

Actividad 2 - Ecuaciones Diferenciales de 1er Orden Homogéneas, Lineales y Exactas

Laura Daniela Romero Montañez

Facultad de ingeniería, Universidad Iberoamericana

Ingeniería en Software

Licenciado: DAVID MAURICIO FORERO TOBARIA

Abril del 2024

UNIVERSIDAD IBEROAMERICANA Facultad de Ingeniería Curso. Ecuaciones Diferenciales

ACTIVIDAD No. 2

Ecuaciones Diferenciales de 1er Orden Homogéneas, Lineales y Exactas.

La técnica aplicada busca la realización y puesta en marcha operativa de los conceptos aprendidos hasta aquí en la unidad, los cuales requerirán de todo el empeño del estudiante en el desarrollo de un taller físico estructurado con ejercicios de orden de dificultad ascendente. Los mismos deberán ser enviados bajo los parámetros y tiempos estipulados.

Guía de la actividad

Paso 1: La actividad está comprendida por un taller de catorce (14) ejercicios sobre operaciones resolución de ecuaciones Diferenciales que emplean métodosde solución de tipo homogéneo, lineal y exacta, estos ejercicios serán asignadospor el docente de acuerdo <u>CON SU NÚMERO ID</u>, a través del foro de acompañamiento, en la resolución de cada ejercicio recuerde que debe EVIDENCIAR, una SECUENCIA PROCEDIMENTAL, es decir debe escribir explicaciones, argumentos, palabras, que permitan justificar el nivel de comprensión alcanzado en la solución del procedimiento.

Paso 2: Al terminar los ejercicios, debe escanear el documento (en el documento escaneado se deben ver claramente la presentación de los ejercicios propuestos, el desarrollo, el planteamiento y el procedimiento, así como los resultados encontrados).

Paso 3: El documento debe ser subido en la plataforma bajos los parámetros (tipos de formatos) y en los plazos dispuestos (tiempos de entrega).

1. [Puntuación Máxima: 1,0 Punto]

Resuelva las siguientes EDO por medio de la Sustitución Lineal:

1.
$$(x - y) dx + xdy = 0$$
 2. $(x + y) dx + xdy = 0$

2.
$$(x + y) dx + xdy = 0$$

3.
$$xdx + (y - 2x) dy = 0$$
 4. $ydx = 2(x + y) dy$

4.
$$ydx = 2(x + y) dy$$

5.
$$(y^2 + yx) dx - x^2 dy = 0$$
 6. $(y^2 + yx) dx + x^2 dy = 0$

6.
$$(y^2 + yx) dx + x^2 dy = 0$$

$$7. \ \frac{dy}{dx} = \frac{y - x}{y + x}$$

7.
$$\frac{dy}{dx} = \frac{y - x}{y + x}$$
 8.
$$\frac{dy}{dx} = \frac{x + 3y}{3x + y}$$

9.
$$-y dx + (x + \sqrt{xy}) dy = 0$$

10.
$$x \frac{dy}{dx} = y + \sqrt{x^2 - y^2}, x > 0$$

2. [Puntuación Máxima: 1,0 Punto]

Resuelva las siguientes EDO por medio de la estructura de una EcuaciónDiferencial Homogénea:

$$1. \frac{dy}{dx} = \frac{x^4 + y^4}{x^2 y}$$

$$2. \frac{dy}{dx} = \frac{xy}{x^3 - y^3}$$

3.
$$(y + \sqrt{x^3 - y^3})dx - xdy = 0$$

$$4. (x + ye^{\frac{x}{y}}dx - xe^{\frac{x}{y}}dy = 0$$

5.
$$y(Ln y + Ln x)dx = (xLny - xLny - y)dy$$

3. [Puntuación Máxima: 2,0 Puntos]

En los problemas 1 a 18, determine si la ecuación diferencial dada es exacta. Enel caso de NO ser exacta proponga un camino de solución y en caso de ser exacta resuelva la EDO en su totalidad:

1.
$$(2x-1) dx + (3y+7) dy = 0$$

2.
$$(2x + y) dx - (x + 6y) dy = 0$$

3.
$$(5x + 4y) dx + (4x - 8y^3) dy = 0$$

4.
$$(\text{sen } y - y \text{ sen } x) dx + (\cos x + x \cos y - y) dy = 0$$

5.
$$(2xy^2 - 3)dx + (2x^2y + 4)dy = 0$$

6.
$$\left(2y - \frac{1}{x} + \cos 3x\right) \frac{dy}{dx} + \frac{y}{x^2} - 4x^3 + 3y \sin 3x = 0$$

7.
$$(x^2 - y^2) dx + (x^2 - 2xy) dy = 0$$

8.
$$\left(1 + \ln x + \frac{y}{x}\right) dx = (1 - \ln x) dy$$

9.
$$(x - y^3 + y^2 \sin x) dx = (3xy^2 + 2y \cos x) dy$$

10.
$$(x^3 + y^3) dx + 3xy^2 dy = 0$$

11.
$$(y \ln y - e^{-xy}) dx + \left(\frac{1}{y} + x \ln y\right) dy = 0$$

12.
$$(3x^2y + e^y) dx + (x^3 + xe^y - 2y) dy = 0$$

13.
$$x \frac{dy}{dx} = 2xe^x - y + 6x^2$$

14.
$$\left(1 - \frac{3}{y} + x\right) \frac{dy}{dx} + y = \frac{3}{x} - 1$$

15.
$$\left(x^2y^3 - \frac{1}{1+9x^2}\right)\frac{dx}{dy} + x^3y^2 = 0$$

16.
$$(5y - 2x)y' - 2y = 0$$

17.
$$(\tan x - \sin x \sin y) dx + \cos x \cos y dy = 0$$

18.
$$(2y \operatorname{sen} x \cos x - y + 2y^2 e^{xy^2}) dx = (x - \operatorname{sen}^2 x - 4xy e^{xy^2}) dy$$

4. [Puntuación Máxima: 1,0 Punto]

En los problemas 7 a 16, obtenga la solución general de la ecuación:

7.
$$\frac{dy}{dx} - y = e^{3x}$$

7.
$$\frac{dy}{dx} - y = e^{3x}$$
. 8. $\frac{dy}{dx} = \frac{y}{x} + 2x + 1$.

9.
$$\frac{dr}{d\theta} + r \tan \theta = \sec \theta$$
. 10. $x\frac{dy}{dx} + 2y = x^{-3}$.

10.
$$x \frac{dy}{dx} + 2y = x^{-3}$$

11.
$$(t+y+1)dt - dy = 0$$

11.
$$(t+y+1)dt - dy = 0$$
 . 12. $\frac{dy}{dx} = x^2 e^{-4x} - 4y$.

13.
$$y \frac{dx}{dy} + 2x = 5y^3$$
.

14.
$$x \frac{dy}{dx} + 3y + 2x^2 = x^3 + 4x$$
.

15.
$$(x^2 + 1)\frac{dy}{dx} + xy = x$$
.

16.
$$(x^2 + 1)\frac{dy}{dx} = x^2 + 2x - 1 - 4xy$$
.

