Project AMMM: Selecting the best committee

Authors:

Alex Herrero Lluna Clavera Professors:

Enric Rodríguez-Carbonell Luís Domingo Velasco

Table of Contents

- The problem
- Problem Formulation
 - Alternative Formulation
 - Fixing to ILP formulation
- Heuristics
 - Greedy
 - Local Search
 - GRASP
- Experimentation and results
- Conclusions

- The problem
- 2 Problem Formulation
 - Alternative Formulation
 - Fixing to ILP formulation
- 3 Heuristics
 - Greedy
 - Local Search
 - GRASP
- 4 Experimentation and results
- Conclusions

Variable	Meaning	Range	Туре
N	Number of members of faculty	Integer	Integer
D	Number of departments in the faculty	Integer	Integer
d_i	Department of professor i	$1 \leq i \leq N$	Integer
n_p	Number of people needed from department p	$1 \le p \le D$	Integer
m _{ij}	Compatibility between professor i and j	$0 \leq m_{ij} \leq 1, \ 1 \leq i, j \leq N$	Real

 Recall that we are dealing with the problem of assigning professor to committees

Variable	Meaning	Range	Туре
N	Number of members of faculty	Integer	Integer
D	Number of departments in the faculty	Integer	Integer
dį	Department of professor i	$1 \le i \le N$	Integer
n_p	Number of people needed from department p	$1 \leq p \leq D$	Integer
m _{ij}	Compatibility between professor i and j	$0 \leq m_{ij} \leq 1, \ 1 \leq i, j \leq N$	Real

- Recall that we are dealing with the problem of assigning professor to committees
- We consider that a subset $S \subseteq \{1, ..., N\}$ is a solution if:

Variable	Meaning	Range	Туре
N	Number of members of faculty	Integer	Integer
D	Number of departments in the faculty	Integer	Integer
d_i	Department of professor i	$1 \leq i \leq N$	Integer
n_p	Number of people needed from department p	$1 \le p \le D$	Integer
m _{ij}	Compatibility between professor i and j	$0 \leq m_{ij} \leq 1, \ 1 \leq i, j \leq N$	Real

- Recall that we are dealing with the problem of assigning professor to committees
- We consider that a subset $S \subseteq \{1, ..., N\}$ is a solution if:

•
$$|\{i \in S | d_i = p\}| = n_p \text{ for every } 1 \le p \le D$$

Variable	Meaning	Range	Туре
N	Number of members of faculty	Integer	Integer
D	Number of departments in the faculty	Integer	Integer
d_i	Department of professor i	$1 \le i \le N$	Integer
n _D	Number of people needed from department p	$1 \leq p \leq D$	Integer
mij	Compatibility between professor i and j	$0 \leq m_{ij} \leq 1, \ 1 \leq i, j \leq N$	Real

- Recall that we are dealing with the problem of assigning professor to committees
- We consider that a subset $S \subseteq \{1, ..., N\}$ is a solution if:
 - $|\{i \in S | d_i = p\}| = n_p$ for every $1 \le p \le D$
 - $\forall i, j \in S, m_{ij} \neq 0$

Variable	Meaning	Range	Туре
N	Number of members of faculty	Integer	Integer
D	Number of departments in the faculty	Integer	Integer
dį	Department of professor i	$1 \le i \le N$	Integer
n_p	Number of people needed from department p	$1 \leq p \leq D$	Integer
mij	Compatibility between professor i and j	$0 \leq m_{ij} \leq 1, \ 1 \leq i, j \leq N$	Real

- Recall that we are dealing with the problem of assigning professor to committees
- We consider that a subset $S \subseteq \{1, ..., N\}$ is a solution if:
 - $|\{i \in S \mid d_i = p\}| = n_p \text{ for every } 1 \le p \le D$
 - $\forall i, j \in S, m_{ij} \neq 0$
 - $\exists i, j \in S, \ m_{ij} < 0.15 \implies \exists k \in S, \ m_{ik} > 0.85 \ \text{and} \ m_{jk} > 0.85$

Variable	Meaning	Range	Туре
N	Number of members of faculty	Integer	Integer
D	Number of departments in the faculty	Integer	Integer
d_i	Department of professor i	$1 \leq i \leq N$	Integer
n_p	Number of people needed from department p	$1 \le p \le D$	Integer
m_{ij}	Compatibility between professor i and j	$0 \leq m_{ij} \leq 1, \ 1 \leq i, j \leq N$	Real

