

Capstone Project on Pneumonia Detection

INTERIM REPORT

Participants

- Mrs Shilpa Kulkarni
- Mr Jignesh Mistry
- Mr Samit Biswas
- Mr Aarish Shahab

Pneumonia and Diagnosis

- Pneumonia is an infection of the lungs caused by bacteria, viruses and fungi. Pneumonia causes inflammation in the air sacs of one or both lungs which fill with fluid or pus, making it difficult to breathe and may result in fatality.
- World Health Organization (WHO) estimates, approximately 150 million lung infections and 4 million deaths can be attributed annually to Pneumonia. Small children and seniors are more susceptible to this infection. Fast, timely and accurate diagnosis is of utmost importance.
- ▶ Chest X-Ray (CXR) analysis is the first step in the diagnosis of Pneumonia.

Problem Statement:

- The goal of this project is to build a model which detects if a given patient's CXR image indicates the presence of Pneumonia or not and also predicts the location of the Pneumonic patch. Both, accuracy and speed of detection are of utmost importance.
- ► To achieve these, we performed object (opacity) detection using a Neural Network(NN) with labelled samples of Chest X-Ray(CXR) images.

Data:

Train and Test Images - The CXR images are present in the Digital Imaging and Communications in Medicine (DICOM) format, with .dcm file extension. They are separated into training and test sets

Patients by class - A .csv file which has information about the class detected per patient is provided

₽		patientId	class
	19529	b5234584-1487-492c-8742-444b9ca41c3d	Normal
	807	0a8ccb49-debc-4e9a-b5dc-eefc3fe909ca	No Lung Opacity / Not Normal
	1733	1851dff6-31ec-4453-9ddc-95c0aedace5b	Lung Opacity

► Training labels - A .csv file with co-ordinates for each bounding box per patient is provided.

₽		patientId	x	у	width	height	Target
	2508	3251dea8-4f74-4f4b-8f56-167b0213414b	140.0	583.0	188.0	114.0	1
	2283	2feb2bad-6b36-4067-87f1-54d39235e3c5	247.0	503.0	163.0	155.0	1
	24491	dc139a0e-0bbf-4ba4-8e71-c949022a542e	NaN	NaN	NaN	NaN	0

EDA, Pre-processing and findings

- ▶ Row counts: There are same number of rows in both .csv files
 - ► There are multiple entries for some patients
- Target Values are 0 (Non-Pneumonic) and 1 (Pneumonic)
- ▶ 2 target values are mapped to 3 class values
 - ► Target 0 is mapped to "Normal" & "No Lung Opacity/Not Normal" classes

► Target 1 is mapped to "Lung Opacity" class

Used pydicom package to load the .dcm images from the training dataset and visualized samples positive as well as negative cases.

- Missing Values:
 - ▶ Class Details There are no missing values
- Training Labels:
 - ▶ 68.3% of the data is missing values in columns x, y, width and height where Target = 0 (non-Pneumonia)
 - For 31.3% of data, there are no missing values where Target = 1
- Check for Class imbalance
 - No noticeable difference between row counts for classes (Normal, No Lung Opacity/Not Normal, Lung Opacity)
 - ► Target=0 includes 2 classes, only 31%.

- Maximum number of cases lies between 40 to 60 (for 500 random samples).
- Normally distributed.

Occurrence is more in male patients than female patients

► Frequency of 2 bounding box (opacity) is higher

	noOfOpacity	Target	Class	totalPatient
0	1	0	No Lung Opacity / Not Normal	11821
1	1	0	Normal	8851
2	1	1	Lung Opacity	2614
3	2	1	Lung Opacity	3266
4	3	1	Lung Opacity	119
5	4	1	Lung Opacity	13

- Analyse the Lung Opacity Window
 - For 2000 samples of training data, plotted the centres of the bounding boxes (bbox) for lung opacities over the actual boxes.
 - Probability is pneumonic patch is more around the centre of both the lungs.

