Faculté de médecine d'Alger
Enseignement de génétique 2ème année de Médecine
2020-2021

Variations génétiques Polymorphisme et mutation

Pr Chikouche Ammar

Plan

Variations génétiques

- 1. Les polymorphismes
- 2. Les mutations (mécanismes et conséquences)

1. Les polymorphismes

Plan

- Introduction
- 1- Définition de polymorphisme
- 2- Classification des Polymorphismes
- 3- Polymorphisme nucléotidique: SNPs (Single nucleotide polymorphisms).
- 4- Polymorphismes de restriction ou RFLP.
- 5- VNTR: Variable Number Tandem Repeat / minisat: ou minisatellites.
- 6- STR: Simple Tandem Repeat / Microsat : ou microsatellites
- 7- CNV= copie number variable ou Polymorphisme de répétition de nombre de copies

Introduction

- L'ADN n'est pas un élément statique
- Il est sujet à des modifications (variations transmissibles)
- Les variations de séquence ou changement dans le génome (séquence d'ADN) sont appelées polymorphismes lorsqu'elles surviennent à une fréquence ≥ 1% (et si moins de 1 % : mutations)
- Polymorphisme: présence dans une population normale d'au moins deux allèles d'un locus, sans conséquence sur l'individu.
- Permet de distinguer les individus les uns des autres.
- Le polymorphisme affecte toutes les régions de l'ADN
 - Séquences codantes
 - Séquences non codantes, les Introns
 - ADN répété (mini, microsat...)

1 Définition du polymorphisme

- Toute variation de séquence de l'ADN: ponctuelle ou répétition de séquence (mini / micro satellites) = polymorphisme si fréquence ≥ 1 % dans une population donnée.
- Modifications non délétères; neutres
- La fréquence du variant le plus rare dépasse le seuil de 1%.

Différences avec Mutation

- MUTATION = Modification dans la séquence d'ADN conduisant à un variant rare et anormal.
- L'alléle non modifié, non porteur de la mutation est le plus fréquent dans la population et constitue l'allèle normal

Les polymorphismes de l'ADN

- Peuvent être la conséquence
- 1- d'une simple substitution de nucléotide / SNP
- 2- d'une modification d'un site de restriction : cas particulier de SNP, RFLP.
- 3- d'une modification de taille d'un motif répété : polymorphisme de longueur
- Différents polymorphismes: classification
- Intérêts
 - Informativité
 - Marqueurs

2 Classification des Polymorphismes

- Différents types
- SNP= Single Nucleotide Polymorphisms
- RFLP: Restriction Fragment Lenght Polymorphism: Polymorphismes de longueur de fragments de restriction (Variation ponctuelle de séquence affectant un site de restriction) (+ / -)
- Polymorphismes de répétition:
 - VNTR: Variable Number Tandem Repeat / minisat: ou minisatellites. nombre variable de séquences répétées en tandem (motif > 10 pb répété x N)
 - STR: Simple Tandem Repeat / Microsat : ou microsatellites (1 à 5 pb X N)
 - CNV: copie number variable = Polymorphismes de répétition de nombre de copies

3 Polymorphisme nucléotidique: SNPs (Single nucleotide polymorphisms) = variant naturel ne concernant qu'un seul nucléotide.

Exemples de SNP: 3 Mêmes régions d'un chromosome de 4 individus

4- Polymorphismes de restriction ou RFLP

- RFLP = Restriction Fragment Lenght Polymorphism: défini par un couple : Sonde / Enzyme (southern-blot) ou par un couple taille/enzyme (PCR)
- Localisation précise, variabilité et transmission mendelienne
 = caractère de marqueur génétique codominant.
- Le couple sonde / enzyme se caractérise par : + / et correspond à des allèles (Bi-allélisme). Mis en évidence par les méthodes de southern ou PCR
- Pour être informatif : le RFLP doit être reconnu par une sonde unique.
- Le polymorphisme (de restriction) n'est pas nécessairement la cause de la maladie mais peut être le marqueur d'une maladie (si localisé près d'un gène muté ou de la mutation).

