ORIENTAÇÕES DE ESTUDO

Olá, pessoal, tudo bem?

Em nossa **Aula 01** vocês devem:

- 1. Estudar os slides abaixo sobre o tema;
- 2. Assistir aos vídeos:

Título	links
Produto Cartesiano	https://youtu.be/Kx3J_WKnJ2Q
Relações: Introdução	https://youtu.be/rMLEdAgMJ4k
Relações: Propriedades	https://youtu.be/ZdXN66KSQgY

Após estudar os slides e visualizar os vídeos, participe do **Fórum**, responda as questões das listas de exercícios.

Matemática Discreta Relações

Professora: Lílian de Oliveira Carneiro

Universidade Federal do Ceará Campus de Crateús

Outubro de 2019

Introdução

Produto Cartesiano

3 Relações e suas Propriedades

Introdução

 Ligações entre elementos de conjuntos ocorrem em muitos contextos

- Ligações entre elementos de conjuntos ocorrem em muitos contextos
- As ligações entre os elementos de conjuntos são representadas usando uma estrutura chamada de relação

- Ligações entre elementos de conjuntos ocorrem em muitos contextos
- As ligações entre os elementos de conjuntos são representadas usando uma estrutura chamada de relação
- Relações podem ser usadas para resolver tais problemas:

- Ligações entre elementos de conjuntos ocorrem em muitos contextos
- As ligações entre os elementos de conjuntos são representadas usando uma estrutura chamada de relação
- Relações podem ser usadas para resolver tais problemas:
 - Quais pares de cidades s\u00e30 ligados por linhas a\u00e9reas em uma rede?

- Ligações entre elementos de conjuntos ocorrem em muitos contextos
- As ligações entre os elementos de conjuntos são representadas usando uma estrutura chamada de relação
- Relações podem ser usadas para resolver tais problemas:
 - Quais pares de cidades s\u00e30 ligados por linhas a\u00e9reas em uma rede?
 - Elaboração de um modo útil de armazenar informação em bancos de dados computacionais

Definição

• Dados dois conjuntos A e B não vazios, definimos o produto cartesiano entre A e B, denotado por $A \times B$, como o conjunto de todos os pares ordenados da forma (x,y) onde $x \in A$ e $y \in B$. Simbolicamente:

- Dados dois conjuntos A e B não vazios, definimos o produto cartesiano entre A e B, denotado por $A \times B$, como o conjunto de todos os pares ordenados da forma (x,y) onde $x \in A$ e $y \in B$. Simbolicamente:
 - $\bullet \ A \times B = \{(x,y) | x \in A \text{ e } y \in B\}$

- Dados dois conjuntos A e B não vazios, definimos o produto cartesiano entre A e B, denotado por $A \times B$, como o conjunto de todos os pares ordenados da forma (x,y) onde $x \in A$ e $y \in B$. Simbolicamente:
 - $A \times B = \{(x,y) | x \in A \text{ e } y \in B\}$
- \bullet O símbolo $A\times B$ lê-se "A cartesiano B " ou produto cartesiano de "A por B "

- Dados dois conjuntos A e B não vazios, definimos o produto cartesiano entre A e B, denotado por $A \times B$, como o conjunto de todos os pares ordenados da forma (x,y) onde $x \in A$ e $y \in B$. Simbolicamente:
 - $A \times B = \{(x,y) | x \in A \text{ e } y \in B\}$
- O símbolo $A \times B$ lê-se "A cartesiano B" ou produto cartesiano de "A por B"
- Se $A = \emptyset$ ou $B = \emptyset$, por definição:

- Dados dois conjuntos A e B não vazios, definimos o produto cartesiano entre A e B, denotado por $A \times B$, como o conjunto de todos os pares ordenados da forma (x,y) onde $x \in A$ e $y \in B$. Simbolicamente:
 - $A \times B = \{(x,y) | x \in A \text{ e } y \in B\}$
- O símbolo $A \times B$ lê-se "A cartesiano B" ou produto cartesiano de "A por B"
- Se $A = \emptyset$ ou $B = \emptyset$, por definição:

$$A \times B = \emptyset = B \times A \text{ e } \emptyset \times \emptyset = \emptyset$$

Definição

• Exemplos. Se $A = \{1, 2, 3\}$ e $B = \{1, 2\}$, então:

- Exemplos. Se $A = \{1, 2, 3\}$ e $B = \{1, 2\}$, então:
 - $\bullet \ A\times B=\{(1,1),(1,2),(2,1),(2,2),(3,1),(3,2)\}$

- Exemplos. Se $A = \{1, 2, 3\}$ e $B = \{1, 2\}$, então:
 - $A \times B = \{(1,1), (1,2), (2,1), (2,2), (3,1), (3,2)\}$

Definição

• Exemplos. Se $A = \{1, 2, 3\}$ e $B = \{1, 2\}$, então:

- Exemplos. Se $A = \{1, 2, 3\}$ e $B = \{1, 2\}$, então:
 - $\bullet \ B\times A=\{(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,2)\}$

- Exemplos. Se $A = \{1, 2, 3\}$ e $B = \{1, 2\}$, então:
 - $B \times A = \{(1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,2)\}$

Definição

• Exemplos. Se $A = \{2, 3\}$, então:

- Exemplos. Se $A = \{2, 3\}$, então:
 - $A \times A = A^2 = \{(2,2), (2,3), (3,2), (3,3)\}$

Definição

• Exemplos. Se $A=\{x\in\mathbb{R}|1\leq x\leq 3\}$ e $B=\{x\in\mathbb{R}|1\leq x\leq 5\}$, então:

- Exemplos. Se $A = \{x \in \mathbb{R} | 1 \le x \le 3\}$ e $B = \{x \in \mathbb{R} | 1 \le x \le 5\}$, então:
 - $\bullet \ A\times B=\{(x,y)\in \mathbb{R}|1\leq x\leq 3 \text{ e } 1\leq y\leq 5\}$

- Exemplos. Se $A=\{x\in\mathbb{R}|1\leq x\leq 3\}$ e $B=\{x\in\mathbb{R}|1\leq x\leq 5\}$, então:
 - $A \times B = \{(x, y) \in \mathbb{R} | 1 \le x \le 3 \text{ e } 1 \le y \le 5 \}$

Propriedades

 \bullet Se $A \neq B$, então $A \times B \neq B \times A$

Propriedades

- Se $A \neq B$, então $A \times B \neq B \times A$
- \bullet Se A e B são conjuntos finitos com m e n elementos, respectivamente, entanto $A\times B$ é um conjunto com $m\cdot n$ elementos

Propriedades

- Se $A \neq B$, então $A \times B \neq B \times A$
- Se A e B são conjuntos finitos com m e n elementos, respectivamente, entanto $A\times B$ é um conjunto com $m\cdot n$ elementos
- \bullet Se A ou B for infinito e nenhum deles vazio, então $A\times B$ é um conjunto infinito

Relações Binárias

Relações Binárias

- Sejam A e B dois conjuntos. Uma relação binária de A em B é um subconjunto de $A \times B$
- Exemplo. Seja $A=\{1,2,3,4,5\}$ e $B=\{1,2,3,4\}$ quais são os elementos da relação $R=\{(x,y)|x< y\}$?

Relações Binárias

- Sejam A e B dois conjuntos. Uma relação binária de A em B é um subconjunto de $A \times B$
- Exemplo. Seja $A = \{1, 2, 3, 4, 5\}$ e $B = \{1, 2, 3, 4\}$ quais são os elementos da relação $R = \{(x, y) | x < y\}$?
 - Temos que:

Relações Binárias

- Sejam A e B dois conjuntos. Uma relação binária de A em B é um subconjunto de $A \times B$
- Exemplo. Seja $A = \{1, 2, 3, 4, 5\}$ e $B = \{1, 2, 3, 4\}$ quais são os elementos da relação $R = \{(x, y) | x < y\}$?
 - Temos que:

$$A \times B = \left\{ \begin{array}{lll} (1,1), & (1,2), & (1,3), & (1,4), \\ (2,1), & (2,2), & (2,3), & (2,4), \\ (3,1), & (3,2), & (3,3), & (3,4), \\ (4,1), & (4,2), & (4,3), & (4,4), \\ (5,1), & (5,2), & (5,3), & (5,4) \end{array} \right\}$$

ullet Os elementos da relação R são:

Relações Binárias

- Sejam A e B dois conjuntos. Uma relação binária de A em B é um subconjunto de $A \times B$
- Exemplo. Seja $A = \{1, 2, 3, 4, 5\}$ e $B = \{1, 2, 3, 4\}$ quais são os elementos da relação $R = \{(x, y) | x < y\}$?
 - Temos que:

$$A \times B = \left\{ \begin{array}{llll} (1,1), & (1,2), & (1,3), & (1,4), \\ (2,1), & (2,2), & (2,3), & (2,4), \\ (3,1), & (3,2), & (3,3), & (3,4), \\ (4,1), & (4,2), & (4,3), & (4,4), \\ (5,1), & (5,2), & (5,3), & (5,4) \end{array} \right\}$$

ullet Os elementos da relação R são:

$$R = \{ (1,2), (1,3), (1,4), (2,3), (2,4), (3,4) \}$$

Relações Binárias

 \bullet Sejam A e B dois conjuntos. Uma relação binária de A em B é um subconjunto de $A\times B$

Relações Binárias

- Sejam A e B dois conjuntos. Uma relação binária de A em B é um subconjunto de $A \times B$
- Exemplo. Seja $A=\{1,2,3\}$ e $B=\{2,4,6,10\}$ quais são os elementos da relação $R=\{(x,y):x\mid y\}$?

Relações Binárias

- Sejam A e B dois conjuntos. Uma relação binária de A em B é um subconjunto de $A \times B$
- Exemplo. Seja $A = \{1,2,3\}$ e $B = \{2,4,6,10\}$ quais são os elementos da relação $R = \{(x,y): x \mid y\}$?
 - Temos que:

Relações Binárias

- Sejam A e B dois conjuntos. Uma relação binária de A em B é um subconjunto de $A \times B$
- Exemplo. Seja $A = \{1,2,3\}$ e $B = \{2,4,6,10\}$ quais são os elementos da relação $R = \{(x,y): x \mid y\}$?
 - Temos que:

$$A \times B = \left\{ \begin{array}{ll} (1,2), & (1,4), & (1,6), & (1,10) \\ (2,2), & (2,4), & (2,6), & (2,10), \\ (3,2), & (3,4), & (3,6), & (3,10) \end{array} \right\}$$

ullet Os elementos da relação R são:

Relações Binárias

- Sejam A e B dois conjuntos. Uma relação binária de A em B é um subconjunto de $A \times B$
- Exemplo. Seja $A = \{1,2,3\}$ e $B = \{2,4,6,10\}$ quais são os elementos da relação $R = \{(x,y): x \mid y\}$?
 - Temos que:

$$A \times B = \left\{ \begin{array}{ll} (1,2), & (1,4), & (1,6), & (1,10) \\ (2,2), & (2,4), & (2,6), & (2,10), \\ (3,2), & (3,4), & (3,6), & (3,10) \end{array} \right\}$$

ullet Os elementos da relação R são:

$$R = \{ (1,2), (1,4), (1,6), (1,10), (2,2), (2,4), (2,6), (2,10), (3,6) \}$$

Relações n-Árias

• Sejam A_1,A_2,\cdots,A_n conjuntos. Uma **relação n-ária** nesses conjuntos é um subconjunto de $A_1\times A_2\times\cdots\times A_n$

- Sejam A_1, A_2, \cdots, A_n conjuntos. Uma **relação n-ária** nesses conjuntos é um subconjunto de $A_1 \times A_2 \times \cdots \times A_n$
- Os conjuntos A_1, A_2, \cdots, A_n são chamados **domínios** da relação e n é chamado de seu **grau**

- Sejam A_1, A_2, \cdots, A_n conjuntos. Uma **relação n-ária** nesses conjuntos é um subconjunto de $A_1 \times A_2 \times \cdots \times A_n$
- Os conjuntos A_1, A_2, \cdots, A_n são chamados **domínios** da relação e n é chamado de seu **grau**
- Exemplo. Seja R a relação $R=\{(a,b,c)\in\mathbb{Z}\times\mathbb{Z}\times\mathbb{Z}: \text{ a,b e c formam uma P.A.}\}$

- Sejam A_1, A_2, \cdots, A_n conjuntos. Uma **relação n-ária** nesses conjuntos é um subconjunto de $A_1 \times A_2 \times \cdots \times A_n$
- Os conjuntos A_1, A_2, \cdots, A_n são chamados **domínios** da relação e n é chamado de seu **grau**
- Exemplo. Seja R a relação $R = \{(a,b,c) \in \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z} : \text{ a,b e c formam uma P.A.}\}$
- Observe que $(a,b,c) \in R$ se, e somente se, exite $k \in \mathbb{Z}$ tal que b=a+k e c=a+2k

- Sejam A_1, A_2, \cdots, A_n conjuntos. Uma **relação n-ária** nesses conjuntos é um subconjunto de $A_1 \times A_2 \times \cdots \times A_n$
- Os conjuntos A_1, A_2, \cdots, A_n são chamados **domínios** da relação e n é chamado de seu **grau**
- Exemplo. Seja R a relação $R = \{(a,b,c) \in \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z} : \text{ a,b e c formam uma P.A.}\}$
- Observe que $(a,b,c) \in R$ se, e somente se, exite $k \in \mathbb{Z}$ tal que b=a+k e c=a+2k
 - $(1,3,5) \in R$, pois 3 = 1 + 2 e $5 = 3 + 2 \cdot 2$

- Sejam A_1, A_2, \cdots, A_n conjuntos. Uma **relação n-ária** nesses conjuntos é um subconjunto de $A_1 \times A_2 \times \cdots \times A_n$
- Os conjuntos A_1, A_2, \cdots, A_n são chamados **domínios** da relação e n é chamado de seu **grau**
- Exemplo. Seja R a relação $R = \{(a,b,c) \in \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z} : \text{ a,b e c formam uma P.A.}\}$
- Observe que $(a,b,c) \in R$ se, e somente se, exite $k \in \mathbb{Z}$ tal que b=a+k e c=a+2k
 - $(1,3,5) \in R$, pois 3 = 1 + 2 e $5 = 3 + 2 \cdot 2$
 - $(2,5,9) \notin R$, pois as razões são diferentes: 5-2=3 e 9-5=4

Relações n-Árias

• Sejam A_1,A_2,\cdots,A_n conjuntos. Uma **relação n-ária** nesses conjuntos é um subconjunto de $A_1\times A_2\times\cdots\times A_n$

- Sejam A_1, A_2, \cdots, A_n conjuntos. Uma **relação n-ária** nesses conjuntos é um subconjunto de $A_1 \times A_2 \times \cdots \times A_n$
- Exemplo. Seja R a relação $R=\{(a,b,m)\in\mathbb{Z}\times\mathbb{Z}\times\mathbb{Z}_+:a,b,m\in\mathbb{Z},m\geq 1\text{ e }a\equiv b(mod\ m)\}$

- Sejam A_1, A_2, \cdots, A_n conjuntos. Uma **relação n-ária** nesses conjuntos é um subconjunto de $A_1 \times A_2 \times \cdots \times A_n$
- Exemplo. Seja R a relação $R=\{(a,b,m)\in\mathbb{Z}\times\mathbb{Z}\times\mathbb{Z}_+:a,b,m\in\mathbb{Z},m\geq 1\text{ e }a\equiv b(mod\ m)\}$
- Observe que:

- Sejam A_1, A_2, \cdots, A_n conjuntos. Uma **relação n-ária** nesses conjuntos é um subconjunto de $A_1 \times A_2 \times \cdots \times A_n$
- Exemplo. Seja R a relação $R=\{(a,b,m)\in\mathbb{Z}\times\mathbb{Z}\times\mathbb{Z}_+:a,b,m\in\mathbb{Z},m\geq 1\ \text{e}\ a\equiv b(mod\ m)\}$
- Observe que:
 - $(8,2,3),(-1,9,5),(14,0,7) \in R$, pois $8 \equiv 2 \pmod{3}$, $-1 \equiv 9 \pmod{5}$ e $14 \equiv 0 \pmod{7}$

- Sejam A_1, A_2, \cdots, A_n conjuntos. Uma **relação n-ária** nesses conjuntos é um subconjunto de $A_1 \times A_2 \times \cdots \times A_n$
- Exemplo. Seja R a relação $R = \{(a,b,m) \in \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}_+ : a,b,m \in \mathbb{Z},m \geq 1 \text{ e } a \equiv b (mod\ m)\}$
- Observe que:
 - $(8,2,3), (-1,9,5), (14,0,7) \in R$, pois $8 \equiv 2 \pmod{3}$, $-1 \equiv 9 \pmod{5}$ e $14 \equiv 0 \pmod{7}$
 - $(7,2,3), (-2,-8,5), (11,0,6) \notin R$, pois $7 \not\equiv 2 \pmod{3}$, $-2 \not\equiv -8 \pmod{5}$ e $11 \not\equiv 0 \pmod{6}$

Relações em um Conjunto

ullet Uma relação no conjunto A é uma relação de A em A

- ullet Uma **relação no conjunto** A é uma relação de A em A
- Em outras palavras, uma relação em um conjunto A é um subconjunto de $A\times A=A^2$
- Exemplo. Seja R a relação $R = \{(a,b) \in A^2 : a \mid b\}$, com $A = \{1,2,3,4\}$. Determine R.

