中国农业大学

2020~2021 学年秋季学期

实变函数 (A卷) 课程考试试题

题号	_	=	三	四	总分
得分					

- 一、证明下列集合关系(第1题6分,第2题9分,共15分)
 - **1**、证明 $(\bigcup_{\alpha} E_{\alpha})^{c} = \bigcap_{\alpha} (E_{\alpha}^{c})$,其中 E_{α}^{c} 表示集合 E_{α} 在基本集 X 中的补集.
 - 2、证明 $(E_1-E_2)-(E_3-E_4)\subseteq (E_1-E_3)\cup (E_4-E_2)$.
- 二、简答题(第1题12分,第2题13分,共25分)
- 1、勒贝格积分是实变函数中最基本的定义之一,试给出勒贝格积分的定义过程,并解释勒贝格积分存在和可积的含义.
- **2**、设 $f_n(x)$ 是有界可测集E上的可测函数列,f(x)是E上的可积函数,试解释 f(x)具有积分的绝对连续性的含义,和 $f_n(x)$ 具有等度的绝对连续积分的含义,并指出两者的区别.
- 三、解答题(每题10分,共40分)
- 1、试判断以测度收敛能否推出几乎处处收敛并说明理由(如果能请给出证明,如不能请举例说明).
- **2、**(勒贝格控制收敛定理)设 E 是可测集,设 $f_n(x)$ 是 E 上的可测函数列, $f_n(x)$ 的极限存在且 $\lim_{n\to\infty} f_n(x) = f(x)$,且有可积函数 g(x) 使得

$$|f_n(x)| \le g(x), \quad (x \in E; n \in \mathbb{N}),$$

则 f(x) 可积且

$$\int_{E} f(x) dm = \lim_{n \to \infty} \int_{E} f_{n}(x) dm.$$

考生诚信承诺

- 1. 本人清楚学校关于考试管理、考场规则、考试作弊处理的规定,并严格遵照执行。
- 2. 本人承诺在考试过程中没有作弊行为,所做试卷的内容真实可信。

学院:	班级:	学号:	姓名:
-----	-----	-----	-----

- 3、若E是有界可测集,(1) 试判断函数空间L 和 L^1 的关系并简要说明理由;
- (2) 试判断函数空间 L^{16} 和 L^{1} 的包含关系并给出证明.
 - 4、将整系数多项式的全体记为集合E, 试判断E是否为可列集并给出理由.

四、证明题(每题10分,共20分)

- 1、设 f_{+} 和 f_{-} 分别为函数f的正部和负部,试证明下列各式:
 - $(1) [f+g]_{+} \leq f_{+} + g_{+}$
 - $(2) [f+g]_{-} \leqslant f + g$
 - (3) $|f-g| \ge (f_+ g_+) + (f_- g_-)$
- **2**、设可测函数列 $f_n(x)$ 在 $[a,b] \subseteq R$ 上依测度收敛于 f(x),且 g 是 R 上的连续函数,试证明 $g[f_n(x)]$ 在 [a,b] 上依测度收敛于 g[f(x)].