Transmission Lines

- Outline
 - When to Invoke a Transmission Line Model
 - Equations for Propagation
 - Reflections

When to Invoke a Transmission Line Model

- Suppose we have a wire. When is it to be viewed as a transmission line?
- **Short answer:** When the *time-of-flight* through the wire is comparable or larger than the rise/fall time of the source signal
- Time of flight is known if we know the velocity of wave propagation and the length of the wire. If the velocity of wave propagation is u and the length of the wire is l, then $u = \frac{l}{t}$
- What if we need to model a wire as a transmission line?
 - We simply model the R/L/C of the wire in a distributed manner instead of a lumped manner.
 - This simply means using several π or T sections as appropriate (depending on the desired accuracy).
- OK, what about the long answer?

Equations of Propagation

- Consider a wire of length l, connected to a voltage source V, and a switch S as shown below. The load resistance R is connected at the end of the wire.
- At time t = 0, the switch S is closed.

- ullet The effect of closing S is not felt everywhere immediately
- Rather, this effect propagates from the source to load with a finite velocity
- Assuming uniform cross section, this velocity is given by $u = \frac{1}{\sqrt{LC}}$. Here $u = \frac{c}{\sqrt{\kappa}}$, where κ is the dielectric constant of the medium in which the wire resides. L

and ${\it C}$ are the inductance and capacitance per unit length of wire.

- ullet Note that if L increases, C decreases and vice versa.
- The voltage/current distributions on the wire at times $t_1 = x_1/u$ and $t_2 = x_2/u$ are shown below.

- We introduced a quantity R_0 above. How is it computed and what is it? Lets explain this analytically
- At t_1 , the voltage is V for $0 \le x \le x_1$ and 0 for $x_1 < x \le l$
- In other words, a **front** of voltage travels to the right with velocity *u*.
- Lets say this front moves a distance dx. Then the capacitance to be charged is Cdx (since C is the capacitance per unit length)
- The charge required is dQ = VC dx. Hence the current is given by

•
$$I = \frac{dQ}{dt} = VC\frac{dx}{dt} = VCu = VC\frac{1}{\sqrt{LC}} = V\sqrt{\frac{C}{L}} = \frac{V}{R_0}$$

- $R_0 = \sqrt{\frac{L}{C}}$ the **Characteristic Impedance** of the line.
- It is a function of the medium in which the wire resides. For PCBs, R_0 is in the 50-75 Ω range.
- The expression for I above is the current for x = 0 to wherever the front is. To the right of the front, I = 0.

- We say that I_x is positive when current flows to the right in the top wire, and to the left in the bottom wire.
- For all x from 0 to the location of the front (call it x), we have $V_x/I_x=R_0$.
- If the source and load were interchanged, we would have $V_x/I_x=-R_0$ based on our sign convention

Reflections

- If the length *l* was infinite, then the front would keep moving to the right.
- If l is finite, then but if the load resistor $R = R_0$, then when the front arrives at the load (at time l/u), currents at all points in the wire and the load are V/R_0 , and so nothing further happens.
- It is as though the length l was infinite.
- Now lets suppose $R \neq R_0$. When the front arrives at the load (at time l/u), the current in the wire is $V_x/R_x = R_0$. But **at the load**, the relationship $V_l/R_l = R$ is required.
- This causes a discontinuity. Thus a reflection develops at the load, which moves to the left.
- The amplitude and polarity of this reflected wave are such that the **total** voltage V_l (i.e. sum of the incident and reflected voltage) is related to I_l by the expression $V_l/I_l=R$
- If the incident voltage was V, the reflected voltage will be ρV where ρ is the **reflection coefficient**

- If the incident current is V/R_0 , reflected current is $-\rho V/R_0$ based on our sign convention.
- The ratio of the total voltage to total current is R, therefore $R = \frac{V + \rho V}{V/R_0 \rho V/R_0}$.
- Solving, we get $\rho = \frac{R/R_0 1}{R/R_0 + 1}$. This reflection coefficient ranges from -1 to +1.
 - When $R = R_0$, then $\rho = 0$. So no reflections are observed (we agreed that should be the case above).
 - When $R = \infty$ (i.e. the wire is **unterminated**), $\rho = 1$
 - When $\emph{R}=0$ (i.e. the wire is short-circuited), $\rho=-1$
- There can be several reflections in this manner. We can compute the waveform at *l* by accounting for such reflections.

Reflections - An Example

- Consider a wire of length l, with $R_0 = 100\Omega$, $R = 900\Omega$ and a source resistance $R_s = 20\Omega$. Also assume the source voltage is V = 12V. We want to determine the waveform at the end of the wire
- First we compute the reflection coefficients.

$$- \rho_R = \frac{\frac{900}{100} - 1}{\frac{900}{100} + 1} = 0.8$$

$$- \rho_S = \frac{\frac{20}{100} - 1}{\frac{20}{100} + 1} = -0.75$$

- A 12 V step appears on the line as a step of voltage $V_1 = 12 \frac{R_0}{R_0 + R_s} = 10 \text{V}$
- At time $t = t_d = \frac{l}{u}$, the wave V_1 arrives at the end of the line, where it is reflected as:

$$V_2 = \rho_R \cdot V_1 = 0.8 \cdot 10$$
 = 8 V

- ullet Therefore the receiver voltage at this time is $V_1+V_2=18{\sf V}$
- At time $2 \cdot t_d$, the wave V_2 arrives at the source. It is now reflected as:

$$V_3 = \rho_S \cdot V_2 = -0.75 \cdot 8V = -6V$$

- At time $3 \cdot t_d$, the wave V_3 arrives at the end of the line. It is now reflected as: $V_4 = \rho_R \cdot V_3 = 0.8 \cdot (-6) \text{V} = -4.8 \text{V}.$
- So the receiver voltage at this time is $V_1 + V_2 + V_3 + V_4 = 7.2 \text{V}$
- And so on...
- Asymptotically, the voltage at the end of the wire is $V \cdot \frac{R}{R+R_s} = 12 \cdot \frac{900}{920} = 11.739 \text{V}$ The waveform at the end of the wire therefore looks like:

