Московский государственный технический университет им. Н.Э. Баумана.

Факультет «Информатика и управление»

Кафедра ИУ5. Курс «Технологии машинного обучения»

Отчет по рубежному контролю №1: «Корреляционный анализ данных» Вариант №1

Выполнил: Проверил:

студент группы ИУ5-63 Курганова Александра

Подпись и дата:

Подпись и дата:

04.06.2019 px1

Рубежный контроль №1 по курсу "Технологии машинного обучения"

Выполнила студентка 3 курса Курганова Александра, ИУ5-63

Вариант №1, датасет: "Toy Dataset"

Задание: для заданного набора данных проведите корреляционный анализ. в случае наличия пропусков в данных удалите строки или колонки, содержащие пропуски. сделайте выводы о возможности построения моделей машинного обучения и о возможном вкладе признаков в модель

```
In [143]:
```

Out[145]:

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.preprocessing import LabelEncoder
%matplotlib inline
sns.set(style="ticks")
```

первичный анализ датасета

считывание датасета, просмотр нескольких строк, размера, типа данных и наличия пропусков, преобразование типа данных

```
In [144]:
data = pd.read_csv("toy_dataset.csv", sep=",")
In [145]:
data.head()
```

```
NumberCityGenderAgeIncomeIllness01DallasMale4140367.0No
```

1	2	Dallas	Male	54	45084.0	No
2	3	Dallas	Male	42	52483.0	No
3	4	Dallas	Male	40	40941.0	No
4	5	Dallas	Male	46	50289 N	Nο

04.06.2019

```
рк1
In [146]:
data.shape
Out[146]:
(150000, 6)
In [147]:
data.dtypes
Out[147]:
Number
             int64
City
            object
Gender
            object
             int64
Age
Income
            float64
Illness
            object
dtype: object
In [148]:
# удаление колонки "Number", так как она не влияет на анализ датасета
data = data.drop(columns = ["Number"])
data.head()
Out[148]:
```

	City	Gender	Age	Income	Illness
0	Dallas	Male	41	40367.0	No
1	Dallas	Male	54	45084.0	No
2	Dallas	Male	42	52483.0	No
3	Dallas	Male	40	40941.0	No
4	Dallas	Male	46	50289.0	No

In [149]:

```
new = []
for col in data.columns:
    if data[col].dtype == 'object':
        new.append(col)
encode = {}
for col in new:
    le = LabelEncoder()
    data[[col]] = le.fit_transform(data[col])
    encode[col] = le
```

04.06.2019 px1

```
In [150]:
```

```
data.dtypes
```

Out[150]:

City int64
Gender int64
Age int64
Income float64
Illness int64

dtype: object

In [151]:

```
data.isnull().sum()
```

Out[151]:

City 0
Gender 0
Age 0
Income 0
Illness 0
dtype: int64

корреляционный анализ датасета

проверка корреляции признаков позволяет решить две задачи: понять какие признаки наиболее сильно коррелируют с целевым признаком и понять какие нецелевые признаки линейно зависимы между собой

```
In [152]:
```

```
data.corr()
```

Out[152]:

	City	Gender	Age	Income	Illness
City	1.000000	0.002188	-0.000636	0.234541	-0.001712
Gender	0.002188	1.000000	-0.003653	0.198888	0.001297
Age	-0.000636	-0.003653	1.000000	-0.001318	0.001811
Income	0.234541	0.198888	-0.001318	1.000000	0.000298
Illness	-0.001712	0.001297	0.001811	0.000298	1.000000

04.06.2019 px1

In [153]:

sns.heatmap(data.corr(), annot = True)

Out[153]:

<matplotlib.axes._subplots.AxesSubplot at 0x11fa81c18>

на основе корреляционной матрицы и тепловой карты можно сделать следующие выводы:

с целевым признаком заболеваний "Illness" остальные колонки вообще почти не коррелируют. этот датасет не самый подходящий для построения моделей машинного обучения, его признаки также почти не приносят вклад в построение модели.