

REACCIONES QUÍMICAS | 1.º BACH EJERCICIOS DE ECUACIONES QUÍMICAS ALBA LÓPEZ VALENZUELA

- 1. Ajusta las siguientes ecuaciones químicas:
 - (a) $H_2 + O_2 \longrightarrow H_2O$
 - (b) $H_2 + O_2 \longrightarrow H_2O_2$
 - (c) $N_2 + H_2 \longrightarrow NH_3$
 - (d) $CaSiO_3(s) + HF(l) \longrightarrow SiF_4(g) + CaF_2(s) + H_2O(l)$
 - (e) $Al_2O_3(s) + HCl(ac) \longrightarrow AlCl_3(ac) + H_2O(l)$
 - (f) $HgO \longrightarrow Hg + O_2$
 - (g) $HBr(ac) + Fe(s) \longrightarrow FeBr_3(ac) + H_2(g)$
 - (h) $Ag(s) + O_2(g) \longrightarrow Ag_2O(s)$
 - (i) $Na_2CO_3 + HCl \longrightarrow NaCl + CO_2 + H_2O$
 - (j) $ZnS + O_2 \longrightarrow ZnO + SO_2$
 - (k) $\text{Li}_2\text{O} + \text{H}_2\text{O} \longrightarrow \text{LiOH}$
 - (l) $CaC_2 + H_2O \longrightarrow C_2H_2 + Ca(OH)_2$
 - (m) $CuO + Cu_2O + H_2 \longrightarrow Cu + H_2O$
 - (n) $S_8 + O_2 \longrightarrow SO_3$
 - (o) $Zn + HCl \longrightarrow ZnCl_2 + H_2$
 - (p) $Al + HCl \longrightarrow AlCl_3 + H_2$
 - (q) Fe + O₂ \longrightarrow Fe₂O₃
 - (r) $Fe_2O_3 + H_2 \longrightarrow Fe + H_2O$
 - (s) $Fe + H_2SO_4 \longrightarrow Fe_2(SO_4)_3 + H_2$
 - (t) $Cr_2O_3 + Al \longrightarrow Cr + Al_2O_3$
 - (u) $BaO + H_2O \longrightarrow Ba(OH)_2$
 - (v) $H_3PO_4 \longrightarrow H_4P_2O_7 + H_2O$
 - (w) $Na_2CO_3 + HCl \longrightarrow NaCl + H_2O + CO_2$
 - (x) $CaCO_3 + HCl \longrightarrow CaCl_2 + H_2O + CO_2$
 - (y) $NH_4Cl + Ca(OH)_2 \longrightarrow CaCl_2 + NH_3 + H_2O$
 - (z) $H_2SO_4 + NaHCO_3 \longrightarrow Na_2SO_4 + CO_2 + H_2O$
- 2. Ajusta las siguientes reacciones químicas:
 - (a) $PCl_3(1) + H_2O(1) \longrightarrow H_3PO_3(aq) + HCl(aq)$
 - (b) $PdCl_2(aq) + HNO_3(aq) \longrightarrow Pd(NO_3)_2(s) + HCl(aq)$
 - (c) $KClO_3 \longrightarrow KCl + O_2$
 - (d) $KNO_3 \longrightarrow KNO_2 + O_2$
 - (e) $Pb(NO_3)_2 \longrightarrow PbO + NO_2 + O_2$
 - (f) NO (g) + $O_2(g) \longrightarrow NO_2(g)$
 - (g) $N_2O_5(g) \longrightarrow NO_2(g) + O_2(g)$
 - (h) $NO_2(g) + H_2O(l) \longrightarrow HNO_3(ac) + NO(g)$
 - (i) $NH_3 + NO \longrightarrow N_2 + H_2O$
 - (j) $N_2O_5 + H_2O \longrightarrow HNO_3$
 - (k) $NH_4NO_3 \longrightarrow N_2O + H_2O$
 - (l) $C_7H_{16}(g) + O_2(g) \longrightarrow CO_2(g) + H_2O(g)$
 - (m) $C_6H_{12}(l) + O_2(g) \longrightarrow CO_2(g) + H_2O(g)$
 - (n) $C_2H_6O(g) + O_2(g) \longrightarrow CO_2(g) + H_2O(g)$
 - (o) $CH_3 CH_2 CHO + O_2 \longrightarrow CO_2 + H_2O$
 - (p) $Al_4C_3(s) + H_2O(l) \longrightarrow Al(OH)_3(s) + CH_4(g)$

