Задача 11.1. Диполь в шаре. В большом однородном непроводящем шаре вдоль диаметра d просверлен узкий канал. Шар равномерно заряжен по объёму с объёмной плотностью заряда $\rho > 0$ и закреплён. Вещество шара не d поляризуется.

Ко входу в канал подносят диполь, образованный двумя заряженными шариками одинаковой массы, закреплёнными на концах лёгкого жёсткого непроводящего стержня, и отпускают. Через время $t_{\rm I}$ он оказывается на противоположном конце канала. Когда то же самое проделывают с одним из шариков, он пролетает канал за время $t_{\rm II}$.

Определите плечо диполя l, считая, что l << d.

Укажите знак ближнего к шару заряда диполя в момент старта в первом случае и знак заряда шарика во втором. Диаметр шариков практически равен диаметру канала.

Примечание. Диполем называется система из двух одинаковых по величине, но разных по знаку электрических зарядов, находящихся на фиксированном расстоянии l (плечо диполя) друг от друга.

Возможное решение. Напряжённость внутри однородно заряженного шара можно найти из теоремы Гаусса:

$$E(x) = \frac{\rho}{3\varepsilon_0} x,$$

где ρ – объёмная плотность заряда шара, x – расстояние до центра шара.

На диполь в электрическом поле действует равнодействующая двух кулоновских сил. Для втягивания диполя в шар нужно расположить его таким образом, чтобы ближний к центру шара заряд был положительным, так как поле ближе к центру слабее, а нам надо добиться превосходства силы притяжения над силой отталкивания.

$$F_{\mathcal{I}} = F_{+} - F_{-} = q(E(x+l) - E(x)) = \frac{ql\rho}{3\varepsilon_{0}} = \text{const},$$

где q — заряд диполя (модуль заряда каждого из шариков).

Таким образом, диполь будет разгоняться с постоянным ускорением $a_{\rm д}$ до вылета из шара.

$$\begin{cases} d = \frac{a_{n}t_{n}^{2}}{2}, \\ a_{n} = \frac{ql\rho}{6m\varepsilon_{0}}, \end{cases}$$

где m — масса одного из шариков диполя.

$$t_{\scriptscriptstyle \rm I} = \sqrt{\frac{3m\varepsilon_0}{q\rho}} \sqrt{\frac{4d}{l}} \ .$$

Рассмотрим движение одного шарика. Если заряд шарика по знаку совпадает с зарядом большого шара, то в канал его не втянет, значит в условии речь идёт о шарике с противоположным (отрицательным) зарядом.

Второй закон Ньютона запишется в виде:

$$ma = qE(x),$$

$$m\ddot{x} = -\frac{q\rho}{3\varepsilon_0}x.$$

Это уравнение гармонических колебаний с периодом

$$T = 2\pi \sqrt{\frac{3m\varepsilon_0}{q\rho}} \ .$$

До противоположного конца канала шарик долетит за время

$$t_{\rm m} = \frac{T}{2} = \pi \sqrt{\frac{3m\varepsilon_0}{q\rho}} \ .$$

Используя выражения для t_{III} и t_{IJ} , получаем ответ:

$$l = d \left(\frac{2}{\pi} \frac{t_{\text{III}}}{t_{\text{II}}} \right)^2.$$

Критерии оценивания

1. Получено или использовано без вывода правильное выражение для	
напряжённости электрического поля $E(x)$ внутри шара	1,5 балла
2. Получено правильное выражение для силы, действующей на диполь в шаре	1,5 балла
3. Правильно указан знак заряда ближнего к центру шара шарика диполя	
в начальном положении	0,5 балла
4. Получено правильное уравнение движения диполя	1 балл
5. Получено правильное выражение для $t_{\rm д}$	1 балл
6. Правильно указан заряд шарика, втягивающегося в шар	0,5 балла
7. Получено уравнение гармонических колебаний для движения шарика	2 балл
8. Получено правильное выражение для $t_{\text{ш}}$	1 балл
9. Получено правильное выражение для l	1 балл

Задача 11.2. Магнитная пружина. Невесомый гибкий провод с током I образует замкнутую петлю длиной L, которая соприкасается с вертикальной стенкой и гранью куба массой m. Система находится в магнитном поле B, перпендикулярном плоскости рисунка. Исходно куб удерживают на расстоянии x_0 от стенки.

