Approved for public release; distribution is unlimited.

GAS-PHASE POLLUTANT DECOMPOSITION WITH NON-THERMAL PLASMAS: SIMPLE REMOVAL **EQUATIONS AND FIGURES-OF-MERIT**

Author(s): Louis A. Rosocha, P-24

Submitted to: Presentation Vugraphs for 5th International Conference on Advanced Oxidation Technologies for Water and Air Remediation (AOTs-5) Albuquerque, NM (May 23-28, 1999)

Los Alamos

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University of California for the U.S. Department of Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

Form 836 (10/96)

19991202 120

Gas-Phase Pollutant Decomposition with Non-Thermal Plasmas: Simple Removal Equations and Figures-of-Merit

5th International Conference on Advanced Oxidation Technologies for Water & Air Remediation (AOTs-5)

Louis A. Rosocha Los Alamos National Laboratory

May 24 - 28, 1999 - Albuquerque, NM

GAS-PHASE POLLUTANT DECOMPOSITION WITH NON-THERMAL PLASMAS (NTPS): SIMPLE REMOVAL EQUATIONS AND FIGURES-OF-MERIT

Louis A. Rosocha

Plasma Physics Group, Los Alamos National Laboratory PO Box 1663, MS E526 Los Alamos, NM 87545 (USA)

Abstract

plasmas are good sources of highly reactive oxidative and reductive species (free radicals and others), e.g., O(3P), OH, N, H, NH, CH, O3, O2 (1Δ), into a gas. Both methods create secondary plasma electrons, with a distribution of electron energies defined by an average electron energy (or electron temperature). In NTPs, the electrons are highly energetic (hot) and the ions and background gas species are at near-ambient temperature. and plasma electrons. Because radical-attack reaction rate constants are very large for many chemical species, entrained pollutants are readily decomposed by NTPs. Via these reactive species, one can direct electrical energy into favorable gas chemistry through energetic electrons, rather than using the energy to heat the gas. NTPs are commonly created by an electrical discharge in a gas or the injection of an energetic electron beam Non-thermal plasmas (NTPs) are a type of advanced oxidation and reduction technology for treating gas-phase chemical pollutants. (cold). For this reason, these plasmas are sometimes called cold plasmas.

Applications of the technology include flue-gas treatment (SO_x and NO_x), environmental remediation of volatile organic compounds (VOCs) in soil or groundwater, or the abatement of other regulated industrial air emissions.

In this talk, we will describe a simple free-radical-based, reaction-kinetics model that predicts the form of the pollutant-removal plots (degree non-chlorinated VOCs), using removal equations derived from the model. Here, we consider the NTP reactor to be a 'black box' which reduces the of removal vs. specific plasma energy) for various air pollutants and/or hazardous chemicals (e.g., the flue gases SO_x and NO_x and chlorinated and concentration of entrained pollutants in a gas-phase stream from an initial value [X]₀ to a value [X] under the influence of a reactor specific energy (active-plasma energy per unit volume) E.

In general, a pollutant-removal equation is exponential in character, depending only on the applied specific energy Ε and a parameter β. The β-value characterizes the particular pollutant of interest and, for general cases, depends on the active decomposing-species formation efficiency G (number of active molecules produced per 100 eV of plasma-deposited electrical energy), the initial pollutant concentration, and the chemical kinetics of radical-pollutant attack and radical scavenging.

radical-radical scavenging is dominant. In the first case, the removal plot is relatively insensitive to [X]0; in the second case, it significantly depends on [X]₀; and in the third case, the plot is insensitive to [X]₀ but has an explicit dependence on the gas residence time τ, in the NTP reactor – in We will examine three special cases: 1) radical scavenging dominates radical attack, 2) radical attack dominates radical scavenging, and 3) contrast to the other two cases.

From the removal equations, one can derive figures-of-merit for both the instantaneous (γ_i) and average (γ) removal energy costs (energy efficiency) for pollutant removal. We will present example figure-of-merit calculations for representative pollutants and carrier gases to illustrate the dependence on initial concentration [X]₀, the degree of pollutant removal [X]/[X]₀, and the G-value.

Acknowledgment

the US Strategic Environmental Research & Development Program This work has been partially supported by (SERDP)

Outline of talk

- Simple "black-box" model of an NTP reactor
- Active-species production functional relationships
 - Decomposition chemistry overview
- Simple kinetics model and generalized pollutant-removal equations.
- Figures-of-merit & costs for decomposition of example pollutants
- Summary

Via Active Species Generated in the Process Gas Non-thermal Plasmas Decompose Pollutants

depends on the gaseous electronics. Radical generation is mainly initiated by energetic-The radical production efficiency (G-value) electron collisions.

$$G = f\left(\frac{k_{rad}}{\frac{E}{V_d \frac{E}{N}}}\right)$$

E/N is the reduced field,

 V_d is the electron drift velocity, which depends on E/N,

k_{rad} is the rate constant for radical formation (e.g., a dissociation rate constant, which depends on E/N), and/or other rate constants.

