Übungen zur Wahrscheinlichkeitstheorie

Alexander Ritz

October 14, 2019

1. Aufgabe

- (i) Geben Sie die kleinste und größte σ -Algebra in einer Menge Ω an.
- (ii) Bestimmen Sie alle σ -Algebren in der vierelementigen Menge $\Omega_4 := \{a, b, c, d\}$.
- (iii) Sikzzieren Sie eine σ -Algebra in der Menge $\Omega_5 := [0, 5]$.
- (iv) Was fällt auf beim Vergleich der σ -Algebren aus (ii) und (iii)?

2. Aufgabe

Seien \mathscr{A} und \mathscr{B} zwei σ -Algebren in Ω mit $\mathscr{A} \in \mathscr{B}$.

- (i) Zeigen Sie, dass aus der \mathscr{A} -Messbarkeit von $f:\Omega\to\mathbb{R}$ die \mathscr{B} -Messbarkeit folgt.
- (ii) Zeigen Sie, dass eine Indikatorfunktion $\mathbb{1}_M : \Omega \to \mathbb{R}$ genau dann \mathscr{A} messbar ist, wenn $M \in \mathscr{A}$ gilt.
- (iii) Seien $f, g: \Omega \to \mathbb{R}$ \mathscr{A} -messbare Funktionen. Zeigen Sie, dass die Mengen

$$\{f < q\}, \{f < q\}, \{f = q\} \text{ und } \{f \neq q\}$$

in \mathscr{A} liegen.¹

3. Aufgabe

Seien $f, g: \Omega \to \mathbb{R}$ \mathscr{A} -messbare Funktionen. Beweisen Sie:

- (i) $\alpha + \beta \cdot g$ ist \mathscr{A} -messbar $(\alpha, \beta \in \mathbb{R})$.
- (ii) f + g ist \mathscr{A} -messbar.
- (iii) f^2 ist \mathscr{A} -messbar.
- (iv) $f \cdot g$ ist \mathscr{A} -messbar.

4. Aufgabe

Beschreiben Sie die "Elemente" (oder auch Bestandteile) einer Zufallsvariablen und eines zugeordneten Wahrscheinlichkeitsraumes. Erläutern Sie die Notwendigkeit des Konzepts der Messbarkeit explizit.

Hinweis: Gehen Sie auch auf die Begriffe "Ereignis"und "Ergebnis"ein.

¹Dabei gelte die in der Statistik gängige Notation: $\{f < g\} = \{\omega \in \Omega \mid f(\omega) < g(\omega)\}$