Segmentation of LiDAR scans using Cylindrical 3D Convolution Network

Zubin Bhuyan

zubin_bhuyan@student.uml.edu

Zhang Zhang

 $zhang_zhang@student.uml.edu$

December 15, 2021

Outline

- Introduction
 - Semantic segmentation of LiDAR scans
- Existing approaches
- Proposed Method
 - Transforming 3D to Cylindrical
 - Proposed framework
- Evaluation & Performance

Introduction

- Semantic scene understanding is essential for many applications.
- Especially for autonomous driving vehicles.
 - Additional depth information.
 - RGB camera, LiDAR, RADAR.
- Much more challenging than detecting 2D image segmentations

Introduction

- Publicly available data and benchmarks have allowed for rapid advancement of the field.
- LiDAR allows accurate measurement for even small objects.
- Semantic segmentation of LiDAR scans is currently one of the most researched areas.
 - Improved scene understanding.
 - Better performance of autonomous driving vehicles in unmapped areas, especially urban setting.

Existing approaches: LiDAR data

- Transform data from 3D to 2D space.
 - Range/depth image based approaches.
 - Bird's-eye-view image based.

- Partition data into 3D cube spaces and apply 3D convolutions.
 - 3D-Voxel.
- Improvement in outdoor scene is minimal.

- Two issues with point cloud data of LiDAR:
 - Sparsity and varying density.
- Most approaches assume uniform distribution and split the space in uniform cubes.
- This results in incorrect representation and later affects the 3D convolution process.

- Two issues with point cloud data of LiDAR:
 - Sparsity and varying density.
- Most approaches assume uniform distribution and split the space in uniform cubes.
- This results in incorrect representation and later affects the 3D convolution process.
- Zhu, et al. in *Cylindrical and Asymmetrical 3D Convolution Networks*, uses 3D cylindrical partitions.

- Zhu, et al. in *Cylindrical and Asymmetrical 3D Convolution Networks*.
- Farther the distance lesser is the point density.

comparison of a standard cubic partition and a cylindrical partition.

• Zhu, et al. in *Cylindrical and Asymmetrical 3D Convolution Networks*.

Proportion of non-empty cells at different distances between cylindrical and cubic partition.

Proposed Method

Transforming 3D euclidian location to cylinder coordinate:

-
$$(x, y, z) \rightarrow (\rho, \theta, z)$$

Then cylindrical partition performs the split on these three dimensions.

Proposed Method

• Pipeline of the cylindrical partition:

Per-point Multi-Layer Perceptions(MLPs) to extract point features, but it lacks local context modeling.

Detailed workflow of MLPs in Cylindrical Partition and Point-wise Refinement Module

Proposed Method

• Pipeline of the cylindrical partition:

Detailed workflow of MLPs in Cylindrical Partition and Point-wise Refinement Module

Overall framework

Asymmetrical residual block strengthens the horizontal and vertical kernels [Ding et al., ACNet: Strengthening the kernel skeletons for powerful CNN via asymmetric convolution.]

Proposed method

- We further improve the model by implementing our sparse convolution checker which was missing in the official implementation.
- Currently our implementation does not show improvement over the SOTA, but it can perform at par with other models.

Experiments and results

- Semantic Kitti dataset
- Implementation was done in PyTorch.

Methods	mIoU	car	bicycle	motorcycle	truck	other-vehicle	person	bicyclist	motorcyclist	road	parking	sidewalk	other-ground	building	fence	vegetation	trunk	terrain	pole	traffic
TangentConv [34]	35.9	86.8	1.3	12.7	11.6	10.2	17.1	20.2	0.5	82.9	15.2	61.7	9.0	82.8	44.2	75.5	42.5	55.5	30.2	22.2
Darknet53 [2]	49.9	86.4	24.5	32.7	25.5	22.6	36.2	33.6	4.7	91.8	64.8	74.6	27.9	84.1	55.0	78.3	50.1	64.0	38.9	52.2
RandLA-Net [16]	50.3	94.0	19.8	21.4	42.7	38.7	47.5	48.8	4.6	90.4	56.9	67.9	15.5	81.1	49.7	78.3	60.3	59.0	44.2	38.1
RangeNet++ [27]	52.2	91.4	25.7	34.4	25.7	23.0	38.3	38.8	4.8	91.8	65.0	75.2	27.8	87.4	58.6	80.5	55.1	64.6	47.9	55.9
PolarNet [51]	54.3	93.8	40.3	30.1	22.9	28.5	43.2	40.2	5.6	90.8	61.7	74.4	21.7	90.0	61.3	84.0	65.5	67.8	51.8	57.5
SqueezeSegv3 [45]	55.9	92.5	38.7	36.5	29.6	33.0	45.6	46.2	20.1	91.7	63.4	74.8	26.4	89.0	59.4	82.0	58.7	65.4	49.6	58.9
Salsanext [10]	59.5	91.9	48.3	38.6	38.9	31.9	60.2	59.0	19.4	91.7	63.7	75.8	29.1	90.2	64.2	81.8	63.6	66.5	54.3	62.1
KPConv [36]	58.8	96.0	32.0	42.5	33.4	44.3	61.5	61.6	11.8	88.8	61.3	72.7	31.6	95.0	64.2	84.8	69.2	69.1	56.4	47.4
FusionNet [48]	61.3	95.3	47.5	37.7	41.8	34.5	59.5	56.8	11.9	91.8	68.8	77.1	30.8	92.5	69.4	84.5	69.8	68.5	60.4	66.5
KPRNet [19]	63.1	95.5	54.1	47.9	23.6	42.6	65.9	65.0	16.5	93.2	73.9	80.6	30.2	91.7	68.4	85.7	69.8	71.2	58.7	64.1
TORANDONet [13]	63.1	94.2	55.7	48.1	40.0	38.2	63.6	60.1	34.9	89.7	66.3	74.5	28.7	91.3	65.6	85.6	67.0	71.5	58.0	65.9
Ours	61.29	96.26	46.2	59.1	44.3	40	64.91	47.87	10.41	93.2	40.71	78.48	7.9	91.8	57.3	88.3	63.75	75.78	63.43	50.48
Cylinder3D	67.8	97.1	67.6	64.0	59.0	58.6	73.9	67.9	36.0	91.4	65.1	75.5	32.3	91.0	66.5	85.4	71.8	68.5	62.6	65.6

Future work

- We plan to continue to work on this project.
 - Improve training optimizations.
 - Test with hyper parameters.
 - Test with nuscenes dataset.

Thank you!