SEMICONDUCTOR DEVICES

MOS Transistors: Part 3

M.B.Patil
mbpatil@ee.iitb.ac.in
www.ee.iitb.ac.in/~sequel

Department of Electrical Engineering Indian Institute of Technology Bombay

* A MOS transistor has four terminals: source, drain, gate, bulk.

- * A MOS transistor has four terminals: source, drain, gate, bulk.
- * The bulk terminal must be suitably biased for the transistor to work properly, with the S-B and D-B junction under reverse bias.
 - Generally, the bulk terminal for an NMOS transistor is connected to the lowest potential in the circuit (typically, $0\,V$).

- * A MOS transistor has four terminals: source, drain, gate, bulk.
- The bulk terminal must be suitably biased for the transistor to work properly, with the S-B and D-B junction under reverse bias.
 - Generally, the bulk terminal for an NMOS transistor is connected to the lowest potential in the circuit (typically, 0 V).
- * The source and drain terminals are often interchangeable.

* When $V_G - V_S < V_{\rm th}$, the device is under accumulation (i.e., p-type near the surface) or depletion, and no significant current is possible. This is the non-conducting or "off" state.

- * When $V_G V_S < V_{\rm th}$, the device is under accumulation (i.e., p-type near the surface) or depletion, and no significant current is possible. This is the non-conducting or "off" state.
- * When $V_G V_S \ge V_{\rm th}$, an inversion layer (*n*-type) forms at the surface and "connects" the source and drain regions. A substantial current flow is now possible electrons flow from source to drain, and I_D flows in the opposite direction, i.e., in the direction shown by the source arrow in the symbol. This is the conducting or "on" state.

* n(x, y) falls rapidly as we move from the Si-SiO₂ interface toward the bulk.

- * n(x, y) falls rapidly as we move from the Si-SiO₂ interface toward the bulk.
- * The electron density in the channel (i.e., the inversion layer) is substantial only when $V_{GS} > V_{\rm th}$.

- * n(x, y) falls rapidly as we move from the Si-SiO₂ interface toward the bulk.
- * The electron density in the channel (i.e., the inversion layer) is substantial only when $V_{GS} > V_{\rm th}$.
- * The electron density is larger near the source end of the channel than at the drain end.

M. B. Patil, IIT Bombay

* In a MOS capacitor, DC current flow is blocked by the insulator, and therefore we could treat the Fermi level as constant.

In a MOS transistor, a DC current can flow, which makes the situation very different.

- * In a MOS capacitor, DC current flow is blocked by the insulator, and therefore we could treat the Fermi level as constant.
 - In a MOS transistor, a DC current can flow, which makes the situation very different.
- * In a MOS capacitor, the surface potential ψ_s depends only on V_G (with respect to the bulk contact). In a MOS transistor, ψ_s is affected by the the gate, source, and drain voltages.

* In a MOS transistor, the channel potential V_c (i.e., $\psi(y=0)$) varies from approximately V_s (0 V) at x=0 to V_D at x=L.

- * In a MOS transistor, the channel potential V_c (i.e., $\psi(y=0)$) varies from approximately V_s (0 V) at x=0 to V_D at x=L.
- * At $y \to \infty$ (the bulk region), the quasi-Fermi level E_{Fp} is $q\phi_B$ below E_i , as in the MOS capacitor.

- * In a MOS transistor, the channel potential V_c (i.e., $\psi(y=0)$) varies from approximately V_s (0 V) at x=0 to V_D at x=L.
- * At $y \to \infty$ (the bulk region), the quasi-Fermi level E_{Fp} is $q\phi_B$ below E_i , as in the MOS capacitor.
- * At y = 0 (the Si-SiO₂ interface), the the quasi-Fermi level E_{Fn} is about $q\phi_B$ above the intrinsic level E_i , as in the MOS capacitor.

* In the capacitor, E_F is constant, so the total voltage drop in the semiconductor is simply $2\phi_B$.

- * In the capacitor, E_F is constant, so the total voltage drop in the semiconductor is simply $2\phi_B$.
- * In the transistor, the two quasi-Fermi levels (i.e., $E_{Fn}(0)$ and $E_{Fp}(\infty)$) are separated by qV_c . The total voltage drop between the Si-SiO₂ interface (y=0) and the bulk region $(y\to\infty)$ is $V_c+2\phi_B$.

- * In the capacitor, E_F is constant, so the total voltage drop in the semiconductor is simply $2\phi_B$.
- * In the transistor, the two quasi-Fermi levels (i.e., $E_{Fn}(0)$ and $E_{Fp}(\infty)$) are separated by qV_c . The total voltage drop between the Si-SiO₂ interface (y=0) and the bulk region $(y\to\infty)$ is $V_c+2\phi_B$.
- * The voltage drop $(V_c + 2\phi_B)$ increases as we go from the source to the drain, and the depletion region becomes wider so as to accommodate the additional voltage difference.

M. B. Patil, IIT Bombay

* Gradual channel approximation: We assume that the surface potential V_c in the x direction varies slowly from 0 V at the source end of the channel to V_D at the drain end. In other words, the electric field in the x direction (\mathcal{E}_x) varies slowly with x.

