Shusen Wang

Seq2Seq Model

The figure is from blog lilianweng.github.io

Seq2Seq Model

Shortcoming: The final state is incapable of remembering a **long** sequence.

The figure is from blog lilianweng.github.io

Seq2Seq Model with Attention

Original paper:

• Bahdanau, Cho, & Bengio. Neural machine translation by jointly learning to align and translate. In ICLR, 2015.

Seq2Seq Model

Encoder RNN

Seq2Seq Model

context vector

$$\mathbf{c} = \sum_{i=1}^{m} \alpha_i \ \mathbf{h}_i.$$

- α_i : similarity between \mathbf{s}_{t-1} and \mathbf{h}_i .
- α_i is computed by a neural network taking \mathbf{s}_{t-1} and \mathbf{h}_i as input.
- v and W are trainable parameters.

context vector

$$\mathbf{c} = \sum_{i=1}^{m} \alpha_i \ \mathbf{h}_i.$$

• α_i : similarity between \mathbf{s}_{t-1} and \mathbf{h}_i .

context vector

$$\mathbf{c} = \sum_{i=1}^{m} \alpha_i \ \mathbf{h}_i.$$

• α_i : similarity between \mathbf{s}_{t-1} and \mathbf{h}_i .

Standard Seq2Seq model: the decoder looks at only its current state.

- Standard Seq2Seq model: the decoder looks at only its current state.
- Attention: decoder additionally looks at all the states of the encoder.

- Standard Seq2Seq model: the decoder looks at only its current state.
- Attention: decoder additionally looks at all the states of the encoder.

- Standard Seq2Seq model: the decoder looks at only its current state.
- Attention: decoder additionally looks at all the states of the encoder.

- Downside: higher time complexity.
 - l_1 : source sequence length
 - l_2 : target sequence length
 - Standard Seq2Seq: $O(l_1 + l_2)$ time complexity
 - Seq2Seq + attention: $O(l_1 l_2)$ time complexity

Self-Attention: Attention beyond Seq2Seq Models

Original paper:

Cheng, Dong, & Lapata. Long Short-Term Memory-Networks for Machine Reading. In EMNLP, 2016.

•
$$\mathbf{s}_t = \sum_{i=1}^{t-1} \alpha_i \, \mathbf{h}_i$$
.

- $\mathbf{s}_t = \sum_{i=1}^{t-1} \alpha_i \, \mathbf{h}_i$.
- α_i is computed by a neural network taking \mathbf{x}_t , \mathbf{s}_{t-1} , and \mathbf{h}_i as inputs.

- $\mathbf{s}_t = \sum_{i=1}^{t-1} \alpha_i \, \mathbf{h}_i$.
- α_i is computed by a neural network taking \mathbf{x}_t , \mathbf{s}_{t-1} , and \mathbf{h}_i as inputs.

- $\mathbf{s}_t = \sum_{i=1}^{t-1} \alpha_i \, \mathbf{h}_i$.
- α_i is computed by a neural network taking \mathbf{x}_t , \mathbf{s}_{t-1} , and \mathbf{h}_i as inputs.

Trainable parameters

- $\mathbf{s}_t = \sum_{i=1}^{t-1} \alpha_i \, \mathbf{h}_i$.
- α_i is computed by a neural network taking \mathbf{x}_t , \mathbf{s}_{t-1} , and \mathbf{h}_i as inputs.

- $\mathbf{s}_t = \sum_{i=1}^{t-1} \alpha_i \, \mathbf{h}_i$.
- α_i is computed by a neural network taking \mathbf{x}_t , \mathbf{s}_{t-1} , and \mathbf{h}_i as inputs.

- $\mathbf{s}_t = \sum_{i=1}^{t-1} \alpha_i \, \mathbf{h}_i$.
- α_i is computed by a neural network taking \mathbf{x}_t , \mathbf{s}_{t-1} , and \mathbf{h}_i as inputs.

- $\mathbf{s}_t = \sum_{i=1}^{t-1} \alpha_i \, \mathbf{h}_i$.
- α_i is computed by a neural network taking \mathbf{x}_t , \mathbf{s}_{t-1} , and \mathbf{h}_i as inputs.

- $\mathbf{s}_{t+1} = \sum_{i=1}^t \alpha_i \, \mathbf{h}_i$.
- α_i is computed by a neural network taking \mathbf{x}_{t+1} , \mathbf{s}_t , and \mathbf{h}_i as inputs.

- $\mathbf{s}_{t+1} = \sum_{i=1}^t \alpha_i \, \mathbf{h}_i$.
- α_i is computed by a neural network taking \mathbf{x}_{t+1} , \mathbf{s}_t , and \mathbf{h}_i as inputs.

- Not the same $\{\alpha_i\}$ computed previously.
- Because $\mathbf{x}_t \rightarrow \mathbf{x}_{t+1}$ and $\mathbf{s}_{t-1} \rightarrow \mathbf{s}_t$.

- $\mathbf{s}_{t+1} = \sum_{i=1}^t \alpha_i \, \mathbf{h}_i$.
- α_i is computed by a neural network taking \mathbf{x}_{t+1} , \mathbf{s}_t , and \mathbf{h}_i as inputs.