Relações em um Conjunto

- ullet Uma **relação no conjunto** A é uma relação de A em A
- \bullet Em outras palavras, uma relação em um conjunto A é um subconjunto de $A\times A=A^2$
- Exemplo. Seja R a relação $R = \{(a,b) \in A^2 : a \mid b\}$, com $A = \{1,2,3,4\}$. Determine R.

$$R = \{ (1,1), (1,2), (1,3), (1,4), (2,2), (2,4), (3,3), (4,4) \}$$

• Analogamente, uma relação n-ária em um conjunto A é um subconjunto de A^n

Relações em um Conjunto

• Quantas relações existem em um conjunto com n elementos?

- Quantas relações existem em um conjunto com n elementos?
 - \bullet Uma relação em um conjunto A é um subconjunto de $A\times A$

- Quantas relações existem em um conjunto com n elementos?
 - ullet Uma relação em um conjunto A é um subconjunto de A imes A
 - \bullet Como $A\times A$ tem n^2 elementos e um conjunto com n elementos tem 2^n subconjuntos

- ullet Quantas relações existem em um conjunto com n elementos?
 - ullet Uma relação em um conjunto A é um subconjunto de A imes A
 - Como $A \times A$ tem n^2 elementos e um conjunto com n elementos tem 2^n subconjuntos
 - Existem 2^{n^2} de $A \times A$
 - ullet Logo, existem 2^{n^2} relações em um conjunto com n elementos
- Exemplo. Existem $2^{3^2}=2^9=512$ relações no conjunto $\{a,b,c\}$

Propriedades das Relações

• Existem algumas propriedades que são usadas para classificar relações em um conjunto

Propriedades das Relações

 Existem algumas propriedades que são usadas para classificar relações em um conjunto

Definição: Seja R uma relação em um conjunto A

Propriedades das Relações

 Existem algumas propriedades que são usadas para classificar relações em um conjunto

Definição: Seja R uma relação em um conjunto A1. R é **reflexiva** se, e somente se, para todo $x \in A$, $(x,x) \in R$ ou, equivalentemente, xRx

Propriedades das Relações

 Existem algumas propriedades que são usadas para classificar relações em um conjunto

Definição: Seja R uma relação em um conjunto A 1. R é **reflexiva** se, e somente se, para todo $x \in A$, $(x,x) \in R$ ou, equivalentemente, xRx 2. R é **simétrica** se, e somente se, para todo $x,y \in A$, se $(x,y) \in R$, então $(y,x) \in R$. Equivalentemente, se xRy, então yRx

Propriedades das Relações

 Existem algumas propriedades que são usadas para classificar relações em um conjunto

Definição: Seja R uma relação em um conjunto A

- 1. R é **reflexiva** se, e somente se, para todo $x \in A$, $(x,x) \in R$ ou, equivalentemente, xRx
- 2. R é simétrica se, e somente se, para todo $x,y\in A$, se $(x,y)\in R$, então $(y,x)\in R$. Equivalentemente, se xRy, então yRx
- 3. R é transitiva se, e somente se, para todo $x,y,z\in A$, se $(x,y)\in R$ e $(y,z)\in R$, então $(x,z)\in R$. Equivalentemente, se xRy e yRz, então xRz

Propriedades das Relações

 Existem algumas propriedades que são usadas para classificar relações em um conjunto

Definição: Seja R uma relação em um conjunto A

- 1. R é **reflexiva** se, e somente se, para todo $x \in A$, $(x, x) \in R$ ou equivalentemente xRx
- $(x,x) \in R$ ou, equivalentemente, xRx
- 2. R é simétrica se, e somente se, para todo $x,y\in A$, se $(x,y)\in R$, então $(y,x)\in R$. Equivalentemente, se xRy, então yRx
- 3. R é transitiva se, e somente se, para todo $x,y,z\in A$, se $(x,y)\in R$ e $(y,z)\in R$, então $(x,z)\in R$. Equivalentemente, se xRy e yRz, então xRz
- 4. R é antissimétrica se, e somente se, $(a,b) \in R$ e $(b,a) \in R$ implica que a=b

Representando Relações

 Podemos representar uma relação, em um conjunto finito, por meio de um grafo direcionado da seguinte maneira:

- Podemos representar uma relação, em um conjunto finito, por meio de um grafo direcionado da seguinte maneira:
 - Cada elemento do conjunto é representado por um ponto

- Podemos representar uma relação, em um conjunto finito, por meio de um grafo direcionado da seguinte maneira:
 - Cada elemento do conjunto é representado por um ponto
 - E cada par ordenado é representado usando um arco com sua direção indicada por uma flecha

Representando Relações

• Definição. Um grafo orientado ou digrafo, consiste em um conjunto V de *vértices* (ou nós) junto com um conjunto E de pares ordenados de elementos de V chamados de *arestas* (ou arcos). O vértice a é chamado vértice inicial de uma aresta (a,b) e o vértice b é chamado vértice final da aresta

- Definição. Um grafo orientado ou digrafo, consiste em um conjunto V de *vértices* (ou nós) junto com um conjunto E de pares ordenados de elementos de V chamados de *arestas* (ou arcos). O vértice a é chamado vértice inicial de uma aresta (a,b) e o vértice b é chamado vértice final da aresta
- Uma aresta da forma (a,a) é representada usando um arco do vértice a que volte para ele mesmo

- Definição. Um grafo orientado ou digrafo, consiste em um conjunto V de vértices (ou nós) junto com um conjunto E de pares ordenados de elementos de V chamados de arestas (ou arcos). O vértice a é chamado vértice inicial de uma aresta (a, b) e o vértice b é chamado vértice final da aresta
- Uma aresta da forma (a, a) é representada usando um arco do vértice a que volte para ele mesmo
- Essa aresta é chamada de laço
- Exemplo. O grafo orientado com vértices a,b,c,d e arestas (a,b),(a,d),(b,b),(b,d),(c,a),(c,b),(d,b) é dado por:

- Definição. Um grafo orientado ou digrafo, consiste em um conjunto V de vértices (ou nós) junto com um conjunto E de pares ordenados de elementos de V chamados de arestas (ou arcos). O vértice a é chamado vértice inicial de uma aresta (a, b) e o vértice b é chamado vértice final da aresta
- ullet Uma aresta da forma (a,a) é representada usando um arco do vértice a que volte para ele mesmo
- Essa aresta é chamada de laço
- Exemplo. O grafo orientado com vértices a, b, c, d e arestas (a, b), (a, d), (b, b), (b, d), (c, a), (c, b), (d, b) é dado por:

Representando Relações

• O digrafo de uma relação sobre um conjunto pode ser utilizao para determinar se a relação possui algumas propriedades

- O digrafo de uma relação sobre um conjunto pode ser utilizao para determinar se a relação possui algumas propriedades
- Para que uma relação sobre um conjunto A seja reflexiva o digrafo que representa a relação deve possuir um laço de cada nó para si mesmo

- O digrafo de uma relação sobre um conjunto pode ser utilizao para determinar se a relação possui algumas propriedades
- Para que uma relação sobre um conjunto A seja reflexiva o digrafo que representa a relação deve possuir um laço de cada nó para si mesmo
- O digrafo que representa uma relação simétrica possui, entre quaisquer dois nós, 0 ou 2 arcos, isto é, quaisquer dois nós ou não possuem arcos entre eles, ou, se possuem, tais arcos estão em ambas os sentidos

- O digrafo de uma relação sobre um conjunto pode ser utilizao para determinar se a relação possui algumas propriedades
- Um digrafo representa uma relação transitiva se para cada par de vértices ocorre uma das seguintes possibilidades em relação aos arcos:

- O digrafo de uma relação sobre um conjunto pode ser utilizao para determinar se a relação possui algumas propriedades
- Um digrafo representa uma relação transitiva se para cada par de vértices ocorre uma das seguintes possibilidades em relação aos arcos:
 - não existe arco ligando o par de vértices;

- O digrafo de uma relação sobre um conjunto pode ser utilizao para determinar se a relação possui algumas propriedades
- Um digrafo representa uma relação transitiva se para cada par de vértices ocorre uma das seguintes possibilidades em relação aos arcos:
 - não existe arco ligando o par de vértices; ou

- O digrafo de uma relação sobre um conjunto pode ser utilizao para determinar se a relação possui algumas propriedades
- Um digrafo representa uma relação transitiva se para cada par de vértices ocorre uma das seguintes possibilidades em relação aos arcos:
 - não existe arco ligando o par de vértices; ou
 - existe pelo menos um arco ligando diretamente os vértices e/ou existe um vértice intermediário que permite ligar o par de vértices

- O digrafo de uma relação sobre um conjunto pode ser utilizao para determinar se a relação possui algumas propriedades
- Um digrafo representa uma relação transitiva se para cada par de vértices ocorre uma das seguintes possibilidades em relação aos arcos:
 - não existe arco ligando o par de vértices; ou
 - existe pelo menos um arco ligando diretamente os vértices e/ou existe um vértice intermediário que permite ligar o par de vértices
- Um grafo direcionado representa uma relação antissimétrica se para cada par de vértices ocorre uma das seguintes possibilidades em relação aos arcos:

- O digrafo de uma relação sobre um conjunto pode ser utilizao para determinar se a relação possui algumas propriedades
- Um digrafo representa uma relação transitiva se para cada par de vértices ocorre uma das seguintes possibilidades em relação aos arcos:
 - não existe arco ligando o par de vértices; ou
 - existe pelo menos um arco ligando diretamente os vértices e/ou existe um vértice intermediário que permite ligar o par de vértices
- Um grafo direcionado representa uma relação antissimétrica se para cada par de vértices ocorre uma das seguintes possibilidades em relação aos arcos:
 - não existe arco ligando os vértices;

- O digrafo de uma relação sobre um conjunto pode ser utilizao para determinar se a relação possui algumas propriedades
- Um digrafo representa uma relação transitiva se para cada par de vértices ocorre uma das seguintes possibilidades em relação aos arcos:
 - não existe arco ligando o par de vértices; ou
 - existe pelo menos um arco ligando diretamente os vértices e/ou existe um vértice intermediário que permite ligar o par de vértices
- Um grafo direcionado representa uma relação antissimétrica se para cada par de vértices ocorre uma das seguintes possibilidades em relação aos arcos:
 - não existe arco ligando os vértices; ou

- O digrafo de uma relação sobre um conjunto pode ser utilizao para determinar se a relação possui algumas propriedades
- Um digrafo representa uma relação transitiva se para cada par de vértices ocorre uma das seguintes possibilidades em relação aos arcos:
 - não existe arco ligando o par de vértices; ou
 - existe pelo menos um arco ligando diretamente os vértices e/ou existe um vértice intermediário que permite ligar o par de vértices
- Um grafo direcionado representa uma relação antissimétrica se para cada par de vértices ocorre uma das seguintes possibilidades em relação aos arcos:
 - não existe arco ligando os vértices; ou
 - entre os dois vértices existe exatamente um arco

Representando Relações

• Outra maneira de representar relações é através de matrizes

- Outra maneira de representar relações é através de matrizes
- Essa abordagem é interessante pois matrizes são uma forma apropriada de representar relações em programas de computador

- Outra maneira de representar relações é através de matrizes
- Essa abordagem é interessante pois matrizes são uma forma apropriada de representar relações em programas de computador
- Seja R uma relação de $A=\{a_1,a_2,\cdots,a_m\}$ e $B=\{b_1,b_2,\cdots,b_n\}$. A relação R pode ser representada pela matriz $M_R=[m_{ij}]$ em que

- Outra maneira de representar relações é através de matrizes
- Essa abordagem é interessante pois matrizes são uma forma apropriada de representar relações em programas de computador
- Seja R uma relação de $A=\{a_1,a_2,\cdots,a_m\}$ e $B=\{b_1,b_2,\cdots,b_n\}$. A relação R pode ser representada pela matriz $M_R=[m_{ij}]$ em que $m_{ij}=\begin{cases} 1, \text{ se } (a_i,b_j) \in R\\ 0, \text{ se } (a_i,b_j) \notin R \end{cases}$

Representando Relações

• Sejam $A=\{1,2,3\}$ e $B=\{1,2\}.$ Seja R a relação de A para B que contém (a,b) se $a\in A$ e $b\in B$ e a>b

- Sejam $A=\{1,2,3\}$ e $B=\{1,2\}$. Seja R a relação de A para B que contém (a,b) se $a\in A$ e $b\in B$ e a>b
- Como $R = \{(2,1), (3,1), (3,2)\}$, a matriz para R é

- Sejam $A=\{1,2,3\}$ e $B=\{1,2\}$. Seja R a relação de A para B que contém (a,b) se $a\in A$ e $b\in B$ e a>b
- Como $R = \{(2,1), (3,1), (3,2)\}$, a matriz para R é

$$M_R = \left[\begin{array}{cc} 0 & 0 \\ 1 & 0 \\ 1 & 1 \end{array} \right]$$

Representando Relações

- Sejam $A=\{1,2,3\}$ e $B=\{1,2\}$. Seja R a relação de A para B que contém (a,b) se $a\in A$ e $b\in B$ e a>b
- Como $R = \{(2,1), (3,1), (3,2)\}$, a matriz para R é

$$M_R = \left[\begin{array}{cc} 0 & 0 \\ 1 & 0 \\ 1 & 1 \end{array} \right]$$

• Sejam $A=\{a_1,a_2,a_2\}$ e $B=\{b_1,b_2,b_3,b_4,b_5\}$. Quais pares ordenados estão na relação R representada pela matriz

$$M_R = \left[\begin{array}{ccccc} 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 \end{array} \right]?$$

Representando Relações

- Sejam $A=\{1,2,3\}$ e $B=\{1,2\}$. Seja R a relação de A para B que contém (a,b) se $a\in A$ e $b\in B$ e a>b
- Como $R = \{(2,1), (3,1), (3,2)\}$, a matriz para R é

$$M_R = \left[\begin{array}{cc} 0 & 0 \\ 1 & 0 \\ 1 & 1 \end{array} \right]$$

• Sejam $A=\{a_1,a_2,a_2\}$ e $B=\{b_1,b_2,b_3,b_4,b_5\}$. Quais pares ordenados estão na relação R representada pela matriz

$$M_R = \left[\begin{array}{cccc} 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 \end{array} \right]?$$

• Como R consiste nos pares ordenados (a_i,b_j) , com $m_{ij}=1$, segue que

Representando Relações

- Sejam $A=\{1,2,3\}$ e $B=\{1,2\}$. Seja R a relação de A para B que contém (a,b) se $a\in A$ e $b\in B$ e a>b
- Como $R = \{(2,1), (3,1), (3,2)\}$, a matriz para R é

$$M_R = \left[\begin{array}{cc} 0 & 0 \\ 1 & 0 \\ 1 & 1 \end{array} \right]$$

• Sejam $A=\{a_1,a_2,a_2\}$ e $B=\{b_1,b_2,b_3,b_4,b_5\}$. Quais pares ordenados estão na relação R representada pela matriz

$$M_R = \left[\begin{array}{ccccc} 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 \end{array} \right]?$$

• Como R consiste nos pares ordenados (a_i,b_j) , com $m_{ij}=1$, segue que

$$R = \{(a_1, b_2), (a_2, b_1), (a_2, b_3), (a_2, b_4), (a_3, b_1), (a_3, b_3)\}$$

Representando Relações

• A matriz de uma relação sobre um conjunto pode ser utilizada para determinar se a relação possui algumas propriedades

- A matriz de uma relação sobre um conjunto pode ser utilizada para determinar se a relação possui algumas propriedades
- Para que uma relação sobre um conjunto A seja **reflexiva** $m_{ii}=1$. Ou seja, os elementos da diagonal principal devem ser iguais a 1

- A matriz de uma relação sobre um conjunto pode ser utilizada para determinar se a relação possui algumas propriedades
- Para que uma relação sobre um conjunto A seja **reflexiva** $m_{ii}=1$. Ou seja, os elementos da diagonal principal devem ser iguais a 1

Representando Relações

- A matriz de uma relação sobre um conjunto pode ser utilizada para determinar se a relação possui algumas propriedades
- Para que uma relação sobre um conjunto A seja **reflexiva** $m_{ii}=1$. Ou seja, os elementos da diagonal principal devem ser iguais a 1

• R é simétrica se, e somente se, $m_{ji}=1$ sempre que $m_{ij}=1$ e $m_{ji}=0$ sempre que $m_{ij}=0$, ou seja, $(M_R)^T=M_R$

Representando Relações

- A matriz de uma relação sobre um conjunto pode ser utilizada para determinar se a relação possui algumas propriedades
- Para que uma relação sobre um conjunto A seja **reflexiva** $m_{ii}=1$. Ou seja, os elementos da diagonal principal devem ser iguais a 1

• R é simétrica se, e somente se, $m_{ji}=1$ sempre que $m_{ij}=1$ e $m_{ji}=0$ sempre que $m_{ij}=0$, ou seja, $(M_R)^T=M_R$

Representando Relações

• R é antissimétrica se, e somente se, $(a,b) \in R$ e $(b,a) \in R$ implica que a=b

- R é antissimétrica se, e somente se, $(a,b) \in R$ e $(b,a) \in R$ implica que a=b
- Consequentemente, R é antissimétrica se $m_{ij}=1$, com $i \neq j$, então $m_{ji}=0$.

