Técnicas de Demonstração Lógica Matemática

Marnes Augusto Hoff

11 de Março de 2008

- ▶ Técnicas
 - abordagens, estratégias para

- Técnicas
 - abordagens, estratégias para
- Demonstração
 - ato de demonstrar, provar, convencer-se (e aos outros) sobre a veracidade de

- Técnicas
 - abordagens, estratégias para
- Demonstração
 - ato de demonstrar, provar, convencer-se (e aos outros) sobre a veracidade de
- Teoremas
 - proposições lógicas que podem ser (já foram) provadas

Componentes de uma Teoria

▶ Uma Teoria é um sistema

- Uma Teoria é um sistema
 - elementos / entidades

- ▶ Uma Teoria é um sistema
 - elementos / entidades
 - axiomas / postulados
 - aceitos como verdades imediatas
 - não se prova

- Uma Teoria é um sistema
 - elementos / entidades
 - axiomas / postulados
 - aceitos como verdades imediatas
 - não se prova
 - definições
 - batizar / dar nomes
 - ► "macros"

- ▶ Uma Teoria é um sistema
 - elementos / entidades
 - axiomas / postulados
 - aceitos como verdades imediatas
 - não se prova
 - definições
 - batizar / dar nomes
 - "macros"
 - e tudo que decorre deles através de teoremas

Teoria

Outros componentes

- ▶ lema
 - teorema auxiliar
 - usado para provar outro
- corolário
 - "teorema" que é conseqüência imediata de outro
 - não se costuma chamar de teorema
- conjectura
 - proposição que se suspeita ser verdadeira
 - mas ainda não foi provada (nem refutada)

Teoremas e Provas

- ▶ Teorema
 - qualquer proposição lógica que tenha sido provada

Teoremas e Provas

- ▶ Teorema
 - qualquer proposição lógica que tenha sido provada
- Prova
 - argumento lógico
 - bem construído
 - finito

Técnicas de Prova

- Principais
 - direta
 - por contraposição ou transposição
 - por contradição ou (redução ao) absurdo
 - indutiva (indução matemática)

Técnicas de Prova

- Principais
 - direta
 - por contraposição ou transposição
 - por contradição ou (redução ao) absurdo
 - indutiva (indução matemática)
- Outras
 - por exaustão
 - geométrica
 - coindutiva (coindução coálgebras)
 - ...

124

Teorema

(maioria)

- ► Condicional ou de implicação
- $\triangleright A \Longrightarrow B$
 - A = hipótese ou premissa
 - B =tese ou conclusão

Teorema

(maioria)

- ► Condicional ou de implicação
- $\triangleright A \Longrightarrow B$
 - A = hipótese ou premissa
 - B = tese ou conclusão
- Formas como pode aparecer

se A , então B	B, se A
A somente se B	B, sempre que A
A implica em B	B segue de A
A não pode acontecer sem B	
sempre que A ocorre, B ocorre	
A é suficiente para B	B é necessário para A

- ightharpoonup Como provar $A \Longrightarrow B$?
- podemos utilizar qualquer coisa válida (já conhecida e aceita/provada)
 - implicações e equivalências da lógica (passos lógicos)
 - modus ponens
 - ▶ introdução do ∨ (adição)
 - ▶ eliminação do ∧ (simplificação)
 - ► leis de De Morgan
 - da teoria em questão
 - axiomas
 - definições
 - teoremas

- ▶ O que queremos mostrar?
 - a tese: B

- ▶ O que queremos mostrar?
 - a tese: B
- ▶ O que temos para isso?
 - a hipótese: A

- O que queremos mostrar?
 - a tese: B
- ▶ O que temos para isso?
 - a hipótese: A
- ▶ De que/onde partimos?
 - geralmente, de um dos "lados" da tese (quando a tese tem estrutura interna de implicação, equivalência, igualdade, etc.)
 - eventualmente, da hipótese
 - raramente, de outra coisa

Exemplo 1 de Teorema $A \Longrightarrow B$

► "A soma de dois inteiros ímpares é par."

- "A soma de dois inteiros ímpares é par."
- reescrevendo
 - Sejam x e y inteiros. Se x e y são ímpares, então x + y é par
 - $\forall x, y \in \mathbb{Z}$, $impar(x) \land impar(y) \Longrightarrow par(x + y)$

- "A soma de dois inteiros ímpares é par."
- reescrevendo
 - Sejam x e y inteiros. Se x e y são ímpares, então x+y é par
 - $\forall x, y \in \mathbb{Z}$, $impar(x) \land impar(y) \Longrightarrow par(x + y)$
- mas o que significa "ser ímpar" e "ser par"?

- "A soma de dois inteiros ímpares é par."
- reescrevendo
 - Sejam x e y inteiros. Se x e y são ímpares, então x + y é par
 - $\forall x, y \in \mathbb{Z}$, $impar(x) \land impar(y) \Longrightarrow par(x + y)$
- mas o que significa "ser ímpar" e "ser par"?
- Dica: sempre olhar as definições
 - geralmente, as definições ajudam a achar o caminho

- Definição de Par: Seja um inteiro a,
 - $a \in par$, sse existe um inteiro k tal que a = 2k
 - $par(a) \iff \exists k \in \mathbb{Z}.(a=2k)$
- ▶ Definição de Ímpar: Seja um inteiro a,
 - a é ímpar, sse existe um inteiro k tal que a=2k+1
 - $impar(a) \iff \exists k \in \mathbb{Z}. (a = 2k + 1)$

- Definição de Par: Seja um inteiro a,
 - $a \in par$, sse existe um inteiro k tal que a = 2k
 - $par(a) \iff \exists k \in \mathbb{Z}.(a=2k)$
- ▶ Definição de Ímpar: Seja um inteiro a,
 - $a \in \text{impar}$, sse existe um inteiro k tal que a = 2k + 1
 - $impar(a) \Longleftrightarrow \exists k \in \mathbb{Z}.(a = 2k + 1)$
- Teorema
 - $\forall x, y \in \mathbb{Z}$, $impar(x) \land impar(y) \Longrightarrow par(x + y)$

- Definição de Par: Seja um inteiro a,
 - $a \in par$, sse existe um inteiro k tal que a = 2k
 - $par(a) \iff \exists k \in \mathbb{Z}.(a=2k)$
- Definição de Ímpar: Seja um inteiro a,
 - a é ímpar, sse existe um inteiro k tal que a = 2k + 1
 - $impar(a) \Longleftrightarrow \exists k \in \mathbb{Z}. (a = 2k + 1)$
- Teorema
 - $\forall x, y \in \mathbb{Z}$, $impar(x) \land impar(y) \Longrightarrow par(x + y)$
 - $\forall x, y \in \mathbb{Z}, \left\{ \begin{array}{l} \exists k_1 \in \mathbb{Z}.(x = 2k_1 + 1) \\ \land \\ \exists k_2 \in \mathbb{Z}.(y = 2k_2 + 1) \end{array} \right\} \Rightarrow \exists k_3 \in \mathbb{Z}.(x + y = 2k_3)$

- lackbox Queremos mostrar a tese: $x+y=2k_3$ para algum $k_3\in\mathbb{Z}$
 - tem uma estrutura interna de igualdade

