МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Физтех-школа фотоники, электроники и молекулярной физики

Отчёт о выполнении лабораторной работы 3.5.1

Изучение плазмы газового разряда в неоне

Автор: Макаров Лев Евгеньевич Б04-306

1 Введение

Цель работы:

1. Исследование характеристик газового разряда

В работе используются:

- стеклянная газоразрядная трубка, наполненная неоном
- высоковольтный источник питания
- источник питания постоянного тока
- делитель напряжения
- резистор
- потенциометр
- амперметры
- вольтметры
- переключатели

2 Теоретические сведения

Плазма

Из-за теплового движения в плазме электроны могут смещаться относительно ионов и образовывать неоднородности. В этих неоднородностях возникает электрическое поле, которое стремится восстановить баланс, из-за чего происходят колебания с частотой

$$w_p = \sqrt{\frac{4\pi n_e e^2}{m_e}}$$

За характерное время колебаний электроны за счет теплового движения смещаются на

$$r_D \sim \frac{v_e}{w_p} = \sqrt{\frac{kT_e}{4\pi n_e e^2}}$$

 r_D - дебаевский радиус, k - константа Больцмана.

Если поместить в плазму пробную (допустим, положительную) частицу, то электроны будут скапливаться около этой частицы, экранируя её поле. Потенциал точечного заряда будет иметь в плазме следующий вид:

$$\varphi(r) = \frac{q}{r}e^{-\frac{r}{r_D}}$$

где $r_D = \sqrt{\frac{kT_e}{4\pi ne^2}}$ – радиус Дебая в случае равновесной плазмы. Если температуры электронов и ионов сильно отличаются, то следует определять отдельно величину радиуса экранирования для электронов и для ионов. Итоговый радиус будет

$$r_D = (r_{De}^{-2} + r_{Di}^{-2})^{-1/2}$$

То есть если $T_i \ll T_e$, то $r_D \approx r_{Di}$

Одиночный зонд

При внесении в плазму уединённого проводника — $30 n \partial a$ — с потенциалом, изначально равным потенциалу точки плазмы, в которую его помещают, на него поступают токи электроннов и ионов:

$$I_{e0} = \frac{n\langle v_e \rangle}{4} eS,$$

$$I_{i0} = \frac{n\langle v_i \rangle}{4} eS,$$
(1)

где $\langle v_e \rangle$ и $\langle v_i \rangle$ — средние скорости электронов и ионов, S — площадь зонда, n — плотность электронов и ионов. Скорости электронов много больше скорости ионов, поэтому $I_{i0} \ll I_{e0}$. Зонд будет заряжаться до некоторого равновестного напряжения $-U_f$ — плавающего потенциала. В равновесии ионный ток мало меняется, а электронный имеет вид

$$I_e = I_0 \exp\left(-\frac{eU_f}{kT_e}\right).$$

Будем подавать потенциал U_3 на зонд и снимать значение зондового тока I_3 . Максимальное значение тока $I_{e\text{H}}$ – электронный ток насыщения, а минимальное $I_{i\text{H}}$ – ионный ток насыщения. Значение из эмпирической формулы Бомона:

$$I_{iH} = 0.4 neS \sqrt{\frac{2kT_e}{m_i}}.$$
 (2)

Электронный ток насыщения можно определить по тепловому движению:

$$I_{e\text{\tiny H}} = \frac{n_e S}{4} \sqrt{\frac{8kT}{\pi m_e}}$$

Двойной зонд

Двойной зонд — система из двух одинаковых зондов, расположенных на небольшом расстоянии друг от друга, между которыми создаётся разность потенциалов, меньшая U_f . Рассчитаем ток между ними вблизи I=0. При небольших разностях потенциалов ионные токи на оба зонда близки к току насыщения и компенсируют друг друга, а значит величина результирующего тока полностью связана с разностью электронных токов. Пусть потенциалы на зондах

$$U_1 = -U_f + \Delta U_1,$$

$$U_2 = -U_f + \Delta U_2.$$

Между зондами $U=U_2-U_1=\Delta U_2-\Delta U_1$. Через первый электрод

$$I_1 = I_{iH} + I_{e1} = I_{iH} - \frac{1}{4} neS \langle v_e \rangle \exp\left(-\frac{eU_f}{kT_e}\right) \exp\left(\frac{e\Delta U_1}{kT_e}\right) = I_{iH} \left(1 - \exp\left(\frac{e\Delta U_1}{kT_e}\right)\right).$$
(3)

