COL362/632 Introduction to Database Management Systems Relational Algebra

Kaustubh Beedkar

Department of Computer Science and Engineering Indian Institute of Technology Delhi

Relational Algebra

▶ If *R* is a relation, then

$$R' := \langle op \rangle_{\langle param \rangle}(R)$$
 is also a relation

▶ If R_1 and R_2 are relations, then

$$R':=R_1\langle op\rangle_{\langle param\rangle}R_2$$
 is also a relation

- ▶ Relational algebra is a procedural query language comprising relational algebra operators
- Operates on relations and produces relations
- Basis of many data processing systems provides a simple and effective abstraction for querying and data manipulation

Selection σ

Filter tuples based on a condition

$$R' := \sigma_{\theta}(R) \subseteq R$$

$$\blacktriangleright \ \theta : [R] \mapsto \{ \ \textit{true}, \textit{false} \ \}$$

Player		
player₋id	name	position
123	MS Dhoni	7
134	SK Yadav	5
131	Rohit Sharma	1
142	Ashok Singh	8
154	David Warner	3
163	Ashok Singh	6
250	Chris Gayle	1

$\sigma_{position>5}(Player)$		
player_id	name	position
123	MS Dhoni	7
142	Ashok Singh	8
163	Ashok Singh	6

$\sigma_{name='Ashok\;Singh'}(Player)$		
player_id	name	position
142	Ashok Singh	8
163	Ashok Singh	6

$\sigma_{position}$ \leq 7 \land player_id $<$ 150 $(Player)$		
player_id	name	position
123	MS Dhoni	7
134	SK Yadav	5
131	Rohit Sharma	1

Projection π

Retrieves specific attributes

Player		
player_id	name	position
123	MS Dhoni	7
134	SK Yadav	5
131	Rohit Sharma	1
142	Ashok Singh	8
154	David Warner	3
163	Ashok Singh	6
250	Chris Gayle	1

$\pi_{\sf id}({\sf Player})$
player_id
123
134
131
142
154
163
250

$\pi_{name}(Player)$
name
MS Dhoni
SK Yadav
Rohit Sharma
Ashok Singh
David Warner
Chris Gayle

$\pi_{name,\;position}(Player)$			
name	position		
MS Dhoni	7		
SK Yadav	5		
Rohit Sharma	1		
Ashok Singh	8		
David Warner	3		
Ashok Singh	6		
Chris Gayle	1		

Union ∪

Combines tuples from two relations

 $R':=R_1\cup R_2$

$$ightharpoonup [R'] := [R_1] = [R_2]$$

Player		
player_id	name	position
123	MS Dhoni	7
134	SK Yadav	5
131	Rohit Sharma	1
142	Ashok Singh	8
154	David Warner	3
163	Ashok Singh	6
250	Chris Gayle	1

MIPlayer		
player_id name positio		position
134	SK Yadav	5
131	Rohit Sharma	1
176	Hardik Pandaya	5

Player ∪ MIPlayer		
$player_id$	name	position
123	MS Dhoni	7
134	SK Yadav	5
131	Rohit Sharma	1
142	Ashok Singh	8
154	David Warner	3
163	Ashok Singh	6
250	Chris Gayle	1
176	Hardik Pandaya	5

Finds tuples in one relation but not the other

$$R' := R_1 - R_2$$

$$ightharpoonup [R'] := [R_1] = [R_2]$$

Player		
player_id	name	position
123	MS Dhoni	7
134	SK Yadav	5
131	Rohit Sharma	1
142	Ashok Singh	8
154	David Warner	3
163	Ashok Singh	6
250	Chris Gayle	1

MIPlayer		
player_id	name	position
134	SK Yadav	5
131	Rohit Sharma	1
176	Hardik Pandaya	5

Player – MIPlayer		
player_id	name	position
123	MS Dhoni	7
142	Ashok Singh	8
154	David Warner	3
163	Ashok Singh	6
250	Chris Gayle	1

Crossproduct \times

Combines tuples from two relations

$$R':=R_1\times R_2$$

$$ightharpoonup [R'] := [R_1] \cup [R_2]$$

$$\blacktriangleright |R'| = |R_1| \cdot |R_2|$$

Player		
player_id	name	position
123	MS Dhoni	7
134	SK Yadav	5
131	Rohit Sharma	1
142	Ashok Singh	8
154	David Warner	3
163	Ashok Singh	6
250	Chris Gayle	1

