0.1 Kolmý priemet vektora do podpriestoru

Riešme v Euklidovom vektorovom priestore úlohu nájsť na x-ovej osi taký vektor $\tilde{\mathbf{v}}$, ktorý dostaneme ako obraz pôvodného vektora \mathbf{v} pri kolmom premietaní. To znamená, že vektory $\mathbf{v} - \tilde{\mathbf{v}}$ a $\tilde{\mathbf{v}}$ budú na seba kolmé. Na obrázku 1 je zobrazená geometrická predstava kolmého priemetu vektora \mathbf{v} . Neskôr ukážeme, že je naozaj pravda to, čo vidno na obrázku, že vektor $\mathbf{v} - \tilde{\mathbf{v}}$ je najkratší zo všetkých vektorov $\mathbf{v} - \tilde{\mathbf{v}}$, kde $\tilde{\mathbf{y}}$ leží na x-ovej osi.

Obrázok 1: Vektor $\mathbf{v} - \tilde{\mathbf{v}}$ je kolmý na $\tilde{\mathbf{v}}$ (na priemet vektora \mathbf{v} na os x)

Príklad 0.1.1 Ku vektoru $\mathbf{v}=(3,2)$ nájdite na x-ovej osi taký vektor $\tilde{\mathbf{v}}$, že vektory $\mathbf{v}-\tilde{\mathbf{v}}$ a $\tilde{\mathbf{v}}$ budú na seba kolmé.

Riešenie:

Najprv si povedzme, aké vektory budú ležať na osi x. Budú to všetky násobky vektora $\mathbf{b}=(1,0)$, ale napríklad aj vektorov (2,0) alebo (-3.7,0). Os x je vlastne jednorozmerný vektorový podpriestor dvojrozmerného vektorového priestoru. Vektor ležiaci na osi x bude mať preto tvar

$$\tilde{\mathbf{v}} = c \cdot \mathbf{b} = c \cdot (1,0) = (c,0)$$

Pretože $\mathbf{v}-\tilde{\mathbf{v}}$ a $\tilde{\mathbf{v}}$ majú byť na seba kolmé, musí platiť, že ich skalárny súčin bude rovný 0.

$$\langle \mathbf{v} - \tilde{\mathbf{v}}, \tilde{\mathbf{v}} \rangle = 0$$

To nastane práve vtedy, keď

$$\langle \mathbf{v} - \tilde{\mathbf{v}}, \mathbf{b} \rangle = 0$$

Teda riešime rovnicu

$$\langle \mathbf{v} - c \cdot \mathbf{b}, \mathbf{b} \rangle = 0$$

Odtiaľ s využitím vlastností skalárneho súčinu dostaneme

$$\begin{aligned} \langle \mathbf{v}, \mathbf{b} \rangle - c \cdot \langle \mathbf{b}, \mathbf{b} \rangle &= 0 \\ \langle \mathbf{v}, \mathbf{b} \rangle &= c \cdot \langle \mathbf{b}, \mathbf{b} \rangle \end{aligned}$$

$$c = \frac{\langle \mathbf{v}, \mathbf{b} \rangle}{\langle \mathbf{b}, \mathbf{b} \rangle} = \frac{\langle (3, 2), (1, 0) \rangle}{\langle (1, 0), (1, 0) \rangle} = \frac{3}{1} = 3$$

Teda hľadaný priemet vektora (3,2) na os x bude vektor

$$\tilde{\mathbf{v}} = c \cdot \mathbf{b} = c \cdot (1,0) = (3,0)$$

Nech je daný N-rozmerný vektorový priestor \mathbb{V}_N so skalárnym súčinom a jeho M-rozmerný vektorový podpriestor \mathbb{V}_M , teda $0 < M \le N$.

Nech $\mathcal{B} = (\mathbf{b}_0, \mathbf{b}_1, \dots, \mathbf{b}_{M-1})$ je báza podpriestoru \mathbb{V}_M .

Priemet vektora v $\in \mathbb{V}_N$ do podpriestoru \mathbb{V}_M je vektor $\tilde{\mathbf{v}}$, ktorý leží v podpriestore \mathbb{V}_M , pričom vektor $\mathbf{v} - \tilde{\mathbf{v}}$ je kolmý na každý vektor podpriestoru \mathbb{V}_M .

