UNIVERSIDADE FEDERAL DE SÃO CARLOS

CENTRO DE CIÊNCIAS EXATAS E DE TECNOLOGIA PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

MINERAÇÃO EM FLUXOS CONTÍNUOS DE DADOS POR MEIO DE TÉCNICAS DE APRENDIZADO SEMISSUPERVISIONADAS

PRISCILLA DE ABREU LOPES

ORIENTADORA: PROFA. DRA. HELOISA DE ARRUDA CAMARGO

São Carlos – SP Março/2015

UNIVERSIDADE FEDERAL DE SÃO CARLOS

CENTRO DE CIÊNCIAS EXATAS E DE TECNOLOGIA
PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

MINERAÇÃO EM FLUXOS CONTÍNUOS DE DADOS POR MEIO DE TÉCNICAS DE APRENDIZADO SEMISSUPERVISIONADAS

PRISCILLA DE ABREU LOPES

Qualificação apresentada ao Programa de Pós-Graduação em Ciência da Computação da Universidade Federal de São Carlos, como parte dos requisitos para a obtenção do título de Doutor em Ciência da Computação, área de concentração: Inteligência Artificial

Orientadora: Profa. Dra. Heloisa de Arruda Camargo

São Carlos – SP Março/2015

RESUMO

Palavras-chave: aprendizado semissupervisionado, fluxos contínuos de dados, fuzzy

ABSTRACT

....

Keywords: semi-supervised learning, data streams, clustering, fuzzy

LISTA DE FIGURAS

2.1	Progressão anual do número de publicações em ingles considerando o resultado	
	de busca realizada na base Scopus, em 10 de janeiro de 2015, pela combinação	
	dos termos learning/mining e data streams/streaming data	15

LISTA DE TABELAS

ACRÔNIMOS E SIGLAS

AH – Árvores de Hoeffding

AM – Aprendizado de Máquina

AP – Affinuty Propagation

CVFDT – Concept-adapting Very Fast Decision Tree

EC – Ensemble de Classificadores

FCD – Fluxos Contínuos de Dados

FCM – Fuzzy C-Means

FPT – Fuzzy Pattern Trees

PA – *Passive-Agressive*

SVM – Support Vector Machine

cmc – *core-micro-cluster*

pcmc – potential core-micro-cluster

SUMÁRIO

CAPÍT	CAPÍTULO 1 – INTRODUÇÃO						
CAPÍT	ULO 2	– CONCEITOS GERAIS	10				
2.1	Aprendizado Semissupervisionado		10				
	2.1.1	Aprendizado Supervisionado e Não Supervisionado	11				
	2.1.2	Abordagens de Aprendizado Semissupervisionado	13				
2.2	Apren	dizado em Fluxos Contínuos de Dados	14				
	2.2.1	Abordagem por Exemplo e por Atributo	16				
	2.2.2	Árvores de Hoeffding	16				
	2.2.3	Agrupamento em Fluxos Contínuos de Dados	16				
	2.2.4	Ferramentas	17				
	2.2.5	Aplicações	17				
2.3 Considerações Finais							
CAPÍT	ULO 3	– ABORDAGENS PARA APRENDIZADO EM FLUXOS CONTÍNUO	S				
DE	DADOS	5	18				
3.1	cas de Classificação em Fluxos Contínuos de Dados	19					
3.2	Técnic	cas de Agrupamento em Fluxos Contínuos de Dados	20				
	3.2.1	Agrupamento Particional em FCD	21				
	3.2.2	Agrupamento Baseado em Densidade em FCD	22				
3.3	Técnic	cas de Aprendizado Semissupervisionado em Fluxos Contínuos de Dados	25				

	3.3.1	Classificação Semissupervisionada em FCD	25					
	3.3.2	Agrupamento Semissupervisionado em FCD	26					
	3.3.3	Aprendizado Semissupervisionado Híbrido em FCD	28					
	3.3.4	Ensemble de Modelos para Aprendizado Semissupervisionado em FCD	29					
3.4	Consid	lerações Finais	31					
CAPÍT	CAPÍTULO 4 – PROPOSTA DE TRABALHO							
4.1	Ativida	ades Principais	32					
4.2	Cronog	grama de Atividades	32					
4.3	Contri	buições Esperadas	32					
4.4	Consid	lerações Finais	32					
REFER	REFERÊNCIAS							

Capítulo 1

Introdução

Este capítulo introduz o contexto e a motivação que levaram à elaboração de uma proposta

Capítulo 2

CONCEITOS GERAIS

O Aprendizado de Máquina (AM) refere-se à investigação de métodos computacionais capazes de adquirir conhecimento de forma automática. Desde a formalização do surgimento desta área de pesquisa, na década de 80 (LANGLEY, 2011), distintas abordagens foram propostas para a realização do processo de aprendizagem.

Aspectos como a evolução e ampliação do acesso a novas tecnologias e a internet tornaram propício o surgimento e desenvolvimento de diferentes e novos domínios. Para as novas
características e desafios que despontaram neste contexto, as técnicas mais clássicas de AM já
não obtiveram o mesmo sucesso e, então, começaram a surgir novas abordagens na tentativa de
encontrar métodos capazes de lidar com novas peculiaridades desses domínios.

Neste capítulo são apresentados conceitos gerais que fundamentam a compreensão do problema tratado neste trabalho, bem como a proposta de pesquisa apresentada. Tais conceitos relacionam-se principalmente a aprendizado semissupervisionado e aprendizado em fluxos contínuos de dados.

2.1 Aprendizado Semissupervisionado

No contexto de AM, a inferência indutiva é um dos principais mecanismos utilizados para derivar conhecimento novo e predizer escritos futuros. No aprendizado indutivo o conhecimento é aprendido por meio de inferência indutiva sobre um conjunto de dados: objetos (também chamados de exemplos ou instâncias) que são descritos por um conjunto de atributos (MITCHELL, 1997). O aprendizado indutivo pode ser dividido em três abordagens: supervisionada, não supervisionada e semissupervisionada.

2.1.1 Aprendizado Supervisionado e Não Supervisionado

Abordagens supervisionadas são aquelas que realizam a extração de conhecimento pelo desenvolvimento de um modelo geral baseado em um conjunto de dados que possuem um atributo especial, chamado classe, que representa o conceito que se deseja aprender. Um exemplo de um conjunto de dados é dito rotulado se a classe à qual pertence é conhecida. Métodos conhecidos como de classificação tipicamente utilizam-se de conjuntos totalmente rotulados e, portanto, pertencem à categoria de aprendizado supervisionado. Estes métodos são amplamente utilizados por produzirem bons resultados (WITTEN; FRANK, 2005).

A maioria dos métodos de classificação utilizam-se de um conjunto de exemplos de treinamento para a construção de um classificador. Tais classificadores são constituídos de um conjunto de regras ou uma estrutura da qual possam ser extraídas regras de classificação. Um conjunto de exemplos de teste independente do conjunto de treinamento é aplicado ao classificador no intuito de verificar a qualidade do resultado obtido na etapa de construção. Se a avaliação for satisfatória, o classificador poderá ser aplicado a conjuntos de novos exemplos com classe desconhecida. Alguns métodos podem requerer um ajuste do classificador após um período de tempo ou o aumento do volume de dados.

Aplicações de árvores de decisão (QUINLAN, 1986), redes neurais (BISHOP, 1995), métodos estatísticos (DUDA; HART, 1973) e genéticos (GOLDBERG, 1989) fazem parte do conjunto de paradigmas para a resolução do problema de classificação (MITCHELL, 1997). Existem métodos, como o *K-Nearest Neightbors* (COVER; HART, 1967), que não geram classificadores, mas utilizam a informação de rótulos para classificar novos exemplos, atribuindo classes por meio de métricas de similaridade.

Variações de métodos de classificação baseados na teoria de conjuntos *fuzzy* (ZADEH, 1965) podem realizar a indução de regras que permitem a representação de conhecimento impreciso a partir de um conjunto de dados (PEDRYCZ; GOMIDE, 1998). Sistemas neuro-*fuzzy* (KLOSE et al., 2001) se utilizam de algoritmos de aprendizado derivados da teoria de redes neurais para gerar regras *fuzzy*. Outras bordagens são baseadas em árvores de decisão, que podem ser induzidas e, posteriormente, ter regras extraídas da estrutura resultante (QUINLAN, 1993). Propostas para extensões chamadas árvores de decisão *fuzzy* também podem ser encontradas na literatura (JANIKOW, 1998; CINTRA; MONARD; CAMARGO, 2012).

Estratégias evolutivas, como Algoritmos Genéticos, são utilizados na otimização e criação de sistemas *fuzzy*. Inicialmente, os chamados Sistemas *Fuzzy* Genéticos, possuíam grande foco na geração de sistemas com alta acurácia (CORDÓN, 2011). Este paradigma foi modificado e há

nas pesquisas mais recentes uma preocupação em aproveitar o potencial de interpretabilidade dos conjuntos *fuzzy* para a geração e otimização de sistemas que, além de alta acurácia, sejam mais claros e interpretáveis para seres humanos (CORDÓN, 2011; FAZZOLARI et al., 2013).

Apesar dos bons resultados produzidos por técnicas supervisionadas, é possível que as classes não estejam disponíveis para determinados domínios, impedindo sua aplicação. Neste contexto normalmente são aplicadas técnicas não supervisionadas de aprendizado.

Agrupamento de dados é uma típica técnica não supervisionada, ou seja, um processo capaz de realizar aprendizagem a partir de um conjunto de dados não rotulado. A aplicação de agrupamento tem como objetivo definir uma possível partição dos dados em grupos, de forma que exemplos semelhantes pertençam a um mesmo grupo e exemplos distintos pertençam a grupos distintos (JAIN; MURTY; FLYNN, 1999). Essa divisão dos dados é baseada em métricas que determinam a relação de dissimilaridade ou similaridade entre diferentes exemplos.

As diferentes técnicas de agrupamento podem ser divididas nas seguintes categorias (HAN; KAMBER; PEI, 2012):

- **Hierárquico:** cria uma decomposição hierárquica de um conjunto de exemplos de acordo com algum critério (DAY; EDELSBRUNNER, 1984; KAUFMAN; ROUSSEEUW, 1990; ZHANG; RAMAKRISHNAN; LIVNY, 1996);
- **Particional:** constrói uma partição inicial de um conjunto de exemplos e, por meio de um processo iterativo, busca melhorar a partição, mudando exemplos de grupo baseado, geralmente, em uma medida de distância (MACQUEEN, 1967; BEZDEK, 1981; KAUFMAN; ROUSSEEUW, 1990);
- **Baseado em Densidade:** baseado em funções densidade, é capaz de criar uma partição ou uma decomposição hierárquica de um conjunto de exemplos (ESTER et al., 1996; HINNEBURG; KEIM, 1998; ANKERST et al., 1999);
- **Baseado em Grades:** todas as operações de agrupamento são realizadas dentro de uma estrutura de grades (*grid*), que é uma divisão do espaço dos exemplos em um número finito de células (WANG; YANG; MUNTZ, 1997; SHEIKHOLESLAMI; CHATTERJEE; ZHANG, 1998).

É relevante mencionar que dentro dos conjuntos descritos é possível encontrar técnicas que utilizam conceitos da teoria de conjuntos *fuzzy*. O *Fuzzy C-Means* (FCM) (BEZDEK, 1981), por exemplo, é uma proposta pioneira, uma das primeiras extensões *fuzzy* do algoritmo *k-means* (MACQUEEN, 1967).

