Computer arithmetic & algorithms	$ d_m d_{m-1} d_0.d_{-1} d_{-2} d_{-n} = d_m \times 10^m + d_{m-1} \times 10^{m-1} + + d_0 \times 10^0 + d_{-1} \times 10^{-1} + d_{-2} \times 10^{-2} \\ + + d_{-n} \times 10^{-2} \\ b_m b_{m-1} b_0.b_{-1} b_{-n} = b_m \times 2^m + b_{m-1} \times 2^{m-1} + + b_0 \times 2^0 + b_{-1} \times 2^{-1} + + b_{-n} \times 2^{-n} \\ d_m d_{m-1} d_0.d_{-1} d_{-2} d_{-n} = (b_r b_{r-1} b_0.b_{-1} b_{-2})_2 \\ d_m d_{m-1} d_0 = (b_r b_{r-1} b_0)_2 & d_{-1} d_{-2} d_{-n} = (b_{-1} b_{-2})_2 \\ To find integer part, - divide d_m d_{m-1} d_0 by 2 (remainder = b_0) - divide quotient by 2 (remainder = b_1) repeat process until quotient is 0$			base 10 (decimal), d _m d _{m-1} d ₀ : integer, d ₋₁ d ₋₂ d _{-n} : fractional converting binary to decimal converting decimal to binary integer = integer & fractional = fractional E.g. 2.4 = 10.011001100110 2/2 = 1R0. 1/2 = 0R1		
	For fractional part, - multiply .d. ₁ d. ₂ d. _n by 2 (integer part = b. ₁) - multiply new fractional part by 2 (integer part = b. ₂)repeat until fractional part is 0; otherwise fractional part is infinite ting-point Binary num in scientific notation normalized form (b _r b _{r-1} b ₀ .b ₋₁ b _{-n}) ₂ = ±(1)		$0.4 \times 2 = 0 + 0.8 \qquad 0.8 \times 2 = 1 + 0.6$ $0.6 \times 2 = 1 + 0.2 \qquad 0.2 \times 2 = 0 + 0.4$ $0.01100110 = 2^{-2} + 2^{-3} + 2^{-6} + 2^{-7} + =$ $(2^{-2} + 2^{-3}) \sum_{i=0}^{\infty} 2^{-4i} = \frac{3}{8} \left(\frac{1}{1 - 2^{-4}} \right) = 0.4$ $.b_{r-1}b_{0}b_{-1}b_{-n})_{2} \times 2^{r} (0.00101_{2} = 1.01_{2} \times 2^{-3})$			
Floating-poi						
formats	$\pm (1.s_1s_2s_N)_2 \times 2^k$ Double precision floating point: $\pm (1.b_1b_2b_{52})_2 \times 2^k$	IEE	E standard ecision		er of bits exponent	mantissa (N)
	machine encilon – diet by 1 and smallest fleating point num > 1		uble	1	11 - 2-52	52
Rounding ru	1. 53 rd bit = 0: truncate after 52 nd bit			Applies 1 (1.**52	to both norm $_{2}O_{53})_{2} \times 2^{k} = (1)$	al and subnormal num L.** ₅₂) ₂ x 2 ^k
	2. 53 rd bit = 1: a. 54 th bit onwards all 0 & 52 nd bit = 0: truncate after 52 nd bit b. else 1 added to 52 nd bit			(1.**1	₅₂ 1 ₅₃) ₂ x 2 ^k =	$(1.**0_{52})_2 \times 2^k$ $(*.**0_{52})_2 \times 2^k$ $(*.**0_{52})_2 \times 2^k$ $(*.***_{52})_2 \times 2^k$
Subnormal floating poin	For num smaller than $2^{-1022} \approx 2.2 \times 10^{-308}$, subnormal floating point number is used: $\pm (0.s_1s_2s_{52})_2 \times 2^{-1022}$ Although num below ϵ_{mach} is machine representable, adding to 1 may have no effect		(0.001		ble precision num = L x 2 ⁻⁵²) x 2 ⁻¹⁰²² = 2 ⁻¹⁰⁷⁴	
Computer arithmetic	For a num x, fl(x) = num stored in computer (not exact)	,		Abs error		ative error = $\frac{ p*-p }{ p } \le \frac{1}{2} \epsilon_{mach}$
Matrix multi plication				s: Find i, k s.t.	$x \ominus y = fl(fl(x) - fl(y))$ $a_{ik} \neq 0$. Find k, j s.t. $b_{kj} \neq 0$.	
