

10060 Physics (Polyteknisk grundlag)

Thermodynamics: Temperature & Heat

Tuesday 2/9-2025 DTU

Coffee first!

(Discuss with your neighbour)

How does the Moka work?

Key concepts:

- Heat
- Temperature
- Boiling
- Expansion
- Convection

Physics (PF)

Tue sday 2/9-2025 DTU

What we will cover in the next 5 Lectures

CHAPTER 1 Temperature and Heat 5	
Introduction 5	
1.1 Temperature and Thermal Equilibrium 6	
1.2 Thermometers and Temperature Scales 7	
1.3 Thermal Expansion 10	
1.4 Heat Transfer, Specific Heat, and Calorimetry	17
1.5 Phase Changes 25	
1.6 Mechanisms of Heat Transfer 33	
Chapter Review 51	
CHAPTER 2	
The Kinetic Theory of Gases 67	
Introduction 67	

CHAPTER 3 The First Law of Thermodynamics Introduction 3.1 Thermodynamic Systems 110 3.2 Work, Heat, and Internal Energy 112 3.3 First Law of Thermodynamics 116 3.4 Thermodynamic Processes 122 3.5 Heat Capacities of an Ideal Gas 125 3.6 Adiabatic Processes for an Ideal Gas 127 Chapter Review 132

CHAPTER 4

78

88

The Second Law of Thermodynamics	143
Introduction 143	
4.1 Reversible and Irreversible Processes 144	
4.2 Heat Engines 146	
4.3 Refrigerators and Heat Pumps 148	
4.4 Statements of the Second Law of Thermodynamics	150
4.5 The Carnot Cycle 152	
4.6 Entropy 157	

109

5: Sustainability Theme

Heat Pumps

Chapter Review

2.1 Molecular Model of an Ideal Gas

2.4 Distribution of Molecular Speeds

2.2 Pressure, Temperature, and RMS Speed

2.3 Heat Capacity and Equipartition of Energy

98

10063 Physics (Polyteknisk grundlag)

Temperature

Temperature

- Temperature is an observable which quantifies how "hot" or "cold" a system is
- Its definition is operationally defined as the quantity we measure with a thermometer

Temperature

- Temperature is an observable which quantifies how "hot" or "cold" a system is
- Its definition is operationally defined as the quantity we measure with a thermometer

Microscopic Interpretation

https://www.youtube.com/shorts/rHUYYGdByAA?feature=share

The Farenheit scale:

Temperature Scales

The absolute zero

^{*} K is an SI unit and it is defined with in reference to the triple point of water (the point where vapor, liquid and ice coexist)

Life skill: Temperature conversion

Farenheit to Celsius:
$$T_C = \frac{5}{9}(T_F - 32^{\circ}F)$$

Celsius to Farenheit:
$$T_F = \frac{9}{5}T_C + 32^{\circ}F$$

Celsius to Kelvin:
$$T_K = T_C + 273.15$$
° C

Kelvin to Celsius:
$$T_C = T_K - 273.15^{\circ}C$$

Different types of thermometers

Hot and Cold

Zeroth Law of Thermodynamics

Question time: What is this?

Thermal expansion

Linear Thermal expansion

$$\Delta L = \alpha \Delta T L_0$$

Material	lpha (10 ⁻⁶ °C ⁻¹)	
Aluminum	22	
Brass	19	
Concrete	15	
Copper	17	
Diamond	1	
Gold	14	
Lead	29	
Plate glass	9	
Rubber	77	
Steel	13	
Tungsten	4.5	

Residual Stress and Strain

Old Thermostat

Tempered Glass

Tempered Glass

Non Tempered Glass

Area and Volume expansion

Area:

$$\Delta A = 2\alpha A \Delta T$$

Volume:

$$\Delta V = \beta V \Delta T$$

with
$$\beta = 3\alpha$$

Material	$m{\beta}$ (10 ⁻⁶ °C ⁻¹)
Mercury	181
Gasoline	950
Kerosene	990
Ethyl alcohol	750
Water (1 °C)	-47.8
Water (4 °C)	0
Water (7 °C)	45.3
Water (10 °C)	87.5
Water (15 °C)	151
Water (20 °C)	207

Question time: How does this object expand?

Tue sday 2/9-2025 DTU Physics (PF)

19

Negative thermal expansion: Water

20

Does a vacuum have a temperature?

10063 Physics (Polyteknisk grundlag)

Heat

Difference between heat and temperature

Temperature is a measure of the kinetic energy in the material

Heat is the transfer of energy from a hot to a cold system

Heat transfer modifies the **internal energy** of a system, i.e. the sum of the kinetic energy of the atoms composing an object and the potential energy associated to their attraction and repulsion forces

Heat and Work

Mechanical equivalent of heat

 $1.000 \, \text{kcal} = 4186 \, \text{J}$

Joule's experiment established the equivalence of heat and work. As the masses descended, they caused the paddles to do work, W = mgh, on the water. The result was a temperature increase, ΔT , measured by the thermometer. Joule found that ΔT was proportional to W and thus determined the mechanical equivalent of heat.

Heat: definition

Tue sday 2/9-2025 DTU Physics (PF)

25

Calorimeter Problem

Calorimeter

$$Q_{\text{cold}} + Q_{\text{hot}} = 0.$$

Problem Time

 m_s , T_s

Water

$$m_w$$
, T_w

$$T_{eq} = ?$$

Problem Time

Ice Cube

 m_I , T_I

Water

 m_w , T_w

 $T_{eq} = ?$

Tue sda y 2/9-2025

DTU

Phase Diagram

29

How does water heat up?

Latent Heat

 $Q = mL_f$ (melting/freezing)

 $Q = mL_v$ (vaporization/condensation)

Liquid and Gas at equilibrium: a note of care

The boiling point of a liquid at a given pressure is the temperature at which its vapor pressure equals the ambient pressure.

Heat propagation

Conduction

Convection

Radiation

33

Convection

 Cumulus clouds are caused by water vapor that rises because of convection. The rise of clouds is driven by a positive feedback mechanism. (credit: "Amada44"/Wikimedia Commons)

Conduction

Rate of heat transfer

$$P = \frac{dQ}{dt} = \frac{kA(T_{\rm h} - T_{\rm c})}{d}$$

Radiation

Stephan-Boltzmann law

$$P = \sigma A e T^4$$

Stephan-Boltzmann constant $\sigma = 5.67 \times 10^{-8} \text{ J/s} \cdot \text{m}^2 \cdot \text{K}^4$

Net heat transfer rate

$$P_{\text{net}} = \sigma e A \left(T_2^4 - T_1^4 \right)$$

36

(b)

Radiation

A black object is a good absorber and a good radiator, whereas a white, clear, or silver object is a poor absorber and a poor radiator.