

Capillary Filling — Level Set Method

Introduction

Surface tension and wall adhesive forces are often used to transport fluid through microchannels in MEMS devices or to measure the transport and position of small amounts of fluid using micropipettes. Multiphase flow through a porous medium and droplets on solid walls are other examples where wall adhesion and surface tension strongly influence the dynamics of the flow.

This example studies a narrow vertical cylinder placed on top of a reservoir filled with water. Because of wall adhesion and surface tension at the air/water interface, water rises through the channel. The model calculates the velocity field, the pressure field, and the shape and position of the water surface.

This example demonstrates how to model the filling of a capillary channel using two multiphysics coupling features available in the Microfluidics Module. You can use either the Two-Phase Flow, Level Set or the Two-Phase Flow, Phase Field multiphysics coupling features. The Level Set interface uses a reinitialized level set method to represent the fluid interface between the air and the water. The Phase Field interface, on the other hand, uses a Cahn-Hilliard equation, including a chemical potential to represent a diffuse interface separating the two phases. The Navier-Stokes equations are used to describe the momentum transport and the conservation of mass.

Model Definition

The model consists of a capillary channel of radius 0.15 mm attached to a water reservoir. Water can flow freely into the reservoir. Because both the channel and the reservoir are cylindrical, you can use the axisymmetric geometry illustrated in Figure 1. Initially, the thin cylinder is filled with air. Wall adhesion causes water to creep up along the cylinder boundaries. The deformation of the water surface induces surface tension at the air/water interface, which in turn creates a pressure jump across the interface. The pressure variations cause water and air to move upward. The fluids continue to rise until the capillary forces are balanced by the gravity force building up as the water rises in the

channel. In the present example, the capillary forces dominate over gravity throughout the simulation. Consequently, the interface moves upward during the entire simulation.

Figure 1: Axisymmetric geometry with boundary conditions.

REPRESENTATION AND CONVECTION OF THE FLUID INTERFACE

Level Set Method

The Level Set interface automatically sets up the equations for the convection of the interface. The fluid interface is represented by the 0.5 contour of the level set function φ . In air $\varphi=0$ and in water $\varphi=1$. The level set function can thus be thought of as the volume fraction of water. The transport of the fluid interface separating the two phases is given by

$$\frac{\partial \phi}{\partial t} + \mathbf{u} \cdot \nabla \phi = \gamma \nabla \cdot \left(\varepsilon \nabla \phi - \phi (1 - \phi) \frac{\nabla \phi}{|\nabla \phi|} \right)$$

The ε parameter determines the thickness of the interface. When stabilization is used for the level set equation, you can typically use an interface thickness of $\varepsilon = h_c/2$, where h_c is the characteristic mesh size in the region passed by the interface. The γ parameter determines the amount of reinitialization. A suitable value for γ is the maximum velocity magnitude occurring in the model. The multiphysics coupling feature defines the density and viscosity according to:

$$\rho = \rho_{air} + (\rho_{water} - \rho_{air})\phi$$

$$\mu = \mu_{air} + (\mu_{water} - \mu_{air})\phi$$

Due to these definitions, the density and viscosity vary smoothly across the fluid interface. The delta function is approximated by

$$\delta = 6|\phi(1-\phi)||\nabla\phi|$$

and the interface normal is calculated from

$$\mathbf{n} = \frac{\nabla \phi}{|\nabla \phi|}$$

Phase Field Method

In the Phase Field interface the two-phase flow dynamics is governed by a Cahn–Hilliard equation. The equation tracks a diffuse interface separating the immiscible phases. The diffuse interface is defined as the region where the dimensionless phase field variable ϕ goes from -1 to 1. When solved in COMSOL Multiphysics, the Cahn–Hilliard equation is split up into two equations

$$\frac{\partial \phi}{\partial t} + \mathbf{u} \cdot \nabla \phi = \nabla \cdot \frac{\gamma \lambda}{\varepsilon^2} \nabla \psi$$

