CS/ECE 3810: Computer Organization

Lecture 4: MIPS instruction set

Anton Burtsev September, 2022

Instruction Set

- Understanding the language of the hardware is key to understanding the hardware/software interface
- A program (in say, C) is compiled into an executable that is composed
 of machine instructions this executable must also run on future
 machines for example, each Intel processor reads in the same x86
 instructions, but each processor handles instructions differently
- Java programs are converted into portable bytecode that is converted into machine instructions during execution (just-in-time compilation)
- What are important design principles when defining the instruction set architecture (ISA)?

Instruction Set

- Important design principles when defining the instruction set architecture (ISA):
 - keep the hardware simple the chip must only implement basic primitives and run fast
 - keep the instructions regular simplifies the decoding/scheduling of instructions

We will later discuss RISC vs CISC

A Basic MIPS Instruction

C code: a = b + c;

Assembly code: (human-friendly machine instructions) add a, b, c # a is the sum of b and c

A Basic MIPS Instruction

C code: a = b + c;

Assembly code: (human-friendly machine instructions) add a, b, c # a is the sum of b and c

Machine code: (hardware-friendly machine instructions) 00000010001100100100000000100000

Translate the following C code into assembly code: a = b + c + d + e;

C code a = b + c + d + e; translates into the following assembly code:

C code a = b + c + d + e; translates into the following assembly code:

```
add a, b, c add a, b, c add a, a, d or add f, d, e add a, a, f
```

- Instructions are simple: fixed number of operands (unlike C)
- A single line of C code is converted into multiple lines of assembly code
- Some sequences are better than others... the second sequence needs one more (temporary) variable f

Subtract Example

C code
$$f = (g + h) - (i + j);$$

Assembly code translation with only add and sub instructions:

Subtract Example

```
C code f = (g + h) - (i + j);
translates into the following assembly code:
```

```
add t0, g, h add f, g, h add t1, i, j or sub f, f, i sub f, t0, t1 sub f, f, j
```

Operands

- In C, each "variable" is a location in memory
- In hardware, each memory access is expensive if variable *a* is accessed repeatedly, it helps to bring the variable into an on-chip scratchpad and operate on the scratchpad (registers)
- To simplify the instructions, we require that each instruction (add, sub) only operate on registers
- Note: the number of operands (variables) in a C program is very large; the number of operands in assembly is fixed... there can be only so many scratchpad registers

Registers

- The MIPS ISA has 32 registers (x86 has 8 registers) –
 Why not more? Why not less?
- Each register is 32 bits wide (modern 64-bit architectures have 64-bit wide registers)
- A 32-bit entity (4 bytes) is referred to as a word
- To make the code more readable, registers are partitioned as \$s0-\$s7 (C/Java variables), \$t0-\$t9 (temporary variables)...

Binary Stuff

- 8 bits = 1 Byte, also written as 8b = 1B
- 1 word = 32 bits = 4B
- 1KB = 1024 B = 2¹⁰ B
- 1MB = 1024 x 1024 B = 2²⁰ B
- 1GB = 1024 x 1024 x 1024 B = 2³⁰ B
- A 32-bit memory address refers to a number between
 0 and 2³² 1, i.e., it identifies a byte in a 4GB memory

Memory Operands

 Values must be fetched from memory before (add and sub) instructions can operate on them

Load word | Register | Memory |

Store word | Register | Memory |

Store word | Register | Memory |

Memory | Memory | Memory |

Store word | Register | Memory |

Store word |

How is memory-address determined?

Memory Address

 The compiler organizes data in memory... it knows the location of every variable (saved in a table)... it can fill in the appropriate mem-address for load-store instructions

Memory Organization

\$gp points to area in memory that saves global variables

Memory Instruction Format

The format of a load instruction:

a constant that is added to the register in parentheses

Memory Instruction Format

The format of a store instruction:

a constant that is added to the register in parentheses

```
int a, b, c, d[10];
addi $gp, $zero, 1000 # assume that data is stored at
                      # base address 1000; placed in $gp;
                      # $zero is a register that always
                      # equals zero
lw $s1, 0($gp)
                     # brings value of a into register $s1
lw $s2, 4($gp)
                     # brings value of b into register $s2
lw $s3, 8($gp)
                     # brings value of c into register $s3
lw $s4, 12($gp)
                     # brings value of d[0] into register $s4
lw $s5, 16($gp)
                     # brings value of d[1] into register $s5
```

Convert to assembly: Remember: int a, b, c, d[10];

C code: d[3] = d[2] + a;

```
Convert to assembly:
Remember: int a, b, c, d[10];
C code: d[3] = d[2] + a;
```

Assembly (same assumptions as previous example):

```
lw $s0, 0($gp) # a is brought into $s0
lw $s1, 20($gp) # d[2] is brought into $s1
add $s2, $s0, $s1 # the sum is in $s2
sw $s2, 24($gp) # $s2 is stored into d[3]
```

Assembly version of the code continues to expand!

Memory Organization

- The space allocated on stack by a procedure is termed the activation record (includes saved values and data local to the procedure) – frame pointer points to the start of the record and stack pointer points to the end – variable addresses are specified relative to \$fp as \$sp may change during the execution of the procedure
- \$gp points to area in memory that saves global variables
- Dynamically allocated storage (with malloc()) is placed on the heap

Binary Representation

The binary number

```
represents the quantity 0 \times 2^{31} + 1 \times 2^{30} + 0 \times 2^{29} + ... + 1 \times 2^{0}
```

- A 32-bit word can represent 2³² numbers between
 0 and 2³²-1
 - ... this is known as the unsigned representation as we're assuming that numbers are always positive

Negative Numbers

32 bits can only represent 2^{32} numbers – if we wish to also represent negative numbers, we can represent 2^{31} positive numbers (incl zero) and 2^{31} negative numbers

1111 1111 1111 1111 1111 1111 1111 $\frac{1}{1}$

2's Complement

```
0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000_{two} = O_{ten}
   0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0001_{two} = 1_{ten}
   1000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000 = -2^{31}
   1000 0000 0000 0000 0000 0000 0001<sub>two</sub> = -(2^{31} - 1)
   1000 0000 0000 0000 0000 0000 0010_{two} = -(2^{31} - 2)
   1111 1111 1111 1111 1111 1111 1111 1110_{two} = -2
```

Consider the sum of 1 and -2 we get -1

Consider the sum of 2 and -1 we get +1

This format can directly undergo addition without any conversions!

