PAPER ANALYSIS

Presented by Yannis He

Paper: LiDAR Semantic Segmentation: A Review

Authors: Ehsan Taghavi, Ryan Razani, Sinclair Hudson

[paper currently under review, no link to paper publicly available]

INTRODUCTION

Background:

- LiDAR are important since its the only sensor that provides 3D geometric information of the robot (autonomous vehicle"s surroundings with high accuracy and density
- Semantic point cloud segmentation is an important in understanding an autonomous vehicle scene semantically.

Problem Statement

- Given a set of points P, and n classes, assign each point to a class.
- Formally: $Y = F(P; \theta)$
 - We seek a bijective function F that, given P points, produces a set of Y labels.
 - Each point $p \in P$ corresponds one-to-one with a $y \in Y$.
 - F is parametrized by θ , which is modified to minimize the difference between Y and the true label

Dataset:

Dataset	Classes	Labelled FOV	Total Frame	Label Derivation
KITTI	9	90	41000	3D Bounding Boxes
SemanticKITTI	20	360	41000	Manually Labelled
A2D2	38	360	38481	Image Segmentation

APPROACHES

- Semantic Segmentation Approach Summary
 - Unordered Point Cloud
 - Spherical Projection of Data Hybrid of Available Techniques
 - Bird's Eye View Representation
 - Multi-View Fusion
- 1. Unordered Point Cloud: Y = MLP(CM(MLP(CM(...P))))
 - Earliest approach, which uses raw point clouds
 - Pioneering implementations: PointNet, PointNet++
 - Input: a list of points, each with x, y, z, remission values Output: a list of class labels
 - Techniques:
 - Multi-Layered Perceptrons
 - Kernel-based Feature extraction methods
 - Use of context modules (to increase the receptive field of the network)
 - Pros:
 - Proven success for small point clouds
 - Cons
 - Computationally expensive and Slow implementations
 - Massive memory requirements for large point clouds

Process a point cloud of 150,000 points in less than 100ms

Hard to achieve the benchmark for real-time computing when using raw point cloud

APPROACHES (CONT')

- 2. Spherical Projection of Data: $Y = Post(J^{-1}(CNN(J(P))))$
 - Projecting the LiDAR point cloud into a spherical coordinate system to create a 2D range image
 - Point cloud segmentation → image segmentation
 - $\blacksquare \qquad \mathbb{R}^3 \longrightarrow \mathbb{R}^2$
 - O Pros:
 - Fast calculation
 - CNNs, which were well studied, can be applied
 - O Cons:
 - Cannot effectively represent occluded objects effectively
 - Projection from image back to point cloud is one-to-many
 - I.e. Shadow Problem: Semantic label of a single pixel gets mapped to multiple points, which could lead to erroneous predictions around the boundary
 - Post-processing needed to reduce those errors

APPROACHES (CONT')

- 3. Hybrid of Available Techniques: Y = Post(H(P))
 - Use combination of techniques from raw point cloud approaches, BEV methods, and spherical projection approaches
- 4. Bird's Eye View (BEV) Representation: $Y = (G^{-1}(CNN(G(P))))$
 - Process: \bigcirc
 - Point cloud is descretized into pixels based on their x and y coordinates using a function G: $\mathbb{R}^3 \to \mathbb{R}^2$
 - The resulting 2D images is then processed by a fully convolutional network that produces a class prediction for each pixel
 - Then, the predictions are mapped back into the point cloud using G⁻¹.
- 5. Multi-View Fusion:

All methods take a LiDAR point cloud as input, and produce a LiDAR point cloud with per-point semantic predictions

RELATED PUBLICATIONS

Overview:

- PointNet & PointNet++
- SequeezeSeg & SqueezeSegV2
- Recurrent CRF Post-Processing
- PointSeq
- RangeNet++
- DeepTemporalSeg
- DRI idar Net
- Naive Bayes Filter
- RandLA-Net
- LocSE module
- Attentive Pooling module
- Local Feature Aggregation module
- Lattice Net
- Distribute
- DeformSlice
- SalsaNet and SalsaNext
- I.U-Net

- 3D-MiniNet 0
- Projection Learning Module
- Local Feature Extractor
- Context Feature Extractor
- Spatial Feature Extractor
- Feature Fusion
- MiniNet Backbone
- KNN Post-Processing
- KPConv
- Deformable Kernels
- Network Structure
- PolarNet
- Network Structure

METRICS & NOVEL APPROACHES AND TECHNIQUES

- Metrics: Mean Intersection over Union
 - Most popular metric for evaluating semantic point cloud segmentation:
 - Average of IoU for each class
- Novel Approaches and Techniques:
 - Point Cloud Semantic Segmentation Techniques
 - Late concatenation of range image
 - Augmenting the dataset
 - More per-point Features
 - Learned per-point Features
 - Normalization
 - Temporal filtering

