

ENDOMORPHISMES ORTHOGONAUX

A DAOUDI

Définition

Soit E un \mathbf{R} -espace vectoriel.

On dit que E est un espace euclidien, si E est muni d'un produit scalaire $<\cdot|\cdot>$ et $\dim(E)$ est finie.

Définition

Soit *E* un espace euclidien muni d'un produit scalaire $<\cdot|\cdot>$ tel que dim(E)=n.

On dit qu'un endomorphisme f de E est orthogonal si :

$$\forall (u, v) \in E^2, \langle f(u) | f(v) \rangle = \langle u | v \rangle.$$

On dit aussi que f conserve le produit scalaire.

On note O(E) l'ensemble des endomorphismes orthogonaux de E .

Remarques

1) Soit f un endomorphisme orthogonal de E, alors $\forall u \in E, ||f(u)|| = ||u||$

En effet $\forall u \in E$, $\langle f(u) | f(u) \rangle = \langle u | u \rangle$ d'où $\forall u \in E$, ||f(u)|| = ||u||

d'où tout endomorphisme orthogonal f de E conserve la norme : $\forall u \in E, ||f(u)|| = ||u||$

Un endomorphisme orthogonal est appelé alors une isométrie vectorielle.

2) **Rappel**: Soit f un endomorphisme de E et dim(E) = n finie alors on a :

f est bijective de E sur $E \Leftrightarrow f$ est une surjective de E sur E

$$\Leftrightarrow f$$
 est une injective de E dans E

$$\Leftrightarrow Ker(f) = \{0_E\}$$

Soit f un endomorphisme orthogonal de E alors $Ker(f) = \{0_E\}$

En effet, on a : $u \in Ker(f) \Leftrightarrow u \in E$ et $f(u) = 0_E$

D'où $||f(u)|| = ||0_E|| = 0$ or ||f(u)|| = ||u|| (car f un endomorphisme orthogonal de E)

Donc ||u|| = 0 par suite $u = 0_E$

Conclusion. $Ker(f) = \{0_E\}$ et dim(E) = n fini car E est un espace euclidien.

Donc f est bijective de E sur E .

Si f est un endomorphisme orthogonal de E alors f est bijective de E sur E

- 3) $(O(E), \circ)$ est un groupe où « \circ » désigne la loi de composition des fonctions. (Vérifier les propriétés ci-dessous):
- 3.1) Si f est un endomorphisme orthogonal de E et g est un endomorphisme orthogonal de E alors $(f \circ g)$ est un endomorphisme orthogonal de E;
- 3.2) Id_E est un endomorphisme orthogonal de E et c'est l'élément neutre de $(O(E), \circ)$: $\forall f \in O(E), Id_E \circ f = f \circ Id_E = f$;

- 3.3) Si f est un endomorphisme orthogonal de E alors f^{-1} est un endomorphisme orthogonal de E où f^{-1} désigne l'application réciproque de f;
- 3.4) $\forall (f,g,h) \in (O(E))^3$, $(f \circ g) \circ h = f \circ (g \circ h)$ (toujours vraie pour les fonctions)

Théorème

Soient E un espace euclidien muni d'un produit scalaire $<\cdot|\cdot>$ tel que $\dim(E)=n$ et f un endomorphisme de E.

f est un endomorphisme orthogonal de E si et seulement si l'image par f d'une base orthonormée $\{e_1, e_2, ..., e_n\}$ de E est une base orthonormée de E (c'est-à-dire $\{f(e_1), f(e_2), ..., f(e_n)\}$ est une base orthonormée).

D'où f est un endomorphisme orthogonal de E si et seulement si la matrice A de f par rapport à une base orthonormée de E vérifie $({}^t\!A)A = I_n$

Preuve.

• Montrons que si f est un endomorphisme orthogonal de E et si $\{e_1,e_2,...,e_n\}$ est une base orthonormée de E alors $\{f(e_1),f(e_2),...,f(e_n)\}$ est une base orthonormée de E

En effet $\forall i \in \{1,2,\ldots,n\}, \forall j \in \{1,2,\ldots,n\}, < f(e_i) \, \big| \, f(e_j) > = < e_i \, \big| \, e_j > \text{ car } f \text{ est un}$ endomorphisme orthogonal de E, d'où $\forall i \in \{1,2,\ldots,n\}, \forall j \in \{1,2,\ldots,n\}$, $< f(e_i) \, \big| \, f(e_j) > = < e_i \, \big| \, e_j > = \delta_{ij} \text{ où } \delta_{ij} = 1 \text{ si } i = j \text{ et } \delta_{ij} = 0 \text{ si } i \neq j$ car $\left\{e_1,e_2,\ldots,e_n\right\}$ est une base orthonormée de E

d'où les vecteurs $f(e_1), f(e_2), ..., f(e_n)$ sont de norme un et deux à deux orthogonaux et par suite la famille $\{f(e_1), f(e_2), ..., f(e_n)\}$ est une base orthonormée de E

Conclusion 1 : si f est un endomorphisme orthogonal de E alors l'image par f d'une base orthonormée de E est une base orthonormée de E .

• Montrons que si l'image par f d'une base orthonormée $\{e_1,e_2,...,e_n\}$ de E est une base orthonormée de E alors f est un endomorphisme orthogonal de E.

En effet $\forall i \in \{1,2,\ldots,n\}, \forall j \in \{1,2,\ldots,n\}, < f(e_i) \, \big| \, f(e_j) > = \delta_{ij}$ car par hypothèse $\big\{ f(e_1), f(e_2), \ldots, f(e_n) \big\}$ est une base orthonormée de E, idem $\forall i \in \{1,2,\ldots,n\}, \forall j \in \{1,2,\ldots,n\}, < e_i \, \big| \, e_i > = \delta_{ij}$

D'où
$$\forall i \in \{1, 2, ..., n\}, \forall j \in \{1, 2, ..., n\}, \langle f(e_i) | f(e_j) \rangle = \langle e_i | e_j \rangle$$

Donc si $u = x_1 e_1 + \cdots + x_n e_n$ et $v = y_1 e_1 + \cdots + y_n e_n$ alors

$$f(u) = x_1 f(e_1) + \dots + x_n f(e_n)$$
 et $f(v) = y_1 f(e_1) + \dots + y_n f(e_n)$ car f est linéaire.

