Conversão de gramática regular para expressão regular

• Lema de Arden:

Sejam \mathcal{R}_1 , \mathcal{R}_2 e \mathcal{R}_3 expressões regulares. Se

- 1. $\mathcal{R}_1 = \mathcal{R}_2 \mathcal{R}_1 \cup \mathcal{R}_3$, então $\mathcal{R}_1 = (\mathcal{R}_2)^* \mathcal{R}_3$;
- 2. $\mathcal{R}_1 = \mathcal{R}_1 \mathcal{R}_2 \cup \mathcal{R}_3$, então $\mathcal{R}_1 = \mathcal{R}_3 (\mathcal{R}_2)^*$.
- Se $G = (V, \Sigma, P, A_1)$, com $V = \{A_1, \ldots, A_n\}$, é uma gramática regular, então a linguagem $\mathcal{L}(G)$ pode ser especificada por meio do seguinte sistema de equações:

$$\mathcal{A}_i = \bigcup_{A_i \to aA_j \in P} a \mathcal{A}_j \bigcup_{A_i \to a \in P} a \bigcup_{A_i \to \varepsilon \in P} \varepsilon.$$

- Esse sistema de equações pode ser resolvido pela sucessiva substituição de variáveis por suas correspondentes equações e/ou uso do Lema de Arden.
 - $-\mathcal{A}_1$ é a solução do sistema de equações.
 - A solução é sucinta, mas não única! Sequências diferentes de substituições de variáveis e uso do Lema de Arden resulta em expressões regulares diferentes (equivalentes).
- **Obs.**: As gramáticas G_1 e G_2 , relativas a cada uma das linguagens listadas a seguir, foram obtidas a partir do DFA e do NFA, respectivamente, propostos no gabarito da atividade avaliativa AA-7. As variáveis das gramáticas têm a seguinte equivalência com os estados dos autômatos: $S \equiv s_0$, $A \equiv s_1$, $B \equiv s_2$, $C \equiv s_3$,

$$\mathcal{L}_1 = \{ w \in \Sigma^* = \{0, 1\}^* \mid |w|_{01} > 0 \text{ ou } |w|_{10} > 0 \}$$

 $\mathcal{L}_2 = \{w \in \Sigma^* = \{0,1\}^* \mid w \text{ representa um número binário ímpar (sem zeros à esquerda)}\}$

 $\mathcal{L}_3 = \{w \in \Sigma^* = \{0,1\}^* \mid w \text{ representa um número binário e } w \pmod{3} = 1\}$

$\mathcal{L}_4 = \{ w \in \Sigma^* = \{0,1\}^* \mid w \text{ representa um número binário e } w \geqslant 7 \}$

• Gramática G_1 que gera as cadeias de \mathcal{L}_4 :

$$G_{1} = (V, \Sigma, P, S) = (\{A, B, C, D, E, S\}, \{0, 1\}, P, S), \text{ com:}$$

$$P = \left\{ \begin{array}{c} S \to 0S \mid 1A, & C \to 0D \mid 1E, \\ A \to 0B \mid 1C, & D \to 0E \mid 1E, \\ B \to 0D \mid 1D, & E \to 0E \mid 1E \mid \varepsilon \end{array} \right\}.$$

Etapa	Eq.	Expressão	Ação
\overline{I}	1	$\mathcal{R}_1 = 0\mathcal{R}_1 \cup 1A$	$\mathcal{R}_1 \equiv S$
	2	$A = 0B \cup 1C$	
	3	$B = 0D \cup 1D$	
	4	$C = 0D \cup 1E$	
	5	$D = 0E \cup 1E$	
	6	$E = 0E \cup 1E \cup \varepsilon$	
II	1	$\mathcal{R}_1 = 0^* 1A$	Lema de Arden
	2	$A = 0B \cup 1C$	
	3	$B = (0 \cup 1)(0 \cup 1)E$	I.5 ightarrow I.3,Fatoração
	4	$C = (00 \cup 01 \cup 1)E$	I.5 ightarrow I.4,Fatoração
	6	$E = (0 \cup 1)^*$	Lema de Arden
III	1	$\mathcal{R}_1 = 0^* 1A$	
	2	$A = 0B \cup 1C$	
	3	$B = (0 \cup 1)(0 \cup 1)(0 \cup 1)^*$	$II.6 \rightarrow II.3$
	4	$C = (00 \cup 01 \cup 1)(0 \cup 1)^*$	$II.6 \rightarrow II.4$
\overline{IV}	1	$\mathcal{R}_1 = 0^* 1A$	
	2	$A = 0(0 \cup 1)(0 \cup 1)(0 \cup 1)^* \cup 1(00 \cup 01 \cup 1)(0 \cup 1)^*$	$III.3, III.4 \rightarrow III.2$
\overline{V}	1	$\mathcal{R}_1 = 0^* 1 (0(0 \cup 1)(0 \cup 1) \cup 1(00 \cup 01 \cup 1))(0 \cup 1)^*$	IV.2 ightarrow IV.1,Fatoração

• Gramática G_2 que gera as cadeias de \mathcal{L}_4 :

$$G_{2} = (V, \Sigma, P, S) = (\{A, B, C, D, E, F, G, S\}, \{0, 1\}, P, S), \text{ com:}$$

$$P = \left\{ \begin{array}{c|c} S \to 0S \mid 1A \mid 1B, & C \to 1E, \\ A \to 1C, & D \to 0F \mid 1F, & G \to 0G \mid 1G \mid \varepsilon \\ B \to 0D \mid 1D, & E \to G, & \end{array} \right\}.$$

Etapa	$\mathbf{Eq}.$	Expressão	Ação
I	1	$\mathcal{R}_2 = 0\mathcal{R}_2 \cup 1A \cup 1B$	$\mathcal{R}_2 \equiv S$
	2	A = 1C	
	3	$B = 0D \cup 1D$	
	4	C = 1E	
	5	$D = 0F \cup 1F$	
	-	E = G	
	7	$F = 0G \cup 1G$	
	8	$G = 0G \cup 1G \cup \varepsilon$	
II	1	$\mathcal{R}_2 = 0^* 1 (A \cup B)$	Lema de arden, Fatoração
	2	A = 11G	$I.6 \rightarrow I.4 \rightarrow I.2$
	3	$B = (0 \cup 1)D$	Fatoração
	5	$D = (0 \cup 1)F$	Fatoração
	7	$F = (0 \cup 1)G$	Fatoração
	8	$G = (0 \cup 1)^*$	Lema de arden
III	1	$\mathcal{R}_2 = 0^* 1(A \cup B)$	
	2	$A = 11(0 \cup 1)^*$	$II.8 \rightarrow II.2$
	3	$B = (0 \cup 1)(0 \cup 1)(0 \cup 1)^{+}$	$II.8 \rightarrow III.7 \rightarrow III.5 \rightarrow III$
IV	1	$\mathcal{R}_2 = 0^* 1 (11(0 \cup 1)^* \cup (0 \cup 1)(0 \cup 1)(0 \cup 1)^+)$	$III.2, III.3 \rightarrow III.1$

$$\mathcal{L}_5 = \{w \in \Sigma^* = \{0,1\}^* \mid w \text{ contém } 001 \text{ ou } 110\}$$

$$\mathcal{L}_6 = \{w \in \Sigma^* = \{0,1\}^* \mid w \text{ não contém } 001 \text{ ou não contém } 110\}$$

$\overline{\mathcal{L}_7 = \{w \in \Sigma^* = \{0,1\}^* \mid \text{ todo } 0 \text{ em } w \text{ \'e adjacente \'a esquerda e \'a direita a um } 1\}}$

• Gramática G_1 que gera as cadeias de \mathcal{L}_7 :

$$G_{1} = (V, \Sigma, P, S) = (\{A, B, S\}, \{0, 1\}, P, S), \text{ com:}$$

$$P = \left\{ \begin{array}{l} S \to 1A \mid \varepsilon, \\ A \to 0B \mid 1A \mid \varepsilon, \\ B \to 1A \end{array} \right\}.$$

