2024 Spring – SPC&O HW#7

- 1. Use the thickness data of **center zone** provided in 4Spring-HW#4.xls to
 - a) construct and test the hypothesis H_0 (null hypothesis): $\mu_{right} = \mu_{left}$ and H_1 : $\mu_{right} \neq \mu_{left}$ with $\alpha = 0.1$. p-value?
 - b) construct and test the hypothesis H_0 (null hypothesis): $\sigma^2_{\text{left}}=12.0$ and H_1 : $\sigma^2_{\text{left}}>12.0$ with $\alpha=0.1$. What is the *p*-value?
 - c) construct and test the hypothesis H₀ (null hypothesis): $\sigma_{\text{right}}^2 = 12.0$ and H₁: $\sigma_{\text{right}}^2 > 12.0$ with $\alpha = 0.1$. What is the *p*-value?
 - d) construct and test the hypothesis H_0 (null hypothesis): $\sigma^2_{\text{left}} = \sigma^2_{\text{right}}$ and H_1 : $\sigma^2_{\text{left}} < \sigma^2_{\text{right}}$ with α =0.1. What is the *p*-value?
 - e) construct a χ^2 proportion test to test H₀: the thickness data of left position of center zone follows a Gamma distribution with α =0.1.
 - f) construct a χ^2 proportion test to test H₀: the thickness data of left position of center zone follows an exponential distribution with α =0.1.
 - g) Using the thickness data of five positions of one wafer as a sample to calculate the average \bar{X} and range R from the first 45 wafers and the target thickness 350 as the central line, construct \bar{X} -R Shewhart control chart for the center zone and use it to monitor the last 40 wafers.
- 2. Use the Super Lotto 638 data collected in 24Spring-HW#1 and assume that the numbers' appearances as the winning numbers of the first set are independent and identical with p_i =6/38, i=1, 2, 3,..., 38. Construct a χ^2 proportion test to test H₀: p_i =6/38, i=1, 2, 3,..., 38 with α =0.1 for n=50, 100, and 500 draws, respectively. What are the p values?
- 3. Collect your heart beat rate (bpm, beats per minute) at least 3 times (e.g. before and after bed time, meals, exercises, etc.) every day with at least 3 repeated measurements each time (at least 30 seconds apart between repeated measurements) starting 4/3 till 4/15. Make a note of your measurement methods and date/time. Using the bpm data collected, construct \overline{X} -R control chart(s) with rationale subgrouping to monitor your body health status. (This problem is due 4/16)