- lackbox Queremos mostrar a tese: $x+y=2k_3$ para algum $k_3\in\mathbb{Z}$
 - tem uma estrutura interna de igualdade
- ▶ Como mostrar? Sugestão: $x + y = ... = ... = 2k_3$

- lackbox Queremos mostrar a tese: $x+y=2k_3$ para algum $k_3\in\mathbb{Z}$
 - tem uma estrutura interna de igualdade
- ▶ Como mostrar? Sugestão: $x + y = ... = ... = 2k_3$
- ▶ Temos a hipótese: $\left\{ \begin{array}{l} x=2k_1+1 \ \ \text{para algum} \ k_1 \in \mathbb{Z} \\ y=2k_2+1 \ \ \text{para algum} \ k_2 \in \mathbb{Z} \end{array} \right.$
 - em algum lugar ela deve ser necessária

- lackbox Queremos mostrar a tese: $x+y=2k_3$ para algum $k_3\in\mathbb{Z}$
 - tem uma estrutura interna de igualdade
- ► Como mostrar? Sugestão: $x + y = ... = ... = 2k_3$
- ▶ Temos a hipótese: $\left\{ egin{array}{ll} x=2k_1+1 & {\sf para algum} \ k_1\in \mathbb{Z} \\ y=2k_2+1 & {\sf para algum} \ k_2\in \mathbb{Z} \end{array} \right.$
 - em algum lugar ela deve ser necessária
- Prova Direta
 x + y

- lackbox Queremos mostrar a tese: $x+y=2k_3$ para algum $k_3\in\mathbb{Z}$
 - tem uma estrutura interna de igualdade
- ► Como mostrar? Sugestão: $x + y = ... = ... = 2k_3$
- ▶ Temos a hipótese: $\left\{ \begin{array}{l} x=2k_1+1 \ \ \text{para algum} \ k_1 \in \mathbb{Z} \\ y=2k_2+1 \ \ \text{para algum} \ k_2 \in \mathbb{Z} \end{array} \right.$
 - em algum lugar ela deve ser necessária
- Prova Direta x + y = pelas hipóteses $(2k_1 + 1) + (2k_2 + 1)$

- ▶ Queremos mostrar a tese: $x + y = 2k_3$ para algum $k_3 \in \mathbb{Z}$
 - tem uma estrutura interna de igualdade
- ► Como mostrar? Sugestão: $x + y = ... = ... = 2k_3$
- ▶ Temos a hipótese: $\left\{ \begin{array}{l} x=2k_1+1 \ \ \text{para algum} \ k_1 \in \mathbb{Z} \\ y=2k_2+1 \ \ \text{para algum} \ k_2 \in \mathbb{Z} \end{array} \right.$
 - em algum lugar ela deve ser necessária
- Prova Direta x + y = pelas hipóteses $(2k_1 + 1) + (2k_2 + 1) = 2k_1 + 2k_2 + 2$

- ▶ Queremos mostrar a tese: $x+y=2k_3$ para algum $k_3\in \mathbb{Z}$
 - tem uma estrutura interna de igualdade
- ► Como mostrar? Sugestão: $x + y = ... = ... = 2k_3$
- ▶ Temos a hipótese: $\left\{ \begin{array}{l} x=2k_1+1 \ \ \text{para algum} \ k_1 \in \mathbb{Z} \\ y=2k_2+1 \ \ \text{para algum} \ k_2 \in \mathbb{Z} \end{array} \right.$
 - em algum lugar ela deve ser necessária
- Prova Direta x + y = pelas hipóteses $(2k_1 + 1) + (2k_2 + 1) = 2k_1 + 2k_2 + 2 = 2(k_1 + k_2 + 1)$

Exemplo de Teorema $A \Longrightarrow B$

 $2k_3$

- lackbox Queremos mostrar a tese: $x+y=2k_3$ para algum $k_3\in\mathbb{Z}$
 - tem uma estrutura interna de igualdade
- ► Como mostrar? Sugestão: $x + y = ... = ... = 2k_3$
- ▶ Temos a hipótese: $\left\{ \begin{array}{l} x=2k_1+1 \ \ \text{para algum} \ k_1 \in \mathbb{Z} \\ y=2k_2+1 \ \ \text{para algum} \ k_2 \in \mathbb{Z} \end{array} \right.$
 - em algum lugar ela deve ser necessária
- Prova Direta x+y = pelas hipóteses $(2k_1+1)+(2k_2+1)$ = $2k_1+2k_2+2$ = $2(k_1+k_2+1)$ = assumindo $k_3=k_1+k_2+1$

Exemplo 2 de Teorema $A \Longrightarrow B$

▶ "A composição de funções injetoras é uma função injetora."

- ▶ "A composição de funções injetoras é uma função injetora."
- reescrevendo
 - Sejam $f: A \to B$ e $g: B \to C$ funções. Se f e g são injetoras, então $g \circ f: A \to C$ é injetora

- ▶ "A composição de funções injetoras é uma função injetora."
- reescrevendo
 - Sejam $f:A\to B$ e $g:B\to C$ funções. Se f e g são injetoras, então $g\circ f:A\to C$ é injetora
- ▶ Definição de Injetora: Seja $m: A \rightarrow B$ uma função
 - $m \in \text{injetora} \iff \forall x, y \in A.(m(x) = m(y) \Longrightarrow x = y)$

- "A composição de funções injetoras é uma função injetora."
- reescrevendo
 - Sejam $f: A \to B$ e $g: B \to C$ funções. Se f e g são injetoras, então $g \circ f: A \to C$ é injetora
- ▶ Definição de Injetora: Seja $m: A \rightarrow B$ uma função
 - $m \in \text{injetora} \iff \forall x, y \in A.(m(x) = m(y) \Longrightarrow x = y)$
- ► A tese que queremos mostrar
 - $\forall x, y \in A.(g \circ f(x) = g \circ f(y) \Longrightarrow x = y)$
 - tem uma estrutura interna de implicação

- ▶ Mostrar: $\forall x, y \in A.(g \circ f(x) = g \circ f(y) \Longrightarrow x = y)$
 - usar $x, y \in A$ quaisquer (genéricos)
 - tentar: $g \circ f(x) = g \circ f(y) \Longrightarrow ... \Longrightarrow ... \Longrightarrow x = y$
 - em algum lugar, as hipóteses devem ser necessárias

- ► Mostrar: $\forall x, y \in A.(g \circ f(x) = g \circ f(y) \Longrightarrow x = y)$
 - usar $x, y \in A$ quaisquer (genéricos)
 - tentar: $g \circ f(x) = g \circ f(y) \Longrightarrow ... \Longrightarrow ... \Longrightarrow x = y$
 - em algum lugar, as hipóteses devem ser necessárias
- Prova Direta
 - Sejam $x, y \in A$ quaisquer, $g \circ f(x) = g \circ f(y)$

- ▶ Mostrar: $\forall x, y \in A.(g \circ f(x) = g \circ f(y) \Longrightarrow x = y)$
 - usar $x, y \in A$ quaisquer (genéricos)
 - tentar: $g \circ f(x) = g \circ f(y) \Longrightarrow ... \Longrightarrow ... \Longrightarrow x = y$
 - em algum lugar, as hipóteses devem ser necessárias
- Prova Direta
 - Sejam $x, y \in A$ quaisquer, $g \circ f(x) = g \circ f(y) \implies$ composição de funções g(f(x)) = g(f(y))

