Introduction to Machine Learning Assignment 2

Divij Singh

18/09/18

1 Q1

(a)

 $e^x=\sum_{n=0}^\infty \frac{x^n}{n!}=1+x+\frac{x^2}{2!}...$ (this is technically the Maclaurin expansion, which is a subest of Taylor series at a=0)

(b)

graph.png

$\mathbf{2}$ $\mathbf{Q2}$

(a) map.png

(b)

We differentiate $J(w)=\frac{1}{2}[(w_2-w_1)^2+(1-w_1)^2]$ by both w_1 and w_2 , to get $\frac{\partial J}{\partial w_1}=2w_1-w_2-1$ and $\frac{\partial J}{\partial w_2}=w_2-w_1$ giving us our gradient vector $\nabla(w)=\begin{bmatrix}2w_1-w_2-1\\w_2-w_1\end{bmatrix}$.

(c)

1.
$$\nabla(w) = \begin{bmatrix} 2w_1 - w_2 - 1 = 21.19 \\ w_2 - w_1 = -2.19 \end{bmatrix}$$
 where $x = 20, y = 17.81$
2. $\nabla(w) = \begin{bmatrix} 2w_1 - w_2 - 1 = -25.25 \\ w_2 - w_1 = 4.25 \end{bmatrix}$ where $x = -20, y = -15.75$
3. $\nabla(w) = \begin{bmatrix} 2w_1 - w_2 - 1 = -5.57 \\ w_2 - w_1 = -5.43 \end{bmatrix}$ where $x = -10, y = -15.43$

2.
$$\nabla(w) = \begin{bmatrix} 2w_1 - w_2 - 1 = -25.25 \\ w_2 - w_1 = 4.25 \end{bmatrix}$$
 where $x = -20, y = -15.75$

3.
$$\nabla(w) = \begin{bmatrix} 2w_1 - w_2 - 1 = -5.57 \\ w_2 - w_1 = -5.43 \end{bmatrix}$$
 where $x = -10, y = -15.43$

(d)

We need values such that $2w_1 - w_2 - 1 = 0$ and $w_2 - w_1 = 0$ From the second equation, we get $w_2 = w_1$, giving us $w_1 = 1$ (which means that $w_2 = 1)$