere in the rule, including the anonymous ones represented by underscores. In particular, the two variables t and y that appear in the head also appear in the first subgoal of the body. Likewise, variable l appears in an arithmetic subgoal, but it also appears in the first subgoal. Thus, the rule is safe.

Example 5.20: The following rule has three safety violations:

$$P(x,y) \leftarrow Q(x,z)$$
 AND NOT $R(w,x,z)$ AND $x < y$

- 1. The variable u appears in the head but not in any nonnegated, relational subgoal of the body. Notice that y's appearance in the arithmetic subgoal x < y does not help to limit the possible values of y to a finite set. As soon as we find values a, b, and c for w, x, and z respectively that satisfy the first two subgoals, we are forced to add the infinite number of tuples (b,d) such that d>b to the relation for the head predicate P.
- 2. Variable w appears in a negated, relational subgoal but not in a nonnegated, relational subgoal.
- 3. Variable y appears in an arithmetic subgoal, but not in a nonnegated, relational subgoal.

Thus, it is not a safe rule and cannot be used in Datalog.

There is another way to define the meaning of rules. Instead of considering all of the possible assignments of values to variables, we consider the sets of tuples in the relations corresponding to each of the nonnegated, relational subgoals. If some assignment of tuples for each nonnegated, relational subgoal is *consistent*, in the sense that it assigns the same value to each occurrence of any one variable, then consider the resulting assignment of values to all the variables of the rule. Notice that because the rule is safe, every variable is assigned a value.

For each consistent assignment, we consider the negated, relational subgoals and the arithmetic subgoals, to see if the assignment of values to variables makes them all true. Remember that a negated subgoal is true if its atom is false. If all the subgoals are true, then we see what tuple the head becomes under this assignment of values to variables. This tuple is added to the relation whose predicate is the head.

Example 5.21: Consider the Datalog rule

$$P(x,y) \leftarrow Q(x,z)$$
 AND $R(z,y)$ AND NOT $Q(x,y)$

Let relation Q contain the two tuples (1,2) and (1,3). Let relation R contain tuples (2,3) and (3,1). There are two nonnegated, relational subgoals, Q(x,z) and R(z,y), so we must consider all combinations of assignments of tuples from relations Q and R, respectively, to these subgoals. The table of Fig. 5.8 considers all four combinations.

	Tuple for	Tuple for	Consistent	NOT Q(x,y)	Resulting
	Q(x,z)	R(z,y)	Assignment?	True?	Head
1)	(1, 2)	(2,3)	Yes	No	_
2)	(1, 2)	(3,1)	No; $z = 2, 3$	Irrelevant	—
3)	(1, 3)	(2,3)	No; $z = 3, 2$	Irrelevant	
4)	(1,3)	(3,1)	Yes	Yes	P(1,1)

Figure 5.8: All possible assignments of tuples to Q(x,z) and R(z,y)

The second and third options in Fig. 5.8 are not consistent. Each assigns two different values to the variable z. Thus, we do not consider these tuple-assignments further.

The first option, where subgoal Q(x,z) is assigned the tuple (1,2) and subgoal R(z,y) is assigned tuple (2,3), yields a consistent assignment, with x,y, and z given the values 1, 3, and 2, respectively. We thus proceed to the test of the other subgoals, those that are not nonnegated, relational subgoals. There is only one: NOT Q(x,y). For this assignment of values to the variables, this subgoal becomes NOT Q(1,3). Since (1,3) is a tuple of Q, this subgoal is false, and no head tuple is produced for the tuple-assignment (1).

220

The final option is (4). Here, the assignment is consistent; x, y, and z are assigned the values 1, 1, and 3, respectively. The subgoal NOT Q(x,y) takes on the value NOT Q(1,1). Since (1,1) is not a tuple of Q, this subgoal is true. We thus evaluate the head P(x,y) for this assignment of values to variables and find it is P(1,1). Thus the tuple (1,1) is in the relation P. Since we have exhausted all tuple-assignments, this is the only tuple in P. \square

5.3.5 Extensional and Intensional Predicates

It is useful to make the distinction between

- Extensional predicates, which are predicates whose relations are stored in a database, and
- Intensional predicates, whose relations are computed by applying one or more Datalog rules.

The difference is the same as that between the operands of a relational-algebra expression, which are "extensional" (i.e., defined by their *extension*, which is another name for the "current instance of a relation") and the relations computed by a relational-algebra expression, either as the final result or as an intermediate result corresponding to some subexpression; these relations are "intensional" (i.e., defined by the programmer's "intent").

When talking of Datalog rules, we shall refer to the relation corresponding to a predicate as "intensional" or "extensional," if the predicate is intensional or extensional, respectively. We shall also use the abbreviation IDB for "intensional database" to refer to either an intensional predicate or its corresponding relation. Similarly, we use abbreviation EDB, standing for "extensional database," for extensional predicates or relations.

Thus, in Example 5.18, Movies is an EDB relation, defined by its extension. The predicate *Movies* is likewise an EDB predicate. Relation and predicate LongMovie are both intensional.

An EDB predicate can never appear in the head of a rule, although it can appear in the body of a rule. IDB predicates can appear in either the head or the body of rules, or both. It is also common to construct a single relation by using several rules with the same IDB predicate in the head. We shall see an illustration of this idea in Example 5.24, regarding the union of two relations.

By using a series of intensional predicates, we can build progressively more complicated functions of the EDB relations. The process is similar to the building of relational-algebra expressions using several operators.

5.3.6 Datalog Rules Applied to Bags

Datalog is inherently a logic of sets. However, as long as there are no negated, relational subgoals, the ideas for evaluating Datalog rules when relations are sets apply to bags as well. When relations are bags, it is conceptually simpler to use

the second approach for evaluating Datalog rules that we gave in Section 5.3.4. Recall this technique involves looking at each of the nonnegated, relational subgoals and substituting for it all tuples of the relation for the predicate of that subgoal. If a selection of tuples for each subgoal gives a consistent value to each variable, and the arithmetic subgoals all become true, then we see what the head becomes with this assignment of values to variables. The resulting tuple is put in the head relation.

Since we are now dealing with bags, we do not eliminate duplicates from the head. Moreover, as we consider all combinations of tuples for the subgoals, a tuple appearing n times in the relation for a subgoal gets considered n times as the tuple for that subgoal, each time in conjunction with all combinations of tuples for the other subgoals.

Example 5.22: Consider the rule

$$H(x,z) \leftarrow R(x,y)$$
 AND $S(y,z)$

where relation R(A,B) has the tuples:

$$\begin{array}{c|c} A & B \\ \hline 1 & 2 \\ 1 & 2 \end{array}$$

and S(B,C) has tuples:

$$\begin{array}{c|cccc}
B & C \\
\hline
2 & 3 \\
4 & 5 \\
4 & 5
\end{array}$$

The only time we get a consistent assignment of tuples to the subgoals (i.e., an assignment where the value of y from each subgoal is the same) is when the first subgoal is assigned one of the tuples (1,2) from R and the second subgoal is assigned tuple (2,3) from S. Since (1,2) appears twice in R, and (2,3) appears once in S, there will be two assignments of tuples that give the variable assignments x = 1, y = 2, and z = 3. The tuple of the head, which is (x,z), is for each of these assignments (1,3). Thus the tuple (1,3) appears twice in the head relation H, and no other tuple appears there. That is, the relation

¹Note that there must not be any negated relational subgoals in the rule. There is not a clearly defined meaning of arbitrary Datalog rules with negated, relational subgoals under the bag model.

is the head relation defined by this rule. More generally, had tuple (1,2) appeared n times in R and tuple (2,3) appeared m times in S, then tuple (1,3) would appear nm times in H. \square

If a relation is defined by several rules, then the result is the bag-union of whatever tuples are produced by each rule.

Example 5.23: Consider a relation H defined by the two rules

$$H(x,y) \leftarrow S(x,y)$$
 AND x>1
 $H(x,y) \leftarrow S(x,y)$ AND y<5

where relation S(B,C) is as in Example 5.22; that is, $S = \{(2,3), (4,5), (4,5)\}$. The first rule puts each of the three tuples of S into H, since they each have a first component greater than 1. The second rule puts only the tuple (2,3) into H, since (4,5) does not satisfy the condition y < 5. Thus, the resulting relation H has two copies of the tuple (2,3) and two copies of the tuple (4,5). \square

5.3.7 Exercises for Section 5.3

Exercise 5.3.1: Write each of the queries of Exercise 2.4.1 in Datalog. You should use only safe rules, but you may wish to use several IDB predicates corresponding to subexpressions of complicated relational-algebra expressions.

Exercise 5.3.2: Write each of the queries of Exercise 2.4.3 in Datalog. Again, use only safe rules, but you may use several IDB predicates if you like.

!! Exercise 5.3.3: The requirement we gave for safety of Datalog rules is sufficient to guarantee that the head predicate has a finite relation if the predicates of the relational subgoals have finite relations. However, this requirement is too strong. Give an example of a Datalog rule that violates the condition, yet whatever finite relations we assign to the relational predicates, the head relation will be finite.

5.4 Relational Algebra and Datalog

Each of the relational-algebra operators of Section 2.4 can be mimicked by one or several Datalog rules. In this section we shall consider each operator in turn. We shall then consider how to combine Datalog rules to mimic complex algebraic expressions. It is also true that any single safe Datalog rule can be expressed in relational algebra, although we shall not prove that fact here. However, Datalog queries are more powerful than relational algebra when several rules are allowed to interact; they can express recursions that are not expressable in the algebra (see Example 5.35).

5.4.1 Boolean Operations

The boolean operations of relational algebra — union, intersection, and set difference — can each be expressed simply in Datalog. Here are the three techniques needed. We assume R and S are relations with the same number of attributes, n. We shall describe the needed rules using Answer as the name of the head predicate in all cases. However, we can use anything we wish for the name of the result, and in fact it is important to choose different predicates for the results of different operations.

• To take the union $R \cup S$, use two rules and n distinct variables

$$a_1, a_2, \ldots, a_n$$

One rule has $R(a_1, a_2, \ldots, a_n)$ as the lone subgoal and the other has $S(a_1, a_2, \ldots, a_n)$ alone. Both rules have the head $Answer(a_1, a_2, \ldots, a_n)$. As a result, each tuple from R and each tuple of S is put into the answer relation.

• To take the intersection $R \cap S$, use a rule with body

$$R(a_1,a_2,\ldots,a_n)$$
 AND $S(a_1,a_2,\ldots,a_n)$

and head $Answer(a_1, a_2, \ldots, a_n)$. Then, a tuple is in the answer relation if and only if it is in both R and S.

• To take the difference R-S, use a rule with body

$$R(a_1,a_2,\ldots,a_n)$$
 AND NOT $S(a_1,a_2,\ldots,a_n)$

and head $Answer(a_1, a_2, \ldots, a_n)$. Then, a tuple is in the answer relation if and only if it is in R but not in S.

Example 5.24: Let the schemas for the two relations be R(A, B, C) and S(A, B, C). To avoid confusion, we use different predicates for the various results, rather than calling them all **Answer**.

To take the union $R \cup S$ we use the two rules:

1.
$$U(x,y,z) \leftarrow R(x,y,z)$$

2. $U(x,y,z) \leftarrow S(x,y,z)$

Rule (1) says that every tuple in R is a tuple in the IDB relation U. Rule (2) similarly says that every tuple in S is in U.

To compute $R \cap S$, we use the rule

$$I(a,b,c) \leftarrow R(a,b,c)$$
 AND $S(a,b,c)$

Finally, the rule

$$D(a,b,c) \leftarrow R(a,b,c)$$
 AND NOT $S(a,b,c)$

computes the difference R-S. \square

Variables Are Local to a Rule

Notice that the names we choose for variables in a rule are arbitrary and have no connection to the variables used in any other rule. The reason there is no connection is that each rule is evaluated alone and contributes tuples to its head's relation independent of other rules. Thus, for instance, we could replace the second rule of Example 5.24 by

$$U(a,b,c) \leftarrow S(a,b,c)$$

while leaving the first rule unchanged, and the two rules would still compute the union of R and S. Note, however, that when substituting one variable u for another variable v within a rule, we must substitute u for all occurrences of v within the rule. Moreover, the substituting variable u that we choose must not be a variable that already appears in the rule.

5.4.2 Projection

To compute a projection of a relation R, we use one rule with a single subgoal with predicate R. The arguments of this subgoal are distinct variables, one for each attribute of the relation. The head has an atom with arguments that are the variables corresponding to the attributes in the projection list, in the desired order.

Example 5.25: Suppose we want to project the relation

Movies(title, year, length, genre, studioName, producerC#)

onto its first three attributes — title, year, and length. The rule

$$P(t,y,1) \leftarrow Movies(t,y,1,g,s,p)$$

serves, defining a relation called P to be the result of the projection. \Box

5.4.3 Selection

Selections can be somewhat more difficult to express in Datalog. The simple case is when the selection condition is the AND of one or more arithmetic comparisons. In that case, we create a rule with

1. One relational subgoal for the relation upon which we are performing the selection. This atom has distinct variables for each component, one for each attribute of the relation.

For each comparison in the selection condition, an arithmetic subgoal
that is identical to this comparison. However, while in the selection condition an attribute name was used, in the arithmetic subgoal we use the
corresponding variable, following the correspondence established by the
relational subgoal.

Example 5.26: The selection

$$\sigma_{length>100}$$
 AND $studioName=$ 'Fox' (Movies)

can be written as a Datalog rule

$$S(t,y,l,g,s,p) \leftarrow Movies(t,y,l,g,s,p) \text{ AND } l \geq 100 \text{ AND } s = \text{'Fox'}$$

The result is the relation S. Note that l and s are the variables corresponding to attributes length and studioName in the standard order we have used for the attributes of Movies. \square

Now, let us consider selections that involve the \mathtt{OR} of conditions. We cannot necessarily replace such selections by single Datalog rules. However, selection for the \mathtt{OR} of two conditions is equivalent to selecting for each condition separately and then taking the union of the results. Thus, the \mathtt{OR} of n conditions can be expressed by n rules, each of which defines the same head predicate. The ith rule performs the selection for the ith of the n conditions.

Example 5.27: Let us modify the selection of Example 5.26 by replacing the AND by an OR to get the selection:

$$\sigma_{length \geq 100}$$
 OR $studioName = Fox$, (Movies)

That is, find all those movies that are either long or by Fox. We can write two rules, one for each of the two conditions:

1.
$$S(t,y,l,g,s,p) \leftarrow Movies(t,y,l,g,s,p)$$
 AND $1 \ge 100$
2. $S(t,y,l,g,s,p) \leftarrow Movies(t,y,l,g,s,p)$ AND $s = 'Fox'$

Rule (1) produces movies at least 100 minutes long, and rule (2) produces movies by Fox. $\ \square$

Even more complex selection conditions can be formed by several applications, in any order, of the logical operators AND, OR, and NOT. However, there is a widely known technique, which we shall not present here, for rearranging any such logical expression into "disjunctive normal form," where the expression is the disjunction (OR) of "conjuncts." A *conjunct*, in turn, is the AND of "literals," and a *literal* is either a comparison or a negated comparison.²

²See, e.g., A. V. Aho and J. D. Ullman, Foundations of Computer Science, Computer Science Press, New York, 1992.

We can represent any literal by a subgoal, perhaps with a NOT in front of it. If the subgoal is arithmetic, the NOT can be incorporated into the comparison operator. For example, NOT $x \ge 100$ can be written as x < 100. Then, any conjunct can be represented by a single Datalog rule, with one subgoal for each comparison. Finally, every disjunctive-normal-form expression can be written by several Datalog rules, one rule for each conjunct. These rules take the union, or OR, of the results from each of the conjuncts.

Example 5.28: We gave a simple instance of this algorithm in Example 5.27. A more difficult example can be formed by negating the condition of that example. We then have the expression:

$$\sigma_{\texttt{NOT (length \ge 100 OR studioName = `Fox')}}(\texttt{Movies})$$

That is, find all those movies that are neither long nor by Fox.

Here, a NOT is applied to an expression that is itself not a simple comparison. Thus, we must push the NOT down the expression, using one form of *DeMorgan's laws*, which says that the negation of an OR is the AND of the negations. That is, the selection can be rewritten:

$$\sigma_{(NOT\ (length>100))}$$
 AND (NOT $(studioName='Fox'))$ (Movies)

Now, we can take the NOT's inside the comparisons to get the expression:

$$\sigma_{length < 100 \text{ AND } studioName \neq "Fox"}$$
 (Movies)

This expression can be converted into the Datalog rule

$$S(t,y,l,g,s,p) \leftarrow Movies(t,y,l,g,s,p) \text{ AND } 1 < 100 \text{ AND } s \neq \text{`Fox'}$$

Example 5.29: Let us consider a similar example where we have the negation of an AND in the selection. Now, we use the second form of DeMorgan's law, which says that the negation of an AND is the OR of the negations. We begin with the algebraic expression

$$\sigma_{\texttt{NOT (length \ge 100 AND studioName = `Fox')}}(\texttt{Movies})$$

That is, find all those movies that are not both long and by Fox.

We apply DeMorgan's law to push the NOT below the AND, to get:

$$\sigma_{(\texttt{NOT (length} \geq 100))}$$
 OR (NOT $(studioName = \texttt{`Fox'}))$ (Movies)

Again we take the NOT's inside the comparisons to get:

$$\sigma_{length < 100}$$
 OR $studioName \neq {}^{\circ}$ Fox, (Movies)

Finally, we write two rules, one for each part of the OR. The resulting Datalog rules are:

1.
$$S(t,y,l,g,s,p) \leftarrow Movies(t,y,l,g,s,p)$$
 AND 1 < 100

2.
$$S(t,y,l,g,s,p) \leftarrow Movies(t,y,l,g,s,p)$$
 AND $s \neq 'Fox'$

5.4.4 Product

The product of two relations $R \times S$ can be expressed by a single Datalog rule. This rule has two subgoals, one for R and one for S. Each of these subgoals has distinct variables, one for each attribute of R or S. The IDB predicate in the head has as arguments all the variables that appear in either subgoal, with the variables appearing in the R-subgoal listed before those of the S-subgoal.

Example 5.30: Let us consider the two three-attribute relations R and S from Example 5.24. The rule

$$P(a,b,c,x,y,z) \leftarrow R(a,b,c)$$
 AND $S(x,y,z)$

defines P to be $R \times S$. We have arbitrarily used variables at the beginning of the alphabet for the arguments of R and variables at the end of the alphabet for S. These variables all appear in the rule head. \square

5.4.5 Joins

We can take the natural join of two relations by a Datalog rule that looks much like the rule for a product. The difference is that if we want $R \bowtie S$, then we must use the same variable for attributes of R and S that have the same name and must use different variables otherwise. For instance, we can use the attribute names themselves as the variables. The head is an IDB predicate that has each variable appearing once.

Example 5.31: Consider relations with schemas R(A,B) and S(B,C,D). Their natural join may be defined by the rule

$$J(a,b,c,d) \leftarrow R(a,b)$$
 AND $S(b,c,d)$

Notice how the variables used in the subgoals correspond in an obvious way to the attributes of the relations R and S. \square

We also can convert theta-joins to Datalog. Recall from Section 2.4.12 how a theta-join can be expressed as a product followed by a selection. If the selection condition is a conjunct, that is, the AND of comparisons, then we may simply start with the Datalog rule for the product and add additional, arithmetic subgoals, one for each of the comparisons.

Example 5.32: Consider the relations U(A,B,C) and V(B,C,D) and the theta-join:

$$U\bowtie_{A< D}$$
 AND $U.B\neq V.B$ V

We can construct the Datalog rule

$$J(a,ub,uc,vb,vc,d) \leftarrow U(a,ub,uc) AND V(vb,vc,d) AND a < d AND ub \neq vb$$

to perform the same operation. We have used ub as the variable corresponding to attribute B of U, and similarly used vb, uc, and vc, although any six distinct variables for the six attributes of the two relations would be fine. The first two subgoals introduce the two relations, and the second two subgoals enforce the two comparisons that appear in the condition of the theta-join. \Box

If the condition of the theta-join is not a conjunction, then we convert it to disjunctive normal form, as discussed in Section 5.4.3. We then create one rule for each conjunct. In this rule, we begin with the subgoals for the product and then add subgoals for each literal in the conjunct. The heads of all the rules are identical and have one argument for each attribute of the two relations being theta-joined.

Example 5.33: In this example, we shall make a simple modification to the algebraic expression of Example 5.32. The AND will be replaced by an OR. There are no negations in this expression, so it is already in disjunctive normal form. There are two conjuncts, each with a single literal. The expression is:

$$U\bowtie_{A< D}$$
 OR $U.B\neq V.B$ V

Using the same variable-naming scheme as in Example 5.32, we obtain the two rules

- 1. $J(a,ub,uc,vb,vc,d) \leftarrow U(a,ub,uc)$ AND V(vb,vc,d) AND a < d
- 2. $J(a,ub,uc,vb,vc,d) \leftarrow U(a,ub,uc)$ AND V(vb,vc,d) AND $ub \neq vb$

Each rule has subgoals for the two relations involved plus a subgoal for one of the two conditions A < D or $U.B \neq V.B$. \square

5.4.6 Simulating Multiple Operations with Datalog

Datalog rules are not only capable of mimicking a single operation of relational algebra. We can in fact mimic any algebraic expression. The trick is to look at the expression tree for the relational-algebra expression and create one IDB predicate for each interior node of the tree. The rule or rules for each IDB predicate is whatever we need to apply the operator at the corresponding node of the tree. Those operands of the tree that are extensional (i.e., they are relations of the database) are represented by the corresponding predicate. Operands that are themselves interior nodes are represented by the corresponding IDB predicate. The result of the algebraic expression is the relation for the predicate associated with the root of the expression tree.

Example 5.34: Consider the algebraic expression

$$\pi_{title,year}\Big(\sigma_{length \geq 100}(exttt{Movies}) \cap \sigma_{studioName}, ag{Movies}\Big)$$

Figure 5.9: Expression tree

```
1. W(t,y,l,g,s,p) \leftarrow Movies(t,y,l,g,s,p) AND 1 \ge 100
2. X(t,y,l,g,s,p) \leftarrow Movies(t,y,l,g,s,p) AND s = Fox'
3. Y(t,y,l,g,s,p) \leftarrow W(t,y,l,g,s,p) AND X(t,y,l,g,s,p)
```

4. Answer(t,y) $\leftarrow Y(t,y,l,g,s,p)$

Figure 5.10: Datalog rules to perform several algebraic operations

from Example 2.17, whose expression tree appeared in Fig. 2.18. We repeat this tree as Fig. 5.9. There are four interior nodes, so we need to create four IDB predicates. Each of these predicates has a single Datalog rule, and we summarize all the rules in Fig. 5.10.

The lowest two interior nodes perform simple selections on the EDB relation Movies, so we can create the IDB predicates W and X to represent these selections. Rules (1) and (2) of Fig. 5.10 describe these selections. For example, rule (1) defines W to be those tuples of Movies that have a length at least 100.

Then rule (3) defines predicate Y to be the intersection of W and X, using the form of rule we learned for an intersection in Section 5.4.1. Finally, rule (4) defines the answer to be the projection of Y onto the title and year attributes. We here use the technique for simulating a projection that we learned in Section 5.4.2.

Note that, because Y is defined by a single rule, we can substitute for the Y subgoal in rule (4) of Fig. 5.10, replacing it with the body of rule (3). Then, we can substitute for the W and X subgoals, using the bodies of rules (1) and (2). Since the Movies subgoal appears in both of these bodies, we can eliminate one copy. As a result, the single rule

Answer(t,y)
$$\leftarrow$$
 Movies(t,y,1,g,s,p) AND 1 \geq 100 AND s = 'Fox'

5.4.7 Comparison Between Datalog and Relational Algebra

We see from Section 5.4.6 that every expression in the basic relational algebra of Section 2.4 can be expressed as a Datalog query. There are operations in the extended relational algebra, such as grouping and aggregation from Section 5.2, that have no corresponding features in the Datalog version we have presented here. Likewise, Datalog does not support bag operations such as duplicate elimination.

