```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from tabulate import tabulate
import itertools
import plotly.express as px
from sklearn.cluster import KMeans
```

In [9]: path=r"C:\Users\Sruth\Downloads\cognifyz dataset.csv"
restaurant\_df=pd.read\_csv(path)
restaurant\_df

Out[9]:

| : |      | Restaurant<br>ID | Restaurant<br>Name             | Country<br>Code | City                | Address                                                    | Locality                                             | Locality<br>Verbose                                     | Longitude  | Latitude  | Cuisines                                  |  |
|---|------|------------------|--------------------------------|-----------------|---------------------|------------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------|------------|-----------|-------------------------------------------|--|
| • | 0    | 6317637          | Le Petit<br>Souffle            | 162             | Makati City         | Third Floor,<br>Century City<br>Mall, Kalayaan<br>Avenu    | Century City<br>Mall, Poblacion,<br>Makati City      | Century City<br>Mall, Poblacion,<br>Makati City,<br>Mak | 121.027535 | 14.565443 | French,<br>Japanese,<br>Desserts          |  |
|   | 1    | 6304287          | Izakaya<br>Kikufuji            | 162             | Makati City         | Little Tokyo,<br>2277 Chino<br>Roces Avenue,<br>Legaspi    | Little Tokyo,<br>Legaspi Village,<br>Makati City     | Little Tokyo,<br>Legaspi Village,<br>Makati City,<br>Ma | 121.014101 | 14.553708 | Japanese                                  |  |
|   | 2    | 6300002          | Heat - Edsa<br>Shangri-La      | 162             | Mandaluyong<br>City | Edsa Shangri-La,<br>1 Garden Way,<br>Ortigas,<br>Mandal    | Edsa Shangri-<br>La, Ortigas,<br>Mandaluyong<br>City | Edsa Shangri-La,<br>Ortigas,<br>Mandaluyong<br>City, Ma | 121.056831 | 14.581404 | Seafood,<br>Asian,<br>Filipino,<br>Indian |  |
|   | 3    | 6318506          | Ooma                           | 162             | Mandaluyong<br>City | Third Floor,<br>Mega Fashion<br>Hall, SM<br>Megamall, O    | SM Megamall,<br>Ortigas,<br>Mandaluyong<br>City      | SM Megamall,<br>Ortigas,<br>Mandaluyong<br>City, Mandal | 121.056475 | 14.585318 | Japanese,<br>Sushi                        |  |
|   | 4    | 6314302          | Sambo<br>Kojin                 | 162             | Mandaluyong<br>City | Third Floor,<br>Mega Atrium,<br>SM Megamall,<br>Ortigas    | SM Megamall,<br>Ortigas,<br>Mandaluyong<br>City      | SM Megamall,<br>Ortigas,<br>Mandaluyong<br>City, Mandal | 121.057508 | 14.584450 | Japanese,<br>Korean                       |  |
|   |      |                  |                                |                 |                     |                                                            |                                                      |                                                         |            |           |                                           |  |
|   | 9546 | 5915730          | Namll<br>Gurme                 | 208             | <b>♦</b> ♦stanbul   | Kemanke��<br>Karamustafa<br>Pa��a<br>Mahallesi,<br>RIhtlm  | Karak <b>∳</b> _y                                    | Karak <b>∳</b> _y,<br><b>∳∳</b> stanbul                 | 28.977392  | 41.022793 | Turkish                                   |  |
|   | 9547 | 5908749          | Ceviz<br>A��acl                | 208             | <b>� �</b> stanbul  | Ko��uyolu<br>Mahallesi,<br>Muhittin<br>��st�_nda��<br>Cadd | Ko��uyolu                                            | Ko��uyolu,<br>��stanbul                                 | 29.041297  | 41.009847 | World<br>Cuisine,<br>Patisserie,<br>Cafe  |  |
|   | 9548 | 5915807          | Huqqa                          | 208             | <b>��</b> stanbul   | Kuru�_e��me<br>Mahallesi,<br>Muallim Naci<br>Caddesi, N    | Kuru <b>�</b> _e��me                                 | Kuru�_e��me,<br>��stanbul                               | 29.034640  | 41.055817 | Italian,<br>World<br>Cuisine              |  |
|   | 9549 | 5916112          | A���k<br>Kahve                 | 208             | <b>��</b> stanbul   | Kuru�_e��me<br>Mahallesi,<br>Muallim Naci<br>Caddesi, N    | Kuru <b>�</b> _e <b>��</b> me                        | Kuru�_e��me,<br>��stanbul                               | 29.036019  | 41.057979 | Restaurant<br>Cafe                        |  |
|   | 9550 | 5927402          | Walter's<br>Coffee<br>Roastery | 208             | 🍫 🔷 stanbul         | Cafea��a<br>Mahallesi,<br>Bademaltl<br>Sokak, No 21/B,<br> | Moda                                                 | Moda,<br>��stanbul                                      | 29.026016  | 40.984776 | Cafe                                      |  |

