Seasonal river temperature model

Eddie Wu

2024-07-18

Introduction

This R markdown file is used to

- 1. Fit models on a seasonal scale (all four seasons).
- 2. See how seasonal fits change compared to annual fit.

**All Models are mixed-effect with location as the random factor.*

```
library(dplyr)
library(tidyverse)
library(lme4)
library(nlme)
library(xts)
library(ModelMetrics)
library(zoo)
library(lubridate)
library(nls2)
```

```
cal.rmse <- function(out.list, fold) {</pre>
  # data frame to store the results
 r <- matrix(NA, nrow=fold, ncol=length(unique(out.list[[1]]$location)))
  colnames(r) <- unique(out.list[[1]]$location)</pre>
  # 10 iterations
  for (i in 1:fold){
   compare <- out.list[[i]]</pre>
   # calculate rmse
   for (loc in unique(compare$location)) {
     compare.now <- subset(compare, location == loc) %>% na.omit()
     r[i,loc] <- ModelMetrics::rmse(compare.now$water, compare.now$preds.ar)
    }
  }
 return(r)
cal.nsc <- function(out.list, fold) {</pre>
  # dataframe to store the results
 r <- matrix(NA, nrow=fold, ncol=length(unique(out.list[[1]] $location)))
  colnames(r) <- unique(out.list[[1]]$location)</pre>
 # 10 iterations
```

```
for (i in 1:fold){
   compare <- out.list[[i]]</pre>
   # calculate nsc
  for (loc in unique(compare$location)) {
     compare.now <- subset(compare, location == loc) %>% na.omit()
     nsc <- 1 - sum((compare.now$water - compare.now$preds.ar)^2) / sum((compare.now$water - mean(compa
    r[i,loc] <- nsc
    }
  }
 return(r)
get.traintest <- function(master.df, year.list, fold) {</pre>
  # create output
  combined_training_list <- vector("list",fold)</pre>
  combined_testing_list <- vector("list",fold)</pre>
  ## Loop 10 folds
  for (f in 1:fold) {
    # dataframe to store the sampled years for each location
    dfind = data.frame(location=character(),
                     year=integer(), stringsAsFactors = FALSE)
    dfindt = data.frame(location=character(),
                     year=integer(), stringsAsFactors = FALSE)
    for (i in 1:length(year.list)){ # i loops through each location
      smp = year.list[[i]] #train
      if (length(smp)>1){
        indx.train=(sample(smp, 1))
        ytrain=indx.train
      } else if (length(smp)==1){
        indx.train=smp
        ytrain=indx.train
      smpt = year.list[[i]][year.list[[i]] != indx.train] #test
      if (length(smpt)>1){
        indx.test=(sample(smpt, 1))
        ytest=indx.test
      } else if (length(smpt)==1){
        indx.test=smpt
        ytest=indx.test
      }
      dfind[i,] = c(names(year.list[i]), ytrain)
      dfindt[i,] = c(names(year.list[i]), ytest)
    }
    # subset the dataframe
    awf_train <- merge(master.df, dfind, by=c("location", "year"))</pre>
    awf_test <- merge(master.df, dfindt, by=c("location", "year"))</pre>
```

```
combined_training_list[[f]] <- awf_train</pre>
    combined_testing_list[[f]] <- awf_test</pre>
 return(list(combined_training_list, combined_testing_list))
good_year <- function(master.df, dayln) {</pre>
  # get table of sample years by location
 yr_out=table(master.df$location, master.df$year)
  # select sample years with more than X days (x=250)
  full_year=list()
  sind=vector()
  cnt=0
  ind=0
  for (i in seq_along(loc_seq)){
   rm(ind)
   if (ncol(yr_out)>=1) {
     ind=which(yr_out[row.names(yr_out)==loc_seq[i],]>dayln)
     if (length(ind)>0) {
       sind=c(sind,i)
       cnt=cnt+1
       full_year[[cnt]]=colnames(yr_out)[ind]
  }
  full_year=setNames(full_year,loc_seq[sind])
  print(full_year)
```

