

Introdução a Teoria de Bancos de

Dados Relacional e SQL

Banco de Dados Relacional e SQL

- Servidor de Banco de Dados vs Arquivos
- Introdução à teoria de Banco de Dados
- Diagrama Entidade Relacionamento
- Tipos de dados em Banco de Dados
- Introdução a SQL

Sugestão de Bibliografia:

- SQL Curso Prático
 Oliveira, Celso Henrique
- Relational Database Design Clearly Explained
 Harrington, Jan

Servidores de Banco de Dados vs Arquivos

Principais formas de armazenamento permanente de dados:

1. **Arquivos**: arquivos texto, planilhas eletrônicas, arquivos em formatos especiais como por exemplo MS-Access (.mdb).

2. Servidor de Banco de Dados

Servidores de Banco de Dados vs Arquivos

Vantagens de se utilizar um Servidor de Banco de Dados:

- Garante a consistência do conteúdo e do relacionamento entre os dos dados
- Grande capacidade de armazenamento e velocidade para recuperação dos dados – consultas não sequenciais
- Possibilita o acesso de vários usuários simultaneamente para leitura e escrita
- Controle de Acesso: Restringe o acesso para consultar/escrever/remover registros por tabela e campo
- Registra os comandos e as operações executados pelos usuários
- Suporta a consultas sofisticadas relacionando e agrupando dados
- Suporte a procedimentos Transacionais para garantir a integridade dos dados
- Gerenciamento do acesso dos usuários ao banco de dados
- Centraliza o gerenciamento dos dados (backup/atualização)
- Automatização de Tarefas: backup, Stored Procedures e Triggers

Acesso a Servidores de Banco de Dados

- Gratuitos:
 - MySQL
 - Postgress
 - Firebird
- Comerciais:
 - Oracle
 - Sysbase
 - SQL Server
 - "MS Access"

Acesso a Servidores de Banco de Dados

Alternativas para conexão com Servidores de Banco de Dados

Aplicação Específica:

Driver Específico:

Driver ODBC: (MS Windows)

Introdução a Teoria de Banco de Dados

Em um Banco de Dados Relacional os <u>dados</u> e <u>o relacionamento</u> <u>entre os dados</u> estão organizados em: Tabelas, Colunas e Linhas

Exemplo de um banco de dados simples com uma única tabela:

ID	ISBN	Título	Área	Editora	Autores
1	0262022834	LECTURES ON MACROECONOMICS	macroeconomia	MIT PRESS	Stanley Fisher,Oliver Blanchard
2	8535208798	MACROECONOMIA	macroeconomia	CAMPUS	Oliver Blanchard
3	8587918443	MACROECONOMIA	macroeconomia	PRENTICE HALL BRASIL	Oliver Blanchard
4	0262521814	REFORM IN EASTERN EUROPE	macroeconomia	MIT PRESS	Oliver Blanchard, Rudiger Dornbush, Paul Krugma
5		PRINCIPIOS DE MICROECONOMIA	microeconomia	THOMSON PIONEIRA	Gregory Mankiw
6	853521044X	INTRODUÇÃO À MICROECONOMIA	microeconomia	CAMPUS	Joseph Stiglitz
7		MICROECONOMIA	microeconomia	PRENTICE HALL BRASIL	Daniel Rubinfeld, Robert Pindyck
8		MICROECONOMIA - PRINCÍPIOS BÁSICOS	microeconomia	CAMPUS	Hal Variant
9	8522104212	INTRODUÇÃO À ECONOMETRIA	econometria	THOMSON PIONEIRA	Jeffrey Woodridge
10	0324113641	INTRODUCTORY ECONOMETRICS	econometria	IE-THOMSON	Jeffrey Woodridge
11	8535213430	ECONOMETRIA - MODELOS E PREVISÕES	econometria	CAMPUS	Daniel Rubinfeld, Robert Pindyck
12	8502041231	ESTATÍSTICA E INTRODUÇÃO À ECONOMETRIA	econometria	SARAIVA	Alexandre Sartóris

Introdução a Teoria de Banco de Dados

Banco de Dados Relacional:

- TABELA: Estrutura primitiva básica
 - Uma tabela esta associada a uma Entidade.
- Entidade: "qualquer coisa" tangível ou intangível (associação ou relacionamento)
- **COLUNAS**: Atributos ou Campos da entidade
- **LINHAS**: Registros de valores para dos atributos que descrevem uma única ocorrência da entidade no mundo real: uma *instância* da entidade

As entidades estão relacionadas entre si de forma **consistente** e **lógica**, compondo um modelo cujo objetivo principal é representar algum aspecto do mundo real.

Introdução a Teoria de Banco de Dados

Exemplo de Entidade, Atributos e Registros

Tabela/Entidade: Livro

Atributos: ID, ISBN, Título, Área, Editora, Autores, Ano, Edição e

Idioma....

