System Interconnect

2014.06.30

cv 54004

The hard processor system (HPS) level 3 (L3) interconnect and level 4 (L4) peripheral buses are implemented with the ARM[®] CoreLink[™] Network Interconnect (NIC-301). The NIC-301 provides a foundation for a high-performance HPS interconnect based on the ARM Advanced Microcontroller Bus Architecture (AMBA®) Advanced eXtensible Interface (AXI[™]), Advanced High-Performance Bus (AHB[™]), and Advanced Peripheral Bus (APB^{TM}) protocols. The L3 interconnect implements a multilayer, nonblocking architecture that supports multiple simultaneous transactions between masters and slaves, including the Cortex®-A9 microprocessor unit (MPU) subsystem. The interconnect provides five independent L4 buses to access control and status registers (CSRs) of peripherals, managers, and memory controllers

Related Information

ARM Infocenter (http://infocenter.arm.com)

Additional information is available in the AMBA Network Interconnect (NIC-301) Technical Reference Manual, revision r2p3, which you can download from the ARM info center website.

Features of the L3 System Interconnect

The L3 system interconnect supports high-throughput peripheral devices. The L3 interconnect has the following characteristics:

- Main internal data width of 64 bits
- Programmable master priority with single-cycle arbitration
- Full pipelining to prevent master stalls
- Programmable control for FIFO buffer transaction release
- Security of the following types:
 - Secure
 - Nonsecure
 - Per transaction security
- Five independent L4 buses

Interconnect Block Diagram and System Integration

Interconnect Block Diagram

The following figure shows the L3 interconnect and L4 buses.

© 2014 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as trademarks or service marks are the property of their respective holders as described at $www. alter a. com/common/legal. html. \ Alter a warrants performance of its semiconductor products to current specifications in accordance with$ Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

ISO 9001:2008

Note: Interconnect slaves are available for connection from peripheral masters. Interconnect masters connect to peripheral slaves. This terminology is the reverse of conventional terminology used in Qsys.

Related Information

- Master to Slave Connectivity Matrix on page 7-4
- Main Connectivity Matrix on page 7-3

System Interconnect Architecture

The L3 interconnect is a partially-connected switch fabric. Not all masters can access all slaves.

Internally, the L3 interconnect is partitioned into the following subswitches:

- L3 interconnect
 - Interconnect used to transfer high-throughput 64-bit data
 - Operates at up to half the MPU main clock frequency
 - Provides masters with low-latency connectivity to AXI bridges, on-chip memories, SDRAM, and FPGA manager
- L3 master peripheral switch
 - Used to connect memory-mastering peripherals to the interconnect
 - 32-bit data width
 - Operates at up to half the interconnect clock frequency
- L3 slave peripheral switch
 - Used to provide access to level 3 and 4 slave interfaces for masters of the master peripheral and interconnects
 - 32-bit data width
 - Five independent L4 buses

The L3 master and slave peripheral switches are fully-connected crossbars. The L3 interconnect is a partially-connected crossbar. The following table shows the connectivity matrix of all the master and slave interfaces of the L3 interconnect.

Main Connectivity Matrix

The L3 master and slave peripheral switches are fully-connected crossbars. The L3 interconnect is a partially-connected crossbar. The following table shows the connectivity matrix of all the master and slave interfaces of the L3 interconnect.

				Sla	ives			
Masters	L3 Slave Peripheral Switch (1)	FPGA Manager	HPS-to-FPGA Bridge	ACP ID Mapper Data	STM	Boot ROM	On-Chip RAM	SDRAM Controller Subsystem L3 Data
L3 Master Peripheral Switch (1)			/	/			\	/
L2 Cache Master 0	✓	✓	/		✓	✓	/	
FPGA-to-HPS Bridge	✓			✓	✓		/	/
DMA	✓	<	/	✓	/		✓	/
DAP	✓	<	/	✓			✓	✓

⁽¹⁾ For details of the masters and slaves connected to the L3 master peripheral switch and L3 master peripheral switch, refer to "Interconnect Block Diagram".

Related Information

Interconnect Block Diagram on page 7-1

Functional Description of the Interconnect

Master to Slave Connectivity Matrix

The interconnect is a partially-connected crossbar. The following table shows the connectivity matrix of all the master and slave interfaces of the interconnect.

Figure 7-1: Interconnect Connectivity Matrix

		Slaves															
Masters	L4 SP Bus Slaves	L4 MP Bus Slaves	L4 OSC1 Bus Slaves	L4 MAIN Bus Slaves	L4 SPIM Bus Slaves	Lightweight HPS-to-FPGA Bridge	USB OTG 0/1 CSR	NAND CSR	NAND Command and Data	Quad SPI Flash Data	FPGA Manager	HPS-to-FPGA Bridge	ACP ID Mapper Data	STM	Boot ROM	On-Chip RAM	SDRAM Controller Subsystem L3 Data
L2 Cache Master 0	/	/	✓	✓	<	/	✓	✓	✓	✓	✓	✓		✓	✓	<	
FPGA-to-HPS Bridge	>	\	\	>	>	\	>	✓	✓	✓			✓	~		/	✓
DMA	/	<	\	/	/	\	/	/	\	/	/	/	/	\		\	/
EMAC 0/1												✓	✓			<	✓
USB OTG 0/1												✓	~			/	✓
NAND												✓	/			<	✓
SD/MMC												/	/			/	/
ETR												✓	✓			✓	✓
DAP	✓	/	✓	<	✓	✓	✓	✓	✓	✓	✓	✓	✓			~	✓

Address Remapping

The interconnect supports address remapping through the remap register in the 13regs group. Remapping allows software to control which memory device (SDRAM, on-chip RAM, or boot ROM) is accessible at address 0x0 and the accessibility of the HPS-to-FPGA and lightweight HPS-to-FPGA bridges. The remap register is one of the NIC-301 Global Programmers View (GPV) registers. The following L3 masters can manipulate remap, because it maps into their address space:

- MPU
- FPGA-to-HPS bridge
- DAP

The remapping bits in the remap register are not mutually exclusive. The lowest order remap bit has higher priority when multiple slaves are remapped to the same address. Each bit allows different combinations of address maps to be formed. There is only one remapping register available in the GPV, so modifying the remap register affects all memory maps of all the masters of the interconnect.

The effects of the remap bits can be categorized in the following groups:

- MPU master interface
 - L2 cache master 0 interface

- Non-MPU master interfaces
 - DMA master interface
 - Master peripheral interfaces
 - Debug Access Port (DAP) master interface
 - FPGA-to-HPS bridge master interface

Related Information

- L3 (NIC-301) GPV Registers Address Map on page 7-16 Information about the GPV registers
- remap on page 7-23

 Description of the remap register
- Cortex-A9 Microprocessor Unit Subsystem
 For general information about the MPU subsystem, refer to the Cortex-A9 Microprocessor Unit Subsystem chapter in the Cyclone V Device Handbook, Volume 3.
- Cortex-A9 Microprocessor Unit Subsystem
 For information about virtual ID mapping in the ACP ID mapper, refer to "HPS Peripheral Master Input IDs" in the Cortex-A9 Microprocessor Unit Subsystem chapter of the Cyclone V Device Handbook, Volume 3.

Available Address Maps

Figure 7-2: Address Maps for Interconnect Masters

The following figure shows the default interconnect address maps for all masters. The figure is not to scale.

0xFFFFFFF 0xFFFF0000	On-Chip RAM	On-Chip RAM	On-Chip RAM	On-Chip RAM	On-Chip RAM
	SCU and L2 Registers (1)				
0xFFFEC000 0xFFFD0000	Boot ROM				
0xFF400000	Peripherals and L3 GPV	Peripherals and L3 GPV		Peripherals and L3 GPV	Peripherals and L3 GPV
0xFF200000	(2)	(2)		(2)	(2)
0xFF000000	DAP	DAP		DAP	DAP
0xFC000000	STM	STM			STM
	(3)	(3)	(3)	(3)	
0xC0000000					
0x80000000		ACP	ACP	ACP	ACP
0x10000000	SDRAM (4)	SDRAM	SDRAM	SDRAM	SDRAM
0x00100000		SDRAM (5)	SDRAM (5)	SDRAM (5)	SDRAM (5)
0x00010000 0x00000000	Boot ROM (5)	SDRAM (5), (6)	SDRAM (5), (6)	SDRAM (5), (6)	SDRAM (5), (6)
	MPU	DMA	Master Peripherals (7)	DAP	FPGA-to-HPS Bridge

Notes on Address Maps

- $^{(1)}$ Transactions on these addresses pass through the L2 interconnect.
- $^{(2)}$ This region can be configured to access slaves on the lightweight HPS-to-FPGA bridge, by using the remap register.
- $^{(3)}$ This region can be configured to access slaves on the HPS-to-FPGA bridge, by using the remap register.
- (4) The MPU accesses SDRAM through a dedicated port.
- $^{(5)}$ This region can be configured to access the ACP, by using the <code>remap</code> register.
- (6) This region can be configured to access on-chip RAM, by using the remap register.
- ⁽⁷⁾ The following peripherals can master the interconnect:
- Ethernet MACs
- USB-2 OTG controllers
- NAND controllers

- ETR
- SD/MMC controller

For the MPU L3 master, either the boot ROM or on-chip RAM maps to address 0x0 and obscures the lowest 64 KB of SDRAM. The address space from 0x00010000 to 0x00100000 is not accessible because the MPU L2 filter registers only have a granularity of 1 MB. After booting completes, the MPU can change address filtering to use the lowest 1 MB of SDRAM.

For non-MPU masters, either the on-chip RAM or the SDRAM maps to address 0x0. When mapped to address 0x0, the on-chip RAM obscures the lowest 64 KB of SDRAM for non-MPU masters.

Related Information

remap on page 7-23
Description of the remap register

Memory Map Remap Bits

Bit Name	Bit Offset	Description
mpuzero	0	When set to 0, the boot ROM maps to address 0x0 for the MPU L3 master. When set to 1, the on-chip RAM maps to address 0x0 for the MPU L3 master. This bit has no effect on non-MPU masters.
		Note that regardless of this setting, the boot ROM also always maps to address 0xffff0000 and the on-chip RAM also always maps to address 0xfffd0000 for the MPU L3 master.
nonmpuzero	1	When set to 0, the SDRAM maps to address 0x0 for the non-MPU L3 masters. When set to 1, the on-chip RAM maps to address 0x0 for the non-MPU masters. This bit has no effect on the MPU L3 master. Note that regardless of this setting, the on-chip RAM also always maps to address 0xfffd0000 for the non-MPU L3 masters.
Reserved	2	Must always be set to 0.
hps2fpga	3	When set to 1, the HPS-to-FPGA bridge slave port is visible to the L3 masters. When set to 0, accesses to the associated address range return an AXI decode error to the master.
lwhp2fpga	4	When set to 1, the lightweight HPS-to-FPGA bridge slave port is visible to the L3 masters. When set to 0, accesses to the associated address range return an AXI decode error to the master.
Reserved	31:5	Must always be set to 0.

Note: L2 filter registers in the MPU subsystem, not the interconnect, allow the SDRAM to be remapped to address 0x0 for the MPU.

Master Caching and Buffering Overrides

Some of the peripheral masters connected to the interconnect do not have the ability to drive the caching and buffering signals of their interfaces. The system manager provides registers so that you can enable

cv_54004 2014.06.30

cacheable and bufferable transactions for these masters. The system manager drives the caching and buffering signals of the following masters:

Master Peripheral	System Manager Register Group	Register
EMAC0 and EMAC1	emacgrp	13master
USB OTG 0 and USB OTG 1	usbgrp	13master
NAND flash	nandgrp	13master
SD/MMC	sdmmcgrp	13master

At reset time, the system manager drives the cache and buffering signals for these masters low. In other words, the masters listed do not support cacheable or bufferable accesses until you enable them after reset. There is no synchronization between the system manager and the interconnect, so avoid changing these settings when any of the masters are active.

Related Information

System Manager

For more information about enabling or disabling these features, refer to the *System Manager* chapter in the *Cyclone V Device Handbook*, *Volume 3*.

Security

Slave Security

The interconnect enforces security through the slave settings. The slave settings are controlled by the address region control registers accessible through the GPV registers. Each L3 and L4 slave has its own security check and programmable security settings. After reset, every slave of the interconnect is set to a secure state (referred to as boot secure). The only accesses allowed to secure slaves are by secure masters.

The GPV can only be accessed by secure masters. The security state of the interconnect is not accessible through the GPV as the security registers are write-only. Any nonsecure accesses to the GPV receive a DECERR response, and no register access is provided. Updates to the security settings through the GPV do not take effect until all transactions to the affected slave have completed.

Master Security

Masters of the interconnect are either secure, nonsecure, or the security is set on a per transaction basis. The DAP is capable of performing only secure accesses. The L2 cache master 0, FPGA-to-HPS-bridge, and DMA perform secure and nonsecure accesses on a per transaction basis. All other interconnect masters perform nonsecure accesses.

Accesses to secure slaves by unsecure masters result in a response of DECERR and the transaction does not reach the slave.

Related Information

Interconnect Master Properties on page 7-10

Arbitration

At the entry point to the interconnect, all transactions are allocated a local quality of service (QoS). QoS specifies the transaction's arbitration priority. The interconnect allows transactions with a higher QoS to

use a greater share of interconnect bandwidth. The transaction arbitration throughout the interconnect uses this QoS value. The QoS controls for each master connected to the interconnect are separated into read and write QoS priority values.

At any arbitration node, a fixed priority exists for transactions with different QoS values. The highest QoS value has the highest priority. If there are coincident transactions at an arbitration node with the same QoS value that require arbitration, then the interconnect uses a least recently used (LRU) algorithm.

You can programmatically configure the QoS value for each master through the appropriate write_qos register.

Related Information

L3 (NIC-301) GPV Registers Address Map on page 7-16 Information about the GPV write_qos registers

Cyclic Dependency Avoidance Schemes

The AXI protocol permits re-ordering of transactions. As a result, when routing concurrent multiple transactions from a single point of divergence to multiple slaves, the interconnect might need to enforce rules to prevent deadlock.

Each master of the interconnect is configured with one of three possible cyclic dependency avoidance schemes (CDAS). The same CDAS scheme is configured for both read and write transactions, but they operate independently.

Single Slave on page 7-9

Single Slave Per ID on page 7-9

Single Active Slave on page 7-10

Related Information

Interconnect Master Properties on page 7-10

Contains descriptions of the CDAS implementation for the masters.

Single Slave

Single slave (SS) ensures the following conditions at a slave interface of a switch:

- All outstanding read transactions are to a single end destination.
- All outstanding write transactions are to a single end destination.

If a master issues another transaction to a different destination than the current destination for that transaction type (read or write), the network stalls the transactions until all the outstanding transactions of that type have completed.

Single Slave Per ID

Single slave per ID (SSPID) ensures the following conditions at a slave interface of a switch:

- All outstanding read transactions with the same ID go the same destination.
- All outstanding write transactions with the same ID go the same destination.

When a master issues a transaction, the following situations can occur:

• If the transaction has an ID that does not match any outstanding transactions, it passes the CDAS.

- If the transaction has an ID that matches the ID of an outstanding transaction, and the destinations also match, it passes the CDAS.
- If the transaction has an ID that matches the ID of an outstanding transaction, and the destinations do not match, the transaction fails the CDAS check and stalls.

