Naïve Bayes Classifier: Training Dataset

input -> Data to be classified

a	ige	income	student	credit_rating	buys_computer
<=30		high	no	fair	no /
<=(30	high	no	excellent	no /
31.	40	high	no	fair	yes / <
>40)	medium	no	fair	yes
>40)	low	yes	fair	yes
>40)	low	yes	excellent	no
31.	40	low	yes	excellent	yes
<=(30	medium	no	fair	no
<=(30	low	yes	fair	yes
>40)	medium	yes	fair	yes
<=(30	medium	yes	excellent	yes
31.	40	medium	no	excellent	yes
31.	40	high	yes	fair	yes
>40)	medium	no	excellent	no

Class:

Compute PLXIC;) for each class

```
P(student = "yes" | buys_comper = "yes") = 6/9 = 0.667
      P(student = "yes" | buys_comper = " no ") = 1/5 = 0.2
      P(dredit_rating = "fair" | buys_computer = "yes") = b/9 = 0.669
      P(dredit_rating = "fair" | buys_computer = "no") = 2/5 = 0.4
× = (Age = 31...40, income = high, student = yes, credit_rating = fair)
  P(XIdi): P(XIbuys_domputer = "yes") = 0.555 x 0.222 x 0.667 x 0.667 = 0.055
            P(X|buys\_computer = "ho") = 0.2 \times 0.4 \times 0.2 \times 0.4 = 0.006
  P(XICi) * P(Ci): P(XI buys_computer = "yes") * P(buys_computer = "yes")
                      = 0.055 \times 0.643 = 0.035
                 P(x1 buys_computer = "yes") * P(buys_computer = "yes")
                       = 0.006 \times 0.357 = 0.002
  There fore, x belongs to class ("buys domputer = "yes")
  648021266-5 MNX10BMW5 99600
```