

Ache tooks v ∈ ? A ∈ B + 9: • A = B	t.q e poss/vel	outicioner P	Izvi em	conjuntos
$\sum_{\alpha \in A} \alpha = \sum_{b \in B}$	b. 3	Obs.;	$\left(\frac{2}{\omega}\right) + \left(\frac{2}{\omega}\right) =$	(\(\frac{1}{2} \)
P = { (a) : ac so	1,21, 6=40,1,	,21}		
	(m)	66		
	$\begin{array}{c} 3 \cdot 101 = \begin{pmatrix} (m)^{n} \\ p \cdot r \end{pmatrix} \\ - \begin{pmatrix} (x) \\ y \cdot r \end{pmatrix} = \begin{pmatrix} (y) \\ (y) \end{pmatrix} \end{array}$			
000	(a, -, 21, b \in 40 (b) (c) (c) (c)	<u> </u>	74 : 36	
		= Z <u>:</u>		

ABCD formendo D
$$A \in K_{\alpha}$$
, $B \in K_{\beta}$, $C \in K_{C}$, $D \in K_{\alpha}$

$$A \in (\alpha_{x}, \alpha_{y}); \quad C = (C_{x}, c_{y})$$

$$MA = \left(\frac{c_{x} + c_{y}}{2}, \frac{\alpha_{y} + c_{y}}{2}\right)$$

$$MA = \left(\frac{c_{x} + c_{y}}{2}, \frac{\alpha_{y} + c_{y}}{2}\right)$$

$$= \left(\frac{\alpha_{x} + \alpha_{y}}{2} + \frac{c_{x} + c_{y}}{2}\right) + \left(\frac{\alpha_{y} - c_{y}}{2}, \frac{c_{x} - \alpha_{x}}{2}\right)$$

$$= \left(\frac{\alpha_{x} + \alpha_{y}}{2} + \frac{c_{x} + c_{y}}{2}\right) + \left(\frac{\alpha_{y} + \alpha_{y}}{2} + \frac{c_{y} + c_{x}}{2}\right)$$

$$= \frac{1}{4} \left(\frac{2\alpha_{x}^{2} + 2c_{y}^{2}}{2} + 2c_{x}^{2} + 2c_{y}^{2} + 4(\pi - \alpha_{y}) + \frac{c_{y} + c_{y}}{2}\right)$$

$$= \frac{1}{4} \left(\frac{2\alpha_{x}^{2} + 2c_{y}^{2}}{2} + 2c_{x}^{2} + 2c_{y}^{2} + 4(\pi - \alpha_{y}) + \frac{c_{y} + c_{y}}{2}\right)$$

$$= \frac{1}{2} \left(\frac{2\alpha_{x}^{2} + 2c_{y}^{2}}{2} + 2c_{x}^{2} + 2c_{y}^{2} + 4(\pi - \alpha_{y}) + \frac{c_{y} + c_{y}}{2}\right)$$

$$= \frac{1}{2} \left(\frac{2\alpha_{x}^{2} + 2c_{y}^{2}}{2} + 2c_{x}^{2} + 2c_{y}^{2}\right)$$

$$= \frac{1}{2} \left(\frac{2\alpha_{x}^{2} + 2c_{y}^{2}}{2} + 2c_{x}^{2} + 2c_{y}^{2}\right)$$

$$= \frac{1}{2} \left(\frac{2\alpha_{x}^{2} + 2c_{y}^{2}}{2} + 2c_{x}^{2} + 2c_{y}^{2}\right)$$

$$= \frac{1}{2} \left(\frac{2\alpha_{x}^{2} + 2c_{y}^{2}}{2} + 2c_{x}^{2}\right)$$

$$= \frac{1}{2} \left(\frac{2\alpha_{x}^{2} + 2c_{y}^{2}}{2} + 2c_{y}^{2}\right)$$

$$= \frac{1}{2} \left(\frac{2\alpha_{x}^{2} + 2c$$

