MAT02035 - Modelos para dados correlacionados

Modelos lineares de efeitos mistos (continuação)

Rodrigo Citton P. dos Reis citton.padilha@ufrgs.br

Universidade Federal do Rio Grande do Sul Instituto de Matemática e Estatística Departamento de Estatística

Porto Alegre, 2023

Estrutura de covariância de efeitos aleatórios

▶ No modelo linear de efeitos mistos.

$$Y_i = X_i \beta + Z_i b_i + \epsilon_i$$

 $R_i = \text{Cov}(\epsilon_i)$ descreve a covariância entre as observações longitudinais ao focar no perfil de resposta média condicional de um indivíduo **específico**.

 Ou seja, é a covariância dos desvios do i-ésimo indivíduo com respeito ao seu perfil de resposta média,

$$\mathsf{E}\left(Y_{i}|b_{i}\right)=X_{i}\beta+Z_{i}b_{i}.$$

- É usualmente assumido que R_i é uma matriz diagonal, $\sigma^2 I_{n_i}$, em que I_{n_i} denota uma matriz identidade $n_i \times n_i$.
- ► Esta suposição é comumente referida como a "suposição de independência condicional".
- Ou seja, dado os efeitos aleatórios b_i , os erros de medição são distribuídos independentemente com uma variância comum σ^2 .

Como comentamos anteriormente, no modelo linear de efeitos mistos podemos distinguir a média condicional de Y_i , dado b_i ,

$$\mathsf{E}\left(Y_{i}|b_{i}\right)=X_{i}\beta+Z_{i}b_{i},$$

da **média marginal** de Y_i ,

$$\mathsf{E}(Y_i) = X_i \beta.$$

- De forma similar podemos distinguir entre as covariância condicional e marginal.
- A covariância condicional de Y_i , dado b_i , é

$$Cov(Y_i|b_i) = Cov(\epsilon_i) = R_i,$$

enquanto a covariância marginal de Y_i é

$$Cov(Y_i) = Cov(Z_ib_i) + Cov(\epsilon_i)$$

= $Z_iCov(b_i)Z'_i + Cov(\epsilon_i)$
= $Z_iGZ'_i + R_i$.

- Mesmo quando $R_i = \text{Cov}(\epsilon_i) = \sigma^2 I_{n_i}$ (uma matriz diagonal com todas as correlações duas-a-duas iguais a zero), a matriz $\text{Cov}(Y_i)$ possui elementos fora da diagonal diferentes de zero, deste modo levando em consideração a correlação entre as observações repetidas no mesmo indivíduo em um estudo longitudinal.
- ▶ Isto é, a introdução de efeitos aleatórios, b_i, induz correlação entre os componentes de Y_i.

Comentários

- O modelo linear de efeitos mistos permite a análise explícita das fontes de variação nas respostas:
 - entre indivíduos (G);
 - \triangleright e intra-indivíduo (R_i) .
- A covariância marginal de Y_i é uma função do tempo de medição.
- A estrutura de covariância induzida por efeitos aleatórios $[Cov(Y_i) = Z_i G Z_i' + \sigma^2 I_{n_i}]$ pode ser contrastada com os modelos de padrão de covariância apresentados na aula anterior.
 - ► Modelos de padrão de covariância não distinguem as diferentes fontes de variabilidade, enquanto que modelos lineares de efeitos mistos distinguem as fontes de variabilidade entre indivíduos e intra-indivíduo.

Comentários (continuação)

- Para os modelos lineares com respostas contínuas, as duas abordagens (padrão de covariância e efeitos mistos) produzem o mesmo modelo para a média marginal de Y_i [E(Y_i) = X_iβ], e diferem somente em termos do modelo assumido para a covariância.
- A estrutura de covariância de efeitos aleatórios não requer delineamento balanceado.
- Ainda, o número de parâmetros de covariância é o mesmo independente do número e as ocasiões de medições.
- ► Finalmente, ao contrário de muitos dos modelos de padrão de covariância que fazem suposições fortes sobre a homogeneidade da variância ao longo do tempo, a estrutura de covariância de efeitos aleatórios permite que a variância e a covariância aumentem ou diminuam em função dos tempos de medição.

