Symulacja procesów rzadkich przy pomocy równania typu Master, algortym Gillespie

Metody Monte Carlo w fizyce Nanoinżynieria materiałów

Łukasz Ruba

Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie

18 kwietnia 2024

Spis treści

	Cel ćwiczenia	3
1	Wstęp teoretyczny	3
2	Metodyka	4
3	Wyniki	5
4	Wnioski	7
	Literatura	8

Cel ćwiczenia

Celem ćwiczenia było obliczenie zawartości składników reakcji chemicznej o dobrze zdefiniowanych parametrach kinetycznych przy użyciu algorytmu Gillespie.

1 Wstęp teoretyczny

W poniższym sprawozdaniu rozpatrywano układ do którego dodawano ze stałą szybkością k_1 substrat x_1 oraz z szybkością k_2 substrat x_2 . Chcąc, aby odwzorowywało to układy chemiczne założono, że cząsteczki x_1 oraz x_2 mogą wejść ze sobą w reakcję tworząc składnik x_3 z szybkością k_3 [1]:

$$x_1 + x_2 \to x_3. \tag{1}$$

Składnik x_3 usuwany jest z szybkością zależną od ilości x_3 skalowanej pewną stałą k_4 . Przy pomocy układu równań różniczkowych można zapisać dynamikę zachodzących procesów:

$$\begin{cases} x_1 + x_2 \xrightarrow{k_3} x_3 \\ x_3 \xrightarrow{k_4} 0 \end{cases} \Rightarrow \frac{dx_3}{dt} = k_3 x_1 x_2 - k_4 x_3 \Rightarrow \frac{dx_3}{dt} = \Gamma_3(t) - \Gamma_4(t), \tag{2}$$

$$\begin{cases} x_1 \xrightarrow{\Gamma_3} 0 \\ 0 \xrightarrow{k_1} 1 \end{cases} \Rightarrow \frac{dx_1}{dt} = -k_3 x_1 x_2 + k_1 \Rightarrow \frac{dx_1}{dt} = -\Gamma_3(t) + \Gamma_1(t), \tag{3}$$

$$\begin{cases} x_2 \xrightarrow{\Gamma_3} 0 \\ 0 \xrightarrow{k_2} 1 \end{cases} \Rightarrow \frac{dx_2}{dt} = -k_3 x_1 x_2 + k_2 \Rightarrow \frac{dx_2}{dt} = -\Gamma_3(t) + \Gamma_2(t). \tag{4}$$

Można zauważyć, że każde równanie ([2, 3, 4]) ma postać typu Master. Częstość zmian danych substratów Γ_i zależy zatem od ich ilości oraz wartości szybkości k_i . Porównując środkową i prawą część układu równań można wyrazić częstości jako:

$$\Gamma_1(t) = k_1,\tag{5}$$

$$\Gamma_2(t) = k_2,\tag{6}$$

$$\Gamma_3(t) = k_3 x_1 x_2,\tag{7}$$

$$\Gamma_4(t) = k_4 x_3. \tag{8}$$

W algorytmie możemy zmiany te wyrazić w sposób dyskretny i losowy jako:

$$\Gamma_1: \quad x_1 \to x_1 + 1, \tag{9}$$

$$\Gamma_2: \quad x_2 \to x_2 + 1, \tag{10}$$

$$\Gamma_3: \quad x_1 \to x_1 - 1, \quad x_2 \to x_2 - 1, \quad x_3 \to x_3 + 1,$$
 (11)

$$\Gamma_4: \quad x_3 \to x_3 - 1, \tag{12}$$

przy założeniu, że poszczególnych składników x_1 , x_2 i x_3 w układzie jest niewiele i opisywane są niewielkimi liczbami naturalnymi.

Zmiana stanu układu może wiązać się ze zmianą ilości pojedynczego składnika jak również kilku składników, w zależności od charakteru zdarzenia. Jest to zatem złożony proces stochastyczny, w którym fluktuacje mogą silnie wpłynąć na jego dynamikę.

