	Objective It is very important to observe we cannot really control What Type of Customer Will Approach the Bank so here regression aspect of logistic model is meaningless as we cannot change the predictors to get the suitable value of response. So we will use Logistic Regression for prediction Purpose and also compare it with the results of ANN Accuracy comparison F Score comparison ROC Curve visulization
] •	Methodology Data Collection Dataset Link: Click Here ➤ Variable Details Data preprocessing Getting the required libraries:
	import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from implearn.over_sampling import SMOTENC from sklearn.preprocessing import StandardScaler from IPython.display import display, HTML #model from sklearn.linear_model import LogisticRegression from sklearn.linear_model import train_test_split from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, Dropout from tensorflow.keras.layers import Dense, Dropout from tensorflow.keras.optimizers import Adam from tensorflow.keras.optimizers import Dense, Dropout from tensorflow.keras.optimizers import ReducelPORPLateau ModelCheckpoint Farlystopping
: C	from sklearn.metrics import accuracy_score , classification_report , precision_score , recall_score , confusion_matrix , fl_score , roc_auc_score , roc_curve Loading the data credit_data=pd.read_csv("/content/drive/MyDrive/credit_approval/dataset.csv") credit_data.head() 10 Gender Own_car Own_property Work_phone Phone Email Unemployed Num_children Num_family Account_length Total_income Age Years_employed Income_type Education_type Family_status Housing_type Occupation_type Ta 0 5008804 1 1 1 1 0 0 0 0 0 0 2 15 427500.0 32.868574 12.435574 Working Higher education Civil marriage Rented apartment Other 1 5008806 1 1 1 0 0 0 0 0 0 2 29 112500.0 58.793815 3.104787 Working Secondary_sec
: i i c c c c c c c c c c c c c c c c c	2 5008808 0 0 1 0 1 1 0 0 1 1 0 0 1 1 0 0 0 1 4 270000.0 52.321403 8.353354 Commercial associate Secondary_secondary
(((((((((((((((((((<pre>for i in np.array([0,1,2,3,4,5,6,13,14,15,6,17,18]):</pre>
	0 Gender 9709 non-null category 1 Own_property 9709 non-null category 2 Own_property 9709 non-null category 4 Phone 9709 non-null category 5 Email 9709 non-null category 6 Unemployed 9709 non-null category 7 Num_children 9709 non-null int64 8 Num_family 970 non-null int64 9 Account_length 9709 non-null int64 10 Total_income 9709 non-null float64 4 Paes 9709 non-null float64 2 Years_employed 9709 non-null float64
c m	Income_type 9709 non-null category 9709 non-n
	<pre>cocupation_counts = credit_data['Occupation_type'].value_counts() axis[0,0].pie(loccupation_counts, autopct='%1.ff%*') axis[0,0].set_title('Occupation_type Distribution') axis[0,0].legend(occupation_counts.index, loc='center left', bbox_to_anchor=(1, 0.5)) housing_counts = credit_data['Housing_type'].value_counts() axis[0,1].pie(housing_counts, autopct='%1.ff%*') axis[0,1].set_title('Housing_Type Distribution') axis[0,1].legend(housing_counts.index, loc='center left', bbox_to_anchor=(1, 0.5)) Income_type_counts = credit_data['Income_type'].value_counts() axis[1,0].pie(Income_type_counts, autopct='%1.ff%*') axis[0,0].set_title('Tncome_type_type Distribution')</pre>
F c c	Axis[1,0].legend(Income_type_counts.index, loc='center left', bbox_to_anchor=(1, 0.5)) Education_type_counts = credit_data['Education_type'].value_counts() axis[1,1].ple(Education_type_counts, autopot='%1.if%%') axis[1,1].set_title(' Education_type Distribution') axis[1,1].legend(Education_type_counts.index, loc='center left', bbox_to_anchor=(1, 0.5)) plt.show() Occupation Type Distribution Occupation Type Distribution Occupation Type Distribution Flowing Type Distribution Housing Type Distribution