9551 rows × 21 columns

```
# handling missing values
#For a categorical variable, determine the most frequent value, known as the mode.
cuisine_mode = resturant_df['Cuisines'].mode()[0]
print(cuisine_mode)

# fill the missing value with mode
restaurant_df['Cuisines'].fillna(cuisine_mode,inplace=True)

# check for missing values - for confirmatio
restaurant_df.isnull().sum()
```

North Indian

```
Out[10]: Restaurant ID
         Restaurant Name
         Country Code
                                  0
          City
                                  0
         Address
                                  0
          Locality
                                  0
         Locality Verbose
                                  0
          Longitude
                                  a
          Latitude
                                  0
          Cuisines
          Average Cost for two
                                  0
          Currency
         Has Table booking
                                  0
         Has Online delivery
          Is delivering now
                                  0
          Switch to order menu
          Price range
                                  0
          Aggregate rating
          Rating color
          Rating text
          Votes
                                  0
         dtype: int64
```

Level\_2: TASK-1: restaurant ratings

print("Average votes received by the restaurent")

round(avg\_votes,2)

#### Analyzethe distribution of aggreate ratings and determine the most common rating range

```
In [11]: def distribution_rating(rating,bins):
               # Create a figure and axes object
               fig, axes = plt.subplots(1, 2, figsize=(14, 6))
               # Plot histogram without KDE on the left
               axes[0].hist(restaurant_df[rating], bins=bins, color='skyblue', edgecolor='black')
               axes[0].set_xlabel('Ratings Value')
               axes[0].set_ylabel('Frequency')
               axes[0].set_title('Restaurant Ratings Histogram')
               # Plot histogram with KDE on the right
               sns.histplot(data=restaurant_df, x=rating, bins=bins, kde=True, color='orange', edgecolor='black', ax=axes[1])
               axes[1].set_xlabel('Ratings Value')
               axes[1].set_ylabel('Density')
               axes[1].set_title('Histogram with KDE')
               # Adjust Layout
               plt.tight_layout()
               plt.show()
In [12]: print("Rating Max Count -", restaurant_df["Aggregate rating"].max())
print("Rating Min Count - ", restaurant_df["Aggregate rating"].min())
         Rating Max Count - 4.9
         Rating Min Count - 0.0
In [19]: import warnings
          warnings.filterwarnings('ignore')
          bins = [x \text{ for } x \text{ in } range(0,6,1)]
          distribution_rating("Aggregate rating",bins)
                                  Restaurant Ratings Histogram
                                                                                                              Histogram with KDE
                                                                                   4000
           3000
                                                                                   3000
           2000
                                                                                   2000
           1000
                                                                                   1000
                                          Ratings Value
                                                                                                                  Ratings Value
In [20]: # Calculate the average number of votes recieved by resturants
           # Average votes received by the restaurent
          avg_votes=restaurant_df['Votes'].mean()
```