Etapa	Eq.	Expressão	Ação
I	1	$\mathcal{R}_1 = 1A \cup \varepsilon$	$\mathcal{R}_1 \equiv S$
	2	$A = 0B \cup 1A \cup \varepsilon$	
	3	B = 1A	
\overline{II}	1	$\mathcal{R}_1 = 1A \cup \varepsilon$	
	2	$A = (01 \cup 1)A \cup \varepsilon$	$I.3 ightarrow I.2, { t Fatoração}$
III	1	$\mathcal{R}_1 = 1A \cup \varepsilon$	
	2	$A = (01 \cup 1)^*$	Lema de Arden
\overline{IV}	1	$\mathcal{R}_1 = 1(01 \cup 1)^* \cup \varepsilon$	$III.2 \rightarrow III.1$

• Gramática G_2 que gera as cadeias de \mathcal{L}_7 :

$$G_2 = (V, \Sigma, P, S) = (\{A, B, C, S\}, \{0, 1\}, P, S), \text{ com:}$$

$$P = \left\{ \begin{array}{c} S \to A \mid C, \mid B \to 0A \mid 1B \mid \varepsilon \\ A \to 1B, \mid C \to 1C \mid \varepsilon \end{array} \right\}.$$

• Extração de expressão regular \mathcal{R}_2 da gramática G_2 , tal que $\mathcal{L}(\mathcal{R}_2) = \mathcal{L}(G_2)$:

Etapa	Eq.	Expressão	Ação
\overline{I}	1	$\mathcal{R}_2 = A \cup C$	$\mathcal{R}_2 \equiv S$
	2	A = 1B	
	3	$B = 0A \cup 1B \cup \varepsilon$	
	4	$C = 1C \cup \varepsilon$	
II	1	$\mathcal{R}_2 = A \cup C$	
	2	A = 1B	
	3	$B = 1^*(0A \cup \varepsilon)$	Lema de Arden
	4	$C = 1^*$	Lema de Arden
III	1	$\mathcal{R}_2 = A \cup 1^*$	$II.4 \rightarrow II.1$
	2	$A = 1^+0A \cup 1^+$	$II.3 ightarrow II.2, {\tt Fatoração}$
\overline{IV}	1	$\mathcal{R}_2 = A \cup 1^*$	$II.4 \rightarrow II.1$
	2	$A = (1^+0)^*1^+$	Lema de Arden
\overline{V}	1	$\mathcal{R}_2 = (1^+0)^*1^+ \cup 1^*$	$IV.2 \rightarrow IV.1$

$\mathcal{L}_8 = \{w \in \Sigma^* = \{0,1\}^* \mid w \text{ cont\'em as subcadeias } 01 \text{ e } 10\}$

• Gramática G_1 que gera as cadeias de \mathcal{L}_8 :

$$G_{1} = (V, \Sigma, P, S) = (\{A, B, C, D, E, S\}, \{0, 1\}, P, S), \text{ com:}$$

$$P = \left\{ \begin{array}{c|c} S \to 0A \mid 1B, & C \to 0E \mid 1C, \\ A \to 0A \mid 1C, & D \to 0D \mid 1E, \\ B \to 0D \mid 1B, & E \to 0E \mid 1E \mid \varepsilon \end{array} \right\}.$$

Etapa	Eq.	Expressão	Ação
\overline{I}	1	$\mathcal{R}_1 = 0A \cup 1B$	$\mathcal{R}_1 \equiv S$
	2	$A = 0A \cup 1C$	
	3	$B = 0D \cup 1B$	
	4	$C = 0E \cup 1C$	
	5	$D = 0D \cup 1E$	
	6	$E = 0E \cup 1E \cup \varepsilon$	
II	1	$\mathcal{R}_1 = 0A \cup 1B$	
	2	A = 0*1C	Lema de Arden
	3	$B = 1^*0D$	Lema de Arden
	4	C = 1*0E	Lema de Arden
	5	D = 0*1E	Lema de Arden
	6	$E = (0 \cup 1)^*$	Lema de Arden
III	1	$\mathcal{R}_1 = 0^+ 1C \cup 1^+ 0D$	$II.2, II.3 \rightarrow II.1$
	4	$C = 1*0(0 \cup 1)*$	$II.6 \rightarrow II.4$
	5	$D = 0*1(0 \cup 1)*$	$II.6 \rightarrow II.5$
\overline{IV}	1	$\mathcal{R}_1 = (0^+1^+0 \cup 1^+0^+1)(0 \cup 1)^*$	$III.4, III.5 \rightarrow III.1, {\tt Fatoração}$

• Gramática G_2 que gera as cadeias de \mathcal{L}_8 :

$$G_{2} = (V, \Sigma, P, S) = (\{A, B, C, D, E, S\}, \{0, 1\}, P, S), \text{ com}$$

$$P = \left\{ \begin{array}{c|c} S \to A \mid B, & D \to 0D \mid 0F, \\ A \to 0A \mid 0C, & E \to 0G, \\ B \to 1B \mid 1D, & F \to 1G, \\ C \to 1C \mid 1E, & G \to 0G \mid 1G \mid \varepsilon \end{array} \right\}.$$

Etapa	Eq.	Expressão	Ação
I	1	$\mathcal{R}_2 = A \cup B$	$\mathcal{R}_2 \equiv S$
	2	$A = 0A \cup 0C$	
	3	$B = 1B \cup 1D$	
	4	$C = 1C \cup 1E$	
		$D = 0D \cup 0F$	
		E = 0G	
		F = 1G	
	8	$G = 0G \cup 1G \cup \varepsilon$	
II	1	$\mathcal{R}_2 = A \cup B$	
	2	$A = 0^+ C$	Lema de Arden, Fatoração
	_	$B = 1^+ D$	Lema de Arden, Fatoração
		$C = 1^+ E$	Lema de Arden, Fatoração
		$D = 0^+ F$	Lema de Arden, Fatoração
		E = 0G	
		F = 1G	
	8	$G = (0 \cup 1)^*$	Lema de Arden
III	1	$\mathcal{R}_2 = 0^+ C \cup 1^+ D$	$II.2, II.3 \rightarrow II.1$
	4	C = 1 + E	
	5	$D = 0^+ F$	
	6	$E = 0(0 \cup 1)^*$	$II.8 \rightarrow II.6$
	7	$F = 1(0 \cup 1)^*$	$II.8 \rightarrow II.7$
IV	1	$\mathcal{R}_2 = 0^+ C \cup 1^+ D$	$II.2, II.3 \rightarrow II.1$
	4	$C = 1^+0(0 \cup 1)^*$	$III.6 \rightarrow III.4$
	5	$D = 0^{+}1(0 \cup 1)^{*}$	$III.7 \rightarrow III.5$
V	1	$\mathcal{R}_2 = (0^+1^+0 \cup 1^+0^+1)(0 \cup 1)^*$	$IV.4, IV.5 \rightarrow IV.1, {\tt Fatoraç\~ao}$

$$\mathcal{L}_9 = \{w \in \Sigma^* = \{0,1\}^* \mid w = xyz, \text{ com } x \in \{0\}^*, |x| = 2k, y \in \{1\}^+ \text{ e } z \in \{0\}^*, |z| = 0 \text{ ou } |z| = 2k' + 1; \ k, k' \in \mathbb{N}\}$$

$$\mathcal{L}_{10} = \{ w \in \Sigma^* = \{0,1\}^* \mid w = x0y0z \text{ com } |y| = 2k \text{ ou } w = x1y1z \text{ com } |y| = 2k' + 1; \ x,y,z \in \Sigma^*; \ k,k' \in \mathbb{N} \}$$

$\mathcal{L}_{11} = \{w \in \Sigma^* = \{0,1\}^* \mid extbf{pelo menos um } 0 \text{ em } w \text{ não \'e seguido de } 1\}$

• Gramática G_1 que gera as cadeias de \mathcal{L}_{11} :

$$G_{1} = (V, \Sigma, P, S) = (\{A, B, S\}, \{0, 1\}, P, S), \text{ com:}$$

$$P = \left\{ \begin{array}{l} S \to 0A \mid 1S, \\ A \to 0B \mid 1S \mid \varepsilon, \\ B \to 0B \mid 1B \mid \varepsilon \end{array} \right\}.$$

