

Model Optimization and Tuning Phase Template

Date	13 July 2024
Team ID	SWTID1720174957
Project Title	Human Resource Management: Predicting Employee Promotions Using Machine Learning
Maximum Marks	10 Marks

Model Optimization and Tuning Phase

The Model Optimization and Tuning Phase involves refining machine learning models for peak performance. It includes optimized model code, fine-tuning hyperparameters, comparing performance metrics, and justifying the final model selection for enhanced predictive accuracy and efficiency.

Hyperparameter Tuning Documentation (6 Marks):

Model	Tuned Hyperparameters	Optimal Values
DecisionTree Classifier	<pre>dt = DecisionTreeClassifier(criterion='entropy',max_depth=5,min_samples_split=10,</pre>	accuracy_score(y_test,y_pred_dt) 0.7149980055843638
RandomForest Classifier	<pre>rf=RandomForestClassifier(n_estimators=100, max_depth=5, random_state=42) rf.fit(x_train,y_train) y_pred_rf=rf.predict(x_test)</pre>	accuracy_score(y_test,y_pred_rf) 0.7957718388512166
Kneighbours Classifier	<pre>knn=KNeighborsClassifier(n_neighbors=3, weights='uniform',algorithm='auto',leaf_size=10) knn.fit(x_train,y_train) y_pred_kn=knn.predict(x_test)</pre>	accuracy_score(y_test,y_pred_kn) 0.9032708416433984

GradientBoosti ng Classifier

 $$xg=GradientBoostingClassifier(n_estimators=100, learning_rate=0.1, max_depth=3, random_state=42) $xg.fit(x_train,y_train) $y_pred_xgexg.predict(x_test)$$

accuracy_score(y_test,y_pred_xg)

0.864379736737136

Performance Metrics Comparison Report (2 Marks):

Model	Baseline Metric	Optimized Metric
DecisionTree Classifier	classification_report(y_test,y_pred) precision recall f1-score support 0 0.95 0.93 0.94 10035 1 0.93 0.95 0.94 10021 accuracy 0.94 20056 macro avg 0.94 0.94 0.94 20056 weighted avg 0.94 0.94 0.94 20056 confusion_matrix(y_test,y_pred) array([[9289, 746],	y_pred_dt=decisionTree(x_train,x_test,y_train,y_test) DecisionTreeClassifier Confusion matrix [[6474 3561] [2155 7866]] Classification report
RandomForest Classifier	classification_report(y_test,y_pred) precision recall f1-score support 0 0.95 0.95 0.95 10035 1 0.95 0.95 0.95 10021 accuracy 0.95 20056 macro avg 0.95 0.95 0.95 20056 weighted avg 0.95 0.95 0.95 20056 confusion_matrix(y_test,y_pred) array([[9498, 537],	y_pred_rf=randomForest(x_train,x_test,y_train,y_test) RandomForestClassifier Confusion matrix [[7317 2718] [1378 8643]] Classification report

	classification_	report(y	tost v			<pre>y_pred_kn=KNN(x_train,x_test,y_train,y_test)</pre>
			test,y	_pred)		
l I	precision recall f1-score support					Confusion matrix [[8451 1584]
***	0	0.96	0.82	0.89	10035	[356 9665]] Classification report
Kneighbours	1	0.84	0.97	0.90	10021	precision recall f1-score supp
	accuracy			0.90	20056	0 0.96 0.84 0.90 10
Classifier	macro avg	0.90	0.90	0.89	20056	1 0.86 0.96 0.91 10
	weighted avg	0.90	0.90	0.89	20056	1 0.00 0.30 0.31 10
	confusion_matrix(_test,y_p	red)			accuracy 0.90 20
	array([[8242, 179	31				macro avg 0.91 0.90 0.90 20
	[308, 971		=int64)			weighted avg 0.91 0.90 0.90 20
	classification_report(y_test,y_pred)					y_pred_xg=xgboost(x_train,x_test,y_train,y_test)
	pr	recision	recall 1	f1-score	support	Confusion matrix [[8409 1626]
GradientBoosti	0	0.88	0.84	0.86	10035	[1094 8927]]
Gracientiboosti	1	0.85	0.89	0.87	10021	Classification report
ng						precision recall f1-score support
****	accuracy			0.86	20056	0 0.88 0.84 0.86 10035
	macro avg	0.87	0.86	0.86	20056	1 0.85 0.89 0.87 10021
Classifier	weighted avg	0.87	0.86	0.86	20056	
	confusion_matrix	(y_test,y	_pred)			accuracy 0.86 20056
	4.5.5.5.5					macro avg 0.87 0.86 0.86 20056 weighted avg 0.87 0.86 0.86 20056
	array([[8409, 16 [1094, 89		pe=int64)		weighted avg 0.87 0.86 0.86 20056

Final Model Selection Justification (2 Marks):

Final Model	Reasoning
	The RandomForest Classifier was chosen because it performs well
	across a range of datasets and doesn't require a lot of
	hyperparameter tweaking. By combining several decision trees—
RandomForest Classifier	each trained on a different collection of attributes and observations it
	successfully minimizes overfitting. This ensemble technique

effectively manages noisy data and outliers while enhancing
generalization.