MÉTODO DE EULER: EXEMPLO EM UMA APLICAÇÃO

MAT 271 – Cálculo Numérico – PER3/2021/UFV

Professor Amarísio Araújo DMA/UFV

PROBLEMA DE VALOR INICIAL NUMA APLICAÇÃO

Considere a água sendo drenada de um tanque cilíndrico vertical, abrindo-se uma válvula na base do cilindro, conforme ilustrado na figura abaixo, onde y indica o nível da água no tanque (em metros) em cada instante t (em minutos).

A água escoará mais rapidamente no início (quando o tanque estiver cheio) e mais lentamente à medida em que o tanque vai se esvaziando.

Mostra-se que a variação do nível com o passar do tempo, $\frac{dy}{dt}$, é dada por: $\frac{dy}{dt} = -ky^{1/2}$, onde k é uma constante positiva que depende da forma do orifício de drenagem, da área da seção transversal do tanque, da viscosidade do líquido etc.

Problema 1: Considerando k = 0.06, e que o nível inicial do tanque é de 3 m, determinar o nível do tanque 2 minutos após a abertura da válvula.

PROBLEMA DE VALOR INICIAL

$$\frac{dy}{dt} = -0.06y^{1/2} \qquad y(0) = 3$$

Problema 1: Encontrar y(2)

UMA APLICAÇÃO

Temos o seguinte PVI: $y' = -0.06y^{1/2}$, y(0) = 3, onde $y' = \frac{dy}{dt}$ e $f(t, y) = -0.06y^{1/2}$

Assim, sendo y a solução do PVI, vamos aplicar o Método de Euler para encontrar uma aproximação de y(2), e, consequentemente, uma aproximação da solução do PVI no intervalo [0,2].

Vamos usar 8 passos: N = 8.

Então o tamanho do passo é $h = \frac{2-0}{8} = 0.25$.

Daí:
$$t_0 = 0$$
, $t_1 = 0.25$, $t_2 = 0.5$. $t_3 = 0.75$, $t_4 = 1$, $t_5 = 1.25$, $t_6 = 1.5$, $t_7 = 1.75$ e $t_8 = 2$

$$y_{n+1} = y_n + hf(t_n, y_n)$$
, para $n = 0.1.2.3.4.5.6.7$ $t_0 = 0, y_0 = 3, f(t_n, y_n) = -0.06y_n^{1/2}$

$$y_{n+1} = y_n + 0.25(-0.06y_n^{1/2})$$
, para $n = 0,1,2,3,4,5,6,7$

$$y_{n+1} = y_n - 0.015y_n^{1/2}$$
, para $n = 0,1,2,3,4,5,6,7$

UMA APLICAÇÃO

$$t_0 = 0, \ t_1 = 0.25, \ t_2 = 0.5. \ t_3 = 0.75, \ t_4 = 1, \ t_5 = 1.25, \ t_6 = 1.5, \ t_7 = 1.75 \ \mathrm{e} \ t_8 = 2$$

$$y_{n+1} = y_n - 0.015 y_n^{1/2}, \ \mathrm{para} \ n = 0,1,2,3,4,5,6,7$$

$$y_1 = y_0 - 0.015 y_0^{1/2} = 3 - (0.015)(3)^{\frac{1}{2}} = 2.974019$$

$$y_2 = y_1 - 0.015 y_1^{1/2} = 2.974019 - (0.015)(2.974019)^{\frac{1}{2}} = 2.948151$$

$$y_3 = y_2 - 0.015 y_2^{1/2} = 2.948151 - (0.015)(2.948151)^{\frac{1}{2}} = 2.922396$$

$$y_4 = y_3 - 0.015 y_3^{1/2} = 2.922396 - (0.015)(2.922396)^{\frac{1}{2}} = 2.896753$$

UMA APLICAÇÃO

$$y_1 = 2.974019 y_2 = 2.948151 y_3 = 2.922396 y_4 = 2.896753$$

$$y_5 = y_4 - 0.015y_4^{1/2} = 2.896753 - (0.015)(2.896753)^{\frac{1}{2}} = 2.871223$$

$$y_6 = y_5 - 0.015y_5^{1/2} = 2.871223 - (0.015)(2.871223)^{\frac{1}{2}} = 2.845806 y(2) \cong y_8 = 2.795310$$

$$y_7 = y_6 - 0.015y_6^{1/2} = 2.845806 - (0.015)(2.845806)^{\frac{1}{2}} = 2.820502$$

$$y_8 = y_7 - 0.015y_7^{1/2} = 2.820502 - (0.015)(2.820502)^{\frac{1}{2}} = 2.795310$$

Portanto, 2 minutos após a abertura da válvula, o nível da água no tanque será de aproximadamente 2.8 metros.

