EEEN3006J

Wireless Systems

Dr. Declan Delaney

(declan.delaney@ucd.ie)

Purpose of the lecture

- In this lecture, we will discuss how to make local oscillators of certain frequency.
- Oscillators are non-linear circuits that take in DC power and output a particular frequency.
- Used in transmitters as:
 - carrier signal into modulator
 - oscillator to drive mixer for up-conversion
- Used in receivers as:
 - local oscillator for mixer for down-conversion

Purpose of this lecture

- We usually make them using an amplifier with feedback.
 - The amplifier can be made using
 - Op-amps (Only at lower frequencies), or
 - Transistors
- We usually make them using feedback made up of passive RC or LC circuits.
- Later in the lecture, we will see how to take a very stable low-frequency oscillator and make a tuneable high-frequency oscillator from it.

What makes a good oscillator?

- A periodic signal
 - often sinusoidal signal
 - sometimes a square-wave.

- Frequency may be
 - Fixed value, or
 - controlled by voltage or temperature.
 - VCO = voltage controlled oscillator.

Need: Frequency Stability

Temperature drift in a 7-MHz variable-frequency oscillator. ~104 ppm/°C

- Average frequency is accurate
 - over time, and
 - over a reasonable temperature range
- The permitted error ∞ signal bandwidth
 - Easy case: baseband signal, large bandwidth.
 - Difficult case: narrow-band, high-frequency.

We measure:

- Error, in parts per million (ppm) or parts per billion (ppb).
- Variation with temperature; ppm/°C or Hz/°C.
- Ageing; ppm/year.

- The transmitter needs to transmit at the correct frequency
 - transmit where receiver is expecting signal
 - avoid interference with neighbours
- The receiver needs to shift the frequency of the input signal by the correct amount
 - otherwise wanted signal will not pass through filter.

Datasheet example

MOFH and MOFZ Series / 14 Pin DIP OCXO

- Oven Controlled Oscillator
- > 1.0 MHz to 150.0 MHz Available
- > 14-pin DIP Package
- > -40°C to 85° Available
- > ±50ppb to ±500ppb

PART NUMBERING GUI	DE:	ELECTRICAL S	PECIFIC	CATTONS			
ART HOMBERING GOI	<u></u>	Frequency Range			1.0 MHz to 150.0MHz		
		Frequency Stability		±50ppb to ±500ppb			
			Operating Temperature		-40°C to 85°C max*		
МОГ <u>Н</u> <u>5</u> <u>\$</u>	100 B - Frequency	* All stabiliti		ailable, pla availablity		lt MMD for	
<u> </u>	Derating Temperature A = 0°C to 50°C B = -10°C to 60°C C = -20°C to 70°C D = -30°C to 70°C E = -30°C to 80°C F = -40°C to 85°C G = 0°C to 70°C	Storage Temperature			-40°C to 95°C		
Output Type H = HCMOS Z = Sinewave Supply Voltage		Output	Sineway	/e ±	-3 dBm	50Ω	
			HCMOS	20	Vdd max Vdd min	30pF	
		Supply Voltage	(Vdd)	3.3V	5V	12V	
		Supply Current	typ	220mA 200n		N 80mA	
			max	550mA	400mA	150mA	
3 = 3.3 Volt 5 = 5 Volt		Warm-up Time		Al Al	3min. @ 25°C		
12 = 12 Volt	.	Input Impedance			100K Ohms typical		
	Frequency Stability $050 = \pm 50$ ppb $100 = \pm 100$ ppb	Crystal			AT or SC Cut options		
Crystal Cut*		Phase Noise @ 10MHZ		S	С	AT	
Blank = AT Cut	250 = ±250ppb	10 Hz Offset		-100)dBc	-92dBc	
S = SC Cut	$500 = \pm 500 \text{ppb}$	100 Hz Offset		-127	'dBc	-118dBc	
		1000 Hz Offset)dBc	-135dBc	
*Specific Stabilites/ Temperatures requires an SC Cut Crystal		Voltage Control 0 to VCC		±3pp	m typ	±10ppm typ	
		Aging (after 30 days)		±0.5p	pm/yr.	±1.5ppm/yr.	

