第一章 离散时间信号与系统

- 第一章 离散时间信号与系统
 - 。 1.1 符号表示及基础
 - 1.1.1 常见典型序列
 - 1.1.2 序列的运算
 - \circ 1.2 离散时间信号的傅里叶变换与 z 变换
 - 1.2.1 离散时间信号的傅里叶变换
 - 1.2.2 *z*变换
 - 1.2.3 逆z变换
 - 1.2.4 z 变换的性质
 - 1.2.5 *z*变换与*DTFT*的关系
 - 1.2.6 Parseval 定理
 - 。 1.3 离散时间系统
 - 1.3.1 线性系统 (Linear system)
 - 1.3.2 时不变 (time-invariant) 系统
 - 1.3.3 线性时不变 (linear time-invariant, LTI) 系统
 - 1.3.4 稳定系统 (stable system) 和因果系统 (causal system)

1.1 符号表示及基础

离散时间信号通常用序列:

 $\{x(n)\}$, n 为 0,1,2... , x(n) 表示为序列中第 n 个样本值。

{·} 表示全部样本值的集合

 $\{x*(n)\}$ 表示复序列的共轭

连续时间序列 $x\{t\}$ 与离散时间序列 $\{x(n)\}$ 的关系:

$$x(n) = x_a(t)|_{t=nT} = x_a(nT)$$
 (1.1)

其中采样频率 $f_s=rac{1}{T}$ (T为采样周期,即两个样本间的时间间隔)

周期序列表示为 $\widetilde{x}(n)$

其中

$$\widetilde{x}(n) = x(n+kN), 0 \le n \le N-1, k$$
为任意整数 (1.2)

1.1.1 常见典型序列

1. 单位脉冲序列

$$\delta(n) = \begin{cases} 1, n = 0 \\ 0, n \neq 0 \end{cases} \tag{1.3}$$

2. 单位阶跃序列

$$u(n) = \begin{cases} 1, n \ge 0 \\ 0, n < 0 \end{cases} \tag{1.4}$$

3. 矩形序列

$$R_N(n) = \begin{cases} 1, n \le n \le N - 1 \\ 0, n < 0, n \ge N \end{cases}$$
 (1.5)

4. 实指数序列

$$x(n) = a^n u(n) \tag{1.6}$$

a
eq 0, |a| < 1 时收敛, $|a| \geq 1$ 时发散

5. 正弦序列

$$x(n) = \sin(\omega_0 n) \tag{1.7}$$

 ω_0 为数字角频率,单位为弧度 rad

6. 复指数序列

$$x(n) = (re^{j\omega_0})^n = r^n[cos(\omega_0 n) + jsin(\omega_0 n)]$$

$$\tag{1.8}$$

1.1.2 序列的运算

1. 序列的加法

$$z(n) = x(n) + y(n) \tag{1.9}$$

2. 序列的相乘

$$z(n) = x(n)y(n) \tag{1.10}$$

3. 序列的位移

$$z(n) = x(n - n_0) (1.11)$$

当 $n_0 > 0$ 时 z(n) 是 x(n) 的延迟; 当 $n_0 < 0$ 时 z(n) 超前于 x(n);

4. 序列的能量及序列的绝对值

序列的能量定义为序列样本值的平方和

$$S = \sum_{n = -\infty}^{\infty} |x(n)|^2 \tag{1.12}$$

如果序列 x(n) 满足 $S<\infty$ 则为平方可和序列 如果序列满足

$$\sum_{n=-\infty}^{\infty} |x(n)| < \infty \tag{1.13}$$

则为绝对可和序列

如果序列的每一个样本值的绝对值均小于某一个有限的正整数 B_x 则 x(n) 为有界序列,即

$$|x(n)| \le B_x < \infty \tag{1.14}$$

5. 实序列的偶部和奇部

任何序列均可以分解成偶对成序列和奇对称序列的和的形式,即

$$x(n) = x_e(n) + x_o(n) (1.15)$$

 $x_e(n)$ 和 $x_o(n)$ 分别称为 x(n) 的偶部和基部, 其分别等于

$$x_e(n) = \frac{1}{2}[x(n) + x(-n)]$$
 (1.15a)

$$x_o(n) = \frac{1}{2}[x(n) - x(-n)]$$
 (1.15b)

