Deena 20104016

```
In [1]: import pandas as pd
import numpy as np
import matplotlib.pyplot as pp
```

Problem Statement

LINEAR REGRESSION

In [2]: a = pd.read_csv("vehicle.csv")

Out[2]:

	ID	model	engine_power	age_in_days	km	previous_owners	lat	1
0	1.0	lounge	51.0	882.0	25000.0	1.0	44.907242	8.6115598
1	2.0	pop	51.0	1186.0	32500.0	1.0	45.666359	12.241889
2	3.0	sport	74.0	4658.0	142228.0	1.0	45.503300	11.417
3	4.0	lounge	51.0	2739.0	160000.0	1.0	40.633171	17.634609
4	5.0	pop	73.0	3074.0	106880.0	1.0	41.903221	12.495650
			•••	•••				
1544	NaN	NaN	NaN	NaN	NaN	NaN	NaN	len
1545	NaN	NaN	NaN	NaN	NaN	NaN	NaN	con
1546	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Null valı
1547	NaN	NaN	NaN	NaN	NaN	NaN	NaN	f
1548	NaN	NaN	NaN	NaN	NaN	NaN	NaN	sea

1549 rows × 11 columns

HEAD

In [3]:

Out[3]:

	ID	model	engine_power	age_in_days	km	previous_owners	lat	lon
0	1.0	lounge	51.0	882.0	25000.0	1.0	44.907242	8.611559868
1	2.0	pop	51.0	1186.0	32500.0	1.0	45.666359	12.24188995
2	3.0	sport	74.0	4658.0	142228.0	1.0	45.503300	11.41784
3	4.0	lounge	51.0	2739.0	160000.0	1.0	40.633171	17.63460922
4	5.0	pop	73.0	3074.0	106880.0	1.0	41.903221	12.49565029
5	6.0	рор	74.0	3623.0	70225.0	1.0	45.000702	7.68227005
6	7.0	lounge	51.0	731.0	11600.0	1.0	44.907242	8.611559868
7	8.0	lounge	51.0	1521.0	49076.0	1.0	41.903221	12.49565029

Data Cleaning and Preprocessing

In [4]: b=a.head(8)

Out[4]:

	ID	model	engine_power	age_in_days	km	previous_owners	lat	lon
0	1.0	lounge	51.0	882.0	25000.0	1.0	44.907242	8.611559868
1	2.0	рор	51.0	1186.0	32500.0	1.0	45.666359	12.24188995
2	3.0	sport	74.0	4658.0	142228.0	1.0	45.503300	11.41784
3	4.0	lounge	51.0	2739.0	160000.0	1.0	40.633171	17.63460922
4	5.0	pop	73.0	3074.0	106880.0	1.0	41.903221	12.49565029
5	6.0	pop	74.0	3623.0	70225.0	1.0	45.000702	7.68227005
6	7.0	lounge	51.0	731.0	11600.0	1.0	44.907242	8.611559868
7	8.0	lounge	51.0	1521.0	49076.0	1.0	41.903221	12.49565029

In [5]:

Out[5]:

	ID	engine_power	age_in_days	km	previous_owners	lat	_
count	1538.000000	1538.000000	1538.000000	1538.000000	1538.000000	1538.000000	
mean	769.500000	51.904421	1650.980494	53396.011704	1.123537	43.541361	
std	444.126671	3.988023	1289.522278	40046.830723	0.416423	2.133518	
min	1.000000	51.000000	366.000000	1232.000000	1.000000	36.855839	
25%	385.250000	51.000000	670.000000	20006.250000	1.000000	41.802990	
50%	769.500000	51.000000	1035.000000	39031.000000	1.000000	44.394096	
75%	1153.750000	51.000000	2616.000000	79667.750000	1.000000	45.467960	
max	1538.000000	77.000000	4658.000000	235000.000000	4.000000	46.795612	

To display heading

In [7]:

Out[7]: <seaborn.axisgrid.PairGrid at 0x27139eb5970>


```
In [8]:
Out[8]: <seaborn.axisgrid.FacetGrid at 0x2713b8cf700>
                70
                60
                50
                40
                30
                20
                10
In [9]:
Out[9]: <AxesSubplot:>
                                                                                      - 1.0
                           ID -
                                                                                       - 0.8
                engine_power
                 age_in_days
                                                                                      - 0.6
                          km
                                                                                       - 0.4
             previous_owners
                                                                                       0.2
                           lat
                 Unnamed: 9 -
                                                                                       0.0
                                        ngine_power -
                                                              ious owners -
                                                                            Unnamed: 9 -
                                 ₽
```

TO TRAIN THE MODEL - MODEL BUILDING

```
In [10]: x = b[['price']]
In [11]: # to split my dataset into training and test data
    from sklearn.model_selection import train_test_split
    x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.3)
```

```
In [12]: | from sklearn.linear_model import LinearRegression
          lr = LinearRegression()
Out[12]: LinearRegression()
In [13]: coeff = pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
Out[13]:
                Co-efficient
                       1.0
          price
          prediction= lr.predict(x_test)
Out[14]: <matplotlib.collections.PathCollection at 0x2713e0c37c0>
           11000
           10000
            9000
            8000
            7000
            6000
                5700
                                     10750
                                                           8900
In [15]: -
Out[15]: 1.0
```

RIDGE & LASSO

Out[19]: 0.999999999889243

6 of 6