Math 415 Homework 1

Parker Gabel

January 17, 2019

1 Find all the zero divisors of $\mathbb{Z}/20\mathbb{Z}$.

Notice that the additive identity of $\mathbb{Z}/20\mathbb{Z}$ is $\mathbb{Z} = 1\mathbb{Z}$. Therefore a zero divisor is any $a,b \in \mathbb{Z}$ such that $ab \equiv 1 \mod 20$. This is the set of all integers that are coprime to 20 or $\{[1], [3], [7], [9], [11], [13], [17], [19]\}$. ([x] means the equivalence class of x modulo 20)

2 Determine $U(\mathbb{Z}[i])$ where $\mathbb{Z}[i] \subseteq \mathbb{C}$ is the ring of Gaussian Integer.

Notice $1 \in \mathbb{Z}[i]$ is its own inverse so $1 \in \mathrm{U}(\mathbb{Z}[i])$. Likewise $-1 \in \mathbb{Z}[i]$ is its own inverse so $-1 \in \mathrm{U}(\mathbb{Z}[i])$. Notice i(-i) = 1 = (-i)i so i, $-i \in \mathrm{U}(\mathbb{Z}[i])$.

I claim there are no more units in the Gaussian Integers. Assume $x \in U(\mathbb{Z}[i])$ and $x \neq 1,-1,i,-i$.

So x = a + bi and there exists a $y = \alpha + \beta$ i such that xy = 1.

- 3 Let G be a group and let R be a ring. We denote by RG the set of all functions f: $G \to R$ whose support $\{x \in G \mid f(x) \neq 0\}$ is finite. Note that if G is finite then this condition is automatically satisfied.
- 3.1 Show that RG is a ring under the operations defined by

$$(f+g)(x) = f(x) + g(x)$$

$$(fg)(x) = \sum_{y \in G} f(y)g(y^{-1}x)$$

for all $f,g \in RG$ and $x \in G$. Note the sum on the right makes sense as it has only finitely many non-zero terms. The product just defined is usually called the convolutional product and we call RG the group ring.

(f+g)(x) = f(x) + g(x) equation* equation*(fg)(x) = typeoutnfss@catcodes

Let $a,b,c \in RG$

3.1.1
$$(a + b)(x) = (b + a)(x)$$

Consider (a + b)(x) = a(x) + b(x) = b(x) + a(x) = (b + a)(x).

3.1.2
$$(a + b)(x) + c(x) = a(x) + (b + c)(x)$$

Consider (a + b)(x) + c(x) = a(x) + b(x) + c(x) = a(x) + (b + c)(x).

3.1.3 There is an additive identity.

Consider i: $G \to R$ defined by i(x) = 0. Notice this fuctions support is empty so it is finite. Also for all $y \in RG$, (y + i)(x) = y(x) + 0 = y(x). So i is the additive identity of RG.

1

3.1.4 There is an element $-a \in RG$ such that (a + (-a))(x) = 0.

Consider the function α : $G \to R$ defined by $\alpha(x) = -(a(x))$. As G is a group any a(x) will have an additive inverse so this is possible. Also α has the same support as a. So $(a + \alpha)(x) = a(x) + \alpha(x) = a(x) + (-a(x)) = 0$. So this is $-a \in RG$.

3.1.5 (a(bc))(x) = ((ab)c)(x)

Consider

$$(a(bc))(x) = \sum_{y \in G} a(y)(bc)(y^{-1}x) = \sum_{y \in G} \sum_{z \in G} a(y)b(z)c(z^{-1}y^{-1}x)$$

Consider

$$((ab)c)(x) = \sum_{y \in G} (ab)(y)c(y^{-1}x) = \sum_{y \in G} \sum_{z \in G} a(z)b(z^{-1}y)c(y^{-1}x)$$

Let
$$yz = w$$
. So $z = y^{-1} w$
So

$$\sum_{y \in G} \sum_{z \in G} a(y)b(z)c(z^{-1}y^{-1}x) = \sum_{y \in G} \sum_{w \in G} a(y)b(y^{-1}w)c(w^{-1}yy^{-1}x) = \sum_{y \in G} \sum_{w \in G} a(y)b(y^{-1}w)c(w^{-1}x)$$

So

$$\sum_{y \in G} \sum_{z \in G} a(z)b(z^{-1}y)c(y^{-1}x) = \sum_{y \in G} \sum_{w \in G} a(y^{-1}w)b(y^{-1}wy)c(y^{-1}x) = \sum_{y \in G} \sum_{w \in G} a(y^{-1}w)b(y^{-1}wy)c(y^{-1}x)$$

Notice these summations happen over the same set of elements so they are in fact equal.

3.1.6
$$(a(b+c))(x) = ab(x) + ac(x)$$
 and $((b+c)a) = ba(x) + ca(x)$

3.2 If R is unital then RG is unital.

Assume R is unital.

4 Question 4

$$fg = \frac{1}{4}(23) - \frac{1}{2}(123) + \frac{1}{4}(231) - \frac{1}{2}(132)$$