- R é antissimétrica se, e somente se, $(a,b) \in R$ e $(b,a) \in R$ implica que a=b
- Consequentemente, R é antissimétrica se $m_{ij}=1$, com $i \neq j$, então $m_{ji}=0$.
- A representação matricial M_R correspondente desta relação terá o elemento $m_{ij}=1$, com $i\neq j$, mas com o termo m_{ji} não pertencendo a matriz

- R é antissimétrica se, e somente se, $(a,b) \in R$ e $(b,a) \in R$ implica que a=b
- Consequentemente, R é antissimétrica se $m_{ij}=1$, com $i \neq j$, então $m_{ji}=0$.
- A representação matricial M_R correspondente desta relação terá o elemento $m_{ij}=1$, com $i\neq j$, mas com o termo m_{ji} não pertencendo a matriz

Representando Relações

• Seja R a relação sobre um conjunto que é representada pela matriz abaixo. R é reflexiva, simétrica e/ou antissimétrica?

Representando Relações

• Seja R a relação sobre um conjunto que é representada pela matriz abaixo. R é reflexiva, simétrica e/ou antissimétrica?

$$M_R = \left[\begin{array}{rrr} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{array} \right]$$

Representando Relações

ullet Seja R a relação sobre um conjunto que é representada pela matriz abaixo. R é reflexiva, simétrica e/ou antissimétrica?

$$M_R = \left[\begin{array}{rrr} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{array} \right]$$

• R é reflexiva, pois todos os elementos da diagonal principal são iguais a $\mathbf{1}$

Representando Relações

• Seja R a relação sobre um conjunto que é representada pela matriz abaixo. R é reflexiva, simétrica e/ou antissimétrica?

$$M_R = \left[\begin{array}{rrr} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{array} \right]$$

- R é **reflexiva**, pois todos os elementos da diagonal principal são iguais a $\mathbf{1}$
- R é simétrica, pois $M_R = (M_R)^T$

Representando Relações

• Seja R a relação sobre um conjunto que é representada pela matriz abaixo. R é reflexiva, simétrica e/ou antissimétrica?

$$M_R = \left[\begin{array}{rrr} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{array} \right]$$

- R é **reflexiva**, pois todos os elementos da diagonal principal são iguais a $\mathbf{1}$
- R é simétrica, pois $M_R = (M_R)^T$
- R não é antissimétrica, pois $m_{21}=m_{12}$

Representando Relações

• Seja $S=\{(1,1),(1,2),(1,3)\}$ a relação sobre um conjunto $A=\{1,2,3\}$ que é representada pela matriz abaixo. S é reflexiva, simétrica e/ou antissimétrica?

Representando Relações

• Seja $S=\{(1,1),(1,2),(1,3)\}$ a relação sobre um conjunto $A=\{1,2,3\}$ que é representada pela matriz abaixo. S é reflexiva, simétrica e/ou antissimétrica?

$$M_S = \left[\begin{array}{rrr} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right]$$

Representando Relações

• Seja $S=\{(1,1),(1,2),(1,3)\}$ a relação sobre um conjunto $A=\{1,2,3\}$ que é representada pela matriz abaixo. S é reflexiva, simétrica e/ou antissimétrica?

$$M_S = \left[\begin{array}{rrr} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right]$$

• S não é **reflexiva**, pois $(2,2) \notin S$

Representando Relações

• Seja $S=\{(1,1),(1,2),(1,3)\}$ a relação sobre um conjunto $A=\{1,2,3\}$ que é representada pela matriz abaixo. S é reflexiva, simétrica e/ou antissimétrica?

$$M_S = \left[\begin{array}{rrr} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right]$$

- S não é **reflexiva**, pois $(2,2) \notin S$
- S não é simétrica, pois $M_S \neq (M_S)^T$

Representando Relações

• Seja $S=\{(1,1),(1,2),(1,3)\}$ a relação sobre um conjunto $A=\{1,2,3\}$ que é representada pela matriz abaixo. S é reflexiva, simétrica e/ou antissimétrica?

$$M_S = \left[\begin{array}{rrr} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right]$$

- S não é **reflexiva**, pois $(2,2) \notin S$
- S não é simétrica, pois $M_S \neq (M_S)^T$
- S é antissimétrica, pois $(1,1),(1,2),(1,3) \in S$, mas $(2,1),(3,1) \notin S$ e $(1,1) \in S$, com a=b=1

Propriedades das Relações

• Exemplo: Seja $A = \{0,1,2,3\}$ e sejam R,S e T relações em A definidas como:

- Exemplo: Seja $A = \{0,1,2,3\}$ e sejam R,S e T relações em A definidas como:
 - $R = \{(0,0), (0,1), (0,3), (1,0), (1,1), (2,2), (3,0), (3,3)\}$
 - $S = \{(0,0), (0,2), (0,3), (2,3)\}$
 - $T = \{(0,1),(2,3)\}$

- Exemplo: Seja $A = \{0, 1, 2, 3\}$ e sejam R, S e T relações em A definidas como:
 - $R = \{(0,0), (0,1), (0,3), (1,0), (1,1), (2,2), (3,0), (3,3)\}$
 - $S = \{(0,0), (0,2), (0,3), (2,3)\}$
 - $T = \{(0,1),(2,3)\}$
- R é reflexiva? Simétrica? Transitiva?

- Exemplo: Seja $A = \{0, 1, 2, 3\}$ e sejam R, S e T relações em A definidas como:
 - $R = \{(0,0), (0,1), (0,3), (1,0), (1,1), (2,2), (3,0), (3,3)\}$
 - $S = \{(0,0), (0,2), (0,3), (2,3)\}$
 - $T = \{(0,1), (2,3)\}$
- R é reflexiva? Simétrica? Transitiva?
- S é reflexiva? Simétrica? Transitiva?

- Exemplo: Seja $A = \{0, 1, 2, 3\}$ e sejam R, S e T relações em A definidas como:
 - $R = \{(0,0), (0,1), (0,3), (1,0), (1,1), (2,2), (3,0), (3,3)\}$
 - $S = \{(0,0), (0,2), (0,3), (2,3)\}$
 - $T = \{(0,1),(2,3)\}$
- R é reflexiva? Simétrica? Transitiva?
- S é reflexiva? Simétrica? Transitiva?
- T é reflexiva? Simétrica? Transitiva?

Propriedades das Relações

Propriedades das Relações

- ullet R é reflexiva
 - \bullet Há um loop em cada ponto da representação. Isto significa que cada elemento de A se relaciona consigo mesmo

Propriedades das Relações

- \bullet R é reflexiva
 - Há um loop em cada ponto da representação. Isto significa que cada elemento de A se relaciona consigo mesmo
- R é simétrica
 - Em cada caso, tem-se uma flecha de partida e de chegada em cada elemento

Propriedades das Relações

- \bullet R é reflexiva
 - ullet Há um loop em cada ponto da representação. Isto significa que cada elemento de A se relaciona consigo mesmo
- R é simétrica
 - Em cada caso, tem-se uma flecha de partida e de chegada em cada elemento
- R não é transitiva
 - Há uma seta saindo de 1 para 0, uma de 0 para 3, mas não tem uma seta de 1 para 3

Propriedades das Relações

Propriedades das Relações

- S não é reflexiva
 - Não há um loop em 1. Assim, $(1,1) \notin S$

Propriedades das Relações

- S não é reflexiva
 - Não há um loop em 1. Assim, $(1,1) \notin S$
- S não é simétrica
 - ullet Há uma flecha de 0 para 2, mas não há de 2 para 0

Propriedades das Relações

- S não é reflexiva
 - Não há um loop em 1. Assim, $(1,1) \notin S$
- S não é simétrica
 - ullet Há uma flecha de 0 para 2, mas não há de 2 para 0
- ullet S é transitiva
 - Para todo $x,y,z\in A$, se $(x,y)\in S$ e $(y,z)\in S$, então $(x,z)\in S$

Propriedades das Relações

Propriedades das Relações

- T não é reflexiva
 - $\bullet\,$ Não há um loop em 0, por exemplo. Assim, $(0,0) \not\in T$

Propriedades das Relações

- T não é reflexiva
 - Não há um loop em 0, por exemplo. Assim, $(0,0) \notin T$
- T não é simétrica
 - $(0,1) \in T$, mas $(1,0) \notin T$

Propriedades das Relações

- ullet T é transitiva
 - A condição de transitividade diz que para todo $x,y,z\in A$, se $(x,y)\in T$ e $(y,z)\in T$, então $(x,z)\in T$

Propriedades das Relações

- T é transitiva
 - A condição de transitividade diz que para todo $x,y,z\in A$, se $(x,y)\in T$ e $(y,z)\in T$, então $(x,z)\in T$
 - A única maneira disto ser falsa é se existirem $x,y,z\in A$ tais que $(x,y)\in T$ e $(y,z)\in T$, mas $(x,z)\notin T$

Propriedades das Relações

- T é transitiva
 - A condição de transitividade diz que para todo $x,y,z\in A$, se $(x,y)\in T$ e $(y,z)\in T$, então $(x,z)\in T$
 - A única maneira disto ser falsa é se existirem $x,y,z\in A$ tais que $(x,y)\in T$ e $(y,z)\in T$, mas $(x,z)\notin T$
 - Mas os únicos elementos em T são (0,1) e (2,3), e estes não têm o potencial de se relacionar. Portanto, a hipótese nunca é verdadeira

Propriedades das Relações

- T é transitiva
 - A condição de transitividade diz que para todo $x,y,z\in A$, se $(x,y)\in T$ e $(y,z)\in T$, então $(x,z)\in T$
 - A única maneira disto ser falsa é se existirem $x,y,z\in A$ tais que $(x,y)\in T$ e $(y,z)\in T$, mas $(x,z)\notin T$
 - Mas os únicos elementos em T são (0,1) e (2,3), e estes não têm o potencial de se relacionar. Portanto, a hipótese nunca é verdadeira
 - ullet Assim, é impossível T ser não transitiva

Propriedades das Relações

- T é transitiva
 - A condição de transitividade diz que para todo $x,y,z\in A$, se $(x,y)\in T$ e $(y,z)\in T$, então $(x,z)\in T$
 - A única maneira disto ser falsa é se existirem $x,y,z\in A$ tais que $(x,y)\in T$ e $(y,z)\in T$, mas $(x,z)\notin T$
 - Mas os únicos elementos em T são (0,1) e (2,3), e estes não têm o potencial de se relacionar. Portanto, a hipótese nunca é verdadeira
 - ullet Assim, é impossível T ser não transitiva
 - ullet Portanto, T é transitiva

Combinando Relações

• Seja $A=\{1,2,3\}$ e $B=\{1,2,3,4\}$. As relações $R_1=\{(1,1),(2,2),(3,3)\}$ e $R_2=\{(1,1),(1,2),(1,3),(1,4)\}$ podem ser combinadas para obtermos novas relações:

- Seja $A = \{1,2,3\}$ e $B = \{1,2,3,4\}$. As relações $R_1 = \{(1,1),(2,2),(3,3)\}$ e $R_2 = \{(1,1),(1,2),(1,3),(1,4)\}$ podem ser combinadas para obtermos novas relações:

- Seja $A = \{1,2,3\}$ e $B = \{1,2,3,4\}$. As relações $R_1 = \{(1,1),(2,2),(3,3)\}$ e $R_2 = \{(1,1),(1,2),(1,3),(1,4)\}$ podem ser combinadas para obtermos novas relações:
 - **1** $R_1 \cup R_2 = \{(1,1), (2,2), (3,3), (1,2), (1,3), (1,4)\}$
 - $2 R_1 \cap R_2 = \{(1,1)\}$

- Seja $A = \{1,2,3\}$ e $B = \{1,2,3,4\}$. As relações $R_1 = \{(1,1),(2,2),(3,3)\}$ e $R_2 = \{(1,1),(1,2),(1,3),(1,4)\}$ podem ser combinadas para obtermos novas relações:

 - **2** $R_1 \cap R_2 = \{(1,1)\}$
 - $8_1 R_2 = \{(2,2), (3,3)\}$

- Seja $A = \{1,2,3\}$ e $B = \{1,2,3,4\}$. As relações $R_1 = \{(1,1),(2,2),(3,3)\}$ e $R_2 = \{(1,1),(1,2),(1,3),(1,4)\}$ podem ser combinadas para obtermos novas relações:

 - **2** $R_1 \cap R_2 = \{(1,1)\}$
 - $8_1 R_2 = \{(2,2), (3,3)\}$
- Seja $R_1=\{(x,y)\in\mathbb{R}^2|x< y\}$ e $R_2=\{(x,y)\in\mathbb{R}^2|x> y\}$ relações sobre \mathbb{R} . Determine $R_1\cup R_2$, $R_1\cap R_2$, R_1-R_2 e R_2-R_1

- Seja $A = \{1,2,3\}$ e $B = \{1,2,3,4\}$. As relações $R_1 = \{(1,1),(2,2),(3,3)\}$ e $R_2 = \{(1,1),(1,2),(1,3),(1,4)\}$ podem ser combinadas para obtermos novas relações:

 - **2** $R_1 \cap R_2 = \{(1,1)\}$
 - $8_1 R_2 = \{(2,2), (3,3)\}$
- Seja $R_1=\{(x,y)\in\mathbb{R}^2|x< y\}$ e $R_2=\{(x,y)\in\mathbb{R}^2|x> y\}$ relações sobre \mathbb{R} . Determine $R_1\cup R_2$, $R_1\cap R_2$, R_1-R_2 e R_2-R_1
 - ① $(x,y) \in R_1 \cup R_2$ se, e somente se, $(x,y) \in R_1$ ou $(x,y) \in R_2$, ou seja, $(x,y) \in R_1 \cup R_2$ se, e somente se, $x < y \lor x > y$ e, portanto, $R_1 \cup R_2 = \{(x,y)|x \neq y\}$

- Seja $A = \{1,2,3\}$ e $B = \{1,2,3,4\}$. As relações $R_1 = \{(1,1),(2,2),(3,3)\}$ e $R_2 = \{(1,1),(1,2),(1,3),(1,4)\}$ podem ser combinadas para obtermos novas relações:

 - **2** $R_1 \cap R_2 = \{(1,1)\}$
 - $8_1 R_2 = \{(2,2), (3,3)\}$
- Seja $R_1=\{(x,y)\in\mathbb{R}^2|x< y\}$ e $R_2=\{(x,y)\in\mathbb{R}^2|x> y\}$ relações sobre \mathbb{R} . Determine $R_1\cup R_2$, $R_1\cap R_2$, R_1-R_2 e R_2-R_1
 - ① $(x,y) \in R_1 \cup R_2$ se, e somente se, $(x,y) \in R_1$ ou $(x,y) \in R_2$, ou seja, $(x,y) \in R_1 \cup R_2$ se, e somente se, $x < y \lor x > y$ e, portanto, $R_1 \cup R_2 = \{(x,y) | x \neq y\}$
 - 2 $R_1 \cap R_2 = \emptyset$, pois é impossível que $x < y \land x > y$

- Seja $A = \{1,2,3\}$ e $B = \{1,2,3,4\}$. As relações $R_1 = \{(1,1),(2,2),(3,3)\}$ e $R_2 = \{(1,1),(1,2),(1,3),(1,4)\}$ podem ser combinadas para obtermos novas relações:

 - **2** $R_1 \cap R_2 = \{(1,1)\}$
 - $8_1 R_2 = \{(2,2), (3,3)\}$
- Seja $R_1=\{(x,y)\in\mathbb{R}^2|x< y\}$ e $R_2=\{(x,y)\in\mathbb{R}^2|x> y\}$ relações sobre \mathbb{R} . Determine $R_1\cup R_2$, $R_1\cap R_2$, R_1-R_2 e R_2-R_1
 - ① $(x,y) \in R_1 \cup R_2$ se, e somente se, $(x,y) \in R_1$ ou $(x,y) \in R_2$, ou seja, $(x,y) \in R_1 \cup R_2$ se, e somente se, $x < y \lor x > y$ e, portanto, $R_1 \cup R_2 = \{(x,y)|x \neq y\}$
 - 2 $R_1 \cap R_2 = \emptyset$, pois é impossível que $x < y \land x > y$
 - $8_1 R_2 = R_1$