Lower triangular multi-	Suppose A and B are lower triangular $n \times n$ matrix, $C = AB$ also lower triangular $c_{ij} = 0 \ \forall \ i < j$, $C = (c_{ij})_{n \times n}$ For $i \ge j$: — A is lower triangular: $a_{ik} = 0$, $\forall \ i < k$				-	n of terms * (1st term + last
plication	— B is lower triangular: $b_{kj} = 0$, $\forall k < j$ — $a_{ik}b_{kj} = 0$ if $i < k$ or $k < j$. So multiplication only needed for k $c_{ij} = \sum_{k=j}^{i} a_{ik}b_{kj}$, $1 \le j \le i \le n$	c≤ior	k≥j		$=\frac{n(n+1)(2n+1)}{6}$	<u>)</u>
Upper Hessen- berg multi- plication	$A = (a_{ij})_{nxn} \text{ be tridiagonal matrix} = \begin{pmatrix} a_{11} & a_{12} & 0 & 0 & 0 \\ a_{21} & a_{22} & a_{23} & 0 & 0 \\ 0 & a_{32} & \ddots & \ddots & 0 \\ 0 & 0 & \ddots & \ddots & a_{n-1,n} \\ 0 & 0 & 0 & a_{n,n-1} & a_{n,n} \end{pmatrix}$	1	$ (c_{ij})_{n \times n} \begin{pmatrix} c_{11} \\ c_{21} \\ 0 \\ 0 \\ 0 \end{pmatrix} $	c_{12} c_{22} c_{23} c_{32} \cdot . 0 \cdot . 0	$\begin{array}{cccc} \cdots & c_{1n} \\ \cdots & \vdots \\ \ddots & \vdots \\ \ddots & c_{n-1} \end{array}$	1,n
pileation	B be upper triangular and C = AB be upper Hessenberg matrix $c_{ij}=0, \ \forall j< i-1, \ 3\leq i\leq n$ For $j\geq i-1:-a_{ik}=0, \ \forall k< i-1, \ 3\leq i\leq n$ or $k>i+1, \ 1\leq i\leq n-2$ $-b_{kj}=0, \ \forall k>j$					
	$-a_{ik}b_{kj} = 0, \ \forall k < i - 1, \ 3 \le i \le n \ \text{ or } k > \min(i+1, j), \ 1 \le i \le n - 2$ $\neq 0, \ \forall i - 1 \le k \le \min(i+1,j), \ \forall i = 1,,n, \ \forall j = \max(1,i-1),, \ n$ $c_{ij} = \sum_{k=\max(1,i-1)}^{\min(i+1,j)} a_{ik}b_{kj}, \ \forall i = 1,,n, \ \forall j = \max(1,i-1),, \ n$					

Bisection	Intermediate Value Theorem (IVT): Let f be cts fn on [a,b], where $f(a)f(b) < 0$. Then $\exists r \in (a,b)$ s.t. $f(r) = 0$		
Mtd	Bisection mtd: Solve for eqn: $f(r) = 0$. Keep dividing interval by 2 until length of new interval/2 \leq TOL. Soln: exact root $r = approx root \pm TOL$		
	After n bisection steps: Approximate root = midpoint of $(a_n, b_n) = (a_n + b_n)/2$		
	Error of approx soln = $ \operatorname{exact} \operatorname{root} - \operatorname{approx} \operatorname{root} \le \frac{b_n - a_n}{2} = \frac{1}{2} \left(\frac{b - a}{2^n} \right) = \left(\frac{b - a}{2^{n+1}} \right)$		
	Num of fn evaluations = $n + 2$ (f(a), f(b), n times of f(c)). Convergence rate = $1/2$; need predefine initial interval. Convergence guaranteed		
	Soln is correct within p d.p if error is less than 0.5 x 10 ^{-p} . Num of steps for bisection: $\frac{b-a}{2^{n+1}}$ < 0.5 x 10 ^{-p}		
Fixed-	Solve eqn: $g(x) = x$, by iterating $x_{i+1} = g(x_i)$. r is a fixed pt if $g(r) = r$	Backward error = $ g(x_i+1) - x_{i+1} = f(x_a) $. Forward error = $ r-x_a $	
Point	Suppose $f(x) = g(x) - x$, and x_a is approximation for r where $f(r) = 0$	Method relies on Fixed-Point Thrm	
Iteration	Convergence Thrm: If $ g'(r) < 1$: will converge with rate $S = g'(r) $		
(FPI)	So S = 0: fastest convergence rate. S < 1: cfm converge. S > 1: won't converge. S = 1: may or may not		
Horner's	Horner's Mtd: most optimal mtd for finding value of polynomial. O(m). Given x, evaluate h(x). Common that h is polynomial.		