- 1) До какой наибольшей скорости υ_m разгонится куб, если его отпустить?
- 2) Через какое время $t_{\rm m}$ будет достигнута эта скорость?

Примечание. Считайте, что при движении куба провод остаётся в одной вертикальной плоскости.

Возможное решение. Рассмотрим равновесие (бесконечно) малого участка провода, не контактирующего со стенкой или гранью куба, имеющего радиус кривизны R и угловой

размер $\Delta \alpha$. Запишем условия равновесия в проекциях на оси x (проходит по касательной к проводу в середине участка) и y (проходит через центр кривизны участка). Учтём, что сила Ампера $F_A = IB\Delta l = IBR\Delta \alpha$:

$$\begin{cases}
T_1 \cos(\Delta \alpha / 2) = T_2 \cos(\Delta \alpha / 2); \\
T_1 \sin(\Delta \alpha / 2) + T_2 \sin(\Delta \alpha / 2) = IBR\Delta \alpha.
\end{cases}$$

Из первого уравнения следует, что натяжение провода постоянно: $T_1 = T_2 \equiv T$, из второго (с учётом малости $\Delta \alpha$) —

что радиус кривизны постоянен на «свободных» участках провода: $R = T/(IB) = {\rm const.}$ Значит, эти участки — дуги окружностей. Одновременно мы замечаем, что сила натяжения — конечная величина, а остальные силы (сила Ампера, сила реакции стенки или грани куба) для любого элемента — бесконечно малые величины (порядка Δl), поэтому угол поворота провода на любом участке — тоже бесконечно малая величина порядка Δl . Это означает, что в состоянии равновесия провод не имеет изломов. Поэтому можно сделать вывод, что в каждый момент времени после отпускания системы невесомый провод, находящийся в «квазиравновесном» состоянии, состоит из двух одинаковых полуокружностей с диаметром, равным x, и двух одинаковых линейных участков, прижатых к стенке и грани куба. Следовательно, длина линейного участка провода, соприкасающегося с гранью куба, равна $l(x) = (L - \pi x)/2$. Куб разгоняется за счёт давления этого участка, которое возникает из-за силы Ампера $F_A = IBl(x) = IB(L - \pi x)/2$.

Поэтому разгон, начинающийся при $x=x_0$, заканчивается при $x=L/\pi$, когда провод перестаёт соприкасаться с гранью куба.

Обратим внимание, что поведение разгоняющий силы в точности совпадает с поведением силы упругости пружины длиной L/π с коэффициентом жёсткости $k=\pi IB/2$. Поэтому движение в процессе разгона соответствуют четверти периода гармонических «колебаний» на пружине от начальной деформации $y_0 = \frac{L}{\pi} - x_0$ до «положения равновесия». Максимальная скорость разгона

$$\upsilon_m = \omega y_0 = y_0 \sqrt{\frac{k}{m}} = \sqrt{\frac{\pi IB}{2m}} \left(\frac{L}{\pi} - x_0 \right).$$

Другой способ вычисления максимальной скорости — это использование закона изменения кинетической энергии. Поскольку сила, действующая на куб, зависит линейным образом от его перемещения, то её работу можно вычислить как площадь под графиком $F(x) = IB(L - \pi x)/2$.

Следовательно, изменение кинетической энергии куба в процессе разгона

$$\frac{mv_m^2}{2} = A_F = \frac{1}{2}F_0\left(\frac{L}{\pi} - x_0\right) = \frac{\pi IB}{4}\left(\frac{L}{\pi} - x_0\right)^2$$
,

то есть

$$\upsilon_m = \sqrt{\frac{\pi IB}{2m}} \left(\frac{L}{\pi} - x_0 \right).$$

Время разгона равно четверти «периода колебаний»: $t_m = \frac{\pi}{2\omega} = \sqrt{\frac{\pi m}{2IB}}$.

Критерии оценивания.

