BLOC 2= Tema 2 + Tema 3. Estimació Puntual + Estimació per intervals.

TEMA 3. Intervals de confiança

LLIÇONS

- 3.1 Concepte d'interval de confiança.
- **3.2** Interval de confiança per a la mitjana: cas normal i cas general.
- 3.3 Interval de confiança per a una proporció.
- 3.4 Intervals de confiança per a la variància. Cas normal
- **3.5** Intervals calculats amb R.

3.1 Concepte d'interval de confiança

Un interval de confiança (IC) per a un paràmetre θ (no observable) és un tipus d'estimació de θ , complementari a l'estimació puntual donada per $\hat{\theta}$.

Un interval de confiança es calcula a partir de les observacions, i per tant difereix de mostra a mostra.

Un interval de confiança freqüentment inclou el valor del paràmetre d'interès θ .

La freqüència en que l'interval observat conté el paràmetre es determina pel nivell de confiança.

Si es construissin molts intervals de confiança a partir de molts anàlisis de les dades per separat, la proporció de tals intervals que contenen el veritable valor del paràmetre θ coincidiria amb el nivell de confiança donat.

Interval de confiança per μ a partir d'una m.a.s de $X \sim N(\mu, 1)$, $\sigma^2 = 1$ amb nivell de confiança del 99%

Ja sabem que \overline{X} és un bon estimador de μ . Ara ens plantegem trobar un interval $[\overline{X} - a, \overline{X} + a]$ amb nivell de confiança $1-\alpha=0.99$, és a dir, $\text{Prob}\{\overline{X}-a\leq\mu\leq\overline{X}+a\}=0.99$ per un cert valor a.

Com trobem a? En aquest cas ho resolem a partir d'una mostra X_1, X_2, X_3, X_4 .

- Calculem $\overline{X} = \frac{1}{n} \sum_{i=1}^{4} X_i$. En realitat hauriem d'escriure \overline{X}_4 , pero s'omet ara per fer-ho mes senzill de llegir.
- ② Com que $\overline{X} \sim N(\mu, 1/4)$, estandaritzant $\frac{\overline{X} \mu}{1/2} = Z \sim N(0, 1)$
- **3** $0.99 = \text{Prob}\{\overline{X} a \le \mu \le \overline{X} + a\} = \text{Prob}\{-2a \le \frac{X \mu}{1/2} \le 2a\}$ $0.99 = \text{Prob}\{-2a \le Z \le 2a\} = 1 - 2\text{Prob}\{Z \ge 2a\} \implies$ $Prob\{Z > 2a\} = 0.005 = \alpha/2$
- **1** $z_{\alpha/2} = z_{0.005} = 2.575 \implies 2a = 2.575 \Rightarrow a = 1.2875$
- **6** Prob $\{-2.575 \le \frac{\overline{X} \mu}{1/2} \le 2.575\} = 0.99$

nivell de confianca del 99%

1 $[\overline{X} - 1.2875, \overline{X} + 1.2875]$ interval de confiança per μ amb

Trobant els valors de les cues a les taules

AQUÍ, NORMALMENTE. AL NÚMERO IMPORTANTE LO LLAMAMOS Q. Y MIDE LA DIFERENCIA ENTRE EL NIVEL DESEADO DE CONFIANZA Y CERTEZA, POR EJEMPLO. CUANDO EL NIVEL DE CONFIANZA ES 95%. O 0.95. & ES 0,05, ASÍ QUE HABLA-MOS DEL NIVEL DE CONFIAN-ZA (1 - OL)-100%.

ENCONTRAR EL NIVEL DE CONFIANZA (1 - OL) -100% IMPLICA OBSERVAR LA CURVA DE LA NORMAL TIPIFICADA Y BUSCAR LOS PUNTOS ± 2 ENTRE LOS QUE EL ÁREA ES 1- Q.

ESTE PUNTO, LLAMADO Za. ES EL VALOR Z MÁS ALLÁ DEL CUAL EL ÁREA ES 0,025 = a

ESTO PASA PORQUE CORTAMOS LAS «COLAS» DE LOS DOS EXTREMOS DE LA CURVA, QUE TIENEN UN ÁREA TOTAL DE $\frac{\alpha}{a} + \frac{\alpha}{a} = \alpha$.

