Mathematics

Robin Adams

September 3, 2023

Contents

1	\mathbf{The}	Foundations	5
	1.1	Primitive Notions and Axioms	5
	1.2	Injective and Surjective Functions	9
	1.3	Subsets of a Set	10
	1.4	Equalizers	11
	1.5	Pullbacks	12

4 CONTENTS

Chapter 1

The Foundations

1.1 Primitive Notions and Axioms

Let there be sets.

Given sets A and B, let there be functions from A to B. We write $f: A \to B$ for 'f is a function from A to B'. We call A the domain of A, and B the codomain.

Given sets A, B and C, and functions $f:A \to B$ and $g:B \to C$, let there be a function $gf = g \circ f:A \to C$, the *composite* of f and g.

Axiom 1.1 (Associativity). For any functions $f:A\to B,\ g:B\to C$ and $h:C\to D,\ we have$

$$h \circ (g \circ f) = (h \circ g) \circ f$$
 .

Axiom 1.2 (Identity). For any set A, there exists a function $id_A : A \to A$, called an identity function on A, such that:

- for every set B and function $f: A \to B$, we have $f \circ id_A = f$;
- for every set B and function $f: B \to A$, we have $id_A \circ f = f$.

Proposition 1.3. The identity function on a set is unique.

PROOF: If $i, j: A \to A$ are identity functions on A then we have $i = i \circ j = j$. \square

Definition 1.4 (Isomorphism). A function $i:A\to B$ is an *isomorphism*, $i:A\cong B$, iff there exists a function $i^{-1}:B\to A$, the *inverse* of i, such that $i^{-1}\circ i=\mathrm{id}_A$ and $i\circ i^{-1}=\mathrm{id}_B$.

Proposition 1.5. The inverse of an isomorphism is unique.

PROOF: If j and k are inverses of i we have j = jik = k. \square

Proposition 1.6. For any set A we have $id_A : A \cong A$ and $id_A^{-1} = id_A$.

PROOF: Since $id_A \circ id_A = id_A$. \square

Proposition 1.7. If $i : A \cong B$ then $i^{-1} : B \cong A$ and $(i^{-1})^{-1} = i$.

PROOF: Since $i \circ i^{-1} = \mathrm{id}_B$ and $i^{-1} \circ i = \mathrm{id}_A$. \square

Proposition 1.8. If $i:A\cong B$ and $j:B\cong C$ then $j\circ i:A\cong C$ and $(j\circ i)^{-1}=i^{-1}\circ j^{-1}$.

PROOF: Since $j \circ i \circ i^{-1} \circ j^{-1} = \mathrm{id}_C$ and $i^{-1} \circ j^{-1} \circ j \circ i = \mathrm{id}_A$. \square

Axiom 1.9 (Terminal Set). There exists a set 1 such that, for any set A, there exists a unique function $A \to 1$.

Proposition 1.10. The terminal set is unique up to unique isomorphism.

Proof:

- $\langle 1 \rangle 1$. Let: A and B be terminal sets.
- $\langle 1 \rangle 2$. Let: i be the unique function $A \to B$.
- $\langle 1 \rangle 3$. Let: i^{-1} be the unique function $B \to A$.
- $\langle 1 \rangle 4$. $i \circ i^{-1} = id_B$

PROOF: Since there is only one function $B \to B$.

 $\langle 1 \rangle 5. \ i^{-1} \circ i = \mathrm{id}_A$

PROOF: Since there is only one function $A \to A$.

Definition 1.11 (Element). For any set A, an element of A is a function $1 \to A$. We write $a \in A$ for $a: 1 \to A$. Given $f: A \to B$ and $a \in A$, we write f(a) for $f \circ a$.

Axiom 1.12 (Extensionality). Let A and B be sets. Let $f, g : A \to B$. If, for all $x \in A$, we have f(x) = g(x), then f = g.

Axiom 1.13 (Empty Set). There exists a set with no elements.