- 3. Escribe y ajusta las siguientes reacciones de combustión:
 - (a) Reacción de combustión del metano (CH₄)
 - (b) Reacción de combustión del butano (C₄H₁₀)
 - (c) Reacción de combustión del etanol (C₂H₆O)
 - (d) Reacción de combustión del propanol (C₃H₈O)
 - (e) Reacción de combustión de la glucosa (C₆H₁₂O₆)
 - (f) Reacción de combustión completa del C
 - (g) Reacción de combustión incompleta del C
 - (h) Reacción de combustión del H
- 4. Clasifica por tipo de reacción química de cada una de las siguientes ecuaciones:
 - (a) $2 \text{ Fe} + \frac{3}{2} \text{ O}_2 \longrightarrow \text{Fe}_2 \text{O}_3$
 - (b) $KClO_3 \longrightarrow KCl + \frac{3}{2}O_2$
 - (c) $Zn + 2HCl \longrightarrow ZnCl_2 + H_2$
 - (d) $AgNO_3(aq) + NaCl(aq) \longrightarrow AgCl(s) \downarrow + NaNO_3(ac)$
 - (e) $HCl + NaOH \longrightarrow NaCl + H_2O$
 - (f) $2 \text{ Fe} + 3 \text{ Cu}^{2+} \longrightarrow 2 \text{ Fe}^{3+} + 3 \text{ Cu}$
 - (g) $C_2H_6 + \frac{7}{2}O_2 \longrightarrow 2CO_2 + 3H_2O$
- (h) $Pb(NO_3)_2(ac) + 2 KI(ac) \longrightarrow PbI_2(s) \downarrow + 2 KNO_3(ac)$
- 5. Ajusta e interpreta en términos atómico-moleculares y en términos molares las ecuaciones químicas siguientes:
 - (a) $N_2O_5(g) \longrightarrow NO_2(g) + O_2(g)$
 - (b) $Fe + O_2 \longrightarrow Fe_2O_3$
 - (c) $C_2H_6 + O_2 \longrightarrow CO_2 + H_2O$
 - (d) $Fe + H_2SO_4 \longrightarrow Fe_2(SO_4)_3 + H_2$
- 6. Escribe las ecuaciones químicas ajustadas que presentan las reacciones químicas siguientes, e interprétalas en términos atómicos- moleculares y molares:
 - (a) Al calentar carbonato de amonio, se libera amoniaco, dióxido de carbono y agua.
 - (b) El zinc reacciona con el vapor de agua y se obtiene óxido de zinc e hidrógeno.
 - (c) La descomposición del ácido carbónico origina dióxido de carbono y agua.
 - (d) Al quemar propano (C₃H₈) en presencia de oxígeno, se obtiene dióxido de carbono y agua.
 - (e) El monóxido de nitrógeno es uno de los contaminantes emitidos por los vehículos y está involucrado en la formación de la lluvia ácida. Una forma de eliminar el NO de las emisiones gaseosas es hacerlo reaccionar con amoniaco. Los productos formados son nitrógeno gaseoso y agua.
 - (f) La piedra caliza, rica en CaCO₃, reacciona con HCl formándose dióxido de carbono, agua y cloruro de calcio.
 - (g) La hidracina, N₂H₄, y el peróxido de hidrógeno mezclados se usan como combustibles para cohetes. Los productos de reacción son nitrógeno y agua.

......SOLUCIONES.....