Mtd	d $P_m(x) = a_0 + a_1x + + a_{m-1}x^{m-1} + a_mx^m = a_0 + x(a_1 + x(a_2 + + x(a_{m-1} + xa_m)))$		
	$p_m = a_m$. $p_{m-1} = a_{m-1} + xp_m$ $p_1 = a_1 + xp_2$. $p_0 = a_0 + xp_1$		

Gaussian	$A_{n \times n} x_{n \times 1} = b_{n \times 1}$. Note lower triangular part not set to zero as they would not be used in further computation
Elimina-	Subtraction: $\frac{n(n-1)(2n+5)}{6}$ (without labelling rows). Multiplication: $\frac{n(n-1)(2n+5)}{6}$ (without labelling rows)
tion O(n³)	Division: n(n+1)/2 (without labelling rows). Note zero column = non-invertible
	Could have cases where $\mathbf{a_{r_i}}_i$ = 0. So label rows to keep track of swapping rows
Leading	Due to computer arithmetic errors, num supposed to be 0 becomes a very small num and cause loss of significant digits
term: $\frac{2n^3}{3}$	Backward sub: O(n²)
Partial	1st mtd to perform row swap to minimise errors
Pivoting	Select pivot elem s.t. its absolute value is largest in a particular col. Num of comparisons is $\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} 1 = \sum_{i=1}^{n-1} (n-i) = \frac{n(n-1)}{2}$

	However, if remaining entries of pivot row also has large magnitude, then would cause loss of significant digits in the other rows.			
Relative	A way to do this is to compare the relative absolute sizes in each col $j = 1,,n$,			
absolute	relative absolute value of row i = $\frac{ a_{ij} }{ max(row i) }$. Divisions = $\frac{(n+2)(n-1)}{2}$, Comparisons = $\frac{n(n-1)(2n+5)}{6}$			
ratio	By choosing largest relative absolute size for each col as pivot elem, loss of sig digits is minimised			
Scaled	2nd mtd to perform row swap to minimise errors. ≤ : don't swap. > : swap			
Partial	To save computational cost, assume max entry of row does not change too much in elimination process, and only find max for each row			
Pivoting	once at beginning, then use this max from original row to calculate relative absolute ratio: scaled partial pivoting			
(SPP)	Comparisons = $\frac{3}{2}n(n-1)$. Note max(row i) stay fixed even if row swap is performed			
LU	Solve for multiple L.S with same coefficient matrix, $Ax_1 = b_1$, $Ax_2 = b_2$, $Ax_0 = b_0$. So can preprocess A to not repeat ops.			
factoriza-	Find A = LU by Gaussian elimination w/o pivoting strategies, where L is lower triangular, U: upper triangular. LUx = b.			
tion	L = strictly lower part of processed A (multipliers m_{ji}) + diagonal all 1. U = upper triangular of processed A			
O(n ³) +	Forward substitution (solve Ly = b for y). Backward substitution (solve Ux = y for x) Time complexity for both substitution = $O(n^2)$. So colving a LS = $O(2n^3)$.			
O(2pn²)	Time complexity for both substitution = O(n²). So, solving p LS = O(2pn³)			
PA = LU factoriza-	Matrix which require row swap to get REF cannot be LU factorized. (or can check det of top left entry, top left 2 x 2 entries, top left 3 x 3 ≠ 0 then can be factorized). Hence, need perform row swap at start with SPP, PAx = Pb, where P is a permutation matrix (n x n matrix			
tion	consisting all 0, except for a single 1 in every row and col)			
O(n ³) +	Now PA = LU. L = strictly lower part of processed A (multipliers m _{ii}) + diagonal all 1. U = upper triangular of processed A			
O(2pn²)	Solve Ly = Pb, then solve Ux = y. No need to explicitly find P, just output r (stored row index) to replace P			
A = LU & PA				
	Symmetric positive-definite matrix. n x n matrix A is symmetric if $A^T = A$. A is positive-definite if $x^T A x > 0 \ \forall$ col vector $x \neq 0$.			
	To check if matrix is positive-definite, could expand algebraically with x and then complete the sq to check > 0.			
	OR If A is symmetric, A is positive-definite iff all eigenvalues > 0 $(a_{11} a_{12}) (a_{22} a_{23}) (a_{11} a_{13})$			
	Principal submatrix of sq matrix A is a sq submatrix whose diag entries = diag entries of A. $(a_{11}, a_{22}, a_{33}, \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}, \begin{pmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{pmatrix}, \begin{pmatrix} a_{11} & a_{13} \\ a_{31} & a_{33} \end{pmatrix})$			
	Any principal submatrix of a symmetric positive-definite matrix is symmetric positive-definite.			
