Теория вероятностей. Вопросы к экзамену

Этот файл — вырезка из лекций, которая составляется для удобства подготовки к экзамену. Можно сказать, что составляется она один раз: всякие ошибки, будь они типографическими или смысловыми, будут, скорее всего, исправлены только в конспекте лекций.

Замечание. Если строгость/нестрогость знака сравнения не имеет значения, то для обозначения этого используется знак $\preccurlyeq \in \{<, \leqslant\}$. При ведении лекций вместо \preccurlyeq использовался знак, похожий на \leqslant , где нижняя черта рисовалась пунктиром. Похожего знака нет в стандартном наборе знаков \not ETEX, поэтому была выбрана замена.

1 Случайные события

1.1 Определение пространства элементарных исходов, примеры. Понятие события (нестрогое), следствие события, невозможное и достоверное событие, примеры. Операции над событиями. Сформулировать классическое определение вероятности и доказать его следствия.

Определение. Случайным называют эксперимент, результат которого невозможно точно предсказать заранее.

Определение. Множество Ω всех исходов данного случайного эксперимента называют пространством элементарных исходов.

Замечание. Всюду в дальнейшем будем предполагать, что

- 1. Каждый элементарный исход является «неделимым», т. е. он не может быть разбит на более «мелкие» исходы;
- 2. В результате каждого эксперимента обязательно имеет место ровно один из входящих в Ω элементарных исходов.

Пример. Бросают монетку. Возможные исходы: выпадение герба или решки. $\Omega = \{ \text{ Герб }, \text{ Решка } \} - \text{множество элементарных исходов. } |\Omega| = 2$

Пример. Бросают игральную кость: $\Omega = \{ \text{"1", "2", "3", "4", "5", "6"} \}, |\Omega| = 6$

Нестрогое определение. Событием будем называть произвольное подмножество множества элементарных исходов множества Ω .

Определение. Событие A называется следствием события B, если из того, что произошло B, следует то, что произошло A, т. е. $B \subseteq A$.

Замечание. Любое множество Ω содержит в себе два подмножества: Ω и \emptyset . События, соответствующие данным множествам, называются невозможным и достоверным соответственно. Эти события называются несобственными событиями. Все остальные события называются собственными.

Пример. Из урны, содержащей два красных и три синих шара, извлекают один шар. Возможные события: $A = \{$ извлечённый шар является красным или синим $\}$ — является достоверным, $B = \{$ извлечён белый шар $\}$ — невозможным.

Операции над событиями.

События — множества элементарных исходов. Следовательно, над ними можно выполнять все операции над множествами. При этом вводится следующая терминология:

- Объединение множеств принято называть суммой событий: $A \cup B = A + B$;
- Пересечение множеств называют произведением событий: $A \cap B = A \cdot B$;
- $A \setminus B$ называют разностью событий A и B;
- Дополнение A называют событием, противоположным A: $\overline{A} = \Omega \setminus A$.

Пусть

- 1. Ω пространство исходов некоторого случайного эксперимента ($|\Omega| = N < \infty$)¹;
- 2. По условиям эксперимента нет оснований предпочесть тот или иной элементарный исход остальным (в таком случае говорят, что все элементарные исходы равновозможны);
- 3. Существует событие $A \subseteq \Omega$, мощность $|A| \stackrel{\text{(обозначим)}}{=} N_A$

Тогда

Определение. Вероятностью осуществления события A называют число

$$P\{A\} = \frac{N_A}{N}$$

Свойства вероятности (в соответствии с классическим определением).

- 1. Вероятность $P(A) \ge 0$ (неотрицательна).
- 2. $P(\Omega) = 1$.

 $^{^1}$ Запись $x<\infty$ означает, что x конечно. Напротив, запись $x\leqslant\infty$ означает, что x либо конечно, либо бесконечно. — Прим. ред.

3. Если A, B — несовместные события, то P(A + B) = P(A) + P(B).

Доказательства этих свойств:

- 1. Т. к. $N_A \geqslant 0$, N > 0, то следует $P(A) = \frac{N_A}{N} \geqslant 0$.
- 2. Принимая во внимание, что $N_{\Omega} = |\Omega| = N$, получается

$$P(\Omega) = \frac{N_{\Omega}}{N} = \frac{N}{N} = 1$$

3. Т. к. Ω — конечно, $A,B\subseteq \Omega$, то получается, что A,B конечны. Существует формула 2

$$|A + B| = |A| + |B| - |AB|$$

Т. к. A и B — несовместные, то $AB = \emptyset$, из чего следует, что $N_{a+b} = N_a + B_b$. Таким образом,

$$P(A+B) = \frac{N_{a+b}}{N} = \frac{N_a + N_b}{N} = \frac{N_a}{N} + \frac{N_b}{N} = P(A) + P(B)$$

1.2 Определение пространства элементарных исходов, примеры. Понятие события (нестрогое). Сформулировать геометрическое и статистическое определения вероятности. Достоинства и недостатки этих определений.

Определение. Случайным называют эксперимент, результат которого невозможно точно предсказать заранее.

Определение. Множество Ω всех исходов данного случайного эксперимента называют пространством элементарных исходов.

Замечание. Всюду в дальнейшем будем предполагать, что

- 1. Каждый элементарный исход является «неделимым», т. е. он не может быть разбит на более «мелкие» исходы;
- 2. В результате каждого эксперимента обязательно имеет место ровно один из входящих в Ω элементарных исходов.

Пример. Бросают монетку. Возможные исходы: выпадение герба или решки. $\Omega = \{ \ \Gamma epb \ , \ Pewa \ \} -$ множество элементарных исходов. $|\Omega| = 2$

Пример. Бросают игральную кость: $\Omega = \{ \text{"1", "2", "3", "4", "5", "6"} \}, |\Omega| = 6$

 $^{^2{\}rm E}$ ё называют формулой включений и исключений. — Прим. лект.

Нестрогое определение. Событием будем называть произвольное подмножество множества элементарных исходов множества Ω .

Геометрическое определение вероятности.

Геометрическое определение вероятности является обобщением классического определения на случай, когда $|\Omega|=\infty$.

Пусть

- 1. $\Omega \subseteq \mathbb{R}^n$;
- 2. $\mu(\Omega) < \infty$, где μ некая мера.

Если n=1, то μ — это длина; если n=2, то μ — площадь; если n=3 — объём. Можно определить меры и при больших n;

3. Возможность принадлежности некоторого элементарного исхода случайного эксперимента событию $A \subseteq Q$ пропорциональна мере этого события и не зависит от формы события A и его расположения внутри Ω .

Тогда

Определение. Вероятностью случайного события $A \subseteq \Omega$ называют число

$$P\{A\} = \frac{\mu(A)}{\mu(\Omega)}$$

Геометрическое определение, в отличие от классического, применимо в случае бесконечного пространства исходов.

Недостаток геометрического определения заключается в том, что оно не учитывает возможность того, что некоторые области внутри Ω окажутся более предпочтительными, чем другие.

Статистическое определение вероятности.

Пусть

- 1. Некоторый случайный эксперимент произведён n раз;
- 2. При этом некоторое наблюдаемое в этом эксперименте событие A произошло n_A раз.

Определение. Вероятностью осуществления события A называют эмпирический (m. e. найденный экспериментальным путём) предел:

$$P(A) = \lim_{n \to \infty} \frac{n_a}{n}$$

Замечание. У статистического определения полным-полно недостатков:

- 1. Никакой эксперимент не может быть произведён бесконечное много раз;
- 2. С точки зрения современной математики статистическое определение является архаизмом, т. к. не даёт достаточно базы для дальнейшего построения теории.
- 1.3 Определение пространства элементарных исходов, примеры. Сформулировать определение сигма-алгебры событий. Доказать простейшие свойства сигма-алгебры. Сформулировать аксиоматическое определение вероятности.

Определение. Случайным называют эксперимент, результат которого невозможено точно предсказать заранее.

Определение. Множеество Ω всех исходов данного случайного эксперимента называют пространством элементарных исходов.

Замечание. Всюду в дальнейшем будем предполагать, что

- 1. Каждый элементарный исход является «неделимым», т. е. он не может быть разбит на более «мелкие» исходы;
- 2. В результате каждого эксперимента обязательно имеет место ровно один из входящих в Ω элементарных исходов.

Пример. Бросают монетку. Возможные исходы: выпадение герба или решки. $\Omega = \{ \ \Gamma epb \ , \ Pewa \ \} -$ множество элементарных исходов. $|\Omega| = 2$

Пример. Бросают игральную кость: $\Omega = \{ \text{"1", "2", "3", "4", "5", "6"} \}, |\Omega| = 6$

Пусть

- 1. Ω пространство элементарных исходов, связанных с некоторым случайным экспериментом;
- 2. $\beta \neq \emptyset$ система (набор) подмножеств в множестве Ω .

Определение. β называется сигма-алгеброй событий, если выполнены условия:

- 1. Ecau $A \in \beta$, mo $\overline{A} \in \beta$; ⁴
- 2. Если $A_1, \ldots, A_n, \ldots \in \beta$, то $A_1 + \ldots + A_n + \ldots \in \beta$.

 $^{^3}$ При ведении лекций слово «сигма» иногда заменялось на букву δ (дельта — \delta в №ТеX). Буква «сигма» выглядит как σ . Лектор говорит, что корректнее всего словосочетание «сигма-алгебра» вообще не сокращать и писать полностью, не используя греческие буквы. — Прим. ред.

⁴Обратите внимание, что $A \subseteq \Omega$, но $A \in \beta$, т. к. элементы множества β — подмножества из Ω . — Прим. лект.

Простейшие следствия из аксиом сигма-алгебры

- 1. $\Omega \in \beta$;
- $2. \emptyset \in \beta;$
- 3. Если $A_1, \ldots, A_n, \ldots \in \beta$, то $A_1 \cdot \ldots \cdot A_n \cdot \ldots \in \beta$;
- 4. Если $A, B \in \beta$; то $A \setminus B \in \beta$.

Доказательства этих следствий:

- 1. По определению $\beta \neq \emptyset \implies \exists A \subseteq Q \colon A \in \beta$; из определения сигма-алгебры (аксиома 1) $\exists A \in \beta \implies \overline{A} \in \beta$; тогда из второй аксиомы следует, что $\exists (A + \overline{A}) \in \beta$; т. к. $A + \overline{A} = \Omega$, то $\Omega \in \beta$.
- 2. Т. к. $\Omega \in \beta$ (по следствию 1), то, по аксиоме 1, $\overline{\Omega} \in \beta$, а $\overline{\Omega} = \emptyset$. Следовательно, $\emptyset \in \beta$.
- 3. Из существования событий $A_1, \ldots, A_n, \ldots \in \beta$ по аксиоме 1 следует, что существуют дополнения этих событий $\overline{A_1}, \ldots, \overline{A_n}, \ldots \in \beta$. По аксиоме 2 следует существование объединения $\overline{A_1} + \ldots + \overline{A_n} + \ldots \in \beta$, и из аксиомы 1 существование дополнения этого объединения: $\overline{\overline{A_1}} + \ldots + \overline{A_n} + \ldots \in \beta$. Из этого, по законам де Моргана, получается $\overline{\overline{A_1}} \cdot \ldots \cdot \overline{\overline{A_n}} \cdot \ldots \in \beta$, что тривиально преобразуется в $A_1 \cdot \ldots \cdot A_n \cdot \ldots \in \beta$.
- 4. Из свойств операций над множествами можно заключить, что $A \setminus B = A \cdot \overline{B}$. По аксиоме 1, из $B \in \beta \implies \overline{B} \in \beta$. По следствию 3, $A, \overline{B} \in \beta \implies A \cdot \overline{B} \in \beta$, что, собственно, является утверждением $A \setminus B \in \beta$.

Аксиоматическое определение вероятности.

Пусть

- 1. Ω пространство элементарных исходов некоторого случайного эксперимента;
- 2. β сигма-алгебра, заданная на Ω .

Определение. Вероятностью (вероятностной мерой) называется функция

$$P \colon \beta \to \mathbb{R}$$

обладающая следующими свойствами:

- 1. $\forall A \in \beta \implies P(A) \geqslant 0$ (аксиома неотрицательности);
- 2. $P(\Omega) = 1$ (аксиома нормированности);

3. Если A_1, \ldots, A_n, \ldots — попарно несовместные события, то вероятность осуществления их суммы равна сумме вероятностей осуществления каждого из них по отдельности: $P(A_1 + \ldots + A_n + \ldots) = P(A_1) + \ldots + P(A_n) + \ldots$ (расширенная аксиома сложения).

Замечание 1. Аксиомы 1-3 называются аксиомами вероятности.

1.4 Определение пространства элементарных исходов, примеры. Сформулировать определение сигма-алгебры событий. Сформулировать аксиоматическое определение вероятности и доказать простейшие свойства вероятности.

Определение. Случайным называют эксперимент, результат которого невозможно точно предсказать заранее.

Определение. Множеество Ω всех исходов данного случайного эксперимента называют пространством элементарных исходов.

Замечание. Всюду в дальнейшем будем предполагать, что

- 1. Каждый элементарный исход является «неделимым», т. е. он не может быть разбит на более «мелкие» исходы;
- 2. В результате каждого эксперимента обязательно имеет место ровно один из входящих в Ω элементарных исходов.

Пример. Бросают монетку. Возможные исходы: выпадение герба или решки. $\Omega = \{ \ \Gamma epb \ , \ Pewa \ \} -$ множество элементарных исходов. $|\Omega| = 2$

Пример. Бросают игральную кость: $\Omega = \{ \text{"1", "2", "3", "4", "5", "6"} \}, |\Omega| = 6$

Пусть

- 1. Ω пространство элементарных исходов, связанных с некоторым случайным экспериментом;
- 2. $\beta \neq \emptyset$ система (набор) подмножеств в множестве Ω .

Определение. β называется сигма-алгеброй событий, если выполнены условия:

1. Ecau $A \in \beta$, mo $\overline{A} \in \beta$; 6

 $^{^5}$ При ведении лекций слово «сигма» иногда заменялось на букву δ (дельта — \delta в $^{\text{LAT}}_{\text{EX}}$). Буква «сигма» выглядит как σ . Лектор говорит, что корректнее всего словосочетание «сигма-алгебра» вообще не сокращать и писать полностью, не используя греческие буквы. — Прим. ред.

⁶Обратите внимание, что $A \subseteq \Omega$, но $A \in \beta$, т. к. элементы множества β — подмножества из Ω . — Прим. лект.