Data importing and cleaning

Data combining

```
## Combine water temperature and discharge
aw <- merge(air, water, by = c("station_name","date"))</pre>
awf <- merge(aw, flow, by = c("location", "date"))</pre>
awf <- awf %>% arrange(location, date)
## Change into factor
awf$location <- as.factor(awf$location)</pre>
awf$station_name <- as.factor(awf$station_name)</pre>
# Get location sequence
loc_seq=levels(awf$location)
## Check if there are any duplicates
duplicates <- awf %>%
  group_by(location, date) %>%
  filter(n() > 1) # Duplicates should be NA...
## Print the result
table(awf$location)
##
##
     bigcreek
                 bigotter
                                                      humber mississagi
                                 fox
                                         genesee
                                                                            nipigon
                                                                    1434
##
         4554
                      919
                                 1374
                                            1095
                                                        4446
                                                                                 848
##
                                still
                                         stlouis vermilion
      portage
                  saginaw
##
          730
                     1095
                                 1246
                                            1349
                                                        1095
```

Check for imputed values

Use a 7-days rolling mean to check for possibly imputed temperatures. If the variance of a certain day's temperature is very close to zero, then it is likely that this particular data is imputed.

```
# make sure that no initial NA values in awf water temperature
which(is.na(awf$temp))
## integer(0)
# Need to calculate the rolling mean for each location separately...
for(loc in loc_seq) {
  sub <- awf[awf$location == loc,]</pre>
  sub$rolling_mean <- rollmean(sub$temp, k = 7, fill = NA, align = "right")</pre>
  awf[awf$location == loc, "rolling_mean"] <- sub$rolling_mean</pre>
}
# Calculate variance
awf$variance <- (awf$temp - awf$rolling_mean)^2</pre>
# Assign NA when variance is very small
awf$temp[which(awf$variance < 1e-10)] <- NA</pre>
# Check results - how many imputed values are in each location
awf %>%
 group_by(location) %>%
```

```
summarise(na_count = sum(is.na(temp)))
## # A tibble: 12 x 2
##
     location na_count
##
     <fct>
                  <int>
## 1 bigcreek
                    101
## 2 bigotter
                      0
## 3 fox
                       6
## 4 genesee
                      6
## 5 humber
                      12
## 6 mississagi
                      6
## 7 nipigon
                      0
## 8 portage
                      2
## 9 saginaw
                     17
## 10 still
                     226
## 11 stlouis
                     144
## 12 vermilion
                     137
```

Get lagged days

Get final master temp dataframe

Get training and testing

Subsetting seasonal scales

Now we want to subset three master dataframes that contains seasonal-scale data. We categorize the data into four different seasonal categories:

```
    spring: 3,4,5
    summer: 6,7,8
    fall: 9,10,11
```

4. winter: 12,1,2

```
master.sum <- master.temp %>%
  filter(month == 6 | month == 7 | month == 8)

master.win <- master.temp %>%
  filter(month == 12 | month == 1 | month == 2)

master.spring <- master.temp %>%
  filter(month == 3 | month == 4 | month == 5)

master.fall <- master.temp %>%
  filter(month == 9 | month == 10 | month == 11)

master.annual <- master.temp %>%
  filter(month != 12 & month != 1 & month != 2)
```

