UTILIZANDO O SOFTWARE WEKA

O que é

- 2
- Weka: software livre para mineração de dados
 - Desenvolvido por um grupo de pesquisadores
 - Universidade de Waikato, Nova Zelândia
 - Também é um pássaro típico da Nova Zelândia
 - Pontos fortes
 - Classificação
 - regras de associação
 - clusters de dados

Weka Explorer

3

 Interface gráfica que permite a execução dos algoritmos de data mining da Weka de forma interativa

Weka Explorer

- 4
- Opções disponíveis
 - □ Preprocess: escolhe e modifica os dados utilizados
 - Classify: treina e testa sistemas de aprendizagem que classificam ou realizar regressão
 - Cluster: análise de clusters
 - Associate: permite aprender regras de associação para os dados
 - Select attributes: seleciona os atributos mais relevantes nos dados
 - □ Visualize: gráfico 2D interativo dos dados

Weka Explorer

- 5
- Open File...
 - Abre uma caixa de diálogo que permite que você navegue para os dados arquivo no sistema de arquivos local
 - Opção padrão: arquivos no formato ARFF
 - ARFF: Attribute-Relation File Format

Arquivo ARFF

- 6
- O que é?
 - O formato ARFF é utilizado como padrão para estruturar as bases de dados manipuladas pela Weka
 - É um arquivo de texto ASCII que descreve uma lista de instâncias que compartilham um conjunto de atributos

7 Weka Explorer - Preprocess

Weka Explorer: Preprocess

- Módulo que permite escolher os dados a serem utilizados. Permite também que se modifique esses dados por meio da aplicação de filtros
- Nele podemos
 - Selecionar conjuntos de dados em diversos formatos
 - Excluir atributos
 - Acessar estatísticas básicas
 - Aplicar um filtro aos dados
 - Ex.: zscore

Weka Explorer: Preprocess

Visão geral

Weka Explorer: Preprocess

Weka Explorer: Preprocess

11

- zscore
 - normaliza os dados
 - Selecione
 - weka.filters.unsupervised.attribute. Standardize
 - Clicando no nome do filtro, podemos configurálo de modo a não normalizar a classe dos

Weka Explorer - Classify

Weka Explorer: Classify

13

- Módulo que permite treinar e testar sistemas de aprendizagem que classificam ou realizar uma regressão dos dados selecionados em Preprocess
- Nele podemos
 - Selecionar e configurar diversos classificadores
 - Escolher a metodologia de teste
 - Fornecer arquivo de teste
 - Realizar cross-validation
 - Etc.

Weka Explorer: Classify

Visão Geral

Weka Explorer: Classify

15

- Metodologia de teste
 - Use training set
 - Usa os casos de treino como de teste
 - Supplied test set
 - Permite selecionar um arquivo com os casos de teste
 - Cross-validation
 - Usa validação cruzada do tipo k-fold
 - Percentage split
 - Usa uma certa porcentagem dos dados para teste

Árvores de Decisão

- Selecione
 - weka.classifiers.trees
- Algumas árvores disponíveis
 - □ J48
 - Arvore de decisão C4.5 (com ou sem poda)
 - NBTree (Naive Bayes tree)
 - Árvore de decisão com classificador naive Bayes nas folhas
 - Id3
 - Árvore de decisão Id3
 - LMT
 - Árvore de decisão com modelo logistico

Árvores de Decisão

17

- Configurando o classificador
 - Clicando no nome dele, podemos configurá-lo
 - Ex.: árvore J48

Árvores de Decisão

18

 Clicando em "Start" o classificador é executado. Saída:

```
J48 pruned tree

tempo = sol | (2.0) | umidade <= 75: sim (2.0) | umidade > 75: nan (3.0) tempo = nublado: sim (4.0) tempo = chuva | vento = SIM: nan (2.0) | vento = NAO: sim (3.0) | Number of Leaves : 5
```

```
=== Stratified cross-validation ===
Correctly Classified Instances
                                                      64.2857 %
Incorrectly Classified Instances
                                                     35.7143 %
                                      0.186
Kappa statistic
Mean absolute error
Root mean squared error
                                      0.4818
Relative absolute error
Root relative squared error
                                      97.6586 %
Total Number of Instances
=== Detailed Accuracy By Class ===
              TP Rate FP Rate Precision Recall F-Measure ROC Area Class
                                 0.7
                                             0.778 0.737
                         0.222
                0.4
                                                      0.444
                                                                 0.789
Weighted Avg.
              0.643
                         0.465
                                   0.629
                                            0.643
                                                                 0.789
                                                      0.632
=== Confusion Matrix ===
 a b <-- classified as
 7 2 | a = sim
 3 2 | b = nao
```

Árvores de Decisão

19

 Na lista de resultados, podemos visualizar a árvore gerada

Lazy learning - aprendizado preguiçoso

- 20
- Selecione
 - weka.classifiers.lazy
- Alguns métodos disponíveis
 - IBk
 - K-NN
 - IBk
 - K-NN usando K = 1
 - KStar
 - K-NN com distância com entropia

Lazy learning - aprendizado preguiçoso

- Configurando o classificador
 - Clicando no nome dele, podemos configurá-lo
 - Ex.: IBk (K-NN)

Bayeslearning - aprendizado preguiçoso

□ Clicando em "Start" o classificador é executado. Saída:

```
IB1 instance-based classifier using 3 nearest neighbour(s) for classification
Time taken to build model: 0 seconds
=== Stratified cross-validation ===
=== Summary ===
Correctly Classified Instances
Incorrectly Classified Instances
Kappa statistic
                                                                               95.3333 %
Mean absolute error
Root mean squared error
Relative absolute error
Root relative squared error
Total Number of Instances
                                                      0.1703
9.0013 1
                                                     36.1192 %
150
--- Detailed Accuracy By Class ---
                    a b c <-- classified as
50 0 0 | a = Iris-setosa
0 47 3 | b = Iris-versicolor
0 4 46 | c = Iris-virginica
```

Classificadores Bayesianos

23

- Selecione
 - weka.classifiers.bayes
- Alguns métodos disponíveis
 - NaiveBayesSimple
 - Classificação com naive Bayes. Atributos numéricos são modelados por uma distribuição normal
 - NaiveBayes
 - Classificação com naive Bayes utilizando as probabilidades das classes. Permite utilizar estimadores de densidade de kernel no caso dos dados não seguirem a distribuição normal.

Classificadores Bayesianos

- Alguns métodos disponíveis
 - NaiveBayesMultinomial
 - Utilizado para classificação de dados de texto (contagem de palavras, etc). Utiliza distribuição multinomial.
 - ComplementNaiveBayes
 - Classificação com naive Bayes usando complemento de classe: para estimar os parâmetros de uma classe o método utiliza os dados de todas as classes, menos os da classe a ser treinada.

Classificadores Bayesianos

- 25
- Alguns métodos disponíveis
 - NaiveBayesUpdateable
 - Versão incremental do NaiveBayes.
 - Utiliza um método de kernel para calcular a função de probabilidade de variáveis continuas.
 - BayesNet
 - Classificação usando Redes Bayesianas.

Classificadores Bayesianos

- Configurando o classificador
 - Clicando no non dele, podemos configurá-lo
 - Ex.: BayesNet

Classificadores Bayesianos

27

 Clicando em "Start" o classificador é executado. Saída (NaiveBayesSimple)

Estatísticas por classe

Naive Bayes (simple)

Class Iris-setosa: P(C) = 0.33333333

Attribute sepallength
Mean: 5.006

Attribute sepalwidth
Mean: 3.418

Attribute petallength
Mean: 1.464

Attribute petallength
Mean: 0.244

Standard Deviation: 0.17351116

Attribute petalwidth
Mean: 0.244

Standard Deviation: 0.1072095

Attribute sepallength Standard Deviation: 0.63587959 Mean: 6.588 Attribute sepalwidth Mean: 2.974 Standard Deviation: 0.32249664 Attribute petallength Mean: 5.552 Standard Deviation: 0.5518947 Attribute petalwidth Mean: 2.026 Standard Deviation: 0.27465006 Class Iris-versicolor: P(C) = 0.33333333 Attribute sepallength Standard Deviation: 0.51617115 Attribute sepalwidth Standard Deviation: 0.31379832 Attribute petallength Mean: 4.26 Standard Deviation: 0.46991098 Attribute petalwidth Standard Deviation: 0.19775268 Mean: 1.326

Classificadores Bayesianos

28

- Clicando em "Start" o classificador é executado. Saída (NaiveBayesSimple)
 - Resultado da classificação

