MATH 3110 HOMEWORK #3

KIRILL CHERNYSHOV

Problem 3.1.1 (e)

Proof. We begin by examining the difference $|\sqrt{n^2+1}-n-0|=|\sqrt{n^2+1}-n|$. Since for n>0, $\sqrt{n^2}=n$ and $n^2+1>n^2$, and since \sqrt{n} increases as n increases, we have $\sqrt{n^2+1}>n$ for n>0. Therefore, $|\sqrt{n^2+1}-n|=\sqrt{n^2+1}-n$, since the quantity is always positive. Now, pick $\epsilon>0$ and solve the inequality:

$$\sqrt{n^{1}+1} - n < \epsilon$$

$$\sqrt{n^{2}+1} < \epsilon + n$$

$$n^{2}+1 < \epsilon^{2}+n^{2}+\epsilon n$$

$$\epsilon n > 1 - \epsilon^{2}$$

$$n > \frac{1}{\epsilon} - \epsilon$$

Therefore, given $N > \frac{1}{\epsilon} - \epsilon$, for any ϵ , for all $n \geq N$, $|\sqrt{n^2 + 1} - n| < \epsilon$.

Problem 3.1.2 Prove that if $\{a_n\}$ is a non-negative sequence, then $\lim_{n\to\infty} a_n = 0 \implies \lim_{n\to\infty} \sqrt{a_n} = 0$.

Proof. Pick any $\epsilon > 0$. By definition, $\lim_{n \to \infty} a_n = 0$ means that, for any $\epsilon' > 0$ there exists N such that for all $n \geq N$, $|a_n| < \epsilon'$, equivalent to $a_n < \epsilon'$ since we are also given that $a_n \geq 0 \,\forall n$. \sqrt{n} increases as n increases, so this means that $\sqrt{a_n} < \sqrt{\epsilon'}$. Therefore, we can pick $\epsilon' = \epsilon^2$, and using the same N, we know that $\sqrt{a_n} < \sqrt{\epsilon'} = \epsilon$. Therefore, $\lim_{n \to \infty} \sqrt{a_n} = 0$.

Problem 3.2.3

(a) Show that the sequence

$$a_n = \sum_{i=1}^n \frac{1}{n+i}$$

has a limit.

Proof. To show that this sequence has a limit, it suffices to show that it is both increasing and has an upper bound. First, examine the difference between two consecutive terms:

$$a_{n+1} - a_n = \sum_{i=1}^{n+1} \frac{1}{n+1+i} - \sum_{i=1}^n \frac{1}{n+i}$$

$$= \sum_{i=2}^{n+2} \frac{1}{n+i} - \sum_{i=1}^n \frac{1}{n+i}$$

$$= \frac{1}{2n+2} + \frac{1}{2n+1} - \frac{1}{n+1}$$

$$> \frac{1}{2n+2} + \frac{1}{2n+2} - \frac{1}{n+1} = \frac{1}{n+1} - \frac{1}{n+1} = 0$$

Since the difference is strictly greater than 0, the sequence is strictly increasing. Also, note that $\sum_{i=1}^n \frac{1}{n+i} < \sum_{i=1}^n \frac{1}{n} = \frac{n}{n} = 1$, that is, the sequence is bounded above by 1. Thus, the sequence must have a limit.

The limit is actually $\ln 2$, since the sequence is actually the riemann sum for $\int_0^1 \frac{1}{1+x} dx$

(b) In the last step, the $K - \epsilon$ principle cannot be applied, since it works if and only if K is a constant, and n is not a constant.

Problem 4.3.1 The generic recursive formula for Newton's method is

$$a_{n+1} = a_n - \frac{f(a_n)}{f'(x_n)}$$

For $f(x) = x^2 - 3$ we have f'(x) = 2x, and therefore the recursive formula is $a_{n+1} = a_n - \frac{a_n^2 - 3}{2a_n}$, where $a_n \neq 0$.

Problem 3-1 (a) Suppose that $b_n = \frac{\sum_{i=1}^n a_i}{n}$ for some sequence $\{a_n\}$. Show that if $\lim_{n\to\infty} a_n = 0$ then $\lim_{n\to\infty} b_n = 0$.

Proof. By definition, given $\epsilon > 0$, there exists N such that for all $n \geq N$, $|a_n| < \epsilon$. Now examine the value of $|b_n|$:

$$|b_n| = \left| \frac{\sum_{i=1}^n a_i}{n} \right|$$

$$= \left| \frac{\sum_{i=1}^{\lfloor N \rfloor} a_i}{n} + \frac{\sum_{i=\lfloor N \rfloor + 1}^n a_i}{n} \right|$$

$$< \frac{\sum_{i=1}^{\lfloor N \rfloor} |a_i|}{n} + \frac{\sum_{i=\lfloor N \rfloor + 1}^n \epsilon}{n}$$

$$= \frac{\sum_{i=1}^{\lfloor N \rfloor} |a_i|}{n} + \frac{(n - \lfloor N \rfloor)\epsilon}{n}$$

$$< \frac{\sum_{i=1}^{\lfloor N \rfloor} a_i}{n} + \frac{n\epsilon}{n}$$

$$= \frac{\sum_{i=1}^{\lfloor N \rfloor} a_i}{n} + \epsilon$$

Since a_n must be bounded, we know that there exists k such that for all n, $|a_n| \leq k$. This means that $\frac{\sum_{i=1}^{\lfloor N\rfloor} a_i}{n} \leq \frac{\sum_{i=1}^{\lfloor N\rfloor} k}{n} = \frac{k \cdot \lfloor N\rfloor}{n}$. If we pick n such that $n \geq \max(N, \frac{k \cdot \lfloor N\rfloor}{\epsilon})$, then $|b_n| < \frac{\sum_{i=1}^{\lfloor N\rfloor} a_i}{n} + \epsilon \leq \epsilon + \epsilon = 2\epsilon$. Therefore, by the $K - \epsilon$ principle, $\lim_{n \to \infty} b_n = 0$.

Problem 3-4 Prove that a convergent sequence $\{a_n\}$ must be bounded.

Proof. Suppose $\lim_{n\to\infty} a_n = L$. Then, by definition, for any $\epsilon > 0$, there exists N such that for all $n \geq N$, $|a_n - L| < \epsilon$. For any such ϵ , we know that the sequence $\{a_n\}$ where $n \geq N$ must be bounded, since $|a_n - L| < \epsilon \implies L - \epsilon < a_n < L + \epsilon$. The rest of the sequence (the terms $a_0, a_1 \cdots a_{\lfloor N \rfloor}$) is a finite set of finite terms, therefore it must also be bounded by some constants P and M, such that for all $i: 0 < i \leq \lfloor N \rfloor$, $P \leq a_i \leq M$. Therefore, we can construct a lower and an upper bound on the entire sequence:

$$\min(P, L - \epsilon) \le a_n \le \max(M, L + \epsilon) \ \forall \ n$$

For any $\epsilon > 0$, there exists N such that for all $n \geq N$, $|a_n - L| < \epsilon$.