2022 北京昌平初三二模

数 学

一、单项选择题(每小题2分,共16分)

1. 斗笠,又名箬笠,即以竹皮编织的用来遮光遮雨的帽子,可以看做一个圆锥,下列平面展开图中能围成一个圆锥的是()

2. 2021年12月9日15时40分,"天宫课堂"第一课开始,神舟十三号乘组航天员翟志刚、王亚平、叶光富在中国空间站进行太空授课,全国超过6000万中小学生观看授课直播,其中6000万用科学记数法表示为()

A. 6000×10^4

B. 6×10^7

C. 0.6×10^8

D. 6×10^{8}

3. 第 24 届冬季奥林匹克运动会于 2022 年 2 月 4 日在北京开幕. 2022 年北京冬奥会会徽以汉字"冬"为灵感来源;北京冬奥会的吉祥物"冰墩墩"是以熊猫为原型进行设计创作;北京冬季残奥会的吉祥物"雪容融"是以灯笼为原型进行设计创作,下列冬奥元素图片中,是轴对称图形的是()

4. 若实数a, b 在数轴上的对应点的位置如图所示,则以下结论正确的是()

A. |a| < |b|

B. ab > 0

C. a < -b

D. a - b > 0

5. 若 a+b=1,则代数式 $\left(\frac{a}{b}-1\right)\cdot\frac{b}{a^2-b^2}$ 的值为()

A. -2

B. −1

C. 1

D. 2

6. 一个不透明的盒子中装有 15 个除颜色外无其他差别的小球,其中有 2 个黄球和 3 个绿球,其余都是红球,从中随机摸出一个小球,恰好是红球的概率为()

A. $\frac{2}{15}$

B. $\frac{1}{5}$

C. $\frac{1}{2}$

D. $\frac{2}{3}$

7. 如图, $\odot O$ 的直径 $AB \perp CD$,垂足为 E , $\angle A = 30^\circ$,连接 CO 并延长交 $\odot O$ 于点 F ,连接 FD ,则 $\angle CFD$ 的 度数为()

A. 30°

B. 45°

C. 60°

D. 75°

8. 某气球内充满了一定质量 气体,当温度不变时,气球内气体的气压 P (单位:千帕)随气球内气体的体积 V (单位:立方米)的变化而变化,P 随 V 的变化情况如下表所示,那么在这个温度下,气球内气体的气压 P 与气球内气体的体积 V 的函数关系最可能是

V (单位: 立方米)	64	48	38.4	32	24	
P (单位: 千帕)	1.5	2	2.5	3	4	•••

A. 正比例函数

B. 一次函数

C. 二次函数

D. 反比例函数

二、填空题(每小题2分,共16分)

9. 若分式 $\frac{1}{x-5}$ 有意义,则实数 x 的取值范围是_____.

10 因式分解: $3x^2 - 6x + 3 =$ _____.

11. 正多边形一个外角的度数是 60°,则该正多边形的边数是____.

12. 如图,在平面直角坐标系 xOy 中,直线 y = 3x 与双曲线 $y = \frac{m}{x} (m \neq 0)$ 交于 A , B 两点,若点 A , B 的横坐标分别为 x_1 , x_2 ,则 $x_1 + x_2 =$ ______.

13. 方程术是《九章算术》最高的数学成就,其中"盈不足"一章中曾记载"今有大器五小器一容三斛("斛"是古代的一种容量单位),大器一小器五容二斛,问大小器各容几何?"

译文:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛,1个大桶加上5个小桶可以盛酒2斛,问1个大桶和1个小桶分别可以盛酒多少斛?

15. 如图,在平面直角坐标系 xOy 中,点 A(1,0) , B(0,2) . 将线段 AB 绕点 A 顺时针旋转 90° 得到线段 AC ,则点 C 的坐标为______.

16. 下图是国家统计局发布的 2021 年 2 月至 2022 年 2 月北京居民消费价格涨跌幅情况折线图(注: 2022 年 2 月与 2021 年 2 月相比较称为同比,2022 年 2 月与 2022 年 1 月相比较称为环比).

根据图中信息,有下面四个推断:

①2021年2月至2022年2月北京居民消费价格同比均上涨;

②2021年2月至2022年2月北京居民消费价格环比有涨有跌;

③在北京居民消费价格同比数据中,2021年4月至8月的同比数据的方差小于2021年9月至2022年1月同比数据的方差;

④在北京居民消费价格环比数据中,2021年4月至8月的环比数据的平均数小于2021年9月至2022年1月环比数据的平均数.

所有合理推断的序号是...

三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27-28题,每小题7分)解答应写出文字说明,演算步骤或证明过程.

17. 计算:
$$(1-\sqrt{3})^0 + |-\sqrt{2}|-2\cos 45^\circ + \left(\frac{1}{4}\right)^{-1}$$
.

18 解方程:
$$\frac{3x}{x-2} = 1 - \frac{2}{x-2}$$
.

19. 已知:如图, ∠MON.

求作: $\angle BAD$, 使 $\angle BAD = \angle MON$.

下面是小明设计的尺规作图过程.

作法:

①在OM 上取一点A,以A 为圆心,OA 为半径画弧,交射线OA 于点B;

②在射线 ON 上任取一点 C ,连接 BC ,分别以 B , C 为圆心,大于 $\frac{1}{2}\mathit{BC}$ 为半径画弧,两弧交于点 E , F , 作直

线EF,与BC交于点D;

- ③作射线 AD, $\angle BAD$ 即为所求.
- (1) 使用直尺和圆规,补全图形(保留作图痕迹);
- (2) 完成下列证明.

证明: : EF 垂直平分 BC,

$$\therefore$$
___= DC .

- AO = AB,
- ∴ *AD* // *OC* () (填推理依据).
- $\therefore \angle BAD = \angle MON$.
- 20. 已知关于x的一元二次方程 $x^2 + 4x + k = 0$ 有两个不相等的实数根,写出一个满足条件k的值,并求此时方程的根.
- 21. 如图,在矩形 ABCD 中,对角线 AC , BD 交于点 O ,分别过点 C , D 作 BD , AC 的平行线交于点 E ,连接 OE 交 AD 于点 F .

(1) 求证: 四边形 OCED 菱形;

(2) 若 AC = 8, $\angle DOC = 60^{\circ}$,求菱形 OCED 的面积.

22. 在平面直角坐标系 xOy 中,直线 $y = kx + b(k \neq 0)$ 与直线 y = x 平行,且过点(2,1).

(1) 求这个一次函数 解析式;

(2) 直线 $y = kx + b(k \neq 0)$ 分别交 x , y 轴于点 A ,点 B , 若点 C 为 x 轴上一点,且 $S_{\triangle ABC} = 2$,直接写出点 C 的 坐标.

