lab1

November 7, 2021

1 Algorytmy macierzowe

1.1 Mnożenie macierzy IGA i FEM

```
[1]: import numpy as np
import re
import matplotlib.pyplot as plt
import scipy.sparse
import time
import os
```

1.1.1 Konwersja macierzy n x n wygenerowanej w Octave na macierz numpy nq x nq.

Wynikowa macierz, to macierz Octave powtórzona q razy w poziomie i pionie.

```
[2]: def input_matrix(octave_matrix, n, m, q=1):
         result = np.zeros((n*q, m*q), dtype=np.double)
         for elem in octave_matrix:
             m = re.match(r''\s*\((\d+), (\d+)\) \rightarrow (\d+\.\d+)\s*'', elem)
             if m is not None: # dla macierzy 256x256 dostaje m = None...
                 x, y, value = m.groups()
             elif len(elem) > 0:
                 coord, value = elem.strip().split(' -> ')
                 value = float(value)
                 x, y = coord.split(',')
                 x, y = x[1:], y.strip()[:-1]
             else:
                 continue
             for i in range(q):
                 for j in range(q):
                     result[i*n + int(x) - 1, j*n + int(y) - 1] = float(value)
         return result
```

```
[3]: def load_octave_matrix(filename):
    with open(filename, "r") as file:
```

```
return file.readlines()
```

```
[4]: data_dir = "../output"

def resolve_path(matrix_type, width, height = None):
    if height is None: height = width
    path = f"{data_dir}/{matrix_type}-{width}x{height}.txt"
    if os.path.isfile(path): return path
    else: raise FileNotFoundError(f"Matrix file {path} not found")

resolve_matrix = lambda matrix_type, n, m, q = 1: input_matrix(
    load_octave_matrix(resolve_path(matrix_type, n, m)), n, m, q
)
```

```
[5]: def timeit(times = 1, loops = 2):
    def timed_func(func):
        def wrapper(*args):
            tries_time = 0
            for n_try in range(times):
                loops_time = 0
                for loop in range(loops):
                      t_start = time.time()
                      func(*args)
                     loops_time += time.time() - t_start
                     tries_time += loops_time / loops
                 return tries_time / times
                 return trimed_func
```

1.1.2 Sześć algorytmów mnożenia macierzy w zależności od kolejności pętli i, j oraz p.

```
A - macierz wejściowa n x m
B - macierz wejściowa m x k
C - macierz wynikowa n x k
```

```
def matrix_mul_jip(A, B, C, n, m, k):
    for j in range(m):
        for i in range(n):
            for p in range(k):
                 C[i,j] += A[i,p]*B[p,j]
def matrix_mul_jpi(A, B, C, n, m, k):
    for j in range(m):
        for p in range(k):
            for i in range(n):
                 C[i,j] += A[i,p]*B[p,j]
def matrix_mul_pij(A, B, C, n, m, k):
    for p in range(k):
        for i in range(n):
            for j in range(m):
                 C[i,j] += A[i,p]*B[p,j]
def matrix_mul_pji(A, B, C, n, m, k):
    for p in range(k):
        for j in range(m):
            for i in range(n):
                 C[i,j] += A[i,p]*B[p,j]
mmul = {
    "warmuprun": matrix_mul_ijp,
    "ijp": matrix_mul_ijp,
    "ipj": matrix_mul_ipj,
    "jip": matrix_mul_jip,
    "jpi": matrix_mul_jpi,
    "pij": matrix_mul_pij,
    "pji": matrix_mul_pji
}
```

1.1.3 Macierze wejściowe

```
[7]: SIZE = 256

n = SIZE  # liczba wierszy macierzy A

m = SIZE  # liczba kolumn macierzy A / liczba wierszy macierzy B

k = SIZE  # liczba kolumn macierzy B

q = 2  # czynnik skalujący macierze

N_n = n * q

N_m = m * q

N_k = k * q
```

```
[8]: A = resolve_matrix("iga", n, m, q)
B = resolve_matrix("fem", m, k, q)
print("Wymiary macierzy A:", A.shape)
print("Wymiary macierzy B:", B.shape)
```

Wymiary macierzy A: (512, 512) Wymiary macierzy B: (512, 512)