D'où $\langle f(u) | f(v) \rangle = x_1 y_1 + \dots + x_n y_n \operatorname{car} \{ f(e_1), f(e_2), \dots, f(e_n) \}$ est une base orthonormée de E (cf. TD)

 $Idem < u | v > = x_1 y_1 + \dots + x_n y_n$

Donc
$$\forall (u,v) \in E^2$$
, $\langle f(u) | f(v) \rangle = \langle u | v \rangle$

Conclusion 2 : Si l'image par f d'une base orthonormée de E est une base orthonormée de E alors f est un endomorphisme orthogonal de E .

Conclusion:

f est un endomorphisme orthogonal de E si et seulement si l'image par f d'une base orthonormée $\{e_1,e_2,...,e_n\}$ de E est une base orthonormée de E .

Remarques (importantes)

1) Si f est un endomorphisme orthogonal de E et A est la matrice de f par rapport à une base orthonormée de E on a: $({}^t\!A)A=I_n$

En effet, soit $B = \left\{e_1, e_2, \ldots, e_n\right\}$ base orthonormée de E d'où $\forall i \in \left\{1, 2, \ldots, n\right\}, \forall j \in \left\{1, 2, \ldots, n\right\}, < f(e_i) \left| f(e_j) > = < e_i \left| e_j > \right.$ car f est un endomorphisme orthogonal de E.

De plus
$$f(e_i) = a_{1i} e_1 + a_{2i} e_2 + \dots + a_{ki} e_k + \dots + a_{ni} e_n = \sum_{k=1}^{k=n} a_{ki} e_k$$

et
$$f(e_j) = a_{1j} e_1 + a_{2j} e_2 + \dots + a_{kj} e_k + \dots + a_{nj} e_n = \sum_{k=1}^{k=n} a_{kj} e_k$$

donc
$$\langle f(e_i) | f(e_j) \rangle = a_{1i} a_{1j} + a_{2i} a_{2j} + \dots + a_{ki} a_{kj} + \dots + a_{ni} a_{nj} = \sum_{k=1}^{k=n} a_{ki} a_{kj}$$
 car

 $B = \left\{e_1, e_2, \dots, e_n\right\}$ est base orthonormée de E .

Si on pose $({}^tA)A = (c_{i\ j})_{\substack{1 \leq i \leq n \\ 1 \leq j \leq n}}$ alors par définition on a :

$$c_{ij} = \sum_{k=1}^{k=n} b_{ik} \, a_{kj} = \sum_{k=1}^{k=n} a_{ki} \, a_{kj} = \langle f(e_i) \, \big| \, f(e_j) \rangle = \langle e_i \, \big| \, e_j \rangle \, \text{car } f \text{ est un endomorphisme}$$
 orthogonal de E .

Et puisque
$$\forall i \in \{1,2,\ldots,n\}, \forall j \in \{1,2,\ldots,n\}, < e_i \mid e_j > = \delta_{ij} \text{ et } I_n = (\delta_{ij})_{\substack{1 \leq i \leq n \\ 1 \leq j \leq n}}$$

Par suite
$$(c_{ij})_{\substack{1 \le i \le n \\ 1 \le i \le n}} = I_n$$
 c'est-à-dire $(^tA)A = I_n$

2) Si f est un endomorphisme orthogonal de E et A est la matrice de f par rapport à une base orthonormée de E alors $\left|\det(A)\right|=1$ c'est-à-dire $\det(A)=-1$ ou $\det(A)=1$ En effet d'après la remarque 1) on a : ${}^t\!A$ $A=I_n$ d'où $\det[({}^t\!A)A]=\det(I_n)=1$

 $\mathsf{Donc} \ \det(\ ^t\!A) \det(A) = 1 \ \mathsf{et} \ \mathsf{puisque} \ \det(\ ^t\!A) = \det(A) \ \mathsf{alors} \ \left[\det(A)\right]^2 = 1 \ \mathsf{d'où} \ \left|\det(A)\right| = 1 \, .$

3) Si A est la matrice de f par rapport à une base B de E et M est la matrice de f par rapport à une autre base B' de E alors $\det(A) = \det(M)$.

En effet d'après la formule de changement de bases, on a : $M = P^{-1}AP$ où P est la matrice de passage de la base B à la base B' , avec $P^{-1}P = I_n$ d'où $\det(P^{-1})\det(P) = 1$

Donc
$$\det(M) = \det(P^{-1})\det(A)\det(P)$$
 et puisque $\det(P^{-1}) = \frac{1}{\det(P)}$ car $\det(P^{-1})\det(P) = 1$

Alors
$$det(M) = \frac{1}{det(P)} det(A) det(P) = det(A)$$

4) On sait que si A est la matrice d'un endomorphisme orthogonal f par rapport à une base orthonormée de E alors $|\det(A)|=1$ mais la réciproque est fausse!

En effet soit $A = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$ la matrice associée à un endomorphisme f de \mathbf{R}^2 par rapport à la

base canonique $B = \{e_1, e_2\}$ de \mathbf{R}^2 où $e_1 = (1,0)$ et $e_2 = (0,1)$.

 ${\it B}\,$ est une base orthonormée de ${\bf R}^2$ (muni du produit scalaire canonique) car :

$$< e_1 | e_2 > = 0 \text{ et } | |e_1| = | |e_2| = 1$$

On a $|\det(A)|=1$ mais f n'est pas un endomorphisme orthogonal de \mathbb{R}^2 .