-	Etapa	Eq.	Expressão	Ação
-	I	2	$\mathcal{R}_1 = 0A \cup 1\mathcal{R}_1$ $A = 0B \cup 1\mathcal{R}_1 \cup \varepsilon$ $B = 0B \cup 1B \cup \varepsilon$	$\mathcal{R}_1 \equiv S$
_	II		$\mathcal{R}_1 = (01 \cup 1)\mathcal{R}_1 \cup 00B \cup 0$ $B = (0 \cup 1)^*$	$I.2 ightarrow I.1, {\it Fatoração}$ Lema de Arden
	III		$\mathcal{R}_1 = (01 \cup 1)^* (00B \cup 0)$ $B = (0 \cup 1)^*$	Lema de Arden
	IV	1	$\mathcal{R}_1 = (01 \cup 1)^* (00(0 \cup 1)^* \cup 0)$	$III.3 \rightarrow III.1$

• Gramática G_2 que gera as cadeias de \mathcal{L}_{11} :

$$G_2 = (V, \Sigma, P, S) = (\{A, B, C, S\}, \{0, 1\}, P, S), \text{ com:}$$

$$P = \left\{ \begin{array}{c|c} S \to 0A \mid 0B \mid 1S, & B \to 0C \mid \varepsilon, \\ A \to 1S, & C \to 0C \mid 1C \mid \varepsilon \end{array} \right\}.$$

• Extração de expressão regular \mathcal{R}_2 da gramática G_2 , tal que $\mathcal{L}(\mathcal{R}_2) = \mathcal{L}(G_2)$:

Etapa	Eq.	Expressão	Ação	
I	1	$\mathcal{R}_2 = 0A \cup 0B \cup 1\mathcal{R}_2$	$\mathcal{R}_2 \equiv S$	
	2	$A = 1\mathcal{R}_2$		
	3	$B = 0C \cup \varepsilon$		
	4	$C = 0C \cup 1C \cup \varepsilon$		
\overline{II}	1	$\mathcal{R}_2 = (01 \cup 1)\mathcal{R}_2 \cup 0B$	I.2 ightarrow I.1,Fatoração	
	3	$B = 0C \cup \varepsilon$		
	4	$C = (0 \cup 1)^*$	Lema de Arden	
III	1	$\mathcal{R}_2 = (01 \cup 1)^* 0B$	Lema de Arden	
	3	$B = 0(0 \cup 1)^* \cup \varepsilon$	$II.4 \rightarrow II.3$	
IV	1	$\mathcal{R}_2 = (01 \cup 1)^* (00(0 \cup 1)^* \cup 0)$	$III.3 \rightarrow III.1$	

$$\mathcal{L}_{12} = \{ w \in \Sigma^* = \{0,1\}^* \mid w \text{ n\~ao cont\'em } 101 \text{ e termina com } 1 \}$$

 $\mathcal{L}_{13} = \{w \in \Sigma^* = \{0,1\}^* \mid |w| \geqslant 3 \text{ e o terceiro e o penúltimo símbolos de } w \text{ não são 1} \}$

$\mathcal{L}_{14} = \{w \in \Sigma^* = \{0,1\}^* \mid w \text{ cont\'em uma quantidade par da subcadeia } 010\}$

• Gramática G_1 que gera as cadeias de \mathcal{L}_{14} :

$$G_{1} = (V, \Sigma, P, S) = (\{A, B, C, D, E, S\}, \{0, 1\}, P, S), \text{ com:}$$

$$P = \left\{ \begin{array}{ccc} S \to 0B \mid 1S \mid \varepsilon, & C \to 0D \mid 1C, \\ A \to 0C \mid 1S \mid \varepsilon, & D \to 0D \mid 1E, \\ B \to 0B \mid 1A \mid \varepsilon, & E \to 0S \mid 1C \end{array} \right\}.$$

•	Extração de ex	pressão reg	gular \mathcal{R}_1	da gra	mática G_1	, tal	que $\mathcal{L}(\mathcal{R}_1)$	$)=\mathcal{L}($	(G_1)):
---	----------------	-------------	-----------------------	--------	--------------	-------	----------------------------------	------------------	---------	----

Etapa	Eq.	Expressão	Ação
\overline{I}	1	$\mathcal{R}_1 = 0B \cup 1\mathcal{R}_1 \cup \varepsilon$	$\mathcal{R}_1 \equiv S$
	2	$A = 0C \cup 1\mathcal{R}_1 \cup \varepsilon$	
	3	$B = 0B \cup 1A \cup \varepsilon$	
		$C = 0D \cup 1C$	
		$D = 0D \cup 1E$	
	6	$E = 0\mathcal{R}_1 \cup 1C$	
II	1	$\mathcal{R}_1 = 0B \cup 1\mathcal{R}_1 \cup \varepsilon$	
	2	$A = 0C \cup 1\mathcal{R}_1 \cup \varepsilon$	
	3	$B = 0*1A \cup 0*$	Lema de Arden
	4	$C = 0D \cup 1C$	
	5	D = 0*1E	Lema de Arden
	6	$E = 0\mathcal{R}_1 \cup 1C$	
III	1	$\mathcal{R}_1 = 0B \cup 1\mathcal{R}_1 \cup \varepsilon$	
	3	$B = 0*10C \cup 0*11\mathcal{R}_1 \cup 0*1 \cup 0*$	$II.2 \rightarrow II.3$
	4	$C = 0^{+}10\mathcal{R}_1 \cup (0^{+}11 \cup 1)C$	II.6 ightarrow II.5 ightarrow II.4,Fatoração
\overline{IV}	1	$\mathcal{R}_1 = (0^+11 \cup 1)\mathcal{R}_1 \cup 0^+10C \cup 0^+1 \cup 0^+ \cup \varepsilon$	$III.3 \rightarrow III.1$
	4	$C = (0^+11 \cup 1)^*0^+10\mathcal{R}_1$	Lema de Arden
\overline{V}	1	$\mathcal{R}_1 = (0^+11 \cup 1 \cup 0^+10(0^+11 \cup 1)^*0^+10)\mathcal{R}_1 \cup 0^+1 \cup 0^+ \cup \varepsilon$	IV.4 ightarrow IV.1,Fatoração
VI	1	$\mathcal{R}_1 = (0^+11 \cup 1 \cup 0^+10(0^+11 \cup 1)^*0^+10)^*(0^+1 \cup 0^+ \cup \varepsilon)$	Lema de Arden

• Gramática G_2 que gera as cadeias de \mathcal{L}_{14} :

$$G_{2} = (V, \Sigma, P, S) = (\{A, B, C, D, E, F, G, H, I, J, K, L, M, N, S\}, \{0, 1\}, P, S), \text{ com:}$$

$$P = \begin{cases}
S \to A \mid 0C \mid 0E \mid 1S, & E \to 0E \mid 1F, & J \to 0J \mid 1K, \\
A \to B \mid 0A \mid \varepsilon, & F \to 0G, & K \to 0L, \\
B \to 1B \mid \varepsilon, & G \to 0H \mid 0J \mid 1G, & L \to S \mid 0M \mid 1L, \\
C \to 0C \mid 1D, & H \to 0H \mid 1I, & M \to 0M \mid 1N, \\
D \to 1S, & I \to 1G, & N \to 1L
\end{cases}.$$

