

F2 Avbildning med linser och speglar

GEOMETRISK OPTIK

Kursinformation

Kurshemsidan

http://www.atomic.physics.lu.se/education/mandatory-courses/faff25/

- Kursprogram
- Läsanvisningar
- Föreläsningsbilder
 - Lösenord: CDFotonik

Kursinformation

Schema

Kursinformation

Laborationer

- Geometrisk optik
 - Förenklad rapport: Svarsformulär
- Ljusets böjning och interferens
 - Fullständig rapport
- Laborationerna utföres parvis
- Förbered er väl
 - Läsa instruktionerna ingår i förberedelserna
- Grupplistor publiceras på hemsidan i eftermiddag

Dagens föreläsning

- F1 Reflexion och brytning
- F2 Avbildning med linser och speglar
- F3 Optiska instrument
- Repetition: Vågor, reflektion och brytning
- Dispersion, reflektans och transmittans
- Brytning i sfärisk yta
- Brytning i tunn lins
- Avbildning i tunna linser
 - Strålkonstruktion
 - Förstoring
- Avbildning i sfäriska speglar

Ljus som en vågrörelse

Ljusets frekvens: f [Hz] Ljusets hastighet i vakuum: c = 299792458 m/sLjusets våglängd: $\lambda = c/f$ Elektriskt fält Utbredningsriktning Magnetiskt fält

Det elektromagnetiska spektrumet

Sammanfattning

Brytning och reflektion

c – ljusets hastighet i vakuumv – ljusets hastighet i ett material

$$f = \frac{c}{\lambda_{vak}} = \frac{v}{\lambda_{mat}}$$

$$n \equiv \frac{c}{v} \qquad \qquad n = \frac{\lambda_{vak}}{\lambda_{mat}}$$

- Brytningslagen: $n_1 \sin \alpha_1 = n_2 \sin \alpha_2$
- Reflektionslagen: $\alpha_1 = \alpha_2$
- Gränsvinkeln för totalreflektion: $\alpha_g = \arcsin \frac{n_t}{n_i}$

Strålar

Kopplingen mellan vågoptik och stråloptik

Vågfront:

 Yta i rymden där en våg har konstant fas

Stråle:

- Anger i vilken riktning energin transporteras
- Fungerar bra endast då våglängden är försumbart liten i förhållande till storleken på de optiska komponenterna

Reflektion och transmission

Definition

Reflektans: $R \equiv P_{ref} \ / \ P_{in}$

Transmittans: $T \equiv P_{tr} / P_{in} = 1 - R$

Vid vinkelrätt (normalt) infall: $R = \left(\frac{n_2 - n_1}{n_2 + n_1}\right)^2$

Exempel: Immersionsolja

Exempel 12.1

Hur mycket ljus går genom en enkel fönsterruta respektive ett treglasfönster?

Förutsätt att ljuset infaller längs med fönstrets normal och att glasets brytningsindex är 1,5.

Dispersion

Brytningsindexets våglängdsberoende

Dispersion

Exempel: Prisma

Dispersion

Exempel: Regnbågen

Strålkonstruktion

Teckenkonvention

- Ljus går från vänster till höger positiv x-led.
- Krökningsradien för en yta är positiv om krökningscentrum är vid högre x än ytan.

Brytning i sfärisk yta

Exempel: Reella och virtuella bilder

Brännpunkter

Bildbrännpunkten

Brännpunkter

Föremålsbrännpunkten

Avbildning i yta

Exempel 13.2

• När ett mynt placeras i botten av ett glas med vatten ser myntet ut att "lyftas" upp av vattnet. Antag att myntet ligger under 10 cm vatten och beräkna var bilden av myntet hamnar.

Andra ytan

Resultat

Linstyper

Brännvidder

Samlingslins

Brännvidder

Spridningslins

Sammanfattning

• Linstillverkarformeln:
$$\frac{1}{f_b} = \frac{1}{f_a} = \frac{1}{f} = (n-1) \left\lfloor \frac{1}{R_1} - \frac{1}{R_2} \right\rfloor$$

- Samlingslins eller positiv lins: f > 0
- Spridningslins eller negativ lins: f < 0
- Gauss' linsformel: $\frac{1}{a} + \frac{1}{b} = \frac{1}{b}$

Storhet	Positiv om
f	linsen är konvex (samlar ljuset)
а	föremålet till vänster om linsen
b	bilden till höger om linsen

Strålkonstruktion

Standardstrålar

- En stråle genom linsens centrum bryts inte.
- En stråle som är *parallell* med den optiska axeln *före* en positiv lins går genom linsens bildbrännpunkt. En stråle som är *parallell* med den optiska axeln *före* en negativ lins ser ut att komma från linsens bildbrännpunkt.
- En stråle som går genom föremålsbrännpunkten hos en positiv lins är parallell med den optiska axeln efter linsen. En stråle på väg mot föremålsbrännpunkten hos en negativ lins är parallell med den optiska axeln efter linsen.

