

# SEOUL BIKE SHARING

Analysis on demand estimation



Brocco Mattia - 2044714 Magliani Jacopo - 2040912

#### INTRODUCTION

# **OBJECTIVES**

- Discover patterns in the **bike sharing** system of Seoul through data exploration and modelling
- Make use of the available features to derive a **regression model** to estimate the count of rented bikes
- Produce insights on the shared public transport for further development

# 8760

the number of observations

14

the number of variables



the time interval

#### INTRODUCTION



Atmospheric variables show trends not too far from what we expect from a continental climate throughout the different seasons (e.g., higher temperatures in Summer, lower rainfall in Winter).





The target variable shows a left-skewed distribution, far from a normal distribution.







18 holiday days

Non-Holiday show an **average of rented bikes greater** than that of Holidays days. This may be also due to the small number of Holiday.

The influence of a **specific holiday** can't be understood as the time interval considered is of 1 year.



Consideration on the target variable with respect to an additional **factor variable computed from the Hour** in a day.



#### **DATA PRE-PROCESSING**

- Removed examples with Functioning Day flag NO
- Removed variables:
  Date, Time and Functioning Day
- Target variable: applied with log to make it more similar to normal distribution

#### **DATA PRE-PROCESSING**

There is a strong natural correlation between Temperature (°C) and Dew Point Temperature (°C)



#### REGRESSION MODELS - FULL MODEL

Adjusted R<sup>2</sup>: 0.6058

Variables whose estimate are **not significantly different from zero**:

- Wind Speed
- Visibility
- Solar radiation
- Snowfall
- Season = Summer



#### REGRESSION MODELS - FULL MODEL

#### ANOVA on levels of Seasons

- 1. Rejected H0 of Bartlett's test on equal variances
- 2. Performed Fisher's test anyway and rejected the null hypothesis of equal means between levels
- Performed Tukey's test on pairwise differences in means and rejected all null hypothesis on equality





# **CHANGES IN THE MODEL**

GVIF of Dew Point Temperature > 10 provides evidence to remove the variable

3 outliers removed

# REGRESSION MODEL II

Adjusted R<sup>2</sup>: **0.6125** 

Collinearity problems
removed (GVIF now all
around 1)

ANOVA table shows all regressors are significant



# **CHANGES IN THE MODEL**

Binary factor variables for:

Snowfall

Rainfall

Adjusted R<sup>2</sup>: 0.6531

No changes in collinearity and against the assumptions of the linear regression.

#### **REGRESSION MODEL III**



#### **VARIABLES SELECTION**

Are all variables gathered necessary?

- Best Subset Selection
- Backward step-wise selection
- Forward step-wise selection



Turns out the explained variance does not decrease when the following are **removed**:

- Visibility
- Wind Speed
- Snowfall



#### **VARIABLES SELECTION**

#### **METHODS**

Best Subset, Forward step-wise and Backward step-wise show identical behavior

#### **TEST RESULTS**

ANOVA (Chi-squared) test on best selection against full model with **p-value 0.9693** 

#### **CROSS-VALIDATION**

We considered the output of Best Subset Selection, and confirmed it through 10-fold cross-validation

## ADJ. R<sup>2</sup>

Same of the full model,  $Adj. R^2 = 0.6532$ 

#### SHRINKAGE METHODS

# **LASSO**



Lambda: 0.1

| Training MSE        | 0.5095 |
|---------------------|--------|
| Test MSE            | 0.5164 |
| R <sup>2</sup>      | 0.6182 |
| Adj. R <sup>2</sup> | 0.6177 |





 Training MSE
 0.4793

 Test MSE
 0.4887

 R²
 0.6387

 Adj. R²
 0.6382

#### SHRINKAGE METHODS - DETAIL



#### **MODEL SELECTION**

Given results on Variable Selection and Shrinkage, the combined use of the Best Subset variables and Ridge was tried, but with no improvement.

In this case **lambda** was even **lower** due to a simpler model.

#### FINAL CHOICE

Non-regularized model with only a subset of variables that estimates the log of the response variable.



## **PERFORMANCE RECAP**

| (1) All variables, only «functioning days», log of Rented Bike Count              |
|-----------------------------------------------------------------------------------|
| (2) Outliers <b>removed</b> , excluded Dew Point Temp. due to <b>collinearity</b> |
| (3) Transformation of <b>Snowfall</b> & <b>Rainfall</b> in binary factors         |
| (4) Best Subset Selection: excluded three variables                               |
| (5) LASSO shrinkage from model described in (3)                                   |
| (6) RIDGE shrinkage from model described in (3)                                   |
| (7) RIDGE shrinkage from model described in (4)                                   |
|                                                                                   |

#### CONCLUSION

#### **VARIABLES**

The **exclusion** of Dew Point Temperature, Wind Speed, Visibility, Snowfall and the use of a binary factor for Rainfall.

#### **FURTHER WORK**

Atmospheric variables may not be enough. Variables related to **road traffic**, presence of **events**, data from general **public transportation**, etc. may help in estimating Rented Bike Count.

#### **MODELS**

The best performing model comes from the **selection of the best subset** of variables **without** the use of any **regularization**.

# Q&A

**CREDITS**: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, and infographics & images by **Freepik** and illustrations by **Storyset** 