Identify good year/month data

We want the monthly data to be greater than 60 days, annual data (winter removed) more than 200 days.

```
## Annual (250 days)
fulyear <- good_year(master.annual, 180)</pre>
```

```
## $bigcreek
## [1] "2000" "2001" "2002" "2003" "2004" "2005" "2006" "2007" "2008" "2009"
## [11] "2012" "2013" "2014"
##
## $bigotter
## [1] "2012" "2013" "2014"
##
## $fox
## [1] "2011" "2012" "2013" "2014"
## $genesee
## [1] "2011" "2012" "2013"
##
## $humber
## [1] "1998" "1999" "2000" "2001" "2002" "2003" "2005" "2006" "2007" "2008"
## [11] "2009" "2011"
##
## $mississagi
## [1] "2011" "2013"
##
## $nipigon
## [1] "2008" "2009"
##
## $portage
## [1] "2011" "2012"
##
## $saginaw
## [1] "2013" "2014"
## $still
## [1] "2002" "2004" "2005" "2008"
```

```
##
## $stlouis
## [1] "2011" "2012" "2013" "2014"
##
## $vermilion
## [1] "2012" "2013" "2014"
## Seasonal (60 days)
fulspring <- good_year(master.spring, 60)</pre>
## $bigcreek
## [1] "2001" "2002" "2003" "2004" "2005" "2006" "2007" "2008" "2009" "2012"
## [11] "2013" "2014"
##
## $bigotter
## [1] "2012" "2013" "2014"
##
## $fox
## [1] "2011" "2012" "2013" "2014"
##
## $genesee
## [1] "2011" "2012" "2013"
## $humber
## [1] "1999" "2000" "2001" "2002" "2003" "2005" "2006" "2007" "2008" "2009"
## [11] "2011" "2013"
##
## $mississagi
## [1] "2011" "2013" "2014"
##
## $nipigon
## [1] "2008" "2009"
##
## $portage
## [1] "2011" "2012"
## $saginaw
## [1] "2013" "2014"
##
## $still
## [1] "2005" "2008"
## $stlouis
## [1] "2012" "2013"
##
## $vermilion
## [1] "2012" "2013" "2014"
fulsum <- good_year(master.sum, 60)</pre>
## $bigcreek
## [1] "2000" "2001" "2002" "2003" "2004" "2005" "2006" "2007" "2008" "2009"
## [11] "2012" "2013" "2014"
## $bigotter
```

```
## [1] "2012" "2013" "2014"
##
## $fox
## [1] "2011" "2012" "2013" "2014"
## $genesee
## [1] "2011" "2012" "2013"
##
## $humber
   [1] "1998" "1999" "2000" "2001" "2002" "2003" "2005" "2006" "2007" "2008"
##
## [11] "2009" "2011"
##
## $mississagi
## [1] "2011" "2012" "2013"
##
## $nipigon
## [1] "2008" "2009"
##
## $portage
## [1] "2011" "2012"
##
## $saginaw
## [1] "2014"
## $still
## [1] "2002" "2004" "2005" "2008"
##
## $stlouis
## [1] "2011" "2012" "2013" "2014"
##
## $vermilion
## [1] "2013" "2014"
fulfall <- good_year(master.fall, 60)</pre>
## $bigcreek
## [1] "2000" "2001" "2002" "2003" "2004" "2005" "2006" "2007" "2008" "2009"
## [11] "2012" "2013"
##
## $bigotter
## [1] "2012" "2013"
## $fox
## [1] "2011" "2012" "2013" "2014"
##
## $genesee
## [1] "2011" "2012" "2013"
##
## $humber
## [1] "1998" "1999" "2000" "2001" "2002" "2003" "2005" "2006" "2007" "2008"
## [11] "2009" "2011"
##
## $mississagi
## [1] "2010" "2011" "2012" "2013"
##
```

```
## $nipigon
## [1] "2008" "2009"
## $portage
## [1] "2011" "2012"
##
## $saginaw
## [1] "2012" "2014"
## $still
## [1] "2002" "2004"
## $stlouis
## [1] "2011" "2012" "2013" "2014"
##
## $vermilion
## [1] "2012" "2013" "2014"
fulwin <- good_year(master.win, 60)</pre>
## $bigcreek
## [1] "2001" "2002" "2004" "2005" "2006" "2007" "2008" "2009" "2012" "2013"
## $bigotter
## [1] "2013"
##
## $fox
## [1] "2012" "2013" "2014"
##
## $genesee
## [1] "2011" "2012" "2013"
##
## $humber
## [1] "1999" "2000" "2001" "2002" "2003" "2005" "2006" "2007" "2008" "2009"
## [11] "2011"
##
## $mississagi
## [1] "2011" "2012" "2013"
##
## $nipigon
## [1] "2008" "2009"
## $portage
## [1] "2011" "2012"
##
## $saginaw
## [1] "2012" "2014"
##
## $stlouis
## [1] "2012"
## $vermilion
## [1] "2012" "2013"
```