Single Active Slave

Single active slave (SAS) is the same as the SSPID scheme, with an added check for write transactions. SAS ensures that a master cannot issue a new write address until all of the data from the previous write transaction has been sent.

Interconnect Master Properties

The system interconnect connects to various slave interfaces through the L3 interconnect and L3 slave peripheral switch.

Table 7-1: Interconnect Master Interfaces

TrustZone security:

- Secure: All transactions are marked TrustZone secure
- Nonsecure: All transactions are marked TrustZone non-secure
- Per transaction: Transactions can be marked TrustZone secure or TrustZone non-secure, depending on the state of the interconnect master.

Issuance is based on the number of read, write, and total transactions.

The FIFO buffer depth for AXI is based on the AW, AR, R, W, and B channels. For AHB and APB, the depth is based on W, A, and D channels.

Master	Interface Width	Clock	Switch	TrustZone Security	GPV Access	CDAS	Issuance	FIFO Buffer Depth	Туре
L2 cache M0	64	mpu_12_ram_clk	L3 intercon- nect	Per Transac- tion	Yes	SSPID	7, 12, 19	2, 2, 2, 2, 2	AXI
FPGA-to- HPS bridge	64	13_main_clk	L3 intercon- nect	Per Transac- tion	Yes	SAS	16, 16, 32	2, 2, 6, 6, 2	AXI
DMA	64	14_main_clk	L3 intercon- nect	Per Transac- tion	No	SSPID	8, 8, 8	2, 2, 2, 2, 2, 2, 2	AXI
EMAC 0/	32	14_main_clk	L3 master peripheral switch	Secure	No	SSPID	16, 16, 32	2, 2, 2, 2, 2, 2, 2	AXI
USB OTG 0/1	32	usb_mp_clk	L3 master peripheral switch	Nonsecure	No	SSPID	2, 2, 4	2, 2, 2	АНВ

Master	Interface Width	Clock	Switch	TrustZone Security	GPV Access	CDAS	Issuance	FIFO Buffer Depth	Туре
NAND	32	nand_x_clk	L3 master peripheral switch	Nonsecure	No	SSPID	1, 8, 9	2, 2, 2, 2, 2, 2, 2	AXI
SD/MMC	32	14_mp_clk	L3 master peripheral switch	Nonsecure	No	SSPID	2, 2, 4	2, 2, 2	АНВ
ETR	32	dbg_at_clk	L3 master peripheral switch	Per Transac- tion	No	SSPID	32, 1, 32	2, 2, 2, 2, 2, 2	AXI
DAP	32	dbg_clk	L3 intercon- nect	Secure	Yes	SS	1, 1, 1	2, 2, 2	АНВ

Interconnect Slave Properties

The interconnect connects to various slave interfaces through the L3 interconnect, L3 slave peripheral switch, and the five L4 peripheral buses. After reset, all slave interfaces are set to the secure state.

Table 7-2: Interconnect Slave Interfaces

Acceptance is based on the number of read, write, and total transactions. The FIFO buffer depth for AXI is based on the AW, AR, R, W, and B channels. For AHB and APB, the depth is based on the W, A, and D channels.

Slave	Interface Width	Clock	Mastered By	Acceptance ⁽²⁾	Buffer Depth	Туре
SDRAM subsystem CSR	32	l4_sp_clk	L4 SP bus master	1, 1, 1	2, 2, 2	APB
SP timer 0/1	32	14_sp_clk	L4 SP bus master	1, 1, 1	2, 2, 2	APB
I ² C 0/1/2/3	32	14_sp_clk	L4 SP bus master	1, 1, 1	2, 2, 2	APB
UART 0/1	32	14_sp_clk	L4 SP bus master	1, 1, 1	2, 2, 2	APB
CAN 0/1	32	14_sp_clk	L4 SP bus master	1, 1, 1	2, 2, 2	APB
GPIO 0/1/2	32	14_mp_clk	L4 SP bus master	1, 1, 1	2, 2, 2	APB
ACP ID mapper CSR	32	14_mp_clk	L4 SP bus master	1, 1, 1	2, 2, 2	APB
FPGA manager CSR	32	14_mp_clk	L4 SP bus master	1, 1, 1	2, 2, 2	APB

⁽³⁾ The FIFO buffer depth for AXI is based on the AW, AR, R, W, and B channels. For AHB and APB, the depth is based on W, A, and D channels.

 $^{^{(2)}}$ Acceptance is based on the number of read, write, and total transactions.

Slave	Interface Width	Clock	Mastered By	Acceptance ⁽²⁾	Buffer Depth	Туре
DAP CSR	32	14_mp_clk	L4 SP bus master	1, 1, 1	2, 2, 2	APB
Quad SPI flash CSR	32	14_mp_clk	L4 SP bus master	1, 1, 1	2, 2, 2	APB
SD/MMC CSR	32	14_mp_clk	L4 SP bus master	1, 1, 1	2, 2, 2	APB
EMAC 0/1 CSR	32	14_mp_clk	L4 SP bus master	1, 1, 1	2, 2, 2	APB
System manager	32	osc1_clk	L4 OSC1 bus master	1, 1, 1	2, 2, 2	APB
OSC1 timer 0/1	32	osc1_clk	L4 OSC1 bus master	1, 1, 1	2, 2, 2	APB
Watchdog 0/1	32	osc1_clk	L4 OSC1 bus master	1, 1, 1	2, 2, 2	APB
Clock manager	32	osc1_clk	L4 OSC1 bus master	1, 1, 1	2, 2, 2	APB
Reset manager	32	osc1_clk	L4 OSC1 bus master	1, 1, 1	2, 2, 2	APB
DMA secure CSR	32	14_main_clk	L4 main bus master	1, 1, 1	2, 2, 2	APB
DMA nonsecure CSR	32	14_main_clk	L4 main bus master	1, 1, 1	2, 2, 2	APB
SPI slave 0/1	32	14_main_clk	L4 main bus master	1, 1, 1	2, 2, 2	APB
Scan manager	32	spi_m_clk	L4 main bus master	1, 1, 1	2, 2, 2	APB
SPI master 0/1	32	spi_m_clk	L4 main bus master	1, 1, 1	2, 2, 2	APB
Lightweight HPS-to- FPGA bridge	32	14_main_clk	L3 slave peripheral switch	16, 16, 32	2, 2, 2, 2, 2	AXI
USB OTG 0/1	32	usb_mp_clk	L3 slave peripheral switch	1, 1, 1	2, 2, 2	АНВ
NAND CSR	32	nand_x_clk	L3 slave peripheral switch	1, 1, 1	2, 2, 2	AXI
NAND command and data	32	nand_x_clk	L3 slave peripheral switch	1, 1, 1	2, 2, 2	AXI
Quad SPI flash data	32	14_mp_clk	L3 slave peripheral switch	1, 1, 1	2, 2, 2	АНВ
FPGA manager data	32	cfg_clk	L3 interconnect	1, 2, 3	2, 2, 2, 32, 2	AXI
HPS-to-FPGA bridge	64	13_main_clk	L3 interconnect	16, 16, 32	2, 2, 6, 6, 2	AXI

⁽³⁾ The FIFO buffer depth for AXI is based on the AW, AR, R, W, and B channels. For AHB and APB, the depth is based on W, A, and D channels.

⁽²⁾ Acceptance is based on the number of read, write, and total transactions.

Slave	Interface Width	Clock	Mastered By	Acceptance ⁽²⁾	Buffer Depth	Туре
ACP ID mapper data	64	mpu_12_ram_ clk	L3 interconnect	13, 5, 18	2, 2, 2, 2, 2	AXI
STM	32	dbg_at_clk	L3 interconnect	1, 2, 2	2, 2, 2, 2, 2	AXI
On-chip boot ROM	32	13_main_clk	L3 interconnect	1, 1, 2	0,0,0,0,0	AXI
On-chip RAM	64	13_main_clk	L3 interconnect	2, 2, 2	0, 0, 0, 8, 0	AXI
SDRAM subsystem L3 data	32	13_main_clk	L3 interconnect	16, 16, 16	2, 2, 2, 2, 2	AXI

Upsizing Data Width Function

The upsizing function combines narrow transactions into wider transactions to increase the overall system bandwidth. Upsizing only packs data for read or write transactions that are cacheable. If the interconnect splits input-exclusive transactions into more than one output bus transaction, it removes the exclusive information from the multiple transactions it creates.

The upsizing function can expand the data width by the following ratios:

- 1:2
- 1:4

If multiple responses from created transactions are combined into one response, then the following order of priority applies:

- DECERR is the highest priority
- SLVERR is the next highest priority
- OKAY is the lowest priority.

Related Information

ARM Infocenter (http://infocenter.arm.com)

Additional information is available in the *AMBA Network Interconnect (NIC-301) Technical Reference Manual*, revision r2p3, which you can download from the ARM Infocenter website.

Incrementing Bursts

The interconnect converts all input INCR bursts that complete within a single output data width to an INCR1 burst of the minimum SIZE possible, and packs all INCR bursts into INCR bursts of the optimal size possible for maximum data throughout.

⁽³⁾ The FIFO buffer depth for AXI is based on the AW, AR, R, W, and B channels. For AHB and APB, the depth is based on W, A, and D channels.

⁽²⁾ Acceptance is based on the number of read, write, and total transactions.

Wrapping Bursts

All wrap bursts are either passed through unconverted as wrap bursts, or converted to one or two incr bursts of the output bus. The interconnect converts input wrap bursts that have a total payload less than the output data width to a single incr burst.

Fixed Bursts

All FIXED bursts pass through unconverted.

Bypass Merge

Bypass merge is accessible through the GPV registers and is only accessible to secure masters. If the programmable bit bypass_merge is enabled, the interconnect does not alter any transactions that could pass through legally without alteration.

Downsizing Data Width Function

The downsizing function reduces the data width of a transaction to match the optimal data width at the destination. Downsizing does not merge multiple-transaction data narrower than the destination bus if the transactions are marked as noncacheable.

The downsizing function reduces the data width by the following ratios:

- 2:1
- 4:1

Incrementing Bursts

The interconnect converts INCR bursts that fall within the maximum payload size of the output data bus to a single INCR burst. It converts INCR bursts that are greater than the maximum payload size of the output data bus to multiple INCR bursts.

INCR bursts with a size that matches the output data width pass through unconverted.

The interconnect packs INCR bursts with a SIZE smaller than the output data width to match the output width whenever possible, using the upsizing function.

Related Information

Upsizing Data Width Function on page 7-13

For more information about AXI terms such as DECERR, WRAP, and INCR, refer to the *AMBA AXI Protocol Specification v1.0*, which you can download from the ARM website.

Wrapping Bursts

The interconnect always converts WRAP bursts to WRAP bursts of twice the length, up to the output data width maximum size of WRAP16, and treats the WRAP burst as two INCR bursts that can each be converted into one or more INCR bursts.

Fixed Bursts

The interconnect converts FIXED bursts to one or more INCR1 or INCRn bursts depending on the downsize ratio.

Bypass Merge

Bypass merge is accessible through the GPV registers and is only accessible to secure masters. If the programmable bit bypass_merge in the fn_mod2 register is enabled, the interconnect does not perform any packing of beats to match the optimal size for maximum throughput, up to the output data width size.

If an exclusive transaction is split into multiple transactions at the output of the downsizing function, the exclusive flag is removed and the master never receives an EXOKAY response. Response priority is the same as for the upsizing function.

Related Information

- **fn_mod2** on page 7-78
- **Upsizing Data Width Function** on page 7-13
 For more information about AXI terms such as DECERR, WRAP, and INCR, refer to the *AMBA AXI Protocol Specification v1.0*, which you can download from the ARM website.

Lock Support

Lock is not supported by the interconnect. For atomic accesses, masters can perform exclusive accesses when sharing data located in the HPS SDRAM.

Related Information

SDRAM Controller Subsystem

For more information about exclusive access support, refer to the *SDRAM Controller Subsystem* chapter in the *Cyclone V Device Handbook*, *Volume 3*.

FIFO Buffers and Clocks

The interconnect contains FIFO buffers in the majority of the interfaces exposed to the HPS master and slaves, as well as between the subswitches. These FIFO buffers also provide clock domain crossing for masters and slaves that operate at a different clock frequency than the switch they connect to.

Data Release Mechanism

For interconnect ports with data FIFO buffers whose depth is greater than zero, you can set a write tidemark function, wr_tidemark. This tidemark level stalls the release of the transaction until one of the following situations occurs:

- The interconnect receives the WLAST beat of a burst.
- The write data FIFO buffer becomes full.
- The number of occupied slots in the write data FIFO buffer exceeds the write tidemark.

Related Information

- **Interconnect Master Properties** on page 7-10 Indicates which master interfaces have data FIFO buffers with a nonzero depth
- Interconnect Slave Properties on page 7-11
 Indicates which slave interfaces have data FIFO buffers with a nonzero depth

Resets

The interconnect has one reset signal. The reset manager drives this signal to the interconnect on a cold or warm reset. On reset, the boot ROM is mapped to address 0x0.

Related Information

Reset Manager

For more information, refer to the *Reset Manager* chapter in the *Cyclone V Device Handbook*, *Volume 3*.

Interconnect Address Map and Register Definitions

This section lists the interconnect register address map and describes the registers.

Note: Interconnect slaves are available for connection from peripheral masters. Interconnect masters connect to peripheral slaves. This terminology is the reverse of conventional terminology used in Qsys.