PODEMOS CALCULAR Zay DIRECTAMENTE A PARTIR DE LA TABLA DE LA NORMAL TIPIFICADA (PÁGINA 84). ES EL PUNTO CON LA PROPIEDAD

$$Pr(z \ge z_{\alpha_0}) = \frac{\alpha}{2}$$

ENESTE CASO

$$Pr(z \ge z_{0.025}) = 0.025$$

-1,6 0,023 6,029 0,036 0,045 0,055

Interval de confiança amb nivell de confiança del 99%

Suposem que hem observat:

$$x_1 = 3.4, x_2 = 1.9, x_3 = 2.8, x_4 = 4.1 \Rightarrow \overline{x} = 3.05$$
. Estimem μ per \overline{X} i l'estimació serà $\overline{x} = 3.05$ amb $S^2 = \sum_{i=1}^4 (x_i - \overline{x})^2/3 = 0.87$, $S = 0.93$.

Amb les dades de l'exemple l'interval

$$[3.05-1.2875,3.05+1.2875]=[1.7625,4.3375]$$
 conté μ amb una confiança del 99%.

Fixem-nos que els extrems de l'interval de confiança depenen de:

- **1** Les dades $x_1 = 3.4, x_2 = 1.9, x_3 = 2.8, x_4 = 4.1 \Rightarrow \overline{x} = 3.05$
- ② La desviació estàndard. En aquest cas $\sigma=1$ coneguda
- **3** El nivell de confiança 1α . En aquest cas $\alpha = 0.01$
- **4** La llei de \overline{X} . En aquest cas $\overline{X} \sim N(\mu, 1/4)$
- **5** $\alpha = 0.01 \text{ i } \overline{X} \sim N(\mu, 1/4) \Rightarrow z_{\alpha/2} = 2.575$

El preu que hem pagat per aconseguir una CONFIANÇA del 99%, en comptes d'un 95%, ha estat un interval MÉS AMPLE i per tant menys precisió per estimar μ :

passem de [2.05, 4.05] (confiança 95%) a

Definició interval de confiança: FORMALMENT

Definició

Sigui $X_1, X_2, \ldots, X_n \sim X \sim$ model probabilístic que depèn de θ . Un **interval de confiança** $[\hat{\theta}_1, \hat{\theta}_2]$ **amb nivell de confiança** $100(1-\alpha)\%$ per a θ és un interval aleatori tal que $\operatorname{Prob}\{[\hat{\theta}_1, \hat{\theta}_2] \quad \text{conte} \quad \theta\}$ amb probabilitat $1-\alpha$.

Els extrems de l'interval $\hat{ heta}_1$ i $\hat{ heta}_2$ es calculen a partir de

- les dades mostrals (x_1, x_2, \dots, x_n)
- el nivell de confiança $100(1-\alpha)\%$

En l'exemple anterior, el paràmetre $\theta=\mu$

- per un nivell de confiança del $1 \alpha = 99\%$ $\hat{\mu}_1 = \hat{\mu}_1(X_1, X_2, \dots, X_n, 0.99) = \overline{X} - 1.2875$ i $\hat{\mu}_2 = \hat{\mu}_2(X_1, X_2, \dots, X_n, 0.99) = \overline{X} + 1.2875 \Rightarrow$ $[\overline{X} - 1.2875, \overline{X} + 1.2875]$
- per un nivell de confiança del $1-\alpha=95\%$ $\hat{\mu}_1=\hat{\mu}_1(X_1,X_2,\ldots,X_n,0.95)=\overline{X}-1 \text{ i}$ $\hat{\mu}_2=\hat{\mu}_2(X_1,X_2,\ldots,X_n,0.95)=\overline{X}+1\Rightarrow [\overline{X}-1,\overline{X}+1]$

Per que funcionen els intervals de confiança?

 $X_1, X_2, \ldots, X_n \sim X \sim$ model probabilístic que depèn de θ Busquem un interval $[\hat{\theta}_1, \hat{\theta}_2]$ tal que $\hat{\theta}_1 \leq \theta \leq \hat{\theta}_2$ $\hat{\theta}_1$ i $\hat{\theta}_2$ es calculen a partir de la mostra X_1, X_2, \ldots, X_n de forma tal que si:

- agafessim MOLTES mostres,
- totes de la mateixa grandària n
- ullet per cada una fessim un interval $\hat{ heta}_1^{(i)} \leq heta \leq \hat{ heta}_2^{(i)}$
- podriem afirmar que el $100(1-\alpha)\%$ (per exemple 95%) dels intervals construits contindrien θ , el veritable valor del paràmetre.