Restriction fragment length polymorphism=RFLP Polymorphismes de longueur de fragments de restriction

Couple sonde radioactive (reconnait une région de l'ADN par hybridation = trait pointillé) + enzyme de restriction (enzyme qui coupe l'ADN à un endroit bien précis = petite croix).

Les fragments migrent de haut en bas selon leur taille; les plus grand en haut et les plus petit migrent plus vite en bas.

5- Polymorphisme de taille - Minisatellite - VNTR (Variable Number of Tandem Repeats)

- Polymorphisme par nombre variable de séquences répétées en tandem: VNTR
- ➡ Répétition d'un motif tel que GGAGGTGGGCAGGA(A/G)G entre 10 et 60 nucléotides.
- Hyperpolymorphes, hétérozygotie élevée.
- Nombreuses applications
 - pour le tests de paternité
 - pour la création d'empreintes génétiques

Polymorphisme de taille: exemple

Polymorphisme de taille applications: investigation Criminelle, recherche de paternité

Recherche de l'agresseur

Test de paternité

6- Polymorphisme de taille - Microsatellites - STR

- Polymorphisme par nombre variable de séquences répétées en tandem STR (Short Tandem Repeat) (microsatellites)
- Répétition d'un motif court de 1 à 4 nucléotides, par exemple (CA)n ou (TA)n.
- Dispersion dans le génome.
- Utilisés comme marqueurs génétiques dans certaines affections

Microsatellites (2 à 6 pb) = (Short Tandem Repeats)

7- Polymorphisme CNV ou copy number variation

- Variabilité du nombre de copies
- Forme particulière de polymorphisme dans lequel le nombre de copies d'un même gène ou d'un fragment de génome est variable entre les individus de la même espèce.
- Cela est due à des événements de duplication (multiplication) ou délétion (perte).

7- Polymorphismes de nombre variable de copies ou CNV.

Polymorphismes de nombre de copies Copies number variable

2. Les mutations (mécanismes et conséquences)

Plan

- Introduction
- 1- Définition d'une mutation génétique
- 2- Classification des mutations
- 3- Les mutations ponctuelles
- 3-1- définitions
- 3-2- Nature des mutations ponctuelles
- 3-3- Les types de mutations
- 3-4- Les mutations ponctuelles et décalage de lecture
- 3-5- Nomenclature pour décrire les mutations
- 3-6- Siège des mutations
- 3-7- Conséquences des mutations
- 3-8- Anomalies d'épissage
- 4- Réarrangements géniques
- 5- Mutations dynamiques
- 6- Fusion de Gènes/ Translocation

Introduction

 Dans la cellule vivante, l'ADN subit des changements chimiques fréquents, surtout quand elle est répliquée (phase S du cycle cellulaire).

- La plupart de ces modifications sont rapidement réparées.
- Celles qui ne le sont pas sont des mutations.

1- Définition d'une mutation génétique.

- Modifications ou changements du matériel génétique.
- Variations permanentes dans la séquence des nucléotides ou dans l'arrangement de l'ADN dans le génome.
- Peuvent avoir des conséquences délétères (rarement avantageuses) sur l'organisme.
- Peuvent survenir dans toute cellule (germinale ou somatique).
- Les mutations germinales affectent les gamètes et sont:
 - Transmissibles (perpétués d'une génération à l'autre)
 - Responsables des maladies héréditaires (héritées).
- Les mutations somatiques affectent les autres cellules que gamétes:
 - Touchent n'importe quel tissu
 - Ne sont pas transmises à la descendance
 - Sont une cause importante de cancer

2- Classification des mutations

3- Les mutations ponctuelles

3-1- Définitions

- Mutation ponctuelle: mutation ne
- touchant qu'une seule base (ou un petit nombre de bases)

nucléotide

Ser:S

Ser:S

Pro:P

Pro:P

Thr:T

Ala: A

Ala:A

His:H

Gln:Q

Asn:N Lys:K

Asp:D

Asp:D

Arg:R

Leu:L

Leu:L

- Mutation silencieuse : touche la 3^{ème} base d'un codon, sans changer son sens (code dégénéré) modification de la séquence de l'ADN sans conséquence protéique
- Mutation neutre : modification de la séquence protéique, mais n'affectant pas la fonction
- Mutation de novo = néomutation.

