

IShape ISHAP

喀擦一下,快速計算體脂身材管理更容易!

組長:蔡昀軒

成員:江東哲、李奕諴、李騏敬、傅聖涵、黃意程

發表日期:2021.06.14

團隊介紹

蔡昀軒

國立東華大學 企管系畢 電商業務助理1年 (業績追蹤、利用圖形介 面進行網頁優化)

江東哲

國立高應科大 會計系畢 JAVA軟體工程師1年 (銀行總帳系統、端末平 台開發測試)

李奕諴

國立臺灣師大 歷史系畢 在學期間自學與選修 遊戲設計、UI/UX設計

團隊介紹

傅聖涵

國立海洋大學 航管系畢 安樂高中-數理資優班 服務業(2年)

李騏敬

國立宜蘭大學 電子系畢業 有c、c++和c#使用經歷

黃意程

淡江大學 管理科學系 具電商、粉專經營經驗 在學期間籌備過專案。

目錄 **Contents**

1產品介紹

專案發想動機與理念 P.6 - P.12 競爭產品分析 P.13 產品演示 P.15

開發成果 ^{疾空整百主境} 系統操作流程

模型整合呈現 P.16 - P.18 開發環境與工具 P.20

資料蒐集 P.21 體脂率迴歸模組 P.38- P.46

展望規劃 開發困難與限制 P.47 未來展望 P.48- P.49

「 別巴 別半 」 是一種慢性疾病

而其中,歷年男性**肥胖比例相較於女性更是多了20%** 故,目標對象主要以男性為主

BMI 身體質量指數 由於算法簡單好用

至1970年發明後,現今已成為衡量肥胖的主要指標

身體質量指數 = 體重 ÷ 身高 (KG) (M²)

日 BMI只注重「體重」數字 未將脂肪和非脂肪,分開來計算

林來瘋 身高192cm 體重91kg

連公子 身高192cm 體重92kg

滑豐 沿率 更精準

直接測量人體內脂肪重量占總體重的比例。但,體脂率要有特定工具才能測量

難道量階率就這麼難嗎?

When Artificial Intelligence meets IN SHAPE

量體溶不再困難

ishape

喀擦一下,快速計算體脂

您將更輕鬆、更精準管理身體數據

競爭產品分析

	iShape	體脂計	雙能量X光 吸收儀	水下秤重	圍度測量	皮下皺褶測量
測量方法	照片+基本資料	生物電阻	X光偵測身體組成	阿基米得原理	三圍+公式	皮摺厚度+公式
操作性	好上手	測量方式普遍	需專業人員	低,設施較常出現 於實驗室	圍度易受到測量方 式不當所影響	需專業人員操作
即時性	3分鐘 方便快速	3分鐘 需購入器材或至健身 房使用	30分鐘 需等待報告結果	久	2分鐘	2分鐘
準確度	AI偵測 照片需提供正確 角度	易受到身體狀態影響 各家體脂計計算方式 有落差	極高,極高,屬學界水準	高 屬古典測量方法	園度易受到測量方 式不當所影響	易受到測量方式有誤 致數據不精確
費用	Beta版免費試用	\$100/次 - \$1,700	\$700 /次 (部桃)		\$30 (皮尺費用)	\$60 (皮摺脂肪夾)

DEMO - LINE BOT

喀擦一下,快速記錄體脂身材管理更容易!

立即體驗

講者: 江東哲

LINE BOT - 前端

依序上傳全身照

選擇性別

輸入年齡

輸入身高

輸入體重

LINE BOT 照片性別資料接收

Line傳回資料

Server傳送資料

程式執行流程

上傳全身照

監聽 圖片訊息 事件:

當使用者上傳正面全身照時, 將圖片下載到指定路徑 並以此事件的訊息ID 作為圖檔檔名 傳送 圖片上傳成功 的訊息通知

傳送按鈕樣板訊息 給使用者點選性別 並將性別選項 設定為Postback 行為

監聽 Postback回傳 事件: 點選性別後

回傳性別資料並儲存

然後傳送輸入年齡的訊息

LINE BOT _{其他基本資料接收}

Server傳送資料 Line傳回資料 程式執行流程

監聽 文數字訊息 事件:

儲存 年齡 資料,請求輸入身高 儲存 身高 資料,請求輸入體重 儲存 體重 資料 傳送 體脂率分析中 訊息

呼叫bfp_analysis() 利用使用者資料開始分析

講者: 江東哲

LINE BOT 模型參數使用

傳送當日分析報告

體脂率分析:

- 1. 執行 human-part-segmentation 模組 從上傳的正面全身照圖片 劃分人體主要部分,產生人體分區部位圖、 人體骨架圖及人體關節座標點 並依比例從座標距離換算成 胸寬、腰寬、臀寬
- 2. 透過 joblib 模組分別載入 胸圍、腰圍、臀圍 隨機森林回歸模型 以預先訓練好的參數,預測三圍
- 3. 取得預測三圍後 再用 joblib 模組載入 體脂率 偏最小平方回歸模型 訓練好的參數,預測體脂率

4. 取得預測資料後,判別三圍及體脂率是否有在衛福 部國民健康署公佈的健康標準內,並傳送分析訊息

系統操作流程

開發環境與工具

CDCL Human Part Segmentation

資料蒐集

資料來源	資料類型	蒐集方式	總筆數	合格筆數
PTT - fitness健身版	數據+圖片	爬蟲	3000	24
Reddit - Physique_phriday	數據+圖片	爬蟲	215	1
凱渥/伊林娛樂	數據+圖片	爬蟲	300	2
STYLE CO.会社	數據+圖片	爬蟲	30	0
tokyo style 整型外科診所	數據+圖片	爬蟲	10	0
小紅書	數據+圖片	手動	200	24
JPpornstars	數據+圖片	手動、爬蟲	10600	48
training men change	數據	手動	1060	0
bodysize	數據+圖片	手動、爬蟲	39920	43
西方/亞洲女星	數據+圖片	手動	30	2
bodyfat - 水下秤重	數據	手動	252	251
真人測量	數據+圖片	實際徵求樣本	17	10

講者:李奕諴

人體測量模組

為了取得**齊寬、腰寬、胸寬** 需要取得**人體輪廓 + 臀部、腰部、胸部位置(圖片y座標)**

函式庫	CRF-RNN for Semantic Image Segmentation	OpenCV	OpenPose	CDCL Human-Part-Segmentation
目的功能	人體區塊	人體輪廓邊緣座標	人體關節點座標	人體關節點座標 + 人體部位區塊
示意圖				
未採用/採用原因	函式庫所取得的人體 區塊為全身,無法滿 足取得寬度的需求	效果不佳不採用	CDCL-Human- Part-Segmentation 可取代	同時具有骨架偵測與部位分割的功 能 最終採用

講者:李奕諴

人體測量模組

最終採用的函式庫:

CDCL

Human-Part-Segmentation

部位分割模型使用電腦生成的影像做為訓練資料,節省標記部位區域的成本,並透過人體姿勢(骨架)輔助,使訓練出的模型也能適用在真實的照片上。

因此該函式庫同時具有骨架偵測與部位分割的功能。

講者:李奕諴

人體測量模組

寬度計算方法:參考了人體測量學(anthropometry)的相關研究,透過身體比例取得

1. 肩部位置

兩邊肩關節點向上 延伸至邊緣點的平 均y座標

2. 臀部位置與寬度

臀關節點y座標平均 的橫切長度

3. 腰部位置與寬度

透過腰部佔身高比計算出腰部y座標,並計算其橫切長度

4. 胸部位置與寬度

定義腰部以上至肩 膀關節區間為胸部 區塊,取其橫切長 度最高者

三圍迴歸模組

爬蟲資料研究與預處理

訓練欄位:

變數名稱	型態	資料轉換
性別	類別	男性: 0 女性: 1
種族	類別	東方人: 0 西方人: 1
身高 (CM)	數值	無
體重 (KG)	數值	無
BMI	數值	無
腰寬 (CM)	數值	無
臀寬 (CM)	數值	#

三圍迴歸模組

各演算法模型評估(交叉驗證CV = 5)

R2 score 多為負數 代表該回歸模型無法有效預測

Decision tree (max_depth = 5) 預測誤差值 ≧ 5				
資料來源	計數			
小紅書	6			
國外男星	5			
女優	4			
西方女星	3			
伊林女模	1			
總計	19			

三圍迴歸模組

測試與排除異常資料

三圍迴歸模組

分析模型在原資料上的預測表現

Decision tree (max_depth = 5)

西方人

西方人

東方人

男性

女性

女性

	1							
gender	race	Height (CM)	Weight (KG)	source	bmi	Waist (CM)	pre_waist	loss
男性	西方人	166	54	國外男星	19.60	88	61.52	26.48
男性	東方人	187	75.5	伊林男模	21.59	73.66	83.67	10.01
男性	西方人	198	111	國外男星(健羊)			~~ ~~	
男性	西方人	191	130	國外男星(健			7	7

國外男星

西方女星

小紅書

誤差>5cm大多為男性,且有兩資料 誤差極大。

187

175

168

78

58

76

但我們無法從圖片上觀察出可能原因

waist_loss: 26.48

waist_loss: 10.01

三圍迴歸模組

分析模型在真人資料(不同的資料)上的預測表現

gender	race	Height (CM)	Weight (KG)	real_waist	pre_waist	waist_loss
8692.jpg	男性	179	98.7	105	92.67	12.33
8690.jpg	男性	165	48.1	68	59	9
8693.jpg	男性	174	73	87	78.61	8.39
8696.jpg	女性	158	49.5	67	59	8
8704.jpg	男性	161.5	50.5	66.5	59	7.5
8691.jpg	男性	176	59	74	78.61	-4.61
8703.jpg	男性	182	72	83	78.61	4.39
8700.jpg	男性	175	57.5	69	65.19	3.81
8702.jpg	男性	168	92.7	89	92.67	-3.67
8689.jpg	男性	166	64.8	82	78.61	3.39
8695.jpg	男性	172	72.9	87	83.67	3.33
8699.jpg	男性	168	67.6	81	78.61	2.39
8698.jpg	男性	178	72.8	77.5	78.61	-1.11
8694.jpg	女性	149	45.6	69	68	1
8701.jpg	男性	180	75.9	83	83.67	-0.67
8697.jpg	男性	183	78.15	83.2	83.67	-0.47
8688.jpg	女性	150	47.9	68	68	0

男性真人

穿著寬鬆的樣本, 誤差卻忽高忽低

三圍迴歸模組

用爬蟲資料建模之結論

對於預測誤差不合理之現象:

- 1. 數據不實
- 2. 照片修圖
- 3. 明星照片與數據兩者時間對不上

因無法判斷數據之真實性 我們決定改用其他資料

三圍迴歸模組

使用生成照片作為新的訓練資料

datasets:

- Roger W. Johnson
- Fitting Percentage of Body Fat to Simple Body Measurements (2017/12/01)
- 共252筆資料

Body Visualizer

- Max Planck Gesellschaft (普朗克研究院)
- Perceiving Systems Department

總共生成251張圖片

Switch Units

三圍迴歸模組

使用生成照片作為新的訓練資料

訓練欄位:

變數名稱	型態	資料轉換	
年齡	數值	無	
身高 (CM)	數值	無	
體重 (KG)	數值	無	
BMI	數值	無	
胸寬 (CM)	數值	無	
腰寬 數值 (CM)		無	
野寛 (CM)	數值	無	

data cleaning:

刪除資料:1筆

 超過Body Visualizer模擬上限(體重過 重164.72)

更正資料:1筆

• 身高誤植29.5 inches(更正為69.5)