Data Pre-processing

```
# Data Generator using Sequence for multiprocessing
from tensorflow.keras.utils import Sequence
class DataSequence(Sequence):
 def init (self, folder, filenames, pneumonia locations=None, batch size=BATCH SIZE,
               image size=IMAGE SIZE, shuffle=True, augment=False, predict=False):
   self.folder = folder
   self.filenames = filenames
   self.pneumonia locations = pneumonia locations
   self.batch size = batch size
   self.image size = image size
   self.shuffle = shuffle
   self.augment = augment
   self.predict = predict
   self.on epoch end()
 def load (self, filename):
   # Load DICOM file as numpy array
   img = pydicom.dcmread(self.folder + filename).pixel array
   # Create empty mask
   mask = np.zeros(img.shape)
   filename = filename.split('.')[0] # Remove the file extension
   if filename in pneumonia locations:
     for location in pneumonia locations[filename]:
        x, y, width, height = location
        mask[x:x+width, y:y+height] = 1 # Broadcast value of 1 to all the pixels within
   # If augment flag is on, then flip the image and mask horizontally half the times
   if self.augment and random.random() > 0.5:
     img = np.fliplr(img)
     mask = np.fliplr(mask)
   # Resize both the image and mask
   img = resize(img, (self.image size, self.image size), mode='symmetric')
   mask = resize(mask, (self.image_size, self.image_size), mode='symmetric') > 0.5
   # Add the channel dimension to both the image and masks files
   img = np.expand dims(img, -1)
   mask = np.expand dims(mask, -1)
```

Data Pre-processing

```
def __load_predict__(self, filename):
  # Load DICOM file as numpy array
 img = pydicom.dcmread(self.folder + filename).pixel array
 img = resize(img, (self.image_size, self.image_size), mode='symmetric')
 img = np.expand dims(img, -1)
 return img
def __getitem__(self, idx):
 # select batch
 filenames = self.filenames[idx*self.batch size : (idx + 1)*self.batch size] # Image path
 if self.predict:
    # Load files for this batch
    imgs = [self. loadpredict (filename) for filename in filenames]
   imgs = np.array(imgs) # Create numpy arrays for batch images
   return imgs, filenames
 else:
    # Load files for this batch
   items = [self. load (filename) for filename in filenames]
   imgs, msks = zip(*items) # Output of __load__ is a tuple with imgs and masks, so uUnzip
    imgs = np.array(imgs) # Create numpy arrays for batch images
   msks = np.array(msks) # Create numpy arrays for batch masks
   return imgs, msks
def on epoch end(self):
 if self.shuffle:
    random.shuffle(self.filenames)
def len (self):
 if self.predict:
   return int(np.ceil(len(self.filenames) / self.batch size))
  else:
    return int(len(self.filenames) / self.batch size)
```

Models Used

- Model with Conv2D Layers
- Model with SeparableConv2D Layers
- Model with SeparableConv2D Layers additional layers
- Model with Resnet Blocks
- Model for Classification with SeparableConv2D Layers

Model 1 with Conv2D Layers

```
# Model 1 with Conv2D Layers
model1 = Sequential()
# Add Convolution layers with 32 kernels of 3X3 shape with activation function ReLU
model1.add(Conv2D(4, (3, 3), input shape = (IMAGE SIZE, IMAGE SIZE, 1), activation = 'relu', padding = 'same'))
model1.add(MaxPooling2D(pool_size = (2, 2))) # Max Pooling layer of size 2X2
model1.add(Conv2D(16, (2, 2), activation = 'relu', padding = 'same'))
model1.add(MaxPooling2D(pool_size = (2, 2)))
model1.add(BatchNormalization())
model1.add(Conv2D(64, (2, 2), activation = 'relu', padding = 'same'))
model1.add(BatchNormalization())
model1.add(MaxPooling2D(pool size = (2, 2)))
model1.add(Dropout(0.4))
model1.add(Conv2D(128, (2, 2), activation = 'relu', padding = 'same'))
model1.add(MaxPooling2D(pool size = (2, 2)))
model1.add(Dropout(0.3))
# 1 unit with Sigmoid activation for binary classification
model1.add(Conv2D(1, 1, activation='sigmoid'))
# UpSampling Layer to bring the image back to the input size
model1.add(UpSampling2D(16))
model1.summary()
model1.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
```

