1.3.7.2 Lüftungs-Wärmetransferkoeffizient

Coefficient de transfert thermique par ventilation

 H_V W/K Verhältnis der Dichte des Wärmestroms, der im stationären Zustand durch mechanische Lüftung oder Infiltration einem Raum zugeführt oder aus ihm abgeführt wird, zur gewichteten Temperaturdifferenz der Zu- und Abluftvolumenströme.

$$H_V = [q_{V,e} \cdot (1 - \eta_{rec,\theta}) + q_{V,inf}] \cdot \rho \cdot c \cdot A_{NGF}$$

 $\rho \cdot c$ spez. Wärmespeicherfähigkeit der Luft = 0,32 Wh/(m³·K)

1.3.7.3 Wärmetransferkoeffizient Coefficient de transfert thermique

H_H W/K Summe aus Transmissions-Wärmetransferkoeffizient und Lüftungs-Wärmetransferkoeffizient

$$H_H = H_T + H_V$$

1.3.7.4 Zeitkonstante Constante de temps

auh

Sie charakterisiert die thermische Trägheit des beheizten Raumes. Sie ist gleich der Wärmespeicherfähigkeit C_m geteilt durch den Wärmetransferkoeffizienten H_H des Raumes.

$$\tau = C_m / H_H$$

1.3.7.5 Temperaturkorrektur Correction de température

 θ_{cor} °C

Korrektur der massgebenden Aussenlufttemperatur für die Berechnung des Norm-Heizleistungsbedarfs zur Berücksichtigung der Zeitkonstante τ :

 θ_{cor} = 0 K bei τ > 200 h θ_{cor} = -1 K bei 100 h < τ ≤ 200 h θ_{cor} = -2 K bei 50 h < τ ≤ 100 h θ_{cor} = -3 K bei 0 h < τ ≤ 50 h

1.3.7.6 Norm-Heizwärmeleistungsbedarf

Demande de puissance de chauffage normée

 Φ_H W/m²

Der auf die Nettogeschossfläche A_{NGF} bezogene Norm-Heizwärmeleistungsbedarf wird gemäss SIA 384.201 ermittelt.

$$\Phi_H = [H_H (\theta_{a,i} - \theta_e - \theta_{cor})] / A_{NGF}$$

- $\theta_{a,i}$ Raumlufttemperatur-Auslegungswert Winter, gemäss 1.3.1.12
- θ_e massgebende Aussenlufttemperatur für die Berechnung des Norm-Heizleistungsbedarfs = -8 °C (Standort Zürich-MeteoSchweiz)

1.3.7.7 Jährliche Volllaststunden der Raumheizung

Heures à pleine charge par an du chauffage

t⊬ h Die jährliche Volllaststundenzahl errechnet sich aus der Division des jährlichen Heizwärmebedarfs Q_h durch den Norm-Heizwärmeleistungsbedarf Φ_H .

1.3.7.8 Thermisch wirksamer Aussenluft-Volumenstrom Débit d'air thermiquement actif qth m³/(h·m²)

Aussenluft-Volumenstrom, welcher die gleiche thermische Wirkung hat wie der Aussenluft-Volumenstrom einer Lüftungsanlage mit Wärmerückgewinnung unter Berücksichtigung der Infiltration, gemäss SIA 380/1, Ziffer 3.5.1.9.2. Der Aussenluft-Volumenstrom durch Infiltration wird gemäss 1.3.5.2 eingesetzt.

1.3.7.9 Jährlicher Heizwärmebedarf

Besoin de chaleur pour le chauffage
par an

Q_H

kWh/m²

Auf die Nettogeschossfläche bezogener Heizwärmebedarf.

Der Heizwärmebedarf wird nach SIA 380/1 für die Klimastation Zürich-MeteoSchweiz berechnet.

Für die Berechnung der Transmissionswärmeverluste und der Lüftungswärmeverluste werden dieselben Annahmen wie für die Berechnung des Norm-Heizwärmeleistungsbedarfs verwendet.