Министерство сельского хозяйства РФ Департамент научно-технологической политики и образования $\Phi \Gamma O Y \ B \Pi O$

Волгоградская государственная сельскохозяйственная академия Кафедра высшей математики

МАТЕМАТИЧЕСКАЯ СТАТИСТИКА. РЕШЕНИЕ ЗАДАЧ ПО ТЕМЕ: «ОДНОФАКТОРНЫЙ ДИСПЕРСИОННЫЙ АНАЛИЗ»

Методическая разработка

Волгоград ИПК «Нива» 2010 УДК 519.2(075.3) ББК 22.17я72 К 67

Рекомендовано к изданию кафедрой высшей математики *BГСХА* и учебно-методическим советом факультета электрификации с.х.

Корниенко, В.С.

К 67 Математическая статистика. Решение задач по теме «Однофактор- ный дисперсионный анализ». Методическая разработка [Текст] /В.С. Корниенко; Волгогр. гос. с.-х. акад. Волгоград, 2010. 20 с.

Приведены необходимые теоретические сведения. Решено (в «ручном» режиме и с помощью Mathcad) достаточное число задач.

Для студентов специальности 110302 - «Электрификация и автоматизация сельского хозяйства».

УДК 519.2(0.75.3) ББК 22.17я72 Дисперсионный анализ дает общую схему проверки статистических гипотез, основанную на тщательном изучении различных источников вариации [изменчивости, неоднородности] в сложной ситуации. Он позволяет оценить влияние одного или нескольких факторов на результирующий признак.

Предположения, лежащие в основе дисперсионного анализа, довольно жесткие и подчеркивают тот факт, что данный метод следует использовать только для таких зависимых переменных, которые были тщательно изучены и точно измерены. До тех пор, пока объемы выборок приблизительно равны, дисперсионный анализ может мириться с некоторым нарушением допущений модели. Но в ситуации выборок, сильно отличающихся по объему, следует воспользоваться другими методами (например, хиквадрат).

На практике часто встречается ситуация, когда можно указать один фактор, влияющий на конечный результат, и этот фактор принимает конечное число значений. Такая ситуация может быть проанализирована при помощи однофакторного дисперсионного анализа.

І. Теоретические сведения

1. Условия применимости

Дисперсионный анализ был предложен Р. Фишером для решения некоторых задач в области биологических исследований, в частности в сельскохозяйственной статистике. В настоящее время дисперсионный анализ определяется как статистике метод, предназначенный для оценки влияния различных факторов на результат эксперимента, в связи с чем, область применения этого метода становится значительно шире. Результатом эксперимента является некоторая случайная величина X, называемая также результатым признаком. На значения случайной величины X влияет фактор A, состоящий из нескольких уровней [групп] A_i , $i = \overline{1,r}$.

Рассмотрим простой пример. Директора фирмы интересует зависимость выполненных работ за смену от работающей на стройке бригады. Предположим, что на стройке работают r бригад. Объем выполненных работ является результативным признаком X, работающую бригаду назовем фактором A, а через A_i обозначим i – й уровень [группу] фактора A (i – ю бригаду, $i = \overline{1,r}$).

^{*} Фишер Роналд Эймлер (1890-1962) — английский математик, генетик и статистик. Исследования относятся к математической статистике.

В дисперсионном анализе наблюдаемые величины разбиваются на r групп, причем i-я группа содержит выборку из n_i , $i=\overline{1,r}$, величин $X_i \in N(a+m_i,\sigma_0)$, где σ_0 является постоянной, хотя и неизвестной величиной, не зависящей от i.

Обозначим через $x_{i,j}$ значение j – й величины в i – й группе. Модель однофакторного дисперсионного анализа можно записать в виде

$$x_{i,i} = a + m_i + \varepsilon_{i,i}, \tag{1}$$

где a - генеральное среднее всех мыслимых результатов наблюдений, т.е. M(X), m_i - эффект влияния на X, вызванный i-м уровнем фактора A, или, иначе, отклонение математического ожидания a_i результативного признака при i-м уровне фактора от общего математического ожидания a, т.е. $m_i = a_i - a$; $\varepsilon_{i,j}$ - случайный остаток, отражающий влияние на величину $x_{i,j}$ всех других неконтролируемых факторов.

Основными предпосылками дисперсионного анализа являются:

- 1) Остатки $\varepsilon_{i,j}$ взаимно независимы для любых i и j .
- 2) $\varepsilon_{i,j} \in N(0,\sigma_0)$ и σ_0 не зависит от i и j.

Средние значения m_i в (1) могут меняться под влиянием некоторых факторов, например, под влиянием различных способов обработки, различных видов животных или растений, неоднородности почвы и т.д. Целью эксперимента является исследование этой изменчивости средних значений (например, гипотеза H_0 о их равенстве).

2. Разложение суммы квадратов отклонений

Несмещенной оценкой для неизвестной дисперсии σ^2 является, как известно, сумма квадратов

$$Q = \sum_{i=1}^{r} \sum_{j=1}^{n_i} (x_{i,j} - \bar{x})^2, \qquad (2)$$

деленная на n-1, где

$$n = \sum_{i=1}^{r} n_i \tag{3}$$

количество всех наблюдений.

Основная идея дисперсионного анализа заключается в разбиении этой суммы квадратов отклонений на несколько компонент, каждая из которых соответствует предполагаемой причине изменения средних значений m_i .