Training accuracy : 97.34% Validation accuracy: 97.55%

Model 2 with SeperableConv2D Layers

```
# Model 2 with SeperableConv2D Layers
model2 = Sequential() # Create and instance of Sequential Model
model2.add(Conv2D(filters=16, kernel_size=(2,2), input_shape=(IMAGE_SIZE, IMAGE_SIZE, 1), activation='relu', padding='same'))
model2.add(MaxPooling2D(pool size = (2, 2)))
model2.add(SeparableConv2D(filters=32, kernel size=(2,2), activation='relu', padding='same'))
model2.add(MaxPooling2D(pool size = (2, 2)))
model2.add(SeparableConv2D(filters=64, kernel size=(2,2), activation='relu', padding='same'))
model2.add(MaxPooling2D(pool_size = (2, 2)))
model2.add(SeparableConv2D(filters=128, kernel size=(2,2), activation='relu', padding='same'))
model2.add(MaxPooling2D(pool_size = (2, 2)))
model2.add(SeparableConv2D(filters=256, kernel_size=(2,2), activation='relu', padding='same'))
model2.add(MaxPooling2D(pool size = (2, 2)))
model2.add(SeparableConv2D(filters=256, kernel size=(2,2), activation='relu', padding='same'))
model2.add(BatchNormalization(momentum=0.9))
model2.add(MaxPooling2D(pool size = (2, 2)))
model2.add(Conv2D(1, 1, activation='sigmoid'))
model2.add(UpSampling2D())
model2.add(UpSampling2D())
model2.add(UpSampling2D())
model2.add(UpSampling2D())
model2.add(UpSampling2D())
model2.add(UpSampling2D())
model2.summary()
# Compile model
model2.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
```

Training accuracy : 97.33% Validation accuracy: 97.37%

► Model 3 with SeperableConv2D blocks with greater depth

```
# Model 3 with SeperableConv2D Layers
inputs = Input(shape=(IMAGE_SIZE, IMAGE_SIZE, 1))
# First conv block
x = Conv2D(filters=16, kernel_size=(3, 3), activation='relu', padding='same')(inputs)
x = Conv2D(filters=16, kernel_size=(3, 3), activation='relu', padding='same')(x)
X = MaxPool2D(pool_size=(2, 2))(X)
# Second conv block
x = SeparableConv2D(filters=32, kernel_size=(3, 3), activation='relu', padding='same')(x)
x = SeparableConv2D(filters=32, kernel size=(3, 3), activation='relu', padding='same')(x)
x = BatchNormalization()(x)
x = MaxPool2D(pool_size=(2, 2))(x)
# Third conv block
x = SeparableConv2D(filters=64, kernel_size=(3, 3), activation='relu', padding='same')(x)
x = SeparableConv2D(filters=64, kernel_size=(3, 3), activation='relu', padding='same')(x)
x = BatchNormalization()(x)
X = MaxPool2D(pool_size=(2, 2))(X)
# Fourth conv block
x = SeparableConv2D(filters=128, kernel_size=(3, 3), activation='relu', padding='same')(x)
x = SeparableConv2D(filters=128, kernel_size=(3, 3), activation='relu', padding='same')(x)
x = BatchNormalization()(x)
X = MaxPool2D(pool_size=(2, 2))(X)
x = Dropout(rate=0.2)(x)
# Fifth conv block
x = SeparableConv2D(filters=256, kernel_size=(3, 3), activation='relu', padding='same')(x)
x = SeparableConv2D(filters=256, kernel_size=(3, 3), activation='relu', padding='same')(x)
x = BatchNormalization()(x)
X = MaxPool2D(pool_size=(2, 2))(X)
x = Dropout(rate=0.2)(x)
# Sigmoid activation for binary classification
x = Conv2D(filters=1, kernel_size=(2,2), activation='sigmoid', padding='same')(x)
output = UpSampling2D(32)(x)
# Creating model
model3 = Model(inputs=inputs, outputs=output)
model3.summarv()
```