Related Information

- Introduction to the Hard Processor System
 Lists the base addresses of all modules.
- Cyclone V SoC HPS Address Map and Register Definitions Web-based address map and register definitions

L3 (NIC-301) GPV Registers Address Map

Registers to control L3 interconnect settings

Base Address: 0xff800000

L3 (NIC-301) GPV Registers

Register	Offset	Width	Access	Reset Value	Description
remap on page 7-23	0x0	32	WO	0x0	Remap

Security Register Group

Register	Offset	Width	Access	Reset Value	Description
14main on page 7-26	0x8	32	WO	0x0	L4 main peripherals security
14sp on page 7-27	0xC	32	WO	0x0	L4 SP Peripherals Security
14mp on page 7-30	0x10	32	WO	0x0	L4 MP Peripherals Security
14osc1 on page 7-33	0x14	32	MO	0x0	L4 OSC1 Peripherals Security
14spim on page 7-35	0x18	32	WO	0x0	L4 SPIM Peripherals Security
stm on page 7-36	0x1C	32	WO	0x0	STM Peripheral Security
lwhps2fpgaregs on page 7-37	0x20	32	WO	0x0	LWHPS2FPGA AXI Bridge Registers Peripheral Security

Register	Offset	Width	Access	Reset Value	Description
usb1 on page 7-38	0x28	32	WO	0x0	USB1 Registers Peripheral Security
nanddata on page 7-38	0x2C	32	WO	0x0	NAND Flash Controller Data Peripheral Security
usb0 on page 7-39	0x80	32	WO	0x0	USB0 Registers Peripheral Security
nandregs on page 7-40	0x84	32	WO	0x0	NAND Flash Controller Registers Peripheral Security
qspidata on page 7-40	0x88	32	WO	0x0	QSPI Flash Controller Data Peripheral Security
fpgamgrdata on page 7-41	0x8C	32	WO	0x0	FPGA Manager Data Peripheral Security
hps2fpgaregs on page 7-42	0x90	32	WO	0x0	HPS2FPGA AXI Bridge Registers Peripheral Security
acp on page 7-42	0x94	32	WO	0x0	MPU ACP Peripheral Security
rom on page 7-43	0x98	32	WO	0x0	ROM Peripheral Security
ocram on page 7-44	0x9C	32	WO	0x0	On-chip RAM Peripheral Security
sdrdata on page 7-44	0xx0	32	WO	0x0	SDRAM Data Peripheral Security

ID Register Group

Register	Offset	Width	Access	Reset Value	Description
periph_id_4 on page 7-46	0x1FD0	32	RO	0x4	Peripheral ID4 Register
<pre>periph_id_0 on page 7-46</pre>	0x1FE0	32	RO	0x1	Peripheral ID0 Register
periph_id_1 on page 7-47	0x1FE4	32	RO	0xB3	Peripheral ID1 Register
periph_id_2 on page 7-47	0x1FE8	32	RO	0x6B	Peripheral ID2 Register
periph_id_3 on page 7-47	0x1FEC	32	RO	0x0	Peripheral ID3 Register
comp_id_0 on page 7-48	0x1FF0	32	RO	0xD	Component ID0 Register
comp_id_1 on page 7-48	0x1FF4	32	RO	0xF0	Component ID1 Register
comp_id_2 on page 7-49	0x1FF8	32	RO	0x5	Component ID2 Register
comp_id_3 on page 7-49	0x1FFC	32	RO	0xB1	Component ID3 Register

L4 MAIN

Register	Offset	Width	Access	Reset Value	Description
<pre>fn_mod_bm_iss on page 7-50</pre>	0x2008	32	RW		Bus Matrix Issuing Functionality Modification Register

L4 SP

Register	Offset	Width	Access	Reset Value	Description
<pre>fn_mod_bm_iss on page 7-51</pre>	0x3008	32	RW		Bus Matrix Issuing Functionality Modification Register

L4 MP

Register	Offset	Width	Access	Reset Value	Description
<pre>fn_mod_bm_iss on page 7-52</pre>	0x4008	32	R₩		Bus Matrix Issuing Functionality Modification Register

L4 OSC1

Register	Offset	Width	Access	Reset Value	Description
<pre>fn_mod_bm_iss on page 7-53</pre>	0x5008	32	RW		Bus Matrix Issuing Functionality Modification Register

L4 SPIM

Register	Offset	Width	Access	Reset Value	Description
<pre>fn_mod_bm_iss on page 7-54</pre>	0x6008	32	RW		Bus Matrix Issuing Functionality Modification Register

STM

Register	Offset	Width	Access	Reset Value	Description
<pre>fn_mod_bm_iss on page 7-55</pre>	0x7008	32	RW	0x0	Bus Matrix Issuing Functionality Modification Register
fn_mod on page 7-56	0x7108	32	RW	0×0	Issuing Functionality Modification Register

LWHPS2FPGA

Register	Offset	Width	Access	Reset Value	Description
<pre>fn_mod_bm_iss on page 7-57</pre>	0x8008	32	RW		Bus Matrix Issuing Functionality Modification Register
fn_mod on page 7-57	0x8108	32	RW	0x0	Issuing Functionality Modification Register

USB1

Register	Offset	Width	Access	Reset Value	Description
<pre>fn_mod_bm_iss on page 7-58</pre>	800Ax0	32	R₩		Bus Matrix Issuing Functionality Modification Register

Register	Offset	Width	Access	Reset Value	Description
ahb_cntl on page 7-59	0xA044	32	RW	0x0	AHB Control Register

NANDDATA

Register	Offset	Width	Access	Reset Value	Description
<pre>fn_mod_bm_iss on page 7-60</pre>	0xB008	32	RW	0x0	Bus Matrix Issuing Functionality Modification Register
fn_mod on page 7-61	0xB108	32	RW	0x0	Issuing Functionality Modification Register

USB0

Register	Offset	Width	Access	Reset Value	Description
<pre>fn_mod_bm_iss on page 7-62</pre>	0x20008	32	RW		Bus Matrix Issuing Functionality Modification Register
ahb_cntl on page 7-62	0x20044	32	RW	0x0	AHB Control Register

NANDREGS

Register	Offset	Width	Access	Reset Value	Description
<pre>fn_mod_bm_iss on page 7-64</pre>	0x21008	32	RW		Bus Matrix Issuing Functionality Modification Register
fn_mod on page 7-64	0x21108	32	RW	0×0	Issuing Functionality Modification Register

QSPIDATA

Register	Offset	Width	Access	Reset Value	Description
<pre>fn_mod_bm_iss on page 7-65</pre>	0x22008	32	RW		Bus Matrix Issuing Functionality Modification Register
ahb_cntl on page 7-66	0x22044	32	RW	0x0	AHB Control Register

FPGAMGRDATA

Register	Offset	Width	Access	Reset Value	Description
<pre>fn_mod_bm_iss on page 7-67</pre>	0x23008	32	RW	0x0	Bus Matrix Issuing Functionality Modification Register
wr_tidemark on page 7-68	0x23040	32	RW	0x4	Write Tidemark
fn_mod on page 7-69	0x23108	32	RW	0x0	Issuing Functionality Modification Register

HPS2FPGA

Register	Offset	Width	Access	Reset Value	Description
<pre>fn_mod_bm_iss on page 7-70</pre>	0x24008	32	RW	0x0	Bus Matrix Issuing Functionality Modification Register
wr_tidemark on page 7-70	0x24040	32	RW	0x4	Write Tidemark
fn_mod on page 7-71	0x24108	32	RW	0x0	Issuing Functionality Modification Register

ACP

Register	Offset	Width	Access	Reset Value	Description
<pre>fn_mod_bm_iss on page 7-72</pre>	0x25008	32	RW		Bus Matrix Issuing Functionality Modification Register
fn_mod on page 7-72	0x25108	32	RW	0×0	Issuing Functionality Modification Register

Boot ROM

Register	Offset	Width	Access	Reset Value	Description
<pre>fn_mod_bm_iss on page 7-73</pre>	0x26008	32	RW		Bus Matrix Issuing Functionality Modification Register
fn_mod on page 7-74	0x26108	32	RW	0×0	Issuing Functionality Modification Register

On-chip RAM

Register	Offset	Width	Access	Reset Value	Description
<pre>fn_mod_bm_iss on page 7-75</pre>	0x27008	32	RW		Bus Matrix Issuing Functionality Modification Register
wr_tidemark on page 7-76	0x27040	32	RW	0x4	Write Tidemark
fn_mod on page 7-76	0x27108	32	RW	0x0	Issuing Functionality Modification Register

DAP

Register	Offset	Width	Access	Reset Value	Description
fn_mod2 on page 7-78	0x42024	32	RW	0x0	Functionality Modification 2 Register
fn_mod_ahb on page 7-78	0x42028	32	RW	0x0	Functionality Modification AHB Register
read_qos on page 7-79	0x42100	32	RW	0x0	Read Channel QoS Value
write_qos on page 7-80	0x42104	32	RW	0x0	Write Channel QoS Value

Register	Offset	Width	Access	Reset Value	Description
fn_mod on page 7-80	0x42108	32	RW	0×0	Issuing Functionality Modification Register

MPU

Register	Offset	Width	Access	Reset Value	Description
read_qos on page 7-81	0x43100	32	RW	0x0	Read Channel QoS Value
write_qos on page 7-82	0x43104	32	RW	0x0	Write Channel QoS Value
fn_mod on page 7-82	0x43108	32	RW	0x0	Issuing Functionality Modification Register

SDMMC

Register	Offset	Width	Access	Reset Value	Description
<pre>fn_mod_ahb on page 7-83</pre>	0x44028	32	RW	0x0	Functionality Modification AHB Register
read_qos on page 7-84	0x44100	32	RW	0x0	Read Channel QoS Value
write_qos on page 7-85	0x44104	32	RW	0x0	Write Channel QoS Value
fn_mod on page 7-85	0x44108	32	RW	0x0	Issuing Functionality Modification Register

DMA

Register	Offset	Width	Access	Reset Value	Description
read_qos on page 7-86	0x45100	32	RW	0x0	Read Channel QoS Value
write_qos on page 7-87	0x45104	32	RW	0x0	Write Channel QoS Value
fn_mod on page 7-87	0x45108	32	RW	0×0	Issuing Functionality Modification Register

FPGA2HPS

Register	Offset	Width	Access	Reset Value	Description		
wr_tidemark on page 7-88	0x46040	32	RW	0x4	Write Tidemark		
read_qos on page 7-89	0x46100	32	RW	0x0	Read Channel QoS Value		
write_qos on page 7-89	0x46104	32	RW	0x0	Write Channel QoS Value		
fn_mod on page 7-90	0x46108	32	RW	0x0	Issuing Functionality Modification Register		

ETR

Register	Offset	Width	Access	Reset Value	Description		
read_qos on page 7-91	0x47100	32	RW	0x0	Read Channel QoS Value		
write_qos on page 7-91	0x47104	32	RW	0x0	Write Channel QoS Value		
fn_mod on page 7-92	0x47108	32	RW	0x0	Issuing Functionality Modification Register		

EMAC0

Register	Offset	Width	Access	Reset Value	Description
read_qos on page 7-93	0x48100	32	RW	0x0	Read Channel QoS Value
write_qos on page 7-93	0x48104	32	RW	0x0	Write Channel QoS Value
fn_mod on page 7-94	0x48108	32	RW	0x0	Issuing Functionality Modification Register

EMAC1

Register	Offset	Width	Access	Reset Value	Description
read_qos on page 7-95	0x49100	32	RW	0x0	Read Channel QoS Value
write_qos on page 7-95	0x49104	32	RW	0x0	Write Channel QoS Value
fn_mod on page 7-96	0x49108	32	RW	0x0	Issuing Functionality Modification Register

USB0

Register	Offset	Width	Access	Reset Value	Description
<pre>fn_mod_ahb on page 7-97</pre>	0x4A028	32	RW	0x0	Functionality Modification AHB Register
read_qos on page 7-98	0x4A100	32	RW	0x0	Read Channel QoS Value
write_qos on page 7-99	0x4A104	32	RW	0x0	Write Channel QoS Value
fn_mod on page 7-99	0x4A108	32	RW	0x0	Issuing Functionality Modification Register

NAND

Register	Offset	Width	Access	Reset Value	Description		
read_qos on page 7-100	0x4B100	32	RW	0x0	Read Channel QoS Value		
write_qos on page 7-100	0x4B104	32	RW	0x0	Write Channel QoS Value		
fn_mod on page 7-101	0x4B108	32	RW	0x0	Issuing Functionality Modification Register		

USB1

Register	Offset	Width	Access	Reset Value	Description
fn_mod_ahb on page 7-102	0x4C028	32	RW	0x0	Functionality Modification AHB Register
read_qos on page 7-103	0x4C100	32	RW	0x0	Read Channel QoS Value
write_qos on page 7-104	0x4C104	32	RW	0x0	Write Channel QoS Value
fn_mod on page 7-104	0x4C108	32	RW	0x0	Issuing Functionality Modification Register

remap

The L3 interconnect has separate address maps for the various L3 Masters. Generally, the addresses are the same for most masters. However, the sparse interconnect of the L3 switch causes some masters to have holes in their memory maps. The remap bits are not mutually exclusive. Each bit can be set independently and in combinations. Priority for the bits is determined by the bit offset: lower offset bits take precedence over higher offset bits.

Module Instance	Base Address	Register Address
13regs	0xff800000	0xFF800000

Offset: 0x0
Access: wo

	Bit Fields														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				Res	served						S S lwhps2fpga	x & hps2fpga	Reserved	X S nonmpuzero	O O x 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

remap Fields

Bit	Name	Description	Access	Reset
4	lwhps2fpga	Controls whether the Lightweight HPS2FPGA AXI Bridge is visible to L3 masters or not.	WO	0x0
		Value Description		
		0x0 The LWHPS2FPGA AXI Bridge is not visible to L3 masters. Accesses to the associated address range return an AXI decode error to the master.		
		0x1 The LWHPS2FPGA AXI Bridge is visible to L3 masters.		
3	hps2fpga	Controls whether the HPS2FPGA AXI Bridge is visible to L3 masters or not.	WO	0x0
		Value Description		
		0x0 The HPS2FPGA AXI Bridge is not visible to L3 masters. Accesses to the associated address range return an AXI decode error to the master.		
		0x1 The HPS2FPGA AXI Bridge is visible to L3 masters.		
1	nonmpuzero	Controls the mapping of address 0x0 for L3 masters other than the MPU. Determines whether address 0x0 for these masters is mapped to the SDRAM or on-chip RAM. Only affects the following masters: DMA controllers (standalone and those built in to peripherals) , FPGA-to-HPS Bridge, and DAP.	WO	0x0
		Value Description		
		0x0 Maps the SDRAM to address 0x0 for the non-MPU L3 masters.		
		0x1 Maps the On-chip RAM to address 0x0 for the non-MPU L3 masters. Note that the On-chip RAM is also always mapped to address 0xffff_0000 for the non-MPU L3 masters independent of this field's value.		

Bit	Name		Description	Access	Reset
0	mpuzero	Controls whether address 0x0 for the MPU L3 master is mapped to the Boot ROM or On-chip RAM. This field only has an effect on the MPU L3 master.			0x0
		Value	Description		
		0x0	Maps the Boot ROM to address 0x0 for the MPU L3 master. Note that the Boot ROM is also always mapped to address 0xfffd_0000 for the MPU L3 master independent of this field's value.		
		0x1	Maps the On-chip RAM to address 0x0 for the MPU L3 master. Note that the On-chip RAM is also always mapped to address 0xffff_ 0000 for the MPU L3 master independent of this field's value.		

Security Register Group Register Descriptions

Registers that control slave security.

Offset: 0x8

l4main on page 7-26

Controls security settings for L4 main peripherals

l4sp on page 7-27

Controls security settings for L4 SP peripherals.

l4mp on page 7-30

Controls security settings for L4 MP peripherals.

l4osc1 on page 7-33

Controls security settings for L4 OSC1 peripherals.

l4spim on page 7-35

Controls security settings for L4 SPIM peripherals.

stm on page 7-36

Controls security settings for STM peripheral.

lwhps2fpgaregs on page 7-37

Controls security settings for LWHPS2FPGA AXI Bridge Registers peripheral.

usb1 on page 7-38

Controls security settings for USB1 Registers peripheral.

nanddata on page 7-38

Controls security settings for NAND Flash Controller Data peripheral.

usb0 on page 7-39

Controls security settings for USB0 Registers peripheral.

nandregs on page 7-40

Controls security settings for NAND Flash Controller Registers peripheral.

qspidata on page 7-40

Controls security settings for QSPI Flash Controller Data peripheral.

fpgamgrdata on page 7-41

Controls security settings for FPGA Manager Data peripheral.

hps2fpgaregs on page 7-42

Controls security settings for HPS2FPGA AXI Bridge Registers peripheral.

acp on page 7-42

Controls security settings for MPU ACP peripheral.

rom on page 7-43

Controls security settings for ROM peripheral.

ocram on page 7-44

Controls security settings for On-chip RAM peripheral.

sdrdata on page 7-44

Controls security settings for SDRAM Data peripheral.