Gauss's law:
$$\int_{V} \rho \, dV = \oint_{ABCD} \mathbf{D} \cdot d\mathbf{A} + \oint_{A'B'C'D'} \mathbf{D} \cdot d\mathbf{A} + \oint_{AA'B'B} \mathbf{D} \cdot d\mathbf{A} + \oint_{DD'C'C} \mathbf{D} \cdot d\mathbf{A} + \oint_{AA'D'D} \mathbf{D} \cdot d\mathbf{A} + \oint_{BB'C'C} \mathbf{D} \cdot d\mathbf{A}.$$

Gauss's law:
$$\int_{V} \rho \, dV = \oint_{ABCD} \mathbf{D} \cdot d\mathbf{A} + \oint_{A'B'C'D'} \mathbf{D} \cdot d\mathbf{A} + \oint_{AA'B'B} \mathbf{D} \cdot d\mathbf{A} + \oint_{DD'C'C} \mathbf{D} \cdot d\mathbf{A} + \oint_{AA'D'D} \mathbf{D} \cdot d\mathbf{A} + \oint_{BB'C'C} \mathbf{D} \cdot d\mathbf{A}.$$

* The integrals over the rectangles ABCD and A'B'C'D' are both zero because we assume that the potential does not vary in the z direction.

Gauss's law:
$$\int_{V} \rho \, dV = \oint_{ABCD} \mathbf{D} \cdot d\mathbf{A} + \oint_{A'B'C'D'} \mathbf{D} \cdot d\mathbf{A} + \oint_{AA'B'B} \mathbf{D} \cdot d\mathbf{A} + \oint_{DD'C'C} \mathbf{D} \cdot d\mathbf{A} + \oint_{AA'D'D} \mathbf{D} \cdot d\mathbf{A} + \oint_{BB'C'C} \mathbf{D} \cdot d\mathbf{A}.$$

- * The integrals over the rectangles ABCD and A'B'C'D' are both zero because we assume that the potential does not vary in the z direction.
- * The integral over BB'C'C is zero because the bands are flat in the bulk region.

Gauss's law:
$$\int_{V} \rho \, dV = \oint_{AA'B'B} \mathbf{D} \cdot d\mathbf{A} + \oint_{DD'C'C} \mathbf{D} \cdot d\mathbf{A} + \oint_{AA'D'D} \mathbf{D} \cdot d\mathbf{A}.$$

$$\oint_{AA'B'B} \mathbf{D} \cdot d\mathbf{A} = -\oint_{AA'B'B} \epsilon \, \mathcal{E}_{x}(x,y) \, dA,$$

Gauss's law:
$$\int_{V} \rho \, dV = \oint_{AA'B'B} \mathbf{D} \cdot d\mathbf{A} + \oint_{DD'C'C} \mathbf{D} \cdot d\mathbf{A} + \oint_{AA'D'D} \mathbf{D} \cdot d\mathbf{A}.$$

$$\oint_{AA'B'B} \mathbf{D} \cdot d\mathbf{A} = -\oint_{AA'B'B} \epsilon \, \mathcal{E}_{x}(x,y) \, dA, \quad \oint_{DD'C'C} \mathbf{D} \cdot d\mathbf{A} = +\oint_{DD'C'C} \epsilon \, \mathcal{E}_{x}(x,y) \, dA.$$

Gauss's law:
$$\int_{V} \rho \, dV = \oint_{AA'B'B} \mathbf{D} \cdot d\mathbf{A} + \oint_{DD'C'C} \mathbf{D} \cdot d\mathbf{A} + \oint_{AA'D'D} \mathbf{D} \cdot d\mathbf{A}.$$

$$\oint_{AA'B'B} \mathbf{D} \cdot d\mathbf{A} = -\oint_{AA'B'B} \epsilon \, \mathcal{E}_{\mathbf{X}}(\mathbf{x}, \mathbf{y}) \, dA, \quad \oint_{DD'C'C} \mathbf{D} \cdot d\mathbf{A} = +\oint_{DD'C'C} \epsilon \, \mathcal{E}_{\mathbf{X}}(\mathbf{x}, \mathbf{y}) \, dA.$$

Gradual channel approximation o \mathcal{E}_x varies slowly with x. o The two integrals add to zero.

$$\oint_{AA'B'B} \mathbf{D} \cdot d\mathbf{A} = -\oint_{AA'B'B} \epsilon \, \mathcal{E}_{x}(x,y) \, dA, \quad \oint_{DD'C'C} \mathbf{D} \cdot d\mathbf{A} = +\oint_{DD'C'C} \epsilon \, \mathcal{E}_{x}(x,y) \, dA.$$

Gradual channel approximation $\to \mathcal{E}_x$ varies slowly with $x. \to \mathsf{The}$ two integrals add to zero.

$$\rightarrow \int_{V} \rho \, dV = \oint_{AA'D'D} \mathbf{D} \cdot \mathbf{dA}.$$

$$\int_{V} \rho \, dV = \oint_{AA'D'D} \mathbf{D} \cdot d\mathbf{A} = \Delta x \Delta z \int_{0}^{\infty} q \left(p - n - N_{a}^{-} \right) dy = -\Delta x \Delta z \, \epsilon_{Si} \mathcal{E}_{Si}^{y}(x) = -\Delta x \Delta z \, \epsilon_{ox} \mathcal{E}_{ox}^{y}(x).$$

$$\int_{V} \rho \, dV = \oint_{AA'D'D} \mathbf{D} \cdot d\mathbf{A} = \Delta x \Delta z \int_{0}^{\infty} q \left(p - n - N_{a}^{-} \right) dy = -\Delta x \Delta z \, \epsilon_{\mathrm{Si}} \mathcal{E}_{\mathrm{Si}}^{y}(x) = -\Delta x \Delta z \, \epsilon_{\mathrm{ox}} \mathcal{E}_{\mathrm{ox}}^{y}(x).$$

$$\rightarrow -\epsilon_{\mathrm{ox}} \mathcal{E}_{\mathrm{ox}}^{y}(x) = -q \int_{0}^{\infty} \left[n(x, y) + (N_{a}^{-} - p) \right] dy \equiv Q_{I}(x) + Q_{D}(x).$$

$$\int_{V} \rho \, dV = \oint_{AA'D'D} \mathbf{D} \cdot d\mathbf{A} = \Delta x \Delta z \int_{0}^{\infty} q \left(p - n - N_{a}^{-} \right) dy = -\Delta x \Delta z \, \epsilon_{\mathrm{Si}} \mathcal{E}_{\mathrm{Si}}^{y}(x) = -\Delta x \Delta z \, \epsilon_{\mathrm{ox}} \mathcal{E}_{\mathrm{ox}}^{y}(x).$$

$$\rightarrow -\epsilon_{\mathrm{ox}} \mathcal{E}_{\mathrm{ox}}^{y}(x) = -q \int_{0}^{\infty} \left[n(x, y) + (N_{a}^{-} - p) \right] dy \equiv Q_{I}(x) + Q_{D}(x).$$

