Компьютерное Зрение Лекция №9, весна 2021

Оптический видеопоток

Что будем изучать сегодня

- Оптический поток
- Lucas-Kanade method
- Horn-Schunk method
- Пирамиды для большого движения
- Общий подход
- Применения

От изображений к видео

- Видео это последовательность кадров, захваченных с течением времени.
- Теперь наши данные изображения являются функцией пространства (x, y) и времени (t).

Почему движение полезно?

Почему движение полезно?

Оптический поток

- Определение: оптический поток это видимое движение шаблонов яркости на изображении.
- Примечание: видимое движение может быть вызвано изменением освещения без какого-либо фактического движения.
 - Подумайте о равномерно вращающейся сфере при неподвижном освещении по сравнению со стационарной сферой при движущемся освещении.

Цель: восстановить движение изображения для каждого пикселя из оптического потока

Оптический поток

Picture courtesy of Selim Temizer - Learning and Intelligent Systems (LIS) Group, MIT

Оценка оптического потока

• Учитывая два последующих кадра, оценим видимое поле движения u(x,y), v(x,y) между ними

- Ключевые допущения
 - Небольшое движение: точки уходят не очень далеко
 - Постоянство яркости: проекция одной и той же точки выглядит одинаково на каждом кадре.е
 - Пространственная когерентность: точки перемещаются, как их соседи

Ключевые допущения: небольшое изменение

Assumption:

The image motion of a surface patch changes gradually over time.

Ключевые допущения: постоянство яркости

Assumption

Image measurements (e.g. brightness) in a small region remain the same although their location may change.

$$I(x, y, t - 1) = I(x + u(x, y), y + v(x, y), t)$$
(assumption)

Ключевые допущения: пространственная когерентность

- * Neighboring points in the scene typically belong to the same surface and hence typically have similar motions.
- * Since they also project to nearby points in the image, we expect spatial coherence in image flow.

Постоянство яркости

(x + u, y + v)

Уравнение Brightness Constancy:

$$I(x + u\delta t, y + v\delta t, t + \delta t) = I(x, y, t)$$

Линеаризация правой части уравнения:

$$\begin{split} I(x,y,t) + \frac{\partial I}{\partial x} \delta x + \frac{\partial I}{\partial y} \delta y + \frac{\partial I}{\partial t} \delta t &= I(x,y,t) \quad \text{assuming small motion} \\ \frac{\partial I}{\partial x} \delta x + \frac{\partial I}{\partial y} \delta y + \frac{\partial I}{\partial t} \delta t &= 0 \quad \qquad \text{divide by } \delta t \\ \text{take limit } \delta t \to 0 \end{split}$$

$$\frac{\partial I}{\partial x}\frac{dx}{dt} + \frac{\partial I}{\partial y}\frac{dy}{dt} + \frac{\partial I}{\partial t} = 0 \qquad \qquad \underset{\text{Equation}}{\text{Brightness Constancy}}$$

Представление оптического потока

How do you compute ...

$$I_x = \frac{\partial I}{\partial x} \quad I_y = \frac{\partial I}{\partial y}$$

spatial derivative

$$u = \frac{dx}{dt} \quad v = \frac{dy}{dt}$$

optical flow

$$I_t = \frac{\partial I}{\partial t}$$

temporal derivative

Forward difference Sobel filter Scharr filter We need to solve for this!

(this is the unknown in the optical flow problem)

frame differencing

Представление оптического потока

Solution lies on a straight line

$$I_x u + I_y v + I_t = 0$$

many combinations of u and v will satisfy the equality

The aperture problem

The aperture problem

The barber pole illusion

http://en.wikipedia.org/wiki/Barberpole illusion

The barber pole illusion

http://en.wikipedia.org/wiki/Barberpole illusion

Что будем изучать сегодня

- Оптический поток
- Lucas-Kanade method
- Horn-Schunk method
- Пирамиды для большого движения
- Общая подход
- Применения

Solving the ambiguity...

