Formale Grundlagen der Informatik II 7. Übungsblatt

Fachbereich Mathematik Prof. Dr. Martin Ziegler Davorin Lešnik, Ph.D. Stéphane Le Roux, Ph.D. Sommersemester 2013 15. 07. 2013

Gruppenübung

Aufgabe G20 (Graphen und FO)

Ein Pfad in einem Graph $\mathscr{G} = (V, E)$ ist eine Sequenz $\langle x_0, x_1, \dots, x_n \rangle$ von Knoten, so dass

$$x_i E x_{i+1}$$

für alle i < n. Der Graph heißt *zusammenhängend*, wenn es für alle Paaren von Knoten (x, y) einen Pfad $(x_0, x_1, ..., x_n)$ gibt, mit $x = x_0$ und $y = x_n$.

Zeigen Sie, dass es keine Formelmenge Γ in der Sprache der Graphen gibt, so dass $\mathscr{G} \models \Gamma$ genau dann wenn \mathscr{G} zusammenhängend ist.

Aufgabe G21 (Sequenzenkalkül)

Zeigen Sie, dass die drei folgenden Quantorenregeln semantisch korrekt sind.

$$\frac{\Gamma, \varphi(t/x) \vdash \Delta}{\Gamma, \forall x \varphi(x) \vdash \Delta} (\forall L)$$

$$\frac{\Gamma \vdash \Delta, \varphi(c/x)}{\Gamma \vdash \Delta, \forall x \varphi(x)} (\forall R) \quad \text{falls c nicht in } \Gamma, \Delta, \varphi(x)$$

$$\frac{\Gamma, \varphi(t/x) \vdash \Delta}{\Gamma, t = t', \varphi(t'/x) \vdash \Delta}$$
(Sub-L)

Hier bezeichnen $\Gamma, \Delta \subseteq FO_0(S)$ beliebige Satzmengen, $\varphi(x) \in FO(S)$ beliebige Formel, in der allenfalls x frei ist, $t, t' \in T_0(S)$ beliebige Terme und $c \in S$ beliebige Konstante.

Aufgabe G22 (Erfüllbarkeit in endlichen Modellen)

Sei S eine endliche Signatur. Zeigen Sie, dass FINSAT(FO(S)) semientscheidbar, aber nicht entscheidbar, ist.

Hinweis: Traktenbrot Satz.

1

٠,	 ni	•	_	_	
\ /I	a i	•	_	c	•
v			_	. •	L

□ entscheidbar

Aufgabe M15	((Semi-)Entscheidbarkeit)	
Entechnidan Si	für die folgenden Mengen	ob cio (comi)ontec

Entscheiden Sie für die folgenden Mengen, ob sie (semi-)entscheidbar sind: (a) SAT(AL) := $\{\varphi \in AL \mid \varphi \text{ erfullbar}\}$ □ entscheidbar □ semientscheidbar, aber nicht entscheidbar □ nicht semientscheidbar (b) $\{(\varphi, \psi) \in AL \mid \varphi \models \psi\}$ □ entscheidbar □ semientscheidbar, aber nicht entscheidbar □ nicht semientscheidbar (c) SAT(FO) := $\{ \varphi \in FO \mid \varphi \text{ erfullbar} \}$ □ entscheidbar □ semientscheidbar, aber nicht entscheidbar □ nicht semientscheidbar (d) $VAL(FO) := \{ \varphi \in FO \mid \varphi \text{ all gemeing \"ultig} \}$ □ entscheidbar □ semientscheidbar, aber nicht entscheidbar □ nicht semientscheidbar (e) UNSAT(FO) := $\{ \varphi \in FO \mid \varphi \text{ unerfullbar} \}$ \square entscheidbar □ semientscheidbar, aber nicht entscheidbar □ nicht semientscheidbar (f) FINSAT(FO) := $\{\varphi \in FO \mid \varphi \text{ hat ein endliches Modell}\}$ \square entscheidbar □ semientscheidbar, aber nicht entscheidbar □ nicht semientscheidbar (g) $INF(FO) := \{ \varphi \in FO \mid \varphi \text{ ist erfullbar und hat nur unendliche Modelle} \}$

□ semientscheidbar, aber nicht entscheidbar

□ nicht semientscheidbar