

Optimising workflow lifecycle management: development, HPC-ready containers deployment and reproducibility

Raül Sirvent, Rosa M Badia

SC24 tutorial, Atlanta, 18 Novembre 2024

Tutorial website

https://github.com/bsc-wdc/Tutorial_SC24

Agenda

8:30 – 8:45	Overview of tutorial agenda	Rosa M Badia
8:45 – 9:10	Part 1.1: Hybrid HPC+AI+DA workflow development with PyCOMPSs - Context of the workflows at BSC - Overview of workflow development with PyCOMPSs - Extensions for the integration of HPC with AI and DA	Rosa M Badia
9:10 – 9:40	Part 1.2: Workflows' reproducibility through provenance - Motivation for workflow provenance - Design of the recording mechanism - Sharing experiments for reproducibility	Raül Sirvent
9:40 - 10:00	 Part 1.3: HPC ready container images Motivation for architecture specific containers Overview of the Container Image Creation service Example of HPC ready container generation Workflow example for hands-on 	Rosa M Badia
10:00 - 10:30	Coffee break	

Agenda

10:30 – 10:45	Hands-on preparation (credentials distribution, how to access, etc)	All presenters
10:45 – 11:15	Part 2.1: Hands-on session: Sample workflows with PyCOMPSs, execution with containers, task-graph generation, tracefile generation (optional)	Rosa M Badia
11:15 – 11:55	Part 2.2: Hands-on session: How to automatically record workflow provenance and use it to share experiments in WorkflowHub	Raül Sirvent
11:55 - 12:00	Tutorial conclusions	All presenters

Part 1.1: Hybrid HPC+AI+DA workflow development with PyCOMPSs

- Context of the workflows at BSC
 - eFlows4HPC and HPCWaaS
 - DT-GEO
 - CAELESTIS
- Overview of workflow development with PyCOMPSs
- Extensions for the integration of HPC with AI and DA
 - En algun lloc, explicar el workflow de CAELESTIS que farem servir
- 25 min

EuroHPC JU systems

		Status	Country	Peak performance	Architecture
	LUMI	Operational	Finland	539.13 petaflops	64-core AMD EPYC™ CPUs + AMD Instinct™ GPU
	Leonardo	Operational	Italy	315.74 petaflops	Intel Ice-Lake, Intel Sapphire Rapids + IA Ampere
	MareNostrum 5	Operational	Spain P First Eur	opean Exasca to be installed any 10.05 petaflops 12.91 petaflops	Sapphire Rapids, NVIDIA Hopper, A Grace, Intel Emeralds, Intel
	Meluxina	OP JUPITE	computer	inv	בוזיי. ÉPYC + NVIDIA Ampere A100
	Vega	Ope Super	ich. Germe	10.05 petaflops	AMD Epyc 7H12 + Nvidia A100
	Karolina	Opera in Jul	Lecn Republic	12.91 petaflops	AMD + Nvidia A100
	Discoverer	Operational	Bulgaria	5.94 petaflops	AMD EPYC
	Deucalion	Operational	Portugal	5.01 petaflops	A64FX, AMD EPYC, Nvidia Ampere

Complex problems for complex computing infrastructures

Workflow lifecyle challenges

- Workflow development
 - Different programming models and environments
- Workflow deployment
 - Can we make it easier to new HPC users?
- Workflow operation
 - Go beyond static workflows
 - Not only computational aspects, data management as well

Sample projects:

eFlows4HPC in a nutshell

- Software tools stack that makes easier the development and management of complex workflows:
 - Combine different aspects
 - HPC, AI, data analytics
 - Reactive and dynamic workflows
 - Autonomous workflow steering
 - Full lifecycle management
 - Not just execution
 - Data logistics and Deployment
- HPC Workflows as a Service:
 - Mechanisms to make easier the use and reuse of HPC by wider communities
- Architectural Optimizations:
 - Selected HPC Al Kernels Optimized for GPUs, FPGA, EPI
- Validation Pillar's
 - End-user workflows linked to CoEs

Dynamic Workflow Definition

Workflow Accessibility/ Re-usability

Efficient
Distributed
Execution

HPCWaaS: Workflow lifecycle overview

Description of data movements as Python functions. Input/output datasets described at Data Catalog

Computational Workflow as a simple Python script. Invocation of software described in the Software Catalog

Topology of the components involved in the workflow lifecycle and their relationship.

