c)
$$M = \{ e^{-x^2} \mid x \in R \} =>$$

$$=> e^{-x^2} = \frac{1}{e^{x^2}}$$
 kde $x \in (-\infty, \infty)$ $=> x$ bude jen kladné a hodnota výrazu bude růst (je ve

jmenovateli) s přibližováním k 0, protože e^x je 1 a to je zároveň maximum (číslo které umocňujeme > 1), kterého lze dosáhnout. Vzhledem k tomu je horní mez 1. Dolní pak bude 0, protože $1/\infty = 0$. Interval bude mít infimum v 0, protože $1/\infty = 0$, a e^{x^2} bude funkce klesající k 0 z obou stran. Jde o infimum ne maximum, a proto bude interval otevřený zleva.

$$=> M = (0,1]$$

e)
$$M = \{ x + y \mid x^2 + y^2 = 1 \} = >$$

 $=> x^2 + y^2 = 1$ je rovnice jednotkové kružnice se středem v počátku, fce. z = x + y je lineární fce. a lze ji přepsat jako y = -x + z, grafem fce. je přímka (graf je klesající) se sklonem 45°, která bude posunutá o z. Hodnota z se pak může pohybovat na intervalu (uzavřeném) který zároveň popisuje danou množinu a to

$$=>$$
 M = [- $\sqrt{2}$, $\sqrt{2}$]

PS: Tuto úlohu jsme počítali na cvičení až na to, že tam šlo o vnitřek kruhu tady jde o hranici.

f) M = {
$$|x| + |y| | x^2 + y^2 = 1 } =>$$

f) M = { $|x| + |y| | x^2 + y^2 = 1 } =>$ => $x^2 + y^2 = 1$ je rovnice jednotkové kružnice se středem v počátku, fce z = |x| + |y| bude maxima nabývat v bodech [+/- $\frac{\sqrt{2}}{2}$,+/- $\frac{\sqrt{2}}{2}$], [-/+ $\frac{\sqrt{2}}{2}$,+/- $\frac{\sqrt{2}}{2}$]

,kde nám záp. znaménka pohltí absolutní hodnota a minimum bude potom [0,+/-1], [+/-1,0]. Z toho plyne že "z" může dosahovat hodnot, které zároveň popisují množinu M. $=> M = [1, \sqrt{2}]$

h) M = {
$$|x-y| |, x \in [0,1]$$
, $y \in (1,2)$ } =>

=> vzdálenost na číselné ose mezi body x a y bude maximální když x = 0 a y = 2 (bráno limitně , protože 2 do intervalu nepatří) a minimální mezi body x = 1 a y = 1 (1 do intervalu nepatří), množina M projde všechny vzdálenosti v tomto rozsahu

$$=> M = (0, 2)$$

1.3

d) ve vesnici jsou chalupy \underline{ch}_i , kde i = 1 ... n a jedna pošta $\underline{p} = >$

$$\Rightarrow$$
 min{max $\|\underline{ch}_i - \mathbf{p}\|_2 \mid p \in vesnici$ }

, kde maximum hledáme přes \underline{ch}_i , kde i = 1 .. n (nejmenší vzdálenost od **nejvzdálenější chalupy**) a minimum z těchto vzdáleností => přes $p \in \mathbb{R}^2$ (pochopitelně budeme uvažovat omezení souřadnic kruhovou hranicí vesnice)

f) máme vektory \underline{a}_i , $\underline{a}_i = (x_i y_i)$, kde i = 1 ... m, které nám ukazují na místa bodů a kružnici ve tvaru $(x-x_0)^2 + (y-y_0)^2 = r^2$, jejíž střed není nutně v počátku uvažovaného systému (je v bodě $[x_0,y_0]$) a poloměr je roven r. Výsledek je násl.

$$=> \min \{ \sum_{i=1}^{m} \min(||\mathbf{a}_{i} - (\mathbf{x},\mathbf{y})||_{2} - ||\mathbf{r}||_{2}) | (\mathbf{x}-\mathbf{x}_{0})^{2} + (\mathbf{y}-\mathbf{y}_{0})^{2} = \mathbf{r}^{2} \}$$

, kde vnitřní minimum hledáme přes i = 1 .. n (pro každé a_i hledáme minimální vzdálenost od kružnice popsané, $(x-x_0)^2 + (y-y_0)^2 = r^2$)*, dále musíme vysčítat všechna tato vnitřní minima (tím máme součet vzdálenosti všech bodů od kružnice a tuto funkci minimalizujeme přes všechny trojrozměrné vektory $\underline{c} = (x_0, y_0, r)$.

* $\|a_i - (x,y)\|_2$ je vzdálenost ukazatele na bod a ukazatele na střed kružnice $[x_0,y_0]$ (ukazatel rozumějme 2rozměrný vektor) a $\|r\|_2$ je velikost poloměru, kterou musíme odečíst od normy, abychom dostali vzdálenosti bodů od kružnice, které potom můžeme vysčítat. % mělo by to být správně ač je to chaotické

1.4

b) $\min\{(x-2)^2+(y-1)^2 | x^2 \le 1 , y^2 \le 1 \}$, z podmínek vyplývá, že $x, y \in [-1,1]$ (jinak by byly vyší než 1), v rovnici $(x-2)^2+(y-1)^2$ je evidentní, že minimum kažné ze závorek = 0, hodnova $(x-2)^2$ se pohybuje na intervalu [1,9] a $(y-1)^2$ na intervalu [4,0], protože součet 2 kladných čísel je číslo kladné je hledané minimum rovno součtu minim obou závorek =>

$$\Rightarrow$$
 $\underline{\mathbf{v}} = (\mathbf{1},\mathbf{1}), \underline{\mathbf{v}} = (x, y) \in R^2$

d) Najdi rozměry krabice bez víka o jednotkovém objemu a co nejmenším povrchu. => $\min\{P = ab + 2ac + 2bc \mid a.b.c = 1\}$, minimalizujeme přes vektor $\underline{v} = (a,b,c) \in R^3$, pro ujasnění "a" a "b" jsou rozměry podstavy "c" je výška krabice. Pro minimalizaci plochy stačí spočítat vázaný extrém, nebo (moje cesta) funkci P převést za využití podmínky na funkci 2

proměnných.
$$P = ab + 2/b + 2/a => P'/a = b -$$
, $\frac{1}{a^2} P'/b = a - \frac{1}{b^2} => a = b = \sqrt[3]{2}$, $c = \frac{\sqrt[3]{2}}{2}$

$$=> \underline{\mathbf{v}} = (\sqrt[3]{2}, \sqrt[3]{2}, \frac{\sqrt[3]{2}}{2})$$

e) min {
$$\begin{array}{ccc} n & n \\ \Sigma & x_i | & \Pi & x_i > 0, \, x_i \in \{-1,1\}\} \end{array}$$
 , je třeba si uvědomit že pokud n je sudé není $i=1$ $i=1$

moc co řešit všechny složky $x_i = -1$, pokud je liché bude platit totéž s tím, že lichý prvek bude = 1.

$$\Rightarrow 2/n \rightarrow -n$$
$$\Rightarrow !(2/n) \rightarrow -n+2$$

%! = negace

Zbyněk Bambušek / OPT - pondělí 5/6 hodina