Introducción al Método de Elementos Finitos

Martín A. Díaz-Viera¹, Antonio Carrillo Ledesma²

¹⁾Instituto Mexicano del Petróleo mdiazv@imp.mx ²⁾Facultad de Ciencias, UNAM http://academicos.fciencias.unam.mx/antoniocarrillo

Posgrado del Instituto Mexicano del Petróleo

20 de marzo de 2023

Contenido I

- Introducción
 - ¿Qué es método de elementos finitos (FEM)?
 - Reseña histórica
 - Antecedentes
 - Problema con condiciones de frontera (BVP)
 - Método de Galerkin
- 2 Método de elementos finitos
 - Problema con condiciones de frontera (BVP)
 - Método de residuos pesados
 - Formulación débil
 - Aproximación de elementos finitos
 - Ejemplo en 1-D
- 3 Esquemas theta (θ) de discretización en el tiempo

Contenido II

- Problema modelo
- Esquema theta (θ) general
- Caso para $\theta = 0$ (completamente explícito)
- Caso para $\theta = 1$ (completamente implícito)
- Caso para $\theta = 1/2$ (Crank- Nicolson)
- Método de volumen finito
 - Características generales
 - Volumen de control
- 5 References

¿Qué es método de elementos finitos (FEM)?

- El método de elementos finitos (FEM) es un método numérico para la solución de problemas de ecuaciones diferenciales parciales con condiciones iniciales y de frontera.
- Está basado en la proyección de la solución en un espacio de funciones definidas localmente por celdas (elementos) en una partición del dominio (malla)
- La solución aproximada se obtiene minimizando el error mediante el cáculo variacional.
- Al integrar en todo el dominio resulta un sistema lineal de ecuaciones algebraicas

Reseña histórica

- En 1915, el matemático soviético Boris Grigoryevich Galerkin había formulado un método general para la resolución de ecuaciones diferenciales (Galerkin, 1915 [1]).
- Anteriormente ya se había presentado un enfoque similar por Bubnov y por ello es conocido como el método de Galerkin o de Bubnov-Galerkin
- Se formuló originalmente con polinomios globales
- Se remonta a los principios variacionales de Leibniz, Euler, Lagrange, Dirichlet, Hamilton, Castigliano.

Antecedentes

- El método Galerkin's con espacios polinomiales discretos, es decir, definidos localmente en celdas (elementos) es conocido como el Método de Elementos Finitos.
- El método de elementos finitos fue introducido por ingenieros para el análisis de estructuras en 1950s y fue propuesto independientemente por Courant en 1943 [2].
- Su aplicación se popularizó en la década de 1960s
- Desde entonces, la maquinaria del método de los elementos finitos se ha ampliado y refinado en un marco global para el diseño y análisis de métodos numéricos para ecuaciones diferenciales.

Método de Galerkin

- Convierte un problema de operador continuo, como una ecuación diferencial, en su formulación débil
- En un problema discreto mediante la aplicación de restricciones lineales determinadas por conjuntos finitos de funciones de base.

Método de Ritz-Galerkin

- El método de Ritz-Galerkin (después de Walther Ritz)
- Generalmente supone una forma bilineal definida positiva y simétrica en la formulación débil,
- Donde la ecuación diferencial se puede formular mediante la minimización de una función cuadrática
- Que representa la energía del sistema
- La solución aproximada es una combinación lineal del conjunto dado de funciones base

Método de Bubnov-Galerkin

- El método de Bubnov-Galerkin (después de Ivan Bubnov) no requiere que la forma bilineal sea simétrica
- Sustituye la minimización de energía con restricciones de ortogonalidad determinadas por las mismas funciones bases que se utilizan para aproximar la solución.
- El método de Bubnov-Galerkin puede verse como la aplicación de una proyección ortogonal en la formulación del operador de la ecuación diferencial.
- Las funciones bases y de peso pertenecen al mismo espacio de funciones.

