Usingscores to improve language modellingmovie plot summaries

Jorge Sáez Gómez Roelof van der Heijden Francesco Stablum

December 13, 2014

Abstract

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Donec velit est, fringilla quis mollis in, dapibus nec ipsum. Donec volutpat sapien nec nibh suscipit vehicula. In hac habitasse platea dictumst. Phasellus mattis, enim sit amet tincidunt auctor, ligula ipsum fermentum libero, ut gravida mauris risus ac magna. Vestibulum a tempor mi. Donec viverra feugiat magna, eget lobortis neque volutpat eu. Nullam vehicula vitae nunc in aliquet. Ut vulputate eget eros quis mollis. Curabitur eget egestas est. Vestibulum tincidunt nisl nec justo hendrerit, in ullamcorper mauris porta. Nullam erat tortor, aliquam non purus nec, facilisis sodales risus.

1 Introduction

In recent years, several successes have been booked for applying semantic analysis on user comments of movies. In this report we use those same techniques, but apply them to plot summaries of movies. Using these corpus of text we try to determine whether the contents of these summaries and the score these movies are rated with on the popular online movie database IMDb [?] are correlated. We do this by comparing the performance on two latent Dirichlet allocation models - one with and another without using the scores.

This project is part of the Natural Language Processing course of the UvA from Fall 2014.

2 Problem

In this section we describe the characteristics of the problem and take a closer look at the data set that we use.

2.1 Data set

The texts that we use in the model are summaries of movies. These summaries have been written by users of the popular online movie database IMDb, with the intent to outline the events that occur in the movie to the reader.

This is fundamentally different from movie reviews, as the author is not supposed to inject his or her own opinion of the movie in the summary. However, this can obviously never be fully accomplished, since the author must have a opinion on the movie in question.

An important assumption we make is that the authors wrote the summaries voluntarily, without any compensation or external influence which might affect the writing of the author. Moreover, we assume that the summary also contains the authors personal opinion on the movie, although this does not have to be explicitly mentioned. Only if this assumption holds, can we try to find a correlation between the summary and the score of the movie.

An example plot summary from the movie Big Fish (2003) from IMDb can be found below. It was written by a user who wanted to remain anonymous.

The story revolves around a dying father and his son, who is trying to learn more about his dad by piecing together the stories he has gathered over the years. The son winds up re-creating his father's elusive life in a series of legends and myths inspired by the few facts he knows. Through these tales, the son begins to understand his father's great feats and his great failings.

3 Approach

3.1 Model

In this section we describe the extended topic based model we used. It is taken from [?].

The generative version of LDA is as follows:

- 1. Draw topic proportions $\theta \mid \alpha \sim \text{Dir}(\alpha)$.
- 2. For each word:
 - (a) Draw topic assignment $z_n \mid \theta \sim \text{Mult}(\theta)$.
 - (b) Draw word $w_n \mid z_n, \beta_{1:K} \sim \text{Mult}(\beta_{zn})$.

Its graphical representation can be seen in Figure 3.1.

We however, use the an extended version of LDA, which makes use of the given scores. Because of this, a third step is added to the generative process:

Figure 1: A graphical representation of traditional LDA model.

- 1. Draw topic proportions $\theta \mid \alpha \sim \text{Dir}(\alpha)$.
- 2. For each word:
 - (a) Draw topic assignment $z_n \mid \theta \sim \text{Mult}(\theta)$.
 - (b) Draw word $w_n \mid z_n, \beta_{1:K} \sim \text{Mult}(\beta_{zn})$.
- 3. Draw response variable $y \mid z_{1:N}, \eta, \sigma^2 \sim \mathcal{N}(\eta^\top \bar{z}, \sigma^2)$.

This version can be called supervised LDA or SLDA. Its graphical representation can be seen in Figure 3.1.

Figure 2: A graphical representation of our modified LDA model.