O algoritmo *k-means* é um dos mais populares e simples algoritmos de agrupamento, ainda sendo amplamente utilizado e, muitas vezes, servindo de base ao desenvolvimento de novos algoritmos. O objetivo do *k-means* é agrupar os dados em *k* grupos disjuntos, de maneira que a soma das distâncias entre os exemplos pertencentes a um grupo e seu respectivo centro seja mínima. O centro de grupo, ou protótipo, representa o ponto médio dos pontos pertencentes a um determinado grupo. No FCM a partição dos dados é realizada em grupos que podem ser não disjuntos, cada exemplo possuindo um grau de pertinência para cada *k* grupo.

Problemas como forte dependência de medidas de distância e normalização dos dados, definição do número correto de grupos para a divisão são observados quando aplicadas técnicas de agrupamento não supervisionadas.

O crescimento acelerado de conjuntos de dados em muitos domínios torna a rotulação manual e total dos dados onerosa. A aplicação de técnicas supervisionadas pode ser prejudicada por utilizar apenas uma pequena quantidade de dados rotulados. Ao mesmo tempo, a utilização de técnicas não supervisionadas desconsideraria totalmente esse conhecimento prévio disponível no processo de aprendizagem. Nesse contexto, surge a ideia de aprendizado semissupervisionado, apresentada na Seção 2.1.2.

2.1.2 Abordagens de Aprendizado Semissupervisionado

A ideia de exploração de informações rotuladas e não rotuladas data da década de 80 (PEDRYCZ, 1985; BOARD; PITT, 1989), mas vem sendo mais explorada, principalmente, na última década (CHAPELLE; SCHÖLKOPF; ZIEN, 2006; SCHWENKER; TRENTIN, 2014).

O aprendizado semissupervisionado tem como base técnicas supervisionadas ou não supervisionadas, adaptadas a fim de realizar a aprendizagem utilizando conjuntos parcialmente rotulados e/ou algum outro tipo de informação prévia já disponível.

visão geral: colocar ideia geral, a separação entre classificação semissupervisionada e agrupamento semissupervisionado e os tipos baseado em sementes e restrições. Ver texto mestrado (SEEGER, 2002; ZHU, 2005; CHAPELLE; SCHÖLKOPF; ZIEN, 2006; ZHU; GOLDBERG, 2009; SCHWENKER; TRENTIN, 2014)

D-FICCA: A density-based fuzzy imperialist competitive clustering algorithm for intrusion detection in wireless sensor networks (SHAMSHIRBAND et al., 2014)

Data Understanding Using Semi-Supervised Clustering (BHATNAGAR et al., 2012)

Label-based Semi-supervised Fuzzy Co-clustering for Document Categorization (YAN; CHEN, 2011)

On Semi-supervised Fuzzy c-Means Clustering with Clusterwise Tolerance by Opposite Criteria (HAMASUNA; ENDO, 2011)

As técnicas de aprendizado citadas e referenciadas nesta seção consideram características particulares para os dados disponíveis. Para essas propostas assume-se que o conjunto de dados é finito, os exemplos seguem uma distribuição estática e estão disponíveis para acesso sempre que necessário durante o processo de aprendizagem.

A evolução da tecnologia, a internet e o aumento significativo de seu número de usuários propiciaram o surgimento de domínios para os quais as características assumidas pelas abordagens mais clássicas de aprendizado não são verdadeiras. Nesse contexto, teve origem uma nova abordagem de tratamento dessa forma de aprendizado, denominado de aprendizado em fluxo contínuo de dados.

2.2 Aprendizado em Fluxos Contínuos de Dados

Existe hoje uma variedade de sistemas que produzem grande quantidade de dados em curto espaço de tempo, como monitoração de tráfego de rede (AGGARWAL; YU, 2008; YU et al., 2009; ZHANG et al., 2012; BREVE; ZHAO, 2013), redes de sensores (PAN; YANG; PAN, 2007; ZHANG et al., 2012; BOUCHACHIA; VANARET, 2014), mineração de *clicks* na *web* (MARIN et al., 2013), medida de consumo de energia (SILVA et al., 2011; ZHANG et al., 2012), fraude de cartão de crédito (WU; LI; HU, 2012), mineração de textos da *web* (FDEZ-RIVEROLA et al., 2007; CHENG et al., 2011; KMIECIAK; STEFANOWSKI, 2011; NAHAR et al., 2014a), rastreamento visual (LIU; ZHOU, 2014), olfação artificial (VITO et al., 2012). Estes conjuntos de dados têm tamanho indefinido, potencialmente infinito, e podem gerar exemplos com distribuição estatística mutável de acordo com o tempo.

O surgimento e crescimento deste tipo de sistemas impulsionaram a pesquisa por técnicas que pudessem realizar a aprendizagem considerando as características específicas por estes domínios, referidos como Fluxos Contínuos de Dados (FCD) (em inglês *Data Streams* ou *Streaming Data*). A Figura 2.1 traz um gráfico que mostra uma visão geral do crescimento no

número de publicações sobre aprendizado/mineração em FCD.

Figura 2.1: Progressão anual do número de publicações em inglês considerando o resultado de busca realizada na base Scopus, em 10 de janeiro de 2015, pela combinação dos termos *learning/mining* e *data streams/streaming data*

Data Stream/Very Large Data Fuzzy c-Means Algorithms for Very Large Data (HAVENS et al., 2012)

Learning Streams vs online learning

Trabalhos base para texto sobre aprendizado em FCD:

- Models and issues in data stream systems (BABCOCK et al., 2002)
- Mining data streams: a review (GABER; ZASLAVSKY; KRISHNASWAMY, 2005)
- An Introduction to Data Streams (AGGARWAL, 2007)
- Learning from Data Streams: Processing Techniques in Sensor Networks (GAMA; GABER, 2007)
- Mining of Massive Datasets (LESKOVEC; RAJARAMAN; ULLMAN, 2014) capítulo sobre data streams

Outros trabalhos mais ligados a abordagens:

• On Clustering Massive Data Streams: A Summarization Paradigm (AGGARWAL et al., 2007)

2.2.1 Abordagem por Exemplo e por Atributo

Aprendizado em FCD por exemplo: um FCD, objetivo é gerar um modelo geral considerando cada exemplo/instância do FCD.

Aprendizado em FCD por atributo: múltiplos FCD, o objetivo é identificar um modelo geral considerando os diferentes comportamentos de diversos FCD (↔ relação com séries temporais)

2.2.1.1 Métodos Aprendizado FCD por Atributo – não precisa ser uma subseção

O *MINETRAC* (CASAS; MAZEL; OWEZARSKI, 2011) combina técnicas de aprendizado não supervisionado e semissupervisionado para identificação e classificação de diferentes classes de fluxos de tráfego de internet de características similares.

Uma proposta de potencial estrutura para a representação de exemplos de um FCD de forma compacta é apresentada por Chen, Chen e Sheng (2013), com o objetivo de, posteriormente, agrupar as estruturas de múltiplos FCD de forma não supervisionada.

Para a identificação de padrões em sequências de dados, como múltiplos FCD ou séries temporais, Li (2014) apresenta uma abordagem semissupervisionada baseada em grafo para propagação de rótulos e extensão do conjunto rotulado que realiza o treinamento de um classificador usando *Support Vector Machine* (SVM).

Patil, Fatangare e Kulkarni (2015) propõem um modelo de aprendizagem para o domínio de preços e demanda no fornecimento de eletricidade. A detecção e adaptação a mudanças em tendências e valores, capacidade de predição e adaptatividade do modelo são alguns dos desafios para os quais os autores buscam solução.

2.2.2 Árvores de Hoeffding

Apresentação das Árvores de Hoeffding (AH).

2.2.3 Agrupamento em Fluxos Contínuos de Dados

2.2.3.1 Framework online-offline

Aquele desenho bonito.

2.2.3.2 Estrutura de sumarização dos dados

Data Stream Clustering: A Survey (SILVA et al., 2013)

Clustering Techniques for Streaming Data: A Survey (YOGITA; TOSHNIWAL, 2013)

2.2.4 Ferramentas

- MOA
- RapidMiner
- ??

2.2.5 Aplicações

Relevant applications include network traffic monitoring, sensor network data analysis, Web click stream mining, power consumption measurement, dynamic tracing of stock fluctuations (ZHANG et al., 2012)

in real-world applications, such as credit fraud and intrusion detection (WU; LI; HU, 2012) distribuição termal em transformadores (SOUZA et al., 2012)

Sistemas de recomendação, com teste em dados extraídos no The New York Times (MARIN et al., 2013) - dados implícitos em ações de usuários para adaptar o perfil de usuário de forma dinâmica

2.3 Considerações Finais

Este capítulo apresenta conceitos gerais relacionados a aprendizado semissupervisionado e em fluxos contínuos de dados, além de particularidades inerentes a estas abordagens. Esta síntese se faz necessária para situar o leitor, facilitando a compreensão do contexto investigado neste trabalho e permitindo entendimento mais claro do conteúdo que será apresentado no Capítulo 3.

Capítulo 3

ABORDAGENS PARA APRENDIZADO EM FLUXOS CONTÍNUOS DE DADOS

Tendo em conta os aspectos envolvidos no aprendizado em FCD e o recente crescimento de esforços para encontrar soluções capazes de lidar com os desafios encontrados nesta variedade de domínios, evidenciado na Seção 2.2, julga-se interessante a investigação mais aprofundada das diversas propostas existentes na literatura para aprendizado em FCD.

As propostas de técnicas para aprendizado em FCD são, na maioria das vezes, adaptações de técnicas de aprendizado clássico para lidar com um ou mais desafios encontrados em domínios de FCD, e.g.: a necessidade de processar os dados logo que chegam, seja de forma *online* (exemplo a exemplo) ou considerando partes do conjunto de exemplos (processamento de *chunks*); a adaptação do modelo geral que representa o FCD e a otimização de suas estruturas; a detecção e tratamento de desvios de conceito.

Algumas técnicas de aprendizado incremental foram desenvolvidas para domínios específicos ou com foco em conjuntos de dados que, embora volumosos, não apresentam características de FCD, como, por exemplo, questões de desvio de conceito. Ainda que o foco principal das propostas não seja o aprendizado em FCD, certas abordagens podem ser aplicadas neste contexto, porém com algumas ressalvas, já que não possuem mecanismos para lidar com um ou outro aspecto intrínseco aos domínios FCD.

Este capítulo apresenta discussão sobre uma revisão bibliográfica de abordagens para aprendizado em FCD, desenvolvidas especificamente com este intuito ou não, considerando a abordagem de aprendizado por exemplos, em que o processo de aprendizagem tem seu foco nas instâncias de um único FCD (Seção 2.2.1).

3.1 Técnicas de Classificação em Fluxos Contínuos de Dados

A indução de árvores de decisão é uma forma de aprendizado supervisionado amplamente utilizada e tem sido bastante explorada dentro do contexto de FCDs. Muitas das propostas envolvendo árvores de decisão utilizam ideias gerais das AH, apresentadas na Seção 2.2.2.

O algoritmo *Incremental Extremely Random Forest* (WANG et al., 2009) considera o aprendizado, feito por árvore de decisão baseada em AH, em FCDs com baixo volume de exemplos, mas em domínios onde seja necessária a adaptação do modelo geral de classificação.

A Very Fast Decision Tree (DOMINGOS; HULTEN, 2000), uma proposta de aprendizado incremental baseada em AH, serviu de fundamento para outros métodos. Uma das abordagens, Concept-adapting Very Fast Decision Tree (CVFDT) (HULTEN; SPENCER; DOMINGOS, 2001), tem como foco a detecção e adaptação a desvios de conceito em FCDs. Liu, Li e Zhong (2009) apresentam uma proposta de um mecanismo para integração de ambiguidades à CVFDT, modificando a divisão de nós pela exploração de múltiplas opções. A técnica visa garantir que o conhecimento mais novo seja utilizado na divisão dos nós, mas também é capaz de reaprender conceitos ressurgentes.

