Mathematik II für Informatik - Zusammenfassung

Jonas Milkovits

Last Edited: 5. August 2020

Inhaltsverzeichnis

1	Ana	alysis Teil I - Konvergenz und Stetigkeit	1
	1.1	Die reellen Zahlen	1
	1.2	Wurzeln, Fakultäten und Binomialkoeffizienten	2
	1.3	Konvergenz von Folgen	2
		1.3.1 Der Konvergenzbegriff und wichtige Beispiele	2
		1.3.2 Konvergenzkriterien	4
			5
	1.4		5
	1.5		6
			7
		1.5.2 Das Cauchy-Produkt	
	1.6		8
	1.7	Stetigkeit reeller Funktionen	
		1.7.1 Der Grenzwertbegriff für Funktionen	
		1.7.2 Stetigkeit	
		1.7.3 Eigenschaften stetiger Funktionen	
	1.8	Stetigkeit von Funktionen mehrerer Variablen	
	1.9	Potenzreihen	
		Wichtige Funktionen	
	1.10	1.10.1 Exponentialfunktion und Logarithmus	
		1.10.2 Trigonometrische Funktionen	
		1.10.3 Die Polardarstellung komplexer Zahlen	
		1.10.4 Hyperbolische Funktionen	
		1.10.1 Hyperbonsone i difference i	_
2	Ana	alysis - Teil II: Differential- und Integralrechnung	2
	2.1	Differenzierbarkeit von Funktionen in einer Variablen	8
		2.1.1 Der Ableitungsbegriff	8
		2.1.2 Ableitungsregeln	g
		2.1.3 Höhere Ableitungen	S
	2.2	Eigenschaften differenzierbarer Funktionen	C
	2.3	Extremwerte	2
	2.4	Differenzieren von Funktionen mehrerer Variablen - Partielle Ableitung	2
	2.5	Differenzieren von Funktionen mehrerer Variablen - Totale Differenzierbarkeit	4
	2.6	Extremwertprobleme in mehreren Variablen	
	2.7	Integration in \mathbb{R}	
		2.7.1 Definition des bestimmten Integrals	
		2.7.2 Stammfunktionen und der Hauptsatz 2.	

1 Analysis Teil I - Konvergenz und Stetigkeit

1.1 Die reellen Zahlen

Definitionen

Die Menge der reellen Zahlen ist der kleinste angeordnete Körper, der $\mathbb Z$ enthält und das 5.1.1 Vollständigskeitsaxiom "Jede nichtleere Teilmenge, die eine obere Schranke besitzt, hat ein Suprenum." erfüllt.

Eine Teilmenge $M \subseteq \mathbb{R}$ heißt:

- 5.1.3 a) nach **oben (unten) beschränkt**, wenn sie eine obere (untere) Schranke besitzt.
 - b) beschränkt, wenn sie nach oben und unten beschränkt ist.

Die Funktion $|\cdot|: \mathbb{R} \to \mathbb{R}$ mit

5.1.5 $|x| = \begin{cases} x & \text{falls } x \ge 0 \\ -x & \text{falls } x < 0 \end{cases}$

heißt **Betragsfunktion** und |x| heißt Betrag von x.

Intervalle:

Es seien zwei Zahlen $a, b \in \mathbb{R}$ mit a < b gegeben. Dann heißen:

- $(a,b) := \{x \in \mathbb{R} : a < x < b\}$ offenes Intervall
- $[a,b] := \{x \in \mathbb{R} : a \le x \le b\}$ abgeschlossenes Intervall
- $(a, b] := \{x \in \mathbb{R} : a < x \le b\}$ halboffenes Intervall
- $[a,b) := \{x \in \mathbb{R} : a \le x < b\}$ halboffenes Intervall

5.1.8 Halbstrahlen:

- $[a, \infty) := \{x \in \mathbb{R} : a \le x\}$
- $\bullet \ (a, \infty) := \{ x \in \mathbb{R} : a < x \}$
- $\bullet \ (-\infty, a] := \{x \in \mathbb{R} : x \le a\}$
- $\bullet \ (-\infty, a) := \{x \in \mathbb{R} : x < a\}$
- $(-\infty,\infty):=\mathbb{R}$

Sätze

5.1.6

Jede nach unten beschränkte, nichtleere Teilmenge von \mathbb{R} besitzt ein Infimum. (Umkehrung Vollständigkeitsaxiom)

Rechenregeln Betragsfunktion:

Für alle $x, y \in \mathbb{R}$ gilt:

- a) $|x| \ge 0$
- b) |x| = |-x|
- c) $\pm x \leq |x|$
- $d) |xy| = |x| \cdot |y|$
- e) |x| = 0 genau dann, wenn x = 0
- f) $|x+y| \le |x| + |y|$ (Dreiecksungleichung)

Bemerkungen

Ein Körper mit Totalordnung ≤ heißt angeordneter Körper, falls gilt:

- $\forall a, b, c \in K : a < b \Rightarrow a + c < b + c$
- $\forall a, b, c \in K : (a \le b \text{ und } 0 \le c) \Rightarrow ac \le bc$

1.2 Wurzeln, Fakultäten und Binomialkoeffizienten

Definitionen

5.2.1	Ganzzahlige Potenzen: Für jedes $x \in \mathbb{R}$ und jedes $n \in \mathbb{N}^*$ ist a) $x^n := x \cdot x \cdot x \dots \cdot x$ $(n\text{-mal }x)$ b) $x^{-n} := \frac{1}{x^n}$, falls $x \neq 0$ c) $x^0 := 1$
5.2.3	Es seien $a \in \mathbb{R}_+$ und $n \in \mathbb{N}^*$. Die eindeutige Zahl $x^n \in \mathbb{R}_+$ mit $x^n = a$ heißt n -te Wurzel von a und man schreibt $x = \sqrt[n]{a}$. Für den wichtigsten Fall $n = 2$ gibt es die Konvention $\sqrt{a} := \sqrt[2]{a}$.
5.2.5	Aus der Eindeutigkeit der n -ten Wurzel (5.2.4) folgt: Für jedes $x \in \mathbb{R}_+$ und jedes $q = \frac{n}{m} \in \mathbb{Q}$ mit $n \in \mathbb{Z}$ und $m \in \mathbb{N}^*$ ist die rationale Potenz definiert durch: $x^q = x^{\frac{n}{m}} := (\sqrt[x]{x})^n.$
5.2.7	Es sei $n \in \mathbb{N}^*$. Dann wird die Zahl $n! := 1 \cdot 2 \cdot \cdot n$ als n Fakultät bezeichnet. Weiterhin definieren wir $0! := 1$.

Es seien $n, k \in \mathbb{N}$ mit $k \leq n$. Dann heißt $\binom{n}{k} := \frac{n!}{k!(n-k)!}$ Binomialkoeffizient "n über k".

Sätze

5.2.2	Existenz der Wurzel: Für jedes $a \in R_+$ und alle $n \in N^*$ gibt es genau ein $w \in R_+$ mit $x^n = a$.
5.2.4	Es seien $q \in \mathbb{Q}$ und $m, \in \mathbb{Z}$, sowie $n, r \in \mathbb{N}^*$ so, dass $q = \frac{m}{n} = \frac{p}{r}$. Dann gilt für jedes $x \in \mathbb{R}_+$: $(\sqrt[n]{x})^m = (\sqrt[r]{m})^p$.
5.2.9	Es seien $n, k \in \mathbb{N}$ mit $k \le n$ und $a, b \in \mathbb{R}$. Dann gilt: a) $\binom{n}{0} = \binom{n}{n} = 1$ und $\binom{n}{k} + \binom{n}{k-1} = \binom{n+1}{k}$ b) $a^{n+1} - b^{n+1} = (a-b) \sum_{k=0}^{n} a^{n-k} b^k$ c) $(a+b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k$ (Binomialformel)

Bemerkungen

1.3 Konvergenz von Folgen

1.3.1 Der Konvergenzbegriff und wichtige Beispiele

Definitionen

	Es sei (a_n) eine Folge in \mathbb{K} und $a \in \mathbb{K}$. Die Folge (a_n) heißt konvergent gegen a , falls für jedes $\epsilon > 0$ ein $n_0 \in \mathbb{N}$ exisitert mit			
5.3.1	$ a_n - a < \epsilon$ für alle $n \ge n_0$.			
0.0.1	In diesem Fall heißt a der Grenzwert oder Limes von (a_n) und wir schreiben:			
	$\lim_{a\to\infty}=a \text{ oder } a_n\to a(n\to\infty).$ Ist (a_n) eine Folge $\mathbb K$, die gegen kein $a\in\mathbb K$ konvergiert, so heißt diese divergent .			
	Eine Folge (a_n) in \mathbb{K} heißt beschränkt , wenn die Menge $\{a_n : n \in \mathbb{N}\} = \{a_0, a_1, a_2,\}$ be-			
5.3.4	schränkt in \mathbb{K} ist. Ist $\mathbb{K} = \mathbb{R}$, so setzen wir weiter			
0.0.4	$sup_{n\in\mathbb{N}}a_n:=sup_{n=0}^\infty a_n:=sup\{a_n:n\in\mathbb{N}\}$			
	$inf_{n\in\mathbb{N}}a_n:=inf_{n=0}^\infty a_n:=inf\{a_n:n\in\mathbb{N}\}$			
	Bestimmte Divergenz:			
5.3.13	Eine Folge (a_n) in $\mathbb R$ divergiert bestimmt nach $\infty(-\infty)$ und wir schreiben $\lim_{n\to\infty}a_n=$			
	$\infty(-\infty)$, wenn es für jedes $C \ge 0$ ein $n_0 \in \mathbb{N}$ gibt, so dass $a_n \ge C(a_n \le -C)$ für alle $n \le n_0$ gilt.			
Sätze				
	Talalananan Talana in TV in the archaealth			
5.3.5	Jede konvergente Folge in K ist beschränkt. Die Umkehrung dieses Satzes ist falsch. Es gibt beschränkte Folgen, die nicht konvergieren.			
	Grenzwertsätze Es seien $(a_n), (b_n)$ und (c_n) Folgen in \mathbb{K} . Dann gilt:			
	a) Ist $\lim_{n\to\infty} a_n = a$, so gilt $\lim_{n\to\infty} a_n = a $			
	b) Gilt $\lim_{n\to\infty} a_n = a$ und $\lim_{n\to\infty} b_n = b$ so gilt:			
	i) $\lim_{n\to\infty} (a_n + b_n) = a + b$			
	ii) $\lim_{n\to\infty} (a_n \cdot b_n) = a \cdot b$			
5.3.7	iii) $\lim_{n\to\infty}(\alpha a_n)=\alpha a$ für alle $\alpha\in\mathbb{K}$			
	iv) Ist zusätzlich $b_n \neq 0$ für alle $n \in \mathbb{N}$ und $b \neq 0$, so ist $\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{a}{b}$			
	Ist $\mathbb{K} = \mathbb{R}$, so gilt außerdem: c) Ist $a_n \leq b_n$ für alle $n \in \mathbb{N}$ und $\lim_{n \to \infty} a_n = a$ sowie $\lim_{n \to \infty} b_n = b$, so folgt $a \leq b$			
	d) Ist $a_n \leq b_n$ für alle $n \in \mathbb{N}$ und $\lim_{n \to \infty} a_n = a$ sowie $\lim_{n \to \infty} b_n = b$, so long $a \leq b$ d) Ist $a_n \leq c_n \leq b_n$ für alle $n \in \mathbb{N}$ und sind (a_n) und (b_n) konvergent mit $\lim_{n \to \infty} a_n = b$			
	$\lim_{n\to\infty}b_n=a$, so ist auf die Folge (c_n) konvergent und es gilt $\lim_{n\to\infty}c_n=a$			
	(Sandwich-Theorem)			
Bemerku	ngen			
	Sei X eine Menge. Eine Folge in X ist eine Abbildung $a: \mathbb{N} \to X$.			
	(Für $X = \mathbb{R}$ reelle Folge, $X = \mathbb{C}$ komplexe Folge)			
	Schreibweise: a_n statt $a(n)$. (n-tes Folgeglied)			
	Ganze Folge: $(a_n)_{n\in\mathbb{N}}$ oder (a_n) oder $(a_n)_{n>0}$			
	Folgen haben maximal einen (eindeutiger) Grenzwert			
	Bezeichnung von Folgen, für die der Grenzwert 0 ist: "Nullfolge"			
5.3.7	c) ist falsch mit $<$, nur richtig mit \le			
	Wichtige konvergente Folgen			
	a) Ist (a_n) eine konvergente Folge in $\mathbb R$ mit Grenzwert a und gilt $a\geq 0$ für alle $n\in\mathbb N$ so ist			
	für jedes $p \in \mathbb{N}^*$ auch $\lim_{n \to \infty} \sqrt[p]{a_n} = \sqrt[p]{a}$.			
	b) Die Folge $(q^n)_{n\in\mathbb{N}}$ mit $q\in\mathbb{R}$ konvergiert genau dann, wenn $q\in(-1,1]$ ist und es gilt:			
E 9 10	$\lim_{n \to \infty} q^n = \begin{cases} 1 & \text{falls } q = 1\\ 0 & \text{falls } -1 < q < 1 \end{cases}$			
5.3.10	\			
	Ist $q \in \mathbb{C}$ mit $ q < 1$, so gilt ebenfalls $\lim_{n \to \infty} q^n = 0$.			
	c) $\lim_{n\to\infty} \sqrt[n]{c} = 1$ für jedes $c \in \mathbb{R}_+$. d) $\lim_{n\to\infty} \sqrt[n]{n} = 1$.			
	e) $\lim_{n\to\infty} \sqrt{n-1}$. e) $\lim_{n\to\infty} (1+\frac{1}{n})^n := e \ (n \ge 1)$.			
	Beachte hier: Beide n gleichzeitig wachsen lassen, keine trägen oder eiligere n .			

