Stability

Qi'ao Chen

December 5, 2021

Contents

1	Preface	1
2	Preliminaries	1
	2.1 Indiscernibles	2
	2.2 Definability and Generalizations	4
	2.3 Imaginaries and T^{eq}	7
	2.4 Examples and counterexamples	17
3	Stability 3.1 Local Stability	19 19
4	TODO Problems	20
5	Index	20
6	References	21

1 Preface

A combination of various notes from [Pillay(2018)] [Chernikov(2019)] [Tent and Ziegler(2012)] A monster model $\mathfrak C$ [Pillay(2018)] has many typos $\mathfrak B$

2 Preliminaries

2.1 Indiscernibles

Definition 2.1. Let I be a linear order and $\mathfrak A$ an L-structure. A family $(a_i)_{i \in I}$ of elements of A is called a **sequence of indiscernibles** if for all L-formulas $\varphi(x_1,\ldots,x_n)$ and all $i_1<\cdots< i_n$ and $j_1<\cdots< j_n$ from I

$$\mathfrak{A}\vDash\varphi(a_{i_1},\dots,a_{i_n})\leftrightarrow\varphi(a_{j_1},\dots,a_{j_n})$$

or

$$\operatorname{tp}(a_{i_1},\dots,a_{i_n}) = \operatorname{tp}(a_{j_1},\dots,a_{j_n})$$

Theorem 2.2. Compactness let us "stretch" indiscernibles. Let $(a_i: i \in \omega)$ be indiscernibles in $\mathfrak C$, and (I,<) an ordering. Then there exists an indiscernible $(b_i: i \in I)$ in $\mathfrak C$ s.t. $\forall i_1 < \cdots < i_n \in I$

$$\mathsf{tp}(a_1, \dots, a_n) = \mathsf{tp}(b_{i_1}, \dots, b_{i_n})$$

Indiscernible sequence are a fundamental tool of model theory, and there are many ways to obtain them.

Theorem 2.3 (Ramsey, extended). Let $n_1, \ldots, n_r < \omega$. For each $i = 1, \ldots, r$, let $X_{i,1}, X_{i,2}$ be a partition of $[\omega]^{n_i}$. Then there is an infinite subset $Y \subseteq \omega$ which is homogeneous, i.e., $\forall i = 1, \ldots, r$, either $[Y]^{n_i} \subseteq X_{i,1}$ or $[Y]^{n_i} \subseteq Y_{i,2}$

Proposition 2.4. For each $n \in \omega$, let $\Sigma_n(x_1, \dots, x_n)$ be a collection of L-formulas in variables x_1, \dots, x_n . Suppose that there are $a_1, a_2, \dots \in \mathfrak{C}$ s.t.

$$\vDash \Sigma_n(a_{i_1}, \dots, a_{i_n}), \quad \forall i_1 < \dots < i_n < \omega$$

Then there is an indiscernible $(b_i : i \in \omega)$ in \mathfrak{C} s.t.

$$\vDash \Sigma_n(b_{i_1}, \dots, b_{i_n}), \quad \forall i_1 < \dots < i_n < \omega$$

we can expand $\bigcup_{n\in\omega}\Sigma_n$ and obtain the Ehrenfeucht-Mostowski type $\mathrm{EM}((a_i)_{i\in\omega})$. This is just the Standard Lemma in Tent

Example 2.1. Suppose $\Sigma_2 = \{x_1 \neq x_2\}$. Then the proposition yields the existence of infinite indiscernible sequences

Proof. Consider

$$\begin{split} \Gamma(x_1, x_2, \dots) &= \{\varphi(x_{i_1}, \dots, x_{i_n}) \leftrightarrow \varphi(x_{j_1}, \dots, x_{j_n}) : \\ &\quad i_1 < \dots < i_n, j_1 < \dots < j_n \in \omega, \varphi \in L\} \\ &\quad \cup \bigcup_n \Sigma(x_1, \dots, x_n) \end{split}$$

Let $\Gamma'(x_1,\ldots,x_n)\subseteq_f\Gamma$. Let $\varphi_1,\ldots,\varphi_r$ be the L-formulas appearing in Γ' . For $i=1,\ldots,r$, let

$$\begin{split} X_{i,1} &= \{ (j_1, \dots, j_n) : j_1 < \dots < j_n \in \omega, \vDash \varphi_i(a_{j_1}, \dots, a_{j_n}) \} \\ X_{i,2} &= \{ (j_1, \dots, j_n) : j_1 < \dots < j_n \in \omega, \vDash \neg \varphi_i(a_{j_1}, \dots, a_{j_n}) \} \end{split}$$

By Ramsey's theorem, there exists an infinite $Y\subseteq \mathbb{N}$ s.t. $\forall i=1,\ldots,r$, $[Y]^{n_i}$ is either contained in $X_{i,1}$ or in $X_{i,2}$. Write $Y=\{k_1< k_2<\ldots\}$. Interpret each x_i as a_{k_i} to satisfy Γ'

Definition 2.5. Let $M \prec N \prec \mathfrak{C}$ be models, and $p(\bar{x}) \in S_{\overline{x}}(N)$. We say p is finitely satisfiable in M, or $p(\bar{x})$ is a **coheir** of $p \upharpoonright M \in S_{\overline{x}}(M)$, if every $\varphi(\bar{x}) \in p(\bar{x})$ is satisfied by some $\bar{a} \in M$

Remark. $p(\bar{x}) \in S_n(N)$ is finitely satisfiable (f.s.) in M iff $p(\bar{x})$ is in the topological closure of $\{\operatorname{tp}(\bar{a}/N): \bar{a} \in M\} \subseteq S_n(N)$

Lemma 2.6. Suppose $p(\bar{x}) \in S_{\bar{x}}(M)$ and $M \prec N$, then there is $p'(\bar{x}) \in S_{\bar{x}}(N)$ s.t. $p \subseteq p'$ and p' is f.s. in M

Proof. Consider $\Gamma(\bar{x})=p(\bar{x})\cup\{\neg\varphi(\bar{x}):\varphi(\bar{x})\in L_N \text{ and not realized in }M\}.$ Let $\Gamma\supseteq_f\Gamma'=\{\Psi(\bar{x}),\neg\varphi_1(\bar{x}),\dots,\neg\varphi_r(\bar{x})\}\in p.$ Then any solution \bar{a} of Ψ in M satisfies Γ' as $M\vDash\forall\bar{x}(\neg\varphi_i(\bar{x}))$

Remark. Let $i_M:M^{\overline{x}}\to S_{\overline{x}}(M)$ s.t. $m\mapsto \operatorname{tp}(m/M)$. Define $i_N:M^{\overline{x}}\to S_{\overline{x}}(N)$ similarly. Let $r:S_{\overline{x}}(N)\to S_{\overline{x}}(M)$. Note that $r\circ i_N=i_M$ and the set of types in $S_{\overline{x}}(N)$ that are f.s. in M is exactly the closure of $i_N(M^{\overline{x}})$ in $S_{\overline{x}}(N)$. Hence its image under r is closed. However the image must contain $i_M(M^{\overline{x}})$ which is dense in $S_{\overline{x}}(M)$. Therefore it must be onto, which proves the desired result

r is continuous and $r(\overline{i_N(M^n)})\supseteq i_M(M^n)$ is closed. $\overline{i_M(M^n)}=S_n(M)$. Then r is onto? Then its preimage of p is what we want

Proposition 2.7. Let $p(\bar{x}) \in S_{\bar{x}}(M)$, N > M be $|M|^+$ -saturated, and $p'(\bar{x}) \in S_{\bar{x}}(N)$ a coheir of p. Let $\bar{a}_1, \bar{a}_2, \dots \in N$ be defined as follows

$$\begin{split} &\bar{a}_1 \text{ realises } p(\bar{x}) \\ &\bar{a}_2 \text{ realises } p'(\bar{x}) \upharpoonright (M, \bar{a}_1) \\ &\bar{a}_3 \text{ realises } p'(\bar{x}) \upharpoonright (M, \bar{a}_1, \bar{a}_2) \\ & \dots \end{split}$$

Then $(\bar{a}_i : i \in \omega)$ is indiscernible over M

Proof. We prove by induction on k that for any $n \le k$ and $i_1 < \dots < i_n \le k$ and $j_1 < \dots < j_n \le k$, we have

$$\operatorname{tp}_M(\bar{a}_{i_1},\dots,\bar{a}_{i_n}/M) = \operatorname{tp}_M(\bar{a}_{j_1},\dots,\bar{a}_{j_n}/M)$$

