Grundbegriffe der Informatik Aufgabenblatt 5

Matr.nr.:		
Nachname:		
Vorname:		
Tutorium:	Nr.	Name des Tutors:
Ausgabe:	15. November 201	2
Abgabe:	23. November 2012, 12:30 Uhr	
	im Briefkasten im	Untergeschoss
	von Gebäude 50.3	4
Lösungen w	erden nur korrigie	rt, wenn sie
• rechtzei	tig,	
	eigenen Handschri	
	er Seite als Deckbla	
		zusammengeheftet
abgegeben v	werden.	
Vom Tutor at	ıszufüllen:	
erreichte Pu	nkte	
Blatt 5:	/ 21	
Blätter 1 – 5	: / 99	

Aufgabe 5.1 (2+2 Punkte)

Geben Sie jeweils eine kontextfreie Grammatik G_x an, so dass für folgende Sprachen L_x , mit $x \in \{0,1\}$ gilt: $L_x = L(G_x)$.

a)
$$L_0 = \{ w \in \{ a, b, c \}^* \mid (b^i a^n b^j c^n b^k)^m, m, n \in \mathbb{N}_+, i, j, k \in \mathbb{N}_0 \}$$

b) Ein Wort w über dem Alphabet $\{a,b\}$ ist genau dann in L_1 , wenn das maximal lange Anfangsstück von w, das nur aus a besteht, und das maximal lange Endstück von w, das nur aus a besteht, gleiche Länge haben.

Aufgabe 5.2 (3+3 Punkte)

Bei der Postfix-Notation werden die Operatoren hinter die Operanden geschrieben.

- a) Geben Sie eine kontextfreie Grammatik an, die die Sprache der korrekten arithmetischen Ausdrücke, die nur Addition, Subtraktion und Multiplikation benutzen, über \mathbb{N}_0 in Postfix-Notation erzeugt. Benutzen Sie das Alphabet $A = \{0,1,2,3,4,5,6,7,8,9,_,+,-,*\}$. Das Zeichen _ markiert dabei das Ende einer Zahl.
- b) Geben Sie für das Wort 3_4_+7_18_13_-*+ einen Ableitungsbaum in Ihrer Grammatik an.

Aufgabe 5.3 (6 Punkte)

Gegeben ist die kontextfreie Grammatik $G = (\{S\}, \{a,b\}, S, \{S \to abS, S \to \epsilon\})$ und die formale Sprache $L = \{(ab)^n \mid n \in \mathbb{N}_0\}.$

Zeigen Sie durch vollständige Induktion L(G) = L, indem Sie beide Inklusionen beweisen.

Aufgabe 5.4 (3+2 Punkte)

Es sei
$$A = \{a, b, c\}$$
.

a) Beschreiben Sie unter Benutzung nur der Symbole $\{, \}$, a, b, c, ϵ , \cup , * und $^+$, sowie runde Klammer auf, runde Klammer zu und Komma, die folgende formale Sprache:

 $L = \{w \in A^* \mid \text{ wenn a in } w \text{ vorkommt, dann auch b}\}$

Hinweis: Die Verwendung von mehr als 25 Zeichen gibt Punktabzug.

b) Geben Sie eine kontextfreie Grammatik G an, so dass L(G) = L.