Clarification/Correction: In the previous lecture, we said

$$p^{\alpha} \parallel \alpha , p^{\beta} \parallel b \Rightarrow p^{\alpha-\beta} \parallel \frac{\alpha}{b} .$$

This is true for every a and b, but you may want to have bla as well because we didn't precisely define what does $p^e \parallel x$ mean for a rational number x.

For example, $5^2 \parallel \frac{75}{7}$ while $5^{-3} \parallel \frac{3}{125}$. Try figuring out the definition for the general case.

How can we check if a given integer n is prime?

• We can check the divisibility by 2,3,4,...,n-1. If n is not divisible by any of them, then it is a prime. We can actually do better.

Lemma: If n is composite, then it must have a prime divisor $p \leqslant \sqrt{n}$.

Proof: n composite \Rightarrow n = ab for some $|\langle a,b \langle n \rangle\rangle$ we have a $\leqslant \sqrt{n}$ or $b \leqslant \sqrt{n}$ because otherwise a $\geqslant \sqrt{n}$, b $\geqslant \sqrt{n}$ \Rightarrow ab $\geqslant \sqrt{n}$. $\sqrt{n} = n$. Say a $\leqslant \sqrt{n}$ and p be a prime divisor of a, then $p \leqslant a \leqslant \sqrt{n}$ and p | a and a | n \Rightarrow p | n.

Thus, we only need to check the divisibility by primes $p \leq \sqrt{n}$.

e.g. 101 prime because it is not divisible by 2,3,5,7.

Sieve of Eratosthenes: Find all primes less than or equal to $50.(\sqrt{50} < 8)$

How can we check the divisibility by 2,3,4,5,8,9? Let $n = \overline{a_k a_{k-1} \dots a_0}$ (decimal representation)

$$\Rightarrow n = a_0 + 10a_1 + 10^2 a_2 + 10^3 \cdot a_3 + ... + 10^k \cdot a_k \cdot \left(\begin{array}{c} base & 10 \\ expansion \end{array}\right)$$

• Divisibility by 2:
$$n = a_0 + (10 a_1 + 10^2 a_2 + ... + 10^k a_k)$$

already divisible by 2

So, $2 \mid n \iff 2 \mid a_0$.

• Divisibility by 4:
$$n = a_6 + 10a_1 + (10^2a_2 + 10^3a_3 + ... + 10^3a_k)$$

50, $4 \mid n \Rightarrow 4 \mid a_0 + 10a_1$

$$= a_6 + 10a_1 + (10^2a_2 + 10^3a_3 + ... + 10^3a_k)$$

by 2

$$= a_6 + 10a_1 + (10^2a_2 + 10^3a_3 + ... + 10^3a_k)$$

by 2

· Divisibility by 3;

$$n = a_0 + a_1 + a_2 + \dots + a_k + (9a_1 + 99a_2 + 999a_3 + \dots + (10^k - 1)a_k)$$
already divisible by 3

So, $3 \mid n \iff 3 \mid a_6 + a_1 + \dots + a_k$.

· Divisibility by 11:

- observe that 10+1, 10^2-1 , 10^3+1 , 10^4-1 , 10^5+1 are divisible by 11.

$$n = a_0 - a_1 + a_2 - \dots + (-1)^k a_k + ((10^l + 1) a_1 + (10^2 - 1) a_2 + \dots + (10^k - (-1)^k) a_k)$$

$$divisible \quad by \quad 11$$

$$S_0, \quad 11 \mid n \iff 11 \mid a_0 - a_1 + a_2 - \dots + (-1)^k a_k$$

Next, we'll consider the primes of the form $2^m \pm 1$, but first recall:

•
$$x^{\alpha} - 1 = (x-1) \cdot (x^{\alpha-1} + x^{\alpha-2} + x^{\alpha-3} + \dots + x^{1} + 1)$$

•
$$x + 1 = (x+1) \cdot (x^{2a} - x^{2a-1} + x^{2a-2} - ... - x^{1} + 1)$$
.

$$x^{3}-1 = (x-1)(x^{2}+x+1)$$
 $x^{3}+1 = (x+1).(x^{2}-x+1).$

Question: Suppose 2 +1. What can we say about m?

- m cannot be odd, because otherwise $2^m + 1 = (2+1)(\dots)$ cannot be prime.
- m is not divisible by any odd number, except 1.

If
$$m = (2a+1) \cdot k$$
, then odd divisor

$$2^{m} + 1 = (2^{k})^{2a+1} + 1 = (2^{k}+1)(\dots)$$

 $\Rightarrow 2^{k}+1 \text{ divides } 2^{m}+1.$

For
$$2^{m}+1$$
 to be prime, $2^{k}+1=2^{m}+1$
 $\Rightarrow k=m \Rightarrow (2a+1)=1$.

• no odd number > 1 divides $m \Rightarrow m = 2^n$ for some n.