Desarrollo actividad

Punto 1:

Resuelva las siguientes EDO por medio de la Sustitución Lineal:

8.	
$\frac{dy}{dx} = \frac{x + 3y}{3x + y}$	
$\frac{dv}{dx} = \frac{3+dy}{dx}$	Definimos la nueva variable v = 3x + y. Derivar la nueva variable.
$\frac{dv}{-3} = \frac{x+3v}{v}$	Sustituir en la EDO original.
v dv = (x+3v) dx - 3	Bv dx Separar variables.
$\int v dv = \int (x+3v) dx -$	∫3v dx Integramos de ambos lados-
1 1 3 3 3 - v ² = x ² + v ² - v ² + 2 2 2	-C Resolver la integral
v = x + C	Despejamos v.
3x + y = x + C	Sustituir la variable original.
y = -2x + C	Despejamos y.
C = 1 $.5$ $f: y = -2x + 1$ $+ Entrada$	

9.
$$-y \, dx + (x + \sqrt{xy}) \, dy = 0$$

9y dx + (x - x)	$+\sqrt{rv}dv=0$
yux + (x - y)ux	(x,y)uy = 0
$-y dx + (x + \sqrt{xy}) dy = 0$	
-y dx + (x + u)dy = 0	Definimos la nueva variable u = \sqrt{xy} .
-y dx + (x + u)dy - 0	sustituimos u² por xy.
(u - y) dx + x dy = 0	Separamos las variables
$\int (u - y) dx + \int x dy = C$	Integramos ambos lados de la ecuación. Agregamos constante.
1 1	
uxy ² + _x ² = C 2 2	
$\sqrt{xy} \times - \frac{1}{2}y^2 + \frac{1}{2}x^2 = C$	Sustituimos u por su definición original.
1	
$ \begin{array}{c} C - x^2 \\ y = 2(\underline{\hspace{1cm}}) \\ x \sqrt{x} + x \end{array} $	Despejamos y.
$y=2(\frac{1}{x\sqrt{x}+x})$	
2C	Simplificar la solución.
$y = \frac{2C}{\sqrt{x + 1 - x}}$	

10.
$$x \frac{dy}{dx} = y + \sqrt{x^2 - y^2}, x > 0$$

$10. x \frac{dy}{dx} = y + \sqrt{x^2 - y^2}, x > 0$
dv
$x \frac{dy}{dx} = y + \sqrt{x^2 - y^2}, x > 0$
du dy Sustituimos u por x²-y².
= 2x - 2y Derivamos la ecuación
$dx dx u = x^2 - y^2 con respecto a x$
$\frac{dy}{dx} = y + \sqrt{u}$ Sustituimos u y du/dx en la EDO original.
$(2x-2y \frac{dy}{dx}) = y + \sqrt{u}$
dx
dy Reordenamos la ecuación para obtener 2yy =-2x+√ u una expresión de dy/dx. dx
dx
dy 1 1
dy 1 1
dia.
dy ————————————————————————————————————
$\frac{dx}{dx} = \frac{1}{x^2 - y^2} = \frac{x}{2} - \frac{x^2 - y^2}{\sqrt{x^2 - y^2}}$ Alstamos tas variables y e x y sus differenciales.
$\sqrt{x^2-y^2}$ 2 $\sqrt{x^2-y^2}$
dv
dx 1 x = = Integramos ambos lados de la ecuación
$\int \frac{1}{x^2-y^2} = \int \frac{1}{x^2-y^2} = \int \frac{1}{x^2-y^2}$ Integramos ambos lados de la ecuación
$y = 1$ $arcsin(_) = (_)x - \sqrt{x^2 - y^2} + C$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Punto 2:

Resuelva las siguientes EDO por medio de la estructura de una Ecuación Diferencial Homogénea

3.
$$(y + \sqrt{x^3 - y^3})dx - xdy = 0$$

3. $(y + \sqrt{x^3 - y^3})dx -$	xdy = 0
$(y+\sqrt{x^2-y^3})dx-xdy=0$	
$(vx+\sqrt{x^2-(vx)^3})dx-x(vx)d=0$	Reemplazamos y con vx.
$(vx+x\sqrt{1-v^3})dx-(vx)dx=0$	Se sustituye $\sqrt{x^3-v^3}$ yor $x\sqrt{1-v^3}$.
$(v + \sqrt{1-v^3})dx - (vx)^2 dx = 0$	Se factoriza x del primer término. Se divide ambos lados por x².
$\frac{1}{v^2 - v + 1} = \frac{1}{\sqrt{1 - v^3}}$	Reorganizamos la ecuación, para que las variables v u x se encuentren en lados opuestos.
$v^2 - v + 1 \sqrt{1 - v^3}$	Integramos de ambos lados. u=1-v³
1 y 1 y 1 y 1 ln v-1 ln 1-(_)² =_ln 1-(_)² 2 x 3 x	3 +C
1 1 ln v-1 ln x²-y² =_ln x³-y³ +0 2 3	C

$$4. (x + ye^{\frac{x}{y}}dx - xe^{\frac{x}{y}}dy = 0$$

$4. (x + ye^{\frac{x}{y}}dx - xe^{\frac{x}{y}}dy$	= 0
x/y	
(x+ye ^{x/y})dx-xe dy=0	
(x+ye ^{x/y})dx-xe dy=0	Reemplazamos v con y/x.
(1 + v) dx - v dv = 0	Se sustituye y e y' por v y dv/dx.
(1 + v) dv= dx	Separamos variables-
1 + v	
∫dv= ∫ dx	Integramos ambos lados de la ecuación
(1 + v)	Agregamos una constante C
$\int \frac{(1 + v)}{v} dv = \ln v + v + C$	Agregamos una constante C
V	Agregamos una constante C
\(\text{dx} = x + C' \)	
V	
\(\text{dx} = x + C' \)	
$\int dx = x + C'$ $\ln v + v + x = C$	Combinamos las constantes de integració
$\int dx = x + C'$ $\ln v + v + x = C$ $\ln y/x + y/x + x = C$	Combinamos las constantes de integració
$\int dx = x + C'$ $\ln v + v + x = C$ $\ln y/x + y/x + x = C$ GeoGebro Calculadora gráfica	Combinamos las constantes de integració
$\int dx = x + C'$ $\ln v + v + x = C$ $\ln y/x + y/x + x = C$ GeoGebra Calculadora gráfica $C = 1 \qquad \vdots \qquad \vdots$ $C = 1 \qquad \vdots \qquad \vdots$	Combinamos las constantes de integració
$\int dx = x + C'$ $\ln v + v + x = C$ $\ln y/x + y/x + x = C$ $GeoGebra Calculadora gráfica$ $C = 1 & \vdots &$	Combinamos las constantes de integració
$\int dx = x + C'$ $\ln v + v + x = C$ $\ln y/x + y/x + x = C$ $GeoGebra Calculadora gráfica$ $C = 1 & \vdots &$	Combinamos las constantes de integració
$\int dx = x + C'$ $\ln v + v + x = C$ $\ln y/x + y/x + x = C$ $GeoGebra Calculadora gráfica$ $C = 1 & \vdots &$	Combinamos las constantes de integració
$\int dx = x + C'$ $\ln v + v + x = C$ $\ln y/x + y/x + x = C$ $GeoGebra Calculadora gráfica$ $C = 1 & \vdots &$	Combinamos las constantes de integració

