1 Limite:

Dizemos que o limite de f(x,y) quando (x,y) tende a (x_o,y_o) é o número L, e escrevemos

$$\lim_{(x,y)\to(x_o,y_o)} f(x,y) = L$$

 ${\bf 1.1}\,$ Teorema do Confronto : Sejam f(x,y),g(x,y)e h(x,y)tais que

$$f(x,y) \le g(x,y) \le h(x,y)$$

se,
$$\lim_{(x,y)\to(x_o,y_o)}f(x,y)=L=\lim_{(x,y)\to(x_o,y_o)}h(x,y)$$
 então
$$\lim_{(x,y)\to(x_o,y_o)}g(x,y)=L$$

1.2 Corolário do Teorema do Confronto: Sejam f(x,y) e g(x,y) tais que f(x,y) é limitada e $\lim_{(x,y)\to(x_o,y_o)}g(x,y)=0$, então

$$\lim_{(x,y)\to(x_o,y_o)} f(x,y).g(x,y) = 0$$

1.3 "Regra dos dois caminhos" :

Se existirem dois caminhos $c_1(t) = (x(t), y(t))$ e $c_2(t) = (x(t), y(t))$ tais que:

$$\lim_{t\to t_0} f(c_1(t)) \neq \lim_{t\to t_0} f(c_2(t)) \text{ então } \lim_{(x,y)\to(x_o,y_o)} f(x,y) \text{ não existe.}$$

• Desigualdades importantes :

- a) $0 \le x^2 \le x^2 + y^2$
- b) $0 \le y^2 \le x^2 + y^2$
- c) $0 \le |y| \le |x| + |y|$
- d) $0 \le |x| \le |x| + |y|$
- e) desigualdades com x y z
- 2 Continuidade:

Sejam f uma função de duas variáveis e (x_o, y_o) um ponto do domínio de f. Dizemos que f é contínua em (x_o, y_o) se

$$\lim_{(x,y)\to(x_o,y_o)} f(x,y) = f(x_o,y_o)$$

3 Derivadas Parciais:

Sejam z = f(x, y) uma função de duas variáveis reais e (x_o, y_o) um ponto do domínio de f.

• A derivada parcial de f em relação a x no ponto (x_o, y_o) é definida por:

$$\frac{\partial f}{\partial x}(x_o, y_o) = \lim_{h \to 0} \frac{f(x_o + h, y_o) - f(x_o, y_o)}{h}$$

se este limite existir.

• A derivada parcial de f em relação a y no ponto (x_o, y_o) é definida por:

$$\frac{\partial f}{\partial y}(x_o, y_o) = \lim_{h \to 0} \frac{f(x_o, y_o + h) - f(x_o, y_o)}{h}$$

4 Regra da Cadeia:

Sejam x(u,v) e y(u,v) funções deriváveis com respeito a u e v. E seja f(x(u,v),y(u,v)) uma função derivável com respeito a x e y. Então F(u,v)=f(x(u,v),y(u,v)) é derivável com respeito a u e v. A saber :

$$\begin{split} \frac{\partial F}{\partial u} &= \frac{\partial f}{\partial x}.\frac{\partial x}{\partial u} + \frac{\partial f}{\partial y}.\frac{\partial y}{\partial u} \\ \frac{\partial F}{\partial v} &= \frac{\partial f}{\partial x}.\frac{\partial x}{\partial v} + \frac{\partial f}{\partial y}.\frac{\partial y}{\partial v} \end{split}$$

5 Diferenciabilidade:

Uma função f(x,y) é dita diferenciável num ponto (x_0,y_0) se as derivadas parciais $\frac{\partial f}{\partial x}(x_0,y_0)$ e $\frac{\partial f}{\partial y}(x_0,y_0)$ existem e

$$\lim_{(h,k)\to(0,0)}\frac{f(x_o+h,y_o+k)-f(x_o,y_o)-hf_x(x_0,y_0)-kf_y(x_0,y_0)}{\|(h,k)\|}=0$$

- Se f é de classe C^1 então f é diferenciável.
- Se f é diferenciável em (x_0, y_0) então f é contínua em (x_0, y_0) .
- Se f não é contínua em (x_0, y_0) então f não é diferenciável em (x_0, y_0) . OBS: f ser de classe C^1 significa que f tem a primeira derivada contínua.

6 Vetor Gradiente:

O vetor gradiente de f(x,y) em P_0 é o vetor :

$$\nabla f(P_0) = \langle \frac{\partial f}{\partial x}(P_0), \frac{\partial f}{\partial y}(P_0) \rangle$$

7 Derivada Direcional:

• A derivada direcional de uma f(x,y) em $P_0 = (x_0,y_0)$ na direção do vetor $\overrightarrow{u} = (a,b)(\mathbf{UNIT}\mathbf{\acute{A}RIO})$ é definida por

$$\frac{\partial f}{\partial u}(x_0, y_0) = \lim_{t \to 0} \frac{f((x_0, y_0) + t(a, b)) - f(x_0, y_0)}{t}$$

se este limite existir.

• A derivada direcional de f(x,y) em $P_0 = (x_0,y_0)$ na direção de \overrightarrow{u} , denotada por $\frac{\partial f}{\partial u}(P_0)$ é a taxa de variação de f(x,y) em P_0 na direção de \overrightarrow{u} .

• Se f(x,y) é diferenciável em $P_0=(x_0,y_0)$ então :

$$\frac{\partial f}{\partial u}(P_0) = \left\langle \nabla f(P_0), \frac{u}{\|u\|} \right\rangle$$

• Se f é uma função diferenciável em P_0 tal que $\nabla f(P_0) \neq 0$, então o valor máximo de $\frac{\partial f}{\partial u}(P_0)$ ocorre quando u tem a direção e o sentido do vetor $\nabla f(P_0)$, sendo $\|\nabla f(P_0)\|$ o valor máximo.

8 Plano Tangente:

Sejam S uma superfícia de nível de equação f(x,y,z)=k (constante) e $P_0=(x_0,y_0,z_0)$ um ponto de S. Se $\nabla f(P_0)\neq 0$, o **plano tangente a** S **em** P_0 pela equação

$$\langle \nabla f(P_0), (x - x_0, y - y_0, z - z_0) \rangle = 0$$

Hugo Marinho