- Recall that we are dealing with the problem of assigning professor to committees
- We consider that a subset $S \subseteq \{1, ..., N\}$ is a solution if:
 - $|\{i \in S \mid d_i = p\}| = n_p$ for every $1 \le p \le D$
 - $\forall i, j \in S, m_{ij} \neq 0$
 - $\exists i,j \in S, \ m_{ij} < 0.15 \implies \exists k \in S, \ m_{ik} > 0.85 \ \text{and} \ m_{jk} > 0.85$
- Given $f(S) = \frac{2}{|S| \cdot (|S|-1)} \sum_{i \in S} \sum_{\substack{j \in S \\ i < j}} m_{ij}$, find a solution S^* such

that $f(S^*) \ge f(S)$ for all possible solutions S

- 1 The problem
- Problem Formulation
 - Alternative Formulation
 - Fixing to ILP formulation
- Heuristics
 - Greedy
 - Local Search
 - GRASP
- Experimentation and results
- Conclusions

Outline

- 1 The problem
- Problem Formulation
 - Alternative Formulation
 - Fixing to ILP formulation
- Heuristics
 - Greedy
 - Local Search
 - GRASP
- 4 Experimentation and results
- 6 Conclusions

Project AMMM
Problem Formulation
Alternative Formulation

Variable	Meaning	Range	Туре
Xi	Professor <i>i</i> goes to the committee	$1 \le i \le N$	Boolean

Maximize:
$$\frac{2}{n \cdot (n-1)} \sum_{i=1}^{N} \sum_{j=i+1}^{N} m_{ij} \cdot x_i \cdot x_j$$

Variable	Meaning	Range	Туре
Xi	Professor <i>i</i> goes to the committee	$1 \le i \le N$	Boolean

Maximize:
$$\frac{2}{n \cdot (n-1)} \sum_{i=1}^{N} \sum_{j=i+1}^{N} m_{ij} \cdot x_i \cdot x_j$$

Subject to:

Number of participants per department: $\sum_{i \in A_p} x_i = n_p$ for every $1 \le p \le D$

No two professors with 0 compatibility: $\lceil m_{ij} \rceil \geq x_i \cdot x_j$ for every $1 \leq i < j \leq N$

Not enough trust: $\sum_{k \in W_{ij}} x_k \ge x_i \cdot x_j$ for every $(i, j) \in N_{ij}$

Where:

$$A_d = \{i \in \{1, \dots, N\} : d_i = d\}$$

$$W_{ij} = \{k \in \{1, \dots, N\} : m_{ik} > 0.85 \land m_{jk} > 0.85\}$$

$$N_{ij} = \{(i, j) \in \mathbb{N} \times \mathbb{N} : 1 \le i < j \le N \land m_{ij} < 0.15\}$$

Variable	Meaning	Range	Туре
Xi	Professor <i>i</i> goes to the committee	$1 \le i \le N$	Boolean

Maximize:
$$\frac{2}{n \cdot (n-1)} \sum_{i=1}^{N} \sum_{j=i+1}^{N} m_{ij} \cdot x_i \cdot x_j$$

Subject to:

Number of participants per department: $\sum_{i \in A_p} x_i = n_p$ for every $1 \le p \le D$

No two professors with 0 compatibility: $\lceil m_{ij} \rceil \geq x_i \cdot x_j$ for every $1 \leq i < j \leq N$

Not enough trust: $\sum_{k \in W_{ij}} x_k \ge x_i \cdot x_j$ for every $(i, j) \in N_{ij}$

Where:

$$A_d = \{i \in \{1, \dots, N\} : d_i = d\}$$

$$W_{ij} = \{k \in \{1, \dots, N\} : m_{ik} > 0.85 \land m_{jk} > 0.85\}$$

$$N_{ij} = \{(i, j) \in \mathbb{N} \times \mathbb{N} : 1 \le i < j \le N \land m_{ij} < 0.15\}$$

This is Non-Linear Programming! Can we fix it?