Note that the depletion charge Q_D varies with x since the depletion width varies with x.

$$Q_I(x) = -C_{
m ox}\left[V_G - \phi_{ms} - 2\phi_B + rac{Q_D(x)}{C_{
m ox}} - V_c(x)
ight].$$

At x=0, we have $V_c=0$ V, and $Q_I(x=0)=-C_{\rm ox}\left[V_G-V_{\rm th}\right]\!, \mbox{ where } V_{\rm th} \mbox{ is the same}$ as the threshold voltage of the corresponding MOS

In general, we have

capacitor.

$$Q_I(x) = -C_{
m ox}\left[V_G - V_{
m th}(x) - V_c(x)
ight]$$
, with

 $V_{\mathsf{th}}(\mathsf{x}) = \phi_{\mathit{ms}} + 2\phi_{\mathit{B}} - \frac{Q_{\mathit{D}}(\mathsf{x})}{C_{\mathsf{ox}}}.$

$$I_D = \iint q \, n(x, y, z) \, \mu_n \, \frac{dV_c}{dx} \, dy dz$$

$$I_D = \iint q \, n(x, y, z) \, \mu_n \, \frac{dV_c}{dx} \, dydz$$
$$= \mu_n \, W \, \frac{dV_c}{dx} \int q \, n(x, y) \, dy = -\mu_n \, W \, \frac{dV_c}{dx} \, Q_I(x)$$

$$I_D = \iint q \, n(x, y, z) \, \mu_n \, \frac{dV_c}{dx} \, dydz$$

$$= \mu_n \, W \, \frac{dV_c}{dx} \int q \, n(x, y) \, dy = -\mu_n \, W \, \frac{dV_c}{dx} \, Q_I(x)$$

$$= -\mu_n \, W \, \frac{dV_c}{dx} \left[-C_{\text{ox}}(V_G - V_{\text{th}}(x) - V_c) \right]$$

$$I_D = \iint q \, n(x, y, z) \, \mu_n \, \frac{dV_c}{dx} \, dydz$$

$$= \mu_n W \, \frac{dV_c}{dx} \int q \, n(x, y) \, dy = -\mu_n W \, \frac{dV_c}{dx} \, Q_I(x)$$

$$= -\mu_n W \, \frac{dV_c}{dx} \left[-C_{\text{ox}}(V_G - V_{\text{th}}(x) - V_c) \right]$$

$$= \mu_n W \, C_{\text{ox}}(V_G - V_{\text{th}}(x) - V_c) \, \frac{dV_c}{dx}$$

$$I_D = \iint q \, n(x, y, z) \, \mu_n \, \frac{dV_c}{dx} \, dydz$$

$$= \mu_n \, W \, \frac{dV_c}{dx} \int q \, n(x, y) \, dy = -\mu_n \, W \, \frac{dV_c}{dx} \, Q_I(x)$$

$$= -\mu_n \, W \, \frac{dV_c}{dx} \left[-C_{\text{ox}}(V_G - V_{\text{th}}(x) - V_c) \right]$$

$$= \mu_n \, W \, C_{\text{ox}}(V_G - V_{\text{th}}(x) - V_c) \, \frac{dV_c}{dx}$$
Remark: The mobility here is smaller than in bulk

Remark: The mobility here is smaller than in bulk (typically by a factor of 2) because of additional scattering at the $Si-SiO_2$ interface.

$$I_D = \iint q \, n(x, y, z) \, \mu_n \, \frac{dV_c}{dx} \, dydz$$

$$= \mu_n \, W \, \frac{dV_c}{dx} \int q \, n(x, y) \, dy = -\mu_n \, W \, \frac{dV_c}{dx} \, Q_I(x)$$

$$= -\mu_n \, W \, \frac{dV_c}{dx} \left[-C_{\text{ox}}(V_G - V_{\text{th}}(x) - V_c) \right]$$

$$= \mu_n \, W \, C_{\text{ox}}(V_G - V_{\text{th}}(x) - V_c) \, \frac{dV_c}{dx}$$

Remark: The mobility here is smaller than in bulk (typically by a factor of 2) because of additional scattering at the $Si-SiO_2$ interface.

We now make a simplifying assumption, viz., $V_{\rm th}(x) \approx V_{\rm th}(x=0)$, which amounts to ingoring the x-dependence of Q_D .

$$I_D = \iint q \, n(x, y, z) \, \mu_n \, \frac{dV_c}{dx} \, dydz$$

$$= \mu_n \, W \, \frac{dV_c}{dx} \int q \, n(x, y) \, dy = -\mu_n \, W \, \frac{dV_c}{dx} \, Q_I(x)$$

$$= -\mu_n \, W \, \frac{dV_c}{dx} \left[-C_{\text{ox}}(V_G - V_{\text{th}}(x) - V_c) \right]$$

$$= \mu_n \, W \, C_{\text{ox}}(V_G - V_{\text{th}}(x) - V_c) \, \frac{dV_c}{dx}$$

Remark: The mobility here is smaller than in bulk (typically by a factor of 2) because of additional scattering at the $Si-SiO_2$ interface.

