

Numerical Analysis for Machine Learning Project

Group 34
Alberto Sandri
Enrico Simionato

Credit card fraud detection

A machine learning based credit card fraud detection using the GA algorithm for feature selection

Emmanuel Ileberi , Yanxia Sun & Zenghui Wang

Journal of Big Data 9, Article number: 24 (2022) | Cite this article

Dataset

Features

Time	V1	V2	 	V28	Amount	Class	

Transactions

Pre-processing

GA features selection

Shuffle + Split

Normalization

Undersampling

$$f_{scaled} = \frac{f - min(f)}{max(f) - min(f)}$$

Metrics

Accuracy

Recall

Precision

F1-score

AUC

Logistic Regression

Model definition

$$z = w_0 x_0 + w_1 x_1 + \dots + w_n x_n + b$$

$$y_{pred} = \frac{1}{1 + e^{-z}}$$

$$label = \begin{cases} 1, & \text{if } y_{pred} \ge 0.5\\ 0, & \text{otherwise} \end{cases}$$

Logistic Regression

$$J(\mathbf{w}, b) = -\frac{1}{n_{samples}} \sum_{i=1}^{n_{samples}} \alpha y_i \log y_{pred, i} + \beta (1 - y_i) \log (1 - y_{pred, i})$$

$$\mathbf{g}(\mathbf{x}^{(k)}) = rac{1}{|I_k|} \sum_{i_k \in I_k}
abla J_{i_k}(\mathbf{x}^{(k)})$$

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} - \gamma^{(k)} \mathbf{g}(\mathbf{x}^{(k)})$$

Recall vs precision

Fast training phase

Decision Tree

Information gain

$$IG = G(parent) - (w_{left} \cdot G(child_{left}) + w_{right} \cdot G(child_{right}))$$

$$G(node) = 1 - \sum_{l \in labels} p(l)^{2}$$

Little time to train

Few hyperparameters to tune

Random Forest

Bootstrapped dataset

Majority vote

Good performances

More memory and training time than DT

Gaussian Naïve Bayes

Model definition

Sample mean

$$\overline{X_i} = \frac{1}{n_{samples}} \sum_{j=1}^{n_{samples}} x_{ji}$$

Sample variance

$$var_i = \frac{1}{n_{samples} - 1} \sum_{i=1}^{n_{samples}} (x_{ji} - \overline{X_i})^2$$

Gaussian Naïve Bayes

Prediction

Artificial Neural Network

Neural network schema

$$\mathbf{a}^l = \sigma(\mathbf{W}^l \cdot \mathbf{a}^{l-1} + \mathbf{b}^l)$$

Artificial Neural Network

Cost functions

Cross entropy for 2 classes

$$J(\mathbf{W}, \mathbf{b}) = -\frac{1}{n_{samples}} \sum_{i=0}^{n_{samples}-1} \alpha y(\mathbf{x}_i) \log a_i^L + \beta (1 - y(\mathbf{x}_i)) \log (1 - a_i^L)$$

Cross entropy for n_{output} classes

$$J(\mathbf{W}, \mathbf{b}) = -\frac{1}{n_{samples}} \sum_{i=0}^{n_{samples}-1} \sum_{j=0}^{n_{outputs}-1} \alpha_j y_j(\mathbf{x}_i) \log a_{ji}^L$$

Optimization methods

$$\mathbf{g}(\mathbf{x}^{(k)}) = \frac{1}{|I_k|} \sum_{i_k \in I_k} \nabla J_{i_k}(\mathbf{x}^{(k)})$$

RMSprop

$$\mathbf{r}^{(k+1)} = \rho \mathbf{r}^{(k)} + (1-\rho)\mathbf{g}(\mathbf{x}^{(k)}) \odot \mathbf{g}(\mathbf{x}^{(k)})$$

$$\boldsymbol{\theta}^{(k+1)} = \boldsymbol{\theta}^{(k)} - \frac{\lambda}{\delta + \sqrt{\mathbf{r}^{(k+1)}}} \odot \mathbf{g}(\mathbf{x}^{(k)})$$

Results

Results

Model	Accuracy	Recall	Precision	F1-Score
$\overline{ m RF}$	99.94	75.48	90.70	82.39
	99.98	72.56	95.34	82.41
DT	99.92	74.84	80.00	77.33
	99.89	72.56	65.07	68.61
ANN1	99.88	85.15	62.77	72.27
ANN2	99.92	79.21	74.77	76.92
	99.08	77.87	12.27	21.20
NB	97.69	85.15	6.20	11.57
	99.44	57.52	15.85	24.85
LR	99.91	70.97	75.34	73.09
	99.77	46.90	34.64	39.84

Results

Conclusion

Overall good performances

Using different hyperparameters for the different datasets could improve performaces

GA feature selection

Conclusion

Accuracy is very important but the recall is the keypoint

Tradeoff recall – precision

Hyperparameters tuning is challenging