6.837 Computer Graphics

Curve Properties & Conversion, Surface Representations

Cubic Bezier Splines

•
$$P(t) = (1-t)^3$$
 P1
+ $3t(1-t)^2$ P2
+ $3t^2(1-t)$ P3
+ t^3 P4

Bernstein Polynomials

• For Bézier curves, the 1 basis polynomials/vectors are Bernstein polynomials

• For cubic Bezier curve:

$$B_1(t)=(1-t)^3$$
 $B_2(t)=3t(1-t)^2$
 $B_3(t)=3t^2(1-t)$ $B_4(t)=t^3$
(careful with indices, many authors start at 0)

Defined for any degree

General Spline Formulation

$$Q(t) = \mathbf{GBT(t)} = \text{Geometry } \mathbf{G} \cdot \text{Spline Basis } \mathbf{B} \cdot \text{Power Basis } \mathbf{T(t)}$$

- Geometry: control points coordinates assembled into a matrix (P1, P2, ..., Pn+1)
- Power basis: the monomials 1, t, t2, ...
- Cubic Bézier:

$$P(t) = \begin{pmatrix} x(t) \\ y(t) \end{pmatrix} = \begin{pmatrix} x_1 & x_2 & x_3 & x_4 \\ y_1 & y_2 & y_3 & y_4 \end{pmatrix} \begin{pmatrix} 1 & -3 & 3 & -1 \\ 0 & 3 & -6 & 3 \\ 0 & 0 & 3 & -3 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ t \\ t^2 \\ t^3 \end{pmatrix}$$

Questions?

Linear Transformations & Cubics

• What if we want to transform each point on the curve with a linear transformation **M**?

$$P'(t) = \mathbf{M} \begin{pmatrix} P_{1,x} & P_{2,x} & P_{3,x} & P_{4,x} \\ P_{1,y} & P_{2,y} & P_{3,y} & P_{4,y} \end{pmatrix} \begin{pmatrix} 1 & -3 & 3 & -1 \\ 0 & 3 & -6 & 3 \\ 0 & 0 & 3 & -3 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ t \\ t^{2} \\ t^{3} \end{pmatrix}$$

Linear Transformations & Cubics

- What if we want to transform each point on the curve with a linear transformation **M**?
 - Because everything is linear, it is the same as transforming only the control points

$$P'(t) = \mathbf{M} \begin{pmatrix} P_{1,x} & P_{2,x} & P_{3,x} & P_{4,x} \\ P_{1,y} & P_{2,y} & P_{3,y} & P_{4,y} \end{pmatrix} \begin{pmatrix} 1 & -3 & 3 & -1 \\ 0 & 3 & -6 & 3 \\ 0 & 0 & 3 & -3 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ t \\ t^{2} \\ t^{3} \end{pmatrix}$$

$$= \mathbf{M} \begin{pmatrix} P_{1,x} & P_{2,x} & P_{3,x} & P_{4,x} \\ P_{1,y} & P_{2,y} & P_{3,y} & P_{4,y} \end{pmatrix} \begin{pmatrix} 1 & -3 & 3 & -1 \\ 0 & 3 & -6 & 3 \\ 0 & 0 & 3 & -3 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ t \\ t^{2} \\ t^{3} \end{pmatrix}$$

Affine Transformations

- Homogeneous coordinates also work
 - Means you can translate, rotate, shear, etc.
 - Note though that you need to normalize P' by 1/w'

$$P'(t) = \mathbf{M} \begin{pmatrix} P_{1,x} & P_{2,x} & P_{3,x} & P_{4,x} \\ P_{1,y} & P_{2,y} & P_{3,y} & P_{4,y} \\ 1 & 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & -3 & 3 & -1 \\ 0 & 3 & -6 & 3 \\ 0 & 0 & 3 & -3 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ t \\ t^{2} \\ t^{3} \end{pmatrix}$$

$$= \mathbf{M} \begin{pmatrix} P_{1,x} & P_{2,x} & P_{3,x} & P_{4,x} \\ P_{1,y} & P_{2,y} & P_{3,y} & P_{4,y} \\ 1 & 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & -3 & 3 & -1 \\ 0 & 3 & -6 & 3 \\ 0 & 0 & 3 & -3 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ t \\ t^{2} \\ t^{3} \end{pmatrix}$$

Questions?

