

About Me?

• SA-I* group leader

Sustainable Aerostructures Initiative

A fast method of material, design and process eco-selection via topology optimization, for additive manufactured structures

INERA Seminar DIMAS

-2

About Me? https://ica.cnrs.fr/en/author/jmorlier/

• Prof in Structural and Multidisciplinary Optimization

https://topggp.github.io/blog/

About Me? https://ica.cnrs.fr/en/author/jmorlier/

Mach increasing Mach 0.12 0.6 MDO in a Nutshell 0.10 0.4 0.2 0.2 0.08 1.2 ر 0.06 0.0 ک CL 0.0 -0.2-0.2 0.04 0.6 -0.4-0.40.02 -0.6 -0.6 0.05 0.10 5 -5 -5 $\dot{m}_{\rm recirculated}$, $\dot{m}_{\rm transfer}$, \dot{v} , $\dot{\gamma}$, γ , CD_{brake} , mass, Optimizer feed and main tank properties, altitude, range, velocity component temperature defect and altitude, T₄ Flight dynamics altitude, velocity path constraints https://github.com/SMTorg/SMT Mach, density Mach, density Mach, density Atmospherics lift, drag ONERA fuel burn and $= \dot{m}_{\rm burn}$ thrust Propulsion path constraints temperature and Thermal defect constraints

Jasa, J. P., Brelje, B. J., Gray, J. S., Mader, C. A., & Martins, J. R. (2020). Large-Scale Path-Dependent Optimization of Supersonic Aircraft. Aerospace, 7(10), 152.

5

4 disciplines

- Low cost satellite
- HALE: No propulsion
- →Only CO2 footprint PP (no Fuel Burn)

scientific reports

OPEN

CO₂ footprint minimization of solar-powered HALE using MDO and eco-material selection

Edouard Duriez^{1,3}, Víctor Manuel Guadaño Martín^{2,3} & Joseph Morlier^{©1,3}

Embodied carbon (kgCO₂e) =
$$\sum_{\text{Sum for all}} \left(\boxed{\text{Quantity (kg)}} \times \boxed{\text{Carbon factor (kgCO2e/kg)}} \right)$$

Discipline	Method	Implementation	References 28	
Aerodynamics	VLM	OAS		
Structure	Wingbox beams	OAS	17	
Energy	Simple in-house method	Section "OpenAeroStruct to Eco-HALE"	Data from ¹⁴	
Environmental	Proportional to mass	Section "MDO framework summary"	Data from ^{29,30}	

CO2 footprint minimization

(b) Material density for skins and spars:

CAD model of the optimal HALE obtained

A slight increase in the total weight of the drone leads to an increase in the weight of the battery and the solar panel in order to propel a heavier drone,

But also to: an increase in the weight of the wing structure that induces a more important lift to compensate \rightarrow increase in the overall weight of the drone.

→ "snowball" effect.

Au programme Part1:Unit Cell/Material/Process as design variables Part2: Ecodesign of 3D volumetric structures with fiber/resin topology optimization •Bonus SMT2.0

Au programme

Part1: Unit Cell/Material/Process

• Part2: Ecodesign of 3D volumetric structures with fiber/resign Thanks to Edouard topology optimization Duriez

• Bonus SMT2.0

Q: How to find structural designs, materials and additive manufacturing processes with the lowest life-cycle CO2 footprint?

- CO₂ emissions minimization of parts
 - If material choice is imposed => mass minimization

- Mass minimization of parts
 - Redesign through topology optimization
 same performance

- Mass minimization of parts
 - Redesign through topology optimization
 same performance but lower mass

- Mass minimization of parts
 - Redesign through topology optimization
 same performance but lower mass

Ecodesign/Manufacturing

- Mass minimization of parts
 - And some additional constraints

(see Enrico's PhD)

- Reparability
- Fail-safe design
- Reusability and robot for assembly (see NASA MADCAT)

Liu, Y., Wang, Z., Lu, H., Ye, J., Zhao, Y., & Xie, Y. M. (2023, September). Layout optimization of truss structures with modular constraints. In *Structures* (Vol. 55, pp. 1460-1469). Elsevier.