$$\psi = -\nabla \cdot \varepsilon^2 \nabla \phi + (\phi^2 - 1)\phi$$

where ${\bf u}$ is the fluid velocity (m/s), γ is the mobility (m³·s/kg), λ is the mixing energy density (N) and ϵ (m) is the interface thickness parameter. The ψ variable is referred to as the phase field help variable. The following equation relates the mixing energy density and the interface thickness to the surface tension coefficient:

$$\sigma = \frac{2\sqrt{2}}{3}\frac{\lambda}{\varepsilon}$$

You can typically set the interface thickness parameter to $\varepsilon=h_c/2$, where h_c is the characteristic mesh size in the region passed by the interface. The mobility parameter γ determines the time scale of the Cahn–Hilliard diffusion and must be chosen judiciously. It must be large enough to retain a constant interfacial thickness but small enough so that the convective terms are not overly damped. The value $\gamma=\varepsilon^2$ is usually a good initial guess. This model uses a higher mobility to obtain the correct pressure variation over the interface.

In the Phase Field interface, the volume fractions of the individual fluids are

$$V_{\rm f1} = \frac{1 - \phi}{2}, \qquad V_{\rm f2} = \frac{1 + \phi}{2}$$

In the present model water is defined as Fluid 1 and air as Fluid 2.

The multiphysics coupling feature defines the density (kg/m³) and the viscosity (Pa·s) of the mixture to vary smoothly over the interface by letting

$$\rho = \rho_{w} + (\rho_{air} - \rho_{w})V_{f2}$$

$$\mu = \mu_{w} + (\mu_{air} - \mu_{w})V_{f2}$$

where the single phase water properties are denoted w and the air properties air.

MASS AND MOMENTUM TRANSPORT

The Navier–Stokes equations describe the transport of mass and momentum for fluids of constant density. In order to account for capillary effects, it is crucial to include surface tension in the model. The Navier–Stokes equations are then

$$\rho \frac{\partial \mathbf{u}}{\partial t} + \rho (\mathbf{u} \cdot \nabla) \mathbf{u} = \nabla \cdot [-p\mathbf{I} + \mu (\nabla \mathbf{u} + (\nabla \mathbf{u})^T)] + \mathbf{F}_{\text{st}} + \rho \mathbf{g}$$

$$\nabla \cdot \mathbf{u} = 0$$

Here, ρ denotes the density (kg/m³), μ equals the dynamic viscosity (Ns/m²), \mathbf{u} represents the velocity (m/s), p denotes the pressure (Pa), and \mathbf{g} is the gravity vector (m/s²). \mathbf{F}_{st} is the surface tension force acting at the air/water interface.

Surface Tension

In the Level Set interface the surface tension force is computed as

$$\mathbf{F}_{st} = \sigma \delta \kappa \mathbf{n}$$

Here, ${\bf n}$ is the interface normal, σ is the surface tension coefficient (N/m), $\kappa = -\nabla \cdot {\bf n}$ is the curvature, and δ equals a Dirac delta function that is nonzero only at the fluid interface.

The following boundary force is added to enforce the contact angle:

$$\mathbf{F}_{\theta} = \sigma \delta(\mathbf{n}_{\text{wall}} \cdot \mathbf{n} - \cos \theta_{\text{w}}) \mathbf{n} \tag{1}$$

where θ is the contact angle (see Figure 2). If you apply a no slip boundary condition, the velocity vanishes on that boundary, and you cannot specify the contact angle. Instead, the interface remains fixed on the wall. However, if you allow a small amount of slip, it is

possible to specify the contact angle. The Wetted Wall coupling feature adds the term given by Equation 1 and consequently makes it possible to set the contact angle.