Pour le prouver on peut utiliser l'une des méthodes ci-dessous:

1^{ère} méthode

$$< f(e_1) | f(e_2) > \neq < e_1 | e_2 >$$

$$\operatorname{car} < e_1 \left| e_2 > = 0 \text{ et } < f(e_1) \left| f(e_2) > = 2 \text{ puisque } f(e_1) = (1,0) \text{ et } f(e_2) = (2,1) \right|$$

2ème méthode

L'image par f de la base orthonormée $B = \{e_1, e_2\}$, à savoir $f(B) = \{f(e_1), f(e_2)\}$ n'est pas une base orthonormée car $f(e_1) | f(e_2) \neq 0$

3ème méthode

$$({}^{t}A)A = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 2 & 5 \end{pmatrix} \text{ d'où } ({}^{t}A)A \neq I_{2}$$

Définition

Soient E un espace euclidien muni d'un produit scalaire $<\cdot|\cdot>$ et f un endomorphisme orthogonal de E.

On dit que f est une rotation vectorielle si $\det(A) = 1$ où A est la matrice associée à f par rapport à une base orthonormée de E .

Rappel

On identifie ${\bf C}$ à ${\bf R}^2$ en utilisant l'application linéaire bijective $\varphi:{\bf C}\to{\bf R}^2$ définie par :

$$\forall (a,b) \in \mathbf{R}^2$$
, pour $z = a + ib$, $\varphi(z) = (a,b)$.

La rotation φ_{θ} de \mathbb{C} d'angle θ et de centre O = (0,0) est définie par :

$$\varphi_{\theta}: \mathbf{C} \to \mathbf{C}$$
 tel que $\forall z \in \mathbf{C}, \varphi_{\theta}(z) = z'$ où $z' = e^{i\theta} z$

Soit $z \in \mathbb{C}$ d'où il existe $(a,b) \in \mathbb{R}^2$, tel que z = a + ib et on a : $z' = (\cos(\theta) + i\sin(\theta))(a + ib)$ D'où $z' = (a\cos(\theta) - b\sin(\theta)) + i(a\sin(\theta) + b\cos(\theta))$

La rotation vectorielle R_{θ} de \mathbf{R}^2 d'angle θ et de centre O = (0,0) est donc définie par :

$$R_{\theta}: \mathbf{R}^2 \to \mathbf{R}^2$$
 et $\forall (a,b) \in \mathbf{R}^2, R_{\theta}(a,b) = (a',b')$ où

$$\begin{cases} a' = a\cos(\theta) - b\sin(\theta) \\ b' = a\sin(\theta) + b\cos(\theta) \end{cases} \quad \text{c'est-à-dire} \begin{pmatrix} a' \\ b' \end{pmatrix} = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix}$$

Donc $A = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}$ est la matrice associée à la rotation vectorielle R_{θ} de

 \mathbf{R}^2 d'angle θ et de centre O = (0,0) par rapport à la base canonique de \mathbf{R}^2 et $\det(A) = [\cos(\theta)]^2 + [\sin(\theta)]^2 = 1$

Proposition

Soient E un espace euclidien muni d'un produit scalaire $<\cdot|\cdot>$ et f un endomorphisme orthogonal de E tels que $f\circ f=Id_F$.

- 1) Si λ est une valeur propre de f alors $\lambda = -1$ ou $\lambda = 1$;
- 2) Si -1 et 1 sont les valeurs propres de f alors les sous espaces propres E_{-1} et E_1 sont orthogonaux (c'est-à-dire $\forall u \in E_{-1}$, $\forall v \in E_1$, $< u \mid v >= 0$) et $E = E_{-1} \oplus E_1$.

Preuve:

1) Soit λ une valeur propre de f d'où il existe $u \in E, u \neq 0_E$ tel que $f(u) = \lambda u$

D'où $f(f(u)) = f(\lambda u) = \lambda f(u)$ car f est linéaire

Donc $u = \lambda(\lambda u)$ car $f \circ f = Id_E$ et $f(u) = \lambda u$ alors $u = \lambda^2 u$ d'où

$$u - \lambda^2 u = 0_E \iff (1 - \lambda^2)u = 0_E \iff 1 - \lambda^2 = 0 \text{ car } u \neq 0_E \text{ alors } \lambda = -1 \text{ ou } \lambda = 1.$$

2) **Montrons que** E_{-1} et E_1 sont orthogonaux.

Supposons que -1 et 1 sont les valeurs propres de f et soient $u \in E_{-1}$, $v \in E_1$ on a donc f(u) = -u et f(v) = v.

Puisque f est un endomorphisme orthogonal de E alors < f(u) | f(v) > = < u | v >

d'où
$$<-u \,|\, v> = < u \,|\, v>$$
 donc $-< u \,|\, v> = < u \,|\, v>$

Alors
$$2 < u \mid v > = 0$$
 par suite $< u \mid v > = 0$.

Conclusion : E_{-1} et E_{1} sont orthogonaux.

Montrons que $E = E_{-1} \oplus E_{1}$, en effet :

•
$$\forall u \in E$$
, on a $\frac{1}{2}(u - f(u)) \in E_{-1}$

 $\operatorname{car}\ f[\frac{1}{2}\big(u-f(u)\big)] = \frac{1}{2}[f(u)-f\big(f(u)\big)]\ \text{d'après la linéarité de }f\ .$

d'où
$$f[\frac{1}{2}(u-f(u))] = \frac{1}{2}[-u-f(-u)]$$
 car $u \in E_{-1}$

donc $f[\frac{1}{2}(u-f(u))] = \frac{1}{2}[-u+f(u)] = -\frac{1}{2}[u-f(u)]$ car f est linéaire.