共251筆資料

三圍迴歸模組

各演算法模型評估(交叉驗證CV = 10)

三圍迴歸模組

評估各演算法模型在原資料上的表現

真實值-真實值>5的個數

三圍迴歸模組

分析模型在真人資料(不同的資料)上的預測表現

誤差過大的數據

- 預測值皆大於真實值
- 受測者多穿著寬鬆的衣物

chest_loss: 16.40 waist_loss: 20.92 hips loss: 0.03

chest_loss: 10.59 waist_loss: 13.16 hips loss: -3.04

chest_loss: 7.79 waist_loss: 9.58 hips loss: 1.24

chest_loss: 4.26 waist_loss: 8.44 hips loss: 1.51

chest_loss: 5.68 waist_loss: 4.77 hips loss: 3.44

chest_loss: 10.57 Waist_loss: 12.93 hips_loss: -.2.68

chest_loss: 1.79 waist_loss: 5.55 hips_loss: -3.87

三圍迴歸模組

驗證:是否穿衣鬆緊會影響預測誤差

chest_loss: 10.57 Waist_loss: 12.93

hips_loss: -.2.68

chest_loss: 5.41 waist loss: 2.28

1,25

當受測者身著不同寬鬆程度的衣物,會使誤差跳動很大

- 只要受測者穿著合身衣物
- 以水平角度拍下全身照

演算法:隨機森林回歸

可在誤差±5cm的範圍內,預測出受測者三圍。

體脂率迴歸模組

建立預測體脂率的模型

- 使用dataset上的252筆資料訓練模型,扣除體脂率小於5%的異常值,訓練資料欄位:年齡、身高、體重、胸圍、腰圍、臀圍、BMI
- 產出結果:體脂率
- 另外準備10筆真人資料做最後驗證
- 期望目標:預測真人體脂率誤差5%內

使用五種不同的演算法

經交叉驗證,『線性回歸』擬合程度最佳,MSE最小。

使用線性迴歸建模型

• 偏度:

bmi	0.702531
hips	0.522841
chest	0.492628
waist	0.440298
weight	0.380316
age	0.260781
height	0.118854
bfp	0.2555293

各項欄位的偏度皆趨近於O,雖然有些微的右偏, 但趨近於常態分佈,因此偏度不需做調整。

(誤差:預測值-正確值)

驗證:是否不做偏度調整對於線性回歸預測結果沒影響!?

預測10筆真人資料:

```
誤差(有調整偏度)
                                                                           誤差(無調整偏度)
           height
                    weight
                            waist
                                               bmi
                                                      bfp
     age
     29.0
404
            166.0
                      64.8
                             82.0
                                    . . .
                                         23.515750
                                                     22.6
                                                           -6.307513
                                                                            -6.760427
     24.0
            165.0
                            68.0
                                         17.667585
                                                          -5.092838
                                                                            -5.028361
405
                    48.1
                                    . . .
                                                     11.9
                                                            -5.966289
     26.0
                                         19.047004
                                                                            -5.312079
406
            176.0
                      59.0
                            74.0
                                                     14.3
                                    . . .
407
     23.0
            179.0
                    98.7
                            105.0
                                         30.804282
                                                     26.1
                                                          1.226805
                                                                             1.066056
                                    . . .
408
     29.0
            174.0
                     73.0
                            87.0
                                    . . .
                                         24.111507
                                                     21.1
                                                            -3.389982
                                                                            -3.550805
410
     29.0
            172.0
                      72.9
                            87.0
                                         24.641698
                                                            -4.575915
                                                                            -4.725940
                                    . . .
                                                     21.9
     28.0
414
            168.0
                      67.6
                             81.0
                                    . . .
                                         23.951247
                                                     21.2
                                                            -7.049352
                                                                            -7.082104
     24.0
            168.0
                      92.7
                             89.0
                                         32.844388
                                                     32.0
417
                                    . . .
                                                          -14.035476
                                                                           -14.250679
418
     29.0
            182.0
                      72.0
                             83.0
                                         21.736505
                                                    17.2
                                                                            -3.339669
                                    . . .
                                                            -3.752612
419
     24.0
            161.5
                      50.5
                             66.5
                                         19.361827
                                                            -3.725409
                                                                            -3.620470
                                                      9.2
```

