Filtering Operation in Frequency Domain-1

Fundamentals

Recap

- DFT of one variable
- DFT of two variables
- How to overcome Wraparound Error?
- Properties of the 2-D DFT and IDFT

Lecture Objectives

- Filtering in Frequency Domain -Basic Observations
- Filtering in Frequency Domain Requirements
- What About the Padding for Filters in Frequency Domain?
- Steps for Filtering in the Frequency Domain
- Correspondence Between Filtering in Spatial and Frequency Domain
- Constructing Spatial Filters from Frequency Domain Filters
- Constructing Frequency Domain Filters from Spatial Filters

Key Stages in DIP

Filtering in Frequency Domain Basic Observations

Basic Observations

$$F(u,v) = \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x,y) e^{-j2\pi(ux/M + vy/N)}$$

for
$$\mathbf{u} = 0, 1, 2, ..., M-1$$
 and $\mathbf{v} = 0, 1, 2, ..., N-1$

- Each term of F(u,v) contains all values of f(x,y), modified by multiplying the values of the exponential terms
 - Establishing a <u>direct one-to-one correspondence</u> between the components of image and its transform is not possible.
 - Only <u>general relationships</u> can be described like, the frequency range available in image.
- Frequency ≈ spatial rates of change in the image
 - Frequencies in the Fourier transform are intuitively related with patterns of intensity variations in the image.

Frequency Values with (u,v) Coordinates

- F(0,0) -> slowest varying frequency value (constant, 'dc' term)
 - Proportional to the average value of the entire image pixel intensities
- Values near the origin correspond to the slowly varying intensity components in image --> smoother regions in the image
 - Walls, clear sky, plain diffuse surfaces
- Values **far from the origin** correspond to the **faster varying intensity** components in image --> higher intensity variation regions in the image
 - edges

Recall: Image Domain Transforms

$$T(u,v) = \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x,y) \underbrace{r(x,y,u,v)}_{\text{Linear Transform}} \text{Linear Transform}$$

$$f(x,y) = \sum_{u=0}^{M-1} \sum_{v=0}^{N-1} T(u,v) \underbrace{s(x,y,u,v)}_{\text{Inverse transformation kernel}}$$
 Inverse Linear Transform

Filtering in Frequency Domain Requirements

How to Filter in the Frequency Domain?

- Basic tool to work with: Fourier Transform.
- Spatial filtering works on the intensity values.
- Frequency domain filtering works on the Fourier transform values.
 - compute the Fourier transform of the image.
 - 2) modify the Fourier transform of an image (apply filters).
 - then compute the inverse transform to obtain the spatial domain representation of the processed result.
- What values do we have?
 - Fourier spectrum (magnitude)
 - Phase angle

$$F(u,v) = |F(u,v)|e^{j\phi(u,v)}$$
$$|F(u,v)| = \left[R^2(u,v) + I^2(u,v)\right]^{1/2}$$
$$\phi(u,v) = \arctan\left[\frac{I(u,v)}{R(u,v)}\right]$$

Example

Scanning Electron Microscope image of an damaged Integrated Circuit

- Strong edges in ±45 ° directions
- The "defect" has edges in other directions
 - White, oxide protrusions

it's Fourier spectrum

- Strong edges in ±45° directions
- The "defect" is "visible" as patterns near the vertical direction

Filtering Operation in Frequency Domain

• Given (a padded) digital image, f(x, y), of size $P \times Q$ pixels, the basic filtering equation in which we are interested has the form:

$$g(x,y) = \text{Real}\left\{\Im^{-1}\left[H(u,v)F(u,v)\right]\right\}$$

- $-\mathfrak{I}^{-1}$ is the IDFT
- F(u,v) is the **DFT** of the input image f(x, y) in which F(0,0) is **centered** at F(u,v) by multiplying the input image by $(-1)^{x+y}$ prior to computing F(u,v)
- H(u,v) is a filter function which is symmetric about its center
- -g(x, y) is the filtered (output) image
- Functions F, H, and g are arrays of size $P \times Q$, the same as the padded input image
- The product H(u,v)F(u,v) is formed using elementwise multiplication

