

What is claimed is:

1. A disk brake comprising

-- a brake disk having a preferred rotational direction;

-- a first brake pad (2) having a first center of gravity (S1) on a first side of the brake disk (4);

-- a second brake pad (3) having a second center of gravity (S2) on a second side of the brake disk (4); and

-- a caliper (1) for transmitting braking forces produced by the second brake pad (3) to the first side of the brake disk (4), wherein

-- the second center of gravity (S2) is offset from the first center of gravity (S1) by a predetermined distance (V) in the direction toward the side of the brake disk (4) which trails when the disk is rotating in a preferred rotational direction (D).

2. The disk brake according to Claim 1, further comprising a clamping device (5) which has a center axis and is configured to push the first brake pad (2) against the brake disk (4), wherein the center axis is perpendicular to the main plane of the brake disk (4) and extends through the first center of gravity (S1).

3. The disk brake according to Claim 1, wherein the offset of the second center of gravity (S2) from the first center of gravity (S1) is present both when the brake is at rest and when it is being actuated.

4. The disk brake according to claim 1, wherein the two centers of gravity (S1, S2) are the same radial distance away from the center axis of the brake disk (4).

5. The disk brake according to claim 1, wherein an offset (V) of the second center of gravity (S2) from the first center of gravity (S1) in the direction parallel to the brake disk (4) is at least in part due to an offset of the first brake pad (3) from the second brake pad (2) parallel to the brake disk (4).

6. The disk brake according to claim 1, wherein an offset (V) of the second center of gravity (S2) from the first center of gravity (S1) in the direction parallel to the brake disk (4) is at least in part due to a difference between the configurations of the first and second brake pads (2, 3).

7. The disk brake according to claim 1, wherein an offset (V) of the second center of gravity (S2) from the first center of gravity (S1) in the direction parallel to the brake disk (4) is at least in part due to a difference between the weight distributions of the first and second brake pads (2, 3).

8. The disk brake according to claim 1, wherein the first and/or the second brake pad (2, 3) is wedge-shaped in at least one cross-sectional plane.

9. The disk brake according to claim 1, wherein the caliper (1) has an opening (9) in an area extending across the brake disk (4).

10. The disk brake according to Claim 9, wherein the opening (9) extends across the first and/or the second brake pad (2, 3) in a projection parallel to the brake disk.

11. The disk brake according to Claim 9, wherein the opening (9) has a contour of a parallelogram.

12. The disk brake according to claim 1, comprising a plate-shaped bracket part (6).

13. The disk brake according to Claim 12, wherein the bracket part (6) is an integral part of an axle part (7).

14. The disk brake according to claim 1, wherein the brake is a sliding caliper disk brake, a hinged caliper disk brake, or a fixed caliper disk brake with one-sided or two-sided clamping.

15. The disk brake according to claim 1, wherein the brake is a brake for commercial vehicles.