Figure 1A

NOVTRAN cDNA sequence:

Figure 1B

NOVTRAN Protein Sequence:

MQWSCLACTLLRVLPHVLSLLRDPVPVPTGTKLFHSCITSTNPCASFLEVAVEAAGITPW
TVGSEHPPCPYPSLHASPFTDSFNRPSPAPLNRPRSAGEPRTEAFPSPGLKARVGGTILAE
AGLNSQGHAVEPVPSGPSGSSKGCVLIKGRPSRMPKARECPVDRENLLLTNPAVPSLLQL
LSSSPCIKVETEQERSNAEFDLQSRAARDYNSRLLLKLGQIPAAKGSSFLELQNVSGGVG
SARGPRNHCKVGAGPQSPFPELGAGSPPLALEKVSTQPIPQARLRKGVDWPPVSPGDQC
PLCTLPGQPNLAHTGCSLNSHGGYCGMESCRFQKPPGHRAGSSSAEAA

Figure 2A

BlastN for NOVTRAN:

gb:GENBANK-ID:H55724 acc:H55724 CHR220663 Chromosome 22 exon Homo sapiens genomic clone C22_916 5', mRNA sequence - Homo sapiens, 171 bp.

Minus Strand HSPs:

Score = 585 (87.8 bits), Expect = 1.0e-19, P = 1.0e-19 Identities = 117/117 (100%), Positives = 117/117 (100%), Strand = Minus / Plus

Query: 675 TGCAGCTGGGATCTGCCCGAGTTTCAGCAGCAGCCTTGAATTGTAATCCCGAGCGGC 619

Sbjct: 78 TGCAGCTGGGATCTGCCCGAGTTTCAGCAGCAGCCTTGAATTGTAATCCCGAGCGGC 134

Figure 2B

BlastX for NOVTRAN:

the state of the s				2	
					•
No Hits:				•	
ptnr:SWISSPROT-ACC:P2235	7 ANTHER SPECIFIC PROTEIN	SF183	102	0.0093	1
	PROTECTIVE RECOMBINANT AN		87	0.018	1
	775 PRO-ALPHA-2(I) COLLAGE		86	0.061	- 2 ·
	r-specific protein - commo			0.073	1
	PROTECTIVE RECOMBINANT AN		78	0.16	1
	ALPHA-1 COLLAGEN TYPE III		- 1		
			86	0.19	3
	4 SPIDROIN 2 (DRAGLINE SII		101	0.24	1
	103AA LONG HYPOTHETICAL E		76	0.25	1
ptnr:SWISSNEW-ACC:P41484	PROLINE-RICH ANTIGEN (36	KD A3	95	0.26	1,
· .	, , , , , , , , , , , , , , , , , , ,			* 0 D	
CuraBLASTX Analysis of A	C007663 A				
-					
PUBLIC DATABASE					
	109 transmembrane protein				. 8
(1047 letters)	105 CLANOMOMOLANO PLOCETI	- 00			
Database: /opt/database	/nublic/blact/protpr				
		4	X	• • • •	
5//,633 seque	nces; 178,813,065 total le	ecters.			
	- * '' - '' - 'X - X		Sma	llest	
				Sum	
		Deadine	TTiah	Drobabil	1 + x r
		Reading	Hidu	Probabil	гтсу
Sequences producing High	-scoring Segment Pairs:		Score	P(N)	N
Sequences producing High	-scoring Segment Pairs:			•	-
	-scoring Segment Pairs: 7 ANTHER-SPECIFIC PROTEIN	Frame		•	-
ptnr:SWISSPROT-ACC:P2235	·	Frame	Score	P(N)	N
ptnr:SWISSPROT-ACC:P2235	7 ANTHER-SPECIFIC PROTEIN	Frame	Score	P(N)	N 1
ptnr:SWISSPROT-ACC:P2235	7 ANTHER-SPECIFIC PROTEIN	Frame	Score	P(N)	N 1
ptnr:SWISSPROT-ACC:P2235 ptnr:pir-id:S12246 anthe	7 ANTHER-SPECIFIC PROTEIN	Frame	Score	P(N)	N 1
ptnr:SWISSPROT-ACC:P2235 ptnr:pir-id:S12246 anthe PATENT DATABASE	7 ANTHER-SPECIFIC PROTEIN r-specific protein SF18 pr	Frame	Score	P(N)	N 1
ptnr:SWISSPROT-ACC:P2235 ptnr:pir-id:S12246 anthe PATENT DATABASE Curablastx Analysis of A	7 ANTHER-SPECIFIC PROTEIN r-specific protein SF18 pr	Frame	Score	P(N)	N 1
ptnr:SWISSPROT-ACC:P2235 ptnr:pir-id:S12246 anthe PATENT DATABASE CuraBLASTX Analysis of A Query= AC007663_A Cura_	7 ANTHER-SPECIFIC PROTEIN r-specific protein SF18 pr C007663_A 109 transmembrane protein	Frame SF183 recur3	Score 102 102	P(N)	N 1
ptnr:SWISSPROT-ACC:P2235 ptnr:pir-id:S12246 anthe PATENT DATABASE CuraBLASTX Analysis of A Query= AC007663_A Cura_	7 ANTHER-SPECIFIC PROTEIN r-specific protein SF18 pr	Frame SF183 recur3	Score 102 102	P(N)	N 1
ptnr:SWISSPROT-ACC:P2235 ptnr:pir-id:S12246 anthe PATENT DATABASE CuraBLASTX Analysis of A Query= AC007663_A Cura_ (1047 letters) o	7 ANTHER-SPECIFIC PROTEIN r-specific protein SF18 pr C007663_A 109 transmembrane protein f query sequence in all 6	Frame SF183 Tecur3	Score 102 102	P(N)	N 1
