Data Transformations

Data Transformations for Data Science

- Data in source vs Data how you want it
- Data storage and analytics should be "de-coupled"
 - Same data can answer multiple questions
 - What queries should be sped up?
 - What information is needed ASAP vs at set intervals?

Data Storage

- How can data be stored?
 - Collection of files
 - Versatile
 - Slow for querying
 - Database Organized by an index
 - Fulfils a more specific purpose
 - Fast querying
 - Requires planning at time of data collection
 - Database No Index
 - More versatile than with index, still needs up-front planning
 - Quick if in-memory
 - Slower than with an index

Relational Databases

- Relational Model
 - Relations = Tables
 - Data stored as a set of related tables

Relational Databases

Ex: Books being checked out of library

1. Flat table

First Name	Last Name	Address	Phone	Book Title	Due Date
Bob	Smith	123 Main St.	555-1212	Don Quixote	7-14-09
Alicia	Petersohn	136 Oak St.	555-1234	Three Men in	7-16-09
				a Boat	
Bob	Smith	123 Main St.	555-1212		8-15-09
				Apart	
Bob	Smith	123 Main St.	555-1212	Anna	8-15-09
				Karenina	
Zayn	Murray	248 Pine Dr.	555-1248	Heidi	8-17-09
Bob	Smith	123 Main St.	555-1212	The Old Man	9-10-09
				and the Sea	

2. Relational database

SQL - Structured Query Language

- This is not an SQL course!
- SQL is a standard
 - Implementations can differ the language is fairly consistent
 - Will encounter it in jobs often
 - Can transform data
 - Can pull data (query)
- Mostly meant for relational databases
 - Some systems have adapted it for types of storage
- https://www.w3schools.com/sql/
 https://www.w3schools.com/sqL/trysql.asp?filename=trysql_select_top&ss=-1

Select

```
SELECT column_1, column_2, ... FROM table_name;
```

SELECT * FROM table_name;

- Stored in "Result Set"
- Returns all rows

Distinct

```
SELECT DISTINCT column_1, column_2, ... FROM table_name;
```

SELECT DISTINCT * FROM table_name;

Shows distinct values

Conditions - Where Statement

SELECT column1, column2, ... FROM table_name
WHERE condition;

- Introduces a constraint to a query
- "Filters" results
- E.g. SELECT name from student_table WHERE class_enrolled=DS-CERT.

Where - Conditions

```
= Equal
```

<> or != Not equal

> Greater than

< Less than

>= Greater than or equal

<= Less than or equal

BETWEEN Between a range (inclusive)

LIKE Patterns - https://www.w3schools.com/sql/sql_like.asp

IN List of possible values

Integrating between tables

Relational Model

Activity Code	Activity Name	
23	Patching	
24	Overlay	
25	Crack Sealing	

000	472	_
Activity Code	Date	Route No.
24	01/12/01	I-95

02/08/01

Key = 24

24

Date	Activity Code	Route No.
01/12/01	24	1-95
01/15/01	23	I-495
02/08/01	24	I-66

Joins

Images from: https://www.w3schools.com/sql/sql_join.asp

Table_1
<TYPE> JOIN Table_2 ON Table_1.column=Table2.column;

Joins

TABLE 1: PR	ICES	TABLE 2: QL	IANTITIES	
PRODUCT	PRICE	PRODUCT	QUANTITY	
Potatoes	\$3	Potatoes	45	
Avocados	\$4	Avocados	63	
Kiwis	\$2	Kiwis	19	
Onions	\$1	Onions	20	
Melons	\$5	Melons	66	
Oranges	\$5	Broccoli	27	
Tomatoes	\$6	Squash	92	

SELECT Prices.*, Quantities.Quantity
FROM Prices LEFT OUTER JOIN Quantities
ON Prices.Product = Quantities.Product;

QUE	QUERY RESULT FOR LEFT OUTER JOIN			
PROD	UCT	PRICE	QUANTITY	
Potati	oes	\$3	45	
Avoca	dos	\$4	63	
Kiw	is	\$2	19	
Onio	ns	\$1	20	
Melo	ns	\$5	66	
Orang	ges	\$5	NULL	
Tomat	oes	\$6	NULL	

TABLE 1: PR	ICES	TABLE 2: QL	JANTITIES
PRODUCT	PRICE	PRODUCT	QUANTITY
Potatoes	\$3	Potatoes	45
Avocados	\$4	Avocados	63
Kiwis	\$2	Kiwis	19
Onions	\$1	Onions	20
Melons	\$5	Melons	66
Oranges	\$5	Broccoli	27
Tomatoes	\$6	Squash	92

SELECT Prices.*, Quantities.Quantity
FROM Prices INNER JOIN Quantities
ON Prices.Product = Quantities.Product;

QUERY RESULT FOR INNER JOIN		
PRODUCT	PRICE	QUANTITY
Potatoes	\$3	45
Avocados	\$4	63
Kiwis	\$2	19
Onions	\$1	20
Melons	\$5	66

TABLE 1: PR	ICES	TABLE 2: QL	JANTITIES
PRODUCT	PRICE	PRODUCT	QUANTITY
Potatoes	\$3	Potatoes	45
Avocados	\$4	Avocados	63
Kiwis	\$2	Kiwis	19
Onions	\$1	Onions	20
Melons	\$5	Melons	66
Oranges	\$5	Broccoli	27
Tomatoes	\$6	Squash	92

SELECT Prices.*, Quantities.Quantity
FROM Prices RIGHT OUTER JOIN Quantities
ON Prices.Product = Quantities.Product;

QUERY RE	SULT FOR RIGHT	OUTER JOIN
PRICE	PRODUCT	QUANTITY
\$3	Potatoes	45
\$4	Avocados	63
\$2	Kiwis	19
\$1	Onions	20
\$5	Melons	66
NULL	Broccoli	27
NULL	Squash	92

SELECT < fields> FROM TableA A FULL OUTER JOIN TableB B

ON A.key = B.key

This work is licensed under a Creative Commons Attribution 3.0 Unported License. Author: http://commons.wikimedia.org/wiki/User:Arbeck

SELECT < fields> FROM TableA A FULL OUTER JOIN TableB B ON A.key = B.key WHERE A key IS NULL OR B. key IS NULL

Group and Aggregate

- Collect data into groups and then perform an operation
- E.g. Get average grade per student
 - Student is the group
 - Average is the operation

Group By Statement

```
SELECT column_1, column_2, ....
FROM table_name
WHERE condition
GROUP BY column_name(s)
ORDER BY column_name(s);
```

https://www.w3schools.com/sql/sql_groupby.asp

- Columns in select must be used in GROUP BY
- Alternatively you can choose aggregation operations

Aggregation Operations

Get average grade per student?

SELECT student_id, avg(grade)
FROM students
GROUP BY student_id

(COUNT, MAX, MIN, SUM, AVG)

SQL for data science

- Often we query to get data into one form and then transform in another
- Often use SQL to get data into a "flat" representation
- We will move on to Pandas in Python3 for exploring, analyzing and transforming data

Notebooks

http://jupyter.org/

https://colab.research.google.com

Integrates with Pandas, matplotlib, sklearn, etc.