Historic, Archive Document

Do not assume content reflects current scientific knowledge, policies, or practices.

Conservation Service

Washington Water Supply Outlook Report February 1, 2008

Water Supply Outlook Reports and Federal - State - Private Cooperative Snow Surveys

For more water supply and resource management information, contact:

Local Natural Resources Conservation Service Field Office

or Scott Pattee Water Supply Specialist Natural Resources Conservation Service 2021 E. College Way, Suite 214 Mt. Vernon, WA 98273-2873 (360) 428-7684 or Kelly Sprute Public Affairs Specialist Natural Resources Conservation Service 1835 Black Lake Blvd. SW, Suite D Olympia, WA 98512-5623 (360) 704-7789

How forecasts are made

Most of the annual streamflow in the western United States originates as snowfall that has accumulated in the mountains during the winter and early spring. As the snowpack accumulates, hydrologists estimate the runoff that will occur when it melts. Measurements of snow water equivalent at selected manual snow courses and automated SNOTEL sites, along with precipitation, antecedent streamflow, and indices of the El Niño / Southern Oscillation are used in computerized statistical and simulation models to prepare runoff forecasts. These forecasts are coordinated between hydrologists in the Natural Resources Conservation Service and the National Weather Service. Unless otherwise specified, all forecasts are for flows that would occur naturally without any upstream influences.

Forecasts of any kind, of course, are not perfect. Streamflow forecast uncertainty arises from three primary sources: (1) uncertain knowledge of future weather conditions, (2) uncertainty in the forecasting procedure, and (3) errors in the data. The forecast, therefore, must be interpreted not as a single value but rather as a range of values with specific probabilities of occurrence. The middle of the range is expressed by the 50% exceedance probability forecast, for which there is a 50% chance that the actual flow will be above, and a 50% chance that the actual flow will be below, this value. To describe the expected range around this 50% value, four other forecasts are provided, two smaller values (90% and 70% exceedance probability) and two larger values (30%, and 10% exceedance probability). For example, there is a 90% chance that the actual flow will be more than the 90% exceedance probability forecast. The others can be interpreted similarly.

The wider the spread among these values, the more uncertain the forecast. As the season progresses, forecasts become more accurate, primarily because a greater portion of the future weather conditions become known; this is reflected by a narrowing of the range around the 50% exceedance probability forecast. Users should take this uncertainty into consideration when making operational decisions by selecting forecasts corresponding to the level of risk they are willing to assume about the amount of water to be expected. If users anticipate receiving a lesser supply of water, or if they wish to increase their chances of having an adequate supply of water for their operations, they may want to base their decisions on the 90% or 70% exceedance probability forecasts, or something in between. On the other hand, if users are concerned about receiving too much water (for example, threat of flooding), they may want to base their decisions on the 30% or 10% exceedance probability forecasts, or something in between. Regardless of the forecast value users choose for operations, they should be prepared to deal with either more or less water. (Users should remember that even if the 90% exceedance probability forecast is used, there is still a 10% chance of receiving less than this amount.) By using the exceedance probability information, users can easily determine the chances of receiving more or less water.

"The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer."

Washington Water Supply Outlook

February 2008

General Outlook

January seemed to end as powerfully as it started; bringing relentless snow showers that blanked even the lowest elevations of the state. Some of which melted as quickly as it came and some that will be around until summer. 12 of 33 SNOTEL sites, located below 4500 foot elevation, set new record high water content records. Keep in mind that SNOTEL records only extend back to the early 1980's. With big snow comes big danger. To date this season Washington has lost 9 people to avalanche, the most in one season since modern records have been kept (ref. NWAC). Short term forecast shows an ever increasing danger in the backcountry with more snow, wind and rain on the way. Long lead weather forecasts indicate a pretty good chance of continuing this wet pattern with above average precipitation. The biggest question is what is the temperature going to be and how high will the freezing level get? (not very high we hope)

Snowpack

The February 1 statewide SNOTEL readings were 129% of average (139% of average on February 8). The Similkameen River area snow surveys reported the lowest readings at 78% of average. Readings in the Tolt River Basin in King County reported the highest at 169% of average. Westside averages from SNOTEL, and February 1 snow surveys, included the North Puget Sound river basins with 126% of average, the Central Puget river basins with 151%, and the Lewis-Cowlitz basins with 148% of average. Snowpack along the east slopes of the Cascade Mountains included the Yakima area with 116% and the Wenatchee area with 103%. Snowpack in the Spokane River Basin was at 122% and the Walla Walla River Basin had 134% of average. Maximum snow cover in Washington was verified at Paradise SNOTEL near MT. Rainer, with water content of 56.9 inches. Last year at this time Paradise had 49.4 inches of snow water. The highest average in the state was at Mowich SNOTEL with 467% of average.

BASIN	PERCENT	OF	LAST	YEAR	PERCENT	OF	AVERAGE
Spokane							
Newman Lake							
Pend Oreille							
Okanogan							
Methow							
Conconully Lake							
Wenatchee							
Chelan							
Upper Yakima							
Lower Yakima		102				114	
Ahtanum Creek							
Walla Walla							
Lower Snake		153				115	
Cowlitz		124				140	
Lewis		139				157	
White		109	• • • • •			127	
Green		120				147	
Puyallup		122				139	
Cedar		115				168	
Snoqualmie		113				137	
Skykomish		111				131	
Skagit		84				110	
Baker		85				126	
Nooksack		89				143	
Olympic Peninsula		86				142	

Precipitation

During the month of January, the National Weather Service and Natural Resources Conservation Service climate stations reported near average precipitation totals throughout Washington river basins. The highest percent of average in the state was at Quartz Peak SNOTEL which reported 188% of average for a total of 11.1 inches. The average for this site is 5.89 inches for January. The wettest spot in the state was reported at June Lake SNOTEL with a January accumulation of 26.5 inches.

RIVER	JANUAF	ξY	WATER	YEAR
BASIN PERG	CENT OF	AVERAGE	PERCENT OF	F AVERAGE
Spokane	126	-		115
Colville-Pend Oreille	120)		110
Okanogan-Methow	112			113
Wenatchee-Chelan	94			101
Upper Yakima	101			100
Lower Yakima	112			112
Walla Walla	110)		111
Lower Snake	129			118
Cowlitz-Lewis	104	:		108
White-Green-Puyallup	102			99
Central Puget Sound	100			105
North Puget Sound	85	·		99
Olympic Peninsula	120			100

Reservoir

Seasonal reservoir levels in Washington vary greatly due to specific watershed management practices required in preparation for irrigation season, fisheries management, power generation, municipal demands and flood control. Reservoir storage in the Yakima Basin was 333,000-acre feet, 75% of average for the Upper Reaches and 118,000-acre feet or 97% of average for Rimrock and Bumping Lakes. Storage at the Okanogan reservoirs was 90% of average for February 1. The power generation reservoirs included the following: Coeur d'Alene Lake, 38,000 acre feet, 33% of average and 16% of capacity; Chelan Lake, 247,000-acre feet, 78% of average and 36% of capacity; and the Skagit River reservoirs at 95% of average and 68% of capacity.

BASIN	PERCENT OF	CAPACITY	CURRENT STORAGE AS
			PERCENT OF AVERAGE
Spokane		16	
Colville-Pend Oreil	le	57	119
Okanogan-Methow		64	90
Wenatchee-Chelan		36	
Upper Yakima		40	
Lower Yakima		51	
Lower Snake		65	
Cowlitz-Lewis		N/A	N/A
North Puget Sound .		68	95

Streamflow

Forecasts vary from 129% of average for the Rex River near Cedar Falls to 83% of average for Okanogan River and Chamokane Creek forecast points. April-September forecasts for some Western Washington streams include the Cedar River near Cedar Falls, 127%; White River, 119%; and Skagit River, 106%. Some Eastern Washington streams include the Yakima River near Parker, 105%: Wenatchee River at Plain, 109%; and Spokane River near Post Falls, 102%. Volumetric forecasts are developed using current, historic and average snowpack, precipitation and streamflow data collected and coordinated by organizations cooperating with NRCS. Caution should be used when using early season forecasts for critical water resource management decisions.

Statewide January streamflows were mostly below average due to seasonally cool temperatures, low elevation snow fall and a lack of snow melt. The Methow River near Pateros had the highest reported flows with 91% of average. The Yakima River at Cle Elum with 35% of average was the lowest in the state. Other streamflows were the following percentage of average as reported by the River Forecast Center: the Cowlitz at Castle Rock, 85%; the Spokane at Spokane, 44%; the Columbia below Rock Island Dam, 67%; and the Cle Elum near Roslyn, 39%.

