EE25BTECH11059 - Vaishnavi Ramkrishna Anantheertha

Question: Let **a** and **b** be two vectors such that $\|\mathbf{a} + \mathbf{b}\| = \|\mathbf{b}\|$. Prove that $\mathbf{a} + 2\mathbf{b}$ is perpendicular to **a**.

Solution:

Variable	Value
a	vector a
b	vector b

TABLE 0: Variables Used

$$(\mathbf{a} + \mathbf{b})^T (\mathbf{a} + \mathbf{b}) = \mathbf{b}^T \mathbf{b}. \tag{0.1}$$

$$(\mathbf{a} + \mathbf{b})^{T}(\mathbf{a} + \mathbf{b}) = \mathbf{a}^{T}\mathbf{a} + \mathbf{a}^{T}\mathbf{b} + \mathbf{b}^{T}\mathbf{a} + \mathbf{b}^{T}\mathbf{b}.$$
 (0.2)

Since dot product is symmetric

$$\mathbf{a}^{\mathsf{T}}\mathbf{b} = \mathbf{b}^{\mathsf{T}}\mathbf{a} \tag{0.3}$$

$$\mathbf{a}^{\mathsf{T}}\mathbf{a} + 2\,\mathbf{a}^{\mathsf{T}}\mathbf{b} + \mathbf{b}^{\mathsf{T}}\mathbf{b} = \mathbf{b}^{\mathsf{T}}\mathbf{b}.\tag{0.4}$$

$$\mathbf{a}^{\mathsf{T}}\mathbf{a} + 2\,\mathbf{a}^{\mathsf{T}}\mathbf{b} = 0. \tag{0.5}$$

We want to show $(\mathbf{a} + 2\mathbf{b})$ is perpendicular to \mathbf{a} .

To prove:
$$\mathbf{a}^{\mathrm{T}}(\mathbf{a} + 2\mathbf{b}) = 0$$
 (0.6)

$$\mathbf{a}^{\mathsf{T}}(\mathbf{a} + 2\mathbf{b}) = \mathbf{a}^{\mathsf{T}}\mathbf{a} + 2\,\mathbf{a}^{\mathsf{T}}\mathbf{b} \tag{0.7}$$

By eq (0.5) and (0.7)

$$\mathbf{a}^{\mathbf{T}}(\mathbf{a} + 2\mathbf{b}) = 0 \tag{0.8}$$

Hence proved

1

Refer to Figure

Fig. 0.1