ÉLÉMENTS DE CORRIGÉ - Maths HEC(S) 2017

Partie I. Quelques propriétés des polynômes de Bernstein

1.a) On a:
$$B_{2,0}(X) = 1 - 2X + X^2$$
, $B_{2,1}(X) = 2X - 2X^2$, $B_{2,2}(X) = X^2 \Longrightarrow K_2 = \begin{pmatrix} 1 & 0 & 0 \\ -2 & 2 & 0 \\ 1 & -2 & 1 \end{pmatrix}$.

b) La matrice K_2 est triangulaire inférieure, de valeurs propres 1 et 2, donc inversible (0 n'est pas valeur propre). Par suite, la famille $(B_{2,0}, B_{2,1}, B_{2,2})$ est une base de $\mathbf{R}_2[X]$.

c) Les calculs donnent :
$$T_2(A_0) = A_0$$
, $T_2(A_1) = A_1$ et $T_2(A_2) = 1/2 A_1 + 1/2 A_2 \Longrightarrow H_2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1/2 \\ 0 & 0 & 1/2 \end{pmatrix}$.

La matrice H_2 est triangulaire supérieure de valeurs propres 1 et 1/2. Les sous-espaces propres sont :

$$\operatorname{Vect}\left(\begin{pmatrix}1\\0\\0\end{pmatrix},\begin{pmatrix}0\\1\\0\end{pmatrix}\right) \text{ pour la valeur propre 1 et Vect}\left(\begin{pmatrix}0\\-1\\1\end{pmatrix}\right) \text{ pour la valeur propre 1/2}.$$

2.a)
$$\forall x \in \mathbf{R}, \sum_{k=0}^{n} \lambda_k B_{n,k}(x) = \lambda_0 (1-x)^n + n\lambda_1 x (1-x)^{n-1} + \dots + \lambda_n x^n = 0 \Longrightarrow \text{pour } x = 0, \lambda_0 = 0. \text{ Par suite,}$$

$$\forall x \in \mathbf{R}^*, \ n\lambda_1 x (1-x)^{n-1} + \dots + \lambda_n x^n = 0$$
. On simplifie par x , d'où, $n\lambda_1 (1-x)^{n-1} + \dots + \lambda_n x^{n-1} = 0$ et pour $x = 0$, on trouve $\lambda_1 = 0$. On réitère le procédé pour aboutir à $\lambda_2 = \dots = \lambda_n = 0$.

La famille $(B_{n,0}, B_{n,1}, \dots, B_{n,n})$ est une famille libre et elle est formée de $(n+1) = \dim \mathbf{R}_n[X]$ éléments de $\mathbf{R}_n[X]$ (car $\deg(B_{n,k}) = n$) : c'est donc une base de $\mathbf{R}_n[X]$.

b) T_n est clairement une application de $\mathbf{R}_n[X]$ dans $\mathbf{R}_n[X]$. Soit $(\alpha, \beta) \in \mathbf{R}^2$ et $(P, Q) \in (\mathbf{R}_n[X])^2$.

On a:
$$T_n(\alpha P + \beta Q) = \sum_{k=0}^n (\alpha P + \beta Q) \left(\frac{k}{n}\right) B_{n,k} = \alpha \sum_{k=0}^n P\left(\frac{k}{n}\right) B_{n,k} + \beta \sum_{k=0}^n Q\left(\frac{k}{n}\right) B_{n,k} = \alpha T_n(P) + \beta T_n(Q).$$

Par suite, T_n est linéaire et c'est un endomorphisme de $\mathbf{R}_n[X]$.

Soit
$$P \in \text{Ker}(T_n) \iff \sum_{k=0}^n P\left(\frac{k}{n}\right) B_{n,k} = 0$$
. Puisque $\left(B_{n,0}, B_{n,1}, \dots, B_{n,n}\right)$ est une famille libre, on a :

 $\forall k \in [0, n], \ P\left(\frac{k}{n}\right) = 0$. Donc, le polynôme P possède au moins (n+1) racines et il est de degré inférieur ou égal à n. Il en résulte que P = 0, d'où $\text{Ker}(T_n) = \{0\}$.

L'endomorphisme T_n est donc injectif et puisque $\mathbf{R}_n[X]$ est un \mathbf{R} -espace vectoriel de dimension finie, T_n est un automorphisme de $\mathbf{R}_n[X]$.

c)
$$T_n(A_0)(X) = \sum_{k=0}^n B_{n,k}(X) = \sum_{k=0}^n \binom{n}{k} X^k (1-X)^{n-k}$$
. La formule du binôme $\Longrightarrow T_n(A_0)(X) = (X+1-X)^n$,

soit,
$$T_n(A_0)(X) = 1$$
. Par suite, $T_n(A_0) = A_0$.

De même,
$$T_n(A_1)(X) = \sum_{k=0}^n \frac{k}{n} \times \binom{n}{k} X^k (1-X)^{n-k} = \sum_{k=0}^{n-1} \binom{n-1}{k} X^{k+1} (1-X)^{n-(k+1)}$$
, soit encore,

$$T_n(A_1)(X) = X \sum_{k=0}^{n-1} {n-1 \choose k} X^k (1-X)^{(n-1)-k} = X(X+1-X)^{n-1} = X, \text{ donc, } T_n(A_1) = A_1.$$

d)
$$\deg T_n(A_0) = \deg(A_0) = 0$$
 et $\deg T_n(A_1) = \deg(A_1) = 1$. On suppose : $\forall j \in [0, k]$, $\deg T_n(A_j) = j$.

Ainsi, on pose : $T_n(A_k) = \alpha_k X^k + \cdots$ avec $\alpha_k \neq 0$. La propriété admise permet d'écrire :

$$\forall k \in [0, n-1], T_n(A_{k+1})(X) = \frac{n-k}{n} \alpha_k X^{k+1} + \cdots, \text{ soit } T_n(A_{k+1})(X) = \alpha_{k+1} X^{k+1} + \cdots$$

Or,
$$\forall k \in [0, n-1]$$
, $\alpha_{k+1} = \frac{n-k}{n} \alpha_k \neq 0$. Par suite, $\deg T_n(A_{k+1}) = k+1$.

Finalement, le principe de récurrence $\Longrightarrow \forall k \in [0, n], \deg T_n(A_k) = k$.

e)
$$\forall k \in [0, n-1], \ \alpha_{k+1} = \frac{n-k}{n} \alpha_k \implies \text{de proche en proche} : \forall k \in [0, n], \ \alpha_k = \frac{n!}{n^k (n-k)!}$$

La matrice H_n de T_n dans la base C_n est triangulaire supérieure et ses coefficients diagonaux sont $\alpha_0, \alpha_1, \ldots, \alpha_n$ avec $\forall k \in [0, n]$, $\alpha_k \neq 0$. Les valeurs propres de H_n sont $\alpha_0 = \alpha_1 = 1$ et $\alpha_2, \alpha_3, \ldots, \alpha_n$ distinctes, soit (n+1) valeurs propres dont n sont distinctes.

