Отчет по домашнему заданию №1

Курс: «Введение в архитектуру вычислительных систем»

1. ФИО

Манро Эйден Форбс (manro.e@phystech.edu)

2. Номер группы

Б01-307

3. Название схемы

D Flip-Flop (D-триггер)

5. Назначение схемы

D Flip-Flop — синхронный триггер, сохраняющий состояние входа D на выходе Q при каждом положительном фронте сигнала CLK. Выход !Q является инверсией Q.

Входы:

- D (данные),
- СLК (тактирующий сигнал).

Выходы:

- Q (сохраненное значение),
- !Q (инвертированный Q).

Принцип работы:

- При переходе СLК из 0 в 1 значение D передается на Q.
- В остальное время Q сохраняет предыдущее состояние.

6. Скриншоты схемы

Рис. 1: Состояние 1: СLK=0, D=0 \rightarrow Q сохраняет предыдущее значение.

Рис. 2: Состояние 2: СLK=1, D=1 \rightarrow Q=0, СLK сработал раньше, чем D.

Рис. 3: Состояние 3: CLK=0, D=1 \rightarrow Q=1, CLK сбросился, упс.

Рис. 4: Состояние 4: Все входы в 1 \rightarrow Q=1.

7. Подсчет транзисторов

Схема D Flip-Flop на основе NAND-элементов и 1 инвертора:

- Каждый NAND: 4 транзистора.
- Всего NAND-элементов: 8.
- Инвертор: 2 транзистора (р и n тип).

Итого: $8 \times 4 + 2 = 32$ транзистора.

8. Критический путь

Рис. 5: Красной линией выделен путь: D \to внутренние элементы \to Q. Задержка определяется комбинацией вентилей.

$$t_{crit_path} = 3t \; (Master \; Latch) + t \; (CLK) + 3t \; (Slave \; Latch) = 7t$$

9. Приложенный файл

 Φ айл схемы: flipflop.circ