- 1. 求 CaF2 在下述条件下的溶解度:
 - (1) 纯水中(忽略水解);
 - (2) 0.01 mol·L⁻¹ CaCl₂溶液中;
 - (3) 0.01 mol·L⁻¹ HCl 溶液中。
- 解: (1) 设溶解度为 s,则

$$K_{sp}$$
= $s(2s)^2$ 查表知 K_{sp} = 2.7×10^{-11} ,代入数据得 s = 1.9×10^{-4} mol. L^{-1}

(2) K_{sp} =[Ca^{2+}][F^{-}] 2 =0.01(2s) 2 解得 s=2.6×10 $^{-5}$ mol. L^{-1}

(3)
$$\delta_{F^{-}} = \frac{K_{a(HF)}}{K_{a[H^{+}]}} = \frac{3.5 \times 10^{-4}}{3.5 \times 10^{-4} + 0.01} = 3.5 \times 10^{-2}$$

$$\alpha_{F^{-}} = \frac{1}{3.5 \times 10^{-2}} = 28.6$$

$$[Ca^{2+}][F^{-}]^{2} = [Ca^{2+}][F^{-}]^{2}.\alpha^{2} = K_{sp}.\alpha^{2}$$

$$s = 1.9 \times 10^{-3} mol.L^{-1}$$

$$(2.0 \times 10^{-4} \text{ mol} \cdot \text{L}^{-1}; 2.9 \times 10^{-5} \text{ mol} \cdot \text{L}^{-1}; 1.9 \times 10^{-3} \text{ mol} \cdot \text{L}^{-1})$$

- 2. 0.01 mol·L^{-1} 的某末金属 M^{2+} 溶液中加入 NaOH,使之产生 $M(OH)_2$ 沉淀,若忽略体积 变化,计算下列情况下溶液的 pH 值。(已知 K_{sp} = 4×10^{-15})
- (1) M^{2+} 1%沉淀 (2) M^{2+} 50%沉淀 (3) M^{2+} 99%沉淀
- 解: (1) $K_{sp}=[M^{2+}][OH^{-}]^{2}$ 而[M^{2+}]=0.01×1% mol·L⁻¹ 代入数据得

 $[OH^{-}]=6.36\times10^{-7} \text{ mol}\cdot\text{L}^{-1}$

∴pH=7.8

- (2) 同理得 pH=7.95
- (3) pH = 8.8

(7.3; 7.45; 8.3)

3. 在 100mL 纯水中加入 AgCl 和 AgBr 固体, 计算平衡状态下, 溶液中 Ag⁺的浓度。

解: 平衡状态下 [Ag+][Cl-]=K_{sp,AgCl}

$$[Ag^+][Br^-]=K_{sp,AgBr}$$

$$[Ag^{+}]=[Cl^{-}]+[Br^{-}]$$

其中 $K_{sp,AgCl}$ =1.8×10⁻¹⁰, $K_{sp,AgBr}$ =5.0×10⁻¹³

代入上述三式,解得[Ag+]=1.34×10⁻⁵ mol·L⁻¹

 $(1.34 \times 10^{-5} \text{ mol} \cdot \text{L}^{-1})$

4. 往100mL 0.030mol·L⁻¹ KCl 溶液中加入 0.3400 g 固体 AgNO₃, 计算此溶液中 pCl 及 pAg。

解:
$$C_{Ag+} = \frac{n}{V} = \frac{0.3400}{170 \times 100 \times 10^{-3}} = 0.02 mol.L^{-1}$$

 $0.02~\text{mol}\cdot\text{L}^{\text{-1}}\text{Ag}^{\text{+}}$ 与 $0.03~\text{mol}\cdot\text{L}^{\text{-1}}\text{Cl}^{\text{-}}$ 反应后,剩余 Cl = $0.01~\text{mol}\cdot\text{L}^{\text{-1}}$

$$AgCl \Leftrightarrow Ag^+ + Cl^-$$

 0.02 0 0.01
 0.02 -s s 0.01 +s

- \therefore s(0.01+s)=1.8×10⁻¹⁰
- ∵s 数值很小, 0.01+s≈0.01
- \therefore s=1.8×10⁻⁸

 $[Ag+]=1.8\times10^{-8} \text{ mol}\cdot\text{L}^{-1}$ $[Cl^{-}]=0.01 \text{ mol}\cdot\text{L}^{-1}$

∴pCl=2.0 pAg=7.8。

(2.0, 7.8)