In the Phase Field interface, the diffuse interface representation makes it possible to compute the surface tension by

$$\mathbf{F}_{st} = G\nabla\phi$$

where ϕ is the phase field parameter, and G is the chemical potential (J/m³)

$$G = \lambda \left[-\nabla^2 \phi + \frac{\phi(\phi^2 - 1)}{\varepsilon^2} \right] = \frac{\lambda}{\varepsilon^2} \Psi$$

As seen above, the phase field surface tension is computed as a distributed force over the interface using only ψ and the gradient of the phase field variable. This computation avoids using the surface normal and the surface curvature, which are troublesome to represent numerically.

INITIAL CONDITIONS

Initially, the reservoir is filled with water and the capillary channel is filled with air. The initial velocity is zero.

BOUNDARY CONDITIONS

Inlet

The hydrostatic pressure, $p = \rho gz$, gives the pressure at the inflow boundary. The pressure boundary condition automatically compensates for hydrostatic pressure so the actual value for the pressure is set to zero. Only water enters through the inlet, so the volume fraction of water is 1 here.

Outlet

At the outlet, the pressure is equal to zero, that is, equal to the pressure at the top of the inflow boundary. Because it is an outflow boundary, you do not have to set any condition on the level set function.

Wetted Walls

The Wetted Wall feature is suitable for solid walls in contact with a fluid-fluid interface. In the Level Set case, it is introduced as a multiphysics coupling feature that sets the velocity component normal to the wall to zero; that is,

$$\mathbf{u} \cdot \mathbf{n}_{\text{wall}} = 0$$

and adds a frictional boundary force

$$\mathbf{F}_{fr} = -\frac{\mu}{\beta}\mathbf{u}$$

Here, β is the slip length. The boundary condition also allows you to specify the contact angle θ , that is, the angle between the wall and the fluid interface (see Figure 2). In this example, the contact angle is 67.5° and the slip length equals the mesh element size, h.

Figure 2: Definition of the contact angle θ .

In the Phase Field simulation, one can combine the Wall feature under the Laminar Flow physics interface imposing a no slip condition for the velocity with the Wetted Wall feature under the Phase Field physics interface imposing the contact angle.

Results and Discussion

The initial development of the fluid interface is shown in Figure 3. During this stage the surface changes drastically in order for it to obtain the prescribed contact angle with the wall. When this is achieved, the surface tension imposed by the surface curvature begins to pull water up through the vertical cylinder. Due to the instantaneous start, the surface oscillates slightly during the rise.

Figure 3: Snapshots of the position of the interface during the first $0.15\,ms$. Level Set (left) and Phase Field (right) model results.

Figure 4 shows the interface and the velocity field at three different times following the initial stage. After about 0.6 ms the shape of the water surface remains approximately constant and forms a rising concave meniscus. Comparing the velocity field in the Level Set and the Phase Field models, the Level Set results display a small velocity near the wall/ interface contact point, something that is not present in the Phase Field results. This is due to a difference in the wetted wall condition. The Level Set interface requires a wall slip length for the interface to move along the wall. As shown in Figure 4, the imposed slip velocity at the wall is small. In the Phase Field model a slip length is not necessary and the fluid velocity is truly zero on the wall.

Figure 4: Interface and velocity field at different times. Level Set (top) and Phase Field (bottom) model results.

Figure 5 shows surface plots of the pressure at t = 0.6 ms. At the fluid interface there is a pressure jump of roughly 300 Pa. The jump is caused by the surface tension and forces the water and air to rise through the vertical cylinder.

Figure 5: Pressure at t = 0.6 ms. Level Set (top) and Phase Field (bottom) model results.

You can easily calculate the position of the interface/wall contact point by integrating the level set function along the thin cylinder wall. Figure 6 shows the position of the contact point as a function of time. The slight oscillations of the water surface noted above are seen here also in the contact point plot. The contact plots from the Level Set and Phase Field models compare very well, except for two minor points. The surface oscillation is a bit more pronounced in the Level Set model, and the surface endpoint is somewhat higher up in this case. Both these differences are small and are most likely related to the different implementations of the wetted wall boundary condition.

