MECHTRON 2MD3

Data Structures and Algorithms for Mechatronics Winter 2022

30 Sorting

Department of Computing and Software

Instructor:

Omid Isfahanialamdari

April 6, 2022

Admin

- I will have office hour today at 15:00
 - Virtual and in-person at ITB-159

Overview

Sorting: What we have seen so far?

Sorting Algorithm	Time Complexity	Properties
Insertion sort	O(n ²)	slowin-placeSuitable for small datasets (< 1K)
Selection sort	O(n ²)	slowin-placeSuitable for small datasets (< 1K)
Heap sort	O(nlogn)	fastin-placeSuitable for large datasets (1K - 1M)

- We will talk about Merge sort and Quick sort
 - Both are very fast algorithms
 - are suitable for very large dataset (>1M)

Merge sort

- Merge sort is a sorting algorithm based on the divide-and-conquer paradigm
- Like Heap sort
 - It uses a comparator
 - o It has $O(n \log n)$ running time (we will discuss this in more detail)
- Unlike Heap sort
 - It does not use an auxiliary priority queue
 - It accesses data in a sequential manner (suitable to sort data on a disk)
 - It is not in-place.
 - There are methods to implement it as an in-place sorting, but those methods are not in the scope of this course.

Merge sort - A quick overview

- An execution of merge-sort is depicted by a binary tree
 - each node represents a recursive call of merge-sort and shows
 - unsorted sequence before the execution and how we partition it
 - sorted sequence at the end of the execution
 - the root is the initial call
 - the leaves are calls on subsequences of size 0 or 1

Divide-and-Conquer

- Divide-and conquer is a general algorithm design paradigm:
 - Divide: divide the input data S in two disjoint subsets S_1 and S_2
 - Recur: solve the subproblems associated with S_1 and S_2
 - Conquer: combine the solutions for S_1 and S_2 into a solution for S
- The base case for the recursion are subproblems of size 0 or 1

 Merge sort is a sorting algorithm based on the divideand-conquer paradigm

Merge sort - Formal Algorithm

- Merge sort on an input sequence S with n elements consists of three steps:
 - o Divide: partition S into two sequences S_1 and S_2 of about n/2 elements each
 - Recur: recursively sort S_1 and S_2
 - Conquer: merge S₁ and S₂ into a unique sorted sequence

Algorithm mergeSort

```
Input sequence S with n elements, comparator C

Output sequence S sorted according to C

if S.size() > 1

(S_1, S_2) \leftarrow partition(S, n/2)

mergeSort(S_1, C)

mergeSort(S_2, C)
```

 $S \leftarrow merge(S_1, S_2)$

- The conquer step of merge-sort consists of merging two sorted sequences A and B into a sorted sequence S containing the union of the elements of A and B
- Merging two sorted sequences, each with n/2 elements and implemented by means of a doubly linked list, takes O(n) time
- Similar to the addition of polynomials in Assignment 2

```
Algorithm merge(A, B)
    Input sequences A and B with n/2 elements each
    Output sorted sequence of A \cup B
    S \leftarrow empty sequence
    while \neg A.empty() \land \neg B.empty()
       if A.front() < B.front()
           S.addBack(A.front()); A.eraseFront();
        else
           S.addBack(B.front()); B.eraseFront();
    while \neg A.empty()
       S.addBack(A.front()); A.eraseFront();
    while \neg B.empty()
       S.addBack(B.front()); B.eraseFront();
    return S
```


Partition

Recursive call, partition

Recursive call, partition

Recursive call, base case

Recursive call, base case

merge

Recursive call, ..., base case, merge

merge

Recursive call, ..., merge, merge

University

merge

Analysis of Merge-Sort

- The height h of the merge-sort tree is $O(\log n)$
 - at each recursive call we divide in half the sequence,
- The overall amount or work done at the nodes of depth i is O(n)
 - we partition and merge 2^i sequences of size $n/2^i$
 - $_{\circ}$ we make 2^{i+1} recursive calls
- Thus, the total running time of merge-sort is $O(n \log n)$

depth	#seqs	size	
0	1	n	
1	2	<i>n</i> /2	
i	2^{i}	$n/2^i$	
•••	•••	• • •	

Analysis of Merge-Sort

- The height h of the merge-sort tree is $O(\log n)$
 - at each recursive call we divide in half the sequence,
- The overall amount or work done at the nodes of depth i is O(n)
 - $_{\circ}$ we partition and merge 2^{i} sequences of size $n/2^{i}$
 - we make 2i+1 recursive calls
- Thus, the total running time of merge-sort is $O(n \log n)$

Total time: $O(n \log n)$

Analysis of Merge-Sort - Using Recurrence Relations

- The conquer step of merge-sort consists of merging two sorted sequences, each with n/2 elements and implemented by means of a doubly linked list, takes at most bn steps, for some constant b.
- Likewise, the basis case (n < 2) will take at b most steps.
- Therefore, if we let T(n) denote the running time of merge-sort:

$$T(n) = \begin{cases} b & \text{if } n < 2\\ 2T(n/2) + bn & \text{if } n \ge 2 \end{cases}$$

- We can therefore analyze the running time of merge-sort by finding a closed form solution to the above equation.
 - \circ That is, a solution that has T(n) only on the left-hand side.

Analysis of Merge-Sort - Using Recurrence Relations

- Iterative Substitution:
- In the iterative substitution, or "plug-and-chug," technique, we iteratively
 apply the recurrence equation to itself and see if we can find a pattern:

$$T(n) = 2T(n/2) + bn$$

$$= 2(2T(n/2^{2})) + b(n/2)) + bn$$

$$= 2^{2}T(n/2^{2}) + 2bn$$

$$= 2^{3}T(n/2^{3}) + 3bn$$

$$= 2^{4}T(n/2^{4}) + 4bn$$

$$= ...$$

$$= 2^{i}T(n/2^{i}) + ibn$$

- Note that base, T(n)=b, case occurs when 2ⁱ=n. That is, i = log n.
- So, $T(n) = bn + bn \log n$
- Thus, T(n) is O(n log n).

Recall

Sorting Algorithm	Time Complexity	Properties
Insertion sort	O(n ²)	slowin-placeSuitable for small datasets (< 1K)
Selection sort	O(n²)	slowin-placeSuitable for small datasets (< 1K)
Heap sort	O(nlogn)	fastin-placeSuitable for large datasets (1K - 1M)
Merge sort	O(nlogn)	fastsequential data accessSuitable for for huge datasets (>1M)

Questions?

Please evaluate this course! https://evals.mcmaster.ca/
Thank you

