Introduction to Data Science (IDS) course

Responsible Data Science

Lecture 19 and 20 Instruction

IDS-L19-L20

Q1. Discrimination

Consider the following potentially discriminatory (PD) and the base rules with the mentioned confidence values.

What range for α causes the PD rule to be α -discriminatory?

Base Rule $B \Rightarrow C$ Confidence: 0.25

PD Rule $A, B \Rightarrow C$ Confidence: 0.55

Q1. Discrimination (Solution)

Consider the following potentially discriminatory (PD) and the base rules with the mentioned confidence values.

What range for α causes the PD rule to be α -discriminatory?

Base Rule $B \Rightarrow C$ Confidence: 0.25

PD Rule $A, B \Rightarrow C$ Confidence: 0.55

$$elift = \frac{confidence(A, B \Rightarrow C)}{confidence(B \Rightarrow C)}$$
 $elift = \frac{0.55}{0.25} = 2.2$

If $\alpha \leq 2.2$, then the PD rule is α -discriminatory.

Q2. Discrimination (Your Turn)

Consider the following potentially discriminatory (PD) and the base rules with the mentioned support values.

What range for α causes the PD rule to be α -discriminatory?

Base Rule $B \Rightarrow C$ Support($\{B, C\}$): 30 Support($\{B\}$): 100

PD Rule $A, B \Rightarrow C$ Support($\{A, B, C\}$): 20 Support($\{A, B\}$): 40

Q2. Discrimination (Solution)

Consider the following potentially discriminatory (PD) and the base rules with the mentioned support values.

What range for α causes the PD rule to be α -discriminatory?

$$elift = \frac{confidence(A, B \Rightarrow C)}{confidence(B \Rightarrow C)} \qquad elift = \frac{\frac{support(\{A, B, C\})}{support(\{A, B, C\})}}{\frac{support(\{B, C\})}{support(\{B\})}} = \frac{\frac{20}{40}}{\frac{30}{100}} = 1.6$$

If $\alpha \leq 1.6$, then the PD rule is α -discriminatory.

Q3. Discrimination

- 1. Classify the regions based on their majority label.
- 2. Compute the accuracy and also the discrimination of the classifier w.r.t. discriminatory attribute (B).
- 3. If we want to relabel l_1 , what would be the new label? and how this relabeling would affect the accuracy and discrimination?

Note that encircled examples are discriminatory (have B=1).

Q3. Discrimination (Solution)

1. Classify the regions based on their majority label.

Q3. Discrimination (Solution)

2. Compute the accuracy and also the discrimination of the classifier w.r.t. discriminatory attribute (B).

Class	-	+	
Pred.	-/+	-/+	
B=1	U_1/U_2	V_{1}/V_{2}	b
B=0	W_1/W_2	X_1/X_2	\bar{b}
	N_1/N_2	P_{1}/P_{2}	1

Class	-	+	
Pred.	-/+ -/+		
B = 1	$\frac{5}{20}/\frac{1}{20}$	$\frac{1}{20} / \frac{3}{20}$	$\frac{10}{20}$
B = 0	$\frac{3}{20}/\frac{1}{20}$	$\frac{1}{20} / \frac{5}{20}$	$\frac{10}{20}$
	$\frac{8}{20} / \frac{2}{20}$	$\frac{2}{20} / \frac{8}{20}$	1

$$acc_T = N_1 + P_2 = \frac{8}{20} + \frac{8}{20} = 0.8$$

$$disc_{T} = \frac{W_{2} + X_{2}}{\overline{b}} - \frac{U_{2} + V_{2}}{b} = \frac{\frac{1}{20} + \frac{5}{20}}{\frac{1}{2}} - \frac{\frac{1}{20} + \frac{3}{20}}{\frac{1}{2}} = 0.2$$

Q3. Discrimination (Solution)

3. If we want to relabel l_1 , what would be the new label? and how this relabeling would affect the accuracy and discrimination?

Class	-	+	
B=1	и	v	b
B = 0	w	х	\bar{b}
	n	р	

Class	-	+	
B=1	3/20	0	10/20
B = 0	1/20	1/20	10/20
	4/20	1/20	

$$\Delta acc_1 = p - n = -3/20$$

$$\Delta disc_{l} = -\frac{u+v}{b} + \frac{w+x}{\bar{b}} = -\frac{\frac{3}{20}}{\frac{1}{2}} + \frac{\frac{2}{20}}{\frac{1}{2}} = -0.1$$

n>pNew label would be +

Q4. Discrimination (Your Turn)

If we want to relabel l_6 , what would be the new label? and how this relabeling would affect the accuracy and discrimination?