- ▶ Mostrar: $\forall x, y \in A.(g \circ f(x) = g \circ f(y) \Longrightarrow x = y)$
 - usar $x, y \in A$ quaisquer (genéricos)
 - tentar: $g \circ f(x) = g \circ f(y) \Longrightarrow ... \Longrightarrow ... \Longrightarrow x = y$
 - em algum lugar, as hipóteses devem ser necessárias
- Prova Direta
 - Sejam $x, y \in A$ quaisquer, $g \circ f(x) = g \circ f(y) \implies \text{composição de funções}$ $g(f(x)) = g(f(y)) \implies \text{hipótese: } g \text{ é injetora}$ f(x) = f(y)

Exemplo 2 de Teorema $A \Longrightarrow B$

- ▶ Mostrar: $\forall x, y \in A.(g \circ f(x) = g \circ f(y) \Longrightarrow x = y)$
 - usar $x, y \in A$ quaisquer (genéricos)
 - tentar: $g \circ f(x) = g \circ f(y) \Longrightarrow ... \Longrightarrow ... \Longrightarrow x = y$
 - em algum lugar, as hipóteses devem ser necessárias

Prova Direta

• Sejam $x, y \in A$ quaisquer, $g \circ f(x) = g \circ f(y) \implies$ composição de funções $g(f(x)) = g(f(y)) \implies$ hipótese: g é injetora $f(x) = f(y) \implies$ hipótese: f é injetora x = y

Símbolos × Palavras

- ▶ Uma demonstração precisa ser escrita com símbolos?
 - Não!!!
 - Mas precisa ser correta!

Símbolos × Palavras

- ▶ Uma demonstração precisa ser escrita com símbolos?
 - Não!!!
 - Mas precisa ser correta!
- Demonstração correta para o teorema anterior (é exatamente a mesma demonstração)
 - Sejam x e y dois elementos quaisquer do conjunto A. Supõe-se que $g \circ f(x)$ é igual a $g \circ f(y)$. Com isso, pode-se usar a definição de composição de funções para se chegar no fato que g(f(x)) é igual a g(f(y)). Daí, como, pela hipótese, a função g é injetora, pode-se concluir que f(x) é igual a f(y). Da mesma forma, como a função f é injetora, conclui-se que x é igual a y.

Demonstração × "Enrolação"

- Tentativa de "enrolar"
 - Como a primeira função, f, não envia dois elementos distintos x e y, pertencentes ao conjunto origem A, para um mesmo elemento z ∈ B, até chegar no segundo conjunto, não feriu a injetividade da função. A segunda função, g, se comporta da mesma forma, ou seja, não envia dois elementos distintos z e w de B para um mesmo elemento v de C. Portanto, a composição das duas funções claramente também será injetora, pois também não enviará dois elementos distintos da origem para um mesmo elemento no conjunto destino.
 - enunciou o teorema novamente, de forma mais "enrolada"
- ▶ intuição ≠ demonstração
- demonstração
 - entra nos detalhes
 - não deixa algo obscuro ("... claramente também será ...")
 - convence!

Equivalências Úteis

Qualquer equivalência serve para reestruturar uma prova

Mostrar	\iff	Mostrar
$A \Longrightarrow (B \Longrightarrow C)$	\iff	$(A \wedge B) \Longrightarrow C$
$A \Longrightarrow (B \Longrightarrow (C \Longrightarrow D)$	\iff	$(A \land B) \Longrightarrow C$ $(A \land B \land C) \Longrightarrow D$
$A \Longrightarrow (B \lor C)$	\iff	$(A \wedge \neg B) \Longrightarrow C$
	\iff	

Equivalências Úteis

Qualquer equivalência serve para reestruturar uma prova

Mostrar	\iff	Mostrar
$A \Longrightarrow (B \Longrightarrow C)$	\iff	$(A \wedge B) \Longrightarrow C$
$A \Longrightarrow (B \Longrightarrow (C \Longrightarrow D)$	\iff	$(A \land B) \Longrightarrow C$ $(A \land B \land C) \Longrightarrow D$
$A \Longrightarrow (B \lor C)$	\iff	$(A \land \neg B) \Longrightarrow C$
	\iff	

► Em especial

Mostrar	\iff	Mostrar	Prova por
$A \Longrightarrow B$	\iff	$\neg B \Longrightarrow \neg A$	Contraposição
$A \Longrightarrow B$	\iff	$A \wedge \neg B \Longrightarrow F$	Contradição ou Absurdo

$$\blacktriangleright \ \forall x,y \in \mathbb{Z}, \ par(xy) \Longrightarrow par(x) \lor par(y)$$

- $\forall x, y \in \mathbb{Z}, \ par(xy) \Longrightarrow par(x) \lor par(y)$
- a contraposição
 - $\forall x, y \in \mathbb{Z}, \neg par(x) \land \neg par(y) \Longrightarrow \neg par(xy)$
 - $\forall x, y \in \mathbb{Z}$, $impar(x) \land impar(y) \Longrightarrow impar(xy)$

- $ightharpoonup \forall x,y \in \mathbb{Z}, \ par(xy) \Longrightarrow par(x) \lor par(y)$
- ▶ a contraposição
 - $\forall x, y \in \mathbb{Z}, \neg par(x) \land \neg par(y) \Longrightarrow \neg par(xy)$
 - $\forall x, y \in \mathbb{Z}$, $impar(x) \land impar(y) \Longrightarrow impar(xy)$
- Prova por Contraposição xy

- $ightharpoonup \forall x,y \in \mathbb{Z}, \ par(xy) \Longrightarrow par(x) \lor par(y)$
- ▶ a contraposição
 - $\forall x, y \in \mathbb{Z}, \neg par(x) \land \neg par(y) \Longrightarrow \neg par(xy)$
 - $\forall x, y \in \mathbb{Z}$, $impar(x) \land impar(y) \Longrightarrow impar(xy)$
- Prova por Contraposição

$$xy$$
 = pelas hipóteses $(2k_1+1)(2k_2+1)$

- $ightharpoonup \forall x,y \in \mathbb{Z}, \ par(xy) \Longrightarrow par(x) \lor par(y)$
- ▶ a contraposição
 - $\forall x, y \in \mathbb{Z}, \neg par(x) \land \neg par(y) \Longrightarrow \neg par(xy)$
 - $\forall x, y \in \mathbb{Z}$, $impar(x) \land impar(y) \Longrightarrow impar(xy)$
- Prova por Contraposição

$$xy = pelas hipóteses $(2k_1 + 1)(2k_2 + 1) = 4k_1k_2 + 2k_1 + 2k_2 + 1$$$

- $ightharpoonup \forall x,y \in \mathbb{Z}, \ par(xy) \Longrightarrow par(x) \lor par(y)$
- ▶ a contraposição
 - $\forall x, y \in \mathbb{Z}, \neg par(x) \land \neg par(y) \Longrightarrow \neg par(xy)$
 - $\forall x, y \in \mathbb{Z}$, $impar(x) \land impar(y) \Longrightarrow impar(xy)$
- Prova por Contraposição

$$xy$$
 = pelas hipóteses
 $(2k_1 + 1)(2k_2 + 1)$ = $4k_1k_2 + 2k_1 + 2k_2 + 1$ = $2(2k_1k_2 + k_1 + k_2) + 1$