№	результат	максимальный балл
1.	Доказано (с использованием условия равновесия провода), что участки провода, не соприкасающиеся со стенкой или гранью куба, имеют форму полуокружностей: • постоянство радиуса кривизны на «свободных» участках — 1,5 балла;	2
2.	• отсутствие изломов – 0,5 балла. Правильно найдена длина участка провода, соприкасающегося с гранью куба: • указано (в том числе без доказательства), что в любой момент времени провод состоит из двух линейных участков и двух полуокружностей с диаметром, равным x — 0,5 балла; • получена формула $l(x) = \frac{L - \pi x}{2}$ — 0,5 балла.	1
3.	Указано (или используется в решении), что разгон куба прекращается при $x=L/\pi$	1
4.	Найдена величина силы, действующей на куб со стороны провода как функция расстояния x : • записано соотношение $F = IBl(x) - 0,5$ балла; • получена правильная формула $F_A = IB(L - \pi x)/2 - 1,5$ балла	2
5.	Правильно найдена величина максимальной скорости куба $\upsilon_m = \sqrt{\frac{\pi IB}{2m}} \left(\frac{L}{\pi} - x_0\right)$ из закона изменения энергии: правильно вычислена работа силы — 1 балл; получен правильный ответ для υ_m — 1 балл. получен правильный ответ для υ_m — 1 балл; получен правильный ответ для υ_m — 1 балл;	2
6.	Правильно найдено время разгона $t_m = \sqrt{\frac{\pi m}{2IB}}$:	2
	 указано, что время разгона соответствует четверти «периода» гармонического движения — 1 балл; получен правильный ответ для t — 1 балл 	
	ВСЕГО	10

Задача 11.3. Обрывок из архива Кельвина. Говорят, что в архиве лорда Кельвина нашли диаграмму (см. рис.) квазистатического циклического процесса тепловой

машины, рабочим телом которой являлось неизвестное вещество. Диаграмма процесса была построена в непривычных координатах T(Q) (T – температура, Q – количество подведённой теплоты) и имела вид ломаной линии abcdeb. От времени чернила выцвели и координатные оси исчезли, однако из пояснений к рисунку следовало, что каждый отрезок параллелен одной из осей координат. Восстановите построением положение осей Q и T и укажите их направления. Опишите ваш способ построения и нарисуйте в работе

диаграмму с осями координат и вспомогательными линиями, использованными при построении.

Возможное решение. Поскольку все отрезки параллельны координатным осям Q и T, на рисунке представлен цикл Карно. Отрезки cd и eb не могут быть параллельны оси Q, иначе в точке b температура отличается от температуры точки a, а это невозможно в циклическом процессе. Поэтому abc и de параллельны оси Q, а cd и eb — оси T. Ось температур должна проходить через точку a, так как c неё начинается отсчёт подведённой теплоты.

Перейдём к построению осей. Здесь и далее подстрочный индекс «х» относится к холодильнику, индекс «н» – к «нагревателю». КПД цикла Карно $\eta = 1 - \frac{T_{\rm X}}{T_{\rm H}} = 1 - \frac{Q_{\rm X}}{Q_{\rm H}},$

откуда
$$\frac{Q_{\mathrm{H}}}{T_{\mathrm{H}}} = \frac{Q_{\mathrm{X}}}{T_{\mathrm{X}}}.$$

Проведём прямые через cd и ae. Они пересекаются в некоторой точке f. Так как длина ed соответствует Q_x , длина ac соответствует Q_y , ed — изотерма при T_x , а ac — изотерма при T_y , то из последнего соотношения следует, что прямые cd и ae пересекаются на оси $extit{Q}$ над началом координат. Таким образом, точка $extit{f}$ принадлежит оси $extit{Q}$ и лежит над началом координат. Проведём прямую, параллельную $extit{cd}$ через точку $extit{a}$ и проведём перпендикуляр к ней из точки $extit{f}$. Точка пересечения даст нам начало координат, а сам перпендикуляр будет являться осью $extit{Q}$. В условии указано, что это цикл тепловой машины, следовательно, это прямой цикл, поэтому ось $extit{Q}$ имеет направление, указанное на рисунке.