Q4. Discrimination (Solution)

If we want to relabel l_6 , what would be the new label? and how this relabeling would affect the accuracy and discrimination?

Class	-	+	
B=1	и	v	b
B = 0	w	х	\bar{b}
	n	р	

Class	-	+	
B=1	1/20	1/20	10/20
B = 0	0	1/20	10/20
	1/20	2/20	

$$\Delta acc_1 = n - p = -1/20$$

$$\Delta disc_{l} = \frac{u+v}{b} - \frac{w+x}{\bar{b}} = \frac{\frac{2}{20}}{\frac{1}{2}} - \frac{\frac{1}{20}}{\frac{1}{2}} = 0.1$$

n < pNew label would be -

Q5. Discrimination (Your Turn)

If we want to relabel l_4 , what would be the new label? and how this relabeling would affect the accuracy and discrimination?

Q5. Discrimination (Solution)

If we want to relabel l_4 , what would be the new label? and how this relabeling would affect the accuracy and discrimination?

Class	-	+	
B=1	и	v	b
B = 0	w	х	\bar{b}
	n	p	

Class	-	+	
B=1	0	0	10/20
B = 0	0	2/20	10/20
	0	2/20	

$$\Delta acc_1 = n - p = -0.1$$

$$\Delta disc_{l} = \frac{u+v}{b} - \frac{w+x}{\bar{b}} = \frac{0}{\frac{1}{2}} - \frac{\frac{2}{20}}{\frac{1}{2}} = -0.2$$

n < pNew label would be -

Q6. Discrimination (Your Turn)

In the following DT classifier, relabeling which leaf leads to the maximum reduction on the discrimination?

Q6. Discrimination (Solution)

In the following DT classifier, relabeling which leaf leads to the maximum reduction on the discrimination?

Class	-	+	
B = 1	и	v	b
B=0	w	х	\bar{b}
	n	р	

$$\Delta disc_l = -\frac{u+v}{b} + \frac{w+x}{\bar{b}}$$

$$\Delta disc_l = \frac{u+v}{b} - \frac{w+x}{\overline{b}}$$

1. The first step is to find the leaf with the maximum effect (positive or negative)

 $oldsymbol{l}_2$ has the maximum effect on discrimination. Because it leads to maximum difference between examples with discriminatory and non-discriminatory attribute.

Q6. Discrimination (Solution)

In the following DT classifier, relabeling which leaf leads to the maximum reduction on the discrimination?

Fraction of instances with B=0 getting positive label

$$disc_{T} = \frac{W_2 + X_2}{\overline{b}} - \frac{U_2 + V_2}{b}$$

Relabeling l_2 leads to maximum reduction (0.5) of the first part and consequently causes maximum reduction of discrimination.

2. The aim is to either decrease the first part or increase the second part in the discrimination formula.

A S Chair of Process and Data Science

Fraction of instances with B=1 getting positive label

Q7. Discrimination (Your Turn)

In the following DT classifier, relabeling which leaf has the maximum effect on the accuracy?

Q7. Discrimination (Solution)

In the following DT classifier, relabeling which leaf has the maximum effect on the accuracy?

Of course l_1 contains the examples which lead to maximum difference between labels $(\frac{1}{20} - \frac{5}{20} = -\frac{4}{20})$. Therefore, relabeling this leaf has the maximum effect on the accuracy.

Q8. Discrimination (Homework)

In the following DT classifier, relabeling which leaf leads to the maximum reduction of the discrimination, and minimum reduction of the accuracy (the best leaf for relabeling)?

Q9. Discrimination (Homework)

What is the first node of the decision tree for the following table of data with respect to accuracy and fairness? (use IGC - IGS)

Sex	Exp	Degree	Job	Class
F	Exp >10	HS	Board	-
М	5< Exp <10	Uni	Board	+
М	Exp >10	HS	Board	-
М	5< Exp <10	HS	Hcare	+
М	Exp < 5	HS	Hcare	+
F	Exp < 5	HS	Board	-
М	Exp < 5	None	Edu	-
F	Exp >10	None	Hcare	-
М	Exp < 5	Uni	Edu	+
М	Exp >10	Uni	Board	+

$$IGC := H_{Class}(D) - \sum_{i=1}^{k} \frac{|D_i|}{|D|} H_{Class}(D_i)$$
 $IGS := H_B(D) - \sum_{i=1}^{k} \frac{|D_i|}{|D|} H_B(D_i)$

Q10. Confidentiality

Suppose that we have the following table of information about people and what they bought from an online grocery shop.