- Idem on montre que $\forall u \in E$, on a $\frac{1}{2}(u+f(u)) \in E_1$
- De plus $\forall u \in E$, on a: $u = \frac{1}{2} (u + f(u)) + \frac{1}{2} (u f(u))$ donc $E = E_{-1} + E_{1}$
- Montrons que $E_{-1} \cap E_1 = \{0_E\}$:

Soit $u \in (E_{-1} \cap E_1)$ on a donc

$$(u \in E_{-1} \text{ et } u \in E_1) \Leftrightarrow (f(u) = -u \text{ et } f(u) = u) \text{ d'où } u = -u$$

Donc $2u = 0_E$ soit $u = 0_E$ et comme $0_E \in (E_{-1} \cap E_1)$ par suite $E_{-1} \cap E_1 = \{0_E\}$.

Conclusion. $E=E_{-1}\oplus E_1$ car $E=E_{-1}+E_1$ et $E_{-1}\cap E_1=\left\{0_E\right\}$

Remarques importantes

Soit E un espace euclidien muni d'un produit scalaire $<\cdot|\cdot>$.

- 1) Si f est un endomorphisme orthogonal de E tel que $f \circ f = Id_E$ on a :
 - $f = -Id_E$ et dans ce cas -1 est **la seule** valeur propre de f : c'est-à-dire $E = E_{-1}$; ou
 - $f=Id_{\scriptscriptstyle E}$ et dans ce cas 1 est **la seule** valeur propre de f : c'est-à-dire $E=E_{\scriptscriptstyle -1}$; ou
 - $f \neq -Id_E$ et $f \neq Id_E$ alors -1 et 1 sont les valeurs propres de f .
- 2) Si f est un endomorphisme orthogonal de E tel que $f \circ f = Id_E$, on a :
- Si 1 est une valeur propre de f et $E \neq E_1$, alors -1 est une valeur propre de f. En effet puisque $E \neq E_1$ alors $f \neq Id_E$ d'où il existe alors $u_0 \in E, f(u_0) \neq u_0$ le vecteur non nul $b = f(u_0) u_0$, vérifie f(b) = -b car $f \circ f = Id_E$ d'où -1 est une valeur propre de f.
- 3) D'après la remarque 2) on a :
- Si f est un endomorphisme orthogonal de E tel que $f \circ f = Id_E$.
- Si $\dim(E_1) \neq 0$ et $\dim(E) \neq \dim(E_1)$ alors -1 et 1 sont les valeurs propres de f, de plus d'après la proposition ci-dessus, les sous espaces propres E_{-1} et E_1 sont orthogonaux et $E = E_{-1} \oplus E_1$.

Définition

Soient E un espace euclidien de dimension n et f un endomorphisme orthogonal de E tels que $f\circ f=Id_E$ alors :

On dit que f est une symétrie orthogonale par rapport à l'espace $E_1 = Ker(f - Id_E)$.

- 1) Si $\dim(E_1) = 0$ (c'est-à-dire 1 n'est pas une valeur propre de f , dans ce cas $f = -Id_E$) : on a est une symétrie centrale ;
- 2) Sidim $(E_1) = n 1$: on a une réflexion d'hyperplan E_1 ;
- 3) Sidim $(E_1) = n 2$: on a un renversement

Exemples

Soient E un espace euclidien et f un endomorphisme orthogonal de E tels que $f \circ f = Id_F$. Etudions les cas particuliers suivants :

 1^{er} cas : dim(E) = 2

- Si 1 n'est pas une valeur propre de f alors $\dim(E_1) = 0$ (d'où $f = -Id_E$) : on a est une symétrie centrale.
- Si 1 est une valeur propre de f alors $\dim(E_1) \neq 0$:
 - Si $dim(E_1) = 1$: on a une réflexion d'hyperplan E_1 ;
 - ightharpoonup Si dim $(E_1) = 2$, alors $E = E_1$ d'où $f = Id_E$

 $2^{\text{ème}}$ cas : $\dim(E) = 3$

- Si 1 n'est pas une valeur propre de f alors $\dim(E_1) = 0$ (d'où $f = -Id_E$) : on a une symétrie centrale.
- Si 1 est une valeur propre de f alors $\dim(E_1) \neq 0$:
 - ightharpoonup Si dim $(E_1) = 3$, alors $f = Id_E$
 - > Si $dim(E_1) = 2$: on a est une réflexion d'hyperplan E_1 ;
 - ightharpoonup Si dim(E_1) = 1 : on a un renversement.

Théorème

Soient E un espace euclidien de dimension n et f un endomorphisme orthogonal de E tels que $f\circ f=Id_E$ alors :

1) Si $\dim(E_1) = n-1$, alors f est la réflexion d'hyperplan E_1 et il existe un vecteur non nul $a \in E_{-1}$ tel que $f = s_a$ où s_a est l'endomorphisme de E défini par :

$$\forall u \in E, \, s_a(u) = u - 2 < u \left| \frac{a}{\|a\|} > \frac{a}{\|a\|} \right|$$

De plus si A est la matrice associée à f par rapport à une base de E, det(A) = -1.

2) Si $\dim(E_1) = n-2$, alors il existe deux vecteurs non nuls orthogonaux $a \in E_{-1}$, $b \in E_{-1}$ tels que le renversement f vérifie : $f = s_a \circ s_b = s_b \circ s_a$ et $\det(A) = 1$ où A est la matrice associée à f par rapport à une base de E.

Preuve.....