1.1.4 Sprawdzanie najszybszego algorytmu

```
min_loop_time = None
min_mul_type = "ijp"
mmul_optimal = mmul[min_mul_type]

for mul_type, mul_fun in mmul.items():
    print(f"{mul_type}:")
    C = np.zeros((N_n, N_k))
    loop_time = %timeit -n 1 -r 1 -o mul_fun(A, B, C, N_n, N_m, N_k)
    if mul_type == "warmuprun": continue
    stats[mul_type] = loop_time.average
    if min_loop_time is None or min_loop_time > loop_time.average:
        min_loop_time = loop_time.average
        min_loop_time = mul_type
        mmul_optimal = mul_fun

print(f"\nNajszybsza konfiguracja: {min_mul_type}")
```

```
warmuprun:
1min 26s ± 0 ns per loop (mean ± std. dev. of 1 run, 1 loop each)
ijp:
1min 24s ± 0 ns per loop (mean ± std. dev. of 1 run, 1 loop each)
ipj:
1min 23s ± 0 ns per loop (mean ± std. dev. of 1 run, 1 loop each)
jip:
1min 23s ± 0 ns per loop (mean ± std. dev. of 1 run, 1 loop each)
jpi:
1min 24s ± 0 ns per loop (mean ± std. dev. of 1 run, 1 loop each)
pij:
1min 24s ± 0 ns per loop (mean ± std. dev. of 1 run, 1 loop each)
pij:
1min 23s ± 0 ns per loop (mean ± std. dev. of 1 run, 1 loop each)
pji:
1min 25s ± 0 ns per loop (mean ± std. dev. of 1 run, 1 loop each)
Najszybsza konfiguracja: pij
```

[15]:

Kolejność pętli	Czas [s]
ijp	84.3998
ipj	83.4422
jip	83.9876
jpi	84.3533
pij	83.032
pji	85.1829

1.1.5 Arbitralny wybór optymalnego algorytmu

Jeżeli ma zostać wykorzystany algorytm wyznaczony obliczeniowo (w komórce powyżej), nie wykonywać komórki poniżej.

```
[16]: mmul_optimal = mmul["ijp"]
```

1.1.6 Sprawdzanie niezerowych miejsc macierzy A, B i C

```
[17]: C = np.zeros((N_n, N_k))
%timeit -n 1 -r 1 mmul_optimal(A, B, C, N_n, N_m, N_k)
```

1min 28s \pm 0 ns per loop (mean \pm std. dev. of 1 run, 1 loop each)

```
[18]: plt.spy(scipy.sparse.csr_matrix(A))
    plt.show()
```


[19]: plt.spy(scipy.sparse.csr_matrix(B))
 plt.show()


```
[20]: plt.spy(scipy.sparse.csr_matrix(C))
plt.show()
```


1.1.7 Mnożenie blokowe macierzy przyjmując wielkość bloków: block_size x block_size.

matrix mul fun to jedna z wybranych funkcji mnożenia macierzy zaimplementowanych wyżej

```
[22]: from math import log
block_sizes = [2**i for i in range(2, int(log(N_n * q, 2)))]
print(block_sizes)
mul_time = []
runs = 1
```

```
for block_size in block_sizes:
    C = np.zeros((N_n, N_k))
    t0 = time.time()
    for j in range(runs):
        matrix_block_mul(A, B, C, N_n, N_m, N_k, block_size, mmul_optimal)
    mul_time.append((time.time() - t0) / runs)

plt.plot(block_sizes, mul_time, linestyle='--')
plt.scatter(block_sizes, mul_time)
plt.xlabel("Rozmiar bloków")
plt.ylabel("Czas mnożenia [s]")
plt.show()
```

[4, 8, 16, 32, 64, 128, 256, 512]

1.1.8 Liczba operacji zmienno przecinkowych w standardowym algorytmie mnożenia macierzy

Niech
$$A = [a_{ij}]_{nxm}, B = [b_{ij}]_{mxk}, C = AB = [c_{ij}]_{nxk}.$$

$$\forall_{i \in [n], j \in [k]} c_{ij} = \sum_{p=1}^{m} a_{ip} b_{pj}$$

W powyższej sumie, dla ustalonych $i,\,j$ mamy mmnożeń oraz m-1dodawań -> 2m-1operacji zmienno przecinkowych.

Zatem ogólny koszt algorytmu to n*k*(2m-1)=2nmk-nk operacji zmienno-przecinkowych.

1.1.9 Liczba operacji zmienno przecinkowych w algorytmie blokowego mnożenia macierzy

Niech $A = [a_{ij}]_{nxm} = [A_{ij}]_{NxM}$, $B = [b_{ij}]_{mxk} = [B_{ij}]_{MxK}$, $C = AB = [c_{ij}]_{nxk} = [C_{ij}]_{NxK}$, gdzie przez A_{ij} , B_{ij} , C_{ij} rozumiemy odpowiednie macierze blokowe rozmiarów, odpowiednio $\frac{n}{N}x\frac{m}{M}$, $\frac{m}{M}x\frac{k}{K}$, $\frac{n}{N}x\frac{k}{K}$.

$$\forall_{i \in [N], j \in [K]} C_{ij} = \sum_{p=1}^{M} A_{ip} B_{pj}$$

Dla ustalonych i, j taka suma to M standardowych mnożeń macierzy, z których każde kosztuje $2*\frac{nkm}{NKM}-\frac{nk}{NK}$ flop oraz M-1 dodawań macierzy, z których każde kosztuje $\frac{nk}{NK}$ flop.

Ostatecznie, po rachunkach, otrzymujemy: 2nmk - nk flop – tyle samo co uprzednio.

Zatem w przypadku naszych macierzy, mnożenie ich będzie wymagać następującą liczbę operacji zmiennoprzecinkowych:

268173312