DT-GEO

CAELESTIS Simulation Ecosystem

 Design and develop a digital ecosystem to enable the flexible integration of product and process simulation tools and industry-driven product and process optimization services on demand at HPC

Integrating different computations in PyCOMPSs

Workflows in PyCOMPSs

- Sequential programming, parallel execution
 - General purpose programming language + annotations/hints
- Task-based parallelization
 - Automatic generation of task graph
 - Coarse grain tasks: methods and web services
 - Sequential and parallel tasks
- Offers a shared memory illusion in a distributed system
 - Can address larger dataset than storage space
- Agnostic of computing platform
 - Clusters, clouds and cluster containers
- Based in Python

Supercomputing

• Further extended in eFlows4HPC for better integration of HPC, Al and Big Data

```
@task(c=INOUT)
def multiply(a, b, c):
    c += a*b
```


PyCOMPSs syntax

- Use of **decorators** to annotate tasks and to indicate arguments directionality
- Small API for data synchronization

Tasks definition

```
@task(c=INOUT)
def multiply(a, b, c):
    c += a*b
```



```
initialize_variables()
startMulTime = time.time()

for i in range(MSIZE):
    for j in range(MSIZE):
        for k in range(MSIZE):
            multiply (A[i][k], B[k][j], C[i][j])

compss_barrier()
mulTime = time.time() - startMulTime
```


Other interesting annotations

Task constraints: enable to define HW or SW requirements

```
@constraint (ComputingUnits="8", MemorySize=6.0)
@task (c=INOUT)
def myfunc(a, b, c):
...
```

Linking with other programming models

```
@constraint (computingUnits= "248")
@mpi (binary="mySimulator", runner="mpirun", computingNodes= "16", ...)
@task (returns=int, stdOutFile=FILE_OUT_STDOUT, ...) def
nems(stdOutFile, stdErrFile):
    pass
```

Task failure management

```
@task(file_path=FILE_INOUT, on_failure='CANCEL_SUCCESSORS')
def task(file_path):
    ...
    if cond :
        raise Exception()
```


PyCOMPSs runtime

- Runtime deployed as a distributed master-worker
 - Description of computational infrastructure in an XML file
- Sequential execution starts in master node and tasks are offloaded to worker nodes
- All data scheduling decisions and data transfers are performed by the runtime
- Support for horizontal elasticity
- Support for containers

Interfaces to integrate HPC/DA/ML

workflow steps defined as tasks

- Goal:
 - Reduce the required glue code to invoke multiple complex software steps
 - Developer can focus in the functionality, not in the integration
 - Enables reusability
- Two paradigms:

Data transformations

@data_transformation (input_data, transformation description)

@software (invocation description)

def data analytics (input data, result): pass

simulation (input_cfg, sim_out) data_analytics (sim_out, analysis_result) ml_training (analysis_result, ml_model)

Software Invocation description


```
{
  "type":"mpi",
  "properties":{
      "runner": "mpirun",
      "processes": "$SW_PROCS"
      "binary": "mpi_sofware.x",
      "params": "-d {{param}}",
      "working_dir": "{{working_dir}}"},
      "prolog":{
            "binary":"mkdir",
            "params":"{{working_dir}}"},
      "epilog":{
            "binary":"tar",
            "params":"zcvf {{out_tgz}}" {{working_dir}}},
      "constraints":{
            "computing_units": $SW_THREADS}
}
```

Software invocation description
Stored in software catalog

- Converts a Python function of a software invocation to a PyCOMPSs task
- Takes information from the description in json
- Enables reuse in multiple workflows

Data transformations

• A data transformation changes the data without requiring extra programming from the developer

Admin/user code

de load blocks rechunk blocks, shape, block size, new block size): SnapshotMatrix = load_blocks_array (final_blocks, shape, block_size); return SnapshotMatrix


```
new block size=desired block size is workflow=True)
@software(config_file = SW_CATALOG + "/dislib/dislib.json")
def rSVD(blocks, desired_rank=30):
  u,s = rsvd(blocks, desired rank, A row chunk size, A column chunk size)
  return u
```