Критерии оценивания

1) Указано, что на рисунке цикл Карно	1 балл
2) Указано, что <i>abc</i> и <i>de</i> – изотермы	1 балл
3) Указано, что cd и eb – адиабаты	1 балл
4) Использовано соотношение $\frac{Q_{\rm H}}{T_{\rm H}} = \frac{Q_{\rm X}}{T_{\rm X}}$ или эквивалентное ему	2 балла
5) Установлено, что ось температур проходит через точку <i>а</i> и верно указано её направление	1,0 балл
6) Показано, что точка пересечения прямых cd и ae принадлежит оси Q	3 балла
7) Восстановлена ось Q и верно указано её направление	1,0 балл

Задача 11.4. Падающая гантель. Два одинаковых маленьких шарика, соединённых неве-

сомым твёрдым стержнем длины L, падают на гладкую, абсолютно упругую горизонтальную плоскость. Непосредственно перед ударом нижнего шарика о плоскость скорости шариков направлены вертикально вниз и равны v_0 , а сразу после удара скорости шариков оказались взаимно перпендикулярны.

- 1) Каковы величина скорости центра масс гантели v_c и угловая скорость вращения стержня ω сразу после удара?
- 2) Под каким углом φ к вертикали был наклонён стержень перед ударом?

Возможное решение

Определение скорости центра масс и угловой скорости

Вариант 1. Рассмотрим момент времени сразу после удара. Из закона сохранения энергии следует

$$m{v_0}^2 = \frac{m({v_1}^2 + {v_2}^2)}{2}$$

 ${v_1}^2 + {v_2}^2 = 2{v_0}^2$,

где индексы 1 и 2 обозначают нижний и верхний шарики, соответственно.

Поскольку поверхность гладкая, сразу после удара скорость центра масс направлена вертикально вверх и находится из выражения

$$\overrightarrow{v_c} = \frac{\overrightarrow{v_1} + \overrightarrow{v_2}}{2}$$

$$v_c = \frac{\sqrt{v_1^2 + v_2^2}}{2} = \frac{v_0}{\sqrt{2}}$$

Из закона сложения скоростей $\vec{v}_{\text{отн}} = \vec{v}_1 - \vec{v}_2$ имеем

$$v_{\text{oth}} = \sqrt{v_1^2 + v_2^2} = v_0 \sqrt{2}.$$

Угловая скорость вращения стержня равняется $\omega = \frac{v_{\text{отн}}}{L}$

Таким образом, ответы на первый вопрос:

$$v_c = \frac{v_0}{\sqrt{2}}$$
 и $\omega = \frac{v_0\sqrt{2}}{L}$.

Вариант 2. Найти скорость центра масс и угловую скорость стержня можно также, используя теорему Кёнига:

$$E_{\text{\tiny KUH}} = 2m \frac{{v_c}^2}{2} + E_{\text{\tiny Bp}} = m v_0^2.$$

Здесь $E_{\rm Bp}=2m\frac{(\frac{\omega L}{2})^2}{2}=\frac{m\omega^2L^2}{4}$ представляет собой кинетическую энергию вращения системы относительно центра масс, $v_{\rm C}$ – скорость центра масс после удара. Поскольку поверхность гладкая, сразу после удара скорость центра масс направлена вертикально вверх и определяется выражением $\vec{v}_{\rm C}=\frac{\vec{v}_1+\vec{v}_2}{2}$. С учётом перпендикулярности \vec{v}_1 и \vec{v}_2

$$v_c = \frac{\sqrt{v_1^2 + v_2^2}}{2} \, .$$

Из закона сохранения энергии ${v_1}^2+{v_2}^2=2{v_0}^2$. Подставляя это в выражение для v_c , получаем

$$v_c = \frac{v_0}{\sqrt{2}}$$

Подставляя выражения для $E_{\rm Bp}$ и v_c в уравнение для $E_{\rm кин}$, получим для угловой скорости тот же ответ, что и первым способом:

$$\omega = \frac{v_0 \sqrt{2}}{I}.$$

Примечание. Возможны другие варианты, комбинирующие закон сохранения энергии и условие перпендикулярности векторов. Все они оцениваются одинаково при корректном получении правильных ответов.

Определение угла ϕ

Вариант 1 (сохранение проекции импульса верхнего шарика)

Ответ можно получить, используя тот факт, что для верхнего шарика выполняется закон сохранения импульса в проекции на ось, перпендикулярную стержню. Этот факт следует из того, что единственная сила, действие которой на верхний шарик за бесконечно малое время соударения существенно — это сила реакции стержня, направленная строго вдоль стержня. До удара проекция скорости шарика на эту ось равна

$$v_x = v_0 \sin \varphi$$
.