Обозначим через

$$\bar{x}_{i} = \frac{1}{n_{i}} \sum_{i=1}^{n_{i}} x_{i,j} \tag{4}$$

- среднее арифметическое величин і-й группы, через

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{r} \sum_{j=1}^{n_i} x_{i,j} \tag{5}$$

- среднее арифметическое всех величин. Тогда справедливо тождество

$$\sum_{i=1}^{r} \sum_{j=1}^{n_i} \left(x_{i,j} - \overline{x} \right)^2 = \sum_{i=1}^{r} n_i \left(\overline{x}_i - \overline{x} \right)^2 + \sum_{i=1}^{r} \sum_{j=1}^{n_i} \left(x_{i,j} - \overline{x}_i \right)^2 , \tag{6}$$

или

$$Q = Q_1 + Q_2. \tag{7}$$

Таким образом, полная сумма квадратов отклонений от общего среднего Q разбивается на две компоненты: Q_1 - сумма квадратов между группами, Q_2 - сумма квадратов внутри групп. Если поделить обе части равенства (6) на число наблюдений n, то получим известное правило сложения дисперсий:

$$\overline{D}_{OBIII} = \overline{D}_{BH\Gamma P} + \overline{D}_{MEЖ\Gamma P}$$
,

где

$$\overline{D}_{OBIII} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2 \cdot n_i ; \quad \overline{D}_{BHTP} = \frac{1}{n} \sum_{i=1}^{n} N_j \cdot \overline{D}_{TP_j} ;$$

$$\overline{D}_{IP} = \frac{1}{n} \sum_{i=1}^{k} \left(x_i - \overline{x}_j \right)^2 ; \quad \overline{D}_{MEЖIP} = \frac{1}{n} \sum_{i=1}^{k} N_j \left(\overline{x}_j - \overline{x} \right)^2 .$$

Пример. Дана совокупность, состоящая из следующих двух групп:

X	3	1	4	n1	2	6	n2	n
Частота	2	5	3	10	4	5	9	19

Необходимо доказать, что $\overline{D}_{OBUU} = \overline{D}_{BH\Gamma P} + \overline{D}_{MEЖ\Gamma P}$.

Решение. Дано: $n_1 = 10$, $n_2 = 9$.

Найдем групповые средние:

$$\overline{x}_1 = \frac{1}{n_1} (3 \cdot 2 + 1 \cdot 5 + 4 \cdot 3) = 2,3; \quad \overline{x}_2 = \frac{1}{n_2} (2 \cdot 4 + 6 \cdot 5) = 4,222.$$

Найдем групповые дисперсии:

$$\overline{D}_{\Gamma P 1} = \frac{1}{10} \left((3 - \overline{x}_1)^2 \cdot 2 + (1 - \overline{x}_1)^2 \cdot 5 + (4 - \overline{x}_1)^2 \cdot 3 \right) = 1,81;$$

$$\overline{D}_{\Gamma P 2} = \frac{1}{9} \left((2 - \overline{x}_2)^2 \cdot 4 + (6 - \overline{x}_2)^2 \cdot 5 \right) = 3,951.$$

Найдем внутригрупповую дисперсию:

$$\overline{D}_{BH\Gamma P} = \frac{1}{n_1 + n_2} (n_1 \cdot \overline{D}_{\Gamma P 1} + n_2 \cdot \overline{D}_{\Gamma P 2}) = 2,824.$$

Найдем общую среднюю:

$$\overline{x} = \frac{1}{n_1 + n_2} (3 \cdot 2 + 1 \cdot 5 + 4 \cdot 3 + 2 \cdot 4 + 6 \cdot 5) = 3,2.$$

Найдем общую дисперсию:

$$\overline{D}_{OBUU} = \frac{1}{19} \left((3 - \overline{x})^2 \cdot 2 + (1 - \overline{x})^2 \cdot 5 + (4 - \overline{x})^2 \cdot 3 + (2 - \overline{x})^2 \cdot 4 + (6 - \overline{x})^2 \cdot 5 \right) = 3,745.$$

Найдем межгрупповую дисперсию:

$$\overline{D}_{MEЖTP} = \frac{1}{n_1 + n_2} \left((\overline{x}_1 - \overline{x})^2 \cdot 10 + (\overline{x}_2 - \overline{x})^2 \cdot 9 \right) = 0,921.$$

Убедимся, что общая дисперсия равна сумме внутригрупповой и межгрупповой дисперсий:

$$\overline{D}_{OBIII} = \overline{D}_{BH\Gamma P} + \overline{D}_{MEЖ\Gamma P} = 2,824 + 0,921 = 3,745.$$

Решим этот пример с помощью Mathcad.