(c) $GWP = 58.6 \text{ kg}_{CO_2e}$

(f) $GWP = 97.2 \text{ kg}_{CO_2e}$

- ${\it CO}_2$ emissions minimization of parts
 - If material choice is free => more complicated
 - > scope of the part of the talk

Process is AM, but WHY?

https://dfam.substack.com/p/dfam-education-in-2022

Ecodesign and Additive Manufacturing

AM environmental opportunities*	AM environmental risks**		
Lower mass	Higher specific energy demand		
Improved resource efficiency	Longer manufacturing times		
Durability (repair/replacement)	Quality issues		
Reduced transport	New process (tooling / choices)		

^{*}S. Ford and M. Despeisse. « Additive manufacturing and sustainability : an exploratory study of the advantages and challenges ». en. In : J. of Cleaner Production 137 (nov. 2016),

^{*}R. Huang, M. Riddle, D. Graziano, Joshua Warren, Sujit Das, Sachin Nimbalkar, Joe Cresko and Eric Masanet. « Energy and emissions saving potential of additive manufacturing : the case of lightweight aircraft components ». en. In : J. of Cleaner Production 135 (nov. 2016)

^{**}C. Herrmann, W. Dewulf, M. Hauschild, A. Kaluza, S. Kara and S. Skerlos. « Life cycle engineering of lightweight structures ». en. In: CIRP Annals 67.2 (jan. 2018)

^{**}D. Chen, S. Heyer, S. Ibbotson, K. Salonitis, J. G. Steingrímsson and S. Thiede. « Direct digital manufacturing : definition, evolution, and sustainability implications ». en. In : J. of Cleaner Production 107 (nov. 2015)

Material/Process as new design variables in MDO

Eco Material selection
Eco Process selection

https://www.ansys.com/blog/the-impact-of-materials-on-sustainability-part-2

Unit cell design (anisotropy)

Digital materials

Multi-scale TO (well connected+ locally-oriented)

A two level optimization that combines Unit cell design & Topology Optimization

Xia L, Breitkopf P (2015) Design of materials using topology optimization and energy-based homogenization approach in Matlab. Struct Multidisc Optim 52(6):1229-1241. https://doi.org/10.1007/s00158-015-1294-0

Wu, Jun, Ole Sigmund, and Jeroen P. Groen. "Topology optimization of multi-scale structures: a review." Structural and Multidisciplinary Optimization 63.3 (2021): 1455-1480.

EMTO results

EMTO on L-shape (cellular /digital materials)

https://github.com/mid2SUPAERO/EMTC

Do you see a difference (Top2Bottom)?

Fig. 23. Examples obtained for a 20×10 macro-scale grid half MBB beam for different volume fractions, both for the new database (top figures) and the original EMTO one (bottom figures). The compliance is reported below each structure.

The Ex-EMTO allows to get truss-like ultra-light designs with very simple shapes.

https://github.com/mid2SUPAERO/Ex-EMTO

Do you see a difference (Left2Right)?

and Local Buckling?

(a) The MBB beam problem.

(c) Cell buckling scores. The selected cells are(d) Micro-structures with cubicity=1 correspond-circled in red. ing to each selected cell.

(e) Final design post-treated for buckling: the micro-structures with cubicity=1 are superimposed on the design and the global volume fraction is brought back to its initial value.

First zoom

Missing point from Ashby's theory: The absence of a simple analytical relation between compliance and volume fraction.

Procedia CIRP

Volume 109, 2022, Pages 454-459

Ecodesign with topology optimization

Edouard Duriez a \boxtimes , Joseph Morlier a , Catherine Azzaro-Pantel b , Miguel Charlotte a

Show more V

https://doi.org/10.1016/j.procir.2022.05.278

Under a Creative Commons license

Get rights and content

Open access

Material index

- If fixed material and process,
 CO₂ minimization = mass minimization
- Material choice through indices introduced by Ashby
 uncouple material choice and part sizing
- ullet Include the geometrical design $(oldsymbol{\mathcal{D}})$ in the variables :

Ashby, M.F., 2004. Materials selection in mechanical design. 2. ed., reprinted ed., Elsevier Butterworth-Heinemann, Amsterdam.

ONERA Seminar DMAS

Deriving the material index

Problem considered:

arg min
$$CO_2^{tot}(mat, \mathcal{D}, t)$$

 $s.t.$ $\delta \leq \delta_{max}$
 $mat = \{E, \rho, CO_{2mat}^i\} \in \Phi$
 $0 < v_f(\mathcal{D}) \leq 1$

• Objective function:

$$CO_2^{tot} = CO_2^{mat} \times M + CO_2^{veh} \times LD \times M$$

How many miles does an airplane like a 777 fly over the course of its lifetime?

