Idee / Ansatz	Begründung / Argumentation	Beispiel
Finde ein unendliches Axiomensystem Ψ für eine Strukturklasse $\mathcal{K}'\subseteq\operatorname{Str}(\tau)-\mathcal{K}$, so dass jede endliche Teilmenge von Ψ ein Modell aus $\mathcal K$ besitzt (axiomatisiere also "gegenteilige Aussagen" durch Ψ).	• Angenommen Φ axiomatisiert \mathcal{K} ; dann ist $\Phi \cup \Psi$ unerfüllbar! • Nach KS gibt es endliches unerfüllbares $\Phi_0 \subseteq \Phi \cup \Psi$. • Nach Wahl von Ψ gibt es ein Modell von Φ_0 ; Widerspruch.	\mathcal{K} : Klasse aller endlichen Mengen; wähle $\Psi=\Phi_{\infty}.$
Wir nehmen an, ein unendliches Axiomensystem Φ für $\mathcal K$ zu kennen, welches aus gutem Grund unendlich viele Sätze benutzt. Genauer unterstellen wir, dass für jede endliche Teilmenge $\Phi_0\subseteq\Phi \text{ gilt: } \mathcal K\subsetneq Mod(\Phi_0).$	• Ang. φ axiomatisiert \mathcal{K} ; dann $\operatorname{Mod}(\neg\varphi)=\operatorname{Str}(\tau)-\mathcal{K}.$ • Demnach ist $\{\neg\varphi\}\cup\Phi$ unerfüllbar! • Nach KS gibt es endliches unerfüllbares $\Phi_0\subseteq\{\neg\varphi\}\cup\Phi.$ • Gebe nun ein Modell von Φ_0 an; Widerspruch.	${\cal K}$: Klasse aller unendlichen Mengen; wähle $\Phi=\Phi_{\infty}.$
Sei $ au$ relational und abzählbar. Dann finde $ au$ -Strukturen $(\mathfrak{A}_m)_{m\in\mathbb{N}}$ und \mathfrak{B} mit $\mathfrak{A}_m\equiv_m\mathfrak{B}$ und $\mathfrak{A}_m\in\mathcal{K}$ für alle $m\in\mathbb{N}$ aber $\mathfrak{B}\not\in\mathcal{K}$. Um $\mathfrak{A}_m\equiv_m\mathfrak{B}$ zu zeigen, finde Gewinnstrategie für Duplikatorin in $G_m(\mathfrak{A}_m,\mathfrak{B})$ (insb. für eine konstante Folge $\mathfrak{A}_m=\mathfrak{A}$ anwendbar, d.h. man findet $\mathfrak{A}\in\mathcal{K},\mathfrak{B}\not\in\mathcal{K}$ mit $\mathfrak{A}\equiv\mathfrak{B}$)	• Angenommen Φ axiomatisiert \mathcal{K} ; dann $\mathfrak{B} \not\models \Phi$. • Wähle $\psi \in \Phi$ mit $\mathfrak{B} \not\models \psi$. Sei $m := \operatorname{qr}(\psi)$. • Wegen $\mathfrak{A}_m \equiv_m \mathfrak{B}$ gilt $\mathfrak{A}_m \not\models \psi$, also $\mathfrak{A}_m \not\models \Phi$; Widerspruch.	\mathcal{K} : Klasse aller abzählbaren Mengen; wähle $\mathfrak{A}=\mathbb{N}$, $\mathfrak{B}=\mathbb{R}$.
Wieder τ relational und abzählbar. Finde zwei Familien von τ -Strukturen $(\mathfrak{A}_m)_{m\in\mathbb{N}}$ und $(\mathfrak{B}_m)_{m\in\mathbb{N}}$ mit $\mathfrak{A}_m\equiv_m\mathfrak{B}_m$ und $\mathfrak{A}_m\in\mathcal{K}$ sowie $\mathfrak{B}_m\not\in\mathcal{K}$ für alle $m\in\mathbb{N}$. Um $\mathfrak{A}_m\equiv_m\mathfrak{B}_m$ zu zeigen, finde Gewinnstrategie für Duplikatorin in $G_m(\mathfrak{A}_m,\mathfrak{B}_m)$.	• Angenommen φ axiomatisiert \mathcal{K} ; wähle $l:=\operatorname{qr}(\varphi)$. • Wegen $\mathfrak{A}_l \equiv_l \mathfrak{B}_l$ gilt also $\mathfrak{A}_l \models \varphi \Leftrightarrow \mathfrak{B}_l \models \varphi$. • Wegen $\mathfrak{A}_l \in \mathcal{K}$ und $\mathfrak{B}_l \not\in \mathcal{K}$: Widerspruch.	\mathcal{K} : Klasse aller unendlichen Mengen; wähle $\mathfrak{A}_m=\mathbb{N}$ und $\mathfrak{B}_m=\{1,\ldots,m\}.$
Beinhaltet $\mathcal K$ beliebig große endliche aber keine unendlichen Strukturen, so kann man sofort den aufsteigenden Satz LöwSkolem benutzen.	 Angenommen Φ axiomatisiert eine solche Strukturklasse K. Nach dem aufsteigenden Satz von LöwSkolem hat Φ ein unendliches Modell A. Da keine unendliche Struktur in K enthalten ist: Widerspruch. 	\mathcal{K} : Klasse aller endlichen Mengen.