5. y(Ln y + Ln x)dx = (xLny - xLny - y)dy

5. y(Ln y + Ln x)dx =	= (xLny - xLny - y)dy
y(ln(y)+ln(x))dx=(xln(y)	-xln(y)-y)dy
y(ln(y)+ln(x))=(xln(y)->	dy dx pasa al otro lado de l xln(y)-y) acuación a dividir.
y(ln(y)+ln(x))=(xln(y)->	xln(y)-y)y' Sustituimos dy/dx con y'.
Despejamos y'	
0*y=(xln(y)-xln(y)-y)y'	Sumamos elementros similares: ln(x)-ln(x)=0
0=(xln(y)-xln(y)-y)y'	Aplicamos la regla 0*a=0
y'=0	Utilizando el teorema de factor cero: si ab=0 entonces a=0 o b=0
y=ʃ0dx	Si f'(x)=g(x) entonces $f(x)=\int g(x)dx$
y=0*x	
y=0+C	Agregamos una constante
у=С	
The state of the s	

Punto 3:

Determine si la ecuación diferencial dada es exacta. En el caso de NO ser exacta proponga un camino de solución y en caso de ser exacta resuelva la EDO en su totalidad

15.
$$\left(x^2y^3 - \frac{1}{1 + 9x^2}\right)\frac{dx}{dy} + x^3y^2 = 0$$

15. (x	$(2y^3 - \frac{1}{1 + 9x^2})\frac{dx}{dy} + x^3y^2 = 0$	
1	dx 1 dx	
(x² y³	$\frac{dx}{dy} - \frac{dx}{dy} + x^3 y^2 = 0 : (x^2 y^3 - \frac{1}{1+9x^2}) \frac{dx}{dy}$	y²
113	a uy	
$(x^2y^3 - \frac{1}{1+2})$	$\frac{1}{9x^2}$) x'=-x ³ y ² Se sustituye dy/dx pos	r x'(y).
2 3	1	
(x y	L 1 Dx²) _=-x³y² Despejamos y' y'	
1*(x² y³-1	./1+9x²)	nos au b/o= -+b/-
3	=-x³y² Multiplicamos fraccio	nes a* D/C− a *D/C
x² y³-1/1-	9x ² Simplificar	
у'	-9x ² =-x ³ y ² Simplificar	
x² y³ (9X²-	⊦1)-1 Simplificamos x³y²en u	na fracción:
1+9x		
	Aplicamos las propieda	dos do las frascionos
x² y³ (9X²-	b/c b	des de las fracciones
(1+9x	-x-y = a _ a*c	
2 3604 2		
x y (9x +	$\frac{-1)-1}{y'} = -x^2y^2y'$ Multiplicamos ambos lad	dos por y'
(1+9x ²	Jy'	
x² y³ (9X²+	1)-1	
(1+9x²		
-v ³ V ² V ¹ =	c²y³(9X²+1)−1 Intercambiamos lados	
-x y y '=	(1+9x²)	

ta Farmscolin y Universidades	
	$x^2 y^3 (9X^2+1)-1$
	$-x^{3}y^{2}y^{1}$ = $(1+9x^{2})$
	Dividimos ambos tados entre -x y
	$-x^3y^2$ $-x^3y^2$
	2.16-112.5
	$y' = \frac{x^2 y^3 (9X^2+1)-1}{2}$
	(1+9x ²) Simplificar
	3 2
	-x ³ y ²
	$y' = -\frac{x^2y^3(9X^2+1)-1}{(1+9x^2)}$ Aplicamos las propiedades de las fracciones: a/-b = -a/b
	(1+9x ²)
	x³ y²
	$y^2 \cdot y^3 \cdot (9x^2+1) = 1$ Aplicamos las propiedades de las fracciones:
	$y' = -\frac{x^2 y^3 (9X^2+1)-1}{(1+9x^2)x^3 y^2}$ Aplicamos las propiedades de las fracciones: $\frac{b/c}{c} = \frac{b}{c+3}$
	$(1+9x^2)x^3y^2 \qquad $
	x² v³ (1+9X²)-1
	$y' = -\frac{x^2 y^3 (1+9X^2)-1}{x^3 (1+9x^2)y^2}$ Odernamos las ecuación.
	x ³ (1+9x ²)y ²
	$(vx)^{1-x}$ Sustituimos y=vx, v es una función de x
	$(vx)'=-\frac{Sustituimos y=vx, v es una funcion de x}{x^3(1+9x^2)(vx)^2}$
	\$ 164.0022
	(vx)'=- Simplificar
	$x^{5}v^{2}(1+9x^{2})$
	x ⁵ v ³ (1+9X ²)-1
	vx'+v=(vx)' = xv'+v
	$x^{5}v^{2}(1+9x^{2})$
	18x ⁷ v³+2x⁵ v³−1
	$\frac{1}{9x^2+1} + x^6v^2v'=0$ Reescribimos como una ecuación diferencial exacta.
	9X +1 32.010.0100 0.0000.

Vamos a verificar que $\partial M(x,y) = \partial N(x,y)$
$\frac{\partial \mathbf{\lambda}}{\partial \mathbf{x}} = \frac{\partial \mathbf{x}}{\partial \mathbf{x}}$
1 Tratamos x como constante
(18x ⁷ v ³ +2x ⁵ v ³ -1)' Sacaremos la constante:(a*f)'=a*f'
$\frac{1}{9x^2+1}$ ((18x 7 v 3)'(+2x 5 v 3)'(-1)') Aplicamos la regla de las suma/diferencia: (f±g)'f'±g'
1 Sacamos las constantes:
$ \frac{1}{(18x^{7}(v^{3})'+2x^{5}(v^{3})'(-1)')} Sacamos las constantes: $ $ \frac{1}{(a*f)'=a*f'} $
1 Aplicamos la regla de la potence $(18x^7*3v^{3-1}+2x^5*v^{3-1}'(-1)')$ $d/dx(x^a)=a*x^{a-1}$
$\frac{18x^{7}*3v^{3-1}+2x^{5}*v^{3-1}'(-1)'}{9x^{2}+1} d/dx(x^{*})=a*x^{*-1}$
1 Simplifican
(54x ⁷ v ² +6x ⁵ v ² (-1) ') Simplificar
1
9x²+1
9x²+1
54x ⁷ v ² +6x ⁵ v ²
Multiplicamos fracciones a* b/c= a*b/c
9x² +1
b+c b c
$54x^5x^2v^2+6x^5v^2$ Se aplica las leyes de los exponente a sa a $x^7 = x^5x^2$
9x² +1
0.6.5.2.2.4.6.5.2
$9*6x^5x^2v^2+1*6x^5v^2$
Reescribimos la ecuación.
Reescribimos la ecuación. 9x² +1
Reescribimos la ecuación. 9x² +1
Reescribimos la ecuación.

