Esperienza: misura del rapporto e/m

Lab. III - a.a. 2014-1015

L'esperienza

• Scopo: misura del rapporto tra (il valore assoluto del-) la carica "e" e la massa "m" dell'elettrone.

Metodo:

- si accelerano elettroni mediante una d.d.p. V_{acc} : $\frac{1}{2}$ m v_e^2 = e V_{acc}
- due bobine di Helmoltz creano un campo **B** uniforme; sugli elettroni agisce $\mathbf{F}_1 = -e \mathbf{v}_e \times \mathbf{B}$
- $-F_{c.peta} = F_L = m v_e^2/r = e v_e B_z$
- si misura il raggio r della traiettoria circolare:

$$e/m = v_e/(B_r)$$

Strumentazione

- Sonda ad effetto Hall con circuito di ampl.
- Multimetro digitale
- Righello
- Bussola
- Bobine di Helmoltz
- Tubo catodico
- Alimentatori
- Scala graduata retro-illuminata
- Macchina fotografica digitale con cavalletto

L'effetto Hall

Semiconduttore (poco) drogato: per esempio n. Viene iniettata una corrente I=J W t. I portatori (maggioritari) vengono deflessi dalla forza di Lorentz \mathbf{F}_L =q \mathbf{v} x \mathbf{B} in dir y. Nello stato stazionario si stabilisce un campo elettrico // y, \mathbf{E}_H = \mathbf{V}_H /W che annulla la forza magnetica, in modo da avere \mathbf{v}_{el} // x:

$$-e V_H/W = -e v_{el} B_z$$

$$J=n (-e) v_{el} = I/(Wt)$$

$$V_H = -I B_z / (e n t) < 0$$

N.B.: drogaggio tipico ~10¹⁵ cm⁻³

Nel caso di drogaggio p: $e V_H/W = -e v_h B_z$ $J=p e v_h = I/(Wt)$ $V_H = I B_z / (e p t) > 0$

Il sensore ad effetto Hall

Sensibile alla componente di **B** ortogonale al piano del sensore.

FEATURES

- Single current sinking or current sourcing linear output
- Improved temperature stability
- Three pin in-line printed circuit board terminals
- Standard .100" mounting centers
- Laser trimmed thin film and thick film resistors minimize sensitivity variations and compensate for temperature variations
- Flux range of ±100 to ±2500 gauss

AUSS \$594A1/\$594A2		
	Catalog Listing	SS94A1
	Main Feature	Gen. purpose
	Supply Voltage (VDC)*	6.6 to 12.6
	Supply Current (mA)**	13 typ. 30 max.
	Output Current (mA) Sinking or Sourcing	1 max.
	Response Time (µ sec.)	3 typ.
	Magnetic Characteristics*** Span*	.625 V _s
	Range (gauss)*	-500 to +500
	Sensitivity (mV/gauss @ 25°C)	5.0±.1
	Linearity† (% span)	−0.8 typ. −1.5 max.
	Vout (0 gauss @ 25°C)***	4.00±.04V
	Temperature Error (all %s reference 25°C value)* Null (%/°C)	±.02
	Gain (%/°C)	±.02

La sonda

Per annullare l'offset $(V_{DD}/2)$, in modo da avere Vout=0 per B=0, ed amplificare il segnale viene utilizzato il circuito \rightarrow

Operativamente: agire sul potenziometro in modo da avere due letture opposte ruotando la sonda di 180°.

Inserire la bacchetta dentro le guide e (per un valore di I_{coil}) misurare B_z vs r, in modo da verificarne l'uniformita' ed il valore di B_z^{MAX} .

Le bobine di Helmoltz

E' noto (Fisica II) che mettendo 2 spire di raggio a poste a distanza a si ottiene un campo "uniforme":

Il tubo catodico

Posizionare lo switch su e/m: le placche di deflessione vengono messe allo stesso potenziale

VDC)+

Power Supply (Helmholtz

Coils 6-9 VDC, ripple < 1%)

(Heater

6.3 VDC or VAC)

Power Supply

(Accelerating Voltage 150-300 VDC)

Fasi dell'esperienza

- 1. Orientazione rispetto al campo magnetico terrestre (l'apparecchiatura e' appoggiata su una base rotante).
- 2. Mappatura del campo magnetico B_z generato dalle bobine mediante sonda ad effetto Hall.
- 3. Variare V_{acc} (150 \rightarrow 300V) e I_{coil} (V_{coil} :6 \rightarrow 9V) in modo da misurare r:
 - Ottimizzare condizioni di acquisizione: foto digitali
- 4. Ricavare r (fit cerchio o intercetta normali a 2 corde) dalla digitizzazione delle immagini
- 5. Correzione per effetto di geom. proiettiva
- 6. Analisi dati: ricavare <e/m> con l'errore stat.
- 7. Valutazione effetti sistematici

Macchina Fotografica

Acquisizione tipica

Digitizzazione immagini

Estrazione di r

Metodo delle 2 corde: trovato il centro C come intersezione delle rette normali, $R^2=1/3*\Sigma_{i=1,2,3}[(x_i-x_c)^2+(y_i-y_c)^2]$

Effetto geometria proiettiva

Sicurezze

- Indossare un paio di occhiali durante l'esperimento, per proteggersi in caso di (improbabile!) implosione del bulbo.
- Quando viene applicata la d.d.p. V_{acc}
 (150→300V DC), fare attenzione a non
 toccare assolutamente il circuito.
- Rispettare i limiti sulle tensioni massime!
- Operare in modo "ragionevole":
 - azzerare (agendo sui potenziometri) la V_{acc} e la V_{coil} prima di spegnere i relativi alimentatori