+Supplementary material

Machine learning assisted performance prediction and

optimization of solid oxide electrolysis cell for green

hydrogen production

Qingchun Yang^{a, b*}, Lei Zhao ^a, Jingxuan Xiao^c, Rongdong Wen ^a, Fu Zhang,^b Dawei Zhang^{a**}

^a School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, PR

China, 230009

^b East China Engineering Science and Technology Co., Ltd., Hefei, PR China, 230011

^c Faculty of Innovation Engineering, Macau University of Science and Technology, Macau,

PR China, 999078

+ For publication in *Green Chemical Engineering*

*Corresponding author:

Dr. Qingchun Yang

Email: ceqcyang@hfut.edu.cn

School of Chemistry and Chemical Engineering

Hefei University of Technology

Hefei, 230009, P. R. China.

Prof. Dawei Zhang

Email: zhangdw@ustc.edu.cn

School of Chemistry and Chemical Engineering

Hefei University of Technology

Hefei, 230009, P. R. China.

S1

Appendix A. Detailed information of the established dataset

Table S1. Detailed information of the established dataset of SOEC system

OE	GC	electrolyte	humidity	voltage	H_2	CO_2	H_2O	T	P	flow	ET	area	resistor	current	H ₂ production rate
LS64M-GDC	H_2+N_2	YSZ	40	1.3	0.1	0.3	0.2	750	1	100	5	0.283	0.25	0.69	0.29
LS46M-GDC	H_2+N_2	YSZ	40	1.3	0.1	0.3	0.2	750	1	100	5	0.283	0.23	1.14	0.48
LS64M-GDC	H_2+N_2	YSZ	40	1.3	0.1	0.3	0.2	800	1	100	5	0.283	0.42	1.25	0.53
LS46M-GDC	H_2+N_2	YSZ	40	1.3	0.1	0.3	0.2	800	1	100	5	0.283	0.26	1.71	0.72
LS64M-GDC	H_2+N_2	YSZ	40	1.3	0.1	0.3	0.2	850	1	100	5	0.283	0.15	1.62	0.68
LS46M-GDC	H_2+N_2	YSZ	40	1.3	0.1	0.3	0.2	850	1	100	5	0.283	0.09	2.26	0.95
LS64M-GDC	H_2+N_2	YSZ	40	1.2	0.1	0.3	0.2	750	1	100	5	0.283	0.25	0.34	0.14
LS46M-GDC	H_2+N_2	YSZ	40	1.2	0.1	0.3	0.2	750	1	100	5	0.283	0.23	0.65	0.27
LS64M-GDC	H_2+N_2	YSZ	40	1.2	0.1	0.3	0.2	800	1	100	5	0.283	0.42	0.69	0.29
LS46M-GDC	H_2+N_2	YSZ	40	1.2	0.1	0.3	0.2	800	1	100	5	0.283	0.26	1.06	0.45
LS64M-GDC	H_2+N_2	YSZ	40	1.2	0.1	0.3	0.2	850	1	100	5	0.283	0.15	0.98	0.41
LS46M-GDC	H_2+N_2	YSZ	40	1.2	0.1	0.3	0.2	850	1	100	5	0.283	0.09	1.61	0.68
LSM-GDC	$H_2+H_2O+CO_2$	YSZ	40	1	0.1	0.4	0.45	750	1	100	10	0.33	0.476	0.21	0.09
LSM-GDC	$H_2+H_2O+CO_2$	YSZ	40	1	0.1	0.4	0.45	800	1	100	10	0.33	0.312	0.32	0.14
LSM-GDC	$H_2+H_2O+CO_2$	YSZ	40	1.2	0.1	0.4	0.45	750	1	100	10	0.33	0.476	0.57	0.24
LSM-GDC	$H_2+H_2O+CO_2$	YSZ	40	1.2	0.1	0.4	0.45	800	1	100	10	0.33	0.312	0.79	0.33
LSM-GDC	$H_2+H_2O+CO_2$	YSZ	40	1	0.25	0.25	0.25	850	1	100	10	0.33	0.499	0.2	0.12
LSM-GDC	$H_2+H_2O+CO_2$	YSZ	40	1	0.1	0.45	0.45	850	1	100	10	0.33	0.499	0.6	0.25
LSM-GDC	$H_2+H_2O+CO_2$	YSZ	40	1.1	0.25	0.25	0.25	850	1	100	10	0.33	0.499	0.65	0.28
LSM-GDC	$H_2 \!\!+\! H_2 O \!\!+\! C O_2$	YSZ	40	1.2	0.1	0.45	0.45	800	1	100	10	0.33	0.312	0.328	0.137068
LSM-GDC	$H_2+H_2O+CO_2$	YSZ	40	1.2	0.1	0.45	0.45	800	3	100	10	0.33	0.312	0.287	0.119934
LSM-GDC	$H_2+H_2O+CO_2$	YSZ	40	1.2	0.1	0.45	0.45	800	5	100	10	0.33	0.312	0.344	0.143754
LSM-GDC	$H_2+H_2O+CO_2$	YSZ	40	1.2	0.1	0.45	0.45	800	7	100	10	0.33	0.312	0.394	0.164648
LSM-GDC	$H_2+H_2O+CO_2$	YSZ	40	1.2	0.1	0.45	0.45	800	9	100	10	0.33	0.312	0.439	0.183453
LSM-GDC	$H_2+H_2O+CO_2$	YSZ	40	1.2	0.1	0.45	0.45	800	15	100	10	0.33	0.312	0.514	0.214795
LSM-GDC	$H_2+H_2O+CO_2$	YSZ	40	1.3	0.1	0.45	0.45	800	1	100	10	0.33	0.312	0.873	0.364817
LSM-GDC	$H_2+H_2O+CO_2$	YSZ	40	1.3	0.1	0.45	0.45	800	3	100	10	0.33	0.312	0.749	0.312999