- How to get more equations for a pixel?
- Инвариант пространственной когерентности:
- Соседние пиксели должны иметь схожие (u,v)
 - Если мы используем окно 5х5, это дает нам 25 уравнений от каждого пикселя

$$0 = I_t(\mathbf{p_i}) + \nabla I(\mathbf{p_i}) \cdot [u \ v]$$

$$\begin{bmatrix} I_x(\mathbf{p_1}) & I_y(\mathbf{p_1}) \\ I_x(\mathbf{p_2}) & I_y(\mathbf{p_2}) \\ \vdots & \vdots \\ I_x(\mathbf{p_{25}}) & I_y(\mathbf{p_{25}}) \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = - \begin{bmatrix} I_t(\mathbf{p_1}) \\ I_t(\mathbf{p_2}) \\ \vdots \\ I_t(\mathbf{p_{25}}) \end{bmatrix}$$

B. Lucas and T. Kanade. An iterative image registration technique with an application to stereo vision. In *Proceedings of the International Joint Conference on Artificial Intelligence*, pp. 674–679, 1981.

Lucas-Kanade flow

• Перегруженная линейная система:

$$\begin{bmatrix} I_{x}(\mathbf{p}_{1}) & I_{y}(\mathbf{p}_{1}) \\ I_{x}(\mathbf{p}_{2}) & I_{y}(\mathbf{p}_{2}) \\ \vdots & \vdots \\ I_{x}(\mathbf{p}_{25}) & I_{y}(\mathbf{p}_{25}) \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = - \begin{bmatrix} I_{t}(\mathbf{p}_{1}) \\ I_{t}(\mathbf{p}_{2}) \\ \vdots \\ I_{t}(\mathbf{p}_{25}) \end{bmatrix} \xrightarrow{A \ d = b}_{25 \times 2 \ 2 \times 1 \ 25 \times 1}$$

Lucas-Kanade flow

• Перегруженная линейная система

$$\begin{bmatrix} I_{x}(\mathbf{p_{1}}) & I_{y}(\mathbf{p_{1}}) \\ I_{x}(\mathbf{p_{2}}) & I_{y}(\mathbf{p_{2}}) \\ \vdots & \vdots & \vdots \\ I_{x}(\mathbf{p_{25}}) & I_{y}(\mathbf{p_{25}}) \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = - \begin{bmatrix} I_{t}(\mathbf{p_{1}}) \\ I_{t}(\mathbf{p_{2}}) \\ \vdots \\ I_{t}(\mathbf{p_{25}}) \end{bmatrix} \xrightarrow{A \ d = b}_{25 \times 2 \ 2 \times 1 \ 25 \times 1}$$

Метод наименьших квадратов $(A^T A) d = A^T b$

$$(A^TA) d = A^Tb$$

$$\begin{bmatrix} \sum I_x I_x & \sum I_x I_y \\ \sum I_x I_y & \sum I_y I_y \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = - \begin{bmatrix} \sum I_x I_t \\ \sum I_y I_t \end{bmatrix}$$

$$A^T A \qquad A^T b$$

Обобщение всех пикселей в окне К х К

Условия для разрешения уравнения

• Optimal (u, v) satisfies Lucas-Kanade equation

$$\begin{bmatrix} \sum_{i=1}^{T} I_{x} I_{x} & \sum_{i=1}^{T} I_{x} I_{y} \\ \sum_{i=1}^{T} I_{x} I_{y} & \sum_{i=1}^{T} I_{y} I_{y} \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = - \begin{bmatrix} \sum_{i=1}^{T} I_{x} I_{t} \\ \sum_{i=1}^{T} I_{y} I_{t} \end{bmatrix}$$

$$A^{T}A$$

$$A^{T}b$$

Когда эта система разрешима?

- **A**^T**A** должно быть обратима
- **А^ТА** не должна быть маленькой из-за шума
 - собственные числа λ_1 и λ_2 матрицы **А^ТА** не должны быть маленькими
- ATA should be well-conditioned
 - $-\lambda_1/\lambda_2$ должны быть небольшие (λ_1 = larger eigenvalue)

Ничего не напоминает?