Etapa	Eq.	Expressão	Ação
I	1	$\mathcal{R}_2 = A \cup 0C \cup 0E \cup 1\mathcal{R}_2$	$\mathcal{R}_2 \equiv S$
	2	$A = B \cup 0 A \cup \varepsilon$	
	3	$B = 1B \cup \varepsilon$	
	4	$C = 0C \cup 1D$	
	5	$D=1\mathcal{R}_2$	
	6	$E = 0E \cup 1F$	
	7	F = 0G	
	8	$G = 0H \cup 0J \cup 1G$	
	9	$H = 0H \cup 1I$	
		$J = 0J \cup 1K$	
		I = 1G	
		K = 0L	
		$L = \mathcal{R}_2 \cup 0M \cup 1L$	
		$M = 0M \cup 1N$	
	15	N = 1L	
II	1	$\mathcal{R}_2 = A \cup 0C \cup 0E \cup 1\mathcal{R}_2$	
	2	$A = B \cup 0 A \cup \varepsilon$	
	3	$B=1^*$	Lema de Arden
	4	$C = 0*11\mathcal{R}_2$	$I.5 ightarrow I.4, {\it Lema}$ de Arden
	6	E = 0*10G	$I.7 ightarrow I.6, ext{Lema}$ de Arden
	8	$G = 0H \cup 0J \cup 1G$	
	9	H = 0*11G	$I.11 \rightarrow I.9, {\tt Lema}$ de Arden
		J = 0*10L	$I.12 \rightarrow I.10, \texttt{Lema}$ de Arden
		$L = \mathcal{R}_2 \cup 0M \cup 1L$	
	14	M = 0*11L	$I.15 \rightarrow I.14, {\tt Lema}$ de Arden
III	1	$\mathcal{R}_2 = (0^+11 \cup 1)\mathcal{R}_2 \cup 0^+10G \cup A$	$II.4, II.6 \rightarrow II.1$
	2	$A = 0^*1^* \cup 0^*$	II.3 ightarrow II.2, Lema de Arden
	8	$G = (0^+11 \cup 1)^*0J$	$II.9 ightarrow I.8, {\tt Lema}$ de Arden
	10	J = 0*10L	
	13	$L = (0^+11 \cup 1)^* \mathcal{R}_2$	$II.14 \rightarrow I.13, {\it Lema de Arden}$
IV	1	$\mathcal{R}_2 = (0^+11 \cup 1)\mathcal{R}_2 \cup 0^+10G \cup 0^*1^* \cup 0^*$	$III.2 \rightarrow III.1$
	8	$G = (0^{+}11 \cup 1)^{*}0^{+}10(0^{+}11 \cup 1)^{*}\mathcal{R}_{2}$	
V	1	$\mathcal{R}_2 = (0^+11 \cup 1 \cup 0^+10(0^+11 \cup 1)^*0^+10(0^+11 \cup 1)^*)\mathcal{R}_2 \cup 0^*1^* \cup 0^*$	$IV.8 \rightarrow IV.1$
VI	1	$\mathcal{R}_2 = (0^+11 \cup 1 \cup 0^+10(0^+11 \cup 1)^*0^+10(0^+11 \cup 1)^*)^*(0^*1^* \cup 0^*)$	Lema de Arden

$\mathcal{L}_{15} = \{w \in \Sigma^* = \{0,1\}^* \mid w ext{ cont\'em uma quantidade par da subcadeia } 000\}$

$$\mathcal{L}_{16} = \{ w \in \Sigma^* = \{0, 1\}^* \mid |w|_0 \pmod{3} = 1 \}$$

$$\mathcal{L}_{17} = \{ w \in \Sigma^* = \{0, 1\}^* \mid |w|_0 \geqslant 3 \text{ e } |w|_1 \leqslant 2 \}$$

$$\mathcal{L}_{18} = \{w \in \Sigma^* = \{0,1\}^* \mid |w|_0 \geqslant 3 \text{ ou } |w|_1 = 2, \text{ e } w \text{ não contém } 11\}$$

 $\mathcal{L}_{19} = \{w \in \Sigma^* = \{0,1\}^* \mid w \text{ contém exatamente uma ocorrência de } 00 \text{ ou de } 11\}$

$$\mathcal{L}_{20} = \{w \in \Sigma^* = \{0,1\}^* \mid |w| \geqslant 3 \text{ e o penúltimo símbolo é } 0\}$$

$$\mathcal{L}_{21} = \{ w \in \Sigma^* = \{0, 1\}^* \mid |w|_{00} \geqslant 1 \text{ e } |w|_{11} = 0 \}$$

 $\mathcal{L}_{22} = \{w \in \Sigma^* = \{0,1\}^* \mid |w| \geqslant 2 \text{ e os dois primeiros símbolos de } w \text{ são iguais aos dois últimos} \}$

 $\mathcal{L}_{23} = \{w \in \Sigma^* = \{0,1\}^* \mid w \text{ n\~ao começa com } 10, \text{ mas termina com } 10\}$

$\mathcal{L}_{24} = \{w \in \Sigma^* = \{0,1\}^* \mid w ext{ contém pelo menos um } 0 ext{ e pelo menos dois 1's} \}$

• Gramática G_1 que gera as cadeias de \mathcal{L}_{24} :

$$G_{1} = (V, \Sigma, P, S) = (\{A, B, S\}, \{0, 1\}, P, S), \text{ com:}$$

$$P = \left\{ \begin{array}{c|c} S \to 0A \mid 1B, & C \to 0C \mid 1E, \\ A \to 0A \mid 1C, & D \to 0E \mid 1D, \\ B \to 0C \mid 1D, & E \to 0E \mid 1E \mid \varepsilon \end{array} \right\}.$$

• Extração de expressão regular \mathcal{R}_1 da gramática G_1 , tal que $\mathcal{L}(\mathcal{R}_1) = \mathcal{L}(G_1)$:

Etapa	Eq.	Expressão	Ação
\overline{I}	1	$\mathcal{R}_1 = 0A \cup 1B$	$\mathcal{R}_1 \equiv S$
	2	$A = 0A \cup 1C$	
	3	$B = 0C \cup 1D$	
	4	$C = 0C \cup 1E$	
	5	$D = 0E \cup 1D$	
	6	$E = 0E \cup 1E \cup \varepsilon$	
II	1	$\mathcal{R}_1 = 0A \cup 10C \cup 11D$	$I.3 \rightarrow I.1$
	2	A = 0*1C	Lema de Arden
	4	C = 0*1E	Lema de Arden
	5	$D = 1^*0E$	Lema de Arden
	6	$E = (0 \cup 1)^*$	Lema de Arden
III	1	$\mathcal{R}_1 = (0^+1 \cup 10)C \cup 11D$	$II.2 \rightarrow II.1$
	4	$C = 0*1(0 \cup 1)*$	$II.6 \rightarrow II.4$
	5	$D = 1^*0(0 \cup 1)^*$	$II.6 \rightarrow II.5$
\overline{IV}	1	$\mathcal{R}_1 = ((0^+1 \cup 10)0^*1 \cup 11^+0)(0 \cup 1)^*$	$III.4, III.5 \rightarrow III.1$

• Gramática G_2 que gera as cadeias de \mathcal{L}_{24} :

$$G_{2} = (V, \Sigma, P, S) = (\{A, B, S\}, \{0, 1\}, P, S), \text{ com:}$$

$$P = \begin{cases} S \to 0A \mid 1C \mid 1E, & D \to 0D \mid 1D \mid 1G \\ A \to 0A \mid 1A \mid 1B, & E \to 0E \mid 1E \mid 1F \\ B \to 0B \mid 1B \mid 1G, & F \to 0F \mid 1F \mid 0G \\ C \to 0C \mid 1C \mid 0D, & G \to 0G \mid 1G \mid \varepsilon \end{cases}.$$

Etapa	Eq.	Expressão	Ação
I	1	$\mathcal{R}_2 = 0A \cup 1C \cup 1E$	$\mathcal{R}_2 \equiv S$
	2	$A = 0A \cup 1A \cup 1B$	
	3	$B = 0B \cup 1B \cup 1G$	
	4	$C = 0C \cup 1C \cup 0D$	
	5	$D = 0D \cup 1D \cup 1G$	
	6	$E = 0E \cup 1E \cup 1F$	
	7	$F = 0F \cup 1F \cup 0G$	
	8	$G = 0G \cup 1G \cup \varepsilon$	
II	1	$\mathcal{R}_2 = 0A \cup 1C \cup 1E$	
	2	$A = (0 \cup 1)^* 1B$	Lema de Arden
	3	$B = (0 \cup 1)^* 1G$	Lema de Arden
	4	$C = (0 \cup 1) * 0D$	Lema de Arden
	5	$D = (0 \cup 1)^* 1G$	Lema de Arden
	6	$E = (0 \cup 1) * 1F$	Lema de Arden
	7	$F = (0 \cup 1)^* 0G$	Lema de Arden
	8	$G = (0 \cup 1)^*$	Lema de Arden
III	1	$\mathcal{R}_2 = 0A \cup 1C \cup 1E$	
	2	$A = (0 \cup 1)^* 1 (0 \cup 1)^* 1G$	$II.3 \rightarrow II.2$
	4	$C = (0 \cup 1)^* 0 (0 \cup 1)^* 1G$	$II.5 \rightarrow II.4$
	6	$E = (0 \cup 1) * 1(0 \cup 1) * 0G$	$II.7 \rightarrow II.6$
	8	$G = (0 \cup 1)^*$	
IV	1	$\mathcal{R}_2 = 0A \cup 1C \cup 1E$	
	2	$A = (0 \cup 1)^* 1 (0 \cup 1)^* 1 (0 \cup 1)^*$	$III.8 \rightarrow III.2$
	4	$C = (0 \cup 1)^* 0 (0 \cup 1)^* 1 (0 \cup 1)^*$	$III.8 \rightarrow III.4$
	6	$E = (0 \cup 1)^* 1 (0 \cup 1)^* 0 (0 \cup 1)^*$	$III.8 \rightarrow III.6$
V	1	$\mathcal{R}_2 = 0(0 \cup 1)^* 1(0 \cup 1)^* 1(0 \cup 1)^* \cup$	$IV.2, IV.4, IV.6 \rightarrow IV.1$
		$1(0 \cup 1)*0(0 \cup 1)*1(0 \cup 1)*$, ,
		$1(0 \cup 1)^*1(0 \cup 1)^*0(0 \cup 1)^*$	