BASIN	PERCENT OF AVERAGE (50 PERCENT CHANCE OF EXCEEDENCE)
Spokane Colville-Pend Oreille Okanogan-Methow Wenatchee-Chelan Upper Yakima Lower Yakima Walla Walla Lower Snake Cowlitz-Lewis White-Green-Puyallup Central Puget Sound North Puget Sound Olympic Peninsula	93-103 83-95 96-109 110-120 102-119 112-114 103-113 99-119 90-98 111-129 106-110
STREAM	PERCENT OF AVERAGE JANUARY STREAMFLOWS
Pend Oreille Below Box Canyon Kettle at Laurier Columbia at Birchbank Spokane at Long Lake Similkameen at Nighthawk Okanogan at Tonasket Methow at Pateros Chelan at Chelan Wenatchee at Pashastin Yakima at Cle Elum Yakima at Parker Naches at Naches Grande Ronde at Troy Snake below Lower Granite Dam SF Walla Walla near Milton Freewat Columbia River at The Dalles Lewis at Ariel Cowlitz below Mayfield Dam Skagit at Concrete Dungeness near Sequim	70 86 45 82 84 91 70 51 35 39 47 46 53 ter 64 61 69

B A S I N S U M M A R Y O F S N O W C O U R S E D A T A

FEBRUARY 2008

SNOW COURSE EI	LEVATION	DATE	SNOW DEPTH	WATER CONTENT	LAST YEAR	AVERAGE 1971-00	SNOW COURSE	ELEVATION	DATE	SNOW DEPTH	WATER CONTENT	LAST YEAR	AVERAGE 1971-00
ABERDEEN LAKE CAN.	4000	1/29/08	14	2.8	4.9	4.7		TEL 3800	2/01/08	143	42.0	29.3	24.1
AHTANUM R.S.	3100	1/30/08	25	5.6	5.3	7.1		TEL 5140	2/01/08	102	24.1	19.2	21.5
ALPINE MEADOWS SNTL	3500	2/01/08		46.3	38.6	29.2		AN. 6300	1/27/08	20	3.0	8.6	6.5
ASHLEY DIVIDE BADGER PASS SNOTEL	4820 6900	2/05/08 2/01/08	27 93	6.2 23.1	3.6 21.0	5.1 22.3		TEL 5000 TEL 6110	2/01/08 2/01/08	57	13.9	14.0	13.1
BAIRD #2	3220	1/31/08	36	7.9	5.7		LOUP LOUP CAMPGRO		1/28/08	27	37.5 6.9	31.9 9.7	40.6
BARKER LAKES SNOTEL	8250	2/01/08	37	8.0	8.6	9.2	LUBRECHT FOREST N		1/31/08	16	2.9	2.9	4.6
BARNES CREEK CAN.	5320	2/06/08	49	13.0	12.4	14.4	LUBRECHT FOREST N		1/31/08	10	1.7	1.4	2.5
BASIN CREEK SNOTEL	7180	2/01/08	25	3.7	4.6	4.9	LUBRECHT FOREST N		1/29/08	12	2.4	1.4	2.8
BEAVER CREEK TRAIL BEAVER PASS	2200 3680	2/02/08 2/02/08	91 90	21.3 27.4	17.0 31.9	10.3 19.3	LUBRECHT HYDROPLO LUBRECHT SNOTEL	T 4200 4680	1/31/08 2/01/08	22 19	3.3	3.2	4.2
BEAVER PASS SNOTEL	3630	2/02/08		30.2	38.9	26.2		TEL 5900	2/01/08	137	3.9 35.1	3.9 47.6	4.2 43.4
BIG WHITE MTN CAN.	5510	1/30/08	39	9.7	12.9	13.3	LYNN LAKE	4000	2/04/08	100	31.5	17.5	14.5
BLACK PINE SNOTEL	7100	2/01/08	36	8.0	5.5	8.0	MARIAS PASS	5250	1/30/08	53	12.0	11.1	11.7
BLACKWALL PILL CAN.	6370	2/01/08		22.2	30.6	23.8	MARTEN LAKE	AM 3600	2/01/08		66.9E	66.4	46.8
BLEWETT PASS#2SNOTEL	4270	2/01/08	50	15.7	18.5	12.4	MARTEN RIDGE SNOT	EL 3520	2/01/08	138	48.4	63.1	
BRENDA MINE CAN.	4450	2/01/08	120	9.7	13.3	8.9	MAZAMA	*** 4200	1/28/08	37	10.0	11.1	
BROWN TOP AM BROWNS PASS	6000	2/02/08 1/25/08	139 17	43.6 3.5	55.8 5.2	42.5	MCCULLOCH C MEADOWS CABIN	AN. 4200 1900	1/31/08 2/03/08	16 43	3.5 8.5	5.0 5.5	4.9 5.0
BUMPING LAKE (NEW)	3400	1/31/08	76	13.8	17.9	13.3	MEADOWS PASS SNO		2/01/08	121	33.4	28.0	19.1
BUMPING RIDGE SNOTEL	4600	2/01/08	104	23.9	23.9	19.4	METEOR		1/29/08	30	7.3	4.9	
BUNCHGRASS MDWSNOTEL	5000	2/01/08		19.6	16.1	18.6	MICA CREEK SNO	TEL 4510	2/01/08	88	22.2	17.3	18.3
BURNT MOUNTAIN PIL	4200	2/01/08	73	16.0	13.9	9.0	MINERS RIDGE SNO		2/01/08	127	33.9	42.0	36.2
BUTTERMILK BUTTE	5250	1/29/08	38	10.0	15.1			AN. 5080	1/27/08	22	4.7	8.3	6.5
CAYUSE PASS SNOTEL	5240 6200	2/01/08 1/30/08	163	45.4	45.5 2.3	2.5		AN. 5840 AN. 4500	2/01/08 2/06/08	21	9.8 7.6	25.5	13.6
CHESSMAN RESERVOIR CHEWALAH #2	4930	2/01/08	10 65	1.6 19.0	12.2	2.5	MORRISSEY RIDGE C		2/01/08	31	18.2	8.9	9.6 18.6
CHICKEN CREEK	4060	1/30/08	66	16.4	10.8	11.5	MORSE LAKE SNO		2/01/08		47.8	40.3	36.9
COLD CREEK STRIP	6020	1/30/08	29	6.3	7.7		MOSES MOUNTAIN (2		1/31/08	38	11.6	10.1	12.0
COLOCKUM PASS	5370	1/30/08	46	12.3	13.3	11.7	MOSES MTN SNO		2/01/08	34	9.0	11.2	10.4
COMBINATION SNOTEL	5600	2/01/08	23	3.8	2.7	3.4	MOSES PEAK	6650	1/31/08	52	17.9	16.5	9.6
COPPER BOTTOM SNOTEL	5200	2/01/08	33	5.7	5.2	8.0	MOSQUITO RDG SNO		2/01/08 1/30/08		28.3	23.2	24.6
COPPER MOUNTAIN CORRAL PASS SNOTEL	7700 6000	1/27/08 2/01/08	28 85	6.3 22.7	6.3 24.2	7.0 22.1	MOULTON RESERVOIR MOUNT BLUM	6850 AM 5800	2/01/08	23	4.1 36.5E	3.3 45.6	5.2 37.6
COUGAR MTN. SNOTEL	3200	2/01/08	87	24.0	14.6	13.7	MOUNT CRAG SNO		2/01/08	96	27.4	26.8	19.3
COX VALLEY	4500	1/29/08	101	29.0	40.1	24.2		AN. 5500	1/27/08	26	6.2	10.4	7.9
COYOTE HILL	4200	1/30/08	28	7.2	4.5	7.3	MOUNT TOLMAN	2000	1/28/08	22	4.5	2.1	3.6
DALY CREEK SNOTEL	5780	2/01/08	38	8.4	6.2	7.4	MOWICH SNO		2/01/08	26	5.6	.0	1.2
DEER PARK	5200	1/30/08	50	16.0	24.4	12.2	MOUNT GARDNER SNO		2/01/08	97	24.3	17.9	12.0
DEVILS PARK DISAUTEL PASS	5900	2/02/08 1/31/08	101 24	32.3 5.8	39.2 5.6	30.7	MUTTON CREEK #1 N.F. ELK CR SNOTE	5700 L 6250	1/25/08 2/01/08	39 30	10.6 6.2	14.8 6.7	9.4 8.0
DISCOVERY BASIN	7050	1/31/08	26	5.3	5.8	6.6	NEVADA RIDGE SNOT		2/01/08	46	9.9	7.4	10.1
DIX HILL	6400	1/27/08	28	7.0	6.0	7.6	NEW HOZOMEEN LAKE	2800	1/30/08	37	9.0		7.8
DOCK BUTTE AM	3800	2/01/08		51.7E	57.4	37.2	NEZ PERCE CMP SNO	TEL 5650	2/01/08	42	10.0	7.4	9.9
DOMMERIE FLATS	2200	1/31/08	53	12.5	7.3	6.4	NOISY BASIN SNOTE		2/01/08	93	24.2	20.4	27.0
DUNCAN RIDGE	5370	1/30/08	26	5.4	6.0		OLALLIE MDWS SNO		2/01/08	147	45.3	45.7	39.2
DUNGENESS SNOTEL EASY PASS AM	4100 5200	2/01/08 2/01/08	41	11.4 46.2E	11.2 60.0	5.9 46.2	OPHIR PARK PARADISE PARK SNO	7150 TEL 5500	1/27/08 2/01/08	29 164	7.5 56.9	6.5 49.4	10.6 48.1
ELBOW LAKE SNOTEL	3200	2/01/08	115	36.1	36.5	20.4	PARK CK RIDGE SNO		2/01/08		38.1	44.9	35.0
EMERY CREEK SNOTEL	4350	2/01/08	56	11.3	9.0	10.5	PETERSON MDW SNOT		2/01/08	24	4.8	5.4	6.1
ENDERBY CAN.	5800	1/28/08	88	27.8	30.7	27.2	PIGTAIL PEAK SNO	TEL 5900	2/01/08	135	38.3	38.0	34.3
FARRON CAN.	4000	1/31/08	32	7.2		8.7	PIKE CREEK SNOTEL	5930	2/01/08	76	17.6	15.7	17.8
FISH CREEK	8000	1/30/08	24	4.5	5.8	5.8	PIPESTONE PASS	7200	1/26/08	11	3.0	1.9 17.0	3.2 14.9
FISH LAKE FISH LAKE SNOTEL	3370 3370	1/30/08 2/01/08	107 106	28.2 26.6	28.8 26.6	24.5 24.7	POPE RIDGE SNO POSTILL LAKE C	TEL 3540 AN. 4200	2/01/08 1/30/08	70 15	16.1 3.7	6.6	5.8
FLATTOP MTN SNOTEL	6300	2/01/08	135	32.4	28.0	31.8	POTATO HILL SNO		2/01/08	114	28.4	23.3	18.5
FOURTH OF JULY SUM	3200	1/29/08	62	14.0	8.1	7.1	QUARTZ PEAK SNO		2/01/08	84	21.5	15.2	15.4
FREEZEOUT CK. TRAIL	3500	1/30/08	40	10.8	13.0	8.8	RAGGED MTN SNOTEL	4210	2/01/08		24.1	17.4	
FROHNER MDWS SNOTEL	6480	2/01/08	24	4.5	4.3	5.0	RAGGED RIDGE	3330	1/28/08	56	13.2	6.1	
FROST MEADOWS	4630	1/31/08	58	14.2	17.9		RAINY PASS SNO		2/01/08	98 100	24.8 28.8	31.4 32.3	30.2 27.6
GOAT CREEK GOLD MTN LOOKOUT	3600	1/30/08 1/30/08	26 39	6.1 10.6	5.4 8.3	5.1	RAINY PASS REX RIVER SNO	4780 FEL 1900	2/02/08 2/01/08	128	39.7	36.5	21.7
GRASS MOUNTAIN #2	2900	2/04/08	68	20.5	11.7	7.5	ROCKER PEAK SNOTE		2/01/08	37	6.8	7.4	9.1
GRAVE CRK SNOTEL	4300	2/01/08	52	12.2	10.5	11.7	ROCKY CREEK	AM 2100	2/01/08		41.8E	34.8	20.2
GREEN LAKE SNOTEL	6000	2/01/08	75	18.9	19.2	15.4	RUSTY CREEK	4000	1/25/08	24	6.3	6.2	4.9
GROUSE CAMP SNOTEL	5380	2/01/08	62	14.2	18.6	14.0	SF THUNDER CK	AM 2200	2/01/08		15.7E	9.6	5.9 17.3
HAMILTON HILL CAN. HAND CREEK SNOTEL	4550	1/27/08	28	6.5	12.1	9.9	SADDLE MTN SNOTEL	7900	2/01/08 2/01/08	78 31	18.5 7.8	12.5 9.0	7.5
HARTS PASS SNOTEL	5030 6500	2/01/08 2/01/08	40 99	8.9 28.4	7.2 38.2	8.6 31.3	SALMON MDWS SNO SASSE RIDGE SNO		2/01/08	99	27.3	32.0	23.8
HARTS PASS	6500	1/31/08	105	33.6	40.0	29.5	SATUS PASS	4030	2/02/08	77	21.2	10.6	8.7
HELL ROARING DIVIDE	5770	2/01/08	93	25.4	16.7	20.7	SAVAGE PASS SNO		2/01/08	99	21.3	15.1	17.6
HERRIG JUNCTION	4850	1/30/08	80	20.3	17.0	18.1	SAWMILL RIDGE	4700	2/04/08	85	25.2	23.3	22.9
HIGH RIDGE SNOTEL	4920	2/01/08	98	25.7	16.8	16.9	SAWMILL RIDGE SNO		2/01/08	109	33.6	41.8	-#-
HOLDOO BAGIN CHOTEL	4530	2/01/08		7.2E	4.5	7.2	SCHREIBERS MDW	AM 3400	2/01/08		37.9E 5.2	52.0 6.9	32.4
HOODOO BASIN SNOTEL HUCKLEBERRY SNOTEL	6050 2000	2/01/08 2/01/08	133	32.7	24.6	30.1	SENTINEL BT SNOTE SHEEP CANYON SNO		2/01/08 2/01/08	26 143	47.8	26.3	23.9
HUMBOLDT GLCH SNOTEL	4250	2/01/08	38	7.0 15.2	2.8 8.5	2.0 9.5	SHEEP CANION SNOT		2/01/08	143	13.6	9.1	8.4
INTERGAARD	6450	1/26/08	16	3.0	2.3	4.8	SILVER STAR MTN C		2/01/08	68	18.0	21.0	20.0
IRENE'S CAMP	5530	1/30/08	33	7.0	8.7		SKALKAHO SNOTEL	7260	2/01/08	65	16.7	12.7	16.0
ISINTOK LAKE CAN.	5100	2/01/08	18	3.1	4.8	5.2	SKOOKUM CREEK SNO		2/01/08	106	37.2	26.4	20.2
JASPER PASS AM	5400	2/01/08		36.5E	72.0	56.5	SKOOKUM LAKES	4230	2/01/08	61	16.9	8.0	
JUNE LAKE SNOTEL	3200	2/01/08		53.2	30.6	28.4	SOURDOUGH GUL SNO		2/01/08	41 72	10.5 21.0	1.5	
KELLER RIDGE KELLOGG PEAK	3700 5560	1/29/08 2/04/08	25 110	5.3 33.6	4.7 21.4	20.7	SOUTH BALDY SPENCER MDW SNO	4920 FEL 3400	2/01/08 2/01/08	135	41.2	27.8	21.9
KRAFT CREEK SNOTEL	4750	2/01/08	34	8.5	6.3	10.9	SPIRIT LAKE SNO		2/01/08	41	16.3	4.0	5.1
LAMB BUTTE		1/31/08	50	13.5	17.1		SPOTTED BEAR MIN.	7000	2/01/08		9.9E	8.0	10.1
LESTER CREEK	3100	2/04/08	80	22.8	15.6	14.2	SPRUCE SPGS SNOTE		2/01/08	74	18.1	9.9	13.0
LOLO PASS SNOTEL	5240	2/01/08	102	23.2	17.0	20.9	STARVATION MOUNTA	IN 6750	1/28/08	42	12.4	17.3	13.0

