C言語関数一覧

(1) ライブラリ関数一覧

関数名	機能と基本形	使用例	
BusyUSART	送信中の時 1 を返す TXSTA レジスタの TRMT フラグ状 態を返す char BusyUSART(void);	while(BusyUSART());	
CloseUSART	送受信を終了し割り込みも禁止 する void CloseUSART(void);	CloseUSART();	
DataRdyUSART	フラグ状態を返す		
getsUSART	char DataRdyUSART(void); len で指定された文字数の文字 列を連続して受信 しbufferで ポイントされたRAM メモリに格納する。 bufferは len+1 のエリア が必要。 永久に受信完了を待ちタイムアウトは無い。 void getsUSART(char *buffer, unsigned char len);	char x[10]; getsUSART(x,5);	
OpenUSART	USART の使用モードを設定し動作を開始させる。 設定内容は、割込み、通信速度、 同期/非同期、 8 ビット/9 ビット、 マスター/ スレーブ、単発/連続受信	& USART_EIGHT_BIT &	

putsUSART	void OpenUSART (unsigned char config, char spbrg); RAM、ROM エリアの連続データを送信する。 終了は null で判定	char mybuff[20];
putsrUSART	<pre>void putsUSART(char *data); void putrsUSART(const rom char *data);</pre>	<pre>putsUSART (mybuff);</pre>
ReadUSART	受信バッファより1個のデータ を取り出し返す。 9 ビットモードにも対応し、 USART_Status. RX_NINE に格納 char ReadUSART(void);	char x; x = ReadUSART();
WriteUSART	送信バッファに1個のデータを書く、9ビットモード にも対応。 9ビット目のデータ は USART_Status. TX_NINE にセット する。 void WriteUSART(char data);	char x; WriteUSART(x);

(2) OpenUSART 用パラメータ

OpenUSART 関数には USART の動作モードを設定するための多くのパラメータが必要となりますが、これらは下記のようになっています。

設定モード	パラメータ名称	意味内容
割込みの許可禁止	USART_INT_TX_ON USART_INT_TX_OFF USART_INT_RX_ON USART_INT_RX_OFF	送信割込みの許可 禁止 受信割込みの許可 禁止
同期/非同期	USART_ASYNCH_MODE USART_SYNCH_MODE	非同期(調歩)モード 同期モード
8/9ビットモード	USART_EIGHT_BIT	8ビットモード

	USART_NINE_BIT	9ビットモード
スレーブ/マスタ	USART_SYNC_SLAVE USART_SYNC_MASTER	同期スレーブ 同期マスタ
単発/連続受信	USART_SINGLE_RX USART_CONT_RX	単発受信モード 連続受信モード
高速/低速速度	USART_BRGH_HIGH USART_BRGH_LOW	高速ボーレート 低速ボーレート

【タイマー用 C ライブラリ関数】

MPLAB-C18 で用意されているタイマー用の関数ライブラリがあります。 各タイマー毎に用意されていて、タイマーO, 1, 2, 3の数値で区別しています。 (1) タイマー用 C 関数ライブラリー覧

関数名	機能と基本形	使用例
	指定タイマーを停止し割込みを禁止す	
CloseTimer1	5	CloseTimerO();
CloseTimer2	<pre>void CloseTimerO(void);</pre>	, , , , ,
Closelimers		
	指定のタイマーの初期設定を行う。割	
OpenTimerO	込み、	OpenTimerO(TIMER_INT_OFF
OpenTimer1	クロック選択、プリスケーラ値などの	& TO_SOURCE_INT &
OpenTimer2	設定を含む	T0_PS_1_32);
OpenTimer3	void OpenTimerO(unsigned char	10_1 0_1_02/ ;
	config);	
	各タイマーのカウンタレジスタの内容	
	を返す	
ReadTimer0	8ビットと16ビットのものがある	
ReadTimer1	Timer0: int(16-bits)	unsigned int result;
ReadTimer2	TMROH、TMROL レジスタ	result = ReadTimerO();
ReadTimer3	Timer1: int(16-bits)	
	TMR1H、TMR1L レジスタ	
	Timer2: char(8-bits) TMR2	

