Отчет по исследованию алгоритма топологической сортировки

Величко Кирилл Андреевич

7 декабря 2020 г.

Содержание

1	Вве	дение	3			
	1.1	Постановка задачи	3			
	1.2	Неформальное описание алгоритма:	3			
	1.3	Формальное описание алгоритма	3			
	1.4	Применение	4			
2	Математическое обоснование алгоритма					
	2.1	Обоснование корректности алгоритма	4			
	2.2	Оценка сложности алгоритма	4			
3	Характеристики входных данных					
	3.1	Структура входных данных алгоритма	5			
	3.2	Генерация входных данных	5			
4	Выч	числительный эксперимент	6			
	4.1	Цели	6			
	4.2	Методология	6			
5	Результаты					
	5.1	Выводы	8			
6	Спи	исок литературы	8			

1 Введение

Топологическая сортировка (Topological sort) — один из основных алгоритмов на графах, который применяется для решения множества более сложных задач. Задача топологической сортировки графа состоит в следующем: указать такой линейный порядок на его вершинах, чтобы любое ребро вело от вершины с меньшим номером к вершине с большим номером. Очевидно, что если в графе есть циклы, то такого порядка не существует. Представленный далее алгоритм был придуман Тарьяном в 1976 году.

1.1 Постановка задачи

Пусть задан ориентированный граф G = (V, E), где:

- \bullet V множество вершин графа.
- $E \subset V \times V$ множество ребер графа.
- G(V, E) не содержит циклов

Требуется найти такое отображение $\phi: V \to \{1..n\}, uv \in E \to \phi(u) < \phi(v)$

1.2 Неформальное описание алгоритма:

Для каждой вершины V графа G(V, E) мы вызываем алгоритм поиска в глубину. После завершения работы над вершиной мы кладём её в начало связного списка всех вершин. Утверждается, что полученный связный список, является тем самым отображением $\phi: V \to \{1..n\}$, удовлетворяющий условию $uv \in E \to \phi(u) < \phi(v)$

1.3 Формальное описание алгоритма

Ниже приведен псевдокод реализующий алгоритм топологической сортировки:

```
Topological Sort(G):
1 Fill(visited, False)
2 \quad V \coloneqq G.V
3 for v \in V
4
     if not visited[v]
        DFS(v)
6 ans.reverse()
7 return ans
DFS(v):
1 visited[v] := True
2 for vu \in E
3
     if not visited[u]
        DFS(u)
4
  ans.pushback(v)
```

Алгоритм предполагает, что на вход подаётся ориентированный граф G без циклов.

Пояснения к процедурам

Процедура Fill принимает массив **visited** и устанавливает для всех вершин стандартное значение **False**. Процедура DFS принимает принимает вершину $v \in V$ и выполняет поиск в глубину из этой вершины. Процедура Pushback добавляет вершину v в конец массива.

Процедура Reverse выполняет перестановку элементов массива в обратном порядке.

https://github.com/veliKerril/topsort - код, реализующий алгоритм на языке C + +

1.4 Применение

Топологическая сортировка применяется в самых разных ситуациях, например при создании параллельных алгоритмов, когда по некоторому описанию алгоритма нужно составить граф зависимостей его операций и, отсортировав его топологически, определить, какие из операций являются независимыми и могут выполняться параллельно (одновременно). Примером использования топологической сортировки может служить создание карты сайта, где имеет место древовидная система разделов. Также топологическая сортировка применяется при обработке исходного кода программы в некоторых компиляторах и IDE, где строится граф зависимостей между сущностями, после чего они инициализируются в нужном порядке, либо выдается ошибка о циклической зависимости.

2 Математическое обоснование алгоритма

2.1 Обоснование корректности алгоритма

Лемма 2.1. G - ациклический ориентированный граф, тогда $uv \in E \to \text{leave}[u] > \text{leave}[v]$, где leave - массив времени выхода из вершины при обходе в глубину.

 $\ \ \,$ Доказательство. Введём следующую терминологию. Вершина $v \in V$ при обходе поиском в глубину называется:

- белой, если она еще не была рассмотрена алгоритмом
- серой, если она находится в текущем дереве вызовов процедуры DFS
- черной, если работа с ней уже закончена

Рассмотрим произвольное ребро (u,v), исследуемое процедурой DFS. При исследовании вершина v не может быть серой, так как серые вершины в процессе работы DFS всегда образуют простой путь в графе, и факт попадания в серую вершину v означает, что в графе есть цикл из серых вершин, что противоречит условию утверждения. Следовательно, вершина v должна быть белой либо черной. Если вершина v — белая, то она становится потомком u, так что leave[u] > leave[v]. Если v — черная, значит, работа v ней уже завершена v значение leave[u] уже установлено. Поскольку мы все еще работаем v вершиной v значение leave[u] еще не определено, так что, когда это будет сделано, будет выполняться неравенство leave[u] > leave[v]. Следовательно, для любого ребра v0 ориентированного ациклического графа выполняется условие leave[u] > leave[v].

Теорема 2.2. G - ациклический ориентированный граф, тогда $\exists \phi: V \to \{1..n\}, uv \in E \to \phi(u) < \phi(v)$

Доказательство. Определим leave[u] как порядковый номер окраски вершины u в черный цвет в результате работы процедуры DFS. Рассмотрим функцию $\phi = n + 1 - \text{leave}[u]$. Очевидно, что такая функция подходит под критерий функции ϕ из условия теоремы, так как выполнена предыдущая лемма.

Следствие 2.3. Представленный выше алгоритм топологической сортировки работает корректно.