Registro:

ID	ISBN	Título	Área	Editora	Autores
+	0202022034	LECTURES ON MACROECONOMICS	macroeconomia	MIT PRESS	Stanley Fisher, Oliver Blanchard
2	8535208798	MACROECONOMIA	macroeconomia	CAMPUS	Oliver Blanchard
3	8587918443	MACROECONOMIA 🔌	macroeconomia	PRENTICE HALL BRASIL	Oliver Blanchard
4	0262521814	REFORM IN EASTERN EUROPE	macroeconomia	MIT PRESS	Oliver Blanchard, Rudiger Dornbush, Paul Krugma
5	8522103712	PRINCIPIOS DE MICROECONOMIA	microeconomia	THOMSON PIONEIRA	Gregory Mankiw
б	853521044X	INTRODUÇÃO À MICROECONOMIA	microeconomia	CAMPUS	Joseph Stigiitz
7		MICROECONOMIA	microeconomia	PRENTICE HALL BRASIL	Daniel Rubinfeld, Robert Pindyck
8	8535216707	MICROECONOMIA - PRINCÍPIOS BÁSICOS	microeconomia	CAMPUS	Hal Variant
9	8522104212	INTRODUÇÃO À ECONOMETRIA	econometria	THOMSON PIONEIRA	Jeffrey Woodridge
10	0324113641	INTRODUCTORY ECONOMETRICS	econometria	IE-THOMSON	Jeffrey Woodridge
11	8535213430	ECONOMETRIA - MODELOS E PREVISÕES	econometria	CAMPUS	Daniel Rubinfeld, Robert Pindyck
12	8502041231	ESTATÍSTICA E INTRODUÇÃO À ECONOMETRIA	econometria	SARAIVA	Alexandre Sartóris

Tipos de Relacionamento

ID	ISBN	Título	Área	Editora	Autores
1	0262022834	LECTURES ON MACROECONOMICS	macroeconomia	MIT PRESS	Stanley Fisher, Oliver Blanchard
2	8535208798	MACROECONOMIA	macroeconomia	CAMPUS	Oliver Blanchard
3	8587918443	MACROECONOMIA	macroeconomia	PRENTICE HALL BRASIL	Oliver Blanchard
4	0262521814	REFORM IN EASTERN EUROPE	macroeconomia	MIT PRESS	Oliver Blanchard, Rudiger Dornbush, Paul Krugma
5		PRINCIPIOS DE MICROECONOMIA	microeconomia	THOMSON PIONEIRA	Gregory Mankiw
6	853521044X	INTRODUÇÃO À MICROECONOMIA	microeconomia	CAMPUS	Joseph Stiglitz
7	8576050188	MICROECONOMIA	microeconomia	PRENTICE HALL BRASIL	Daniel Rubinfeld, Robert Pindyck
8	8535216707	MICROECONOMIA - PRINCÍPIOS BÁSICOS	microeconomia	CAMPUS	Hal Variant
9	8522104212	INTRODUÇÃO À ECONOMETRIA	econometria	THOMSON PIONEIRA	Jeffrey Woodridge
10	0324113641	INTRODUCTORY ECONOMETRICS	econometria	IE-THOMSON	Jeffrey Woodridge
11		ECONOMETRIA - MODELOS E PREVISÕES	econometria	CAMPUS	Daniel Rubinfeld, Robert Pindyck
12	8502041231	ESTATÍSTICA E INTRODUÇÃO À ECONOMETRIA	econometria	SARAIVA	Alexandre Sartóris

Relacionamento	Exemplo
1:1	Um livro tem um código ISBN
Um-para-Um	Um código ISBN está relacionado a um único livro
1:N	Uma editora publica um ou mais livros
Um-para-N	Um livro foi publicado por uma única editora
N:N	Um autor escreve 1 ou mais livros
N-para-N	Um livro pode ser escrito por mais de um autor

Tipos de Relacionamento

Problemas:

- Duplicar as informações na base de dados
- Dificuldade de realizar a busca por falta de padronização e por estar em um único campo

O Dificuldade de manutenção: Modificar o endereço da editora ou os dados de uma autor

Solução:

- Representar cada entidade no banco de dados por uma tabela
- Identificar claramente o tipo de relacionamento entre as entidades

Tabelas e Chaves

Uma base de dados deve conter:

- Os atributos as entidades
- As associações entre as entidades

Devemos criar:

- Criar uma tabela para cada entidade
- Utilizar chaves para identificar os registros das tabelas
- Criar tabelas de relacionamento entre entidades

Tabela: Editora

Chave Primária e Chave Estrangeira

Tipos de Chaves: Chaves Primárias

Chaves Primárias

- Identifica de forma única uma instância da entidade.
- Atributo especial presente em todas as entidades, com valor único, não nulo, exclusivo e imutável para cada linha
- Boas Prática:
- Criar chaves primárias com a exclusiva função de ser chave primária, ou seja, não deve ter um significado intrínseco.

Ex: Ao criar uma tabela de Pessoas não utilizar CPF ou RG como chave primária.

- Normalmente a chave primária de uma tabela é um número natural e os bancos de dados incrementam o contador automaticamente à medida que novos registros são inseridos.

Tipos de Chaves: Chaves Estrangeiras

Chaves Estrangeiras

- Estabelece relações entre instancias de entidades distintas.
- O valor da chave estrangeira na instância de uma entidade, corresponde ao valor da chave primária da instância de uma entidade com a qual ela esta relacionada.

Exemplo:

Relação: "a entidade Livro esta relacionada com a entidade Editora".

Cada entidade Editora criamos uma chave primária ID_EDITORA.

- Quando inserimos um novo Livro na base de dados, ao invés de copiar todos os atributos da Editora, apenas inserimos no registro que define a nova instancia do Livro a chave primária que identifica a Editora.
- Pode ter valor nulo quando o relacionamento não for obrigatório.
- Uma entidade pode conter uma ou mais chaves estrangeiras dependendo do relacionamento que esta entidade estabelece com as demais.