Tsai, Lee e Yang (2009) apresentam uma proposta diferenciada para mineração de regras de desvios de conceitos, buscando encontrar a regra que governa o desvio identificado. A técnica é baseada em AH e conta com estratégias para diminuir a complexidade das regras de desvio de conceito mineradas.

Dentro do conjunto de abordagens para aprendizado supervisionado em FCD também encontramos alguns métodos híbridos que se utilizam de conceitos *fuzzy*.

A proposta de Shaker, Senge e HÜllermeier (2013) é um método de classificação adaptativo baseado em *Fuzzy Pattern Trees* (FPT) (HUANG; GEDEON; NIKRAVESH, 2008), com mecanismo de adaptação que identifica a antecipação de possíveis mudanças locais no modelo atual e confirma essas mudanças por teste estatístico de hipótese.

Wang, Ji e Jin (2013) expõem a proposta de um *framework* geral para a utilização de pesos *fuzzy* para cada exemplo do FCD. De forma incremental, conforme a chegada de novos exemplos, o cálculo da pertinência, baseado na informação de rótulo, é efetuado, levando em conta as pertinências já calculados para exemplos antigos. O cálculo de distância utilizado pode identificar possíveis *outliers*. A priori, o *framework* pode ser utilizado em conjunto com qualquer algoritmo de classificação que faça uso da informação obtida na forma de pesos. Os autores optaram por vincular, de forma direta, um algoritmo baseado em redes neurais, o *Passive-Agressive* (PA)

(CRAMMER et al., 2006), constituindo a técnica neuro-fuzzy (JANG; SUN; MIZUTANI, 1997) chamada de Fuzzy Passive-Agressive.

A ideia da construção de um modelo preditivo pela integração de múltiplos modelos (WITTEN; FRANK, 2005; ROKACH, 2010) também pode ser encontrada no aprendizado em FCD. Abordagens que se utilizam deste sistema serão tratadas, doravante, pelo termo geral *Ensemble* de Classificadores (EC).

Tsymbal et al. (2008) propõe uma técnica de integração dinâmica de EC para auxiliar no trabalho com desvios de conceito, onde cada classificador recebe um peso proporcional a sua acurácia local. Para a classificação final, o melhor classificador base, quando houver, é selecionado ou é realizada uma votação ponderada entre os classificadores.

A mudança de conceitos e contexto é o foco no trabalho de Gomes, Menasalvas e Sousa (2011). A proposta baseada em EC realiza a detecção de mudanças de conceito e, dinamicamente, adiciona e remove classificadores ponderados de acordo com o que foi identificado. Conceitos estáveis são detectados por método baseado na taxa de erro do processo de aprendizado. A informação de contexto é utilizada na adaptação a conceitos recorrentes (ou ressurgentes) e no gerenciamento de conhecimento aprendido previamente.

A dificuldade de classificação de instâncias incompletas também é uma preocupação quando tratamos de aprendizado em FCD. A maior parte das abordagens assume que todos os exemplos do FCD possuem valores para um determinado conjunto de atributos, no entanto existem esforços (MILLÁN-GIRALDO; SÁNCHEZ; TRAVER, 2011) para que os exemplos sem um ou mais atributos possam ser aproveitados no processo de aprendizagem.

Pesquisadores têm investido na área de classificação em FCD, porém é importante ressaltar que nem sempre existem rótulos disponíveis para realizar esse tipo de tarefa de aprendizado e a rotulação manual dos exemplos de um FCD é inviável considerando seu tamanho potencialmente infinito. A próxima sessão descreve técnicas de agrupamento em FCD.

3.2 Técnicas de Agrupamento em Fluxos Contínuos de Dados

Abordagens de agrupamento de dados são tipicamente utilizadas no aprendizado não supervisionado. Dentro de domínios de FCD é comum verificar a falta de informação de classe, seja por conta da natureza do domínio (não existem classes definidas) ou pela dificuldade em rotular exemplos de um FCD. A Seção 2.2.3 discute algumas características específicas do agrupamento de dados em FCD e mecanismos para lidar com tais características.

Independentemente dos métodos adotados, é desejável que algoritmos de agrupamento em FCDs possuam a capacidade de (AMINI; WAH; SABOOHI, 2014): *a*) descobrir grupos de formatos arbitrários; *b*) lidar com ruído; *c*) realizar o agrupamento sem informação prévia sobre o número de grupos. Há diferentes técnicas para agrupamento em FCD e elas podem ser divididas de acordo com a abordagem de agrupamento que seguem.

O *ClusTree* (KRANEN et al., 2011), por exemplo, é uma proposta de índice hierárquico para manter vetores de grupo, construindo uma hierarquia de microgrupos em diferentes níveis. Outras técnicas que seguem abordagem hierárquica de agrupamento são o *E-Stream* (UDOMMANE-TANAKIT; RAKTHANMANON; WAIYAMAI, 2007), que possui suporte para cinco tipos de evolução em grupos (aparecimento, desaparecimento,, evolução própria, mescla e divisão), e suas extensões para suporte de incerteza em FCDs heterogêneos (MEESUKSABAI; KANGKACHIT; WAIYAMAI, 2011) e FCDs de alta dimensão (CHAIRUKWATTANA et al., 2014).

As subseções a seguir apresentam técnicas já existentes baseadas em agrupamento particional e baseado em densidade, onde é possível identificar focos de pesquisas mais recentes.

3.2.1 Agrupamento Particional em FCD

O *CluStream* (AGGARWAL et al., 2003) é baseado no algoritmo *k-means* para agrupamento de FCDs e introduz um *framework online-offline* para agrupamento em FCD que vem sendo adotado para grande parte dos algoritmos de agrupamento em FCD. Yang e Zhou (2006) propõem uma extensão chamada *HCluStream* para lidar com FCDs heterogêneos.

A proposta de Labroche (2014) está baseada no algoritmo *k*-medóides e realiza agrupamento *fuzzy* de forma incremental. O trabalho de Lemos, Caminhas e Gomide (2013) apresenta uma técnica para geração de um classificador *fuzzy* baseado em agrupamento incremental para a geração de regras que descrevem novos estados operacionais de um sistema de detecção e diagnóstico de falhas.

Hore, Hall e Goldgof (2007b) apresentam a proposta de uma abordagem genérica para agrupamento iterativo *fuzzy*/possibilístico em FCD, introduzindo equações objetivo transformadas para os algoritmo FCM (BEZDEK, 1981), *possibilitistc c-means* (KRISHNAPURAM; KELLER, 1996) e Gustafson-Kessel (GUSTAFSON; KESSEL, 1978). Outro trabalho (HORE; HALL; GOLDGOF, 2007a) traz uma nova variante do FCM para aprendizado em FCD, o *Streaming* FCM, que realiza adaptação à evolução de distribuições pela utilização de uma parte do histórico de protótipos/centróides no agrupamento de *chunks* de dados, conforme sua chegada. Em (HORE

et al., 2008) é explorada uma extensão *online* para o FCM que mantém sumarização do agrupamento usando exemplos ponderados. Os exemplos ponderados obtidos pelo agrupamento de cada *chunk* de dados formam um *ensemble* que é transformado em um conjunto de grupos finais.

Uma extensão do agrupamento *Affinity Propagation* (AP) (FREY; DUECK, 2007) para aprendizado em FCD é o algoritmo *Streaming* AP (ZHANG; FURTLEHNER; SEBAG, 2008). Usando método de passagem de mensagem, o AP escolhe, entre os exemplos disponíveis, aqueles que melhor representam o conjunto, os chamados *exemplars*, que indicam os diferentes grupos dentro do conjunto de exemplos. A proposta de extensão é dividida em dois passos, sendo que o objetivo do primeiro é encontrar os *exemplars* ponderados dentro de um *chunk* de dados por uma extensão do AP (*Weighted Affinity Propagation*), enquanto o segundo visa diminuir a complexidade do modelo pela aplicação do *Weighted Affinity Propagation* para o conjunto de *exemplars*. Em trabalho mais recente (ZHANG et al., 2014), o *Streaming* AP traz melhorias como mecanismo de detecção de mudanças e adaptação do modelo da distribução dos dados.

3.2.2 Agrupamento Baseado em Densidade em FCD

Os algoritmos de baseados em densidade também são utilizados como alternativa para a tarefa de agrupamento, sendo duas de suas vantagens a alta tolerância a ruído ou *outliers* e a habilidade em descobrir grupos de formatos arbitrários.

As técnicas de agrupamento baseado em densidade seguem, comumente, duas abordagens que são descritas nas próximas seções e incluem exemplos de algoritmos que se encaixam nessas categorias.

3.2.2.1 Algoritmos de Microgrupos de Densidade

Em algoritmos de agrupamento de microgrupos de densidade, microgrupos mantêm a informação de sumarização dos exemplos e o agrupamento é realizado usando as estruturas de sinopse.

A proposta de Cao et al. (2006) é o algoritmo de agrupamento em FCD baseado em densidade chamado *DenStream*, que utiliza duas estruturas de sumarização para lidar com novas distribuições no FCD, diferenciando-as de *outliers*. As estruturas nomeadas *core-micro-cluster* (cmc), referentes ao agrupamento em si, e *pontential core-micro-cluster* (pcmc), distribuição de exemplos que representa regiões menos densas que são mantidas. O aprendizado da estrutura do FCD é realizado em duas fases. Na fase *online* do algoritmo, cada novo exemplo pode ser

associado a um microgurpo já existente (cmc ou pcmc), de acordo com cálculo de métrica de dissimilaridade (distância Euclidiana) ou será criado um novo pcmc para o novo exemplo. Na fase *offline* é aplicado o algoritmo *DBSCAN* (ESTER et al., 1996) para determinar o grupos finais, de acordo com o conjunto de cmc. De tempos em tempos, um método de poda avalia o conjunto de pcmc para garantir que são *outliers*, de acordo com o valor de densidade, e descartá-los. O *DenStream* não possui mecanismos para a eliminação de microgrupos ou para fundir dois ou mais microgrupos, o que pode ser problemático conforme o crescimento do conjunto de exemplos e limitações de espaço para armazenamento.

O *DenStream* serviu de inspiração para outras técnicas que consideram situações particulares e implementam adaptações para lidar com contextos diversos. Li-xiong et al. (2009) desenvolveram um algoritmo baseado no *DenStream* para aplicações com grande volume de outliers. O algoritmo *SDStream* (REN; MA, 2009) tem a habilidade de descobrir grupos de formatos arbitrários dentro de um modelo de janela deslizante, que permite o esquecimento progressivo dos dados antigos. *HDenStream* (JINXIAN; HUI, 2009) é um algoritmo adaptado para aprendizado em FCDs com atributos heterogêneos pela inclusão de um atributo bidimensional para manter a frequência de atributos categóricos. O *HDDStream* (NTOUTSI et al., 2012) traz adaptações ao original *DenStream* para melhorar o agrupamento de FCDs de alta dimensão. O *PreDeConStream* (HASSANI et al., 2012) melhora a eficiência da fase *offline* do *HDDStream*.

