3. For the Market-Basket dataset, apply Apriori algorithm and identify the best rules based on support and confidence.

```
import pandas as pd
from mlxtend.frequent_patterns import apriori, association_rules
df=pd.read_csv("basket.csv")
all_items=list(item for sublist in df.values.tolist() for item in sublist if pd.notna(item))
unique items = list(set(all items))[:200]
df_subset = df.head(200)
encoded_df=pd.DataFrame(0,index=range(len(df)),columns=unique_items)
for index,transaction in df_subset.iterrows():
  for item in transaction.dropna():
    encoded_df.loc[index,item]=1
min_support=0.3
min_confident=0.7
# Step 4: Apply the Apriori algorithm to find frequent itemsets
frequent_items = apriori(encoded_df, min_support=min_support, use_colnames=True)
# Step 5: Generate association rules based on the frequent itemsets
rules = association rules(frequent items, metric="confidence",
min_threshold=min_confident)
# Output the frequent itemsets and association rules
print("Frequent Itemsets:")
print(frequent_items)
print("\nAssociation Rules:")
print(rules)
```

sample dataset:

bread	milk	cookie	eggs
bread	milk	cookie	soup
bread	milk	cookie	
turkey	eggs		
eggs	cookies		
milk	diaper	bread	
bread	diaper		
bread	milk	cookie	avocado
bread	milk	cookie	
bread	milk	cookie	eggs

Output

Frequent Itemsets:

	support	itemsets
0	0.500000	(bread)
1	0.363636	(cookie)
2	0.454545	(milk)
3	0.409091	(eggs)
4	0.363636	(bread, cookie)
5	0.409091	(bread, milk)
6	0.363636	(milk, cookie)
7	0.363636	(bread, milk, cookie)

Association Rules:

	antecedents	consequents	antecedent support	consequent support
0	(bread)	(cookie)	0.500000	0.363636
1	(cookie)	(bread)	0.363636	0.500000
2	(bread)	(milk)	0.500000	0.454545
3	(milk)	(bread)	0.454545	0.500000
4	(milk)	(cookie)	0.454545	0.363636
5	(cookie)	(milk)	0.363636	0.454545
6	(bread, milk)	(cookie)	0.409091	0.363636
7	(bread, cookie)	(milk)	0.363636	0.454545
8	(milk, cookie)	(bread)	0.363636	0.500000
9	(bread)	(milk, cookie)	0.500000	0.363636
10	(milk)	(bread, cookie)	0.454545	0.363636
11	(cookie)	(hread milk)	a 363636	a 1a9a91

import pandas as pd

4. For the data set given in Q3, apply FP-tree algorithm, show the tree construction and identify the best rules based on support and confidence.

from mlxtend.frequent_patterns import fpgrowth # Example dataset data = [['bread', 'milk', 'cookie', 'eggs'], ['bread', 'milk', 'cookie', 'soup'], ['bread', 'milk', 'cookie'], ['turkey', 'eggs'], ['eggs', 'cookies'], ['milk', 'diaper', 'bread'], ['bread', 'diaper'], ['bread', 'milk', 'cookie', 'avocado'], ['bread', 'milk', 'cookie'], ['bread', 'milk', 'cookie', 'eggs']] # Create a DataFrame with one-hot encoding df = pd.DataFrame(data)df = df.stack().reset_index().pivot_table(index='level_0', columns=0, aggfunc=lambda x: 1, fill_value=0) # Apply the FP-growth algorithm frequent_itemsets = fpgrowth(df, min_support=0.2, use_colnames=True) # Display frequent itemsets print(frequent_itemsets)

```
itemsets
    support
                                              ((level_1, bread))
0
        0.8
1
        0.7
                                               ((level_1, milk))
2
        0.6
                                             ((level 1, cookie))
3
        0.4
                                               ((level_1, eggs))
        0.2
                                             ((level 1, diaper))
4
5
        0.7
                            ((level_1, bread), (level_1, milk))
                           ((level_1, cookie), (level_1, milk))
6
        0.6
7
        0.6
                          ((level_1, cookie), (level_1, bread))
             ((level_1, cookie), (level_1, bread), (level_1...
8
        0.6
9
        0.2
                           ((level_1, cookie), (level_1, eggs))
10
        0.2
                             ((level_1, eggs), (level_1, milk))
        0.2
                            ((level_1, eggs), (level_1, bread))
11
             ((level_1, cookie), (level_1, eggs), (level_1,...
        0.2
12
13
        0.2
             ((level_1, cookie), (level_1, eggs), (level_1,...
             ((level_1, eggs), (level_1, bread), (level_1, ...
14
        0.2
             ((level_1, cookie), (level_1, eggs), (level_1,...
15
        0.2
        0.2
                          ((level_1, bread), (level_1, diaper))
16
```