Cholesky	Cholesky factorization: every symmetric positive-definite matrix A can be factored as A = R ^T R (R is upper triangular). Hence would save			
factoriza-	roughly half the memory compared to A = LU. Idea: Use row/col ops to reduce A into identity matrix to get A = R^TR .			
tion O(n³) +	Forward sub: $R^Ty = b$ for y. Backward sub: $Rx = y$ for x. $O(n^2)$			
O(pn²)	Forward sub: R'y = b for y. Backward sub: RX = y for X. $O(n^2)$ $A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{12} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \dots & a_{nn} \end{pmatrix} \qquad k = 1: R = \begin{pmatrix} \sqrt{a_{11}} & u_1^T : = \frac{1}{\sqrt{a_{11}}} (a_{12} \dots a_{1n}) \\ - & \sqrt{a_{11}} (a_{12} \dots a_{1n}) \end{pmatrix}, \qquad A = \begin{pmatrix} - & - & - \\ - & \widetilde{A_1} : = \begin{pmatrix} a_{22} & \dots & a_{2n} \\ \vdots & \ddots & \vdots \\ a_{2n} & \dots & a_{nn} \end{pmatrix} - u_1 u_1^T \end{pmatrix},$			
	$k = 2 \colon R = \begin{pmatrix} R_{11} & R_{12} & R_{13} \dots R_{1n} \\ - & \sqrt{\tilde{a}_{11}} & u_2^T := \frac{1}{\sqrt{\tilde{a}_{11}}} (\tilde{a}_{12} \dots \tilde{a}_{1,n-1}) \end{pmatrix}, A = \begin{pmatrix} - & - & - \\ - & \widetilde{A_2} := \begin{pmatrix} \tilde{a}_{22} & \cdots & \tilde{a}_{2,n-1} \\ \vdots & \ddots & \vdots \\ \tilde{a}_{2,n-1} & \cdots & \tilde{a}_{n-1,n-1} \end{pmatrix} - u_2 u_2^T \end{pmatrix}$			
Strictly	Repeat until k = n, then A becomes I so A = R ^T R. Note $\tilde{A} = K_1 - u_1 u_1^T$ also positive definite. A is stricly diagonally dominant (sdd) if for each $1 \le i \le n$, $ a_{ii} > \sum_{j \ne i} a_{ij} $, i.e. diagonal entry > sum of non-diagonal entries in same row,			
Diagonally	then Jacobi and Gauss-Seidel mtd will converge			
Dominant	If A sdd, then A is a nonsingular matrix. If A not sdd, MIGHT still converge (check spectral radius)			
Spectral	Another mtd to check convergence is spectral radius p(B) = max magnitude of eigenvalues of B. If p(B) < 1, and c is arbitrary, then for any			
Radius	vector x_0 , $x_{k+1} = Bx_k + c$ converges. In particular, check $p(D^{-1}(L + U)) < 1$. Use $det(D^{-1}(L + U) - \lambda I) = 0$ to find eigenvalues.			
	Note determinant of matrix = product of eigenvalues			
Jacobi	$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} \begin{pmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \end{pmatrix} \begin{pmatrix} a_{11} & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \end{pmatrix}$			
$ \begin{vmatrix} (n^2) & \begin{pmatrix} \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} \begin{pmatrix} \vdots & \ddots & \ddots & 0 \\ a_{n1} & \cdots & a_{n-1} & 0 \end{pmatrix} \begin{pmatrix} \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & a_{nn} \end{pmatrix} \begin{pmatrix} \vdots & \ddots & \ddots & a_{n-1,n} \\ 0 & \cdots & 0 & a_{nn} \end{pmatrix} $				
Similar to fixed-point iteration. $A_{n \times n} = L + D + U$. $Ax = b$. $(L + D + U)x = b$. $Dx = b - (L + U)x$. $x = D^{-1}(b - (L + U)x)$.				
