Formális nyelvek - 6.

Csuhaj Varjú Erzsébet

Algoritmusok és Alkalmazásaik Tanszék Informatikai Kar Eötvös Loránd Tudományegyetem H-1117 Budapest Pázmány Péter sétány 1/c

E-mail: csuhaj@inf.elte.hu

Hossz-nemcsökkentő grammatikák

Definíció

Egy G=(N,T,P,S) 0-típusú grammatikát hossz-nemcsökkentőnek mondunk, ha bármely $u\to v\in P$ szabályra $|u|\le |v|$ teljesül.

Tétel

Minden hossz-nemcsökkentő grammatika környezetfüggő nyelvet generál.

Bizonyításvázlat:

Legyen G=(N,T,P,S) egy tetszőleges hossz-nemcsökkentő grammatika. Az általánosság megszorítása nélkül feltehetjük, hogy terminális szimbólum csak $A \to a$ alakú szabályban szerepel a P szabályhalmazban, ahol A nemterminális és a terminális.

Legyen $u \to v$ olyan szabály P-ben, amelyre $|u| \ge 2$ és $u \to v$ alakja legyen

$$X_1X_2\ldots X_m\to Y_1Y_2\ldots Y_n$$

 $n \geq m \geq 2$. Akkor az előbbi megjegyzés alapján $X_i, Y_j \in N, \ 1 \leq i \leq m, \ 1 \leq j \leq n$.

Legyen n > m. Helyettesítsünk minden

$$X_1X_2\ldots X_m\to Y_1Y_2\ldots Y_n$$

alakú szabályt a következő szabályhalmazzal, ahol $Z_i \notin N$, $1 \le i \le m$, új, a szabályhoz bevezetett nemterminálisok. (Különböző szabályokhoz páronként diszjunkt új nemterminálishalmazokat vezetünk be.)

Bizonyításvázlat - folytatás:

$$X_1X_2\ldots X_m\to Y_1Y_2\ldots Y_n$$

Helyettesítve:

$$X_1 X_2 \dots X_m \to Z_1 X_2 \dots X_m$$

$$Z_1 X_2 \dots X_m \to Z_1 Z_2 \dots X_m$$

$$\vdots$$

$$Z_1 \dots Z_{m-1} X_m \to Z_1 \dots Z_{m-1} Z_m Y_{m+1} \dots Y_n$$

$$Z_1 \dots Z_{m-1} Z_m Y_{m+1} \dots Y_n \to Y_1 \dots Z_{m-1} Z_m Y_{m+1} \dots Y_n$$

$$\vdots$$

$$Y_1 \dots Y_{m-1} Z_m Y_{m+1} \dots Y_n \to Y_1 \dots Y_{m-1} Y_m Y_{m+1} \dots Y_n$$

Az n=m eset értelemszerű módosítással adódik.

Könnyen látható, hogy így minden egyes hossz-nemcsökkentő szabályt helyettesíthetünk környezetfüggő szabályok halmazával úgy, hogy a generált nyelv nem változik.

Bizonyításvázlat - szemléltetés:

$$X_1 X_2 \dots X_m \Longrightarrow Z_1 X_2 \dots X_m \Longrightarrow Z_1 Z_2 \dots X_m$$

 $\Longrightarrow^* Z_1 Z_2 \dots Z_{m-1} X_m \Longrightarrow Z_1 Z_2 \dots Z_{m-1} Z_m Y_{m+1} \dots Y_n$
 $\Longrightarrow^* Y_1 Y_2 \dots Y_{m-1} Z_m Y_{m+1} \dots Y_n \Longrightarrow Y_1 Y_2 \dots Y_{m-1} Y_m Y_{m+1} \dots Y_n.$

$$X_1X_2 \dots X_m \to Z_1X_2 \dots X_m$$

$$Z_1X_2 \dots X_m \to Z_1Z_2 \dots X_m$$

$$\vdots$$

$$Z_1 \dots Z_{m-1}X_m \to Z_1 \dots Z_{m-1}Z_mY_{m+1} \dots Y_n$$

$$Z_1 \dots Z_{m-1}Z_mY_{m+1} \dots Y_n \to Y_1 \dots Z_{m-1}Z_mY_{m+1} \dots Y_n$$

$$\vdots$$

$$Y_1 \dots Y_{m-1}Z_mY_{m+1} \dots Y_n \to Y_1 \dots Y_{m-1}Y_mY_{m+1} \dots Y_n$$

Korollárium

$$\mathcal{L}_2 \subset \mathcal{L}_1$$
.