2. Ecau $A_1, ..., A_n, ... \in \beta$, mo $A_1 + ... + A_n + ... \in \beta$.

Аксиоматическое определение вероятности.

Пусть

- 1. Ω пространство элементарных исходов некоторого случайного эксперимента;
- 2. β сигма-алгебра, заданная на Ω .

Определение. Вероятностью (вероятностной мерой) называется функция

$$P \colon \beta \to \mathbb{R}$$

обладающая следующими свойствами:

- 1. $\forall A \in \beta \implies P(A) \geqslant 0$ (аксиома неотрицательности);
- 2. $P(\Omega) = 1$ (аксиома нормированности);
- 3. Если $A_1, \ldots, A_n, \ldots -$ попарно несовместные события, то вероятность осуществления их суммы равна сумме вероятностей осуществления каждого из них по отдельности: $P(A_1 + \ldots + A_n + \ldots) = P(A_1) + \ldots + P(A_n) + \ldots$ (расширенная аксиома сложения).

Свойства вероятностей (из аксиоматического определения):

- 1. $P(\overline{A}) = 1 P(A)$;
- 2. $P(\emptyset) = 0;$
- 3. Если $A \subseteq B$, то $P(A) \leqslant P(B)$;
- 4. $\forall A \in \beta : 0 \leqslant P(A) \leqslant 1;$
- 5. P(A+B) = P(A) + P(B) P(AB), где $A, B \in \beta$;
- 6. Для любого *конечного* набора событий A_1, \ldots, A_n верно

$$P(A_1 + ... + A_n) =$$
+ $\sum_{1 \le i_1 \le n} P(A_{i_1})$
- $\sum_{1 \le i_1 < i_2 \le n} P(A_{i_1}, A_{i_2})$
+ $\sum_{1 \le i_1 < i_2 < i_3 \le n} P(A_{i_1}, A_{i_2}, A_{i_3}) - ... + ...$

Доказательства этих свойств:

- 1. По аксиомам 1, 2 сигма-алгебры $\exists A + \overline{A} = \Omega$; по аксиоме вероятности №2 $P(\Omega) = 1 = P(A + \overline{A})$; по аксиоме вероятности №3 (A и \overline{A} несовместны), $P(A + \overline{A}) = P(A) + P(\overline{A}) = 1 \implies P(\overline{A}) = 1 P(A)$.
- 2. $P(\emptyset)=P(\overline{\Omega})$; по свойству №1 $P(\emptyset)=1-\stackrel{=1\ (\text{по аксиоме 2})}{P(\Omega)}=0$
- 3. $A \subseteq B \stackrel{\text{(по рисунку)}}{\Longrightarrow} B = A + (B \setminus A)$

(см. рисунок 15)

Тогда

$$P(B) = P(A + (B \setminus A)) =$$
 A, B\A несовместны, используем аксиому 3

$$=P(A)+\stackrel{\geqslant 0}{P}(B\smallsetminus A)\stackrel{1}{\geqslant}P(A) \ \Longrightarrow P(B)\geqslant P(A)$$

4.

- (a) Неравенство $P(A) \geqslant 0$ следует из аксиомы 1.
- (b) Осталось доказать, что $P(A) \leqslant 1$.

$$\forall A \subseteq \Omega \stackrel{\text{по свойству } 3}{\Longrightarrow} P(A) \leqslant \stackrel{=1}{P(\Omega)} \Longrightarrow P(A) \leqslant 1$$

Для любых A, B:

(a)
$$A + B = A + (B \setminus A)$$
,

(см. рисунок 16)

при этом $A \cdot (B \setminus A) = \emptyset$.

В соответствии с аксиомой 3,

$$P(A+B) = P(A) + P(B \setminus A) \tag{1}$$

(b)
$$B = AB + (B \setminus A),$$

(см. рисунок 17)

причём $(AB)(B \setminus A) = \emptyset$.

По аксиоме 3, имеем $P(B) = P(AB) + P(B \setminus A) \implies P(B \setminus A) = P(B) - P(AB)$. Подставим результат в 1 и получим

$$P(A+B) = P(A) + P(B) - P(AB)$$

- 6. Это свойство доказывать не станем. Оно является обобщением свойства 5 и может быть доказано из 5 с использованием метода математической индукции.
- 1.5 Сформулировать определение условной вероятности. Доказать, что при фиксированном событии B условная вероятность P(A|B) обладает всеми свойствами безусловной вероятности.

Пусть

- 1. A и B два события, связанные с одним случайным экспериментом;
- 2. Дополнительно известно, что в результате эксперимента произошло событие B.

Определение. Условной вероятностью осуществления события A при условии, что произошло B, называется число⁷

$$P(A \mid B) = \frac{P(AB)}{P(B)}, \ P(B) \neq 0$$

Теорема. Пусть

- 1. Зафиксировано событие $B, P(B) \neq 0;$
- 2. $P(A \mid B)$ рассматривается как функция события A.

Tогда $P(A \mid B)$ обладает всеми свойствами безусловной вероятности.

Доказательство. Докажем отдельно соответствие $P(A \mid B)$ трём аксиомам вероятности и следствиям из неё.

 $^{^7}$ В разговорной речи $P(A \,|\, B)$ читается как P от A при B. — Прим. лект.

1. Докажем, что условная вероятность $P(A \mid B)$ удовлетворяет трём аксиомам вероятности:

(a)
$$P(A \mid B) = \underbrace{\frac{P(AB)}{P(AB)}}_{>0} \implies P(A \mid B) \geqslant 0.$$

(b)
$$P(\Omega \mid B) = \frac{P(\Omega B)}{P(B)} = \frac{P(B)}{P(B)} = 1.$$

(c)

$$P(A_1 + \ldots + A_n + \ldots | B) = \frac{P((A_1 + \ldots + A_n + \ldots)B)}{P(B)} =$$

$$= \frac{1}{P(B)} \cdot P(A_1B + A_2B + \ldots + A_nB + \ldots) =$$

 $A_i,A_j \ \textit{несовместны},\ i\neq j;\ A_iB\subseteq A_i,A_jB\subseteq A_j \Longrightarrow (\underline{A_iB})\cap (A_jB)=\emptyset,\ u\ \textit{тогда}\ \textit{по аксиоме вероятности}\ N^{\underline{a}3}$

$$= \frac{1}{P(B)} \cdot [P(A_1B) + \dots + P(A_nB) + \dots] =$$

$$= (p \circ \partial) \frac{P(A_1B)}{P(B)} + \dots + \frac{P(A_nB)}{P(B)} + \dots =$$

$$= P(A_1 | B) + \dots + P(A_n | B) + \dots$$

- 2. Т. к. свойства 1-6 безусловной вероятности являются прямыми следствиями из аксиом 1-3, а условная вероятность этим аксиомам удовлетворяет, то она удовлетворяет свойствам 1-6.
- 1.6 Сформулировать определение условной вероятности. Доказать теорему (формулу) умножения вероятностей. Привести пример использования этой формулы.

Пусть

- 1. A и B два события, связанные с одним случайным экспериментом;
- 2. Дополнительно известно, что в результате эксперимента произошло событие B.

Определение. Условной вероятностью осуществления события A при условии, что произошло B, называется число⁸

$$P(A \mid B) = \frac{P(AB)}{P(B)}, \ P(B) \neq 0$$

 $^{^8}$ В разговорной речи $P(A \,|\, B)$ читается как P от A при B. — Прим. лект.

Теорема. Формула умножения вероятностей для двух событий.

 $\Pi ycmb$

1. A, B - coбытия;

2. P(A) > 0.

Tог ∂a

$$P(AB) = P(A) P(B \mid A)$$

Доказательство. Т. к. P(A) > 0, то определена условная вероятность

$$P(B \mid A) = \frac{P(AB)}{P(A)}$$

из чего напрямую следует

$$P(AB) = P(A) P(B \mid A)$$

Теорема. Формула умножения вероятностей для n событий $\Pi ycmb$

1. A_1, \ldots, A_n — coбытия;

2.
$$P(A_1 \cdot \ldots \cdot A_{n-1}) > 0$$
.

Tог ∂a

$$P(A_1 \cdot A_2 \cdot \ldots \cdot A_n) = P(A_1) P(A_2 \mid A_1) P(A_3 \mid A_1 A_2) \cdot \ldots \cdot P(A_n \mid A_1 \cdot \ldots \cdot A_{n-1})$$

Доказательство.

1. Обозначив $k = \overline{1, n-1}$, имеем $A_1 \cdot \ldots \cdot A_k \supseteq A_1 \cdot \ldots \cdot A_{n-1}$.

По свойству 3 вероятности $P(A_1 \cdot \ldots \cdot A_k) \geqslant P(A_1 \cdot \ldots \cdot A_{n-1}) > 0.$

Следовательно, все условные вероятности, входящие в правую часть доказываемой формулы, определены, и можно задавать условные вероятности по типу $P(A_n \mid A_1 A_2 \dots A_{n-1})$, и, следовательно, можно пользоваться формулой умножения вероятностей для двух событий. 2. Последовательно применим формулу умножения вероятностей для двух событий $(P(A_{mf}B_{mf}) = P(A_{mf})P(B_{mf} \mid A_{mf}))$:

$$P(\underbrace{A_{1} \cdot \ldots \cdot A_{n-1}}_{A_{mf1}} \cdot \underbrace{A_{n}}_{B_{mf1}}) = \underbrace{A_{mf1}}_{A_{mf1}} \cdot \underbrace{A_{mf1}}_{B_{mf1}} \cdot \underbrace{A_{mf1}}_{A_{mf1}} \cdot \underbrace{A_{mf1}}_{A_{mf1}} = \underbrace{P(\underbrace{A_{1} \cdot \ldots \cdot A_{n-2}}_{A_{mf2}} \cdot \underbrace{A_{n-1}}_{B_{mf2}}) \cdot P(\underbrace{A_{n}}_{A_{n}} \mid \underbrace{A_{1} \cdot \ldots \cdot A_{n-1}}_{A_{mf2}}) = \underbrace{A_{mf2}}_{A_{mf3}} \cdot \underbrace{A_{n-2}}_{B_{mf3}} \cdot \underbrace{P(\underbrace{A_{n-1}}_{A_{n-1}} \mid \underbrace{A_{1} \cdot \ldots \cdot A_{n-2}}_{A_{n-2}}) \cdot P(A_{n} \mid A_{1} \cdot \ldots \cdot A_{n-1})}_{= \ldots = = P(A_{1}) P(A_{2} \mid A_{1}) P(A_{3} \mid A_{1} A_{2}) \cdot \ldots \cdot P(A_{n} \mid A_{1} \cdot \ldots \cdot A_{n-1})}$$

Пример. На семи карточках написаны буквы слова «ШОКОЛАД». Карточки тщательно перемешивают, и по очереди извлекают случайным образом три из них без возвращения первых карточек. Найти вероятность того, что эти три карточки в порядке появления образуют слово «ШОК»:

 $A = \{ mpu \ \kappa apmoч \kappa u \ в \ nops \partial \kappa e \ nosenehus \ oбpasyom \ cлово «ШОК» \}$

Давайте введём следующие обозначения:

$$A_1 = \{$$
 на первой извлечённой карточке написано «Ш» $\}$ $A_2 = \{$ на второй извлечённой карточке написано «О» $\}$ $A_3 = \{$ на третьей извлечённой карточке написано «К» $\}$

 $Tor \partial a \ A = A_1 \cdot A_2 \cdot A_3.$

$$P(A) = P(A_1 A_2 A_3) \stackrel{\textit{no ϕ-ле умножения вероятностей}}{=} P(A_1) \cdot P(A_2 \mid A_1) \cdot P(A_3 \mid A_1 A_2)$$

Вероятность события $A_1 - \frac{1}{7}$.

Предположим, что в результате эксперимента стало доподлинно известно, что произошло событие A_1 . Тогда вероятность вытащить «O» $-\frac{2}{6}$.

Потом стало доподлинно известно, что произошло событие A_2 . Тогда вероятность вытащить «K» $-\frac{1}{5}$.

$$Tor \partial a \ A = A_1 \cdot A_2 \cdot A_3 = \frac{1}{7} \cdot \frac{2}{6} \cdot \frac{1}{5} = \frac{1}{105}$$

 $^{^9}$ Т. к. обозначения $A,\,B$ накладываются на уже используемые, то при иллюстрации применения этой формулы будем использовать индекс $_{mf}$ (multiplication formula). — Прим. ред.

1.7 Сформулировать определение пары независимых событий. Доказать критерий независимости двух событий. Сформулировать определение попарно независимых событий и событий, независимых в совокупности. Обосновать связь этих свойств.

Пусть A и B — два события, связанные с некоторым случайным экспериментом.

Определение. События A и B называются независимыми, если P(AB) = P(A) P(B). **Теорема.**

- 1. Пусть P(B) > 0. Утверждение «А и B — независимы» равносильно $P(A \,|\, B) = P(A)$;
- 2. Пусть P(A) > 0. Утверждение «A и B — независимы» равносильно $P(B \mid A) = P(B)$.

Доказательство.

1. Сначала докажем, что если A и B — независимые, то $P(A \mid B) = P(A)$. По определению независимых событий, P(AB) = P(A)P(B). По определению условной вероятности,

$$P(A | B) = \frac{P(AB)}{P(B)} = \frac{P(A) \cdot P(B)}{P(B)} = P(A)$$

Теперь докажем обратное.

Пусть $P(A \mid B) = P(A)$. Докажем, что P(AB) = P(A)P(B).

$$P(AB)$$
 по ф-ле умножения вероятностей $P(B)\cdot \stackrel{=P(A)}{P(A\mid B)}=P(B)P(A)$

2. Доказательство второго пункта теоремы аналогично.

Определение. События A_1, \ldots, A_n называется попарно независимыми, если 10

$$\forall \forall i \neq j; i, j \in \{1, ..., n\} P\{A_i A_j\} = P\{A_i\} P\{A_j\}$$

Определение. События A_1, \ldots, A_n называются независимыми в совокупности, если

$$\forall k \in \{2, \ldots, n\} \forall \forall i_1 < i_2 < \ldots < i_k P\{A_{i_1}, \ldots, A_{i_k}\} = P\{A_{i_1}\} \cdot \ldots \cdot P\{A_{i_k}\}$$

14

 $^{^{10}}$ Обозначение $\forall \forall$ является математическим сленгом и технически некорректно. Тем не менее, это удобный способ обозначения того, что в выражении должно стоять несколько \forall подряд. — Прим. лект.

Замечание. Очевидно, что если события A_1, \ldots, A_n независимы в совокупности, то они и попарно независимы. Обратное неверно.

