

Build custom geospatial analytics for distribution networks

SaaS product in beta for automated B2B prospecting

CASE STUDIES

- 1. Vehicle routing and fleet sizing
- 2. Inventory management for reps
- 3. Find B2B prospects that match your business

ACTORS

MAPS

DISTRIBUTION

DATA ANALYTICS

DISTRIBUTION

DISTRIBUTION

DATA ANALYTICS

Product Catalog

Sensor Data

Server Logs

Network Data

Billing Data

Clickstream

Mobile Date

Set Top Box

Social Media

Text Files

Text Messages

THE PROBLEM(S)

1. Original Routes

The original routing plan was generated following "good rules of thumb", but it is sub-optimal in terms of distance and fleet costs.

Show Original Routes

2. Optimised Routes

Using automated optimisation algorithms, we can reduce the total distance travelled, saving fuel and time.

Show Optimised Routes

3. Optimised Fleet

We can take optimisation a step further by considering fleet composition as well as routing, saving on total cost of ownership and operation.

Add Fleet Optimisation

Vehicle	Distance (km)	Orders Delivered
Vehicle 1	39.9	12
Vehicle 2	30.5	15
Vehicle 3	26.2	10
Vehicle 4	27.1	30
Vehicle 5	87.2	40

Scenario comparison

Scenario	Num Vehicles	Fuel Cost (\$ Per Litre)	Total Distance (km)	Vehicle Cost Per Day (\$)	Distance-Based Fuel Cost (\$)	Total Cost Per Day (\$)
Original	5	1.20	210.8	251	50	301

1. Original Routes

The original routing plan was generated following "good rules of thumb", but it is sub-optimal in terms of distance and fleet costs.

Show Original Routes

2. Optimised Routes

Using automated optimisation algorithms, we can reduce the total distance travelled, saving fuel and time.

Show Optimised Routes

3. Optimised Fleet

We can take optimisation a step further by considering fleet composition as well as routing, saving on total cost of ownership and operation.

Add Fleet Optimisation

Vehicle	Distance (km)	Orders Delivered
Vehicle 1	18.0	10
Vehicle 2	12.5	13
Vehicle 3	47.1	33
Vehicle 4	45.6	36
Vehicle 5	58.3	15

Scenario comparison

Scenario	Num Vehicles	Fuel Cost (\$ Per Litre)	Total Distance (km)	Vehicle Cost Per Day (\$)	Distance-Based Fuel Cost (\$)	Total Cost Per Day (\$)
Original	5	1.20	210.8	251	50	301
Optimised	5	1.20	181.5	251	43	294

1. Original Routes

The original routing plan was generated following "good rules of thumb", but it is sub-optimal in terms of distance and fleet costs.

Show Original Routes

2. Optimised Routes

Using automated optimisation algorithms, we can reduce the total distance travelled, saving fuel and time.

Show Optimised Routes

3. Optimised Fleet

We can take optimisation a step further by considering fleet composition as well as routing, saving on total cost of ownership and operation.

Add Fleet Optimisation

Vehicle	Distance (km)	Orders Delivered
Vehicle 3	49.6	35
Vehicle 4	45.6	36
Vehicle 5	69.0	36

Scenario comparison

Scenario	Num Vehicles	Fuel Cost (\$ Per Litre)	Total Distance (km)	Vehicle Cost Per Day (\$)	Distance-Based Fuel Cost (\$)	Total Cost Per Day (\$)
Original	5	1.20	210.8	251	50	301
Optimised	5	1.20	181.5	251	43	294
Optimised Fleet	3	1.20	164.2	156	39	195

Truck Visit Analytics v1.0.1 - Demo

Scorecard

Not Visited

Achievement

Utilisation

Stops

Plan - View

Plan - Entry

Exceptions

Definitions

>7 Days

TA-Ship-to	Last Visit (days)	Avg Mth Qty	Avg Mth \$
S1510 Meeveo	11	5	368
S1396 Realblab	11	2	166
S1673 Demivee	12	1	102
S1884 Blogpad	12	1	85
RTM2756 Aivee	11	1	58

>14 Days

TA-Ship-to	Last Visit (days)	Avg Mth Qty	Avg Mth \$
S1584 Zoomzone	19	3	224
S1186 Realbuzz	18	2	184
S0336 Divanoodle	20	1	76
C28274 Twiyo	22	1	61
C25583 Tagfeed	19	1	61
\$1615 Edgewire	28	1	60

>30 Days

TA-Ship-to	Last Visit (days)	Avg Mth Qty	Avg Mth \$
S1826 Meevee	39	1	205
S1790 Rooxo	34	1	63
S1487 Feedfire	39	1	61
S0777 Eidel	35	0	31
C20319 Zoonoodle	32	0	26
C23618 Eidel	35	0	17

- Convergence of enablers
- Unstructured data provides "infinite contextual layer"
- Time is now for data analytics or lose competitive advantage

Thank you.

Kale Needham | CEO & Founder

E kjn@spiraldatagroup.com.au

spiraldatagroup.com.au