I4main

Controls security settings for L4 main peripherals

Module Instance	Base Address	Register Address
13regs	0xff800000	0xFF800008

Offset: 0x8
Access: wo

	Bit Fields														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
					Reserv	red						X M dmanonsecure	x o dmasecure	0 x 0 spis1	MO 0×0

l4main Fields

Bit	Name		Description	Access	Reset
3	dmanonsecure		nether secure or non-secure masters can DMA Non-secure slave.	WO	0x0
		Value	Description		
		0x0	The slave can only be accessed by a secure master.		
		0x1	The slave can only be accessed by a secure or non-secure masters.		
2	dmasecure		nether secure or non-secure masters can DMA Secure slave.	WO	0x0
		Value	Description		
		0x0	The slave can only be accessed by a secure master.		
		0x1	The slave can only be accessed by a secure or non-secure masters.		
1	spis1		nether secure or non-secure masters can PI Slave 1 slave.	WO	0x0
		Value	Description		
		0x0	The slave can only be accessed by a secure master.		
		0x1	The slave can only be accessed by a secure or non-secure masters.		
0	spis0		nether secure or non-secure masters can PI Slave 0 slave.	WO	0x0
		Value	Description		
		0x0	The slave can only be accessed by a secure master.		
		0x1	The slave can only be accessed by a secure or non-secure masters.		

l4sp

Controls security settings for L4 SP peripherals.

Module Instance	Base Address	Register Address
13regs	0xFF800000	0xFF80000C

Offset: 0xC Access: wo

	Bit Fields														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Re	served			x % Sptimer1	can1 WO 0x0	can0 WO 0x0	% & uart1	% & wart0	i2c3 WO 0x0	i2c2 WO 0x0	i2c1 WO 0x0	i2c0 WO 0x0	x & sptimer0	MO 0×0

l4sp Fields

Bit	Name		Description	Access	Reset
10	sptimer1		nether secure or non-secure masters can P Timer 1 slave.	WO	0x0
		Value	Description		
		0x0	The slave can only be accessed by a secure master.		
		0x1	The slave can only be accessed by a secure or non-secure masters.		
9	can1	Controls wh	WO	0x0	
		Value	Description		
		0x0	The slave can only be accessed by a secure master.		
		0x1	The slave can only be accessed by a secure or non-secure masters.		
8	can0	Controls wh	hether secure or non-secure masters can AN 0 slave.	WO	0x0
		Value	Description		
		0x0	The slave can only be accessed by a secure master.		
		0x1	The slave can only be accessed by a secure or non-secure masters.		

Bit	Name		Description	Access	Reset
7	uart1		hether secure or non-secure masters can JART 1 slave.	WO	0x0
		Value	Description		
		0x0	The slave can only be accessed by a secure master.		
		0x1	The slave can only be accessed by a secure or non-secure masters.		
6	uart0		hether secure or non-secure masters can JART 0 slave.	WO	0x0
		Value	Description		
		0x0	The slave can only be accessed by a secure master.		
		0x1	The slave can only be accessed by a secure or non-secure masters.		
5	i2c3		hether secure or non-secure masters can 2C3 (EMAC 1) slave.	WO	0x0
		Value	Description		
		0x0	The slave can only be accessed by a secure master.		
		0x1	The slave can only be accessed by a secure or non-secure masters.		
4	i2c2		hether secure or non-secure masters can 2C2 (EMAC 0) slave.	WO	0x0
		Value	Description		
		0x0	The slave can only be accessed by a secure master.		
		0x1	The slave can only be accessed by a secure or non-secure masters.		
3	i2c1	Controls whaccess the I	hether secure or non-secure masters can 2C1 slave.	WO	0x0
		Value	Description		
		0x0	The slave can only be accessed by a secure master.		
		0x1	The slave can only be accessed by a secure or non-secure masters.		

Bit	Name		Description	Access	Reset
2	i2c0	Controls whaccess the I	nether secure or non-secure masters can 2C0 slave.	WO	0x0
		Value	Description		
		0x0	The slave can only be accessed by a secure master.		
		0x1	The slave can only be accessed by a secure or non-secure masters.		
1	sptimer0	Controls whaccess the S	WO	0x0	
		Value	Description		
		0x0	The slave can only be accessed by a secure master.		
		0x1	The slave can only be accessed by a secure or non-secure masters.		
0	sdrregs		nether secure or non-secure masters can DRAM Registers slave.	WO	0x0
		Value	Description		
		0x0	The slave can only be accessed by a secure master.		
		0x1	The slave can only be accessed by a secure or non-secure masters.		

l4mp

Controls security settings for L4 MP peripherals.

Module Instance	Base Address	Register Address
13regs	0xFF800000	0xFF800010

Offset: 0x10 Access: wo

	Bit Fields														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		Reserv	red			0 x 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	x % gpiol	0×0 MO Oppio0	% % acpidmap	x0 0 0 emac1	0×0 0 O emac0	0x0	% % qspiregs	dap WO 0x0	A O D Epgamgrregs X

I4mp Fields

Bit	Name		Description	Access	Reset
9	gpio2		hether secure or non-secure masters can GPIO 2 slave.	WO	0x0
		Value	Description		
		0x0	The slave can only be accessed by a secure master.		
		0x1	The slave can only be accessed by a secure or non-secure masters.		
8	gpio1		hether secure or non-secure masters can GPIO 1 slave.	WO	0x0
		Value	Description		
		0x0	The slave can only be accessed by a secure master.		
		0x1	The slave can only be accessed by a secure or non-secure masters.		
7	gpio0		hether secure or non-secure masters can GPIO 0 slave.	WO	0x0
		Value	Description		
		0x0	The slave can only be accessed by a secure master.		
		0x1	The slave can only be accessed by a secure or non-secure masters.		

Bit	Name		Description	Access	Reset
6	acpidmap		nether secure or non-secure masters can ACP ID Mapper slave.	WO	0x0
		Value	Description		
		0x0	The slave can only be accessed by a secure master.		
		0x1	The slave can only be accessed by a secure or non-secure masters.		
5	emac1		nether secure or non-secure masters can MAC 1 slave.	WO	0x0
		Value	Description		
		0x0	The slave can only be accessed by a secure master.		
		0x1	The slave can only be accessed by a secure or non-secure masters.		
4	emac0		nether secure or non-secure masters can MAC 0 slave.	WO	0x0
		Value	Description		
		0x0	The slave can only be accessed by a secure master.		
		0x1	The slave can only be accessed by a secure or non-secure masters.		
3	sdmmc		nether secure or non-secure masters can DMMC slave.	WO	0x0
		Value	Description		
		0x0	The slave can only be accessed by a secure master.		
		0x1	The slave can only be accessed by a secure or non-secure masters.		
2	qspiregs		nether secure or non-secure masters can QSPI Registers slave.	WO	0x0
		Value	Description		
		0x0	The slave can only be accessed by a secure master.		
		0x1	The slave can only be accessed by a secure or non-secure masters.		

I4osc1

Controls security settings for L4 OSC1 peripherals.

Module Instance	Base Address	Register Address		
13regs	0xff800000	0xFF800014		

Offset: 0x14
Access: WO

Bit Fields															
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			Re	served					oscltimer1	x S oscitimer0	X & Sysmgr	% & rstmgr	% & clkmgr	x % 14wd1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

l4osc1 Fields

Bit	Name		Description	Access	Reset
6	osc1timer1		nether secure or non-secure masters can OSC1 Timer 1 slave.	WO	0x0
		Value	Description		
		0x0	The slave can only be accessed by a secure master.		
		0x1	The slave can only be accessed by a secure or non-secure masters.		
5	osc1timer0		nether secure or non-secure masters can OSC1 Timer 0 slave.	WO	0x0
		Value	Description		
		0x0	The slave can only be accessed by a secure master.		
		0x1	The slave can only be accessed by a secure or non-secure masters.		
4	sysmgr		nether secure or non-secure masters can ystem Manager slave.	WO	0x0
		Value	Description		
		0x0	The slave can only be accessed by a secure master.		
		0x1	The slave can only be accessed by a secure or non-secure masters.		
3	rstmgr		nether secure or non-secure masters can eset Manager slave.	WO	0x0
		Value	Description		
		0x0	The slave can only be accessed by a secure master.		
		0x1	The slave can only be accessed by a secure or non-secure masters.		

Bit	Name		Description	Access	Reset
2	clkmgr	Controls whaccess the C	WO	0x0	
		Value	Description		
		0x0	The slave can only be accessed by a secure master.		
		0x1	The slave can only be accessed by a secure or non-secure masters.		
1	14wd1	Controls whether secure or non-secure masters can access the L4 Watchdog Timer 0 slave.		WO	0x0
		Value	Description		
		0x0	The slave can only be accessed by a secure master.		
		0x1	The slave can only be accessed by a secure or non-secure masters.		
0	14wd0		nether secure or non-secure masters can 4 Watchdog Timer 0 slave.	WO	0x0
		Value	Description		
		0x0	The slave can only be accessed by a secure master.		
		0x1	The slave can only be accessed by a secure or non-secure masters.		

I4spim

Controls security settings for L4 SPIM peripherals.

Module Instance	Base Address	Register Address		
13regs	0xFF800000	0xFF800018		

Offset: 0x18

Access: wo

Bit Fields															
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved								% & scanmgr 0 o scanmgr	0 Spiml	M O SpimO o					

l4spim Fields

Bit	Name		Description	Access	Reset
2	scanmgr	Controls whether secure or non-secure masters can access the Scan Manager slave.			0x0
		Value Description			
		0x0	The slave can only be accessed by a secure master.		
		0x1	The slave can only be accessed by a secure or non-secure masters.		
1	spim1	Controls whether secure or non-secure masters can access the SPI Master 1 slave.		WO	0x0
		Value	Description		
		0x0	The slave can only be accessed by a secure master.		
		0x1	The slave can only be accessed by a secure or non-secure masters.		
0	spim0		nether secure or non-secure masters can PI Master 0 slave.	WO	0x0
		Value	Description		
		0x0	The slave can only be accessed by a secure master.		
		0x1	The slave can only be accessed by a secure or non-secure masters.		

stm

Controls security settings for STM peripheral.

Module Instance	Base Address	Register Address		
13regs	0xFF800000	0xFF80001C		

Offset: 0x1C Access: wo

							Bit F	ields							
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						Re	served								s WO 0x0

stm Fields

Bit	Name		Description	Access	Reset
0	s	Controls whether secure or non-secure masters can access the STM slave.		WO	0x0
		Value	Description		
		0x0	The slave can only be accessed by a secure master.		
		0x1	The slave can only be accessed by a secure or non-secure masters.		

lwhps2fpgaregs

Controls security settings for LWHPS2FPGA AXI Bridge Registers peripheral.

Module Instance	Base Address	Register Address
13regs	0xff800000	0xFF800020

Offset: 0x20 Access: wo

Bit Fields															
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			,			Re	served							*	s WO 0x0

lwhps2fpgaregs Fields

Bit	Name		Access	Reset	
0	S		nether secure or non-secure masters can WHPS2FPGA AXI Bridge Registers slave. Description The slave can only be accessed by a secure	WO	0x0
		master. Ox1 The slave can only be accessed by a secure or non-secure masters.			

usb1

Controls security settings for USB1 Registers peripheral.

Module Instance	Base Address	Register Address
13regs	0xff800000	0xFF800028

Offset: 0x28

Access: wo

Bit Fields															
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						Re	served								s WO 0x0

usb1 Fields

Bit	Name		Access	Reset	
0	s	Controls whether secure or non-secure masters can access the USB1 Registers slave.		WO	0x0
		Value	Description		
		0x0	The slave can only be accessed by a secure master.		
		0x1	The slave can only be accessed by a secure or non-secure masters.		

nanddata

Controls security settings for NAND Flash Controller Data peripheral.

Module Instance	Base Address	Register Address
13regs	0xFF800000	0xFF80002C

Access: wo

Bit Fields															
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Reserved															
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						Re	served								s WO 0x0

nanddata Fields

Bit	Name		Access	Reset	
0	s	access the N	nether secure or non-secure masters can IAND Flash Controller Data slave.	WO	0x0
		Value Description			
		0x0 The slave can only be accessed by a secure master.			
		0x1	The slave can only be accessed by a secure or non-secure masters.		

usb0

Controls security settings for USB0 Registers peripheral.

Module Instance	Base Address	Register Address
13regs	0xff800000	0xFF800080

Offset: 0x80
Access: wo

Bit Fields Reserved Reserved s WO 0x0

usb0 Fields

Bit	Name		Description	Access	Reset
0	s		nether secure or non-secure masters can USBO Registers slave.	WO	0x0
		Value	Description		
		0x0	The slave can only be accessed by a secure master.		
		0x1	The slave can only be accessed by a secure or non-secure masters.		

nandregs

Controls security settings for NAND Flash Controller Registers peripheral.

Module Instance	Base Address	Register Address
13regs	0xff800000	0xFF800084

Offset: 0x84

Access: wo

Bit Fields															
31	31 30 29 28 27 26 25 24 23 22 21 20 19 18 17											16			
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved											s WO 0x0				

nandregs Fields

Bit	Name		Description	Access	Reset
0	S		nether secure or non-secure masters can IAND Flash Controller Registers slave. Description	WO	0x0
		0x0 0x1	The slave can only be accessed by a secure master. The slave can only be accessed by a secure or non-secure masters.		

qspidata

Controls security settings for QSPI Flash Controller Data peripheral.

Module Instance	Base Address	Register Address
13regs	0xff800000	0xFF800088

Offset: 0x88 Access: wo

	Bit Fields														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1										0				
Reserved											s WO 0x0				

qspidata Fields

Bit	Name		Description	Access	Reset
0	s		nether secure or non-secure masters can QSPI Flash Controller Data slave. Description	WO	0x0
		0x0 0x1	The slave can only be accessed by a secure master. The slave can only be accessed by a secure or non-secure masters.		

fpgamgrdata

Controls security settings for FPGA Manager Data peripheral.

Module Instance	Base Address	Register Address
13regs	0xff800000	0xFF80008C

Offset: 0x8C Access: wo

	Bit Fields														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved											s WO 0x0				

fpgamgrdata Fields

Bit	Name		Description	Access	Reset
0	s	access the F	nether secure or non-secure masters can PGA Manager Data slave.	WO	0x0
		Value	Description		
		0x0	The slave can only be accessed by a secure master.		
		0x1	The slave can only be accessed by a secure or non-secure masters.		

hps2fpgaregs

Controls security settings for HPS2FPGA AXI Bridge Registers peripheral.

Module Instance	Base Address	Register Address
13regs	0xff800000	0xFF800090

Offset: 0x90 Access: wo

Bit Fields															
31	31 30 29 28 27 26 25 24 23 22 21 20 19 18 17										16				
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved											s WO 0x0				

hps2fpgaregs Fields

Bit	Name		Description	Access	Reset
0	s		nether secure or non-secure masters can IPS2FPGA AXI Bridge Registers slave.	WO	0x0
		Value	Description		
		0x0	The slave can only be accessed by a secure master.		
		0x1	The slave can only be accessed by a secure or non-secure masters.		

acp

Controls security settings for MPU ACP peripheral.

