Exercise 1. Consider $\mathbb{R}^{n \times n}$ to be the space of $n \times n$ real matrices, with $\|\bullet\|_{\infty}$ norm. Each matrix's "coordinates" are its entries a_{ij} .

(a) Let $\det: \mathbb{R}^{n \times n} \to \mathbb{R}$ be the determinant function. Briefly explain (using induction, or just explain the 3×3 case) why \det can be written as a homogeneous polynomial of degree n in the variables a_{ij} . Conclude that \det is a continuous function.

Answer.

For a
$$3 \times 3$$
 matrix $A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$, where $A \in \mathbb{R}^{3 \times 3}$

$$f(A) := \det(A) = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{21}a_{32}a_{13} - a_{31}a_{22}a_{13} - a_{32}a_{23}a_{11} - a_{21}a_{12}a_{33}$$

Then the f(a) is a homogeneous polynomial of degree 3.

For $k \times k$ matrix A^k , aussume $f(A^k)$ is a homogeneous polynomial of degree k

$$f(A^k) := \det(A^k) = a_{11} \cdot \begin{vmatrix} a_{22} & \dots & a_{2k} \\ & \dots & & \\ a_{k2} & \dots & a_{kk} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & \dots & a_{2k} \\ & \dots & & \\ a_{k1} & \dots & a_{kk} \end{vmatrix} + \dots + a_{1k} \begin{vmatrix} a_{21} & \dots & a_{2(k-1)} \\ & \dots & \\ a_{k1} & \dots & a_{k(k-1)} \end{vmatrix}$$

For $(k+1) \times (k+1)$ matrix A

$$f(A^{k+1})$$
: = det (A^{k+1}) = $f(A^k)$ + $a_{1(k+1)}$ | a_{21} ... $a_{2(k)}$ | ... a_{k1} ... $a_{k(k)}$ |

We can know that $f(A^{k+1})$ is a homogeneous polynomial of degree k+1.

Therefore by induction, $\det : \mathbb{R}^{n \times n} \to \mathbb{R}$ is a homogeneous polynomial of degree n.

Hence, f is a linear homogeneous polynomial function from $\mathbb{R}^{n \times n}$, then the function \det is also a continuous function

(b) Denote $GL(n,\mathbb{R}) \subset \mathbb{R}^{n \times n}$ as the set of all $n \times n$ invertible matrices. Use preimage \det^{-1} to explain why it is an open set inside $\mathbb{R}^{n \times n}$. [This says that invertible matrices stays invertible after some small change to its entries.]

Answer.

Because $\mathrm{GL}(n,\mathbb{R})$ as the set of all $n\times n$ invertible matrices, the $\forall A\in\mathrm{GL}(n,\mathbb{R})$,

$$\det(A) \neq 0$$
.

Then because $\mathbb{R} - 0$ is a open set, $\{A = \det^{-1}(0)\}$ is also a open set.

Therefore $GL(n,\mathbb{R})$ is an open set inside $\mathbb{R}^{n\times n}$

Exercise 2.

(a) Use the result of HW1 Ex5 to explain why in any metric space (M,d), for any fixed $y \in M$, the function $f: M \to \mathbb{R}$, f(x) = d(x,y) is a continuous function.

Answer.

In HW1 Ex5 we can know for metric space $(M,d),\{x_n\}$ coverging to x and $\{y_n\}$ converging to y

$$\lim_{n\to\infty} d(x_n, y_n) = d(x, y)$$

Then, when $\{x_n\}$ coverging to $x \Longrightarrow x_n \to \infty$, we fix $y \in M$,

$$\lim_{n \to \infty} d(x_n, y) = d(x, y) \Longrightarrow \lim_{n \to \infty} f(x_n) = f(x)$$

Therefore f(x) = d(x, y) is a continuos

(b) Use (a) to give another short proof of HW2 Ex3: for any $y \in M$ and r > 0, $B_r(y)$ is open in M and $\overline{B_r}(y) = \{x \in M : d(x,y) \leqslant r\}$ is closed in M.

Answer.

$$\overline{B_r}(y) = \{x \in M : d(x, y) \leqslant r\}$$

By (a), when $\{x_n\} \in \overline{B_r}(y)$, $\{x_n\}$ converging to $x \in M \Longrightarrow x_n \to \infty$, we fix $y \in M$.

Since,

$$d(x_n, y) \leqslant r \Longrightarrow \lim_{n \to \infty} d(x_n, y) = d(x, y) \leqslant r$$

Therefore, $x \in \overline{B_r}(y) \Longrightarrow \overline{B_r}(y) \subset M$. By definition, $\overline{B_r}(y)$ is closed in M.

Because $\overline{B_r}(y) = (B_r(y))^c$ is closed in M, then $B_r(y) \subset M$ is open in M.

Exercise 3. Showing discontinuity. Let $Arg: \mathbb{R}^2 - \mathbf{0} \to \mathbb{R}$ be defined such that if the polar coordinate of (x,y) is (r,θ) with $-\pi < \theta \le \pi$, then $Arg(x,y) := \theta$. Fix a point p = (-a,0) on the negative x axis (a > 0).

(a) Explicitly construct a sequence of points $\{(x^{(i)},y^{(i)})\}$ in $\mathbb{R}^2-\mathbf{0}$ converging to p=(-a,0), but with $\lim_{i\to\infty}\operatorname{Arg}(x^{(i)},y^{(i)})\neq\operatorname{Arg}(-a,0)$. Conclude that Arg is not continuous on the negative x axis.

