Lab Exercise 7

7.1 Structural Description of 1 Bit Full Adder

7.1.1 Truth Table

	Inputs	Outputs			
Α	В	C _{in}	Sum	Carry	
0	0	0	0	0	
0	0	1	1	0	
0	1	0	1	0	
0	1	1	0	1	
1	0	0	1	0	
1	0	1	0	1	
1	1	0	0	1	
1	1	1	1	1	

7.1.2 Verilog Code:

```
module fulladd (cin, x,y,s,cout);
input cin,x,y;
output s, cout;
wire z1,z2,z3;
xor (s,x,y,cin);
and (z1,x,y);
and(z2, x,cin);
and (z3,y,cin);
or (cout, z1,z2,z3);
endmodule
```

7.1.3 Vector Waveform

7.2 Behavioral Description of 1-bit Full Adder

7.2.1 Verilog Code:

```
module fulladd_behav(cin,xx,yy,s,cout,LED_COM);
  input cin,xx,yy;
  output cout,s;
  inout LED_COM;
  assign s=xx^yy^cin;
  assign cout=(xx&yy)|(xx&cin)|(yy&cin);
  assign LED_COM=1;
endmodule
```

7.2.2 Vector Waveform

7.3 Behavioral Description of 4 Bit Full Adder

7.3.1 Truth Table

	Α			В			Sum				Carry		
Cin	A3	A2	A1	A0	В3	B2	B1	во	S 3	S2	S1	S0	Cout
0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	1	0	0	0	1	0	0	1	0	0
0	0	0	1	0	0	0	1	0	0	1	0	0	0
0	0	0	1	1	0	0	1	1	0	1	1	0	0
0	0	1	0	0	0	1	0	0	1	0	0	0	0
0	0	1	0	1	0	1	0	1	1	0	1	0	0
0	0	1	1	0	0	1	1	0	1	1	0	0	0
0	0	1	1	1	0	1	1	1	1	1	1	0	0
0	1	0	0	0	1	0	0	0	0	0	0	0	1
0	1	0	0	1	1	0	0	1	0	0	1	0	1
0	1	0	1	0	1	0	1	0	0	1	0	0	1
0	1	0	1	1	1	0	1	1	0	1	1	0	1
0	1	1	0	0	1	1	0	0	1	0	0	0	1
0	1	1	0	1	1	1	0	1	1	0	1	0	1
0	1	1	1	0	1	1	1	0	1	1	0	0	1
0	1	1	1	1	1	1	1	1	1	1	1	0	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1

7.3.2 Verilog Code

```
module adder4(carryin, x3,x2,x1,x0,y3,y2,y1,y0,s3,s2,s1,s0,carryout,LED_COM);
     input carryin, x3,x2,x1,x0,y3,y2,y1,y0;
     output s3,s2,s1,s0,carryout;
     inout LED COM;
     wire c1,c2,c3;
     fulladd stage0 (carryin, x0,y0,s0,c1);
     fulladd stage1 (c1, x1,y1,s1,c2);
     fulladd stage2 (c2, x2,y2,s2,c3);
     fulladd stage3 (c3, x3,y3,s3,carryout);
     assign LED_COM=1;
endmodule
module fulladd(cin,xx,yy,s,cout);
     input cin,xx,yy;
     output cout,s;
     assign s=xx^yy^cin;
     assign cout=(xx&yy)|(xx&cin)|(yy&cin);
endmodule
```

7.3.3 Vector Waveform

Lab Exercise 8

8.1 Verilog Code

```
module addsub(cin, x3,x2,x1,x0,y3,y2,y1,y0,s3,s2,s1,s0,cout, LED_COM);
input cin, x3,x2,x1,x0,y3,y2,y1,y0;
output s3,s2,s1,s0,cout;
inout LED_COM;
wire c1,c2,c3,yy0, yy1, yy2,yy3;
adsub(cin, y3,y2,y1,y0,yy0, yy1, yy2,yy3);
fulladd stage0 (cin, x0,y0,s0,c1);
fulladd stage1 (c1, x1,y1,s1,c2);
fulladd stage2 (c2, x2,y2,s2,c3);
fulladd stage3 (c3, x3,y3,s3,cout);
assign LED_COM=1;
endmodule
module fulladd(cin,xx,yy,s,cout);
input cin,xx,yy;
output cout,s;
assign s=xx^yy^cin;
assign cout=(xx&yy)|(xx&cin)|(yy&cin);
endmodule
module adsub(cin, y3,y2,y1,y0,yy0, yy1, yy2,yy3);
input cin, y0, y1, y2, y3;
output yy0, yy1, yy2, yy3;
assign yy0 = cin^y0;
assign yy1 = cin^y1;
```

assign yy2 = cin^y2; assign yy3 = cin^y3; endmodule

8.2 Vector Waveform for Addition (Cin = 0)

8.3 Vector Waveform Subtraction (Cin = 1)

Report Problem 1

12 Bit Comparator

R.1.1 A > B

R.1.2 A < B

$\underline{R.1.3 A = B}$

Report Problem 2

Ternary Adder

R.2.1 Binary Encoded Truth Table

A1	A0	B 1	B 0	S1	S0	C
0	0	0	0	0	0	0
0	0	0	1	0	1	0
0	0	1	0	1	0	0
0	1	0	0	0	1	0
0	1	0	1	1	0	0
0	1	1	0	0	0	1
1	0	0	0	1	0	0
1	0	0	1	0	0	1
1	0	1	0	0	1	1

R.2.2 Verilog Code

R.2.3 Vector Waveform

R.2.4 K-Map and Boolean Expression for S0:

f(A1, A0, B1, B0) = A1'A0'B0 + A0B1'B0' + A1B1

R.2.5 K-map and Boolean Expression for S1:

f(A1, A0, B1, B0) = A1'A0'B1 + A0B0 + A1B1'B0'

R.2.6 K-map and Boolean Expression for C:

f(A1, A0, B1, B0) = A0B1 + A1B0 + A1B1