Training accuracy: 96.21% Validation accuracy: 96.01%

Model 4 with ResNet blocks

```
def create_downsample(channels, inputs):
    x = keras.layers.BatchNormalization(momentum=0.9)(inputs)
    x = keras.layers.LeakyReLU(0)(x)
    x = keras.layers.Conv2D(channels, 1, padding='same', use_bias=False)(x)
    x = keras.layers.MaxPool2D(2)(x)
    # Added start
    #x = keras.loyers.Conv2D(channeLs, 1, padding.'same', use bias-FaLse)(x)
    #x = keras.loyers.MaxPooL20(2)(x)
    # Added End
    return x
```

```
def create resblock(channels, inputs):
 x = keras.layers.BatchNormalization(momentum=0.9)(inputs)
 x = keras.layers.LeakyReLU(0)(x)
 x = keras.layers.Conv2D(channels, 3, padding='same', use bias=False)(x)
 x = keras.layers.BatchNormalization(momentum=0.9)(x)
 x = keras.layers.LeakyReLU(0)(x)
 x = keras.layers.Conv2D(channels, 3, padding='same', use bias=False)(x)
  #Added Start
 x = keras.layers.BatchNormalization(momentum=0.9)(x)
 x = keras.layers.LeakyReLU(0)(x)
 x = keras.layers.Conv2D(channels, 3, padding='same', use bias=False)(x)
  #Added End
  addInput = x;
 print("Add input shape:", addInput.shape)
 print("Resnet block input shape:", inputs.shape)
 resBlockOut = keras.layers.add([addInput, inputs])
 print("Resnet block out shape:", resBlockOut.shape)
 out = keras.layers.concatenate([resBlockOut, addInput], axis=3)
 print("concat block out shape:", out.shape)
 out = keras.layers.Conv2D(channels, 1, padding='same', use bias=False)(out)
  print("mixed block out shape:", out.shape)
  return out
```

Training accuracy: 96.57% Validation accuracy: 95.48%

BCE + IOU as Loss Mean IOU as Metric

```
# Define IOU or Jaccard Loss function
def iou_loss(y_true, y_pred):
 y true = tf.reshape(y true, [-1])
 y_pred = tf.reshape(y_pred, [-1])
 intersection = tf.reduce_sum(y_true * y_pred)
  score = (intersection + 1.) / (tf.reduce_sum(y_true) + tf.reduce_sum(y_pred) - intersection + 1.)
  return 1 - score
# Combine BCE Loss and IOU Loss
def iou_bce_loss(y_true, y_pred):
  return 0.5 * keras.losses.binary_crossentropy(y_true, y_pred) + 0.5 * iou_loss(y_true, y_pred)
# Mean IOU as a metric
def mean_iou(y_true, y_pred):
 y pred = tf.round(y pred)
  intersect = tf.reduce_sum(y_true * y_pred, axis=[1, 2, 3])
  union = tf.reduce_sum(y_true, axis=[1, 2, 3]) + tf.reduce_sum(y_pred, axis=[1, 2, 3])
  smooth = tf.ones(tf.shape(intersect))
  return tf.reduce_mean((intersect + smooth) / (union - intersect + smooth))
```

