Term Test 1

SOLUTIONS

1. False.

Consider $(0,1,1) \in W$ so x-|y|+z=0. Now, by scalar multiplication,

$$(-1)(0,1,1) = (0,-1,-1)$$

However,

$$(0) - |-1| + (-1) = -2 \neq 0$$

Hence closure under scalar multiplication fails and accordingly W is not a subspace of \mathbb{R}^3 . (Closure under vector addition is not satisfied either.)

2. False.

For $W_1 = W_2$, we must be able to find k such that the spanning set of W_1 can be written as a linear combination of the spanning set of W_2 and vice versa. Let's start by trying to write (0, k, 1) as a linear combination of (1, 1, 2) and (1, 0, 1). This requires

$$(0, k, 1) = \lambda_1(1, 1, 2) + \lambda_2(1, 0, 1)$$

for some $\lambda_1, \lambda_2 \in \mathbb{R}$. We must have then

$$0 = \lambda_1 + \lambda_2$$
$$k = \lambda_1$$
$$1 = 2\lambda_1 + \lambda_2$$

From the first and third equations, we find that $\lambda_1 = 1$ and $\lambda_2 = -1$, which means that k = 1. But we still need to check the other linear combinations.

By inspection, (1, -2, -1) = -2(1, 1, 2) + 3(1, 0, 1), from which we conclude that $W_2 \subseteq W_1$.

Also, (1,1,2)=3(0,1,1)+(1,-2,-1) and (1,0,1)=2(0,1,1)+(1,-2,-1), which shows that $W_1\subseteq W_2$. Hence k=1 makes $W_1=W_2$.

3. True.

By contraposition, assume that r_1, r_2, r_3 are not all distinct meaning that at least two must be equal. Then $\{f_1, f_2, f_3\}$ is not linearly independent because at least two of the functions will be the same. Therefore, it cannot be a basis.

4(a). *Proof.* If $x \notin \text{span}\{v_1, v_2, v_3\}$ then $\text{span}\{v_1, v_2, v_3\} \subseteq \text{span}\{x, v_1, v_2, v_3\}$. By Theorem I, Chapter 6, we can claim that $\{x, v_1, v_2, v_3\}$ is linearly independent.

Let's now test for the linear independence of $\{v_1 + x, v_2 + x, v_3 + x\}$:

$$\lambda_1(v_1 + x) + \lambda_2(v_2 + x) + \lambda_3(v_3 + x) = \mathbf{0}$$

or

$$(\lambda_1 + \lambda_2 + \lambda_3)\boldsymbol{x} + \lambda_1\boldsymbol{v}_1 + \lambda_2\boldsymbol{v}_2 + \lambda_3\boldsymbol{v}_3 = \boldsymbol{0}$$

As $\{x, v_1, v_2, v_3\}$ is linearly independent, all the coefficients of the vectors here must vanish. That is, only $\lambda_1 = \lambda_2 = \lambda_3 = 0$ satisfies the foregoing condition. Thus $\{v_1 + x, v_2 + x, v_3 + x\}$ is linearly independent.

4(b). *Proof.* From part (*a*), we know that $\{x, v_1, v_2, v_3\} \subset \mathcal{V}$ is linearly independent. This means that V cannot be spanned by fewer than 4 vectors; otherwise the Fundamental Theorem of Linear Algebra would be violated. Therefore $V \neq \text{span}\{v_1 + x, v_2 + x, v_3 + x\}$.