Введем данные:

ORIGIN := 1

G1 :=
$$\begin{pmatrix} 3 & 2 \\ 1 & 5 \\ 4 & 3 \end{pmatrix}$$
 G2 := $\begin{pmatrix} 2 & 4 \\ 6 & 5 \end{pmatrix}$ G := stack(G1,G2)

$$\mathsf{n}_1 \coloneqq \sum \mathsf{G1}^{\left<2\right>} \qquad \mathsf{n}_2 \coloneqq \sum \mathsf{G2}^{\left<2\right>}$$

Найдем средние:

$$xs_1 := \frac{G1^{\left<1\right>} \cdot G1^{\left<2\right>}}{n_1} \qquad \qquad xs_2 := \frac{G2^{\left<1\right>} \cdot G2^{\left<2\right>}}{n_2} \qquad \qquad xso := \frac{G^{\left<1\right>} \cdot G^{\left<2\right>}}{\sum n}$$

Найдем дисперсии:

$$D_{1} := \frac{\overrightarrow{\left(G1^{\langle 1 \rangle} - xs_{1}\right)^{2} \cdot G1^{\langle 2 \rangle}}}{n_{1}} \qquad D_{2} := \frac{\overrightarrow{\left(G2^{\langle 1 \rangle} - xs_{2}\right)^{2} \cdot G2^{\langle 2 \rangle}}}{n_{2}}$$

$$D_{0} := \frac{\overrightarrow{\left(G^{\langle 1 \rangle} - xs_{0}\right)^{2} \cdot G^{\langle 2 \rangle}}}{\sum n} \qquad D_{vG} := \frac{\overrightarrow{n \cdot D}}{\sum n} \qquad D_{mG} := \frac{\overrightarrow{(xs - xs_{0})^{2} \cdot n}}{\sum n}$$

Выведем результаты:

$$n = \begin{pmatrix} 10 \\ 9 \end{pmatrix} \qquad xs = \begin{pmatrix} 2.3 \\ 4.222 \end{pmatrix} \qquad xso = 3.211 \qquad D = \begin{pmatrix} 1.81 \\ 3.951 \end{pmatrix}$$

$$Do = 3.745$$
 $DvG = 2.824$ $DmG = 0.921$

Проверим выполнимость правила:

Do = DvG + DmG = 1

Здесь G1 — первая группа; G2 — вторая группа; G — общая группа; xs_1 — средняя группы G1; xs_2 — средняя группы G2; xs_0 — средняя группы G; D_1 — дисперсия группы G1; D_2 — дисперсия группы G2; D0 — дисперсия группы G3; G4 — внутригрупповая дисперсия; G4 — межгрупповая дисперсия.

3. Критерий Бартлетта

Одним из условий применения дисперсионного анализа является равенство генеральных групповых дисперсий $\sigma_i^2 = \sigma_0^2$, $i = \overline{1,r}$.

Проверим гипотезу H_0 : $\sigma_1^2 = \sigma_2^2 = ... = \sigma_r^2$ с помощью критерия Бартлетта.

Для этого выполним следующую последовательность расчетов.

1. Найдем несмещенные оценки \overline{S}_i^2 групповых дисперсий по формуле

$$\overline{S_i^2} = \frac{n_i S_i^2}{n_i - 1}, \quad i = \overline{1, r}.$$
 (8)

2. Найдем общую несмещенную оценку дисперсии:

$$\overline{S^2} = \frac{(n_1 - 1)\overline{S_1^2} + (n_2 - 1)\overline{S_2^2} + \dots + (n_r - 1)\overline{S_r^2}}{(n_1 - 1) + (n_2 - 1) + \dots + (n_r - 1)}.$$
(9)

3. Вычислим

$$q = \left[1 + \frac{1}{3(r-1)} \left(\frac{1}{n_1 - 1} + \frac{1}{n_2 - 1} + \dots + \frac{1}{n_r - 1} - \frac{1}{(n_1 - 1) \cdot \dots \cdot (n_r - 1)}\right)\right]^{-1}.$$
 (10)

4. Вычислим статистику Бартлетта:

$$\psi = q \left[(n_1 - 1) \ln \left(\frac{\overline{S^2}}{\overline{S_1^2}} + \dots + (n_r - 1) \ln \left(\frac{\overline{S^2}}{\overline{S_r^2}} \right) \right) \right]. \tag{11}$$

Статистика ψ при $n_i > 3$, $i = \overline{1,r}$, и справедливости гипотезы H_0 имеет распределение, близкое к χ^2_{r-1} , что дает возможность проверить гипотезу H_0 описанными ранее способами.

4. Проверка гипотезы о равенстве групповых средних

Пусть H_0 : $m_i = m$, $i = \overline{1,r}$. Заметим, что величина $\overline{S^2} = \frac{Q}{n-1}$, являющаяся несмещенной оценкой для σ^2 , всегда будет иметь распределение χ^2 с n-1 степенями свободы и по ней можно построить доверительный интервал для σ^2 .

Если гипотеза H_0 верна, то величины

$$\overline{S_{\phi}^2} = \frac{1}{r-1}Q_1 \text{ M} \quad \overline{S_0^2} = \frac{1}{n-r}Q_2$$
 (12)

будут иметь распределение Фишера с r-1 и n-r степенями свободы, соответственно, при этом $\overline{S_{\phi}^2}$ и $\overline{S_0^2}$ являются несмещенными оценками для межгрупповой дисперсии σ_0^2 .

Отношение

$$\psi = \frac{\frac{1}{r-1}Q_1}{\frac{1}{n-r}Q_2} \tag{13}$$

называется дисперсионным отношением и, если гипотеза H_0 верна, то статистика ψ имеет распределение Фишера с r-1, n-r степенями свободы. В этом случае эффекты влияния уровней фактора А будут нулевыми, т.е. $m_1=m_2=...=m_r=0$, а оценка параметра a равна общему среднему \bar{x} , вычисленному по формуле (5). Проверка гипотезы H_0 о равенстве групповых средних проводится по схеме, изложенной ранее. Если же гипотеза H_0 отвергается, то параметр a по-прежнему вычисляется по формуле (5), а оценка эффекта m_i влияния i-го уровня фактора равна

$$\overline{m}_i = \overline{x}_i - \overline{x}, \tag{14}$$

 $\overline{m}_i = \overline{x}_i - \overline{x}$, (14) где \overline{x}_i определяется по формуле (4), а \overline{x} - по формуле (5). Проверка гипотезы H_0 о равенстве групповых средних проводится по схеме, изложенной ранее.