	SNOW COURSE	ELEVATION	DATE	SNOW	WATER CONTENT	LAST YEAR	AVERAGE 1971-00		ELE	VATION	DATE	SNOW DEPTH	WATER	LAST YEAR	AVERAGE 1971-00
	STAHL PEAK SNOTEL	6030	2/01/08	98	27.1	21.9	24.1	TROUT CREEK	CAN.	5650	2/02/08	23	4.3	7.1	5.5
	STAMPEDE PASS SNOT	EL 3860	2/01/08	126	35.1	34.4	31.0	TRUMAN CREEK		4060	1/29/08	23	5.0	3.6	3.5
	STEVENS PASS SNOT	EL 4070	2/01/08	127	31.3	31.3	30.2	TUNNEL AVENUE		2450	2/05/08	92	24.6	20.0	14.8
	STORM LAKE	7780	1/30/08	33	7.3	7.3	8.3	TV MOUNTAIN		6800	2/02/08	47	13.0	9.3	11.8
-	STRYKER BASIN	6180	1/30/08	89	24.7	19.2	21.3	TWELVEMILE SNOT	EL	5600	2/01/08	63	15.4	9.6	12.8
	SUMMERLAND RES CA	N. 4200	1/29/08	27	5.7	9.9	6.9	TWIN CAMP		4100	2/04/08	64	18.7	16.8	17.4
	SUMMIT G.S. #2	4600	1/30/08	29	6.6	7.3	6.3	TWIN LAKES SNOT	EL	6400	2/01/08	116	30.6	24.1	27.5
	SUNSET SNOT	EL 5540	2/01/08		14.6	11.2	20.9	TWIN SPIRIT DIV	IDE	3480	2/03/08	76	16.8	8.3	10.5
	SURPRISE LKS SNOT	EL 4250	2/01/08	145	41.1	34.9	32.2	UPPER HOLLAND L	AKE	6200	2/02/08	75	21.1	16.7	23.7
	SWAMP CREEK SNOT	EL 4000	2/01/08	54	14.1	17.0	13.9	UPPER WHEELER S	NOTEL	4400	2/01/08	44	9.8	10.4	9.2
	TEN MILE LOWER	6600	1/30/08	21	3.6	3.8	4.7	VULCAN MIN		4660	1/30/08	28	8.2	9.3	
	TEN MILE MIDDLE	6800	1/30/08	25	4.9	4.9	7.1	VULCAN ROAD		3840	1/30/08	22	5.1	6.4	
	THUNDER BASIN SNOT	EL 4200	2/01/08	89	25.4	30.4	24.3	WARM SPRINGS SN	OTEL	7800	2/01/08	50	12.6	12.0	13.8
	THOMPSON CREEK	2500	1/28/08	39	8.4	3.4		WATSON LAKES	AM	4500	2/01/08		45.9E	52.5	35.6
	THOMPSON RIDGE	4650	1/29/08	36	9.1	12.5		WATERHOLE S	NOTEL	5000	2/01/08	117	36.7	38.2	23.2
	TINKHAM CREEK SNOT	EL 3000	2/01/08	115	29.5	27.9	22.7	WEASEL DIVIDE		5450	1/31/08	87	23.1	21.5	21.5
	TOATS COULEE	2850	1/30/08	16	2.8	3.9	2.6	WELLS CREEK S	NOTEL	4200	2/01/08	90	24.7	32.1	22.0
	TOUCHET SNOT	EL 5530	2/01/08	98	28.7	20.5	23.8	WHITE PASS ES S	NOTEL	4500	2/01/08	80	18.3	16.5	17.1
	TRINKUS LAKE	6100	2/01/08		25.3E	23.0	26.6	WHITE ROCKS MIN	CAN.	7200	1/26/08	48	14.6	17.7	15.7
	TROUGH #2 SNOT	ET. 5310	2/01/08	29	8.0	8.2	7.5								

