Design and Analysis of Algorithms

L21: Job Scheduling

Dr. Ram P Rustagi Sem IV (2020-Even) Dept of CSE, KSIT rprustagi@ksit.edu.in

Resources

- Text book 2: Sec 4.1, 4.3, 4.4
- Text book 1: Sec 9.1-5.4 Levitin
- R1: Introduction to Algorithms
 - Cormen et al.
- MIT Open Course Ware
 - https://www.geeksforgeeks.org/job-sequencing-usingdisjoint-set-union/

Example Case

- In college fest which starts at 9:00am, there are a number of available events as below to participate, and each event takes 1 unit of time (e.g. 1hr).
 - Each event has different awards values
 - Each event has its own closing timeline.

Event	Closing	Award	
Mimcry	12:00	200	
Drama	11:00	100	
Painting	12:00	90	
Dance	10:00	50	
JAM	11:00	125	
Singing	10:00	60	

Deadline
3
2
3
1
2
1

Q: What is the max award you can get?

Greedy Job Scheduling

- A set of n jobs to run on a computer
- Each job i has a deadline $d_i \ge 1$ and profit $p_i \ge 0$
- There is only one computer
- Each job takes one unit of time (simplification)
- Profit is earned when job is completed by deadline
- Find the subset of jobs that maximizes the profit, i.e.

Maximize $\Sigma_{i} \in J$ P_{i}

Note: It belongs to subset paradigm since we are looking at subset of jobs.

Example: Job Scheduling

Job	Profit	Dead -line
1	100	2
2	10	1
3	15	2
4	27	1

Optimal Solution: 1,4

Feasible Solutions	Profit
1	100
2	10
3	15
4	27
1,2	110
1,3	115
1,4	127
2,3	25
3,4	42

Job Scheduling: Greedy Approach

- What should be the optimization measure to schedule the next job?
- First attempt:
 - Choose $\Sigma_{i \in J}$ P_{i} as the optimization measure
 - i.e. choose a job that increases this value maximum
 - Subject to constraint of the deadline i.e. J (set of jobs) should be feasible solution.
 - How to choose jobs:
 - Order jobs in decreasing order of profit
 - Choose job one at a time as per this order and add to the solution if solution remains feasible.

Job Scheduling: Greedy Approach

Job	Pro fit	De ad- line
1	100	2
4	27	1
3	15	2
2	10	1

- Application of First Greedy approach
 - Job 1 is added to J. Feasible $\{1\}$
 - Next: Job 4 is considered as per order.
 - Is set $J = \{1, 4\}$ feasible.
 - -Yes if schedule is 4-1, No if 1-4
 - Thus {1,4} is feasible solution.
 - Next: Job 3 is considered,
 {1,4,3} is infeasible, thus J remains {1,4}
 - Next: Job 2 is considered
 {1,4,2} is infeasible thus J remains {1,4}
 - The max profit is 127 for $J = \{1, 4\}$
- Time complexity:
 - Evaluate feasibility for a given set: n!

Job Scheduling: Feasible Solution

- How to determine that a given set of jobs constitute feasible solution.
- Try out all possible permutations in jobs J
 - Check for each permutation if jobs can be scheduled meeting the deadlines.
- Easy to check for a given permutation $\sigma=i_1,i_2,...,i_k$
 - Job i_q must be completed by time q, $1 \le q \le k$
 - If for some job i_q , $q>d_{i_q}$, then job i_q is not completed by d_{i_q} .
- When |J|=k, all k! permutations must be checked
- Can we find one permutation that meets the need?
 - Order the jobs in non-decreasing order of deadlines

Proof for Feasible Solution

• Theorem 1:

- Let J be the set of k jobs and $\sigma=i_1, i_2, ..., i_k$ is a permutation of jobs in J such that $d_{i_1} \le d_{i_2} \le ... \le d_{i_k}$. Then J is a feasible solution if and only if (iff) the jobs in J can be processed in the order σ without violating any deadline.

• Theorem 2:

 The greedy method (order jobs in non-increasing order of profit) always obtains an optimal solution to the job scheduling problem.

Algo High Level

```
Algo GreedyJob(int d[], set J, int n) {
   // J is set of jobs that can be completed in deadlines d [ ]
   J = \{ 1 \}
   for i=2 to n \in \{
      if all jobs in J U \{i\} can be completed, then
         // by their deadlines
         J = J U \{i\}
```

Algo 01: Example (Ex 3a, Bk-2)

- $n = 7 \text{ jobs}, J_1, J_2, J_3, J_4, J_5, J_6, J_7$
- Profits: $(p_1,p_2,p_3,p_4,p_5,p_6,p_7) = 3, 5, 20, 18, 1, 6, 30$
- deadlines: $(d_1,d_2,d_3,d_4,d_5,d_6,d_7) = 1, 3, 4, 3, 2, 1, 2$
- Deadlines sorted in non-increasing order of profit

i	1	2	3	4	5	6	7
P_{i}	30	20	18	6	5	ω	1
Di	2	4	3	1	3	1	2
Ji	J_7	J ₃	J_4	J ₆	J_2X	J_1X	J ₅ X

30 20 18 6

Algo-1: Job Scheduling

```
int JobSchedule2(int d[], int J[], int n) {
 //n \ge 1, and deadlines d[i] \ge 1, 1 \le i \le n
 //Jobs are ordered such that their profits are in non-
 increasing order i.e. p[1] \ge p[2] \ge ... \ge p[n].
 //J[i] is the ith job in the optimal solution with k \le n jobs
 // At algo termination, d[J[i]] \le d[j[i+1]], 1 \le i < k
 // Initialize
 d[0] = 0 // fictitious job with deadline of 0
 // allows for job insertion at position 1 later.
 J[0] = 0 // this job is boundary and can't be scheduled
 J[1] = 1 // start with job 1 with highest profit
 k = 1 // job set size is 1 to start with
```