D^{-1} is just reciprocal of all entries in D. So $x^{(k+1)} = D^{-1}(b - Lx^{(k)} - Ux^{(k)})$				
Then solve eqn element-wise, $\forall i = 1,,n$: $x_i^{(k+1)} = \frac{1}{a_{ii}} \left[b_i - a_{i1} x_1^{(k)} - \dots - a_{i,i-1} x_{i-1}^{(k)} - a_{i,i+1} x_{i+1}^{(k)} - \dots - a_{in} x_n^{(k)} \right]$				
	So calculation can be parallelized			
Gauss-				
Seidel Mtd				
O(n ²) Now cannot parallelized, as $x_2, \dots x_n$ dependent on x_1, \dots, x_{n-1} . But since updated values are used, will converge faster than Jacobi				
Successive	Successive Over- Let ω be a real num, and $x^{(k+1)} = (1 - \omega)x^{(k)} + \omega D^{-1}(b - Lx^{(k+1)} - Ux^{(k)})$. ω is called relaxation parameter and $\omega > 1$ = over-relaxation			
Relaxation (SOR) $\forall i = 1,, n: \ x_i^{(k+1)} = (1 - \omega)x_i^{(k)} + \frac{\omega}{a_{ii}} \left[b_i - a_{i1}x_1^{(k+1)} - \cdots - a_{i,i-1}x_{i-1}^{(k)} - a_{i,i+1}x_{i+1}^{(k)} - \cdots - a_{in}x_n^{(k)} \right]$				
GS: ω = 1. SOR: ω > 1. Need to choose ω wisely, usually 1.1 or 1.2. Faster convergence than GS				
When to use which	Direct mtd: Gaussian elimination, A = LU or PA = LU, Cholesky factorization. O(n³) for preprocessing, O(n²) Use iterative mtd if 1. requirement of accuracy not high, save computational cost 2. good approximation already known (to be used as initial guess)			
mtd?	for finding 3. If A is sparse (many entries = 0). Most expensive op is matrix-vector			
Iterative mtd: Jacobi, Gauss-Seidel, SOR. O(n²) multiplication which would be cheaper				
	, , , , , , , , , , , , , , , , , , ,			
Internola-	Given data points (v., f(v.)) (v., f(v.)) (v., f(v.)) Want to find Weierstrass approximation theorem: Let f be a cts folon (a, b). For			

Interpola-	Given data points $(x_0, f(x_0)), (x_1, f(x_1)),, (x_n, f(x_n))$. Want to find	Weierstrass approximation theorem: Let f be a cts fn on [a, b]. For	
tion	polynomial of deg n, P _n (x) to connect these pts to restore original fn	any $\epsilon > 0$, \exists a polynomial P(x) s.t. $ f(x) - P(x) < \epsilon$, $\forall x \in [a, b]$	
	f, i.e. $P_n(x_i) = f(x_i)$, $\forall i = 0,1,,n$		
1. Gaussian	Write $P_n(x) = a_0 + a_1x + + a_nx^n$		
Elmt	From general eqn for polynomial, sub data points in to get n+1 eqns and solve L.S to find coeff		
Basis fn	Basis fn: $\{\varphi_0(\mathbf{x}), \varphi_1(\mathbf{x}),, \varphi_n(\mathbf{x})\}$, where $\varphi_k(\mathbf{x}_j) = \delta_{jk}$,	Kronecker delta, $\delta_{jk} = \begin{cases} 0, & \text{if } j \neq k \\ 1, & \text{otherwise}, \text{ j = 0,1,, n, k = 0,1,, n} \end{cases}$	
2. Lagrange polynomial	$L_{k}(x) = \prod_{j=0, j \neq k}^{n} \frac{x - x_{j}}{x_{k} - x_{j}} = \frac{(x - x_{0}) (x - x_{k-1})(x - x_{k+1}) (x - x_{n})}{(x_{k} - x_{0}) (x_{k} - x_{k-1})(x_{k} - x_{k+1}) (x_{k} - x_{n})}. \text{ So } L_{k}(x_{j}) = \delta_{j}$	k . $L_k(x) = k^{th}$ Lagrange basis polynomial	
porymorma	Then $P_n(x) = f(x_0)L_0(x) + f(x_1)L_1(x) + + f(x_n)L_n(x) \cdot P_n(x) = Lagrange inte$		

	LS is guaranteed to have a soln if (deg n, num of eqns m)	Using LS: Pros – direct mtd Cons: tedious computations		
	m=n: By constructing Lagrange interpolating polynomial	Lagrange: Pros – easy to analyse. Good if we need to interpolate		
	m > n: Not guaranteed	many fns with same set of interpolating nodes Cons: not		
	m < n: Infinitely many solution	convenient to add more data points		
Uniqueness	of If $x_0, x_1,, x_n$ are $n + 1$ distinct nums and f is a fn whose va	lues are given at these nums,		
Lagrange po		with $f(x_k) = P_n(x_k)$, for $k = 0,1,,n$. $P_n(x) = Lagrange polynomial$		
Adding	Let P_{n-1} be the Lagrange interpolating polynomial of $f(x)$ with n nodes $x_0, x_1,, x_{n-1}$. Suppose we get one more data point $(x_n, f(x_n))$.			
