PROVA SCRITTA - MATEMATICA DEL CONTINUO - 22.01.21

Corso di Laurea in Informatica - a.a. 2020/21 - Docenti: Cecilia Cavaterra e Anna Gori

PARTE I Indicare la risposta corretta negli spazi del foglio risposte La PARTE I è superata se si risponde correttamente a 3 risposte su 5

1. Le soluzioni dell'equazione $2^x + 4^x = 2$ sono

a)
$$x = \frac{1}{3}$$

b)
$$x = -2 e x = 1$$

b)
$$x = -2 e x = 1$$
 c) $x = 0 e x = -1$

d)
$$x = 0$$

2. Sia $B \subseteq \mathbb{R}$ tale che $\,B = \{ \log_2(-x) \mid \, -1 < x < 0 \}$, allora

a)
$$-2 \in B$$
 b) $B = \emptyset$ c) $0 \in B$ d) $2 \in B$

b)
$$B = \emptyset$$

c)
$$0 \in B$$

d)
$$2 \in E$$

3. Le soluzioni della disequazione $\sqrt{x} > x - 2$ sono

a)
$$x < 4$$

b)
$$0 < x < 4$$

a)
$$x < 4$$
 b) $0 \le x < 4$ c) $0 \le x < 2$

d)
$$x > 0$$

4. Calcolare il valore di $\log_{\frac{1}{2}} \left(2\sqrt[3]{4}\right)$

a)
$$\frac{3}{5}$$

a)
$$\frac{3}{5}$$
 b) $\frac{1}{2\sqrt[3]{4}}$ c) $-2^{\frac{5}{3}}$ d) $-\frac{5}{3}$

c)
$$-2^{\frac{5}{3}}$$

5. Quale di queste espressioni ha senso

a)
$$\log(\cos 2\pi - 1)$$
 b) $\sqrt{\sin 1}$

b)
$$\sqrt{\sin 1}$$

c)
$$\arcsin \pi$$

d)
$$\frac{1}{\arctan 1 - \frac{7}{4}}$$

PARTE II-1 Indicare la risposta corretta negli spazi del foglio risposte

1. (PUNTI 1) Scegliere la proposizione corretta

a) Sia f continua su [a,b] con f(a)>0 e f(b)>0. Allora $f(x)>0, \forall x\in [a,b]$

b) Sia f continua su [a, b] con f(a)f(b) > 0. Allora esiste $x_0 \in (a, b)$ tale che $f(x_0) = 0$

c) Sia f continua su [a, b] con f(a)f(b) < 0. Allora esiste $x_0 \in (a, b)$ tale che $f(x_0) = 0$

d) Sia f continua su [a,b]. Allora f assume tutti i valori compresi tra a e b

2. (PUNTI 1) Scegliere la definizione corretta di $\lim_{x\to +\infty} f(x) = 3$

a) $\exists M > 0$ tale che $\forall x > M$ si ha f(x) = 3

b) $\forall \varepsilon > 0$ si ha $3 - \varepsilon < f(x) < 3 + \varepsilon$

c) $\forall M > 0 \; \exists \; \varepsilon > 0 \; \text{tale che} \; \; \forall x > M \; \text{ si ha } \; 3 - \varepsilon < f(x) < 3 + \varepsilon$

d) $\forall \varepsilon > 0 \; \exists \; M > 0 \; \text{tale che} \; \; \forall x > M \; \text{si ha} \; 3 - \varepsilon < f(x) < 3 + \varepsilon$

3. (PUNTI 1) Sia f continua e derivabile su [a, b]. Sia $x_0 \in [a, b]$.

a) Se $f'(x_0) = 0$ allora x_0 è un punto estremante

b) Se x_0 è un punto estremante allora $f'(x_0) = 0$

c) Se x_0 è punto di massimo assoluto allora $x_0 \in (a, b)$

d) Se x_0 è punto di massimo e di minimo assoluto allora $f(x) = f(x_0), \forall x \in [a, b]$

- 4. (PUNTI 1) Sia f continua su \mathbb{R} e sia $F(x) = \int_0^x f(t) dt$. Allora
 - a) F è crescente su \mathbb{R}
 - b) F è positiva su \mathbb{R}
 - c) F'(x) = f(x) f(0)
 - d) F è derivabile su \mathbb{R}
- 5. (PUNTI 1) Si consideri un insieme $A \subseteq \mathbb{R}$. Allora
 - a) il sup A esiste ed è unico
 - b) il sup A è unico e appartiene a \mathbb{R}
 - c) il $\sup A$ potrebbe non esistere
 - d) se il sup $A \in \mathbb{R}$ allora il sup A coincide con il massimo di A

PARTE II-2 Indicare i passaggi essenziali e le risposte negli spazi del foglio risposte

- 6. (PUNTI 3) Utilizzando la definizione, dimostrare che $\lim_{n\to+\infty} \left(\frac{n}{n^2+2}\right) = 0$
- 7. (PUNTI 3) Trovare le soluzioni in forma algebrica dell'equazione $iz^4\overline{z} + 1 = 0$
- 8. (PUNTI 3) Calcolare la formula di Taylor arrestata al secondo ordine e centrata in $x_0 = 1$ della funzione $f(x) = \sqrt{x+3} \log x$
- 9. (**PUNTI 3**) Calcolare l'integrale $\int_0^1 \frac{1}{x+2\sqrt{x+3}} dx$
- 10. (PUNTI 3) Calcolare il raggio di convergenza della serie di potenze

$$\sum_{n=0}^{\infty} \binom{2n}{n} x^n, \quad \text{dove } \binom{2n}{n} \quad \text{è il coefficiente binomiale}$$

PARTE II-3 Indicare i passaggi essenziali e le risposte negli spazi del foglio risposte

(**PUNTI 10**) Data la funzione
$$f(x) = \frac{2x+3}{x^2+x-2}$$
 determinare:

- 1) l'insieme di definizione; il segno di f; i limiti agli estremi dell'insieme di definizione; eventuali asintoti (orizzontali, verticali, obliqui); f'(x); segno di f'(x); eventuali punti di massimo o minimo
- 2) Disegnare il grafico di f
- 3) Disegnare il grafico di g(x) = |f(x)|
- 4) Disegnare il grafico di h(x) = f(|x|)