LSM-GDC	$H_2+H_2O+CO_2$	YSZ	40	1.3	0.1	0.45	0.45	800	5	100	10	0.33	0.312	0.769	0.321356
LSM-GDC	$H_2+H_2O+CO_2$	YSZ	40	1.3	0.1	0.45	0.45	800	7	100	10	0.33	0.312	0.873	0.364817
LSM-GDC	$H_2+H_2O+CO_2$	YSZ	40	1.3	0.1	0.45	0.45	800	9	100	10	0.33	0.312	0.93	0.388637
LSM-GDC	$H_2+H_2O+CO_2$	YSZ	40	1.3	0.1	0.45	0.45	800	15	100	10	0.33	0.312	1.09	0.455499
LSM-GDC	$H_2+H_2O+CO_2$	YSZ	40	1.4	0.1	0.45	0.45	800	1	100	10	0.33	0.312	1.95	0.814883
LSM-GDC	$H_2+H_2O+CO_2$	YSZ	40	1.4	0.1	0.45	0.45	800	3	100	10	0.33	0.312	1.8	0.7522
LSM-GDC	$H_2+H_2O+CO_2$	YSZ	40	1.4	0.1	0.45	0.45	800	5	100	10	0.33	0.312	1.8	0.7522
LSM-GDC	$H_2+H_2O+CO_2$	YSZ	40	1.4	0.1	0.45	0.45	800	7	100	10	0.33	0.312	1.88	0.785631
LSM-GDC	$H_2+H_2O+CO_2$	YSZ	40	1.4	0.1	0.45	0.45	800	9	100	10	0.33	0.312	1.95	0.814883
LSM-GDC	$H_2+H_2O+CO_2$	YSZ	40	1.4	0.1	0.45	0.45	800	15	100	10	0.33	0.312	2.09	0.873388
LSM-GDC	$H_2+H_2O+CO_2$	YSZ	40	1.1	0.1	0.45	0.45	850	1	100	10	0.33	0.499	1	0.42
LSM-GDC	$H_2+H_2O+CO_2$	YSZ	40	1	0.07	0.35	0.58	800	10	100	10	0.33	0.312	0.32	0.13
LSM-GDC	$H_2+H_2O+CO_2$	YSZ	40	1	0.07	0.35	0.58	800	1	100	10	0.33	0.312	0.45	0.19
LSM-GDC	$H_2+H_2O+CO_2$	YSZ	40	1	0.07	0.35	0.58	800	10	100	10	0.33	0.312	0.53	0.22
LSM-GDC	$H_2+H_2O+CO_2$	YSZ	40	1	0.07	0.35	0.58	800	1	100	10	0.33	0.312	0.61	0.26
LSM-GDC	$H_2+H_2O+CO_2$	YSZ	40	1.2	0.07	0.35	0.58	800	10	100	10	0.33	0.312	0.95	0.4
LSM-GDC	$H_2+H_2O+CO_2$	YSZ	40	1.2	0.07	0.35	0.58	800	1	100	10	0.33	0.312	1	0.42
LSM-GDC	$H_2+H_2O+CO_2$	YSZ	40	1.3	0.07	0.35	0.58	800	10	100	10	0.33	0.312	1.59	0.67
LSM-GDC	$H_2+H_2O+CO_2$	YSZ	40	1.3	0.07	0.35	0.58	800	1	100	10	0.33	0.312	1.32	0.56
LSCF+CGO	H_2+Ar	ScSZ	50	1	0.5	0	0.5	750	1	10	11	2	1.08	0.057	0.02382
LSCF+CGO	H_2+Ar	ScSZ	50	1	0.5	0	0.5	800	1	10	11	2	0.494	0.139	0.058087
LSCF+CGO	H_2+Ar	ScSZ	50	1	0.5	0	0.5	850	1	10	11	2	0.389	0.298	0.124531
LSCF+CGO	H_2+Ar	ScSZ	50	1.2	0.5	0	0.5	750	1	10	11	2	1.08	0.235	0.098204
LSCF+CGO	H_2+Ar	ScSZ	50	1.2	0.5	0	0.5	800	1	10	11	2	0.494	0.483	0.20184
LSCF+CGO	H_2+Ar	ScSZ	50	1.2	0.5	0	0.5	850	1	10	11	2	0.389	0.803	0.335565
LSCF+CGO	H_2+Ar	ScSZ	50	1.3	0.5	0	0.5	750	1	10	11	2	1.08	0.339	0.141664
LSCF+CGO	H_2+Ar	ScSZ	50	1.3	0.5	0	0.5	800	1	10	11	2	0.494	0.785	0.328043
LSCF+CGO	H_2+Ar	ScSZ	50	1.3	0.5	0	0.5	850	1	10	11	2	0.389	1.13	0.472214
LSCF+CGO	H_2+Ar	ScSZ	97	1.3	0.1	0	0.6	650	1	125	10	1.74	0.12	0.55	0.2
LSCF+CGO	H_2+Ar	ScSZ	97	1.2	0.1	0	0.6	650	1	125	10	1.74	0.12	0.43	0.14
LSCF+CGO	H_2+Ar	ScSZ	97	1.3	0.1	0	0.36	650	1	125	10	1.74	0.13	0.48	0.18
LSCF+CGO	H_2+Ar	ScSZ	97	1.2	0.1	0	0.36	650	1	125	10	1.74	0.12	0.38	0.13

LSCF+CGO	H_2+Ar	ScSZ	97	1.3	0.1	0	0.12	650	1	125	10	1.74	0.12	0.34	0.16
LSCF+CGO	H_2+Ar	ScSZ	97	1.2	0.1	0	0.12	650	1	125	10	1.74	0.13	0.26	0.09
LSCF+CGO	H_2+Ar	ScSZ	97	1.2	0.1	0	0.12	650	1	125	10	1.74	0.12	0.3	0.1
LSCF+CGO	H_2+Ar	ScSZ	97	1.2	0.1	0	0.36	650	1	125	10	1.74	0.12	0.3	0.1
LSCF+CGO	H_2+Ar	ScSZ	97	1.2	0.1	0	0.6	650	1	125	10	1.74	0.13	0.3	0.1
LSCF+CGO	H_2+Ar	ScSZ	97	1.2	0.1	0	0.12	650	1	125	10	1.74	0.12	0.46	0.16
LSCF+CGO	H_2+Ar	ScSZ	97	1.2	0.1	0	0.36	650	1	125	10	1.74	0.12	0.46	0.16
LSCF+CGO	H_2+Ar	ScSZ	97	1.2	0.1	0	0.6	650	1	125	10	1.74	0.13	0.46	0.16
LSCM	CO ₂ +H ₂ O	YSZ	40	1.5	0.1	0.7	0.2	800	1	30	60	0.5	3.08	0.08	0.033431
LSCM	CO ₂ +H ₂ O	YSZ	40	0.5	0.1	0.7	0.2	800	1	30	60	0.5	3.08	0.01	0.004179
LSCM	CO_2+H_2O	YSZ	40	1	0.1	0.7	0.2	800	1	30	60	0.5	3.08	0.03	0.012537
LSCM	CO ₂ +H ₂ O	YSZ	40	2	0.1	0.5	0.4	800	1	30	60	0.5	3.25	0.14	0.058504
LSCM	CO ₂ +H ₂ O	YSZ	40	1.5	0.1	0.5	0.4	800	1	30	60	0.5	3.25	0.07	0.029252
LSCM	CO_2+H_2O	YSZ	40	0.5	0.1	0.5	0.4	800	1	30	60	0.5	3.25	0.01	0.004179
LSCM	CO ₂ +H ₂ O	YSZ	40	1	0.1	0.3	0.6	800	1	30	60	0.5	2.94	0.03	0.012537
LSCM	CO_2+H_2O	YSZ	40	2	0.1	0.3	0.6	800	1	30	60	0.5	2.94	0.12	0.050147
LSCM	CO ₂ +H ₂ O	YSZ	40	1.5	0.1	0.3	0.6	800	1	30	60	0.5	2.94	0.06	0.025073
LSCM	CO ₂ +H ₂ O	YSZ	40	0.5	0.1	0.3	0.6	800	1	30	60	0.5	2.94	0.01	0.004179
LSCM	CO ₂ +H ₂ O	YSZ	40	1	0.1	0.3	0.6	800	1	30	60	0.5	2.94	0.02	0.008358
LSCM	CO ₂ +H ₂ O	YSZ	40	2	0.1	0.3	0.6	800	1	30	60	0.5	2.94	0.11	0.045968
LSCM	CO ₂ +H ₂ O	YSZ	40	1	0.1	0.7	0.2	750	1	30	60	0.5	3.08	0.016	0.006686
LSCM	CO ₂ +H ₂ O	YSZ	40	1.25	0.1	0.7	0.2	750	1	30	60	0.5	3.08	0.027	0.011283
LSCM	CO ₂ +H ₂ O	YSZ	40	1.5	0.1	0.7	0.2	750	1	30	60	0.5	3.08	0.044	0.018387
LSCM	CO ₂ +H ₂ O	YSZ	40	1	0.1	0.7	0.2	800	1	30	60	0.5	2.94	0.034	0.014208
LSCM	CO ₂ +H ₂ O	YSZ	40	1.25	0.1	0.7	0.2	800	1	30	60	0.5	2.94	0.055	0.022984
LSCM	CO ₂ +H ₂ O	YSZ	40	1.5	0.1	0.7	0.2	800	1	30	60	0.5	2.94	0.08	0.033431
LSCM	CO ₂ +H ₂ O	YSZ	40	1	0.1	0.7	0.2	850	1	30	60	0.5	2.32	0.04	0.016716
LSCM	CO_2+H_2O	YSZ	40	1.25	0.1	0.7	0.2	850	1	30	60	0.5	2.32	0.06	0.025073
LSCM	CO_2+H_2O	YSZ	40	1.5	0.1	0.7	0.2	850	1	30	60	0.5	2.32	0.09	0.03761
LSCM	CO_2+H_2O	YSZ	40	1.5	0	0.4	0.6	800	1	30	60	0.5	2.94	0.1	0.041789
LSCM	CO_2+H_2O	YSZ	40	1	0	0.8	0.2	800	1	30	60	0.5	2.94	0.05	0.020894
LSCM	CO_2+H_2O	YSZ	40	1	0	0.6	0.4	800	1	30	60	0.5	2.94	0.11	0.045968