5. Коэффициент детерминации

Предположим, что фактор A влияет на результативный признак X. Для измерения степени этого влияния используют выборочный коэффициент детерминации, равный

$$\overline{d} = \frac{Q_1}{O},\tag{15}$$

который показывает, какую долю выборочной дисперсии составляет дисперсия групповых средних, иначе говоря, какая доля общей дисперсии объясняется зависимостью результативного признака X от фактора A.

6. Сводка формул

Изложенные выше формулы для решения задач однофакторного анализа приведем в табл. 1.

При вычислении сумм квадратов Q, Q_1 , Q_2 часто удобно при $n_i=n_0$ использовать следующие формулы:

$$Q_{1} = \frac{\sum_{i=1}^{r} \left(\sum_{j=1}^{n_{0}} x_{i,j}\right)^{2}}{n_{0}} - \frac{\left(\sum_{i=1}^{r} \sum_{j=1}^{n_{0}} x_{i,j}\right)^{2}}{n_{0}r},$$
(16)

$$Q_2 = \sum_{i=1}^r \sum_{j=1}^{n_0} x_{i,j}^2 - \frac{\left(\sum_{i=1}^r \sum_{j=1}^{n_0} x_{i,j}\right)^2}{n_0},$$
(17)

$$Q = \sum_{i=1}^{r} \sum_{j=1}^{n_0} x_{i,j}^2 - \frac{\left(\sum_{i=1}^{r} \sum_{j=1}^{n_0} x_{i,j}\right)^2}{n_0 r}.$$
 (18)

Таблица 1

Компоненты дисперсии	Сумма квадратов	Число степеней свободы	Оценки дисперсии
Межгрупповая	$Q_1 = \sum_{i=1}^{r} n_i (\bar{x}_i - \bar{x})^2$	r-1	$\overline{S_{\phi}^{2}} = \frac{Q_{1}}{r - 1}$
Внутригруп- повая	$Q_2 = \sum_{i=1}^r \sum_{j=1}^{n_i} \left(x_{i,j} - \overline{x}_i \right)^2$	n-r	$\overline{S_0^2} = \frac{Q_2}{n-r}$
Общая	$Q = \sum_{i=1}^{r} \sum_{j=1}^{n_i} (x_{i,j} - \overline{x})^2$	n-1	$\overline{S^2} = \frac{Q}{n-1}$

II. Задачи

Задача 1. В табл. 2 приведены данные по объемам работ, выполненных на стройке за смену для четырех бригад.

Таблица 2

Номер	Объем выполненной	Групповое	Выборочная
бригады	работы	среднее	смещенная
			дисперсия
1	140, 144, 142, 145	142,75	3,688
2	150, 149, 152, 152	150,75	1,688
3	148, 149, 146, 147	147,50	1,25
4	150, 155, 154, 152	152,75	3,688

Выполняются ли для этих данных условия проведения дисперсионного анализа?

Р е ш е н и е. Будем считать, что результаты выработок не зависят друг от друга и имеют нормальное распределение. Проверим по критерию Бартлетта гипотезу о равенстве групповых дисперсий. В нашем случае

$$r = 4$$
, $n_i = 4$, $(i = \overline{1,4})$, $n = 16$.

1. Найдем несмещенные оценки дисперсий по формулам (8):

$$\overline{S_1^2} = \frac{S_1^2 n_1}{n_1 - 1} = \frac{3,688 \cdot 4}{3} = 4,917; \quad \overline{S_2^2} = \frac{S_2^2 \cdot n_2}{n_2 - 1} = \frac{1,688 \cdot 4}{3} = 2,251;$$

$$\overline{S_3^2} = \frac{S_3^2 \cdot n_3}{n_3 - 1} = \frac{1,25 \cdot 4}{3} = 1,667; \quad \overline{S_4^2} = \frac{S_4^2 \cdot n_4}{n_4 - 1} = \frac{3,688 \cdot 4}{3} = 4,917.$$

2. По формуле (9) найдем общую несмещенную дисперсию:
$$\overline{S^2} = \frac{(n_1-1)S_1^2 + \ldots + (n_4-1)S_4^2}{(n_1-1)+\ldots + (n_4-1)} = \frac{3\big(4,917+2,251+1,667+4,917\big)}{3\cdot 4} = 3,438 \ .$$

3. По формуле (10) найдем параметр

$$q = \left[1 + \frac{1}{3(4-1)} \left(\frac{1}{3} + \frac{1}{3} + \frac{1}{3} + \frac{1}{3} - \frac{1}{3+3+3+3}\right)\right]^{-1} = 0,878.$$

4. Вычислим статистику для критерия Бартлетта:

$$\psi = 0.878 \left(3 \ln \left(\frac{3,438}{4,917} \right) + 3 \ln \left(\frac{3,438}{2,251} \right) + 3 \ln \left(\frac{3,438}{1,667} \right) + 3 \ln \left(\frac{3,438}{4,917} \right) \right) = 3,986.$$

Проверим гипотезу H_0 : $\sigma_1^2 = ... = \sigma_1^4$ на уровне значимости $\alpha = 0.05$. По таблицам распределения χ_3^2 при $\alpha = 0.05$ находим $\chi_{3,\kappa p}^2 = 7.82$. Так как $\psi = 3,986 < \chi^2_{3,\kappa p}$, то гипотезу H_0 принимаем.