We now make a simplifying assumption, viz., $V_{\rm th}(x) \approx V_{\rm th}(x=0)$, which amounts to ingoring the x-dependence of Q_D . That leads to

$$\int_0^L I_D dx = I_D L = \mu_n W C_{ox} \int_0^{V_D} (V_G - V_{th} - V_c) dV_c. \quad \forall_S = 0 \, \forall V_c$$

$$I_D = \iint q \, n(x, y, z) \, \mu_n \, \frac{dV_c}{dx} \, dydz$$

$$= \mu_n \, W \, \frac{dV_c}{dx} \int q \, n(x, y) \, dy = -\mu_n \, W \, \frac{dV_c}{dx} \, Q_I(x)$$

$$= -\mu_n \, W \, \frac{dV_c}{dx} \left[-C_{\text{ox}}(V_G - V_{\text{th}}(x) - V_c) \right]$$

$$= \mu_n \, W \, C_{\text{ox}}(V_G - V_{\text{th}}(x) - V_c) \, \frac{dV_c}{dx}$$

Remark: The mobility here is smaller than in bulk (typically by a factor of 2) because of additional scattering at the Si-SiO2 interface.

We now make a simplifying assumption, viz., $V_{\rm th}(x) \approx V_{\rm th}(x=0)$, which amounts to ingoring the x-dependence of Q_D . That leads to

$$\int_{0}^{L} I_{D} dx = I_{D} L = \mu_{n} W C_{ox} \int_{0}^{V_{D}} (V_{G} - V_{th} - V_{c}) dV_{c}. \quad \forall_{s} = 0 \,\forall -1 \,\forall s = 0 \,\forall s =$$

$$J_0 \stackrel{\text{def}}{=} I_D = \mu_n \frac{W}{L} C_{\text{ox}} \left[(V_G - V_{\text{th}}) V_D - \frac{1}{2} V_D^2 \right].$$

$$I_D = \mu_n \frac{W}{L} C_{\rm ox} \left[(V_G - V_{\rm th}) V_D - \frac{1}{2} V_D^2 \right]. \label{eq:ID}$$

$$I_D = \mu_n \frac{W}{L} C_{\text{ox}} \left[(V_G - V_{\text{th}}) V_D - \frac{1}{2} V_D^2 \right].$$

* Consider a constant V_G (> $V_{\rm th}$). The above equation predicts that, as V_D is increased, I_D will reach a maximum value and then decrease.

$$\begin{aligned} &V_{th}=0.5 \text{ V} \\ &V_G=3 \text{ V} \\ &t_{ox}=50 \text{ nm} \\ &\mu_n=500 \text{ cm}^2/\text{V-s} \\ &L=2 \, \mu\text{m} \\ &W=5 \, \mu\text{m} \end{aligned}$$

$$I_D = \mu_n rac{W}{L} C_{
m ox} \left[(V_G - V_{
m th}) V_D - rac{1}{2} V_D^2
ight].$$

- * Consider a constant V_G (> $V_{\rm th}$). The above equation predicts that, as V_D is increased, I_D will reach a maximum value and then decrease.
- * In a real device, ID saturates after reaching the maximum value.

* The inversion charge, which is responsible for current conduction, decreases from S to D due to an increase in the channel potential: $Q_I(x) = -C_{ox} [V_G - V_{th}(x) - V_c(x)]$.

$$\begin{aligned} &V_{th}=0.5\,\text{V}\\ &V_G=3\,\text{V}\\ &t_{ox}=50\,\text{nm}\\ &\mu_n=500\,\text{cm}^2/\text{V-s}\\ &L=2\,\mu\text{m}\\ &W=5\,\mu\text{m} \end{aligned}$$

- * The inversion charge, which is responsible for current conduction, decreases from S to D due to an increase in the channel potential: $Q_I(x) = -C_{ox} [V_G V_{th}(x) V_c(x)]$.
- * When $V_c = V_G V_{\rm th}$, the inversion charge becomes nearly zero \to The channel gets "pinched-off."

- * The inversion charge, which is responsible for current conduction, decreases from S to D due to an increase in the channel potential: $Q_I(x) = -C_{ox}[V_G V_{th}(x) V_c(x)]$.
- * When $V_c = V_G V_{\rm th}$, the inversion charge becomes nearly zero \to The channel gets "pinched-off."
- * Since V_c increases from S to D, pinch-off occurs at the drain end.

- * The inversion charge, which is responsible for current conduction, decreases from S to D due to an increase in the channel potential: $Q_I(x) = -C_{ox} [V_G V_{th}(x) V_c(x)].$
- * When $V_c = V_G V_{\rm th}$, the inversion charge becomes nearly zero \to The channel gets "pinched-off."
- * Since V_c increases from S to D, pinch-off occurs at the drain end.
- * Beyond pinch-off, the "excess" drain voltage $V_D V_D^{\rm sat}$ drops across a narrow high-field region, leaving the conditions in most of the device unchanged. $\rightarrow I_D$ remains equal to $I_D^{\rm sat}$.

Example: For an NMOS transistor with $L=2\,\mu\mathrm{m}$, $W=5\,\mu\mathrm{m}$, $\mu_{n}=500\,\mathrm{cm^{2}/V}$ -s, $t_{\mathrm{ox}}=500\,\mathrm{\mathring{A}}$, $V_{\mathrm{th}}=0.4\,\mathrm{V}$,

(a) Plot I_D versus V_{DS} for $V_{GS} = 1.5, 2, 2.5, 3, 3.5, 4 V.$

Example: For an NMOS transistor with $L=2 \mu m$, $W=5 \mu m$, $\mu_n=500 \text{ cm}^2/\text{V-s}$, $t_{ox}=500 \text{ Å}$, $V_{th}=0.4 \text{ V}$,

- (a) Plot I_D versus V_{DS} for $V_{GS} = 1.5, 2, 2.5, 3, 3.5, 4 V$.
- (b) Show the locus of $V_{DS}^{\rm sat}$ in the I_D - V_{DS} plane.