	レジスタ Timer3: int(16-bits) TMR3H、TMR3L レジスタ	
	<pre>unsigned int ReadTimer1(void); unsigned char ReadTimer2(void);</pre>	
WriteTimerO WriteTimer1 WriteTimer2 WriteTimer3	Timer2: char(8-bits) TMR2	WriteTimerO(O);
	<pre>unsigned WriteTimer2(unsigned char timer);</pre>	

(2) OpenTimer 用パラメータ一覧

OpenTimer 関数には各タイマの動作モードを設定するための多くのパラメータが必要となりますが、これらは下記のようになっています。

タイマー種 別	項目種別	パラメータ名称	意味内容
全部共通	割込み許可禁止	TIMER_INT_ON TIMER_INT_OFF	タイマー割込み許可 禁止
	モード設定	T0_8BIT T0_16BIT	8 ビットモード指定 1 6 ビットモード指定
タイマ0	外部クロックエッジ	TO_EDGE_FALL TO_EDGE_RISE	外部クロック立下り 外部クロック立上り
	クロック選択	TO_SOURCE_EXT TO_SOURCE_INT	外部クロック指定(I/0 ピ ン)

			内部クロック指定(Tosc)
	プリスケーラ値	T0_PS1_1 T0_PS1_2 T0_PS1_4 T0_PS1_8 T0_PS1_16 T0_PS1_32 T0_PS1_64 T0_PS1_128 T0_PS1_256	1:1 1:2 1:4 1:8 1:16 1:32 1:64 1:128 1:256
	モード設定	T1_8BIT_RW T1_16BIT_RW	8 ビットモード指定 1 6 ビットモード指定
タイマ 1	クロック選択	T1_SOURCE_EXT T1_SOURCE_INT	外部クロック指定(I/0 ピ ン) 内部クロック指定(Tosc)
	プリスケーラ値	T1_PS_1_1 T1_PS_1_2 T1_PS_1_4 T1_PS_1_8	1 : 1 1 : 2 1 : 4 1 : 8
	発振回路許可禁止	T1_OSC1EN_ON T1_OSC1EN_OFF	発振回路を使用する 発振回路を使用しない
	外部クロック入力 の内部同期の指定	T1_SYNC_EXT_ON T1_SYNC_EXT_OFF	内部クロックに同期させる させな い
	CCP 用のクロック指 定	T1_SOURCE_CCP T1_CCP1_T3_CCP2	CCP1, 2 両方のクロックに使 用 CCP 1 だけのクロックに使用
タイマ 2	プリスケーラ値	T2_PS1_1 T2_PS1_4 T2_PS1_16	1 : 1 1 : 4 1 : 1 6
	ポストスケーラ値	T2_P0ST_1_1 T2_P0ST_1_2	1 : 1 1 : 2
タイマ3	クロック選択	T3_SOURCE_EXT	外部クロック指定(I/0ピ

	T3_SOURCE_INT	ン) 内部クロック指定 (Tosc)
モード設定	T3_8BIT_RW T3_16BIT_RW	8 ビットモード指定 1 6 ビットモード指定
プリスケーラ値	T3_PS_1_1 T3_PS_1_2 T3_PS_1_4 T3_PS_1_8	1 : 1 1 : 2 1 : 4 1 : 8
クロックの選択	T3_OSC1EN_ON T3_OSC1EN_OFF	タイマー 1 のクロックを使 う 使わな い
外部クロック入力 の内部同期の指定	T3_SYNC_EXT_ON T3_SYNC_EXT_OFF	内部クロックに同期させる させな い
CCP 用のクロック指 定	T3_SOURCE_CCP T1_CCP1_T3_CCP2	CCP1, 2 両方のクロックに使 用 CCP 2 だけのクロックに使用

