Uso del teorema 5.7.9 para determinar si un sistema tiene soluciones

Determine si el sistema

$$2x_1 + 4x_2 + 6x_3 = 18$$

$$4x_1 + 5x_2 + 6x_3 = 24$$

$$2x_1 + 7x_2 + 12x_3 = 40$$

tiene soluciones.

SOLUCIÓN Sea
$$A = \begin{pmatrix} 2 & 4 & 6 \\ 4 & 5 & 6 \\ 2 & 7 & 12 \end{pmatrix}$$
. La forma escalonada por renglones de A es $\begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix}$

y $\rho(A) = 2$. La forma escalonada por renglones de la matriz aumentada $(A, \mathbf{b}) = \begin{pmatrix} 2 & 4 & 6 & | & 18 \\ 4 & 5 & 6 & | & 24 \\ 2 & 7 & 12 & | & 40 \end{pmatrix}$

es $\begin{pmatrix} 1 & 2 & 3 & | & 9 \\ 0 & 1 & 2 & | & 4 \\ 0 & 0 & 0 & | & 1 \end{pmatrix}$, que tiene tres pivotes, por lo que $\rho(A, \mathbf{b}) = 3$ y el sistema no tiene solución.

Uso del teorema 5.7.9 para determinar si un sistema tiene soluciones

Determine si el sistema

$$x_1 - x_2 + 2x_3 = 4$$
$$2x_1 + x_2 - 3x_3 = -2$$
$$4x_1 + x_2 + x_3 = 6$$

tiene soluciones.

SOLUCIÓN Sea $A = \begin{pmatrix} 1 & -1 & 2 \\ 2 & 1 & -3 \\ 4 & -1 & 1 \end{pmatrix}$. Entonces det A = 0, de manera que $\rho(A) < 3$. Como la

primera columna no es un múltiplo de la segunda, es evidente que las primeras dos columnas son linealmente independientes; así, $\rho(A) = 2$. Para calcular $\rho(A, \mathbf{b})$ se reduce por renglones:

$$\begin{pmatrix} 1 & -1 & 2 & | & 4 \\ 2 & 1 & -3 & | & -2 \\ 4 & -1 & 1 & | & 6 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & -1 & 2 & | & 4 \\ 0 & 3 & -7 & | & -10 \\ 0 & 3 & -7 & | & -10 \end{pmatrix}$$

Se ve que $\rho(A, \mathbf{b}) = 2$ y existe un número infinito de soluciones para el sistema (si hubiera una solución única se tendría det $A \neq 0$).

Los resultados de esta sección permiten mejorar el teorema de resumen, visto por última vez en la sección 5.4.