

CSE211 – Formal Languages and Automata Theory

U1L8 – Constructing DFA

Dr. P. Saravanan

School of Computing SASTRA Deemed University

Agenda

- Recap of previous class
 - Types of Automata
 - Pictorial representation of Automaton
 - Introduction to Finite Automata
 - Deterministic Finite Automata(DFA)
 - Definition of DFA
- Notations of DFA
- Extended transition function of DFA
- Designing DFA-Examples

Deterministic Finite Automata

A deterministic finite automaton (DFA) is a 5-tuple notation:

$$A = (Q, \Sigma, \delta, q_0, F)$$
 where

- Q is a finite set of states
- lacksquare Σ is an alphabet
- $\delta: Q \times \Sigma \rightarrow Q$ is a transition function
- $q_0 \in \mathcal{Q}$ is the initial state
- $F \subseteq \mathcal{Q}$ is a set of accepting states (or final states).
- In transition diagrams, the accepting states will be denoted by double loops

Designing DFA Example-1

■ Design a FA with $\Sigma = \{0, 1\}$ accepts the only input 101

Solution:

How a DFA processes strings

• Given an input string $x = a_1 a_2 ... a_n$, if

then x is "accepted"; otherwise, "rejected."

Every transition is deterministic.

Designing DFA: Example 2

- Design an FA A to accept the language
- $L = \{x \bigcirc y \mid x \text{ and } y \text{ are any strings of 0's and 1's} \}.$
 - Examples of strings in $L=\{0.1, 1.1010, 100011...\}$
- Transition diagram

Why is it deterministic?

- Transition diagram

Transition Table

	10-1	مناله	了 个 向
8 (20,) =	oro.
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
{ (71,	_	
	A .	1 1Z	

	0	1
$\int q_0$	q_2	q_0
	q_1	q_1
q_2	q_2	q_1

 \rightarrow : initial state; *: final state

Extending transition function to strings

• Given an input string $x = a_1 a_2 ... a_n$, if

$$\delta(p, a_1) = q_1, \, \delta(q_1, a_2) = q_2,$$
...,
 $\delta(q_{i-1}, a_i) = q_i,$
...,
 $\delta(q_{n-1}, a_n) = q_n, \quad \text{and } q_n \in F,$

then the extended transition $\hat{\delta}$ is defined as

$$\hat{\delta}(p,x)=q$$

Extended transition function for Strings

- Also may be defined recursively
- Recursive definition for $\hat{\delta}$

Basis:
$$\hat{\delta}(q, \varepsilon) = q$$
.

Basis: $\hat{\delta}(q, \varepsilon) = q$.

Induction: if $w = \sqrt{a}$ (a is the last symbol of w), then

$$\hat{\delta}(q, w) = \delta \hat{\delta}(q, x), a) = 0$$

The graphical representation is

The Language of a DFA

■ The language of a DFA A is defined as

$$L(A) = \{ w \mid \hat{\delta}(q_0, w) \text{ is in } F \}$$

■ If *L* is *L*(*A*) for some DFA *A*, then we say *L* is a regular language

Designing DFA Example-3

■ Design a FA with $\Sigma = \{0, 1\}$ accepts those string which starts with 1 and ends with 0.

Designing DFA Example-4

■ Design FA with $\Sigma = \{0, 1\}$ accepts even number of 0's and even number of 1's

Summary

- Types of Automata
- Pictorial representation of Automaton
- Introduction to Finite Automata
- Deterministic Finite Automata(DFA)
- Definition of DFA
- Notations of DFA
- Extended transition function of DFA
- Designing DFA-Examples

References

- John E. Hopcroft, Rajeev Motwani and Jeffrey D.
 Ullman, Introduction to Automata Theory, Languages, and Computation, Pearson, 3rd Edition, 2011.
- Peter Linz, An Introduction to Formal Languages and Automata, Jones and Bartle Learning International, United Kingdom, 6th Edition, 2016.

Next Class:

Non-deterministic Finite Automata(NFA)

THANK YOU.