Estimação via máxima verossimilhança

Estimação via máxima verossimilhança

Estimação via máxima verossimilhança

Note, que pelas propriedades da distribuição normal, temos que

$$Y_i \sim N(X_i\beta, Z_iGZ_i' + \sigma^2I_{n_i}).$$

- Logo, podemos escrever a função de verossimilhança com base no modelo normal multivariado.
- Como esperado, o estimador de máxima verossimilhança de β é o estimador de **mínimos quadrados generalizados** (MQG) e depende da covariância marginal entre as medidas repetidas $[Cov(Y_i) = Z_i G Z_i' + \sigma^2 I_{n_i}]$

$$\hat{\beta} = \left\{ \sum_{i=1}^{N} (X_i'[\mathsf{Cov}(Y_i)]^{-1} X_i) \right\}^{-1} \sum_{i=1}^{N} (X_i'[\mathsf{Cov}(Y_i)]^{-1} y_i).$$

Estimação via máxima verossimilhança

- Em geral, não há expressão simples para o estimador de máxima verossimilhança dos componentes de covariância [$G \in \sigma^2$ (ou R_i)] e requer **técnicas iterativas**.
- Porque a estimativa de covariância de máxima verossimilhança é enviesada em amostras pequenas, usa-se a estimação de máxima verossimilhança restrita (REML);
 - ▶ e a resultante estimativa REML de β é dada por $\hat{\beta}$ substituindo Cov (Y_i) pela sua estimativa REML. # Inferência para o modelo linear de efeitos mistos

Inferência para o modelo misto

Considere o modelo

$$Y_i = X_i \beta + Z_i b_i + \epsilon_i,$$

em que, $b_i \sim N_q(0, G(\alpha))$ e $\epsilon_{ij} \sim N(0, \sigma^2)$, b_i e ϵ_{ij} independentes.

- ► Tem-se: p efeitos fixos e $\frac{q(q+1)}{2} + 1$ efeitos aleatórios.
- ▶ Inferência estatística para $\theta = (\beta, \alpha, \sigma^2)$:
 - 1. Máxima verossimilhança.
 - 2. Máxima verossimilhança restrita.

Inferência para o modelo misto

A função de verossimilhança é dada por:

$$L(\theta|y) = \prod_{i=1}^{N} p(y_i|\theta)$$

$$= \prod_{i=1}^{N} \int p(y_i, b_i|\theta) db_i$$

$$= \prod_{i=1}^{N} \int p(y_i|b_i, \theta) p(b_i|\theta) db_i,$$

em que $p(y_i|b_i,\theta) \sim N_{n_i}(X_i\beta + Z_ib_i,\sigma^2I_{n_i})$ e $p(b_i|\theta) \sim N_q(0,G)$.

Note que $p(y_i|\theta) \sim N_{n_i}(X_i\beta, Z_iGZ_i' + \sigma^2I_{n_i})$.

Escolha entre modelos de covariância de efeitos aleatórios

Escolha entre modelos de covariância de efeitos aleatórios

► Embora o modelo linear de efeitos mistos assume que as respostas longitudinais dependem em uma combinação dos efeitos populacionais e indivíduo-específicos, quando tomamos a média com respeito a distribuição dos efeitos aleatórios

$$\mathsf{E}(Y_i) = X_i \beta,$$

e a covariância entre as respostas tem a estrutura distinta de efeitos aleatórios

$$Cov(Y_i) = Z_i G Z_i' + \sigma^2 I_{n_i}.$$

- Da perspectiva de modelar a covariância, a estrutura de efeitos aleatórios é atraente porque o **número de parâmetros de covariância**, $q \times (q+1)/2 + 1$, é o mesmo, independentemente do número e do momento das ocasiões de medição.
- Em muitas aplicações, será suficiente incluir apenas interceptos e inclinações aleatórios para o tempo (um total de 2 × (2+1)/2+1 = 4 parâmetros de covariância), permitindo assim a heterogeneidade nas variâncias e correlações que podem ser expressas como funções do tempo.
- Em outras aplicações, uma estrutura de efeitos aleatórios mais complexa pode ser necessária.

- Na escolha de um modelo para a covariância, muitas vezes será interessante **comparar** dois modelos aninhados, um com q efeitos aleatórios correlacionados, outro com q+1 efeitos aleatórios correlacionados.
- A diferença no número de parâmetros de covariância entre esses dois modelos é q+1, pois há uma variância adicional e q covariâncias adicionais no modelo "completo".
- Conforme mencionado em aulas anteriores, o teste da razão de verossimilhança fornece um método válido para comparar modelos aninhados para a covariância.
- No entanto, em certos casos, a distribuição nula usual para o teste da razão de verossimilhança não é mais válida.

