Constraint Satisfaction Problems (CSPs)

CS 221 Section - 10/31/19

Chuma Kabaghe

Will Deaderick

Agenda

- CSP Problem Modeling
- N-ary Constraints
- Exam Problem Solving

Factor Graph and CSP Applications

- Scheduling problems: event scheduling, resource and assembly scheduling
- Inferring relations from data
- Puzzles: sudoku, crosswords
- Satisfiability problems
- Map and graph coloring
- Object tracking
- Decoding noisy signals (images, messages etc.)

Agenda

- CSP Problem Modeling
- N-ary Constraints
- Exam Problem Solving

Setup:

- Have E events and T time slots
- Each event e must be put in exactly one time slot
- Each time slot t can have at most one event
- Event e only allowed at time slot t if (e, t) in A

Setup:

- Have E events and T time slots
- Each event e must be put in exactly one time slot
- Each time slot t can have at most one event
- Event e only allowed at time slot t if (e, t) in A

Formulation 1a:

• Variables for each event $e, X_e \in \{1,...,T\}$

- Variables for each event $e, X_e \in \{1,...,T\}$
- Constraints (only one event per time slot): for each pair of events $e \neq e'$, enforce $[X_e \neq X_{e'}]$

- Variables for each event $e, X_e \in \{1,...,T\}$
- Constraints (only one event per time slot): for each pair of events $e \neq e'$, enforce $[X_e \neq X_{e'}]$
- Constraints (only schedule allowed times): for each event e, enforce [(e, X_e) ∈ A]

- Variables for each event $e, X_e \in \{1,...,T\}$
- Constraints (only one event per time slot): for each pair of events $e \neq e'$, enforce $[X_e \neq X_{e'}]$
- Constraints (only schedule allowed times): for each event e, enforce [(e, X_e) ∈ A]

- Variables for each event $e, X_e \in \{1,...,T\}$
- Constraints (only one event per time slot): for each pair of events $e \neq e'$, enforce $[X_e \neq X_{e'}]$
- Constraints (only schedule allowed times): for each event e, enforce [(e, X_e) ∈ A]

- Variables for each event $e, X_e \in \{1,...,T\}$
- Constraints (only one event per time slot): for each pair of events $e \neq e'$, enforce $[X_e \neq X_{e'}]$
- Constraints (only schedule allowed times): for each event e, enforce [(e, X_e) ∈ A]

- Variables for each event $e, X_e \in \{1,...,T\}$
- Constraints (only one event per time slot): for each pair of events $e \neq e'$, enforce $[X_e \neq X_{e'}]$
- Constraints (only schedule allowed times): for each event e, enforce [(e, X_e) ∈ A]

- Variables for each event $e, X_e \in \{1,...,T\}$
- Constraints (only one event per time slot): for each pair of events $e \neq e'$, enforce $[X_e \neq X_{e'}]$
- Constraints (only schedule allowed times): for each event e, enforce [(e, X_e) ∈ A]

- Variables for each event $e, X_e \in \{1,...,T\}$
- Constraints (only one event per time slot): for each pair of events $e \neq e'$, enforce $[X_e \neq X_{e'}]$
- Constraints (only schedule allowed times): for each event e, enforce [(e, X_e) ∈ A]

- Variables for each event $e, X_e \in \{1,...,T\}$
- Constraints (only one event per time slot): for each pair of even $e \neq e'$, enforce $[X_e \neq X_{e'}]$
- Constraints (only schedule allowed times): for each event e, enforce $[(e, X_e) \in A]$

Formulation 1b:

• Variables for each event $e, X_1,...,X_E$

Formulation 1b:

• Variables for each event e, $X_1,...,X_E$

$$Domain_i = \{t : (i, t) \in A\}$$

Formulation 1b:

• Variables for each event $e, X_1, ..., X_E$

$$Domain_i = \{t : (i, t) \in A\}$$

• Constraints (only one event per time slot): for each pair of events $e \neq e'$, enforce $[X_e \neq X_{e'}]$

Formulation 2a:

• Variables for each time slot $t: Y_t \in \{1,...,E\} \cup \{\emptyset\}$

- Variables for each time slot $t: Y_t \in \{1,...,E\} \cup \{\emptyset\}$
- Constraints (each event is scheduled exactly once): for each event e, enforce $[Y_t = e]$ for exactly one t

- Variables for each time slot $t: Y_t \in \{1,...,E\} \cup \{\emptyset\}$
- Constraints (each event is scheduled exactly once): for each event e, enforce $[Y_t = e$ for exactly one t]
- Constraints (only schedule allowed times): for each time slot t, enforce $[Y_t = \emptyset \text{ or } (Y_t, t) \in A]$

- Variables for each time slot $t: Y_t \in \{1,...,E\} \cup \{\emptyset\}$
- Constraints (each event is scheduled exactly once): for each event e, enforce $[Y_t = e \text{ for exactly one } t]$
- Constraints (only schedule allowed times): for each time slot t, enforce $[Y_t = \emptyset \text{ or } (Y_t, t) \in A]$

Formulation 2b:

• Variables for each time slot $t: Y_1,...,Y_T$

Formulation 2b:

• Variables for each time slot $t: Y_1,...,Y_T$

$$Domain_i = \{e : (e,i) \in A\} \cup \{\emptyset\}$$

Formulation 2b:

• Variables for each time slot $t: Y_1, ..., Y_T$

$$Domain_i = \{e : (e, i) \in A\} \cup \{\emptyset\}$$

• Constraints (each event is scheduled exactly once): for each event e, enforce $[Y_t = e$ for exactly one t]

Formulation 1a:

E variables with domain size T, and O(E^2) binary constraints.