Each number represents the quantity

$$x_{31} - 2^{31} + x_{30} 2^{30} + x_{29} 2^{29} + ... + x_1 2^1 + x_0 2^0$$

2's Complement

```
0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ _{two} = 0_{ten}
0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0001_{two} = 1_{ten}
...
0111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111
```

$$x + x' = -1$$

 $x' + 1 = -x$... hence, can compute the negative of a number by
 $-x = x' + 1$ inverting all bits and adding 1

Similarly, the sum of x and -x gives us all zeroes, with a carry of 1 In reality, $x + (-x) = 2^n$... hence the name 2's complement

 Compute the 32-bit 2's complement representations for the following decimal numbers:

 Compute the 32-bit 2's complement representations for the following decimal numbers:

Given -5, verify that negating and adding 1 yields the number 5

Recap - Numeric Representations

• Decimal
$$35_{10} = 3 \times 10^1 + 5 \times 10^0$$

• Binary
$$00100011_2 = 1 \times 2^5 + 1 \times 2^1 + 1 \times 2^0$$

Hexadecimal (compact representation)

$$0x 23$$
 or $23_{hex} = 2 \times 16^1 + 3 \times 16^0$

0-15 (decimal) 0-9, a-f (hex)

Dec	Binary	Hex									
0	0000	00	4	0100	04	8	1000	80	12	1100	0c
1	0001	01	5	0101	05	9	1001	09	13	1101	0d
2	0010	02	6	0110	06	10	1010	0a	14	1110	0e
3	0011	03	7	0111	07	11	1011	0b	15	1111	Of
											28

Constant or Immediate Operands

- We often use constants in operations
- Example: add 4 to register \$s3
 lw \$t0, AddrConstant4(\$s1)# \$t0 = constant 4
 add \$s3,\$s3,\$t0 # \$s3 = \$s3 + \$t0 (\$t0 == 4)
- A more elegant way
 addi \$s3,\$s3,4 # \$s3 = \$s3 + 4

Instruction format (R-type)

Instructions are 32bit words in memory

ор	rs	rt	rd	shamt	funct
6 bits	5 bits	5 bits	5 bits	5 bits	6 bits

- op: Basic operation of the instruction, traditionally called the opcode
- rs: The first register source operand
- rt: The second register source operand
- rd: The register destination operand. It gets the result of the operation
- shamt: Shift amount
- funct: Function/function code, selects the specific variant of the operation in the op field

Instruction format (R-type)

Instructions are 32bit words in memory

ор	rs	rt	rd	shamt	funct
6 bits	5 bits	5 bits	5 bits	5 bits	6 bits

- This works ok well for instructions like
 - add \$s0, \$s1, \$s3
- But what about
 - lw \$t0, 32(\$s0)
 - addi \$t0, \$t1, 4 # t0 = t1 + 4

Instruction format (I-type)

Instructions are 32bit words in memory

- op: Basic operation of the instruction, traditionally called the opcode
- rs: The first register source operand
- rt: New meaning destination register

Instruction	Format	ор	rs	rt	rd	shamt	funct	address
add	R	0	reg	reg	reg	0	32 _{ten}	n.a.
sub (subtract)	R	0	reg	reg	reg	0	34 _{ten}	n.a.
add immediate	I	8 _{ten}	reg	reg	n.a.	n.a.	n.a.	constant
ไพ (load word)	I	35 _{ten}	reg	reg	n.a.	n.a.	n.a.	address
SW (store word)	I	43 _{ten}	reg	reg	n.a.	n.a.	n.a.	address

FIGURE 2.5 MIPS instruction encoding. In the table above, "reg" means a register number between 0 and 31, "address" means a 16-bit address, and "n.a." (not applicable) means this field does not appear in this format. Note that add and sub instructions have the same value in the op field; the hardware uses the funct field to decide the variant of the operation: add (32) or subtract (34).

Register numbers

- \$s0 \$s7 map on hardware registers
 16 23
 - E.g., \$s0 is 16, \$s1 is 17
- \$t0 \$t7 map on hardware registers
 8 15
 - E.g., \$t0 is 8, \$t1 is 17

$$A[300] = h + A[300]$$

Gets compiled to

```
A[300] = h + A[300]
```

Gets compiled to

```
lw $t0,1200($t1) # Temporary reg $t0 gets A[300]
add $t0,$s2,$t0 # Temporary reg $t0 gets h + A[300]
sw $t0,1200($t1) # Stores h+A[300] back into A[300]
```

Example

$$A[300] = h + A[300]$$

Gets compiled to

```
lw $t0,1200($t1) # Temporary reg $t0 gets A[300]
add $t0,$s2,$t0 # Temporary reg $t0 gets h + A[300]
sw $t0,1200($t1) # Stores h+A[300] back into A[300]
```

Ор	rs	rt	rd	address/ shamt	funct
35	9	8		1200	
0	18	8	8	0	32
43	9	8		1200	

Instruction encoding

Instruction	Format	ор	rs	rt	rd	shamt	funct	address
add	R	0	reg	reg	reg	0	32 _{ten}	n.a.
sub (subtract)	R	0	reg	reg	reg	0	34 _{ten}	n.a.
add immediate	I	8 _{ten}	reg	reg	n.a.	n.a.	n.a.	constant
ไพ (load word)	I	35 _{ten}	reg	reg	n.a.	n.a.	n.a.	address
SW (store word)	I	43 _{ten}	reg	reg	n.a.	n.a.	n.a.	address

FIGURE 2.5 MIPS instruction encoding. In the table above, "reg" means a register number between 0 and 31, "address" means a 16-bit address, and "n.a." (not applicable) means this field does not appear in this format. Note that add and sub instructions have the same value in the op field; the hardware uses the funct field to decide the variant of the operation: add (32) or subtract (34).

