

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ Информатика и системы управления

КАФЕДРА Программное обеспечение ЭВМ и информационные технологии

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №1 «ДЛИННАЯ АРИФМЕТИКА»

Студент Романов Семен Константинович

<u>Группа</u> <u>ИУ7 – 35Б</u>

Описание задачи

Смоделировать операцию умножения целого числа длиной до 30 десятичных цифр на действительное число в форме \pm m.n E \pm K, где суммарная длина мантиссы (m+n) - до 30 значащих цифр, а величина порядка K - до 5 цифр. Результат выдать в форме \pm 0.m1 E \pm K1, где m1 - до 30 значащих цифр, а K1 - до 5 цифр.

Техническое Задание

Входные данные:

- 1. **Целое число:** строка, содержащая число в виде ±m. (m<=30 символов)
- 2. Действительное число: строка вида \pm m.n $E \pm K$. Суммарная длина строки до 30 значащих цифр (m+n) + символ точки и знака, а величина порядка K до 5 цифр и символ знака

Выходные данные:

1. Программа выводит либо верный результат в форме $\pm 0.m1$ E $\pm K1$, где m1 - до 30 значащих цифр, а K1 - до 5 цифр, либо сообщение о невозможности произвести счет

Способ обращения к программе:

Обращение происходит через консоль

Аварийные ситуации:

1. Ошибка при вводе целого числа

- 2. Ошибка при вводе действительного числа
- 3. Превышение длины целого числа
- 4. Превышение длины действительного числа
- 5. Превышение длины порядка (на вход)
- 6. Переполнение длины порядка (после вычислений)

Структуры данных:

- 1. Для чтения как целого числа, так и действительного, создается массив типа char длиной LEN + 10 (длина мантиссы LEN + место для служебных знаков в виде точки, знака, пробелов, экспоненты)
- 2. Далее создается такая структура:

```
1 typedef struct
2 {
3    char number[LEN];
4    short int len;
5    char sign;
6    short int after_dot_len;
7    short int order;
8 } number;
```

Обозначение полей:

- *char number[LEN]* массив для сохранения числа. В данном массиве сохраняются только цифры числа, без точки
- *short int len* количество цифр в number
- *char sign* знак числа. При отсутствии оного во входной строке, записывается плюс
- *short int after_dot_len* количество чисел после запятой (в целом числе это значение равно 0)
- *short int order* значение порядка (в целом числе это значение равен len)

3. Результат сохраняется в структуре result.

Алгоритм:

- 1. На вход подается 2 числа, сначала целое, затем действительное
- 2. Идет их обработка в структуры

Оба числа сохраняются как набор цифр в number без точки и первого нуля в случае десятичного числа, также вычисляется их порядки. В целом числе порядок равен длине числа, в действительном прибавляется (len – after_dot_len). Также в действительном числе убираются первые нули, при их наличии (очистка идет после проверки на длину входных данных), также в этом случае уменьшается порядок

- 3. Высчитываем верный знак результата
- 4. Если одно из чисел равно 0, то все результат становится равен 0 и идет переход на шаг 6
- 5. Идет их перемножение "столбиком" и их запись в во временную строку result_number[LEN * 2 + 1]. Двойная длина нужна для дальнейшего округления числа. Два числа длиной LEN при перемножении не могут дать число, длиной больше чем 2 * LEN. После этого будет произведено округление до 30 разряда, в случае если в конце будут указаны незначащие нули, они будут стерты. Первые нули также убираются с изменением порядка.
- 6. Далее идет сложение порядков.
- 7. Вывод корректного результата будет произведено так: printf("%c 0.%s E%d", result.sign, result.number, result.order);

Тесты

N	Test	Number 1	Number 2	Result
1	Некорректный	123.1	123	"Invalid Input"
	ввод			_
2	Некорректный	123	123.1.1	"Invalid Input"
	ввод			
3	Некорректный	123	123.1 E11.1	"Invalid Input"
	ввод			
4	Некорректный	+-123	123.1 E1	"Invalid Input"
	ввод			
5	Некорректный	123	Qwerty	"Invalid Input"
	ввод			
6	Превышение	123	123 E999999	"Invalid Input"
	длины порядка			
7	Переполнение	123	123 E99999	"Order
	порядка			Overflow"
8	Переполнение	1	0.01 E-99999	"Order
	порядка			Overflow"
9	Превышение	111111(31	123.1	"Invalid Input"
	длины мантиссы	единица)		
10	Превышение	123	0.111111(30	"Invalid Input"
	длины мантиссы		единиц)	
11	Умножение на	0	-123.1	$-0.0 \to 0$
	ноль			

12	Умножение на	123	0.0 E0	0.0 E 0
	ноль			
13	Округление	11	0.111111(29	0.123332 (27
			единиц)	троек) Е 2
14	Округление	111	0.555555(29	0.616661 (27
			пятерок)	шестерок) Е 2
15	Округление	999999(30	2	+0.2 E 31
		девяток)		

Контрольные вопросы:

- 1. **Каков возможный диапазон чисел, представляемых в ПК?** На возможный диапазон чисел влияет их тип, размер выделенной для их хранения память, разрядность ОС. Так для целого числа выделяется 16 бит, то есть его максимальное значение ±2,147,483,647 (int).
- 2. **Какова возможная точность представления чисел, чем она определяется?** Точность представления вещественных чисел зависит от количества памяти, выделенной для хранения мантиссы. Для мантиссы типа double выделяется 52 бита, то есть мантисса может принимать значения до 4 503 599 627 370 496, а под представление порядка 11 бит
- 3. **Какие стандартные операции возможны над числами?** Сложение, вычитание, умножение, деление, сравнение, взятия остатка от деления.
- 4. Какой тип данных может выбрать программист, если обрабатываемые числа превышают возможный диапазон представления чисел в ПК? Массив символов для обычного

- представления числа или структуру, в которую можно разделить различные данные (знак, мантиссу, порядок).
- 5. **Как можно осуществить операции над числами, выходящими за рамки машинного представления?** Разработать собственные решения, либо же использовать специальные библиотеки.

Вывод

В ходе лабораторной работы было установлено, что при работе с длинной арифметикой крайне эффективным оказался способ представления числа в качестве массива символьного типа. Несмотря на проигрыши по скорости, мы получили выигрыш по памяти, а также возможность умножения чисел любой длины, даже превышающих 30 символов, как было установлено в ходе работы. Также мной была создана функция, которая может умножать не только целые и действительные вместе, но и отдельно 2 целых или 2 действительных.