

Predicting Vinho Verde Quality using Random Forests

Megan McGoldrick GA Data Science April 2015

Objective

In 2009, a research team in Portugal showed that SVM outperformed NN and MLR methods in "predict[ing] human wine taste preferences based on easily available analytical tests." ^a

My goal is to achieve comparable or **better** classification performance with less effort on data transformation, parameter tuning and/or feature selection.

^a P. Cortez, A. Cerdeira, F. Almeida, T. Matos and J. Reis. Modeling wine preferences by data mining from physicochemical properties. In *Decision Support Systems*, Elsevier, 47(4):547-553, 2009.

Data Source

- Samples of Vinho Verde ("young wine") from northwest Portugal
 - 1,599 red, 4,898 white
- Features
 - 1 response: sensory-based measure of quality
 - 11 explanatory (physiochemical properties):
 Fixed acidity, volatile acidity, citric acid,
 pH, alcohol, residual sugar, chlorides,
 density, sulphates, free sulfur dioxide
 and total sulfur dioxide
- No missing values
- Collected by Portugal's official certification body (CVRVV) between May 2004 and February 2007
- Available in UCI MLR
 http://archive.ics.uci.edu/ml/datasets/Wine+Quality

Multiple, imbalanced classes

Most samples perceived as "average;" few high/low quality

Distribution of Quality

Median of 3+ expert ratings on 0-10 scale from blind tastings

Mean 5.9 Median 6

Skewed/noisy data, non-linear relationships

Dependent/correlated features

Selected Spearman Rank Correlation Coefficients

(p-value < .0001)

	Red	White
Density - Alcohol	-0.5	-0.8
Density - Residual Sugar	0.4	0.8
Density - Chlorides	0.4	0.5
pH - Fixed Acidity	-0.7	-0.4
pH - Citric Acid	-0.5	
Free S02 - Total S02	0.8	0.6
Citric Acid - Fixed Acidity	0.7	
Citric Acid - Volatile Acidity	-0.6	

Modeling Approach

Separate for red and white

- 1. 20 iterations of Scikit-Learn's Random Forest Classifier with 500 trees and stratified 5-fold cross validation
- 2. Grid search with F1 scoring to tune parameters for number of trees, max features per tree and measure of tree split quality (gini vs entropy)
- 3. 20 additional iterations of Random Forest Classifier with "best" model parameters and stratified 5-fold CV
- 4. Comparison of RF overall accuracy, kappa, sensitivity by class and precision by class to published SVM $T_{0.5}$ results

Red: RF shows some gains over SVM

Particularly for higher classes

^a 20 iterations of Scikit-Learn's Random Forest Classifier with stratified 5-fold cross validation with 500 estimators

^b Cortez et. al. Note, Sensitivity by Class calculated from published confusion matrix.

White: RF slightly better

No lift for highest (9), lowest (3) classes

^a 20 iterations of Scikit-Learn's Random Forest Classifier with stratified 5-fold cross validation with 500 estimators

^b Cortez et. al. Note, Sensitivity by Class calculated from published confusion matrix.

Red: Tuning suggests 5 features, fewer trees

Improvement likely to be small, if any

Red: Only hi/lo precision improves with tuning

^a 20 iterations of Scikit-Learn's Random Forest Classifier with stratified 5-fold cross validation, 360 estimators and 5 max features

62.7%

5

6

7

^b 20 iterations of Scikit-Learn's Random Forest Classifier with stratified 5-fold cross validation and 500 estimators

^c Cortez et. al. Note, Sensitivity by Class calculated from published confusion matrix.

White: Similar changes + entropy split criterion

Toss up between sqrt(d) and 5 max features

White: No notable change with tuning

^a 20 iterations of Scikit-Learn's Random Forest Classifier with stratified 5-fold cross validation, 360 estimators, 5 max features and entropy

^b 20 iterations of Scikit-Learn's Random Forest Classifier with stratified 5-fold cross validation and 500 estimators

^c Cortez et. al. Note, Sensitivity by Class calculated from published confusion matrix.

Conclusions

- Random Forest appears to beat SVM, especially for red, but still room for improvement
 - Variable transformations? e.g., log
 - Other methods? e.g., Sklearn Multiclass
- Results potentially useful for wine production and marketing decisions
- Key challenge will be expanding dataset to cover other varietals, regions, metrics and/or audiences