- Variables for each event $e, X_e \in \{1,...,T\}$
- Constraints (only one event per time slot): for each pair of events $e \neq e'$, enforce $[X_e \neq X_{e'}]$
- Constraints (only schedule allowed times): for each event e, T variables with domain size E+1 enforce $[(e, X_e) \in A]$ O(T^2) variables with domain size Formulation 2a: 2 and O(T^2) binary constraints.

- Variables for each time slot $t: Y_t \in \{1,...,E\} \cup \{\emptyset\}$
- Constraints (each event is scheduled exactly once): for each event e, enforce $[Y_t = e$ for exactly one t]
- Constraints (only schedule allowed times): for each time slot t, enforce $[Y_t = \emptyset \text{ or } (Y_t, t) \in A]$

Agenda

- CSP Problem Modeling
- N-ary Constraints
- Exam Problem Solving

- From event scheduling:
 - Constraints (each event is scheduled exactly once): for each event *e*, enforce

$$[Y_t = e \text{ for exactly one } t]$$

Key Idea: Auxiliary Variables

Auxiliary Variables hold intermediate computation.

Represent "for exactly one" as counting the number of values equal to e and constraining that count to be equal to one.

Key Idea: Auxiliary Variables

Auxiliary Variables hold intermediate computation.

Represent "for exactly one" as counting the number of values equal to e and constraining that count to be equal to one.

Factors:

Initialization: $[A_0 = 0]$

Key Idea: Auxiliary Variables

Auxiliary Variables hold intermediate computation.

Represent "for exactly one" as counting the number of values equal to e and constraining that count to be equal to one.

Factors:

Initialization: $[A_0 = 0]$

Processing: $[A_i = A_{i-1} + 1[Y_i = e]]$

Key Idea: Auxiliary Variables

Auxiliary Variables hold intermediate computation.

Represent "for exactly one" as counting the number of values equal to e and constraining that count to be equal to one.

Factors:

Initialization: $[A_{\theta} = 0]$

e-1					
i	0	1	2	3	4
Y_{i}		3	1	2	1
A_{i}	0				

Key Idea: Auxiliary Variables

Auxiliary Variables hold intermediate computation.

Represent "for exactly one" as counting the number of values equal to e and constraining that count to be equal to one.

Factors:

Initialization: $[A_{\theta} = 0]$

e-1						
i	0	1	2	3	4	
Y_{i}		3	1	2	1	
A_{i}	0	0				

Key Idea: Auxiliary Variables

Auxiliary Variables hold intermediate computation.

Represent "for exactly one" as counting the number of values equal to e and constraining that count to be equal to one.

Factors:

Initialization: $[A_0 = 0]$

e = 1 i 0 1 2 3 4 Y _i 3 1 2 1					
i	0	1	2	3	4
Y_{i}		3	1	2	1
A_i	0	0	1		

Key Idea: Auxiliary Variables

Auxiliary Variables hold intermediate computation.

Represent "for exactly one" as counting the number of values equal to e and constraining that count to be equal to one.

Factors:

Initialization: $[A_0 = 0]$

e = I					
i	0	1	2	3	4
Y_{i}		3	1	2	1
A_{i}	0	0	1	1	

Key Idea: Auxiliary Variables

Auxiliary Variables hold intermediate computation.

Represent "for exactly one" as counting the number of values equal to e and constraining that count to be equal to one.

Factors:

Initialization: $[A_0 = 0]$

e = I					
i	0	1	2	3	4
Y_{i}		3	1	2	1
A_{i}	0	0	1	1	2

Key Idea: Auxiliary Variables

Auxiliary Variables hold intermediate computation.

Represent "for exactly one" as counting the number of values equal to e and constraining that count to be equal to one.

Factors:

Initialization: $[A_{\theta} = 0]$

Processing: $[A_i = \min(A_{i-1} + 1[Y_i = e], 2)] A_i = 0 = 0 = 1 = 1 = 2$

Final Output: $1[A_T = 1]$

Key Idea: Auxiliary Variables

Auxiliary Variables hold intermediate computation.

Represent "for exactly one" as counting the number of values equal to e and constraining that count to be equal to one.

Factors:

Initialization: $[A_{\theta} = 0]$

Processing: $[A_i = \min(A_{i-1} + 1[Y_i = e], 2)] A_i = 0 = 0 = 1 = 1 = 2$

Final Output: $1[A_T = 1]$

$$e = 1$$
 i
 0
 1
 2
 3
 4
 Y_i
 3
 1
 2
 1
 A_i
 0
 0
 1
 1
 2

Still have factors with three variables...

Key idea: Combine A_{i-1} and A_i into one variable B_i

Key idea: Combine A_{i-1} and A_i into one variable B_i

e = 1							
i	0	1	2	3	4		
Y_{i}		3	1	2	1		
A_i	0	0	1	1	2		

Key idea: Combine A_{i-1} and A_i into one variable B_i

Factors:

Initialization: $[B_I[0] = 0]$

Processing: $[B_i[1] = \min(B_i[0] + 1[Y_i = e], 2)]$

Final Output: $1[B_T[1] = 1]$

Consistency: $[B_{i-1}[1] = B_i[0]]$

Key idea: Combine A_{i-1} and A_i into one variable B_i

Factors:

Initialization: $[B_I[0] = 0]$

Processing: $[B_i[1] = \min(B_i[0] + 1[Y_i = e], 2)]$

Final Output: $1[B_T[1] = 1]$

Consistency: $[B_{i-1}[1] = B_i[0]]$

 $[Y_t = e \text{ for exactly one } t]$

Agenda

- CSP Problem Modeling
- N-ary Constraints
- Exam Problem Solving