Finding Shortest Paths in Unweighted Graphs

Shusen Wang

Shortest Path in Unweighted Graphs

- Weights are all ones.
- Weights of nonexistent edges are ∞ .

- Easier problem: finding shortest path in unweighted graph.
- Harder problem: finding shortest path in weighted graph.

Shortest Path in Unweighted Graphs

vertex	dist	path
v_1	1	v_3
v_2	2	v_1
v_3	0	0
v_4	2	v_1
v_5	3	v_2
v_6	1	v_3
v_7	3	v_4

Algorithm

Preparations

• v_3 is the source.

vertex	visit	dist	path
v_1	no	∞	0
v_2	no	∞	0
v_3	no	∞	0
v_4	no	∞	0
v_5	no	∞	0
v_6	no	∞	0
v_7	no	∞	0

Preparations

• v_3 is the source.

vertex	visit	dist	path
v_1	no	∞	0
v_2	no	∞	0
v_3	no	∞	0
v_4	no	∞	0
v_5	no	∞	0
v_6	no	∞	0
v_7	no	∞	0

Initial State

- v_3 is the source.
- Mark v_3 as "visited".
- Set v_3 's distance to 0.

vertex	visit	dist	path
v_1	no	∞	0
v_2	no	∞	0
v_3	yes	0	0
v_4	no	∞	0
v_5	no	∞	0
v_6	no	∞	0
v_7	no	∞	0

Initial State

• enqueue(v_3).

Queue:

vertex	visit	dist	path
v_1	no	∞	0
v_2	no	∞	0
v_3	yes	0	0
v_4	no	∞	0
v_5	no	∞	0
v_6	no	∞	0
v_7	no	∞	0

Iteration 1

• $v_3 \leftarrow \text{dequeue}()$.

Queue:

vertex	visit	dist	path
v_1	no	∞	0
v_2	no	∞	0
v_3	yes	0	0
v_4	no	∞	0
v_5	no	∞	0
v_6	no	∞	0
v_7	no	∞	0

Iteration 1

- $v_3 \leftarrow \text{dequeue}$ ().
- Find adjacent vertices of v_3 : v_1 and v_6 .

vertex	visit	dist	path
v_1	no	∞	0
v_2	no	∞	0
v_3	yes	0	0
v_4	no	∞	0
v_5	no	∞	0
v_6	no	∞	0
v_7	no	∞	0

vertex	visit	dist	path
v_1	no	∞	0
v_2	no	∞	0
v_3	yes	0	0
v_4	no	∞	0
v_5	no	∞	0
v_6	no	∞	0
v_7	no	∞	0

- Has v_1 been visited?
- No.
- \rightarrow Work on v_1 .

vertex	visit	dist	path
v_1	no	∞	0
v_2	no	∞	0
v_3	yes	0	0
v_4	no	∞	0
v_5	no	∞	0
v_6	no	∞	0
v_7	no	∞	0

Queue:

vertex	visit	dist	path
v_1	no	∞	0
v_2	no	∞	0
v_3	yes	0	0
v_4	no	∞	0
v_5	no	∞	0
v_6	no	∞	0
v_7	no	∞	0

Queue:

vertex	visit	dist	path
v_1	yes	∞	0
v_2	no	∞	0
v_3	yes	0	0
v_4	no	∞	0
v_5	no	∞	0
v_6	no	∞	0
v_7	no	∞	0

- visit[1] = true.
- dist[1] = dist[3] + 1 = 1.

Queue:

vertex	visit	dist	path
v_1	yes	1	0
v_2	no	∞	0
v_3	yes	0	0
v_4	no	∞	0
v_5	no	∞	0
v_6	no	∞	0
v_7	no	∞	0

- visit[1] = true.
- dist[1] = dist[3] + 1 = 1.
- path $[1] = v_3$.

