Problem Understanding

Situations

Installation started ~ 2010

Life of Solar Panels ~ 25yrs

Exponential Waste surge ~

2040 to meet Energy Goals

Loose policy

implementation with lots of

loopholes

Lack of Logistics and

Recycling Infrastructure

Toxic and Carcinogenic

Waste Generation

Addressed

Circular Economy

Cost-Benefits

Tech Strategy

Policy Restructure

Logistics

Prediction Model - Solar PV Module Waste

Inorder to predict the PV Module waste in India in the upcoming years we implemented two approaches - Mathermatical and Machine Learning model -SARIMA, to get to the most accurate prediction for building the frameworks ahead.

Mathematical Approach

Key Considerations

EOL of a solar panel is considered when its efficiency reduces to 80% of the initial

At EOL modules would be decommissioned over a span of 5 years with 10%, 15%, 20%, 25%, and 30% of the remaining capacity turning into waste annually.

Wastes

Transportation Waste

Product Operations Waste

End-Of-Life Waste

Assumtions used (Based on Industry Std.):

- Solar panel installations = until 2030.
- Weight of solar panels = 65 tonnes per MW.
- End-of-life (EOL) period = 25 years.

Cummulative Waste Generated

Wc = Wth +
$$\sum_{1}^{Eol-1}$$
 (Wpo) + \sum_{Eol}^{Eol+4} W

Under the above assumptions of solar installations cumulative PV module waste is estimated at 18,980 kilotonnes by 2050.

*Inspired from: CEEW Report

SARIMA Approach

We implemented the SARIMA Model to predict the waste generated by PV Modules.

Data Cleaning Cleaned historical solar Panel installation records **Stationarity Check** Applied ADF test and differencing methods

SARIMA Modeling Forecasted trends predicted data with SARIMA parameters

Validation actual observations

The cumulative waste generation by the Year 2056 is 84000 Kilo Tonnes.

By the SARIMA model the predicted cumulative PV module waste is estimated at 18061 kilotonnes by 2050.

Environmental Impact

Pollution and Contamination

The **least expensive pathways** by a wide margin.

Occupies large land areas, Leads to incorrect exploitation of natural lands, in addition to the emissions of various materials over time, especially with factors like water precipitation.

Toxic Leakage

Heavy metal contamination of soil.

Hyperaccumulation in plants

Leaching

- **Lead:** Impairs intellectual development, Damages brain, nerves, blood, kidneys, and reproduction.
- **CdTe:** Harms kidneys, liver, bones, and lungs; linked to lung cancer.

If not responsibly managed, they

(a) pollute our terrestrial ecosystem,

(b) indirectly encourage continuous mining and extraction of Earth's finite resources, (c) diminish the net environmental benefit of harvesting solar energy

Resource Recovery

Using the results of our predictive model we estimated the quantities of recovered materials by 2050

Material Constituent	Amount Recovered by 2050	Economic Value of Recovered materials
Aluminum	3,39,74,20,000 Kg	₹ 7,02,75,63,27,000.00
Cadmium	N/A	N/A
Copper	8,35,12,000 Kg	₹ 71,82,03,20,000.00
Silicon	66,61,98,000 Kg	₹ 1,12,66,74,05,760.00
Tin	N/A	N/A
Silver	96,79,800 Kg	₹ 9,13,10,52,13,800.00
Glass	12,62,17,00,000 Kg	₹ 2,52,43,40,00,000.00
Polymers and Plastics	77,81,80,000 Kg	₹ 42,79,99,00,000.00

Through our calculation the total amount in today's value of the recovered material **by 2050** would be **24.7 Billion Dollars** with recycling **efficiency being 92%**

R&D Before Recycling Technology

Significant R&D efforts in photovoltaics are focusing on designing for circularity to make recycling less intensive:

SILICON

Thinner cells and back-contact designs are being developed to halve silicon usage and cut energy consumption by around 30%.