Lateralförstoring

Definition

Exempel 13.3

Overheadprojektor

En overheadprojektor består av en jämnt belyst yta, en lins och en vikspegel. En stordiabild läggs på den belysta ytan 40 cm ifrån objektivet, som har brännvidden 35 cm.

- **a)** På vilket avstånd ifrån objektivet skall projektorskärmen stå?
- **b)** Texten på en stordiabild är 8,0 mm hög. Hur stor blir texten på skärmen när bilden är skarp?

Exempel: Konvex lins

Konvex lins

- Förstorad
- Rättvänd
- Virtuell

a < f

Konvex lins

Konkav lins

Konkav lins

Parallella strålar

Uppgift 13.11

Strålar som kommer från *en* punkt långt borta är (med god approximation) parallella när de når fram till en lins. Det betyder att parallella strålar ska ge upphov till *en* bildpunkt.

a) Ett parallellt strålknippe infaller mot en tunn konvex lins. Strålknippet bildar 30 graders vinkel med den optiska axeln. Rita en figur och visa hur strålarna går efter linsen.

Parallella strålar

Uppgift 13.11

Strålar som kommer från *en* punkt långt borta är (med god approximation) parallella när de når fram till en lins. Det betyder att parallella strålar ska ge upphov till *en* bildpunkt.

b) Ett parallellt strålknippe infaller mot en tunn konkav lins. Strålknippet bildar 15 graders vinkel med den optiska axeln. Rita en figur och visa hur strålarna går efter linsen.

Tunn lins

Sammanfattning

- Linstillverkarformeln: $\frac{1}{f} = (n-1)\left(\frac{1}{R_1} \frac{1}{R_2}\right)$
- Samlingslins: f > 0 Spridningslins: f < 0
- Gauss' linsformel: $\frac{1}{a} + \frac{1}{b} = \frac{1}{f}$
- Lateralförstoring: $M \equiv \frac{y_b}{y_a} = -\frac{b}{a}$
- Strålkonstruktion
 - Stråle genom centrum förblir obruten
 - Strålar parallella med optiska axeln bryts mot brännpunkten

Storhet	Positiv om
f	linsen är konvex (samlar ljuset)
α	föremålet till vänster om linsen
b	bilden till höger om linsen
y a	föremålet ovanför optiska axeln
$oldsymbol{y}_{ exttt{b}}$	bilden ovanför optiska axeln
M	avbildningen rättvänd

Plana speglar

- Virtuell bild
- *a* = *b*

Sfäriska speglar

Brännvidd

Sfäriska speglar

Brännpunkt för konkav spegel

Sfäriska speglar

Brännpunkt för konvex spegel

Strålkonstruktion

Standardstrålar

- En stråle som träffar spegelns origopunkt går tillbaka i lika stor vinkel på andra sidan den optiska axeln.
- En stråle som infaller *parallellt* med den optiska axeln hos en konkav spegel går efter reflektion genom spegelns brännpunkt. Är spegeln konvex ser strålen i stället ut att komma från brännpunkten efter reflektionen.
- En stråle som går genom *brännpunkten* hos en konkav spegel är parallell med den optiska axeln efter reflektionen. Hos en konvex spegel blir en stråle som är på väg mot brännpunkten parallell med den optiska axeln efter reflektionen.

Bildkonstruktion

Bildkonstruktion

Uppgift 14.13

En soppslev består av ett förkromat halvklot med diametern 8,0 cm. Om man tittar ner i sleven ser man en upp-och-ned-vänd bild. Hur nära ska ett föremål komma för att det ska ge upphov till en rättvänd bild?

Speglar

Sammanfattning

- Spegelns brännvidd $f = -\frac{R}{2}$
- Konkav lins: f > 0 Konvex lins: f < 0
- Gauss' linsformel: $\frac{1}{a} + \frac{1}{b} = \frac{1}{f}$
- Lateralförstoring: $M \equiv \frac{y_b}{y_a} = -\frac{b}{a}$

	Storhet	Positiv om
	R	C till höger om O (konvex)
	f	F till vänster om O (konkav)
	а	A ligger till vänster om O
Self * \$100	b	B ligger till vänster om O
LUNDS UNIVERSITET Lunds Tekniska Högskola	M	avbildningen är rättvänd