Alguns métodos híbridos utilizam conceitos do algoritmo *DenStream* aliado a outras abordagens. O *StreamOptics* (TASOULIS; ROSS; ADAMS, 2007) é um *framework* baseado nos conceitos de cmc e pcmc, que utiliza o algoritmo *OPTICS* (ANKERST et al., 1999) para produzir visualização gráfica da estrutura do FCD e sua evolução com o passar do tempo. No entanto, em nenhum momento é gerada uma partição do conjunto, então a análise do agrupamento deve ser realizada manualmente. Isaksson, Dunham e Hahsler (2012) propõem o algoritmo *SOStream*, que detecta estrutura de FCDs de rápida evolução pela adaptação automática de limiar para o agrupamento baseado em densidade. O algoritmo utiliza aprendizado competitivo como em *Self Organizing Maps* (KOHONEN, 1982), o que pode tornar o processo mais oneroso.

O algoritmo *APDenStream* (ZHANG et al., 2013) baseia-se nos métodos AP e *DenStream* para definição de um modelo geral que representa o FCD. O algoritmo AP substitui o *DBSCAN* na fase *offline* do *DenStream*. Baseado em trabalho anterior dos autores (FORESTIERO; PIZZUTI; SPEZZANO, 2009), FlockStream (FORESTIERO; PIZZUTI; SPEZZANO, 2013) utiliza um sistema multi-agente baseado em um modelo de *flocking* (KENNEDY; EBERHART; SHI, 2001). Nesta técnica os agentes são microgrupos que trabalham de forma independente mas formam grupos juntos.

3.2.2.2 Algoritmos Baseados em Densidade e Grades

Uma tendência que pode ser observada é a integração entre diferentes abordagens de agrupamento, especificamente agrupamento baseado em grades e baseado em densidade. Há estudos (AMINI et al., 2011; AMINI; WAH; SABOOHI, 2014) sobre técnicas que seguem esta abordagem.

Métodos de agrupamento baseadas em grade e densidade mapeiam os pontos de dados em grade e, então, as grades são agrupados de acordo com suas densidades. Uma das primeiras tentativas de associar os dois métodos foi o trabalho de Gao et al. (2005), que propõe um algoritmo de agrupamento incremental de passagem única usando unidades densas, que são consideradas em uma fase de agrupamento caso tenham densidade acima de um limiar prédefinido.

D-Stream I (CHEN; TU, 2007) é a proposta de um framework para agrupamento de FCD em tempo real, que conta com fases online e offline. Na fase online acontece a leitura de um novo exemplo e seu mapeamento na grade. Na fase offline os grupos são ajustados em intervalos de tempo de acordo com o procedimento: no primeiro intervalo de tempo, cada grade densa é associada a um grupo distinto; a cada novo intervalo de tempo os grupos são ajustados pela identificação de grades densas e esparsas; se a grade for densa, será mesclada a outras grades vizinhas, formando um grupo, caso contrário a grade é removida do grupo. O D-Stream I agrupa os exemplos em tempo real de um FCD utilizando conceitos de agrupamento por densidade e grades, incluindo mecanismos para decaimento de densidade, detecção de evolução de comportamento e para lidar com outliers.

Algumas extensões para o *D-Stream I* são propostas. Jia, Tan e Yong (2008) melhora a qualidade dos grupos pela detecção dos pontos limites de uma grade. A extensão *D-Stream II* (TU; CHEN, 2009) inclui uma restrição de correlação para a mesclagem entre grades.

Ao realizar agrupamento baseado em grades, quanto maior a dimensão do conjunto de dados, maior o número de grades vazias. Pensando nisso, Ren, Cai e Hu (2011) propõem o algoritmo *PKS-Stream* para conjuntos de alta dimensão. A técnica possui uma estrutura de árvore para manter as grades não-vazias e suas relações. À chegada de um novo exemplo, o algoritmo verifica se ele pertence a alguma das grades existentes na estrutura de árvore. Caso não seja verdadeiro, uma nova grade é criada. De tempo em tempo, a árvore é ajustada, pela remoção de grades esparsas, e os grupos são formados de acordo com a densidade das grades vizinhas. O *PKS-Stream I* (ZHANG et al., 2012) é uma versão otimizada do *PKS-Stream*.

DCUStream (YANG et al., 2012) é um algoritmo baseado em densidade e grades para aprendizado em FCDs com dados incertos. A proposta introduz o conceito de core dense grid que

é uma grade densa com vizinhos esparsos, usados no momento de agrupamento na fase *offline*, quando os vizinhos esparsos são considerados ruído. O processo de busca pelos *core dense grids* e seus vizinhos pode ser bastante lento.

A proposta do algoritmo *DENGRIS-Stream* (AMINI; WAH, 2012) realiza o agrupamento dentro de um modelo de janela deslizante, na tentativa de capturar a distribuição mais recente dos dados. É a primeira proposta para agrupamento baseado em densidade e grades que considera o modelo de janela deslizante.

ExCC (BHATNAGAR; KAUR; CHAKRAVARTHY, 2013) é um algoritmo de agrupamento baseado em densidade e grades que tem como foco o aprendizado em FCDs heterogêneos. O algoritmo é robusto, adaptando-se a mudanças na distribuição dos dados e detectando *outliers* com rapidez. O algoritmo implementa um mecanismo para garantir o curso de novos grupos descobertos.

Pela revisão aqui exposta, pode-se verificar que é crescente o número de novas propostas para agrupamento em FCDs, em especial aquelas que utilizam abordagem baseada em densidade e outras abordagens capazes de lidar com o surgimento e desaparecimento de grupos de forma simples.

No entanto, neste tipo de aprendizado, ignoramos qualquer informação prévia que possa existir a respeito da distribuição dos dados. O investimento em novas propostas para aprendizado semissupervisionado em FCD também cresceu nos últimos anos, como pode ser inferido pelas técnicas apresentadas na próxima seção.

3.3 Técnicas de Aprendizado Semissupervisionado em Fluxos Contínuos de Dados

A busca por melhores resultados no aprendizado em FCD impulsionou o desenvolvimento de técnicas semissupervisionadas para trabalhar neste contexto. As abordagens de aprendizado semissupervisionado para conjuntos estáticos, juntamente com as abordagens de aprendizado supervisionado e não supervisionado em FCD servem de inspiração para as propostas descritas nas próximas seções.

3.3.1 Classificação Semissupervisionada em FCD

As técnicas de aprendizado semissupervisionado baseadas em classificadores assumem que o conjunto de dados é parcialmente rotulado. No caso desse tipo de aprendizado em FCD,

a parte rotulada dos exemplos pode ser apenas um pequeno conjunto que irá gerar o modelo inicial de classificação ou é possível encontrar exemplos rotulados no próprio fluxo.

Considerando essas duas abordagens, podem ser encontradas na literatura propostas baseadas em diferentes métodos de classificação, por exemplo: redes neurais (LEITE; COSTA; GOMIDE, 2010; ASTUDILLO; OOMMEN, 2011, 2013; BOUGUELIA; BELAID; BELAID, 2013; KASABOV et al., 2013), baseada em grafos (TIWARI; KURHANEWICZ, 2010; BERTINI; LOPES; ZHAO, 2012; BERTINI; ZHAO, 2013), competição de partículas (BREVE; ZHAO, 2012, 2013), SVM (FRANDINA et al., 2013), entre outros (PAN; YANG; PAN, 2007; FDEZ-RIVEROLA et al., 2007; SILVA et al., 2011).

Uma proposta (LIANG et al., 2012) baseada em CVFDT considera que o FCD possui rótulo positivo e os dados incertos são não rotulados e realiza o aprendizado de forma semissupervisionada.

Técnicas baseadas em *ensemble* de classificadores também são populares no aprendizado semissupervisionado em FCD. Kholghi e Keyvanpour (2011) apresentam uma proposta para um *framework* que combina semissupervisão por meio de *Active Learning* (SETTLES, 2010) e a consideração da influência de exemplos não rotulados a fim de melhorar a performance de aprendizagem, construindo um modelo de predição de rótulos de exemplo futuros com alto valor de acurácia. Esse modelo de predição é baseado em um *ensemble* de classificadores construídos a partir de *chunks* de exemplos do FCD. Esta é uma das primeiras tentativas de incorporação de *Active Learning* semissupervisionado em FCD.

3.3.2 Agrupamento Semissupervisionado em FCD

No aprendizado semissupervisionado baseado em agrupamento, considera-se conhecimento prévio para melhorar o aprendizado. Esta informação pode estar disponível em diferentes formas, por exemplo rótulos para parte do FCD, restrições entre pares de exemplos, informações estatísticas sobre a distribuição dos exemplos.

Quando há uma pequena quantidade de exemplos rotulados disponíveis, estes podem ser utilizados como sementes que contribuirão para guiar o algoritmo de agrupamento. O modelo de *flocking* serve de inspiração para a adaptação de um algoritmo de agrupamento para aprendizado em FCD (BRUNEAU; PICAROUGNE; GELGON, 2009), utilizando um pequeno conjunto de dados rotulados como informação para um operador de divisão de um grupo de exemplos, que permite a adaptação do agrupamento a mudanças no FCD.

Uma técnica de agrupamento semissupervisionado baseada em AP (SHI et al., 2009) utiliza informação prévia na forma de rótulos no ajuste da matriz de similaridade do modelo produzido

e promove um estudo para ampliar o conjunto de dados rotulados. Baseado em *Fuzy Pattern Matching* (CAYROL; FARRENY; PRADE, 1982; DUBOIS; PRADE; TESTEMALE, 1988), um método (MOUCHAWEH, 2010) tem o objetivo de aprender funções de pertinência com um conjunto de exemplos rotulados inicial limitado. A função de pertinência das classes é aprendida e atualizada, de acordo com a chegada de novos exemplos com rótulos.

O algoritmo *Compound Gaussian Mixture Model* (GAO; LIU; GAO, 2010), baseado no agrupamento *Gaussian Mixture Model* (ref), utiliza amostra de dados rotulados para melhorar o agrupamento. Atwa e Li (2014) propõem um algoritmo de agrupamento semissupervisionado que extende o AP para lidar com FCD. Um conjunto de instâncias rotuladas é incorporado para detecção de mudança, que requer a atualização do modelo o mais rápido possível. A técnica *Growing Type-2 Fuzzy Classifier* (BOUCHACHIA; VANARET, 2014) utiliza uma versão *online* do agrupamento *Gaussian Mixture Model* para gerar partições *fuzzy* tipo-2 (ref) para construir regras de classificação, empregando conjunto parcialmente rotulado no aprendizado. Esta técnica possui mecanismos para aprendizado em FCD.

Em um contexto de FCD com multirrótulos, o *Hierarchical Semi-supervised Impurity based Subspace Clustering* (AHMED; KHAN; RAJESWARI, 2010) captura a correlação implícita existente entre cada par de rótulos de classe.

Técnicas que utilizam informação na forma de restrições podem obtê-las a partir de exemplos rotulados, mas também pode ser um conhecimento pré-existente nesse formato. O *C-DenStream* (RUIZ; MENASALVAS; SPILIOPOULOU, 2009) é uma técnica baseada no algoritmo *DenStream* adaptado para a utilização o conceito de restrições entre pares de exemplos estendido para FCD. O *C-DenStream* foi uma das primeiras extensões do paradigma de aprendizado por agrupamento semissupervisionado estático para FCD e, embora traga ganhos nesse contexto, ainda possui as limitações do *DenStream*.

Halkidi, Spiliopoulou e Pavlou (2012) utiliza, além do FCD, um fluxo contínuo de restrições, introduzindo o conceito de multigrupos (regiões densas e sobrepostas) e implementa mecanismo para identificação de *outlier*. Sirampuj, Kangkachit e Waiyamai (2013) propõem um algoritmo para agrupamento em FCD também com uso de conhecimento prévio na forma de restrições. A técnica, que é uma extensão do *E-Stream* (UDOMMANETANAKIT; RAKTHANMANON; WAIYAMAI, 2007) possui mecanismos para lidar com restrições que mudam de acordo com o tempo (técnica de esquecimento).