23. 如图,在 $\triangle ABC$ 中, $\angle C=90^\circ$, BC , AC与 $\bigcirc O$ 交于点F , D , BE为 $\bigcirc O$ 直径,点E在AB上,连接 BD , DE , $\angle ADE=\angle DBE$.

(1) 求证: AC 是 ⊙O 的切线;

(2) 若 $\sin A = \frac{3}{5}$, $\odot O$ 的半径为 3,求 BC 的长.

24. 如图,在一次学校组织的社会实践活动中,小龙看到农田上安装了很多灌溉喷枪,喷枪喷出的水流轨迹是抛物线,他发现这种喷枪射程是可调节的,且喷射的水流越高射程越远,于是他从该农田的技术部门得到了这种喷枪的一个数据表,水流的最高点与喷枪的水平距离记为x,水流的最高点到地面的距离记为y.

y与x的几组对应值如下表:

x (单位: m)	0	$\frac{1}{2}$	1	$\frac{3}{2}$	2	$\frac{5}{2}$	3	4	
y (单位: m)	1	9 8	$\frac{5}{4}$	11 8	$\frac{3}{2}$	13 8	$\frac{7}{4}$	2	

- (1) 该喷枪的出水口到地面的距离为 m;
- (2) 在平面直角坐标系 xOy 中,描出表中各组数值所对应的点,并画出 y 与 x 的函数图像;
- (3)结合(2)中的图像,估算当水流的最高点与喷枪的水平距离为8m时,水流的最高点到地面的距离为
- _____m (精确到1m).根据估算结果,计算此时水流的射程约为_____m (精确到1m)
- 25. 甲, 乙两个小区各有 300 户居民, 为了解两个小区 3 月份用户使用燃气量情况, 小明和小丽分别从中随机抽取 30 户进行调查, 并对数据进行整理、描述和分析. 下面给出了部分信息.
- a. 甲小区用气量频数分布直方图如下(数据分成 5 组: $5 \le x < 10$, $10 \le x < 15$, $15 \le x < 20$, $20 \le x < 25$, $25 \le x < 30$)

- b. 甲小区用气量的数据在 $15 \le x < 20$ 这一组的是:
- 15 15 16 16 16 16 18 18 18 18 18 19
- c. 甲,乙两小区用气量的平均数、中位数、众数如下:

小区	平均数	中位数	众数
甲	17.2	m	18
乙	17.7	19	15

- 根据以上信息,回答下列问题:
- (1) 写出表中m的值;
- (2)在甲小区抽取的用户中,记 3 月份用气量高于它们的平均用气量的户数为 p_1 . 在乙小区抽取的用户中,记 3 月份用气量高于它们的平均用气量的户数为 p_2 . 比较 p_1 , p_2 的大小,并说明理由;
- (3) 估计甲小区中用气量超过15立方米的户数.
- 26. 在平面直角坐标系 xOy 中,已知抛物线 $y = ax^2 + bx 1(a > 0)$.

- (1) 若抛物线过点(4,-1).
- ①求抛物线的对称轴;
- ②当-1 < x < 0时,图像在x轴的下方,当5 < x < 6时,图像在x轴的上方,在平面直角坐标系中画出符合条件的图像,求出这个抛物线的表达式;
- (2) 若 $(-4, y_1)$, $(-2, y_2)$, $(1, y_3)$ 为抛物线上的三点且 $y_3 > y_1 > y_2$, 设抛物线的对称轴为直线 x = t, 直接写出 t 的取值范围.
- 27. 如图,已知 $\angle MON = \alpha \left(0^{\circ} < \alpha < 90^{\circ}\right)$,OP 是 $\angle MON$ 的平分线,点 A 是射线OM 上一点,点 A 关于OP 对称点 B 在射线ON 上,连接 AB 交OP 于点 C ,过点 A 作 ON 的垂线,分别交OP ,ON 于点 D , E ,作 $\angle OAE$ 的平分线 AQ ,射线 AQ 与 OP ,ON 分别交于点 F ,G .

- (1) ①依题意补全图形;
- ②求 $\angle BAE$ 度数; (用含 α 的式子表示)
- (2) 写出一个 α 的值,使得对于射线OM 上任意的点A 总有 $OD = \sqrt{2}AF$ (点A 不与点O 重合),并证明. 28. 在平面直角坐标系xOy中, $\odot O$ 的半径为 1,对于 ΔABC 和直线l 给出如下定义:若 ΔABC 的一条边关于直线

l的对称线段PQ是 $\odot O$ 的弦,则称 $\triangle ABC$ 是 $\odot O$ 的关于直线l的"关联三角形",直线l是"关联轴".

- (1) 如图 1,若 △ABC 是 ⊙O 的关于直线 l 的"关联三角形",请画出 △ABC 与 ⊙O 的"关联轴"(至少画两条);
- (2) 若 $\triangle ABC$ 中,点A 坐标为(2,3),点B 坐标为(4,1),点C 在直线 y=-x+3 的图像上,存在"关联轴l"使 $\triangle ABC$ 是 $\bigcirc O$ 的关联三角形,求点C 横坐标的取值范围;
- (3)已知 $A(\sqrt{3},1)$,将点 A 向上平移 2 个单位得到点 M ,以 M 为圆心 MA 为半径画圆, B , C 为 $\odot M$ 上的两点,且 AB=2 (点 B 在点 A 右侧),若 $\triangle ABC$ 与 $\odot O$ 的关联轴至少有两条,直接写出 OC 的最小值和最大值,以及 OC 最大时 AC 的长.

参考答案

一、单项选择题(每小题2分,共16分)

1. 斗笠,又名箬笠,即以竹皮编织的用来遮光遮雨的帽子,可以看做一个圆锥,下列平面展开图中能围成一个圆锥 的是()

【答案】D

【解析】

【分析】根据圆锥的展开图可直接得到答案.

【详解】解:圆锥的展开图是扇形和圆,且圆在扇形的弧线上.

故选: D.

【点睛】此题主要考查了简单几何体的展开图,题目比较简单.

2. 2021年12月9日15时40分,"天宫课堂"第一课开始,神舟十三号乘组航天员翟志刚、王亚平、叶光富在中国空间站进行太空授课,全国超过6000万中小学生观看授课直播,其中6000万用科学记数法表示为()

A. 6000×10^4

B. 6×10^7

C. 0.6×10^8

D. 6×10^8

【答案】B

【解析】

【分析】对于一个绝对值较大的数,用科学记数法写成 $a \times 10^n$ 的形式,其中 $1 \le |a| < 10$,n 是比原整数位数少 1 的数.

【详解】解: $6000 \, \text{万} = 60000000 = 6 \times 10^7$.

故选: B.

【点睛】此题考查了科学记数法 表示方法,科学记数法的表示形式为 $a \times 10^n$ 的形式,其中 $1 \le |a| < 10$,n 为整数,表示时关键要正确确定 a 的值以及 n 的值.