777: A 30-year lifetime. 3,500 hours a year as an average. An average speed of 500 miles per hour. $30 \times 3500 \times 500 = 52,500,000$ miles i.e. LD.

Topology optimization pareto front

 V_f : volume fraction (ratio of space containing material) $f(V_f)$: compliance – volume fraction pareto front

ONERA Seminar DMAS

Edouard Duriez, Miguel Charlotte, Catherine Azzaro-Pantel et al. On some properties of the compliance-volume fraction Pareto front in topology optimization useful for material selection., 27 December 2022, PREPRINT (Version 1) available at Research Square [https://doi.org/10.21203/rs.3.rs-2390440/v1]

Sigmund, O., Aage, N., & Andreassen, E. (2016). On the (non-) optimality of Michell structures. *Structural and Multidisciplinary Optimization*, *54*, 361-373.

Deriving the material index

• Problem considered:

arg min
$$CO_2^{tot}(mat, \mathcal{D}, t)$$

 $s.t.$ $\delta \leq \delta_{max}$
 $mat = \{E, \rho, CO_{2mat}^i\} \in \Phi$
 $0 < v_f(\mathcal{D}) \leq 1$

• Objective function:

$$CO_2^{tot} = CO_2^{mat} \times M + CO_2^{veh} \times LD \times M$$

Deriving the material index

starting from
$$\ C = U^TKU = U^TF = U(i_F)F(i_F) = FU(i_F)$$
 $\ M = \rho t Lh V_f$

• Problem considered:

compliance

$$C \leq F\delta_{max}$$

$$\frac{f(V_f)F}{tE} = \delta_{max}$$

If t is a free variable, it can be chosen as in compliance to achieve the minimum mass.

$$t = rac{f(V_f)F}{\delta_{max}E}$$
 thus $M = rac{LhF}{\delta_{max}}rac{
ho}{E}f(V_f)V_f$

$$CO_2^{tot} = \frac{(CO_2^{mat} + LD CO_2^{veh}) \times \frac{\rho}{E} \frac{LhF}{\delta_{max}} f(V_f) V_f}{Material f_3(M)}$$
 functional $f_1(F)$ topology index $f_2(G)$

REMINDER!

- Many materials
- Competing properties

• => Ashby indexes: $f_3(M)$

$$P=f_1(F)\times f_2(G)\times f_3(M)$$

F: Functional constraints

G: Geometrical constraints

M: Material properties

M. F. Ashby et Kara Johnson. « Materials and Design : The Art and Science of Material Selection in Product Design ». In : 2002.

Minimize topology index

topology index $f_2(G)$

- Topology index : $f(V_f)V_f$: Minimize this to minimize mass
- Thickness t is finally adjusted to satisfy constraint

Data for Material index functional improvement can be found in lightweight

components for transport systems

Table 8. Fuel consumption reduction coefficients for different vehicle types and related life time impact savings per kg of weight reduction.

Transport system	Energy source	FRC [26]	Service life	Eco-Impact (ReCiPe H/A)	Life time savings (ReCiPe H/A)	Equivalent electrical energy
Gasoline car	Gasoline	0.51/(100kg*100km)	200000km	0.121 Pts/l	1.21 Pts/kg	85 MJ
Diesel car	Diesel	0.241/(100kg*100km)	200000km	0.141 Pts/I	0.68 Pts/kg	48 MJ
Short distance train	Electricity	300 kJ / (1000kg*km)	$3.5*10^6 \text{km}$	0.051 Pts/kWh	14.88 Pts/kg	1050 MJ
Long distance train	Electricity	100 kJ / (1000kg*km)	$10*10^6 \text{ km}$	0.051 Pts/kWh	14.17 Pts/kg	1000 MJ
Short distance aircraft	Kerosene	12.5 ton / (100kg*year)	25 year	0.134 Pts/l	335 Pts/kg	23647 MJ
Long distance aircraft	Kerosene	103 ton / (100kg*year)	25 year	0.134 Pts/l	2760 Pts/kg	194852 MJ

Kellens, Karel, et al. "Environmental impact of additive manufacturing processes: does AM contribute to a more sustainable way of part manufacturing?." Procedia Cirp 61 (2017): 582-587.