Queue:

vertex	visit	dist	path
v_1	yes	1	v_3
v_2	no	∞	0
v_3	yes	0	0
v_4	no	∞	0
v_5	no	∞	0
v_6	no	∞	0
v_7	no	∞	0

Queue:

vertex	visit	dist	path
v_1	yes	1	v_3
v_2	no	∞	0
v_3	yes	0	0
v_4	no	∞	0
v_5	no	∞	0
v_6	no	∞	0
v_7	no	∞	0

- Has v_6 been visited?
- No.
- \rightarrow Work on v_6 .

Queue:

vertex	visit	dist	path
v_1	yes	1	v_3
v_2	no	∞	0
v_3	yes	0	0
v_4	no	∞	0
v_5	no	∞	0
v_6	no	∞	0
v_7	no	∞	0

Queue:

 v_1

vertex	visit	dist	path
v_1	yes	1	v_3
v_2	no	∞	0
v_3	yes	0	0
v_4	no	∞	0
v_5	no	∞	0
v_6	no	∞	0
v_7	no	∞	0

Queue:

 v_1

vertex	visit	dist	path
v_1	yes	1	v_3
v_2	no	∞	0
v_3	yes	0	0
v_4	no	∞	0
v_5	no	∞	0
v_6	yes	∞	0
v_7	no	∞	0

- visit[6] = true.
- dist[6] = dist[3] + 1 = 1.

Queue:

 v_1

vertex	visit	dist	path
v_1	yes	1	v_3
v_2	no	∞	0
v_3	yes	0	0
v_4	no	∞	0
v_5	no	∞	0
v_6	yes	1	0
v_7	no	∞	0

- visit[6] = true.
- dist[6] = dist[3] + 1 = 1.
- path $[6] = v_3$.

Queue:

 v_1

vertex	visit	dist	path
v_1	yes	1	v_3
v_2	no	∞	0
v_3	yes	0	0
v_4	no	∞	0
v_5	no	∞	0
v_6	yes	1	v_3
v_7	no	∞	0

Iteration 2

• $v_1 \leftarrow \text{dequeue}()$.

Queue:

 v_1

vertex	visit	dist	path
v_1	yes	1	v_3
v_2	no	∞	0
v_3	yes	0	0
v_4	no	∞	0
v_5	no	∞	0
v_6	yes	1	v_3
v_7	no	∞	0

Iteration 2

- $v_1 \leftarrow \text{dequeue}$ ().
- Find adjacent vertices of v_1 : v_2 and v_4 .

Queue:

vertex	visit	dist	path
v_1	yes	1	v_3
v_2	no	∞	0
v_3	yes	0	0
v_4	no	∞	0
v_5	no	∞	0
v_6	yes	1	v_3
v_7	no	∞	0

• Has v_2 been visited?

Queue:

vertex	visit	dist	path
v_1	yes	1	v_3
v_2	no	∞	0
v_3	yes	0	0
v_4	no	∞	0
v_5	no	∞	0
v_6	yes	1	v_3
v_7	no	∞	0

- Has v_2 been visited?
- No.
- \rightarrow Work on v_2 .

Queue:

vertex	visit	dist	path
v_1	yes	1	v_3
v_2	no	∞	0
v_3	yes	0	0
v_4	no	∞	0
v_5	no	∞	0
v_6	yes	1	v_3
v_7	no	∞	0

enqueue(v_2).

Queue:

 v_6

vertex	visit	dist	path
v_1	yes	1	v_3
v_2	no	∞	0
v_3	yes	0	0
v_4	no	∞	0
v_5	no	∞	0
v_6	yes	1	v_3
v_7	no	∞	0

• visit[2] = true.

Queue:

 v_6

vertex	visit	dist	path
v_1	yes	1	v_3
v_2	yes	∞	0
v_3	yes	0	0
v_4	no	∞	0
v_5	no	∞	0
v_6	yes	1	v_3
v_7	no	∞	0

- visit[2] = true.
- dist[2] = dist[1] + 1 = 2.

Queue:

 v_6

vertex	visit	dist	path
v_1	yes	1	v_3
v_2	yes	2	0
v_3	yes	0	0
v_4	no	∞	0
v_5	no	∞	0
v_6	yes	1	v_3
v_7	no	∞	0

- visit[2] = true.
- dist[2] = dist[1] + 1 = 2.
- path[2] = v_1 .

