

Department of Information Engineering (DEI)

Master degree on ICT for Internet and Multimedia Engineering (MIME)

Internet of Things and Smart Cities 01 – Course introduction

Marco Giordani (marco.giordani@unipd.it)

Department of Information Engineering (DEI) – SIGNET Research Group University of Padova – Via Gradenigo 6/B, 35131, Padova (Italy)

Let me introduce myself...

Marco Giordani (marco.giordani@unipd.it)

- Associate Professor.
- Background on 5G/6G network and protocol design.

Office hours

Whenever you want... upon request!

Useful rules

- Please use [IOTSC] as a prefix for all email subjects.
- I usually respond to all emails within max. 1 day (timeout).
- If no response after 1 day, permission to RETX your request.

Google Scholar

What do you regard as the most interesting use of the Internet of Things?

https://www.mckinsey.com/ Videos/video?vid=44221004 77001&plyrid=IzQolWCsY

What's the biggest risk associated with the Internet of Things?

https://www.mckinsey.com/ Videos/video?vid=44220031 43001&plyrid=IzQolWCsY

Internet of Things and Smart Cities Copyright © Prof. Marco Giordani (marco.giordani@unipd.it). All rights reserved.

What one factor would most accelerate the benefits of the Internet of Things?

https://www.mckinsey.com/ Videos/video?vid=44219476 24001&plyrid=IzQolWCsY

What's one policy change that would accelerate the benefits of the Internet of Things?

https://www.mckinsey.com/ Videos/video?vid=44221004 76001&plyrid=IzQolWCsY

Internet of Things and Smart Cities Copyright © Prof. Marco Giordani (marco.giordani@unipd.it). All rights reserved.

Objectives

The course will provide the following knowledge and skills:

- 1. To know and understand the basic concepts of the **Internet of Things**.
- 2. To apply the paradigms of the Internet of Things in telecommunications.
- 3. To know and understand the basic concepts of **Smart Cities**.
- 4. To be able to apply the paradigms of Smart Cities to real problems of city management, with particular reference to the aspects of ICT.

Contents

PART 1: Internet of Things

- 1. Definition of the Internet of Things and the relative applications.
- 2. Internet of Things system architecture.
- 3. Internet of Things for **short-range communication:** RFID, NFC, Wi-Fi, IEEE 802.14.4, ZigBee, 6LowPAN.
- 4. Internet of Things for long-range communication: SigFox, LoRa, NB-IoT.
- 5. Internet of Things wired technologies.
- 6. Internet of Things **protocols:** HTTP, WebSocket, MQTT, CoAP.
- 7. Internet of Things cloud architecture and services.
- Key scientific challenges for the Internet of Things related to the physical layer, addressing and routing, and security.

Contents

PART 2: Smart Cities

- Definition of Smart Cities and the applications, scientific and market trends.
- 2. Examples of Smart City applications (GUEST LECTURES with experts).
 - IoT for Cities: Worldsensing
 - IoT for Healthcare: Scripps Research
 - IoT for Industrial Automation: DAB Pumps
 - IoT for Smart Agriculture: X-FARM

Schedule

	Monday	Tuesday	Wednesday	Thursday	Friday
08:30					
10:30					
12:30		IOTSC Room Ae 14:30 - 16:15		IOTSC Room Be 14:30 - 16:15	
14:30					
16:30					

Schedule

- 6 credits (48 hours, <u>24 lectures</u>)
 - "Frontal" lectures
 - (Hands-on) LAB experiences
 - Guest lectures
 - Students' activities
- Lectures will not be recorded: if you want, you can record audio with your devices.
- Lectures will not be live streamed.
- Attendance is not mandatory, but it is recommended.
- The exam will be on the book and the material that is also published in STEM.

LAB

- Participation to the LAB sessions is important and recommended (we'll see...).
- We are planning 3(+1) "hands-on" practical LAB experiences with LoRa.
 - Configuring the Arduino board.
 - Establishing LoRa connections with a real working gateway.
 - Data processing and analysis.
- Group work and cooperation.
- Support from 2 young tutors/angels!
- Starting in November 2024.