$\mathcal{L}_{25} = \{w \in \Sigma^* = \{0,1\}^* \mid w = 0u \; ext{e} \; |w| \; ext{\'e par ou} \; w = 1u' \; ext{e} \; |u'| \; ext{\'e par, com} \; u, u' \in \Sigma^* \}$

• Gramática G_1 que gera as cadeias de \mathcal{L}_{25} :

$$G_1 = (V, \Sigma, P, S) = (\{A, B, S\}, \{0, 1\}, P, S), \text{ com:}$$

$$P = \left\{ \begin{array}{l} S \to 0A \mid 1B, \\ A \to 0B \mid 1B, \\ B \to 0A \mid 1A \mid \varepsilon \end{array} \right\}.$$

Etapa	Eq.	Expressão	Ação
I	1	$\mathcal{R}_1 = 0A \cup 1B$	$\mathcal{R}_1 \equiv S$
	2	$A = 0B \cup 1B$	
	3	$B = 0A \cup 1A \cup \varepsilon$	
\overline{II}	1	$\mathcal{R}_1 = (0 \cup 10 \cup 11)A \cup 1$	I.3 ightarrow I.1,Fatoração
	2	$A = ((0 \cup 1)(0 \cup 1))^*(0 \cup 1)$	$I.3 \rightarrow I.2, {\tt Lema}$ de Arden
III	1	$\mathcal{R}_1 = (0 \cup 10 \cup 11)((0 \cup 1)(0 \cup 1))^*(0 \cup 1) \cup 1$	$II.2 \rightarrow II.1$

 \bullet Gramática G_2 que gera as cadeias de \mathcal{L}_{25} :

$$G_{2} = (V, \Sigma, P, S) = (\{A, B, C, D, E, F, G\}, \{0, 1\}, P, S), \text{ com:}$$

$$P = \begin{cases} S \to 0A \mid 1B \mid 1D, & D \to 1E, \\ A \to 0F \mid 1F, & E \to 0F \mid 1F, \\ B \to 0C, & F \to 0G \mid 1G \mid \varepsilon, \\ C \to 0F \mid 1F, & G \to 0F \mid 1F \end{cases}.$$

• Extração de expressão regular \mathcal{R}_2 da gramática G_2 , tal que $\mathcal{L}(\mathcal{R}_2) = \mathcal{L}(G_2)$:

Etapa	Eq.	Expressão	Ação
I	1	$\mathcal{R}_2 = 0A \cup 1B \cup 1D$	$\mathcal{R}_2 \equiv S$
	2	$A = 0F \cup 1F$	
	3	B = 0C	
	4	$C = 0F \cup 1F$	
	5	D = 1E	
	6	$E = 0F \cup 1F$	
	7	$F = 0G \cup 1G \cup \varepsilon$	
	8	$G = 0F \cup 1F$	
II	1	$\mathcal{R}_2 = 0A \cup 10C \cup 11E$	$I.3, I.5 \rightarrow I.1$
	2	$A = (0 \cup 1)F$	Fatoração
	4	$C = (0 \cup 1)F$	Fatoração
	6	$E = (0 \cup 1)F$	Fatoração
	7	$F = ((0 \cup 1)(0 \cup 1))^*$	$I.8 ightarrow I.7, exttt{Lema}$ de Arden
III	1	$\mathcal{R}_2 = 0A \cup 10C \cup 11E$	
	2	$A = (0 \cup 1)((0 \cup 1)(0 \cup 1))^*$	$II.7 \rightarrow II.2$
	4	$C = (0 \cup 1)((0 \cup 1)(0 \cup 1))^*$	$II.7 \rightarrow II.4$
	6	$E = (0 \cup 1)((0 \cup 1)(0 \cup 1))^*$	$II.7 \rightarrow II.6$
\overline{IV}	1	$\mathcal{R}_2 = (0 \cup 10 \cup 11)(0 \cup 1)((0 \cup 1)(0 \cup 1))^*$	$III.2, III.4, III.6 \rightarrow III.1, {\tt Fatoração}$

 $\mathcal{L}_{26} = \{w \in \Sigma^* = \{0,1\}^* \mid |w|_0 + |w|_1 = 2k+1, \ k \in \mathbb{N} \text{ e } w \text{ não contém } 10\}$

$\mathcal{L}_{27} = \{ w \in \Sigma^* = \{0,1\}^* \mid w = xyz, \ x,z \in \{0\}^*, \ y \in \{1\}^+; \ |x|_0 + |z|_0 = 2k, \ |y|_1 = 2k'+1, \ k,k' \in \mathbb{N} \}$

• Gramática G_1 que gera as cadeias de \mathcal{L}_{27} :

$$G_{1} = (V, \Sigma, P, S) = (\{A, B, C, D, E, F, G, S\}, \{0, 1\}, P, S), \text{ com}$$

$$P = \left\{ \begin{array}{c} S \to 0A \mid 1D, & D \to 0F \mid 1E \mid \varepsilon, \\ A \to 0S \mid 1B, & E \to 1D, \\ B \to 0G \mid 1C, & F \to 0G, \\ C \to 1B, & G \to 0F \mid \varepsilon \end{array} \right\}.$$

• Extração de expressão regular \mathcal{R}_1 da gramática G_1 , tal que $\mathcal{L}(\mathcal{R}_1) = \mathcal{L}(G_1)$:

Etapa	Eq.	Expressão	Ação
\overline{I}	1	$\mathcal{R}_1 = 0A \cup 1D$	$\mathcal{R}_1 \equiv S$
	2	$A = 0\mathcal{R}_1 \cup 1B$	
	3	$B = 0G \cup 1C$	
		C = 1B	
		$D = 0F \cup 1E \cup \varepsilon$	
		E = 1D	
		F = 0G	
	8	$G = 0F \cup \varepsilon$	
II	1	$\mathcal{R}_1 = 00\mathcal{R}_1 \cup 01B \cup 1D$	$I.2 \rightarrow I.1$
	3	$B = 0G \cup 11B$	$I.4 \rightarrow I.3$
	5	$D = 00G \cup 11D \cup \varepsilon$	$I.6, I.7 \rightarrow I.5$
	8	$G = 00G \cup \varepsilon$	$I.7 \rightarrow I.8$
III	1	$\mathcal{R}_1 = (00)^* (01B \cup 1D)$	Lema de Arden
	3	$B = (11)^*0G$	Lema de Arden
	5	$D = (11)^*(00G \cup \varepsilon)$	Lema de Arden
	8	$G = (00)^*$	Lema de Arden
\overline{IV}	1	$\mathcal{R}_1 = (00)^* (01B \cup 1D)$	
	3	$B = (11)^*0(00)^*$	$III.8 \rightarrow III.3$
	5	$D = (11)^*((00)^+ \cup \varepsilon)$	$III.8 \rightarrow III.5$
V	1	$\mathcal{R}_1 = (00)^* (01(11)^* 0(00)^* \cup 1(11)^* ((00)^+ \cup \varepsilon))$	$IV.3, IV.5 \rightarrow IV.1$

• Gramática G_2 que gera as cadeias de \mathcal{L}_{27} :

$$G_{1} = (V, \Sigma, P, S) = (\{A, B, C, D, E, F, G, H, I, S\}, \{0, 1\}, P, S), \text{ comp}$$

$$P = \begin{cases} S \to 0A \mid 0B \mid 1E, & D \to 0H \mid 1F, \\ A \to 0C, & E \to 0I \mid 1G \mid \varepsilon, \\ B \to 0S \mid 1D, & F \to 1D, \\ C \to 0A \mid 1E, & G \to 1E, \end{cases}$$