Example

• Decimal

Ор	rs	rt	rd	address/ shamt	funct
35	9	8		1200	
0	18	8	8	0	32
43	9	8		1200	

• Binary

100011	01001	01000	0000 0100 1011 0000		
000000	10010	01000	01000 00000 100000		
101011	01001	01000	0000 0100 1011 0000		

MIPS machine language

Name	Format			Exan	Comments			
add	R	0	18	19	17	0	32	add \$s1,\$s2,\$s3
sub	R	0	18	19	17	0	34	sub \$s1,\$s2,\$s3
addi	I	8	18	17	100			addi \$s1,\$s2,100
lw	I	35	18	17	100			lw \$s1,100(\$s2)
SW	I	43	18	17	100			sw \$s1,100(\$s2)
Field size		6 bits	5 bits	5 bits	5 bits	5 bits	6 bits	All MIPS instructions are 32 bits long
R-format	R	ор	rs	rt	rd shamt funct		funct	Arithmetic instruction format
I-format	I	ор	rs	rt	address			Data transfer format

FIGURE 2.6 MIPS architecture revealed through Section 2.5. The two MIPS instruction formats so far are R and I. The first 16 bits are the same: both contain an *op* field, giving the base operation; an *rs* field, giving one of the sources; and the *rt* field, which specifies the other source operand, except for load word, where it specifies the destination register. R-format divides the last 16 bits into an *rd* field, specifying the destination register; the *shamt* field, which Section 2.6 explains; and the *funct* field, which specifies the specific operation of R-format instructions. I-format combines the last 16 bits into a single *address* field.

Logical operations

Logical operations	C operators	Java operators	MIPS instructions
Shift left	<<	<<	s11
Shift right	>>	>>>	srl
Bit-by-bit AND	&	&	and, andi
Bit-by-bit OR			or, ori
Bit-by-bit NOT	~	~	nor

FIGURE 2.8 C and Java logical operators and their corresponding MIPS instructions. MIPS implements NOT using a NOR with one operand being zero.

Shift

- Shift left by 4
- Before
 - 0000 0000 0000 0000 0000 0000 1001 = 9
- After
 - 0000 0000 0000 0000 0000 0000 1001 0000 = 144

Encoding shift

Example

Shift amount

ор	rs	rt	rd	shamt	funct
0	0	16	10	4	0

Control instructions

Branch instructions

Branch when equal

```
beq register1, register2, L1
```

- Go to L1 if register1 equals register2
- Branch when not equal

```
bne register1, register2, L1
```

- Go to L1 if register1 does *not* equal register2
- Unconditional jump
 - j L1
 - Jump to L1

If then .. else ...

```
if (i == j) f = g + h; else f = g - h;
```

Assume that f,g, h, i, and j are in \$s0, \$s1, etc.

If then .. else ...

Exit:

```
if (i == j) f = g + h; else f = g - h;

• Assume that f,g, h, i, and j are in $s0, $s1, etc.

bne $s3,$s4,Else # go to Else if i ≠ j

add $s0,$s1,$s2 # f = g + h (skipped if i ≠ j)

j Exit # unconditional jump to Exit

Else:

sub $s0,$s1,$s2 # f = g - h (skipped if i = j)
```

Loops

```
while (save[i] == k)
i += 1;
```

Assume that i and k are in \$s3 and \$s5

Loops

```
while (save[i] == k)
    i += 1;
```

Assume that i and k are in \$s3 and \$s5

```
Loop: sll $t1,$s3,2

add $t1,$t1,$s6  # $t1 = address of save[i]

lw $t0,0($t1)  # Temp reg $t0 = save[i]

bne $t0,$s5, Exit # go to Exit if save[i] ≠ k

addi $s3,$s3,1  # i = i + 1

j Loop  # go to Loop
```

Exit:

Comparisons

Set on less than

```
slt $t0, $s3, $s4 # $t0 = 1 if $s3 < $s4
```

Or with a constrant

```
slti $t0,$s2,10 # $t0 = 1 if $s2 < 10
```

 Now you can use slt, slti, beq, and bne along with \$zero (register that is always 0)

Branch instructions

Branch when equal

```
beq register1, register2, L1
```

- Go to L1 if register1 equals register2
- Branch when not equal

```
bne register1, register2, L1
```

- Go to L1 if register1 does *not* equal register2
- Unconditional jump
 - j L1
 - Jump to L1

Branch instructions

Branch when equal

```
beq register1, register2, L1
```

- Go to L1 if register1 equals register2
- Branch when not equal

```
bne register1, register2, L1
```

- Go to L1 if register1 does *not* equal register2
- Unconditional jump
 - j L1
 - Jump to L1

Shift Operations

- shamt: how many positions to shift
- Shift left logical
 - Shift left and fill with 0 bits
 - sll by i bits multiplies by 2i
- Shift right logical
 - Shift right and fill with 0 bits
 - srl by i bits divides by 2i (unsigned only)

AND Operations

- Useful to mask bits in a word
 - Select some bits, clear others to 0

```
and $t0, $t1, $t2
```

```
$t2 | 0000 0000 0000 0000 00<mark>00 11</mark>01 1100 0000
```

\$t0 | 0000 0000 0000 0000 00 11 00 0000 0000

OR Operations

- Useful to include bits in a word
 - Set some bits to 1, leave others unchanged

```
or $t0, $t1, $t2
```

NOT Operations

- Useful to invert bits in a word
 - Change 0 to 1, and 1 to 0
- MIPS has NOR 3-operand instruction
 - a NOR b == NOT (a OR b)

```
nor $t0, $t1, $zero Register 0: always read as zero
```

```
$t1 | 0000 0000 0000 0001 1100 0000 0000
```

\$t0 | 1111 1111 1111 1100 0011 1111 1111

Signed and unsigned comparisons

Consider a comparison instruction: slt \$t0, \$t1, \$zero and \$t1 contains the 32-bit number 1111 01...01

What gets stored in \$t0?

