Decision Trees

BY MG ANALYTICS

IMPORTANT TERMS

- Root Node: It represents entire population or sample and this further gets divided into two or more homogeneous sets.
- **Splitting:** It is a process of dividing a node into two or more sub-nodes.
- Decision Node: When a sub-node splits into further sub-nodes, then it is called decision node.
- ▶ **Leaf/ Terminal Node:** Nodes do not split is called Leaf or Terminal node.
- Branch / Sub-Tree: A sub section of entire tree is called branch or sub-tree.
- Parent and Child Node: A node, which is divided into sub-nodes is called parent node of subnodes whereas sub-nodes are the child of parent node.

Process

- Trees are generated by selecting best rules possible at every split.
- Classification:
- Probability is obtained by proportion of values at leaf node
- Hard Class decisions are dependent on
 - majority vote.
 - Applying cut off on probability score
- Regression:
- Decision is dependent on average of target at terminal or leaf nodes
- ▶ Tree splitting is stopped when one of the set conditions is met.

Rules creation: Numeric Variables

Numeric variables are split into random ranges to create rules.

Age	Rules
10	Age >10, Age <10
13	Age > 13
5	Age <5
7	Age >7
17	Age<17
24	Age >24

Rules creation: Categorical Variables

- Categorical variables are split on value >0.5 to create rules.
- Male > 0.5
- ► City_NY > 0.5
- City_Paris > 0.5

Male	City_NY	City_Paris
0	1	0
1	1	0
0	0	1
0	1	0
1	0	1
0	1	0

Axis Aligned Split

be aligned to an axis where each feature is an axis.

Rule Selection : Classification

We are looking for a split which gives the most homogeneous child nodes.

$$gini\ index = 1 - \sum_{i=1}^{k} p_i^2$$

$$entropy = -\sum_{i=1}^{k} p_i * log(p_i)$$

$$deviance = -\sum_{i=1}^{k} n_i * log(p_i)$$

Using Information gain to Split

Probability of getting a result out of

split

6/12 = .50

$$3/7 = .42$$

3/5 = .60

$$2/7 = .28$$

Information Gain Using Gini index

Parent Gini : 1- $(6/12)^2 + (6/12)^2 = 0.5$

Split 1: GINI_1 = 1-
$$(4/7)^2$$
 + $(3/7)^2$ = 0.4898
: GINI_2 = 1- $(2/5)^2$ + $(3/5)^2$ = 0.480

Wght avg of GINIs = (7/12)*(0.4898) + (5/12)*(0.480) = 0.486GAIN = 0.5 - 0.486 = 0.014

Split 2: GINI_1 = 1-
$$(4/5)^2 + (1/5)^2 = 0.320$$

: GINI_2 = 1- $(5/7)^2 + (2/7)^2 = 0.4082$

Wght avg of GINIs = (5/12)*(0.320) + (7/12)*(0.4082) = 0.3715GAIN = 0.5 - 0.3715 = 0.1285

Regression Trees

 we are collecting very similar records at each leaf. So, we can use median or mean of the records at a leaf as the predictor value for all the new records that obey similar conditions.

Such trees are called regression trees.

Rule Selection: Regression

In case of regression the original SSE is compared with the sum of SSEs after the splits and the one with minimum is selected.

TARGET	PREDICTED	ERROR	Sqr(Error)
5	8.63	3.63	13.1769
6	8.63	2.63	6.9169
4	8.63	4.63	21.4369
6	8.63	2.63	6.9169
11	8.63	-2.37	5.6169
12	8.63	-3.37	11.3569
13	8.63	-4.37	19.0969
12	8.63	-3.37	11.3569
		SSE	95.8752

TARGET	PREDICTED	ERROR	Sqr(Error)
5	8.75	3.75	14.0625
6	8.75	2.75	7.5625
12	8.75	-3.25	10.5625
12	8.75	-3.25	10.5625
			42.75

TARGET	PREDICTED	ERROR	Sqr(Error)
11	8.5	-2.5	6.25
6	8.5	2.5	6.25
13	8.5	-4.5	20.25
4	8.5	4.5	20.25
			53

SSE = 42.75+53 = 95.75

TARGET	PREDICTED	ERROR	Sqr(Error)
5	5.25	0.25	0.0625
6	5.25	-0.75	0.5625
6	5.25	-0.75	0.5625
4	5.25	1.25	1.5625
			2.75

TARGET	PREDICTED	ERROR	Sqr(Error)
11	12	1	1
12	12	0	0
13	12	-1	1
12	12	0	0
			2

When to stop splitting:

- 1. Node becomes homogeneous.
- 2. Maximum depth of tree is reached.
- 3. Maximum number of leaf node limit is reached.
- 4. Leaf node has observations less than lower limit of values present.
- 5. The split results in leaf node having less than lower limit of values.

Hyperparameters:

criterion{"gini", "entropy"}, default="gini"

The function to measure the quality of a split. Supported criteria are "gini" for the Gini impurity and "entropy" for the information gain.

Splitter{"best", "random"}, default="best"

The strategy used to choose the split at each node. Supported strategies are "best" to choose the best split and "random" to choose the best random split.

max_depth: int, default=None

The maximum depth of the tree. If None, then nodes are expanded until all leaves are pure or until all leaves contain less than min_samples_split samples.

- min_samples_split: int or float, default=2
 The minimum number of samples required to split an internal node:
- min_samples_leaf: int or float, default=1
 The minimum number of samples required to be at a leaf node.
- max_features: int, float or {"auto", "sqrt", "log2"}, default=None
 The number of features to consider when looking for the best split.
- max_leaf_nodes: Grow a tree with max_leaf_nodes in best-first fashion.
- class_weight: dict, list of dict or "balanced", default=None Weights associated with classes in the form {class_label: weight}.

Overfitting

- Dtree's overfit due to:
 - high depth
 - Noisy observations
 - Noisy Variables