1 GCD Theorems

1.1 GCD WR

If a and b are integers not both zero, and q and r are integers such that a = qb + r, then gcd(a, b) = gcd(b, r)

1.2 GCD CT (GCD characterization theorem)

If d is a positive common divisor of the integers a and b, and there exist integers x and y so that ax + by = d, then $d = \gcd(a, b)$.

1.3 Coprimeness and Divisibility

If a,b, and c are integers and $c \mid ab$ and gcd(a,c) = 1, then $c \mid b$

1.4 Primes and Divisibility

If p is a prime and $p \mid ab$ then $p \mid a$ or $p \mid b$

1.5 GCD of One

Let a and b be integers. Then $gcd(a, b) = 1 \iff ax + by = 1$ where x and y are integers.

1.6 Division by the GCD

Let a and b be integers. If $gcd(a,b) = d \neq 0$, then $gcd(\frac{a}{d}, \frac{b}{d}) = 1$.

2 EEA

2.1 Extended Euclidean Algorithm

If a > b > 0 are positive integers, then $d = \gcd(a, b)$ can be computed and there exist integers x and y so that ax + by = d.

3 Linear Diophatine Equations

Equations with integer co-efficients for which integer solutions are sought.

3.1 Linear Diophatine Equation Theorem, Part 1 LDET1

Let gcd (a,b)=d. The linear Diophatine equation ax + by = c has a solution iff $d \mid c$

3.2 Linear Diophatine Equation Theorem 2, LDET2

Let gcd(a, b) = d where both a and b are not zero. If $x = x_0$ and $y = y_0$ is one particular integer solution to the equation ax + by = d then the complete solution is $x = x_0 + \frac{b}{d}n$, $y = y_0 - \frac{a}{d}n \forall \epsilon Z$

4 Congruence

Let m be a fixed positive integer. If $a, b \in \mathbb{Z}$ we say that a is congruent to b modulo m. $a \equiv b \mod m$ if $m \mid (a - b)$. If $m \nmid (a - b)$ then $a \neq \mod m$

4.1 Equivalence relation

- 1. $a \equiv b \mod m$
- 2. If $a \equiv b \mod m$ then $b \equiv a \mod m$
- 3. If $a \equiv b \mod m$ and $b \equiv c \mod m$ then $a \equiv c \mod m$

4.2 properties of congruence

- 1. $a + b \equiv a' + b' \mod m$
- 2. $a b \equiv a' b' \mod m$
- 3. $ab \equiv a'b' \mod m$

4.3 Congruences and Division

If $ac \equiv bc \mod m$ and $\gcd(c, m) = 1$ then $a \equiv b \mod m$

4.4 Congruent IFF Same remainder

 $a \equiv b mod m$ iff a and b have the same remainder when divided by m.

4.5 Modular Arithmetic

4.5.1 Congruence class

 $[a] = x \in \mathbb{Z} \mid x \equiv a \mod m$ \mathbb{Z}_m is the set of m congruence classes. [a] + [b] = [a + b] and [a] * [b] = [a * b]

4.5.2 Identity

Something that does nothing. $\forall a \in S, a * e = a$

4.5.3 Inverse

a*b=b*a=e Subtraction is the addition of inverse. Division is multiplication with inverse.

4.6 Fermat's Little Theorem

If p is a prime number that does not divide the integer a, then $a^{p-1} \equiv 1 mod p$ For any integer a and any prime p $a^p \equiv a mod p$

4.6.1 Existence of Inverse

Let p be a prime. if [a] is any non zero element in Z_p then there exists an element $[b] \in Z_p$ so that [a] * [b] = 1

4.7 Linear Congruences

 $ax \equiv cmodm$ is a linear congruence, solution if x so that congruence is true.

4.7.1 Linear congruence Theorem 1 LCT1

Let $gcd(a, m) = d \neq 0$ The linear congruence $ax \equiv cmodm$ has a solution iff $d \mid c$. Also if x_0 is a solution then complete solution is $x \equiv x_0 mod \frac{m}{d}$

4.7.2 Linear Congruence Theorem 2, LCT2

Let $gcd(a, m) = d \neq 0$. The equation [a][c] = [c] in Z_m has a solution iff $d \mid c$

4.8 Chinese Remainder Theorem

Let $a_1, a_2 \in \mathbb{Z}$ If $gcd(m_1, m_2) = 1$ then the simultaneous linear congruences $n \equiv a_1 mod m_1$ and $n \equiv a_2 mod m_2$ have a unique solution modulo $m_1 m_2$ Thus is $n=n_0$ is one integer solution then the complete solution is $n \equiv n_0 mod m_1 m_2$

