An Efficient RFID Tag Estimation Method Using Biased Chebyshev Inequality for Dynamic Frame Slotted ALOHA

Hazem Elsaid

Smart SysTech 2014, 02.07.2014

- **■** Motivation
- **■** Classical Tag Estimation Methods
- **■** Proposed Biased Chebyshev Tag Estimation
- **■** Conclusion and Future Work

- System Model:
 - □ Single RFID Reader.
 - □ Dense RFID network with unknown number of passive tags.
 - ☐ Tags should be identified in the minimum possible time.

- System Model:
 - ☐ Single RFID Reader.
 - Dense RFID network with unknown number of passive tags.
 - ☐ Tags should be identified in the minimum possible time.
- Identification Process:
 - □ Reader asks the tags for there EPC code.

- System Model:
 - ☐ Single RFID Reader.
 - □ Dense RFID network with unknown number of passive tags.
 - ☐ Tags should be identified in the minimum possible time.
- Identification Process:
 - □ Reader asks the tags for there EPC code.
 - □ Single answer (Successful).

- System Model:
 - ☐ Single RFID Reader.
 - Dense RFID network with unknown number of passive tags.
 - ☐ Tags should be identified in the minimum possible time.
- Identification Process:
 - ☐ Reader asks the tags for there EPC code.
 - □ Single answer (Successful).
 - □ No answer.

- System Model:
 - ☐ Single RFID Reader.
 - □ Dense RFID network with unknown number of passive tags.
 - ☐ Tags should be identified in the minimum possible time.
- Identification Process:
 - ☐ Reader asks the tags for there EPC code.
 - □ Single answer (Successful).
 - □ No answer.
 - ☐ Multiple answers. (Collision)

What is the maximum achievable identification efficiency?

- Dynamic Framed Slotted ALOHA:
 - ☐ Time divided into multiple frames.
 - □ Each frame has different length (number of slots).
 - ☐ Reader has to inform the tags with the frame size (Q value).
 - □ Each tag chooses only one random slot per frame.
- Maximum reading efficiency:

$$\eta_{\text{max}} = 36\%$$
 if $L = n$
Unknown number of tags n=?

Robust number of tags estimation

- Motivation
- Classical Tag Estimation Methods
- **■** Proposed Biased Chebyshev Tag Estimation
- **■** Conclusion and Future Work

Classical Tag Estimation Methods

- Lower bound:
 - ☐ Assumes two tags collided per collided slot (Lower bound of collision).

$$n_{est} = 2 \times \text{Number of collided slots}$$

- Schoute:
 - ☐ Assumes Poisson distribution, then calculates the expected number of collisions per slot.

$$n_{est} = 2.39 \times \text{Number of collided slots}$$

→ Both these methods depends only on one information (number of collided slots)

Classical Tag Estimation Methods

■ Classical Chebyshev Tag estimation methods

Classical Tag Estimation Methods

- Estimation error for the classical tag estimation methods
 - □ Frame length L=128.
 - □ Classical Chebyshev is the most promising tag estimation method.
 - ☐ The estimation error increase when the actual number of tags increases.

- Motivation
- **■** Classical Tag Estimation Methods
- **■** Proposed Biased Chebyshev Tag Estimation
- **■** Conclusion and Future Work

■ Classical Chebyshev Tag estimation:

$$\varepsilon_{\text{conv}} = \min_{n} \{ |a_0 - c_0| + |a_1 - c_1| + |a_k - c_k| \}$$

- Numerical example:
 - $\Box |a_0-c_0| = k \rightarrow error = k tags.$
 - $\Box |a_1-c_1| = k \rightarrow error = k tags.$
 - $\Box |a_k-c_k| = k$ \rightarrow error $\geq 2*k$ tags. (depends on the existing number of tags).
- Proposed biased Chebyshev Tag estimation:

$$\varepsilon_{\text{Biased}} = \min_{n} \left\{ \left| a_0 - c_0 \right| + \left| a_1 - c_1 \right| + \gamma_c \left| a_k - c_k \right| \right\}$$
Collision
Coefficient

- Estimation error curve:
 - □ Frame length L=512
 - \square Number of tags >> L \rightarrow Number of collided slots is dominant.
 - □ Number of tags << L → Number of collided slots is very small.
 - \Box L/2< Number of tags <2L \rightarrow Variable collision coefficient (γ_c) for minimum estimation error.

■ Using simulations the proposed collision coefficient equation:

$$\gamma_c(L, n) = (1.2 \times 10^{-4} n - 0.09) \cdot L + (0.0016 \times n + 8.36)$$

- Estimation error for the proposed tag estimation compared to the classical methods:
 - ☐ Frame length L=128
 - □ The proposed collision coefficient compensates the increase of the mean estimation error with the increase of the number of tags.

- Percentage of saving time using the proposed algorithm compared to the classical Chebyshev algorithm:
 - ☐ Starting frame length L=128
 - □ Oscillations in the curve are due to the frame length takes only discrete values 2^Q.
 - □ Negative value at with a tag populations less than 25 tags has a very small effect.

- Motivation
- **■** Classical Tag Estimation Methods
- Proposed Biased Chebyshev Tag Estimation
- **■** Conclusion and Future Work

Conclusion and future work

Conclusion

- ☐ A new biased Chebyshev inequality tag estimation method is proposed.
- ☐ The proposed method is compared with the classical tag estimation methods and gives better results with dense RFID networks.
- ☐ A new biased Chebyshev inequality anti-collision algorithm is presented.
- □ The new algorithm compared with the classical Chebyshev inequality anti-collision and the reading time is reduced by 25%.

■ Future work

- ☐ The successful and empty coefficients should be also calculated and added to the main estimation equation.
- □ Compare the new estimation performance with the current performance in terms of estimation error and saving time.

Thanks for your kind attention!

Hazem.a.elsaid@fau.de

