Super SloMo: High Quality Estimation of Multiple Intermediate Frames for Video Interpolation

Huaizu Jiang, Deqing Sun, Varun Jampani Ming-Hsuan Yang, Erik Learned-Miller, Jan Kautz

Presented by Aleksei Kalinov

04 October 2018

- 1. Preliminary Topics
 - a. Motion Estimation
 - b. Image Warping
 - c. U-Net
- 2. Super SlowMo
 - a. Solution Approach
 - b. Architecture Description
 - c. Results

- 1. Preliminary Topics
 - a. Motion Estimation
 - b. Image Warping
 - c. U-Net
- 2. Super SlowMo
 - a. Solution Approach
 - b. Architecture Description
 - c. Results

Motion Estimation

Optical Flow. A pattern of apparent motion of objects, surfaces, and edges in a visual scene caused by the relative motion between an observer and a scene.

Block Matching

For each patch in the reference frame we optimize matching error with target frame image patch w.r.t. coordinates of the latter.

Reference frame

Target frame

Block Matching Improvements

- 1. Hierarchical matching -- optimize at different resolutions
- 2. Sub-pixel matching -- better quality for fast-paced events.
- 3. Search region limit -- speed-up by introducing more assumptions
- 4. 2D Logarithmic search -- speed-up at a cost of quality
- 5. Millions of other searches -- area of research

Differential methods

Express change in frames as finite difference equations. Solve for unknows.

$$I_x(q_1)V_x + I_y(q_1)V_y = -I_t(q_1)$$

- 1. Preliminary Topics
 - a. Motion Estimation
 - b. Image Warping
 - c. U-Net
- 2. Super SlowMo
 - a. Solution Approach
 - b. Architecture Description
 - c. Results

Forward warping

Flow is used to warp pixel in the reference picture. Target location is rounded.

Backward warping

Each target pixel finds its original position using inverse flow. Intensity is interpolated.

- 1. Preliminary Topics
 - a. Motion Estimation
 - b. Image Warping
 - c. U-Net
- 2. Super SlowMo
 - a. Solution Approach
 - b. Architecture Description
 - c. Results

U-Net

- 1. Preliminary Topics
 - a. Motion Estimation
 - b. Image Warping
 - c. U-Net
- 2. Super SlowMo
 - a. Solution Approach
 - b. Architecture Description
 - c. Results

Problem statement

Given two images I_o and I_t and time t, predict and intermediate frame I_t

T = 0 T = 1

Solution

$$\hat{I}_t = \frac{1}{Z} \odot \left((1-t)V_{t\leftarrow 0} \odot g(I_0, F_{t\rightarrow 0}) + tV_{t\leftarrow 1} \odot g(I_1, F_{t\rightarrow 1}) \right)$$

Warp

Warp

Occlude

Occlude

Linearly Combine Go home

What about flows?

Estimate flows for given images and interpolate for intermediate one.

$$\hat{F}_{t\to 0} = -(1-t)tF_{0\to 1} + t^2F_{1\to 0}$$

$$\hat{F}_{t\to 1} = (1-t)^2F_{0\to 1} - t(1-t)F_{1\to 0}$$

- 1. Preliminary Topics
 - a. Motion Estimation
 - b. Image Warping
 - c. U-Net
- 2. Super SlowMo
 - a. Solution Approach
 - b. Architecture Description
 - c. Results

Model architecture

Flow interpolation network

Second network helps to resolve artifacts from quick motion.

Training

Loss consists of 4 parts:

- Reconstruction loss.
- Perceptual loss.
- 3. Warping loss.
- Smoothness loss.

Trained on ~300k Adobe

$$l_r = \frac{1}{N} \sum_{i=1}^{N} \|\hat{I}_{t_i} - I_{t_i}\|_1$$

$$l_p = \frac{1}{N} \sum_{i=1}^{N} \|\phi(\hat{I}_t) - \phi(I_t)\|_2$$

Trained on ~300k Adobe
$$l_w = \|I_0 - g(I_1, F_{0 \to 1})\|_1 + \|I_1 - g(I_0, F_{1 \to 0})\|_1 +$$
 and Youtube 240 fps videos.
$$\frac{1}{N} \sum_{i=1}^N \|I_{t_i} - g(I_0, \hat{F}_{t_i \to 0})\|_1 + \frac{1}{N} \sum_{i=1}^N \|I_{t_i} - g(I_1, \hat{F}_{t_i \to 1})\|_1$$

$$l_s = \|\nabla F_{0\to 1}\|_1 + \|\nabla F_{1\to 0}\|_1$$

- 1. Preliminary Topics
 - a. Motion Estimation
 - b. Image Warping
 - c. U-Net
- 2. Super SlowMo
 - a. Solution Approach
 - b. Architecture Description
 - c. Results

Results in numbers

	PSNR	SSIM	IE
Phase-Based [18]	32.35	0.924	8.84
FlowNet2 [1, 9]	32.30	0.930	8.40
DVF [15]	32.46	0.930	8.27
SepConv [20]	33.02	0.935	8.03
Ours (Adobe240-fps)	32.84	0.935	8.04
Ours	33.14	0.938	7.80

	PSNR	SSIM	IE
w/o flow interpolation	30.34	0.908	8.93
w/o vis map	31.16	0.918	8.33
w/o perceptual loss	30.96	0.916	8.50
w/o warping loss	30.52	0.910	8.80
w/o smoothness loss	31.19	0.918	8.26
full model	31.19	0.918	8.30

Results on UCF101

Ablation studies

Real results

Conclusions

- 1. Clever combination of old and new techniques can produce astonishing results.
- 2. When something goes wrong, just add another CNN.

References

- 1. Huaizu Jiang, Deqing Sun, Varun Jampani, Ming-Hsuan Yang, Erik G. Learned-Miller, Jan Kautz, Super SloMo: High Quality Estimation of Multiple Intermediate Frames for Video Interpolation. http://arxiv.org/abs/1712.00080
- 2. Olaf Ronneberger, Philipp Fischer, Thomas Brox, U-Net: Convolutional Networks for Biomedical Image Segmentation. https://arxiv.org/abs/1505.04597