結論:本來就接近常態分佈可以不調整偏度,影響很小。

遇到的困難:

使用線性回歸預建模,預測真人體脂率誤差還是過大,有一半的資料誤差大於5%,認為可能的原因是訓練模型的『資料量過少,欄位過多』。

如何解決:

目前無法增加資料量,因此嘗試『降維』來驗證是否能降低預測誤差。 使用LASSO, RIDGE, ELASTICNET, PCA, PLS來嘗試建模型。

降維線性回歸

PLS Regression 擬合程度最佳。

PLS REGRESSION

PLS是運用了PCA的概念,但是PCA只有提取X主成份,PLS是分別提取X和Y的成份來做線性回歸,並要求X的主成分和Y的主成份分別達到變異數最大,並且兩者的共變異數最大。

PCA是如何去關聯合

PLS REGRESSION

● 驗證測試資料(10筆真人男性),n_components = 3, mse為最低點:13.7,最終使用此參數作為預測模型參數。

驗證:降維過後是否能減少預測誤差!?

預測10筆真人資料: (誤差:預測值-正確值)

```
誤差 (無降維)
                                                                            誤差(有降維)
           height
                    weight
                             waist
                                                       bfp
                                                bmi
     age
     29.0
                              82.0
                                                      22.6
                                                              -6.307513
                                                                            -4.618576
404
            166.0
                       64.8
                                          23.515750
                                                             -5.092838
405
     24.0
            165.0
                      48.1
                              68.0
                                          17.667585
                                                      11.9
                                                                            -2.782462
406
     26.0
            176.0
                      59.0
                              74.0
                                          19.047004
                                                      14.3
                                                             -5.966289
                                                                            -4.884296
     23.0
                             105.0
                                          30.804282
                                                      26.1
                                                             1.226805
                                                                             2.569511
407
            179.0
                      98.7
408
     29.0
            174.0
                      73.0
                              87.0
                                          24.111507
                                                      21.1
                                                             -3.389982
                                                                            -2.757189
410
     29.0
            172.0
                      72.9
                              87.0
                                          24.641698
                                                      21.9
                                                                            -3.000590
                                                              -4.575915
414
     28.0
            168.0
                      67.6
                              81.0
                                          23.951247
                                                      21.2
                                                             -7.049352
                                                                            -4.449803
     24.0
            168.0
                              89.0
                                          32.844388
                                                      32.0
                                                             -14.035476
                                                                            -7.881501
417
                      92.7
                                                      17.2
418
     29.0
            182.0
                      72.0
                              83.0
                                          21.736505
                                                              -3.752612
                                                                            -4.192190
419
     24.0
            161.5
                      50.5
                              66.5
                                          19.361827
                                                       9.2
                                                              -3.725409
                                                                             1.069362
```

<u>結論:降維過後確實減少誤差,因此最終以PLS回歸做為預測體</u> 脂率模型。

講者:李騏敬

開發困難與限制

問題	缺乏身體數 據	缺乏女性數 據	特徵數據	三圍預測誤差大	無法預測特殊體態	個體差異影響預 測					
類別	收集資料										
目前限制	正面全身照	男性	模組擷 取困難	裸身或穿著合 身衣物	一般體態的人	正常比例體態的 人					
原因	與身體數據 相符合的照 片收集不易	女性的數據 取得困難	模組	且工具限制	特殊體態訓練資料 不夠,無法精準預 測	特殊比例的人會 無法標記所需的 位子					
未來	收	集更多的數據		透過模型來判 斷身上衣物	增加特殊體態資料 收集及訓練	可調整我們所標 記所需要的位子					