5.3.1	Folge $(a_n) = (\frac{1}{n})_{n \geq 1} = (1, \frac{1}{2}, \frac{1}{3},)$ Sei $\epsilon > 0$. Dann $\frac{1}{\epsilon} < n_0$ für ein $n_0 \in \mathbb{N}$ (beliebiges n immer größer). Für alle $n \geq n_0$ gilt dann: $ a_n - a = a_n - 0 = a_n = \frac{1}{n} \leq \frac{1}{n_0} < \epsilon$ \Rightarrow Konvergenz gegen 0			
5.3.9	Sei $p \in \mathbb{N}^*$ fest gewählt und $a_n = \frac{1}{n^p}$ für $n \in \mathbb{N}^*$. Dann gilt für alle $n \in \mathbb{N}^*$ die Ungleicht $n \le n^p$ und damit $0 \le a_n = \frac{1}{n^p} \le \frac{1}{n}.$ Da sowohl die Folge, die konstant Null ist, als auch die Folge $\frac{1}{n}$ gegen Null konvergiert, ist dan nach Satz 5.3.7(d) auch die Folge (a_n) konvergent und ebenfalls eine Nullfolge.			
5.3.9	Wir untersuchen $a_n = \frac{n^2 + 2n + 3}{n^2 + 3}, \ n \in \mathbb{N}.$ Dazu kürzen wir durch Bruch durch die höchste auftretende Potenz : $a_n = \frac{n^2 + 2n + 3}{n^2 + 3} = \frac{1 + \frac{2}{n} + \frac{3}{n^2}}{1 + \frac{3}{n^2}} \to \frac{1 + 0 + 0}{1 + 0} = 1 \ (n \to \infty).$ Dieses Verfahren ist bei allen Polynom in n geteilt durch Polynom in n "gut anwendbar.			
5.3.12	$a_n := \sqrt{n+1} - \sqrt{n}, \ n \in \mathbb{N}$ (Differenz von zwei divergenten Folgen) Trick: Erweiterung mit der Summe von Wurzeln bei Differenzen von Wurzeln $\sqrt{n+1} - \sqrt{n} = \frac{\sqrt{n+1} - \sqrt{n}\sqrt{n+1} + \sqrt{n}}{\sqrt{n+1} + \sqrt{n}} = \frac{(n+1) - n}{\sqrt{n+1} + \sqrt{n}} = \frac{1}{\sqrt{n+1} + \sqrt{n}} \le \frac{1}{2\sqrt{n}} = \frac{1}{2}\sqrt{\frac{1}{n}}$ Sandwich: $\lim_{n \to \infty} (\sqrt{n+1} - \sqrt{n}) = 0$.			
5.3.12	Geometrische Summenformel: $a_n:=\sum_{k=0}^n q^k=1+q+q^2+\ldots+q^n,\ n\in\mathbb{N}$ $\lim_{n\to\infty}a_n=\frac{1}{1-q},\ q <1.$			

1.3.2 Konvergenzkriterien

Definitionen

	Eine reelle Folge (a_n) heißt:
5.3.14	a) monoton wachsend, wenn $a_{n+1} \ge a_n$ für alle $n \in \mathbb{N}$ gilt.
0.5.14	b) monoton fallend, wenn $a_{n+1} \leq a_n$ für alle $n \in \mathbb{N}$ gilt.
	c) monoton, wenn sie monoton wachsend oder monoton fallend ist.
5.3.18	Folge (a_n) in \mathbb{K} heißt Cauchy-Folge, wenn für jedes $\epsilon > 0$ ein Index $n_0 \in \mathbb{N}$ existiert, so dass
0.0.10	$ a_n - a_m < \epsilon$, für alle $n, m \ge n_0$

$S\ddot{a}tze$

	Monotonie Kriterium	
5.3.15	Ist die reelle Folge (a_n) nach oben (nach unten) beschränkt und monoton wachsend (fallend), so	
5.5.15	ist (a_n) konvergent und es gilt:	
	$\lim_{n\to\infty} a_n = \sup_{n\in\mathbb{N}} a_n \text{ (bzw. } \lim_{n\to\infty} a_n = \inf_{n\in\mathbb{N}} a_n)$	
5.3.19	Jede konvergente Folge in $\mathbb K$ ist eine Cauchy-Folge .	
F 2 20	Cauchy-Kriterium	
5.3.20	Eine Folge in \mathbb{K} konvergiert genau dann, wenn sie eine Cauchy-Folge ist.	

Monotoniever	Monotonieverhalten, deswegen hier nur in $\mathbb R$ und nicht in $\mathbb C$ (keine Ordnung)		
Beide hier ges Grenzwert	sehenen Konvergenzkriterien funktionieren ohne vorherige Behauptung über den		

	Betrachtung einer rekursiv defininierten Folge
	$a_0 := \sqrt[3]{6} \text{ und } a_{n+1} = \sqrt[3]{6 + a_n}, n \in \mathbb{N}$
5.3.16	Damit folgt: $a_1 = \sqrt[3]{6 + \sqrt[3]{6}}$, $a_2 = \sqrt[3]{6 + \sqrt[3]{6} + \sqrt[3]{6}}$ Solche Folgen entstehen oft bei iterativen Näherungsverfahren. Behauptung: (a_n) nach oben beschränkt und monoton wachsend \Rightarrow Konvergenz Beweis: Induktion

1.3.3Teilfolgen und Häufungswerte

Definitionen

5.3.22	Es sei (a_n) eine Folge in \mathbb{K} . Ein $a \in \mathbb{K}$ heißt Häufungswert der Folge, falls für jedes $\epsilon > 0$ die Menge $\{n \in \mathbb{N} : a_n - a < \epsilon\}$ unendlich viele Elemente hat.
5.3.23	Es sei (a_n) eine Folge in \mathbb{K} . Ist $\{n_1, n_2, n_3,\} \subseteq \mathbb{N}$ eine unendliche Menge von Indizes mit $n_1 < n_2 < n_3$, so heißt die Folge $(a_{n_k})_{k \in \mathbb{N}}$ eine Teilfolge von (a_n) .

Sätze

Es sei (a_n) eine Folge in \mathbb{K} . Dann gilt

- 5.3.24
- a) Ein $\alpha \in \mathbb{K}$ ist genau dann ein Häufungswert von (a_n) , wenn eine Teilfolge (a_{n_k}) von (a_n) existiert, die gegen α konvergiert.
- b) Ist (a_n) konvergenz mit Grenzwert α , so konvergiert auch jede Teilfolge von (a_n) gegen a.
- c) Ist (a_n) konvergenz, so hat (a_n) genau einen Häufungswert, nämlich den Grenzwert $\lim_{n\to\infty}a_n$.

Bemerkungen

Jeder Grenzwert ist auch Häufungswert.
Häufungswert von $((-1)^n)_{n\in\mathbb{N}}$: 1, -1 (aber keine Grenzwerte)
Häfungswert von (i^n) : 1, i, -1, -i
Keine Teilfolgen: $(a_0, a_0, a_2, a_2,)$ (keine doppelten Elemente) $(a_2, a_3, a_0,)$ (nicht umsortieren)

1.4 Asymptotik

Definitionen

- a) Wir bezeichnen mit $F_+ := \{(a_n) \text{ Folge in } \mathbb{R} : a_n > 0 \text{ für alle } n \in \mathbb{N} \}$
- b) Es sei $(b_n) \in \mathbb{F}_+$. Dann definieren wir die Landau-Symbole durch

- $O(b_n) := \{(a_n) \in \mathbb{F}_+ : \frac{a_n}{b_n} n \in \mathbb{N} \}$ $(b_n \text{ größer gleich } a_n)$ $o(b_n) := \{(a_n) \in \mathbb{F}_+ : \lim_{n \to \infty} \frac{a_n}{b_n} = 0 \}$ $(b_n \text{ echt größer als } a_n)$

Es seien $(a_n), (b_n), (c_n), (d_n) \in \mathbb{F}_+$ und $\alpha, \beta \in \mathbb{R}_+$. Dann gilt:

a) Sind $a_n, b_n \in O(c_n)$, so ist auch $\alpha a_n + \beta b_n \in O(c_n)$

b) Gilt $a_n \in O(b_n)$ und $c_n \in O(d_n)$, so ist $a_n c_n \in O(b_n d_n)$

c) Aus $a_n \in O(b_n)$ und $b_n \in O(c_n)$ folgt $a_n \in O(c_n)$

d) $a_n \in O(b_n)$ genau dann, wenn $\frac{1}{b_n} \in O(\frac{1}{a_n})$

e) Diese Aussagen gelten auch alle mit Klein-O anstatt Groß-O

Bemerkungen

5.4.5

- a) =-Zeichen wird hier nicht bekannten mathematischen Sinne verwendet \Rightarrow Kompromiss Notation $a_n \in O(b_n)$
- b) Es gilt immer $o(b_n) \subseteq O(b_n)$.
- 5.4.2 c) $(\frac{a_n}{b_n})_{n \in \mathbb{N}}$ konvergent $\Rightarrow a_n \in O(b_n)$
 - d) $a_n \in O(b_n)$: Folge a_n wächst höchstens so schnell wie ein Vielfaches von b_n

Exponentielle Algorithmen sind viel schlechter als polynomiale.

Landau-Symbol	Bezeichnung	Bemerkung
O(1)	beschränkt	
$O(\log_a(n))$	logarithmisch	a > 1
O(n)	linear	
$O(n\log_a(n))$	"n log n"	a > 1
$O(n^2)$	quadratisch	
$O(n^3)$	kubisch	
$O(n^k)$	polynomial	$k \in \mathbb{N}^*$
$O(a^n)$	exponentiell	a > 1

1.5 Reihen

Definitionen

Es sei (a_n) eine Folge in \mathbb{K} . Dann heißt

$$\sum_{n=0}^{\infty} a_n = a_0 + a_1 + a_2 + \dots$$

die **Reihe** über (a_n) .

5.5.1 Für jedes $k \in \mathbb{N}$ heißt dann $s_k = \sum_{n=0}^k a_n$ die k-te Teilsumme oder **Partialsumme** der Reihe. Ist die Folge $(s_k)_{k \in \mathbb{N}}$ konvergent, so nennen wir die Reihe **konvergent** mit dem Reihenwert:

$$\sum_{n=0}^{\infty} a_n := \lim_{k \to \infty} s_k = \lim_{k \to \infty} \sum_{n=0}^{k} a_n$$

Ist (s_k) divergent, so nennen wir auch die Reihe divergent.

5.5.3	Seien $\sum_{n=0}^{\infty} a_n$ und $\sum_{n=0}^{\infty} b_n$ zwei konvergente Reihen in \mathbb{K} und $\alpha, \beta \in \mathbb{K}$. Dann ist auch $\sum_{n=0}^{\infty} (\alpha a_n + \beta b_n)$ konvergent und es gilt $\sum_{n=0}^{\infty} (\alpha a_n + \beta b_n) = \alpha \sum_{n=0}^{\infty} a_n + \beta \sum_{n=0}^{\infty} b_n$
5.5.4	Es gilt $\sum_{n=0}^{\infty} \frac{1}{n!} = e$.
5.5.5	Ist $\sum_{n=0}^{\infty} a_n$ eine konvergente Reihe in \mathbb{K} , so ist (a_n) eine Nullfolge in \mathbb{K} .
5.5.6	Es sei (a_n) eine Folge in \mathbb{K} und $s_k := \sum_{n=0}^k a_n, \ k \in \mathbb{N}$ Dann gilt: a) Monotonie Kriterium Ist $a_n \geq 0$ für alle $n \in \mathbb{N}$ und $(s_k)_{k \in \mathbb{N}}$ nach oben beschränkt, so ist $\sum_{n=0}^{\infty} a_n$ konvergent. b) Cauchy-Kriterium Die Reihe $\sum_{n=0}^{\infty} a_n$ ist genau dann konvergent, wenn für jedes $\epsilon > 0$ ein $n_o \in \mathbb{N}$ existiert mit $ \sum_{n=l+1}^k a_n < \epsilon$ für alle $k, l \in \mathbb{N}$ mit $k > l \geq n_0$.
5.5.7	Leibniz-Kriterium Es sei (a_n) eine monoton fallende Folge in \mathbb{R} mit $\lim_{n\to\infty}a_n=0$. Dann ist die Reihe $\sum_{n=0}^{\infty}(-1)^na_n$ konvergent.

Gilt nicht umgekehrt. Nullfolge ist eine Voraussetzung für eine konvergente Reihe, aber keine 5.5.5Garantie.