The Plan for Today

- Differential Properties of Curves & Continuity
- B-Splines
- Surfaces
 - Tensor Product Splines
 - Subdivision Surfaces
 - Procedural Surfaces
 - Other

Differential Properties of Curves

Motivation

- Compute normal for surfaces
- Compute velocity for animation
- Analyze smoothness

Image courtesy of Kristian Molhave on Wikimedia Commons. License: CC-BY-SA. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Velocity

- First derivative w.r.t. t
- Can you compute this for Bezier curves?

$$P(t) = (1-t)^{3} P1 + 3t(1-t)^{2} P2 + 3t^{2}(1-t) P3 + t^{3} P4$$

 You know how to differentiate polynomials...

Velocity

- First derivative w.r.t. t
- Can you compute this for Bezier curves?

$$P(t) = (1-t)^3 P1$$

+ $3t(1-t)^2 P2$
+ $3t^2(1-t) P3$
+ $t^3 P4$

• P'(t) =
$$-3(1-t)2$$
 P1
+ $[3(1-t) 2 - 6t(1-t)]$ P2
+ $[6t(1-t) - 3t 2]$ P3
+ $3t 2$ P4

Sanity check: t=0; t=1

Linearity?

- Differentiation is a linear operation
 - -(f+g)'=f'+g'
 - -(af)'=af'
- This means that the derivative of the basis is enough to know the derivative of any spline.
- Can be done with matrices
 - Trivial in monomial basis
 - But get lower-order polynomials

Tangent Vector

- The tangent to the curve P(t) can be defined as T(t)=P'(t)/||P'(t)||
 - normalized velocity, ||T(t)|| = 1
- This provides us with one orientation for swept surfaces later

Curvature Vector

- Derivative of unit tangent
 - -K(t)=T'(t)
 - Magnitude ||K(t)|| is constant for a circle
 - Zero for a straight line
- Always orthogonal to tangent, ie. $K \cdot T = 0$

Geometric Interpretation

- K is zero for a line, constant for circle
 - What constant? 1/r
- 1/||K(t)|| is the radius of the circle that touches P(t) at *t* and has the same curvature as the curve

Curve Normal

• Normalized curvature: T'(t)/||T'(t)||

Questions?

Orders of Continuity

- C0 = continuous
 - The seam can be a sharp kink
- G1 = geometric continuity
 - Tangents point to the same
 direction at the seam
- C1 = parametric continuity
 - Tangents are the same at the seam, implies G1
- C2 = curvature continuity
 - Tangents and their derivatives are the same

Orders of Continuity

- G1 = geometric continuity
 - Tangents point to the same
 direction at the seam
 - good enough for modeling
- C1 = parametric continuity
 - Tangents are the same at the seam, implies G1
 - often necessary for animation

Connecting Cubic Bézier Curves

- How can we guarantee C0 continuity?
- How can we guarantee G1 continuity?
- How can we guarantee C1 continuity?
- C2 and above gets difficult

Connecting Cubic Bézier Curves

- Where is this curve
- C0 continuous?
- G1 continuous?
- C1 continuous?
- What's the relationship between:
- the # of control points, and the # of cubic Bézier subcurves?

Questions?

- \geq 4 control points
- Locally cubic
 - Cubics chained together, again.

- \geq 4 control points
- Locally cubic
 - Cubics chained together, again.

- \geq 4 control points
- Locally cubic
 - Cubics chained together, again.

- \geq 4 control points
- Locally cubic

- Cubics chained together, again.

- \geq 4 control points
- Locally cubic
 - Cubics chained together, again.

Curve is not constrained to pass through any control points

Cubic B-Splines: Basis

A B-Spline curve is also bounded by the convex hull of its control points.

$$B_2(t) = \frac{1}{6}(3t^3 - 6t^2 + 4)$$

$$B_4(t) = \frac{1}{6}t^3$$

Cubic B-Splines: Basis

$$Q(t) = \mathbf{GBT}(\mathbf{t})$$

$$B_{B-Spline} = \frac{1}{6} \begin{pmatrix} 1 & -3 & 3 & -1 \\ 4 & 0 & -6 & 3 \\ 1 & 3 & 3 & -3 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

31

Cubic B-Splines: Basis

$$Q(t) = \frac{(1-t)^3}{6}P_1 + \frac{3t^3 - 6t^2 + 4}{6}P_2 + \frac{-3t^3 + 3t^2 + 3t + 1}{6}P_3 + \frac{t^3}{6}P_4$$

$$Q(t) = \mathbf{GBT}(\mathbf{t})$$

$$B_{B-Spline} = \frac{1}{6} \begin{pmatrix} 1 & -3 & 3 & -1 \\ 4 & 0 & -6 & 3 \\ 1 & 3 & 3 & -3 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

32

- Local control (windowing)
- Automatically C2, and no need to match tangents!

