Denoising Dense Representations with Symbols for Robust Zero-Shot Retrieval

Rodrigo Nogueira

Tutorial Timetable

- 1. Part 1: Knowledge Graphs and Entities
 - Welcome & Latent Space Representations (Dietz)
 - 2. Knowledge Graphs and GPT (Bast)
 - 3. Entity Linking (Bast)
- 2. Part 2: Neuro-Symbolic Foundations
 - 1. Ranking Wikipedia Entities / Aspects (Chatterjee)
 - 2. Neural Text Representations and Semantic Annotations (Dietz)
 - 3. Infusion of Symbolic Knowledge into Text Representation (Nie)
- 3. Part 3: Reasoning, Robustness, and Relevance
 - Denoising Dense Representations with Symbols (Nogueira) ← We are here
 - 2. Reasoning about Relevance (Dalton)
 - 3. From PRF to Retrieval Enhanced Generation (Dietz)
- 4. Part 4: Emerging Topics
 - 1. Conclusion and Outlook
 - 2. Panel Discussion

Agenda

- Motivation: The need for better search engines in the context of LLMs
- 3 ways of using Transformers for search:
 - Dense Retrievers
 - Sparse Retrievers
 - Rerankers
 - In-domain vs out-of-domain analysis
 - Scaling up model size

Why am I interested in information retrieval?

To connect pieces of knowledge previously thought to be unrelated

E.g., to build an automated hypothesis generator using literature-based discovery

Example: What are the best drugs for illness A?

Swanson linking

Just ask GPT-4 to generate hypotheses?

Maybe, but it is yet to be shown that this works...

 Current LLM's can hardly remember facts about long-tail topics, let alone connect them

For now, we need to use a search engine to give a LLM the necessary information to link pieces of knowledge

Information given to LLMs needs to be carefully selected

A example from the IIRC dataset:

Wilhelm Müller was born on 7 October 1794 at **Dessau**, the son of a tailor. In 1813-1814 he took part, as a volunteer in the Prussian army, in the national rising against **Napoleon**. He participated in the battles of **Lützen**, **Bautzen**, **Hanau** and **Kulm**. In 1814 he returned to his studies at Berlin. Müller's son, **Friedrich Max Müller**, was an English orientalist who founded the comparative study of religions.

Which battle Wilhelm Müller fought in while in the Prussian army had the most casualties?

Battle of Lützen (1813)

Napoleon lost 19,655 men, while the Prussians lost 8,500 men and the Russians lost 3,500 men

Battle of Bautzen

Losses on both sides totaled around 20,000.

Battle of Hanau

Overall, 4,500 French soldiers and 9,000 allied soldiers were lost in the battle.

Battle of Kulm

The French lost more than half of the pursuing force of 34,000; The allies lost approximately 13,000 soldiers.

Just train retrievers on more data?

- Many interesting problems do not have labelled datasets
 - Ex: domain-specific tasks, long-tail knowledge
- We need robust zero-shot retrievers!

A Simple Search Engine

Where to use a Pretrained Transformer Model?

How Transformers are used in IR?

Representations document Transformer dense vector Dense index

Dense

Reranker

Dense representations

Single-vector dense retriever based on BERT

Retrieval: Find the top k most relevant texts to a query

Brute-force search:

We often need to search many (e.g.: millions) of texts

- Brute-force won't scale, Approximate Nearest Neighbor methods are commonly used

Learned Sparse Representations

Learned Sparse Representations: SparTerm

Passage-wise Importance Distribution(dense) Token-wise **Importance** Distribution **Token-wise Importance Predictor BERT** Tok 1 Tok 2 Tok N

(c) Gating Controller

SPLADE: Learned Sparse Representations

|w| = embedding dim = vocabulary size

 $w_i = log(1 + ReLU(logits))$ ensures sparsity (i.e., most elements are zeros)

Can be used with existing inverted index infrastructure (e.g., Lucene)

Training loss: $\mathcal{L} = \mathcal{L}_{rank-IBN} + \lambda_q \mathcal{L}_{reg}^q + \lambda_d \mathcal{L}_{reg}^d$

 $\ell_{\mathsf{FLOPS}} = \sum_{i \in V} \bar{a}_j^2 = \sum_{i \in V} \left(\frac{1}{N} \sum_{i=1}^N w_j^{(d_i)} \right)^2$

ensures low term weights

in-batch negatives

Rerankers

Training: Inference: monoT5: "true" or "false" relevance score = P(token="true" | q, d) T5 as a reranker Softmax Add & Norm Feed Forward Add & Norm Add & Norm Feed Forward Attention N× $N \times$ Add & Norm Add & Norm Masked Multi-Head Attention Positional Encoding Positional Output Encoding Embedding Input Embedding <sos> document: [d] relevant: query: Step 1 Encoder Decoder

In summary

Which is better in in-domain and out-of-domain IR tasks?

What is in-domain and out-of-domain?

It is a subjective definition!

"In-domain" refers to queries and documents used in evaluation being from the same domain as training examples

"Out-of-domain" refers to training and test examples being from different domains (e.g., train on finance examples and evaluate on biomedicine examples)

In-domain vs Out-of-domain

No distillation (e.g., Splade v2, ColBERT v2) No IR-specific pretraining (e.g. CoCondenser, Contriever)

nDCG@10

Method	In-domain TREC-DL 20	Out-of-domain BEIR
BM25	0.475	0.440
SPLADE (sparse)	0.671	0.458
GTR-base (T5, dense)	0.696	0.426
BM25 + monoT5-base (reranker)	0.701	0.478

Models were trained on MS MARCO (same distribution of TREC-DL 2020)

Scaling up model size

GTR is from Ni et al., "Large Dual Encoders Are Generalizable Retrievers", 2021 SGPT is from Muennighoff, "SGPT: GPT Sentence Embeddings for Semantic Search", 2022 Charts from Rosa et al., "In Defense of Cross-Encoders for Zero-Shot Retrieval, 2022

Conclusions

- Retrieval method: No clear winner if you have lots of query-relevant passages to train on;
- Fine-grained representations (i.e., symbols) are key for out-of-domain effectiveness;
- Cross-encoders in the form of rerankers show better OOD effectiveness
 than bi-encoders in the form of dense retrievers

Extras

monoBERT: BERT as a reranker

We want:

$$s_i = P(Relevant = 1|q, d_i)$$

A binary classifier finetuned on pairs of <query, relevant text> and <query, non-relevant text>

Multi-vector Dense Retriever: ColBERT

Augmenting Sparse Representations with doc2query

In summary

Sources: Gao et al., "COIL: Revisit Exact Lexical Match in Information Retrieval with Contextualized Inverted List", 2021

Formal et al., "SPLADE: Sparse lexical and expansion model for first stage ranking", 2021

Noqueira et al., "Document expansion by query prediction", 2019

In-domain vs Out-of-domain

No distillation (e.g., Splade v2, ColBERT v2) No IR-specific pretraining (e.g. CoCondenser, Contriever) No larger training dataset (e.g., GTR, E5)

nDCG@10

	nov	
Method	In-domain TREC-DL 20	Out-of-domain BEIR
BM25	0.475	0.440
doc2query (sparse)	0.619	0.453
SPLADE (sparse)	0.671	0.458
GTR-base (T5, dense)	0.696	0.426
ColBERT (dense multi vector)	0.676	0.453
COIL (dense multi vector)	0.688	0.483
BM25 + monoT5-base (reranker)	0.701	0.490

Source: Lin SC, Lin J., "A Dense Representation Framework for Lexical and Semantic Matching", 2022