- (a) Plot I_D versus V_{DS} for $V_{GS} = 1.5, 2, 2.5, 3, 3.5, 4 V.$
- (b) Show the locus of V_{DS}^{sat} in the I_D - V_{DS} plane.
- (c) Plot I_D versus V_{GS} for $V_{DS}=0.2\,\mathrm{V}$ and $V_{DS}=3\,\mathrm{V}$. $(V_{BS}=0\,\mathrm{V},\ T=300\,\mathrm{K}).$

- (a) Plot I_D versus V_{DS} for $V_{GS} = 1.5, 2, 2.5, 3, 3.5, 4 V$.
- (b) Show the locus of $V_{DS}^{\rm sat}$ in the I_D - V_{DS} plane.
- (c) Plot I_D versus V_{GS} for $V_{DS} = 0.2 \,\text{V}$ and $V_{DS} = 3 \,\text{V}$. $(V_{BS} = 0 \,\text{V}, T = 300 \,\text{K})$.

Solution:

(a)
$$I_D = \frac{W}{L} \mu_n C_{\text{ox}} \left[(V_{GS} - V_{\text{th}}) V_{DS} - \frac{1}{2} V_{DS}^2 \right].$$

- (a) Plot I_D versus V_{DS} for $V_{GS} = 1.5, 2, 2.5, 3, 3.5, 4 V.$
- (b) Show the locus of $V_{DS}^{\rm sat}$ in the I_D - V_{DS} plane.
- (c) Plot I_D versus V_{GS} for $V_{DS}=0.2\,\mathrm{V}$ and $V_{DS}=3\,\mathrm{V}$. $(V_{BS}=0\,\mathrm{V},\ T=300\,\mathrm{K}).$

Solution:

(a)
$$I_D = \frac{W}{L} \mu_n C_{\text{ox}} \left[(V_{GS} - V_{\text{th}}) V_{DS} - \frac{1}{2} V_{DS}^2 \right].$$

Saturation occurs when $V_{DS} = V_{GS} - V_{\text{th}}.$

M. B. Patil, IIT Bombay

- (a) Plot I_D versus V_{DS} for $V_{GS} = 1.5, 2, 2.5, 3, 3.5, 4 V.$
- (b) Show the locus of $V_{DS}^{\rm sat}$ in the I_D - V_{DS} plane.
- (c) Plot I_D versus V_{GS} for $V_{DS}=0.2\,\mathrm{V}$ and $V_{DS}=3\,\mathrm{V}$. $(V_{BS}=0\,\mathrm{V},\ T=300\,\mathrm{K}).$

Solution:

(a)
$$I_D = \frac{W}{L} \mu_n C_{ox} \left[(V_{GS} - V_{th}) V_{DS} - \frac{1}{2} V_{DS}^2 \right].$$

Saturation occurs when $V_{DS} = V_{GS} - V_{\text{th}}$.

For each given value of V_{GS} , we first compute V_{DS}^{sat} .

- (a) Plot I_D versus V_{DS} for $V_{GS} = 1.5, 2, 2.5, 3, 3.5, 4 V.$
- (b) Show the locus of V_{DS}^{sat} in the I_D - V_{DS} plane.
- (c) Plot I_D versus V_{GS} for $V_{DS}=0.2\,\mathrm{V}$ and $V_{DS}=3\,\mathrm{V}$. $(V_{BS}=0\,\mathrm{V},\ T=300\,\mathrm{K}).$

Solution:

(a)
$$I_D = \frac{W}{L} \mu_n C_{\text{ox}} \left[(V_{GS} - V_{\text{th}}) V_{DS} - \frac{1}{2} V_{DS}^2 \right].$$

Saturation occurs when $V_{DS} = V_{GS} - V_{\text{th}}$.

For each given value of V_{GS} , we first compute $V_{DS}^{\rm sat}$.

For $V_{DS} < V_{DS}^{\rm sat}$, we use the expression for I_D above.

- (a) Plot I_D versus V_{DS} for $V_{GS} = 1.5, 2, 2.5, 3, 3.5, 4 V.$
- (b) Show the locus of V_{DS}^{sat} in the I_D - V_{DS} plane.
- (c) Plot I_D versus V_{GS} for $V_{DS}=0.2\,\mathrm{V}$ and $V_{DS}=3\,\mathrm{V}$. $(V_{BS}=0\,\mathrm{V},\ T=300\,\mathrm{K}).$

Solution:

(a)
$$I_D = \frac{W}{L} \mu_n C_{ox} \left[(V_{GS} - V_{th}) V_{DS} - \frac{1}{2} V_{DS}^2 \right].$$

Saturation occurs when $V_{DS} = V_{GS} - V_{th}$.

For each given value of V_{GS} , we first compute V_{DS}^{sat} .

For $V_{DS} < V_{DS}^{\rm sat}$, we use the expression for I_D above.

For
$$V_{DS} > V_{DS}^{\text{sat}}$$
, $I_D = I_D^{\text{sat}} = \frac{1}{2} \frac{W}{I} \mu_n C_{\text{ox}} (V_{GS} - V_{\text{th}})^2$.