Bizonyítás: Az $L = \{a^nb^nc^n \mid n \geq 1\}$ nyelv hossz-nemcsökkentő grammatikával generálható, így környezetfüggő, viszont nem generálható környezetfüggetlen grammatikával.

Megjegyzés: A hossz-nemcsökkentő tulajdonság íly módon ekvivalens a környezetfüggőséggel, azzal a kivétellel, hogy környezetfüggő grammatikák esetében az $S \to \varepsilon$ szabály megléte megengedett.

Megjegyzések a korolláriumhoz

Legyen $G = (\{S, A, B\}, \{a, b, c\}, P, S)$, ahol

$$\{S \to abc, S \to aAbc, Ab \to bA, Ac \to Bbcc, bB \to Bb, aB \to aaA, aB \to aa\}$$

Akkor $L=\{a^nb^nc^n\mid n\geq 1\}$ és G hossz-nemcsökkentő. Legyen $S\Longrightarrow^*a^iAb^ic^i$. Akkor alkalmazzuk a 3. szabályt, majd a 4. szabályt és az $a^ib^iBbc^{i+1}$ szót kapjuk. Ezután csak az 5. szabályt alkalmazhatjuk és $a^iBb^{i+1}c^{i+1}$ -hez jutunk. Ebből a szóból vagy az $a^{i+1}Ab^{i+1}c^{i+1}$ szót vagy az $a^{i+1}b^{i+1}c^{i+1}$ szót nyerhetjük.

Megjegyzések a korolláriumhoz

Megmutatjuk, hogy L nem környezetfüggetlen. Tegyük fel az ellenkezőjét. Legyen $w=a^qb^qc^q\in L$, ahol p,q a Bar-Hillel lemmának megfelelő konstansok. Nyilvánvaló, hogy |w|>q>p. (Lásd a lemma bizonyítását.) Ekkor bármely $u,v,x,y,z\in\{a,b,c\}^*$ -ra, amelyre w=uxvyz, $|xvy|\leq q$, |xy|>0, a lemma alapján fennáll, hogy $uvz\in L$. Viszont, mivel xy az $\{a,b,c\}$ -ből legalább egy betűt nem tartalmaz, így uvz nem lehet L eleme, és így a nyelv nem teljesíti a Bar-Hillel lemma feltételeit, vagyis a nyelv nem környezetfüggetlen.

Bar-Hillel lemma: Minden L környezetfüggetlen nyelvhez meg tudunk adni két p és q természetes számot úgy, hogy minden olyan w szó L-ben, amely hosszabb, mint p w = uxvyz alakú, ahol $|xvy| \le q$, $xy \ne \varepsilon$, és minden ux^ivy^iz szó is benne van az L nyelvben minden $i \ge 0$ egész számra $(u, x, v, y, z \in T^*)$.

Tartalmazás (szóprobléma)

Tétel:

Minden környezetfüggő G=(N,T,P,S) grammatika és minden $u\in T^*$ szó esetén eldönthető, hogy G-ben u levezethető-e vagy sem.

Bizonyításvázlat:

Ha $u = \varepsilon$, akkor a válasz triviális. Ha $u \in T^+$, akkor tekintsük az összes olyan véges

$$S = u_0, u_1, u_2, \dots, u_n = u$$

sorozatot, ahol $u_i \in (N \cup T)^+$ és $|u_i| \le |u_{i+1}|$ teljesül $0 \le i \le n-1$ -re , valamint $u_i \ne u_j$, hacsak $i \ne j$.

Azon $v \in (N \cup T)^+$ szavak száma, amelyekre $|v| \le |u|$ fennáll, véges, ezért a fenti sorozatok száma is véges.

Ezért szisztematikusan elő tudjuk az összes ilyen sorozatot állítani és le tudjuk ellenőrizni, hogy $u_i \Longrightarrow u_{i+1}$, $0 \le i \le n-1$ teljesül-e vagy sem.

Ha van ilyen sorozat, akkor $u \in L(G)$. (A legrövidebb levezetésben nincs szóismétlés.)

Kuroda normálforma

Definíció:

Egy hossz-nemcsökkentő G=(N,T,P,S) grammatikát Kuroda normálformájúnak mondunk, ha minden egyes szabálya

- 1. vagy $A \rightarrow a$,
- 2. vagy $A \rightarrow B$,
- 3. vagy $A \rightarrow BC$
- 4. vagy $AB \rightarrow CD$

alakú, ahol $a \in T$ és $A, B, C, D \in N$.

Kuroda normálforma - folytatás

Tétel:

Minden hossz-nemcsökkentő grammatikához meg tudunk konstruálni egy vele ekvivalens Kuroda normálformájú grammatikát.