Veiem-ho gràficament

Interpretant el nivell de confiança

ESTA PÁGINA MUESTRA LOS RESULTADOS DE UNA SIMULACIÓN POR ORDENADOR DE VEINTE MUESTRAS DE TAMAÑO n=1000. SUPONEMOS QUE EL VALOR REAL DE $\rho=0.5$. EN LA PARTE SUPERIOR PUEDES VER LA DISTRIBUCIÓN MUESTRAL DE β CHORMAL, CON MEDIA ρ Y $\rho=\sqrt{\rho(1-p^2)}$). EN LA PARTE INFERIOR SE ENCUENTRAN LOS DE CONFIANZA DE CADA MUESTRA, AL 95%. COMO MEDIA, UNO DE CADA VEINTE (O UN 5%) DE ESTOS INTERVALOS DE INCLUIRÁ EL PUNTO, $\rho=0.5$.

3.2 Intervals de confiança per a μ : cas normal i cas general

Sigui X_1, \ldots, X_n una m.a.s. de X. Distingim els següents 3 casos:

- Interval de confiança per a la mitjana d'una $N(\mu, \sigma^2)$ amb σ^2 coneguda \Rightarrow Prova Z. Fet a l'apartat 3.1.
- ② Interval de confiança per a la mitjana d'una $N(\mu, \sigma^2)$ amb σ^2 desconeguda \Rightarrow Prova t de Student
- **3** Interval de confiança per a la mitjana μ amb σ^2 desconeguda i $n>30\Rightarrow {\sf Prova}\ Z$

Interval de confiança per a μ quan les dades són $N(\mu, \sigma^2)$ amb σ^2 coneguda. Com a 3.1 amb α i σ^2 qualsevols

Sigui X_1, \ldots, X_n una m.a.s. de $X \sim N(\mu, \sigma^2)$, amb σ^2 coneguda. Interval de confiança de nivell de confiança $1 - \alpha$ pel paràmetre μ .

- Escollim $1 \alpha \Rightarrow \mathsf{Calculem} \ \alpha/2$
- Determinem $z_{\alpha/2}$ fent servir que $Z \sim N(0,1)$

$$\operatorname{Prob}\left(-z_{\alpha/2} < Z < z_{\alpha/2}\right) = 1 - \alpha$$

•
$$X \sim N(\mu, \sigma^2) \Rightarrow \overline{X} \sim N(\mu, \frac{\sigma^2}{n}) \Rightarrow Z = \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \sim N(0, 1) \Rightarrow$$

$$\operatorname{Prob}\left(-z_{\alpha/2} < \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} < z_{\alpha/2}\right) = 1 - \alpha$$

$$\operatorname{Prob}\left(-z_{\alpha/2}\frac{\sigma}{\sqrt{n}} < \overline{X} - \mu < z_{\alpha/2}\frac{\sigma}{\sqrt{n}}\right) = 1 - \alpha$$

$$\operatorname{Prob}\left(\overline{X} - z_{\alpha/2}\frac{\sigma}{\sqrt{n}} < \mu < \overline{X} + z_{\alpha/2}\frac{\sigma}{\sqrt{n}}\right) = 1 - \alpha$$

LLEGIR PEÑA 8.3.1 PÀGINES 323-324 () () () () () () ()

Interval de confiança per a μ quan les dades són $N(\mu, \sigma^2)$ i σ^2 coneguda

• Interval de confiança de nivell de confiança $1 - \alpha$:

$$\left(\overline{X}-z_{\alpha/2}\frac{\sigma}{\sqrt{n}},\overline{X}+z_{\alpha/2}\frac{\sigma}{\sqrt{n}}\right)$$

• Donades les dades: x_1, x_2, \dots, x_n , calculem \overline{x} , l'interval

$$\left(\overline{x}-z_{\alpha/2}\frac{\sigma}{\sqrt{n}},\overline{x}+z_{\alpha/2}\frac{\sigma}{\sqrt{n}}\right)$$

conté a la mitjana μ amb probabilitat $1 - \alpha$.

• Usualment expressem:

$$IC_{1-\alpha}(\mu) = \overline{x} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

Exemple: Si $\sigma = 1.5$, n = 12 i $\overline{x} = 3.6$,

$$1 - \alpha = 0.95 \Rightarrow z_{\alpha/2} = z_{0.05/2} = 1.96$$

$$\left(3.6-1.96\tfrac{1.5}{\sqrt{12}},3.6+1.96\tfrac{1.5}{\sqrt{12}}\right) = (2.751,4.449) \text{ és un interval de confiança al } 95\% \text{ per la mitjana poblacional } \mu^{\square}$$

Interval de confiança per a μ quan les dades són $N(\mu, \sigma^2)$ i σ^2 desconeguda

Sigui X_1, \ldots, X_n una m.a.s. de $X \sim N(\mu, \sigma^2)$, amb σ^2 desconeguda. Interval de confiança de nivell de confiança $1 - \alpha$ pel paràmetre μ .