Etapa	$\mathbf{Eq}.$	Expressão	Ação
I	1	$\mathcal{R}_2 = 0A \cup 0B \cup 1E$	$\mathcal{R}_2 \equiv S$
	2	A = 0C	
	3	$B = 0\mathcal{R}_2 \cup 1D$	
	4	$C = 0A \cup 1E$	
	-	$D = 0H \cup 1F$	
		$E = 0I \cup 1G \cup \varepsilon$	
		F = 1D	
	-	G = 1E	
		$H = 0I \cup \varepsilon$	
	10	I = 0H	
II	1	$\mathcal{R}_2 = 00C \cup 00\mathcal{R}_2 \cup 01D \cup 1E$	$I.2, I.3 \rightarrow I.1$
	4	$C = 00C \cup 1E$	$I.2 \rightarrow I.4$
	5	$D = 0H \cup 11D$	$I.7 \rightarrow I.5$
	6	$E = 00H \cup 11E \cup \varepsilon$	$I.8, I.10 \rightarrow I.6$
	9	$H = 00H \cup \varepsilon$	$I.10 \rightarrow I.9$
III	1	$\mathcal{R}_2 = (00)^* (00C \cup 01D \cup 1E)$	Lema de Arden
	4	C = (00)*1E	Lema de Arden
	5	$D = (11)^*0$	Lema de Arden
	6	$E = (11)^*(00H \cup \varepsilon)$	Lema de Arden
	9	$H = (00)^*$	Lema de Arden
IV	1	$\mathcal{R}_2 = (00)^* (((00)^+ 1 \cup 1E) \cup 01(11)^* 0)$	III.4, III.5 ightarrow III.1,Fatoração
	6	$E = (11)^*((00)^+ \cup \varepsilon)$	$III.9 \rightarrow III.6$
\overline{V}	1	$\mathcal{R}_2 = (00)^* (((00)^+ 1 \cup 1)(11)^* ((00)^+ \cup \varepsilon) \cup 01(11)^* 0)$	$IV.6 \rightarrow IV.1$

$$\mathcal{L}_{28} = \{w \in \Sigma^* = \{0,1\}^* \mid w = xcycz, \ c \in \Sigma, \ x,y,z \in \Sigma^*; \ |x| = 2k+1, \ |z| = 2k', \ k,k' \in \mathbb{N}; \ |y| = 2\}$$

 $\mathcal{L}_{29} = \{w \in \Sigma^* = \{0,1\}^* \mid w \text{ contém uma, duas ou três ocorrências do símbolo } 0\}$

$\mathcal{L}_{30} = \{ w \in \Sigma^* = \{0, 1\}^* \mid w = u01^n, \ u \in \Sigma^*, \ n \in \mathbb{N}^+ \}$

• Gramática G_1 que gera as cadeias de \mathcal{L}_{30} :

$$G_1 = (V, \Sigma, P, S) = (\{A, B, S\}, \{0, 1\}, P, S), \text{ com:}$$

$$P = \left\{ \begin{array}{l} S \to 0A \mid 1S, \\ A \to 0A \mid 1B, \\ B \to 0A \mid 1B \mid \varepsilon \end{array} \right\}.$$

Etapa	Eq.	Expressão	Ação
I	1	$\mathcal{R}_1 = 0A \cup 1\mathcal{R}_1$	$\mathcal{R}_1 \equiv S$
	2	$A = 0A \cup 1B$	
	3	$B = 0A \cup 1B \cup \varepsilon$	
II	1	$\mathcal{R}_1 = 1^*0A$	Lema de Arden
	2	$A = 0A \cup 1B$	
	3	$B = 1^*0A \cup 1^*$	Lema de Arden
III	1	$\mathcal{R}_1 = 1^*0A$	
	2	$A = (0 \cup 1^+0)A \cup 1^+$	$II.3 \rightarrow II.2$
\overline{IV}	1	$\mathcal{R}_1 = 1^* 0 A$	
	2	$A = (0 \cup 1^+0)^*1^+$	Lema de Arden
\overline{V}	1	$\mathcal{R}_1 = 1^*0(0 \cup 1^+0)^*1^+$	$IV.2 \rightarrow \overline{IV.1}$

• Gramática G_2 que gera as cadeias de \mathcal{L}_{30} :

$$G_2 = (V, \Sigma, P, S) = (\{A, B, S\}, \{0, 1\}, P, S), \text{ com:}$$

$$P = \left\{ \begin{array}{l} S \to 0A \mid 0S \mid 1S, \\ A \to 1A \mid 1B, \\ B \to \varepsilon \end{array} \right\}.$$

• Extração de expressão regular \mathcal{R}_2 da gramática G_2 , tal que $\mathcal{L}(\mathcal{R}_2) = \mathcal{L}(G_2)$:

Etapa	Eq.	Expressão	Ação
I	2	$\mathcal{R}_2 = 0A \cup 0\mathcal{R}_2 \cup 1\mathcal{R}_2$ $A = 1A \cup 1B$ $B = \varepsilon$	$\mathcal{R}_2 \equiv S$
II		$\mathcal{R}_2 = (0 \cup 1)^* 0A$ $A = 1^+$	Lema de Arden $I.3 \rightarrow I.2, \text{Lema de Arden}$
III	1	$\mathcal{R}_2 = (0 \cup 1)^* 01^+$	$II.2 \rightarrow II.1$

$\mathcal{L}_{31} = \{ w \in \Sigma^* = \{0,1\}^* \mid w \text{ não começa com } 0 \text{ e não termina com } 000 \}$

• Gramática G_1 que gera as cadeias de \mathcal{L}_{31} :

$$G_{1} = (V, \Sigma, P, S) = (\{A, B, C, D, S\}, \{0, 1\}, P, S), \text{ com}$$

$$P = \left\{ \begin{array}{c} S \to 1A \mid \varepsilon, \\ A \to 0B \mid 1A \mid \varepsilon, \\ B \to 0C \mid 1A \mid \varepsilon, \end{array} \right. \left. \begin{array}{c} C \to 0D \mid 1A \mid \varepsilon, \\ D \to 0D \mid 1A, \end{array} \right\}.$$

Etapa	Eq.	Expressão	Ação
\overline{I}	1	$\mathcal{R}_1 = 1A \cup \varepsilon$	$\mathcal{R}_1 \equiv S$
	2	$A = 0B \cup 1A \cup \varepsilon$	
	3	$B = 0C \cup 1A \cup \varepsilon$	
	4	$C = 0D \cup 1A \cup \varepsilon$	
	5	$D = 0D \cup 1A$	
II	1	$\mathcal{R}_1 = 1A \cup \varepsilon$	
	2	$A = 1^*0B \cup 1^*$	Lema de Arden
	3	$B = 00D \cup 01A \cup 0 \cup 1A \cup \varepsilon$	$I.4 \rightarrow I.3$
	5	$D = 0^* 1A$	Lema de Arden
III	1	$\mathcal{R}_1 = 1A \cup \varepsilon$	
	2	$A = 1*0B \cup 1*$	
	3	$B = (00^+1 \cup 01 \cup 1)A \cup 0 \cup \varepsilon$	II.5 ightarrow II.3,Fatoração
\overline{IV}	1	$\mathcal{R}_1 = 1A \cup \varepsilon$	
	2	$A = (1^*0(00^+1 \cup 01 \cup 1))^*1^*(00 \cup 0 \cup \varepsilon)$	$III.3 \rightarrow III.2, \texttt{Lema}$ de Arden
\overline{V}	1	$\mathcal{R}_1 = 1(1^*0(00^+1 \cup 01 \cup 1))^*1^*(00 \cup 0 \cup \varepsilon) \cup \varepsilon$	$IV.2 \rightarrow IV.1$

• Gramática G_2 que gera as cadeias de \mathcal{L}_{31} :

$$G_{2} = (V, \Sigma, P, S) = (\{A, B, C, D, S\}, \{0, 1\}, P, S), \text{ com:}$$

$$P = \left\{ \begin{array}{c|c} S \to 1A \mid 1D \mid \varepsilon, & C \to \varepsilon, \\ A \to 0B \mid \varepsilon, & D \to 0D \mid 1A \mid 1D \\ B \to 0C \mid \varepsilon, & \end{array} \right\}.$$