- $\forall x, y \in \mathbb{Z}, \ par(xy) \Longrightarrow par(x) \lor par(y)$
- a contraposição
 - $\forall x, y \in \mathbb{Z}, \neg par(x) \land \neg par(y) \Longrightarrow \neg par(xy)$
 - $\forall x, y \in \mathbb{Z}$, $impar(x) \land impar(y) \Longrightarrow impar(xy)$
- Prova por Contraposição

$$xy$$
 = pelas hipóteses
 $(2k_1+1)(2k_2+1)$ = $4k_1k_2+2k_1+2k_2+1$ = $2(2k_1k_2+k_1+k_2)+1$ = com $k_3=2k_1k_2+k_1+k_2$
 $2k_3+1$

Exemplo de Teorema $A \Longrightarrow B$

▶ Sejam $R: A \rightarrow B$ e $S: A \rightarrow B$ relações binárias. R e S são simétricas $\Longrightarrow R \cap S$ é simétrica

- ▶ Sejam $R: A \rightarrow B$ e $S: A \rightarrow B$ relações binárias. $R \in S$ são simétricas $\Longrightarrow R \cap S$ é simétrica
- a forma do absurdo
 - (R e S são simétricas) e $R \cap S$ não é simétrica \Longrightarrow Falso

- ▶ Sejam $R: A \rightarrow B$ e $S: A \rightarrow B$ relações binárias. R e S são simétricas $\Longrightarrow R \cap S$ é simétrica
- a forma do absurdo
 - (R e S são simétricas) e $R \cap S$ não é simétrica \Longrightarrow Falso
- Prova por Absurdo

- ▶ Sejam $R: A \rightarrow B$ e $S: A \rightarrow B$ relações binárias. R e S são simétricas $\Longrightarrow R \cap S$ é simétrica
- a forma do absurdo
 - (R e S são simétricas) e $R \cap S$ não é simétrica \Longrightarrow Falso
- Prova por Absurdo
 - Como $R \cap S$ não é simétrica, $\exists \langle x, y \rangle \in R \cap S$ tal que $\langle y, x \rangle \notin R \cap S$.

- ▶ Sejam $R: A \rightarrow B$ e $S: A \rightarrow B$ relações binárias. R e S são simétricas $\Longrightarrow R \cap S$ é simétrica
- a forma do absurdo
 - (R e S são simétricas) e $R \cap S$ não é simétrica \Longrightarrow Falso
- Prova por Absurdo
 - Como $R \cap S$ não é simétrica, $\exists \langle x, y \rangle \in R \cap S$ tal que $\langle y, x \rangle \notin R \cap S$.
 - Entretanto, considerando-se esse mesmo par $\langle x, y \rangle \in R \cap S$

- ▶ Sejam $R: A \rightarrow B$ e $S: A \rightarrow B$ relações binárias. R e S são simétricas $\Longrightarrow R \cap S$ é simétrica
- a forma do absurdo
 - (R e S são simétricas) e $R \cap S$ não é simétrica \Longrightarrow Falso
- Prova por Absurdo
 - Como $R \cap S$ não é simétrica, $\exists \langle x, y \rangle \in R \cap S$ tal que $\langle y, x \rangle \notin R \cap S$.
 - Entretanto, considerando-se esse mesmo par $\langle x,y\rangle \in R\cap S \implies \text{definição de } \cap \langle x,y\rangle \in R \land \langle x,y\rangle \in S$

- ▶ Sejam $R: A \rightarrow B$ e $S: A \rightarrow B$ relações binárias. R e S são simétricas $\Longrightarrow R \cap S$ é simétrica
- a forma do absurdo
 - (R e S são simétricas) e $R \cap S$ não é simétrica \Longrightarrow Falso
- Prova por Absurdo
 - Como $R \cap S$ não é simétrica, $\exists \langle x, y \rangle \in R \cap S$ tal que $\langle y, x \rangle \notin R \cap S$.
 - Entretanto, considerando-se esse mesmo par $\langle x,y\rangle\in R\cap S$ \Longrightarrow definição de \cap $\langle x,y\rangle\in R$ \wedge $\langle x,y\rangle\in S$ \Longrightarrow R e S são simétricas $\langle y,x\rangle\in R$ \wedge $\langle y,x\rangle\in S$

- ▶ Sejam $R: A \rightarrow B$ e $S: A \rightarrow B$ relações binárias. R e S são simétricas $\Longrightarrow R \cap S$ é simétrica
- a forma do absurdo
 - (R e S são simétricas) e $R \cap S$ não é simétrica \Longrightarrow Falso
- Prova por Absurdo
 - Como $R \cap S$ não é simétrica, $\exists \langle x, y \rangle \in R \cap S$ tal que $\langle y, x \rangle \notin R \cap S$.
 - Entretanto, considerando-se esse mesmo par $\langle x,y \rangle \in R \cap S$ \Longrightarrow definição de \cap $\langle x,y \rangle \in R \land \langle x,y \rangle \in S$ \Longrightarrow R e S são simétricas $\langle y,x \rangle \in R \land \langle y,x \rangle \in S$ \Longrightarrow definição de \cap $\langle y,x \rangle \in R \cap S$

- ▶ Sejam $R: A \rightarrow B$ e $S: A \rightarrow B$ relações binárias. R e S são simétricas $\Longrightarrow R \cap S$ é simétrica
- a forma do absurdo
 - (R e S são simétricas) e $R \cap S$ não é simétrica \Longrightarrow Falso
- Prova por Absurdo
 - Como $R \cap S$ não é simétrica, $\exists \langle x, y \rangle \in R \cap S$ tal que $\langle y, x \rangle \notin R \cap S$.
 - Entretanto, considerando-se esse mesmo par $\langle x,y \rangle \in R \cap S$ \Longrightarrow definição de \cap $\langle x,y \rangle \in R \land \langle x,y \rangle \in S$ \Longrightarrow R e S são simétricas $\langle y,x \rangle \in R \land \langle y,x \rangle \in S$ \Longrightarrow definição de \cap $\langle y,x \rangle \in R \cap S$
 - O que é um absurdo. Portanto, $R \cap S$ é simétrica.

Teorema

- Bicondicional ou de Equivalência
 - $A \iff B$
 - Formas como pode aparecer

A se, e somente se, B

A é equivalente a B

A é necessário e suficiente para B

- Como Provar?
 - ightharpoonup geralmente, provando $A \Longrightarrow B$ e $B \Longrightarrow A$
 - ightharpoonup eventualmente, provando a própria equivalência $A \iff B$

Princípio da Indução Matemática

- ▶ É um dos axiomas de Peano (definição de ℕ)
 - é aceito (não se prova)
- Idéia aplicada a
 - definições indutivas
 - funções recursivas
 - provas indutivas
 - proposições sobre N
 - generalização: proposições sobre conjuntos enumeráveis
- Dois Tipos
 - Primeiro Princípio de Indução Indução Tipo 1 Indução Fraca
 - Segundo Princípio de Indução Indução Tipo 2 Indução Forte

- Objetivo
 - demonstrar uma proposição P(n) para qualquer $n \in \mathbb{N}$

- Objetivo
 - demonstrar uma proposição P(n) para qualquer $n \in \mathbb{N}$

$$\begin{array}{ccc}
 & P(0) & \forall k \in \mathbb{N}.P(k) \Longrightarrow P(k+1) \\
 & \forall n \in \mathbb{N}.P(n)
\end{array}$$