Аналогично через второй получим

$$I_2 = I_{iH} \left(1 - \exp\left(\frac{e\Delta U_2}{kT_e}\right) \right) \tag{4}$$

Из (7) и (8) с учётом последовательного соединение зондов ($I_1 = -I_2 = I$):

$$\Delta U_1 = \frac{kT_e}{e} \ln \left(1 - \frac{I}{I_{ii}} \right)$$

$$\Delta U_2 = \frac{kT_e}{e} \ln \left(1 + \frac{I}{I_{iii}} \right)$$

Тогда итоговые формулы для разности потенциалов и тока

$$U = \frac{kT_e}{e} \ln \frac{1 - I/I_{iH}}{1 + I/I_{iH}}, \quad I = I_{iH} th \frac{eU}{2kT_e}.$$
 (5)

Зависимость выглядит примерно так. Из формулы можно найти формулу для T_e : для U=0 мы найдём $I_{i\mathrm{H}}$, продифференцируем в точке U=0 и с учётом th $\alpha \approx \alpha$ при малых α и $A \to 0$ получим:

$$kT_e = \frac{1}{2} \frac{eI_{iH}}{\frac{dI}{dU}|_{U=0}}.$$
 (6)

3 Экспериментальная установка

Стеклянная газоразрядная трубка имеет холодный (ненакаливаемый) полый катод, три анода и *геттерный* узел — стеклянный баллон, на внутреннюю повехность которого напылена газопоглощающая плёнка (*геттер*). Трубка наполнена изотопом неона ²2Ne при давлении 2 мм рт. ст. Катод и один из анодом (I и II) с помощью переключателя Π_1 подключается через балластный резистор R_6 (≈ 450 кОм) к регулируемому ВИП с выкодным напряжением до 5 кВ.

При подключении к ВИП анода-I между ним и катодом возникает газовый разряд. Ток разряда измеряется миллиамперметром A_1 , а падение напряжения на разрядной трубке – цифровым вольтметром V_1 , подключённым к трубке черезе высокоомный (25 МОм) делитель напряжения с коэффициентом $(R_1 + R_2)/R_2 = 10$.

При подключении к ВИП анода-II разряд возникает в пространстве между катодом и анодом-II, где находятся двойной зонд, используемый для диагностики плазмы положительного столба.

Зонды изготовлены из молибденовой проволоки диаметром d=0.2 мм и имеют длину l=5.2 мм. Они подключены к источнику питания GPS через потенциометр R. Переключатель Π_2 позволяет изменять полярность напряжения на зондах. Величина напряжения на зондах изменяеься с помощью дискретного переключателя «V» выходного напряжения источника питания и потенциометра R, а измеряется цифровым вольтметром V_2 . Для измерения зондового тока используется мультиметр A_2 .

4 Результаты измерений и обработка данных

ВАХ разряда

1. Подготовим все приборы к работе.

Включим в сеть ВИП и мультиметр V_1 . Будем плавно увеличивать выходное напряжение ВИП с нулевого значения до того момента, как в трубке зажжётся разряд. Показания вольтметра V_1 непосредственно перед зажиганием – т.н. напряжение зажигания разряда – равны $U_{\text{заж}}=(231\pm3)\,$ В.

