Московский физико-технический институт

ЛАБОРАТОРНАЯ РАБОТА №4.4.1

Амплитудная дифракционная решётка

выполнили студенты 006 и 007 группы ФЭФМ Штрайх Роберт Петрова Софья **Цель работы:** Знакомство с работой и настройкой гониометра Г5, определение спектральных характеристик амплитудной решетки.

В работе используются: гониометр, дифракционная решетка, ртутная лампа.

Теоретическое введение

1. Основное соотношение приближенной теории дифракционной решётки.

$$d\sin\varphi_m = m\lambda. \tag{1}$$

Угловая дисперсия D характеризует угловое расстояние между близкими спектральными линиями:

$$D = \frac{d\varphi}{d\lambda} = \frac{m}{d\cos\varphi} = \frac{m}{\sqrt{d^2 - m^2\lambda^2}}.$$
 (2)

Т.е. это производная зависимости угла отклонения волны диспергирующим элементом по длине волны.

- 2. Разрешающая способность $R = \frac{\lambda}{\delta \lambda}$ характеризует возможность прибора различать две близкие спектральные линии с длинами волн λ и $\lambda + \delta \lambda$.
- 3. Также стоит выделить дисперсионную область, которая является предельной шириной спектрального интервала $\Delta\lambda$ прибора, для которой дифракционные максимумы соседних порядков не перекрываются. Она определяет диапазон длин волн, при которых прибор может быть использован для анализа спектра. Полуширина линии $\delta\varphi = \frac{\lambda}{Nd\cos\varphi}$. Разрешающую способность в силу критерия Релея можно записать в следующем виде R=Nm.

Рис. 1: Иллюстрация к критерию Релея

Экспериментальная установка

Устройство гониометра $\Gamma 5$

Рис. 2: Гониометр Г5

Опишем некоторые обозначенные на рисунке гониометра элементы. Коллиматор 3, столик 7 и алидада 17 со зрительной трубе 12 крепится на массивном основании 23. На столике 7 размещаются исследуемые объекты. Коллиматор закреплен неподвижно, а столик и алидада с трубой

могут вращаться вокруг вертикальной оси.

Дифракционная решетка

При работе с дифракционной решеткой основной задачей является точное измерение углов, при которых наблюдаются главные максимумы для различных длин волн. В нашей работе для измерения углов используется гониометр $\Gamma 5$.

Рис. 3: Принципиальная схема установки

Спектр ртутной лампы

Каждая линия спектра имеет свою ширину и тонкую структуру. Ниже приведены некоторые интегральные характеристики спектральных линий для лампы ДРШ - 250.

Рис. 4: Спектр ртутной лампы ДРШ-250

Характеристики спектра ртутной лампы ДРШ-250

Nº	1	2	3	4	5	6
λ нм.	579,1	577,0	546,1	491,6	435,8	404,7
Цвет	желт.	желт.	зелен.	голуб.	синий	фиолет.
Яркость	10	8	10	4	4	3

Рис. 5: Характеристики ДРШ-250

Ход работы

1. Измерим угловые координаты спектральных линий ртути в ± 1 порядках ($\sigma_{\varphi}=2.4\cdot 10^{-5}$ рад).

Цвет	фиолетовый	голубой	зеленый	желтый	желтый	красный	красный
φ	11,77	13,7	15,7	16,75	16,79	17,63	17,78
$\sin \varphi$	0,204	0,237	0,271	0,288	0,289	0,303	0,305
λ , HM	404,66	491,6	546,07	576,96	579,07	623,4	690,72

Таблица 1: Результаты измерений угловых координат спектральных линий

Рис. 6: Зависимость $\sin \varphi(\lambda)$

Определим период решетки:

$$\sigma_d = \sigma_{rac{1}{k}} = rac{1}{\sqrt{n}} \sqrt{rac{<\lambda\sin\varphi> - <\lambda><\sin\varphi>}{<\sin^2\varphi> - <\sin\varphi>^2}}$$
 $d = rac{1}{k} = (2558 \pm 250)$ нм