LSCM	CO ₂ +H ₂ O	YSZ	40	1	0	0.4	0.6	800	1	30	60	0.5	2.94	0.185	0.077309
LSCM	CO_2+H_2O	YSZ	40	1.5	0	0.8	0.2	800	1	30	60	0.5	2.94	0.05	0.020894
LSCM	CO_2+H_2O	YSZ	40	1.5	0	0.6	0.4	800	1	30	60	0.5	2.94	0.11	0.045968
LSCM	CO_2+H_2O	YSZ	40	1.5	0	0.4	0.6	800	1	30	60	0.5	2.94	0.185	0.077309
LSCM	CO_2+H_2O	YSZ	40	1.9	0	0.8	0.2	800	1	30	60	0.5	2.94	0.05	0.020894
LSCM	CO_2+H_2O	YSZ	40	1.9	0	0.6	0.4	800	1	30	60	0.5	2.94	0.11	0.045968
LSCM	CO_2+H_2O	YSZ	40	1.9	0	0.4	0.6	800	2	30	60	0.5	2.94	0.185	0.077309
YSZ/YSZ/LSM	H ₂ +N ₂ +空气	YSZ	30	1.3	0.1	0.1	0.8	800	2	300	30	63	0.27	0.68	1.77
YSZ/YSZ/LSM	H ₂ +N ₂ +空气	YSZ	30	1.3	0.1	0.2	0.7	800	2	300	30	63	0.18	0.61	1.43
YSZ/YSZ/LSM	H ₂ +N ₂ +空气	YSZ	30	1.3	0.1	0.3	0.6	800	2	300	30	63	0.12	0.53	1.242
YSZ/YSZ/LSM	H ₂ +N ₂ +空气	YSZ	30	1.2	0.1	0.1	0.8	800	2	300	30	63	0.27	0.54	1.404
YSZ/YSZ/LSM	H ₂ +N ₂ +空气	YSZ	30	1.2	0.1	0.2	0.7	800	2	300	30	63	0.18	0.49	1.28
YSZ/YSZ/LSM	H ₂ +N ₂ +空气	YSZ	30	1.2	0.1	0.3	0.6	800	2	300	30	63	0.12	0.46	1.13
YSZ/YSZ/LSM	H ₂ +N ₂ +空气	YSZ	30	1.1	0.1	0.1	0.8	800	2	300	30	63	0.27	0.4	1.04
YSZ/YSZ/LSM	H ₂ +N ₂ +空气	YSZ	30	1.1	0.1	0.2	0.7	800	2	300	30	63	0.18	0.35	0.91
YSZ/YSZ/LSM	H ₂ +N ₂ +空气	YSZ	30	1.1	0.1	0.3	0.6	800	2	300	30	63	0.12	0.31	0.8
YSZ/YSZ/LSM	H ₂ +N ₂ +空气	YSZ	30	1	0.1	0.1	0.8	800	2	300	30	63	0.27	0.24	0.62
YSZ/YSZ/LSM	H ₂ +N ₂ +空气	YSZ	30	1	0.1	0.2	0.7	800	2	300	30	63	0.18	0.17	0.44
YSZ/YSZ/LSM	H ₂ +N ₂ +空气	YSZ	30	1	0.1	0.3	0.6	800	2	300	30	63	0.12	0.14	0.36
YSZ/YSZ/LSM	H ₂ +N ₂ +空气	YSZ	30	0.94	0.1	0.1	0.8	800	2	300	30	63	0.27	0.1	0.27
YSZ/YSZ/LSM	H ₂ +N ₂ +空气	YSZ	30	0.97	0.1	0.2	0.7	800	2	300	30	63	0.18	0.1	0.27
YSZ/YSZ/LSM	H ₂ +N ₂ +空气	YSZ	30	0.99	0.1	0.3	0.6	800	2	300	30	63	0.12	0.1	0.27
YSZ/YSZ/LSM	H ₂ +N ₂ +空气	YSZ	30	0.99	0.1	0.1	0.8	800	2	300	30	63	0.27	0.2	0.52
YSZ/YSZ/LSM	H ₂ +N ₂ +空气	YSZ	30	1.03	0.1	0.2	0.7	800	2	300	30	63	0.18	0.2	0.52
YSZ/YSZ/LSM	H ₂ +N ₂ +空气	YSZ	30	1.05	0.1	0.3	0.6	800	2	300	30	63	0.12	0.2	0.52
YSZ/YSZ/LSM	H ₂ +N ₂ +空气	YSZ	30	1.18	0.1	0.1	0.8	800	2	300	30	63	0.27	0.5	1.36
YSZ/YSZ/LSM	H ₂ +N ₂ +空气	YSZ	30	1.22	0.1	0.2	0.7	800	2	300	30	63	0.18	0.5	1.29
YSZ/YSZ/LSM	H ₂ +N ₂ +空气	YSZ	30	1.27	0.1	0.3	0.6	800	2	300	30	63	0.12	0.5	1.2
YSZ/YSZ/LSM	H ₂ +N ₂ +空气	YSZ	30	1.23	0.1	0.1	0.8	800	2	300	30	63	0.27	0.6	1.56
YSZ/YSZ/LSM	$H_2+N_2+空气$	YSZ	30	1.28	0.1	0.2	0.7	800	2	300	30	63	0.18	0.6	1.43
YSZ/YSZ/LSM	$H_2+N_2+空气$	YSZ	30	1.42	0.1	0.3	0.6	800	2	300	30	63	0.12	0.6	1.34
YSZ/YSZ/LSM	H ₂ +N ₂ +空气	YSZ	30	1.3	0.1	0.1	0.8	800	2	300	30	63	0.27	0.7	1.82

