Chapter 13 Section 3 & 4 Problem Set

Andry Paez

October 7, 2023

Section 3: Arc Length and Curvature

Problem 1a

Use Equation 2 to compute the length of the given line segment.

$$\vec{r}(t) = \langle 3 - t, 2t, 4t + 1 \rangle \quad 1 \le t \le 3$$

Solution

Let the length of the line segment be

$$L = \int_{a}^{b} \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2} + \left(\frac{dz}{dt}\right)^{2}} dt \Rightarrow L = \int_{a}^{b} \|\vec{r}'(t)\| dt$$
$$D : \{ t \mid 1 \le t \le 3 \}$$

$$\vec{r}'(t) = \langle -1, 2, 4 \rangle \Rightarrow L = \int_{1}^{3} \sqrt{(-1)^{2} + (2)^{2} + (4)^{2}} dt = \int_{1}^{3} \sqrt{21} dt = \sqrt{21}t \Big|_{1}^{3} = \sqrt{21}(3) - \sqrt{21}(1) = 2\sqrt{21}$$

Problems 3-7 odd

Find the length of the curve.

3.
$$\vec{r}(t) = \langle t, 3\cos t, 3\sin t \rangle$$
 $25 \le t \le 5$

Solution

$$\vec{r}'(t) = \langle 1, -3\sin t, 3\cos t \rangle \Rightarrow L = \int_{-5}^{5} \sqrt{1^2 + (-3\sin t)^2 + (3\cos t)^2} dt$$

$$= \int_{-5}^{5} \sqrt{1 + 9\sin^2 t + 9\cos^2 t} dt$$

$$= \int_{-5}^{5} \sqrt{1 + 9(1)} dt$$

$$= \int_{-5}^{5} \sqrt{10} dt$$

$$= \sqrt{10}t \Big|_{-5}^{5} dt = \sqrt{10}(5) - \sqrt{10}(-5) = 10\sqrt{10}$$

5. $\vec{r}(t) = \langle \sqrt{2}t, e^t, e^{-t} \rangle$ $0 \le t \le 1$

Solution

$$\vec{r}'(t) = \langle \sqrt{2}, e^t, -e^{-t} \rangle \Rightarrow L = \int_0^1 \sqrt{(\sqrt{2})^2 + (e^t)^2 + (-e^{-t})^2} dt$$

$$= \int_0^1 \sqrt{2 + e^{2t} + e^{-2t}} dt$$

$$= \int_0^1 \sqrt{(e^t + e^{-t})^2} dt$$

$$= \int_0^1 e^t + e^{-t} dt$$

$$= e^t - e^{-t} \Big|_0^1 = (e^1 - \frac{1}{e^1}) - (e^0 - \frac{1}{e^0}) = e^{-t} - 1 + 1 = e^{-t} - \frac{1}{e^0}$$

7.
$$\vec{r}(t) = \langle 1, t^2, t^3 \rangle$$
 $0 \le t \le 1$

Solution

$$\vec{r}'(t) = \langle 0, 2t, 3t^2 \rangle \Rightarrow L = \int_0^1 \sqrt{(0)^2 + (2t)^2 + (3t^2)^2} dt$$

$$= \int_0^1 \sqrt{4t^2 + 9t^4} dt$$

$$= \int_0^1 \sqrt{t^2(4 + 9t^2)} dt$$

$$= \int_0^1 t\sqrt{4 + 9t^2} dt$$

Using u-substitution,

$$u^{2} = 4 + 9t^{2}$$

$$2udu = 18t dt$$

$$\frac{u}{9} = t dt$$

$$\int_{0}^{1} t\sqrt{4 + 9t^{2}} dt = \int_{0}^{1} u \cdot (\frac{1}{9}u) du = \frac{1}{9} \int_{0}^{1} u^{2} du = \frac{1}{9} (\frac{1}{3}u^{3}) \Big|_{2}^{\sqrt{13}} = \frac{1}{27} (u^{3}) \Big|_{2}^{\sqrt{13}} = \frac{1}{27} (13^{\frac{3}{2}} - 2^{3}) = \frac{13\sqrt{13}}{27} - 3$$

Problems 19-23 odd

- (a) Find the unit tangent and unit normal vectors $\vec{T}(t)$ and $\vec{N}(t)$.
- (b) Use Formula 9 to find the curvature.