MECHANICAL DETAILS:

Need: Spectral Purity

- One line in frequency spectrum
 - no harmonics, no other spurious outputs
- Phase noise = random phase modulation
 - due to random noise in circuit (flicker noise)
 - affects amplitude and phase, but oscillator amplitude control reduces amplitude changes
 - specify power spectral density at some offset
 - e.g. -95 dBc/Hz at 100 kHz
 - dBc = dB relative to carrier (wanted output)

Often Want Frequency Agility

- Frequency adjustable
 - transmitter works over some range of freq.
 - receiver must receive over some range of freq.
- Specify frequency range, step size
 - step size corresponds to channel spacing
- Speed of adjustment
 - frequency-hopping systems rapid changes
 - generator settles on new frequency quickly
- Conflict with frequency stability

We make oscillators using feedback

- Oscillators: nonlinear circuits convert DC power to AC.
 - Ideally a sinusoid (simpler to design around.)

- Basic idea: amplifier with positive feedback
 - Barkhausen criterion: $A(j\omega) \cdot \beta(j\omega) = 1 + j0$ at some frequency ω .

$$x_o = A x_i + A \beta x_0$$

Barkhausen criterion makes the denominator zero.

$$x_o = \frac{A}{1 - A \beta} x_i$$

Basic sinusoidal oscillator

- need narrow bandwidth for spectral purity
 - could use L-C resonant circuit (high Q factor)?
 - for narrower bandwidth,
 use mechanical resonator
- some non-linearity controls amplitude
 - usually in amplifier

Quartz Crystal Resonator

- Quartz exhibits piezo-electric effect
 - applied voltage causes shape change
 - shape change generates voltage
- Crystal acts as mechanical resonator
 - 2 electrodes, piezo-electric conversions
 - effect is electrical resonator
 - high Q-factor: 10⁴ up to 10⁶ possible
- Dimensions control resonant frequency
 - up to 100 MHz commonly available

Quartz Resonator

$$\omega_{S} = \frac{1}{\sqrt{LC_{S}}}$$

$$\omega_{S} = \frac{1}{\sqrt{LC_{S}}}$$

$$\omega_{p} = \frac{1}{\sqrt{LC'}}$$

$$C' = \frac{C_{p}C_{S}}{C_{p} + C_{S}}$$

$$\omega_S = \frac{1}{\sqrt{LC_S}}$$

$$\omega_p = \frac{1}{\sqrt{LC'}}$$

$$C' = \frac{C_p C_s}{C_p + C_s}$$

- Mechanical resonator, so model:
 - momentum as large inductance (L, H)
 - elasticity as series capacitance (C_s, fF)
 - Damping and loss as small series resistance R_s
 - also real capacitance between electrodes (pF)

Precision Oscillator

- Want precise frequency, stability, low phase noise
 - use quartz crystal resonator in feedback
 - external capacitors add to parallel capacitance...
 - allow very limited frequency adjustment ppm
 - for higher precision, place oscillator in oven
 - temperature controlled chamber TCXO
- Other mechanical resonators possible
 - ceramic resonators
 - similar to quartz, but not as good
 - surface acoustic wave (SAW) resonators
 - vibrations on surface, not in bulk of material

Voltage-Controlled Oscillator

$$f_0 = \frac{1}{2\pi\sqrt{LC}}$$

- At RF, usually LC resonant circuit
 - poor precision Q-factor $\sim 10^2$
 - (L could be transmission line stub)
- Need electrical adjustment
 - often use capacitance change in diode
 - reverse-biased by control voltage
 - special diodes are optimised for this
 - non-linear relationship
- Easy, quick to change frequency

- limited range of adjustment
- difficult to get precise frequency

Example: Hartley Oscillator

This diagram shows a variant which uses an op—amp, but transistor-based designs are also common.

- Basic oscillator uses 2 inductors & 1 capacitor
 - can also use 1 tapped inductor (mutual L)
- Modify for Voltage Controlled Oscillator replace capacitor with varactor

- extra capacitor (large) to isolate varactor bias
- large inductance, "RF choke", to isolate signal

Example: Multi-vibrator

- Capacitor alternately charged & discharged
 - voltage-controlled current sources set freq.
 - switches change charging direction

- More suitable for IC implementation
 - but not at very high frequencies...