3.1.1 Formulas

(I took this straight from the photo Francesco sent.)

$$P(\theta, s, z, p, W \mid \alpha, \beta) = \prod_{d} \operatorname{Dir}(\varphi_{d} \mid \beta)$$

$$\left[\prod_{d} \operatorname{Dir}(\theta_{d} \mid \alpha) \prod_{d} \operatorname{Mult}(\varphi_{d} \mid \theta_{d}) \operatorname{Mult}(w_{d} \mid \varphi_{d}) \right]$$

$$\int_{\varphi_{0}} \int_{\varphi_{1}} \dots \int_{\varphi_{k}} P(\theta, s, z, \varphi, W \mid \alpha, \beta, \eta, \sigma)$$

$$= \left[\prod_{k} \operatorname{Dir}(\varphi_{k} \mid \beta) \right] \left[\prod_{d} \operatorname{Dir}(\theta_{d} \mid \alpha) \mathcal{N}(\eta^{\top} \bar{z}_{d}, \sigma) \prod_{i}^{N_{d}} \operatorname{Mult}(z) \right]$$

$$\times \left[\prod_{d} \prod_{i}^{N_{d}} \operatorname{Mult}(w_{di} \mid \varphi_{z_{d}}) \right] \to \prod_{d} \prod_{w} \prod_{k} \left[\operatorname{Mult}(w \mid \varphi_{k})^{N_{dk}} \right]$$

$$P(\theta, s, z, w \mid \alpha, \beta, \eta, \sigma) = \left[\prod_{k} \int_{\varphi_{k}} \operatorname{Dir}(\varphi_{k} \mid \beta) \prod_{d} \prod_{w} \left[\operatorname{Mult}(w \mid \varphi_{k})^{N_{dk}} \right] \right]$$

$$= \left[\prod_{d} \operatorname{Dir}(\theta_{d} \mid \alpha) \mathcal{N}(s_{d} \mid \eta^{\top} \bar{z}_{d}, \sigma) \prod_{i}^{N} \operatorname{Mult}(z_{di} \mid \theta_{d}) \right]$$

$$\times \left[\prod_{k} \frac{\Gamma(\beta) \Gamma(W\beta)}{\Gamma(N_{k} + W\beta)} \prod_{w} \frac{\Gamma(N_{kw} + \beta)}{\Gamma(\beta)} \right]$$

next page

$$\left[\prod_{k} \frac{W\beta}{\Gamma(\beta)^{W} \Gamma(N_{k} + W\beta)} \prod_{w} \Gamma(N_{kw} + \beta)\right]$$

$$\times \left[\prod_{d} \mathcal{N}(s_{d} \mid \eta^{\top} \bar{z}_{d}, \sigma) \frac{\Gamma(K\alpha)}{\Gamma(\alpha)^{K} \Gamma(N_{d} + K\alpha)}\right]$$

$$\times \prod_{k} \Gamma(N_{dk} + \alpha)\right]$$

$$P(z \mid s, W, \dots) \stackrel{\text{Bayes}}{=} \frac{P(s, w \mid z, \dots) P(z \mid \dots)}{P(s, w \mid \dots)}$$

$$\bar{z}_{d} = \frac{N_{dk}}{N_{d}}$$

$$P(z_{i} = k \mid z_{-i}, s, w, \dots) \propto P(z_{i} = k \mid z_{-i}, s, w)$$

 $P(s, z, w \mid \alpha, \beta, \eta, \sigma) =$

$$= (kind \ of) \left[\prod_{k'} \frac{1}{\Gamma(N_k + W\beta)} \prod_{w} \Gamma(N_{kw} + \beta) \right] \\ \times \mathcal{N} \left(s_d \mid \eta^{\top} \frac{N_{dk}}{N_d}, \sigma \right) \frac{1}{\Gamma(N_d + K\alpha)} \prod_{k'} \Gamma(N_{dk} + \alpha)$$

and we conclude Collapsed Segmented LDA (CSLDA):

