```
In [1]: import pandas as pd
   import numpy as np
   import matplotlib.pyplot as plt
In [2]:
```

In [3]: df = pd.read_csv("C5_health care diabetes.csv")

Out[3]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunction
0	6	148	72	35	0	33.6	0.62
1	1	85	66	29	0	26.6	0.3
2	8	183	64	0	0	23.3	0.67
3	1	89	66	23	94	28.1	0.16
4	0	137	40	35	168	43.1	2.28
763	10	101	76	48	180	32.9	0.17
764	2	122	70	27	0	36.8	0.34
765	5	121	72	23	112	26.2	0.24
766	1	126	60	0	0	30.1	0.34
767	1	93	70	31	0	30.4	0.3

768 rows × 9 columns

In [4]:

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 768 entries, 0 to 767
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	Pregnancies	768 non-null	int64
1	Glucose	768 non-null	int64
2	BloodPressure	768 non-null	int64
3	SkinThickness	768 non-null	int64
4	Insulin	768 non-null	int64
5	BMI	768 non-null	float64
6	DiabetesPedigreeFunction	768 non-null	float64
7	Age	768 non-null	int64
8	Outcome	768 non-null	int64

dtypes: float64(2), int64(7)

memory usage: 54.1 KB

```
In [5]:
Out[5]: Index(['Pregnancies', 'Glucose', 'BloodPressure', 'SkinThickness', 'Insulin',
            'BMI', 'DiabetesPedigreeFunction', 'Age', 'Outcome'],
           dtype='object')
In [6]: f_m=df[['Pregnancies', 'Glucose', 'BloodPressure', 'SkinThickness', 'Insulin',
          'BMI', 'DiabetesPedigreeFunction', 'Age']]
In [7]:
Out[7]: (768, 8)
In [8]:
Out[8]: (768,)
In [9]:
In [10]:
In [11]: logr=LogisticRegression()
Out[11]: LogisticRegression()
In [13]: prediction=logr.predict(observation)
Out[13]: array([1], dtype=int64)
In [14]: ----
Out[14]: array([0, 1], dtype=int64)
In [15]: [7]
Out[15]: 0.00029236948687560993
Out[16]: 0.9997076305131244
       RANDOM VARIABLE
In [17]:
Out[17]: 0 500
          268
       Name: Outcome, dtype: int64
```

```
In [18]: x=df[['Pregnancies', 'Glucose', 'BloodPressure', 'SkinThickness', 'Insulin',
                'BMI', 'DiabetesPedigreeFunction', 'Age']]
In [19]: #g1={"Verified":{'True':1,'False':2}}
         #df=df.replace(g1)
In [20]: from sklearn.model_selection import train_test_split
         x_train,x_test,y_train,y_test=train_test_split(x,y,train_size=0.70)
In [21]: rfc=RandomForestClassifier()
         Out[21]: RandomForestClassifier()
In [22]: parameters={'max_depth':[1,2,3,4,5],
                    'min_samples_leaf':[5,10,15,20,25],
In [23]: | from sklearn.model_selection import GridSearchCV
         grid_search =GridSearchCV(estimator=rfc,param_grid=parameters,cv=2,scoring="ac
Out[23]: GridSearchCV(cv=2, estimator=RandomForestClassifier(),
                      param_grid={'max_depth': [1, 2, 3, 4, 5],
                                  'min_samples_leaf': [5, 10, 15, 20, 25],
                                  'n_estimators': [10, 20, 30, 40, 50]},
                      scoring='accuracy')
In [24]:
Out[24]: 0.7728527437163624
In [25]:
```

```
from sklearn.tree import plot_tree
In [26]:
         plt.figure(figsize=(80,40))
         plot_tree(rfc_best.estimators_[5],feature_names=x.columns,class_names=['Yes','
Out[26]: [Text(2232.0, 1956.96, 'BMI <= 29.85\ngini = 0.456\nsamples = 332\nvalue = [3</pre>
         48, 189]\nclass = Yes'),
          Text(892.8, 1522.080000000000, 'SkinThickness <= 8.5\ngini = 0.24\nsamples
         = 125\nvalue = [179, 29]\nclass = Yes'),
          Text(446.4, 1087.2, 'gini = 0.35\nsamples = 40\nvalue = [48, 14]\nclass = Ye
         s'),
          Text(1339.19999999999, 1087.2, 'Age <= 28.5\ngini = 0.184\nsamples = 85\nv
         alue = [131, 15]\nclass = Yes'),
          Text(892.8, 652.3200000000002, 'gini = 0.0\nsamples = 55\nvalue = [102, 0]\n
         class = Yes'),
          Text(1785.6, 652.3200000000002, 'gini = 0.449\nsamples = 30\nvalue = [29, 1]
         5]\nclass = Yes'),
          Text(3571.2, 1522.0800000000002, 'BMI <= 40.8\ngini = 0.5\nsamples = 207\nva
         lue = [169, 160]\nclass = Yes'),
          Text(3124.799999999997, 1087.2, 'BloodPressure <= 84.5\ngini = 0.494\nsampl
         es = 172\nvalue = [153, 123]\nclass = Yes'),
          Text(2678.399999999996, 652.3200000000002, 'Insulin <= 9.0\ngini = 0.481\ns
         amples = 147\nvalue = [143, 96]\nclass = Yes'),
          Text(2232.0, 217.4400000000005, 'gini = 0.496\nsamples = 70\nvalue = [52, 6
         2]\nclass = No'),
          Text(3124.79999999997, 217.4400000000005, 'gini = 0.396\nsamples = 77\nva
         lue = [91, 34]\nclass = Yes'),
          Text(3571.2, 652.3200000000002, 'gini = 0.394\nsamples = 25\nvalue = [10, 2
         71\nclass = No'),
          Text(4017.6, 1087.2, 'gini = 0.422\nsamples = 35\nvalue = [16, 37]\nclass =
         No')]
```