Mathcad-контроль:

Сперва проверим результаты 3-го и 4-го столбцов табл. 2:

$$G1 := \begin{pmatrix} 140 \\ 144 \\ 142 \\ 145 \end{pmatrix} \qquad G2 := \begin{pmatrix} 150 \\ 149 \\ 152 \\ 152 \end{pmatrix} \qquad G3 := \begin{pmatrix} 148 \\ 149 \\ 146 \\ 147 \end{pmatrix} \qquad G4 := \begin{pmatrix} 150 \\ 155 \\ 154 \\ 152 \end{pmatrix}$$

$$mean(G1) = 142.75$$
 $mean(G2) = 150.75$ $mean(G3) = 147.5$ $mean(G4) = 152.75$ $var(G1) = 3.688$ $var(G2) = 1.688$

$$var(G3) = 1.25$$
 $var(G4) = 3.688$

Теперь найдем несмещенные оценки дисперсий:

$$Var(G1) = 4.917$$
 $Var(G2) = 2.25$ $Var(G3) = 1.667$ $Var(G4) = 4.917$

Вычисляем общую несмещенную дисперсию:

$$\frac{\operatorname{Var}(G1) + \operatorname{Var}(G2) + \operatorname{Var}(G3) + \operatorname{Var}(G4)}{4} = 3.438 \, \blacksquare$$

Вычислим параметр q:

$$q := \left[1 + \frac{1}{3 \cdot (4-1)} \cdot \left(\frac{1}{3} + \frac{1}{3} + \frac{1}{3} + \frac{1}{3} - \frac{1}{3+3+3+3}\right)\right]^{-1} \qquad q = 0.878$$

Вычислим статистику для критерия Бартлетта:

$$\psi := 3 \cdot q \cdot \ln \left(\frac{3.438^4}{\text{Var}(G1) \cdot \text{Var}(G2) \cdot \text{Var}(G3) \cdot \text{Var}(G4)} \right) \qquad \qquad \psi = 1.139$$

Найдем χ_{kr} :

$$\alpha := 0.05$$
 $\chi kr := qchisq(1 - \alpha, 3)$ $\chi kr = 7.815$

Задача 2. Для данных задачи 1 проверить гипотезу дисперсионного анализа о равенстве средних H_0 : $m_1 = m_2 = m_3 = m_4$.

 ${
m P}$ е ш е н и е. Для проверки гипотезы H_0 вычислим суммы Q_1 и Q_2 .

Общее выборочное среднее равно

$$\overline{x} = \frac{140 + 144 + 142 + \dots + 154 + 152}{16} = 148,438$$
.

Тогда

$$Q_{1} = \sum_{i=1}^{4} 4(\overline{x}_{i} - \overline{x})^{2} = 4[(142,75 - 148,31)^{2} + ... + (152,75 - 148,31)^{2}] = 228,688;$$

$$Q_{2} = \sum_{i=1}^{4} \sum_{i=1}^{4} (x_{i,j} - \overline{x}_{i})^{2} = (140 - 142,75)^{2} + ... + (152 - 152,75)^{2} = 41,25.$$

Вычислим статистику Фишера:

$$\psi = \frac{(n-r)Q_1}{(r-1)Q_2} = \frac{(16-4)\cdot 228,688}{(4-1)\cdot 41,25} = 22,176.$$

По таблицам распределения Фишера для $\alpha=0.05$ и степеней свободы $k_1=3$, $k_2=12$ найдем критическое значение $F_{\kappa p}=3.49$. Так как $\psi>F_{\kappa p}$, то гипотезу H_0 отклоняем, т.е. считаем, что объем ежедневной выработки зависит от работающей бригады. Оценим степень этой зависимости с помощью коэффициента детерминации. Для этого вычислим Q:

$$Q = \sum_{i=1}^{4} \sum_{j=1}^{4} \left(x_{i,j} - \overline{x} \right)^2 = (140 - 148,31)^2 + \dots + (152 - 148,31)^2 = 269,938.$$

Контроль: Q = Q1 + Q2.

По формуле (15) получим

$$\overline{d} = \frac{Q_1}{Q} = \frac{220,19}{259,46} = 0,847.$$

Это означает, что 84,7 % общей вариации ежедневного объема выработки связано с работающей сменой.