Vamos a encontrar Ψ (x,y)
Encontrar Ψ (x, f_111) mediante la integración de cualquiera de las siguientes expresiones: Ψ = $\int M(x,f_111)dx$ o Ψ = $\int M(x,f_111)df_111$
Integraremos $\int Ndf_1 = \int x^6 f_1^2 df_1 df_1 df_2 df_3$
incegratemos juar _ iii
6.2
$\int x^6 f_{-}^2 111 df_{-}111$
x ⁶ *ʃf ² 111 df_111
2*1
<u>+_</u> ⊥↓↓
x ⁶ *
2
f ³ _111 x ⁶ *
x**
x°*f_111
+ C
3
Describeration of the second o
Reemplazaremos C con n(x), ya que x fue tratada como una constante.
x ° *f <u>111</u>
+ n(x)
3
x°*f_111 1
$n(x) = -1/3 \arctan(3x) + c_1$
3
$X^6 * f^3 = 111 1$ $Y = \frac{1}{3} - \frac{1}{3}$
$\Psi = $ arctan(3x)+c_1
3 3
x ⁶ *f ³ _111 1
arctan(3x)=c_1
3 3
La ecuación es una ecuación diferencial exacta, ya que:
Unda EDO de la forma M(x,y)y'=0 es una ecuación diferencial exacta si se cumple lo siguiente:
1- Si existe una función $\Psi(x,y)$ yal que $\Psi_x(x,y)=M(x,y),\Psi_y(x,y)=N(x,y)$
Ψ
2- (x,y) tiene derivadas parciales constinuas
$\sum_{i=1}^{n} M(x,y) = \sum_{i=1}^{n} M(x,y) = \sum_{i=1}^{n} M(x,y) = \sum_{i=1}^{n} M(x,y)$
$\frac{\partial}{\partial x} = \frac{\partial}{\partial x \partial x} = \frac{\partial^2 \Psi(x,y)}{\partial x \partial y} = \frac{\partial^2 \Psi(x,y)}{\partial x \partial y} = \frac{\partial}{\partial x} \frac{x}{\partial x}$
$\frac{\partial \mathbf{v}}{\partial \mathbf{v}} = \frac{\partial \mathbf{x} \partial \mathbf{v}}{\partial \mathbf{x} \partial \mathbf{v}} = \frac{\partial \mathbf{x} \partial \mathbf{v}}{\partial \mathbf{x} \partial \mathbf{v}} = \frac{\partial \mathbf{x} \partial \mathbf{v}}{\partial \mathbf{v}}$
-, -, -, -, -, -, -, -, -, -, -, -, -, -

Despe	jamos v		
x°*f_1 3	111 1 arctan(3x)= 3	c_1	
x 6 * v 3	1 =c_1+_arctan(3x) 3	Movemos 1/3 arc	tan(ex) al lado derecho
x 6 *v 3 =	= 3c_1+arctan(3x)	Múltiplicamos a	ambos lados por 3.
,	c_1 arctan(3x) 	Dividimos ambos	s lados por xº.
v =	8c_1 + arctan(3x)		
	3c_1 + arctan(3x) x^2	Sustituimos v=y	ı/x
$y = \sqrt[3]{3}$	3c_1 + arctan(3x)		
	X	GeoGebra Calculador	a gráfica
y =	3c_1 + arctan(3x) x	$c_1 = 1 \qquad \vdots \\ 5 \qquad \qquad 5 \qquad 0$ $f(x) = \frac{\sqrt[3]{c_1 + tg^{-1}(3x)}}{x} \qquad \vdots \\ = \frac{\sqrt[3]{1 + tg^{-1}(3x)}}{x}$	3-2-2
		+	-3 -2 -1 0 1 2 3
			-9-

16. (5y-2x)y'-2y=0

16. $(5y - 2x)y'$	-2y=0
(5y-2x)y'-2y=0	
-2y+(5y-2x)y'=0	
-2y+(3y-2x)y -0	
Vamos a verificar que	$\partial M(x,y) = \partial N(x,y)$
	$\frac{\partial \mathbf{y}}{\partial \mathbf{y}} = \frac{\partial \mathbf{x}}{\partial \mathbf{x}}$
Calculamos ∂ M	Calculamos ∂N
3 y	3 y
Э У	∂ y
(-2y)'	((5y-2x))'
-2*1	(5y)'-(2x)'
-2	0-1
	-2
Es verdadero	
Vamas a anantus V	
Vamos a encontrar Ψ (
siguientes expresione	iante la integración de cualquiera de las $s: \Psi = M(x,y)dx$ o $\Psi = M(x,y)dy$
Integraremos	y-2xdy
∫5y−2xdy	
−2xdy+∫5ydy	Aplicamos la regla de la suma ∫f(x)±g(x)dx=∫f(x)dx±∫g(x)dx
−2xy+∫5ydy	
5y ² -2xy+	
2	
5y ²	
-2xy+ +C_1 2	Agregamos una constante a la solución

) Moreta Farmscolin y Universidades	
	$\Psi(x,y) = -2xy + \underline{\qquad} + C_1$
	2
	$c_{2} = -2xy + \underline{\qquad} + C_{1}$ $\Psi(x,y) = \Psi c_{2}$
	$c_2 = -2xy+_{-} + C_1$ $\Psi(x,y) = \Psi(c_2)$
	2
	5y²
	5y² -2xy+ = C Combinamos constantes
	2
	$4x + \sqrt{16x + 40C}$ $4x - \sqrt{16x + 40C}$ Despejamos y
	$y = \frac{4x + \sqrt{16x + 40C}}{10}, y = \frac{4x - \sqrt{16x + 40C}}{10}$ Despejamos y
	10 10
	$4x + \sqrt{16x^2C}$ $4x - \sqrt{16x^2C}$ $y = y = 10$ Simplificar
	v= v= Simplificar
	10 10
	La ecuación es una ecuación diferencial exacta, ya que:
	Unda EDO de la forma M(x,y)y'=0 es una ecuación diferencial exacta si
	se cumple lo siguiente:
	1- Si existe una función $\Psi(x,y)$ yal que $\Psi_x(x,y)=M(x,y),\Psi_y(x,y)=N(x,y)$
	2- Ψ (x,y) tiene derivadas parciales constinuas
	$\supset M(x,y) \supset^2 \Psi(x,y) \supset^2 \Psi M(x,y) \supset M(x,y)$
	$\frac{\partial M(x,y)}{\partial y} = \frac{\partial^2 \Psi(x,y)}{\partial x \partial y} = \frac{\partial^2 \Psi M(x,y)}{\partial x \partial y} = \frac{\partial N(x,y)}{\partial x}$
	$\partial y \qquad \partial x \partial y \qquad \partial x$
	I .

17. $(\tan x - \sin x \sin y) dx + \cos x \cos y dy = 0$

17. (tan x – sen x sen	$(x + \cos x \cos y) dx + \cos x \cos y dy = 0$
(tan(x)-sen(x)sen(y))dx+cos(x)cos(y)dy=0
tan(x)-sen(x)sen(y)+cos(x)co	dy
cun(x) sen(x)sen(y) cos(x)co	dx
tan(x)-sen(x)sen(y)+cos(x)co	os(y)y'=0 Sustituimos dy/dx con
tan(x)-sen(x)sen(y)+cos(x)co	os(y)y'=0
Vamos a verificar que ∂M(x,)	
Calculamos \supset M	Calculamos ∂ N
<u>9 λ</u>	<u>∂</u> y
(tan(x))'-(sen(x)sen(y))'	(cos(x)cos(y))'
0-sin(x)cos(y)	cos(y)(cos(x))'
-sin(x)cos(y)	cos(y)(-sin(x))
	-sin(x)cos(y)
Es verdadero	
Vamos a encontrar $\Psi(x,y)$	
Encontrar \(\tau(x, y) \) mediante l siguientes expresiones: \(\P = \) Integraremos \(\) Ndy= \(\) cos(x)co	a integración de cualquiera de las (x,y)dx o Y=∫N(x,y)dy s(y)dy
<pre>fcos(x)cos(y)dy</pre>	
cos(x)∫cos(y)dy	
cos(x)sen(y)	
cos(x)sen(y)+C	