- Nomenclatura
 - Base de Indução: P(0)
 - Hipótese de Indução: $\forall k \in \mathbb{N}$. P(k)
 - Passo de Indução: $\forall k \in \mathbb{N} . P(k) \Longrightarrow P(k+1)$

- Objetivo
 - demonstrar uma proposição P(n) para qualquer $n \in \mathbb{N}$

$$\begin{array}{ccc}
P(0) & \forall k \in \mathbb{N}.P(k) \Longrightarrow P(k+1) \\
\forall n \in \mathbb{N}.P(n)
\end{array}$$

- Nomenclatura
 - Base de Indução: P(0)
 - Hipótese de Indução: $\forall k \in \mathbb{N}$. P(k)
 - Passo de Indução: $\forall k \in \mathbb{N} : P(k) \Longrightarrow P(k+1)$
- Para se considerar a conclusão provada basta se provar as duas premissas da regra
 - base
 - passo
 - ► (como sempre, não se prova a hipótese)

Estratégia

- ▶ provar a Base: P(0)
 - geralmente é simples

Estratégia

Primeiro Princípio da Indução Matemática

- ▶ provar a Base: P(0)
 - geralmente é simples
- "provar o Passo"
 - acreditar na Hipótese: P(k) (supor que é verdadeira)
 - provar a tese do Passo: P(k+1)
 - prova direta, por contraposição, por absurdo, por indução, ...
 - provavelmente a hipótese será necessária

Primeiro Princípio da Indução Matemática

Variação

Original

•
$$P(0)$$
 $\forall k \in \mathbb{N}.P(k) \Longrightarrow P(k+1)$ $\forall n \in \mathbb{N}.P(n)$

Primeiro Princípio da Indução Matemática

Variação

Original

•
$$P(0)$$
 $\forall k \in \mathbb{N}.P(k) \Longrightarrow P(k+1)$ $\forall n \in \mathbb{N}.P(n)$

▶ Generalização: para qualquer valor inicial $b \in \mathbb{N}$

•
$$\frac{P(b)}{\forall k \geq b \in \mathbb{N}.P(k) \Longrightarrow P(k+1)}{\forall n \geq b \in \mathbb{N}.P(n)}$$

ightharpoonup Também se pode generalizar para o conjunto $\mathbb Z$ e b<0

Exemplo 1 — Indução do Tipo 1

• "A soma dos primeiros n ímpares positivos é n^2 ."

n	ímpares	soma
1	1	1
2	1,3	4
3	1,3,5	9
4	1,3,5,7	16

Exemplo 1 — Indução do Tipo 1

▶ "A soma dos primeiros n ímpares positivos é n^2 ."

n	ímpares	soma
1	1	1
2	1,3	4
3	1,3,5	9
4	1,3,5,7	16

- reescrevendo
 - Para $n \ge 1 \in \mathbb{N}$, $1+3+...+(2n-1)=n^2$
 - Para $n \geq 1 \in \mathbb{N}$,

$$\sum_{i=1}^n (2i-1) = n^2$$

- ▶ Para $n \ge 1 \in \mathbb{N}$, $1+3+...+(2n-1)=n^2$
- Prova por Indução
 - Base: *P*(1) para n = 1, tem-se $(2 \cdot 1 - 1) = 1 = 1^2$

- ▶ Para $n \ge 1 \in \mathbb{N}$, $1+3+...+(2n-1)=n^2$
- ► Prova por Indução
 - Base: P(1) para n = 1, tem-se $(2 \cdot 1 1) = 1 = 1^2$
 - Hipótese: supõe-se que P(k) vale, para qualquer $k \ge 1$ $\forall k \ge 1 \in \mathbb{N}, \quad 1+3+...+(2k-1)=k^2$

- ▶ Para $n \ge 1 \in \mathbb{N}$, $1+3+...+(2n-1)=n^2$
- ► Prova por Indução
 - Base: P(1) para n = 1, tem-se $(2 \cdot 1 1) = 1 = 1^2$
 - Hipótese: supõe-se que P(k) vale, para qualquer $k \ge 1$ $\forall k \ge 1 \in \mathbb{N}, \quad 1+3+...+(2k-1)=k^2$
 - Passo: deve-se mostrar P(k+1), provavelmente usando P(k) $1+3+...+(2k-1)+(2(k+1)-1)=...=(k+1)^2$

- ▶ Para $n > 1 \in \mathbb{N}$, $1 + 3 + ... + (2n 1) = n^2$
- Prova por Indução
 - Base: P(1) para n = 1, tem-se $(2 \cdot 1 - 1) = 1 = 1^2$
 - Hipótese: supõe-se que P(k) vale, para qualquer k > 1 $\forall k > 1 \in \mathbb{N}, \quad 1 + 3 + ... + (2k - 1) = k^2$
 - Passo: deve-se mostrar P(k+1), provavelmente usando P(k) $1+3+...+(2k-1)+(2(k+1)-1) = ... = (k+1)^2$ 1+3+...+(2k-1)+(2(k+1)-1) =

- ▶ Para $n \ge 1 \in \mathbb{N}$, $1+3+...+(2n-1)=n^2$
- ► Prova por Indução
 - Base: P(1) para n = 1, tem-se $(2 \cdot 1 1) = 1 = 1^2$
 - Hipótese: supõe-se que P(k) vale, para qualquer $k \ge 1$ $\forall k \ge 1 \in \mathbb{N}, \quad 1+3+...+(2k-1)=k^2$
 - Passo: deve-se mostrar P(k+1), provavelmente usando P(k) $1+3+...+(2k-1)+(2(k+1)-1)=...=(k+1)^2$ $\boxed{1+3+...+(2k-1)+(2(k+1)-1)=}$ (1+3+...+(2k-1))+(2(k+1)-1)=

- ▶ Para $n \ge 1 \in \mathbb{N}$, $1+3+...+(2n-1)=n^2$
- ▶ Prova por Indução
 - Base: P(1) para n = 1, tem-se $(2 \cdot 1 1) = 1 = 1^2$
 - Hipótese: supõe-se que P(k) vale, para qualquer $k \ge 1$ $\forall k \ge 1 \in \mathbb{N}, \quad 1+3+...+(2k-1)=k^2$
 - Passo: deve-se mostrar P(k+1), provavelmente usando P(k) $1+3+...+(2k-1)+(2(k+1)-1)=...=(k+1)^2$ $\boxed{1+3+...+(2k-1)+(2(k+1)-1)}=$ (1+3+...+(2k-1))+(2(k+1)-1)= pela hipótese $k^2+2k+2-1=$

- ▶ Para $n \ge 1 \in \mathbb{N}$, $1+3+...+(2n-1)=n^2$
- ▶ Prova por Indução
 - Base: P(1) para n = 1, tem-se $(2 \cdot 1 1) = 1 = 1^2$
 - Hipótese: supõe-se que P(k) vale, para qualquer $k \ge 1$ $\forall k \ge 1 \in \mathbb{N}, \quad 1+3+...+(2k-1)=k^2$
 - Passo: deve-se mostrar P(k+1), provavelmente usando P(k) $1+3+...+(2k-1)+(2(k+1)-1)=...=(k+1)^2$ $\boxed{1+3+...+(2k-1)+(2(k+1)-1)}=$ (1+3+...+(2k-1))+(2(k+1)-1)= pela hipótese $k^2+2k+2-1=$ $(k+1)^2$

