UIT2504 Artificial Intelligence Agent Architectures

C. Aravindan <Aravindan C@ssn.edu.in>

Professor of Computing SSN College of Engineering

August 01, 2024

1/18

What is AI?

Thinking humanly	Thinking rationally		
Acting humanly	Acting rationally		

What is AI?

Thinking humanly	Thinking rationally		
Acting humanly	Acting rationally		

The textbook advocates "Acting Rationally"

Agents

The agent function maps from percept sequences to actions:

$$f:P^*\to A$$

ullet An agent program runs on some physical architecture to compute f

3/18

Rational Agents

Rational Agents

For each possible percept sequence, a rational agent should select an action that is expected to maximize its performance measure, given the evidence provided by the percept sequence and whatever built-in knowledge the agent has.

PEAS Formulation

- PEAS: Performance measure, Environment, Actuators, Sensors
- Example: How can we describe an automated taxi driver?
- Performance: Safety, speed, legal, comfort, profits, etc.
- Environment: Roads, traffic, pedestrians, weather, etc.
- Actuators: Steering, accelerator, brake, signal, horn, etc.
- Sensors: Camera, sonar, speedometer, GPS, odometer, engine sensors, etc.

5 / 18

PEAS Formulation

- Another example: How can we describe an Internet shopping agent?
- Performance: Price, quality, appropriateness, efficiency, etc.
- Environment: Current and future websites, vendors, shippers
- Actuators: Display to user, follow links, fill-up forms, etc.
- Sensors: Understand HTML pages (text, graphics, scripts)

6/18

C. Aravindan (SSN) AI August 01, 2024

PEAS Formulation

Agent Type	Performance Measure	Environment	Actuators	Sensors
Medical diagnosis system	Healthy patient, reduced costs	Patient, hospital, staff	Display of questions, tests, diagnoses, treatments	Touchscreen/voice entry of symptoms and findings
Satellite image analysis system	Correct categorization of objects, terrain	Orbiting satellite, downlink, weather	Display of scene categorization	High-resolution digital camera
Part-picking robot	Percentage of parts in correct bins	Conveyor belt with parts; bins	Jointed arm and hand	Camera, tactile and joint angle sensors
Refinery controller	Purity, yield, safety	Refinery, raw materials, operators	Valves, pumps, heaters, stirrers, displays	Temperature, pressure, flow, chemical sensors
Interactive English tutor	Student's score on test	Set of students, testing agency	Display of exercises, feedback, speech	Keyboard entry, voice

Questions?

• Fully observable Vs. partially observable

- Fully observable Vs. partially observable
- Single agent Vs. multiagent

- Fully observable Vs. partially observable
- Single agent Vs. multiagent
- Deterministic Vs. stochastic

- Fully observable Vs. partially observable
- Single agent Vs. multiagent
- Deterministic Vs. stochastic
- Episodic Vs. sequential

- Fully observable Vs. partially observable
- Single agent Vs. multiagent
- Deterministic Vs. stochastic
- Episodic Vs. sequential
- Static Vs. dynamic

- Fully observable Vs. partially observable
- Single agent Vs. multiagent
- Deterministic Vs. stochastic
- Episodic Vs. sequential
- Static Vs. dynamic
- Discrete Vs. continuous

- Fully observable Vs. partially observable
- Single agent Vs. multiagent
- Deterministic Vs. stochastic
- Episodic Vs. sequential
- Static Vs. dynamic
- Discrete Vs. continuous
- Known Vs. unknown

9/18

Task Environment	Observable	Agents	Deterministic	Episodic	Static	Discrete
Crossword puzzle	Fully	Single	Deterministic	Sequential	Static	Discrete
Chess with a clock	Fully	Multi	Deterministic	Sequential	Semi	Discrete
Poker	Partially	Multi	Stochastic	Sequential	Static	Discrete
Backgammon	Fully	Multi	Stochastic	Sequential	Static	Discrete
Taxi driving	Partially	Multi	Stochastic	Sequential	Dynamic	Continuous
Medical diagnosis	Partially	Single	Stochastic	Sequential	Dynamic	Continuous
Image analysis	Fully	Single	Deterministic	Episodic	Semi	Continuous
Part-picking robot	Partially	Single	Stochastic	Episodic	Dynamic	Continuous
Refinery controller	Partially	Single	Stochastic	Sequential	Dynamic	Continuous
English tutor	Partially	Multi	Stochastic	Sequential	Dynamic	Discrete

Questions?

Simple Reflex Agents

Model-based Reflex Agents

Goal-based Agents

Utility-based Agents

Learning Agents

Components Architecture

Questions?

• Read chapters 1 and 2 of the text book!

