Chapter 4: Polynomials

Linear Algebra Done Right, by Sheldon Axler

Problem 1

Verify all the assertions in 4.5 except the last one.

Proof. Suppose $w, z \in \mathbb{C}$, and let $a, b, c, d \in \mathbb{R}$ be such that w = a + bi and z = c + di.

- Notice $z + \overline{z} = (c + di) + (c di) = 2c = 2\Re(z)$.
- We have $z \overline{z} = (c + di) (c di) = 2di = 2\Im(z)i$.
- Notice $z\overline{z} = (c+di)(c-di) = c^2 + d^2 = (\sqrt{c^2+d^2})^2 = |z|^2$.
- We have $\overline{w+z} = \overline{(a+c)+(b+d)i} = (a-bi)+(c-di) = \overline{w}+\overline{z}$. Also, $\overline{wz} = \overline{(ac-bd)}+\overline{(ad+bc)i} = \overline{(ac-bd)}-\overline{(ad+bc)i}$ and $\overline{w}\,\overline{z} = \overline{(a-bi)}(c-di) = \overline{(ac-bd)}-\overline{(ad+bc)i}$, so that $\overline{wz} = \overline{w}\,\overline{z}$.
- Notice $\overline{\overline{z}} = \overline{c di} = c + di = z$.
- We have $|\Re(z)| = |c| = \sqrt{c^2} \le \sqrt{c^2 + d^2} = |z|$, and similarly $|\Im(z)| = |d| = \sqrt{d^2} < \sqrt{c^2 + d^2} = |z|$.
- Notice $|\overline{z}| = |c di| = \sqrt{c^2 + (-d)^2} = \sqrt{c^2 + d^2} = |z|$.
- We have

$$|wz| = |(ac - bd) + (ad + bc)i|$$

$$= \sqrt{(ac - bd)^2 + (ad + bc)^2}$$

$$= \sqrt{a^2c^2 + a^2d^2 + b^2c^2 + b^2d^2}$$

$$= \sqrt{(a^2 + b^2)(c^2 + d^2)}$$

$$= \sqrt{a^2 + b^2}\sqrt{c^2 + d^2}$$

$$= |w||z|,$$

as desired.

Problem 3

Is the set

$$\{0\} \cup \{p \in \mathcal{P}(\mathbb{F}) \mid \deg p \text{ is even}\}$$

a subspace of $\mathcal{P}(\mathbb{F})$?

Proof. Let $E = \{0\} \cup \{p \in \mathcal{P}(\mathbb{F}) \mid \deg p \text{ is even}\}$. Then E is not a subspace of $\mathcal{P}(\mathbb{F})$. To see this, notice $p(x) = x^2 \in E$ and $q(x) = -x^2 + x \in E$ (since $\deg(-x^2 + x) = 2$), but $p + q = x \notin E$, so that E is not closed under addition. \square

Problem 5

Suppose m is a nonnegative integer, z_1, \ldots, z_{m+1} are distinct elements of \mathbb{F} , and $w_1, \ldots, w_{m+1} \in \mathbb{F}$. Prove that there exists a unique polynomial $p \in \mathcal{P}_m(\mathbb{F})$ such that

$$p(z_j) = w_j$$

for
$$j = 1, ..., m + 1$$
.

Proof. Define

$$T: \mathcal{P}_m(\mathbb{F}) \to \mathbb{F}^{m+1}$$

 $p \mapsto (p(z_1), \dots, p(z_{m+1})).$

It suffices to show that T is an isomorphism, since injectivity implies uniqueness of such a $p \in \mathcal{P}_m(\mathbb{F})$, and surjectivity implies its existence. So we first show that T is a linear map. Suppose $p, q \in \mathcal{P}_m(\mathbb{F})$. Then

$$T(p+q) = ((p+q)(z_1), \dots, (p+q)(z_{m+1}))$$

$$= (p(z_1) + q(z_1), \dots, p(z_{m+1}) + q(z_{m+1}))$$

$$= (p(z_1), \dots, p(z_{m+1})) + (q(z_1), \dots, q(z_{m+1}))$$

$$= Tp + Tq,$$

so that T is additive. Next suppose $\lambda \in \mathbb{F}$. Then

$$T(\lambda p) = ((\lambda p)(z_1), \dots, (\lambda p)(z_{m+1}))$$

$$= (\lambda p(z_1), \dots, \lambda p(z_{m+1}))$$

$$= \lambda (p(z_1), \dots, p(z_{m+1}))$$

$$= \lambda (Tp),$$

so that T is also homogenous. Hence T is a linear map. To see that T is an isomorphism, it's enough to show T is injective. So suppose Tp=0 for some $p\in\mathcal{P}_m(\mathbb{F})$. Then

$$Tp = (p(z_1), \dots, p(z_{m+1})) = (0, \dots, 0),$$

and hence p has m+1 zeros. Since it has degree at most m, p must therefore be the zero polynomial, completing the proof.

Problem 7

Prove that every polynomial of odd degree with real coefficients has a real zero.