It is also true that any single Datalog rule can be expressed in relational algebra. That is, we can write a query in the basic relational algebra that produces the same set of tuples as the head of that rule produces.

However, when we consider collections of Datalog rules, the situation changes. Datalog rules can express recursion, which relational algebra can not. The reason is that IDB predicates can also be used in the bodies of rules, and the tuples we discover for the heads of rules can thus feed back to rule bodies and help produce more tuples for the heads. We shall not discuss here any of the complexities that arise, especially when the rules have negated subgoals. However, the following example will illustrate recursive Datalog.

Example 5.35: Suppose we have a relation Edge(X,Y) that says there is a directed edge (arc) from node X to node Y. We can express the transitive closure of the edge relation, that is, the relation Path(X,Y) meaning that there is a path of length 1 or more from node X to node Y, as follows:

```
1. Path(X,Y) \leftarrow Edge(X,Y)
2. Path(X,Y) \leftarrow Edge(X,Z) AND Path(Z,Y)
```

Rule (1) says that every edge is a path. Rule (2) says that if there is an edge from node X to some node Z and a path from Z to Y, then there is also a path from X to Y. If we apply Rule (1) and then Rule (2), we get the paths of length 2. If we take the Path facts we get from this application and use them in another application of Rule (2), we get paths of length 3. Feeding those Path facts back again gives us paths of length 4, and so on. Eventually, we discover all possible path facts, and on one round we get no new facts. At that point, we can stop. If we haven't discovered the fact Path(a, b), then there really is no path in the graph from node a to node b. \square

5.4.8 Exercises for Section 5.4

Exercise 5.4.1: Let R(a,b,c), S(a,b,c), and T(a,b,c) be three relations. Write one or more Datalog rules that define the result of each of the following expressions of relational algebra:

- a) $R \cup S$.
- b) $R \cap S$.

- c) R-S.
- d) $(R \cup S) T$.
- ! e) $(R S) \cap (R T)$.
 - f) $\pi_{a,b}(R)$.
- ! g) $\pi_{a,b}(R) \cap \rho_{U(a,b)}(\pi_{b,c}(S)).$

Exercise 5.4.2: Let R(x, y, z) be a relation. Write one or more Datalog rules that define $\sigma_C(R)$, where C stands for each of the following conditions:

- a) x = y.
- b) x < y AND y < z.
- c) x < y OR y < z.
- d) NOT (x < y OR x > y).
- ! e) NOT ((x < y OR x > y) AND y < z).
- ! f) NOT ((x < y OR x < z) AND y < z).

Exercise 5.4.3: Let R(a, b, c), S(b, c, d), and T(d, e) be three relations. Write single Datalog rules for each of the natural joins:

- a) $R \bowtie S$.
- b) $S \bowtie T$.
- c) $(R \bowtie S) \bowtie T$. (*Note*: since the natural join is associative and commutative, the order of the join of these three relations is irrelevant.)

Exercise 5.4.4: Let R(x,y,z) and S(x,y,z) be two relations. Write one or more Datalog rules to define each of the theta-joins $R\bowtie_C S$, where C is one of the conditions of Exercise 5.4.2. For each of these conditions, interpret each arithmetic comparison as comparing an attribute of R on the left with an attribute of S on the right. For instance, x < y stands for R.x < S.y.

- ! Exercise 5.4.5: It is also possible to convert Datalog rules into equivalent relational-algebra expressions. While we have not discussed the method of doing so in general, it is possible to work out many simple examples. For each of the Datalog rules below, write an expression of relational algebra that defines the same relation as the head of the rule.
 - a) $P(x,y) \leftarrow Q(x,z)$ AND R(z,y)
 - b) $P(x,y) \leftarrow Q(x,z)$ AND Q(z,y)
 - c) $P(x,y) \leftarrow Q(x,z)$ AND R(z,y) AND x < y

5.5 Summary of Chapter 5

- ♦ Relations as Bags: In commercial database systems, relations are actually bags, in which the same tuple is allowed to appear several times. The operations of relational algebra on sets can be extended to bags, but there are some algebraic laws that fail to hold.
- ◆ Extensions to Relational Algebra: To match the capabilities of SQL, some operators not present in the core relational algebra are needed. Sorting of a relation is an example, as is an extended projection, where computation on columns of a relation is supported. Grouping, aggregation, and outerioins are also needed.
- ◆ Grouping and Aggregation: Aggregations summarize a column of a relation. Typical aggregation operators are sum, average, count, minimum, and maximum. The grouping operator allows us to partition the tuples of a relation according to their value(s) in one or more attributes before computing aggregation(s) for each group.
- ◆ Outerjoins: The outerjoin of two relations starts with a join of those relations. Then, dangling tuples (those that failed to join with any tuple) from either relation are padded with null values for the attributes belonging only to the other relation, and the padded tuples are included in the result.
- ◆ Datalog: This form of logic allows us to write queries in the relational model. In Datalog, one writes rules in which a head predicate or relation is defined in terms of a body, consisting of subgoals.
- ◆ Atoms: The head and subgoals are each atoms, and an atom consists of an (optionally negated) predicate applied to some number of arguments. Predicates may represent either relations or arithmetic comparisons such as <.
- ◆ IDB and EDB Predicates: Some predicates correspond to stored relations, and are called EDB (extensional database) predicates or relations. Other predicates, called IDB (intensional database), are defined by the rules. EDB predicates may not appear in rule heads.
- ◆ Safe Rules: Datalog rules must be safe, meaning that every variable in the rule appears in some nonnegated, relational subgoal of the body. Safe rules guarantee that if the EDB relations are finite, then the IDB relations will be finite.
- ◆ Relational Algebra and Datalog: All queries that can be expressed in core relational algebra can also be expressed in Datalog. If the rules are safe and nonrecursive, then they define exactly the same set of queries as core relational algebra.

5.6 References for Chapter 5

As mentioned in Chapter 2, the relational algebra comes from [2]. The extended operator γ is from [5].

Codd also introduced two forms of first-order logic called *tuple relational* calculus and domain relational calculus in one of his early papers on the relational model [3]. These forms of logic are equivalent in expressive power to relational algebra, a fact proved in [3].

Datalog, looking more like logical rules, was inspired by the programming language Prolog. The book [4] originated much of the development of logic as a query language, while [1] placed the ideas in the context of database systems.

More on Datalog and relational calculus can be found in [6] and [7].

- F. Bancilhon, and R. Ramakrishnan, "An amateur's introduction to recursive query-processing strategies," ACM SIGMOD Intl. Conf. on Management of Data, pp. 16–52, 1986.
- E. F. Codd, "A relational model for large shared data banks," Comm. ACM 13:6, pp. 377-387, 1970.
- E. F. Codd, "Relational completeness of database sublanguages," in *Database Systems* (R. Rustin, ed.), Prentice Hall, Englewood Cliffs, NJ, 1972.
- H. Gallaire and J. Minker, Logic and Databases, Plenum Press, New York, 1978.
- 5. A. Gupta, V. Harinarayan, and D. Quass, "Generalized projections: a powerful approach to aggregation," *Intl. Conf. on Very Large Databases*, pp. 358–369, 1995.
- 6. M. Liu, "Deductive database languages: problems and solutions," *Computing Surveys* **31**:1 (March, 1999), pp. 27–62.
- 7. J. D. Ullman, Principles of Database and Knowledge-Base Systems, Volumes I and II, Computer Science Press, New York, 1988, 1989.

Chapter 6

The Database Language SQL

The most commonly used relational DBMS's query and modify the database through a language called SQL (sometimes pronounced "sequel"). SQL stands for "Structured Query Language." The portion of SQL that supports queries has capabilities very close to that of relational algebra, as extended in Section 5.2. However, SQL also includes statements for modifying the database (e.g., inserting and deleting tuples from relations) and for declaring a database schema. Thus, SQL serves as both a data-manipulation language and as a data-definition language. SQL also standardizes many other database commands, covered in Chapters 7 and 9.

There are many different dialects of SQL. First, there are three major standards. There is ANSI (American National Standards Institute) SQL and an updated standard adopted in 1992, called SQL-92 or SQL2. The most recent SQL-99 (previously referred to as SQL3) standard extends SQL2 with object-relational features and a number of other new capabilities. There is also a collection of extensions to SQL-99, collectively called SQL:2003. Then, there are versions of SQL produced by the principal DBMS vendors. These all include the capabilities of the original ANSI standard. They also conform to a large extent to the more recent SQL2, although each has its variations and extensions beyond SQL2, including some, but not all, of the features in the SQL-99 and SQL:2003 standards.

This chapter introduces the basics of SQL: the query language and database modification statements. We also introduce the notion of a "transaction," the basic unit of work for database systems. This study, although simplified, will give you a sense of how database operations can interact and some of the resulting pitfalls.

The next chapter discusses constraints and triggers, as another way of exerting user control over the content of the database. Chapter 8 covers some of the ways that we can make our SQL queries more efficient, principally by

declaring indexes and related structures. Chapter 9 covers database-related programming as part of a whole system, such as the servers that we commonly access over the Web. There, we shall see that SQL queries and other operations are almost never performed in isolation, but are embedded in a conventional host language, with which it must interact.

Finally, Chapter 10 explains a number of advanced database programming concepts. These include recursive SQL, security and access control in SQL, object-relational SQL, and the data-cube model of data.

The intent of this chapter and the following are to provide the reader with a sense of what SQL is about, more at the level of a "tutorial" than a "manual." Thus, we focus on the most commonly used features only, and we try to use code that not only conforms to the standard, but to the usage of commercial DBMS's. The references mention places where more of the details of the language and its dialects can be found.

6.1 Simple Queries in SQL

Perhaps the simplest form of query in SQL asks for those tuples of some one relation that satisfy a condition. Such a query is analogous to a selection in relational algebra. This simple query, like almost all SQL queries, uses the three keywords, SELECT, FROM, and WHERE that characterize SQL.

```
Movies(title, year, length, genre, studioName, producerC#)
StarsIn(movieTitle, movieYear, starName)
MovieStar(name, address, gender, birthdate)
MovieExec(name, address, cert#, netWorth)
Studio(name, address, presC#)
```

Figure 6.1: Example database schema, repeated

Example 6.1: In this and subsequent examples, we shall use the movie database schema from Section 2.2.8. For reference, these relation schemas are the ones shown in Fig. 6.1.

As our first query, let us ask about the relation

```
Movies(title, year, length, genre, studioName, producerC#)
```

for all movies produced by Disney Studios in 1990. In SQL, we say

```
SELECT *
FROM Movies
WHERE studioName = 'Disney' AND year = 1990;
```

This query exhibits the characteristic select-from-where form of most SQL queries.

How SQL is Used

In this chapter, we assume a generic query interface, where we type SQL queries or other statements and have them execute. In practice, the generic interface is used rarely. Rather, there are large programs, written in a conventional language such as C or Java (called the host language). These programs issue SQL statements to a database, using a special library for the host language. Data is moved from host-language variables to the SQL statements, and the results of those statements are moved from the database to host-language variables. We shall have more to say about the matter in Chapter 9.

- The FROM clause gives the relation or relations to which the query refers. In our example, the query is about the relation Movies.
- The WHERE clause is a condition, much like a selection-condition in relational algebra. Tuples must satisfy the condition in order to match the query. Here, the condition is that the studioName attribute of the tuple has the value 'Disney' and the year attribute of the tuple has the value 1990. All tuples meeting both stipulations satisfy the condition; other tuples do not.
- The SELECT clause tells which attributes of the tuples matching the condition are produced as part of the answer. The * in this example indicates that the entire tuple is produced. The result of the query is the relation consisting of all tuples produced by this process.

One way to interpret this query is to consider each tuple of the relation mentioned in the FROM clause. The condition in the WHERE clause is applied to the tuple. More precisely, any attributes mentioned in the WHERE clause are replaced by the value in the tuple's component for that attribute. The condition is then evaluated, and if true, the components appearing in the SELECT clause are produced as one tuple of the answer. Thus, the result of the query is the Movies tuples for those movies produced by Disney in 1990, for example, Pretty Woman.

In detail, when the SQL query processor encounters the ${\tt Movies}$ tuple

title	year	length	genre	studioName	producerC#
Pretty Woman	1990	119	romance	Disney	999

(here, 999 is the imaginary certificate number for the producer of the movie), the value 'Disney' is substituted for attribute studioName and value 1990 is substituted for attribute year in the condition of the WHERE clause, because these are the values for those attributes in the tuple in question. The WHERE clause thus becomes

A Trick for Reading and Writing Queries

It is generally easist to examine a select-from-where query by first looking at the FROM clause, to learn which relations are involved in the query. Then, move to the WHERE clause, to learn what it is about tuples that is important to the query. Finally, look at the SELECT clause to see what the output is. The same order — from, then where, then select — is often useful when writing queries of your own, as well.

```
WHERE 'Disney' = 'Disney' AND 1990 = 1990
```

Since this condition is evidently true, the tuple for $Pretty\ Woman$ passes the test of the WHERE clause and the tuple becomes part of the result of the query. \Box

6.1.1 Projection in SQL

We can, if we wish, eliminate some of the components of the chosen tuples; that is, we can project the relation produced by a SQL query onto some of its attributes. In place of the * of the SELECT clause, we may list some of the attributes of the relation mentioned in the FROM clause. The result will be projected onto the attributes listed.¹

Example 6.2: Suppose we wish to modify the query of Example 6.1 to produce only the movie title and length. We may write

```
SELECT title, length
FROM Movies
WHERE studioName = 'Disney' AND year = 1990;
```

The result is a table with two columns, headed title and length. The tuples in this table are pairs, each consisting of a movie title and its length, such that the movie was produced by Disney in 1990. For instance, the relation schema and one of its tuples looks like:

¹Thus, the keyword SELECT in SQL actually corresponds most closely to the projection operator of relational algebra, while the selection operator of the algebra corresponds to the WHERE clause of SQL queries.

Sometimes, we wish to produce a relation with column headers different from the attributes of the relation mentioned in the FROM clause. We may follow the name of the attribute by the keyword AS and an *alias*, which becomes the header in the result relation. Keyword AS is optional. That is, an alias can immediately follow what it stands for, without any intervening punctuation.

Example 6.3: We can modify Example 6.2 to produce a relation with attributes name and duration in place of title and length as follows.

```
SELECT title AS name, length AS duration
FROM Movies
WHERE studioName = 'Disney' AND year = 1990;
```

The result is the same set of tuples as in Example 6.2, but with the columns headed by attributes name and duration. For example,

name	duration
Pretty Woman	119
• • •	

could be the first tuple in the result. \Box

Another option in the SELECT clause is to use an expression in place of an attribute. Put another way, the SELECT list can function like the lists in an extended projection, which we discussed in Section 5.2.5. We shall see in Section 6.4 that the SELECT list can also include aggregates as in the γ operator of Section 5.2.4.

Example 6.4: Suppose we want output as in Example 6.3, but with the length in hours. We might replace the SELECT clause of that example with

```
SELECT title AS name, length*0.016667 AS lengthInHours
```

Then the same movies would be produced, but lengths would be calculated in hours and the second column would be headed by attribute lengthInHours, as:

name	length In Hours
Pretty Woman	1.98334

Example 6.5: We can even allow a constant as an expression in the SELECT clause. It might seem pointless to do so, but one application is to put some useful words into the output that SQL displays. The following query:

Case Insensitivity

SQL is case insensitive, meaning that it treats upper- and lower-case letters as the same letter. For example, although we have chosen to write keywords like FROM in capitals, it is equally proper to write this keyword as From or from, or even FrOm. Names of attributes, relations, aliases, and so on are similarly case insensitive. Only inside quotes does SQL make a distinction between upper- and lower-case letters. Thus, 'FROM' and 'from' are different character strings. Of course, neither is the keyword FROM.

```
SELECT title, length*0.016667 AS length, 'hrs.' AS inHours
FROM Movies
WHERE studioName = 'Disney' AND year = 1990;
```

produces tuples such as

title	length	in Hours
Pretty Woman	1.98334	hrs.
• • •		

We have arranged that the third column is called inHours, which fits with the column header length in the second column. Every tuple in the answer will have the constant hrs. in the third column, which gives the illusion of being the units attached to the value in the second column.

6.1.2 Selection in SQL

The selection operator of relational algebra, and much more, is available through the WHERE clause of SQL. The expressions that may follow WHERE include conditional expressions like those found in common languages such as C or Java.

We may build expressions by comparing values using the six common comparison operators: =, <>, <, >, <=, and >=. The last four operators are as in C, but <> is the SQL symbol for "not equal to" (!= in C), and = in SQL is equality (== in C).

The values that may be compared include constants and attributes of the relations mentioned after FROM. We may also apply the usual arithmetic operators, +, *, and so on, to numeric values before we compare them. For instance, (year - 1930) * (year - 1930) < 100 is true for those years within 9 of 1930. We may apply the concatenation operator | | | to strings; for example 'foo' | | | 'bar' has value 'foobar'.

An example comparison is

studioName = 'Disney'

SQL Queries and Relational Algebra

The simple SQL queries that we have seen so far all have the form:

SELECT LFROM RWHERE C

in which L is a list of expressions, R is a relation, and C is a condition. The meaning of any such expression is the same as that of the relational-algebra expression

$$\pi_L(\sigma_C(R))$$

That is, we start with the relation in the FROM clause, apply to each tuple whatever condition is indicated in the WHERE clause, and then project onto the list of attributes and/or expressions in the SELECT clause.

in Example 6.1. The attribute studioName of the relation Movies is tested for equality against the constant 'Disney'. This constant is string-valued; strings in SQL are denoted by surrounding them with single quotes. Numeric constants, integers and reals, are also allowed, and SQL uses the common notations for reals such as -12.34 or 1.23E45.

The result of a comparison is a boolean value: either TRUE or FALSE.² Boolean values may be combined by the logical operators AND, OR, and NOT, with their expected meanings. For instance, we saw in Example 6.1 how two conditions could be combined by AND. The WHERE clause of this example evaluates to true if and only if both comparisons are satisfied; that is, the studio name is 'Disney' and the year is 1990. Here is an example of a query with a complex WHERE clause.

Example 6.6: Consider the query

```
SELECT title
FROM Movies
WHERE (year > 1970 OR length < 90) AND studioName = 'MGM';
```

This query asks for the titles of movies made by MGM Studios that either were made after 1970 or were less than 90 minutes long. Notice that comparisons can be grouped using parentheses. The parentheses are needed here because the precedence of logical operators in SQL is the same as in most other languages: AND takes precedence over OR, and NOT takes precedence over both. \Box

²Well there's a bit more to boolean values; see Section 6.1.7.

Representing Bit Strings

A string of bits is represented by B followed by a quoted string of 0's and 1's. Thus, B'011' represents the string of three bits, the first of which is 0 and the other two of which are 1. Hexadecimal notation may also be used, where an X is followed by a quoted string of hexadecimal digits (0 through 9, and a through f, with the latter representing "digits" 10 through 15). For instance, X'7fff' represents a string of twelve bits, a 0 followed by eleven 1's. Note that each hexadecimal digit represents four bits, and leading 0's are not suppressed.

6.1.3 Comparison of Strings

Two strings are equal if they are the same sequence of characters. Recall from Section 2.3.2 that strings can be stored as fixed-length strings, using CHAR, or variable-length strings, using VARCHAR. When comparing strings with different declarations, only the actual strings are compared; SQL ignores any "pad" characters that must be present in the database in order to give a string its required length.

When we compare strings by one of the "less than" operators, such as < or >=, we are asking whether one precedes the other in lexicographic order (i.e., in dictionary order, or alphabetically). That is, if $a_1a_2\cdots a_n$ and $b_1b_2\cdots b_m$ are two strings, then the first is "less than" the second if either $a_1 < b_1$, or if $a_1 = b_1$ and $a_2 < b_2$, or if $a_1 = b_1$, $a_2 = b_2$, and $a_3 < b_3$, and so on. We also say $a_1a_2\cdots a_n < b_1b_2\cdots b_m$ if n < m and $a_1a_2\cdots a_n = b_1b_2\cdots b_n$; that is, the first string is a proper prefix of the second. For instance, 'fodder' < 'foo', because the first two characters of each string are the same, fo, and the third character of fodder precedes the third character of foo. Also, 'bar' < 'bargain' because the former is a proper prefix of the latter.

6.1.4 Pattern Matching in SQL

SQL also provides the capability to compare strings on the basis of a simple pattern match. An alternative form of comparison expression is

s LIKE p

where s is a string and p is a pattern, that is, a string with the optional use of the two special characters % and $_$. Ordinary characters in p match only themselves in s. But % in p can match any sequence of 0 or more characters in s, and $_$ in p matches any one character in s. The value of this expression is true if and only if string s matches pattern p. Similarly, s NOT LIKE p is true if and only if string s does not match pattern p.

Example 6.7: We remember a movie "Star something," and we remember that the something has four letters. What could this movie be? We can retrieve all such names with the query:

```
SELECT title
FROM Movies
WHERE title LIKE 'Star ____';
```

This query asks if the title attribute of a movie has a value that is nine characters long, the first five characters being Star and a blank. The last four characters may be anything, since any sequence of four characters matches the four symbols. The result of the query is the set of complete matching titles, such as $Star\ Wars$ and $Star\ Trek$. \square

Example 6.8: Let us search for all movies with a possessive ('s) in their titles. The desired query is

```
SELECT title
FROM Movies
WHERE title LIKE '%''s%';
```

To understand this pattern, we must first observe that the apostrophe, being the character that surrounds strings in SQL, cannot also represent itself. The convention taken by SQL is that two consecutive apostrophes in a string represent a single apostrophe and do not end the string. Thus, ''s in a pattern is matched by a single apostrophe followed by an s.

The two % characters on either side of the 's match any strings whatsoever. Thus, any title with 's as a substring will match the pattern, and the answer to this query will include films such as Logan's Run or Alice's Restaurant. \Box

6.1.5 Dates and Times

Implementations of SQL generally support dates and times as special data types. These values are often representable in a variety of formats such as 05/14/1948 or 14 May 1948. Here we shall describe only the SQL standard notation, which is very specific about format.

A date constant is represented by the keyword DATE followed by a quoted string of a special form. For example, DATE '1948-05-14' follows the required form. The first four characters are digits representing the year. Then come a hyphen and two digits representing the month. Note that, as in our example, a one-digit month is padded with a leading 0. Finally there is another hyphen and two digits representing the day. As with months, we pad the day with a leading 0 if that is necessary to make a two-digit number.

A time constant is represented similarly by the keyword TIME and a quoted string. This string has two digits for the hour, on the military (24-hour)

Escape Characters in LIKE expressions

What if the pattern we wish to use in a LIKE expression involves the characters % or _? Instead of having a particular character used as the escape character (e.g., the backslash in most UNIX commands), SQL allows us to specify any one character we like as the escape character for a single pattern. We do so by following the pattern by the keyword ESCAPE and the chosen escape character, in quotes. A character % or _ preceded by the escape character in the pattern is interpreted literally as that character, not as a symbol for any sequence of characters or any one character, respectively. For example,

s LIKE 'x%%x%' ESCAPE 'x'

makes x the escape character in the pattern x%%x%. The sequence x% is taken to be a single %. This pattern matches any string that begins and ends with the character %. Note that only the middle % has its "any string" interpretation.

clock. Then come a colon, two digits for the minute, another colon, and two digits for the second. If fractions of a second are desired, we may continue with a decimal point and as many significant digits as we like. For instance, TIME '15:00:02.5' represents the time at which all students will have left a class that ends at 3 PM: two and a half seconds past three o'clock.

Alternatively, time can be expressed as the number of hours and minutes ahead of (indicated by a plus sign) or behind (indicated by a minus sign) Greenwich Mean Time (GMT). For instance, TIME '12:00:00-8:00' represents noon in Pacific Standard Time, which is eight hours behind GMT.

To combine dates and times we use a value of type TIMESTAMP. These values consist of the keyword TIMESTAMP, a date value, a space, and a time value. Thus, TIMESTAMP '1948-05-14 12:00:00' represents noon on May 14, 1948.