Cheng et al. (2011) desenvolvem um *framework* para análise de agrupamento de textos e desenvolvimento de um novo modelo de agrupamento semissupervisionado, capaz de lidar com informação prévia na forma de restrições entre pares de exemplos e rótulos de maneira

simultânea.

Uma proposta de método para agrupamento em FCD incertos (domínios onde há ruído e dados incompletos) (AGGARWAL; YU, 2008) utiliza um modelo geral de incerteza, no qual assume-se que algumas estatísticas de incerteza estão disponíveis.

3.3.3 Aprendizado Semissupervisionado Híbrido em FCD

É possível identificar dentro do aprendizado semissupervisionado algumas abordagens híbridas, ou seja, inspiradas em métodos de agrupamento e classificação trabalhando em conjunto para melhorar o aprendizado.

Wu, Ye e Fu (2009) apresentam um método semissupervisionado para a construção de um rastreador de tópicos (*topical crawler*), aplicando um agrupamento *k-means* com restrições entre pares para detectar novas amostras de páginas enviadas a um classificador de páginas e preditor de links para atualização de modelos aprendidos.

A proposta de Borchani, Larranaga e Bielza (2011) é a combinação do método de (DASU; KRISHNAN, 2006) adaptado em um algoritmo de agrupamento para aprendizado semissupervisionado. O algoritmo de agrupamento é utilizado para atualização do modelo quando ocorre desvio de conceito.

Técnicas baseadas em AH podem utilizar métodos de agrupamento para divisão e rotulação em suas folhas. Li, Wu e Hu (2012) estende trabalho anterior (LI; WU; HU, 2010b) e propõem um algoritmo de classificação semissupervisionada em FCD, utilizando uma árvore de decisão como modelo de classificação. Para o crescimento da árvore, utiliza-se de um algoritmo de agrupamento baseado no *k-means* para a produção de grupos de conceito e rotulação automática de dados não rotulados. Potenciais desvios de conceito são identificados e conceitos recorrentes são mantidos. Uma técnica semelhante considera informação prévia na forma de rótulos e aplica uma versão semissupervisionada do algoritmo de agrupamento *k-modes* para produzir grupos de conceito (LI; WU; HU, 2010a; WU; LI; HU, 2012).

Clustering Feature Decision Tree (XU; QIN; CHANG, 2011) realiza a construção de uma árvore de decisão a partir de FCD parcialmente rotulados, aplicando algoritmo de agrupamento para gerar um vetor de atributos de grupos, sumários estatísticos que serão usados para indução da árvore de decisão. Os vetores de grupos também são empregados na classificação de exemplos nas folhas da árvore.

Zhang, Zhu e Guo (2009) propõem um framework para construção de modelos a partir de

FCD com exemplos rotulados e não rotulados. Para a construção do modelo, os dados do FCD são associados a quatro categorias distintas, cada qual correspondendo à situação de desvio de conceito, podendo existir ou não nos exemplos rotulados e não rotulados. Em seguida, é aplicado método de aprendizado SVM semissupervisionado baseado no *k-means*.

A técnica *Concurrent Semi-supervised Learning of Data Streams* (NGUYEN et al., 2011; NGUYEN; NG; WOON, 2013) aplica o potencial de aprendizado semissupervisionado concorrente, onde um modelo de agrupamento e um de classificação são construídos de forma simultânea e colaborativa, fazendo uso de um pequeno conjunto de exemplos rotulados encontrados em um FCD.

Outras propostas utilizam aprendizado semissupervisionado com objetivo de apenas estender o conjunto de exemplos rotulados e, então, aplicar método de aprendizado supervisionado com mecanismos disponíveis para lidar com as particularidades de FCD. Wu, Yang e Zhou (2006) coloca a proposta de um algoritmo de aprendizado semissupervisionado baseado em treinamento por agrupamento, para seleção de exemplos confiáveis a serem rotulados e utilizados no retreinamento de um classificador. A técnica proposta por (YU et al., 2009) aplica um algoritmo de agrupamento semissupervisionado aos exemplos parcialmente rotulados do FCD na tentativa de estender o conjunto de exemplos rotulados, utilizando-os para atualização de um modelo supervisionado que conta com mecanismos de esquecimento.

O framework COMPOSE (DYER; CAPO; POLIKAR, 2014) aprende desvios de conceitos em ambiente de FCD onde há apenas um conjunto inicial de dados rotulados e, após a inicialização, apenas dados não rotulados. O COMPOSE segue três passos: 1) combinação dos dados rotulados iniciais aos dados não rotulados atuais para treinar um classificador semissupervisionado e rotular de forma automática o conjunto de dados; 2) para cada classe, construção de formas que englobam os exemplos, representando a distribuição atual da classe; 3) compactação das formas e extração de instâncias representantes (core supports), que servirão como conjunto rotulado inicial para os próximos novos dados não rotulados.

3.3.4 Ensemble de Modelos para Aprendizado Semissupervisionado em FCD

Algumas propostas para aprendizado semissupervisionado em FCD tem a intenção de aproveitar da construção de diversos modelos trabalhando em conjunto para melhorar a representação dos exemplos do FCD.

Zhang et al. (2012) é uma adaptação do trabalho (ZHANG; ZHU; GUO, 2009), onde para

cada categoria de exemplo de treinamento é construído um modelo distinto para classificação, baseado em SVM. Em (ZHANG et al., 2014) os modelos base para o *ensemble* são construídos por método de aprendizado semissupervisionado, utilizando conjunto de exemplos rotulados e não rotulados. Informação histórica é mantida como parte de peso no fator de decisão para classificação de novos exemplos.

O trabalho de Nahar et al. (2014b) propõe um *framework* para detecção de *cyberbullying* utilizando um classificador *ensemble* semissupervisionado. Em outra proposta (NAHAR et al., 2014a), a técnica utiliza inclui a extensão do conjunto de dados rotulados por meio de um classificador *ensemble*, com aplicação de um algoritmo *fuzzy* SVM para ponderar o espaço de atributos do domínio.

Outras técnicas têm a extensão do conjunto de exemplos rotulados como parte do processo de aprendizado semissupervisionado. Cao e He (2008) apresenta um algoritmo iterativo que recupera rótulos de acordo com níveis de confiança para melhorar o sistema aprendido pela geração de vários modelos de classificação. A técnica utilizada por Ahmadi e Beigy (2012) treina classificadores usando os exemplos rotulados e tenta classificar os exemplos não rotulados por meio do *ensemble* para estender o conjunto de treinamento e adaptar os modelos de classificação.

Os trabalhos (MASUD et al., 2008a) e (MASUD et al., 2008b) descrevem uma proposta baseada na construção de microgrupos pela aplicação de método de agrupamento semissupervisionado e construção de classificadores pelo algoritmo *K-Nearest Neighbors* para cada*chunk* de exemplos do FCD. Os *L* melhores modelos (de acordo com acurácia individual) são utilizados em um *ensemble*.

A proposta de Ditzler e Polikar (2011) apresenta um *ensemble* onde classificadores são treinados a partir dos exemplos rotulados do FCD. Omodelo de classificação utiliza pesos para determinar a influência de cada classificador na decisão final e esses pesos são determinadospeladistância entre componentes de um *Gaussian Mixture Model* treinado com o conjunto completo de exemplos.

Masud et al. (2012) propõem um *ensemble* onde cada modelo de classificação é construindo como uma coleção de microgrupos, usando agrupamento semissupervisionado, e exemplos não rotulados são classificados de acordo com o conjunto de modelos.

Uma proposta (LIU et al., 2013) mantém um *ensemble* de modelos mistos, baseados em métodos de classificação e agrupamento. Os exemplos rotulados são utilizados para treinamento de classificador supervisionado e novos exemplos rotulados são empregados na atualização desse

classificador. Os exemplos não rotulados são utilizados na construção de modelos não supervisionado. O *ensemble* segue um modelo semissupervisionado de classificação de forma a maximizar o consenso entre os diferentes modelos.

3.4 Considerações Finais

Neste capítulo foram colocadas algumas técnicas de aprendizado em FCD. A maioria das propostas sugere adaptações para métodos de aprendizado em conjuntos estáticos, a fim de incluir mecanismos que possam lidar com as limitações de aprendizado em FCD.

Recentemente, percebe-se uma preocupação em elaborar técnicas que possam realizar o aprendizado de forma semissupervisionada, uma vez que a maior parte dos domínios não possuem uma quantidade grande de rótulos. O modelo supervisionado aprendido apenas pelo pequeno conjunto de exemplos pode ser ineficiente, enquanto modelos aprendidos de forma não supervisiona perdem a chance de melhorar o resultado pela consideração de informação prévia sobre o FCD.

As técnicas apresentadas neste capítulo utilizam métodos variados de aprendizado de máquina e implementam diferentes mecanismos para atacar os problemas característicos de aprendizado em FCD. Alguns trabalhos sugerem adaptações e extensões para melhorar um ou outro aspecto de um método. De forma geral, a forma de como lidar com o tempo (mecanismos de esquecimento) e detecção de desvio de conceitos são duas tarefas relevantes que não são consideradas por todas as técnicas de aprendizado em FCD. De qualquer forma, a revisão colocada no capítulo contribui para uma visão geral do estado da arte quanto ao aprendizado em FCD.

sugestão se forma de sumarização... tabela? Gráfica?

O Capítulo 4 discute a proposta de trabalho para elaboração da tese de doutorado dentro do tema de aprendizado de máquina semissupervisionado em FCD.

Capítulo 4

PROPOSTA DE TRABALHO

- 4.1 Atividades Principais
- 4.2 Cronograma de Atividades
- 4.3 Contribuições Esperadas
- 4.4 Considerações Finais

REFERÊNCIAS

AGGARWAL, C. C. An Introduction to Data Streams. In: AGGARWAL, C. C. (Ed.). *Data Streams - Models and Algorithms*. [S.l.]: Springer, 2007. p. 1–8.

AGGARWAL, C. C. et al. A Framework for Clustering Evolving Data Streams. In: *Proceedings of the 29th International Conference on Very Large Data bases*. [S.l.: s.n.], 2003. v. 29, p. 81–92.

AGGARWAL, C. C. et al. On Clustering Massive Data Streams: A Summarization Paradigm. In: AGGARWAL, C. C. (Ed.). *Data Streams - Models and Algorithms*. [S.l.]: Springer, 2007. p. 9–38.

AGGARWAL, C. C.; YU, P. S. A Framework for Clustering Uncertain Data Streams. In: 2008 IEEE 24th International Conference on Data Engineering. [S.l.]: IEEE, 2008. v. 00, p. 150–159.

AHMADI, Z.; BEIGY, H. Semi-supervised Ensemble Learning of Data Streams in the Presence of Concept Drift. In: *Hybrid Artificial Intelligent Systems*. [S.l.]: Springer Berlin Heidelberg, 2012. p. 526537.

AHMED, M. S.; KHAN, L.; RAJESWARI, M. Using Correlation Based Subspace Clustering for Multi-label Text Data Classification. In: 2010 22nd IEEE International Conference on Tools with Artificial Intelligence. [S.l.]: IEEE, 2010. p. 296–303.

AMINI, A.; WAH, T. Y. DENGRIS-Stream: A Density-Grid based Clustering Algorithm for Evolving Data Streams over Sliding Window. In: *International Conference on Data Mining and Computer Engineerging*. [S.l.: s.n.], 2012. p. 206–210.

AMINI, A.; WAH, T. Y.; SABOOHI, H. On Density-Based Data Streams Clustering Algorithms: A Survey. *Journal of Computer Science and Technology*, v. 29, n. 1, p. 116–141, 2014.