Module Instance	Base Address	Register Address
13regs	0xFF800000	0xFF800094

Offset: 0x94 Access: wo

	Bit Fields														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved											s WO 0x0				

acp Fields

Bit	Name		Description	Access	Reset
0	s		hether secure or non-secure masters can MPU ACP slave.	WO	0x0
		Value	Description		
		0x0	The slave can only be accessed by a secure master.		
		0x1	The slave can only be accessed by a secure or non-secure masters.		

rom

Controls security settings for ROM peripheral.

Module Instance	Base Address	Register Address
13regs	0xff800000	0xFF800098

Offset: 0x98 Access: wo

	Bit Fields														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserved											s WO 0x0			

rom Fields

Bit	Name		Description	Access	Reset
0	s	Controls whaccess the R	nether secure or non-secure masters can OM slave.	WO	0x0
		Value	Description		
		0x0	The slave can only be accessed by a secure master.		
		0x1	The slave can only be accessed by a secure or non-secure masters.		

ocram

Controls security settings for On-chip RAM peripheral.

Module Instance	Base Address	Register Address
13regs	0xff800000	0xFF80009C

Offset: 0x9C

Access: wo

	Bit Fields														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved											s WO 0x0				

ocram Fields

Bit	Name		Description	Access	Reset		
0	s		Controls whether secure or non-secure masters can access the On-chip RAM slave.				
		Value	Description				
		0x0	The slave can only be accessed by a secure master.				
		0x1	The slave can only be accessed by a secure or non-secure masters.				

sdrdata

Controls security settings for SDRAM Data peripheral.

Module Instance	Base Address	Register Address
13regs	0xff800000	0xFF8000A0

Offset: 0xA0
Access: wo

	Bit Fields														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1										0				
Reserved										s WO 0x0					

sdrdata Fields

Bit	Name		Description	Access	Reset
0	s		nether secure or non-secure masters can DRAM Data slave.	WO	0x0
		Value			
		0x0	The slave can only be accessed by a secure master.		
		0x1			

ID Register Group Register Descriptions

Contains registers that identify the ARM NIC-301 IP Core.

Offset: 0x1000

periph_id_4 on page 7-46

JEP106 continuation code

periph_id_0 on page 7-46

Peripheral ID0

periph_id_1 on page 7-47

Peripheral ID1

periph_id_2 on page 7-47

Peripheral ID2

periph_id_3 on page 7-47

Peripheral ID3

comp_id_0 on page 7-48

Component ID0

comp_id_1 on page 7-48

Component ID1

comp_id_2 on page 7-49

Component ID2

comp_id_3 on page 7-49
Component ID3

periph_id_4

JEP106 continuation code

Module Instance	Base Address	Register Address
13regs	0xFF800000	0xFF801FD0

Offset: 0x1FD0

Access: RO

	Bit Fields														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved											peri R	ph_id_ 0 0x4	4		

periph_id_4 Fields

Bit	Name	Description	Access	Reset
7:0	periph_id_4	JEP106 continuation code	RO	0x4

periph_id_0

Peripheral ID0

Module Instance	Base Address	Register Address
13regs	0xff800000	0xFF801FE0

Offset: 0x1FE0

Access: RO

	Bit Fields														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved												n7to0 0 0x1			

periph_id_0 Fields

Bit	Name	Description	Access	Reset
7:0	pn7to0	Part Number [7:0]	RO	0x1

periph_id_1

Peripheral ID1

Module Instance	Base Address	Register Address
13regs	0xff800000	0xFF801FE4

Offset: 0x1FE4

Access: RO

	Bit Fields														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved											jep3tc RC	0_pn11 0xB3	to8		•

periph_id_1 Fields

Bit	Name	Description	Access	Reset
7:0	jep3to0_pn11to8	JEP106[3:0], Part Number [11:8]	RO	0xB3

periph_id_2

Peripheral ID2

Module Instance	Base Address	Register Address
13regs	0xff800000	0xFF801FE8

Offset: 0x1FE8

Access: RO

	Bit Fields														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved										re	ev_jepc RO	ode_je	p6to4		

periph_id_2 Fields

Bit	Name	Description	Access	Reset
7:0	rev_jepcode_jep6to4	Revision, JEP106 code flag, JEP106[6:4]	RO	0x6B

periph_id_3

Peripheral ID3

Module Instance	Base Address	Register Address
13regs	0xff800000	0xFF801FEC

Offset: 0x1FEC

Access: RO

	Bit Fields														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved rev_and cust_mod_num RO 0x0 RO 0x0										ım					

periph_id_3 Fields

Bit	Name	Description	Access	Reset
7:4	rev_and	Revision	RO	0x0
3:0	cust_mod_num	Customer Model Number	RO	0x0

comp_id_0

Component ID0

Module Instance	Base Address	Register Address
13regs	0xff800000	0xFF801FF0

Offset: 0x1FF0

Access: RO

	Bit Fields														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserved										pre Ro	eamble 0 0xD			

comp_id_0 Fields

Bit	Name	Description	Access	Reset
7:0	preamble	Preamble	RO	0xD

comp_id_1

Component ID1

Module Instance	Base Address	Register Address
13regs	0xff800000	0xFF801FF4

Offset: 0x1FF4

Access: RO

	Bit Fields														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved genipcompcls_preamble RO 0xF0															

comp_id_1 Fields

Bit	Name	Description	Access	Reset
7:0	genipcompcls_preamble	Generic IP component class, Preamble	RO	0xF0

comp_id_2

Component ID2

Module Instance	Base Address	Register Address
l3regs	0xFF800000	0xFF801FF8

Offset: 0x1FF8

Access: RO

	Bit Fields														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved preamble RO 0x5															

comp_id_2 Fields

ı	Bit	Name	Description	Access	Reset
	7:0	preamble	Preamble	RO	0x5

comp_id_3

Component ID3

Module Instance	Base Address	Register Address
13regs	0xff800000	0xFF801FFC

Offset: 0x1FFC

Access: RO

	Bit Fields														
31	31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16												16		
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved										pre RO	eamble 0xB1				

comp_id_3 Fields

Bit	Name	Description	Access	Reset
7:0	preamble	Preamble	RO	0xB1

Master Register Group Register Descriptions

Registers associated with master interfaces in the L3 Interconnect. Note that a master in the L3 Interconnect connects to a slave in a module.

Offset: 0x2000

L4 MAIN Register Descriptions

Registers associated with the L4 MAIN master. This master is used to access the APB slaves on the L4 MAIN bus.

Offset: 0x0

fn_mod_bm_iss on page 7-50

Sets the issuing capability of the preceding switch arbitration scheme to multiple or single outstanding transactions.

fn_mod_bm_iss

Sets the issuing capability of the preceding switch arbitration scheme to multiple or single outstanding transactions.

Module Instance	Base Address	Register Address
13regs	0xFF800000	0xFF802008

Offset: 0x2008

Access: RW

	Bit Fields														
31	31 30 29 28 27 26 25 24 23 22 21 20 19 18												17	16	
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserved											wr RW 0x0	rd RW 0x0		

Bit	Name		Description	Access	Reset
1	wr	Value	Description Multiple outstanding write transactions	RW	0x0
		0x0 0x1			
0	rd	Value 0x0 0x1	Description Multiple outstanding read transactions Only a single outstanding read transaction	RW	0x0

L4 SP Register Descriptions

Registers associated with the L4 SP master. This master is used to access the APB slaves on the L4 SP bus.

Offset: 0x1000

fn_mod_bm_iss on page 7-51

Sets the issuing capability of the preceding switch arbitration scheme to multiple or single outstanding transactions.

fn_mod_bm_iss

Sets the issuing capability of the preceding switch arbitration scheme to multiple or single outstanding transactions.

Module Instance	Base Address	Register Address
13regs	0xff800000	0xFF803008

Offset: 0x3008

Access: RW

	Bit Fields														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved										wr RW 0x0	rd RW 0x0				

Bit	Name		Access	Reset	
1	wr	Value	RW	0x0	
		0x0			
		0x1			
0	rd	Value	Description	RW	0x0
		0x0	Multiple outstanding read transactions		
		0x1	Only a single outstanding read transaction		

L4 MP Register Descriptions

Registers associated with the L4 MP master. This master is used to access the APB slaves on the L4 MP bus.

Offset: 0x2000

fn_mod_bm_iss on page 7-52

Sets the issuing capability of the preceding switch arbitration scheme to multiple or single outstanding transactions.

fn_mod_bm_iss

Sets the issuing capability of the preceding switch arbitration scheme to multiple or single outstanding transactions.

Module Instance	Base Address	Register Address
13regs	0xff800000	0xFF804008

Offset: 0x4008

Access: RW

	Bit Fields														
31	31 30 29 28 27 26 25 24 23 22 21 20 19 18												17	16	
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserved											wr RW 0x0	rd RW 0x0		

Bit	Name		Description	Access	Reset
1	wr	Value	Description	RW	0x0
		0x0	Multiple outstanding write transactions		
		0x1	Only a single outstanding write transaction		
0	rd	Value	Description	RW	0x0
		0x0	Multiple outstanding read transactions		
		0x1	Only a single outstanding read transaction		

L4 OSC1 Register Descriptions

Registers associated with the L4 OSC1 master. This master is used to access the APB slaves on the L4 OSC1 bus.

Offset: 0x3000

fn_mod_bm_iss on page 7-53

Sets the issuing capability of the preceding switch arbitration scheme to multiple or single outstanding transactions.

fn_mod_bm_iss

Sets the issuing capability of the preceding switch arbitration scheme to multiple or single outstanding transactions.

Module Instance	Base Address	Register Address
13regs	0xff800000	0xFF805008

Offset: 0x5008
Access: RW

	Bit Fields														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserved								wr RW 0x0	rd RW 0x0					

Bit	Name		Description	Access	Reset
1	wr	Value	Description	RW	0x0
		0x0	Multiple outstanding write transactions		
		0x1	Only a single outstanding write transaction		
0	rd	Value	Description	RW	0x0
		0x0	Multiple outstanding read transactions		
		0x1	Only a single outstanding read transaction		

L4 SPIM Register Descriptions

Registers associated with the L4 SPIM master. This master is used to access the APB slaves on the L4 SPIM bus.

Offset: 0x4000

fn_mod_bm_iss on page 7-54

Sets the issuing capability of the preceding switch arbitration scheme to multiple or single outstanding transactions.

fn_mod_bm_iss

Sets the issuing capability of the preceding switch arbitration scheme to multiple or single outstanding transactions.

Module Instance	Base Address	Register Address
13regs	0xff800000	0xFF806008

Offset: 0x6008

Access: RW

	Bit Fields														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserved								wr RW 0x0	rd RW 0x0					

Bit	Name		Description	Access	Reset
1	wr	Value $0x0$	Description Multiple outstanding write transactions	RW	0x0
		0x1	Only a single outstanding write transaction		
0	rd	Value 0x0 0x1	Description Multiple outstanding read transactions Only a single outstanding read transaction	RW	0x0

STM Register Descriptions

Registers associated with the STM master. This master is used to access the STM AXI slave.

Offset: 0x5000

fn_mod_bm_iss on page 7-55

Sets the issuing capability of the preceding switch arbitration scheme to multiple or single outstanding transactions.

fn_mod on page 7-56

Sets the block issuing capability to multiple or single outstanding transactions.

fn_mod_bm_iss

Sets the issuing capability of the preceding switch arbitration scheme to multiple or single outstanding transactions.

Module Instance	Base Address	Register Address
13regs	0xff800000	0xFF807008

Offset: 0x7008

Access: RW

	Bit Fields														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						Reserv	red							wr RW 0x0	rd RW 0x0

Bit	Name		Description	Access	Reset
1	wr	Value 0x0 0x1	Description Multiple outstanding write transactions Only a single outstanding write transaction	RW	0x0
0	rd	Value 0x0 0x1	Description Multiple outstanding read transactions Only a single outstanding read transaction	RW	0x0

fn mod

Sets the block issuing capability to multiple or single outstanding transactions.

Module Instance	Base Address	Register Address
13regs	0xff800000	0xFF807108

Offset: 0x7108

Access: RW

	Bit Fields														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserved								wr RW 0x0	rd RW 0x0					

fn_mod Fields

Bit	Name		Description	Access	Reset
1	wr	Value	Description	RW	0x0
		0x0	Multiple outstanding write transactions		
		0x1	Only a single outstanding write transaction		
0	rd	Value	Description	RW	0x0
		0x0	Multiple outstanding read transactions		
		0x1	Only a single outstanding read transaction		

LWHPS2FPGA Register Descriptions

Registers associated with the LWHPS2FPGA AXI Bridge master. This master is used to access the LWHPS2FPGA AXI Bridge slave. This slave is used to access the registers for all 3 AXI bridges and to access slaves in the FPGA connected to the LWHPS2FPGA AXI Bridge.

Offset: 0x6000

fn_mod_bm_iss on page 7-57

Sets the issuing capability of the preceding switch arbitration scheme to multiple or single outstanding transactions.

fn_mod on page 7-57

Sets the block issuing capability to multiple or single outstanding transactions.

fn_mod_bm_iss

Sets the issuing capability of the preceding switch arbitration scheme to multiple or single outstanding transactions.

Module Instance	Base Address	Register Address
13regs	0xff800000	0xFF808008

Offset: 0x8008

Access: RW

	Bit Fields														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved										wr RW 0x0	rd RW 0x0				

fn_mod_bm_iss Fields

Bit	Name		Description	Access	Reset
1	wr	Value 0x0 0x1	Description Multiple outstanding write transactions Only a single outstanding write transaction	RW	0x0
0	rd	Value 0x0 0x1	Description Multiple outstanding read transactions Only a single outstanding read transaction	RW	0x0

fn_mod

Sets the block issuing capability to multiple or single outstanding transactions.

Module Instance	Base Address	Register Address
13regs	0xff800000	0xFF808108

Offset: 0x8108

Access: RW

	Bit Fields														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Reserved															
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved										wr RW 0x0	rd RW 0x0				

fn_mod Fields

Bit	Name		Description	Access	Reset
1	wr	Value	Description	RW	0x0
		0x0	Multiple outstanding write transactions		
		0x1	Only a single outstanding write transaction		
0	rd	Value	Description	RW	0x0
		0x0	Multiple outstanding read transactions		
		0x1	Only a single outstanding read transaction		

USB1 Register Descriptions

Registers associated with the USB1 master. This master is used to access the registers in USB1.

Offset: 0x8000

fn_mod_bm_iss on page 7-58

Sets the issuing capability of the preceding switch arbitration scheme to multiple or single outstanding transactions.

ahb_cntl on page 7-59

Sets the block issuing capability to one outstanding transaction.

fn_mod_bm_iss

Sets the issuing capability of the preceding switch arbitration scheme to multiple or single outstanding transactions.

Module Instance	Base Address	Register Address
13regs	0xff800000	0xFF80A008

Offset: 0xA008

Access: RW

	Bit Fields														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved									wr RW 0x0	rd RW 0x0					

fn_mod_bm_iss Fields

Bit	Name		Description	Access	Reset
1	wr	Value	Description	RW	0x0
		0x0	Multiple outstanding write transactions		
		0x1	Only a single outstanding write transaction		
0	rd	Value	Description	RW	0x0
		0x0	Multiple outstanding read transactions		
		0x1	Only a single outstanding read transaction		

ahb_cntl

Sets the block issuing capability to one outstanding transaction.

