What is claimed is

1. A pyrrolecarboxamide or pyrrolethioamide of the formula I

$$\begin{array}{c|c}
R_1 & X \\
N & H
\end{array}$$

$$\begin{array}{c|c}
R_2 & R_3
\end{array}$$

$$\begin{array}{c|c}
\end{array}$$

$$\begin{array}{c|c}
\end{array}$$

$$\begin{array}{c|c}
\end{array}$$

$$\begin{array}{c|c}
\end{array}$$

$$\end{array}$$

$$\begin{array}{c|c}
\end{array}$$

$$\end{array}$$

$$\begin{array}{c|c}
\end{array}$$

$$\begin{array}{c|c}
\end{array}$$

wherein

X is oxygen or sulfur;

R₁ is C₁-C₄alkyl unsubstituted or substituted, with the exception of CF₃; C₃-C₀cycloalkyl unsubstituted or substituted; or halogen;

R₂ is hydrogen, C₁-C₄alkyl unsubstituted or substituted, C₁-C₄alkoxy unsubstituted or substituted, cyano or halogen;

R₃ is C₁-C₄alkyl unsubstituted or substituted; and

A is orthosubstituted aryl; orthosubstituted heteroaryl; bicycloaryl unsubstituted or substituted; or bicycloheteroaryl unsubstituted or substituted.

2. A compound of formula I according to claim 1, wherein

 R_1 is C_1 - C_4 alkyl; C_1 - C_4 haloalkyl; C_1 - C_4 alkyl; C_1 - C_4 alkyl; C_1 - C_4 alkyl;

C₃-C₆cycloalkyl unsubstituted or substituted by C₁-C₄alkyl, C₁-C₄haloalkyl, C₁-C₄alkoxy,

 C_1 - C_4 haloalkoxy, C_1 - C_4 alkoxy- C_1 - C_4 alkyl, C_1 - C_4 haloalkoxy- C_1 - C_4 alkyl or halogen; or halogen;

R₂ is hydrogen, C₁-C₄alkyl, C₁-C₄haloalkyl, C₁-C₄alkoxy, C₁-C₄haloalkoxy,

C₁-C₄alkoxy-C₁-C₄alkyl, C₁-C₄haloalkoxy-C₁-C₄alkyl, cyano or halogen;

 R_3 is C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_4 alkoxy- C_1 - C_4 alkyl or C_1 - C_4 haloalkoxy- C_1 - C_4 alkyl;

A is a group

$$R_4$$
 R_5 R_5 R_5 R_5 R_5 R_5 R_5 R_5 R_5 R_4 R_5 R_5 R_5 R_5 R_5 R_5 R_5 R_4 R_5 R_5 R_4 R_5 R_5 R_5 R_5 R_5 R_6 R_7 R_7 R_7 R_7 R_8 R_8

and

 R_4 is $C_3\text{-}C_7\text{cycloalkyl},\ C_4\text{-}C_7\text{cycloalkenyl},\ C_5\text{-}C_7\text{cycloalkadienyl}$ wherein the cycloalkyl group can be mono- to pentasubstituted by halogen, hydroxy, $C_1\text{-}C_4\text{alkyl},\ C_1\text{-}C_4\text{alkoxy},\ C_1\text{-}C_4\text{alkenyl},\ C_2\text{-}C_5\text{alkynyl},\ C_1\text{-}C_4\text{haloalkyl};\ phenyl unsubstituted or substituted by halogen, nitro, cyano, CHO, <math display="inline">C_1\text{-}C_4\text{alkyl},\ C_1\text{-}C_4\text{alkoxy},\ C_1\text{-}C_4\text{haloalkoxy},\ C_2\text{-}C_5\text{alkynyl},\ C_1\text{-}C_4\text{haloalkyl},\ COOC_1\text{-}C_4\text{alkyl},\ C_1\text{-}C_4\text{alkoxy-}C_1\text{-}C_4\text{alkyl},\ C_1\text{-}C_4\text{alkoxy-}C_1\text{-}C_4\text{alkyl},\ C_1\text{-}C_4\text{alkoxy-}C_1\text{-}C_4\text{alkoxy-}C_1\text{-}C_4\text{alkoxy-}C_1\text{-}C_4\text{alkyl},\ C_1\text{-}C_4\text{alkoxy-}C_1\text{-}C_4\text{alkoxy-}C_1\text{-}C_4\text{alkyl-}C_1\text{-}C_4\text{alkoxy-}C_1\text{-}C_4\text{alkyl-}C_1\text{-}C_4\text{alkoxy-}C_1\text{-}C_4\text{alkyl-}C_1\text{-}C_4\text{alkoxy-}C_1\text{-}C_4\text{alkyl-}C_1\text{-}C_4\text{alkoxy-}C_1\text{-}C_4\text{alkyl-}C_1\text{-}C_4\text{alkoxy-}C_1\text{-}C_4\text{alkyl-}C_1\text{-$

