Sampling Methods

Nipun Batra

September 25, 2023

IIT Gandhinagar

Topics

1. Markov Chains

2. Markov Chain Monte Carlo (MCMC)

 We want to compute posterior predictive distribution (or something similar)

- We want to compute posterior predictive distribution (or something similar)
- We would typically use Monte Carlo methods to do this.

- We want to compute posterior predictive distribution (or something similar)
- We would typically use Monte Carlo methods to do this.
- $I = \int f(x)p(x)dx$ where p(x) is the posterior distribution.

- We want to compute posterior predictive distribution (or something similar)
- We would typically use Monte Carlo methods to do this.
- $I = \int f(x)p(x)dx$ where p(x) is the posterior distribution.
- We can approximate I by $\frac{1}{N} \sum_{i=1}^{N} f(x_i)$, where $x_i \sim p(x)$ are drawn **IID**.

- We want to compute posterior predictive distribution (or something similar)
- We would typically use Monte Carlo methods to do this.
- $I = \int f(x)p(x)dx$ where p(x) is the posterior distribution.
- We can approximate I by $\frac{1}{N} \sum_{i=1}^{N} f(x_i)$, where $x_i \sim p(x)$ are drawn **IID**.
- Goal: sample from p(x), usually using unnormalized density $\tilde{p}(x)$

Limitations of basic sampling methods

- Transformation based methods: Usually limited to drawing from standard distributions.
- Rejection and Importance sampling: Require selection of good proposal distirbutions.

In high dimensions, usually most of the density p(x) is concentrated within a tiny subspace of x. Moreover, those subspaces are difficult to be known a priori.

A solution to these are Markov Chain Monte Carlo methods.

Markov Chains

 Table 1: Prior Probability (PI)

	$X_0 = Sunny$	$X_0 = Rainy$
PI	0.5	0.5

Table 2: Transition Matrix (A)

		X_{t}	+1
		Sunny	Rainy
V	Sunny	0.9	0.1
X_t	Rainy	0.2	0.8

Let us consider the rainy-sunny example.

Table 1: Prior Probability (PI)

Table 2: Transition Matrix (A)

	$X_0 = Sunny$	$X_0 = Rainy$
PI	0.5	0.5

		X_t	+1
		Sunny	Rainy
V	Sunny	0.9	0.1
X_t	Rainy	0.2	0.8

What is the probability of it being sunny on day 0?

Let us consider the rainy-sunny example.

Table 1: Prior Probability (PI)

Table 2: Transition Matrix (A)

	$X_0 = Sunny$	$X_0 = Rainy$
PI	0.5	0.5

		X_{t}	+1
		Sunny	Rainy
V	Sunny	0.9	0.1
X_t	Rainy	0.2	0.8

What is the probability of it being sunny on day 0?

0.5

Let us consider the rainy-sunny example.

Table 3: Prior Probability (PI)

$X_0 = Sunny$	$X_0 = Rainy$
---------------	---------------

0.5

РΙ

Table 4: Transition Matrix (A)

		X_t	+1
		Sunny	Rainy
V	Sunny	0.9	0.1
X_t	Rainy	0.2	0.8

What is the probability of it being sunny on day 0?

0.5

Table 3: Prior Probability (PI)

	$X_0 = Sunny$	$X_0 = Rainy$
PI	0.5	0.5

Table 4: Transition Matrix (A)

		X_t	+1
		Sunny	Rainy
V	Sunny	0.9	0.1
X_t	Rainy	0.2	0.8

- What is the probability of it being sunny on day 0?
- 0.5

Let us consider the rainy-sunny example.

 Table 5: Prior Probability (PI)

	$X_0 = Sunny$	$X_0 = Rainy$
PI	0.5	0.5

Table 6: Transition Matrix (A)

		X_{t+1}	
		Sunny	Rainy
V	Sunny	0.9	0.1
X_t	Rainy	0.2	8.0

• What is the probability of it being sunny/rainy on day 1?

Let us consider the rainy-sunny example.

 Table 5: Prior Probability (PI)

DI OF OF		$X_0 = Sunny$	$X_0 = Rainy$
P1 0.5 0.5	ΡI	0.5	0.5

Table 6: Transition Matrix (A)

		X_t	+1
		Sunny	Rainy
V	Sunny	0.9	0.1
X_t	Rainy	0.2	8.0

- What is the probability of it being sunny/rainy on day 1?
- We can have two cases:
 - $X_0 = \text{Sunny}$: $P(X_1 = \text{Sunny}) = 0.9$
 - $X_0 = \text{Rainy}$: $P(X_1 = \text{Sunny}) = 0.2$
 - $P(X_1 = Sunny) = 0.5 \times 0.9 + 0.5 \times 0.2 = 0.55$
 - $P(X_1 = Rainy) = 0.5 \times 0.1 + 0.5 \times 0.8 = 0.45$

Let us consider the rainy-sunny example.

