LGE OSPO

SW 공급망 보안 가이드라인 소개

SW 공급망 보안 국제 동향 및 SBOM 활용 사례

LG전자 | SW센터 | 박 원 재

Contents

I. SW 공급망 보안 가이드라인

I. SW 공급망 보안 가이드라인

개요

발행 기관

과학기술정보통신부, 디지털플랫폼정부위원회, 국가정보원

발행일

2024. 05.

주요 내용

이 가이드라인은 소프트웨어(SW) 공급망 보안 관리의 필요성과 주요 국가들의 정책 동향을 검토하고, 기업과 산업, 그리고 국가 차원에서 통합된 위험관리 체계를 구축하는 방안을 제안합니다. 이 체계에서 SBOM은 SW 공급망에서의 SW구성 요소에 대한 신뢰할 수 있는 정보를 공유하는 중요한 수단이 되는데, 본 문서에서는 정부 여러 기관이 운영하는 테스트베드를 통해 SBOM 인프라를 지원하고 있음과 동시에 국내에서 활용 가능한 SBOM 표준에 대해서도 소개합니다.

배포처

한국인터넷진흥원 (KISA)

https://www.kisa.or.kr/2060204/form?postSeq=15&page=1

01 환경 변화

• 초연결 사회의 도래

01 환경 변화

• SW 부품 공급의 분업화 / 공개 SW 사용의 확대

II. 추진 배경

02 SW 공급망 위기 대응의 필요성

• 공격 기법의 고도화

02 SW 공급망 위기 대응의 필요성

• 피해 규모의 대형화

03 주요국 정책 동향 (미국)

- 미국
 - '21.5 | EO14028
 - '22.9 | 관리예산처(OMB) 보안 강화 지침
 - Self-Attestation 제출 요구, SBOM 중요성 부각
 - '23.1 | FDA 의료기기 보안 강화 정책
 - SBOM 제출 요구

- 일본
 - 의료, 자동차, SW 분야에 SBOM 실증(PoC)사업 진행중
 - 공개 SW의 급속한 확대로 통신 분야 공급망에 대한 SBOM 도입 가능성 검토중(2023)

- 유럽
 - '24.3 | 유럽의회 Cyber Resilience Act(CRA) 승인
 - 유통되는 디지털 기기의 SBOM 제출 의무화
 - 이사회의 승인을 거쳐 2026년 하반기 발효될 것으로 예상
 - CE 마크 부착 요건에 Cyber 보안 적합성 포함
 - CE 마크: KC 마크와 유사한 개념
 - 제품 안정성 관련 인증
- Quad 사이버보안 파트너쉽
 - 미국, 일본, 인도, 호주 4개국 협의체
 - 각국 정부 정책에 '안전한 SW 개발 활동'을 반영하고, 장려하기로 합의
 - 안전한 SW를 위한 공동의 원칙을 마련

01 C-SCRM 구축 방안

• 공급망 보안 기본 개념 (미국 국립표준기술 연구소, NIST)

공급망 요소 (Supply Chain Element) 시스템 및 구성요소의 연구 및 설계, 개발, 제조, 구입, 배포, 통합, 운영 및 유지보수 또는 폐기에 사용되는 조직과 개체, 도구를 포함

공급망 사이버보안 위험 (Cybersecurity Risks throughout the Supply Chain)

공급자(개발사 및 공급(유통)사), 공급망(개발환경 및 업데이트 전송로), 제품 및 서비스에서 발생할 수 있는 피해와 침해 가능성

공급망 사이버보안 위험평가 (Cybersecurity Supply Chain Risk Assessment)

공급망 전체의 사이버보안 위험, 발생 가능성 및 잠재적 영향에 대한 체계적인 조사

공급망 사이버보안 위험관리 (Cybesecurity Supply Chain Risk Management, C-SCRM)

