Interaction Humain-Matériel

▶ Charles Pontonnier

Modèles Musculo vs le monde

Modèles musculo vs le monde

Modèles musculo vs le laboratoire

Humain

Interaction (physique)

Estimation des efforts externes

Mise à l'échelle Modélisation

Redoncance musculaire Contraintes

Force

Activité musculaire

Mouvement

Laboratoire

- + Analyse du mouvement
- + Conditions contrôlées
- + Prototypage des méthodes

Modèles musculo vs le sport

Interaction (physique)

 $M(q)\ddot{q} + C(q, \dot{q}) = F + E$

Humain

Prédiction des actions d'interaction Cosimulation Système déformable

Matériel sportif/environnement

- + Analyse de l'interaction (synergie)
- + Prévention des blessures
- + Optimisation de la performance
- + Optimisation du matériel

Interaction plongeur plongeoir

▶ Thèse de Louise Demestre

Interaction en plongeon olympique (thèse Louise Demestre)

XXX

Modèle d'interaction

- A. MULLER, C. PONTONNIER, P. PUCHAUD, G. DUMONT, CUSTOM: A MATLAB TOOLBOX FOR MUSCULOSKELETAL SIMULATION, JOURNAL OF OPEN SOURCE SOFTWARE, OPEN JOURNALS, 4 (33), 1-3 (2019)
- S. Grange, ATL4S—A Tool and Language for Simplified Structural Solution Strategy. Located at: GEOMAS INSA-Lyon (2021)

Modèle du plongeur

18 segments, 44 degrés de liberté Masses et inerties [Dumas2006] Mise à l'échelle géométrique [Puchaud 2019]

$$H(q)\ddot{q} + C(q,\dot{q})\dot{q} + G(q) = f_e + \tau$$

Quantité d'intérêt!

Dumas, R., Cheze, L., & Verriest, J. P. (2007). Adjustments to McConville et al. and Young et al. body segment inertial parameters. *Journal of biomechanics*, 40(3), 543-553.

Puchaud, P., Sauret, C., Muller, A., Bideau, N., Dumont, G., Pillet, H., & Pontonnier, C. (2020). Accuracy and kinematics consistency of marker-based scaling approaches on a lower limb model: a comparative study with imagery data. *Computer Methods in Biomechanics and Biomedical Engineering*, 23(3), 114-125.

Modèle de contact

Points anatomiques définis sur le pied comme des « points de contact »

On limite la force max par point de contact

On définit des seuils pour la détection du contact (position et vitesse)

$$\min_{\boldsymbol{f_e}} \sum_{i=1}^{2N_f} \|\boldsymbol{F_i}\|^2$$

On minimise la somme de la norme des forces au carré en chaque point de contact

$$S. t. \begin{cases} M_s(\boldsymbol{q}) \ddot{\boldsymbol{q}} + C_s(\boldsymbol{q}, \dot{\boldsymbol{q}}) + G_s(\boldsymbol{q}) + \boldsymbol{f_e} = \boldsymbol{0} \\ \forall i \in [1, 2(N_f + N_h)], \boldsymbol{F_i} < \boldsymbol{F_{i_{max}}} \end{cases}$$

En respectant l'équilibre dynamique et les forces maximales disponibles par point de contact

Repère mobile (à recalculer à chaque instant)

On repère les pieds sur le plongeoir à chaque frame

On définir un repère local pour le contact

Modèle de tremplin

Modèle éléments finis (49 nœuds)
Contact unilatéral (géré par complémentarité)

Méthode de caractérisation

4 essais (2 courses d'élan, 2 départ arrêtés)

Les points d'observation sont situés au-delà du fulcrum (appui)

Recuit simulé

100 tirs (répartition statistique du résultat d'optimisation → k-means clustering sur la distance euclidienne d'un vecteur solution à l'autre)

Résultats moyennés sur l'ensemble des essais -

Caractérisation sur les essais étudiés

Plongeons	Validation – sans élan	Validation – avec élan	Application – avant
Erreur max à l'extrémité (m)	0,29 ± 0,00	0,24 ± 0,00	0,53 ± 0,06
Erreur max à l'extrémité (%)	59 ± 1	51 ± 2	49 ± 6
Erreur max à l'appui (m)	0,04 ± 0,01	0,05 ± 0,01	0,09 ± 0,03
Erreur max à l'appui (%)	51 ± 11	68 ± 4	52 ± 13
Erreur moyenne maximale (m)	0,06 ± 0,00	0,06 ± 0,01	0,15 ± 0,03
Erreur normalisée maximale	12 ± 1	17 ± 7	18 ± 5
(%)			
Intervalle corrélation max	[0,89-0,95]	[0,89-0,93]	[0,83 - 0,92]
кетага associe max (s)	0,01 ± 0,01	U,UZ ± U,UU	U,U4 ± U,U3

 \blacksquare $\frac{EI}{h} = 2,65.10^5 Pa$

 $\rho = 855 \, kg. \, m^3$

e = 0.099

 \blacksquare $\frac{EI}{h} = 2,50.10^5 Pa$

 $\rho = 1150 \, kg.m^3$

e = 0.999

Erreurs maximales

élevées

Erreurs moyennes satisfaisantes

Corrélation satisfaisante

Discussion

Les solutions appartiennent toutes au même cluster → cohérence des résultats d'optimisation