Example: For an NMOS transistor with $L=2\,\mu\text{m}$, $W=5\,\mu\text{m}$, $\mu_n=500\,\text{cm}^2/\text{V-s}$, $t_{ox}=500\,\text{Å}$, $V_{th}=0.4\,\text{V}$,

- (a) Plot I_D versus V_{DS} for $V_{GS} = 1.5, 2, 2.5, 3, 3.5, 4 V.$
- (b) Show the locus of V_{DS}^{sat} in the I_D - V_{DS} plane.
- (c) Plot I_D versus V_{GS} for $V_{DS}=0.2\,\mathrm{V}$ and $V_{DS}=3\,\mathrm{V}$. $(V_{BS}=0\,\mathrm{V},\ T=300\,\mathrm{K}).$

Solution:

(a)
$$I_D = \frac{W}{L} \mu_n C_{ox} \left[(V_{GS} - V_{th}) V_{DS} - \frac{1}{2} V_{DS}^2 \right].$$

Saturation occurs when $V_{DS} = V_{GS} - V_{\mathsf{th}}$.

For each given value of V_{GS} , we first compute $V_{DS}^{\rm sat}$.

For $V_{DS} < V_{DS}^{\rm sat}$, we use the expression for I_D above.

For
$$V_{DS} > V_{DS}^{\rm sat}$$
, $I_D = I_D^{\rm sat} = \frac{1}{2} \frac{W}{L} \mu_n C_{\rm ox} (V_{GS} - V_{\rm th})^2$.

(b)
$$I_D^{\text{sat}} = \frac{1}{2} \frac{W}{L} \mu_n C_{\text{ox}} (V_{GS} - V_{\text{th}})^2 = \frac{1}{2} \frac{W}{L} \mu_n C_{\text{ox}} (V_{DS}^{\text{sat}})^2$$
, a parabola in the $I_D - V_{DS}$ plane.

Example: For an NMOS transistor with $L=2 \, \mu m$, $W=5 \, \mu m$, $\mu_n=500 \, cm^2/V$ -s, $t_{ox}=500 \, \mathring{A}$, $V_{th}=0.4 \, V$,

- (a) Plot I_D versus V_{DS} for $V_{GS} = 1.5, 2, 2.5, 3, 3.5, 4 V.$
- (b) Show the locus of V_{DS}^{sat} in the I_D - V_{DS} plane.
- (c) Plot I_D versus V_{GS} for $V_{DS}=0.2\,\mathrm{V}$ and $V_{DS}=3\,\mathrm{V}$. $(V_{BS}=0\,\mathrm{V},\ T=300\,\mathrm{K}).$

Solution:

(a)
$$I_D = \frac{W}{L} \mu_n C_{\text{ox}} \left[(V_{GS} - V_{\text{th}}) V_{DS} - \frac{1}{2} V_{DS}^2 \right].$$

Saturation occurs when $V_{DS} = V_{GS} - V_{\text{th}}$.

For each given value of V_{GS} , we first compute $V_{DS}^{\rm sat}$. For $V_{DS} < V_{\rm pat}^{\rm sat}$, we use the expression for I_D above.

For
$$V_{DS} > V_{DS}^{\text{sat}}$$
, $I_D = I_D^{\text{sat}} = \frac{1}{2} \frac{W}{L} \mu_n C_{\text{ox}} (V_{GS} - V_{\text{th}})^2$.

(b)
$$I_D^{\rm sat}=rac{1}{2}\,rac{W}{L}\,\mu_n C_{
m ox}\,(V_{GS}-V_{
m th})^2=rac{1}{2}\,rac{W}{L}\,\mu_n C_{
m ox}\,(V_{DS}^{
m sat})^2,$$
 a parabola in the I_D-V_{DS} plane.

(c)
$$I_D = \frac{W}{L} \mu_n C_{ox} \left[(V_{GS} - V_{th}) V_{DS} - \frac{1}{2} V_{DS}^2 \right], V_{DS}^{sat} = V_{GS} - V_{th}.$$

(c)
$$I_D = \frac{W}{L} \mu_n C_{\text{ox}} \left[(V_{GS} - V_{\text{th}}) V_{DS} - \frac{1}{2} V_{DS}^2 \right], V_{DS}^{\text{sat}} = V_{GS} - V_{\text{th}}.$$

The condition required for saturation, viz., $V_{DS} > (V_{GS} - V_{\rm th})$, can be re-written as $V_{GS} < (V_{DS} + V_{\rm th})$.

(c)
$$I_D = \frac{W}{L} \mu_n C_{\text{ox}} \left[(V_{GS} - V_{\text{th}}) V_{DS} - \frac{1}{2} V_{DS}^2 \right], V_{DS}^{\text{sat}} = V_{GS} - V_{\text{th}}.$$

The condition required for saturation, viz., $V_{DS} > (V_{GS} - V_{\text{th}})$, can be re-written as $V_{GS} < (V_{DS} + V_{\text{th}})$.

For a given V_{DS} , the boundary between the linear and saturation regions is given by

$$V_{GS}^{\mathrm{sat}} = (V_{DS} + V_{\mathrm{th}}).$$

(c)
$$I_D = \frac{W}{L} \mu_n C_{\text{ox}} \left[(V_{GS} - V_{\text{th}}) V_{DS} - \frac{1}{2} V_{DS}^2 \right], V_{DS}^{\text{sat}} = V_{GS} - V_{\text{th}}.$$

The condition required for saturation, viz., $V_{DS} > (V_{GS} - V_{\text{th}})$, can be re-written as $V_{GS} < (V_{DS} + V_{\text{th}})$.

For a given V_{DS} , the boundary between the linear and saturation regions is given by

$$V_{GS}^{\text{sat}} = (V_{DS} + V_{\text{th}}).$$

(i)
$$V_{DS} = 0.2 \,\text{V}$$
: $V_{GS}^{\text{sat}} = 0.2 + 0.4 = 0.6 \,\text{V}$.

(c)
$$I_D = \frac{W}{L} \mu_n C_{\text{ox}} \left[(V_{GS} - V_{\text{th}}) V_{DS} - \frac{1}{2} V_{DS}^2 \right], V_{DS}^{\text{sat}} = V_{GS} - V_{\text{th}}.$$

The condition required for saturation, viz., $V_{DS} > (V_{GS} - V_{\text{th}})$, can be re-written as $V_{GS} < (V_{DS} + V_{\text{th}})$.