	Managers Drivers High skill tech staff Accountants Medicine staff Cooking staff Security staff Cleaning staff Private service staff Low-skill Laborers Secretaries
	Waiters_barmen staff HR staff IT staff Realty agents Education_type Distribution Secondary_secondary special Higher education Higher education Incomplete higher
2	State servant Student Student State servant Student Lower secondary Academic degree 25.3% Lower secondary Academic degree
	Num_children 1
	3000 - 20
	Family_status Num_family Total_income Total_income Total_income
	2000 - 10
	figure, axis =plt.subplots(2,2,figsize=(8,8)) sns.violinplot(y=credit_data['Unemployed'],x=credit_data['Total_income'],ax=axis[0,0],color="green") axis[0,0].set_xlabel("Total Income") axis[0,0].set_ylabel("Unemployed") axis[0,0].set_title("Violinplot of Total Income vs Unemployed") sns.violinplot(y=credit_data['Income_type'],x=credit_data['Total_income'],ax=axis[0,1],color="red") axis[0,1].set_xlabel("Total Income") axis[0,1].set_ylabel("Income Type") axis[0,1].set_ylabel("Income Type")
	axis[1,0].hist(credit_data["Age"), color="darkblue") axis[1,0].set_ylabel("Frequency") axis[1,0].set_ylabel("Frequency") axis[1,0].set_ylamel(0,1500]) axis[1,1].hist(credit_data["Account_length"), color="saddlebrown") axis[1,1].set_xlabel("Account_Length") axis[1,1].set_ylabel("Frequency") axis[1,1].set_ylabel("Frequency") axis[1,1].set_ylabel("Frequency") axis[1,1].set_ylabel("Histogram of Account_Length") axis[1,1].set_ylamel(0,1500)) plt.tight_layout() plt.show()
	Violinplot of Total Income vs Unemployed Violinplot of Total Income vs Income Type Commercial associate Pensioner State servant
	Student - Working - 1.5 1 0.0 0.5 1.0 1.5 Total Income 1e6 Histogram of Age Histogram of Age 1400 - 1400 - 1400
	1400 - 1200 - 1000 -
i	200 - 200 - 40 - 50 - 60 - 70
7 7	<pre>count Target Target</pre>
	<pre>df=smote_nc.fit_resample(X,y) credit_data_bal=pd.DataFrame(df[0]) credit_data_bal('Target']=df[1] credit_data_bal('Target'].value_counts()</pre>
tt tt tt c	#converting in suitable format for i in credit_data_bal.columns[[0,1,2,3,4,5,6,13,14,15,16,17,18]]: credit_data_bal[i]=pd.Categorical(credit_data_bal[i]) for i in credit_data_bal.columns[[7,8,9,10,11,12]]: credit_data_bal[i]=pd.to_numeric(credit_data_bal[i]) for i in credit_data_bal.columns[[7,8,9]]: credit_data_bal.columns[[7,8,9]]: credit_data_bal.info() <class 'pandas.core.frame.dataframe'=""> RangeIndex: 16852 entries, 0 to 16851</class>
	Data columns (total 19 columns): # Column Non-Null columns Drype
co m	11 Age 16852 non-null float64 12 Years_employed 16852 non-null float64 13 Income_type 16852 non-null category 14 Education_type 16852 non-null category 15 Family_status 16852 non-null category 16 Housing_type 16852 non-null category 17 Occupation_type 16852 non-null category 18 Target 16852 non-null category 18 Target 16852 non-null category 18 Target 16852 non-null category 19 Total of the neumerical variables and using OneHotEncoding for categorical variables #Scaling the neumerical variables and using OneHotEncoding for categorical variables std=Std=StandardScaler() credit_data_bal_encoded=pd.get_dummies (credit_data_bal,columns=credit_data_bal.columns[[0,1,2,3,4,5,6,13,14,15,16,17]],drop_first=True)
c c c c c c c c c c c c c c c c c c c	credit_data_bal_encoded(credit_data_bal_encoded.columns[[0,1,2,3,4,5]]]=std.fit_transform(credit_data_bal_encoded.columns[[0,1,2,3,4,5]]]) for i in credit_data_bal_encoded.columns[np.arange(7,49)]:
rr	X_train, X_test, y_train, y_test=train_test_split (X, y, test_size=0.2) Logistic regression modell=LogisticRegression (max_iter=1000) modell.fit (X_train, y_train) LogisticRegression LogisticRegression (max_iter=1000) Checking accuracy metric on Test data