$$P(S, Z, W \mid \alpha, \beta, \eta, \sigma) = \left[\prod_{k} \frac{\Gamma(W\beta)}{\Gamma(\beta)^{W} \cdot \Gamma(N_{k} + W\beta)} \prod_{w} \Gamma(N_{kw} + \beta) \right] \times \left[\prod_{d} \mathcal{N} \left(s_{d} \mid \eta^{T} \cdot \frac{N_{dk}}{N_{d}}, \sigma \right) \frac{\Gamma(K\alpha)}{\Gamma(\alpha)^{K} \cdot \Gamma(N_{d} + K\alpha)} \prod_{k} \Gamma(N_{dk} + \alpha) \right]$$

Where we used $\frac{N_{dk}}{N_d} \equiv \bar{Z}_d$

3.1.2 Transformation to log-space

Now we transform into log-space:

$$\begin{split} \log P(S, Z, W \mid \alpha, \beta, \eta, \sigma) = \\ \left[\sum_{k} \log \Gamma(W\beta) - W \log \Gamma(\beta) - \log \Gamma(N_k + W\beta) + \sum_{w} \log \Gamma(N_{kw} + \beta) \right] + \\ \left[\sum_{d} \underbrace{-\log \sigma - \frac{1}{2} \log(2\pi) - \frac{\left(s_d - \eta^T \cdot \frac{N_{dk}}{N_d}\right)^2}{2\sigma^2}}_{\text{Normal distribution}} + \\ \log \Gamma(K\alpha) - K \log \Gamma(\alpha) - \log \Gamma(N_d + K\alpha) + \sum_{k} \log \Gamma(N_{dk} + \alpha) \right] \end{split}$$

3.1.3 Rewriting log gamma function

The logarithm of the gamma function can be rewritten as follows [?]:

$$\log \Gamma(z) = -\gamma z - \log z + \sum_{j=1}^{\infty} \left[\frac{z}{j} - \log \left(1 + \frac{z}{j} \right) \right]$$
 (2)

where γ is the Euler-Mascheroni constant. We apply this to $\sum_k \sum_w \log \Gamma(N_{kw} + \beta)$, which then becomes:

$$= \sum_{k,w} -\gamma (N_{kw} + \beta) - \log(N_{kw} + \beta) + \sum_{j=1}^{\infty} \frac{N_{kw} + \beta}{j} - \log\left(1 + \frac{N_{kw} + \beta}{j}\right)$$
$$= -\gamma (N + KW\beta) - \sum_{k,w} \log(N_{kw} + \beta) - \sum_{j=1}^{\infty} \frac{N_{kw} + \beta}{j} - \log\left(\frac{N_{kw} + \beta + j}{j}\right)$$

Note that the term $-\gamma(N+KW\beta)$ serves as a normalisation constant for this dataset. Since we do not need the exact probabilities but only the proportional probabilities during the algorithms execution, we can discard those terms.

$$\Rightarrow -\sum_{k,w} \log(N_{kw} + \beta) - \sum_{j=1}^{\infty} \frac{N_{kw} + \beta}{j} - \log\left(\frac{N_{kw} + \beta + j}{j}\right)$$

$$= -\sum_{k,w} \log(N_{kw} + \beta) - \sum_{j=1}^{\infty} \frac{N_{kw} + \beta}{j} - \log(N_{kw} + \beta + j) + \log(j)$$

$$= -\sum_{k,w} \log(N_{kw} + \beta) - \sum_{j=1}^{\infty} \left(\frac{N_{kw} + \beta}{j} + \log(j)\right) + \sum_{j=1}^{\infty} \log(N_{kw} + \beta + j)$$

$$= \sum_{j=1}^{\infty} \left(\frac{N + KW\beta}{j} + KW\log(j)\right) - \sum_{k,w} \log(N_{kw} + \beta) + \sum_{j=1}^{\infty} \log(N_{kw} + \beta + j)$$

$$= \sum_{j=1}^{\infty} \left(\frac{N + KW\beta}{j} + KW\log(j)\right) - \sum_{k,w} \sum_{j=0}^{\infty} \log(N_{kw} + \beta + j)$$