Code

```
%Al alloy Stainless Steel Ti alloy inconel
Emat=[70.8, 197, 115, 205].*10^9;
rhomat=[2795, 7915, 4425, 7900];
co2mat=[13, 6.15, 40.4, 15.5];
L=2; %m
h=0.5; %m
delta_max=0.005;
F=20000;
```

```
life=25;
FRC=103; %tonco2/100kg/year
lifekero=FRC*life*1000/100; %kgco2/kg
%from ADEME : jet A in France or europe : 3.83kgeCO2/kg.
emitkero=3.83; %kgco2 / kg kerosen
lifeco2=lifekero*emitkero;
co2veh=lifeco2/lveh; %kgCO2/km
```

```
load('complHRr3.csv')
cPl=complHRr3(:,2);
%filtering
  win=1000;
  xgauss=0:1:win-1;
  sig=win/8;
  ygauss=1/(sig*sqrt(2*pi))*exp(-0.5*(xgauss-(win-1)/2).^2./sig^2);
  cFiltG=conv(cPl,ygauss);
  cFiltGT=cFiltG(win:end-win);
%
%cpareto=complHRr3(:,2); %raw pareto %Pando % multistart
cpareto=cFiltGT;
vpareto= 0.01:0.0001:1;
vpareto=vpareto(win/2:end-win/2-1);%
figure(1)
plot(vpareto, cpareto);
```



```
Code (bis)
```

```
figure(2)
plot(vpareto, vpareto'.*cpareto);

[optimalvfv, optimalvf]=min(vpareto'.*cpareto);
optVf=vpareto(optimalvf);

%Al alloy Stainless Steel Ti alloy inconel
for material=1:4 % 2 or 3 or 4

thick(material)=cpareto(optimalvf)*F/delta_max/Emat(material);
mass(material)=L*h*thick(material)*optVf*rhomat(material);
co2mat(material)
Idx_veh(material)=(Emat(material)/rhomat(material))*(co2mat(material)+lveh*co2veh)
Idx_bridge(material)=(Emat(material)/rhomat(material))*(co2mat(material))
Impact_CO2veh(material)=(co2mat(material)+lveh*co2veh)*mass(material);
Impact_CO2veh(material)=(co2mat(material))*mass(material);
```

Al alloy Stainless Steel Ti alloy inconel

```
Material f_3(M) IS
Idx = (CO_2^{mat} + LDCO_2^{veh}) \times \frac{\rho}{E}
Search for lower Idx
depending on the application
```

```
mass = 5.3807    5.4761    5.2445    5.2525

co2mat = 13.0000    6.1500    40.4000    15.5000

Impact_CO2veh = 1.0e+05 * 5.3073    5.4011    5.1744    5.1809

Impact_CO2bridge = 69.9492    33.6783    211.8788    81.4133

Idx_veh = 1.0e+12 * 2.4985    2.4548    2.5641    2.5596

Idx bridge =1.0e+09 * 0.3293    0.1531    1.0499    0.4022
```

Results

• Results change depending on the application:

Aircraft

Material	E (GPa)	$\rho (kg/m^3)$	$CO_{2mat}^{i} \ (kgCO_{2}/kg)$	$Idx \\ (kgCO_2/N/n$	
Al alloy	70.8	2795	13.0	3.90×10^{-3}	
Stainless steel	197	7915	6.15	3.97×10^{-3}	
Ti alloy	115	4425	40.4	3.80×10^{-3}	
Inconel 713	205	7900	15.5	3.81×10^{-3}	

mass: 5,24kg 5.2445

 CO_2 emissions:

517 tons 1.0e+05 * 5.1744

Pedestrian bridge

Material	E (GPa)	$\frac{\rho}{(kg/m^3)}$	$CO^{i}_{2mat} \\ (kgCO_{2}/kg)$	$Idx \\ (kgCO_2/N/m$	
Al alloy	70.8	2795	13.0	5.13 ×10 ⁻⁷	
Stainless steel	197	7915	6.15	2.47×10^{-7}	
Ti alloy	115	4425	40.4	1.56×10^{-6}	
Inconel 713	205	7900	15.5	5.97×10^{-7}	

mass: 5,47kg ^{5.4761}

 CO_2 emissions:

33,67 kg 33.6783

To go deeper

Cleaner Environmental Systems

A fast method of material, design and process eco-selection via topology optimization, for additive manufactured structures