SILVER

Advances in inkjet and screen-printing, coupled with bifacial or rear-contact cell designs, aim to cut silver usage by 99% using nickel, copper, and aluminum.

INDIUM

Projects focus on replacing indium-tin-oxide (ITO) with fluorine-doped tin oxide to reduce indium reliance in thin-film PV technologies

Alternatives to non-recyclable encapsulants and backsheets include thermoplastics or designs eliminating encapsulants altogether.

GLASS

Innovations in glass composition, anti-reflective coatings, and double-glass panels improve light transmission and remove backsheets.

Recycling Technology

Logistics Framework

Logistics Model

Circular Economy Framework

Logistics Circular Economy Framework

Bricks

Logistics Circular Economy Framework

Logistics Circular Economy Framework

Policy and Regulatory Framework

In India, a special policy or framework is **not designed** for PV waste.

Current scenario

Loopholes in current e-waste mangement rules

India identifies less e-waste categories, compared to developed nations. shows the lack of awareness in fully capturing the e-waste issue.

Vagueness and absence of managerial regulatory framework in the collection.

India's EPR mainly focuses on downstream upstream measures are not mandated.

Loopholes in context to global scenario

India bans e-waste imports under 2016 Hazardous Waste Rules.

This ban is not absolute and can be bypassed legally or illegally.

Proposed Framework for India

A dedicated Extended Producer Responsibility (EPR) framework

Objectives as part of EPR can be achieved through various **policy measures**

UPSTREAM	MIDSTREAM	DOWNSTREAM	
"Design for recycle"	"Creating demand for sustainable products"	"Prevent leakage into informal sector"	Mandate to recycle 80-85% of module & 100% of heavy metal

Instruments for implementation:

POLICY: product take back, minimum recycle requirements

ECONOMIC: Deposit/Refund, ECO Tax, Material Tax

SOCIAL: Product Labelling, Awareness Creation

Incentivizing potential stakeholders:

To recyclers and waste collectors, recycling units, Producers and customers

As **tax rebates**, **grants** for recycling units and **PSS** for customers

Cost-Benefit Analysis of PV Recycling

The Cost Benefit Analysis is based on considering basis as 1 Recycling Unit with a capacity processing 1000 Tonnes Per Year.

(All costs and benefits are on per year basis for the plant.)

Cost

Benefit

Cost-Benefit Analysis of PV Recycling - Cont

Results:

To encourage recycling unit investments, the government should offer 20% subsidies and tax exemptions.

Optimal transportation distance between the collection centers and recycling unit should be limited to 100-150 km.

Social Benefits

Jobs Created by 2050	Carbon Emmisions Prevented	Material Recovered
38,120 Jobs	33 Gt of CO₂ equivalent	176 Mt

3-Phase Nation-Wide Infrastructure Plan

Phase 3: Add 800 units (total 1200) to handle pea	k
waste generation.	

Phases	Installed RU	Added RU
2025-2030	0-1	150-160
2031-2036	150-160	220-240
2036-2050	380-400	760-800

Feasibility Report

Cotomorna	Suggestion	Feasibility Score (out of 10)			
Category		Economic	Technological	Indian Context	
Technology	End-to-end Mechanical Recycling with involvement for Chemical Recycling exclusively for production of EGS or for closed loop recycling.	8	10	9 Heat treatment will be more feasible in future when energy demands are met.	
Logistcs	Decentralization through cluster formation and optimizing transportation routes and economies though CCs and hiring PRO to take burden off producer's backs.	7	8	8	
Circular Economy	Incorporating local industries (open loop) and supply chain into an inter-linked framework with seamless material and data flow between different phases, locations and stakeholders.	10	7	8	
Policy	Dedicated and mandatory EPR for solar panel sector. Refund polices, minimum recycling policy, suggested incentives for different stakeholders	7	7	7 EPR policy suits for India, along with financial incentives to stakeholders.	