Пример. (Бернштейна)

Paccмотрим правильный тетраэ ∂p^{11} , на одной грани которого «написано» 1, второй -2, третьей -3, четвёртой -1, 2, 3.

Этот тетраэдр один раз подбрасывают.

Событие A_1 заключается в том, что на нижней грани «написано» 1; также введём A_2 для 2, A_3 для 3. Давайте покажем, что события A_1 , A_2 , A_3 попарно независимы, но не являются независимыми в совокупности.

1. Докажем, что они независимы попарно. Т. к. $P(A_1) = \frac{1}{2}$, $P(A_2) = \frac{1}{2}$, то

$$P(A_1 A_2) = P(A_1) P(A_2) = \frac{1}{4}$$

Событие A_1A_2 означает, что на нижней грани присутствуют и 1, и 2.

 $Bc\ddot{e}$ аналогично для $P(A_1A_3) = P(A_1)P(A_3)$ и $P(A_2A_3) = P(A_2)P(A_3)$.

2. Проверим равенство $P(A_1A_2A_3)=P(A_1)\,P(A_2)\,P(A_3)$, которое, казалось бы, должно равняться $\frac{1}{8}$. Но произведение событий $A_1,\ A_2,\ A_3$ означает, что на нижней грани присутствуют и 1, и 2, и 3, вероятность чего равна $\frac{1}{4}$.

U выходит, что $\frac{1}{4} \neq \frac{1}{8}$.

Следовательно, события A_1 , A_2 , A_3 не являются независимыми в совокупности.

1.8 Сформулировать определение полной группы событий. Доказать теоремы о формуле полной вероятности и о формуле Байеса. Понятия априорной и апостериорной вероятностей.

Пусть Ω — пространство элементарных исходов, связанных с некоторым случайным экспериментом, а (Ω, β, P) — вероятностное пространство этого случайного эксперимента.

Определение. Говорят. что события $H_1, \ldots, H_n \in \beta$ образуют полную группу событий, если

1.
$$P(H_i) > 0, i = \overline{1, n};$$

2.
$$H_iH_j = \emptyset \ npu \ i \neq j;$$

 $^{^{11}}$ Трёхмерная фигура, состоящая из четырёх треугольников. — Прим. ред.

3.
$$H_1 + \ldots + H_n = \Omega$$
.

Теорема. Формула полной вероятности.

 $\Pi ycmb$

- 1. H_1, \ldots, H_n полная группа событий;
- 2. $A \in \beta$ cobumue.

Тогда (это выражение называется формулой полной вероятности):

$$P(A) = P(A | H_1)P(H_1) + ... + P(A | H_n)P(H_n)$$

Доказательство.

1.
$$A = A\Omega^{\Omega = H_1 + ... + H_n} A \cdot (H_1 + ... + H_n) = AH_1 + ... + AH_n$$
.

Принимая $i \neq j : H_i \neq \emptyset$, $H_j \neq \emptyset$, но $(AH_i) \subseteq H_i$, $(AH_j) \subseteq H_j \implies (AH_i)(AH_j) = \emptyset$, $m.$ $e.$ AH_i nonapho не пересекаются.

2. Тогда

$$P(A) = P(AH_1 + ... + AH_n) =$$
 $AH_i \text{ попарно не пересекаются} =$
 $= P(AH_1) + ... + P(AH_n) =$
 $m. \ \kappa. \ P(H_i) > 0, \ mo \ P(AH_i) = P(H_i)P(A|H_i)$
 $= P(A|H_1)P(H_1) + ... + P(A|H_n)P(H_n)$

Теорема. Пусть

- 1. H_1, \ldots, H_n полная группа событий;
- 2. P(A) > 0.

Tог ∂a

$$P(H_i \mid A) = \frac{P(A \mid H_i)P(H_i)}{P(A \mid H_1)P(H_1) + \ldots + P(A \mid H_n)P(H_n)}, \ i = \overline{1, n}$$

Доказательство.

$$P(H_i \mid A) \overset{\textit{no onp. условной вероятности}}{=} = \frac{P(AH_i)}{P(A)} \overset{\textit{no ϕ-ле умножения в числителе, полной вероятности в знаменателе}}{=} = P(H_i \mid A) = \frac{P(A \mid H_i)P(H_i)}{P(A \mid H_1)P(H_1) + \ldots + P(A \mid H_n)P(H_n)}, \ i = \overline{1, n}$$

Вероятности $P(H_i)$, $i=\overline{1,n}$ называются априорными, т. к. они известны до опыта; Вероятности $P(H_i\,|\,A),\ i=\overline{1,n}$ называются апостериорными — они вычисляются после опыта.

1.9 Сформулировать определение схемы испытаний Бернулли. Доказать формулу для вычисления вероятности реализации ровно к успехов в серии из п испытаний по схеме Бернулли. Доказать следствия этой формулы.

Давайте рассмотрим случайный эксперимент, в результате которого возможна реализация одного из двух элементарных исходов, т. е. пространство элементарных исходов у нас будет состоять из двух элементов ($|\Omega|=2$).

Один из элементарных исходов условно будем называть успехом, второй — неудачей. Пусть p — вероятность осуществления успеха в случайном эксперименте, а q (q=1-p) — вероятность неудачи.

Определение. Схемой испытаний Бернулли называется серия из однотипных экспериментов указанного вида, в которой отдельные испытания независимы, т. е. вероятность реализации успеха в i-ом испытании не зависит от исходов первого, второго, ..., i-1-ого испытаний.

Теорема. Пусть проводится серия из n испытаний по схеме Бернулли c вероятностью успеха p. Тогда $P_n(k)$ есть вероятность того, что в серии из n испытаний произойдёт ровно k успехов:

$$P_n(k) = C_n^k p^k q^{n-k}$$

Доказательство.

1. Результат проведения серии из n экспериментов запишем c использованием кортежа (x_1, \ldots, x_n) , ϵde

$$x_i = \begin{cases} 1, \ ecлu \ в \ ucnыmaнuu \ uмел \ место \ ycnex; \ 0, \ ecлu \ в \ ucnыmaнuu \ uмела \ место \ неудача. \end{cases}$$

2. Пусть

$$A = \{$$
 в серии из п испытаний произошло ровно k успехов $\}$

Тогда A состоит из кортежей, в которых будет ровно k единиц и n-k нулей. B событии A будет столько элементарных исходов, сколькими способами можно расставить k единиц по n позициям. Каждая такая расстановка однозначно определяется номерами позиций, в которых будут записаны единички. B остальные позиции будут записаны нули.

Выбрать k позиций из имеющихся n можно C_n^k способами. Вероятность каждого отдельного исхода равна произведению вероятностей каждого отдельного x_i , и тогда общая вероятность исхода будет равна p^kq^{n-k} .

Все испытания независимы; следовательно, все кортежи из A равновероятны, и их C_n^k штук, что означает

$$P_n(k) = C_n^k p^k q^{n-k}$$

Следствие. Вероятность того, что кол-во успехов в серии из n испытаний по схеме Бернулли c вероятностью успеха p будет заключено между k_1 и k_2 :

$$P_n(k_1 \leqslant k \leqslant k_2) = \sum_{i=k}^{k_2} C_n^i p^i q^{n-i}$$

Доказательство.

1. Пусть

$$A_i=\{\ e\ cepuu\ npouзoшло\ poeнo\ i\ ycnexoe\ \},\ i=\overline{k_1,k_2}$$
 $P(A_i)=P_n(i)=C_n^ip^iq^{n-i}$

2.

$$A = A_{k_1} + A_{k_1+1} + \ldots + A_{k_2} = P_n(k_1 \leqslant k \leqslant k_2)$$

$$\Longrightarrow$$

$$P(A) = (A_{k_1} + \ldots + A_{k_2}) \stackrel{A_i \ u \ A_j \ necoemecmnu \ npu \ i \neq j}{=} P(A_{k_1}) + \ldots + P(A_{k_2}) =$$

$$= \sum_{i=k_1}^{k_2} P\{A_i\} = \sum_{i=k_2}^{k_2} C_n^i p^i q^{n-i}$$

Следствие. Вероятность того, что в серии испытаний Бернулли с вероятностью успеха p (и неудачи q = 1 - p) произойдёт хотя бы один успех: $P_n(k \ge 1) = 1 - q^n$.

Доказательство. Пусть $A = \{$ в серии произошёл хотя бы один успех $\}$. В таком случае $\overline{A} = \{$ в серии не будет ни одного успеха $\}$, и тогда

$$P(A) = 1 - P(\overline{A}) = 1 - P_n(0) = 1 - C_0^i p^0 q^{n-0} = 1 - q^n$$

2 Случайные величины

2.1 Сформулировать определение случайной величины и функции распределения вероятностей случайной величины. Доказать свойства функции распределения.

Пусть (Ω, β, P) — вероятностное пространство некоторого случайного эксперимента.

Определение. Случайной величиной называется функция

$$X \colon \Omega \to \mathbb{R}$$

такая, что для каждого $x \in \mathbb{R}$ множество $\{\omega : X(\omega) < x\} \in \beta$ (т. е. для любого x множество $\{\omega : X(\omega) < x\}$ является событием).

Пусть X — случайная величина, связанная с некоторым случайным экспериментом.

Определение. Функцией распределения вероятностей случайной величины X называется отображение

$$F_X \colon \mathbb{R} \to \mathbb{R}$$

onpedeлённое следующим $npaвилом^{12}$

$$F_X(x) = P\{X < x\}$$

Свойства функции распределения:

- 1. $0 \leqslant F(x) \leqslant 1$;
- 2. F является неубывающей функцией, т. е. если $x_1 \leqslant x_2$, то $F(x_1) \leqslant F(x_2)$;

3.

$$\lim_{x \to -\infty} F(x) = 0$$

$$\lim_{x \to +\infty} F(x) = 1$$

- 4. В каждой точке функция распределения непрерывна слева¹³: $\lim_{x\to x_0-} F(x) = F(x_0)$;
- 5. $P{a \le X < b} = F(b) F(a)$.

Доказательства.

1. F(x) определена как вероятность, т. е. $F(x) = P\{...\} \in [0; 1]$.

 $^{^{12}}$ С тем же успехом можно определить F_X как $F_X(x) = P\{X \leqslant x\}$; выбор обусловлен конвенцией (при этом, видимо, в международной литературе используют именно знак \leqslant). От того, как определена эта функция, в основном зависят выборы знаков (< или \leqslant) в определённых местах в дальнейших формулах, но список отличий этим не ограничивается. — Прим. ред.

 $^{^{13}}$ Если бы F_X была определена как $F_X = P\{X \leqslant x\}$, то функция распределения была бы непрерывна справа. В учебнике по Теории Вероятностей из серии «Математика в техническом университете» (с римской цифрой на обложке, далее книги из серии будут адресоваться по номерам; для Теории Вероятностей — учебник XVI) написано (издание третье, исправленное), что на этом отличия в свойствах заканчиваются; это, судя по всему, ошибка, т. к. при использовании \leqslant свойство 5 должно записываться как $P\{a < X \leqslant b\} = F(b) - F(a)$. — Прим. ред.

2. Имея $x_1 \le x_2$, выразим $F(x_2)$:

$$F(x_2) = P\{X < x_2\} = P\{\underbrace{\{X < x_1\}}_{Cobumue\ A} + \underbrace{\{x_1 \leqslant X < x_2\}}_{Cobumue\ B}\}$$

 $Coбыmus\ A\ u\ B\ неcoвместны,\ m.\ e.$

$$F(x_2) = \underbrace{P\{X < x_1\}}_{F(x_1)} + \underbrace{P\{x_1 \leqslant X < x_2\}}_{\geqslant 0} \geqslant F(x_1)$$

3. Сначала докажем, что $\lim_{x\to +\infty} F(x) = 1$:

Рассмотрим последовательность x_1, x_2, x_3, \dots такую, что

- (a) $x_1 < x_2 < x_3 < \dots$;
- (b) $\lim_{n\to\infty} x_n = +\infty$.

Обозначим $A_n = \{X < x_n\}, n \in N; \text{ очевидно, что последовательность со$ $бытий } A_n имеет свойство <math>A_1 \subseteq A_2 \subseteq \ldots \subseteq A_n \subseteq A_{n+1} \subseteq \ldots, m.$ е. эта последовательность является неубывающей последовательностью событий.

Тогда, применяя аксиому непрерывности

$$\lim_{x \to \infty} F(x_n) = \lim_{n \to \infty} P(A_n) \stackrel{\text{аксиома непрерывности}}{=} \underbrace{P\{X < +\infty\}}_{(\text{достоверное событие})} = 1$$

 $T.\ \kappa.\ x_1,\ x_2,\ \ldots - n$ роизвольная последовательность (неубывающая и стремящаяся κ бесконечности), то в соответствии с определением предела функции по Γ ейне¹⁴

$$\lim_{x \to +\infty} F(x) = 1$$

Другая часть этого свойства, $\lim_{x\to -\infty} F(x) = 0$, доказывается аналогично.

4. Пусть x_1, x_2, \ldots — возрастающая последовательность такая, что $\lim_{n \to \infty} x_n = x_0$.

Пусть $A_i = \{X < x_i\}, i \in \mathbb{N}.$ Тогда событие

$$\{X < x_n\} = \bigcup_{i=1}^{\infty} A_i$$

nричём последовательность событий A_1, A_2, \ldots является возрастающей;

 $^{^{14}}$ Значение A называется пределом функции f(x) в точке x_0 , если для любой последовательности точек $\{x_n\}_{n=1}^{\infty}$, сходящейся к x_0 (см. понятие предела nocnedosamenьnocmu, не функции), но не содержащей x_0 в качестве одного из своих элементов, последовательность значений функции $\{f(x_n)\}_{n=1}^{\infty}$ сходится к A. — Прим. ред.

$$\lim_{n \to \infty} F(x_n) = \lim_{n \to \infty} P(A_n) \stackrel{\text{аксиома непрерывности}}{=} P\{X < x_0\} = F(x_0)$$

 $T.\ \kappa.\ x_1,\ x_2,\ \ldots-n$ роизвольная последовательность, сходящаяся $\kappa\ x_0$ слева, то в соответствии с определением предела функции по Γ ейне

$$\lim_{x \to x_0 -} F(x) = F(x_0)$$

5. $\{X < b\} = \{X < a\} + \{a \leqslant X < b\};$ события в объединении несовместные, поэтому

$$\underbrace{P\{X < b\}}_{F(B)} = \underbrace{P\{X < a\}}_{F(A)} + P\{a \leqslant X < b\}$$

из чего тривиально следует

$$P\{a \leqslant X < b\} = F(b) - F(a)$$

2.2 Сформулировать определения случайной величины и функции распределения случайной величины. Сформулировать определения дискретной и непрерывной случайной величины. Доказать свойства плотности распределения вероятностей непрерывной случайной величины.