Module Instance	Base Address	Register Address
13regs	0xff800000	0xFF80A044

Offset: 0xA044

Access: RW

	Bit Fields														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						Reserv	red							o a force_incr	ueella in in in in in in in in in in in in in

ahb_cntl Fields

Bit	Name		Description	Access	Reset
1	force_incr	Value	Description	RW	0x0
		0x0	Multiple outstanding write transactions		
		0x1	If a beat is received that has no write data strobes set, that write data beat is replaced with an IDLE beat. Also, causes all transactions that are to be output to the AHB domain to be an undefined length INCR.		
0	decerr_en	Value	Description	RW	0x0
		0x0	No DECERR response.		
		0x1	If the AHB protocol conversion function receives an unaligned address or a write data beat without all the byte strobes set, creates a DECERR response.		

NANDDATA Register Descriptions

Registers associated with the NANDDATA master. This master is used to access data in the NAND flash controller.

Offset: 0x9000

fn_mod_bm_iss on page 7-60

Sets the issuing capability of the preceding switch arbitration scheme to multiple or single outstanding transactions.

fn_mod on page 7-61

Sets the block issuing capability to multiple or single outstanding transactions.

fn_mod_bm_iss

Sets the issuing capability of the preceding switch arbitration scheme to multiple or single outstanding transactions.

Module Instance	Base Address	Register Address
13regs	0xFF800000	0xFF80B008

Offset: 0xB008

Access: RW

	Bit Fields														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved										wr RW 0x0	rd RW 0x0				

Bit	Name		Description	Access	Reset
1	wr	Value 0x0 0x1	Description Multiple outstanding write transactions Only a single outstanding write transaction	RW	0x0
0	rd	Value 0x0 0x1	Description Multiple outstanding read transactions Only a single outstanding read transaction	RW	0x0

fn mod

Sets the block issuing capability to multiple or single outstanding transactions.

Module Instance	Base Address	Register Address
13regs	0xff800000	0xFF80B108

Offset: 0xB108

Access: RW

	Bit Fields														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved										wr RW 0x0	rd RW 0x0				

fn_mod Fields

Name		Description	Access	Reset
wr	Value	Description	RW	0x0
	0x0	Multiple outstanding write transactions		
	0x1	Only a single outstanding write transaction		
rd	Value	Description	RW	0x0
	0x0	Multiple outstanding read transactions		
	0x1	Only a single outstanding read transaction		
	wr	value 0x0 0x1 rd Value 0x0 0x1	Value Ox0 Multiple outstanding write transactions Ox1 Only a single outstanding write transaction Value Description Ox0 Multiple outstanding read transactions Ox1 Only a single outstanding read Ox1 Only a single outstanding read	Value Ox0 Multiple outstanding write transactions Ox1 Only a single outstanding write transaction Value Description RW Value Description Ox0 Multiple outstanding read transactions Ox1 Only a single outstanding read RW

USBO Register Descriptions

Registers associated with the USB0 master. This master is used to access the registers in USB0.

Offset: 0x1e000

fn_mod_bm_iss on page 7-62

Sets the issuing capability of the preceding switch arbitration scheme to multiple or single outstanding transactions.

ahb_cntl on page 7-62

Sets the block issuing capability to one outstanding transaction.

fn_mod_bm_iss

Sets the issuing capability of the preceding switch arbitration scheme to multiple or single outstanding transactions.

Module Instance	Base Address	Register Address
13regs	0xff800000	0xFF820008

Offset: 0x20008

Access: RW

	Bit Fields														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved											wr RW 0x0	rd RW 0x0			

fn_mod_bm_iss Fields

Bit	Name		Description	Access	Reset
1	wr	Value	Description	RW	0x0
		0x0	Multiple outstanding write transactions		
		0x1	Only a single outstanding write transaction		
0	rd	Value	Description	RW	0x0
		0x0	Multiple outstanding read transactions		
		0x1	Only a single outstanding read transaction		

ahb cntl

Sets the block issuing capability to one outstanding transaction.

Module Instance	Base Address	Register Address
13regs	0xff800000	0xFF820044

Offset: 0x20044

Access: RW

	Bit Fields														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						Reserv	red							XXX force_incr	gecerr gecoerr gecoerr gecoerr

ahb_cntl Fields

Bit	Name		Description	Access	Reset
1	force_incr	Value	Description	RW	0x0
		0x0	Multiple outstanding write transactions		
		0x1	If a beat is received that has no write data strobes set, that write data beat is replaced with an IDLE beat. Also, causes all transactions that are to be output to the AHB domain to be an undefined length INCR.		
0	decerr_en	Value	Description	RW	0x0
		0x0	No DECERR response.		
		0x1	If the AHB protocol conversion function receives an unaligned address or a write data beat without all the byte strobes set, creates a DECERR response.		

NANDREGS Register Descriptions

Registers associated with the NANDREGS master. This master is used to access the registers in the NAND flash controller.

Offset: 0x1f000

fn_mod_bm_iss on page 7-64

Sets the issuing capability of the preceding switch arbitration scheme to multiple or single outstanding transactions.

fn_mod on page 7-64

Sets the block issuing capability to multiple or single outstanding transactions.

fn_mod_bm_iss

Sets the issuing capability of the preceding switch arbitration scheme to multiple or single outstanding transactions.

Module Instance	Base Address	Register Address
13regs	0xff800000	0xFF821008

Offset: 0x21008

Access: RW

	Bit Fields														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Reserved															
15	15 14 13 12 11 10 9 8 7 6 5 4 3 2										2	1	0		
	Reserved									wr RW 0x0	rd RW 0x0				

fn_mod_bm_iss Fields

Bit	Name		Description	Access	Reset
1	wr	Value	Description	RW	0x0
		0x0	Multiple outstanding write transactions		
		0x1	Only a single outstanding write transaction		
0	rd	Value	Description	RW	0x0
		0x0	Multiple outstanding read transactions		
		0x1	Only a single outstanding read transaction		

fn_mod

Sets the block issuing capability to multiple or single outstanding transactions.

Module Instance	Base Address	Register Address
13regs	0xFF800000	0xFF821108

Offset: 0x21108

Access: RW

	Bit Fields														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserved									wr RW 0x0	rd RW 0x0				

fn_mod Fields

Bit	Name		Description	Access	Reset
1	wr	Value 0x0 0x1	Description Multiple outstanding write transactions Only a single outstanding write transaction	RW	0x0
0	rd	Value 0x0 0x1	Description Multiple outstanding read transactions Only a single outstanding read transaction	RW	0x0

QSPIDATA Register Descriptions

Registers associated with the QSPIDATA master. This master is used to access data in the QSPI flash controller.

Offset: 0x20000

fn_mod_bm_iss on page 7-65

Sets the issuing capability of the preceding switch arbitration scheme to multiple or single outstanding transactions.

ahb_cntl on page 7-66

Sets the block issuing capability to one outstanding transaction.

fn_mod_bm_iss

Sets the issuing capability of the preceding switch arbitration scheme to multiple or single outstanding transactions.

Module Instance	Base Address	Register Address
13regs	0xff800000	0xFF822008

Offset: 0x22008

Access: RW

	Bit Fields														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserved								wr RW 0x0	rd RW 0x0					

Bit	Name		Description	Access	Reset
1	wr	Value	Description	RW	0x0
		0x0	Multiple outstanding write transactions		
		0x1	Only a single outstanding write transaction		
0	rd	Value	Description	RW	0x0
		0x0	Multiple outstanding read transactions		
		0x1	Only a single outstanding read transaction		

ahb_cntlSets the block issuing capability to one outstanding transaction.

Module Instance	Base Address	Register Address
13regs	0xff800000	0xFF822044

Offset: 0x22044

Access: RW

	Bit Fields														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						Reserv	red							XXX force_incr	geografia geografia geografia geografia

ahb_cntl Fields

Bit	Name		Description	Access	Reset
1	force_incr	Value	Description	RW	0x0
		0x0	Multiple outstanding write transactions		
		0x1	If a beat is received that has no write data strobes set, that write data beat is replaced with an IDLE beat. Also, causes all transactions that are to be output to the AHB domain to be an undefined length INCR.		
0	decerr_en	Value	Description	RW	0x0
		0x0	No DECERR response.		
		0x1	If the AHB protocol conversion function receives an unaligned address or a write data beat without all the byte strobes set, creates a DECERR response.		

FPGAMGRDATA Register Descriptions

Registers associated with the FPGAMGRDATA master. This master is used to send FPGA configuration image data to the FPGA Manager.

Offset: 0x21000

fn_mod_bm_iss on page 7-67

Sets the issuing capability of the preceding switch arbitration scheme to multiple or single outstanding transactions.

wr_tidemark on page 7-68

Controls the release of the transaction in the write data FIFO.

fn_mod on page 7-69

Sets the block issuing capability to multiple or single outstanding transactions.

fn_mod_bm_iss

Sets the issuing capability of the preceding switch arbitration scheme to multiple or single outstanding transactions.

Module Instance	Base Address	Register Address
l3regs	0xff800000	0xFF823008

Offset: 0x23008

Access: RW

	Bit Fields														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserved											wr RW 0x0	rd RW 0x0		

Bit	Name		Description	Access	Reset
1	wr	Value	Description	RW	0x0
		0x0	Multiple outstanding write transactions		
		0x1	Only a single outstanding write transaction		
0	rd	Value	Description	RW	0x0
		0x0	Multiple outstanding read transactions		
		0x1	Only a single outstanding read transaction		

wr_tidemark

Controls the release of the transaction in the write data FIFO.

Module Instance	Base Address	Register Address
l3regs	0xff800000	0xFF823040

Offset: 0x23040

Access: RW

	Bit Fields														
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17											16				
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved											evel V 0x4				

wr_tidemark Fields

ı	Bit	Name	Description	Access	Reset
	3:0	level	Stalls the transaction in the write data FIFO until the number of occupied slots in the write data FIFO exceeds the level. Note that the transaction is released before this level is achieved if the network receives the WLAST beat or the write FIFO becomes full.	RW	0x4

fn_mod

Sets the block issuing capability to multiple or single outstanding transactions.

Module Instance	Base Address	Register Address
13regs	0xFF800000	0xFF823108

Offset: 0x23108

Access: RW

Bit Fields															
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserved											wr RW 0x0	rd RW 0x0		

fn_mod Fields

Bit	Name		Description	Access	Reset
1	wr	Value	Description	RW	0x0
		0x0	Multiple outstanding write transactions		
		0x1	Only a single outstanding write transaction		
0	rd	Value	Description	RW	0x0
		0x0	Multiple outstanding read transactions		
		0x1	Only a single outstanding read transaction		

HPS2FPGA Register Descriptions

Registers associated with the HPS2FPGA AXI Bridge master. This master is used to access the HPS2FPGA AXI Bridge slave. This slave is used to access slaves in the FPGA connected to the HPS2FPGA AXI Bridge.

Offset: 0x22000

fn_mod_bm_iss on page 7-70

Sets the issuing capability of the preceding switch arbitration scheme to multiple or single outstanding transactions.

wr_tidemark on page 7-70

Controls the release of the transaction in the write data FIFO.

fn_mod on page 7-71

Sets the block issuing capability to multiple or single outstanding transactions.

fn_mod_bm_iss

Sets the issuing capability of the preceding switch arbitration scheme to multiple or single outstanding transactions.

Module Instance	Base Address	Register Address
13regs	0xff800000	0xFF824008

Offset: 0x24008

Access: RW

	Bit Fields														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved											wr RW 0x0	rd RW 0x0			

fn_mod_bm_iss Fields

Bit	Name		Access	Reset	
1	wr	Value 0x0 0x1	Description Multiple outstanding write transactions Only a single outstanding write transaction	RW	0x0
0	rd	Value 0x0 0x1	Description Multiple outstanding read transactions Only a single outstanding read transaction	RW	0x0

wr_tidemark

Controls the release of the transaction in the write data FIFO.

Module Instance	Base Address	Register Address
13regs	0xff800000	0xFF824040

Offset: 0x24040

Access: RW

	Bit Fields														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0								0						
	Reserved level RW 0x4														

wr_tidemark Fields

Bit	Name	Description	Access	Reset
3:0	level	Stalls the transaction in the write data FIFO until the number of occupied slots in the write data FIFO exceeds the level. Note that the transaction is released before this level is achieved if the network receives the WLAST beat or the write FIFO becomes full.	RW	0x4

fn_mod

Sets the block issuing capability to multiple or single outstanding transactions.

Module Instance	Base Address	Register Address		
13regs	0xff800000	0xFF824108		

Offset: 0x24108

Access: RW

	Bit Fields														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserved							wr RW 0x0	rd RW 0x0						

fn_mod Fields

Bit	Name		Access	Reset	
1	wr	Value	Description	RW	0x0
		0x0			
		0x1			
0	rd	Value	Description	RW	0x0
		0x0	Multiple outstanding read transactions		
		0x1	Only a single outstanding read transaction		

ACP Register Descriptions

Registers associated with the ACP master. This master is used to access the MPU ACP slave via the ACP ID Mapper.

Offset: 0x23000

fn_mod_bm_iss on page 7-72

Sets the issuing capability of the preceding switch arbitration scheme to multiple or single outstanding transactions.

fn_mod on page 7-72

Sets the block issuing capability to multiple or single outstanding transactions.

fn_mod_bm_iss

Sets the issuing capability of the preceding switch arbitration scheme to multiple or single outstanding transactions.

Module Instance	Base Address	Register Address
13regs	0xff800000	0xFF825008

Offset: 0x25008

Access: RW

	Bit Fields														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserved							wr RW 0x0	rd RW 0x0						

fn_mod_bm_iss Fields

Bit	Name		Access	Reset	
1	wr	Value	RW	0x0	
		0x0			
		0x1			
0	rd	Value Description		RW	0x0
		0x0	Multiple outstanding read transactions		
		0x1	Only a single outstanding read transaction		

fn_mod

Sets the block issuing capability to multiple or single outstanding transactions.

Module Instance	Base Address	Register Address
13regs	0xff800000	0xFF825108

Offset: 0x25108

Access: RW

	Bit Fields														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						Reserv	red							wr RW 0x0	rd RW 0x0

fn_mod Fields

Bit	Name		Description	Access	Reset
1	wr	Value	Description	RW	0x0
		0x0	Multiple outstanding write transactions		
		0x1	Only a single outstanding write transaction		
0	rd	Value	Description	RW	0x0
		0x0	Multiple outstanding read transactions		
		0x1	Only a single outstanding read transaction		

Boot ROM Register Descriptions

Registers associated with the Boot ROM master. This master is used to access the contents of the Boot ROM.

Offset: 0x24000

fn_mod_bm_iss on page 7-73

Sets the issuing capability of the preceding switch arbitration scheme to multiple or single outstanding transactions.

fn_mod on page 7-74

Sets the block issuing capability to multiple or single outstanding transactions.

fn_mod_bm_iss

Sets the issuing capability of the preceding switch arbitration scheme to multiple or single outstanding transactions.