- Escollim $1 \alpha \Rightarrow$ Calculem $\alpha/2$
- Calculem $S^2 = \frac{\sum_{i=1}^{n} (X_i X)^2}{n-1}$
- L'estadístic

$$T_{n-1} = \sqrt{n} \frac{\overline{X} - \mu}{S} = \frac{\overline{X} - \mu}{S / \sqrt{n}} \sim t_{n-1}$$

es distribueix com una t de Student amb n-1 g.ll.

• Es tracta de trobar a i b tal que

$$\operatorname{Prob}\left(a < \frac{\overline{X} - \mu}{S/\sqrt{n}} < b\right) = 1 - \alpha$$

• En comptes de Z usarem t_{n-1}

LECTURA INDEPENDENT: t de Student amb notació matemàtica

- Y, Z v.a.'s independents
- $Z \sim N(0,1)$
- $Y \sim \chi_{\nu}^2$

la distribució de la v.a. $t_{\nu}=\frac{Z}{\sqrt{Y/\nu}}$ s'anomena **distribució t de**

Student amb ν graus de llibertat

- Quan n és gran, t_{n-1} s'aproxima MOLT a una N(0,1)
- Amb efectes pràctics es pot fer servir la Normal en comptes de la t.
- Per $\alpha/2=0.025$ ($\Rightarrow 1-\alpha/2=0.975$), $t_{30;0.975}=2.042$, $t_{35;0.975}=2.030$, $t_{60;0.975}=2.00$, $t_{90;0.975}=1.987$, i quan $n\to\infty$ $t_{n;0.975}=2.045\approx z_{0.975}=1.96$

Interval de confiança amb nivell de confiança $1-\alpha$ per a μ basat en una t de Student

Sigui X_1, \ldots, X_n una m.a.s. de $X \sim N(\mu, \sigma^2)$, amb σ^2 desconeguda.

- Escollim $1 \alpha \Rightarrow \text{calculem } \alpha/2$
- Trobem a i b tal que

$$\operatorname{Prob}\left(\mathbf{a} < \frac{\overline{X} - \mu}{S/\sqrt{n}} < b\right) = 1 - \alpha$$

Com?

- Degut a la simetria de t de Student repartim α de forma equànim a cada cua assignant $\alpha/2$.
- Calculem el percentil $t_{n-1;1-rac{lpha}{2}}.$ Definim $a=-t_{n-1;1-rac{lpha}{2}}$ i $b=t_{n-1;1-rac{lpha}{2}}$

$$\operatorname{Prob}\left(-t_{n-1;1-\frac{\alpha}{2}} < t_{n-1} = \frac{\overline{X} - \mu}{S/\sqrt{n}} < t_{n-1;1-\frac{\alpha}{2}}\right) = 1 - \alpha$$

Interval de confiança basat en una t de Student

Fent servir les mateixes manipulacions que abans obtenim

$$\operatorname{Prob}\left(-t_{n-1;1-\alpha/2} < t_{n-1} = \frac{\overline{X} - \mu}{S/\sqrt{n}} < t_{n-1;1-\alpha/2}\right) = 1 - \alpha$$

$$\operatorname{Prob}\left(-t_{n-1;1-\alpha/2} \frac{S}{\sqrt{n}} < \overline{X} - \mu < t_{n-1;1-\alpha/2} \frac{S}{\sqrt{n}}\right) = 1 - \alpha$$

$$\operatorname{Prob}\left(\overline{X} - t_{n-1;1-\alpha/2} \frac{S}{\sqrt{n}} < \mu < \overline{X} + t_{n-1;1-\alpha/2} \frac{S}{\sqrt{n}}\right) = 1 - \alpha$$

L'interval de confiança amb nivell de confiança $1-\alpha$ per a la mitjana μ és

$$\left(\overline{x}-t_{n-1;1-\alpha/2}\frac{S}{\sqrt{n}},\overline{x}+t_{n-1;1-\alpha/2}\frac{S}{\sqrt{n}}\right)$$

EXERCICI VOLUNTARI 2: Alçada dels estudiants del Grau d'Estadística

Les alçades dels dels estudiants del Grau d'Estadística UB-UPC es distribueixen com una Normal (μ_A, σ_A^2) .