Beispiele

Reihen:

- einen:

 $\sum_{n=0}^{\infty} q^n = \frac{1}{1-q}, |q| < 1$ (Geometrische Reihe)

 $\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = 1$ $\sum_{n=1}^{\infty} \frac{1}{n} = divergent$ (Harmonische Reihe)

 $\sum_{n=0}^{\infty} \frac{1}{n!} = e$ $\sum_{n=0}^{\infty} (-1)^n \frac{1}{n+1} = \ln(2)$ (alternierende harmonische Reihe) (Leibniz-Kriterium)

 $\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$: konvergent, wenn $\alpha > 1$, sonst divergent

1.5.1 Absolute Konvergenz

Definitionen

Eine Reihe $\sum_{n=0}^{\infty} a_n$ in \mathbb{K} heißt **absolut konvergent**, wenn die Reihe $\sum_{n=0}^{\infty} |a_n|$ in \mathbb{K} konvergiert. 5.5.9(Summanden werden schnell genug klein, vorzeichenunabhängig)

5.5.10	Jede absolut konvergente Reihe $\sum_{n=0}^{\infty} a_n$ in \mathbb{K} ist auch konvergent in \mathbb{K} und es gilt die verallgemeinerte Dreiecksungleichung $ \sum_{n=0}^{\infty} a_n \leq \sum_{n=0}^{\infty} a_n $
5.5.12	 Es seien (a_n) und (b_n) reelle Folgen und n_o ∈ N. • Majorantenkriterium Ist a_n ≤ b_n für alle n ≥ n_o und konvergiert die Reihe ∑_{n=0}[∞] b_n, so ist ∑_{n=0}[∞] a_n absolut konvergent. • Minorantenkriterium Ist a_n ≥ b_n ≥ 0 für alle n ≥ n₀ und divergiert die Reihe ∑_{n=0}[∞] b_n, so divergiert auch die Reihe ∑_{n=0}[∞] a_n.
5.5.16	Es sei $\sum_{n=0}^{\infty} a_n$ eine Reihe in \mathbb{K} . a) Wurzelkriterium Existiert der Grenzwert $\lim_{n\to\infty} \sqrt[n]{ a_n }$, so ist die Reihe • absolut konvergent, wenn $\lim_{n\to\infty} \sqrt[n]{ a_n } < 1$ ist • divergent, wenn $\lim_{n\to\infty} \sqrt[n]{ a_n } > 1$ ist b) Quotientenkriterium Ist $a_n \neq 0$ für alle $n \in \mathbb{N}$ und existiert der Grenzwert $\lim_{n\to\infty} \left \frac{a_{n+1}}{a_n}\right $, so ist die Reihe • absolut konvergent, wenn $\lim_{n\to\infty} \left \frac{a_{n+1}}{a_n}\right < 1$ ist • divergent, wenn $\lim_{n\to\infty} \left \frac{a_{n+1}}{a_n}\right > 1$ ist

5.5.10	Gilt nicht umgekehrt (alternierende harmonische Reihe)
5.5.10	Absolute Konvergenz: Reihenwert ist unabhängig von der Summationsreihenfolge
5.5.12	Die Vergleichsfolge heißt jeweils konverente Majorante bzw. divergente Minorante.
5.5.16	Liefert Wurzel-/Quotientenkriterium genau Eins, kann man daraus keine Aussage ableiten

1.5.2 Das Cauchy-Produkt

Definitionen

5.5.21 Für alle
$$z \in \mathbb{C}$$
 ist $e^z := E(z) = \sum_{n=0}^{\infty} \frac{z^n}{n!}$.

Sätze

Es seien
$$\sum_{n=0}^{\infty} a_n$$
 und $\sum_{n=0}^{\infty} b_n$ zwei **absolut konvergente Folgen** in \mathbb{K} . Dann konvergiert auch die Reihe $\sum_{n=0}^{\infty} \sum_{k=0}^{n} a_k b_{n-k}$ **absolut** und es gilt für die Reihenwerte:
$$\sum_{n=0}^{\infty} \sum_{k=0}^{n} a_k b_{n-k} = (\sum_{n=0}^{\infty} a_n)(\sum_{n=0}^{\infty} b_n)$$
 Die Reihe $\sum_{n=0}^{\infty} \sum_{k=0}^{n} a_k b_{n-k}$ heißt **Cauchy-Produkt** der beiden Reihen.

5.5.20 Für alle $z, w \in \mathbb{C}$ gilt $E(z+w) = E(z)E(w)$.

1.6 Konvergenz in normierten Räumen

Definitionen

5.6.5	Es sei $(a_n)_{n\in\mathbb{N}}=((a_{n,1},a_{n,2},\ldots,a_{n,d})^T)_{n\in\mathbb{N}}$ eine Folge in \mathbb{R} mit der 2-Norm. Dann ist (a_n) in \mathbb{R} genau dann konvergent , wenn für jedes $j\in\{1,2,\ldots,d\}$ die Koordinatenfolge $(a_{n,j})_{n\in\mathbb{N}}$ in \mathbb{R} konvergent ist. In diesem Fall ist $\lim_{n\to\infty} \binom{a_{n,1}}{a_{n,2}} = \binom{\lim_{n\to\infty} a_{n,1}}{\lim_{n\to\infty} a_{n,2}}$ $\lim_{n\to\infty} (a_{n,j})_{n\in\mathbb{N}} = \binom{\lim_{n\to\infty} a_{n,1}}{\lim_{n\to\infty} a_{n,2}}$ Falls eine Komponente im Vektor divergiert, divergiert die ganze Folge.
5.6.11	Eine Teilmenge M von V ist genau dann abgeschlossen , wenn für jede Folge in M , die in V konvergiert, der Grenzwert ein Element aus M ist.
5.6.17	Satz von Bolzano-Weierstraß Sei $(V, \cdot _V)$ ein endlichdimensionaler normierter Raum und $M \subseteq V$ kompakt. Dann besitzt jede Folge in M eine konvergente Teilfolge mit Grenzwert in M .
5.6.22	Banach'scher Fixpunktsatz Es sei $(V, \cdot _V)$ ein Banachraum $M \subseteq V$ abgeschlossen und $f: M \to M$ eine Funktion. Weiter existiere ein $q \in (0,1)$, so dass $ f(x) - f(y) _V \le q x - y _V, \text{ für alle } x, y \in M$ gilt. Dann gelten die folgenden Aussagen: a) Es gibt genau ein $v \in M$ mit $f(v) = v$. (d.h. f hat genau einen Fixpunkt in M) b) Für jedes $x_0 \in M$ konvergiert die Folge (x_n) mit $x_{n+1} = f(x_n), n \in \mathbb{N}$, gegen v und es gelten die folgenden Fehlerabschätzungen für hedes $n \in \mathbb{N}^*$: $ x_n - v _V \le \frac{q^n}{1-q} x_1 - x_0 _V \text{ (A-priori-Abschätzung)}$ $ x_n - v _V \le \frac{q}{1-q} x_n - x_{n-1} _V \text{ (A-posterior-Abschätzung)}$

	Normierter Raum: $V =$ normierter Vektorraum mit Norm $ \cdot _V$ (ermöglicht Abstandsmessung) Hier als Vorstellung $\mathbb{R}^{\mathbb{H}}$ mit Standard(2)-Norm (normaler Abstand im Raum)
5.6.1	Genau dasselbe wie vorher, wir ersetzen nur den Betrag durch die jeweilige Norm
5.6.1	Cauchy-Folge: Abstand von je zwei Folgegliedern
	2-Norm : $ x _2 = \sqrt{x_1^2 + x_2^2}$
5.6.5	Der Satz gilt im endlichen Raum für alle Normen. Wenn eine Folge bezüglich einer Norm konvergiert, dann auch bzgl jeder anderen. Grenzwerte bleiben gleich.
5.6.8	Menge abgeschlossen : Rand gehört zur Menge Menge offen : Rand gehört nicht zur Menge Die meisten Menge sind weder offen noch abgeschlossen, keine Umkehrschlüsse!
5.6.17	Ist $(V, \cdot _V)$ ein endlichdimensionaler normierter Raum,so besitzt jede beschränkte Folge in V mindestens einen Häufungswert. (Unendliche viele Punkte in einer beschränkten Menge müssen irgendwo klumpen)
5.6.19	Standardvektorraum \mathbb{R} ist für jedes $d \in \mathbb{N}^*$ mit jeder Norm ein Banachraum . Wählt man außerdem die durch das Skalarprodukt induzierte 2-Norm, so ist $(\mathbb{R}, \cdot _2)$ ein Hilbertraum .

Beispiele

1.7 Stetigkeit reeller Funktionen

1.7.1 Der Grenzwertbegriff für Funktionen

Definitionen

 $V = \mathbb{R}^{\not\models}, \text{ 1-Norm: } ||x||_1 = \sum_{j=1}^3 |x_i|, \ a_n := (1, \frac{1}{n}, \frac{n-1}{n})^T, \ n \in \mathbb{N}^*$ Hier gilt $\lim_{n \to \infty} a_n = (1, 0, 1)^T$. Zeige: Abstand von a_n zu Grenzwert belieblig klein: $||a_n - (1, 0, 1)^T|| = |0| + |\frac{1}{n}| + |\frac{n-1}{n} - 1| = \frac{2}{n} \text{ (Abstand geht gegen 0)}$ Sei $\epsilon > 0$. Dann existiert $n_0 \in \mathbb{N}$ mit $n_0 > \frac{2}{\epsilon}$. Für alle $n \ge n_0$ gilt: $||a_n - (1, 0, 1)^T||_1 = \frac{2}{n} \le \frac{2}{n_0} \le \frac{2\epsilon}{2} = \epsilon$

Es sei $D \subseteq \mathbb{R}$ eine Menge, $f: D \to \mathbb{R}$ eine Funktion und $x_0 \in \mathbb{R}$

- a) Wir nennen x_0 einen **Häufungspunkt** von D, falls es eine Folge (a_n) in D mit $a_n \neq x_0$ für alle $n \in \mathbb{N}$ gibt, die gegen x_0 konvergiert.
- b) Ist x_0 ein Häufungspunkt von D, so sagen wir, dass f für x gegen x_0 den Grenzwert y hat, wenn für jede Folge (a_n) in D, die gegen x_0 konvergiert und für die $a_n \neq x_0$ für alle $n \in \mathbb{N}$ gilt, die Folge $(f(a_n))$ gegen y konvergiert. Wir schreiben dafür: $\lim_{x \to x_0} f(x) = y$.
- 5.7.1 c) Ist x_0 ein Häufungspunkt von $D_+ := \{x \in D : x > x_0\}$, so hat f für x gegen x_0 den **rechtsseitigen Grenzwert** y, wenn für jede Folge (a_n) in D_+ , die gegen x_0 konvergiert, die Folge $(f(a_n))$ gegen y konvergiert.

 Wir schreiben dafür: $\lim_{x \to x_0+} f(x) = y$.
 - d) Ist x_0 ein Häufungspunkt von $D_- := \{x \in D : x < x_0\}$, so hat f für x gegen x_0 den **linksseitigen Grenzwert** y, wenn für jede Folge (a_n) in D_- , die gegen x_0 konvergiert, die Folge $(f(a_n))$ gegen y konvergiert. Wir schreiben dafür: $\lim_{x\to x_0-} f(x) = y$.

Divergenz

- a) Es seien $D \subseteq \mathbb{R}$, $f: D \to \mathbb{R}$ eine Funktion und x_0 ein Häufungspunkt von D. Wir schreiben $\lim_{x \to x_0} f(x) = \infty(-\infty)$, wenn für jedes Folge (a_n) in D, die gegen x_0 konvergiert und für die $a_n \neq x_0$ für alle $n \in \mathbb{N}$ gilt, die Folge $(f(a_n))$ bestimmt gegen $\infty(-\infty)$ divergiert.
- b) Es sei $D \subset \mathbb{R}$ nicht nach oben (unten) beschränkt, $f: D \to \mathbb{R}$ eine Funktion und $y \in \mathbb{R} \cup \{\infty, -\infty\}$. Wir sagen $\lim_{x \to \infty} f(x) = y$ (bzw. $\lim_{x \to -\infty} f(x) = y$), wenn für jede Folge (a_n) in D, die bestimmt gegen $\infty(-\infty)$ divergiert, $\lim_{x \to \infty} f(a_n) = y$ gilt.

Sätze

5.7.6

5.7.7

Es sei $D \subseteq \mathbb{R}$, $f: D \to \mathbb{R}$ eine Funktion und $x_0 \in \mathbb{R}$. Existieren $\lim_{x \to x_0 -} f(x)$ und $\lim_{x \to x_0 +} f(x)$ und sind die beiden Werte gleich so existiert auch $\lim_{x \to x_0} f(x)$ und es gilt

 $\lim_{x \to x_0} f(x) = \lim_{x \to x_{0-}} = \lim_{x \to x_{0+}}$

Es sei $D \subseteq \mathbb{R}$ und x_0 ein Häufungspunkt von D. Desweiteren seien drei Funktion $f, g, h : D \to \mathbb{R}$ gegeben, so dass die Grenzwerte $\lim_{x \to x_0} f(x)$ und $\lim_{x \to x_0} g(x)$ existieren. Dann gilt:

- a) Die Grenzwerte für x gegen x_0 von f + g, fg und |f| exisiteren und es gilt:
 - $\lim_{x \to x_0} (f(x) + g(x)) = \lim_{x \to x_0} f(x) + \lim_{x \to x_0} g(x)$
 - $\lim_{x\to x_0} (f(x)\cdot g(x)) = \lim_{x\to x_0} f(x)\cdot \lim_{x\to x_0} g(x)$
 - $\lim_{x\to x_0} |f(x)| = |\lim_{x\to x_0} f(x)|$
- b) Gilt $f(x) \leq g(x)$ für alle $x \in D \setminus \{x_0\}$, so ist $\lim_{x \to x_0} f(x) \leq \lim_{x \to x_0} g(x)$
- c) Ist $\lim_{x\to x_0} f(x) = \lim_{x\to x_0} g(x)$ und es gilt $f(x) \le h(x) \le g(x)$ für alle $x \in D\setminus\{x_0\}$, so gilt auch $\lim_{x\to x_0} h(x) = \lim_{x\to x_0} f(x) = \lim_{x\to x_0} g(x)$. (Sandwich-Theorem)
- d) Ist $y := \lim_{x \to x_0} g(x) \neq 0$, so existiert $\delta > 0$, so dass $|g(x)| \geq \frac{|y|}{2}$ für alle $x \in (D \cap (x_0 \delta, x_0 + \delta)) \setminus \{x_0\}$ ist. Wir können also die Funktion $\frac{f}{g} : (D \cap (x_0 \delta, x_0 + \delta)) \setminus \{x_0\} \to \mathbb{R}$ mit $\frac{f}{g}(x) := \frac{f(x)}{g(x)}$ definieren. Für diese existiert dann der Limes für x gegen x_0 mit $\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{\lim_{x \to x_0} f(x)}{\lim_{x \to x_0} g(x)}$.

