Цепной метод поиска булевой производной.

Цепной метод вычисления булевых производных

 $Y=y(x_1...x_i..x_e)$ Чтобы выделить функцию, зависяшую $y=y(x_1...x_k;y_1(x_{k+1}...x_i..x_e))$, $dy/dx_i=dy/dy_1*dy_1/dx_i$ Если y_1 - сложная функция, $y=y(x_1...x_k;y_1(x_{k+1}...x_i...x_e)*y_2(x_{k+1}...x_i...x_e)$ $y_3(x_{k+1}...x_i...x_e)$), то $dy/dx_i=dy/dy_1*dy_1/dx_i*dy_2/dy_3*...dy_n/dx_i$ тогда все вычисления булевых производных сводятся к правилам.

Цепной метод поиска частной булевой производной:

$$\frac{dy}{dx_i} = y(x_1, ..., x_{i-1}, 0, x_{i+1}, ..., x_n) \oplus y(x_1, ..., x_{i-1}, 1, x_{i+1}, ..., x_n)$$

Выполнив суперпозицию можна записать

$$Y = y(x_1, ..., x_{k-1} * y_1(x_k, ..., x_i, ..., x_n)); \frac{dy}{dx_i} = \frac{dy}{dy_1} \cdot \frac{dy_1}{dx_i}; \frac{dy}{dx_i} = \frac{dy}{dy_1} \cdot \frac{dy_1}{dy_2} \cdot \cdot \frac{dy_m}{dx_i}$$

Идея метода — при разумном выборе функции $y_1...y_m$ все производные в правой части берутся достаточно просто, например по правилам 7 и 8. Но это справедливо в том случае, если при каждой суперпозиции находится единственная ф-ция $y_1...y_m$ которая зависит от x_i . Это соответствует комбинационной схеме без разветвлений.

Пример:

Вычисления можна упростить используя префиксную форму

$$y = (((x1+x2)_1x3x4)_3(x5+x6)_2)_4$$

$$y = (_4 \land (_3 \land (_1 \lor (x1x2)_1x3x4)_3(_2 \lor x5x6)_2)_4$$

Аргументы в скобках называются списком аргументов

Правило интерпретируется

$$\frac{d(\neg cnuco\kappa_apzyментов)}{d(apzyмент_us_cnucka)} = \land cnuco\kappa_apzyментов_беs_apzyментаиs_cnucka\\ \frac{d(\nabla cnuco\kappa_apzyментов)}{d(apzyмент_us_cnucka)} = \neg cnuco\kappa_apzyментов_беs_apzyментаиs_cnucka\\ \Pipuмер$$

$$\frac{dy}{dx_1} = \frac{dy}{dy_4} \frac{dy_4}{dy_1} \frac{dy_1}{dx_1}$$

$$\begin{aligned} \frac{dy}{dy_4} &= \frac{d(\nabla y + y + 5)}{dy_4} = (\overline{\wedge}y + 5) = (\overline{\wedge}y + 3) = y + 3 = \overline{x}_6 \vee \overline{x}_7 \\ \frac{dy_4}{dy_1} &= \frac{d(\overline{\wedge}y + 1 \times 3y + 2)}{dy_1} = (\overline{\wedge}x + 3y + 2) = (\overline{\wedge}x + 3(\overline{\wedge}x + 4 \times 3x + 5)) = x + 3x + 4 \vee x + 3x + 5 \\ \frac{dy_1}{dx_1} &= \frac{d(\overline{\wedge}x + 1 \times 2)}{dx_1} = \overline{x}_2 \end{aligned}$$

$$\frac{dy}{dx_1} = (\overline{x}_6 \vee \overline{x}_7)(x_3x_4 \vee x_3x_5)\overline{x}_2 = \overline{x}_2x_3x_4\overline{x}_6 \vee \overline{x}_2x_3x_4\overline{x}_7 \vee \overline{x}_2x_3x_5\overline{x}_6 \vee \overline{x}_2x_3x_5\overline{x}_7$$

	X1	X2	X3	X4	X5	X6	X7	Y
X1≡0	1	0	1	1	x	0	х	1
	1	0	1	1	x	x	0	1
	1	0	1	x	1	0	x	1
	1	0	1	х	1	x	0	1
X1≡1	0	0	1	1	x	0	x	0
	0	0	1	1	x	x	0	0
	0	0	1	x	1	0	x	0
	0	0	1	x	1	x	0	0