Mathcad-контроль:

$$G := augment(G1, G2, G3, G4)$$
 $a := mean(G)$ $a = 148.438$

$$Q1 := (142.75 - a)^{2} + (150.75 - a)^{2} + (147.5 - a)^{2} + (152.75 - a)^{2}$$

$$Q1 := 4 \cdot Q1$$
 $Q1 = 228.688$

$$Q2 := \left[(140 - 142.75)^{2} + (144 - 142.75)^{2} + (142 - 142.75)^{2} \right] \dots \\ + (145 - 142.75)^{2} + (150 - 150.75)^{2} + (149 - 150.75)^{2} \dots \\ + \left[(152 - 150.75)^{2} + (152 - 150.75)^{2} + (148 - 147.5)^{2} \right] \dots \\ + \left[(149 - 147.5)^{2} + (146 - 147.5)^{2} + (147 - 147.5)^{2} \right] \dots \\ + \left[(150 - 152.75)^{2} + (155 - 152.75)^{2} + (154 - 152.75)^{2} \right] \dots \\ + (152 - 152.75)^{2}$$

$$O2 = 41.25$$

$$Q := \left[(140 - a)^{2} + (144 - a)^{2} + (142 - a)^{2} + (145 - a)^{2} + (150 - a)^{2} \right] ...$$

$$+ \left[(149 - a)^{2} + (152 - a)^{2} + (152 - a)^{2} + (148 - a)^{2} + (149 - a)^{2} \right] ...$$

$$+ \left[(146 - a)^{2} + (147 - a)^{2} + (150 - a)^{2} + (155 - a)^{2} + (154 - a)^{2} \right] ...$$

$$+ (152 - a)^{2}$$

$$Q = 269.938$$
 $Q = Q1 + Q2 = 1$ $\alpha := 0.05$ $Fkr := qF(1 - \alpha, 3, 12)$ $Fkr = 3.49$ $d := \frac{Q1}{Q}$ $d = 0.847$

Задача 3. По данным задач 1 и 2 найти оценки параметров модели (1) дисперсионного анализа.

Р е ш е н и е. Так как объем ежедневной выработки зависит от работающей смены, то оценка параметра a равна $\bar{x} = 148,31$. Оценки параметров m_i равны

$$\overline{m}_i = \overline{x}_i - \overline{x},$$

T.e.

$$\overline{m}_1 = 142,75 - 148,31 = -5,56$$
; $\overline{m}_2 = 150,15 - 148,31 = 1,94$; $\overline{m}_3 = 147,5 - 148,31 = -0,81$; $\overline{m}_4 = 152,75 - 148,31 = 4,44$.

Оценка параметра σ_0^2 равна

$$\overline{\sigma_0^2} = \frac{Q}{r-1} = \frac{220,19}{3} = 73,39$$
.

Сформулируем базовую задачу однофакторного дисперсионного анализа, и укажем методику ее решения.

Базовая задача. Пусть имеется m партий A_1 , A_2 ,..., A_m изделий^{*}. Из каждой партии отобрано соответственно n_1 , n_2 ,..., n_m изделий. Значения показателя качества этих изделий представлены в виде табл. З наблюдений. Необходимо на уровне значимости $\alpha = 0.05$ проверить существенность влияния партий (фактор A) на их качество.

Таблица 3

Партия	Номер наблюдения								
Партия (фактор A)	1	1 2							
A_1	$a_{1,1}$	$a_{1,2}$	•••	a_{1,n_1}					
A_2	$a_{2,1}$	$a_{2,2}$		a_{2,n_2}					
•••				•••					
A_m	$a_{m,1}$	$a_{m,2}$		a_{m,n_m}					

Возможный путь решения в Mathcad.

1) Введем данные:

$$ORIGIN := 1$$
 $A1 :=$ матрица размера $1 \times n_1$
 $A2 :=$ матрица размера $1 \times n_2$
......
 $Am :=$ матрица размера $1 \times n_m$
 $A :=$ аидтен $(A1, A2, ..., Am)$ матрица-строка данных табл. 3
 $m :=$ число уровней фактора A
 $n := \begin{pmatrix} cols(A1) \\ cols(A2) \\ ... \\ cols(A3) \end{pmatrix}$
 $N := \sum n$ число столбцов матрицы A

2) Проверим гипотезу о равенстве групповых дисперсий для всех уровней фактора. Для этого вычислим критерий Бартлетта b.

$$V \coloneqq egin{pmatrix} Var(A1) \\ Var(A2) \\ ... \\ Var(Am) \end{pmatrix}$$
 - матрица несмещенных дисперсий

^{*} Партию естественно назвать фактором, а каждую конкретную партию A_i $(i=\overline{1,m})$ уровнем фактора; m - полное число взятых партий.

$$S := \frac{(n-1) \cdot V}{\sum (n-1)} \qquad drob := \frac{1}{\prod_{i=1}^{m} (n_i - 1)} \qquad q := \left(1 - \frac{1}{3(m-1)} \cdot \left(\sum \left(\overline{\left(\frac{1}{n-1}\right)} + drob\right)\right)\right)^{-1}$$

$$b \coloneqq q \cdot (n-1) \cdot \ln \left(\frac{S}{V} \right)$$
 - критерий Бартлетта

$$\alpha := 0.05$$
 $\chi_{\alpha,\kappa p} := qchisq(1-\alpha,m-1)$

 $b < \chi_{\alpha, \kappa p} =$ сравниваем критерий Бартлетта с критическим значением $\chi_{\alpha, \kappa p}$

Делаем **вывод:** если $b < \chi_{\alpha,\kappa p}$ (т.е. если после знака равенства компьютер выдаст 1), то групповые дисперсии всех уровней фактора *совпадают*.

