

Disciplina: Estruturas de Dados 2 – ED43S Curso: Tecnologia em Análise e Desenvolvimento de Sistemas

Departamento Acadêmico de Informática (Dainf)

Professora: Rúbia Eliza de Oliveira Schultz Ascari rubia@utfpr.edu.br

- É um tipo especial de árvore
 - Cada nó pode possuir nenhuma, uma ou no máximo duas subárvores
 - Subárvore da **esquerda** e a da **direita**
 - Usadas em situações onde, a cada passo, é preciso tomar uma decisão entre duas direções

Árvore binária na natureza

Exemplo de árvore binária:

- Existem alguns tipos de árvores binárias
 - Estritamente binária
 - Completa
 - Cheia
 - Zigue Zague

- Árvore estritamente binária
 - Cada nó possui sempre ou 0 (no caso de nó folha) ou 2 subárvores
 - Nenhum nó tem filho único

- Árvore binária completa
 - A diferença de altura entre as subárvores de qualquer nó é no máximo 1
 - Se a altura da árvore é D, cada nó folha está no nível D ou D-1

- Árvore binária cheia
 - Árvore estritamente binária onde todos os nó folhas estão no mesmo nível

- Árvore zigue zague
 - Cada nó possui apenas filho único, ou seja, os nós interiores possuem exatamente uma subárvore vazia.

TIPOS DE ÁRVORES BINÁRIAS

Estritamente Binária 0 ou 2 filhos

Completa
Sub-árvores vazias
apenas no último ou
penúltimo nível

Binária

Cheia Sub-árvores vazias somente no último nível

Binária

Zigue Zague
Nós internos com 1
subárvore vazia

- Percorrer todos os nós é uma operação muito comum em árvores binárias
 - Cada nó é visitado uma única vez
 - Isso gera uma sequência linear de nós, cuja ordem depende de como a árvore foi percorrida
 - Não existe uma ordem natural para se percorrer todos os nós de uma árvore binária
 - A visita ao nó pode ser feita para executar alguma ação em cada nó

Essa ação pode ser mostrar (imprimir) o valor do nó, modificar esse valor,
 etc.

- Percursos em árvores binárias:
 - Um percurso (ou caminhamento) define uma sequência de nós
 - Cada nó passa a ter um nó seguinte, ou um nó anterior, ou ambos (exceto árvore com 1 só nó)
 - A Sequência de nós depende do percurso adotado.

Exemplo

• Percurso 1:

$$A-B-D-E-F-G$$

$$A - B - E - D - F - G$$

- Percursos comuns em árvores binárias:
 - Pré-Ordem (Profundidade)
 - 1) Visita a raiz
 - 2) Percorre a sub-árvore **esquerda**
 - 3) Percorre a sub-árvore direita

Exemplo

- Percursos comuns em árvores binárias:
 - Em-Ordem (Ordem Simétrica)
 - 1) Percorre a sub-árvore **esquerda**
 - 2) Visita a raiz
 - 3) Percorre a sub-árvore direita

Exemplo

- Percursos comuns em árvores binárias:
 - Pós-Ordem
 - 1) Percorre a sub-árvore **esquerda**
 - 2) Percorre a sub-árvore direita
 - 3) Visita a raiz

Exemplo

- Percursos comuns em árvores binárias:
 - > Largura
 - 1) Visita é feita por nível, da esquerda para a direita

Exemplo

Percursos comuns em árvores binárias:

Exercício 1: 130 200

- Pré-ordem:
- Em-ordem:
- Pós-ordem:
- Largura:

(150)

Percursos comuns em árvores binárias:

> Exercício 1: (130)

83

• Pré-ordem:
$$130 - 100 - 83 - 120 - 200 - 150 - 230$$

(150)

120

• Em-ordem:
$$83 - 100 - 120 - 130 - 150 - 200 - 230$$

• Pós-ordem:
$$83 - 120 - 100 - 150 - 230 - 200 - 130$$

• Largura:
$$130 - 100 - 200 - 83 - 120 - 150 - 230$$

- Percursos comuns em árvores binárias:
 - Exercício 2: Qual o percurso mais indicado para montar a equação matemática armazenada na árvore binária a seguir, para que a leitura seja feita da forma como nós estamos acostumados a utilizar?

- Percursos comuns em árvores binárias:
 - Exercício 2: Qual o percurso mais indicado para montar a equação matemática armazenada na árvore binária a seguir, para que a leitura seja feita da forma como nós estamos acostumados a utilizar?

• Em ordem: (a * b) + (c / (d + e))

- Existem duas abordagens muito utilizadas para implementar uma árvore no computador:
 - Usando um array (alocação estática)
 - Usando uma lista encadeada (alocação dinâmica)

- Usando um array (alocação estática)
 - Necessário definir o número máximo de nós
 - Tamanho do array
 - Usa 2 funções para retornar a posição dos filhos à esquerda e à direita de um pai

- Lista encadeada (alocação dinâmica)
 - Espaço de memória alocado em tempo de execução
 - A árvore cresce à medida que novos elementos são armazenados, e diminui à medida que elementos são removidos

Um exemplo de implementação usando Lista Encadeada (TAD) está disponível para download no Moodle.

Fonte do algoritmo: https://programacaodescomplicada.wordpress.com/complementar/

```
info
                                         dir
                         esq
struct NO{
    int info:
    struct NO *esq;
                                                            raiz
    struct NO *dir:
};
                                                В
               ----vazio
                                                      D
               ----vazio
                                                           raiz
                ----vazio
                 ----vazio
               -----vazio
               -----vazio
```

Árvore Binária de Busca

- Definição
 - É uma árvore binária
 - Cada nó pode ter 0, 1 ou 2 filhos
 - Cada nó da árvore possui um valor (chave) associado a ele
 - Não existem valores repetidos
 - Esse valor determina a posição do nó na árvore
- Regra para posicionamento dos valores na árvore
 - Para cada nó pai
 - todos os valores da subárvore esquerda são menores do que o nó pai
 - todos os valores da subárvore direita são maiores do que o nó pai;
 - Inserção e remoção devem ser realizadas respeitando essa regra de posicionamento dos nós.

Referências

- Conteúdo baseado no material elaborado pelo professor André Backes. Disponível em https://programacaodescomplicada.wordpress.com/complementar/.
- Backes, André Ricardo, Estruturas de dados descomplicada: em linguagem C, 1ª ed., Rio de Janeiro: Elsevier, 2016.
- Braganholo, Vanessa. Estruturas de Dados e Seus Algoritmos –
 Árvores e Árvores Binárias. Disponível em
 http://www2.ic.uff.br/~vanessa/material/ed/03-ArvoresBinarias.pdf.
 Acesso em 05/05/2021.

Dúvidas

• 555