9 行列の階数と線形独立性

以下で、K は実数全体 $\mathbb R$ または複素数全体 $\mathbb C$ とする.

演習 9.1 前回の演習 8.3 の式 (1), (2) を今度は教科書の定理 2.14 を用いて示せ:

(1) rank
$$\begin{pmatrix} A & O \\ O & B \end{pmatrix}$$
 = rank A + rank B

(2) rank
$$\begin{pmatrix} A & C \\ O & B \end{pmatrix} \ge \operatorname{rank} A + \operatorname{rank} B$$

演習 9.2 n 個の n 項縦ベクトル $x_1, \ldots, x_n \in K^n$ について、次の (a), (b), (c) は同値であることを示せ:

- (a) x_1, \ldots, x_n は線形独立.
- (b) x_1,\ldots,x_n を並べて作った n 次正方行列 $A=(x_1,\ldots,x_n)$ は正則.
- (c) x_1, \ldots, x_n は K^n を張る.

[ヒント] $((a)\Leftrightarrow(b))$ は教科書の定理 2.14 と系 2.12 により得られる. $((b)\Rightarrow(c))$ 正則行列ならば、列基本変形のみを繰り返して単位行列にできるはず. $((c)\Rightarrow(b))$ 逆に(c) が成り立つなら, e_1,\ldots,e_n が x_1,\ldots,x_n の線形結合で書けるはず.

演習 9.3
$$(1)$$
 $m{x}=\left(egin{array}{c} x_1 \\ \vdots \\ x_m \end{array}\right)$ を m 項縦ベクトル、 $m{y}=\left(egin{array}{c} y_1 \\ \vdots \\ y_n \end{array}\right)$ を n 項縦ベクトルとす

ると,

$$A = \boldsymbol{x}^t \boldsymbol{y} = \begin{pmatrix} x_1 y_1 & \cdots & x_1 y_n \\ \vdots & \ddots & \vdots \\ x_m y_1 & \cdots & x_m y_n \end{pmatrix}$$

は $m \times n$ 行列である. $x \neq 0$, $y \neq 0$ のとき, rank A = 1 となることを示せ.

(2) 逆に, A をある $m \times n$ 行列とするとき, もし $\operatorname{rank} A = 1$ ならば, ある m 項縦ベクトル x と n 項縦ベクトル y が存在して $A = x^t y$ と書けることを示せ.

時間が余ったら、次も考えてみてください.

演習 9.4 一般に, A を $m \times n$ 行列, $\operatorname{rank} A = r$ とするとき, ある $m \times r$ 行列 X と $n \times r$ 行列 Y が存在して, $A = X^t Y$ と書けることを示せ.