Edouard Duriez ^a $\overset{\circ}{\bowtie}$, Catherine Azzaro-Pantel ^b, Joseph Morlier ^a, Miguel Charlotte ^a

Properties	Bending beam (Ashby)	Bending plate (Ashby)	Duriez et al. (2022b)	Our problem	Get rights and content
Free variables	a, <i>m</i>	h, <i>m</i>	t, <i>D</i> , m	\mathcal{D} , m , p	
Fixed	L, <i>D</i>	L, t, <i>D</i>	L_{\max} , h_{\max}	L_{\max} , h_{\max} , t_{\max}	
Constraint	δ_{max}	δ_{max}	δ_{max}	$\delta_{ ext{max}}$	

Au programme

- Part1: Unit Cell/Material/Process as design variables
- Part2: Ecodesign of 3D volumetric structures with fiber/resin topology optimization
- Bonus SMT2.0

Thanks to Enrico Stragiotti (Déjà vu), Alexandre Coehlo and Gustavo Asai

X* is a UHAR Wing i) Composites Fiber Placement as DVs https://www.compositesworld.com/articles/tow-steering-part-2-the-next-generation Upper skin 2.5 g Buckling 2.5 g Failure Tow path

Panel thickness Lower skin Tow path 2.5 g Failure -1 g Buckling Buckling/Failure Panel Thickness (mm) Main Tow Path 0 0.25 0.5 0.75 1 3 6 9 12 15 18

Brooks, T. R., Martins, J. R., & Kennedy, G. J. (2019). High-fidelity aerostructural optimization of tow-steered composite wings. Journal of Fluids and Structures, 88, 122-147.

Brooks, T. R., Martins, J. R., & Kennedy, G. J. (2020). Aerostructural tradeoffs for tow-steered composite wings. Journal of Aircraft, 57(5), 787-799.

Lower wing mass, Less fuel burn

GE Bracket by Schmidt et al., Struct. Multidiscip. Optim. (2020)

First in 2D:

In-plane fibre orientations

Optimisation problem formulation

$$\min_{\boldsymbol{\rho},\boldsymbol{\theta}} \boldsymbol{c}(\boldsymbol{\rho},\boldsymbol{\theta}) = \sum_{\boldsymbol{e}} \rho_{\boldsymbol{e}}^{\boldsymbol{\rho}} \boldsymbol{u}_{\boldsymbol{e}}^{\boldsymbol{T}} \boldsymbol{k}_{\boldsymbol{0}}(\theta_{\boldsymbol{e}}) \boldsymbol{u}_{\boldsymbol{e}}^{\boldsymbol{T}}$$

$$\operatorname{s.t.} \begin{cases} \frac{V(\boldsymbol{\rho})}{V_0} \leq f \\ \boldsymbol{K}\boldsymbol{U} = \boldsymbol{F} \\ 0 < \rho_{min} \leq \boldsymbol{\rho} \leq 1 \\ -\pi \leq \boldsymbol{\theta} \leq \pi \end{cases}$$

solved with initial random point

Filters

$$\rho_{e} \frac{\widetilde{\partial c}}{\partial \rho_{e}} = \frac{1}{\sum_{i} H_{ei}^{\rho}} \sum_{i} H_{ei}^{\rho} \rho_{i} \frac{\partial c}{\partial \rho_{i}} \qquad \qquad \widetilde{\theta}_{e} = \frac{1}{\sum_{i} H_{ei}^{\theta} \rho_{i}} \sum_{i} H_{ei}^{\theta} \rho_{i} \theta_{i}$$

$$H_{ei}^{\rho} = \max(0, r_{\rho} - \Delta(e, i)) \qquad \qquad H_{ei}^{\theta} = \max(0, r_{\theta} - \Delta(e, i))$$

AFP?

Problem 1 - MBB beam

2D and in-plane 3D solutions were compared to verify the sensitivity calculations for 3D elements

- ▶ Half MBB beam, 186 mm \times 80 mm \times 8 mm
- ► Element size: 4 mm
- Volume fraction constraint: 0.3
- ▶ Density filter radius: 8 mm ⇒ 3D layers behave similar to 2D
- Orientation filter radius: 20 mm
- Same initial orientation: 50°

AFP?