Module Instance	Base Address	Register Address
13regs	0xff800000	0xFF826008

Offset: 0x26008

Access: RW

	Bit Fields														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						Reserv	red							wr RW 0x0	rd RW 0x0

fn_mod_bm_iss Fields

Bit	Name		Description	Access	Reset
1	wr	Value	Description	RW	0x0
		0x0	Multiple outstanding write transactions		
		0x1	Only a single outstanding write transaction		
0	rd	Value	Description	RW	0x0
		0x0	Multiple outstanding read transactions		
		0x1	Only a single outstanding read transaction		

fn_mod

Sets the block issuing capability to multiple or single outstanding transactions.

Module Instance	Base Address	Register Address
13regs	0xff800000	0xFF826108

Offset: 0x26108

Access: RW

	Bit Fields														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	,					Reserv	red							wr RW 0x0	rd RW 0x0

fn_mod Fields

Bit	Name		Description	Access	Reset
1	wr	Value 0x0 0x1	Description Multiple outstanding write transactions Only a single outstanding write transaction	RW	0x0
0	rd	Value 0x0	Description Multiple outstanding read transactions	RW	0x0
		0x1	Only a single outstanding read transaction		

On-chip RAM Register Descriptions

Registers associated with the On-chip RAM master. This master is used to access the contents of the On-chip RAM.

Offset: 0x25000

fn_mod_bm_iss on page 7-75

Sets the issuing capability of the preceding switch arbitration scheme to multiple or single outstanding transactions.

wr_tidemark on page 7-76

Controls the release of the transaction in the write data FIFO.

fn_mod on page 7-76

Sets the block issuing capability to multiple or single outstanding transactions.

fn_mod_bm_iss

Sets the issuing capability of the preceding switch arbitration scheme to multiple or single outstanding transactions.

Module Instance	Base Address	Register Address
13regs	0xff800000	0xFF827008

Offset: 0x27008

Access: RW

	Bit Fields														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						Reserv	red							wr RW 0x0	rd RW 0x0

fn_mod_bm_iss Fields

Bit	Name		Description	Access	Reset
1	wr	Value	Description	RW	0x0
		0x0	Multiple outstanding write transactions		
		0x1	Only a single outstanding write transaction		
0	rd	Value	Description	RW	0x0
		0x0	Multiple outstanding read transactions		
		0x1	Only a single outstanding read transaction		

wr_tidemark

Controls the release of the transaction in the write data FIFO.

Module Instance	Base Address	Register Address
13regs	0xff800000	0xFF827040

Offset: 0x27040

Access: RW

	Bit Fields														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved										evel W 0x4					

wr_tidemark Fields

Bit	Name	Description	Access	Reset
3:0	level	Stalls the transaction in the write data FIFO until the number of occupied slots in the write data FIFO exceeds the level. Note that the transaction is released before this level is achieved if the network receives the WLAST beat or the write FIFO becomes full.	RW	0x4

fn_mod

Sets the block issuing capability to multiple or single outstanding transactions.

Module Instance	Base Address	Register Address
l3regs	0xff800000	0xFF827108

Offset: 0x27108

Access: RW

	Bit Fields														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						Reserv	red							wr RW 0x0	rd RW 0x0

fn_mod Fields

Bit	Name		Description	Access	Reset
1	wr	Value	Description	RW	0x0
		0x0	Multiple outstanding write transactions		
		0x1	Only a single outstanding write transaction		
0	rd	Value	Description	RW	0x0
		0x0	Multiple outstanding read transactions		
		0x1	Only a single outstanding read transaction		

Slave Register Group Register Descriptions

Registers associated with slave interfaces.

Offset: 0x42000

DAP Register Descriptions

Registers associated with the DAP slave interface. This slave is used by the DAP to access slaves attached to the L3/L4 Interconnect.

Offset: 0x0

fn_mod2 on page 7-78

Controls bypass merge of upsizing/downsizing.

fn_mod_ahb on page 7-78

Controls how AHB-lite burst transactions are converted to AXI tranactions.

read_qos on page 7-79

QoS (Quality of Service) value for the read channel.

write_qos on page 7-80

QoS (Quality of Service) value for the write channel.

fn_mod on page 7-80

Sets the block issuing capability to multiple or single outstanding transactions.

fn_mod2

Controls bypass merge of upsizing/downsizing.

Module Instance	Base Address	Register Address
13regs	0xff800000	0xFF842024

Offset: 0x42024

Access: RW

Bit Fields															
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Reserved															
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1											0				
Reserved										bypass_merge					
															RW 0x0

fn_mod2 Fields

Bit	Name		Description	Access	Reset
0	bypass_merge	Controls b	ypass merge of upsizing/downsizing.	RW	0x0
		Value	Description		
		0x0	The network can alter transactions.		
		0x1	The network does not alter any transactions that could pass through the upsizer legally without alteration.		

fn_mod_ahb

Controls how AHB-lite burst transactions are converted to AXI tranactions.

Module Instance	Base Address	Register Address
13regs	0xFF800000	0xFF842028

Offset: 0x42028

Access: RW

	Bit Fields														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						Reserv	red							x x wr_incr_override	MA O rd_incr_override O

fn_mod_ahb Fields

Bit	Name		Description	Access	Reset
1	wr_incr_override		how AHB-lite write burst transactions are d to AXI tranactions.	RW	0x0
		Value	Description		
		0x0	The L3 Interconnect converts AHB-lite write bursts to AXI transactions in accordance with the default behavior as specified in the ARM NIC-301 documentation.		
		0x1	The L3 Interconnect converts AHB-lite write bursts to AXI single transactions.		
0	rd_incr_override		how AHB-lite read burst transactions are d to AXI tranactions.	RW	0x0
		Value	Description		
		0x0	The L3 Interconnect converts AHB-lite read bursts to AXI transactions in accordance with the default behavior as specified in the ARM NIC-301 documentation.		
		0x1	The L3 Interconnect converts AHB-lite read bursts to AXI single transactions.		

read_qos

QoS (Quality of Service) value for the read channel.

Module Instance	Base Address	Register Address
l3regs	0xFF800000	0xFF842100

Offset: 0x42100

Access: RW

	Bit Fields														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
					Reserv	red								pri W 0x0	

read_qos Fields

Bit	Name	Description	Access	Reset
3:0	pri	QoS (Quality of Service) value for the read channel. A higher value has a higher priority.	RW	0x0

write_qos

QoS (Quality of Service) value for the write channel.

Module Instance	Base Address	Register Address
13regs	0xff800000	0xFF842104

Offset: 0x42104

Access: RW

	Bit Fields														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
					Reserv	red								pri W 0x0	

write_qos Fields

Bit	Name	Description	Access	Reset
3:0	pri	QoS (Quality of Service) value for the write channel. A higher value has a higher priority.	RW	0x0

fn_mod

Sets the block issuing capability to multiple or single outstanding transactions.

Module Instance	Base Address	Register Address
13regs	0xff800000	0xFF842108

Offset: 0x42108

Access: RW

	Bit Fields														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						Reserv	red							wr RW 0x0	rd RW 0x0

fn_mod Fields

Bit	Name		Access	Reset	
1	wr	Value 0x0 0x1	Description Multiple outstanding write transactions Only a single outstanding write transaction	RW	0x0
0	rd	Value 0x0 0x1	Description Multiple outstanding read transactions Only a single outstanding read transaction	RW	0x0

MPU Register Descriptions

Registers associated with the MPU slave interface. This slave is used by the MPU to access slaves attached to the L3/L4 Interconnect.

Offset: 0x1000

read_qos on page 7-81

QoS (Quality of Service) value for the read channel.

write_qos on page 7-82

QoS (Quality of Service) value for the write channel.

fn_mod on page 7-82

Sets the block issuing capability to multiple or single outstanding transactions.

read gos

QoS (Quality of Service) value for the read channel.

Module Instance	Base Address	Register Address
13regs	0xff800000	0xFF843100

Offset: 0x43100

Access: RW

	Bit Fields														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	*				Reserv	red								pri √0x0	

read_qos Fields

Bit	Name	Description	Access	Reset
3:0	pri	QoS (Quality of Service) value for the read channel. A higher value has a higher priority.	RW	0x0

write_qos

QoS (Quality of Service) value for the write channel.

Module Instance	Base Address	Register Address
13regs	0xff800000	0xFF843104

Offset: 0x43104

Access: RW

	Bit Fields														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
					Reserv	red .							RI	pri W 0x0	

write_qos Fields

Bit	Name	Description	Access	Reset
3:0	pri	QoS (Quality of Service) value for the write channel. A higher value has a higher priority.	RW	0x0

fn_mod

Sets the block issuing capability to multiple or single outstanding transactions.

Module Instance	Base Address	Register Address
13regs	0xff800000	0xFF843108

Offset: 0x43108

Access: RW

	Bit Fields														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved							wr RW 0x0	rd RW 0x0							

fn_mod Fields

Bit	Name		Description	Access	Reset
1	wr	Value 0x0 0x1	Description Multiple outstanding write transactions Only a single outstanding write transaction	RW	0x0
0	rd	Value 0x0 0x1	Description Multiple outstanding read transactions Only a single outstanding read transaction	RW	0x0

SDMMC Register Descriptions

Registers associated with the SDMMC slave interface. This slave is used by the DMA controller built into the SDMMC to access slaves attached to the L3/L4 Interconnect.

Offset: 0x2000

fn_mod_ahb on page 7-83

Controls how AHB-lite burst transactions are converted to AXI tranactions.

read_qos on page 7-84

QoS (Quality of Service) value for the read channel.

write_qos on page 7-85

QoS (Quality of Service) value for the write channel.

fn_mod on page 7-85

Sets the block issuing capability to multiple or single outstanding transactions.

fn_mod_ahb

Controls how AHB-lite burst transactions are converted to AXI tranactions.

Module Instance	Base Address	Register Address
13regs	0xFF800000	0xFF844028

Offset: 0x44028

Access: RW

	Bit Fields														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						Reserv	red							xox wr_incr_override	M M O rd_incr_override O

fn_mod_ahb Fields

Bit	Name		Description	Access	Reset
1	wr_incr_override	Controls	RW	0x0	
		Value	Description		
		0x0	The L3 Interconnect converts AHB-lite write bursts to AXI transactions in accordance with the default behavior as specified in the ARM NIC-301 documentation.		
		0x1	The L3 Interconnect converts AHB-lite write bursts to AXI single transactions.		
0	rd_incr_override		how AHB-lite read burst transactions are d to AXI tranactions.	RW	0x0
		Value	Description		
		0x0	The L3 Interconnect converts AHB-lite read bursts to AXI transactions in accordance with the default behavior as specified in the ARM NIC-301 documentation.		
		0x1	The L3 Interconnect converts AHB-lite read bursts to AXI single transactions.		

read_qos

QoS (Quality of Service) value for the read channel.

Module Instance	Base Address	Register Address
l3regs	0xFF800000	0xFF844100

Offset: 0x44100

Access: RW

	Bit Fields														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved pri RW 0x0															

read_qos Fields

Bit	Name	Description	Access	Reset
3:0		QoS (Quality of Service) value for the read channel. A higher value has a higher priority.	RW	0x0

write_qos

QoS (Quality of Service) value for the write channel.

Module Instance	Base Address	Register Address
13regs	0xff800000	0xFF844104

Offset: 0x44104

Access: RW

	Bit Fields														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
					Reserv	ved								pri √0x0	

write_qos Fields

Bit	Name	Description	Access	Reset
3:0	pri	QoS (Quality of Service) value for the write channel. A higher value has a higher priority.	RW	0x0

fn_mod

Sets the block issuing capability to multiple or single outstanding transactions.

Module Instance	Base Address	Register Address
13regs	0xff800000	0xFF844108

Offset: 0x44108

Access: RW

	Bit Fields														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						Reserv	red							wr RW 0x0	rd RW 0x0

fn_mod Fields

Bit	Name		Description	Access	Reset
1	wr	Value	Description	RW	0x0
		0x0	Multiple outstanding write transactions		
		0x1	Only a single outstanding write transaction		
0	rd	Value	Description	RW	0x0
		0x0	Multiple outstanding read transactions		
		0x1	Only a single outstanding read transaction		

DMA Register Descriptions

Registers associated with the DMA Controller slave interface. This slave is used by the DMA Controller to access slaves attached to the L3/L4 Interconnect.

Offset: 0x3000

read_qos on page 7-86

QoS (Quality of Service) value for the read channel.

write_qos on page 7-87

QoS (Quality of Service) value for the write channel.

fn_mod on page 7-87

Sets the block issuing capability to multiple or single outstanding transactions.

read_qos

QoS (Quality of Service) value for the read channel.

Module Instance	Base Address	Register Address
13regs	0xFF800000	0xFF845100

Offset: 0x45100

Access: RW

	Bit Fields														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	*				Reserv	red								pri V 0x0	

read_qos Fields

Bit	Name	Description	Access	Reset
3:0	pri	QoS (Quality of Service) value for the read channel. A higher value has a higher priority.	RW	0x0

write_qos

QoS (Quality of Service) value for the write channel.

Module Instance	Base Address	Register Address
13regs	0xff800000	0xFF845104

Offset: 0x45104

Access: RW

	Bit Fields														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
					Reserv	red								pri W 0x0	

write_qos Fields

Bit	Name	Description	Access	Reset
3:0		QoS (Quality of Service) value for the write channel. A higher value has a higher priority.	RW	0x0

fn_mod

Sets the block issuing capability to multiple or single outstanding transactions.

Module Instance	Base Address	Register Address
13regs	0xff800000	0xFF845108

Offset: 0x45108

Access: RW

	Bit Fields														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						Reserv	red							wr RW 0x0	rd RW 0x0

fn_mod Fields

Bit	Name		Description	Access	Reset
1	wr	Value	Description	RW	0x0
		0x0	Multiple outstanding write transactions		
		0x1	Only a single outstanding write transaction		
0	rd	_		DM	00
U	ra	Value	Description	RW	0x0
		0x0	Multiple outstanding read transactions		
		0x1	Only a single outstanding read transaction		

FPGA2HPS Register Descriptions

Registers associated with the FPGA2HPS AXI Bridge slave interface. This slave is used by the FPGA2HPS AXI Bridge to access slaves attached to the L3/L4 Interconnect.

Offset: 0x4000

wr_tidemark on page 7-88

Controls the release of the transaction in the write data FIFO.

read_qos on page 7-89

QoS (Quality of Service) value for the read channel.

write_qos on page 7-89

QoS (Quality of Service) value for the write channel.

fn_mod on page 7-90

Sets the block issuing capability to multiple or single outstanding transactions.

wr_tidemark

Controls the release of the transaction in the write data FIFO.

Module Instance	Base Address	Register Address
13regs	0xff800000	0xFF846040

Offset: 0x46040

Access: RW

	Bit Fields														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved										evel W 0x4	*				

wr_tidemark Fields

Bit	Name	Description	Access	Reset
3:0	level	Stalls the transaction in the write data FIFO until the number of occupied slots in the write data FIFO exceeds the level. Note that the transaction is released before this level is achieved if the network receives the WLAST beat or the write FIFO becomes full.	RW	0x4

read_qos

QoS (Quality of Service) value for the read channel.

Module Instance	Base Address	Register Address
13regs	0xff800000	0xFF846100

Offset: 0x46100

Access: RW

	Bit Fields														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserved										pri V 0x0				

read_qos Fields

Bit	Name	Description	Access	Reset
3:0	pri	QoS (Quality of Service) value for the read channel. A higher value has a higher priority.	RW	0x0

write_qos

QoS (Quality of Service) value for the write channel.

