Chapter 1

- 1.) Find all integers n that satisfy the following:
 - a.) $\phi(n) = n/2$
 - b.) $\phi(n) = \phi(2n)$
 - c.) $\phi(n) = 12$

Solution:

a.) $n = 2^m$ where $m \in \mathbb{Z}_{>0}$

Proof:

a.) Let $n=2^m$, then using theorem 2.5, we find that

$$\phi(2^m) = 2^m - 2^{m-1} = 2^{m-1} = n/2$$

Next, suppose n is not a power of two and take its prime factorization as $\prod p_i^{a_i}$. Using the fact that ϕ is multiplicative, we find that

$$\phi(n) = \phi\left(\prod p_i^{a_i}\right) = \prod \phi(p_i^{a_i})$$

Since n is not a power of two, there exists i where $p_i > 2$ and $a_i \ge 1$, thus $\phi()$ Let $b_i = \phi(p_i^{a_i})$.

$$\phi(n)=b_1b_2b_3\cdots$$

- b.) awd
- 2.) Prove or disprove the following statements:
 - a.) If (m, n) = 1, then