57

Signed and unsigned comparisons

```
Consider a comparison instruction:
slt $t0, $t1, $zero
and $t1 contains the 32-bit number 1111 01...01
```

What gets stored in \$t0?

The result depends on whether \$t1 is a signed or unsigned number – the compiler/programmer must track this and accordingly use either slt or sltu

```
slt $t0, $t1, $zero stores 1 in $t0 sltu $t0, $t1, $zero stores 0 in $t0
```

Sign Extension

- Occasionally, 16-bit signed numbers must be converted into 32-bit signed numbers – for example, when doing an add with an immediate operand
- The conversion is simple: take the most significant bit and use it to fill up the additional bits on the left – known as sign extension

Procedures

Calling functions

```
// some code...
foo();
// more code..
```

- \$ra contains information for how to return from a subroutine
 - i.e., from foo()

 Functions can be called from different places in the program

```
if (a == 0) {
    foo();
    ...
} else {
    foo();
    ...
}
```

Procedure Call Instructions

- Procedure call: jump and link jal ProcedureLabel
 - Address of following instruction put in \$ra
 - Jumps to target address
- Procedure return: jump register
 jr \$ra
 - Copies \$ra to program counter
 - Can also be used for computed jumps
 - e.g., for case/switch statements

Calling conventions

- Goal: re-entrant programs
 - How to pass arguments
 - On the stack?
 - In registers?
 - How to return values
 - On the stack?
 - In registers?
 - What registers have to be preserved
 - All? Some subset?
- Conventions differ from compiler, optimizations, etc.

Passing arguments

- First 4 arguments in registers
 - \$a0 \$a3
- Other arguments on the stack
- Return values in registers
 - \$v0 \$v1

Preserving registers

- \$t0 \$t9: temporaries
 - Can be overwritten by callee
- \$s0 \$s7: saved
 - Must be saved/restored by callee

Leaf Procedure Example

C code:

```
int leaf_example (int g, h, i, j)
{ int f;
    f = (g + h) - (i + j);
    return f;
}
```

- Arguments g, ..., j in \$a0, ..., \$a3
- f in \$s0 (hence, need to save \$s0 on stack)
- Result in \$v0

Leaf Procedure Example

MIPS code:

leaf ex	kample	e:		
addi	\$sp,	\$sp,	- 4	
SW	\$s0,	0(\$5)	o)	Save \$s0 on stack
add	\$t0,	\$a0,	\$a1	
add	\$t1,	\$a2,	\$a3	Procedure body
sub	\$s0,	\$t0,	\$t1	
add	\$v0,	\$s0,	\$zero	Result
lw	\$s0,	0(\$5)	o)	Doctoro CoO
addi	\$sp,	\$sp,	4	Restore \$s0
jr	\$ra			Return

Recursive invocations

```
foo(int a) {
    if (a == 0)
        return;
    a--;
    foo(a);
    return;
}
```

Non-Leaf Procedures

- Procedures that call other procedures
- For nested call, caller needs to save on the stack:
 - Its return address
 - Any arguments and temporaries needed after the call
- Restore from the stack after the call

Non-Leaf Procedure Example

C code:

```
int fact (int n)
{
  if (n < 1) return f;
  else return n * fact(n - 1);
}</pre>
```

- Argument n in \$a0
- Result in \$v0

Non-Leaf Procedure Example

MIPS code:

```
fact:
   addi $sp, $sp, -8
                        # adjust stack for 2 items
   sw $ra, 4($sp)
                        # save return address
   sw $a0, 0($sp)
                        # save argument
                        # test for n < 1
   slti $t0, $a0, 1
   beq $t0, $zero, L1
   addi $v0, $zero, 1
                        # if so, result is 1
   addi $sp, $sp, 8
                        # pop 2 items from stack
                        # and return
   jr $ra
L1: addi $a0, $a0, -1
                        # else decrement n
   jal fact
                        # recursive call
   lw $a0, 0($sp)
                        # restore original n
                        # and return address
   lw $ra, 4($sp)
   addi $sp, $sp, 8
                        # pop 2 items from stack
                        # multiply to get result
   mul $v0, $a0, $v0
                        # and return
        $ra
   jr
```

Local variables

What types of variables do you know?

 Or where these variables are allocated in memory?

What types of variables do you know?

- Global variables
 - Initialized → data section
 - Uninitalized → BSS
- Dynamic variables
 - Heap
- Local variables
 - Stack

Global variables

```
1. #include <stdio.h>
2.
3. char hello[] = "Hello";
4. int main(int ac, char **av)
5. {
       static char world[] = "world!";
6.
      printf("%s %s\n", hello, world);
7.
8.
      return 0;
9.}
```

Global variables

```
1. #include <stdio.h>
2.
3. char hello[] = "Hello";
4. int main(int ac, char **av)
5. {
6.    static char world[] = "world!";
7.    printf("%s %s\n", hello, world);
8.    return 0;
9. }
```

- Allocated in the data section
 - It is split in initialized (non-zero), and non-initialized (zero)
 - As well as read/write, and read only data section

Global variables

Dynamic variables (heap)

```
1. #include <stdio.h>
2. #include <string.h>
3. #include <stdlib.h>
4.
5. char hello[] = "Hello";
6. int main(int ac, char **av)
7. {
8. char world[] = "world!";
9. char *str = malloc(64);
10.
      memcpy(str, "beautiful", 64);
11. printf("%s %s %s\n", hello, str, world);
12. return 0;
13.}
```

Dynamic variables (heap)

```
1. #include <stdio.h>
2. #include <string.h>
3. #include <stdlib.h>
4.
5. char hello[] = "Hello";
6. int main(int ac, char **av)
7. {
8. char world[] = "world!":
9. char *str = malloc(64);
10.
      memcpy(str, "beautiful", 64);
      printf("%s %s %s\n", hello, str, world);
11.
12.
      return 0;
13.}
```

- Allocated on the heap
 - Special area of memory provided by the OS from where malloc() can allocate memory

Dynamic variables (heap)

Local variables

Local variables

```
1. #include <stdio.h>
2.
3. char hello[] = "Hello";
4. int main(int ac, char **av)
5. {
      //static char world[] = "world!";
6.
7.
      char world[] = "world!";
  printf("%s %s\n", hello, world);
8.
9.
  return 0;
10.}
```

Local variables...

