In [1]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

In [2]: df=pd.read_csv('diabetes.csv')

In [3]: df

Out[3]: Pregnancies Glucose BloodPressure SkinThickness Insulin BMI Pedigree Age Out 0 33.6 0.627 0 26.6 0.351 0 23.3 0.672 28.1 0.167 43.1 2.288 180 32.9 0.171 0 36.8 0.340 112 26.2 0.245 0 30.1 0.349

0 30.4

0.315

768 rows × 9 columns

In [4]: df.head()

Out[4]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	Pedigree	Age	Outco
0	6	148	72	35	0	33.6	0.627	50	
1	1	85	66	29	0	26.6	0.351	31	
2	8	183	64	0	0	23.3	0.672	32	
3	1	89	66	23	94	28.1	0.167	21	
4	0	137	40	35	168	43.1	2.288	33	
4									•

In [5]: df.tail()

\sim	 _		
	 т	וכו	٠,

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	Pedigree	Age	Out
763	10	101	76	48	180	32.9	0.171	63	
764	2	122	70	27	0	36.8	0.340	27	
765	5	121	72	23	112	26.2	0.245	30	
766	1	126	60	0	0	30.1	0.349	47	
767	1	93	70	31	0	30.4	0.315	23	
4									•

In [6]: df.describe()

Out[6]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	Pŧ
count	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	768.
mean	3.845052	120.894531	69.105469	20.536458	79.799479	31.992578	0.
std	3.369578	31.972618	19.355807	15.952218	115.244002	7.884160	0.
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.
25%	1.000000	99.000000	62.000000	0.000000	0.000000	27.300000	0.
50%	3.000000	117.000000	72.000000	23.000000	30.500000	32.000000	0.
75%	6.000000	140.250000	80.000000	32.000000	127.250000	36.600000	0.
max	17.000000	199.000000	122.000000	99.000000	846.000000	67.100000	2.
4							•

In [7]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 768 entries, 0 to 767
Data columns (total 9 columns):

Ducu	COTAMIIS (COCAT	J COTAMITS).	
#	Column	Non-Null Count	Dtype
0	Pregnancies	768 non-null	int64
1	Glucose	768 non-null	int64
2	BloodPressure	768 non-null	int64
3	SkinThickness	768 non-null	int64
4	Insulin	768 non-null	int64
5	BMI	768 non-null	float64
6	Pedigree	768 non-null	float64
7	Age	768 non-null	int64
8	Outcome	768 non-null	int64

dtypes: float64(2), int64(7)

memory usage: 54.1 KB

In [9]: df.shape

Out[9]: (768, 9)

```
In [10]:
         df.isnull().sum()
Out[10]: Pregnancies
                            0
          Glucose
                            0
          BloodPressure
                            0
          SkinThickness
                            0
          Insulin
                            0
          BMI
                            0
          Pedigree
                            0
                            0
          Age
          Outcome
                            0
          dtype: int64
```

In [12]: | sns.heatmap(df.corr(),annot=True)

Out[12]: <Axes: >

In [20]: from sklearn.neighbors import KNeighborsClassifier
 kn=KNeighborsClassifier()
 kn.fit(X_train,y_train)

Out[20]: KNeighborsClassifier()

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.

On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

```
In [21]: y_pred=kn.predict(X_test)
```

In [23]: from sklearn.metrics import accuracy_score,precision_score,recall_score,con
conf=confusion_matrix(y_test,y_pred)

```
In [25]: sns.heatmap(conf,annot=True)
plt.xlabel("Actual value")
```

Out[25]: Text(0.5, 23.5222222222222, 'Actual value')


```
In [26]: accuracy_score(y_test,y_pred)
```

Out[26]: 0.7207792207792207

```
In [27]: precision_score(y_test,y_pred)
```

Out[27]: 0.6481481481481481

```
In [28]: recall_score(y_test,y_pred)
Out[28]: 0.5932203389830508
In [ ]:
```