MIT OpenCourseWare http://ocw.mit.edu

18.034 Honors Differential Equations Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

18.034 Solutions to Problemset 5

Spring 2009

1. (a) Since $f_n \to f$ uniformly on [a,b], for $\epsilon > 0$ given, there exists $N \in \mathbb{Z}_+$ such that $|f_n(t) - f(t)| < \epsilon/(b-a)$ for $t \in [a,b]$ whenever $n \geq N$. For $n \geq N$,

$$\left| \int_{a}^{b} f_n(t) dt - \int_{a}^{b} f(t) dt \right| \leq \int_{a}^{b} |f_n(t) - f(t)| dt < \epsilon$$

(b) $f_n(t)$ is given by

- $\int_{0}^{1} f_{n}(t) dt = \frac{1}{2} \text{ for all } n,$ $\int_{0}^{1} f(t) dt = 0.$
- 2. In the course of the local existence theorem, $|x_k(t) x_{k-1}(t)| \le$

$$ML^{k-1}\frac{|t-t_0|^k}{k!}$$
 for $k=1,2,...$

$$|x(t) - x_n(t)| = \left| \sum_{k=n+1}^{\infty} (x_k(t) - x_{k-1}(t)) \right|$$

$$\leq \sum_{k=n+1}^{\infty} |x_k(t) - x_{k-1}(t)|$$

$$\leq \frac{M}{L} \sum_{k=n+1}^{\infty} \frac{(LT)^k}{k!}$$

$$= \frac{M}{L} \frac{(LT)^{n+1}}{(n+1)!} \sum_{k=0}^{\infty} \frac{(LT)^k}{k!}$$

$$= ML^n \frac{T^{n+1}}{(n+1)!} e^{LT}$$

3. (a) (\Rightarrow) Let $F(t)=f(t,\phi(t))$ and solve x''=F(t) when $x(t_0)=x_0,$ $x'(t_0)=x_1.$

$$(\Leftarrow)$$
 Use $\frac{d}{dt} \int_{t_0}^t f(s,t) ds = f(t,t) + \int_{t_0}^t \frac{\partial f}{\partial t}(s,t) ds$.

(b) Repeat the proof of the local existence theorem by showing

(1)
$$|x_n(t) - x_0| = |x_1| |t - t_0| + \left| \int_{t_0}^t (t - s) f(s, x_{n-1}(s)) ds \right|$$

$$\leq |x_1| |t - t_0| + M \int_{t_0}^t |t - s| ds$$

$$= |x_1| |t - t_0| + \frac{M}{2} |t - t_0|^2$$

$$\leq B|t - t_0|$$

$$(2) |x_{n}(t) - x_{n-1}(t)| \leq \int_{t_{0}}^{t} (t-s)|f(s, x_{n-1}(s)) - f(s, x_{n-2}(s))| ds$$

$$\leq L \int_{t_{0}}^{t} (t-s)|x_{n-1} - x_{n-2}| ds$$

$$\leq ML^{n-1} \frac{|t-t_{0}|^{2n}}{(2n)!}$$

where L is the Lipshitz constant.

4. (a)
$$\mathcal{L}\left[\frac{1}{\sqrt{t}}\right] = \int_0^\infty e^{-st} \frac{1}{\sqrt{t}} dt = \int_0^\infty e^{-x^2} \frac{\sqrt{s}}{x} \frac{2x}{s} dx$$
, where $x^2 = st$.

$$= \frac{2}{\sqrt{s}} \int_0^\infty e^{-x^2} dx = \sqrt{\pi/s}$$

(b)
$$\mathcal{L}[\sqrt{t}] = \int_0^\infty e^{-st} \sqrt{t} \, dt = \sqrt{t} \frac{e^{-st}}{-s} \Big]_0^\infty - \int_0^\infty \frac{e^{-st}}{-s} \frac{1}{2\sqrt{t}} \, dt$$
 by parts.

$$= 0 + \frac{1}{2s} \int_0^\infty e^{-st} \frac{1}{\sqrt{t}} \, dt = \sqrt{\pi}/2s^{3/2}$$

5. (a) $\mathcal{L}[e^{t^2}] = \int_0^\infty e^{t^2 - st} dt$ is indefinite for every real value of s, no matter how large, since $t^2 - st > 0$ for t > s and so

$$\int_0^\infty e^{t^2 - st} dt > \int_s^\infty e^{t^2 - st} dt > \int_s^\infty e^0 dt = \infty$$

- (b) $\mathcal{L}\left[\frac{1}{t^k}\right] = \int_0^\infty e^{-st} \frac{1}{t^k} dt$, (s > 0). The trouble here is when t = 0. Near t = 0, $e^{-st} \approx 1$ and therefore $\int_0^\tau e^{-st} \frac{1}{t^k} dt \gtrsim \int_0^\tau \frac{dt}{t^k} = \left\{ \frac{t^{1-k}}{1-k} \Big|_0^\tau & k \neq 1 \right.$ Therefore, $\mathcal{L}\left[\frac{1}{t^k}\right]$ exists for k < 1. $\log t \Big|_0^\tau & k = 1$
- 6. (a) $5\cos 2t 3\sin 2t + 2$.
 - (b) $e^{-t/3}\cos\sqrt{2}t$.