• Using suppression and generalization anonymize this table such that it has 2-anonymity and distinct 2-diversity.

Explicit identifier	r	Quasi-identifiers			Sensitive
Name	Age	Gender	State of domicile	Religion	Product
Ramsha	22	Female	Tamil Nadu	Hindu	Pea
Yadu	24	Female	Kerala	Hindu	Bean
Salima	25	Female	Tamil Nadu	Muslim	Peanut
Sunny	25	Male	Karnataka	Buddhist	Pea
Joan	24	Female	Kerala	Muslim	Bean
Bahuksana	23	Male	Karnataka	Buddhist	Lentil
Rambha	19	Male	Kerala	Christian	Peanut
Kishor	24	Male	Karnataka	Buddhist	Lentil
Johnson	17	Male	Kerala	Christian	Peanut
John	19	Male	Kerala	Christian	Pea

Q10. Confidentiality (Solution)

2-anonymity

- Data is k-anonymity if each equivalence class contains at least k records.
- Equivalence class is a set of records that have the same values for the quasi-identifiers.

Name	Age	Gender	State of domicile	Religion	Product
*	20 < Age ≤ 25	Female	Tamil Nadu	*	Pea
*	20 < Age ≤ 25	Female	Kerala	×	Bean
*	20 < Age ≤ 25	Female	Tamil Nadu	*	Peanut
*	20 < Age ≤ 25	Male	Karnataka	*	Pea
*	20 < Age ≤ 25	Female	Kerala	*	Bean
*	20 < Age ≤ 25	Male	Karnataka	*	Lentil
*	Age ≤ 20	Male	Kerala	*	Peanut
*	20 < Age ≤ 25	Male	Karnataka	*	Lentil
*	Age ≤ 20	Male	Kerala	*	Peanut
*	Age ≤ 20	Male	Kerala	*	Pea

2-anonymity, distinct 2-diversity

 Data is distinct I-diversity if there are at least I distinct values for the sensitive attribute in each equivalence class.

Name	Age	Gender	State of domicile	Religion	Product
*	20 < Age ≤ 25	Female	*	Hindu	Pea
*	20 < Age ≤ 25	Female	*	Hindu	Bean
*	20 < Age ≤ 25	Female	*	Muslim	Peanut
*	20 < Age ≤ 25	Male	*	Buddhist	Pea
*	20 < Age ≤ 25	Female	*	Muslim	Bean
*	20 < Age ≤ 25	Male	*	Buddhist	Lentil
*	Age ≤ 20	Male	*	Christian	Peanut
*	20 < Age ≤ 25	Male	*	Buddhist	Lentil
*	Age ≤ 20	Male	*	Christian	Peanut
*	Age ≤ 20	Male	*	Christian	Pea

Q11. Confidentiality (Your Turn)

What is the maximum l value for entropy l-diversity in the following table which has 2-anonimity?

olicit identifier		Quasi-identifiers			Sensitive	
Name	Age	Gender	State of domicile	Religion	Product	
*	20 < Age ≤ 25	Female	*	Hindu	Pea	
*	20 < Age ≤ 25	Female	*	Hindu	Bean	
*	20 < Age ≤ 25	Female	*	Muslim	Peanut	
*	20 < Age ≤ 25	Male	*	Buddhist	Pea	
*	20 < Age ≤ 25	Female	*	Muslim	Bean	
*	20 < Age ≤ 25	Male	*	Buddhist	Lentil	
*	Age ≤ 20	Male	*	Christian	Peanut	
*	20 < Age ≤ 25	Male	*	Buddhist	Lentil	
*	Age ≤ 20	Male	*	Christian	Peanut	
*	Age ≤ 20	Male	*	Christian	Pea	

A table is said to have entropy l-diversity if for every equivalence class E, $Entropy(E) \ge log(l)$.

