COMPSCI 3MI3

Assignment 7

1 Solution Set

1.1 Q1

As described in the slides for topics 7 and 8, when defining a typing relation over the set of terms \mathcal{T} , the typing relation is not always total. Thus $dom(:) \subseteq \mathcal{T}$, with the set of terms that are syntactically correct, but semantically incorrect $\mathcal{W} \subseteq \mathcal{T} \setminus dom(:)$. This is to say that all terms that are well-typeable must be evaluatable under our semantics to a value. While Ω is a syntactically correct, semantically it represents an incorrect term in lambda calculus, being unable to evaluate to a value. Additionally, we cannot type these recursive forms since pure simply-typed lambda calculus only allows us to assign a base type to values. Since Ω will never evaluate to a value we cannot assign a base type to build up a well-typed definition. Therefore, Ω cannot be well-typed.

1.2 Q2

We can show the following expressions have the indicated types by deriving their types formally.

(a) Show $f: Bool \Rightarrow Bool \vdash f$ (if false then true else false): Bool

(1)	$f:Bool\Rightarrow Bool\vdash f(\text{if false then true else false})$	Assume
(2)	$\boxed{f:Bool \Rightarrow Bool \vdash f}$	Assume
(3)	$f: Bool \Rightarrow Bool \vdash f: Bool \Rightarrow Bool$	T-Var on 2
(4)	$f: Bool \Rightarrow Bool \vdash \texttt{if} \ \texttt{false} \ \texttt{then} \ \texttt{true} \ \texttt{else} \ \texttt{false}$	Assume
(5)	$f: Bool \Rightarrow Bool \vdash \mathtt{false}$	Assume
(6)	$ig \ Bool$	T-False on (5)
(7)	$f:Bool\Rightarrow Bool\vdash \mathtt{false}:Bool$	T-Intro on (5) , (6)

```
(9)
                 Bool
                                                                                              T-True on (8)
  (10)
               f: Bool \Rightarrow Bool \vdash \texttt{true}: Bool
                                                                                              T-Intro on (8), (9)
  (11)
                f: Bool \Rightarrow Bool \vdash false
                                                                                              Assume
                                                                                              T-False on (11)
  (12)
                 Bool
  (13)
               f: Bool \Rightarrow Bool \vdash \texttt{false}: Bool
                                                                                              T-Intro on (11), (12)
  (14)
                                                                                              T-If on (4), (7), (10), (13)
               Bool
  (15)
            f: Bool \Rightarrow Bool \vdash \text{if false then true else false}: Bool
                                                                                              T-Intro on (4), (14)
  (16)
          f: Bool \Rightarrow Bool \vdash f (if false then true else false) : Bool
                                                                                              T-App on (3), (15)
(b) Show f: Bool \Rightarrow Bool \vdash \lambda x: Bool. f (if x then false else x): Bool \Rightarrow Bool
   (1)
           f: Bool \Rightarrow Bool \vdash \lambda x: Bool. f (if x then false else x)
                                                                                                         Assume
   (2)
              f: Bool \Rightarrow Bool, x: Bool \vdash f (if x then false else x)
                                                                                                         Assume
   (3)
                f: Bool \Rightarrow Bool, x: Bool \vdash f
                                                                                                         Assume
                                                                                                         T-Var on 3
   (4)
               f: Bool \Rightarrow Bool, x: Bool \vdash f: Bool \Rightarrow Bool
   (5)
                f: Bool \Rightarrow Bool, x: Bool \vdash \text{if } x \text{ then false else } x
                                                                                                         Assume
                  f:Bool \Rightarrow Bool, x:Bool \vdash x
    (6)
                                                                                                         Assume
   (7)
                  f: Bool \Rightarrow Bool, x: Bool \vdash x: Bool
                                                                                                         T-Var on (6)
   (8)
                  f: Bool \Rightarrow Bool, x: Bool \vdash false
                                                                                                         Assume
   (9)
                    Bool
                                                                                                         T-False on (8)
  (10)
                  f: Bool \Rightarrow Bool, x: Bool \vdash \texttt{false}: Bool
                                                                                                         T-Intro on (8), (9)
                  f: Bool \Rightarrow Bool, x: Bool \vdash x
  (11)
                                                                                                         Assume
  (12)
                  f: Bool \Rightarrow Bool, x: Bool \vdash x: Bool
                                                                                                         T-Var on (11)
  (13)
                  Bool
                                                                                                         T-If on 5, 7, 10, 12
```