Пусть (Ω, β, P) — вероятностное пространство некоторого случайного эксперимента.

Определение. Случайной величиной называется функция

$$X \colon \Omega \to \mathbb{R}$$

такая, что для каждого $x \in \mathbb{R}$ множество $\{\omega : X(\omega) < x\} \in \beta$ (т. е. для любого x множество $\{\omega : X(\omega) < x\}$ является событием).

Пусть X — случайная величина, связанная с некоторым случайным экспериментом.

Определение. Функцией распределения вероятностей случайной величины X называется отображение

$$F_X \colon \mathbb{R} \to \mathbb{R}$$

определённое следующим правилом 15

$$F_X(x) = P\{X < x\}$$

 $^{^{15}\}mathrm{C}$ тем же успехом можно определить F_X как $F_X(x) = P\{X \leqslant x\}$; выбор обусловлен конвенцией (при этом, видимо, в международной литературе используют именно знак \leqslant). От того, как определена эта функция, в основном зависят выборы знаков (< или \leqslant) в определённых местах в дальнейших формулах, но список отличий этим не ограничивается. — Прим. ред.

Определение. Случайная величина называется дискретной, если множество её значений конечно или счётно.

Определение. Случайная величина X называется непрерывной, если существует ϕ ункция

$$f(x) \colon \mathbb{R} \to \mathbb{R}$$

такая, что $\forall x \in \mathbb{R}$ функция $F(x) = \int\limits_{-\infty}^{x} f(t)dt$ (F — функция распределения в X).

Замечание 1. При этом f называют функцией плотности распределения вероятности случайной величины X.

Свойства непрерывных случайных величин¹⁶.

1. $f(x) \ge 0$;

2.

$$P\{a \leqslant X < b\} = \int_{a}^{b} f(x)dx$$

где X — непрерывная случайная величина, а f – её функция плотности 17 ;

3. Условие нормировки:

$$\int_{-\infty}^{+\infty} f(x) \, dx = 1$$

где f- функция плотности некоторой случайной величины;

4.

$$P\{x_0 \leqslant X < x_0 + \Delta x\} \approx f(x_0) \Delta x$$

где X — непрерывная случайная величина, f — её функция плотности, x_0 — точка непрерывности функции f, а Δx — мало;

5. Если X — непрерывная случайная величина, то для любого наперёд заданного $x_0 \in \mathbb{R}$

$$P\{X = x_0\} = 0$$

Доказательства.

1. Почти всюду $f(x) = F'(x) \stackrel{F - \text{неубывающая}}{\geqslant} 0.$

 $[\]overline{\begin{tabular}{l}^{16}\text{C}{\text{войств именно функции плотности непрерывных случайных величин «в чистом виде» в лекциях нет. — Прим. ред. $$^{17}\text{Чуть позже по лекциям утверждается, что в этом свойстве не важно, какие знаки стоят в условии при P, т. е. $$$$$P\{a\leqslant X < b\} = P\{a < X < b\} = P\{a < X \leqslant b\}$

2. По свойству функции распределения

$$P\{x \leqslant X < b\} = F(b) - F(a)$$

 $T.\ \kappa.\ F\ -\ nepвooбразная\ для\ f,\ mo\ no\ формуле\ H$ ьютона-Лейбница

$$P\{x \leqslant X < b\} = F(b) - F(a) = \int_a^b f(x)dx$$

3.

$$\int_{-\infty}^{+\infty} f(x) dx = \lim_{x_1 \to -\infty, x_2 \to +\infty} \int_{x_1}^{x_2} f(x) dx \stackrel{cooutemoo 2}{=} \lim_{x_2 \to +\infty} F(x_2) - \lim_{x_1 \to -\infty} F(x_1) = \underbrace{F(+\infty)}^{-1} F(-\infty) \stackrel{0}{=} 1$$

4.

$$P\{x_0 \leqslant X < x_0 + \Delta x\} \stackrel{\text{cooutemoo } 2}{=} F(x_0 + \Delta x) - F(x_0)$$

 $T. \ \kappa. \ x_0 - m$ очка непрерывности $f, \ a \ \Delta x$ мало, то можно считать, что в окрестности $(x_0, \ x_0 + \Delta x)$ функция F' = f непрерывна. Тогда применим к функции f на $[x_0, \ x_0 + \Delta x]$ теорему Лагранжса¹⁸:

$$F(x_0 + \Delta x) - F(x_0) = \underbrace{F'(\xi)}_{f(\xi)} \Delta x$$

где $\xi \in (x_0, x_0 + \Delta x)$. Т. к. Δx мало, а f непрерывна в некоторой окрестности x_0 , то можно считать, что $f(\xi) \approx f(x_0)$. Таким образом,

$$P\{x_0 \leqslant X < x_0 + \Delta x\} \approx f(x_0) \Delta x$$

5.

$$P\{X = x_0\} = \lim_{\Delta x \to 0} P\{x_0 \leqslant X < x_0 + \Delta x\} =$$

$$\stackrel{c \text{ odicm bo 2}}{=}$$

$$= \lim_{\Delta x \to 0} \left[F(x_0 + \Delta x) - F(x_0) \right]^{F \text{ henpepusha, cm. same value sume } 0$$

 $^{^{18}}$ Пусть функция y = f(x) непрерывна на отрезке [a, b] и дифференцируема в интервале (a, b); тогда между точками a и b найдётся хотя бы одна такая точка c (a < c < b), для которой справедливо равенство f(b) - f(a) = f'(c)(b - a). — Прим. ред.

 $^{^{19}\}xi$ — строчная буква «кси» греческого алфавита. — Прим. ред.

2.3 Сформулировать определение нормальной случайной величины, указать геометрический смысл параметров. Понятие стандартного нормального закона. Доказать формулу для вычисления вероятности попадания нормальной случайной величины в интервал.

Определение. Говорят, что случайная величина X имеет нормальное распределение с параметрами m и σ^2 ($\sigma > 0$), если её функция плотности имеет вид

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-m)^2}{2\sigma^2}}, \ x \in \mathbb{R}$$

Обозначается $X \sim N(m, \sigma^2)$.

Функция плотности нормального распределения имеет характерную колоколообразную форму; m является координатой x «центра» этого колокола (центра симметрии), а σ характеризует разброс значений случайной величины; чем меньше σ , тем выше экстремум функции плотности 20 .

Замечание 1.

Определение. Распределение N(0, 1) называет стандартным нормальным распределением; для него функция плотности равна

$$f_{0,1}(x) = \frac{1}{\sqrt{2\pi}}e^{\frac{-x^2}{2}}, \ x \in \mathbb{R}$$

Часто для вычисления вероятностей из стандартного нормального распределения рассматривают функцию

$$\Phi(x) = F_{0,1}(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{t^2}{2}} dt$$

 $\Phi(x)$ называют функцией Лапласа; для нахождения её значений используйте заранее высчитанные таблицы 21 .

Замечание 2. Часто вместо функции $\Phi(x)$ удобнее рассмотреть функцию

$$\Phi_0(x) = \frac{1}{\sqrt{2\pi}} \int_{0}^{x} e^{-\frac{t^2}{2}} dt$$

 $^{^{20}}$ В статье «Нормальное распределение» в Википедии присутствуют неплохие иллюстрации. — Прим. ред.

 $^{^{21}}$ В конце учебника XVI (приложение $\Pi.3$) находится таблица значений для функции $\Phi_0(x)$ (см. следующее замечание). Лектор говорит, что в домашнем задании в обязательном порядке необходимо посчитать вероятности при помощи этой функции; на контрольную или экзамен можно принести распечатку таблицы значений, но там высчитывание конечного значения вероятности не обязательно. — Прим. ред.

(см. рисунок 28)

Свойства функций Φ и Φ_0 :

1.
$$\Phi(x) = \frac{1}{2} + \Phi_0(x)$$
;

2.
$$\Phi_0(x) = -\Phi_0(x)$$
 (функция чётная);

3.
$$\Phi_0(+\infty) = \frac{1}{2}$$
;

4.
$$\Phi_0(-\infty) = -\frac{1}{2}$$
.

Замечание 3. Пусть $x \sim N(m, \sigma^2)$; чему равно $P\{a \leq X \leq b\}$? Рассмотрим

 $P\{a\leqslant X< b\}=\langle$ по свойству плотности распределения $\rangle=$

$$= \int_{a}^{b} f_X(x) dx = \frac{1}{\sigma \sqrt{2\pi}} \int_{a}^{b} e^{-\frac{(x-m)^2}{2\sigma^2}} =$$

$$= \left\langle t = \frac{x-m}{\sigma}; dx = \sigma dt; \begin{cases} x = a \implies t = \frac{a-m}{\sigma}, \\ x = b \implies t = \frac{b-m}{\sigma} \end{cases} \right\rangle =$$

$$=rac{1}{arphi\sqrt{2\pi}}\cdotarphi\cdot\int\limits_{rac{a-m}{\sigma}}^{rac{\sigma-m}{\sigma}}e^{-rac{t^2}{2}}\,dt=\langle\,\,m.\,\,\kappa.\,\,\Phi(t)\,-\,n$$
ервообразная $f_{0,\,1}(t)\,\,
angle=0$

$$= \Phi\left(\frac{b-m}{\sigma}\right) - \Phi\left(\frac{a-m}{\sigma}\right) =$$

$$= \left\langle \Phi(t) \equiv \frac{1}{2} + \Phi_0(t) \right\rangle =$$

$$= \Phi_0\left(\frac{b-m}{\sigma}\right) - \Phi_0\left(\frac{a-m}{\sigma}\right)$$

T. κ . $X \sim N(m,\,\sigma^2)\,-$ непрерывная случайная величина, то

$$P\{a \preccurlyeq X \preccurlyeq b\} = \Phi_0\left(\frac{b-m}{\sigma}\right) - \Phi_0\left(\frac{a-m}{\sigma}\right) = \Phi\left(\frac{b-m}{\sigma}\right) - \Phi\left(\frac{a-m}{\sigma}\right)$$

2.4 Сформулировать определение случайного вектора и функции распределения вероятностей случайного вектора. Сформулировать свойства функции распределения двумерного случайного вектора. Доказать предельные свойства.

Пусть

- 1. (Ω, β, P) вероятностное пространство;
- 2. $X_{\omega} = X_1(\omega), \ldots, X_n(\omega)$ случайные величины, заданные на этом вероятностном пространстве.

Определение. n-мерным случайным вектором называется кортеж 22

$$\overrightarrow{X} = (X_1, \ldots, X_n)$$

Определение. Функцией распределения вероятностей случайного вектора

$$X = (X_1, \ldots, X_n)$$

называется отображение

$$F: \mathbb{R}^n \to \mathbb{R}$$

определённое правилом

$$F(x_1, \ldots, x_n) = P\{X_1 < x_1, \ldots, X_n < x_n\}$$

Свойства функции распределения случайного вектора (для n=2):

- 1. $0 \leqslant F(x_1, x_2) \leqslant 1$;
- 2. (а) При фиксированном x_2 функция $F(x_1, x_2)$ как функция переменного x_1 является неубывающей функцией;
 - (b) При фиксированном x_1 функция $F(x_1, x_2)$ как функция переменного x_2 является неубывающей функцией.

3.
$$\lim_{x_1 \to -\infty, x_2 = const} F(x_1, x_2) = 0$$
$$\lim_{x_1 = const, x_2 \to -\infty} F(x_1, x_2) = 0$$

4.
$$\lim_{x_1 \to +\infty, x_2 \to +\infty} F(x_1, x_2) = 1$$

5.
$$\lim_{x_1 = const, x_2 \to +\infty} F(x_1, x_2) = F_{X_1}(x_1)$$

$$\lim_{x_1 \to +\infty, \, x_2 = const} F(x_1, \, x_2) = F_{X_2}(x_2)$$

где $F_{X_i}(x_i)$ — функция распределения случайной величины X_i ;

6. Вероятность того, что реализация попадёт в похожую на прямоугольник область $D = \{(x, y) : x \in [a_1, b_1), y \in [a_2, b_2)\}$:

$$P\{a_1 \le X < b_1, a_2 \le X_2 < b_2\} = F(b_1, b_2) - F(a_1, b_2) - F(b_1, a_2) + F(a_1, a_2)$$

26

 $^{^{22}}$ Обратите внимание, что векторы обозначаются стрелочкой (\overrightarrow{X}) , а не прямой (\overline{X}) . Это важно, т. к. далее в курсе появится величина, которая будет обозначаться прямой. За использование прямой для обозначения вектора будут снижаться баллы. — Прим. лект.

- 7. (а) При фиксированном x_2 функция $F(x_1, x_2)$ как функция переменной x_1 является непрерывной слева в каждой точке;
 - (b) При фиксированном x_1 функция $F(x_1, x_2)$ как функция переменной x_2 является непрерывной слева в каждой точке.

Доказательства.

- 1. ...
- 2. . . .
- 3. Покажем, что $\lim_{x_1 \to -\infty, x_2 = const} F(x_1, x_2) = 0.$

По определению, $F(x_1, x_2) = P\{\{X_1 < x_1\} \cdot \{X_2 < x_2\}\};$ при $x_1 \to -\infty$ событие $\{X_1 < -\infty\}$ является невозможным. Произведение невозможного события на событие $\{X_2 < x_2\}$ является невозможным событием, поэтому $F(x_1, x_2)$ стремится к нулю при $x_1 \to -\infty$, $x_2 = const$.

 $\lim_{x_1=const, x_2\to -\infty} F(x_1, x_2) = 0$ доказывается аналогично.

4. По определению, $F(x_1, x_2) = P\{\{X_1 < x_1\} \cdot \{X_2 < x_2\}\}.$

Событие $\{X_1 < +\infty\}$ является достоверным, $\{X_2 < +\infty\}$ также является достоверным, а произведение достоверных событий — достоверное событие; таким образом,

$$\lim_{x_1 \to +\infty, x_2 \to +\infty} F(x_1, x_2) = 1$$

5. Покажем, что $\lim_{x_1=const, x_2\to +\infty} F(x_1, x_2) = F_{X_1}(x_1)$

По определению,

$$F(x_1, x_2) = P\{\{X_1 < x_1\} \cdot \{X_2 < x_2\}\}\$$

Событие $\{X_2 < +\infty\}$ является достоверным; произведение события $\{X_1 < x_1\}$ на достоверное равно $\{X_1 < x_1\}$ (т. е. равно ему же), поэтому

$$\lim_{x_1 = const, x_2 \to +\infty} F(x_1, x_2) = P\{X_1 < x_1\} = F_{X_1}(x_1)$$

 $\lim_{x_1\to +\infty,\,x_2=const}F(x_1,\,x_2)=F_{X_2}(x_2)$ доказывается аналогично.