3. 第 24 届冬季奥林匹克运动会于 2022 年 2 月 4 日在北京开幕. 2022 年北京冬奥会会徽以汉字"冬"为灵感来源;北京冬奥会的吉祥物"冰墩墩"是以熊猫为原型进行设计创作;北京冬季残奥会的吉祥物"雪容融"是以灯笼为原型进行设计创作.下列冬奥元素图片中,是轴对称图形的是()

【答案】D

【解析】

【分析】根据轴对称图形的定义判断即可.

【详解】解: A、不是轴对称图形,不符合题意;

- B、不是轴对称图形,不符合题意;
- C、不是轴对称图形,不符合题意;
- D、 轴对称图形,符合题意;

故选: D.

【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.

4. 若实数a, b 在数轴上的对应点的位置如图所示,则以下结论正确的是()

A. |a| < |b|

- B. ab > 0
- C. a < -b
- D. a b > 0

【答案】A

【解析】

【分析】根据数轴上点的位置, 先确定 a、b 的范围, 再逐个判断得出结论.

【详解】解:根据数轴可得,-2 < a < -1,2 < b < 3,

∴ |a| < |b|, ab < 0, a > -b, a-b < 0, $\square A \subseteq \square A$

故选: A.

【点睛】本题考查了数轴、绝对值、有理数乘法的符号法则、相反数以及有理数的减法.认真分析数轴得到有用信息是解决本题的关键.

5. 若
$$a+b=1$$
,则代数式 $\left(\frac{a}{b}-1\right)\cdot\frac{b}{a^2-b^2}$ 的值为()

A. -2

B. -1

C. 1

D. 2

【答案】C

【解析】

【分析】先将代数式进行化简,再将a+b=1代入化简之后的式子求解即可.

【详解】解:
$$\left(\frac{a}{b}-1\right)\cdot\frac{b}{a^2-b^2}=\left(\frac{a-b}{b}\right)\cdot\frac{b}{(a-b)(a+b)}=\frac{1}{(a+b)}$$

将 a+b=1代入上式可得: 原式= $\frac{1}{1}=1$,

故选: C.

【点睛】本题考查分式的化简求值,解题的关键是根据分式运算法则先将式子正确化简,再将a+b=1代入计算. 6. 一个不透明的盒子中装有 15 个除颜色外无其他差别的小球,其中有 2 个黄球和 3 个绿球,其余都是红球,从中随机摸出一个小球,恰好是红球的概率为(

A. $\frac{2}{15}$

B. $\frac{1}{5}$

C. $\frac{1}{2}$

D. $\frac{2}{3}$

【答案】D

【解析】

【分析】直接根据概率公式求解.

【详解】解: :: 盒子中装有 15-2-3=10 个红球,

∴从中随机摸出一个小球,恰好是红球的概率是 $\frac{10}{15} = \frac{2}{3}$;

故选: D.

【点睛】本题考查了概率公式: 随机事件 A 的概率 P(A) = 事件 A 可能出现的结果数除以所有可能出现的结果数.

7. 如图, $\bigcirc O$ 的直径 $AB \perp CD$,垂足为 E , $\angle A = 30^\circ$,连接 CO 并延长交 $\bigcirc O$ 于点 F ,连接 FD ,则 $\angle CFD$ 的 度数为(

A. 30°

B. 45°

C. 60°

D. 75°

【答案】C

【解析】

【分析】由 OA=OC,得 $\angle OCA=\angle A=30^{\circ}$ 从而得 $\angle BOC=\angle OCA+\angle A=60^{\circ}$,再由 CF 是直径,则 $\angle CDF=90^{\circ}$,则 $FD\bot CD$,又因为 $AB\bot CD$,所以 $AB/\!\!/ DF$,所以 $\angle CFD=\angle BOC=60^{\circ}$.

【详解】解: :: OA=OC,

 $\therefore \angle OCA = \angle A = 30^{\circ}$,

 $\therefore \angle BOC = \angle OCA + \angle A = 60^{\circ},$

:: CF 是 ⊙ O 的直径,

∴ $\angle CDF = 90^{\circ}$, $\square FD \perp CD$,

又 $:AB \perp CD$,

 $\therefore AB // DF$,

 $\therefore \angle CFD = \angle BOC = 60^{\circ}.$

故选: C.

【点睛】本题考查直径所对圆周角是直角,等腰三角形的性质,三角形外角性质,平行线的判定与性质,掌握直径 所对圆周角是直角是解题的关键.

8. 某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压 P (单位:千帕)随气球内气体的体积 V (单位:立方米)的变化而变化,P 随 V 的变化情况如下表所示,那么在这个温度下,气球内气体的气压 P 与气球内气体的体积 V 的函数关系最可能是

V (单位: 立方米)	64	48	38.4	32	24	
P (单位: 千帕)	1.5	2	2.5	3	4	

【答案】D

【解析】

【分析】根据 PV=96 结合反比例函数的定义判断即可.

【详解】解:由表格数据可得
$$PV$$
=96,即 $P = \frac{96}{V}$,

:气球内气体的气压P与气球内气体的体积V的函数关系最可能是反比例函数,

故选: D.

【点睛】本题考查了反比例函数,掌握反比例函数的定义是解题的关键.

二、填空题(每小题2分,共16分)

9. 若分式 $\frac{1}{x-5}$ 有意义,则实数 x 的取值范围是_____.

【答案】 $x \neq 5$

【解析】

【分析】由于分式的分母不能为 0,因此 x- $5\neq 0$,解得 x.

【详解】解: :分式
$$\frac{1}{x-5}$$
有意义,

故答案为 x≠5.

【点睛】本题主要考查分式有意义的条件:分式有意义,分母不能为0.

10. 因式分解:
$$3x^2 - 6x + 3 =$$
_____.

【答案】 $3(x-1)^2$

【解析】

【分析】先提取公因式,再用完全平方公式分解即可.

【详解】解: $3x^2 - 6x + 3$,

$$=3(x^2-2x+1)$$
,

$$=3(x-1)^2$$

故答案为: $3(x-1)^2$.

【点睛】本题考查了因式分解,解题关键是熟练运用提取公因式和公式法进行因式分解.

11. 正多边形一个外角的度数是60°,则该正多边形的边数是____.

【答案】6.

【解析】

【详解】解:这个正多边形的边数:360°÷60°=6

故答案为: 6.

【点睛】本题考查多边形内角与外角.

12. 如图,在平面直角坐标系 xOy 中,直线 y = 3x 与双曲线 $y = \frac{m}{x} (m \neq 0)$ 交于 A , B 两点,若点 A , B 的横坐标分别为 x_1 , x_2 ,则 $x_1 + x_2 =$ ______.

【答案】0

【解析】

【分析】根据反比例函数与正比例函数都是中心对称图形可得 $x_1 = -x_2$, 然后求解即可.