5.7.1	x_0 HP von D bedeutet, dass x_0 aus $D\setminus\{x_o\}$ annäherbar Bsp.: HP von $(0,1]\colon [0,1]$
5.7.4	Es gilt nicht $\lim_{x\to x_0} f(x) = f(x_0)$.

5.7.8	$\lim_{x \to \infty} \frac{1}{x} = 0$ $\lim_{x \to 0^{+}} \frac{1}{x} = \infty$ $\lim_{x \to 0^{-}} \frac{1}{x} = -\infty$ $\lim_{x \to \infty} x = \infty$
5.7.8	Exponential funktion: $E(x)=e^x=\sum_{n=0}^\infty\frac{x^n}{n!}$ Grenzwerte: $\lim_{x\to\infty}e^x=\infty\\ \lim_{x\to-\infty}e^x=0$

1.7.2 Stetigkeit

Definitionen

Demmilio	
5.7.9	Es sei $D \subseteq \mathbb{R}$ und $x_0 \in D$. Eine Funktion $f: D \to \mathbb{R}$ heißt stetig in x_0 , falls für jede Folge (a_n) in D , die gegen x_0 konvergiert, auch die Folge $(f(a_n))$ konvergiert und $\lim_{n\to\infty} f(a_n) = f(x_0)$ gilt. Weiter heißt f stetig auf D , wenn f in jedem Punkt $x_0 \in D$ stetig ist. Schließlich setzen wir noch $C(D) := \{f: D \to \mathbb{R}: f \text{ stetig auf } D\}$. (Menge aller stetigen Funktionen auf D)
5.7.18	Es sei $D \subseteq \mathbb{R}$. Eine Funktion $f: D \to \mathbb{R}$ heißt a) monoton wachsend, falls für alle $x, y \in D$ gilt $x \leq y \Rightarrow f(x) \leq f(y)$ b) monoton fallend, falls für alle $x, y \in D$ gilt $x \leq y \Rightarrow f(x) \geq f(y)$ c) streng monoton wachsend, falls für alle $x, y \in D$ gilt $x < y \Rightarrow f(x) < f(y)$ d) streng monoton fallend, falls für alle $x, y \in D$ gilt $x < y \Rightarrow f(x) > f(y)$ e) (streng) monoton, wenn sie (streng) monoton wachsend oder (streng) monoton fallend ist
5.7.22	Es sei $D \subseteq \mathbb{R}$. Eine Funktion $f: D \to \mathbb{R}$ heißt Lipschitz-stetig , falls es ein $L > 0$ gibt mit $ f(x) - f(y) \le L x - y $ für alle $x, y \in D$.
Sätze	

$S\ddot{a}tze$

5.7.12	Es sei $D \subseteq \mathbb{R}$ und $f: D \to \mathbb{R}$ eine Funktion. Ist $x_0 \in D$ ein Häufungspunkt von D,so ist f in x_0 genau dann stetig , wenn $\lim_{x\to x_0} f(x) = f(x_0)$ gilt.
5.7.15	Es sei $D \subseteq \mathbb{R}$ und $f, g : D \to \mathbb{R}$ seien stetig in $x_0 \in D$. Dann sind die Funktionen $f + g$, fg und $ f $ stetig in x_0 . Ist $x_0 \in D^* := \{x \in D : g(x) \neq 0\}$, so ist die Funktion $\frac{f}{g} : D^* \to \mathbb{R}$ stetig in x_0 .
5.7.16	Es seien $D, E \subseteq \mathbb{R}$ und $f: D \to E$, sowie $g: E \to \mathbb{R}$ Funktionen. Ist f stetig in $x_0 \in D$ und g stetig in $f(x_0)$, so ist $g \circ f: D \to \mathbb{R}$ stetig in x_0 .
5.7.20	Es sei $D \subseteq \mathbb{R}$ und $x_0 \in D$. Eine Funktion $f: D \to \mathbb{R}$ ist in x_0 genau dann stetig , wenn es für jedes $\epsilon > 0$ ein $\delta > 0$ gibt, so dass $ f(x) - f(y) < \epsilon$ für alle $x \in D$ mit $ x - x_0 < \delta$ gilt.
5.7.23	Ist $D \subseteq \mathbb{R}$ und $f: D \to \mathbb{R}$ Lipschitz-stetig so ist f stetig auf D . Die Umkehrung dieser Aussage ist falsch. (Lipschitz-Stetigkeit ist damit ein strengerer Begriff als Stetigkeit)

5.7.9	Stetigkeit: Kleines Wackeln an Parametern \rightarrow auch nur kleines Wackeln am Funktionswert
5.7.12	Stetigkeit: Grenzübergang austauschbar mit Funktionsauswertung
5.7.15	Jede Polynomfunktion ist auf ganz \mathbb{R} stetig.
5.7.19	Exponentialfunktion ist streng monoton wachsend.
5.7.23	Lipschitz-Stetigkeit bedeutet anschaulich, dass die Steigung des Graphen beschränkt bleibt.

1.7.3 Eigenschaften stetiger Funktionen

Definitionen

5.7.27 Es sei $D \subseteq \mathbb{R}$. Eine Funktion $f: D \to \mathbb{R}$ heißt beschränkt, falls die Menge f(D) (Bild der Funktion) beschränkt ist, d.h. falls ein $C \ge 0$ existiert, so dass $|f(x)| \le C$ für alle $x \in D$ gilt.

Sätze

Zwischenwertsatz

Es seien $a, b \in \mathbb{R}$ mit a < b gegeben und $f \in C([a, b])$. Ist y_0 eine reelle Zahl zwischen f(a) und f(b), so gibt es ein $x_0 \in [a, b]$ mit $f(x_0) = y_0$.

5.7.25

Nullstellensatz von Bolzano

- 5.7.26 Es seien $a, b \in \mathbb{R}$ mit a < b gegeben und $f \in C([a, b])$ erfülle f(a)f(b) < 0 (Existenz einer Nullstelle / Einer der beiden Werte 0). Dann gibt es ein $x_0 \in (a, b)$ mit $f(x_0) = 0$.
- Es sei $K \subseteq \mathbb{R}$ kompakt und nicht-leer, sowie $f \in C(K)$. Dann gibt es $x_*, x^* \in K$, so dass $f(x_*) \le f(x) \le f(x^*)$ für alle $x \in K$ gilt. Insbesondere ist f beschränkt. (Jede stetige Funktion auf kompakter Menge ist beschränkt)

1.8 Stetigkeit von Funktionen mehrerer Variablen

Definitionen

5.8.1

Es seien V und W normierte \mathbb{R} -Vektorräume, $D \subseteq V$ und $f: D \to W$ eine Funktion.

- a) Wir nennen $x_0 \in D$ **Häufungspunkt** von D, falls es eine Folge (a_n) in D mit $a_n \neq x_0$ für alle $n \in \mathbb{N}$ gibt, die gegen x_0 konvergiert.
- b) Sei x_0 ein Häufungspunkt von D. Dann ist $\lim_{x\to x_0} f(x) = y$, falls für jede Folge (a_n) in D, die gegen x_0 konvergiert und $a_n \neq x_0$ für alle $n \in \mathbb{N}$ erfüllt, die Folge $(f(a_n))$ gegen y konvergiert.

Es seien V, W zwei normierte \mathbb{R} -Vektorräumen, $D \subseteq V$ und $x_0 \in D$. Eine Funktion $f: D \to W$ heißt **stetig** in x_0 , wenn für jede Folge (a_n) in D, die gegen x_0 konvergiert, auch die Folge $(f(a_n))$ konvergiert und $\lim_{n\to\infty} f(a_n) = f(x_0)$ gilt.

Weiter heißt **f stetig auf D**, wenn f in jedem Punkt $x_0 \in D$ stetig ist. Außerdem setzen wir wieder $C(D; W) := \{f : D \to W : f \text{ stetig auf } D\}$.

5.8.4	Es sei $D \subseteq \mathbb{R}$ und $x_0 \in D$. Dann ist $f: D \to \mathbb{R}^{+}$ genau dann in x_0 stetig, wenn alle Koordinatenfunktionen $f_1, f_2, \ldots, f_p: D \to \mathbb{R}$ in x_0 stetig sind.
5.8.5	Es seien $D \subseteq \mathbb{R}$, $x_0 \in D$ und $f, g : D \to \mathbb{R}$ stetig in x_0 , sowie $h : f(D) \to \mathbb{R}$ stetig in $f(x_0)$. Dann sind auch $f + g$, fg und $h \circ f$ als Funktionen von D nach \mathbb{R} stetig in x_0 . Ist außerdem $x_0 \in D^* := \{x \in D : g(x) \neq 0\}$, so ist auch $\frac{f}{g} : D^* \to \mathbb{R}$ stetig in x_0 .
5.8.8	Es sei $K \subseteq \mathbb{R}$ kompakt und nicht-leer, sowie $f \in C(K)$. Dann gibt es $x_*, x^* \in K$, so dass $f(x_*) \leq f(x) \leq f(x^*)$ für alle $x \in K$ gilt. Insbesondere ist f beschränkt.
5.8.10	Es sei $ \cdot $ irgendeine Norm auf $\mathbb R$ und $ \cdot _2$ die 2-Norm auf $\mathbb R$. Dann gibt es zwei Konstanten c und C mit $0 < c \le C$, so dass $c x _2 \le x \le C x _x$ für alle $x \in \mathbb R$ gilt.
5.8.11	 a) Sind · und · zwei Normen auf ℝ, so gibt es Konstanten 0 < c ≤ C, so dass c x ≤ x ≤ C x für alle x ∈ ℝ gilt. b) Ist eine Folge (a_n) in ℝ bezüglich einer Norm konvergent, so konvergiert sie auch bezüglich jeder anderen Norm und der Grenzwert ist derselbe.

5.8.2	Hier keine links- und rechtsseitiger Grenzwerte, da es Unmengen an Richtungen gibt
5.8.11	Gilt $c x \le x \le C x $ so heißen die Normen $ \cdot , \cdot $ äquivalent. Je zwei Normen im $\mathbb R$ sind äquivalent.

1.9 Potenzreihen

Definitionen

5.9.1	Es sei (a_n) eine Folge K. Eine Reihe der Form $\sum_{n=0}^{\infty} a_n x^n = a_0 + a_1 x + a_2 x^2 + \dots$ heißt Potenzreihe .			
5.9.4	Es sei $\sum_{n=0}^{\infty} a_n x^n$ eine Potenzreihe die die Voraussetzungen von 5.9.3 erfüllt und ρ wie in diesem Satz definiert. Dann heißt die Zahl: $r := \begin{cases} 0 & \text{falls in obigem Satz a) gilt} \\ \infty & \text{falls in obigem Satz b) gilt} \\ \frac{1}{\rho} & \text{falls in obigem Satz c) gilt} \end{cases}$ der Konvergenzradius der Reihe.			
5.9.6	Es sei (a_n) eine Folge in \mathbb{K} , $n_0 \in \mathbb{N}$ und $x_o \in \mathbb{K}$. Dann nennt man eine Reihe der Form $\sum_{n=n_0}^{\infty} a_n (x-x_0)^n$ Potenzreihe . Der Punkt x_0 wird Entwicklungspunkt der Potenzreihe genannt. (Hier ist das Konvergenzgebiet nun um x_0 statt um 0 (allgemeiner)) (Alle Sätze und Definitionen gelten hier genauso)			

	Satz von Hadamard
	Es sei (a_n) eine Folge in \mathbb{K} , so dass der Grenzwert $\rho := \lim_{n \to \infty} \sqrt[n]{ a_n }$ existiert oder die Folge $(\sqrt[n]{ a_n })$ unbeschränkt ist. Dann gelten die folgenden Konvergenzaussagen für die Potenzreihe $\sum_{n=0}^{\infty} a_n x^n$:
5.9.3	a) Ist die Folge $\sqrt[n]{ a_n }$ unbeschränkt, so konvergiert die Potenzreihe nur für $x=0$.
	b) Ist $\rho = 0$, so konvergiert die Potenzreihe für alle $x \in \mathbb{K}$ absolut.
	c) Ist $\rho \in (0, \infty)$, so ist die Potenzreihe für alle $x \in \mathbb{K}$ mit $ x < \frac{1}{\rho}$ absolut konvergenz und
	für alle $x \in \mathbb{K}$ mit $ x > \frac{1}{\rho}$ divergent.
	Quotientenkriterium
	Es sei (a_n) eine Folge in \mathbb{K} mit $a_n \neq 0$ für alle $n \in \mathbb{N}$, so dass $\sigma := \lim_{n \to \infty} \left \frac{a_{n+1}}{a_n} \right $ existiert. Dann
5.9.10	gilt für den Konvergenzradius r von $\sum_{n=0}^{\infty} a_n x^n$:
	$r = \begin{cases} \frac{1}{\sigma}, & \text{falls } \sigma \in (0, \infty) \\ \infty, & \text{falls } \sigma = 0. \end{cases}$
	Cauchy-Produkt von Potenzreihen
	Es seien $\sum_{n=0}^{\infty} a_n x^n$ und $\sum_{n=0}^{\infty} b_n x^n$ Potenzreihen in \mathbb{K} mit Konvergenzradien $r_1, r_2 > 0$. Dann hat die Potenzreihe
5.9.13	$\sum_{n=0}^{\infty} \sum_{k=0}^{n} a_k b_{n-k} x^n$
	mindestens den Konvergenzradius $R := \min\{r_1, r_2\}$ und es gilt für alle $x \in \mathbb{K}$ mit $ x < r$
	$\sum_{n=0}^{\infty} \sum_{k=0}^{n} a_k b_{n-k} x^n = (\sum_{n=0}^{\infty} a_n x^n) (\sum_{n=0}^{\infty} b_n x^n).$
	n=0 $k=0$
5.9.14	Es sei $\sum_{n=0}^{\infty} a_n x^n$ eine Potenzreihe in \mathbb{K} mit Konvergenzradius $r > 0$. Dann ist die dadurch
	gegebene Funktion $f: \{x \in \mathbb{K} : x < r\} \to \mathbb{K}$ mit $f(x) = \sum_{n=0}^{\infty} a_n x^n$ stetig auf $\{x \in \mathbb{K} : x < r\}$.