FP-tree structure:

5. For the Mall-Customer data set, implement K-means clustering algorithm and visualize the clusters.

import pandas as pd import matplotlib.pyplot as plt from sklearn.cluster import KMeans from sklearn.preprocessing import LabelEncoder data=pd.read_csv("Mall_Customers.csv") #data.sample(5)

	CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)
22	23	Female	46	25	5
100	101	Female	23	62	41
36	37	Female	42	34	17
53	54	Male	59	43	60
191	192	Female	32	103	69

X=data[['Annual Income (k\$)','Spending Score (1-100)']]

kmean=KMeans(n_clusters=7,random_state=0)

y_kmeans=kmean.fit_predict(X)

data['Cluster']=y_kmeans

#data.head(5)

	CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)	Cluster
0	1	Male	19	15	39	3
1	2	Male	21	15	81	5
2	3	Female	20	16	6	3
3	4	Female	23	16	77	5
4	5	Female	31	17	40	3

plt.figure(figsize=(8,6))

plt.scatter(X.iloc[:,0],X.iloc[:,1],c=y_kmeans,s=50)

centroids = kmean.cluster_centers_

plt.scatter(centroids[:, 0], centroids[:, 1], c='red', s=200, marker='+', label='Centroids')

plt.title('k mean clustering ')

plt.xlabel('Annual Income (k\$)')

plt.ylabel('Spending Score (1-100)')

plt.show()

6. For the Groceries dataset implement the Agglomerative clustering algorithm and visualize the clusters.

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.cluster import AgglomerativeClustering
from sklearn.preprocessing import StandardScaler
from scipy.cluster.hierarchy import dendrogram,linkage
featues=data[['Annual Income (k\$)','Spending Score (1-100)']]
#scalling the feature
scaler=StandardScaler()
scaled_feature=scaler.fit_transform(featues)
Apply agglomerative clustering
agg_clustering=AgglomerativeClustering(n_clusters=5)
data['Cluster']=agg_clustering.fit_predict(scaled_feature)

linkage_matrix=linkage(scaled_feature,method='ward')
plt.figure(figsize=(20,17))
dendrogram(linkage_matrix)
plt.title('Dendogram')
plt.xlabel('levels')
plt.ylabel('Distance')
plt.show()

	CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)	Cluster
5	6	Female	22	17	76	3
11	12	Female	35	19	99	3
150	151	Male	43	78	17	0
67	68	Female	68	48	48	2
155	156	Female	27	78	89	1

7. For the Mall_Customers implement DBScan clustering algorithm and visualize the clusters.

```
import pandas as pd
    import numpy as np
    import matplotlib.pyplot as plt
    import seaborn as sns
    from sklearn.cluster import DBSCAN
    from sklearn.preprocessing import StandardScaler
    data=pd.read_csv('Mall_Customers.csv')
    data['Gender']=data['Gender'].map({'Male':0,'Female':1})
    data.sample(5)
    features=data[['Gender','Age','Annual Income (k$)','Spending Score (1-100)']]
    #standardizing the features to enure all variables are in same scallable
    scalar=StandardScaler()
    scaled_features=scalar.fit_transform(features)
    #Applay db sacan clustering
    dbscan=DBSCAN(eps=0.5,min_samples=5)
    clusters=dbscan.fit_predict(scaled_features)
    data['Cluster']=clusters
    marks=['o','s','D','^','P','*']
    plt.figure(figsize=(10,7))
    sns.scatterplot(data=data,x="Annual Income (k$)",y="Spending Score (1-
100)",hue="Cluster",palette='viridis',s=100)
    plt.title("DBSCAN Clustering of mall customers")
    plt.xlabel('Annual Income (k$)')
    plt.ylabel('Spending Score (1-100)')
    plt.legend()
    plt.show()
```

