Exercícios - Imagem Direta e Inversa

José Antônio O. Freitas

MAT-UnB

19 de setembro de 2020

Exercício

Seja g. $\underline{A} \rightarrow \underline{B}$ uma função e sejam $\underline{X}, Y \subset \underline{B}$. Mostre que $\underline{g}^{-1}(X - \underline{Y}) = \underline{g}^{-1}(X) - \underline{g}^{-1}(Y)$.

SEOA teg-3(X-Y). DA í g(t)ex-

Assim $g(t) \in X \in g(t) \notin Y$.

 $t \in g^{-1}(X) \in t \notin g^{-1}(Y)$. con is

 $t \in g^{-1}(x) - g^{-1}(y)$, or SETA $g'(X-Y) \leq g'(X) - g'(Y).$ AGOM SETA JE $g^{-1}(X) - g^{-1}(Y)$. $PA' = g^{-1}(X) = g + g^{-1}(Y)$. ISTO $E, g(g) \in X = g(g) + Y$. ASSIM

< □ ト ← □ ト ← 重 ト ← 重 ・ か へ ()

$$g(j) \in X-Y$$
. L060, $j \in g^{-3}(X-Y)$.

$$g^{-1}(x) - g^{-1}(y) \leq g^{-1}(x-y)$$
.

$$g'(X-Y)=g'(X)-g'(Y).*$$

Exercício

Sejam $f: \underline{A} \to \underline{B}$ uma função e $\underline{P}, \underline{Q} \subseteq \underline{A}$. Mostre que se f é injetora, então $f(\underline{P} \cap \underline{Q}) = f(\underline{P}) \cap f(\underline{Q})$.

$$f: A \rightarrow B$$
; $P \subseteq A$
 $f(P) = \{f(x) \mid x \in P\} \Rightarrow y \in Y = f(x), x \in P.$

SETA tef(PnQ). DAÍ EXISTE 3 e Pn Q TAL QUE f(3)= t. ASM JEPE JEQ. LOGO, TEf(P)E $t \in f(0)$, ISTO ϵ , $t \in f(P)$ f(0).

DA í

 $f(P \cap Q) = f(P) \cap f(Q)$.

AGOM SE $t \in f(P) \cap f(Q)$. DATE MAT-UNB tef(P) e tef(b). Assim EXISTE X, EP TAL QUE f(xi)-t E EXISTE XZEQ TAL Que p(x2)= 1. 2060, f(xi) = f(xi). MAS f E SNJETO-RA, com ISSO $\chi_1 = \chi_2$. ENT Ao ◆□▶ ◆圖▶ ◆意▶ ◆意▶ 「意」

X=XIEPnQ E ASSIM LEP(PnQ).

PONTANTO,