F F	<pre>predl=model1.predict(X_test) accuracy = accuracy_score(y_test, pred1) f1 = f1_score(y_test, pred1) print(f*Accuracy: (accuracy:.2f)*) print(f*F1 score: (f1:.2f)*) Accuracy: 0.72 F1 score: 0.72 ROC Curve and AUC score</pre> <pre>roc_auc = roc_auc_score(y_test, pred1)</pre>
	<pre>fpr, tpr, thresholds = roc_curve(y_test, pred1) plt.figure(figsize=(8, 6)) plt.plot(fpr, tpr, color='darkblue', lw=2, label=f'ROC Curve (AUC = {roc_auc:.2f})') plt.plot([0, 1], [0, 1], color='gray', linestyle='') plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('Receiver Operating Characteristic (ROC) Curve') plt.legend(loc='lower right') plt.show()</pre> Receiver Operating Characteristic (ROC) Curve 1.0 -
,	Dositive Water and the state of
	0.2 - ROC Curve (AUC = 0.72)
r	Artificial Neural Network Model model2 = Sequential() model2.add(Dense(512,input_dim=X_train.shape[1],activation='relu',kernel_initializer='he_normal')) model2.add(Dropout(0.2)) model2.add(Dense(512,activation='relu',kernel_initializer='he_normal')) model2.add(Dropout(0.2)) model2.add(Dense(256,activation='relu',kernel_initializer='he_normal'))
rr r	model2.add(Dense(64,activation='relu',kernel_initializer='he_normal')) model2.add(Dense(1, activation='sigmoid')) model2.compile(optimizer=Adam(learning_rate =0.001),loss='binary_crossentropy',metrics=['accuracy']) early_stopping = EarlyStopping(monitor='val_accuracy',patience=10,restore_best_weights=True) model2.summary() //usr/local/lib/python3.10/dist-packages/keras/src/layers/core/dense.py:87: UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sequential models, prefer using an `Input(shape)` object as t layer in the model instead. super()init(activity_regularizer=activity_regularizer, **kwargs)
M	Layer (type) Output Shape Param # dense (Dense) (None, 512) 25,088 dropout (Dropout) (None, 512) 0 dense_1 (Dense) (None, 512) 262,656 dropout_1 (Dropout) (None, 512) 0 dense_2 (Dense) (None, 256) 131,328
ŀ	dense_3 (Dense) (None, 64) 16,448 dense_4 (Dense) (None, 1) 65 Total params: 435,585 (1.66 MB) Trainable params: 435,585 (1.66 MB) Non-trainable params: 0 (0.00 B) history = model2.fit (x= X_train, y= y_train, validation_data=(X_test,y_test), batch_size= 256, epochs=1000, verbose=0, callbacks=[early_stopping])
	Predicting accuracy for ANN model pred2= model2.predict (X_test) pred2= binary = (pred2 > 0.5).astype(int) # Convert probabilities to binary predictions (0 or 1) accuracy = accuracy_score(y_test, pred2_binary) f1 =f1_score(y_test, pred2_binary) print(f"Accuracy: (accuracy:2f)") display(HTML(f"Acsydel Accuracy: (np.round(accuracy,2)) "") display(HTML(f" <h3>Model F1 score: (f1:.2f)") display(HTML(f"<h3>Model F1 score: (np.round(f1,2)) "") 106/106</h3></h3>
F I	<pre>Model Accuracy: 0.83 F1 Score: 0.83 Model F1 score: 0.83 Model F1 score: 0.83 ROC curve and AUC score roc_auc = roc_auc_score(y_test, pred2_binary) fpr ,tpr, threshold = roc_curve(y_test, pred2_binary) plt.figure(figsize=(8, 6)) plt.plot(fpr, tpr, color='darkblue', lw=2, label=f'ROC Curve (AUC = {roc_auc:.2f})') plt.plot(fpr, tpr, color='darkblue', lw=2, label=f'ROC Curve (AUC = {roc_auc:.2f})') plt.plot([0, 1], [0, 1], color='gray', linestyle='') plt.xlabel('False Positive Rate')</pre>
I I	plt.ylabel('True Positive Rate') plt.ylabel('True Positive Rate') plt.title('Receiver Operating Characteristic (ROC) Curve') plt.show() Receiver Operating Characteristic (ROC) Curve 1.0 - 0.8 -
,	The Bositive Batter of the Control o
	0.0 — ROC Curve (AUC = 0.83) O.0 — ROC Curve (AUC = 0.83) False Positive Rate Function for predicting risk using the ANN model
r	new_data=pd.DataFrame(0,index=[0],columns=X_train.columns) def predict_credit_risk(
	<pre># Own car if Own_car == "Yes": new_data.iloc[:,7] = 1 # Own_property if Own_property == "Yes": new_data.iloc[:,8] = 1 # Phone if Phone == "Yes": new_data.iloc[:,10] = 1 # Email if Email == "Yes":</pre>
