Informační bezpečnost ve zdravotnictví

PV080

Vašek Matyáš

Zdravotnictví a bezpečnost

SECURITY

Vlastnost prvku (např.
IS), který je na určité
 úrovni chráněn proti
 ztrátám nebo také stav
 ochrany (na určité
 úrovni) proti ztrátám.

<u>SAFETY</u>

 Předpoklad, že při specifikovaných podmínkách nedojde ke stavu ohrožení lidského života, zdraví, hodnot a prostředí.

Ohrožení života "počítačem" v medicíně?

PŘÍMO

- Tyto případy jsou velmi výjimečné, spíše extrémní.
- Např. chyba v programu způsobí zvýšení dávek ozáření, kterému pak pacient podlehl.
 - Therac-25 (Wikipedia)
 - Białystok incident

NEPŘÍMO

- Častější případy.
- Počítač nebo jím řízený přístroj dodají chybné výsledky analýzy, na jejichž základě lékař stanoví chybný léčebný postup.

Důvěryhodnost a důvěrnost

- Podvržená data autentizace.
- Rukopis laboranta, razítko ap.
- Digitální podpis –
 integrita, autenticita dat.
- Prokazatelná zodpovědnost.

- Mlčenlivost osobní zdravotní informace získané při lékařském výkonu.
- Lékař, pacient, sestra, vedoucí ústavu, zdrav. pojišťovna.

Bezpečnost v klinických informačních systémech

• Víceméně roztříštěné úsilí při tvorbě směrnic a pravidel. (Bezp. politika!)

 "Security in Clinical Information Systems", British Medical Association (BMA), 1996

• Doktor může otevřít nový záznam, kde je uveden jen on a pacient na seznamu řízení přístupu.

 Pokud je pacient jen na speciálním vyšetření, pak může doktor na seznam zařadit i jeho ošetřujícího lékaře.

• Právě jeden z lékařů na seznamu řízení přístupu musí být označen jako odpovědný a pouze on může seznam měnit a může k němu přidávat jen odborné zdravotnické pracovníky.

- Odpovědný lékař musí pacientovi sdělit, kdo je na seznamu řízení přístupu při vytvoření nového záznamu, při jakýchkoliv změnách a kdykoliv je odpovědnost za záznam předávána jinému lékaři.
- Pacientův souhlas musí být výslovný, s výjimkou řešení nouzových stavů a specifikovaných statutárních případů.

 Nikdo nesmí mít možnost smazat klinické informace, dokud neuplynula předepsaná doba pro jejich úschovu.

 Všechny přístupy ke klinickým záznamům musí být zaznamenány s udáním informací kdo a kdy se záznamem pracoval. Auditní záznam všech mazání musí být neustále udržován.

 Informace ze záznamu A mohou být připojeny k záznamu B tehdy a jen tehdy, když seznam řízení přístupu záznamu B je obsazen v seznamu pro A.

- Musí být zavedena účinná opatření proti agregaci osobních zdravotních informací.
- Pacienti, k jejichž seznamu řízení přístupu má být přidána další osoba, musí být zvlášť upozorněni, pokud již tato osoba má přístup ke zdravotním informacím velkého množství lidí.

 Počítačové systémy, které pracují s osobními zdravotními daty, musí mít subsystém, který efektivně prosazuje výše uvedené principy. Účinnost tohoto subsystému musí být podrobena hodnocení nezávislými experty.

Úvod do informační bezpečnosti

PV080

Vašek Matyáš (část slajdů J. Bouda)

Bezpečnost (angl. Security)

Vlastnost prvku (např. IS), který je na určité úrovni chráněn proti ztrátám nebo také stav ochrany (na určité úrovni) proti ztrátám.

Bezpečnost

1. Prevence

2. Detekce

3. Reakce

Informační dominance

1. Cíl: Dosažení vlastní *informační* dominance, tzn. mít správné informace na správném místě ve správný čas.

2. Cíl: Zamezit nepřátelské straně v dosažení informační dominance.

Minimalizace nepřátelské informační dominance

• Pro minimalizaci nepřátelské informační dominance je důležité svěřovat pracovníkům jen nejpotřebnější informace;

 taky tyto pracovníky předem i průběžně prověřovat.

Při utajení dat zvažujeme:

1. zda tato data mají být utajována,

2. zda samotná existence těchto dat je utajována,

zda i důvod utajení těchto dat je utajován.

