VLSI: Very Large-Scale Integration

CAD & Physical Design

CAD = Computer Aided Design

Complexity of today's circuits requires computer support for most design tasks

CAD split into Synthesis, Physical Design

Synthesis = translating designer requirements into a circuit graph

PD = translating circuit graph into layout ("blueprint") for fabrication

Partitioning

Floorplanning

Placement

Global Routing

Detailed Routing

Partitioning

Circuits can exceed chip capacity

Split circuits into chip-sized subcircuits

Meet capacity constraints

Reduce interconnect demand

Meet performance requirements

Partitioning

Floorplanning

Placement

Global Routing

Detailed Routing

Floorplanning

Assign portions of a design to regions of the chip area

Blocks have adjustable sizes

Seek to reduce routing delay & area

Partitioning

Floorplanning

Placement

Global Routing

Detailed Routing

Placement

Pick relative location for each gate

Seek to improve routeability, limit delay, reduce overall area

DFF INV NOR

DFF NOR DFF

Partitioning

Floorplanning

Placement

Global Routing

Detailed Routing

Global Routing

Determine overall path of all routes Pick channels to route through

Seeks to reduce delay, channel widths

Detailed Routing

Determine exactly how each signal is routed through each region

Seeks to reduce routing area

Compaction

Squeeze layout to reduce chip area Helps eliminate inefficiencies caused by other steps