Modelo Entidade-Relacionamento (ER)

Representação das entidades e dos relacionamentos entre as mesmas em um banco de dados.

Diagrama Entidade Relacionamento

3 Regras Básicas:

- 1. Cada entidade no Diagrama ER será representada por uma caixa que deverá conter:
 - O nome da entidade, no plural ou singular dependendo da preferência do autor.
 - A lista de atributos da entidade, incluindo chaves primárias e estrangeiras.
 - Opcionalmente pode-se listar o tipo de cada atributo ou utilizar símbolos para indicar unicidade ou obrigatoriedade do campo.

Exemplo de Convenção:

'+', ou escrever PK (primary key

'-' ou escrever FK (foreign key

Diagrama Entidade Relacionamento

3 Regras Básicas (continuação...):

2. Tabelas relacionadas diretamente entre si são unidas por linhas. As terminações da linha indicam o tipo de relacionamento. Quatro terminações são possíveis:

Terminação	Significado
	Zero ou uma
	Obrigatoriamente uma e apenas uma
	Zero, uma ou várias
	Obrigatoriamente uma ou várias

3. Por convenção recomenda-se que as Chaves Primárias mantenham o mesmo nome quando forem utilizadas como Chaves Estrangeiras em outras entidades.

Diagrama Entidade Relacionamento

Alguns relacionamentos:

- um editora pode publicar nenhum, um ou mais livros
- um autor pode escrever nenhum, um ou mais livros
- um livro necessariamente foi publicado por uma editora
- um livro pode ter um ou mais autores

Exercício: Consulta na base de dados

Abrir a bse de dados: *livros.bd1.mdb* utilizando o *MS-Access*

Exercício: Consulta na base de dados

Base de Dados Contábeis de Empresas

Informações básicas:

Dados da Empresa: Nome, Pais sede, Setor que atua

Dados de Balanços: Ativo, Passivo, Patrimônio Líquido

Demonstrativos de Resultados: Receita Bruta, Lucro Bruto, Lucro Operacional, Lucro Líquido

Títulos Negociados e Cotações: Código do título, classe (ON, PN...), cotação, data da cotação

Base de Dados Contábeis de Empresas

Tipos de Dados

Tipos numéricos:

- INT ou INTEGER: Número inteiro
 - Utilizada para criar Chaves primárias
- **FLOAT**: Número real (*floating-point*) "pequeno" com precisão simples
- **DOUBLE**: Número real com precisão dupla (double-precision).

Outros tipos numéricos comuns em bancos de dados: SMALLINT, NUMERIC, DECIMAL, REAL

Tipos de Dados

Tipos Texto

- CHAR: Tipo para armazenar cadeias de caracteres com tamanho fixo.
 - Deve-se informar o número máximo de caracteres suportado pelo campo.
 - Os caracteres faltantes serão preenchidos com 'espaços' à direita.
 - É comum o limite de 255 caracteres.
- VARCHAR: Armazenacadeias de caracteres (strings) de tamanho variável.
 - Necessariamente deve-se fornecer o tamanho máximo da sequência de caracteres que poderá ser armazenada.
 - Caso um registro tenha menos caracteres que o suportado pelo campo, os caracteres restantes ficarão vazios.
 - É comum o limite de 255 caracteres.
- TEXT: Tipo para armazenar cadeias de caracteres (textos) mais extensos.
 - Normalmente é possível especificar o tamanho máximo do texto que poderá ser armazenado mas não é obrigatório.

Outros tipos para armazenar texto: MEDIUMTEXT, LONGTEXT, BLOB.

Tipos de Dados

Tipos Data e Horário:

- DATE: Tipo campo para armazenar datas
- **DATETIME** e **TIMESTAMP**: Tipo para armazenar a combinação de data e horário. A diferença entre ambos, quando há, varia de acordo com a implementação de banco do dados.
- TIME: Tipo para rmazenas horários
- **INTERVAL**: Tipo para armazenar intervalos de tempo.

SQL - Structured Query Language

SQL (Structured Query Language)

- Linguagem estruturada definida por regras de sintaxe e um vocabulário próprio
- Permite construir frases (queries ou comandos)
- Comandos interpretados por um Sistema Gerenciador de Banco de Dados que executará operações sobre o conjunto de dados.
- O conjunto de comando inclui operações para:
 - Criar uma estrutura de armazenamento e relacionamento entre dados
 - Modificar a estrutura criada
- Operações básicas de manipulação de dados: selecionar (select), inserir (insert), atualizar (update), apagar (delete)
 - Indexação do conteúdo da base para tornar os operações mais rápidas
 - Gerenciamento do acesso dos usuários aos dados

SQL - Structured Query Language

1. Data Definition Language (DDL):

Criação de uma tabela: CREATE TABLE

Remoção de uma tabela: DROP TABLE

Altreração da estrutura da tabela: ALTER TABLE

Criação de um índice: CREATE INDEX

Remoção de um índice: DROP INDEX

Altreração de um índice: ALTER INDEX

2. Data Manipulation Language (DML):

Inserção de dados: INSERT

Atualização de dados: UPDATE

Remoção de dados: DELETE

SQL - Structured Query Language

3. Data Query Language (DQL):

Seleção dos dados: SELECT

4. Data Control Language (DCL):

Criação de um usuário: CREATE USER

Alteração de um usuário: ALTER USER

Concessão de privilégios: GRANT

Revogação de privilégios: REVOKE

Comandos SQL no MS Access

1. Abrir o assistem de consulta

2. Fechar a Janela "Mostrar Tabela"

3. Escolher o modo de exibição SQL

SQL - Data Definition Language (DDL)