Ψ (x,y)= cos(x)ser	Reemplazamos la C con $n(x)$, ya que $n(y)+n(x)$ tratada con una constante
· (x,y)= cos(x)ser	mcy/mcx/ cracada con una conscance
Calculamos n(x)	
(cos(x)sen(y)+n(x	x))'
(cos(x)sen(y))'+n	1'(x)
-sen(y)sen(x)+n'((x)
-sen(y)sen(x)+n'((x)
-sen(y)sen(x)+n'((x)=tan(x)-sen(x)sen(y) Intercambiamos lados
_	n(x) a ambos lados
-sen(y)sen(x)+n'((x)+sen(y)sen(x)=tan(x)sen(y)-sen(x)+sen(y)sen(x)
n'(x)=tan(x)	Simplificar
n(x)=ʃtan(x)dx	Si f'(x)= g(x) entonces $f(x)=\int g(x)dx$
sen(x)	
dx cos(x)	Reescribimos usando identidades trigonom
(cos(x))'	Aplicamos integración por sustitución.
_	Sustituimos: u=cos(x)
du =-sen(x)	du= -sen(x)dx
dx	dx= ()du
sen(x) 1	sin(x)
ſ	
u sen(x)	J
sen(x) 1 *d	Simplificar
	d 95

sen(x)*1 [du
usen(x)
1 ∫du
u u
Usamos la integral común: ∫1/u du= ln(u) , -ln(u) suponiendo un logaritmo de valores complejos.
-ln(cos(x))+ c_1 Sustituimos en laecuación u=cos(x) y le agregamos una constante a la solución.
n(x)=-ln(cos(x))+ c_1 Se integra la ecuación completa.
Ψ (x,y)=-ln(cos(x))+ c_1
Ψ (x,y)=cos(x)sen(y)+(-ln(cos(x))+ c_1)
Ψ (x,y)=cos(x)sen(y)-ln(cos(x))+ c_1
$cos(x)sen(y)-ln(cos(x))+ c_1= c_2$ $\forall (x,y)= \forall c_2$
cos(x)sen(y)-ln(cos(x))= C Combinamos constantes
Despejamos y
cos(x)sen(y) = C+ln(cos(x)) Movemos $ln(cos(x))$ al lado derecho.
Dividimos ambos lados entre cos(x)
$\frac{\cos(x)\operatorname{sen}(y) = C + \ln(\cos(x))}{\cos(x) - \cos(x)}; x \neq \frac{\pi}{2} + 2\pi, x \neq \frac{\pi}{2} + 2\pi n$
cos(x) cos(x) 2 2

$sen(y) = \frac{C + \ln(\cos(x))}{\cos(x)}; x \neq \frac{\pi}{2} + 2\pi, x \neq \frac{\pi}{2} + 2\pi n$
cos(x) 2 2
Aplicamos propiedades trigonométricas inversas.
C +ln(cos(x)
$C + \ln(\cos(x)) \qquad C + \ln(\cos(x))$ $y = \arcsin(\underline{\underline{}}) + 2 \pi n + \arcsin(\underline{\underline{}}) + 2 \pi n$ $\cos(x) \qquad \cos(x)$
cos(x)
La ecuación es una ecuación diferencial exacta, ya que:
Unda EDO de la forma M(x,y)y'=0 es una ecuación diferencial exacta si se cumple lo siguiente:
1- Si existe una función $\Psi(x,y)$ yal que $\Psi_x(x,y)=M(x,y),\Psi_y(x,y)=N(x,y)$
2- Ψ (x,y) tiene derivadas parciales constinuas
$\partial_{x} M(x,y) = \partial_{x} + (x,y) = \partial_{x} + M(x,y) = \partial_{x} M(x,y)$
$\frac{\partial}{\partial x} = \frac{\partial x \partial x}{\partial x \partial y} = \frac{\partial x \partial y}{\partial x \partial y} = \frac{\partial x \partial y}{\partial x \partial y} = \frac{\partial x}{\partial x \partial y}$

18. $(2y \operatorname{sen} x \cos x - y + 2y^2 e^{xy^2}) dx = (x - \operatorname{sen}^2 x - 4xy e^{xy^2}) dy$

18 (2) sep v cos v . v : 2:2 x 2 x 4v =
18. $(2y \operatorname{sen} x \operatorname{cos} x - y + 2y^2 e^{xy^2}) dx = (x - \operatorname{sen}^2 x - 4xy e^{xy^2}) dy$
$(x - \operatorname{sen}^2 x - 4xye^{xy}) dy$
VV42
(2y sen(x) cos(x)-y+2y ² e $^{xy^2}$)dx=(x-sen ² x-4xye $^{xy^2}$)dy
Conocemos que:
M(x,y)= 2sen(x)cos(x)-y+2y e N(x,y)= x-sen x-4xye xy^2
N(x,y)= x-sen'x-4xye^'
Vamos a verificar que $\partial M(x,y) = \partial N(x,y)$
$\frac{\partial \lambda}{\partial x} = \frac{\partial x}{\partial x}$
⊘ y
Calculamos ∂ M Calculamos ∂ N
9 y
2sen(x)cos(x)-1+4ye ^{xy-2} +4xy³e ^{xy-2} 1-4ye ^{xy-2} -4xy³e ^{xy-2}
Es Incorrecto
ES INCOFFECCO
Vemos que $\partial M/\partial y$ no es igual a $\partial N/\partial x$, lo que indica que
la ecuación diferencial dada <mark>no es exacta</mark> .
Para resolver una ecuación diferencial no exacta, uno de los métodos
es buscar un factor integrante que la convierta en una ecuación exacta.
es suscar an racest integrance que la convictea en ana ceaación exacta.

Punto 4:

En los problemas 7 a 16, obtenga la solución general de la ecuación

$$7. \frac{dy}{dx} - y = e^{3x} .$$

$7. \frac{dy}{dx} - y = e^{3x} .$
ux
$\frac{dy}{dx} - y = e^{3x}$
Una EDO lineas de primer orden tiene forma $y'(x)+p(x)y=q(xy'-y=e^{3x})$ Se sustituye dy/dx por y' .
La ecuación esta en forma de EDO lineal de primero orden
y'(x)+p(x)y=q(x) $p(x)=-1, q(x)=e^{3x}$
Vamos a encontrar el factor de integración $\mu'(x)=e^{3x}$.
Encontrar el factor de integración μ(x), tal que
$\mu'(x)=\mu(x)p(x)$ $\mu'(x)*p(x)=\mu'(x)$.
$\mu'(x) = \mu(x)p(x)$ Dividimos ambos lados entre $\mu(x)$.
μ(x) μ(x)
μ'(x) \$:==1:f::===
= p(x) Simplificar
μ(x)
$(\ln(\mu(x)))'=-1$ $p(x)=1$
Ahora, se resolvera (ln(μ(x)))'=-1
ever 1
$\mu'(x)=e^{-x+c_{-1}}$
Se aplica las leyes de los exponente a = a a
$\mu'(x) = e^{-x} e^{-x}$ $e^{-x+c_{-1}} = e^{-x} e^{-x}$
e -e e
La constante e ^{c_1} puede ser descartada
μ(x)=e ^x La constante e ^{xx} puede ser descartada (será absorbida había C)

