ГКП4 \diamond **4.** Обозначим углы напротив ребра (v_i, v_j) так, как показано на рисунке.

Используя общую формулу оператора Лапласа $\Delta \omega = (\star d \star d + d \star d \star) \omega$, выведите дискретную формулу Лапласиана: $(\Delta f)_i = \frac{1}{2 \cdot \operatorname{Area}(v_i^*)} \cdot \sum_j (\operatorname{ctg} \alpha_{ij} + \operatorname{ctg} \beta_{ij}) (f(v_i) - f(v_j))$, где f — функция на сетке.

Кривизны 19.03.2018

ГКП5<1. Докажите, что

- (1) площадь сферического треугольника на единичной сфере с внутренними углами $\alpha_1,\alpha_2,\alpha_3$ равна $\sum \alpha_i \pi$.
- (2) Докажите, что площадь сферического n-угольника на единичной сфере с внутренними углами $\alpha_1, \alpha_2, \ldots, \alpha_n$ равна $\sum \alpha_i + (2-n)\pi$.

ГКП5 \diamond **2.** Пусть $M = \{V, E, F\}$ — связная симплициальная поверхность без края. Для данной вершины v рассмотрим единичные нормали n_1, \ldots, n_k к содержащим её граням. Определим гауссову кривизну K(v) в точке v как площадь сферического многоугольника, натянутого на концы векторов n_1, \ldots, n_k , а также определим угловой дефект по формуле $d(v) = 2\pi - \sum_{f \in F_v} \angle_f(v)$, где F_v — это все грани, содержащие вершину v, а $\angle_f(v)$ — плоский угол грани f при вершине v. Докажите, что d(v) = K(v) для всех вершин v.

ГКП5◊3. (Дискретная теорема Гаусса-Бонне)

- (1) Для произвольного выпуклого многогранника докажите, что $\sum_{v \in V} d(v) = 4\pi$.
- (2) Пусть $M=\{V,E,F\}$ связная ориентированная симплициальная поверхность без края. Докажите, что $\sum_{v\in V}d(v)=2\pi\chi(M)$, где $\chi(M)=V-E+F=2-2g$ Эйлерова характеристика симплициальной поверхности M.

ГКП5 \diamond **4.** Площадь S треугольника ABC на плоскости зависит от расположения точек A, B и C. Докажите, что градиент S как функции от A — это вектор $\nabla_A S$, перпендикулярный стороне BC, а по длине равный половине BC.

ГКП5**⋄5.** Рассмотрим объём Vol многогранника как функцию от положения вершины *v*. Докажите, что

$$\nabla_{\nu} \text{Vol} = \frac{1}{3} \sum_{i} A_{i} N_{i},$$

где A_i и N_i — соответственно площади и нормали граней, содержащих v.

ГКП5 \diamond 6. Рассмотрим площадь S симплициальной поверхности как функцию от положения вершины v. Докажите, что

$$abla_{v}S = rac{1}{2}\sum_{i}(\operatorname{ctg}lpha_{i} + \operatorname{ctg}eta_{i})(v_{i} - v),$$

где v_i — вершины, смежные с данной, а α_i , β_i — углы, противолежащие ребру vv_i .