Module Instance	Base Address	Register Address
13regs	0xFF800000	0xFF846104

Offset: 0x46104

Access: RW

	Bit Fields														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserved										pri √0x0				

write_qos Fields

Bit	Name	Description	Access	Reset
3:0		QoS (Quality of Service) value for the write channel. A higher value has a higher priority.	RW	0x0

fn_mod

Sets the block issuing capability to multiple or single outstanding transactions.

Module Instance	Base Address	Register Address
13regs	0xff800000	0xFF846108

Offset: 0x46108

Access: RW

	Bit Fields														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						Reserv	red							wr RW 0x0	rd RW 0x0

fn_mod Fields

Bit	Name		Access	Reset	
1	wr	Value	Description	RW	0x0
		0x0	Multiple outstanding write transactions		
		0x1	Only a single outstanding write transaction		
0				DM	00
U	rd	Value	Description	RW	0x0
		0x0	Multiple outstanding read transactions		
		0x1	Only a single outstanding read transaction		

ETR Register Descriptions

Registers associated with the ETR (TMC) slave interface. This slave is used by the ETR to access slaves attached to the L3/L4 Interconnect.

Offset: 0x5000

read_qos on page 7-91

QoS (Quality of Service) value for the read channel.

write_qos on page 7-91

QoS (Quality of Service) value for the write channel.

fn_mod on page 7-92

Sets the block issuing capability to multiple or single outstanding transactions.

read_qos

QoS (Quality of Service) value for the read channel.

Module Instance	Base Address	Register Address
13regs	0xff800000	0xFF847100

Offset: 0x47100

Access: RW

	Bit Fields														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved pri RW 0x0															

read_qos Fields

Bit	Name	Description	Access	Reset
3:0	pri	QoS (Quality of Service) value for the read channel. A higher value has a higher priority.	RW	0x0

write_qos

QoS (Quality of Service) value for the write channel.

Module Instance	Base Address	Register Address
13regs	0xFF800000	0xFF847104

Offset: 0x47104

Access: RW

	Bit Fields														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserved											pri V 0x0			

write_qos Fields

Bit	Name	Description	Access	Reset
3:0	pri	QoS (Quality of Service) value for the write channel. A higher value has a higher priority.	RW	0x0

fn_mod

Sets the block issuing capability to multiple or single outstanding transactions.

Module Instance	Base Address	Register Address
13regs	0xff800000	0xFF847108

Offset: 0x47108

Access: RW

	Bit Fields														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						Reserv	red							wr RW 0x0	rd RW 0x0

fn_mod Fields

Bit	Name		Description	Access	Reset
1	wr	Value	Description	RW	0x0
		0x0	Multiple outstanding write transactions		
		0x1	Only a single outstanding write transaction		
0	rd			RW	0x0
U	l u	Value	Description	IXW	UXU
		0x0	Multiple outstanding read transactions		
		0x1	Only a single outstanding read transaction		

EMACO Register Descriptions

Registers associated with the EMAC0 slave interface. This slave is used by the DMA controller built into the EMAC0 to access slaves attached to the L3/L4 Interconnect.

Offset: 0x6000

read_qos on page 7-93

QoS (Quality of Service) value for the read channel.

write_qos on page 7-93

QoS (Quality of Service) value for the write channel.

fn_mod on page 7-94

Sets the block issuing capability to multiple or single outstanding transactions.

read_qos

QoS (Quality of Service) value for the read channel.

Module Instance	Base Address	Register Address
13regs	0xff800000	0xFF848100

Offset: 0x48100

Access: RW

	Bit Fields														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
					Reserv	red								pri W 0x0	

read_qos Fields

Bit	Name	Description	Access	Reset
3:0	pri	QoS (Quality of Service) value for the read channel. A higher value has a higher priority.	RW	0x0

write_qos

QoS (Quality of Service) value for the write channel.

Module Instance	Base Address	Register Address
13regs	0xFF800000	0xFF848104

Offset: 0x48104

Access: RW

	Bit Fields														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	*				Reserv	red								pri V 0x0	

write_qos Fields

Bit	Name	Description	Access	Reset
3:0	pri	QoS (Quality of Service) value for the write channel. A higher value has a higher priority.	RW	0x0

fn_mod

Sets the block issuing capability to multiple or single outstanding transactions.

Module Instance	Base Address	Register Address
13regs	0xff800000	0xFF848108

Offset: 0x48108

Access: RW

	Bit Fields														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						Reserv	red							wr RW 0x0	rd RW 0x0

fn_mod Fields

Bit	Name		Access	Reset	
1	wr	Value	Description	RW	0x0
		0x0	Multiple outstanding write transactions		
		0x1	Only a single outstanding write transaction		
0	rd	.,,	.	RW	0x0
· ·		Value	Description	100	ONO
		0x0	Multiple outstanding read transactions		
		0x1	Only a single outstanding read transaction		

EMAC1 Register Descriptions

Registers associated with the EMAC1 slave interface. This slave is used by the DMA controller built into the EMAC1 to access slaves attached to the L3/L4 Interconnect.

Offset: 0x7000

read_qos on page 7-95

QoS (Quality of Service) value for the read channel.

write_qos on page 7-95

QoS (Quality of Service) value for the write channel.

fn_mod on page 7-96

Sets the block issuing capability to multiple or single outstanding transactions.

read_qos

QoS (Quality of Service) value for the read channel.

Module Instance	Base Address	Register Address
13regs	0xff800000	0xFF849100

Offset: 0x49100

Access: RW

	Bit Fields														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
					Reserv	red								pri W 0x0	

read_qos Fields

Bit	Name	Description	Access	Reset
3:0		QoS (Quality of Service) value for the read channel. A higher value has a higher priority.	RW	0x0

write_qos

QoS (Quality of Service) value for the write channel.

Module Instance	Base Address	Register Address
13regs	0xFF800000	0xFF849104

Offset: 0x49104

Access: RW

	Bit Fields														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserved											pri √0x0			

write_qos Fields

Bit	Name	Description	Access	Reset
3:0	pri	QoS (Quality of Service) value for the write channel. A higher value has a higher priority.	RW	0x0

fn_mod

Sets the block issuing capability to multiple or single outstanding transactions.

Module Instance	Base Address	Register Address
13regs	0xff800000	0xFF849108

Offset: 0x49108

Access: RW

	Bit Fields														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						Reserv	red							wr RW 0x0	rd RW 0x0

fn_mod Fields

Bit	Name		Description	Access	Reset
1	wr	Value	Description	RW	0x0
		0x0	Multiple outstanding write transactions		
		0x1	Only a single outstanding write transaction		
0	rd	Value	Description	RW	0x0
		0x0	Multiple outstanding read transactions		
		0x1	Only a single outstanding read transaction		

USBO Register Descriptions

Registers associated with the USB0 slave interface. This slave is used by the DMA controller built into the USB0 to access slaves attached to the L3/L4 Interconnect.

Offset: 0x8000

fn_mod_ahb on page 7-97

Controls how AHB-lite burst transactions are converted to AXI tranactions.

read_qos on page 7-98

QoS (Quality of Service) value for the read channel.

write_qos on page 7-99

QoS (Quality of Service) value for the write channel.

fn_mod on page 7-99

Sets the block issuing capability to multiple or single outstanding transactions.

fn_mod_ahb

Controls how AHB-lite burst transactions are converted to AXI tranactions.

Module Instance	Base Address	Register Address
13regs	0xff800000	0xFF84A028

Offset: 0x4A028

Access: RW

							Bit F	ields							
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						Reserv	red							ож « ж wr_incr_override	MA O rd_incr_override

fn_mod_ahb Fields

Bit	Name		Description	Access	Reset
1	wr_incr_override	Controls	RW	0x0	
		Value	Description		
		0x0	The L3 Interconnect converts AHB-lite write bursts to AXI transactions in accordance with the default behavior as specified in the ARM NIC-301 documentation.		
		0x1	The L3 Interconnect converts AHB-lite write bursts to AXI single transactions.		
0	rd_incr_override		how AHB-lite read burst transactions are d to AXI tranactions.	RW	0x0
		Value	Description		
		0x0	The L3 Interconnect converts AHB-lite read bursts to AXI transactions in accordance with the default behavior as specified in the ARM NIC-301 documentation.		
		0x1	The L3 Interconnect converts AHB-lite read bursts to AXI single transactions.		

read_qos

QoS (Quality of Service) value for the read channel.

Module Instance	Base Address	Register Address
13regs	0xff800000	0xFF84A100

Offset: 0x4A100

Access: RW

	Bit Fields														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0								0							
Reserved											pri W 0x0				

read_qos Fields

Bi	it	Name	Description	Access	Reset
3:0	0		QoS (Quality of Service) value for the read channel. A higher value has a higher priority.	RW	0x0

write_qos

QoS (Quality of Service) value for the write channel.

Module Instance	Base Address	Register Address
13regs	0xff800000	0xFF84A104

Offset: 0x4A104

Access: RW

	Bit Fields														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved													pri W 0x0		

write_qos Fields

Bit	Name	Description	Access	Reset
3:0	pri	QoS (Quality of Service) value for the write channel. A higher value has a higher priority.	RW	0x0

fn_mod

Sets the block issuing capability to multiple or single outstanding transactions.

Module Instance	Base Address	Register Address
l3regs	0xff800000	0xFF84A108

Offset: 0x4A108

Access: RW

	Bit Fields														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Reserved															
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserved									wr RW 0x0	rd RW 0x0				

fn_mod Fields

Bit	Name		Description	Access	Reset
1	wr	Value	Description	RW	0x0
		0x0	Multiple outstanding write transactions		
		0x1	Only a single outstanding write transaction		

Bit	Name		Description	Access	Reset
0	rd	Value	Description	RW	0x0
		0x0	Multiple outstanding read transactions		
		0x1	Only a single outstanding read transaction		

NAND Register Descriptions

Registers associated with the NAND slave interface. This slave is used by the DMA controller built into the NAND flash controller to access slaves attached to the L3/L4 Interconnect.

Offset: 0x9000

read_qos on page 7-100

QoS (Quality of Service) value for the read channel.

write_qos on page 7-100

QoS (Quality of Service) value for the write channel.

fn_mod on page 7-101

Sets the block issuing capability to multiple or single outstanding transactions.

read_qos

QoS (Quality of Service) value for the read channel.

Module Instance	Base Address	Register Address
13regs	0xff800000	0xFF84B100

Offset: 0x4B100

Access: RW

	Bit Fields														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved												pri V 0x0			

read_qos Fields

Bit	Name	Description	Access	Reset
3:0		QoS (Quality of Service) value for the read channel. A higher value has a higher priority.	RW	0x0

write_qos

QoS (Quality of Service) value for the write channel.

Module Instance	Base Address	Register Address
13regs	0xff800000	0xFF84B104

Offset: 0x4B104

Access: RW

Bit Fields															
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved										pri W 0x0					

write_qos Fields

Bit	Name	Description	Access	Reset
3:0	pri	QoS (Quality of Service) value for the write channel. A higher value has a higher priority.	RW	0x0

fn_mod

Sets the block issuing capability to multiple or single outstanding transactions.

Module Instance	Base Address	Register Address
13regs	0xff800000	0xFF84B108

Offset: 0x4B108

Access: RW

	Bit Fields														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved								wr RW 0x0	rd RW 0x0						

fn_mod Fields

Bit	Name		Access	Reset	
1	wr	Value	RW	0x0	
		0x0 Multiple outstanding write transactions			
		0x1	Only a single outstanding write transaction		

Bit	Name		Access	Reset	
0	rd	Value	RW	0x0	
		0x0 Multiple outstanding read transactions			
		0x1	Only a single outstanding read transaction		

USB1 Register Descriptions

Registers associated with the USB1 slave interface. This slave is used by the DMA controller built into the USB1 to access slaves attached to the L3/L4 Interconnect.

Offset: 0xa000

fn_mod_ahb on page 7-102

Controls how AHB-lite burst transactions are converted to AXI tranactions.

read_qos on page 7-103

QoS (Quality of Service) value for the read channel.

write_qos on page 7-104

QoS (Quality of Service) value for the write channel.

fn_mod on page 7-104

Sets the block issuing capability to multiple or single outstanding transactions.

fn_mod_ahb

Controls how AHB-lite burst transactions are converted to AXI tranactions.

Module Instance	Base Address	Register Address
13regs	0xff800000	0xFF84C028

Offset: 0x4C028

Access: RW

	Bit Fields														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						Reserv	red							wr_incr_override	rd_incr_override
														RW 0x0	RW 0x0

fn_mod_ahb Fields

Bit	Name		Description	Access	Reset
1	wr_incr_override		how AHB-lite write burst transactions are d to AXI tranactions.	RW	0x0
		Value Description			
		0x0	The L3 Interconnect converts AHB-lite write bursts to AXI transactions in accordance with the default behavior as specified in the ARM NIC-301 documentation.		
		0x1	The L3 Interconnect converts AHB-lite write bursts to AXI single transactions.		
0	rd_incr_override	Controls how AHB-lite read burst transactions are converted to AXI tranactions.		RW	0x0
		Value	Description		
		0x0	The L3 Interconnect converts AHB-lite read bursts to AXI transactions in accordance with the default behavior as specified in the ARM NIC-301 documentation.		
		0x1	The L3 Interconnect converts AHB-lite read bursts to AXI single transactions.		

read_qos

QoS (Quality of Service) value for the read channel.

Module Instance	Base Address	Register Address
13regs	0xff800000	0xFF84C100

Offset: 0x4C100

Access: RW

	Bit Fields														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserved pri RW 0x0														

read_qos Fields

Bit	Name	Description	Access	Reset
3:0	pri	QoS (Quality of Service) value for the read channel. A higher value has a higher priority.	RW	0x0

write_qos

QoS (Quality of Service) value for the write channel.

Module Instance	Base Address	Register Address
13regs	0xFF800000	0xFF84C104

Offset: 0x4C104

Access: RW

	Bit Fields														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved									pri V 0x0						

write_qos Fields

Bit	Name	Description	Access	Reset
3:0	pri	QoS (Quality of Service) value for the write channel. A higher value has a higher priority.	RW	0x0

fn_mod

Sets the block issuing capability to multiple or single outstanding transactions.

Module Instance	Base Address	Register Address
13regs	0xff800000	0xFF84C108

Offset: 0x4C108

Access: RW

							Bit F	ields							
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserved							wr RW 0x0	rd RW 0x0						

fn_mod Fields

Bit	Name		Access	Reset	
1	wr	Value	Description	RW	0x0
		0x0	Multiple outstanding write transactions		
		0x1	Only a single outstanding write transaction		

Bit	Name		Access	Reset	
0	rd	Value	Description	RW	0x0
		0x0	Multiple outstanding read transactions		
		0x1	Only a single outstanding read transaction		

Document Revision History

Table 7-3: Document Revision History

Date	Version	Changes
June 2014	2014.06.30	 Corrected master interconnect security properties for: Ethernet MAC ETR Added address map and register descriptions
February 2014	2014.02.28	Maintenance release
December 2013	2013.12.30	Maintenance release
November 2012	1.2	Minor updates.
June 2012	1.1	 Added interconnect connectivity matrix. Rearranged functional description sections. Simplified address remapping section. Added address map and register definitions section.
January 2012	1.0	Initial release.

