ПРАВИТЕЛЬСТВО РОССИЙСКОЙ ФЕДЕРАЦИИ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ «ВЫСШАЯ ШКОЛА ЭКОНОМИКИ»

Факультет компьютерных наук Образовательная программа «Программная инженерия»

профессор департамента программной инженерии факультета компьютерных наук
Легалов Александр Иванович

МикроПроект по предмету Архитектура Вычисленных Системы

Пояснительная записка

Исполнитель: студент группы _ БПИ197 Ф.И: Яхя Янал

Москва 2020

Задание

Разработать программу, вычисляющую с помощью степенного ряда с точностью не хуже 0,1% значение функции гиперболического тангенса $\boldsymbol{th}(\boldsymbol{x}) = \frac{(e^{\boldsymbol{x}} - e^{-\boldsymbol{x}})}{(e^{\boldsymbol{x}} + e^{-\boldsymbol{x}})}$ для заданного параметра х (использовать FPU)

применяемые расчётные методы

чтобы считать th(x), через формулы $\boldsymbol{th}(x) = \frac{(e^x - e^{-x})}{(e^x + e^{-x})}$, надо использовать степенный ряд, чтобы считать e^x и e^{-x} , и это возможно через ряда Тейлора $\boldsymbol{e}^x = 1 + \frac{x}{1} + \frac{x^2}{2!} + \ldots + \frac{x^n}{n!}$, где x вокруг нуля, но почему не использовал степенный ряд, чтобы это сработал для всех $x \in \mathbb{R}$? Пусть x = a, где a большое число, и пусть X = x - a, тогда:

$$e^x = e^a (1 + \frac{(x-a)}{1} + \frac{(x-a)^2}{2!} + \dots + \frac{(x-a)^n}{n!})$$

Но из начала было надо считать e^a , и вдруг опять в нашей формуле появилось ещё $f^n(e^x \ where \ x=a)=e^a$, из этого следует что мы не можем считать e^x в нашем случай с помощью степенного ряда, поэтому в моей программе есть ограничение на x, где x должен $\in [-4.4, 4.4]$, чтобы получить ответ с точностью не xyже 0,1%.

Но а если мы взяли N какое то большое число то получим хорошую точность для больших x? Да получим, но, а если x=100,

Тогда N должно быть тоже достаточно большое, пусть для этого достаточно взять N=23, получится что надо в ряде Тейлора считать 100^{23} , но нас $100^{23} > 2^{80} - 1$, то есть 100^{23} не поместится в директиве DT(10 bytes), поэтому увлечение N не решает нашу проблему, и вот из-за чего я ограничил значение x.

список используемых источников

- Презентация семинара по FPU и его запись
- Знание ряды из первого курса

Текст Программы

Microproject.ASM:

```
format PE console
entry start
include 'win32a.inc'
include 'my_lib.inc'
                                      ; including my Library
section '.code' code readable executable
start:
    ; input x
   invoke printf, strx
   invoke scanf, formatEnterX, x;
   FINIT
                                       ;coprocessor initialization
FirstCon:
    ; check if x is in range [-4.4, 4.4]
                                       ;loading x into the top of the stack st(0)
   fld [x]
                                       ; comparing st(0) and rLimitation, with
   fcomp [rLimitation]
clearing st(0)
   fstsw ax
   sahf
   inbe start
                                       ; if st(0) > rLimitation
secondCon:
   fld [x]
   fcomp [lLimitation]
                                       ; comparing st(0) and lLimitation, with
clearing st(0)
   fstsw
   sahf
   jb start
                                       ; if st(0) < lLimitation
   invoke printf, formatX, dword[x], dword[x+4] ;print x
   invoke printf, formatInt ,[N]
   TH [x]
                                       ; calling TH macro in my_lib
    ; printing the result of tanh(x)
   invoke printf, formatTH,dword[x], dword[x+4], dword[th_res], dword[th_res+4]
   invoke getch
section '.data' data readable writable
                    "Enter x between [-4.4, 4.4], to calculate tanh(x): ", 0
               db
   strx
                     '%lf' , 0
   formatEnterX db
                    'tanh(%lf) = %lf',10, 0
   formatTH
               db
   formatX
                     'x = %lf',10, 0
               db
                    'N = %d', 10, 0
   formatInt
               db
               dq
   e_To_X
               dq
                    ?
```

```
?
    e_To_nX
                 dq
    N
                  dd
                        12
    resPow dq
resFac dd
resSum dq
                        ?
                        ?
                      1.0
                 dd
                        0
    j
    th_res dq
                        ?
    denominator dq
    rLimitation dq
                     4.4
    lLimitation dq
                        -4.4
                  dq
section '.idata' import data readable
    library kernel, 'kernel32.dll',\
             msvcrt, 'msvcrt.dll'
    import kernel,\
            ExitProcess, 'ExitProcess'
    import msvcrt,\
            printf, 'printf',\
sprintf, 'sprintf',\
            scanf, 'scanf',\
getch, '_getch'
```

