Machine Learning Methods in Finance: Recent Applications and Prospects

Daniel Hoang, Kevin Wiegratz

Long Zhen

Contents

- Introduction to ML
- Taxonomy of ML
- Summary

1. Introduction to ML

• Instead of causal explanations, ML serves for prediction (supervised) or data structure inference(unsupervised).

1.1 Supervised learning

- Purpose: prediction
- Training data & test data
- Prediction performance vs. interpretation

- OLS: BLUE; best interpretation, weak performance
 - Nonlinear transformation and interactions?
- →LASSO/Ridge/Elastic Net: introduce bias by adding penalty term
- Regression tree
- → random forest: bootstrap samples and build separate trees
- \rightarrow GBDT: build trees iteratively

Figure 4. Illustrative depiction of a decision tree trained for house price prediction

Hard to interpret:

Feed-forward NN

- \rightarrow recurrent NN: for sequential data
 - Eg. Gated recurrent units/LSTM
- → convolutional NN: for visual data

• Older methods:

- Naïve Bayes
- SVM/SVR

1.2 Unsupervised learning

• Purpose: data structure inference

Clustering

- Centroid-based methods: eg. K-means
 - After the initial positioning of the centroids, they iteratively update their position to arrive at suitable clusters
- Density-based methods: eg. DBSCAN
 - Group observations with many similar observations nearby into clusters
- Distribution-based methods: eg. Gaussian mixture models
 - Based on whether observations belong to the same statistical distribution
- Hierarchical methods: eg. BIRCH
 - Iteratively combine smaller clusters into larger clusters

Dimensionality reduction

- Decrease the dimensionality while retain most of the inherent information
- PCA-based: cover as much of the data's variance as possible
- NN-based: autoencoder
 - Consist of an encoder network that creates a condensed representation of the input data and a subsequent decoder network that reconstructs the original data. A special bottleneck layer connect the encoder and decoder to train

- Others:
- Association rule mining: identify relations between variables
- Outlier detection methods

1.3 Reinforcement learning and other types

• Semi-supervised: eg. Active learning (closely related variant of semi-supervised learning): train the model with labeled examples → calculate importance score for the unlabeled → label and reduce costs

2. Taxonomy of ML Applications in Financial Economics

- ML solves different problems compared to OLS
- Three typical applications:

1	Construction of Superior and Novel Measures	$y = \beta X + \varepsilon$
2	Reduction of Prediction Error in Economic Prediction Problems	$\widehat{\mathbf{y}} = f(X)$
3	Extension of the Existing Econometric Toolset	$y = \beta X + \varepsilon$ & ML

2.1 Construction of superior and novel measures

Measures of Market Sentiment

Stock Market Sentiment	Methods	Data
Antweiler and Frank (2004)	Naïve Bayes/SVM	Yahoo Finance message board
Renault (2017)		StockTwits
Bartov et al. (2017)		Twitter
Barbon et al. (2019)	Naïve Bayes	Firm-specific news
Ke et al. (2019)	Customized ML	Dow Jones Newswire articles
Huang et al. (2014)	Naïve Bayes	Analyst reports
Manela and Moreira (2017)		Wall Street Journal front-page articles
Vamossy (2020)	Deep learning	StockTwits posts
Liew and Wang (2016)	Commercial ML	Twitter posts
Product Market		

Product Market	
Sentiment	

Tang (2018)

Methods	Data
Commercial ML	Twitter posts

Measures of Corporate Executives' Personality and Decisions

Hu and Ma (2020)

Executives' Personality	Methods	Data	Measures
Gow et al. (2016)	Naïve Bayes/SVM	Yahoo Finance message board	Naïve Bayes/SVM
Hrazdil et al. (2020)	IBM service	Conference calls	CEO and CFO personality
Hsieh et al. (2020)	Face detection	Executives' business headshot images	trustworthiness
Du et al. (2019)	Textual analysis	Mutual fund managers' letters to shareholders	Managers' level of confidence
Executives' Decisions	Methods	Data	Measures
Bandiera et al. (2020)			Whether perform low/high-level tasks
Barth et al. (2020)		Earnings conference call	How they withhold information

How founders speak? What they say? How they present

visually

Youtube videos

Measures of Firm Characteristics and Corporate Policies

Corporates	
------------	--

Li et al. (2020)

Buehlmaier and Whited (2018)

Lowry et al. (2020)

Methods	Data	Measures
	Conference call transcripts	Corporate cultures
	Annual report	Financial constraints
	SEC letters	Regulatory IPO concern

Financials

Hanley and Hoberg (2019)

Bubna et al. (2020)

Bertsch et al. (2020)

Methods	Data	Measures
Commercial ML	Banks' annual report	Risk exposure
Cluster		Venture capital relatedness
	Customer complaint texts	Bank misconduct

2.2 Reduction of Prediction Error in Economic Prediction

Explanation

- Feature importance: importance score
 - eg. Permutation importance (permute X_i and calculate the score)
- Feature dependence: relations between predictor and target
 - Partial dependence plots
- Single prediction analysis: disentangle the contribution of every predictor to a specific prediction value
 - Sharpley Additive Explanation(SHAP)

Prediction of Firm Characteristics and Corporate Policies Firm Fundamentals **Accounting Fraud** Startups' Success Amini et al. (2019) Bao et al. (2020) Xiang et al. (2012) Carnings
Van Binsbergen et al. Brown et al. (2020) Ang et al. (2020) (2020)

2.3 Extension of the Existing Econometric Toolset

- ML-enhanced instrumental variable regression
- Causal trees and forests

• Recall 2SLS:

$$y_i = \alpha + \beta x_i + \epsilon_i (i = 1, ..., n)$$
$$cov(x_i, \epsilon_i) \neq 0$$

- IV: $cov(z_i, \epsilon_i) = 0$; $cov(z_i, x_i) \neq 0$
- First stage:

$$x_i = \gamma + \delta z_i + u_i$$
$$\hat{x}_i = \hat{\gamma} + \hat{\delta} z_i$$

• Second stage:

$$y_i = \alpha + \beta \widehat{x_i} + (\epsilon_i + \beta \widehat{u_i})$$

- Causal ML & IV
 - Better predictions for the IV results in more precise estimates in the second stage.

Extension of the Existing Econometric Toolset

- ML-enhanced instrumental variable regression
- Causal trees and forests

Causal trees and forests

• 从协变量中,找到一个最优分裂节点,**最大化子节点间处理效 应差异**

Summary

- ML methods:
 - Supervised learning
 - Unsupervised learning
 - Others (reinforcement learning...)
- Taxonomy of ML
 - Measure construction
 - Prediction
 - Econometric extension
- Summary