C₁-C₆haloalkoxy;

 R_5 is hydrogen, cyano, nitro, halogen, C_1 - C_4 haloalkyl, C_1 - C_4 alkyl, C_1 - C_4 alkoxy- C_1 - C_4 alkoxy or C_1 - C_4 haloalkoxy;

 R_6 , R_7 , R_8 , R_9 and R_{10} are identical or different and are each independently of the others hydrogen, halogen, C_1 - C_4 haloalkyl, C_1 - C_4 alkyl, C_2 - C_5 alkenyl, C_2 - C_5 alkynyl, C_1 - C_4 alkoxy, C_1 - C_4 alkyl, C_1 - C_4 alkyl, C_1 - C_4 alkyl, C_1 - C_4 alkyl, C_1 - C_5 alkyl, C_1 - C_6 haloalkoxy- C_1 - C_4 alkyl, C_1 - C_4 - C_1 - C_2 - C_2 - C_2 - C_1 - C_2 - C_2 - C_2 - C_2 - C_2 - C_3 - C_4

- A compound of formula I according to claim 2, wherein X is oxygen.
- 4. A compound of formula I according to claim 2, wherein X is sulfur.
- 5. A compound of formula I according to claim 3, wherein

 R_1 is C_1 - C_3 alkyl; C_1 - C_3 haloalkyl; C_3 - C_6 cycloalkyl unsubstituted or substituted by C_1 - C_3 alkyl, C_1 - C_3 haloalkyl or halogen;

R₂ is hydrogen, C₁-C₄alkyl or C₁-C₄haloalkyl;

 R_3 is C_1 - C_4 alkyl, C_1 - C_3 haloalkyl or C_1 - C_3 alkoxy- C_1 - C_3 alkyl;

A is A1, A2, A3, A5, A8, A10, A13, A14, A17, A18, A20, A21, A22, A24, A25, A26, A27, A29, A31 or A32;

 R_4 is C_5 - C_7 cycloalkyl, unsubstituted or mono- to trisubstituted by halogen, hydroxy, C_2 - C_4 alkenyl, C_2 - C_4 alkynyl, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_4 haloalkoxy or C_1 - C_4 alkoxy; C_5 - C_7 cycloalkenyl, unsubstituted or mono- to trisubstituted by halogen, hydroxy, C_2 - C_4 alkenyl, C_2 - C_4 alkynyl, C_1 - C_4 haloalkyl, C_1 - C_4 haloalkoxy or C_1 - C_4 alkoxy; C_5 - C_7 cyclodialkenyl, unsubstituted or mono- to disubstituted by halogen, hydroxy, C_2 - C_4 alkenyl, C_2 - C_4 alkynyl,

 C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_4 haloalkoxy or C_1 - C_4 alkoxy; thienyl, furyl, isoxazolyl, oxazolyl, thiadiazolyl, triazinyl, pyridyl, pyrimidinyl, pyrazinyl or pyridazinyl, which are unsubstituted or substituted by halogen, hydroxy, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_4 alkoxy or C_1 - C_4 haloalkoxy; phenyl which is unsubstituted or substituted by halogen, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, C_1 - C_4 haloalkyl or C_1 - C_4 haloalkoxy;

 R_5 is hydrogen, halogen, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, C_1 - C_4 haloalkyl or C_1 - C_4 haloalkoxy; and R_6 , R_7 , R_8 , R_9 and R_{10} are identical or different and are each independently of the others hydrogen, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, C_1 - C_4 haloalkyl or C_1 - C_4 haloalkoxy.

6. A compound of formula I according to claim 5, wherein

A is A1, A2, A3, A17, A20, A21, A24, A25, A26, A27 or A31;

R₁ is C₁-C₂alkyl, C₁-C₃haloalkyl or cyclopropyl;

 R_2 is hydrogen or C_1 - C_3 alkyl;

 R_3 is C_1 - C_3 alkyl or C_1 - C_3 alkoxy- C_1 - C_3 alkyl;

 R_4 is cyclohexyl, cyclohexenyl or cyclohexadienyl, which are unsubstituted or mono- to disubstituted by chloro, bromo, C_1 - C_2 alkyl, C_1 - C_2 haloalkyl or C_1 - C_2 haloalkoxy; thienyl, furyl, triazinyl, pyridyl, pyrazinyl, pyridazinyl or pyrimidinyl which are unsubstituted or substituted by halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl or C_1 - C_4 haloalkoxy;

 R_5 is hydrogen, halogen, C_1 - C_3 alkyl, C_1 - C_3 haloalkyl, C_1 - C_3 alkoxy or C_1 - C_3 haloalkoxy; and R_6 , R_7 , R_8 , R_9 and R_{10} are identical or different and are each independently of the others hydrogen or C_1 - C_3 alkyl.