 Table 7: Prior Probability (PI)

	$X_0 = Sunny$	$X_0 = Rainy$
ΡI	0.5	0.5

Table 8: Transition Matrix (A)

		X_t	+1
		Sunny	Rainy
V	Sunny	0.9	0.1
X_t	Rainy	0.2	8.0

What is the probability of it being sunny/rainy on day 2?

Table 7: Prior Probability (PI)

	$X_0 = Sunny$	$X_0 = Rainy$
PI	0.5	0.5

Table 8: Transition Matrix (A)

		X_{t}	+1
		Sunny	Rainy
V	Sunny	0.9	0.1
X_t	Rainy	0.2	0.8

- What is the probability of it being sunny/rainy on day 2?
- We can have two cases:
 - $P(X_2 = Sunny) = 0.55 \times 0.9 + 0.45 \times 0.2 = 0.585$
 - $P(X_2 = Rainy) = 0.55 \times 0.1 + 0.45 \times 0.8 = 0.415$

Let us consider the rainy-sunny example.

 Table 9: Prior Probability (PI)

DI OF OI	Rainy
PI 0.5 0.5	5

Table 10: Transition Matrix (A)

		X_{t}	+1
		Sunny	Rainy
V	Sunny	0.9	0.1
X_t	Rainy	0.2	8.0

What is the probability of it being sunny/rainy on day T?

Table 9: Prior Probability (PI)

PI 05 05		$X_0 = Sunny$	$X_0 = Rainy$
11 0.5 0.5	PI	0.5	0.5

Table 10: Transition Matrix (A)

		X_{t}	+1
		Sunny	Rainy
V	Sunny	0.9	0.1
X_t	Rainy	0.2	0.8

- What is the probability of it being sunny/rainy on day T?
- We can use matrix power to compute this.

Table 9: Prior Probability (PI)

PI	0.5	0.5

Table 10: Transition Matrix (A)

		X_{t}	+1
		Sunny	Rainy
V	Sunny	0.9	0.1
X_t	Rainy	0.2	0.8

- What is the probability of it being sunny/rainy on day T?
- We can use matrix power to compute this.
- Distribution of X_T is given by $\pi = \pi POWER(A, T)$.

 Table 9: Prior Probability (PI)

PI 0.5 0.5		$X_0 = Sunny$	$X_0 = Rainy$
	PI	0.5	0.5

Table 10: Transition Matrix (A)

		X_{t+1}		
		Sunny	Rainy	
X_t	Sunny	0.9	0.1	
	Rainy	0.2	0.8	

- What is the probability of it being sunny/rainy on day T?
- We can use matrix power to compute this.
- Distribution of X_T is given by $\pi = \pi POWER(A, T)$.
- At T = 99 and T = 100, $\pi = (0.67, 0.33)$.

Notebook: markov-chain.ipynb

Questions:

• Does the distribution of X_T depend on initial distribution π ?

We can define statationary distribution as follows:

- A distribution π is said to be stationary for a Markov chain with transition matrix A if $\pi = \pi A$.
- For previous example,
 - $\pi = (\pi_1, \pi_2)$
 - $\pi_1 = 0.9\pi_1 + 0.2\pi_2$
 - $\pi_2 = 0.1\pi_1 + 0.8\pi_2$
 - $\pi_1 + \pi_2 = 1$
 - Solving, $\pi = (\frac{2}{3}, \frac{1}{3})$

Can we have a Markov chain with multiple stationary distributions?

Can we have a Markov chain with multiple stationary distributions?

Table 11: Transition Matrix (A)

		X_{t+1}				
		Α	В	С	D	
	Α	0.5	0.5	0	0	
X_t	В	0.5	0.5	0	0	
\wedge_t	C	0	0	0.5	0.5	
	D	0	0	0.5	0.5	

Can we have a Markov chain with multiple stationary distributions?

Table 11: Transition Matrix (A)

		X_{t+1}			
		Α	В	С	D
X_t	Α	0.5	0.5	0	0
	В	0.5	0.5	0	0
	C	0	0	0.5	0.5
	D	0	0	0.5	0.5

- If we start at A or B, the stationary distribution is (0.5, 0.5, 0, 0).
- If we start at C or D, the stationary distribution is (0,0,0.5,0.5).

Properties of Markov Chain: Time Homogeneity

 A Markov chain is said to be homogeneous if the transition probabilities are independent of the time t.

Properties of Markov Chain: Time Homogeneity

- A Markov chain is said to be homogeneous if the transition probabilities are independent of the time t.
- We have the same transition matrix A for all t.

