

UNIVERSIDADE DE BRASÍLIA DEPARTAMENTO DE CIÊNCIAS MECÂNICAS PROGRAMA DE PÓS-GRADUAÇÃO

Atividade 5 Métodos Numéricos de Otimização SIMPLEX

Disciplina: Métodos Numéricos Professor: Dr. Rafael Gabler Gontijo

Aluno: Eng. Lucas Wanick — Mestrando em Engenharia Mecânica

Enunciado 1 - Interpretação da Tabela Simplex

Resolução do Enunciado 1 - Método Simplex

Nesta primeira parte da atividade, foi solicitado resolver um problema de maximização via Método Simplex. A seguir, é apresentada as três tabelas principais que compõem a sequência de iterações do método.

Iteração 0 - Tabela Inicial

Básicas	Z	x_1	x_2	s_1	s_2	s_3	s_4	Solução	Interseção
Z	1	0	-55	0	15	0	0	1200	_
s_1	0	0	5,4	1	-0,7	0	0	21	3,889
x_1	0	1	0,8	0	0,1	0	0	8	10
s_3	0	0	-0,8	0	-0,1	1	0	1	-1,25
s_4	0	0	1	0	0	0	1	6	6

Nesta tabela, a variável x_2 possui o menor coeficiente negativo na função objetivo (-55), logo é selecionada para entrar na base. Calculamos as razões (Solução / Coluna de x_2) para as linhas com coeficientes positivos em x_2 , obtendo:

Razões:
$$\frac{21}{5.4} \approx 3,889$$
, $\frac{8}{0.8} = 10$

A menor razão ocorre na linha de s_1 , que é então a variável que sai da base.

Iteração 1 - Após entrada de x_2 e saída de s_1

Básicas	Z	x_1	x_2	s_1	s_2	s_3	s_4	Solução	Interseção
Z	1	0	-55	0	15	0	0	1200	?
x_2	0	0	1	0,1852	-0,1296	0	0	3,889	?
x_1	0	1	0,8	0	0,1	0	0	8	?
s_3	0	0	-0,8	0	-0,1	1	0	1	?
s_4	0	0	1	0	0	0	1	6	?

Nesta iteração, todas as variáveis da função objetivo (linha Z) têm coeficientes não negativos. Portanto, atingimos a solução ótima.

Básicas	Z	x_1	x_2	s_1	s_2	s_3	s_4	Solução
Z	1	0	0	10,186	7,872	0	0	1413,895
x_2	0	0	1	$0,\!1852$	-0,1296	0	0	3,889
x_1	0	1	0	-0,1482	0,2037	0	0	4,8888
s_3	0	0	0	0	-0,2037	1	0	4,111
s_4	0	0	0	-0,1852	$0,\!1296$	0	1	2,111

Iteração Final - Solução Ótima

Critério de Parada

O método Simplex atinge o ponto ótimo quando todos os coeficientes da linha da função objetivo (Z) se tornam nulos ou positivos. Isso significa que não há mais direção viável que permita o aumento da função objetivo, e, portanto, a solução encontrada é a melhor possível dentro da região factível.

Solução ótima final: Z = 1413,895 com $x_1 = 4,8888$, $x_2 = 3,889$.

Enunciado 2

Introdução

Faremos a modelagem e solução de um problema de programação linear voltado à distribuição ótima da geração de energia elétrica a partir de quatro fontes renováveis no contexto brasileiro: solar fotovoltaica, eólica onshore, biomassa e pequenas centrais hidrelétricas (PCH). O objetivo é minimizar o custo total de geração (LCOE) respeitando restrições operacionais e ambientais realistas, com base em dados extraídos de relatórios técnicos da EPE (Empresa de Pesquisa Energética), IEA (International Energy Agency), IPCC (Intergovernmental Panel on Climate Change), e documentos oficiais brasileiros como o Plano Decenal de Expansão de Energia (PDE).

A modelagem considera os custos nivelados de geração elétrica (em R\$/MWh), as emissões de CO₂ equivalente por MWh com base em Análise do Ciclo de Vida (ACV), os fatores de capacidade médios e a produção semanal típica por MW instalado. Tais parâmetros foram utilizados para construir uma função objetivo e um conjunto de restrições coerentes com a realidade brasileira.

