Titanic

Team Members:

Tigmanshu Chaudhary(TIC48)
Charu Sreedharan(CHS263)
Varun Nair(VAN17)
Anirban Sen(ANS331)

Problem Statement

- Kaggle competition
- Objective: To predict the survival rate of passengers on the Titanic employing machine learning techniques.
- Programming Language used: Python

Dataset

- 891 records in training set.
- 418 records in test set.
- Target variable Survived
- 11 attributes in total.

Attributes

- PassengerId→this is the rowID of the passenger details.
- Pclass→indicates the economic class or status of the passenger(where 1 refers to first class, 2 refers to second class and so on).
- Name→this is the name of the passenger.
- Sex→ this is the gender of the passenger.
- Age→Age of the passenger.
- SibSp→this indicates if there is a sibling or spouse for a passenger.
- Parch→indicates number of parents plus number of children.
- Ticket→this is the serial number of the ticket.
- Fare→indicates the value of the ticket.
- Cabin→indicates the cabin number of the passenger.
- Embarked→indicates the port from which the passenger embarked C(Cherbourg),S(Southampton),Q(Queenstown)

Pre-processing

PassengerId	0
Survived	0
Pclass	0
Name	0
Sex	0
Age	177
SibSp	0
Parch	0
Ticket	0
Fare	0
Cabin	687
Embarked	2

- Columns 'Age', 'Cabin' & 'Embarked' have null values.
- Replaced null values of 'Age' with mean of 'Age' column.
- Replaced null values of 'Fare' (in test set) with mean of 'Fare' column.
- Omitted following features for model fitting:
 - Cabin Cabin is correlated with pclass/fare to have any impact.
 Also many null values.
 - Embarked makes no sense of how it could impact survivability.
 - Ticket makes no sense of how it could impact survivability.
 - Name felt it is not important in prediction
- Label encode 'Sex' into 0 and 1 for males and females.

Feature Engineering

- As can be seen, lower family size(upto 4) leads to higher survival rate.
- Created new feature: 'FamilySize'

'FamilySize' = 'SibSp' + 'Parch' + 1

Created new Feature: 'Title'. Extracted from name.

"Mr": 1, "Miss": 2, "Mrs": 3, "Master": 4, "Respectable Titles": 5

Sex vs Survival

Features for model fitting: 'Pclass', 'Sex', 'Age', 'SibSp',
 'PassengerId','Parch','Fare','FamilySize','Title'

Split data into training and validation sets.

Scale training data using Standard Scaler: ensures equal weight for features.

Model Fitting

Model Name	Accuracy on Validation set
KNN Classification	0.758
Logistic Regression	0.815
Linear Discriminant Analysis	0.780
Quadratic Discriminant Analysis	0.741

Accuracy on Test set: below 0.78 for these models

Model Name	Accuracy on Validation set	Accuracy on Test set
Adaptive Boosting	0.79	0.78
SVM	0.816	0.794
Random Forest	0.845	0.799

Random Forest Model

```
parameter grid = {
                  'max depth' : [4, 6, 8],
                 'n estimators': [50, 10],
                 'max features': ['sqrt', 'auto', 'log2'],
                 'min samples split': [2, 3, 10],
                 'min samples_leaf': [1, 3, 10],
                 'bootstrap': [True, False],
forest = RandomForestClassifier()
cross validation = StratifiedKFold(n splits=5)
random forest = GridSearchCV(forest,
                   scoring='accuracy',
                   param grid=parameter_grid,
                   cv=cross validation,
                   verbose=1
rf = random_forest.fit(X_trainval_transformed, Y_trainval)
Y_pred_rf = random_forest.predict(X_testset_transformed)
```

Ensemble bagging decision tree algorithm.

Parameters:

n_estimators: The number of trees in the forest.

max_depth : The maximum depth of the
tree.

min_samples_split: The minimum number of samples required to split an internal node.

- Used GridSearchCV for exhaustive search over specified parameter values.
- 5-fold cross-validation.

Out[8]:

Random Forest

Decision Tree Visualization

Feature importance using Random Forest model

Conclusion and Future Improvements

 Random Forest - most successful model in predicting the survival with an accuracy of 79.9% on the test dataset.

1782	new	being lost			0.79904	3	101
1783	3 05	TigmanshuGroupTitanic	999	A	0.79904	18	8
Vour B	est Entry						
	Best Entry		of your heet core. Keen trying!				
		↑ scored 0.79904, which is not an improvement	of your best score. Keep trying!				
			of your best score. Keep trying!	e g	0.79904	39	6

- Accuracy maybe low because of multiple null values in Age column.
- Can dig more into data and eventually build new features.

Try different models like XGBoost or Neural Networks.