Assume this is true for k and consider k+1. Let $i_1 < \cdots < i_n \le k$, $j_1 < \cdots < j_n \le k$. We need to show that

$$\operatorname{tp}_M(\bar{a}_{i_1},\dots,\bar{a}_{i_n},\bar{a}_{k+1}/M) = \operatorname{tp}_M(\bar{a}_{j_1},\dots,\bar{a}_{j_n},\bar{a}_{k+1}/M)$$

Consider a formula $\varphi(\bar{x}_1,\dots,\bar{x}_n,\bar{x}_{n+1})\in L_M.$ Assume by contradiction that

$$M \vDash \varphi(\bar{a}_{i_1}, \cdots, \bar{a}_{i_n}, \bar{a}_{k+1}) \land \neg \varphi(\bar{a}_{j_1}, \cdots, \bar{a}_{j_n}, \bar{a}_{k+1})$$

But $\operatorname{tp}(\bar{a}_{k+1}/M, \bar{a}_1, \dots, \bar{a}_k)$ is f.s. in M, so there is $\bar{a}' \in M$ s.t.

$$M \vDash \varphi(\bar{a}_{i_1}, \cdots, \bar{a}_{i_n}, \bar{a}') \land \neg \varphi(\bar{a}_{j_1}, \cdots, \bar{a}_{j_n}, \bar{a}')$$

contradicting IH

2.2 Definability and Generalizations

Definition 2.8. $X \subseteq \mathfrak{C}^n$ is **definable almost over** A if there is an A-definable equivalence relation E on \mathfrak{C}^n with finitely many classes and X is a union of some E-classes

Lemma 2.9. Let \mathbb{D} be a definable class and A a set of parameters. T.F.A.E.

- 1. \mathbb{D} is definable over A
- 2. \mathbb{D} is invariant under all automorphisms of \mathfrak{C} which fix A pointwise

$$S \subseteq K^{\operatorname{alg}} \Rightarrow M \setminus S \subseteq K^{\operatorname{alg}}$$

Proof. \Rightarrow is easy as for any $F \in \operatorname{Aut}(\mathfrak{C}/A)$ and $\mathbb{D} = \varphi(\mathfrak{C}, \bar{a})$, $\mathfrak{C} \models \varphi(\bar{s}, \bar{a})$ iff $\mathfrak{C} \models \varphi(F(\bar{s}), \bar{a})$. StackExchange

$$x \in \mathbb{D} \Leftrightarrow \vDash \varphi(x, \bar{a}) \Leftrightarrow \varphi(F(x), F(\bar{a})) \leftrightarrow \varphi(F(x), \bar{a}) \Leftrightarrow F(x) \in \mathbb{D}$$

 \Leftarrow . Another proof from Chernikov. Assume that $\mathbb{D} = \varphi(\mathfrak{C}, b)$ where $b \in \mathfrak{C}$, and let $p(y) = \operatorname{tp}(b/A)$

Claim 1. $p(y) \vdash \forall x (\varphi(x,y) \leftrightarrow \varphi(x,b))$, which says that for any realisations b', $\varphi(\mathfrak{C},b) = \varphi(\mathfrak{C},b')$

Indeed, let $b' \models p(y)$ be arbitrary. Then $\operatorname{tp}(b/A) = \operatorname{tp}(b'/A)$ so there is some $\sigma \in \operatorname{Aut}(\mathfrak{C}/A)$ with $\sigma(b) = b'$. Then $\sigma(X) = \varphi(\mathfrak{C},b')$ and by assumption $\sigma(X) = X$, thus $\varphi(\mathfrak{C},b) = X = \varphi(\mathfrak{C},b')$.

There is some $\psi(y) \in p$ (there is a finite subset of p(y) that does the job and we take the conjunction) s.t.

$$\psi(y) \vDash \forall x (\varphi(x, y) \leftrightarrow \varphi(x, b))$$

Let $\theta(x)$ be the formula $\exists y(\psi(y) \land \varphi(x,y))$. Note that $\theta(x)$ is an L(A)-formula, as $\psi(y)$ is

Claim 2. $X = \theta(\mathfrak{C})$

If $a \in X$, then $\vDash \varphi(a,b)$, and as $\psi(y) \in \operatorname{tp}(b/A)$ we have $\vDash \theta(a)$. Conversely, if $\vDash \theta(a)$, let b' be s.t. $\vDash \psi(b') \land \varphi(a,b')$. But by the choice of ψ this implies that $\vDash \varphi(a,b)$

 \Leftarrow Let $\mathbb D$ be defined by φ , defined over $B \supset A$. Consider the maps

$$\mathfrak{C} \xrightarrow{\tau} S(B) \xrightarrow{\pi} S(A)$$

where $\tau(c)=\operatorname{tp}(c/B)$ and π is the restriction map. Let Y be the image of $\mathbb D$ in S(A). Since $Y=\pi[\varphi]$. Y is closed. Note that $\tau(\mathbb D)=[\varphi]$. $\tau(\mathbb D)=\{\operatorname{tp}(c/B):\mathfrak C\models\varphi(c)\}\subseteq[\varphi]$. For any $q(x)\in[\varphi]$, as $\mathfrak C$ is saturated, $\mathfrak C\models q(d)$ and $d\in\mathbb D$. Thus $q\in\tau(\mathbb D)$. π is continuous

Assume that $\mathbb D$ is invariant under all automorphisms of $\mathfrak C$ which fix A pointwise. Since elements which have the same type over A are conjugate by an automorphism of $\mathfrak C$, this means that $\mathbb D$ -membership depends only on the type over A, i.e., $\mathbb D=(\pi\tau)^{-1}(Y)$. For any $\operatorname{tp}(c/A)=\operatorname{tp}(d/A)$ and $c\in\mathbb D$, as c and d are conjugate, $d\in\mathbb D$.

For any $c \notin \mathbb{D}$, $\pi \tau(c) \in Y$ iff $\operatorname{tp}(c/A) \in \pi[\varphi]$ iff there is $d \in \mathbb{D}$ s.t. $\operatorname{tp}(c/A) = \operatorname{tp}(d/A)$ but then $c \in \mathbb{D}$.

This implies that $[\varphi]=\pi^{-1}(Y)$ $\tau(\mathbb{D})=[\varphi]=\tau(\tau^{-1}\pi^{-1})(Y)=\pi^{-1}(Y)$, or $S(A)\setminus Y=\pi[\neg\varphi]$; hence $S(A)\setminus Y$ is also closed and we conclude that Y is clopen. By Lemma $\ref{eq:substant}$? $Y=[\psi]$ for some L(A)-formula ψ . This ψ defines \mathbb{D} . For any $d\in\mathfrak{C}$

$$\models \psi(d) \Leftrightarrow \operatorname{tp}(d/A) \Leftrightarrow d \in \mathbb{D}$$

A slight generalization of the previous lemma

Lemma 2.10. *Let* $X \subseteq \mathfrak{C}^n$ *be definable. TFAE*

- 1. X is almost A-definable, i.e., there is an A-definable equivalence relation E on \mathfrak{C}^n with finitely many classes, s.t. X is a union of E-classes
- 2. The set $\{\sigma(X) : \sigma \in Aut(\mathfrak{C}/A)\}$ is finite

3. The set $\{\sigma(X): \sigma \in Aut(\mathfrak{C}/A)\}\$ is small

Proof. $1 \to 2$. Let $\varphi(x_1, x_2) \in L(A)$ be the A-definable equivalence relation E, and let $b_1, \dots, b_n \in M$ be representatives in each equivalence class so that each class can be written as $[b_i] = \varphi(\mathfrak{C}, b_i)$. Given $\sigma \in \operatorname{Aut}(\mathfrak{C}/A)$, since $\varphi(x_1, x_2) \leftrightarrow \varphi(\sigma(x_1), \sigma(x_2))$, the image of each $[b_i]$ under σ will be

$$\sigma([b_i]) = \{\sigma(x) : \varphi(x,b_i)\} = \{x' : \varphi(x',\sigma(b_i))\} = \{x : \varphi(x,b_{j_i})\} = [b_{j_1}]$$

for some $j_i \leq n$. Now X is a disjoint union of some $[b_i]$'s, so $\sigma(X)$ is a disjoint union of some $[b_j]$'s. Since there are only finitely many equivalence classes, there can only be finitely many possibilities for disjoint unions of these classes