Gas-phase plasma chemical decomposition is driven by electron impact and radical attack.

(1) $e + X \rightarrow products$

- (2) O, OH, N, etc. + X → products
- The first reaction is dominant at large pollutant mole fractions.
- The second dominates at smaller mole fractions.

(More energy is directly absorbed by pollutant at high mole fraction, hence electron channel dominates.)

Plasma chemical decomposition of VOCs produces a variety of terminal products.

- e, O, OH, N, etc. + X → products
- Manageable products: CO₂, CO, Cl₂, HCl, COCl₂
- Undesirable products: Other halocarbons, hazardous byproducts (e.g., DCAC - CHCl₂COCI); polymers
- Secondary treatment:
 CO₂ + NaOH → NaHCO₃
 CO + catalyst→ CO₂
 Cl₂ + NaHCO₃→ NaCl + HCl + ...
 HCl + NaOH → NaCl + H₂O
 COCl₂ + H₂O→ 2HCl + CO₂

Major de-NO_x Reactions in Moist Gas Mixtures w/o HCs

$$N(^{2}D) + H_{2}O \rightarrow NH + OH$$

 $NH + NO \rightarrow N_{2} + OH$
 $NH + O_{2} \rightarrow NO + OH$
 $NO + NO_{3} \rightarrow 2NO_{2}$
 $NO + OH + M \rightarrow HNO_{2} + M$
 $OH + HNO_{2} \rightarrow NO_{2} + H_{2}O$
 $OH + HNO_{2} \rightarrow NO_{2} + H_{2}O$
 $OH + NO_{2} \rightarrow N_{2} + O_{2}$
 $OH + NO_{2} \rightarrow NO + N_{2}$
 $O(^{1}D) + NO_{2} \rightarrow NO + O_{2}$
 $O(^{1}D) + NO_{2} \rightarrow NO + O_{2}$

Primary Acid-Formation Pathways:

$$NO + OH + M \rightarrow HNO_2 + M$$

 $OH + NO_2 + M \rightarrow HNO_3 + M$

The presence of SO₂ recycles OH radicals & reduces effective de-NO_x energy cost

$$OH + SO_2 + M \rightarrow HSO_3 + M$$

 $HSO_3 + O_2 \rightarrow HO_2 + SO_3$
 $HO_2 + NO \rightarrow NO_2 + OH$

The OH radical then goes on to be used again in de-NO_x

OH + NO + M
$$\rightarrow$$
 HNO₂ + M
OH + HNO₂ \rightarrow NO₂ + H₂O
OH + NO₂ + M \rightarrow HNO₃ + M

Acid is also formed by the reaction

$$HSO_3 + H_2O \rightarrow H_2SO_4$$

With ammonia (NH₃) addition, useful particulates (fertilizer) can be formed from NO_x

$$e + NH_3 \rightarrow NH_2 + H + e$$
 $e + NH_2 \rightarrow NH + H + e$
 $NH + H \rightarrow N + H_2$
 $NH_2 + NO \rightarrow N_2 + H_2O$
 $NH + NO \rightarrow N_2 + OH$
 $N + NO \rightarrow N_2 + OH$
 $N + NO \rightarrow N_2 + OH$

OH + NH₃ \rightarrow NH₂ + H₂O OH + NO + M \rightarrow HNO₂ + M OH + HNO₂ \rightarrow NO₂ + H₂O OH + NO₂ + M \rightarrow HNO₃ + M NH₃ + HNO₃ \rightarrow NH₄NO₃ (Ammonium Nitrate fertilizer)

Simple, first-order kinetics model gives exponential pollutant-removal function.

Chemical Reactions

Rate Equations

$$\frac{d[R.]}{dt} = \frac{d[R.]}{d\overline{E}} \cdot \frac{d\overline{E}}{dt} = G\overline{P}$$

$$R^{\bullet} + X \rightarrow Products$$

$$\frac{d[X]}{dt} = -k[R \cdot][X]$$

(7)

$$R^{\bullet} + S_i \rightarrow Products$$

$$\frac{d[\mathbf{R}\cdot]}{dt} = -k_{S_i}[\mathbf{R}\cdot][S_i]$$

(3)

Assume steady state: $\frac{d[R\cdot]}{dt}(net) = G\overline{P} - k[R\cdot][X] - \sum_{k_{S_i}} [R\cdot][S_i] = 0$

Solve for [R]_{ss} and insert into (2) to obtain generalized removal equation.

A generalized removal equation depends on plasma chemistry (radical yields), reaction chemistry, and applied plasma specific energy.

