1. Left actions of groups on themselves

(a) Show that if H has finite index n in G, then there is a normal subgroup $K \subseteq G$ with $K \leq H$ and $|G:K| \leq n!$.

Proof. Suppose H has finite index n in G. As described in DF, §4.2, p. 119, let us label the left cosets of H with integers $1, 2, \ldots, n$. Thus, we can list the distinct left cosets of H in G as a_1H, a_2H, \ldots, a_mH and for each $g \in G$ the permutation σ_g may be described as a permutation of the indices $1, 2, \ldots, n$ as follows:

$$\sigma_q(i) = j$$
 if and only if $ga_i H = a_j H$

Hence if we let $\pi_H = \{\sigma_g \mid g \in G\}$. That is, π_H is the permutation representation afforded by the action. Then, by DF, $\S4.2$, Theorem 3, we have that the kernel of the action (i.e. the kernel of π_H) is $\cap_{x \in G} xHx^{-1}$, and $\ker \pi_H$ is the largest normal subgroup of G contained in H. Hence, we know that $\ker \pi_H \subseteq G$ and $\ker \pi_H \subseteq H$. Thus, this normal subgroup exists and we will call it K. Now we need to show that $|G:K| \leq n!$.

We know
$$|G:H|=n$$
.

(b) Prove that every non-abelian group of order 6 has a non-normal subgroup of order 2. Use this to classify all groups over order 6 (up to isomorphism). [Hint: What are the possible orders of elements? For the second part, what are the abelian groups of order 6? For a non-abelian order-6 group, produce an injective homomorphism into S_3 .]

Proof. Let G be a group such that G is non-abelian and |G| = 6. Since $|G| < \infty$, we have that G is a finite group. In addition, note $2 \mid 6$ and 2 is prime. Hence, we can apply Cauchy's Theorem which states that G has an element of order 2. Let us call this element $x \in G$. Then,

$$H = \langle x \rangle = \{e, x\}$$

Note that $e, x \in H, G$, so $H \subset G$ and $H \neq \emptyset$. In addition,

$$xe^{-1} = xe$$
$$= x \in H$$

and,

$$ex^{-1} = ex$$
$$= x \in H$$

Hence, for every $x, y \in H$, we have that $xy^{-1} \in H$. Thus, H satisfies the subgroup criterion and so $H \leq G$. Now fix $y \in G$ such that $y \neq x, e$. We know such an element exists since |G| = 6. Furthermore, since G is non-abelian, we can fix y such that $xy \neq yx$. If we could not, then it would mean that x commutes with all elements of G. Consider yxy^{-1} and suppose $yxy^{-1} \in H$. Then $yxy^{-1} = x$ or $yxy^{1} = e$. In the first case, note that $yxy^{-1} = x$ implies that yx = xy, a contradiction. In the second case, we have that $yxy^{1} = e$ implies

1

that yx = y, which implies that x = e. However, we know $x \neq e$, so this also a contradiction. Hence, $yxy^{-1} \notin H$ and thus H is a non-normal subgroup of order 2.

2. Conjugacy classes

(a) If the center of G is of index n, prove that every conjugacy class has at most n elements.

Proof. Recall that the center of G is defined as $Z(G) = \{g \in G \mid gx = xg \text{ for all } x \in G\}$. We have that |G|: Z(G)| = n. Now fix $s \in G$. Then $C_G(s) = \{g \in G \mid gsg^{-1} = s\}$. If $gsg^{-1} = s$, then we can multiply by g on the right and get gs = sg. Thus, we can reformulate the above definition as $C_G(s) = \{g \in G \mid gsg^{-1} = s\}$. Now observe that if $g \in Z(G)$, then gx = xg for all $x \in G$. Hence, we have that $g \in C_G(s)$ and so $Z(G) \subset C_G(s)$. Thus, $|Z(G)| \leq |C_G(s)|$. Thus, by Lagrange's Theorem we have,

$$|G: C_G(s)| = \frac{|G|}{|C_G(s)|} \le \frac{|G|}{|Z(G)|} = |G: Z(G)| = n$$

Thus, by DF, §4.3, Proposition 6, we have that the number of conjugates of s in G is less than or equal to n. Hence, the conjugacy class of s (i.e. orbit of s in G acting on itself of conjugation) has at most n elements. Since s was arbitrary, this holds for every $s \in G$. \square

- (b) A subgroup $M \leq G$ is maximal if $M \neq G$ and if $M \leq H \leq G$, then H = M of H = G. (Assume G is finite).
 - (i) Prove that if M < G is maximal, then $N_G(M) = M$ or G. (ii) Deduce that if a maximal subgroup M is not normal, then the number of non-identity elements of G that are contained in conjugates of M is at most (|M| 1)|G : M|, i.e.

$$\left| \left(\bigcup_{g \in G} gMg^{-1} \right) - \{1\} \right| \leqslant (|M| - 1)|G:M|$$

(iii) Deduce further that for any H < G, the set $\{gHg^{-1} \mid g \in G\}$ does not partition G (in contrast to the set of left cosets).

Proof. (i) Suppose M < G is maximal and consider $N_G(M) = \{g \in G \mid gMg^{-1} = M\}$. Suppose M is normal. Then by DF, §3.1, Theorem 6, we have that $N_G(M) = G$. Now suppose M is not normal.

(ii)

(c) Suppose G is a finite group with r conjugacy classes. Let g_1, \ldots, g_r be representatives of those r distinct conjugacy classes. Show that if these representatives all pairwise commute, then G is abelian.

Proof. Suppose G is a finite group with r conjugacy classes. Suppose that the representatives for these classes, g_1, g_2, \ldots, g_r pairwise commute. Fix $i, j \in \{1, \ldots, r\}$ with $i \neq j$. Then, $g_i g_j = g_j g_i$. Now fix a in the conjugacy class of g_i and b in the conjugacy class of g_j . Then there exists $g, g' \in G$ such that $gag^{-1} = g_i$ and $g'bg'^{-1} = g_j$. Hence, we have that $g_i g_j = g_j g_i$ implies,

$$gag^{-1}g'bg'^{-1} = g'bg'^{-1}gag^{-1}$$

(d) Let G be a finite group of odd order. Prove that if $x \neq 1$, then x and x^{-1} are not conjugate.

Proof. Suppose that G is a finite group of odd order and that $x \in G$ such that $x \neq 1$. Suppose x and x^{-1} are conjugate in G. That is, there is some $g \in G$ such that $x^{-1} = gxg^{-1}$. This implies that $x^{-1}g = gx$ and hence $x^{-1}gx^{-1} = g$