Get training and testing

Similarly, get training and testing for the specific season.

```
fold = 10
## Get training and testing for annual
annual <- get.traintest(master.annual, fulyear, 10)</pre>
combined_training_list <- annual[[1]]</pre>
combined_testing_list <- annual[[2]]</pre>
## Get training and testing for each season
sum <- get.traintest(master.sum, fulsum, 10)</pre>
win <- get.traintest(master.win, fulwin, 10)</pre>
spr <- get.traintest(master.spring, fulspring, 10)</pre>
fall <- get.traintest(master.fall, fulfall, 10)</pre>
combined_training_list_sp <- spr[[1]]</pre>
combined testing list sp <- spr[[2]]
combined_training_list_su <- sum[[1]]</pre>
combined_testing_list_su <- sum[[2]]</pre>
combined_training_list_fa <- fall[[1]]</pre>
combined_testing_list_fa <- fall[[2]]</pre>
combined_training_list_w <- win[[1]]</pre>
combined_testing_list_w <- win[[2]]</pre>
## Create a list to store all the combined training and testing lists
grand_training <- list(combined_training_list_sp, combined_training_list_su,</pre>
                         combined_training_list_fa, combined_training_list_w,
                         combined_training_list)
grand_testing <- list(combined_testing_list_sp, combined_testing_list_su,
                         combined_testing_list_fa, combined_testing_list_w,
                         combined testing list)
```

Model Comparison

We now run each of the three models five times, once on each of the four seasons, and annual data.

Important: Here we only look at the model output from models with corAR1() value fixed at 0.8. To check the ACF, please refer to the TEMP temporal autocorrelation document.

Linear lag5

```
## Forms
ctrl = lmeControl(opt='optim')
form1 <- water ~ air + dmean_1 + dmean_2 + dmean_3 + dmean_4 + dmean_5
spring.r <- vector("list", fold)</pre>
```

```
summer.r <- vector("list", fold)</pre>
fall.r <- vector("list", fold)</pre>
winter.r <- vector("list", fold)</pre>
annual.r <- vector("list", fold)
grand.lag5 <- list(spring.r, summer.r, fall.r, winter.r, annual.r)</pre>
## Iteration starts here
for (season in 1:5) {
  ## Get current season and its corresponding training/testing
  train <- grand training[[season]]</pre>
  test <- grand_testing[[season]]</pre>
  ## 10 fold iteration starts here
  for (i in 1:fold){
    # select current dataset, and all unique location levels
    current.training <- train[[i]] %>% arrange(location, date)
    current.testing <- test[[i]] %>% arrange(location, date)
    compare <- current.testing</pre>
    # model training and predicting
    model.ar <- lme(form1,</pre>
                     random = ~1 | location, control = ctrl,
                     na.action = na.omit, data = current.training,
                     correlation=corAR1(form=~1|location, 0.85, fixed=T))
    compare$preds.ar <- as.vector(predict())</pre>
      model.ar, newdata = current.testing, re.form = ~1|location))
    grand.lag5[[season]][[i]] <- compare</pre>
  }
}
View(grand.lag5[[4]][[1]])
## Plots
for (loc in loc_seq) {
  df <- grand.lag5[[2]][[1]]</pre>
  plot.df <- df[df$location == loc,]</pre>
  diff.ar <- round(sqrt(mean((plot.df$preds.ar-plot.df$water)^2)),2)</pre>
  pl <- ggplot(data=plot.df, aes(x=date))+</pre>
          geom_line(aes(x=date, y=water), color = "black")+
           geom_line(aes(x=date, y=preds.ar), color = "blue")+
           ggtitle(paste(
             loc, ": ", plot.df$year, " (RMSE:", diff.ar, ")"))
  print(pl)
```

bigcreek: 2004 (RMSE: 1.26)

bigotter: 2013 (RMSE: 1.91)

fox: 2014 (RMSE: 1.07)

genesee: 2012 (RMSE: 1.85)

humber: 2008 (RMSE: 1.79)

mississagi: 2011 (RMSE: 2.1)

portage: 2012 (RMSE: 2.3)

saginaw: 2012 (RMSE: 2.33)

stlouis: 2014 (RMSE: 1.96)

vermilion: 2013 (RMSE: 1.55)

