A. 文件

a. 專題動機與願景

腳踏車方向燈的出發點是因為,有鑑於成大校園內腳踏車車流量大,加 上下課時趕課導致大家疏於注意車況,時常有腳踏車車禍發生,如果想 要改善校園內的交通,就應該比照機車、汽車,藉由方向燈來輔助用路 人,降低校園內車禍的發生率。

預期成果

腳踏車前面:兩個按鈕(左右各一)加上語音控制前面的點矩陣亮方向燈 腳踏車後面:煞車手把上裝上壓力感測器,分段顯示不同亮度的煞車燈

用 dot matrix 顯示方向燈和煞車燈 黃色的是按鈕控制方向燈 灰色的是架手機(語音辨識)的地方

b. 系統功能與原理說明

LED Dot Matrix Display 用 SPI 的 SSPBUF 傳送資料給 dot matrix, dot matrix 是一行一行去接收值,利用視覺暫留讓人覺得一次是全部顯示

1. 煞車燈:

利用壓力感測器(FSR400),控制腳踏車後方 LED Dot Matrix Display 顯示煞車圖案。

壓力感測器是用 ADC 將類比訊號轉成數位訊號,將感測到的值分成兩段,顯示不同亮度的煞車燈。用 timer2 和 interrupt 做閃爍的燈, 閃 1 秒停 0.5 秒。

2. 方向燈:

利用聲控(HC-05)或按鈕來控制方向燈,顯示方向燈時發出聲音提示,並用 LED Dot Matrix Display 顯示方向圖案。

聲音的提示使用蜂鳴器來呈現,以 PWM 實現。定義音階的頻率,藉由修改 PR2 的值,產生不同的聲音。

按鈕控制方向燈是利用 interrupt 來達成,將 interrupt 設成 high priority,和語音辨識的 interrupt(low priority)作區別。

聲音控制方向燈的部分,我們設計一個應用程式,使其能與微處理器 溝通,所以用 HC-05 此項藍芽模組來接收手機方的訊息,進而控制燈 的明滅與聲音播放停止。此部分在程式碼中利用 UART 來呈現。

c. 創意特色描述

- 1. 方向燈的部分,用跑馬燈(LED Dot Matrix Display)呈現右轉或左轉。
- 2. 有不同的方式可以選擇如何開啟方向燈,用語音的方式或是按按鈕的方式,也可以一起混用。
- 3. 煞車燈設計驚嘆號的號誌,並閃爍顯示,提醒後方的用路人。
- 4. 聲控使用 google 語音辨識 API, 比起使用語音辨識模組更節省成本, 且準確度較高。
- 5. 設計獨一無二的手機 APP,提供簡易的藍芽設定畫面,方便接上方向 燈系統。
- 6. 一鍵開啟語音辨識,使用者只要在騎車前把開關打開,就能夠持續背景偵測,不需要理會手機的狀態。
- 7. 提供 APP 下載的 QR code, 掃描後快速下載, 馬上就可以使用
- 8. 方向燈和煞車燈都可以充電

9. 方向燈亮起後會播「小星星」,用來提醒騎士現在方向燈正在亮,要 記得關閉。

d. 系統使用環境及對象

- 適用環境
 - 。 戶外場域、裝在腳踏車上
- 適用對象
 - 。 腳踏車騎士
- APP 掃描 QR code

e. 系統完整架構圖、流程圖、電路圖、設計圖

系統 = 方向燈 + 煞車燈 初步系統架構

系統完整架構圖

• 方向燈

煞車燈

流程圖

• 方向燈

前方點矩陣

後方點矩陣

電路圖

1. 壓力感測器接上 dot matrix

MAX7219 & Dot matrix 接線圖

2. 按鈕和藍芽模組接上 dot matrix

設計圖

1. 方向燈

側邊

2. 煞車燈

設計圖

1. 腳踏車前面

2. 腳踏車後面

3. 方向燈 & 煞車燈

f. 系統開發工具、材料及技術

系統開發工具 source code

• 硬體部分

。 開發環境: MPLAB IDE v5(XC8 compiler)

。 程式語言: C語言

• 軟體部分

。 開發環境:Android Studio

。 程式語言: Java

硬體元件

• 點矩陣顯示器模組*2

- 自組的點矩陣顯示器模組*1(點矩陣*1、MAX2719*1、電容*2、電阻 *1)
- HC-05 藍芽模組*1
- FSR-400 壓力感測器*1
- 蜂鳴器*1
- button 傳感器*2