Problem 1 - MBB beam

► 2D - Comp. = 2691 N.mm

► 3D - Comp. = 2733 N.mm

8/12

CO27

In this work, the environmental impact of the structure is measured in terms of the mass of CO_2 emitted during material production $CO_{2,mat}$ and during its use in a long distance aircraft $CO_{2,use}$, following the methodology from [1], adapted to composite materials. The value used to compare different designs is the total footprint $CO_{2,tot} = CO_{2,mat} + CO_{2,use}$.

The impact of the material production depends on the total mass M and the CO_2 intensity of the material $CO_{2,mat}^i$ (mass of CO_2 emitted per mass of material). Its expression is given by (8), where ρ_f is the fiber density, $CO_{2,f}^i$ is the fiber CO_2 intensity, ρ_m is the matrix density, $CO_{2,m}^i$ is the matrix CO_2 intensity, and V_f is the fiber volume fraction in the composite material.

$$CO_{2,mat} = M \cdot CO_{2,mat}^{i} = M \cdot \frac{\rho_{f} V_{f} CO_{2,f}^{i} + \rho_{m} (1 - V_{f}) CO_{2,m}^{i}}{\rho_{f} V_{f} + \rho_{m} (1 - V_{f})}$$

The impact of the use phase is calculated as the emissions that would be saved if the component was lighter. Reducing the mass by 1 kg in a long distance aircraft leads to a reduction of 98.8 t CO_2 during its lifetime [1], i.e., $CO_{2.use} = M \cdot 98.8$ t CO_2/kg .

CO2?

	Material	$ ho \ ({ m kg/m^3})$	E (GPa)	ν	$CO_2^i \ (\mathrm{kg}\ CO_2/\mathrm{kg})$
	Bamboo	700	17.5	0.39	1.0565
	Flax	1470	53.5	0.355	0.44
Fibers	Hemp	1490	62.5	0.275	1.6
	HM Carbon	2105	760	0.105	68.1
	S-Glass	2495	89.5	0.22	2.905
Resins	PLA	1255	3.45	0.39	2.28
	PETG	1270	2.06	0.403	4.375
	Epoxy	1255	2.41	0.399	5.94

FIGURE 4 – Compliance versus CO_2 footprint of the optimal designs with natural fibers. Each design is represented by its fiber and resin.

Maps of compliance versus CO2

100

FIGURE 4 – Compliance versus CO_2 footprint of the optimal designs with natural fibers. Each design is represented by its fiber and resin.

FIGURE 4 – Compliance versus ${\it CO}_2$ footprint of the optimal designs with natural fibers. Each design is represented by its fiber and resin.

For non structural parts

COMPARISON AT HIGH COMPLIANCE

For nonstructural parts, where providing stiffness is not the main function, e.g. aircraft interior, fiberglass is a typical choice. A bamboo/cellulose design was considered as substitute to minimise footprint for fixed f.

FIGURE 3 – Compliance versus CO_2 footprint of the optimal designs. Each point represents a fiber/resin/ V_f combination, colored and grouped by fiber.

For non structural parts

TABLE 4 – Structures optimised for minimum footprint at f = 0.35.

fiber	Resin	Compliance (N.mm)	<i>M</i> (g)	$CO_{2,tot}$ (kg CO_2)		
S-glass	Polyester	604	72.7	7173		
Bamboo	Cellulose	2049	31.7	3122		

FIGURE 6 – Final designs optimised at f = 0.35: S-glass/polyester (left) and bamboo/cellulose (right).

Results for f = 0.35 are shown in Fig. 6 and Table 4, bamboo presents 56.4% less mass and CO2 emission with 3.4 times more compliance, which might be acceptable when loading is not critical.

For structural parts

COMPARISON AT 1100N.MM

For main structural components, where stiffness is an important requirement, carbon fiber is typically used. A HM carbon/epoxy, an S-glass/polyester and a hemp/PLA design (all with 0.5 fiber volume fraction) were optimised to achieve a compliance of 1100 N.mm by varying Vf.

FIGURE 3 – Compliance versus CO_2 footprint of the optimal designs. Each point represents a fiber/resin/ V_f combination, colored and grouped by fiber.

Ongoing work with Prof Masania

2.5x stronger-50% weight

Ongoing work https://www.youtube.com/watch?v=7Jxyu9uRMLo

Fang, G., Zhang, T., Huang, Y., Zhang, Z., Masania, K., & Wang, C. C. (2024). Exceptional mechanical performance by spatial printing with continuous fiber: Curved slicing, toolpath generation and physical verification. Additive Manufacturing, 104048.

