機械学習 入門編

2024年12月4日 ARIMアカデミー データ構造化ワークショップ(1)

物質・材料研究機構 マテリアル先端リサーチインフラセンターハブ

松波 成行

1. 実験系の「データ」とは?

実験系における4つのデータのタイプ

生分解性ポリマーの研究に適用させると

農業(アグリテック)に適用すると

マテリアル開発サイクルとデータ活用

■ マテリアルの開発・評価ステージによって、データ構造化の設計は変化する。Informaticsを適用する技術分野ごとで要件を十分に吟味する。

2. データの利活用の要諦

① データからパターン見つけること

②パターンを情報→知識→叡智 へと昇華させること

DIKW pyramid パターン認識からの帰納法的プロセス

3. パターン認識はどのように?

パターン認識で使われるモデル

・線形型

単回帰

多変量解析

・非線形型

機械学習

深層学習(画像認識・画像生成)

多変量解析・機械学習モデル

Deep learning

機械学習(パターン認識)のための専門書

個別のアルゴリズムは専門書から学習してください

4. データの尺度と機械学習

様々なデータ尺度

	尺度名	定義	(F)
質的変数 (離散性)	名義尺度	分類のための単なる名前や識 別ラベル	・ 名前・ 性別・ 単語(文字列)
	順序尺度	順序関係を表す。 加減算が意味がない	アンケートの5段階評価世代区分カテゴリー区分
量的変数(連続性)	間隔尺度	一定の単位で量られた量。 原点はあっても「無」ではない 等間隔性がある 加減算が意味を持つ	・年月、時間 ・試験の成績 ・摂氏、華氏温度
	比例尺度	原点が定まっている 割り算(比)が意味をもつ	・身長や体重 ・絶対温度

データ尺度とパターン認識

- 1 変数(特徴量): どのような変数(特徴量)を選定するか
- 2 モデル: どのようなアルゴリズム・関数を用いるか
- 3 パラメータ: どのようFitting係数・ハイパーパラメータを調整するか

分類の概要

	分 類	予 測
概要	分類は、入力データを事前に定義された <u>クラスやカテゴリに分類するタスク</u> 。	予測は、 <u>数値や連続値の予測を行うタ</u> スク。
	データポイントを複数のグループに割り 当てることを目的とします。	与えられた入力に基づいて、数値の予 測や連続値の予測を行います。
目的変数	質的変数	量的変数
使用例	メールが「スパム」または「非スパム」の どちらに分類されるかを判断する	住宅価格の予測や売上予測などが予 測する
代表的な 機械学習モデル	 ロジスティック回帰 ランダムフォレスト サポートベクターマシン 人工ニューラルネットワークなど。 	・ 線形重回帰・ サポートベクターマシン・ 決定木回帰・ 人工ニューラルネットワークなど。

予測型の機械学習モデルの構築と評価

識別機	ハイパーパラメータ
スパースモデル Rige, Lasso, ElasticNet	alpha(正則化パラメータ)alphaが大きいと単純なモ デル分類
決定木	事前枝刈込 max_depth、max_leaf_nodes、 min_samples_leaf
ランダムフォレスト	n_estimator(大きければよい)、max_features(小さ いと過剰適合が低減される)、事前枝刈込の max_depth
勾配ブースティング	n_estimator(大きいと複雑なモデルになり過剰学習になる)、learning_rate(決定木の誤りを訂正)、事前枝刈込のmax_depth
サポートベクターマシーン	C(正則化パラメータ)Cが小さいと単純なモデル、 kernel(RBFではgammaも調整)
ニューラルネットワーク	hiddon_layer_size(隠れ層)activation(非線形活性 化関数)、alpha(I2正則化)alphaが大きいと単純な モデル。

各種の識別機やハイパーパラメータ調整を行い、機械学習モデルを構築する

5. 大隅先生の3ステップ

【再掲】これからの時代に生きるために

(大隅昇. 統計数理研究所・名誉教授)

探索的データ科学のススメ

「目的にあったデータの取得方法」が必要。そのためのデータ主導型の解析過程が必要

考え方:

<u>現象解析の本質は「データ」にある。データによる現象理解を前提として統計学、分類操</u>作などを背景として統合的に現象解析をすすめる。

方法論:

- ① Experimental Design: データをどう計画的に取得するか
- **② Data Collection Mode: データを具体的にどう集めるか**
- ③ Analyzing: 問題とする現象解析に適した解析法はどうあるべきか