Sintaxe do comando CREATE TABLE:

```
CREATE TABLE NomeTabela (

NomeColuna1 TipoDoCampoColuna1 [ObrigaçõesColuna1],
NomeColuna2 TipoDoCampoColuna2 [ObrigaçõesColuna2],
NomeColuna3 TipoDoCampoColuna3 [ObrigaçõesColuna3],
(...)
NomeColunaN TipoDoCampoColunaN [ObrigaçõesColunaN],

[ObrigaçõesDaTabela]
)
```

Sintaxe do comando DROP TABLE:

DROP TABLE Nome Tabela

Obrigações (Constrains)

Objetivo:

- Garantir da integridade da base de dados e impor regras de negócio ao conjunto dos dados.
- Instruções adicionais fornecidas no momento da criação da tabela que impõe algumas regras obrigatórias para colunas da tabela ou para a tabela como um todo.
- Operações: inserção, atualização ou remoção de registros, se alguma obrigação for desrespeitada ocorre um erro e a operação é abortada.

Principais constrains para colunas:

- PRIMARY KEY
- NOT NULL

Exemplo: Cadastro de clientes evita que seja feito um registro com nome do cliente vazio.

• UNIQUE

Exemplo: Coluna de CPF do cadastro de pessoas para evitar 2 pessoas com mesmo CPF.

Principais constrains para tabela:

- FOREIGN KEY:
 - •Vincula campos de chave estrangeira de uma tabela com a chave primária de outra tabela.
 - Garantir a integridade relacional

Exemplos: Create Table

Tabela para cadastro de Empresas:

ID_EMPRESA: Chave Primária

NOME: Único

```
CREATE TABLE EMPRESAS
                      INT PRIMARY KEY,
  ID EMPRESA
                   VARCHAR (255) UNIQUE,
  NOME
  NOME COMPLETO VARCHAR (255) UNIQUE,
  PAIS SEDE
                     VARCHAR (255),
  IDENTIFICADOR
                           INT,
                                                                            EMPRESAS
                       VARCHAR (255),
  WEBDITE
                                                                    + ID EMPRESA
                                                                                   INT
  SETOR
                     VARCHAR (255)
                                                                    NOME
                                                                                  VARCHAR(255)
                                                                    NOME COMPLETO
                                                                                  VARCHAR(255)
                                                                    PAIS SEDE
);
                                                                                  VARCHAR(255)
                                                                    IDENTIFICADOR
                                                                    WEBDITE
                                                                                  VARCHAR(255)
                                                                    SETOR
                                                                                  VARCHAR(255)
                                                                                                          ΒÆ
                                                                                               + ID BALANCO

    ID EMPRESA

                                                                                               DT BALANCO
                                                                      RESULTADOS
                                                                                               DISPONIVEL CP
                                                                                               CRED_COMERCIA
                                                            + ID RESULTADO
                                                                           INT
                                                                                               ESTOQUES

    ID EMPRESA

                                                                           INT
                                                                                               OUTROS ATIVOS
                                                            DT_RESULTADO
                                                                           DATE
                                                                                               REALIZAVEL LP
                                                            RECEITA BRUTA
                                                                                  DOUBLE
                                                                                               INV SUBSID OUT
                                                            IMPOSTOS VENDAS
                                                                                  DOUBLE
```

Exemplos: Create Table

Tabela para cadastro de Livros:

ID_EMPRESA: Chaves estrangeira

```
CREATE TABLE TITULOS
 ID TITULO INT PRIMARY KEY,
 ID EMPRESA INT,
                 VARCHAR (50),
 CODIGO
                   VARCHAR (25),
 CLASSE
 TIPO
                 VARCHAR (25),
 BOLSA
                  VARCHAR (25),
                   VARCHAR (25),
 STATUS
CONSTRAINT FK TITULO EMPRESA FOREIGN KEY (ID EMPRESA) REFERENCES EMPRESAS
);
                                                                EMPRESAS
                          TITULOS
                                                        + ID EMPRESA
                                                                      INT
                                                        NOME
                                                                      VARCHAR(255)
               + ID TITULO
                            INT
                                                        NOME_COMPLETO
                                                                      VARCHAR(255)
               - ID EMPRESA
                                                        PAIS SEDE
                                                                      VARCHAR(255)
               CODIGO
                            VARCHAR(50)
                                                        IDENTIFICADOR
                                                                      INT
               CLASSE
                            VARCHAR(25)
                                                        WEBDITE
                                                                      VARCHAR(255)
               TIPO
                            VARCHAR(25)
                                                        SETOR
                                                                      VARCHAR(255)
               BOLSA
                            VARCHAR(25)
               STATUS
                            VARCHAR(25)
                                                                                            BALA
                                                                                  + ID BALANCO

    ID EMPRESA
```

SQL - Data Manipulation Language (DML)

Sintaxe do comando INSERT:

- No comando INSERT não há a obrigatoriedade de fornecer todos os campos da tabela, a menos dos campos que tenham restrições ou regras específicas, exemplo: NOT NULL.
- Cadeias de caracteres (strings) nas expressões SQL são delimitadas por aspas simples ".