Outline

- 1 The problem
- Problem Formulation
 - Alternative Formulation
 - Fixing to ILP formulation
- Heuristics
 - Greedy
 - Local Search
 - GRASP
- 4 Experimentation and results
- 6 Conclusions

Variable	Meaning	Range	Туре
Xi	Professor <i>i</i> goes to the committee	$1 \le i \le N$	Boolean

Maximize:
$$\frac{2}{n \cdot (n-1)} \sum_{i=1}^{N} \sum_{j=i+1}^{N} m_{ij} \cdot \mathbf{x}_{i} \cdot \mathbf{x}_{j}$$

Subject to:

Number of participants per department: $\sum_{i \in A_p} x_i = n_p$ for every $1 \le p \le D$

No two professors with 0 compatibility: $\lceil m_{ij} \rceil \geq x_i \cdot x_j$ for every $1 \leq i < j \leq N$

Not enough trust: $\sum_{k \in W_{ij}} x_k \ge x_i \cdot x_j$ for every $(i, j) \in N_{ij}$

Where:

$$A_d = \{i \in \{1, \dots, N\} : d_i = d\}$$

$$W_{ij} = \{k \in \{1, \dots, N\} : m_{ik} > 0.85 \land m_{jk} > 0.85\}$$

$$N_{ij} = \{(i, j) \in \mathbb{N} \times \mathbb{N} : 1 \le i < j \le N \land m_{ij} < 0.15\}$$

Variable	Meaning	Range	Туре
Xi	Professor <i>i</i> goes to the committee	$1 \le i \le N$	Boolean
Уij	Professor i and j go to the committee	$1 \leq i, j \leq N$	Boolean

Maximize:
$$\frac{2}{n \cdot (n-1)} \sum_{i=1}^{N} \sum_{i=i+1}^{N} m_{ij} \cdot y_{ij}$$

Subject to:

Number of participants per department: $\sum_{i \in A_p} x_i = n_p$ for every $1 \le p \le D$

No two professors with 0 compatibility: $\lceil m_{ij} \rceil \geq x_i + x_j - 1$ for every $1 \leq i < j \leq N$

Not enough trust: $\sum_{k \in W_{ii}} x_k \ge x_i + x_j - 1$ for every $(i, j) \in N_{ij}$

Correlation between variables: $\begin{cases} x_i \geq y_{ij} \\ x_j \geq y_{ij} \end{cases}$

- 1 The problem
- 2 Problem Formulation
 - Alternative Formulation
 - Fixing to ILP formulation
- 3 Heuristics
 - Greedy
 - Local Search
 - GRASP
- 4 Experimentation and results
- Conclusions

Outline

- 1 The problem
- Problem Formulation
 - Alternative Formulation
 - Fixing to ILP formulation
- 3 Heuristics
 - Greedy
 - Local Search
 - GRASP
- 4 Experimentation and results
- 6 Conclusions

Project AMMM Heuristics Greedy

• The greedy algorithm is useful to obtain fast solutions

- The greedy algorithm is useful to obtain fast solutions
- It chooses elements one by one without backtracking

- The greedy algorithm is useful to obtain fast solutions
- It chooses elements one by one without backtracking
- The decisions are based on a greedy function

Project AMMM Heuristics Greedy

• We use the greedy function:

• We use the greedy function:
$$q(u) = \sum_{s \in S} m_{us}$$

- We use the greedy function: $q(u) = \sum_{s \in S} m_{us}$
- We then select the element u with higher q(u) at each step

- We use the greedy function: $q(u) = \sum_{s \in S} m_{us}$
- We then select the element u with higher q(u) at each step
- It does not make sense to evaluate q for the first element, we treat it as an special case

- We use the greedy function: $q(u) = \sum_{s \in S} m_{us}$
- We then select the element u with higher q(u) at each step
- It does not make sense to evaluate q for the first element, we treat it as an special case
- The first element will be the professor with the highest mean compatibility

- We use the greedy function: $q(u) = \sum_{s \in S} m_{us}$
- We then select the element u with higher q(u) at each step
- It does not make sense to evaluate q for the first element, we treat it as an special case
- The first element will be the professor with the highest mean compatibility
- The rest of the algorithm is the usual greedy algorithm

```
function GreedySolve(N, D, d, n, m)
    remaining \leftarrow sum(n)
    S \leftarrow \emptyset
    S \leftarrow S \cup \{bestCompat(N, m)\}
    remaining \leftarrow remaining - 1
    while remaining > 0 do
         U \leftarrow feasibleProfs(N, D, d, n, m, S)
        if U = \emptyset then
             return null
         else
             p \leftarrow \arg\max\{q(u)\}
             S \leftarrow S \cup \{p\}
             n_{d_n} \leftarrow n_{d_n} - 1
             remaining \leftarrow remaining - 1
         end if
    end while
    return S
end function
```