Assume

(8)

 $f: Bool \Rightarrow Bool \vdash \texttt{true}$

```
(14) | f: Bool \Rightarrow Bool, x: Bool \vdash \text{if } x \text{ then false else } x: Bool T-Intro on (5), (13)

(15) | f: Bool \Rightarrow Bool, x: Bool \vdash f (\text{if } x \text{ then false else } x): Bool T-App on (4), (14)

(16) | f: Bool \Rightarrow Bool \vdash \lambda x: Bool. f (\text{if } x \text{ then false else } x): Bool \Rightarrow Bool T-Abs on (15)
```

1.3 Q3

We will prove the property that if $\Gamma \vdash t : T$ and Δ is a permutation of Γ , then $\Delta \vdash t : T$ and $\operatorname{depth}(\Gamma \vdash t : T) = \operatorname{depth}(\Delta \vdash t : T)$, with depth as defined below. We will prove this property holds by induction over typing derivations $\Gamma \vdash t : T$. We consider the definition of simply-typed pure lambda calculus and its typing derivations presented in the slides for topic 7 and 8.

We define a permutation of elements in a set to be the rearrangement of those elements in a linear order different from the set's original linear ordering. A permutation of a set of elements does not alter the elements the set contains.

We define the depth of a typing derivation to be the number of typing "steps" to fully type a well-typeable term t. We define depth by cases as follows:

```
\begin{split} \operatorname{depth}(\Gamma \vdash \operatorname{true} : \operatorname{Bool}) &= 1 \\ \operatorname{depth}(\Gamma \vdash \operatorname{false} : \operatorname{Bool}) &= 1 \\ \operatorname{depth}(\Gamma \vdash \operatorname{if} t_1 \operatorname{then} t_2 \operatorname{else} t_3 : T) &= 1 + \\ & \max(\operatorname{depth}(\Gamma \vdash t_1 : \operatorname{Bool}), \operatorname{depth}(\Gamma \vdash t_2 : T), \operatorname{depth}(\Gamma \vdash t_3 : T)) \\ \operatorname{depth}(\Gamma \vdash x : T) &= 1 \\ \operatorname{depth}(\Gamma \vdash \lambda x : T_1 . t_2 : T_1 \Rightarrow T_2) &= 1 + \operatorname{depth}(\Gamma, x : T_1 \vdash t_2 : T_2) \\ \operatorname{depth}(\Gamma \vdash t_1 \ t_2 : T_2) &= 1 + \max(\operatorname{depth}(\Gamma \vdash t_1 : T_1 \Rightarrow T_2), \ \operatorname{depth}(\Gamma \vdash t_2 : T_1)) \end{split}
```

Base case. The base case denotes typing derivations on terms for which there does not exist any sub-typing derivations. The possible typing derivations are of the following:

Case: T-True, T-False

If T-True is the final typing derivation we know t = true, T = Bool. To type true by T-True we need no typing information so we can ignore Γ , and subsequently Δ . By T-True we know true: Bool, thus we can attach our irrelevant permutated typing context to obtain $\Delta \vdash true$: Bool. Therefore we have $\Delta \vdash t:T$.

By the defintion of depth we know $depth(\Gamma \vdash true : Bool) = 1 = depth(\Delta \vdash true : Bool)$ thus we know both derivations have the same depth.

Therefore our property holds if T-True is the final typing derivation. We can prove the T-False case in the same way.

Case: T-Var

If T-Var is the final typing derivation, we have $t=x,\,T=T,$ and have the premise that $x:T\in\Gamma$. Since we know Δ is a permutation of Γ and permutations of a set contain all elements of the original set, we know $x:T\in\Delta$. Since we have $x:T\in\Delta$, by T-Var we know $\Delta\vdash x:T$, which is $\Delta\vdash t:T$.