Courtesy of Seth Teller. Used with permission.

B-Spline Curve Control Points

Default B-Spline

B-Spline with derivative discontinuity

Repeat interior control point

B-Spline which passes through end points

Repeat end points

Bézier ≠ B-Spline

But both are cubics, so one can be converted into the other!

Converting between Bézier & BSpline

$$Q(t) = \mathbf{GBT(t)}$$
 = Geometry $\mathbf{G} \cdot \text{Spline Basis } \mathbf{B} \cdot \text{Power Basis } \mathbf{T(t)}$

- Simple with the basis matrices!
 - Note that this only works for $B_{Bezier} = egin{pmatrix} 1 & -3 & 3 & -1 \ 0 & 3 & -6 & 3 \ 0 & 0 & 3 & -3 \ 0 & 0 & 0 & 1 \end{pmatrix}$ a single segment of 4 control points
- P(t) = G B1 T(t) =GB1 (B2-1B2) T(t)=
 (GB1 B2-1) B2 T(t) $B_{B-Spline} = \frac{1}{6} \begin{pmatrix} 1 & -3 & 3 & -1 \\ 4 & 0 & -6 & 3 \\ 1 & 3 & 3 & -3 \\ 0 & 0 & 1 \end{pmatrix}$ • GB1 B2-1 are the control points
- for the segment in new basis.

Converting between Bézier & B-Spline

NURBS (Generalized B-Splines)

- Rational cubics
 - Use homogeneous coordinates, just add w!
 - Provides an extra weight parameter to control points

- NURBS: Non-Uniform Rational B-Spline
 - non-uniform = different spacing between the blending functions, a.k.a. "knots"
 - rational = ratio of cubic polynomials (instead of just cubic)
 - implemented by adding the homogeneous coordinate w into the control points.

Questions?

Representing Surfaces

- Triangle meshes
 - Surface analogue of polylines, this is what GPUs draw
- Tensor Product Splines
 - Surface analogue of spline curves
- Subdivision surfaces
- Implicit surfaces, e.g. f(x,y,z)=0
- Procedural
 - e.g. surfaces of revolution, generalized cylinder
- From volume data (medical images, etc.)

Triangle Meshes

- What you've used so far in Assignment 0
- Triangle represented by 3 vertices
- Pro: simple, can be rendered directly
- Cons: not smooth, needs many triangles to approximate smooth surfaces (tessellation)

Smooth Surfaces?

•
$$P(t) = (1-t)^3$$
 P1
+ $3t(1-t)^2$ P2
+ $3t^2(1-t)$ P3
+ t^3 P4

What's the dimensionality of a curve? 1D!

What about a surface?

•
$$P(u) = (1-u)^3$$
 P1
+ $3u(1-u)^2$ P2
+ $3u^2(1-u)$ P3
+ u^3 P4

•
$$P(u) = (1-u)^3$$
 P1
+ $3u(1-u)^2$ P2
+ $3u^2(1-u)$ P3
+ u^3 P4

•
$$P(u) = (1-u)^3$$
 P1
+ $3u(1-u)^2$ P2
+ $3u^2(1-u)$ P3
+ u^3 P4

•
$$P(u) = (1-u)^3$$
 P1
+ $3u(1-u)^2$ P2
+ $3u^2(1-u)$ P3
+ u^3 P4

- $P(u, v) = (1-u)^3$ P1(v)+ $3u(1-u)^2$ P2(v)+ $3u^2(1-u)$ P3(v)+ u^3 P4(v)
- Let's make the Pis move along curves!

- $P(u, v) = (1-u)^3$ P1(v)+ $3u(1-u)^2$ P2(v)+ $3u^2(1-u)$ P3(v)+ u^3 P4(v)
- Let's make the Pis move along curves!