Model Training

```
# Define Callbacks
   checkpoint = ModelCheckpoint(filepath='best weights.hdf5', save best only=True, save weights only=True)
   1r reduce = ReduceLROnPlateau(monitor='val loss', factor=0.3, patience=1, verbose=2, mode='max')
   early stop = EarlyStopping(monitor='val loss', min delta=0.1, patience=1, mode='min')
  # Generate training and validation datasets
   folder = 'stage 2 train images/'
   train_gen = DataSequence(folder, train_filenames, pneumonia_locations, batch_size=BATCH_SIZE, image_size=IMAGE_SIZE, shuffle=False, augment=True, predict=False)
   valid gen = DataSequence(folder, valid filenames, pneumonia locations, batch size=BATCH SIZE, image size=IMAGE SIZE, shuffle=False, predict=False)
[ ] # Model1
   history1 = model1.fit generator(train gen, validation data=valid gen, callbacks=[lr reduce], epochs=2, shuffle=True, verbose=1)
   Epoch 1/2
   30/755 [>......] - ETA: 3:54:07 - loss: 0.5515 - accuracy: 0.9611 - mean iou: 0.6355/usr/local/lib/python3.6/dist-packages/keras/utils/data uti
    UserWarning)
   200/755 [=====>......] - ETA: 2:57:00 - loss: 0.5385 - accuracy: 0.9695 - mean iou: 0.7040/usr/local/lib/python3.6/dist-packages/keras/utils/data uti
    UserWarning)
   UserWarning)
   584/755 [=======>>.....] - ETA: 53:30 - loss: 0.5335 - accuracy: 0.9710 - mean_iou: 0.7155/usr/local/lib/python3.6/dist-packages/keras/utils/data_utils
    UserWarning)
   Epoch 2/2
   Epoch 00002: ReduceLROnPlateau reducing learning rate to 0.0003000000142492354.
```

Classification Model

```
def getitem (self, idx):
 # select batch
 filenames = self.filenames[idx*self.batch size : (idx + 1)*self.batch size]
 if self.predict:
   # Load files for this batch
   imgs = [self. loadpredict (filename) for filename in filenames]
   imgs = np.array(imgs) # Create numpy arrays for batch images
   return imgs, filenames
 else:
   # Load files for this batch
   items = [self. load (filename) for filename in filenames]
   imgs, tgts = zip(*items) # Output of load is a tuple with imgs and targets, so Unzip the images and targets
   imgs = np.array(imgs) # Create numpy arrays for batch images
   tgts = np.array(tgts) # Create numpy arrays for target
   return imgs, tgts
```

Classification Model

```
[ ] inputs = Input(shape=(IMAGE_SIZE, IMAGE_SIZE, 1))
    # First conv block
    x = Conv2D(filters=16, kernel size=(3, 3), activation='relu', padding='same')(inputs)
    x = Conv2D(filters=16, kernel_size=(3, 3), activation='relu', padding='same')(x)
    X = MaxPool2D(pool_size=(2, 2))(X)
    # Second conv block
    x = SeparableConv2D(filters=32, kernel_size=(3, 3), activation='relu', padding='same')(x)
    x = SeparableConv2D(filters=32, kernel_size=(3, 3), activation='relu', padding='same')(x)
    x = BatchNormalization()(x)
    X = MaxPool2D(pool_size=(2, 2))(X)
    # Third conv block
    x = SeparableConv2D(filters=64, kernel_size=(3, 3), activation='relu', padding='same')(x)
    x = SeparableConv2D(filters=64, kernel_size=(3, 3), activation='relu', padding='same')(x)
    x = BatchNormalization()(x)
    X = MaxPool2D(pool_size=(2, 2))(X)
    # Fourth conv block
    x = SeparableConv2D(filters=128, kernel size=(3, 3), activation='relu', padding='same')(x)
    x = SeparableConv2D(filters=128, kernel size=(3, 3), activation='relu', padding='same')(x)
    x = BatchNormalization()(x)
    X = MaxPool2D(pool_size=(2, 2))(X)
    x = Dropout(rate=0.2)(x)
    # Fifth conv block
    x = SeparableConv2D(filters=256, kernel_size=(3, 3), activation='relu', padding='same')(x)
    x = SeparableConv2D(filters=256, kernel size=(3, 3), activation='relu', padding='same')(x)
    x = BatchNormalization()(x)
    x = MaxPool2D(pool size=(2, 2))(x)
    x = Dropout(rate=0.2)(x)
```

