021 Sec 4,3
tect we sweet of a great of
Section 4.3 How daivatives at the man interval I, if Deb y = f(x) is increasing (1) on an interval I, if
whenever X1 < X2 than f(XV) = f(XZ)
19) of X
Deb. y = f(x) is increasing () whenever X(< X2 that f(x1) \le f(X2) whenever X(< X2 that f(x1) \le f(X2) x y x (1) on an interval T, if
Deb y=f(x) is decreasing () > ((x2)) whenever x, (x2 then f(x1) > ((x2))
whenever
8 A A A A A A A A A A A A A A A A A A A
7× / / / / / / / / / / / / / / / / / / /
whenever X, ZXz then £(Xi) > £(XZ) whenever X, ZXz then £(Xi) > £(XZ) The increasing and decreasing test The increasing and decreasing test a) If £(X) > 0 an an open intensel I, then £(X) \(\text{on I} \) a) If £(X) > 0 an an open intensel I, then £(Xi) \(\text{on I} \) a) If £(Xi) > 0 an an open intensel I, then £(Xi) \(\text{on I} \)
The increasing and decreasing test I, then the
The increasing and decreasing interval I) their text on I a) If f'(x) >0 on an open interval I) b) If f(x) <0 11 c) <0 > (x) < f(x) <0 c) If (x) <0 (x) <0 > (x)
1 + 1 + 1 > 1
no a let M
We are given took on (XIIX)
we are given that $f(X)>0$ on $f(X)$
so by MUT, there is a C'(C)(X2-X1)
Go by MU (, (val) = f'(c)(x2-x1) ((x2)-f(x1) = f'(c)(x2-x1) We assumed So RHS 70
We assumed RHS 70
1.1570
30 (CX2) > (CX1)

Sec 4.3 " EX Find where $y = f(x) = 3x^4 - 4x^3 - (2x^2 + 5)$ is 1 and where 1 Solution (1(x) = 12x3-12x2-24x $= (2 \times (x+1)(x-2)$ In increasing orders the critical numbers care (x=-1,0,2) Note f' can only change sign at a critical number (-D)-1) + - + + + + 1 (-(0)2) + + + + + 1 X+(70 X-270 X7-1 X72 So f is increasing on the open intervels (-1,0) and (2,00) (-0,-1) and (0,2) L'is decreasing " the live can hard fron [3,5] warry an [0,5] (1 on [0,3) Note l'is dés cultimores x=3 x=5 x

021 Sec 413 First Derivetive Test Let X=C be a crit number for a continuous function f Going Left to Right 1) If f' goes from positive to my at X=C tu a lep then (C, FCC) is a local maximum 2) If f'goes from negative to positive at K=C fu u b to the Then (c, (cc)) is a local minimum Note The first derivative test does not give the value of the function at the local min or many only where the extrana occurs, To find the value of the function, evaluate the function at the critical pt. EX Using the first darivative test find whome f(x) has (and maximums and minimums it $f'(x) = -3x(x-4)(x+2)(x-3)^2$

f is horasing on $(-\infty, -2)$ and on (014)f is decreasing on (-210) and on (410) 021 Sec 4,3 Concavily Carrently A function f(x) is concave down, 1 adapt (c,f(c)) if, near p, the graph of f (ies below the tangent line at (C, (CC)) A fundim f(x) is concave up, U, at a pt p = (c, f(c)) if near P) The graph of f lies above the fought line of (C, ECC) A function f is cancave up, (resp, cancave daw) on an open interval I, if the function is carcave up, (res, concare dawn) for see pts in I nde flu, gln, hlu, Kin So, ne connection between increasing (decreasing and concer up/ down Now f" measures the rate of charge of the first doinative is positive so if ("70, the rate of charge of the first doinative is positive so f"70 => f is concave up, Likewise ("20 => f is concave down, Likewise) Ex f(x)=y=x3 f'(x)=3x2, se f1 everywhere (0100) (+ 1+ 1) (-0100) (+ 1+ 1) (-0100) (+ 1+ 1) So fis concave down on (-000) fu u op on (o, s) The pt (0,0) is an inflection pt,

Del A pt (c, f(c)) is an inflection pt for the graph of food it i) The concavity of f changes at M (C) f(c)) 2) The pt (c,f(e)) is a point of continuity for f(x) Man Ex y = fex = (x3+1 if x>0 note for \$xx0 f is ce up So, the cancerity changes, but I is discontinuous at X=0, so no inflection pt, Mon Ex +(x) = {x3; f x = 0 No inflection pt at x=0 / even though carcavity changes, Ex g(t) = tan- (t) g1(t) = 1++2 $g''(t) = \frac{(1+t^2)0-2t(1)}{(1+t^2)^2}$ $g''(t) = \frac{-2t}{(1+t^2)^2}$. Note g''(t) < 0 if t < 0, s = g(c) cop an (-0.0)Sa, ancavity changes at t=0 And (90) is a pt of continuity for 9(t) So (0,0) is an inflection pt

