

UTILISATION DE LA PLATEFORME NEUROMORPHIC COMPUTING PLATFORM DU HUMAN BRAIN PROJECT (HBP)

Manon PREDHUMEAU & Justin GOUTEY

Proposé par Alexandre MUZY Tuteuré par David HILL

Présentation Modules Neuromorphiques

PRÉSENTATION

Hardware BrainScaleS (https://electronicvisions.github.io/hbp-sp9-guidebook/pm/pm_hardware_configuration.html)

- Équipe d'Heidelberg
- Simulation hardware
- 20 modules neuromorphiques
- Simulation plus économe et 10³ à 10⁵ fois plus rapide que la réalité

7

Présentation Modules Neuromorphiques

MODULES NEUROMORPHIQUES

Décomposition d'un module neuromorphique (https://electronicvisions.github.io/hbp-sp9-guidebook /pm/pm hardware configuration.html)

• Élément central de BrainScaleS

• Milieu de simulation

 Composants au cœur de la simulation :

Wafer

O Carte FPGA

WAFER

- Cercle de silicone de 20 cm de diamètre
- Lieu de la simulation
- 384 puces HICANN:
 - 128 000 synapses
 - 512 « neurones électroniques »

Présentation Principes Architecture

PRÉSENTATION

Hardware SpiNNaker (https://electronicvisions.github.io/hbp-sp9-guidebook/mc/mc index.html)

- Spiking Neural Network
 Architecture
- Équipe de Manchester
- Simulation software
- « Many Core »
- Objectif: simuler 1% du cerveau humain

Présentation Principes Architecture

SIMULATION ÉVÈNEMENTIELLE

- Pas de pas de temps fixe
- Mécanisme de callbacks
- Appel de fonction ⇔ évènement

Modèle event driven appliqué à SpiNNaker (http://apt.cs.manchester.ac.uk/projects/SpiNNaker/software/)

Présentation Principes

Architecture

NIVEAUX 1: LE HARDWARE

- 600 cartes de 48 puces
- Soit 28 800 puces
- 18 cœurs par puce
 - 1 cœur moniteur
 - 16 cœurs simulation
 - 1 cœur tolérance aux pannes

Composition d'une puce SpiNNaker (http://apt.cs.manchester.ac.uk/projects/SpiNNaker/SpiNNchip/)

Présentation Principes Architecture

Niveaux 2 : couche applicative de bas niveau

Couche applicative bas niveau (http://apt.cs.manchester.ac.uk/projects/SpiNNaker/software/)

Niveaux 3 : couche applicative de haut niveau

- SpyNNaker : Implémentation de PyNN
- PACMAN
- Gestion des simulations par les utilisateurs

PyNN

Émulateurs

Plateforme HBP

PLATEFORME HBP: UTILISATION DE LA PLATEFORME

COLLABORATIVE

Résultat :

Trace d'exécution

- Pas d'information supplémentaire:
 - O Placement des populations
 - Consommation
 - Tables de routage
 - 0 ...

Détails d'un job terminé avec succès

CONCLUSION

- Projet orienté recherche
- BrainScaleS orienté hardware / SpiNNaker orienté software
- Paramétrage par une API relativement uniforme : PyNN
- SpiNNaker plus abouti

Difficultés :

- Recherche documentation fastidieuse, émulateurs non fonctionnels
- Réorientation du projet
- Pas assez d'informations pour analyse de performances