Escribimos las ec	cuación con la forma $(\mu(x)*y)'=\mu(x)*q(x)$
y'-y=e ^{3x} Mu re	ltiplicamos por el factor de integración, µ(x) y
re	escribimos la ecuación como (μ(x)*y(x))'=μ(x)*q(x)
x -x 3x	Multiplicacmos ambos lados por el factor de
y'e ^{-x} -ye ^{-x} =e ^{3x} e	integración, e ^{-x}
y'e ^{-x} -ye ^{-x} =e ^{2x}	Simplificar
, , , , .	
. 7-	Aplicamos la regla del producto: (f*g)'=f'*g+f*g'
(e ^{-x} y)'=e ^{2x}	f=e ^{-x} , g=y: y'e ^{-x} -ye ^{-x} =(e ^{-x} y)'
Ahans 3	vera (e y)'=e
Anora, se resol	vera (e y) =e
e ^{-x} y=∫e ^{2x} dx	Si $f'(x)=g(x)$, entonces $f(x)=\int g(x)dx$
	- -
C = 2x = d = .	Vamos a aplicar integración por sustitución
∫e²x dx	<pre>f(g(x))*g'(x)dx=f(u)du,u=g(x)</pre>
du	
_ = 2	Sustituir u=2x
dx	
1 =∫e"_ du	du=2dx
-je _ du2	dx=1/2 du
1	
= _ *∫e du	Sacamos la constante:
2	• • •
1	Anlianna la marla de internación de la luca
= _ e "	Aplicamos la regla de integracción: ∫e du=e du=e du=e du=e du=e du=e du=e du=
1	
= _ e ^{2x}	Sustituimos en la ecuación u=2x
2	
1	
= _ e ^{2x} +C	Agegamos la constante a la solución
2	

gi niesti ramican y unvenesco	
	e ^{-x} y= _ e ^{2x} + C Completamos la ecuación
	e ^{-x} y= _ e ^{2x} + C Completamos la ecuación
	2
	Ahora despejaremos y
	Allota despejaremos y
	_x 1
	$e^{-x} y = e^{2x} + C$
	2
	e ^{-x} y 1/2 e ^{2x} C
	= + Dividimos ambos lados entre e ^{-x}
	e " e " e "
	$y = \frac{1/2 e^{2x}}{e^{-x}} + \frac{C}{e^{-x}}$ Simplificar, eliminamos los terminos comunes e^{-x} $\frac{e^{-x}}{e^{-x}} + \frac{e^{-x}}{e^{-x}} = \frac{e^{-x}}{2x} y$
	1/2 e ^{zx} C Simperificat, eciminamos cos cermitios comunes e
	y = + + e y
	e ^{-x} = -x = -x y
	e
	1/2 e ^{2x} C
	Ahora simplificaremos + e^-x e^-x
	e ^{-x} e ^{-x}
	e ^{2x} /2 C
	+ Se multiplican fracciones: a* b/c = a*b/c
	e e
	Anliermes les preniededes de les forceiones
	e ^{2x} C Aplicamos las propiedades de las fracciones:
	$\frac{1}{2e^{-x}} + \frac{b/c}{e^{-x}} \qquad b/c \qquad b$
	2e ^{-x} e ^{-x} =
	a c*a
1	
	e 3x C
1	
	2 e ^{-x} Aplicaciómos las leyes de los exponentes
	e ^{2x} e ^{2x-(-x)} e ^{3x}
	==
	2e ^{-x} 2 2
	3Y 2/2 And 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2
	e ^{3x} C/1 Aplicaciómos las leyes de los exponentes
	+ a -b = 1/a b
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	e ^x
	Aplicamos las propiedades de las fracciones:
	+ C e ^{-x} a
	2 a
	1

IBERO

8.
$$\frac{dy}{dx} = \frac{y}{x} + 2x + 1$$
.

	$8. \frac{dy}{dx} = \frac{y}{x} + 2x + 1 .$
dy dx	y = _ + 2x + 1 x
y'	<pre>Prime Prime P</pre>
у'	
y'	$-\frac{y}{x} = +2x +1$ Simplificar
у'	1 Reescribimos en la forma estándar $-$ = +2x +1 $p(x)=-1/x$, $q(x)=2x+1$ x^y
Va	amos a encontrar el factor de integración
h	Encontrar el factor de integración $\mu'(x)$, tal que $\mu(x)p(x) = \mu'(x)$
μ' <u>μ</u> ($\frac{f(x)}{f(x)} = \frac{\mu(x)p(x)}{\mu(x)}$ Dividir ambos lados entre $\mu(x)$
	$\frac{(x)}{(x)} = p(x)$ Simplificar
	$\ln(\mu(x)))' = p(x)$ $(\ln(\mu(x)))' = \frac{\mu'(x)}{\mu(x)}$ $\ln(\mu(x)))' = -\frac{1}{x}$ $p(x) = -\frac{1}{x}$
	.n(μ(x)))' =-

and the control of th	
	Si $f(x)=g(x)$ entonces $f(x)=f(x)dx$
	$(\operatorname{cu}(\mu(x)))$, = $i - i$ ax
	Х
	1
	$(\ln(\mu(x))) = -\int_{-\infty}^{\infty} dx$ Sacamos la constante: $\int a \cdot f(x) dx = a \cdot \int_{-\infty}^{\infty} dx$
	X
	$(\ln(\mu(x))) = -\ln(x)$ usamos la integral común: $\int 1/x dx$,
	suponiendo un logaritmo de valores complejos.
	$(\ln(\mu(x))) = -\ln(x) + c_1$ Agregamos constante a la solución.
	Constitution and an analysis and an an analysis and an analysi
	Despejaremos μ(x)
	pespejaremos ktv)
	114272
	Utilizaremos la definición de logaritmo: $\mu(x)=e^{-\ln(x)+c_{-1}}$ Pi log_a(b)=c entonces b=a ^c
	$ln(\mu(x)) = -ln(x) + c_1: \mu(x) = e^{-ln(x) + c_1}$
	Aplicamos las leyes de los exponentes:
	$\mu(x) = e^{-\ln(x)} e^{-1}$ Apricamos las leyes de los exponentes: $a^{b+c} = a^b b^c$
	Aplicamos las leyes de los exponente:
	$\mu(x) = (e^{\ln(x)})^{-1} e^{-1}$ Apricamos tas teyes de los exponente: $a^{ab} = (a^b)^c$
	Aplicar las propiedades de los logaritmos:
	$\mu(x)=x^{-1} e^{c_{-1}}$ $a^{\log_a a(b)}=b$
	$e^{\ln(x)} = x$
	^
	1
	$\mu(x) = e^{c_{-1}}$ Aplicar las leyes de los exponente: $a^{-1} = 1/a$
	x x ⁻¹ = 1/x
	x - 1/x
	Multiplicamos fracciones:
	1*e ^{c-1} b a*b
	μ(x)= a* _ =
	х с с
	e c_1
	$\mu(x) = $
	x

