

UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH

Centre de la Imatge i la Tecnologia Multimèdia

Julen Cayero

Rotation plus displacement (2D view)

Rotation plus displacement

$${}^{A}\boldsymbol{p} = {}^{A}\mathbf{R}_{\mathrm{B}} {}^{B}\boldsymbol{p} + {}^{A}\boldsymbol{d}_{A\to B}$$

Where

- ${}^{A}\boldsymbol{p}$ is the position of \boldsymbol{p} seen from the frame A
- ${}^{B}\boldsymbol{p}$ is the position of \boldsymbol{p} seen from the frame B
- ${}^{A}\mathbf{R}_{\mathrm{B}}$ is the rotation matrix that relates the orientation of both frames
- ${}^{A}d_{A\rightarrow B}$ is the displacement between frames seen from A.

Equivalently you can use

$${}^{B}\boldsymbol{p} = {}^{B}\mathbf{R}_{A} {}^{A}\boldsymbol{p} + {}^{B}\boldsymbol{d}_{B\rightarrow A}$$

Let's isolate ${}^{B}p$ from the equation

$${}^{A}\boldsymbol{p} = {}^{A}\mathbf{R}_{B} {}^{B}\boldsymbol{p} + {}^{A}\boldsymbol{d}_{A\rightarrow B} \rightarrow$$

$${}^{B}\boldsymbol{p} = {}^{A}\mathbf{R}_{B}^{-1} ({}^{B}\boldsymbol{p} - {}^{A}\boldsymbol{d}_{A\rightarrow B}) \rightarrow$$

$${}^{B}\boldsymbol{p} = {}^{A}\mathbf{R}_{B}^{-1} {}^{B}\boldsymbol{p} - {}^{A}\mathbf{R}_{B}^{-1} {}^{A}\boldsymbol{d}_{A\rightarrow B}$$

So it must be clear that since

$${}^{B}\boldsymbol{p} = {}^{B}\mathbf{R}_{A} {}^{A}\boldsymbol{p} + {}^{B}\boldsymbol{d}_{B\to A}$$

$$^{A}\mathbf{R}_{\mathrm{B}}^{-1} = {}^{A}\mathbf{R}_{\mathrm{B}}^{\mathrm{T}} = {}^{B}\mathbf{R}_{A}$$

$$\bullet \quad -{}^{B}\mathbf{R}_{A} \, {}^{A}\mathbf{d}_{A\to B} = {}^{B}\mathbf{d}_{B\to A}$$

Example:

Example:

Known

- ${}^{A}\mathbf{R}_{B}$, ${}^{B}\mathbf{R}_{C}$
- ${}^{A}oldsymbol{d}_{A o B}$, ${}^{B}oldsymbol{d}_{B o C}$
- ^{C}p

Example with numbers:

Known

•
$${}^{A}\mathbf{R}_{B} = \begin{bmatrix} 0.9397 & 0.3420 \\ -0.3420 & 0.9397 \end{bmatrix}, {}^{B}\mathbf{R}_{C} = \begin{bmatrix} 0.7660 & -0.6428 \\ 0.6428 & 0.7660 \end{bmatrix}$$

•
$${}^{A}\boldsymbol{d}_{A\to B}=\begin{bmatrix}1\\1\end{bmatrix}$$
, ${}^{B}\boldsymbol{d}_{B\to C}=\begin{bmatrix}2\\1\end{bmatrix}$

•
$${}^{c}\mathbf{p} = \begin{bmatrix} -0.5 \\ 1 \end{bmatrix}$$

Example with numbers:

Could you find:

• ${}^{A}\mathbf{R}_{C}$ and ${}^{A}\mathbf{d}_{A\rightarrow C}$?

Affine transformations, homogeneous coordinates

2D vector

$$x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

3D vector

$$\boldsymbol{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

2D homogeneous vector

$$\widehat{\boldsymbol{x}} = \begin{pmatrix} x_1 \\ x_2 \\ 1 \end{pmatrix}$$

3D vector

$$\widehat{\boldsymbol{x}} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ 1 \end{pmatrix}$$

Affine transformations, homogeneous coordinates

Translate a vector

$$\widehat{x}' = \begin{pmatrix} \mathbf{I}_{3x3} & \mathbf{t} \\ \mathbf{0}_{1x3} & 1 \end{pmatrix} \widehat{x} = \begin{pmatrix} \mathbf{x} + \mathbf{t} \\ 1 \end{pmatrix}$$

Rotate a vector

$$\widehat{x}' = \begin{pmatrix} \mathbf{R} & \mathbf{0}_{3x1} \\ \mathbf{0}_{1x3} & 1 \end{pmatrix} \widehat{x} = \begin{pmatrix} \mathbf{R}x \\ 1 \end{pmatrix}$$

Affine transformations, Affine matrix

A has inverse

$$\mathbf{A}^{-1} = \begin{pmatrix} \mathbf{R}^{\mathrm{T}} & -\mathbf{R}^{\mathrm{T}} t \\ \mathbf{0}_{1 \times 3} & 1 \end{pmatrix}$$

Prove that:

$$AA^{-1} = A^{-1}A = I$$

Example with numbers:

Known

•
$${}^{A}\mathbf{R}_{B} = \begin{bmatrix} 0.9397 & 0.3420 \\ -0.3420 & 0.9397 \end{bmatrix}, {}^{C}\mathbf{R}_{B} = \begin{bmatrix} 0.7660 & 0.6428 \\ -0.6428 & 0.7660 \end{bmatrix}$$

•
$${}^{A}\boldsymbol{d}_{A\to B}=\begin{bmatrix}1\\1\end{bmatrix}$$
, ${}^{B}\boldsymbol{d}_{B\to C}=\begin{bmatrix}2\\1\end{bmatrix}$

•
$${}^{A}\boldsymbol{p} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$$

Example with numbers:

Could you find:

• ${}^{A}\mathbf{R}_{C}$ and ${}^{C}\boldsymbol{d}_{C\rightarrow A}$?

Exercises

Midterm Exam

Exercise 5

Final Exam

Exercise 2

Additional one:

El origen del marco de referencia $\{B\}$ es conocido desde el marco de referencia $\{A\}$ a través del vector \boldsymbol{t} . La orientación del frame $\{A\}$ con respecto a $\{B\}$ se encuentra codificada en la matriz de rotación \boldsymbol{R} , tal que ${}^{B}\boldsymbol{p}=\boldsymbol{R}^{A}\boldsymbol{p}$. Representando ${}^{A}\boldsymbol{p}$ las componentes del vector \boldsymbol{p} expresadas en el marco de referencia $\{A\}$ y ${}^{B}\boldsymbol{p}$ las componentes del vector \boldsymbol{p} expresadas en el marco de referencia $\{B\}$ si $\{A\}$ y $\{B\}$ tuvieran un origen común. ¿Cu ál es la matriz de transformación afín que permite expresar un vector conocido en $\{B\}$, en el marco de referencia $\{A\}$?