	Offensichtlich konvergieren alle Potenzreihen für $x = 0$.
5.9.3	Keine Aussage bei $ x = \frac{1}{\rho}$ möglich.
5.9.3	Konvergenzbereich entweder $\{0\}$ oder $\mathbb K$ oder Kreis in $\mathbb C$ bzw. Intervall in $\mathbb R$
5.9.6	Konvergenzradius nun entweder $0, \infty$ oder $r = (\lim_{n \to \infty} \sqrt[n]{ a_n })^{-1}$.
5.9.14	$E: \mathbb{C} \to \mathbb{C} \text{ mit } E(x) = e^x \text{ stetig auf } \mathbb{C}.$ Daraus folgt: $E(\mathbb{R}) = \{e^x : x \in \mathbb{R}\} = (0, \infty)$

Wichtige Funktionen

1.10.1 Exponentialfunktion und Logarithmus

Satz von Hadamard

Definitionen

5.10.2	Die Umkehrfunktion von $E: \mathbb{R} \to (0, \infty)$ wird mit $ln := E^{-1}: (0, \infty) \to \mathbb{R}$ bezeichnet und heißt natürlicher Logarithmus.
5.10.4	Für alle $a \in (0, \infty)$ und alle $x \in \mathbb{R}$ definieren wir die allgemeine Potenz durch $a^x := e^{x \cdot ln(a)}$

5.10.1	Die Exponentialfunktion $E: \mathbb{R} \to (0, \infty)$ ist bijektiv
5.10.3	a) Die Funktion ln ist auf $(0, \infty)$ stetig und wöchst streng monoton. b) Es gilt $ln(1) = 0$ und $ln(e) = 1$. c) $lim_{x\to\infty}ln(x) = \infty$ und $lim_{x\to 0+}ln(x) = -\infty$. d) Für alle $x,y\in(0,\infty)$ und $q\in\mathbb{Q}$ gilt: • $ln(xy) = ln(x) + ln(y)$ • $ln(\frac{x}{y}) = ln(x) - ln(y)$ • $ln(x^q) = qln(x)$
5.10.5	Es sei $a \in (0, \infty)$. Dann ist die Funktion $x \to a^x$ stetig auf \mathbb{R} und es gelten die bekannten Rechenregeln für Potenzen wie beispielsweise $a^{x+y} = a^x a^y$, $a^{-1} = \frac{1}{a}$, $(a^x)^y = a^{xy}$

${\bf 1.10.2}\quad {\bf Trigonometrische\ Funktionen}$

Definitionen

5.10.6	$sin(z) := \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} z^{(2}n + 1), \ z \in \mathbb{C} \ (\mathbf{Sinus})$ $cos(z) := \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} z^{2n}, \ z \in \mathbb{C} \ (\mathbf{Cosinus})$
5.10.9	Eine Funktion $f: \mathbb{R} \to \mathbb{R}$ oder $f: \mathbb{C} \to \mathbb{C}$ heißt: a) ungerade, falls $f(-x) = -f(x)$ für alle $x \in \mathbb{R}$ bzw. \mathbb{C} gilt. b) gerade, falls $f(-x) = f(x)$ für alle $x \in \mathbb{R}$ bzw. \mathbb{C} gilt. c) periodisch mit Periode $L \in \mathbb{R}$, bzw. \mathbb{C} , wenn $f(x + L) = f(x)$ für alle $x \in \mathbb{R}$ bzw. \mathbb{C} gilt.
5.10.14	Die Funktion $tan: \mathbb{C}\backslash\{\frac{pi}{2}+k\pi:k\in\mathbb{Z}\}\to\mathbb{C}$ mit $tan(z)\frac{sin(z)}{cos(z)}$ heißt Tangens .
5.10.15	arcsin: $[-1,1] \rightarrow \left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$ (Arcussinus) arcsin: $[-1,1] \rightarrow [0,\infty]$ (Arcuscosinus) arcsin: $\mathbb{R} \rightarrow \left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$ (Arcustangens)

$\mathbf{S\ddot{a}tze}$

5.10.8	Trigonometrischer Pythagoras $sin^2(x) + cos^2(x) = 1$, für alle $x \in \mathbb{R}$
5.10.10	Der Cosinus ist gerade und der Sinus ist ungerade .
5.10.11	Eulersche Formel Für alle $z \in \mathbb{C}$ gilt $e^{iz} = cos(z) + sin(z)i$. Insbesondere gilt für alle $x \in \mathbb{R}$ damit $Re(e^{ix}) = cos(x)$ und $Im(e^{ix}) = sin(x)$.
5.10.12	Für alle $x, y \in \mathbb{R}$ gilt a) $ sin(x) \le 1$ und $ cos(x) \le 1$ b) Additionstheoreme: $sin(x+y) = sin(x)cos(y) + sin(y)cos(x)$ $cos(x+y) = cos(x)cos(y) + sin(x)sin(y)$ c) Rechenregeln für verschobene Funktionen: $sin(x+\frac{\pi}{2}) = cos(x)$ $sin(x+\pi) = -sin(x)$ $sin(x+2\pi) = sin(x)$ $cos(x+\frac{\pi}{2}) = -sin(x)$ $cos(x+\pi) = -cos(x)$ $cos(x+2\pi) = cos(x)$ Sinus und Cosinus sind periodisch mit Periode 2π
	Es ist

$$5.10.13 \qquad \begin{array}{c} sin(z) = 0 \Leftrightarrow z = k\pi \text{ für ein } k \in \mathbb{Z} \\ cos(z) = 0 \Leftrightarrow z = \frac{\pi}{2} + k\pi \text{ für ein } k \in \mathbb{Z} \end{array}$$

5.10.6

Alle Winkel in der Mathematik werden im Bogenmaß angegeben.

	$0_{\rm o}$	30°	45°	60°	90°
	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
sin	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1
cos	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0

(Sin: $\frac{\sqrt{0}}{2},\frac{\sqrt{1}}{2},\frac{\sqrt{2}}{2},\frac{\sqrt{3}}{2},\frac{\sqrt{4}}{2})$

1.10.3 Die Polardarstellung komplexer Zahlen

Definitionen

Es sei $Z=x+yi\in\mathbb{C}\backslash\{0\}$ mit $x,y\in\mathbb{R}$. Dann heißt $r:=\sqrt{x^2+y^2}$ der **Betrag** von z und der 5.10.17Winkel ϕ , der zwischen z und der positiven reellen Achse eingeschlossen wird das **Argument** von z. Beide Werte zusammen (r, ϕ) zusammen sind die **Polarkoordinaten** von z.

Sätze

Es seien $z=re^{i\phi},\,w=se^{i\psi}\in\mathbb{C}\backslash\{0\}$ mit Polarkoordinaten $(r,\phi),$ bzw. (s,ϕ) gegeben. Dann hat 5.10.19 $z \cdot w$ die Polarkoordinaten $(rs, \phi + \psi)$ und $\frac{z}{w}$ die Polarkoordinaten $(\frac{r}{s}, \phi - \psi)$.

5.10.17 Argument im Intervall $(-\pi, \pi]$ oder $[0, 2\pi)$ um Eindeutigkeit zu garantieren. Argument: $(-\pi, \pi) \to \text{Umrechnung von Komplex zu Polarkoordinaten}$ $x = r \cos(\phi)$ $y = r \sin(\phi)$ $r = \sqrt{x^2 + y^2}$

5.10.18

$$\phi = \begin{cases} \arctan \frac{y}{x}, & x > 0\\ \arctan \frac{y}{x} + \pi, & x < 0 \text{ und } y \ge 0\\ \arctan \frac{y}{x} - \pi, & x < 0 \text{ und } y < 0\\ \frac{\pi}{2}, & x = 0 \text{ und } y > 0\\ -\frac{\pi}{2}, & x = 0 \text{ und } y < 0 \end{cases}$$

Beispiele

Hyperbolische Funktionen

Definitionen

$$sinh(z) := \frac{e^z - e^{-z}}{2}, \ z \in \mathbb{C} \ (\textbf{Sinus hyperbolicus})$$

$$cosh(z) := \frac{e^z + e^{-z}}{2}, \ z \in \mathbb{C} \ (\textbf{Cosinus hyperbolicus})$$

$$tanh(z) := \frac{sinh(z)}{cosh(z)}, \ z \in \mathbb{C} \backslash \{(k\pi + \frac{\pi}{2}i : k \in \mathbb{Z})\} \ (\textbf{Tangens hyperbolicus})$$

$\mathbf{2}$ Analysis - Teil II: Differential- und Integralrechnung

Differenzierbarkeit von Funktionen in einer Variablen

2.1.1Der Ableitungsbegriff

Definitionen

Für ganzes Kapitel gilt: $I \subseteq \mathbb{R}$ als Intervall.

- a) Es sei $x_0 \in I$. Eine Funktion $f:I \to \mathbb{R}$ heißt differenzierbar in x_0 , wenn der Grenzwert $\lim_{x\to x_0} \frac{f(x)-f(x_0)}{x-x_0}$ in $\mathbb R$ existiert. In diesem Fall heißt dieser Grenzwert die **Ableitung** von f in x_0 und wird
 - mit $f'(x_0)$ bezeichnet.
- b) Eine Funktion $f: I \to \mathbb{R}$ heißt differenzierbar auf I, falls sie in allen Punkten $x_0 \in I$ differenzierbar ist. In diesem Fall wird $x \to f'(x)$ für $x \in I$ eine Funktion $f': I \to \mathbb{R}$ definiert. Diese Funktion heißt die **Ableitung** oder auch **Ableitungsfunktion** von f auf I.

Sätze

6.1.7

6.1.1

Es sei $f: I \to \mathbb{R}$ in $x_0 \in I$ differenzierbar. Dann ist f stetig in x_0 . 6.1.4(Jede differenzierbare Funktion ist stetig)

Eine Funktion $f: I \to \mathbb{R}$ ist in $x_0 \in I$ genau dann **differenzierbar** mit $f'(x_0) = a$, wenn

 $f(x) = f(x_0) + a(x - x_0) + r(x), x \in I$

ist und für die Funktion $r: I \to \mathbb{R}$ gilt

 $\lim_{x \to x_0} \frac{|r(x)|}{|x - x_0|} = 0$

6.1.1	Der Grenzwert in 6.1.1 existiert genau dann, wenn der Grenzwert $\lim_{h\to 0} \frac{f(x^0+h)-f(x_0)}{h}$ existiert. Die Werte stimmen dann überein. Je nach Situation den einen oder anderen verwenden.
6.1.6	Die Exponentialfunktion ist auf \mathbb{R} differenzierbar und es gilt $E'(x) = e^x = E(x)$.

2.1.2 Ableitungsregeln

Definitionen

Sätze

6.1.9

Es seien $f, g: I \to \mathbb{R}$ in $x_0 \in I$ differenzierbar und $\alpha, \beta \in \mathbb{R}$. Dann gilt

a) $\alpha f + \beta g$ ist in x_0 differenzierbar und

$$(\alpha f + \beta g)'(x_0) = \alpha f'(x_0) + \beta g'(x_0)$$
. (Linearität)

b) fg ist differenzierbar in x_0 und

 $(fg)'(x_0) = f'(x_0)g(x_0) + f(x_0)g'(x_0).$ (Produktregel)

c) Ist $g(x_0) \neq 0$, so existiert ein Intervall $J \subseteq I$ mit $x_0 \in J$ und $g(x) \neq 0$ für alle $x \in J$. Außerdem ist die Funktion $\frac{f}{g}: J \to \mathbb{R}$ differenziber und es gilt

$$(\frac{f}{g})'(x_0) = \frac{f'(x_0)g(x_0) - f(x_0)g'(x_0)}{(g(x_0))^2}$$
. (Quotientenregel)

Kettenregel

Es seien $I, J \subseteq \mathbb{R}$ Intervalle und $g: I \to J$ sei differenzierbar in $x_0 \in I$. Weiter sei $f: J \to \mathbb{R}$ differenzierbar in $y_0 = g(x_0)$. Dann ist auch die Funktion $f \circ g: I \to \mathbb{R}$ differenzierbar in x_0 und es gilt

$$(f \circ g)'x_0 = f'(g(x_0)) \cdot g'(x_0).$$

Es sei $f \in C(I)$ streng monoton und $x_0 \in I$ differenzierbar mit $f'(x_0) \neq 0$. Dann existiert die 6.1.12 **Umkehrfunktion** $f^{-1}: f(I) \to \mathbb{R}$, diese ist differenzierbar in $y_0 = f(x_0)$ und es gilt

$$(f^{-1})'(y_0) = \frac{1}{f'(x_0)}$$

Es sei $f(x) = \sum_{n=0}^{\infty} a_n x^n$ eine Potenzreihe in \mathbb{R} mit Konvergenzradius r > 0. Dann hat auch die Potenzreihe $\sum_{n=1}^{\infty} n a_n x^{n-1}$ den Konvergenzradius r, die Funktion f ist in allen $x \in (-r, r)$ differenzierbar und es gilt

$$f'(x) = \sum_{n=1}^{\infty} n a_n x^{n-1}, x \in (-r, r)$$

(Potenzreihe im Inneren des Konvergenzgebietes summandenweise ableitbar)