- *6.* . . .
- 7. Доказывается аналогично одномерному случаю.

2.5 Сформулировать определение случайного вектора и функции распределения вероятностей случайного вектора. Сформулировать свойства функции распределения двумерного случайного вектора. Доказать формулу для вычисления $P\{a_1 \leq X_1 < b_1, a_2 \leq X_2 < b_2\}$.

Пусть

- 1. (Ω, β, P) вероятностное пространство;
- 2. $X_{\omega} = X_1(\omega), \ldots, X_n(\omega)$ случайные величины, заданные на этом вероятностном пространстве.

Определение. n-мерным случайным вектором называется кортеж 23

$$\overrightarrow{X} = (X_1, \ldots, X_n)$$

Определение. Функцией распределения вероятностей случайного вектора

$$X = (X_1, \ldots, X_n)$$

называется отображение

$$F \colon \mathbb{R}^n \to \mathbb{R}$$

определённое правилом

$$F(x_1, \ldots, x_n) = P\{X_1 < x_1, \ldots, X_n < x_n\}$$

Свойства функции распределения случайного вектора (для n=2):

- 1. $0 \leqslant F(x_1, x_2) \leqslant 1$;
- 2. (а) При фиксированном x_2 функция $F(x_1, x_2)$ как функция переменного x_1 является неубывающей функцией;
 - (b) При фиксированном x_1 функция $F(x_1, x_2)$ как функция переменного x_2 является неубывающей функцией.

3.
$$\lim_{x_1 \to -\infty, x_2 = const} F(x_1, x_2) = 0$$
$$\lim_{x_1 = const, x_2 \to -\infty} F(x_1, x_2) = 0$$

4.
$$\lim_{x_1 \to +\infty, x_2 \to +\infty} F(x_1, x_2) = 1$$

 $^{^{23}}$ Обратите внимание, что векторы обозначаются стрелочкой (\overrightarrow{X}) , а не прямой (\overline{X}) . Это важно, т. к. далее в курсе появится величина, которая будет обозначаться прямой. За использование прямой для обозначения вектора будут снижаться баллы. — Прим. лект.

5.
$$\lim_{x_1 = const, x_2 \to +\infty} F(x_1, x_2) = F_{X_1}(x_1)$$

$$\lim_{x_1 \to +\infty, \, x_2 = const} F(x_1, \, x_2) = F_{X_2}(x_2)$$

где $F_{X_i}(x_i)$ — функция распределения случайной величины X_i ;

6. Вероятность того, что реализация попадёт в похожую на прямоугольник область $D = \{(x, y) : x \in [a_1, b_1), y \in [a_2, b_2)\}$:

$$P\{a_1 \le X < b_1, a_2 \le X_2 < b_2\} = F(b_1, b_2) - F(a_1, b_2) - F(b_1, a_2) + F(a_1, a_2)$$

- 7. (а) При фиксированном x_2 функция $F(x_1, x_2)$ как функция переменной x_1 является непрерывной слева в каждой точке;
 - (b) При фиксированном x_1 функция $F(x_1, x_2)$ как функция переменной x_2 является непрерывной слева в каждой точке.

Доказательство. (формулы для вычисления $P\{a_1 \leqslant X_1 < b_1, a_2 \leqslant X_2 < b_2\}$)

1. Найдём вероятность попадания случайного вектора $(X_1,\,X_2)$ в полосу

$$\{X_1 < x_1, a_2 \leqslant X < b_2\}$$

(a)
$$\{X_1 < x_1, X_2 < b_2\} = \{X_1 < x_1, a_2 \le X_2 < b_2\} + \{X_1 < x_1, X_2 < a_2\}$$

(b) По теореме сложения (события объединения несовместны):

$$\underbrace{P\{X_1 < x_1, X_2 < b_2\}}_{F(x_1, b_2)} = P\{X_1 < x_1, a_2 \leqslant X_2 < b_2\} + \underbrace{P\{X_1 < x_1, X_2 < a_2\}}_{F(x_1, a_2)}$$

Таким образом,

$$P\{X_1 < x_1, a_2 \le X_2 < b_2\} = F(x_1, b_2) - F(x_1, a_2)$$

2. (a)

$${X_1 < b_1, a_2 \leqslant X_2 < b_2} = {a_1 \leqslant X_1 < b_1, a_2 \leqslant X_2 < b_2} + {X_1 < a_1, a_2 \leqslant X_2 < b_2}$$

(b) По формуле сложения (события объединения несовместны):

$$\underbrace{P\{X_1 < b_1, \ a_2 \leqslant X_2 < b_2\}}_{(us \ nyhkma \ a) \ F(b_1, b_2) - F(b_1, a_2)} = P\{a_1 \leqslant X_1 < b_1, \ a_2 \leqslant X_2 < b_2\} +$$

$$\underbrace{P\{X_1 < a_1, \ a_2 \leqslant X_2 < b_2\}}_{(us\ nyнкта\ a)\ F(a_1,b_2) - F(a_1,a_2)}$$

Таким образом,

$$P\{a_1 \leqslant X_1 < b_1, \ a_2 \leqslant X_2 < b_2\} = F(b_1, \ b_2) - F(b_1, \ a_2) - F(a_1, \ b_2) + F(a_1, \ a_2)$$

2.6 Сформулировать определение случайного вектора и функции распределения вероятностей случайного вектора. Сформулировать определение непрерывного случайного вектора и доказать свойства плотности распределения вероятностей для двумерного случайного вектора.

Пусть

- 1. (Ω, β, P) вероятностное пространство;
- 2. $X_{\omega} = X_1(\omega), \ldots, X_n(\omega)$ случайные величины, заданные на этом вероятностном пространстве.

Определение. n-мерным случайным вектором называется кортеж 24

$$\overrightarrow{X} = (X_1, \ldots, X_n)$$

Определение. Функцией распределения вероятностей случайного вектора

$$X = (X_1, \ldots, X_n)$$

называется отображение

$$F: \mathbb{R}^n \to \mathbb{R}$$

определённое правилом

$$F(x_1, \ldots, x_n) = P\{X_1 < x_1, \ldots, X_n < x_n\}$$

Определение. Случайный вектор (X_1, \ldots, X_n) называется непрерывным, если существует функция

$$f: \mathbb{R}^n \to \mathbb{R}$$

такая, что для каждой точки (x_1,\ldots,x_n) выполняется

$$F(x_1, ..., x_n) = \int_{-\infty}^{x_1} dt_1 \int_{-\infty}^{x_2} dt_2 ... \int_{-\infty}^{x_i} dt_i ... \int_{-\infty}^{x_n} f(t_1, ..., t_n) dt_n$$

где F — функция распределения плотности случайного вектора (X_1, \ldots, X_n) . При этом f называется функцией плотности распределения вероятностей этого вектора.

Замечание 1. В определении предполагается. что несобственный интеграл сходится в каждой точке $(x_1, \ldots, x_n) \in \mathbb{R}^n$.

 $^{^{24}}$ Обратите внимание, что векторы обозначаются стрелочкой (\overrightarrow{X}) , а не прямой (\overline{X}) . Это важно, т. к. далее в курсе появится величина, которая будет обозначаться прямой. За использование прямой для обозначения вектора будут снижаться баллы. — Прим. лект.

Замечание 2. При n = 2:

$$F(x_1, x_2) = \int_{-\infty}^{x_1} dt_1 \int_{-\infty}^{x_2} f(t_1, t_2) dt_2$$

Свойства непрерывных случайных векторов (для n=2)Свойств именно функции плотности непрерывных случайных векторов «в чистом виде» в лекциях нет. — Прим. ред..

- 1. Если f функция плотности двумерного случайного вектора, то $f(x_1, x_2) \geqslant 0$.
- 2. Если (X_1, X_2) непрерывный случайный вектор, а $f(x_1, x_2)$ его функция плотности, то

$$P\{a_1 \preceq X_1 \preceq b_1, \ a_2 \preceq X_2 \preceq b_2\} = \int_{a_1}^{b_1} dx_1 \int_{a_2}^{b_2} f(x_1, x_2) dx_2$$

- 3. Условие нормировки: $\iint_{R^2} f(x_1, x_2) dx_1 dx_2 = 1.$
- 4. Если $f(x_1, x_2)$ функция плотности вектора (X_1, X_2) , а (x_1^0, x_2^0) точка непрерывности функции f, то

$$P\{x_1^0 \leq X_1 \leq x_1^0 + \Delta x_1, x_2^0 \leq X_2 \leq x_2^0 + \Delta x_2\} \approx f(x_1^0, x_2^0) \Delta x_1 \Delta x_2$$

если Δx_1 , Δx_2 достаточно малы.

5. Если (X_1, X_2) — непрерывный случайный вектор, то для любых наперёд заданных $x_1^0, \, x_2^0$

$$P\{(X_1, X_2) = (x_1^0, x_2^0)\} = 0$$

6.

$$P\{(X, Y) \in D\} = \iint_D f(x_1, x_2) dx_1 dx_2$$

7.

$$\int_{-\infty}^{+\infty} f(x_1, x_2) dx_2 = f_{X_1}(x_1)$$

$$\int_{-\infty}^{+\infty} f(x_1, x_2) dx_1 = f_{X_2}(x_2)$$

где f_{X_1} , f_{X_2} — маргинальные функции плотности случайных величин X_1 и X_2 , f — совместная функция плотности случайных величин X_1 и X_2 (\equiv функция плотности случайного вектора (X_1, X_2)).

Обратите внимание, что из функции плотности можно получить обе маргинальные.

 $f(x_1, x_2) \implies \begin{cases} f_{X_1}(x_1) \\ f_{X_2}(x_2) \end{cases}$

Доказательства. Доказательства свойств 1-5 аналогичны одномерному случаю. Свойство 6 является обобщением свойства 2 на случай произвольной области D (без доказательства).

Доказательство свойства 7.

Докажем, что
$$f_{X_1}(x_1) = \int\limits_{-\infty}^{+\infty} f(x_1, x_2) dx_2.$$

По свойству двумерной функции распределения $F(x_1, +\infty) = F_{X_1}(x_1)$; таким образом (подставим определение функции распределения для двумерного вектора),

$$F_{X_1}(x_1) = \int_{-\infty}^{x_1} dt_1 \int_{-\infty}^{+\infty} f(t_1, t_2) dt_2$$

$$f_{X_1}(x_1) = \frac{dF_{X_1}(x_1)}{dx_1} =$$

 $= \langle x_1 - m$ очка непрерывности функции $f_{X_1}(x_1)$, и тогда по теореме

о производной интеграла с перменным верхним пределом $\rangle =$

$$= \int_{-\infty}^{+\infty} f(x_1, t_2) dt_2$$

Вторая формула доказывается аналогично.

2.7 Сформулировать определение пары независимых случайных величин. Доказать свойства независимых случайных величин. Понятия попарно независимых случайных величин и случайных величин, независимых в совокупности.

Определение. Случайные величины X и Y называются независимыми, если

$$F(x, y) = F_X(x) F_Y(y)$$

где F — совместная функция распределения X и Y (\equiv функция распределения случайного вектора (X,Y)); F_X , F_Y — маргинальные функции распределения случайных величин X и Y.

Свойства независимых случайных величин:

1.

Случайные величины X и Y независимы

$$\iff$$

 $\forall \forall x, y \in \mathbb{R}$ события $\{X < x\}$ и $\{Y < y\}$ независимы.

2.

Случайные величины X и Y независимы

$$\Longrightarrow$$

 $\forall \forall x_1, x_2 \in \mathbb{R}, \forall \forall y_1, y_2 \in \mathbb{R}$ события $\{x_1 \leqslant X < x_2\}$ и $\{y_1 \leqslant Y < y_2\}$ независимы.

3.

Случайные величины X и Y независимы

$$\iff$$

 $\forall \forall M_1, M_2$ события $\{X \in M_1\}$ и $\{Y \in M_2\}$ независимы,

где M_1 , M_2 — промежутки или объединения промежутков в \mathbb{R} .

4. Если X и Y — дискретные случайные величины, то

$$X, Y$$
 — независимые $\iff p_{ij} \equiv P_{X_i} P_{Y_j}$

где
$$p_{ij} = P\{(X, Y) = (x_i, y_j)\}, P_{X_i} = P\{X = x_i\}, P_{Y_i} = P\{Y = y_j\}.$$

5. Если X и Y — непрерывные случайные величины, то

$$X, Y$$
 — независимы $\iff f(x, y) \equiv f_X(x) f_Y(y)$

где f — совместная плотность распределения случайных величин X и Y (\equiv функция плотности распределения случайного вектора (X, Y)); f_X , f_Y — маргинальные плотности распределения случайных величин X и Y соответственно.

Доказательства.

- 1. Очевидно следует из определения независимых случайных величин.
- 2. (a) **Необходимость** (\Longrightarrow).

 Пусть $F(x, y) = F_X(x) F_Y(y)$.

 Тогда

$$P\{x_1 \leqslant X < x_2, y_1 \leqslant Y < y_2\} =$$
 $= \langle \ c$ войство функции распределения случайного вектора $\rangle =$
 $= F(x_1, y_1) + F(x_2, y_2) - F(x_1, y_2) - F(x_2, y_1) =$
 $= F_X(x_1) F_Y(y_1) + F_X(x_2) F_Y(y_2) - F_X(x_1) F_Y(y_2) - F_X(x_2) F_Y(y_1) =$
 $= [F_X(x_2) - F_X(x_1)] [F_Y(y_2) - F_Y(y_1)] =$
 $= \langle \ c$ войство одномерной функции распределения $\rangle =$
 $= P\{x_1 \leqslant X < x_2\} P\{y_1 \leqslant Y < y_2\}$

(b) Достаточность (\iff). Пусть $\forall \forall x_1, x_2, y_1, y_2 \in \mathbb{R}$,

$$P\{x_1 \leqslant X < x_2, y_1 \leqslant Y < y_2\} = P\{x_1 \leqslant X < x_2\} P\{y_1 \leqslant Y < y_2\}$$

Torða

$$F(x, y) = P\{X < x, Y < y\} = P\{-\infty < X < x, -\infty < Y < y\} =$$

$$= \langle x_1 = -\infty, x_2 = x, y_1 = -\infty, y_2 = y \rangle =$$

$$= P\{-\infty < X < x\} P\{-\infty < Y < y\} = F_X(x) F_Y(y)$$

- 3. Является обобщением свойств 1 и 2 (без доказательства).
- 4. (а) Достаточность (\iff). Достаточность была доказана выше, в рассуждениях перед определением независимых случайных величин.
 - (b) **Необходимость** (\Longrightarrow). Необходимость студентам предлагается доказать самостоятельно.
- 5. (a) **Необходимость** (\Longrightarrow).