We can compare dates or times using the same comparison operators we use for numbers or strings. That is, < on dates means that the first date is earlier than the second; < on times means that the first is earlier (within the same day) than the second.

6.1.6 Null Values and Comparisons Involving NULL

SQL allows attributes to have a special value NULL, which is called the *null* value. There are many different interpretations that can be put on null values. Here are some of the most common:

1. Value unknown: that is, "I know there is some value that belongs here but I don't know what it is." An unknown birthdate is an example.

- 2. Value inapplicable: "There is no value that makes sense here." For example, if we had a spouse attribute for the MovieStar relation, then an unmarried star might have NULL for that attribute, not because we don't know the spouse's name, but because there is none.
- 3. Value withheld: "We are not entitled to know the value that belongs here." For instance, an unlisted phone number might appear as NULL in the component for a phone attribute.

We saw in Section 5.2.7 how the use of the outerjoin operator of relational algebra produces null values in some components of tuples; SQL allows outerjoins and also produces NULL's when a query involves outerjoins; see Section 6.3.8. There are other ways SQL produces NULL's as well. For example, certain insertions of tuples create null values, as we shall see in Section 6.5.1.

In WHERE clauses, we must be prepared for the possibility that a component of some tuple we are examining will be NULL. There are two important rules to remember when we operate upon a NULL value.

- 1. When we operate on a NULL and any value, including another NULL, using an arithmetic operator like × or +, the result is NULL.
- 2. When we compare a NULL value and any value, including another NULL, using a comparison operator like = or >, the result is UNKNOWN. The value UNKNOWN is another truth-value, like TRUE and FALSE; we shall discuss how to manipulate truth-value UNKNOWN shortly.

However, we must remember that, although NULL is a value that can appear in tuples, it is *not* a constant. Thus, while the above rules apply when we try to operate on an expression whose value is NULL, we cannot use NULL explicitly as an operand.

Example 6.9: Let x have the value NULL. Then the value of x+3 is also NULL. However, NULL +3 is not a legal SQL expression. Similarly, the value of x=3 is UNKNOWN, because we cannot tell if the value of x, which is NULL, equals the value 3. However, the comparison NULL =3 is not correct SQL. \Box

The correct way to ask if x has the value NULL is with the expression x IS NULL. This expression has the value TRUE if x has the value NULL and it has value FALSE otherwise. Similarly, x IS NOT NULL has the value TRUE unless the value of x is NULL.

6.1.7 The Truth-Value UNKNOWN

In Section 6.1.2 we assumed that the result of a comparison was either TRUE or FALSE, and these truth-values were combined in the obvious way using the logical operators AND, OR, and NOT. We have just seen that when NULL values

Pitfalls Regarding Nulls

It is tempting to assume that NULL in SQL can always be taken to mean "a value that we don't know but that surely exists." However, there are several ways that intuition is violated. For instance, suppose x is a component of some tuple, and the domain for that component is the integers. We might reason that 0*x surely has the value 0, since no matter what integer x is, its product with 0 is 0. However, if x has the value NULL, rule (1) of Section 6.1.6 applies; the product of 0 and NULL is NULL. Similarly, we might reason that x-x has the value 0, since whatever integer x is, its difference with itself is 0. However, again the rule about operations on nulls applies, and the result is NULL.

occur, comparisons can yield a third truth-value: UNKNOWN. We must now learn how the logical operators behave on combinations of all three truth-values.

The rule is easy to remember if we think of TRUE as 1 (i.e., fully true), FALSE as 0 (i.e., not at all true), and UNKNOWN as 1/2 (i.e., somewhere between true and false). Then:

- 1. The AND of two truth-values is the minimum of those values. That is, x AND y is FALSE if either x or y is FALSE; it is UNKNOWN if neither is FALSE but at least one is UNKNOWN, and it is TRUE only when both x and y are TRUE.
- 2. The OR of two truth-values is the maximum of those values. That is, x OR y is TRUE if either x or y is TRUE; it is UNKNOWN if neither is TRUE but at least one is UNKNOWN, and it is FALSE only when both are FALSE.
- 3. The negation of truth-value v is 1-v. That is, NOT x has the value TRUE when x is FALSE, the value FALSE when x is TRUE, and the value UNKNOWN when x has value UNKNOWN.

In Fig. 6.2 is a summary of the result of applying the three logical operators to the nine different combinations of truth-values for operands x and y. The value of the last operator, NOT, depends only on x.

SQL conditions, as appear in WHERE clauses of select-from-where statements, apply to each tuple in some relation, and for each tuple, one of the three truth values, TRUE, FALSE, or UNKNOWN is produced. However, only the tuples for which the condition has the value TRUE become part of the answer; tuples with either UNKNOWN or FALSE as value are excluded from the answer. That situation leads to another surprising behavior similar to that discussed in the box on "Pitfalls Regarding Nulls," as the next example illustrates.

Example 6.10: Suppose we ask about our running-example relation

\boldsymbol{x}	\boldsymbol{y}	x AND y	x OR y	NOT x
TRUE	TRUE	TRUE	TRUE	FALSE
TRUE	UNKNOWN	UNKNOWN	TRUE	FALSE
TRUE	FALSE	FALSE	TRUE	FALSE
UNKNOWN	TRUE	UNKNOWN	TRUE	UNKNOWN
UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN
UNKNOWN	FALSE	FALSE	UNKNOWN	UNKNOWN
FALSE	TRUE	FALSE	TRUE	TRUE
FALSE	UNKNOWN	FALSE	UNKNOWN	TRUE
FALSE	FALSE	FALSE	FALSE	TRUE

Figure 6.2: Truth table for three-valued logic

Movies(title, year, length, genre, studioName, producerC#) the following query:

```
SELECT *
FROM Movies
WHERE length <= 120 OR length > 120;
```

Intuitively, we would expect to get a copy of the Movies relation, since each movie has a length that is either 120 or less or that is greater than 120.

However, suppose there are Movies tuples with NULL in the length component. Then both comparisons length <= 120 and length > 120 evaluate to UNKNOWN. The OR of two UNKNOWN's is UNKNOWN, by Fig. 6.2. Thus, for any tuple with a NULL in the length component, the WHERE clause evaluates to UNKNOWN. Such a tuple is *not* returned as part of the answer to the query. As a result, the true meaning of the query is "find all the Movies tuples with non-NULL lengths." \Box

6.1.8 Ordering the Output

We may ask that the tuples produced by a query be presented in sorted order. The order may be based on the value of any attribute, with ties broken by the value of a second attribute, remaining ties broken by a third, and so on, as in the τ operation of Section 5.2.6. To get output in sorted order, we may add to the select-from-where statement a clause:

```
ORDER BY <list of attributes>
```

The order is by default ascending, but we can get the output highest-first by appending the keyword DESC (for "descending") to an attribute. Similarly, we can specify ascending order with the keyword ASC, but that word is unnecessary.

The ORDER BY clause follows the WHERE clause and any other clauses (i.e., the optional GROUP BY and HAVING clauses, which are introduced in Section 6.4).

The ordering is performed on the result of the FROM, WHERE, and other clauses, just before we apply the SELECT clause. The tuples of this result are then sorted by the attributes in the list of the ORDER BY clause, and then passed to the SELECT clause for processing in the normal manner.

Example 6.11: The following is a rewrite of our original query of Example 6.1, asking for the Disney movies of 1990 from the relation

```
Movies(title, year, length, genre, studioName, producerC#)
```

To get the movies listed by length, shortest first, and among movies of equal length, alphabetically, we can say:

```
SELECT *
FROM Movies
WHERE studioName = 'Disney' AND year = 1990
ORDER BY length, title;
```

A subtlety of ordering is that all the attributes of Movies are available at the time of sorting, even if they are not part of the SELECT clause. Thus, we could replace SELECT * by SELECT producerC**, and the query would still be legal.

An additional option in ordering is that the list following ORDER BY can include expressions, just as the SELECT clause can. For instance, we can order the tuples of a relation R(A,B) by the sum of the two components of the tuples, highest first, with:

```
SELECT *
FROM R
ORDER BY A+B DESC;
```

6.1.9 Exercises for Section 6.1

Exercise 6.1.1: If a query has a SELECT clause

```
SELECT A B
```

how do we know whether A and B are two different attributes or B is an alias of A?

Exercise 6.1.2: Write the following queries, based on our running movie database example

```
Movies(title, year, length, genre, studioName, producerC#)
StarsIn(movieTitle, movieYear, starName)
MovieStar(name, address, gender, birthdate)
MovieExec(name, address, cert#, netWorth)
Studio(name, address, presC#)
```

in SQL.

- a) Find the address of MGM studios.
- b) Find Sandra Bullock's birthdate.
- c) Find all the stars that appeared either in a movie made in 1980 or a movie with "Love" in the title.
- d) Find all executives worth at least \$10,000,000.
- e) Find all the stars who either are male or live in Malibu (have string Malibu as a part of their address).

Exercise 6.1.3: Write the following queries in SQL. They refer to the database schema of Exercise 2.4.1:

```
Product(maker, model, type)
PC(model, speed, ram, hd, price)
Laptop(model, speed, ram, hd, screen, price)
Printer(model, color, type, price)
```

Show the result of your queries using the data from Exercise 2.4.1.

- a) Find the model number, speed, and hard-disk size for all PC's whose price is under \$1000.
- b) Do the same as (a), but rename the speed column gigahertz and the hd column gigabytes.
- c) Find the manufacturers of printers.
- d) Find the model number, memory size, and screen size for laptops costing more than \$1500.
- e) Find all the tuples in the Printer relation for color printers. Remember that color is a boolean-valued attribute.
- f) Find the model number and hard-disk size for those PC's that have a speed of 3.2 and a price less than \$2000.

Exercise 6.1.4: Write the following queries based on the database schema of Exercise 2.4.3:

```
Classes(class, type, country, numGuns, bore, displacement)
Ships(name, class, launched)
Battles(name, date)
Outcomes(ship, battle, result)
```

and show the result of your query on the data of Exercise 2.4.3.

- a) Find the class name and country for all classes with at least 10 guns.
- b) Find the names of all ships launched prior to 1918, but call the resulting column shipName.
- c) Find the names of ships sunk in battle and the name of the battle in which they were sunk.
- d) Find all ships that have the same name as their class.
- e) Find the names of all ships that begin with the letter "R."
- ! f) Find the names of all ships whose name consists of three or more words (e.g., King George V).

Exercise 6.1.5: Let a and b be integer-valued attributes that may be NULL in some tuples. For each of the following conditions (as may appear in a WHERE clause), describe exactly the set of (a,b) tuples that satisfy the condition, including the case where a and/or b is NULL.

```
a) a = 10 \text{ OR } b = 20
```

- b) a = 10 AND b = 20
- c) a < 10 OR a >= 10
- !d) a = b
- !e) a <= b

! Exercise 6.1.6: In Example 6.10 we discussed the query

```
SELECT *
FROM Movies
WHERE length <= 120 OR length > 120;
```

which behaves unintuitively when the length of a movie is NULL. Find a simpler, equivalent query, one with a single condition in the WHERE clause (no AND or OR of conditions).

6.2 Queries Involving More Than One Relation

Much of the power of relational algebra comes from its ability to combine two or more relations through joins, products, unions, intersections, and differences. We get all of these operations in SQL. The set-theoretic operations — union, intersection, and difference — appear directly in SQL, as we shall learn in Section 6.2.5. First, we shall learn how the select-from-where statement of SQL allows us to perform products and joins.

6.2.1 Products and Joins in SQL

SQL has a simple way to couple relations in one query: list each relation in the FROM clause. Then, the SELECT and WHERE clauses can refer to the attributes of any of the relations in the FROM clause.

Example 6.12: Suppose we want to know the name of the producer of *Star Wars*. To answer this question we need the following two relations from our running example:

```
Movies(title, year, length, genre, studioName, producerC#)
MovieExec(name, address, cert#, netWorth)
```

The producer certificate number is given in the Movies relation, so we can do a simple query on Movies to get this number. We could then do a second query on the relation MovieExec to find the name of the person with that certificate number.

However, we can phrase both these steps as one query about the pair of relations Movies and MovieExec as follows:

```
SELECT name
FROM Movies, MovieExec
WHERE title = 'Star Wars' AND producerC# = cert#;
```

This query asks us to consider all pairs of tuples, one from Movies and the other from MovieExec. The conditions on this pair are stated in the WHERE clause:

- The title component of the tuple from Movies must have value 'Star Wars'.
- 2. The producerC# attribute of the Movies tuple must be the same certificate number as the cert# attribute in the MovieExec tuple. That is, these two tuples must refer to the same producer.

Whenever we find a pair of tuples satisfying both conditions, we produce the name attribute of the tuple from MovieExec as part of the answer. If the data is what we expect, the only time both conditions will be met is when the tuple from Movies is for $Star\ Wars$, and the tuple from MovieExec is for George Lucas. Then and only then will the title be correct and the certificate numbers agree. Thus, George Lucas should be the only value produced. This process is suggested in Fig. 6.3. We take up in more detail how to interpret multirelation queries in Section 6.2.4. \Box

Figure 6.3: The query of Example 6.12 asks us to pair every tuple of Movies with every tuple of MovieExec and test two conditions

6.2.2 Disambiguating Attributes

Sometimes we ask a query involving several relations, and among these relations are two or more attributes with the same name. If so, we need a way to indicate which of these attributes is meant by a use of their shared name. SQL solves this problem by allowing us to place a relation name and a dot in front of an attribute. Thus R.A refers to the attribute A of relation R.

Example 6.13: The two relations

```
MovieStar(name, address, gender, birthdate)
MovieExec(name, address, cert#, netWorth)
```

each have attributes name and address. Suppose we wish to find pairs consisting of a star and an executive with the same address. The following query does the job.

```
SELECT MovieStar.name, MovieExec.name
FROM MovieStar, MovieExec
WHERE MovieStar.address = MovieExec.address;
```

In this query, we look for a pair of tuples, one from MovieStar and the other from MovieExec, such that their address components agree. The WHERE clause enforces the requirement that the address attributes from each of the two tuples agree. Then, for each matching pair of tuples, we extract the two name attributes, first from the MovieStar tuple and then from the other. The result would be a set of pairs such as

Movie Star. name	MovieExec.name		
Jane Fonda	Ted Turner		
• • •	• • •		

The relation name, followed by a dot, is permissible even in situations where there is no ambiguity. For instance, we are free to write the query of Example 6.12 as

```
SELECT MovieExec.name
FROM Movies, MovieExec
WHERE Movie.title = 'Star Wars'
          AND Movie.producerC# = MovieExec.cert#;
```

Alternatively, we may use relation names and dots in front of any subset of the attributes in this query.

6.2.3 Tuple Variables

Disambiguating attributes by prefixing the relation name works as long as the query involves combining several different relations. However, sometimes we need to ask a query that involves two or more tuples from the same relation. We may list a relation R as many times as we need to in the FROM clause, but we need a way to refer to each occurrence of R. SQL allows us to define, for each occurrence of R in the FROM clause, an "alias" which we shall refer to as a tuple variable. Each use of R in the FROM clause is followed by the (optional) keyword AS and the name of the tuple variable; we shall generally omit the AS in this context.

In the SELECT and WHERE clauses, we can disambiguate attributes of R by preceding them by the appropriate tuple variable and a dot. Thus, the tuple variable serves as another name for relation R and can be used in its place when we wish.

Example 6.14: While Example 6.13 asked for a star and an executive sharing an address, we might similarly want to know about two stars who share an address. The query is essentially the same, but now we must think of two tuples chosen from relation MovieStar, rather than tuples from each of MovieStar and MovieExec. Using tuple variables as aliases for two uses of MovieStar, we can write the query as

Tuple Variables and Relation Names

Technically, references to attributes in SELECT and WHERE clauses are always to a tuple variable. However, if a relation appears only once in the FROM clause, then we can use the relation name as its own tuple variable. Thus, we can see a relation name R in the FROM clause as shorthand for R AS R. Furthermore, as we have seen, when an attribute belongs unambiguously to one relation, the relation name (tuple variable) may be omitted.

We see in the FROM clause the declaration of two tuple variables, Star1 and Star2; each is an alias for relation MovieStar. The tuple variables are used in the SELECT clause to refer to the name components of the two tuples. These aliases are also used in the WHERE clause to say that the two MovieStar tuples represented by Star1 and Star2 have the same value in their address components.

The second condition in the WHERE clause, Starl.name < Starl.name, says that the name of the first star precedes the name of the second star alphabetically. If this condition were omitted, then tuple variables Starl and Starl could both refer to the same tuple. We would find that the two tuple variables referred to tuples whose address components are equal, of course, and thus produce each star name paired with itself.³ The second condition also forces us to produce each pair of stars with a common address only once, in alphabetical order. If we used <> (not-equal) as the comparison operator, then we would produce pairs of married stars twice, like

Star1.name	Star2.name		
Paul Newman	Joanne Woodward		
Joanne Woodward	Paul Newman		
• • •			

6.2.4 Interpreting Multirelation Queries

There are several ways to define the meaning of the select-from-where expressions that we have just covered. All are *equivalent*, in the sense that they each give the same answer for each query applied to the same relation instances. We shall consider each in turn.

³A similar problem occurs in Example 6.13 when the same individual is both a star and an executive. We could solve that problem by requiring that the two names be unequal.

Nested Loops

The semantics that we have implicitly used in examples so far is that of tuple variables. Recall that a tuple variable ranges over all tuples of the corresponding relation. A relation name that is not aliased is also a tuple variable ranging over the relation itself, as we mentioned in the box on "Tuple Variables and Relation Names." If there are several tuple variables, we may imagine nested loops, one for each tuple variable, in which the variables each range over the tuples of their respective relations. For each assignment of tuples to the tuple variables, we decide whether the WHERE clause is true. If so, we produce a tuple consisting of the values of the expressions following SELECT; note that each term is given a value by the current assignment of tuples to tuple variables. This query-answering algorithm is suggested by Fig. 6.4.

```
LET the tuple variables in the from-clause range over relations R_1,R_2,\ldots,R_n; FOR each tuple t_1 in relation R_1 DO FOR each tuple t_2 in relation R_2 DO
```

FOR each tuple t_n in relation R_n DO IF the where-clause is satisfied when the values from t_1, t_2, \ldots, t_n are substituted for all attribute references THEN evaluate the expressions of the select-clause according to t_1, t_2, \ldots, t_n and produce the tuple of values that results.

Figure 6.4: Answering a simple SQL query

Parallel Assignment

There is an equivalent definition in which we do not explicitly create nested loops ranging over the tuple variables. Rather, we consider in arbitrary order, or in parallel, all possible assignments of tuples from the appropriate relations to the tuple variables. For each such assignment, we consider whether the WHERE clause becomes true. Each assignment that produces a true WHERE clause contributes a tuple to the answer; that tuple is constructed from the attributes of the SELECT clause, evaluated according to that assignment.

Conversion to Relational Algebra

A third approach is to relate the SQL query to relational algebra. We start with the tuple variables in the FROM clause and take the Cartesian product of their relations. If two tuple variables refer to the same relation, then this relation appears twice in the product, and we rename its attributes so all attributes have

An Unintuitive Consequence of SQL Semantics

Suppose R, S, and T are unary (one-component) relations, each having attribute A alone, and we wish to find those elements that are in R and also in either S or T (or both). That is, we want to compute $R \cap (S \cup T)$. We might expect the following SQL query would do the job.

```
SELECT R.A
FROM R, S, T
WHERE R.A = S.A OR R.A = T.A;
```

However, consider the situation in which T is empty. Since then R.A = T.A can never be satisfied, we might expect the query to produce exactly $R \cap S$, based on our intuition about how "OR" operates. Yet whichever of the three equivalent definitions of Section 6.2.4 one prefers, we find that the result is empty, regardless of how many elements R and S have in common. If we use the nested-loop semantics of Figure 6.4, then we see that the loop for tuple variable T iterates 0 times, since there are no tuples in the relation for the tuple variable to range over. Thus, the if-statement inside the forloops never executes, and nothing can be produced. Similarly, if we look for assignments of tuples to the tuple variables, there is no way to assign a tuple to T, so no assignments exist. Finally, if we use the Cartesian-product approach, we start with $R \times S \times T$, which is empty because T is empty.

unique names. Similarly, attributes of the same name from different relations are renamed to avoid ambiguity.

Having created the product, we apply a selection operator to it by converting the WHERE clause to a selection condition in the obvious way. That is, each attribute reference in the WHERE clause is replaced by the attribute of the product to which it corresponds. Finally, we create from the SELECT clause a list of expressions for a final (extended) projection operation. As we did for the WHERE clause, we interpret each attribute reference in the SELECT clause as the corresponding attribute in the product of relations.

Example 6.15: Let us convert the query of Example 6.14 to relational algebra. First, there are two tuple variables in the FROM clause, both referring to relation MovieStar. Thus, our expression (without the necessary renaming) begins:

$MovieStar \times MovieStar$

The resulting relation has eight attributes, the first four correspond to attributes name, address, gender, and birthdate from the first copy of relation MovieStar, and the second four correspond to the same attributes from the

other copy of MovieStar. We could create names for these attributes with a dot and the aliasing tuple variable — e.g., Star1.gender — but for succinctness, let us invent new symbols and call the attributes simply A_1, A_2, \ldots, A_8 . Thus, A_1 corresponds to Star1.name, A_5 corresponds to Star2.name, and so on.

Under this naming strategy for attributes, the selection condition obtained from the WHERE clause is $A_2 = A_6$ and $A_1 < A_5$. The projection list is A_1, A_5 . Thus,

$$\pi_{A_1,A_5}\Big(\sigma_{A_2=A_6} \text{ AND }_{A_1< A_5}\big(\rho_{M(A_1,A_2,A_3,A_4)}(\text{MovieStar}) \times \\ \rho_{N(A_5,A_6,A_7,A_8)}(\text{MovieStar})\big)\Big)$$

renders the entire query in relational algebra. \Box

6.2.5 Union, Intersection, and Difference of Queries

Sometimes we wish to combine relations using the set operations of relational algebra: union, intersection, and difference. SQL provides corresponding operators that apply to the results of queries, provided those queries produce relations with the same list of attributes and attribute types. The keywords used are UNION, INTERSECT, and EXCEPT for \cup , \cap , and -, respectively. Words like UNION are used between two queries, and those queries must be parenthesized.

Example 6.16: Suppose we wanted the names and addresses of all female movie stars who are also movie executives with a net worth over \$10,000,000. Using the following two relations:

```
MovieStar(name, address, gender, birthdate)
MovieExec(name, address, cert#, netWorth)
```

we can write the query as in Fig. 6.5. Lines (1) through (3) produce a relation whose schema is (name, address) and whose tuples are the names and addresses of all female movie stars.

- 1) (SELECT name, address
- FROM MovieStar
- 3) WHERE gender = 'F')
- INTERSECT
- 5) (SELECT name, address
- 6) FROM MovieExec
- 7) WHERE netWorth > 10000000);

Figure 6.5: Intersecting female movie stars with rich executives

Similarly, lines (5) through (7) produce the set of "rich" executives, those with net worth over \$10,000,000. This query also yields a relation whose schema

Readable SQL Queries

Generally, one writes SQL queries so that each important keyword like FROM or WHERE starts a new line. This style offers the reader visual clues to the structure of the query. However, when a query or subquery is short, we shall sometimes write it out on a single line, as we did in Example 6.17. That style, keeping a complete query compact, also offers good readability.

has the attributes name and address only. Since the two schemas are the same, we can intersect them, and we do so with the operator of line (4). \Box

Example 6.17: In a similar vein, we could take the difference of two sets of persons, each selected from a relation. The query

```
(SELECT name, address FROM MovieStar)
EXCEPT
(SELECT name, address FROM MovieExec);
```

gives the names and addresses of movie stars who are not also movie executives, regardless of gender or net worth. \Box

In the two examples above, the attributes of the relations whose intersection or difference we took were conveniently the same. However, if necessary to get a common set of attributes, we can rename attributes as in Example 6.3.