Seasonal residual

```
## Forms
spring.r <- vector("list", fold)</pre>
summer.r <- vector("list", fold)</pre>
fall.r <- vector("list", fold)</pre>
winter.r <- vector("list", fold)</pre>
annual.r <- vector("list", fold)</pre>
grand.sto <- list(spring.r, summer.r, fall.r, winter.r, annual.r)</pre>
## Iteration starts here
for (season in 1:5) {
  ## Get current season and its corresponding training/testing
  train <- grand_training[[season]]</pre>
  test <- grand_testing[[season]]</pre>
  # Each iteration
  for (i in 1:fold) {
    compare <- NA
    # select current dataset, and all unique location levels
    current.training <- train[[i]] %>% arrange(location, date)
```

```
current.testing <- test[[i]] %>% arrange(location, date)
## TRAINING
# get the model annual component
annual.comp \leftarrow nls(air \sim a+b*sin(2*pi/365*(yday(date)+t0)),
                    start = list(a=0.05, b=5, t0=-26),
                    data=current.training)
# get the air temperature residuals
res <- as.data.frame(matrix(NA, ncol = 2,
                             nrow = length(na.omit(current.training$air))))
# dataframe to store the residuals
colnames(res) <- c("res.t", "location")</pre>
res[,"location"] <- na.omit(current.training$location)</pre>
res[,"res.t"] <- as.vector(residuals(annual.comp))</pre>
res <- res %>% group_by(location) %>%
  mutate(res.t1 = lag(res.t, 1), res.t2 = lag(res.t, 2))
res[,"res.w"] <- residuals(nls(water ~ a+b*sin(2*pi/365*(yday(date)+t0)),</pre>
                            start = list(a=0.05, b=5, t0=-26),
                            data = current.training))
# get the water temperature residual component
residual.comp.ar <- lme(fixed = res.w ~ res.t + res.t1 + res.t2,</pre>
                         random = ~ 1|location,
                         correlation = corAR1(form=~1|location,
                                               0.85, fixed=T),
                         data = res, na.action = na.omit,
                         control = ctrl)
## TESTING
# Annual
preds.annual <- as.data.frame(</pre>
  predict(annual.comp,newdata=current.testing))
preds.annual <- cbind(preds.annual,</pre>
                       current.testing$location, current.testing$date)
colnames(preds.annual) <- c("preds.annual", "location", "date")</pre>
# Residuals
res <- as.data.frame(matrix(NA, ncol = 3,
                             nrow=length(current.testing$air))) #residuals
colnames(res) <- c("res.t", "location", "date")</pre>
res[,"location"] <- current.testing$location</pre>
res[,"date"] <- current.testing$date</pre>
res[,"res.t"] <- current.testing$air - preds.annual$preds.annual</pre>
res <- res %>% group_by(location) %>%
  mutate(res.t1 = lag(res.t, 1),res.t2 = lag(res.t, 2))
pres.ar <- predict(residual.comp.ar, newdata=res, na.action=na.omit,</pre>
                    re.form=~(1|location))
preds.residuals <- cbind(na.omit(res)[,"location"],</pre>
                          na.omit(res)[,"date"],as.data.frame(pres.ar))
# add up both components
```

```
p <- merge(preds.annual, preds.residuals, by=c("location","date"))</pre>
    p[,"preds.ar"] <- p$preds.annual + p$pres.ar</pre>
    ## Calculate RMSE
    compare <- merge(current.testing, p, by=c("location","date")) %>%
      select(location, year, date, water, preds.ar, preds.annual)
    grand.sto[[season]][[i]] <- compare</pre>
  }
}
## Plots
for (loc in loc_seq) {
  df <- grand.sto[[2]][[1]]</pre>
  plot.df <- df[df$location == loc,]</pre>
  diff.ar <- round(sqrt(mean((plot.df$preds.ar-plot.df$water)^2)),2)</pre>
  pl <- ggplot(data=plot.df, aes(x=date))+</pre>
          geom_line(aes(x=date, y=water), color = "black")+
          geom_line(aes(x=date, y=preds.ar), color = "blue")+
          ggtitle(paste(
            loc, ": ", plot.df$year, " (RMSE:", diff.ar, ")"))
  print(pl)
```