ptnr:SWISSPROT-ACC:P2235 ptnr:pir-id:S12246 anthe PATENT DATABASE CuraBLASTX Analysis of A Query= AC007663_A Cura_	7 ANTHER-SPECIFIC PROTEIN r-specific protein SF18 pr C007663_A 109 transmembrane protein f query sequence in all 6	Frame SF183 Tecur3	Score 102 102	P(N)	N 1
ptnr:SWISSPROT-ACC:P2235 ptnr:pir-id:S12246 anthe PATENT DATABASE CuraBLASTX Analysis of A Query= AC007663_A Cura_	7 ANTHER-SPECIFIC PROTEIN r-specific protein SF18 pr C007663_A 109 transmembrane protein f query sequence in all 6	Frame SF183 Tecur3	Score 102 102	P(N) 0.015 0.015	N 1 1 1
ptnr:SWISSPROT-ACC:P2235 ptnr:pir-id:S12246 anthe PATENT DATABASE CuraBLASTX Analysis of A Query= AC007663_A Cura_	7 ANTHER-SPECIFIC PROTEIN r-specific protein SF18 pr C007663_A 109 transmembrane protein f query sequence in all 6	Frame SF183 Tecur3	Score 102 102	P(N) 0.015 0.015	N 1 1 1
ptnr:SWISSPROT-ACC:P2235 ptnr:pir-id:S12246 anthe PATENT DATABASE CuraBLASTX Analysis of A Query= AC007663_A Cura_	7 ANTHER-SPECIFIC PROTEIN r-specific protein SF18 pr C007663_A 109 transmembrane protein f query sequence in all 6	Frame SF183 Tecur3 reading fracters.	Score 102 102	P(N) 0.015 0.015 Smalle	N 1 1
ptnr:SWISSPROT-ACC:P2235 ptnr:pir-id:S12246 anthe PATENT DATABASE CuraBLASTX Analysis of A Query= AC007663_A Cura_	7 ANTHER-SPECIFIC PROTEIN r-specific protein SF18 pr C007663_A 109 transmembrane protein f query sequence in all 6 /licensed/blast/geneseq_aances; 51,277,408 total let	Frame SF183 Tecur3	Score 102 102	P(N) 0.015 0.015 Smalle Sum Probabi	N 1 1
ptnr:SWISSPROT-ACC:P2235 ptnr:pir-id:S12246 anthe PATENT DATABASE CuraBLASTX Analysis of A Query= AC007663_A Cura_	7 ANTHER-SPECIFIC PROTEIN r-specific protein SF18 pr C007663_A 109 transmembrane protein f query sequence in all 6 /licensed/blast/geneseq_aances; 51,277,408 total let	Frame SF183 Tecur3 reading fracters. Reading	Score 102 102	P(N) 0.015 0.015 Smalle	N 1 1
ptnr:SWISSPROT-ACC:P2235 ptnr:pir-id:S12246 anthe PATENT DATABASE CuraBLASTX Analysis of A Query= AC007663_A Cura_	7 ANTHER-SPECIFIC PROTEIN r-specific protein SF18 pr C007663_A 109 transmembrane protein f query sequence in all 6 /licensed/blast/geneseq_aances; 51,277,408 total let	Frame SF183 Tecur3 reading fracters. Reading	Score 102 102 High	P(N) 0.015 0.015 Smalle Sum Probabi	N 1 1 ility
ptnr:SWISSPROT-ACC:P2235 ptnr:pir-id:S12246 anthe PATENT DATABASE CuraBLASTX Analysis of A Query= AC007663_A Cura_	7 ANTHER-SPECIFIC PROTEIN r-specific protein SF18 pr C007663_A 109 transmembrane protein f query sequence in all 6 /licensed/blast/geneseq_aances; 51,277,408 total let	Frame SF183 Tecur3 reading frame Reading Frame	Score 102 102 High	P(N) 0.015 0.015 Smalle Sum Probabi	N 1 1 ility
ptnr:SWISSPROT-ACC:P2235 ptnr:pir-id:S12246 anthe PATENT DATABASE CuraBLASTX Analysis of A Query= AC007663_A Cura_	7 ANTHER-SPECIFIC PROTEIN r-specific protein SF18 pr C007663_A 109 transmembrane protein f query sequence in all 6 /licensed/blast/geneseq_aances; 51,277,408 total let	Frame SF183 Tecur3 reading frame Reading Frame	Score 102 102 High Score 81	Smalle Sum Probabi P(N)	N 1 1 1 N
ptnr:SWISSPROT-ACC:P2235 ptnr:pir-id:S12246 anthe PATENT DATABASE CuraBLASTX Analysis of A Query= AC007663_A Cura_	7 ANTHER-SPECIFIC PROTEIN r-specific protein SF18 pr C007663_A 109 transmembrane protein f query sequence in all 6 /licensed/blast/geneseq_aances; 51,277,408 total let -scoring Segment Pairs: collagen (prior art) - Hom	Frame SF183 recur3 reading frame Reading Frame no sa+1 gion+1	Score 102 102 High Score 81	Smalle Sum Probabi P(N)	N 1 1 1 1 1 1 3

