Multi-robot navigation and control for acoustic inspection of metal plate structures

Semaine 1

Lectures

- Learning the propagation properties of rectangular metal plates for Lamb wave-based mapping:
 - recover the geometry of a metal plate using UGWs acquired by a mobile unit without using a predetermined propagation model.
 - Uses beamforming for localisation of boundaries;
- A FastSLAM Approach Integrating Beamforming Maps for Ultrasound-based Robotic Inspection of Metal Structures
 - localization and mapping on metal plates using UGWs.
 - Uses a wave propagation models and beamforming
- Combined Grid and Feature-based Mapping of Metal Structures with Ultrasonic Guided Waves
 - mapping using UGWs and beamforming

Lectures

- Experimental Investigation of Impact Localization in Composite Plate using newly Developed Imaging Method
 - compression molding process to create a composite plate
 - piezoelectric sensors used
 - wavelet transform based method to get TOF of waves of each cluster of sensors
 - specific algorithm to determine localisation thanks to TOF
- High Resolution Guided Wave Tomography
 - HARBUT, the Hybrid Algorithm for Robust Breast Ultrasound Tomography
 - Beamforming algorithm
 - velocities of waves vary with the product of frequency and thickness
- A Magnetic Crawler System for Autonomous Long-Range Inspection and Maintenance on Large Structures
 - Uses particle filter for position estimation
 - Ultrasonic mapping with beamforming, only when robot stops, not simulated on large structure

1. Get initial estimate of sound speed (typically set everything to a constant background

Lectures

- MinPos: a Novel Frontier Allocation Algorithm for Multi-robot Exploration
 - Approches classiques: nearest frontier, greedy assignment (he robot-frontier pair with lowest cost is selected, the robot is assigned to the frontier, and both are removed from their respective list), utility-based
 - Centralized / decentralized
 - synchronous: The centralizer wait for all robots to arrive at their frontier to assign the new set of frontiers / asynchronous: whenever a robot reaches its frontier
 - Each robot performs repeatedly the following steps: 1. Frontiers identification and clustering
 2. Computation of the distances to frontiers 3. Assignment to a frontier 4. Navigation towards the assigned frontiers for a fixed time period
 - The map representation used is an Occupancy Grid
 - Minimum Position: approach that consists in assigning to a robot a frontier for which it is in best position, i.e. the frontier having the less robots closer than itself.
 - Wavefront propagation stopping and Parallel computation of wavefronts are used to reduce computation complexity

Simulation

- Blender to create corroded metal plate
- Gazebo
- drone_simulator:

