PRÁCTICA 6: Buses de comunicación II (SPI)

Objectiu de la pràctica

L'objectiu principal d'aquesta pràctica és comprendre el funcionament del bus SPI (Serial Peripheral Interface) a través de l'ús de dos dispositius: un lector de targetes SD i un lector RFID RC522, tots dos controlats amb un microcontrolador (ESP32) mitjançant Arduino IDE.

Part 1: Lectura i escriptura a una targeta SD

Funcionament

Aquest primer exercici té com a finalitat llegir i escriure un arxiu en una targeta microSD connectada mitjançant SPI.

1. Inicialització del mòdul SD:

- Es configura la comunicació SPI amb els pins corresponents.
- Es comprova si la targeta SD s'ha inicialitzat correctament.

2. Escriptura a un arxiu:

- o S'obre (o crea) un arxiu anomenat archivo.txt.
- S'hi escriu la frase "Hola, Cocacola!".
- o Es tanca l'arxiu per garantir que la informació s'ha desat.

3. Lectura de l'arxiu:

- o S'obre archivo.txt en mode lectura.
- Es llegeix i es mostra per pantalla (Serial) el contingut byte a byte.

Comentaris importants

- L'ús de SPI.begin() amb assignació de pins personalitzada permet flexibilitat amb l'ESP32, ja que aquest microcontrolador permet múltiples busos SPI.
- El pin CS (Chip Select) utilitzat és el 4, que és el que s'ha de posar també a SD.begin(4).

Resultat:

```
Iniciando SD ...Inicialización exitosa
Escribiendo en archivo.txt...
Escritura completada.
archivo.txt:
Hola, Cocacola!
```

Part 2: Lectura d'una targeta RFID amb RC522

Funcionament

Aquest segon exercici consisteix a llegir el codi únic (UID) d'una targeta RFID utilitzant el mòdul RC522.

1. Inicialització del mòdul RC522:

o Es configura la comunicació SPI i es fa la inicialització del mòdul lector.

2. Lectura del UID:

- o El programa està contínuament comprovant si hi ha una nova targeta a prop.
- Si detecta una targeta, es llegeix el seu UID i s'imprimeix en hexadecimal pel port sèrie.

Comentaris importants

- Es fa servir la biblioteca MFRC522, que facilita molt la comunicació amb aquest tipus de lectors.
- Els pins SS (SDA) i RST estan ben definits i es poden canviar segons el muntatge.
- Aquesta part també fa servir SPI.begin(), amb una assignació personalitzada de pins.

Resultat:

```
Iniciant lector RFID...
Lector preparat. Apropa una targeta RFID.
UID de la targeta: 63 AE D6 06
UID de la targeta: 90 69 66 43
```

Canvien els UID perquè vam utilitzar dos tipos de targeta RFID. El primer és de la targeta blanca i el segon és del dispositiu alternatiu cilíndric blau.

Consideracions generals del bus SPI

- El bus SPI és sincrònic i full-duplex, amb una arquitectura mestre-esclau.
- L'ESP32 pot utilitzar múltiples busos SPI, i en aquesta pràctica s'han assignat pins personalitzats per evitar conflictes.
- Quan es volen utilitzar dos dispositius SPI (com el lector SD i el lector RFID), s'ha
 d'assegurar que cadascun té una línia CS pròpia, i que es baixa la línia CS del
 dispositiu amb el qual es vol comunicar en aquell moment, mantenint les altres en
 estat HIGH.

Conclusió

Aquesta pràctica és una molt bona introducció a la comunicació SPI. Permet entendre:

- Com inicialitzar i comunicar-se amb dispositius SPI.
- Com escriure i llegir dades en memòries externes (SD).
- Com gestionar perifèrics com lectors RFID.
- La importància de gestionar correctament els pins CS quan hi ha múltiples dispositius SPI en un mateix bus.