Exemplos:

•Inserir uma nova empresa na tabela EMPRESAS:

```
INSERT INTO EMPRESAS (ID_EMPRESA, NOME, NOME_COMPLETO,
PAIS_SEDE, IDENTIFICADOR, WEBDITE, SETOR) VALUES (1000, 'Uma
Nova Empresa', 'Uma Nova Empresa S/A', 'Brasil', 2000,
'www.novaempresa.com.br', 'Metalurgia');
```

• Tentando violar a restrição: NOME tem que ser único

```
INSERT INTO EMPRESAS (ID_EMPRESA, NOME, NOME_COMPLETO,
PAIS_SEDE, IDENTIFICADOR, WEBDITE, SETOR) VALUES (1001, 'Uma
Nova Empresa', 'Uma Nova Empresa LTDA', 'EUA', 2001,
'www.novaempresa.com.br', 'Mineração');
```

SQL - Data Manipulation Language (DML)

Sintaxe do comando UPDATE:

```
UPDATE NomeTabela

SET NomeColuna_A=ValorColuna_A, NomeColuna_B=ValorColuna_B...

[WHERE CondiçãoDeSeleção AND | OR

CondiçãoDeSeleção...]
```

Sintaxe do comando DELETE:

```
DELETE FROM NomeTabela

[WHERE CondiçãoDeSeleção AND | OR

CondiçãoDeSeleção...]
```

- A cláusula WHERE nos comandos UPDATE e DELETE é opcional e utilizada para restringir os registros que serão afetados pelo comando
- Quando a cláusula WHERE é omitida os comandos afetarão TODOS os registros
- Operadores de igualdade ('='), desiqualdade ('<', '>', '<>'), expressões e funções especiais (LIKE e IS NULL).
- Cadeias de caracteres (strings) nas expressões SQL são delimitadas por aspas simples "."

SQL - Data Manipulation Language (DML)

Exemplos:

• Atualizar EMPRESAS informando um novo nome para o registro ID EMPRESA= 1000:

```
UPDATE EMPRESAS SET NOME = 'Novo Nome da Empresa' WHERE
ID EMPRESA=1000;
```

• Apagar da tabela EMPRESAS o registro no qual o NOME é 'Novo Nome da Empresa':

```
DELETE FROM EMPRESAS WHERE NOME = 'Novo Nome da Empresa';
```

SQL - Data Query Language (DQL)

Sintaxe do comando SELECT:

```
SELECT [* | NomeTabela.Campo, NomeTabela.Campo,...]

FROM NomeTabela, NomeTabela,....

[WHERE

CondiçãoDeSeleção AND | OR

CondiçãoDeSeleção...]

[ORDER BY NomeTabela.Campo, NomeTabela.Campo... [DESC]]

[GROUP BY NomeTabela.Campo]
```

- A cláusula SELECT especifica os campos que devem formar o resultado da consulta
 - O caractere '*', indica que todos os campos devem ser retornados
 - Colocar o nome da tabela antes do nome do campo é obrigatório quando estamos consultando ao mesmo tempo tabelas que tenham campos com o mesmo nome
- Na cláusula FROM devem constar todas as tabelas cujos campos foram mencionados em qualquer cláusula do comando de consulta.
- A cláusula WHERE é opcional, quando não definida retorna como resultado da consulta todos dos registros da tabela.

Operadores Básico

- Utilizados para campos numéricos, datas e campos texto
- Data: ordem cronológica, sendo que quando mais recente, maior.

Por exemplo, '2006-02-01 18:50:00' é maior que "2005-03-01 00:00:00'.

• Texto: ordem lexicográfica.

Operador	Descrição	Exemplo	
=	igual	ID_EMPRESA=2; NOME='Petrobras'	
<> , !=	diferente	SETOR<>'Textil'; PAIS_SEDE<>'Brasil'	
>	maior	BALANCOS.DT_BALANCO>31/12/2002	
>=	maior ou igual	BALANCOS.DISPONIVEL_CP>1000000;	
<	menor	BALANCOS.DISPONIVEL_CP<1000000;	
<=	menor ou igual	BALANCOS.ESTOQUES>1000000;	

Operadores Lógicos

Operador	Significado	Exemplo	
AND	Е	DT_BALANCO>31/12/2002 AND ID_EMPRESA=1	
OR	OU	DISPONIVEL_CP>10000 OR ESTOQUES > 2000000	

Operadores Especiais

Operador	Descrição	
LIKE	Busca por palavras ou parte de palavras	
BETWEEN	Determina um intervalo de busca pode ser usado para números e datas	
IN	Determina uma lista de valores	
IS [NOT] NULL Retringe a procura a campos [não] nulos		

Sintaxe do operador LIKE:

```
SELECT [* | NomeTabela.NomeCampo,...]
FROM NomeTabela,....
WHERE NomeCampo LIKE 'Expressão'
```

Exemplo	Interpretação	
LIKE 'ECONOMIA'	CONOMIA' Registros com exatamente a palavra 'ECONOMIA'	
LIKE 'ECONO%'	Registros que começam com a palavra 'ECONO' exemplo: 'ECONOMETRIA'	
Registros que terminam com a palavra 'ECONOMIA' exemplo: 'MACROECONOMIA' 'MICROECONOMIA'		
LIKE '%ECONO%' Registros com a palavra 'ECONO' em qualquer posição exemplo: 'MACROECONOMIA' ECONOMETRIA		