 $2 \to 1$. Let $X = \varphi(\mathfrak{C}, b)$ and $p(y) = \operatorname{tp}(b/A)$. Given $\sigma \in \operatorname{Aut}(\mathfrak{C}/A)$, we have $\sigma(X) = \varphi(\mathfrak{C}, \sigma(b))$. Then from assumption, there must be distinct b_1, \dots, b_n s.t.

$$\{\sigma(X): \sigma \in \operatorname{Aut}(\mathfrak{C}/A)\} = \{\varphi(\mathfrak{C}, b_i): i \leq n\}$$

Now if $\operatorname{tp}(b'/A)=\operatorname{tp}(b/A)$, then strong homogeneity yields some $\sigma\in\operatorname{Aut}(\mathfrak{C}/A)$ s.t. $\sigma(b)=b'$. Then the above argument again shows that $\varphi(x,b')$ defines $\sigma(X)$ for some $\sigma\in\operatorname{Aut}(\mathfrak{C}/A)$. Thus $\sigma(X)=\varphi(\mathfrak{C},b')=\varphi(\mathfrak{C},b_i)$ for some $i\leq k$. Therefore $p(y)\vdash\bigvee_{i\leq k}\forall x(\phi(x,y)\leftrightarrow\phi(x,b_i))$. By compactness there is some $\psi(y)\in p$ s.t. $\psi(y)\vdash\bigvee_{i\leq k}\forall x(\phi(x,y)\leftrightarrow\phi(x,b_i))$. Now define $E(x_1,x_2)$ as

$$\forall y (\psi(y) \to (\phi(x_1,y) \leftrightarrow \phi(x_2,y)))$$

so it is A-definable. It is easy to check that E is an equivalence relation with finitely many classes, and that X is a union of E-classes $(a_1Ea_2$ iff they agree on $\phi(x,b_i)$ for all $i\leq k$, and so $X=\phi(\mathfrak{C},b_0)$ is given by the union of all possible combinations intersected with it)

 $3 \rightarrow 1$ Assume for contradiction that

$$|\{\sigma(X): \sigma \in \operatorname{Aut}(\mathfrak{C}/A)\}| = \lambda > \omega$$

we can find λ -many elements $(b_i:i<\lambda)\subset\mathfrak{C}$ to represent the distinct images under automorphisms. Then the set

$$q(y) = p(y) \cup \{ \neg \forall x (\varphi(x, y) \leftrightarrow \varphi(x, b_i)) : i < \lambda \}$$

will be finitely satisfiable. Thus q(y) is realised by some b'. But such b' has the same type as b over A and so strong homogeneity yields some $\sigma \in \operatorname{Aut}(\mathfrak{C}/A)$ s.t. $\sigma(b) = b'$. Applying such σ on X gives the image $\varphi(\mathfrak{C},b') = \varphi(\mathfrak{C},b_i)$ for some $i < \lambda$, a contradiction

Proposition 2.11. We can identify definable sets with continuous functions in a certain settings

- 1. Formulas $\varphi(\bar{x}), \psi(\bar{x}) \in L_A$ are equivalent iff $[\varphi(\bar{x})] = [\psi(\bar{x})]$
- 2. The clopen subsets of $S_{\overline{x}}(A)$ are precisely the basic clopen sets
- 3. Clopen subsets X of $S_{\overline{x}}(A)$ correspond exactly to continuous functions $f:S_{\overline{x}}(A)\to 2$ (with discrete topology) where $f(p(\overline{x}))=1$ if $p(\overline{x})\in X$ and 0 otherwise
- 4. The definable subsets of \mathfrak{C}^c are in one-to-one correspondence with continuous functions from $S_{\overline{x}}(A)$ to 2

Proof. 3. If
$$X$$
 is clopen, then $f^{-1}(2)=S_{\overline{x}}(A)$, $f^{-1}(0)=\emptyset$, $f^{-1}(\{1\})=X$, $f^{-1}(\{0\})=X^c$

4. By 1, definable sets are in one-to-one correspondence with basic clopen subsets. By 2, basic clopen sets are exactly all of the clopen subsets, so definable sets are in one-to-one correspondence with clopen sets. By 3, clopen sets are in one-to-one correspondence with continuous functions $f:S_{\overline{x}}(A)\to 2$

2.3 Imaginaries and $T^{
m eq}$

Definition 2.12. The **definable closure** $\operatorname{dcl}(A)$ of A is the set of elements c for which there is an L(A)-formula $\varphi(x)$ s.t. c is the unique element satisfying φ . Elements or tuples a and b are said to be **interdefinable** if $a \in \operatorname{dcl}(b)$ and $b \in \operatorname{dcl}(a)$.

Lemma 2.13. Assume $A \subseteq \mathfrak{C}$ and $\bar{b} \in \mathfrak{C}$

- 1. $\bar{b} \in \operatorname{acl}(A)$ iff $\{f(\bar{b}) : f \in \operatorname{Aut}(\mathfrak{C}/A)\}$ is finite
- 2. $\bar{b} \in \operatorname{dcl}(A)$ iff $f(\bar{b}) = \bar{b}$ for all $f \in \operatorname{Aut}(\mathfrak{C}/A)$
- *Proof.* 1. Suppose $\bar{b}\in\operatorname{acl}(A)$ with witness $\exists^{\leq k}\varphi(\bar{x})$. Then $\varphi(\mathfrak{C})$ is Adefinable and hence is $\operatorname{Aut}(\mathfrak{C}/A)$ -invariant by Lemma 2.9

Suppose the finiteness. Since the composition of automorphisms is an automorphism, this set is $\operatorname{Aut}(\mathfrak{C}/A)$ -invariant and therefore A-definable by some $\varphi(\bar{x})$.

2. $\{\bar{b}\}\$ is $\operatorname{Aut}(\mathfrak{C}/A)$ -invariant

The first motivation to develop $T^{\rm eq}$ is dealing with quotient objects, without leaving the context of first order logic. That is, if E is some definable equivalence relation on some definable set X, we want to view X/E as a definable set

We work in the setting of multi-sorted languages. Let L be a 1-sorted language and let T be a (complete) L-theory. We shall build a many-sorted language $L^{\rm eq}$ -theory $T^{\rm eq}$. We will ensure that in natural sense, $L^{\rm eq}$ contains L and $T^{\rm eq}$ contains T

First we define L^{eq} . Consider the set L-formula $\varphi(x,y)$, up to equivalence, such that T models that φ is an equivalence relation. For each φ , define s_{φ} to be a new sort in L^{eq} . Of particular importance is $s_{=}$, the sort given by the formula "x=y". = is an equivalence relation This sort $s_{=}$ will yield, in each model of T^{eq} , a model of T

Also define f_φ to be a function symbol with domain sort $s^n_=$ (where φ has n free variables) and codomain sort s_φ

For each m-place relation symbol $R\in L$, make $R^{\rm eq}$ an m-place relation symbol in $L^{\rm eq}$ on $s_=^m$. Likewise for all constant and function symbols in L. Finally, for the sake of formality, we put a unique equality symbol $=_{\varphi}$ on each sort

Remark. Let N be an L^{eq} structure. Then N has interpretations $s_{\varphi}(N)$ of each sort s_{φ} and $f_{\varphi}(N): s_{=}(N)^{n_{f_{\varphi}}} \to s_{\varphi}(N)$ of each function symbol f_{φ} . Additionally, N will contain an L-structure consisting of $s_{=}$ and interpretations of the symbols of L inside of $s_{=}$

Definition 2.14. T^{eq} is the L^{eq} -theory which is axiomatised by the following

- 1. T, where the quantifiers in the formulas of T now range over the sort s_{\pm}
- 2. For each suitable L-formula $\varphi(x,y)$, the axiom $\forall_{s_{=}} \bar{x} \forall_{s_{=}} \bar{y} (\varphi(x,y) \leftrightarrow f_{\varphi}(\bar{x}) = f_{\varphi}(\bar{y}))$
- 3. For each $L\text{-formula }\varphi\text{, the axiom }\forall_{s_{\varphi}}y\exists_{s_{=}}\bar{x}(f_{\varphi}(\bar{x})=y)$

Axioms 2 and 3 simply state that f_φ is the quotient function for the equivalence relation given by φ

Definition 2.15. Let $M \models T$. Then $M^{\rm eq}$ is the $L^{\rm eq}$ structure s.t. $s_=(M^{\rm eq}) = M$ and for each suitable L-formula $\varphi(x,y)$ of n variables, the sort $s_{\omega}(M^{\rm eq})$ is

equal to $M^{n_{f_{\varphi}}}/E$ where E is the equivalence relation defined by $\varphi(x,y)$ and $f_{\varphi}(M^{\rm eq})(b)=b/E$

Example 2.2 (Projective planes). From Hodges.