YSZ/YSZ/LSM	H ₂ +N ₂ +空气	YSZ	30	1.49	0.1	0.2	0.7	800	2	300	30	63	0.18	0.7	1.55
YSZ/YSZ/LSM	H ₂ +N ₂ +空气	YSZ	30	1.55	0.1	0.3	0.6	800	2	300	30	63	0.12	0.7	1.45
NBSCF	H_2+H_2O	BZCYYb	10	1.1	0.1	0	0.1	550	1	100	20	0.36	0.046	0.05	0.020894
NBSCF	H_2+H_2O	BZCYYb	10	1.1	0.1	0	0.1	600	1	100	20	0.36	0.065	0.165	0.068952
NBSCF	H_2+H_2O	BZCYYb	10	1.1	0.1	0	0.1	650	1	100	20	0.36	0.106	0.451	0.188468
NBSCF	H_2+H_2O	BZCYYb	10	1.1	0.1	0	0.1	700	1	100	20	0.36	0.209	0.78	0.325953
NBSCF	H_2+H_2O	BZCYYb	10	1.1	0.1	0	0.1	750	1	100	20	0.36	0.383	1.26	0.52654
NBSCF	H_2+H_2O	BZCYYb	10	1.2	0.1	0	0.1	550	1	100	20	0.36	0.046	0.19	0.079399
NBSCF	H_2+H_2O	BZCYYb	10	1.2	0.1	0	0.1	600	1	100	20	0.36	0.065	0.4	0.167156
NBSCF	H_2+H_2O	BZCYYb	10	1.2	0.1	0	0.1	650	1	100	20	0.36	0.106	0.93	0.388637
NBSCF	H_2+H_2O	BZCYYb	10	1.2	0.1	0	0.1	700	1	100	20	0.36	0.209	1.5	0.626833
NBSCF	H_2+H_2O	BZCYYb	10	1.2	0.1	0	0.1	750	1	100	20	0.36	0.383	2.09	0.873388
NBSCF	H_2+H_2O	BZCYYb	10	1.3	0.1	0	0.1	550	1	100	20	0.36	0.046	0.38	0.158798
NBSCF	H_2+H_2O	BZCYYb	10	1.3	0.1	0	0.1	600	1	100	20	0.36	0.065	0.76	0.317595
NBSCF	H_2+H_2O	BZCYYb	10	1.3	0.1	0	0.1	650	1	100	20	0.36	0.106	1.59	0.664443
NBSCF	H_2+H_2O	BZCYYb	10	1.3	0.1	0	0.1	700	1	100	20	0.36	0.209	2.43	1.01547
NBSCF	H_2+H_2O	BZCYYb	10	1.3	0.1	0	0.1	750	1	100	20	0.36	0.383	3.08	1.287097
LSM	$H_2 \!\!+\!\! H_2 O \!\!+\!\! CO_2$	YSZ	40	1	0.1	0.6	0.1	800	1	50	10	1	0.09	0.704	0.294194
LSM	$H_2 \!\!+\!\! H_2 O \!\!+\!\! CO_2$	YSZ	40	1	0.1	0.6	0.05	800	1	50	10	1	0.09	0.645	0.269538
LSM	$H_2 \!\!+\!\! H_2 O \!\!+\!\! CO_2$	YSZ	40	1	0.1	0.6	0	800	1	50	10	1	0.09	0.627	0.262016
LSM	$H_2 \!\!+\!\! H_2 O \!\!+\!\! CO_2$	YSZ	40	1.1	0.1	0.6	0.1	800	1	50	10	1	0.09	0.931	0.389054
LSM	$H_2 \!\!+\!\! H_2 O \!\!+\!\! CO_2$	YSZ	40	1.1	0.1	0.6	0.05	800	1	50	10	1	0.09	0.837	0.349773
LSM	$H_2 \!\!+\!\! H_2 O \!\!+\!\! CO_2$	YSZ	40	1.1	0.1	0.6	0	800	1	50	10	1	0.09	0.825	0.344758
LSM	$H_2 \!\!+\!\! H_2 O \!\!+\!\! CO_2$	YSZ	40	0.9	0.1	0.6	0.1	800	1	50	10	1	0.09	0.254	0.106144
LSM	$H_2+H_2O+CO_2$	YSZ	40	0.9	0.1	0.6	0.05	800	1	50	10	1	0.09	0.263	0.109905
LSM	$H_2 \!\!+\!\! H_2 O \!\!+\!\! CO_2$	YSZ	40	0.9	0.1	0.6	0	800	1	50	10	1	0.09	0.197	0.082324
LSM	H_2+CO_2	YSZ	30	1.4	0.5	0.5	0	850	1	50	10	0.5	0.211	0.21	0.087757
LSM	H_2+CO_2	YSZ	30	1.4	0.5	0.5	0	850	1	50	10	0.5	0.124	0.31	0.129546
LSM	H_2+CO_2	YSZ	30	1.4	0.5	0.5	0	850	1	50	10	0.5	0.112	0.37	0.154619
LSM	H_2+CO_2	YSZ	30	1.5	0.5	0.5	0	850	1	50	10	0.5	0.211	0.226	0.094443
LSM	H_2+CO_2	YSZ	30	1.5	0.5	0.5	0	850	1	50	10	0.5	0.124	0.318	0.132889
LSM	H_2+CO_2	YSZ	30	1.5	0.5	0.5	0	850	1	50	10	0.5	0.112	0.381	0.159216

LSM	H_2+CO_2	YSZ	30	1.2	0.5	0.5	0	850	1	50	10	0.5	0.211	0.172	0.071877
LSM	H_2+CO_2	YSZ	30	1.2	0.5	0.5	0	850	1	50	10	0.5	0.124	0.248	0.103636
LSM	H_2+CO_2	YSZ	30	1.2	0.5	0.5	0	850	1	50	10	0.5	0.112	0.288	0.120352
LSM	H_2+CO_2	YSZ	30	1	0.5	0.5	0	850	1	50	10	0.5	0.211	0.065	0.027163
LSM	H_2+CO_2	YSZ	30	1	0.5	0.5	0	850	1	50	10	0.5	0.124	0.103	0.043043
LSM	H_2+CO_2	YSZ	30	1	0.5	0.5	0	850	1	50	10	0.5	0.112	0.137	0.057251
LSM	H_2+CO_2	YSZ	30	1.5	0.2	0.8	0	850	1	50	10	0.5	0.4	0.847	0.353952
LSM	H_2+CO_2	YSZ	30	1.5	0.2	0.8	0	850	1	50	10	0.5	0.21	1.18	0.493109
LSM	H_2+CO_2	YSZ	30	1.5	0.2	0.8	0	850	1	50	10	0.5	0.2	1.62	0.67698
LSM	H_2+CO_2	YSZ	30	1.3	0.2	0.8	0	850	1	50	10	0.5	0.4	0.0687	0.028709
LSM	H_2+CO_2	YSZ	30	1.3	0.2	0.8	0	850	1	50	10	0.5	0.21	1	0.417889
LSM	H_2+CO_2	YSZ	30	1.3	0.2	0.8	0	850	1	50	10	0.5	0.2	0.15	0.062683
LSM	H_2+CO_2	YSZ	30	1.2	0.2	0.8	0	850	1	50	10	0.5	0.4	0.585	0.244465
LSM	H_2+CO_2	YSZ	30	1.2	0.2	0.8	0	850	1	50	10	0.5	0.21	0.846	0.353534
LSM	H_2+CO_2	YSZ	30	1.2	0.2	0.8	0	850	1	50	10	0.5	0.2	0.945	0.394905
LSM	H_2+CO_2	YSZ	30	1	0.2	0.8	0	850	1	50	10	0.5	0.4	0.282	0.117845
LSM	H_2+CO_2	YSZ	30	1	0.2	0.8	0	850	1	50	10	0.5	0.21	0.363	0.151694
LSM	H_2+CO_2	YSZ	30	1	0.2	0.8	0	850	1	50	10	0.5	0.2	0.422	0.176349
LSM	H_2+CO_2	YSZ	30	1.5	0.5	0.5	0	750	1	50	10	0.5	0.42	0.392	0.163812
LSM	H_2+CO_2	YSZ	30	1.5	0.5	0.5	0	800	1	50	10	0.5	0.3	0.589	0.246136
LSM	H_2+CO_2	YSZ	30	1.5	0.5	0.5	0	850	1	50	10	0.5	0.22	0.67	0.279985
LSM	H_2+CO_2	YSZ	30	1.4	0.5	0.5	0	750	1	50	10	0.5	0.42	0.304	0.127038
LSM	H_2+CO_2	YSZ	30	1.4	0.5	0.5	0	800	1	50	10	0.5	0.3	0.509	0.212705
LSM	H_2+CO_2	YSZ	30	1.4	0.5	0.5	0	850	1	50	10	0.5	0.22	0.635	0.265359
LSM	H_2+CO_2	YSZ	30	1	0.5	0.5	0	750	1	50	10	0.5	0.42	0.027	0.011283
LSM	H_2+CO_2	YSZ	30	1	0.5	0.5	0	800	1	50	10	0.5	0.3	0.095	0.039699
LSM	H_2+CO_2	YSZ	30	1	0.5	0.5	0	850	1	50	10	0.5	0.22	0.194	0.08107
LSCF	H_2+CO_2	YSZ	43	1.3	0.7	0	0.3	750	1	160	40	12.5	0.27	0.489	0.204348
LSCF	H_2+CO_2	YSZ	43	1.3	0.7	0	0.3	800	1	160	40	12.5	0.28	0.767	0.320521
LSCF	H_2+CO_2	YSZ	43	1.3	0.7	0	0.3	850	1	160	40	12.5	0.32	1.06	0.442962
LSCF	H_2+CO_2	YSZ	43	1.2	0.7	0	0.3	750	1	160	40	12.5	0.27	0.338	0.141246
LSCF	H_2+CO_2	YSZ	43	1.2	0.7	0	0.3	800	1	160	40	12.5	0.28	0.557	0.232764