Figure 3A

NOVNEUR cDNA sequence:

Regions 135319 to 135129 (1-190bp) and 134487 to 134314 (191 to 364bp) of the genomic clone (in - frame). Further extended using ESTs AI739078, AI767488, and AI796217.

Figure 3B

NOVNEUR Protein sequence:

 ${\tt MFGSLLHFALLAAGVVPLSWDLPEPRSRASKIRVHSRGKLWAIGHFMGKKSLEPSSPSPLGTAPHT\SLRDQRLQLSHDLLGILLLKKALGVSLSRPAPQIQYRRLLVQILQK}$

Figure 4A

BlastN for NOVNEUR:

gb:GENBANK-ID:HUMNKB acc:M21551 Human neuromedin B mRNA, complete cds Homo sapiens, 640 bp (RNA).

Top Previous Match Next Match
Length = 640

•			
Plus S	tranc	d HSPs:	
Score =	3,055	5 (458.4 bits), Expect = 9.1e-132, P = 9.1e-132	
Identit	ies =	= 629/639 (98%), Positives = 629/639 (98%), Strand = Plus / P.	lus
Query:	2	GCGCGCCCGAACGAAGCCGCGCCCGGGCACAGC-ATGGCCCG-CGG-CGGAGGGCGCCT	58
	+ .	GCGCGCCGAACGAAGCCGCGGCCCGGGCACAGC ATGGCCCG CGG CGGG GGGCGCT	
Sbjct:	2	GCGCGCCCGAACGAAGCCGCGGCCCGGGCACAGCCATGGCCCGGCGGGCG	60
Query:	59	CGGATGTTCGGCAGCCTCCTGCACTTCGCCCTGCTCGCTGCCGGCGTCGTCCCGCTCAGC	118
		CGGATGTTCGGCAGCCTCCTGC CTTCGCCCTGCTCGCTGCCGGCGTCG CCCGCTCAGC	0
Sbjct:	61	CGGATGTTCGGCAGCCTCCTGCTCTCGCCCTGCTCGCCGGCGTCGCCCCGCTCAGC	120
	4.4.0	magaa mamagaaga agaagaa agaagaa agaa ag	170
Query:	119	TGGGATCTCCCGGAGCCCGCAGCCGAGCCAGCAAGATCCGAGTGCACTCGCGAGGCAAG	1/8
	101	TGGGATCTCCCGGAGCCCGCAGCCGAGCCAGCAAGATCCGAGTGCACTCGCGAGGCAA TGGGATCTCCCGGAGCCCGCAGCCGAGCCAGCAGATCCGAGTGCACTCGCGAGGCAAC	190
Sbjct:	121	I TORON I CI COCO PROCESTA CONTRA LA COMPOSTA LA COCO MODERNA LA COCOMINA LA COCO MODERNA LA COCOMINA LA COCO MODERNA LA COCOMINA LA C	
Query:	179	ÇTCTGGGCCATCGGTCACTTCATGGGCAAGAAGAGTCTGGAGCCTTCCAGCCCATCCCCA	238
Query.	. 17	CTCTGGGCCA CGGTCACTTCATGGGCAAGAAGAGTCTGGAGCCTTCCAGCCCATCCC A	
Sbjct:	181	CTCTGGGCCACCGGTCACTTCATGGGCAAGAAGACTCTGGAGCCTTCCAGCCCATCCC-A	239
55,00.			
Query:	239	TTGGGGACAGCTCCCACACCTCCC-TGAGGGACCAGCGACTGCAGCTGAGTCATGATCT	297
		TTGGGGACAGCTCCCCACACCTCCC TGAGGGACCAGCGACTGCAGCTGAGTCATGATCT	
Sbjct:	240	. TTGGGGACAGCTCCCCACACCTCCCCTGAGGGACCAGCGACTGCAGCTGAGTCATGATCT	299
Query:	298	${\tt GCTCGGAATCCTCCTGCTAAAGAAGGCTCTGGGCGTGAGCCTCAGCCGCCCCGCACCCCA}$	357
		${\tt GCTCGGAATCCTCCTGCTAAAGAAGGCTCTGGGCGTGAGCCTCAGCCGCCCCGCACCCCA}$	
Sbjct:	300	$\tt GCTCGGAATCCTCCTGCTAAAGAAGGCTCTGGGCGTGAGCCTCAGCCGCCCCGCACCCCA$	359
Query:	358	AATCCAGTACAGGAGGCTGCTGGTACAAATACTGCAGAAATGACACCAATAAT-GGGGCA	416
		AATCCAGTACAGGAGGCTGCTGGTACAAATACTGCAGAAATGACACCAATAAT GGGGCA	470
Sbjct:	360	AATCCAGTACAGGAGGCTGCTGGTACAAATACTGCAGAAATGACACCAATAATAGGGGCA	419
0	417	GACACAACAGCGTGGCTTAGATTGTGCCCACCCAGGGAAGGTGCTGAATGGGACCCTGTT	476
Query:	4 L /	GACACAACAGCGTGGCTTAGATTGTGCCCACCCAGGGAAGGTGCTGAATGGGACCCTGTT	470
Sbjct:	420	GACACAACAGCGTGGCTTAGATTGTGCCCACCCAGGGAAGGTGCTGAATGGGACCCTGTT GACACAACAGCGTGGCTTAGATTGTGCCCACCCAGGGAAGGTGCTGAATGGGACCCTGTT	479
SDJCC:	420	GACACACCOTOCCTIAGATTOTOCCCACCCAGGGARGOTOCTGIRITOGGICCCTGTT	
Query:	477	GATGGCCCCATCTGGATGTAAATCCTGAGCTCAAATCTCTGTTACTCCATTACTGTGATT	536
Query.		GATGGCCCCATCTGGATGTAAATCCTGAGCTCAAATCTCTGTTACTCCATTACTGTGATT	
Sbjct:	480	GATGGCCCCATCTGGATGTAAATCCTGAGCTCAAATCTCTGTTACTCCATTACTGTGATT	539
Query:	537	TCTGGCTGGGTCACCAGAAATATCGCTGATGCAGACACAGATTATGTTCCTGCTGTATTT	596
-		TCTGGCTGGGTCACCAGAAATATCGCTGATGCAGACACAGATTATGTTCCTGCTGTATTT	
Sbjct:	540	TCTGGCTGGGTCACCAGAAATATCGCTGATGCAGACACAGATTATGTTCCTGCTGTATTT	599
Query:	597	CCTGCTTCCCTGTTGAATTGGTGAATAAAACCTTGCTCTAT 637	
		CCTGCTTCCCTGTTGAATTGGTGAATAAAACCTTGCTCT T	
Sbjct:	600	CCTGCTTCCCTGTTGAATTGGTĢAATAAAACCTTGCTCTTT 640	

Figure 4B

BlastX for NOVNEUR:

ptnr:SWISSPROT-ACC:P08949 NEUROMEDIN B-32 PRECURSOR [CONTAINS: NEUROMEDIN B] - Homo sapiens (Human), 121 aa.

Top Previous Match Next Match

Length = 121

Plus Strand HSPs:

Score = 513 (180.6 bits), Expect = 1.9e-48, P = 1.9e-48Identities = 105/118 (88%), Positives = 105/118 (88%), Frame = +2

Query: 44 RREGARMFGSLLHFALLAAGVVPLSWDLPEPRSRASKIRVHSRGKLWAIGHEMGKKSLEP 223.

R GARMFGSLL FALLAAGV PLSWDLPEPRSRASKIRVHSRG LWA GHFMGKKSLEP

Sbjct: 4 RAGGARMFGSLLLFALLAAGVAPLSWDLPEPRSRASKIRVHSRGNLWATGHFMGKKSLEP 63

Query: 224 SSPSPLGTAPHTSLRDQRLQLSHDLLGILLLKKALGVSLSRPAPQIQYRRLLVQILQK 397

SSPS G P LRDQRLQLSHDLLGILLLKKALGVSLSRPAPQIQYRRLLVQILQK

Sbjct: 64 SSPSHWGQLPTPPLRDQRLQLSHDLLGILLLKKALGVSLSRPAPQIQYRRLLVQILQK 121

ClustalW for NOVNEUR:

Based on this alignment, black outlined amino acid residues indicate regions of conserved sequence (i.e., regions that may be required to preserve structural or functional properties); greyed amino acid residues can be mutated to a residue with comparable steric and/or chemical properties without altering protein structure or function (e.g., L to V, I, or M); non-highlighted amino acid residues can potentially be mutated to a much broader extent without altering structure or function.

Sequences used:

- 1) A37178 (neuromedin B precursor = rat): Locus A37178, accession A37178, PID g112182
- 2) NEUB_HUMAN (NEUROMEDIN B-32 PRECURSOR): Locus NEUB_HUMAN, accession P08949, PID g1346684

Neuromedin_New_REVCOMP
A37178
MTRQAGSTWILLEFALEVSGITPESWDLPEPRSRASKIRVHSRGKLWAIGHEMGKKS
NEUB_HUMAN
MARRAGGARMEGSLLLEFALEVSGITPESWDLPEPRSRASKIRVHSRGNLWATGHEMGKKS
Neuromedin_New_REVCOMP
A37178
NEUB_HUMAN
Neuromedin_New_REVCOMP
A37178
NEUB_HUMAN

Neuromedin_New_REVCOMP
A37178
NEUB_HUMAN

K

MTRQAGSTWILLEGLLLEFALEAGGWPLSWDLPEPRSRASKIRVHSRGNLWATGHEMGKKS
MARRAGGARMEGSLLLEFALEAGGWPLSWDLPEPRSRASKIRVHSRGNLWATGHEMGKKS
MARRAGGARMEGSLLLEFALEAGGWPLSWDLPEPRSRASKIRVHSRGKLWAIGHMGKKS
MARRAGGARMEGSLLEFALEAGGWPLSWDLPEPRSRASKIRVHSRGKLWAIGHMGKKS
MARRAGGARMEGSLLEFALEAGGWPLSWDLFEPRSRASKIRVHSRGKKS
MARRAGGARMEGSLLEFALEAGGWPLSWDLFEPRSRASKIRVHSRGKKS
MARRAGGARMEGSLLEFALEAGGWPLSWDLFEPRSRASKIRVHSRGKKS
MARRAGGARMEGSLUFTAGGRUFTAGGRUFTAGGRUFTAGGRUFTAGGRUFTAGGRUFTAGGRUFTAGGRUFTAGGRUFTAGGRUFTAGGRUFTAGGRUFTAGGRUFTAGGRUFTA

Figure 6A

NOVGON cDNA sequence:

- TGGGAACCTGCGCACCTTTGTGGGCTGTGCCGTGAGGGAGTTTACTTTCCTGGCCAAGAAGCCAGGCTGCAGGGGCCTTC
- GGATCACCAÇGGATGCCTGCTGGGGTCGCTGTGAGACCTGGGAGAAACCCATTCTGGAACCCCCTATATTGAAGCCCAT 241
- ÇATCGAGTCTGTACCTACAACGAGACCAAACAGGTGACTGTCAAGCTGCCCAACTGTGCCCCGGGAGTCGACCCCTTCTA
- CACCTATCCCGTGGCCATCCGCTGTGACTGCGGAGCCTGCTCCACTGCCACCACGGAGCTGAGGTTGATGCCAGGGGAAG
- GTAAGAGACAAGGTGAGTCTCCTGAAGGCAGTAGATGGTTGGAATGGGCTGCTTGGGGACCCAGCGAGCTCCCAGGGCCT
- TTCTGCTTCTTCCTGTACCCCTGTATŢTCCCTTGGCTTTCCAAATTGACTCÄGCTTCTGGTAAAGTTGGAAACTTTTCCA
- GCAAACAGACCTTCATCTTCTCCAGTGCAGAGATTACATTAGGAGGAACATGA

Figure 6B

NOVGON Protein Sequence:

MKLAFLFLGPMALLLLAGYGCVLGASSGNLRTFVGCAVREFTFLAKKPGCRGLRITTDA CWGRCETWEKPILEPPYIEAHHRVCTYNETKQVTVKLPNCAPGVDPFYTYPVAIRCDCG ACSTATTELRLMPGEAAVALGFWCQRRRQGSRTTGTRWRHAAVRDKVSLLKAVDGW NGLLGDPASSQGLSASSCTPVFPLAFQIDSASGKVGNFSSKQTFIFSSAEITLGGT*

Figure 7A

BlastN for NOVGON:

AF146151 Salmo salar gonadotropin II beta subunit mRNA, partial cds - Salmo salar, 266 bp (RNA).

Top Previous Match Next Match Length = 266

Plus Strand HSPs:

Score = 208 (31.2 bits), Expect = 0.043, P = 0.042Identities = 124/205 (60%), Positives = 124/205 (60%), Strand = Plus / Plus

Query: 177 CTGCTGGGGTCGCTGTGAGACCTGGGAGAACCCATTCTGGAACCCCCCTATATTGAAGC 236 CTGC G GG C CTG G ACC GGAG CC TT T AA CCC AT T'I A C

Sbjct: 34 CTGCAGTGGCCACTGCGTCACCAAGGAG---CCGGTTTTC-AAGAGCCC-ATTTTCCACC 88

Query: 237 CCAT-C-ATCGAGTCTGTACCTACAACGA-GACCAAACAGGTGACTGTCAAGCTGCCCAA 293
T C A C GT TG ACCTAC GA G CC A G AC TC CT CC A

Sbjct: 89 GTGTACCAGCATGTGTGCACCTACCGGGACGTCCGCT-ATGAAACGATCCGCCTACCTGA 147

Query: 294 CTGTGCCCCGGGAGTCGACCC-CTTCTACACCTATCCCGTGGCCATCCGCTGTGACTGCG 352

CTGT CCCC G GT GACC C T T CACCTA CC GTGGC T GCTGTGACTGC

Sbjet: 148 CTGTCCCCCTTGGGTGGACCATCATGT-CACCTACCCTGTGGCTCTGAGCTGTGACTGCA 206

Query: 353 GAGCCTGCTCCACTGCCACCACGGAGCTG 381

G CTG CA G CAC C GA CTG

Sbjct: 207 GCCTCTGTAACATGGACACTTCTGA-CTG 234

Figure 7B

BlastX for NOVGON:

PO1235 GONADOTROPIN BETA CHAIN PRECURSOR - Cyprinus carpio (Common carp), 144 aa.

Score = 203 (71.5 bits), Expect = 2.3e-16, P = 2.3e-16Identities = 37/85 (43%), Positives = 52/85 (61%).

Query: 42 TFLAKKPGC=RGLRITTDACWGRCETWEKPILEPPYIEAHHRVCTYNETKQVTVKLPNCA 100
T +K GC + L + T C G C T E P+ + P+ + VCTY + + TV+LP+C

Sbjct: 39 TVAVEKEGCPKCLVLQTTICSGHCLTKE-PVYKSPFSTVYQHVCTYRDVRYETVRLPDCP 97

Query: 101 PGVDPFYTYPVAIRCDCGACSTATTE 126
PGVDP TYPVA+ CDC C+ T++
Sbjct: 98 PGVDPHITYPVALSCDCSLCTMDTSD 123

>ptnr:SWISSNEW-ACC:Q9YGH2 GONADOTROPIN BETA-II CHAIN PRECURSOR (GTH-II-BETA)
- Clupea pallasii (Pacific herring), 149 aa.
Plus Strand HSPs:

Score = 206 (72.5 bits), Expect = 1.0e-15, P = 1.0e-15Identities = 47/117 (40%), Positives = 63/117 (53%), Frame = +1

Query: 28 PMALLLLAGYGCVLG--ASSGNLRTFVGCAVREFTFLAKKPGC-RGLRITTDACWGRCET 198
P + LL CVL A NL+ C + T + K GC R L T C G C T

Sbjct: 5 PECTILLLLCMCVLAVPAQCFNLQP---CVLVNETVSVEKEGCPRCLVFRTTICSGHCPT 61

Sbjct: 62 KE-PVYKSPFSVVNQHVCTYGNFRYETIRLPDCADGVDPLVTYPVALSCECSLCSMDTSD 120

>patp:R15106 hCG/bLH chimera, D10 - Homo sapiens, 145 aa.
Plus Strand HSPs:
Score = 188 (66.2 bits), Expect = 5.0e-14, P = 5.0e-14
Identities = 40/101 (39%), Positives = 58/101 (57%), Frame = +1

Query: 76 SSGNLRTFVGCAVREFTFLAKKPGCRG-LRITTDACWGRCETWEK--PILEPPYIEAHHR 246
S G LR C T A+K C + TT C G C + ++ P++ PP + R
Sbjct: 1 SRGPLRPL--CQPINATLAAEKEACPVCITFTTSICAGYCPSMKRVLPVILPPMPQ---R 55

Query: 247 VCTYNETKQVTVKLPNCAPGVDPFYTYPVAIRCDCGACSTATTE 378 VCTY+E + +V+LP C PGVDP ++PVA+ C CG C ++T+ Sbjct: 56 VCTYHELRFASVRLPGCPPGVDPMVSFPVALSCHCGPCRLSSTD 99

>patp:W65110 Equine chorionic gonadotropin beta-chain protein - Equus caballus, 169 aa.

