Project Banner

OBJECTIVE

To design and implement a radar-based system capable of classifying drones and birds using micro-Doppler signature analysis. The system aims to enhance situational awareness by reliably differentiating between drones and birds, leveraging the unique time-frequency features of their motion patterns for improved security and surveillance applications.

PROPOSED SOLUTION

To design and implement a radar-based system capable of classifying drones and birds using micro-Doppler signature analysis. The system aims to enhance situational awareness by reliably differentiating between drones and birds, leveraging the unique time-frequency features of their motion patterns for improved security and surveillance applications.

The outcome is a system that classifies objects as either birds or drones using radar signals within milliseconds.

The beneficiaries are security agencies, surveillance operators, and airspace regulators.

Mr. Rajesh Joseph Abraham,

Associate Professor, Indian Institute of Space Science and Technology

Mr. Harish Kumar, Lead Data Scientist, NTTDATA Services

MENTORING REVIEW - 1

Round - 1 Mentoring: Time : 12:00 PM Venkat Nagabhushanam Jetty: Multi-class Target Classification Faculty coordinator/evaluator: Computational expensiveness? Solution: We have trained in CPU, (Already provided) it requires CPU not any higher end devices. Alumni Coordinator : Positive booking. Work to be done: -> Multiclass target classification. lime : 7:14 PM Round 1 - Evaluation Work done: -> For Multi-class target classification, we have done upto "Extract Spectrum" from the time domain data. -> PM's input: Idealogy from him about distance, direction of the target. Inputs from Mentors: -> Model for classification -> Business prototype / End product (technical) -> Scalogram images of human walk, human run -> Archietecture -> Feature extraction/ Distance, direction

MENTORING REVIEW – 2

MODEL DOCUMENTATION

100 Photos and the storage makes a				
S, No	Model Name	Input	Transformation technique	Accuracy
1-	Serial Network	Spectogram	STFT	85.367
2.	ResNetso	Spectogram	STFT	66.67%
3.	LSTM-ALRO	Spectrogram	STFT	91.30%
4.	Random Forust	PCA-transformed, flattend spectrogram images	STFT	92.00%
Б.	Gated Rewrount Unit	Spectrogram	STFT	66.6≠%
6.	Shallow CNN	SNR normalized FFT matrix	FFT	68%
7.	Resnet 50	Entire scan segment -> scalogram	CMT	85.1.
8.	Resnet 50	center ranges cell → Sælogram	ewt	76.90%. Biased overtitle
ġ.	Resnet 50' (callback func)	center range cells → scalogram	СИТ	99.9 y. Blassed over drone.
10.	Resnet 50 (stratified k. Rold)	Entire Scan-) Scalogram	CMT	100%. Biased or bird.

Conclusion: (feature extracted models) 11. Random forest features CMT 91.884. 12. Adaboost features CMT 85.814. 13. XGBoost features CMT 91.474. 14. SVM features CMT 91.474. 15. Decision features CMT 83.144. 16. Thee

Architecture of End Product

Aychitecture Of End Product.

Architecture of Model