	<pre>if Email == "Yes": new_data.iloc[:,11] = 1 # Unemployed if Unemployed == "Yes": new_data.iloc[:,12] = 1 # Income type if Income_type == "Working": new_data.iloc[:,16] = 1 elif Income_type == "Pensioner": new_data.iloc[:,13] = 1 elif Income_type == "State servant": new_data.iloc[:,14] = 1 elif Income_type == "Student":</pre>
	<pre>if Family_status == "Married": new_data.iloc(;,21] = 1 elif Family_status == "Separated": new_data.iloc(;,22) = 1 elif Family_status == "Single_unmarried": new_data.iloc[;,23] = 1 elif Family_status == "Widow": new_data.iloc[;,24] = 1 # Housing type if Housing_type == "Rented apartment": new_data.iloc(;,28] = 1 elif Housing_type == "With parents": new_data.iloc(;,28] = 1</pre>
	<pre>new_data.iloc[:,39] = 1 elif Occupation_type == "Sales staff": new_data.iloc[:,44] = 1 elif Occupation_type == "Drivers": new_data.iloc[:,33] = 1 elif Occupation_type == "High skill tech staff": new_data.iloc[:,35] = 1 elif Occupation_type == "Medicine staff": new_data.iloc[:,40] = 1 elif Occupation_type == "IT staff": new_data.iloc[:,36] = 1 elif Occupation_type == "Cleaning staff": new_data.iloc[:,36] = 1 elif Occupation_type == "Cleaning staff": new_data.iloc[:,30] = 1 elif Occupation_type == "Clooking staff":</pre>
	<pre>new_data.iloc[:,31] = 1 elif Occupation_type == "HR staff": new_data.iloc[:,34] = 1 elif Occupation_type == "Low-skill Laborers": new_data.iloc[:,38] = 1 elif Occupation_type == "Realty agents": new_data.iloc[:,38] = 1 elif Occupation_type == "Security staff": new_data.iloc[:,43] = 1 elif Occupation_type == "Security staff": new_data.iloc[:,46] = 1 elif Occupation_type == "Waiters_barmen staff": new_data.iloc[:,47] = 1 elif Occupation_type == "Other": new_data.iloc[:,41] = 1 elif Occupation_type == "Private service staff":</pre>
	<pre>new_data.iloc[:,42] = 1 elif Occupation_type == "Secretaries": new_data.iloc[:,45] = 1 # Normalize numeric inputs new_data.iloc[:,0] = (Num_children - X_train['Num_children'].describe()[1]) / X_train['Num_children'].describe()[2] new_data.iloc[:,1] = (Num_family - X_train['Num_family'].describe()[1]) / X_train['Num_family'].describe()[2] new_data.iloc[:,2] = (Account_length - X_train['Account_length'].describe()[1]) / X_train['Account_length'].describe()[2] new_data.iloc[:,3] = (((Total_income)/11.75) - X_train['Total_income'].describe()[1]) / X_train['Total_income'].describe()[2] new_data.iloc[:,4] = (Age - X_train['Age'].describe()[1]) / X_train['Age'].describe()[2] new_data.iloc[:,5] = (Years_employed - X_train['Years_employed'].describe()[1]) / X_train['Years_employed'].describe()[2] # Predict credit risk</pre>
	<pre># Predict credit risk pred2 = model2.predict (new_data) # Convert prediction to binary class prediction = (pred2 > 0.5).astype(int) if prediction == 1: prediction_final = "High " else: prediction_final = "Low " return prediction_final</pre> Let us try to predict on a given input
	pred_datapoint=predict_credit_risk(Gender="Maile", Work_phone="Yes", Own_car="Yes", Phone="Yes", Email="Yes", Unemployed="No", Num_children=0, Num_family=4, Total_income=200000, Ag==22, Years_employed=1, Income_type="Working", Account_length=12, Housing_type="Working", Housing_type="With parents",
1 × × × × × × × × × × × × × × × × × × ×	Housing_type="With parents", Occupation_type="IT staff", Education_type="IT staff", Education_type="Single_unmarried", Own_property="Yes") display(HTML(f" <h3>Credit card user risk : (pred_datapoint)</h3> ")) 1/1