Or, les vecteurs A_0 et A_1 sont des vecteurs propres de T_n associés à la valeur propre 1 et la famille (A_0, A_1) est libre. Par suite, en notant $\forall k \in [\![0, n]\!]$, \mathcal{E}_{α_k} , le sous-espace propre associé à la valeur propre α_k , on a dim $\mathcal{E}_1 \geqslant 2$

et $\forall k \in [2, n]$, dim $\mathcal{E}_{\alpha_k} \ge 1$. Il en résulte que $\sum_{k=0}^n \dim \mathcal{E}_{\alpha_k} \ge n+1$ et puisque cette somme ne peut excéder n+1,

on a bien $\sum_{k=0}^{n} \dim \mathcal{E}_{\alpha_k} = n+1 = \dim \mathbf{R}_n[X]$. Par suite, T_n est diagonalisable.

3.a) Soit $\varepsilon > 0$. On a classiquement : $\mathbf{E}(\overline{Z}_n) = z$ et $\mathbf{V}(\overline{Z}_n) = \frac{z(1-z)}{n}$. L'inégalité de Bienaymé-Tchebychev permet d'écrire : $0 \le \mathbf{P}([|\overline{Z}_n - z| > \varepsilon]) \le \frac{z(1-z)}{n\varepsilon^2} \to 0$ quand n tend vers $+\infty$.

Il en résulte alors par définition que la suite de variables aléatoires $(\overline{Z}_n)_{n\geqslant 1}$ converge en probabilité vers z.

- b) La fonction f est continue sur le segment [0,1] donc |f| également $\Longrightarrow |f|$ admet un minimum et un maximum M sur [0,1] (cours).
- c) Soit $\omega \in \Omega$.

Si
$$U_n(\omega) = 1$$
, alors $|f(\overline{Z}_n)(\omega) - f(z)| \le |f(\overline{Z}_n)(\omega)| + |f(z)| \le 2M = 2M \times 1 + \varepsilon \times 0$.

Si
$$U_n(\omega) = 0$$
, alors $\overline{U}_n = \left[\left| f(\overline{Z}_n)(\omega) - f(z) \right| \leqslant \varepsilon \right]$. On a bien : $\left| f(\overline{Z}_n)(\omega) - f(z) \right| \leqslant \varepsilon = 2M \times 0 + \varepsilon \times 1$.

Bilan : on a l'inégalité suivante entre variables aléatoires, $\left|f(\overline{Z}_n) - f(z)\right| \leqslant 2M \times \mathbf{1}_{U_n} + \varepsilon \times \mathbf{1}_{\overline{U}_n}$.

- d) Par croissance de l'espérance (cours), on a : $0 \leq \mathbf{E}(|f(\overline{Z}_n) f(z)|) \leq 2M \mathbf{P}(U_n) + \varepsilon \mathbf{P}(\overline{U}_n)$.
- Or, puisque la suite $(\overline{Z}_n)_{n\geqslant 1}$ converge en probabilité vers z et que f est continue, on sait d'après le cours que la suite $(f(\overline{Z}_n))_{n\geqslant 1}$ converge en probabilité vers f(z). Donc, $\mathbf{P}(U_n) = \mathbf{P}\left(\left[\left|f(\overline{Z}_n) f(z)\right| > \varepsilon\right]\right) \to 0$ quand n tend vers $+\infty$. Par suite, $\lim_{n\to +\infty} \mathbf{P}(\overline{U}_n) = 1$ et par encadrement, on a, $0 \le \mathbf{E}\left(\left|f(\overline{Z}_n) f(z)\right|\right) \le \varepsilon$, ce qui prouve

que $\lim_{n\to +\infty} \mathbf{E}(f(\overline{Z}_n)) = f(z)$. Enfin, il est clair, d'après le théorème du transfert, que l'on a $\mathbf{E}(f(\overline{Z}_n)) = f_n(z)$.

Bilan:
$$\lim_{n \to +\infty} \mathbf{E}(f(\overline{Z}_n)) = \lim_{n \to +\infty} f_n(z) = f(z).$$

- 4.a) Z=grand(1,1,"bin",n,z).
- b) C'est une approximation de f(z). Deux niveaux d'approximation : convergence de $\mathbf{E}(f(\overline{Z}_n))$ vers f(z) et méthode de Monte-Carlo $\mathbf{E}(f(\overline{Z}_n))$ vers son approximation stochastique avec N=1000.

Partie II. Les polynômes d'interpolation de Lagrange

5.a) Φ est linéaire et injective car si $P \in \text{Ker } \Phi$ avec $\deg(P) \leqslant n$, alors P admet (n+1) racines distinctes, donc P = 0 et $\text{Ker } \Phi = \{0\}$. Or, $\dim \mathbf{R}_n[X] = \dim \mathbf{R}^{n+1} = n+1$. Bilan : Φ est un isomorphisme de $\mathbf{R}_n[X]$ dans \mathbf{R}^{n+1} .

b)
$$\Phi(L_i) = e_i \iff \Phi(L_i) = (L_i(x_0), L_i(x_1), \dots, L_i(x_i), L_i(x_{i+1}), \dots, L_i(x_n)) = (0, 0, \dots, 1, 0, \dots, 0).$$

Donc, $\forall i \in [0, n]$, L_i s'annule en n points $x_0, x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n$ et vaut 1 en x_i .

Par suite, il existe une constante réelle $c \in \mathbb{R}^*$ telle que, $\forall i \in [0, n]$, $L_i(X) = c \prod_{\substack{k \in [0, n] \\ k \neq i}} (X - x_k)$.