Again, $\sum_{j=1}^{\infty} \frac{N+KW\beta}{j} + KW \log(j)$ is a constant for this dataset, so we can discard it. This results in the following proportionality:

$$\sum_{k,w} \log \Gamma(N_{kw} + \beta) \propto -\sum_{k,w} \sum_{j=0}^{\infty} \log(N_{kw} + \beta + j)$$
 (3)

Using similar steps, we can also simplify

$$\sum_{k} \log \Gamma(N_k + W\beta) \propto -\sum_{k} \sum_{j=0}^{\infty} \log(N_k + W\beta + j)$$
 (4)

$$\sum_{k,d} \log \Gamma(N_{dk} + \alpha) \propto -\sum_{k,d} \sum_{j=0}^{\infty} \log(N_{dk} + \alpha + j)$$
 (5)

$$\sum_{d} \log \Gamma(N_d + K\alpha) \propto -\sum_{d} \sum_{j=0}^{\infty} \log(N_d + K\alpha + j)$$
 (6)

Putting these together gives us the following proportionality:

$$\log P(S, Z, W \mid \alpha, \beta, \eta, \sigma) \propto \frac{1}{2\sigma^2} \sum_{d} \left(s_d - \eta^T \cdot \frac{N_{dk}}{N_d} \right)^2 - \sum_{j=0}^{\infty} \sum_{d} \log(N_d + K\alpha + j) - \sum_{j=0}^{\infty} \sum_{k,d} \log(N_{dk} + \alpha + j) - \sum_{j=0}^{\infty} \sum_{k,d} \log(N_{kk} + \beta + j) - \sum_{j=0}^{\infty} \sum_{k,w} \log(N_{kw} + \beta + j)$$

3.1.4 Estimating response parameters

Maximum a posteriori (MAP) estimate for the η hyperparameter:

$$\begin{split} \nabla_{\eta_k} \log p(S, Z, W \mid \alpha, \beta, \eta, \sigma) &= \sum_{d} \frac{\frac{N_{dk}}{N_d} \left(s_d - \eta^T \frac{N_{d.}}{N_d} \right)}{\sigma^2} = \\ &= \sum_{d} \frac{s_d \frac{N_{dk}}{N_d}}{\sigma^2} - \sum_{d} \frac{\frac{N_{dk}}{N_d} \left(\eta^T \frac{N_{d.}}{N_d} \right)}{\sigma^2} = 0 \\ \Rightarrow \sum_{d} s_d \frac{N_{dk}}{N_d} &= \sum_{d} \frac{N_{dk}}{N_d} \left(\sum_{k'} \eta_{k'} \frac{N_{dk'}}{N_d} \right) = \sum_{d} \frac{N_{dk}}{N_d} \left(\eta_k \frac{N_{dk}}{N_d} + \sum_{k' \neq k} \eta_{k'} \frac{N_{dk'}}{N_d} \right) \\ \Rightarrow \sum_{d} s_d \frac{N_{dk}}{N_d} &= \eta_k \sum_{d} \left(\frac{N_{dk}}{N_d} \right)^2 + \sum_{d} \left(\frac{N_{dk}}{N_d} \sum_{k' \neq k} \eta_{k'} \frac{N_{dk'}}{N_d} \right) \\ \Rightarrow \sum_{d} \left(s_d \frac{N_{dk}}{N_d} - \frac{N_{dk}}{N_d} \sum_{k' \neq k} \eta_{k'} \frac{N_{dk'}}{N_d} \right) = \eta_k \sum_{d} \left(\frac{N_{dk}}{N_d} \right)^2 \\ \Rightarrow \sum_{d} \frac{N_{dk}}{N_d} \left(s_d - \sum_{k' \neq k} \eta_{k'} \frac{N_{dk'}}{N_d} \right) = \eta_k \sum_{d} \left(\frac{N_{dk}}{N_d} \right)^2 \\ \Rightarrow \eta_k &= \frac{\sum_{d} \frac{N_{dk}}{N_d} \left(s_d - \sum_{k' \neq k} \eta_{k'} \frac{N_{dk'}}{N_d} \right)}{\sum_{d} \left(\frac{N_{dk}}{N_d} \right)^2} \end{split}$$