bigcreek: 2004 (RMSE: 1.01)

bigotter: 2013 (RMSE: 1.61)

fox: 2014 (RMSE: 1.31)

genesee: 2012 (RMSE: 2.26)

mississagi: 2011 (RMSE: 1.97)

portage: 2012 (RMSE: 2.97)

saginaw: 2012 (RMSE: 2.77)

stlouis: 2014 (RMSE: 1.87)

vermilion: 2013 (RMSE: 1.82)

Non-linear

```
## starting parameters
coef.spring <- c(alpha=20, gamma=5,beta=9)</pre>
coef.summer <- c(alpha=25, gamma=7,beta=10)</pre>
coef.fall <- c(alpha=27, gamma=8,beta=10)</pre>
coef.winter <- c(alpha=11, gamma=8,beta=12)</pre>
coef.annual <- c(alpha=20, gamma=5,beta=9)</pre>
coef.list <- list(coef.spring, coef.summer, coef.fall, coef.winter, coef.annual)</pre>
spring.r <- vector("list", fold)</pre>
summer.r <- vector("list", fold)</pre>
fall.r <- vector("list", fold)</pre>
winter.r <- vector("list", fold)</pre>
annual.r <- vector("list", fold)</pre>
grand.nonlinear <- list(spring.r, summer.r, fall.r, winter.r, annual.r)</pre>
## Iteration starts here
for (season in c(1,2,3,5)) {
  ## Get current season and its corresponding training/testing
```

```
train <- grand_training[[season]]</pre>
  test <- grand_testing[[season]]</pre>
  ## 10 fold iteration starts here
  for (i in 1:fold){
    compare <- NA
    # select current dataset, and all unique location levels
    current.training <- train[[i]]</pre>
    current.testing <- test[[i]]</pre>
    # model training and predicting
    model <- nlme(waterT ~ alpha / (1 + exp(gamma * (beta - airT))),</pre>
                 fixed = list(alpha~1,gamma~1,beta~1),
                 random = gamma ~ 1 | location,
                 start = coef.list[[season]],
                 data=current.training,
                 control = list(maxIter = 1000, tolerance = 1e-02))
    preds <- predict(model, newdata = current.testing, level = 1)</pre>
    p <- as.data.frame(preds)</pre>
    # calculate RMSE
    compare <- cbind(current.testing, preds = p$preds) %>%
      select(location, date, obs = waterT, preds)
    grand.nonlinear[[season]][[i]] <- compare</pre>
  }
}
View(grand.nonlinear[[2]])
```

lag5 with flow

```
## Forms
ctrl = lmeControl(opt='optim')
form3 <- water ~ air + dmean_1 + dmean_2 + dmean_3 + dmean_4 + dmean_5 + I(1/flow)

spring.r <- vector("list", fold)
summer.r <- vector("list", fold)
fall.r <- vector("list", fold)
winter.r <- vector("list", fold)
annual.r <- vector("list", fold)

grand.flow <- list(spring.r, summer.r, fall.r, winter.r, annual.r)

## Iteration starts here
for (season in 1:5) {

    ## Get current season and its corresponding training/testing
    train <- grand_training[[season]]
    test <- grand_testing[[season]]</pre>
```

```
## 10 fold iteration starts here
  for (i in 1:fold){
    # select current dataset, and all unique location levels
    current.training <- train[[i]] %>% arrange(location, date)
    current.testing <- test[[i]] %>% arrange(location, date)
    compare <- current.testing</pre>
    # model training and predicting
    model.ar <- lme(form3,</pre>
                     random = ~1 | location, control = ctrl,
                     na.action = na.omit, data = current.training,
                     correlation=corAR1(form=~1|location, 0.85, fixed=T))
    compare$preds.ar <- as.vector(predict())</pre>
      model.ar, newdata = current.testing, re.form = ~1|location))
    grand.flow[[season]][[i]] <- compare</pre>
  }
View(grand.flow[[4]][[1]])
## Plots
for (loc in loc_seq) {
  df <- grand.flow[[2]][[1]]</pre>
  plot.df <- df[df$location == loc,]</pre>
  diff.ar <- round(sqrt(mean((plot.df$preds.ar-plot.df$water)^2)),2)</pre>
  pl <- ggplot(data=plot.df, aes(x=date))+</pre>
          geom_line(aes(x=date, y=water), color = "black")+
          geom_line(aes(x=date, y=preds.ar), color = "blue")+
          ggtitle(paste(
             loc, ": ", plot.df$year, " (RMSE:", diff.ar, ")"))
  print(pl)
}
```

