Low Level Design (LLD)

Shipment Pricing Prediction

Written by: Gokul kanna. R
Document version: 0.3

Last revision Date: 24/10/2021

Contents

Abstract

	1.Intro	duction	1
1.1	w	hy is low-level Design documentation?1	
1.2	Sc	cope 2	
1.3	Co	onstraints2	
1.4	O	ut of scope2	
	2.Techi	nical Specification	2
2.1	Da	ataset 2	
	2.1.1	Dataset overview3	
	2.1.2	Input schema3	
2.2	Pr	edicting4	
2.3	Lo	ogging 4	
2.4	Da	atabase 4	
2.5	De	eployment 4	
	3.Techn	ology Stack	5
	4. Propo	sed Solution	5
	5. Mode	l Training/Validation Workflow	6
	6.User I	/O workflow	7
	7 Test ca	2505	Q

Abstract

Shipment pricing system are new generation of traditional shipment pricing where the whole process right from tracking the shipment package till delivery of the package to the customer. Users are able to track and find the cost of their package to be shipped by any modes. Apart from interesting real-world applications of Shipment pricing systems, the characteristics of data being generated by these systems make them attractive for the research.

1. Introduction

1.1 Why this Low-Level Design Documentation?

The purpose of this documentation is detailed description of shipment prediction system which will explain the purpose and the feature of the system, the interfaces of the system, what the system will do, the constraints under which it must operate and how the system will perform under different climatic conditions. This document is intended for both the stack holders and developers of the system and will be proposed for the higher management for its approval.

This project can be delivered in three phases

Phase 1: Building Machine learning model depending on the requirements.

Phase 2: Integration of UI and database to all the functionalities.

Phase 3: Deployment of project on cloud.

1.1 Scope

Shipment pricing system are new generation of traditional shipment pricing where the whole process right from tracking the shipment package till delivery of the package to the customer. Users are able to track and find the cost of their package to be shipped by any modes. Apart from interesting real-world applications of Shipment pricing systems, the characteristics of data being generated by these systems make them attractive for the research. Our main aim to predict reliable model which would be used across the all situation for predicting accurate prices

1.2 Constraints

This project is based on Shipment data across all the countries, There are also many redundant data which would affect our model accuracy.

1.3 Out of scope

System will not be Perform good if there are any new labels added.

Technical Specifications

1.2 Dataset

Data	Finalized	Source
Shipment Pricing	Yes	https://www.kaggle.com/divyeshard eshana/supply-chain-shipment- pricing-data

1.2.1 Dataset Overview

17379 – rows

9 – columns

	ID	Project Code	PQ#	PO / SO #	ASN/DN #	Country	Managed By	Fulfill Via	Vendor INCO Term	Shipment Mode	 Unit of Measure (Per Pack)	Line Item Quantity	Line Item Value	Pack Price	Unit Price	Manufacturing Site	D
0	1	100-CI- T01	Pre-PQ Process	SCMS-	ASN-8	Côte d'Ivoire	PMO - US	Direct Drop	EXW	Air	 30	19	551.00	29.00	0.97	Ranbaxy Fine Chemicals LTD	
1	3	108- VN- T01	Pre-PQ Process	SCMS- 13	ASN-85	Vietnam	PMO - US	Direct Drop	EXW	Air	240	1000	6200.00	6.20	0.03	Aurobindo Unit III, India	
2	4	100-CI- T01	Pre-PQ Process	SCMS- 20	ASN-14	Côte d'Ivoire	PMO - US	Direct Drop	FCA	Air	100	500	40000.00	80.00	0.80	ABBVIE GmbH & Co.KG Wiesbaden	
3	15	108- VN- T01	Pre-PQ Process	SCMS- 78	ASN-50	Vietnam	PMO - US	Direct Drop	EXW	Air	60	31920	127360.80	3.99	0.07	Ranbaxy, Paonta Shahib, India	
4	16	108- VN- T01	Pre-PQ Process	SCMS- 81	ASN-55	Vietnam	PMO - US	Direct Drop	EXW	Air	60	38000	121600.00	3.20	0.05	Aurobindo Unit III, India	
5	23	112- NG- T01	Pre-PQ Process	SCMS- 87	ASN-57	Nigeria	PMO - US	Direct Drop	EXW	Air	240	416	2225.60	5.35	0.02	Aurobindo Unit III, India	
6	44	110- ZM- T01	Pre-PQ Process	SCMS- 139	ASN- 130	Zambia	PMO - US	Direct Drop	DDU	Air	90	135	4374.00	32.40	0.36	MSD South Granville Australia	
7	45	109- TZ-T01	Pre-PQ Process	SCMS- 140	ASN-94	Tanzania	PMO - US	Direct Drop	EXW	Air	60	16667	60834.55	3.65	0.06	Aurobindo Unit III, India	
8	46	112- NG- T01	Pre-PQ Process	SCMS- 156	ASN-93	Nigeria	PMO - US	Direct Drop	EXW	Air	60	273	532.35	1.95	0.03	Aurobindo Unit III, India	