Each function has private instances of local variables

```
foo(int x) {
    int a, b, c;
    ...
    return;
}
```

Function can be called recursively

```
foo(int x) {
    int a, b, c;
    a = x + 1;
    if ( a < 100 )
        foo(a);
    return;
}</pre>
```

How to allocate local variables?

```
void my_function()
{
    int a, b, c;
    ...
}
```

How to allocate local variables?

```
void my_function()
{
    int a, b, c;
    ...
}
```

On the stack!

Local Data on the Stack

- Local data allocated by callee
 - e.g., C automatic variables
- Procedure frame (activation record)
 - Used by some compilers to manage stack storage

Memory Layout

- Text: program code
- Static data: global variables
 - e.g., static variables in C, constant arrays and strings
 - \$gp initialized to address allowing ±offsets into this segment
- Dynamic data: heap
 - E.g., malloc in C, new in Java
- Stack: automatic storage

Recap: Procedure Calling

- Steps required
 - Place parameters in registers
 - 2. Transfer control to procedure
 - 3. Acquire storage for procedure
 - 4. Perform procedure's operations
 - 5. Place result in register for caller
 - Return to place of call

Calling convention (again)

Preserved	Not preserved
Saved registers: \$s0-\$s7	Temporary registers: \$t0-\$t9
Stack pointer register: \$sp	Argument registers: \$a0-\$a3
Return address register: \$ra	Return value registers: \$v0-\$v1
Stack above the stack pointer	Stack below the stack pointer

Binary numbers, << 1, mul 2

Strings

Character Data

- Byte-encoded character sets
 - ASCII: 128 characters
 - 95 graphic, 33 control
 - Latin-1: 256 characters
 - ASCII, +96 more graphic characters
- Unicode: 32-bit character set
 - Used in Java, C++ wide characters, ...
 - Most of the world's alphabets, plus symbols
 - UTF-8, UTF-16: variable-length encodings

ASCII value	Char- acter										
32	space	48	0	64	@	80	Р	96	`	112	р
33	!	49	1	65	А	81	Q	97	а	113	q
34	"	50	2	66	В	82	R	98	b	114	r
35	#	51	3	67	С	83	S	99	С	115	S
36	\$	52	4	68	D	84	Т	100	d	116	t
37	%	53	5	69	Е	85	U	101	е	117	u
38	&	54	6	70	F	86	V	102	f	118	V
39	•	55	7	71	G	87	W	103	g	119	W
40	(56	8	72	Н	88	Х	104	h	120	Х
41)	57	9	73	I	89	Y	105	i	121	у
42	*	58	:	74	J	90	Z	106	j	122	Z
43	+	59	;	75	K	91	[107	k	123	{
44	,	60	<	76	L	92	\	108	I	124	
45	-	61	=	77	M	93]	109	m	125	}
46		62	>	78	N	94	٨	110	n	126	~
47	/	63	?	79	0	95	_	111	0	127	DEL

Byte/Halfword Operations

- Could use bitwise operations
- MIPS byte/halfword load/store
 - String processing is a common case

```
lb rt, offset(rs) lh rt, offset(rs)
```

Sign extend to 32 bits in rt

```
lbu rt, offset(rs) lhu rt, offset(rs)
```

Zero extend to 32 bits in rt

```
sb rt, offset(rs) sh rt, offset(rs)
```

Store just rightmost byte/halfword

String Copy Example

- C code (naïve):
 - Null-terminated string

```
void strcpy (char x[], char y[])
{ int i;
    i = 0;
    while ((x[i]=y[i])!='\0')
        i += 1;
}
```

- Addresses of x, y in \$a0, \$a1
- i in \$s0

String Copy Example

MIPS code:

```
strcpy:
   addi $sp, $sp, -4
                         # adjust stack for 1 item
        $s0, 0($sp)
                         # save $s0
   SW
   add \$s0, \$zero, \$zero # i = 0
L1: add $t1, $s0, $a1
                         # addr of y[i] in $t1
   lbu $t2, 0($t1)
                         # $t2 = y[i]
   add $t3, $s0, $a0
                         # addr of x[i] in $t3
   sb $t2, 0($t3)
                         \# x[i] = y[i]
   beq $t2, $zero, L2
                         # exit loop if y[i] == 0
   addi $s0, $s0, 1
                         # i = i + 1
        L1
                         # next iteration of loop
L2: lw $s0, 0($sp)
                         # restore saved $s0
   addi $sp, $sp, 4
                         # pop 1 item from stack
                         # and return
        $ra
   jr
```

32-bit Constants

- Most constants are small
 - 16-bit immediate is sufficient
- For the occasional 32-bit constant
 lui rt, constant
 - Copies 16-bit constant to left 16 bits of rt
 - Clears right 16 bits of rt to 0

J-Type instructions

Branch Addressing

- Branch instructions specify
 - Opcode, two registers, target address
- Most branch targets are near branch
 - Forward or backward

- PC-relative addressing
 - Target address = PC + offset × 4
 - PC already incremented by 4 by this time

Jump Addressing

- Jump (j and jal) targets could be anywhere in text segment
 - Encode full address in instruction

ор	address
6 bits	26 bits

- (Pseudo)Direct jump addressing
 - Target address = $PC_{31...28}$: (address × 4)

Branching Far Away

 If branch target is too far to encode with 16-bit offset, assembler rewrites the code

Branching Far Away

- If branch target is too far to encode with 16-bit offset, assembler rewrites the code
- Example

```
beq $s0,$s1, L1

↓

bne $s0,$s1, L2

j L1

L2: ...
```