6. 任意序列的单位脉冲表示

任一序列 x(n) 都可以表示成单位脉冲序列移位的加权和,即

$$x(n) = \sum_{m=-\infty}^{\infty} x(m)\delta(n-m)$$
 (1.16)

1.2 离散时间信号的傅里叶变换与 z 变换

1.2.1 离散时间信号的傅里叶变换

离散时间傅里叶变换 DTFT (discrete-time Fourier tansform) ,序列的 DTFT 定义为:

$$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x(n)e^{-j\omega n}, \omega = \frac{2\pi f}{f_S}$$
(1.17)

式中, ω 为数字角频率, 它是频率 f 对采样频率 f_s 作归一化后的角频率。

 $X(e^{j\omega})$ 时 ω 的连续函数,且周期为 2π

式(1.17)级数不一定总是收敛的,当 x(n) 绝对可和时,它的 DTFT 一定存在。

离散时间信号的傅里叶逆变换 (IDTFT):

$$x(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) e^{j\omega m} d\omega \tag{1.18}$$

x(n) 和 $X(e^{j\omega})$ 对应关系可表示为: $X(e^{j\omega})=DTFT[x(n)]$, $x(n)=IDTFT[X(e^{j\omega})]$

 $X(e^{j\omega})$ 的几种表示方法:

$$X(e^{j\omega}) = Re[X(e^{j\omega})] + jIm[X(e^{j\omega})] = |X(e^{j\omega})|e^{j\phi(\omega)}$$

$$(1.19)$$

 $Re[\cdot]$ 和 $Im[\cdot]$ 表示取实部和虚部。

 $|X(e^{j\omega})|$ 为离散序列 x(n) 的幅度谱, $\phi(\omega)$ 为离散序列的相位谱。

DTFT 的主要特性

序列	DTFT
ax(n)+by(n)	$aX(e^{j\omega}) + Y(e^{j\omega})$
$x^*(n)$	$X^*(e^{-j\omega})$
$x^*(-n)$	$X^*(e^{j\omega})$

序列	DTFT
$x(n-n_0)$	$e^{-jn_0\omega}X(e^{j\omega})$
$e^{j\omega_0 n}x(n)$	$X(e^{j(\omega-\omega_0)})$
Re[x(n)]	$X_e(e^{j\omega})$ [$X(e^{j\omega})$ 的共轭偶对称部分]
jIm[x(n)]	$X_o(e^{j\omega})$ [$X(e^{j\omega})$ 的共轭奇对称部分]
x(n) 为实序列	$X(e^{j\omega})=X^*(e^{-j\omega})$
	$Re[X(e^{j\omega})]=Re[X(e^{-j\omega})]$
	$Im[X(e^{j\omega})] = -Im[X(e^{-j\omega})]$
	$arg[X(e^{j\omega})] = -arg[X(e^{-j\omega})]$
$x_e(n)$ [$x(n)$ 的共轭偶对称部分]	$Re[X(e^{j\omega})]$
$x_o(n)$ [$x(n)$ 的共轭偶奇称部分]	$jIm[X(e^{j\omega})]$

1.2.2 z变换

序列 x(n) 的 z 变换定义为:

$$X(z) = \sum_{n=-\infty}^{\infty} x(n)z^{-n}, (n = 0$$
时为单边 z 变换) (1.20)

上式中 z 为复变量,也可记为 $\mathscr{Z}[x(n)] = X(z)$

对于所有的序列或所有的 z 值,z变换并不总是收敛,使 z 变换收敛的 z 值的集合称作收敛区域,一般为 z 平面上的一个环形区域,该区域为:

$$R_{x^{-}} < |z| < R_{x^{+}} \tag{1.21}$$

其中 R_{x^-} 可以小到0, R_{x^+} 可以大到 ∞

以下讨论几种序列的收敛域

1. 有限长序列

仅有有限个数的序列值是非零值,从而有:

$$X(z) = \sum_{n=n_1}^{n_2} x(n)z^{-n}$$
 (1.22)