$$\operatorname{Or}, \ L_i(x_i) = 1 \Longrightarrow 1 = c \prod_{\substack{k \in [\![0,n]\!]\\k \neq i}} (x_i - x_k) \Longrightarrow c = \left(\prod_{\substack{k \in [\![0,n]\!]\\k \neq i}} (x_i - x_k) \right)^{-1} \Longrightarrow \forall i \in [\![0,n]\!], \ L_i(X) = \prod_{\substack{k \in [\![0,n]\!]\\k \neq i}} \frac{X - x_k}{x_i - x_k} \cdot \sum_{\substack{k \in [\![0,n]\!]\\k \neq i}} \frac{X - x_k}{x_i - x_k} \cdot \sum_{\substack{k \in [\![0,n]\!]\\k \neq i}} \frac{X - x_k}{x_i - x_k} \cdot \sum_{\substack{k \in [\![0,n]\!]\\k \neq i}} \frac{X - x_k}{x_i - x_k} \cdot \sum_{\substack{k \in [\![0,n]\!]\\k \neq i}} \frac{X - x_k}{x_i - x_k} \cdot \sum_{\substack{k \in [\![0,n]\!]\\k \neq i}} \frac{X - x_k}{x_i - x_k} \cdot \sum_{\substack{k \in [\![0,n]\!]\\k \neq i}} \frac{X - x_k}{x_i - x_k} \cdot \sum_{\substack{k \in [\![0,n]\!]\\k \neq i}} \frac{X - x_k}{x_i - x_k} \cdot \sum_{\substack{k \in [\![0,n]\!]\\k \neq i}} \frac{X - x_k}{x_i - x_k} \cdot \sum_{\substack{k \in [\![0,n]\!]\\k \neq i}} \frac{X - x_k}{x_i - x_k} \cdot \sum_{\substack{k \in [\![0,n]\!]\\k \neq i}} \frac{X - x_k}{x_i - x_k} \cdot \sum_{\substack{k \in [\![0,n]\!]\\k \neq i}} \frac{X - x_k}{x_i - x_k} \cdot \sum_{\substack{k \in [\![0,n]\!]\\k \neq i}} \frac{X - x_k}{x_i - x_k} \cdot \sum_{\substack{k \in [\![0,n]\!]\\k \neq i}} \frac{X - x_k}{x_i - x_k} \cdot \sum_{\substack{k \in [\![0,n]\!]\\k \neq i}} \frac{X - x_k}{x_i - x_k} \cdot \sum_{\substack{k \in [\![0,n]\!]\\k \neq i}} \frac{X - x_k}{x_i - x_k} \cdot \sum_{\substack{k \in [\![0,n]\!]\\k \neq i}} \frac{X - x_k}{x_i - x_k} \cdot \sum_{\substack{k \in [\![0,n]\!]\\k \neq i}} \frac{X - x_k}{x_i - x_k} \cdot \sum_{\substack{k \in [\![0,n]\!]\\k \neq i}} \frac{X - x_k}{x_i - x_k} \cdot \sum_{\substack{k \in [\![0,n]\!]\\k \neq i}} \frac{X - x_k}{x_i - x_k} \cdot \sum_{\substack{k \in [\![0,n]\!]\\k \neq i}} \frac{X - x_k}{x_i - x_k} \cdot \sum_{\substack{k \in [\![0,n]\!]\\k \neq i}} \frac{X - x_k}{x_i - x_k} \cdot \sum_{\substack{k \in [\![0,n]\!]\\k \neq i}} \frac{X - x_k}{x_i - x_k} \cdot \sum_{\substack{k \in [\![0,n]\!]\\k \neq i}} \frac{X - x_k}{x_i - x_k} \cdot \sum_{\substack{k \in [\![0,n]\!]\\k \neq i}} \frac{X - x_k}{x_i - x_k} \cdot \sum_{\substack{k \in [\![0,n]\!]\\k \neq i}} \frac{X - x_k}{x_i - x_k} \cdot \sum_{\substack{k \in [\![0,n]\!]\\k \neq i}} \frac{X - x_k}{x_i - x_k} \cdot \sum_{\substack{k \in [\![0,n]\!]\\k \neq i}} \frac{X - x_k}{x_i - x_k} \cdot \sum_{\substack{k \in [\![0,n]\!]\\k \neq i}} \frac{X - x_k}{x_i - x_k} \cdot \sum_{\substack{k \in [\![0,n]\!]\\k \neq i}} \frac{X - x_k}{x_i - x_k} \cdot \sum_{\substack{k \in [\![0,n]\!]\\k \neq i}} \frac{X - x_k}{x_i - x_k} \cdot \sum_{\substack{k \in [\![0,n]\!]\\k \neq i}} \frac{X - x_k}{x_i - x_k} \cdot \sum_{\substack{k \in [\![0,n]\!]\\k \neq i}} \frac{X - x_k}{x_i - x_k} \cdot \sum_{\substack{k \in [\![0,n]\!]\\k \neq i}} \frac{X - x_k}{x_i - x_k} \cdot \sum_{\substack{k \in [\![0,n]\!]\\k \neq i}} \frac{X - x_k}{x_i - x_k} \cdot \sum_{\substack{k \in [\![0,n]\!]\\k \neq i}} \frac{X - x_k}{x_i - x_k} \cdot \sum_{\substack{k \in [\![0,n]\!]\\k \neq i}} \frac{X - x_k}{x_i - x_k} \cdot \sum_$$

c) Un polynôme réel non nul de degré inférieur ou égal à n ayant au plus n racines distinctes, on déduit que pour toute suite x_0, x_1, \ldots, x_n de (n+1) réels deux à deux distincts, l'application Ψ définit un produit scalaire

sur $\mathbf{R}_n[X]$. Il est clair que pour tout $(i,j) \in [0,n]^2$, $L_i(x_j) = \delta_{i,j} = \begin{cases} 1 & \text{si } i=j \\ 0 & \text{sinon} \end{cases} \implies (L_0,L_1,\ldots,L_n)$ est une famille orthonormée dans $\mathbf{R}_n[X]$: c'est donc une famille libre (cours) et elle est constituée de (n+1) éléments. Bilan: (L_0,L_1,\ldots,L_n) est une base orthonormée de $\mathbf{R}_n[X]$.

d) Puisque (L_0, L_1, \dots, L_n) est une base de $\mathbf{R}_n[X]$, tout polynôme $P \in \mathbf{R}_n[X]$ s'écrit de manière unique :

$$P = \sum_{i=0}^{n} \nu_i L_i \text{ avec } (\nu_0, \nu_1, \dots, \nu_n) \in \mathbf{R}^{n+1}. \text{ Or, } \forall j \in \llbracket 0, n \rrbracket, \ P(x_j) = \sum_{i=0}^{n} \nu_i \delta_{i,j} = \nu_j, \text{ d'où } P = \sum_{i=0}^{n} P(x_i) L_i.$$

Ainsi,
$$\forall k \in \llbracket 0, n \rrbracket$$
, $X^k = \sum_{i=0}^n x_i^k L_i$. Par suite, la matrice A est définie par : $A = \begin{pmatrix} 1 & x_0 & x_0^2 & \dots & x_0^n \\ 1 & x_1 & x_1^2 & \dots & x_1^n \\ \vdots & \vdots & \vdots & \vdots \\ 1 & x_n & x_n^2 & \dots & x_n^n \end{pmatrix}$

e) D'après la question d), le polynôme $P_f = \sum_{i=0}^n f(x_i) L_i$ vérifie les conditions requises et il est unique.

6.a) Puisque $P_f \in \mathbf{R}_n[X]$ et $Q_f \in \mathbf{R}_{n+1}[X]$, on a $(Q_f - P_f) \in \mathbf{R}_{n+1}[X]$. Donc, $\deg(Q_f - P_f) \leq n+1$ et il est clair que $\forall i \in [0, n]$, on a $(Q_f - P_f)(x_i) = 0$. Par suite, le polynôme w qui est de degré (n+1) divise le polynôme $(Q_f - P_f)$, donc il existe un réel δ tel que pour tout $t \in [a, b]$, on a : $Q_f(t) - P_f(t) = \delta \times w(t)$.

b) On a: $\forall t \in [a, b], h(t) = f(t) - Q_f(t) = f(t) - P_f(t) - \delta \times w(t)$.