NRCS Natural Resources Conservation Service

February 1, 2008 -Snowpack, Precipitation and Reservoir Conditions at a Glance

(Water Year = October 1, 2007 - Current Date)

Natural Resources Conservation Service

Washington State Snow, Water and Climate Services

Program Contacts

RL "Gus" Hughbanks
State Conservationist
Spokane State Office
W. 316 Boone Ave., Suite 450
Spokane, WA 99201-2348
phone: 509-323-2961
fax: 509-323-2979
gus.hughbanks@wa.usda.gov

Scott Pattee Water Supply Specialist Washington Snow Survey Office 2021 E. College Way, Suite 214 Mount Vernon, WA 98273-2873

phone: 360-428-7684 fax: 360-424-6172 scott.pattee@wa.usda.gov Jon Lea
DCO Supervisor
Oregon Data Collection Office
101 SW Main St, Suite 1300
Portland, OR 97204
Phone: 503-414-3267
Fax: 503-414-3277
jon.lea@or.usda.gov

James Marron
Resource Conservationist
National Water and Climate Center
101 SW Main St., Suite 1600
Portland, OR 97204-3224
phone: 503-414-3047
fax: 503-414-3101
jim.marron@por.usda.gov

Helpful Internet Addresses

NRCS Snow Survey and Climate Services Homepages

Washington:

http://www.wa.nrcs.usda.gov/snow

Oregon:

http://www.or.nrcs.usda.gov/snow

Idaho:

http://www.id.nrcs.usda.gov/snow

National Water and Climate Center (NWCC): http://www.wcc.nrcs.usda.gov

NWCC Anonymous FTP Server: ftp.wcc.nrcs.usda.gov

USDA-NRCS Agency Homepages

Washington:

http://www.wa.nrcs.usda.gov

NRCS National: http://www.nrcs.usda.gov

February 1, 2008

The Columbia Basin snowpack charts are produced, using only automated data. These data are telemetered via remote collection sites in Canada and the United States. The data are provisional, until they are officially released by the responsible data collection agency.

The combined Columbia Basin snowpack above The Dalles is currently at 105 percent of average, compared to 97 percent of average last year and 102 percent last month. The Canadian snow pack dropped from 114 percent on January 1 to 103 percent on February 1. However, most of Idaho, Oregon, western Montana and southern Washington experienced above average precipitation throughout the month of January, coupled with cold temperatures. This combination of climate variables increased the snow pack significantly in most U.S. basins. For example, the Spokane basin snow pack increased from 95 percent last month to 111 percent on February 1. Similarly, the Yakima snow pack increased from 102 percent to 112 percent; the Snake headwaters from 85 percent to 100 percent; the Boise and southern Idaho basins from 87 percent to 113 percent; the eastern Oregon/Snake from 105 percent to 121 percent; the Salmon from 104 percent to 116 percent; the Clearwater from 104 percent to 110 precent; the John Day from 109 percent to 127 percent; and western Oregon got hammered, with the Deschutes increasing from 105 percent to 145 percent. The overall snowpack is at 71 percent of the average peak accumulation. This compares to 65 percent last year.

The snowpack in the Columbia Basin above Castlegar is at 102 percent of average. This compares to 111 percent last year and 108 percent last month. For the basin above Grand Coulee, the snowpack is at 102 percent of average, compared to 103 percent last year and 103 percent last month. The Snake River snowpack above Ice Harbor is at 112 percent of average, compared to 76 percent last year and 99 percent last month.

So...even though the snow pack conditions in British Columbia deteriorated over the last month, the rest of the Columbia in the U.S. more than made up for it. The snowpack in the Kettle is the lowest in the basin at 83 percent, while the highest is in the Deschutes Basin of central Oregon.

Overall, the 2008 water supply potential within the Columbia Basin looks very good.

Spokane River Basin

*Based on selected stations

The February 1 forecasts for summer runoff within the Spokane River Basin are 102% of average near Post Falls and 101% at Long Lake. The Chamokane River near Long Lake forecasted to have 83% of average flows for the May-August period. The forecast is based on a basin snowpack that is 122% of average and precipitation that is 115% of average for the water year. Precipitation for January was above normal at 126% of average. Streamflow on the Spokane River at Long Lake was 45% of average for January. February 1 storage in Coeur d'Alene Lake was 38,000acre feet, 33% of average and 16% of capacity. Snowpack at Quartz Peak SNOTEL site was 140% of average with 21.5 inches of water content. Average temperatures in the Spokane basin were 4 degrees below normal for January and 1 degree below normal for the water year.

Spokane River Basin

Streamflow Forecasts - February 1, 2008

						- 	========	
		<<=====	Drier ====	== Future Co	onditions ==	===== Wetter	====>>	
Forecast Point	Forecast	_======		= Chance Of E	Exceeding * =			
•	Period	90% (1000AF)	70% (1000AF)		0% (% AVG.)	30% (1000AF)	10% (1000AF)	30-Yr Avg. (1000AF)
				l =======				
SPOKANE near Post Falls (2)	APR-JUL APR-SEP	2020 2130	2360 2470	2590 2700	102 102	2820 2930	3160 3270	2550 2650
	APR-SEP	2130	2470	2700	102	2930	3270	2650
SPOKANE at Long Lake (2)	APR-JUL	2210	2610	2880	101	3150	3550	2850
2	APR-SEP	2410	2830	3110	101	3390	3810	3070
CHAMOKANE CREEK near Long Lake	MAY-AUG	2.7	6.2	8.5	83	10.8	14.3	10.2
				I				

	SPOKANE Reservoir Storage (100	RIVER BASIN 0 AF) - End		·			KANE RIVER BASIN pack Analysis -		1, 2008
Reservoir		Usable Capacity	*** Usabl This Year	le Storag Last Year	e *** Avg	Watershed	Number of Data Sites	This Yea	r as % of ======= Average
		========				SPOKANE RIVER	11	142	122
						NEWMAN LAKE	1	174	140

^{* 90%, 70%, 50%, 30%,} and 10% chances of exceeding are the probabilities that the actual volume will exceed the volumes in the table.

- The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.
 The value is natural volume actual volume may be affected by upstream water management.
 Median value used in place of average. The value listed under 30% is actually a 25% exceedance level. The value listed under 70% is actually a 75% exceedance level.

Colville - Pend Oreille River Basins

*Based on selected stations

The April – September average forecast for the Kettle River streamflow is 94%, Colville at Kettle Falls is 100% and Priest River near the town of Priest River is 102%. January streamflow was 67% of average on the Pend Oreille River, 86% on the Columbia at Birchbank and 74% on the Kettle River. February 1 snow cover was 101% of average in the Pend Oreille Basin River Basin and 88% in the Kettle River Basin. Bunchgrass Meadows SNOTEL site had 19.6 inches of snow water on the snow pillow. Normally Bunchgrass would have 18.6 inches on February 1. Precipitation during January was 120% of average, bringing the year-to-date precipitation to 110% of average. Reservoir storage in the basin, including Lake Pend Oreille and Priest Lake was 119% of normal. Average temperatures were 4 degrees below normal for January and 1 degree below normal for the water year.