Tvrdenie 0.1.1 Koeficienty vektora $\tilde{\mathbf{v}} \in \mathbb{V}_M$, ktorý je kolmým priemetom vektora \mathbf{v} do M-rozmerného priestoru \mathbb{V}_M s ortogonálnou bázou $\mathcal{B} = (\mathbf{b}_0, \mathbf{b}_1, \dots, \mathbf{b}_{M-1})$, vypočítame nasledovne:

$$c_k = \frac{\langle \mathbf{v}, \mathbf{b}_k \rangle}{\langle \mathbf{b}_k, \mathbf{b}_k \rangle} \quad pre \quad k = 0, 1, \dots, M - 1$$
 (0.1.1)

Dôkaz:

Pretože vektor $\mathbf{v} - \tilde{\mathbf{v}}$ musí byť kolmý na podpriestor \mathbb{V}_M , bude kolmý na každý prvok bázy \mathbb{V}_M . Platí

$$\langle \mathbf{v} - \tilde{\mathbf{v}}, \mathbf{b}_k \rangle = 0$$
 pre $k = 0, 1, \dots, M - 1$

 $\tilde{\mathbf{v}} \in \mathbb{V}_M$, preto

$$\langle \mathbf{v} - \tilde{\mathbf{v}}, \mathbf{b}_k \rangle = \langle \mathbf{v} - \sum_{i=0}^{N-1} c_i \mathbf{b}_i, \mathbf{b}_k \rangle = 0 \quad \text{pre} \quad k = 0, 1, \dots, M - 1$$

$$\langle \mathbf{v}, \mathbf{b}_k \rangle - \sum_{i=0}^{N-1} c_i \langle \mathbf{b}_i, \mathbf{b}_k \rangle = 0$$

$$\langle \mathbf{v}, \mathbf{b}_k \rangle = c_k \langle \mathbf{b}_k, \mathbf{b}_k \rangle \quad \text{pretože} \quad \langle \mathbf{b}_i, \mathbf{b}_k \rangle = 0 \quad \text{pre} \quad i \neq k$$

$$c_k = \frac{\langle \mathbf{v}, \mathbf{b}_k \rangle}{\langle \mathbf{b}_k, \mathbf{b}_k \rangle}$$

Príklad 0.1.2 Aký je priemet vektora $\mathbf{v} = (2,4,8,1)$ do podpriestoru generovaného bázou $\mathcal{B} = (\mathbf{b}_0, \mathbf{b}_1)$, kde $\mathbf{b}_0 = (1,2,4,0)$, $\mathbf{b}_1 = (8,0,-2,1)$?

Riešenie:

Priemet vektora $\mathbf{v} = (2, 4, 8, 1)$ do podpriestoru generovaného bázou $\mathcal{B} = (\mathbf{b}_0, \mathbf{b}_1)$, kde $\mathbf{b}_0 = (1, 2, 4, 0)$, $\mathbf{b}_1 = (8, 0, -2, 1)$, je vektor $\tilde{\mathbf{v}}$ so súradnicami

$$\tilde{\mathbf{v}}_{\mathcal{B}} = (2, 0.02)$$

 $\tilde{\mathbf{v}}_{\mathcal{E}} = (2.16, 4, 7.96, 0.02)$

Pretože báza \mathcal{B} je ortogonálna, koeficienty rozkladu sa vypočítajú zo vzorca (0.1.1).

$$c_0 = \frac{\langle (2,4,8,1), (1,2,4,0) \rangle}{\langle (1,2,4,0), (1,2,4,0) \rangle} = \frac{42}{21} = 2$$

$$c_1 = \frac{\langle (2,4,8,1), (8,0,-2,1) \rangle}{\langle (8,0,-2,1), (8,0,-2,1) \rangle} = \frac{1}{69} = 0.02$$

0.2 Gramova-Schmidtova ortogonalizácia

Keď chceme z danej známej bázy $\mathcal{B} = (\mathbf{b}_0, \mathbf{b}_1, \dots, \mathbf{b}_{N-1})$ priestoru \mathbb{V} vyrobiť ortogonálnu bázu $\mathcal{B}' = (\mathbf{b}'_0, \mathbf{b}'_1, \dots, \mathbf{b}'_{N-1})$ môžeme použiť nasledovný postup:

- 1. Vyberieme jeden z vektorov bázy \mathcal{B} a označíme ho ako vektor \mathbf{b}_0' bázy \mathcal{B}' : $\mathbf{b}_0' = \mathbf{b}_0$
- 2. Nájdeme vektor \mathbf{b}_1' taký, že $\mathbf{b}_1' \perp \mathbf{b}_0'$ a leží v rovine (podpriestore) určenej vektormi $\mathbf{b}_0', \mathbf{b}_1$. Túto požiadavku spĺňa vektor $\mathbf{b}_1' = \mathbf{b}_1 \tilde{\mathbf{b}}_1$, kde $\tilde{\mathbf{b}}_1$ je kolmý priemet vektora \mathbf{b}_1 na priamku určenú vektorom \mathbf{b}_0' .
- 3. Nájdeme vektor \mathbf{b}_2' taký, že $\mathbf{b}_2' \perp \mathbf{b}_0'$, $\mathbf{b}_2' \perp \mathbf{b}_1'$ a leží v podpriestore určenom vektormi \mathbf{b}_0' , \mathbf{b}_1' , \mathbf{b}_2 . Túto požiadavku spĺňa vektor $\mathbf{b}_2' = \mathbf{b}_2 \tilde{\mathbf{b}}_2$, kde $\tilde{\mathbf{b}}_2$ je kolmý priemet vektora \mathbf{b}_2 do podpriestoru určeného vektormi \mathbf{b}_0' , \mathbf{b}_1' .
- 4. Krok 3 opakujeme, až kým nie je v báze \mathcal{B}' N vektorov.