После удара, воспользовавшись законом сложения скоростей, получим для проекции

$$v_x = \frac{\omega L}{2} - v_c \sin \varphi.$$

Из этих двух уравнений, используя ранее полученные выше выражения для v_c и ω , получаем ответ для φ :

$$\sin \varphi = \frac{\omega L}{2(v_0 + v_c)} = \sqrt{2} - 1 \Rightarrow \varphi = \arcsin(\sqrt{2} - 1) \approx 24.5^{\circ}.$$

Вариант 2 (использование закона сохранения момента импульса)

Внешняя сила, действующая на гантель во время удара — сила нормальной реакции глад-кой поверхности — имеет нулевое плечо относительно точки удара нижнего шарика о поверхность. Поэтому момент импульса гантели относительно оси, проходящей через эту точку, сохраняется. При этом момент импульса гантели относительно этой оси равен моменту импульса верхнего шарика 2, а скорость которого после удара $\vec{v}_2 = \vec{v}_c + \vec{v}_{\rm Bp2}$. Мы уже знаем, что сразу после удара скорость центра масс направлена вертикально вверх и равна по величине $v_c = \frac{v_0}{\sqrt{2}}$. Скорость вращения $\vec{v}_{\rm Bp2}$ направлена перпендикулярно стержню, а её модуль $|\vec{v}_{\rm Bp2}| = \frac{\omega L}{2} = \frac{v_0}{\sqrt{2}}$. Поэтому закон сохранения момента импульса имеет вид

$$mv_0 L sin\varphi = -m \frac{v_0}{\sqrt{2}} L sin\varphi + mL \frac{v_0}{\sqrt{2}}$$

Выражая из этого соотношения синус искомого угла, получим $sin\varphi = \frac{1}{\sqrt{2}+1} = \sqrt{2}-1$.

Итак,
$$\varphi = arcsin(\sqrt{2} - 1) \approx 24,5^\circ$$
.

Вариант 3 (использование закона изменения момента импульса)

В случае непостоянства момента импульса относительно выбранной точки мы должны учесть изменение момента импульса из-за внешних сил. В рамках данной задачи момент импульса может меняться только под действием реакции поверхности. Из теоремы о движении центра масс найдём импульс, переданный поверхностью шарикам,

$$\Delta P_N = 2m(v_0 + v_c)$$

Запишем закон изменения момента импульса относительно центра масс:

$$2\frac{mL^2\omega}{4} = \frac{mL^2\omega}{2} = \frac{\Delta P_N L \sin \varphi}{2}.$$

Отсюда, используя ранее полученные выражения для v_c и ω , получаем ответ для φ .

$$\sin \varphi = \frac{\omega L}{2(v_0 + v_c)} = \sqrt{2} - 1 \Rightarrow \varphi = \arcsin(\sqrt{2} - 1) \approx 24.5^{\circ}.$$

Вариант 4 (использование векторных диаграмм).

Поскольку стержень невесом, а время удара мало, изменение импульса верхнего шарика $\overrightarrow{\Delta P}$ направлено вдоль стержня. Представим скорость этого шарика двумя способами:

$$\vec{v}_2 = \vec{v}_0 + \frac{\Delta \vec{P}}{m}$$
$$\vec{v}_2 = \vec{v}_c + \vec{v}_{\text{BP2}}$$

Здесь $\vec{v}_{\rm Bp2}$ - скорость верхнего шарика в системе центра масс после удара. Поскольку стержень твёрдый, $\frac{\Delta \vec{P}}{m}$ и $\vec{v}_{\rm Bp2}$ перпендикулярны. Изобразим это геометрически.

Поскольку $v_{\rm вp2} = \frac{\omega L}{2}$, из прямоугольного треугольника получим: $\sin \varphi = \frac{\omega L}{2(v_0 + v_c)} = \sqrt{2} - 1 \Rightarrow \varphi = arcsin(\sqrt{2} - 1) \approx 24,5^{\circ}$.