2. С помощью вольтметра V_1 и амперметра A_1 снимем вольт-амперную характеристику разряда $U_{\rm p}\left(I_{\rm p}\right)$ в диапазоне от 0,5 мA до \approx 5 мA по току.

Измерения проведём как при нарастании (\nearrow), так и при убывании (\searrow) тока. Занесём полученные данные в таблицу 1. Заметим заранее, что гистерезиса ВАХ в работе не наблюдается, поэтому при построении графика имеет смысл использовать значения, полученные при усреднении ($\langle \ldots \rangle$) снятых значений. Тоже занесём эти точки в таблицу.

Оценим также погрешности. Погрешность амперметра A_1 равна половине цены его деления, $\Delta I = 0.02$ мА. Погрешность вольтметра равна 0.003U + 4 ед. мл. разряда.

Таблица 1: Зависимость тока разряда $I_{\rm p}$ от его напряжения $U_{\rm p}$ при нарастании и убывании

$U_{\rm p}^{\rm возp}, {\rm B}$	26,02	22,96	22,86	22,11	22,45	23,14	24,49	35,37
$I_{\rm p},{ m mA}$	0,5	0,8	1,1	1,4	1,7	2,0	2,3	2,6
$U_{\rm p}^{\rm yбыв},{\rm B}$	24,9	23,12	22,0	22,11	22,74	22,9	26,29	
$I_{\rm p},{ m mA}$	2,3	2,0	1,7	1,4	1,1	0,8	0,5	

Построим вольт-амперную характеристику разряда в координатах $I_{\rm p}\left(U_{\rm p}\right)$. Она представлена на рисунке 1. По наклону кривой на левом конце графика определим минимальное дифференциальное сопротивление разряда $R_{\rm диф}\equiv \frac{{\rm d}U}{{\rm d}I}=36000~\Omega$. Сравнив график с рисунком ?? (в Приложении к отчёту), сделаем вывод, что полученный в работе график соответствует участку Γ – \mathcal{I} .

Рис. 1: Вольт-амперная характеристика разряда $I_{\rm p}\left(U_{\rm p}\right)$. Сглаживающая кривая проведена с помощью кубического сплайна

II. Зондовые характеристики

Подготовим приборы к работе. Плавно увеличим напряжение ВИП до возникновения разряда. Установим максимально допустимое значение разрядного тока $I_{\rm p}^{max}=5,0$ мА. Подготовим к работе источник питания, после чего с помощью потенциометра R установим на зонда максимально допустимое напряжение $U_{\rm s}^{max}=25,0$ В.

Измерим вольт-амперную характеристику двойного зонда I_3 (U_3) в диапазоне от $-U_3^{max}$ до U_3^{max} при фиксированном токе разряда $I_{\rm p}$. Проведём данные измерения при трёх различных значениях тока разряда (2,0 мA, 1,5 мA и 0,84 мA в таблице соответственно). Занесём полученные данные в таблицу 2. Отцентрируем кривую: проведём ось абсцисс на уровне $I=\frac{1}{2}\sum \Delta I$ и восстановим ось ординат из точки пересечения кривой с осью абсцисс. Пересчитанные для этого точки с индексом c также занесём в таблицу.

Таблица 2: Зависимость напряжения на зонде $U_{\rm 3}$ от тока $I_{\rm 3}$ через него значениях $I_{\rm p}=2,0$ мА, 1,5 мА и 0,84 мА соответственно