Frequency Scaling

Multiplication

- use non-linear device to generate harmonics
- band-pass filter to select required frequency
- also multiplies phase noise

Division

- use flip-flops, counters, etc. to divide by N
- square-wave output (could filter for sine)
- also divides phase noise

use mixer as seen already (frequency shifting)

Phase-Locked Loop (PLL)

Feedback control system

- adjusts frequency of VCO to match input
- phase detector measures phase difference
- loop filter provides gain and low-pass filter
 - controls behaviour of the system

PLL Application Examples

Noisy or modulated input

- want VCO to follow average frequency of input
- use loop filter with narrow bandwidth
- in communications receiver, extract carrier frequency or clock frequency from signal...

Frequency Modulation – demodulator

- get VCO to follow changing input frequency
- loop filter bandwidth must be wide enough
- then control voltage ∞ modulation...

Frequency Synthesis

- input from stable (e.g. crystal) oscillator
- synchronise VCO with multiple of input freq.
- get agility of VCO with stability of crystal...

Phase Detector Example 1

• Ideal Multiplier

- inputs $v_1(t) = A_1 \sin(\omega_1 t)$ $v_2(t) = A_2 \sin(\omega_2 t + \phi)$
- $v_o(t) = K^{\frac{A_1 A_2}{2}} \left[\cos\{(\omega_2 \omega_1)t + \phi\} \cos\{(\omega_2 + \omega_1)t + \phi\} \right]$
- high-frequency term removed by loop filter...
- If both frequencies equal (PLL is working properly)
 - effective $v_o(t) = K \frac{A_1 A_2}{2} [\cos(\phi)]$

non-linear relationship phase difference <-> output

~ linear around zero output

Phase Detector Example 2

- Multiplier with square-wave signals: ±1 V
 - exclusive-NOR gate behaves similarly
- For "phase" difference ϕ , average output

$$\overline{v_o} = \frac{K(\pi - |\phi|) - K|\phi|}{\pi} = K\left(1 - \frac{2|\phi|}{\pi}\right)$$
 assuming same freq.

- note linear over 180° range
- periodic in phase difference (as expected)

PLL Operation

- VCO: $f_v = f_0 + k_f v_c$ $f_v = f_0 + \frac{1}{2\pi} \frac{d\theta_v}{dt}$
 - centre frequency f_0 , change proportional to v_c
 - frequency ∞ rate of change of phase angle
- In normal operation, loop is "locked"
 - ⇒ VCO is following frequency of input signal
- If input signal at frequency f_0

- VCO also at f_0 , so $v_c = 0$, so $v_e = 0$
- so phase difference must be $\pm \frac{\pi}{2}$

Stable Operation? $\frac{\pi}{2} = \frac{3\pi}{2}$

- Define phase difference $\phi = \theta_i \theta_v$
- Suppose relative phase of input advances
 - $-\phi$ becomes larger moving to right on graph
 - what happens to error voltage?
 - what happens to VCO control voltage?
 - what happens to VCO frequency?
 - what happens to VCO phase?

Which operating point is stable?

$heta_i$

$$v_e$$

$$v_c$$

$$f_v$$

$$\theta_{v}$$

- Step change in θ_i
- \Rightarrow step in v_e
- $\Rightarrow v_c$ starts to rise
 - low-pass loop filter...
- so f_v follows VCO
- so phase advances
 - \Rightarrow phase error falls...
- Settles at $v_c = 0$ again
- transient is example depends on loop & filter parameters

Phase Change Example

f_i

θ_i

$$f_{v}$$

$$\theta_v$$

Response to Frequency Change

- Step change in $f_i \rightarrow f_0 + \Delta f$
 - so θ_i starts to advance
 - v_e increases
 - f_v follows
 - so θ_v advances also
- Settles with $v_c \neq 0$
 - needed to get higher f_v
 - so phase error needed...
- Transient is example

Frequency Change Example

Lock Range

- We define the lock range of PLL as:
 - range of input frequency over which loop can remain locked.
- What determines the lock range?
 - Maybe the limits of the VCO adjustment (if this is small).
 - Otherwise, the limits of the phase detector output
 - ullet multiplied by the gain of the filter, k_a
 - ullet multiplied by the frequency sensitivity of the VCO, k_f .

