Aufgabe 1. Zeigen Sie, dass für alle quadratintegrierbaren Martingale M, das heißt $E[M_n^2] < \infty$ für alle $n \in \mathbb{N}$ und $m \leq n$ folgende Aussagen gelten:

i)
$$E[(M_n - M_m)^2] | \mathcal{F}_m] = E[M_n^2 - M_m^2 | \mathcal{F}_m]$$

Durch Ausquadrieren erhalten wir

$$E[(M_n - M_m)^2] | \mathcal{F}_m] = E[M_n^2 - 2M_nM_m + M_m^2 | \mathcal{F}_m].$$

Da M ein Martingal ist, ist es adaptiert. Damit ist M_m ist \mathcal{F}_m messbar und wir können es aus der bedingten Erwartung rausziehen. Zudem gilt dafür $E[M_m \mid \mathcal{F}_m] = M_m$, sodass

$$= E[M_n^2 \mid \mathcal{F}_m] - 2M_m E[M_n \mid \mathcal{F}_m] + M_m^2.$$

Mit der Martingaleigenschaft folgt

$$= E[M_n^2 \mid \mathcal{F}_m] - 2M_m^2 + M_m^2.$$

Zusammenfassen der letzten beiden Terme liefert

$$= E[M_n^2 \mid \mathcal{F}_m] - M_m^2.$$

wieder aufgrund der \mathcal{F}_m -Messbarkeit von M_m erhalten wir

$$= E[M_n^2 - M_m^2 \mid \mathcal{F}_m].$$

ii)
$$E[(M_n - M_m)^2] = E[M_n^2] - E[M_m^2]$$

Mit der definierenden Eigenschaft (ii) vom bedingten Erwartungswert ausgewertet auf Ω können wir schreiben

$$E[(M_n - M_m)^2] = E[E[(M_n - M_m)^2 | \mathcal{F}_m]]$$

Einsetzten von Teilaufgabe (a) liefert

$$= E\big[E[M_n^2 - M_m^2 \mid \mathcal{F}_m]\big]$$

und wieder die Eigenschaft (ii) auf Ω schließlich

$$= E[M_n^2 - M_m^2].$$

Aufgabe 3. Seien X_1, X_2, \ldots i.i.d. Zufallsvariablen mit $E[X_1] = 0$ und $0 < E[X_1^2] < \infty$. Verwenden Sie das 0-1-Gesetz von Kolmogorov und den zentralen Grenzwertsatz, um zu zeigen, dass fast sicher

$$\limsup_{n \to \infty} \frac{S_n}{\sqrt{n}} = \infty$$

gilt, wobei $S_n := \sum_{k=1}^n X_k$.

Hinweis: Verwenden Sie das Lemma von Fatou.

Da die Inklusion gilt $\left\{\limsup_{n\to\infty}\frac{S_n}{\sqrt{n}}=\infty\right\}\subseteq\left\{(S_n)\text{ konvergiert nicht}\right\}$, ist $\left\{\limsup_{n\to\infty}\frac{S_n}{\sqrt{n}}=\infty\right\}$ nach Blatt 5 Aufgabe 5.6. ein terminales Ereignis. Nach dem 0-1-Gesetz von Kolmogorov ist $P\left(\limsup_{n\to\infty}\frac{S_n}{\sqrt{n}}=\infty\right)\in\left\{0,1\right\}$. Äquivalent können wir sagen, dass für ein beliebiges $N\in\mathbb{N}$ gilt $P\left(\limsup_{n\to\infty}\frac{S_n}{\sqrt{n}}>N\right)\in\left\{0,1\right\}$. Das heißt wiederum, dass

$$P\left(\limsup \frac{S_n}{\sqrt{n}} > N\right) = P\left(\frac{S_n}{\sqrt{n}} > N \text{ für unendlich viele } n\right),$$

also

$$= P\left(\limsup_{n \to \infty} \left\{ \frac{S_n}{\sqrt{n}} > N \right\} \right).$$

