OLYMPIADES FRANÇAISES DE MATHÉMATIQUES

ÉPREUVE DE SÉLECTION

MERCREDI 3 OCTOBRE 2012

Durée: 4 heures

Instructions

- ▷ On demande des solutions complètement rédigées, où toute affirmation est soigneusement justifiée. La notation tiendra compte de la clarté et de la précision de la copie.
 - Travaillez d'abord au brouillon, et rédigez ensuite au propre votre solution, ou une tentative, rédigée, de solution contenant des résultats significatifs pour le problème. Ne rendez pas vos brouillons : ils ne seraient pas pris en compte.
- ▶ Rédigez les différents problèmes sur des copies distinctes. Sur chaque copie, écrivez en lettres capitales vos nom et prénom en haut à gauche, et le numéro du problème en haut à droite.
- ▶ Une solution complète rapportera plus de points que plusieurs tentatives inachevées. Il vaut mieux terminer un petit nombre de problèmes que de tous les aborder.
- ▷ Chacun des six problèmes est noté sur 10. Il est possible de les traiter dans n'importe quel ordre mais ils sont essentiellement présentés dans l'ordre de difficulté croissante.
- 尽 Règles, équerres et compas sont autorisés. Les rapporteurs sont interdits.
 Les calculatrices sont interdites, ainsi que tous les instruments électroniques.

EXERCICES POUR LES ÉLÈVES DE COLLÈGE ET DE SECONDE

Merci de bien vouloir respecter la numérotation des exercices.

Exercice 1. Fred et Sarah sont les aînés d'une même et grande famille. Fred a deux fois moins de frères que de sœurs, tandis que Sarah a autant de sœurs que de frères.

Combien d'enfants y a-t-il dans cette famille?

Exercice 2. Pour préparer un steak, il faut le cuire une minute sur chaque côté. On ne dispose que d'une seule poêle, dans laquelle on peut mettre deux steaks.

- a) Comment préparer quatre steaks en quatre minutes?
- b) Comment préparer cinq steaks en cinq minutes?

On ne tient évidemment pas compte du temps perdu lors des manipulations.

Exercice 3. Sur une boîte rectangulaire de dimension $6 \text{ cm} \times 4 \text{ cm}$, on a placé un ruban en diagonale comme le montre la figure ci-dessous (le ruban est représenté en gris sur la figure).

On a mesuré AB = 1 cm et BC = 5 cm. Calculer la largeur du ruban.

Exercice 4. Autour d'une même table sont assises 2013 personnes qui ont toutes des tailles différentes. On dit qu'une personne est *grande* si elle est plus grande que ses deux voisins, et qu'elle est *petite* si elle est plus petite que ses deux voisins.

Prouver que, quelle que soit la répartition choisie autour de la table, il y a autant de personnes grandes que de petites.

Exercice 5. Prouver que le nombre $10^{2011} + 10^{2012} + 10^{2013}$ est divisible par 37.

Exercice 6. On considère une étoile régulière à cinq branches (cf.figure).

Déterminer l'angle x indiqué sur la figure.

EXERCICES POUR LES ÉLÈVES DE PREMIÈRE ET TERMINALE

Merci de bien vouloir respecter la numérotation des exercices.

Exercice 7. Prouver que le nombre $10^{2011} + 10^{2012} + 10^{2013}$ est divisible par 37.

Exercice 8. On considère une étoile régulière à cinq branches (cf.figure).

Déterminer l'angle x indiqué sur la figure.

Exercice 9. Trouver tous les couples (p, q) de nombres premiers pour lesquels les nombres 2p + q, p + 2q et p + q - 18 sont tous les trois des nombres premiers.

On rappelle qu'un nombre premier est un entier supérieur ou égal à 2, qui n'est divisible que par 1 et par lui-même.

Exercice 10. Soit ABC un triangle et I le centre de son cercle inscrit. On suppose que AI = BC et que $\widehat{ICA} = 2\widehat{IAC}$.

Quelle est la valeur de \widehat{ABC} ?

Exercice 11. Autour d'une même table sont assises 2013 personnes qui ont toutes des tailles différentes. On dit qu'une personne est *grande* si elle est plus grande que ses deux voisins, et qu'elle est *petite* si elle est plus petite que ses deux voisins.

- a) Prouver que, quelle que soit la répartition choisie autour de la table, il y a autant de personnes grandes que de petites.
- b) Quelles sont les entiers n pour lesquels on peut trouver une répartition des personnes contenant exactement n personnes grandes?

Exercice 12. Prouver que, pour tous réels x et y, on a

$$5x^2 + y^2 + 4 \geqslant 4x + 4xy.$$

Pour quelles valeurs de x et y l'égalité a-t-elle lieu?