D10 ¶

In [1]: import pandas as pd
 import numpy as np
 import matplotlib.pyplot as plt
 import seaborn as sns

In [2]: df=pd.read_csv(r"C:\Users\user\Downloads\3_Fitness-1.csv")
 df

Out[2]:

	Row Labels	Sum of Jan	Sum of Feb	Sum of Mar	Sum of Total Sales
0	А	5.62%	7.73%	6.16%	75
1	В	4.21%	17.27%	19.21%	160
2	С	9.83%	11.60%	5.17%	101
3	D	2.81%	21.91%	7.88%	127
4	E	25.28%	10.57%	11.82%	179
5	F	8.15%	16.24%	18.47%	167
6	G	18.54%	8.76%	17.49%	171
7	Н	25.56%	5.93%	13.79%	170
8	Grand Total	100.00%	100.00%	100.00%	1150

In [3]: df.head(10)

Out[3]:

	Row Labels	Sum of Jan	Sum of Feb	Sum of Mar	Sum of Total Sales
0	А	5.62%	7.73%	6.16%	75
1	В	4.21%	17.27%	19.21%	160
2	С	9.83%	11.60%	5.17%	101
3	D	2.81%	21.91%	7.88%	127
4	Е	25.28%	10.57%	11.82%	179
5	F	8.15%	16.24%	18.47%	167
6	G	18.54%	8.76%	17.49%	171
7	Н	25.56%	5.93%	13.79%	170
8	Grand Total	100.00%	100.00%	100.00%	1150

```
In [18]: df["Sum of Jan"]=df["Sum of Jan"].replace("%","",regex=True).astype(float)
    df["Sum of Feb"]=df["Sum of Feb"].replace("%","",regex=True).astype(float)
    df["Sum of Mar"]=df["Sum of Mar"].replace("%","",regex=True).astype(float)
    df
```

Out[18]:

	Row Labels	Sum of Jan	Sum of Feb	Sum of Mar	Sum of Total Sales
0	Α	5.62	7.73	6.16	75
1	В	4.21	17.27	19.21	160
2	С	9.83	11.60	5.17	101
3	D	2.81	21.91	7.88	127
4	E	25.28	10.57	11.82	179
5	F	8.15	16.24	18.47	167
6	G	18.54	8.76	17.49	171
7	Н	25.56	5.93	13.79	170
8	Grand Total	100.00	100.00	100.00	1150

In [19]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 9 entries, 0 to 8
Data columns (total 5 columns):

#	Column	Non-Null Count	Dtype	
0	Row Labels	9 non-null	object	
1	Sum of Jan	9 non-null	float64	
2	Sum of Feb	9 non-null	float64	
3	Sum of Mar	9 non-null	float64	
4	Sum of Total Sales	9 non-null	int64	
dtypes: float64(3), int64(1), object(1)				

dtypes: +loat64(3), int64(1), object(1)

memory usage: 488.0+ bytes

In [20]: df.describe()

Out[20]:

	Sum of Jan	Sum of Feb	Sum of Mar	Sum of Total Sales
count	9.000000	9.000000	9.000000	9.000000
mean	22.22222	22.223333	22.221111	255.555556
std	30.438329	29.612265	29.640999	337.332963
min	2.810000	5.930000	5.170000	75.000000
25%	5.620000	8.760000	7.880000	127.000000
50%	9.830000	11.600000	13.790000	167.000000
75%	25.280000	17.270000	18.470000	171.000000
max	100.000000	100.000000	100.000000	1150.000000

Out[22]: <seaborn.axisgrid.PairGrid at 0x239b591a130>

In [23]: | sns.distplot(df["Sum of Total Sales"])

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: Fut ureWarning: `distplot` is a deprecated function and will be removed in a futu re version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for hi stograms).

warnings.warn(msg, FutureWarning)

Out[23]: <AxesSubplot:xlabel='Sum of Total Sales', ylabel='Density'>

In [34]: | sns.heatmap(df1.corr())

Out[34]: <AxesSubplot:>


```
In [36]: x=df1[['Sum of Jan', 'Sum of Feb', 'Sum of Mar']]
y=df1['Sum of Total Sales']
In [37]: from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

Out[38]: LinearRegression()

```
In [39]: print(lr.intercept_)
```

-0.005149663362601586

```
In [40]: coeff = pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
coeff
```

Out[40]:

Sum of Jan	3.561011
Sum of Feb	3.880201
Sum of Mar	4.058839

Co-efficient

```
In [41]: prediction=lr.predict(x_test)
    plt.scatter(y_test, prediction)
```

Out[41]: <matplotlib.collections.PathCollection at 0x239b68b89d0>


```
In [42]: print(lr.score(x_test,y_test))
```

0.9999832128877887