	League	
id	league_name	
11	IPL	
21	CPL	

Player $ imes$ League				
player₋id	name	position	id	league_name
123	MS Dhoni	7	11	IPL
123	MS Dhoni	7	12	CPL
134	SK Yadav	5	11	IPL
134	SK Yadav	5	12	CPL
131	Rohit Sharma	1	11	IPL
131	Rohit Sharma	1	12	CPL
142	Ashok Singh	8	11	IPL
142	Ashok Singh	8	12	CPL
154	David Warner	3	11	IPL
154	David Warner	3	12	CPL
163	Ashok Singh	6	11	IPL
163	Ashok Singh	6	12	CPL
250	Chris Gayle	1	11	IPL
250	Chris Gayle	1	12	CPL

Rename ρ

Allows renaming of a relation or its attributes

$$R' := \rho'_R(R)$$

• $[R'] := [R]$

Player		
player_id	name	position
123	MS Dhoni	7
134	SK Yadav	5
131	Rohit Sharma	1
142	Ashok Singh	8
154	David Warner	3
163	Ashok Singh	6
250	Chris Gayle	1

$ ho_{\sf cricketers}({\sf Player})$		
player_id	name	position
123	MS Dhoni	7
134	SK Yadav	5
131	Rohit Sharma	1
142	Ashok Singh	8
154	David Warner	3
163	Ashok Singh	6
250	Chris Gayle	1

R'	$:= \rho_{A'\leftarrow A}(R)$
	$A \in R$

$\rho_{position \leftarrow b_order}(Player)$		
player₋id	name	b₋order
123	MS Dhoni	7
134	SK Yadav	5
131	Rohit Sharma	1
142	Ashok Singh	8
154	David Warner	3
163	Ashok Singh	6
250	Chris Gayle	1

Intersection ∩

$$R':=R_i\cap R_2$$

$$\triangleright = R_1 - (R_1 - R_2)$$

$$ightharpoonup [R'] := [R_1] = [R_2]$$

Player		
player_id	name	position
123	MS Dhoni	7
134	SK Yadav	5
131	Rohit Sharma	1
142	Ashok Singh	8
154	David Warner	3
163	Ashok Singh	6
250	Chris Gayle	1

MIPlayer		
player_id	name	position
134	SK Yadav	5
131	Rohit Sharma	1
176	Hardik Pandaya	5

Player ∩ MIPlayer		
player_id	name	position
134	SK Yadav	5
131	Rohit Sharma	1

12

Theta join \bowtie_{θ}

$$R':=R_1\bowtie_{\theta}R_2$$

$$\blacktriangleright = \sigma_{\theta}(R_1 \times R_2) \subseteq R_1 \times R_2$$

$$ightharpoonup [R'] := [R_1] \cup [R_2]$$

 $\bullet \ \theta : [R_1] \cup [R_2] \mapsto \{ \text{ true, false } \}$

Player			
player_id name		position	
123	MS Dhoni	7	
134	SK Yadav	5	
131	Rohit Sharma	1	
142	Ashok Singh	8	
154	David Warner	3	
163	Ashok Singh	6	
250	Chris Gayle	1	

League		
id	league_name	
150	IPL	
210	CPL	

	Player $\bowtie_{ heta:=true}$ League				
player_id	name	position	id	league_name	
123	MS Dhoni	7	150	IPL	
123	MS Dhoni	7	210	CPL	
134	SK Yadav	5	150	IPL	
134	SK Yadav	5	210	CPL	
131	Rohit Sharma	1	150	IPL	
131	Rohit Sharma	1	210	CPL	
142	Ashok Singh	8	150	IPL	
142	Ashok Singh	8	210	CPL	
154	David Warner	3	150	IPL	
154	David Warner	3	210	CPL	
163	Ashok Singh	6	150	IPL	
163	Ashok Singh	6	210	CPL	
250	Chris Gayle	1	150	IPL	
250	Chris Gayle	1	210	CPL	

Theta join \bowtie_{θ} with selective predicate

$$R':=R_1\bowtie_{\theta}R_2$$

$$\blacktriangleright = \sigma_{\theta}(R_1 \times R_2) \subseteq R_1 \times R_2$$

$$ightharpoonup [R'] := [R_1] \cup [R_2]$$

 $\qquad \qquad \theta: [R_1] \cup [R_2] \mapsto \{ \, \mathsf{true}, \mathsf{false} \, \}$

Player			
player_id	player_id name		
123	MS Dhoni	7	
134	SK Yadav	5	
131	Rohit Sharma	1	
142	Ashok Singh	8	
154	David Warner	3	
163	Ashok Singh	6	
250	Chris Gayle	1	