Emerica Emiliano Company	
	1 μ(x)= _ La constante e ^{c_1} puede ser descartada (será absorbida hacia C).
	X (Sera absorbida nacia C).
	Vamos a escribir la ecuación con la forma $(\mu(x)*y)'=\mu(x)*q(x)$.
	1 Multiplicams por el factor de integración, μ(x) y y' y = +2x +1 reescribimos la ecuación como (μ(x)*y)'=μ(x)*q(x) x
	1 1 1 1 1 Multiplicamos ambos lados por el factor de y' y _ = 2x _ +1 _ integración,1/x.
	x x x x x
	y' y 1
	y y 1 =2+ _ Simplificar x x ² x
	x x x
	1 1 Aplicar la regla del producto:(f*g)'=f'*g'
	1 1 Aptical ta regta det producto. (+xg) - + xg (-y) + = 2 +
	x x 7= _, g=y: = (_y).
	1 1
	$y = \int 2 + dx$ Si +'(x)=g(x) entonces +(x)=Jg(x)dx
	x x
	1 1 Aplicamos la regla de la suma:
	1 1 Aplicamos la regla de la suma: $y = \int 2dx + \int_{-}^{} dx$ $\int f(x) \pm g(x) dx = \int f(x) dx \pm \int g(x) dx$ x
	x x
	1
	$\begin{array}{ccc} - \\ y = 2x + \ln(x) & \int 2dx = 2x : \int 1/x dx = \ln(x) \\ x & \end{array}$
	^
	1
	_y =2x + ln(x) + C Agregamos la constante a la solución. x
	1 Multiplicames ambes lades per v
	_yx =2xx + ln(x)x + Cx

y =2xx + ln(x)x + Cx	$\frac{1}{x} yx = \frac{1*yx}{x} = 1*y = y$
$y = 2x^2 + x \ln(x) + Cx$	$2xx = 2x^{1+1} = 2x^2$
Ge@Gebra Calculad	lora gráfica
C = 1 -5 5	
f: $2 \times + \times \ln(x) + C \times$ = $y = 2 \times + \times \ln(x) + 1 \times$ + Entrada	3
	-3 -2 -1 0 1 2
	_1

$$9. \frac{dr}{d\theta} + r \tan \theta = \sec \theta.$$

$9. \frac{dr}{d\theta} + r \tan \theta = \sec \theta$	
dr + r tanθ = secθ dθ	
$r'(\theta) + r \tan(\theta) = \sec(\theta)$	Se sustituye dy/dθ por r'(θ).
$r'(\theta) + tan\theta \ r(\theta) = sec(\theta)$	Reescribimos en la forma estándar) y'(x)+p(x)*y=q(x) p(x)= tan(θ)r(θ), q(x)=sec(θ)
Hayaremos el factor de in	tegración
$\mu'(\theta) = \mu(\theta)*p(\theta)$	Encontrar el factor de integración μ(x tal que:μ(x)*p(x)=μ'(x)
$\frac{\mu'(\theta)}{\mu(\theta)} = \frac{\mu(\theta) * p(\theta)}{\mu(\theta)}$	Dividimos ambos lados entre $\mu(\theta)$
μ(θ) μ(θ)	
$\frac{\mu'(\theta)}{\mu(\theta)} = p(\theta)$	Simplificar
(ln(μ(θ)))' = p(θ)	$(\ln(\mu(\theta)))' = \frac{\mu'(\theta)}{\mu(\theta)}$
(ln(μ(θ)))' = tan(θ)	p(θ)=tan(θ)
$ln(\mu(\theta)) = \int tan(\theta)d\theta$	Si $f'(x)=g(x)$ entonces $f(x)=\int tan(x)dx$
$ ln(\mu(\theta)) = \int \frac{\sin(\theta)}{\cos(\theta)} d\theta $	Usaremos la siguiente identidad: tan(θ)=sin(x)/cos(x)

Auli
Aplicaremos integración por sustitución
$sin(\theta)$
∫dθ cos(θ)
cos(0)
du
$\underline{ } = -\sin(\theta) \qquad \qquad \text{Sistituimos: } u = \cos(\theta)$
=
du= −sin(0)d0
1
dθ= ()du
sin(θ)
$sin(\theta)$ 1
ʃ ()du
sin(θ) 1 ∫ ()du u sin(θ)
()du
u sin(0)
zir(0) 1
sin(θ) 1
Simplificamos () u sin(θ)
u sin(b)
sin(θ) 1
* Multiplicamos los parentesis:(-a)=-a.
u sin(θ)
sin(θ)*1 Multiplicames fracciones: 2/bts/b=2ts/btd
Multiplicamos fracciones: a/b*c/b=a*c/b*d
u sin(θ)
1
Eliminamos los terminos comunes:sin(θ)
u
1
du
u u
I .

l du Sacamos la constante ∫a*f(x)dx=a*∫f(x)dx u	
Usamos la integral común: ∫1/u du=ln(u) , -ln(u) suponiendo un logaritmo de valores complejos.	
-ln(cos(θ)) Sustituimos en la ecuación u=cos(θ)	
-ln(cos(θ))+c_1 Agregamos una constante a la solución	
$ln(\mu(\theta))=-ln(cos(\theta))+c_1$ Reemplazamos en la ecuación original.	
Ahora,despejaremos μ(θ)	
$\mu(\theta) = e^{-\ln(\cos(\theta)) + c_{-1}}$ Utilizaremos la definición de logaritmos: Pi log_a (b)=c entonces b=a ^c	
$\ln(\mu(\theta))=-\ln(\cos(\theta))+c_1: \mu(\theta)=e^{-\ln(\cos(\theta))+c_1}$	
$\mu(\theta) = e^{-\ln(\cos(\theta))} e^{c_{-1}}$ Aplicamos las leyes de los exponente: $a^{b+c} = a^b a^c$	
$\mu(\theta) = (e^{\ln(\cos(\theta))})^{-1} e^{c_{-1}}$ Aplicamos las leyes de los exponentes: $a^{bc} = (a^b)^c$	
Aplicamos las propiedades de los logaritmos: $\mu(\theta) = \cos^{-1}(\theta) e^{c_{-1}} \qquad a^{\log_a(b)} = b$ $e^{\ln(\cos(\theta))} = \cos(\theta)$	
e messes =cos(A)	
$\mu(\theta) = e^{c_{-1}} \frac{1}{\cos(\theta)}$ Aplicar las leyes de los exponentes a ⁻¹ = 1/a 1 $\cos^{-1}(\theta) = \frac{1}{\cos(\theta)}$	
cos(θ)	
$\mu(\theta) = \frac{1 \times e^{c_{-1}}}{\cos(\theta)}$ Multiplicamos las fracciones:	
a* _ = c	
$\mu(\theta) = \frac{e^{-c_1}}{\cos(\theta)}$	

