

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΟΝΙΚΩΝ ΑΙΣΘΗΤΗΡΙΩΝ http://sensors.ece.ntua.gr

Τελική κατασκευή

Αισθητήρας Fluxgate

Οδηγίες

- 1. Κατασκευάστε σε breadboard το κύκλωμα διέγερσης και λήψης της Διαφάνειας 3.
- 2. Για τις δοκιμές, χρησιμοποιήστε τροφοδοσία 5 V μέσω των εργαστηριακών τροφοδοτικών.
- 3. Χρησιμοποιώντας τον παλμογράφο (σε λειτουργία DC Coupling), επιβεβαιώστε ότι:
 - i. Το σήμα στην **έξοδο του κυκλώματος διέγερσης** είναι **ημιτονοειδές**, συχνότητας ≈**5-7 kHz**.
 - ii. Το σήμα στην **έξοδο του κυκλώματος λήψης** έχει την **αναμενόμενη μορφή** σήματος αισθητήρα Fluxgate, **δεν ξεπερνά τα 5 V_{pp}** και **δεν έχει αρνητικό μέρος**.
- 4. Χρησιμοποιήστε το Arduino για την **τροφοδοσία** του κυκλώματος και για τη **λήψη** του σήματος.
- 5. Αναπτύξτε **κώδικα** ώστε το Arduino να **μετρά** και να **εμφανίζει** την τάση από κορυφή σε κορυφή (**V**_{pp}) του λαμβανόμενου σήματος (**σε mV**).

Συνολικό Κύκλωμα

Απαιτούμενα εξαρτήματα

Είδος	Τεμάχια/ ομάδα
NE555	1
R 68 Ω	1
R 2.2 kΩ	1
R 10 kΩ	1
R 100 kΩ	2
C 10 nF	1
C 100 nF	1
C 1 μF	2
C 220 µF	1
L 330 μH	1

Είδος	Τεμάχια/ ομάδα
Καλώδια	15
Αισθητήρας Fluxgate	1
Μαγνητικός πυρήνας	1
Breadboard	1
Arduino Uno	1
Καλώδιο USB	1

Διαδικασία Εξέτασης

- 1. Η παρουσία στα εργαστήρια είναι υποχρεωτική μέχρι την ολοκλήρωση και εξέταση της κατασκευαστικής εργασίας.
- 2. Η κάθε ομάδα μπορεί να εξεταστεί **όποτε το επιθυμεί**, κατά τις ώρες των επόμενων εργαστηρίων.
- 3. Η εξέταση περιλαμβάνει **επίδειξη της λειτουργίας του αισθητήρα και του κώδικα**, καθώς και την **προφορική εξέταση** με ερωτήσεις σχετικές με την κατασκευή και λειτουργία του αισθητήρα.
- 4. Για την επίδειξη της λειτουργίας, θα πρέπει να έχετε μαζί σας **έναν φορητό υπολογιστή (ανά ομάδα)**.
- 5. Για την επιτυχή ολοκλήρωση της εργασίας, ο αισθητήρας θα πρέπει να ανιχνεύει την παρουσία ενός μαγνήτη, μεταβάλλοντας το σήμα που εμφανίζεται στο Serial Monitor/Serial Plotter του Arduino IDE.