19.
$$\vec{r}(t) = \langle t^2, \sin t - t \cos t, \cos t + t \sin t \rangle, \quad t > 0$$

Solution

a.

$$\vec{T}(t) = \frac{\vec{r}'(t)}{\|\vec{r}'(t)\|}$$

$$\vec{r}'(t) = \langle 2t, \cos t - \cos t + t \sin t, -\sin t + \sin t + t \cos t \rangle = \langle 2t, t \sin t, t \cos t \rangle$$

$$\|\vec{r}'(t)\| = \sqrt{4t^2 + t^2 \sin^2 t + t^2 \cos^2 t} = \sqrt{4t^2 + t^2} = \sqrt{5t^2} = \sqrt{5}t \quad [\cos^2 t + \sin^2 t = 1]$$

$$\vec{T}(t) = \frac{\langle 2t, t \sin t, t \cos t \rangle}{\sqrt{5}t} = \frac{1}{\sqrt{5}} \langle 2, \sin t, \cos t \rangle$$

$$\vec{N}(t) = \frac{\vec{T}'(t)}{\|\vec{T}'(t)\|}$$

$$\vec{T}'(t) = \frac{1}{\sqrt{5}} \langle 0, \cos t, -\sin t \rangle$$

$$\|\vec{T}'(t)\| = \frac{1}{\sqrt{5}} \sqrt{0^2 + \cos^2 t + \sin^2 t} = \sqrt{1} = \frac{1}{\sqrt{5}}$$

$$\vec{N}(t) = \frac{\frac{1}{\sqrt{5}} \langle 0, \cos t, -\sin t \rangle}{\frac{1}{\sqrt{5}}} = \langle 0, \cos t, -\sin t \rangle$$

b.

$$\kappa(t) = \frac{\|\vec{T}'(t)\|}{\|\vec{r}'(t)\|} = \frac{\frac{1}{\sqrt{5}}}{\sqrt{5}t} = \frac{1}{5t}$$

21.
$$\vec{r}(t) = \langle t, t^2, 4 \rangle$$

Solution

a.

$$\begin{split} \vec{r}'(t) &= \hat{\mathbf{i}} + 2t\,\hat{\mathbf{j}} \\ \|\vec{r}'(t)\| &= \sqrt{1^2 + (2t)^2} = \sqrt{1 + 4t^2} \\ \vec{T}(t) &= \frac{\hat{\mathbf{i}} + 2t\,\hat{\mathbf{j}}}{\sqrt{1 + 4t^2}} = \frac{1}{\sqrt{1 + 4t^2}} (\,\hat{\mathbf{i}} + 2t\,\hat{\mathbf{j}}) \\ \frac{d}{dt} &= [f(t)\vec{u}(t)] = f'(t)\vec{u}(t) + f(t)\vec{u}'(t) \quad [vector \ product \ rule] \\ \vec{T}'(t) &= -\frac{4t}{(1 + 4t^2)^{\frac{3}{2}}} (\,\hat{\mathbf{i}} + 2t\,\hat{\mathbf{j}}) + \frac{1}{(1 + 4t^2)^{\frac{1}{2}}} (2\,\hat{\mathbf{j}}) \\ &= \frac{1}{(1 + 4t^2)^{\frac{3}{2}}} \left(-4t\,(\hat{\mathbf{i}} + 2t\,\hat{\mathbf{j}}) + (1 + 4t^2)(2\,\hat{\mathbf{j}}) \right) = \frac{1}{(1 + 4t^2)^{\frac{3}{2}}} (-4t\,\hat{\mathbf{i}} - 8t^2\,\hat{\mathbf{j}} + 2\,\hat{\mathbf{j}} + 8t^2\,\hat{\mathbf{j}}) \\ &= \frac{1}{(1 + 4t^2)^{\frac{3}{2}}} (-4t\,\hat{\mathbf{i}} + 2\,\hat{\mathbf{j}}) \\ \|\vec{T}'(t)\| &= \frac{1}{(1 + 4t^2)^{\frac{3}{2}}} \sqrt{(-4t)^2 + 2^2} = \frac{1}{(1 + 4t^2)^{\frac{3}{2}}} \sqrt{16t^2 + 4} = \frac{1}{(1 + 4t^2)^{\frac{3}{2}}} \sqrt{4(4t^2 + 1)} = \frac{2}{(1 + 4t^2)^{\frac{3}{2}}} \sqrt{1 + 4t^2} \\ &= \frac{2}{1 + 4t^2} \\ \vec{N}(t) &= \frac{\vec{T}'(t)}{\|\vec{T}'(t)\|} = \frac{1}{(1 + 4t^2)^{\frac{3}{2}}} (-4t\,\hat{\mathbf{i}} + 2\,\hat{\mathbf{j}}) \cdot \frac{1 + 4t^2}{2} = \frac{(1 + 4t^2)^1}{2(1 + 4t^2)^{\frac{3}{2}}} (-4t\,\hat{\mathbf{i}} + 2\,\hat{\mathbf{j}}) = \frac{1}{\sqrt{1 + 4t^2}} (-2t\,\hat{\mathbf{i}} + \hat{\mathbf{j}}) \end{split}$$