- Seja $A = \{1,2,3\}$ e $B = \{1,2,3,4\}$. As relações $R_1 = \{(1,1),(2,2),(3,3)\}$ e $R_2 = \{(1,1),(1,2),(1,3),(1,4)\}$ podem ser combinadas para obtermos novas relações:

 - **2** $R_1 \cap R_2 = \{(1,1)\}$
 - $8_1 R_2 = \{(2,2), (3,3)\}$
- Seja $R_1=\{(x,y)\in\mathbb{R}^2|x< y\}$ e $R_2=\{(x,y)\in\mathbb{R}^2|x> y\}$ relações sobre \mathbb{R} . Determine $R_1\cup R_2$, $R_1\cap R_2$, R_1-R_2 e R_2-R_1
 - ① $(x,y) \in R_1 \cup R_2$ se, e somente se, $(x,y) \in R_1$ ou $(x,y) \in R_2$, ou seja, $(x,y) \in R_1 \cup R_2$ se, e somente se, $x < y \lor x > y$ e, portanto, $R_1 \cup R_2 = \{(x,y)|x \neq y\}$
 - 2 $R_1 \cap R_2 = \emptyset$, pois é impossível que $x < y \land x > y$
 - $8_1 R_2 = R_1$
 - $\mathbf{4} R_2 R_1 = R_2$

Combinando Relações

 Há uma outra maneira de combinar relações que é análoga à composição de funções

- Há uma outra maneira de combinar relações que é análoga à composição de funções
- Definição. Seja R uma relação de A em B e S uma relação de B em C. A composição de R e S, denotada por $S \circ R$, é a relação que consiste dos pares ordenados (a, c), onde $a \in A$, $c \in C$, de forma que existe um elemento $b \in B$ tal que $(a,b) \in R \in (b,c) \in S$

- Há uma outra maneira de combinar relações que é análoga à composição de funções
- **Definição.** Seja R uma relação de A em B e S uma relação de B em C. A composição de R e S, denotada por $S \circ R$, é a relação que consiste dos pares ordenados (a,c), onde $a \in A$, $c \in C$, de forma que existe um elemento $b \in B$ tal que $(a,b) \in R$ e $(b,c) \in S$
- Exemplo. Encontre $S \circ R$, onde R é uma relação de $A = \{1,2,3\}$ em $B = \{1,2,3,4\}$, S é uma relação de $B = \{1,2,3,4\}$ em $C = \{0,1,2\}$ definidas por $R = \{(1,1),(1,4),(2,3),(3,1),(3,4)\}$ e $S = \{(1,0),(2,0),(3,1),(3,2),(4,1)\}$

- Há uma outra maneira de combinar relações que é análoga à composição de funções
- **Definição.** Seja R uma relação de A em B e S uma relação de B em C. A composição de R e S, denotada por $S \circ R$, é a relação que consiste dos pares ordenados (a,c), onde $a \in A$, $c \in C$, de forma que existe um elemento $b \in B$ tal que $(a,b) \in R$ e $(b,c) \in S$
- Exemplo. Encontre $S \circ R$, onde R é uma relação de $A = \{1,2,3\}$ em $B = \{1,2,3,4\}$, S é uma relação de $B = \{1,2,3,4\}$ em $C = \{0,1,2\}$ definidas por $R = \{(1,1),(1,4),(2,3),(3,1),(3,4)\}$ e $S = \{(1,0),(2,0),(3,1),(3,2),(4,1)\}$

Combinando Relações

• **Definição.** Seja R uma relação em um conjunto A. As potências $R^n, n=1,2,\cdots$, são definidas recursivamente por

Combinando Relações

• Definição. Seja R uma relação em um conjunto A. As potências $R^n, n=1,2,\cdots$, são definidas recursivamente por

$$R^1=R \ \mathrm{e} \ R^{n+1}=R^n \circ R$$

Combinando Relações

• **Definição.** Seja R uma relação em um conjunto A. As potências $R^n, n=1,2,\cdots$, são definidas recursivamente por

$$R^1 = R e R^{n+1} = R^n \circ R$$

• Exemplo. Seja $R = \{(1,1),(2,1),(3,2),(4,3)\}$. Encontre as potências $R^n, n=2,3,4,\cdots$

Combinando Relações

$$R^1=R \ \mathrm{e} \ R^{n+1}=R^n \circ R$$

- Exemplo. Seja $R = \{(1,1),(2,1),(3,2),(4,3)\}$. Encontre as potências $R^n, n=2,3,4,\cdots$

Combinando Relações

$$R^1=R \ \mathrm{e} \ R^{n+1}=R^n \circ R$$

- Exemplo. Seja $R = \{(1,1),(2,1),(3,2),(4,3)\}$. Encontre as potências $R^n, n = 2,3,4,\cdots$

Combinando Relações

$$R^1=R \ \mathrm{e} \ R^{n+1}=R^n \circ R$$

- Exemplo. Seja $R = \{(1,1), (2,1), (3,2), (4,3)\}$. Encontre as potências $R^n, n = 2, 3, 4, \cdots$

 - $R^3 = R^2 \circ R = \{(1,1), (2,1), (3,1), (4,1)\}$
 - $8^4 = R^3 \circ R = \{(1,1), (2,1), (3,1), (4,2)\} = R^3$

Combinando Relações

$$R^1=R \ \mathrm{e} \ R^{n+1}=R^n \circ R$$

- Exemplo. Seja $R = \{(1,1),(2,1),(3,2),(4,3)\}$. Encontre as potências $R^n, n = 2,3,4,\cdots$

 - $R^3 = R^2 \circ R = \{(1,1), (2,1), (3,1), (4,1)\}$
 - $8 R^4 = R^3 \circ R = \{(1,1),(2,1),(3,1),(4,2)\} = R^3$

Combinando Relações

$$R^1=R \ \mathrm{e} \ R^{n+1}=R^n \circ R$$

- Exemplo. Seja $R = \{(1,1), (2,1), (3,2), (4,3)\}$. Encontre as potências $R^n, n = 2, 3, 4, \cdots$

 - $R^3 = R^2 \circ R = \{(1,1), (2,1), (3,1), (4,1)\}$
 - $8^4 = R^3 \circ R = \{(1,1), (2,1), (3,1), (4,2)\} = R^3$
- Teorema. A relação R em um conjunto A é transitiva se, e somente se, $R^n \subset R$ para $n=2,3,4,\cdots$

Operações Booleanas

• Operadores booleanos sobre matrizes podem ser utilizados para calcular a união e a interseção entre duas relações

Operações Booleanas

- Operadores booleanos sobre matrizes podem ser utilizados para calcular a união e a interseção entre duas relações
- **Definição.** Sejam duas relações R e S, representadas por duas matrizes M_R e M_S , respectivamente. Temos:

Operações Booleanas

- Operadores booleanos sobre matrizes podem ser utilizados para calcular a união e a interseção entre duas relações
- **Definição.** Sejam duas relações R e S, representadas por duas matrizes M_R e M_S , respectivamente. Temos:

$$M_{R \cup S} = M_R \vee M_S$$
 e $M_{R \cap S} = M_R \wedge M_S$

Operações Booleanas

- Operadores booleanos sobre matrizes podem ser utilizados para calcular a união e a interseção entre duas relações
- **Definição.** Sejam duas relações R e S, representadas por duas matrizes M_R e M_S , respectivamente. Temos:

$$M_{R \cup S} = M_R \vee M_S$$
 e $M_{R \cap S} = M_R \wedge M_S$

• Exemplo. Sejam R e S relações sobre A representadas pelas matrizes

Operações Booleanas

- Operadores booleanos sobre matrizes podem ser utilizados para calcular a união e a interseção entre duas relações
- **Definição**. Sejam duas relações R e S, representadas por duas matrizes M_R e M_S , respectivamente. Temos:

$$M_{R \cup S} = M_R \vee M_S$$
 e $M_{R \cap S} = M_R \wedge M_S$

ullet Exemplo. Sejam R e S relações sobre A representadas pelas

matrizes
$$M_R=\left[\begin{array}{ccc} 1 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{array}\right] \quad M_S=\left[\begin{array}{ccc} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{array}\right]$$
 . Temos:

Operações Booleanas

- Operadores booleanos sobre matrizes podem ser utilizados para calcular a união e a interseção entre duas relações
- **Definição**. Sejam duas relações R e S, representadas por duas matrizes M_R e M_S , respectivamente. Temos:

$$M_{R \cup S} = M_R \vee M_S$$
 e $M_{R \cap S} = M_R \wedge M_S$

ullet Exemplo. Sejam R e S relações sobre A representadas pelas

matrizes
$$M_R = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$
 $M_S = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix}$. Temos:
$$M_{R \cup S} = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$
 $M_{R \cap S} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$

Operações Booleanas

 A matriz de uma composição pode ser obtida usando o produto booleano de matrizes

Operações Booleanas

- A matriz de uma composição pode ser obtida usando o produto booleano de matrizes
- **Definição.** Sejam A e B matrizes zero-um de ordem $m \times k$ e $k \times n$, respectivamente. O **produto booleano** de A e B, denotado por $A \odot B = [c_{ij}]$, é uma matriz $m \times n$ tal que

Operações Booleanas

- A matriz de uma composição pode ser obtida usando o produto booleano de matrizes
- **Definição**. Sejam A e B matrizes zero-um de ordem $m \times k$ e $k \times n$, respectivamente. O **produto booleano** de A e B, denotado por $A \odot B = [c_{ij}]$, é uma matriz $m \times n$ tal que

$$c_{ij} = (a_{i1} \wedge b_{1j}) \vee (a_{i2} \wedge b_{2j}) \vee \cdots \vee (a_{ik} \wedge b_{kj}) \vee$$

Operações Booleanas

- A matriz de uma composição pode ser obtida usando o produto booleano de matrizes
- **Definição**. Sejam A e B matrizes zero-um de ordem $m \times k$ e $k \times n$, respectivamente. O **produto booleano** de A e B, denotado por $A \odot B = [c_{ij}]$, é uma matriz $m \times n$ tal que

$$c_{ij} = (a_{i1} \wedge b_{1j}) \vee (a_{i2} \wedge b_{2j}) \vee \cdots \vee (a_{ik} \wedge b_{kj}) \vee$$

 Note que o produto booleano é análogo ao produto usual de matrizes, mas com a operação ∨ no lugar da adição e a operação ∧ no lugar da multiplicação

Operações Booleanas

- A matriz de uma composição pode ser obtida usando o produto booleano de matrizes
- **Definição.** Sejam A e B matrizes zero-um de ordem $m \times k$ e $k \times n$, respectivamente. O **produto booleano** de A e B, denotado por $A \odot B = [c_{ij}]$, é uma matriz $m \times n$ tal que

$$c_{ij} = (a_{i1} \wedge b_{1j}) \vee (a_{i2} \wedge b_{2j}) \vee \cdots \vee (a_{ik} \wedge b_{kj}) \vee$$

- Note que o produto booleano é análogo ao produto usual de matrizes, mas com a operação ∨ no lugar da adição e a operação ∧ no lugar da multiplicação
- Da definição de produto booleano segue que:

Operações Booleanas

- A matriz de uma composição pode ser obtida usando o produto booleano de matrizes
- **Definição.** Sejam A e B matrizes zero-um de ordem $m \times k$ e $k \times n$, respectivamente. O **produto booleano** de A e B, denotado por $A \odot B = [c_{ij}]$, é uma matriz $m \times n$ tal que

$$c_{ij} = (a_{i1} \wedge b_{1j}) \vee (a_{i2} \wedge b_{2j}) \vee \cdots \vee (a_{ik} \wedge b_{kj}) \vee$$

- Note que o produto booleano é análogo ao produto usual de matrizes, mas com a operação ∨ no lugar da adição e a operação ∧ no lugar da multiplicação
- Da definição de produto booleano segue que:

$$M_{S \circ R} = M_R \odot M_S$$

Operações Booleanas

 \bullet Exemplo. Encontre a matriz que representa $S\circ R,$ quando as matrizes que representam R e S são

Operações Booleanas

• Exemplo. Encontre a matriz que representa $S \circ R$, quando as matrizes que representam R e S são

$$M_R = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \quad M_S = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$

Operações Booleanas

• Exemplo. Encontre a matriz que representa $S \circ R$, quando as matrizes que representam R e S são

$$M_R = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \quad M_S = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$

ullet A matriz para $S\circ R$ é

Operações Booleanas

• Exemplo. Encontre a matriz que representa $S \circ R$, quando as matrizes que representam R e S são

$$M_R = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \quad M_S = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$

ullet A matriz para $S\circ R$ é

$$M_{S \circ R} = M_R \circ M_S = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

Operações Booleanas

• Exemplo. Encontre a matriz que representa $S \circ R$, quando as matrizes que representam R e S são

$$M_R = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \quad M_S = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$

ullet A matriz para $S\circ R$ é

$$M_{S \circ R} = M_R \circ M_S = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

• A matriz que representa a composição de duas relações pode ser usada oara encontrar $M_{R^n}=M_R^{[n]}$

Matriz de uma Relação Transitiva

ullet Seja $R\subseteq A imes A$ uma relação transitiva, isto é

- ullet Seja $R\subseteq A imes A$ uma relação transitiva, isto é
 - $\bullet \ \ {\rm Se} \ (a,b) \in R \ {\rm e} \ (b,c) \in R \ , \ {\rm ent} \tilde{\rm ao} \ (a,c) \in R$

- ullet Seja $R\subseteq A imes A$ uma relação transitiva, isto é
 - $\bullet \ \ {\rm Se} \ (a,b) \in R \ {\rm e} \ (b,c) \in R \ , \ {\rm ent} \tilde{\rm ao} \ (a,c) \in R$
- \bullet E isto é a composição $R\circ R$ e $R\circ R\subseteq R$

- ullet Seja $R\subseteq A imes A$ uma relação transitiva, isto é
 - $\bullet \ \ \mathsf{Se} \ (a,b) \in R \ \mathsf{e} \ (b,c) \in R \text{, ent} \\ \mathsf{ão} \ (a,c) \in R$
- \bullet E isto é a composição $R\circ R$ e $R\circ R\subseteq R$
- Proposição. Se R é uma relação transitiva de A^2 e M_R é a sua representação matricial, então

- ullet Seja $R\subseteq A imes A$ uma relação transitiva, isto é
 - Se $(a,b) \in R$ e $(b,c) \in R$, então $(a,c) \in R$
- \bullet E isto é a composição $R\circ R$ e $R\circ R\subseteq R$
- Proposição. Se R é uma relação transitiva de A^2 e M_R é a sua representação matricial, então

$$M_R^n \subseteq M_R, \forall n \in \mathbb{N}$$

Matriz de uma Relação Transitiva

- ullet Seja $R\subseteq A imes A$ uma relação transitiva, isto é
 - $\bullet \ \ {\rm Se} \ (a,b) \in R \ {\rm e} \ (b,c) \in R \ , \ {\rm ent} \tilde{\rm ao} \ (a,c) \in R$
- E isto é a composição $R \circ R$ e $R \circ R \subseteq R$
- Proposição. Se R é uma relação transitiva de A^2 e M_R é a sua representação matricial, então

$$M_R^n \subseteq M_R, \forall n \in \mathbb{N}$$

• Se para algum n, $M_R^n \nsubseteq M_R$, então R não é uma relação transitiva

Matriz de uma Relação Transitiva

- ullet Seja $R\subseteq A imes A$ uma relação transitiva, isto é
 - $\bullet \ \ {\rm Se} \ (a,b) \in R \ {\rm e} \ (b,c) \in R \ , \ {\rm ent} \tilde{\rm ao} \ (a,c) \in R$
- E isto é a composição $R \circ R$ e $R \circ R \subseteq R$
- Proposição. Se R é uma relação transitiva de A^2 e M_R é a sua representação matricial, então

$$M_R^n \subseteq M_R, \forall n \in \mathbb{N}$$

• Se para algum n, $M_R^n \nsubseteq M_R$, então R não é uma relação transitiva

Matriz de uma Relação Transitiva

• Mostre que a relação R sobre $A=\{1,2,3\}$ dada pela matriz

$$M_R = \left[\begin{array}{ccc} 1 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{array} \right] \text{ \'e transitiva}$$

Matriz de uma Relação Transitiva

• Mostre que a relação R sobre $A=\{1,2,3\}$ dada pela matriz

$$M_R = \left[\begin{array}{ccc} 1 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{array} \right] \text{ \'e transitiva}$$

• Como $M_R^2 = M_R \odot M_R = M_R$ e, portanto, $M_R^2 \subseteq M_R$, temos que a relação é transitiva

Fechos de uma Relação

ullet Se uma relação R em um conjunto A não possui certa propriedade, podemos tentar estender R a fim de obter uma relação R^* em A que tenha a propriedade desejada