Método de Petroy-Galerkin

- El método de Petrov-Galerkin (después de Georgii I. Petrov) permite usar funciones base para restricciones de ortogonalidad (llamadas funciones base de prueba o funciones de peso)
- Que son diferentes de las funciones base utilizadas para aproximar la solución.
- Puede verse como una extensión del método de Bubnov-Galerkin.
- Aplicando una proyección que no es necesariamente ortogonal en la formulación del operador de la ecuación diferencial.

Problema con condiciones de frontera (BVP)

Se considera el problema con condiciones de frontera siguiente:

$$\mathcal{L}u = f_{\Omega} \text{ en } \Omega$$
 (1)
 $u = u_{\partial} \text{ en } \partial \Omega$

donde

$$\mathcal{L}u = -\nabla \cdot (\underline{\underline{a}} \cdot \nabla u) + cu \tag{2}$$

es un operador diferencial elíptico de 2do orden, siendo $\underline{\underline{a}}$ una matriz positiva definida, simétrica y $c \geq 0$, con $\Omega \subset R^2$ un dominio poligonal.

¿Qué es método de elementos finitos (FEM)? Reseña histórica Antocodontes

Problema con condiciones de frontera (BVP) Método de Galerkin

Forma variacional del problema

Multiplicando por $v \in V$ ambos miembros de la ecuación (1) e integrando en el dominio Ω resulta

$$-\int_{\Omega} v \left(\nabla \cdot \underline{\underline{a}} \cdot \nabla u + c u \right) = \int_{\Omega} v f_{\Omega} d\underline{x}$$
 (3)

Aplicando el teorema de Green obtenemos la ecuación

$$\int_{\Omega} \left(\nabla v \cdot \underline{\underline{a}} \cdot \nabla u + cuv \right) d\underline{x} = \int_{\Omega} v f_{\Omega} d\underline{x} \tag{4}$$

Qué es método de elementos finitos (FEM)? Reseña histórica Antecedentes

Problema con condiciones de frontera (BVP) Método de Galerkin

Forma variacional del problema

Definiendo el operador bilineal y la funcional lineal como:

$$a(u,v) \equiv \int_{\Omega} \left(\nabla v \cdot \underline{\underline{a}} \cdot \nabla u + cuv \right) d\underline{x} \tag{5}$$

$$L(v) \equiv \langle f, v \rangle = \int_{\Omega} v f_{\Omega} d\underline{x} \tag{6}$$

se puede expresar el problema de la Ec. (1) en **forma variacional** como:

$$a(u,v) = L(v) \tag{7}$$

Método de Galerkin

El método de Galerkin consiste en encontrar $u \in V$ que satisfaga

$$a(u,v) = L(v) \quad \forall v \in V$$
 (8)

donde V es un subespacio de un espacio de Hilbert H.

- La Ec. (8) no se puede resolver ya que el espacio V es de dimensión infinita.
- En su lugar se usa un conjunto de funciones linealmente independientes $\{\phi_i\}_{i=1}^N$ en V.
- Se define el espacio V^h generado por las funciones ϕ_i .

Método de Galerkin

Se puede redefinir el método Galerkin con V^h en lugar de V y encontrar una función u_h que satisfaga

$$a(u_h, v_h) = \langle f, v_h \rangle \quad \forall v_h \in V^h. \tag{9}$$

donde

$$u_h = \sum_{i=1}^{N} c_i \phi_i \quad \text{y} \quad v_h = \phi_j \tag{10}$$

Método de Galerkin

Sustituyendo las Ecs (10) en la Ec. (9) resulta

$$\sum_{i=1}^{N} a(\phi_i, \phi_j) c_i = \langle f, \phi_j \rangle, \quad j = 1, 2, ...N$$
 (11)

La ecuación (11) se puede escribir como

$$\sum_{i=1}^{N} K_{ij} c_i = F_j, \quad j = 1, 2, ...N$$
 (12)

donde

$$K_{ij} = a(\phi_i, \phi_j) \quad \text{y} \quad F_j = \langle f, \phi_j \rangle$$
 (13)

Método de Galerkin

• El problema se reduce a resolver el sistema de ecuaciones lineales en forma matricial

$$\underline{\underline{\mathbb{K}}c} = \underline{F} \tag{14}$$

donde $\underline{\underline{\mathbb{K}}}$ y \underline{F} son la matriz y el vector cuyas entradas son K_{ij} y F_j .