Suppose A is a three-dimensional vector space over a finite field, and let L be the first-order language of A. Then we can write a formula $\theta(x,y)$ of L which expresses 'vectors x and y are non-zero and are linearly dependent on each other'. The formula θ is an equivalence formula of A, and the sort s_{θ} is the set of points of the projective plane P associated with A

Now $M^{\rm eq} \models T^{\rm eq}$. Moreover, passing from T to $T^{\rm eq}$ is a canonical operation, in the following sense

Lemma 2.16. 1. For any $N \models T^{eq}$, there is an $M \models T$ s.t. $N \cong M^{eq}$

- 2. Suppose $M, N \models T$ are isomorphic, and let $h: M \cong N$. Then h extends uniquely to $h^{\text{eq}}: M^{\text{eq}} \cong N^{\text{eq}}$
- 3. T^{eq} is a complete L^{eq} -theory
- 4. Suppose $M,N \models T$ and let $\bar{a} \in M$, $\bar{b} \in N$ with $\operatorname{tp}_M(\bar{a}) = \operatorname{tp}_N(\bar{b})$. Then $\operatorname{tp}_{M^{\operatorname{eq}}}(\bar{a}) = \operatorname{tp}_{N^{\operatorname{eq}}}(\bar{b})$

Proof. 1. Take $M = s_{=}(N)$

2. Let $h^{\mathrm{eq}}:M^{\mathrm{eq}}\to N^{\mathrm{eq}}$ be defined as $h^{\mathrm{eq}}(f_{\varphi}(M^{\mathrm{eq}})(b))=f_{\varphi}(N^{\mathrm{eq}})(h(b))$ for each $\varphi\in L$. This defines a function on M^{eq} , because $f_{\varphi}(M^{\mathrm{eq}})$ is surjective by the T^{eq} axioms. Moreover h^{eq} is well-defined. Suppose $f_{\varphi}(M^{\mathrm{eq}})(b)=f_{\varphi}(M^{\mathrm{eq}})(b')$, then $\varphi(b,b')$ and hence $\varphi(h(b),h(b'))$, therefore $f_{\varphi}(N^{\mathrm{eq}})(h(b))=f_{\varphi}(N^{\mathrm{eq}})(h(b'))$. Injectivity is the same since $\varphi(b,b')\leftrightarrow \varphi(h(b),h(b'))$.

$$\begin{split} f_{\varphi}(N^{\mathrm{eq}})(h(b)) &= f_{\varphi}(N^{\mathrm{eq}})(h(b')) \Leftrightarrow h(b)/E_{\varphi} = h(b')/E_{\varphi} \\ &\Leftrightarrow \varphi(h(b),h(b')) \\ &\Leftrightarrow \varphi(b,b') \\ &\Leftrightarrow f_{\varphi}(M^{\mathrm{eq}})(b) = f_{\varphi}(M^{\mathrm{eq}})(b') \end{split}$$

3. Let $M, N \models T^{\mathrm{eq}}$, we want to show that they are elementary equivalent. Assume the generalized continuum hypothesis. By GCH, there are $M', N' \models T^{\mathrm{eq}}$ which are λ saturated of size λ , for some large λ (strongly inaccessible), which $M \leq M'$ and $N \leq N'$. Since we want to show elementary equivalence, we can replace M, N with M' and

N'. By 1, we have $M=M_0^{\mathrm{eq}}$, $N=N_0^{\mathrm{eq}}$ for some $M_0,N_0 \vDash T$. Furthermore, M_0,N_0 are λ -saturated of size λ . By assumption, T is complete, so $M_0 \equiv N_0$, and therefore $M_0 \cong N_0$. By 2, $M \cong N$, and therefore $M \equiv N$

We could simply prove that there is a back and forth system between M and N, using such a system between $M \supset M_0 \vDash T$ and $N \supset N_0 \vDash T$ $M_0 \equiv N_0$ iff $M_0 \sim_\omega N_0$. We want to show that $M \sim_\omega N$. For any $p \in \omega$,

- given $a \in s_{=}(M)$, choose according to M
- given $a \in s_{\varphi}(M)$, then there is $\bar{b}\bar{c} \in s_{=}(M)$ s.t. $f_{\varphi}(M^{\mathrm{eq}})(\bar{b}\bar{c}) = a$ and $\varphi(\bar{b},\bar{c})$. If $\bar{b} \in s_{=}(M^{\mathrm{eq}})^n$, then there is a local isomorphism $\bar{b} \mapsto \bar{d}$ as $M \sim_{\omega} N$. Take $b = \bar{d}/E_{\varphi}$.
- 4. Let $M,N \vDash T$, they are elementary submodels of $\mathfrak C$. Since $\operatorname{tp}_M(\bar a) = \operatorname{tp}_N(\bar b)$, there exists an $\sigma \in \operatorname{Aut}(\mathfrak C/A)$ with $\sigma(\bar a) = \bar b$. By 2, this automorphism extends to $\sigma^{\operatorname{eq}} : \mathfrak C^{\operatorname{eq}} \to \mathfrak C^{\operatorname{eq}}$ with $\sigma^{\operatorname{eq}}(a) = b$, hence $\operatorname{tp}_{M^{\operatorname{eq}}}(a) = \operatorname{tp}_{\mathfrak C^{\operatorname{eq}}}(b) = \operatorname{tp}_{N^{\operatorname{eq}}}(b)$

Corollary 2.17. Consider the Strong space $S_{(s_=)^n}(T^{eq})$. The forgetful map $\pi: S_{(s_-)^n}(T^{eq}) \to S_n(T)$ is a homeomorphism

Proof. Observe that it is continuous and surjective. By 4 of the previous lemma it is injective. Any continuous bijection from a compact space to a Hausdorff space is a homeomorphism \Box

Proposition 2.18. Let $\varphi(x_1, ..., x_k)$ be an L^{eq} formula, where x_i is of sort S_{E_i} . There is an L-formula $\psi(\bar{y}_1, ..., \bar{y}_k)$ s.t.

$$T^{\mathrm{eq}} \vDash \forall \bar{y}_1, \dots, \bar{y}_k(\psi(\bar{y}_1, \dots, \bar{y}_k) \leftrightarrow \varphi(f_{E_1}(\bar{y}_1), \dots, f_{E_k}(\bar{y}_k)))$$

Proof. Let n be the length of $\bar{y}_1,\ldots,\bar{y}_k$. Consider the set $\pi[\varphi(f_{E_1}(\bar{y}_1),\ldots,f_{E_k}(\bar{y}_k))]$, it is a clopen subset of $S_n(T)$ by the previous lemma, hence equal to $\psi(\bar{y}_1,\ldots,\bar{y}_k)$ for some formula ψ .