Úloha 0.2.1 Napíšte kroky 2 a 3 z algoritmu Gram-Schmidtovej ortogonalizácie ako jeden indukčný krok, v ktorom všeobecne vyjadríte vektor \mathbf{b}'_n pomocou vektorov $\mathbf{b}'_0, \mathbf{b}'_1, \dots, \mathbf{b}'_{n-1}$ a \mathbf{b}_n .

Úloha 0.2.2 Čo sa stane, ak báza \mathcal{B} , z ktorej chceme vyrobiť ortogonálnu bázu \mathcal{B}' pomocou Gram-Schmidtovej ortogonalizácie, nie je ortogonálna?

Úloha 0.2.3 Nájdite ortogonálnu bázu vektorového priestoru určeného bázou $\mathcal{B} = ((1,2,3,4,5,6),(3,4,2,1,3,4),(5,4,1,0,1,2),(1,3,4,5,6,1),(2,3,4,5,1,2),(1,2,3,4,2,1)).$

Dá sa úloha riešiť bez počítača?

Príklad 0.2.1 Ortogonalizujte pomocou Gram-Schmidtovej ortogonalizácie bázu $\mathcal{B} = ((1,1,1),(0,1,2),(0,1,4)).$

Riešenie:

Ako prvý vektor bázy sme vybrali vektor (1,1,1). Pôvodná báza:

$$\mathcal{B} = (\mathbf{b}_0, \mathbf{b}_1, \mathbf{b}_2) = ((1, 1, 1), (0, 1, 2), (0, 1, 4))$$

Ortogonálna báza, ktorú dostaneme Gram-Schmidtovou ortogonalizáciou je báza

$$\mathcal{B}' = (\mathbf{b}_0', \mathbf{b}_1', \mathbf{b}_2') = \left((1, 1, 1), (-1, 0, 1), \left(\frac{1}{3}, -\frac{2}{3}, \frac{1}{3} \right) \right)$$

Neskôr ukážeme užitočnosť takto vytvorenej ortogonálnej bázy \mathcal{B}' . Teraz len poznamenáme, že vektory bázy \mathcal{B}' majú nasledujúce vlastnosti:

- \bullet prvý vektor $\mathbf{b}_0' = (1, 1, 1)$ predstavuje konštantnú zložku procesu,
- vektor $\mathbf{b}'_1 = (-1, 0, 1)$ predstavuje lineárnu zložku procesu,

• vektor $\mathbf{b}_2'=(\frac{1}{3},-\frac{2}{3},\frac{1}{3})$ predstavuje kvadratickú (parabolickú) zložku procesu.

Naviac vektor \mathbf{b}_1' predstavuje lineárny nárast bez konštantnej zložky a vektor \mathbf{b}_2' predstavuje kvadratický priebeh bez konštantnej a bez lineárnej zložky. Vektory $\mathbf{b}_0', \mathbf{b}_1', \mathbf{b}_2'$ sú vykreslené na obrázku 2.

Obrázok 2: Ortogonálne vektory $\mathbf{b}_0', \mathbf{b}_1', \mathbf{b}_2'$, ktoré predstavujú čistý konštantný, lineárny a kvadratický priebeh

Príklad 0.2.2 Nájdite konštantnú, lineárnu a kvadratickú zložku vektorov $\mathbf{v} = (3, 6, 2)$ a $\mathbf{u} = (0, 2, 7)$.

Riešenie:

 ${\bf V}$ troj
rozmernom vektorovom priestore bude konštantný priebeh predstavovať vektor

$$\mathbf{b}_0' = (1, 1, 1)$$

lineárny nárast bude predstavovať vektor

$$\mathbf{b}_1' = (-1, 0, 1)$$

a kvadratický priebeh bude predstavovať vektor

$$\mathbf{b}_2' = \left(\frac{1}{3}, -\frac{2}{3}, \frac{1}{3}\right)$$

Tieto vektory sú na seba kolmé, preto môžeme podľa vzorca (0.1.1) vypočítať koeficienty vektora $\mathbf{v}=(3,6,2)$:

$$c_0 = \frac{11}{3}, \qquad c_1 = -\frac{1}{2}, \qquad c_2 = -\frac{7}{2}$$

Vidíme, že platí

$$(3,6,2) = \frac{11}{3} \cdot (1,1,1) - \frac{1}{2} \cdot (-1,0,1) - \frac{7}{2} \cdot \left(\frac{1}{3}, -\frac{2}{3}, \frac{1}{3}\right)$$