製作材料

1. 方向燈

盒子(包住麵包板) 16.5cm*4.5cm*7.5cm 前面方向燈開口 6cm*3.2cm 旁邊電源開口直徑 2.3cm 旁邊按鈕開口(線從裡面接出來) 黑色的紙包住按鈕

2. 煞車燈

盒子(包住麵包板) 16.5cm*5.5cm*8cm 接線到前面的煞車握把

技術

1. Interrupt

按下按鈕或語音辨識接受到訊息時,皆會觸發 Interrupt(按鈕-high priority、語音 low priority),開啟或關閉方向燈。

為了讓方向燈可以同時受按鈕或語音控制,將左右轉的 flag 設為全域變數,每進入一次 interrupt 就會更改 flag 的狀態,讓方向燈可以正確地閃爍。

煞車燈做閃爍的部分是用 interrupt 進去計算跑進去幾次,當跑進去的次數達到我們要的秒數的次數,就會把 count 歸零立一個 flag 起來,離開 interrupt 後,在迴圈裡判斷 flag,當 flag 立起來,就跑進去顯示煞車燈的 function。

2. Timer

煞車燈中的閃爍是透過 timer2 去計算時間,設定 PR2,當 TMR2 一直往上加到跟 PR2 一樣的時候,就會跑進去 interrupt 裡面。

3. PWM

使用 CCP1, 定義音符的頻率, 用來設定 PR2 的值(根據公式計算); duty cycle 每次都設定為該頻率之週期的一半。當方向燈要亮起的 flag 立起後,以迴圈方式播放「小星星」的每個音符,不斷更改頻率,使蜂鳴器的播出的聲音有高低變化。關掉音樂的方式為調整 CCP1M3 和 CCP1M2, 關掉 PWM 模式。

4. UART

將 PIC 的 Rx 設為 input,接收藍芽訊息,baud rate 設為 9600,使用 low interrupt,當 RCIF 為 1 時,讀取 RCREG,改變方向燈的 flag和停止播放音樂。

5. ADC

設定 ADCON1,將 AN0 設成 analog,用壓力感測器改變電阻值,傳入 AN0 的電壓會因此改變,用電壓的變化去做判斷壓力的大小。

6. SPI

用單向傳輸。在 MAX7219 中,當 CS 設為 low 時,表示可以傳送資料進去,將位置及資料寫入 SSPBUF,透過 SDO 傳進 MAX7219,當資料傳輸完後,再將 CS 改回 high。

g. 周邊接口或 Library 及 API 使用說明

• 共同

<SPI>

SPI

signed char WriteSPI(unsigned char); 將 SSPBUF 的值傳入 slave。

max7219

void init_MAX7219(void);

初始設定 MAX7219。

void MAX7219_1Unit(unsigned char , unsigned char);

將位址和資料傳入 WriteSPI(unsigned char)。

dot_matrix

void Draw(unsigned short *, int);

dot matrix 從第一行到第八行依序快速亮燈。

void TurnRight(void);

void TurnLeft(void);

方向燈每亮一次會播一個音,無限循環。

void Close(void);

call PWM1_Stop()關掉音樂,將 MAX7219_1Unit()傳送的資料設為 0,關掉方向燈。

void Stop(int)

設定 dot matrix 的亮度。

void TurnOff()

將 dot matrix 關掉。

• 煞車燈

<ADC>

adc

void ADC_Initialize(void);

初始設定 ADC 的輸入 pin、類比轉數位和清空 Register。

int ADC_Read(void);

讀取 ADC 輸入的值並回傳。

<Interrupt & Timer>

timer

void init_interrupt(void);

初始設定 interrup,將 timer2 打開,並設定 PR2 為每 0.25 秒會觸發。

方向燈

<PWM>

sound

void delay_ms(unsigned int milliseconds);

延遲多少毫秒,由傳入的參數決定。在此每次傳入 1000,延遲 1 秒鐘。

void PWM1_Init(long desired_frequency);

設定 PWM 頻率,將 PR2 = Fosc/((PWM 頻率) * 4 * prescaler) - 1。
int PWM_Max_Duty();

設定 PWM 最大的 duty frequency,即整個週期皆為 HIGH,回傳Fosc/(目前音符的頻率)* prescaler)。

void PWM1_Duty(unsigned int duty);

設定 PWM 的 duty frequency, 將 duty cycle 設為半週期。

void PWM1_Mode_On();

開啟 PWM 的模式, CCP1 模組選擇用 PWM。

void PWM1 Start();

開始使用 PWM,把 Timer2 打開。

void PWM1 Stop();

停止播放音樂,將 CCP1 模組關閉 PWM 模式。

void playTone();

播放音符,設定 PWM 頻率、duty,並播放目前的音一秒鐘。

hc-05

void HC_05_Init();

