Homework set 6

A *hyperplane* in a normed space V is a set of the form $H = x_0 + H_0$, where $H_0 \subset V$ is a subspace such that $\operatorname{codim} H_0 := \dim V/H_0 = 1$.

Problem 1. Let V be a normed space. Show that H is a closed hyperplane if and only if there exists a bounded linear functional $f \in V^{\vee}$ such that $H = f^{-1}(c)$ for some $c \in \mathbf{R}$. Then show that $V \setminus H$ consists of two disjoint connected components.

Solution. Let $H=x_0+H_0$ be a closed hyperplane. Then $H_0\subset V$ is a closed subspace, so there exists a bounded linear functional $f\in V^\vee$ such that $H_0\subset\ker f$. We then have the exact sequences

$$0 \longrightarrow H_0 \longrightarrow V \xrightarrow{q} V/H_0 \longrightarrow 0$$

$$\downarrow^j \qquad \qquad \downarrow_{\mathrm{id}}$$

$$0 \longrightarrow \ker f \longrightarrow V \xrightarrow{f} \mathbf{R} \longrightarrow 0$$

from which we define a linear map $p:V/H_0\to \mathbf{R}$ by $[x]\mapsto f(x)$, where $x\in [x]\in V/H_0$. This map is linear and nonzero, and thus an isomorphism. It follows that j is also an isomorphism. Therefore $H_0=\ker f$, so $H=f^{-1}(f(x_0))$.

Let now $f \in V^{\vee}$. If x is such that f(x) = c then $f^{-1}(c) = x + \ker f$, so it is a hyperplane, and closed because $\ker f = f^{-1}(0)$ is closed.

The complement is

$$V \setminus H = f^{-1}((-\infty, c) \cup (c, \infty)) = f^{-1}((-\infty, c)) \cup f^{-1}((c, \infty)) =: V_{-} \cup V_{+}$$

which are two open disjoint sets. If $x, y \in V_+$ then

$$f((1-t)x + ty) = (1-t)f(x) + tf(y) > (1-t)c + tc = c$$

so the segment $\{(1-t)x+ty\mid 0\leq t\leq 1\}\subset V_+$. The set is thus path connected. \Box

Problem 2. Let *V* be a normed space and let

$$S(r) = \{x \in V \mid ||x|| = r\}, \quad B(r) = \{x \in V \mid ||x|| < r\},$$

be the sphere and ball of radius r. Show that for any $x_0 \in S(r)$ there exists a hyperplane $H \subset V$ that contains x_0 such that the open ball B(r) is entirely contained in one component of $V \setminus H$.

Solution. Let $S = \mathbf{R}x_0$ and define $f: S \to \mathbf{R}$ by $f(x_0) = r$, where $r = |x_0|$, and extend by linearity. Then

$$|f| = \sup_{|\lambda x_0|=1} |f(\lambda x_0)| = \sup_{|\lambda|=1} |\lambda|r = 1.$$

By Hahn–Banach we can extend this to $f \in V^{\vee}$ such that |f| = 1. For any $x \in B(r)$ we then have

$$|f(x)| \le |f||x| < r,$$

so
$$B(r) \subset \{x \in V \mid f(x) < r\}$$
 while $x_0 \in \{x \in V \mid f(x) = r\}$.

The annihilator of a set M in a normed space V is the set

$$M^{\perp} = \{ f \in V^{\vee} \mid f(x) = 0 \text{ for all } x \in M \}.$$

Problem 3. Let V be a normed space and $S \subset V$ a subspace. Show that S^{\vee} is isometric to V^{\vee}/S^{\perp} .

Solution. We have short exact sequences

$$0 \longrightarrow \ker \rho \longrightarrow V^{\vee} \stackrel{\rho}{\longrightarrow} S^{\vee} \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow$$

$$0 \longrightarrow S^{\perp} \longrightarrow V^{\vee} \longrightarrow V^{\vee}/S^{\perp} \longrightarrow 0,$$

where the upper row is exact because of Hahn–Banach. The map $\rho: V^{\vee} \to S^{\vee}$ is just the restriction map $f \mapsto f_{|S}$. Its kernel is

$$\ker \rho = \{ f \in V^{\vee} \mid f_{|S} = 0 \} = S^{\perp}.$$

We thus get a well-defined linear map $\psi: S^{\vee} \to V^{\vee}/S^{\perp}$ by $\psi(f) = [\hat{f}]$, where \hat{f} is an extension of f.

This map is injective, because if $\psi(f)=[\hat{f}]=0$ then $\hat{f}\in S^{\perp}$ and $f=\rho(\hat{f})=0$. It is also surjective: Let $[g]\in V^{\vee}/S^{\perp}$, where $g\in V^{\vee}$. Set $f=g_{|S|}$. Then $\psi(f)=[g]$.

Note that every $x \in V$ defines a linear functional $e_x \in (V^{\vee})^{\vee}$ by $e_x(f) = f(x)$. We have $S^{\perp} = \bigcap_{x \in S} \ker e_x$, so S^{\perp} is the intersection of closed sets and thus closed. Therefore V^{\vee}/S^{\perp} is a normed space. For $f \in S^{\vee}$ we have

$$|\psi(f)| = |[\hat{f}]| = \inf_{\hat{f}|S=f} |\hat{f}| = |f|,$$

where the last equality is by Hahn–Banach.

Problem 4. Let V be a normed space and $S \subset V$ a closed subspace. Show that $(V/S)^{\vee}$ is isometric to S^{\perp} .

Solution. Since S is closed the quotient V/S is a normed space. We define a map $\psi: S^{\perp} \to (V/S)^{\vee}$ by

$$\psi(f)([x]) = f(x).$$

We have to show this is a well-defined linear map and that $\psi(f)$ is bounded. By definition we have $f_{|S}=0$, so the map is well-defined and linear.

This map is injective: If $\psi(f)([x])=0$ for all [x] then f(x)=0 for all x, so f=0. The map is also surjective: Let $g\in (V/S)^\vee$. Define a map $f\in V^\vee$ by f(x)=g([x]). Then $f_{|S}=0$ so $f\in S^\perp$ and $\psi(f)=g$. Now

$$|\psi(f)| = \sup_{[x]=1} |\psi(f)([x])|.$$

We have $|[x]| = \inf_{y \in S} |x - y|$, so if |[x]| = 1 there exists $x \in V$ and (y_n) in S such that $|x - y_n| \to 1$ as $n \to \infty$ (and $|x - y| \ge 1$ for all $y \in S$). For such an x we have

$$|\psi(f)([x])| = |f(x)| = \frac{|f(x)|}{|x|}|x| \le |f||x| \le |f|(|y| + |x - y|)$$

for $y \in S$. Taking inf over $y \in S$ we get $|\psi(f)([x])| \le |f|$ when |[x]| = 1, so $|\psi(f)| \le |f|$.

For any x we have $|[x]| \leq |x|$, so

$$|\psi(f)| = \sup_{|[x]| \neq 0} \frac{|\psi(f)([x])|}{|[x]|} \ge \sup_{x \notin S} \frac{|f(x)|}{|x|} = \sup_{x \neq 0} \frac{|f(x)|}{|x|} = |f|$$

because $f_{|S} = 0$, so $|\psi(f)| = |f|$.