Outline

- The problem
- 2 Problem Formulation
 - Alternative Formulation
 - Fixing to ILP formulation
- 3 Heuristics
 - Greedy
 - Local Search
 - GRASP
- 4 Experimentation and results
- 6 Conclusions

Project AMMM Heuristics Local Search

• Local Search (LS) is used to improve solutions

Project AMMM Heuristics Local Search

- Local Search (LS) is used to improve solutions
- ullet Given an initial solution and an operator, LS will search in $\mathcal{N}(S)$ for better solutions

- Local Search (LS) is used to improve solutions
- ullet Given an initial solution and an operator, LS will search in $\mathcal{N}(S)$ for better solutions
- The algorithm stops upon finding S^* such as $f(S^*) \geq f(s) \ \ \forall s \in \mathcal{N}(S^*)$

- Local Search (LS) is used to improve solutions
- ullet Given an initial solution and an operator, LS will search in $\mathcal{N}(S)$ for better solutions
- The algorithm stops upon finding S^* such as $f(S^*) \geq f(s) \ \ \forall s \in \mathcal{N}(S^*)$
- We used a Swap Operator with first improvement strategy

```
function LocalSearch(N, D, d, n, m, S)
(i,j) \leftarrow findFeasibleSwap(N, D, d, n, m, S)
while (i,j) is not null do
S \leftarrow (S \setminus \{i\}) \cup \{j\}
(i,j) \leftarrow findFeasibleSwap(N, D, d, n, m, S)
end while
return S
end function
```

```
function FINDFEASIBLESWAP(N,D,d,n,m,S)
    for i = 1, \ldots, N do
        for j = i + 1, \dots, N do
            if validSwap(N, D, d, n, m, S, i, j) then
                outside \leftarrow from i, j the one that is not in S
                inside \leftarrow from i, j the one that is in S
                out \leftarrow 0
                in \leftarrow 0
                for k = 1, \ldots, N do
                    if k \in S and k \neq inside then
                         out \leftarrow out + m_{outside,k}
                        in \leftarrow in + minside k
                    end if
                end for
                if out > in then
                    return (inside, outside)
                end if
            end if
        end for
    end for
    return null
end function
```

Outline

- 1 The problem
- 2 Problem Formulation
 - Alternative Formulation
 - Fixing to ILP formulation
- 3 Heuristics
 - Greedy
 - Local Search
 - GRASP
- 4 Experimentation and results
- 6 Conclusions

Project AMMM Heuristics GRASP

• Randomize the construction of the initial solution for the LS

- Randomize the construction of the initial solution for the LS
- LS can be repeated with different starting points

- Randomize the construction of the initial solution for the LS
- LS can be repeated with different starting points
- Use a *Greedy Function q* and evaluate all elements accordingly

- Randomize the construction of the initial solution for the LS
- LS can be repeated with different starting points
- Use a *Greedy Function q* and evaluate all elements accordingly
- Create a Restricted Candidate List (RCL) with all elements u such as $q(u) \geq q_{max} \alpha(q_{max} q_{min})$

- Randomize the construction of the initial solution for the LS
- LS can be repeated with different starting points
- Use a *Greedy Function q* and evaluate all elements accordingly
- Create a Restricted Candidate List (RCL) with all elements u such as $q(u) \geq q_{max} \alpha(q_{max} q_{min})$
- Select an element of the RCL at random

- Randomize the construction of the initial solution for the LS
- LS can be repeated with different starting points
- Use a Greedy Function q and evaluate all elements accordingly
- Create a Restricted Candidate List (RCL) with all elements u such as $q(u) \ge q_{max} \alpha(q_{max} q_{min})$
- Select an element of the RCL at random
- Execute the whole process (Constructive Greedy + LS) many times to obtain the best solution

$$ullet$$
 Same greedy function $q(u) = \sum_{s \in S} m_{us}$

- Same greedy function $q(u) = \sum_{s \in S} m_{us}$
- No special selection of the first element