Sintaxe do operador IN:

```
SELECT [* | NomeTabela.NomeCampo,...]
FROM NomeTabela,....
WHERE NomeCampo IN (ListaDeValores)
```

Exemplo:

Para selecionar registros cujo ANO seja 2001 ou 2004:

```
(...) WHERE (...) ANO IN (2001,2004)
```

Sintaxe do operador IS [NOT] NULL:

```
SELECT [* | NomeTabela.NomeCampo,...]
FROM NomeTabela,....
WHERE NomeCampo IS [NOT] NULL
```

Exemplo:

Para selecionar registros cuja DATA_CADASTRO não seja vazio:

```
(...) WHERE (...) DATA CADASTRO IS NOT NULL
```


Sintaxe do operador BETWEEN:

```
SELECT [* | NomeTabela.NomeCampo,...]
FROM NomeTabela,....
WHERE NomeCampo BETWEEN LimiteInferior AND LimiteSuperior
```

Exemplo:

Para selecionar registros cujas datas de cadastro estejam no ano de 2001:

```
(...) WHERE (...)
DATA CADASTRO BETWEEN '2001-01' AND '2001-12-13'
```


Exemplos Básico:

Selecionar da tabela EMPRESAS todos dos campos da empresa com ID_EMPRESA=1

```
SELECT * FROM EMPRESAS WHERE ID EMPRESA = 1
```

Selecionar da tabela EMPRESAS os campos ID_EMPRESA, NOME, PAIS_SEDE das empresas do setor 'Textil'

```
SELECT ID_EMPRESA, NOME, PAIS_SEDE FROM EMPRESAS WHERE SETOR =
'Textil'
```

Selecionar da tabela EMPRESAS os campos ID_EMPRESA, NOME, PAIS_SEDE, e o SETOR das empresas do setor 'Textil' OU do setor de 'Mineração'

```
SELECT ID_EMPRESA,NOME,PAIS_SEDE FROM EMPRESAS WHERE SETOR =
'Textil' or SETOR = 'Mineração'
```


Exemplos Básico:

Selecionar da tabela BALANCOS os campos ID_EMPRESA, DT_BALANCO e DISPONIVEL_CP para os registros da ID_EMPRESA = 1 e datas superiores a 01/01/2000

SELECT ID_EMPRESA, DISPONIVEL_CP, DT_BALANCO FROM BALANCOS WHERE ID_EMPRESA = 1 AND DT_BALANCO > 01/01/2000

Selecionar da tabela BALANCOS os campos ID_EMPRESA, DT_BALANCO e DISPONIVEL_CP para os registros da ID_EMPRESA = 1 e datas superiores a 01/01/2000 e inferiores a 31/12/2006

SELECT ID_EMPRESA, DISPONIVEL_CP, DT_BALANCO FROM BALANCOS WHERE ID_EMPRESA = 1 AND DT_BALANCO > 01/01/2000 AND DT_BALANCO < 31/12/2006

Acesso a Banco de Dados e Queries em R

Para acessar Bancos de Dados em R e executar queries podemos:

- 1. Utilizar pacotes e drives específicos por exemplo para MySQL, Oracle, SQL Server, etc...
- Acesso é feito diretamente ao banco de dados passando os parâmetros da conexão
- 2. Utilizar os pacotes RODBC e RJDBC/Bridge ODBC É necessário criar no sistema operacional uma DSN ("Data Source Names")
- 3. Para o MS Access e MS Excel não é necessário criar DSNs pois o pacote RODBC pode acessar diretamente estas bases.

Conexão com Banco de Dados - DNS

Conexão com Banco de Dados - DSN

Conexão ao MS Access - Queries em R

Pacote RODBC:

Conexão DSN Genérico

```
odbcConnect(dsn, uid = "", pwd = "", ...)
```

Conexão ao Access

```
odbcConnectAccess(access.file, uid = "", pwd = "", ...)
odbcConnectAccess2007(access.file, uid = "", pwd = "", ...)
```

Conexão ao MS Access - Queries em R

Abre a conexão com a base de dados e executa uma query select:

```
library(RODBC);
DataLoaderSQL = function(db, query){
## Estabelece a conexão com o banco de dados
conn = odbcConnectAccess(db$filename);
## Executa a query; rs = ResultSet
 rs = sqlQuery(conn,query);
## Fecha a conexão
 odbcClose(conn);
## Retorna o dado par a programa principal
 return(rs);
```

Conexão ao MS Access - Queries em R

Abre a conexão com a base de dados e executa uma query *select*:

Teste da função de carga de dados

```
## Carrega a biblioteca
source("../lib/DataLoader.r");
## Parâmetros de acesso ao banco de dados
db = list(filename="../database/empresas.mdb", user="", passwd="");
## Define a query
query = "select * from EMPRESAS";
## Executa a query
data = DataLoaderSQL(db,query);
## Mostra os dados
print(data);
```


Exemplos Básico:

Selecionar da tabela EMPRESAS todos os campos das empresas que tem a palavra "Banco" no campo NOME_COMPLETO

```
SELECT * FROM EMPRESAS WHERE NOME COMPLETO Like "*BANCO*"
```