Figure 6: Position of the interface/wall contact point as a function of time. Level Set (top) and Phase Field (bottom) model result. The velocity is approximately constant after $t=0.6\,\mathrm{ms}$.

Finally, you can verify the obtained contact angle. It is defined by $\cos \theta = \mathbf{n}^T \mathbf{n}_{\text{wall}}$. In this case, the normal to the wall is $\mathbf{n}_{\text{wall}} = \mathbf{e}_r$. The contact angle is thus $\theta = \cos n_r$, where n_r is the radial component of the interface normal. Due to the slight oscillations of the surface, the contact angle varies during the rise. As Figure 7 shows, at t = 0.6 ms the contact angle is approximately 69° for the Level Set model and approximately 68° for the

Phase Field model. Both results are close to the imposed contact angle of $3\pi/8 = 1.18$ rad $=67.5^{\circ}$. The contact angle further approaches the imposed value if the mesh is refined.

Figure 7: Plot of $acos(n_r)$. At the wall, this gives the contact angle. In the Level Set model (top) the wall angle is approximately 69° and in the Phase Field model (bottom) it is approximately 68°.

Notes About the COMSOL Implementation

The model is straightforward to set up using either the Level Set or the Phase Field interface. At walls in contact with the fluid interface, you can use the Wetted Wall coupling feature for the Level Set case.

The simulation procedure consists of two steps. First the phase field and level set functions are initialized, then the time-dependent calculation starts. This is automatically set up by the software. You only need to specify appropriate times for the time-dependent analysis.

Application Library path: Microfluidics_Module/Two-Phase_Flow/capillary_filling_ls

Modeling Instructions

From the File menu, choose New.

NEW

In the New window, click Model Wizard.

MODEL WIZARD

- I In the Model Wizard window, click 2D Axisymmetric.
- 2 In the Select Physics tree, select Fluid Flow>Multiphase Flow>Two-Phase Flow, Level Set> Laminar Flow.
- 3 Click Add.
- 4 Click 🔵 Study.
- 5 In the Select Study tree, select Preset Studies for Selected Multiphysics>
 Time Dependent with Phase Initialization.
- 6 Click **Done**.

GEOMETRY I

- I In the Model Builder window, under Component I (compl) click Geometry I.
- 2 In the Settings window for Geometry, locate the Units section.
- 3 From the Length unit list, choose mm.

Rectangle I (rI)

- I In the Geometry toolbar, click Rectangle.
- 2 In the Settings window for Rectangle, locate the Size and Shape section.
- **3** In the **Width** text field, type **0.3**.
- 4 In the Height text field, type 0.15.
- **5** Locate the **Position** section. In the **z** text field, type -0.15.

6 Click | Build Selected.

Rectangle 2 (r2)

- I In the Geometry toolbar, click Rectangle.
- 2 In the Settings window for Rectangle, locate the Size and Shape section.
- 3 In the Width text field, type 0.15.
- 4 In the **Height** text field, type 0.5.
- 5 Click Pauld Selected.

Form Union (fin)

- I In the Model Builder window, click Form Union (fin).
- 2 In the Settings window for Form Union/Assembly, click Paul Build Selected.

MULTIPHYSICS

Two-Phase Flow, Level Set 1 (tpf1)

- I In the Model Builder window, under Component I (compl)>Multiphysics click Two-Phase Flow, Level Set I (tpfl).
- 2 In the Settings window for Two-Phase Flow, Level Set, locate the Material Properties section.
- 3 Click Add Multiphase Material.
- 4 Locate the Surface Tension section. Select the Include surface tension force in momentum equation check box.

MATERIALS

Phase I (mpmat1.phase1)

- I In the Model Builder window, under Component I (compl)>Materials> Multiphase Material I (mpmatl) click Phase I (mpmatl.phasel).
- 2 In the Settings window for Phase, locate the Link Settings section.
- 3 Click Radd Material from Library . This button is found when expanding the options next to the Material list.