2. Рассчитаем и сравним между собой экспериментальную и теоретическую угловую дисперсию для желтого дублета в спектрах разного порядка. Для расчета теоретической дисперсии возьмем среднюю длину волны желтого дублета.

$$D_{\scriptscriptstyle
m T} = rac{m}{\sqrt{d^2 - m^2 \lambda^2}}; \ \ \sigma_{D_{\scriptscriptstyle
m T}} = rac{md}{(d^2 - m^2 \lambda^2)^{3/2}}$$

m	1	2	3
$D_{ ext{ iny T}} \cdot 10^{-5}, ext{pag/Å}$	4,01	8,76	15,93
$\sigma_{D_{\text{\tiny T}}} \cdot 10^{-9}, \text{ рад/Å}$	1,65	4,3	11,49

Таблица 2: Теоретически рассчитанная угловая дисперсия

Для оценки экспериментальной угловой дисперсии определим разности угловых координат линий желтого дублета во всех видимых порядках ($\Delta\lambda=21~{\rm \AA}$):

$$D_{ extstyle extstyle extstyle extstyle extstyle D} = rac{\Delta arphi}{\Delta \lambda}$$
 $\sigma_{\Delta arphi} = \sqrt{2}\sigma_{arphi} = 3.39 \cdot 10^{-5} \,\, ext{рад}$ $rac{\sigma_{D_{ extstyle extstyle$

m	1	2	3
$D_{ m s} \cdot 10^{-5},~{ m pag/\AA}$	3,02	8,04	17,01
$\sigma_{D_{\mathfrak{s}}} \cdot 10^{-6}, \mathrm{pag/\mathring{A}}$	1,61	1,61	1,62
$\Delta \varphi \cdot 10^{-5}$, рад	63,42	168,84	357,21

Таблица 3: Экспериментально найденная угловая дисперсия

Значения угловой дисперсии с повышением порядка спектра линейно возрастают.

Рис. 7: Зависимость $D_{\mathfrak{s}}(m)$

3. Оценим разрешимый спектральный интервал $\delta\lambda$, зная угловую полуширину желтой линии и угловую дисперсию. Ширина одной из линий желтого дублета $47^\circ=2.277\cdot 10^{-4}$ рад:

$$\frac{\sigma_{\delta\lambda}}{\delta\lambda} = \sqrt{\left(\frac{\sigma_{\Delta\varphi}}{\Delta\varphi}\right)^2 + \left(\frac{\sigma_D}{D}\right)^2}$$
$$\delta\lambda \approx \frac{\Delta\varphi}{D} = (2.8 \pm 0.49) \text{ Å}$$

Оценим разрешающую способность для средней длины волны жёлтого дублета:

$$\frac{\sigma_R}{R} = \frac{\sigma_{\delta\lambda}}{\delta\lambda}$$

$$R = \frac{\lambda}{\delta\lambda} = (2060.71 \pm 360.62)$$

Оценим число эффективно работающих штрихов решётки и её эффективный размер:

$$\frac{\sigma_N}{N} = \frac{\sigma_R}{R}$$

$$N = \frac{R}{m} = (1030 \pm 180)$$

$$\frac{\sigma_l}{l} = \sqrt{\left(\frac{\sigma_N}{N}\right)^2 + \left(\frac{\sigma_d}{d}\right)^2}$$

$$l = Nd \approx (2.63 \pm 0.52) \; \text{mm}$$

4. Рассчитаем порядок спектра, при котором фиолетовая линия наложится на желтую:

$$m = \frac{\lambda}{\Delta \lambda} \approx 192$$

Выводы

- Мы ознакомились с устройством и работой гониометра, произвели его юстировку.
- Определили спектральные характеристики используемой в работе амплитудной решетки: её шаг, угловую дисперсию, число эффективно работающих штрихов и эффективный размер решётки.