League		
id	league_name	
150	IPL	
210	CPL	

Player $oxtimes_{ heta=player_id>id}$ League				
player_id	name	position	id	league_name
154	David Warner	3	150	IPL
163	Ashok Singh	6	150	IPL
250	Chris Gayle	1	150	IPL
250	Chris Gayle	1	210	CPL

Equi join ⋈

$$R' := R_1 \bowtie_{[L][R]} R_2$$

 $:= R_1 \bowtie_{\theta} R_2$
 $\theta := R_1.[L] == R_2.[R] \text{ and } [L] \subseteq [R_1], [R] \subseteq [R_2]$

Player			
player_id	player_id name		
123	MS Dhoni	7	
134	SK Yadav	5	
131	Rohit Sharma	1	
142	Ashok Singh	8	
154	David Warner	3	
163	Ashok Singh	6	
250	Chris Gayle	1	

Batter		
id	bt_type	
123	finisher	
131	opener	
250	opener	
272	lower order	

Player ⋈ _{player_id, id} Batter				
player_id	name	position	id	bt_type
123	MS Dhoni	7	123	finisher
131	Rohit Sharma	1	131	opener
250	Chris Gayle	1	250	opener

Natural join ⋈

$$R' := R_1 \bowtie_{[J][J]} R_2$$

 $:= \pi_{[R']}(R_1 \bowtie_{[J][J]} R_2)$

$$ightharpoonup = [J] := [R_1] \cap [R_2] \text{ and } [R'] := [R_1] \cup ([R_2] - [J])$$

Player			
player₋id	name	position	
123	MS Dhoni	7	
134	SK Yadav	5	
131	Rohit Sharma	1	
142	Ashok Singh	8	
154	David Warner	3	
163	Ashok Singh	6	
250	Chris Gayle	1	

Player ⋈ Batter				
player_id	name	position	player_id	bt_type
123	MS Dhoni	7	123	finisher
131	Rohit Sharma	1	131	opener
250	Chris Gayle	1	259	opener

Batter		
player₋id	bt_type	
123	finisher	
131	opener	
250	opener	

Left semi-join ⋉

$$R' := R_1 \ltimes R_2$$
$$:= \pi_{[R_1]}(R_1 \bowtie R_2) \subseteq R_1$$

 $ightharpoonup [R'] := [R_1]$

Player		
player_id	name	position
123	MS Dhoni	7
134	SK Yadav	5
131	Rohit Sharma	1
142	Ashok Singh	8
154	David Warner	3
163	Ashok Singh	6
250	Chris Gayle	1

Batter	
player_id	bt_type
123	finisher
131	opener
250	opener

Player ⋉ Batter		
player_id name position		
123	MS Dhoni	7
131	Rohit Sharma	1
250	Chris Gayle	1

Right semi-join ⋊

$$R' := R_1 \rtimes R_2$$

:= $\pi_{[R_2]}(R_1 \bowtie R_2) \subseteq R_2$

$$ightharpoonup [R'] := [R_2]$$

Player		
player_id	name	position
123	MS Dhoni	7
134	SK Yadav	5
131	Rohit Sharma	1
142	Ashok Singh	8
154	David Warner	3
163	Ashok Singh	6
250	Chris Gayle	1

Batter	
player_id	bt_type
123	finisher
131	opener
267	middle order

Player ⋊ Batter	
player_id	bt_type
123	finisher
131	opener

Left anti semi-join ⊳

$$R' := R_1 \rhd R_2$$

= $R_1 - (R_1 \bowtie R_2) \subseteq R_1$

$$ightharpoonup [R'] := [R_1]$$

Player		
player_id	name	position
123	MS Dhoni	7
134	SK Yadav	5
131	Rohit Sharma	1
142	Ashok Singh	8
154	David Warner	3
163	Ashok Singh	6
250	Chris Gayle	1

Batter	
player_id	bt_type
123	finisher
131	opener
267	middle order

Player ⊳ Batter		
player_id name		position
134	SK Yadav	5
142	Ashok Singh	8
154	David Warner	3
163	Ashok Singh	6
250	Chris Gayle	1

Right anti semi-join \lhd

$$R' := R_1 \triangleleft R_2$$

= $R_2 - (R_1 \bowtie R_2) \subseteq R_2$

$$ightharpoonup [R'] := [R_2]$$

Player		
player_id	name	position
123	MS Dhoni	7
134	SK Yadav	5
131	Rohit Sharma	1
142	Ashok Singh	8
154	David Warner	3
163	Ashok Singh	6
250	Chris Gayle	1