Axiom 1.14 (Products). Let A and B be sets. There exists a set $A \times B$ and functions $\pi_1 : A \times B \to A$, $\pi_2 : A \times B \to B$, the projections, such that, for every set X and functions $f : X \to A$, $g : X \to B$, there exists a unique function $\langle f, g \rangle : X \to A \times B$ such that

$$\pi_1 \circ \langle f, g \rangle = f, \qquad \pi_2 \circ \langle f, g \rangle = g.$$

Proposition 1.15. If $\pi_1: P \to A$ and $\pi_2: P \to B$ form a product of A and B, and $p_1: Q \to A$ and $p_2: Q \to B$ form a product of A and B, then there exists a unique isomorphism $i: P \cong Q$ such that $p_1 \circ i = \pi_1$ and $p_2 \circ i = \pi_2$.

PROOF

- $\langle 1 \rangle 1$. Let: $i: P \to Q$ be the unique function such that $p_1 \circ i = \pi_1$ and $p_2 \circ i = \pi_2$.
- (1)2. Let: $i^{-1}: Q \to P$ be the unique function such that $\pi_1 \circ i^{-1} = p_1$ and $\pi_2 \circ i^{-1} = p_2$
- $\langle 1 \rangle 3$. $i \circ i^{-1} = \mathrm{id}_Q$

PROOF: Each is the unique $x: Q \to Q$ such that $p_1 \circ x = p_1$ and $p_2 \circ x = p_2$.

 $\langle 1 \rangle 4$. $i^{-1} \circ i = \mathrm{id}_P$

PROOF: Each is the unique $x: P \to P$ such that $\pi_1 \circ x = \pi_1$ and $\pi_2 \circ x = \pi_2$.

Proposition 1.16. Let $f: A \to B$, $g: B \to C$ and $h: B \to D$. Then

$$\langle g,h\rangle\circ f=\langle g\circ f,h\circ f\rangle$$

PROOF: Each is the unique x such that $\pi_1 \circ x = g \circ f$ and $\pi_2 \circ x = h \circ f$. \square

Definition 1.17. Given functions $f:A\to B$ and $g:C\to D$, define $f\times g:A\times C\to B\times D$ by

$$f \times g = \langle f \circ \pi_1, g \circ \pi_2 \rangle$$
.

Proposition 1.18. Let $f: A \to B$, $g: C \to D$, $h: B \to E$ and $k: D \to F$. Then

$$(h \times k) \circ (f \times g) = (h \circ f) \times (k \circ g)$$
.

Proof:

$$(h \times k) \circ (f \times g) = \langle h \circ \pi_1, k \circ \pi_2 \rangle \circ (f \times g)$$

$$= \langle h \circ \pi_1 \circ (f \times g), k \circ \pi_2 \circ (f \times g) \rangle \quad \text{(Proposition 1.16)}$$

$$= \langle h \circ f \circ \pi_1, k \circ g \circ \pi_2 \rangle$$

$$= (h \circ f) \times (k \circ g)$$

Axiom 1.19 (Function Sets). Let A and B be sets. There exists a set A^B , called the function set of A and B, and function $\epsilon: A^B \times B \to A$, the evaluation map, such that, for any set X and function $f: X \times B \to A$, there exists a unique function $\lambda f: X \to A^B$ such that

$$f = \epsilon \circ (\lambda f \times \mathrm{id}_B) .$$

Proposition 1.20. For any sets A and B, if F and G are function sets with evaluation maps $e: F \times B \to A$ and $e': G \times B \to A$, then there exists a unique isomorphism $i: F \cong G$ such that $e' \circ (i \times \mathrm{id}_B) = e$.

Proof:

 $\langle 1 \rangle 1$. Let: $i: F \to G$ be the unique function such that $e = e' \circ (i \times id_B)$.

 $\langle 1 \rangle 2$. Let: $i^{-1}: G \to F$ be the unique function such that $e' = e \circ (i^{-1} \times id_B)$ $\langle 1 \rangle 3$. $i \circ i^{-1} = id_G$

PROOF: Each is the unique x such that $e' = e' \circ (x \times id_B)$.

 $\langle 1 \rangle 4$. $i^{-1} \circ i = \mathrm{id}_F$

PROOF: Each is the unique x such that $e = e \circ (x \times id_B)$.

