Identifying Genetic Material with Compressed Sensing Techniques

Jamie Dougherty

8th October 2018

Acknowledgements

With thanks to

- The SRIM Scheme
- Dr Sergio Bacallado

Outline

- Introduction to Metagenomics
- 2 Problem Spec
- 3 Overview of Approximate Message Passing
- Application to Matrix Factorisation

 Sequence DNA of mixture genomes in large groups of micro-organisms.

- Sequence DNA of mixture genomes in large groups of micro-organisms.
- Conventional cultivation methods have trouble in these environments.

- Sequence DNA of mixture genomes in large groups of micro-organisms.
- Conventional cultivation methods have trouble in these environments.
- Applications in medicine treatment of infections.

- Sequence DNA of mixture genomes in large groups of micro-organisms.
- Conventional cultivation methods have trouble in these environments.
- Applications in medicine treatment of infections.
- Still not well understood room for new methods.

Problem Spec

- Problem can be framed as the reconstruction of a noisy low-rank matrix with structured factors.
- Using prior information from factors can improve error. Still a challenge to derive algorithms that use this information.

 Message passing algorithms allow efficient marginalising of distributions with a certain structure of dependencies.

- Message passing algorithms allow efficient marginalising of distributions with a certain structure of dependencies.
- AMP does away with this structure. Just requires high number of dependencies.

- Message passing algorithms allow efficient marginalising of distributions with a certain structure of dependencies.
- AMP does away with this structure. Just requires high number of dependencies.
- Some limit theorems are then used to derive a different iterative procedure (AMP).

- Message passing algorithms allow efficient marginalising of distributions with a certain structure of dependencies.
- AMP does away with this structure. Just requires high number of dependencies.
- Some limit theorems are then used to derive a different iterative procedure (AMP).
- Some motivation comes from Statistical Physics (Replica and Cavity methods).

- Message passing algorithms allow efficient marginalising of distributions with a certain structure of dependencies.
- AMP does away with this structure. Just requires high number of dependencies.
- Some limit theorems are then used to derive a different iterative procedure (AMP).
- Some motivation comes from Statistical Physics (Replica and Cavity methods).

Example

Problem: find sparse x given y = Ax, $A \in \mathbb{R}^{N \times n}$, n << N AMP iterate:

$$x^{t+1} = \eta(x^{t} + A^{T}z^{t})$$
$$z^{t} = y - Ax^{t} + \eta'(x^{t-1} + A^{T}z^{t-1})$$

Interesting Points

- Structure of the problem is exploited.
- Updates are computationally efficient.

Interesting Points

- Structure of the problem is exploited.
- Updates are computationally efficient.
- Engenders a separate set of equations know as State Evolution:
 - Approximates error of iterative procedure.
 - ② Can be used by algorithm to modify optimal mapping to target structure.

Interesting Points

- Structure of the problem is exploited.
- Updates are computationally efficient.
- Engenders a separate set of equations know as State Evolution:
 - Approximates error of iterative procedure.
 - 2 Can be used by algorithm to modify optimal mapping to target structure.

Example with state evolution

Problem: find sparse x given y = Ax, $A \in \mathbb{R}^{N \times n}$, n << N AMP update:

$$x^{t+1} = \eta(x^t + A^T z^t, \hat{\sigma}^t)$$

$$z^t = y - Ax^t + \eta'(x^{t-1} + A^T z^{t-1}, \hat{\sigma}^{t-1})$$

State evolution:

$$\hat{\sigma}^t = \hat{\sigma}^t \eta' (A^T z^{t-1} + x^t, \hat{\sigma}^{t-1})$$

AMP for matrix factorisation

Problem

Find $\mathbf{x_0} \sim \mu_0$

$$A = \frac{\lambda}{n} \mathbf{x}_0 \mathbf{x}_0^T + W$$

W distributed as a Gaussian orthogonal ensemble.

AMP Solution

$$\mathbf{x}^{t+1} = Af_t(\mathbf{x}^t) - \mathbf{b_t}f_{t-1}(\mathbf{x}^{t-1})$$

Results in rank one case

How iterates improve over time

Problems

What happens when we try and apply these techniques to our Metagenomic problem?

Algorithm becomes more complex.

Problems

What happens when we try and apply these techniques to our Metagenomic problem?

- Algorithm becomes more complex.
- Much of the literature requires assumptions that don't apply.

Problems

What happens when we try and apply these techniques to our Metagenomic problem?

- Algorithm becomes more complex.
- Much of the literature requires assumptions that don't apply.

How do we resolve some of these problems?

How do we resolve some of these problems?

• Don't try for Bayes optimal.

How do we resolve some of these problems?

- Don't try for Bayes optimal.
- Choose non-linearities based on intuition.

How do we resolve some of these problems?

- Don't try for Bayes optimal.
- Choose non-linearities based on intuition.
- Lot's of experimentation!

How do we resolve some of these problems?

- Don't try for Bayes optimal.
- Choose non-linearities based on intuition.
- Lot's of experimentation!

Don't have working algorithm, more testing needed.

• Metagenomic problem seems tractable.

- Metagenomic problem seems tractable.
- AMP is very efficient when used correctly.

- Metagenomic problem seems tractable.
- AMP is very efficient when used correctly.
- However it is difficult to use correctly in this context.

- Metagenomic problem seems tractable.
- AMP is very efficient when used correctly.
- However it is difficult to use correctly in this context.
- Better intuitions and more testing could generate a solution.