Selecionar da tabela EMPRESAS todos os campos das empresa que estejam cadastradas com "S.A.", ou seja, que tenham "S.A." no campo NOME_COMPLETO

```
SELECT * FROM EMPRESAS WHERE NOME COMPLETO Like "*S.A.*"
```

Selecionar da tabela BALANCOS os campos ID_EMPRESA, DT_BALANCO, ESTOQUES e CRED_COMERCIAIS para os balanços publicados entre 1996 e 2000, inclusive. Utilizar a função YEAR e os operadores de desigualdade.

```
SELECT ID_EMPRESA, DT_BALANCO, CRED_COMERCIAIS_CP, ESTOQUES FROM BALANCOS WHERE YEAR(DT_BALANCO) >= 1996 AND YEAR(DT BALANCO) <= 2000
```


Exemplos Básico:

Selecionar da tabela BALANCOS os campos ID_EMPRESA, DT_BALANCO, ESTOQUES e CRED_COMERCIAIS para os balanços publicados entre 1996 e 2000, inclusive. Utilizar a função YEAR o comando BETWEEN / AND

SELECT ID_EMPRESA, DT_BALANCO, CRED_COMERCIAIS_CP, ESTOQUES FROM BALANCOS WHERE YEAR(DT_BALANCO) BETWEEN 1996 AND 2000

Selecionar da tabela BALANCOS os campos ID_EMPRESA, DT_BALANCO, ESTOQUES e CRED_COMERCIAIS para os balanços publicados entre 1996 e 2000, inclusive. Utilizar a função YEAR o comando IN

SELECT ID_EMPRESA, DT_BALANCO, CRED_COMERCIAIS_CP, ESTOQUES FROM BALANCOS WHERE YEAR(DT BALANCO) IN (1996,1997,1998,1999, 2000)

Selecionar da tabela BALANCOS os campos ID_EMPRESA, DT_BALANCO, ESTOQUES e CRED_COMERCIAIS para os balanços publicados entre 1996 e 2000, inclusive, para os quais os campos ESTOQUES e CRED_COMERCIAIS não sejam vazios

SELECT ID_EMPRESA, DT_BALANCO, CRED_COMERCIAIS_CP, ESTOQUES FROM BALANCOS WHERE YEAR(DT_BALANCO) IN (1996,1997,1998,1999, 2000) AND CRED_COMERCIAIS_CP IS NOT NULL AND ESTOQUES IS NOT NULL

Expressões Aritméticas:

É possível colocar expressões aritméticas tanto nos campos selecionados quanto nos critérios.

Exemplo:

Selecionas da tabela BALANCOS o ID_EMPRESA data e a relação passivo circulante e exigível de longo prazo quando esta razão 1.

```
SELECT
```

ID_EMPRESA, DT_BALANCO, PASSIVO_CIRCULANTE/EXIGIVEL_LP

FROM

BALANCOS

WHERE

ID EMPRESA = 1 AND PASSIVO CIRCULANTE/EXIGIVEL LP > 1

Group By e Order By

GROUP BY :opcional e deve ser utilizada para agrupar registros que tenham alguma característica em comum e normalmente é utilizada com outras funções especiais como por exemplo:

SUM: Função que soma um determinado campo dos todos os registros que foram agrupados

CONT: Função que conta os registros que foram agrupados

ORDER BY: opcional e é utilizada para ordenar o resultado da consulta por um ou mais campos que necessariamente devem constar no resultado.

Exemplos Básico:

Selecionar da tabela BALANCOS os campos ID_EMPRESA, DT_BALANCO, ESTOQUES e CRED_COMERCIAIS para os balanços publicados entre 1996 e 2000, inclusive ordenando os resultados pelos campos ID_EMPRESA e DT_BALANCO.

```
SELECT ID_EMPRESA, DT_BALANCO, CRED_COMERCIAIS_CP, ESTOQUES FROM BALANCOS WHERE YEAR(DT_BALANCO) >= 1996 AND YEAR(DT_BALANCO) <= 2000 order by ID EMPRESA, DT BALANCO
```

Calcular a receita bruta acumulada entre os anos de 2004 e 2005 para a empresas, ordenando o resultado e ordem decrescente. Utilizar os operadores SUM e GROUP BY.

```
SELECT ID_EMPRESA, sum(RECEITA_BRUTA) FROM RESULTADOS WHERE
YEAR(DT_RESULTADO) >= 2004 AND YEAR(DT_RESULTADO) <= 2005 GROUP BY
ID EMPRESA ORDER BY sum(RECEITA BRUTA) DESC
```

SELECT ID_EMPRESA, sum(RECEITA_BRUTA) AS RB_ACUMULADA FROM RESULTADOS WHERE YEAR(DT_RESULTADO) >= 2004 AND YEAR(DT_RESULTADO) <= 2005 GROUP BY ID_EMPRESA ORDER BY sum(RECEITA_BRUTA) DESC

Exemplo: Selecionar a série histórica de receitas brutas da Petrobrás.

Exemplo: Selecionar a série histórica de receitas brutas da Petrobrás.