Generalized offferential equation: For low degree of removal (Le.,

$$k[X] + \sum_{i} k_{S_i} [S_i]$$

$$k[X] = -Gd\overline{\overline{E}}$$

Integration with limits $[X]_0 \to [X]$ and $0 \to E$ gives:

$$\frac{[X]}{[X]_0} + \frac{\sum_{i} k_{S_i} [S_i]}{k [X]_0} \ln \frac{[X]}{[X]_0} - 1 = -\frac{G\bar{\mathsf{E}}}{[X]_0}$$

For low degree of removal (i.e., [X]/[X]₀ ~ 1 + ln { [X]/[X]₀}), an analytical solution is obtained:

$$[X]/[X]_0 = \exp(-\overline{\mathbf{E}}/\beta)$$

where

$$\beta = \frac{1}{G} \left([X]_0 + \frac{\sum_i k_{S_i} [S_i]}{k} \right)$$

When k [X] << Σ_i k_{Si} [S_i], the β-value and, hence the degree of removal [X]/ [X]_δ shows no dependence on the initial concentration [X]_δ

removal function (plot of degree of removal vs The simple model predicts the form of the plasma specific energy).

Example removal data for various compounds (cont'd.)

Los Alamos

After Hsiao et al

After Falkenstein; Korzekwa & Rosocha

Example recombination-dominated removal plot (calculated).

Additional example case (explicit residence-time dependence):

Σ_i k_{Si} [S_i] >> k [X]₀ and dominant scavenging pathway is recombination of the radicals, e.g., [R*] = [S], where S represents the primary scavenger

$$[R^{\bullet}] = (G\bar{P}/k_s)^{1/2}$$

$$\frac{d[X]}{[X]} = -k \left(\frac{G\overline{P}}{ks}\right)^{1/2} dt$$

 $[X]/[X]_0 = \exp\{-k (G\bar{E}/k_s)^{1/2} \tau_r^{1/2}\}$

Ballpark B-value calculation for TCE (C2HCl3) in a dry, air-like gas mixture:

Simple Chemical Model

1)
$$e + O_2 \rightarrow O + O + e$$

2) $O + TCE \rightarrow Products$
3) $O + O_2 + M \rightarrow O_3 + M$

G (O) ~ 10 molec/100 eV

$$k_2 = 5.3 \times 10^{-13} \text{ cm}^3/\text{s}$$

 $k_3 = 6.1 \times 10^{-34} \text{ cm}^6/\text{s} \text{ (for M} = O_2)$
 $k'_3 = 5.9 \times 10^{-34} \text{ cm}^6/\text{s} \text{ (for M} = N_2)$

8-Value Estimates

 $\beta = 1/G \{ [X]_0 + 1/k_2 (k_3 [O_2]^2 + k'_3 [O_2] [N_2]) \}$ $\beta \sim 260 J/liter$

Without Chain Reactions

With CI Chain Reactions Chain length 2: $\beta \sim$ 130 J/liter Chain length 5: $\beta \sim$ 52 J/liter

Chain length 10: β ~ 26 J/liter

Example scaling laws for pollutant removal (no [X]₀ dependence)

(1)
$$[X] = [X]_0 \exp(-\overline{E}/\beta)$$
,

where [X] $_0$ is the initial pollutant concentration, [X] is the resulting concentration, $_{\mathbb E}$ is the applied specific energy (or plasma power divided by gas flow rate, P/Q), and β is the e-fold energy density. Supplying one β to the reactor reduces the concentration by 1/e, 2β by $1/e^2$, and so on.

stream. At any instant, this can be expressed as the following quantity obtained A useful figure of merit for the decomposition of pollutants is defined by the energy delivered to the plasma per hazardous molecule removed from the gas by solving Equation 1 for € and taking the derivative:

(2)
$$\gamma_i = -\frac{d\bar{\mathsf{E}}}{d[X]} = -\frac{d[-\beta \ln(\frac{[X]}{[X]_0})]}{d[X]} = \frac{\beta}{[X]}$$
.

This is the instantaneous energy cost per molecule removed.

Scaling laws for pollutant removal (cont'd)

A more practically-useful parameter is the integral, or average, energy cost γ

(3)
$$\gamma = \frac{\bar{E}_{-\infty}}{[X]_0 - [X]} = \frac{-\beta \ln(\frac{\lfloor X \rfloor}{[X]_0})}{[X]_0 (1 - \frac{\lfloor X \rfloor}{[X]_0})}$$
 (= $\beta/[X]_0$ (at optimum; i.e., $[X]/[X]_0 \sim 1$).