Guess the intuition is $[\varphi] = [\psi]$ iff $\models \varphi \leftrightarrow \psi$. Consider $\pi[\psi(\bar{y}_1, \dots, \bar{y}_k)] = \pi[\varphi(f_{E_1}(\bar{y}_1), \dots, f_{E_k}(\bar{y}_k))]$ and as π is homeomorphism, $[\psi(\bar{y}_1, \dots, \bar{y}_k)] = [\varphi(f_{E_1}(\bar{y}_1), \dots, f_{E_k}(\bar{y}_k))]$

This proposition also shows that T^{eq} is complete since f_{E_i} is surjective Also, for any $\bar{c} \in \mathfrak{C}$, $\bar{c} \in \mathrm{dcl}^{\mathrm{eq}}(\emptyset) \Leftrightarrow \bar{c} \in \mathrm{dcl}(\emptyset)$, $\bar{c} \in \mathrm{acl}^{\mathrm{eq}}(\emptyset) \Leftrightarrow \bar{c} \in \mathrm{acl}(\emptyset)$

Corollary 2.19. 1. Let $M, N \models T$, and let $h : M \to N$ be an elementary embedding. Then $h^{\text{eq}} : M^{\text{eq}} \to N^{\text{eq}}$ is also an elementary embedding

2. \mathfrak{C}^{eq} is also κ -saturated

Proof. 1. $h: M \to \operatorname{im}(h)$ is an isomorphism and can extend to $h^{\operatorname{eq}}: M^{\operatorname{eq}} \to (\operatorname{im}(h))^{\operatorname{eq}}$, and $(\operatorname{im}(h))^{\operatorname{eq}} \subseteq N^{\operatorname{eq}}$

2. By Proposition 2.18

Remark. For $M \vDash T$, a definable set $X \subseteq M^n$ can be viewed as an element of M^{eq} . Suppose X is defined in M by $\varphi(\bar{x},\bar{a})$ where $\bar{a} \in M$. Consider the equivalence relation E_{ψ} defined by $\psi(\bar{y}_1,\bar{y}_2) = \forall \bar{x}(\varphi(\bar{x},\bar{y}_1) \leftrightarrow \varphi(\bar{x},\bar{y}_2))$ $\bar{y}_1 \sim \bar{y}_2$ iff this $\varphi(M,\bar{y}_1) = \varphi(M,\bar{y}_2)$, and consider $c = \bar{a}/E_{\psi} = f_{\psi}(\bar{a}) \in M^{\mathrm{eq}}$. Then X is defined in M^{eq} by $\chi(\bar{x},c) = \exists \bar{y}(\varphi(\bar{x},\bar{y}) \land f_{\psi}(\bar{y}) = c)$. Moreover, if $c' \in S_{\psi}(M^{\mathrm{eq}})$ and $\forall \bar{x}(\chi(\bar{x},c) \leftrightarrow \chi(\bar{x},c'))$, then c = c'. To see this, let $c' = f_{\psi}(\bar{a}')$, and let X' be defined in M by $\varphi(\bar{x},\bar{a}')$. Then X' is defined in M^{eq} by $\chi(\bar{x},c')$, so we have that X = X' (in M^{eq}). And then X = X' (in M) so $c = f_{\psi}(\bar{a}) = f_{\psi'}(\bar{a}') = c'$

Definition 2.20. With the above considerations in mind, given $M \models T$ and a definable set $X \subseteq M^n$, we call such a $c \in M^{eq}$ a **code** for X

Remark. Any automorphism of \mathfrak{C}^{eq} fixes a definable set X set-wise iff it fixes a code for X. However, the choice of a code for X will depend on the formula φ used to define it

$$\sigma(X) = X \Leftrightarrow \sigma(X) = \{\sigma(x) : \varphi(x,b)\} = \{x : \varphi(x,\sigma(b))\} = \{x : \varphi(x,b)\} = X$$
$$\Leftrightarrow \forall x(\varphi(x,b) \leftrightarrow \varphi(x,\sigma(b)))$$
$$\Leftrightarrow \psi(b,\sigma(b)) \Leftrightarrow f_{sb}(b) = f_{sb}(\sigma(b))$$

We can think of \mathfrak{C}^{eq} as adjoining codes for all definable equivalence relations (as c/E' codes E'(x,c) for an arbitrary equivalence relation E)

Definition 2.21. Let $A \subseteq M \models T$. Then $\operatorname{acl}^{\operatorname{eq}}(A) = \{c \in M^{\operatorname{eq}} : c \in \operatorname{acl}_{M^{\operatorname{eq}}}(A)\}$ and $\operatorname{dcl}^{\operatorname{eq}}(A)$ is defined similarly

Remark. Suppose $A\subseteq M \prec N$, then $\operatorname{acl}_{N^{\operatorname{eq}}}(A), \operatorname{dcl}_{N^{\operatorname{eq}}}(A)\subseteq M^{\operatorname{eq}}$, so this notation is unambiguous

Lemma 2.22. Let $M \models T$, a definable subset X of M^n , and $A \subseteq M$. Then X is almost A-definable iff X is definable in M^{eq} by a formula with parameters in $\operatorname{acl}^{eq}(A)$

Proof. We can work in $\mathfrak C$, since $M < \mathfrak C$. Let c be a code for X. From 2.10 X is almost A-definable iff $|\{\sigma(X): \sigma \in \operatorname{Aut}(\mathfrak C/A)\}| < \omega$ iff $|\{\sigma(c): \sigma \in \operatorname{Aut}(\mathfrak C^{\operatorname{eq}}/A)\}| < \omega$ (note that σ extends uniquely in $\mathfrak C^{\operatorname{eq}}$), that is, $c \in \operatorname{acl}^{\operatorname{eq}}(A)$.

$$\sigma(b)/E = \sigma'(b)/E \Leftrightarrow \forall x (\varphi(x, \sigma(b)) \leftrightarrow \varphi(x, \sigma'(b)))$$
$$\Leftrightarrow \sigma(X) = \sigma'(X)$$

Definition 2.23. Let $\bar{a}, \bar{b} \in \mathfrak{C}$ have length n. Let \bar{a}, \bar{b} have the same strong type over A (written as $\operatorname{stp}_{\mathfrak{C}}(\bar{a}/A) = \operatorname{stp}_{\mathfrak{C}}(\bar{a}/A)$) if $E(\bar{a}, \bar{b})$ for any finite equivalence relation (finitely many classes) defined over A

Remark. If $\varphi(\bar{x})$ is a formula over A, then it defines an equivalence with two classes $E(\bar{x}_1,\bar{x}_2)$ iff $(\varphi(\bar{x}_1) \wedge \varphi(\bar{x}_2)) \vee (\neg \varphi(\bar{x}_1) \wedge \neg \varphi(\bar{x}_2))$. Hence strong types are a refinement of types

Hence for any formula if $\mathrm{stp}(\bar{a}/A)=\mathrm{stp}(\bar{b}/B)$, at least we have $\varphi(\bar{a})\leftrightarrow\varphi(\bar{b})$

Lemma 2.24. If
$$A=M \prec \mathfrak{C}$$
, then $\operatorname{tp}_{\mathfrak{C}}(a/M) \vDash \operatorname{stp}_{\mathfrak{C}}(a/M)$

$$\operatorname{tp}_\sigma(a/M) = \operatorname{tp}_\sigma(b/M) \Rightarrow \operatorname{stp}_\sigma(a/M) = \operatorname{stp}_\sigma(b/M)$$

Proof. Let E be an equivalence relation with finitely many classes, defined over M, and \bar{b} another realization of $\operatorname{tp}_{\mathfrak{C}}(\bar{a}/M)$, we want to show E(a,b). Since E has only finitely many classes, and M is a model, there are representants e_1,\dots,e_n of each E-class in M. Hence we must have $E(a,e_i)$ for some i, and therefore $E(b,e_i)$, which yields E(a,b)

Lemma 2.25. *Let* $A \subseteq M \models T$, and let $\bar{a}, \bar{b} \in M$. *TFAE*

- 1. $stp(\bar{a}/A) = stp(\bar{b}/A)$
- 2. \bar{a}, \bar{b} satisfy the same formulas almost A-definable
- 3. $\operatorname{tp}_{\mathfrak{C}}(\bar{a}/\operatorname{acl}^{\operatorname{eq}}(A)) = \operatorname{tp}_{\mathfrak{C}}(\bar{b}/\operatorname{acl}^{\operatorname{eq}}(A))$

Proof. $3 \to 2$. 2.22. Suppose $X = \varphi(\mathfrak{C}, \bar{d})$ is almost A-definable, then $\bar{a}, \bar{b} \in \varphi(\mathfrak{C}, \bar{d})$ iff $\bar{a}, \bar{b} \in \theta(\mathfrak{C}) := \exists \bar{y} (\varphi(\mathfrak{C}, \bar{y}) \land \bar{y}/E_{\psi} = \bar{c})$ where $\bar{c} = \bar{d}/E_{\psi} \in \operatorname{acl}^{\operatorname{eq}}(A)$. $2 \to 3$

 $1 \to 2$. Let X be almost definable over A. We want to show that $\bar{a} \in X$ iff $\bar{b} \in X$.