C_Lus1	Cluster		
-1	105		
3	18		
2	18		
7	17		
4	15		
5	7		
8	6		
0	5		
1	5		
6	4		

Name: count, dtype: int64

8. Implement KNN Classification algorithm on the Mall Customers. Analyse the model using different K values and display the performance of the model.

```
import pandas as pd
    import numpy as np
    import matplotlib.pyplot as plt
    from sklearn.model_selection import train_test_split
    from sklearn.preprocessing import StandardScaler
    from sklearn.neighbors import KNeighborsClassifier
    from sklearn.metrics import classification_report,accuracy_score
    data=pd.read_csv('Mall_Customers.csv')
    data['Gender']=data['Gender'].map({'Male':0,'Female':1})
    # Define the target variable (e.g., categorize Spending Score into low (0) and high (1))
    # Assuming scores <= 50 are "low spenders" and > 50 are "high spenders"
    data['Spending_Category'] = data['Spending Score (1-100)'].apply(lambda x: 1 if x > 50 else
0)
    X=data[['Gender','Age','Annual Income (k$)']]
    y=data['Spending_Category']
    #Standardize the feature
    scaler=StandardScaler()
    X_scaled=scaler.fit_transform(X)
    X_train,X_test,y_train,y_test=train_test_split(X_scaled,y,test_size=0.2,random_state=42)
    # Define the range of K values to tX_test
    k_values=range(1,10)
    accuracy_scores=[]
    for k in k_values:
       # Initialize the KNN classifire
       knn=KNeighborsClassifier(n_neighbors=k)
       # Fit the data model on training data
       knn.fit(X train,y train)
       # predict on the testing data
       y_pred=knn.predict(X_test)
       accuracy_accuracy_score(y_test,y_pred)
       accuracy_scores.append(accuracy)
       print(f"\nK={k} Classification Report: ")
       print(classification_report(y_test,y_pred))
    print("\nAccuracy scores for different K values:")
    # Display the accuracy scores for different K values
    for k in k_values:
       print(f"K={k}: {accuracy:.4f}")
```

```
plt.figure(figsize=(10, 6))
plt.plot(k_values, accuracy_scores, marker='o', linestyle='--', color='b')
plt.title('KNN Accuracy for Different K Values')
plt.xlabel('K (Number of Neighbors)')
plt.ylabel('Accuracy')
plt.grid(True)
plt.show()
```


Example custom input for a new customer: Female, 30 years old, Annual Income 70k custom_data = pd.DataFrame([[1, 20, 20]],columns= ['Gender', 'Age', 'Annual Income (k\$)']) # Female, Age 30, Annual Income 70k

```
# Scale the custom data
custom_data_scaled = scaler.transform(custom_data)
# Predict the category for the custom data
predicted_category = knn.predict(custom_data_scaled)
# Output the predicted category
if predicted_category[0] == 1:
    print("Predicted Spending Category: High Spender")
else:
    print("Predicted Spending Category: Low Spender")
```

Output: Predicted Spending Category: High Spender

K=1 Classification Report:						
	precision	recall	f1-score	support		
0	0.70	0.70	0.70	23		
1	0.59	0.59	0.59	17		
accuracy			0.65	40		
macro avg	0.64	0.64	0.64	40		
weighted avg	0.65	0.65	0.65	40		
K=2 Classific	ation Report:					
	precision	recall	f1-score	support		
0	0.60	0.78	0.68	23		
1	0.50	0.29	0.37	17		
1	0.50	0.29	0.57	1/		
accuracy			0.57	40		
macro avg	0.55	0.54	0.52	40		
weighted avg	0.56	0.57	0.55	40		