AMINI, A. et al. A study of density-grid based clustering algorithms on data streams. In: 2011 Eighth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD). [S.l.]: IEEE, 2011. p. 1652–1656.

ANKERST, M. et al. Optics: Ordering points to identify the clustering structure. In: *ACM Sigmod Record*. [S.l.: s.n.], 1999. p. 49–60.

ASTUDILLO, C. A.; OOMMEN, B. J. Imposing tree-based topologies onto self organizing maps. *Information Sciences*, v. 181, n. 18, p. 3798–3815, 2011.

ASTUDILLO, C. A.; OOMMEN, B. J. On achieving semi-supervised pattern recognition by utilizing tree-based SOMs. *Pattern Recognition*, v. 46, n. 1, p. 293–304, 2013.

- ATWA, W.; LI, K. Clustering Evolving Data Stream with Affinity. In: *Database and Expert Systems Applications*. [S.l.]: Springer International Publishing, 2014. p. 446–453.
- BABCOCK, B. et al. Models and issues in data stream systems. In: *Proceedings of the twenty-first ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems PODS '02*. New York, New York, USA: ACM Press, 2002. p. 1–16.
- BERTINI, J. a. R.; LOPES, A. D. A.; ZHAO, L. Partially labeled data stream classification with the semi-supervised K-associated graph. *Journal of the Brazilian Computer Society*, v. 18, n. 4, p. 299–310, 2012.
- BERTINI, J. R.; ZHAO, L. A Comparison of Two Purity-Based Algorithms When Applied to Semi-supervised Streaming Data Classification. In: *2013 BRICS Congress on Computational Intelligence and 11th Brazilian Congress on Computational Intelligence*. [S.l.]: IEEE, 2013. p. 21–27.
- BEZDEK, J. C. *Pattern Recognition with Fuzzy Objective Function Algorithms*. Norwell, MA, USA: Kluwer Academic Publishers, 1981.
- BHATNAGAR, V. et al. Data Understanding using Semi-Supervised Clustering. In: 2012 Conference on Intelligent Data Understanding. [S.l.]: IEEE, 2012. p. 118–123.
- BHATNAGAR, V.; KAUR, S.; CHAKRAVARTHY, S. Clustering data streams using grid-based synopsis. *Knowledge and Information Systems*, v. 41, n. 1, p. 127–152, jun. 2013.
- BISHOP, C. M. Neural Networks for Pattern Recognition. [S.l.]: Oxford University Press, 1995.
- BOARD, R.; PITT, L. Semi-supervised learning. *Machine Learning*, Kluwer Academic Publishers, v. 4, n. 1, p. 41–65, 1989.
- BORCHANI, H.; LARRANAGA, P.; BIELZA, C. Classifying evolving data streams with partially labeled data. *Intelligent Data Analysis*, v. 15, n. 5, p. 655–670, 2011.
- BOUCHACHIA, A.; VANARET, C. GT2FC: An Online Growing Interval Type-2 Self-Learning Fuzzy Classifier. *IEEE Transactions on Fuzzy Systems*, v. 22, n. 4, p. 999–1018, ago. 2014.
- BOUGUELIA, M.-R.; BELAID, Y.; BELAID, A. A Stream-Based Semi-supervised Active Learning Approach for Document Classification. In: 2013 12th International Conference on Document Analysis and Recognition. [S.l.]: IEEE, 2013. p. 611–615.
- BREVE, F.; ZHAO, L. Particle competition and cooperation in networks for semi-supervised learning with concept drift. In: *The 2012 International Joint Conference on Neural Networks (IJCNN)*. [S.l.]: IEEE, 2012. p. 1–6.
- BREVE, F.; ZHAO, L. Semi-supervised Learning with Concept Drift Using Particle Dynamics Applied to Network Intrusion Detection Data. In: 2013 BRICS Congress on Computational Intelligence and 11th Brazilian Congress on Computational Intelligence. [S.l.]: IEEE, 2013. p. 335–340.

BRUNEAU, P.; PICAROUGNE, F.; GELGON, M. Incremental semi-supervised clustering in a data stream with a flock of agents. In: *2009 IEEE Congress on Evolutionary Computation*. [S.1.]: IEEE, 2009. p. 3067–3074.

- CAO, F. et al. Density-Based Clustering over an Evolving Data Stream with Noise. In: *Proceedings of the 6th SIAM International Conference on Data Mining*. [S.l.: s.n.], 2006. p. 328–339.
- CAO, Y.; HE, H. Learning from testing data: A new view of incremental semi-supervised learning. In: 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence). [S.l.]: IEEE, 2008. p. 2872–2878.
- CASAS, P.; MAZEL, J.; OWEZARSKI, P. MINETRAC: Mining flows for unsupervised analysis & semi-supervised classification. In: *Proceedings of the 23rd International Teletraffic Congress*. [S.l.: s.n.], 2011. p. 87–94.
- CAYROL, M.; FARRENY, H.; PRADE, H. Fuzzy Pattern Matching. *Kybernetes*, v. 11, n. 2, p. 103–116, 1982.
- CHAIRUKWATTANA, R. et al. SE-Stream: Dimension Projection for Evolution-Based Clustering of High Dimensional Data Streams. In: *Knowledge and Systems Engineering*. [S.l.]: Springer International Publishing, 2014. p. 365–376.
- CHAPELLE, O.; SCHÖLKOPF, B.; ZIEN, A. Semi-Supervised Learning. [S.l.]: MIT Press, 2006. 523 p.
- CHEN, J.; CHEN, P.; SHENG, X. A Sketch-based Clustering Algorithm for Uncertain Data Streams. *Journal of Networks*, v. 8, n. 7, p. 1536–1542, jul. 2013.
- CHEN, Y.; TU, L. Density-based clustering for real-time stream data. In: *Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery and data mining KDD 07*. [S.l.: s.n.], 2007. p. 133–142.
- CHENG, Y. et al. Learning to Group Web Text Incorporating Prior Information. In: 2011 IEEE 11th International Conference on Data Mining Workshops. [S.l.]: IEEE, 2011. p. 212–219.
- CINTRA, M. E.; MONARD, M. C.; CAMARGO, H. A. FuzzyDT A Fuzzy Decision Tree Algorithm Based on C4. 5. In: *CBSF Brazilian Congress on Fuzzy Systems*. [S.l.: s.n.], 2012. p. 199–211.
- CORDÓN, O. A historical review of evolutionary learning methods for Mamdani-type fuzzy rule-based systems: Designing interpretable genetic fuzzy systems. *International Journal of Approximate Reasoning*, v. 52, n. 6, p. 894–913, set. 2011.
- COVER, T. M.; HART, P. E. Nearest Neighbor Pattern Classification. *IEEE Transactions in Information Theory*, IT-13, n. 1, p. 21–27, 1967.
- CRAMMER, K. et al. Online Passive-Aggressive Algorithms. *The Journal of Machine Learning Research*, v. 7, p. 551–585, 2006.
- DASU, T.; KRISHNAN, S. An information-theoretic approach to detecting changes in multi-dimensional data streams. In: *Proceedings of the Symposium on the Interface of Statistics, Computing Science, and Applications.* [S.l.: s.n.], 2006. p. 1–24.

DAY, W. H. E.; EDELSBRUNNER, H. Efficient algorithms for agglomerative hierarchical clustering methods. *Journal of Classification*, v. 1, n. 1, p. 7–24, 1984.

- DITZLER, G.; POLIKAR, R. Semi-supervised learning in nonstationary environments. In: *The* 2011 International Joint Conference on Neural Networks. [S.l.]: IEEE, 2011. p. 2741–2748.
- DOMINGOS, P.; HULTEN, G. Mining high-speed data streams. In: *Proceedings of the sixth ACM SIGKDD international conference on Knowledge discovery and data mining KDD '00*. [S.l.: s.n.], 2000. p. 71–80.
- DUBOIS, D.; PRADE, H.; TESTEMALE, C. Weighted fuzzy pattern matching. *Fuzzy Sets and Systems*, v. 28, n. 3, p. 313–331, 1988.
- DUDA, R. O.; HART, P. E. *Pattern classification and scene analysis*. [S.l.]: John Wiley and Sons, 1973.
- DYER, K. B.; CAPO, R.; POLIKAR, R. COMPOSE: A semisupervised learning framework for initially labeled nonstationary streaming data. *IEEE transactions on neural networks and learning systems*, v. 25, n. 1, p. 12–26, jan. 2014.
- ESTER, M. et al. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. In: *Second International Conference on Knowledge Discovery and Data Mining*. [S.l.: s.n.], 1996. p. 226–231.
- FAZZOLARI, M. et al. A Review of the Application of Multiobjective Evolutionary Fuzzy Systems: Current Status and Further Directions. *Fuzzy Systems, IEEE Transactions on*, v. 21, n. 1, p. 45–65, 2013.
- FDEZ-RIVEROLA, F. et al. Applying lazy learning algorithms to tackle concept drift in spam filtering. *Expert Systems with Applications*, v. 33, n. 1, p. 36–48, jul. 2007.
- FORESTIERO, A.; PIZZUTI, C.; SPEZZANO, G. FlockStream: A Bio-Inspired Algorithm for Clustering Evolving Data Streams. In: 2009 21st IEEE International Conference on Tools with Artificial Intelligence. [S.l.]: IEEE, 2009. p. 1–8.
- FORESTIERO, A.; PIZZUTI, C.; SPEZZANO, G. A single pass algorithm for clustering evolving data streams based on swarm intelligence. *Data Mining and Knowledge Discovery*, v. 26, p. 1–26, 2013. ISSN 13845810.
- FRANDINA, S. et al. On-Line Laplacian One-Class Support Vector Machines. In: *Artificial Neural Networks and Machine Learning (ICANN2013)*. [S.l.]: Springer Berlin Heidelberg, 2013. p. 186–193.
- FREY, B. J.; DUECK, D. Clustering by Passing Messages Between Data Points. *Science*, v. 315, n. 5814, p. 947–949, fev. 2007.
- GABER, M. M.; ZASLAVSKY, A.; KRISHNASWAMY, S. Mining data streams: a review. *ACM SIGMOD Record*, v. 34, n. 2, p. 18, jun. 2005.
- GAMA, J.; GABER, M. M. (Ed.). Learning from Data Streams: Processing Techniques in Sensor Networks. [S.l.]: Springer, 2007.

GAO, J. et al. An incremental data stream clustering algorithm based on dense units detection. *Advances in Knowledge Discovery and Data Mining*, v. 3518, p. 420–425, 2005.

