TRANSFORMER DESIGN

EMF induced in transformer winding in V/turn, $(E_t) = k \cdot \sqrt{KVA}$ Maximum value of magnetic flux in weber, $(\phi_m) = \frac{E_t}{4.44 \cdot f}$ where,

k= constant for output voltage per turn

KVA= rating of distribution transformer in KVA

Design of core:

Net iron core area, $(A_i) = \frac{\phi_m}{Bm}$ where,

 B_m =Maximum flux density in coil core calculation not performed

Design of window:

Total area of window(A_w) = $\frac{Q}{3.33 \times Bm \times f \times kw \times \delta \times Ai \times 10^6}$ Width of the window, (W_w)= $\sqrt{\frac{Aw}{ratioHtW}}$

Height of the window, $(H_w) = ratioHtW \times Ww$ where,

 k_w = Window space factor such that,

$$k_w = \frac{8}{30 + KVA}$$
 for $KVA < 50$

$$k_w = \frac{10}{30 + KVA}$$
 for $50 < KVA < 200$

 δ = current density which is the same for both primary and secondary winding ratioHtW= ratio of window height to window weight

Design of yoke:

For hot rolled silicon steel, $A_y = 1.15 - 1.20 A_{gi}$

For cold rolled silicon steel, $A_y = A_{gi}$

Here we have assumed hot-rolled silicon steel.

Area of yoke, $(A_y) = 1.20 \times A_{gi}$

For the rectangular yoke,

$$D_y = a$$

$$H_y = \frac{A_y}{D_y}$$

where,

 $A_{gi} = \frac{A_i}{k}$; k= Staking factor

 D_y = Depth of yoke

 H_y = Height of yoke

Overall dimension of frame:

Distance between adjacent limbs, $D = W_w + d$

Overall height of frame, $H = H_w + 2H_y$

Overall length of frame, W = 2D + a

Design of LV winding:

No. of turns of secondary winding, $(T_s) = \frac{V_s}{F_{s+1}}$

Secondary current, $(I_s) = \frac{Q(\text{in VA})}{m*V_s}$

Area, $(A) = \frac{I_s}{\delta}$

Using bare conductor of $(w \times t)$ m^2 (From the table)

Area of bare conductor, $(a_s) = t \times w$

Current density in secondary winding, $(\delta_s) = \frac{I_s}{a_s}$ We take paper insulation of 0.5mm and add it to the width and thickness.

No. of turns in one layer= $\frac{H_w}{w}$ Minimum nos. of layer= $\frac{T_s}{no\ of\ turns\ in\ one\ layer}$

No of turns in a layer= $\frac{T_s}{minimum\ no.\ of\ layers}$

We used helical winding so no. of turns in a layer increases by 1.

Axial depth, (L_{cs}) = no. of turns in a layer \times w

Clearance on each side of winding= $\frac{(H_w - L_{cs})}{2}$

Using 0.5 pressboard cylinder layer

Radial depth of LV winding, (b_s) = no. of layers × radial depth+insulation between layers

Width between core and LV winding= 5 + 0.9KV

Inside diameter of LV winding, $(D_{in,s}) = d + 2y$

External diameter of LV winding, $(D_{ext,s}) = D_{in,s} + 2b_s$

The mean diameter of LV winding, $(D_{mts}) = \frac{D_{ext,s} + D_{in,s}}{2}$

Mean length of LV winding, $(L_{mts}) = \pi \times D_{mts}$

where,

 V_s = Phase voltage of LV winding

 δ = current density of material

 δ_s = Current density of LV winding

d= Diameter of core

y= Insulation between core and LV winding

 b_s = Radius of LV winding

Design of H.V winding

Number of primary turns $(T_p) = (\frac{V_p}{V_s}) \times T_s$

Primary current $(I_p) = \frac{Q}{3 \times V_s}$ [For Delta connection]

Taking $\delta_p = 1.05\delta$

Area (a) =
$$\frac{I_s}{\delta_n}$$

Also,

Area (a) =
$$\frac{\pi}{4} \times d^2$$
 [To find d]

Now, we use nearest standard conductor size for bare diameter (d') and insulated diameter (d'_s) ,

Modified area of conductor $(a_p) = \frac{\pi}{4} \times (d')^2$

Actual current density $(\delta_p) = \frac{I_p}{a_p}$

Numbers of turns in layer = $\frac{H_w}{d_s'}$

Axial depth of one coil = Turns per layer \times d'_s

Spacers used between adjacent coils are 5mm in height. so,

Axial length of H.V winding (LC_p) :

 $LC_p = \text{No. of coils} \times (\text{axial depth of each coil} + \text{depth of spacers})$

Clearance on each side = $\frac{H_w - LC_p}{2}$

Insulation between H.V and L.V (z) = 5 + 0.9 K.V

Inside diameter of H.V winding $(D_{in,p})$ = Outside diameter of L.V winding + 2 × z

External diameter of H.V winding $(D_{ext,p}) = D_{in,p} + 2 \times b_p$

Mean diameter $(D_{mtp}) = \frac{D_{in,p} + D_{in,p}}{2}$

Mean length of H.V winding $(L_{mtp}) = \pi \times D_{mtp}$

Clearance between windings of two adjecent limbs = D - $D_{ext,p}$

Operating Characteristic

Resistance:

Total resistance referred to primary side $(R_p) = r_p + [r_s \times (\frac{T_p}{T_s})^2]$

Per Unit resistance $(\epsilon_r) = \frac{I_p \times R_p}{V_p}$

where,

 r_p = Resistance of Primary winding

 $r_s =$ Resistance of Secondary winding

 $T_p = \text{No. of turns in Primary}$

 $T_s = \text{No. of turns in Secondary}$

Leakage Reactance:

Leakage Reactance referred to primary side (X_p)

$$=2\pi f \mu_0 T_p^2 \times \frac{L_{mt}}{L_c} \times (a + \frac{b_p + b_s}{3}) \times 10^{-3}$$

Per unit reactance $(\epsilon_x) = \frac{I_p \times X_p}{V_p}$

where,

permeability $(\mu_0) = 4\pi \times 10^{-7}$

f = frequency

 $L_{mt} = \text{length of mean turn}$

 $L_c = \text{height of winding}$

 $b_p = \text{Radial Depth of H.V coil}$

 $b_s = \text{Radial Depth of L.V coil}$

PU voltage regulation:

PU voltage regulation at 0.8 pf (ϵ)

$$= \epsilon_r \cos(\phi) + \epsilon_x \sin(\phi)$$