Out[20]: 156.91

#### TASK-2 : CUISINE COMBINATION

```
In [21]: restaurant_df['Cuisines'] = restaurant_df['Cuisines'].str.split(',')
In [22]: comninations_list = []
         for i in restaurant_df['Cuisines']:
            comninations_list.extend(set(c) for c in itertools.combinations(i, 2))
         combination_counts = pd.Series(comninations_list).value_counts()
         print(combination_counts.head())
        \{ \hbox{North Indian, Chinese} \}
        {North Indian, Mughlai}
                                      689
        { Chinese, Mughlai}
                                      323
        {North Indian, Fast Food}
                                      296
        { Chinese, North Indian}
                                      268
       Name: count, dtype: int64
In [23]: # Determine if certain cuisine combinations tend to have higher ratings
         restaurant_df['Cuisines'] = restaurant_df['Cuisines'].apply(lambda x: ', '.join(x) if isinstance(x, list) else x)
         # Display the updated DataFrame
         print(restaurant_df['Cuisines'])
         avg_rating=restaurant_df.groupby('Cuisines')['Aggregate rating'].mean()
         # Average rating in descending order
         avg_rating=avg_rating.sort_values(ascending=False)
         print('The Cuisines Combination that have higher ratings:')
         avg_rating.head()
        0
                      French, Japanese, Desserts
        1
                                         Japanese
        2
               Seafood, Asian, Filipino, Indian
                                Japanese, Sushi
Japanese, Korean
        3
        4
        9546
        9547
                 World Cuisine, Patisserie, Cafe
        9548
                   Italian, World Cuisine
        9549
                            Restaurant Cafe
       Name: Cuisines, Length: 9551, dtype: object
       The Cuisines Combination that have higher ratings:
Out[23]: Cuisines
         Italian, Deli
                                     4.9
         Hawaiian, Seafood
                                     4.9
         American, Sandwich, Tea 4.9
         Continental, Indian
                                     4.9
         European, Asian, Indian 4.9
         Name: Aggregate rating, dtype: float64
         TASK-3: Geographicla analysis
```

## Plot the locations of restutants on a map using latitude coordinate



# Identify any patterns or clusters of reaturants in specific areas

```
In [26]: X=restaurant_df[['Latitude','Longitude']]
    num_cluster=5
    # k mean clustering
    kmeans=KMeans(n_clusters=num_cluster,n_init=10,random_state=42)
    restaurant_df['cluster']=kmeans.fit_predict(X)

In [28]: # Plotting the clusters
    plt.scatter(restaurant_df['Longitude'], restaurant_df['Latitude'], c=restaurant_df['cluster'], cmap='rainbow')
    plt.title('Restaurant Clusters')
    plt.ylabel('Longitude')
    plt.ylabel('Longitude')
    plt.ylabel('Latitude')
    plt.show()
```



TASK-4:Resturant chains

Identify if there is any resturant chains avaliable in dataset

```
In [29]: restaurant_df.head(2)
```

Out[29]:

| : | Restaurant<br>ID | Restaurant<br>Name  | Country<br>Code | City           | Address                                                          | Locality                                                  | Locality<br>Verbose                                           | Longitude  | Latitude  | Cuisines                         | <br>Has<br>Table<br>booking | Has<br>Online<br>delivery | deliverir<br>no |
|---|------------------|---------------------|-----------------|----------------|------------------------------------------------------------------|-----------------------------------------------------------|---------------------------------------------------------------|------------|-----------|----------------------------------|-----------------------------|---------------------------|-----------------|
| 0 | 6317637          | Le Petit<br>Souffle | 162             | Makati<br>City | Third<br>Floor,<br>Century<br>City<br>Mall,<br>Kalayaan<br>Avenu | Century<br>City Mall,<br>Poblacion,<br>Makati<br>City     | Century<br>City Mall,<br>Poblacion,<br>Makati<br>City,<br>Mak | 121.027535 | 14.565443 | French,<br>Japanese,<br>Desserts | <br>Yes                     | No                        | r               |
| 1 | 6304287          | lzakaya<br>Kikufuji | 162             | Makati<br>City | Little<br>Tokyo,<br>2277<br>Chino<br>Roces<br>Avenue,<br>Legaspi | Little<br>Tokyo,<br>Legaspi<br>Village,<br>Makati<br>City | Little<br>Tokyo,<br>Legaspi<br>Village,<br>Makati<br>City, Ma | 121.014101 | 14.553708 | Japanese                         | <br>Yes                     | No                        | r               |