【详解】解: :: 反比例函数与正比例函数都是中心对称图形,

 $x_1 = -x_2$,

 $\therefore x_1+x_2=0$,

故答案为: 0.

【点睛】本题考查了反比例函数与一次函数的交点问题,熟练掌握反比例函数与正比例函数的中心对称性是解题的 关键.

13. 方程术是《九章算术》最高的数学成就,其中"盈不足"一章中曾记载"今有大器五小器一容三斛("斛"是古代的一种容量单位),大器一小器五容二斛,问大小器各容几何?"

译文:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛,1个大桶加上5个小桶可以盛酒2斛,问1个大桶和1个小桶分别可以盛酒多少斛?

设1个大桶可以盛酒 x 斛,1个小桶可以盛酒 y 斛,依题意,可列二元一次方程组为_____.

【答案】
$$\begin{cases} 5x + y = 3 \\ x + 5y = 2 \end{cases}$$

【解析】

【分析】根据"5个大桶加上1个小桶可以盛酒3斛,1个大桶加上5个小桶可以盛酒2斛"建立方程组即可.

【详解】由题意得:
$$\begin{cases} 5x + y = 3 \\ x + 5y = 2 \end{cases}$$

故答案为:
$$\begin{cases} 5x + y = 3 \\ x + 5y = 2 \end{cases}$$

【点睛】本题考查了列二元一次方程组,读懂题意,正确建立方程是解题关键.

【答案】
$$-1 < x \le \frac{1}{2}$$

【解析】

【分析】分别求出两个不等式的解集,即可得出不等式组的解集

【详解】解:解不等式
$$2(x+1) \le 3$$
得: $x \le \frac{1}{2}$,

解不等式
$$\frac{x-2}{3} > -1$$
得: $x > -1$,

∴原不等式组的解集为
$$-1 < x \le \frac{1}{2}$$
,

故答案为:
$$-1 < x \le \frac{1}{2}$$
.

【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知"同大取大;同小取小;大小小大中间找;大大小小找不到"的原则是解答此题的关键.

15. 如图,在平面直角坐标系 xOy 中,点 A(1,0) , B(0,2) . 将线段 AB 绕点 A 顺时针旋转 90° 得到线段 AC ,则点 C 的坐标为

【答案】(3, 1)

【解析】

【分析】过点 C 作 $CD \perp x$ 轴,垂足为 D,证明 $\triangle OBA \cong \triangle DAC$,从而得到 AD = BO,AO = CD,计算 OD 的长即可确定点 C 的坐标.

【详解】过点 C作 $CD \perp x$ 轴, 垂足为 D,

- ::线段 AB 绕点 A 顺时针旋转 90° 得到线段 AC,
- $\therefore \angle OBA = \angle 2$, BA = AC,
- $\therefore \triangle OBA \cong \triangle DAC$,
- $\therefore AD=BO, AO=CD,$
- ∵点 *A*(1,0), *B*(0,2),
- $\therefore OA=1$, OB=2,
- $\therefore AD=BO=2$, AO=CD=1,
- $\therefore OD=3$,
- ∴点 *C* 的坐标(3, 1),

故答案为: (3, 1).

【点睛】本题考查了旋转 性质,三角形全等的判定和性质,线段与坐标的关系,熟练掌握旋转的性质和三角形全等的判定是解题的关键.

16. 下图是国家统计局发布的 2021 年 2 月至 2022 年 2 月北京居民消费价格涨跌幅情况折线图(注: 2022 年 2 月与 2021 年 2 月相比较称为同比,2022 年 2 月与 2022 年 1 月相比较称为环比).

根据图中信息,有下面四个推断:

- ①2021年2月至2022年2月北京居民消费价格同比均上涨;
- ②2021年2月至2022年2月北京居民消费价格环比有涨有跌;
- ③在北京居民消费价格同比数据中,2021年4月至8月的同比数据的方差小于2021年9月至2022年1月同比数据的方差;
- ④在北京居民消费价格环比数据中,2021年4月至8月的环比数据的平均数小于2021年9月至2022年1月环比数据的平均数.

所有合理推断的序号是...

【答案】 ②③④

【解析】

【分析】直接利用折线图,判断①②③④的结论,即可得出答案.

【详解】解:从同比来看,2021年2月至2022年2月北京居民消费价格同比数据有正数也有负数,即同比有上涨也有下跌,故①错误;

从环比来看,2021年2月至2022年2月北京居民消费价格环比数据有正数也有负数,即环比有上涨也有下跌,故 ②正确;

从折线统计图看,2021年4月至8月 同比数据波动小于2021年4月至8月的同比数据波动,所以2021年4月至8月的同比数据的方差小于2021年9月至2022年1月同比数据的方差,故③正确:

2021年4月至8月的环比数据的平均数为: $(0-0.1-0.4+0.7+0.1) \div 5=0.06$,

2021年9月至2022年1月环比数据的平均数为: (-0.1+0.9+0-0.3+0.2) ÷5=0.14,

∴2021年4月至8月的环比数据的平均数小于2021年9月至2022年1月环比数据的平均数,故④正确; 故答案为: ②③④.

【点睛】本题考查折线统计图,方差,平均数,从统计图获取的所要的信息是解题的关键.

三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27-28题,每小题7分)解答应写出文字说明,演算步骤或证明过程.

17. 计算:
$$(1-\sqrt{3})^0 + |-\sqrt{2}|-2\cos 45^\circ + \left(\frac{1}{4}\right)^{-1}$$
.

【答案】5

【解析】

【分析】直接利用零指数幂的性质以及绝对值的性质、特殊角的三角函数、负指数幂的性质分别化简得出答案.

【详解】解:
$$(1-\sqrt{3})^0 + |-\sqrt{2}|-2\cos 45^\circ + \left(\frac{1}{4}\right)^{-1}$$

$$=1+\sqrt{2}-2\times\frac{\sqrt{2}}{2}+4$$

$$=1+\sqrt{2}-\sqrt{2}+4$$

=5.

【点睛】本题主要考查实数的混合运算,掌握零指数幂,负整数指数幂,绝对值以及特殊角的三角函数的运算法则,是解题的关键.

18. 解方程:
$$\frac{3x}{x-2} = 1 - \frac{2}{x-2}$$
.

【答案】x = -2

【解析】

【分析】先去分母,等号两边同时乘以(x-2), 化成整式方程在求解,最后验根即可.

【详解】解:方程两边同时乘以(x-2),

得到: 3x = x - 2 - 2,

解得: x = -2

经检验, x = -2 是原方程的解,

: 原方程的解是 x = -2,

【点睛】本题考查了分式方程的解法,属于基础题,熟练掌握分式方程的解法是解决本题的关键,最后一定要记得检验.

19. 已知:如图, ∠MON.

求作: $\angle BAD$, 使 $\angle BAD = \angle MON$.

下面是小明设计的尺规作图过程.