Fechos de uma Relação

- Se uma relação R em um conjunto A não possui certa propriedade, podemos tentar estender R a fim de obter uma relação R^* em A que tenha a propriedade desejada
- ullet A nova relação R^* conterá todos os pares ordenados que R contém mais os pares ordenados adicionais necessários para que a propriedade desejada se verifique

Fechos de uma Relação

- Se uma relação R em um conjunto A não possui certa propriedade, podemos tentar estender R a fim de obter uma relação R^* em A que tenha a propriedade desejada
- ullet A nova relação R^* conterá todos os pares ordenados que R contém mais os pares ordenados adicionais necessários para que a propriedade desejada se verifique
- Portanto, $R \subseteq R^*$

Fechos de uma Relação

- Se uma relação R em um conjunto A não possui certa propriedade, podemos tentar estender R a fim de obter uma relação R^* em A que tenha a propriedade desejada
- ullet A nova relação R^* conterá todos os pares ordenados que R contém mais os pares ordenados adicionais necessários para que a propriedade desejada se verifique
- ullet Portanto, $R \subseteq R^*$
- Naturalmente, deseja-se adicionar o menor número de pares possível, de modo a obter a menor relação R^* sobre A que possui a propriedade deseja

- Se uma relação R em um conjunto A não possui certa propriedade, podemos tentar estender R a fim de obter uma relação R^* em A que tenha a propriedade desejada
- ullet A nova relação R^* conterá todos os pares ordenados que R contém mais os pares ordenados adicionais necessários para que a propriedade desejada se verifique
- ullet Portanto, $R \subseteq R^*$
- Naturalmente, deseja-se adicionar o menor número de pares possível, de modo a obter a menor relação R^{st} sobre A que possui a propriedade deseja
- Se R^* é a menor relação que possui a propriedade deseja, então R^* chamada de **fecho** de R com respeito à propriedade em questão

Fechos de uma Relação

• **Definição.** Seja A um conjunto, R uma relação binária em A e seja p uma propriedade. O fecho de R é a relação binária R^* em A que possui a propriedade p e satisfaz as seguintes condições:

- **Definição.** Seja A um conjunto, R uma relação binária em A e seja p uma propriedade. O fecho de R é a relação binária R^* em A que possui a propriedade p e satisfaz as seguintes condições:
 - R^* possui a propriedade p;

- **Definição.** Seja A um conjunto, R uma relação binária em A e seja p uma propriedade. O fecho de R é a relação binária R^* em A que possui a propriedade p e satisfaz as seguintes condições:
 - R* possui a propriedade p;
 - $R \subseteq R^*$;

- **Definição.** Seja A um conjunto, R uma relação binária em A e seja p uma propriedade. O fecho de R é a relação binária R^* em A que possui a propriedade p e satisfaz as seguintes condições:
 - R^* possui a propriedade p;
 - $R \subseteq R^*$;
 - S é uma outra relação qualquer que contém R e satisfaz a propriedade p, então $R^*\subseteq S$

- **Definição.** Seja A um conjunto, R uma relação binária em A e seja p uma propriedade. O fecho de R é a relação binária R^* em A que possui a propriedade p e satisfaz as seguintes condições:
 - R^* possui a propriedade p;
 - $R \subseteq R^*$;
 - S é uma outra relação qualquer que contém R e satisfaz a propriedade p, então $R^*\subseteq S$
- Podemos definir os seguintes fechos

Fechos de uma Relação

- **Definição.** Seja A um conjunto, R uma relação binária em A e seja p uma propriedade. O fecho de R é a relação binária R^* em A que possui a propriedade p e satisfaz as seguintes condições:
 - R^* possui a propriedade p;
 - $R \subseteq R^*$;
 - S é uma outra relação qualquer que contém R e satisfaz a propriedade p, então $R^* \subseteq S$
- Podemos definir os seguintes fechos
 - Reflexivo
 - Simétrico
 - Transitivo

de uma relação em um conjunto

Fechos de uma Relação

- **Definição.** Seja A um conjunto, R uma relação binária em A e seja p uma propriedade. O fecho de R é a relação binária R^* em A que possui a propriedade p e satisfaz as seguintes condições:
 - R^* possui a propriedade p;
 - $R \subseteq R^*$;
 - S é uma outra relação qualquer que contém R e satisfaz a propriedade p, então $R^* \subseteq S$
- Podemos definir os seguintes fechos
 - Reflexivo
 - Simétrico
 - Transitivo

de uma relação em um conjunto

 Naturalmente, se a relação já realiza uma propriedade, ela é seu próprio fecho com respeito a esta propriedade

Fechos de uma Relação

• Exemplo. Seja $A = \{1, 2, 3\}$ e seja $R = \{(1, 1), (1, 2), (1, 3), (3, 1), (2, 3)\}$

- Exemplo. Seja $A = \{1, 2, 3\}$ e seja $R = \{(1, 1), (1, 2), (1, 3), (3, 1), (2, 3)\}$
- ullet Note que R não é reflexiva

- Exemplo. Seja $A = \{1, 2, 3\}$ e seja $R = \{(1, 1), (1, 2), (1, 3), (3, 1), (2, 3)\}$
- ullet Note que R não é reflexiva
- ullet O fecho de R com respeito à reflexividade é:

- Exemplo. Seja $A = \{1, 2, 3\}$ e seja $R = \{(1, 1), (1, 2), (1, 3), (3, 1), (2, 3)\}$
- ullet Note que R não é reflexiva
- O fecho de R com respeito à reflexividade é:

$$R^* = \{(1,1), (1,2), (1,3), (3,1), (2,3), (2,2), (3,3)\}$$

Fechos de uma Relação

- Exemplo. Seja $A = \{1, 2, 3\}$ e seja $R = \{(1, 1), (1, 2), (1, 3), (3, 1), (2, 3)\}$
- ullet Note que R não é reflexiva
- O fecho de R com respeito à reflexividade é:

$$R^* = \{(1,1), (1,2), (1,3), (3,1), (2,3), (2,2), (3,3)\}$$

$$R^*=R\cup\Delta$$
 , em que $\Delta=\{(2,2),(3,3)\}$

Fechos de uma Relação

- Exemplo. Seja $A = \{1, 2, 3\}$ e seja $R = \{(1, 1), (1, 2), (1, 3), (3, 1), (2, 3)\}$
- ullet Note que R não é reflexiva
- O fecho de R com respeito à reflexividade é:

$$R^* = \{(1,1), (1,2), (1,3), (3,1), (2,3), (2,2), (3,3)\}$$

$$R^* = R \cup \Delta$$
, em que $\Delta = \{(2, 2), (3, 3)\}$

- Observe que os elementos em Δ são os únicos pares da forma (x,x), com $x\in A$, que não estão em R
 - ullet Note que R^* é reflexiva e contém R

Fechos de uma Relação

- Exemplo. Seja $A = \{1, 2, 3\}$ e seja $R = \{(1, 1), (1, 2), (1, 3), (3, 1), (2, 3)\}$
- Note que R não é reflexiva
- O fecho de R com respeito à reflexividade é:

$$R^* = \{(1,1), (1,2), (1,3), (3,1), (2,3), (2,2), (3,3)\}$$

$$R^* = R \cup \Delta$$
, em que $\Delta = \{(2, 2), (3, 3)\}$

- Observe que os elementos em Δ são os únicos pares da forma (x,x), com $x\in A$, que não estão em R
 - ullet Note que R^* é reflexiva e contém R
 - Além disso, qualquer relação reflexiva em A deve conter os novos pares ordenados que incluímos: (2,2) e (3,3)

Fechos de uma Relação

- Exemplo. Seja $A = \{1, 2, 3\}$ e seja $R = \{(1, 1), (1, 2), (1, 3), (3, 1), (2, 3)\}$
- Note que R não é reflexiva
- O fecho de R com respeito à reflexividade é:

$$R^* = \{(1,1), (1,2), (1,3), (3,1), (2,3), (2,2), (3,3)\}$$

$$R^* = R \cup \Delta$$
, em que $\Delta = \{(2, 2), (3, 3)\}$

- Observe que os elementos em Δ são os únicos pares da forma (x,x), com $x\in A$, que não estão em R
 - $\bullet \ \, \text{Note que } R^* \,\, \text{\'e reflexiva e cont\'em } R$
 - Além disso, qualquer relação reflexiva em A deve conter os novos pares ordenados que incluímos: (2,2) e (3,3) de forma que não pode haver relação reflexiva menor do que esta

Fechos de uma Relação

- Exemplo. Seja $A = \{1, 2, 3\}$ e seja $R = \{(1, 1), (1, 2), (1, 3), (3, 1), (2, 3)\}$
- ullet Note que R não é reflexiva
- O fecho de R com respeito à reflexividade é:

$$R^* = \{(1,1), (1,2), (1,3), (3,1), (2,3), (2,2), (3,3)\}$$

$$R^* = R \cup \Delta$$
, em que $\Delta = \{(2, 2), (3, 3)\}$

- Observe que os elementos em Δ são os únicos pares da forma (x,x), com $x\in A$, que não estão em R
 - Note que R^* é reflexiva e contém R
 - Além disso, qualquer relação reflexiva em A deve conter os novos pares ordenados que incluímos: (2,2) e (3,3) de forma que não pode haver relação reflexiva menor do que esta
 - $\bullet\,$ Ou seja, qualquer relação reflexiva contendo R deve conter a relação R^*

- Exemplo. Seja $A = \{1, 2, 3\}$ e seja $R = \{(1, 1), (1, 2), (1, 3), (3, 1), (2, 3)\}$
- ullet Note que R não é simétrica

- Exemplo. Seja $A = \{1, 2, 3\}$ e seja $R = \{(1, 1), (1, 2), (1, 3), (3, 1), (2, 3)\}$
- ullet Note que R não é simétrica
- ullet O fecho de R com respeito à simetria é:

- Exemplo. Seja $A = \{1, 2, 3\}$ e seja $R = \{(1, 1), (1, 2), (1, 3), (3, 1), (2, 3)\}$
- ullet Note que R não é simétrica
- O fecho de R com respeito à simetria é:

$$R^* = \{(1,1), (1,2), (1,3), (3,1), (2,3), (2,1), (3,2)\}$$

Fechos de uma Relação

- Exemplo. Seja $A = \{1, 2, 3\}$ e seja $R = \{(1, 1), (1, 2), (1, 3), (3, 1), (2, 3)\}$
- ullet Note que R não é simétrica
- O fecho de R com respeito à simetria é:

$$R^* = \{(1,1), (1,2), (1,3), (3,1), (2,3), (2,1), (3,2)\}$$

 $\bullet \ \ {\rm Note \ que} \ R^* \ {\rm \acute{e} \ sim\acute{e}trica} \ {\rm e \ cont\acute{e}m} \ R$

- Exemplo. Seja $A = \{1, 2, 3\}$ e seja $R = \{(1, 1), (1, 2), (1, 3), (3, 1), (2, 3)\}$
- ullet Note que R não é simétrica
- O fecho de R com respeito à simetria é:

$$R^* = \{(1,1), (1,2), (1,3), (3,1), (2,3), (2,1), (3,2)\}$$

- Note que R^* é simétrica e contém R
- Além disso, qualquer relação simétrica em A deve conter os novos pares ordenados que incluímos: (2,1) e (3,2)

- Exemplo. Seja $A = \{1, 2, 3\}$ e seja $R = \{(1, 1), (1, 2), (1, 3), (3, 1), (2, 3)\}$
- ullet Note que R não é simétrica
- O fecho de R com respeito à simetria é:

$$R^* = \{(1,1), (1,2), (1,3), (3,1), (2,3), (2,1), (3,2)\}$$

- Note que R^* é simétrica e contém R
- Além disso, qualquer relação simétrica em A deve conter os novos pares ordenados que incluímos: (2,1) e (3,2) de forma que não pode haver relação simétrica menor do que esta

- Exemplo. Seja $A = \{1, 2, 3\}$ e seja $R = \{(1, 1), (1, 2), (1, 3), (3, 1), (2, 3)\}$
- Note que R não é simétrica
- O fecho de R com respeito à simetria é:

$$R^* = \{(1,1), (1,2), (1,3), (3,1), (2,3), (2,1), (3,2)\}$$

- Note que R^* é simétrica e contém R
- Além disso, qualquer relação simétrica em A deve conter os novos pares ordenados que incluímos: (2,1) e (3,2) de forma que não pode haver relação simétrica menor do que esta
- Ou seja, qualquer relação simétrica contendo R deve conter a relação R^{\ast}

- Exemplo. Seja $A = \{1, 2, 3\}$ e seja $R = \{(1, 1), (1, 2), (1, 3), (3, 1), (2, 3)\}$
- Note que R não é simétrica
- O fecho de R com respeito à simetria é:

$$R^* = \{(1,1), (1,2), (1,3), (3,1), (2,3), (2,1), (3,2)\}$$

- Note que R^* é simétrica e contém R
- Além disso, qualquer relação simétrica em A deve conter os novos pares ordenados que incluímos: (2,1) e (3,2) de forma que não pode haver relação simétrica menor do que esta
- ullet Para os fechos reflexivo e simétrico, temos apenas que verificar os pares já em R a fim de encontrar quais pares precisamos incluir

- Exemplo. Seja $A = \{1, 2, 3\}$ e seja $R = \{(1, 1), (1, 2), (1, 3), (3, 1), (2, 3)\}$
- $\bullet\,$ Note que R não é transitiva

- Exemplo. Seja $A = \{1, 2, 3\}$ e seja $R = \{(1, 1), (1, 2), (1, 3), (3, 1), (2, 3)\}$
- ullet Note que R não é transitiva
- O fecho transitivo demanda uma série de passos para ser encontrado

- Exemplo. Seja $A = \{1, 2, 3\}$ e seja $R = \{(1, 1), (1, 2), (1, 3), (3, 1), (2, 3)\}$
- ullet Note que R não é transitiva
- O fecho transitivo demanda uma série de passos para ser encontrado
- Verificando os pares ordenados de R, vemos que precisamos incluir (3,2) (devido aos pares (3,1) e (1,2))

- Exemplo. Seja $A = \{1, 2, 3\}$ e seja $R = \{(1, 1), (1, 2), (1, 3), (3, 1), (2, 3)\}$
- ullet Note que R não é transitiva
- O fecho transitivo demanda uma série de passos para ser encontrado
- Verificando os pares ordenados de R, vemos que precisamos incluir (3,2) (devido aos pares (3,1) e (1,2))
- Precisamos incluir (3,3) (devido aos pares (3,1) e (1,3))

- Exemplo. Seja $A = \{1, 2, 3\}$ e seja $R = \{(1, 1), (1, 2), (1, 3), (3, 1), (2, 3)\}$
- ullet Note que R não é transitiva
- O fecho transitivo demanda uma série de passos para ser encontrado
- Verificando os pares ordenados de R, vemos que precisamos incluir (3,2) (devido aos pares (3,1) e (1,2))
- Precisamos incluir (3,3) (devido aos pares (3,1) e (1,3))
- ullet Precisamos incluir (2,1) (devido aos pares (2,3) e (3,1))

- Exemplo. Seja $A = \{1, 2, 3\}$ e seja $R = \{(1, 1), (1, 2), (1, 3), (3, 1), (2, 3)\}$
- ullet Note que R não é transitiva
- O fecho transitivo demanda uma série de passos para ser encontrado
- Verificando os pares ordenados de R, vemos que precisamos incluir (3,2) (devido aos pares (3,1) e (1,2))
- Precisamos incluir (3,3) (devido aos pares (3,1) e (1,3))
- Precisamos incluir (2,1) (devido aos pares (2,3) e (3,1))
- Isto nos dá a relação:

- Exemplo. Seja $A = \{1, 2, 3\}$ e seja $R = \{(1, 1), (1, 2), (1, 3), (3, 1), (2, 3)\}$
- Note que R não é transitiva
- O fecho transitivo demanda uma série de passos para ser encontrado
- Verificando os pares ordenados de R, vemos que precisamos incluir (3,2) (devido aos pares (3,1) e (1,2))
- Precisamos incluir (3,3) (devido aos pares (3,1) e (1,3))
- Precisamos incluir (2,1) (devido aos pares (2,3) e (3,1))
- Isto nos dá a relação:

$$\{(1,1),(1,2),(1,3),(3,1),(2,3),(3,2),(3,3),(2,1)\}$$

Fechos de uma Relação

- Exemplo. Seja $A = \{1, 2, 3\}$ e seja $R = \{(1, 1), (1, 2), (1, 3), (3, 1), (2, 3)\}$
- Note que R não é transitiva
- O fecho transitivo demanda uma série de passos para ser encontrado
- Verificando os pares ordenados de R, vemos que precisamos incluir (3,2) (devido aos pares (3,1) e (1,2))
- Precisamos incluir (3,3) (devido aos pares (3,1) e (1,3))
- Precisamos incluir (2,1) (devido aos pares (2,3) e (3,1))
- Isto nos dá a relação:

$$\{(1,1),(1,2),(1,3),(3,1),(2,3),(3,2),(3,3),(2,1)\}$$

No entanto, esta relação ainda não é transitiva

Fechos de uma Relação

Isto nos dá a relação:

$$\{(1,1),(1,2),(1,3),(3,1),(2,3),(3,2),(3,3),(2,1)\}$$

• No entanto, esta relação ainda não é transitiva

Fechos de uma Relação

Isto nos dá a relação:

$$\{(1,1),(1,2),(1,3),(3,1),(2,3),(3,2),(3,3),(2,1)\}$$

- No entanto, esta relação ainda não é transitiva
- Pois, devido ao novo par (2,1) e ao par original (1,2), devemos incluir o par (2,2)
- Isto nos dá a relação:

Fechos de uma Relação

Isto nos dá a relação:

$$\{(1,1),(1,2),(1,3),(3,1),(2,3),(3,2),(3,3),(2,1)\}$$

- No entanto, esta relação ainda não é transitiva
- Pois, devido ao novo par (2,1) e ao par original (1,2), devemos incluir o par (2,2)
- Isto nos dá a relação:

$$\{(1,1),(1,2),(1,3),(3,1),(2,3),(3,2),(3,3),(2,1),(2,2)\}$$

Fechos de uma Relação

Isto nos dá a relação:

$$\{(1,1),(1,2),(1,3),(3,1),(2,3),(3,2),(3,3),(2,1)\}$$

- No entanto, esta relação ainda não é transitiva
- Pois, devido ao novo par (2,1) e ao par original (1,2), devemos incluir o par (2,2)
- Isto nos dá a relação:

$$\{(1,1),(1,2),(1,3),(3,1),(2,3),(3,2),(3,3),(2,1),(2,2)\}$$
 que é transitiva e é também a menor relação transitiva que contém R

Fechos de uma Relação

Isto nos dá a relação:

$$\{(1,1),(1,2),(1,3),(3,1),(2,3),(3,2),(3,3),(2,1)\}$$

- No entanto, esta relação ainda não é transitiva
- Pois, devido ao novo par (2,1) e ao par original (1,2), devemos incluir o par (2,2)
- Isto nos dá a relação:

$$\{(1,1),(1,2),(1,3),(3,1),(2,3),(3,2),(3,3),(2,1),(2,2)\}$$
 que é transitiva e é também a menor relação transitiva que contém R

 Uma maneira de determinar o fecho transitivo de uma relação é verificar os pares ordenados na relação original, incluir novos pares se necessário, verificar a relação obtida, incluindo novos pares se necessário e assim por diante, até que tenhamos obtido uma relação transitiva

Fechos de uma Relação

• Seja $A=\{0,1,2,3\}$ e considere a relação $R=\{(0,1),(1,2),(2,3)\}$ definida em A. Determine o fecho transitivo de R

Fechos de uma Relação

• Seja $A=\{0,1,2,3\}$ e considere a relação $R=\{(0,1),(1,2),(2,3)\}$ definida em A. Determine o fecho transitivo de R

Hipótese	Conclusão
(0,1) e $(1,2)$	$(0,2)^*$
(1,2) e $(2,3)$	$(1,3)^*$
(0,2) e $(2,3)$	$(0,3)^*$

* Não faz parte da relação original

Fechos de uma Relação

• Seja $A=\{0,1,2,3\}$ e considere a relação $R=\{(0,1),(1,2),(2,3)\}$ definida em A. Determine o fecho transitivo de R

Hipótese	Conclusão
(0,1) e $(1,2)$	$(0,2)^*$
(1,2) e $(2,3)$	$(1,3)^*$
(0,2) e $(2,3)$	$(0,3)^*$

- * Não faz parte da relação original
- $R^* = \{(0,1), (0,2), (0,3), (1,2), (1,3), (2,3)\}$

Fechos Transitivo de uma Relação

ullet Teorema. O fecho transitivo de uma relação R é igual a R^{st} , em que

$$R^* = \bigcup_{n=1}^{\infty} R^n$$

Fechos Transitivo de uma Relação

• Teorema. O fecho transitivo de uma relação R é igual a R^{st} , em que

$$R^* = \bigcup_{n=1}^{\infty} R^n$$

• Seja A um conjunto com |A|=n e seja R uma relação sobre A, então

Fechos Transitivo de uma Relação

• Teorema. O fecho transitivo de uma relação R é igual a R^{st} , em que

$$R^* = \bigcup_{n=1}^{\infty} R^n$$

• Seja A um conjunto com |A|=n e seja R uma relação sobre A, então

$$R^* = R \cup R^2 \cup R^3 \cup \dots \cup R^n$$

Fechos Transitivo de uma Relação

• Teorema. O fecho transitivo de uma relação R é igual a R^{st} , em que

$$R^* = \bigcup_{n=1}^{\infty} R^n$$

• Seja A um conjunto com |A|=n e seja R uma relação sobre A, então

$$R^* = R \cup R^2 \cup R^3 \cup \dots \cup R^n$$

 \bullet Potências de R maiores do que n não são necessárias para computar R^*

Fechos Transitivo de uma Relação

• Teorema. O fecho transitivo de uma relação R é igual a R^{st} , em que

$$R^* = \bigcup_{n=1}^{\infty} R^n$$

• Seja A um conjunto com |A|=n e seja R uma relação sobre A, então

$$R^* = R \cup R^2 \cup R^3 \cup \dots \cup R^n$$

- Potências de R maiores do que n não são necessárias para computar R^{\ast}
- Seja M_R a matriz zero-um da relação R sobre um conjunto com n elementos. Assim, a matriz do fecho transitivo de R^* é

Fechos Transitivo de uma Relação

• Teorema. O fecho transitivo de uma relação R é igual a R^{st} , em que

$$R^* = \bigcup_{n=1}^{\infty} R^n$$

• Seja A um conjunto com |A|=n e seja R uma relação sobre A, então

$$R^* = R \cup R^2 \cup R^3 \cup \dots \cup R^n$$

- \bullet Potências de R maiores do que n não são necessárias para computar R^*
- Seja M_R a matriz zero-um da relação R sobre um conjunto com n elementos. Assim, a matriz do fecho transitivo de R^* é

$$M_R^* = M_R \vee M_R^{[2]} \cup M_R^{[3]} \vee \dots \vee M_R^{[n]}$$

Fechos Transitivo de uma Relação

• Exemplo. Seja $A=\{1,2,3,4\}$ e uma relação binária R definida como $R=\{(1,2),(2,1),(2,3),(3,4)\}$. Determine o fecho transitivo de R

Fechos Transitivo de uma Relação

• Exemplo. Seja $A = \{1, 2, 3, 4\}$ e uma relação binária R definida como $R = \{(1, 2), (2, 1), (2, 3), (3, 4)\}$. Determine o fecho transitivo de R

$$M_R = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \qquad M_R^2 = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$M_R^3 = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \qquad M_R^4 = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Fechos Transitivo de uma Relação

• Exemplo. Seja $A = \{1, 2, 3, 4\}$ e uma relação binária R definida como $R = \{(1, 2), (2, 1), (2, 3), (3, 4)\}$. Determine o fecho transitivo de R

fecho transitivo de
$$R$$

$$M_R = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \qquad M_R^2 = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$M_R^3 = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \qquad M_R^4 = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$M_R^* = M_R \vee M_R^2 \vee M_R^3 \vee M_R^4 = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Ordens Parciais

 Com frequência usamos relações para ordenar alguns ou todos os elementos

- Com frequência usamos relações para ordenar alguns ou todos os elementos
 - Ordenamos palavras usando a relação que contém pares de palavras (x,y), em que x vem antes de y no dicionário

- Com frequência usamos relações para ordenar alguns ou todos os elementos
 - Ordenamos palavras usando a relação que contém pares de palavras (x, y), em que x vem antes de y no dicionário
 - Ordenamos o conjunto dos inteiros usando a relação que contém os pares (x,y) em que x menor que y

- Com frequência usamos relações para ordenar alguns ou todos os elementos
 - Ordenamos palavras usando a relação que contém pares de palavras (x, y), em que x vem antes de y no dicionário
 - Ordenamos o conjunto dos inteiros usando a relação que contém os pares (x,y) em que x menor que y
- Definição. Uma relação em um conjunto S é chamada de ordenação parcial ou de ordem parcial se for reflexiva, antissimétrica e transitiva. Um conjunto S junto com uma ordenação parcial R é denominado um conjunto parcialmente ordenado ou poset e é indicado por (S,R)

- Com frequência usamos relações para ordenar alguns ou todos os elementos
 - Ordenamos palavras usando a relação que contém pares de palavras (x, y), em que x vem antes de y no dicionário
 - Ordenamos o conjunto dos inteiros usando a relação que contém os pares (x,y) em que x menor que y
- Definição. Uma relação em um conjunto S é chamada de ordenação parcial ou de ordem parcial se for reflexiva, antissimétrica e transitiva. Um conjunto S junto com uma ordenação parcial R é denominado um conjunto parcialmente ordenado ou poset e é indicado por (S, R)
 - ullet Os membros de S são chamados de elementos do poset

- Com frequência usamos relações para ordenar alguns ou todos os elementos
 - Ordenamos palavras usando a relação que contém pares de palavras (x, y), em que x vem antes de y no dicionário
 - Ordenamos o conjunto dos inteiros usando a relação que contém os pares (x,y) em que x menor que y
- Definição. Uma relação em um conjunto S é chamada de ordenação parcial ou de ordem parcial se for reflexiva, antissimétrica e transitiva. Um conjunto S junto com uma ordenação parcial R é denominado um conjunto parcialmente ordenado ou poset e é indicado por (S, R)
 - ullet Os membros de S são chamados de elementos do poset
 - Seja R uma relação binária no conjunto S. Então R é dita antissimétrica se, e somente se, $\forall x, \forall y \in S$, se $(a,b) \in R$ e $(b,a) \in R$, então a=b

Ordens Parciais

• Exemplo. Mostre que a relação "maior que ou igual a"(≥) é uma ordem parcial no conjunto dos inteiros

- Exemplo. Mostre que a relação "maior que ou igual a"(≥) é uma ordem parcial no conjunto dos inteiros
 - Como $a \ge a, \forall a \in \mathbb{Z}$, \ge é reflexiva

- Exemplo. Mostre que a relação "maior que ou igual a"(≥) é uma ordem parcial no conjunto dos inteiros
 - Como $a \ge a, \forall a \in \mathbb{Z}, \ge$ é reflexiva
 - Se $a \ge b$ e $b \ge a$, então a = b.

- Exemplo. Mostre que a relação "maior que ou igual a"(≥) é uma ordem parcial no conjunto dos inteiros
 - Como $a > a, \forall a \in \mathbb{Z}, > \text{\'e}$ reflexiva
 - Se $a \ge b$ e $b \ge a$, então a = b. Logo, \ge é antissimétrica

- Exemplo. Mostre que a relação "maior que ou igual a"(≥) é uma ordem parcial no conjunto dos inteiros
 - Como $a \geq a, \forall a \in \mathbb{Z}, \geq \text{\'e}$ reflexiva
 - Se $a \ge b$ e $b \ge a$, então a = b. Logo, \ge é antissimétrica
 - Se $a \ge b$ e $b \ge c$, então $a \ge c$.

- Exemplo. Mostre que a relação "maior que ou igual a"(≥) é uma ordem parcial no conjunto dos inteiros
 - Como $a > a, \forall a \in \mathbb{Z}, > \text{\'e}$ reflexiva
 - Se $a \ge b$ e $b \ge a$, então a = b. Logo, \ge é antissimétrica
 - Se $a \ge b$ e $b \ge c$, então $a \ge c$. Logo, \ge é transitiva

- Exemplo. Mostre que a relação "maior que ou igual a"(≥) é uma ordem parcial no conjunto dos inteiros
 - Como $a \geq a, \forall a \in \mathbb{Z}, \geq \text{\'e}$ reflexiva
 - Se $a \ge b$ e $b \ge a$, então a = b. Logo, \ge é antissimétrica
 - Se $a \ge b$ e $b \ge c$, então $a \ge c$. Logo, \ge é transitiva
 - ullet Portanto, \geq é uma ordem parcial no conjunto dos inteiros

- Exemplo. Mostre que a relação "maior que ou igual a"(≥) é uma ordem parcial no conjunto dos inteiros
 - Como $a \geq a, \forall a \in \mathbb{Z}, \geq \text{\'e}$ reflexiva
 - Se $a \ge b$ e $b \ge a$, então a = b. Logo, \ge é antissimétrica
 - Se $a \ge b$ e $b \ge c$, então $a \ge c$. Logo, \ge é transitiva
 - ullet Portanto, \geq é uma ordem parcial no conjunto dos inteiros
- Exemplo. A relação "divide"(|) é uma ordem parcial no conjunto dos inteiros positivos

- Exemplo. Mostre que a relação "maior que ou igual a"(≥) é uma ordem parcial no conjunto dos inteiros
 - Como $a \geq a, \forall a \in \mathbb{Z}, \geq \text{\'e}$ reflexiva
 - Se $a \ge b$ e $b \ge a$, então a = b. Logo, \ge é antissimétrica
 - Se $a \ge b$ e $b \ge c$, então $a \ge c$. Logo, \ge é transitiva
 - ullet Portanto, \geq é uma ordem parcial no conjunto dos inteiros
- Exemplo. A relação "divide"(|) é uma ordem parcial no conjunto dos inteiros positivos
 - Vimos que esta relação é reflexiva, antissimétrica e transitiva

- Exemplo. Mostre que a relação "maior que ou igual a"(≥) é uma ordem parcial no conjunto dos inteiros
 - Como $a \geq a, \forall a \in \mathbb{Z}, \geq \text{\'e}$ reflexiva
 - Se $a \ge b$ e $b \ge a$, então a = b. Logo, \ge é antissimétrica
 - Se $a \ge b$ e $b \ge c$, então $a \ge c$. Logo, \ge é transitiva
 - ullet Portanto, \geq é uma ordem parcial no conjunto dos inteiros
- Exemplo. A relação "divide"(|) é uma ordem parcial no conjunto dos inteiros positivos
 - Vimos que esta relação é reflexiva, antissimétrica e transitiva
 - Logo, $(\mathbb{Z}_+^*, |)$ é um poset

Ordens Parciais

ullet Exemplo. Mostre que a relação de inclusão (\subseteq) é uma ordem parcial no conjunto das partes de um conjunto S

- Exemplo. Mostre que a relação de inclusão (\subseteq) é uma ordem parcial no conjunto das partes de um conjunto S
 - $\bullet \ \, {\sf Como} \ A \subseteq A \ \, {\sf sempre} \ \, {\sf que} \ \, A \ \, {\sf \'e} \ \, {\sf um} \ \, {\sf subconjunto} \ \, {\sf de} \ \, S, \subseteq \\ \, {\sf reflexiva}$

- Exemplo. Mostre que a relação de inclusão (\subseteq) é uma ordem parcial no conjunto das partes de um conjunto S
 - $\bullet \ \, {\sf Como} \ A \subseteq A \ \, {\sf sempre} \ \, {\sf que} \ \, A \ \, {\sf \'e} \ \, {\sf um} \ \, {\sf subconjunto} \ \, {\sf de} \ \, S, \subseteq \\ \, {\sf reflexiva}$
 - $\bullet \ \ \mathsf{Se} \ A \subseteq B \ \mathsf{e} \ B \subseteq A \text{, então } A = B.$

- Exemplo. Mostre que a relação de inclusão (\subseteq) é uma ordem parcial no conjunto das partes de um conjunto S
 - Como $A\subseteq A$ sempre que A é um subconjunto de S, \subseteq reflexiva
 - Se $A \subseteq B$ e $B \subseteq A$, então A = B. Logo, \subseteq é antissimétrica

- Exemplo. Mostre que a relação de inclusão (\subseteq) é uma ordem parcial no conjunto das partes de um conjunto S
 - Como $A\subseteq A$ sempre que A é um subconjunto de S, \subseteq reflexiva
 - Se $A \subseteq B$ e $B \subseteq A$, então A = B. Logo, \subseteq é antissimétrica
 - $\bullet \ \ \mathsf{Se} \ A \subseteq B \ \mathsf{e} \ B \subseteq C \text{, ent} \\ \mathsf{ão} \ A \subseteq C.$

- Exemplo. Mostre que a relação de inclusão (\subseteq) é uma ordem parcial no conjunto das partes de um conjunto S
 - Como $A\subseteq A$ sempre que A é um subconjunto de S, \subseteq reflexiva
 - Se $A \subseteq B$ e $B \subseteq A$, então A = B. Logo, \subseteq é antissimétrica
 - Se $A \subseteq B$ e $B \subseteq C$, então $A \subseteq C$. Logo, \subseteq é **transitiva**