Classification Model

```
# FC layer
x = Flatten()(x)
x = Dense(units=512, activation='relu')(x)
x = Dropout(rate=0.7)(x)
x = Dense(units=128, activation='relu')(x)
x = Dropout(rate=0.5)(x)
x = Dense(units=64, activation='relu')(x)
x = Dropout(rate=0.3)(x)

# Output layer
output = Dense(units=1, activation='sigmoid')(x)
```

Training accuracy: 81.97% Validation accuracy: 80.69%

Model Comparison

Model	Training accuracy	Validation accuracy	AUC
Model 1: Conv2D Layers	97.34%	97.55%	82.92
Model 2: SeperableConv2D Layers	97.33%	97.37%	79.32
Model 3: SeperableConv2D blocks with greater depth	96.21%	96.01%	85.62
Model 4: ResNet blocks	96.57%	95.48%	81.90
Classification Model	81.97%	80.69%	-

Model Comparison

Step by Step Approach

- Pre-processing by splitting training data into batches of size 32
- Created a basic model with only Conv2D layers
- To reduce the training parameters, created model with SeparableConv2D
- Built 4 models for predicting bounding boxes and evaluated based on Accuracy metric
- Built Classification model for predicting the presence of Pneumonia
- Picked model 3, SeperableConv2D blocks with greater depth, based on accuracy and loss.
- Verified actual and predicted bounding boxes using 1 batch(32) of validation samples
- Created submission file

Based on AUC, Accuracy and Loss, selected model 3, SeperableConv2D blocks

```
1 # REGRESSION MODEL TO PREDICT BBOX COORDINATES
    inputs = Input(shape=(IMAGE_SIZE, IMAGE_SIZE, 1))
4 # First conv block
5 x = Conv2D(filters=16, kernel_size=(3, 3), activation='relu', padding='same')(inputs)
 6 x = Conv2D(filters=16, kernel size=(3, 3), activation='relu', padding='same')(x)
7 X = MaxPool2D(pool_size=(2, 2))(X)
9 # Second conv block
10 x = SeparableConv2D(filters=32, kernel_size=(3, 3), activation='relu', padding='same')(x)
11 x = SeparableConv2D(filters=32, kernel_size=(3, 3), activation='relu', padding='same')(x)
12  x = BatchNormalization()(x)
13 X = MaxPool2D(pool_size=(2, 2))(X)
14
15 # Third conv block
17 x = SeparableConv2D(filters=64, kernel_size=(3, 3), activation='relu', padding='same')(x)
18  x = BatchNormalization()(x)
19 x = MaxPool2D(pool_size=(2, 2))(x)
20
21 # Fourth conv block
22 x = SeparableConv2D(filters=128, kernel_size=(3, 3), activation='relu', padding='same')(x)
23 x = SeparableConv2D(filters=128, kernel_size=(3, 3), activation='relu', padding='same')(x)
24 x = BatchNormalization()(x)
25 x = MaxPool2D(pool size=(2, 2))(x)
26 x = Dropout(rate=0.2)(x)
27
28 # Fifth conv block
29 x = SeparableConv2D(filters=256, kernel size=(3, 3), activation='relu', padding='same')(x)
30 x = SeparableConv2D(filters=256, kernel_size=(3, 3), activation='relu', padding='same')(x)
31 x = BatchNormalization()(x)
32 X = MaxPool2D(pool_size=(2, 2))(X)
33 x = Dropout(rate=0.2)(x)
35 # Sigmoid activation for binary classification
    x = Conv2D(filters=1, kernel_size=(2,2), activation='sigmoid', padding='same')(x)
    output = UpSampling2D(32)(x)
    # Creating model
41 model3 = Model(inputs=inputs, outputs=output)
42 model3.summary()
```

- Model Structure for Model 3
 - ▶ 5 SeparableConv2D blocks with MaxPooling and BatchNormalization layers
 - Conv2D Sigmoid Activation
 - ▶ 32 Upsampling Layers
 - Optimzer = Adam
 - Loss = iou_bce_loss
 - Metrics = accuracy
 - ► Epochs = 8

- - 755/755 [============] 5751s 8s/step loss: 0.5060 accuracy: 0.9629 mean_iou: 0.7378 precision_1: 0.2355 recall_1: 0.1952 auc_1: 0.7682 val_loss: 0.4941 val_accuracy: Epoch 2/2
 755/755 [=============] 5684s 8s/step loss: 0.4912 accuracy: 0.9639 mean_iou: 0.7523 precision_1: 0.2705 recall_1: 0.2572 auc_1: 0.8189 val_loss: 0.4330 val_accuracy:

Epoch 00002: ReduceLROnPlateau reducing learning rate to 0.0003000000142492354.