Definition 1.21 (Inverse Image). Let A, X and Y be sets. Let $f: X \to Y$, $a \in Y$ and $j: A \to X$. Then j is the *inverse image* of a under f if and only if:

•
$$f \circ j = a \circ !_A$$

• for every set I and function $q: I \to X$ such that $f \circ q = a \circ !_I$, there exists a unique $\overline{q}: I \to A$ such that $q = j \circ \overline{q}$.

Axiom 1.22 (Inverse Images). For any sets X and Y, function $f: X \to Y$ and element $a \in Y$, there exists a set $f^{-1}(a)$ and function $j: f^{-1}(a) \to X$ such that j is the inverse image of a under f.

Proposition 1.23. If $j: A \to X$ and $k: B \to X$ are inverse images of $a: 1 \to Y$ under $f: X \to Y$, then there exists a unique isomorphism $i: A \cong B$ such that $k \circ i = j$.

Proof:

- $\langle 1 \rangle 1$. Let: $i: A \to B$ be the unique function such that $j = k \circ i$.
- $\langle 1 \rangle 2$. Let: $i^{-1}: B \to A$ be the unique function such that $k = j \circ i^{-1}$
- $\langle 1 \rangle 3$. $i \circ i^{-1} = \mathrm{id}_B$

PROOF: Each is the unique x such that $k = k \circ x$.

 $\langle 1 \rangle 4$. $i^{-1} \circ i = \mathrm{id}_A$

PROOF: Each is the unique x such that $j = j \circ x$.

Definition 1.24 (Injective). A function $f: A \to B$ is *injective*, $f: A \mapsto B$, iff, for every set X and functions $x, y: X \to A$, if $f \circ x = f \circ y$ then x = y.

Proposition 1.25. Any function $a: 1 \rightarrow A$ is injective.

PROOF: If $x, y: X \to 1$ satisfy $a \circ x = a \circ y$, then x = y because there is only one function $X \to 1$. \square

Definition 1.26 (Surjective). A function $f: A \to B$ is *surjective*, $f: A \twoheadrightarrow B$, iff, for every set X and functions $x, y: B \to X$, if $x \circ f = y \circ f$ then x = y.

Axiom 1.27 (Subset Classifier). There exists a set 2, a subset classifier, and element $T \in 2$, truth, such that, for any sets A and X and any injective function $f: A \to X$, there exists a unique function $\chi: X \to 2$ such that f is the inverse image of T under χ .

Proposition 1.28. If S and S' are subobject classifiers with truth elements t and t', then there exists a unique isomorphism $i : S \cong S'$ such that i(t) = t'.

Proof:

- $\langle 1 \rangle 1$. Let: $i: S \to S'$ be the characteristic function of t.
- $\langle 1 \rangle 2$. Let: $i^{-1}: S' \to S$ be the characteristic function of t'.
- $\langle 1 \rangle 3. \ i \circ i^{-1} = \mathrm{id}_{S'}$

PROOF: Each is the characteristic function of t'.

 $\langle 1 \rangle 4. \ i^{-1} \circ i = \mathrm{id}_S$

PROOF: Each is the characteristic function of t.

Axiom 1.29 (Natural Numbers). There exists a set \mathbb{N} of natural numbers, an element $0 \in \mathbb{N}$ and a function $s : \mathbb{N} \to \mathbb{N}$ such that, for every set X, element $a \in X$ and function $r : X \to X$, there exists a unique function $x : \mathbb{N} \to X$ such that x(0) = a and $x \circ s = r \circ x$.

Proposition 1.30. If $N, 0 \in N, s : N \to N$ and $N', 0' \in N', s' : N' \to N'$ are natural number sets, then there exists a unique isomorphism $i : N \cong N'$ such that i(0) = 0' and $s' \circ i = i \circ s$.

Proof:

```
\langle 1 \rangle 1. Let: i: N \to N' be the unique function such that i(0) = 0' and i \circ s = s' \circ i.
```

$$\langle 1 \rangle 2.$$
 Let: $i^{-1}:N'\to N$ be the unique function such that $i^{-1}(0')=0$ and $i^{-1}\circ s'=s\circ i^{-1}$

$$\langle 1 \rangle 3. \ i \circ i^{-1} = \mathrm{id}_{N'}$$

PROOF: Each is the unique x such that x(0') = 0' and $s' \circ x = x \circ s'$.