W celu symulowania takich procesów metodą Monte Carlo można posłużyć się algorytmem Gillespie. Na wstępie należy założyć, że dynamika rozważanego procesu ma charakter losowy, a szybkości zachodzących zmian opisywane są za pomocą odpowiadających im częstości: $\{\Gamma_1, \Gamma_2, \dots, \Gamma_n\}$ - co de facto oznacza liczbę realizacji danego stanu na jednostkę czasu. Algorytm Gillespie jest iteracyjny i w każdej iteracji oblicza się:

1. sumę częstości wszystkich procesów:

$$\Gamma_{max} = \sum_{i=1}^{n} \Gamma_i,\tag{13}$$

2. losuje się przedział czasu Δt , w którym nie zachodzą zmiany w układzie:

$$U_1 \sim U(0,1) \quad \rightarrow \quad \Delta t = -\frac{1}{\Gamma_{max}} ln(U_1),$$
 (14)

3. po czasie Δt następuje zmiana stanu układu, w sposób losowy określany jest numer zdarzenia m:

$$U_2 \sim U(0,1) \rightarrow m = min \left\{ s; \sum_{i=1}^s \frac{\Gamma_i}{\Gamma_{max}} > U_2, \quad s = 1, 2, 3, ..., n \right\},$$
 (15)

- 4. na podstawie informacji o numerze zdarzenia, określa się jego rodzaj i dokonuje się zmiany stanu układu na podstawie równań [9, 10, 11, 12],
- 5. daną iterację kończy się zmieniając aktualny czas symulacji:

$$t + \Delta t \to t$$
 (16)

6. symulację kończy się, gdy zachodzi warunek: $t>t_{max}$.

2 Metodyka

Opisany algorytm we wstępie teoretycznym (1) zaimplementowano w kodzie napisanym w języku C++.

Wykonano symulację dla parametrów: $k_1 = 1$, $k_2 = 1$, $k_3 = 0.001$, $k_4 = 0.01$ oraz wartości początkowych składników $x_1(t=0) = 120$, $x_2(t=0) = 80$, $x_3(t=0) = 1$. Czas t_{max} wynosił 200 sekund.

W trakcie trwania algorytmu zapisywano wartości każdego substratu w każdej chwili czasowej. Dodatkowo, chcąc jak najlepiej estymować wartość x_3 wykonywano kilka powtórzeń algorytmu, a następnie uśredniano jego wartości dla N=50 binów czasowych, które obliczano jako:

$$\delta t = \frac{t_{max}}{N}. (17)$$

Wartość średnią x_3 obliczono jako:

$$\langle x_3 \rangle = \frac{1}{P} \sum_{i}^{P} h_1(i),$$
 (18)

gdzie P to liczba powtórzeń algorytmu, a ciąg h_1 to suma wartości x_3 w danym binie czasowym podzielona przez ilość zliczeń w tym binie.

Ponadto, obliczono wartości odchylenia standardowego dla każdego punktu:

$$\sigma = \sqrt{\frac{\langle x_3^{(2)} \rangle - \langle x_3^{(1)} \rangle^2}{P}}.$$
(19)

Wykonano dwie symulacje, dla P=5 oraz P=100. Wszystkie grafiki wykonany przy pomocy biblioteki matplotlib w Python.

3 Wyniki

Na Rysunku 1 przedstawiono wynik symulacji z pięciu przebiegów algorytmu Gillespie. Każda symulacja startowała z tym samym zestawem parametrów wymienionych w sekcji 2. Ilości każdego składnika w danej chwili czasowej różniły się od siebie przy każdym podejściu, ale można zauważyć że trendy krzywych dla x_1 , x_2 i x_3 były takie same: zawartość x_1 oraz x_2 malała, zaś x_3 rosło przez około 50 sekund. Następnie wartości substratów fluktuowały wokół pewnej stałej wartości.

Rysunek 1: Ilość składników x_1, x_2 i x_3 dla pięciu symulacji algorytmem Gillespie.

Na Rysunku 2 przedstawiono krzywą z uśredniania pięciu przebiegów zawartości składnika x_3 (wzór [18]) w układzie. Zgodnie ze wzorem [19] obliczono w każdym punkcie wartość odchylenia standardowego, które reprezentowane jest przez czarne słupki. Już pięć symulacji pozwoliło znacznie wygładzić linię x_3 , która nie fluktuuje tak mocno jak pojedyncze przebiegi.