9. Implement Naïve Bayes Classification algorithm on the Online Retail. Analyse the efficiency of the algorithm using different metrics.

```
import pandas as pd
    from sklearn.model_selection import train_test_split
    from sklearn.naive_bayes import GaussianNB
    from sklearn.metrics import accuracy_score, classification_report, confusion_matrix
    import matplotlib.pyplot as plt
    import seaborn as sns
    dataset = pd.read_csv("Online_Retail.csv", encoding='latin1')
    print(dataset.head())
    # Dropping rows with missing CustomerID as we need it for classification
    dataset = dataset.dropna(subset = ['CustomerID'])
    dataset['InvoiceDate'] = pd.to_datetime(dataset['InvoiceDate'])
    dataset['InvoiceDay'] = dataset['InvoiceDate'].dt.day
    dataset['InvoiceMonth'] = dataset['InvoiceDate'].dt.month
    dataset['InvoiceHour'] = dataset['InvoiceDate'].dt.hour
    X = dataset[['Quantity', 'UnitPrice', 'InvoiceDay', 'InvoiceMonth', 'InvoiceHour']]
    y = dataset['Country']
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
    model = GaussianNB()
    model.fit(X_train, y_train)
    y_pred = model.predict(X_test)
    print(f"Accuracy: {accuracy:.4f}")
    print("\nClassification Report:")
    print(classification_report(y_test, y_pred))
    print("\nConfusion Matrix:")
    conf_matrix = confusion_matrix(y_test, y_pred)
    print(conf_matrix)
    plt.figure(figsize=(10, 7))
    sns.heatmap(conf_matrix, annot=True, fmt='d', cmap='Blues', xticklabels=model.classes_,
yticklabels=model.classes_)
    plt.title('Confusion Matrix of Naive Bayes Classification')
    plt.xlabel('Predicted')
    plt.ylabel('Actual')
    plt.show()
```

InvoiceNo StockCode 0 536365 85123A 1 536365 71053 2 536365 84406B 3 536365 84029G 4 536365 84029E InvoiceDate	CREAM KNITTED UNI	WHIT CUPID HEA ON FLAG H OLLY HOTT	TE WHITE HE	OLDER NTERN ANGER OTTLE	tity 6 6 8 6
0 2010-12-01 08:26:00	2.55	17850	.0 United	Kingdom	
1 2010-12-01 08:26:00	3.39	17850	0.0 United	Kingdom	
2 2010-12-01 08:26:00	2.75	17850	0.0 United	Kingdom	
3 2010-12-01 08:26:00	3.39	17850	0.0 United	Kingdom	
4 2010-12-01 08:26:00	3.39	17850	0.0 United	Kingdom	
Accuracy: 0.0105					
p	recision	recall	f1-score	support	
A	0.00	0.00	0.00	270	
Australia	0.00	0.00	0.00	370	
Austria	0.00	0.00	0.00	116	
Bahrain Balai	0.00	0.60	0.00	5	
Belgium	0.01	0.09	0.01	625	
Brazil	0.27	1.00	0.43	9	
Canada	0.00	0.00	0.00	44	
Channel Islands	0.00	0.00	0.00	230	
Cyprus	0.00	0.00	0.00	186	
Czech Republic	0.00	0.00	0.00	9	
Denmark	0.01	0.01	0.01	124	
EIRE	0.00	0.00	0.00	2322	
European Community	0.00	0.00	0.00	16	
Finland	0.00	0.00	0.00 0.00	213	
France	0.00	0.00		2525	
Germany	0.02	0.75	0.05	2785	
Greece Iceland	0.00 0.00	0.00 0.00	0.00 0.00	45 53	
Israel	0.00	0.00	0.00	75	
Italy			0.00	261	
	0.00	0.00			
Japan	0.00	0.00	0.00	96	
Lebanon	0.29	1.00	0.45	15	
Lithuania	0.00	1.00	0.01	9	
Malta	0.00	0.00	0.00	34	
Netherlands	0.11	0.00	0.01	719	
Norway	0.00	0.00	0.00	340	
Poland	0.00	0.00	0.00	92	
Portugal	0.00	0.00	0.00	469	
RSA	0.12	1.00	0.21	23	