ADD MATERIAL TO PHASE I (MPMATI.PHASEI)

- I Go to the Add Material to Phase I (mpmat1.phaseI) window.
- 2 In the tree, select Built-in>Air.
- 3 Click OK.

MATERIALS

Phase 2 (mpmat1.phase2)

- I In the Model Builder window, under Component I (compl)>Materials> Multiphase Material I (mpmatl) click Phase 2 (mpmatl.phase2).
- 2 In the Settings window for Phase, locate the Link Settings section.
- 3 Click Add Material from Library. This button is found when expanding the options next to the Material list.

ADD MATERIAL TO PHASE 2 (MPMATI.PHASE2)

- I Go to the Add Material to Phase 2 (mpmat1.phase2) window.
- 2 In the tree, select Built-in>Water, liquid.
- 3 Click OK.

MULTIPHYSICS

Wetted Wall I (ww I)

- I In the Model Builder window, under Component I (compl)>Multiphysics click Wetted Wall I (wwl).
- **2** Select Boundaries 6 and 7 only.
- 3 In the Settings window for Wetted Wall, locate the Contact Angle section.
- **4** In the $\theta_{\rm w}$ text field, type (3*pi/8)[rad].

LEVEL SET (LS)

Level Set Model 1

- I In the Model Builder window, under Component I (compl)>Level Set (Is) click Level Set Model I.
- 2 In the Settings window for Level Set Model, locate the Level Set Model section.
- 3 In the ε_{ls} text field, type 5e-6.

Initial Values, Fluid 2

- I In the Model Builder window, click Initial Values, Fluid 2.
- 2 Select Domain 1 only.

Add gravity volume force contribution by enabling gravity in the Laminar Flow (spf) interface.

LAMINAR FLOW (SPF)

- I In the Model Builder window, under Component I (compl) click Laminar Flow (spf).
- 2 In the Settings window for Laminar Flow, locate the Physical Model section.
- **3** Select the **Include gravity** check box.

Inlet 1

- I In the Physics toolbar, click Boundaries and choose Inlet.
- 2 Select Boundary 8 only.
- 3 In the Settings window for Inlet, locate the Boundary Condition section.
- **4** From the list, choose **Pressure**.
- 5 Locate the Pressure Conditions section. Clear the Compensate for hydrostatic pressure check box.

LEVEL SET (LS)

- I In the Model Builder window, under Component I (compl) click Level Set (Is).
- 2 In the Physics toolbar, click Boundaries and choose Inlet.
- I Select Boundary 8 only.
- 2 In the Settings window for Inlet, locate the Level Set Condition section.
- 3 From the list, choose Fluid 2 ($\varphi = 1$).

Outlet I

- I In the Physics toolbar, click Boundaries and choose Outlet.
- 2 Select Boundary 5 only.

LAMINAR FLOW (SPF)

- I In the Model Builder window, under Component I (compl) click Laminar Flow (spf).
- 2 In the Physics toolbar, click Boundaries and choose Outlet.
- I Select Boundary 5 only.
- 2 In the Settings window for Outlet, locate the Pressure Conditions section.
- 3 Clear the Compensate for hydrostatic pressure check box.

Next, define a variable for the contact angle using the Laminar Two-Phase Flow, Level Set interface's variable for the **r** component of the interface normal, *tpf.intnormr*.

Initial Values 1

I In the Model Builder window, click Initial Values I.

- 2 In the Settings window for Initial Values, locate the Initial Values section.
- **3** Clear the **Compensate for hydrostatic pressure** check box.