Beinhaltet \mathcal{K} unendliche Strukturen und zwar ausschließlich solche, deren Kardinalität sich global "beschränken" lässt, so kann man die LöwSkolem-Sätze verwenden. Für jedes Axiomensystem findet man dann nämlich sehr kleine unendliche (abzählbare) Modelle und beliebig große unendliche Modelle.	• Beinhaltet $\mathcal K$ nur unendliche Strukturen $\mathfrak A$ mit Mächtigkeit $ A < M $ für feste Menge M , so verwende aufsteigenden Satz von LöwSkolem und erhalte für hypoth. Axiomensystem Φ ein Modell mit Mächtigkeit $\geq M $; Widerspruch. • Beinhaltet $\mathcal K$ nur unendliche Strukturen $\mathfrak A$ mit Mächtigkeit $ A > \mathbb N $, verwende absteigenden Satz von LöwSkolem und erhalte für hypoth. Axiomensystem Φ ein abzählbares Modell; Widerspruch.	\mathcal{K} : die Isomorphieklasse einer unendlichen Struktur.
	Finde ein unendliches Axiomensystem Ψ für eine Strukturklasse $\mathcal{K}'\subseteq \operatorname{Str}(\tau)-\mathcal{K}$, so dass jede endliche Teilmenge von Ψ ein Modell aus \mathcal{K} besitzt (axiomatisiere also "gegenteilige Aussagen" durch Ψ). Wir nehmen an, ein unendliches Axiomensystem Φ für \mathcal{K} zu kennen, welches aus gutem Grund unendlich viele Sätze benutzt. Genauer unterstellen wir, dass für jede endliche Teilmenge $\Phi_0\subseteq\Phi$ gilt: $\mathcal{K}\subseteq \operatorname{Mod}(\Phi_0)$. Sei τ relational und abzählbar. Dann finde τ -Strukturen $(\mathfrak{A}_m)_{m\in\mathbb{N}}$ und \mathfrak{B} mit $\mathfrak{A}_m\equiv_m\mathfrak{B}$ und $\mathfrak{A}_m\in\mathcal{K}$ für alle $m\in\mathbb{N}$ aber $\mathfrak{B}\not\in\mathcal{K}$. Um $\mathfrak{A}_m\equiv_m\mathfrak{B}$ zu zeigen, finde Gewinnstrategie für Duplikatorin in $G_m(\mathfrak{A}_m,\mathfrak{B})$ (insb. für eine konstante Folge $\mathfrak{A}_m=\mathfrak{A}$ anwendbar, d.h. man findet $\mathfrak{A}\in\mathcal{K},\mathfrak{B}\not\in\mathcal{K}$ mit $\mathfrak{A}\equiv\mathfrak{B}$) Wieder τ relational und abzählbar. Finde zwei Familien von τ -Strukturen $(\mathfrak{A}_m)_{m\in\mathbb{N}}$ und $(\mathfrak{B}_m)_{m\in\mathbb{N}}$ mit $\mathfrak{A}_m\equiv_m\mathfrak{B}_m$ und $\mathfrak{A}_m\in\mathcal{K}$ sowie $\mathfrak{B}_m\not\in\mathcal{K}$ für alle $m\in\mathbb{N}$. Um $\mathfrak{A}_m\equiv_m\mathfrak{B}_m$ zu zeigen, finde Gewinnstrategie für Duplikatorin in $G_m(\mathfrak{A}_m,\mathfrak{B}_m)$. Beinhaltet \mathcal{K} beliebig große endliche aber keine unendlichen Strukturen, so kann man sofort den aufsteigenden Satz LöwSkolem benutzen.	 Finde ein unendliches Axiomensystem Ψ für eine Strukturklasse K'⊆ Str(r) – K, so dass jede endliche Teilmenge von Ψ ein Modell aus K besitzt (axiomatisiere also "gegenteilige Aussagen" durch Ψ). Nach KS gibt es endliches unenfüllbares Φ₀ ⊆ Φ ∪ Ψ. Nach Wahl von Ψ gibt es ein Modell von Φ₀; Widerspruch. Nach Wahl von Ψ gibt es ein Modell von Φ₀; Widerspruch. Nach Wahl von Ψ gibt es ein Modell von Φ₀; Widerspruch. Ange. φ axiomatisiert K; dann Mod(¬φ) = Str(τ) – K. Demnach ist {¬φ} ∪ Φ unerfüllbare! Nach KS gibt es endliches unerfüllbare!<!--</td-->