Frontrunning in Ethereum

 $\bullet \bullet \bullet$

Evaluation of vulnerability detection tools

Supervisor: Ass.Prof.in Dipl.-Ing.in Mag.a rer.soc.oec. Dr.in techn. Monika di Angelo

What do these tools have in common?

- Conkas
- Ethracer
- Mythril
- Oyente
- Securify

What do these tools have in common?

- Conkas
- Ethracer
- Mythril
- Oyente
- Securify

1. They can detect frontrunning vulnerabilities in programs

What do these tools have in common?

- Conkas
- Ethracer
- Mythril
- Oyente
- Securify

- 1. They can detect frontrunning vulnerabilities in programs
- 2. They all miss > 94% of vulnerable programs¹

[1] Zhang et al. (2023) Combatting Front-Running in Smart Contracts: Attack Mining, Benchmark Construction and Vulnerability Detector Evaluation.

Why?

Ethereum Transactions

Ethereum Transactions

Frontrunning

Frontrunning

Frontrunning

Why are frontrunning vulnerability detectors so bad?

Vulnerable Programs

Zhang et al. (2023) Combatting Front-Running in Smart Contracts: Attack Mining, Benchmark Construction and Vulnerability Detector Evaluation.

Add secure programs

Evaluation Example

Tool \ Secure?	Vulnerable Programs	Secure Programs
Conkas	20%	15%
Oyente	18%	8%
Securify	0%	20%

Label the programs!

Evaluation Example

Tool \ Label	Uses sha256	Currency: ether	Currency: Token
Conkas	0%	15%	0%
Oyente	18%	8%	14%
Securify	0%	20%	12%

Contributions

- Verification of previous results
- Detailed understanding of causes for missed vulnerabilities
- Dataset for reproducible & automatic tool evaluation
- First analysis of false positives

References & Credits

[1] Wuqi Zhang, Lili Wei, Shing-Chi Cheung, Yepang Liu, Shuqing Li, Lu Liu, and Michael R. Lyu. Combatting Front-Running in Smart Contracts: Attack Mining, Benchmark Construction and Vulnerability Detector Evaluation. In IEEE Transactions on Software Engineering, volume 49, pages 3630–3646, 2023.

Icons from <u>Flaticon</u>:

- <u>Transaction</u>
- <u>Investigation</u>
- <u>Source Code</u>
- <u>Investigator</u>
- Coworking
- Stats Table
- <u>Check</u>
- Nope Shield