bigcreek: 2004 (RMSE: 1.26)

bigotter: 2013 (RMSE: 1.9)

fox: 2014 (RMSE: 1.07)

genesee: 2012 (RMSE: 1.54)

humber: 2008 (RMSE: 1.78)

mississagi: 2011 (RMSE: 2.09)

portage: 2012 (RMSE: 2.3)

saginaw: 2012 (RMSE: 2.33)

stlouis: 2014 (RMSE: 1.96)

vermilion: 2013 (RMSE: 1.53)

Comparison at the end

We first compare each model within one specific season.

```
## Spring::
spring.compare <- data.frame(
  lag5 = colMeans(cal.rmse(grand.lag5[[1]], fold)),
  sto = colMeans(cal.rmse(grand.sto[[1]], fold)),
  #nonlinear = colMeans(cal.rmse(grand.nonlinear[[1]], fold)),
  flow = colMeans(cal.rmse(grand.flow[[1]], fold)))

colMeans(spring.compare)

## lag5 sto flow</pre>
```

knitr::kable(spring.compare, digits = 3)

3.082264 3.377733 2.976439

	lag5	sto	flow
bigcreek	2.149	3.539	2.126
bigotter	1.830	2.701	1.656
fox	3.786	3.852	3.824
genesee	3.599	2.961	2.978
humber	3.384	3.089	3.306
mississagi	2.556	3.472	2.505
nipigon	2.164	4.462	2.118
portage	2.857	4.048	2.848

```
lag5
                             flow
                      sto
saginaw
            3.135
                    2.529
                            3.165
still
            3.673
                    1.923
                            3.681
stlouis
            3.917
                    4.492
                            3.962
vermilion
            3.937
                           3.548
                    3.465
```

```
## Summer::
summer.compare <- data.frame(
  lag5 = colMeans(cal.rmse(grand.lag5[[2]], fold), na.rm=T),
  sto = colMeans(cal.rmse(grand.sto[[2]], fold), na.rm=T),
  #nonlinear = colMeans(cal.rmse(grand.nonlinear[[2]], fold)),
  flow = colMeans(cal.rmse(grand.flow[[2]], fold), na.rm=T))

colMeans(summer.compare)

## lag5 sto flow
## 1.886360 2.052192 1.884769

knitr::kable(summer.compare, digits = 3)</pre>
```

lag5	sto	flow
1.169	1.358	1.156
1.477	1.767	1.431
1.640	1.843	1.637
2.130	2.231	2.265
2.103	2.573	2.033
1.786	1.584	1.773
2.845	2.683	2.843
2.319	2.711	2.307
2.267	2.596	2.262
1.550	1.754	1.553
1.834	1.799	1.829
1.517	1.728	1.528
	1.169 1.477 1.640 2.130 2.103 1.786 2.845 2.319 2.267 1.550 1.834	1.169 1.358 1.477 1.767 1.640 1.843 2.130 2.231 2.103 2.573 1.786 1.584 2.845 2.683 2.319 2.711 2.267 2.596 1.550 1.754 1.834 1.799

```
## Fall::
fall.compare <- data.frame(
  lag5 = colMeans(cal.rmse(grand.lag5[[3]], fold)),
  sto = colMeans(cal.rmse(grand.sto[[3]], fold)),
  #nonlinear = colMeans(cal.rmse(grand.nonlinear[[3]], fold)),
  flow = colMeans(cal.rmse(grand.flow[[3]], fold)))

colMeans(fall.compare)

## lag5 sto flow
## 2.581101 3.221028 2.562034

knitr::kable(fall.compare, digits = 3)</pre>
```