1o Passo: Descobrir o ID_EMPRESA para a Petrobrás

SELECT ID_EMPRESA, NOME_COMPLETO FROM EMPRESAS WHERE NOME COMPLETO LIKE "*PETROBR*"

20 Passo: Selecionar da tabela RESULTADOS a série de receitas brutas para os registros no

quais $ID_EMPRESA = 1$

SELECT ID_EMPRESA, DT_RESULTADO, RECEITA_BRUTA FROM RESULTADOS WHERE ID EMPRESA=1 ORDER BY DT RESULTADO

Tonsulta1				
∠ ID_EMPRES ▼	DT_RESULTADO -	RECEITA_BRUTA -		
1	31/12/1986	15603317		
1	31/12/1987	51140295		
1	31/12/1988	75534098		
1	31/12/1989	51222134		
1	31/12/1990	41554593		
1	31/12/1991	40714106		
1	30/09/1992	38699143		
4	21/12/1002	56990000		

Exemplo: Selecionar a série histórica de receitas brutas da Petrobrás.

Único Passo: Selecionar da tabela RESULTADOS o campo RECEITA_BRUTA dos registros cujo

ID_EMPRESA seja igual ao ID_EMPRESA dos registros da tabela EMPRESAS cujo campo NOME

seja igual a 'Petrobras'

SELECT

Campos em tabelas diferentes com o mesmo nome devem identificados como: **NomeDaTabela.NomeDoCampo**

EMPRESAS.ID EMPRESA, NOME, DT RESULTADO, RECEITA BRUTA

FROM

EMPRESAS, RESULTADOS

Incluir todas as tabelas envolvidas na consulta

WHERE

RESULTADOS.ID EMPRESA=EMPRESAS.ID EMPRESA

AND

Relacionar as chaves das tabelas

EMPRESAS.NOME='Petrobras'

ORDER BY DT RESULTADO

Exemplo: Selecionar a série histórica de receitas brutas da Petrobrás.

SELECT EMPRESAS.ID_EMPRESA, NOME, DT_RESULTADO, RECEITA_BRUTA FROM EMPRESAS, RESULTADOS WHERE RESULTADOS.ID_EMPRESA=EMPRESAS.ID_EMPRESA AND EMPRESAS.NOME='Petrobras' ORDER BY DT RESULTADO

📴 Consulta1		
∠ ID_EMPRES ▼	DT_RESULTADO -	RECEITA_BRUTA -
1	31/12/1986	15603317
1	31/12/1987	51140295
1	31/12/1988	75534098
1	31/12/1989	51222134
1	31/12/1990	41554593
1	31/12/1991	40714106
1	30/09/1992	38699143
1	31/12/1992	56889233
1	31/12/1993	62285736
1	31/12/1994	55018499
1	31/12/1995	48914100
1	31/12/1996	51187775
1	31/12/1997	54490016
1	31/12/1998	52258858
1	31/03/1999	12965373
1	30/06/1999	28380136
1	30/09/1999	47776802
1	31/12/1999	

Exemplos Básico:

Selecionar da tabela BALANCOS os campos DT_BALANCO, DISPONIVEL_CP, CRED_COMERCIAIS_CP, ESTOQUES, OUTROS_ATIVOS_CP para a Petrobras para os balanços publicados em 2005

SELECT DT_BALANCO, DISPONIVEL_CP, CRED_COMERCIAIS_CP, ESTOQUES, OUTROS_ATIVOS_CP FROM EMPRESAS, BALANCOS WHERE EMPRESAS.ID_EMPRESA = BALANCOS.ID_EMPRESA AND NOME='Petrobras' and YEAR(DT_BALANCO)=2005

Selecionar da tabela EMPRESAS o ID_EMPRESA e o NOME, e da tabela BALANCOS os campos DT_BALANCO, DISPONIVEL_CP, CRED_COMERCIAIS_CP, ESTOQUES, OUTROS_ATIVOS_CP para os balanços publicados em 2005 para cada empresa cadastrada ordenando pelo campo ID_EMPRESA.

SELECT **EMPRESAS**.ID_EMPRESA, NOME, DT_BALANCO, DISPONIVEL_CP, CRED_COMERCIAIS_CP, ESTOQUES, OUTROS_ATIVOS_CP FROM EMPRESAS, BALANCOS WHERE EMPRESAS.ID_EMPRESA = BALANCOS.ID_EMPRESA AND YEAR(DT_BALANCO)=2005 ORDER BY **EMPRESAS**.ID_EMPRESA

Exemplo: Selecionar a cotações de todos os títulos da Petrobras retornando no código do título, a data da cotação e o valor de fechamento para o ano de 2005.

Exemplo: Selecionar a cotações de todos os títulos da Petrobras retornando no código do título, a data da cotação e o valor de fechamento para o ano de 2005.

```
SELECT
      NOME, CODIGO, DT COTACAO, FECHAMENTO
FROM
      EMPRESAS, TITULOS, COTACOESTRIMESTRE
WHERE
             EMPRESAS.ID EMPRESA=TITULOS.ID EMPRESA
      AND
             TITULOS.ID TITULO=COTACOESTRIMESTRE.ID TITULO
      AND
             NOME='Petrobras'
      AND
             DT ANO = 2005
```

Exercício

Exercício 01

Criar a função:

LiquidezCorrentePorPeriodo(company, dateBegin, dateEnd)

Onde

company: nome da empresa

dateBegin: Data de Início do período

dateEnd: Data de final de período

Retorna

Data Frame com as colunas:

period: Data ao do final do período ao qual se refere o balanço

liquidezCorrente: Liquidez corrente do período