=== Confusion Matrix ===

a b c <-- classifie

a b c <-- classified as 50 0 0 | a = Iris-setosa 0 47 3 | b = Iris-versicolor 0 4 46 | c = Iris-virginica

Regressão

29

- Selecione
 - weka.classifiers.functions
- Métodos de regressão disponíveis
 - SimpleLinearRegression
 - Modelo de regressão linear simples
 - Escolhe o atributo que resulta no menor erro quadrado
 - Os valores em falta não são permitidos
 - Trabalha apenas com atributos numéricos

Regressão

- Métodos de regressão disponíveis
 - LinearRegression
 - Funciona como o SimpleLinearRegression
 - Usa o critério de Akaike (medida da qualidade relativa) para seleção do modelo de regressão (linear ou múltipla)
 - É capaz de lidar com casos ponderados

Regressão

- 31
- Configurando o classificador
 - Clicando no nome dele, podemos configurá-lo
 - □ Ex.: LinearRegression

Regressão

- 32
- Devemos usar sempre "Use training set" em "Test options"
 - A regressão será calculada em cima dos dados de treinamento
- Definir variável dependente
 - Aquela que os dados irão predizer
 - Ex: sellingPrice

Regressão

□ Clicando em "Start" o classificador é

13.1339 %

10.51 %

executado. LinearRegression Linear Regression Model sellingPrice = -26.6882 * houseSize + 7.0551 * lotSize + 43166.0767 * bedrooms + 42292.0901 * bathroom + -21661.1208 Time taken to build model: 0.06 seconds === Evaluation on training set === === Summary === 4053.821 20 4125 Correlation coefficient 0.9945 Mean absolute error Root mean squared error Relative absolute error Mean absolute error 4578.4125

Root relative squared error

Total Number of Instances

SimpleLinearRegression

Redes Neurais

- Selecione
 - weka.classifiers.functions
- O único método disponível será
 - MultiLayerPreceptron
- Apesar de possuir apenas essa rede, é possível encontrar pacotes com outras redes implementadas na internet
 - Self-Organizing Maps
 - Learning Vector Quantizer
 - Elman Recurrent Network
 - etc

Redes Neurais

35

- Configurando o classificador
 - training time
 - Nro de iterações
 - □ learning rate
 - Incremento do ajuste de pesos no back propogation
 - momentum
 - Controla as mudanças nas variações dos incrementos

Redes Neurais

- Configurando o classificador
 - hiddenLayers
 - Nro de camadas ocultas. O valor 0 indica que não possui camadas ocultas
 - Existem também alguns curingas que definem automaticamente o nro de camadas
 - 'a' = (número de atributos + número de classes) / 2
 - 'i' = número de atributos
 - 'o' = número de classes
 - 't' = número de atributos + número de classes.

Redes Neurais

37

- Configurando o classificador
 - □ GUI: Exibe a rede gerada

Redes Neurais

Time taken to build model: 1.64 seconds

3,8

□ Clicando em "Start" o classificador é executado.

	TP Rate	FP Rate	Precision	Recall	F-Measure	ROC Area	Class
	1	0	1	1	1	1	Iris-setosa
	0.96	0.02	0.96	0.96	0.96	0.996	Iris-versicolor
	0.96	0.02	0.96	0.96	0.96	0.996	Iris-virginica
Weighted Avg.	0.973	0.013	0.973	0.973	0.973	0.998	

=== Confusion Matrix ===

a b c <-- classified as 50 0 0 | a = Iris-setosa 0 48 2 | b = Iris-versicolor 0 2 48 | c = Iris-virginica

=== Detailed Accuracy By Class ===

39

- Selecione
 - weka.classifiers.functions
- Método disponíveis
 - SMO
 - Implementa o algoritmo de otimização mínima sequencial de John Platt para treinar uma SVM
 - LibSVM
 - Pacote com implementações mais robustas e eficientes de diferentes SVM

SVM

- Configurando SMO
 - filterType
 - Determina como/se os dados serão transformados
 - Kernel
 - Define o kernel a ser usado

41

Configurando SMO

- numFolds
 - Número de folds da validação cruzada
 - 1 significa que os dados de treinamento serão usados
- Não modificar
 - toleranceParameter
 - epsilon
 - checksTurnedOff