Colville - Pend Oreille River Basins

Streamflow Forecasts - February 1, 2008

		<<=====	Drier ====	== Future Co	onditions =:	===== Wette	: ====>>	
Forecast Point	Forecast Period	90% (1000AF)	70% (1000AF)		50%	30% (1000AF)	10% (1000AF)	30-Yr Avg. (1000AF)
PEND OREILLE Lake Inflow (2)	APR-JUL APR-SEP	11300 12300	11600 12700	11800 12900	93 93	12000	12300 13500	12700 13900
PRIEST near Priest River (1,2)	APR-JUL	580	755	835	103	915	1090	815
	APR-SEP	615	805	890	102	975	1160	870
PEND OREILLE bl Box Canyon (2)	APR-JUL	9420	11000	12100	94	13200	14800	12900
	APR-SEP	9970	11900	13200	94	14500	16400	14100
COLVILLE at Kettle Falls	APR-JUL	74	106	128	100	150	182	128
	APR-SEP	81	117	141	100	165	200	141
KETTLE near Laurier	APR-JUL	1250	1550	1750	9 4	1950	2250	1870
	APR-SEP	1260	1610	1850	9 4	2090	2440	1970
COLUMBIA at Birchbank (1,2)	APR-JUL	31500	33800	34800	98	35800	38100	35700
	APR-SEP	37700	42600	44900	103	47200	52100	43500
COLUMBIA at Grand Coulee Dm (1,2)	APR-JUL	42500	49700	53000	99	56300	63500	53800
	APR-SEP	50500	59100	63000	98	66900	75500	64000
COLVILLE - PEND C Reservoir Storage (100						- - PEND OREILLE nowpack Analys		

Reservoir Storage (100	JU AF) - End	or January	Y		Watershed Showpa	ck Analysis -	rebruary .	1, 2008
Reservoir	Usable Capacity	*** Usabi This Year	le Storage Last Year	*** Avg	Watershed	Number of Data Sites	This Yea: Last Yr	
					COLVILLE RIVER	0	150	0
					PEND OREILLE RIVER	10	136	106
					KETTLE RIVER	6	88	87

 $[\]star$ 90%, 70%, 50%, 30%, and 10% chances of exceeding are the probabilities that the actual volume will exceed the volumes in the

 ^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.
 (2) - The value is natural volume - actual volume may be affected by upstream water management.
 (3) - Median value used in place of average. The value listed under 30% is actually a 25% exceedance level. The value listed under 70% is actually a 75% exceedance level.

Okanogan - Methow River Basins

*Based on selected stations

Summer runoff average forecast for the Okanogan River is 83%, Similkameen River is 86% and Methow River is 94%. Salmon Creek should be expected to have near normal flows this summer. February 1 snow cover on the Okanogan was 91% of average, Omak Creek was 120% and the Methow was 100%. January precipitation in the Okanogan-Methow was 112% of average, with precipitation for the water year at 113% of average. January streamflow for the Methow River was 91% of average, 94% for the Okanogan River and 82% for the Similkameen. Snow-water content at Salmon Meadows SNOTEL was 7.8 inches. Average for this site is 7.5 inches on February 1. Combined storage in the Conconully Reservoirs was 15,000-acre feet, which is 64% of capacity and 90% of the February 1 average. Temperatures were 8 degrees below normal for January and 3 degrees below for the water year.

Okanogan - Methow River Basins

Streamflow Forecasts - February 1, 2008

	========	 <<=====	Drier ====	========== == Future Co	nditions =:	======================================	· =====>>	========
Forecast Point	Forecast Period	 ======= 90% (1000AF)	70% (1000AF)	= Chance Of E	xceeding * : 0% (% AVG.)	30% (1000AF)	10% (1000AF)	30-Yr Avg. (1000AF)
		(1000AF)	(1000AF)	(1000AF/	(* AVG.)	(1000AF)	(1000AF)	(1000AF)
Similkameen R nr Nighthawk (1)	APR-JUL	790	1040	1160	8 6	1280	1530	1350
	APR-SEP	875	1130	1250	8 6	1370	1620	1450
Okanogan R nr Tonasket (1)	APR-JUL	745	1130	1300	82	1470	1850	1580
	APR-SEP	855	1270	1460	83	1650	2060	1770
Okanogan R at Malott (1)	APR-JUL	755	1160	1340	82	1520	1930	1635
	APR-SEP	870	1310	1510	83	1710	2150	1826
Methow R nr Pateros	APR-SEP	755	860	930	94	1000	1100	985
	APR-JUL	700	795	860	95	925	1020	910
OVANOGAN M			=========				TERROR DAGING	=========

		ry					1, 2008
Usable Capacity	*** Usal This Year			Watershed	Number of Data Sites		ar as % of
10.5	7.8	9.4	8.4	OKANOGAN RIVER	18	73	91
13.0	7.2	7.1	8.2	OMAK CREEK	3	98	120
				SANPOIL RIVER	1	139	125
				SIMILKAMEEN RIVER	4	61	78
				TOATS COULEE CREEK	1	82	108
				CONCONULLY LAKE	3	82	113
				METHOW RIVER	8	79	100
	Usable Capacity	Usable *** Usal Capacity This Year	Usable *** Usable Storag Capacity This Last Year Year 10.5 7.8 9.4	Usable *** Usable Storage *** Capacity This Last Year Year Avg	Usable *** Usable Storage *** Capacity This Last Year Avg	Usable Capacity This Last Year Avg Watershed Snowpack Analysis - 10.5 7.8 9.4 8.4 OKANOGAN RIVER 18 13.0 7.2 7.1 8.2 OMAK CREEK 3 SANPOIL RIVER 1 SIMILKAMEEN RIVER 4 TOATS COULEE CREEK 1 CONCONULLY LAKE 3	Watershed Snowpack Analysis - February

^{* 90%, 70%, 50%, 30%,} and 10% chances of exceeding are the probabilities that the actual volume will exceed the volumes in the

 ^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.
 (2) - The value is natural volume - actual volume may be affected by upstream water management.
 (3) - Median value used in place of average. The value listed under 30% is actually a 25% exceedance level.
 The value listed under 70% is actually a 75% exceedance level.

Wenatchee - Chelan River Basins

*Based on selected stations

Precipitation during January was 94% of average in the basin and 101% for the year-to-date. Runoff for Entiat River is forecast to be 96% of average for the summer. The February-September average forecast for Chelan River is 98%, Wenatchee River at Plain is 109%, Stehekin River is 99% and Icicle Creek is 103%. Stemilt and Squilchuck creeks should have near average flows as well. January average streamflows on the Chelan River were 70% and on the Wenatchee River 51%. February 1 snowpack in the Wenatchee River Basin was 102% of average; the Chelan, 93%; the Entiat, 108%; Stemilt Creek, 107% and Colockum Creek, 106%. Reservoir storage in Lake Chelan was 247,000-acre feet, 78% of February 1 average and 36% of capacity. Lyman Lake SNOTEL had the most snow water with 35.1 inches of water. This site would normally have 43.4 inches on February 1. Temperatures were 6 degrees below normal for January and 2 degrees below for the water year.

Wenatchee - Chelan River Basins

Streamflow Forecasts - February 1, 2008

		<<=====	= Drier ====	== Future Co	nditions =:	===== Wetter	: ====>>			
Forecast Point	Forecast	!								
	Period	90%	70%		50%	30%	10%	30-Yr Avg.		
		(1000AF)	(1000AF)	(1000AF)	(% AVG.)	(1000AF)	(1000AF)	(1000AF)		
Stehekin R at Stehekin	APR-JUL	======================================	655	700	100	=====================================	810	700		
Stellerili R at Stellerili	APR-SEP	705	775	820	99	745 865	935	830		
	APK-SEP	705	115	1 020	33	l 002	933	630		
Chelan R at Chelan (2)	APR-JUL	930	995	1040	99	1090	1150	1050		
01102411 11 40 01102411 (2)	APR-SEP	1030	1110	1170	98	1230	1310	1190		
	021	2030	2220	i	20		-3-0			
Entiat R nr Ardenvoir	APR-JUL	180	198	210	98	220	240	215		
	APR-SEP	197	215	230	96	245	265	240		
Wenatchee R at Plain	APR-JUL	1050	1120	1170	109	1220	1290	1070		
	APR-SEP	1140	1230	1290	109	1350	1440	1180		
Icicle Ck nr Leavenworth	APR-JUL	290	305	320	103	335	350	310		
	APR-SEP	310	335	350	103	365	390	340		
						1.000	1.000	1.400		
Wenatchee R at Peshastin	APR-JUL	1420	1530	1600	108	1670	1780	1480		
	APR-SEP	1540	1670	1760	108	1850	1980	1630		
Columbia R bl Rock Island Dam (2)	APR-JUL	47500	54300	59000	100	63700	70500	59000		
columbia k bi kock island bam (2)	APR-SEP	54800	63400	69200	100	75000	83500	69500		
	AFK-SEP	24000	63400	69200 	100	75000	03300	69500		
=======================================				 =========						

Reservoir Storage	- CHELAN RIVER (1000 AF) - End		ıry		WENATCHEE	- CHELAN RIVER ack Analysis -		1, 2008
Reservoir	Usable Capacity	*** Usa This Year	<u>.</u>		Watershed	Number of Data Sites	This Yea	r as % of
CHELAN LAKE	676.1	246.7	408.5	315.5	CHELAN LAKE BASIN	5	81	93
					ENTIAT RIVER	1	95	108
					WENATCHEE RIVER	7	90	102
					STEMILT CREEK	1	94	107
					COLOCKUM CREEK	2	94	106

^{* 90%, 70%, 50%, 30%,} and 10% chances of exceeding are the probabilities that the actual volume will exceed the volumes in the table.