my_lib.inc:

```
;-----Factorial macro-----
macro Fac N {
local Factorial, endf
                           ; loading 1 into register eax, in eax will be saved
   mov eax, 1
the result of N!
                           ; loading N into register ecx
   mov ecx, N
Factorial:
                     ;compare ecx with 0
         cmp ecx,0
                           ;end loop if N <= 0</pre>
        jle endf
        mul ecx
                           ; eax <- eax * ecx
                            ; ecx <- ecx - 1
        dec ecx
         jmp Factorial
                           ; goto Factorial
    endf:
                           ; pushing the value from eax to the stack
        push eax
}
;------Power macro-----
macro Power X, N{
local CalcPower, endPoweer
                           ; loading 1 into register eax, in eax will be saved
    mov eax, 1
the result of N!
                           ; loading N into register ecx
    mov ecx, N
    fld1
                           ; loading 1 into the top of the stack st(0)
CalcPower:
        . --∧, ७
je endPoweer
fmul У
                          ; comparing ecx with 0
; end loop if ecx == 0
                           ; st(0) <- st(0) * X
         fmul X
                            ; ecx <- ecx - 1
        dec ecx
        endPoweer:
       fstp [resPow]
                           ; writing the result of x^N to memory in resPow, with
clearing the stack
```

```
}
;-----e^x macro-----
macro EpowX X, N{
local Ex_Loop, Start_Ex_Loop, end_Ex_Loop
Ex_Loop:
                                ; loading N into register ebx
    mov ebx, N
Start_Ex_Loop:
                            ; compare ebx with 0
; end the loop if ebx == 0
; saving temp value of ebx in j
        cmp ebx,0
        je end_Ex_Loop
mov [j],ebx
        Fac ebx
                                 ; calling Fac macro to calculate ebx!
                                 ; saving the result of Fac macro(ebx!) which was
        pop [resFac]
pushed to stack, in memory into resFac
        Power X, ebx
                                ; calling Power macro to calculate X^ebx
                             ; loading resPow into the top of the stack st(0); s(0) <- s(0) / resFac; s(0) <- s(0) + resSum; resSum <- s(0), and clear s(0)
        fld [resPow]
        fidiv [resFac]
        fadd [resSum]
fstp [resSum]
        mov ebx, [j]
                                ; restore the value of ebx from the value of j
                                ; ebx <- ebx - 1
        dec ebx
        end_Ex_Loop:
        nop
                             ; no operation
;-----tanh(x) macro-----
macro TH X{
        fld X
                                ; loading X into the top of the stack st(0)
        fstp [tmp]
                                ; tmp <- st(0), and clear st(0)</pre>
                               ; calling EpowX macro (e^X)
        EpowX X, [N]
        fld [resSum] ; loading resSum into the top of the stack st(0) fstp [e_To_X] ; e_To_X <- st(0), and clearing st(0)
        ; reinitialize resSum to 1
                                 ; loading 1 into the top of the stack st(0)
        fld1
        fstp [resSum]
                                ; resSum <- st(0), and clearing st(0)
        ; getting -X
                                ; loading 0 into the top of the stack st(0)
        fldz
        fsub X
                                 ; st(0) <- st(0) - X
                                ; X <- st(0), and clear st(0)
        fstp X
        EpowX X, [N]
                               ; calling EpowX macro (e^-X)
                               ; loading resSum into the top of the stack st(0); e_To_X <- st(0), and clearing st(0); loading e_To_X into the top of the stack st(0)
        fld [resSum]
        fstp [e_To_nX]
        fld [e To X]
        fadd [e_To_X] ; st(0) <- st(0) + e_To_nX 
fstp [denominator] ; denominator <- st(0), and clear st(0)
                                ; loading e_To_X into the top of the stack st(0)
        fld [e_To_X]
        ; re-assign to base its base value
        fld[tmp]
        fstp X
}
```