SVM

42

LibSVM

- Características
 - Diferentes formulações SVM
 - Classificação multi-classes mais eficiente
 - Validação cruzada para seleção de modelos
 - Estimativas de probabilidade
 - Vários kernels (incluindo matriz de kernel precalculado)
 - SVM ponderada para dados desbalanceados

□ Clicando em "Start" o classificador é Kernel used: Linear Kernel: $K(x,y) = \langle x,y \rangle$ Classifier for classes: Iris-setosa, Iris-versicolor BinarySMO Number of kernel evaluations: 284 (68.996% cached) Machine linear: showing attribute weights, not support vectors. Classifier for classes: Iris-versicolor, Iris-virginica 0.6829 * (normalized) sepallength -1.523 * (normalized) sepalwidth 2.2034 * (normalized) petallength BinarySMO 1.9272 * (normalized) petalwidth Machine linear: showing attribute weights, not support vectors. 0.7091 0.3176 * (normalized) sepallength Number of kernel evaluations: 352 (70.32% cached) -0.863 * (normalized) sepalwidth 3.0543 * (normalized) petallength Classifier for classes: Iris-setosa, Iris-virginica 4.0815 \star (normalized) petalwidth BinarySMO Number of kernel evaluations: 453 (61.381% cached) Machine linear: showing attribute weights, not support vectors. 0.5886 * (normalized) sepallength -0.5782 * (normalized) sepalwidth 1.6429 * (normalized) petallength 1.4777 * (normalized) petalwidth 1.1668

45

□ Clicando em "Start" o classificador é executado

Time taken to build model: 0.03 seconds === Stratified cross-validation === === Summary === Correctly Classified Instances Incorrectly Classified Instances 6 0.94 Kappa statistic Mean absolute error 0.2311 Root mean squared error 0.288 Relative absolute error Root relative squared error 61.101 % Total Number of Instances 150 === Detailed Accuracy By Class === TP Rate FP Rate Precision Recall F-Measure ROC Area Class 0.942 1 0 0.98 0.05 1 1 1 0.907 0.98 0.942 Iris-setosa 0.965 0.942 0.938 0.97 ^c 0.978 Iris-versicolor 0.9 0.01 0.978 0.9 0.938 0.962 0.96 0.96 Iris-virginica 0.02 Weighted Avg. 0.96 === Confusion Matrix === a b c <-- classified as 50 0 0 | a = Iris-setosa 0 49 1 | b = Iris-versicolor 0 5 45 | c = Iris-virginica

Weka Explorer - Cluster

Weka Explorer: Cluster

47

- Módulo que permite analisar os clusters ou agrupamentos dos dados selecionados em Preprocess
- Nele podemos
 - Selecionar e configurar diversos métodos de agrupamentos
 - Escolher a metodologia de avaliação do agrupamento
 - Os próprios dados
 - Fornecer arquivo de teste
 - Etc.

Weka Explorer: Cluster

48

Visão Geral

Wetodologia

Claster Masociate Select attributes Visualize

Claster and Metodologia

Claster mode

Uset mode

Uset word

Tipos de Agrupamentos

Resultados do agrupamento

Weka Explorer: Cluster

49

- Metodologia de avaliação
 - Use training set
 - Classifica os dados de treinamento nos clusters e calcula a percentagem de casos em cada cluster
 - Supplied test set
 - Permite selecionar um arquivo com os casos de teste para avaliar o agrupamento, se este for probabilístico
 - Percentage split
 - Usa uma certa porcentagem dos dados para avaliar o agrupamento, se este for probabilístico

Weka Explorer: Cluster

- Metodologia de avaliação
 - Classes to clusters evaluation
 - Ignora a classe e calcula o agrupamento.
 - Atribui classes aos clusters, de acordo com a as amostras dentro do cluster: classe mais frequente
 - Em seguida, calcula o erro de classificação e mostra a matriz de confusão correspondente.

Análise de Clusters

51

- Selecione
 - weka.clusterers
- Método disponíveis
 - SimpleKMeans
 - K-means
 - EM
 - Expectation maximization ou maximização de expectativa
 - Gera descrições probabilísticas dos clusters em termos de média e desvio padrão para os atributos numéricos

Análise de Clusters

- Método disponíveis
 - Cobweb
 - Gera agrupamento hierárquico, onde os grupos são descritos probabilisticamente
 - HierarchicalClusterer
 - Implementa uma série de métodos clássicos hierárquicos e tipos de linkage (Single, Complete, Average, Mean, Centroid, Ward,...)

