A Project Management Ontology in OWL

Roberto Casadei May, 2014

Course: Semantic Web
Computer Science and Engineering LM
Alma Mater Studiorum – Università di Bologna

Summary

- 1) Introduction
- 2) Ontology development: a methodology
- 3) Development of MPMO (My Project Management Ontology)
- 4) Conclusions

Introduction

- WHAT → modelling the knowledge in a domain of interest using OWL
- HOW → trying to follow a methodology for ontology development

With respect to the previous assignment

- More emphasis on the <u>process</u> (rather than on the product)
- Striving to follow a more <u>systematic approach</u>
- Deeper <u>awareness</u> about what an ontology is

Ontology development: the methodology

Iterative process

- 1) Determine domain, scope and objectives
- 2) Informal/semi-formal knowledge acquisition
- 3) Refine **requirements** and **tests**
- 4) Design and implementation
- 5) Evaluation and quality assurance
- 6) Maintainance: usage monitoring and evolution

1a) Domain and scope

Domain → **project management**

► I.e., the application of knowledge, skills and techniques to execute projects effectively

and efficiently

1b) Domain and scope

Are we sure we need an ontology?

Actually, this phase might conclude that an ontology is not the right tool for us

High-level objectives

- To provide a description tool and support unambiguous communication
- To provide a model upon which project management software tools can be built
 - Typical features: collaborative tools, issue tracking, scheduling, project portfolio management, resource management, document management tools, workflow management, reporting&analysis

Two abstraction levels

- Project management concepts and models
- Project models

1c) Domain and scope

Scope

- 1) Project management models
- 2) People and organizations
- 3) Resources
- 4) Projects

But re-using when possible!

2a) Informal/semi-formal knowledge acquisition

Sources

- The previous assignment
- The "Project Management" course ;)
- Wikipedia, the PMBOK (Project Management Body of Knowledge) & literature

Steps

- Collect the terms and informally organize them
- Paraphrase/clarify terms to produce informal concept definitions
- Inspect the terms

2b) Informal/semi-formal knowledge acquisition

Collect the terms and organize them informally

Project management model Project management concept Project management effort Project Software project Organization Agent Person

Resource
Time
Budget
Tool
Human-resource
Deliverable
Artifact
Documentation

Process Activity

Participant
Stakeholder
Group
Team
Role
Customer
Membership
Project manager
Team member

2c) Informal/semi-formal knowledge acquisition

Paraphrase the terms to produce informal concept definitions

For example:

- Organization = group of individuals organized to work for some purpose or mission.
- Process = set of interrelated actions and activities performed to create a pre-specified product, service, or result. Each process is characterized by its inputs, the tools and techniques that can be applied, and the resulting outputs.
- Deliverable = any unique and verifiable product, result or capability to perform a service that is required to be produced to complete a process, phase, or project

...

2d) Informal/semi-formal knowledge acquisition

What do we want to say about these terms? Which properties they have?

For example:

- A resource can be the input or the output of a project/process/activity
- A process can be organized into subprocesses and activities
- An agent or person can play a certain role in a project during a time interval
- ·

Do these concepts have some **common characteristics**? Are there **additional things** with those characteristics which might be considered?

For example:

- Projects as well as processes and activities have goals, inputs, outputs, and participants
- Organizations as well as projects, processes, and activities can define roles to be played by agents or people
-

3a) Refine requirements and tests: functional requirements

We should define better what we want to do so to be able to move towards design

For example, via use cases

- A project management expert defines a new project management model by extending a basic model with both concepts already defined somewhere and new concepts
- A project manager uses a software tool which allows him to graphically create a project description that is based on the MPMO ontology concepts
- A software tool may be used to check if all the concepts instantiated into a project description are defined within the associated project management model

...

3b) Refine requirements and tests: non-functional requirements

What properties should the ontology exhibit?

- ► **Generality** & **Flexibility**: adaptivity to contexts/situations which can be very diverse
- Simplicity: providing a model which is easy to understand and put into action
- **Extensibility**: providing support for specializations and tailoring
- → These suggest goal-driven tests by the perspective of ontology usage

Is OWL the right language to build the ontology? Which OWL flavor?

- → We compare what we want to express in our ontology to OWL expressivity and decidability boundaries
 - ► For example: a design decision is that of having things being both an instance and a class
 - ▶ E.g.: Organization is both an instance of PMConcept and a subclass of org:Organization
 - ► This would put the ontology into OWL Full (which is undecidable) but OWL 2 solves this problem using the so-called <u>punning</u> where a URI can be used in multiple roles

4a) Design & implementation

Inputs for this phase

- Goals, requirements
- Informal knowledge previously collected

Design / modelling / implementation

- Delve into concepts, relationships, properties
- Organize the concepts
- Formalize the definitions

Conventions

Class names are singular

4b) Design & implementation

Ontology editor: Protégé

Imported ontologies

- SKOS
- ORG
- FoaF
- Time
-

My Project Management Ontology (MPMO) FoaF (Friend of a Friend) Simple Knowledge **Organization System** (SKOS) ORG (Organization ontology) Time

4c) Design & implementation

4d) Design & implementation

Some notes about design/modelling decisions

- At one abstraction level we have PMModel, PMConcept, PMEffort, and at another abstraction level we have the project management concepts (instances of PMConcept!)
 - A PMModel governsExecutionOf PMEffort (inverse functional property)
- Project is a subclass of Process, Process is a subclass of Activity
 - A Process must produce in output one or more Deliverables
 - This cannot be expressed in RDFS. How is this expressed in OWL?
 - Unqualified cardinality restrictions in OWL 1: owl:minCardinality + owl:someValuesFrom
 - Qualified cardinality restrictions in OWL 2 : owl:minQualifiedCardinality + owl:onClass
 - A Project is a temporary endeavour → it must have a duration
 - time:hasBeginning min 1 time:Instant
 - time:hasEnd min 1 time:Instant
- Resource has a subclass Deliverable, whereas the kind of resource is expressed using a value partition ResourceKind which is totally covered by disjointed subclasses: Digital, Financial, Human, Physical, Time

5a) Evaluation and quality assurance

Based on goals and requirements!!!

Checklist for non-functional ontology properties

- Generality & Flexibility
- Simplicity
- Extensibility

Evaluation through "acceptance testing"

- No applications are built upon this ontology
- But we can perform some query upon data

5b) Evaluation and quality assurance

participant	organization	role	project
Antonella_Carbonaro	Unibo	Customer	MyThirdAssignment
Roberto_Casadei	My0wn0rganization	Project_manager	MyThirdAssignment
Roberto_Casadei	Unibo	Student	

```
Activity
Agent
Lifecycle
Membership
Organization
PMEffort
Process
Project
Resource
Role
Team
```

Analysis

MyThirdAssignment

6a) Maintainance: usage monitoring and evolution

Is there **version compatibility** with the RDFS model released in the previous assignment?

- Do all constructs have the same meaning? NO.
- E.g., Stakeholder was a subclass of Person while now it is an instance of Role (and Role is disjoint with Agent, which is a superclass of Person)

Conclusion

Two main considerations

- 1) As for other engineering efforts, ontology development benefits from the adoption of a methodology
 - In particular, be iterative and get feedback by use!
- 2) OWL allows for the definition of stronger ontologies with respect to those built upon RDF Schema
 - The increased expressivity of the ontology language allowed us specify additional constraints and formalize the definitions