作法:

①在OM 上取一点A,以A为圆心,OA为半径画弧,交射线OA于点B;

②在射线 ON 上任取一点 C ,连接 BC ,分别以 B , C 为圆心,大于 $\frac{1}{2}\mathit{BC}$ 为半径画弧,两弧交于点 E , F ,作直

线EF,与BC交于点D;

③作射线 AD , $\angle BAD$ 即为所求.

- (1) 使用直尺和圆规,补全图形(保留作图痕迹);
- (2) 完成下列证明.

证明: :: EF 垂直平分 BC,

- \therefore ___=DC.
- AO = AB,
- ∴ AD // OC ((填推理依据).
- $\therefore \angle BAD = \angle MON$.

【答案】(1)见详解 (2) BD,三角形中位线定理

【解析】

【分析】(1)根据题目的描述,进行尺规作图即可;

(2) 利用三角形中位线定理即可求解.

【小问1详解】

作图如下:

【小问2详解】

证明: : EF 垂直平分 BC,

- $\therefore BD=DC$,
- AO=AB,
- ∴根据三角形的中位线定理有: AD // OC,
- $\therefore \angle BAD = \angle MON$.

故答案为: BD,三角形中位线定理.

【点睛】本题考查了尺规作图、三角形中位线定理、平行线的性质等知识,根据三角形的中位线得出 AD //OC 是解答本题的关键。

20. 已知关于x的一元二次方程 $x^2 + 4x + k = 0$ 有两个不相等的实数根,写出一个满足条件k的值,并求此时方程的根.

【答案】当 k=0 时, $x_1=0$, $x_2=-4$ (答案不唯一)

【解析】

【分析】先求出 b^2 -4ac, 再根据 b^2 -4ac>0 求出 k 的取值范围, 然后写出一个, 并求出方程的根即可.

【详解】:关于x的一元二次方程 $x^2+4x+k=0$ 有两个不相等的实数根,

:. $b^2-4ac=4^2-4\times k>0$,

即 *k*<4.

当 k=0 时, $x^2+4x=0$,

解得 x₁=0, x₂=-4.

【点睛】本题主要考查了一元二次方程的根的判别式,当 b^2 -4ac>0 时,一元二次方程 ax^2 +bx+c=0 有两个不相等的 实数根.

21. 如图,在矩形 ABCD 中,对角线 AC , BD 交于点 O ,分别过点 C , D 作 BD , AC 的平行线交于点 E ,连接 OE 交 AD 于点 F .

- (1) 求证: 四边形 OCED 是菱形;
- (2) 若AC = 8, $\angle DOC = 60^{\circ}$,求菱形OCED的面积.

【答案】 (1) 见解析 (2) $8\sqrt{3}$

【解析】

【分析】(1) 先证四边形 DECO 是平行四边形,再由矩形的性质得 OD=OC,即可得出结论;

(2)先由矩形性质,得 OD=OC=4,再判定 $\triangle OCD$ 是等边三角形,得 CD=4,再由菱形的性质得 $CD\perp OE$, $CF=\frac{1}{2}$ CD=2,然后由勾股定理 OF 长,即可求得 OE 长,最后由菱形面积公式求解即可.

【小问1详解】

证明: :: CE // BD, DE // AC,

- :.四边形 DECO 是平行四边形,
- ∵矩形 ABCD,
- $\therefore OC = OD$,
- ∴四边形 OCED 是菱形;

【小问2详解】

解: ::矩形 ABCD,

$$\therefore OD = OC = \frac{1}{2}AC = \frac{1}{2} \times 8 = 4,$$

- $\therefore \angle DOC = 60^{\circ}$,
- $\therefore \triangle OCD$ 是等边三角形,
- $\therefore CD = OC = 4$,

由(1)知:四边形 OCED 是菱形,

$$\therefore CF = \frac{1}{2} CD = \frac{1}{2} \times 4 = 2, \quad OE = 2OF, \quad CD \perp OE,$$

∴在 $Rt \triangle OFC$ 中, 由勾股定理, 得

$$OF = \sqrt{OC^2 - CF^2} = \sqrt{4^2 - 2^2} = 2\sqrt{3}$$
,

 $\therefore OE=2OF=4\sqrt{3}$,

$$\therefore S_{\notin \mathbb{R}} OCED = \frac{1}{2} CD \cdot OE = \frac{1}{2} \times 4 \times 4\sqrt{3} = 8\sqrt{3} ,$$

答: 菱形 OCED 的面积为 $8\sqrt{3}$.

【点睛】本题考查矩形的性质,菱形的判定与性质,平行四边形的判定,勾股定理,熟练掌握矩形的性质、菱形的 判定与性质、平行四边形的判定是解题的关键.

- 22. 在平面直角坐标系 xOy 中, 直线 $y = kx + b(k \neq 0)$ 与直线 y = x 平行, 且过点 (2,1).
- (1) 求这个一次函数的解析式;
- (2)直线 $y=kx+b(k\neq 0)$ 分别交 x , y 轴于点 A ,点 B , 若点 C 为 x 轴上一点,且 $S_{\triangle ABC}=2$,直接写出点 C 的 坐标.

【答案】(1) y=x-1

(2) (5,0)或(-3,0)

【解析】

【分析】(1)首先根据直线 $y = kx + b(k \neq 0)$ 与直线 y = x 平行,可求得 k=1,再把点(2,1)代入解析式,即可求得b,据此即可求得解析式;

(2)首先可求得 $A \setminus B$ 的坐标,设点 C 的坐标为(x,0),可得 AC=|1-x|,再根据三角形的面积公式列出方程,解方程即可求得.

【小问1详解】

解: : 直线 $y = kx + b(k \neq 0)$ 与直线 y = x 平行

 $\therefore k = 1$

∴直线为y = x + b

把点(2,1)代入解析式, 得2+b=1

解得 b=-1

故这个一次函数的解析式为 y=x-1;

【小问2详解】

解: 在 y=x-1 中,

设点 C 的坐标为(x,0),则 AC=|1-x|,

$$:: S_{\triangle ABC} = \frac{1}{2} AC \cdot OB = 2$$

 $\therefore |1-x|=4$

解得 x=5 或 x=-3

故点 C 的坐标为(5,0)或(-3,0).

【点睛】本题考查了利用待定系数法求一次函数的解析式,求直线与坐标轴的交点坐标,三角形面积公式,解绝对值方程,根据三角形面积公式得到绝对值方程是解决本题的关键.

23. 如图,在 $\triangle ABC$ 中, $\angle C=90^\circ$, BC , AC与 $\bigcirc O$ 交于点 F , D , BE 为 $\bigcirc O$ 直径,点 E 在 AB 上,连接 BD , DE , $\angle ADE=\angle DBE$.

(1) 求证: *AC* 是 ⊙ *O* 的切线;

(2) 若 $\sin A = \frac{3}{5}$, $\odot O$ 的半径为 3,求 BC 的长.