Exemples

Soient E un espace euclidien et f un endomorphisme orthogonal de E tels que $f \circ f = Id_E$. Etudions les cas particuliers suivants:

1er cas : dim(E) = 2

- Si dim $(E_1) = 2$ alors $f = Id_E$
- Si $\dim(E_1)=1$ alors $\dim(E) \neq \dim(E_1)$ d'où d'après l'une des remarques ci-dessus, -1 et 1 sont les valeurs propres de f, E_{-1} et E_1 sont orthogonaux et $E=E_{-1}\oplus E_1$. Donc $\dim(E_{-1})=1$, et il existe alors un vecteur non nul $a\in E_{-1}$ tel que $E_{-1}=vect(\{a\})$ et $f=s_a$ est la réflexion par rapport à E_1 (c'est la symétrie orthogonale par rapport à E_1).
- Si dim $(E_1) = 0$ alors $f = -Id_E$

 $2^{\text{ème}}$ cas : $\dim(E) = 3$

- Si dim $(E_1) = 3$ alors $f = Id_E$
- Si $\dim(E_1) = 2$ alors $\dim(E) \neq \dim(E_1)$ d'où d'après l'une des remarques ci-dessus, -1 et 1 sont les valeurs propres de f, E_{-1} et E_1 sont orthogonaux et $E = E_{-1} \oplus E_1$. Donc $\dim(E_{-1}) = 1$, et il existe alors un vecteur non nul $a \in E_{-1}$ tel que $E_{-1} = vect(\{a\})$ et $f = s_a$ est la réflexion par rapport à E_1 (c'est la symétrie orthogonale par rapport à E_1).

- Si $\dim(E_1) = 1$ alors $\dim(E) \neq \dim(E_1)$ d'où d'après l'une des remarques ci-dessus, -1 et 1 sont les valeurs propres de f, E_{-1} et E_1 sont orthogonaux et $E = E_{-1} \oplus E_1$.
 - Donc $\dim(E_{-1}) = 2$, et il existe alors deux vecteurs non nuls orthogonaux $(a,b) \in (E_{-1})^2$ tels que $E_{-1} = vect(\{a,b\})$ et $f = s_a \circ s_b = s_b \circ s_a$ est un renversement.
- Si $\dim(E_1) = 0$ alors $f = -Id_E$

Classification des endomorphismes orthogonaux (isométries) en dimension 1, 2 ou 3 Soient E un espace euclidien muni d'un produit scalaire $<\cdot|\cdot>$ et f un endomorphisme orthogonal (**isométrie**) de E c'est-à-dire (${}^t\!A$) $A=I_n$ où A est la matrice associée à f par rapport à une base orthonormée de E, d'où $\det(A)=\pm 1$ car $\det({}^t\!A)=\det(A)$ et $\det(I_n)=1$.

 1^{er} cas : dim(E) = 1

Théorème (à retenir)

Si $\dim(E)=1$ et f est un endomorphisme orthogonal (**isométrie**) de E alors $f=-Id_E$ ou $f=Id_E$

Preuve.....

 $2^{\text{ème}}$ cas : $\dim(E) = 2$

Théorème (à retenir)

Si $\dim(E) = 2$ et f est un endomorphisme orthogonal (**isométrie**) de E on a :

- Si $\det(A)=1$ (c'est-à-dire f est une **isométrie positive**) : il existe $\theta \in \mathbf{R}$ tel que $A = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}, \ f \text{ est la rotation vectorielle d'angle } \theta \ ;$ de plus si $f \neq Id_E$ ou $f \neq -Id_E$ alors f n'est pas diagonalisable sur \mathbf{R} .
- Si $\det(A) = -1$ (c'est-à-dire f est une **isométrie négative**) : il existe $\theta \in \mathbf{R}$ tel que $A = \begin{pmatrix} \cos(\theta) & \sin(\theta) \\ \sin(\theta) & -\cos(\theta) \end{pmatrix}$, on a $f \circ f = Id_E$ et f est la symétrie orthogonale par rapport à la droite vectorielle E_1 d'équation cartésienne : $(A I_2) \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$. de plus f est diagonalisable sur \mathbf{R} .

Preuve.....

Remarques

1) Si $\dim(E) = 2$ et f est une **isométrie négative** alors $f \circ f = Id_E$.

En effet
$$A = \begin{pmatrix} \cos(\theta) & \sin(\theta) \\ \sin(\theta) & -\cos(\theta) \end{pmatrix}$$
 donc ${}^tA = \begin{pmatrix} \cos(\theta) & \sin(\theta) \\ \sin(\theta) & -\cos(\theta) \end{pmatrix} = A$ et puisque $({}^tA)A = I_2$

alors $A.A = I_2$ c'est-à-dire $f \circ f = Id_E$

2) Si dim(E) = 2 et f est une **isométrie négative** alors

$$E_{1} = vect\left(\left\{\left(\cos(\frac{\theta}{2}), \sin(\frac{\theta}{2})\right)\right\}, E_{-1} = vect\left(\left\{\left(-\sin(\frac{\theta}{2}), \cos(\frac{\theta}{2})\right)\right\}\right\},$$

3) Si $\dim(E) = 2$ et f est une **isométrie négative** alors $f \circ f = Id_E$ et les valeurs propres de f sont -1 et 1 d'où E_{-1} et E_1 sont orthogonaux et $E = E_{-1} \oplus E_1$.

Rappel : Si B est une matrice carrée de type $n \times n$ et λ est un scalaire alors $\det(\lambda B) = \lambda^n \det(B)$

Exemples

1) On considère \mathbf{R}^2 muni du produit scalaire usuel $<\cdot$ $|\cdot>$.

Soit $A = \frac{1}{5} \begin{pmatrix} 3 & 4 \\ 4 & -3 \end{pmatrix}$ la matrice associée à l'endomorphisme f de \mathbf{R}^2 par rapport à la base

canonique $B = \{e_1, e_2\}$ de \mathbf{R}^2 où $e_1 = (1,0)$ et $e_2 = (0,1)$.

Quelle est la nature de l'endomorphisme f ?