Bemerkungen

6.1.15

6.1.12 Wichtig: $f'(x_0) \neq 0$ als Voraussetzung!

Name	Symbol	Definitionsbereich	Bild	Ableitung
E-funktion	e.	\mathbb{R}	$(0,\infty)$	e.
(nat.) Logarithmus	ln	$(0,\infty)$	\mathbb{R}	$\frac{1}{x}$
Sinus	sin	\mathbb{R}	[-1, 1]	cos
Cosinus	cos	\mathbb{R}	[-1, 1]	- sin
Tangens	tan	$\mathbb{R}\setminus\{(k+1/2)\pi\}$	\mathbb{R}	$\frac{1}{\cos^2} = 1 + \tan^2$
Arcussinus	arcsin	[-1, 1]	$[-\pi/2, \pi/2]$	$\frac{1}{\sqrt{1-x^2}}$
Arcuscosinus	arccos	[-1, 1]	$[0, \pi]$	$-\frac{1}{\sqrt{1-x^2}}$
Arcustangens	arctan	\mathbb{R}	$(-\pi/2,\pi/2)$	$\frac{1}{1+x^2}$
Sinus hyperbolicus	sinh	R	R	cosh
Cosinus hyp.	cosh	\mathbb{R}	$[1,\infty)$	sinh
Tangens hyp.	tanh	\mathbb{R}	(-1,1)	$\frac{1}{\cosh^2} = 1 - \tanh^2$

Beispiele

2.1.3 Höhere Ableitungen

Definitionen

6.1.19	Ist $f: I \to \mathbb{R}$ eine in I differenzierbare Funktion und ist f' auf I stetig, so nennt man f stetig differenzierbar. Man schreibt $C^1(I) := \{f: I \to \mathbb{R}: f \text{ stetig differenzierbar}\}$
	a Es sei $f:I\to\mathbb{R}$ differenzierbar auf $I,x_0\in I$ und $n\in\mathbb{N}$ mit $n\geq 2$. Dann heißt die Funktion
	f in x_0 (bzw. auf I) n-mal differenzierbar falls sie auf I schon $(n-1)$ differenzierbar ist

und die Funktion $f^{(n-1)}$ in x_0 (bzw. auf I) wieder differenzierbar ist. In diesem Fall heißt $f^{(n)}(x_0) = (f^{(n-1)})'(x_0)$ die n-te Ableitung von f in x_0 bzw. $x \to \infty$

 $f^{(n)}(x)$ die n-te Ableitungsfunktion von f auf I.

b) Ist die n-te Ableitung von f auf I selbst sogar wieder stetig auf I, so sagt man f sei sei n-mal stetig differenzierbar auf I. Man schreibt

 $C^n(I) := \{ f : I\mathbb{R} : f \text{ n-mal stetig differenzierbar} \}.$

c) Ist $f \in C^n(I)$ für alle $n \in \mathbb{N}$, so nennt man f beliebig oft differenzierbar. Man verwendet dafür die Bezeichnung

$$f \in C^{\infty}(I) := \prod_{n \in \mathbb{N}} C^n(I).$$

Bemerkungen

6.1.20

Die Funktion selbst wird als nullte Ableitung definiert $f^{(0)} := f$. 6.1.20

2.2 Eigenschaften differenzierbarer Funktionen

Definitionen

Es sei $I \subseteq \mathbb{R}$ ein offenes Intervall, $x_0 \in I$ und $f \in C^{\infty}(I)$.

a) Die Potenzreihe

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$

heißt **Taylorreihe** von f um x_0 . 6.2.9

b) Für jedes $k\in\mathbb{N}$ heißt das Polynom

$$T_{k,f}(x;x_0):=\sum_{n=0}^k \frac{f^{(n)}(x_0)}{n!}(x-x_0)^n$$
das Taylorpolynom k-ten Grades von f in x_0 .

Mittelwertsatz der Differenzialrechnung

- 6.2.1 Es seien $a, b \in \mathbb{R}$ mit a < b und $f \in C([a, b])$ sei differenzierbar in (a, b). Dann gibt es ein $\xi \in (a, b)$, so dass $\frac{f(b) f(a)}{b a} = f'(\xi)$, bzw. gleichbedeutend $f(b) f(a) = f'(\xi)(b a)$ gilt.
 - a) Satz von Rolle

Es seien $a, b \in \mathbb{R}$ mit a < b und $f \in C([a, b])$. Ist f auf (a, b) differenzierbar und gilt f(a) = f(b), so gibt es ein $\xi \in (a, b)$ mit $f'(\xi) = 0$.

b) Es sei $f:I\to\mathbb{R}$ auf dem Intervall I differenzierbar. Dann gilt

Ist f' = 0 auf I, so ist f auf I konstant.

Ist f' > 0 auf I, so ist f auf I streng monoton wachsend.

Ist f' < 0 auf I, so ist f auf I streng monoton fallend.

Ist $f' \geq 0$ auf I, so ist f auf I monoton wachsend.

Ist $f' \leq 0$ auf I, so ist f auf I monoton fallend.

c) Sind $f, g: I \to \mathbb{R}$ auf I differenzierbare Funktionen und gilt f' = g' auf I, so gibt es eine Konstante $c \in \mathbb{R}$, so dass f(x) = g(x) + c für alle $x \in I$ gilt.

Satz von de 'Hospital

Es sei (a,b) ein offenes Intervall \mathbb{R} $(a=-\infty \text{ und } b=\infty \text{ hier zugelassen})$ und $f,g:(a,b)\to\mathbb{R}$ seien differenzierbar auf (a,b) mit $g'(x)\neq 0$ für alle $x\in (a,b)$. Gilt dann

 $\lim_{x\to a} f(x) = \lim_{x\to a} g(x) = 0$ oder $\lim_{x\to a} f(x) = \lim_{x\to a} g(x) = \pm \infty$

und existiert der Grenzwert

$$L := \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

 $(L = \pm \infty \text{ zugelassen}), \text{ dann gilt}$

$$\lim_{x \to a} \frac{f(x)}{g(x)} = L.$$

Satz von Taylor

Es seien $I \subseteq \mathbb{R}$ ein offenes Intervall, $x, x_0 \in I$ und für ein $k \in \mathbb{N}_{\vdash}$ sei $f : I \to \mathbb{R}$ eine k + 1-mal differenzierbare Funktion. Dann gibt es ein ξ zwischen x und x_0 , so dass gilt

$$f(x) = T_{k,f}(x;x_0) + \frac{f^{k+1}(\xi)}{(k+1)!}(x-x_0)^{k+1}$$

(Vorne Annäherung, hinten Fehlerterm - Abschätzung wie gut die Taylorreihe zu Funktion passt)

Bemerkungen

6.2.2

6.2.6

6.2.12

Sekantensteigung der Funktion (erhalten durch a und b) entspricht irgendwann zwischen a und b tatsächlich der Tangentensteigung.

- 6.2.6 Achtung! Alle Voraussetzungen prüfen!
 - a) Taylor für k=0 ist Mittelwertsatz.
 - b) Der Fehlerterm

$$R_{k,f}(x;x_0) := \frac{f^{k+1}(\xi)}{(k+1)!}(x-x_0)^{k+1},$$

der die Differenz zwischen f(x) und der Näherung durch das Taylorpolynom k-ten Grades beschreibt, wird auch als Restglied bezeichnet.

Beispiele

6.2.12

2.3 Extremwerte

Definitionen

Ec coi	$D \subset$	TD.	und	f.	D	⊈ ∠	oine	Funktion.	
rs ser	$\nu \subseteq$	71/2	una	1:	ν	$\rightarrow \mathbb{Z}$	еше	runkuon.	

- a) Man sagt, dass f in $x_0 \in D$ ein **globales Maximum** (bzw. Minimum) hat, falls $f(x) \le f(x_0)$ (bzw. $f(x) \ge f(x_{=})$) für alle $x \in D$ gilt.
- b) f hat in $x_0 \in D$ ein **relatives Maximum** (bzw. Minimum), falls ein $\delta > 0$ existiert, so dass $f(x) \leq f(x_0)$ (bzw. $f(x) \geq f(x_0)$) für alle $x \in D$ mit $|x x_0| < \delta$ gilt.
- c) Allgemein spricht man von einem globalen bzw. relativen **Extremum** in x_0 wenn f dort ein entsprechendes Maximum oder Minimum hat.

Sätze

6.3.1

- Es sei $f: I \to \mathbb{R}$ differenzierbar in $x_0 \in I$. Ist x_0 ein innerer Punkt von I und hat f in x_0 ein relatives Extremum, so gilt $f'(x_0) = 0$.
- Es sei $I \subseteq \mathbb{R}$ ein Intervall, $x_0 \in I^\circ$ und $f \in C^n(I)$ für ein $n \ge 2$. Weiter gelte $f'(x_0) = f''(x_0) = \cdots = f^{n-1}(x_0) = 0$, aber $f^{(n)}(x_0) \ne 0$. Ist nun n ungerade, so hat f in x_0 kein Extremum, ist n gerade, so liegt in x_0 ein Extremum vor, und zwar falls $f^{(n)}(x_0) > 0$ ein **Minimum** und falls $f^{(n)}(x_0) < 0$ ein **Maximum**.

Bemerkungen

6.3.3 Innerer Punkt von D: Kein Randpunkt, möglich Kugel um den Punkt zu legen Warnung: x_0 innerer Punkt ist wesentlich Warnung: Umkehrung des Satzes gilt nicht (Kann auch Sattelpunkt sein, nicht unbedingt Extremum)

2.4 Differenzieren von Funktionen mehrerer Variablen - Partielle Ableitung Definitionen

Sätze	Let $C \subset \mathbb{R}^d$ offen $f: C \to \mathbb{R}^p$ sine Funktion und $g: C$ so jet f in g geneu denn partiell diffe
6.4.13	(stetig) partiell differenzierbar in x_0 , wenn sie schon $(n-1)$ -mal (stetig) partiell differenzierbar auf G ist und alle $(n-1)$ -ten partiellen Ableitungen in x_0 wieder (stetig) partiell differenzierbar sind. Notation: $\partial_1 \partial_3 \partial_1$ (Reihenfolge meist egal, wenn nicht von innen nach außen)
6.1.10	$\nabla f(x_0 := J_f(x_0)) = (\partial_1 f(x_0), \partial_2 f(x_0), \dots, \partial_d f(x_0))$ den Gradient von f . Es seien $G \subseteq \mathbb{R}^d$, $n \in \mathbb{N}$ mit $n \geq 2$, $x_0 \in G$ und $f : G \to \mathbb{R}^p$ eine Funktion. Diese nennt man n -mal
	$\left(\partial_1 f_p(x_0) \partial_2 f_p(x_0) \dots \partial_d f_p(x_0)\right)$ heißt Jakobi-Matrix von f . Im Spezialfall $p=1$ nennt man die 1 x d -Matrix, d.h. den \mathbb{R}^d -Zeilenvektor
	Es sei $G \subseteq \mathbb{R}^d$ offen und $f: G \to \mathbb{R}^p$ in $x_0 \in G$ partiell differenzierbar. Die p x d -Matrix aller partiellen Ableitungen $J_f(x_0) := \begin{pmatrix} \partial_1 f_1(x_0) & \partial_2 f_1(x_0) & \dots & \partial_d f_1(x_0) \\ \partial_1 f_2(x_0) & \partial_2 f_2(x_0) & \dots & \partial_d f_2(x_0) \\ \dots & \dots & \dots & \dots \\ \partial_1 f_p(x_0) & \partial_2 f_p(x_0) & \dots & \partial_d f_p(x_0) \end{pmatrix}$
	$\partial_1 f, \partial_2 f, \dots, \partial_d f: G \to \mathbb{R}^p$ stetig, so nennt man f stetig partiell differenzierbar in G .
	c) Ist f in G partiell differenzierbar und sind sämtliche partielle Ableitungen
	b) Ist f in allen $x_0 \in G$ partiell differenzierbar, so sagt man f ist in G partiell differenzierbar und schreibt $\partial_j f = \frac{\partial f}{\partial x_j} = f_{x_j} : G \to \mathbb{R}^p$ für die partielle Ableitungs(-funktion)
6.4.3	für die partielle Ableitung von f in x_0 nach der j-ten Koordinate.
	so heißt f in x_0 partiell differenzierbar. Man schreibt dann für $j=1,2,\ldots,d$ auch $\partial_j f(x_0) := \frac{\partial f}{\partial x_j}(x_0) := f_{x_j}(x_0) := (\partial_{e_j} f)(x_0)$
6.4.1	\mathbb{R}^{n} . a) Existieren in einem $x_0 \in G$ die Richtungsableitungen von f in alle Richtungen $e_1, e_2, \dots e_d$,
	Es seien $G \subseteq \mathbb{R}^d$ offen, $f: G \to \mathbb{R}^p$ eine Funktion und $\{e_1, e_2, \dots, e_d\}$ die Standardbasis des \mathbb{R}^d .
	so heißt f in x_0 in Richtung v differenzierbar und $(\partial_v f)(x_0)$ die Richtungsableitung von f in x_0 in Richtung v . (Betrachtung der Funktionswerte entlang einer Geraden im Raum)
	$(\partial_v f)(x_0) := \lim_{h \to 0} \frac{f(x_0 + hv) - f(x_0)}{h},$
	Es sei $G \subseteq \mathbb{R}^d$ offen, $f: G \to \mathbb{R}^p$ eine Funktion, $x_0 \in G$ und $v \in \mathbb{R}^d \setminus \{0\}$. Existiert der Grenzwert

6.4.8	Ist $G \subseteq \mathbb{R}^a$ offen, $f: G \to \mathbb{R}^p$ eine Funktion und $x_0 \in G$, so ist f in x_0 genau dann partiell differenzierbar, wenn alle Koordinatenfunktionen $f_1, f_2, \ldots, f_p: G \to \mathbb{R}$ in x_0 partiell differenzierbar sind. In diesem Fall gilt
	$\partial_j f(x_0) = (\partial_1 f_1(x_0), \partial_j f_2(x_0), \dots, \partial_j f_p(x_0))^T$
	Satz von Schwarz
6.4.15	Ist $G \subseteq \mathbb{R}^d$ offen und $f: G \to \mathbb{R}^p$ eine n-mal stetig partiell differenzierbare Funktion, so ist die
0.4.10	Reihenfolge der partiellen Ableitungen bis zur Ordnung n vertauschbar.
	(Sind die partiellen Ableitungen nicht stetig, gilt der Satz nicht.)

