3-3 Stepping Stone: Introduction to Threat Modeling

Joshua Merren

Southern New Hampshire University

CYB-250-11621-M01 Cyber Defense

Professor Tchinda Mbuna

15 July 2024

I. Threat Modeling

Incident	Target Breach	Sony Breach	OPM Breach
Attackers	the attackers were	Hacktivists with	Suspected state-
	initially believed to be	possible nation-state	sponsored Chinese
	part of an organized	sponsorship, identified	hackers used
	crime group	as 'Guardians of the	sophisticated
	specializing in	Peace.'	techniques to breach
	stealing credit card		OPM's systems,
	data.		possibly as part of a
			larger espionage
			strategy.
Tools	Malware including	Custom malware	The hackers utilized
	BlackPOS, which	tools, including data-	malware such as
	scraped memory from	wiping malware	PlugX and Sakula,
	POS terminals to	named Destover, were	which provided them
	capture credit card	used to disrupt	with remote access
	data.	operations, delete	capabilities and the
		critical data, and leak	ability to move
		sensitive information.	laterally within the
			network.
Vulnerability	Poor network	Sony's network was	Inadequate security
	segmentation and	insufficiently secured	measures including
	security practices at	against sophisticated	the lack of multi-
	Target allowed the	intrusion tactics, and	factor authentication
	malware to access and	there was a failure to	for system access and
	transmit sensitive	respond adequately to	insufficient
	data.	previous security	monitoring of
		warnings.	sensitive systems.

Action	Attackers installed	Deployment of	Utilization of stolen
	malware on POS	destructive malware	credentials to install
	systems to capture	leading to the erasure	backdoors and
	credit card	of system data,	malware on the
	information and	dissemination of	network, enabling the
	transmitted it out of	confidential	exfiltration of
	the network.	communications, and	sensitive data
		public exposure of	including SF-86
		personal information	forms.
		of employees and	
		celebrities.	
Target	Point of Sale (POS)	Corporate networks,	Databases containing
	systems handling	specifically systems	detailed personnel
	credit card	containing sensitive	records and
	transactions.	employee data,	background check
		intellectual property,	information for
		and internal	government
		communications.	employees.
Unauthorized Result	Theft of 40 million	Massive data	Theft of sensitive
	credit and debit card	destruction, public	personal data for over
	numbers and 70	leakage of	22 million current and
	million records	confidential emails,	former federal
	containing personal	unreleased films, and	employees, including
	information.	severe reputational	fingerprints and
		damage to Sony.	background check
			information.
Objective	To steal credit card	Coerce Sony into	Gather extensive
	information for	altering or halting the	personal and
	fraudulent purposes.	release of a film ("The	biometric information
		Interview") critical of	for intelligence

	North Korea,	purposes, potentially
	alongside punishing	for use in creating
	the company for	detailed profiles on
	perceived insults.	U.S. government
		emplovees.

II. Incident Analysis: OPM Breach

Among the incidents studied, the "Confidentiality" component of the CIA triad is most applicable to the action category of the OPM breach. The unauthorized access and exfiltration of susceptible data breached confidentiality on a massive scale. This violation of privacy and security impacted individual employees and had broader national security implications.

Analyzing the attack using an adversarial mindset allows cybersecurity professionals to understand better and counteract the tactics employed. The attackers in the OPM breach likely had a detailed understanding of the systems they targeted, allowing them to maneuver through the network undetected for an extended period. They exploited less secure third-party connections, an often-overlooked vulnerability, to gain initial access. Recognizing such sophisticated strategies helps to craft layered defense mechanisms that are adaptive and robust against multi-vector attacks.

Proactively employing threat modeling at OPM could have led to significant changes in handling and protecting sensitive information. For instance, more rigorous identity and access management controls could have been established, including enforcing multi-factor authentication and stricter access protocols for third-party vendors. Regularly conducting security audits and penetration testing could have helped identify and mitigate vulnerabilities

before they could be exploited. Moreover, continuous monitoring of network traffic and anomaly detection systems alerted administrators to unauthorized access attempts sooner, potentially preventing extensive data exfiltration.

III. Threat Modeling Extension

The necessity of threat modeling in cybersecurity is apparent, given its capacity to systematically identify and address potential vulnerabilities before they are exploited. To persuade a supervisor of the importance of threat modeling, one could argue that threat modeling enhances security and optimizes resource allocation by directing security efforts where they are most needed. Additionally, it supports compliance with various regulatory requirements by demonstrating due diligence in protecting sensitive information.

Threat modeling is critical for security practitioners because it provides a comprehensive method for assessing security from an attacker's perspective. Security teams can design systems and controls that effectively mitigate risks by understanding potential attack vectors. This proactive approach is far more cost-effective than the reactive handling of security breaches, often resulting in significant financial and reputational damage.

Beyond enhancing security controls, threat modeling can offer organizational benefits such as improved IT governance and risk management. It can foster a culture of security awareness throughout the organization, ensuring that all employees understand their role in maintaining security. This holistic approach not only improves security but also enhances the overall resilience of the organization against cyber threats.

Regarding role-specific applications, threat modeling differs significantly across various IT functions. For testers, the focus is on identifying and exploiting system vulnerabilities to

understand potential breach points. Designers use threat modeling to anticipate and design against potential security flaws, ensuring that systems are resilient from the ground up. Meanwhile, developers apply threat modeling to trace how data flows through systems and ensure that all data transactions are secure from interception or manipulation.