- Estes testes, usualmente, estão na fronteira do espaço de parâmetros.
 - Neste caso, a estatística da RV, sob H₀, não tem uma distribuição qui-quadrado.
- A distribuição neste caso é uma mistura de distribuições qui-quadrado.
 - Ou seja, por exemplo, para $H_0: \sigma_{b_2} = 0$

$$RV \sim 0.5 \chi_q + 0.5 \chi_{q+1}$$
.

Exemplo

- Modelo completo: q = 2 (intercepto e inclinação aleatórios)
- Modelo restrito: q = 1 (somente intercepto aleatório)
 - Teste usual (errado): nível de significância 5%, o valor crítico é dado por 5.99.
 - ► Teste correto: $RV \sim 0.5\chi_1 + 0.5\chi_2$ nível de significância 5%, o valor crítico é dado por 5,14 (Tabela, Apend. C, Fitzmaurice et al.).

- Objetivo: predizer perfis individuais ou identificar indivíduos acima ou abaixo do perfil médio.
- Deseja-se:

$$\widehat{Y}_i = \widehat{E}(Y_i|b_i) = X_i\widehat{\beta} + Z_i\widehat{b}_i,$$

e para tal é necessário \hat{b}_i , o chamado \structure{Estimador BLUP, "Best Linear Unbiased Predictor" de b_i .

- No modelo linear misto, Y_i e b_i tem uma distribuição conjunta normal multivariada.
- Usando conhecidas propriedades da normal multivariada, temos que

$$\mathsf{E}(b_i|Y_i,\widehat{\beta}) = GZ_i'\Sigma_i^{-1}(Y_i - X_i\widehat{\beta})$$

 Usando as estimativas de máxima verossimilhança dos componentes de variância,

$$\widehat{b}_i = \widehat{G} Z_i' \widehat{\Sigma}_i^{-1} (Y_i - X_i \widehat{\beta}),$$

- o BLUP de bi.
 - ► (Abordagem empirical Bayes)

$$\widehat{Y}_i = X_i \widehat{\beta} + Z_i \widehat{b}_i = (\widehat{R}_i \widehat{\Sigma}_i^{-1}) X_i \widehat{\beta} + (I_{n_i} - \widehat{R}_i \widehat{\Sigma}_i^{-1}) Y_i,$$

em que
$$\operatorname{Var}(\epsilon_i) = R_i$$
, e
 $\widehat{\Sigma}_i \widehat{\Sigma}_i^{-1} = I_{n_i} = (Z_i \widehat{G} Z_i' + \widehat{R}_i) \widehat{\Sigma}_i^{-1} = Z_i \widehat{G} Z_i' \widehat{\Sigma}_i^{-1} + \widehat{R}_i \widehat{\Sigma}_i^{-1}$.

- ▶ **Interpretação:** média ponderada entre a média populacional $X_i\widehat{\beta}$ e o *i*-ésimo perfil observado.
 - Isto significa que o perfil predito é "encolhido" na direção da média populacional.

- A quantidade de "encolhimento" (*shrinkage*) depende da magnitude de R_i e Σ_i .
 - R_i: variância intra-indivíduo;
 - $\triangleright \Sigma_i$: variância total (entre e intra-indivíduo).
- P Quando R_i é relativamente grande, e a variabilidade intra indivíduo é maior que a variabilidade entre indivíduos, mais peso é atribuído a $X_i\widehat{\beta}$, a média populacional estimada, do que à resposta individual observada.
- Por outro lado, quando a variabilidade entre indivíduos é grande em relação à variabilidade intra-indivíduos, mais peso é dado à resposta observada Y_i.

- Finalmente, o grau de "encolhimento" em direção à média populacional também depende de n_i .
- Em geral, há maior encolhimento em direção à curva média populacional quando n; é pequeno.
- Intuitivamente, isso faz sentido já que menos peso deve ser dado à trajetória observada do indivíduo quando menos dados estão disponíveis.

Avisos

- Próxima aula: Modelos lineares de efeitos mistos exemplos e implementação computacional.
- ▶ Para casa: ler o Capítulo 8 do livro "Applied Longitudinal Analysis".
 - Caso ainda não tenha lido, leia também os Caps. 1, 2, 3, 4, 5, 6 e 7.

Bons estudos!

