Jifan Zhang

jifanzhang2026@u.northwestern.edu | +1 773 312 1101

Education

Northwestern University | Ph.D. in Statistics & Data Science

Sep 2021 - Jun 2026

Advisor: Miklós Rácz GPA: 3.97/4.0 Focus: AI & Graph Learning

Tsinghua University | B.S. in Mathematics

Sep 2017 - Sep 2021

Advisor: Qian Lin Major GPA: 3.79/4.0 Focus: Pure Math & Applied Math

Professional Experience & Projects

PhD Decision Science Intern | Epsilon

Jun 2025 - Sep 2025

Robust CTR Controller in Large-Scale Digital Advertising

- Developed end-to-end CTR prediction system processing **200M campaigns** across **30K branches**, utilizing Cat-Boost feature selection, categorical embeddings, and LSTM-based unified deep learning architecture that achieved **60% correlation improvement** over baseline models.
- Deployed production-ready CTR prediction pipeline with threshold-based filtering, delivering 10% average CTR lift and 100% target goal achievement rate in real-world campaign simulations for Dairy Queen and CVS.
- Optimized training infrastructure on Databricks Spark cluster, implementing cold-start weekly training and warm-start daily fine-tuning strategy that reduced daily training runtime by 85% (from 4 hours to 30 minutes).
- Tech stack: Python, PyTorch, CatBoost, Spark/Databricks, LSTM, pandas, scikit-learn.

Lead Researcher | Northwestern University

Jan 2025 - Present

Uncertainty Quantification for Spatio-Temporal Graph Forecasting

- Innovated STACI, a topology-aware, **model-free** conformal uncertainty quantification framework for graph-structured multivariate time series with theorectial analysis on finite-sample coverage and optimization of *ellipsoidal prediction* sets adapting to the high-dimensional manifold structure.
- Integrated STACI with multiple spatio-temporal backbones (AGCRN,ASTGCN, STGODE), achieving 100% target coverage while reducing prediction-set volume by at least 15% on *PEMS* traffic data vs. UQ baselines (DEEPSTUQ, conformal variants), showcasing *SOTA* performance in reliability–efficiency trade-offs.

Theoretical Foundations for Network Inference: Graph Matching, Community Recovery, Isomorphism

- Advanced theoretical foundations for learning on (multiple) networks, deriving sharp phase transitions and algorithms with implications to large-scale network analytics and recommender systems.
- Graph Matching & Community Recovery: Designed algorithms that achieve tight thresholds for community recovery and graph matching across multiple correlated stochastic block models. **Initiated** the study of regular sparse SBMs and proved that matching $O(\log n)$ sparse graphs enables exact community recovery.
- Graph Isomorphism & Subgraph Counting: Established sharp phase transitions for isomorphic 1-neighbourhoods in random graphs. Established a local central limit theorem for sparse-regime subgraph counts.

Lead Researcher | The Institute for Data, Econometrics, Algorithms, and Learning Causal Representation Learning for Network-Structured Genomics

Oct 2024 - Jun 2025

- Proposed Grace-VAE, a causal disentanglement framework by integrating graph topology into VAEs, yielding causal latent representations for multivariate genomics data with identifiability guarantees.
- Experimented on *Norman & Replogle* datasets (300K samples, 8,000 dimensions), improved generalization to unseen interventions with 5% lower MMD and 3% higher R² versus strong baselines (CMVAE,GEARS).

${\bf ML~Research~Collaborator}~|~{\it ByteDance}$

Sep 2020 - Nov 2020

User Online Trend Prediction

- Predicted daily online activity for 100K TikTok users over 3 years; achieved 20% higher correlation on the held-out test set via feature selection and XGBoost-derived features, and built a Factorization Machines predictor.
- Built user-behavior clusters and trained category-specific models; for hard-to-predict "middle" users, introduced a temporal LSTM model, improving F1 score by 15% compared with single prediction model.
- Constructed an production-ready **online daily prediction pipeline** (feature generation, model inference, monitoring), enabling more precise ad targeting and improved campaign efficiency.

High-Resolution Astronomical Image Generation with GANs

- Implemented a *Progressive GAN* with Wasserstein loss on *Linux* clusters using **multi-GPU** training, improving throughput and time-to-quality.
- Synthesized **512**×**512** astronomical images and ran standardized evaluation; achieved 24 **FID score** (decrease by 10% vs. baseline) with fixed seeds and matched splits.

Data Analysis Intern | Huatai Securities Cointegration Analytics for Equity Pairs

Dec 2019 - Mar 2020

- Built an end-to-end *cointegration stat-arb* pipeline over **1,889** equities (2019–2020), including ADF/EG/DW tests, rolling and change-point diagnostics, VAR/VECM stability, and *Johansen* multivariate cointegration; pivoted to multi-asset pair modeling and backtesting.
- Executed a z-score threshold + safety-band hedging strategy: on pair (600528.SH, 000008.SZ) achieved annualized return of 27% (train) and 25% (test); on (000046.SZ, 600981.SH) achieved 17.8% (test), illustrating the advantage of cointegration in marketing.

Core Competencies

Deep Learning & AI: Graph Neural Networks, Causal AI, Generative Models, Uncertainty Quantification, Time-Series Modeling

MLOps & Production: Large-scale ML Systems, Real-time Processing, Parallel Computing; Spark/Databricks

Business Impact: CTR Optimization, Recommender Systems, User Behavior Prediction

Programming: Python, R, C++, MATLAB

Selected Publications & Preprints

Harnessing Multiple Correlated Networks for Exact Community Recovery	Sep 2024
Jifan Zhang, Miklós Rácz. Advances in Neural Information Processing Systems (NeurIPS 2024).	
Topology-Aware Conformal Prediction for Stream Networks	$May\ 2025$
Jifan Zhang, Fangxin Wang, Zihe Song, Kaize Ding, Shixiang Zhu.	
Advances in Neural Information Processing Systems (NeurIPS 2025).	
Causal Representation Learning from Network Data	Jul~2025
Jifan Zhang, Michelle Li, Elena Zheleva.	
Bridging Pretraining and Supervised learning in Knowledge Graph	Sep~2025
Jifan Zhang, Suqi Liu, Miklós Rácz.	
When Local Neighbourhoods Become Distinct in Random Graphs	$Oct\ 2025$
Jifan Zhang, Miklós Rácz.	

Honors & Leadership

Northwestern University Fellowship	2021 – 2022
First Prize, China Undergraduate Mathematical Contest in Modeling (Beijing Region)	2019
Honor of Comprehensive Excellence, Dept. of Mathematics, Tsinghua University	2018
President, Student Science Association, Dept. of Mathematics, Tsinghua University	2019-2020