Od aktiva k útoku

- Aktiva data, zdroje... s hodnotou
- Zranitelnost (systému) a útočník => hrozba
- Riziko pravděpodobnost uplatnění hrozby
- Útok je realizací hrozby, útok může být úspěšný či neúspěšný
 - Úspěšný únik má dopad na hodnotu aktiv

Od rizika k bezpečnostní politice

- Riziko omezujeme
 - odstranění nemožné či příliš nákladné (častěji)
- Bezpečnostní opatření mají omezit rizika
- Bezpečnostní mechanizmy implementují bezpečnostní opatření
- Bezpečnostní politika specifikuje způsoby uplatňování bezpečnostních opatření

Kde může selhat bezpečnost

- Matematický algoritmus
 - Velmi nepravděpodobné a neobvyklé
 - Může se stát jen při hrubé chybě výrobce systému
 - GSM
- Špatné naprogramování matematického algoritmu
 - Dost neobvyklé, stává se pouze u nekvalitních firem
 - Je důsledkem nedostatečného vzdělání programátorů
 - Nevhodný způsob generování náhodných čísel

Kde může selhat bezpečnost

- Chyby při implemetaci systému
 - Velmi časté
 - Způsobeny snahou firem o minimalizaci nákladů při vývoji
 - Softwarové firmy nenesou odpovědnost za škody způsobené bezpečnostními chybami
 - Škoda na jejich pověsti není tak velká, aby se jim vyplatilo investovat peníze do kvalitního vývoje

Kde může selhat bezpečnost

- Všechny předchozí důvody zaviňují pouze
 5 % všech prolomení bezpečnosti!
- Hlavním důvodem prolomení jsou chyby a úmyslné jednání obsluhy počítačů
 - Snadno zapamatovatelné a tedy i uhodnutelné heslo
 - Použití nevhodných programů, které heslo neúmyslně zveřejňují – nezabezpečený přenos dat po Internetu

Incidenty způsobeny

- Chybami (neúmyslné): 50-70 %
- Vlivem přírody, zdrojů: 10-15 %
- Škodlivým softwarem: 5-10 %
- Záměrnými útoky (sabotáže) zaměstnanců (i bývalých) : 10-20 %
- Vnějšími útočníky: 1-5 %

Kde nejčastěji "selže" bezpečnost

- Úmyslné jednání zaměstnanců
 - Pomsta zaměstnavateli nebo kolegům
 - Snaha obohatit se
 - Zaměstnanec je někým zkorumpován

Absolutně bezpečné systémy v praxi NEEXISTUJÍ

Základní problém bezpečnosti

- Co útočník získá napadením daného systému?
- Kolik peněz, strojů, času a lidí musí nasadit na napadení daného systému?
- Vyplatí se to?
- Hromadné útoky na více systémů!

Klasifikace útočníků I

- Původní klasifikace 1-2-3, dnes nereprezentativní
- **Třída 0** (script kiddies) –útočníci, kteří nedisponují dostatkem znalostí o systému a využívají komukoliv běžně dostupné předpřipravené nástroje a postupy pro útoky na známé zranitelnosti zkoušením těchto nástrojů metodou pokus-omyl nebo čistě náhodným necíleným zjištěním zranitelnosti (např. reakce zařízení na krátký a intenzivní výboj světla).
- **Třída 1** (chytří nezasvěcení útočníci) mnohdy inteligentní útočníci, kteří nemají dostatek znalostí o systému. Využívají cenově běžně dostupných nástrojů nebo služeb s možností zmapování principu fungování přístroje v dohledné době. Obvykle zkouší útočit na známé bezpečnostní slabiny, nevyhledávají nové.

Klasifikace útočníků II

- **Třída 1.5** jedná se o osoby nebo skupiny osob s možnostmi na rozhraní mezi 1. a 2. třídou. Útočníci jsou inteligentní, se základními znalostmi systému. Využívají cenově dostupných nástrojů, útočí na známé chyby a snaží se hledat i nové slabiny. Např. specializovaná pracoviště univerzit.
- **Třída 2** (zasvěcení insideři) zkušení jedinci nebo týmy s nákladným a sofistikovaným vybavením, se kterým jsou schopni provést analýzu systému v dostatečném čase. Mají úzce specializované technické vědomosti a zkušenosti, různě hluboké pro jednotlivé části systému s možným přístupem k většině z nich.

Klasifikace útočníků III

• **Třída 3** (majetné organizace) – vysoce kvalifikované týmy využívající zařízení, která nejsou běžně dostupná na trhu. Mohou provádět detailní analýzy systému, navrhovat komplexní útoky a využívat nejmodernější analytické nástroje. Příkladem jsou např. vládní organizace (NSA), které mají pro své aktivity značné finanční zabezpečení.

Ochrana komunikace/dat

- Fyzická ochrana
 - místnosti
 - kabely
 - CD/DVD, USB tokeny

• • •

- Kryptografie umění (mj.) skrýt význam (informační hodnotu) dat
 - Návazná přednáška

Bezpečnost z dřívějšího pohledu

• Důvěrnost:

- Cílem je zabránit zjištění sémantického obsahu dat nepovolanými (neautorizovanými) osobami.
- např. utajením existence informací (značně obtížné),
- kontrolou přístupu k místům, kde se data nacházejí,
- maskováním mezi jinými soubory nebo
- změnou dat do jiné podoby, kterou nelze změnit zpět bez znalosti patřičné (tajné) informace – klíče. Tento poslední způsob se běžně označuje jako šifrování a budeme se mu věnovat dále v tomto kurzu.