Queue:

 v_6

vertex	visit	dist	path
v_1	yes	1	v_3
v_2	yes	2	v_1
v_3	yes	0	0
v_4	no	∞	0
v_5	no	∞	0
v_6	yes	1	v_3
v_7	no	∞	0

• Has v_4 been visited?

Queue:

 v_6

vertex	visit	dist	path
v_1	yes	1	v_3
v_2	yes	2	v_1
v_3	yes	0	0
v_4	no	∞	0
v_5	no	∞	0
v_6	yes	1	v_3
v_7	no	∞	0

- Has v_4 been visited?
- No.
- \rightarrow Work on v_4 .

Queue:

 v_6

vertex	visit	dist	path
v_1	yes	1	v_3
v_2	yes	2	v_1
v_3	yes	0	0
v_4	no	∞	0
v_5	no	∞	0
v_6	yes	1	v_3
v_7	no	∞	0

• enqueue(v_4).

Queue:

 v_6

 v_2

vertex	visit	dist	path
v_1	yes	1	v_3
v_2	yes	2	v_1
v_3	yes	0	0
v_4	no	∞	0
v_5	no	∞	0
v_6	yes	1	v_3
v_7	no	∞	0

• visit[4] = true.

Queue:

 v_6

 v_2

vertex	visit	dist	path
v_1	yes	1	v_3
v_2	yes	2	v_1
v_3	yes	0	0
v_4	yes	∞	0
v_5	no	∞	0
v_6	yes	1	v_3
v_7	no	∞	0

- visit[4] = true.
- dist[4] = dist[1] + 1 = 2.

Queue:

 v_6

 v_2

vertex	visit	dist	path
v_1	yes	1	v_3
v_2	yes	2	v_1
v_3	yes	0	0
v_4	yes	2	0
v_5	no	∞	0
v_6	yes	1	v_3
v_7	no	∞	0

- visit[4] = true.
- dist[4] = dist[1] + 1 = 2.
- path $[4] = v_1$.

Queue:

 v_6

 v_2

vertex	visit	dist	path
v_1	yes	1	v_3
v_2	yes	2	v_1
v_3	yes	0	0
v_4	yes	2	v_1
v_5	no	∞	0
v_6	yes	1	v_3
v_7	no	∞	0

• $v_6 \leftarrow \text{dequeue}()$.

Queue:

 v_6

 v_2

vertex	visit	dist	path
v_1	yes	1	v_3
v_2	yes	2	v_1
v_3	yes	0	0
v_4	yes	2	v_1
v_5	no	∞	0
v_6	yes	1	v_3
v_7	no	∞	0

- $v_6 \leftarrow \text{dequeue}()$.
- v_6 has no adjacent vertex.
- \rightarrow Ignore v_6 .

Queue:

 v_2

vertex	visit	dist	path
v_1	yes	1	v_3
v_2	yes	2	v_1
v_3	yes	0	0
v_4	yes	2	v_1
v_5	no	∞	0
v_6	yes	1	v_3
v_7	no	∞	0

• $v_2 \leftarrow \text{dequeue}()$.

Queue:

 v_2

vertex	visit	dist	path
v_1	yes	1	v_3
v_2	yes	2	v_1
v_3	yes	0	0
v_4	yes	2	v_1
v_5	no	∞	0
v_6	yes	1	v_3
v_7	no	∞	0

- $v_2 \leftarrow \text{dequeue}()$.
- Find adjacent vertices of v_2 : v_4 and v_5 .

Queue:

vertex	visit	dist	path
v_1	yes	1	v_3
v_2	yes	2	v_1
v_3	yes	0	0
v_4	yes	2	v_1
v_5	no	∞	0
v_6	yes	1	v_3
v_7	no	∞	0

• Has v_4 been visited?