講者:李騏敬

未來展望

短期✓

平台功能架設,強調功能的易用性

確立模型基本架構、Line bot的基礎功能

中期

網頁、APP的開發,模型優化

加強數據的完整性、增加會員系統、圖表、 體重的紀錄,雲端系統

長期

行銷推廣,拓展合作,並建立品牌形象

講者:李騏敬

附錄一:產品開發

	iShape 開發時程表						April 2021														May 2	2021														
目次	任務內容	起始日	完成日	天數	完成度	2 3	4 5	6 7	8 9	101	1121	3141	15161	719	202	1222	3242	526	2728	2930	0 1 2	2 3	4 5	6 7	7 8	9 10	1112	131	41516	5171	8192	0212	2223	24252	6272	829303
1	專案題目發想蒐集	4/2	4/9	7	100%																															1
2	提案實作項目討論篩選 及確定	4/2	4/30	28	100%																															
3	提案簡報製作	4/14	4/15	1	100%																															
4	專案時程規劃-甘特圖	4/14	4/21	7	100%																															
5	研究文獻/參考資料 /工具應用	4/13	4/22	9	100%																															1
6	模組研究及開發環境建置	4/13	4/22	9	100%																															
7	爬蟲 - PTT、Reddit論壇	4/14	4/24	10	100%											П																				
8	爬蟲 - 東西方名人、模特兒 、女優、健美、小紅書	4/13	4/24	11	100%																															1
9	全身正面照爬蟲、篩選 及正規化	4/13	5/9	26	100%																															
10	資料集檢索篩選	4/15	4/30	15	100%																															
11	專案期中報告製作	4/16	5/8	22	100%																															
13	資料預處理	4/18	5/8	20	100%																															
12	迴歸模型研究&實作	4/20	5/25	35	100%																															
14	BFP公式驗證比對	4/22	4/24	2	100%																															
15	系統操作流程圖	4/22	5/21	29	100%																															
16	前端呈現功能製作	5/1	5/8	7	100%																															
17	人體模擬照製作	5/5	5/9	4	100%																	Т														
18	模型整合測試	5/12	5/27	15	100%																															
19	迴歸模型分析資料視覺化	5/14	5/27	13	100%																															
20	整體功能測試修正	5/19	5/29	10	100%																															
21	專案發表報告製作	5/23	5/31	8	100%																															

附錄二:專案分工表

✓蔡昀軒 ✓黃意程 ✓李奕誠 ✓傅聖涵 ✓李騏敬 ✓江東哲

專案題目發想蒐集	√	√	√	√	√	
提案實作項目篩選	√	√	√	√	√	\
開發時程-甘特圖	√					√
會議主持紀錄追蹤	✓	√				
研究文獻/參考資料 /工具應用			/			
DP模組應用研究		√	√		√	
開發環境建置					√	√
網站爬蟲實作	✓			√		√
資料集檢索篩選	✓		√			√
人體模擬照製作						V

期中報告製作	√	✓	\	√	√	
資料預處理		✓		√		/
迴歸模型研究&實作		✓		√		
BFP公式驗證						/
系統操作流程圖		✓				/
前端呈現功能製作			/		/	/
模型整合測試		✓				
迴歸模型分析資料 視覺化		✓		✓		
專案發表報告製作	√	✓	\	√	√	\
Line Bot功能實作					V	1