Критерии оценивания

Ответ на вопрос 1 (5 баллов)

Вариант 1 (кинематика)

- 1. Из закона сохранения энергии получено $v_1^2 + v_2^2 = 2v_0^2$ 1 балл
- 2. Записано выражение для скорости центра масс $\vec{v}_{\rm c} = \frac{\vec{v}_1 + \vec{v}_2}{2}$ 0,5 балла
- 3. Получено верное выражение для скорости центра масс $v_c = \frac{v_0}{\sqrt{2}}$ 1 балл
- 4. Выражение для угловой скорости вращения через относительную скорость шариков $\omega = \frac{v_{\text{отн}}}{L}$ 1 балл
- 5. Выражение для относительной скорости движения шариков

$$v_{\text{отн}} = \sqrt{v_1^2 + v_2^2}$$
 0,5 балла

6. Получено верное выражение для угловой скорости $\omega = \frac{v_0 \sqrt{2}}{L}$ 1 балл

Всего: 5 баллов

Вариант 2 (использование теоремы Кёнига)

- 1. Использовано при решении выражение для кинетической энергии гантели после удара в виде $E_{\text{кин}}=2m\frac{{v_c}^2}{2}+E_{\text{вp}}=m{v_0}^2$ 1 балл
- 2. Из закона сохранения энергии получено ${v_1}^2 + {v_2}^2 = 2{v_0}^2$ 0,5 балла
- 3. Из определения скорости центра масс $\overrightarrow{v_c} = \frac{\overrightarrow{v_1} + \overrightarrow{v_2}}{2}$ и закона сохранения энергии $v_1^2 + v_2^2 = 2{v_0}^2$, с учётом перпендикулярности $\overrightarrow{v_1}$ и $\overrightarrow{v_2}$, получено выражение для v_c , а именно $v_c = \frac{v_0}{\sqrt{2}}$ 1,5 балла
- 4. Использовано для решения выражение для энергии вращения в системе центра масс $E_{\rm Bp}=\frac{m\omega^2 l^2}{4}$ 1 балл
- 5. Получено верное выражение для угловой скорости $\omega = \frac{v_0 \sqrt{2}}{L}$ 1 балл

Всего: 5 баллов

1 балл

Ответ на вопрос 2 (5 баллов)

Вариант 1 (сохранение проекции импульса верхнего шарика) вдоль

- 1. Указано, что сила, действующая на верхний шарик, направлена стержня и проекция импульса на перпендикулярное направление сохраняется
- 2. Выражение для проекции импульса верхнего шарика на направление, перпендикулярное стержню до удара, $p_x = mv_0 \sin \varphi$ 1 балл
- 3. Выражение для проекции импульса верхнего шарика после удара на направление, перпендикулярное стержню, с использованием полученных выражений для скорости центра масс и угловой скорости вращения $p_x = m(\frac{\omega L}{2} v_c \sin \varphi_0)$ 2 балла

4.	Получен верный ответ для $ arphi $	1 балл			
	Всего: 5 баллов				
Baj	Вариант 2 (использование закона сохранения момента импульса)				
1.	Записан закон сохранения момента импульса относительно точки				
	удара нижнего шарика о поверхность	3 балла			
2.	С использованием ранее полученных результатов для v_c и ω				
	получен верный ответ для ϕ	2 балла			
	Всего: 5 баллов				
Baj	риант 3 (использование закона изменения момента импульса)				
1.	Выражение для импульса, полученного гантелей при столкновении с г	_			
	$P_N = 2m(v_0 + v_c)$	1 балл			
2.	Записан закон изменения момента импульса относительно				
	выбранной участником точки	2 балла			
3.	С использованием ранее полученных результатов для v_c и ω				
	получен верный ответ для ϕ	2 балла			
	Всего: 5 баллов				
-	риант 4 (использование векторных диаграмм)				
1.	Указано, что сила, действующая на верхний шарик, направлена				
	вдоль стержня	1 балл			
2.					
	в векторной форме через изменение импульса для верхнего шарика				
	$\vec{v}_2 = \vec{v}_0 + \frac{\Delta \vec{P}}{m}$	1 балл			
3.	Записано выражение для скорости верхнего шарика после удара				
	в векторной форме через скорость центра масс и скорость второго				
	шарика в системе центра масс $\vec{v}_2 = \vec{v}_{c} + \vec{v}_{\rm вp2}$	1 балл			
4.	Использована векторная диаграмма и перпендикулярность $ec{v}_2$ и $\Delta ec{P}$	1 балл			
5.	Получен верный ответ для $oldsymbol{arphi}$	1 балл			
	Всего: 5 баллов				

Задача 11.5. Прозрачный шарик. Лучи света, испускаемые точечным источником S,

падают на однородный шар из прозрачного материала с показателем преломления n. Луч, вышедший из источника S под углом α к прямой MN, на которой лежат источник и центр шара, после двух преломлений на границе шара, пересекает MN под углом β в точке K (см. рис.). Расстояние SK = l.