LSCF	H_2+CO_2	YSZ	43	1.2	0.7	0	0.3	850	1	160	40	12.5	0.32	0.795	0.332222
LSCF	H_2+CO_2	YSZ	43	1.1	0.7	0	0.3	750	1	160	40	12.5	0.27	0.195	0.081488
LSCF	H_2+CO_2	YSZ	43	1.1	0.7	0	0.3	800	1	160	40	12.5	0.28	0.339	0.141664
LSCF	H_2+CO_2	YSZ	43	1.1	0.7	0	0.3	850	1	160	40	12.5	0.32	0.505	0.211034
LSCF	H_2+CO_2	YSZ	43	1	0.7	0	0.3	750	1	160	40	12.5	0.27	0.052	0.02173
LSCF	H_2+CO_2	YSZ	43	1	0.7	0	0.3	800	1	160	40	12.5	0.28	0.117	0.048893
LSCF	H_2+CO_2	YSZ	43	1	0.7	0	0.3	850	1	160	40	12.5	0.32	0.184	0.076892
LSM	$H_2O+Ar+CO_2$	YSZ	20	1.2	0	0.25	0.25	750	1	330	15	4	0.127	0.376	0.157126
LSM	H_2+H_2O+Ar	YSZ	20	1.2	0.25	0	0.25	750	1	330	15	4	0.128	0.333	0.139157
LSM	$H_2O+Ar+CO_2$	YSZ	20	1.1	0	0.25	0.25	750	1	330	15	4	0.127	0.243	0.101547
LSM	H_2+H_2O+Ar	YSZ	20	1.1	0.25	0	0.25	750	1	330	15	4	0.128	0.206	0.086085
LSM	$H_2O+Ar+CO_2$	YSZ	20	1	0	0.25	0.25	750	1	330	15	4	0.127	0.087	0.036356
LSM	H_2+H_2O+Ar	YSZ	20	1	0.25	0	0.25	750	1	330	15	4	0.128	0.066	0.027581
LSM	$H_2O+Ar+CO_2$	YSZ	20	0.9	0	0.25	0.25	750	1	330	15	4	0.127	0.08	0.033431
LSM	H_2+H_2O+Ar	YSZ	20	0.9	0.25	0	0.25	750	1	330	15	4	0.128	0.106	0.044296
LSM	$H_2O+Ar+CO_2$	YSZ	20	1.2	0	0.25	0.25	850	1	330	15	4	0.07	0.83	0.346848
LSM	H_2+H_2O+Ar	YSZ	20	1.2	0.25	0	0.25	850	1	330	15	4	0.069	0.587	0.245301
LSM	$H_2O+Ar+CO_2$	YSZ	20	1.1	0	0.25	0.25	850	1	330	15	4	0.07	0.615	0.257002
LSM	H_2+H_2O+Ar	YSZ	20	1.1	0.25	0	0.25	850	1	330	15	4	0.069	0.458	0.191393
LSM	$H_2O+Ar+CO_2$	YSZ	20	1	0	0.25	0.25	850	1	330	15	4	0.07	0.323	0.134978
LSM	H_2+H_2O+Ar	YSZ	20	1	0.25	0	0.25	850	1	330	15	4	0.069	0.2	0.083578
LSM	$H_2O+Ar+CO_2$	YSZ	20	0.9	0	0.25	0.25	850	1	330	15	4	0.07	0.043	0.017969
LSM	H_2+H_2O+Ar	YSZ	20	0.9	0.25	0	0.25	850	1	330	15	4	0.069	0.173	0.072295
LSM	$H_2+Ar+CO_2$	YSZ	20	1.2	0.25	0.5	0	750	1	330	15	4	0.077	0.373	0.155873
LSM	$H_2+Ar+CO_2$	YSZ	20	1.1	0.25	0.5	0	750	1	330	15	4	0.077	0.239	0.099875
LSM	$H_2+Ar+CO_2$	YSZ	20	1	0.25	0.5	0	750	1	330	15	4	0.077	0.088	0.036774
LSM	$H_2+Ar+CO_2$	YSZ	20	0.9	0.25	0.5	0	750	1	330	15	4	0.077	0.086	0.035938
LSM	$H_2+Ar+CO_2$	YSZ	20	1.2	0.25	0.5	0	850	1	330	15	4	0.085	0.864	0.361056
LSM	$H_2+Ar+CO_2$	YSZ	20	1.1	0.25	0.5	0	850	1	330	15	4	0.085	0.642	0.268285
LSM	$H_2+Ar+CO_2$	YSZ	20	1	0.25	0.5	0	850	1	330	15	4	0.085	0.343	0.143336
LSM	$H_2+Ar+CO_2$	YSZ	20	0.9	0.25	0.5	0	850	1	330	15	4	0.085	0.029	0.012119
LSM/YSZ	H_2+H_2O	YSZ	40	1.3	0	0	1	850	1	80	15	1	0.14	0.909	0.379861

LSM/YS	$Z H_2+H_2O$	YSZ	40	1.3	0	0.1	0.9	850	1	80	15	1	0.11	0.806	0.336818
LSM/YS	$Z H_2+H_2O$	YSZ	40	1.3	0	0.2	0.8	850	1	80	15	1	0.1	0.667	0.278732
LSM/YS	$Z H_2+H_2O$	YSZ	40	1.3	0	0.3	0.7	850	1	80	15	1	0.09	0.545	0.227749
LSM/YS	$Z H_2+H_2O$	YSZ	40	1.3	0	0.4	0.6	850	1	80	15	1	0.08	0.486	0.203094
LSM/YS	$Z H_2+H_2O$	YSZ	40	1.3	0	0.5	0.5	850	1	80	15	1	0.06	0.442	0.184707
LSM/YS	$Z H_2+H_2O$	YSZ	40	1.1	0	0	1	850	1	80	15	1	0.14	0.626	0.261598
LSM/YS	$Z H_2+H_2O$	YSZ	40	1.1	0	0.1	0.9	850	1	80	15	1	0.11	0.534	0.223153
LSM/YS	$Z H_2+H_2O$	YSZ	40	1.1	0	0.2	0.8	850	1	80	15	1	0.1	0.448	0.187214
LSM/YS	$Z H_2+H_2O$	YSZ	40	1.1	0	0.3	0.7	850	1	80	15	1	0.09	0.372	0.155455
LSM/YS	$Z H_2+H_2O$	YSZ	40	1.1	0	0.4	0.6	850	1	80	15	1	0.08	0.341	0.1425
LSM/YS	$Z H_2+H_2O$	YSZ	40	1.1	0	0.5	0.5	850	1	80	15	1	0.06	0.311	0.129963
LSM/YS	$Z H_2+H_2O$	YSZ	40	1	0	0	1	850	1	80	15	1	0.14	0.465	0.194318
LSM/YS	$Z H_2+H_2O$	YSZ	40	1	0	0.1	0.9	850	1	80	15	1	0.11	0.416	0.173842
LSM/YS	$Z H_2+H_2O$	YSZ	40	1	0	0.2	0.8	850	1	80	15	1	0.1	0.334	0.139575
LSM/YS	$Z H_2+H_2O$	YSZ	40	1	0	0.3	0.7	850	1	80	15	1	0.09	0.273	0.114084
LSM/YS	$Z H_2+H_2O$	YSZ	40	1	0	0.4	0.6	850	1	80	15	1	0.08	0.253	0.105726
LSM/YS	$Z H_2+H_2O$	YSZ	40	1	0	0.5	0.5	850	1	80	15	1	0.06	0.228	0.095279
LSM/YS	$Z H_2+H_2O$	YSZ	40	0.8	0	0	1	850	1	80	15	1	0.14	0.163	0.068116
LSM/YS	$Z H_2+H_2O$	YSZ	40	0.8	0	0.1	0.9	850	1	80	15	1	0.11	0.138	0.057669
LSM/YS	$Z H_2+H_2O$	YSZ	40	0.8	0	0.2	0.8	850	1	80	15	1	0.1	0.112	0.046804
LSM/YS	$Z H_2+H_2O$	YSZ	40	0.8	0	0.3	0.7	850	1	80	15	1	0.09	0.097	0.040535
LSM/YS	$Z H_2+H_2O$	YSZ	40	0.8	0	0.4	0.6	850	1	80	15	1	0.08	0.097	0.040535
LSM/YS	$Z H_2+H_2O$	YSZ	40	0.8	0	0.5	0.5	850	1	80	15	1	0.06	0.085	0.035521
LSM/YS	$Z H_2+H_2O$	YSZ	40	1.2	0.1	0.15	0.7	850	1	80	15	1	0.14	0.857	0.358131
LSM/YS	$Z H_2+H_2O$	YSZ	40	1.2	0.1	0.15	0.6	850	1	80	15	1	0.11	0.812	0.339326
LSM/YS	$Z H_2+H_2O$	YSZ	40	1.2	0.1	0.15	0.5	850	1	80	15	1	0.1	0.748	0.312581
LSM/YS	$Z H_2+H_2O$	YSZ	40	1.2	0.1	0.15	0.4	850	1	80	15	1	0.09	0.647	0.270374
LSM/YS	$Z H_2+H_2O$	YSZ	40	1.2	0.1	0.15	0.3	850	1	80	15	1	0.08	0.534	0.223153
LSM/YS	$Z H_2+H_2O$	YSZ	40	1.2	0.1	0.15	0.2	850	1	80	15	1	0.06	0.465	0.194318
LSM/YS	$Z H_2+H_2O$	YSZ	40	1	0.1	0.15	0.7	850	1	80	15	1	0.14	0.473	0.197661
LSM/YS	$Z H_2+H_2O$	YSZ	40	1	0.1	0.15	0.6	850	1	80	15	1	0.11	0.443	0.185125
LSM/YS	$Z H_2+H_2O$	YSZ	40	1	0.1	0.15	0.5	850	1	80	15	1	0.1	0.42	0.175513