- A quants estudiants haurem de mesurar si, amb una probabilitat del 95% (o superior), volem estimar la mitjana μ_A de l'alçada amb una precisió de 3cm?. Suposeu que la desviació estàndar de les alçades és $\sigma_A=8.5$ cm.
- ② A quants estudiants haurem de mesurar si, amb una probabilitat del 95% (o superior), volem l'estimació de μ_A amb una precisió $0.64\sigma_A$ cm i l'estimació de σ_A amb una precisió de $0.8\sigma_A$ cm.
- Suposat que l'alçada mitjana de la població d'estudiants és de μ_A = 174 cm amb desviació estàndar σ_A = 8.5cm, simuleu (genereu), amb R, aleatòriament n = 50 alçades d'aquesta població. Podeu fer servir la funció rnorm(n,mu,sigma)=rnorm(50,174,8.5).

EXERCICI VOLUNTARI 2: Alçada dels estudiants del Grau d'Estadística

Calculeu $\sum_{i=1}^{50} x_i$ i $\sum_{i=1}^{50} x_i^2$ amb les 50 dades simulades i feu servir aquests valors per construir els següents intervals de confiança per la mitjana poblacional de les alçades dels estudiants μ_A :

- Calculeu intervals de confiança per μ_A al 90% i al 95%, suposant que $\sigma_A=8.5$ cm.
- Calculeu intervals de confiança per μ_A al 90% i al 95%, estimant la desviació estàndar de la població a partir de les dades simulades
- Entre quins valors es troba la mitjana poblacional de l'alçada dels estudiants del Grau d'Estadística i perquè?

EXERCICI VOLUNTARI 2: Alçada dels estudiants del Grau d'Estadística

Simuleu k=100 mostres d'alçades de grandària n=50 a partir d'una variable aleatòria Normal de mitjana $\mu_A=174$ cm i desviació estàndar $\sigma_A=8.5$ cm.

- O Calculeu els k=100 intervals de confiança per μ_A al 90% deduits de les 100 mostres simulades havent estimat la desviació estàndar de la població a partir de les dades simulades
- **1** Quina proporció d'intervals conté el valor 174? Noteu que heu generat dades d'una normal amb mitjana $\mu_A = 174$.
- Escriviu amb les vostres pròpies paraules el que enteneu per interval de confiança a partir de les conclusions d'aques exercici.

RESOLEU-LO I LLIUREU-LO EL DIVENDRES 1 D'ABRIL

Exemple Bismut: element químic, Bi, nombre atòmic 83

El contingut de bismut en un aliatge en 10 mostres és (en ppm): 19.7, 21.4, 12.5, 13.8, 13.5, 20.4, 18.2, 16.6, 15.2, 16.3

$$\overline{x} = \frac{\sum_{i=1}^{10} x_i}{10} = \frac{167.6}{10} = 16.76$$

$$S^2 = \frac{1}{9} \left(\sum_{i=1}^{10} X_i^2 - 10(16.76)^2 \right) = \frac{85.704}{9} = 9.52 \Rightarrow S = 3.08$$

La mitjana del contingut de Bismut en aquest aliatge és de 16.76 ppm amb una desviació estàndar de 3.086 ppm.

Interval de confiança al 95% pel contingut mig de Bismut

Un interval de confiança al $95\% \Longrightarrow 1 - \alpha = 0.95$ L'interval de confiança general és:

$$\left(\overline{x}-t_{n-1;1-\alpha/2}\frac{S}{\sqrt{n}},\overline{x}+t_{n-1;1-\alpha/2}\frac{S}{\sqrt{n}}\right)$$

que traduït al nostre exemple serà:

$$\left(16.76 - t_{9;1-0.05/2} \frac{3.086}{\sqrt{10}}, 16.76 + t_{9;1-0.05/2} \frac{3.086}{\sqrt{10}}\right)$$

$$(16.76 - 2.208, 16.76 + 2.208) = (14.552, 18.968)$$

Com que n=10, hem mirat a la taula de la distribució de la t d'Student amb n-1=10 g.ll.: $t_{9;0.975}=2.2622$ i com $1-\alpha=0.95$ hem agafat $\alpha/2=0.025$.)

Interval de confiança al 99% pel contingut mig de Bismut

Si ara en volguéssim un interval de confiança al 99%, en aquest cas $\alpha=1-0.99=0.01$ i només cal que substituïm $t_{9;0.975}=2.208$ per $t_{9;0.995}=3.2498$ i l'interval quedaria de la forma:

$$\left(16.76 - t_{9;1-0.01/2} \frac{3.086}{\sqrt{10}}, 16.76 + t_{9;1-0.01/2} \frac{3.086}{\sqrt{10}}\right) =$$

$$\left(16.76 - t_{9;0.995} 0.976, 16.76 + t_{9;0.995} 0.976\right)$$

per tant s'obté l'interval

Comparem-lo amb l'interval de confiança al 95%: (14.552, 18.968). Notem que continua centrat en la mitjana 16.76 però l'interval s'ha fet més gran ja que estem exigint més precisió al resultat.