Plus Strand HSPs:

Score = 175 (61.6 bits), Expect = 1.2e-12, P = 1.2e-12Identities = 43/116 (37%), Positives = 60/116 (51%), Frame = +1

Query: 31 MALLLLAGYGCVLGAŞSGNLRTFVGCAVREFTFLAKKPGCR-GLRITTDACWGRCETWEK 207 + L +L G V AS G LR C T A+K C + TT C G C + + Sbjct: 7 LLLWMLLSVGGVW-ASRGPLRPL--CRPINATLAAEKEACPICITFTTSICAGYCPSMVR 63

Query: 208 PILEPPYIEAHHR-VCTYNETKQVTVKLPNCAPGVDPFYTYPVAIRCDCGACSTATTE 378 + P + A + VCTY E + +++LP C PGVDP ++PVA+ C CG C TT+ Sbjct: 64 VM--PAALPAIPQPVCTYRELRFASIRLPGCPPGVDPMVSFPVALSCHCGPCQIKTTD 119

ClustalW alignment for NOVGON:

Based on this alignment, black outlined amino acid residues indicate regions of conserved sequence (i.e., regions that may be required to preserve structural or functional properties); greyed amino acid residues can be mutated to a residue with comparable steric and/or chemical properties without altering protein structure or function (e.g. L to V, I, or M), non-highlighted amino acid residues can potentially be mutated to a much broader extent without altering structure or function.

```
L GVÄG V WAS RGP...LRPLG
LGVÄG V WAS RGP...LRPLGQ
AGYGC V LGASSCNLRTF VGCA
                                                                                \begin{array}{c} O & O & O & O & O \\ O & O & O & O & O \\ \end{array}
                                                                                                GOLDFISH
                GOLDFISH
                                                       novel_gonadotropin
                                                                                                                                        novel_gonadotropin
                                                                                                                                                                                                                         novel_gonadotropin
                                                                                                                                                                                                                                                                                                       novel_gonadotropin
GTHB_CYPCA
Q98849_GTHB2_C
LSHB_BOVIN
LSHB_SHEEP
                                                                                            098849 GTHB2 (
LSHB_BOVIN
                                                                                                                                                                 GTHB_CYPCA
Q98849_GTHB2_C
LSHB_BOVIN
LSHB_SHEEP
                                                                                                                                                                                                                                                 GTHB_CYPCA
Q98849_GTHB2_LSHB_BOVIN_
LSHB_SHEEP
                                                                                  STHB_CYPCA
                                                                                                                         SHB_SHEEP
```

Figure 9A

NOVINTRA A cDNA sequence:

Regions 116708 to 116812 (1-105bp), 117121 to 117248 (106-233p), and 117529 to 117778 (234-483bp).

Figure 9B

NOVINTRA A Protein sequence:

LSYCFRIKYADQKALYTRDGQLLVGDPVADNCCAEKICILPNRGLARTKVPIFLGIQGGS RCLACVETEEGPSLQLEPSTLPPQDVNIEELYKGGEEATRFTFFQSSSGSAFRLEAAAWP GWFLCGPAEPQQPVQLTKESEPSARTKFYFEQSW

Figure 10A

BlastN for NOVINTRA A:

bp.

Top Previous Match Next Match

Length = 221

Plus Strand HSPs:

Score = 321 (48.2 bits), Expect = 8.1e-08, P = 8.1e-08
Identities = 147/218 (67%), Positives = 147/218 (67%), Strand = Plus / Plus

Query: 253 AGGATGTGAACATTGAGGAACTGTACAA-AGGTGGTGAAGAGGCCACACGCTTCACCTTC 311

AGG GT AACAT GA CTG CAA A G GA GAG CA CGCTTCACCTTC

Sbjct: 4 AGGCAGTTAACATCACTGACCTGAGCAAGAACAAG-GAGGAGAACAAGCGCTTCACCTTC 62

Query: 312 TTCCAGAGCAG-CTCAGGCTCCGCCTTCAGGCTT-GAGGCTGCTGCCTGGCTGGCTGGT 369
TCC G CA C GGC CC CAG CTT GAG CTGC GCCTG CCTGGCTGGT

Sbjct: 63 ATCC-GCTCAAACAGTGGCCCCACCACCACCAG-CTTCGAGTCTGCCGCCTGCCCTGGCTGGT 120

Query: 370 TCCTGTGTGGCCCGGCAG-AGCCCCAGCAGCAGCAGC-TCACCAAGGAG---AGTGA 424

TCCT TG CG CAG AG C A C GCC GT CAGC TCACCAA AG A GA
Sbjet: 121 TCCTCTGCACGGCG-CAGGAGGCAGACCGGCCCGT-CAGCCTCACCAACAAGCCCAAAGA 178

Ouery: 425 GCCCT-CAGCCCGT-ACCAAGTTTTACTTTGAACAGAGCTGGTAG 467

G CCT CA GT ACCAAGTT TACTT A AG C GTAG

Sbjct: 179 GTCCTTCATG--GTCACCAAGTTCTACTTCCAGGAGGACCAGTAG 221

Figure 10B

BlastX for NOVINTRA A:

ptnr:TREMBLNEW-ACC:CAB59831 IL-1L1 PROTEIN - Mus musculus (Mouse), 155 aa. Top Previous Match Next Match Length = 155

Plus Strand HSPs:

Score = 309 (108.8 bits), Expect = 8.0e-27, P = 8.0e-27Identities = 70/149 (46%), Positives = 93/149 (62%), Frame = +3

12 CFRIKYADQKALYTRDGQLLVGDPVADNCC-AEKICILPNRGLARTKVPIFLGIQGGSRC 188

CFR+K + K LY + OLL G A+ E+I ++PNR L + P+ LG+QGGS+C

8 ÇFRMKDSALKVLYLHNNQLLAGGLHAEKVIKGEEISVVPNRALDASLSPVILGVQGGSQC 67 Sbjct:

189 LACVETEEGPSLQLEPSTLPPQDVNIEELYKGGEEATRFTFFQSSSGSAFRLEAAAWPGW 368 Query:

L+C TE+GP L+LEP VNI ELY G +E+ FTF++ G

68 LSC-GTEKGPILKLEP------VNIMELYLGAKESKSFTFYRRDMGLTSSFESAAYPGW 119 Sbjct:

369 FLCGPAEPQQPVQLTKESEPSAR----TKFYFEQ 458 Query:

> T FYF+Q FLC. E QPV+LT+ E A

120 FLCTSPEADQPVRLTQIPEDPAWDAPITDFYFQQ 153 Sbjct:

>ptnr:SPTREMBL-ACC:Q9UBHO FIL1 DELTA (INTERLEUKIN-1 LIKE PROTEIN 1) (INTERLEUKIN-1 RECEPTOR ANTAGONIST HOMOLOG 1) (INTERLEUKIN-1 DELTA) - Homo sapiens (Human), 155 aa.

Plus Strand HSPs:

Score = 285 (100.3 bits), Expect = 4.3e-24, P = 4.3e-24Identities = 67/149 (44%), Positives = 89/149 (59%), Frame = +3

12 CFRIKYADQKALYTRDGQLLVGDPVADNCC-AEKICILPNRGLARTKVPIFLGIQGGSRC 188 Query:

CFR+K + K LY + QLL G A E+I ++PNR L + P+ LG+QGGS+C

Sbjct: 8 CFRMKDSALKVLYLHNNQLLAGGLHAGKVIKGEEISVVPNRWLDASLSPVILGVQGGSQC 67

189 LACVETEEGPSLQLEPSTLPPQDVNIEELYKGGEEATRFTFFQSSSGSAFRLEAAAWPGW 368 Query:

L+C +E P+L LEP VNI ELY G +E+ FTF++ G

Sbjct: 68 LSCGVGQE-PTLTLEP------VNIMELYLGAKESKSFTFYRRDMGLTSSFESAAYPGW 119

369 FLCGPAEPQQPVQLTKESEPSAR----TKFYFEQ 458 Query:

E QPV+LT+ E T FYF+O FLC

Sbjct: 120 FLCTVPEADQPVRLTQLPENGGWNAPITDFYFQQ 153

Figure 11

ClustalW for NOVINTRA A:

Based on this alignment, black outlined amino acid residues indicate regions of conserved sequence (i.e., regions that may be required to preserve structural or functional properties); greyed amino acid residues can be mutated to a residue with comparable steric and/or chemical properties without altering protein structure or function (e.g. L to V, I, or M); non-highlighted amino acid residues can potentially be mutated to a much broader extent without altering structure or function.

