Esempi sui limiti

Sono qui elencati alcuni esempi.

• La funzione $f(x) = x^2$ è continua in $x_0 = 3$, perché il suo valore $f(3) = 3^2 = 9$ coincide con il valore ottenuto come limite:

$$\lim_{x\to 3}x^2=9$$

• Quanto x diventa molto grande, il valore 1/x diventa arbitrariamente piccolo, e tende quindi a zero:

$$\lim_{x \to \infty} \frac{1}{x} = 0$$

• Quando x diventa molto grande, il valore x^3 diventa arbitrariamente grande, e tende quindi a $+\infty$:

$$\lim_{x o +\infty} x^3 = +\infty$$

• La funzione seno oscilla indefinitamente fra -1 e +1, e quindi non tende a nessun limite preciso per $x \to \infty$. Quest'affermazione si dimostra formalmente grazie al primo teorema delle restrizioni: siccome la restrizione del seno ai valori $\frac{\pi}{2} + 2k\pi$ è costantemente 1 e la restrizione a $\frac{\pi}{2} + 2k\pi$ è costantemente -1, la funzione seno non può ammettere limite globale. Quindi:

$$\lim_{x\to +\infty} \sin x = \text{indefinito}$$
 (lo stesso vale per - ∞) o più rigorosamente:
$$\lim_{x\to +\infty} \sin x$$