2.2 Оценка сложности алгоритма

Если структуры **visited**, **G.V**, **G.E**, **ans** устроены как массивы, то сложность процедур следующая:

- Сложность процедуры Fill $\Theta(V)$.
- ullet Количество итераций цикла $\mathbf{for} \Theta(V)$
- Суммарная сложность процедуры DFS $\Theta(V+E)$ (в сумме по всем итерациям цикла).

- Сложность процедуры pushback $\Theta(1)$.
- Сложность процедуры reverse $\Theta(V)$.

Итоговая сложность

$$\Theta(V) + \Theta(V) + \Theta(V + E) + \Theta(V) \cdot \Theta(1) + \Theta(V) = \Theta(V + E)$$

3 Характеристики входных данных

3.1 Структура входных данных алгоритма

Входные данные должны содержать описание графа. Не теряя общности, положим что вершинами графа являются натуральные числа, а сам граф не содержит кратных ребер и петель.

Первая строка содержит два числа n и m — количество вершин и ребер в графе.

Следующие m строк содержат три числа (u, v) — означающие что в графе есть ребро (u, v).

Рис. 1: Иллюстрация: Слева дан ациклический ориентированный граф, справа дано его формальное описание

3.2 Генерация входных данных

Числа n и m выбираются из фиксированного диапазона , причем $\max(m) \leqslant \frac{n(n-1)}{2}$. После чего генерируется m чисел из диапазона $[0; \frac{n(n-1)}{2})$. Каждое число соответствует ребру (u,v) по следующему правилу:

$$x \mapsto (x \operatorname{div} n, x \operatorname{mod} n)$$

Далее нам необходимо проверить граф на ацикличность, это можно сделать простым обходом в глубину. Для этого нам необходимо проверить, что в дереве обхода нет обратных ребёр.

Формальная процедура генерации выглядит так:

```
\begin{aligned} &\operatorname{GenGraph}(N): \\ &1 \quad M \coloneqq \operatorname{GetRandomInt}\left(\left[N^{\frac{1}{2}}, \frac{N(N-1)}{2}\right]\right) \\ &2 \quad E \coloneqq \operatorname{GetRandomSeq}\left(\left[0; \frac{N(N-1)}{2} - 1\right], M\right) \\ &3 \quad Edges \coloneqq \{\varnothing\} \\ &4 \quad \text{for } e \in E: \\ &5 \quad E = E \ \cup \ \left(\text{e div N, e mod N}\right)\right) \\ &6 \quad V = \{1..n\} \\ &7 \quad \text{if } Acyclic(V, E): \\ &8 \quad Write(N, M) \\ &9 \quad \text{for } u, v \in Edges: \\ &10 \quad Write(u, v) \end{aligned}
```

Ребра ограничены снизу, чтобы граф был не слишком разряжённым и сверху, так как при большем количнстве ребёр граф, очевидно, имеет циклы.

4 Вычислительный эксперимент

4.1 Цели

- Установить эмпирическую зависимость времени исполнения программы-алгоритма при росте параметра N от 5 вершин до 100;
- Полученные результаты сравнить с теоретическими оценками;

4.2 Методология

Для каждого $n \in [5;100]$ кратного 5 сгенерировать 300 тестовых случаев, и сравнить время работы программы на параметрах n и m с теоретическими следующим образом:

- Рассмотреть медианное значение $\mathcal{T}(n)$
- \bullet Рассмотреть медианное отношение $\frac{T(n+m)}{n+m}$
- \bullet Рассмотреть медианное отношение $\frac{T(2n)}{n}$

Здесь $\mathcal{T}(n)$ — среднее время работы программы для теста с n вершинами, $\mathcal{T}(n+m)$ — время работы программы для теста с n вершинами и m рёбрами.

5 Результаты

Численные результаты представлены в таблице 1

7.7	T()	T(N+M)	T(2N)
N	$\mathcal{T}(n)$	N+M	$\frac{N}{N}$
5	1.0	0.11	2.0
10	2.0	0.14	2.0
15	2.3	0.18	1.826
20	4.0	0.11	1.25
25	4.2	0.11	1.666
30	5.0	0.11	1.6
35	5.0	0.09	1.9
40	6.0	0.11	1.68
45	6.0	0.10	2
50	7.0	0.11	1.85
55	7.2	0.11	
60	8.0	0.10	
65	9.0	0.11	
70	9.5	0.09	
75	10.0	0.10	
80	10.1	0.10	
85	11.0	0.10	
90	12.0	0.11	
95	12.5	0.14	
100	13.0	0.10	
Среднее арифметическое		0.11	1.78
Медиана		0.11	1.84

Таблица 1: Результаты эксперимента

Зависимость $\mathcal{T}(n)$ представлена на рисунке 2:

Рис. 2: $\mathcal{T}(n)$

Зависимость $\frac{T(n+m)}{n+m}$ представлена на рисунке 3:

Рис. 3: $\frac{T(n+m)}{n+m}$

5.1 Выводы

Эмпирически полученная зависимость $\mathcal{T}(n+m)$, несмотря на небольшие отклонения, в среднем отличается от теоретически полученной оценки на константу 0.11. А медиана отношения $\frac{T(2N)}{T(N)}$ равна 1.84, что недалеко от теоретического значения 2. Возможно, это вызвано малыми значениями n. Отсюда можно сделать вывод, что данный алгоритм на самом деле имеет сложность работы $\Theta(V+E)$.

6 Список литературы

- Томас Кормен, Чарльз Лейзерсон, Рональд Ривест, Клиффорд Штайн. Алгоритмы: Построение и анализ [2005]
- Бьерн Страуструп. Язык программирования С++. Зе Издание [1985]