【答案】(1)过程见详解

$$(2) \frac{24}{5}$$

【解析】

【分析】(1)连接 *OD*,*OD=OB=OE*,即有 *ZOBD=ZODB*, *ZODE=ZOED*,再根据 *BE* 是直径,得到 *ZBDE=90°=ZDBE+ZDEB=ZODB+ZODE*,即有 *ZDBE+ZODE=90°*,再根据 *ZADE=ZDBE*,有 *ZADE+ZODE=90°*,即有 *OD ZAC*,则结论得证;

(2) 先证 $OD \ /\!/ BC$,则有 $\frac{BC}{OD} = \frac{AB}{OA}$,利用 $\sin A = \frac{OD}{OA} = \frac{3}{5}$ 可求出OA,即可求出BC的值.

【小问1详解】

连接 OD,如图,

:OD=OB=OE,

 $\therefore \angle OBD = \angle ODB$, $\angle ODE = \angle OED$,

∵BE 是直径,

 $\therefore \angle BDE = 90^{\circ} = \angle DBE + \angle DEB = \angle ODB + \angle ODE$

 $\therefore \angle DBE + \angle ODE = 90^{\circ},$

 $\therefore \angle ADE = \angle DBE$,

 $\therefore \angle ADE + \angle ODE = 90^{\circ},$

 $\therefore OD \perp AC$

∵OD 为半径,

∴AC 是⊙O 的切线;

根据(1)的结论,有 $OD \perp AC$,

 $\therefore \angle C = 90^{\circ}$,

 $\therefore BC \perp AC$

 $\therefore OD // BC$,

$$\therefore \frac{BC}{OD} = \frac{AB}{OA} ,$$

∵在 $Rt \triangle ADO$ 中, $\sin A = \frac{OD}{OA} = \frac{3}{5}$,

又:OD=OB=3,

 $\therefore OA=5$,

 $\therefore AB = OA + OB = 8$,

$$\because \frac{BC}{OD} = \frac{AB}{OA} ,$$

$$\therefore BC = \frac{AB}{OA} \times OD = \frac{8}{5} \times 3 = \frac{24}{5}.$$

即
$$BC$$
 为 $\frac{24}{5}$.

【点睛】本题考查了切线的判定与性质、直径作对圆周角为90°、平行的性质、勾股定理、三角函数等知识,证明切线是解答本题的关键.

24. 如图,在一次学校组织的社会实践活动中,小龙看到农田上安装了很多灌溉喷枪,喷枪喷出的水流轨迹是抛物线,他发现这种喷枪射程是可调节的,且喷射的水流越高射程越远,于是他从该农田的技术部门得到了这种喷枪的一个数据表,水流的最高点与喷枪的水平距离记为*x*,水流的最高点到地面的距离记为*y*.

y与x的几组对应值如下表:

x (单位: m)	0	$\frac{1}{2}$	1	$\frac{3}{2}$	2	$\frac{5}{2}$	3	4	
y (单位: m)	1	$\frac{9}{8}$	$\frac{5}{4}$	11 8	$\frac{3}{2}$	13 8	$\frac{7}{4}$	2	

- (1) 该喷枪的出水口到地面的距离为 m;
- (2) 在平面直角坐标系 xOy 中,描出表中各组数值所对应的点,并画出 y 与 x 的函数图像;

【答案】(1)1 (2) 见解析

(3) 3, 18

【解析】

【分析】(1)令x=0时,求得y值即可.

(2)按照描点,连线的基本步骤画函数图像即可.

(3)先确定直线 y=kx+b,当 x=8 时,求得 y=3,设抛物线解析式为 $y=a(x-8)^2+3$,把(0,1)代入解析式,确定 a=

 $-\frac{1}{32}$, 得到拋物线解析式, 令 y=0, 求得 x 的值即可.

【小问1详解】

令 *x*=0 时,得 *y*=1,

故答案为: 1.

【小问2详解】

根据题意,画图如下:

【小问3详解】

设直线为 y=kx+b, 根据题意, 得

$$\begin{cases} b=1\\ 4k+b=2 \end{cases}$$

解得
$$\begin{cases} k = \frac{1}{4}, \\ b = 1 \end{cases}$$

故直线的解析式为 $y = \frac{1}{4}x + 1$,

当 x=8 时,

得
$$y = \frac{1}{4} \times 8 + 1 = 3 (m)$$
,

故抛物线的顶点坐标为(8,3),

设抛物线解析式为 $y = a(x-8)^2 + 3$,

把(0,1)代入解析式,

解得
$$a=-\frac{1}{32}$$
,

$$\therefore y = -\frac{1}{32}(x-8)^2 + 3,$$

$$\Rightarrow$$
 y=0, $\Re -\frac{1}{32}(x-8)^2 + 3 = 0$,

解得 $x=8+4\sqrt{6}$, 或 $x=8-4\sqrt{6}$ (舍去) ,

 $\mathbb{H} x = 8 + 4\sqrt{6} \approx 17.79 \approx 18(m),$

故答案为: 3, 18.

- 【点睛】本题考查了一次函数图像的画法,待定系数法确定一次函数的解析式,顶点式确定抛物线的解析式,一元 二次方程的解法,熟练掌握待定系数法,选择顶点式确定二次函数的解析式是解题的关键.
- 25. 甲,乙两个小区各有300户居民,为了解两个小区3月份用户使用燃气量情况,小明和小丽分别从中随机抽取30户进行调查,并对数据进行整理、描述和分析.下面给出了部分信息.
- a. 甲小区用气量频数分布直方图如下(数据分成 5 组: $5 \le x < 10$, $10 \le x < 15$, $15 \le x < 20$, $20 \le x < 25$, $25 \le x < 30$)

b. 甲小区用气量的数据在 $15 \le x < 20$ 这一组的是:

15 15 16 16 16 16 18 18 18 18 18 19

c. 甲, 乙两小区用气量的平均数、中位数、众数如下:

刁	NX	平均数	中位数	众数
甲	1	17.2	m	18
Z	_	17.7	19	15

根据以上信息,回答下列问题:

- (1) 写出表中m 的值;
- (2)在甲小区抽取的用户中,记 3 月份用气量高于它们的平均用气量的户数为 p_1 . 在乙小区抽取的用户中,记 3 月份用气量高于它们的平均用气量的户数为 p_2 . 比较 p_1 , p_2 的大小,并说明理由;
- (3) 估计甲小区中用气量超过15立方米的户数.

【答案】(1)16; (2) $p_1 < p_2$;

(3) 200 户.

【解析】

【分析】(1)利用求中位数的方法求解即可;

- (2) 利用中位数和平均数的意义求解即可;
- (3) 根据抽取的 30 户中用气量超过 15 立方米的户数所占的比例估算出整体户数.