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \odot \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} = \begin{bmatrix} a_{11}b_{11} & a_{12}b_{12} \\ a_{21}b_{21} & a_{22}b_{22} \end{bmatrix}$$

Simple Frequency Domain Filter - example

To mask out the DC term (average intensity) - F(0,0)

$$H(u,v) = \begin{cases} 0 & \text{if } u = 0 \text{ and } v = 0 \\ 1 & \text{otherwise} \end{cases}$$

Frequency Domain Filter Nomenclature

- Low frequencies: regions of smooth intensities
- High frequencies: abrupt transitions in the intensity values
- Lowpass filter: Pass the low frequencies, attenuate the high frequencies
 - Blur the image
 - Blur the edges
- Highpass filter: Pass the high frequencies, attenuate the low frequencies
 - Enhance edges, sharpen the image
 - Lower the contrast in the image

Lowpass Filter

Highpass Filter

Offset Highpass Filter

Adding a small constant to the highpass filter does not affect sharpening appreciably, but it does *prevent* elimination of the **dc term** and thus *preserves tonality*.

Filtering with Padding the input image

Effect of Padding on Input Image

What About the Padding for Filters in Frequency Domain?

Simple Idea (Not preferred)

Steps:

- 1. Construct the filter in the frequency domain having same size as the unpadded input image
- 2. Perform IDFT of this filter.
 - Frequency domain -> spatial domain
- 3. Do the Zero padding in the spatial domain.
- 4. Perform DFT to obtain the frequency domain filter.
 - Spatial domain -> frequency domain

Simple Idea (Not preferred)

Simple Idea (Not preferred) – Solution ??

Steps:

- 1. Pad the input image (in spatial domain of course...).
- Construct the filter in frequency domain having same size as the padded input image.
- This approach will result in wraparound error because no padding is used for the filter transfer function.
 - this error is mitigated significantly by the separation provided by padding the input image
 - it is preferable to ringing
 - Results in wraparound error, but smoother images

Effect of Frequency Filtering on the Phase Angle

$$F(u,v)=R(u,v)+jI(u,v)$$

- Substitute it in $g(x,y)=F^{-1}[H(u,v)F(u,v)]$ $g(x,y)=F^{-1}[H(u,v)R(u,v)+jH(u,v)I(u,v)]$
- ☐ Phase angle is given by:

$$\phi(u,v) = \arctan\left[\frac{I(u,v)}{R(u,v)}\right]$$

- $\Box \Phi_{G}(u,v) = \Phi_{F}(u,v)$ since H(u,v) cancel out
- The filters that have no effect on the phase angle, are appropriately called as zero-phase-shift filters

Effects of Phase Angle Change

- $F(u,v)=|F(u,v)|e^{j\phi(u,v)}$ Original image
- $F_1(u,v) = |F(u,v)|e^{j[-1]\phi(u,v)]} Phase angle \times (-1)$
- $F_2(u,v)=|F(u,v)|e^{j[0.25\phi(u,v)]}$ Phase angle × 0.25

$$\mathfrak{F}^{-1}\left\{F(u,v)\right\} = \mathbb{F}_{1}(u,v)$$

$$\mathfrak{F}^{-1}\left\{F_{1}(u,v)\right\} = \mathbb{F}_{2}(u,v)$$

Effects of Phase Angle Change

Phase angle \times (-1)

Phase angle \times (0.25)

These two results illustrate the advantage of using <u>frequency-domain filters that</u> do not alter the phase angle.

Steps for Filtering in the Frequency Domain

Important !!!

Steps for Filtering in the Frequency Domain

- 1. Given an input image f(x,y) of size $M \times N$, obtain the padding parameters P and Q (typically, P = 2M and Q = 2N).
- 2. Form a zero padded image $f_p(x,y)$ of size $P \times Q$ using zero-, mirror-, or replicate padding to the image f(x,y).