Interval de confiança per a la mitjana: cas general

Sigui $X_1, X_2, \ldots, X_n \sim X$ i no coneixem la distribució de X, podria ser exponencial, lognormal, normal, etc.

Sigui μ la mitjana de la població $(E(X) = \mu)$ i σ^2 la variància de la població $(\sigma^2 = \text{Var}(X).)$

Volem un interval de confiança amb nivell de confiança $1-\alpha$ per $\mu.$

Ens basarem en el Teorema Central del Límit (TCL) i en la llei dels Grans Nombres (LGN) que ens asseguren, per mostres de grandària n gran, que

- La mitjana mostral $\overline{X} \sim N(\mu, \sigma^2/n)$ (TCL)
- La variància mostral S^2 es comporta com σ^2 (LGN)

0

$$rac{\overline{X}-\mu}{S/\sqrt{n}}\sim N(0,1)$$

• Podem determinar el valor $z_{\alpha/2}$ de manera que

$$\operatorname{Prob}\left(-z_{\alpha/2} < \frac{\overline{X} - \mu}{S/\sqrt{n}} < z_{\alpha/2}\right) = 1 - \alpha$$

Interval de confiança per a la mitjana: cas general

Per a mostres grans de qualsevol població, l'interval

$$\left(\overline{x}-z_{\alpha/2}\frac{\mathcal{S}}{\sqrt{n}},\overline{x}+z_{\alpha/2}\frac{\mathcal{S}}{\sqrt{n}}\right)$$

obtingut a partir d'un valor qualsevol de \overline{x} , conté a la mitjana μ amb una probabilitat $1-\alpha$ i per tant

$$IC_{1-\alpha}(\mu) = \overline{x} \pm z_{\alpha/2} \frac{S}{\sqrt{n}}$$

és un interval de confiança per μ de nivell $1 - \alpha$.

3.3 Interval de confiança per a una proporció

Sigui p la proporció desconeguda d'una certa característica C en una població. Com fer per estimar-la?

- Prenem una mostra X_1, X_2, \ldots, X_n mostra aleatòria de X on X=1 si l'individu presenta C, X=0 si l'individu no presenta C
- De fet $X \sim \operatorname{Bern}(p)$
- Estimem p mitjançant la proporció d'individus que presenten $C \Rightarrow \hat{p} = \frac{\sum_{i=1}^{n} X_i}{n} = \overline{X}$
- Recordem que $\sum_{i=1}^{n} X_i \sim \text{Bin}(n, p) = \text{nombre d'individus que verifiquen la característica d'interès i}$ $\text{Var}(\sum_{i=1}^{n} X_i) = np(1-p)$
- $\operatorname{Var}(\hat{\rho}) = \operatorname{Var}\left(\frac{\sum_{i=1}^{n} X_i}{n}\right) = \frac{\operatorname{Var}(\sum_{i=1}^{n} X_i)}{n^2} = \frac{p(1-p)}{n}.$

Interval de confiança per a una proporció per n gran

Suposem que ens basem en un nombre d'individus prou gran, posem n > 30

- Pel Teorema Central del Límit, $\sum_{i=1}^{n} X_i \sim N(np, np(1-p))$
- $\hat{p} \sim N(p, \frac{p(1-p)}{n})$
- $ullet rac{\hat{
 ho}-p}{\sqrt{rac{p(1-p)}{n}}} \sim N(0,1)$
- $ullet rac{\hat{
 ho}-p}{\sqrt{rac{\hat{
 ho}(1-\hat{
 ho})}{n}}}\sim N(0,1)$
- Un interval de confiança per p amb un nivell de confiança $100(1-\alpha)$ ve donat per:

$$\left(\hat{\rho}-z_{\alpha/2}\frac{\sqrt{\hat{\rho}(1-\hat{\rho})}}{\sqrt{n}},\hat{\rho}+z_{\alpha/2}\frac{\sqrt{\hat{\rho}(1-\hat{\rho})}}{\sqrt{n}}\right)$$

HEALTHY FOR LIFE

Recordem que es vol estimar el percentatge de nens obesos en la comunitat Americana-Latina (no mexicana) i Americana-Xinesa. A l'article parlant de la Prevalença de sobrepes.