Queue:

vertex	visit	dist	path
v_1	yes	1	v_3
v_2	yes	2	v_1
v_3	yes	0	0
v_4	yes	2	v_1
v_5	no	∞	0
v_6	yes	1	v_3
v_7	no	∞	0

- Has v_4 been visited?
- Yes.
- \rightarrow Ignore v_4 .

Queue:

vertex	visit	dist	path
v_1	yes	1	v_3
v_2	yes	2	v_1
v_3	yes	0	0
v_4	yes	2	v_1
v_5	no	∞	0
v_6	yes	1	v_3
v_7	no	∞	0

• Has v_5 been visited?

Queue:

vertex	visit	dist	path
v_1	yes	1	v_3
v_2	yes	2	v_1
v_3	yes	0	0
v_4	yes	2	v_1
v_5	no	∞	0
v_6	yes	1	v_3
v_7	no	∞	0

- Has v_5 been visited?
- No.
- \rightarrow Work on v_5 .

Queue:

vertex	visit	dist	path
v_1	yes	1	v_3
v_2	yes	2	v_1
v_3	yes	0	0
v_4	yes	2	v_1
v_5	no	∞	0
v_6	yes	1	v_3
v_7	no	∞	0

• enqueue(v_5).

Queue:

 v_4

vertex	visit	dist	path
v_1	yes	1	v_3
v_2	yes	2	v_1
v_3	yes	0	0
v_4	yes	2	v_1
v_5	no	∞	0
v_6	yes	1	v_3
v_7	no	∞	0

• visit[5] = true.

Queue:

 v_4

vertex	visit	dist	path
v_1	yes	1	v_3
v_2	yes	2	v_1
v_3	yes	0	0
v_4	yes	2	v_1
v_5	yes	∞	0
v_6	yes	1	v_3
v_7	no	∞	0

- visit[5] = true.
- dist[5] = dist[2] + 1 = 3.

Queue:

 v_4

vertex	visit	dist	path
v_1	yes	1	v_3
v_2	yes	2	v_1
v_3	yes	0	0
v_4	yes	2	v_1
v_5	yes	3	0
v_6	yes	1	v_3
v_7	no	∞	0

- visit[5] = true.
- dist[5] = dist[2] + 1 = 3.
- path $[5] = v_2$.

Queue:

 v_4

vertex	visit	dist	path
v_1	yes	1	v_3
v_2	yes	2	v_1
v_3	yes	0	0
v_4	yes	2	v_1
v_5	yes	3	v_2
v_6	yes	1	v_3
v_7	no	∞	0

• $v_4 \leftarrow \text{dequeue}()$.

Queue:

 v_4

vertex	visit	dist	path
v_1	yes	1	v_3
v_2	yes	2	v_1
v_3	yes	0	0
v_4	yes	2	v_1
v_5	yes	3	v_2
v_6	yes	1	v_3
v_7	no	∞	0

- $v_4 \leftarrow \text{dequeue}()$.
- Find adjacent vertices of v_4 : v_3 , v_5 , v_6 , and v_7 .

Queue:

vertex	visit	dist	path
v_1	yes	1	v_3
v_2	yes	2	v_1
v_3	yes	0	0
v_4	yes	2	v_1
v_5	yes	3	v_2
v_6	yes	1	v_3
v_7	no	∞	0

- Has v_3 been visited?
- Yes.
- \rightarrow Ignore v_3 .

Queue:

vertex	visit	dist	path
v_1	yes	1	v_3
v_2	yes	2	v_1
v_3	yes	0	0
v_4	yes	2	v_1
v_5	yes	3	v_2
v_6	yes	1	v_3
v_7	no	∞	0

- Has v_5 been visited?
- Yes.
- \rightarrow Ignore v_5 .

Queue:

vertex	visit	dist	path
v_1	yes	1	v_3
v_2	yes	2	v_1
v_3	yes	0	0
v_4	yes	2	v_1
v_5	yes	3	v_2
v_6	yes	1	v_3
v_7	no	∞	0

- Has v_6 been visited?
- Yes.
- \rightarrow Ignore v_6 .

