Properties of Maximum Likelihood Estimators

ASSUMPTIONS

- 1. $(X_1, X_2, X_3...)$ is an infinite sequence of I.I.D. continuous random variables
- 2. $f(X|\theta)$ is a family of probability density functions, with parameter θ in a compact space
- 3. if $\theta_1 \neq \theta_2$, then the resulting distributions are different $(P(f(X|\theta_1)/f(X|\theta_1)\neq 1)>0)$
- 4. f is continuous in θ .
- 5. The log-likelihood is integrable ($\mathsf{E}\big[|\ln f(\mathsf{X}|\theta)|\big]<\infty$ for all θ)

1

MLE: CONSISTENT WHEN THE MODEL IS TRUE

Theorem: Consistency of MLE

If $(X_1, X_2, X_3...)$ are drawn from $f(X|\theta_t)$ for some parameter θ_t , then under assumptions 1-5,

$$\theta_{\textit{MLE}} \stackrel{\textit{p}}{\rightarrow} \theta_{\textit{t}}$$

MLE: "Close" when the Model is False

Theorem: MLE and KL divergence

If $(X_1, X_2, X_3...)$ are drawn from some distribution g, and θ_c minimizes the KL divergence,

$$\mathsf{KL}ig[f(\cdot| heta)\|gig] = \int_{-\infty}^{\infty} f(x| heta)\lograc{f(x| heta)}{g(x)}dx$$

Then under assumptions 1-5,

$$\theta_{\text{MLE}} \xrightarrow{p} \theta_{\text{c}}$$

3

EXTRA ASSUMPTIONS

- 6. The parameter θ_0 that maximizes likelihood is in the interior of the parameter space.
- 7. Likelihood is twice continuously differentiable.
- 8. Intergration and differentiation operators are interchangeable for likelihood.
- 9. The Fisher information, $I(\theta_{\rm o}) = -{\rm E}[\frac{\partial^2}{\partial \theta^2} \ln f(X|\theta)|\theta = \theta_{\rm o}]$ exists and is nonsingular.

MLE: ASYMPTOTICALLY NORMAL

Theorem: MLE is asymptotically normal

Under assumptions 1-9,

$$\frac{\theta_{MLE} - \theta_{O}}{\sqrt{n}} \stackrel{d}{\rightarrow} N(O, 1/I(\theta_{O}))$$

MLE: ASYMPTOTICALLY EFFICIENT

Theorem: MLE is asymptotically efficient

Under assumptions 1-9, $\theta_{\textit{MLE}}$ is asymptotically efficient.

SUMMARY OF MLE PROPERTIES

- Consistent when the model is true
- As close as possible when the model is false
- Asymptotically normal
- Asymptotically efficient

Handling Outliers

OUTLIERS

Outlier definition

An outlier is:

A data point that is unusual (or unlikely)

OUTLIERS

Outlier definition

An outlier is:

- A data point that is unusual (or unlikely)
- With respect to some statistical model

WHERE IS THE OUTLIER? PART I

WHERE IS THE OUTLIER? PART II

WHERE IS THE OUTLIER? PART III

WHERE IS THE OUTLIER? PART IV

LESSONS

- Outliers are interesting.
- An outlier could be telling you something important.
- Never remove a point just because it is an outlier.
 - This is altering the data to fit your idea of what the model is.

HOW TO HANDLE AN OUTLIER

Is the outlier a coding error, measurement error, or otherwise not a meaningful value from the distribution being studied?

Then, remove the outlier and document your decision.

Is the outlier a meaningful value?

· Do not remove the outlier.

ALTERNATIVES TO REMOVING OUTLIERS

What are our options if we do not remove outliers?

- 1. Apply a log or exponential transform to represent non-linearity.
- 2. Adopt a more flexible functional form (e.g., polynomial terms).
- 3. Use indicator variables to treat outlying points separately.
- 4. Compute outlier robust statistics.

Levels of Measurement

MEASURING SOUP

Codebook

1 = Shoyu

2 = Shio

3 = Miso

•	
Observation	Broth
1	1
2	3
3	1
4	2
5	1

What is the average broth?

THE RANDOM VARIABLE DEFINITION

Random Variable

Given probability space (Ω, S, P) , a random variable is a measurable function from Ω to \mathbb{R} .

- \mathbb{R} usually means real numbers with field operations $(+,-,\cdot,\ldots)$.
- · Some operations may not be sensible.

LEVELS OF MEASUREMENT

Level	Operations	
Nominal	=	
Ordinal	<,=,>	
Interval	–, average, weighted average	
Ratio	All arithmetic operations	

- Stanley Smith Stevens

NOMINAL VARIABLES

A nominal variable defines categories

Can check if two values are equal or not equal

Other operations may not be defined

- <,>
 +,-,·,/

WHAT CAN YOU DO WITH NOMINAL VARIABLES?

Valid:

- Value Counts
- Mode

Requires more structure:

- Median
- Mean
- Variance

ORDINAL / RANK VARIABLES

An *ordinal variable* defines categories that have an order.

- Can apply <, =, >
 Intervals may not be meaningful.
 - No $+, -, \cdot, /$

WHAT CAN YOU DO WITH ORDINAL VARIABLES?

Valid:

- · Median, Quantiles
- Probabilities that A > B, etc.

Requires more structure:

- Mean
- +, -, ·, /
- Notions of "shape" of distribution

LIKERT SCALES

The interface was easy to navigate

Strongly	Disagree	Neutral	Agree	Strongly
Disagree				Agree
1	2	3	4	5

INTERVAL / METRIC VARIABLES

An interval variable defines categories with consistent intervals

- Can apply —, average May have no notion of zero
 - No +, ·, /

What Can You Do with Interval Variables?

Valid:

- Mean
- Variance
- Most common statistics

Requires more structure:

- Log
- Root-Mean-Square

RATIO VARIABLES

A ratio variable defines categories with consistent intervals and a meaningful zero.

 Can apply all arithmetic operations.

LEVELS OF MEASUREMENT

Level	Operations	
Nominal	=	
Ordinal	<,=,>	
Interval	–, average, weighted average	
Ratio	All arithmetic operations	

- Stanley Smith Stevens