Etapa	Eq.	Expressão	Ação
I	1	$\mathcal{R}_2 = 1A \cup 1D \cup \varepsilon$	$\mathcal{R}_2 \equiv S$
	2	$A = 0B \cup \varepsilon$	
	3	$B = 0C \cup \varepsilon$	
	4	$C = \varepsilon$	
	5	$D = 0D \cup 1A \cup 1D$	
\overline{II}	1	$\mathcal{R}_2 = 1A \cup 1D \cup \varepsilon$	
	2	$A = 00 \cup 0 \cup \varepsilon$	$I.4 \rightarrow I.3 \rightarrow I.2$
	5	$D = (0 \cup 1)^* 1A$	Lema de Arden
III	1	$\mathcal{R}_2 = 1(00 \cup 0 \cup \varepsilon) \cup 1D \cup \varepsilon$	$II.2 \rightarrow II.1$
	5	$D = (0 \cup 1)^* 1 (00 \cup 0 \cup \varepsilon)$	$II.2 \rightarrow II.5$
\overline{IV}	1	$\mathcal{R}_2 = (1 \cup 1(0 \cup 1)^*1)(00 \cup 0 \cup \varepsilon) \cup \varepsilon$	II.2 ightarrow II.1, Fatoração
		_	_

$$\mathcal{L}_{32} = \{ w \in \Sigma^* = \{0, 1\}^* \mid w = uc, \ u \in \Sigma^*, \ c \in \Sigma, \ |u|_c \leqslant 2 \}$$

$\mathcal{L}_{33} = \{ w \in \Sigma^* = \{0,1\}^* \mid w \text{ não contém } 0110 \text{ e não termina com } 01 \}$

• Gramática G_1 que gera as cadeias de \mathcal{L}_{33} :

$$G_1 = (V, \Sigma, P, S) = (\{A, B, C, S\}, \{0, 1\}, P, S), \text{ com:}$$

$$P = \left\{ \begin{array}{c|c} S \to 0A \mid 1S \mid \varepsilon, & B \to 0A \mid 1C, \\ A \to 0A \mid 1B \mid \varepsilon, & C \to 1S \mid \varepsilon \end{array} \right\}.$$

• Extração de expressão regular \mathcal{R}_1 da gramática G_1 , tal que $\mathcal{L}(\mathcal{R}_1) = \mathcal{L}(G_1)$:

Etapa	Eq.	Expressão	Ação
\overline{I}	1	$\mathcal{R}_1 = 0A \cup 1\mathcal{R}_1 \cup \varepsilon$	$\mathcal{R}_1 \equiv S$
	2	$A = 0A \cup 1B \cup \varepsilon$	
	3	$B = 0A \cup 1C$	
	4	$C=1\mathcal{R}_1\cup\varepsilon$	
II	1	$\mathcal{R}_1 = 0A \cup 1\mathcal{R}_1 \cup \varepsilon$	
	2	$A = (0 \cup 10)A \cup 111\mathcal{R}_1 \cup 11 \cup \varepsilon$	$I.4 ightarrow I.3 ightarrow I.2, {\it Fatoração}$
III	1	$\mathcal{R}_1 = 0A \cup 1\mathcal{R}_1 \cup \varepsilon$	
	2	$A = (0 \cup 10)^* (111\mathcal{R}_1 \cup 11 \cup \varepsilon)$	Lema de Arden
\overline{IV}	1	$\mathcal{R}_1 = (0(0 \cup 10)^*111 \cup 1)\mathcal{R}_1 \cup 0(0 \cup 10)^*(11 \cup \varepsilon) \cup \varepsilon$	III.2 ightarrow III.1, Fatoração
\overline{V}	1	$\mathcal{R}_1 = (0(0 \cup 10)^*111 \cup 1))^*(0(0 \cup 10)^*(11 \cup \varepsilon) \cup \varepsilon)$	Lema de Arden

• Gramática G_2 que gera as cadeias de \mathcal{L}_{33} :

$$G_{2} = (V, \Sigma, P, S) = (\{A, B, C, D, S\}, \{0, 1\}, P, S), \text{ com}$$

$$P = \left\{ \begin{array}{c} S \to 0A \mid 1S \mid \varepsilon, \\ A \to 0A \mid 1B \mid 1C \mid \varepsilon, \\ B \to 0A, \end{array} \right. \left. \begin{array}{c} C \to 1D, \\ D \to 1S \mid \varepsilon, \\ \end{array} \right\}.$$

• Extração de expressão regular \mathcal{R}_2 da gramática G_2 , tal que $\mathcal{L}(\mathcal{R}_2) = \mathcal{L}(G_2)$:

Etapa	Eq.	Expressão	Ação
\overline{I}	1	$\mathcal{R}_2 = 0A \cup 1\mathcal{R}_2 \cup \varepsilon$	$\mathcal{R}_2 \equiv S$
	2	$A = 0A \cup 1B \cup 1C \cup \varepsilon$	
	3	B = 0A	
	4	C = 1D	
	5	$D=1\mathcal{R}_2\cup\varepsilon$	
II	1	$\mathcal{R}_2 = 0A \cup 1\mathcal{R}_2 \cup \varepsilon$	
	2	$A = (0 \cup 10)A \cup 111\mathcal{R}_2 \cup 11 \cup \varepsilon$	$I.3 \rightarrow I.2, I.5 \rightarrow I.4 \rightarrow I.2, \texttt{Fatoraç\~ao}$
III	1	$\mathcal{R}_2 = 0A \cup 1\mathcal{R}_2 \cup \varepsilon$	
	2	$A = (0 \cup 10)^* (111\mathcal{R}_2 \cup 11 \cup \varepsilon)$	Lema de Arden
\overline{IV}	1	$\mathcal{R}_2 = (0(0 \cup 10)^*111 \cup 1)\mathcal{R}_2 \cup 0(0 \cup 10)^*(11 \cup \varepsilon) \cup \varepsilon$	III.2 ightarrow III.1,Fatoração
\overline{V}	1	$\mathcal{R}_2 = (0(0 \cup 10)^*111 \cup 1)^*(0(0 \cup 10)^*(11 \cup \varepsilon) \cup \varepsilon)$	Lema de Arden

 $\mathcal{L}_{34} = \{w \in \Sigma^* = \{0,1\}^* \mid |w| \geqslant 4$, começa com 0 e contém pelo menos um 1 do terceiro ao penúltimo símbolo $\}$

$\mathcal{L}_{35} = \{w \in \Sigma^* = \{0,1\}^* \mid |w| = 2k+1, \ k \in \mathbb{N}, \ w \text{ termina com } 1 \text{ e cont\'em pelo menos mais um } 1\}$

$\mathcal{L}_{36} = \{w \in \Sigma^* = \{0,1\}^* \mid |w| = 2k, \ k \in \mathbb{N}, \ w \ extbf{n ilde{a}o cont ilde{e}m} \ 11\}$

• Gramática G_1 que gera as cadeias de \mathcal{L}_{36} :

$$G_{1} = (V, \Sigma, P, S) = (\{A, B, S\}, \{0, 1\}, P, S), \text{ com}$$

$$P = \left\{ \begin{array}{c|c} S \to 0A \mid 1C \mid \varepsilon, & B \to 0A \mid \varepsilon \\ A \to 0S \mid 1B, & C \to 0S \end{array} \right\}.$$

• Extração de expressão regular \mathcal{R}_1 da gramática G_1 , tal que $\mathcal{L}(\mathcal{R}_1) = \mathcal{L}(G_1)$:

Etapa	Eq.	Expressão	Ação
I	1	$\mathcal{R}_1 = 0A \cup 1C \cup \varepsilon$	$\mathcal{R}_1 \equiv S$
	2	$A = 0\mathcal{R}_1 \cup 1B$	
	3	$B = 0A \cup \varepsilon$	
	4	$C = 0\mathcal{R}_1$	
\overline{II}	1	$\mathcal{R}_1 = 0A \cup 10\mathcal{R}_1 \cup \varepsilon$	$I.4 \rightarrow I.1$
	2	$A = 0\mathcal{R}_1 \cup 10A \cup 1$	$I.3 \rightarrow I.2$
III	1	$\mathcal{R}_1 = 0A \cup 10\mathcal{R}_1 \cup \varepsilon$	
	2	$A = (10)^*(0\mathcal{R}_1 \cup 1)$	Lema de Arden
\overline{IV}	1	$\mathcal{R}_1 = (0(10)^*0 \cup 10)\mathcal{R}_1 \cup 0(10)^*1 \cup \varepsilon$	III.2 ightarrow III.1, Fatoração
V	1	$\mathcal{R}_1 = (0(10)^*0 \cup 10)^*(0(10)^*1 \cup \varepsilon)$	Lema de Arden

