第一章 大气运动的基本特征

引言 大气运动在空间和时间上具有**很宽的尺度谱**。天气学研究与天气和气候有关的大气运动,可以忽略离散的分子特性,把大气视为**连续的流体介质**,表征大气状态的物理量在连续介质中具有**单一的值**,这些场变量及其导数是空间和时间的**连续函数**。控制大气运动的流体力学热力学方程基本定律可以用场变量作为因变量和时空为自变量的偏微分方程表示。 大气运动受到质量守恒、动量守恒、能量守恒等基本物理定律支配,为了应用这些定律,本章讨论基本作用力、旋转坐标系中的视示力、控制大气运动的基本方程组,并在此基础上分析大尺度运动系统的风场和气压场的关系,引出天气图分析中应当遵循的基本原则。

1.1 影响大气运动的作用力

系统 在时间或空间上能够与其他系统区分开来的一个实体。在系统与系统间存在着界面,各系统的物理量可以通过界面交换。

天气学中, 气旋、反气旋等系统虽然与周围大气无明确界面, 在性质上有明显不同, 是开放系统。

尺度表征一个系统在空间上的大小或者在时间上持续的长短。

一般来说,无论在高空还是在地面,空间尺度越小,时间尺度也相应越短。

气象学中的尺度一般指特征尺度,不反应个体具体数值。

天气尺度: 10^6 m = 1000km

大气 天气学分析中将大气视为**低粘性的流体**。符合**连续介质假设**。

基本力 真实作用于大气的力,其存在与参考系无关,也称为牛顿力。例如气压梯度力、地心引力、摩擦力等。

<mark>视示力</mark> 由于坐标系随地球一起旋转而形成的相对运动加速度的力。包括<mark>惯性离心力和地转偏向力</mark>。

若作用力分析中同时包含基本力和视示力,则牛顿第二运动定律适用于地球旋转非惯性系。

大气分层 对流层、平流层、中间层、热层、散逸层(详见大气物理学)

对流层平均厚度为10~20km, 特征量级10¹km

参考系 为了确定物体的**位置**和描述其**运动**而选作标准的另一物体

观测风是相对于地面的,风向是相对于观测地的经纬度确定的,由此可见,选择地球为参照系是最直观和方便的。但地球是旋转的,是一个非惯性系,为适用牛顿第二定律,需引入微分算子等内容。

惯性系 牛顿第二定律成立的参考系称为惯性参考系,反之称为非惯性系。

研究地球上运动的物体时,太阳参考系是惯性参考系。

天气学中,参考系如何选择,原则上是任意的,但在一般研究中通常选择地球作为参考系。

坐标系 为了定量地表示物体相对于**参照系**的位置而选定的变数(**坐标**)的组合。

天气学中常用有: 球坐标系、局地直角坐标系、自然坐标系(地球上流体的运动带有曲率,在水平方向上取流线建立 τ ,n方向)、p坐标系(气压为垂直坐标)、 σ 坐标系(用于数值预报,用气压和地表气压相除,简化地形处理)、 θ 坐标系(位温为垂直坐标)