$M = A^TA$ это матрица вторых моментов! (Harris corner detector...)

$$A^{T}A = \begin{bmatrix} \sum I_{x}I_{x} & \sum I_{x}I_{y} \\ \sum I_{x}I_{y} & \sum I_{y}I_{y} \end{bmatrix} = \sum \begin{bmatrix} I_{x} \\ I_{y} \end{bmatrix} [I_{x} I_{y}] = \sum \nabla I(\nabla I)^{T}$$

- Собственные вектора и значения матрицы A^TA определяют направление и амплитуду движения
 - The eigenvector associated with the larger eigenvalue points in the direction of fastest intensity change
 - The other eigenvector is orthogonal to it

Интерпретация собственных чисел

Классификация точки по собственным значениям матрицы моментов:

Граница

$$\sum \nabla I(\nabla I)^T$$

- градиент очень большой или очень маленький
- большое λ_1 , маленькое λ_2

Регион с слабой текстурой

$$\sum \nabla I (\nabla I)^T$$

- градиент имеет маленькую амплитуду
- маленькое λ_1 , маленькое λ_2

Регион с сильной текстурой

$$\sum \nabla I(\nabla I)^T$$

- градиенты в разные стороны, большая амплитуда
- большое λ_1 , большое λ_2

Ошибки в методе Lukas-Kanade

What are the potential causes of errors in this procedure?

- Suppose A^TA is easily invertible
- Suppose there is not much noise in the image
- Когда нарушаются ограничения
 - Яркость не остается постоянной во времени
 - Большое изменение движения
 - Соседние точки ведут себя по-разному
 - окно слишком большое
 - какой оптимальный размер окна?

Улучшение модели

• Разложение в ряд:

$$0 = I(x + u, y + v) - I_{t-1}(x,y)$$

$$\approx I(x,y) + I_x u + I_y v - I_{t-1}(x,y)$$

- Это не очень точно
 - Для повышения точности при разложении нужны члены высокого порядка:

$$= I(x,y) + I_x u + I_y v + \text{higher order terms} - I_{t-1}(x,y)$$

- Теперь встает проблема поиска решения на (u, v) нелинейная система:
 - Можно разрешить с помощью метода Ньютона
 - В методе Lukas-Kanade применяется одна итерация метода Ньютона:
 - Лучше результат, чем больше итераций

Iterative Refinement

- Итеративный алгоритм Lukas-Kanade
 - 1. Оценить поток для каждого пикселя, решая уравнение Lucas-Kanade
 - 2. Warp I(t-1) towards I(t) using the estimated flow field use image warping techniques
 - 3. Решить до конца последовательности

Что будем изучать сегодня

- Оптический поток
- Lucas-Kanade method
- Horn-Schunk method
- Пирамиды для большого движения
- Общая подход
- Применения

Horn-Schunk method

• Поток сформулирован как глобальная энергетическая функция, которая должна быть минимизирована:

$$E = \iint \left[(I_x u + I_y v + I_t)^2 + lpha^2 (\|
abla u\|^2 + \|
abla v\|^2)
ight] \mathrm{d}x \mathrm{d}y$$

Horn-Schunk method

- Поток сформулирован как глобальная энергетическая функция, которая должна быть минимизирована:
- Первая часть функции изменение яркости.

$$E = \iint \left[\left(I_x u + I_y v + I_t
ight]^2 + lpha^2 (\|
abla u\|^2 + \|
abla v\|^2)
ight] \mathrm{d}x \mathrm{d}y$$

Horn-Schunk method for optical flow

- Поток сформулирован как глобальная энергетическая функция, которая должна быть минимизирована:
- Вторая часть регуляризация потока. Она пытается сделать так, чтобы изменения между пикселями были небольшими.

$$E = \iint \left[(I_x u + I_y v + I_t)^2 + lpha^2 \left\|
abla u
ight\|^2 + \left\|
abla v
ight\|^2
ight] \mathrm{d}x \mathrm{d}y$$

Horn-Schunk method

- Поток сформулирован как глобальная энергетическая функция, которая должна быть минимизирована :
- α масштаб регуляризации. Большие значения α делают более «гладким».

$$E = \iint \left[(I_x u + I_y v + I_t)^2 + lpha^2 \left[\|
abla u\|^2 + \|
abla v\|^2
ight)
ight] \mathrm{d}x \mathrm{d}y$$