Example 6.18: Suppose we wanted all the titles and years of movies that appeared in either the Movies or StarsIn relation of our running example:

```
Movies(title, year, length, genre, studioName, producerC#)
StarsIn(movieTitle, movieYear, starName)
```

Ideally, these sets of movies would be the same, but in practice it is common for relations to diverge; for instance we might have movies with no listed stars or a StarsIn tuple that mentions a movie not found in the Movies relation.⁴ Thus, we might write

```
(SELECT title, year FROM Movie)
    UNION
(SELECT movieTitle AS title, movieYear AS year FROM StarsIn);
```

The result would be all movies mentioned in either relation, with title and year as the attributes of the resulting relation. \Box

⁴There are ways to prevent this divergence; see Section 7.1.1.

6.2.6 Exercises for Section 6.2

Exercise 6.2.1: Using the database schema of our running movie example

```
Movies(title, year, length, genre, studioName, producerC#)
StarsIn(movieTitle, movieYear, starName)
MovieStar(name, address, gender, birthdate)
MovieExec(name, address, cert#, netWorth)
Studio(name, address, presC#)
```

write the following queries in SQL.

- a) Who were the male stars in *Titanic*?
- b) Which stars appeared in movies produced by MGM in 1995?
- c) Who is the president of MGM studios?
- ! d) Which movies are longer than Gone With the Wind?
- ! e) Which executives are worth more than Merv Griffin?

Exercise 6.2.2: Write the following queries, based on the database schema

```
Product(maker, model, type)
PC(model, speed, ram, hd, price)
Laptop(model, speed, ram, hd, screen, price)
Printer(model, color, type, price)
```

of Exercise 2.4.1, and evaluate your queries using the data of that exercise.

- a) Give the manufacturer and speed of laptops with a hard disk of at least thirty gigabytes.
- b) Find the model number and price of all products (of any type) made by manufacturer B.
- c) Find those manufacturers that sell Laptops, but not PC's.
- ! d) Find those hard-disk sizes that occur in two or more PC's.
- ! e) Find those pairs of PC models that have both the same speed and RAM. A pair should be listed only once; e.g., list (i, j) but not (j, i).
- !! f) Find those manufacturers of at least two different computers (PC's or laptops) with speeds of at least 3.0.

Exercise 6.2.3: Write the following queries, based on the database schema

Classes(class, type, country, numGuns, bore, displacement)
Ships(name, class, launched)
Battles(name, date)
Outcomes(ship, battle, result)

of Exercise 2.4.3, and evaluate your queries using the data of that exercise.

- a) Find the ships heavier than 35,000 tons.
- b) List the name, displacement, and number of guns of the ships engaged in the battle of Guadalcanal.
- c) List all the ships mentioned in the database. (Remember that all these ships may not appear in the Ships relation.)
- ! d) Find those countries that have both battleships and battlecruisers.
- ! e) Find those ships that were damaged in one battle, but later fought in another.
- ! f) Find those battles with at least three ships of the same country.
- ! Exercise 6.2.4: A general form of relational-algebra query is

$$\pi_L\Big(\sigma_C(R_1\times R_2\times\cdots\times R_n)\Big)$$

Here, L is an arbitrary list of attributes, and C is an arbitrary condition. The list of relations R_1, R_2, \ldots, R_n may include the same relation repeated several times, in which case appropriate renaming may be assumed applied to the R_i 's. Show how to express any query of this form in SQL.

! Exercise 6.2.5: Another general form of relational-algebra query is

$$\pi_L\Big(\sigma_C(R_1\bowtie R_2\bowtie\cdots\bowtie R_n)\Big)$$

The same assumptions as in Exercise 6.2.4 apply here; the only difference is that the natural join is used instead of the product. Show how to express any query of this form in SQL.

6.3 Subqueries

In SQL, one query can be used in various ways to help in the evaluation of another. A query that is part of another is called a *subquery*. Subqueries can have subqueries, and so on, down as many levels as we wish. We already saw one example of the use of subqueries; in Section 6.2.5 we built a union, intersection, or difference query by connecting two subqueries to form the whole query. There are a number of other ways that subqueries can be used:

- Subqueries can return a single constant, and this constant can be compared with another value in a WHERE clause.
- Subqueries can return relations that can be used in various ways in WHERE clauses.
- 3. Subqueries can appear in FROM clauses, followed by a tuple variable that represents the tuples in the result of the subquery.

6.3.1 Subqueries that Produce Scalar Values

An atomic value that can appear as one component of a tuple is referred to as a *scalar*. A select-from-where expression can produce a relation with any number of attributes in its schema, and there can be any number of tuples in the relation. However, often we are only interested in values of a single attribute. Furthermore, sometimes we can deduce from information about keys, or from other information, that there will be only a single value produced for that attribute.

If so, we can use this select-from-where expression, surrounded by parentheses, as if it were a constant. In particular, it may appear in a WHERE clause any place we would expect to find a constant or an attribute representing a component of a tuple. For instance, we may compare the result of such a subquery to a constant or attribute.

Example 6.19: Let us recall Example 6.12, where we asked for the producer of *Star Wars*. We had to query the two relations

```
Movies(title, year, length, genre, studioName, producerC#)
MovieExec(name, address, cert#, netWorth)
```

because only the former has movie title information and only the latter has producer names. The information is linked by "certificate numbers." These numbers uniquely identify producers. The query we developed is:

```
SELECT name
FROM Movies, MovieExec
WHERE title = 'Star Wars' AND producerC# = cert#;
```

There is another way to look at this query. We need the Movies relation only to get the certificate number for the producer of *Star Wars*. Once we have it, we can query the relation MovieExec to find the name of the person with this certificate. The first problem, getting the certificate number, can be written as a subquery, and the result, which we expect will be a single value, can be used in the "main" query to achieve the same effect as the query above. This query is shown in Fig. 6.6.

Lines (4) through (6) of Fig. 6.6 are the subquery. Looking only at this simple query by itself, we see that the result will be a unary relation with

```
1) SELECT name
2) FROM MovieExec
3) WHERE cert# =
4) (SELECT producerC#
5) FROM Movies
6) WHERE title = 'Star Wars'
);
```

Figure 6.6: Finding the producer of Star Wars by using a nested subquery

attribute producerC#, and we expect to find only one tuple in this relation. The tuple will look like (12345), that is, a single component with some integer, perhaps 12345 or whatever George Lucas' certificate number is. If zero tuples or more than one tuple is produced by the subquery of lines (4) through (6), it is a run-time error.

Having executed this subquery, we can then execute lines (1) through (3) of Fig. 6.6, as if the value 12345 replaced the entire subquery. That is, the "main" query is executed as if it were

```
SELECT name
FROM MovieExec
WHERE cert# = 12345;
```

The result of this query should be George Lucas.

6.3.2 Conditions Involving Relations

There are a number of SQL operators that we can apply to a relation R and produce a boolean result. However, the relation R must be expressed as a subquery. As a trick, if we want to apply these operators to a stored table Foo, we can use the subquery (SELECT * FROM Foo). The same trick works for union, intersection, and difference of relations. Notice that those operators, introduced in Section 6.2.5 are applied to two subqueries.

Some of the operators below — IN, ALL, and ANY — will be explained first in their simple form where a scalar value s is involved. In this situation, the subquery R is required to produce a one-column relation. Here are the definitions of the operators:

- 1. EXISTS R is a condition that is true if and only if R is not empty.
- 2. s IN R is true if and only if s is equal to one of the values in R. Likewise, s NOT IN R is true if and only if s is equal to no value in R. Here, we assume R is a unary relation. We shall discuss extensions to the IN and NOT IN operators where R has more than one attribute in its schema and s is a tuple in Section 6.3.3.

- 3. s > ALL R is true if and only if s is greater than every value in unary relation R. Similarly, the > operator could be replaced by any of the other five comparison operators, with the analogous meaning: s stands in the stated relationship to every tuple in R. For instance, s <> ALL R is the same as s NOT IN R.
- 4. s > ANY R is true if and only if s is greater than at least one value in unary relation R. Similarly, any of the other five comparisons could be used in place of >, with the meaning that s stands in the stated relationship to at least one tuple of R. For instance, s = ANY R is the same as s IN R.

The EXISTS, ALL, and ANY operators can be negated by putting NOT in front of the entire expression, just like any other boolean-valued expression. Thus, NOT EXISTS R is true if and only if R is empty. NOT S >= ALL R is true if and only if R is not the maximum value in R, and NOT R is true if and only if R is the minimum value in R. We shall see several examples of the use of these operators shortly.

6.3.3 Conditions Involving Tuples

A tuple in SQL is represented by a parenthesized list of scalar values. Examples are (123, 'foo') and (name, address, networth). The first of these has constants as components; the second has attributes as components. Mixing of constants and attributes is permitted.

If a tuple t has the same number of components as a relation R, then it makes sense to compare t and R in expressions of the type listed in Section 6.3.2. Examples are t IN R or t <> ANY R. The latter comparison means that there is some tuple in R other than t. Note that when comparing a tuple with members of a relation R, we must compare components using the assumed standard order for the attributes of R.

```
1)
    SELECT name
2)
    FROM MovieExec
3)
    WHERE cert# IN
4)
        (SELECT producerC#
5)
         FROM Movies
         WHERE (title, year) IN
6)
7)
             (SELECT movieTitle, movieYear
8)
              FROM StarsIn
9)
              WHERE starName = 'Harrison Ford'
             )
        );
```

Figure 6.7: Finding the producers of Harrison Ford's movies

Example 6.20: In Fig. 6.7 is a SQL query on the three relations

```
Movies(title, year, length, genre, studioName, producerC#)
StarsIn(movieTitle, movieYear, starName)
MovieExec(name, address, cert#, netWorth)
```

asking for all the producers of movies in which Harrison Ford stars. It consists of a "main" query, a query nested within that, and a third query nested within the second.

We should analyze any query with subqueries from the inside out. Thus, let us start with the innermost nested subquery: lines (7) through (9). This query examines the tuples of the relation StarsIn and finds all those tuples whose starName component is 'Harrison Ford'. The titles and years of those movies are returned by this subquery. Recall that title and year, not title alone, is the key for movies, so we need to produce tuples with both attributes to identify a movie uniquely. Thus, we would expect the value produced by lines (7) through (9) to look something like Fig. 6.8.

title	year
Star Wars	1977
Raiders of the Lost Ark	1981
The Fugitive	1993
• • •	

Figure 6.8: Title-year pairs returned by inner subquery

Now, consider the middle subquery, lines (4) through (6). It searches the Movies relation for tuples whose title and year are in the relation suggested by Fig. 6.8. For each tuple found, the producer's certificate number is returned, so the result of the middle subquery is the set of certificates of the producers of Harrison Ford's movies.

Finally, consider the "main" query of lines (1) through (3). It examines the tuples of the MovieExec relation to find those whose cert# component is one of the certificates in the set returned by the middle subquery. For each of these tuples, the name of the producer is returned, giving us the set of producers of Harrison Ford's movies, as desired.

Incidentally, the nested query of Fig. 6.7 can, like many nested queries, be written as a single select-from-where expression with relations in the FROM clause for each of the relations mentioned in the main query or a subquery. The IN relationships are replaced by equalities in the WHERE clause. For instance, the query of Fig. 6.9 is essentially that of Fig. 6.7. There is a difference regarding the way duplicate occurrences of a producer — e.g., George Lucas — are handled, as we shall discuss in Section 6.4.1.

```
SELECT name
FROM MovieExec, Movies, StarsIn
WHERE cert# = producerC# AND
    title = movieTitle AND
    year = movieYear AND
    starName = 'Harrison Ford';
```

Figure 6.9: Ford's producers without nested subqueries

6.3.4 Correlated Subqueries

The simplest subqueries can be evaluated once and for all, and the result used in a higher-level query. A more complicated use of nested subqueries requires the subquery to be evaluated many times, once for each assignment of a value to some term in the subquery that comes from a tuple variable outside the subquery. A subquery of this type is called a *correlated* subquery. Let us begin our study with an example.

Example 6.21: We shall find the titles that have been used for two or more movies. We start with an outer query that looks at all tuples in the relation

```
Movies(title, year, length, genre, studioName, producerC#)
```

For each such tuple, we ask in a subquery whether there is a movie with the same title and a greater year. The entire query is shown in Fig. 6.10.

As with other nested queries, let us begin at the innermost subquery, lines (4) through (6). If Old.title in line (6) were replaced by a constant string such as 'King Kong', we would understand it quite easily as a query asking for the year or years in which movies titled King Kong were made. The present subquery differs little. The only problem is that we don't know what value Old.title has. However, as we range over Movies tuples of the outer query of lines (1) through (3), each tuple provides a value of Old.title. We then execute the query of lines (4) through (6) with this value for Old.title to decide the truth of the WHERE clause that extends from lines (3) through (6).

```
1) SELECT title
2) FROM Movies Old
3) WHERE year < ANY
4) (SELECT year
5) FROM Movies
6) WHERE title = Old.title
);</pre>
```

Figure 6.10: Finding movie titles that appear more than once

The condition of line (3) is true if any movie with the same title as Old.title has a later year than the movie in the tuple that is the current value of tuple variable Old. This condition is true unless the year in the tuple Old is the last year in which a movie of that title was made. Consequently, lines (1) through (3) produce a title one fewer times than there are movies with that title. A movie made twice will be listed once, a movie made three times will be listed twice, and so on.⁵ \Box

When writing a correlated query it is important that we be aware of the scoping rules for names. In general, an attribute in a subquery belongs to one of the tuple variables in that subquery's FROM clause if some tuple variable's relation has that attribute in its schema. If not, we look at the immediately surrounding subquery, then to the one surrounding that, and so on. Thus, year on line (4) and title on line (6) of Fig. 6.10 refer to the attributes of the tuple variable that ranges over all the tuples of the copy of relation Movies introduced on line (5) — that is, the copy of the Movies relation addressed by the subquery of lines (4) through (6).

However, we can arrange for an attribute to belong to another tuple variable if we prefix it by that tuple variable and a dot. That is why we introduced the alias Old for the Movies relation of the outer query, and why we refer to Old.title in line (6). Note that if the two relations in the FROM clauses of lines (2) and (5) were different, we would not need an alias. Rather, in the subquery we could refer directly to attributes of a relation mentioned in line (2).

6.3.5 Subqueries in FROM Clauses

Another use for subqueries is as relations in a FROM clause. In a FROM list, instead of a stored relation, we may use a parenthesized subquery. Since we don't have a name for the result of this subquery, we must give it a tuple-variable alias. We then refer to tuples in the result of the subquery as we would tuples in any relation that appears in the FROM list.

Example 6.22: Let us reconsider the problem of Example 6.20, where we wrote a query that finds the producers of Harrison Ford's movies. Suppose we had a relation that gave the certificates of the producers of those movies. It would then be a simple matter to look up the names of those producers in the relation MovieExec. Figure 6.11 is such a query.

Lines (2) through (7) are the FROM clause of the outer query. In addition to the relation MovieExec, it has a subquery. That subquery joins Movies and StarsIn on lines (3) through (5), adds the condition that the star is Harrison Ford on line (6), and returns the set of producers of the movies at line (2). This set is given the alias Prod on line (7).

⁵This example is the first occasion on which we've been reminded that relations in SQL are bags, not sets. There are several ways that duplicates may crop up in SQL relations. We shall discuss the matter in detail in Section 6.4.

```
1)
    SELECT name
2)
    FROM MovieExec, (SELECT producerC#
3)
                     FROM Movies, StarsIn
4)
                     WHERE title = movieTitle AND
5)
                            vear = movieYear AND
6)
                            starName = 'Harrison Ford'
7)
                     ) Prod
8)
    WHERE cert# = Prod.producerC#;
```

Figure 6.11: Finding the producers of Ford's movies using a subquery in the FROM clause

At line (8), the relations MovieExec and the subquery aliased Prod are joined with the requirement that the certificate numbers be the same. The names of the producers from MovieExec that have certificates in the set aliased by Prod is returned at line (1). \Box

6.3.6 SQL Join Expressions

We can construct relations by a number of variations on the join operator applied to two relations. These variants include products, natural joins, theta-joins, and outerjoins. The result can stand as a query by itself. Alternatively, all these expressions, since they produce relations, may be used as subqueries in the FROM clause of a select-from-where expression. These expressions are principally shorthands for more complex select-from-where queries (see Exercise 6.3.11).

The simplest form of join expression is a *cross join*; that term is a synonym for what we called a Cartesian product or just "product" in Section 2.4.7. For instance, if we want the product of the two relations

```
Movies(title, year, length, genre, studioName, producerC#)
StarsIn(movieTitle, movieYear, starName)
```

we can say

```
Movies CROSS JOIN StarsIn;
```

and the result will be a nine-column relation with all the attributes of Movies and StarsIn. Every pair consisting of one tuple of Movies and one tuple of StarsIn will be a tuple of the resulting relation.

The attributes in the product relation can be called R.A, where R is one of the two joined relations and A is one of its attributes. If only one of the relations has an attribute named A, then the R and dot can be dropped, as usual. In this instance, since Movies and StarsIn have no common attributes, the nine attribute names suffice in the product.

However, the product by itself is rarely a useful operation. A more conventional theta-join is obtained with the keyword ON. We put JOIN between two

relation names R and S and follow them by ON and a condition. The meaning of JOIN...ON is that the product of $R \times S$ is followed by a selection for whatever condition follows ON.

Example 6.23: Suppose we want to join the relations

```
Movies(title, year, length, genre, studioName, producerC#)
StarsIn(movieTitle, movieYear, starName)
```

with the condition that the only tuples to be joined are those that refer to the same movie. That is, the titles and years from both relations must be the same. We can ask this query by

```
Movies JOIN StarsIn ON
     title = movieTitle AND year = movieYear;
```

The result is again a nine-column relation with the obvious attribute names. However, now a tuple from Movies and one from StarsIn combine to form a tuple of the result only if the two tuples agree on both the title and year. As a result, two of the columns are redundant, because every tuple of the result will have the same value in both the title and movieTitle components and will have the same value in both year and movieYear.

If we are concerned with the fact that the join above has two redundant components, we can use the whole expression as a subquery in a FROM clause and use a SELECT clause to remove the undesired attributes. Thus, we could write

to get a seven-column relation which is the Movies relation's tuples, each extended in all possible ways with a star of that movie. \Box

6.3.7 Natural Joins

As we recall from Section 2.4.8, a natural join differs from a theta-join in that:

- 1. The join condition is that all pairs of attributes from the two relations having a common name are equated, and there are no other conditions.
- 2. One of each pair of equated attributes is projected out.

The SQL natural join behaves exactly this way. Keywords NATURAL JOIN appear between the relations to express the ⋈ operator.

Example 6.24: Suppose we want to compute the natural join of the relations

```
MovieStar(name, address, gender, birthdate)
MovieExec(name, address, cert#, netWorth)
```

The result will be a relation whose schema includes attributes name and address plus all the attributes that appear in one or the other of the two relations. A tuple of the result will represent an individual who is both a star and an executive and will have all the information pertinent to either: a name, address, gender, birthdate, certificate number, and net worth. The expression

MovieStar NATURAL JOIN MovieExec;

succinctly describes the desired relation.

6.3.8 Outerjoins

The outerjoin operator was introduced in Section 5.2.7 as a way to augment the result of a join by the dangling tuples, padded with null values. In SQL, we can specify an outerjoin; NULL is used as the null value.

Example 6.25: Suppose we wish to take the outerjoin of the two relations

```
MovieStar(name, address, gender, birthdate)
MovieExec(name, address, cert#, netWorth)
```

SQL refers to the standard outerjoin, which pads dangling tuples from both of its arguments, as a *full* outerjoin. The syntax is unsurprising:

```
MovieStar NATURAL FULL OUTER JOIN MovieExec:
```

The result of this operation is a relation with the same six-attribute schema as Example 6.24. The tuples of this relation are of three kinds. Those representing individuals who are both stars and executives have tuples with all six attributes non-NULL. These are the tuples that are also in the result of Example 6.24.

The second kind of tuple is one for an individual who is a star but not an executive. These tuples have values for attributes name, address, gender, and birthdate taken from their tuple in MovieStar, while the attributes belonging only to MovieExec, namely cert# and netWorth, have NULL values.

The third kind of tuple is for an executive who is not also a star. These tuples have values for the attributes of MovieExec taken from their MovieExec tuple and NULL's in the attributes gender and birthdate that come only from MovieStar. For instance, the three tuples of the result relation shown in Fig. 6.12 correspond to the three types of individuals, respectively.

All the variations on the outerjoin that we mentioned in Section 5.2.7 are also available in SQL. If we want a left- or right-outerjoin, we add the appropriate word LEFT or RIGHT in place of FULL. For instance,

MovieStar NATURAL LEFT OUTER JOIN MovieExec;

name	address	gender	birthdate	cert#	networth
Mary Tyler Moore	Maple St.	'F'	9/9/99	12345	\$100
Tom Hanks	Cherry Ln.	'M'	8/8/88	NULL	NULL
George Lucas	Oak Rd.	NULL	NULL	23456	\$200

Figure 6.12: Three tuples in the outerjoin of MovieStar and MovieExec

would yield the first two tuples of Fig. 6.12 but not the third. Similarly,

```
MovieStar NATURAL RIGHT OUTER JOIN MovieExec;
```

would yield the first and third tuples of Fig. 6.12 but not the second.

Next, suppose we want a theta-outerjoin instead of a natural outerjoin. Instead of using the keyword NATURAL, we may follow the join by ON and a condition that matching tuples must obey. If we also specify FULL OUTER JOIN, then after matching tuples from the two joined relations, we pad dangling tuples of either relation with NULL's and include the padded tuples in the result.

Example 6.26: Let us reconsider Example 6.23, where we joined the relations Movies and StarsIn using the conditions that the title and movieTitle attributes of the two relations agree and that the year and movieYear attributes of the two relations agree. If we modify that example to call for a full outerjoin:

```
Movies FULL OUTER JOIN StarsIn ON
    title = movieTitle AND year = movieYear;
```

then we shall get not only tuples for movies that have at least one star mentioned in StarsIn, but we shall get tuples for movies with no listed stars, padded with NULL's in attributes movieTitle, movieYear, and starName. Likewise, for stars not appearing in any movie listed in relation Movies we get a tuple with NULL's in the six attributes of Movies.

The keyword FULL can be replaced by either LEFT or RIGHT in outerjoins of the type suggested by Example 6.26. For instance,

```
Movies LEFT OUTER JOIN StarsIn ON
    title = movieTitle AND year = movieYear;
```

gives us the Movies tuples with at least one listed star and NULL-padded Movies tuples without a listed star, but will not include stars without a listed movie. Conversely,

```
Movies RIGHT OUTER JOIN StarsIn ON
   title = movieTitle AND year = movieYear;
```

will omit the tuples for movies without a listed star but will include tuples for stars not in any listed movies, padded with NULL's.

6.3.9 Exercises for Section 6.3

Exercise 6.3.1: Write the following queries, based on the database schema

```
Product(maker, model, type)
PC(model, speed, ram, hd, price)
Laptop(model, speed, ram, hd, screen, price)
Printer(model, color, type, price)
```

of Exercise 2.4.1. You should use at least one subquery in each of your answers and write each query in two significantly different ways (e.g., using different sets of the operators EXISTS, IN, ALL, and ANY).

- a) Find the makers of PC's with a speed of at least 3.0.
- b) Find the printers with the highest price.
- ! c) Find the laptops whose speed is slower than that of any PC.
- ! d) Find the model number of the item (PC, laptop, or printer) with the highest price.
- ! e) Find the maker of the color printer with the lowest price.
- !! f) Find the maker(s) of the PC(s) with the fastest processor among all those PC's that have the smallest amount of RAM.

Exercise 6.3.2: Write the following queries, based on the database schema

```
Classes(class, type, country, numGuns, bore, displacement)
Ships(name, class, launched)
Battles(name, date)
Outcomes(ship, battle, result)
```

of Exercise 2.4.3. You should use at least one subquery in each of your answers and write each query in two significantly different ways (e.g., using different sets of the operators EXISTS, IN, ALL, and ANY).