Since X is almost definable over A, there is an A-definable equivalence relation E with finitely many classes, and $\bar{c}_1,\dots,\bar{c}_n$ s.t. for all $\bar{x}\in M$, we have $\bar{x}\in X$ iff $M\vDash E(\bar{x},\bar{c}_1)\vee\dots\vee E(\bar{x},\bar{c}_n)$. Hence $E(\bar{a},\bar{c}_i)$ for some i, so by assumption $E(\bar{b},\bar{c}_i)$.

 $2 \to 1$. Let E be an A-definable equivalence relation with finitely many classes, we want to show that $E(\bar{a},\bar{b})$. The set $X=\{\bar{x}\in M: E(\bar{x},\bar{a})\}$ is definable almost over A. But $\bar{a}\in X$, so $\bar{b}\in X$, hence $E(\bar{a},\bar{b})$

Here is a note from scanlon

Definition 2.26. An **imaginary element** of $\mathfrak A$ is a class a/E where $a \in A^n$ and E is a definable equivalence relation on A^n

Definition 2.27. $\mathfrak A$ **eliminates imaginaries** if, for every definable equivalence relation E on A^n there exists definable function $f:A^n\to A^m$ s.t. for $x,y\in A^n$ we have

$$xEy \Leftrightarrow f(x) = f(y)$$

Remark. The definition give above is what Hodges calls **uniform elimination of imaginaries**

Remark. If $\mathfrak A$ eliminates imaginaries, then for any definable set X and definable equivalence relation E on X, there is a definable set Y and a definable bijection $f: X/E \to Y$. Of course this is not literally true, we should rather say that there is a definable map $f': X \to Y$ s.t. f' is invariant on the equivalence classes defined by E

So elimination of imaginaries is saying that quotients exists in the category of definable sets

Remark. If $\mathfrak A$ eliminates imaginaries then for any imaginaries element $a/E=\tilde a$ there is some tuple $\hat a\in A^m$ s.t. $\tilde a$ and $\hat a$ are **interdefinable**, i.e. there is a formula $\varphi(x,y)$ s.t.

- $\mathfrak{A} \models \varphi(a, \tilde{a})$
- If a'Ea then $\mathfrak{A} \models \varphi(a', \hat{a})$
- If $\varphi(b, \hat{a})$ then bEa
- If $\varphi(a,c)$ then $c=\hat{a}$

To get the formula φ we use the function f given by the definition of elimination of imaginaries and let $\varphi(x,y):=f(x)=y$

Almost conversely, if for every $\mathfrak{A}' \equiv \mathfrak{A}$ every imaginary in \mathfrak{A}' is interdefinable with a **real** (non-imaginary) tuple then \mathfrak{A} eliminates imaginaries

$$\{\forall xy(xEy \leftrightarrow f_E(x) = f_E(y)) \mid \forall E\}$$

Example 2.3. For any structure \mathfrak{A} , every imaginary in \mathfrak{A}_A is interdefinable with a sequence of real elements

Example 2.4. Let $\mathfrak{A}=(\mathbb{N},<,\equiv\mod 2)$. Then \mathfrak{A} eliminates imaginaries. For example, to eliminate the "odd/even" equivalence relation, E, we can define $f:\mathbb{N}\to\mathbb{N}$ by

$$f(x) = y \Leftrightarrow xEy \land \forall z[xEz \rightarrow y < z \lor y = z]$$

Definition 2.28. $\mathfrak A$ has **definable choice functions** if for any formula $\theta(\bar x, \bar y)$ there is a definable function $f(\bar y)$ s.t.

$$\forall \bar{y} \exists \bar{x} [\theta(\bar{x}, \bar{y}) \leftrightarrow \theta(f(\bar{y}), \bar{y})]$$

(i.e., f is a skolem function for θ) and s.t.

$$\forall \bar{y} \forall \bar{z} [\forall \bar{x} (\theta(\bar{x}, \bar{y}) \leftrightarrow \theta(\bar{x}, \bar{z})) \rightarrow f(\bar{y}) = f(\bar{z})]$$

Proof. If $\mathfrak A$ has definable choice functions then $\mathfrak A$ eliminates imaginaries \Box

Proof. Given a definable equivalence relation E on A^n let f be a definable choice function for $E(\bar x,\bar y)$. Since E is an equivalence relation we have $\forall \bar y E(f(\bar y),\bar y)$ and

$$\forall \bar{y}\bar{z}[\bar{y}/E = \bar{z}/E \to f(\bar{y}) = f(\bar{z})]$$

Thus
$$f(\bar{y}) = f(\bar{z}) \Leftrightarrow \bar{y}E\bar{z}$$

Example 2.5. We now see that $\mathfrak{A} = (\mathbb{N}, <, \equiv \mod 2)$ eliminates imaginaries. Basically since \mathfrak{A} is well ordered, we can find a least element to witness membership of definable sets, hence we have definable functions

Example 2.6. $\mathfrak{A} = (\mathbb{N}, \equiv \mod 2)$ does not eliminate imaginaries

First note that the only definable subsets of \mathbb{N} are \emptyset , \mathbb{N} , $2\mathbb{N}$, $(2n+1)\mathbb{N}$. This is because \mathfrak{A} has an automorphisms which switches $(2n+1)\mathbb{N}$ and $2\mathbb{N}$

Now suppose $f:\mathbb{N}\to\mathbb{N}^m$ eliminates the equivalence relation $\equiv\mod 2$, i.e.,

$$f(x) = f(y) \Leftrightarrow y \equiv 2 \mod 2$$

The $\operatorname{im}(f)$ is definable and has cardinality 2. Since there are no definable subsets of $\mathbb N$ of cardinality 2, we must have m>1. Now let $\pi:\mathbb N^m\to\mathbb N$ be a projection. Then $\pi(\operatorname{im}(f))$ is a finite nonempty definable subset of $\mathbb N$. But no such set exists

Proposition 2.29. *If* $\mathfrak A$ *eliminates imaginaries, then* $\mathfrak A_A$ *eliminates imaginaries*

Proof. The idea is that an equivalence relation with parameters can be obtained as a fiber of an equivalence relation in more variables. Let $E\subseteq A^n$ be an equivalence relation definable in \mathfrak{A}_A . Let $\varphi(x,y;z)\in L$ and $a\in A^l$ be s.t.

$$xEy \Leftrightarrow \mathfrak{A} \vDash \varphi(x,y;a)$$

We now define

$$\psi(x,u,y,v) = \begin{cases} u = v \wedge \text{"}\varphi \text{ defines an equivalence relation"} & \text{or } \\ u \neq v & \text{or } \\ \text{"}\varphi(x,y,v) \text{ does not define an equivalence relation"} \end{cases}$$

Now ψ defines an equivalence relation on A^{n+l} . Let $f:A^{n+l}\to A^m$ eliminate ψ , then f(-,a) eliminates E

Back to [Pillay(2018)]

Definition 2.30. 1. T has elimination of imaginaries (EI) if for any model $M \models T$ and $e \in M^{\text{eq}}$, there is a $\bar{c} \in M$ s.t. $e \in \operatorname{dcl}_{M^{\text{eq}}}(\bar{c})$ and $\bar{c} \in \operatorname{dcl}_{M^{\text{eq}}}(e)$

- 2. T has weak elimination of imaginaries if, as above, except $\bar{c} \in \operatorname{acl}_{M^{\operatorname{eq}}}(e)$ (that is, $e \in \operatorname{dcl}_{M^{\operatorname{eq}}}(\bar{c})$ and $\bar{c} \in \operatorname{acl}_{M^{\operatorname{eq}}}(e)$)
- 3. T has geometric elimination of imaginaries if, as above, except $e\in \operatorname{acl}_{M^{\operatorname{eq}}(\bar{c})}$ and $\bar{c}\in\operatorname{acl}_{M^{\operatorname{eq}}}(e)$

Note that in particular, elimination of imaginaries imply the existence of codes for definable sets