Horn-Schunk method

• Поток сформулирован как глобальная энергетическая функция, которая должна быть минимизирована:

$$E = \iint \left[(I_x u + I_y v + I_t)^2 + lpha^2 (\|
abla u\|^2 + \|
abla v\|^2)
ight] \mathrm{d}x \mathrm{d}y$$

• Задачу минимизации можно решить, взяв производную по отношению к и и v. Получим следующие уравнения :

$$egin{aligned} rac{\partial L}{\partial u} - rac{\partial}{\partial x} rac{\partial L}{\partial u_x} - rac{\partial}{\partial y} rac{\partial L}{\partial u_y} = 0 \ rac{\partial L}{\partial v} - rac{\partial}{\partial x} rac{\partial L}{\partial v_x} - rac{\partial}{\partial y} rac{\partial L}{\partial v_y} = 0 \end{aligned} \qquad egin{aligned} I_x(I_x u + I_y v + I_t) - lpha^2 \Delta u = 0 \ I_y(I_x u + I_y v + I_t) - lpha^2 \Delta v = 0 \end{aligned}$$

Horn-Schunk method

• Производные по отношению к и и v получаются:

$$egin{aligned} I_x(I_xu+I_yv+I_t)-lpha^2\Delta u &=0 \ I_y(I_xu+I_yv+I_t)-lpha^2\Delta v &=0 \end{aligned}$$

• Где
$$\Delta=rac{\partial^2}{\partial x^2}+rac{\partial^2}{\partial y^2}$$
 is. На практике его считают так: $\Delta u(x,y)=\overline{u}(x,y)-u(x,y)$

• Здесь $\overline{u}(x,y)$ едневзвешенное значение u, измеренное на (x,y).

Horn-Schunk method

ullet Теперь подставим $\Delta u(x,y) = \overline{u}(x,y) - u(x,y)$

$$egin{aligned} I_x(I_xu+I_yv+I_t)-lpha^2\Delta u &=0 \ I_y(I_xu+I_yv+I_t)-lpha^2\Delta v &=0 \end{aligned}$$

• Получим: $(I_x^2+lpha^2)u+I_xI_yv=lpha^2\overline{u}-I_xI_t$ $I_xI_yu+(I_y^2+lpha^2)v=lpha^2\overline{v}-I_yI_t$

• Система является линейной для u и v и может быть решена аналитически для каждого пикселя в отдельности.

Iterative Horn-Schunk

• Но так как решение зависит от соседних значений поля потока, то его необходимо повторить после обновления соседей.

• Так что вместо этого, мы можем итеративно решать для и и v, используя: t = (t - k) + (t - k)

$$egin{split} u^{k+1} &= \overline{u}^k - rac{I_x(I_x\overline{u}^k + I_y\overline{v}^k + I_t)}{lpha^2 + I_x^2 + I_y^2} \ v^{k+1} &= \overline{v}^k - rac{I_y(I_x\overline{u}^k + I_y\overline{v}^k + I_t)}{lpha^2 + I_x^2 + I_y^2} \end{split}$$

Что вообще делает регуляризация потока?

- Это сумма квадратов (евклидовая мера расстояния).
- Мы помещаем это в выражение, чтобы свести к минимуму.
- => В областях, свободных от текстуры, нет оптического потока.
- => По рёбрам точки будут стекаться к ближайшим точкам, решая aperture problem.

Плотный оптический поток по Michael Black's method

- Майкл Блэк продвинул метод Хорн-Шанка на шаг дальше, начав с константы регуляризации. :
- Которая выглядит, как квадрат:

$$\|
abla u\|^2 + \|
abla v\|^2$$

• И заменил его этим:

• Почему эта регуляризация работает лучше?

Что будем изучать сегодня

- Оптический поток
- Lucas-Kanade method
- Horn-Schunk method
- Пирамиды для большого движения
- Общая подход
- Применения

Повторение

• Ключевые допущения (Ошибки в Lucas-Kanade)

- Небольшое движение: точки уходят не очень далеко
- Постоянство яркости: проекция одной и той же точки выглядит одинаково на каждом кадре.е
- Пространственная когерентность: точки перемещаются, как их соседи

Пересмотр предположения о малом движении

- Это движение достаточно маленькое?
 - Наверное, не настолько. Это намного больше одного пикселя (доминируют термины 2-го порядка).
 - Как мы можем решить эту проблему?

