Problem

$$0 < \epsilon_1 < \epsilon_2 < 1$$

LetM be a probabilistic polynomial time Turing machine, and let C be a language where for some fixed

- **a.** $w \notin C$ implies $\Pr[M \text{ accepts } w] \leq \epsilon_1$, and
- **b.** $w \in C$ implies $\Pr[M \text{ accepts } w] \geq \epsilon_2$.

Show that $C \in BPP$. (Hint: Use the result of Lemma 10.5.)

Step-by-step solution

Step 1 of 1

Given M be probabilistic Turing Machine and C be a language where for some fixed $0 < \varepsilon_1 < \varepsilon_2 < 1$.

1. $w \notin C$ implies $\Pr[M \text{ accepts } w] \leq \varepsilon_1$. 2. $w \in C$ implies $\Pr[M \text{ accepts } w] \leq \varepsilon_2$

It is required to show $C \in BPP$

- Between any two distinct real numbers $\varepsilon_1 < \varepsilon_2$ there exists another real number that lies strictly between them. Thus to choose c such that $\varepsilon_1 < c < \varepsilon_2$
- Consider another machine S which repeatedly runs M. Now S accepts if the proportion of M's acceptance is greater or equal to C, and S rejects if the proportion of M's acceptance is less than C. Now to show S decides in BPP.
- Consider the variable S_k be the total number of acceptances by machine M after k runs on input w. Hence, for $w \in C$, S_k is the sum of k 0-1 random variables with common mean $\mu_1 > \varepsilon_2$, and for $w \notin C$, S_k is sum of k 0-1 random variable with common mean $\mu_1 > \varepsilon_1$. The error probabilities can then be expressed as follows:

1. For
$$w \in C$$
, $\Pr[S \text{ rejects } w] = \Pr\left[\frac{S_k}{k} < c\right] \le \Pr\left[\left|\frac{S_k}{k} - \mu_2\right| > \mu_2 - c\right]$
2. For $w \in C$, $\Pr[S \text{ accepts } w] = \Pr\left[\frac{S_k}{k} \ge c\right] \le \Pr\left[\left|\frac{S_k}{k} - \mu_1\right| \ge c - \mu_1\right]$

By the weak law of large numbers (or various other bounds from probability theory), there exist k that will make those probabilities on the right as small as desired, and in particular, there exist k that will make them both strictly less than

• By using "Amplification lemma" this shows $C \in BPP$

Comment