 $\langle 1 \rangle 4$. $i^{-1} \circ i = \mathrm{id}_N$

PROOF: Each is the unique x such that x(0) = 0 and $s \circ x = x \circ s$.

Definition 1.31 (Retraction, Section). Let $r: A \to B$ and $s: B \to A$. Then r is a retraction of s, and s is a section of r, iff $r \circ s = \mathrm{id}_B$.

Axiom 1.32 (Choice). Every surjective function has a section.

1.2 Injective and Surjective Functions

Proposition 1.33. Let $f: A \to B$. Then f is injective if and only if, for any elements $x, y \in A$, if f(x) = f(y) then x = y.

Proof:

```
\langle 1 \rangle 1. If f is injective then, for all x, y \in A, if f(x) = f(y) then x = y.
```

PROOF: Immediate from definitions.

 $\langle 1 \rangle 2$. If, for all $x, y \in A$, if f(x) = f(y) then x = y, then f is injective.

 $\langle 2 \rangle 1$. Assume: For all $x, y \in A$, if f(x) = f(y) then x = y.

 $\langle 2 \rangle 2$. Let: X be a set and $x, y: X \to A$

 $\langle 2 \rangle 3$. Assume: $f \circ x = f \circ y$

 $\langle 2 \rangle 4$. For all $t \in X$ we have x(t) = y(t).

 $\langle 3 \rangle 1$. Let: $t \in X$

 $\langle 3 \rangle 2$. f(x(t)) = f(y(t))

Proof: $\langle 2 \rangle 3$

 $\langle 3 \rangle 3. \ x(t) = y(t)$

Proof: $\langle 2 \rangle 1$

 $\langle 2 \rangle 5$. x = y

PROOF: Axiom of Extensionality.

Proposition 1.34. Every section is injective.

PROOF: Let $r \circ s = id$. If $s \circ x = s \circ y$ then $x = r \circ s \circ x = r \circ s \circ y = y$. \sqcup

Proposition 1.35. Let $r: A \to B$. Then the following are equivalent.

 ${\it 1. \ r \ is \ surjective.}$

- 2. r has a section.
- 3. For every element $y \in B$, there exists $x \in A$ such that r(x) = y.

Proof:

 $\langle 1 \rangle 1$. $1 \Rightarrow 2$

PROOF: Axiom of Choice.

- $\langle 1 \rangle 2$. $2 \Rightarrow 3$
 - $\langle 2 \rangle 1$. Let: $s: A \to B$ be a section of r.
 - $\langle 2 \rangle 2$. Let: $y \in B$
 - $\langle 2 \rangle 3$. Let: x = s(y)
 - $\langle 2 \rangle 4$. r(x) = y
- $\langle 1 \rangle 3. \ 3 \Rightarrow 1$
 - $\langle 2 \rangle 1$. Assume: $\forall y \in B. \exists x \in A. r(x) = y$
 - $\langle 2 \rangle 2$. Let: X be a set and $f, g: B \to X$
 - $\langle 2 \rangle 3$. Assume: fr = gr
 - $\langle 2 \rangle 4$. For all $y \in B$ we have f(y) = g(y).
 - $\langle 3 \rangle 1$. Let: $y \in B$
 - $\langle 3 \rangle 2$. PICK $x \in A$ such that r(x) = y.
 - $\langle 3 \rangle 3$. f(y) = g(y)PROOF:

$$f(y) = f(r(x)) \tag{(3)2}$$

$$= g(r(x)) \qquad (\langle 2 \rangle 3)$$

$$= g(y) \tag{3}2$$

 $\langle 2 \rangle 5.$ f = g

PROOF: Axiom of Extensionality.

1.3 Subsets of a Set

Definition 1.36 (Subset). Let $i: X \to A$. We write '(X, i) is a subset of A' for 'i is injective'.

Given subsets $i: X \to A$ and $j: Y \to A$, we write (X, i) = (Y, j) for 'there exists an isomorphism $k: X \cong Y$ such that $j \circ k = i$.