 Пусть $F(x, y) \equiv F_X(x) F_Y(y)$. По свойству двумерной плоскости $f(x, y) = \frac{\delta^2 F(x, y)}{\delta x \, \delta y} = \frac{\delta^2}{\delta x \, \delta y} [F_X(x) F_Y(y)] = \frac{dF_X(x)}{dx} \cdot \frac{dF_Y(y)}{dy} = f_X(x) f_Y(y)$
 - (b) Достаточность (\iff).

 Пусть $f(x, y) = f_X(x) f_Y(y)$.

Tог ∂a

$$F(x, y) = \int_{-\infty}^{x} dt \int_{-\infty}^{y} f(t, v) dv = \int_{-\infty}^{x} dt \int_{-\infty}^{y} f_X(t) f_Y(v) dv =$$

$$\int_{-\infty}^{x} f_X(t) dt \int_{F_X(x)}^{y} f_Y(v) dv = F_X(x) F_Y(y)$$

Определение. Случайные величины X_1, \ldots, X_n , заданные на одном вероятностном пространстве, называются

- Попарно независимыми, если X_i и X_j независимы при $i \neq j$;
- Независимыми в совокупности, если

$$F(x_1, \ldots, x_n) = F_{X_1}(x_1) \cdot \ldots \cdot F_{X_n}(x_n)$$

где F — совместная функция распределения случайных величин $X_1, \ldots X_n$ (\equiv функция распределения случайного вектора $(X_1, \ldots X_n)$), F_{X_i} — маргинальные функции распределения случайных величин $X_i, i = \overline{1; n}$.

Замечание 1. Можено доказать, что

- 1. Если X_1, \ldots, X_n независимы в совокупности, то они попарно независимы. Обратное неверно.
- 2. Обобщения свойств 4 и 5 будут справедливы для любого числа п случайных величин, независимых в совокупности. К примеру, обобщение свойства 5:

$$X_1, \ldots, X_n$$
 — независимы в совокупности

$$f(x_1, \ldots, x_n) = f_{X_1}(x_1) \cdot \ldots \cdot f_{X_n}(x_n)$$

2.8 Понятие условного распределения случайной величины. Сфор мулировать определение условного ряда распределения компоненты двумерного дискретного случайного вектора. Привести рассуждения, приводящие к такому определению. Сформулировать определение условной плотности распределения компоненты двумерного непрерывного случайного вектора. Сформулировать критерии независимости случайных величин в терминах условных распределений.

Давайте рассмотрим случайный вектор (X, Y). Предположим, известно, что случайная величина Y приняла значение y_0 . Что в этом случае можно сказать о возможных значениях случайной величины X и что можно сказать о законе распределения случайной величины X при условии $Y = y_0$?

Случай дискретного случайного вектора Пусть

- 1. (X, Y) дискретный случайный вектор;
- 2. $X \in \{x_1, \ldots, x_m\}, Y \in \{y_1, \ldots, y_n\};$
- 3. $p_{ij} = P\{(X, Y) = (x_i, y_j)\}, i = \overline{1; m}, j = \overline{1; n},$ $P_{X_i} = P\{X = x_i\}, i = \overline{1; m},$ $P_{Y_j} = P\{Y = y_j\}, j = \overline{1; n};$
- 4. Известно, что $Y = y_j$ для некоторого фиксированного j.

Тогда

$$P\{X=x_i\,|\,Y=y_j\}=\langle$$
 из определения условной вероятности $\rangle=\frac{P\{\{X=x_i\}\cdot\{Y=y_j\}\}}{P\{Y=y_j\}}=\frac{P\{(X,Y)=(x_i,y_j)\}}{P_{Y_j}}=\frac{p_{ij}}{P_{Y_j}}$

Определение. В случае двумерного дискретного случайного вектора (X, Y) условной вероятностью того, что случайная величина X приняла значение x_i при условии $Y=y_i$ называют число

$$\pi_{ij} = \frac{p_{ij}}{P_{Y_i}}$$

Определение. Набор вероятностей π_{ij} , $i = \overline{1; m}$, для данного фиксированного j называются уловным распределением случайного вектора X при условии $Y = y_j$.

Замечание 1. Условная вероятность того, что случайная величина Y приняла значение y_i при условии $X = x_i$ определяется аналогично²⁵:

$$\tau_{ij} = P\{Y = y_j \mid X = x_i\} = \frac{p_{ij}}{P_{X_i}}$$

Замечание 2. Набор вероятностей $\tau_{ij}, j = \overline{1; n}, \, \partial$ ля фиксированного i называют условным распределением случайной величины Y при условии $X = x_i$.

Случай непрерывного случайного вектора

В случае непрерывного случайного вектора (X, Y) рассуждения, аналогичные проведённым для дискретного случайного вектора рассуждениям, приводят к следующему определению.

Определение. Условной плотностью распределения случайного вектора X при условии Y = y называется функция

$$f_X(x \mid Y = y) = \frac{f(x, y)}{f_Y(y)}$$

где f — совместная плотность распределения случайных величин X и Y (\equiv плотность распределения вектора (X,Y)), f_Y — маргинальная плотность распределения случайной величины Y.

Замечание. Аналогичным образом определяется условная плотность распределения случайной величины Y при условии X=x:

$$f_Y(y \mid X = x) = \frac{f(x, y)}{f_X(x)}$$

где $f_X(x)$ — маргинальная плотность распределения случайной величины X.

Теорема. Критерии независимости случайных величин в терминах условных распределений.

- 1. Пусть (X,Y)- двумерный случайный вектор. Тогда следующие условия эквивалентны:
 - X, Y независимые.
 - $F_X(x \mid Y = y) \equiv F_X(x)$ для всех y, в которых определена $F_X(x \mid Y = y)$.
 - $F_Y(y \mid X = x) \equiv F_Y(y)$ для всех x, в которых определена $F_Y(y \mid X = x)$.
- 2. Если (X, Y) непрерывный случайный вектор, то следующие условия эквивалентны. (для условной плотности)

 $^{^{-25}} au$ — строчная буква «тау» греческого алфавита. — Прим. ред.

- X, Y независимые.
- $f_X(x \mid Y = y) \equiv f_X(x)$ для всех y, в которых определена $f_X(x \mid Y = y)$.
- $f_Y(y \mid X = x) \equiv f_Y(y)$ для всех x, в которых определена $f_Y(y \mid X = x)$.
- 3. Если $(X, Y) \partial u$ скретный случайный вектор, то следующие утверэждения эквиваленты.
 - X, Y независимые.
 - $P\{X = x_i \mid Y = y_i\} \equiv P\{X = x_i\}$ direct $j = \overline{1; n}$.
 - $P\{Y=y_j \mid X=x_i\} \equiv P\{Y=y_j\}$ dar $ecex\ i=\overline{1;\ m}$.

$$(sdec_{b} X \in \{x_{1}, \ldots, x_{m}\}, Y \in \{y_{1}, \ldots, y_{n}\}).$$

Доказательство. Без доказательства.

2.9 Понятие функции скалярной случайной величины. Доказать теорему о формуле для вычисления плотности $f_Y(y)$ случайной величины $Y = \phi(X)$, если X – непрерывная случайная величина, а φ – монотонная непрерывно дифференцируемая функция. Сформулировать аналогичную теорему для кусочно-монотонной функции φ .

Пусть

- 1. X некоторая случайная величина;
- 2. $\varphi \colon \mathbb{R} \to \mathbb{R}$ некоторая известная функция.

Тогда $\varphi(X) = Y$ — некоторая случайная величина.

Теорема. Пусть

- 1. X— непрерывная случайная величина;
- 2. $\varphi \colon \mathbb{R} \to \mathbb{R};$
- $\it 3. \ arphi$ монотонна и непрерывно дифференцируема;
- 4. $\psi \phi y$ нкция²⁶, обратная к φ (т. к. φ монотонная, то $\exists \psi = \varphi^{-1}$);
- 5. $Y = \varphi(X)$.

Tог ∂a

 $[\]overline{}^{26}\psi-$ строчная буква «пси» греческого алфавита. — Прим. ред.

- 1. У также является непрерывной случайной величиной;
- 2. $f_Y(y) = f_X(\psi(y))|\psi'(y)|$.

Доказательство.

- 1. $F_Y(y) = P\{Y < y\} = P\{\varphi(X) < y\}$
 - (a) Если φ монотонно возрастающая функция, то $\varphi(X) < y \iff X < \varphi^{-1}(y) = \psi(y);$
 - (b) Если φ монотонная убывающая функция, то $\varphi(X) < y \iff X > \varphi^{-1}(y) = \psi(y)$
- 2. В случае случая а, $F_Y(y) = P\{X < \psi(y)\} = F_X(\psi(y))$; в случае б $F_Y(y) = P\{X > \varphi(y)\} = 1 P\{X \preccurlyeq \psi(y)\} = \langle X \text{непрерывная } \rangle = 1 P\{X < \psi(y)\} = 1 F_X(\psi(y))$.

3.

$$f_Y(y) = F_Y'(y) = \begin{cases} \frac{d}{dy} [F_X(\psi(y))] = F_X'(\psi(y)) \cdot \psi'(y), & \text{если a} \\ \frac{d}{dy} [1 - F_X(\psi(y))] = -F_X'(\psi(y)) \cdot \psi'(y), & \text{если b} \\ = f_X(\psi(y)) \cdot |\psi'(y)| \end{cases}$$

Теорема. Пусть

- 1. Х непрерывная случайная величина;
- 2. $\varphi \colon \mathbb{R} \to \mathbb{R}$ является кусочно-монотонной функцией, имеющей п интервалов монотонности;
- $3. \ arphi \ \partial u \phi \phi e p e н ц u p y e м a;$
- 4. Для данного $y \in R$, $x_1 = x_1(y), \ldots, x_k = x_k(y)$ $(k \le n)$ это все решения уравнения $y = \varphi(x)$, принадлежащие интервалам I_1, \ldots, I_k монотонности функции φ .

Тогда для данного в условии 4 значения у

$$f_Y(y) = \sum_{j=1}^k f_X(\psi_j(y)) * |\psi'_j(y)|$$

где $\psi_j(y)$ — функция, обратная к $\varphi(x)$ на интервале $I_j,\,j=\overline{1;\,k}$

2.10 Понятие скалярной функции случайного вектора. Обосновать формулу для вычисления функции распределения случайной величины Y, функционально зависящей от случайных величин X_1 и X_2 , если (X_1, X_2) – непрерывный случайный вектор. Доказать теорему о формуле свёртки.

Пусть

- 1. (X_1, X_2) двумерный случайный вектор;
- 2. $\varphi: \mathbb{R}^2 \to \mathbb{R}$
- 3. $Y = \varphi(X_1, X_2)$ некоторая одномерная случайная величина.

Как, зная закон распределения случайного вектора (X_1, X_2) , найти закон распределения случайной величины Y?

Рассмотрим два случая. Случай дискретного случайного вектора: Пусть (X_1, X_2) — дискретный случайный вектор. В таком случае Y — дискретная случайная величина.

Случай непрерывного случайного вектора:

Если (X_1, X_2) — непрерывный случайный вектор, то функцию распределения случайной величины $Y = \varphi(X_1, X_2)$ можно найти по формуле

$$F_Y(y) = \iint_{D(y)} f(x_1, x_2) dx_1 dx_2$$

где f — совместная плотность распределения случайных величин X_1 и X_2 , $D(y) = \{(x_1, x_2) : \varphi(x_1, x_2) < y\}.$

Доказательство.

$$F_Y(y) = P\{Y < y\} =$$
 $= \langle \ coбытия \ \{Y < y\} \ u \ \{(X_1, \, X_2) \in D(y)\} \$ эквивалентны $\rangle =$
 $= \langle \ coŏйство \ непрерывного случайного вектора $\rangle =$
 $= \iint\limits_{D(y)} f(x_1, \, x_2) \, dx_1 \, dx_2$$

Формула свёртки.

Теорема. Пусть

- 1. X_1, X_2 непрерывные случайные величины;
- $2. \ X_1, \ X_2 -$ независимые случайные величины;

3.
$$Y = X_1 + X_2$$
 (m. e. $\varphi(x_1, x_2) = x_1 + x_2$).

Tог ∂a

$$f_Y(y) = \int_{-\infty}^{+\infty} f_{X_2}(y - x_1) f_{X_1}(x_1) dx_1$$

Доказательство.

1.

$$F_{Y}(y) = P\{Y < y\} = P\{X_{1} + X_{2} < y\} = \iint_{D(y)} f(x_{1}, x_{2}) dx_{1} dx_{2} = \begin{cases} = \left\langle X_{1}, X_{2} - \text{nesabucumbe} \right\rangle \Rightarrow f(x_{1}, x_{2}) = f_{X_{1}}(x_{1}) f_{X_{2}}(x_{2}) \end{cases} = \begin{cases} = \int_{-\infty}^{+\infty} dx_{1} \int_{-\infty}^{y-x_{1}} f_{X_{1}}(x_{1}) f_{X_{2}}(x_{2}) dx_{2} = \int_{-\infty}^{+\infty} f_{X_{1}}(x_{1}) \left[F_{X_{2}}(x_{2}) \Big|_{-\infty}^{y-x_{1}} \right] dx_{1} = \begin{cases} = \langle F_{X_{2}}(-\infty) = 0 \rangle = \int_{-\infty}^{+\infty} f_{X_{1}}(x_{1}) F_{X_{2}}(y - x_{1}) dx_{1} \end{cases}$$

2.

$$f_Y(y) = \frac{d}{dy} F_Y(y) = \int_{-\infty}^{+\infty} f_{X_1}(x_1) f_{X_2}(y - x_1) dx_1$$

2.11 Сформулировать определение математического ожидания для дискретной и непрерывной случайных величин. Механический смысл математического ожидания. Доказать свойства математического ожидания. Записать формулы для вычисления математического ожидания функции случайной величины и случайного вектора.

Определение. Mатематическим ожиданием дискретной величины X называют $^{\prime\prime}$ исло

$$M[X] = \sum_{i} p_i x_i$$

где i пробегает такое множество значений, что x_i исчерпывает все возможные значения случайной величины X; $p_i = P\{X = x_i\}$.