Capture Range

- We define the capture range of the PLL as:
 - The range of input frequencies at which loop can acquire a lock.
 - e.g. if the signal has just been switched on...
- Cannot exceed lock range usually less
- Depends on bandwidth of loop filter
 - when not locked, phase detector output is at difference frequency
 - must be within bandwidth of loop filter in order to affect VCO frequency
 - with no input, or input far from VCO, VCO runs at centre frequency, f_0

Frequency Synthesis

- Generate any one of a discrete set of freq.
 - stability of crystal oscillator
 - agility of VCO
 - usually computer controlled
- Example is original Direct Freq. Synthesis
 - stable crystal oscillator provides input
 - multiply, divide, mix to get desired output
 - switch hardware for adjustable output

Indirect Frequency **Synthesis**

- Output is from VCO
 - use PLL to lock frequency to stable reference
 - if loop locked, inputs to phase detector must be at same frequency, so $f_o = N f_{ref}$
 - reference frequency derived from crystal osc.
 - divider is digital counter, adjustable N
 - number-controlled oscillator, step size = f_{ref}
 - small step size at high frequency ⇒ large N

Problems

• Example:

- want 440 - 450 MHz

steps of 25 kHz

- need $f_{ref} = 25 \text{ kHz}$

- *N* in range 17600 - 18000

- Slow response long settling time
 - phase detector at 25 kHz, narrow loop filter BW
 - VCO control voltage cannot change rapidly
- Phase noise poor
 - close to f_o , get phase noise of reference $\times N$
 - farther out, get phase noise of VCO
 - PLL has no control above loop filter BW

Hard to build adjustable high-speed divider

- Combine indirect and direct synthesis
 - PLL used to get range and step size, at low freq.
 - add fixed frequency to get required output
 - or run VCO at output frequency,
 - subtract fixed freq. before input to divider

Double frequency with a d-type flip-flop

Fractional-*N*Divider

- Modified divider allows non-integer division
 - allows small step size with higher f_{ref}
- High-speed divider, with 2 division ratios
 - dual-modulus divider
 - control logic counts output cycles:
 - $\div(N+1)$ for k cycles of each R, then
 - +N for R-k cycles of each R

average division ratio =
$$\frac{(N+1)k + N(R-k)}{R} = N + \frac{k}{R}$$

- want 440 to 450 MHz, 25 kHz steps
- now use $f_{ref} = 10$ MHz (for example)
 - allows much larger loop filter BW
- Choose N to get frequency in required range
 - here N = 44, so minimum output freq. 44 times f_{ref}
- choose R to get required step size ...
- adjust k to get specific frequency

$$f_o = 440 \text{ MHz} + k \times 25 \text{ kHz}$$

Problems

Spurious components in output

- note periodic change in division ratio at $\frac{f_{ref}}{R}$
- ⇒ periodic component in VCO control voltage
- ⇒ periodic frequency modulation of VCO
- ⇒ spurious components in output spectrum, at multiples of f_{ref}/R on both sides of f_o .

Solutions:

- randomise division adjustment
 - much more complex hardware...
- add compensating signal to control voltage
 - since error is periodic and predictable...

Direct Digital Synthesis

Phase Accumulator

Generate samples of signal digitally

- add k to phase accumulator on each clock
- so phase value advances at adjustable rate
- overflows regularly view as angle, 0 to 2π
- ROM gives sin() of this phase angle
- apply samples to D/A converter, reconstruct

DDS

$$f_o = f_{ck} \frac{k}{2^N}$$

- For large N, extremely small frequency steps
 - low phase noise due to clock jitter
- Many spurious outputs
 - phase has other periodic components
 - in example above, at half output frequency
 - quantisation errors also periodic
- Output frequency
 - must be much less than clock frequency
 - also limited by speed of D/A converter

Example: AD9830

- 50 MHz max clock, 32-bit phase, 10-bit DAC
- 2 frequencies, 4 phase offsets stored

Example: AD9910

- 1 GHz max clock
 - output up to 400 MHz (with good filter)
- 32-bit phase accumulator, 14-bit DAC
 - freq. resolution ~ 0.23 Hz at 1 GHz clock.

-100
-10
-20
-30
-40
-40
-60
-70
-80
-90
-100
START 0Hz
50MHz/DIV
STOP 500MHz

Figure 15. Residual Phase Noise Plot, 1 GHz Operation with PLL Disabled

Figure 10. Wideband SFDR at 204 MHz, REFCLK = 1 GHz