- a) Find the countries whose ships had the largest number of guns.
- ! b) Find the classes of ships, at least one of which was sunk in a battle.
 - c) Find the names of the ships with a 16-inch bore.
 - d) Find the battles in which ships of the Kongo class participated.
- !! e) Find the names of the ships whose number of guns was the largest for those ships of the same bore.
- ! Exercise 6.3.3: Write the query of Fig. 6.10 without any subqueries.

- ! Exercise 6.3.4: Consider expression $\pi_L(R_1 \bowtie R_2 \bowtie \cdots \bowtie R_n)$ of relational algebra, where L is a list of attributes all of which belong to R_1 . Show that this expression can be written in SQL using subqueries only. More precisely, write an equivalent SQL expression where no FROM clause has more than one relation in its list.
- ! Exercise 6.3.5: Write the following queries without using the intersection or difference operators:
 - a) The intersection query of Fig. 6.5.
 - b) The difference query of Example 6.17.
- !! Exercise 6.3.6: We have noticed that certain operators of SQL are redundant, in the sense that they always can be replaced by other operators. For example, we saw that s IN R can be replaced by s = ANY R. Show that EXISTS and NOT EXISTS are redundant by explaining how to replace any expression of the form EXISTS R or NOT EXISTS R by an expression that does not involve EXISTS (except perhaps in the expression R itself). Hint: Remember that it is permissible to have a constant in the SELECT clause.

Exercise 6.3.7: For these relations from our running movie database schema

```
StarsIn(movieTitle, movieYear, starName)
MovieStar(name, address, gender, birthdate)
MovieExec(name, address, cert#, netWorth)
Studio(name, address, presC#)
```

describe the tuples that would appear in the following SQL expressions:

- a) Studio CROSS JOIN MovieExec;
- b) StarsIn NATURAL FULL OUTER JOIN MovieStar;
- c) StarsIn FULL OUTER JOIN MovieStar ON name = starName;
- ! Exercise 6.3.8: Using the database schema

```
Product(maker, model, type)
PC(model, speed, ram, hd, rd, price)
Laptop(model, speed, ram, hd, screen, price)
Printer(model, color, type, price)
```

write a SQL query that will produce information about all products — PC's, laptops, and printers — including their manufacturer if available, and whatever information about that product is relevant (i.e., found in the relation for that type of product).

Exercise 6.3.9: Using the two relations

```
Classes(class, type, country, numGuns, bore, displacement)
Ships(name, class, launched)
```

from our database schema of Exercise 2.4.3, write a SQL query that will produce all available information about ships, including that information available in the Classes relation. You need not produce information about classes if there are no ships of that class mentioned in Ships.

- ! Exercise 6.3.10: Repeat Exercise 6.3.9, but also include in the result, for any class C that is not mentioned in Ships, information about the ship that has the same name C as its class. You may assume that there is a ship with the class name, even if it doesn't appear in Ships.
- ! Exercise 6.3.11: The join operators (other than outerjoin) we learned in this section are redundant, in the sense that they can always be replaced by select-from-where expressions. Explain how to write expressions of the following forms using select-from-where:
 - a) R CROSS JOIN S;
 - b) R NATURAL JOIN S;
 - c) R JOIN S ON C;, where C is a SQL condition.

6.4 Full-Relation Operations

In this section we shall study some operations that act on relations as a whole, rather than on tuples individually or in small numbers (as do joins of several relations, for instance). First, we deal with the fact that SQL uses relations that are bags rather than sets, and a tuple can appear more than once in a relation. We shall see how to force the result of an operation to be a set in Section 6.4.1, and in Section 6.4.2 we shall see that it is also possible to prevent the elimination of duplicates in circumstances where SQL systems would normally eliminate them.

Then, we discuss how SQL supports the grouping and aggregation operator γ that we introduced in Section 5.2.4. SQL has aggregation operators and a GROUP-BY clause. There is also a "HAVING" clause that allows selection of certain groups in a way that depends on the group as a whole, rather than on individual tuples.

6.4.1 Eliminating Duplicates

As mentioned in Section 6.3.4, SQL's notion of relations differs from the abstract notion of relations presented in Section 2.2. A relation, being a set, cannot have more than one copy of any given tuple. When a SQL query creates a new relation, the SQL system does not ordinarily eliminate duplicates. Thus, the SQL response to a query may list the same tuple several times.

Recall from Section 6.2.4 that one of several equivalent definitions of the meaning of a SQL select-from-where query is that we begin with the Cartesian product of the relations referred to in the FROM clause. Each tuple of the product is tested by the condition in the WHERE clause, and the ones that pass the test are given to the output for projection according to the SELECT clause. This projection may cause the same tuple to result from different tuples of the product, and if so, each copy of the resulting tuple is printed in its turn. Further, since there is nothing wrong with a SQL relation having duplicates, the relations from which the Cartesian product is formed may have duplicates, and each identical copy is paired with the tuples from the other relations, yielding a proliferation of duplicates in the product.

If we do not wish duplicates in the result, then we may follow the keyword SELECT by the keyword DISTINCT. That word tells SQL to produce only one copy of any tuple and is the SQL analog of applying the δ operator of Section 5.2.1 to the result of the query.

Example 6.27: Let us reconsider the query of Fig. 6.9, where we asked for the producers of Harrison Ford's movies using no subqueries. As written, George Lucas will appear many times in the output. If we want only to see each producer once, we may change line (1) of the query to

1) SELECT DISTINCT name

Then, the list of producers will have duplicate occurrences of names eliminated before printing.

Incidentally, the query of Fig. 6.7, where we used subqueries, does not necessarily suffer from the problem of duplicate answers. True, the subquery at line (4) of Fig. 6.7 will produce the certificate number of George Lucas several times. However, in the "main" query of line (1), we examine each tuple of MovieExec once. Presumably, there is only one tuple for George Lucas in that relation, and if so, it is only this tuple that satisfies the WHERE clause of line (3). Thus, George Lucas is printed only once.

6.4.2 Duplicates in Unions, Intersections, and Differences

Unlike the SELECT statement, which preserves duplicates as a default and only eliminates them when instructed to by the DISTINCT keyword, the union, intersection, and difference operations, which we introduced in Section 6.2.5, normally eliminate duplicates. That is, bags are converted to sets, and the set version of the operation is applied. In order to prevent the elimination of duplicates, we must follow the operator UNION, INTERSECT, or EXCEPT by the keyword ALL. If we do, then we get the bag semantics of these operators as was discussed in Section 5.1.2.

Example 6.28: Consider again the union expression from Example 6.18, but now add the keyword ALL, as:

The Cost of Duplicate Elimination

One might be tempted to place DISTINCT after every SELECT, on the theory that it is harmless. In fact, it is very expensive to eliminate duplicates from a relation. The relation must be sorted or partitioned so that identical tuples appear next to each other. Only by grouping the tuples in this way can we determine whether or not a given tuple should be eliminated. The time it takes to sort the relation so that duplicates may be eliminated is often greater than the time it takes to execute the query itself. Thus, duplicate elimination should be used judiciously if we want our queries to run fast.

```
(SELECT title, year FROM Movies)
UNION ALL
(SELECT movieTitle AS title, movieYear AS year FROM StarsIn);
```

Now, a title and year will appear as many times in the result as it appears in each of the relations Movies and StarsIn put together. For instance, if a movie appeared once in the Movies relation and there were three stars for that movie listed in StarsIn (so the movie appeared in three different tuples of StarsIn), then that movie's title and year would appear four times in the result of the union.

As for union, the operators INTERSECT ALL and EXCEPT ALL are intersection and difference of bags. Thus, if R and S are relations, then the result of expression

R INTERSECT ALL S

is the relation in which the number of times a tuple t appears is the minimum of the number of times it appears in R and the number of times it appears in S.

The result of expression

R EXCEPT ALL S

has tuple t as many times as the difference of the number of times it appears in R minus the number of times it appears in S, provided the difference is positive. Each of these definitions is what we discussed for bags in Section 5.1.2.

6.4.3 Grouping and Aggregation in SQL

In Section 5.2.4, we introduced the grouping-and-aggregation operator γ for our extended relational algebra. Recall that this operator allows us to partition

the tuples of a relation into "groups," based on the values of tuples in one or more attributes, as discussed in Section 5.2.3. We are then able to aggregate certain other columns of the relation by applying "aggregation" operators to those columns. If there are groups, then the aggregation is done separately for each group. SQL provides all the capability of the γ operator through the use of aggregation operators in SELECT clauses and a special GROUP BY clause.

6.4.4 Aggregation Operators

SQL uses the five aggregation operators SUM, AVG, MIN, MAX, and COUNT that we met in Section 5.2.2. These operators are used by applying them to a scalar-valued expression, typically a column name, in a SELECT clause. One exception is the expression COUNT(*), which counts all the tuples in the relation that is constructed from the FROM clause and WHERE clause of the query.

In addition, we have the option of eliminating duplicates from the column before applying the aggregation operator by using the keyword DISTINCT. That is, an expression such as COUNT(DISTINCT x) counts the number of distinct values in column x. We could use any of the other operators in place of COUNT here, but expressions such as SUM(DISTINCT x) rarely make sense, since it asks us to sum the different values in column x.

Example 6.29: The following query finds the average net worth of all movie executives:

```
SELECT AVG(netWorth)
FROM MovieExec;
```

Note that there is no WHERE clause at all, so the keyword WHERE is properly omitted. This query examines the netWorth column of the relation

```
MovieExec(name, address, cert#, netWorth)
```

sums the values found there, one value for each tuple (even if the tuple is a duplicate of some other tuple), and divides the sum by the number of tuples. If there are no duplicate tuples, then this query gives the average net worth as we expect. If there were duplicate tuples, then a movie executive whose tuple appeared n times would have his or her net worth counted n times in the average. \square

Example 6.30: The following query:

```
SELECT COUNT(*)
FROM StarsIn;
```

counts the number of tuples in the StarsIn relation. The similar query:

```
SELECT COUNT(starName)
FROM StarsIn:
```

counts the number of values in the starName column of the relation. Since duplicate values are not eliminated when we project onto the starName column in SQL, this count should be the same as the count produced by the query with COUNT(*).

If we want to be certain that we do not count duplicate values more than once, we can use the keyword DISTINCT before the aggregated attribute, as:

```
SELECT COUNT(DISTINCT starName)
FROM StarsIn;
```

Now, each star is counted once, no matter in how many movies they appeared. $\hfill\Box$

6.4.5 Grouping

To group tuples, we use a GROUP BY clause, following the WHERE clause. The keywords GROUP BY are followed by a list of *grouping* attributes. In the simplest situation, there is only one relation reference in the FROM clause, and this relation has its tuples grouped according to their values in the grouping attributes. Whatever aggregation operators are used in the SELECT clause are applied only within groups.

Example 6.31: The problem of finding, from the relation

```
Movies(title, year, length, genre, studioName, producerC#)
```

the sum of the lengths of all movies for each studio is expressed by

```
SELECT studioName, SUM(length) FROM Movies GROUP BY studioName;
```

We may imagine that the tuples of relation Movies are reorganized and grouped so that all the tuples for Disney studios are together, all those for MGM are together, and so on, as was suggested in Fig. 5.4. The sums of the length components of all the tuples in each group are calculated, and for each group, the studio name is printed along with that sum.

Observe in Example 6.31 how the SELECT clause has two kinds of terms. These are the only terms that may appear when there is an aggregation in the SELECT clause.

1. Aggregations, where an aggregate operator is applied to an attribute or expression involving attributes. As mentioned, these terms are evaluated on a per-group basis.

 Attributes, such as studioName in this example, that appear in the GROUP BY clause. In a SELECT clause that has aggregations, only those attributes that are mentioned in the GROUP BY clause may appear unaggregated in the SELECT clause.

While queries involving GROUP BY generally have both grouping attributes and aggregations in the SELECT clause, it is technically not necessary to have both. For example, we could write

SELECT studioName FROM Movies GROUP BY studioName;

This query would group the tuples of Movies according to their studio name and then print the studio name for each group, no matter how many tuples there are with a given studio name. Thus, the above query has the same effect as

SELECT DISTINCT studioName FROM Movies;

It is also possible to use a GROUP BY clause in a query about several relations. Such a query is interpreted by the following sequence of steps:

- 1. Evaluate the relation R expressed by the FROM and WHERE clauses. That is, relation R is the Cartesian product of the relations mentioned in the FROM clause, to which the selection of the WHERE clause is applied.
- 2. Group the tuples of R according to the attributes in the GROUP BY clause.
- 3. Produce as a result the attributes and aggregations of the SELECT clause, as if the query were about a stored relation R.

Example 6.32: Suppose we wish to print a table listing each producer's total length of film produced. We need to get information from the two relations

Movies(title, year, length, genre, studioName, producerC#)
MovieExec(name, address, cert#, netWorth)

so we begin by taking their theta-join, equating the certificate numbers from the two relations. That step gives us a relation in which each MovieExec tuple is paired with the Movies tuples for all the movies of that producer. Note that an executive who is not a producer will not be paired with any movies, and therefore will not appear in the relation. Now, we can group the selected tuples of this relation according to the name of the producer. Finally, we sum the lengths of the movies in each group. The query is shown in Fig. 6.13.

287

SELECT name, SUM(length) FROM MovieExec, Movies WHERE producerC# = cert# GROUP BY name;

Figure 6.13: Computing the length of movies for each producer

6.4.6 Grouping, Aggregation, and Nulls

When tuples have nulls, there are a few rules we must remember:

- The value NULL is ignored in any aggregation. It does not contribute to
 a sum, average, or count of an attribute, nor can it be the minimum or
 maximum in its column. For example, COUNT(*) is always a count of the
 number of tuples in a relation, but COUNT(A) is the number of tuples with
 non-NULL values for attribute A.
- On the other hand, NULL is treated as an ordinary value when forming groups. That is, we can have a group in which one or more of the grouping attributes are assigned the value NULL.
- When we perform any aggregation except count over an empty bag of values, the result is NULL. The count of an empty bag is 0.

Example 6.33: Suppose we have a relation R(A,B) with one tuple, both of whose components are NULL:

Then the result of:

SELECT A, COUNT(B) FROM R GROUP BY A:

is the one tuple (NULL, 0). The reason is that when we group by A, we find only a group for value NULL. This group has one tuple, and its B-value is NULL. We thus count the bag of values {NULL}. Since the count of a bag of values does not count the NULL's, this count is 0.

On the other hand, the result of:

```
SELECT A, SUM(B)
FROM R
GROUP BY A;
```

Order of Clauses in SQL Queries

We have now met all six clauses that can appear in a SQL "select-from-where" query: SELECT, FROM, WHERE, GROUP BY, HAVING, and ORDER BY. Only the SELECT and FROM clauses are required. Whichever additional clauses appear must be in the order listed above.

is the one tuple (NULL, NULL). The reason is as follows. The group for value NULL has one tuple, the only tuple in R. However, when we try to sum the B-values for this group, we only find NULL, and NULL does not contribute to a sum. Thus, we are summing an empty bag of values, and this sum is defined to be NULL. \Box

6.4.7 HAVING Clauses

Suppose that we did not wish to include all of the producers in our table of Example 6.32. We could restrict the tuples prior to grouping in a way that would make undesired groups empty. For instance, if we only wanted the total length of movies for producers with a net worth of more than \$10,000,000, we could change the third line of Fig. 6.13 to

WHERE producerC# = cert# AND networth > 10000000

However, sometimes we want to choose our groups based on some aggregate property of the group itself. Then we follow the GROUP BY clause with a HAVING clause. The latter clause consists of the keyword HAVING followed by a condition about the group.

Example 6.34: Suppose we want to print the total film length for only those producers who made at least one film prior to 1930. We may append to Fig. 6.13 the clause

HAVING MIN(year) < 1930

The resulting query, shown in Fig. 6.14, would remove from the grouped relation all those groups in which every tuple had a year component 1930 or higher. \Box

There are several rules we must remember about HAVING clauses:

- An aggregation in a HAVING clause applies only to the tuples of the group being tested.
- Any attribute of relations in the FROM clause may be aggregated in the HAVING clause, but only those attributes that are in the GROUP BY list may appear unaggregated in the HAVING clause (the same rule as for the SELECT clause).

```
SELECT name, SUM(length)
FROM MovieExec, Movies
WHERE producerC# = cert#
GROUP BY name
HAVING MIN(year) < 1930;
```

Figure 6.14: Computing the total length of film for early producers

6.4.8 Exercises for Section 6.4

Exercise 6.4.1: Write each of the queries in Exercise 2.4.1 in SQL, making sure that duplicates are eliminated.

Exercise 6.4.2: Write each of the queries in Exercise 2.4.3 in SQL, making sure that duplicates are eliminated.

- ! Exercise 6.4.3: For each of your answers to Exercise 6.3.1, determine whether or not the result of your query can have duplicates. If so, rewrite the query to eliminate duplicates. If not, write a query without subqueries that has the same, duplicate-free answer.
- ! Exercise 6.4.4: Repeat Exercise 6.4.3 for your answers to Exercise 6.3.2.
- ! Exercise 6.4.5: In Example 6.27, we mentioned that different versions of the query "find the producers of Harrison Ford's movies" can have different answers as bags, even though they yield the same set of answers. Consider the version of the query in Example 6.22, where we used a subquery in the FROM clause. Does this version produce duplicates, and if so, why?

Exercise 6.4.6: Write the following queries, based on the database schema

```
Product(maker, model, type)
PC(model, speed, ram, hd, price)
Laptop(model, speed, ram, hd, screen, price)
Printer(model, color, type, price)
```

of Exercise 2.4.1, and evaluate your queries using the data of that exercise.

- a) Find the average speed of PC's.
- b) Find the average speed of laptops costing over \$1000.
- c) Find the average price of PC's made by manufacturer "A."
- ! d) Find the average price of PC's and laptops made by manufacturer "D."
 - e) Find, for each different speed, the average price of a PC.

- ! f) Find for each manufacturer, the average screen size of its laptops.
- ! g) Find the manufacturers that make at least three different models of PC.
- ! h) Find for each manufacturer who sells PC's the maximum price of a PC.
- ! i) Find, for each speed of PC above 2.0, the average price.
- !! j) Find the average hard disk size of a PC for all those manufacturers that make printers.

Exercise 6.4.7: Write the following queries, based on the database schema

```
Classes(class, type, country, numGuns, bore, displacement)
Ships(name, class, launched)
Battles(name, date)
Outcomes(ship, battle, result)
```

of Exercise 2.4.3, and evaluate your queries using the data of that exercise.

- a) Find the number of battleship classes.
- b) Find the average number of guns of battleship classes.
- ! c) Find the average number of guns of battleships. Note the difference between (b) and (c); do we weight a class by the number of ships of that class or not?
- ! d) Find for each class the year in which the first ship of that class was launched.
- ! e) Find for each class the number of ships of that class sunk in battle.
- !! f) Find for each class with at least three ships the number of ships of that class sunk in battle.
- !! g) The weight (in pounds) of the shell fired from a naval gun is approximately one half the cube of the bore (in inches). Find the average weight of the shell for each country's ships.
- **Exercise 6.4.8:** In Example 5.10 we gave an example of the query: "find, for each star who has appeared in at least three movies, the earliest year in which they appeared." We wrote this query as a γ operation. Write it in SQL.
- ! Exercise 6.4.9: The γ operator of extended relational algebra does not have a feature that corresponds to the HAVING clause of SQL. Is it possible to mimic a SQL query with a HAVING clause in relational algebra? If so, how would we do it in general?

6.5 Database Modifications

To this point, we have focused on the normal SQL query form: the select-fromwhere statement. There are a number of other statement forms that do not return a result, but rather change the state of the database. In this section, we shall focus on three types of statements that allow us to

- 1. Insert tuples into a relation.
- 2. Delete certain tuples from a relation.
- 3. Update values of certain components of certain existing tuples.

We refer to these three types of operations collectively as *modifications*.

6.5.1 Insertion

The basic form of insertion statement is:

```
INSERT INTO R(A_1, \ldots, A_n) VALUES (v_1, \ldots, v_n);
```

A tuple is created using the value v_i for attribute A_i , for i = 1, 2, ..., n. If the list of attributes does not include all attributes of the relation R, then the tuple created has default values for all missing attributes.

Example 6.35: Suppose we wish to add Sydney Greenstreet to the list of stars of *The Maltese Falcon*. We say:

- INSERT INTO StarsIn(movieTitle, movieYear, starName)
- 2) VALUES('The Maltese Falcon', 1942, 'Sydney Greenstreet');

The effect of executing this statement is that a tuple with the three components on line (2) is inserted into the relation StarsIn. Since all attributes of StarsIn are mentioned on line (1), there is no need to add default components. The values on line (2) are matched with the attributes on line (1) in the order given, so 'The Maltese Falcon' becomes the value of the component for attribute movieTitle, and so on.

If, as in Example 6.35, we provide values for all attributes of the relation, then we may omit the list of attributes that follows the relation name. That is, we could just say:

```
INSERT INTO StarsIn
VALUES('The Maltese Falcon', 1942, 'Sydney Greenstreet');
```

However, if we take this option, we must be sure that the order of the values is the same as the standard order of attributes for the relation.

If you are not sure of the declared order for the attributes, it is best to
list them in the INSERT clause in the order you choose for their values in
the VALUES clause.

The simple INSERT described above only puts one tuple into a relation. Instead of using explicit values for one tuple, we can compute a set of tuples to be inserted, using a subquery. This subquery replaces the keyword VALUES and the tuple expression in the INSERT statement form described above.

Example 6.36: Suppose we want to add to the relation

```
Studio(name, address, presC#)
```

all movie studios that are mentioned in the relation

```
Movies(title, year, length, genre, studioName, producerC#)
```

but do not appear in Studio. Since there is no way to determine an address or a president for such a studio, we shall have to be content with value NULL for attributes address and presC# in the inserted Studio tuples. A way to make this insertion is shown in Fig. 6.15.

- 1) INSERT INTO Studio(name)
- 2) SELECT DISTINCT studioName
- 3) FROM Movies
- 4) WHERE studioName NOT IN
- 5) (SELECT name
- 6) FROM Studio);

Figure 6.15: Adding new studios

Like most SQL statements with nesting, Fig. 6.15 is easiest to examine from the inside out. Lines (5) and (6) generate all the studio names in the relation Studio. Thus, line (4) tests that a studio name from the Movies relation is none of these studios.

Now, we see that lines (2) through (6) produce the set of studio names found in Movies but not in Studio. The use of DISTINCT on line (2) assures that each studio will appear only once in this set, no matter how many movies it owns. Finally, line (1) inserts each of these studios, with NULL for the attributes address and presC#, into relation Studio.

6.5.2 Deletion

The form of a deletion is

The Timing of Insertions

The SQL standard requires that the query be evaluated completely before any tuples are inserted. For example, in Fig. 6.15, the query of lines (2) through (6) must be evaluated prior to executing the insertion of line (1). Thus, there is no possibility that new tuples added to Studio at line (1) will affect the condition on line (4).

In this particular example, it does not matter whether or not insertions are delayed until the query is completely evaluated. However, suppose DISTINCT were removed from line (2) of Fig. 6.15. If we evaluate the query of lines (2) through (6) before doing any insertion, then a new studio name appearing in several Movies tuples would appear several times in the result of this query and therefore would be inserted several times into relation Studio. However, if the DBMS inserted new studios into Studio as soon as we found them during the evaluation of the query of lines (2) through (6), something that would be incorrect according to the standard, then the same new studio would not be inserted twice. Rather, as soon as the new studio was inserted once, its name would no longer satisfy the condition of lines (4) through (6), and it would not appear a second time in the result of the query of lines (2) through (6).

The effect of executing this statement is that every tuple satisfying the condition will be deleted from relation R.