Il est clair que $\forall i \in [0, n]$, $h(x_i) = f(x_i) - P_f(x_i) - \delta \times w(x_i) = 0$ et que $h(\overline{x}) = f(\overline{x}) - Q_f(\overline{x}) = 0$.

Bilan: la fonction h s'annule en les (n+2) points $\overline{x}, x_0, x_1, \ldots, x_n$.

On ordonne la famille $(x_0, x_1, \ldots, x_n, \overline{x})$ en $(y_0, y_1, \ldots, y_n, y_{n+1})$ de sorte que $a \le y_0 < y_1 < \cdots < y_n < y_{n+1} \le b$. La fonction h est de classe C^{n+1} sur [a, b] car f est de classe C^{n+1} sur [a, b] et Q_f est de classe C^{∞} sur \mathbf{R} . On $a: h(y_0) = h(y_1) = \cdots = h(y_n) = h(y_{n+1}) = 0$. Donc, d'après le théorème de Rolle, il existe $c_0 \in]y_0, y_1[$, $c_1 \in]y_1, y_2[, \ldots, c_{n-1} \in]y_{n-1}, y_n[, c_n \in]y_n, y_{n+1}[$, c'est-à-dire au moins (n+1) réels deux à deux distincts, tels que $h'(c_0) = 0, h'(c_1) = 0, \ldots, h'(c_{n-1}) = 0, h'(c_n) = 0$.

En réitérant ce raisonnement pour tout $k \in [0, n+1]$, la fonction $h^{(k)}$ s'annule en (n+2-k) réels de a, b deux à deux distincts. En particulier, a, b s'annule en au moins un réel a, b s'annule en

Autrement dit, il existe un réel $\theta \in]a, b[$ tel que $h^{(n+1)}(\theta) = 0$.

c) On a $h^{(n+1)}(\theta) = f^{(n+1)}(\theta) - P_f^{(n+1)}(\theta) - \delta \times w^{(n+1)}(\theta)$. Or, $\deg(P_f) \le n$ et $\deg(w) = n+1$ avec w unitaire.

Par suite,
$$P_f^{(n+1)} = 0$$
 et $w^{(n+1)} = (n+1)!$; il en résulte que $0 = f^{(n+1)}(\theta) - \delta(n+1)! \Longrightarrow \delta = \frac{f^{(n+1)}(\theta)}{(n+1)!}$

Donc: $f(\overline{x}) - P_f(\overline{x}) = Q_f(\overline{x}) - P_f(\overline{x}) = \delta \times w(\overline{x})$. Ainsi, pour tout $\overline{x} \in [a, b]$ différent de x_0, x_1, \dots, x_n , on a: $f(\overline{x}) - P_f(\overline{x}) = \frac{1}{(n+1)!} \times f^{(n+1)}(\theta) \times w(\overline{x})$.

Comme la fonction f est de classe C^{n+1} sur le segment [a, b], la fonction $f^{(n+1)}$ est continue sur le segment [a, b] et elle admet donc une borne supérieure. Il est clair que si \overline{x} est égal à l'un des x_i , l'égalité précédente reste valide puisque dans ce cas, $f(\overline{x}) - P_f(\overline{x}) = 0$ et $w(\overline{x}) = 0$, donc n'importe quel réel $\theta \in]a, b[$ convient.

Par suite, $\forall t \in [a, b]$, on a : $|f(t) - P_f(t)| = \frac{1}{(n+1)!} \times |w(t)| \times |f^{(n+1)}(t)| \le \frac{1}{(n+1)!} \times |w(t)| \times \sup_{[a, b]} |f^{(n+1)}|$.

Partie III. Exemple d'interpolation et phénomène de Runge

7.a) La fonction f_{ρ} est l'inverse d'une fonction strictement positive sur \mathbf{R} , donc le dénominateur de f_{ρ} ne s'annule pas $\Longrightarrow f_{\rho}$ est indéfiniment dérivable et de classe C^{∞} sur \mathbf{R} .

b) La fonction f_{ρ} est paire sur \mathbf{R} (et en particulier sur tout intervalle de la forme $]-\gamma,\gamma[$). Donc, $\forall\,x\in\mathbf{R},$

$$f_{\rho}(-x) = f_{\rho}(x) \Longrightarrow \forall n \in \mathbb{N}^*, \ f_{\rho}^{(n)}(x) = (-1)^n f_{\rho}^{(n)}(-x) \Longrightarrow \forall n \in \mathbb{N}^*, \ \forall x \in \mathbf{R}, \ \left| f_{\rho}^{(n)}(x) \right| = \left| f_{\rho}^{(n)}(-x) \right| = |f_{\rho}^{(n)}(-x)| = |f_{\rho}$$

c)
$$\forall x \in \mathbf{R}, f_{\rho}(x) = \frac{1}{x^2 + \rho^2} = \frac{1}{\rho^2} \left(1 + \frac{x^2}{\rho^2} \right)^{-1} \text{ et } \forall |x| < \rho, \left(1 + \frac{x^2}{\rho^2} \right)^{-1} = \sum_{k=0}^{+\infty} (-1)^k \left(\frac{x^2}{\rho^2} \right)^k \Longrightarrow$$

$$\forall |x| < \rho, \ f_{\rho}(x) = \sum_{k=0}^{+\infty} \frac{(-1)^k}{\rho^{2k+2}} x^{2k} = \sum_{k=0}^{+\infty} \beta_k x^{2k}.$$

8.a)
$$\forall x \in]-\rho, \rho[, v(x) = \frac{\rho^2}{\rho^2 - x^2} = \frac{p}{\rho - x} + \frac{q}{\rho + x} = \frac{(p - q)x + (p + q)\rho}{\rho^2 - x^2} \Longrightarrow p - q = 0 \text{ et } p + q = \rho \Longrightarrow p = q = \frac{\rho}{2}$$

b) La fonction v est paire sur $]-\rho, \rho[\Longrightarrow \forall x \in]-\rho, \rho[, v^{(n)}(-x) = (-1)^n v^{(n)}(x), d'où : |v^{(n)}(x)| = |v^{(n)}(-x)|$

c) On suppose que
$$0 < x < \rho$$
. Le résultat admis permet d'écrire : $\forall x \in]0, \rho[, f_{\rho}^{(n)}(x) = \sum_{k=0}^{+\infty} \frac{(-1)^k}{\rho^{2k+2}} \times A_{2k}^{(n)}(x)$.