• Una vez que el sistema es resuelto, la solución aproximada u_h es encontrada.

Problema con condiciones de frontera (BVP)

Dada la ecuación diferencial

$$\mathcal{L}u = f_{\Omega}; \quad \forall \mathbf{x} \in \Omega$$
 (15)

donde

$$\mathcal{L}u \equiv -\nabla \cdot (\boldsymbol{a} \cdot \nabla u) + \nabla \cdot (\boldsymbol{b}u) + cu \tag{16}$$

es el operador elíptico general de segundo orden y a, b y c son una matriz, un vector y un escalar respectivamente, que son funciones definidas en $\Omega \in \mathbb{R}^d$, (d=1,2,3), con condiciones de frontera tipo Neumann y Dirichlet.

Problema con condiciones de frontera (BVP)

El problema BVP está dado por

$$-\nabla \cdot (\boldsymbol{a} \cdot \nabla u) + \nabla \cdot (\boldsymbol{b}u) + cu = f_{\Omega}; \qquad \forall \boldsymbol{x} \in \Omega$$
 (17)

$$u = u_{\partial_D}; \quad \forall \mathbf{x} \in \partial_D \Omega$$
 (18)

$$(\boldsymbol{a} \cdot \nabla \boldsymbol{u} - \boldsymbol{b} \boldsymbol{u}) \cdot \boldsymbol{n} = g_{\partial_{N}}; \qquad \forall \boldsymbol{x} \in \partial_{N} \Omega \tag{19}$$

Método de residuos pesados

El método de elementos finitos se puede formular a partir del método de residuos pesados [18].

Si se define

$$\mathcal{R}(\mathbf{x}, u) \equiv \mathcal{L}u(\mathbf{x}) - f_{\Omega}(\mathbf{x}); \quad \forall \mathbf{x} \in \Omega$$
 (20)

donde $\mathcal{R}(\mathbf{x}, u)$ es el residuo (error).

- Si $u(\mathbf{x})$ es la solución exacta, entonces $\mathcal{R}(\mathbf{x}, u) \equiv 0$,
- Para cualquier otra solución aproximada $\tilde{u}(x)$ del problema, $\mathcal{R}(x, \tilde{u})$ no será cero en cada punto $x \in \Omega$.
- El **método de residuos pesados** tiene como objetivo elegir a la $\tilde{u}(x)$ que haga mínimo el residuo (error) en algún sentido.

Método de residuos pesados

• Una solución aproximada óptima $\tilde{u}(x)$ se obtendrá si se pide que

$$\int_{\Omega} w \mathcal{R}(\mathbf{x}, \tilde{u}) d\mathbf{x} = \int_{\Omega} w (\mathcal{L}\tilde{u} - f_{\Omega}) d\mathbf{x} = 0$$
 (21)

- La ecuación anterior implica que $\mathcal{R}\left(\mathbf{x}, \tilde{u}\right) \approx 0$.
- Esta solución es óptima en el sentido del promedio ponderado, donde w es una función de peso que se utiliza para promediar la ecuación.

Formulación débil

- Para derivar la forma débil del problema se transforma la ecuación diferencial parcial a una ecuación integral.
- El primer paso para derivar la forma débil consiste en multiplicar la ecuación (17) por una función de peso w arbitraria e integrar sobre el dominio Ω

$$\int_{\Omega} w \left\{ -\nabla \cdot (\mathbf{a} \cdot \nabla u) + \nabla \cdot (\mathbf{b}u) + cu \right\} d\mathbf{x} = \int_{\Omega} w f_{\Omega} d\mathbf{x}$$
(22)

donde w es una función continua, al menos a tramos, bastará que $w \in C^0(\Omega)$. Una función u pertenece a $C^k(\Omega)$ si todas sus derivadas, hasta orden k, son continuas.

