WORKSHEET 11

MATH 101

Fulbright University, Ho Chi Minh City, Vietnam

Approximations

Question 1. From the video of 3Blue1Brown, summarize what is Taylor series? A reference for Taylor series is here: https://tutorial.math.lamar.edu/classes/calcii/taylorseries.aspx

Another reference to learn about why infinite series is fun by one of the finest mathematicians in this generation, Charles Fefferman (Princeton University): https://www.youtube.com/watch?v=Jwtn5_d2YCs

Date: October 7, 2024.

Question 2. Find the Taylor series for the following functions:

 $(1) \sin(x)$

(2) e^x

 $(3) \ln(1+x)$

Optimization

The meaning of second derivative is that it tells us about the concavity of the graph of a function.

Definition 1. Let f be a function defined over an interval I and let $c \in I$. We say f has an absolute maximum on I at c if $f(c) \ge f(x)$ for all $x \in I$. We say f has an absolute minimum on I at c if $f(c) \le f(x)$ for all $x \in I$. If f has an absolute maximum on I at c or an absolute minimum on I at c, we say f has an absolute extremum on I at c.

Theorem 1. If f is a continuous function over the closed, bounded interval [a,b], then there is a point in [a,b] at which f has an absolute maximum over [a,b], and there is a point in [a,b] at which f has an absolute minimum over [a,b].