U_3 ,B	I_3 ,MKA	I_{3c} ,MKA	I_3 ,MKA	I_{3c} ,MKA	I_3 ,MKA	I_{3c} ,MKA
25,0	39,8	37,1	77,8	73,3	124,0	118,0
22,0	38,4	35,7	75,6	71,1	127,1	121,1
19,0	37,1	34,4	73,4	68,9	125,4	119,4
16,0	35,8	33,1	70,1	65,6	121,4	115,4
13,0	34,1	31,4	67,2	62,7	113,1	107,1
10,0	31,1	28,4	60,5	56,0	99,4	93,4
8,0	27,9	25,2	53,6	49,1	86,4	80,4
6,0	23,4	20,7	44,5	40,0	69,9	63,9
4,0	17,5	14,8	32,4	27,9	49,2	43,2
2,0	10,1	7,4	18,3	13,8	24,9	18,9
0,0	2,7	0,0	4,5	0,0	6,0	0,0
-2,0	-5,6	-8,3	-9,9	-14,4	-12,5	-18,5
-4,0	-12,9	-15,6	-24,0	-28,5	-36,8	-42,8
-6,0	-18,7	-21,4	-35,7	-40,2	-57,6	-63,6
-8,0	-23,0	-25,7	-44,9	-49,4	-74,8	-80,8
-10,0	-25,9	-28,6	-51,6	-56,1	-87,8	-93,8
-13,0	-28,6	-31,3	-57,9	-62,4	-101,4	-107,4
-16,0	-30,1	-32,8	-61,4	-66,1	-109,4	-115,4
-19,0	-31,2	-33,9	-63,7	-68,2	-113,1	-119,1
-22,0	-32,4	-35,1	-65,7	-70,2	-114,8	-120,8
-25,0	-33,5	-36,2	-67,7	-72,2	-112,2	-118,2

Рис. 2: Зондовая характеристика через разряд $I_{\rm p}=2{,}00~{\rm mA}$

Рис. 3: Зондовая характеристика через разряд $I_{\rm p}=1{,}51~{\rm mA}$

Рис. 4: Зондовая характеристика через разряд $I_{\rm p}=0.84~{\rm mA}$

Рис. 5: Зондовые характеристики через разряд

По графикам определим температуру электронов.

$$kT_e = \frac{e\Delta U}{2}$$

$$kT_e = \frac{1}{2} \frac{eI_{iH}}{\frac{dI}{dU}|_{U=0}}.$$

 $kT_e=rac{1}{2}rac{eI_{i ext{H}}}{rac{dU}{dU}}.$ $kT_e=rac{\Delta U}{2},$ где ΔU - расстояние между точками 1 и 2.

 $I_{i\text{H}}=0.4neS\sqrt{\frac{2kT_e}{m_i}}$., где S= π dl - площадь поверхности зонда. Зная, что d=0,2 мм, l=5,2 мм, получим S=3,27 * 10^{-62} , а $m_i=22*1,66*10^{-27}$ - масса иона неона.

$$\omega_p = \sqrt{\frac{4\pi n e^2}{m}} = 5.6*10^4*\sqrt{n_e}$$
 - плазменная частота колебаний электронов.

$$r_D = \sqrt{\frac{kT_e}{4\pi n e^2}}$$
 -радиус Дебая. Среднее число ионов в сфере такого радиуса $N_D = n \frac{4}{3} \pi r_D^2$.

I_p ,	I_{in} ,	dI/dU, мA/B	kT, Эв	$T,K*10^3$	$n_e, 10^{16}, v^{-3}$	$\omega 10^{12}/$	$r_d 10^{-4}$	$N_d, 10^5$	α
2	110	25,73	3	35,4	3,76	10,85880288	6	3,25	
1,5	75	3,4	2,5	41,3	3,45	10,4	6,60	3,97	

Таблица 3: Данные расчетов

Графики зависимости Те(Ір), ne(Ір) занесены на Рисунок 6.

5 Вывод

В данной лабораторной работе мы исследовали состояние плазмы в тлеющем газовом разряде с помощью двойного зонда. Полученные результаты сходятся с указанными в лабораторной работе по порядку. Плазму в тлеющем разряде можно с хорошей точностью назвать идеальной, так как $N_D > 30 \gg 1$.

Рис. 6: Графики зависимости $\mathrm{Te}(\mathrm{Ip}),\mathrm{ne}(\mathrm{Ip})$

1.5 I,мА 2.5

2.0

3.0

0.0

0.5

1.0