Part I (Chapter 2)

Problem Set 2.3

20. ■

The equilibrium equations of the blocks in the spring-block system are

$$3(x_2 - x_1) - 2x_1 = -80$$

$$3(x_3 - x_2) - 3(x_2 - x_1) = 0$$

$$3(x_4 - x_3) - 3(x_3 - x_2) = 0$$

$$3(x_5 - x_4) - 3(x_4 - x_3) = 60$$

$$-2x_5 - 3(x_5 - x_4) = 0$$

where x_i are the horizontal displacements of the blocks measured in mm. (a) Write a program that solves these equations by the Gauss-Seidel method without relaxation. Start with $\mathbf{x} = \mathbf{0}$ and iterate until four-figure accuracy after the decimal point is achieved. Also print the number of iterations required. (b) Solve the equations using the function <code>gaussSeidel</code> using the same convergence criterion as in part (a). Compare the number of iterations in parts (a) and (b).

21. \blacksquare Solve the equations in Prob. 20 with the conjugate gradient method using the function conjGrad. Start with $\mathbf{x} = \mathbf{0}$ and iterate until four-figure accuracy after the decimal point is achieved.

Part II (Chapter 3)

Problem Set 3.1

20. \blacksquare The table shows how the relative density ρ of air varies with altitude h. Determine the relative density of air at 10.5 km.

h (km)	0	1.525	3.050	4.575	6.10	7.625	9.150
ρ	1	0.8617	0.7385	0.6292	0.5328	0.4481	0.3741

Problem Set 3.2

7. \blacksquare The relative density ρ of air was measured at various altitudes h. The results were

h (km)	0	1.525	3.050	4.575	6.10	7.625	9.150
ρ	1	0.8617	0.7385	0.6292	0.5328	0.4481	0.3741

Use a quadratic least-squares fit to determine the relative air density at h=10.5 km. (This problem was solved by interpolation in Prob. 20, Problem Set 3.1.)

Part III (Chapter 4)

Problem Set 4.2

16. ■

The two blocks of mass m each are connected by springs and a dashpot. The stiffness of each spring is k, and c is the coefficient of damping of the dashpot. When the system is displaced and released, the displacement of each block during the ensuing motion has the form

$$x_k(t) = A_k e^{\omega_r t} \cos(\omega_i t + \phi_k), k = 1, 2$$

where A_k and ϕ_k are constants, and $\omega = \omega_r \pm i\omega_i$ are the roots of

$$\omega^4 + 2\frac{c}{m}\omega^3 + 3\frac{k}{m}\omega^2 + \frac{c}{m}\frac{k}{m}\omega + \left(\frac{k}{m}\right)^2 = 0$$

Determine the two possible combinations of ω_r and ω_i if c/m = 12 s⁻¹ and k/m = 1500 s⁻².