7	<pre>cipython-input-20-68cdc8e09a73>:117: FutureWarning: Seriesgetitem treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To value by position, use 'ser.iloc[pos]' new_data.iloc[:,1] = (Num_family - X_train['Num_family'].describe()[1]) / X_train['Num_family'].describe()[2] </pre> <pre>cipython-input-20-68cdc8e09a73>:117: FutureWarning: Seriesgetitem treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To value by position, use 'ser.iloc[pos]' new_data.iloc[:,1] = (Num_family - X_train['Num_family'].describe()[1]) / X_train['Num_family'].describe()[2] </pre> <pre> <ipython-input-20-68cdc8e09a73>:118: FutureWarning: Seriesgetitem treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To value by position, use 'ser.iloc[pos]' new_data.iloc[:,2] = (Account_length - X_train['Account_length'].describe()[2] </ipython-input-20-68cdc8e09a73></pre> <pre> <ipython-input-20-68cdc8e09a73>:118: FutureWarning: Seriesgetitem treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To value by position, use 'ser.iloc[pos]' new_data.iloc[:,2] = (Account_length - X_train['Account_length'].describe()[2] </ipython-input-20-68cdc8e09a73></pre> <pre> <ipython-input-20-68cdc8e09a73>:118: FutureWarning: Seriesgetitem treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To value by position, use 'ser.iloc[pos]' new_data.iloc[:,2] = (Account_length - X_train['Account_length'].describe()[2] </ipython-input-20-68cdc8e09a73></pre> <pre> <ipre> <ipre> </ipre></ipre></pre> <pre> </pre> <pre></pre>
7	new_data.iloc[;,3] = (([Total_income)/11.75) - X_train['Total_income'].describe()[1]) / X_train['Total_income'].describe()[2] inew_data.iloc[:,3] = (([Total_income)/11.75) - X_train['Total_income'].describe()[1]) / X_train['Total_income'].describe()[2] inew_data.iloc[:,3] = (([Total_income)/11.75) - X_train['Total_income'].describe()[1]) / X_train['Total_income'].describe()[2] inew_data.iloc[:,3] = (([Total_income)/11.75) - X_train['Total_income'].describe()[1]) / X_train['Total_income'].describe()[2] inew_data.iloc[:,4] = (Age - X_train['Age'].describe()[1]) / X_train['Age'].describe()[2] inew_data.iloc[:,5] = (Years_employed - X_train['Years_employed'].describe()[1]) / X_train['Years_employed'].describe()[2] inew_data.iloc[:,5] = (Years_employed - X_train['Years_employed'].describe()[1]) / X_train['Year
C	new_data.iloc[;,5] = (Years_employed - X_train['Years_employed'].describe()[1]) / X_train['Years_employed'].describe()[2] **stypthon-input-20-68cdc8e09a73-3121: FutureWarning: Seriesgetitem treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To availue by position, use 'ser.iloc[pos]' new_data.iloc[:,5] = (Years_employed - X_train['Years_employed'].describe()[1]) / X_train['Years_employed'].describe()[2] **Credit card user risk : High **Conclusion** Summmary Findings* **We have a clear higher accuracy in ANN model than Logistic model.
	 We have a clear higher accuracy in ANN model than Logistic model. We have a clear higher F1 score in ANN model than Logistic model. We have a clear higher ROC AUC in ANN model than Logistic model.
+ + F	Higher Accuracy: The ANN model has demonstrated superior accuracy compared to the Logistic Regression model. This indicates that the ANN model is more proficient at correctly classifying both the default and non-default classes overall. Higher F1 Score: The ANN model's higher F1 score suggests it performs better in balancing precision and recall, which is crucial in imbalanced datasets where one class (e.g., high risk) may be less frequent. This indicates that the ANN model is more effective at minimizing both for positives and false negatives, which is especially important in credit card risk prediction where the cost of misclassification can be high. Higher ROC AUC: The ANN model also exhibits a higher ROC AUC score, reflecting its enhanced ability to discriminate between the high risk and low risk classes across different classification thresholds. A higher ROC AUC confirms that the ANN model is more effective at disting between high-risk and low-risk customers.