- GAO, M. M.; LIU, J. Z.; GAO, X. X. Application of Compound Gaussian Mixture Model clustering in the data stream. In: 2010 International Conference on Computer Application and System Modeling (ICCASM 2010). [S.I.]: IEEE, 2010. p. V7–172–V7–177.
- GOLDBERG, D. *Genetic Algorithms in Search, Optimization, and Machine Learning*. [S.l.]: Addison-Wesley, 1989. 432 p.
- GOMES, J. a. B.; MENASALVAS, E.; SOUSA, P. a. C. Learning recurring concepts from data streams with a context-aware ensemble. In: *Proceedings of the 2011 ACM Symposium on Applied Computing SAC '11*. New York, New York, USA: ACM Press, 2011. p. 994.
- GUSTAFSON, D. E. G. D. E.; KESSEL, W. C. K. W. C. Fuzzy clustering with a fuzzy covariance matrix. 1978 IEEE Conference on Decision and Control including the 17th Symposium on Adaptive Processes, v. 17, n. 2, p. 761–766, 1978.
- HALKIDI, M.; SPILIOPOULOU, M.; PAVLOU, A. A semi-supervised incremental clustering algorithm for streaming data. *Advances in Knowledge Discovery and Data Mining*, v. 7301, p. 578–590, 2012.
- HAMASUNA, Y.; ENDO, Y. On semi-supervised fuzzy c-means clustering with clusterwise tolerance by opposite criteria. In: *2011 IEEE International Conference on Granular Computing*. [S.l.]: IEEE, 2011. p. 225–230.
- HAN, J.; KAMBER, M.; PEI, J. *Data Mining: Concepts and Techniques*. [S.l.]: Morgan Kaufmann Publishers, 2012. 744 p. (Data Management Systems Series).
- HASSANI, M. et al. Density-Based Projected Clustering of Data Streams. In: *Scalable Uncertainty Management*. [S.l.: s.n.], 2012. p. 311–324.
- HAVENS, T. C. et al. Fuzzy c-Means Algorithms for Very Large Data. *IEEE Transactions on Fuzzy Systems*, v. 20, n. 6, p. 1130–1146, dez. 2012.
- HINNEBURG, A.; KEIM, D. A. An Efficient Approach to Clustering in Large Multimedia Databases with Noise. In: *Proceedings of the Fourth International Conference on Knowledge Discovery and Data Mining (KDD-98)*. [S.l.: s.n.], 1998. v. 5865, p. 58–65.
- HORE, P. et al. Online fuzzy c means. In: *NAFIPS 2008 2008 Annual Meeting of the North American Fuzzy Information Processing Society.* [S.l.]: IEEE, 2008. p. 1–5.
- HORE, P.; HALL, L. O.; GOLDGOF, D. B. A fuzzy c means variant for clustering evolving data streams. In: 2007 IEEE International Conference on Systems, Man and Cybernetics. [S.1.]: IEEE, 2007. p. 360–365.
- HORE, P.; HALL, L. O.; GOLDGOF, D. B. Creating Streaming Iterative Soft Clustering Algorithms. In: *NAFIPS 2007 2007 Annual Meeting of the North American Fuzzy Information Processing Society*. [S.l.]: IEEE, 2007. p. 484–488.
- HUANG, Z.; GEDEON, T. D.; NIKRAVESH, M. Pattern trees induction: A new machine learning method. *IEEE Transactions on Fuzzy Systems*, v. 16, n. 4, p. 958–970, 2008.

HULTEN, G.; SPENCER, L.; DOMINGOS, P. Mining time-changing data streams. In: *Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery and data mining*. [S.l.: s.n.], 2001. p. 97–106.

- ISAKSSON, C.; DUNHAM, M. H.; HAHSLER, M. SOStream: Self Organizing Density-Based Clustering over Data Stream. In: *Machine Learning and Data Mining in Pattern Recognition*. [S.l.: s.n.], 2012. v. 7376, p. 264–278.
- JAIN, A. K.; MURTY, M. N.; FLYNN, P. J. Data clustering: a review. *ACM Comput. Surv.*, ACM, New York, NY, USA, v. 31, n. 3, p. 264–323, 1999.
- JANG, J.-S. R.; SUN, C.-T.; MIZUTANI, E. *Neuro-Fuzzy and Soft Computing*. [S.l.: s.n.], 1997. 614 p.
- JANIKOW, C. Z. Fuzzy decision trees: issues and methods. *Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on*, v. 28, n. 1, p. 1–14, 1998.
- JIA, C.; TAN, C.; YONG, A. A grid and density-based clustering algorithm for processing data stream. In: *Proceedings 2nd International Conference on Genetic and Evolutionary Computing, WGEC 2008.* [S.l.: s.n.], 2008. p. 517–521.
- JINXIAN, L.; HUI, L. A density-based clustering over evolving heterogeneous data stream. In: 2009 Second ISECS International Colloquium on Computing, Communication, Control, and Management, CCCM 2009. [S.l.: s.n.], 2009. v. 4, p. 275–277.
- KASABOV, N. et al. Dynamic evolving spiking neural networks for on-line spatio- and spectro-temporal pattern recognition. *Neural networks: the official journal of the International Neural Network Society*, Elsevier Ltd, v. 41, n. 1995, p. 188–201, maio 2013.
- KAUFMAN, L.; ROUSSEEUW, P. J. Finding Groups in Data: An Introduction to Cluster Analysis. [S.l.]: John Wiley and Sons, 1990. 368 p.
- KENNEDY, J.; EBERHART, R. C.; SHI, Y. Swarm Intelligence. [S.l.]: Morgan Kaufmann, 2001. 512 p.
- KHOLGHI, M.; KEYVANPOUR, M. Active Learning Framework Combining Semi-Supervised Approach for Data Stream Mining. In: *Intelligent Computing and Information Science*. [S.l.]: Springer Berlin Heidelberg, 2011, (Communications in Computer and Information Science, v. 135). p. 238–243.
- KLOSE, A. et al. Data mining with neuro-fuzzy models. In: KANDEL, A.; LAST, M.; BUNKE, H. (Ed.). *Data Mining and Computational Intelligence*. Heidelberg, Germany: Physica-Verlag GmbH, 2001. p. 1–35.
- KMIECIAK, M. R.; STEFANOWSKI, J. Semi-supervised approach to handle sudden concept drift. *Control and Cybernetics*, v. 40, n. 3, p. 667–695, 2011.
- KOHONEN, T. Self-organized formation of topologically correct feature maps. *Biological Cybernetics*, v. 43, p. 59–69, 1982.
- KRANEN, P. et al. The ClusTree: indexing micro-clusters for anytime stream mining. *Knowledge and Information Systems*, Springer-Verlag, v. 29, n. 2, p. 249–272, 2011.

KRISHNAPURAM, R.; KELLER, J. M. The possibilistic C-means algorithm: Insights and recommendations. *IEEE Transactions on Fuzzy Systems*, v. 4, n. 3, p. 385–393, 1996.

- LABROCHE, N. Online fuzzy medoid based clustering algorithms. *Neurocomputing*, Elsevier, v. 126, p. 141–150, fev. 2014.
- LANGLEY, P. The changing science of machine learning. *Machine Learning*, v. 82, n. 3, p. 275–279, 2011.
- LEITE, D.; COSTA, P.; GOMIDE, F. Evolving granular neural network for semi-supervised data stream classification. In: *The 2010 International Joint Conference on Neural Networks (IJCNN)*. [S.l.]: IEEE, 2010. p. 1–8.
- LEMOS, A.; CAMINHAS, W.; GOMIDE, F. Adaptive fault detection and diagnosis using an evolving fuzzy classifier. *Information Sciences*, Elsevier Inc., v. 220, p. 64–85, jan. 2013.
- LESKOVEC, J.; RAJARAMAN, A.; ULLMAN, J. D. *Mining of Massive Datasets*. [S.l.]: Cambridge University Press, 2014. 476 p.
- LI, F. A Pattern Query Strategy Based on Semi-supervised Machine Learning in Distributed WSNs. *Journal of Information and Computational Science*, v. 11, n. 18, p. 6447–6459, dez. 2014.
- LI, P.; WU, X.; HU, X. Learning from Concept Drifting Data Streams with Unlabeled Data. In: *Proceedings of the National Conference on Artificial Intelligence*. [S.l.: s.n.], 2010. p. 1945–1946.
- LI, P.; WU, X.; HU, X. Mining Recurring Concept Drifts with Limited Labeled Streaming Data. In: *JMLR: Workshop and Conference Proceedings 13*. [S.l.: s.n.], 2010. v. 3, n. 2, p. 241–252.
- LI, P.; WU, X.; HU, X. Mining Recurring Concept Drifts with Limited Labeled Streaming Data. *ACM Transactions on Intelligent Systems and Technology*, v. 3, n. 2, p. 1–32, fev. 2012.
- LI-XIONG, L. L.-x. L. et al. A three-step clustering algorithm over an evolving data stream. In: 2009 IEEE International Conference on Intelligent Computing and Intelligent Systems. [S.l.: s.n.], 2009. v. 1, p. 160–164.
- LIANG, C. et al. Learning very fast decision tree from uncertain data streams with positive and unlabeled samples. *Information Sciences*, Elsevier Inc., v. 213, p. 50–67, dez. 2012.
- LIU, J.; LI, X.; ZHONG, W. Ambiguous decision trees for mining concept-drifting data streams. *Pattern Recognition Letters*, Elsevier B.V., v. 30, n. 15, p. 1347–1355, nov. 2009.
- LIU, J. et al. A Semi-supervised Ensemble Approach for Mining Data Streams. *Journal of Computers*, v. 8, n. 11, p. 2873–2879, nov. 2013.
- LIU, Y.; ZHOU, Y. Online Detection of Concept Drift in Visual Tracking. In: *Neural Information Processing*. [S.l.]: Springer International Publishing, 2014. p. 159–166.
- MACQUEEN, J. B. Some Methods for Classification and Analysis of MultiVariate Observations. In: *In Proc. of the fifth Berkeley Symposium on Mathematical Statistics and Probability*. [S.l.]: University of California Press, 1967. v. 1, p. 281–297.

MARIN, L. et al. On-line dynamic adaptation of fuzzy preferences. *Information Sciences*, Elsevier Inc., v. 220, p. 5–21, jan. 2013.

MASUD, M. M. et al. A Practical Approach to Classify Evolving Data Streams: Training with Limited Amount of Labeled Data. In: *2008 Eighth IEEE International Conference on Data Mining*. [S.l.]: IEEE, 2008. p. 929–934.

MASUD, M. M. et al. A Practical Approach To Classify Evolving Data Streams: Training With Limited Amount Of Labeled Data. [S.l.], 2008. 11 p.

MASUD, M. M. et al. Facing the reality of data stream classification: coping with scarcity of labeled data. In: *Knowledge and Information Systems*. [S.l.: s.n.], 2012. v. 33, n. 1, p. 213–244.

MEESUKSABAI, W.; KANGKACHIT, T.; WAIYAMAI, K. HUE-Stream: Evolution-Based Clustering Technique for Heterogeneous Data Streams with Uncertainty. In: *Advanced Data Mining and Applications*. [S.l.]: Springer Berlin Heidelberg, 2011. p. 27–40.

MILLÁN-GIRALDO, M.; SÁNCHEZ, J. S.; TRAVER, V. J. On-line learning from streaming data with delayed attributes: a comparison of classifiers and strategies. *Neural Computing and Applications*, v. 20, n. 7, p. 935–944, jun. 2011.

MITCHELL, T. Machine Learning. [S.l.]: McGraw-Hill Education (ISE Editions), 1997.

MOUCHAWEH, M. S. Semi-supervised classification method for dynamic applications. *Fuzzy Sets and Systems*, Elsevier, v. 161, n. 4, p. 544–563, fev. 2010.

NAHAR, V. et al. Semi-supervised Learning for Cyberbullying Detection in Social Networks. In: *Databases Theory and Applications*. [S.l.]: Springer International Publishing, 2014. p. 160–171.

NAHAR, V. et al. Detecting cyberbullying in social networks using multi-agent system. *Web Intelligence and Agent Systems*, v. 12, n. 4, p. 375–388, 2014.

NGUYEN, H.; NG, W.; WOON, Y. Concurrent Semi-supervised Learning with Active Learning of Data Streams. In: *Transactions on Large-Scale Data- and Knowledge-Centered Systems VIII.* [S.l.]: Springer Berlin Heidelberg, 2013. v. 7790, p. 113–136.

NGUYEN, H.-l. et al. Concurrent Semi-supervised Learning of. In: *Data Warehousing and Knowledge Discovery*. [S.l.]: Springer Berlin Heidelberg, 2011. p. 445–459.

