TD8: Calcul Différentiel

2020/2021 E3FI Semestre 1

1 Dérivation

On rappelle les formules usuelles de dérivations :

Fonction	Dérivée
$x \to x^n$	$x \to nx^{n-1}$
$x \to \sqrt{x}$	$x o \frac{1}{2\sqrt{x}}$
$x \to e^x$	$x \to e^x$
$x \to \ln(x)$	$x o \frac{1}{x}$
$x \to \cos(x)$	$x \to -\sin(x)$
$x \to \sin(x)$	$x \to \cos(x)$

Et les formules usuelles d'opérations sur les dérivées :

(u+v)'	u' + v'
(uv)'	u'v + uv'
(ku)'	ku'
$\left(\frac{1}{u}\right)'$	$\frac{-u'}{u^2}$
$\left(\frac{u}{v}\right)$	$\frac{u'v-uv'}{v^2}$
$(g \circ u)'$	$g' \circ u \times u'$

Exercice 1. (i) Que devient cette dernière formule dans le cas où g est l'exponentielle? Le logarithme népérien? Où $g(x) = x^n$?

(ii) Calculer les dérivées des fonctions suivantes :

$$f(x) = 4x^2 - 3x + 4; \quad g(x) = \frac{ax + b}{cx + d}; \qquad h(x) = \frac{\sqrt{x}}{x}; \qquad i(x) = \frac{x^2}{2} + \frac{2}{x};$$

$$j(x) = \frac{3x^2 - 4x + 1}{2x - 3}; \qquad k(x) = \frac{10}{x^2}; \qquad l(x) = (-5x^2 + 1)^2 \qquad m(x) = \frac{1}{(x - 3)(x + 2)}$$

- (iii) On rappelle que l'équation de la tangente à la courbe C_f au point d'abscisse a est : y = f'(a)(x-a) + f(a)Donner les équations des tangentes en au point d'abscisse 1 aux courbes représentant les fonctions f, g, h de la question précédante.
- (iv) Etudier les variations des fonctions suivantes après avoir préciser l'ensemble de définition.

$$f: x \to ax^2 + bx + c$$

$$g: x \to x^3 - 3x - 3$$

$$h: x \to \frac{-10}{(x-3)^2}$$

- (v) On considère la fonction f définie par la relation : $f(x) = \frac{3x^2 2x 2}{2x^2 + x + 1}$ Etablir que $f'(x) = \frac{7x^2 + 14x}{(2x^2 + x + 1)^2}$ et en déduire que la fonction admet pour minorant le nombre -2 et pour majorant le nombre 2.
- (vi) Dériver les fonctions suivantes : $f: x \to \ln(\frac{1-x}{1+x})$ et $g(x) = \sqrt{1+5x^3}e^{-x^2}$

2 Limites

- (i) Rappeler les quatre "formes indéterminées" usuelles.
- (ii) Rappeler les résultats suivants (croissances comparées) :

$$\lim_{\substack{x \to +\infty \\ x \to +\infty}} \frac{e^x}{x^n} = \lim_{\substack{x \to -\infty \\ x \to +\infty}} e^x x^n = \lim_{\substack{x \to +\infty \\ x \to 0+}} \frac{\ln(x)}{x} = \lim_{\substack{x \to 0+}} x \ln(x)$$

- (iii) Rappeler l'énoncé du théorème des gendarmes.
- (iv) Calculer les limites suivantes en expliquant clairement quelle technique permet de lever l'indétermination.

A)
$$\lim_{x \to +\infty} \frac{4x^2 - 3}{5x^3 + 2x - 8}$$
 B). $\lim_{x \to +\infty} x + 2\sin(x) = C$) $\lim_{x \to +\infty} 8x^2 - 4x = D$) $\lim_{x \to 2^+} \frac{x}{4 - x^2}$ et $\lim_{x \to 2^-} \frac{x}{4 - x^2}$

3 Intégration

On rappelle les formules suivantes :

Fonction	Primitive (à une constante près)
Fonction	
$x \to x^{\alpha} \ (\alpha \neq -1)$	$x \to \frac{x^{\alpha+1}}{\alpha+1}$
$x o \frac{1}{x^n}$	$x \to \frac{-1}{(n-1)x^{n-1}}$
$x \to \frac{1}{x}$	$x \to \ln(x)$
$x \to e^u(x)$	$x \to u'(x)e^u(x)$
$x \to \ln(x)$	$x \to x \ln(x) - x$
$x \to \cos(x)$	$x \to \sin(x)$
$x \to \sin(x)$	$x \to -\cos(x)$

Et les formules usuelles d'opération sur les primitives :

f'(x)f(x)	$\frac{1}{2}[f(x)]^2$
$\frac{f'(x)}{f(x)}$	$\ln f(x) $
$f'(x)[f(x)]^{\alpha}$ avec $\alpha \neq -1$	$\frac{[f(x)]^{\alpha+1}}{\alpha+1}$

Donner une primitive des fonctions suivantes (on suppose a non nul dans tout l'exercice).

$$f(x = (ax + b)^n g(x) = e^{ax+b} h(x) = \cos(ax + b) i(x) = -3x^3 + 2x^2 - 5$$

$$j(x) = \frac{1}{2x-3} k(x) = \frac{1}{2e^{3x}} l(x) = \sqrt{ax + b} m(x) = 3^x$$

Calculer les sommes suivantes :

$$I_{1} = \int_{-1}^{3} (3u^{2} + 2u - 1) du \qquad I_{2} = \int_{2}^{7} \frac{1}{2x + 8} dx$$

$$I_{3} = \int_{4}^{5} \frac{1}{\sqrt{5x + 1}} dx \qquad \qquad I_{4} = \int_{2}^{8} 2^{x} dx$$

$$I_{5} = \int_{-1}^{1} \frac{1}{e^{x}} dx$$

Une des définitions possibles du nombre π est la suivante : $\pi = 4 \int_0^1 \sqrt{1-x^2} dx$. Commenter cette définition.