▶ Based on accuracy and loss, selected model 3, SeperableConv2D blocks

```
df_regr_metrics = pd.DataFrame(columns=['Model', 'Epoch', 'Train loss', 'Valid loss', 'Train accuracy', 'Valid accuracy', 'Train iou', 'Valid iou', 'Train Precision', 'Valid Precision', 'Valid Precision', 'Valid Ioss', 'Valid 
             for i, epoch_num in enumerate(history.epoch):
                    df_regr_metrics = df_regr_metrics.append({
                                                                          'Model':'Model3',
                                                                          'Epoch': int(epoch_num),
                                                                          'Train loss':history.history["loss"][i],
                                                                           'Valid loss':history.history["val_loss"][i],
                                                                           'Train accuracy':history.history["accuracy"][i],
                                                                           'Valid accuracy':history.history["val_accuracy"][i],
                                                                           'Train iou':history.history["mean iou"][i],
10
                                                                          'Valid iou': history.history["val mean iou"][i],
11
12
                                                                           'Train Precision':history.history['precision_1'][i],
                                                                           'Valid Precision': history.history["val_precision_1"][i],
13
                                                                           'Train Recall': history.history['recall 1'][i],
14
                                                                           'Valid Recall':history.history["val_recall_1"][i],
15
                                                                           'Train AUC': history.history['auc 1'][i],
16
                                                                          'Valid AUC': history.history["val auc 1"][i]}, ignore index=True)
17
             df_regr_metrics
```

	Model	Epoch	Train loss	Valid loss	Train accuracy	Valid accuracy	Train iou	Valid iou	Train Precision	Valid Precision	Train Recall	Valid Recall	Train AUC	Valid AUC
0	Model3	0	0.506007	0.494073	0.962898	0.949001	0.737834	0.682489	0.235494	0.265730	0.19519	0.245055	0.768172	0.812514
1	Model3	1	0.491239	0.432990	0.963905	0.951135	0.752271	0.723777	0.270460	0.278685	0.25725	0.266564	0.818901	0.824171

Submission File Creation

```
1 submission_dict = {}
    # Predict the bbox coordinates for the test dataset and
 3 for imgs, filenames in test gen:
      # predict batch of images
      preds = model.predict(imgs)
      print(filenames.shape)
      print(preds.shape)
      for filename, pred in zip(filenames, preds):
         # resize predicted mask
10
11
         pred = resize(pred, (1024, 1024), mode='reflect')
12
         # threshold predicted mask
         comp = pred[:, :, 0] > 0.5
13
14
         # apply connected components
15
         comp = measure.label(comp)
16
         # apply bounding boxes
17
         predictionString = ''
         for region in measure.regionprops(comp):
18
          # retrieve x, y, height and width
19
          y, x, y2, x2 = region.bbox
20
21
          height = y2 - y
22
          width = x2 - x
          # proxy for confidence score
23
24
           conf = np.mean(pred[y:y+height, x:x+width])
          predictionString += str(conf) + ' ' + str(x) + ' ' + str(y) + ' ' + str(width) + ' ' + str(height)
25
         filename = filename.split('.')[0]
26
27
         submission_dict[filename] = predictionString
       # stop if we've got them all
      if len(submission dict) >= len(test filenames):
29
30
31
           #sumbission_df = sumbission_df.append({'patientId':patientId, 'PredictionString': predictionString}, ignore_index=True)
32
    # save dictionary as csv file
    sub = pd.DataFrame.from dict(submission dict,orient='index')
    sub.index.names = ['patientId']
    sub.columns = ['PredictionString']
    sub.to csv('submission.csv')
```