Réponse

> Tout d'abord on remarque que $B = \{e_1, e_2\}$ est une base orthonormée car $< e_1 | e_2 > = 0$ et $||e_1|| = ||e_2|| = 1$;

$$A = \frac{1}{5} \begin{pmatrix} 3 & 4 \\ 4 & -3 \end{pmatrix} \text{ et } ({}^{t}A)A = \frac{1}{5} \begin{pmatrix} 3 & 4 \\ 4 & -3 \end{pmatrix} \cdot \frac{1}{5} \begin{pmatrix} 3 & 4 \\ 4 & -3 \end{pmatrix} = \frac{1}{25} \begin{pmatrix} 25 & 0 \\ 0 & 25 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$\det(A) = \det\left(\frac{1}{5} \begin{pmatrix} 3 & 4 \\ 4 & -3 \end{pmatrix}\right) = \left(\frac{1}{5}\right)^2 \det\begin{pmatrix} 3 & 4 \\ 4 & -3 \end{pmatrix} = \frac{1}{25}(-25) = -1$$

Conclusion:

On a $\dim(\mathbf{R}^2) = 2$, $(^tA)A = I_2$ et $\det(A) = -1$ d'où f est la symétrie orthogonale par rapport

à la droite $E_1 = Ker(f - Id_{\mathbf{R}^2})$ d'équation cartésienne : $y = \frac{1}{2}x$ car,

$$(x,y) \in E_1 \Leftrightarrow (A-I_2) \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Leftrightarrow \begin{pmatrix} \frac{3}{5} - 1 & \frac{4}{5} \\ \frac{4}{5} & \frac{-3}{5} - 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Leftrightarrow \begin{pmatrix} \frac{-2}{5} & \frac{4}{5} \\ \frac{4}{5} & \frac{-8}{5} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Leftrightarrow \cdots \Leftrightarrow y = \frac{1}{2}x$$

2) On considère \mathbf{R}^2 muni du produit scalaire usuel $<\cdot$ $|\cdot>$.

Soit $A = \frac{1}{5} \begin{pmatrix} 3 & -4 \\ 4 & 3 \end{pmatrix}$ la matrice associée à l'endomorphisme f de \mathbf{R}^2 par rapport à la base

canonique $B = \left\{e_1\,, e_2\right\}$ de \mathbf{R}^2 où $e_1 = (1,0)$ et $e_2 = (0,1)$.

Quelle est la nature de l'endomorphisme f?

Réponse

Idem:

> Tout d'abord on remarque que $B=\left\{e_1,e_2\right\}$ est une base orthonormée car $<\!e_1\left|e_2>\!=\!0\right|$ et $\left\|e_1\right\|=\left\|e_2\right\|=1$

$$\det(A) = \det\left(\frac{1}{5} \begin{pmatrix} 3 & 4 \\ 4 & -3 \end{pmatrix}\right) = \left(\frac{1}{5}\right)^2 \det\begin{pmatrix} 3 & -4 \\ 4 & 3 \end{pmatrix} = \frac{1}{25}(25) = 1$$

Conclusion:

On a dim(\mathbb{R}^2) = 2, (tA) $A = I_2$ et det(A) = 1

d'où il existe $\theta \in \mathbf{R}$ tel que f est la rotation vectorielle d'angle θ :

$$A = \frac{1}{5} \begin{pmatrix} 3 & -4 \\ 4 & 3 \end{pmatrix} = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}$$

 θ est donné à $2k\pi$ où $k \in \mathbb{Z}$ et vérifie : $\cos(\theta) = \frac{3}{5}$ et $\sin(\theta) = \frac{4}{5}$.

 θ n'est pas un angle « classique » mais on peut choisir $\theta = \arctan\left(\frac{4}{3}\right)$ car

$$\tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)} = \frac{4}{3}$$
 et $\cos(\theta) > 0$.

3) On considère \mathbf{R}^2 muni du produit scalaire usuel $<\cdot$ $|\cdot>$.

Soit $A = \frac{1}{2} \begin{pmatrix} \sqrt{2} & -\sqrt{2} \\ \sqrt{2} & \sqrt{2} \end{pmatrix}$ la matrice associée à l'endomorphisme f de \mathbf{R}^2 par rapport à la

base canonique $B=\left\{e_1,e_2\right\}$ de \mathbf{R}^2 où $e_1=(1,0)$ et $e_2=(0,1)$.

Quelle est la nature de l'endomorphisme f ?

Réponse

On a $\dim(\mathbf{R}^2) = 2$, $B = \{e_1, e_2\}$ est une base orthonormée et on vérifie que $({}^t\!A)A = I_2$ et $\det(A) = 1$ d'où il existe $\theta \in \mathbf{R}$ tel que f est la rotation vectorielle d'angle θ :

$$A = \frac{1}{2} \begin{pmatrix} \sqrt{2} & -\sqrt{2} \\ \sqrt{2} & \sqrt{2} \end{pmatrix} = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}$$

 θ est donné à $2k\pi$ où $k \in \mathbb{Z}$ et vérifie : $\cos(\theta) = \frac{\sqrt{2}}{2}$ et $\sin(\theta) = \frac{\sqrt{2}}{2}$.

Il suffit alors de choisir $\theta = \frac{\pi}{4}$

Conclusion : f est la rotation vectorielle d'angle $\frac{\pi}{4}$

Avant de traiter la caractérisation d'un endomorphisme orthogonal d'un espace vectoriel de dimension 3, énonçons le théorème général suivant.

Théorème (important)

Soient E un espace euclidien muni d'un produit scalaire $<\cdot|\cdot>$ et f un endomorphisme orthogonal (**isométrie**) de E.