Bezpečnostní model Bell-LaPadula

 Procesy nesmějí číst data na vyšší úrovni (tzv. jednoduchá bezpečnostní vlastnost, též NRU - no read up).

• Procesy nesmějí zapisovat data do nižší úrovně (tzv. *-vlastnost, též *NWD - no write down*).

Integritní model Biba

- Inverzní k modelu Bell-LaPadula
- Cílem je zajištění integrity dat
- Procesy nesmějí číst data na nižší úrovni vlastnost no read down
- Procesy na dané úrovni nesmí zapsat data do vyšší úrovně – vlastnost no write up

Bezpečnost z více úhlů pohledu

• Integrita:

Data bez svolení majitele (autorizované osoby) nesmí

- nepozorovaně změnit svůj stav (tzv. slabá integrita)
- nebo jej nesmí změnit vůbec (tzv. silná integrita).
- Pokud bude na dobré úrovni zajištěná důvěrnost, pak je zajištění integrity snazší.

Bezpečnost z více úhlů pohledu

Dostupnost:

Autorizovaní uživatelé by měli mít přístup k datům a službám co nejméně komplikovaný.

 Dobře chráněná data, co se důvěrnosti a integrity týče, která nelze použít při řádné práci, ta nám nebudou příliš platná.

Bezpečnost z více úhlů pohledu

• (Prokazatelná) Zodpovědnost:

Za veškeré své činy a chování v systému mají uživatelé zodpovědnost vůči majiteli dat.

– Tato zodpovědnost nemusí být přímá (majitel nekontroluje každého uživatele osobně), ale v případě potřeby musí vždy existovat možnost zjistit, kde a kým (příp. i za jakým účelem) data v určitou dobu byla použita.

Bezpečnost z více úhlů pohledu

- Autentizace entit: víme s kým komunikujeme.
- Řízení přístupu: přidělování dat/zdrojů kontrolováno.
- Nepopiratelnost: aktivitu nelze později popřít.
 - Odeslání zprávy
 - Přijetí zprávy

•

Zásadní kroky pro zajištění bezpečnosti

1. Analýza a hodnocení hrozeb

2. Specifikace bezpečnostní politiky a architektury

3. Popis bezpečnostních mechanismů

Analýza a hodnocení hrozeb

- Zvážit, co všechno by mělo být chráněno
- Vyhodnotit, jaké hrozby hrozí ochraňovaným hodnotám.
 - Často nelze než vycházet z analýzy empirických poznatků o problémech v okolí, jiných útocích na podobné hodnoty atd.
- Chybně provedená analýza hrozeb má za důsledek téměř vždy chybně navržená bezpečnostní opatření. Hodnoty pak mohou být chráněny velmi nákladným, ale naprosto nesmyslným a neúčinným způsobem.

Specifikace bezpečnostní politiky a architektury

- Bezpečnostní politika co mají dosáhnout a zajistit ochranná opatření.
 - Zahrnuje požadavky, pravidla a postupy, určující způsob ochrany a zacházení s ochraňovanými hodnotami.
- Architektura na vysoké úrovni popisuje strukturu celého komplexu opatření a jednotlivým částem přiřadí bezpečnostní funkce.

Popis bezpečnostních mechanismů

• Zde jsou rozepsány techniky pro implementaci bezpečnostních funkcí nebo jejich částí.

• Účinnost mechanismu musí být v souladu s bezpečnostní politikou a přiměřená odpovídajícím hrozbám.

Nevhodnost doplňkové bezpečnosti

- Nejprve je pracně vybudován rozsáhlý systém a pak se přijde na to, že bude potřeba "nějak" zajistit ochranu spravovaných informací.
- Důsledkem pozdního doplnění specifikace o zajištění bezpečnosti může být
 - vybudování ochrany na nižší úrovni (než by za stejné peníze poskytla ochrana budovaná plánovitě)
 - nebo překročení rozpočtu,
 - mnohdy obojí.

Další oblasti bezpečnosti

- Fyzická
- Personální
- Dokumentová (bez ohledu na formu)

• ...

Co je to bezpečnost ICT?

- Bezpečnost při používání systémů ICT obecně
 - Počítačová bezpečnost
 - Mobilní telefony
 - Kreditní karty
 - Internetové bankovnictví

Příklady zneužití

- Neoprávněné použití cizí kreditní karty
 - Výběr z bankomatu
 - Platba na terminálu (v obchodě)
 - Platba po Internetu (!)
- Zneužití mobilního telefonu
 - Odposlech telefonního hovoru
 - Volání na cizí účet
 - Zneužití falešné identity

Cíle bezpečnosti ICT

- Zamezit zneužití elektronických zařízení
- Nalézt osobu pokoušející se o zneužití
- Minimalizovat škody způsobené zneužitím

• ...

Více o praktických aspektech později v semestru...

Zajištění bezpečnosti

- jedná se o proces, nikoliv stav či cíl!
 - (Výjimku by mohly tvořit systémy, které se samy vůbec nemění a kde beze změny je i jejich okolí. ☺)

Polosemestrální písemka!

6. listopadu

Více informací 30. října