W kolejnym kroku dokonano uśrednienia zawartości składnika x_3 dla 100 symulacji. Wyniki zaprezentowano na Rysunku 3. Krzywa jest bardzo gładka, a odchylenia standardowe bardzo małe. W celu sprawdzenia poprawności obliczania odchylenia standardowego całą operację przeprowadzono kilkukrotnie dla różnych ziaren generatora liczb pseudolosowych podstawowego C++ oraz generatora Mersenne Twister i w każdym przypadku otrzymywano małe wartości σ_{x_3} . Wyniki z których utworzono wykres z Rys. 3 przedstawiono w Tabeli 1.

Rysunek 2: Uśredniona wartość składnika x_3 (linia czerwona) z pięciu symulacji wraz z odchyleniami standardowymi (czarne słupki) pokazana na tle przebiegów wszystkich x_3 wziętych do uśrednienia.

Rysunek 3: Uśredniona wartość składnika x_3 (linia czerwona) ze 100 symulacji wraz z odchyleniami standardowymi (czarne słupki) pokazana na tle przebiegów wszystkich x_3 wziętych do uśrednienia.

Tabela 1: Tabela wartości x_3 uśrednionego dla 100 losowań oraz odchyleń standardowych w każdej chwili czasowej.

Czas [s]	Zawartość x_3 [-]	Std. [-]	Czas [s]	Zawartość x_3 [-]	Std. [-]
2	16.7158	0.031174	102	88.148	0.209444
6	39.019	0.0727149	106	89.4146	0.224197
10	51.4379	0.0773506	110	89.9679	0.222085
14	58.7597	0.0615479	114	90.2112	0.191932
18	63.5217	0.0946704	118	90.9379	0.224614
22	67.6065	0.117347	122	90.916	0.166966
26	71.2707	0.0958277	126	91.4566	0.159104
30	73.5246	0.0868577	130	91.3202	0.207936
34	75.693	0.0745055	134	92.0921	0.201651
38	77.0413	0.058354	138	92.3858	0.204541
42	78.5679	0.0746632	142	92.694	0.16447
46	79.3556	0.0933797	146	92.1401	0.152932
50	80.1372	0.135418	150	92.9247	0.181775
54	81.313	0.172333	154	92.5397	0.236619
58	81.7229	0.175939	158	92.8585	0.162129
62	82.2051	0.193689	162	92.4932	0.243421
66	83.3433	0.160374	166	93.321	0.268438
70	84.2558	0.147286	170	93.2377	0.25827
74	84.5209	0.173035	174	94.0531	0.177583
78	84.8301	0.151128	178	94.165	0.171634
82	85.2806	0.144138	182	95.5473	0.168392
86	85.2306	0.179809	186	95.3483	0.139026
90	86.0776	0.184416	190	94.7424	0.110361
94	86.8297	0.170851	194	94.8728	0.0862639
98	87.2731	0.191569	198	95.8079	0.129306

4 Wnioski

Procesy stochastyczne mogą być przydatne nawet w takich dziedzinach nauki jak badanie kinetyki reakcji chemicznych, czego przykładem jest zaprezentowany algorytm Gillespie. Na jego podstawie udało się wysymulować zawartość substratów x_1 , x_2 i x_3 .

Pokazano, że wielokrotne powtarzanie symulacji pozwala na odszumienie wyników krzywych reprezentujących zawartości składników w układzie poprzez pozbycie się fluktuacji, będących efektem stochastycznej natury algorytmu. Ponadto, wartości odchylenia standardowego znacząco spadają wraz ze wzrostem uśrednień, co jest zgodne z przypuszczeniami teoretycznymi.

LITERATURA LITERATURA

Literatura

[1] Tomasz Chwiej, dr hab. inż., skrypt do zadania "Monte Carlo: symulacja procesów rzadkich przy pomocy równania typu Master, algorytm Gillespie", AGH, Kraków, 12 kwietnia 2024.