7. A compound of formula I according to claim 6, wherein

R₁ is methyl, ethyl, CFH₂ or CF₂H;

R₂ is hydrogen;

R₃ is methyl or CH₂OCH₃;

A is A31 or A33; and

R₄ is halophenyl, C₅-C₂cycloalkyl or halothienyl.

8. A compound of formula I according to claim 4, wherein

 R_1 is C_1 - C_3 alkyl; C_1 - C_3 haloalkyl; C_3 - C_6 cycloalkyl unsubstituted or substituted by C_1 - C_3 alkyl, C_1 - C_3 haloalkyl or halogen;

R₂ is hydrogen, C₁-C₄alkyl or C₁-C₄haloalkyl;

 R_3 is C_1 - C_4 alkyl, C_1 - C_3 haloalkyl or C_1 - C_3 alkoxy- C_1 - C_3 alkyl;

A is A1, A2, A3, A5, A8, A10, A13, A14, A17, A18, A20, A21, A22, A24, A25, A26, A27, A29, A31 or A32;

 R_4 is C_5 - C_7 cycloalkyl, unsubstituted or mono- to trisubstituted by halogen, hydroxy, C_2 - C_4 alkenyl, C_2 - C_4 alkynyl, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_4 haloalkoxy or C_1 - C_4 alkoxy; C_5 - C_7 cycloalkenyl, unsubstituted or mono- to trisubstituted by halogen, hydroxy, C_2 - C_4 alkenyl, C_2 - C_4 alkynyl, C_1 - C_4 alkyl, C_1 - C_4 haloalkoxy, C_1 - C_4 haloalkoxy or C_1 - C_4 alkoxy;

C₅-C₇cyclodialkenyl, unsubstituted or mono- to disubstituted by halogen, hydroxy,

 C_2 - C_4 alkenyl, C_2 - C_4 alkynyl, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_4 haloalkoxy or C_1 - C_4 alkoxy; thienyl, furyl, isoxazolyl, oxazolyl, thiadiazolyl, triazinyl, pyridyl, pyrimidinyl, pyrazinyl or pyridazinyl, which are unsubstituted or substituted by halogen, hydroxy, C_1 - C_4 alkyl, C_1 - C_4 alkoxy or C_1 - C_4 haloalkoxy; phenyl which is unsubstituted or substituted by halogen, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, C_1 - C_4 haloalkyl or C_1 - C_4 haloalkoxy;

 R_5 is hydrogen, halogen, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, C_1 - C_4 haloalkyl or C_1 - C_4 haloalkoxy; and R_6 , R_7 , R_8 , R_9 and R_{10} are identical or different and are each independently of the others hydrogen, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, C_1 - C_4 haloalkyl or C_1 - C_4 haloalkoxy.

9. A compound of formulal according to claim 8, wherein

A is A1, A2, A3, A17, A20, A21, A24, A25, A26, A27 or A31;

R₁ is C₁-C₂alkyl, C₁-C₃haloalkyl or cyclopropyl;

R₂ is hydrogen or C₁-C₃alkyl;

 R_3 is C_1 - C_3 alkyl or C_1 - C_3 alkoxy- C_1 - C_3 alkyl;

R₄ is cyclohexyl, cyclohexenyl or cyclohexadienyl, which are unsubstituted or mono- to disubstituted by chloro, bromo, C₁-C₂alkyl, C₁-C₂haloalkyl or C₁-C₂haloalkoxy; thienyl, furyl, triazinyl, pyridyl, pyrazinyl, pyridazinyl or pyrimidinyl which are unsubstituted or substituted by halogen, C₁-C₄alkyl, C₁-C₄haloalkyl or C₁-C₄haloalkoxy;

 R_5 is hydrogen, halogen, C_1 - C_3 alkyl, C_1 - C_3 haloalkyl, C_1 - C_3 alkoxy or C_1 - C_3 haloalkoxy; and R_6 , R_7 , R_8 , R_9 and R_{10} are identical or different and are each independently of the others hydrogen or C_1 - C_3 alkyl.

10. A process for the preparation of compounds of formula I which comprises reacting the starting materials according to the scheme

Base = NEt₃, Hūnig-base, Na₂CO₃, K₂CO₃ and others

wherein A, R₁, R₂ and R₃ are as defined for formula I in claim 1.

- 11. A composition for controlling microorganisms and preventing attack and infestation of plants therewith, wherein the active ingredient is a compound as claimed in claim 1 together with a suitable carrier.
- 12. Use of a compound of formula I according to claim 1 for protecting plants against infestation by phytopathogenic microorganisms.
- 13. A method of controlling or preventing infestation of cultivated plants by phytopathogenic microorganisms by application of a compound of formula I as claimed in claim 1 to plants, to parts thereof or the locus thereof.
- 14. A pyrrole carboxylic acid of formula X

$$R_1$$
 COOH (X)

wherein R_1 , R_2 and R_3 are as defined for formula I in claim 2.