- 1. (a) $H_2 + \frac{1}{2} O_2 \longrightarrow H_2 O$ $2 H_2 + O_2 \longrightarrow 2 H_2 O$
 - (b) $H_2 + O_2 \longrightarrow H_2O_2$
 - (c) $N_2 + 3 H_2 \longrightarrow 2 NH_3$
 - (d) $CaSiO_3(s) + 6HF(l) \longrightarrow SiF_4(g) + CaF_2(s) + 3H_2O(l)$
 - (e) $Al_2O_3(s) + 6HCl(ac) \longrightarrow 2AlCl_3(ac) + 3H_2O(l)$
 - (f) $HgO \longrightarrow Hg + \frac{1}{2}O_2$ $2 HgO \longrightarrow 2 Hg + O_2$
 - (g) $3 \operatorname{HBr}(ac) + \operatorname{Fe}(s) \longrightarrow \operatorname{FeBr}_3(ac) + \frac{3}{2} \operatorname{H}_2(g)$
 - (h) $2 \operatorname{Ag}(s) + \frac{1}{2} \operatorname{O}_2(g) \longrightarrow \operatorname{Ag}_2 \operatorname{O}(s)$
 - (i) $Na_2CO_3 + 2HCl \longrightarrow 2NaCl + CO_2 + H_2O$
 - (j) $ZnS + \frac{3}{2}O_2 \longrightarrow ZnO + SO_2$
 - (k) $\text{Li}_2\text{O} + \text{H}_2\text{O} \longrightarrow 2 \text{LiOH}$
 - (l) $CaC_2 + 2H_2O \longrightarrow C_2H_2 + Ca(OH)_2$
 - (m) $2 \text{ CuO} + \text{Cu}_2\text{O} + 3 \text{ H}_2 \longrightarrow 4 \text{ Cu} + 3 \text{ H}_2\text{O}$
 - (n) $S_8 + 12 O_2 \longrightarrow 8 SO_3$
 - (o) $Zn + 2HCl \longrightarrow ZnCl_2 + H_2$
 - (p) Al + 3 HCl \longrightarrow AlCl₃ + $\frac{3}{2}$ H₂
 - (q) $2 \operatorname{Fe} + \frac{3}{2} \operatorname{O}_2 \longrightarrow \operatorname{Fe}_2 \operatorname{O}_3$
 - (r) $Fe_2O_3 + 3H_2 \longrightarrow 2Fe + 3H_2O$
 - (s) $2 \text{ Fe} + 3 \text{ H}_2 \text{SO}_4 \longrightarrow \text{Fe}_2 (\text{SO}_4)_3 + 3 \text{ H}_2$
 - (t) $Cr_2O_3 + 2Al \longrightarrow 2Cr + Al_2O_3$
 - (u) $BaO + H_2O \longrightarrow Ba(OH)_2$
 - (v) $2 H_3 PO_4 \longrightarrow H_4 P_2 O_7 + H_2 O$
 - (w) $Na_2CO_3 + 2HCl \longrightarrow 2NaCl + H_2O + CO_2$
 - (x) $CaCO_3 + 2HCl \longrightarrow CaCl_2 + H_2O + CO_2$
 - (y) $2 NH_4Cl + Ca(OH)_2 \longrightarrow CaCl_2 + 2 NH_3 + 2 H_2O$
 - (z) $H_2SO_4 + 2 NaHCO_3 \longrightarrow Na_2SO_4 + 2 CO_2 + 2 H_2O$
- 2. (a) $PCl_3(l) + 3H_2O(l) \longrightarrow H_3PO_3(aq) + 3HCl(aq)$
 - (b) $PdCl_2(aq) + 2 HNO_3(aq) \longrightarrow Pd(NO_3)_2(s) + 2 HCl(aq)$
 - (c) $KClO_3 \longrightarrow KCl + \frac{3}{2}O_2$
 - (d) $KNO_3 \longrightarrow KNO_2 + \frac{1}{2}O_2$
 - (e) $Pb(NO_3)_2 \longrightarrow PbO + 2NO_2 + \frac{1}{2}O_2$
 - (f) NO (g) + $\frac{1}{2}$ O₂(g) \longrightarrow NO₂(g)
 - (g) $N_2O_5(g) \longrightarrow 2NO_2(g) + \frac{1}{2}O_2(g)$
 - (h) $3 \text{ NO}_2(g) + \text{H}_2\text{O}(l) \longrightarrow 2 \text{ HNO}_3(ac) + \text{NO}(g)$
 - (i) $2 \text{ NH}_3 + 3 \text{ NO} \longrightarrow \frac{5}{2} \text{ N}_2 + 3 \text{ H}_2 \text{O}$
 - (j) $N_2O_5 + H_2O \longrightarrow 2HNO_3$
 - (k) $NH_4NO_3 \longrightarrow N_2O + 2H_2O$
 - (l) $C_7H_{16}(g) + 11O_2(g) \longrightarrow 7CO_2(g) + 8H_2O(g)$