- $P(u, v) = (1-u)^3$ P1(v)+ $3u(1-u)^2$ P2(v)+ $3u^2(1-u)$ P3(v)+ u^3 P4(v)
- Let's make the Pis move along curves!

- $P(u, v) = (1-u)^3$ P1(v)+ $3u(1-u)^2$ P2(v)+ $3u^2(1-u)$ P3(v)+ u^3 P4(v)
- Let's make the Pis move along curves!

- $P(u, v) = (1-u)^3$ P1(v)+ $3u(1-u)^2$ P2(v)+ $3u^2(1-u)$ P3(v)+ u^3 P4(v)
- Let's make the Pis move along curves!

- $P(u, v) = (1-u)^3$ P1(v)+ $3u(1-u)^2$ P2(v)+ $3u^2(1-u)$ P3(v)+ u^3 P4(v)
- Let's make the Pis move along curves!

A 2D surface patch!

- In the previous, Pis were just some curves
- · What if we make **them** Bézier curves?

- . In the previous, Pis were just some curves
- What if we make **them** Bézier curves?
- Each u=const. and v=const.

curve is a Bézier curve!

 Note that the boundary control points (except corners) are NOT interpolated!

A bicubic Bézier surface

The "Control Mesh"
16 control points

Bicubics, Tensor Product

```
• P(u,v) = B1(u) * P1(v)
    + B2(u) * P2(v)
    + B3(u) * P3(v)
    + B4(u) * P4(v)
• Pi(v) = B1(v) * Pi,1
     + B2(v) * Pi,2
     + B3(v) * Pi,3
     + B4(v) * Pi,4
```


Bicubics, Tensor Product

$$P(u, v) =$$

$$\sum_{i=1}^{4} B_i(u) \left[\sum_{j=1}^{4} P_{i,j} B_j(v) \right]$$

$$= \sum_{i=1}^{4} \sum_{j=1}^{4} P_{i,j} B_{i,j}(u, v)$$

$$B_{i,j}(u,v) = B_i(u)B_j(v)$$

i=1 j=1

Bicubics, Tensor Product

```
• P(u,v) = B1(u) * P1(v)
    + B2(u) * P2(v)
    + B3(u) * P3(v)
    + B4(u) * P4(v)
• Pi(v) = B1(v) * Pi,1
     + B2(v) * Pi,2
     + B3(v) * Pi,3
     + B4(v) * Pi,4
```

$$P(u,v) = \frac{4}{4} \int_{-\infty}^{4} \frac{4}{1-x^2} dx$$

16 control points Pi,j 16 2D basis functions Bi,j

$$= \sum_{i=1}^{4} \sum_{j=1}^{4} P_{i,j} B_{i,j}(u,v)$$

$$B_{i,j}(u,v) = B_i(u)B_j(v)$$

Recap: Tensor Bézier Patches

- Parametric surface P(u,v) is a bicubic polynomial of two variables u & v
- Defined by 4x4=16 control points P1,1, P1,2.... P4,4
- Interpolates 4 corners, approximates others
- Basis are product of two Bernstein polynomials: B1(u)B1(v); B1(u)B2(v);... B4(u)B4(v)

Questions?

Tangents and Normals for Patches

- P(u,v) is a 3D point specified by u, v
- The partial derivatives $\partial P/\partial u$ and $\partial P/\partial v$ are 3D vectors
 - Both are tangent to surface at P

© Addison-Wesley. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Tangents and Normals for Patches

- P(u,v) is a 3D point specified by u, v
- The partial derivatives $\partial P/\partial u$ and $\partial P/\partial v$ are 3D vectors
 - Both are tangent to surface at P
 - Normal is perpendicular to both, i.e.,

$$n = (\partial P/\partial u) \times (\partial P/\partial v)$$

Questions?