By the defintion of depth we know $depth(\Gamma \vdash x : T) = 1 = depth(\Delta \vdash x : T)$, thus we know both derivations have the same depth.

Therefore our property holds for the T-Var case.

Thus our base case holds.

Induction step. We assume for all typing sub-derivations our property holds. We will prove for the reminaing typing derivations that our property holds. The typing derivation must be one of the following:

Case: T-If

If T-If was the final typing derivation we know $t = \text{if } t_1 \text{ then } t_2 \text{ else } t_3$ and have the premises that in the typing context Γ we know $t_1 : \text{Bool}$, $t_2 : T$ and $t_3 : T$. Since we know Δ is a permutation of Γ and have the premise $\Gamma \vdash t_1 : \text{Bool}$, by our induction hypothesis on t_1 we know $\Delta \vdash t_1 : \text{Bool}$. By applying the induction hypothesis on t_2 and t_3 we similarly know $\Delta \vdash t_2 : T$ and $\Delta \vdash t_3 : T$. Since we have the previous premises by T-If we can conclude $\Delta \vdash \text{if } t_1 \text{ then } t_2 \text{ else } t_3 : T$.

By the definition of depth we know $\operatorname{depth}(\Gamma \vdash \operatorname{if} t_1 \operatorname{then} t_2 \operatorname{else} t_3 : T) = 1 + \max(\operatorname{depth}(\Gamma \vdash t_1 : \operatorname{Bool}), \operatorname{depth}(\Gamma \vdash t_2 : T), \operatorname{depth}(\Gamma \vdash t_3 : T))$. By our induction hypothesis on t_1 we know $\operatorname{depth}(\Gamma \vdash t_1 : \operatorname{Bool}) = \operatorname{depth}(\Delta \vdash t_1 : \operatorname{Bool}),$ and can prove the derivations for t_2 and t_3 have the same depth similarly. Thus we know $\max(\operatorname{depth}(\Gamma \vdash t_1 : \operatorname{Bool}), \operatorname{depth}(\Gamma \vdash t_2 : T), \operatorname{depth}(\Gamma \vdash t_3 : T)) = \max(\operatorname{depth}(\Delta \vdash t_1 : \operatorname{Bool}), \operatorname{depth}(\Delta \vdash t_2 : T), \operatorname{depth}(\Delta \vdash t_3 : T)),$ thus it follows that $(\Gamma \vdash \operatorname{if} t_1 \operatorname{then} t_2 \operatorname{else} t_3 : T) = (\Delta \vdash \operatorname{if} t_1 \operatorname{then} t_2 \operatorname{else} t_3 : T),$ both derivations have the same depth.

Therefore our property holds for the T-If case.

Case: T-Abs

If T-Abs was the final typing derivation we have $t = \lambda x : T_1. t_2$ and $T = T_1 \Rightarrow T_2$ with the premise $\Gamma, x : T_1 \vdash t_2 : T_2$. Since Δ is a permutation of Γ , we know $\Delta, x : T_1$ is a permutation of $\Gamma, x : T_1$. Therefore by our induction hypothesis on t_2 with our premise $\Gamma, x : T_1 \vdash t_2 : T_2$ and $\Delta, x : T_1$ a permutation of $\Gamma x : T_1$ we know $\Delta, x : T_1 \vdash t_2 : T_2$. Thus, by T-Abs we can show $\Delta \vdash \lambda x : T_1.t_2 : T_1 \Rightarrow T_2$. Therefore we have $\Delta \vdash t : T$. By the definition of depth we know $\operatorname{depth}(\Gamma \vdash \lambda x : T_1.t_2 : T_1 \Rightarrow T_2) = 1 + \operatorname{depth}(\Gamma, x : T_1 \vdash t_2 : T_2)$. By our induction hypothesis on t_2 , and since we know $\Delta, x : T_1$ is a permutation of $\Gamma, x : T_1$ we can conclude $\operatorname{depth}(\Gamma, x : T_1 \vdash t_2 : T_2) = \operatorname{depth}(\Delta, x : T_1 \vdash t_2 : T_2)$. Therefore by the defintion of depth we know $\operatorname{depth}(\Gamma \vdash \lambda x : T_1.t_2 : T_1 \Rightarrow T_2) = \operatorname{depth}(\Delta \vdash \lambda x : T_1.t_2 : T_1 \Rightarrow T_2)$, the two derivations have the same depth.

