COMP-170: Homework #4

Ben Tanen - February 26, 2017

Problem 5

Let $L = \{\langle M \rangle \mid M \text{ only accepts odd inputs } \}$. Prove $L \leq_m \overline{A_{TM}}$

* * *

We want to prove $L \leq_m \overline{A_{TM}}$. To do this, we will construct a function $f: \Sigma_L^* \to \Sigma_{\overline{ATM}}^*$ such that $x \in L \Leftrightarrow f(x) \in \overline{A_{TM}}$. Once we show f satisfies this criteria, we can see that $L \leq_m \overline{A_{TM}}$.

First, we will claim $L \leq_m \overline{A_{TM}}$. To prove this claim, we will first show how L and $\overline{A_{TM}}$ relate to each other (using the "Tony Square").

	L	$\overline{A_{TM}}$
IN	M accepts only odd inputs	M' doesn't accept w
OUT	M doesn't just accept odd inputs	M' accepts w

Now that we've built our "Tony Square", we can define our function. In this function, we will use the recognizer R for \overline{L} that was constructed for problem 4. Let $f: \Sigma_L^* \to \Sigma_{\overline{ATM}}^*$ be defined as follows:

f on input $\langle M \rangle$ outputs $\langle M', w \rangle$, where M' and w are defined as:

M' on input x:

Run R on $\langle M \rangle$

If R accepts $\langle M \rangle$, ACCEPT

w = 1 // The specific value of w doesn't matter

Given our definition of f, we claim that f is computable. Because M' is a valid Turing machine and f is a finite function, we can see that f is indeed computable.

Now, we can go through two cases to show that f correctly satisfies $x \in L \Leftrightarrow f(x) \in \overline{A_{TM}}$. Consider the following two cases:

- 1. Suppose $\langle M \rangle \in L$ such that M only accept odd inputs. Because $\langle M \rangle \in L$, we know that $\langle M \rangle \notin \overline{L}$ so we know that R will not accept $\langle M \rangle$. Thus, because R won't accept $\langle M \rangle$, we can see that M' won't accept w. Thus, if $\langle M \rangle \in L$, $\langle M', w \rangle \in \overline{A_{TM}}$.
- 2. Suppose $\langle M \rangle \not\in L$ such that M does not just accept odd inputs (i.e. M accepts at least one even input). Because $\langle M \rangle \not\in L$, we know that $\langle M \rangle \in \overline{L}$. Thus, we know R (as a recognizer of \overline{L}) would accept $\langle M \rangle$. This would then cause M' to accept w. Thus, we can see that if $\langle M \rangle \not\in L$, then $\langle M', w \rangle \not\in \overline{A_{TM}}$.

Given these two cases, we can thus see that f does indeed satisfy the claim $x \in L \Leftrightarrow f(x) \in \overline{A_{TM}}$. Therefore, we can see that $L \leq_m \overline{A_{TM}}$.