COMPARANDO COM A SOLUÇÃO ANALÍTICA

A solução exata deste pvi é $y = (\sqrt{3} - 0.03t)^2$ (determinada analiticamente).

Assim, o valor exato de y(2) é $y(2) = (\sqrt{3} - 0.06)^2 = 2.795753$.

У	APROXIMADO	EXATO
y(0)	3	3
y(0.25)	2.9740	2.9741
y(0.5)	2.9482	2.9483
y(0.75)	2.9224	2.9226
y(1)	2.8968	2.8970
y(1.25)	2.8712	2.8715
y(1.5)	2.8458	2.8461
y(1.75)	2.8205	2.8209
y(2)	2.7953	2.7958

MUDANDO O PROBLEMA

Problema 2: Considerando k = 0.06 e que o nível inicial da água é de 3 m, determinar quanto tempo levará para o tanque ficar vazio.

PROBLEMA DE VALOR INICIAL

$$\frac{dy}{dt} = -0.06y^{1/2} \qquad y(0) = 3$$

Problema 2: Encontrar t > 0 tal que y(t) = 0

RESOLVENDO O PROBLEMA 2 A PARTIR DA SOLUÇÃO ANALÍTICA

Temos O PVI: $y' = -0.06y^{1/2}$, y(0) = 3; onde $y' = \frac{dy}{dt}$.

A solução exata do PVI é $y = (\sqrt{3} - 0.03t)^2$ (determinada analiticamente).

Tal solução $y = (\sqrt{3} - 0.03t)^2$ nos dá o nível y da água no tanque em qualquer tempo $t \ge 0$.

O problema proposto é: determinar em que momento, a partir da abertura da válvula, o tanque estará vazio, isto é qual o valor de t > 0 para o qual y = 0.

Isto equivale a descobrir a solução da equação $(\sqrt{3} - 0.03t)^2 = 0$

A solução da equação $\left(\sqrt{3}-0.03t\right)^2=0$ é $t=\frac{\sqrt{3}}{0.03}\cong 57.735$

Portanto, o tanque ficará vazio após aproximadamente 57.7 minutos da abertura da válvula.

OBSERVAÇÕES A PARTIR DO USO DO MÉTODO DE EULER PARA O PROBLEMA 1

Como vimos na discussão do Problema 1, tínhamos o seguinte PVI:

$$y' = -0.06y^{1/2}$$
, $y(0) = 3$; onde $y' = \frac{dy}{dt}$

e aplicamos o Método de Euler para encontrar um valor aproximado de y(2).

Considerando N=8 (8 passos), ou seja, $h=\frac{1}{4}=0.25$, obtivemos $y(2)\cong y_8=2.795310$, usando:

$$y_{n+1} = y_n + hf(t_n, y_n)$$
, para $n = 0.1, 2, 3, 4, 5, 6, 7$ $t_0 = 0, y_0 = 3, f(t_n, y_n) = -0.06y_n^{1/2}$

OBSERVAÇÕES A PARTIR DO USO DO MÉTODO DE EULER PARA O PROBLEMA 1

Se continuarmos aplicando o método de Euler, com o mesmo tamanho de passo h=0.25, podemos calcular, de forma aproximada, o nível y da água no tanque em um tempo t>2.

Por exemplo, para tempo t=20, com h=0.25 ($\Rightarrow N=\frac{20-0}{0.25}=80$), podemos continuar os cálculos anteriores (interrompidos depois do oitavo passo) e dar mais 72 passos (de mesmo comprimento h=0.25), de modo que chegaremos na aproximação $y(20)\cong y_{80}=1.2779$.

Portanto, o nível da água, 20 minutos após a abertura da válvula será de aproximadamente $1.28\ m.$

O valor exato, usando a solução analítica, é: $y = (\sqrt{3} - 0.6)^2 = 1.2815$.

OBSERVAÇÕES FINAIS

Como vimos na solução do Problema 2, o tanque fica vazio, aproximadamente, após 57.735 minutos da abertura da válvula

Isto significa que o intervalo para a solução y do PVI é aproximadamente [0, 57.735].

Ao aplicar o método de Euler para calcular o valor aproximado de y(57.3), com passo de tamanho h=0.1, serão dados $N=\frac{57.3-0}{0.1}=573$ passos, obtendo: $y(57.3)\cong y_{573}=0.0000159442\cong 0$.

Dando mais um passo de tamanho h = 0.1, obtemos $y(57.4) \cong y_{574} = -0.0000080139 < 0$.