

ADVANCED COMPUTER ARCHITECTURE

DESIGNING A SUPERSCALAR PROCESSOR (FIRST FORMATIVE ASSIGNMENT)

INSTRUCTION SET AND CLOCK CYCLES TO EXECUTE

Data Transfer

LI - 1 cycle

LA - 1 cycle

LW - 1 cycle

SW - 1 cycle

Arithmetic

ADD - 1 cycle

ADDI - 1 cycle

MUL - 2 cycles

DIV - 4 cycles

SUB - 1 cycle

Control

BEQ - 2 cycles

BNE - 2 cycles

BGE - 2 cycles

BLT - 2 cycles

J - 1 cycle

JR - 1 cycle

Floating Point

FADD - 4 cycles

FSUB - 4 cycles

FMUL - 6 cycles

FDIV - 20 cycles

FSQRT - 10 cycles

MADD - 10 cycles

Other

NOP - 1 cycle

ECALL - 1 cycle

QUESTION TO PROF: IS THIS REALISTIC?

BASELINE PROGRAMS

Vector Addition
Factorial
Calculate sigmoid function for vector
Matrix multiplication
One Convolution operation
Backpropagation algorithm

DESIGN OF THE ARCHITECTURE

General

32 general purpose registers

32 floating point registers

Five stage pipeline

- 1) Fetch
- 2) Decode
- 3) Execute
- 4) Memory
- 5) Write back

Execution units

4 ALUs, 1 Branch Unit

Question to prof: What other execution units can we add?

Approaches

1) Tomasulos algorithm for out of order execution

Branch prediction

- 1) Static
- 2) Dynamic
- 3) Speculative
- 4) Neural network

ANALYSIS TO BE CONDUCTED

Types of analysis

- CPI for different algorithms
- CPI for different branch prediction approaches
- State how many way super scalar the processor is
- Analyze the impact of using a neural predictor for branch prediction
- Analyze the impact of pipelining
- Break down of percentage usage of instruction types

What other types of analysis can we perform?