【A/D 変換用 C 言語関数】

MPLAB-C18 で用意されている A/D 変換モジュール用の C 言語ライブラリを説明します。

A/D 変換の制御は比較的やさしいのですが、Acquisition Time を十分確保しないと精度が出なくなるので要注意です。

(1) ライブラリ関数の種類と機能

MPLAB-C18 にあらかじめ用意されている A/D 変換モジュール用の関数は下記表となっています。

関数名	機能と基本形	使用例

BusyADC	A/D 変換中の時 1 を返す ADCONO レジスタの GO ビットの状態を返す	while(BusvADC()):	
Buoyribo	char BusyADC(void);		
CloseADC	まず ADCONO の ADON ビットをクリアして A/D コンバータを 未使用状態にしてから割り込みも禁止す る	CloseADC();	
	void CloseADC(void);		
ConvertADC	A/D 変換を開始する。(ADCONO の GO ビットを 1 にする)	ConvertADC();	
	<pre>void ConvertADC(void);</pre>		
0pen A DC	A/D 変換機能の使用モードを設定し動作を開始させる。 設定内容は、変換クロック、割込み、データ配置、 基準電圧、チャンネル数、チャネル選択	OpenADC (ADC_FOSC_32 & ADC_RIGHT_JUST & ADC_1ANA_OREF, ADC_CH & ADC_INT_OFF);	
	void OpenADC (unsigned char config, unsigned char config2);		
ReadADC	A/D 変換した結果の符号付2バイトのデータを返す。 右詰、左詰は OpenADC の設定による	<pre>int result; result = ReadADC();</pre>	
	int ReadADC(void);		
SetChanADC	ー度チャンネルOに戻してから指定したチャンネルを選択する。	SetChanADC(ADC_CHO);	
	void SetChanADC (unsigned char channel);	OCCURATIANO (ANO_UTIO),	

(2) OpenADC 用パラメータ

OpenADC 関数には A/D 変換モジュールの動作モードを設定するための多くのパラメータが

必要となりますが、これらは下記のようになっています。

設定項目	パラメータ名称	意味内容
	ADC_FOSC_2	Fosc/2
	ADC_FOSC_4	Fosc/4
	ADC_FOSC_8	Fosc/8
クロック選択	ADC_FOSC_16	Fosc/16
	ADC_FOSC_32	Fosc/32
	ADC_FOSC_64	Fosc/64
	ADC_FOSC_RC	内部クロック
(t. mt)	ADC_RIGHT_JUST	右詰め
結果の詰め方	ADC_LEFT_JUST	左詰め
	ADC_8ANA_0REF	Vref+=Vdd,Vref-=Vss
		8チャンネル全部使用
	ADC_7ANA_1REF	AN3=Vref+ 他全チャン
		ネル使用
	ADC_5ANA_0REF	Vref=vdd Vref-=Vss
	ADC_4ANA_1REF	AN3=Vref+
	ADC_3ANA_0REF	Vref+=Vdd、Vref-=Vss
使用チャンネル数	ADC_2ANA_1REF	AN3=Vref+
とリファレンス	ADC_0ANA_0REF	全部ディジタル
2.777027	ADC_6ANA_2REF	AN3=Vref+、AN2=Vref-
	ADC_6ANA_0REF	Vref+=Vdd、Vref-=Vss
	ADC_5ANA_1REF	AN3=Vref+、Vref-=Vss
	ADC_4ANA_2REF	AN3=Vref+、AN2=Vref-
	ADC_3ANA_2REF	AN3=Vref+、AN2=Vref-
	ADC_2ANA_2REF	AN3=Vref+、AN2=Vref-
	ADC_1ANA_0REF	ANO のみ
	ADC_2ANA_0REF	AN3=Vref+、AN2=Vref-
	ADC_CH0	
	ADC_CH1	
	ADC_CH2	
チャンネル指定	ADC_CH3	SetChanADC 関数の
アインヤル相比	ADC_CH4	パラメータとしても使用する
	ADC_CH5	
	ADC_CH6	
	ADC_CH7	

割込み	ADC_INT_ON	割込みを使用
	ADC_INT_OFF	割込み使わず

参考 URL http://www.picfun.com/mod1800.html