more	Let $Q_n(x) = P_n(x) - P_{n-1}(x)$. $Q_n(x)$ is the unique interpolating polynomial t	hat interpolates $(x_0, 0)$, $(x_1, 0)$,, $(x_{n-1}, 0)$, $(x_n, f(x_n - P_{n-1}(x_n))$		
inter-	$Q_n(x) = f[x_0, x_1,, x_n](x - x_0)(x - x_1)(x - x_{n-1}) \text{ where } f[x_0, x_1,, x_n] = n^{\text{th}} \text{ divided diff of } f = \sum_{k=0}^n f(x_k) \prod_{j=0, j \neq k}^n \frac{1}{x_{j-1,j}}$			
polating nodes	So $P_n(x) = P_{n-1}(x) + Q_n(x) = P_{n-1}(x) + f[x_0, x_1,, x_n](x - x_0)(x - x_1)(x - x_{n-1}) = = P_0(x) + f[x_0, x_1](x - x_0) + + f[x_0,, x_n](x - x_0)(x - x_1)(x - x_{n-1})$			
3.	$P_n(x) = \sum_{k=0}^n f[x_0, \dots, x_k](x - x_0) (x - x_1) \dots (x - x_{k-1}) = P_0(x) + f[x_0]$			
Newton's	And n th divided diff of f = f[x ₀ , x ₁ ,, x _n] = $\sum_{k=0}^{n} f(x_k) \prod_{j=0, j \neq k}^{n} \frac{1}{x_{\nu-x_j}}$, where f[x ₀] = P ₀ (x) = f(x ₀).			
Poly- nomial	Note. order of nodes don't matter. i.e. $f[x_0, x_1, x_2] = f[x_1, x_2, x_0]$			
(Easier to	Let $x_0,, x_n$ be n+1 distinct real nums. Then $f[x_0, x_1,, x_n] = \frac{f[x_1, x_2,, x_n] - f[x_0, x_1,, x_{n-1}]}{x_n - x_0}$. Compute $f[x_0],, f[x_n]$ first, then $f[x_0, x_1] = \frac{f[x_1] - f[x_0]}{x_1 - x_0}$			
add more	O(n²) for computing n th divided diff. Num of entries = n + (n-1) + + 1 = $\frac{n(n+1)}{2}$. So total need n(n+1) subtraction and $\frac{n(n+1)}{2}$ divisions			
nodes)	To compute P _n (x) for some x, use Horner's method. O(n)			
	$P \leftarrow f[x_0, x_1,, x_n]; \text{ for } k = n-1,,0 \text{ do } \{P \leftarrow f[x_0, x_1,, x_k] + (x-x_k)P\}$			
Error of	Runge's phenomenon: Wider oscillation at ends (i.e. worse interpolation)	on at ends). ↑ num of nodes only worsen approximation at ends.		
interpola-	Error of interpolation, $ f(x) - P_n(x) $: error is 0 on all nodes.			
tion	$g_n(x) = (x-x_0)(x-x_1)(x-x_n) = \prod_{k=0}^n (x-x_k) $ has similar pattern to error $ f(x) - P_n(x) $ w equally-spaced nodes			
	Let $x_0 < x_1 < < x_n$ be n+1 distinct pts on [a, b]. If $f \in C^{n+1}([a,b])$, i.e. all derivatives f, $f^{(1)},,f^{(n+1)}$ are cts in [a, b], and P_n is the interpolating			
	polynomial of f w deg \leq n at $x_0, x_1,, x_n$. Then $\forall x \in \mathbb{R}, \exists \xi \in \mathbb{R}$ dependant on $x_0,, x_n, x$, and $\xi \in \min$ and \max of $\{x_0, x_1,, x_n, x\}$, s.t.			
	$f(x) - P_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x-x_0)(x-x_1)(x-x_n)$			
Cheby-	Chebyshev nodes: $x_k = \cos\left(\frac{(k+1/2)\pi}{n+1}\right)$, $k = 0,1,, n$ in [-1, 1]. Let $T_n(x) :=$	(deg n, n order) Chebyshev polynomial = cos((n)arccos x) (n nodes)		
shev Interpola-	Using Chebyshev nodes means $ \prod_{k=0}^{n}(x-x_k) = \frac{1}{2^n}T_{n+1}(x) \leq \frac{1}{2^n}$ is the smallest.			