Bizonyításvázlat:

Legyen G=(N,T,P,S) egy hossz-nemcsökkentő grammatika, és tegyük fel, hogy terminális szimbólumok csak $A\to a$ alakú szabályokban fordulnak elő, ahol $A\in N, a\in T.$

Ha $u \to v \in P$, valamint |u| = 1 és |v| > 2, akkor a $u \to v$ -t 3. alakú (azaz, $A \to BC$ alakú) szabályokkal tudjuk helyettesíteni a Chomsky normálformára hozás algoritmusának megfelelően.

Ha |u|=|v|= 2, akkor az $u\to v$ szabály 4. alakú (azaz, $AB\to CD$ alakú).

Vagyis elegendő azzal az esettel foglalkoznunk, ha $|u| \ge 2$ és |v| > 2.

Bizonyításvázlat - folytatás

Legyen $u=X_1X_2\ldots X_m$ és $v=Y_1Y_2\ldots Y_n,\ 2\leq m,\ 2< n,\ X_i\in N, 1\leq i\leq m$ és $Y_j\in N, 1\leq j\leq n$. Tegyük fel, hogy n>m, az n=m eset értelemszerű módosítással adódik. Akkor az

$$X_1X_2\ldots X_m\to Y_1Y_2\ldots Y_n$$

szabályt helyettesítjük a

$$X_1X_2 \rightarrow Y_1Z_2 \qquad Z_m \rightarrow Y_mZ_{m+1}$$

$$Z_2X_3 \rightarrow Y_2Z_3 \qquad Z_{m+1} \rightarrow Y_{m+1}Z_{m+2}$$

$$\vdots$$

$$Z_{m-1}X_m \rightarrow Y_{m-1}Z_m \qquad Z_{n-1} \rightarrow Y_{n-1}Y_n$$

szabályokkal, ahol Z_2, \ldots, Z_{n-1} új, a szabályhoz bevezetett nemterminálisok. (Minden fenti alakú szabályhoz páronként diszjunkt új nemterminálishalmazt vezetünk be.)

Bizonyításvázlat - szemléltetés

A $X_1X_2...X_m \rightarrow Y_1Y_2...Y_n$ szabály végrehajtásának szimulálása:

$$X_1 X_2 X_3 \dots X_{m-1} X_m \Longrightarrow Y_1 Z_2 X_3 \dots X_{m-1} X_m \Longrightarrow Y_1 Y_2 Z_3 \dots X_{m-1} X_m$$

$$\Longrightarrow Y_1 Y_2 Y_3 \dots Z_{m-1} X_m \Longrightarrow Y_1 Y_2 Y_3 \dots Y_{m-1} Z_m \Longrightarrow Y_1 Y_2 Y_3 \dots Y_{m-1} Y_m Z_{m+1}$$

$$\Longrightarrow Y_1 Y_2 Y_3 \dots Y_m Y_{m+1} Z_{m+2} \Longrightarrow^* Y_1 Y_2 Y_3 \dots Y_{m-1} Y_{m+1} Y_{m+2} \dots Y_{n-1} Y_n$$

Az alkalmazott szabályok:

$$X_1X_2 \to Y_1Z_2 \qquad Z_m \to Y_mZ_{m+1}$$

$$Z_2X_3 \to Y_2Z_3 \qquad Z_{m+1} \to Y_{m+1}Z_{m+2}$$

$$\vdots$$

$$Z_{m-1}X_m \to Y_{m-1}Z_m \qquad Z_{n-1} \to Y_{n-1}Y_n$$

Bizonyításvázlat - folytatás

Legyen N' az új és az eredeti nemterminálisok halmaza, P' pedig a P halmazból megmaradó és a fenti átalakítással kapott szabályok halmaza. Akkor könnyen látható, hogy a G'=(N',T,P',S) grammatikára $L(G)\subseteq L(G')$ teljesül. A fordított irányú tartalmazás is igazolható.

Kuroda normálforma - folytatás

Korollárium

Minden ε -mentes környezetfüggő nyelv generálható Kuroda normálformájú grammatikával.

0-típusú grammatikák egy normálformája

Tétel

Minden G = (N, T, P, S) 0-típusú grammatikához létezik egy vele ekvivalens G' generatív grammatika, amelynek minden egyes szabályának alakja egyike az alábbiaknak:

$$S \rightarrow \varepsilon, \quad A \rightarrow a,$$
 $A \rightarrow B, \quad A \rightarrow BC,$ $AB \rightarrow AC, \quad AB \rightarrow CB,$ $AB \rightarrow B,$

ahol $a \in T, S, A, B, C, \in N$ és az S kezdőszimbólum csak a szabályok baloldalán fordul elő.

