Homework 8

- 1. Find coordinate basis vectors, first quadratic form, unit normal vector field, shape operator and Gaussian and mean curvatures for
 - a) sphere of the radius R: $x^2 + y^2 + z^2 = R^2$,

$$\mathbf{r}(\theta,\varphi) \qquad \begin{cases} x = R\sin\theta\cos\varphi \\ y = R\sin\theta\sin\varphi \\ z = R\cos\theta \end{cases} \qquad (0 \le \varphi < 2\pi, 0 \le \theta \le \pi),$$

b) cylinder $x^2 + y^2 = R^2$,

$$\mathbf{r}(h,\varphi) \qquad \begin{cases} x = R\cos\varphi \\ y = R\sin\varphi \\ z = h \end{cases} \qquad (0 \le \varphi < 2\pi, -\infty < h < \infty)$$

c) cone $x^2 + y^2 - k^2 z^2 = 0$,

$$\mathbf{r}(h,\varphi) \qquad \begin{cases} x = kh\cos\varphi \\ y = kh\sin\varphi \\ z = h \end{cases} \quad (0 \le \varphi < 2\pi, -\infty < h < \infty)$$

d) saddle F = xy (you may perform the calculations only at origin).

$$\mathbf{r}(u, v) \qquad \begin{cases} x = u \\ y = v \\ z = uv \end{cases} \qquad (-\infty < u < \infty, -\infty < v < \infty)$$

 $\mathbf{r}(u,v) \qquad \begin{cases} x=u \\ y=v \\ z=uv \end{cases} \qquad (-\infty < u < \infty, -\infty < v < \infty)$ **2.** Consider helix $\mathbf{r}(t)$: $\begin{cases} x(t) = a \cos t \\ y(t) = a \sin t \end{cases}$. Show that this helix belongs to cylinder z(t) = ct

surface $x^2 + y^2 = a^2$. Using first quadratic form on the surface of cylindre or in a different way calculate length of the helix $(0 \le t \le t_0)$.

- **3** Assume that the action of the shape operator at the tangent coordinate vectors $\mathbf{r}_u = \partial_u, \, \mathbf{r}_v = \partial_v$ at the given point \mathbf{p} of the surface $\mathbf{r} = \mathbf{r}(u, v)$ is defined by the relations: $S(\partial_u) = 2\partial_u + 2\partial_v$ and $S(\partial_v) = -\partial_u + 5\partial_v$. Calculate principal curvatures, Gaussian and mean curvatures of the surface at this point.
- 4 On the sphere of the radius $x^2 + y^2 + z^2 = R^2$ in E^3 consider the triangle ABCwith vertices at the North Pole and at Equator: A = (0,0,R), B = (R,0,0) and C = $(R\cos\varphi, R\sin\varphi, 0)$. The edges of this triangle are arcs of the meridians and the arc of the Equator.

Find the result of the parallel transport of vector $\mathbf{X} = \mathbf{e}_x$ attached at the North pole along the edges of the triangle ABC.

 $\mathbf{5}^{\dagger}$ On the sphere $x^2 + y^2 + z^2 = R^2$ in \mathbf{E}^3 consider the closed curve $\theta = \theta_0, \varphi = t$, $0 < t < 2\pi$ (latitude) Find the result of parallel transport of the vector tangent to the sphere along this curve.

1