- 1) Выразите радиус R шара и расстояние SO от источника до центра шара через параметры l, α, β, n .
- 2) Вычислите SO и R для значений n=2, $\alpha=60$ °C, $\beta=30$ °C, l=10 см.

Возможное решение

Пусть B — точка падения луча, о котором идёт речь в задаче, на поверхность шара (рис.1.), C — точка выхода луча из шара, φ и θ — углы падения и преломления, связанные законом Снелла: $\sin \varphi = n \sin \theta$, A — точка пересечения продолжений лучей SB и CK. Так как треугольник OBC — равнобедренный, то угол падения в точке C равен углу преломления θ в точке B. Согласно закону преломления угол преломления в точке C будет равен углу падения φ в точке B. С учётом этого, по теореме синусов, для треугольников SBO и OCK:

$$\frac{SO}{\sin \varphi} = \frac{R}{\sin \alpha} \text{ и } \frac{OK}{\sin \varphi} = \frac{R}{\sin \beta}.$$
$$\frac{SO}{OK} = \frac{\sin \beta}{\sin \alpha}.$$

 $SO = l \frac{\sin \beta}{\sin \alpha + \sin \beta}$.

Следовательно,

Тогда ответ на первый вопрос:

Обратите внимание на то, что и в точке B, и в точке C угол отклонения луча при преломлении равен $\gamma = \varphi - \theta$. Поэтому полный угол отклонения луча равен 2γ .

Следовательно, $\angle SAK = \pi - (\alpha + \beta) = \pi - 2\gamma$, то есть $\gamma = \frac{\alpha + \beta}{2}$. Таким образом,

справедливо соотношение $\frac{\sin\varphi}{\sin\theta} = \frac{\sin\varphi}{\sin\left(\varphi-\gamma\right)} = n$, из которого следует:

 $\sin \varphi = n \sin \varphi \cos \gamma - n \sin \gamma \cos \varphi.$

Из последнего уравнения находим $\operatorname{tg} \varphi = \frac{n \sin \gamma}{n \cos \gamma - 1}$ и $\sin \varphi = \frac{n \sin \gamma}{\sqrt{n^2 - 2n \cos \gamma + 1}}$.

Из теоремы синусов для треугольника SBO следует $\frac{SO}{\sin \varphi} = \frac{R}{\sin \alpha}$.

Запишем формулы для ответа на второй вопрос:

$$R = SO \frac{\sin \alpha}{\sin \varphi} = l \frac{\sin \alpha \sin \beta \sqrt{n^2 - 2n \cos \gamma + 1}}{(\sin \alpha + \sin \beta) n \sin \gamma}.$$

После подстановки заданных численных значений получаем: SO = 3,66 см, R = 3,30 см.

Критерии оценивания

1. Проведён анализ хода луча в шаре, то есть на рисунке отмечены				
углы падения и преломления для луча, падающего на шар, и луча,				
выходящего из шара	0,5 балла			
2. Записан закон Снелла для этих лучей $\sin \varphi = n \sin \theta$	0,5 балла			
3. Указано (или используется в решении), что угол падения при входе				
луча в шар равен углу преломления при выходе из шара и угол				
преломления при входе в шар равен углу падения при выходе	1 балл			
4. Получено соотношение $\frac{SO}{OK} = \frac{\sin \beta}{\sin \alpha}$ или эквивалентное	1 балл			
5. Получен верный ответ для <i>SO</i>	1 балл			
6. Получено верное выражение для связи угла поворота луча				
с углами α и β $\left(\varphi - \theta = \frac{\alpha + \beta}{2} \right)$ или эквивалентное	1 балл			
7. Получено верное выражение для угла падения или угла преломления				
через данные задачи	1 балл			
Примечание: если это выражение получено другим корректным способом,				
без вычисления угла поворота луча, то балл за п.6 тоже ставится.				
8. Получен верный ответ для R	2 балла			
9. Получено численное значение SO	1 балл			
10. Получено численное значение <i>R</i>	1 балл			