Here, the energy cost per molecule is expressed in terms of the β-value, the degree of removal, and the initial concentration. When radical-pollutant attack dominates $\beta \approx [X]_0/G$ and the removal cost is then independent of the initial concentration

(4)
$$\gamma = \frac{\bar{E}}{[X]_0 - [X]} = \frac{-\ln(\frac{[X]_0}{[X]_0})}{G(1 - \frac{[X]_0}{[X]_0})}$$
 (= 1/G at optimum; i.e., [X]/[X]_0 ~ 1).

Figures-of-merit for pollutant removal

costs decrease as the concentration increases (note 200 ppm case vs 100 ppm case). Energy costs and degree of removal for NO removal in an NO-air mixture with one efold plasma specific energies of 50 J/liter and 20 J/liter. NO is a compound whose etavalue is not very sensitive to the initial concentration; therefore, the removal energy

Figures-of-merit for pollutant removal:

Summary

- presents phenomenological descriptions of reactor performance and, in most cases, does not provide a consistent way to compare and/or Most technical literature on treating air emissions with NTPs mainly predict the scaling and optimization properties of different NTP systems.
- unit volume deposited in the reactor active volume) required to remove A simple way of comparing different types of NTP reactors, is based mixture and the associated yield (electrical energy cost per mass of on the concept of: the plasma specific energy (electrical energy per a particular pollutant to a prescribed level in a defined exhaust-gas pollutant removed.
- We have described simple models for pollutant-removal and figures-ofmerit for energy-removal costs in generalized NTP reactors.

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 074-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503

1. AGENCY USE ONLY (Leave	2. REPORT DATE		3. REPORT TYPE AND DATES COVERED		
blank)	1999	Conference Proceedings, May 23-28, 1999			
4. TITLE AND SUBTITLE			5. FUNDING N	UMBERS	
Gas-Phase Pollutant Decomposition	n with Non-Thermal Plasmas:	Simple Removal	N/A		
Equations and Figures-of Merit					
6. AUTHOR(S)					
Louis A. Rosocha					
7. PERFORMING ORGANIZATION NA	ME(S) AND ADDRESS(ES)			G ORGANIZATION	
			REPORT NUMBER		
Los Alamos National Laboratory			N/A		
	-			WO (MONITORING	
9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)			10. SPONSORING / MONITORING AGENCY REPORT NUMBER N/A		
SERDP					
901 North Stuart St. Suite 303					
Arlington, VA 22203					
11. SUPPLEMENTARY NOTES No copyright is asserted in the Uni	tad States under Title 17 IIS	code The U.S. Govern	nent has a roval	ty-free license to exercise all	
rights under the copyright claimed	harain for Government purpos	es All other rights are re	eserved by the c	onvright owner.	
rights under the copyright claimed	nerem for Government purpos	cs. 7th office rights are re	5551 (64 6) 1116 1		
12a. DISTRIBUTION / AVAILABILITY STATEMENT				12b. DISTRIBUTION CODE	
Approved for public release: distribution is unlimited.				A	
13. ABSTRACT (Maximum 200 Words	e)		<u></u>		
Non-thermal plasmas (NTPs) a	re a type of advanced oxidatio	n and reduction technolo	gy for treating g	gas-phase chemical pollutants.	
Such plasmas are good sources of l	highly reactive exidative and r	eductive species (free rad	licals and others	s), e.g., O(³ P), OH, N, H, NH,	
CH. O_3 , O_2 ($^1\Delta$), and plasma electrons	ons. Because radical-attack re	action rate constants are	very large for m	nany chemical species,	

Non-thermal plasmas (NTPs) are a type of advanced oxidation and reduction technology for treating gas-phase chemical pollutants Such plasmas are good sources of highly reactive oxidative and reductive species (free radicals and others), e.g., $O(^3P)$, OH, N, H, NH, CH, O_3 , $O_2(^1\Delta)$, and plasma electrons. Because radical-attack reaction rate constants are very large for many chemical species, entrained pollutants are readily decomposed by NTPs. Via these reactive species, one can direct electrical energy into favorable gas chemistry through energetic electrons, rather than using the energy to heat the gas. NTPs are commonly created by an electrical discharge in a gas or the injection of an energetic electron beam into a gas. Both methods create secondary plasma electrons, with a distribution of electron energies defined by an average electron energy (or electron temperature). In NTPs, the electrons are highly energetic (hot) and the ions and background gas species are at near-ambient temperature (cold). For this reason, these plasmas are sometimes called cold plasmas.

14. SUBJECT TERMS SERDP, NTPs, advanced oxidation	15. NUMBER OF PAGES 22 16. PRICE CODE N/A		
17. SECURITY CLASSIFICATION OF REPORT unclass	18. SECURITY CLASSIFICATION OF THIS PAGE unclass	19. SECURITY CLASSIFICATION OF ABSTRACT unclass	20. LIMITATION OF ABSTRACT UL

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18 298-102