For a given V_{DS} , the boundary between the linear and saturation regions is given by

$$V_{GS}^{\mathrm{sat}} = (V_{DS} + V_{\mathsf{th}}).$$

(i)
$$V_{DS} = 0.2 \,\text{V}$$
: $V_{GS}^{\text{sat}} = 0.2 + 0.4 = 0.6 \,\text{V}$.

$$V_{GS} < 0.6\,\mathrm{V}$$
: saturation, $V_{GS} > 0.6\,\mathrm{V}$: linear region.

(c)
$$I_D = \frac{W}{L} \mu_n C_{\text{ox}} \left[(V_{GS} - V_{\text{th}}) V_{DS} - \frac{1}{2} V_{DS}^2 \right], V_{DS}^{\text{sat}} = V_{GS} - V_{\text{th}}.$$

The condition required for saturation, viz., $V_{DS} > (V_{GS} - V_{\rm th})$, can be re-written as $V_{GS} < (V_{DS} + V_{\rm th})$.

For a given V_{DS} , the boundary between the linear and saturation regions is given by

$$V_{GS}^{\text{sat}} = (V_{DS} + V_{\text{th}}).$$

(i)
$$V_{DS} = 0.2 \text{ V}$$
: $V_{GS}^{\text{sat}} = 0.2 + 0.4 = 0.6 \text{ V}$. $V_{GS} < 0.6 \text{ V}$: saturation, $V_{GS} > 0.6 \text{ V}$: linear region.

(ii)
$$V_{DS} = 3.0 \text{ V}$$
: $V_{GS}^{\text{sat}} = 3.0 + 0.4 = 3.4 \text{ V}$.

(c)
$$I_D = \frac{W}{L} \mu_n C_{\text{ox}} \left[(V_{GS} - V_{\text{th}}) V_{DS} - \frac{1}{2} V_{DS}^2 \right], V_{DS}^{\text{sat}} = V_{GS} - V_{\text{th}}.$$

The condition required for saturation, viz., $V_{DS} > (V_{GS} - V_{\rm th})$, can be re-written as $V_{GS} < (V_{DS} + V_{\rm th})$.

For a given V_{DS} , the boundary between the linear and saturation regions is given by

$$V_{GS}^{\text{sat}} = (V_{DS} + V_{\text{th}}).$$

(i) $V_{DS} = 0.2 \,\mathrm{V}$: $V_{GS}^{\mathrm{sat}} = 0.2 + 0.4 = 0.6 \,\mathrm{V}$.

 $V_{GS} < 0.6 \, \text{V}$: saturation, $V_{GS} > 0.6 \, \text{V}$: linear region.

(ii) $V_{DS} = 3.0 \text{ V}$: $V_{GS}^{\text{sat}} = 3.0 + 0.4 = 3.4 \text{ V}$.

 $V_{GS} < 3.4\,\mathrm{V}$: saturation, $V_{GS} > 3.4\,\mathrm{V}$: linear region.

(c)
$$I_D = \frac{W}{L} \mu_n C_{\rm ox} \left[(V_{GS} - V_{\rm th}) V_{DS} - \frac{1}{2} V_{DS}^2 \right], \ V_{DS}^{\rm sat} = V_{GS} - V_{\rm th}.$$

The condition required for saturation, viz., $V_{DS} > (V_{GS} - V_{th})$, can be re-written as $V_{GS} < (V_{DS} + V_{th})$.

For a given V_{DS} , the boundary between the linear and saturation regions is given by

$$V_{GS}^{\text{sat}} = (V_{DS} + V_{\text{th}}).$$

(i) $V_{DS} = 0.2 \,\text{V}$: $V_{GS}^{\text{sat}} = 0.2 + 0.4 = 0.6 \,\text{V}$.

 $V_{GS} < 0.6 \,\mathrm{V}$: saturation, $V_{GS} > 0.6 \,\mathrm{V}$: linear region.

(ii) $V_{DS} = 3.0 \text{ V}$: $V_{GS}^{\text{sat}} = 3.0 + 0.4 = 3.4 \text{ V}$.

 $V_{GS} < 3.4\,\mathrm{V}$: saturation, $V_{GS} > 3.4\,\mathrm{V}$: linear region.

* In the saturation region, the Channel Length Modulation (CLM) effect gives rise to a non-zero slope in the I_D – V_{DS} characteristics of a MOSFET.

- In the saturation region, the Channel Length Modulation (CLM) effect gives rise to a non-zero slope in the I_D-V_{DS} characteristics of a MOSFET.
- * The length of the high-field region ΔL makes the effective length of the transistor $L-\Delta L$, and since $I_D\sim 1/L$, the current increases with increasing ΔL , i.e., increasing V_D .

- * In the saturation region, the Channel Length Modulation (CLM) effect gives rise to a non-zero slope in the I_D – V_{DS} characteristics of a MOSFET.
- * The length of the high-field region ΔL makes the effective length of the transistor $L-\Delta L$, and since $I_D\sim 1/L$, the current increases with increasing ΔL , i.e., increasing V_D .
- * The CLM effect, which is significant in MOS transistors with $L < 2 \, \mu m$, can be included in the I_D equation with a "CLM parameter" λ , which is about $0.1/L \, (\mu m) \, V^{-1}$.

- In the saturation region, the Channel Length Modulation (CLM) effect gives rise to a non-zero slope in the I_D-V_{DS} characteristics of a MOSFET.
- * The length of the high-field region ΔL makes the effective length of the transistor $L-\Delta L$, and since $I_D\sim 1/L$, the current increases with increasing ΔL , i.e., increasing V_D .
- * The CLM effect, which is significant in MOS transistors with $L < 2\,\mu\text{m}$, can be included in the I_D equation with a "CLM parameter" λ , which is about $0.1/L\,(\mu\text{m})\,\text{V}^{-1}$. For example, for $L = 2\,\mu\text{m}$, λ would be about $0.05\,\text{V}^{-1}$.