Pre vektor $\mathbf{u} = (0, 2, 7)$ sú koeficienty

$$d_0 = 3, \qquad d_1 = 3.5, \qquad d_2 = 1.5$$

$$(3,6,2) = 3 \cdot (1,1,1) + 3.5 \cdot (-1,0,1) + 1.5 \cdot \left(\frac{1}{3}, -\frac{2}{3}, \frac{1}{3}\right)$$

Navyše z obrázkov 3 a 4 vidíme, ako dobre jednotlivé vektory $\mathbf{b}_0', \mathbf{b}_1', \mathbf{b}_2'$ aproximujú každý z pôvodných vektorov \mathbf{v} a \mathbf{u} .

Obrázok 3: Vektor $\mathbf{v} = (3, 6, 2)$ a príspevok vektorov $\mathbf{b}'_0, \mathbf{b}'_1, \mathbf{b}'_2$

Príklad 0.2.3 Nájdite ortogonálnu bázu $\mathcal{B}' = (\mathbf{b}'_0, \mathbf{b}'_1)$ vektorového podpriestoru \mathbb{U} priestoru \mathbb{V} , ak viete, že $\mathbb{U} = [(1, 2, 0, -1), (1, 1, 3, 0)].$

Riešenie:

Vektory (1,2,0,-1),(1,1,3,0) sú lineárne nezávislé, ale nie sú ortogonálne, lebo ich skalárny súčin je 3 a nie 0.

Keby sme úlohu riešili tak, že vyberieme dva kolmé vektory,

napr. (1,2,0,-1),(1,0,0,1), dostaneme síce ortogonálnu bázu dvojrozmerného podpriestoru, ale nie podpriestoru $\mathbb U$ generovaného vektormi

 $\mathbf{b}_0 = (1, 2, 0, -1), \mathbf{b}_1 = (1, 1, 3, 0).$

Napríklad vektor (1,1,3,0) sa nedá napísať ako lineárna kombinácia vektorov (1,2,0,-1),(1,0,0,1).

Pri báze, ktorú dostaneme Gram-Schmidtovou ortogonalizáciou však je zaručené, že je bázou toho istého podpriestoru ako báza, z ktorej bola odvodená:

Obrázok 4: Vektor $\mathbf{u} = (0, 2, 7)$ a príspevok vektorov $\mathbf{b}_0', \mathbf{b}_1', \mathbf{b}_2'$

Ako prvý zoberieme do bázy prvý vektor $\mathbf{b}_0' = (1, 2, 0, -1)$. Druhý vektor \mathbf{b}_1' , dostaneme ako rozdiel vektora \mathbf{b}_1 a jeho kolmého priemetu na vektor \mathbf{b}_0' , ktoré oba ležia v podpriestore \mathbb{U} , teda aj vektor \mathbf{b}_1' bude ležať v podpriestore \mathbb{U} .

$$\mathbf{b}_1' = \mathbf{b}_1 - \tilde{\mathbf{b}}_1 = \mathbf{b}_1 - c \cdot \mathbf{b}_0', \quad \text{kde} \qquad c = \frac{\langle \mathbf{b}_1, \mathbf{b}_0' \rangle}{\langle \mathbf{b}_0', \mathbf{b}_0' \rangle}$$

Riešením príkladu je báza $\mathcal{B}' = (\mathbf{b}_0', \mathbf{b}_1')$, kde

$$\begin{aligned} \mathbf{b}_0' &= (1, 2, 0, -1) \\ \mathbf{b}_1' &= (1, 1, 3, 0) - \tilde{\mathbf{b}}_1 = (1, 1, 3, 0) - 0.5 \cdot (1, 2, 0, -1) = \\ &= (1, 1, 3, 0) - (0.5, 1, 0, -0.5) = (0.5, 0, 3, 0.5) \end{aligned}$$

Z postupu vidíme, že vektor (0.5, 0, 3, 0.5) ortogonálnej bázy, sme dostali ako lineárnu kombináciu vektorov pôvodnej bázy.

Úloha 0.2.4 Nájdite ortogonálnu bázu $\mathcal{B}' = (\mathbf{b}_0', \mathbf{b}_1', \mathbf{b}_3', \mathbf{b}_4')$ vektorového podpriestoru \mathbb{U} priestoru \mathbb{V} , ak viete, že $\mathbb{U} = [(1, 2, 3, 4, 5, 6), (3, 4, 2, 1, 3, 4), (5, 4, 1, 0, 1, 2), (1, 3, 4, 5, 6, 1)].$