- 5. 计算下列化学因数 F;
 - (1) 从 Mg₂P₂O₇的质量计算 MgSO₄•7H₂O 的质量;
 - (2) 从(NH₄)₃PO₄· 12MoO₃的质量计算 P 和 P₂O₅的质量;
 - (3) 从 Cu(C₂H₃O₂)₂·3 Cu(AsO₂)₂ 的质量计算 As₂O₃ 和 CuO 的质量。
 - (4) 从丁二酮肟镍 $Ni(C_4H_8N_2O_2)_2$ 的质量计算 Ni 的质量;
 - (5) 从 8-羟基喹啉铝 (C_9H_6NO)₃Al 的质量计算 Al_2O_3 的质量。

解: (1)F=2.21

- $(2)F_1=0.0165,F_2=0.038$
- (3) $F_1=0.585, F_2=0.315$
- (4)F=0.203
- (5)F=0.11
- 6. 取正长石试样 0.4670 g, 经熔样处理后,将其中 K^+ 沉淀为四苯硼酸钾 $K[B(C_6H_5)_4]$, 烘干后, 沉淀质量为 0.1726 g, 计算试样中 K₂O 的质量分数。

解: 2 $K[B(C_6H_5)_4] \hookrightarrow K_2O$

$$\therefore m_2 = \frac{m_1}{M_1} \times \frac{1}{2} \times M_2 = \frac{0.1726 \times 94}{358 \times 2} = 0.02266g$$

 $\omega = 0.02266/0.4670 \times 100\% = 4.86\%$

(4.86%)

- 7. 设试样仅含有 NaCl 及 KCl, 称 0.1325g 用 0.1032 mol·L⁻¹AgNO₃ 标准溶液滴定, 用 去 AgNO3溶液 21.84 mL。求试样中 NaCl 及 KCl 的质量分数。
 - 解:设 NaCl 质量为 x, KCl 质量为 y

则 x+v=0.1325

$$\frac{x}{58} + \frac{y}{74} = 0.1032 \times 21.84 \times 10^{-3}$$

解得上述两式得: x=0.1243g y=8.2×10⁻³g

 $\omega_{\text{KCl}}=6.19\%$

(97.28%; 2.72%)

8. 称取一定量的约含 52% NaCl 和 44% KCl 的试样。将试样溶于水后,加入 0.1128 $mol\cdot L^{-1}$ AgNO₃溶液 30.00mL。过量的 AgNO₃需用 10.00mL 标准 NH₄SCN 溶液滴定。已知 1.00 mL 标准 NH₄SCN 溶液相当于 1.15 mL AgNO₃溶液。应称取试样多少克?

解:
$$n_{\text{CL}}$$
=0.1128×(30-1.15×10)×10⁻³mol=2.087×10⁻³mol 设应称取试样 x,则
$$\frac{0.52x}{58} + \frac{0.44x}{74} = 2.087 \times 10^{-3}$$

解得 x=0.14g

(0.14g)

9. 称取 0.5776 克含有 NaCl 和 NaBr 的试样,用重量法测定,得到两者的银盐沉淀 0.4403g; 另取同样质量的试样用沉淀法测定,用去 0.1074 $mol\cdot L^{-1}$ AgNO₃ 溶液 25.25 mL。求 NaCl 和 NaBr 的质量分数。

解:设 NaCl的质量分数为 x, NaBr的质量分数为 y

則
$$\frac{0.5776x}{58} \times 143 + \frac{0.5776y}{103} \times 188 = 0.4403$$

 $\frac{0.5776x}{58} + \frac{0.5776y}{103} = 0.1074 \times 25.25 \times 10^{-3}$

上述两式可得 x=15.68%

y=20.71%

(15.68%, 20.71%)

10. 设某纯有机化合物 $C_4H_8SO_x$,将该化合物试样 174.4 mg 进行试样分析处理,使 S 转化为 SO_4^{2-} ,取其 1/10 体积以 $0.01268mol\cdot L^{-1}Ba(ClO_4)_2$ 溶液滴定,以吸附指示剂指示终点,达到终点时,耗去 11.45 mL,求 x 值。

解: $n_{C4H8SOx}$ = n_{SO42} = $10n_{Ba2+}$ = $10 \times 0.01268 \times 11.45 \times 10^{-3}$ mol

即
$$n_{C4H8SOx}=1.452\times10^{-3}$$
mol

$$\therefore$$
 174.4×10⁻³=1.452×10⁻³×(88+16x)

∴ x=2