More intuition on phylogenetic tree estimation

Simplification from John Huelsenbeck's lecture Woods Hole Molecular Phylogenetics

Human AAGCTTCACCGGCGCAGTCATTCTCATAATCGCCCACGGACTT.....AACCCAAACAACCCAGCTCTCCCTAAGCTT Chimpanzee AAGCTTCACCGGCGCAATTATCCTCATAATCGCCCACGGACTT.....AACCCAAACAACCACGCTCTCCCTAAGCTT Gorilla AAGCTTCACCGGCGCAGTTGTTCTTATAATTGCCCACGGACTT.....AACCCAAACAATTCAACTCTCCCTAAGCTT Orangutan AAGCTTCACCGGCGCAACCACCCTCATGATTGCCCATGGACTC.....CACCCAGACACCTACAACTCTCACTAAGCTT Gibbon AAGCTTTACAGGTGCAACCGTCCTCATAATCGCCCACGGACTA.....AACCCAAACGCTAGAACTCTCCCTAAGCTT

$$\Pr\left(\begin{array}{c}A\\A\\A\\A\\A\end{array}\right)\times\Pr\left(\begin{array}{c}A\\A\\A\\A\end{array}\right)\times\Pr\left(\begin{array}{c}G\\G\\G\\G\end{array}\right)\times\Pr\left(\begin{array}{c}C\\C\\C\\C\\C\end{array}\right)\times\Pr\left(\begin{array}{c}T\\T\\T\\T\end{array}\right)\times\Pr\left(\begin{array}{c}T\\T\\T\\T\end{array}\right)\times\Pr\left(\begin{array}{c}C\\C\\C\\T\end{array}\right)\cdots$$

Species 1 GCAATCG...
Species 2 GCAACCG...
Species 3 ACAACCG...

$$\pi_A \times p_{AA}(v_1) \times p_{AA}(v_2) \times p_{AG}(v_3) \times p_{AG}(v_4)$$

What is truly going on?

Exponential distribution

		A	С	G	Т
From	A	-0.886	0.19	0.633	0.063 0.316 0.063
	C	0.253	-0.696	0.127	0.316
	G	1.266	0.19	-1.519	0.063
	Т	0.253	0.949	0.127	-1.329

Interpretation: If the process is in state i, we wait an exponentially distributed amount of time with parameter $-q_{ii}$ until the next substitution occurs.

To

		A	С	G	Т
	A	-0.886 0.253 1.266	0.19	0.633	0.063
From	C	0.253	-0.696	0.127	0.316
	G	1.266	0.19	-1.519	0.063
	Т	0.253	0.949	0.127	-1.329

Interpretation: The change is to state j with probability $-q_{ij}/q_{ii}$.

To

Finish

	A	С	G	Т
A	-0.886	0.19 -0.696 0.19	0.633	0.063
С	0.253	-0.696	0.127	0.316
G	1.266	0.19	-1.519	0.063
Т	0.253	0.949		-1.329

Finish -

	A	С	G	Т
A	-0.886	0.19	0.633	0.063
С	0.253	-0.696	0.127	0.316
G	1.266		-1.519	0.063
Т	0.253	0.949	0.127	-1.329

	A	С	G	Т	
A	-0.886	0.19	0.633	0.063	
С	0.253	-0.696	0.127	0.316	
G	1.266	0.19	-1.519	0.063	1.266
Т	0.253	0.949	0.127	-1.329	$p_A = \frac{1.233}{1.519} = 0.833$
					$p_C = \frac{0.190}{1.519} = 0.125$
					$p_T = \frac{0.063}{1.519} = 0.042$ Start
					Start —

	A	С	G	Т	
A	-0.886	0.19	0.633	0.063	
С	0.253	-0.696	0.127	0.316	
G	1.266	0.19	-1.519	0.063	1.266
Т	0.253	0.949	0.127	-1.329	$(p_A = \frac{1.233}{1.519} = 0.833)$
					$p_C = \frac{0.190}{1.519} = 0.125$ $p_T = \frac{0.063}{1.519} = 0.042$
					Start —

Finish

	A	С	G	Т
A	-0.886		0.633	0.063
С	0.253	-0.696	0.127	0.316
G	1.266	0.19	-1.519	0.063
Т		0.949	0.127	-1.329

Exp(0.886)

Start

Finish -

					$n = \frac{0.190}{0.190} = 0.214$
	A	С	G	Т	$p_C = \frac{0.190}{0.886} = 0.214$
A	-0.886	0.19	0.633	0.063	$n = \frac{0.633}{0.633} = 0.714$
С	0.253	-0.696	0.127	0.316	$p_G - \frac{1}{0.886} - 0.714$
G	1.266	0.19	-1.519	0.063	$p_G = \frac{0.633}{0.886} = 0.714$ $p_T = \frac{0.063}{0.886} = 0.072$
Т	0.253	0.949	0.127	-1.329	$p_T = 0.886 = 0.072$

Start

	A	С	G	Т
A	-0.886	0.19		0.063
C	0.253		0.127	0.316
G	1.266	0.19	-1.519	0.063
Т	0.253	0.949	0.127	-1.329

Start

				G	
P (0.50) =	A	0.7079	0.0813	0.1835	0.0271
	С	0.1085	0.7377	0.0542	0.0995
	G	0.367	0.0813	0.5244	0.0271
	Т	0.7079 0.1085 0.367 0.1085	0.2985	0.0542	0.5387

			С		
P (5.00) =	A	0.4113	0.2873 0.319 0.2873	0.2056	0.0957
	С	0.3831	0.319	0.1915	0.1062
	G	0.4112	0.2873	0.2056	0.0957
	Т	0.3831	0.3188	0.1915	0.1065

				G	
P (10.00) =	A	0.4005	0.2994	0.2002	0.0998
	С	0.3992	0.3008	0.1996	0.1002
	G	0.4005	0.2994	0.2002 0.1996 0.2002	0.0998
	Т	0.3992	0.3008	0.1996	0.1002

$$P(1000.00) = \begin{bmatrix} A & C & G & 1 \\ A & 0.4 & 0.3 & 0.2 & 0.1 \\ C & 0.4 & 0.3 & 0.2 & 0.1 \\ G & 0.4 & 0.3 & 0.2 & 0.1 \\ T & 0.4 & 0.3 & 0.2 & 0.1 \end{bmatrix}$$

Working with real data

 Tips in the phylogeny: genes, species, individuals, or some other evolving entity, are referred to as taxa.

Add taxa

- Adding taxa breaks up branches in the phylogeny. This often improves the performance of maximum likelihood
- Improve model evaluation and model parameter estimation
- Adding more outgroup taxa often improves rooting
- Adding taxa can considerably increase the computational demand of analyses

Types of real data

- Full genome: Largely restricted to organisms with small genomes. Expensive and difficult to build phylogenies with large genome sequences, though this is rapidly changing.
- Transcriptome: RNA gives a snapshot of an enriched subset of the genome mRNA is then copied to complimentary DNA (cDNA) and sequenced. Less stable than DNA.
- Targeted enrichment: We design short bait sequences that are similar to conserved genome regions. Data are difficult to combine across different studies that used different baits.
- RAD-seq: Sequence data from specific regions scattered across the genome. It uses intrinsic properties of the genome for enrichment, rath, er than user-designed baits