- $\mathbf{s}_{t+1} = \sum_{i=1}^t \alpha_i \, \mathbf{h}_i$.
- α_i is computed by a neural network taking \mathbf{x}_{t+1} , \mathbf{s}_t , and \mathbf{h}_i as inputs.

- $\mathbf{s}_{t+1} = \sum_{i=1}^t \alpha_i \, \mathbf{h}_i$.
- α_i is computed by a neural network taking \mathbf{x}_{t+1} , \mathbf{s}_t , and \mathbf{h}_i as inputs.

- $\mathbf{s}_{t+1} = \sum_{i=1}^t \alpha_i \, \mathbf{h}_i$.
- α_i is computed by a neural network taking \mathbf{x}_{t+1} , \mathbf{s}_t , and \mathbf{h}_i as inputs.

The update of LSTM with self-attention is analogous.

The update of LSTM with self-attention is analogous.

•
$$\mathbf{s}_t = \sum_{i=1}^{t-1} \alpha_i \ \mathbf{h}_i$$
. Exactly the same as SimpleRNN

The update of LSTM with self-attention is analogous.

•
$$\mathbf{s}_t = \sum_{i=1}^{t-1} \alpha_i \ \mathbf{h}_i.$$
• $\mathbf{c}_t' = \sum_{i=1}^{t-1} \alpha_i \ \mathbf{c}_i.$

Exactly the same as SimpleRNN

Conveyor belt

The update of LSTM with self-attention is analogous.

•
$$\mathbf{s}_t = \sum_{i=1}^{t-1} \alpha_i \, \mathbf{h}_i$$
.

•
$$\mathbf{c}'_t = \sum_{i=1}^{t-1} \alpha_i \mathbf{c}_i$$
.

•
$$\mathbf{c}_t = \mathbf{f}_t \circ \mathbf{c}_t' + \mathbf{i}_t \circ \tilde{\mathbf{c}}_t.$$

Forget gate, computed using \mathbf{x}_t and \mathbf{s}_t .

New value, computed using \mathbf{x}_t and \mathbf{s}_t .

Input gate, computed using \mathbf{x}_t and \mathbf{s}_t .

The update of LSTM with self-attention is analogous.

•
$$\mathbf{s}_t = \sum_{i=1}^{t-1} \alpha_i \, \mathbf{h}_i$$
.

•
$$\mathbf{c}'_t = \sum_{i=1}^{t-1} \alpha_i \mathbf{c}_i$$
.

•
$$\mathbf{c}_t = \mathbf{f}_t \circ \mathbf{c}_t' + \mathbf{i}_t \circ \tilde{\mathbf{c}}_t$$
.

$$\mathbf{h}_t = \mathbf{o}_t \circ \mathbf{c}_t.$$

Output gate, computed using \mathbf{x}_t and \mathbf{s}_t .

The update of LSTM with self-attention is analogous.

•
$$\mathbf{s}_t = \sum_{i=1}^{t-1} \alpha_i \, \mathbf{h}_i$$
.

•
$$\mathbf{c}'_t = \sum_{i=1}^{t-1} \alpha_i \ \mathbf{c}_i$$
.

•
$$\mathbf{c}_t = \mathbf{f}_t \circ \mathbf{c}_t' + \mathbf{i}_t \circ \mathbf{\tilde{c}}_t.$$

• $\mathbf{h}_t = \mathbf{o}_t \circ \mathbf{c}_t.$

•
$$\mathbf{h}_t = \mathbf{o}_t \circ \mathbf{c}_t$$
.

Difference 1:

- In standard LSTM, the gates and new value are computed using \mathbf{x}_t and \mathbf{h}_{t-1} .
- With self-attention, the gates and new value are computed using \mathbf{X}_t and \mathbf{S}_t .

- The update of LSTM with self-attention is analogous.
- $\mathbf{s}_t = \sum_{i=1}^{t-1} \alpha_i \; \mathbf{h}_i$.
- $\mathbf{c}'_t = \sum_{i=1}^{t-1} \alpha_i \mathbf{c}_i$.
- $\mathbf{c}_t = \mathbf{f}_t \circ \mathbf{c}_t' + \mathbf{i}_t \circ \tilde{\mathbf{c}}_t.$
- $\mathbf{h}_t = \mathbf{o}_t \circ \mathbf{c}_t$.

Difference 2:

- In standard LSTM, apply forget gate to \mathbf{c}_{t-1} .
- With self-attention, apply forget gate to $\mathbf{c}_t' = \sum_{i=1}^{t-1} \alpha_i \ \mathbf{c}_i$.

• With self-attention, RNN is less likely to forget.

- With self-attention, RNN is less likely to forget.
- Pay attention to the context relevant to the new input.

```
The
The FBI
    FBI is
The
    FBI is chasing
The
The
    FBI is
            chasing a
    FBI is
The
            chasing a criminal
    FBI is
The
            chasing a
                       criminal on
             chasing a
    FBI is
                       criminal on the
The
                       criminal on
    FBI is
             chasing a
                                   the run
The
The
    FBI
             chasing a
                       criminal
                                on
                                   the run .
```

Figure is from the paper "Long Short-Term Memory-Networks for Machine Reading."