공급망 전체에서 사이버보안 위험에 대한 노출을 관리하고 적절하게 대응하기 위한 전략, 정책 및 절차 등의 관리체계

01 C-SCRM 구축 방안

- 기업, 기관의 C-SCRM 관리 활동 (NIST)
 - 3개 레벨로 나누어진 다단계 위험관리 체계를 구축할 수 있음

표 7 이해관계자의 역할에 따른 주요 C-SCRM 활동 예시

수준	이해관계자	역할	활동
1. 전사	경영진 ²⁶⁾	C-SCRM 활동에 대한 경영진의 감독을 확립	 전사적 C-SCRM 전략 정의 거버넌스 구조 및 운영 모델 수립 기업의 위험 구성, 위험관리 방식의 기조 설정 대체적인 구현 계획, 정책, 목적, 목표를 정의 전사적 수준의 C-SCRM 의사 결정 수행 C-SCRM PMO(프로젝트 관리조직) 구성
2. 프로세스	비즈니스 관리자 ²⁷⁾	기업의 미션과 비즈니스 프로세스 측면에서 공급망의 사이버보안 위험을 평가, 대응, 모니터링	비즈니스 프로세스별 전략 개발 정책, 절차, 지침, 제약사항 개발 신규 IT 프로젝트에서 보안취약점 감축 C-SCRM 구현 계획 개발 기업의 위험관리 체계를 비즈니스 프로세스에 맞게 조정 (예, 위험 허용 범위 설정) 비즈니스 프로세스 내 위험관리 C-SCRM에 관해 레벨1에 보고, 레벨3의 보고에 대한 조치
3. 시스템 업무에 C-SCRM을 운영 관리자 ²⁸⁾ 적용하고 운영 및 *개별		업무에 C-SCRM을 적용하고 운영 및	C-SCRM 계획 개발 C-SCRM 정책과 요구사항 구현 레벨1과 2에서 제공한 제약사항 준수 개별 시스템의 상황에 맞게 C-SCRM을 조정하고 SDLC에 적용 C-SCRM에 관해 레벨2에 보고

01 C-SCRM 구축 방안

안전한 빌드 및 배포

• 개발, 운영환경의 C-SCRM 구축 방안 (ESF 권고)

취약점 대응 조치

그림 8 SW 공급망 참여자에 따른 보안 활동

• 개발사, 공급사, 운영사로 나누어 역할 분배

안전한 SW 개발체계(NIST) 활용 가능 :
 Secure Software Development Framework(SSDF)*

- SSDF의 특징
 - SW 개발에 관한 지식 없이도 이해할 수 있는 프레임워크
 - 사용하는 SDLC 모델, 기술, 플랫폼, 프로그래밍 언어, 운영환경과 관계 없이 적용 가능

02 SW 구성요소의 신뢰성 확보 방안

- Software Bill of Materials (SBOM)
 - SW 전체의 구성요소를 목록화한 문서

15 / 35

02 SW 구성요소의 신뢰성 확보 방안

• NTIA의 SBOM 최소 요건

02 SW 구성요소의 신뢰성 확보 방안

• NTIA의 SBOM 최소 요건

02 SW 구성요소의 신뢰성 확보 방안

- SBOM 활용 영역
 - 보안취약점 관리

• 공개 SW 라이선스 관리

03 SBOM 기반 공급망 보안 강화 방안

• 주체별 보안 강화 방안

개발사

• SBOM 생성을 위한 필수 설비 구축 필요 (SBOM 도구 등)

공급사 및 운영사

- SBOM 공급(유통)체계 구축
 - 정부/공공기관/협회/단체 등에 산업별 SW 공급망 거점을 구축

03 SBOM 기반 공급망 보안 강화 방안

• 주체별 보안 강화 방안

개발사

• SBOM 생성을 위한 필수 설비 구축 필요 (SBOM 도구 등)

공급사 및 운영사 • SBOM 공급(유통)체계 구축

• 정부/공공기관/협회/단체 등에 산업별 SW 공급망 거점을 구축

산업별 SW 공급망 거점 / SW공급망 관리센터

- 산업 생태계 스스로 SBOM 유통할 수 있도록 지원
- 위험 발생 시 산업 전반에서 빠르게 조치 할 수 있도록 지원
- 통합하여 국가 단위로 관리

01

SBOM 생성, 활용 실증

의료, 보안 분야 SW 3종을 활용한 실증

• SBOM 생성 과정에서 SBOM 유효성 검증

18 SBOM 유효성 검증 단계에서 데이터 누락·중복	릭 사례
-------------------------------	------

컴포넌트 (Component Name)	버전 (Component Version)	공급자 (Supplier Name)	라이선스명 · 버전 (License Name · Version)	
commons-io	1,3,2		정보누락	
commons-io	2,2			
commons-io: commons-io	2,2		Apache-2,0	
commons-io: commons-io	2,1	정보누락	Apache-2,0	
commons-io: commons-io	1,3,2		Apache-2,0	
commons-io: commons-io	1,3		Apache-2,0	