6.4.3 Berechnung Ableitung: Alle anderen Variablen werden als konstante Parameter behandelt

6.1.10 Es gilt
$$J_f(x) = \begin{pmatrix} \nabla(f_1(x)) \\ \nabla(f_2(x)) \\ \dots \\ \nabla(f_n(x)) \end{pmatrix}$$

Bedeutung Gradient: Falls f glatt genug ist gibt der Vektor $\nabla f(x_0)$ die Richtung, in der der 6.1.10 Graph von f an der Stelle x_0 am stärksten ansteigt und seine Länge entspricht dieser maximalen Steigung. (Basis für Optimierungsverfahren)

Beispiele

2.5 Differenzieren von Funktionen mehrerer Variablen - Totale Differenzierbarkeit

Definitionen

6.5.1	Es sei $G \subseteq \mathbb{R}^d$ offen und $x_0 \in G$. Eine Funktion $f: G \to \mathbb{R}^p$ heißt (total) differenzierbar in x_0 , wenn es eine lineare Abbildung $\Phi: \mathbb{R}^d \to \mathbb{R}^p$ gibt, so dass gilt $f(x) = f(x_0) * \Phi(x - x_0) + r(x), x \in G$ mit einer Funktion $r: G \to \mathbb{R}^p$ die
	$lim_{x ightarrow x_0}rac{ r(x) }{ x-x_0 }=0$ erfüllt.
	Die lineare Abbildung $Df(x_0) := \Phi$ heißt dann (totale) Ableitung von f in x_0 . Ist f in allen $x_0 \in G$ total differenzierbar, so nennt man die Funktion $Df : G \to \mathcal{L}(\mathbb{R}^d, \mathbb{R}^p)$ die Ableitung(sfunktion) von f .
6.5.17	Eine Menge $M \subseteq \mathbb{R}^d$ heißt konvex , wenn für alle $a, b \in M$ auch $\bar{ab} \subseteq M$ gilt.
6.5.20	Es sei $G \subseteq \mathbb{R}^d$ offen und $f: G \to \mathbb{R}$ in $x_0 \in G$ zweimal partiell differenzierbar. Dann heißt die Matrix der zweiten partiellen Ableitungen $H_f(x_0) := (\partial_j \partial_k f(x_0))_{j,k=1,\dots,d}$
	Hesse-Matrix von f in x_0 . Satz von Taylor
6.5.22	Den Ausdruck
0.9.22	$T_{1,f}(x;x_0) := f(x_0) + \nabla f(x_0)(x - x_0)$
	bezeichnen wir wieder als das Taylorpolynom ersten Grades von f in x_0 .

6.5.6	Ist $G \subseteq \mathbb{R}^d$ offen und $f: G \to \mathbb{R}^p$ in $x_0 \in G$ total differenzierbar, so ist f auch stetig in x_0 .
6.5.7	Es sei $G \subseteq \mathbb{R}^d$ offen, $f: G \to \mathbb{R}^p$ eine in $x_0 \in G$ total differenzierbare Funktion und $v \in \mathbb{R}^d \setminus \{0\}$. Dann existiert in x_0 die Richtungsableitung von f in Richtung v und es gilt $(\partial_v f)(x_0) = Df(x_0)(v)$.
6.5.8	Es sei $G \subseteq \mathbb{R}^d$ offen, $x_0 \in G$ und $f: G \to \mathbb{R}^p$ eine Funktion. Ist f in x_0 total differenzierbar, so ist f in x_0 auch partiell differenzierbar und die Abbildungsmatrix von $Df(x_0)$ bezüglich der Standardbasen von \mathbb{R}^d bzw. \mathbb{R}^p ist die Jakobi-Matrix $J_f(x_0)$.
6.5.10	Ist $G \subseteq \mathbb{R}^d$ offen und $f: G \to \mathbb{R}^p$ in $x_0 \in G$ total differenzierbar, so gilt für jedes $v \in \mathbb{R} \setminus \{0\}$ $\partial_v f(x_0) = J_f(x_0)v$.
6.5.12	Ist $G \subseteq \mathbb{R}^d$ offen und $f: G \to \mathbb{R}^p$ in $x_0 \in G$ stetig partiell differenzierbar, so ist f in x_0 sogar total differenzierbar.
6.5.13	Kettenregel Es seien $G \subseteq \mathbb{R}^d$ und $H \subseteq \mathbb{R}^p$ offen, sowie $g: G \to \mathbb{R}^p$ mit $g(G) \subseteq H$ und $f: H \to \mathbb{R}^q$ Funktionen, so dass g in $x_0 \in G$ und f in $g(x_0)$ total differenzierbar sind. Dann ist auch die Funktion $f \circ g: G \to \mathbb{R}^q$ in x_0 total differenzierbar und es gilt $D(f \circ g)(x_0) = Df(g(x_0)) \cdot Dg(x_0).$ (Enthält Matrixmultiplikation)
6.5.16	Mittelwertsatz Es sei $G \subseteq \mathbb{R}^d$ offen und $f: G \to \mathbb{R}$ eine total differenzierbare Funktion. Sind $a,b \in G$ so gewählt, dass $\bar{ab} \subseteq G$, so gibt es ein $\xi \in \bar{ab}$ mit $\bar{ab} := \{a + \lambda(b-a) : \lambda \in [0,1]\}$
6.5.18	Schrankensatz Es sei $G \subseteq \mathbb{R}^d$ offen und konvex, sowie $f: G \to \mathbb{R}$ total differenzierbar. Gibt es ein $L \geq 0$ mit $ \nabla f(x) _2 \leq L$ für alle $x \in G$, so gilt $ f(x) - f(y) \leq L x - y _2$, für alle $x, y \in G$ d.h. f ist Lipschitz-stetig auf G .
6.5.22	Satz von Taylor Es sei $G \subseteq \mathbb{R}^d$ eine offene und konvexe Menge und $f: G \to \mathbb{R}$ sei zweimal stetig partiell differenzierbar (damit auch 2x total differenzierbar) in G . Zu jeder Wahl von $x_0, x \in G$ gibt es dann ein $\xi \in x_0^- x$ mit $f(x) = f(x_0) + \nabla f(x_0)(x - x_0) + \frac{1}{2}(x - x_0)^T H_f(\xi)(x - x_0).$

6.5.4	Ableitung einer linearen Abbildung $\Phi:\mathbb{R}^d\to\mathbb{R}^p$ ist in jedem Punkt die Abbildung Φ selbst
6.5.8	Die Umkehrung dieses Satzes ist falsch.
6.5.12	stetig partiell differenzierbar \implies total differenzierbar \implies stetig \Downarrow partiell differenzierbar \iff alle Richtungsabl. existieren
6.5.16	$\bar{ab} := \{a + \lambda(b-a) : \lambda \in [0,1]\}$: Verbindungsstrecke von a nach b
6.5.20	Hesse-Matrix ist immer eine quadratische Matrix. Sogar symmetrisch, falls f stetig partiell differenzierbar in x_0 ist Es gilt $H_f(x_0) = J_{(\nabla f)^T}(x_0)$

2.6 Extremwertprobleme in mehreren Variablen

Definitionen

	Es sei $G \subseteq \mathbb{R}^d$ und $f: G \to \mathbb{R}$.
	a) Man sagt, dass f in $x_0 \in G$ ein globales Maximum (bzw. Minimum) hat, falls $f(x) \leq f(x_0)$
	(bzw. $f(x) \ge f(x_0)$) für alle $x \in G$ gilt.
6.6.1	b) f hat in $x_0 \in G$ ein relatives Maximum (bzw. Minimum), falls ein $\delta > 0$ existiert, so dass
	$f(x) \le f(x_0)$ (bzw. $f(x) \ge f(x_0)$) für alle $x \in G$ mit $ x - x_0 < \delta$ gilt.
	c) Allgemein spricht man von einem globalen bzw. relativen Extremum in x_0 , wenn f dort
	ein entsprechendes Maximum oder Minimum hat.

Sätze

6.6.2	Es sei $G \subseteq \mathbb{R}^d$ und x_0 ein innerer Punkt von G , sowie $f: G \to \mathbb{R}$ total differenzierbar in x_0 . Hat f in x_0 ein relatives Extremum, so gilt $\nabla f(x_0) = 0$.
6.6.3	Es sei $G \subseteq \mathbb{R}^d$ offen, $f: G \to \mathbb{R}$ zweimal stetig partiell differenzierbar und für $x_0 \in G$ gelte $\nabla f(x_0) = 0$. Ist dann die Hesse-Matrix $H_f(x_0)$ a) positiv definit, so hat f in x_0 ein relatives Minimum b) negativ definit, so hat f in x_0 ein relatives Maximum c) indefinit, so hat f in x_0 kein relatives Extremum

2.7 Integration in \mathbb{R}

2.7.1 Definition des bestimmten Integrals

Definitionen

6.7.1	Es seien $a, b \in \mathbb{R}$ mit $a < b$. Eine endliche Menge $Z := \{x_0, x_1, \dots, x_n\} \subseteq [a, b]$ heißt Zerlegung des Intervalls $[a, b]$, wenn gilt $a = x_0 < x_1 < \dots < x_{n-1} < x_n = b$. Für eine solche Zerlegung und eine gegebene beschränkte Funktion $f : [a, b] \to \mathbb{R}$ setzen wir nun für jedes $j = 1, \dots, n$ $I_j := [x_{j-1}, x_j], I_j := x_j - x_{j-1}, m_j := \inf f(I_j), M_j := \sup f(I_j)$
	Es seien $a, b \in \mathbb{R}$ mit $a < b, Z = \{x_0, dots, x_n\}$ eine Zerlegung von $[a, b]$ und $f : [a, b] \to \mathbb{R}$
a = a	beschränkt. Dann heißt der Wert
6.7.2	$\underline{s}_f(Z) := \sum_{j=1}^n m_j I_j ext{ die Untersumme von f zu } \mathbf{Z}$
	$ar{s_f}(Z) := \sum_{j=1}^{n-1} M_j I_j ext{ die Obersumme von f zu Z}$
	Es seien $a, b \in \mathbb{R}$ mit $a < b$ und $f : [a, b] \to \mathbb{R}$ sei beschränkt.
	Wir nennen
	$\int_a^b f(x)dx := \sup\{\underline{s}_f(Z) : Z \text{ Zerlegung von [a,b]}\}$
0.7.4	unteres Integral von \overline{f} auf $[a,b]$
6.7.4	$\int_a^{\bar{b}} f(x) dx := \inf\{\bar{s}_f(Z) : Z \text{ Zerlegung von } [a, b] \}$
	oberes Integral von f auf $[a, b]$
	f auf $[a,b]$ heißt (Riemann-)integrierbar, wenn
	$\bar{\int_a^b} f(x)dx = \underline{\int_a^b} f(x)dx$
670	Es seien $a, b \in \mathbb{R}$ mit $a < b$ und $f : [a, b] \to \mathbb{R}$ sei integrierbar. Dann setzt man für jedes $c \in [a, b]$
6.7.9	$\int_c^c f(x)dx := 0 \text{ und } \int_b^a f(x)dx := -\int_a^b f(x)dx.$

Es seien $a, b \in \mathbb{R}$ mit a < b und integrierbare Funktionen $f, g : [a, b] \to \mathbb{R}$ gegeben. Dann gelten die folgenden Aussagen.

a) Monotone: Ist $f(x) \leq g(x)$ für alle $x \in [a, b]$, so ist auch

$$\int_{a}^{b} f(x)f(x)dx \le \int_{a}^{b} g(x)dx$$

 $\int_a^b f(x)f(x)dx \le \int_a^b g(x)dx$ b) **Homogenität**: Ist $\alpha \in \mathbb{R}$, so ist auch αf integrierbar und es gilt

$$\int_{a}^{b} \alpha f(x) dx = \alpha \int_{a}^{b} f(x) dx$$

$$\int_a^b (f(x) + g(x))dx = \int_a^b f(x)dx + \int_a^b g(x)dx$$

 $\int_{a}^{b} \alpha f(x) dx = \alpha \int_{a}^{b} f(x) dx$ c) Additivität: Auch die Funktion f + g ist integrierbar und es gilt $\int_{a}^{b} (f(x) + g(x)) dx = \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx$ d) Dreiecksungleichung: Die Funktion |f| ist ebenfalls integrierbar und es gilt

$$\left| \int_a^b f(x) dx \right| \le \int_a^b |f(x)| dx$$

e) Ist $c \in (a,b)$ so ist f auch integrierbar auf [a,c] und [c,b] und es gilt $\int_a^b f(x)dx = \int_c^a f(x)dx = \int_b^c f(x)dx$

$$\int_{a}^{b} f(x)dx = \int_{c}^{a} f(x)dx = \int_{b}^{c} f(x)dx$$

Standardabschätzung

- Es seien $a, b \in \mathbb{R}$ mit a < b und $f : [a, b] \to \mathbb{R}$ integrierbar. Dann ist 6.7.8 $|\int_{a}^{b} f(x)dx| \le (b-a) \sup_{x \in [a,b]} |f(x)| = (b-a)||f||_{\infty}$
- Es seien $a, b \in \mathbb{R}$ mit a < b. Jede stetige und jede monotone Funktion $f: [a, b] \to \mathbb{R}$ ist 6.7.10integrierbar.