- In the saturation region, the Channel Length Modulation (CLM) effect gives rise to a non-zero slope in the I_D-V_{DS} characteristics of a MOSFET.
- * The length of the high-field region ΔL makes the effective length of the transistor $L-\Delta L$, and since $I_D\sim 1/L$, the current increases with increasing ΔL , i.e., increasing V_D .
- * The CLM effect, which is significant in MOS transistors with $L < 2~\mu\text{m}$, can be included in the I_D equation with a "CLM parameter" λ , which is about $0.1/L~(\mu\text{m})~V^{-1}$. For example, for $L = 2~\mu\text{m}$, λ would be about $0.05~V^{-1}$.
- The drain saturation current equation, modified to account for CLM, is given by

$$I_D^{\mathsf{sat}} = rac{1}{2} \, rac{W}{L} \, \mu_n \, C_{\mathsf{ox}} \, (V_{\mathit{GS}} - V_{\mathsf{th}})^2 \, (1 + \lambda \, V_{\mathit{DS}}).$$

In amplifier applications, a MOS transistor is biased in the saturation region. The drain current is given by $I_D^{\rm sat} = \frac{1}{2} \frac{W}{I} \mu_n \, C_{\rm ox} \, (V_{GS} - V_{\rm th})^2 \, (1 + \lambda V_{DS}).$

In amplifier applications, a MOS transistor is biased in the saturation region. The drain current is given by

$$I_D^{\mathsf{sat}} = rac{1}{2} \, rac{W}{L} \, \mu_n \, C_{\mathsf{ox}} \, (V_{GS} - V_{\mathsf{th}})^2 \, (1 + \lambda V_{DS}).$$

The parameters g_m (the transconductance) and r_o (the output resistance) are given by

$$g_m = \left. \frac{\partial I_D}{\partial V_{GS}} \right|_{\text{saturation}} = \frac{W}{L} \, \mu_n \, C_{\text{ox}} (V_{GS} - V_{\text{th}}), \quad \text{(assuming } \lambda V_{DS} \ll 1),$$

In amplifier applications, a MOS transistor is biased in the saturation region. The drain current is given by

$$I_D^{\mathsf{sat}} = rac{1}{2} \, rac{W}{L} \, \mu_n \, C_{\mathsf{ox}} \, (V_{GS} - V_{\mathsf{th}})^2 \, (1 + \lambda V_{DS}).$$

The parameters g_m (the transconductance) and r_o (the output resistance) are given by

$$g_m = \left. rac{\partial I_D}{\partial V_{GS}} \right|_{
m saturation} = rac{W}{L} \, \mu_n \, C_{
m ox} (V_{GS} - V_{
m th}), \quad (assuming \; \; \lambda V_{DS} \ll 1),$$

$$g_o = \frac{1}{r_o} = \left. \frac{\partial I_D}{\partial V_{DS}} \right|_{\text{saturation}} = \frac{1}{2} \left. \frac{W}{L} \, \mu_n \, C_{\text{ox}} \, (V_{GS} - V_{\text{th}})^2 \lambda \right.$$

In amplifier applications, a MOS transistor is biased in the saturation region. The drain current is given by

$$I_D^{\mathsf{sat}} = rac{1}{2} \, rac{W}{L} \, \mu_n \, C_{\mathsf{ox}} \, (V_{GS} - V_{\mathsf{th}})^2 \, (1 + \lambda V_{DS}).$$

The parameters g_m (the transconductance) and r_o (the output resistance) are given by

$$g_m = \left. \frac{\partial I_D}{\partial V_{GS}} \right|_{\text{saturation}} = \frac{W}{L} \, \mu_n \, C_{\text{ox}} (V_{GS} - V_{\text{th}}), \quad \text{(assuming } \lambda V_{DS} \ll 1),$$

$$g_o = \frac{1}{r_o} = \left. \frac{\partial I_D}{\partial V_{DS}} \right|_{\text{saturation}} = \frac{1}{2} \left. \frac{W}{L} \, \mu_n \, C_{\text{ox}} \, (V_{GS} - V_{\text{th}})^2 \lambda = \frac{\lambda I_D}{1 + \lambda V_{DS}}.$$

At high frequencies, the internal device capacitances must be included in the small-signal model.

At high frequencies, the internal device capacitances must be included in the small-signal model.

* The gate-to-channel capacitance is the largest capacitance, and it arises from the fact that the inversion charge Q_I varies with V_G .

At high frequencies, the internal device capacitances must be included in the small-signal model.

- * The gate-to-channel capacitance is the largest capacitance, and it arises from the fact that the inversion charge Q_I varies with V_G .
- * In saturation, $C_{gs} = \frac{2}{3} WLC_{ox}$, $C_{gd} = 0$ for an idealised transistor structure with no overlap between the gate electrode and the source or drain regions.

* In a practical transistor, because of technological constraints, the gate electrode does overlap somewhat with the source and drain regions, leading to (small) overlap capacitances C_{gs}^{ov} and C_{gd}^{ov} , which must be added to C_{gs} and C_{gd} .

- * In a practical transistor, because of technological constraints, the gate electrode does overlap somewhat with the source and drain regions, leading to (small) overlap capacitances C_{gs}^{ov} and C_{gd}^{ov} , which must be added to C_{gs} and C_{gd} .
- * The capacitances C_{sb} and C_{db} represent the junction capacitance of the S-B and D-B junctions, respectively. The S and B terminals are typically connected together, so C_{sb} is bypassed.