Infos:

o Wünsche für die letzte Stunde?

- Z. B.; - Prüfung Eusammen durchlösen -Mini-Prüfung für euch vorbereiten - Zusammenfassung der Theorie in Logik

Aufgaben zu Logik

- etwas lustiges/entspanntes

Feedback:

o gut gelöst :

Bonus, Generator bestimmen: F=Z3[x] 2+x+2=m(x) 2x+2 istein Generator von F* |F*|=|F1(0)|=9-1=8=> mogl. Ordnungen: 1, 2,4,8

2x+2 $2 \qquad (2\times+2)^{2} = 4\times^{2} + 8\times + 4 = \times^{2} + 2\times + 1 = \times -1 = \times + 2 \neq 1$ $(2\times+2)^{4} = ((2\times+2)^{2})^{2} = (\times+2)^{2} = \times^{2} + 4\times + 4 = \times^{2} + \times + 1 = -1 = 2 \neq 1$

=> ord(2x+2)=8 und 2x+2 ist ein Generator

Let F be a finite field. Show that there exists an irreducible polynomial $p(x) \in F[x]$ with deg(p(x)) > 1.

Idee: Wie der Beweis, dass es & viele Primzahlen gibt.

Nehme an nur endlich viele PZ pa, pz, ... PK

Sei M=P1. P2. ... · PR+7 => Rp; (m) = 1 => p; Km Vi

Aber Widerspruch, da m≠p; Vi und m muss ein Primfaktorhaben.

Sei F= { a, a, ... am }.

p(x) EF[x], deg(p(x))>1 and p(x) irreduzibel (>> p(x) hat Keine Nullstelle.

Wir wollen pWEFW s.d. p(WZO YaEF.

→ wir nehmen uns alle Nullstellen a; und "+1"

=> p hat keine Nullstelle

Prove or disprove: If Π complete, then Π_1 complete or Π_2 complete.

Nehme an T_3 complete and T_1 nicht complete Sei $S_2 \in S_2$ $\exists .d.$ $T_2(S_2) = 1$.

⇒ T(S1,52)=1 VS,ES,

Da II complete gibt es pripie PaxPa

s.d. $\&((s_1, s_2), (p_1, p_2)) = 1$

 $\Leftrightarrow Q_1(s_1, p_1) = 1$ oder $Q_2(s_2, p_2) = 1$ das wollen wir

Wie können wir ausschliessen?

"Es gibt Aussagen, die wir nicht beweisen Künnen

(*) ⇒ es gibt Si € Si s.d. Ti(Si)=1 und &(Si Pi)=0 Ypi ∈ Pi. jeder Beweis schlägt Schl

=> wähle sq wie oben.

 $\Rightarrow \&(\&_1,\&_2), (p_1,p_2) = 1 \text{ and } \&_1(s_1,p_1) = 0$

 $\Rightarrow \aleph_{1}(S_{2},\rho_{1})=1$

(b) Prove or disprove: If Π_1 sound or Π_2 sound, then Π sound.

Nehme an o.E.d.A. Its sound.

Sei (51,52) & S1 x S2 s.d. / &((51,52), (p1, p2))=1

 $mi+ (\rho_1, \rho_1) \in \rho_1 \times \rho_2.$ $\Rightarrow & (5_1, \rho_1) = 1 \quad oder \quad & (5_2, \rho_2) = 1.$

Fall (1): => Ty (5y) = 1 * (da Ty sound)

=> T(5,52)=1

Fall (2): keine Info da Wir nichts über Tz wissenu

=> wir können T(51,52)=U nicht ausschliessen.

VIt. Gegenbsp.?

Wirbrauchen: & (s, p)=0

 $(5_{2}, \rho_{2}) = 1$

begenson möglichst einfach wählen?

T(51,52)=0 (51)=0 und T2(52)=0

withle S== S== P1=P2={0}.

z.Z. Tz complete - finde Beweis pre P s.d. $\&_2(s_2,p_2)=1$

 $T_1(0) = 0$, $\&_1(0,0) = 0$ ($\rightarrow T_1$ complete) $T_2(0) = 0$, $\&_2(0,0) = 1$ (T_2 unsound) $\Rightarrow T(0) = 0$, &(0,0), (0,0) = 1 $\Rightarrow T$ unsound ∇ Logical Calculi;

· Wichtig: nichts von Lemma 2.7. anwenden?

Die nötige Theorie wird sehr gut in Abschnitt 6.4.2 vom Skript erklärt :)

$$\varnothing \vdash_{R_1} F \to F$$

$$\{F\} \vdash_{R_2} F \vee F$$

$$\{\neg F \vee \neg F\} \vdash_{R_3} F \to (\neg F \vee \neg F)$$

$$\{F \to (G \vee H), G \to H\} \vdash_{R_4} F \to H$$
 Formally derive $A \to \neg A$ from $\{\neg A\}$.

Strategie: von hinten anfangen

1 letzter Schrittmuss Ry Sein, der Rest passt nicht.

a) [A + (Lv(Gv7A)), L+(Gv7A)] + A - (Gv7A)

So et was können wir

nicht bekommen.

Nur Ræpasstiaber hann bekommen Wir das Gleiche einfach länger.

$$\Rightarrow \qquad \begin{array}{c} & & \\ & \times &$$