Connaitre la réaction du plongeoir = connaitre son comportement vibratoire

Connaitre le modèle = connaitre son énergie mécanique

Etude énergétique du plongeon

Application a l'ETUDE ENERGETIQUE DU PLONGEON

- 1 plongeur de niveau international
- 6 types de plongeons différents
- 3 itérations

 tendance

Plongeons étudiés

Plongeons arrière

Etude des transferts d'énergie

Calcul des énergies du plongeur et du plongeoir

•
$$Ep_{plongeur} = Mg(h - h_{min})$$

•
$$Ec_{plongeur} = \sum_{j=1}^{N} \frac{1}{2} m_j v_j^2 + \frac{1}{2} I_j \omega_j^2$$

Calcul des énergies du plongeur et du plongeoir

- Prise en compte de tous les nœuds
- Energie potentielle de déformation
- Energie cinétique du plongeoir

Etude énergétique du saut à la perche

$$E_{inp1} = E_{out1} - E_{initial}$$

$$E_{inp2} = E_{out2} - E_{out1}$$

22

Etude énergétique du plongeon sur tremplin – plongeons avant

Etude énergétique du plongeon sur tremplin – plongeons arrière

plongeons avant – évolution des énergies

plongeons avant – Critères énergétiques

- 1 er
- 2ème
- 3ème

plongeons avant – Critères énergétiques

- **7**ème
- 3ème

plongeons avant – Critères énergétiques

- 1 er
- 2ème
- 3ème

plongeons avant – énergies maximales

plongeons arrière – évolution des énergies

plongeons arrière – Critères énergétiques

plongeons arrière – Critères énergétiques

- 1 er
- 2ème
- 3ème

plongeons arrière – énergies maximales

- 1 ei
- 2ème
- 3ème

Conclusion – Analyse de la performance

Données de mouvement

Modèle d'interaction

Méthode d'analyse

Transferts d'énergie

Résultats

Evolution des énergies

Critères de performance

Evolution des critères avec le nombre de rotations

Conclusions & perspectives

Profils énergétiques des plongeons des plongeurs de l'INSEP + moments cinétiques + ...

Corrélation avec la cinématique

Retours à l'entraineuse

Etude de la réception à la gymastique (interaction gymnaste − tapis) → prévention des blessures

Interaction Gymnaste-Tapis

► Thèse de Rebecca Crolan

Rébecca Crolan, Diane Haering, Mathieu Ménard and Charles Pontonnier

https://www.urgencedos.com/wp-content/uploads/2018/09/lumbago-lombalgie.jpg?x16441

Review

- ☐ Gymnast landing strategy ≠ other sport
- ☐ Drop landings **do not represent** gymnastic landings (Christoforidou et al. (2017))
- Protocol without landing mat is not representative as well (Niespodziński et al. (2021))
- ☐ Study of **progressive** fatigue (Zhang et al. (2021))

Procedure

Sorensen Test

Data Analysis

Prediction

Develop a machine learning model to predict kinematics and kinetic moment, based on IMUs.

With reference to:

5 IMUs data

Motion Capture

Custom Modelisation

In progress

Fatigue Parameters

Study the variation of the landing strategy with the onset of fatigue.

With reference to:

Height of back somersault

Sorensen Test + RPE scale

EMGs data

Study Time Frequency Analysis with model develop in S2M laboratory, Fabien Dal Maso , Canada.

History of low back injury

(with Romane Bidet, osteopathy student)

Identify the relationship between the injury history and the landing strategy.

With reference to:

Health history questionnaire

Sorensen Test + RPE scale

Landing strategy

Landing Mat caractérisation (Adrien Gaggioli

internship)

Brüggemann, G. P., Arampatzis, A., Emrich, F., & Potthast, W. (2008). Biomechanics of double transtibial amputee sprinting using dedicated sprinting prostheses. *Sports Technology*, 1(4-5), 220-227.

Rigney, S. M., Simmons, A., & Kark, L. (2017). Mechanical characterization and comparison of energy storage and return prostheses. *Medical Engineering & Physics*, *41*, 90-96.

Makimoto, A., Sano, Y., Hashizume, S., Murai, A., Kobayashi, Y., Takemura, H., & Hobara, H. (2017). Ground reaction forces during sprinting in unilateral transfemoral amputees. *Journal of applied biomechanics*, *33*(6), 406-409.

Frère, J., L'hermette, M., Slawinski, J., & Tourny-Chollet, C. (2010). Mechanics of pole vaulting: a review. *Sports biomechanics*, *9*(2), 123-138.

Morlier, J., & Mesnard, M. (2007). Influence of the moment exerted by the athlete on the pole in pole-vaulting performance. *Journal of biomechanics*, 40(10), 2261-2267.

Frère, J., Sanchez, H., Vanhaesebrouck, R., & Cassirame, J. (2021). Effect of simplifying the body model to compute the energy parameters in pole vaulting. *Sports Biomechanics*, 1-13.