 - (m) $C_6H_{12}(l) + 9O_2(g) \longrightarrow 6CO_2(g) + 6H_2O(g)$
 - (n) $C_2H_6O(g) + 3O_2(g) \longrightarrow 2CO_2(g) + 3H_2O(g)$
 - (o) $CH_3 CH_2 CHO + 4O_2 \longrightarrow 3CO_2 + 3H_2O$
 - (p) $Al_4C_3(s) + 12H_2O(l) \longrightarrow 4Al(OH)_3(s) + 3CH_4(g)$
- 3. (a) $CH_4 + 2O_2 \longrightarrow CO_2 + 2H_2O$
 - (b) $C_4H_{10} + \frac{13}{2}O_2 \longrightarrow 4CO_2 + 5H_2O$

- (c) $C_2H_6O + 3O_2 \longrightarrow 2CO_2 + 3H_2O$
- (d) $C_3H_8O + \frac{9}{2}O_2 \longrightarrow 3CO_2 + 4H_2O$
- (e) $C_6H_{12}O_6 + 6O_2 \longrightarrow 6CO_2 + 6H_2O_3$
- (f) $C + O_2 \longrightarrow CO_2$
- (g) $C + \frac{1}{2} O_2 \longrightarrow CO$
- (h) $H_2 + \frac{1}{2} O_2 \longrightarrow H_2 O$
- (a) Adición, rédox; (b) Descomposición; (c) Sustitución; (d) Sustitución doble, precipitación; (e) Sustitución doble, neutralización; (f) Rédox; (g) Combustión; (h) Sustitución doble, precipitación.
- 5. (a) $N_2O_5(g) \longrightarrow 2 NO_2(g) + \frac{1}{2} O_2(g)$; una molécula (o mol) de N_2O_5 se descompone en 2 moléculas (o moles) de NO_2 y media molécula (o moles) de O_2 .
 - (b) 2 Fe + ³/₂ O₂ → Fe₂O₃; un átomo (o mol) de Fe reacciona con 3/2 moléculas (o moles) de O₂ para formar una molécula (o mol) de Fe₂O₃.
 - (c) C₂H₆ + 5 O₂ → 2 CO₂ + 3 H₂O; una molécula (o mol) de C₂H₆ reacciona con 5 moléculas (o moles) de O₂ para formar 2 moléculas (o moles) de CO₂ y 3 moléculas (o moles) de H₂O.
- 6. (a) $(NH_4)_2CO_3 \xrightarrow{\Delta} 2NH_3 + CO_2 + H_{20}$; al calentar una molécula (o mol) de $(NH_4)_2CO_3$ se liberan 2 moléculas (o moles) de NH_3 , 1 molécula (o mol) de CO_2 y 1 molécula (o mol) de H_2O .
 - (b) Zn + H₂O → ZnO + H₂; un átomo (o mol) de zinc reacciona con 1 molécula (o mol) de vapor de agua y se obtiene 1 molécula (o mol) de óxido de zinc y 1 molécula (o mol) de hidrógeno.
 - (c) H₂CO₃ CO₂ + H₂O; la descomposición de 1 molécula (o mol) de ácido carbónico origina 1 molécula (o mol) de dióxido de carbono y 1 molécula (o mol) de agua.
 - (d) $C_3H_8 + 5 O_2 \longrightarrow 3 CO_2 + 4 H_2O$; al quemar 1 molécula (o mol) de C_3H_8 en presencia de 5 moléculas (o moles) de O_2 , se obtienen 3 moléculas (o moles) de dióxido de carbono y 4 moléculas (o moles) de agua.
 - (e) 3 NO + NH₃ → 2 N₂ + 3 H₂O; 3 moléculas (o moles) de NO reaccionan con 1 molécula (o mol) de NH₃ para formar 2 moléculas (o moles) de N₂ y 3 moléculas (o moles) de agua.
 - (f) CaCO₃ + 2 HCl → CaCl₂ + CO₂ + H₂O; 1 molécula (o mol) de CaCO₃ reacciona con 2 moléculas (o moles) de HCl para formar 1 molécula (o mol) de CaCl₂, 1 molécula (o mol) de CO₂ y 1 molécula (o mol) de H₂O.
 - (g) N₂H₄ + 2 H₂O₂ → N₂ + 4 H₂O; 1 molécula (o mol) de N₂H₄ reacciona con 2 moléculas (o moles) de H₂O₂ para formar 1 molécula (o mol) N₂ y 4 moléculas (o moles) de H₂O.