ENT305A: Exam

Exercise 1 (Un problème sous contraintes). Pour $c \in \mathbb{R}^n$, on considère le problème

$$\min_{s.c.} (c, x)
||x||_2 \le 1,$$

$$x > 0$$
(1)

 $Notation: \text{pour } z \in \mathbb{R}^n, \text{ on \'ecrira } z^- \in \mathbb{R}^n \text{ d\'efini pour } i \in \{1,...n\} \text{ par } (z^-)_i = \begin{cases} z_i, \text{ si } z_i < 0, \\ 0, \text{ sinon.} \end{cases}$

1. Montrer que le problème est bien posé, et en donner un minimiseur global èvident si $c \ge 0$.

L'ensemble des contraintes $C := \{x \in \mathbb{R}^n, x \geq 0, ||x||^2 \leq 1\}$ est manifestement borné puisqu'il est inclus dans la boule unité fermée. Il est aussi fermé dans \mathbb{R}^n par continuité des fonctions. Il est donc compact, et comme la fonction objectif est continue, le problème est bien posé.

Dans le cas de figure où $c \ge 0$, on a $(c, x) \ge 0$ pour tout $x \in C$. Or en $x = 0 \in C$, la fonction objectif prend la valeur 0: c'est donc que 0 est un minimiseur global du problème.

On suppose dans toute la suite qu'il existe $i_0 \in \{1, ... n\}$ tel que $c_{i_0} < 0$.

2. $||x||_2$ n'est pas différentiable sur \mathbb{R}^n . Mettre le problème d'optimisation (1) sous forme équivalente (2), avec n+1 contraintes d'inégalité différentiables sur \mathbb{R}^n , notées $f_0, f_1, ... f_n$, où f_0 est associée à la contrainte $||x||^2 \le 1$ (utiliser des inégalités "plus petites ou égales").

On écrit simplement

$$\min_{s.c.} (c, x)
||x||_2^2 - 1 \le 0,
-x_i \le 0, i \in \{1, ...n\}.$$
(2)

Les fonctions associées sont donc $f_0: x \mapsto ||x||_2^2 - 1$ et $f_i: x \mapsto -x_i, i \in \{1, \dots n\}$, qui sont bien entendu régulières sur \mathbb{R}^n .

3. Sous quelles conditions une solution locale de (1) vérifie nécessairement les conditions KKT?

Rappeler les conditions LICQ sur les contraintes d'inégalités actives.

Pour $x \in \mathbb{R}^n$, on a $\nabla f_0(x) = 2x$, $\nabla f_i(x) = -e_i$, $i \in \{1, \dots n\}$, où $(e_i)_{1 \le i \le n}$ est la base canonique de \mathbb{R}^n .

- 4. On suppose les conditions LICQ satisfaites. Soit x un minimiseur global du problème.
- (a) Montrer qu'il existe $\lambda_0 \geq 0, \lambda = (\lambda_1,...,\lambda_n) \in \mathbb{R}^n +$ tels que

$$\lambda_0(||x||^2 - 1) = 0, \forall i \in \{1, \dots, n\}, \ \lambda_i x_i = 0, \ c + 2\lambda_0 x - \lambda = 0.$$

D'après ce qui précède, un minimiseur global satisfait les conditions de KKT. Les deux premières conditions demandées sont les conditions de complémentarité. La dernière condition demandée correspond à la condition de stationnarité puisque

$$\nabla f(x) + \lambda_0 \nabla f_0(x) + \sum_{i=0}^n \lambda_i \nabla f_i(x) = c + 2\lambda_0 x - \sum_{i=0}^n \lambda_i e_i = c + 2\lambda_0 x - \lambda = 0.$$

(b) Justifier que $\lambda_0 > 0$.

Si on avait $\lambda_0 = 0$, on trouverait $c = \lambda - 2\lambda_0 x = \lambda \ge 0$, contredisant l'hypothèse faite sur c.

(c) Démontrer que

$$x = \frac{c^-}{\|c^-\|_2}$$

Comme $x \geq 0$, on doit avoir $\lambda \geq c$ (par stationarité). On distingue désormais selon le signe de c_i pour $i \in \{1, \dots, n\}$. Si $c_i < 0$, on a $x_i > \frac{\lambda_i}{2\lambda_0} \geq 0$ (par stationarité). Ainsi $\lambda_i = 0$ (2eme complémentarité) et donc $x_i = -\frac{c_i}{2\lambda_0}$. Si $c_i = 0$, $x_i = \frac{\lambda_i}{2\lambda_0}$ et donc 2eme condition de compl.: $x_i = \lambda_i = 0$.

Enfin, si $c_i > 0$, pour satisfaire la condition de positivité de x, on a nécessairement: $\lambda_i \geq c_i > 0$, et donc $x_i = 0$ (2e cond).

Finalement, $x=\frac{c^-}{2\lambda_0}$ Par ailleurs, $\lambda_0>0$ impose $\|x\|_2=1$, ce qui achève de montrer la formule demandée.