$$\Delta R \approx 2\sqrt{\frac{\sum (R'_i - \overline{R})^2}{n(n-1)}} \approx 0.35$$
.

Таким образом получим окончательную оценку

$$\overline{R} pprox (8.5 \pm 0.4)$$
 Джс / (моль · K)

2. С помощью закона Кулона рассчитаем силу \vec{f} , с которой притягивается каждый шарик к «полубесконечной» цепочке:

$$f = \frac{q^2}{4\pi\epsilon_0 d^2} (1 - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \dots) \approx 0.81 f_0,$$
 (1)

где $\frac{q^2}{4\pi\epsilon_0 d^2}$ = f_0 - сила притяжения двух соседних шариков. Так как

нас устраивает точность порядка 5%, то при вычислении суммы можно ограничиться 5-6 слагаемыми. Очевидно, что это и будет минимально необходимая сила для разрыва цепочки. $\overline{F_{min}} \approx 8,1H$ Если приложить такую силу к крайнему шарику, то он начнет смещаться.

Рассмотрим теперь силы, действующие на второй шарик. Вправо на него действует сила $f_2=f_0$ со стороны первого шарика, а влево сила $f=0.81f_0$, поэтому второй шарик также начнет смещаться вместе с первым. На третий шарик со стороны двух крайних действует сила $f_3=f_0(1-\frac{1}{2^2})=0.75f_0$, которая меньше, чем сила притяжения к остальным шарикам, расположенным слева. Следовательно, это шарик не сдвинется, поэтому цепочка разорвется между вторым и третьим шариками.