b.

$$\kappa(t) = \frac{\|\vec{T}'(t)\|}{\|\vec{r}'(t)\|} = \frac{2}{1+4t^2} \cdot \frac{1}{(1+4t^2)^{\frac{1}{2}}} = \frac{2}{(1+4t^2)^{\frac{3}{2}}}$$

23.
$$\vec{r}(t) = \langle t, \frac{1}{2}t^2, t^2 \rangle$$

Solution

a.

$$\begin{split} \vec{r}'(t) &= \langle 1, t, 2t \rangle \\ \| \vec{r}'(t) \| &= \sqrt{1^2 + t^2 + (2t)^2} \\ \vec{T}(t) &= \frac{\vec{r}'(t)}{\| \vec{r}'(t) \|} = \frac{\langle 1, t, 2t \rangle}{\sqrt{1 + t^2 + 4t^2}} = \frac{1}{\sqrt{1 + 5t^2}} \langle 1, t, 2t \rangle \\ \frac{d}{dt} &= [f(t)\vec{u}(t)] = f'(t)\vec{u}(t) + f(t)\vec{u}'(t) \quad [vector \ product \ rule] \\ \vec{T}'(t) &= -\frac{5t}{(1 + 5t^2)^{\frac{3}{2}}} \langle 1, t, 2t \rangle + \frac{1}{(1 + 5t^2)^{\frac{1}{2}}} \langle 0, 1, 2 \rangle \\ &= \frac{1}{(1 + 5t^2)^{\frac{3}{2}}} \left(-5t \langle 1, t, 2t \rangle + (1 + 5t^2) \langle 0, 1, 2 \rangle \right) \\ &= \frac{1}{(1 + 5t^2)^{\frac{3}{2}}} \left(\langle -5t, -5t^2, -10t^2 \rangle + \langle 0, 1 + 5t^2, 2 + 10t^2 \rangle \right) = \frac{1}{(1 + 5t^2)^{\frac{3}{2}}} \langle -5t, 1, 2 \rangle \\ \| \vec{T}'(t) \| &= \end{split}$$

Problem 27

Use Theorem 10 to find the curvature

$$\vec{r}(t) = \sqrt{6}t^2 \,\hat{\mathbf{i}} + 2t \,\hat{\mathbf{j}} + 2t^3 \,\hat{\mathbf{k}}$$

Solution

Problem 28

Find the curvature of $\vec{r}(t) = \langle t^2, \ln t, t \ln t \rangle$ at the point (1, 0, 0).

Solution

Problem 31 & 33

Use Formula 11 to find the curvature.