Уменьшим разрешение

Оценка грубого мелкого оптического потока

Оценка грубого мелкого оптического потока

Результаты без пирамид

^{*} From Khurram Hassan-Shafique CAP5415 Computer Vision 2003

Результаты с пирамидами

Что будем изучать сегодня

- Оптический поток
- Lucas-Kanade method
- Horn-Schunk method
- Пирамиды для большого движения
- Общая подход
- Применения

Повторение

• Ключевые допущения (Ошибки в Lucas-Kanade)

- Небольшое движение: точки уходят не очень далеко
- Постоянство яркости: проекция одной и той же точки выглядит одинаково на каждом кадре.е
- **Пространственная когерентность:** точки перемещаются, как их соседи

Gestalt – common fate

Люди склонны воспринимать элементы, движущиеся в одном направлении, как более связанные, чем стационарные или движущиеся в разных направлениях.

Сегментация движения

• Как мы представляем движение в этой сцене?

Сегментация движения

• Разбить последовательность изображений на "слои", каждый из которых имеет когерентное (аффинное) движение

Affine motion

$$u(x, y) = a_1 + a_2 x + a_3 y$$

 $v(x, y) = a_4 + a_5 x + a_6 y$

• Заменим в уравнении постоянства яркости:

$$I_{x} \cdot u + I_{y} \cdot v + I_{t} \approx 0$$

Affine motion

$$u(x, y) = a_1 + a_2 x + a_3 y$$

 $v(x, y) = a_4 + a_5 x + a_6 y$

• Заменим в уравнении постоянства яркости:

$$I_x(a_1 + a_2x + a_3y) + I_y(a_4 + a_5x + a_6y) + I_t \approx 0$$

- Каждый пиксель обеспечивает 1 линейное ограничение на 6 неизвестных
- Минимизация наименьших квадратов :

$$Err(\vec{a}) = \sum \left[I_x(a_1 + a_2x + a_3y) + I_y(a_4 + a_5x + a_6y) + I_t \right]^2$$

Как мы оцениваем слои?

- 1. Получим набор гипотез о affine motion
 - Разделить изображение на блоки и оценивать параметры affine motion в каждом из них по наименьшим квадратам
 - Исключить гипотезы с высокой ошибкой
 - •Отобразить параметры движения в векторном пространстве
 - Сделать k-means кластеризацию на параметры affine motion
 - Соединяем кластеры, которые близки, чтобы добиться наименьшего количества гипотез

Как мы оцениваем слои?

- 1. Получим набор гипотез о affine motion
 - Разделить изображение на блоки и оценивать параметры affine motion в каждом из них по наименьшим квадратам
 - Исключить гипотезы с высокой ошибкой
 - •Отобразить параметры движения в векторном пространстве
 - Сделать k-means кластеризацию на параметры affine motion
 - Соединяем кластеры, которые близки, чтобы добиться наименьшего количества гипотез

Как мы оцениваем слои?

- 1. Получим набор гипотез о affine motion
 - Разделить изображение на блоки и оценивать параметры affine motion в каждом из них по наименьшим квадратам
 - Исключить гипотезы с высокой ошибкой
 - •Отобразить параметры движения в векторном пространстве
 - Сделать k-means кластеризацию на параметры affine motion
 - Соединяем кластеры, которые близки, чтобы добиться наименьшего количества гипотез

2. Повторить до сходимости:

- •Отнести каждый пиксель к наилучшей гипотезе
 - Пиксели с высокой ошибкой остаются без гипотезы
- •Фильтрация регионов для соблюдения пространственных ограничений
- •Пересчитать оценку affine motions в каждом регионе

Результаты

J. Wang and E. Adelson. Layered Representation for Motion Analysis. CVPR 1993.

Что будем изучать сегодня

- Оптический поток
- Lucas-Kanade method
- Horn-Schunk method
- Пирамиды для большого движения
- Общая подход
- Применения