tion	So now $g_n(x) = \left \frac{1}{2^n}\cos((n+1)\arccos x)\right \le \frac{1}{2^n}$, $g_n \to 0$ as $n \to \infty$. Error of interpolation for Chebyshev $= f(x) - P_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} \frac{1}{2^n} T_{n+1}(x) \le \frac{f^{(n+1)}(\xi)}{(n+1)!} \frac{1}{2^n} T_{n+1}(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} \frac{1}{2^$			
	For [a,b]: $x_k = \frac{a+b}{2} + \frac{b-a}{2} \cos\left(\frac{(k+1/2)\pi}{n+1}\right)$, $k = 0,1,,n$. $\left \prod_{k=0}^{n} (x-x_k)\right \le \frac{((b-a)/2)^{n+1}}{2^n}$			
	By using Chebyshev nodes to interpolate w Lagrange/divided diff, this polynomial = Chebyshev interpolating polynomial w deg n-1			
	Using Chebyshev nodes, error is worse ard center, but much milder no	ear ends (error more evenly distributed). As $n \uparrow$, Chebyshev $\rightarrow f(x)$		
Linear	Inconsistent sys: SLE w no solution, typically m ≥ n	Note $x^Tx = x ^2$. Normal equations: $A^TA\bar{x} = A^Tb$		

Linear Inc		nsistent sys: SLE w no solution, typically m ≥ n		Note $x^Tx = x ^2$. Normal equations: $A^TA\overline{x} = A^Tb$
Least	Length = Euclidean norm = $ x _2 = \sqrt{x_1^2 + x_2^2 + + x_n^2}$			\bar{x} is L.S sol to Ax = b, which minimizes Euclidean norm of the residual r = b - Ax
Square	Dot product of 2 n-dimensional col vectors = $\mathbf{u} \cdot \mathbf{v} = \mathbf{u}^T \mathbf{v} = \mathbf{u}_1 \mathbf{v}_1 + \mathbf{u}_2 \mathbf{v}_2 + \dots + \mathbf{u}_n \mathbf{v}_n$			
Problem	If $u^Tv = 0$, then u and v are perpendicular/orthogonal to each other. $u \perp v$			If $r = 0$, then \bar{x} is the sol to $Ax = b$.
	If need to use $A_{m \times n}$ (full col rank = cols all LI) for multiple $A^{T}A$ is		A ^T A is sym	metric positive-definite. For all $x \neq 0$, $x^TA^TAx = (Ax)^T(Ax) = y^TY$
	incor	nsistent sys, can use Cholesky factorization for $A^TA = R^TR$,	= y ² >	0
	wher	e R is an upper triangular matrix	Forward s	ub: $R^Ty = A^Tb$. Backward sub: $R\bar{x} = y$
QR factoriza	ation	on A^TA not numerically stable as could have rounding errors. $A = QR$: $(m \times n) = (m \times n)^*(n \times n)$		
		So, use (reduced) QR factorization: $A_{m \times n} = Q_{m \times n} R_{n \times n}$, where Q		
		Since Q is orthogonal matrix, it has orthonormal cols (i.e. $ \ \ \textbf{q}_i\ $	= 1, $\mathbf{q}_i^T \mathbf{q}_j$ =	= 0 if i ≠ j)
		$/ a_{11} a_{12} \cdots a_{1n} \setminus / q_{11} q_{12} \cdots q_{1n} \setminus / r_{11} r_{1}$	r_{1r}	i
		$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \end{pmatrix} = \begin{pmatrix} q_{11} & q_{12} & \cdots & q_{1n} \\ q_{21} & q_{22} & \cdots & q_{2n} \\ \vdots & \vdots & \ddots & \vdots \end{pmatrix} \begin{pmatrix} r_{11} & r_{11} \\ 0 & r_{21} \\ \vdots & \vdots & \ddots & \vdots \end{pmatrix}$	$_2$ r_{2r}	1
		$\begin{pmatrix} \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} \begin{pmatrix} \vdots & \vdots & \ddots & \vdots \\ q_{m1} & q_{m2} & \cdots & q_{mn} \end{pmatrix} \begin{pmatrix} \vdots & \ddots & \vdots \\ 0 & \cdots & \vdots \end{pmatrix}$	^	1
			- 111	1/
Gram-Schm		$\mathbf{y}_1 = \mathbf{a}_1, r_{11} = \mathbf{y}_1 , \mathbf{q}_1 = \frac{\mathbf{y}_1}{r_{11}}$	$\mathbf{y}_j = \mathbf{a}_j - \mathbf{r}$	$r_{1j}\mathbf{q}_1 - r_{2j}\mathbf{q}_2 - \dots - r_{j-1,j}\mathbf{q}_{j-1}, \ \mathbf{q}_j = \frac{r_j}{r_{ij}}$
orthogonali	ZatiOH	$r_{12} = \mathbf{q}_1^{\mathrm{T}} \mathbf{a}_2, \mathbf{y}_2 = \mathbf{a}_2 - r_{12} \mathbf{q}_1, r_{22} = \mathbf{y}_2 , \mathbf{q}_2 = \frac{\mathbf{y}_2}{r_{22}}$	$r_{ii} = \mathbf{q}_i^T \mathbf{a}$	$r_{1j}\mathbf{q}_{1} - r_{2j}\mathbf{q}_{2} - \dots - r_{j-1,j}\mathbf{q}_{j-1}, \ \mathbf{q}_{j} = \frac{y_{j}}{r_{jj}}$ $j_{j}, r_{jj} = y_{j} ,$

		r_{22}	
•	Suppose $f:\mathbb{R} \to \mathbb{R}$ is n+1 times differentiable on some open interval w the n th derivative $f^{(n)}$ cts on [a, x]. Then $\exists c \in [a,x]$ s.t.		