Sequences used:

1) X86458spoil1 (cDNA encoding a human spoil-I protein); X86459spoil2 (cDNA encoding a human spoil-II protein); X89432-il1delta (human IL-1 delta encoding cDNA); Q14628 (intracellular IL-1 receptor antagonist type II-human); G512010il1beta (ovine Il-1 beta 7 pig)

X86458spoil1 X86459spoil2 X89432-il1delta Q14628 il1beta-1DNA G512010il1beta	
X86458spoil1 X86459spoil2 X89432-il1delta Q14628 il1beta-1DNA G512010il1beta	TICRPSGRKSSKMQAFRIWDVNQKTFYLRNNQLVAGYLQGPNVNLEEKI
X86458spoil1 X86459spoil2 X89432-il1delta Q14628 il1beta-1DNA G512010il1beta	CKYPEAL BQGRGDPIYLGIQNPEM CKYPEAL BQGRGDPIYLGIQNPEM SVVPNRW LDASLSPVILGVQGGSQ DVVP I EPHALELGIHGGKM CILPNRG LARTKVPIELGIQGGSR CKEQDREQKSLVLDSPCVLKALHLLSQEMSREVVFCMSFVQGEBRDNKIPVALGIRDKNU
X86458spoil1 X86459spoil2 X89432-il1delta Q14628 il1beta-1DNA G512010il1beta	CLYCEKVGEQPTLQLKE QKIMDLYGQPEPVKPFLFYRAKTGRTSTLESVATPD CLYCEKVGEQPTLQLKE QKIMDLYGQPEPVKPFLFYRAKTGRTSTLESVATPD CLSCG-VGQEPTLTLEP VNIMELYLGAKESKSFTFYRRDMGLTSSFESAAKPG CLSCVKSGDETRLQLEA VNITDLSENRKQDKRFAFIRSDSGPTTSFESAACPG CLACVETEEGPSLQLEPSTLPPQDVNIEELYKGGEEATRFTFEQSSSGGSAFRLEAAAWPG YLSCVKKGDTPTLQLEE VDPKVYPKRNMEKRFVFYKTEIKNTVEFESVLYPN
X86458spoil1 X86459spoil2 X89432-il1delta Q14628 il1beta-1DNA G512010il1beta	WFIASS - KRDQPIILTS ELGKS YNTAFELNIND - WFIASS - KRDQPIILTS ELGKS YNTAFELNIND - WFICTVPEADQPVRLTQLPENGGWNAPITDFYFQQCD - WFICTAMEADQPVSLTNMPDEG VMVTKFYFQEDE - WFICGPAEPQQPVQLTKESEPS ARTKFYFEQSW - WYISTSQIEEKPVFLGRFRGGQ DITDFRMETLSP

Figure 12A

NOVINTRA B cDNA sequence:

Regions 116968 to 117028 (1-61bp), 104067 to 104164 (62-159bp), 101958 to 102098 (160-300bp), and 100915 to 101134 (301-520bp) of genomic clone (-frame).

Figure 12B

NOVINTRA B Protein sequence:

MGTPGLALHADWTVSQDFCRTPKSYAIRDSRQMVWVLSGNSLIAAPLSRSIKPVTLHLI ACRDTEFSDKEKGNMVYLGIKGKDLCLFCAEIQGKPTLQLKEKNIMDLYVEKKAQKPFL FFHNKEGSTSVFQSVSYPGWFIATSTTSGQPIFLTKERGITNNTNFYLDSVE

Figure 13A

BlastN for NOVINTRA B:

gb:GENBANK-ID:PIGIRAP|acc:L38849 Sus scrofa (clone p0328w) IRAP1 mRNA, complete cds - Sus scrofa, 563 bp (RNA).

Top Previous Match Next Match

Length = 563

Plus Strand HSPs:

	309 (46.4 bits), Expect = $1.1e-07$, P = $1.1e-07$ es = $197/331$ (59%), Positives = $197/331$ (59%), Strand = Plus / Plus
Query:	169 CATTTAATAGCCTGTA-GAGAC-ACAGAATTCAGTGACAAGGAAAAGGGTAATATGGTTT 226 CA TA TA CTG A GAGA A AGA T GTG C G AG T AT T GT T
Sbj¢t:	217 CAAATACTAAACTGGAAGAGAGATAGATGTG-GTGCCTGTTGAGCCTCATTTTGTGT 273
Query:	227 ACCTGGGAATCAAGGGAAAAGATCTCTGTCTCTTCTGTGCAGAAATTCAGGGCAAGCC-T 285 CCTGGG ATC A GGA A CT TG CT T CTGTG AA T C GG A G T
Sbjct:	274 TCCTGGGGATCCATGGAGGGAAGCTGTGCCTGTCCTGTGTC-AAGT-CTGGTGATGAGAT 331
Query:	286 -ACTTTGCAGCTTAAGGAAAAAATATCATGGACCTGTATGTGGAGAAGAAGCAC-AGA 343 A T CAG T A G A AA ATCA GACCTG A GA AG AGCA A A
Sbjct:	332 GAAGCTCCAGTTGGACGCAGTTAACATCACAGACCTG-AGAAAGAACAGCGAGCAGGACA 390
Query:	344 AGCCCTTTCTCTTTTTCCACAATAA-AGAAGGCTCCACTTCTGTCTTTCAGTCAGTCTCT 402 AGC CTT CTT TCC C A AG GGC CCAC C CTTT AGTCAG C C
Sbjct:	391 AGCGCTTCACCTTCATCCGCTCCGACAGT-GGCCCCACCACCACCAGCTTTGAGTCAGCCGCC 449
Query:	T CCTGGCTGGTTCATAGCCACCTCCACCACAT-CAGGACAGCCCATCTTTCTCACCAA 461 T CCTGGCTGGTTC T CAC T CAC A A CAG CAGCC T CTCACCAA
Sbjct:	450 TGTCCTGGCTGGTTCCTCTGCAC-TGCACTAGAGGCAGACCAGCCTGTTGGCCTCACCAA 508
Query:	462 GGAGAG-AG-GCATAACT-AATAACACTAACTTCTACTT 497 G A GCA T AA CAC AA TTCTACTT
Sbjct:	509 CACGCCAAAGCAGCCGTCAAGGTCACCAAGTTCTACTT 547