021 Sec 4,3 The second donivative tost Let fox) have a critical value at x=c, then a) E"(C)>O implies a local minimum at X=C 6) f(c) <0 (1 11 (1 maximum at X=C c) E'(c)=0, no conclusion can be drawn. Investigate O i) f(x) = x4, f'=4x3, f'=0 when x=0 fu=(xxz) fu(0) =0 local minimum at X=0 (i) $f(x) = -x^4$, f'(x) = 0 at x = 0. E(X) = - (2X3) E((0) =0 Local Maximum at (0,0) $f(x) = x^3$, $f'(x) = 3x^3$, f'(0) at x = 0no min, nor mox, but an inflection pt at (0,0), fin(x) = ex fin(0) = 0

EX Use the second derivative test to find extrema for $f(x) = -3x^5 + 5x^3$ Solution (1(x) = -15 x4 + 15 x2 = -15 x2(x21) = -15 x2(x-1)(x+1) critical values at X=-40,1 Now f"(X) = -60X3+30X For crit value x=-1, {"(-1)=3070, so a (coal min at x=-1 " X=+1, ("(1)=-30<0" " (ocal moxal X=1 For ait value X=0, (1(0) >0. So, other methods must be used. Use the first derivative test. (-E, 0) - + - + + 1 - > no max nor min al & we now lock at f"

f(x)=3×3=2 The only critical pt is at X=0, whom & done, (-010) + + + + 1 2 local minut at X=0 Contian f(c) = 0 does not mean that we must have a local max or a local min at X=C $E \times g(t) = (t-1)^3$ $g'(t) = 3(t-1)^2 = 3(t-1)^2$ g1(t)=0 at t=1 but the point (10) is not a maximum nor a minimum

Sec 4,4 Indeferminate Forms and L'Hospital's Rule Recall that d f(x) + f'(x) However there is a use for fick) Consider lin ex. This is an indeterminate form of the on One part of L'Hospitals rule is: It (in f(x) is an indeterminate form of type = then $\lim_{x\to\infty} \frac{f(x)}{g(x)} = \lim_{x\to\infty} \frac{f'(x)}{g'(x)}$ In our exemple: lim ext lim dex = lim ex = do x EX lim ex H lim ex = 1 lim ex H lim ex = 2x70 x = 2x70 x = 2x70 In general: lin any pagnamial xxx (im any poly moment = 0 (im sinx, this is an indeterminate form of type o lim 9714 = lim de sint = lim cost = cos (6) = 1 X70 X = x70 de X EX lin $\frac{\sin x}{x^2+x}$ $\frac{H}{x \to 0}$ $\frac{\cos x}{2x+1}$ $\frac{\cos 0}{2\cdot 0+1} = \frac{1}{1}$

nde this is not an indeterminate form, So, we can not

It we did use L'Hospital's rule. use L'Hospital's vule $\lim_{x \to 0} \frac{d}{dx} \frac{\cos x}{\cos x} = \lim_{x \to 0} \frac{-\sin x}{2} = 0$ $\lim_{x \to 0} \frac{d}{dx} \frac{\cos x}{\cos x} = \lim_{x \to 0} \frac{-\sin x}{2} = 0$ $\lim_{x \to 0} \frac{d}{dx} \frac{\cos x}{\cos x} = \lim_{x \to 0} \frac{-\sin x}{2} = 0$ $\lim_{x \to 0} \frac{d}{dx} \frac{\cos x}{\cos x} = \lim_{x \to 0} \frac{-\sin x}{2} = 0$ $\lim_{x \to 0} \frac{d}{dx} \frac{\cos x}{\cos x} = \lim_{x \to 0} \frac{-\sin x}{2} = 0$ $\lim_{x \to 0} \frac{d}{dx} \frac{\cos x}{\cos x} = \lim_{x \to 0} \frac{-\sin x}{2} = 0$ $\lim_{x \to 0} \frac{d}{dx} \frac{\cos x}{\cos x} = \lim_{x \to 0} \frac{-\sin x}{2} = 0$ EX lim [inx - x-1], indeforminate form of type 00-00 = lim [(x-1)-lux], type of we can nowe use x>(+ [(ux)(x-1)]) the standard "Littospital's Rule $\lim_{x \to 0^+} \frac{1}{1 + \ln x + x(\frac{1}{x})} = \lim_{x \to 0^+} \frac{1}{2 + \ln x} = \frac{1}{2 + 6} = \frac{1}{2}$ = lim (1-7) (+ x(x-1) Indeterminate Products of type (0.00) or (0.(-00)) EX lim xln X = lim ln x, type (-2) we use x-70t x L'Hapital's Rule $\frac{H}{dx} = \lim_{x \to 0^+} \frac{1}{x} = \lim_{x \to 0^+} \frac{1}{x} = \lim_{x \to 0^+} \frac{1}{x} = 0$ We have already seen that I (im ((+*) = e This is an example of an indeterminate paver of type (0 Other indeterminate powers and

00, 00, 000

EX (im XX: Solution: write XX= (e lux)X We seek lim exlux = elim x(nx) = e0 = 1 / stangent line at \$20, 15 over previous example