Par suite,
$$\forall x \in]0, \rho[, |f_{\rho}^{(n)}(x)| \leq \frac{1}{\rho^2} \sum_{k=0}^{+\infty} \frac{1}{\rho^{2k}} \times |A_{2k}^{(n)}(x)| = \frac{1}{\rho^2} \sum_{k=0}^{+\infty} \frac{1}{\rho^{2k}} \times A_{2k}^{(n)}(x) \text{ car } \forall x > 0, \forall k \in \mathbb{N}, \text{ on a :}$$

$$A_{2k}^{(n)}(x) \geqslant 0. \text{ D'où, } \forall x \in]0, \\ \rho[, |f_{\rho}^{(n)}(x)| \leqslant \frac{1}{\rho^2} \sum_{k=0}^{+\infty} \left(\frac{A_{2k}(x)}{\rho^{2k}}\right)^{(n)}. \text{ Or, d'après le résultat admis, } \sum_{k=0}^{+\infty} \left(\frac{A_{2k}(x)}{\rho^{2k}}\right)^{(n)}.$$

est, la dérivée *n*-ième de la somme de la série géométrique convergente $\sum_{k=0}^{+\infty} \frac{A_{2k}(x)}{\rho^{2k}} = \sum_{k=0}^{+\infty} \left(\frac{x^2}{\rho^2}\right)^k \text{ (car } 0 < x < \rho\text{)}.$

Mais,
$$\forall x \in]0, \rho[, \sum_{k=0}^{+\infty} \left(\frac{x^2}{\rho^2}\right)^k = \frac{\rho^2}{\rho^2 - x^2} = v(x)$$
. Par suite, $\forall x \in]0, \rho[, |f_{\rho}^{(n)}(x)| \le \frac{1}{\rho^2} \times v^{(n)}(x) = \frac{1}{\rho^2} \times |v^{(n)}(x)|$.

On peut remarquer en effet que $\forall\,x\in\,]\,0,\rho[,\,v^{(n)}(x)>0.$

Si
$$-\rho < x < 0$$
, alors $0 < -x < \rho$. Donc, $\forall x \in]-\rho, 0[, |f_{\rho}^{(n)}(-x)| \leq \frac{1}{\rho^2} \times |v^{(n)}(-x)|$.

Or, d'après les questions 7.b) et 8.b), on a $|f_{\rho}^{(n)}(x)| = |f_{\rho}^{(n)}(-x)|$ et $|v^{(n)}(x)| = |v^{(n)}(-x)|$. Par suite,

$$\forall x \in]-\rho, 0[, |f_{\rho}^{(n)}(x)| \leq \frac{1}{\rho^2} \times |v^{(n)}(x)|. \text{ Bilan } : \forall x \in]-\rho, \rho[, \text{ on a } : |f_{\rho}^{(n)}(x)| \leq \frac{1}{\rho^2} \times |v^{(n)}(x)|.$$

d)
$$\forall x \in]-\rho, \rho[, v(x) = \frac{\rho}{2} \left(\frac{1}{\rho-x} + \frac{1}{\rho+x}\right) \cdot \text{À l'aide d'une récurrence claire, la fonction } x \longmapsto \frac{1}{\rho-x} \text{ a pour la pour pour la pour$$

dérivée *n*-ième $\frac{n!}{(\rho-x)^{n+1}}$ et la fonction $x \mapsto \frac{1}{\rho+x}$ a pour dérivée *n*-ième $\frac{(-1)^n n!}{(\rho+x)^{n+1}}$. Par suite,

$$\forall x \in]-\rho, \rho[, \ v^{(n)}(x) = \frac{n! \, \rho}{2} \left(\frac{1}{(\rho - x)^{n+1}} + \frac{(-1)^n}{(\rho + x)^{n+1}} \right) \leqslant \frac{n! \, \rho}{2} \left(\frac{1}{|\rho - x|^{n+1}} + \frac{1}{|\rho + x|^{n+1}} \right).$$

$$\text{Or, puisque } -\rho < -1 \leqslant x \leqslant 1 < \rho \text{, on a : } 0 < \frac{1}{\rho + x} \leqslant \frac{1}{\rho - 1} \text{ et } 0 < \frac{1}{\rho - x} \leqslant \frac{1}{\rho - 1}.$$

Donc,
$$|v^{(n)}(x)| \le \frac{n! \, \rho}{2} \left(\frac{2}{(\rho - 1)^{n+1}} \right) = \frac{n! \, \rho}{(\rho - 1)^{n+1}}$$

Il en résulte que pour tout $x \in [-1, 1]$ et tout $\rho > 1$, on a : $|f_{\rho}^{(n)}(x)| \le \frac{1}{\rho^2} \times \frac{n! \, \rho}{(\rho - 1)^{n+1}} = \frac{n!}{\rho(\rho - 1)^{n+1}}$

9. Il est clair que si x est égal à l'un des $x_{i,n}$, les inégalités des questions a) et b) sont vérifiées puisque dans ce cas, on $w_n(x) = 0$.

a) On a
$$|w_n(x)| = \prod_{i=0}^n |x - x_{i,n}|$$
 avec $x \in]x_{k,n}, x_{k+1,n}[$ et $\forall i \in [0,n], x_{i,n} = -1 + \frac{2i}{n}$.

Pour
$$i \le k$$
, on a: $x_{i,n} \le x_{k,n} < x < x_{k+1,n} \Longrightarrow |x - x_{i,n}| = x - x_{i,n} \le x_{k+1,n} - x_{i,n} = \frac{2(k-i+1)}{n}$.

$$Pour \ i \geqslant k+1, \ \text{on a} : x_{k,n} < x < x_{k+1,n} \leqslant x_{i,n} \Longrightarrow |x-x_{i,n}| = x_{i,n} - x \leqslant x_{i,n} - x_{k,n} = \frac{2(i-k)}{n} \cdot x_{i,n} = \frac{2(i-k$$

Par suite,
$$|w_n(x)| \leqslant \left(\frac{2}{n}\right)^{n+1} (k+1) \times k \times \ldots \times 1 \times 1 \times 2 \times \ldots \times (n-k) = \left(\frac{2}{n}\right)^{n+1} \times (k+1)! (n-k)!$$

On a :
$$\frac{n!}{(k+1)!(n-k)!} = \frac{1}{n+1} \binom{n+1}{k+1} \text{ et } \forall \, k \in [\![0,n-1]\!], \, \binom{n+1}{k+1} \geqslant \binom{n+1}{1} = n+1, \, \text{d'où},$$

$$\frac{n!}{(k+1)!(n-k)!} \geqslant 1 \iff (k+1)!(n-k)! \leqslant n! \implies |w_n(x)| \leqslant \left(\frac{2}{n}\right)^{n+1} \times n!.$$

b) On a :
$$\left(\frac{2}{n}\right)^{n+1} \times n! \underset{n \to +\infty}{\sim} \left(\frac{2}{n}\right)^{n+1} n^n e^{-n} \sqrt{2\pi n} \underset{n \to +\infty}{\sim} \left(\frac{2}{e}\right)^{n+1} \left(\frac{e\sqrt{2\pi}}{\sqrt{n}}\right)$$
, avec $\lim_{n \to +\infty} \left(\frac{e\sqrt{2\pi}}{\sqrt{n}}\right) = 0$.

$$\text{Par suite, } 0 \leqslant \frac{|w_n(x)|}{(2/\mathrm{e})^{n+1}} \leqslant \frac{(2/n)^{n+1} n!}{(2/\mathrm{e})^{n+1}} \underset{n \to +\infty}{\sim} \frac{\mathrm{e}\sqrt{2\pi}}{\sqrt{n}} \to 0 \Longrightarrow \frac{|w_n(x)|}{(2/\mathrm{e})^{n+1}} \to 0 \text{ quand } n \text{ tend vers } +\infty.$$

Bilan: il existe un entier n_0 tel que pour tout $n \ge n_0$, on a pour tout $x \in [-1,1]: |w_n(x)| \le \left(\frac{2}{e}\right)^{n+1}$

c) La question 6.d)
$$\Longrightarrow \forall x \in [-1,1]$$
, on a : $|f_{\rho}(x) - P_{f_{\rho},n}(x)| \le \frac{1}{(n+1)!} \times |w_n(x)| \times \sup_{[-1,1]} |f_{\rho}^{(n+1)}|$.