Proposition 2.31. *TFAE*

- 1. T has EI
- 2. For some model $M \vDash T$, we have that for any \emptyset -definable equivalence relation E, there is a partition of M^n into \emptyset -definable sets Y_1, \ldots, Y_r and for each $i=1,\ldots,r$ a \emptyset -definable $f_i:Y_i\to M^{k_i}$ where $k_i\geq 1$ s.t. for each $i=1,\ldots,r$, for all $\bar{b}_1,\bar{b}_2\in Y_i$, we have $E(\bar{b}_1,\bar{b}_2)$ iff $f_i(\bar{b}_1)=f_i(\bar{b}_2)$
- 3. For any model $M \vDash T$, we have that for any \emptyset -definable equivalence relation E, there is a partition of M^n into \emptyset -definable sets Y_1, \ldots, Y_r and for each $i=1,\ldots,r$ a \emptyset -definable $f_i:Y_i\to M^{k_i}$ where $k_i\geq 1$ s.t. for each $i=1,\ldots,r$, for all $\bar{b}_1,\bar{b}_2\in Y_i$, we have $E(\bar{b}_1,\bar{b}_2)$ iff $f_i(\bar{b}_1)=f_i(\bar{b}_2)$

4. For any model $M \models T$, and any definable $X \subseteq M^n$ there is an L-formula $\varphi(\bar{x}, \bar{y})$ and $\bar{b} \in M$ s.t. X is defined by $\varphi(\bar{x}, \bar{b})$ and for all $\bar{b}' \in M$ if X is defined by $\varphi(\bar{x}, \bar{b}')$ then $\bar{b} = \bar{b}'$. We call such a \bar{b} a code for X.

most typos i've ever seen in a proof

Proof. $2 \Leftrightarrow 3$. Since we concern only \emptyset -definable relations and functions, if it is true in some model, then it is true in any model

 $1 \to 2$. Let $\pi_E: S^n_= \to S_E$ the canonical definable quotient map. Let $e \in S_E$. By assumption, there is $k \in \mathbb{N}$ and $\bar{c} \in \mathfrak{C}^k$ s.t. e and \bar{c} are interdefinable. In other words, there is a formula $\varphi_e(x,\bar{y})$ over \emptyset s.t. $\varphi_e(e,\bar{c})$. Moreover, $|\varphi_e(\mathfrak{C},\bar{c})| = |\varphi_e(e,\mathfrak{C})| = 1$

Let

$$\begin{split} X_e &= \{ \bar{x} \in \mathfrak{C}, \vDash \exists ! \bar{y} \varphi_e(\pi_E(\bar{x}), \bar{y}) \\ & \land \forall z (E(\bar{x}, \bar{z}) \leftrightarrow \\ & (\forall y (\varphi_e(\pi_E(\bar{x}), \bar{y}) \leftrightarrow \varphi_e(\pi_E(\bar{z}), \bar{y}))) \} \end{split}$$

This means that φ_e defines a function on X_e , and that this function separates E-classes.

Then $\pi^{-1}(\{e\}) \subset X_e$.

Since each X_e contains $\pi^{-1}(\{e\})$, we get $\mathfrak{C}^n = \bigcup_{e \in \pi_E(\mathfrak{C}^n)} X_e$, and by compactness, there are e_1, \dots, e_l s.t. $\mathfrak{C}^n = \bigcup_{i=1}^l X_{e_i}$. As each X_e is \emptyset -definable. Let $\bar{x} \in X_e \Leftrightarrow \theta_e(\bar{x})$. Then $\mathfrak{C}^n = \bigcup_e X_e$ means that $\models \forall \bar{x} \bigvee_e \theta_e(\bar{x})$ and thus $[\bigvee_e \theta_e] = S_n(\emptyset) = \bigcup_e [\theta_e]$. Then by compactness... $\models \forall \bar{x} (\bar{x} = \bar{x} \leftrightarrow \bigvee_e \theta_e(\bar{x}))$ Naively, we can pick $f_i = \varphi_{e_i} \circ \pi_E$, but X_{e_i} are not disjoint

However we can consider Y_1, \dots, Y_r to be the atoms of the boolean algebra generated by the X_i . These are disjoint, and we can pick, for each Y_j , appropriate f_i , to get the result

3 o 4. Let $X = \varphi(\mathfrak{C}, \bar{a})$. Consider the \emptyset -definable equivalence relation $E(\bar{y}, \bar{z}) \Leftrightarrow \forall x (\varphi(\bar{x}, \bar{y}) \leftrightarrow \varphi(\bar{x}, \bar{z}))$. Let Y_i and f_i be as in 3 and say $\bar{a} \in Y_1$, and let $\bar{b} = f_1(\bar{a})$. Then $\exists \bar{y} (f_1(\bar{y}) = \bar{b} \land \varphi(\bar{x}, \bar{y}))$ defines X, call this formula ψ

We have to show that \bar{b} is unique. Let \bar{b}' be s.t. $\exists \bar{y}(f_1(\bar{y}) = \bar{b}' \land \varphi(\bar{x}, \bar{y}))$ also defines X, and let \bar{a}_0 be as the \bar{y} in the formula. Then $\varphi(x, \bar{a}_0)$ defines X, hence $\bar{a}_0 E \bar{a}$, which implies $\bar{b}' = f_1(\bar{a}_0) = f_1(\bar{a}) = \bar{b}$

 $4 \to 1$. Let $e \in \mathfrak{C}^{\mathrm{eq}}$, then $e = \pi_E(\bar{a})$ for some $\bar{a} \in \mathfrak{C}^n$ and some \emptyset -definable equivalence relation E

The set $X=\{\bar{x}\in\mathfrak{C}^n\mid \vdash E(\bar{x},\bar{a})\}$ has a code $\bar{b}\in\mathfrak{C}^k$, so that $X=\psi(\mathfrak{C}^n,\bar{b})$. We are going to prove interdefinability of e and \bar{b} using automorphisms of \mathfrak{C}

First suppose that $\sigma \in \operatorname{Aut}(\mathfrak{C})$, and fixes e. We have $\mathfrak{C}^{\operatorname{eq}} \vDash \forall \bar{x}(\pi_E(\bar{x}) = \pi_E(\bar{a}) \leftrightarrow \psi(\bar{x},\bar{b}))$. Applying σ , we get $\mathfrak{C}^{\operatorname{eq}} \vDash \forall \bar{x}(\pi_E(\bar{x}) = \pi_E(\bar{a}) \leftrightarrow \psi(\bar{x},\sigma(\bar{b})))$. But \bar{b} is a code for X, hence $\bar{b} = \sigma(\bar{b})$. This implies $\bar{b} \in \operatorname{dcl}(e)$

Now suppose $\sigma \in \operatorname{Aut}(\mathfrak{C})$ and fixes \bar{b} . Again $\mathfrak{C}^{\operatorname{eq}} \models \forall \bar{x}(\pi_E(\bar{x}) = \pi_E(\bar{a}) \leftrightarrow \psi(\bar{x},\bar{b}))$ and $\mathfrak{C}^{\operatorname{eq}} \models \forall \bar{x}(\pi_E(\bar{x}) = \pi_E(\sigma(\bar{a})) \leftrightarrow \psi(\bar{x},\bar{b}))$. But $\psi(\bar{a},\bar{b})$, $e = \pi_E(\bar{a}) = \pi_E(\sigma(\bar{a})) = \sigma(e)$. Hence $e \in \operatorname{dcl}(\bar{b})$

Note that condition 2 is somewhat unsatisfying, as we would like to have a quotient function for E, that is, r=1

Proposition 2.32. *Suppose* T *eliminates imaginaries. We get* r = 1 *in condition* 2 *iff* $dcl(\emptyset)$ *has at least two elements*

Proof. First, suppose that r=1. Consider the equivalence on \mathfrak{C}^2 given by E((x,y),(x',y')) iff $x=y\leftrightarrow x'=y'$. In other words, the E classes are the diagonal and its complement (only two). Then $\pi_E(\mathfrak{C}^2)$ has two elements, and they belong to $\operatorname{dcl}^{\operatorname{eq}}(\emptyset)$. But because T eliminates imaginaries, this implies that there is also two elements in $\operatorname{dcl}(\emptyset)$ by Proposition 2.18

Second, suppose that $\operatorname{dcl}(\emptyset)$ contains two constants a and b. Let Y_i, f_i be as in condition 2. Using a and b,we can find some number k and functions $g_i: \mathfrak{C}^{k_i} \to \mathfrak{C}^k$ s.t. $g_i(\mathfrak{C}^{k_i})$ are pairwise disjoint. We can check that the \emptyset -definable function $f: \mathfrak{C}^n \to \mathfrak{C}^k$ sending $y \in Y_i$ to $g_i(f_i(y))$ has all the required properties