DEFINITIONS

Variables I

- I In the Home toolbar, click \supseteq Variables and choose Local Variables.
- 2 In the Settings window for Variables, locate the Variables section.
- **3** In the table, enter the following settings:

Name	Expression	Unit	Description
theta	<pre>(acos(tpf1.intnormr))[1/deg]</pre>		Contact angle expression

Meniscus position

- I In the **Definitions** toolbar, click **Probes** and choose **Boundary Probe**.
- 2 In the Settings window for Boundary Probe, type Meniscus position in the Label text field.
- 3 In the Variable name text field, type z pos.
- 4 Locate the Integration Settings section. Clear the Compute surface integral check box.
- 5 Locate the Source Selection section. Click Clear Selection.
- 6 Select Boundary 6 only.
- 7 Click Replace Expression in the upper-right corner of the Expression section. From the menu, choose Component I (compl)>Level Set>Is.Vf2 - Volume fraction of fluid 2 - 1.
- **8** Locate the **Expression** section.
- **9** Select the **Description** check box. In the associated text field, type Contact point position.
- 10 Locate the Probe Type section. From the Type list, choose Integral.

MESH I

Mapped I

In the Mesh toolbar, click Mapped.

Size

- I In the Model Builder window, click Size.
- 2 In the Settings window for Size, locate the Element Size section.

- 3 From the Calibrate for list, choose Fluid dynamics.
- 4 From the Predefined list, choose Extra fine.
- 5 Click **Build All**.

STUDY I

Step 2: Time Dependent

- I In the Model Builder window, under Study I click Step 2: Time Dependent.
- 2 In the Settings window for Time Dependent, locate the Study Settings section.
- 3 In the Output times text field, type range (0,0.25e-4,1e-3).

Solution I (soll)

I In the Study toolbar, click Show Default Solver.

The automatic time stepping can have difficulties to start when the pressure initially tries to adjust to the surface tension. A manually specified time step is therefore a more appealing option in this case.

- 2 In the Model Builder window, expand the Solution I (soll) node, then click Time-Dependent Solver 1.
- 3 In the Settings window for Time-Dependent Solver, click to expand the Time Stepping section.
- 4 From the Steps taken by solver list, choose Manual.

- 5 In the Time step text field, type 5e-6.
- 6 In the Initial step fraction text field, type 1e-3.
- 7 In the Study toolbar, click **Compute**.

The fifth default plot group shows the volume fraction of air. While the position of the air/water interface appears clearly, you can obtain an even sharper interface by plotting the 0.5 level of the same quantity using a filled contour plot, as in Figure 3.

RESULTS

Contour I

- In the Model Builder window, expand the Volume Fraction of Fluid I (Is) node, then click Contour I.
- 2 In the Settings window for Contour, locate the Coloring and Style section.
- 3 From the Contour type list, choose Filled.
- 4 From the Coloring list, choose Color table.
- 5 Click Change Color Table.
- 6 In the Color Table dialog box, select Linear>GrayScale in the tree.
- 7 Click OK.
- 8 In the Settings window for Contour, locate the Coloring and Style section.
- **9** Select the **Color legend** check box.
- 10 From the Legend type list, choose Line.

Surface 1

- I In the Model Builder window, right-click Surface I and choose Delete.
- 2 Click Yes to confirm.

Volume Fraction of Fluid I (Is)

- I In the Model Builder window, under Results click Volume Fraction of Fluid I (Is).
- 2 In the Settings window for 2D Plot Group, locate the Data section.
- 3 From the Time (s) list, choose 0.
- 4 In the Volume Fraction of Fluid I (Is) toolbar, click I Plot.

Click the **Zoom Box** button in the **Graphics** toolbar, then zoom in on the lower part of the capillary. Compare the resulting plot with that in the upper-left panel of Figure 3.

Reproduce the remaining plots on the left in Figure 3 by plotting the solution for the time values 5e-5, 1e-4, and 1.5e-4.

Velocity (spf)

The second default plot shows a surface plot of the velocity magnitude of the fluids combined with one contour lines to identify the air/water-interface. This plot can be changed to reproduce the combined velocity-field arrows and air/water-interface plot shown in Figure 4.

Surface

- I In the Model Builder window, expand the Velocity (spf) node.
- 2 Right-click Surface and choose Delete.
- **3** Click **Yes** to confirm.