Therefore our property holds for T-Abs.

Case: T-App

If T-App was the final typing derivation we have $t=t_1$ t_2 and $T=T_2$, with the premises $\Gamma \vdash t_1: T_1 \Rightarrow T_2$ and $\Gamma \vdash t_2: T_1$. Since we know Δ is a permutation of Γ and have the premise $\Gamma \vdash t_1: T_1 \Rightarrow T_2$, by our induction hypothesis on t_1 we know $\Delta \vdash t_1: T_1 \Rightarrow T_2$. Similarly since we have the premise $\Gamma \vdash t_2: T_1$, by our induction hypothesis on t_2 we know $\Delta \vdash t_2: T_1$. Thus, by T-App we can show $\Delta \vdash t_1 \ t_2: T_2$. Therefore we have $\Delta \vdash t: T$. By the definition of depth we know depth($\Gamma \vdash t_1 \ t_2: T_2$) = 1 + max(depth($\Gamma \vdash t_1: T_1 \Rightarrow T_2$), depth($\Gamma \vdash t_2: T_1$)). Since we know Δ is a permutation of Γ , by our induction hypothesis on t_1 we know depth($\Gamma \vdash t_1: T_1 \Rightarrow T_2$) = depth($\Delta \vdash t_1: T_1 \Rightarrow T_2$). Similarly by our induction hypothesis on t_2 we know depth($\Gamma \vdash t_2: T_1$) = depth($\Delta \vdash t_2: T_1$). Thus their maximum will be the same, max(depth($\Gamma \vdash t_1: T_1 \Rightarrow T_2$), depth($\Gamma \vdash t_2: T_1$) = max(depth($\Delta \vdash t_1: T_1 \Rightarrow T_2$), depth($\Delta \vdash t_2: T_1$). Then, by the definition of depth we know both derivations have the same depth with depth($\Gamma \vdash t_1: T_2: T_2$) = depth($\Delta \vdash t_1: T_2: T_2$).

Therefore our property holds for T-App.

We have shown that for all possible typing derivations our property holds. Therefore our induction step holds.

Thus we've shown that if $\Gamma \vdash t : T$ and Δ is a permutation of Γ , then $\Delta \vdash t : T$ and the depth of both derivations is the same, i.e. $\operatorname{depth}(\Gamma \vdash t : T) = \operatorname{depth}(\Delta \vdash t : T)$.

1.4 Q4

We will prove the property that if $\Gamma \vdash t : T$ and $x \notin dom(\Gamma)$, then $\Gamma, x : S \vdash t : T$ and the latter derivation has the same depth as the former, or formally $\operatorname{depth}(\Gamma \vdash t : T) = \operatorname{depth}(\Gamma, x : S \vdash t : T)$, with the definition of depth defined in Q3. We will prove this property holds by induction over typing derivations $\Gamma \vdash t : T$. We consider the definition of simply-typed pure lambda calculus and its typing derivations presented in the slides for topic 7 and 8.

Base case. The base case denotes typing derivations on terms for which there does not exist any sub-typing derivations. The possible typing derivations are of the following:

Case: T-True, T-False

If T-True is the final typing derivation we know t = true, T = Bool. T-True requires no typing context to type true as Bool, thus we have $\Gamma, x : S \vdash true : Bool$ by T-True. Therefore we've proven $\Gamma, x : S \vdash t : T$.

By the defintion of depth we know $depth(\Gamma \vdash true : Bool) = 1 = depth(\Gamma, x : S \vdash true : Bool)$ thus we know both derivations have the same depth.

Therefore our property holds if T-True is the final typing derivation. We can prove the T-False case in the same way.

