效

袔

K

镪

一、选择题 (每小题 3分, 共 30分)

- 1. 设随机变量X, Y的期望都存在,并且对于任给的x, y,都有E(Y|X=x)=-2x+5, E(X|Y = y) = 2y + 5。请问E(X), E(Y)分别为: ()。
 - (A) 3, -1;
- (B) 2, 0;
- (C) 1, -1;
- (D) 条件不够,不能计算。
- 2. 零初值的平稳独立增量过程*X(t)*,下列性质正确的是()
 - (A) E(X(t)) = C(常数); (B) $R_X(s,t) = \sigma^2(t-s);$
 - (C) $E(X(t)) = \sigma^2$;
- (D) 有限维分布由一维分布确定。
- 3. 下列说法错误的是():
 - 正态随机向量线性变换后仍 (A) 维纳过程是正态过程; (B) 是正态随机向量;
 - 泊松过程的条件分布 (C)
- 相互独立的泊松过程之和仍 (D)
- 是均匀分布:
- 是泊松过程。
- 4. 随机过程 $X(t) = At^2 + B, -\infty < t < +\infty$, 其中 $A \sim B(1, 0.4)$ (即0 1分布), $B \sim U(0, 2\pi)$ (即均匀分布),且A与B相互独立,请给出该随机过程X(t)的任 意一条样本函数。下列说法正确的是:(
 - (A) A + B: (B) $At^2 + 1$:
 - (C) $t^2 + B$;
- (D) $t^2 + \pi_{\circ}$
- 5. 关于n维正态随机向量,下列结论错误的是: (

由一阶矩和二阶矩完全确 (A)

定联合分布:

- (B) 边缘分布一定是正态分布;
- (C) 条件分布一定是正态分布; (D) 协方差矩阵一定是正定矩阵。

6.	若正	态随机变量序列 $\{X_n, n \ge 1\}$ 在 $n \to ∞$ 时均方极限存在,记为 X 。随机变
量Y为二阶矩随机变量。则下列结论错误的是:(为二阶矩随机变量。则下列结论错误的是: ()。
	(A)	$\lim_{n\to\infty} E(X_n) = E(X); (B) X - 定服从正态分布;$
	(C)	$\lim_{n \to \infty} D(X_n) = D(X); \qquad (D) \lim_{n \to \infty} E(X_n^2 Y^2) = E(X^2 Y^2).$
7.	下列说法不正确的是:()。	
	(A)	均方连续的二阶矩过程在 (B) 维纳过程是均方可微的;
		有限区间上一定均方可积;
	(C)	若二阶矩过程的导数过程存在, 二阶矩过程的均方极限如果存 (D)
		则导数过程是二阶矩过程; 在,则是惟一的。
8.	8. $\{X(t), t \in T\}$ 为零均值,自相关函数为 $R_X(\tau)$ 的实宽平稳过程,则下列说法	
	正确	的是: ()。
	(A)	X(t+a) - X(t)也是宽平稳的,
		其中a是常数; 是严平稳的;
	(C)	$ ilde{E}X(t)$ 均方连续,则 $R_X(au)$ (D) 该过程一定遍历的。
		处处连续;
9. 下列不是马尔可夫过程的是: ()。		不是马尔可夫过程的是: ()。
	(A)	维纳过程; (B) 泊松过程;
	(C)	高斯白噪声序列; (D) 随机相位正弦波。
10.	甲乙	两人进行一种比赛,设每局比赛甲胜的概率是1,没有和局。设比赛开
	始时	,甲乙两人记分均为0分,每局比赛胜者得1分,负者扣1分。当有一人
	获得	2分时比赛结束。请问比赛结束时,甲赢得比赛的概率:()
	(A) $\frac{1}{3}$;	(B) $\frac{1}{2}$; (C) $\frac{1}{4}$; (D) $\frac{1}{5}$ °
_,	· 填空题 (每小题 3 分,共 30 分)	
1.	设随机变量 ξ 的概率密度函数为 $f(x)$,令 $\eta(t)=\xi\cos\beta t$, β 是正常数, $t\in \mathbf{R}$ 。	
	试求	$\eta(t)$ 的一维概率密度为($f(\frac{y}{\cos\beta t})\frac{1}{ \cos\beta t }$)。
2.	设顾	客以每分钟2人的速率到达,顾客流为齐次泊松流,求在2分钟内到达的
	顾客	不超过3人的概率是($\sum_{k=0}^{3} \frac{4^k e^{-4}}{k!}$)。
		k=0

- 3. 设 $\{X(t), t \ge 0\}$ 是参数为 λ 的泊松过程,试对s > 0,求 $E(X(t)X(t+s)) = (\lambda t[1+\lambda(t+s)]).$
- 4. 设 $\{X(t), t \geq 0\}$ 是具有参数 $\lambda > 0$ 的泊松过程,泊松过程X(t)计数的事件流中事件第n次到达的时间 W_n 的数学期望是 $\binom{n}{t}$ 。
- 5. 设 $\{N_1(t), t \geq 0\}$ 是参数为 λ_1 的泊松过程, $\{N_2(t), t \geq 0\}$ 是参数为 λ_2 的泊松过程,二者相互独立. 对于 $0 \leq k \leq n$,则:

$$P\{N_1(t) = k | N_1(t) + N_2(t) = n\} = (C_n^k \left[\frac{\lambda_1}{\lambda_1 + \lambda_2}\right]^k \left[\frac{\lambda_2}{\lambda_1 + \lambda_2}\right]^{n-k}) \circ$$

- 6. 若 $X(t) = A \sin 3t, t \ge 0$, A服从N(0,7), 令 $Y(t) = \int_0^t X(s)ds$, 则 $D_Y(t) = (\frac{7}{9}(1 \cos 3t)^2)$ 。
- 7. 参数为 σ^2 的维纳过程W(t)(是)平稳过程,W(t+3) W(t+1)(不是)宽平稳过程。(填写"是"或"不是")
- 8. 给定随机过程 $\{X(t), t \geq 0\}$,其均值函数 $m_X = 0$,自相关函数 $R_X(\tau) = e^{-|\tau|}$ 。 设 $Y = \int_0^1 X(t) dt$,则E(Y) = (0), $D(Y) = (2e^{-1})$ 。
- 9. 马尔可夫过程的有限维分布函数由(一维分布)和(转移分布)确定。
- 10. 泊松过程的时间间隔序列(独立)(填"独立"或"不独立")且服从(指数)分布,等待时间序列(不独立)(填"独立"或"不独立")且一维分布为(n阶的爱尔朗)分布。

三、计算题(共10分)

已知随机过程 $X(t) = \cos(t+A), -\infty < t < +\infty$,其中A是随机变量,其分布律为 $P\{A = i\} = \frac{1}{3}(i = 0, \frac{\pi}{2}, \pi)$,求:

- (1)求随机过程X(t)的任意两个样本函数,并绘出草图:
- (2)求随机过程X(t)的一维概率分布与二维概率分布;
- (3)求随机过程X(t)的均值函数、自协方差函数。

四、计算题 (共15分)

- (1)证明该过程是宽平稳过程。
- (2) 讨论该过程的均方连续性,均方可导性以及均方可积性。
- (3)证明该过程是均值均方遍历的。

五、计算题(共15分)

设齐次马氏链的状态空间 $E = \{1, 2, 3, 4, 5, 6, 7\}$,一步转移矩阵

- (1)画出状态转移图;
- (2)分析各状态类型;
- (3) 分解状态空间E。