Arrow Surface 1

- I In the Model Builder window, right-click Velocity (spf) and choose Arrow Surface.
- 2 In the Settings window for Arrow Surface, locate the Arrow Positioning section.
- 3 Find the z grid points subsection. In the Points text field, type 30.

Contour I

- I Right-click **Velocity (spf)** and choose **Contour**.
- 2 In the Settings window for Contour, locate the Expression section.
- 3 In the Expression text field, type tpf1.Vf1.
- 4 Locate the Levels section. From the Entry method list, choose Levels.
- 5 In the Levels text field, type 0.5.
- 6 Locate the Coloring and Style section. From the Coloring list, choose Uniform.
- 7 From the Color list, choose Gray.

Velocity (spf)

- I In the Model Builder window, click Velocity (spf).
- 2 In the Settings window for 2D Plot Group, locate the Data section.
- 3 From the Time (s) list, choose 2E-4.
- 4 In the Velocity (spf) toolbar, click Plot.
- 5 Click the **Zoom Extents** button in the **Graphics** toolbar.

The resulting plot should closely resemble the upper-left plot in Figure 4.

Generate the remaining two plots by choosing the values 4e-4 and 6e-4 from the Time list.

Velocity, 3D (spf)

The forth default plot group shows the air/water-interface as an isosurface plot using a revolved dataset.

Revolution 2D

- I In the Model Builder window, expand the Results>Datasets node, then click Revolution 2D.
- 2 In the Settings window for Revolution 2D, click to expand the Revolution Layers section.
- 3 In the Start angle text field, type 0.
- 4 In the Revolution angle text field, type 360.

Revolution 2D 1

- I In the Model Builder window, click Revolution 2D I.
- 2 In the Settings window for Revolution 2D, locate the Revolution Layers section.
- 3 In the Revolution angle text field, type 230.

Edge 2D I

- I In the Results toolbar, click More Datasets and choose Edge 2D.
- **2** Select Boundaries 6 and 7 only.

Revolution 2D 3

- I In the Results toolbar, click More Datasets and choose Revolution 2D.
- 2 In the Settings window for Revolution 2D, locate the Data section.
- 3 From the Dataset list, choose Edge 2D 1.
- 4 Locate the Revolution Layers section. In the Revolution angle text field, type 230.

Edge 2D 2

- I In the Results toolbar, click More Datasets and choose Edge 2D.
- 2 Select Boundary 2 only.

Revolution 2D 4

- I In the Results toolbar, click More Datasets and choose Revolution 2D.
- 2 In the Settings window for Revolution 2D, locate the Data section.
- 3 From the Dataset list, choose Edge 2D 2.

Volume Fraction of Fluid I (Is) I

- I In the Model Builder window, expand the Results>Volume Fraction of Fluid I (Is) I node, then click Volume Fraction of Fluid I (Is) I.
- 2 In the Settings window for 3D Plot Group, locate the Data section.

- 3 From the Dataset list, choose Revolution 2D.
- 4 From the Time (s) list, choose 3E-4.
- **5** Locate the **Plot Settings** section. Clear the **Plot dataset edges** check box.
- 6 In the Volume Fraction of Fluid I (Is) I toolbar, click Plot.

Isosurface I

- I In the Model Builder window, click Isosurface I.
- 2 In the Settings window for Isosurface, locate the Coloring and Style section.
- 3 From the Color list, choose White.

Surface I

- I In the Model Builder window, right-click Volume Fraction of Fluid I (Is) I and choose Surface.
- 2 In the Settings window for Surface, locate the Expression section.
- 3 In the Expression text field, type 1s. Vf1.
- 4 Locate the Coloring and Style section. Click Change Color Table.
- 5 In the Color Table dialog box, select Linear>Cividis in the tree.
- 6 Click OK.
- 7 In the Settings window for Surface, locate the Data section.
- 8 From the Dataset list, choose Revolution 2D 1.
- **9** From the Time (s) list, choose **3E-4**.
- 10 In the Volume Fraction of Fluid I (Is) I toolbar, click Plot.