Mit Blatt 5 Aufgabe 2 oder eventuell auch mit dem Lemma von Fatou erhalten wir

$$\geq \limsup_{n \to \infty} P\left(\frac{S_n}{\sqrt{n}} > N\right).$$

Da schließlich nach dem zentralen Grenzwertsatz $\frac{S_n}{\sqrt{n}} \Rightarrow Y$ mit $Y \sim \mathcal{N}(0,1)$, erhalten wir

$$=1-P(Y\leq N)>0.$$

Damit muss $P(\limsup_{n\to\infty} \frac{S_n}{\sqrt{n}} = \infty) = 1$ gelten.

Aufgabe 4. Geben Sie für einen wiederholten Münzwurf (mit fairer Münze) einen Wahrscheinlichkeitsraum an und zeigen Sie, dass der Prozess $(M_n)_{n\in\mathbb{N}}$,

der die Summe der Auszahlung $X = (X_n)_{n \in \mathbb{N}}$ von 1, beziehungsweise -1 beschreibt ein Martingal bezüglich seiner Filtration ist. Das Spiel endet, wenn die Auszahlung von $a \in \mathbb{N}$ erreicht ist. Ist das gestoppte Spiel immer noch ein Martingal? Was lässt sich über die Konvergenz (fast sicher und L^1) des gestoppten Spiels aussagen?

Bei jedem einzelnen Münzwurf sind die verschiedenen Auskommen $\Omega_1 = \{K, Z\}$ für Kopf oder Zahl. Der Grundraum von X ist dann $\Omega = \Omega_1^{\mathbb{N}}$, sodass für alle $\omega \in \Omega$ gilt $\omega_n \in \Omega_1$. Die Filtration ist $\mathbb{F} = (\mathcal{F}_n)$ mit $\mathcal{F}_n = \mathcal{P}(\Omega_1)^{\otimes n}$. Auf $\mathcal{P}(\Omega_1)$ ist ein Wahrscheinlichkeitsmaß P_1 gegeben durch $P_1(\emptyset) = 0$, $P_1(K) = P_1(Z) = \frac{1}{2}$ und $P_1(\Omega_1) = 1$. Das die Würfe unabhängig sind, können wir definieren $P_n(\omega) = \prod_{k=1}^n P_1(\omega_k)$ setzen. Da Ω polnisch ist, gibt es einen projektiven Limes P zu (P_n) auf Ω , was (Ω, \mathcal{F}, P) zu einem Wahrscheinlichkeitsraum macht. Sei $A \in \mathbb{Z}$, dann ist $M_n^{-1}(A) \in \mathcal{F}_n$, da \mathcal{F}_n aus den Potenzmengen von Ω_1 besteht. Somit ist M_n adaptiert. Es sollte noch geprüft werden, dass \mathbb{F} tatsächlich die natürliche Filtration von (M_n) ist. Wir sollen noch prüfen, ob (M_n) ein Martingal ist. Sei hierfür m < n. Dann gilt mit der Definition von (M_n)

$$E[M_n \mid \mathcal{F}_m] = E\left[\sum_{k=1}^n X_k \mid \mathcal{F}_m\right].$$

Wegen der Linearität der bedingten Erwartung gilt

$$= E[M_m \mid \mathcal{F}_m] + E\left[\sum_{k=m+1}^n X_k \mid \mathcal{F}_m\right].$$

Da M_m \mathcal{F}_m -messbar und für k > m X_k unabhängig von \mathcal{F}_m ist, gilt

$$= M_m + \sum_{k=m+1}^{n} E[X_k] = M_m \,,$$

Denn $E[X_k] = 1 \cdot \frac{1}{2} - 1 \cdot \frac{1}{2} = 0$. Somit ist (M_n) ein Martingal. Nach Satz 189 ist auch der gestoppte Prozess ein Martingal. Da auch sup $E[|M_n|] = 0$, gilt nach dem Doobschen Martingalkonvergenzsatz, dass M_n fast sicher und in L^1 konvergiert.