1

Assignment 9

Surbhi Agarwal

 ${\it Abstract} \hbox{--} \hbox{This document deals with properties of subspaces of a finite dimensional vector space.}$

1 Problem

Let W_1 and W_2 be subspaces of a finite-dimensional vector space \mathbb{V} . Prove that

1)
$$(W_1 + W_2)^0 = W_1^0 \cap W_2^0$$

2) $(W_1 \cap W_2)^0 = W_1^0 + W_2^0$

2 Solution

Given	W_1 and W_2 are subspaces of a finite dimensional vector space $\mathbb V$
1. To prove	$(W_1 + W_2)^0 = W_1^0 \cap W_2^0$
Proof of $(W_1 + W_2)^0$ \subseteq $(W_1^0 \cap W_2^0)$	Let $f \in (W_1 + W_2)^0$ $\forall \mathbf{v} \in (W_1 + W_2)$ $f(\mathbf{v}) = 0$ $\Rightarrow \forall \mathbf{w}_1 \in W_1, \mathbf{w}_2 \in W_2$ $\mathbf{w}_1 + \mathbf{w}_2 \in (W_1 + W_2)$ $\therefore f(\mathbf{w}_1 + \mathbf{w}_2) = 0$ $\Rightarrow \text{ When } \mathbf{w}_2 = 0, \text{ then } \forall \mathbf{w}_1 \in W_1$ $f(\mathbf{w}_1) = 0$ $\therefore f \in W_1^0$ And when $\mathbf{w}_1 = 0, \forall \mathbf{w}_2 \in W_2$ $f(\mathbf{w}_2) = 0$ $\therefore f \in W_2^0$
	$ f \in W_1^0, f \in W_2^0 $ $ \Rightarrow f \in (W_1^0 \cap W_2^0) $ $ \therefore (W_1 + W_2)^0 \subseteq (W_1^0 \cap W_2^0) $

Proof of $(W_1^0 \cap W_2^0)$ \subseteq $(W_1 + W_2)^0$	Let $f \in (W_1^0 \cap W_2^0)$ $\implies f \in W_1^0, f \in W_2^0$ $\implies \forall \mathbf{w}_1 \in W_1, \mathbf{w}_2 \in W_2$ $f(\mathbf{w}_1) = 0 \text{ and } f(\mathbf{w}_2) = 0$ $\forall \mathbf{v} \in (W_1 + W_2),$ $\mathbf{v} = \mathbf{w}_1 + \mathbf{w}_2$ $\implies f(\mathbf{v}) = f(\mathbf{w}_1 + \mathbf{w}_2)$ $\implies f(\mathbf{v}) = f(\mathbf{w}_1) + f(\mathbf{w}_2)$ $\implies f(\mathbf{v}) = 0$ $\implies f \in (W_1 + W_2)^0$
	$ (W_1^0 \cap W_2^0) \subseteq (W_1 + W_2)^0 $ Hence, $(W_1 + W_2)^0 = (W_1^0 \cap W_2^0)$
2. To prove	$(W_1 \cap W_2)^0 = W_1^0 + W_2^0$
Proof of $(W_1^0 + W_2^0)$ \subseteq $(W_1 \cap W_2)^0$	Let $f \in (W_1^0 + W_2^0)$ for some $f_1 \in W_1^0, f_2 \in W_2^0$, $f = f_1 + f_2$ Now, for $\mathbf{v} \in (W_1 \cap W_2)$ $f(\mathbf{v}) = (f_1 + f_2)(\mathbf{v})$ $\Rightarrow f(\mathbf{v}) = f_1(\mathbf{v}) + f_2(\mathbf{v})$ $\therefore \mathbf{v} \in (W_1 \cap W_2)$ $\Rightarrow \mathbf{v} \in W_1$, and $\mathbf{v} \in W_2$ So, $f_1(\mathbf{v}) = 0$, and $f_2(\mathbf{v}) = 0$ $\Rightarrow f(\mathbf{v}) = 0 + 0 = 0$ $\Rightarrow f \in (W_1 \cap W_2)^0$ $\therefore (W_1^0 + W_2^0) \subseteq (W_1 \cap W_2)^0$

Proof of
$$(W_1 \cap W_2)^0$$

$$\subseteq (W_1^0 + W_2^0)$$
Assuming

Basis of W_1 as $\{\alpha_1, \dots, \alpha_k, \beta_1, \dots, \beta_l\}$
Basis of W_2 as $[\alpha_1, \dots, \alpha_k, \beta_1, \dots, \beta_l]$

$$= (W_1^0 + W_2^0)$$

$$\therefore \text{ Basis of } (W_1 \cap W_2) \text{ is } \{\alpha_1, \dots, \alpha_k\}$$
and Basis of $W_1 + W_2$ is $\{\alpha_1, \dots, \alpha_k, \beta_1, \dots, \beta_l, \gamma_1, \dots, \gamma_m\}$

Now, for $\mathbf{v} \in (W_1 + W_2)$

$$\mathbf{v} = \sum_{i=1}^k x_i \alpha_i + \sum_{i=1}^l y_i \beta_i + \sum_{i=1}^m z_i \gamma_i$$

$$f(\mathbf{v}) = \sum_{i=1}^k a_i \alpha_i + \sum_{i=1}^l b_i \beta_i + \sum_{i=1}^m z_i \gamma_i$$

$$f(\mathbf{v}) = \sum_{i=1}^k a_i \alpha_i$$
But since $f \in (W_1 \cap W_2)^0$, thus $f(\mathbf{v}) = 0$

$$\therefore a_1 = a_2 = \dots = a_k = 0$$
So, we can now write
$$f(\mathbf{v}) = \sum_{i=1}^l x_i \alpha_i + \sum_{i=1}^l y_i \beta_i$$

$$\Rightarrow f_1(\mathbf{v}) = \sum_{i=1}^k x_i \alpha_i + \sum_{i=1}^l y_i \beta_i$$

$$\Rightarrow f_1(\mathbf{v}) = \sum_{i=1}^k x_i \alpha_i + \sum_{i=1}^l y_i \beta_i$$
Comparing this to the original equation, we can say $c_i = 0$

$$And \forall \mathbf{v} \in W_2,$$

$$\mathbf{v} = \sum_{i=1}^k x_i \alpha_i + \sum_{i=1}^m z_i \gamma_i$$

$$\Rightarrow f_2(\mathbf{v}) = \sum_{i=1}^k a_i \alpha_i + \sum_{i=1}^m z_i \gamma_i$$
Comparing this to the original equation, we can say $b_i = 0$

$$f = f_1 + f_2$$

$$\therefore a_i = b_i = c_i = 0,$$

$$f_1(\mathbf{v}) = 0$$

$$\Rightarrow f_1 \in W_1^0$$

$$Also, f_2(\mathbf{v}) = 0$$

$$\Rightarrow f_1 \in W_1^0$$

$$Also, f_2(\mathbf{v}) = 0$$

$$\Rightarrow f_2 \in W_2^0$$
So, $f_1 + f_2 \in (W_1^0 + W_2^0)$

$$\Rightarrow f \in (W_1^0 + W_2^0)$$

$$\therefore (W_1 \cap W_2)^0 \subseteq (W_1^0 + W_2^0)$$

$$\text{Hence, } (W_1 \cap W_2)^0 = (W_1^0 + W_2^0)$$