An LSTM Neural Network to Predict the Accuracy of Magnitude Estimates by Early-est

Massimo Nazaria

11/09/2020

Can a neural network learn to predict the accuracy of magnitude estimates shortly after an earthquake occurs?

Outline

- Early-est Data
- Accuracy of Magnitude Estimates
- ► Feature Extraction and Labeling
- Model Definition
- Data Scaling
- ► Training Phase
- Evaluation

Early-est Data

Name	Type	Description
evt	Integer	Event ID
min	Integer	Minute (or version)
loc_err_h	Double	Ellipsoid horizontal error
loc_err_z	Double	Ellipsoid vertical error
loc_err_resid	Double	RMS of the residuals
loc_num_st	Integer	Number of stations used for localization
loc_min_dist	Double	Distance of the nearest station
loc_avg_dist	Double	Average distance of stations
loc_std_dist	Double	Standard deviation distance of stations
loc_1st_azim_gap	Double	Primary azimuthal gap
loc_2nd_azim_gap	Double	Secondary azimuthal gap
mag	Double	Estimated magnitude of type Mwp
mag_err	Double	Magnitude error
mag_num_st	Integer	Number of stations ($<= loc_num_st$)

Early-est Data

Selected Events

- ▶ 608 earthquakes from 2019-04-15 to 2020-01-30
- ▶ All location versions from min 1 to 16 are present
- Mwp mag estimate is present at every min
- ightharpoonup mag at min 16 is ≥ 5

Accuracy of mag

- mag_t is the magnitude estimate at min t
- ► Consider mag₁₆ the most accurate estimate
- ightharpoonup accuracy(mag_t) := $\frac{mag_t mag_{16} + 1}{2}$

Accuracy of Magnitude Estimates

Figure 1: $accuracy(mag_t)$, t = 1, 2, ..., 16

Feature Extraction

- $ightharpoonup Par_t^e(p)$ is the estimated param p of event e at minute t, e.g.
 - Par₂¹⁰⁰(loc_err_h) is the estimated ellipsoid horizontal error of evt 100 at min 2
- ▶ $Par^e := (Par_1^e, Par_2^e, ..., Par_N^e)$ is the sequence of all param versions of evt e, from min 1 to N, with N := 16
- We obtain input features from Par^e by computing N K + 1 sub-sequences of length K, with K := 2:
 - $ightharpoonup X_1^e := (Par_1^e, Par_2^e, ..., Par_K^e),$
 - $X_2^e := (Par_2^e, ..., Par_K^e, Par_{K+1}^e),$
 - **•** ...
 - $\qquad \qquad X_{N-K+1}^e := (\textit{Par}_{N-K+1}^e, \textit{Par}_{N-K+2}^e, ..., \textit{Par}_N^e).$

Labeling

For each sequence X_i^e , of K consecutive parameter versions, we compute the corresponding label Y_i^e , with i = 1, 2, ..., N - K + 1:

- $Y_{N-K+1}^e := \frac{Par_N^e(\text{mag}) Par_N^e(\text{mag}) + 1}{2} = \frac{0+1}{2} = \frac{1}{2} = 0.5.$

Final Dataset (i.e. the samples)

► $T := \{(X_i^e, Y_i^e) : i \in 1, 2, ..., N - K + 1, \forall e \in E\}$, where E contains all the events

Model Definition

Layer	Type	Activation fcn	Input dim	Output dim
1	LSTM	ReLU	(K, P)	(2, 20)
2	LSTM	ReLU	(2, 20)	(10)
3	Dense	Sigmoid	(10)	(1)

- ightharpoonup K := 2 is the number of sequences per sample, e.g.
 - $Par^e = (Par_1^e, Par_2^e)$
- ightharpoonup P := 12 is the number parameters per sequence, e.g.
 - $Par_1^e = (Par_1^e(loc_err_h), \dots, Par_1^e(mag), \dots)$
 - $Par_2^e = (Par_2^e(loc_err_h), \dots, Par_2^e(mag), \dots)$
 - $|Par_1^e| = |Par_2^e| = 12$

Data Scaling

Figure 2: Original data (left), and scaled data (right)

Training Phase (Settings)

Test Set	30% of Dataset
Training Set	70% of Dataset
Algorithm	Adam
Loss Function	Mean Squared Logarithmic Error
Batch Size	16
Validation Set	25% of Training Set
# of Epochs	100

Training Phase (History)

Figure 3: Model loss decreases during training

Evaluation

Figure 4: Test samples unordered (above) and ordered (below)