년트	버전	공급자	라이선스명
Ant Nome	(Component Version)	(Cupplior Nama)	(Licopeo Nom

SBOM 데이터를 수정·보완한 사례

(Component Name)	(Component Version)	(Supplier Name)	(License Name·Version)
commons-io	1.3.2	apache	Apache-2,0
commons-io	1,3	apache	Apache-2,0
commons-io	2,1	apache	Apache-2,0
commons-io	2,2	apache	Apache-2,0

- 자동 생성 과정에서는 SBOM 항목 중 누락, 중복이 필연적으로 발생
- 검색을 통해 수작업으로 보완 필요

01 SBOM 생성, 활용 실증

- SBOM 도구를 활용한 컴포넌트 관리
 - Source 분석 도구는 편차가 상대적으로 적음
 - Binary 분석 도구는 편차가 큼
 - 2종 이상의 도구 사용을 권장
- SBOM을 활용한 보안 취약점 탐지 및 조치
 - SBOM 생성을 통한 컴포넌트 관리가 취약점 탐지 및 조치에 중요
 - 분석 도구에 따라 컴포넌트 정보가 달라지고, 취약점 정보도 달라지므로 주지 필요
 - 분석 도구에 따라 CVE-ID, 출처, 조치 방안 등이 다르게 표현됨
 - 즉, 경험의 축적이 필요

oz SW 공급망 보안 관리 체계 점검 실증

- 개요
 - 미국 가이드를 참조해 54개 세부항목을 만들고, 인터뷰 진행
- 실증 결과
 - 대상 중소기업은 SW 공급망 보안 관리 인식 부족했음
 - 상당수 대기업들은 SW 투명성/안정성을 위한 SBOM 기반 체계를 구축하고 운영중
 - 보안취약점 관리 보다 라이선스 관리에 중점을 두고 있음

표 21 SW 공급망 보안 점검 실증 항목 일부				
보안 요구 분야	점검 항목(예)			
안전한 제품 관리	• 정기적인 SW 보안 교육 여부			
(12개)	• 모의해킹, 보안취약점 진단 등 보안을 위한 활동 여부			
보안코드 개발	• 빌드 관리 및 보안성 검토 수행 여부			
(13개)	• 빌드단계에서의 보안요구사항 확인 여부			
타사 구성요소 확인	• 공개 SW, 상용 SW의 보안요구사항 확인 여부			
(7개)	• 취약성, 라이선스 만료 확인 여부			
개발환경 보안	• 빌드 환경에 대한 공격 표면 조사 및 위협 모델링 수행 여부			
(16개)	• 개발환경에 대한 접근제어, 인터넷 차단 등 조치 수행 여부			
보안코드 전달	• 패키지 바이너리의 전자서명 생성 여부			
(6개)	• 계약 명기 시, SBOM 전달 여부			

표 22 SW 공급망 보안 점검 상세 결과					
보안 요구사항	전체 항목	Y(양호)	P(부분양호)	N(취약)	N/A
안전한 제품 관리	12	5	6	1	0
보안 코드 개발	13	4	5	4	0
타사 구성요소 확인	7	5	1	1	0
개발환경 보안	16	7	3	4	2
보안 코드 전달	6	3	1	2	0
합계	54	24	16	12	2

V. SBOM 기반 SW 공급망 보안 활성화 지원

01 SW 보안 취약점 점검 지원 테스트베드

- 기업지원허브(판교)
 - 가전, 금융, 스마트도시, 의료 등 다양한 분야에 대한 사이버보안 위협 시연
 - 보안취약점 점검 도구 활용 지원
 - 학생, 일반인 등을 대상 견학 및 교육 프로그램 운영

01 SW 보안 취약점 점검 지원 테스트베드

- 디지털헬스케어 보안 리빙랩(원주)
 - 환자 의료정보 시스템 변조, 개인의료장비 트래픽 변조 등 디지털헬스케어 기기에 대한 사이버위협 시연
 - SW 의료기기를 포함한 다양한 디지털헬스케어 의료기기에 대한 보안취약점 점검을 지원
 - SW가 포함된 의료기기 인·허가 시 의료기기 인허가 지원

or SW 보안 취약점 점검 지원 테스트베드

- 국가사이버안보협력센터 기술공유실(판교)
 - SBOM 생성 자동화, SBOM 관리, SW 보안취약점 추적/관리 실증을 위한 테스트베드 구축
 - 테스트베드를 활용한 SBOM 출력