Addressing Mode Summary

Chapter 2 — Instructions: Language of the Computer — 102

MIPS assembly language

Category	Instruction	Example	Meaning	Comments		
	add	add \$s1,\$s2,\$s3	\$s1 = \$s2 + \$s3	Three register operands		
Arithmetic	subtract	sub \$s1,\$s2,\$s3	\$s1 = \$s2 - \$s3	Three register operands		
	add immediate	addi \$s1,\$s2,20	\$s1 = \$s2 + 20	Used to add constants		
	load word	lw \$s1,20(\$s2)	\$s1 = Memory[\$s2 + 20]	Word from memory to register		
	store word	sw \$s1,20(\$s2)	Memory[\$s2 + 20] = \$s1	Word from register to memory		
	load half	lh \$s1,20(\$s2)	\$s1 = Memory[\$s2 + 20]	Halfword memory to register		
	load half unsigned	1hu \$s1,20(\$s2)	\$s1 = Memory[\$s2 + 20]	Halfword memory to register		
	store half	sh \$s1,20(\$s2)	Memory[\$s2 + 20] = \$s1	Halfword register to memory		
Data transfer	load byte	1b \$s1,20(\$s2)	\$s1 = Memory[\$s2 + 20]	Byte from memory to register		
transier	load byte unsigned	1bu \$s1,20(\$s2)	\$s1 = Memory[\$s2 + 20]	Byte from memory to register		
	store byte	sb \$s1,20(\$s2)	Memory[\$s2 + 20] = \$s1	Byte from register to memory		
	load linked word	11 \$s1,20(\$s2)	\$s1 = Memory[\$s2 + 20]	Load word as 1st half of atomic swap		
	store condition. word	sc \$s1,20(\$s2)	Memory[\$s2+20]=\$s1;\$s1=0 or 1	Store word as 2nd half of atomic swap		
	load upper immed.	lui \$s1,20	\$s1 = 20 * 2 ¹⁶	Loads constant in upper 16 bits		
	and	and \$s1,\$s2,\$s3	\$s1 = \$s2 & \$s3	Three reg. operands; bit-by-bit AND		
	or	or \$s1,\$s2,\$s3	\$s1 = \$s2 \$s3	Three reg. operands; bit-by-bit OR		
	nor	nor \$s1,\$s2,\$s3	\$s1 = ~ (\$s2 \$s3)	Three reg. operands; bit-by-bit NOR		
Logical	and immediate	andi \$s1,\$s2,20	\$s1 = \$s2 & 20	Bit-by-bit AND reg with constant		
	or immediate	ori \$s1,\$s2,20	\$s1 = \$s2 20	Bit-by-bit OR reg with constant		
	shift left logical	sll \$s1,\$s2,10	\$s1 = \$s2 << 10	Shift left by constant		
	shift right logical	srl \$s1,\$s2,10	\$s1 = \$s2 >> 10	Shift right by constant		
	branch on equal	beq \$s1,\$s2,25	if (\$s1 == \$s2) go to PC + 4 + 100	Equal test; PC-relative branch		
	branch on not equal	bne \$s1,\$s2,25	if (\$s1!= \$s2) go to PC + 4 + 100	Not equal test; PC-relative		
Conditional	set on less than	slt \$s1,\$s2,\$s3	if (\$s2 < \$s3) \$s1 = 1; else \$s1 = 0	Compare less than; for beq, bne		
branch	set on less than unsigned	sltu \$s1,\$s2,\$s3	if (\$s2 < \$s3) \$s1 = 1; else \$s1 = 0	Compare less than unsigned		
	set less than immediate	slti \$s1,\$s2,20	if (\$s2 < 20) \$s1 = 1; else \$s1 = 0	Compare less than constant		
	set less than immediate unsigned	sltiu \$s1,\$s2,20	if (\$s2 < 20) \$s1 = 1; else \$s1 = 0	Compare less than constant unsigned		
Disease Pri	jump	j 2500	go to 10000	Jump to target address		
Unconditional	jump register	jr \$ra	go to \$ra	For switch, procedure return		
jump	jump and link	jal 2500	\$ra = PC + 4; go to 10000	For procedure call		

MIPS assembly language

Category	Instruction	Example	Meaning	Comments
	add	add \$s1,\$s2,\$s3	\$s1 = \$s2 + \$s3	Three register operands
Arithmetic	subtract	sub \$s1,\$s2,\$s3	\$s1 = \$s2 - \$s3	Three register operands
	add immediate	addi \$s1,\$s2,20	\$s1 = \$s2 + 20	Used to add constants
	load word	lw \$s1,20(\$s2)	\$s1 = Memory[\$s2 + 20]	Word from memory to register
	store word	sw \$s1,20(\$s2)	Memory[\$s2 + 20] = \$s1	Word from register to memory
	load half	lh \$s1,20(\$s2)	\$s1 = Memory[\$s2 + 20]	Halfword memory to register
	load half unsigned	lhu \$s1,20(\$s2)	\$s1 = Memory[\$s2 + 20]	Halfword memory to register
5-1-	store half	sh \$s1,20(\$s2)	Memory[\$s2 + 20] = \$s1	Halfword register to memory
Data transfer	load byte	1b \$s1,20(\$s2)	\$s1 = Memory[\$s2 + 20]	Byte from memory to register
ti ai isici	load byte unsigned	1bu \$s1,20(\$s2)	\$s1 = Memory[\$s2 + 20]	Byte from memory to register
	store byte	sb \$s1,20(\$s2)	Memory[\$s2 + 20] = \$s1	Byte from register to memory
	load linked word	11 \$s1,20(\$s2)	\$s1 = Memory[\$s2 + 20]	Load word as 1st half of atomic swap
	store condition. word	sc \$s1,20(\$s2)	Memory [\$s2 +20]= \$s1;\$s1=0 or 1	Store word as 2nd half of atomic swap
	load upper immed.	lui \$s1,20	\$s1 = 20 * 2 ¹⁶	Loads constant in upper 16 bits