Recap: Matrix Notation for Curves

Cubic Bézier in matrix notation

```
point on curve
 P(t) = \begin{pmatrix} x(t) \\ y(t) \end{pmatrix} =
                                                                                                          Canonical
                                                                                                       "power basis"
\begin{pmatrix} x_1 & x_2 & x_3 & x_4 \\ y_1 & y_2 & y_3 & y_4 \end{pmatrix} \begin{pmatrix} 1 & -3 & 3 & -1 \\ 0 & 3 & -6 & 3 \\ 0 & 0 & 3 & -3 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ t \\ t^2 \\ t^3 \end{pmatrix}
       "Geometry matrix"
                                                                  "Spline matrix"
   of control points P1..P4
                                                                      (Bernstein)
                   (2 \times 4)
```

Hardcore: Matrix Notation for Patches

Not required, but convenient!

x coordinate of surface at (u,v)

$$P^x(u,v) =$$

$$(B_1(u),\ldots,B_4(u))$$

Row vector of basis functions (*u*)

$$P(u, v) = \sum_{i=1}^{4} B_i(u) \left[\sum_{j=1}^{4} P_{i,j} B_j(v) \right]$$

Column vector of basis functions (*v*)

$$\begin{pmatrix} P_{1,1}^x & \dots & P_{1,4}^x \\ \vdots & & \vdots \\ P_{4,1}^x & \dots & P_{4,4}^x \end{pmatrix} \begin{pmatrix} B_1(v) \\ \vdots \\ B_4(v) \end{pmatrix}$$

4x4 matrix of x coordinates

of the control points

Hardcore: Matrix Notation for Patches

• Curves:

$$P(t) = \mathbf{G} \mathbf{B} \mathbf{T}(t)$$

• Surfaces:

$$P^{x}(u,v) = \mathbf{T}(u)^{\mathrm{T}} \mathbf{B}^{\mathrm{T}} \mathbf{G}^{x} \mathbf{B} \mathbf{T}(v)$$

A separate 4x4 geometry matrix for x, y, z

• T = power basis

 $\mathbf{B} = \text{spline matrix}$

G = geometry matrix

Super Hardcore: Tensor Notation

- You can stack the Gx, Gy, Gz matrices into a geometry tensor of control points
 - I.e., Gki, j = the kth coordinate of control point Pi, j
 - A cube of numbers!

$$P^{k}(u,v) = \mathbf{T}^{l}(u) \mathbf{B}_{l}^{i} \mathbf{G}_{ij}^{k} \mathbf{B}_{m}^{j} \mathbf{T}^{m}(v)$$

- "Definitely not required, but nice!
 - See http://en.wikipedia.org/wiki/Multilinear_algebra

Tensor Product B-Spline Patches

- Bézier and B-Spline curves are both cubics
 - Can change between representations using matrices

- Consequently, you can build tensor product surface patches out of B-Splines just as well
 - Still 4x4 control points for each patch
 - 2D basis functions are pairwise products of B-Spline basis functions
 - Yes, simple!

Tensor Product Spline Patches

Pros

- Smooth
- Defined by reasonably small set of points

Cons

- Harder to render (usually converted to triangles)
- Tricky to ensure continuity at patch boundaries

Extensions

- Rational splines: Splines in homogeneous coordinates
- NURBS: Non-Uniform Rational B-Splines
 - Like curves: ratio of polynomials, non-uniform location of control points, etc.

Utah Teapot: Tensor Bézier Splines

Designed by Martin Newell

Image courtesy of Dhatfield on Wikimedia Commons. License: CC-BY-SA. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.

Cool: Displacement Mapping

• Not all surfaces are smooth...

© Addison-Wesley. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Cool: Displacement Mapping

- Not all surfaces are smooth...
- "Paint" displacements on a smooth surface
 - For example, in the direction of normal
- Tessellate smooth patch into fine grid, then add displacement D(u,v) to vertices

Heavily used in movies, more and more in games

Displacement Mapping Example

This image is in the public domain. Source: Wikimedia Commons.

Questions?

Subdivision Surfaces

- Start with polygonal mesh
- Subdivide into larger number of polygons, smooth result after each subdivision
 - Lots of ways to do this.
- The limit surface is smooth!

© IEEE. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

It turns out corner cutting (Chaikin's Algorithm) produces a quadratic B-Spline curve! (Magic!)

(Well, not totally unexpected, remember de Casteljau)

Subdivision Curves and Surfaces

- Idea: cut corners to smooth
- Add points and compute weighted average of neighbors
- Same for surfaces
 - Special case for irregular vertices
 - vertex with more or less than 6 neighbors in a triangle mesh

Warren et al.