02

SW 공급망 보안을 위한 SBOM 개발

표 33 SBOM 관련 국내외 표준 현황

		국제표준	국내표준		
구 분	개발기구		국가표준	단체표준	
SPDX	리눅스재단	ISO/IEC5962 ('21)	_	TTAK,KO-11,0182('15) ※ SPDX v2.0 일부 참조	
CycloneDX	OWASP	_	_	_	
SWID	ISO/IEC 19770-2 ('09제정,'15개정)		KS X ISO/IEC 19770-2('21)	_	

02 SW 공급망 보안을 위한 SBOM 개발

- 정보통신기술협회(TTA)
 - SBOM 단체표준(TTAK.KO-11.0182)
 - SPDX v2.0을 기반으로 국내 실정에 맞게 개선

표 34 정보통신 단체표준 SBOM 속성 규격				
구분(Baseline)	속성(Attribution)			
① SBOM 검증 도구(SBOM Validation Tool Name)	ex) Folosology			
② 공급자(Supplier Name)	ComponentSupplier			
③ 저작권자(Author Name)	ComponentAuthor			
④ 컴포넌트(Component Name)	ComponentName			
⑤ 버전(Version String)	ComponentVersion			
⑥ 고유식별자(Unique Identifier)	FormatID			
⑦ 컴포넌트 해시(Component Hash)	FileChecksum			
⑧ 라이선스 명(License Name)	Component License			
⑨ 라이선스 결합 형태(License Usage)	Dynamic/Satic Linking			
⑩ 보안취약점 DB(Vulnerability DB)	VulnerabilityDB, NVD			
⑪ 관계성(Relationship)	IncludeComponent, ImportComponent			
② 릴리즈 날짜(Release Date)	ReleaseDate			
③ CVE ID	CVE-Year-Serial Number			
CVSS Base Score	Base, Impact, Exploitability			
© CVSS Severity	CVSS Severity: High, Medium, Low, None			

02 SW 공급망 보안을 위한 SBOM 개발

- 국립전파연구원
 - 국가 표준(KS X ISO/IEC 19770-2)
 - SWID(ISO/IEC 19770-2)을 한글 표준으로 도입
 - * SW 보안취약점 관리에 SWID가 널리 활용되지 않고 있음

02 SW 공급망 보안을 위한 SBOM 개발

- 국가정보원
 - SBOM 기본항목 제안
 - 국제적으로 통용되고 있는 SBOM 데이터 교환 표맷(CycloneDX, SPDX)을 개선하고자 함
 - 항목이 지나치게 많거나 보안취약점 정보를 제공하지 않음
 - NTIA의 데이터 필드는 항목이 부족함

표 35 NIS-SBOM 기본항목 (* : 자체 선정)				
구분	속성			
① SBOM Standard*	NIS / SPDX / CycloneDX / TTA 등 SBOM 표준			
② SBOM Type*	개발 / 유통 등 SBOM 생성단계			
③ CycloneDXNo.	CycloneDX번호			
④ SPDX Doc. ID	SPDX 문서번호			
⑤ SBOM ID*	SBOM 문서번호			
® Product Name*	제품 이름			
⑦ Product Version*	제품 버전			
® Component Name	컴포넌트 이름			
	컴포넌트 별칭			
© Component Version	컴포넌트 버전			
① Component Supplier Name	컴포넌트 공급자 이름			
© Component Hash	컴포넌트 해시(SHA-256 이상 사용)			
® Component Path*	컴포넌트 경로(컴포넌트 실제 위치 식별)			
SBOM Author Name	SBOM 작성자			
⑤ Unique Identifier	컴포넌트 버전 외에 조회가 가능한 고유 식별자 (CPE, PURL 등)			
® Dependency Relationship	상위 컴포넌트와의 종속 관계			
Timestamp	SBOM 생성일시			
® License Name · Version	라이선스 이름·버전			
® Vul. DB	NVD(CVE), CISA(KEV) 등 보안취약점 DB			
20 Vul. Info	CVE 식별자 및 CVSS 보안취약점 등급			

VI. 시사점

01 SW 공급망 관리의 중요성 증대

- 주요 국가에서의 법제화, 규제 강화
- SW 개발환경의 변화에 따른 복잡성 증가
- 공급망 관리를 통한 SW Licensing / 보안 관리

SBOM 생성 효율화 필요

- 분석 도구 기능 고도화
- SBOM 생성 시 수작업 최소화
- 컴포넌트 정보 큐레이션

02 공급망 전체의 인식 제고

- 개별 기업이 아니라 공급망 전체의 관점에서의 접근
- 공급망에서의 컨센서스

SBOM 유통 효율화 필요

• SBOM 표준 양식 활용

