Ensemble methods (Decision by Committee)

Ensemble Methods

- Use multiple models to obtain better predictive performance.
- Includes much more computation, since you are training multiple learners
- Typically combine multiple fast learners (like decision trees)
- Tend to overfit
- Tend to get better results since there is deliberately introduced significant diversity among models

Motivation for Ensemble Learning

- •No Free Lunch theorem: There is no algorithm that is always the most accurate
- •Generate a group of base-learners which when combined have higher accuracy
- Different learners use different
 - •Algorithms
 - Parameters
 - Representations
 - Training sets
 - •Etc.

Bagging (Bootstrap aggregating)

the random errors that a single classifier is bound to make).

□ Take M bootstrap samples (with replacement)
 □ Train M different classifiers on these bootstrap samples
 □ For a new query, let all classifiers predict and take an average (or majority vote)
 □ If the classifiers make independent errors, then their ensemble can improve performance.
 □ Stated differently: the variance in the prediction is reduced (we don't suffer from

Boosting

- •Train classifiers (e.g. decision trees) in a sequence.
- •A new classifier should focus on those cases which were incorrectly classified in the last round.
- •Combine the classifiers by letting them vote on the final prediction (like bagging).
- •Each classifier is "weak" but the ensemble is "strong."
- AdaBoost is a specific boosting method.

Boosting

- •We adaptively weigh each data case.
- •Data cases which are wrongly classified get high weight (the algorithm will focus on them)
- •Each boosting round learns a new (simple) classifier on the weighed dataset.
- •These classifiers are weighed to combine them into a single powerful classifier.
- •Classifiers that obtain low training error rate have high weight.

Bagging: Bootstrap aggregating

- •Each model in the ensemble votes with equal weight
- •Train each model with a random training set

Boosting

- Incremental
- •Build new models that try to do better on previous model's mis-classifications
 - -Can get better accuracy
 - -Tends to overfit
- Adaboost is canonical boosting algorithm

Random Forest

- Ensemble consisting of a bagging of decision tree learners with a randomized selection of features at each split.
- Grow many trees on datasets sampled from the original dataset with replacement (a bootstrap sample).
 - ☐ Draw K bootstrap samples of a fixed size
 - ☐ Grow a DT, randomly sampling a few attributes/dimensions to split on at each internal node
- Average the predictions of the trees for a new query (or take majority vote)
- Random Forests are state of the art classifiers!

Random forest

- •Random forest (or random forests) is an ensemble classifier that consists of many decision trees and outputs the class that is the mode of the class's output by individual trees.
- •The term came from **random decision forests** that was first proposed by Tin Kam Ho of Bell Labs in 1995.
- •The method combines Breiman's "bagging" idea and the random selection of features.

Features and Advantages

Ih	e advantages of random forest are:
	It is one of the most accurate learning algorithms available. For
	many data sets, it produces a highly accurate classifier.
	It runs efficiently on large databases.
	It can handle thousands of input variables without variable deletion.
	It has an effective method for estimating missing data and maintains
	accuracy when a large proportion of the data are missing.
	It has methods for balancing error in class population unbalanced
	data sets.
	Generated forests can be saved for future use on other data.

```
Boston House Prices dataset
Notes
Data Set Characteristics:
    :Number of Instances: 506
    :Number of Attributes: 13 numeric/categorical predictive
    :Median Value (attribute 14) is usually the target
    :Attribute Information (in order):
        - CRIM
                   per capita crime rate by town
                   proportion of residential land zoned for lots over 25,000 sq.ft.
        - ZN
                   proportion of non-retail business acres per town
        - INDUS
                   Charles River dummy variable (= 1 if tract bounds river; 0 otherwise)
        - CHAS
                   nitric oxides concentration (parts per 10 million)

    NOX

                   average number of rooms per dwelling
        - RM
        - AGE
                   proportion of owner-occupied units built prior to 1940
        - DIS
                   weighted distances to five Boston employment centres
        - RAD
                   index of accessibility to radial highways
        - TAX
                   full-value property-tax rate per $10,000
        - PTRATIO pupil-teacher ratio by town
        - B
                   1000(Bk - 0.63)^2 where Bk is the proportion of blacks by town
                  % lower status of the population
        - LSTAT
        - MEDV
                   Median value of owner-occupied homes in $1000's
    :Missing Attribute Values: None
    :Creator: Harrison, D. and Rubinfeld, D.L.
```