Introduction à la Théorie des Catégories

Aurélien Vandeweyer Mattia Serrani

Service de Physique de l'Univers, Champs et Gravitation, Université de Mons, Belgique

Introduction

La théorie des catégories^[1] est une branche fondamentale des mathématiques qui permet d'étudier des concepts en les généralisant grâce à des propriétés universelles communes, décrivant ainsi des structures générales indépendamment des détails spécifiques propres à chaque domaine.

Qu'est-ce qu'une catégorie?

La définition que nous proposons^[2] ne dépend d'aucune représentation particulière :

Une **catégorie** $\mathcal C$ consiste en

- Une collection d'**objets** A, B, C, ...
- Une collection de **morphismes** entre les objets f, g, h, ...

telle que les trois propriétés suivantes soient satisfaites :

- Une loi de **composition** : $A \xrightarrow{f} B \xrightarrow{g} C \implies g \circ f : A \to C$.
- Une loi d'**identité** : $f \circ 1_A = f = 1_B \circ f$.
- Une loi d'associativité : $f \circ (g \circ h) = (f \circ g) \circ h$.

Ce sont les flèches qui comptent vraiment!

Un objet est entièrement caractérisé par son morphisme identité^[2].

Exemples de catégories

Set : Les objets sont les ensembles et les morphismes sont les fonctions.

Pos: Les objets sont les posets et les morphismes sont les fonctions monotones.

Catégories finies : la collection d'objets et de morphismes sont des ensembles finis.

Monoïde : Un monoïde est une catégorie d'un seul objet, les flèches sont les éléments du monoïde,

Un exemple concret :

Groupe: Un groupe G est un monoïde munis d'un inverse, donc G est une catégorie avec un seul objet et dont chaque morphisme est un isomorphisme.

Et si on inverse le sens des flèches?

La catégorie opposée \mathcal{C}^{op} d'une catégorie \mathcal{C} consiste à l'inversion des flèches :

- ${ullet} (\mathcal{C}^{\mathsf{op}})^{\mathsf{op}} = \mathcal{C}.$
- $dom(\mathcal{C}) = cod(\mathcal{C}^{op})$ et $cod(\mathcal{C}) = dom(\mathcal{C}^{op})$.
- Un résultat prouvé dans une catégorie est également vrai dans sa catégorie duale.

Foncteurs

Grossièrement, si \mathcal{C} et \mathcal{D} sont deux catégories, alors un **foncteur** $F:\mathcal{C}\to\mathcal{D}$ donne une "image" de la catégorie \mathcal{C} dans la catégorie \mathcal{D} . En termes de diagrammes^[2]:

On parle ici de foncteurs **covariants**, mais il existe également des foncteurs **contravariants**.

Applications entre foncteurs

On peut établir des correspondances entre les foncteurs, appelées **transformations naturelles**. Leur composition est illustrée comme suit :

On dit que η_X est la composante X de la transformation naturelle η .

Et des isomorphismes?

Si $F \xrightarrow{\eta} G$ et $G \xrightarrow{\nu} F$ telles que $\eta \circ \nu = 1$ alors cela définit un **isomor**-de la transformation naturelle est un isomorphisme.

Propriété universelle

Pour définir une certaine notion au sens large, on utilise une **propriété universelle** (UMP) :

L'UMP est fréquemment définie comme une (ou plusieurs) condition d'existence.

Exemples de propriétés universelles

Monoïde libre : Dans la définition, X est simplement un ensemble.

Produit : Un produit^[3] est caractérisé par deux projecteurs tels que toutes les informations du produit y sont contenues. Ni plus ni moins.

Algèbre enveloppante universelle : Étant donné une K-algèbre de Lie $\mathfrak g$, peut-t-on construire une algèbre associative dont le commutateur correspond au crochet de Lie de $\mathfrak g$?

- 1. Algèbre tensorielle : $T(\mathfrak{g}) := \sum_{n=0}^{\infty} \mathfrak{g}^{\otimes n}$ avec $\mathfrak{g}^{\otimes 0} = K$ et $\sigma : \mathfrak{g} \to T(\mathfrak{g})$.
- 2. Algèbre enveloppante : $[X,Y] \stackrel{!}{=} X \otimes Y Y \otimes X$. On a l'algèbre enveloppante $U(\mathfrak{g}) := T(\mathfrak{g}) / \sim$.
- 3. Propriété universelle : Soit φ un homomorphisme t.q. $\varphi([X,Y]) = \varphi(X)\varphi(Y) \varphi(Y)\varphi(X)$, alors il existe un unique homomorphisme $\tilde{\varphi}: U(\mathfrak{g}) \to A$ tel que le diagramme commute

En pratique?

Le centre de l'algèbre enveloppante $U(\mathfrak{g})$ caractérise les **opérateurs de Casimir**. Le carré du moment angulaire \mathbf{J}^2 est l'exemple typique, $\mathbf{J}^2 := j_X^2 + j_y^2 + j_z^2 = I(I+1)$. Plus précisément,

$$C := \sum_{i=1}^{n} X_i X^i \in U(\mathfrak{g}), \qquad [C, X_i] = 0, \qquad X_i, X^i \in \mathfrak{g}.$$

Le lemme de Yoneda

Il s'agit d'un résultat central de la théorie des catégories^[1] : pour tout objet $C \in \mathcal{C}$ et pour tout foncteur $F \in \mathbf{Fun}(\mathcal{C}^{\mathrm{op}}, \mathbf{Set})$, il existe un unique isomorphisme $\overline{\mathrm{Hom}(Y(C), F) \cong F(C)}$. Un corollaire important est que $\overline{Y(C) \cong Y(D)} \Leftrightarrow C \cong D$.

- L'entité $\text{Hom}(-, A) : \mathcal{C}^{\text{op}} \to \textbf{Set}$ est un **foncteur représentant**.
- L'élément Y(C) est l'**intégration de Yoneda**.
- La catégorie $Fun(\mathcal{C}^{op}, \mathbf{Set})$ est la catégorie des foncteurs $\mathcal{C}^{op} \to \mathbf{Set}$.
- Le lemme de Yoneda généralise le théorème de Cayley.

Références

- 1. Mac Lane, Saunders. Categories for the Working Mathematician, 2nd ed. Springer, 1998.
- 2. Awodey, Steve. Category Theory, 2nd ed. Oxford University Press, 2010.
- 3. Milewski, Bartosz. Category Theory for Programmers. Open Access Book, 2017.