>> tangent line at \$20,

Nes slope of 1 type 100 COEX = COEX Ex lim (1+sin 4x) cotx Let 9 = ((+ sin 4 x) cot x Take In of both sides lny= In (Itsin4x) Cofx (ng = cot x In (1+sin 4x) Iny= In(1+sin+x), type o, use Litterpitals limby = lim oxfolt+sin(x) = lim ox lu(1+sin(x))

x-70+ x-70+ ox toux $= \lim_{X \to 0} \frac{4\cos 4x}{1+\sin 4x} = \frac{4\cos(4\cos)}{1+\sin(4\cos)} = \frac{41}{1+\cos(4\cos)}$ $= \lim_{X \to 0} \frac{4\cos(4x)}{1+\sin(4x)} = \frac{41}{1+\cos(4x)}$ so lim luy = 4. Now, expandite exto luy = Qe y = et, recalling, our dobintion of y (in ((+ sin 4x) cotx = e4 x-20+

$$f(1) = -27$$
, $f(2) = -16$, $f(4) = 0$, $f(0) = 0$

Critical values in order aug 1,2,4

C111100											
	1 + 1	4	X-1	(X-4)2	(e,)	12	X-4	X-2	£ ,,	· ×	-1>0
(-2,4) (1,2) (2,4) (4,0)	1736	++++	+ + +	+ + + + + + + + + + + + + + + + + + + +	1 + + +	++++	-++	1 + +	++++		X-K0 X-K0

f is increasing on (1100)

f is decreasing on (-0011)

(40)

f is concare up an (-0012)

and on (4100)

(21-16)

f is concare down on (214)

(has a local cend global mismimum at (1,-27) f does not have any global or local marinams

f has an infledingt at (2,16) and also at (40)

(im f(x) = 0 10m f(x) = 00 x7-8

f(X) is decreasing an $(-\infty, -2)$ and an (-2,0), but not an $(-\infty, 0)$ f(X) is increasing an (0,2) and an $(2,\infty)$ but not an $(0,\infty)$ f(X) is increasing an (-2,2), f(X) is concave up an (-2,2), f(X) concave down an $(-\infty, -2)$ and $(2,0\infty)$ f(X) concave up an (-2,2), f(X) concave down an $(-\infty, -2)$ and $(-\infty, -2)$ a

021 Section 4.5 EX Graph f(x) = X (25in X) Note -1 ≤ 5Mx ≤ 1. 50 -2 ≤ 25inx ≤ Z y=x-2 f = 1+2cos X Since -1 ≤ cos x ≤ 1 -2 ≤ 2 cos x ≤ 2 So f' is always in the interval [-1,3] Also ((x)=x when sin x=0, x=0, TT,2TT €(X)=X+2 when 5MX=1, X=5. ((x)=x-2 when sinx=-1, X=3TT

Qu' Li ine do te EX Graph (CX) = X given frot $f'(x) = \frac{-1}{(x^2-1)^{3/2}}, f''(x) = \frac{3x}{(x^2-1)^{5/2}}$ (X-1)(X+1)70, we need XK-1, or X7+1 Solution 1) Domain of the need X=170 2) No roots: f(x) is Never Zero, because x=0 in not in the domain, 3) $f(-x) = \frac{-x}{\sqrt{(-x)^2-1}} = \frac{-x}{\sqrt{x^2-1}} = -f(x)$, So f is concadd function So the graph of f is symmetric wit the origin 4) (in x=1, x=-1) (x=-1) (x=-1 5) Vertical asymptotes of X=1, X=1 6) f'(x) 40 on the domain of f, 50 f J, on its domain. 7) ("(x) <0 if x is <-1, % f is according on (-0)-1) €((x)70, if x is > 1, so € is cc op an (1,20) No maximums nor minimums No inflection pts,

021 Sec 4,5

Oal Sec 4,5 EX Graph: f(x) = 8x 5-5x4-20x3 Given that (1(x) = 20x2(x+1)(2x-3) fiscritical at X=-1,0,3/2 f"(x)=160 x3-60 x2-(20x = $20 \times (8 \times^2 - 3 \times - 6) = 20 \times (x - r_1)(x - r_2)$ where rists are vocts of 8x2-3x-6 r= 16(3-1201) x-0,70 (2= 16 (3+ 1201) a 1,07 All the critical values are: -1, 51, 0, 52, 3/2 €(-1)=7, €(r)243, f(0)=0, €(r2)2-20, €(3/2)2 20 X2 XE1 2X-3 F1 (-00,-1) + (-11U) (r,,0) (0, (2) (r2, 3/2) t (7/21D) increasing on (-01-1) and on (3/2,0) (is decreasins an (-1,3/2) By the Gost downstree test local max at (-(17) 100al min at (3/21-32) (Es concare down on (-D)() and on (0, 12) E 84 concave up on (1710) and an (1310) (521-20) f is contameres everywhere. So f has infloctingthe at (r, 4,3) (至1-33) and at (12,-20), and (0,0) lim f(4) =+ & No global max not min. XAD (in (cf) = - p X7-2