

Learning goals

- Describe common features of animals
 Describe the features of Porferia
- Describe the features of Cnidarians

2

General features of animals

- Heterotrophic –
 consumer
 Multicellularity
 No cell walls
 Active movement
 Diversity of form
 Diversity of habitat
 Sexual reproduction
 Specialized tissues

4

Phylum Porifera (Parazoa)

- Sponges
 26,000 marine species; 150 freshwater species
 Among the most abundant animals in the deep ocean
 Lack symmetry
 Various growth forms
 Larval sponges free-swimming
 Adults remain attached (sessile)
 Specific cell types (multicellular)

5

Sponge reproduction

- Asexual: fragmentation
 Sexual

- Sexual

 Choanocytes transform into sperm
 Sperm captured and passed to egg cell
 Development may occur within mother or in open water
 Larva is planktonic; zooplankton
 Will settle and transform into adult

7

Understanding check

What makes animals distinct from other forms of life that we have seen so far?

Why might sponges be mistaken for plants (or some other type of organism)

What protist group likely shares a common ancestor with all animals?

8

Eumetazoa

Animals with **true embryonic tissues**

- Endoderm forms the gastrodermis (digestive tissue)
- Ectoderm forms the epidermis and nervous system
- Mesoderm (only in bilateral animals) forms the muscles

- Radial symmetry
- Bilateral symmetry

Symmetry

- All eumetazoans have symmetry defined doing an imaginary axis drawn through the animal's body Radial symmetry

 8 Body parts arranged around central axis

 Can be divided into two equal halves by any plane that because the control of the central cen

10

Phylum Cnidaria ("cnidos": stinging)

- Most marine, few freshwater species
 Diploblastic

- Diploblastic
 Radially symmetric
 Bodies have distinct tissues, but no reproductive, circulatory, or excretory systems
 No concentrated nervous system
 Latticework of nerve cells; touch, gravity, light receptors
 Capture prey with nematocysts

11

Cnidarian body plan

- Single opening leading to gastrovascular (GVC) cavity, site of:
 - Digestion
 - Most gas exchange
 - Waste discharge
 - Formation of gametes
- Two layers of body wall
 - Epidermis
 - Gastrodermis
 - Mesoglea occurs between layers

1	2
Т	_

Gastrovascular space

- Serves as a hydrostatic skeleton
 Rigid structure against which
 muscles can operate
- Gives the animal shape

13

14

Scyphozoa • e.g., jellyfish • Medusa most conspicuous and complex • Ring of muscle cells allows for rhythmic contractions for propulsion

19

Phylum Ctenophora

- Comb jellies, sea wainuts
 Pelagic
 Transparent and small
 Propel via 8 rows of comb-like plates of fused cilia
 Many bioluminescent
 Two tentacles with colloblasts that discharge strong adhesive to capture prey

20

Understanding check

What sort of symmetry do the early eumetazoans exhibit?

Are ctenophorans dangerous like some cnidarians are? Explain...

Bilateral symmetry

- Bilateral symmetry
 Body is mirrored down the sagittal plane (down the middle)
- of the body)
 Cephalization: evolution of a head brain area
- Directional movement
 Central nervous system (eventually)
 Eventually gives rise to segmentation

22

Basic bilaterian pattern of development

- Mitotic cell divisions (called cleavage) of the zygote forms a hollow ball of cells, called the blastula
- Blastula indents to form a two-layer-thick ball with:
 Blastopore: opening to the outside

 - Archenteron: Primitive body cavity

23

Types of body cavities

- Coelom (body cavity): space surrounded by mesoderm tissue that is formed during development
- Accelomates: no body cavity
 Pseudocoelomate: cavity
- between mesoderm and endoderm (pseudocoelom)

 Coelomates: cavity entirely within mesoderm (coelom)

25

The body cavity made possible advanced organ systems

- Coelomates developed a circulatory system: flow nutrients and remove wastes
- system: flow nutrients and remove wastes

 Open circulatory system: blood passes from vessels into sinuses, mixes with body fluids, and reenters the vessels

 Closed circulatory system: blood moves continuously through vessels that are separated from body fluids Patterns of development

 Cephalization allowed for the development of a central nervous system

26

Understanding check

Why is bilateral symmetry so important in animal development?

What are the three types of body cavity configurations in bilateral animals?

Why is the development of a body cavity so important to the evolution of eumetazoans?

Early Bilaterians

- Acoelomates
 - Acoela

 - Lack a digestive cavity
 Primitive nervous system
 Minor concentration of neurons in the anterior end of the body