其中 n_1, n_2 为有限整数,分别为 x(n) 的起点和终点。除了当 $n_1 < 0$ 时 $z = \infty$ 以及 $n_2 > 0$ 时 z = 0 之外, z 所在的区域均收敛,即有限长序列的收敛区域至少是:

$$0 < |z| < \infty$$

其收敛区域可能包括 z=0 或包括 $z=\infty$

2. 右边序列

右边序列为 $n < n_1$ 时 x(n) = 0 的序列, z 变换为:

$$X(z) = \sum_{n=n_1}^{\infty} x(n)z^{-n}$$
 (1.23)

右边序列的收敛域是一个半径为 R_{x^-} 的圆的外部, 即:

$$|Z|>R_{x^-}$$

当 $n_1 \geq 0$ 时 z 变换在 $z = \infty$ 处收敛,反之 $n_1 < 0$ 时 z 变换在 $z = \infty$ 处将不收敛

3. 左边序列

左边序列为 $n>n_2$ 时 x(n)=0 的序列, z 变换为:

$$X(z) = \sum_{n=-\infty}^{n_2} x(n)z^{-n}$$
 (1.24)

左边序列的收敛域是一个半径为 R_{x^-} 的圆的内部,即:

$$|z| < R_{x^+}$$

若 $n_2 < 0$ 则左边序列的 z 变换在 z = 0 处将收敛

4. 双边序列

双边序列可视为一个左边序列与一个右边序列之和,其z变换的收敛域就是这两个序列z变换的公共收敛区间

$$X(z) = \sum_{n = -\infty}^{\infty} x(n)z^{-n} = \sum_{n = 0}^{\infty} x(n)z^{-n} + \sum_{n = -\infty}^{-1} x(n)z^{-n}$$
 (1.25)

第一个级数是右边序列,对 $|z|>R_{x^-}$ 收敛;第二个级数是左边序列,对 $|z|< R_{x^+}$ 。若 $R_{x^-}< R_{x^+}$,则有一个形式为:

$$|R_{x^-} < |z| < R_{x^+}$$

的公共收敛区域。若 $R_{x^-} > R_{x^+}$,则没有公共收敛区域,因此式(1.25)不能收敛。

1.2.3 逆z变换

已知函数 X(z) 及其收敛域,反求序列的变换,其表示及变换关系式(柯西积分定理推导)为:

$$x(n) = \mathscr{Z}^{-1}[X(z)] = \frac{1}{2\pi j} \oint_C X(z) z^{n-1} dz$$
 (1.26)

式中C为X(z)收敛域内的一条逆时针方向绕原点的闭合曲线

1.2.4 z变换的性质

z变换特性表

序列	z 变换	收敛域
x(n)	X(z)	$R_{x^-} < \ z\ < R_{x^+}$
y(n)	Y(z)	$R_{y^-} < \ z\ < R_{y^+}$
ax(n)+bx(n)	aX(z)+bY(z)	$max[R_{x^-},R_{y^-}] < \ z\ < \ min[R_{x^+},R_{y^+}]$
$x(n+n_0)$	$z^{n_0}X(z)$	$R_{x^-} < \ z\ < R_{x^+}$
$a^n x(n)$	$X(a^{-1}z)$	$\ a\ R_{x^-}<\ z\ <\ a\ R_{x^+}$
nx(n)	$-z\frac{dX(z)}{dz}$	$R_{x^-} < \ z\ < R_{x^+}$
$x^*(n)$	$X^*(z^*)$	$R_{x^-} < \ z\ < R_{x^+}$