Surface 2

- I Right-click Volume Fraction of Fluid I (Is) I and choose Surface.
- 2 In the Settings window for Surface, locate the Data section.
- 3 From the Dataset list, choose Revolution 2D 3.
- 4 Locate the Coloring and Style section. From the Coloring list, choose Uniform.
- 5 From the Color list, choose Gray.

Surface 3

- I Right-click Volume Fraction of Fluid I (Is) I and choose Surface.
- 2 In the Settings window for Surface, locate the Data section.
- 3 From the Dataset list, choose Revolution 2D 4.
- 4 Locate the Coloring and Style section. From the Coloring list, choose Uniform.

- 5 From the Color list, choose Gray.
- 6 In the Volume Fraction of Fluid I (Is) I toolbar, click Plot.

Next, plot the pressure at t = 0.6 ms. Compare the result with the upper plot in Figure 5.

7 Click the **Toom Extents** button in the **Graphics** toolbar.

Contour

- I In the Model Builder window, expand the Results>Pressure (spf) node.
- 2 Right-click Contour and choose Delete.
- 3 Click Yes to confirm.

Pressure (spf)

- I In the Model Builder window, under Results click Pressure (spf).
- 2 In the Settings window for 2D Plot Group, locate the Data section.
- **3** From the **Time (s)** list, choose **6E-4**.

Surface I

- I Right-click Pressure (spf) and choose Surface.
- 2 In the Settings window for Surface, locate the Expression section.
- **3** In the **Expression** text field, type p.
- 4 Locate the Coloring and Style section. Click Change Color Table.
- 5 In the Color Table dialog box, select Aurora>JupiterAuroraBorealis in the tree.
- 6 Click OK.
- 7 In the Settings window for Surface, locate the Coloring and Style section.
- 8 From the Color table transformation list, choose Reverse.
- 9 In the Pressure (spf) toolbar, click Plot.
- 10 Click the **Zoom Extents** button in the **Graphics** toolbar.

Meniscus position

Go on to compute and plot the position of the interface/contact point.

- I In the Model Builder window, under Results right-click Probe Plot Group I and choose Rename.
- 2 In the Rename ID Plot Group dialog box, type Meniscus position in the New label text field.
- 3 Click OK.

- 4 In the Settings window for ID Plot Group, locate the Legend section.
- 5 Clear the Show legends check box.
- **6** In the **Meniscus position** toolbar, click **Plot**.

Compare this graph with that in the upper panel of Figure 6.

Finally, check the value of the contact angle at t = 0.6 ms (Figure 7).

2D Plot Group 7

- I In the Home toolbar, click Add Plot Group and choose 2D Plot Group.
- 2 In the Settings window for 2D Plot Group, locate the Data section.
- **3** From the **Time (s)** list, choose **6E-4**.

Contour I

- I Right-click 2D Plot Group 7 and choose Contour.
- 2 In the Settings window for Contour, locate the Levels section.
- 3 From the Entry method list, choose Levels.
- **4** Locate the **Expression** section. In the **Expression** text field, type 1s.Vf1.
- **5** Locate the **Levels** section. In the **Levels** text field, type 0.5.

Color Expression 1

- I Right-click Contour I and choose Color Expression.
- 2 In the Settings window for Color Expression, click Replace Expression in the upper-right corner of the Expression section. From the menu, choose Component I (compl)> Definitions>Variables>theta - Contact angle expression - I.

Meniscus angle

- I In the Model Builder window, under Results click 2D Plot Group 7.
- 2 In the Settings window for 2D Plot Group, locate the Color Legend section.
- 3 Select the Show maximum and minimum values check box.
- 4 In the 2D Plot Group 7 toolbar, click Plot.

At this instance the contact angle is approximately 69 degrees which can be found by expanding the Range section in the Settings Window> of the Color Expression> node created.

In the Label text field, type Meniscus angle.