Batter	
player_id	bt_type
123	finisher
131	opener
267	middle order

Player ⊲ Batter	
player_id bt_type	
267	middle order

Left outer join ™

$$R' := R_1 \bowtie R_2$$

= $(R_1 \bowtie R_2) \cup ((R_1 \bowtie R_2) \times R_3)$

- where $R_3 = \{ (\omega, \dots, \omega) \}$ and $|(\omega, \dots, \omega)| = |[R'] [R_1]|$
- $\blacktriangleright [R'] := [R_1 \bowtie R_2]$

Player		
player₋id	player_id name	
123	MS Dhoni	7
134	SK Yadav	5
131	Rohit Sharma	1
142	Ashok Singh	8
154	David Warner	3
163	Ashok Singh	6
250	Chris Gayle	1

Batter		
player_id bt_type		
123	finisher	
131	opener	
267	middle order	

Player ⋈ Batter			
player_id name position			bt_type
123	MS Dhoni	7	finisher
134	SK Yadav	5	ω
131	Rohit Sharma	1	opener
142	Ashok Singh	8	ω
154	David Warner	3	ω
163	Ashok Singh	6	ω
250	Chris Gayle	1	ω

Right outer join ⋈

$$R' := R_1 \bowtie R_2$$

= $(R_1 \bowtie R_2) \cup (R_3 \times (R_1 \triangleleft R_2))$

- where $R_3 = \{ (\omega, \dots, \omega) \}$ and $|(\omega, \dots, \omega)| = |[R'] [R_2]|$
- $\blacktriangleright [R'] := [R_1 \bowtie R_2]$

Player			
player₋id	player_id name		
123	MS Dhoni	7	
134	SK Yadav	5	
131	Rohit Sharma	1	
142	Ashok Singh	8	
154	David Warner	3	
163	Ashok Singh	6	
250	Chris Gayle	1	

Batter		
player_id bt_type		
123	finisher	
131	opener	
267	middle order	

Player ⋈ Batter			
player_id name position bt_type			
123	MS Dhoni	7	finisher
131	Rohit Sharma	1	opener
267	ω	ω	middle order

$$R' := R_1 \bowtie R_2$$
$$= R_1 \bowtie R_2 \cup R_1 \bowtie R_2$$

▶
$$[R'] := [R1 \bowtie R_2]$$

Player		
player_id name		position
123	MS Dhoni	7
134	SK Yadav	5
131	Rohit Sharma	1
142	Ashok Singh	8
154	David Warner	3
163	Ashok Singh	6
250	Chris Gayle	1

Batter		
player_id	bt_type	
123	finisher	
131	opener	
267	middle order	

Player ⊯ Batter			
player_id name position		bt_type	
123	MS Dhoni	7	finisher
134	SK Yadav	5	ω
131	Rohit Sharma	1	opener
142	Ashok Singh	8	ω
154	David Warner	3	ω
163	Ashok Singh	6	ω
250	Chris Gayle	1	ω
267	ω	ω	middle order

Grouping and aggregation Γ

$$R' := \Gamma_{[G], f_1(G_1), \dots, f_n(G_n)}(R)$$

- ▶ $[G] \subseteq [R]$ and $[G_i] \subset [R]$
- $ightharpoonup f_i: [G_i] \mapsto D_i$

Common aggregate functions

- sum
- ▶ min
- max
- avg
- count
- count-distinct*

Player			
player_id name		team	runs
123	MS Dhoni	CSK	600
134	SK Yadav	MI	400
131	Rohit Sharma	MI	500
142	Ashok Singh	CSK	100
154	David Warner	DC	150
163	Ashok Singh	CSK	250
250	Chris Gayle	RCB	300

$\Gamma_{team,sum(runs)}(Player)$		
team	sum(runs)	
CSK	950	
MI	900	
DC	150	
RCB	300	

Generalized projections

$$R' := \pi_{E_1,...E_n}(R)$$

- \triangleright E_i is arithmetic expression involving constants and attributes of R
- ▶ Same as projection, but some operation can be "directly" expressed

Player			
player_id name ba		bat_first	bat_second
123	MS Dhoni	1000	600
134	SK Yadav	900	400
131	Rohit Sharma	800	500
142	Ashok Singh	300	100
154	David Warner	800	150
163	Ashok Singh	100	250
250	Chris Gayle	1200	300

$\pi_{name,bat_first+bat_second}(Player)$		
name	bat_first + bat_second	
MS Dhoni	1600	
SK Yadav	1300	
Rohit Sharma	1300	
Ashok Singh	400	
David Warner	950	
Ashok Singh	350	
Chris Gayle	1500	