2 rows × 22 columns

```
In [30]: res_count=restaurant_df['Restaurant Name'].value_counts()
         potential_chains=res_count[res_count > 10].index
         print("Potential restaurant chains:")
         for chain in potential_chains:
    print(f"--{chain}")
        Potential restaurant chains:
        --Cafe Coffee Day
        --Domino's Pizza
        --Subway
        --Green Chick Chop
        --McDonald's
        --Keventers
        --Pizza Hut
        --Giani
        --Baskin Robbins
        --Barbeque Nation
        --Giani's
        --Barista
        --Dunkin' Donuts
        --Costa Coffee
        --Pind Balluchi
        --Wah Ji Wah
        --Twenty Four Seven
        --Pizza Hut Delivery
        --Sagar Ratna
        --Republic of Chicken
        --KFC
        --Starbucks
        --Chaayos
        --Burger King
        --Haldiram's
        --Shree Rathnam
        --Frontier
        --Moti Mahal Delux
        --Bikanervala
        --Aggarwal Sweets
        --Behrouz Biryani
        --Karim's
        --Bikaner Sweets
        --Chicago Pizza
        --Apni Rasoi
        --34, Chowringhee Lane
        --Wow! Momo
        --Madras Cafe
        --Burger Point
```

### Analysis the ratings and popularity of different restutrants chains

```
In [31]: restaurant_chain_stats=restaurant_df.groupby('Restaurant Name').agg({
        'Aggregate rating':'mean',
        'Votes':'sum',
    }).reset_index()

restaurant_chain_stats.columns=['Restaurant Name','Average rating','Total Votes']
restaurant_chain_stats=restaurant_chain_stats.sort_values(by='Total Votes',ascending=False)
print("Restaurant Chain Rating and Popularity Analysis (Sorted by Total Votes):")
print(restaurant_chain_stats.head(20))
```

| Resta | urant Chain Rating and Popu |          | , ,   |
|-------|-----------------------------|----------|-------|
|       | Restaurant Name             |          |       |
| 663   | Barbeque Nation             | 4.353846 | 28142 |
| 101   | AB's - Absolute Barbecues   | 4.825000 | 13400 |
| 6943  | Toit                        | 4.800000 | 10934 |
| 785   | Big Chill                   | 4.475000 | 10853 |
| 2297  | Farzi Cafe                  | 4.366667 | 10098 |
| 6988  | Truffles                    | 3.950000 | 9682  |
| 1510  | Chili's                     | 4.580000 | 8156  |
| 2879  | Hauz Khas Social            | 4.300000 | 7931  |
| 3261  | Joey's Pizza                | 4.250000 | 7807  |
| 4902  | Peter Cat                   | 4.300000 | 7574  |
| 796   | Big Yellow Door             | 4.266667 | 7511  |
| 5571  | Saravana Bhavan             | 4.133333 | 7238  |
| 6080  | Starbucks                   | 3.805556 | 7139  |
| 4941  | Pirates of Grill            | 4.025000 | 7091  |
| 3405  | Karim's                     | 3.030769 | 6878  |
| 2098  | Domino's Pizza              | 2.740506 | 6643  |
| 6106  | Subway                      | 2.907937 | 6124  |
| 2145  | Dunkin' Donuts              | 3.136364 | 5974  |
| 783   | Big Brewsky                 |          | 5705  |
| 4924  | Pind Balluchi               | 2.630000 | 5582  |