BECA / Dr. Huson / Geometry 1-13 Test angles

Name:

Test: I can solve for angle measures

Diagrams are not necessarily drawn to scale unless otherwise stated.

- 1. I have my own calculator with me today. (circle one). Yes No
- 2. I have a notebook, ruler, and protractor (circle one). Yes No
- 3. Given \overline{ABC} , AB = 29, and BC = 63. Find AC.

4. Given \overline{DEF} , $DE = 5\frac{1}{14}$, and $DF = 9\frac{4}{7}$. Find EF. State as a fraction.

5. Find the distance between M and N.

6. Find GH, given G = 1.4 and H = 6.1.

7. Draw the ray \overrightarrow{ST} with a straight edge (or ruler). Measure ST in centimeters.

- 8. Two rays with a common vertex compose a(n) ______.
- 9. Points that are all located on the same line are _____
- 10. Use conventional notation to write the names of the ray, line, and segment shown.

- 11. Two line segments or angles of equal measure are ______.
- 12. Identify two line segments in the given plane.

13. Given isosceles $\triangle XYZ$ with $\overline{XY}\cong \overline{XZ}$. On the diagram mark the congruent line segments with tick marks.

- 14. Given the situation in the diagram, answer each question. Circle True or False.
 - (a) T or F: $\angle RPT$ and $\angle SPU$ are adjacent angles.

- (b) T or F: $\angle TPS$ is an obtuse angle.
- (c) T or F: \overrightarrow{PS} and \overrightarrow{PT} are opposite rays. \leftarrow
- 15. As shown below, two lines intersect making four angles: $\angle 1$, $\angle 2$, $\angle 3$, and $\angle 4$.

- (a) Given that $m \angle 1 = 65^{\circ}$, find $m \angle 3 =$
- (b) Find $m\angle 2 =$
- (c) True or false, $\angle 1$ and $\angle 4$ are complementary angles.
- 16. (a) Given, the diagram below. Name a right angle:
 - (b) Name an angle that is complementary to $\angle AOB$:
 - (c) Name the angle that is opposite to $\angle DOE$:

For full credit on these three problems, start with an equation and check your solution.

17. Given $m \angle BAC = 4x + 2$ and $m \angle CAD = 3x + 3$, $m \angle BAD = 75^{\circ}$. Find $m \angle BAC$.

18. As shown below, two lines intersect making four angles: $\angle 1$, $\angle 2$, $\angle 3$, and $\angle 4$. Given that $m\angle 1=x+32$ and $m\angle 3=2x-8$, find $m\angle 1$.

19. An angle bisector is shown below, with \overrightarrow{PR} bisecting $\angle QPS$. Given $m\angle QPR = 5x - 8$ and $m\angle RPS = 3x + 20$, find $m\angle QPS$.

Do Not Solve! Draw and label the situation on the right, model with an equation to the left, and circle where it states what to find.

20. Given \overline{ABC} , with AB = 2x - 7, BC = 3x - 3, and AC = 15. Find AB.

21. Given that K bisects \overline{JL} . JK = 3x + 8, KL = 17. Find x.

22. The point M is the midpoint of \overline{UV} , UM = x + 7, and MV = 2x + 1. Find UV.

23. The points P, Q, and R are collinear, with PQ = 6x + 16 and PR = 42. \overline{QR} is half the length of \overline{PQ} . Find x.

Do Not Solve!

Model the situation with an equation. Circle where it states what to find.

24. In the diagram below $\angle AOB = 2x$ and $\angle COB = 5x + 20$. Find $m \angle AOB$.

25. Two lines intersect making four angles: $\angle 1$, $\angle 2$, $\angle 3$, and $\angle 4$. Given that $m\angle 1=6x+28$ and $m\angle 3=8x+12$. Find $m\angle 1$.

26. In the diagram below $\angle AOB = 10x + 3$ and $\angle DOE = 63^{\circ}$. Find x.

27. Given that $m\angle 2 = 10x - 20$ and $m\angle 3 = 3x + 5$ as shown in the diagram, find $m\angle 2$.