Queue:

vertex	visit	dist	path
v_1	yes	1	v_3
v_2	yes	2	v_1
v_3	yes	0	0
v_4	yes	2	v_1
v_5	yes	3	v_2
v_6	yes	1	v_3
v_7	no	∞	0

• Has v_7 been visited?

Queue:

visit	dist	path
yes	1	v_3
yes	2	v_1
yes	0	0
yes	2	v_1
yes	3	v_2
yes	1	v_3
no	∞	0
	yes yes yes yes yes yes yes	yes 1 yes 2 yes 0 yes 2 yes 3 yes 1

- Has v_7 been visited?
- No.
- \rightarrow Work on v_7 .

Queue:

vertex	visit	dist	path
v_1	yes	1	v_3
v_2	yes	2	v_1
v_3	yes	0	0
v_4	yes	2	v_1
v_5	yes	3	v_2
v_6	yes	1	v_3
v_7	no	∞	0

• enqueue(v_7).

Queue:

 v_5

vertex	visit	dist	path
v_1	yes	1	v_3
v_2	yes	2	v_1
v_3	yes	0	0
v_4	yes	2	v_1
v_5	yes	3	v_2
v_6	yes	1	v_3
v_7	no	∞	0

• visit[7] = true.

Queue:

 v_5

vertex	visit	dist	path
v_1	yes	1	v_3
v_2	yes	2	v_1
v_3	yes	0	0
v_4	yes	2	v_1
v_5	yes	3	v_2
v_6	yes	1	v_3
v_7	yes	∞	0

- visit[7] = true.
- dist[7] = dist[4] + 1 = 3.

Queue:

 v_5

vertex	visit	dist	path
v_1	yes	1	v_3
v_2	yes	2	v_1
v_3	yes	0	0
v_4	yes	2	v_1
v_5	yes	3	v_2
v_6	yes	1	v_3
v_7	yes	3	0

- visit[7] = true.
- dist[7] = dist[4] + 1 = 3.
- path $[7] = v_4$.

Queue:

 v_5

vertex	visit	dist	path
v_1	yes	1	v_3
v_2	yes	2	v_1
v_3	yes	0	0
v_4	yes	2	v_1
v_5	yes	3	v_2
v_6	yes	1	v_3
v_7	yes	3	v_4

• $v_5 \leftarrow \text{dequeue}()$.

Queue:

 v_5

vertex	visit	dist	path
v_1	yes	1	v_3
v_2	yes	2	v_1
v_3	yes	0	0
v_4	yes	2	v_1
v_5	yes	3	v_2
v_6	yes	1	v_3
v_7	yes	3	v_4

- $v_5 \leftarrow \text{dequeue}()$.
- Find adjacent vertices of v_5 : v_7 .

Queue:

vertex	visit	dist	path
v_1	yes	1	v_3
v_2	yes	2	v_1
v_3	yes	0	0
v_4	yes	2	v_1
v_5	yes	3	v_2
v_6	yes	1	v_3
v_7	yes	3	v_4

Iteration 6(A)

- Has v_7 been visited?
- Yes.
- \rightarrow Ignore v_7 .

Queue:

vertex	visit	dist	path
v_1	yes	1	v_3
v_2	yes	2	v_1
v_3	yes	0	0
v_4	yes	2	v_1
v_5	yes	3	v_2
v_6	yes	1	v_3
v_7	yes	3	v_4

• $v_7 \leftarrow \text{dequeue}()$.

Queue:

vertex	visit	dist	path
v_1	yes	1	v_3
v_2	yes	2	v_1
v_3	yes	0	0
v_4	yes	2	v_1
v_5	yes	3	v_2
v_6	yes	1	v_3
v_7	yes	3	v_4

- $v_7 \leftarrow \text{dequeue}()$.
- Find adjacent vertices of v_7 : v_6 .

Queue:

vertex	visit	dist	path
v_1	yes	1	v_3
v_2	yes	2	v_1
v_3	yes	0	0
v_4	yes	2	v_1
v_5	yes	3	v_2
v_6	yes	1	v_3
v_7	yes	3	v_4

Iteration 7(A)

- Has v_6 been visited?
- Yes.
- \rightarrow Ignore v_6 .