1) Si F est un sous-espace vectoriel de E tel que $f(F) \subset F$ alors $f(F^{\perp}) \subset F^{\perp}$; (c'est-à-dire si F est stable par f alors F^{\perp} est stable par f, où F^{\perp} est l'orthogonal de F) 2) Si $\lambda \in \mathbf{R}$ et λ est une valeur propre de f alors $\lambda = \pm 1$;

3) Si -1 et 1 sont des valeurs propres de f alors les sous-espaces propres E_{-1} et E_1 sont orthogonaux (c'est-à-dire $\forall u \in E_{-1}, \forall v \in E_1, \langle u | v \rangle = 0$)

Preuve.....

 $3^{\text{ème}}$ cas : $\dim(E) = 3$

Théorème (à retenir)

Si $\dim(E) = 3$ et f est un endomorphisme orthogonal (**isométrie**) de E on a :

- Si det(A) = 1 (c'est-à-dire f est une **isométrie positive**), alors 1 est une valeur propre de f et $dim(E_1) = 1$ ou $dim(E_1) = 3$.
 - Si dim $(E_1) = 3$, alors $f = Id_E$
 - Si $\dim(E_1) = 1$, f est dite une rotation
 - ullet Si -1 est une valeur propre (forcement double) de f, la rotation f est appelée le retournement d'axe E_1 (c'est la symétrie orthogonale par à la droite E_1) et il existe une base orthonormée $B' = \{a_1, a_2, a_3\}$ de E telle que la matrice de f par rapport à B' est de la forme

$$\begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \text{ où } E_1 = vect(\left\{a_3\right\}) \text{ , } \left\|a_3\right\| = 1 \text{ et } \left\{a_1, a_2\right\} \text{ est une base }$$

orthonormée de E_{-1} .

 $\begin{tabular}{ll} $ \bullet$ Si -1 n'est pas une valeur propre de f , alors il existe $\theta \in \mathbf{R}$ et il existe une base orthonormée $B'=\{a_1,a_2,a_3\}$ de E tel que la matrice e in the property of the$

$$\text{de } f \text{ par rapport à } B' \text{ est de la forme} \begin{pmatrix} \cos(\theta) & -\sin(\theta) & 0 \\ \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

f est la rotation vectorielle d'angle θ et d'axe $E_1 = vect(\{a_3\})$, $\|a_3\| = 1$ et $\{a_1, a_2\}$ est une base orthonormée de $(E_1)^{\perp}$.

- Si det(A) = -1 (c'est-à-dire f est une **isométrie négative**), alors
 - -1 est une valeur propre de f et $\dim(E_{-1}) = 1$ ou $\dim(E_{-1}) = 3$.
 - Si $\dim(E_{-1}) = 3$, alors $f = -Id_E$
 - Si $\dim(E_{-1}) = 1$:
 - ullet Si 1 est une valeur propre (forcement double) de $f: \dim(E_1)=2$, il existe une base orthonormée $B'=\{a_1,a_2,a_3\}$ de E telle que la matrice

de
$$f$$
 par rapport à B ' est de la forme
$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$
 dans ce cas

 $f \circ f = Id_E$ d'où f est la symétrie orthogonale par rapport à l'hyperplan E_1 : on dit que f est la réflexion de E_1 .

 $E_{-1} = vect(\{a_3\})$, $\|a_3\| = 1$ et $\{a_1, a_2\}$ est une base orthonormée de E_1 .

 \clubsuit Si 1 n'est pas une valeur propre de f , alors il existe une base orthonormée $B' = \{a_1, a_2, a_3\}$ une rotation R d'axe $E_{-1} = vect(\{a_3\})$ de

$$\mathsf{matrice} \begin{pmatrix} \cos(\theta) & -\sin(\theta) & 0 \\ \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{pmatrix} \mathsf{par} \; \mathsf{rapport} \; \grave{\mathbf{a}} \; \mathit{B'} \; \mathsf{telles} \; \mathsf{que}$$

 $f = S \circ R = R \circ S$ où S est la réflexion par rapport au plan $\left(E_{-1}\right)^{\perp}$ de

matrice
$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$
 par rapport à B' .

C'est-à-dire f est la composée de la réflexion par rapport au plan $\left(E_{-1}\right)^{\!\!\perp}$ et d'une rotation d'axe E_{-1} , qui commutent.

Preuve.....

Exemples

1) On considère \mathbf{R}^3 muni du produit scalaire usuel $<\cdot$ $|\cdot>$.

Soit $A = \frac{1}{3} \begin{pmatrix} 2 & 1 & -2 \\ -2 & 2 & -1 \\ 1 & 2 & 2 \end{pmatrix}$ la matrice associée à l'endomorphisme f de \mathbf{R}^3 par rapport à la

base canonique $B=\left\{e_1,e_2,e_3\right\}$ de ${\bf R}^3$ où $e_1=(1,0,0)$, $e_2=(0,1,0)$ et $e_3=(0,0,1)$. Quelle est la nature de l'endomorphisme f ?

Réponse

On a dim(\mathbf{R}^3) = 3, $B = \{e_1, e_2, e_3\}$ est une base orthonormée de \mathbf{R}^3 et on vérifie facilement

que ('A)
$$A = \frac{1}{3} \begin{pmatrix} 2 & -2 & 1 \\ 1 & 2 & 2 \\ -2 & -1 & 2 \end{pmatrix} \frac{1}{3} \begin{pmatrix} 2 & 1 & -2 \\ -2 & 2 & -1 \\ 1 & 2 & 2 \end{pmatrix} = I_3$$
 et $\det(A) = \left(\frac{1}{3}\right)^3 \det\begin{pmatrix} 2 & 1 & -2 \\ -2 & 2 & -1 \\ 1 & 2 & 2 \end{pmatrix} = 1$

D'où f est une isométrie positive et $f \neq Id_{\mathbf{R}^3}$ car $A \neq I_3$ donc d'après le théorème cidessus $\dim(E_1) = 1$.