初始化 HC-05,石英震盪器頻率設定為 8MHz,並初始化 UART,baud rate 為 9600。

void receiveMsg();

接收來自手機的訊息,設定左轉燈、右轉燈的 flag,並做出左轉、右轉、關掉等反應。

<UART>

uart

void USART_Init(long);

初始化 UART,設定 Tx 為輸出、Rx 為輸入,baud rate 為傳入參數,在此設定為 9600,最後開啟 Tx、Rx 的 low priority interrupt。

char USART_ReceiveChar(void);

回傳控制左轉、右轉、關掉的 flag。

char USART_ReceiveChar_RCREG(void);

回傳 RCREG,單純讀取接收到的藍芽資料。

<Interrupt>

dot_matrix

void External_Interrupt_Init();

將 interrupt 設為 falling edge,設定 INT1 和 INT2。

h. 實際組員之分工項目

預計

洪翊筑 F74051239 - 負責方向燈與按鈕控制部分

陳鈺潔 F74052201 - 負責方向燈與語音辨識控制部分

何品萱 F74056190 - 負責煞車燈及其控制部分

實際

洪翊筑 F74051239

負責方向燈(SPI)、煞車燈(SPI,interrupt,timer)、壓力感測器(ADC)、按鈕控制部分(interrupt)、蜂鳴器(結合方向燈)、組裝

陳鈺潔 F74052201

負責接鈕控制部分(interrupt)、語音辨識控制部分(UART、interrupt)、APP(JAVA,語音辨識,藍芽)、蜂鳴器(PWM,timer)

何品菅 F74056190

負責方向燈(SPI)、煞車燈(SPI)、壓力感測器(ADC)、按鈕控制部分 (interrupt)、語音辨識控制部分(interrupt)、蜂鳴器(結合方向燈)、組裝

i. 遇到的困難及如何解決

- 1. 語音辨識的模組使用 3.3V, 但是 pic18f4520 適用電壓為 5V。
 - 。 解決方式:用 TL431 作為穩壓,接到 Vss;其他 pin 腳以串聯 電阻方式降壓。
- 2. 語音辨識模組經過降壓後,依然無法在 pic18f4520 上使用。
 - 。 解決方式:改用軟體實現語音辨識,並用藍芽模組傳輸給 pic18。由手機接收使用者語音訊息後,將資料經由藍芽傳入 pic18 操控。
- 3. 點矩陣一直無法正常顯示。
 - 。 解決方式:確認 SPI 的初始設定與 buffer 的設定,補上點矩陣 缺少電阻與電容。

- 4. 發現點矩陣的 pin 是亂的。
 - 。 解決方式:用焊接的方式將線焊死,避免接線混亂的問題,並 且因為 pin 腳太雜亂,焊接上會需要大量時間,所以我們焊接 了一塊,其他塊則是用已接好 MAX7219 的模組。
- 5. 三軸加速度模組使用 I2C, 點矩陣顯示使用 SPI, 導致 pin 腳重疊, 無法實作。
 - 。 解決方法:將 I2C 改成用軟體實作, SPI 用硬體
- 6. I2C 軟體實作上設定複雜,一直無法成功。
 - 。 改成使用壓力感測器來判斷是否按下煞車,將 pin 腳留給點矩 陣使用 SPI。
- 7. 把語音辨識與按鈕控制結合的時候,pic18 必須能夠接受語音的控制 後又接受按鈕控制,或是先接受按鈕再接受語音。
 - 。 解決方法:透過設定 flag 的全域變數,每次進入 interrupt 去 修改 flag 的設定,使方向燈能夠正確顯示。
- 8. 蜂鳴器與方向燈結合的時候,兩者的頻率不一致,且都須由 while 控制,不好合併。
 - 。解決方法:將方向燈與蜂鳴器播放放在同一個迴圈控制,刪除音樂的 delay 用方向燈變換的時間當作音樂的 delay,使兩者能夠同時配合。

j. 預期效益與結語

透過普及腳踏車方向燈的安裝,讓在校園內的每個騎士都能及時反映現在自己行駛的狀況及方向,警示前後方的用路人,避免因突然的轉彎或煞車,所造成的擦撞,藉此改善交通亂象。

B. 作品操作之 Demo 影片

實際騎乘腳踏車

https://www.youtube.com/watch?time_continue=2&v=-bxiyGbQEzl

敏重燈

https://www.youtube.com/watch?time_continue=1&v=a9cO366AZsq

E. 會議記錄

Hackmd 連結:https://hackmd.io/iZ9WvB8oTMSPQz1IGQ3vaQ