Proposition 1.37. Given subsets (X, i), (Y, j) of A, if (X, i) = (Y, j) then the isomorphism $k : X \cong Y$ such that $i \circ k = j$ is unique.

PROOF: Since i is injective. \square

Proposition 1.38. If (X,i) is a subset of A then (X,i) = (X,i).

PROOF: Since $id_X : X \cong X$ and $i \circ id_X = i$. \square

Proposition 1.39. Given subsets (X,i), (Y,j) of A, if (X,i) = (Y,j) then (Y,j) = (X,i).

PROOF: If $k: X \cong Y$ and $j \circ k = i$ then $k^{-1}: Y \cong X$ and $i \circ k^{-1} = j$. \square

Proposition 1.40. Given subsets (X, i), (Y, j), (Z, k) of A, if (X, i) = (Y, j) and (Y, j) = (Z, k) then (X, i) = (Z, k).

PROOF: If $f: X \cong Y$ satisfies $j \circ f = i$ and $g: Y \cong Z$ satisfies $k \circ g = j$, then $g \circ f: X \cong Z$ and $k \circ g \circ f = i$. \square

Definition 1.41 (Inclusion). Let (X,i) and (Y,j) be subsets of A. We say (X,i) is *included* in (Y,j), and write $(X,i) \subseteq (Y,j)$, iff there exists $k: X \to Y$ such that $j \circ k = i$.

Proposition 1.42. For any subsets (X,i), (Y,j) of A, if (X,i) = (Y,j) then $(X,i) \subseteq (Y,j)$.

Proof: Immediate from definitions. \Box

Corollary 1.42.1. For any subset (X,i) of A we have $(X,i) \subseteq (X,i)$.

Proposition 1.43. For any subsets (X,i), (Y,j), (Z,k) of A, if $(X,i) \subseteq (Y,j)$ and $(Y,j) \subseteq (Z,k)$, then $(X,i) \subseteq (Z,k)$.

PROOF: If $f: X \to Y$ satisfies $j \circ f = i$ and $g: Y \to Z$ satisfies $k \circ g = j$, then $g \circ f: X \to Z$ and $k \circ g \circ f = i$. \square

Corollary 1.43.1. Inclusion is well defined. That is, if (X,i) = (X',i'), (Y,j) = (Y',j') and $(X,i) \subseteq (Y,j)$ then $(X',i') \subseteq (Y',j')$.

Proposition 1.44. For any subsets (X,i) and (Y,j) of A, if $(X,i) \subseteq (Y,j)$ and $(Y,j) \subseteq (X,i)$ then (X,i) = (Y,j).

Proof:

```
\langle 1 \rangle 1. Let: f: X \to Y satisfy j \circ f = i.
```

$$\langle 1 \rangle 2$$
. Let: $g: Y \to X$ satisfy $i \circ g = j$.

 $\langle 1 \rangle 3. \ g \circ f = \mathrm{id}_X$

PROOF: Since $i \circ q \circ f = i$ and i is injective.

 $\langle 1 \rangle 4$. $f \circ g = \mathrm{id}_Y$

PROOF: Since $j \circ f \circ g = j$ and j is injective.

 $\langle 1 \rangle 5$. $f: X \cong Y$ and $j \circ f = i$.

 $\langle 1 \rangle 6. \ (X,i) = (Y,j)$

1.4 Equalizers

Proposition 1.45. For any set A, the function $\langle id_A, id_A \rangle : A \to A \times A$ is injective.

PROOF: Since $\pi_1 \circ \langle \mathrm{id}_A, \mathrm{id}_A \rangle = \mathrm{id}_A$. \square

Proposition 1.46. Given sets A and B and functions $f, g: A \to B$, there exists a set E and function $e: E \to A$, called the equalizer of f and g, such that:

- $\bullet \ f \circ e = g \circ e$
- for any set X and function $x: X \to A$, if $f \circ x = g \circ x$ then there exists a unique $\overline{x}: X \to E$ such that $x = e \circ \overline{x}$.

Proof:

⟨1⟩1. Let: $eq: B \times B \to 2$ be the characteristic function of $\langle id_B, id_B \rangle: B \to B \times B$

PROOF: By the Axiom of the Subset Classifier.