De plus -1 n'est pas une valeur propre de f car $\det(A + I_3) = \det\begin{pmatrix} \frac{2}{3} + 1 & \frac{1}{3} & \frac{-2}{3} \\ \frac{-2}{3} & \frac{2}{3} + 1 & \frac{-1}{3} \\ \frac{1}{3} & \frac{2}{3} & \frac{2}{3} + 1 \end{pmatrix} \neq 0$

D'où il existe $\theta \in \mathbf{R}$ et il existe une base orthonormée $B' = \{a_1, a_2, a_3\}$ de \mathbf{R}^3 telles que la

 $\text{matrice de } f \text{ par rapport à } B' \text{ est de la forme} \begin{pmatrix} \cos(\theta) & -\sin(\theta) & 0 \\ \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{pmatrix}.$

f est la rotation vectorielle d'angle θ et d'axe $E_1 = vect(\{a_3\})$, $\|a_3\| = 1$ et $\{a_1, a_2\}$ est une base orthonormée de $(E_1)^{\perp}$.

Cherchons les vecteurs a_1, a_2, a_3 :

•
$$(x, y, z) \in E_1 \Leftrightarrow (A - I_3) \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \Leftrightarrow \begin{cases} -x + y - 2z = 0 \\ x + 2y - z = 0 \end{cases}$$

D'où
$$E_1 = vect(\{(-1,1,1)\})$$
 donc $E_1 = vect(\{a_3\})$ où $a_3 = \frac{1}{\sqrt{3}}(-1,1,1)$,

Par suite $(E_1)^{\perp}$ est le plan d'équation cartésienne : -x+y+z=0.

Posant
$$a_1 = \frac{1}{\sqrt{2}}(1,1,0)$$
 et $a_2 = a_3 \wedge a_1 = \frac{-1}{\sqrt{6}}e_1 + \frac{1}{\sqrt{6}}e_2 - \frac{2}{\sqrt{6}}e_3$

D'où
$$a_2=(\frac{-1}{\sqrt{6}},\frac{1}{\sqrt{6}},\frac{-2}{\sqrt{6}})$$
 ; $\{a_1,a_2\}$ est une base orthonormée de $(E_1)^\perp$ et

 $\textit{B'} = \left\{a_1, a_2, a_3\right\} \text{ est une base orthonorm\'ee de } \mathbf{R}^3 \text{ telles que la matrice de } f \text{ par rapport}$

$$\text{à B' est de la forme } M_f(B') = \begin{pmatrix} \cos(\theta) & -\sin(\theta) & 0 \\ \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \\ \end{pmatrix}.$$

Cherchons alors θ un angle de la rotation f

D'après la formule de changement de bases on a : $M_f(B') = P^{-1}AP$ où

$$P = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{6}} & \frac{-1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ 0 & \frac{-2}{\sqrt{6}} & \frac{1}{\sqrt{3}} \end{pmatrix} \text{ est la matrice de passage de la base } B \text{ à la base } B'.$$

Et puisque B et B' sont deux bases orthonormées alors $P^{-1}={}^{t}P$

$$\mathsf{D'où} \begin{pmatrix} \cos(\theta) & -\sin(\theta) & 0 \\ \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ \frac{-1}{\sqrt{6}} & \frac{1}{\sqrt{6}} & \frac{-2}{\sqrt{6}} \\ \frac{-1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \end{pmatrix} \frac{1}{3} \begin{pmatrix} 2 & 1 & -2 \\ -2 & 2 & -1 \\ 1 & 2 & 2 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{6}} & \frac{-1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ 0 & \frac{-2}{\sqrt{6}} & \frac{1}{\sqrt{3}} \end{pmatrix} \mathsf{donc}$$

$$\begin{pmatrix} \cos(\theta) & -\sin(\theta) & 0 \\ \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 d'où $\theta = \frac{-\pi}{3} + 2k\pi$ où $k \in \mathbb{Z}$

Conclusion : f est la rotation vectorielle d'angle $\theta = \frac{-\pi}{3}$ et d'axe $E_1 = vect(\left\{\frac{1}{\sqrt{3}}(-1,1,1)\right\})$

2) Soient E un espace euclidien de dimension 3, muni du produit scalaire usuel $<\cdot$ $|\cdot>$ et $B=\{a_1,a_2,a_3\}$ une base orthonormée de E.

Déterminer la matrice par rapport à la base B, de la rotation d'axe dirigé par $u=a_1+2a_2+a_3$ et d'angle $\frac{3\pi}{2}$.

Réponse

Posons $b_3 = \frac{u}{\|u\|} = \frac{1}{\sqrt{6}}(a_1 + 2a_2 + a_3)$ et déterminons d'abord un vecteur unitaire (c'est à dire

de norme 1 et orthogonal à b_3 . On peut choisir par exemple $b_1 = \frac{1}{\sqrt{2}}(a_1 - a_3)$

(On peut aussi choisir d'après le procédé de Gram-Schmidt , $b_1 = \frac{a_1 - \langle a_1 | b_3 \rangle b_3}{\|a_1 - \langle a_1 | b_3 \rangle b_3\|}$)

Puis on choisit $b_2 = \frac{b_3 \wedge b_1}{\|b_3 \wedge b_1\|}$ dans la base $B = \{a_1, a_2, a_3\}$, on a donc $b_2 = \frac{1}{\sqrt{3}}(-a_1 + a_2 - a_3)$.

D'où la matrice de la rotation d'axe dirigé par b_3 et d'angle $\frac{3\pi}{2}$ par rapport à la base

$$B' = \{b_1, b_2, b_3\} \text{ est } R = \begin{pmatrix} \cos(\frac{3\pi}{2}) & -\sin(\frac{3\pi}{2}) & 0\\ \sin(\frac{3\pi}{2}) & \cos(\frac{3\pi}{2}) & 0\\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0\\ -1 & 0 & 0\\ 0 & 0 & 1 \end{pmatrix}$$