Case: T-Var

If T-Var is the final typing derivation, we have $t=y,\,T=T,$ and have the premise that $y:T\in\Gamma$. If y=x, then by our premise $x:T\in\Gamma$ we know $x\notin dom(\Gamma)$ is false. Thus, the left side of our implication is false and our property is vacuously true. If $y\neq x$, then we know $y:T\in\Gamma$ and $y:T\in\Gamma,x:S$, since growing our typing context will not remove y from $dom(\Gamma)$. By T-Var we then have $\Gamma,x:S\vdash y:T$, which is $\Gamma,x:S\vdash t:T$.

By the defintion of depth we know $depth(\Gamma \vdash y : T) = 1 = depth(\Gamma, x : S \vdash y : T)$, thus we know both derivations have the same depth.

Therefore our property holds for the T-Var case.

Thus, our base case holds.

Induction step. We assume for all typing sub-derivations our property holds. We will prove for the reminaing typing derivations that our property holds. The typing derivation must be one of the following:

Case: T-If

If T-If was the final typing derivation we know $t = \text{if } t_1 \text{ then } t_2 \text{ else } t_3 \text{ and have the premises } \Gamma \vdash t_1 : \text{Bool}, \ \Gamma \vdash t_2 : T \text{ and } \Gamma \vdash t_3 : T.$ Since we know $x \notin dom(\Gamma)$ and have the premise $\Gamma \vdash t_1 : \text{Bool}$, by our induction hypothesis on t_1 we know $\Gamma, x : S \vdash t_1 : \text{Bool}$. By applying the induction hypothesis on t_2 and t_3 we similarly know $\Gamma, x : S \vdash t_2 : T$ and $\Gamma, x : S \vdash t_3 : T$. Since we have the previous premises by T-If we can conclude $\Gamma, x : S \vdash \text{if } t_1 \text{ then } t_2 \text{ else } t_3 : T$.

By the definition of depth we know $\operatorname{depth}(\Gamma \vdash \operatorname{if} t_1 \operatorname{then} t_2 \operatorname{else} t_3 : T) = 1 + \max(\operatorname{depth}(\Gamma \vdash t_1 : \operatorname{Bool}), \operatorname{depth}(\Gamma \vdash t_2 : T), \operatorname{depth}(\Gamma \vdash t_3 : T))$. By our induction hypothesis on t_1 we know $\operatorname{depth}(\Gamma \vdash t_1 : \operatorname{Bool}) = \operatorname{depth}(\Gamma, x : S \vdash t_1 : \operatorname{Bool}),$ and can prove the derivations for t_2 and t_3 have the same depth similarly. Thus we know $\max(\operatorname{depth}(\Gamma \vdash t_1 : \operatorname{Bool}), \operatorname{depth}(\Gamma \vdash t_2 : T), \operatorname{depth}(\Gamma \vdash t_3 : T)) = \max(\operatorname{depth}(\Gamma, x : S \vdash t_1 : \operatorname{Bool}), \operatorname{depth}(\Gamma, x : S \vdash t_2 : T), \operatorname{depth}(\Gamma, x : S \vdash t_3 : T)),$ thus it follows that $(\Gamma \vdash \operatorname{if} t_1 \operatorname{then} t_2 \operatorname{else} t_3 : T) = (\Gamma, x : S \vdash \operatorname{if} t_1 \operatorname{then} t_2 \operatorname{else} t_3 : T),$ both derivations have the same depth. Therefore our property holds for the T-If case.

Case: T-Abs

If T-Abs was the final typing derivation we have $t = \lambda y : T_1$. t_2 and $T = T_1 \Rightarrow T_2$ with the premise $\Gamma, y : T_1 \vdash t_2 : T_2$. Since we know $x \notin dom(\Gamma)$, by our induction hypothesis on t_2 we know $\Gamma, y : T_1, x : S \vdash t_2 : T_2$. By the lemma of permutation we proved in Q3, we know typing derivations do not change if we permute the typing context. Therefore $\Gamma, y : T_1, x : S \vdash t_2 : T_2$ is equivalent to $\Gamma, x : S, y : T_1 \vdash t_2 : T_2$, swapping the ordering of x and y. By T-Abs with the premise $\Gamma, x : S, y : T_1 \vdash t_2 : T_2$ we know $\Gamma, x : S \vdash \lambda y : T_1 \cdot t_2 : T_1 \Rightarrow T_2$. Therefore we have $\Gamma, x : S \vdash t : T$.