Example 6.37: We can delete from relation

```
StarsIn(movieTitle, movieYear, starName)
```

the fact that Sydney Greenstreet was a star in *The Maltese Falcon* by the SQL statement:

```
DELETE FROM StarsIn
WHERE movieTitle = 'The Maltese Falcon' AND
    movieYear = 1942 AND
    starName = 'Sydney Greenstreet';
```

Notice that unlike the insertion statement of Example 6.35, we cannot simply specify a tuple to be deleted. Rather, we must describe the tuple exactly by a WHERE clause. \Box

Example 6.38: Here is another example of a deletion. This time, we delete from relation

```
MovieExec(name, address, cert#, netWorth)
```

several tuples at once by using a condition that can be satisfied by more than one tuple. The statement

```
DELETE FROM MovieExec WHERE netWorth < 10000000;
```

deletes all movie executives whose net worth is low — less than ten million dollars. \Box

6.5.3 Updates

While we might think of both insertions and deletions of tuples as "updates" to the database, an *update* in SQL is a very specific kind of change to the database: one or more tuples that already exist in the database have some of their components changed. The general form of an update statement is:

```
UPDATE R SET < new-value assignments > WHERE < condition >;
```

Each new-value assignment is an attribute, an equal sign, and an expression. If there is more than one assignment, they are separated by commas. The effect of this statement is to find all the tuples in R that satisfy the condition. Each of these tuples is then changed by having the expressions in the assignments evaluated and assigned to the components of the tuple for the corresponding attributes of R.

Example 6.39: Let us modify the relation

```
MovieExec(name, address, cert#, netWorth)
```

by attaching the title Pres. in front of the name of every movie executive who is the president of a studio. The condition the desired tuples satisfy is that their certificate numbers appear in the presC# component of some tuple in the Studio relation. We express this update as:

- 1) UPDATE MovieExec
- 2) SET name = 'Pres. ' || name
- 3) WHERE cert# IN (SELECT presC# FROM Studio);

Line (3) tests whether the certificate number from the MovieExec tuple is one of those that appear as a president's certificate number in Studio.

Line (2) performs the update on the selected tuples. Recall that the operator | | denotes concatenation of strings, so the expression following the = sign in line (2) places the characters Pres. and a blank in front of the old value of the name component of this tuple. The new string becomes the value of the name component of this tuple; the effect is that 'Pres.' has been prepended to the old value of name.

6.5.4 Exercises for Section 6.5

Exercise 6.5.1: Write the following database modifications, based on the database schema

```
Product(maker, model, type)
PC(model, speed, ram, hd, price)
Laptop(model, speed, ram, hd, screen, price)
Printer(model, color, type, price)
```

of Exercise 2.4.1. Describe the effect of the modifications on the data of that exercise.

- a) Using two INSERT statements, store in the database the fact that PC model 1100 is made by manufacturer C, has speed 3.2, RAM 1024, hard disk 180, and sells for \$2499.
- ! b) Insert the facts that for every PC there is a laptop with the same manufacturer, speed, RAM, and hard disk, a 17-inch screen, a model number 1100 greater, and a price \$500 more.
 - c) Delete all PC's with less than 100 gigabytes of hard disk.
 - d) Delete all laptops made by a manufacturer that doesn't make printers.
 - e) Manufacturer A buys manufacturer B. Change all products made by B so they are now made by A.
 - f) For each PC, double the amount of RAM and add 60 gigabytes to the amount of hard disk. (Remember that several attributes can be changed by one UPDATE statement.)
- ! g) For each laptop made by manufacturer B, add one inch to the screen size and subtract \$100 from the price.

Exercise 6.5.2: Write the following database modifications, based on the database schema

```
Classes(class, type, country, numGuns, bore, displacement)
Ships(name, class, launched)
Battles(name, date)
Outcomes(ship, battle, result)
```

of Exercise 2.4.3. Describe the effect of the modifications on the data of that exercise.

a) The two British battleships of the Nelson class — Nelson and Rodney — were both launched in 1927, had nine 16-inch guns, and a displacement of 34,000 tons. Insert these facts into the database.

- b) Two of the three battleships of the Italian Vittorio Veneto class Vittorio Veneto and Italia were launched in 1940; the third ship of that class, Roma, was launched in 1942. Each had nine 15-inch guns and a displacement of 41,000 tons. Insert these facts into the database.
- c) Delete from Ships all ships sunk in battle.
- d) Modify the Classes relation so that gun bores are measured in centimeters (one inch = 2.5 centimeters) and displacements are measured in metric tons (one metric ton = 1.1 tons).
- e) Delete all classes with fewer than three ships.

6.6 Transactions in SQL

To this point, our model of operations on the database has been that of one user querying or modifying the database. Thus, operations on the database are executed one at a time, and the database state left by one operation is the state upon which the next operation acts. Moreover, we imagine that operations are carried out in their entirety ("atomically"). That is, we assumed it is impossible for the hardware or software to fail in the middle of a modification, leaving the database in a state that cannot be explained as the result of the operations performed on it.

Real life is often considerably more complicated. We shall first consider what can happen to leave the database in a state that doesn't reflect the operations performed on it, and then we shall consider the tools SQL gives the user to assure that these problems do not occur.

6.6.1 Serializability

In applications like Web services, banking, or airline reservations, hundreds of operations per second may be performed on the database. The operations initiate at any of thousands or millions of sites, such as desktop computers or automatic teller machines. It is entirely possible that we could have two operations affecting the same bank account or flight, and for those operations to overlap in time. If so, they might interact in strange ways.

Here is an example of what could go wrong if the DBMS were completely unconstrained as to the order in which it operated upon the database. This example involves a database interacting with people, and it is intended to illustrate why it is important to control the sequences in which interacting events can occur. However, a DBMS would not control events that were so "large" that they involved waiting for a user to make a choice. The event sequences controlled by the DBMS involve only the execution of SQL statements.

Example 6.40: The typical airline gives customers a Web interface where they can choose a seat for their flight. This interface shows a map of available

seats, and the data for this map is obtained from the airline's database. There might be a relation such as:

```
Flights(fltNo, fltDate, seatNo, seatStatus)
```

upon which we can issue the query:

```
SELECT seatNo
FROM Flights
WHERE fltNo = 123 AND fltDate = DATE '2008-12-25'
AND seatStatus = 'available';
```

The flight number and date are example data, which would in fact be obtained from previous interactions with the customer.

When the customer clicks on an empty seat, say 22A, that seat is reserved for them. The database is modified by an update-statement, such as:

```
UPDATE Flights
SET seatStatus = 'occupied'
WHERE fltNo = 123 AND fltDate = DATE '2008-12-25'
AND seatNo = '22A';
```

However, this customer may not be the only one reserving a seat on flight 123 on Dec. 25, 2008 and this exact moment. Another customer may have asked for the seat map at the same time, in which case they also see seat 22A empty. Should they also choose seat 22A, they too believe they have reserved 22A. The timing of these events is as suggested by Fig. 6.16. □

Figure 6.16: Two customers trying to book the same seat simultaneously

As we see from Example 6.40, it is conceivable that two operations could each be performed correctly, and yet the global result not be correct: both customers believe they have been granted seat 22A. The problem is solved in SQL by the notion of a "transaction," which is informally a group of operations that need to be performed together. Suppose that in Example 6.40, the query

Assuring Serializable Behavior

In practice it is often impossible to require that operations run serially; there are just too many of them, and some parallelism is required. Thus, DBMS's adopt a mechanism for assuring serializable behavior; even if the execution is not serial, the result looks to users as if operations were executed serially.

One common approach is for the DBMS to *lock* elements of the database so that two functions cannot access them at the same time. We mentioned locking in Section 1.2.4, and there is an extensive technology of how to implement locks in a DBMS. For example, if the transaction of Example 6.40 were written to lock other transactions out of the Flights relation, then transactions that did not access Flights could run in parallel with the seat-selection transaction, but no other invocation of the seat-selection operation could run in parallel.

and update shown would be grouped into one transaction.⁶ SQL then allows the programmer to state that a certain transaction must be *serializable* with respect to other transactions. That is, these transactions must behave as if they were run *serially* — one at a time, with no overlap.

Clearly, if the two invocations of the seat-selection operation are run serially (or serializably), then the error we saw cannot occur. One customer's invocation occurs first. This customer sees seat 22A is empty, and books it. The other customer's invocation then begins and is not given 22A as a choice, because it is already occupied. It may matter to the customers who gets the seat, but to the database all that is important is that a seat is assigned only once.

6.6.2 Atomicity

In addition to nonserialized behavior that can occur if two or more database operations are performed about the same time, it is possible for a single operation to put the database in an unacceptable state if there is a hardware or software "crash" while the operation is executing. Here is another example suggesting what might occur. As in Example 6.40, we should remember that real database systems do not allow this sort of error to occur in properly designed application programs.

Example 6.41: Let us picture another common sort of database: a bank's account records. We can represent the situation by a relation

⁶However, it would be extremely unwise to group into a single transaction operations that involved a user, or even a computer that was not owned by the airline, such as a travel agent's computer. Another mechanism must be used to deal with event sequences that include operations outside the database.

Accounts(acctNo, balance)

Consider the operation of transferring \$100 from the account numbered 123 to the account 456. We might first check whether there is at least \$100 in account 123, and if so, we execute the following two steps:

1. Add \$100 to account 456 by the SQL update statement:

```
UPDATE Accounts
SET balance = balance + 100
WHERE acctNo = 456;
```

2. Subtract \$100 from account 123 by the SQL update statement:

```
UPDATE Accounts
SET balance = balance - 100
WHERE acctNo = 123;
```

Now, consider what happens if there is a failure after Step (1) but before Step (2). Perhaps the computer fails, or the network connecting the database to the processor that is actually performing the transfer fails. Then the database is left in a state where money has been transferred into the second account, but the money has not been taken out of the first account. The bank has in effect given away the amount of money that was to be transferred.

The problem illustrated by Example 6.41 is that certain combinations of database operations, like the two updates of that example, need to be done atomically; that is, either they are both done or neither is done. For example, a simple solution is to have all changes to the database done in a local workspace, and only after all work is done do we commit the changes to the database, whereupon all changes become part of the database and visible to other operations.

6.6.3 Transactions

The solution to the problems of serialization and atomicity posed in Sections 6.6.1 and 6.6.2 is to group database operations into *transactions*. A transaction is a collection of one or more operations on the database that must be executed atomically; that is, either all operations are performed or none are. In addition, SQL requires that, as a default, transactions are executed in a serializable manner. A DBMS may allow the user to specify a less stringent constraint on the interleaving of operations from two or more transactions. We shall discuss these modifications to the serializability condition in later sections.

When using the *generic SQL interface* (the facility wherein one types queries and other SQL statements), each statement is a transaction by itself. However,

How the Database Changes During Transactions

Different systems may do different things to implement transactions. It is possible that as a transaction executes, it makes changes to the database. If the transaction aborts, then (unless the programmer took precautions) it is possible that these changes were seen by some other transaction. The most common solution is for the database system to lock the changed items until COMMIT or ROLLBACK is chosen, thus preventing other transactions from seeing the tentative change. Locks or an equivalent would surely be used if the user wants the transactions to run in a serializable fashion.

However, as we shall see starting in Section 6.6.4, SQL offers us several options regarding the treatment of tentative database changes. It is possible that the changed data is not locked and becomes visible even though a subsequent rollback makes the change disappear. It is up to the author of a transaction to decide whether it is safe for that transaction to see tentative changes of other transactions.

SQL allows the programmer to group several statements into a single transaction. The SQL command START TRANSACTION is used to mark the beginning of a transaction. There are two ways to end a transaction:

- The SQL statement COMMIT causes the transaction to end successfully.
 Whatever changes to the database were caused by the SQL statement or
 statements since the current transaction began are installed permanently
 in the database (i.e., they are committed). Before the COMMIT statement
 is executed, changes are tentative and may or may not be visible to other
 transactions.
- 2. The SQL statement ROLLBACK causes the transaction to *abort*, or terminate unsuccessfully. Any changes made in response to the SQL statements of the transaction are undone (i.e., they are *rolled back*), so they never permanently appear in the database.

Example 6.42: Suppose we want the transfer operation of Example 6.41 to be a single transaction. We execute BEGIN TRANSACTION before accessing the database. If we find that there are insufficient funds to make the transfer, then we would execute the ROLLBACK command. However, if there are sufficient funds, then we execute the two update statements and then execute COMMIT.

6.6.4 Read-Only Transactions

Examples 6.40 and 6.41 each involved a transaction that read and then (possibly) wrote some data into the database. This sort of transaction is prone to

Application- Versus System-Generated Rollbacks

In our discussion of transactions, we have presumed that the decision whether a transaction is committed or rolled back is made as part of the application issuing the transaction. That is, as in Examples 6.44 and 6.42, a transaction may perform a number of database operations, then decide whether to make any changes permanent by issuing COMMIT, or to return to the original state by issuing ROLLBACK. However, the system may also perform transaction rollbacks, to ensure that transactions are executed atomically and conform to their specified isolation level in the presence of other concurrent transactions or system crashes. Typically, if the system aborts a transaction then a special error code or exception is generated. If an application wishes to guarantee that its transactions are executed successfully, it must catch such conditions and reissue the transaction in question.

serialization problems. Thus we saw in Example 6.40 what could happen if two executions of the function tried to book the same seat at the same time, and we saw in Example 6.41 what could happen if there was a crash in the middle of a funds transfer. However, when a transaction only reads data and does not write data, we have more freedom to let the transaction execute in parallel with other transactions.

Example 6.43: Suppose we wrote a program that read data from the Flights relation of Example 6.40 to determine whether a certain seat was available. We could execute many invocations of this program at once, without risk of permanent harm to the database. The worst that could happen is that while we were reading the availability of a certain seat, that seat was being booked or was being released by the execution of some other program. Thus, we might get the answer "available" or "occupied," depending on microscopic differences in the time at which we executed the query, but the answer would make sense at some time.

If we tell the SQL execution system that our current transaction is *read-only*, that is, it will never change the database, then it is quite possible that the SQL system will be able to take advantage of that knowledge. Generally it will be possible for many read-only transactions accessing the same data to run in parallel, while they would not be allowed to run in parallel with a transaction that wrote the same data.

We tell the SQL system that the next transaction is read-only by:

SET TRANSACTION READ ONLY:

This statement must be executed before the transaction begins. We can also inform SQL that the coming transaction may write data by the statement

SET TRANSACTION READ WRITE;

However, this option is the default.

6.6.5 Dirty Reads

Dirty data is a common term for data written by a transaction that has not yet committed. A dirty read is a read of dirty data written by another transaction. The risk in reading dirty data is that the transaction that wrote it may eventually abort. If so, then the dirty data will be removed from the database, and the world is supposed to behave as if that data never existed. If some other transaction has read the dirty data, then that transaction might commit or take some other action that reflects its knowledge of the dirty data.

Sometimes the dirty read matters, and sometimes it doesn't. Other times it matters little enough that it makes sense to risk an occasional dirty read and thus avoid:

- The time-consuming work by the DBMS that is needed to prevent dirty reads, and
- 2. The loss of parallelism that results from waiting until there is no possibility of a dirty read.

Here are some examples of what might happen when dirty reads are allowed.

Example 6.44: Let us reconsider the account transfer of Example 6.41. However, suppose that transfers are implemented by a program P that executes the following sequence of steps:

- 1. Add money to account 2.
- 2. Test if account 1 has enough money.
 - (a) If there is not enough money, remove the money from account 2 and end.⁷
 - (b) If there is enough money, subtract the money from account 1 and end.

If program P is executed serializably, then it doesn't matter that we have put money temporarily into account 2. No one will see that money, and it gets removed if the transfer can't be made.

However, suppose dirty reads are possible. Imagine there are three accounts: A1, A2, and A3, with \$100, \$200, and \$300, respectively. Suppose transaction

⁷You should be aware that the program P is trying to perform functions that would more typically be done by the DBMS. In particular, when P decides, as it has done at this step, that it must not complete the transaction, it would issue a rollback (abort) command to the DBMS and have the DBMS reverse the effects of this execution of P.

 T_1 executes program P to transfer \$150 from A1 to A2. At roughly the same time, transaction T_2 runs program P to transfer \$250 from A2 to A3. Here is a possible sequence of events:

- 1. T_2 executes Step (1) and adds \$250 to A3, which now has \$550.
- 2. T_1 executes Step (1) and adds \$150 to A2, which now has \$350.
- 3. T₂ executes the test of Step (2) and finds that A2 has enough funds (\$350) to allow the transfer of \$250 from A2 to A3.
- 4. T_1 executes the test of Step (2) and finds that A1 does not have enough funds (\$100) to allow the transfer of \$150 from A1 to A2.
- T₂ executes Step (2b). It subtracts \$250 from A2, which now has \$100, and ends.
- T₁ executes Step (2a). It subtracts \$150 from A2, which now has -\$50, and ends.

The total amount of money has not changed; there is still \$600 among the three accounts. But because T_2 read dirty data at the third of the six steps above, we have not protected against an account going negative, which supposedly was the purpose of testing the first account to see if it had adequate funds. \Box

Example 6.45: Let us imagine a variation on the seat-choosing function of Example 6.40. In the new approach:

- 1. We find an available seat and reserve it by setting seatStatus to 'occupied' for that seat. If there is none, end.
- 2. We ask the customer for approval of the seat. If so, we commit. If not, we release the seat by setting seatStatus to 'available' and repeat Step (1) to get another seat.

If two transactions are executing this algorithm at about the same time, one might reserve a seat S, which later is rejected by the customer. If the second transaction executes Step (1) at a time when seat S is marked occupied, the customer for that transaction is not given the option to take seat S.

As in Example 6.44, the problem is that a dirty read has occurred. The second transaction saw a tuple (with S marked occupied) that was written by the first transaction and later modified by the first transaction. \Box

How important is the fact that a read was dirty? In Example 6.44 it was very important; it caused an account to go negative despite apparent safeguards against that happening. In Example 6.45, the problem does not look too serious. Indeed, the second traveler might not get their favorite seat, or might even be told that no seats existed. However, in the latter case, running the transaction

again will almost certainly reveal the availability of seat S. It might well make sense to implement this seat-choosing function in a way that allowed dirty reads, in order to speed up the average processing time for booking requests.

SQL allows us to specify that dirty reads are acceptable for a given transaction. We use the SET TRANSACTION statement that we discussed in Section 6.6.4. The appropriate form for a transaction like that described in Example 6.45 is:

- 1) SET TRANSACTION READ WRITE
- ISOLATION LEVEL READ UNCOMMITTED;

The statement above does two things:

- 1. Line (1) declares that the transaction may write data.
- 2. Line (2) declares that the transaction may run with the "isolation level" read-uncommitted. That is, the transaction is allowed to read dirty data. We shall discuss the four isolation levels in Section 6.6.6. So far, we have seen two of them: serializable and read-uncommitted.

Note that if the transaction is not read-only (i.e., it may modify the database), and we specify isolation level READ UNCOMMITTED, then we must also specify READ WRITE. Recall from Section 6.6.4 that the default assumption is that transactions are read-write. However, SQL makes an exception for the case where dirty reads are allowed. Then, the default assumption is that the transaction is read-only, because read-write transactions with dirty reads entail significant risks, as we saw. If we want a read-write transaction to run with read-uncommitted as the isolation level, then we need to specify READ WRITE explicitly, as above.

6.6.6 Other Isolation Levels

SQL provides a total of four *isolation levels*. Two of them we have already seen: serializable and read-uncommitted (dirty reads allowed). The other two are *read-committed* and *repeatable-read*. They can be specified for a given transaction by

SET TRANSACTION ISOLATION LEVEL READ COMMITTED;

or

SET TRANSACTION ISOLATION LEVEL REPEATABLE READ;

respectively. For each, the default is that transactions are read-write, so we can add READ ONLY to either statement, if appropriate. Incidentally, we also have the option of specifying

SET TRANSACTION ISOLATION LEVEL SERIALIZABLE:

Interactions Among Transactions Running at Different Isolation Levels

A subtle point is that the isolation level of a transaction affects only what data that transaction may see; it does not affect what any other transaction sees. As a case in point, if a transaction T is running at level serializable, then the execution of T must appear as if all other transactions run either entirely before or entirely after T. However, if some of those transactions are running at another isolation level, then they may see the data written by T as T writes it. They may even see dirty data from T if they are running at isolation level read-uncommitted, and T aborts.

However, that is the SQL default and need not be stated explicitly.

The read-committed isolation level, as its name implies, forbids the reading of dirty (uncommitted) data. However, it does allow a transaction running at this isolation level to issue the same query several times and get different answers, as long as the answers reflect data that has been written by transactions that already committed.

Example 6.46: Let us reconsider the seat-choosing program of Example 6.45, but suppose we declare it to run with isolation level read-committed. Then when it searches for a seat at Step (1), it will not see seats as booked if some other transaction is reserving them but not committed.⁸ However, if the traveler rejects seats, and one execution of the function queries for available seats many times, it may see a different set of available seats each time it queries, as other transactions successfully book seats or cancel seats in parallel with our transaction. \Box

Now, let us consider isolation level repeatable-read. The term is something of a misnomer, since the same query issued more than once is not quite guaranteed to get the same answer. Under repeatable-read isolation, if a tuple is retrieved the first time, then we can be sure that the identical tuple will be retrieved again if the query is repeated. However, it is also possible that a second or subsequent execution of the same query will retrieve *phantom* tuples. The latter are tuples that result from insertions into the database while our transaction is executing.

Example 6.47: Let us continue with the seat-choosing problem of Examples 6.45 and 6.46. If we execute this function under isolation level repeatable-read,

⁸What actually happens may seem mysterious, since we have not addressed the algorithms for enforcing the various isolation levels. Possibly, should two transactions both see a seat as available and try to book it, one will be forced by the system to roll back in order to break the deadlock (see the box on "Application- Versus System-Generated Rollbacks" in Section 6.6.3).

then a seat that is available on the first query at Step (1) will remain available at subsequent queries.

However, suppose some new tuples enter the relation Flights. For example, the airline may have switched the flight to a larger plane, creating some new tuples that weren't there before. Then under repeatable-read isolation, a subsequent query for available seats may also retrieve the new seats.

Isolation Level	Dirty Reads	Nonrepeat- able Reads	Phantoms
Read Uncommitted	Allowed	Allowed	Allowed
Read Committed	Not Allowed	Allowed	$\mathbf{Allowed}$
Repeatable Read	Not Allowed	Not Allowed	Allowed
Serializable	Not Allowed	Not Allowed	Not Allowed

Figure 6.17 summarizes the differences between the four SQL isolation levels.

Figure 6.17: Properties of SQL isolation levels

6.6.7 Exercises for Section 6.6

Exercise 6.6.1: This and the next exercises involve certain programs that operate on the two relations

```
Product(maker, model, type)
PC(model, speed, ram, hd, price)
```

from our running PC exercise. Sketch the following programs, including SQL statements and work done in a conventional language. Do not forget to issue BEGIN TRANSACTION, COMMIT, and ROLLBACK statements at the proper times and to tell the system your transactions are read-only if they are.

- a) Given a speed and amount of RAM (as arguments of the function), look up the PC's with that speed and RAM, printing the model number and price of each.
- b) Given a model number, delete the tuple for that model from both PC and Product.
- c) Given a model number, decrease the price of that model PC by \$100.
- d) Given a maker, model number, processor speed, RAM size, hard-disk size, and price, check that there is no product with that model. If there is such a model, print an error message for the user. If no such model existed in the database, enter the information about that model into the PC and Product tables.

- ! Exercise 6.6.2: For each of the programs of Exercise 6.6.1, discuss the atomicity problems, if any, that could occur should the system crash in the middle of an execution of the program.
- ! Exercise 6.6.3: Suppose we execute as a transaction T one of the four programs of Exercise 6.6.1, while other transactions that are executions of the same or a different one of the four programs may also be executing at about the same time. What behaviors of transaction T may be observed if all the transactions run with isolation level READ UNCOMMITTED that would not be possible if they all ran with isolation level SERIALIZABLE? Consider separately the case that T is any of the programs (a) through (d) of Exercise 6.6.1.
- !! Exercise 6.6.4: Suppose we have a transaction T that is a function which runs "forever," and at each hour checks whether there is a PC that has a speed of 3.5 or more and sells for under \$1000. If it finds one, it prints the information and terminates. During this time, other transactions that are executions of one of the four programs described in Exercise 6.6.1 may run. For each of the four isolation levels serializable, repeatable read, read committed, and read uncommitted tell what the effect on T of running at this isolation level is.