【小问1详解】

解: 由题意可知:

$$m = \frac{16+16}{2} = 16;$$

【小问2详解】

解:由表可知:

甲, 乙两小区用气量的中位数分别是 16、19, 平均数分别为: 17.2、17.7,

 $p_1 < 15, p_2 > 15,$

 $\therefore p_1 < p_2$;

【小问3详解】

解:抽取的甲小区 30 户中用气量超过 15 立方米的户数所占的比例为: $\frac{12+6+2}{30} = \frac{2}{3}$

甲小区中用气量超过 15 立方米的户数为: $300 \times \frac{2}{3} = 200$ 户.

【点睛】本题考查求中位数及其意义,由样本估计总体,解题的关键是理解题意,从表格获取信息,掌握求中位数及其意义,由样本估计总体.

26. 在平面直角坐标系 xOy 中,已知抛物线 $y = ax^2 + bx - 1(a > 0)$.

- (1) 若抛物线过点(4,-1).
- ①求抛物线的对称轴:

②当-1 < x < 0时,图像在x轴的下方,当5 < x < 6时,图像在x轴的上方,在平面直角坐标系中画出符合条件的图像,求出这个抛物线的表达式;

(2) 若 $(-4, y_1)$, $(-2, y_2)$, $(1, y_3)$ 为抛物线上的三点且 $y_3 > y_1 > y_2$, 设抛物线的对称轴为直线 x = t, 直接写出 t 的取值范围.

【答案】 (1) ①*x*=2; ②
$$y = \frac{1}{5}x^2 - \frac{4}{5}x - 1$$

(2)
$$-3 < t < -\frac{1}{2}$$

【解析】

【分析】①把(4,-1)代入解析式,确定 b=-4a,代入直线 $x=-\frac{b}{2a}$ 计算即可.

②根据对称轴为直线 x=2,且 2-(-1)=5-2,判定抛物线经过(-1,0)和(5,0),代入解析式确定 a,b的值即可.

(2) 根据
$$x = -\frac{b}{2a} = t$$
,得到 $b = -2at$,从而解析式变形为 $y = ax^2 - 2atx - 1(a > 0)$,把 $\left(-4, y_1\right)$, $\left(-2, y_2\right)$,

 $\left(1,y_{3}\right)$ 分别代入解析式,根据 $y_{3}>y_{1}>y_{2}$,列出不等式组,解不等式组即可.

【小问1详解】

解: ①把(4, -1)代入解析式 $y = ax^2 + bx - 1(a > 0)$, 得

$$-1 = 16a + 4b - 1$$
,

解得 b=-4a,

∴对称轴为直线
$$x = -\frac{b}{2a} = -\frac{-4a}{2a} = 2$$
.

②根据题意,画图像如下:

∵当-1<x<0时,图像在x轴 下方,

当5 < x < 6时,图像在x轴的上方,

对称轴为直线 x=2, 且 2-(-1)=5-2,

∴ 抛物线经过(-1,0)和(5,0),

$$\therefore \begin{cases} a-b-1=0 \\ 25a+5b-1=0 \end{cases},$$

解得
$$\begin{cases} a = \frac{1}{5} \\ b = -\frac{4}{5} \end{cases},$$

$$\therefore y = \frac{1}{5}x^2 - \frac{4}{5}x - 1.$$

【小问2详解】

$$\therefore x = -\frac{b}{2a} = t$$
,

 $\therefore b=-2at$

:解析式变形为 $y = ax^2 - 2atx - 1(a > 0)$,

把 $(-4, y_1)$, $(-2, y_2)$, $(1, y_3)$ 分别代入解析式, 得 $y_3 = a - 2at - 1$, $y_1 = 16a + 8at - 1$, $y_2 = 4a + 4at - 1$,

 $\because y_3 > y_1 > y_2,$

$$\therefore \begin{cases} a - 2at - 1 > 16a + 8at - 1 \\ a - 2at - 1 > 4a + 4at - 1 \end{cases},$$

$$16a + 8at - 1 > 4a + 4at - 1$$

故 *t* 的取值范围是 $-3 < t < -\frac{1}{2}$.

【点睛】本题考查了待定系数法, 抛物线的对称性, 二次函数与不等式的综合, 熟练掌握待定系数法, 对称性, 与不等式的关系是解题的关键.

27. 如图,已知 $\angle MON = \alpha \left(0^{\circ} < \alpha < 90^{\circ}\right)$,OP 是 $\angle MON$ 的平分线,点 A 是射线OM 上一点,点 A 关于OP 对称点 B 在射线ON 上,连接 AB 交OP 于点 C ,过点 A 作 ON 的垂线,分别交OP ,ON 于点 D , E ,作 $\angle OAE$ 的平分线 AQ ,射线 AQ 与 OP ,ON 分别交于点 F ,G .

(1) ①依题意补全图形;

②求 $\angle BAE$ 度数; (用含 α 的式子表示)

(2) 写出一个 α 的值,使得对于射线OM 上任意的点A 总有 $OD = \sqrt{2}AF$ (点A 不与点O 重合),并证明.

【答案】 (1) 见解析, $\angle BAE = \frac{\alpha}{2}$;

(2) α =45°, 证明见解析.

【解析】

【分析】 (1) ①在 ON 上取 OB = OA ,根据垂线,角平分线的画法作图即可;②求出 $\angle COB = \frac{\alpha}{2}$,再证明

$$\angle BAE = \angle COB = \frac{\alpha}{2} \ \mathbb{H} \ \mathbb{H};$$

(2)证明 $\triangle AOE$ 为等腰直角三角形,再证明 $\triangle ODE \cong \triangle ABE(ASA)$,得到OD = AB,进一步得到OD = AB = 2AC,证明 $\triangle FAC$ 为等腰直角三角形,得到 $AF = \sqrt{2}AC$,即可得到 $OD = \sqrt{2}AF$.

【小问1详解】

解: ①作图如下:

② $: \angle MON = \alpha$, $OP \in \angle MON$ 的平分线,

$$\therefore \angle COB = \frac{\alpha}{2}$$
,

::点A、B关于OP对称,

$$\therefore OB = OA$$
,

∴ $OC \perp AB$, $\square \angle OCB = 90^{\circ}$,

 $: AE \perp OB$,

 $\therefore \angle AEB = 90^{\circ}$,

 $\therefore \angle OBC = \angle ABE$,

$$\therefore \angle BAE = \angle COB = \frac{\alpha}{2}$$
,

【小问2详解】

解: 当 α =45°时,对任意的点A总有 $OD = \sqrt{2}AF$,

理由如下:

 $::A \setminus B$ 关于 OP 对称,且 OP 平分 $\angle MON$,

∴OP 垂直平分AB, 即 $OP \perp AB$, AB = 2AC,

 \therefore $\angle MON = 45^{\circ}$, $AE \perp OB$,

 $\therefore \triangle AOE$ 为等腰直角三角形,

 $\therefore AE = OE$,

由(1)可知: $\angle BAE = \angle COB = \frac{\alpha}{2} = 22.5^{\circ}$,即 $\angle BAE = \angle DOE$,