- Overweight prevalence=Prevalença de sobrepes: quantifica la proporció de nens obesos en un període donat
- Com es defineix el sobrepes infantil?
- Hi ha el mateix llindar per qualsevol edat?
- Hi ha el mateix llindar per nens i nenes?
- La resposta és negativa: El llindar de sobrepes infantil és específic per grups d'edat i per gènere

HEALTHY FOR LIFE: Interval de confiança per la prevalença de sobrepes

If a simple random sample design had been used, overweight prevalence could have been estimated by $\hat{p} = x/n$, where x is the number of overweight children in the sample or relevant subsample (e.g., children aged 2–5) and n is the total sample or subsample size. However, the sample design employed needs to be taken into account for the analysis.

In a simple random sample, the variance of \hat{p} could have been estimated by $\hat{p}(1-\hat{p})/n$, and 95% confidence intervals given by $\hat{p}\pm 1.96\sqrt{\hat{p}(1-\hat{p})/n}$. The use of the sample weights to

L'interval de confiança per la prevalença és:

$$\left(LI,LS\right) = \left(\hat{p} - z_{\alpha/2} \frac{\sqrt{\hat{p}(1-\hat{p})}}{\sqrt{n}}, \hat{p} + z_{\alpha/2} \frac{\sqrt{\hat{p}(1-\hat{p})}}{\sqrt{n}}\right)$$

on LI i LS indiquen el límit inferior i superior de l'interval.

Healthy for Life: Intervals de confiança per la prevalença

- A partir de les dades de l'article (n = 2474)
- 990 nens: 490 nens i 500 nenes entre 2 i 5 anys
- 1484 nens: 740 nens i 744 nenes entre 6 i 11 anys
- NS: nombre de nens/nenes a cada categoria amb sobrepes
- Ll i LS el límit inferior i superior de l'interval de confiança per la proporció de sobrepes al 95%.

Els intervals de confiança per la prevalença de sobrepes (proporció de nens/nenes amb sobrepes) en cada categoria d'edat.

	EDAT	n	NS	ĝ	$\sqrt{rac{\hat{ ho}(1-\hat{ ho})}{n}}$	LI	LS
Both	2-5	990	216	0.218	0.0131	0.1925	0.2439
Both	6-11	1484	353	0.238	0.0111	0.2162	0.2595
Nens	2-5	490	112	0.229	0.0190	0.1914	0.2658
Nens	6-11	740	172	0.232	0.0155	0.2020	0.2629
Nenes	2-5	500	104	0.208	0.0182	0.1724	0.2436
Nenes	6-11	744	181	0.243	0.0157	0.2124	0.2741

LECTURA INDEPENDENT. Obesitat infantil

A la WHO: World Health Organization (Organización Mundial de la Salud (OMS))

http://www.who.int/mediacentre/factsheets/fs311/es/index.h ¿Qué son la obesidad y el sobrepeso? La obesidad y el sobrepeso se definen como una acumulación anormal o excesiva de grasa que puede ser perjudicial para la salud. El índice de masa corporal (IMC) -el peso en kilogramos dividido por el cuadrado de la talla en metros (kg/m^2) - es una indicación simple de la relación entre el peso y la talla que se utiliza frecuentemente para identificar el sobrepeso y la obesidad en los adultos, tanto a nivel individual como poblacional. La OMS define sobrepeso cuando IMC > 25, y obesidad cuando $IMC \ge 30$. Los nuevos Patrones de crecimiento infantil presentados por la OMS en abril de 2006 incluyen tablas del IMC para lactantes y niños de hasta 5 años. La medición del sobrepeso y la obesidad en niños de 5 a 14 años es difícil porque no hay una definición normalizada de la obesidad infantil que se aplique en todo el mundo.

LECTURA INDEPENDENT. Índex Masa Corporal infantil

Consulteu el CDC: Center for Disease Control.

http://www.cdc.gov/healthyweight/assessing/bmi

Calculating and interpreting BMI for children and teens involves the following steps:

- 1. Obtain accurate height and weight measurements.
- 2. Calculate the BMI and percentile using the Child and Teen BMI Calculator.
- 3. Review the calculated BMI-for-age percentile and results. BMI is both age-and sex-specific for children and teens because:.
 - The amount of body fat changes with age.
 - The amount of body fat differs between girls and boys.
- 4. Find the weight status category for the calculated BMI-for-age percentile as shown in the following table:
 - Underweight ⇔ Less than the 5th percentile
 - Healthy weight ⇔ 5th percentile to less than the 85th percentile
 - Overweight ⇔ 85th to less than the 95th percentile
 Obese ⇔ Equal to or greater than the 95th percentile

3.4 Interval de confiança per la variança d'una població normal

Sigui $X \sim N(\mu, \sigma^2)$ i volem construir l'interval de confiança per σ^2 a partir d'una mostra $X_1, \ldots, X_n \sim X$.

