Tip Detection and Guidance for Automatic Inspection of Lightning Surges on Wind Turbine Blade

s1270144 Shuto Homma Sperviser: Yuichi Yaguchi {s1270144, yaguchi}@u-aizu.ac.jp

Introduction

Target:

- Detecting the blade tips of wind turbine generators
- Performing autonomous blade tip inspections by UAS.

Background:

- Human Inspection(Conventional Method):
 - → Large cost in labor and time.
- Drone Inspection(My research Method):

Problem:

How to make the autonomous navigation to touch a narrow object.

Tether

Probe

Research Requirement

My Reserch Method: Existing Method: VLOS Flight:

Minimum Flight Distance Long Flight Distance Maneuvering skills required.

It doesn't take time.

It takes long time.

Target UAS

- The test aircraft: an eight-engine plane manufactured by DJI M600.
 - The height of estimated inspection probe arm: 100 cm.
- The onboard camera: Insta 360 ONE R.
 - The three onboard cameras are not synchronized.
 - The image size: 1920*1080
 - The frame rate: 30 fps
 - The horizontal distance from each camera to the arm: 30 cm
 - The distance between cameras 1 and 2 or 3: 50 cm
 - The distance between cameras
 2 and 3: 50 cm

Target UAV

Objective of this research

- 1. Three cameras capture one tip as the butt end.
- 2. Obtain blade tips.
- 3. The points of the camera and tips are illustrated in Fig.
- 4. The center of gravity of the triangle created by 3 is the tip.
- 5. Move the drone so that the tip is aligned with the center of the outer triangle.

Example on the left:

Vertical: UP

Horizon: Right Front

Inspection System Design

Main Process

- Invoke three camera process to get blade tip pixel position of each camera.
- Calculate vertical and horizontal distance from UAV to blade tip.
- Generate UAV control commands from horizontal misalignment and vertical distance.
- Camera is not synchronized.
- Camera Process
 - Capture camera image.
 - Do shrink before GrabCut
 - Extract blade area using GrabCut.
 - Find blade tip.
 - Stock result on the Queue.

Blade Area Detection

Blade Tip Detection

- 1. Grabcut
- 2. Noise Reduction (Comparison of acquisition area)
- 3. Select direction of tip
- 4. The direction directly opposite to the direction of 3 is the standard point.
- 5. The furthest point in Manhattan distance from the standard point of 4 is the tip.

Principles of Tracking

Connections between modules

Experimental Result (on February 1 and 7, 2023)

- A hovering test was conducted at at the Fukushima Renewable Energy Laboratory.
- \rightarrow The drone hovered at a distance of approximately 1m and remained stationary for approximately 20s.
- Response delay of 0.4 to 0.5 sec.
- \rightarrow In windy conditions, precessional motion occurs.
- The GrabCut process reduces fps.
- → To solve this problem, it is necessary to shrink the image before GracCut.

Conclusion

- We proposed an autonomous operation of a small UAV to touch a tip of a wind turbine propeller to guide by image processing.
- If the wind is less than 5 meters, it can follow and approach without problems.
- The propeller could be recognized continuously if the frame rate was sufficient.
- It was confirmed that when the frame rate is small, the amount of change in the image of the target blade increases with the amount of movement, making tracking impossible.

Reference

- [1] Jordan, S., Moore, J., Hovet, S., Box, J., Perry, J., Kirsche, K., ... & Tse, Z. T. H. (2018). State of the art technologies for UAV inspections. IET Radar, Sonar & Navigation, 12(2), 151-164.
- [2] Chan, B., Guan, H., Jo, J., & Blumenstein, M. (2015). Towards UAV-based bridge inspection systems: A review and an application perspective. Structural Monitoring and Maintenance, 2(3), 283-300.
- [3] Rakha, T., & Gorodetsky, A. (2018). Review of Unmanned Aerial System (UAS) applications in the built environment: Towards automated building inspection procedures using drones. Automation in Construction, 93, 252-264.
- [4] Rother, C., Kolmogorov, V., & Blake, A. (2004). "GrabCut" interactive foreground extraction using iterated graph cuts. ACM transactions on graphics (TOG), 23(3), 309-314.

Thank you

GrabCut Algorithm

Reason for camera chage

Fish-eye camera

Insta 360 ONE R

Reason for there are three cameras.

Reason for I did not use machine learning

Recepter Inspection

- The tips of wind turbine blades have lightning receptors to prevent failure due to direct lightning strikes.
- Human Inspection(Conventional Method):
 - → Large cost in labor and time.

• Drone Inspection(My research Method):

High voltage activity inside blade damages structure

Tracking Error

Tracking error: It occurs when the frame position and mask are not aligned. Grabcut of non-blades such as clouds and windmills.

Target UAV

Target UAV

How to get the tip of wind brade.

