rse Code: BTCS 701-18 Course Title: Network Security and Cryptography 3L:0T:0P 3Credits

Detailed Contents:

UNIT 1: Introduction (3 Hours)

Introduction to Cryptography, Security Threats, Vulnerability, Active and Passive attacks, Security services and mechanism, Conventional Encryption Model, CIA model

[5hrs] (CO 1)

UNIT 2: Math Background

Modular Arithmetic, Euclidean and Extended Euclidean algorithm, Prime numbers, Fermat and Euler's Theorem

[5hrs]

(CO 1)

UNIT 3: Cryptography

Dimensions of Cryptography, Classical Cryptographic Techniques Block Ciphers (DES, AES): Feistal Cipher Structure, Simplifies DES, DES, Double and Triple DES, Block Cipher design Principles, AES, Modes of Operations Public-Key Cryptography: Principles Of Public-Key Cryptography, RSA Algorithm, Key Management, Diffie-Hellman Key Exchange, Elgamal Algorithm, Elliptic Curve Cryptography

[12hrs] (CO 2)

UNIT 4 Hash and MAC Algorithms

Authentication Requirement, Functions, Message Authentication Code, Hash Functions, Security Of Hash Functions And Macs, MD5 Message Digest Algorithm, Secure Hash Algorithm, Digital Signatures, Key Management: Key Distribution Techniques, Kerberos

[6hrs] (CO 3)

UNIT 5 Security in Networks

Threats in networks, Network Security Controls – Architecture, Encryption, Content Integrity, Strong Authentication, Access Controls, Wireless Security, Honeypots, Traffic flow security, Firewalls – Design and Types of Firewalls, Personal Firewalls, IDS, Email Security – PGP, S/MIME

Course Code: BTCS	Course Title: Data Warehousing and	3L: 0T: 0P	Credits: 3
-702-18	Data Mining		35.145.11.37.41.11.11.11.11.11.11.11.11.11.11.11.11.

Detailed Contents:

UNIT 1:

Data Warehousing Introduction: design guidelines for data warehouse implementation, Multidimensional Models; OLAP- introduction, Characteristics, Architecture, Multidimensional view Efficient processing of OLAP Queries, OLAP server Architecture ROLAP versus MOLAP Versus HOLAP and data cube, Data cube operations, data cube computation.

Data mining: What is data mining, Challenges, Data Mining Tasks, Data: Types of Data, Data Quality, Data Pre-processing, Measures of Similarity and Dissimilarity

[10hrs]

UNIT 2:

Data mining: Introduction, association rules mining, Naive algorithm, Apriori algorithm, direct hashing and pruning (DHP), Dynamic Item set counting (DIC), Mining frequent pattern without candidate generation (FP, growth), performance evaluation of algorithms

Classification: Introduction, decision tree, tree induction algorithms – split algorithm based on information theory, split algorithm based on Gini index; naïve Bayes method; estimating predictive accuracy of classification method

[10 hrs]

UNIT 3:

Cluster analysis: Introduction, partition methods, hierarchical methods, density based methods, dealing with large databases, cluster software

Search engines: Characteristics of Search engines, Search Engine Functionality, Search Engine Architecture, Ranking of web pages, The search engine history, Enterprise Search, Enterprise Search Engine Software.

[10 hrs]

UNIT 4:

Web data mining: Web Terminology and Characteristics, Locality and Hierarchy in the web, Web Content Mining, Web Usage Mining, Web Structure Mining, Web mining Software.[8 hrs]

se Code:	BTCS 704-18	Course Title :	Deep Learning	3L:0T:0P	3Credits

Detailed Contents:

UNIT 1: Machine Learning Basics: Learning, Under-fitting, Overfitting, Estimators, Bias, Variance, Maximum Likelihood Estimation, Bayesian Statistics, Supervised Learning, Unsupervised Learning and Stochastic Gradient Decent.

[4hrs] (CO 1)

UNIT 2: Deep Feedforward Network: Feed-forward Networks, Gradient-based Learning, Hidden Units, Architecture Design, Computational Graphs, Back-Propagation, Regularization, Parameter Penalties, Data Augmentation, Multi-task Learning, Bagging, Dropout and Adversarial Training and Optimization.

[4hrs] (CO 2)

UNIT 3: Convolution Networks: Convolution Operation, Pooling, Basic Convolution Function, Convolution Algorithm, Unsupervised Features and Neuroscientific for convolution Network. [6hrs] (CO 3)

UNIT 4: Sequence Modelling: Recurrent Neural Networks (RNNs), Bidirectional RNNs, Encoder- Decoder Sequence-to-Sequence Architectures, Deep Recurrent Network, Recursive Neural Networks and Echo State networks.

[12hrs] (CO 4)

UNIT 5: Deep Generative Models: Boltzmann Machines, Restricted Boltzmann Machines, Deep Belief Networks, Deep Boltzmann Machines, Sigmoid Belief Networks, Directed Generative Net, Drawing Samples from Auto—encoders.

[14hrs] (CO 5)

Course Code:	Course Title: Block Chain	3L:0 T: 0P	Credits: 3
BTCS721-18	Technology		

Detailed Contents:

INTRODUCTION TO BLOCKCHAIN

Blockchain- Public Ledgers, Blockchain as Public Ledgers -Bitcoin, Blockchain 2.0, Smart Contracts, Block in a Blockchain, Transactions-Distributed Consensus, The Chain and the Longest Chain - Cryptocurrency to Blockchain 2.0 - Permissioned Model of Blockchain, Cryptographic -Hash Function, Properties of a hash function-Hash pointer and Merkle tree

BITCOIN AND CRYPTOCURRENCY

A basic crypto currency, Creation of coins, Payments and double spending, FORTH – the precursor for Bitcoin scripting, Bitcoin Scripts, Bitcoin P2P Network, Transaction in Bitcoin Network, Block Mining, Block propagation and block relay, Consensus introduction, Distributed consensus in open environments-Consensus in a Bitcoin network

BITCOIN CONSENSUS

Bitcoin Consensus, Proof of Work (PoW)- Hashcash PoW, Bitcoin PoW, Attacks on PoW, monopoly problem- Proof of Stake- Proof of Burn - Proof of Elapsed Time - Bitcoin Miner, Mining Difficulty, Mining Pool-Permissioned model and use cases, Design issues for Permissioned Blockchains, Execute contracts- Consensus models for permissioned blockchain-Distributed consensus in closed environment Paxos

DISTRIBUTED CONSENSUS

RAFT Consensus-Byzantine general problem, Byzantine fault tolerant system-Agreement Protocol, Lamport-Shostak-Pease BFT Algorithm-BFT over Asynchronous systems, Practical Byzantine Fault Tolerance

HYPER LEDGER FABRIC & ETHERUM

Architecture of Hyperledger fabric v1.1-Introduction to hyperledger fabric v1.1, chain code- Ethereum: Ethereum network, EVM, Transaction fee, Mist Browser, Ether, Gas, Solidity, Smart contracts, Truffle Design and issue Crypto currency, Mining, DApps, DAO

BLOCKCHAIN APPLICATIONS

Internet of Things-Medical Record Management System-Block chain in Government and Block chain Security-Block chain Use Cases –Finance