序列	z 变换	收敛域
x(-n)	$X(\frac{1}{z})$	$rac{1}{R_{x^+}} < \ z\ < rac{1}{R_{x^-}}$
x(n) * y(n)	X(z)Y(z)	$max[R_{x^-},R_{y^-}] < \ z\ < \ min[R_{x^+},R_{y^+}]$
x(n)y(n)	$\frac{1}{2\pi j}\oint_C X(v)Y(rac{z}{v})v^{-1}dv$	$R_{x^-}R_{y^-} < \ z\ < R_{x^+}R_{y^+}$
$x(0)=X(\infty)$		$\ z\ >R_{x^-}$
$x(\infty) = Res[X(z),1]$		$(z-1)X(z)$ 收敛于 $\ z\ \geq 1$

1.2.5 z变换与DTFT的关系

$$X(z)|_{z=e^{j\omega}} = \sum_{n=-\infty}^{\infty} x(n)e^{-jn\omega}$$
(1.27)

当 $z=e^{j\omega}$ 时,z 变换与 DTFT 相等,即采样序列单位圆上的z变换就等于该序列的DTFT 由于 $e^{j\omega}=e^{j(\omega+2k\pi)}$,所以 $X(e^{j\omega})$ 是以 2π 为周期的周期函数, z 平面单位圆上一周正好对应 $X(e^{j\omega})$ 的一个周期。

1.2.6 Parseval 定理

设两个序列 x(n), y(n) 则Paseval定理为:

$$\sum_{n=-\infty}^{\infty} x(n)y^*(n) = \frac{1}{2\pi j} \oint_C X(v)Y^*(\frac{1}{v^*})v^{-1}dv$$
 (1.28)

上式中,积分围线取在 X(v) 和 $Y^*(\frac{1}{v^*})$ 的收敛区域的交叠范围内。 Parseval定理的一个很重要的应用式计算序列的能量:

$$\sum_{n=-\infty}^{\infty}|x(n)|^2=\sum_{n=-\infty}^{\infty}x(n)x^*(n)=rac{1}{2\pi}\int_{-\pi}^{\pi}X(e^{j\omega})X^*(e^{j\omega})d\omega=rac{1}{2\pi}\int_{-\pi}^{\pi}|X(e^{j\omega})|^2d\omega =0$$

1.3 离散时间系统

离散时间系统在数学上定义为将输入序列 x(n) 映射成输出序列 y(n) 的唯一性变换或运算,或者说将一个序列变换成另一个序列的系统。表示为:

$$y(n) = T[x(n)] \tag{1.30}$$

算子 $T[\cdot]$ 表示种种约束条件。

1.3.1 线性系统 (Linear system)

满足叠加原理的系统具有线性特性。即若对两个激励 $x_1(n)$ 和 $x_2(n)$ 有:

$$T[ax_1(n) + bx_2(n)] = aT[x_1(n)] + bT[x_2(n)], a, b$$
为任意常数 (1.31)

线性系统满足叠加性原理,不满足上述关系的为非线性系统。

1.3.2 时不变 (time-invariant) 系统

时不变系统就是系统的参数不随时间而变化,不管输入信号作用的时间先后,输出信号响应的形状均相同,仅出现的时间不同。

$$T[x(n)] = y(n)T[x(n-n_0)] = y(n-n_0)$$
(1.32)

$$x(n) \longrightarrow T[\cdot] \longrightarrow y(n)$$

$$x(n-n0) \longrightarrow T[\cdot] \longrightarrow y(n-n0)$$

1.3.3 线性时不变 (linear time-invariant, LTI) 系统

1.3.4 稳定系统 (stable system) 和因果系统 (causal system)

只要输入序列是有界的,其输出必定是有界的,这样的系统称为稳定系统,稳定系统的充要条件是其单位脉冲响应绝对可和,即:

$$\sum_{n=-\infty}^{\infty}|h(n)|<\infty$$

因果系统,就是系统的输出只取决于此时以及此时以前的输入(x(n), x(n-1), x(n-2)...等)一个线性时不变系统是因果系统的充要条件是

$$h(n) \equiv 0, n < 0$$

通常将 n < 0 时等于 0 的序列称为因果序列。