3. Multiply $f_p(x,y)$ by $(-1)^{x+y}$ to center its transform.

3. Multiply $f_p(x,y)$ by $(-1)^{x+y}$ to center its transform

- $= M \times N$ data array computed by the DFT with f(x, y) as input
- $= M \times N$ data array computed by the DFT with $f(x,y)(-1)^{x+y}$ as input
- ---- = Periods of the DFT

Steps for Filtering in the Frequency Domain

- 4. Compute the DFT, F(u,v) of the image $f_p(x,y)$ from step-3.
- 5. Construct a real, symmetric filter H(u,v) of size $P\times Q$ with center at the location (P/2,Q/2).
- 6. Form the product $G(u,v)=H(u,v) \cdot F(u,v)$ using the elementwise multiplication operation for u=0,1,2,...,M-1 and v=0,1,2,...,N-1.
- 7. Obtain the filtered image (of size $P \times Q$) by computing the IDFT of G(u,v): $g_p(x,y) = \left(\operatorname{real} \left[\Im^{-1} \left\{ G(u,v) \right\} \right] \right) (-1)^{x+y}$
- 8. Obtain the final image g(x,y) of the same size as the input image by extracting the $M \times N$ region from the top, left quadrant of $g_p(x,y)$.

Filtering Explained with Example

Correspondence Between Filtering in Spatial and Frequency Domain

Correspondence between filtering in the Spatial and Frequency Domains

 The link between Spatial and Frequency Domains is the Convolution Theorem.

$$f \star h)(x, y) \Leftrightarrow (F \cdot H)(u, v)$$

• Filtering in frequency domain is an elementwise product of H(u,v) and F(u,v).

 Given: H(u,v), can we find corresponding h(x,y) filter in spatial domain?

Computing h(x,y)

- Let $f(x,y) = \delta(x,y)$, then F(u,v) = 1
- Hence, $h(x,y) = \text{Real}\left\{\Im^{-1}\left[H(u,v)F(u,v)\right]\right\} = \Im^{-1}\left\{H(u,v)\right\}$, and it is the inverse transform of the frequency domain filter.
- So, h(x,y) is the corresponding filter in the spatial domain.
- The converse is also true: i.e., $H(u,v)=F\{h(x,y)\}$
- We conclude that: $h(x,y) \Leftrightarrow H(u,v)$ form a discrete Fourier transform pair for a filter.

Properties of h(x,y)

- h(x,y) is obtained by inverse discrete Fourier transform(IDFT) of the frequency domain filter with Fourier transform of an impulse function.
 - Also known as the impulse response of H(u,v)
- All quantities in discrete representations of H(u,v) and h(x,y) are finite.
 - Such filters are known as finite impulse response (FIR) filters
- Spatial convolution filtering is well suited (speed) for small kernels using hardware and/or firmware implementation.
- When working with general purpose computers, frequency-domain filtering using a **fast Fourier transform** (FFT) algorithm can be hundreds of times faster than using spatial convolution.

Constructing Spatial Filters from Frequency Domain Filters

- Goal: use full size $(P \times Q)$ frequency domain filters as a guide to specify the spatial filters for a much smaller neighborhood.
- We shall illustrate the method with Gaussian functions.
 - Recall: Both the forward and inverse Fourier transform of a Gaussian function are real Gaussian functions.

$$H(u) = Ae^{-u^2/2\sigma^2}$$
 $h(x) = \sqrt{2\pi\sigma}Ae^{-2\pi^2\sigma^2x^2}$

1-D Gaussian Fourier transform pair

- Both H(u) and h(x) are real, and Gaussian functions
 - No complex terms (simplifies computations)
- Functions behave reciprocally. (sigma term)
 - − When H(u) has $\sigma \rightarrow \infty => h(x)$ tends toward an impulse

Lowpass Filter with a Gaussian Function:

- All coefficients are positive.
- Largest value in center.
- Values decrease towards "outer" samples.