	and	and \$s1,\$s2,\$s3	\$s1 = \$s2 & \$s3	Three reg. operands; bit-by-bit AND
				Three reg. operands; bit-by-bit OR
	or		\$s1 = \$s2 \$s3	
	nor	nor \$s1,\$s2,\$s3	\$s1 = ~ (\$s2 \$s3)	Three reg. operands; bit-by-bit NOR
Logical	and immediate	andi \$s1,\$s2,20	\$s1 = \$s2 & 20	Bit-by-bit AND reg with constant
	or immediate	ori \$s1,\$s2,20	\$s1 = \$s2 20	Bit-by-bit OR reg with constant
	shift left logical	sll \$s1,\$s2,10	\$s1 = \$s2 << 10	Shift left by constant
	shift right logical	srl \$s1,\$s2,10	\$s1 = \$s2 >> 10	Shift right by constant
	branch on equal	beq \$s1,\$s2,25	if (\$s1 == \$s2) go to	Equal test; PC-relative branch
			PC + 4 + 100	
	branch on not equal	bne \$s1,\$s2,25	if (\$s1!= \$s2) go to	Not equal test; PC-relative
			PC + 4 + 100	
	set on less than	slt \$s1,\$s2,\$s3	if (\$s2 < \$s3) \$s1 = 1;	Compare less than; for beq, bne
Conditional			else \$s1 = 0	
branch	set on less than	sltu \$s1,\$s2,\$s3	if (\$s2 < \$s3) \$s1 = 1;	Compare less than unsigned
	unsigned		else \$s1 = 0	
	set less than	slti \$s1,\$s2,20	if (\$s2 < 20) \$s1 = 1;	Compare less than constant
	immediate		else \$s1 = 0	
	set less than	sltiu \$s1,\$s2,20	if (\$s2 < 20) \$s1 = 1;	Compare less than constant
	immediate unsigned		else $$s1 = 0$	unsigned
Liver and distinguish	jump	j 2500	go to 10000	Jump to target address
Unconditional	jump register	jr \$ra	go to \$ra	For switch, procedure return
jump	jump and link	jal 2500	\$ra = PC + 4; go to 10000	For procedure call

Target Addressing Example

- Loop code from earlier example
 - Assume Loop at location 80000

Loop:	sll	\$t1,	\$s3,	2	80000	0	0	19	9	4	0
	add	\$t1,	\$t1,	\$s6	80004	0	9	22	9	0	32
	lw	\$t0,	0(\$t	1)	80008	35	9	8		0	
	bne	\$t0,	\$s5,	Exit	80012	5	8	21		_2	
	addi	\$s3,	\$s3,	1	80016	8	19	19		1	
	j	Loop			80020	2			20000		
Exit:					80024						

Recap: registers

Name	Register number	Usage	Preserved on call?
\$zero	0	The constant value 0	n.a.
\$v0-\$v1	2–3	Values for results and expression evaluation	no
\$a0-\$a3	4–7	Arguments	no
\$t0-\$t7	8–15	Temporaries	no
\$s0 - \$s7	16–23	Saved	yes
\$t8-\$t9	24–25	More temporaries	no
\$gp	28	Global pointer	yes
\$sp	29	Stack pointer	yes
\$fp	30	Frame pointer	yes
\$ra	31	Return address	yes

Linking and loading

What is inside a program?

What parts do we need to run code?

Parts needed to run a program

- Code itself
 - By convention it's called text
- Stack
 - To call functions
- Space for variables

What types of variables do you know?

- Global variables
 - Initialized → data section
 - Uninitalized → BSS
- Local variables
 - Stack
- Dynamic variables
 - Heap

Memory layout of a process

Where do these areas come from?

Memory layout of a process

Compiler and linker

Load program in memory

Translation and Startup

Translation and Startup

Assembler Pseudoinstructions

- Most assembler instructions represent machine instructions one-to-one
- Pseudoinstructions: high-level assembly constructs

```
move $t0, $t1 \rightarrow add $t0, $zero, $t1 blt $t0, $t1, L \rightarrow slt $at, $t0, $t1 bne $at, $zero, L
```

• \$at (register 1): assembler temporary

Translation and Startup

Chapter 2 — Instructions: Language of the Computer — 119

Object files (.o)

Object files

- Conceptually: five kinds of information
 - Header: code size, name of the source file, creation date
 - Object code: binary instruction and data generated by the compiler
 - Relocation information: list of places in the object code that need to be patched
 - Symbols: global symbols defined by this module
 - Symbols to be imported from other modules
 - Debugging information: source file and file number information, local symbols, data structure description

Example: UNIX A.OUT

- Small header
- Text section
 - Executable code
- Data section
 - Initial values for static data

Translation and Startup

Why linking?

Why linking?

- Modularity
 - Program can be written as a collection of modules
 - We can build libraries of common functions
- Efficiency
 - Code compilation
 - Change one source file, recompile it, and re-link the executable
 - Space efficiency
 - Share common code across executable files
 - On disk and in memory

Example: printf()

- 1000 programs in a typical UNIX system
- 1000 copies of printf

How big is printf() actually?

Motivation

- Disk space
 - 2504 programs in /usr/bin on my Linux laptop

```
- ls /usr/bin | wc -l
```

- printf() is a large function
- Handles conversion of multiple types to strings
 - 5-10K
- This means 10-25MB of disk can be wasted just on printf()
- Runtime memory costs are
 - 5-10K times the number of running programs
 - 250 programs running on my Linux laptop

```
- ps -aux | wc -1
```

- 1MB-2.5MB – huge number for most systems 15-20 years ago

Two kinds of linking

- Static
 - The program is linked at compilation time
 - main() + static libraries => executable
- Dynamic
 - The program is linked right when it's loaded into memory
 - main() + dynamic libraries => executable

Example: size of a statically vs dynamically linked program

- On Ubuntu 16.04 (gcc 5.4.0, libc 2.23)
 - Statically linked trivial example

```
gcc -m32 -static hello-int.c -o test725KB
```

Dyncamically linked trivial example

```
- gcc -m32 hello-int.c -o test
```

- 7KB

Linking

- Input: object files (code modules)
- Each object file contains
 - A set of segments
 - Code
 - Data
 - A symbol table
 - Imported & exported symbols
- Output: executable file, library, etc.

