Section 2.3.

Trajectory and range in a linear medium

Read Section 2.3.

Recall the basic equations for projectile motion with linear air resistance.

Let x = the horizontal coordinate; let y = the vertical coordinate, with the positive direction upward;

Solutions for v_x and v_y as functions of t ...

$$m\dot{v}_{x} = -bv_{x} \implies v_{x}(t) = v_{0x}e^{-bt/m}$$
 $m\dot{v}_{y} = -mg - bv_{y}$

$$\Rightarrow v_{y}(t) = (v_{0y} + \frac{mq}{b})e^{-bt/m} - \frac{mq}{b}$$

Rewrite the solutions ...

"time constant" = τ and "terminal speed" = v_{ter}

Calculation of the trajectory

The "trajectory" is the curve in space along which the particle moves

► Horizontal position, x(t)

$$\chi(t) = \int_{0}^{t} U_{x}(t') dt'$$

$$= U_{0x}(-\tau) e^{-t/\tau} |_{0}^{t}$$

$$= U_{0x} \tau (1 - e^{-t/\tau})$$

x(t) increases to x_{final} as $t \to \infty$;

$$x_{\text{final}} = v_{0x} \tau$$
.

► Vertical position, y(t); take y(0) = 0

$$y(t) = \int_{0}^{t} v_{y}(t') dt'$$

$$= (v_{0}y + v_{fer})(-\tau)e^{-t/\tau} |_{0}^{t} - v_{fer}t$$

$$= (v_{0}y + v_{fer})\tau(1 - e^{-t/\tau}) - v_{fer}t$$

 $v_y(t)$ reaches a maximum downward velocity as $t \to \infty$; terminal velocity = $-v_{ter}$

►Trajectory, i.e., the curve in space along which the projectile moves; y as a function of x;

$$y = (v_{oy} + v_{ter}) \frac{x}{v_{ox}} + v_{ter} \approx l_n (1 - \frac{x}{v_{ox}\tau})$$

Figure 2.7

The trajectory of a projectile, assuming linear air resistance

Figure 2.7 The trajectory of a projectile subject to a linear drag force (solid curve) and the corresponding trajectory in a vacuum (dashed curve). At first the two curves are very similar, but as t

 $\underline{\text{Horizontal range}}$; R and R_{vac}

Recall, without air resistance,

With linear air resistance,

But this is a *transcendental equation* for the range R (as a function of v_{0x} and v_{0y}).

Methods: [i] use a computer, or [ii] make an approximation.

Example 2.4

RANGE OF SMALL METAL PELLETS

(note: "small" means tiny).

Suppose D = 0.2 mm and {
$$v_{0x}$$
, v_{0y} } = { $1/\sqrt{2}$, $1/\sqrt{2}$ } m/s. *Calculate the range*.

To solve:

Recall, v_{ter} = mg/b and τ = m/b = v_{ter} /g. We'll calculate m from density ρ , m = $(\pi/6) \rho D^3$; also, recall b = $(1.6 \times 10^{-4} \text{ N.s/m}^2) D$ ◆ If there is no air resistance then the range is

$$R_{\text{vac}} = 2 v_{0x} v_{0y} / g = 10.2 \text{ cm}$$

◆ Assuming linear air resistance, and solving the equation exactly (with *Mathematica*)

material	density (kg m ⁻³)	v _{ter} (m/s)	R (cm)
gold	16 ×10 ³	20.5	9.74
aluminum	2.7 ×10 ³	3.47	7.96

♦ Taylor's approximate method ...

$$y = 0$$
 where $x = R$,

$$(V_{oy} + V_{ox}) \frac{R}{V_{ox}} + V_{ter} I \ln \left[1 - \frac{R}{V_{ox}T}\right] = 0$$

We might anticipate that R / $(v_{ex} \tau)$ is small , because these tiny pellets will have a small range.

Let
$$\varepsilon = R / (v_{ex} \tau)$$
.

Recall the Taylor series for $\ln (1 - \varepsilon)$ = $-\varepsilon - \varepsilon^2 / 2 - \varepsilon^3 / 3 + O(\varepsilon^4)$

So approximate (anticipating $\epsilon << 1$)

$$\ln (1 - \varepsilon) \approx -\varepsilon - \varepsilon^2 / 2 - \varepsilon^3 / 3$$

Results of the approximation gold $R \approx 9.73 \text{ cm} \quad [9.74 \Rightarrow \text{error} = -0.1 \%]$ aluminum $R \approx 7.42 \text{ cm} \quad [7.96 \Rightarrow \text{error} = -7.3 \%]$

Range for linear air resistance

Calculated using Mathematica.

Assume the initial angle of elevation is 45 degrees. Plot the *range* versus *initial speed*, for v_{ter} = 40 m/s.

Dashed curve = no air resistance

Black curve = linear air resistance exact

Red curve = Taylor's approximation (2.44); breaks down for large v_0

Parametric Plots

Suppose we know x(t) and y(t); and now we want to make a plot of y versus x (" the trajectory ").

```
ParametricPlot[ {x[t],y[t]},
  {t,0,5},
  PlotRange->{{0,15},{0,6}} ]
```

For example, with $g = 9.8 \text{ m/s}^2$, $v_0 = \{10,10\} \text{ m/s}$, and $\tau = 3 \text{ s}$:


```
x[t_]:=v0x*τ*(1 - Exp[-t/τ])
y[t_]:=(v0y+vter)*τ*(1 - Exp[-t/τ])
- vter*t
```

Homework Assignment #3 due in class Friday, September 23

[11] Problem 2.2 *

[12] Problem 2.3 *

[13] Problem 2.10 **

[14] Problem 2.18 *

[15] Problem 2.26 *

[16] Assigned problem

Use the cover sheet.