The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.
 The value is natural volume - actual volume may be affected by upstream water management.
 Median value used in place of average. The value listed under 30% is actually a 25% exceedance level.
 The value listed under 70% is actually a 75% exceedance level.

Upper Yakima River Basin

*Based on selected stations

February 1 reservoir storage for the Upper Yakima reservoirs was 333,000-acre feet, 75% of average. Forecasts for the Yakima River at Cle Elum are 112% of average and the Teanaway River near Cle Elum is at 120%. Lake inflows are all forecasted to be above this summer. January streamflows within the basin were Yakima near Cle Elum at 35% and Cle Elum River near Roslyn at 39%. February 1 snowpack was 119% based upon 10 snow course and SNOTEL readings within the Upper Yakima Basin. Precipitation was 101% of average for January and 100% year-to-date for water. Volume forecasts for the Yakima Basin are for natural flow. As such, they may differ from the U.S. Bureau of Reclamation's forecast for the total water supply available, which includes irrigation return flow.

Upper Yakima River Basin

Streamflow Forecasts - February 1, 2008

		<<=====	Drier ====	== Future C	onditions ==	===== Wetter	====>>			
Forecast Point	Forecast Period	90% (1000AF)	70% (1000AF)		Exceeding * = 50% (% AVG.)	30% (1000AF)	10% (1000AF)	30-Yr Avg. (1000AF)		
Keechelus Reservoir Inflow (2)	APR-JUL	105	125	138	112	151	171	123		
	APR-SEP	117	137	150	112	163	183	134		
Kachess Reservoir Inflow (2)	APR-JUL	99	116	127	113	138	155	112		
	APR-SEP	107	124	135	113	146	163	119		
Cle Elum Lake Inflow (2)	APR-JUL	375	420	450	110	480	525	410		
	APR-SEP	415	460	495	110	530	575	450		
Yakima R at Cle Elum (2)	APR-JUL	720	830	905	112	980	1090	810		
	APR-SEP	805	920	1000	112	1080	1200	890		
Teanaway R bl Forks nr Cle Elum	APR-JUL	122	145	161	120	177	200	134		
	APR-SEP	127	150	166	120	182	205	138		

UPPER YA Reservoir Storage (UPPER YAKIMA RIVER BASIN Watershed Snowpack Analysis - February 1, 2008							
Reservoir	Usable *** Usable Storage *** oir Capacity This Last Year Year Avg							r as % of ======= Average
KEECHELUS	157.8	61.3	83.3	89.9	UPPER YAKIMA RIVER	10	97	119
KACHESS	239.0	139.6	147.0	139.4				
CLE ELUM	436.9	131.8	244.3	215.4				
	~							

^{* 90%, 70%, 50%, 30%,} and 10% chances of exceeding are the probabilities that the actual volume will exceed the volumes in the

- The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.
 The value is natural volume actual volume may be affected by upstream water management.
 Median value used in place of average. The value listed under 30% is actually a 25% exceedance level.
 The value listed under 70% is actually a 75% exceedance level.

Lower Yakima River Basin

*Based on selected stations

January average streamflows within the basin were: Yakima River near Parker, 39%; Naches River near Naches, 47%; and Yakima River at Kiona, 45%. February 1 reservoir storage for Bumping and Rimrock reservoirs was 118,000-acre feet, 97% of average. Forecast averages for Yakima River near Parker are 105%; American River near Nile, 110%; Ahtanum Creek, 106%; and Klickitat River near Glenwood, 119%. February 1 snowpack was 114% based upon 8 snow course and SNOTEL readings within the Lower Yakima Basin and Ahtanum Creek reported in at 108% of average. Precipitation was 112% of average for January and 112% year-to-date for water. Temperatures were 3 degrees below normal for January and 1 degree below for the water year. Volume forecasts for Yakima Basin are for natural flow. As such, they February differ from the U.S. Bureau of Reclamation's forecast for the total water supply available, which includes irrigation return flow.

Lower Yakima River Basin

Streamflow Forecasts - February 1, 2008

		<<=====	= Drier ====	== Future Co	onditions =	===== Wetter	====>>			
				-1						
Forecast Point	Forecast			01141100 02 2						
	Period	90%	70%		50%	30%	10%	30-Yr Avg.		
		(1000AF)	(1000AF)	(1000AF)	(% AVG.)	(1000AF)	(1000AF)	(1000AF)		
Bumping Lake Inflow (2)	APR-JUL	107	121	130	106	139	153	123		
Bumping bake Iniiow (2)	APR-SEP	117	132	142	106	152	167	134		
	AFK-SEF	11,	152	142	100	132	107	134		
American R nr Nile	APR-JUL	99	111	119	110	127	139	108		
	APR-SEP	107	121	130	110	139	153	118		
						1				
Rimrock Lake Inflow (2)	APR-JUL	180	195	205	103	215	230	200		
	APR-SEP	215	230	245	102	260	275	240		
Naches R nr Naches (2)	APR-JUL	680	755	810	113	865	940	720		
	APR-SEP	730	820	880	113	940	1030	780		
Ahtanum Ck at Union Gap	APR-JUL	22	28	32	107	36	42	30		
	APR-SEP	24	30	34	106	38	44	32		
Yakima R nr Parker (2)	APR-JUL	1570	1760	1890	105	2020	2210	1800		
	APR-SEP	1730	1940	2080	105	2220	2430	1990		
KLICKITAT near Glenwood	APR-JUL	126	140	150	119	160	174	126		
ALICATIAI Hear Grenwood	APR-SEP	167	183	194		205	220			
	APK-SEP	16/	183	194	119	205	220	163		
						l 				

LOWER YAH Reservoir Storage (1		LOWER YAKIMA RIVER BASIN Watershed Snowpack Analysis - February 1, 2008					
Reservoir	Usable Capacity		ble Stora Last Year	ge *** Avg	Watershed	Number of Data Sites	This Year as % of Last Yr Average
BUMPING LAKE	33.7	12.2	15.9	9.9			
RIMROCK	198.0	105.5	145.1	111.8			

* 90%, 70%, 50%, 30%, and 10% chances of exceeding are the probabilities that the actual volume will exceed the volumes in the table.

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.

^{(2) -} The value is natural volume - actual volume may be affected by upstream water management.

(3) - Median value used in place of average. The value listed under 30% is actually a 25% exceedance level.

The value listed under 70% is actually a 75% exceedance level.

Walla Walla River Basin

*Based on selected stations

January precipitation was 110% of average, maintaining the year-to-date precipitation at 111% of average. Snowpack in the basin was 134% of average. Streamflow forecasts are 114% of average for Mill Creek and 112% for the SF Walla Walla near Milton-Freewater. January streamflow was 64% of average for the Walla Walla River. Average temperatures were 2 degrees below normal for January and near average for the water year. A new SNOTEL site named Milkshakes was installed, in cooperation with the City of Walla Walla, in the headwaters of Mill Creek. We look forward to having this station provide important climatic information in support of the City's water supply forecasting efforts.

Walla Walla River Basin

Streamflow Forecasts - February 1, 2008

===========	=========			=========	========	=======================================
<<=====	= Drier ====	== Future Co	onditions =	===== Wetter	====>>	
st ======		= Chance Of E	Exceeding *			
nd 90%	70%] 9	08	30%	10%	30-Yr Avg.
(1000AF)	(1000AF)	(1000AF)	(% AVG.)	(1000AF)	(1000AF)	(1000AF)
		==========		=======================================		
P 77	85	91	112	j 97	105	81
P 63	70	75	112	80	87	67
L 21	24	27	113	30	33	24
P 25	29	32	114	j 35	3.9	28
	ast 90% (1000AF) EP 77 EP 63	Description of the second seco	Ast	St	Ast	od 90% 70% 50% 30% 10% (1000AF) (1000AF) (\$ AVG.) (1000AF) (1000AF) CP 77 85 91 112 97 105 CP 63 70 75 112 80 87 UL 21 24 27 113 30 33

	WALLA WALLA RIVER BASIN Reservoir Storage (1000 AF) - End of January				WALLA WALLA RIVER BASIN Watershed Snowpack Analysis - February 1, 2008				
Reservoir		Usable Capacity	*** Usab This Year	le Storage Last Year	e *** Avg	Watershed	Number of Data Sites	This Yea: Last Yr	r as % of ====== Average
	=======================================					WALLA WALLA RIVER	2	146	134

^{* 90%, 70%, 50%, 30%,} and 10% chances of exceeding are the probabilities that the actual volume will exceed the volumes in the table.

