Circuitos Eletrônicos Analógicos Prova de Recuperação - 11/07/16

Sem Consulta - Duração: 2h 40min

Nome: Jari Auguse Arlayeri

Justifique sucintamente as passagens A interpretação é parte integrante da questão

Questão 1: (Valor 2.0). Deseja-se processar um sinal de banda-passante BW de 80KHz com um amplificador de tensão de ganho A_v =120 [V/V]. Para tanto, disponibiliza-se de opamps a polo dominante e com frequências de corte e ganho-unitário, f_c e f_t respectivamente, como listado na Tabela 1. Para se minimizar erros, impõe-se que o opamp a ser utilizado tenha um ganho de tensão em malha aberta \geq 100 na banda-passante do sinal.

OPAMP#	f _c (Hz)	f _t (MHz)
1	10	2.0
2	10	8.6
3	10	9.0
4	5	0.8

Tabela 1

- i) (valor 1.0) Quais opamps seriam compatíveis para o projeto? Se nenhum deles, especificar fc e ft que atenderiam ao projeto.
- ii) (valor 1.0) propor e dimensionar um circuito para o amplificador em questão (A_V = 120 [V/V]).

Questão 2 (Valor 3.0): Considerando ideal o amplificador operacional no circuito da Figura 1, e parâmetros listados, justificando as passagens:

- a) (valor 0.75) Obter a função ganho de malha L(s)
- b) (valor 0.75) Determinar a frequência de oscilação f_o e o ganho do amplificador para oscilação sustentável.
- c) (valor 1.0) Propor um circuito limitador de amplitude para oscilador linear. Considere disponíveis os componentes necessários, definindo seus valores ou características. Se for o caso, assumir diodos com $V_D = 0.7V$.
- d) (valor 0.5) Admitindo que a oscilação à saída do opamp em ω_o tenha um valor de pico V_{pk}, determine, literalmente, o valor de slew-rate necessário. Justifique a sua resposta.

 $V_{R} - V_{BE_{1}} + V_{BE_{1}} = O(R)$ $V_{OUT} = R_{1} I_{5} (V_{T})$ $V_{IN} = R_{1} I_{5} (V_{T})$ $R_{1} = -300(R_{1} + R_{1})$ $R_{1} = -300(R_{1} + R_{1})$ $R_{1} = -300(R_{1} + R_{1})$ $R_{1} = -300(R_{1} + R_{1})$

Questão 4 - (Valor 3.0) Considere o circuito linear da Figura 3 e parâmetros listados.

- a) (valor 0.75) Determine o ponto quiescente de Q₁ [I_{CQ}, I_{BQ}, V_{CEQ}]. Assumindo, inicialmente, condição quiescente Vout = 0V, verifique se a mesma ocorre.
- b) (valor 0.75) Caso a condição quiescente Vout = 0V não ocorra, proponha a alteração de um único elemento que possa impô-la. Justifique.
- c) (valor 1.0) Literalmente, represente cada estágio demarcado pelo respectivo quadripólo equivalente para pequenos sinais.
- d) (valor 0.5) Estime a máxima amplitude de Vs, literalmente.

$$V_{BE} = 0.7V, V_T = 25mV$$

 $\beta 1 = \beta 2 = 300 \quad r_{CE} \rightarrow \infty \quad C \rightarrow \infty$
Resistores em $[\Omega]$