Применение

- Сегментация объектов на базе поиска движения
- Обучение динамических моделей
- Улучшение качество видео
 - Стабилизация потока
 - Улучшение разрашения
- Сопровождение образов
- Распознавание событий

Estimating 3D structure

Segmenting objects based on motion cues

- Background subtraction
 - A static camera is observing a scene
 - Goal: separate the static *background* from the moving *foreground*

Segmenting objects based on motion cues

- Motion segmentation
 - Segment the video into multiple *coherently* moving objects

S. J. Pundlik and S. T. Birchfield, Motion Segmentation at Any Speed, Proceedings of the British Machine Vision Conference (BMVC) 2006

Tracking objects

Z.Yin and R.Collins, "On-the-fly Object Modeling while Tracking," *IEEE Computer Vision and Pattern Recognition (CVPR '07)*, Minneapolis, MN, June 2007.

Synthesizing dynamic textures

Super-resolution

Example: A set of low quality images

low-temperature solde. investigated (or some c manufacturing technol nonwetting of 40ln40Sr microstructural coarse mal cycling of 58Bi42S

Most of the test data o Most of the test data o couple of exceptions. 3 low-temperature solder investigated (or some o nonwerting of 40fn40St microstructural coarse mal cycling of 58Bi42S

Most of the test data o Most of the test data o Most of the test data o couple of exceptions. I couple of exceptions. I low-temperature solder low-temperature solder investigated (or some c investigated (or some c manufacturing technol nonwetting of 40In40St microstructural coarse microstructural coarse mal cycling of 58B42S.

couple of exceptions. I low-temperature solder investigated (or some o manufacturing technol manufacturing technol nonwetting of 40In40St microstructural coarse mal eyeling of 58B442S

couple of exceptions. I couple of exceptions. I low-temperature solder low-temperature solder investigated (or some < investigated (or some < investigated (or some < manufacturing technol manufacturing technol manufacturing technol nonwetting of 40In40St nonwetting of 40In40St microstructural coarse microstructural coarse microstructural coarse mal cycling of 58Bi42S mal cycling of 58Bi42S mal cycling of 58Bi42S:

couple of exceptions. 1 manufacturing technoli nonwetting of 40tn40St mal cycling of 58Bi42Si

Most of the test data of couple of exceptions. 1 low-temperature solder investigated (or some a manufacturing technolnonwetting of 40in405a microstructural coarse mal cycling of 68Bi42Si

Most of the test data o Most of the test data o Most of the test data o couple of exceptions. 1 low-temperature solder nonwetting of 40In40St

Super-resolution

Each of these images looks like this:

Most of the test data of couple of exceptions. I low-temperature solder investigated (or some o manufacturing technologic nonwetting of 40In40St microstructural coarse mail cycling of 58Bi42St

Super-resolution

The recovery result:

Most of the test data of couple of exceptions. T low-temperature solder investigated (or some of manufacturing technol nonwetting of 40In40Sr microstructural coarse mal cycling of 58Bi42Si

Recognizing events and activities

D. Ramanan, D. Forsyth, and A. Zisserman. <u>Tracking People by Learning their Appearance</u>. PAMI 2007.

Recognizing events and activities

Juan Carlos Niebles, Hongcheng Wang and Li Fei-Fei, **Unsupervised Learning of Human Action Categories Using Spatial-Temporal Words**, (<u>BMVC</u>), Edinburgh, 2006.

Recognizing events and activities

Crossing – Talking – Queuing – Dancing – jogging

W. Choi & K. Shahid & S. Savarese WMC 2010

W. Choi, K. Shahid, S. Savarese, "What are they doing?: Collective Activity Classification Using Spatio-Temporal Relationship Among People", 9th International Workshop on Visual Surveillance (VSWS09) in conjuction with ICCV 09

Заключение

- Оптический поток
- Lucas-Kanade method
- Horn-Schunk method
- Пирамиды для большого движения
- Общая подход
- Применения оптического потока

Reading: [Szeliski] Chapters: 8.4, 8.5

[Fleet & Weiss, 2005]

http://www.cs.toronto.edu/pub/jepson/teaching/vision/2503/opticalFlow.pdf