More operators

- duplicate elimination $(\delta(R))$
- ▶ Sorting τ
- ► More on this later

Composing Operators

Names of players with more than 1000 runs $\pi_{\text{name}}(\sigma_{\text{runs}>1000}(\text{Player})$

▶ Batters and their position who play in the middle order $\pi_{\text{name, position}}(\sigma_{\text{bt_type}=\text{'middle order'}}(\text{Player} \bowtie \text{Batter}))$

Examples

Students		
StudentID	Name	Major
1	Akash	CS
2	Binoy	Math
3	Charu	CS

Courses		
CourseID	CourseName	InstructorID
101	Databases	201
102	Calculus	202
103	Algorithms	201

Instructors		
InstructorID	Name	Department
201	Prof. Neetu	CS
202	Prof. Ram	Math

Retrieve names of all students majoring in "CS" $\pi_{name}(\sigma_{major='CS'}(Students))$

► Find instructors who teach courses in both CS and Math departments

$$R = \pi_{\mathsf{InstructorID}}(\sigma_{\mathsf{Department}='\mathsf{CS'}}(\mathsf{Instructors}))$$
 $S = \pi_{\mathsf{InstructorID}}(\sigma_{\mathsf{Department}='\mathsf{Math'}}(\mathsf{Instructors}))$
 $R \cap S$

Examples

Students		
StudentID	Name	Major
1	Akash	CS
2	Binoy	Math
3	Charu	CS

Courses		
CourseID	CourseName	InstructorID
101	Databases	201
102	Calculus	202
103	Algorithms	201

Instructors		
InstructorID	Name	Department
201	Prof. Neetu	CS
202	Prof. Ram	Math

Enrollments		
EnrollmentID	StudentID	CourseID
1	1	101
2	2	102
3	3	101
4	1	103
5	3	103

- ▶ Find all students enrolled in courses taught by "Prof. Neetu."
 - 1. Find the 'InstructorID' of "Prof. Neetu": $R_1 = \sigma_{\text{Name}='\text{Prof. Neetu'}}$ (Instructors)
 - 2. Join this with the 'Courses' table to find the courses taught by "Prof. Neetu":

$$R_2 = R_1 \bowtie_{\mathsf{Instructors.InstructorID} = \mathsf{Courses.InstructorID}}$$
 Courses

3. Join the result with the 'Enrollments' table:

$$R_3 = R_2 \bowtie_{\mathsf{Courses}.\mathsf{CourseID} = \mathsf{Enrollments}.\mathsf{CourseID}}$$
 Enrollments

4. Retrieve the names of the students:

$$\pi_{\mathsf{Name}}(R_3\bowtie_{\mathsf{Students}.\mathsf{StudentID}=\mathsf{Enrollments}.\mathsf{StudentID}} \mathsf{Students})$$

Examples

Students		
StudentID	Name	Major
1	Akash	CS
2	Binoy	Math
3	Charu	CS

Courses		
CourseID	CourseName	InstructorID
101	Databases	201
102	Calculus	202
103	Algorithms	201

Instructors		
InstructorID	Name	Department
201	Prof. Neetu	CS
202	Prof. Ram	Math

Enrollments		
EnrollmentID	StudentID	CourseID
1	1	101
2	2	102
3	3	101
4	1	103
5	3	103

- List students who are not taking any courses.
 - 1. Find all 'StudentID' who are enrolled in courses: $R_1 = \pi_{StudentID}(Enrollments)$
 - 2. Find all 'StudentID' in the 'Students' table: $R_2 = \pi_{\text{StudentID}}(\text{Students})$
 - 3. Use set difference to find students not enrolled in any course:

$$R_2 - R_1$$

Homework

Students			
StudentID	Name	Major	
1	Akash	CS	
2	Binoy	Math	
3	Charu	CS	

Courses			
CourseID	CourseName	InstructorID	
101	Databases	201	
102	Calculus	202	
103	Algorithms	201	

Instructors				
InstructorID	Name	Department		
201	Prof. Neetu	CS		
202	Prof. Ram	Math		

Enrollments				
EnrollmentID	StudentID	CourseID		
1	1	101		
2	2	102		
3	3	101		
4	1	103		
5	3	103		

- Find all courses taken by every CS major.
- Find instructors who teach at least two different courses.
- Find pairs of students who are enrolled in the same course.

Summary

- ▶ Relational algebra is a foundational tool for understanding and building queries
 - Basis of SQL
 - Basis of modern data processing systems
- Key operations
 - Selection, projection, union, set difference, cross product, joins