Innleveringsoppgave 1 i IN1150 v22

hermagst

22. januar 2021

Oppgave 1

- (a) $A \cup B = A$
- (b) $A \cap B = B$
- (c) $A \setminus B = \{5, 6, 7\}$
- (d) $\emptyset \setminus (A \setminus B) = \emptyset$
- **(e)** $(A \setminus B) \setminus C = \{6\}$
- (f) $(B \cup C) \setminus A = \emptyset$
- (g) $((A \cup B) \setminus A) \setminus B = \emptyset$
- **(h)** $(A \cup B) \setminus (A \setminus B) = B$

Oppgave 2

 $A \cap C = \emptyset$ betyr at A og C har ingen like elementer, samme med $B \cap C = \emptyset$

At $A \cup B = \{a, b\}$ betyr at a og b må være i enten A eller B. Både $A = \{a, b\} \land B = \emptyset$, $B = \{a, b\} \land A = \emptyset$ og $A = \{a\} \land B = \{b\}$ er gyldig. Det eneste som er igjen i mengden er 2 og 4 som da må være i C

$$A = \{a\}, B = \{b\}, C = \{2, 4\}$$

Oppgave 3

- (a) {2} ∈ A Fordi 2 finnes blant A sine delmengder, men ingen av delmengdene til A består kun av {2}
- (b) $A \cap B = \emptyset$ fordi ingen av tuplene eller delmengdene i de to mengdene er like

Oppgave 4

- (a) $(A \setminus C) \subseteq (B \setminus C)$ må være sant fordi hvis $A \subseteq B$ vil differansen mellom A og C og B og C ikke utgjøre noen forskjell.
- (b) Hvis $A \subseteq B$ og vi så tar snittet $A \cap B$ vil vi alltid få A. Følgende vil $A \subseteq A \cap C$ ikke nødvendigvis være sann, avhengig av utfallet til A sitt snitt av C.

Oppgave 5

- (a) $S \rightarrow E$
- (b) $S \rightarrow E \land E \rightarrow S$
- (c) $E \rightarrow \neg S$
- (d) $S \rightarrow \neg E \land \neg E \rightarrow S$

Oppgave 6

- (a) Hvis jeg er ute bruker jeg munnbind
- (b) Hvis jeg ikke er ute bruker jeg ikke munnbind
- (c) Jeg er hverken ute eller bruker munnbdind
- (d) Hvis jeg er ute og har det travelt bruker jeg ikke munnbind

Oppgave 7

- (a) $M \wedge \neg T$
- (b) $U \rightarrow M$
- (c) $\neg (u \land \neg M)$
- (d) $(U \land \neg M) \to T$

Oppgave 8

- (a) Nødvendig betingelse
- (b) Hverken av delene
- (c) Tilstrekkelig betingelse
- (d) Tilstrekkelig betingelse
- (\mathbf{e}) Både nødvendig og tilstrekkelig betingelse
- (f) Hverken av delene
- (g) Både nødvendig og tilstrekkelig betingelse fordi at katten er glad og svær er synonymt med at den er stor og blid
- (h) Nødvendig betingelse fordi du må ha et kjæledyr for å ha en stor og blid katt