Remark. Elimination of imaginaries also makes sense for many sorted theories

Proposition 2.33 (Assume T 1-sorted). T^{eq} has elimination of imaginaries

Proof. Prove a strong version of 2 in Proposition 2.31 that is, we don't need to distinguish Y_1,\ldots,Y_r and f_1,\ldots,f_r . Let E' be a \emptyset -definable equivalence relation on a sort s_E in some model $M^{\rm eq}$ of $T^{\rm eq}$. By Proposition 2.18 there is an L-formula $\psi(\bar{y}_1,\bar{y}_2)$ (\bar{y}_i the appropriate length) s.t. for all $\bar{a}_1,\bar{a}_2\in M$, $M\models\psi(\bar{a}_1,\bar{a}_2)$ iff $M^{\rm eq}\models E'(f_E(\bar{a}_1),f_E(\bar{a}_2))$. So $\psi(\bar{y}_1,\bar{y}_2)$ is an L-formula defining an equivalence relation on M^k for the suitable length k. Consider the map h, taking $e\in S_E$ to $f_\psi(\bar{a})$ for any $\bar{a}\in M^k$ s.t. $f_E(\bar{a})=e$ for any $\bar{a}\in M^k$ s.t. $f_E(\bar{a})=e$ suppose $f_E(\bar{a})=e=f_E(\bar{a}')$, we easily see that $f_\psi(\bar{a})=f_\psi(\bar{a}')$, hence the map h is well-defined, and satisfies 2 of 2.31 \square

2.4 Examples and counterexamples

Example 2.7. The theory of an infinite set has weak elimination of imaginaries but not full elimination of imaginaries

Proof. First, we show that T has weak elimination of imaginaries. Let M be an infinite set and let $e \in M^{eq}$ be an imaginary element. Suppose that. Let $A \subset M$ be a finite set over which X is definable ??. Consider the set

$$\hat{A} := \bigcap_{\substack{\sigma \in \operatorname{Aut}(M) \\ \sigma(X) = X}} \sigma(A)$$

Since A is finite, there are $\sigma_1, \dots, \sigma_n$ s.t. $\hat{A} = \bigcap_i \sigma_i(A)$

To see that T does not have full elimination of imaginaries, observe that there is never a code for any finite set. Indeed, if M is an infinite set, $X \subset_f M$, and $\bar{a} \in M$, we can find a permutation of M which fixes X as a set but does not fix \bar{a} , meaning \bar{a} could not be a code for X

Example 2.8. Let $T = \operatorname{Th}(M, <, \dots)$ where < is a total well-ordering. Then T has elimination of imaginaries

Proof. Every definable set has a least element. We verify (2) in 2.31. Let E be a \emptyset -definable equivalence relation on M^n . Let $f:M^n\to M^n$ s.t. for any $\bar{a}, f(\bar{a})$ is the least element of the E-class of \bar{a} . Notice that f is \emptyset -definable, and for all $\bar{a}, \bar{b}, f(\bar{a}) = f(\bar{b})$ iff $E(\bar{a}, \bar{b})$

Lemma 2.34. Let T be strongly minimal and $acl(\emptyset)$ be infinite (in some, any model). Then T has weak elimination of imaginaries

Proof. Fix a model M. Let $e \in M^{\mathrm{eq}}$ Ok, now i think the convention for pillay is that $e \in M^{\mathrm{eq}}$ is automatically imaginary, so $e = \bar{a}/E$ for some \bar{a} and E some \emptyset -definable equivalence relation. Let $A = \operatorname{acl}_{M^{\mathrm{eq}}}(e) \cap M$. A is infinite as it contains $\operatorname{acl}(\emptyset)$.

We first prove that there exists some $b\subset A$ s.t. $E(\bar{a},b)$. Let $X_1=\{y_1\in M: M\vDash \exists y_2\dots y_n(\bar{y}E\bar{a})\}$. It is definable over e. If X_1 is finite, any $b_1\in X_1$ then belongs to A. Otherwise, X_1 is cofinite, hence meets the infinite set A. Either way, $X_1\cap A\neq\emptyset$ and we have $b_1\in X_1\cap A$

Now let $X_2=\{y_2\in M: M\vDash \exists y_3\dots y_n(b_1\bar{y}E\bar{a})\}$. We remark $X_2\neq\emptyset$ since $b_1\in X_1$. Now X_2 is either finite or cofinite since T is strongly minimal. By the same argument above, we may find $b_2\in X_2\cap A$. Then repeating this process, we may find $\bar{b}\subset A$. Therefore $\bar{b}\in\operatorname{acl}_{M^{\operatorname{eq}}}(e)$.

Finally notice that $e\in\operatorname{dcl}_{M^{\operatorname{eq}}}(\bar{b})$ since $\bar{a}/E=\bar{b}/E=e$

Example 2.9. The theory ACF $_p$ has elimination of imaginaries, for any p

Proof. By Lemma 2.34, ACF $_p$ has weak elimination of imaginaries. Therefore it suffices to show that every finite set can be coded. Let K be an algebraically closed field and let $X = \{c_1, \dots, c_n\} \subseteq K$. Consider the polynomial

$$\begin{split} P(x) &= \prod_{i=1}^{n} (x - c_i) \\ &= x^n + e_{n-1} x^{n-1} + \dots + e_1 x + e_0 \end{split}$$

Then we may take the tuple $\bar{e}=(e_n,\ldots,e_0)$ to be our code for X. \square

3 Stability

Thoughout this chapter we will fix a complete theory T in some language L. Moreover, we will have no problem in working in $T^{\rm eq}$ (that is to say, to assume $T = T^{\rm eq}$)

For a given theory T, the spectrum functions is given as

$$I(T,-): Card \rightarrow Card$$

 $I(T, \lambda) = \#$ of models of T or cardinality λ (up to isomorphism)

3.1 Local Stability

- **Definition 3.1.** 1. Let $M \vDash T$. We say $\varphi(\bar{x}, \bar{y})$ is **stable in** M if it is **not** the case that there are $\bar{a}_i, \bar{b}_i \in M$, for $i < \omega$, s.t. **either** for all $i, j < \omega$, $M \vDash \varphi(\bar{a}_i, \bar{b}_i)$ iff $i \le j$, **or**, for all $i, j < \omega$, $M \vDash \neg \varphi(\bar{a}_i, \bar{b}_j)$ iff $i \le j$
 - 2. $\varphi(\bar{x}, \bar{y})$ is **stable** (for T) if it is stable in M for all $M \models T$
 - 3. *T* is **stable** if every *L*-formula $\varphi(\bar{x}, \bar{y})$ is stable (for *T*)

Remark. A formula $\varphi(\bar{x}, \bar{y})$ is stable for T iff it is not the case that there are $\bar{a}_i, \bar{b}_i \in \mathfrak{C}$, for $i < \omega$, s.t. $\mathfrak{C} \models \varphi(\bar{a}_i, \bar{b}_i)$ iff $i \leq j$ for all $i, j < \omega$

For simplicity, from now onwards we will write tuples simply as x and a.

Lemma 3.2. 1. Suppose $\varphi(x,y)$ and $\psi(x,z)$ are stable for T. Then $\neg \varphi(x,y)$, $(\varphi \lor \psi)(x,yz)$ and $(\varphi \land \psi)(x,yz)$ are also stable

Proof. 1. Enrich the language L with the tuples of constant symbols $\bar{c}_i, \bar{d}_i, i \in \omega$, and consider $\Sigma = T \cup \{\neg \varphi(\bar{c}_i, \bar{d}_j) : i \leq j\} \cup \{\varphi(\bar{c}_i, \bar{d}_j) : i > j\}$ of formulas in the new language. For $\Sigma' \subset_f \Sigma$, let n be the largest index.

4 TODO Problems

2.1 2.3 2.4

5 Index

This is a functional link that will open a buffer of clickable index entries:

6 References

References

- [Pillay(2018)] Anand Pillay. Topics in Stability Theory. https://www3.nd.edu/~apillay/Topics_in_Stability_Theory__No_Intro_.pdf, 2018.
- [Chernikov(2019)] Artem Chernikov. Lecture notes on stability theory. https://www.ams.org/open-math-notes/omn-view-listing? listingId=110792, 2019.
- [Tent and Ziegler(2012)] Katrin Tent and Martin Ziegler. *A course in model theory*. Number 40. Cambridge University Press, 2012.