User code


```
model, parameters = load_model_parameters(model_file)
for cfg in sim_cfgs:
    sim_results.append(execute_FOM_instance(model,parameters,[cfg]))
rom = rSVD(sim_results, desired_rank)
                                                              User code
```

Dislib: parallel machine learning

- dislib: Collection of machine learning algorithms developed on top of PyCOMPSs
 - Unified interface, inspired in scikit-learn (fit-predict)
 - Based on a distributed data structure (ds-array)
 - Unified data acquisition methods
 - Parallelism transparent to the user PyCOMPSs parallelism hidden
 - Open source, available to the community
- Provides multiple methods:
 - Data initialization
 - Clustering
 - Classification
 - Model selection, ...

```
x = load_txt_file("train.csv", (10, 780))
x_test = load_txt_file("test.csv", (10, 780))
kmeans = KMeans(n_clusters=10)
kmeans.fit(x)
```

kmeans.predict(x test)

Dislib data structure: Distributed arrays (ds-arrays)

- 2-dimensional structure (i.e., matrix)
 - Divided in blocks (NumPy arrays)
- Works as a regular Python object
 - But not stored in local memory!
- Methods for instantiation and slicing with the same syntax of numpy arrays:
 - Internally parallelized with PyCOMPSs:
 - Loading data (e.g. from a text file)
 - Indexing (e.g., x[3], x[5:10]
 - Operators (e.g., x.min(), x.transpose())
- ds-arrays can be iterated efficiently along both axes
- Samples and labels can be represented by independent distributed arrays

Internally parallelized with PyCOMPSs

Computes pair wise distances of points to centers and accumulates new values to compute new centers (partials)


```
@task(blocks={Type: COLLECTION_IN, Depth: 2}, returns=np.array)
def _partial_sum(blocks, centers):
    return partials
```

x: ds-array

```
@task(returns=dict)
def _merge(*data):
...
return accum
```

Reduces values of centers through merge task

```
def fit(self, x, y=None):
    """ Compute K-means clustering.
    old_centers = None
    iteration = 0

while not self._converged(old_centers, iteration):
    old_centers = self.centers.copy()
    partials = []
    for row in x._iterator(axis=0):
        partial = _partial_sum(row._blocks, old_centers)
        partials.append(partial)
    self._recompute_centers(partials)
```


Sample workflows

- UCIS4EQ Earthquake simulation eFlows4HPC and DT-GEO
- CAELESTIS Surrogate model creation

Event-driven cancellation/creation

UCIS4EQ: HPC-based urgent seismic simulation workflow

- Evaluation of scenarios after the occurrence of a seismic event
- Combines multiple web services and HPC simulation (Salvus)
- Workflow Dynamicity:
 - Usage of data streaming for communication of events
 - On event occurrence API supports:
 - **Dynamic cancellation** of task groups
 - **Dynamic creation** of new set of tasks

Workflow templates

caelestis

Surrogate Model Creation Workflow

Customized for each the model

Actual problem: open hole tension

- Open hole geometry: test tube with a hole in the middle
 - The simulation mechanically sets it under tension until it breaks
 - all virtually, numerically
- The workflow generates synthetic data which is simulated with Alya and subsequently trains a model
- The trained model is able to predict predict the maximum load at which the tube will break given some inputs

- Mesh
 - Global element size: 0.5 mm x 0.5 mm x 0.13 mm
 - Total elements: 54332
 - Element types: Hexahedrons

Further Information

- Project page: http://www.bsc.es/compss
 - Documentation
 - Virtual Appliance for testing & sample applications
 - Tutorials

Source Code

https://github.com/bsc-wdc/compss

Docker Image

https://hub.docker.com/r/compss/compss

Applications

https://github.com/bsc-wdc/apps

https://github.com/bsc-wdc/dislib

Dislib

https://dislib.readthedocs.io/en/latest/

ACKs

MareNostrum 5

Thanks!

rosa.m.badia@bsc.es