- ▶ Para $n \ge 1 \in \mathbb{N}$, $1+3+...+(2n-1)=n^2$
- ▶ Prova por Indução
 - Base: P(1) para n = 1, tem-se $(2 \cdot 1 1) = 1 = 1^2$
 - Hipótese: supõe-se que P(k) vale, para qualquer $k \ge 1$ $\forall k \ge 1 \in \mathbb{N}, \quad 1+3+...+(2k-1)=k^2$
 - Passo: deve-se mostrar P(k+1), provavelmente usando P(k) $1+3+\ldots+(2k-1)+(2(k+1)-1)=\ldots=(k+1)^2$ $\boxed{1+3+\ldots+(2k-1)+(2(k+1)-1)=}$ $(1+3+\ldots+(2k-1))+(2(k+1)-1)=$ pela hipótese $k^2+2k+2-1=(k+1)^2$
- A prova acima mostra que $n > 1 \in \mathbb{N}, \quad 1+3+...+(2n-1) = n^2$

Por que funciona?

► Situação

- 1. P(a) (premissa) 2. $P(a) \Longrightarrow P(b)$ (premissa)
- 3. $P(b) \Longrightarrow P(c)$ (premissa)
- 3. $P(b) \Longrightarrow P(c)$ (premissa)

Por que funciona?

► Situação

5. *P*(*b*)

```
1. P(a) (premissa)

2. P(a) \Longrightarrow P(b) (premissa)

3. P(b) \Longrightarrow P(c) (premissa)

4. P(c) \Longrightarrow P(d) (premissa)
```

Modus Ponens 2, 1

Por que funciona?

Situação

```
1. P(a)(premissa)2. P(a) \Longrightarrow P(b)(premissa)3. P(b) \Longrightarrow P(c)(premissa)4. P(c) \Longrightarrow P(d)(premissa)5. P(b)Modus Ponens 2, 16. P(c)Modus Ponens 3, 5
```

Por que funciona?

Situação

```
1. P(a)(premissa)2. P(a) \Longrightarrow P(b)(premissa)3. P(b) \Longrightarrow P(c)(premissa)4. P(c) \Longrightarrow P(d)(premissa)5. P(b)Modus Ponens 2, 16. P(c)Modus Ponens 3, 57. P(d)Modus Ponens 4, 6
```

Por que funciona?

▶ Situação

```
1. P(a)(premissa)2. P(a) \Longrightarrow P(b)(premissa)3. P(b) \Longrightarrow P(c)(premissa)4. P(c) \Longrightarrow P(d)(premissa)5. P(b)Modus Ponens 2, 16. P(c)Modus Ponens 3, 57. P(d)Modus Ponens 4, 6
```

Se houver infinitas implicações

$$P(0)$$
 $P(0) \Longrightarrow P(1)$ $P(1) \Longrightarrow P(2)$ $P(2) \Longrightarrow P(3)$... aplica-se Modus Ponens tantas vezes quantas necessárias

▶ De fato, o passo de indução significa "infinitas implicações" $\forall k \in \mathbb{N} . P(k) \Longrightarrow P(k+1)$

- "Algoritmo" usado para P(k+1) em função de P(k)
 - é genérico
 - pode ser instanciado para qualquer k
 - exemplo para P(8) (ou seja, P(7+1), com k=7)

$$\begin{array}{lll} 1+3+...+(2\cdot 7-1)+(2(7+1)-1) & = \\ (1+3+...+(2\cdot 7-1)) + (2(7+1)-1) & = \\ 7^2 & + & 2\cdot 7+2-1 & = \\ (7+1)^2 & & & \end{array} \text{usando } P(7)$$

- "A soma dos cubos de três naturais consecutivos é um múlt. de 9."
 - Definição: a é múltiplo de $9 \Longleftrightarrow \exists x \in \mathbb{Z}$. a = 9x

- ▶ "A soma dos cubos de três naturais consecutivos é um múlt. de 9."
 - Definição: a é múltiplo de $9 \Longleftrightarrow \exists x \in \mathbb{Z}$. a = 9x
- ▶ reescrevendo: $\forall n \in \mathbb{N}$, $n^3 + (n+1)^3 + (n+2)^3 = 9x$, $x \in \mathbb{Z}$

- ▶ "A soma dos cubos de três naturais consecutivos é um múlt. de 9."
 - Definição: a é múltiplo de $9 \Longleftrightarrow \exists x \in \mathbb{Z}$. a = 9x
- ▶ reescrevendo: $\forall n \in \mathbb{N}$, $n^3 + (n+1)^3 + (n+2)^3 = 9x$, $x \in \mathbb{Z}$
- Prova por Indução
 - Base: $0^3 + 1^3 + 2^3 = 0 + 1 + 8 = 9 = 9 \cdot 1$

- ▶ "A soma dos cubos de três naturais consecutivos é um múlt. de 9."
 - Definição: a é múltiplo de $9 \Longleftrightarrow \exists x \in \mathbb{Z}$. a = 9x
- ▶ reescrevendo: $\forall n \in \mathbb{N}$, $n^3 + (n+1)^3 + (n+2)^3 = 9x$, $x \in \mathbb{Z}$
- Prova por Indução
 - Base: $0^3 + 1^3 + 2^3 = 0 + 1 + 8 = 9 = 9 \cdot 1$
 - Hipótese: $\forall k \in \mathbb{N}$, $k^3 + (k+1)^3 + (k+2)^3 = 9x$, $x \in \mathbb{Z}$

- "A soma dos cubos de três naturais consecutivos é um múlt. de 9."
 - Definição: a é múltiplo de $9 \Longleftrightarrow \exists x \in \mathbb{Z}$. a = 9x
- ▶ reescrevendo: $\forall n \in \mathbb{N}$, $n^3 + (n+1)^3 + (n+2)^3 = 9x$, $x \in \mathbb{Z}$
- Prova por Indução
 - Base: $0^3 + 1^3 + 2^3 = 0 + 1 + 8 = 9 = 9 \cdot 1$
 - Hipótese: $\forall k \in \mathbb{N}$, $k^3 + (k+1)^3 + (k+2)^3 = 9x$, $x \in \mathbb{Z}$
 - Passo $(k+1)^3 + (k+2)^3 + (k+3)^3 =$

- "A soma dos cubos de três naturais consecutivos é um múlt. de 9."
 - Definição: a é múltiplo de $9 \Longleftrightarrow \exists x \in \mathbb{Z}$. a = 9x
- ▶ reescrevendo: $\forall n \in \mathbb{N}$, $n^3 + (n+1)^3 + (n+2)^3 = 9x$, $x \in \mathbb{Z}$
- Prova por Indução
 - Base: $0^3 + 1^3 + 2^3 = 0 + 1 + 8 = 9 = 9 \cdot 1$
 - Hipótese: $\forall k \in \mathbb{N}, \quad k^3 + (k+1)^3 + (k+2)^3 = 9x, \ x \in \mathbb{Z}$
 - Passo $(k+1)^3 + (k+2)^3 + (k+3)^3 = (k+1)^3 + (k+2)^3 + k^3 + 9k^2 + 27k + 27 = 0$