	lag5	sto	flow
bigcreek	1.511	3.517	1.505
bigotter	1.297	4.003	1.290
fox	3.783	3.288	3.805

	lag5	sto	flow
genesee	3.147	2.582	2.989
humber	2.348	3.717	2.347
mississagi	2.722	2.762	2.728
nipigon	1.635	3.254	1.636
portage	3.481	3.726	3.471
saginaw	2.834	2.981	2.855
still	2.233	3.218	2.231
stlouis	3.084	2.530	3.098
vermilion	2.900	3.073	2.790

```
## Annual
annual.compare <- data.frame(
  lag5 = colMeans(cal.rmse(grand.lag5[[5]], fold)),
  sto = colMeans(cal.rmse(grand.sto[[5]], fold)),
  #nonlinear = colMeans(cal.rmse(grand.nonlinear[[5]], fold)),
  flow = colMeans(cal.rmse(grand.flow[[5]], fold)))

colMeans(annual.compare)

## lag5 sto flow
## 3.040102 3.150102 3.005924
knitr::kable(annual.compare, digits = 3)</pre>
```

	lag5	sto	flow
bigcreek	1.960	3.110	1.965
bigotter	1.393	3.356	1.386
fox	3.813	3.203	3.830
genesee	3.340	2.541	3.105
humber	2.656	3.288	2.657
mississagi	3.524	3.454	3.531
nipigon	2.870	4.505	2.866
portage	3.079	2.922	3.081
saginaw	3.454	2.554	3.473
still	3.142	2.305	3.140
stlouis	3.955	3.031	3.973
vermilion	3.295	3.531	3.065

We then compare the results of different seasonal scales on each individual model.

```
## Lag5::
lag5.compare <- data.frame(
    spring = colMeans(cal.rmse(grand.lag5[[1]], fold)),
    summer = colMeans(cal.rmse(grand.lag5[[2]], fold)),
    fall = colMeans(cal.rmse(grand.lag5[[3]], fold)),
    winter = colMeans(cal.rmse(grand.lag5[[4]], fold)),
    annual = colMeans(cal.rmse(grand.lag5[[5]], fold)))

colMeans(lag5.compare)
knitr::kable(lag5.compare, digits = 3)</pre>
```

```
## Stochastic::
sto.compare <- data.frame(</pre>
  spring = colMeans(cal.rmse(grand.sto[[1]], fold)),
  summer = colMeans(cal.rmse(grand.sto[[2]], fold)),
 fall = colMeans(cal.rmse(grand.sto[[3]], fold)),
 winter = colMeans(cal.rmse(grand.sto[[4]], fold)),
  annual = colMeans(cal.rmse(grand.sto[[5]], fold)))
colMeans(sto.compare)
knitr::kable(sto.compare, digits = 3)
## Flow::
nonlinear.compare <- data.frame(</pre>
  spring = colMeans(cal.rmse(grand.nonlinear[[1]], fold)),
  summer = colMeans(cal.rmse(grand.nonlinear[[2]], fold)),
 fall = colMeans(cal.rmse(grand.nonlinear[[3]], fold)),
 annual = colMeans(cal.rmse(grand.nonlinear[[5]], fold)))
colMeans(nonlinear.compare)
knitr::kable(flow.compare, digits = 3)
## Flow::
flow.compare <- data.frame(</pre>
  spring = colMeans(cal.rmse(grand.flow[[1]], fold)),
  summer = colMeans(cal.rmse(grand.flow[[2]], fold)),
 fall = colMeans(cal.rmse(grand.flow[[3]], fold)),
  winter = colMeans(cal.rmse(grand.flow[[4]], fold)),
  annual = colMeans(cal.rmse(grand.flow[[5]], fold)))
colMeans(flow.compare)
knitr::kable(flow.compare, digits = 3)
```