By the definition of depth we know $\operatorname{depth}(\Gamma \vdash \lambda y: T_1. t_2: T_1 \Rightarrow T_2) = 1 + \operatorname{depth}(\Gamma, y: T_1 \vdash t_2: T_2)$. By our induction hypothesis on t_2 we know $\operatorname{depth}(\Gamma, y: T_1 \vdash t_2: T_2) = \operatorname{depth}(\Gamma, y: T_1, x: S \vdash t_2: T_2)$ and by our permutation lemma we know $\operatorname{depth}(\Gamma, y: T_1, x: S \vdash t_2: T_2) = \operatorname{depth}(\Gamma, x: S, y: T_1 \vdash t_2: T_2)$. Therefore by the defintion of depth we know $\operatorname{depth}(\Gamma \vdash \lambda y: T_1. t_2: T_1 \Rightarrow T_2) = \operatorname{depth}(\Gamma, x: S \vdash \lambda y: T_1. t_2: T_1 \Rightarrow T_2)$, the two derivations have the same depth.

Therefore our property holds for the T-Abs case.

Case: T-App

If T-App was the final typing derivation we have $t = t_1$ t_2 and $T = T_2$, with the premises $\Gamma \vdash t_1 : T_1 \Rightarrow T_2$ and $\Gamma \vdash t_2 : T_1$. Since we know $x \notin dom(\Gamma)$, by our induction hypothesis on t_1 we know $\Gamma, x : S \vdash t_1 : T_1 \Rightarrow T_2$. Similarly by our induction hypothesis on t_2 we know $\Gamma, x : S \vdash t_2 : T_1$. By the premises $\Gamma, x : S \vdash t_1 : T_1 \Rightarrow T_2$ and $\Gamma, x : S \vdash t_2 : T_1$, by T-App we then derive $\Gamma, x : S \vdash t_1$ $t_2 : T_2$. Therefore we have $\Gamma, x : S \vdash t : T$.

By the definition of depth we know $\operatorname{depth}(\Gamma \vdash t_1 \ t_2 : T_2) = 1 + \max(\operatorname{depth}(\Gamma \vdash t_1 : T_1 \Rightarrow T_2), \ \operatorname{depth}(\Gamma \vdash t_2 : T_1)).$ Since we know $x \notin \operatorname{dom}(\Gamma)$, by our induction hypothesis on t_1 we know $\operatorname{depth}(\Gamma \vdash t_1 : T_1 \Rightarrow T_2) = \operatorname{depth}(\Gamma, x : S \vdash t_1 : T_1 \Rightarrow T_2).$ Similarly by our induction hypothesis on t_2 we know $\operatorname{depth}(\Gamma \vdash t_2 : T_1) = \operatorname{depth}(\Gamma, x : S \vdash t_2 : T_1)$. Thus their maximum will be the same, $\max(\operatorname{depth}(\Gamma \vdash t_1 : T_1 \Rightarrow T_2), \operatorname{depth}(\Gamma \vdash t_2 : T_1)) = \max(\operatorname{depth}(\Gamma, x : S \vdash t_1 : T_1 \Rightarrow T_2), \operatorname{depth}(\Gamma, x : S \vdash t_2 : T_1))$. Then, by the definition of depth we know both derivations have the same depth with $\operatorname{depth}(\Gamma \vdash t_1 \ t_2 : T_2) = \operatorname{depth}(\Gamma, x : S \vdash t_1 \ t_2 : T_2)$.

Therefore our property holds for T-App.

We have shown that for all possible typing derivations our property holds. Therefore our induction step holds.

Thus we've shown that if $\Gamma \vdash t : T$ and $x \notin dom(\Gamma)$, then $\Gamma, x : S \vdash t : T$ and $depth(\Gamma \vdash t : T) = depth(\Gamma, x : S \vdash t : T)$.