Merging segment

Merging code

What needs to be done to merge (or move) code in memory?

Detour: real programs

```
4 # All program code is placed after the
 5 # .text assembler directive
 6 .text
8 # Declare main as a global function
 9 .globl main
10
11 # The label 'main' represents the starting point
12 main:
13
19
20 # All memory structures are placed after the
21 # .data assembler directive
22 .data
23
```

System calls

Service	Operation	Code (in \$v0)	Arguments	Results
print_int	Print integer number (32 bit)	1	\$a0 = integer to be printed	None
print_float	Print floating-point number (32 bit)	2	\$f12 = float to be printed	None
print_double	Print floating-point number (64 bit)	3	\$f12 = double to be printed	None
print_string	Print null-terminated character string	4	\$a0 = address of string in memory	None
read_int	Read integer number from user	5	None	Integer returned in \$v0
read_float	Read floating-point number from user	6	None	Float returned in \$f0
read_double	Read double floating-point number from user	7	None	Double returned in \$f0
read_string	Works the same as Standard C Library fgets() function.	8	\$a0 = memory address of string input buffer \$a1 = length of string buffer (n)	None
sbrk	Returns the address to a block of memory containing n additional bytes. (Useful for dynamic memory allocation)	9	\$a0 = amount	address in \$v0
exit	Stop program from running	10	None	None
print_char	Print character	11	\$a0 = character to be printed	None
read_char	Read character from user	12	None	Char returned in \$v0
exit2	Stops program from running and returns an integer	17	\$a0 = result (integer number)	None

```
1 # "Hello World" in MIPS assembly
 2 # From: http://labs.cs.upt.ro/labs/so2/html/resources/nachos-doc/mipsf.html
4 # All program code is placed after the
 5 # .text assembler directive
6 .text
8 # Declare main as a global function
9 .globl main
10
11 # The label 'main' represents the starting point
12 main:
13
          # Run the print_string syscall which has code 4
14
          li
                  $v0,4
                            # Code for syscall: print_string
15
                  $a0, msg # Pointer to string (load the address of msg)
          la
16
         syscall
17
          li
                  $v0,10 # Code for syscall: exit
18
          syscall
19
20 # All memory structures are placed after the
21 # .data assembler directive
22
          .data
23
```

```
1 # "Hello World" in MIPS assembly
 2 # From: http://labs.cs.upt.ro/labs/so2/html/resources/nachos-doc/mipsf.html
 3
 4 # All program code is placed after the
 5 # .text assembler directive
 6 .text
 7
 8 # Declare main as a global function
 9 .globl main
10
11 # The label 'main' represents the starting point
12 main:
          # Run the print_string syscall which has code 4
13
14
          li
                  $v0,4
                             # Code for syscall: print string
15
                  $a0, msg  # Pointer to string (load the address of msg)
          la
16
        syscall
17
          li
                  $v0,10
                            # Code for syscall: exit
18
          syscall
19
20 # All memory structures are placed after the
21 # .data assembler directive
22
           .data
23
          # The .asciiz assembler directive creates
24
25
          # an ASCII string in memory terminated by
          # the null character. Note that strings are
26
27
          # surrounded by double-quotes
         .asciiz "Hello World!\n"
28 msg:
```

Main's signature

```
int main(int argc, char* argv[], char **envp) {
   while (*envp != NULL) {
    printf("%s\n", *envp++);
  return 0;
$ gcc t.c
$ ./a.out
SHELL=/bin/bash
TERM=xterm-256color
HISTSIZE=1000
EDITOR=vim
LANG=en US.UTF-8
HISTCONTROL=ignoredups
ARCH=x86 64
DISPLAY=:0
COLORTERM=truecolor
```

Relocation

```
User Text Segment [00400000]..[00440000]
[00400000] 8fa40000 lw $4, 0($29)
                                         ; 183: lw $a0 0($sp) # argc
[00400004] 27a50004 addiu $5, $29, 4 ; 184: addiu $a1 $sp 4 # argv
[00400008] 24a60004 addiu $6, $5, 4 ; 185: addiu $a2 $a1 4 # envp
[0040000c] 00041080 sll $2, $4, 2 ; 186: sll $v0 $a0 2
[00400010] 00c23021 addu $6, $6, $2 ; 187: addu $a2 $a2 $v0
[00400014] 0c100009 jal 0x00400024 [main]
                                         ; 188: jal main
[00400018] 00000000 nop
                                          ; 189: nop
[0040001c] 3402000a ori $2, $0, 10
                                         : 191: li $v0 10
[00400020] 0000000c syscall
                                          ; 192: syscall # syscall 10
(exit)
[00400024] 34020004 ori $2, $0, 4
                                          ; 14: li $v0,4 # Code for
syscall: print string
[00400028] 3c011001 lui $1, 4097 [msg]
                                          ; 15: la $a0, msg # Pointer to
string (load the address of msg)
[0040002c] 34240000 ori $4, $1, 0 [msg]
[00400030] 0000000c syscall
                                          ; 16: syscall
                                          ; 17: li $v0,10 # Code for
[00400034] 3402000a ori $2, $0, 10
syscall: exit
[00400038] 0000000c syscall
                                          ; 18: syscall
```

Loading a Program

- Load from image file on disk into memory
 - 1. Read header to determine segment sizes
 - 2. Create virtual address space
 - 3. Copy text and initialized data into memory
 - Or set page table entries so they can be faulted in
 - 4. Set up arguments on stack
 - 5. Initialize registers (including \$sp, \$fp, \$gp)
 - 6. Jump to startup routine
 - Copies arguments to \$a0, ... and calls main
 - When main returns, do exit syscall

Dynamic Linking

- Only link/load library procedure when it is called
 - Requires procedure code to be relocatable
 - Avoids image bloat caused by static linking of all (transitively) referenced libraries
 - Automatically picks up new library versions

Lazy Linkage

Indirection table

Stub: Loads routine ID, Jump to linker/loader

Linker/loader code

Dynamically mapped code

b. Subsequent calls to DLL routine