Arduino MKR WAN 1310

STEM

 Announcements: Professor-to-student information exchange about change of class schedule, and other general aspects...

• Collaborative Forum: Cooperation with mates is one key skill that any successful engineer

needs to know how to exploit.

Course slides

Information about exams

- Extra references
- Extra material

• ..

NTERNET OF THINGS AND SMART CITIES 2024-2025 - INP9087842

https://stem.elearning.unipd.it/course/view.php?id=9540

Reference textbooks

- Internet of Things: Concepts and System Design
 - Milan Milenkovic
 - ISBN: 978-3030413453
- It is available on the digital library of UNIPD:
 - https://biblioingegneriacentrale.cab.unipd.it/chi/sgc

Reference textbooks

- IoT Networking
 - Riccardo Melen, Vittorio Trecordi
 - ISBN: 9788883398032
- Digital copy is available for 19.9€ here: https://he.pearson.it/catalogo/2838

Reference textbooks

- Internet of Things A to Z: Technologies and Applications
 - Qusay F. Hassan (Editor)
 - ISBN: 978-1-119-45674-2

https://onlinelibrary.wiley.com/doi/book/10.1002/9781119456735

Other suggested books

- J. Vasseur, A. Dunkels, "Interconnecting Smart Objects with IP The Next Internet," Morgan Kaufmann, 2010.
- Z. Shelby, C. Bormann, "6LoWPAN: The Wireless Embedded Internet," John Wiley & Sons, 2009.
- S. Mcclellan, J. A. Jimenez, G. Koutitas (Editors), "Smart Cities: Applications, Technologies, Standards, and Driving Factors," Springer, 2018.
- G. G. Parker, M. W. Van Alstyne, S. P. Choudary, "Platform Revolution: How Networked Markets Are Transforming the Economy and How to Make Them Work for You," W.W. Norton & Co, 2016.
- S. Greengard, "The Internet of Things," MIT Press, 2015.
- S. Farahani, "ZigBee Wireless Networks and Transceivers," Newnes, 2008.
- C. Anton-Haro, M. Dohler (Editors), "Machine-to-machine (M2M) Communications: Architecture, Performance and Applications," Woodhead Publishing, 2015.
- D. Kellmereit, D. Odovoski, "The Silent Intelligence The Internet of Things," DnD Ventures, 2013.

But...

Should I buy the book(s)?

- Not necessarily...
- In class, I may refer to and collect material from many (different) books.
 - Attendance to lectures is important (and highly recommended).
- Slides we will uploaded to the STEM webpage of the course before each lecture.
 - Slides (and attendance) are enough for passing the exam.
- I might refer to book chapters or research papers that we will upload to STEM when needed.

Exam

Dates

- **1st call**: January 23rd, 2025 14:30
- **2nd call**: February 11th, 2025 14:30
- **3rd call**: June 23rd, 2025 09:00
- 4th call: September 9th, 2025 14:30

Exam

Structure

- The exam consists of two parts:
 - PART 1 (up to 28/33 points): Written test (mandatory)
 - It consists of both Multiple Choice Questions (MCQ) and open questions.
 - It covers the whole couse syllabus.
 - Duration: 1.5 h.
 - PART 2 (up to 5 extra points): LAB assessment (optional)
 - It is an <u>optional part</u> of the exam: the exam can be passed with no PART 2, but the maximum grade (when combined with PART 1) would be <u>28/33</u>.
 - It is a sort of "replication" of the LAB sessions of the course during the semester.
 - Participation to the LAB sessions during the semester is <u>required</u>.

Exam

Structure (examples)

PART 1 (Written) grade	PART 2 (LAB) grade	FINAL GRADE	
27	3	30	
27	5	32	
21	5	26	
21	3	24	
15	5	20 (passed!)	
22	2	24	