LSM/YSZ	H_2+H_2O	YSZ	40	1	0.1	0.15	0.4	850	1	80	15	1	0.09	0.362	0.151276
LSM/YSZ	H_2+H_2O	YSZ	40	1	0.1	0.15	0.3	850	1	80	15	1	0.08	0.293	0.122441
LSM/YSZ	H_2+H_2O	YSZ	40	1	0.1	0.15	0.2	850	1	80	15	1	0.06	0.243	0.101547
LSM/YSZ	H_2+H_2O	YSZ	40	0.9	0.1	0.15	0.7	850	1	80	15	1	0.14	0.291	0.121606
LSM/YSZ	H_2+H_2O	YSZ	40	0.9	0.1	0.15	0.6	850	1	80	15	1	0.11	0.274	0.114502
LSM/YSZ	H_2+H_2O	YSZ	40	0.9	0.1	0.15	0.5	850	1	80	15	1	0.1	0.236	0.098622
LSM/YSZ	H_2+H_2O	YSZ	40	0.9	0.1	0.15	0.4	850	1	80	15	1	0.09	0.197	0.082324
LSM/YSZ	H_2+H_2O	YSZ	40	0.9	0.1	0.15	0.3	850	1	80	15	1	0.08	0.149	0.062265
LSM/YSZ	H_2+H_2O	YSZ	40	0.9	0.1	0.15	0.2	850	1	80	15	1	0.06	0.119	0.049729
LSCF	$H_2+H_2O+CO_2$	YSZ	20	1.5	0.1	0.45	0.45	800	1	100	10	0.2	0.11	2.23	0.931892
LSCF	$H_2+H_2O+CO_2$	YSZ	20	1.5	0.1	0.45	0.45	750	1	100	10	0.2	0.13	1.29	0.539077
LSCF	$H_2+H_2O+CO_2$	YSZ	20	1.5	0.1	0.45	0.45	700	1	100	10	0.2	0.17	0.9	0.3761
LSCF	$H_2+H_2O+CO_2$	YSZ	20	1.3	0.1	0.45	0.45	800	1	100	10	0.2	0.11	1.7	0.710411
LSCF	$H_2+H_2O+CO_2$	YSZ	20	1.3	0.1	0.45	0.45	750	1	100	10	0.2	0.13	0.93	0.388637
LSCF	$H_2+H_2O+CO_2$	YSZ	20	1.3	0.1	0.45	0.45	700	1	100	10	0.2	0.17	0.62	0.259091
LSCF	$H_2+H_2O+CO_2$	YSZ	20	1.2	0.1	0.45	0.45	800	1	100	10	0.2	0.11	0.57	0.238197
LSCF	$H_2+H_2O+CO_2$	YSZ	20	1.2	0.1	0.45	0.45	750	1	100	10	0.2	0.13	0.289	0.12077
LSCF	$H_2+H_2O+CO_2$	YSZ	20	1.2	0.1	0.45	0.45	700	1	100	10	0.2	0.17	0.172	0.071877
LSCF	$H_2+H_2O+CO_2$	YSZ	20	1.6	0.1	0.3	0.6	750	1	100	10	0.2	0.125	1.79	0.748021
LSCF	$H_2+H_2O+CO_2$	YSZ	20	1.6	0.1	0.45	0.45	750	1	100	10	0.2	0.13	1.54	0.643549
LSCF	$H_2 + H_2 O + CO_2$	YSZ	20	1.6	0.1	0.6	0.3	750	1	100	10	0.2	0.13	1.42	0.593402
LSCF	$H_2+H_2O+CO_2$	YSZ	20	1.5	0.1	0.3	0.6	750	1	100	10	0.2	0.125	1.6	0.668622
LSCF	$H_2+H_2O+CO_2$	YSZ	20	1.5	0.1	0.45	0.45	750	1	100	10	0.2	0.13	1.3	0.543255
LSCF	$H_2+H_2O+CO_2$	YSZ	20	1.5	0.1	0.6	0.3	750	1	100	10	0.2	0.13	1.23	0.514003
LSCF	$H_2+H_2O+CO_2$	YSZ	20	1.3	0.1	0.3	0.6	750	1	100	10	0.2	0.125	0.995	0.415799
LSCF	$H_2+H_2O+CO_2$	YSZ	20	1.3	0.1	0.45	0.45	750	1	100	10	0.2	0.13	0.911	0.380697
LSCF	$H_2+H_2O+CO_2$	YSZ	20	1.3	0.1	0.6	0.3	750	1	100	10	0.2	0.13	0.859	0.358966
LSCF	$H_2+H_2O+CO_2$	YSZ	20	1.2	0.1	0.3	0.6	750	1	100	10	0.2	0.125	0.796	0.332639
LSCF	$H_2 + H_2 O + CO_2$	YSZ	20	1.2	0.1	0.45	0.45	750	1	100	10	0.2	0.13	0.743	0.310491
LSCF	$H_2+H_2O+CO_2$	YSZ	20	1.2	0.1	0.6	0.3	750	1	100	10	0.2	0.13	0.681	0.284582
LSCF-GDC	H_2+H_2O	YSZ	40	1.2	0.1	0	0.9	800	1	100	8	12.56	0.14	1.18	0.493109
LSCF-GDC	H_2+H_2O	YSZ	40	1.2	0.1	0	0.9	750	1	100	8	12.56	0.16	0.89	0.371921
						~ -									