Submission File

patientId	PredictionString	
24fe325a-be98-405e-bbf5-cbe64aa82e5c		
25f09d92-e440-4e16-aca2-5baca1a76c89		
26636455-c98d-49a1-8b48-7025f535f982	0.77659607 508 257 259 510	
255354f6-9379-493a-90d1-5dd36ac660bc		
25c98e9d-637f-4e6f-8ad3-f9f85a7f7590		
25d2e423-40f3-4c47-becd-e05908e3ced4		
264d4100-0a4a-460d-81fd-e781bbf6ca86		
266490ca-ce52-4f5b-92ff-082dae7967c0		
26903582-dbc1-4427-b9da-45e2fa00ed17		
24e04bef-a0c2-439e-9181-5fa26c162fa4	0.5576752 259 258 507 507	
2634cbd2-0a3f-4503-bc07-b8f4f2da80c4		
2557ee07-5fc1-4eba-915e-f52d3d898f1e	0.7287349 257 257 511 511	
25840be8-f6cf-4df1-893b-80412b99a417	0.52446324 515 260 249 504	
2657b0a9-63ec-43b2-810e-b665f879f309		
2568153b-bdde-4292-8968-47f8e74cd400		
26a937bc-a3e4-41a1-9a1a-a63506d4b49d	0.8797624 256 256 512 512	
265dd221-9049-4bca-b5c0-4118dafa55c5		
268116a6-2304-4316-b5b3-3073fc5467b1		
257e34f1-f461-45fd-ab15-ec4cbfada52a		
2578fa2d-6cf3-41d1-b233-89587b1126d8		
2676fc9d-7ace-4896-b698-17fc68131851	0.6088609 258 258 255 507	
258f5240-8010-4472-91fe-494f75d59a46	0.56559247 513 258 252 506	

Model Output for Training Data(Model 3)

Predicted bounding box

Original bounding box

Model Output for Test Data(Model 3)

Predicted bounding box

ID: 2b9990c6-dd10-44e4-9d5a-5701a964a57d Modality: CR Age: 58 Sex: F Target: 0

ID: 0066ba32-08b6-4ac9-8d5a-abec69825d53 Modality: CR Age: 52 Sex: F Target: 1

As we can see, the model is predicting correctly.

- For the first patient, the bounding box is bigger as the whole chest looks congested
- For the second patient, we dont have a bounding box, as the lungs appear to be clear
- For the third patient, pneumonia is detected in 2 different areas marked by the two seperate bounding boxes.

Conclusion

- Our model is able to predict the bounding boxes around Pneumonic patches w ith accuracy of 87% on test data.
- Out of 3000 patients in the test set, 935 appear to have pneumonia for whom one or more bounding boxes are predicted by our model.
- Approximately 31% of patients are predicted to have pneumonia which is consistent with the training set data.
- This project uses recent techniques in the field of computer vision and deep learning and visualizations of key outcomes.

Implications

- Application can predict if the patient is affected with Pneumonia
- It pinpoints the affected areas of lungs using bounding boxes and the confidence levels associated with each of them
- This will help the doctors by reducing the number of CXRs they have to look through
- This project will help health care professionals by making quick and accurate predictions of pneumonia in CXR images.

Limitations

Currently, input images size is fixed. This can be modified to accept images of different sizes.

How to improve model performance?

- ► Image Augmentation to increase the number of images where Target=1, which is our class of interest
- Increase the number of training epochs
- Choose models based on performance

Closing Reflections

- Learnings
 - Use of pydicom package to view .dcm medical images
 - Preprocessing of image related data
 - Use of custom loss and metric functions
 - Resnet and SeperableConv2D Layers
 - Collaboration between team members for different tasks
 - Understanding of complexity of real-world data and projects
- Possible Improvements
 - Use a pretrained model such as YOLO or Faster-RCNN as benchmark
 - Image Augmentation

Thank you!