Exam Solutions

March 2017

- 1. (a) constraint word_aligned{v_addr[1:0]==2'b00;}
 - (b) constraint page_fix $\{v_addr[31:12] = 20'd4096;\}$
- 2. (a) No, a finite state machine which would require to keep an *exact* count of the number of 0's or 1's cannot be made, since the number of states in such a machine cannot be bounded by a finite number. Consider cases where all 0's precede all 1's. The machine will have to keep an exact count of all the 0's, and therefore, such a machine cannot be made.
 - (b) No, same reason as above. No pattern can be made to possibly reuse the old states.
 - (c) No, same reason as above.
- 3. (a) Let k = 0*11*0(1(101)*0 + 00*11*0)*1(101)*1k(1k)*0(0k(1k)*0)*
 - (b) 10110
 - (c) One possible solution is shown in Fig. 1
- 4. CNF Clauses: z (z'+d+e) (z+d') (z+e') (d'+a) (d'+c) (d+a'+c') (c+s) (c'+s') (e'+b) (e'+s) (e+b'+s') Through Unit propagation, the following satisfying assignments can be found:
 - (a) (a,b,s,c,d,e,z) = (1,X,0,1,1,0,1)
 - (b) (a,b,s,c,d,e,z) = (X,1,1,0,0,1,1)
- 5. (a) No
 - (b) Yes
 - (c) No
 - (d) Yes
 - (e) No
 - (f) Yes
 - (1) 10.
 - (g) No
 - (h) No
- 6. Solution is shown in Fig. 2

Figure 1: Q3(c)

Figure 2: Q6