LSCF-GDC	H_2+H_2O	YSZ	40	1.1	0.1	0	0.9	800	1	100	8	12.56	0.14	0.899	0.375682
LSCF-GDC	H_2+H_2O	YSZ	40	1.1	0.1	0	0.9	750	1	100	8	12.56	0.16	0.631	0.263688
LSCF-GDC	H_2+H_2O	YSZ	40	1	0.1	0	0.9	800	1	100	8	12.56	0.14	0.539	0.225242
LSCF-GDC	H_2+H_2O	YSZ	40	1	0.1	0	0.9	750	1	100	8	12.56	0.16	0.36	0.15044
LSCF-GDC	H_2+H_2O	YSZ	40	1.3	0.1	0	0.9	750	1	100	8	12.56	0.165	0.938	0.48198
LSCF-GDC	H_2+H_2O	YSZ	40	1.3	0.1	0	0.9	750	1	125	8	12.56	0.154	1.03	0.530463
LSCF-GDC	H_2+H_2O	YSZ	40	1.3	0.1	0	0.9	750	1	150	8	12.56	0.162	1.1	0.56475
LSCF-GDC	H_2+H_2O	YSZ	40	1.3	0.1	0	0.9	750	1	175	8	12.56	0.164	1.16	0.58768
LSCF-GDC	H_2+H_2O	YSZ	40	1.3	0.1	0	0.9	750	1	200	8	12.56	0.154	1.22	0.619824
LSCF-GDC	H_2+H_2O	YSZ	40	1.2	0.1	0	0.9	750	1	100	8	12.56	0.165	0.8	0.434311
LSCF-GDC	H_2+H_2O	YSZ	40	1.2	0.1	0	0.9	750	1	125	8	12.56	0.154	0.852	0.466041
LSCF-GDC	H_2+H_2O	YSZ	40	1.2	0.1	0	0.9	750	1	150	8	12.56	0.162	0.883	0.478996
LSCF-GDC	H_2+H_2O	YSZ	40	1.2	0.1	0	0.9	750	1	175	8	12.56	0.164	0.927	0.507383
LSCF-GDC	H_2+H_2O	YSZ	40	1.2	0.1	0	0.9	750	1	200	8	12.56	0.154	0.962	0.522009
LSCF-GDC	H_2+H_2O	YSZ	40	1	0.1	0	0.9	750	1	100	8	12.56	0.165	0.317	0.172471
LSCF-GDC	H_2+H_2O	YSZ	40	1	0.1	0	0.9	750	1	125	8	12.56	0.154	0.338	0.201246
LSCF-GDC	H_2+H_2O	YSZ	40	1	0.1	0	0.9	750	1	150	8	12.56	0.162	0.356	0.218768
LSCF-GDC	H_2+H_2O	YSZ	40	1	0.1	0	0.9	750	1	175	8	12.56	0.164	0.371	0.235037
LSCF-GDC	H_2+H_2O	YSZ	40	1	0.1	0	0.9	750	1	200	8	12.56	0.2	0.394	0.284648
LSCF-GDC	$H_2 \!\!+\! H_2 O \!\!+\! C O_2$	YSZ	40	1.4	0.1	0.1	0.8	750	1	100	8	12.56	0.21	1.03	0.430425
LSCF-GDC	$H_2 \!\!+\! H_2 O \!\!+\! C O_2$	YSZ	40	1.4	0.1	0.25	0.65	750	1	100	8	12.56	0.2	1	0.417889
LSCF-GDC	$H_2 \!\!+\! H_2 O \!\!+\! C O_2$	YSZ	40	1.4	0.1	0.45	0.45	750	1	100	8	12.56	0.2	0.938	0.39198
LSCF-GDC	$H_2 \!\!+\! H_2 O \!\!+\! C O_2$	YSZ	40	1.4	0.1	0.65	0.25	750	1	100	8	12.56	0.23	0.864	0.361056
LSCF-GDC	$H_2 \!\!+\! H_2 O \!\!+\! C O_2$	YSZ	40	1.3	0.1	0.1	0.8	750	1	100	8	12.56	0.2	0.917	0.383204
LSCF-GDC	$H_2 \!\!+\! H_2 O \!\!+\! C O_2$	YSZ	40	1.3	0.1	0.25	0.65	750	1	100	8	12.56	0.21	0.894	0.373593
LSCF-GDC	$H_2 \!\!+\! H_2 O \!\!+\! C O_2$	YSZ	40	1.3	0.1	0.45	0.45	750	1	100	8	12.56	0.2	0.833	0.348101
LSCF-GDC	$H_2+H_2O+CO_2$	YSZ	40	1.3	0.1	0.65	0.25	750	1	100	8	12.56	0.2	0.765	0.319685
LSCF-GDC	$H_2+H_2O+CO_2$	YSZ	40	1.1	0.1	0.1	0.8	750	1	100	8	12.56	0.23	0.547	0.228585
LSCF-GDC	$H_2+H_2O+CO_2$	YSZ	40	1.1	0.1	0.25	0.65	750	1	100	8	12.56	0.2	0.528	0.220645
LSCF-GDC	$H_2 \!\!+\! H_2 O \!\!+\! C O_2$	YSZ	40	1.1	0.1	0.45	0.45	750	1	100	8	12.56	0.21	0.501	0.209362
LSCF-GDC	$H_2 \!\!+\! H_2 O \!\!+\! C O_2$	YSZ	40	1.1	0.1	0.65	0.25	750	1	100	8	12.56	0.2	0.443	0.185125
LSCF-GDC	$H_2 \!\!+\! H_2 O \!\!+\! C O_2$	YSZ	40	1.4	0.1	0.1	0.8	800	1	100	8	12.56	0.2	1.14	0.476393
						~									