① Experimental Design: データをどう計画的に取得するか

- **1** Experimental Design: データをどう計画的に取得するか
 - → 考えられる説明変数を考察することからはじまります。
- 2 Data Collection Mode: データを具体的にどう集めるか
 - → 科学分野では、
 - 既存のデータベース(商用DBを含む)
 - ・ 研究室の過去データ
 - ・ 実験装置の出力ファイルデータ ← 本題
- ③ Analyzing: 問題とする現象解析に適した解析法はどうあるべきか

1 Experimental Design: 特徴量をつくる

質的変数、量的変数をまとめる表づくりは、 みなさんもExcelで普段行っているはずです

② Data Collection Mode: データを具体的にどう集めるか

- **1** Experimental Design: データをどう計画的に取得するか
 - → 考えられる説明変数を考察することからはじまります。
- ② Data Collection Mode: データを具体的にどう集めるか
 - → 科学分野では、
 - ・ 既存のデータベース(商用DBを含む)
 - ・ 研究室の過去データ
 - ・実験装置の出力ファイルデータ ← ARIMが注力するところ
- ③ Analyzing: 問題とする現象解析に適した解析法はどうあるべきか

③ Analyzing: 問題とする現象解析に適した解析法はどうあるべきか

- 1 Experimental Design: データをどう計画的に取得するか
 - → 考えられる説明変数を考察することからはじまります。
- 2 Data Collection Mode: データを具体的にどう集めるか
 - → 科学分野では、
 - 既存のデータベース(商用DBを含む)
 - 研究室の過去データ
 - 実験装置の出力ファイルデータ
- ③ Analyzing: 問題とする現象解析に適した解析法はどうあるべきか

6. 予行練習

ミニ演習

設定

あなたは学生向けアパートの不動産のオーナーです。

課題

アパートの建築費の借入金を回収するため、入居率を高めなければなりません。 家賃が高すぎると入居率が落ち、収入を得ることができません。一方で家賃が安すぎ ると、こちらも借入金の返済が長期化します。

なるべく早く借入金を完済するため、適正な家賃を決める必要があります。

問題

家賃を決めるために必要となる条件を 10個書き出してください。

ミニ演習

機械学習で家賃を決めるAIツールを開発を委託発注します。

Q1: 目的変数は何でしょうか?

Q2: 説明変数は何でしょうか?

Q3: それは質的変数ですか、量的変数ですか?

7. はじめてみましょう

機械学習の流れ(Scikit-learnに慣れる)

①探索的データ分析 (EDA)

概要統計量の算出ペアプロットの作図 相関係数の計算

ライブラリ

pandas

matplotlib

seaborn

②データ可視化

頻度分布 単回帰

ライブラリ

scikit-learn

matplotlib

③機械学習

線形重回帰 決定木 非線形回帰

ライブラリ

scikit-learn

matplotlib

【参考】 Pythonの代表的なライブラリ

ライブラリ名	主な機能	
NumPy	高性能の数値計算やデータ処理に特化したPythonのライブラリ NumPyは多次元の配列や行列を効率的に操作する機能を提供し、科学技術計算やデー タ解析の分野で広く使用されています。	
Pandas	データ操作と解析のための高レベルのPythonライブラリ Pandasはテーブル形式のデータを効率的に処理し、データのフィルタリング、変換、 集約、および結合などの機能を提供。データの整形やクリーニング、欠損値の処理な どを容易に行うことができます。	
Matplotlib	Pythonでデータを可視化するための強力なライブラリ Matplotlibはグラフや図を描画するための多様な機能を提供し、折れ線グラフ、ヒストグラム、散布図、バーチャートなどの多くのプロットスタイルをサポート。データの傾向や関係性を視覚的に理解するための強力なツールです。	
Scikit-learn	Pythonで機械学習のタスクを実装するための包括的なライブラリ Scikit-learnは、分類、回帰、クラスタリング、次元削減などの機械学習アルゴリズム やツールを提供。データの前処理、特徴抽出、モデルの評価などもサポートしており、 機械学習の実装を容易にします。	

予測の機械学習モデルの練習 (Bonton Housingデータセット)

概要

Boston Housingデータセットは、1970年代初頭にアメリカのマサチューセッツ州ボストン市で収集された住宅価格に関する情報を含むデータセット。

- ・ 506の異なる地域(郊外)の住宅に関する情報が含まれている。
- ・ 各地域には、住宅価格を予測するための13種類の特徴量が示されている。

【利用にあたっての注意】

Boston Housingデータセットは、住宅価格の予測や地域の特徴の関係性の分析など、さまざまな機械学習のタスクに使用されてきました。しかし、「黒人の割合」などの差別的なデータを含んでいるため、Scikit learnのversion 1.0以降から利用は非推奨となりました。

https://colab.research.google.com/github/ARIM-Academy/Advanced_Tutorial_1/blob/main/Scikit-learn-0.ipynb