- 3) Продолжаем проводить дисперсионный анализ.
- а) Вычисляем межгрупповую дисперсию s12:

$$sr := \begin{pmatrix} mean(A1) \\ mean(A2) \\ \dots \\ mean(Am) \end{pmatrix} \qquad Q1 := \begin{pmatrix} \sum \overline{(A1 - sr_1)^2} \\ \sum \overline{(A2 - sr_2)^2} \\ \dots \\ \sum \overline{(Am - sr_m)^2} \end{pmatrix} \qquad s12 := \frac{\sum Q1}{N - m}$$

б) Вычисляем внутригрупповую дисперсию s22:

$$sr1 := mean(A)$$
 $Q2 := (sr - sr1)^2 \cdot n$ $s22 := \frac{Q2}{m-1}$

в) Находим FN, $F_{\alpha,\kappa\rho}$ и сравниваем их

$$FN := \frac{s22}{s12} \qquad F_{\alpha,\kappa p} = qF(1-\alpha, m-1, N-m) \qquad FN < F_{\alpha,\kappa p} = qF(1-\alpha, m-1, N-m)$$

Делаем **вывод:** если $FN < F_{\alpha,\kappa p}$ (т.е. если после знака равенства компьютер поставил 1), то выбор партии (фактор A) на качество изделий *незначимо*, в противном случае *значимо*.

Задача 4. Выяснить на уровне значимости $\alpha = 0,05$, зависит ли урожайность сельскохозяйственной культуры от технологии обработки почвы, по результатам табл. 4.

Таблица 4

Уровни тех-	Годы									
нологии	1	2	3	4	5	6				
1	140	141	140	141	142	145				
2	150	149	150	147						
3	147	147	145	150	150					
4	144	147	142	146						

Решение.

1) Введем данные

$$A1 := (140 \ 141 \ 140 \ 141 \ 142 \ 145)$$

$$A2 := (150 \ 149 \ 150 \ 147)$$

$$A3 := (147 \ 147 \ 145 \ 150 \ 150)$$

$$A4 := (144 \ 147 \ 142 \ 146)$$

$$A := augment(A1, A2, A3, A4)$$

$$m := 4 \qquad n := \begin{pmatrix} cols(A1) \\ cols(A2) \\ cols(A3) \\ cols(A4) \end{pmatrix} \qquad N := \sum n$$

2) Проверим гипотезу о равенстве групповых дисперсий для всех уровней фактора

$$s \coloneqq \begin{pmatrix} Var(A1) \\ Var(A2) \\ Var(A3) \\ Var(A4) \end{pmatrix} \qquad S \coloneqq \frac{(n-1) \cdot s}{\sum (n-1)} \qquad drob \coloneqq \frac{1}{\prod_{i=1}^{m} (n_i-1)}$$

$$q \coloneqq \left\lceil 1 - \frac{1}{3(m-1)} \cdot \left\lceil \sum \left(\overline{\left(\frac{1}{n-1}\right)} + drob \right) \right\rceil \right\rceil^{-1} \qquad b \coloneqq q \cdot (n-1) \cdot ln \left(\frac{S}{s}\right)$$

$$\alpha := 0.05$$
 $\chi kr\alpha := qchisq(1 - \alpha, m - 1)$ $b < \chi kr\alpha = 1$

Вывод: групповые дисперсии для всех уровней фактора совпадают.

3) Продолжаем проводить дисперсионный анализ

$$sr := \begin{pmatrix} mean(A1) \\ mean(A2) \\ mean(A3) \\ mean(A4) \end{pmatrix}$$

$$Q1 := \begin{pmatrix} \overbrace{\sum (A1 - sr_1)^2} \\ \overbrace{\sum (A2 - sr_2)^2} \\ \overbrace{\sum (A3 - sr_3)^2} \\ \overbrace{\sum (A4 - sr_4)^2} \end{pmatrix}$$

$$s12 := \frac{\sum Q1}{N - m}$$

$$\begin{split} sr1 &:= mean(A) \qquad Q2 := \left(sr - sr1\right)^2 \cdot n \qquad s22 := \frac{Q2}{m-1} \\ FN &:= \frac{s22}{s12} \qquad Fkr\alpha := qF \Big(1 - \alpha \ , m-1 \ , N-m \Big) \qquad FN < Fkr\alpha = 0 \end{split}$$

Вывод: гипотеза о том, что все технологии одинаково эффективны, *отвергается*. Делаем вывод о том, что выбор технологии *влияет* на урожайность.

Оценим степень этого влияния. Для этого проведем вычисление κo эффициента детерминации r2, который показывает, какую часть в общей дисперсии величин фактора A составляет часть, обусловленная зависимостью от фактора технологии.

$$r2 := \frac{s22 \cdot (m-1)}{s12 \cdot (N-m) + s22 \cdot (m-1)} \qquad r2 = 0.753$$

$$i := 1 ... m \qquad a_i := sr_i \qquad a = \begin{pmatrix} 141.5 \\ 149 \\ 147.8 \\ 144.75 \end{pmatrix} \qquad \sigma := \sqrt{s12} \qquad \sigma = 1.95$$

В нашем случае r2 = 0,753, т.е. 75,3 % общей вариации урожайности обусловлены технологией.

Вывод: из приведенных вычислений следует, например, что урожайность при второй технологии обработки представляет собой случайную величину, имеющую нормальное распределение N(149;1,95).

Задача 5. В течение шести лет использовались пять различных технологий по выращиванию сельскохозяйственной культуры. Данные по урожайности (в ц/га) приведены в табл. 5. Необходимо на уровне значимости $\alpha = 0.05$ установить влияние различных технологий на урожайность культуры.

