Player choses door #1: Probability of choosing the car = 1/3

Behind door 1	Behind door 2	Behind door 3	Result if staying at door #1	Result if switching to the door offered
Goat	Goat	Car	Wins goat	Wins car
Goat	Car	Goat	Wins goat	Wins car
Car	Goat	Goat	Wins car	Wins goat

Player choice before door is open

Simulation: Run experiments

```
As such, we can use the "sum" function to get the total number of wins
                 for each strategy.
          print(f'\n\
          {N:,} games were played \n\
          Chances of winning the car based on the following strategies:\n\
          Remaining with initial selection: {"{:.1%}".format(sum(ChoiceStay)/N)}\n\
          Switching doors: {"{:.1%}".format(sum(ChoiceSwitch)/N)}')
[2]: ###### Run the Simulation#####
      MontyHallSimulation(N=100)
          100 games were played
          Chances of winning the car based on the following strategies:
          Remaining with initial selection: 34.0%
          Switching doors: 66.0%
[9]: 1/3
[9]: 0.333333333333333
[10]: 2/3
```

P(prize door i) = $\frac{1}{3}$ for i = 1, 2, 3.

- the fact that the contestant has already chosen Door #1
- No matter which door is chosen, same probabilities

1/6 + 1/6 + 2/6 + 2/6 = 1

Host Opens Door #3

P (Host Opens Door#3) = sum of the conditional probabilities of host opening door #3 conditional on the prize location

$$= (1/6) + (1/3) = 1/2$$

$$1/6 + 1/6 + 2/6 + 2/6 = 1$$

$$Pr(B|A) = \frac{Pr(A \text{ AND } B)}{Pr(A)}$$
Choose Door #1

Probability of (Winning by Staying) =

Probability of (Car Behind Door #1) GIVEN that (Host Opens Door #3) = P ((Car Behind Door #1) | (Host Opens Door #3))

$$= \frac{P(\text{ (Host Opens Door #3) AND (Car Behind Door #1))}}{P(\text{Host Opens Door #3})} = (1/2 * 1/3) / (1/2) = 1/3$$

Probability of (Winning by Switching) =

Probability of (Car Behind Door #2) GIVEN that (Host Opens Door #3) = P ((Car Behind Door #2) | (Host Opens Door #3))

$$= \frac{P((Host Opens Door #3) AND (Car Behind Door #2))}{P(Host Opens Door #3)} = (1 * 1/3) / (1/2) = 2/3$$

Switch and win

Switch and win

Stay and win