UPPSALA UNIVERSITET

Matematiska institutionen Erik Lindgren

Lösning till Omtentamen i matematik Envariabelanalys för M, 1MA210 16 juni 2020

1. a) Gränsvärdet är av typen 0/0. Användning av l'Hopitals regel ger att

$$\lim_{x \to 0} \frac{\ln(1 + \sin x)}{x} = \lim_{x \to 0} \frac{\frac{1}{(1 + \sin x)} \cos x}{1} = 1.$$

b) Om vi förlänger med $\sqrt{x^3 + x^{\frac{3}{2}}} + \sqrt{x^3 + x}$ får vi uttrycket

$$\frac{x^3 + x^{\frac{3}{2}} - x^3 - x}{\sqrt{x^3 + x^{\frac{3}{2}}} + \sqrt{x^3 + x}} = \frac{x^{\frac{3}{2}} - x}{\sqrt{x^3 + x^{\frac{3}{2}}} + \sqrt{x^3 + x}} = \frac{1 - x^{-\frac{1}{2}}}{\sqrt{1 + x^{-\frac{3}{2}}} + \sqrt{1 + x^{-2}}}.$$

Därför blir gränsvärdet lika med

$$\lim_{x \to \infty} \frac{1 - x^{-\frac{1}{2}}}{\sqrt{1 + x^{-\frac{3}{2}}} + \sqrt{1 + x^{-2}}} = \frac{1}{2}.$$

2. Med $f(x) = (x^2 - 1)/x^3 = 1/x - 1/x^3$ så har vi $f'(x) = -1/x^2 + 3/x^4$. Vi ser då att f är strängt växande för $|x| < \sqrt{3}$ och strängt avtagande för $|x| > \sqrt{3}$. Vidare har vi att $f(x) \to +\infty$ då $x \to 0$ från vänster och $f(x) \to -\infty$ då $x \to 0$ från höger. Vi ser också att $f(x) \to 0$ då $x \to \pm \infty$. Vi kan då sluta oss till att f inte antar något globalt max eller globalt min. Däremot har f lokalt min i $x = -\sqrt{3}$ or lokalt max i $x = \sqrt{3}$.

Vi tittar också på $f''(x) = 2/x^3 - 12/x^5$. Vi ser då att $f'' \ge 0$ och därmed konvex om $x \ge \sqrt{6}$ eller $-\sqrt{6} \le x < 0$. Vi ser också att $f'' \ge 0$ och därmed konkav om $0 < x \le \sqrt{6}$ eller om $x \le -\sqrt{6}$.

Vi kan då skissa grafen m
ha av detta ovan och punkterna $x=\pm\sqrt{3},\,x=\pm\sqrt{6},\,x=\pm1$ och $x=\pm2/3.$

3. a) Vi partialintegrerar två gånger och får

$$\int x(\ln(x))^2 dx = -\int \frac{x^2}{2} \cdot 2 \cdot \ln x \cdot \frac{1}{x} dx + \frac{x^2}{2} (\ln(x))^2$$

$$= -\int x \ln x dx + \frac{x^2}{2} (\ln(x))^2$$

$$= +\int \frac{x^2}{2} \cdot \frac{1}{x} dx - \frac{x^2}{2} \ln(x) + \frac{x^2}{2} (\ln(x))^2$$

$$= \int \frac{x}{2} dx - \frac{x^2}{2} \ln(x) + \frac{x^2}{2} (\ln(x))^2$$

$$= \frac{x^2}{4} - \frac{x^2}{2} \ln(x) + \frac{x^2}{2} (\ln(x))^2 + C$$

b) Vi ser att derivatan av $-\frac{1}{3}\cos^3 x$ är $\cos^2 x \sin x$ och får därmed

$$\int_0^{\frac{\pi}{4}} \cos^2 x \sin x dx = \frac{1}{3} \left(-\cos^3(\pi/4) + \cos^3(0) \right) = \frac{1}{3} \left(1 - \frac{1}{(\sqrt{2})^3} \right) = \frac{1}{3} \left(1 - \frac{1}{2\sqrt{2}} \right).$$

Uppgiften kan också lösas genom substitutionen $t = \cos x$.

4. a) Eftersom $(1+x^4)\ln x \ge (1+x^4) \ge x^4 \ge x^2$ då $x \ge e$ så har vi att integranden är begränsad ovanifrån av $\frac{1}{x^2}$. Eftersom integralen

$$\int_{e}^{\infty} \frac{1}{x^2} dx = \left[-\frac{1}{x} \right]_{e}^{\infty} = \frac{1}{e}$$

är konvergent och integranden är positiv, så gäller det enligt jämförelsesatsen att även

$$\int_{e}^{\infty} \frac{1}{(1+x^4)\ln x} dx$$

är konvergent.

b) Eftersom $\sin x \in [0,1]$ för $x \in [0,\pi/2]$ så gäller att $x \sin x \le x$. Alltså har vi

$$\frac{1}{x\sin x} \ge \frac{1}{x}$$

för $x \in (0, \pi/2]$. Eftersom

$$\int_0^{\pi/2} \frac{1}{x} dx$$

divergerar mot ∞ och integranden är positiv, så gäller även att

$$\int_0^{\pi/2} \frac{1}{x \sin x} dx$$

divergerar mot ∞ enligt jämförelsesatsen.