Subdivision Curves and Surfaces

Advantages

- Arbitrary topology
- Smooth at boundaries
- Level of detail, scalable
- Simple representation
- Numerical stability, well-behaved meshes
- Code simplicity
- Little disadvantage:
 - Procedural definition
 - Not parametric
 - Tricky at special vertices

© IEEE. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Flavors of Subdivision Surfaces

- Catmull-Clark
 - Quads and triangles
 - Generalizes bicubics to arbitrary topology!
- Loop, Butterfly

- License: CC-BY-SA. This content is excluded from our Creative Commons license. For more information, see Triangles http://ocw.mit.edu/help/faq-fair-use/.
- Doo-Sabin, sqrt(3), biquartic...
 - and a whole host of others
- Used everywhere in movie and game modeling!
- See http://www.cs.nyu.edu/~dzorin/sig00course/

Subdivision + Displacement

Original rough mesh

Original mesh with subdivision

Original mesh with subdivision and displacement

[©] source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Questions?

Specialized Procedural Definitions

- Surfaces of revolution
 - Rotate given 2D profile curve
- Generalized cylinders
 - Given 2D profile and
 3D curve, sweep the
 profile along the 3D
 curve

Assignment 1!

Surface of Revolution

- 2D curve q(u) provides one dimension
 - Note: works also with 3D curve
- Rotation R(v) provides 2nd dimension

s(u,v)=R(v)q(u)where R is a matrix, q a vector, and s is a point on the surface

General Swept Surfaces

- Trace out surface by moving a profile curve along a trajectory.
 - profile curve $\mathbf{q}(u)$ provides one dim
 - trajectory $\mathbf{c}(u)$ provides the other
- Surface of revolution can be seen as a special case where trajectory is a circle

$$s(u,v)=M(c(v))q(u)$$

where \mathbf{M} is a matrix that depends on the trajectory \mathbf{c}

General Swept Surfaces

- How do we get **M**?
 - Translation is easy, given by c(v)
 - What about orientation?
- Orientation options:
 - Align profile curve with an axis.
 - Better: Align profile curve with frame that "follows" the curve

$$s(u,v)=M(c(v))q(u)$$

where M is a matrix that depends on the trajectory c

Frames on Curves: Frenet Frame

- Frame defined by 1st (tangent), 2nd and 3rd derivatives of a 3D curve
- Looks like a good idea for swept surfaces...

Image courtesy of Kristian Molhave on Wikimedia Commons. License: CC-BY-SA. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Frenet: Problem at Inflection!

- Normal flips!
- Bad to define a smooth swept surface

Smooth Frames on Curves

- Build triplet of vectors
 - include tangent (it is reliable)
 - orthonormal
 - coherent over the curve

• Idea:

- use cross product to create orthogonal vectors
- exploit discretization of curve
- use previous frame to bootstrap orientation
- See Assignment 1 instructions!

Normals for Swept Surfaces

• Need partial derivatives w.r.t. both *u* and *v*

$$n = (\partial \mathbf{s}/\partial u) \times (\partial \mathbf{s}/\partial v)$$

- Remember to normalize!
- One given by tangent of profile curve, the other by tangent of trajectory

$$s(u,v)=M(c(v))q(u)$$

where \mathbf{M} is a matrix that depends on the trajectory \mathbf{c}

Questions?

Implicit Surfaces

Surface defined implicitly by a function

$$f(x, y, z) = 0$$
 (on surface)
 $f(x, y, z) < 0$ (inside)
 $f(x, y, z) > 0$ (outside)

This image is in the public domain. Source: Wikimedia Commons.

Implicit Surfaces

• Pros:

- Efficient check whether point is inside
- Efficient Boolean operations
- Can handle weird topology for animation
- Easy to do sketchy modeling

• Cons:

 Does not allow us to easily generate a point on the surface

Image courtesy of Anders Sandberg on Wikimedia Commons. License: CC-BY-SA. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Questions?

Point Set Surfaces

 Given only a noisy 3D point cloud (no connectivity), can you define a reasonable surface using only the points?

- Laser range scans only give you points, so this is potentially useful

license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.

Point Set Surfaces

- Modern take on implicit surfaces
- Cool math: Moving Least Squares (MLS), partitions of unity, etc.

© ACM, Inc. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Not required in this class, but nice to know.

Ohtake et al. 2003

Questions?

That's All for Today

- Further reading
 - Buss, Chapters 7 & 8

- Subvision curves and surfaces
 - http://www.cs.nyu.edu/~dzorin/sig00course/

MIT OpenCourseWare http://ocw.mit.edu

6.837 Computer Graphics Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.