附錄三:專案檢討與改進

檢討項目	說明	改進方法
無意義的爬蟲程式及資料搜集篩選	專案前期,對要訓練的身體特徵不夠瞭解,導致原本篩選出來的資料,到後期發現都無法作爲訓練資 料	前期應該針對要製作的產品,投入較多的人力做文獻資料搜集與相關產品研究,避免耗費時間撰寫無意義的爬蟲與資料篩選
專案時程控制不佳	在專案啟動前,對專案的評估,資料蒐集掌握透不 夠透徹詳細,導致時程規畫不佳,無法達到預期效 果	對專案評估應該更詳盡透徹,列出可能問題,並預先擬定替代方案。
缺乏對檔案的管理 規範	專案前期由於缺乏規範,而成員間檔案處理的風格 不同,造成檔案排序混亂、查找不易	應規劃專案的資料夾結構與命名規則,作為成員間處理檔案的依據; 並落實版本控制,方便日後整理、修改。
環境的開發及架設	專案前期,對專案的最後呈現沒有好的規劃及環境 架設,導致在途中一直變換較簡單的方式來解決問 題	應在初期討論後期呈現及環境的統一,避免浪費時間在解決環境問題及呈現
測試模型耗時過長	對於演算法不夠熟悉,需不斷地調整參數優化模型	應針對測試方法做個列表,逐一去做測試,才能有效率的完成模型
花費多餘時間互相 解釋目前專案進度	組員間資訊傳遞不夠透明、無法快速進入狀況	應在會議期間收攏當前進度,而會議時間需再壓縮,可使專注力更有效運用;會議紀錄應更簡潔、易懂,而放置路徑可於更易取得處,同時觀看率也應提升。

附錄三:開發優勢強項

- 滾動式修正,可以即時評估現有資源,做一個校正回歸
- 持續開會追蹤專案,並不斷改善內容
- 及時調配工作內容,保持機動性
- 團隊配合度高
- 疫情爆發下,快速調整工作型態,適應力及自主性極高
- WFH期間,超前佈署及早與指導老師進行簡報排練
- 積極自主學習, LineBot、Human-Part Segmentation等函式庫的學習應用

參考資料

- 1. Jiang, M., & Guo, G. (2019). Body Weight Analysis From Human Body Images. *IEEE Transactions on Information Forensics and Security*, 14(10), 2676-2688.
- 2. Lin, Y.C., Wang, M.J., & Wang EM. (2004). The comparisons of anthropometric characteristics among four peoples in East Asia. *Applied Ergonomics*, 35(2), 173-178.
- 3. Lin, K., Wang, L., Luo, K., Chen, Y., Liu, Z. & Sun, M.-T. (2020). Cross-Domain Complementary Learning Using Pose for Multi-Person Part Segmentation. *IEEE Transactions on Circuits and Systems for Video Technology*, 31(3), 1066-1078.
- 4. 肥胖和超重(2020年4月1日)。世界衛生組織。https://www.who.int/zh/news-room/fact-sheets/detail/obesity-and-overweight
- 5. 成人健康體位標準(2020年3月13日)。衛生福利部國民健康署。 https://www.hpa.gov.tw/Pages/Detail.aspx?nodeid=542&pid=9737
- 6. 衡量肥胖有哪些方法?(2017年11月13日)。衛生福利部國民健康署。 https://www.hpa.gov.tw/Pages/Detail.aspx?nodeid=127&pid=7794
- 7. Wikipedia contributors. (2021, April 16). Anthropometry. In *Wikipedia, The Free Encyclopedia*. https://en.wikipedia.org/w/index.php?title=Anthropometry&oldid=1018162215
- 8. Wikipedia contributors. (2021, May 11). Female body shape. In *Wikipedia, The Free Encyclopedia*.
 - https://en.wikipedia.org/w/index.php?title=Female_body_shape&oldid=1022575737
- 9. https://www.storm.mg/article/334971?page=1

2 產品介紹

專案發想動機與理念 P.6 - P.12 競爭產品分析 P.13 產品演示 P.15

Q&A 歡迎提問

發表日期: 2021.05.27

開發成果系統操作流程

模型整合呈現 P.16 - P.18 P.19 開發環境與工具 P.20

資料蒐集 P.21 P.22-P.24 一圍迴歸模組 P.25-P.37 體脂率迴歸模組 P.38- P.46

蔡昀軒、江東哲、李奕諴 李騏敬、傅聖涵、黃意程

展望規劃 開發困難與限制 P.4 未來展望 P.48- P.49 開發困難與限制 P.47

thanks for listening

蔡昀軒、江東哲、李奕諴、李騏敬、傅聖涵、黃意程

發表日期:2021.06.14