- "A soma dos cubos de três naturais consecutivos é um múlt. de 9."
 - Definição: a é múltiplo de $9 \Longleftrightarrow \exists x \in \mathbb{Z}$. a = 9x
- ▶ reescrevendo: $\forall n \in \mathbb{N}$, $n^3 + (n+1)^3 + (n+2)^3 = 9x$, $x \in \mathbb{Z}$
- Prova por Indução
 - Base: $0^3 + 1^3 + 2^3 = 0 + 1 + 8 = 9 = 9 \cdot 1$
 - Hipótese: $\forall k \in \mathbb{N}$, $k^3 + (k+1)^3 + (k+2)^3 = 9x$, $x \in \mathbb{Z}$
 - Passo $(k+1)^3 + (k+2)^3 + (k+3)^3 = (k+1)^3 + (k+2)^3 + k^3 + 9k^2 + 27k + 27 = \text{pela hipótese}$ 9x $+9k^2 + 27k + 27 =$

- "A soma dos cubos de três naturais consecutivos é um múlt. de 9."
 - Definição: a é múltiplo de $9 \Longleftrightarrow \exists x \in \mathbb{Z}$. a = 9x
- ▶ reescrevendo: $\forall n \in \mathbb{N}$, $n^3 + (n+1)^3 + (n+2)^3 = 9x$, $x \in \mathbb{Z}$
- Prova por Indução
 - Base: $0^3 + 1^3 + 2^3 = 0 + 1 + 8 = 9 = 9 \cdot 1$
 - Hipótese: $\forall k \in \mathbb{N}$, $k^3 + (k+1)^3 + (k+2)^3 = 9x$, $x \in \mathbb{Z}$
 - Passo $(k+1)^3 + (k+2)^3 + (k+3)^3 = (k+1)^3 + (k+2)^3 + k^3 + 9k^2 + 27k + 27 = pela hipótese$ 9x $+9k^2 + 27k + 27 = 9(x+k^2+3k+3) =$

- "A soma dos cubos de três naturais consecutivos é um múlt. de 9."
 - Definição: a é múltiplo de $9 \Longleftrightarrow \exists x \in \mathbb{Z}$. a = 9x
- ▶ reescrevendo: $\forall n \in \mathbb{N}$, $n^3 + (n+1)^3 + (n+2)^3 = 9x$, $x \in \mathbb{Z}$
- Prova por Indução
 - Base: $0^3 + 1^3 + 2^3 = 0 + 1 + 8 = 9 = 9 \cdot 1$
 - Hipótese: $\forall k \in \mathbb{N}$, $k^3 + (k+1)^3 + (k+2)^3 = 9x$, $x \in \mathbb{Z}$
 - Passo $(k+1)^3 + (k+2)^3 + (k+3)^3 = (k+1)^3 + (k+2)^3 + k^3 + 9k^2 + 27k + 27 = \text{pela hipótese}$ • $9x + 9k^2 + 27k + 27 = 9(x+k^2+3k+3) = y = x+k^2+3k+3$ • $9y, \text{ com } y \in \mathbb{Z}$

- Objetivo: o mesmo
- Motivo
 - há situações em que, para mostrar P(k+1)
 - ightharpoonup não se pode depender única e exclusivamente de P(k)
 - ▶ pode ser necessário algum P(i) com $0 \le i \le k$
- Solução
 - assumir que todos os anteriores são verdadeiros

- Objetivo: o mesmo
- Motivo
 - há situações em que, para mostrar P(k+1)
 - ightharpoonup não se pode depender única e exclusivamente de P(k)
 - ▶ pode ser necessário algum P(i) com $0 \le i \le k$
- Solução
 - assumir que todos os anteriores são verdadeiros

$$P(0) \qquad \forall k \in \mathbb{N}. P(0) \land P(1) \land P(2) \land \dots \land P(k) \Longrightarrow P(k+1)$$
$$\forall n \in \mathbb{N}. P(n)$$

- provavelmente, algum dos P(i) será necessário
- mas não se sabe qual, por isso se assume todos

Variação

Original

•
$$P(0)$$
 $\forall k \in \mathbb{N}. P(0) \land P(1) \land ... \land P(k) \Longrightarrow P(k+1)$
 $\forall n \in \mathbb{N}. P(n)$

Variação

Original

•
$$\frac{P(0) \qquad \forall k \in \mathbb{N}. P(0) \land P(1) \land \dots \land P(k) \Longrightarrow P(k+1)}{\forall n \in \mathbb{N}. P(n)}$$

▶ Generalização: para qualquer valor inicial $a \in \mathbb{N}$

•
$$\frac{P(a)}{\forall k \in \mathbb{N}. P(a) \land P(a+1) \land \dots \land P(k) \Longrightarrow P(k+1)}{\forall n \in \mathbb{N}. P(n)}$$

▶ Também se pode generalizar para o conjunto \mathbb{Z} e a < 0

Exemplo 3 — Indução do Tipo 2

▶ "Todo inteiro positivo possui uma representação em binário."

- "Todo inteiro positivo possui uma representação em binário."
- reescrevendo
 - $\forall n > 0 \in \mathbb{N}$

Exemplo 3 — Indução do Tipo 2

- "Todo inteiro positivo possui uma representação em binário."
- reescrevendo
 - $\forall n > 0 \in \mathbb{N}$
 - $\exists r \in \mathbb{N}$

(quantidade de bits)

- "Todo inteiro positivo possui uma representação em binário."
- reescrevendo
 - $\forall n > 0 \in \mathbb{N}$
 - $\exists r \in \mathbb{N}$ (quantidade de bits)
 - $\exists b_{r-1}, b_{r-2}, ..., b_2, b_1, b_0 \in \{0, 1\}$ (os bits)

- "Todo inteiro positivo possui uma representação em binário."
- reescrevendo
 - $\forall n > 0 \in \mathbb{N}$
 - $\exists r \in \mathbb{N}$ (quantidade de bits)
 - $\exists b_{r-1}, b_{r-2}, ..., b_2, b_1, b_0 \in \{0, 1\}$ (os bits)
 - $b_{r-1} \cdot 2^{r-1} + b_{r-2} \cdot 2^{r-2} + \dots + b_2 \cdot 2^2 + b_1 \cdot 2^1 + b_0 \cdot 2^0 = n$

- "Todo inteiro positivo possui uma representação em binário."
- reescrevendo
 - $\forall n > 0 \in \mathbb{N}$
 - $\exists r \in \mathbb{N}$ (quantidade de bits)
 - $\exists b_{r-1}, b_{r-2}, ..., b_2, b_1, b_0 \in \{0, 1\}$ (os bits)
 - $b_{r-1} \cdot 2^{r-1} + b_{r-2} \cdot 2^{r-2} + \dots + b_2 \cdot 2^2 + b_1 \cdot 2^1 + b_0 \cdot 2^0 = n$

$$2^{r-1}$$
 2^{r-2} ... 2^2 2^1 2^0

- ▶ Exemplo: n = 11
 - r = 4
 - $b_3 = 1$
 - $b_2 = 0$
 - $b_1 = 1$
 - $b_0 = 1$
 - $1 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0 = 8 + 0 + 2 + 1 = 11 = n$
 - 1 0 1 1

