Exercice 3 -

- 1) Soit $P(X) = X^6 + X^5 + X^2 + X + 1 \in \mathbb{F}_2[X]$. Effectuer les divisions euclidiennes dans $\mathbb{F}_2[X]$ de P(X) par $X^2 + X + 1$, $X^3 + X + 1$ et $X^3 + X^2 + 1$.
- 2) En déduire que P(X) est irréductible dans $\mathbb{F}_2[X]$. On identifie \mathbb{F}_{64} à $\mathbb{F}_2[X]/(P(X))$.
- 3) Quels sont les sous-corps de F₆₄?
- 4) Soit α la classe de X dans \mathbb{F}_{64} . Montrer que $\alpha^5 + \alpha^3 + \alpha^2$ appartient à un sous-corps strict K de \mathbb{F}_{64} . Exprimer les éléments de K comme polynômes en α de degrés inférieurs strictement à 6.
- 5) Montrer que $\alpha^3 + \alpha^2$ appartient à un sous-corps strict L de \mathbb{F}_{64} . Exprimer les éléments de L comme polynômes en α de degrés inférieurs strictement à 6.
- 6) Soit $(s_i)_{i\geq 0} \in (\mathbb{F}_2)^{\mathbb{N}}$ définie par $s_0 = s_1 = s_2 = s_3 = s_4 = 0$, $s_5 = 1$ et par la relation

$$s_{i+6} = s_{i+5} + s_{i+2} + s_{i+1} + s_i$$
 (pour tout $i \ge 0$).

Expliquer pourquoi $(s_i)_{i\geqslant 0}$ est périodique de période $r\leqslant 63$.

- Calculer les premiers termes de (s_i)_{i≥0} et en déduire r.
- 8) Le polynôme P(X) est-il primitif?
- 9) Rappeler pourquoi P(X) divise $X^{63} 1$ dans $\mathbb{F}_2[X]$.
- 10) Soit \mathcal{C} le code binaire cyclique de longueur 63 et de polynôme générateur P(X). Quelle est la dimension de C? Quel est son cardinal?
- 11) Quels sont les paramètres de C?
- 12) Calculer α^8 et α^{11} comme polynômes en α de degrés inférieurs strictement à 6. En déduire un élément non nul de C de poids minimum.

- 1) Montrer que dans F₈, tout élément distinct de 0 et 1 est un élément primitif.
- 2) Expliquer pourquoi dans $\mathbb{F}_8[X]$ le polynôme X^3+X+1 est scindé à racines simples. Soit α une de ses racines dans \mathbb{F}_8 .
- 3) On considère dans M3 7 (F8) la matric

$$M = \begin{pmatrix} \alpha^2 + 1 & \alpha^2 + \alpha + 1 & \alpha^2 + \alpha + 1 & \alpha^2 & 1 & 0 & 0 \\ 0 & \alpha^2 + 1 & \alpha^2 + \alpha + 1 & \alpha^2 + \alpha + 1 & \alpha^2 & 1 & 0 \\ 0 & 0 & \alpha^2 + 1 & \alpha^2 + \alpha + 1 & \alpha^2 + \alpha + 1 & \alpha^2 & 1 \end{pmatrix}.$$

Montrer que les lignes de cette matrice sont linéairement indépendantes sur F₈.

- 4) Soit C le code linéaire de matrice génératrice M. Quel est le cardinal de C?
- 5) Montrer que $(1,0,0,\alpha^2+1,\alpha^2+\alpha+1,\alpha^2+\alpha+1,\alpha^2) \in \mathcal{C}$ et en déduire que \mathcal{C} est cyclique.
- 6) Quel est le polynôme générateur g(X) de C?
- 7) Vérifier que $g(X) = (X-1)(X-\alpha)(X-\alpha^2)(X-\alpha^3)$ et en déduire que l'on a bien $g(X) \mid X^7 - 1 \text{ dans } \mathbb{F}_8[X].$
- 8) Soit $c=(c_0,c_1,c_2,c_3,c_4,c_5,c_6)$ un mot non nul de \mathcal{C} . Montrer que si $P(X)=\sum_{i=0}^6 c_i X^i \in \mathcal{C}$ $\mathbb{F}_8[X]$, on a $P(1) = P(\alpha) = P(\alpha^2) = P(\alpha^3) = 0$.
- 9) En déduire que $\omega(c) > 4$.
- 10) Quelle est la distance minimale de $\mathcal C$? Quel est l'ordre de la condition de décodage de $\mathcal C$ (le nombre d'erreurs que l'on peut corriger)?
- 11) Soit C^{\perp} le dual de C. Quel est le cardinal de C^{\perp} ?
- 12) On sait par le cours que \mathcal{C}^{\perp} est un code cyclique. Quel est son polynôme générateur?
- 13) Quelle est la distance minimale de C[⊥]?