

Estimation of Actuation Configuration for a Multi-Actuated Blimp

Semester Thesis

Students: Matthias Krebs

Simon Laube

Advisors:

Kostas Alexis

Markus Achtelik

Overview

Problem: Motor to Blimp transformation is essential part of controller

Idea: Create blimp model from Motor transformations and fit this model to the system

How: Actuate blimp and compare measurements with model output

Autonomous Systems Lab

Concept

Batch Optimization Process

Model Function

$$\vec{\alpha} = J^{-1}(r \, \mathcal{C}(\theta) \, \vec{u} - \vec{\omega} \times J\vec{\omega})$$

 $C(\theta)$ Thrust force transformation

 \vec{u} Thrust force (input)

 $\vec{\omega}$ Angular velocity

 $\vec{\alpha}$ Angular acceleration

r Radius

Inertia tensor

Parameterization

Gibbs-Rodriguez (3)

Quaternionen (4)

Current Results

Gibbs-Rodriguez Parameters

Residual plot in parameter space

Current Results

Quaternion Parameters

Residual plot in parameter space

Outlook

- Parameterization for radius, inertia tensor
- Actuator input patterns
- Varied simulation data from modular simulation model
- Convergence analysis

Context / General Description

- Control depends on simplified model of blimp
 - Fit paramteres of simplified model s.t. it best fits real system

Problem Formulation

- Nonlinear Least Squares Optimization
 - $S(\theta) = \sum_{u=1}^{n} \{Y_u f(\xi_u, \theta)\}^2$

 Y_u : Angular acceleration from gyro measurement $f(\xi_u, \theta)$: Nonlinear function depending on inputs ξ_u and parameters θ

Parametrization

Quaternion

No Singularities

Constrained||q|| = 1

Quadratic model

$$q = \begin{bmatrix} \cos(\varphi/2) \\ n \cdot \sin(\varphi/2) \end{bmatrix}$$

Gibbs-Rodriguez

Singularity at $\varphi = \pi/2$

Unconstrained

Nonlinear model

 $\lambda = n \cdot \tan(\varphi/2)$

Problem Formulation

Quaternion

No Singularities

Constrained||q|| = 1

Quadratic model

Autonomous Systems Lab

$$q = \begin{bmatrix} \cos(\varphi/2) \\ n \cdot \sin(\varphi/2) \end{bmatrix}$$

Gibbs-Rodriguez

Singularity at $\varphi = \pi/2$

Unconstrained

Nonlinear model

 $\lambda = n \cdot \tan(\varphi/2)$

Example

Video?

Outlook

- Inputs bla bla ...
- Text Cases ...
- Estimate Accuracy of Result ...