6. Från Taylors formel har vi för Taylorpolynomet kring a

$$f(x) - P_2(x) = \frac{1}{3!}f^{(3)}(t)(x-a)^3$$

för något t mellan a och x. Låter vi $f(x) = e^x$ och använder Taylorpolynomet kring origo, får vi för $x \in (-1,0)$

$$e^x - 1 - x - \frac{x^2}{2} = \frac{1}{3!}e^t x^3$$

för något $t \in (x,0)$. Eftersom $0 \le e^t \le 1$ för $t \le 0$ så får vi

$$|e^x - 1 - x - \frac{x^2}{2}| \le \left|\frac{1}{3!}x^3\right| = \frac{|x|^3}{6}.$$

Låter vi $x = -t^2$ ger detta

$$|e^{-t^2} - 1 + t^2 - t^4/2| \le \frac{t^6}{6}.$$

Genom att integrera $1-t^2+t^4/2$ får vi då en uppskattning på integralen där (absolutbeloppet av) felet är mindre än

$$\int_0^1 \frac{t^6}{6} dt = \frac{1}{42} < \frac{1}{20}.$$

Vi integrerar då $1 - t^2 + t^4/2$ och får

$$\int_0^1 1 - t^2 + t^4 / 2dt = \frac{1}{2} - \frac{1}{3} + \frac{1}{10} = \frac{23}{30}.$$

Detta är ett närmevärde på integralen med ett fel som är mindre än 1/20.

6. Vi ser att $f'(x) = 7x^6 + 2 \ge 2$. Således är f strängt växande och därmed inverterbar överallt. För att bestämma integralen använder vi substitutionen x = g(t) eller t = f(x) vilket ger dt = f'(x)dx och därmed

$$\int_0^3 g(t)dt = \int_{g(0)}^{g(3)} xf'(x)dx = \int_0^1 7x^7 + 2xdx = \frac{7}{8} + 1 = \frac{15}{8},$$

där vi använt att g(0) = 0 och g(3) = 3 eftersom f(0) = 0 och f(1) = 3.

7. Enligt kvotkriteriet kan vi hitta konvergensradien genom att titta på

$$\lim_{k \to \infty} \frac{3^k \sqrt[5]{k+1}}{3^{k+1} \sqrt[5]{k}} = \frac{1}{3}.$$

Detta betyder att serien är absolutkonvergent för $|x| < \frac{1}{3}$ och divergent för $|x| > \frac{1}{3}$. Vi testar de olika fallen $x = \pm \frac{1}{3}$ separat. Om $x = \frac{1}{3}$ så har vi serien

$$\sum_{k=1}^{\infty} \frac{1}{\sqrt[5]{k}}$$

som är divergent eftersom t ex integralen

$$\int_{1}^{\infty} \frac{1}{\sqrt[5]{x}} dx$$

är divergent.

Om $x = -\frac{1}{3}$ så har vi serien

$$\sum_{k=1}^{\infty} \frac{(-1)^k}{\sqrt[5]{k}}$$

som är konvergent eftersom termerna är avtagande och alternerande.

Vi sammanfattar: Serien konvergerar för $-\frac{1}{3} \le x < \frac{1}{3}$ och divergerar annars.

$$\lim_{k \to \infty} a_k = L$$

om det för varje $\varepsilon > 0$ finns ett tal N > 0 så att k > N implicerar att

$$|a_k - L| < \varepsilon$$
.

b) Tag $\varepsilon > 0$, vi vill då visa att det finns N > 0 så att om k > N så har vi

$$\left|\frac{\ln k}{k^3}\right| < \varepsilon.$$

Om vi väljer N till $1/\sqrt{\varepsilon}$ och k > N ser vi att vi får

$$\left|\frac{\ln k}{k^3}\right| \leq \left|\frac{1}{k^2}\right| < \frac{1}{N^2} \leq \varepsilon,$$

där vi har använt att $\ln k \le k$ om $k \ge 1$.

Alltså har vi visat att att det finns ett sådant N.

- 9. a) T ex följden 1, 2, 3, 4, ...
 - b) T ex följden $\{(-1)^n\}$.
 - c) T ex f(x) = x.
 - d) T ex funktionen som är 0 på intervallet [0, 1/2] och 0 på intervallet (1/2, 0].
 - e) T ex funktionen f(x) = |x|. Denna funktion är ej deriverbar en gång i x = 0 och därmed inte deriverbar två gånger heller. Däremot är den kontinuerlig överallt.
- 10. Eftersom värdemängden är [0,1] så finns ett $t \in [0,1]$ så att f(t) = 1. Vi vet också att $t \neq 0$ eftersom f(0) = 0. Vi delar upp i olika fall.

Fall 1: Om t=1 så har vi från medelvärdessatsen att det finns $c\in(0,1)$ så att

$$f'(c) = \frac{f(1) - f(0)}{1 - 0} = 1$$

och därmed antar f' värdet 1 i detta fall.

Fall 2: Om $t \neq 1$ så gäller t < 1. Från medelvärdessatsen får vi då att det finns ett $d \in (0,t)$ så att

$$f'(d) = \frac{f(t) - f(0)}{t - 0} = \frac{1}{t} > 1.$$

Vidare vet vi då att eftersom f(t) = 1 och fs maxvärde är 1, så antar f ett maxvärde i x = t. Därmed gäller f'(t) = 0. Eftersom f' är kontinuerlig antar f alla värden mellan f'(t) = 0 och f'(d) > 1. Värdet 1 ligger däremellan. Alltså antar f' värdet 1 någonstans även i detta fall.