Proof. Suppose not. Then there exists some $p \in \mathcal{P}(\mathbb{R})$ of odd degree with no real zeros. By Theorem 4.17, p must be of the form

$$p(x) = c(x^2 + b_1x + c_1) \cdots (x^2 + b_Mx + c_M),$$

where $c, b_1, \ldots, b_M, c_1, \ldots, c_M \in \mathbb{R}$ and $M \in \mathbb{Z}^+$. But then p has even degree, a contradiction. Thus every polynomial of odd degree with real coefficients must indeed have a real zero.

Problem 9

Suppose $p \in \mathcal{P}(\mathbb{C})$. Define $q : \mathbb{C} \to \mathbb{C}$ by

$$q(z) = p(z) \, \overline{p(\overline{z})} \,.$$

Prove that q is a polynomial with real coefficients.

Proof. Suppose p has degree n. Then there exist $c, \lambda_1, \ldots, \lambda_n \in \mathbb{C}$ such that

$$p(z) = c(z - \lambda_1) \cdots (z - \lambda_n).$$

Thus we have

$$q(z) = c(z - \lambda_1) \cdots (z - \lambda_n) \overline{c(\overline{z} - \lambda_1) \cdots (\overline{z} - \lambda_n)}$$

$$= c(z - \lambda_1) \cdots (z - \lambda_n) \overline{c}(z - \overline{\lambda_1}) \cdots (z - \overline{\lambda_n})$$

$$= c\overline{c}(z - \lambda_1) (z - \overline{\lambda_1}) \cdots (z - \lambda_n) (z - \overline{\lambda_n})$$

$$= |c|^2 (z^2 - 2\Re(\lambda_1)z + |\lambda_1|^2) \cdots (z^2 - 2\Re(\lambda_n)z + |\lambda_n|^2),$$

so that q(z) is the product of polynomials with real coefficients. Thus q is itself a polynomial with real coefficients, as was to be shown.

Problem 11

Suppose $p \in \mathcal{P}(\mathbb{F})$ with $p \neq 0$. Let $U = \{pq \mid q \in \mathcal{P}(\mathbb{F})\}$.

- (a) Show that $\dim \mathcal{P}(\mathbb{F})/U = \deg p$
- (b) Find a basis of $\mathcal{P}(\mathbb{F})/U$.

Proof. Suppose deg p = n for some $n \in \mathbb{Z}^+$.

(a) Consider the map

$$T: \mathcal{P}(\mathbb{F}) \to \mathcal{P}_{n-1}(\mathbb{F})$$

 $f \mapsto r(f),$

where r(f) is the unique remainder when f is divided by p. We will show that T is linear, null T = U, and range $T = \mathcal{P}_{n-1}(\mathbb{F})$, so that

 $\mathcal{P}(\mathbb{F})/U \cong \mathcal{P}_{n-1}(\mathbb{F})$. Since $\mathcal{P}_{n-1}(\mathbb{F}) \cong \mathbb{F}^n$ and dim $\mathbb{F}^n = n = \deg p$, this gives the desired result.

First we show T is a linear map. To see this, suppose $f,g \in \mathcal{P}(\mathbb{F})$. Then there exist unique $q_1,q_2 \in \mathcal{P}(\mathbb{F})$ such that $f=q_1p+r(f)$ and $g=q_2p+r(g)$. But then $f+g=(q_1+q_2)p+r(f)+r(g)$, and hence r(f+g)=r(f)+r(g). Thus

$$T(f+g) = r(f) + r(g) = T(f) + T(g),$$

and so T is additive. To see that T is also homogenous, suppose $\lambda \in \mathbb{F}$. Then $\lambda f = (\lambda q_1)p + \lambda r(f)$, and since both the quotient and remainder are unique, we must have $\lambda r(f) = r(\lambda f)$. Therefore

$$T(\lambda f) = \lambda r(f) = \lambda T f,$$

and so T is homogeneous. Thus T is a linear map, as claimed.

Next we show null T = U. Suppose $f \in \text{null } T$. Then Tf = 0, and hence r(f) = 0. That is, there exists $q_1 \in \mathcal{P}(\mathbb{F})$ such that $f = pq_1$, and thus $f \in U$. Conversely, if $g \in U$, then there exists $q_2 \in \mathcal{P}(\mathbb{F})$ such that $g = pq_2$. But then r(g) = 0, and hence Tg = 0 and $g \in \text{null } T$.

Lastly we show range $T = \mathcal{P}_{n-1}$. Of course range $T \subseteq \mathcal{P}_{n-1}$. So suppose $r \in \mathcal{P}_{n-1}$. Then r = 0p + r (where 0 denotes the zero polynomial), and hence Tr = r. Thus range $T = \mathcal{P}_{n-1}(\mathbb{F})$.

(b) We claim $1 + U, x + U, ..., x^{n-1} + U$ is a basis of $\mathcal{P}(\mathbb{F})/U$. Notice none of these vectors is the zero vector since elements of U are of the form pq where $\deg p = n$, so when $q \neq 0$, we have $\deg(pq) \geq n$, and when q = 0, we have pq = 0. Since $1, x, ..., x^{n-1}$ all have degree < n, none can be in U. Clearly the list is linearly independent. Since it has the right length, it's indeed a basis.