La question 8.d)
$$\Longrightarrow \forall x \in [-1,1]$$
, on a : $\left|f_{\rho}^{(n+1)}(x)\right| \leqslant \frac{(n+1)!}{\rho(\rho-1)^{n+2}}$, avec $\rho > 1$.

Par suite, $\sup_{[-1,1]} |f_{\rho}^{(n+1)}| \leq \frac{(n+1)!}{\rho(\rho-1)^{n+2}}$. Enfin, la question 9.b) précise que pour n suffisamment grand, on a :

$$\forall x \in [-1, 1], |w_n(x)| \leqslant \left(\frac{2}{e}\right)^{n+1} \cdot \text{D'où}, \forall x \in [-1, 1], \text{ on a}: |f_{\rho}(x) - P_{f_{\rho}, n}(x)| \leqslant \frac{1}{\rho(\rho - 1)} \left(\frac{2/e}{\rho - 1}\right)^{n+1} \cdot \text{D'où}, \forall x \in [-1, 1], \text{ on a}: |f_{\rho}(x) - P_{f_{\rho}, n}(x)| \leqslant \frac{1}{\rho(\rho - 1)} \left(\frac{2/e}{\rho - 1}\right)^{n+1} \cdot \text{D'où}, \forall x \in [-1, 1], \text{ on a}: |f_{\rho}(x) - P_{f_{\rho}, n}(x)| \leqslant \frac{1}{\rho(\rho - 1)} \left(\frac{2/e}{\rho - 1}\right)^{n+1} \cdot \text{D'où}, \forall x \in [-1, 1], \text{ on a}: |f_{\rho}(x) - P_{f_{\rho}, n}(x)| \leqslant \frac{1}{\rho(\rho - 1)} \left(\frac{2/e}{\rho - 1}\right)^{n+1} \cdot \text{D'où}, \forall x \in [-1, 1], \text{ on a}: |f_{\rho}(x) - P_{f_{\rho}, n}(x)| \leqslant \frac{1}{\rho(\rho - 1)} \left(\frac{2/e}{\rho - 1}\right)^{n+1} \cdot \text{D'où}, \forall x \in [-1, 1], \text{ on a}: |f_{\rho}(x) - P_{f_{\rho}, n}(x)| \leqslant \frac{1}{\rho(\rho - 1)} \left(\frac{2/e}{\rho - 1}\right)^{n+1} \cdot \text{D'où}, \forall x \in [-1, 1], \text{ on a}: |f_{\rho}(x) - P_{f_{\rho}, n}(x)| \leqslant \frac{1}{\rho(\rho - 1)} \left(\frac{2/e}{\rho - 1}\right)^{n+1} \cdot \text{D'où}, \forall x \in [-1, 1], \text{ on a}: |f_{\rho}(x) - P_{f_{\rho}, n}(x)| \leqslant \frac{1}{\rho(\rho - 1)} \left(\frac{2/e}{\rho - 1}\right)^{n+1} \cdot \text{D'où}, \forall x \in [-1, 1], \text{ on a}: |f_{\rho}(x) - P_{f_{\rho}, n}(x)| \leqslant \frac{1}{\rho(\rho - 1)} \left(\frac{2/e}{\rho - 1}\right)^{n+1} \cdot \text{D'où}, \forall x \in [-1, 1], \text{D'où}, \forall x \in [-1, 1], \text{D'où}, \forall x \in [-1, 1], \text{D'où}, \text{D'où},$$

Ainsi,
$$|f_{\rho}(x) - P_{f_{\rho},n}(x)|$$
 tend vers 0 si $\frac{2/e}{\rho - 1} < 1$ (série géométrique), c'est-à-dire si $\rho > 1 + \frac{2}{e}$

10.a) La fonction
$$t \mapsto \ln(t^2 + \rho^2)$$
 est paire sur $[-1, 1] \Longrightarrow \int_{-1}^{1} \ln(t^2 + \rho^2) dt = 2 \int_{0}^{1} \ln(t^2 + \rho^2) dt$.

Une intégration par parties de l'intégrale $\int_0^1 \ln(t^2 + \rho^2) dt$ permet d'écrire :

$$\int_0^1 \ln(t^2 + \rho^2) dt = \left[t \ln(t^2 + \rho^2) \right]_0^1 - 2 \int_0^1 \frac{t^2}{t^2 + \rho^2} dt = \ln(1 + \rho^2) - 2 \left(\int_0^1 dt - \rho^2 \int_0^1 \frac{dt}{t^2 + \rho^2} \right)$$

Le changement de variable $t=\rho\,u$ dans la dernière intégrale conduit à :

$$\int_0^1 \ln(t^2 + \rho^2) dt = \ln(1 + \rho^2) - 2 + 2\rho \left[Arctan(u) \right]_0^{\frac{1}{\rho}} = \ln(1 + \rho^2) - 2 + 2\rho Arctan\left(\frac{1}{\rho}\right)$$

Il en résulte que :
$$\forall \rho > 0$$
, $H(\rho) = \frac{1}{4} \int_{-1}^{1} \ln{(t^2 + \rho^2)} dt = \frac{1}{2} \int_{0}^{1} \ln{(t^2 + \rho^2)} dt = \frac{1}{2} \ln{(1 + \rho^2)} - 1 + \rho \operatorname{Arctan}\left(\frac{1}{\rho}\right)$.

On sait que
$$\lim_{\rho \to 0^+} \operatorname{Arctan}\left(\frac{1}{\rho}\right) = \frac{\pi}{2}$$
, d'où $\lim_{\rho \to 0^+} \rho \operatorname{Arctan}\left(\frac{1}{\rho}\right) = 0$. Par suite, $\lim_{\rho \to 0^+} H(\rho) = -1$.

On peut donc prolonger par continuité la fonction H en 0 en posant H(0)=-1.

b) La fonction H est continue sur \mathbb{R}_+ et dérivable sur \mathbb{R}_+^* (somme et produit de fonctions dérivables sur \mathbb{R}_+^*).

On rappelle que
$$\forall y \in \mathbf{R}$$
, la dérivée de $\operatorname{Arctan}(y)$ est $\frac{1}{1+y^2}$. Par suite, $\forall x \in \mathbf{R}_+^*$, $H'(x) = \operatorname{Arctan}\left(\frac{1}{x}\right) > 0$.