Figure 13B

BlastX for NOVINTRA B: >ptnr:SPTREMBL-ACC:Q9UHA5 FIL1 ETA - Homo sapiens (Human), 157 aa. Plus Strand HSPs: Score = 777 (273.5 bits), Expect = 3.2e-76, P = 3.2e-76Identities = 149/149 (100%), Positives = 149/149 (100%), Frame = +1 64 PK\$YAIRD\$RQMVWVL\$GN\$LIAAPL\$R\$IKPVTLHLIACRDTEF\$DKEKGNMVYLGIKG 243 Query: PKSYAIRDSROMVWVLSGNSLIAAPLSRSIKPVTLHLIACRDTEFSDKEKGNMVYLGIKG 9 PKSYAIRDSROMVWVLSGNSLIAAPLSRSIKPVTLHLIACRDTEFSDKEKGNMVYLGIKG 68 Sbjct: 244 KDLCLFCAEIQGKPTLQLKEKNIMDLYVEKKAQKPFLFFHNKEG\$T\$VFQ\$V\$YPGWFIA 423 Query: KDLCLFCAEIQGKPTLQLKEKNIMDLYVEKKAQKPFLFFHNKEGSTSVFQSVSYPGWFIA 69 KDLCLFCAEIQGKPTLQLKEKNIMDLYVEKKAQKPFLFFHNKEGSTSVFQSVSYPGWFIA 128 Sbjct: 424 TSTTSGQPIFLTKERGITNNTNFYLDSVE 510 Query: TSTTSGQPIFLTKERGITNNTNFYLDSVE 129 TSTTSGQPIFLTKERGITNNTNFYLDSVE 157 >ptnr:SPTREMBL-ACC:Q9NZH7 INTERLEUKIN-1 HOMOLOG 2 - Homo sapiens (Human), 164 Plus Strand HSPs: Score = 411 (144.7 bits), Expect = 1.9e-37, P = 1.9e-37Identities = 80/85 (94%), Positives = 81/85 (95%), Frame = +164 PKSYAIRDSROMVWVLSGNSLIAAPLSRSIKPVTLHLIACRDTEFSDKEKGNMVYLGIKG 243 PKSYAIRDSROMVWVLSGNSLIAAPLSRSIKPVTLHLIACRDTEFSDKEKGNMVYLGIKG 9 PKSYAIRDSROMVWVLSGNSLIAAPLSRSIKPVTLHLIACRDTEFSDKEKGNMVYLGIKG 68 Sbjct: . 244 KDLCLFCAEIQGKPTLQLKEKNIMD 318 Query: KDLCLFCAEIOGKPTLQLK + 69 KDLCLFCAEIQGKPTLQLKLQGSQD 93 >ptnr:TREMBLNEW-ACC:AAF02757 INTERLEUKIN-1 RECEPTOR ANTAGONIST HOMOLOG - Homo sapiens (Human), 155 aa. Top Previous Match Next Match Plus Strand HSPs: Score = 197 (69.3 bits), Expect = 5.9e-15, P = 5.9e-15Identities = 52/147 (35%), Positives = 76/147 (51%), Frame = +1 73 YAIRDSRQMVWVLSGNSLIAAPLSRSIKPVTLHLIACRDTEFSDKEKGNMVYLGIKGKDL 252 Query: ++ LG++G + ++DS V L N L+A L K + 9 FRMKDSALKVLYLHNNQLLAGGLHAG-KVIKGEEISVVPNRWLDASLSPVI-LGVQGGSQ 66 Sbjct: 253 CLFCAEIQGKPTLQLKEKNIMDLYVEKKAQKPFLFFHNKEGSTSVFQSVSYPGWFIATST 432 Query:

CL C Q +PTL L+ NIM+LY+ K K F F+

T+FY

433 TSGQPIFLTK--ERGITNN--TNFYLDSVE 510

126 EADQPVRLTQLPENGGWNAPITDFYFQQCD 155

+ QP+ LT+ E G N

Sbjct:

Query:

Sbjct:

67 CLSCGVGQ-EPTLTLEPVNIMELYLGAKESKSFTFYRRDMGLTSSFESAAYPGWFLCTVP 125

G TS F+S +YPGWF+ T

Figure 14

ClustalW for NOVINTRA B:

Based on this alignment, black outlined amino acid residues indicate regions of conserved sequence (i.e., regions that may be required to preserve structural or functional properties); greyed amino acid residues can be mutated to a residue with comparable steric and/or chemical properties without altering protein structure or function (e.g. L to V, I, or M); non-highlighted amino acid residues can potentially be mutated to a much broader extent without altering structure or function.

Sequences used:

2) X86459spoil2 (cDNA encoding a human spoil-II protein; Q14628 (intracellular IL-1 receptor antagonist type II-human); AAF02757 (intracellular IL-1 receptor antagonist type II-human); G512010; (OVINE IL-1 BETA - Pig)

Multiple Alignment:

il1beta2DNA X86459spoil2 Q14628 AAF02757	MGTPGLALHADWTVSQD	ľ
G512010illbeta	MATVPEPINEVMAYYSDENELLF.EVDGPKQMKSCTQHLDLESMEDENIQLQISHQLYNKS	
il1beta2DNA X86459spoil2 Q14628 AAF02757	AVGMGLWRLRPSALTLSPVEAPAFSAPLCTLPFPPVCK - PITGTIN	
G512010il1beta	FRQVVSVIVAMEKLRSRAYEHVFRDDDERSILSFIFEEE PVIFETSSDELLCDAAVQSVK	
ilibeta2DNA X86459spoil2 Q14628 AAF02757 G512010ilibeta	DSRQMVWVLSGNSLIAAPLSRSIKPVTLHLIACRDTEFSDK-EKGNMVYLGIKGKD DLNQQVWTLQGQNLVAVPRSDSVTPVTVAVITCKYPEALEQ-GRGDPIYLGIQNPE DVNQKTEYLRNNQLVAGYLQ-GPNVNLEEKIDVVPIEPHALELGIHGGK DSALKVLYLHNNQLLAGGLH-AGKVIKGEEISVVPNRWLD-ASLSPVILGVQGGS CKLQDREQKSLVLDS-PCVLKALHLLSQEMSREVVFCMSFVQGEERDNKIPVALGIRDKN	
il1beta2DNA X86459spoil2 Q14628 AAF02757 G512010il1beta	ICLFCAEIQGKPTLQLKEKNIMDLYVEKKAQKPFÜFEHNKEGSTSVFQSVSYPGWFIATS MCLYCEKYGEQPTLQLKEQKIMDLYGQPEPVKPFÜFYRAKTGRTSTLESVAEPDWFIAS MCLSCVKSGDETRLQLEAVNITDLSENKKQDKRFAFIRSDSGPTMSFESAACPGWFÜCTA QCLSCG-VGQEPTLTLEPVNIMELYLGAKESKSFTFYRRDMGLTSSFESAAYPGWFÜCTV EYLSCVKKGDTPTLQLEEVDPKVYP-KRMMEKRFVFYKTEIKNTVEFESVLYPNWYISTS	1
il1beta2DNA X86459spoil2 Q14628 AAF02757 G512010il1beta	TTSGQP FLTKER-G-ITNNTNFYLDSVE- KRD-QP ILTSEL-G-KSYNTAFELNIND- MEADQPVSLTNMPDEGVMVTKFYFQEDE- PEADQPVRLTQLPENGGWNAPITDFYFQQCD- QIEEKPVFLGRFRG-GQDITDFRMETLSP	

Figure 15A

NOVINTRA C cDNA sequence:

Region 168700 to 168880 (1-181bp), 169967 to 170118 (182-331bp) and 170635 to 170694 (332-391bp) of the genomic clone (- frame).