- ► Prova por Indução
 - Base: Para n = 1, tem-se r = 1 e $b_0 = 1$ $b_0 \cdot 2^0 = 1 \cdot 1 = 1 = n$

- ► Prova por Indução
 - Base: Para n = 1, tem-se r = 1 e $b_0 = 1$ $b_0 \cdot 2^0 = 1 \cdot 1 = 1 = n$
 - Hipótese
 - $\forall k > 0 \in \mathbb{N}$
 - $ightharpoonup \exists r \in \mathbb{N}$
 - $\exists b_{r-1},...,b_1,b_0 \in \{0,1\}$
 - $b_{r-1} \cdot 2^{r-1} + ... + b_1 \cdot 2^1 + b_0 \cdot 2^0 = k$

Exemplo 3 — Indução do Tipo 2

- ► Prova por Indução (continuação)
 - Passo
 - ▶ Seja $k+1 \in \mathbb{N}$, com k+1 > 1
 - ▶ Pela Hipótese, todos números de 1 a k têm representações em binário
 - Escolhe-se um i entre eles, da seguinte forma

$$i = \left\{egin{array}{ll} rac{k}{2} & ext{, se } k+1 ext{ \'e impar} \ & & \ rac{k+1}{2} & ext{, se } k+1 ext{ \'e par} \end{array}
ight.$$

► Como k+1>1, tem-se $1 \le i \le k$ portanto, i tem uma representação em binário

Exemplo 3 — Indução do Tipo 2

- Prova por Indução (continuação)
 - Passo (continuação)
 - ► Seja a representação de *i* em binário

r

$$b_{r-1}, ..., b_1, b_0$$

 $b_{r-1} \cdot 2^{r-1} + ... + b_1 \cdot 2^1 + b_0 \cdot 2^0 = i$

Cria-se uma nova representação em binário

Seja
$$a \in \{0,1\}$$
 definido por $a = \left\{ \begin{array}{l} 0 \quad \text{, se } k+1 \text{ \'e par} \\ 1 \quad \text{, se } k+1 \text{ \'e \'impar} \end{array} \right.$ Cria-se $2 \cdot \left(b_{r-1} \cdot 2^{r-1} + \ldots + b_1 \cdot 2^1 + b_0 \cdot 2^0\right) + a \cdot 2^0$ Que fica $b_{r-1} \cdot 2^r + \ldots + b_1 \cdot 2^2 + b_0 \cdot 2^1 + a \cdot 2^0$ $\text{\'e \'e uma representa\'eão de } r+1 \text{ bits para o valor } 2i+a$

- Prova por Indução (continuação)
 - Passo (continuação)

$$\text{Como} \\ i = \left\{ \begin{array}{l} \frac{k}{2} & \text{, se } k+1 \text{ \'e impar} \\ \\ \frac{k+1}{2} & \text{, se } k+1 \text{ \'e par} \\ a = \left\{ \begin{array}{l} 0 & \text{, se } k+1 \text{ \'e impar} \\ 1 & \text{, se } k+1 \text{ \'e impar} \end{array} \right. \end{aligned}$$

- Se k+1 é par, $2i+a=2\cdot\frac{k+1}{2}+0=k+1$
- Se k+1 é ímpar, $2i+a=2\cdot\frac{k}{2}+1=k+1$
- Portanto, a representação em binário $b_{r-1} \cdot 2^r + ... + b_1 \cdot 2^2 + b_0 \cdot 2^1 + a \cdot 2^0$ representa k+1
 - o que prova que k+1 tem representação em binário

- Objetivo
 - provar propriedades sobre conjuntos de estruturas
 - geralmente definidos indutivamente
 - são enumeráveis
- Inspiração
 - Indução Matemática
- Diferencas
 - Pode ter mais de uma Base
 - Pode ter mais de um Passo
 - consequentemente, pode ter mais de uma hipótese

- ► Seja *L* a linguagem gerada pela gramática
 - $(\{S\}, \{1, +, -, \times, \div, (,)\}, P, S)$ onde
 - $P = \{ S \rightarrow 1 \mid 111 \mid (S+S) \mid (S \times S S \div S) \}$

- ► Seja *L* a linguagem gerada pela gramática
 - $(\{S\}, \{1, +, -, \times, \div, (,)\}, P, S)$ onde
 - $P = \{ S \rightarrow 1 \mid 111 \mid (S+S) \mid (S \times S S \div S) \}$
- Exemplos de palavras da linguagem L
 - 1, 111, (1+1), (1+111), $(1 \times 111 1 \div 111)$
 - $((1+1)+(111+111)), (1+((111\times(111+1)-111\div 1)+1))$

- ▶ Seja L a linguagem gerada pela gramática
 - $(\{S\}, \{1, +, -, \times, \div, (,)\}, P, S)$ onde
 - $P = \{ S \rightarrow 1 \mid 111 \mid (S+S) \mid (S \times S S \div S) \}$
- Exemplos de palavras da linguagem L
 - 1, 111, (1+1), (1+111), $(1 \times 111 1 \div 111)$
 - $((1+1)+(111+111)), (1+((111\times(111+1)-111\div 1)+1))$
- Provar
 - Todas palavras de L têm tamanho ímpar.
 - $\forall w \in L$. tam(w) é ímpar

- Prova por Indução Estrutural
 - Bases
 - tam(1) = 1, que é ímpar
 - ightharpoonup tam(111) = 3, que é ímpar

- Prova por Indução Estrutural
 - Bases
 - ightharpoonup tam(1) = 1, que é ímpar
 - \blacktriangleright tam(111) = 3, que é ímpar
 - Hipótese
 - $\forall w \in L$. tam(w) é ímpar
 - Passo
 - ▶ Seja $w \in L$ com $w \neq 1$ e $w \neq 111$.
 - Portanto, $w ext{ \'e da forma } (w_1 + w_2) ext{ ou}$ $w ext{ \'e da forma } (w_1 \times w_2 - w_3 \div w_4)$ onde $w_1, w_2, w_3, w_4 \in L$

- Prova por Indução Estrutural (continuação)
 - Passo (continuação)
 - Se w é da forma $(w_1 + w_2)$, então $tam(w) = tam(w_1) + tam(w_2) + 3$ Como, por hipótese, $tam(w_1)$ e $tam(w_2)$ são ímpares, $tam(w) = (2k_1 + 1) + (2k_2 + 1) + 3 = 2(k_1 + k_2 + 2) + 1$, portanto, ímpar
 - ► Se w é da forma $(w_1 \times w_2 w_3 \div w_4)$, então $tam(w) = tam(w_1) + tam(w_2) + tam(w_3) + tam(w_4) + 5$ Como, por hipótese, $tam(w_1)$, $tam(w_2)$, $tam(w_3)$ e $tam(w_4)$ são ímpares, $tam(w) = (2k_1 + 1) + (2k_2 + 1) + (2k_2 + 1) + (2k_4 + 1) + 5$

$$tam(w) = (2k_1 + 1) + (2k_2 + 1) + (2k_3 + 1) + (2k_4 + 1) + 5 = 2(k_1 + k_2 + k_3 + k_4 + 4) + 1$$
, portanto, impar

Técnicas de Demonstração Lógica Matemática

Marnes Augusto Hoff
marnes.hoff@gmail.com
http://www.nyx.net/~mhoff

11 de Março de 2008