3-2- Nature des mutations ponctuelles

- Les substitutions de paires de nucléotides (2 types):
 - Les transitions (noir):
 - Remplacement d'une purine par une purine (A<->G)
 - ou d'une pyrimidine par une pyrimidine (T<->C)
 - Les transversions (bleu):
 - Remplacement d'une pyrimidine par une purine ou l'inverse (ex : A<->C).

3-3- Les types de mutations

- 1) Mutations ponctuelles:
 - non sens: substitution d'un AA par un codon STOP (TAA, TGA, TAG)
 - faux sens : substitution d'un AA par un autre (pathogénicité?)
 - création/abolition d'un site d'épissage
 - délétion, insertion d'1 ou plusieurs nucléotides (2 5): décalage du cadre de lecture (frameschift).
- 2) Petites délétions, duplications, insertions, inversions intragéniques:
 - taille: quelques dizaines de bases à quelques kb
 - avec ou sans décalage du cadre de lecture
 - décalage : structure anormale, aboutit à un codon STOP
- 3) Mutations instables avec amplification de triplet:
 - (CGG)n : X fragile; (CTG)n : Steinert
 - (CAG)n polyglutamines: chorée de Huntington
 - (GAA)n : Friedreich

3-4- Les mutations ponctuelles et décalage de lecture

3-5- Nomenclature pour décrire les mutations

Alanine	Ala	Α	Glycine	Gly	G	Proline	Pro	P
Arginine	Arg	R	Histidine	His	Н	Sérine	Ser	S
Asparagine	Asn	N	Isoleucine	lle	I	Thréonine	Thr	T
Aspartate	Asp	D	Leucine	Leu	L	Tryptophane	Trp	W
Cysteine	Cys	С	Lysine	Lys	K	Tyrosine	Tyr	Υ
Glutamine	Gln	Q	Méthionine	Met	M	Valine	Val	٧
Glutamate	Glu	Ε	Phénylalanine	Phe	F			

- Substitution d'acides aminés
 - G542X = la glycine en position 542 a été remplacée par un codon stop
- Substitution de nucléotides
 - 1162(G—A) = la guanine en position 1162 est remplacée (dans l'ADN) par une adénine.
- Délétions et insertions
 - delta-F 508 = délétion du codon 508 de la phénylalanine
 - nt 409(insC) = insertion d'une cytidine après le nucléotide situé en position 409

3-6- Siège des mutations

- Peut siéger n'importe où dans le géne
- Une mutation peut modifier:
 - la transcription, la stabilité de l'ARN, l'épissage,
 - la traduction, les modifications post-traductionnelles,
 - la structure de la protéine, sa stabilité, ses propriétés physicochimiques, le ciblage intracellulaire ou la liaison à d'autres molécules, l'activité enzymatique

3-7- Conséquences des mutations

- Mutation perte de fonction: récessives généralement
 - Le gène ne s'exprime plus
 - Le gène s'exprime, mais la protéine mutée ne peut plus effectuer sa fonction (protéine tronquée)
- Mutation gain de fonction: dominantes, ou co-dominantes généralement
 - Le gène s'exprime plus fortement
 - La protéine mutée peut avoir
 - une fonction plus intense ou une nouvelle fonction
 - une fonction qui devient constitutive, alors qu'elle était inductible (cancer)

3-8- Anomalies d'épissage

4- Réarrangements géniques

5- Mutations dynamiques

- Mutations par expansion de triplets.
- Expansions de taille modérée dans les séquences codantes des gènes (CAG)
 - Maladie de Huntington.
- Expansions de grande taille dans les régions non codantes des gènes (CGG, CTG, GAA)
 - X Fragile (CGG); Ataxie de Friedreich (GAA), maladie de steinert avec expansion du triplet CTG.

6- Fusion de Gènes/ Translocation

- Translocation dans un gène = un gène hybride.
- Gène hybride transcrit et traduit = protéine avec l'extrémité N terminale d'une protéine couplée à l'extrémité C terminale d'une autre.
- Le chromosome de Philadelphie (cellules lymphocytaires chez les patients présentant la leucémie myelocytaire chronique (LMC)) = résultat d'une translocation qui produit un gène composé (bcr abl).

