

Universidade do Minho Escola de Ciências

Mestrado Integrado em Engenharia Informática

Teste 1 :: 21 de março de 2018

Análise

Departamento de Matemática e Aplicações

	_	
NI () NIZ	
Nome	Numero	
) itamere,	

ı

As respostas ao grupo I devem ser convenientemente justificadas e devem ser dadas na folha de teste.

Questão 1. [3,5 valores] Considere o conjunto

$$A = \left\{ (x,y) \in \mathbb{R}^2 : \frac{x^2}{4} + y^2 \le 1 \text{ e } x^2 + y^2 > 1 \right\} \cup \left\{ (x,y) \in \mathbb{R}^2 : y = x^2 + 1 \right\}.$$

- a) Represente graficamente o conjunto A.
- b) Defina, por extensão, o conjunto $A \cap \{(x,y) \in \mathbb{R}^2 : x=0\}$.
- c) Indique um elemento do conjunto $\bar{A} \setminus A$.
- d) O conjunto A é limitado?

Questão 2. [1,5 valores] Defina uma função f, real de duas variáveis reais, cuja curva de nível definida por f(x,y)=4 é a circunferência centrada na origem e de raio 2.

Questão 3. [4 valores] Considere a função definida por $f(x,y) = \frac{x^2 - y}{x^2 + xy}$.

- a) Indique o domínio de f.
- b) Calcule, caso exista, $\lim_{(x,y)\to(0,0)} f(x,y)$.

Questão 4. [6 valores] A função $f:\mathbb{R}^2\longrightarrow\mathbb{R}$ é definida por

$$f(x,y) = \begin{cases} \frac{-3x^2y}{x^2 + y^2}, & \text{se } (x,y) \neq (0,0) \\ 0, & \text{se } (x,y) = (0,0) \end{cases}$$

- a) Justifique que f é uma função contínua.
- b) Encontre a derivada direcional de f, no ponto de coordenadas (1,-1), segundo a direção do vetor (-1,1).
- c) Prove que $f_x(0,0)$ e $f_y(0,0)$ existem ambas.
- d) Verifique se f é diferenciável em (0,0).

Em cada uma das questões seguintes, assinale neste enunciado, se a afirmação é verdadeira ou falsa: não deve apresentar qualquer justificação. Cada resposta certa vale 1 valor e cada resposta errada desconta 0,5 valores.

Questão 1. Se f é uma função real de duas variáveis reais injetiva e $f(x_0,y_0)=f(x_1,y_1)$, então $x_0 = x_1$ e $y_0 = y_1$.

Questão 2. Se f(2,3)=1, então $\lim_{(x,y)\to(2,3)}f(x,y)=1$.

Questão 3. O plano tangente ao gráfico da função $f(x,y) = \sqrt{2x^2 + 2y^2 + 12}$, no ponto de coordenadas (1, -1, 4) é definido por x - y - 2z + 6 = 0.

Questão 4. A função definida por f(x,y) = |x| não é derivável em qualquer ponto do eixo das abcissas.

Questão 5. Se $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ é definida por $f(x,y) = \left(\ln(x^2+y^2+1), \sin(2x+y), e^x\right)$, então a matriz jacobiana de f em (0,0) é $Jf(0,0)=\left[egin{array}{cc} 0 & 2 & 1 \\ 0 & 1 & 0 \end{array} \right].$