A ferramenta computacional utilizada para a resolução do problema foi a biblioteca scipy.optimize.linprog, com o solver HiGHS, que permite a aplicação eficiente de algoritmos simplex e interior point em problemas lineares de média e grande escala. Os resultados obtidos fornecem uma estratégia de despacho energético ótima que atende à demanda semanal de 1000 MWh, respeitando o teto de emissão de 30.000 kgCO₂-eq e garantindo participação expressiva de fontes renováveis de baixa emissão.

As fontes e dados utilizados para embasamento incluem:

- EPE Caderno de Preços de Referência para Geração (2023);
- IPCC AR5 e relatórios de ciclo de vida energético (2014 e 2021);

- IEA World Energy Outlook (edições 2022 e 2023);
- Plano Decenal de Expansão Energética 2032 (PDE 2032);
- NDC Brasil (Contribuição Nacionalmente Determinada compromisso com a neutralidade de carbono até 2050).

Formulação Matemática do Problema

Sejam as variáveis de decisão:

- x_1 : quantidade de energia solar gerada (em MWh/semana)
- x₂: quantidade de energia eólica gerada (em MWh/semana)
- x_3 : quantidade de energia de biomassa gerada (em MWh/semana)
- x_4 : quantidade de energia gerada por PCH (em MWh/semana)

A função objetivo representa o custo total de geração semanal:

$$Min Z = 149x_1 + 129x_2 + 247x_3 + 193x_4$$

Sujeita às seguintes restrições:

(R1) Demanda mínima de energia:
$$x_1 + x_2 + x_3 + x_4 \ge 1000$$

(R2) Limite solar: $x_1 \le 300$
(R3) Limite eólica: $x_2 \le 400$
(R4) Limite biomassa: $x_3 \le 500$
(R5) Limite PCH: $x_4 \le 450$
(R6) Emissão de CO₂-eq: $48x_1 + 11x_2 + 230x_3 + 24x_4 \le 30000$
(R7) Meta de renováveis limpas: $x_1 + x_2 \ge 350$
(R8) Não negatividade: $x_i \ge 0$, para $i = 1, 2, 3, 4$

Forma padrão para o solver (linprog)

A função linprog exige que todas as restrições estejam na forma $A_{ub}x \leq b_{ub}$. Assim, as restrições R1 e R7 são multiplicadas por -1:

(R1*)
$$-x_1 - x_2 - x_3 - x_4 \le -1000$$

(R7*) $-x_1 - x_2 \le -350$

Sistema Linear

Função objetivo (vetor c):

$$c = \begin{bmatrix} 149 & 129 & 247 & 193 \end{bmatrix}$$

Matriz das restrições (A ub):

$$A_{ub} = \begin{bmatrix} -1 & -1 & -1 & -1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 48 & 11 & 230 & 24 \\ -1 & -1 & 0 & 0 \end{bmatrix} \quad b_{ub} = \begin{bmatrix} -1000 \\ 300 \\ 400 \\ 500 \\ 450 \\ 30000 \\ -350 \end{bmatrix}$$

Implementação Computacional (Python)

```
import numpy as np
from scipy.optimize import linprog
c = np.array([149, 129, 247, 193])
A_ub = np.array([
    [-1, -1, -1, -1],
    [1, 0, 0, 0],
    [0, 1, 0, 0],
    [ 0, 0, 1, 0],
    [0, 0, 0, 1],
    [48, 11, 230, 24],
    [-1, -1, 0, 0]
])
b_ub = np.array([
    -1000,
    300,
    400,
    500,
    450,
    30000,
    -350
])
res = linprog(c, A_ub=A_ub, b_ub=b_ub, method='highs')
print(res)
```

Resultados Obtidos

- Status da Otimização: Ótima (convergência).
- Custo Total Mínimo: **R\$ 154.200,00**
- Geração ótima por fonte:
 - Solar: $x_1 = 300 \text{ MWh}$ - Eólica: $x_2 = 400 \text{ MWh}$ - Biomassa: $x_3 = 0 \text{ MWh}$

- PCH: $x_4 = 300 \text{ MWh}$
- \bullet Emissões totais de CO2-eq:

$$48 \cdot 300 + 11 \cdot 400 + 230 \cdot 0 + 24 \cdot 300 = 26.000 \text{ kg CO}_2\text{-eq.} \le 30.000$$

- Total gerado: 300 + 400 + 0 + 300 = 1000 MWh (atende à demanda) (Atendido)
- Meta de renováveis limpas: $x_1 + x_2 = 700 \text{ MWh} \ge 350$ (Atendido)