Answer.

Let $x_i = -a - \frac{1}{i}$, $y_i = -\frac{1}{i}$, then for

$$\lim_{i \to \infty} (x_i, y_i) = (-a, 0) \Longrightarrow \lim_{i \to \infty} \operatorname{Arg}(x_i, y_i) = \operatorname{Arg}(-a, 0) = -\pi$$

But $Arg(-a, 0) = \pi \neq -\pi$

Then Arg is not continuous on the negative x axis.

(b) Find an open set U in \mathbb{R} such that $\operatorname{Arg}^{-1}(U)$ is not open in $\mathbb{R}^2 - \mathbf{0}$. Again conclude that Arg is not a continuous function.

Answer.

Let
$$U = (0, \pi + \frac{1}{n})$$
, then $Arg^{-1}(U) = (\{r, r \neq 0\}, (0, \pi])$

 $\operatorname{Arg}^{-1}(U)$ is not open in $\mathbb{R}^2 - \mathbf{0}$

Arg is not a continuous function.

Exercise 4. Let $l^1 = \{a = (a_1, a_2, \dots) : \sum_{i=1}^{\infty} |a_i| < \infty\}$ be the set of all absolutely summable sequences, with l^1 metric given by $d(a, b) = \sum_{i=1}^{\infty} |a_i - b_i|$.

(a) Explain why the subset $S = \{a \in l^1: \sum_{i=1}^{\infty} |a_i| \leq 1\}$ is closed and bounded in l^1 . (Hint: BALL.)

Answer.

i. Let $a_n \in S$ where $\{a_n\}$ is converging to a, $a_n = (a_{n1}, a_{n2}, \dots), a = (a_1, a_2, \dots)$.

Then we fix $y \in S$, for r > 0, $B_r(y) \subset S$, $B_r(y) = \{a_n \in S, d(a_n, y) \leq r\}$

$$\lim_{n \to \infty} d(\boldsymbol{a}_n, y) = \lim_{n \to \infty} \sum_{i=1}^{\infty} |a_{ni} - y_i| \leqslant r \Longrightarrow \sum_{i=1}^{\infty} \left| \lim_{n \to \infty} a_{ni} - y_i \right| = \sum_{i=1}^{\infty} |a_i - y_i| = d(\boldsymbol{a}, y) \leqslant r$$

Therefore, $a \in B_r(y) \Longrightarrow S$ is closed in l^1

ii. Let
$$z = (0, 0, ...) \in l^1 = \{\sum_{i=1}^{\infty} |a_i| < \infty\}$$

$$\forall a \in S = \left\{ \sum_{i=1}^{\infty} |a_i| \le 1 \right\}, d(a, z) = \sum_{i=1}^{\infty} |a_i - z_i| = \sum_{n=1}^{\infty} |a_i| \le 1$$

then, S is bounded in l^1

Combine the i and ii, S is closed in l^1 .

(b) Consider a sequence $\{e^{(k)}\}_{k=1}^{\infty}$, where $e_j^{(i)} = \delta_{ij} = \begin{cases} 1 & \text{if } i=j \\ 0 & \text{otherwise} \end{cases}$. Write down $e^{(1)}, e^{(2)}, e^{(3)}$, and evaluate $d(e^{(i)}, e^{(j)})$ for $i \neq j$.

Answer.

$$e^{(1)} = \delta_j = \begin{cases} 1 & \text{if } j = 1 \\ 0 & \text{otherwise} \end{cases} = \{1, 0, 0, \dots\}$$

$$e^{(2)} = \delta_j = \begin{cases} 1 & \text{if } j = 2 \\ 0 & \text{otherwise} \end{cases} = \{0, 1, 0, \dots\}$$

$$e^{(3)} = \delta_j = \begin{cases} 1 & \text{if } j = 3 \\ 0 & \text{otherwise} \end{cases} = \{0, 0, 1, \dots\}$$

$$d(e^{(i)}, e^{(j)}) = 2$$

(c) Explain why the closed and bounded set S above is NOT sequentially compact.

Answer.

Because in (b) each sequence $\{e^{(k)}\}_{k=1}^{\infty}$ is closed and bounded in [0,1],

but suppose $A = \{e^{(k)}\}_{k=1}^{\infty}$, A is not a sequentially compact, because A didn't have convergent subsequence Therefore for set $S = \{\sum_{i=1}^{\infty} |a_i| \leqslant 1\}$ above can also look like A which have not a convergent subsequence. Then S above is not sequentially compact.

Exercise 5. In one sentence, without doing calculations, show that if $1 \le p, q$, the set $S = \{\mathbf{x} \in \mathbb{R}^n : \|\mathbf{x}\|_q = 1\}$ is compact, and the (objective) function $f(\mathbf{x}) = \|\mathbf{x}\|_p$ attains maximum and minimum value on (the constraint set) S.

Answer.

Because $1 \leqslant p,q$, the function $f(\mathbf{x}) = \|\mathbf{x}\|_p$ is continuous and the set $S = \{\mathbf{x} \in \mathbb{R}^n : \|\mathbf{x}\|_q = 1\}$ is compact, therefore the set $\{f(\mathbf{x}) = \|\mathbf{x}\|_p\}$ is also compact and we can attains maximum and minmum.