Properties of Markov Chain: Irreducibility

- A Markov chain is said to be irreducible if every state is accessible from every other state.
- In other words, there is a non-zero probability of reaching any state from any other state.

Irreducible Markov Chain (2 States)

Non-Irreducible Markov Chain (2 States)

Markov Chain Monte Carlo

(MCMC)

MCMC main idea

- We then identify a way to construct a 'nice' Markov chain such that its stationary probability distribution is our target distribution p(x).
- We then run the Markov chain for a long time and use the samples to estimate 1.
- But, we thus far said: $x_i \sim p(x)$ are drawn **IID**.
- But, if we use a Markov chain to generate samples, then the samples are not i.i.d.
- But, we can still use the samples to estimate I using the ergodic theorem.

Ergodic Theorem for Markov Chains

Inspired from: MathematicalMonk's playlisty on MCMC.

- From Monte Carlo sampling, we know we can estimate $I = \int f(x)p(x)dx$ by $\frac{1}{N}\sum_{i=1}^{N}f(x_i)$, where $x_i \sim p(x)$.
- But, the samples are drawn i.i.d. from p(x).
- But, if we use a Markov chain to generate samples, then the samples are not i.i.d.
- But, we can still use the samples to estimate I using the ergodic theorem.

Ergodic Theorem for Markov Chains

- Let $X_1, X_2,...$ be a Markov chain with stationary distribution p(x).
- Let f be a function such that $\mathbb{E}[|f(X)|] < \infty$.
- Then, $\frac{1}{N} \sum_{i=1}^{N} f(X_i) \to \mathbb{E}[f(X)]$ as $N \to \infty$.
- The proof is similar to the proof of the law of large numbers.
- The idea is that the estimates contain information about the shape of the target distribution p.

Markov Chain Properties: Stationarity

- A Markov chain is a sequence of random variables $X_1, X_2, ...$ with the property that the distribution of X_{n+1} given $X_1, ..., X_n$ depends only on X_n .
- A Markov chain is said to be **stationary** if the distribution of X_{n+1} given X_1, \ldots, X_n is the same as the distribution of X_{n+1} given X_n .
- A Markov chain is said to be homogeneous if the transition probabilities are independent of n.

Markov Chain

• Markov Chain: A joint distribution p(X) over a sequence of random variables $X = \{X_1, X_2, \dots, X_n\}$ is said to have the Markov property if

$$p(X_i|X_1,...,X_{i-1}) = p(X_i|X_{i-1})$$

The sequence is then called a Markov chain.

 The idea is that the estimates contain information about the shape of the target distribution p.

Metropolis Hastings

- The basic idea is propose to move to a new state x_{i+1} from the current state x_i with probability $q(x_{i+1}|x_i)$, where q is called the proposal distribution and our target density of interest is $p(=\frac{1}{7}\tilde{p})$.
- The new state is accepted with probability $\alpha(x_i, x_{i+1})$.
 - If $p(x_{i+1}|x_i) = p(x_i|x_{i+1})$, then $\alpha(x_i, x_{i+1}) = \min(1, \frac{p(x_{i+1})}{p(x_i)})$.
 - If $p(x_{i+1}|x_i) \neq p(x_i|x_{i+1})$, then $\alpha(x_i, x_{i+1}) = \min(1, \frac{p(x_{i+1})q(x_i|x_{i+1})}{p(x_i)q(x_{i+1}|x_i)}) = \min(1, \frac{\tilde{p}(x_{i+1})q(x_i|x_{i+1})}{\tilde{p}(x_i)q(x_{i+1}|x_i)})$
- Evaluating α , we only need to know the target distribution up to a constant of proportionality or without normalization constant.

Algorithm: Metropolis Hastings

- 1. Initialize x_0 .
- 2. for i = 1, ..., N do:
- 3. Sample $x^* \sim q(x^*|x_{i-1})$.
- 4. Compute $\alpha = \min(1, \frac{\tilde{p}(x^*)q(x_{i-1}|x^*)}{\tilde{p}(x_{i-1})q(x^*|x_{i-1})})$
- 5. Sample $u \sim \mathcal{U}(0,1)$
- 6. if $u \leq \alpha$:

$$x_i = x^*$$

else:

$$x_i = x_{i-1}$$

Pop Quiz

How do we choose the initial state x_0 ?

Pop Quiz

How do we choose the initial state x_0 ?

- 1. Start the Markov Chain at an initial x_0 .
- 2. Using the proposal $q(x|x_i)$, run the chain long enough, say N_1 steps.
- 3. Discard the first $N_1 1$ samples (called 'burn-in' samples).
- 4. Treat x_{N_1} as first sample from p(x).

MCMC demo

https://chi-feng.github.io/mcmc-demo/app.html