6.7 Summary of Chapter 6

- → SQL: The language SQL is the principal query language for relational database systems. The most recent full standard is called SQL-99 or SQL3. Commercial systems generally vary from this standard.
- ◆ Select-From-Where Queries: The most common form of SQL query has the form select-from-where. It allows us to take the product of several relations (the FROM clause), apply a condition to the tuples of the result (the WHERE clause), and produce desired components (the SELECT clause).
- ◆ Subqueries: Select-from-where queries can also be used as subqueries within a WHERE clause or FROM clause of another query. The operators EXISTS, IN, ALL, and ANY may be used to express boolean-valued conditions about the relations that are the result of a subquery in a WHERE clause.
- ◆ Set Operations on Relations: We can take the union, intersection, or difference of relations by connecting the relations, or connecting queries defining the relations, with the keywords UNION, INTERSECT, and EXCEPT, respectively.
- → Join Expressions: SQL has operators such as NATURAL JOIN that may be applied to relations, either as queries by themselves or to define relations in a FROM clause.

- ♦ Null Values: SQL provides a special value NULL that appears in components of tuples for which no concrete value is available. The arithmetic and logic of NULL is unusual. Comparison of any value to NULL, even another NULL, gives the truth value UNKNOWN. That truth value, in turn, behaves in boolean-valued expressions as if it were halfway between TRUE and FALSE.
- ♦ Outerjoins: SQL provides an OUTER JOIN operator that joins relations but also includes in the result dangling tuples from one or both relations; the dangling tuples are padded with NULL's in the resulting relation.
- ◆ The Bag Model of Relations: SQL actually regards relations as bags of tuples, not sets of tuples. We can force elimination of duplicate tuples with the keyword DISTINCT, while keyword ALL allows the result to be a bag in certain circumstances where bags are not the default.
- ◆ Aggregations: The values appearing in one column of a relation can be summarized (aggregated) by using one of the keywords SUM, AVG (average value), MIN, MAX, or COUNT. Tuples can be partitioned prior to aggregation with the keywords GROUP BY. Certain groups can be eliminated with a clause introduced by the keyword HAVING.
- ♦ Modification Statements: SQL allows us to change the tuples in a relation. We may INSERT (add new tuples), DELETE (remove tuples), or UPDATE (change some of the existing tuples), by writing SQL statements using one of these three keywords.
- ◆ Transactions: SQL allows the programmer to group SQL statements into transactions, which may be committed or rolled back (aborted). Transactions may be rolled back by the application in order to undo changes, or by the system in order to guarantee atomicity and isolation.
- ◆ Isolation Levels: SQL defines four isolation levels called, from most stringent to least stringent: "serializable" (the transaction must appear to run either completely before or completely after each other transaction), "repeatable-read" (every tuple read in response to a query will reappear if the query is repeated), "read-committed" (only tuples written by transactions that have already committed may be seen by this transaction), and "read-uncommitted" (no constraint on what the transaction may see).

6.8 References for Chapter 6

Many books on SQL programming are available. Some popular ones are [3], [5], and [7]. [6] is an early exposition of the SQL-99 standard.

SQL was first defined in [4]. It was implemented as part of System R [1], one of the first generation of relational database prototypes.

There is a discussion of problems with this standard in the area of transactions and cursors in [2].

- 1. M. M. Astrahan et al., "System R: a relational approach to data management," ACM Transactions on Database Systems 1:2, pp. 97–137, 1976.
- H. Berenson, P. A. Bernstein, J. N. Gray, J. Melton, E. O'Neil, and P. O'Neil, "A critique of ANSI SQL isolation levels," *Proceedings of ACM SIGMOD Intl. Conf. on Management of Data*, pp. 1–10, 1995.
- 3. J. Celko, SQL for Smarties, Morgan-Kaufmann, San Francisco, 2005.
- 4. D. D. Chamberlin et al., "SEQUEL 2: a unified approach to data definition, manipulation, and control," *IBM Journal of Research and Development* **20**:6, pp. 560–575, 1976.
- C. J. Date and H. Darwen, A Guide to the SQL Standard, Addison-Wesley, Reading, MA, 1997.
- P. Gulutzan and T. Pelzer, SQL-99 Complete, Really, R&D Books, Lawrence, KA, 1999.
- 7. J. Melton and A. R. Simon, *Understanding the New SQL: A Complete Guide*, Morgan-Kaufmann, San Francisco, 2006.

Chapter 7

Constraints and Triggers

In this chapter we shall cover those aspects of SQL that let us create "active" elements. An *active* element is an expression or statement that we write once and store in the database, expecting the element to execute at appropriate times. The time of action might be when a certain event occurs, such as an insertion into a particular relation, or it might be whenever the database changes so that a certain boolean-valued condition becomes true.

One of the serious problems faced by writers of applications that update the database is that the new information could be wrong in a variety of ways. For example, there are often typographical or transcription errors in manually entered data. We could write application programs in such a way that every insertion, deletion, and update command has associated with it the checks necessary to assure correctness. However, it is better to store these checks in the database, and have the DBMS administer the checks. In this way, we can be sure a check will not be forgotten, and we can avoid duplication of work.

SQL provides a variety of techniques for expressing integrity constraints as part of the database schema. In this chapter we shall study the principal methods. We have already seen key constraints, where an attribute or set of attributes is declared to be a key for a relation. SQL supports a form of referential integrity, called a "foreign-key constraint," the requirement that a value in an attribute or attributes of one relation must also appear as a value in an attribute or attributes of another relation. SQL also allows constraints on attributes, constraints on tuples, and interrelation constraints called "assertions." Finally, we discuss "triggers," which are a form of active element that is called into play on certain specified events, such as insertion into a specific relation.

7.1 Keys and Foreign Keys

Recall from Section 2.3.6 that SQL allows us to define an attribute or attributes to be a key for a relation with the keywords PRIMARY KEY or UNIQUE. SQL also uses the term "key" in connection with certain referential-integrity constraints.

These constraints, called "foreign-key constraints," assert that a value appearing in one relation must also appear in the primary-key component(s) of another relation.

7.1.1 Declaring Foreign-Key Constraints

A foreign key constraint is an assertion that values for certain attributes must make sense. Recall, for instance, that in Example 2.21 we considered how to express in relational algebra the constraint that the producer "certificate number" for each movie was also the certificate number of some executive in the MovieExec relation.

In SQL we may declare an attribute or attributes of one relation to be a *foreign key*, referencing some attribute(s) of a second relation (possibly the same relation). The implication of this declaration is twofold:

- 1. The referenced attribute(s) of the second relation must be declared UNIQUE or the PRIMARY KEY for their relation. Otherwise, we cannot make the foreign-key declaration.
- 2. Values of the foreign key appearing in the first relation must also appear in the referenced attributes of some tuple. More precisely, let there be a foreign-key F that references set of attributes G of some relation. Suppose a tuple t of the first relation has non-NULL values in all the attributes of F; call the list of t's values in these attributes t[F]. Then in the referenced relation there must be some tuple s that agrees with t[F] on the attributes G. That is, s[G] = t[F].

As for primary keys, we have two ways to declare a foreign key.

a) If the foreign key is a single attribute we may follow its name and type by a declaration that it "references" some attribute (which must be a key — primary or unique) of some table. The form of the declaration is

REFERENCES (<attribute>)

b) Alternatively, we may append to the list of attributes in a CREATE TABLE statement one or more declarations stating that a set of attributes is a foreign key. We then give the table and its attributes (which must be a key) to which the foreign key refers. The form of this declaration is:

FOREIGN KEY (<attributes>) REFERENCES (<attributes>)

Example 7.1: Suppose we wish to declare the relation

Studio(name, address, presC#)

whose primary key is name and which has a foreign key presC# that references cert# of relation

```
MovieExec(name, address, cert#, netWorth)
```

We may declare presC# directly to reference cert# as follows:

```
CREATE TABLE Studio (
   name CHAR(30) PRIMARY KEY,
   address VARCHAR(255),
   presC# INT REFERENCES MovieExec(cert#)
);
```

An alternative form is to add the foreign key declaration separately, as

```
CREATE TABLE Studio (
name CHAR(30) PRIMARY KEY,
address VARCHAR(255),
presC# INT,
FOREIGN KEY (presC#) REFERENCES MovieExec(cert#)
);
```

Notice that the referenced attribute, cert# in MovieExec, is a key of that relation, as it must be. The meaning of either of these two foreign key declarations is that whenever a value appears in the presC# component of a Studio tuple, that value must also appear in the cert# component of some MovieExec tuple. The one exception is that, should a particular Studio tuple have NULL as the value of its presC# component, there is no requirement that NULL appear as the value of a cert# component (but note that cert# is a primary key and therefore cannot have NULL's anyway).

7.1.2 Maintaining Referential Integrity

The schema designer may choose from among three alternatives to enforce a foreign-key constraint. We can learn the general idea by exploring Example 7.1, where it is required that a presC# value in relation Studio also be a cert# value in MovieExec. The following actions will be prevented by the DBMS (i.e., a run-time exception or error will be generated).

- a) We try to insert a new Studio tuple whose presC# value is not NULL and is not the cert# component of any MovieExec tuple.
- b) We try to update a Studio tuple to change the presC# component to a non-NULL value that is not the cert# component of any MovieExec tuple.
- c) We try to delete a MovieExec tuple, and its cert# component, which is not NULL, appears as the presC# component of one or more Studio tuples.

d) We try to update a MovieExec tuple in a way that changes the cert# value, and the old cert# is the value of presC# of some movie studio.

For the first two modifications, where the change is to the relation where the foreign-key constraint is declared, there is no alternative; the system has to reject the violating modification. However, for changes to the referenced relation, of which the last two modifications are examples, the designer can choose among three options:

- 1. The Default Policy: Reject Violating Modifications. SQL has a default policy that any modification violating the referential integrity constraint is rejected.
- 2. The Cascade Policy. Under this policy, changes to the referenced attribute(s) are mimicked at the foreign key. For example, under the cascade policy, when we delete the MovieExec tuple for the president of a studio, then to maintain referential integrity the system will delete the referencing tuple(s) from Studio. If we update the cert# for some movie executive from c_1 to c_2 , and there was some Studio tuple with c_1 as the value of its presC# component, then the system will also update this presC# component to have value c_2 .
- 3. The Set-Null Policy. Here, when a modification to the referenced relation affects a foreign-key value, the latter is changed to NULL. For instance, if we delete from MoveExec the tuple for a president of a studio, the system would change the presC# value for that studio to NULL. If we updated that president's certificate number in MovieExec, we would again set presC# to NULL in Studio.

These options may be chosen for deletes and updates, independently, and they are stated with the declaration of the foreign key. We declare them with ON DELETE or ON UPDATE followed by our choice of SET NULL or CASCADE.

Example 7.2: Let us see how we might modify the declaration of

Studio(name, address, presC#)

in Example 7.1 to specify the handling of deletes and updates in the

MovieExec(name, address, cert#, netWorth)

relation. Figure 7.1 takes the first of the CREATE TABLE statements in that example and expands it with ON DELETE and ON UPDATE clauses. Line (5) says that when we delete a MovieExec tuple, we set the presC# of any studio of which he or she was the president to NULL. Line (6) says that if we update the cert# component of a MovieExec tuple, then any tuples in Studio with the same value in the presC# component are changed similarly.

```
1) CREATE TABLE Studio (
2) name CHAR(30) PRIMARY KEY,
3) address VARCHAR(255),
4) presC# INT REFERENCES MovieExec(cert#)
5) ON DELETE SET NULL
6) ON UPDATE CASCADE
);
```

Figure 7.1: Choosing policies to preserve referential integrity

Dangling Tuples and Modification Policies

A tuple with a foreign key value that does not appear in the referenced relation is said to be a dangling tuple. Recall that a tuple which fails to participate in a join is also called "dangling." The two ideas are closely related. If a tuple's foreign-key value is missing from the referenced relation, then the tuple will not participate in a join of its relation with the referenced relation, if the join is on equality of the foreign key and the key it references (called a foreign-key join). The dangling tuples are exactly the tuples that violate referential integrity for this foreign-key constraint.

Note that in this example, the set-null policy makes more sense for deletes, while the cascade policy seems preferable for updates. We would expect that if, for instance, a studio president retires, the studio will exist with a "null" president for a while. However, an update to the certificate number of a studio president is most likely a clerical change. The person continues to exist and to be the president of the studio, so we would like the presC# attribute in Studio to follow the change.

7.1.3 Deferred Checking of Constraints

Let us assume the situation of Example 7.1, where presC# in Studio is a foreign key referencing cert# of MovieExec. Arnold Schwarzenegger retires as Governor of California and decides to found a movie studio, called La Vista Studios, of which he will naturally be the president. If we execute the insertion:

```
INSERT INTO Studio
VALUES('La Vista', 'New York', 23456);
```

we are in trouble. The reason is that there is no tuple of MovieExec with certificate number 23456 (the presumed newly issued certificate for Arnold Schwarzenegger), so there is an obvious violation of the foreign-key constraint.

One possible fix is first to insert the tuple for La Vista without a president's certificate, as:

```
INSERT INTO Studio(name, address)
VALUES('La Vista', 'New York');
```

This change avoids the constraint violation, because the La-Vista tuple is inserted with NULL as the value of presC#, and NULL in a foreign key does not require that we check for the existence of any value in the referenced column. However, we must insert a tuple for Arnold Schwarzenegger into MovieExec, with his correct certificate number before we can apply an update statement such as

```
UPDATE Studio
SET presC# = 23456
WHERE name = 'La Vista';
```

If we do not fix MovieExec first, then this update statement will also violate the foreign-key constraint.

Of course, inserting Arnold Schwarzenegger and his certificate number into MovieExec before inserting La Vista into Studio will surely protect against a foreign-key violation in this case. However, there are cases of *circular constraints* that cannot be fixed by judiciously ordering the database modification steps we take.

Example 7.3: If movie executives were limited to studio presidents, then we might want to declare cert# to be a foreign key referencing Studio(presC#); we would first have to declare presC# to be UNIQUE, but that declaration makes sense if you assume a person cannot be the president of two studios at the same time.

Now, it is impossible to insert new studios with new presidents. We can't insert a tuple with a new value of presC# into Studio, because that tuple would violate the foreign-key constraint from presC# to MovieExec(cert#). We can't insert a tuple with a new value of cert# into MovieExec, because that would violate the foreign-key constraint from cert# to Studio(presC#).

The problem of Example 7.3 can be solved as follows.

- First, we must group the two insertions (one into Studio and the other into MovieExec) into a single transaction.
- 2. Then, we need a way to tell the DBMS not to check the constraints until after the whole transaction has finished its actions and is about to commit.

To inform the DBMS about point (2), the declaration of any constraint — key, foreign-key, or other constraint types we shall meet later in this chapter — may be followed by one of DEFERRABLE or NOT DEFERRABLE. The latter is the

default, and means that every time a database modification statement is executed, the constraint is checked immediately afterwards, if the modification could violate the foreign-key constraint. However, if we declare a constraint to be DEFERRABLE, then we have the option of having it wait until a transaction is complete before checking the constraint.

We follow the keyword DEFERRABLE by either INITIALLY DEFERRED or INITIALLY IMMEDIATE. In the former case, checking will be deferred to just before each transaction commits. In the latter case, the check will be made immediately after each statement.

Example 7.4: Figure 7.2 shows the declaration of Studio modified to allow the checking of its foreign-key constraint to be deferred until the end of each transaction. We have also declared presC# to be UNIQUE, in order that it may be referenced by other relations' foreign-key constraints.

```
CREATE TABLE Studio (
name CHAR(30) PRIMARY KEY,
address VARCHAR(255),
presC# INT UNIQUE
    REFERENCES MovieExec(cert#)
    DEFERRABLE INITIALLY DEFERRED
);
```

Figure 7.2: Making presC# unique and deferring the checking of its foreign-key constraint

If we made a similar declaration for the hypothetical foreign-key constraint from MovieExec(cert#) to Studio(presC#) mentioned in Example 7.3, then we could write transactions that inserted two tuples, one into each relation, and the two foreign-key constraints would not be checked until after both insertions had been done. Then, if we insert both a new studio and its new president, and use the same certificate number in each tuple, we would avoid violation of any constraint.

There are two additional points about deferring constraints that we should bear in mind:

- Constraints of any type can be given names. We shall discuss how to do so in Section 7.3.1.
- If a constraint has a name, say MyConstraint, then we can change a deferrable constraint from immediate to deferred by the SQL statement

```
SET CONSTRAINT MyConstraint DEFERRED;
```

and we can reverse the process by replacing DEFERRED in the above to IMMEDIATE.

7.1.4 Exercises for Section 7.1

Exercise 7.1.1: Our running example movie database of Section 2.2.8 has keys defined for all its relations.

```
Movies(<u>title</u>, <u>year</u>, length, genre, studioName, producerC#)
StarsIn(<u>movieTitle</u>, <u>movieYear</u>, <u>starName</u>)
MovieStar(<u>name</u>, address, gender, birthdate)
MovieExec(name, address, <u>cert#</u>, netWorth)
Studio(<u>name</u>, address, presC#)
```

Declare the following referential integrity constraints for the movie database as in Exercise 7.1.1.

- a) The producer of a movie must be someone mentioned in MovieExec. Modifications to MovieExec that violate this constraint are rejected.
- b) Repeat (a), but violations result in the producerC# in Movie being set to NULL.
- c) Repeat (a), but violations result in the deletion or update of the offending Movie tuple.
- d) A movie that appears in StarsIn must also appear in Movie. Handle violations by rejecting the modification.
- e) A star appearing in StarsIn must also appear in MovieStar. Handle violations by deleting violating tuples.
- ! Exercise 7.1.2: We would like to declare the constraint that every movie in the relation Movie must appear with at least one star in StarsIn. Can we do so with a foreign-key constraint? Why or why not?

Exercise 7.1.3: Suggest suitable keys and foreign keys for the relations of the PC database:

```
Product(maker, model, type)
PC(model, speed, ram, hd, price)
Laptop(model, speed, ram, hd, screen, price)
Printer(model, color, type, price)
```

of Exercise 2.4.1. Modify your SQL schema from Exercise 2.3.1 to include declarations of these keys.

Exercise 7.1.4: Suggest suitable keys for the relations of the battleships database

```
Classes(class, type, country, numGuns, bore, displacement)
Ships(name, class, launched)
Battles(name, date)
Outcomes(ship, battle, result)
```

of Exercise 2.4.3. Modify your SQL schema from Exercise 2.3.2 to include declarations of these keys.

Exercise 7.1.5: Write the following referential integrity constraints for the battleships database as in Exercise 7.1.4. Use your assumptions about keys from that exercise, and handle all violations by setting the referencing attribute value to NULL.

- a) Every class mentioned in Ships must be mentioned in Classes.
- b) Every battle mentioned in Outcomes must be mentioned in Battles.
- c) Every ship mentioned in Outcomes must be mentioned in Ships.

7.2 Constraints on Attributes and Tuples

Within a SQL CREATE TABLE statement, we can declare two kinds of constraints:

- 1. A constraint on a single attribute.
- 2. A constraint on a tuple as a whole.

In Section 7.2.1 we shall introduce a simple type of constraint on an attribute's value: the constraint that the attribute not have a NULL value. Then in Section 7.2.2 we cover the principal form of constraints of type (1): attribute-based CHECK constraints. The second type, the tuple-based constraints, are covered in Section 7.2.3.

There are other, more general kinds of constraints that we shall meet in Sections 7.4 and 7.5. These constraints can be used to restrict changes to whole relations or even several relations, as well as to constrain the value of a single attribute or tuple.

7.2.1 Not-Null Constraints

One simple constraint to associate with an attribute is NOT NULL. The effect is to disallow tuples in which this attribute is NULL. The constraint is declared by the keywords NOT NULL following the declaration of the attribute in a CREATE TABLE statement.

Example 7.5: Suppose relation Studio required presC# not to be NULL, perhaps by changing line (4) of Fig. 7.1 to:

4) presC# INT REFERENCES MovieExec(cert#) NOT NULL

This change has several consequences. For instance:

- We could not insert a tuple into Studio by specifying only the name and address, because the inserted tuple would have NULL in the presC# component.
- We could not use the set-null policy in situations like line (5) of Fig. 7.1, which tells the system to fix foreign-key violations by making presC# be NULL.

7.2.2 Attribute-Based CHECK Constraints

More complex constraints can be attached to an attribute declaration by the keyword CHECK and a parenthesized condition that must hold for every value of this attribute. In practice, an attribute-based CHECK constraint is likely to be a simple limit on values, such as an enumeration of legal values or an arithmetic inequality. However, in principle the condition can be anything that could follow WHERE in a SQL query. This condition may refer to the attribute being constrained, by using the name of that attribute in its expression. However, if the condition refers to any other relations or attributes of relations, then the relation must be introduced in the FROM clause of a subquery (even if the relation referred to is the one to which the checked attribute belongs).

An attribute-based CHECK constraint is checked whenever any tuple gets a new value for this attribute. The new value could be introduced by an update for the tuple, or it could be part of an inserted tuple. In the case of an update, the constraint is checked on the new value, not the old value. If the constraint is violated by the new value, then the modification is rejected.

It is important to understand that an attribute-based CHECK constraint is not checked if the database modification does not change the attribute with which the constraint is associated. This limitation can result in the constraint becoming violated, if other values involved in the constraint do change. First, let us consider a simple example of an attribute-based check. Then we shall see a constraint that involves a subquery, and also see the consequence of the fact that the constraint is only checked when its attribute is modified.

Example 7.6: Suppose we want to require that certificate numbers be at least six digits. We could modify line (4) of Fig. 7.1, a declaration of the schema for relation

Studio(name, address, presC#)

to be

4) presC# INT REFERENCES MovieExec(cert#)
CHECK (presC# >= 100000)

For another example, the attribute gender of relation

MovieStar(name, address, gender, birthdate)

was declared in Fig. 2.8 to be of data type CHAR(1) — that is, a single character. However, we really expect that the only characters that will appear there are 'F' and 'M'. The following substitute for line (4) of Fig. 2.8 enforces the rule:

4) gender CHAR(1) CHECK (gender IN ('F', 'M')),

Note that the expression ('F' 'M') describes a one-component relation with two tuples. The constraint says that the value of any gender component must be in this set. \Box

Example 7.7: We might suppose that we could simulate a referential integrity constraint by an attribute-based CHECK constraint that requires the existence of the referred-to value. The following is an *erroneous* attempt to simulate the requirement that the presC# value in a

Studio(name, address, presC#)

tuple must appear in the cert# component of some

MovieExec(name, address, cert#, netWorth)

tuple. Suppose line (4) of Fig. 7.1 were replaced by

4) presC# INT CHECK (presC# IN (SELECT cert# FROM MovieExec))

This statement is a legal attribute-based CHECK constraint, but let us look at its effect. Modifications to Studio that introduce a presC# that is not also a cert# of MovieExec will be rejected. That is almost what the similar foreign-key constraint would do, except that the attribute-based check will also reject a NULL value for presC# if there is no NULL value for cert#. But far more importantly, if we change the MovieExec relation, say by deleting the tuple for the president of a studio, this change is invisible to the above CHECK constraint. Thus, the deletion is permitted, even though the attribute-based CHECK constraint on presC# is now violated. \Box

7.2.3 Tuple-Based CHECK Constraints

To declare a constraint on the tuples of a single table R, we may add to the list of attributes and key or foreign-key declarations, in R's CREATE TABLE statement, the keyword CHECK followed by a parenthesized condition. This condition can be anything that could appear in a WHERE clause. It is interpreted as a condition about a tuple in the table R, and the attributes of R may be referred to by name in this expression. However, as for attribute-based CHECK constraints, the condition may also mention, in subqueries, other relations or other tuples of the same relation R.

Limited Constraint Checking: Bug or Feature?