Calcularem la variància mostral S^2 i farem servir la distribució χ^2 amb n-1 graus de llibertat, tenint en compte que

$$\frac{(n-1)S^2}{\sigma^2} \sim \mathcal{X}_{n-1}^2$$

Es tracta de trobar a i b tal que

$$\mathbf{P}\left(a < \frac{(n-1)S^2}{\sigma^2} \sim \mathcal{X}_{n-1}^2 < b\right) = 1 - \alpha$$

En aquest cas la llei χ^2 amb n-1 graus de llibertat no és simètrica, i per tant encara que repartim $1-\alpha$ entre les dues cues, no podrem fer com abans a=-b, sino que haurem de trobar dos valors diferents $a=\mathcal{X}^2_{n-1;\alpha/2}$ i $b=\mathcal{X}^2_{n-1;1-\alpha/2}$.

Interval de confiança per la variància d'una Normal

Els dos valors diferents $a=\mathcal{X}_{n-1;\alpha/2}^2$ i $b=\mathcal{X}_{n-1;1-\alpha/2}^2$ són tals que

$$\mathbf{P}\left(\frac{(n-1)S^2}{\sigma^2} < \mathcal{X}_{n-1;\alpha/2}^2 = a\right) = \frac{\alpha}{2}$$

$$\mathbf{P}\left(\frac{(n-1)S^2}{\sigma^2} < \mathcal{X}_{n-1;1-\alpha/2}^2 = b\right) = 1 - \frac{\alpha}{2}$$

i per tant

$$\operatorname{Prob}\left(a = \mathcal{X}_{n-1;\alpha/2}^2 < \frac{(n-1)S^2}{\sigma^2} < \mathcal{X}_{n-1;1-\alpha/2}^2 = b\right) = 1 - \alpha$$

o equivalentment

$$\Pr\left(\frac{1}{b} = \frac{1}{\mathcal{X}_{n-1;1-\alpha/2}^2} < \frac{\sigma^2}{(n-1)S^2} < \frac{1}{\mathcal{X}_{n-1;\alpha/2}^2} = \frac{1}{a}\right) = 1 - \alpha$$

Interval de confiança per la variància d'una Normal

Manipulem aquesta expressió per tal "d'aïllar" σ^2 . Teniem

$$\operatorname{Prob}\left(\frac{1}{\mathcal{X}_{n-1;1-\alpha/2}^2} < \frac{\sigma^2}{(n-1)S^2} < \frac{1}{\mathcal{X}_{n-1;\alpha/2}^2}\right) = 1 - \alpha$$

o, el que és el mateix

$$\operatorname{Prob}\left(\frac{(n-1)S^2}{\mathcal{X}_{n-1;1-\alpha/2}^2} < \sigma^2 < \frac{(n-1)S^2}{\mathcal{X}_{n-1;\alpha/2}^2}\right) = 1 - \alpha$$

Obtenim, doncs, l'interval de confiança per σ^2 :

$$IC_{1-\alpha}(\sigma^2) = \left(\frac{(n-1)S^2}{\mathcal{X}_{n-1;1-\alpha/2}^2}, \frac{(n-1)S^2}{\mathcal{X}_{n-1;\alpha/2}^2}\right)$$

Notem que l'interval no és simètric respecte del valor de S^2 .

Exemple Bismut

Recordem que n=10, $\overline{x}=16.76$ i $S^2=9.52$ i un interval de confiança al 95% per μ és $\left(14.552,18.968\right)$. Trobem a la taula de la χ_9^2 :

$$a = \mathcal{X}_{n-1;\alpha/2}^2 = \mathcal{X}_{9;0.025}^2 = 2.70$$
$$b = \mathcal{X}_{n-1;1-\alpha/2}^2 = \mathcal{X}_{9;0.975}^2 = 19.02$$

i per tant l'interval de confiança per σ^2 al 95% serà:

$$\left(\frac{9 \cdot 9.52}{19.02}, \frac{9 \cdot 9.52}{2.7}\right) = \left(\frac{85.68}{19.02}, \frac{85.68}{2.7}\right) = \left(4.505, 31.73\right)$$

En resum, les dades recollides del bismut indiquen que la millor estimació de la mitjana μ de l'aliatge de Bismut és 16.76 ppm i l'interval (14.5, 19) conté μ amb alta probabilitat. La millor estimació de la desviació típica és 3.08 ($\sqrt{9.52}$) i l'interval (2.12, 5.63) = ($\sqrt{4.5}$, $\sqrt{31.7}$) conté σ amb alta probabilitat.