Chapter 6

Pushdown Automata

Pushdown Automata (PDA)

- PDA is a way to implement a context free grammar in a similar way we design finite automata for regular grammar
- PDA = Finite State Machine + a **Stack**
- Stack operations: Push and POP

Structure of Pushdown Automata

Fig: Pushdown Automata

Formal Definition of PDA

- P = (Q, Σ , Γ , δ , q_0 , z_0 , F)
- Q = finite set of states
- Σ = finite set of input symbols
- Γ =A finite set of stack alphabet
- δ = the transition function
- q_0 = the start state
- z_0 = the start stack symbol
- F = the set of final states

Transition function

Input

- δ takes argument as a triple where δ = (q,a,x)
 - q is a state in Q
 - a is either an input symbol Σ or ϵ
 - x is a stack symbol, that is a member of Γ

Output

- Output of δ is a finite set of pairs (p, γ) where
- P is a new state
- γ is a string of stack symbols that replaces x at the top of the stack
- If
 - $\gamma = \epsilon$ then the stack is popped
 - $\gamma = x$ then the stack is unchanged
 - γ = yz then x is replaced by z and y is pushed onto the stack.

Pushdown Automata (Graphical Notation)

Finite State Machine

Pushdown Automata

a = Input Symbol

b = Symbol on the top of the stack. This symbol is popped, ϵ means the stack is neither read or popped

c = This symbol is pushed onto the stack, , ϵ means nothing is pushed onto the stack

```
L = \{0^n 1^n | n \ge 0\}
L = \{01, 0011, 0001111,....\}
```


<u>00</u>11

<u>001</u>1

0011

Since we have found z_0 as the final stack element, the string is eccepted

• L = $\{WW^R \mid W = (a + b)^+\}$

abba

• L = $\{WW^R \mid W = (a + b)^+\}$

 <u>a b</u> | b a

• L = $\{WW^R \mid W = (a + b)^+\}$

 <u>a b</u> | b a

• L = $\{WW^R \mid W = (a + b)^+\}$

<u>ab</u> ba

• L = $\{WW^R \mid W = (a + b)^+\}$

After pushing ab we need to pop a from the stack, but the top of the stack does not contains a, As the PDA cannot pop the required value, so the string can not be accepted

Homework

• Design a PDA for odd palindrome