LSCF-GDC	$H_2 + H_2 O + C O_2$	YSZ	40	1.4	0.1	0.25	0.65	800	1	100	8	12.56	0.23	1.13	0.472214
LSCF-GDC	$H_2 + H_2 O + C O_2$	YSZ	40	1.4	0.1	0.45	0.45	800	1	100	8	12.56	0.2	1.11	0.463857
LSCF-GDC	$H_2+H_2O+CO_2$	YSZ	40	1.4	0.1	0.65	0.25	800	1	100	8	12.56	0.21	1.03	0.430425
LSCF-GDC	$H_2 + H_2 O + C O_2$	YSZ	40	1.3	0.1	0.1	0.8	800	1	100	8	12.56	0.2	1.11	0.463857
LSCF-GDC	$H_2+H_2O+CO_2$	YSZ	40	1.3	0.1	0.25	0.65	800	1	100	8	12.56	0.2	1.06	0.442962
LSCF-GDC	$H_2 + H_2O + CO_2$	YSZ	40	1.3	0.1	0.45	0.45	800	1	100	8	12.56	0.23	1.03	0.430425
LSCF-GDC	$H_2+H_2O+CO_2$	YSZ	40	1.3	0.1	0.65	0.25	800	1	100	8	12.56	0.2	0.976	0.407859
LSCF-GDC	$H_2+H_2O+CO_2$	YSZ	40	1.1	0.1	0.1	0.8	800	1	100	8	12.56	0.21	0.736	0.307566
LSCF-GDC	$H_2 + H_2 O + C O_2$	YSZ	40	1.1	0.1	0.25	0.65	800	1	100	8	12.56	0.2	0.717	0.299626
LSCF-GDC	$H_2 + H_2 O + C O_2$	YSZ	40	1.1	0.1	0.45	0.45	800	1	100	8	12.56	0.2	0.697	0.291268
LSCF-GDC	$H_2 + H_2O + CO_2$	YSZ	40	1.1	0.1	0.65	0.25	800	1	100	8	12.56	0.23	0.667	0.278732
Ni/GDC	H_2+H_2O+He	YSZ	50	1.2	0.35	0	0.35	900	1	150	20	1.8	1.64	0.067	0.027999
Ni/GDC	H_2+H_2O+He	YSZ	50	1.2	0.35	0	0.35	900	10	150	20	1.8	2.05	0.125	0.052236
Ni/GDC	H_2+H_2O+He	YSZ	50	1.3	0.35	0	0.35	900	1	150	20	1.8	1.64	0.099	0.041371
Ni/GDC	H_2+H_2O+He	YSZ	50	1.3	0.35	0	0.35	900	10	150	20	1.8	2.05	0.103	0.043043
Ni/GDC	H_2+H_2O+He	YSZ	50	1.4	0.35	0	0.35	900	1	150	20	1.8	1.64	0.126	0.053
Ni/GDC	H_2+H_2O+He	YSZ	50	1.4	0.35	0	0.35	900	10	150	20	1.8	2.05	0.125	0.052
Ni/GDC	H_2+H_2O+He	YSZ	50	1.5	0.35	0	0.35	900	1	150	20	1.8	1.64	0.159	0.066
Ni/GDC	H_2+H_2O+He	YSZ	50	1.5	0.35	0	0.35	900	10	150	20	1.8	2.05	0.151	0.062
Ni/GDC	H_2+H_2O+He	YSZ	50	1.6	0.35	0	0.35	900	1	150	20	1.8	1.64	0.196	0.08
Ni/GDC	H_2+H_2O+He	YSZ	50	1.6	0.35	0	0.35	900	10	150	20	1.8	2.05	0.175	0.073
LSM	H_2+H_2O	YSZ	60	1.3	0.5	0	0.5	900	1	100	11	2	0.124	1.5	0.626833
LSM	H_2+H_2O	YSZ	60	1.3	0.5	0	0.5	850	1	100	11	2	0.136	1.07	0.447141
LSM	H_2+H_2O	YSZ	60	1.3	0.5	0	0.5	800	1	100	11	2	0.145	0.856	0.357713
LSM	H_2+H_2O	YSZ	60	1.3	0.5	0	0.5	750	1	100	11	2	0.173	0.668	0.27915
LSM	H_2+H_2O	YSZ	60	1.3	0.5	0	0.5	700	1	100	11	2	0.192	0.459	0.191811
LSM	H_2+H_2O	YSZ	60	1.2	0.5	0	0.5	900	1	100	11	2	0.124	1.07	0.447141
LSM	H_2+H_2O	YSZ	60	1.2	0.5	0	0.5	850	1	100	11	2	0.136	0.81	0.33849
LSM	H_2+H_2O	YSZ	60	1.2	0.5	0	0.5	800	1	100	11	2	0.145	0.65	0.271628
LSM	H_2+H_2O	YSZ	60	1.2	0.5	0	0.5	750	1	100	11	2	0.173	0.468	0.195572
LSM	H_2+H_2O	YSZ	60	1.2	0.5	0	0.5	700	1	100	11	2	0.192	0.325	0.135814
LSM	H_2+H_2O	YSZ	60	1	0.5	0	0.5	900	1	100	11	2	0.124	0.428	0.178856

LSM	H_2+H_2O	YSZ	60	1	0.5	0	0.5	850	1	100	11	2	0.136	0.315	0.131635
LSM	H_2+H_2O	YSZ	60	1	0.5	0	0.5	800	1	100	11	2	0.145	0.207	0.086503
LSM	H_2+H_2O	YSZ	60	1	0.5	0	0.5	750	1	100	11	2	0.173	0.109	0.04555
LSM	H_2+H_2O	YSZ	60	1	0.5	0	0.5	700	1	100	11	2	0.192	0.045	0.018805
LSCoF	H_2+H_2O+He	YSZ	40	1.6	0.07	0	0.63	900	1	120	20	1.8	0.18	0.176	0.071
LSCoF	H_2+H_2O+He	YSZ	40	1.6	0.07	0	0.63	875	1	120	20	1.8	0.133	0.131	0.053
LSCoF	H_2+H_2O+He	YSZ	40	1.6	0.07	0	0.63	850	1	120	20	1.8	0.09	0.094	0.039
LSCoF	H_2+H_2O+He	YSZ	40	1.6	0.07	0	0.63	825	1	120	20	1.8	0.07	0.07	0.028
LSCoF	H_2+H_2O+He	YSZ	40	1.6	0.07	0	0.63	800	1	120	20	1.8	0.05	0.048	0.021
LSCoF	H_2+H_2O+He	YSZ	40	1.5	0.07	0	0.63	900	1	120	20	1.8	0.151	0.149	0.06
LSCoF	H_2+H_2O+He	YSZ	40	1.5	0.07	0	0.63	875	1	120	20	1.8	0.114	0.112	0.046
LSCoF	H_2+H_2O+He	YSZ	40	1.5	0.07	0	0.63	850	1	120	20	1.8	0.08	0.078	0.032
LSCoF	H_2+H_2O+He	YSZ	40	1.5	0.07	0	0.63	825	1	120	20	1.8	0.06	0.058	0.025
LSCoF	H_2+H_2O+He	YSZ	40	1.5	0.07	0	0.63	800	1	120	20	1.8	0.04	0.041	0.018
LSCoF	H_2+H_2O+He	YSZ	40	1.4	0.07	0	0.63	900	1	120	20	1.8	0.124	0.126	0.05
LSCoF	H_2+H_2O+He	YSZ	40	1.4	0.07	0	0.63	875	1	120	20	1.8	0.09	0.09	0.038
LSCoF	H_2+H_2O+He	YSZ	40	1.4	0.07	0	0.63	850	1	120	20	1.8	0.07	0.07	0.027
LSCoF	H_2+H_2O+He	YSZ	40	1.4	0.07	0	0.63	825	1	120	20	1.8	0.05	0.05	0.02
LSCoF	H_2+H_2O+He	YSZ	40	1.4	0.07	0	0.63	800	1	120	20	1.8	0.03	0.035	0.013
LSCoF	H_2+H_2O+He	YSZ	40	1.3	0.07	0	0.63	900	1	120	20	1.8	0.08	0.101	0.042
LSCoF	H_2+H_2O+He	YSZ	40	1.3	0.07	0	0.63	875	1	120	20	1.8	0.06	0.074	0.031
LSCoF	H_2+H_2O+He	YSZ	40	1.3	0.07	0	0.63	850	1	120	20	1.8	0.04	0.052	0.022
LSCoF	H_2+H_2O+He	YSZ	40	1.3	0.07	0	0.63	825	1	120	20	1.8	0.03	0.037	0.016
LSCoF	H_2+H_2O+He	YSZ	40	1.3	0.07	0	0.63	800	1	120	20	1.8	0.02	0.026	0.011

Appendix B. Supplementary Figures and Tables

Fig. S1. Schematic diagram of the hydrogen production principle (a) of ALK (b) of PEM

Fig.S2. Optimization of the hyperparameters of the RF model

Fig. S3. Optimization of the hyperparameters of the DNN model

Fig. S4. SHAP based local interpretation of the Ohmic resistor of SOEC

Fig. S5. SHAP based local interpretation of the current of SOEC

Fig. S6. 1D partial dependence plot of important input variables on Ohmic resistance (a-c), current (d-f), and H₂ production rate (g-i)

Table S2. Comparison of the R² and RMSE of the predicted performance of the various ML models of the SOEC system before hyperparameters tuning

Models	Item	Ohmic resistance	Current	H ₂ production ratio
RF	Train R ²	0.9412	0.9428	0.9781
	Train RMSE	0.0350	0.0849	0.0381
	Test R ²	0.9305	0.8291	0.8479
	Test RMSE	0.0382	0.2428	0.1217
DNN	Train R ²	0.8690	0.8936	0.9348
	Train RMSE	0.0458	0.1491	0.0260
	Test R ²	0.8163	0.7822	0.8254
	Test RMSE	0.0624	0.2647	0.3900
SVR	Train R ²	0.7469	0.7519	0.8715
	Train RMSE	0.0763	0.2428	0.1893
	Test R ²	0.7204	0.6667	0.6058
	Test RMSE	0.0856	0.2696	0.1308
XGBoost	Train R ²	0.9685	0.9915	0.9916
	Train RMSE	0.0231	0.0450	0.0189
	Test R ²	0.9575	0.8319	0.8624
	Test RMSE	0.0573	0.2118	0.0908