Определение. Mатематическим ожиданием непрерывной случайной величины X называется число 27

$$M[X] = \int_{-\infty}^{+\infty} x f(x) dx$$

 $r\partial e\ f(x)\ -\ \phi y$ нкция плотности случайной величины X.

Замечание. Механический смысл математического ожидания.

Будем интерпретировать величину p_i как «вероятностную массу» значения x_i случайной величины X. T. к. $\sum_i p_i = 1$, то M[X] характеризует положение центра тяжести вероятностной массы.

Свойства математического ожидания:

- 1. Если $P\{X=x_0\}=1$ (т. е. если X фактически не является случайной), то $MX=x_0$:
- $2. \ M[aX+b] = a \cdot MX + b;$
- 3. $M[X_1 + X_2] = MX_1 + MX_2$;
- 4. Если X_1 , X_2 независимы, то $M[X_1X_2] = (MX_1)(MX_2)$.

Доказательства.

1. Ряд распределения:

$$X \quad x_0 \\ P \quad 1$$

По определению: $MX = \sum_{i} p_i x_i = 1 \cdot x_0 = x_0$.

2. Докажем для случая непрерывной случайной величины.

$$M[aX+b]=\langle arphi(x)=ax+b;\ aX+b-$$
 непрерывная случайная величина $angle =\int\limits_{-\infty}^{+\infty}(ax+b)\,f(x)\,dx=a\int\limits_{-\infty}^{+\infty}x\,f(x)\,dx+b\int\limits_{-\infty}^{+\infty}f(x)\,dx=a\cdot MX+b.$

 $^{^{27}}$ Если аргумент достаточно простой, то квадратные скобки в обозначении M[X] часто опускают. Также часто MX обозначают просто буквой m. — Прим. ред.

3. Доказательство для дискретного случая. Элементы X_1 обозначаются индексами i, пробегающими множество I; для X_2 используются j и J. Запись o:

$$M[X_1 + X_2] = \langle \varphi(x_1, x_2) = x_1 + x_2 \rangle =$$

$$= \sum_{i \in I} \sum_{j \in J} (x_{1,i} + x_{2,j}) p_{ij} = \sum_{i \in I} \sum_{j \in J} x_{1,i} p_{ij} + \sum_{i \in I} \sum_{j \in J} x_{2,j} p_{ij} =$$

$$= \sum_{i \in I} x_{1,i} \sum_{j \in J} p_{ij} + \sum_{j \in J} x_{2,j} \sum_{i \in I} p_{ij} = MX_1 + MX_2$$

$$P\{X_1 = X_{1,i}\}$$

4. Докажем для непрерывных случайных величин

$$M[X_1X_2] = \langle \varphi(x_1, x_2) = x_1 x_2 \rangle = \iint_{R^2} x_1 x_2 f(x_1, x_2) dx_1 dx_2 =$$

$$= \langle X_1, X_2 - \text{nesaeucumu} \implies f(x_1, x_2) = f_{X_1}(x_1) f_{X_2}(x_2) \rangle =$$

$$= \int_{-\infty}^{+\infty} dx_1 \int_{-\infty}^{+\infty} x_1 x_2 f_{X_1}(x_1) f_{X_2}(x_2) dx_2 =$$

$$\left(\int_{-\infty}^{+\infty} x_1 f_{X_1}(x_1) dx_1 \right) \left(\int_{-\infty}^{+\infty} x_2 f_{X_2}(x_2) dx_2 \right) = (MX_1)(MX_2)$$

Рубрика «Сделай сам». Доказательства для дискретного случая свойств 2 и 4, непрерывного случая свойства 3 предлагается написать самостоятельно.

Замечание.

- 1. Пусть X случайная величина, а $\varphi\colon \mathbb{R} \to \mathbb{R}$ некоторая функция, тогда
 - (a) Если $X \partial u$ скретная случайная величина, то

$$M[\varphi(X)] = \sum_{i} \varphi(x_i) p_i$$

 $(b)\ E$ сли X — непрерывная случайная величина, то

$$M[\varphi(X)] = \int_{-\infty}^{+\infty} \varphi(x) f(x) dx$$

2. Если (X, Y) — случайный вектор, $\varphi \colon \mathbb{R}^2 \to \mathbb{R}$, — функция, то

(a) Если $(X, Y) - \partial u c \kappa p e m ный случайный вектор, то$

$$M[\varphi(X, Y)] = \sum_{i,j} \varphi(x_i, y_j) p_{ij}$$

$$ede \ p_{ij} = P\{(X, Y) = (x_i, y_j)\}.$$

(b) E c n u (X, Y) - н e n p e p ы в ный случайный в е к т o p, т o

$$M[\varphi(X, Y)] = \iint_{\mathbb{R}^2} \varphi(x, y) f(x, y) dx dy$$

где f — совместная плотность распределения X и Y.

2.12 Сформулировать определение дисперсии случайной величины. Механический смысл дисперсии. Доказать свойства дисперсии. Понятие среднеквадратичного отклонения случайной величины.

Определение. Дисперсией случайной величины X называют число

$$D[X] = M[(X - m)^2]$$

 $r\partial e \ m = MX.$

Замечание 1. Если $X - \partial u c \kappa p e m h a s c лучай н a s в е личи н a, mo$

$$DX = \langle DX = M[(X - m)^2], \ \varphi(x) = (x - m)^2 \rangle = \sum_{i} (x_i - m)^2 p_i$$

 $r\partial e \ p_i = P\{X = x_i\}.$

Замечание 2. $Ecnu\ X\ -\ непрерывная\ случайная\ величина,\ mo$

$$D[X] = \int_{-\infty}^{+\infty} (x - m)^2 f(x) dx$$

 $r\partial e\ f\ -\ \phi y$ нкция плотности случайной величины X.

Замечание. Механический смысл дисперсии.

Дисперсия случайной величины характеризует разброс значений этой случайной величины относительно математического ожидания. Чем больше дисперсия, тем больше разброс значений.

С точки зрения механики дисперсия — момент инерции вероятностной массы относительно математического ожидания.

Свойства дисперсии:

- 1. $DX \ge 0$;
- 2. Если $P\{X = x_0\} = 1$, то DX = 0.
- $3. \ D[aX+b] = a^2DX;$
- 4. $D[X] = M[X^2] (MX)^2$;
- 5. Если X_1 , X_2 независимы, то $D[X_1 + X_2] = DX_1 + DX_2$.

Доказательства.

1. DX = MY, где $Y = (X - m)^2$. T. к. $Y \geqslant 0$, то следует, что $DX = MY \geqslant 0$.

2.

$$X \quad x_0 \\ P \quad 1$$

Mатематическое ожидание $MX = m = x_0$.

Дисперсия
$$DX = \sum_{i} (x_i - m)^2 p_i = (x_0 - x_0)^2 \cdot 1 = 0.$$

3.

$$D[aX + b] = M[[(aX + b) - M(aX + b)]^{2}] = M[[aX + b - a \cdot MX - b]^{2}] =$$

$$= M[(a(X - MX))^{2}] = a^{2}M[(X - MX)^{2}] = a^{2}DX$$

4. Обозначим m=MX; тогда

$$DX = M[(X - m)^{2}] = M[X^{2} - 2mX + m^{2}] = M[X^{2}] - 2\underbrace{m \cdot M[X]}_{m^{2}} + m^{2} = M[X^{2}] - m^{2}$$

5.

$$D(X_1+X_2)=\langle$$
 по свойству 4 $\rangle=M[(X_1+X_2)^2]-(M(X_1+X_2))^2=$ $=M[X_1^2]+M[X_2^2]+2\,M[X_1X_2]-(MX_1)^2-(MX_2)^2-2\,MX_1\cdot MX_2=$ $=\langle X_1,\,X_2-$ независимые, тогда $M[X_1\,X_2]=MX_1\cdot MX_2\rangle=$ $=(M[X_1^2]-(MX_1)^2)+(M[X_2^2]-(MX_2)^2)=DX_1+DX_2$

Замечание. DX имеет размерность, равную квадрату размерности случайной величины X. Это не всегда удобно, особенно при решении практических задач. Поэтому рассматривают такую числовую характеристику, как среднеквадратичное отклонение (CKO).

Определение. Среднеквадратичным отклонением (СКО) случайной величины X называют число

$$\sigma_X = \sqrt{D[X]}$$

2.13 Сформулировать определение математического ожидания и дисперсии. Записать законы распределения биномиальной, пуассоновской, равномерной, экспоненциальной и нормальной случайной величин. Найти математические ожидания и дисперсии этих случайных величин.

Определение. $\mathit{Математическим}$ ожиданием дискретной величины X называют $\mathit{число}$

$$M[X] = \sum_{i} p_i x_i$$

где і пробегает такое множество значений, что x_i исчерпывает все возможные значения случайной величины X; $p_i = P\{X = x_i\}$.

Определение. Математическим ожиданием непрерывной случайной величины X называется число²⁸

$$M[X] = \int_{-\infty}^{+\infty} x f(x) dx$$

где f(x) — функция плотности случайной величины X.

Определение. Дисперсией случайной величины X называют число

$$D[X] = M[(X - m)^2]$$

 $r \partial e \ m = MX.$

Замечание 1. Eсли X — ∂u скpеmная случайная величина, mо

$$DX = \langle DX = M[(X - m)^2], \ \varphi(x) = (x - m)^2 \rangle = \sum_{i} (x_i - m)^2 p_i$$

 $r\partial e \ p_i = P\{X = x_i\}.$

Замечание 2. Eсли X — непрерывная случайная величина, то

$$D[X] = \int_{-\infty}^{+\infty} (x - m)^2 f(x) dx$$

 $\mathit{rde}\ f - \mathit{\phi}\mathit{yhkuus}\ \mathit{nnomhocmu}\ \mathit{cny}\mathit{vaйной}\ \mathit{величины}\ X.$

 $^{^{28}}$ Если аргумент достаточно простой, то квадратные скобки в обозначении M[X] часто опускают. Также часто MX обозначают просто буквой m. — Прим. ред.

Биномиальная случайная величина

Обозначение $X \sim B(n, p), X$ — кол-во успехов в серии из n испытаний по схеме Бернулли с вероятностью успеха p. Рассмотрим случайную величину X_i , $i = \overline{1; n}$:

$$X_i = \begin{cases} 1, & \text{если в } i\text{-ом испытании произошёл успех,} \\ 0, & \text{если в } i\text{-ом имела место неудача} \end{cases}$$

Случайные величины X_1, \ldots, X_n независимы, т. к. отдельные испытания в схеме Бернулли независимы.

Каждое $X_i \sim B(1,\,p),\,\,i=\overline{1;\,n}.$ Ранее было показано, что $MX_i=p,\,DX_i=pq.$ Тогда

$$X = \sum_{i=1}^{n} X_i$$

$$MX=M\left[\sum_{i=1}^nX_i
ight]=\sum_{i=1}^nMX_i=np$$
 $DX=D\left[\sum_{i=1}^nX_i
ight]=\langle X_i$ независимы $\rangle=\sum_{i=1}^nDX_i=npq$

Пуассоновская случайная величина $X \sim \Pi(\lambda)$

$$P\{X = k\} = \frac{\lambda^k}{k!}e^{-\lambda}, \ k = 0, 1, 2, \dots$$

Тогда математическое ожидание выражается

$$MX = \sum_{k=0}^{\infty} k \frac{\lambda^k}{k!} e^{-\lambda} = e^{-\lambda} \sum_{k=1}^{\infty} k \frac{\lambda^k}{k!} = e^{-\lambda} \sum_{k=1}^{\infty} \frac{\lambda^{k-1} \lambda}{(k-1)!} =$$

$$= \lambda e^{-\lambda} \sum_{k=1}^{\infty} \frac{\lambda^{k-1}}{(k-1)!} = \langle i = k-1 \rangle = \lambda e^{-\lambda} \qquad \sum_{i=0}^{\infty} \frac{\lambda^i}{i!} = \lambda$$
формула Маклорена для e^{λ}

Дисперсия выражается как $DX = M[X^2] - (MX)^2$.

$$MX^2 = \sum_{k=0}^{\infty} k^2 \frac{\lambda^k}{k!} e^{-\lambda} = \ldots = \lambda^2 + \lambda$$
. Тогда $DX = \lambda$.

Случайная величина X, имеющая геометрическое распределение с параметром р

$$P{X = k} = pq^k, k = 0, 1, 2, \dots$$

$$MX = \sum_{k=0}^{\infty} k \cdot pq^k = \sum_{k=1}^{\infty} k \cdot pq^k = pq \sum_{k=1}^{\infty} kq^{k-1} = 1 + 2q + 3q^2 + 4q^3 + \dots$$

= продифференцируем сумму бесконечно убывающей геометрической прогрессии:

$$(1+q+q^2+\ldots)' = \left(\frac{1}{1-q}\right)' \implies 1+2q+3q^2+4q^3+\ldots = \frac{1}{(1-q)^2} = \frac{1}{p^2} = \frac{1}{p^2} = \frac{1}{p^2}$$
$$= pq\frac{1}{p^2} = \frac{q}{p}$$

Аналогичным образом можно показать, что $DX = \frac{q}{p^2}$

Равномерно распределённая случайная величина $X \sim R(0, 1)$

$$f(x) = \begin{cases} \frac{1}{b-a}, & x \in (a,b) \\ 0 & \text{иначе} \end{cases}$$

$$MX = \int_{-\infty}^{\infty} x \, f(x) \, dx = \frac{1}{b-a} \int_{a}^{b} x \, dx = \frac{1}{2(b-a)} (b^2 - a^2) = \frac{a+b}{2}$$

$$DX = \int_{-\infty}^{+\infty} \left(x - \frac{a+b}{2} \right)^2 f(x) \, dx = \frac{1}{b-a} \int_{a}^{b} \left(x - \frac{a+b}{2} \right)^2 dx = \frac{1}{3(b-a)} \left(x - \frac{a+b}{2} \right)^3 \Big|_{a}^{b} = \frac{1}{3(b-a)} \left(\frac{(b-a)^3}{8} - \frac{(a-b)^3}{8} \right) = \frac{(b-a)^3}{12(b-a)} = \frac{(b-a)^2}{12}$$