Enfin, $\lim_{x \to +\infty} H(x) = +\infty$, car $\lim_{x \to +\infty} \ln(1+x^2) = +\infty$ et $x \operatorname{Arctan}\left(\frac{1}{x}\right) > 0$. Donc, $\lim_{x \to +\infty} x \operatorname{Arctan}\left(\frac{1}{x}\right) \ge 0$ (en fait, $\lim_{x \to +\infty} x \operatorname{Arctan}\left(\frac{1}{x}\right) = 1$, mais ce résultat n'est pas indispensable pour pouvoir conclure).

Bilan: la fonction H réalise une bijection strictement croissante de \mathbf{R}_+ sur $[-1, +\infty]$.

c) On a : $(\ln 2 - 1) \in]-1,0[\subset [-1,+\infty[$. Notons H^{-1} la bijection réciproque de H.

Le théorème de la bijection permet alors d'établir l'existence et l'unicité d'un réel ρ_0 tel que $H(\rho_0)=\ln 2-1$, c'est-à-dire $\rho_0 = H^{-1}(\ln 2 - 1)$. La stricte croissance de $H^{-1} \Longrightarrow H^{-1}(-1) < H^{-1}(\ln 2 - 1) < H^{-1}(0) = \rho_1 \Longleftrightarrow 0$ $0 < \rho_0 < \rho_1$. Or, $H(1) = \frac{1}{2} \ln 2 - 1 + \frac{\pi}{4} \simeq 0.131 > 0 \Longrightarrow \rho_1 < 1$. Bilan: $0 < \rho_0 < 1$.

d) On a : $\forall \rho > 0$, $w_n(i\rho) = \prod_{i=1}^n (i\rho - x_{k,n})$ qui est un produit de complexes non nuls puisque $\rho > 0$.

Par suite, $\forall k \in [0, n], |i\rho - x_{k,n}| > 0 \Longrightarrow |w_n(i\rho)|^2 = \prod_{k=0}^n |i\rho - x_{k,n}|^2 = \prod_{k=0}^n (\rho^2 + x_{k,n}^2) > 0.$

En prenant les logarithmes, on obtient : $\ln |w_n(i\rho)|^2 = 2 \ln |w_n(i\rho)| = \sum_{i=0}^n \ln \left(\rho^2 + \left(-1 + \frac{2k}{n}\right)^2\right)$,

 $\text{d'où, } \frac{1}{n} \ln |w_n(i\rho)| = \frac{1}{2} \times \frac{1}{n} \sum_{k=0}^n \ln \left(\rho^2 + \left(-1 + \frac{2k}{n} \right)^2 \right) = \frac{1}{2} \times \frac{1}{n} \sum_{k=0}^{n-1} \ln \left(\rho^2 + \left(-1 + \frac{2k}{n} \right)^2 \right) + \frac{1}{2} \frac{\ln(1+\rho^2)}{n}.$

Or, $\frac{1}{n}\sum_{n=1}^{n-1}\ln\left(\rho^2+\left(-1+\frac{2k}{n}\right)^2\right)$ est une somme de Riemann associée à la fonction $t\longmapsto\ln\left(\rho^2+(-1+2t)^2\right)$

continue sur [0, 1]. Par suite, $\lim_{n \to +\infty} \frac{1}{n} \sum_{k=0}^{n-1} \ln \left(\rho^2 + \left(-1 + \frac{2k}{n} \right)^2 \right) = \int_0^1 \ln \left(\rho^2 + (-1 + 2t)^2 \right) dt$.

D'autre part, $\lim_{n\to+\infty}\frac{\ln(1+\rho^2)}{n}=0$. Finalement, $\lim_{n\to+\infty}\frac{1}{n}\ln|w_n(i\rho)|=\frac{1}{2}\int_0^1\ln\left(\rho^2+(-1+2t)^2\right)\mathrm{d}t$.

Le changement de variable $u = -1 + 2t \Longrightarrow \int_0^1 \ln \left(\rho^2 + (-1 + 2t)^2 \right) dt = \frac{1}{2} \int_{-1}^1 \ln \left(\rho^2 + u^2 \right) du = \int_0^1 \ln \left(\rho^2 + u^2 \right) du.$

Finalement, $\lim_{n \to +\infty} \frac{1}{n} \ln |w_n(i\rho)| = \frac{1}{2} \int_0^1 \ln(\rho^2 + u^2) du = H(\rho)$ d'après la question 10.a).

11. On note G la fonction définie sur \mathbf{R}_+ par $G(x) = \frac{1}{2} \ln \left(\frac{1+x^2}{4} \right) + x \operatorname{Arctan} \left(\frac{1}{x} \right)$.

Le programme consiste à rechercher par une méthode dichotomique, une solution s_0 de l'équation G(x) = 0, c'est-à-dire que s_0 vérifie $G(s_0)=0$. Puisque $G(x)=H(x)-H(\rho_0)$, on a $0=G(s_0)=H(s_0)-H(\rho_0)$ et comme H est bijective, on a $s_0 = \rho_0$.

12.a) Puisque $\forall k \in [0, n], P_{f_{\rho}, n}(x_{k,n}) = f_{\rho}(x_{k,n}) = \frac{1}{\rho^2 + x_{k,n}^2}$, on a : $\forall k \in [0, n], S_n(x_{k,n}) = 0$.

Donc, S_n admet au moins (n+1) racines distinctes $x_{0,n}, x_{1,n}, \ldots, x_{n,n}$ qui sont toutes les racines de w_n .

Bilan : le polynôme
$$w_n$$
 divise le polynôme S_n qui est donc de degré supérieur ou égal à $(n+1)$.
b) $\forall i \in \llbracket 0, n \rrbracket$, $L_i(X) = \prod_{\substack{k \in \llbracket 0, n \rrbracket \\ k \neq i}} \frac{X - x_{k,n}}{x_{i,n} - x_{k,n}} \Longrightarrow L_i(-X) = \prod_{\substack{k \in \llbracket 0, n \rrbracket \\ k \neq i}} \frac{-X - x_{k,n}}{x_{i,n} - x_{k,n}} = (-1)^n \prod_{\substack{k \in \llbracket 0, n \rrbracket \\ k \neq i}} \frac{X + x_{k,n}}{x_{i,n} - x_{k,n}} \cdot \text{Or},$

$$\forall j \in [0, n], x_{n-j, n} = -x_{j, n} \Longrightarrow L_i(-X) = (-1)^n \prod_{\substack{k \in [0, n] \\ n-k \neq n-i}} \frac{X - x_{n-k, n}}{-x_{n-i, n} + x_{n-k, n}} = \prod_{\substack{k \in [0, n] \\ n-k \neq n-i}} \frac{X - x_{n-k, n}}{x_{n-i, n} - x_{n-k, n}} = L_{n-i}(X).$$

D'autre part,
$$P_{f_{\rho},n}(X) = \sum_{i=0}^{n} f_{\rho}(x_{i,n})L_{i}(X) \Longrightarrow P_{f_{\rho},n}(-X) = \sum_{i=0}^{n} f_{\rho}(x_{i,n})L_{i}(-X) = \sum_{i=0}^{n} f_{\rho}(x_{i,n})L_{i}(-X)$$

Puisque f_{ρ} est paire, on a $f_{\rho}(x_{i,n}) = f_{\rho}(-x_{i,n}) = f_{\rho}(x_{n-i,n}) \Longrightarrow P_{f_{\rho},n}(-X) = \sum_{i=0}^{n} f_{\rho}(x_{n-i,n}) L_{n-i}(X)$ et le changement d'indice $j = n - i \Longrightarrow P_{f_{\rho},n}(-X) = \sum_{i=0}^{n} f_{\rho}(x_{j,n}) L_{j}(X) = P_{f_{\rho},n}(X)$.

