On the feasibility for the system of quadratic equations MATLAB Library

Anatoly Dymarsky, Elena Gryazina, Boris Polyak, Sergei Volodin

1 Notations

The goal of the project is to solve a number of tasks for quadratic maps, which are

1. (Real case) The map $f: \mathbb{R}^n \to \mathbb{R}^m$ s.t.

$$f_i(x) = x^T A_i x + 2b_i^T x, A_i = A_i^T$$

2. (Complex case) The map $f: \mathbb{C}^n \to \mathbb{R}^m$ s.t.

$$f_i(x) = x^* A_i x + b_i^* x + x^* b_i, A_i = A_i^*$$

Where \cdot^* is Hermitian conjugate.

From this point on, X denotes \mathbb{R}^n for real case or \mathbb{C}^n for complex case.

We use the following notations:

Definition 1.1. For a vector $c \in \mathbb{R}^n$ and tuple of matrices $(A_1, ..., A_n)$ (or vectors) the dot product is defined as following:

$$c \cdot A = \sum_{i=1}^{n} c_i A_i$$

Definition 1.2. The image of f is denoted as F:

$$F = f(X)$$

Definition 1.3. The convex hull of F is denoted as G:

$$G = \operatorname{conv} F$$

Definition 1.4. The boundary points of F touched by a supporting hyperplane with normal vector $c \in \mathbb{R}^m$:

$$\partial F_c = \operatorname*{arg\,min}_{y \in F}(c, y)$$

Definition 1.5. The boundary points of G touched by a supporting hyperplane with normal vector $c \in \mathbb{R}^m$:

$$\partial G_c = \operatorname*{arg\,min}_{y \in G}(c,y)$$

2 Functions

The library consists of a number of functions defined in separate .m files. Input format for the map is the following:

- The number A(i,j,k) denotes i'th row and j'th column of the matrix A_k
- The number b(i,j) denotes i'th element of the vector $b_j \in \mathbb{R}^m$
- 1. Feasibility membership oracle Given:

- \bullet The map f as matrices A and vectors b
- A point $y \in \mathbb{R}^m$.

Determine: if $y \in F$

is_infeasible = infeasibility_oracle(A, b, y)

This function tries to separate the point y from the convex hull G with a hyperplane. See Theorem 3.2 from the article.

Return value:

- 1 means that the separation was successful and the point $y \notin G$. This implies $y \notin F$.
- 0 means that the feasibility is uncertain.

2. Boundary oracle

Given:

- \bullet The map f as matrices A and vectors b
- A point $y \in G$
- A direction $d \in \mathbb{R}^m$

The following two tasks are considered:

(a) [t, is_in_F] = boundary_oracle(A, b, y, d)

This function finds the point y + td on the boundary ∂G with the largest t:

$$t = \sup\{\tau | y + \tau d \in G\}$$

Return value:

- \bullet t is the largest step in direction d
- is_in_F is a binary variable indicating if the resulting point y + td belongs to F: it is 1 if it is true or 0 if the result is uncertain

Exception: if optimization task failed, in particular, if $y \notin G$.

(b) c = get_c_from_d(A, b, y, d)

This function obtains the normal vector c at the boundary point y + td using dual problem (5) from the article.

Return value: the normal vector c s.t. $y + td \in \partial G_c$

Exception: if optimization task failed, in particular, if $y \notin G$.

3. Nonconvexity certificate

Given:

- The map f as matrices A and vectors b
- A point $y \in F$
- \bullet Number of iterations k

The following two tasks are considered:

(a) $c = get_c_minus(A, b, y, k)$

This function runs k iterations of the following procedure:

- i. Generate random direction d
- ii. Obtain a normal vector c using get_c_from_d()
- iii. Check if ∂F_c is nonconvex using Theorem 3.4 from the article
- iv. Return c if so, continue otherwise

Return value: c s.t. ∂F_c is nonconvex

Exception: if c was not found in k iterations

(b) is_nonconvex = nonconvexity_certificate(A, b, y, k)

This function runs get_c_minus() and outputs 1 if the normal vector c was found. In this case the image F is guaranteed to be nonconvex.

Return value: 1 if F is nonconvex, 0 if result is uncertain

4. Positive-definite $c \cdot A$

Given:

- The map f as matrices A and vectors b
- The initial normal vector p

The following three tasks are considered:

(a) c_plus = get_near_c_plus(A, p, gamma);

This function finds the nearest to p vector c_+ such that

$$c_+ \cdot A \succeq 0$$

via solving the following optimization task $(c_{+\perp})$ is the part of c_{+} orthogonal to p):

$$\min \gamma ||c_+||^2 + c_{+\perp}^2$$

$$c_+ \cdot A - I \succeq 0$$

$$(c_+, p) \geqslant 0$$

Return value: c_+ s.t. $c_+ \cdot A \succeq 0$

Exception: if c_+ was not found (b) c_- plus = get_-c_- plus(A, k)

This function generates a random vector p and then finds c_+ nearest to it. Function generates at most k vectors p.

Return value: c_+ s.t. $c_+ \cdot A \succeq 0$ Exception: if c_+ was not found

(c) c_plus = get_best_plus(A)

This function returns the "best" vector c_+ s.t. $c_+ \cdot A \succeq 0$ via the following problem:

$$\max \lambda_{\min}(c_+ \cdot A)$$
$$||c||^2 \leqslant 1$$

The spectrum of the resulting matrix $c_+ \cdot A$ is separated from 0 the most.

Return value: c_+ s.t. $c_+ \cdot A \succeq 0$ Exception: if c_+ was not found

5. Convex subpart

Given:

- \bullet The map f as matrices A and vectors b
- The point $y \in F$
- \bullet Number of iterations k
- Vector c_+ s.t. $c_+ \cdot A \succeq 0$
- Number of iterations k_c_minus for the nonconvexity certificate

This function performs the following procedure k times:

- (a) Changing basis with change_basis
- (b) Obtaining $c \in C_{-}$ using get_c_minus
- (c) Minimizing z(c) using c as a starting point

The resulting z_{max} is a minimum over all obtained z's

Return value: Minimal value z_{max} or Inf if no nonconvexities were found

Exception: None