Таблица 5

Номер	Годы								
технологии	1	2	3	4	5	6			
A_1	1,2	1,1	1,0	1,3	1,1	0,8			
A_2	0,6	1,1	0,8	0,7	0,7	0,9			
A_3	0,9	0,6	0,8	1,0	1,0	1,1			
A_4	1,7	1,4	1,3	1,5	1,2	1,3			
A_5	1,0	1,4	1,1	0,9	1,2	1,5			

Р е ш е н и е. Понятно, какие изменения следует произвести в Mathcad-программе при решении задачи 4.

Приведем полное решение задачи 5.

2)

$$s := \begin{pmatrix} Var(A1) \\ Var(A2) \\ Var(A3) \\ Var(A4) \\ Var(A5) \end{pmatrix} \qquad S := \frac{(n-1) \cdot s}{\sum (n-1)} \qquad drob := \frac{1}{\prod_{i=1}^{m} (n_i - 1)}$$

$$q := \left[1 - \frac{1}{3(m-1)} \cdot \left[\sum \left(\frac{1}{n-1}\right) + drob\right]\right]^{-1} \qquad b := q \cdot (n-1) \cdot ln\left(\frac{S}{s}\right)$$

$$\alpha := 0.05 \qquad \chi kr\alpha := qchisq(1 - \alpha, m-1) \qquad b < \chi kr\alpha = 1$$

Вывод: групповые дисперсии для всех уровней *совпадают*. 3)

$$sr := \begin{pmatrix} mean(A1) \\ mean(A2) \\ mean(A3) \\ mean(A4) \\ mean(A5) \end{pmatrix} \qquad Q1 := \begin{pmatrix} \sum (A2 - sr_2)^2 \\ \sum (A3 - sr_3)^2 \\ \sum (A4 - sr_4)^2 \\ \sum (A5 - sr_5)^2 \end{pmatrix}$$

$$s12 := \frac{\sum Q1}{N - m}$$

$$s12 := \frac{1}{N - m}$$

$$s13 := \frac{1}{N - m}$$

$$s13 := \frac{N}{N - m}$$

$$s23 := \frac{N}{M - m}$$

$$s24 := \frac{N}{M - m}$$

$$s25 := \frac{N}{M - m}$$

$$s27 := \frac{N}{M - m}$$

$$s28 := \frac{N}{M - m}$$

$$s29 := \frac{N}{M - m}$$

$$s20 := \frac{N}{M - m}$$

Вычислим коэффициент детерминации r2:

$$r2 := \frac{s22 \cdot (m-1)}{s12 \cdot (N-m) + s22 \cdot (m-1)} \qquad r2 = 0.599$$

Вывод: влияние типа технологии (фактора A) на урожайность значимо.

Поскольку r2 = 0.599, то 59,9 % общей вариации урожайности обусловлено технологией.

Задача 6. (Решить самостоятельно). Предприятие решает вопрос о том, какую из трех систем контроля качества выбрать. Все три системы были тестированы. Результаты тестов были отображены в табл. 6.

Таблица 6

Номер системы	Число выявленных бракованных изделий
	партии продукции
1	1, 2, 3, 0, 2, 1
2	2, 3, 1, 0, 1
3	2, 2, 3, 2

Проверить гипотезу об отсутствии влияния различий между системами на результаты тестирования систем. Доверительная вероятность равна 95 %. Предполагается, что выборки получены из независимых нормальных генеральных совокупностей с одной и той же генеральной дисперсией.

Задача 7. (Решить самостоятельно). На заводе установлено четыре линии по выпуску облицовочной плитки. С каждой линии случайным образом в течение смены отобрано 10 плиток и сделаны замеры их толщины (мм). Отклонения от номинального размера приведены в табл. 7. Требуется на уровне значимости 5 % установить зависимость выпуска качественных плиток от линии выпуска (фактор A).

Таблина 7

									u 0 31 11	ц и /
Линия по		Номер испытания								
выпуску	1	2	3	4	5	6	7	8	9	10
плитки										
(фактор A)										
A_1	0,6	0,2	0,4	0,5	0,8	0,2	0,1	0,6	0,8	0,8
A_2	0,2	0,2	0,4	0,3	0,3	0,6	0,8	0,2	0,5	0,5
A_3	0,8	0,6	0,2	0,4	0,9	1,1	0,8	0,2	0,4	0,8
A_4	0,7	0,7	0,3	0,3	0,2	0,8	0,6	0,4	0,2	0,6

Ответ: влияние линии (фактор A) на качество облицовочных плиток *незначимо*. Только 9,7 % общей вариации качества плиток обусловлено линией по выпуску плиток.

Задача 8. (Решить самостоятельно). Имеются четыре партии сырья: A_1 , A_2 , A_3 , A_4 . Из каждой партии отобрано по пять образцов и проведены испытания на определение величины разрывной нагрузки. Результаты испытаний приведены в табл. 8. Необходимо на уровне значимости 5 % выяснить, существенно ли влияние различных партий сырья на величину разрывной нагрузки.

Таблица 8

Партия (фактор A)	Разрывная нагрузка (кг/см ²)								
A_1	200	140	170	145	165				
A_2	190	150	210	150	150				
A_3	230	190	200	190	200				
$A_{\scriptscriptstyle A}$	150	170	150	170	180				

Ответ: различие между партиями сырья оказывает *существенное* влияние на величину разрыва нагрузки. Лишь 40,7% изменчивости исследуемой случайной величины обусловлено изменением фактора A.