Bizonyításvázlat

Legyen G=(N,T,P,S) egy tetszőleges 0-típusú grammatika. Tegyük fel, hogy P tartalmaz $u\to \varepsilon$ alakú szabályt, ahol $u\in (N\cup T)^+$. Ekkor minden $u\to \varepsilon$ alakú szabályt, ahol $u\in (N\cup T)^+$, helyettesítsünk $uX\to X$ és $Xu\to X$ alakú szabályokkal minden egyes $X\in (N\cup T)$ -re. Jelöljük az újonnan kapott szabályhalmazt P'-vel. Könnyen látható, hogy a G'=(N,T,P',S) grammatika az $L(G')=L(G)-\{\varepsilon\}$ nyelvet generálja.

Ha $\varepsilon \in L(G)$, akkor adjuk hozzá P-hez az $S' \to \varepsilon$ szabályt, ahol $S' \notin N$.

Ezután P'-t átalakítjuk úgy, hogy terminális szimbólumok csak 2. alakú, azaz $A \to a$, $(A \in N, a \in T)$ alakú szabályokban fordulhassanak elő. Ekkor minden további szabály $u \to v$ alakú lesz, ahol $u, v \in N^+$.

A hossz-nemcsökkentő szabályok (azaz, ahol $|u| \le |v|$) esetében a Kuroda normálformára hozás során alkalmazott módszert alkalmazzuk.

Bizonyításvázlat - folytatás

Ezután a hossz-csökkentő szabályokkal foglalkozunk. Minden $X_1 ... X_m \to Y_1 ... Y_n$, ahol $m > n \ge 1$, és $X_i, Y_j \in N$, alakú szabályt helyettesítünk egy szabályhalmazzal, ahol $U_1, ... U_m$, és $Z_1, ... Z_n$ új, a szabályhoz bevezetett nemterminálisok:

$$X_{m-1}X_m \to Z_m U_m \qquad Z_m U_m \to U_m$$

$$X_{m-2}U_m \to Z_{m-1}U_{m-1} \qquad Z_{m-1}U_{m-1} \to U_{m-1}$$

$$\vdots$$

$$X_n U_{n+2} \to Z_{n+1}U_{n+1} \qquad Z_{n+1}U_{n+1} \to U_n Y_n$$

$$X_{n-1}U_n \to U_{n-1}Y_{n-1}$$

$$\vdots$$

$$X_1 U_2 \to U_1 Y_1$$

$$U_1 Y_1 \to Y_1,$$

Itt $AB \to CD$ típusú szabályokat váltunk ki, négy 5. vagy 6. alakú szabállyal $(AB \to AC, AB \to CB)$. Így egy olyan grammatikát kapunk, amely ugyanazt a nyelvet generálja, mint az eredeti G grammatika.

Bizonyításvázlat - szemléltetés

A szabály alkalmazása:

$$X_1 X_2 \dots X_{m-2} X_{m-1} X_m \Longrightarrow X_1 X_2 \dots X_{m-2} Z_m U_m \Longrightarrow X_1 X_2 \dots X_{m-2} U_m \Longrightarrow X_1 X_2 \dots Z_{m-1} U_{m-1}$$

$$\Longrightarrow X_1 X_2 \dots U_{m-1} \Longrightarrow^* X_1 X_2 \dots X_n U_{n+2} \Longrightarrow X_1 X_2 \dots Z_{n+1} U_{n+1} \Longrightarrow X_1 X_2 \dots U_n Y_n$$

$$\Longrightarrow X_1 X_2 \dots U_n Y_n \Longrightarrow X_1 U_2 Y_2 \dots Y_n \Longrightarrow^* U_1 Y_1 Y_2 \dots Y_n \Longrightarrow Y_1 Y_2 \dots Y_n$$

$$X_{m-1}X_m \to Z_m U_m$$
 $Z_m U_m \to U_m$
 $X_{m-2}U_m \to Z_{m-1}U_{m-1}$ $Z_{m-1}U_{m-1} \to U_{m-1}$
 \vdots
 $X_n U_{n+2} \to Z_{n+1}U_{n+1}$ $Z_{n+1}U_{n+1} \to U_n Y_n$
 $X_{n-1}U_n \to U_{n-1}Y_{n-1}$
 \vdots
 $X_1 U_2 \to U_1 Y_1$
 $U_1 Y_1 \to Y_1$,