PM2.5-GNN: A Domain Knowledge Enhanced Graph Neural Network For PM2.5 Forecasting

Shuo Wang

shawnwang.tech@gmail.com
School of Systems Science, Beijing Normal University

Background

What is PM2.5

- Particles Matters smaller than 2.5µm
- One of the six major air contaminants (SO2, NO2, PM2.5, PM10, CO, O3), among which PM2.5 is the most harmful one for human body. Long exposure may cause cardiopulmonary diseases.
- Global issue, especially severe in China

Purpose of PM2.5 forecasting

- governments' policy-making
- people's decision making

Challenges

- Air pollution is a complex dynamic system
- Long-term spatio-temporal dependency
- Incorporate domain knowledge

- [1] J. Hu, et al., Spatial and temporal variability of PM 2.5 and PM 10 over the North China Plain and the Yangtze River Delta, China.
- [2] http://www.mee.gov.cn/ http://106.37.208.228:8082/
- [3] https://www.who.int/airpollution/news-and-events/how-air-pollution-is-destroying-our-health

Background

Background

[1] https://earth.nullschool.net/ [2] http://caiyunapp.com/map/

PM2.5-GNN

Graph Construction

- Nodes are cities, node state $X^t \in \mathbb{R}^{N \times 1}$ is PM2.5 concentrations
- Edges are possible PM2.5 transport paths between nodes
- Meteorological data are used as nodes' attributes $p^t \in \mathbb{R}^{N \times p}$ and edges' attributes $Q^t \in \mathbb{R}^{M \times \widetilde{q}}$

Algorithm Frame Work

Output: PM2.5 prediction at t+1, ..., t+T

Input: PM2.5 at t;

Meteorological data at t+1, ..., t+T

October 23, 2020

Compared model: GC-LSTM

GC-LSTM^[1]

- the previous state-of-the-art graph-based model in PM2.5 forecasting
- Graph Convolutional Networks (GCN) + LSTM

GCN^[2] vs. GNN proposed by DeepMind^[3]

GNN (Basic block used in our model) $f(H^{(l)},A) = \sigma\left(\hat{D}^{-\frac{1}{2}}\hat{A}\hat{D}^{-\frac{1}{2}}H^{(l)}W^{(l)}\right)$ Pass and aggregate Information on graphs Work on directed graphs, feed in edge Attributes, and run MLPs on edges

[1] Y. Qi, Q. Li, H. Karimian, and D. Liu, A hybrid model for spatiotemporal forecasting of PM 2.5 based on graph convolutional neural network and long short–term memory, 2019.

[2] T. N. Kipf and M. Welling, Semi-supervised classification with graph convolutional networks, 2017 [3] P. W. Battaglia et al., Relational inductive biases, deep learning, and graph networks, 2018.

PM2.5-GNN

Node's prediction at t \hat{X}_i^t

Experiment

Dataset

A 4-year dataset (2015-2018)

ACM SIGSPATIAL 2020

- PM2.5 concentrations from Ministry of Ecology and Environment
- Meteorological data from European Centre for Medium-Range Weather Forecasts (ECMWF)

Planetary Boundary Layer height (PBL)

Table 3: Dataset is spilt into 3 sub-datasets.

Dataset	Train	Validate	Test	
1	2015/1/1 - 2016/12/31	2017/1/1 - 2017/12/31	2018/1/1 - 2018/12/31	
2	2015/11/1 - 2016/2/28	2016/11/1 - 2017/2/28	2017/11/1 - 2018/2/28	
3	2016/9/1 - 2016/11/30	2016/12/1 - 2016/12/31	2017/1/1 - 2017/1/31	

[1] M. R. Perrone and S. Romano, Relationship between the planetary boundary layer height and the particle scattering coefficient at the surface, 2018. [2] 中国雾霾说明书. 微信公众号 星球研究所

8/ 12

Results

Table 2: Experimental results of $PM_{2.5}$ -GNN's compared models, and its different configurations for ablation study. Lack of PBL feature or subtraction (export) component worsens $PM_{2.5}$ -GNN's performance.

	Sub-dataset 1		Sub-dataset 2		Sub-dataset 3	
	RMSE	CSI (%)	RMSE	CSI (%)	RMSE	CSI (%)
GRU	21.00 ± 0.17	45.38 ± 0.52	32.59 ± 0.16	51.07 ± 0.81	45.25 ± 0.85	59.40 ± 0.01
GC-LSTM	20.84 ± 0.11	45.83 ± 0.43	32.10 ± 0.29	51.24 ± 0.13	45.01 ± 0.81	60.58 ± 0.14
PM _{2.5} -GNN	19.93 ± 0.11	48.52 ± 0.48	31.37 ± 0.34	52.33 ± 1.06	43.29 ± 0.79	61.91 ± 0.78
PM _{2.5} -GNN no PBL	20.46 ± 0.18	47.43 ± 0.37	32.44 ± 0.36	51.05 ± 1.15	44.71 ± 1.02	60.64 ± 0.84
$PM_{2.5}$ -GNN no export	20.54 ± 0.16	45.73 ± 0.58	31.91 ± 0.32	51.54 ± 1.27	43.72 ± 1.03	61.52 ± 0.95

Results

Figure 11: Comparison of prediction curves between PM_{2.5}-GNN and its baselines for 72 hours ahead prediction at Xi'an node of testset of Dataset 3.

ACM SIGSPATIAL 2020

Deployment

http://caiyunapp.com/map/

Figure 2: Online website (http://caiyunapp.com/map/) that provides 72-hour real-time PM_{2.5} concentration prediction using PM_{2.5}-GNN model proposed in this paper.

Data Source Ministry of Ecology and Environment of China (MEE) Air quality data (PM2.5, PM10, so2, etc.) **Global Forecast** System (GFS) Weather forecasting data (Temperature, Precipitation, Wind, etc.)

Figure 10: Deployment Framework

$PM_{2.5}$ -GNN: A Domain Knowledge Enhanced Graph Neural Network For $PM_{2.5}$ Forecasting

Shuo Wang*
shawnwang.tech@gmail.com
School of Systems Science, Beijing
Normal University
Beijing, China

Qingye Meng mengqingye@caiyunapp.com ColorfulClouds Pacific Technology Co., Ltd. Beijing, China Yanran Li*
csyli@comp.polyu.edu.hk
Department of Computing, The Hong
Kong Polytechnic University
Hong Kong, China

Lingwei Meng lingweim@princeton.edu Atmospheric and Oceanic Sciences Program, Princeton University Princeton, NJ, USA Jiang Zhang[†]
zhangjiang@bnu.edu.cn
School of Systems Science, Beijing
Normal University
Beijing, China

Fei Gao Philip.sss@mail.bnu.edu.cn School of Systems Science, Beijing Normal University Beijing, China

Code: https://github.com/shawnwang-tech/PM2.5-GNN

12/ 12