Discrete Sample Quiz 8

Question 1 What is the probability that the sum of the numbers on two dice is even when they are rolled? (Express your answer as P/Q.)

Question 2

- (A) What is the probability to get sequence "Heads, Heads, Heads, Heads, Heads" when tossing a coin?
- (B) What is the probability to get sequence "Heads, Tails, Heads, Tails, Heads, Tails, Heads, Tails" when tossing a coin?
- **(C)** What is the probability to get even number of "Heads" when tossing a coin 6 times?

Question 3 Assume that there is the following gambling game involving dice (cube with six outcomes: 1, 2, 3, 4, 5, 6 with equal probabilities). Player A guesses a number n between 1 and 6 (for example n = 3). Then he rolls a dice three times. We have the following four outcomes (events):

 E_1 : If one of the dice rolls equals Player's A number n, then Player A wins 1 euro.

 E_2 : If two of the dice rolls equal Player's A number n, then Player A wins 2 euros.

 E_3 : If all three dice rolls equal Player's A number n, then Player A wins 3 euros.

 E_4 : If none of the dice rolls equals n, then Player A loses 1 euro.

- (A) Find the probability for each event E_1, E_2, E_3, E_4 .
- **(B)** Find the expected value of the money that Player *A* wins or loses during a single round of this game. (One round = three dice rolls as described above). Use this formula a weighted sum of the euros multiplied by the respective probabilities:

$$P(E_1) \cdot 1 + P(E_2) \cdot 2 + P(E_3) \cdot 3 + P(E_4) \cdot (-1)$$
.

Question 4 Find a probability that choosing a random month during a leap year, it would have exactly 5 Sundays.

Question 5 Suppose you and a friend each choose at random an integer between 1 and 8, inclusive. For example, some possibilities are (3,7), (7,3), (4,4), (8,1),

where your number is written first and your friends number second. Find the following probabilities:

- (A) p(you pick 5 and your friend picks 8).
- **(B)** p(sum of the two numbers picked is < 4).
- (C) p(both numbers match).
- **(D)** p(the sum of the two numbers is a prime).
- (E) p(your number is greater than your friends number).

Question 6 In a card-game "Zolīte" there are 26 cards: four Aces (worth 11 points each); four Kings (worth 4 points each); four Queens (worth 3 points each); four Jacks (worth 2 points each); four cards "10" (worth 10 points each); and also four "9", one "8" and one "7" (they are worth 0 points).

A single trick (stikis) in this game consists of any three cards (you can assume that all the C_{26}^3 tricks have equal probabilities.)

- (A) Let X be the random variable that expresses the number of points of a single card out of the 26 cards. Find the expected value E(X).
- **(B)** Find the variance V(X).
- (C) Let Y be the random variable that expresses the total number of points for all three cards c_1, c_2, c_3 in a random trick. Find the expected value E(Y).
- **(D)** Is E(Y) exactly three times larger than E(X)?

Question 7 You create a random bit string of length five (all 32 bit strings are equally probable). Consider these events:

 E_1 : the bit string chosen begins with 1;

 E_2 : the bit string chosen ends with 1;

 E_3 : the bit string chosen has exactly three 1s.

- (**A**) Find $p(E_1 | E_3)$.
- **(B)** Find $p(E_3 | E_2)$.
- (**C**) Find $p(E_2 | E_3)$.

Question 8 A tiny ant travels in 3D space. It starts in the point (0;0;0) and makes 9 steps altogether: With equal probability each step can be parallel to either x, y or z axes (incrementing the corresponding coordinate).

- (A) What is the probability that the ant has taken at least one step in the direction of each coordinate axis?
- **(B)** What is the probability that the ant has reached the point (3; 3; 3)?