 $\langle 1 \rangle 2$. Let: $e: E \to A$ be the inverse image of \top under $eq \circ \langle f, g \rangle$

PROOF: By the Axiom of Inverse Images.

- $\langle 1 \rangle 3. \ f \circ e = g \circ e$
 - $\langle 2 \rangle 1. \ eq \circ \langle f, g \rangle \circ e = \top$
 - $\langle 2 \rangle 2$. Let: $m: E \to B$ be the unique function such that $\langle \mathrm{id}_B, \mathrm{id}_B \rangle \circ m = \langle f, g \rangle \circ e$
 - $\langle 2 \rangle 3. \langle m, m \rangle = \langle f \circ e, g \circ e \rangle$
 - $\langle 2 \rangle 4$. $f \circ e = g \circ e = m$
- $\langle 1 \rangle 4$. For any set X and function $x: X \to A$, if $f \circ x = g \circ x$ then there exists a unique $\overline{x}: X \to E$ such that $x = e \circ \overline{x}$.
 - $\langle 2 \rangle 1$. Let: X be a set.
 - $\langle 2 \rangle 2$. Let: $x: X \to A$
 - $\langle 2 \rangle 3$. Assume: $f \circ x = g \circ x$
 - $\langle 2 \rangle 4. \ \langle f, g \rangle \circ x = \langle \mathrm{id}_B, \mathrm{id}_B \rangle \circ f \circ x$
 - $\langle 2 \rangle 5$. $eq \circ \langle f, g \rangle \circ x = \top \circ !_X$

Proof:

$$\begin{aligned} eq \circ \langle f, g \rangle \circ x &= eq \circ \langle \mathrm{id}_B, \mathrm{id}_B \rangle \circ f \circ x \\ &= \top \circ !_B \circ f \circ x \\ &= \top \circ !_X \end{aligned}$$

 $\langle 2 \rangle$ 6. There exists a unique $\overline{x}: X \to E$ such that $e \circ \overline{x} = x$ PROOF: From $\langle 1 \rangle$ 2.

1.5 Pullbacks

Proposition 1.47. Let $f: A \to C$ and $g: B \to C$. Then there exists a set P and functions $p: P \to A$, $q: P \to B$ such that:

1.5. PULLBACKS

- $\bullet \ f \circ p = g \circ q$
- For any set X and functions $x: X \to A$, $y: X \to B$ such that $f \circ x = g \circ y$, there exists a unique function $(x,y): X \to P$ such that $p \circ (x,y) = x$ and $q \circ (x,y) = y$.

Proof:

 $\langle 1 \rangle 1$. Let: $e: P \to A \times B$ be the equalizer of $f \circ \pi_1, g \circ \pi_2 : A \times B \to C$.

 $\langle 1 \rangle 2$. Let: $p = \pi_1 \circ e : E \to A$ and $q = \pi_2 \circ e : E \to B$.

 $\langle 1 \rangle 3$. $f \circ p = g \circ q$

 $\langle 1 \rangle$ 4. For any set X and functions $x: X \to A$, $y: X \to B$ such that $f \circ x = g \circ y$, there exists a unique function $(x,y): X \to P$ such that $p \circ (x,y) = x$ and $q \circ (x,y) = y$.

 $\langle 2 \rangle 1$. Let: X be a set.

 $\langle 2 \rangle 2$. Let: $x: X \to A$ and $y: X \to B$

 $\langle 2 \rangle 3$. Assume: $f \circ x = g \circ y$

 $\langle 2 \rangle 4. \ f \circ \pi_1 \circ \langle x, y \rangle = g \circ \pi_2 \circ \langle x, y \rangle$

 $\langle 2 \rangle$ 5. Let: $(x,y): X \to E$ be the unique morphism such that $e \circ (x,y) = \langle x,y \rangle$

 $\langle 2 \rangle 6$. (x,y) is unique such that $\pi_1 \circ e \circ (x,y) = x$ and $\pi_2 \circ e \circ (x,y) = y$

 $\langle 2 \rangle$ 7. (x,y) is unique such that $p \circ (x,y) = x$ and $q \circ (x,y) = y$.