- Exemplo. Mostre que a relação de inclusão (\subseteq) é uma ordem parcial no conjunto das partes de um conjunto S
 - Como $A\subseteq A$ sempre que A é um subconjunto de S, \subseteq reflexiva
 - Se $A \subseteq B$ e $B \subseteq A$, então A = B. Logo, \subseteq é antissimétrica
 - Se $A \subseteq B$ e $B \subseteq C$, então $A \subseteq C$. Logo, \subseteq é transitiva
 - ullet Portanto, \subseteq é uma ordem parcial no conjunto das partes de S

- Exemplo. Mostre que a relação de inclusão (\subseteq) é uma ordem parcial no conjunto das partes de um conjunto S
 - Como $A\subseteq A$ sempre que A é um subconjunto de S, \subseteq reflexiva
 - Se $A \subseteq B$ e $B \subseteq A$, então A = B. Logo, \subseteq é antissimétrica
 - Se $A \subseteq B$ e $B \subseteq C$, então $A \subseteq C$. Logo, \subseteq é transitiva
 - ullet Portanto, \subseteq é uma ordem parcial no conjunto das partes de S
- Em poset diferentes s\(\tilde{a}\) o usados s\(\tilde{m}\) bolos diferentes, tais como ≤, ⊆, |, para ordem parcial

- Exemplo. Mostre que a relação de inclusão (\subseteq) é uma ordem parcial no conjunto das partes de um conjunto S
 - Como $A\subseteq A$ sempre que A é um subconjunto de S, \subseteq reflexiva
 - Se $A \subseteq B$ e $B \subseteq A$, então A = B. Logo, \subseteq é antissimétrica
 - Se $A \subseteq B$ e $B \subseteq C$, então $A \subseteq C$. Logo, \subseteq é transitiva
 - \bullet Portanto, \subseteq é uma ordem parcial no conjunto das partes de S
- Em poset diferentes s\(\tilde{a}\) o usados s\(\tilde{m}\) bolos diferentes, tais como ≤, ⊆, |, para ordem parcial
- Entretanto precisamos de um símbolo que possa ser usado quando discutirmos a relação de ordem em um poset arbitrário

- Exemplo. Mostre que a relação de inclusão (\subseteq) é uma ordem parcial no conjunto das partes de um conjunto S
 - Como $A\subseteq A$ sempre que A é um subconjunto de S, \subseteq reflexiva
 - Se $A \subseteq B$ e $B \subseteq A$, então A = B. Logo, \subseteq é antissimétrica
 - Se $A \subseteq B$ e $B \subseteq C$, então $A \subseteq C$. Logo, \subseteq é transitiva
 - \bullet Portanto, \subseteq é uma ordem parcial no conjunto das partes de S
- Em poset diferentes s\(\tilde{a}\) o usados s\(\tilde{m}\) bolos diferentes, tais como ≤, ⊆, |, para ordem parcial
- Entretanto precisamos de um símbolo que possa ser usado quando discutirmos a relação de ordem em um poset arbitrário
 - Em geral, a indicação $a \preccurlyeq b$ é usada para denotar que $(a,b) \in R$ em um poset arbitrário (S,R)

- Exemplo. Mostre que a relação de inclusão (\subseteq) é uma ordem parcial no conjunto das partes de um conjunto S
 - Como $A\subseteq A$ sempre que A é um subconjunto de S, \subseteq reflexiva
 - Se $A \subseteq B$ e $B \subseteq A$, então A = B. Logo, \subseteq é antissimétrica
 - Se $A \subseteq B$ e $B \subseteq C$, então $A \subseteq C$. Logo, \subseteq é transitiva
 - \bullet Portanto, \subseteq é uma ordem parcial no conjunto das partes de S
- Em poset diferentes s\(\tilde{a}\) o usados s\(\tilde{m}\) bolos diferentes, tais como ≤, ⊆, |, para ordem parcial
- Entretanto precisamos de um símbolo que possa ser usado quando discutirmos a relação de ordem em um poset arbitrário
 - Em geral, a indicação $a \preccurlyeq b$ é usada para denotar que $(a,b) \in R$ em um poset arbitrário (S,R)
 - A notação $a \prec b$ significa que $a \preccurlyeq b$, mas $a \neq b$

- Exemplo. Mostre que a relação de inclusão (\subseteq) é uma ordem parcial no conjunto das partes de um conjunto S
 - Como $A\subseteq A$ sempre que A é um subconjunto de S, \subseteq reflexiva
 - Se $A \subseteq B$ e $B \subseteq A$, então A = B. Logo, \subseteq é antissimétrica
 - Se $A \subseteq B$ e $B \subseteq C$, então $A \subseteq C$. Logo, \subseteq é transitiva
 - \bullet Portanto, \subseteq é uma ordem parcial no conjunto das partes de S
- Em poset diferentes s\(\tilde{a}\) o usados s\(\tilde{m}\) bolos diferentes, tais como ≤, ⊆, |, para ordem parcial
- Entretanto precisamos de um símbolo que possa ser usado quando discutirmos a relação de ordem em um poset arbitrário
 - Em geral, a indicação $a \preccurlyeq b$ é usada para denotar que $(a,b) \in R$ em um poset arbitrário (S,R)
 - A notação $a \prec b$ significa que $a \preccurlyeq b$, mas $a \neq b$
 - ullet Dizemos que "a é menor que b" ou "b é maior que a" se $a \prec b$

Ordens Total

• Definição. Se (S, \preccurlyeq) é um poset e quaisquer dois elementos de S são comparáveis, S é chamado de conjunto totalmente ordenado ou linearmente ordenado, e \preccurlyeq será chamada de ordem total e ordem linear

- Definição. Se (S, \preccurlyeq) é um poset e quaisquer dois elementos de S são comparáveis, S é chamado de conjunto totalmente ordenado ou linearmente ordenado, e \preccurlyeq será chamada de ordem total e ordem linear
- Exemplo. No poset $(Z_+,|)$, os inteiros 3 e 9 são comparáveis, mas os inteiros 5 e 7 são incomparáveis, pois $5 \nmid 7$ e $7 \nmid 5$

- Definição. Se (S, \preccurlyeq) é um poset e quaisquer dois elementos de S são comparáveis, S é chamado de conjunto totalmente ordenado ou linearmente ordenado, e \preccurlyeq será chamada de ordem total e ordem linear
- Exemplo. No poset $(Z_+, |)$, os inteiros 3 e 9 são comparáveis, mas os inteiros 5 e 7 são incomparáveis, pois $5 \nmid 7$ e $7 \nmid 5$
- O adjetivo "parcial" é usado para descrever as ordens parciais porque pares de elementos podem ser incomparáveis

- Definição. Se (S, \preccurlyeq) é um poset e quaisquer dois elementos de S são comparáveis, S é chamado de conjunto totalmente ordenado ou linearmente ordenado, e \preccurlyeq será chamada de ordem total e ordem linear
- Exemplo. No poset $(Z_+, |)$, os inteiros 3 e 9 são comparáveis, mas os inteiros 5 e 7 são incomparáveis, pois $5 \nmid 7$ e $7 \nmid 5$
- O adjetivo "parcial" é usado para descrever as ordens parciais porque pares de elementos podem ser incomparáveis
- Quando quaisquer dois elementos no conjunto forem comparáveis, a relação é chamada de ordem total ou ordem linear

- Definição. Se (S, \preccurlyeq) é um poset e quaisquer dois elementos de S são comparáveis, S é chamado de conjunto totalmente ordenado ou linearmente ordenado, e \preccurlyeq será chamada de ordem total e ordem linear
- Exemplo. No poset $(Z_+, |)$, os inteiros 3 e 9 são comparáveis, mas os inteiros 5 e 7 são incomparáveis, pois $5 \nmid 7$ e $7 \nmid 5$
- O adjetivo "parcial" é usado para descrever as ordens parciais porque pares de elementos podem ser incomparáveis
- Quando quaisquer dois elementos no conjunto forem comparáveis, a relação é chamada de ordem total ou ordem linear
- Um conjunto totalmente ordenado também é chamado de cadeia

Ordens Total

• Exemplo. O poset (Z, \leq) é totalmente ordenado, pois $a \leq b$ ou $b \leq a$ sempre que a e b forem inteiros

- Exemplo. O poset (Z, \leq) é totalmente ordenado, pois $a \leq b$ ou $b \leq a$ sempre que a e b forem inteiros
- Exemplo. O poset $(Z_+, |)$ não é totalmente ordenado, pois contém elementos não comparáveis

- Exemplo. O poset (Z, \leq) é totalmente ordenado, pois $a \leq b$ ou $b \leq a$ sempre que a e b forem inteiros
- Exemplo. O poset $(Z_+, |)$ não é totalmente ordenado, pois contém elementos não comparáveis
- Definição. (S, \preccurlyeq) é um conjunto bem-ordenado se for um poset tal que \preccurlyeq seja uma ordem total e todo subconjunto não vazio de S tenha um menor elemento

- Exemplo. O poset (Z, \leq) é totalmente ordenado, pois $a \leq b$ ou $b \leq a$ sempre que a e b forem inteiros
- Exemplo. O poset $(Z_+, |)$ não é totalmente ordenado, pois contém elementos não comparáveis
- Definição. (S, \preccurlyeq) é um conjunto bem-ordenado se for um poset tal que \preccurlyeq seja uma ordem total e todo subconjunto não vazio de S tenha um menor elemento
- O conjunto $A=\{1,3,5,7,\cdots\}$ dos inteiros positivos ímpares é um subconjunto não vazio de Z_+ e possui o elemento mínimo (minA=1)

- Exemplo. O poset (Z, \leq) é totalmente ordenado, pois $a \leq b$ ou $b \leq a$ sempre que a e b forem inteiros
- Exemplo. O poset $(Z_+, |)$ não é totalmente ordenado, pois contém elementos não comparáveis
- Definição. (S, \preccurlyeq) é um conjunto bem-ordenado se for um poset tal que \preccurlyeq seja uma ordem total e todo subconjunto não vazio de S tenha um menor elemento
- O conjunto $A=\{1,3,5,7,\cdots\}$ dos inteiros positivos ímpares é um subconjunto não vazio de Z_+ e possui o elemento mínimo (minA=1)
- O conjunto $P=\{2,3,5,7,11,\cdots\}$ dos inteiros positivos primos é um subconjunto não vazio de Z_+ e possui o elemento mínimo (minP=2)

Diagrama de Hasse

• Muitas arestas em um grafo orientado para um poset finito não precisam ser mostradas porque elas devem estar presentes

Diagrama de Hasse

- Muitas arestas em um grafo orientado para um poset finito não precisam ser mostradas porque elas devem estar presentes
- Exemplo. Considere o grafo orientado para a ordem parcial $\{(a,b)|a\leq b\}$ no conjunto $\{1,2,3,4\}$

Diagrama de Hasse

- Muitas arestas em um grafo orientado para um poset finito não precisam ser mostradas porque elas devem estar presentes
- Exemplo. Considere o grafo orientado para a ordem parcial $\{(a,b)|a\leq b\}$ no conjunto $\{1,2,3,4\}$

 Como esta relação é de ordem parcial, ela é reflexiva e seu grafo orientado tem laço em todos os vértices

Diagrama de Hasse

• Consequentemente, não precisamos mostrar esses laços, pois eles devem estar presentes

Diagrama de Hasse

• Consequentemente, não precisamos mostrar esses laços, pois eles devem estar presentes

 Como uma ordem é parcial é transitiva, não precisamos mostrar as arestas que devem estar presentes por causa da transitividade

Diagrama de Hasse

• Consequentemente, não precisamos mostrar esses laços, pois eles devem estar presentes

- Como uma ordem é parcial é transitiva, não precisamos mostrar as arestas que devem estar presentes por causa da transitividade
- E se supormos que todas as arestas estão apontadas "para cima", não precisamos mostrar o sentido das arestas

Diagrama de Hasse

- Como uma ordem é parcial é transitiva, não precisamos mostrar as arestas que devem estar presentes por causa da transitividade
- E se supormos que todas as arestas estão apontadas "para cima", não precisamos mostrar o sentido das arestas

 O diagrama resultante contém informação suficiente para encontrar a ordem parcial

Diagrama de Hasse

- Como uma ordem é parcial é transitiva, não precisamos mostrar as arestas que devem estar presentes por causa da transitividade
- E se supormos que todas as arestas estão apontadas "para cima", não precisamos mostrar o sentido das arestas

- O diagrama resultante contém informação suficiente para encontrar a ordem parcial
- Este diagrama é chamado de diagrama de Hasse

Elementos Maximais e Minimais

• Elemento Maximal. a é maximal no poset (S, \preceq) se não existir nenhum $b \in S$ tal que $a \prec b$

- Elemento Maximal. a é maximal no poset (S, \preceq) se não existir nenhum $b \in S$ tal que $a \prec b$
 - Ou seja, a é maximal se ele não for menor do que nenhum elemento no poset

- Elemento Maximal. a é maximal no poset (S, \preceq) se não existir nenhum $b \in S$ tal que $a \prec b$
 - Ou seja, a é maximal se ele não for menor do que nenhum elemento no poset
- Elemento Minimal. a é minimal no poset (S, \preceq) se não existir nenhum $b \in S$ tal que $b \prec a$

- Elemento Maximal. a é maximal no poset (S, \preceq) se não existir nenhum $b \in S$ tal que $a \prec b$
 - Ou seja, a é maximal se ele não for menor do que nenhum elemento no poset
- Elemento Minimal. a é minimal no poset (S, \preceq) se não existir nenhum $b \in S$ tal que $b \prec a$
 - Ou seja, a é minimal se ele não for maior do que nenhum elemento no poset

Elementos Maximais e Minimais

• Exemplo. Quais elementos do poset $(\{2,4,5,10,12,20,25\},|)$ são maximais e quais são minimais?

- Exemplo. Quais elementos do poset $(\{2,4,5,10,12,20,25\},|)$ são maximais e quais são minimais?
- O diagrama de Hasse para este poset é o seguinte:

- Exemplo. Quais elementos do poset $(\{2,4,5,10,12,20,25\},|)$ são maximais e quais são minimais?
- O diagrama de Hasse para este poset é o seguinte:

Elementos Maximais e Minimais

- Exemplo. Quais elementos do poset $(\{2,4,5,10,12,20,25\},|)$ são maximais e quais são minimais?
- O diagrama de Hasse para este poset é o seguinte:

ullet O diagrama mostra que os elementos maximais são 12,20 e 25

- Exemplo. Quais elementos do poset $(\{2,4,5,10,12,20,25\},|)$ são maximais e quais são minimais?
- O diagrama de Hasse para este poset é o seguinte:

- O diagrama mostra que os elementos maximais são 12, 20 e 25
- Os elementos minimais são 2 e 5

- Exemplo. Quais elementos do poset $(\{2,4,5,10,12,20,25\},|)$ são maximais e quais são minimais?
- O diagrama de Hasse para este poset é o seguinte:

- O diagrama mostra que os elementos maximais são 12, 20 e 25
- Os elementos minimais são 2 e 5
- Observe que um poset pode ter mais de um elemento maximal e mais de um elemento minimal

Elementos Maximais e Minimais

• Algumas vezes, existe um elemento em um poset que é maior do que todos os outros elementos

- Algumas vezes, existe um elemento em um poset que é maior do que todos os outros elementos
 - Este elemento é chamado de maior elemento (ou máximo)

- Algumas vezes, existe um elemento em um poset que é maior do que todos os outros elementos
 - Este elemento é chamado de maior elemento (ou máximo)
 - $a \notin o$ maior elemento do poset (S, \preccurlyeq) se $b \preccurlyeq a, \forall b \in S$

- Algumas vezes, existe um elemento em um poset que é maior do que todos os outros elementos
 - Este elemento é chamado de maior elemento (ou máximo)
 - $a \notin o$ maior elemento do poset (S, \preccurlyeq) se $b \preccurlyeq a, \forall b \in S$
 - O maior elemento, se existir, é único

- Algumas vezes, existe um elemento em um poset que é maior do que todos os outros elementos
 - Este elemento é chamado de maior elemento (ou máximo)
 - a é o maior elemento do poset (S, \preceq) se $b \preceq a, \forall b \in S$
 - O maior elemento, se existir, é único
- Do mesmo modo, um elemento é chamado de menor (ou mínimo) se ele for menor do que todos os outros elementos no poset

- Algumas vezes, existe um elemento em um poset que é maior do que todos os outros elementos
 - Este elemento é chamado de maior elemento (ou máximo)
 - $a \notin o$ maior elemento do poset (S, \preccurlyeq) se $b \preccurlyeq a, \forall b \in S$
 - O maior elemento, se existir, é único
- Do mesmo modo, um elemento é chamado de menor (ou mínimo) se ele for menor do que todos os outros elementos no poset
 - $a \notin o$ menor elemento de (S, \preceq) se $a \preceq b, \forall b \in S$

- Algumas vezes, existe um elemento em um poset que é maior do que todos os outros elementos
 - Este elemento é chamado de maior elemento (ou máximo)
 - $a \notin o$ maior elemento do poset (S, \preccurlyeq) se $b \preccurlyeq a, \forall b \in S$
 - O maior elemento, se existir, é único
- Do mesmo modo, um elemento é chamado de menor (ou mínimo) se ele for menor do que todos os outros elementos no poset
 - a é o menor elemento de (S, \preccurlyeq) se $a \preccurlyeq b, \forall b \in S$
 - O menor elemento, se existir, é único

- Algumas vezes, existe um elemento em um poset que é maior do que todos os outros elementos
 - Este elemento é chamado de maior elemento (ou máximo)
 - $a \notin o$ maior elemento do poset (S, \preccurlyeq) se $b \preccurlyeq a, \forall b \in S$
 - O maior elemento, se existir, é único
- Do mesmo modo, um elemento é chamado de menor (ou mínimo) se ele for menor do que todos os outros elementos no poset
 - a é o menor elemento de (S, \preccurlyeq) se $a \preccurlyeq b, \forall b \in S$
 - O menor elemento, se existir, é único
- Exemplo. Existem um maior e um menor elemento no poset $(Z_+, |)$?