 $: OP \perp AB$, $AE \perp OB$,

 $\therefore \angle AEB = \angle OED$,

在 $\triangle ODE$ 和 $\triangle ABE$ 中,

$$\begin{cases} \angle BAE = \angle DOE \\ AE = OE \\ \angle AEB = \angle OED \end{cases}$$

 $\therefore \triangle ODE \cong \triangle ABE(ASA)$,

- $\therefore OD = AB$,
- AB = 2AC,
- $\therefore OD = AB = 2AC$,
- :AQ 平分 $\angle OAE$, $\triangle AOE$ 为等腰直角三角形,
- $\therefore \angle FAD = 22.5^{\circ}$,
- $\therefore \angle FAC = 45^{\circ}$,
- $: OP \perp AB$,
- ∴ △FAC 为等腰直角三角形,
- $: AF = \sqrt{2}AC,$
- $\therefore OD = AB = 2AC$,

$$\therefore AF = \frac{\sqrt{2}}{2}OD,$$

【点睛】本题考查作图,角平分线,等腰直角三角形,三角形全等的判定及性质,解题的关键是掌握角平分线的作法及性质,垂线的作法,等腰直角三角形的判定,三角形全等的判定及性质.

28. 在平面直角坐标系 xOy 中, $\odot O$ 的半径为 1,对于 $\triangle ABC$ 和直线 l 给出如下定义: 若 $\triangle ABC$ 的一条边关于直线 l 的对称线段 PQ 是 $\odot O$ 的弦,则称 $\triangle ABC$ 是 $\odot O$ 的关于直线 l 的"关联三角形",直线 l 是"关联轴".

- (1) 如图 1, 若 $\triangle ABC$ 是 $\bigcirc O$ 的关于直线 l 的"关联三角形",请画出 $\triangle ABC$ 与 $\bigcirc O$ 的"关联轴"(至少画两条);
- (2) 若 $\triangle ABC$ 中,点A 坐标为(2,3),点B 坐标为(4,1),点C 在直线 y = -x + 3 的图像上,存在"关联轴l"使 $\triangle ABC$ 是 $\bigcirc O$ 的关联三角形,求点C 横坐标的取值范围;
- (3)已知 $A(\sqrt{3},1)$,将点 A 向上平移 2 个单位得到点 M ,以 M 为圆心 MA 为半径画圆, B , C 为 $\bigcirc M$ 上的两点,且 AB=2 (点 B 在点 A 右侧),若 $\triangle ABC$ 与 $\bigcirc O$ 的关联轴至少有两条,直接写出 OC 的最小值和最大值,以及 OC 最大时 AC 的长.

【答案】 (1) 见解析 (2) $0 \le x_c \le 4$

(3) $2\sqrt{3}-2$, $2\sqrt{7}$, $2\sqrt{3}$

【解析】

【分析】(1)根据 A (1, 2) , B (2, 1) , C (4, 1) , 计算 $AB = \sqrt{(2-1)^2 + (1-2)^2} = \sqrt{2}$,

确定圆O长为 $\sqrt{2}$ 的弦,再确定其对称轴即可.

(2)根据 A (2, 3), B (4, 1), 计算 $AB = \sqrt{(4-2)^2 + (3-1)^2} = 2\sqrt{2} > 2$, 故 AB 不能落在圆的内部;过点 A 作 $AN \perp y$ 轴,垂足为 N,则 AN = 2,等于圆的直径,存在"关联轴 l"使 $\triangle ABC$ 是 $\bigcirc O$ 的关联三角形,此时 $x_C = 0$;作点 B 关于 x 轴的对称点 P,此时 BP = 2,等于圆的直径,存在"关联轴 l"使 $\triangle ABC$ 是 $\bigcirc O$ 的关联三角形,此时 $x_C = 4$,综上所述,点 C 横坐标的范围是 $0 \le x_C \le 4$.

(3) 如图,连接 OM,交圆 M 于点 C,此时 OC 最小,根据勾股定理,得 $OM = \sqrt{3^2 + (\sqrt{3})^2} = 2\sqrt{3}$,圆 M 的半径为 2,计算 OC 的最小值; $OC = \sqrt{(3+2)^2 + (\sqrt{3})^2} = 2\sqrt{7}$,此时 AC = 4.

【小问1详解】

如图 1,作 $BM \perp x$ 轴,垂足为 M,根据题意 $AB = AE = EF = BF = \sqrt{2}$,且 $\angle EFO = \angle BFM = 45^\circ$,

- $\therefore \angle EFB = 90^{\circ}$,
- :.四边形 ABFE 是正方形,
- ∴边 AE, BF 的中点所在直线就是 $\triangle ABC$ 与 $\bigcirc O$ 的一条"关联轴";
- $: \bigcirc O$ 的半径为 1,
- ∴ $EH=GH=FG=EF==\sqrt{2}$, $\perp \angle EFG=90^{\circ}$,

:.四边形 EFGH 是正方形,

 $\therefore \angle EFG + \angle EFB = 180^{\circ},$

 $\therefore B$ 、F、G三点共线,

∴直线 EF 是 $\triangle ABC$ 与 $\bigcirc O$ 的一条"关联轴".

【小问2详解】

如图 2,根据 A (2, 3) ,B (4, 1) ,C (4, 1) ,计算 $AB = \sqrt{(4-2)^2 + (3-1)^2} = 2\sqrt{2} > 2$,故 AB 不能落在圆的内部;

过点 A 作 $AN \perp y$ 轴, 垂足为 N, 则 AN=2, 等于圆的直径,存在"关联轴 l" 使 $\triangle ABC$ 是 $\bigcirc O$ 的关联三角形,

此时 $x_C = 0$;

作点 B 关于 x 轴的对称点 P,此时 BP=2,等于圆的直径,存在"关联轴 l" 使 $\triangle ABC$ 是 $\bigcirc O$ 的关联三角形,此时 $x_C=4$,综上所述,点 C 横坐标的范围是 $0 \le x_C \le 4$.

【小问3详解】

如图,连接OM,交圆M于点C,此时OC最小,

根据勾股定理,得 $OM = \sqrt{3^2 + (\sqrt{3})^2} = 2\sqrt{3}$, 圆 M 的半径为 2,

故 OC 的最小值为 $2\sqrt{3}-2$;

当点 C 是直径 AC 的一个端点时,OC 最大,根据勾股定理,得

$$OC = \sqrt{(3+2)^2 + (\sqrt{3})^2} = 2\sqrt{7}$$
, 此时 $AC = 4$.

【点睛】本题考查了新定义问题,轴对称的性质,圆的基本性质,勾股定理,熟练掌握圆的性质,正确理解新定义是解题的关键.