Trying to apply the previous formula as an update rule for η does not converge. Instead, the following update can be used:

$$\eta_k^{new} \leftarrow (1 - \gamma)\eta_k^{old} + \gamma \frac{\sum_d \frac{N_{dk}}{N_d} \left(s_d - \sum_{k' \neq k} \eta_{k'} \frac{N_{dk'}}{N_d} \right)}{\sum_d \left(\frac{N_{dk}}{N_d} \right)^2 + \varepsilon}$$

With $1 \gg \gamma > 0$ in order for the previous series to converge and $1 \gg \varepsilon > 0$ is a smoothing constant.

3.1.5 Gibbs Sampler

Gibbs sampler:

$$P(z_{di} = k \mid Z^{\setminus i}, S, W, \alpha, \beta, \eta, \sigma) \propto P(z_{di} = k, Z_{-i}, S, W, \alpha, \beta, \eta, \sigma)$$

$$\propto \left[\prod_{k'} \frac{\prod_{w} \Gamma(N_{k'w}^{\setminus i} + \mathbb{I}(k' = k \wedge w = w_{di}) + \beta)}{\Gamma(N_{k'}^{\setminus i} + \mathbb{I}(k' = k) + W\beta)} \right] \times$$

$$\mathcal{N}\left(s_{d} \mid \eta^{\top} \frac{N_{dk'}^{\setminus i} + \mathbb{I}(k' = k)}{N_{d}}, \sigma\right) \prod_{k'} \Gamma(N_{dk'}^{\setminus i} + \mathbb{I}(k' = k) + \alpha)$$

Or in log-space:

$$\propto \sum_{k',w} \log \Gamma(N_{k'w}^{\setminus i} + \mathbb{I}(k' = k \land w = w_{di}) + \beta) - \log \Gamma(N_{k'}^{\setminus i} + \mathbb{I}(k' = k) + W\beta)$$
$$-\frac{1}{2\sigma^2} \left(s_d - \eta^{\top} \frac{N_{dk'}^{\setminus i} + \mathbb{I}(k' = k)}{N_d}\right)^2 + \sum_{k'} \log \Gamma(N_{dk'}^{\setminus i} + \mathbb{I}(k' = k) + \alpha)$$

We rewrite the log gamma terms again to get:

$$\propto \sum_{j=0}^{\infty} \sum_{k'} \log(N_{k'}^{\setminus i} + \mathbb{I}(k'=k) + W\beta + j) - \log(N_{dk'}^{\setminus i} + \mathbb{I}(k'=k) + \alpha + j) - \sum_{j=0}^{\infty} \sum_{k',w} \log(N_{k'w}^{\setminus i} + \mathbb{I}(k'=k) + k \wedge w = w_{di}) + \beta + j) - \frac{1}{2\sigma^2} \left(s_d - \eta^{\top} \frac{N_{dk'}^{\setminus i} + \mathbb{I}(k'=k)}{N_d} \right)^2$$

$$\left(s_d - \eta^{\top} \frac{N_{dk'}^{\setminus i} + \mathbb{I}(k'=k)}{N_d} \right)^2 \rightarrow \left(s_d - \eta^{\top} \frac{\sum_{k} N_{dk'} e_k + \mathbb{I}(k'=k)}{N_d} \right)^2$$

4 Experiments

5 Discussion