```
In [1]: import pandas as pd
    import matplotlib.pyplot as plt
    from statsmodels.tsa.seasonal import seasonal_decompose
    from statsmodels.tsa.stattools import adfuller
    import plotly.express as px
    from statsmodels.graphics.tsaplots import plot_acf, plot_pacf
    from statsmodels.tsa.statespace.sarimax import SARIMAX
    from sklearn.metrics import mean_absolute_error
    import warnings
    warnings.filterwarnings('ignore')
In [2]: data = pd.read_csv('Temperatures.csv', encoding='latin-1')
data
```

_		-	_	-	
M	111	- 1	-)		0
\cup	uч	. I	\leq		0

:		Area Code	Area	Months Code	Months	Element Code	Element	Unit	Y1961	Y1962	Y1963	•••	Y2010	Y2011	Y2012	Y2013	Y2014
	0	2	Afghanistan	7001	January	7271	Temperature change	°C	0.777	0.062	2.744	•••	3.601	1.179	-0.583	1.233	1.75!
	1	2	Afghanistan	7001	January	6078	Standard Deviation	°C	1.950	1.950	1.950	•••	1.950	1.950	1.950	1.950	1.95(
	2	2	Afghanistan	7002	February	7271	Temperature change	°C	-1.743	2.465	3.919		1.212	0.321	-3.201	1.494	-3.187
	3	2	Afghanistan	7002	February	6078	Standard Deviation	°C	2.597	2.597	2.597	•••	2.597	2.597	2.597	2.597	2.597
	4	2	Afghanistan	7003	March	7271	Temperature change	°C	0.516	1.336	0.403		3.390	0.748	-0.527	2.246	-0.076
	•••		•••	•••	•••	•••	•••			•••	•••	•••	•••	•••	•••	•••	
	9651	5873	OECD	7018	Jun□Jul□Aug	6078	Standard Deviation	°C	0.247	0.247	0.247		0.247	0.247	0.247	0.247	0.247
	9652	5873	OECD	7019	Sep□Oct□Nov	7271	Temperature change	°C	0.036	0.461	0.665		0.958	1.106	0.885	1.041	0.999
1	9653	5873	OECD	7019	Sep□Oct□Nov	6078	Standard Deviation	°C	0.378	0.378	0.378		0.378	0.378	0.378	0.378	0.378
,	9654	5873	OECD	7020	Meteorological year	7271	Temperature change	°C	0.165	-0.009	0.134	•••	1.246	0.805	1.274	0.991	0.81
	9655	5873	OECD	7020	Meteorological year	6078	Standard Deviation	°C	0.260	0.260	0.260		0.260	0.260	0.260	0.260	0.260

9656 rows × 66 columns

In [3]: year_columns = [col for col in data.columns if col.startswith('Y')]
 temperatures = data[year_columns].mean()

data = temperatures.reset_index()
 data.columns = ['Year', 'Average Temperature']
 data['Year'] = data['Year'].str[1:]

data.to_csv("average_temperatures.csv", index=False)
print(data)

	Year	Average	Temperature
0	1961	Aver age	0.402433
1	1962		0.315527
2	1963		0.317393
3	1964		0.269382
4	1965		0.217839
5	1966		0.376419
6	1967		0.263239
7	1968		0.244870
8	1969		0.382172
9	1970		0.365322
10	1971		0.240934
11	1972		0.302553
12	1973		0.427691
13	1974		0.261849
14	1975		0.314653
15	1976		0.221112
16	1977		0.422978
17	1978		0.355488
18	1979		0.442465
19	1980		0.438270
20	1981		0.437693
21	1982		0.404857
22	1983		0.503748
23	1984		0.366971
24	1985		0.365511
25	1986		0.398096
26	1987		0.535514
27	1988		0.546662
28	1989		0.469231
29	1990		0.621797
30	1991		0.499991
31	1992		0.447798
32	1993		0.439094
33	1994		0.611078
34	1995		0.635836
35	1996		0.477239
36	1997		0.617341
37	1998		0.818264
38	1999		0.704445
39	2000		0.674191
40	2001		0.741673
41	2002		0.802509
42	2003		0.769485
43	2004		0.726237

```
2005
                            0.777465
       44
       45
          2006
                            0.791795
       46 2007
                            0.842554
       47 2008
                            0.742614
          2009
                            0.814177
       48
       49
          2010
                            0.884504
       50 2011
                            0.768488
       51 2012
                            0.788930
       52 2013
                            0.829647
       53 2014
                            0.913872
       54 2015
                            1.018816
       55 2016
                            1.081491
       56 2017
                            1.003342
       57 2018
                            1.010832
       58 2019
                            1.094599
In [4]: data.set index("Year", inplace=True)
        decomposition = seasonal decompose(data["Average Temperature"], model="additive", period=10)
        fig, (ax1, ax2, ax3, ax4) = plt.subplots(4, 1, figsize=(10, 8))
        data["Average Temperature"].plot(ax=ax1, title="Original Data", color='blue')
        decomposition.trend.plot(ax=ax2, title="Trend", color='red')
        decomposition.seasonal.plot(ax=ax3, title="Seasonality", color='green')
        decomposition.resid.plot(ax=ax4, title="Residual (Noise)", color='purple')
        plt.tight layout()
        plt.show()
```



```
In [5]: result = adfuller(data["Average Temperature"])
        print(f"ADF Statistic: {result[0]}")
        print(f"p-value: {result[1]}")
       ADF Statistic: 1.1279797201576414
       p-value: 0.9954484841402742
In [6]: data.reset index(inplace=True)
        data["Temp diff"] = data["Average Temperature"].diff()
        def plot temperature(df: pd.DataFrame, y: str, title: str) -> None:
            fig = px.line(df, x='Year', y=y, labels={'Year': 'Year'})
            fig.update layout(template="simple white", font=dict(size=18),
                              title text=title, width=650, title x=0.5, height=400)
            return fig.show()
        plot temperature(df=data, y='Temp diff', title='Differenced Temperature Data')
In [ ]: data["Temp diff2"] = data["Temp diff"].diff()
        data.dropna(inplace=True)
        result diff2 = adfuller(data["Temp diff2"])
        print(f"ADF Statistic: {result diff2[0]}")
        print(f"p-value: {result diff2[1]}")
       ADF Statistic: -4.759518603359893
       p-Value: 6.496008212398227e-05
In [8]: fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(16, 5), dpi=80)
        plot acf(data['Temp diff'].dropna(), ax=ax1)
        plot pacf(data['Temp diff'].dropna(), ax=ax2, method='ywm')
        ax1.set title("Autocorrelation Function (ACF)")
        ax2.set title("Partial Autocorrelation Function (PACF)")
        ax1.tick params(axis='both', labelsize=12)
        ax2.tick params(axis='both', labelsize=12)
        plt.show()
```



```
plt.legend()
plt.title("Average Global Temperature Forecast")
plt.grid(True)
plt.show()
```

Average Global Temperature Forecast


```
In [12]: actual = data["Average Temperature"]
predicted = model_fit.predict()

mae = mean_absolute_error(actual, predicted)
print(f"Mean Absolute Error (MAE): {mae:.4f}")
```

Mean Absolute Error (MAE): 0.0758