- Algumas vezes, existe um elemento em um poset que é maior do que todos os outros elementos
 - Este elemento é chamado de maior elemento (ou máximo)
 - $a \notin o$ maior elemento do poset (S, \preccurlyeq) se $b \preccurlyeq a, \forall b \in S$
 - O maior elemento, se existir, é único
- Do mesmo modo, um elemento é chamado de menor (ou mínimo) se ele for menor do que todos os outros elementos no poset
 - a é o menor elemento de (S, \preccurlyeq) se $a \preccurlyeq b, \forall b \in S$
 - O menor elemento, se existir, é único
- **Exemplo.** Existem um maior e um menor elemento no poset $(Z_+, |)$?
 - 1 é o menor elemento de (Z_+) , pois $1 \mid n, \forall n \in \mathbb{Z}_+$

- Algumas vezes, existe um elemento em um poset que é maior do que todos os outros elementos
 - Este elemento é chamado de maior elemento (ou máximo)
 - a é o maior elemento do poset (S, \preccurlyeq) se $b \preccurlyeq a, \forall b \in S$
 - O maior elemento, se existir, é único
- Do mesmo modo, um elemento é chamado de menor (ou mínimo) se ele for menor do que todos os outros elementos no poset
 - a é o menor elemento de (S, \preccurlyeq) se $a \preccurlyeq b, \forall b \in S$
 - O menor elemento, se existir, é único
- **Exemplo.** Existem um maior e um menor elemento no poset $(Z_+, |)$?
 - 1 é o menor elemento de (Z_+) , pois $1 \mid n, \forall n \in \mathbb{Z}_+$
 - Como não existe nenhum inteiro que seja divisível por todos os inteiros positivos, não existe o maior elemento

Relações de Equivalências

ullet Uma relação em um conjunto A é denominada uma **relação** de equivalência se for reflexiva, simétrica e transitiva

- Uma relação em um conjunto A é denominada uma relação de equivalência se for reflexiva, simétrica e transitiva
 - Dois elementos a e b que estão relacionados por uma relação de equivalência são denominados equivalentes

- Uma relação em um conjunto A é denominada uma relação de equivalência se for reflexiva, simétrica e transitiva
 - Dois elementos a e b que estão relacionados por uma relação de equivalência são denominados equivalentes
 - Notação: $a \sim b$

- Uma relação em um conjunto A é denominada uma relação de equivalência se for reflexiva, simétrica e transitiva
 - Dois elementos a e b que estão relacionados por uma relação de equivalência são denominados equivalentes
 - Notação: $a \sim b$
- Exemplo. A congruência módulo $m, m \in \mathbb{Z}_+^*$ é uma relação de equivalência no conjunto dos inteiros

- Uma relação em um conjunto A é denominada uma relação de equivalência se for reflexiva, simétrica e transitiva
 - Dois elementos a e b que estão relacionados por uma relação de equivalência são denominados equivalentes
 - Notação: $a \sim b$
- Exemplo. A congruência módulo $m, m \in \mathbb{Z}_+^*$ é uma relação de equivalência no conjunto dos inteiros
- De fato, mostramos em Teoria dos Números que:

- Uma relação em um conjunto A é denominada uma relação de equivalência se for reflexiva, simétrica e transitiva
 - Dois elementos a e b que estão relacionados por uma relação de equivalência são denominados **equivalentes**
 - Notação: $a \sim b$
- Exemplo. A congruência módulo $m, m \in \mathbb{Z}_+^*$ é uma relação de equivalência no conjunto dos inteiros
- De fato, mostramos em Teoria dos Números que:
 - $a \equiv b \pmod{m}$

- Uma relação em um conjunto A é denominada uma relação de equivalência se for reflexiva, simétrica e transitiva
 - Dois elementos a e b que estão relacionados por uma relação de equivalência são denominados equivalentes
 - Notação: $a \sim b$
- Exemplo. A congruência módulo $m, m \in \mathbb{Z}_+^*$ é uma relação de equivalência no conjunto dos inteiros
- De fato, mostramos em Teoria dos Números que:
 - $a \equiv b \pmod{m}$
 - Se $a \equiv b \pmod{m}$, então $b \equiv a \pmod{m}$

- Uma relação em um conjunto A é denominada uma relação de equivalência se for reflexiva, simétrica e transitiva
 - Dois elementos a e b que estão relacionados por uma relação de equivalência são denominados **equivalentes**
 - Notação: $a \sim b$
- Exemplo. A congruência módulo $m, m \in \mathbb{Z}_+^*$ é uma relação de equivalência no conjunto dos inteiros
- De fato, mostramos em Teoria dos Números que:
 - $a \equiv b \pmod{m}$
 - Se $a \equiv b \pmod{m}$, então $b \equiv a \pmod{m}$
 - Se $a \equiv b \pmod{m}$ e $b \equiv c \pmod{m}$, então $a \equiv c \pmod{m}$

- Uma relação em um conjunto A é denominada uma relação de equivalência se for reflexiva, simétrica e transitiva
 - Dois elementos a e b que estão relacionados por uma relação de equivalência são denominados equivalentes
 - Notação: $a \sim b$
- Exemplo. A congruência módulo $m, m \in \mathbb{Z}_+^*$ é uma relação de equivalência no conjunto dos inteiros
- De fato, mostramos em Teoria dos Números que:
 - $a \equiv b \pmod{m}$
 - Se $a \equiv b \pmod{m}$, então $b \equiv a \pmod{m}$
 - Se $a \equiv b \pmod{m}$ e $b \equiv c \pmod{m}$, então $a \equiv c \pmod{m}$
- Ou seja, a congruência módulo *m* é reflexiva, simétrica e transitiva e, portanto, é uma relação de equivalência

Classes de Equivalência

• Sejam A um conjunto e R uma relação de equivalência em A. Para cada elemento de $a \in A$, chama-se classe de equivalência de a o conjunto

Classes de Equivalência

Sejam A um conjunto e R uma relação de equivalência em A.
 Para cada elemento de a ∈ A, chama-se classe de equivalência de a o conjunto

$$C(a) = \{x \in A | x \sim a\}$$

Classes de Equivalência

• Sejam A um conjunto e R uma relação de equivalência em A. Para cada elemento de $a \in A$, chama-se classe de equivalência de a o conjunto

$$C(a) = \{x \in A | x \sim a\}$$

• Exemplo. No conjunto $Z_m=\{\overline{0},\overline{1},\cdots,\overline{m-1}\}$ as classes de equivalência são as classes de congruência $\overline{0},\overline{1},\cdots,\overline{m-1}$, em que

Classes de Equivalência

• Sejam A um conjunto e R uma relação de equivalência em A. Para cada elemento de $a \in A$, chama-se classe de equivalência de a o conjunto

$$C(a) = \{ x \in A | x \sim a \}$$

- Exemplo. No conjunto $Z_m=\{\overline{0},\overline{1},\cdots,\overline{m-1}\}$ as classes de equivalência são as classes de congruência $\overline{0},\overline{1},\cdots,\overline{m-1}$, em que
 - $\overline{0} = \{0, \pm m, \pm 2m, \cdots\}$

Classes de Equivalência

Sejam A um conjunto e R uma relação de equivalência em A.
 Para cada elemento de a ∈ A, chama-se classe de equivalência de a o conjunto

$$C(a) = \{x \in A | x \sim a\}$$

- Exemplo. No conjunto $Z_m=\{\overline{0},\overline{1},\cdots,\overline{m-1}\}$ as classes de equivalência são as classes de congruência $\overline{0},\overline{1},\cdots,\overline{m-1}$, em que
 - $\overline{0} = \{0, \pm m, \pm 2m, \cdots \}$
 - $\overline{1} = \{1, 1 \pm m, 1 \pm 2m, \cdots \}$

Classes de Equivalência

Sejam A um conjunto e R uma relação de equivalência em A.
 Para cada elemento de a ∈ A, chama-se classe de equivalência de a o conjunto

$$C(a) = \{x \in A | x \sim a\}$$

- Exemplo. No conjunto $Z_m=\{\overline{0},\overline{1},\cdots,\overline{m-1}\}$ as classes de equivalência são as classes de congruência $\overline{0},\overline{1},\cdots,\overline{m-1}$, em que
 - $\overline{0} = \{0, \pm m, \pm 2m, \cdots\}$
 - $\overline{1} = \{1, 1 \pm m, 1 \pm 2m, \cdots \}$
 -
 - $\overline{m-1} = \{m-1, m-1 \pm m, m-1 \pm 2m, \cdots\}$

Classes de Equivalência

Sejam A um conjunto e R uma relação de equivalência em A.
 Para cada elemento de a ∈ A, chama-se classe de equivalência de a o conjunto

$$C(a) = \{ x \in A | x \sim a \}$$

• Exemplo. Quais as classes de equivalência de 0 e 1 na congruência módulo 4?

Classes de Equivalência

Sejam A um conjunto e R uma relação de equivalência em A.
 Para cada elemento de a ∈ A, chama-se classe de equivalência de a o conjunto

$$C(a) = \{x \in A | x \sim a\}$$

- Exemplo. Quais as classes de equivalência de 0 e 1 na congruência módulo 4?
- A classe de equivalência de 0 é:

Classes de Equivalência

Sejam A um conjunto e R uma relação de equivalência em A.
 Para cada elemento de a ∈ A, chama-se classe de equivalência de a o conjunto

$$C(a) = \{x \in A | x \sim a\}$$

- Exemplo. Quais as classes de equivalência de 0 e 1 na congruência módulo 4?
- A classe de equivalência de 0 é:

•
$$\overline{0} = \{\cdots, -12, -8, -4, 0, 4, 8, 12\cdots\}$$

Classes de Equivalência

Sejam A um conjunto e R uma relação de equivalência em A.
 Para cada elemento de a ∈ A, chama-se classe de equivalência de a o conjunto

$$C(a) = \{ x \in A | x \sim a \}$$

- Exemplo. Quais as classes de equivalência de 0 e 1 na congruência módulo 4?
- A classe de equivalência de 0 é:

•
$$\overline{0} = \{ \cdots, -12, -8, -4, 0, 4, 8, 12 \cdots \}$$

A classe de equivalência de 1 é:

Classes de Equivalência

Sejam A um conjunto e R uma relação de equivalência em A.
 Para cada elemento de a ∈ A, chama-se classe de equivalência de a o conjunto

$$C(a) = \{ x \in A | x \sim a \}$$

- Exemplo. Quais as classes de equivalência de 0 e 1 na congruência módulo 4?
- A classe de equivalência de 0 é:

•
$$\overline{0} = \{\cdots, -12, -8, -4, 0, 4, 8, 12\cdots\}$$

- A classe de equivalência de 1 é:
 - $\overline{1} = \{\cdots, -11, -7, -3, 1, 5, 9, 13 \cdots\}$

Classes de Equivalência

• Exemplo. Seja $R = \{(a,b) \in \mathbb{Z}^2 | a=b \text{ ou } a=-b\}$. Qual a classe de equivalência de um inteiro a para a relação de equivalência R?

- Exemplo. Seja $R = \{(a,b) \in \mathbb{Z}^2 | a=b \text{ ou } a=-b\}$. Qual a classe de equivalência de um inteiro a para a relação de equivalência R?
- Como um inteiro é equivalente a ele mesmo e a seu oposto nesta relação de equivalência, temos:

- Exemplo. Seja $R = \{(a,b) \in \mathbb{Z}^2 | a=b \text{ ou } a=-b\}$. Qual a classe de equivalência de um inteiro a para a relação de equivalência R?
- Como um inteiro é equivalente a ele mesmo e a seu oposto nesta relação de equivalência, temos:

$$C(a) = \{-a, a\}$$

Classes de Equivalência

- Exemplo. Seja $R = \{(a,b) \in \mathbb{Z}^2 | a=b \text{ ou } a=-b\}$. Qual a classe de equivalência de um inteiro a para a relação de equivalência R?
- Como um inteiro é equivalente a ele mesmo e a seu oposto nesta relação de equivalência, temos:

$$C(a) = \{-a, a\}$$

• Note que C(a) contém dois inteiros distintos, a menos que a=0

- Exemplo. Seja $R = \{(a,b) \in \mathbb{Z}^2 | a=b \text{ ou } a=-b\}$. Qual a classe de equivalência de um inteiro a para a relação de equivalência R?
- Como um inteiro é equivalente a ele mesmo e a seu oposto nesta relação de equivalência, temos:

$$C(a) = \{-a, a\}$$

- Note que C(a) contém dois inteiros distintos, a menos que a=0
 - $C(7) = \{-7, 7\}$

- Exemplo. Seja $R = \{(a,b) \in \mathbb{Z}^2 | a=b \text{ ou } a=-b\}$. Qual a classe de equivalência de um inteiro a para a relação de equivalência R?
- Como um inteiro é equivalente a ele mesmo e a seu oposto nesta relação de equivalência, temos:

$$C(a) = \{-a, a\}$$

- Note que C(a) contém dois inteiros distintos, a menos que a=0
 - $C(7) = \{-7, 7\}$
 - $C(7) = \{-5, 5\}$

- Exemplo. Seja $R = \{(a,b) \in \mathbb{Z}^2 | a=b \text{ ou } a=-b\}$. Qual a classe de equivalência de um inteiro a para a relação de equivalência R?
- Como um inteiro é equivalente a ele mesmo e a seu oposto nesta relação de equivalência, temos:

$$C(a) = \{-a, a\}$$

- Note que ${\cal C}(a)$ contém dois inteiros distintos, a menos que a=0
 - $C(7) = \{-7, 7\}$
 - $C(7) = \{-5, 5\}$
 - $C(0) = \{0\}$

Relações de Equivalência e Partições

- \bullet Uma partição de um conjunto S é uma coleção de subconjuntos não vazios de S mutuamente disjuntos cuja união resulte S
- ullet Teorema. Uma relação de equivalência em um conjunto S determina uma partição de S, e uma partição de S determina uma relação de equivalência em S

Relações de Equivalência e Partições

• Exemplo. A relação de equivalência em $\mathbb N$ dada por

Relações de Equivalência e Partições

• Exemplo. A relação de equivalência em $\mathbb N$ dada por

$$R = \{(x,y) \in \mathbb{N}^2 | x+y \text{ \'e par} \}$$

Relações de Equivalência e Partições

$$R = \{(x, y) \in \mathbb{N}^2 | x + y \text{ \'e par} \}$$

particiona $\mathbb N$ em duas classes de equivalência:

Relações de Equivalência e Partições

• Exemplo. A relação de equivalência em № dada por

$$R = \{(x, y) \in \mathbb{N}^2 | x + y \text{ \'e par} \}$$

particiona N em duas classes de equivalência:

• Se x é par, então para qualquer número par $y, \ x+y$ é par e, portanto, $y \in C(x)$

Relações de Equivalência e Partições

• Exemplo. A relação de equivalência em № dada por

$$R = \{(x, y) \in \mathbb{N}^2 | x + y \text{ \'e par} \}$$

particiona N em duas classes de equivalência:

- Se x é par, então para qualquer número par $y,\,x+y$ é par e, portanto, $y\in C(x)$
- Se x é ímpar, então para qualquer número ímpar $y,\ x+y$ é ímpar e, portanto, $y\in C(x)$

Relações de Equivalência e Partições

• Exemplo. A relação de equivalência em № dada por

$$R = \{(x,y) \in \mathbb{N}^2 | x + y \text{ \'e par} \}$$

particiona N em duas classes de equivalência:

- Se x é par, então para qualquer número par $y, \, x+y$ é par e, portanto, $y \in C(x)$
- Se x é ímpar, então para qualquer número ímpar y, x+y é ímpar e, portanto, $y \in C(x)$

Matemática Discreta Relações

Professora: Lílian de Oliveira Carneiro

Universidade Federal do Ceará Campus de Crateús

Outubro de 2019