1.2.2 Input Schema

Feature name	Datatype	Null/Required			
Country	Text	Required			
Shipment mode	Text	Required			
Weight	Float	Required			
Line-Item Insurance	Float	Required			
Unit Price	Float	Required			
Pack Price	Float	Required			
Unit of measure	Float	Required			
Fulfill via	Text	Required			

1.3 Predicting

- ✓ The system displays the price of shipment according to the users input.
- √ The system presents the set of inputs required from the user.
- √ The user gives required information.
- ✓ The system should be able to predict the price of shipment for theinformation provided by the user.

1.4 Logging

- ✓ We have chosen File logging.
- ✓ System logs each and every system flow.
- √ Each and every user's input information is logged.

1.5 Database

The system stores each and every data given by the user orreceived on request to the database. We have used MongoDB.

1.6 Deployment

1. AWS

2. Technology stack

Frond End	HTML/CSS/
Backend	Python Flask
Database	MongoDB
Deployment	AWS

2. Proposed Solution

Shipment pricing system are new generation of traditional shipment pricing where the whole process right from tracking the shipment package till delivery of the package to the customer. Users are able to track and find the cost of their package to be shipped by any modes. Apart from interesting real-world applications of Shipment pricing systems, the characteristics of data being generated by these systems make them attractive for the research. Our main aim to predict reliable model which would be used across the all situation for predicting accurate prices

Model training/validation workflow

User I/O workflow

5. Test cases (if any)

Test Case Description	Pre-Requisite	Expected Result
Verify whether	Application URL	Application URL should
theApplication	should be	beaccessible to the user
URL is	defined	
accessible to the user		
Verify whether	1. Application	The Application should load
theApplication	URLis	completely for the user
loads	accessible	whenthe URL is accessed
completely for the user when	2. Application is	
the URL is accessed	deployed	
Verify whether user is able	1. Application	User should be able to edit
toedit all input fields	isaccessible	allinput fields
	2. User is logged in	
	to the application	
Verify whether user gets	1. Application	User should get Submit
Submit button to submit	isaccessible	buttonto submit the inputs
theinputs	2. User is logged in	
	to the application	
Verify whether user is	1. Application	User should be presented
presented with	isaccessible	withrecommended results on
recommendedresults on	2. User is logged in	clicking submit
clicking submit	to the application	
Verify whether the	1. Application	The recommended results
recommended results are	isaccessible	should be in accordance to
inaccordance to the	2. User is logged in	theselections user made
selections	to the application	
user made		
Verify whether is going to	1. Application	Recommended error page
inappropriate page or URL it	isaccessible	should be according to the
should go to the desired	2. User is logged in	Error/issue.
error	to the application	
page.		