31.
$$y = x^4$$

Solution

33. $y = xe^x$

Solution

Problem 51

Find the vectors \mathbf{T} , \mathbf{N} , and \mathbf{B} at the given point.

$$\vec{r}(t) = \langle t^2, \frac{2}{3}t^3, t \rangle, \quad (1, \frac{2}{3}, 1)$$

Solution

Problem 53

Find equations of the normal plane and osculating plane of the curve at the given point.

$$x = \sin 2t, \ y = -\cos 2t, \ z = 4t; \ (0, 1, 2\pi)$$

Solution

Problem 66

Use Formula 14 to find the torsion at the given value of t.

$$\vec{r}(t) = \langle \sin t, 3t, \cos t \rangle, \quad t = \frac{\pi}{2}$$

Solution

Problem 70

Use Theorem 15 to find the torsion of the given curve at a general point and at the point corresponding to t=0

$$\vec{r}(t) = \langle \cos t, \sin t, \sin t \rangle$$

Solution

Section 4: Motion in Space - Velocity and Acceleration

Problem 3-7 odd

Find the velocity, acceleration, and speed of a particle with the given position function. Sketch the path of the particle and draw the velocity and acceleration vectors for the specified value of t.

3.
$$\vec{r}(t) = \langle -\frac{1}{2}t^2, t \rangle, \quad t = 2$$

Solution

$$\vec{r}'(t) = \vec{v}(t) = \langle -t, 1 \rangle \quad \Rightarrow \quad \vec{v}(2) = \langle -2, 1 \rangle$$

 $\vec{r}''(t) = \vec{a}(t) = \langle -1, 0 \rangle \quad \Rightarrow \quad \vec{a}(2) = \langle -1, 0 \rangle$

5.
$$\vec{r}(t) = 3\cos t \,\hat{\mathbf{i}} + 2\sin t \,\hat{\mathbf{j}}$$
 $t = \frac{\pi}{3}$

7.
$$\vec{r}(t) = t \hat{\mathbf{i}} + t^2 \hat{\mathbf{j}} + 2 \hat{\mathbf{k}}$$
 $t = 1$

Problems 9-13 odd

Find the velocity, acceleration, and speed of a particle with the given position function.

9.
$$\vec{r}(t) = \langle t^2 + t, t^2 - t, t^3 \rangle$$

11.
$$\vec{r}(t) = \sqrt{2}t \,\hat{\mathbf{i}} + e^t \,\hat{\mathbf{j}} + e^{-t} \,\hat{\mathbf{k}}$$

13.
$$\vec{r}(t) = e^t(\cos t \,\hat{\mathbf{i}} + \sin t \,\hat{\mathbf{j}} + t \,\hat{\mathbf{k}})$$

Problem 15

Find the velocity and position vectors of a particle that has the given acceleration and the given initial velocity and position.

$$a(t) = 2 \hat{\mathbf{i}} + 2t \hat{\mathbf{k}}, \quad v(0) = 3 \hat{\mathbf{i}} - \hat{\mathbf{j}}, \quad r(0) = \hat{\mathbf{j}} + \hat{\mathbf{k}}$$

Problem 17a

Find the position vector of a particle that has the given acceleration and the specified initial velocity and position.

$$a(t) = 2t \hat{\mathbf{i}} + \sin t \hat{\mathbf{j}} + \cos 2t \hat{\mathbf{k}}, \quad v(0) = \hat{\mathbf{i}}, \quad r(0) = \hat{\mathbf{j}}$$

Problem 23

A projectile is fired with an initial speed of $200 \frac{m}{s}$ and angle of elevation 60° . Find (a) the range of the projectile, (b) the maximum height reached, and (c) the speed at impact.

Problem 26

A projectile is fired from a tank with initial speed $400\frac{m}{s}$. Find two angles of elevation that can be used to hit a target 3000m away.

Problem 27

A rifle is fired with angle of elevation 36° . What is the initial speed if the maximum height of the bullet is 1600 ft?

Problem 37 & 39

Find the tangential and normal components of the acceleration vector.

37.
$$\vec{r}(t) = (t^2 + 1) \hat{\mathbf{i}} + t^3 \hat{\mathbf{j}}, \quad t \ge 0$$

39.
$$\vec{r}(t) = \cos t \,\hat{\mathbf{i}} + \sin t \,\hat{\mathbf{j}} + t \,\hat{\mathbf{k}}$$

Problem 41

Find the tangential and normal components of the acceleration vector at the given point.

$$\vec{r}(t) = \ln t \,\hat{\mathbf{i}} + (t^2 + 3t) \,\hat{\mathbf{j}} + 4\sqrt{t} \,\hat{\mathbf{k}}, \quad (0, 4, 4)$$