5 RSA

5.1 Setting up RSA

- 1. choose two large distinct primes p and q and let n=pq.
- 2. select an integer e so that gcd(e,(p-1)(q-1))=1 and 1< e<(p-1)(q-1)
- 3. solve $ed \equiv 1 (mod(p-1)(q-1))$ for an integer 1 < d < (p-1)(q-1)
- 4. public key is (e,m) and private key is (d,n)

5.2 sending a message

- 1. look up public key(e,n)
- 2. generate an integer message M $0 \le M < n$
- 3. compute the ciphertext C $M^e \equiv C mod n$ where $0 \leq C < n$

5.3 receiving a message

- 1. use the private key (d,n)
- 2. compute message text R from C $C^d \equiv R(modn)$ where $0 \leq R < n$

6 Complex Numbers

Complex Numbers: An expression of the form $C = x + yi \mid x, y \in R$ where x and y are real numbers. Has a real and imaginary part.

Mathematical operations
$$a+bi=c+di \leftrightarrow a=cb=d(a+bi)+(c+di)=(a+c)+(b+d)i(a+bi)(c+di)=(ac-bd)+(ad+bc)i$$

- **3.** Associativity of addition (u+v)+z=u+(v+z)
- 2. Commutativity of addition (u+v)=v+u
- 3. additive identity 0 + 0i
- 4. Additive inverse -z = -x yi
- 5. Associativity of multiplication (u * v) * z = u * (v * z)
- 6. Commutativity of multiplication (u * v) = v * u
- 7. multiplicative identity 1 = 1 + 0i
- 8. multiplicative inverse $z = x + yi\frac{x-yi}{x^2+u^2}$

6.1 Complex conjugate

complex conjugate of z = x + yi is $\overline{z} = x - y$

6.2 Modulus

Modulus of
$$z = x + yi |z| = |x + yi| = \sqrt{x^2 + y^2}$$

6.3 Polar multiplication of Complex Numbers

If $z_1 = r_1(\cos\theta + i\sin\theta)$ and $z_2 = r_2(\cos\theta + i\sin\theta)$ are two complex numbers in polar form then $z_1z_2 = r_1r_2(\cos(\theta_1 + \theta_2) + i\sin(\theta_1 + \theta_2))$

6.4 De Moivre's Theorem

If $\theta \in \mathbb{R}$ and $n \in \mathbb{Z}$ then $(\cos \theta + i \sin \theta)^n = \cos(n\theta) + i \sin(n\theta)$ if $z = r(\cos \theta + i \sin \theta)$ and n is an integer then $z^n = r^n(\cos \theta + i \sin \theta)^n$

6.5 complex exponential function

$$e^{i*\theta} = cos\theta + isin\theta$$

6.6 Properties of Complex Exponentials

$$e^{i\theta} * e^{i\phi} = e^{i(\theta + \phi)}$$
$$(e^{i\theta})^n = e^{in\theta}$$

6.7 Complex n-th Roots Theorem

if $r(\cos\theta + i\sin\theta)$ is in the polar form of a complex number a, then the solutions are $\sqrt[n]{r}(\cos(\frac{\theta+2\pi k}{n}) + i\sin(\frac{\theta+2\pi k}{n}))$

7 Polynomials

7.1 Definition

A polynomial in x over the field F is an expression of the form $a_n * x^n + a_{n+1}x^{n-1} + \cdots + a_1x + a_0$ all of the a's are coefficients.

If $a_n \neq 0$ in $a_n * x^n + a_{n+1}x^{n-1} + \cdots + a_1x + a_0$ Then polynomial has degree n. Zero has all coefficients 0 and degree undefined.

7.2 Equality

only equal if $a_i = b_i$ for all a,b

7.3 Sum

sum of f(x) and g(x) is $f(x) + g(x) = \sum_{i=0}^{\max(n,m)} (a_i + b_i) x^i$ with any missing terms coefficient 0.

7.4 Difference

difference of f(x) and g(x) is $f(x) - g(x) = \sum_{i=0}^{\max(n,m)} (a_i - b_i) x^i$ with any missing terms coefficient 0.

7.5 Products

product of f(x) and g(x) is $f(x) * g(x) = \sum_{i=0}^{n+m} c_i x^i$ where $c_i = \sum_{j=0}^{i} a_j b_{i-j}$

7.6 Division algorithm for polynomials DAP

If f(x) and g(x) are polynomials in F[x] and g(x) is not the zero polynomial, then there exist unique polynomials q(x) and r(x) in F such that f(x) = q(x)g(x) + r(x) where deg(r(x)) < deg(g(x))