- Same greedy function $q(u) = \sum_{s \in S} m_{us}$
- No special selection of the first element
- The same local search procedure as before

- Same greedy function $q(u) = \sum_{s \in S} m_{us}$
- No special selection of the first element
- The same local search procedure as before
- ullet We tested the optimal lpha value (next section)

```
function GRASP(N, D, d, n, m, \alpha, maxlter)
    S \leftarrow \emptyset
    for i = 1, ..., maxIter do
        U \leftarrow constructiveGreedy(N, D, d, n, m, \alpha)
        if U \neq \emptyset then
             U \leftarrow localSearch(N, D, d, n, m, U)
        end if
        if f(U) > f(S) then

    ▷ Check average compatibility

            S \leftarrow U
        end if
    end for
    return S
end function
```

```
function ConstructiveGreedy(N, D, d, n, m, \alpha)
     remaining \leftarrow sum(n)
     S \leftarrow \emptyset
     while remaining > 0 do
           U \leftarrow feasibleProfs(N, D, d, n, m, S)
           if U = \emptyset then
                return 0
           end if
           q_{max} \leftarrow \max_{u \in U} \{q(u)\}
           q_{min} \leftarrow \min_{u \in U} \{q(u)\}
           \mathsf{rcl} \leftarrow \{ u \in U \mid q(u) \geq q_{\mathsf{max}} - \alpha \cdot (q_{\mathsf{max}} - q_{\mathsf{min}}) \}
           p \leftarrow \text{get random element from rcl}
           S \leftarrow S \cup \{p\}
           n_{d_0} \leftarrow n_{d_0} - 1
           remaining \leftarrow remaining - 1
     end while
     return S
end function
```

- The problem
- 2 Problem Formulation
 - Alternative Formulation
 - Fixing to ILP formulation
- 3 Heuristics
 - Greedy
 - Local Search
 - GRASP
- Experimentation and results
- Conclusions

Alpha-tuning

Figure: Mean of objective functions for each alpha

Alpha-tuning

Figure: Number of instances solved by different values of alpha

Successes and Misses

Algorithm	Success	No solution	Fail
CPLEX	86	14	0
Greedy	36	64	50
Local Search	36	64	50
GRASP First Execution	42	58	44
GRASP Second Execution	43	57	43
GRASP Third Execution	35	65	51
GRASP (Max)	52	48	34
GRASP (Mean)	40	60	46

Table: Success and Failures from different methods

Greedy Quality

Figure: Greedy Solution

LS Quality

Figure: LS Solution

GRASP Quality

Figure: GRASP Solution

Quality of heuristics: Global

% Close to optimal solution	Greedy	Local Search	GRASP
100%	3	10	20
> 95%	7	20	31
> 90%	16	5	0
> 85%	5	1	1
< 85%	5	0	0

Table: Number of samples that reached certain qualities

Overall Time

Figure: Overall Time

CPLEX vs GRASP

Figure: GRASP vs CPLEX

Greedy vs LS

Figure: Greedy vs LS

- 1 The problem
- 2 Problem Formulation
 - Alternative Formulation
 - Fixing to ILP formulation
- 3 Heuristics
 - Greedy
 - Local Search
 - GRASP
- Experimentation and results
- 6 Conclusions

Project AMMM Conclusions

> CPLEX always gives optimal solutions and finds a solution (when it exists), although the execution times could be too high in some instances.

- CPLEX always gives optimal solutions and finds a solution (when it exists), although the execution times could be too high in some instances.
- Heuristics gave us very good solutions (most of the cases being > 95% optimal). Unfortunately, it is not guaranteed that they will find a solution when it exists.

- CPLEX always gives optimal solutions and finds a solution (when it exists), although the execution times could be too high in some instances.
- Heuristics gave us very good solutions (most of the cases being > 95% optimal). Unfortunately, it is not guaranteed that they will find a solution when it exists.
- Future improvements to find more solutions, maintaining the quality of them, are very promising!.

Project AMMM: Selecting the best committee

Authors:

Alex Herrero Lluna Clavera Professors:

Enric Rodríguez-Carbonell Luís Domingo Velasco