Bemerkungen

6.7.7

- 6.7.2Es gilt $\underline{s}_f(Z) \leq \bar{s}_f(Z)$
- Flächeninhalte unter der x Achse zählen negativ. 6.7.4

Stammfunktionen und der Hauptsatz 2.7.2

Definitionen

- Es seien $a, b \in \mathbb{R}$ mit a < b und $f, F : [a, b] \to \mathbb{R}$ Funktionen. Man sagt F ist eine **Stammfunk**tion von f, wenn F auf [a, b] differenzierbar ist und F' = f auf [a, b] gilt. 6.7.13(Wenn F Stammfunktion von f ist, dann auch $F + c, c \in \mathbb{R}$) Es sei $I\subseteq\mathbb{R}$ ein Intervall. Besitzt $f:I\to\mathbb{R}$ auf I eine Stammfunktion, so schreibt man für die Menge aller Stammfunktionen auch das sogenannte unbestimmte Integral 6.7.18 $\int f(x)dx$.
 - Dieses bezeichnet eine Menge von Funktionen und keine bestimmte Zahl.

Sätze

Hauptsatz der Differnzial- und Integralrechnung

Es seien $a, b \in \mathbb{R}$ mit a < b und $c \in [a, b]$, sowie eine stetige Funktion $f : [a, b] \to \mathbb{R}$ gegeben. Dann gelten die folgenden Aussagen

- 6.7.15
 - a) Die Funktion $F:[a,b]\to\mathbb{R}$ mit $F(x):=\int_{a}^{x}f(s)ds, x\in I$, ist eine Stammfunktion von f.
 - b) Ist $\Phi:[a,b]\to\mathbb{R}$ eine Stammfunktion von f, so gilt

$$\Phi(x) = \Phi(c) + \int_{c}^{x} f(x)ds$$
, für alle $x \in [a, b]$.

Es sei $\sum_{n=0}^{\infty} a_n x^n$ eine Potenzreihe in $\mathbb R$ mit Konvergenzradius größer null. Dann hat die Reihe $\sum_{n=0}^{\infty} \frac{a_n}{n+1} x^{n+1}$ denselben Konvergenzradius und es gilt 6.7.20

$$\int \sum_{n=0}^{\infty} a_n x^n dx = \sum_{n=0}^{\infty} \int a_n x^n dx = \sum_{n=0}^{\infty} \frac{a_n}{n+1} x^{n+1} + c$$

innerhalb des Konvergenzbereichs.

Ist
$$F$$
 eine Stammfunktion von f , so erhält man sofort
$$\int_a^b f(x)dx = F(b) - F(a) =: F(x)|_{x=a}^{x=b}$$

Geometrische Reihe 5.9.2

Konvergiert für |x| < 1 mit $\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$.

Exponentialfunktion 5.9.2

5.9.5

 $e^z = \sum_{n=0}^{\infty} \frac{z^n}{n!}$ konvergiert für alle $z \in \mathbb{C}$

a)
$$a_n = 1$$
, $\sum_{n=0}^{\infty} x^n$

Dann gilt: $\rho = \lim_{n \to \infty} \sqrt[n]{|a_n|} = \lim_{n \to \infty} 1 = 1$, also $r = \frac{1}{\rho} = 1$.

Am Rand: Für x = 1: $\sum_{n=0}^{\infty} 1^n$ divergent. (-1 auch divergent)

Konvergenzbereich: (-1,1)

b)
$$a_n = \frac{1}{n}, \sum_{n=1}^{\infty} \frac{x^n}{n}$$

Konvergenzradius 1, da: $\lim_{n\to\infty} \sqrt[n]{\frac{1}{n}} = \lim_{n\to\infty} \frac{1}{\sqrt[n]{n}} = \frac{1}{\lim_{n\to\infty} \sqrt[n]{n}} = 1$. Am Rand: Für x=1: $\sum_{n=1}^{\infty} \frac{1}{n}$: divergent (harmonische Reihe)

Für x = -1: $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$: konvergent (alternierende harmonische Reihe)

Konvergenzbereich: [-1, 1)

$$a_n := \frac{(-4)^n}{n}, x_0 = 1, \sum_{n=1}^{\infty} \frac{(-4)^n}{n} (x-1)^n$$

Es gilt: $\rho = \lim_{n \to \infty} \sqrt[n]{|a_n|} = \lim_{n \to \infty} \sqrt[n]{|\frac{(-4)^n}{n}|} = \lim_{n \to \infty} \frac{4}{\sqrt[n]{n}} = \frac{4}{1} = 4$

Konvergenzradius: $r = \frac{1}{a} = \frac{1}{4}$

Konvergenz in $(1 - \frac{1}{4}, 1 + \frac{1}{4}) = (\frac{3}{4}, \frac{5}{4})$ 5.9.6

Transpunkte. $x = \frac{5}{4} : \sum_{n=1}^{\infty} \frac{(-4)^n}{n} (\frac{5}{4} - 1)^n = \sum_{n=1}^{\infty} \frac{(-4)^n}{n} \cdot \frac{1}{4^n} = \sum_{n=1}^{\infty} \frac{(-1)^n}{n} \text{ konvergent (alt. harmonische Reihe)}$ $x = \frac{3}{4} : \sum_{n=1}^{\infty} \frac{(-4)^n}{n} (\frac{3}{4} - 1)^n = \sum_{n=1}^{\infty} \frac{(-4)^n}{n} \cdot \frac{1}{(-4)^n} = \sum_{n=1}^{\infty} \frac{1}{n} \text{ divergent (harmonische Reihe)}$

Konvergenzgebiet: $(\frac{3}{4}, \frac{5}{4}]$

a) $a_n = \frac{n^n}{n!}, \sum_{n=0}^{\infty} \frac{n^n}{n!} x^n$ Quotientenkriterium:

 $\sigma := \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(n+1)^{n+1}}{(n+1)!} \cdot \frac{n!}{n^n} \right| = \lim_{n \to \infty} \left| \frac{(n+1) \cdot (n+1)^n}{(n+1)n} \right| = \lim_{n \to \infty} \left(\frac{n+1}{n} \right)^n = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = e$

Konvergenzradius: $r = \frac{1}{\sigma} = \frac{1}{e}$

b) $\sum_{n=0}^{\infty} \frac{1}{2^n} x^{3n}$ Achtung Falle! Wegen 3^n kein Hadamard und 5.9.10 anwendbar. Substitution $y=x^3$. $\to \sum_{n=0}^{\infty} \frac{1}{2^n} y^n$ 5.9.11

Konvergenzradius: 2, da $\lim_{n\to\infty} \sqrt[n]{|\frac{1}{2^n}|} = \frac{1}{2}$.

Also Konvergenz für $y=x^3\in(-2,2)$, Divergenz außerhalb [-2,2]

 \rightarrow Konvergenz für $x \in (-\sqrt[3]{2}, \sqrt[3]{2})$, Divergenz außerhalb $[-\sqrt[3]{2}, \sqrt[3]{2}]$

Konvergenzradius der ursprünglichen Reihe ist $\sqrt[3]{2}$.

 $\lim_{x\to 0} \frac{e^x-1}{x}$

Für alle $x \in \mathbb{R}$ gilt:

5.9.16
$$\frac{e^{x}-1}{x} = \frac{1}{x} \left(\sum_{n=0}^{\infty} \frac{x^{n}}{n!} - 1\right) = \frac{1}{x} \sum_{n=1}^{\infty} \frac{x^{n}}{n!} = \sum_{n=1}^{\infty} \frac{x^{(n-1)}}{n!} = \sum_{n=0}^{\infty} \frac{x^{n}}{(n+1)!}$$
Konvergenzradius: Unendlich (Quotientenkriterium) \rightarrow Auf \mathbb{R} und in Null stetig Damit gilt: $\lim_{n\to\infty} \frac{e^{x}-1}{x} = \lim_{n\to\infty} \sum_{n=0}^{\infty} \frac{x^{n}}{(n+1)!} = \sum_{n=0}^{\infty} \frac{0^{n}}{(n+1)!} = 1.$

Wir berechnen $(1+i)^{2001}$.

$$5.10.20 \qquad (1+i)^{2001} = (\sqrt{2}e^{i\frac{\pi}{4}})^{2011} = \sqrt{2}^{2011}e^{i2011\cdot\frac{\pi}{4}} = \sqrt{2}\cdot 2^{1005}e^{i(2008+3)\frac{\pi}{4}} = \sqrt{2}\dot{2}^{1}005e^{i502\pi}e^{i\frac{3\pi}{4}} = 2^{1005}\cdot\sqrt{2}e^{i\frac{3\pi}{4}} = 2^{1005}(-1+i) \ (e^{i502\pi} = 1)$$

$$f(x) = c \to \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{0}{x - x_0} = 0 \text{ (Ableitung konstanter Funktionen ist 0)}$$

$$f(x) = x^2, x \in \mathbb{R}$$
Für jedes $x_0 \in \mathbb{R}$ gilt:
$$\frac{f(x) - f(x_0)}{x - x_0} = \frac{x^2 - x_0^2}{x - x_0} = \frac{(x - x_0)(x + x_0)}{x - x_0} = x + x_0$$
Daraus folgt:
$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \to x_0} (x + x_0) = 2x_0$$
Damit ist f auf \mathbb{R} differenzierbar und es gilt $f'(x) = 2x, x \in \mathbb{R}$.

$$6.1.11 \qquad \begin{array}{l} a>0, \ \phi(x):=a^x, \ x\in \mathbb{R} \ (\text{allgemein}) \\ \phi(x)=e^{x\cdot ln(a)}\colon f(x)=e^y \ \text{und} \ g(x)=x\cdot ln(a)\to \phi=f\circ g \\ \phi'=f'(g(x))g'(x)=e^{g(x)}ln(a)=e^{x\cdot ln(a)}ln(a)=a^xln(a) \\ \\ \textbf{Ableitung des ln} \\ 6.1.14 \qquad \begin{array}{l} f(x)=e^x, \ f^{-1}(x)=ln(x) \\ (ln)'(y)=(f^{-1})'(y)=\frac{1}{f'(x)}=\frac{1}{e^x}=\frac{1}{e^{ln(y)}}=\frac{1}{y}, \ y\in (0,\infty) \\ \\ \textbf{Potenzreihen von Sinus und Cosinus konvergieren auf ganz } \mathbb{R}. \\ sin'(x)=(\sum_{n=0}^{\infty}\frac{(-1)^n}{(2n+1)!}x^{2n+1})'=\sum_{n=0}^{\infty}\frac{(-1)^n}{(2n)!}x^{2n}=cos(x) \\ cos'(x)=-sin(x) \\ \\ \textbf{Berechnung des Reihenwerts mithilfe von } 6.1.15 \\ \textbf{Potenzreihe } \sum_{n=1}^{\infty}nx^n, \ \text{Konvergenzradius } 1, \ \text{Welche Funktion ist hier gegeben?} \\ \textbf{Für alle } x\in (-1,1) \ \text{gilt: } \sum_{n=1}^{\infty}nx^n=x\sum_{n=1}^{\infty}nx^{n-1}=x\sum_{n=1}^{\infty}(x^n)'=x(\sum_{n=1}^{\infty}x^n)' \\ \text{Nun bis auf fehlenden ersten Summanden gleich der schon bekannten geometrische Reihe. Für } \\ x\in (-1,1) \ \text{gilt: } \sum_{n=1}^{\infty}nx^n=x(\frac{1}{1-x}-1)'=x\frac{-1}{(1-x)^2}(-1)=\frac{x}{(1-x)^2} \end{array}$$

Taylorpolynom k-ten Grades ist anschaulich die bestmögliche Approximation an die Funktion f6.2.10

$$f: \mathbb{R}^{3} \to \mathbb{R} \text{ mit } f(x, y, z) = xe^{xz+y^{2}}:$$

$$\partial_{1} f(x, y, z) = e^{xz+y^{2}} + xe^{xz+y^{2}} \cdot z$$

$$\partial_{2} f(x, y, z) = xe^{xz+y^{2}} \cdot 2y$$

$$\partial_{3} f(x, y, z) = xe^{xz+y^{2}} \cdot x$$

$$f: \mathbb{R}^{2} \to \mathbb{R} \text{ mit } f(x, y) = x^{3}y + xe^{y}$$

$$f: \mathbb{R}^2 \to \mathbb{R} \text{ mit } f(x,y) = x^3y + xe^y$$

Ableitungen erster Ordnung:

$$\partial_1 f(x,y) = 3x^2y + e^y$$
 und $\partial_2 f(x,y) = x^3 + xe^y$

6.4.14 Ableitungen zweiter Ordnung:

$$\partial_1^2 f(x,y) = 6xy \qquad \partial_1 \partial_2 f(x,y) = 3x^2 + e^y \partial_2 \partial_1 f(x,y) = 3x^2 + e^y \qquad \partial_2^2 f(x,y) = xe^y$$

Man beobachtet, dass das Ergebnis nicht von der Reihenfolge der Ableitungen abhängig sind.

6.7.18
$$\int \sin(x)dx = -\cos(x) + c, \ c \in \mathbb{R}$$