Análise de Clusters

 Configurando o método (Ex.: SimpleKMeans) weka.gui.GenericObjectEdito weka.clusterers.SimpleKMeans distanceFunction About Cluster data using the k means algorithm. ■ Função de distância Capabilities maxIterations displayStdDevs False Nro de iterações Choose EuclideanDistance -R first-last máximas numClusters Nro de clusters Seed Nro de sementes iniciais Save...

Análise de Clusters

50 (33%) 50 (33%)

 Clicando em "Start" o método é executado Within cluster sum of squared errors: 7.817456892309574 Missing values globally replaced with mean/mode Cluster centroids: Full Data Attribute (50) (50) (50) sepallength sepalwidth 5.8433 5.936 5.006 6.588 2.974 2.77 3.418 3.054 petallength 3.7587 1.464 5.552 Iris-setosa Iris-virginica class Iris-setosa Iris-versicolor Time taken to build model (full training data) : 0.04 seconds === Model and evaluation on training set === Clustered Instances

Análise de Clusters

55

Podemos ainda visualizar os clusters formados

Weka Explorer – Select Attributes

Weka Explorer: Select Attributes

57

- Módulo que permite investigar quais atributos são mais preditivos
 - □ Seleção em 2 etapas:
 - Um método de busca:
 - Um método de avaliação
 - Flexibilidade: (quase) qualquer combinação de busca/avaliação

Weka Explorer: Select Attributes

Weka Explorer: Select Attributes

59

- Modo de seleção dos atributos
 - Use full training set
 - A importância do atributo é determinada usando todo o conjunto de treinamento
 - Cross-validation
 - A importância do atributo é determinada usando cross-validation

Metodologia de avaliação

- Selecione
 - weka.attributeSelection
- Alguns métodos disponíveis
 - CfsSubsetEval
 - Seleciona os atributos medindo sua capacidade preditiva e grau de redundância
 - ChiSquaredAttributeEval
 - Seleciona os atributos atráves do cálculo do qui-quadrado
 - ConsistencySubsetEval
 - Seleciona os atributos medindo o seu nível de consistência

Metodologia de avaliação

61

- Alguns métodos disponíveis
 - GainRatioAttributeEval
 - Seleciona os atributos medindo a taxa de ganho do atributo em relação a classe
 - InfoGainAttributeEval
 - Utiliza o ganho de informação para selecionar os atributos
 - PrincipalComponents
 - Transformação dos dados usando PCA
 - SVMAttributeEval
 - Avalia os atributos usando uma SVM

Método de busca

- ¬ Selecione
 - weka.attributeSelection
- Alguns métodos disponíveis
 - BestFirst
 - Inicia com nenhum atributo e inclui um atributo por vez no conjunto
 - ExhaustiveSearch
 - Busca exaustiva por todo o conjunto de atributos

Método de busca

63

- Alguns métodos disponíveis
 - GeneticSearch
 - Realiza a busca utilizando um algoritmo genético simples (Goldberg,1989)
 - Ranker
 - Classifica os atributos usando suas avaliações individuais (e.g., entropia, taxa de ganho etc)

Weka Explorer: Select Attributes

- Exemplo: iris.arff
 - Metodologia de avaliação
 - CfsSubsetEval
 - Método de busca
 - BestFirst
 - Modo de seleção dos atributos
 - Use full training set

Weka Explorer: Select Attributes

65

□ Clicando em "Start" o método é executado

```
=== Run information ===
           weka.attributeSelection.CfsSubsetEval
Evaluator:
Search:weka.attributeSelection.BestFirst -D 1 -N 5 \,
Relation: iris
Attributes: 5
                                           === Attribute Selection on all input data ===
            sepallength
            sepalwidth
                                            Search Method:
            petallength
                                                  Best first.
            petalwidth
            class
                                                  Start set: no attributes
Evaluation mode:evaluate on all training data
                                                  Search direction: forward
                                                  Stale search after 5 node expansions
                                                  Total number of subsets evaluated: 12
                                                  Merit of best subset found: 0.887
                                            Attribute Subset Evaluator (supervised, Class (nominal): 5 class):
                                                  CFS Subset Evaluator
                                                  Including locally predictive attributes
                                           Selected attributes: 3,4 : 2
                                                      petallength
                                               petalwidth
```