Lowpass Filter with a Gaussian Function:

Test image of size 1024 x 1024

Filtering with Gaussian kernel of size 21 x 21, with $\sigma = 3.5$

Filtering with Gaussian kernel of size 43 x 43, with $\sigma = 7$

Highpass Filter with a Gaussian Function:

$$H(u) = Ae^{-u^2/2\sigma_1^2} - Be^{-u^2/2\sigma_2^2}$$

$$A \ge B \quad and \quad \sigma_1 \ge \sigma_2$$

Highpass Gaussian filter in **frequency domain** made of Two lowpass Gaussian
functions

$$h(x) = \sqrt{2\pi}\sigma_1 A e^{-2\pi^2 \sigma_1^2 x^2} - \sqrt{2\pi}\sigma_2 B e^{-2\pi^2 \sigma_2^2 x^2}$$

Corresponding Highpass Gaussian filter in spatial domain

f(x,y) of size 600×600

Its F(u,v), centered

- Sobel Filter h(x,y)
 - -3×3 kernel size
- Image Size f(x,y)
 - -600×600
- To avoid wraparound error, We need zero padding for both f(x,) and h(x,y) !!!
 - $P \ge A + B 1$
 - $P \ge 600 + 3 1 = 602$

-1	0	1
-2	0	2
-1	0	1

Spatial Sobel filter h(x,y)

Step-1: Sobel function exhibits ODD symmetry. However, its 1st element is not zero.

Step-2: To make it an perfect **odd function**, we have to add to it a **leading row and column of 0's**.

$$h(x,y) = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix} \longrightarrow \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 1 \\ 0 & -2 & 0 & 2 \\ \hline 0 & -1 & 0 & 1 \end{bmatrix}$$

For an **odd function**, when M is an **even number**, a **1-D odd sequence** has always **zero** values for the points at locations O and M/2.

 $\{0,-b,0,b\}$

Step-3: Place the Sobel filter from previous step into an larger array of zeros of the size 602×602 with both of their **centers coincide**.

Centered at index (301,301)	•	•	•	•	•	•	•	•	•	•	•
	•	•	•	•	•	•	•	•	•	•	•
	•	•	•	0	0	0	0	•	•	•	•
	•	•	•	0	-1	0	1	•	•	•	•
		•		0	-2	0	2	•	•		
	•		•	0	-1	0	1	•	•	•	•
	•	•	•	•	•	•	•	•	•	•	•
	•	•	•	•	•	•	•	•	•	•	•
	•	•	•	•	•	•	•	•	•	•	
	•	•	•	•		•	•	•	•	•	

 $h(x,y) = 602 \times 602$ size array of zeros

- <u>Very important point !!!</u> If odd (even) characteristic of a filter is not preserved, the filtering is not identical in spatial and frequency domains !!!.
- Step-4: Find the forward DFT of h(x,y) resulting in the required H(u,v) filter in the frequency domain.
 - * Since h(x,y) is ODD and REAL function, H(u, v) will be purely imaginary.

Recall:

f(x,y) real and odd $\Leftrightarrow F(u,v)$ imaginary and odd

The complete procedure to generate H(u,v) from h(x,y):

- 1. Pad h(x,y) to form a 602×602 elements array: $h_p(x,y)$.
- 2. Multiply $h_p(x,y)$ with $(-1)^{x+y}$ to center the frequency domain filter.
- 3. Compute the forward DFT of the result in step (2): H(u,v).
- 4. Set the real part of H(u,v) to 0 to facilitate numerical precision or to eliminate outliers. H has to be purely imaginary.
- 5. Finally, multiply H(u,v) with $(-1)^{u+v}$ to compensate for the shift to the center of the spatial filter in step (2).

Note the **antisymmetry** in H(u,v) image about its center, a result of H(u,v) being odd.

Fourier Spectrum of H(u,v)

domain filter

Highpass filtering in Frequency Domain example

Highpass filtering in Spatial Domain - example

Highpass filtering in Spatial Domain Vs. Frequency domain

Frequency Domain Filter Result

Spatial Domain Filter Result

Filtering - example

Phase spectrum High-pass filtering Low-pass filtering

Next Lecture

- Image Smoothing Using Lowpass Frequency Domain Filters
- Image Sharpening Using Highpass Frequency Domain Filters
- Laplacian in the Frequency Domain
- Homomorphic Filtering
- Selective Filtering