Class05: Data Vis with ggplot

Iris Lee (PID: A16297004)

Graphics systems in R

There are many graphics systems in R for making plots and figures.

We have already played a little with "base R" graphics and the plot() function.

Today we will start learning about a popular graphics package called ggplot2().

This is an add on package - i.e. we need to install it. I install it (like I install any package) with the install.packages() function.

plot(cars)

Before I can use the functions from a package I have to load up the package from my "library". We use the library(ggplot2) command to load it up.

```
library(ggplot2)
ggplot(cars)
```

Every ggplot is made up of at least 3 things: - data (the numbers etc. that will go into your plot) - aes (how the columns of data map to the plot aesthetics) - geoms (how the plot actually looks, points, bars, lines, etc.)

```
ggplot(cars) +
  aes(x=speed, y=dist) +
  geom_point()
```


For simple plots ggplot is more verbose - it takes more code - than base R plot.

Add some more layers to out ggplot:

```
ggplot(cars) +
  aes(x=speed, y=dist) +
  geom_point() +
  geom_smooth(method="lm") +
  labs(title="Stopping distance of old cars",
       subtitle = "A silly example plot") +
  theme_bw()
```

[`]geom_smooth()` using formula = 'y ~ x'

Stopping distance of old cars

Adding more plot aesthetics through aes()

```
url <- "https://bioboot.github.io/bimm143_S20/class-material/up_down_expression.txt"
genes <- read.delim(url)
head(genes)</pre>
```

```
Gene Condition1 Condition2 State
A4GNT -3.6808610 -3.4401355 unchanging
AAAS 4.5479580 4.3864126 unchanging
AASDH 3.7190695 3.4787276 unchanging
AATF 5.0784720 5.0151916 unchanging
AATK 0.4711421 0.5598642 unchanging
AB015752.4 -3.6808610 -3.5921390 unchanging
```

Q. Use the nrow() function to find out how many genes are in this dataset. What is your answer?

```
nrow(genes)
```

[1] 5196

Answer: 5196 genes

Q. Use the colnames() function and the ncol() function on the genes data frame to find out what the column names are (we will need these later) and how many columns there are. How many columns did you find?

Answer: There are 4 columns.

Q. Use the table() function on the State column of this data.frame to find out how many 'up' regulated genes there are. What is your answer?

```
table(genes$State)

down unchanging up
    72    4997    127
```

Answer: There are 127 'up' regulated genes.

Q. Using your values above and 2 significant figures. What fraction of total genes is upregulated in this dataset?

Answer: 2.44%

Q. Complete the code below to produce the following plot

```
ggplot(genes) +
   aes(x=Condition1, y=Condition2) +
   geom_point()
```



```
p <- ggplot(genes) +
    aes(x=Condition1, y=Condition2, col=State) +
    geom_point()
p</pre>
```


p + scale_colour_manual(values=c("blue", "gray", "red"))

Q. Nice, now add some plot annotations to the p object with the labs() function so your plot looks like the following:

Gene Expression Changes Upon Drug Treatment