- (1) The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.
 (2) The value is natural volume actual volume may be affected by upstream water management.
 (3) Median value used in place of average. The value listed under 30% is actually a 25% exceedance level.
 The value listed under 70% is actually a 75% exceedance level.

Lower Snake River Basin

*Based on selected stations

The April - September forecast is for 107% for Clearwater River at Spalding. The Snake and Grande Ronde rivers can expect summer flows to be about 103% and 113% of normal respectively. January precipitation was 129% of average, bringing the year-to-date precipitation to 118% of average. February 1 snowpack readings averaged 115% of normal. January streamflow was 53% of average for Snake River below Lower Granite Dam and 46% for Grande Ronde River near Troy. Average temperatures were 2 degrees below normal for January and near average for the water year.

Lower Snake River Basin

Streamflow Forecasts - February 1, 2008

		<<=====	Drier ====	== Future Co	onditions ==	===== Wetter	====>>			
Forecast Point	Forecast	=======		= Chance Of E	xceeding * =		======			
	Period	90%	70%	5	10%	30%	10%	30-Yr Avg.		
•		(1000AF)	(1000AF)	(1000AF)	(% AVG.)	(1000AF)	(1000AF)	(1000AF)		
Grande Ronde R at Troy	MAR-JUL	1230	1620	1800	114	1980	2370	1580		
	APR-SEP	1040	1390	1550	113	1710	2060	1370		
Clearwater R at Spalding	APR-JUL	6060	7370	7970	107	8570	9880	7430		
	APR-SEP	6380	7760	8390	107	9020	10400	7850		
SNAKE blw Lower Granite Dam (1,2)	APR-JUL	12900	19300	22200	103	25100	31500	21600		
	APR-SEP	14200	21400	24700	103	28000	35200	24100		

			_	 		.==	
	LOWER SNAKE RIVER BA: Reservoir Storage (1000 AF) - End	LOWER SNAKE RIVER BASIN Watershed Snowpack Analysis - February 1, 2008					
Reservoir	Usable Capacity	This Last	*** Avg	Watershed	Number of Data Sites	This Year ======= Last Yr	
				LOWER SNAKE, GRANDE	RONDE 11	153	115

* 90%, 70%, 50%, 30%, and 10% chances of exceeding are the probabilities that the actual volume will exceed the volumes in the table.

 ^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.
 (2) - The value is natural volume - actual volume may be affected by upstream water management.
 (3) - Median value used in place of average. The value listed under 30% is actually a 25% exceedance level.
 The value listed under 70% is actually a 75% exceedance level.

Cowlitz - Lewis River Basins

*Based on selected stations

Forecasts for April – September streamflows within the basin are Lewis River at Ariel, 117% and Cowlitz River at Castle Rock, 111% of average. The Columbia at The Dalles is forecasted to have 99% of average flows this summer. January average streamflow for Cowlitz River was 69% and 61% for Lewis River. The Columbia River at The Dalles was 64% of average. January precipitation was 104% of average and the water-year average was 108%. February 1 snow cover for Cowlitz River was 140%, and Lewis River was 157% of average. Average temperatures have been 2 degrees below normal during January and 1-2 degrees colder than normal for the water year. A new SNOTEL site named Pepper Creek was installed, in cooperation with PacifiCorp, in the Lewis River Basin. We look forward to utilizing this data to help enhance forecasting efforts in the basin.

Cowlitz - Lewis River Basins

Streamflow Forecasts - February 1, 2008

		<<=====	Drier ====	== Future Co	nditions =:	===== Wetter	:====>>			
Forecast Point	Forecast Period	90% (1000AF)	70% (1000AF)	5	exceeding * = 0% 0% (% AVG.)	30% (1000AF)	10% (1000AF)	30-Yr Avg. (1000AF)		
Columbia R at The Dalles (2)	APR~JUL APR~SEP	64800 74700	76100 88100	83800 97300	99	91500 106000	103000	84600 98600		
KLICKITAT near Glenwood	APR-JUL	126	140	150	119	160	174	126		
	APR-SEP	167	183	194	119	205	220	163		
LEWIS at Ariel (2)	APR-JUL	970	1110	1210	117	1310	1450	1031		
	APR-SEP	1130	1280	1380	117	1480	1630	1176		
COWLITZ R. bl Mayfield Dam (2)	APR-JUL	1550	1780	1930	114	2080	2310	1689		
	APR-SEP	1730	2010	2200	115	2390	2670	1922		
COWLITZ R. at Castle Rock (2)	APR-JUL	2130	2380	2550	111	2720	2970	2295		
	APR-SEP	2440	2730	2920	111	3110	3400	2639		

COWLITZ Reservoir Storage	- LEWIS RIVER BA	COWLITZ - LEWIS RIVER BASINS Watershed Snowpack Analysis - February 1, 2008						
Reservoir	Usable Capacity	*** Us: This Year	able Stora Last Year	ge *** Avg	Watershed	Number of Data Sites	This Year Last Yr	as % of Average
MOSSYROCK	0.0	1117.5	1199.7		LEWIS RIVER	5	139	157
SWIFT	0.0	486.0	597.8		COWLITZ RIVER	6	124	140
YALE	0.0	363.0	356.1					
MERWIN	0.0	408.9	404.0					
				١				

^{* 90%, 70%, 50%, 30%,} and 10% chances of exceeding are the probabilities that the actual volume will exceed the volumes in the table.

The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.
 The value is natural volume - actual volume may be affected by upstream water management.
 Median value used in place of average. The value listed under 30% is actually a 25% exceedance level.
 The value listed under 70% is actually a 75% exceedance level.

White - Green River Basins

*Based on selected stations

Summer runoff is forecast to be 119% of normal for the Green River below Howard Hanson Dam and 119% for the White River near Buckley. February 1 snowpack was 127% of average for the White River, 139% for Puyallup River and 147% in the Green River Basin. Water content on February 1 at Corral Pass SNOTEL, at an elevation of 6,000 feet, was 22.7 inches. This site has a February 1 average of 22.1 inches. January precipitation was 102% of average, bringing the water year-to-date to 99% of average for the basins. Average temperatures in the area were 3 degrees below normal for January and 1 degree below for the water-year. A new SNOTEL site named Lynn Lake was installed, in cooperation with the City of Tacoma, in the Green River Basin. We look forward to having this site, co-located with the historic manual snow course, to enhance water supply forecasting efforts.

White - Green - Puyallup River Basins

122

	========			=====				======			
Streamflow Forecasts - February 1, 2008											
		<<=====	Drier ====	== Fu	iture Co	onditions =:	===== We	tter ===	==>>		
Forecast Point	Forecast			= Char					====	20 1/ 2	
	Period	90% (1000AF)	70% (1000AF)	/1		50% (% AVG.)	30%	_	.0% 000AF)	30-Yr Avg. (1000AF)	
		(1000AF)	(1000Ar)			(% AVG.)	1======	Ar) (10 ======	700AF)	(1000AF)	
WHITE near Buckley (1,2)	APR-JUL	425	495		525	119	55	5	625	440	
• 1 1	APR-SEP	520	600		635	119	67	0	750	534	
•							ļ				
GREEN R below Howard Hansen (1,2)	APR-JUL	190	260		290	119	32		390	243	
	APR-SEP	215	285		320	119	35	5	425	268	
				! 			1 		.======		
WHITE - GREEN - P	UYALLUP RIV	ER BASINS				WHITE - G	REEN - PUY	ALLUP RI	VER BASI	NS	
Reservoir Storage (100	0 AF) - End	of January	/	į		Watershed Si	nowpack An	alysis -	Februar	y 1, 2008	
		========						======	=======		
_	Usable		le_Storage *:	**			N	umber		ear as % of	
Reservoir	Capacity	This Year	Last Year A		Water	sned	Don	of a Sites		r Average	
			Year A	vg -			bat	a Sites	Last 1.		
				-	WHITE	RIVER		3	109	127	
				i				-			
					GREEN	RIVER		7	120	147	

^{* 90%, 70%, 50%, 30%,} and 10% chances of exceeding are the probabilities that the actual volume will exceed the volumes in the table.

PUYALLUP RIVER

The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.
 The value is natural volume - actual volume may be affected by upstream water management.
 Median value used in place of average. The value listed under 30% is actually a 25% exceedance level.
 The value listed under 70% is actually a 75% exceedance level.

Central Puget Sound River Basins

*Based on selected stations

Forecast for spring and summer flows are: 126% for Cedar River near Cedar Falls; 129% for Rex River; 111% for South Fork of the Tolt River; and 127% for Cedar River at Cedar Falls. Basin-wide precipitation for January was 100% of average, bringing water-year-to-date to 105% of average. February 1 average snow cover in Cedar River Basin was 168%, Tolt River Basin was 169%, Snoqualmie River Basin was 137%, and Skykomish River Basin was 131%. Rex River SNOTEL site, at 3960 feet, had 39.7 inches of water content. Average February 1 water content is 21.7 inches at Rex River. Rex, Meadows Cabin, Mt. Gardner, Alpine Meadows and Skookum SNOTEL sites all set new record high water content levels for February 1. Temperatures were 3 degrees below average for January and 1 degree below normal for the water-year.

