Genifer – an artificial general intelligence

YKY (甄景贤 general.intelligence@Gmail.com)

with input from:
Abram Demski
Ben Goertzel
Martin Magnusson
William Taysom
Russell Wallace
Pei Wang

© latest revision: August 19, 2017

Preface, executive summary, to-do list

- 1. This book is a perpetual draft.
- 2. My personal reason for developing AGI is to achieve life extension.
- 3. The source code of Genifer is hosted on Google Code, including some very easy tutorial slides. Also feel free to contact me!

— YKY

Executive summary:

- **Inference:** Genifer descended from classical logic-based A.I. Its 3 modes of inference are deduction, abduction (explaining), and induction (learning). This is common to NARS, OpenCog, Cyc.
- **Logic:** Genifer is based on an **algebra of concept composition**, which replaces predicate logic as the internal structure of propositions.
- **KB:** Genifer's KB stores logic formulas, similar to classical A.I. systems such as Cyc, and NARS. OpenCog is an exception in that it stores its knowledge as a hypergraph called AtomSpace.
- **Uncertainty:** Genifer uses fuzzy-probabilistic logic, the probabilistic part is an exact algorithm for belief propagation in Bayesian networks. The fuzzy-probabilistic calculus is created by YKY based on the Beta distribution.
- **Bootstrapping:** Genifer will be written in its own language, which is a **logical-functional** programming language based on Genifer's logic and an existing functional programming language such as Clojure or Haskell.

To-do:

- **Ch 1 (Introduction)** Explain the new ideas that I learned about the relationship between propositional logic and topological logic.
- **Ch 2 (Architecture)** Explain AIXI, algorithmic complexity, Solomonoff induction, etc. Explain distributive architecture. New idea that bootstrapping is possible.
- **Ch 3 (KR)** ok —
- **Ch 4 (Logic)** New logic of concept composition. Ideas about equational unification and concepts. Explain background notions, eg paradoxes.
- **Ch 5 (Z)** Add new idea on the "Java-girl paradox", which is in draft paper.
- **Ch 8 (Inference)** Copy and paste Bayesian inference and factor graph stuff from the Lisp code to here.
- **Ch 9 (Pattern recognition)** Matrix technique on similarity.
- **Ch 11 (Learning)** A lot of new material is in the slides.
- **Ch 12 (NL)** New idea of semantic parsing. New diagrams from GUI.
- **Ch 13 (Memory)** Explain hierarchical clustering idea, ontology.
- **Ch 14 (Planning)** May need re-think.
- **Ch 18 (Implementation)** Bootstrap Genifer in its own language.
- **Appendix A** Recommend more books for AGI sub-areas. Especially math books.

Contents

序		1
0	导论 0.1 鸡与蛋问题,罐头中的罐头刀	4 4
ı	技巧	5
1	机器学习基础	6
•	1.1 归纳偏见与「没有免费午餐」	6 6
2	· 逻辑	7
	2.1 人脑思考的三大模式	7
	2.1.1 Deduction	7
	2.1.2 Abduction	7
	2.1.3 Induction	7
	2.2 命题逻辑	7
	2.3 谓词逻辑 / 一阶逻辑	7
	2.4 逻辑推理算法	7
	2.4.1 同一化算法 (unification)	7 7
	2.4.2 有解身法 (resolution)	7
	2.5 二	7
	2.7 代数逻辑、逻辑的几何化	7
	2.8 范畴论、范畴逻辑	7
	2.9 量子逻辑	7
		7
	2.11 图重写系统, 超图	7
		_
3	不确定性	8
	3.1 模糊性	8
	3.2 机率	8 8
	3.3 可信度	o 8
	3.4 推理算法	8
	3.4.1 MCMC (Markov chain Monte Carlo)	8
4	神经网络	9
	4.1 神经科学	9
	4.1.1 大脑结构	9
	4.1.2 神经元	9
	4.1.3 神经化学	9
	4.2 神经网络的数学	9
	4.2.1 非线性分析	9 9
	4.2.2 拓扑度埋论	9
	4.2.4 调和分析	9
	4.3 深度学习	9
		_

5	进化算法 5.1 自然进化历史	10 10 10			
6	强化学习 6.1 控制论,微分几何	11 11 11			
11	功能组别	12			
7	模 式识别 7.1 视觉	13 13			
8	信念修正,真理维修	14			
9	归纳学习 9.1 基於逻辑的归纳学习	15 15			
10	自然语言	16 16 16 16 16			
11	计划 11.1 自动程式生成	17 17			
Ш	·····································	18			
12	认知系统架构	19			
13	记忆系统 13.1 工作记忆	20 20 20			
14	实践 14.1 道德问题	21 21 21			
符-	·····································				
专	专有名词与缩写				
参:	考文献	25			
索	·····································	26			
致i	·····································	26			