Экспоненциальная случайная величина $X \sim Exp(\lambda)$

$$f(x) = \begin{cases} \lambda e^{-\lambda x}, & x > 0 \\ 0, & x < 0 \end{cases}$$

$$MX = \int_{-\infty}^{+\infty} x f(x) x = \lambda \int_{0}^{+\infty} x e^{-\lambda x} dx = -\int_{0}^{+\infty} x de^{-\lambda x} = -x e^{-\lambda x} \Big|_{0}^{+\infty} + \int_{0}^{+\infty} e^{-\lambda x} dx = -\frac{1}{\lambda} e^{-\lambda x} \Big|_{0}^{+\infty} = \frac{1}{\lambda}$$

$$DX = M[X^2] - (MX)^2,$$

$$M[X^{2}] = \int_{-\infty}^{+\infty} x^{2} f(x) dx = \lambda \int_{0}^{+\infty} x^{2} e^{-\lambda x} dx = -\int_{0}^{+\infty} x^{2} de^{-\lambda x} =$$

$$= -x^{2} e^{-\lambda x} \Big|_{0}^{+\infty} + 2 \underbrace{\int_{0}^{+\infty} x e^{-\lambda x} dx}_{=\frac{MX}{\lambda}} = \frac{2}{\lambda^{2}}$$

Таким образом,

$$DX = \frac{2}{\lambda^2} - \left(\frac{1}{\lambda}\right)^2 = \frac{1}{\lambda^2}$$

Нормальная случайная величина $X \sim N(\underbrace{m}_{MX}, \underbrace{\sigma^2}_{DX})$

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-m)^2}{2\sigma^2}}, \ x \in \mathbb{R}$$

$$MX = \int_{-\infty}^{+\infty} x f(x) dx = \frac{1}{\sigma \sqrt{2\pi}} \int_{-\infty}^{+\infty} x e^{-\frac{(x-m)^2}{2\sigma^2}} dx = \langle x - m = t \rangle =$$

$$= \frac{1}{\sigma \sqrt{2\pi}} \int_{-\infty}^{+\infty} (t+m) e^{-\frac{t^2}{2\sigma^2}} dt =$$

$$=\frac{1}{\sigma\sqrt{2\pi}}\int\limits_{-\infty}^{+\infty}te^{-\frac{t^2}{2\sigma^2}}dt+m\cdot\frac{1}{\sigma\sqrt{2\pi}}\int\limits_{-\infty}^{+\infty}e^{-\frac{t^2}{2\sigma^2}}dt=m$$

$$DX = M[(X - MX)^2] = \int_{-\infty}^{+\infty} (x - m)^2 f(x) \, dx = \frac{1}{\sigma \sqrt{2\pi}} \int_{-\infty}^{+\infty} (x - m)^2 e^{-\frac{(x - m)^2}{2\sigma^2}} \, dx =$$

$$= \left\langle \frac{x - m}{\sigma} = t, \, dx = \sigma dt \right\rangle =$$

$$= \frac{\sigma^2}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} t^2 e^{-\frac{t^2}{2}} \, dt = \frac{\sigma^2}{2\sqrt{2\pi}} \int_{-\infty}^{+\infty} t e^{-\frac{t^2}{2}} \, dt^2 = -\frac{\sigma^2}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} t \, de^{-\frac{t^2}{2}} \, dt = \langle \text{ по частям } \rangle =$$

$$= -\frac{\sigma^2}{\sqrt{2\pi}} t e^{-\frac{t^2}{2}} \Big|_{-\infty}^{+\infty} + \sigma^2 \cdot \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} t \, de^{-\frac{t^2}{2}} \, dt = \sigma^2$$

2.14 Сформулировать определение ковариации и записать формулы для ее вычисления в случае дискретного и непрерывного случайных векторов. Доказать свойства ковариации.

Ковариация является характеристикой случайного вектора. Пусть (X, Y) — двумерный случайный вектор.

Определение. Ковариацией случайных величин X и Y называется число

$$cov(X, Y) = M[(X - m_X)(Y - m_Y)]$$

где $m_X = MX$, $m_Y = MY$.

Замечание. Из определения следует:

1. В случае дискретного случайного вектора

$$cov(X, Y) = \sum_{i} \sum_{j} (x_i - m_X)(y_j - m_Y)p_{ij}$$

$$ede \ p_{ij} = P\{(X, Y) = (x_i, y_j)\}.$$

2. В случае непрерывного случайного вектора

$$cov(X, Y) = \iint_{R^2} (x - m_X)(y - m_Y)f(x, y) dx dy$$

где f — совместная плотность величин X и Y.

Свойства ковариации:

- 1. $D(X + Y) = DX + DY + 2\operatorname{cov}(X, Y);$
- $2. \cos(X, X) = DX;$
- 3. Если X, Y независимые, то cov(X, Y) = 0;
- 4. $cov(a_1X + b_1, a_2Y + b_2) = a_1a_2 cov(X, Y)$
- 5. $|\cos(X,Y)| \leqslant \sqrt{DX \cdot DY}$, причём $|\cos(X,Y)| = \sqrt{DX \cdot DY} \iff \exists \exists a,b \in \mathbb{R}, Y = aX + b \text{ (т. е. } X \text{ и } Y \text{ связаны линейной зависимостью)};$
- 6. cov(X, Y) = M[XY] (MX)(MY).

Доказательства.

1.

$$D(X + Y) = M[((X + Y) - M[X + Y])^{2}] = \langle MX = m_{1}, MY = m_{2} \rangle =$$

$$= M[((X - m_{1}) - M[Y - m_{2}])^{2}] =$$

$$= M[(X - m_{1})^{2}] + M[(Y - m_{2})^{2}] + 2M[(X - m_{1})(Y - m_{2})] =$$

$$= DX + DY + 2 \operatorname{cov}(X, Y)$$

2.
$$cov(X, X) = M[(X - m)(X - m)] = M[(X - m)^2] = DX$$
.

3.

$$\cot(X,Y) = M[(X-m_1)(Y-m_2)] =$$
 $= \langle X, Y - \text{независимы} \implies (X-m_1) \ u \ (Y-m_2) \ \text{тоже независимы} \rangle =$
 $= [M(X-m_1)][M(Y-m_2)] = 0$

4.

$$cov(a_1X + b_1, a_2X + b_2) =$$

$$= M[[a_1X + b_1 - M(a_1X + b_1)] \cdot [a_2X + b_2 - M(a_2X + b_2)]] =$$

$$= M[[a_1X + b_1 - a_1m_1 - b_1][a_2X + b_2 - a_2m_2 - b_2]] =$$

$$= M[a_1a_2(X_1 - MX_1)(X_2 - MX_2)]$$

5. (а) Выберем произвольное число $t \in R$. Рассмотрим случайную величину Z(t) = tX - Y.

Тогда $D[Z(t)]=D[tX-Y]=\langle$ свойство 1+ свойство дисперсии $\rangle=t^2DX+DY-2t\operatorname{cov}(X,Y)=DX\cdot t^2-2t\cdot\operatorname{cov}(X,Y)+DY-\kappa$ вадратный трёхчлен относительно t.

 $T.\ \kappa.\ D[Z(t)]\geqslant 0,\ c$ ледовательно, трёхчлен должен быть параболой вверх, следовательно — дискриминант $D\leqslant 0.$

$$\frac{D}{4} = (\operatorname{cov}(X, Y))^2 - DX \cdot DY \leqslant 0 \implies |\operatorname{cov}(X, Y)| \leqslant \sqrt{DX \cdot DY}$$

(b) Необходимость (\Longrightarrow).

Если

$$|\operatorname{cov}(X,Y)| = \sqrt{DX \cdot DY} \implies \partial u c \kappa p u m u h a h m = 0 \implies$$
 $\Longrightarrow D[Z(t)]$ имеет единственный корень. Обозначим его $t = a \implies$
 $\Longrightarrow D[Z(a)] = 0 \implies$

 $\implies Z(a) = aX - Y$ принимает единственное значение с вероятностью 1, обозначим это значение $\kappa a\kappa - b \implies Z(a) = aX - Y = -b \implies Y = aX + b$

(c) Достаточность (\iff). Eсли $Y = aX + b \implies Z(a) = -b \implies D[Z(a)] = 0 \implies \partial$ искриминант = $0 \implies |\operatorname{cov}(X, Y)| = \sqrt{DX \cdot DY}$.

6.

$$cov(X, Y) = M[(X - m_1)(Y - m_2)] = M[XY - m_1Y - m_2X + m_1m_2] =$$

$$= M[XY] - m_1 \underbrace{MY}_{m_2} - m_2 \underbrace{MX}_{m_1} + m_1m_2 = M[XY] - m_1m_2$$

2.15 Сформулировать определение ковариации и коэффициента корреляции случайных величин. Сформулировать свойства коэффициента корреляции. Сформулировать определения независимых и некоррелированных случайных величин, указать связь между этими свойствами. Понятия ковариационной и корреляционной матриц. Записать свойства ковариационной матрицы.

Пусть (X, Y) — двумерный случайный вектор.

Определение. Ковариацией случайных величин X и Y называется число

$$\operatorname{cov}(X,\,Y) = M[(X-m_X)(Y-m_Y)]$$
 где $m_X = MX,\,m_Y = MY.$

Замечание. Недостатком ковариации является то, что она имеет размерность, равную произведению разностей случайных величин X и Y. Часто рассматривают аналогичную безразмерную характеристику, которая называется коэффициентом корреляции случайных величин случайных величин X и Y:

$$\rho(X, Y) = \rho_{XY} = \frac{\text{cov}(X, Y)}{\sqrt{DX \cdot DY}}$$

 $r\partial e \ DX \cdot DY > 0.$

Свойства коэффициента корреляции:

- 1. $\rho_{XX} = 1$;
- 2. Если X, Y независимые, то $\rho_{XY} = 0;$
- 3. $\rho(a_1X+b_1,\,a_2Y+b_2)=\pm\rho(X,\,Y)$, причём \pm заменяется на
 - +, если $a_1a_2 > 0$;

• -, если $a_1a_2 < 0$.

4.
$$|\rho_{XY}| \leqslant 1$$
, причём $\rho_{XY} = \begin{cases} 1, & \text{когда } Y = aX + b, \text{ где } a > 0, \\ -1, & \text{когда } Y = aX + b, \text{ где } a < 0 \end{cases}$

Определение. Случайные величины X и Y называются независимыми, если

$$F(x, y) = F_X(x) F_Y(y)$$

где F — совместная функция распределения X и Y (\equiv функция распределения случайного вектора (X,Y)); F_X , F_Y — маргинальные функции распределения случайных величин X и Y.

Определение. Случайные величины X и Y называют некоррелированными, если cov(X,Y)=0.

Из свойства 3 ковариации следует, что если X, Y — независимые, то X, Y — некоррелированные. Обратное неверно — приведите пример самостоятельно.

Пусть
$$\overrightarrow{X} = (X_1, \ldots, X_n)$$
 — случайный вектор.

Определение. Ковариантной матрицей случайного вектора \overrightarrow{X} называется матрица

$$\Sigma_{\overrightarrow{X}} = (\sigma_{ij})_{i,j=\overline{1;n}}$$

 $r\partial e \ \sigma_{ij} = \operatorname{cov}(X_i, X_j).$

Определение. Корреляционной матрицей вектора $\overrightarrow{X} = (X_1, \dots, X_n)$ называют матрицу

$$P = (\rho_{ij})_{i, j = \overline{1; n}}$$

 $r\partial e \ \rho_{ij} = \rho(X_i, X_j).$

Замечание. Логично показать некоторые свойства ковариантной матрицы:

- 1. $\sigma_{ii} = DX_i$;
- 2. $\Sigma_{\overrightarrow{X}} = \Sigma_{\overrightarrow{X}}^T$;
- 3. Если

$$\overrightarrow{Y} = \overrightarrow{X}B + \overrightarrow{c}$$

где $\overrightarrow{Y}=(Y_1,\ldots,Y_m), \ \overrightarrow{X}=(X_1,\ldots,X_n), \ B\in M_{n,m}(\mathbb{R})$ (т. е. \overrightarrow{Y} является линейной функцией от вектора \overrightarrow{X}), то

$$\Sigma_{\overrightarrow{Y}} = B^T \Sigma_{\overrightarrow{X}} B$$

4. Матрица $\Sigma_{\overrightarrow{X}}$ является неотрицательно определённой, т. е. $\forall \overrightarrow{b} \in \mathbb{R}^{\omega}$

$$\overrightarrow{b}^T \Sigma_{\overrightarrow{X}} \overrightarrow{b} \geqslant 0$$

5. Если все компоненты вектора \overrightarrow{X} попарно независимы, то $\Sigma_{\overrightarrow{X}}-\partial$ иагональная матрица.

А Комбинаторика

Пусть X — некое множество. Для примеров определим $X = \{1, 2, 3, 4, 5, 6\}$.

А.1 Сочетания без повторений

Определение. Сочетанием без повторений из n (n = |X|) элементов по m называется любое неупорядоченное подмножество множества X, содержащее m различных элементов.

Кол-во таких подмножеств обозначается как ${\cal C}_n^m$ и равно

$$C_n^m = \frac{n!}{m!(n-m)!}$$

А.2 Размещения без повторений

Определение. Размещением без повторений из n элементов (исходного множества, n = |X|) по m (длина кортежа) называется кортеж, состоящий из m различных элементов множества X.

Примеры. (1, 2, 4), но не (5, 5, 4).

Кол-во возможных размещений без повторений:

$$A_n^m = \frac{n!}{(n-m)!}$$

А.3 Перестановки без повторений

Перестановки без повторений — крайний случай размещений без повторений.

Определение. Перестановкой без повторений называют называют кортеж, состоящий из n = |X| различных элементов множества X.

Кол-во возможных перестановок без повторений:

$$P_n = A_n^n = n!$$

Замечание. Три предыдущих понятия связаны как

$$A_n^m = P_m C_n^m$$

А.4 Размещения с повторениями

Определение. Размещением с повторениями из $n\ (n=|X|)$ по m элементов называется любой элемент из $X^m=X\times X\times \ldots \times X$.

Примеры. (1, 2, 3, 4, 5), (1, 4, 4, 4, 2).

Кол-во возможных размещений с повторениями:

$$\widetilde{A}_n^m = n^m$$

А.5 Перестановки с повторениями

Определение. Перестановкой с повторениями называют кортеж длины n из элементов множества X, в котором каждый элемент $x_i \in X$ повторяется n_i , $i = \overline{1,k}$ раз $(\sum_i^k n_i = n)$.

Кол-во возможных перестановок с повторениями:

$$P_n(n_1, n_2, \dots, n_k) = \frac{n!}{n_1! \cdot n_2! \cdot \dots \cdot n_k!}, \ n = n_1 + n_2 + \dots + n_k$$