One might wonder why attribute- and tuple-based checks are allowed to be violated if they refer to other relations or other tuples of the same relation. The reason is that such constraints can be implemented much more efficiently than more general constraints can. With attribute- or tuple-based checks, we only have to evaluate that constraint for the tuple(s) that are inserted or updated. On the other hand, assertions must be evaluated every time any one of the relations they mention is changed. The careful database designer will use attribute- and tuple-based checks only when there is no possibility that they will be violated, and will use another mechanism, such as assertions (Section 7.4) or triggers (Section 7.5) otherwise.

The condition of a tuple-based CHECK constraint is checked every time a tuple is inserted into R and every time a tuple of R is updated. The condition is evaluated for the new or updated tuple. If the condition is false for that tuple, then the constraint is violated and the insertion or update statement that caused the violation is rejected. However, if the condition mentions some other relation in a subquery, and a change to that relation causes the condition to become false for some tuple of R, the check does not inhibit this change. That is, like an attribute-based CHECK, a tuple-based CHECK is invisible to other relations. In fact, even a deletion from R can cause the condition to become false, if R is mentioned in a subquery.

On the other hand, if a tuple-based check does not have subqueries, then we can rely on its always holding. Here is an example of a tuple-based CHECK constraint that involves several attributes of one tuple, but no subqueries.

Example 7.8: Recall Example 2.3, where we declared the schema of table MovieStar. Figure 7.3 repeats the CREATE TABLE statement with the addition of a primary-key declaration and one other constraint, which is one of several possible "consistency conditions" that we might wish to check. This constraint says that if the star's gender is male, then his name must not begin with 'Ms.'.

In line (2), name is declared the primary key for the relation. Then line (6) declares a constraint. The condition of this constraint is true for every female movie star and for every star whose name does not begin with 'Ms.'. The only tuples for which it is *not* true are those where the gender is male and the name does begin with 'Ms.'. Those are exactly the tuples we wish to exclude from MovieStar. \Box

```
1) CREATE TABLE MovieStar (
2)    name CHAR(30) PRIMARY KEY,
3)    address VARCHAR(255),
4)    gender CHAR(1),
5)    birthdate DATE,
6)    CHECK (gender = 'F' OR name NOT LIKE 'Ms.%')
   );
```

Figure 7.3: A constraint on the table MovieStar

Writing Constraints Correctly

Many constraints are like Example 7.8, where we want to forbid tuples that satisfy two or more conditions. The expression that should follow the check is the OR of the negations, or opposites, of each condition; this transformation is one of "DeMorgan's laws": the negation of the AND of terms is the OR of the negations of the same terms. Thus, in Example 7.8 the first condition was that the star is male, and we used gender = 'F' as a suitable negation (although perhaps gender <> 'M' would be the more normal way to phrase the negation). The second condition is that the name begins with 'Ms.', and for this negation we used the NOT LIKE comparison. This comparison negates the condition itself, which would be name LIKE 'Ms.%' in SQL.

7.2.4 Comparison of Tuple- and Attribute-Based Constraints

If a constraint on a tuple involves more than one attribute of that tuple, then it must be written as a tuple-based constraint. However, if the constraint involves only one attribute of the tuple, then it can be written as either a tuple- or attribute-based constraint. In either case, we do not count attributes mentioned in subqueries, so even a attribute-based constraint can mention other attributes of the same relation in subqueries.

When only one attribute of the tuple is involved (not counting subqueries), then the condition checked is the same, regardless of whether a tuple- or attribute-based constraint is written. However, the tuple-based constraint will be checked more frequently than the attribute-based constraint — whenever any attribute of the tuple changes, rather than only when the attribute mentioned in the constraint changes.

7.2.5 Exercises for Section 7.2

Exercise 7.2.1: Write the following constraints for attributes of the relation

Movies(title, year, length, genre, studioName, producerC#)

- a) The year cannot be before 1915.
- b) The length cannot be less than 60 nor more than 250.
- c) The studio name can only be Disney, Fox, MGM, or Paramount.

Exercise 7.2.2: Write the following constraints on attributes from our example schema

```
Product(maker, model, type)
PC(model, speed, ram, hd, price)
Laptop(model, speed, ram, hd, screen, price)
Printer(model, color, type, price)
```

of Exercise 2.4.1.

- a) The speed of a laptop must be at least 2.0.
- b) The only types of printers are laser, ink-jet, and bubble-jet.
- c) The only types of products are PC's, laptops, and printers.
- ! d) A model of a product must also be the model of a PC, a laptop, or a printer.

Exercise 7.2.3: Write the following constraints as tuple-based CHECK constraints on one of the relations of our running movies example:

```
Movies(title, year, length, genre, studioName, producerC#)
StarsIn(movieTitle, movieYear, starName)
MovieStar(name, address, gender, birthdate)
MovieExec(name, address, cert#, netWorth)
Studio(name, address, presC#)
```

If the constraint actually involves two relations, then you should put constraints in both relations so that whichever relation changes, the constraint will be checked on insertions and updates. Assume no deletions; it is not always possible to maintain tuple-based constraints in the face of deletions.

- a) A star may not appear in a movie made before they were born.
- ! b) No two studios may have the same address.
- !c) A name that appears in MovieStar must not also appear in MovieExec.
- ! d) A studio name that appears in Studio must also appear in at least one Movies tuple.

!! e) If a producer of a movie is also the president of a studio, then they must be the president of the studio that made the movie.

Exercise 7.2.4: Write the following as tuple-based CHECK constraints about our "PC" schema.

- a) A PC with a processor speed less than 2.0 must not sell for more than \$600.
- b) A laptop with a screen size less than 15 inches must have at least a 40 gigabyte hard disk or sell for less than \$1000.

Exercise 7.2.5: Write the following as tuple-based CHECK constraints about our "battleships" schema:

```
Classes(class, type, country, numGuns, bore, displacement)
Ships(name, class, launched)
Battles(name, date)
Outcomes(ship, battle, result)
```

- a) No class of ships may have guns with larger than a 16-inch bore.
- b) If a class of ships has more than 9 guns, then their bore must be no larger than 14 inches.
- ! c) No ship can be in battle before it is launched.
- ! Exercise 7.2.6: In Examples 7.6 and 7.8, we introduced constraints on the gender attribute of MovieStar. What restrictions, if any, do each of these constraints enforce if the value of gender is NULL?

7.3 Modification of Constraints

It is possible to add, modify, or delete constraints at any time. The way to express such modifications depends on whether the constraint involved is associated with an attribute, a table, or (as in Section 7.4) a database schema.

7.3.1 Giving Names to Constraints

In order to modify or delete an existing constraint, it is necessary that the constraint have a name. To do so, we precede the constraint by the keyword CONSTRAINT and a name for the constraint.

Example 7.9: We could rewrite line (2) of Fig. 2.9 to name the constraint that says attribute name is a primary key, as

2) name CHAR(30) CONSTRAINT NameIsKey PRIMARY KEY,

Similarly, we could name the attribute-based CHECK constraint that appeared in Example 7.6 by:

```
4) gender CHAR(1) CONSTRAINT NoAndro
CHECK (gender IN ('F', 'M')),
```

Finally, the following constraint:

```
6) CONSTRAINT RightTitle
CHECK (gender = 'F' OR name NOT LIKE 'Ms.%');
```

is a rewriting of the tuple-based CHECK constraint in line (6) of Fig. 7.3 to give that constraint a name. \Box

7.3.2 Altering Constraints on Tables

We mentioned in Section 7.1.3 that we can switch the checking of a constraint from immediate to deferred or vice-versa with a SET CONSTRAINT statement. Other changes to constraints are effected with an ALTER TABLE statement. We previously discussed some uses of the ALTER TABLE statement in Section 2.3.4, where we used it to add and delete attributes.

ALTER TABLE statements can affect constraints in several ways. You may drop a constraint with keyword DROP and the name of the constraint to be dropped. You may also add a constraint with the keyword ADD, followed by the constraint to be added. Note, however, that the added constraint must be of a kind that can be associated with tuples, such as tuple-based constraints, key, or foreign-key constraints. Also note that you cannot add a constraint to a table unless it holds at that time for every tuple in the table.

Example 7.10: Let us see how we would drop and add the constraints of Example 7.9 on relation MovieStar. The following sequence of three statements drops them:

```
ALTER TABLE MovieStar DROP CONSTRAINT NameIsKey;
ALTER TABLE MovieStar DROP CONSTRAINT NoAndro;
ALTER TABLE MovieStar DROP CONSTRAINT RightTitle;
```

Should we wish to reinstate these constraints, we would alter the schema for relation MovieStar by adding the same constraints, for example:

```
ALTER TABLE MovieStar ADD CONSTRAINT NameIsKey
PRIMARY KEY (name);
ALTER TABLE MovieStar ADD CONSTRAINT NoAndro
CHECK (gender IN ('F', 'M'));
ALTER TABLE MovieStar ADD CONSTRAINT RightTitle
CHECK (gender = 'F' OR name NOT LIKE 'Ms.%');
```

Name Your Constraints

Remember, it is a good idea to give each of your constraints a name, even if you do not believe you will ever need to refer to it. Once the constraint is created without a name, it is too late to give it one later, should you wish to alter it. However, should you be faced with a situation of having to alter a nameless constraint, you will find that your DBMS probably has a way for you to query it for a list of all your constraints, and that it has given your unnamed constraint an internal name of its own, which you may use to refer to the constraint.

These constraints are now tuple-based, rather than attribute-based checks. We cannot bring them back as attribute-based constraints.

The name is optional for these reintroduced constraints. However, we cannot rely on SQL remembering the dropped constraints. Thus, when we add a former constraint we need to write the constraint again; we cannot refer to it by its former name.

7.3.3 Exercises for Section 7.3

Exercise 7.3.1: Show how to alter your relation schemas for the movie example:

```
Movie(title, year, length, genre, studioName, producerC#)
StarsIn(movieTitle, movieYear, starName)
MovieStar(name, address, gender, birthdate)
MovieExec(name, address, cert#, netWorth)
Studio(name, address, presC#)
```

in the following ways.

- a) Make title and year the key for Movie.
- b) Require the referential integrity constraint that the producer of every movie appear in MovieExec.
- c) Require that no movie length be less than 60 nor greater than 250.
- ! d) Require that no name appear as both a movie star and movie executive (this constraint need not be maintained in the face of deletions).
- ! e) Require that no two studios have the same address.

Exercise 7.3.2: Show how to alter the schemas of the "battleships" database:

```
Classes(class, type, country, numGuns, bore, displacement)
Ships(name, class, launched)
Battles(name, date)
Outcomes(ship, battle, result)
```

to have the following tuple-based constraints.

- a) Class and country form a key for relation Classes.
- Require the referential integrity constraint that every battle appearing in Outcomes also appears in Battles.
- c) Require the referential integrity constraint that every ship appearing in Outcomes appears in Ships.
- d) Require that no ship has more than 14 guns.
- ! e) Disallow a ship being in battle before it is launched.

7.4 Assertions

The most powerful forms of active elements in SQL are not associated with particular tuples or components of tuples. These elements, called "triggers" and "assertions," are part of the database schema, on a par with tables.

- An assertion is a boolean-valued SQL expression that must be true at all times.
- A trigger is a series of actions that are associated with certain events, such
 as insertions into a particular relation, and that are performed whenever
 these events arise.

Assertions are easier for the programmer to use, since they merely require the programmer to state what must be true. However, triggers are the feature DBMS's typically provide as general-purpose, active elements. The reason is that it is very hard to implement assertions efficiently. The DBMS must deduce whether any given database modification could affect the truth of an assertion. Triggers, on the other hand, tell exactly when the DBMS needs to deal with them.

7.4.1 Creating Assertions

The SQL standard proposes a simple form of assertion that allows us to enforce any condition (expression that can follow WHERE). Like other schema elements, we declare an assertion with a CREATE statement. The form of an assertion is:

7.4. ASSERTIONS 329

The condition in an assertion must be true when the assertion is created and must remain true; any database modification that causes it to become false will be rejected.¹ Recall that the other types of CHECK constraints we have covered can be violated under certain conditions, if they involve subqueries.

7.4.2 Using Assertions

There is a difference between the way we write tuple-based CHECK constraints and the way we write assertions. Tuple-based checks can refer directly to the attributes of that relation in whose declaration they appear. An assertion has no such privilege. Any attributes referred to in the condition must be introduced in the assertion, typically by mentioning their relation in a select-from-where expression.

Since the condition must have a boolean value, it is necessary to combine results in some way to make a single true/false choice. For example, we might write the condition as an expression producing a relation, to which NOT EXISTS is applied; that is, the constraint is that this relation is always empty. Alternatively, we might apply an aggregation operator like SUM to a column of a relation and compare it to a constant. For instance, this way we could require that a sum always be less than some limiting value.

Example 7.11: Suppose we wish to require that no one can become the president of a studio unless their net worth is at least \$10,000,000. We declare an assertion to the effect that the set of movie studios with presidents having a net worth less than \$10,000,000 is empty. This assertion involves the two relations

```
MovieExec(name, address, cert#, netWorth)
Studio(name, address, presC#)

The assertion is shown in Fig. 7.4. □

CREATE ASSERTION RichPres CHECK

(NOT EXISTS

(SELECT Studio.name

FROM Studio, MovieExec

WHERE presC# = cert# AND netWorth < 10000000

)

);
```

Figure 7.4: Assertion guaranteeing rich studio presidents

¹However, remember from Section 7.1.3 that it is possible to defer the checking of a constraint until just before its transaction commits. If we do so with an assertion, it may briefly become false until the end of a transaction.

Example 7.12: Here is another example of an assertion. It involves the relation

```
Movies(title, year, length, genre, studioName, producerC#)
```

and says the total length of all movies by a given studio shall not exceed 10,000 minutes.

```
CREATE ASSERTION SumLength CHECK (10000 >= ALL (SELECT SUM(length) FROM Movies GROUP BY studioName));
```

As this constraint involves only the relation Movies, it seemingly could have been expressed as a tuple-based CHECK constraint in the schema for Movies rather than as an assertion. That is, we could add to the definition of table Movies the tuple-based CHECK constraint

Notice that in principle this condition applies to every tuple of table Movies. However, it does not mention any attributes of the tuple explicitly, and all the work is done in the subquery.

Also observe that if implemented as a tuple-based constraint, the check would not be made on deletion of a tuple from the relation Movies. In this example, that difference causes no harm, since if the constraint was satisfied before the deletion, then it is surely satisfied after the deletion. However, if the constraint were a lower bound on total length, rather than an upper bound as in this example, then we could find the constraint violated had we written it as a tuple-based check rather than an assertion. \Box

As a final point, it is possible to drop an assertion. The statement to do so follows the pattern for any database schema element:

```
DROP ASSERTION <assertion name>
```

7.4.3 Exercises for Section 7.4

Exercise 7.4.1: Write the following assertions. The database schema is from the "PC" example of Exercise 2.4.1:

```
Product(maker, model, type)
PC(model, speed, ram, hd, price)
Laptop(model, speed, ram, hd, screen, price)
Printer(model, color, type, price)
```

a) No manufacturer of PC's may also make laptops.

331

Comparison of Constraints

The following table lists the principal differences among attribute-based checks, tuple-based checks, and assertions.

Type of	Where	When	Guaranteed
Constraint	Declared	Activated	to Hold?
Attribute-	With	On insertion	Not if
based CHECK	attribute	to relation or	subqueries
		attribute update	
Tuple-	Element of	On insertion	Not if
based CHECK	relation schema	to relation or	subqueries
		tuple update	
Assertion	Element of	On any change to	Yes
	database schema	any mentioned	
		relation	

- b) A manufacturer of a PC must also make a laptop with at least as great a processor speed.
- c) If a laptop has a larger main memory than a PC, then the laptop must also have a higher price than the PC.
- d) If the relation Product mentions a model and its type, then this model must appear in the relation appropriate to that type.

Exercise 7.4.2: Write the following as assertions. The database schema is from the battleships example of Exercise 2.4.3.

```
Classes(class, type, country, numGuns, bore, displacement)
Ships(name, class, launched)
Battles(name, date)
Outcomes(ship, battle, result)
```

- a) No class may have more than 2 ships.
- ! b) No country may have both battleships and battlecruisers.
- ! c) No ship with more than 9 guns may be in a battle with a ship having fewer than 9 guns that was sunk.
- ! d) No ship may be launched before the ship that bears the name of the first ship's class.
- ! e) For every class, there is a ship with the name of that class.

! Exercise 7.4.3: The assertion of Exercise 7.11 can be written as two tuple-based constraints. Show how to do so.

7.5 Triggers

Triggers, sometimes called event-condition-action rules or ECA rules, differ from the kinds of constraints discussed previously in three ways.

- 1. Triggers are only awakened when certain *events*, specified by the database programmer, occur. The sorts of events allowed are usually insert, delete, or update to a particular relation. Another kind of event allowed in many SQL systems is a transaction end.
- 2. Once awakened by its triggering event, the trigger tests a *condition*. If the condition does not hold, then nothing else associated with the trigger happens in response to this event.
- 3. If the condition of the trigger is satisfied, the *action* associated with the trigger is performed by the DBMS. A possible action is to modify the effects of the event in some way, even aborting the transaction of which the event is part. However, the action could be any sequence of database operations, including operations not connected in any way to the triggering event.

7.5.1 Triggers in SQL

The SQL trigger statement gives the user a number of different options in the event, condition, and action parts. Here are the principal features.

- 1. The check of the trigger's condition and the action of the trigger may be executed either on the *state of the database* (i.e., the current instances of all the relations) that exists before the triggering event is itself executed or on the state that exists after the triggering event is executed.
- 2. The condition and action can refer to both old and/or new values of tuples that were updated in the triggering event.
- 3. It is possible to define update events that are limited to a particular attribute or set of attributes.
- 4. The programmer has an option of specifying that the trigger executes either:
 - (a) Once for each modified tuple (a row-level trigger), or
 - (b) Once for all the tuples that are changed in one SQL statement (a *statement-level trigger*, remember that one SQL modification statement can affect many tuples).

7.5. TRIGGERS 333

Before giving the details of the syntax for triggers, let us consider an example that will illustrate the most important syntactic as well as semantic points. Notice in the example trigger, Fig. 7.5, the key elements and the order in which they appear:

- a) The CREATE TRIGGER statement (line 1).
- b) A clause indicating the triggering event and telling whether the trigger uses the database state before or after the triggering event (line 2).
- c) A REFERENCING clause to allow the condition and action of the trigger to refer to the tuple being modified (lines 3 through 5). In the case of an update, such as this one, this clause allows us to give names to the tuple both before and after the change.
- d) A clause telling whether the trigger executes once for each modified row or once for all the modifications made by one SQL statement (line 6).
- e) The condition, which uses the keyword WHEN and a boolean expression (line 7).
- f) The action, consisting of one or more SQL statements (lines 8 through 10).

Each of these elements has options, which we shall discuss after working through the example.

Example 7.13: In Fig. 7.13 is a SQL trigger that applies to the

```
MovieExec(name, address, cert#, netWorth)
```

table. It is triggered by updates to the netWorth attribute. The effect of this trigger is to foil any attempt to lower the net worth of a movie executive.

- 1) CREATE TRIGGER NetWorthTrigger
- 2) AFTER UPDATE OF netWorth ON MovieExec
- 3) REFERENCING
- OLD ROW AS OldTuple,
- 5) NEW ROW AS NewTuple
- 6) FOR EACH ROW
- 7) WHEN (OldTuple.netWorth > NewTuple.netWorth)
- 8) UPDATE MovieExec
- 9) SET netWorth = OldTuple.netWorth
- 10) WHERE cert# = NewTuple.cert#;

Figure 7.5: A SQL trigger

Line (1) introduces the declaration with the keywords CREATE TRIGGER and the name of the trigger. Line (2) then gives the triggering event, namely the update of the netWorth attribute of the MovieExec relation. Lines (3) through (5) set up a way for the condition and action portions of this trigger to talk about both the old tuple (the tuple before the update) and the new tuple (the tuple after the update). These tuples will be referred to as OldTuple and NewTuple, according to the declarations in lines (4) and (5), respectively. In the condition and action, these names can be used as if they were tuple variables declared in the FROM clause of an ordinary SQL query.

Line (6), the phrase FOR EACH ROW, expresses the requirement that this trigger is executed once for each updated tuple. Line (7) is the condition part of the trigger. It says that we only perform the action when the new net worth is lower than the old net worth; i.e., the net worth of an executive has shrunk.

Lines (8) through (10) form the action portion. This action is an ordinary SQL update statement that has the effect of restoring the net worth of the executive to what it was before the update. Note that in principle, every tuple of MovieExec is considered for update, but the WHERE-clause of line (10) guarantees that only the updated tuple (the one with the proper cert#) will be affected.

7.5.2 The Options for Trigger Design

Of course Example 7.13 illustrates only some of the features of SQL triggers. In the points that follow, we shall outline the options that are offered by triggers and how to express these options.

- Line (2) of Fig. 7.5 says that the condition test and action of the rule are executed on the database state that exists after the triggering event, as indicated by the keyword AFTER. We may replace AFTER by BEFORE, in which case the WHEN condition is tested on the database state that exists before the triggering event is executed. If the condition is true, then the action of the trigger is executed on that state. Finally, the event that awakened the trigger is executed, regardless of whether the condition is still true. There is a third option, INSTEAD OF, that we discuss in Section 8.2.3, in connection with modification of views.
- Besides UPDATE, other possible triggering events are INSERT and DELETE.
 The OF netWorth clause in line (2) of Fig. 7.5 is optional for UPDATE events, and if present defines the event to be only an update of the attribute(s) listed after the keyword OF. An OF clause is not permitted for INSERT or DELETE events; these events make sense for entire tuples only.
- The WHEN clause is optional. If it is missing, then the action is executed whenever the trigger is awakened. If present, then the action is executed only if the condition following WHEN is true.

7.5. TRIGGERS 335

 While we showed a single SQL statement as an action, there can be any number of such statements, separated by semicolons and surrounded by BEGIN...END.

- When the triggering event of a row-level trigger is an update, then there will be old and new tuples, which are the tuple before the update and after, respectively. We give these tuples names by the OLD ROW AS and NEW ROW AS clauses seen in lines (4) and (5). If the triggering event is an insertion, then we may use a NEW ROW AS clause to give a name for the inserted tuple, and OLD ROW AS is disallowed. Conversely, on a deletion OLD ROW AS is used to name the deleted tuple and NEW ROW AS is disallowed.
- If we omit the FOR EACH ROW on line (6) or replace it by the default FOR EACH STATEMENT, then a row-level trigger such as Fig. 7.5 becomes a statement-level trigger. A statement-level trigger is executed once whenever a statement of the appropriate type is executed, no matter how many rows zero, one, or many it actually affects. For instance, if we update an entire table with a SQL update statement, a statement-level update trigger would execute only once, while a row-level trigger would execute once for each tuple to which an update was applied.
- In a statement-level trigger, we cannot refer to old and new tuples directly, as we did in lines (4) and (5). However, any trigger whether row- or statement-level can refer to the relation of *old tuples* (deleted tuples or old versions of updated tuples) and the relation of *new tuples* (inserted tuples or new versions of updated tuples), using declarations such as OLD TABLE AS OldStuff and NEW TABLE AS NewStuff.

Example 7.14: Suppose we want to prevent the average net worth of movie executives from dropping below \$500,000. This constraint could be violated by an insertion, a deletion, or an update to the netWorth column of

MovieExec(name, address, cert#, netWorth)

The subtle point is that we might, in one statement insert, delete, or change many tuples of MovieExec. During the modification, the average net worth might temporarily dip below \$500,000 and then rise above it by the time all the modifications are made. We only want to reject the entire set of modifications if the net worth is below \$500,000 at the end of the statement.

It is necessary to write one trigger for each of these three events: insert, delete, and update of relation MovieExec. Figure 7.6 shows the trigger for the update event. The triggers for the insertion and deletion of tuples are similar.

Lines (3) through (5) declare that NewStuff and OldStuff are the names of relations containing the new tuples and old tuples that are involved in the database operation that awakened our trigger. Note that one database statement can modify many tuples of a relation, and if such a statement executes, there can be many tuples in NewStuff and OldStuff.