0 导论

0.1 鸡与蛋问题,罐头中的罐头刀

Part I

技巧

1 机器学习基础

- 1.1 归纳偏见与「没有免费午餐」
- 1.2 结构主义、后结构主义

2 逻辑

- 2.1 人脑思考的三大模式
- 2.1.1 Deduction
- 2.1.2 Abduction
- 2.1.3 Induction
- 2.2 命题逻辑
- 2.3 谓词逻辑 / 一阶逻辑
- 2.4 逻辑推理算法
- 2.4.1 同一化算法 (unification)
- 2.4.2 消解算法 (resolution)
- 2.5 二阶逻辑 / 高阶逻辑
- 2.6 λ -演算,组合逻辑
- 2.7 代数逻辑、逻辑的几何化
- 2.8 范畴论、范畴逻辑
- 2.9 量子逻辑
- 2.10 项重写系统
- 2.11 图重写系统,超图

- 3 不确定性
- 3.1 模糊性
- 3.2 机率
- 3.2.1 Bayesian networks
- 3.3 可信度
- 3.4 推理算法
- 3.4.1 MCMC (Markov chain Monte Carlo)

4 神经网络

- 4.1 神经科学
- 4.1.1 大脑结构
- 4.1.2 神经元
- 4.1.3 神经化学
- 4.2 神经网络的数学
- 4.2.1 非线性分析
- 4.2.2 拓扑度理论
- 4.2.3 同调论 / 奇点理论
- 4.2.4 调和分析
- 4.3 深度学习

- 5 进化算法
- 5.1 自然进化历史
- 5.2 进化算子及其算子谱

- 6 强化学习
- 6.1 控制论, 微分几何
- 6.2 最优化

Part II

功能组别

7 模式识别

7.1 视觉

8 信念修正,真理维修

9 归纳学习

9.1 基於逻辑的归纳学习

10 自然语言

- 10.1 语法
- 10.2 语义
- 10.2.1 Abduction-as-interpretation
- **10.2.2 Montague** 语法
- 10.2.3 Categorial 语法

11 计划

11.1 自动程式生成

Part III

系统

12 认知系统架构

- 13 记忆系统
- 13.1 工作记忆
- 13.2 事件记忆

- 14 实践
- 14.1 道德问题
- 14.2 商业化

Symbols

source code

$\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ Hyp Prop	classical number systems hypothesis space (ground) proposition space	§??				
General logic: \exists, \forall classical existential and universal quantifiers						
^, ∨, ¬ → ⊢ ⊨	classical binary logic AND, OR, NOT (classical) implication entailment, syntactic entailment, semantic	§??				
		caa				
= ≈ ⊆ ~	equality (logic predicate) similarity = fuzzy equality (logic predicate) inclusion ("is-a" relation) association (logic predicate)	§?? §?? §??				
$a \circ b$	composition of concepts	§??				
(a,b)	pairing or union	§??				
$\lambda x.Mx$	lambda abstraction					
M: au	(type theory) expression M is of type $ au$					
$t \stackrel{R}{\Rightarrow} t'$	t rewrites to t' under rewriting system R					
$t \stackrel{R}{\sim} t'$	t narrows to t^\prime under rewriting system R	§??				
$A \bowtie B$	unify(A,B)	§??				
[s ₁]: formula	KB stores statement s_1	3				
Fuzzy and probabilistic logic: $\#x.Q(x)$	probabilistic quantifier ("for some")	§??				
→ >	probabilistic implication (= Bayesian network link)	§??				
$\stackrel{Z}{\wedge},\stackrel{Z}{\vee}$	fuzzy AND and OR	§??				
$\stackrel{P}{\wedge},\stackrel{P}{\vee}$	probabilistic AND and OR	§??				
⊙ ·	a (fuzzy or probabilistic) operator that combines AND and OR	§??				
$\Gamma(\cdot)$	fuzzy modifier	§??				
$rac{\xi}{w}$	point of neutrality (fuzzy logic) total number of support for a hypothesis	§?? §??				
w^+, w^-	positive and negative support for a hypothesis	§??				
Categories of truth values: \mathcal{B}	binary logic					
${\cal P}$	(binary) probabilistic logic					
$\mathcal{Z}_{(\mathcal{D})}$	pure fuzzy logic					
$\mathcal{P}(\mathcal{B}) \ \mathcal{P}(\mathcal{Z})$	binary-probabilistic logic fuzzy-probabilistic logic					
r (2)	ruzzy-probabilistic logic					
Miscellaneous:						
"text"	texts in English / natural language					

source code

formula To do: ... logic formulas things to do

Bibliography

致谢

In addition to the people listed on the title page, I'd like to thank the AGI mailing-list participants for years of discussions.