1	
$\mu(\theta) = \frac{1}{1 + (1 + 1)^2}$ La constante e puede se (será absorbida hacia C)	er descartada N
cos(θ) (Sera absorbida nacia C	,
61 1161	
$\mu(\theta)$ =sec (θ) Simplificar	
Escribiremos la ecuación con la forma (μ(x)*y)'	=u(x)*u(x)
() ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '	el factor de integración,
$r'(\theta)+tan(\theta)r(\theta)=sec(\theta)$ $\mu(x)$ y reescribimo $(\mu(x)*y)'=\mu(x)*q(x)$	
(han) day	
71(0)(0)++77(0)(0)7(0)(0)(0)(0)	Multiplicamos ambos
$r'(\theta)sec(\theta)+tan(\theta)sec(\theta)r(\theta)sec(\theta)=sec(\theta)sec(\theta)$	lados por el factor de integración, sec(θ)
	de integración, sector
$r'(\theta)sec(\theta)+tan(\theta)r(\theta)sec(\theta)=sec^{2}(\theta)$ Sim	plificar
Aplicamos la regla de	1 producto:
(f*g)'= f'*g + f*g'	e produces.
$(\sec(\theta)r(\theta))'=\sec^2(\theta)$ $f=\sec(\theta), g=r(\theta):$. (2) ((2) (2));
r'(0)sec(0)+tan(0)r(0)sec(θ)=(sec(θ)r(θ))'
$sec(\theta)r(\theta)=(sec^2(\theta)d\theta)$ Si $f(x)=g(x)$ entonces	f(v)-(a(v)dv
$sec(\theta)r(\theta)=\int sec^2(\theta)d\theta$ Si $f(x)=g(x)$ entonces	7 () –) 9 () / 0 / 0
Aplicamos la regla de	integración
$\int \sec^2(\theta) d\theta = \tan(\theta) + C \qquad \int \sec(\theta) d\theta = \tan(\theta) = C$	
(0) (0) ((0) (0)	
sec(θ)r(θ)=tan(θ)+C	
$sec(\theta)r(\theta)$ tan (θ) C Dividir ambos	lados entre sec(θ)
$sec(\theta)$ $sec(\theta)$ $sec(\theta)$	
tan(θ) C	
$r(\theta) = \underline{\qquad} + \underline{\qquad}$ Simplificar	
sec(θ) sec(θ)	
 1	

10.
$$x \frac{dy}{dx} + 2y = x^{-3}$$
.

10. $x \frac{dy}{dx} + 2y = x^{-3}$. $\begin{array}{c} dy \\ x \underline{\hspace{1cm}} + 2y = x \end{array}$ Reescribiremos como una EDO linea de primer orden. $xy'+2y = x^{-3}$ De forma estandar y'(x)+p(x)y=q(x)Se sustituye dy/dx por y'. $xy'+2y = x^{-3}$ Reescribimos en la forma estándar y'(x)+p(x)*y=q(x)Simplificar Dividimos ambos lados entre x. Simplificar Reescribimos en la forma estándar $p(x)=2/x, q(x)=1x^{4}$ Encontraremos el factor de integración $\mu(x)$, tal que $\mu(x)*p(x)=\mu'(x)$ $\mu'(x) = \mu(x)*p(x)$ $\frac{\mu'(x)}{\mu(x)} = \frac{\mu(x)*p(x)}{\mu(x)}$ Dividimos ambos lados entre $\mu(x)$ $\frac{\mu'(x)}{\mu(x)} = p(x)$ Simplificar $(\ln(\mu(x)))' = \frac{\mu'(x)}{\mu(x)}$ $(\ln(\mu(x)))'=p(x)$ (ln(μ(x)))'=_ p(x)=2/x

2 ln(μ(x))=ʃ_ dx	Si f'(x)=ʃg(x)dx
x 1	Sacamamos la constante:
ln(μ(x))=2∫_ dx x	$\int a*f(x)dx = a*f(x)dx$
ln(μ(x))=2ln(x)+c_1	Usamos la integral común: ∫1/x dx=ln(x) suponiendo un logaritmo de valores comp
	Utilizamos la definición de algoritmo:
$\mu(x)=e^{2\ln(x)+c_{-1}}$	Pi log:a(b)=c entonces b=a ^c ln($\mu(x)$)=2ln(x)+c_1 : $\mu(x)$ =e ^{2ln(x)+c_1}
μ(x)=e ^{2ln(x)} e ^{c_1}	Aplicamos las leyes de los exponente: aʰʰc =aʰ a c
$\mu(x) = (e^{\ln(x)})^2 e^{c_{-1}}$	Simplificar e ^{2ln(x)}
	Aplicamos las propiedades de los logari
μ(x)=e ^{c_1} x ²	alog_a(b) =b
μ(x)=e ^{c_1} x ²	La constante e puede ser descartada (será absorbida hacia C)
$y' +_{-} y = \frac{1}{x}$	Muliplicamos por el factor de integrac
^ ^	μ(x) y reescribimos la ecuación como (μ(x)*y(x))'=μ(x)*q(x)
$y'x^{2} + y*x^{2} = \frac{1}{x}$	Multiplicamos ambos lados por el factor
	integración,x².
$x^2y' + 2xy = \frac{1}{x^2}$	Simplificar
1	Aplicamos la regla de producto:
$(x^2y)' = \frac{1}{x^2}$	(f*g)'=f'*g+f*g' f=x², g=y: x² y'+2xy=(x²y)'
$x^{2}y = \int_{x^{2}} dx$	Si $f(x)=g(x)$ entonces $f(x)=f(x)dx$
X 2	
Alpicaremos la regl	la de la potencia
	Aplicamos las leyes de los exponentes 1/aʰ =a-ʰ
∫x ⁻² dx	1/a -a 1/x² =x-²

Jahry Universidades	
X ⁻²⁺¹	Aplicamos las leyes de los exponentes: x ^{a+1}
-2+1	$\int x^a dx = \underline{\hspace{1cm}}, a \neq -1$
	a+1
X -1	
	Restamos
-1	
X -1	Aplicamos las propiedades de las fracciones:
	a/-b = -a/b
1	
-	
-x ⁻¹	Aplicamos la regla a/1 = a
1	
1	Aplicamos las leyes de los exponenetes:
 X	a ⁻¹ = 1/a
^	
1	Complementamos la ecuación y agregamos una
x²y= + c_1	constante a la solución
x	
x²y 1/x c_1	No. 1.11
	Dividimos ambos lados entre x²
$\overline{x^2} = \overline{x^2} + \overline{x^2}$	
1/x c_1	
$y = -\frac{1}{x^2} + \frac{1}{x^2}$	Simplificar
X ² X ²	
1 c_1	Aplicamos las propiedades de las fracciones:
y = +	b/c b
XX ² X ²	= a C*a
	u
1 c_1	
y = +	Simplificar
X ³ X ²	

Bibliografía.

- ➤ MateFacil. (2016, 22 junio). 25. Ecuación diferencial mediante sustitución lineal [Vídeo]. YouTube. https://www.youtube.com/watch?v=3eN3QgTcpZw
- colaboradores de Wikipedia. (2024, 13 marzo). Ecuación diferencial homogénea. Wikipedia, la Enciclopedia Libre.
 - https://es.wikipedia.org/wiki/Ecuaci%C3%B3n_diferencial_homog%C3%A9nea
- Calculadora de ecuaciones diferenciales ordinarias (EDO). (s. f.).
 https://es.symbolab.com/solver/ordinary-differential-equation-calculator
- ➤ GeoGebra the world's favorite, free math tools used by over 100 million students and teachers. (s. f.). GeoGebra. https://www.geogebra.org/?lang=es
- Acevedo Borges, E. (2009). Ecuaciones diferenciales: (ed.). Editorial ebooks Patagonia Editorial Universidad de La Serena. https://elibro.net/es/lc/biblioibero/titulos/190626
- Alonso de Mena, A. I. Calzada Delgado, J. A. & Álvarez López, J. (2008). Ecuaciones diferenciales ordinarias: ejercicios y problemas resueltos: (ed.). Delta Publicaciones.
 https://elibro.net/es/lc/biblioibero/titulos/60259
- García Hernández, A. E. (2015). Ecuaciones diferenciales: (ed.). Grupo Editorial Patria.
 https://elibro.net/es/lc/biblioibero/titulos/39438