macro Fac:

	Входные параметры	Выходные параметры
Имя	N	закружится в стек
Тип	dd (4 bytes)	dd (4 bytes)
	Число, которое будет	
Назначение	вычислено его	N!
	факториал	
Метод передачи	По значению	По значению в стек
Функциональность	Посчитать факториал определённого числа	
макроса		

Macro Power:

	Входные параметры	Выходные параметры
Имя	X, N	resPow
Тип	dq (8 bytes), dd(4bytes)	dq (8bytes)
	Х: число для которого	
Назначение	будет вычислено tanh	X^N
	N: степень X	
		По значению из
Метод передачи	По значению	регистра FPU в памяти
		(resPow)
Функциональность	Посчитать X^N где, X вещественное число и N	
макроса	целое положительное число	

Macro EpowX:

	Входные параметры	Выходные параметры
Имя	X, N	resSum
Тип	dq (8 bytes), dd(4bytes)	dq (8bytes)
Назначение	X: число для которого будет вычислено tanh N: то N которое в формуле ряда Тейлора	e^X
Метод передачи	По значению	По значению из регистра FPU в памяти (resSum)
Функциональность макроса	Посчитать e^X где, X вещественное число	

Macro TH:

	Входные параметры:	Выходные параметры:
Имя	X	th_res
Тип	dq (8 bytes)	dq (8bytes)
Назначение	X: число для которого будет вычислено tanh	Tanh(x)
Метод передачи	По значению	По значению из регистра FPU в памяти (th_res)
Функциональность макроса	Посчитать tanh (X) где, X вещественное число	

Примеры Выполнение

```
E:\Second Year HSE\AVS\mikroproject\microProject.EXE

Enter x between [-4.4, 4.4], to calculate tanh(x): 4.5

Enter x between [-4.4, 4.4], to calculate tanh(x): 4.6

Enter x between [-4.4, 4.4], to calculate tanh(x): -4.5

Enter x between [-4.4, 4.4], to calculate tanh(x): -4.6

Enter x between [-4.4, 4.4], to calculate tanh(x): -4.6

Enter x between [-4.4, 4.4], to calculate tanh(x): 4.4

x = 4.40000

N = 12

tanh(4.400000) = 0.999006
```

E:\Second Year HSE\AVS\mikroproject\microProject.EXE

```
Enter x between [-4.4, 4.4], to calculate tanh(x): 0.5
x = 0.500000
N = 12
tanh(0.500000) = 0.462117
-
```

■ E:\Second Year HSE\AVS\mikroproject\microProject.EXE

```
Enter x between [-4.4, 4.4], to calculate tanh(x): 1.7
x = 1.700000
N = 12
tanh(1.700000) = 0.935409
-
```

■ E:\Second Year HSE\AVS\mikroproject\microProject.EXE

```
Enter x between [-4.4, 4.4], to calculate tanh(x): -3.7865
x = -3.786500
N = 12
tanh(-3.786500) = -0.998784
-
```

E:\Second Year HSE\AVS\mikroproject\microProject.EXE

```
Enter x between [-4.4, 4.4], to calculate tanh(x): -0.348726
x = -0.348726
N = 12
tanh(-0.348726) = -0.335245
-
```

■ E:\Second Year HSE\AVS\mikroproject\microProject.EXE

```
Enter x between [-4.4, 4.4], to calculate tanh(x): 0
x = 0.000000
N = 12
tanh(0.000000) = 0.000000
```