

PES University, Bengaluru

(Established under Karnataka Act 16 of 2013)

END SEMESTER ASSESSMENT (ESA) - JULY - 2023

UE21EC251B - Digital VLSI Design

	Total Marks : 100.0
1.a. With the help of CMOS inverter VTC indicationg regions of operation derive the expression of VIL, VIH, VOH and VOL	on and (10.0 Marks)
1.b. For two input NAND write the schematic using BICMOS logic struc	cture (6.0 Marks)
1.c. Consider a resistive load inverter circuit with VDD=5V Kn'=20uA/V2 RL=200Kohm W/L=2 calculate the critical voltages VoL VoH	Vto=0.8V (4.0 Marks)

2.a. V	Vrite the processing steps for fabricating n-type MOS transistor	(10.0 Marks)
2.b. V	Vrite the schematic and layout diagram two input NOR gate	(10.0 Marks)
3.a.	A company in Urbana, IL called Prairie Technology has access to a CMOS fabrication process with the device parameters listed below. $ \mu_n C_{ox} = 120 \mu \text{A/V}^2 \\ \mu_p C_{ox} = 60 \mu \text{A/V}^2 \\ L = 0.6 \mu \text{m} \text{ for both nMOS and pMOS devices} \\ V_{T0,n} = 0.8 \text{V} \\ V_{T0,p} = -1.0 \text{V} \\ W_{min} = 1.2 \mu \text{m} $ Design a CMOS inverter by determining the channel widths W_n and W_p of the nMOS and pMOS transistors, to meet the following performance specifications. $ \bullet V_{th} = 1.5 \text{V for } V_{DD} = 3 \text{V}, \\ \bullet \text{Propagation delay times } \tau^*_{PHL} \leq 0.2 \text{ns and } \tau^*_{PLH} \leq 0.15 \text{ns}, \\ \bullet \text{A falling delay of } 0.35 \text{ns for an output transition from 2 V to } 0.5 \text{V}, \\ \text{assuming a combined output load capacitance of } 300 \text{F} \text{and ideal step input.} $	(10.0 Marks)
3.b. V	Vith the help of schematic, waveforms and design equation expl ator	ain CMOS ring (6.0 Marks)

(4.0 Marks)

4.a. With the help of schematic diagram explain CMOS implementation of D-latch (7.0 Marks)

4.b. Write the transistor schematic of AOI-based implementation of the clocked NOR-based SR latch circuit. (5.0 Marks)

c. with the help of block and timing diagrams explain the following sequencing ethods for MAX delay constraints FF			
ii Two phase latches iii Pulsed latches	(8.0 Marks)		
5.a. Use transmission gate and write the schematic of the following expression i 2:1 mux			
ii 6T implementation of 2 input XOR gate iii. F=AB+A'C'+AB'C	(10.0 Marks)		
5.b. Explain the working of FULL CMOS 6T SRAM and explain the and its design stratagy	ne read0 operation (10.0 Marks)		