• Gramática G_2 que gera as cadeias de \mathcal{L}_{36} :

$$G_{2} = (V, \Sigma, P, S) = (\{A, B, C, D, E, S\}, \{0, 1\}, P, S), \text{ com:}$$

$$P = \left\{ \begin{array}{c|c} S \to 0A \mid 0D \mid 1C \mid \varepsilon, & C \to 0S, \\ A \to 0S \mid 1B, & D \to 1E, \\ B \to 0A, & E \to 0D \mid \varepsilon \end{array} \right\}.$$

Etapa	Eq.	Expressão	Ação
I	1	$\mathcal{R}_2 = 0A \cup 0D \cup 1C \cup \varepsilon$	$\mathcal{R}_2 \equiv S$
	2	$A = 0\mathcal{R}_2 \cup 1B$	
	3	B = 0A	
	4	$C = 0\mathcal{R}_2$	
	5	D = 1E	
	6	$E = 0D \cup \varepsilon$	
II	1	$\mathcal{R}_2 = 0A \cup 0D \cup 10\mathcal{R}_2 \cup \varepsilon$	$I.4 \rightarrow I.1$
	2	$A = 0\mathcal{R}_2 \cup 10A$	$I.3 \rightarrow I.2$
	5	$D = 10D \cup 1$	$I.6 \rightarrow I.5$
III	1	$\mathcal{R}_2 = 0A \cup 0D \cup 10\mathcal{R}_2 \cup \varepsilon$	
	2	$A = (10)^* 0 \mathcal{R}_2$	Lema de Arden
	5	D = (10)*1	Lema de Arden
IV	1	$\mathcal{R}_2 = (0(10)^*0 \cup 10)\mathcal{R}_2 \cup 0(10)^*1 \cup \varepsilon$	$III.2, III.5 ightarrow III.1, { t Fatoração}$
\overline{V}	1	$\mathcal{R}_2 = (0(10)^*0 \cup 10)^*(0(10)^*1 \cup \varepsilon)$	Lema de Arden

 $\mathcal{L}_{37} = \{w \in \Sigma^* = \{0,1\}^* \mid w = u11, \ u \in \Sigma^* \text{ e todo } 0 \text{ em } u \text{ \'e seguido de um par de símbolos distintos}\}$

 $\mathcal{L}_{38} = \{w \in \Sigma^* = \{0,1\}^* \mid w \text{ contém os símbolos } 0 \text{ e } 1, \text{ mas não contém } 00\}$

 $\mathcal{L}_{39} = \{w \in \Sigma^* = \{0,1\}^* \mid w \text{ contém pelo menos um 1, mas não contém } 11\}$

$\mathcal{L}_{40} = \{w \in \Sigma^* = \{0,1\}^* \mid w \text{ contém } 00, \text{ mas não contém } 011\}$

• Gramática G_1 que gera as cadeias de \mathcal{L}_{40} :

$$G_{1} = (V, \Sigma, P, S) = (\{A, B, C, D, S\}, \{0, 1\}, P, S), \text{ con}$$

$$P = \left\{ \begin{array}{c} S \to 0A \mid 1S, & C \to 0C \mid 1D \mid \varepsilon \\ A \to 0C \mid 1B, & D \to 0C \mid \varepsilon \\ B \to 0A, & \end{array} \right\}.$$

Etapa	Eq.	Expressão	Ação
\overline{I}	1	$\mathcal{R}_1 = 0A \cup 1\mathcal{R}_1$	$\mathcal{R}_1 \equiv S$
	2	$A = 0C \cup 1B$	
	3	B = 0A	
	4	$C = 0C \cup 1D \cup \varepsilon$	
	5	$D = 0C \cup \varepsilon$	
\overline{II}	1	$\mathcal{R}_1 = 1^*0A$	Lema de Arden
	2	$A = (10)^*0C$	$I.3 ightarrow I.2, {\tt Lema}$ de Arden
	4	$C = (0 \cup 10)C \cup 1 \cup \varepsilon$	I.5 ightarrow I.4,Fatoração
III	1	$\mathcal{R}_1 = 1^*0(10)^*0C$	$II.2 \rightarrow II.1$
	4	$C = (0 \cup 10)^* (1 \cup \varepsilon)$	Lema de Arden
IV	1	$\mathcal{R}_1 = 1^*0(10)^*0(0 \cup 10)^*(1 \cup \varepsilon)$	$III.4 \rightarrow III.1$

• Gramática G_2 que gera as cadeias de \mathcal{L}_{40} :

$$G_{2} = (V, \Sigma, P, S) = (\{A, B, C, D, E, S\}, \{0, 1\}, P, S), \text{ com:}$$

$$P = \left\{ \begin{array}{c|c} S \to 0A \mid 1S, & C \to 0C \mid 1D \mid 1E \mid \varepsilon \\ A \to 0C \mid 1B, & D \to 0C, \\ B \to 0A, & E \to \varepsilon \end{array} \right\}.$$

• Extração de expressão regular \mathcal{R}_2 da gramática G_2 , tal que $\mathcal{L}(\mathcal{R}_2) = \mathcal{L}(G_2)$:

Etapa	Eq.	Expressão	Ação
\overline{I}	1	$\mathcal{R}_2 = 0A \cup 1\mathcal{R}_2$	$\mathcal{R}_2 \equiv S$
	2	$A = 0C \cup 1B$	
	3	B = 0A	
	4	$C = 0C \cup 1D \cup 1E \cup \varepsilon$	
	5	D = 0C	
	6	$E = \varepsilon$	
\overline{II}	1	$\mathcal{R}_2 = 1^*0A$	Lema de Arden
	2	$A = (10)^*0C$	$I.3 ightarrow I.2, { t Lema}$ de Arden
	4	$C = (0 \cup 10)C \cup 1 \cup \varepsilon$	$I.5, I.6 ightarrow I.4, {\it Fatoração}$
III	1	$\mathcal{R}_2 = 1^*0(10)^*0C$	$II.2 \rightarrow II.1$
	4	$C = (0 \cup 10)^* (1 \cup \varepsilon)$	Lema de Arden
\overline{IV}	1	$\mathcal{R}_2 = 1^*0(10)^*0(0 \cup 10)^*(1 \cup \varepsilon)$	$III.4 \rightarrow III.1$

 $\mathcal{L}_{41} = \{w \in \Sigma^* = \{0,1\}^* \mid w \text{ contém pelo menos um } 00, \text{ mas não contém } 11\}$

 $\mathcal{L}_{42} = \{w \in \Sigma^* = \{0,1\}^* \mid w \text{ começa com } 0 \text{ e cont\'em } 010 \text{ ou } w \text{ começa com } 1 \text{ e cont\'em } 101\}$

 $\mathcal{L}_{43} = \{w \in \Sigma^* = \{0,1\}^* \mid w \text{ cont\'em dois 1's separados por uma quantidade par de símbolos}\}$

 $\mathcal{L}_{44} = \{w \in \Sigma^* = \{0,1\}^* \mid |w|_0 = 2k, \ k \in \mathbb{N}, \ \text{e cada } 0 \ \text{\'e seguido de pelo menos dois 1's consecutivos} \}$

$$\mathcal{L}_{45} = \{w \in \Sigma^* = \{0,1\}^* \mid |w| = 2k, \ k \in \mathbb{N}, \ \mathbf{e} \ w \ \mathbf{começa} \ \mathbf{com} \ 1 \ \mathbf{ou} \ \mathbf{termina} \ \mathbf{com} \ 11\}$$

$$\mathcal{L}_{46} = \{ w \in \Sigma^* = \{0, 1\}^* \mid w \text{ \'e diferente de } 0, 00, 1, 11 \text{ e } 010 \}$$

$$\mathcal{L}_{47} = \{ w \in \Sigma^* = \{0, 1\}^* \mid |w|_0 = 2k \ \mathbf{e} \ |w|_1 = 3k', \ k, k' \in \mathbb{N} \}$$