STEP 1 MATERIAL SELECTION

[UNPUBLISHED]From Manufacturable to EcoOptimized part https://github.com/mid2SUPAERO/SOMP_Ansys

58

Add Ecomaterial selection, printability and of course opensource framework (but need an ANSYS LICENCE)

Figure 9: Isosurfaces of density 0.55 for different materials.

Figure 10: Isosurfaces of the optimal designs for each printing direction.

https://github.com/mid2SUPAERO/SOMP_Ansys

Add Ecomaterial selection, printability and of course opensource framework (but need an ANSYS LICENCE)

Figure 7: Compliance versus material production footprint of the optimal designs, grouped by fiber.

Figure 11: Examples of fiber distribution on slices of the optimal designs.

Figure 16: Isosurfaces of the optimal designs for random and 0° initial orientations.

https://github.com/mid2SUPAERO/SOMP_Ansys

Figure 8: Compliance versus total footprint of the optimal designs, grouped by fiber.

Au programme

- Part1:Unit Cell/Material/Process as design variables
- Part2: Ecodesign of 3D volumetric structures with fiber/resin topology optimization
- Bonus SMT2.0

Bonus (Extracted from a recent poster https://gdr.igaia.cnrs.fr)

SMT 2.0: A Surrogate Modeling
Toolbox
applied to Material Discovery
Prof. Joseph Morlier
Paul Saves, Nathalie Bartoli, Thierry Lefebvre
(ONERA)

Main Idea

Can we applied SMT2 to Material Discovery?

Variables types:

- Continuous (x)
- Ex: wing length

- Integer (z)
- Ex: winglet number

- Categorical (u)
- Ex: Plane shape / material properties

Categorical variables:

n variables, n=2

u1= shape

u2= color

<u>Levels:</u> L_i levels for I in 1,..n,

 $L_1=3$, $L_2=2$

Levels(u1)= square, circle,

rhombus

Levels(u2)= blue, red

Categories: $\prod_{i=1}^{n} L_i$, 2*3=6

- Blue square
- Blue circle
- Blue rhombus 6 possibilities
- Red square
- Red circle
- Red rhombus

Data

Example in Battery Engineering Agrawal, D., Crystal System Properties for Li-ion batteries, Properties of Li-ion silicate to predict the crystal system class of the battery, Kaggle, March 2020.

▲ Materials Id =	A Formula	=	≜ Spacegroup	=	# Formation Ene =	# E Above Hull (=	# Band Gap (eV) =	# Nsites =	# Density (gm/cc) =	# Volume =	√ Has Bandstruc
The unique ID of the material as stated on materialsproject.org	Chemical forms the material	ula of	Spacegroup		Formation Energy	Energy if decomposition of material into most stable ones	Band Gap (in eV)	Number of atoms in the unit cell of the crystal	The density of bulk crystalline materials	The unit cell volume of the material	Boolean variable for bandstructure
339 unique values	LiFeSiO4 LiCoSiO4 Other (268)	12% 9% 79%	P1 P21/c Other (235)	21% 9% 69%	-2.98 -2.0	0 0.19	0 3.82	10 132	2.2 4.2	123 1.52k	true 274 81% false 65 19%

Bonus

Predict y the crystal structure type (monoclinic, orthorhombic, triclinic)
from X Lithium-ion physical and chemical compound information

i.e. learn from learning database y=f(x)

scikit-learn with 80/20 dtree w/wo specific features (sf)

SMT with <u>10/90 (!!)</u> wo sf

Conclusions

- Proof of concept of greener aerostructures
- Design acceleration through SMT2.0
- Link between education and research in the topic of sustainable aerostructures
- This is also the topic of our LISA project with TU DELFT AE

Source: 3D Printing World Environment Day GIF By General Electric

ONERA Seminar DMAS

Perspectives

In aircraft design: min {mass} is proportional to min {CO2PP}

Manufacturing < 1% of total aircraft emissions

This is not true for launchers, HALE drones...

So there is work for us!!!

MERCI Institut Supérieur de l'Aéronautique et de l'Espace 10, avenue Edouard Belin – BP 54032 31055 Toulouse Cedex 4 – France T +33 5 61 33 80 80 www.isae-supaero.fr ISAE Institut Supérieur de l'Aéronautique et de l'Espace SUPAERO