	$\frac{1}{(n+1)!} \frac{1}{(n+1)!} 1$		
	The n th	order Taylor polynomial for f at a is $P(x) = f(a) + f'(a)(x-a) + \frac{1}{2!}f''(a)(x-a)^2 + + \frac{1}{n!}f^{(n)}(a)(x-a)^n$, w approximation error $= \frac{1}{(n+1)!}f^{(n+1)}(c)(x-a)^{n+1}$	
2-point forw	ard-	If f is twice continuously differentiable, then by Taylor's thrm, let $x = x+h$, $a = x$,	
diff formula		then $f'(x) = \frac{f(x+h)-f(x)}{h} - \frac{h}{2}f''(c)$ where $c \in [x,x+h]$ (w error term). 1st order method since error $\frac{h}{2}f''(c)$ is O(h)	
Generalized	IVT	Let f be a cts fn on interval [a,b]. Let $x_1,, x_n \in [a,b]$ and $a_1,, a_n > 0$. Then $\exists c \in [a,b]$ s.t. $(a_1 + + a_n)f(c) = a_1f(x_1) + + a_nf(x_n)$	
3-point centered- diff formula		Expand f(x+h) and f(x-h) to f''' w Taylor to get f'(x) = $\frac{f(x+h)-f(x-h)}{2h} - \frac{1}{6}h^2f'''(c)$, where x-h < c < x+h	
		2nd order method since error $\frac{1}{6}h^2f'''(c)$ is O(h ²), approx is better. Generally, higher order appox formula more accurate	
Approx formula		For f''(x), $f(x+h) = f(x) + hf'(x) + \frac{h^2}{2}f''(x) + \frac{h^3}{6}f'''(x) + \frac{h^4}{24}f^{(4)}(c_1) & f(x-h) = f(x) - hf'(x) + \frac{h^2}{2}f''(x) - \frac{h^3}{6}f'''(x) + \frac{h^4}{24}f^{(4)}(c_2) & \text{where } x-h < c_2 < x < c_1 < x+h < c_2 < x < c_2 < x < c_2 < x+h < c_2 < x < c_2 < x+h < c_2 < x < c_2 < x+h $	
for higher derivatives		Adding both, 3-point centered diff formula for $f''(x) \approx \frac{f(x+h)-2f(x)+f(x-h)}{h^2}$ w error $\frac{h^2}{12}f^{(4)}(c)$ where x-h < c < x+h	
Rounding	unding Let $\hat{f}(x+h)$, $\hat{f}(x-h)$ be floating-point version of $f(x+h)$, $f(x-h)$, i.e. $f(x+h) = \hat{f}(x+h) + \epsilon_1$, $f(x-h) = \hat{f}(x-h) + \epsilon_2$, for some machine rounding error		
error ϵ_2		hen error in approx for 3-point centered-diff = $ f'(x) - \hat{f}'(x) \le \frac{\epsilon}{h} + \frac{h^2 M}{6}$, where $\epsilon_1, \epsilon_2 < \epsilon > 0$ and $ f'''(c) \le M$. Smallest error at $h = \sqrt[3]{\frac{3\epsilon}{M}}$	
		rder n formula for approximating Q: $Q = F_n(h) + K(h)h^n$, where $K(h)$ depends on h but can be treated as constant over range of h	
		Sichardson) extrapolation: $F_{n+1}(h) + O(h^{n+1}) = \frac{2^n F_n(h/2) - F_n(h)}{2^n - 1} + O(h^{n+1})$, where $F_{n+1}(h)$ is at least an order $n+1$ formula	