NTOUTSI, I. et al. Density-based Projected Clustering over High Dimensional Data Streams. In: *Proceedings of the third SIAM International Conference on Data Mining*. [S.l.: s.n.], 2012. p. 987–998.

PAN, J.; YANG, Q.; PAN, S. Online co-localization in indoor wireless networks by dimension reduction. In: *Proceedings of the National Conference on Artificial Intelligence*. [S.l.: s.n.], 2007. p. 1102–1107.

PATIL, P.; FATANGARE, Y.; KULKARNI, P. Semi-supervised Learning Algorithm for Online Electricity Data Streams. In: *Artificial Intelligence and Evolutionary Algorithms in Engineering Systems*. [S.l.]: Springer India, 2015. p. 349–358.

PEDRYCZ, W. Algorithms of fuzzy clustering with partial supervision. *Pattern Recognition Letters*, v. 3, n. January, p. 13–20, 1985.

- PEDRYCZ, W.; GOMIDE, F. An Introduction to Fuzzy Sets: Analysis and Design. [S.l.]: MIT Press, 1998. (A Bradford book).
- QUINLAN, J. R. Induction of decision trees. *Machine Learning*, v. 1, n. 1, p. 81–106, 1986.
- QUINLAN, J. R. *C4.5: Programs for Machine Learning*. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1993.
- REN, J.; CAI, B.; HU, C. Clustering over Data Streams Based on Grid Density and Index Tree. *Journal of Convergence Information Technology*, v. 6, n. 1, p. 83–93, 2011.
- REN, J.; MA, R. Density-based data streams clustering over sliding windows. In: *6th International Conference on Fuzzy Systems and Knowledge Discovery, FSKD 2009.* [S.l.: s.n.], 2009. v. 5, p. 248–252.
- ROKACH, L. Ensemble-based classifiers. Artificial Intelligence Review, v. 33, p. 1–39, 2010.
- RUIZ, C.; MENASALVAS, E.; SPILIOPOULOU, M. C-DenStream: Using domain knowledge on a data stream. In: *Discovery Science*. [S.l.]: Springer Berlin Heidelberg, 2009. p. 287–301.
- SCHWENKER, F.; TRENTIN, E. Partially supervised learning for pattern recognition. *Pattern Recognition Letters*, v. 37, fev. 2014.
- SEEGER, M. *Learning with labeled and unlabeled data*. [S.l.], 2002. 62 p. Disponível em: http://infoscience.epfl.ch/record/161327/files/review.pdf>.
- SETTLES, B. *Active Learning Literature Survey*. [S.1.], 2010. 65 p. Disponível em: http://burrsettles.com/pub/settles.activelearning.pdf>.
- SHAKER, A.; SENGE, R.; HÜLLERMEIER, E. Evolving fuzzy pattern trees for binary classification on data streams. *Information Sciences*, Elsevier Inc., v. 220, p. 34–45, jan. 2013.
- SHAMSHIRBAND, S. et al. D-FICCA: A density-based fuzzy imperialist competitive clustering algorithm for intrusion detection in wireless sensor networks. *Measurement*, Elsevier Ltd, v. 55, p. 212–226, set. 2014.
- SHEIKHOLESLAMI, G.; CHATTERJEE, S.; ZHANG, A. Wavecluster: A multi-resolution clustering approach for very large spatial databases. In: *Proceedings of the International Conference on Very Large Data Bases*. [S.l.: s.n.], 1998. p. 428–439.
- SHI, X. et al. An incremental affinity propagation algorithm and its applications for text clustering. In: 2009 International Joint Conference on Neural Networks. [S.l.]: IEEE, 2009. p. 2914–2919.
- SILVA, D. et al. Semi-supervised classification of characterized patterns for demand forecasting using smart electricity meters. In: 2011 International Conference on Electrical Machines and Systems. [S.l.]: IEEE, 2011. p. 1–6.
- SILVA, J. A. et al. Data stream clustering: A survey. *ACM Computing Surveys*, v. 46, n. 1, p. 1–31, out. 2013.

SIRAMPUJ, T.; KANGKACHIT, T.; WAIYAMAI, K. CE-Stream: Evaluation-based technique for stream clustering with constraints. In: *The 2013 10th International Joint Conference on Computer Science and Software Engineering (JCSSE)*. [S.l.]: IEEE, 2013. p. 217–222.

- SOUZA, L. et al. Thermal modeling of power transformers using evolving fuzzy systems. *Engineering Applications of Artificial Intelligence*, Elsevier, v. 25, n. 5, p. 980–988, ago. 2012.
- TASOULIS, K. D.; ROSS, G.; ADAMS, N. M. Visualising the Cluster Structure of Data Streams. In: *Advances in Intelligent Data Analysis*. [S.l.: s.n.], 2007. p. 81–92.
- TIWARI, P.; KURHANEWICZ, J. Semi supervised multi kernel (SeSMiK) graph embedding: identifying aggressive prostate cancer via magnetic resonance imaging and spectroscopy. In: *Medical Image Computing and Computer-Assisted Intervention (MICCAI 2010)*. [S.l.]: Springer Berlin Heidelberg, 2010. p. 666–673.
- TSAI, C.-J.; LEE, C.-I.; YANG, W.-P. Mining decision rules on data streams in the presence of concept drifts. *Expert Systems with Applications*, Elsevier Ltd, v. 36, n. 2, p. 1164–1178, mar. 2009.
- TSYMBAL, A. et al. Dynamic integration of classifiers for handling concept drift. *Information Fusion*, v. 9, n. 1, p. 56–68, jan. 2008.
- TU, L.; CHEN, Y. Stream data clustering based on grid density and attraction. *ACM Transactions on Knowledge Discovery from Data*, v. 3, n. 3, p. 12:1–12:27, 2009.
- UDOMMANETANAKIT, K.; RAKTHANMANON, T.; WAIYAMAI, K. E-Stream: Evolution-Based Technique for Stream Clustering. In: *Advanced Data Mining and Applications*. [S.l.]: Springer Berlin Heidelberg, 2007. p. 605–615.
- VITO, S. et al. Semi-Supervised Learning Techniques in Artificial Olfaction: A Novel Approach to Classification Problems and Drift Counteraction. *IEEE Sensors Journal*, v. 12, n. 11, p. 3215–3224, nov. 2012.
- WANG, A. et al. An incremental extremely random forest classifier for online learning and tracking. In: 2009 16th IEEE International Conference on Image Processing (ICIP). [S.l.]: IEEE, 2009. p. 1449–1452.
- WANG, L.; JI, H.-B.; JIN, Y. Fuzzy Passive-Aggressive classification: A robust and efficient algorithm for online classification problems. *Information Sciences*, Elsevier Inc., v. 220, p. 46–63, jan. 2013.
- WANG, W.; YANG, J.; MUNTZ, R. STING: A statistical information grid approach to spatial data mining. In: *Proceedings of International Conference on Very Large Data*. [S.l.: s.n.], 1997. p. 1–18.
- WITTEN, I. H.; FRANK, E. Data Mining: Practical machine learning tools and techniques. [S.l.: s.n.], 2005. 560 p.
- WU, Q.-Y.; YE, Y.; FU, J. Learnable topical crawler through online semi-supervised clustering. In: *2009 International Conference on Machine Learning and Cybernetics*. [S.l.]: IEEE, 2009. p. 231–236.

WU, S.; YANG, C.; ZHOU, J. Clustering-training for Data Stream Mining. In: *Sixth IEEE International Conference on Data Mining - Workshops (ICDMW'06)*. [S.l.]: IEEE, 2006. p. 653–656.

- WU, X.; LI, P.; HU, X. Learning from Concept Drifting Data Streams with Unlabeled Data. *Neurocomputing*, Elsevier Science Publishers B. V., Amsterdam, The Netherlands, The Netherlands, v. 92, p. 145–155, 2012.
- XU, W.-h.; QIN, Z.; CHANG, Y. Clustering feature decision trees for semi-supervised classification from high-speed data streams. *Journal of Zhejiang University SCIENCE C*, SP Zhejiang University Press, v. 12, n. 8, p. 615–628, 2011.
- YAN, Y.; CHEN, L. Label-based semi-supervised fuzzy co-clustering for document categoraization. In: 2011 8th International Conference on Information, Communications & Signal Processing. [S.1.]: IEEE, 2011. p. 1–5.
- YANG, C. Y. C.; ZHOU, J. Z. J. HClustream: A Novel Approach for Clustering Evolving Heterogeneous Data Stream. In: *Sixth IEEE International Conference on Data Mining Workshops (ICDMW'06)*. [S.l.: s.n.], 2006. p. 682–688.
- YANG, Y. et al. Dynamic density-based clustering algorithm over uncertain data streams. In: 2012 9th International Conference on Fuzzy Systems and Knowledge Discovery. [S.l.: s.n.], 2012. p. 2664–2670.
- YOGITA, Y.; TOSHNIWAL, D. Clustering techniques for streaming data a survey. In: 2013 3rd IEEE International Advance Computing Conference (IACC). [S.I.]: IEEE, 2013. p. 951–956.
- YU, Y. et al. Anomaly intrusion detection for evolving data stream based on semi-supervised learning. In: *Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)*. [S.l.: s.n.], 2009. v. 5506 LNCS, p. 571–578.
- ZADEH, L. A. Fuzzy sets. *Information and Control*, v. 8, n. 3, p. 338–353, 1965.
- ZHANG, B. et al. A New Semi-supervised Learning Based Ensemble Classifier for Recurring Data Stream. In: *Pervasive Computing and the Networked World*. [S.l.]: Springer International Publishing, 2014. v. 8351, p. 759–765.
- ZHANG, D. et al. A Clustering Algorithm Based on Density-Grid for Stream Data. In: 2012 13th International Conference on Parallel and Distributed Computing, Applications and Technologies. [S.l.]: IEEE, 2012. p. 398–403.
- ZHANG, J.-p. et al. Online stream clustering using density and affinity propagation algorithm. In: 2013 IEEE 4th International Conference on Software Engineering and Service Science. [S.l.]: IEEE, 2013. p. 828–832.
- ZHANG, P. et al. A framework for application-driven classification of data streams. *Neurocomputing*, Elsevier, v. 92, p. 170–182, set. 2012.
- ZHANG, P.; ZHU, X.; GUO, L. Mining Data Streams with Labeled and Unlabeled Training Examples. In: 2009 Ninth IEEE International Conference on Data Mining. [S.l.]: IEEE, 2009. p. 627–636.

ZHANG, T.; RAMAKRISHNAN, R.; LIVNY, M. BIRCH: An Efficient Data Clustering Method for Very Large Databases. In: *Proceedings of the 1996 ACM SIGMOD International Conference on Management of Data*. New York, NY, USA: ACM, 1996. (SIGMOD '96), p. 103–114.

ZHANG, X. et al. Data Stream Clustering With Affinity Propagation. *IEEE Transactions on Knowledge and Data Engineering*, v. 26, n. 7, p. 1644–1656, jul. 2014.

ZHANG, X.; FURTLEHNER, C.; SEBAG, M. Data streaming with affinity propagation. In: *Machine Learning and Knowledge Discovery Database*. [S.l.]: Springer Berlin Heidelberg, 2008. p. 628–643.

ZHU, X. *Semi-Supervised Learning Literature Survey*. [S.l.], 2005. 60 p. Disponível em: http://pages.cs.wisc.edu/jerryzhu/pub/ssl_survey.pdf>.

ZHU, X.; GOLDBERG, A. B. *Introduction to Semi-Supervised Learning*. [S.l.: s.n.], 2009. 130 p.