Q11. Confidentiality (Solution)

What is the maximum l value for entropy l-diversity in the following table which has 2-anonimity?

xplicit iden	atifier	Quas	i-identifiers		Sensitive	
Name	Age	Gender	State of domicile	Religion	Product	
*	20 < Age ≤ 25	Female	*	Hindu	Pea	
*	20 < Age ≤ 25	Female	*	Hindu	Bean	Entropy = 1
*	20 < Age ≤ 25	Female	*	Muslim	Peanut	
*	20 < Age ≤ 25	Male	*	Buddhist	Pea	Entropy = 1
*	20 < Age ≤ 25	Female	*	Muslim	Bean	
*	20 < Age ≤ 25	Male	*	Buddhist	Lentil	Entropy 0.02
*	Age ≤ 20	Male	*	Christian	Peanut	Entropy = 0.92
*	20 < Age ≤ 25	Male	*	Buddhist	Lentil	
*	Age ≤ 20	Male	*	Christian	Peanut	Entropy = 0.92
*	Age ≤ 20	Male	*	Christian	Pea	Littopy = 0.92

$$Entropy(E) \ge log(l)$$
 $log(l) = 0.92$ $l = 1.9$

Q12. Confidentiality (Your Turn)

- Assume the following list as the list of frequency of sensitive values in an equivalence class.
 - Does the corresponding equivalence class have recursive (1,2)-diversity?
 - Does the corresponding equivalence class have recursive (2,3)-diversity?

• Frequency list =
$$(r_1 = 500, r_2 = 400, r_3 = 200, r_4 = 50, r_5 = 20)$$
 $r_1 < c(r_l + r_{l+1} + \cdots + r_m)$

Q12. Confidentiality (Solution)

- Assume the following list as the list of frequency of sensitive values in an equivalence class.
 - Does the corresponding equivalence class have recursive (1,2)-diversity?
 - Does the corresponding equivalence class have recursive (2,3)-diversity?

• Frequency list =
$$(r_1 = 500, r_2 = 400, r_3 = 200, r_4 = 50, r_5 = 20)$$
 $r_1 < c(r_l + r_{l+1} + \dots + r_m)$

$$r_1 < 1(r_2+r_3+r_4+r_5)$$
 $l=2, c=1$
$$500 < 1(400+200+50+20)$$
 The corresponding equivalence class has recursive (1,2)-diversity

$$r_1 < 2(r_3+r_4+r_5)$$
 $l=3, c=2$
$$500 < 2(200+50+20)$$
 The corresponding equivalence class has recursive (2,3)-diversity

Q13. Confidentiality (Your Turn)

- Consider "Age" and "Gender" as the quasi-identifiers:
 - Anatomize the following table with the minimum number of groups in order to have 2 distinct sensitive values in each group.
 - What is the response for the following query in the intermediate generalized table and in the anatomized tables? Count(Age = 40, Disease = 'Flu')

Age	Gender	Disease
30	Female	Hepatitis
31	Female	Hepatitis
32	Female	HIV
35	Male	Hepatitis
38	Male	HIV
36	Male	HIV
42	Female	Flu
40	Female	Flu
43	Female	Heart
45	Female	Heart

Q13. Confidentiality (Solution)

- Consider "Age" and "Gender" as the quasi-identifiers:
 - Anatomize the following table with the minimum number of groups in order to have 2 distinct sensitive values in each group.
 - What is the response for the following query in the intermediate generalized table and in the anatomized tables? Count(Age = 40, Disease = 'Flu')

Gender	Disease
Female	Hepatitis
Female	Hepatitis
Female	HIV
Male	Hepatitis
Male	HIV
Male	HIV
Female	Flu
Female	Flu
Female	Heart
Female	Heart
	Female Female Male Male Male Female Female Female Female

Age	Gender	Disease
[30-32)	Female	Hepatitis
[30-32)	Female	Hepatitis
[30-32)	Female	HIV
[35-38)	Male	Hepatitis
[35-38)	Male	HIV
[35-38)	Male	HIV
[40-45]	Female	Flu
[40-45]	Female	Flu
[40-45]	Female	Heart
[40-45]	Female	Heart

Age	Gender	Disease
30	Female	1
31	Female	1
32	Female	1
35	Male	2
38	Male	2
36	Male	2
42	Female	3
40	Female	3
43	Female	3
45	Female	3

GroupID	Disease	Count
1	Hepatitis	2
1	HIV	1
2	Hepatitis	1
2	HIV	2
3	Flu	2
3	Heart	2

$$Count(Age = 40, Disease = 'Flu') = 2 \times \frac{1}{6} = 0.33$$

$$Count(Age = 40, Disease = 'Flu') = 1 \times \frac{2}{4} = 0.5$$