Algo1: Job Scheduling

```
for (i=2; i \le n; i++) {
 // consider jobs in non-increasing order of p[i]
 // find pos for J[i] and check for feasibility of insertion
 int r = k //job set size
 while ((d[J[r]]>d[i]) && (d[J[r]!=r))
    r-; //find position where job i can be considered.
 if ((d[J[r]]\leqd[i]) &&(d[i]>r)){
    //insert i into J[]
    for (int q=k; q \ge (r+1); q--)
       J[q+1]=J[q] // increase deadline of jobs by 1.
    J[r+1]=i
    k++ // since job i is feasible, increase the set size.
 }//end if
}//end for i
return k
```

Algo-1: Time Complexity

- For loop run n times.
 - Each job needs to be considered.
- if K is the value of max deadline, then
 - Inside while loop plus for loop (for shifting slots) may run K times.
- Time complexity: (nK)
- Considering K is of order of n (if all jobs can be scheduled)
- Time complexity: (n²)

Algo 02: Example (Ex 3a, Bk-2)

- $n = 7 \text{ jobs}, J_1, J_2, J_3, J_4, J_5, J_6, J_7$
- Profits: $(p_1,p_2,p_3,p_4,p_5,p_6,p_7) = 3, 5, 20, 18, 1, 6, 30$
- deadlines: $(d_1,d_2,d_3,d_4,d_5,d_6,d_7) = 1, 3, 4, 3, 2, 1, 2$
- Deadlines sorted in non-increasing order of profit

i	1	2	3	4	5	6	7
P_{i}	30	20	18	6	5	ω	1
Di	2	4	3	1	3	1	2
Ji	J_7	J ₃	J_4	J ₆	J_2X	J_1X	J ₅ X

Algo 02: Example (Ex 4.6, Bk-2)

- n = 5 jobs, J_1 , J_2 , J_3 , J_4 , J_5
- Profits: $(p_1,p_2,p_3,p_4,p_5) = 20, 15, 10, 5, 1$
- deadlines: $(d_1,d_2,d_3,d_4,d_5) = 2, 2, 1, 3, 2$
- Deadlines sorted in non-increasing order of profit

i	1	2	3	4	5
Pi	20	15	10	5	1
Di	2	2	1	3	2
Ji	J_1	J_2	J ₃ X	J ₄	J ₅ X

15 20 5

Algo-2: Job Scheduling

```
//Approach: schedule a job in the slot where it meets deadline.
// If no slot is available before deadline, then job is not scheduled.
// jobs are ordered in non-increasing order as per deadlines.
int JobSchedule-1(int d[], int j[], int n) {
 //n \ge 1, and deadlines d[i] \ge 1, 1 \le i \le n
 //jobs are ordered such that their profits are in non-
 increasing order i.e. p[1] \ge p[2] \ge ... \ge p[n].
 //Job[i] is ith job in the optimal solution with k≤n jobs
 // At algo termination, d[Job[i]] \leq d[job[i+1]],
 1 \le i < k
 // Initialization
 k=0; // size of Job schedule
  for i=1 to n
     slot[i]=False // all slots are initialized to false
```

Algo-2: Job Scheduling

```
for (i=1; i \le n; i++)
 // consider jobs in non-increasing order of p[i]
 //check if any slot available before deadline
 <u>while</u> (j=d[i]; j>0; j-) {
    //find position where job i can be considered.
    if (slot[j] == False{
      //Add jobs to the slot
      slot[j] = True;
      Job[j] = i;
      k++;
      break; // from while
     }//<u>end if</u>
 }//end while
} // end for
<u>return</u> k
```

Algo-2: Time Complexity

- For loop run n times.
 - Each job needs to be considered.
- if K is the value of max deadline, then
 - while loop may run K times.
- Time complexity: (nK)
- Considering K is of order of n (if all jobs can be scheduled)
- Time complexity: O (n²)

Fast Job Scheduling (Union-Find)

- Let i denote the timeslot i
 - At the start time, each time slot is its own set
- There are m timeslots, where

```
m = min(n, max(d_i)) #i.e. the latest deadline
example: n=4, and (d_1, d_2, d_3, d_4) = 2, 5, 3, 2
m = min(4, 5) = 4
example: n=4, and (d_1, d_2, d_3, d_4) = 2, 3, 1, 2
m = min(4, 3) = 3
```

- Each set of k slots has a value F(k) for all slots i in set k
 - F(k): Stores highest free timeslot before this time
 - F(k): Defined only for root node in set
- Initially all slots are free

Algo 02: Example (Ex 4.6, Bk-2)

- n = 5 jobs, J_1 , J_2 , J_3 , J_4 , J_5 Profits: $(p_1,p_2,p_3,p_4,p_5) = 20,15,10,5,1$
- **deadlines:** $(d_1,d_2,d_3,d_4,d_5) = 2, 2, 1, 3, 2$
- Deadlines sorted in non-increasing order of profit

Path Compression

Summary

- Job Scheduling
 - Greedy approach: Schedule as per profit and deadline
- Two approaches
 - Schedule the job in earliest slot and then keep shifting right
 - Schedule the job in the deadline slot or look for slots earlier than the deadline