Bilan : quelle que soit la parité de l'entier n, le polynôme $P_{f_{\rho},n}$ est pair.

c) On a:
$$w_n(1-1/n) = w_n(y_n) = \prod_{k=0}^n \left(1 - \frac{1}{n} + 1 - \frac{2k}{n}\right) = \prod_{k=0}^n \left(\frac{2n-2k-1}{n}\right) = \frac{1}{n^{n+1}} \prod_{k=0}^n (2n-2k-1).$$

Le changement d'indice $j = n - k \Longrightarrow |w_n(y_n)| = \frac{1}{n^{n+1}} \prod_{j=0}^n |2j-1| = \frac{1}{n^{n+1}} \times 1 \times 3 \times \ldots \times 2n - 1$, soit encore

$$|w_n(y_n)| = \frac{1}{n^{n+1}} \times \frac{(2n)!}{2 \times 4 \times \dots \times 2n} = \frac{(2n)!}{2^n \times n^{n+1} \times n!}$$

La formule de Stirling $\Longrightarrow |w_n(y_n)| \underset{n \to +\infty}{\sim} \frac{\sqrt{4\pi n} (2n)^{2n} e^{-2n}}{2^n n^{n+1} \sqrt{2\pi n} e^{-n} n^n} \underset{n \to +\infty}{\sim} \frac{\sqrt{2}}{n} \left(\frac{2}{e}\right)^n \text{ (donc, } \tau = \sqrt{2} \text{ et } \sigma = 2/e\text{)}.$

d)
$$\lim_{n \to +\infty} \left(\ln |w_n(i\rho)| - nH(\rho) \right) = 0 \iff \lim_{n \to +\infty} \left(\ln |w_n(i\rho)| - \ln \left(\exp(nH(\rho)) \right) = 0 \iff \lim_{n \to +\infty} \left(\ln \frac{|w_n(i\rho)|}{e^{nH(\rho)}} \right) = 0 \iff \lim_{n \to +\infty} \frac{|w_n(i\rho)|}{e^{nH(\rho)}} = 1 \iff |w_n(i\rho)| \underset{n \to +\infty}{\sim} e^{nH(\rho)}.$$

Par suite,
$$\left|\frac{w_n(y_n)}{w_n(i\rho)}\right| \underset{n \to +\infty}{\sim} \frac{\frac{\sqrt{2}}{n}(2/e)^n}{e^{nH(\rho)}} \underset{n \to +\infty}{\sim} \frac{\sqrt{2}}{n} \times e^{-n(1-\ln 2 + H(\rho))}.$$

13.a) Posons
$$n = 2p + 1$$
. On a: $w_n(i\rho) = \prod_{k=0}^{2p+1} (i\rho - x_{k,2p+1}) = \prod_{k=0}^{p} (i\rho - x_{k,2p+1}) \times \prod_{k=p+1}^{2p+1} (i\rho - x_{k,2p+1})$.

La relation $\forall k \in [0, 2p+1], x_{k,2p+1} = -x_{2p+1-k,2p+1}$ et le changement d'indice j = 2p+1-k dans le second

produit
$$\Longrightarrow w_n(i\rho) = \prod_{k=0}^p (-\rho^2 - x_{k,2p+1}^2) = (-1)^{p+1} \prod_{k=0}^p (\rho^2 + x_{k,2p+1}^2)$$
 qui est un réel non nul.

Puisque le polynôme $P_{f\rho,n}$ est pair (question 12.b), il est clair que le polynôme S_n est également pair.

Il en résulte que le degré de S_n est pair. D'autre part, $\deg(P_{f_\rho,n}) \leq n \Longrightarrow \deg(S_n) \leq n+2$, compte tenu de la définition de S_n . Or, $\deg(S_n) \geq n+1$ (question 12.a), donc le degré de S_n ne peut que valoir (n+1) ou (n+2). Comme n est impair, (n+1) est pair et donc, le degré de S_n est égal à $(n+1) = \deg(w_n)$.

Par suite, il existe une constante complexe c telle que : $S_n(X) = c \times w_n(X)$.

Or,
$$S_n(i\rho) = 1$$
, d'où, $1 = c \times w_n(i\rho)$ et comme $w_n(i\rho) \neq 0$, on a : $S_n(X) = \frac{w_n(X)}{w_n(i\rho)}$

b) D'après ce qui précède, on a : $\forall x \in [-1,1]$, $S_n(x) = 1 - (x^2 + \rho^2) P_{f_\rho,n}(x) = \frac{w_n(x)}{w_n(i\rho)}$. En multipliant les

deux membres de la dernière égalité par $f_{\rho}(x)$ (qui n'est pas nul), on obtient : $f_{\rho}(x) - P_{f_{\rho},n}(x) = f_{\rho}(x) \times \frac{w_n(x)}{w_n(i\rho)}$,

d'où :
$$\forall x \in [-1, 1], |f_{\rho}(x) - P_{f_{\rho}, n}(x)| = f_{\rho}(x) \times \left| \frac{w_n(x)}{w_n(i_{\theta})} \right|$$

14.a) Pour
$$y_n = 1 - \frac{1}{n}$$
, on a: $|f_{\rho}(y_n) - P_{f_{\rho},n}(y_n)| = f_{\rho}(y_n) \times \left| \frac{w_n(y_n)}{w_n(i\rho)} \right| \underset{n \to +\infty}{\sim} \frac{1}{1 + \rho^2} \times \frac{\sqrt{2}}{n} \times e^{-n(1 - \ln 2 + H(\rho))}$.

Or,
$$0 < \rho < \rho_0 \Longrightarrow -1 < H(\rho) < \ln 2 - 1 < 0 \Longrightarrow 1 - \ln 2 + H(\rho) < 0 \Longrightarrow \lim_{n \to +\infty} e^{-n(1 - \ln 2 + H(\rho))} = +\infty$$

et par croissances comparées, $\lim_{n\to+\infty}\frac{1}{n}\times e^{-n\left(1-\ln 2+H(\rho)\right)}=+\infty$

Bilan : pour
$$0 < \rho < \rho_0$$
, on a : $\lim_{n \to +\infty} \left| f_{\rho}(y_n) - P_{f_{\rho},n}(y_n) \right| = +\infty$.

b) Conséquence de la question précédente!!!