Figure 15B

NOVINTRA C Protein sequence:

DINHRVWVLQDQTLIAVPRKVFPVTIALISCRHVETLEKDRGNPIYLGLNGLNLCLMCAK VGDQPTLQLKLQEKDIMDLYNQPEPVKSFLFYHSQSGRNSTFESVAFPGWFIAVSSEGGC PLILTQELGK

Figure 16A

BlastN for NOVINTRA C:

gb:GENBANK-ID:PIGIRAP acc:L38849 Sus scrofa (clone p0328w) IRAP1 mRNA, complete cds - Sus scrofa, 563 bp (RNA).

Top Previous Match Next Match

Length = 563.

Minus Strand HSPs:

Score = 274 (41.1 bits), Expect = 5.6e-06, P = 5.6e-06
Identities = 150/244 (61%), Positives = 150/244 (61%), Strand = Minus / Plus

Query: 258 TCTACCTGGGCCTGAATGGACTCAATCTCTGCCTGATGTGTGCTAAAGTCGGG-GACCAG 200
T T CCTGGG T ATGGA AA CT TGCCTG TGTG T AAGTC GG GA AG

Sbjct: 271 TGTTCCTGGGGATCCATGGAGGGAAGCTGTGCCTGTCCTGTG-TCAAGTCTGGTGATGAG 329

Sbjet: 330 ATGAAGCTCCAGTTGGA-CG-CAGTTAAC----ATCACAGACCTG-AGAAAGAACAGCGA 382

Query: 140 GCCTGTGAAGTCCTTTCTCTTCTACCACAGCCAGAGTGGCAGGAACTCCACCTTCGAGTC 81
GC G AAG CTT CTTC CC C C A AGTGGC A C CCA CTT GAGTC

Sbjct: 383 GCAGGACAAGCGCTTCACCTTCATCCGCTCCGACAGTGGCCCCACCACCACCACCTTTGAGTC 442

Query: 80 TGTGGCTTTCCCTGGCTGGTTCATCGCTGT-CAGCTCTGAAGG-AGGCTGTCCTCATC 23

G GC T CCTGGCTGGTTC TC TG C GC CT AGG AG C CCT T C

Sbjct: 443 AGCCGCCTGTCCTGGCTGGTTCCTC--TGCACTGCACTAGAGGCAGACCAGCCTGTTGGC 500

Query: 22 CTTACCCA 15

CT ACC A

Sbjct: 501 CTCACCAA 508

Figure 16B

BlastX for NOVINTRA C:

>ptnr:SPTREMBL-ACC:Q9UHA7 FIL1 EPSILON + Homo sapiens (Human), 158 aa. Plus Strand HSPs:

Score = 646 (227.4 bits), Expect = 2.4e-62, P = 2.4e-62Identities = 126/130 (96%), Positives = 127/130 (97%), Frame = +1

Query: 1 DINHRVWVLQDQTLIAVPRK--VFPVTIALIŞÇRHVETLEKDRGNPIYLGLNGLNLCLMC 174

DINHRVWVLQDQTLIAVPRK + PVTIALISCRHVETLEKDRGNPIYLGLNGLNLCLMC

Sbjct: 17 DINHRVWVLQDQTLIAVPRKDRMSPVTIALISCRHVETLEKDRGNPIYLGLNGLNLCLMC 76

Query: 175 AKVGDQPTLQLKLQEKDIMDLYNQPEPVKSFLFYHSQSGRNSTFESVAFPGWFIAVSSEG 354

AKVGDQPTLQLK EKDIMDLYNQPEPVKSFLFYHSQSGRNSTFESVAFPGWFIAVSSEG

Sbjct: 77 AKVGDQPTLQLK--EKDIMDLYNQPEPVKSFLFYHSQSGRNSTFESVAFPGWFIAVSSEG 134

Query: 355 GCPLILTQELGK 390

GCPLILTQELGK

Sbjct: 135 GCPLILTQELGK 146

>ptnr:SPTREMBL-ACC:Q9NZH8 INTERLEUKIN-1 HOMOLOG 1 - Homo sapiens, 169 aa.

Plus Strand HSPs:

Score = 416 (146.4 bits), Expect = 5.7e-38, P = 5.7e-38Identities = 82/130 (63%), Positives = 101/130 (77%), Frame = +1

Query: 1 DINHRVWVLQDQTLIAVPRK--VFPVTIALISCRHVETLEKDRGNPIYLGLNGLNLCLMC 174

D+N +VW LQ Q L+AVPR V PVT+A+I+C++ E LE+ RG+PIYLG+ +CL C

Sbjct: 29 DLNQQVWTLQGQNLVAVPRSDSVTPVTVAVITCKYPEALEQGRGDPIYLGIQNPEMCLYC 88

Query: 175 AKVGDQPTLQLKLQEKDIMDLYNQPEPVKSFLFYHSQSGRNSTFESVAFPGWFIAVSSEG 354

KVG+OPTLOLK E+ IMDLY OPEPVK FLFY +++GR ST ESVAFP WFIA SS+

Sbjct: 89 EKVGEQPTLQLK--EQKIMDLYGQPEPVKPFLFYRAKTGRTSTLESVAFPDWFIA-SSKR 145

Ouery: 355 GCPLILTOELGK 390

P+ILT ELGK

Sbjct: 146 DQPIILTSELGK 157

>ptnr:SWISSPROT-ACC:P25085 INTERLEUKIN-1 RECEPTOR ANTAGONIST PROTEIN
PRECURSOR (IL-1RA) (IL-1RN) (IRAP) - Mus musculus (Mouse), 178 aa.

Top Previous Match Next Match

Minus Strand HSPs:

Score = 173 (60.9 bits), Expect = 2.1e-12, P = 2.1e-12Identities = 35/81 (43%), Positives = 50/81 (61%), Frame = -1

Query: 259 IYLGLNGLNLCLMCAKVGDQPTLQLKLQEKDIMDLYNQPEPVKSFLFYHSQSGRNSTFES 80

++LG++G LCL CAK GD ++L+L+E +I DL E K F F S+ G ++FES

Sbjct: 82 VFLGIHGGKLCLSCAKSGDD--IKLQLEEVNITDLSKNKEEDKRFTFIRSEKGPTTSFES 139

Query: 79 VAFPGWFIAVSSEGGCPLILT 17

A PGWF+ + E P+ LT

Sbjct: 140 AACPGWFLCTTLEADRPVSLT 160

ClustalW for NOVINTRA C:

Based on this alignment, black outlined amino acid residues indicate regions of conserved sequence (i.e., regions that may be required to preserve structural or functional properties); greyed amino acid residues can be mutated to a residue with comparable steric and/or chemical properties without altering protein structure or function (e.g. L to V, I, or M); non-highlighted amino acid residues can potentially be mutated to a much broader extent without altering structure or function.

Sequences used:

- 1) IL1X MOUSE: Locus IL1X MOUSE: Accession P25085; PID g124313
- 2) IL1X HORSE: Locus IL1X HORSE; Accession O18999; PID g6166230
- 3) AAF02757_HUMAN: Locus AF186094_1; Accession AAF02757; PID g6049805

Figure 18

Figure 19

Figure 20

Figure 21

Figure 22

Figure 23