Central Puget Sound River Basins

Streamflow Forecasts - February 1, 2008

		<<=====	Drier ====	== Future C	onditions =:	===== Wetter	: ====>>			
							ĺ			
Forecast Point	Forecast	=======		= Chance Of	Exceeding * :		=======			
	Period	90%	70%	1	50%	30%	10%	30-Yr Avg.		
•		(1000AF)	(1000AF)	(1000AF)	(% AVG.)	(1000AF)	(1000AF)	(1000AF)		
=======================================	_======================================			========		=========				
CEDAR near Cedar Falls	APR-JUL	74	85	92	126	99	110	73		
	APR-SEP	82	93	101	126	109	120	80		
•				ĺ						
REX near Cedar Falls	APR-JUL	24	29	32	128	35	40	25		
	APR-SEP	28	33	36	129	39	44	28		
				İ						
CEDAR RIVER at Cedar Falls	APR-JUL	64	81	93	126	105	122	74		
	APR-SEP	65	82	93	127	104	121	73		
						İ				
SOUTH FORK TOLT near Index	APR-JUL	11.6	14.4	16.3	111	18.2	21	14.7		
	APR-SEP	13.9	16.8	18.8	111	21	24	16.9		
				Ì		ĺ				

CENTRAL PUGET SOUND RIVER BASINS Reservoir Storage (1000 AF) - End of January				CENTRAL PUGET SOUND RIVER BASINS Watershed Snowpack Analysis - February 1, 2008				
Reservoir	Usable Capacity	*** Usable Storage *** This Last Year Year Avg		Watershed	Number of Data Sites	This Year		
					CEDAR RIVER	4	115	168
					TOLT RIVER	2	128	169
					SNOQUALMIE RIVER	4	113	137
					SKYKOMISH RIVER	2	111	131

 $[\]star$ 90%, 70%, 50%, 30%, and 10% chances of exceeding are the probabilities that the actual volume will exceed the volumes in the table.

 ^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.
 (2) - The value is natural volume - actual volume may be affected by upstream water management.
 (3) - Median value used in place of average. The value listed under 30% is actually a 25% exceedance level.
 The value listed under 70% is actually a 75% exceedance level.

North Puget Sound River Basins

*Based on selected stations

Forecast for Skagit River streamflow at Newhalem is 106% of average for the spring and summer period. January streamflow in Skagit River was 64% of average. Other forecast points included Baker River at 109% and Thunder Creek at 110% of average. Basin-wide precipitation for January was 85% of average, bringing water-year-to-date to 99% of average. February 1 average snow cover in Skagit River Basin was 110%, and Nooksack River Basin was 143% and the Baker River was 126%. Rainy Pass SNOTEL, at 4,780 feet, had 24.8 inches of water content. Average February 1 water content is 30.2 inches at Rainy Pass. February 1 Skagit River reservoir storage was 95% of average and 68% of capacity. Average temperatures for January were 2 degrees below normal for the basin and 1 degree below average for the water year.

North Puget Sound River Basins

Streamflow Forecasts - February 1, 2008

Screaminow Forecasts - rebutary 1, 2000											
	 	<<======									
Forecast Point	Forecast	=======	========	= Chance Of E	xceeding * =		======				
	Period	90%	70%	5	0%	3 0%	10%	30-Yr Avg.			
•		(1000AF)	(1000AF)	(1000AF)	(% AVG.)	(1000AF)	(1000AF)	(1000AF)			
=======================================			========	========	=======================================	=========					
THUNDER CREEK near Newhalem	APR-JUL	210	230	255	109	260	280	234			
	APR-SEP	325	350	365	110	380	405	333			
4											
SKAGIT at Newhalem (2)	APR-JUL	1740	1880	1980	106	2080	2220	1864			
	APR-SEP	2110	2250	2350	106	2450	2590	2217			
					1						
BAKER RIVER near Concrete	APR-JUL	740	835	900	109	965	1060	828			
	APR-SEP	925	1050	1140	109	1230	1360	1050			
					l						

NORTH PUGET S Reservoir Storage (10	NORTH PUGE Watershed Snowp	r SOUND RIVER D		1, 2008				
Reservoir	Usable Capacity	*** Usa This Year	able Stora Last Year	ge *** Avg	Watershed	Number of Data Sites		r as % of ====== Average
ROSS	1404.1	923.9	1031.5	978.3	SKAGIT RIVER	14	84	110
DIABLO RESERVOIR	90.6	86.2	86.5	85.5	BAKER RIVER	9	88	126
					NOOKSACK RIVER	2	89	143

^{* 90%, 70%, 50%, 30%,} and 10% chances of exceeding are the probabilities that the actual volume will exceed the volumes in the table.

- (1) The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.
 (2) The value is natural volume actual volume may be affected by upstream water management.
 (3) Median value used in place of average. The value listed under 30% is actually a 25% exceedance level.
 The value listed under 70% is actually a 75% exceedance level.

Olympic Peninsula River Basins

*Based on selected stations

Forecasted average runoff for streamflow for the Dungeness and Elwha rivers is 115% and 113% respectively. January runoff in the Dungeness River was 58% of normal. Big Quilcene and Wynoochee rivers should expect near average runoff this summer also. January precipitation was 120% of average. Precipitation has accumulated at 100% of average for the water year. January precipitation at Quillayute was 12.02 inches. The thirty-year average for January is 13.65 inches. Olympic Peninsula snowpack averaged 142% of normal on February 1. Temperatures were 3 degrees below average for January and 1 degree below for the water year.

Olympic Peninsula River Basins

Streamflow Forecasts - February 1, 2008

=======================================		======================================	:======== : Drier =====	======================================	nditions =:	======================================	=====>>	.=========
Forecast Point	Forecast Period	====== 90% (1000AF)	70% (1000AF)	= Chance Of E 5 (1000AF)	Exceeding * : 0% (% AVG.)	30% (1000AF)	====== 10% (1000AF)	30-Yr Avg. (1000AF)
DUNGENESS near Sequim	APR-JUL APR-SEP	116 135	132 158	143 174	115 115	=====================================	170 215	124 152
ELWHA near Port Angeles	APR-JUL APR-SEP	420 505	450 545	470 570	112 113	490 595	520 635	419 503
OLYMPIC PENINSULA RIVER BASINS Reservoir Storage (1000 AF) - End of January						E======== C PENINSULA RI nowpack Analys		ary 1, 2008

	OLYMPIC PENINSULA RIVER E Reservoir Storage (1000 AF) - End	ry		OLYMPIC PENINSULA RIVER BASINS Watershed Snowpack Analysis - February 1, Number This Year Watershed of ===================================			1, 2008
Reservoir	Usable Capacity	ole Storag Last Year	e *** Avg	Watershed	of		
		 		OLYMPIC PENINSULA	5	86	142

^{* 90%, 70%, 50%, 30%,} and 10% chances of exceeding are the probabilities that the actual volume will exceed the volumes in the table.

 ^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.
 (2) - The value is natural volume - actual volume may be affected by upstream water management.
 (3) - Median value used in place of average. The value listed under 30% is actually a 25% exceedance level.
 The value listed under 70% is actually a 75% exceedance level.

Issued by

Released by

Arlen Lancaster

Chief

Private

Natural Resources Conservation Service

U.S. Department of Agriculture

R.L. "Gus" Hughbanks State Conservationist

Natural Resources Conservation Service

Spokane, Washington

The Following Organizations Cooperate with the Natural Resources Conservation Service in Snow Survey Work*:

Canada Ministry of Sustainable Resources

Snow Survey, River Forecast Centre, Victoria, British Columbia

State Washington State Department of Ecology

Washington State Department of Natural Resources

Federal Department of the Army

Corps of Engineers
U.S. Department of Agriculture

Forest Service

U.S. Department of Commerce

NOAA, National Weather Service

U.S. Department of Interior

Bonneville Power Administration

Bureau of Reclamation Geological Survey National Park Service Bureau of Indian Affairs

Recourse Conservation & Development Councils

Local City of Tacoma

City of Seattle

Chelan County P.U.D.

Pacific Power and Light Company

Puget Sound Power and Light Company Washington Water Power Company

Snohomish County P.U.D. Colville Confederated Tribes

Spokane County Yakama Indian Nation Whatcom County Pierce County

Kalispel Tribe of Indians Spokane Indian Tribe Jamestown S'klallum Tribe

Okanogan Irrigation District

Wenatchee Heights Irrigation District Newman Lake Homeowners Association

Whitestone Reclamation District

Washington Snow Survey Office 2021 E. College Way, Suite 214 Mount Vernon, WA 98273-2873

FOR OFFICIAL USE ONLY

Washington Water Supply Outlook Report

Natural Resources Conservation Service Spokane, WA