Queue:

vertex	visit	dist	path
v_1	yes	1	v_3
v_2	yes	2	v_1
v_3	yes	0	0
v_4	yes	2	v_1
v_5	yes	3	v_2
v_6	yes	1	v_3
v_7	yes	3	v_4

End of Procedure

- The queue is empty.
- → End of procedure.

Queue:

vertex	visit	dist	path
v_1	yes	1	v_3
v_2	yes	2	v_1
v_3	yes	0	0
v_4	yes	2	v_1
v_5	yes	3	v_2
v_6	yes	1	v_3
v_7	yes	3	v_4

Pseudo Code

Inputs: vertices \mathcal{V} , edges \mathcal{E} , and the source vertex s.

1. Initialize an empty queue.

Pseudo Code

Inputs: vertices \mathcal{V} , edges \mathcal{E} , and the source vertex s.

- 1. Initialize an empty queue.
- 2. For each vertex $v \in \mathcal{V}$:
 - a. Set visit[v] = false.
 - b. Set dist $[v] = \infty$.
 - c. Set path[v] = 0.

vertex	visit	dist	path
v_1	false	∞	0
v_2	false	∞	0
•	•	• •	•
v_n	false	∞	0

Pseudo Code

Inputs: vertices \mathcal{V} , edges \mathcal{E} , and the source vertex s.

- 1. Initialize an empty queue.
- 2. For each vertex $v \in \mathcal{V}$:
 - a. Set visit[v] = false.
 - b. Set dist $[v] = \infty$.
 - c. Set path[v] = 0.
- 3. enqueue(s).
- 4. Set visit[s] = true and dist[s] = 0.

Pseudo Code (Cont.)

- 5. While the queue is not empty:
 - a. $v \leftarrow \text{dequeue}()$.
 - b. $S \leftarrow \{u \mid e_{vu} \in \mathcal{E} \text{ and } \text{visit}[u] = \text{true}\}.$

Pseudo Code (Cont.)

- 5. While the queue is not empty:
 - a. $v \leftarrow \text{dequeue}()$.
 - b. $S \leftarrow \{u \mid e_{vu} \in \mathcal{E} \text{ and } \text{visit}[u] = \text{true}\}.$
 - c. For each $u \in S$:
 - i. enqueue(u).
 - ii. visit[u] = true.
 - iii. dist[u] = dist[v] + 1.
 - iv. path[u] = v.

Pseudo Code (Cont.)

- 5. While the queue is not empty:
 - a. $v \leftarrow \text{dequeue}()$.
 - b. $S \leftarrow \{u \mid e_{vu} \in \mathcal{E} \text{ and } \text{visit}[u] = \text{true}\}.$
 - c. For each $u \in S$:
 - i. enqueue(u).
 - ii. visit[u] = true.
 - iii. dist[u] = dist[v] + 1.
 - iv. path [u] = v.

Outputs: dist[v] and path[v], for all $v \in \mathcal{V}$.

The time complexity is $O(|\mathcal{V}| + |\mathcal{E}|)$. (Why?)

First, the initialization has $O(|\mathcal{V}|)$ time complexity.

The time complexity is $O(|\mathcal{V}| + |\mathcal{E}|)$. (Why?)

First, the initialization has $O(|\mathcal{V}|)$ time complexity.

Second, queue operations has a total of $O(|\mathcal{V}|)$ time complexity.

- Every vertex is enqueued and dequeued exactly once.
- Enqueue and dequeue operations have constant time complexity.

The time complexity is $O(|\mathcal{V}| + |\mathcal{E}|)$. (Why?)

First, the initialization has $O(|\mathcal{V}|)$ time complexity.

Second, queue operations has a total of $O(|\mathcal{V}|)$ time complexity.

Third, every edge is touched once; thus $O(|\mathcal{E}|)$ time complexity.

- Once vertex v is dequeued, all the edges from v are touched.
- Every vertex is dequeued only once.
- Thus every edge is touched only once.

Thank You!