Formulación débil

• Se manipula los integrandos bajo la divergencia como sigue

$$\nabla \cdot \{ w \left[(\boldsymbol{a} \cdot \nabla u) - (\boldsymbol{b}u) \right] \} \quad (23)$$
$$= \nabla w \cdot \left[(\boldsymbol{a} \cdot \nabla u) - (\boldsymbol{b}u) \right] + w \left\{ \nabla \cdot \left[(\boldsymbol{a} \cdot \nabla u) - (\boldsymbol{b}u) \right] \right\}$$

$$\nabla \cdot (w \mathbf{a} \cdot \nabla u - w \mathbf{b} u) \quad (24)$$

$$= \nabla w \cdot \mathbf{a} \cdot \nabla u - \nabla w \cdot \mathbf{b} u + w \left[\nabla \cdot (\mathbf{a} \cdot \nabla u) - \nabla \cdot (\mathbf{b} u) \right]$$

Formulación débil

ullet Integrando la expresión anterior en el dominio Ω se obtiene

$$\int_{\Omega} \nabla \cdot (w \mathbf{a} \cdot \nabla u - w \mathbf{b} u) d\mathbf{x} \qquad (25)$$

$$= \int_{\Omega} (\nabla w \cdot \mathbf{a} \cdot \nabla u - \nabla w \cdot \mathbf{b} u) d\mathbf{x}$$

$$+ \int_{\Omega} w \left[\nabla \cdot (\mathbf{a} \cdot \nabla u) - \nabla \cdot (\mathbf{b} u) \right] d\mathbf{x}$$

Formulación débil

Reordenando la ecuación anterior resulta

$$- \int_{\Omega} w \left[\nabla \cdot (\boldsymbol{a} \cdot \nabla u) - \nabla \cdot (\boldsymbol{b}u) \right] d\boldsymbol{x}$$

$$= \int_{\Omega} (\nabla w \cdot \boldsymbol{a} \cdot \nabla u - \nabla w \cdot \boldsymbol{b}u) d\boldsymbol{x}$$

$$- \int_{\Omega} \nabla \cdot (w \boldsymbol{a} \cdot \nabla u - w \boldsymbol{b}u) d\boldsymbol{x}$$

$$= \int_{\Omega} \nabla \cdot (w \boldsymbol{a} \cdot \nabla u - w \boldsymbol{b}u) d\boldsymbol{x}$$

Formulación débil

• Aplicando el teorema de Gauss de la divergencia al segundo término del lado derecho de la ecuación anterior (26)

$$\int_{\Omega} \nabla \cdot (w \mathbf{a} \cdot \nabla u - w \mathbf{b} u) d\mathbf{x} = \int_{\partial \Omega} (w \mathbf{a} \cdot \nabla u - w \mathbf{b} u) \cdot \mathbf{n} d\mathbf{x}$$
 (27)

Formulación débil

• Sustituyendo la igualdad (27) en la ecuación (26)

$$-\int_{\Omega} w \left[\nabla \cdot (\boldsymbol{a} \cdot \nabla u) - \nabla \cdot (\boldsymbol{b}u) \right] d\boldsymbol{x}$$

$$= \int_{\Omega} (\nabla w \cdot \boldsymbol{a} \cdot \nabla u - \nabla w \cdot \boldsymbol{b}u) d\boldsymbol{x}$$

$$-\int_{\partial \Omega} (w \boldsymbol{a} \cdot \nabla u - w \boldsymbol{b}u) \cdot \boldsymbol{n} d\boldsymbol{x}$$
(28)

Formulación débil

• Por lo tanto, la ecuación (22) puede reescribirse como

$$\int_{\Omega} \{\nabla w \cdot (\mathbf{a} \cdot \nabla u - \mathbf{b}u) + cuw\} d\mathbf{x} \qquad (29)$$

$$- \int_{\partial\Omega} w (\mathbf{a} \cdot \nabla u - \mathbf{b}u) \cdot \mathbf{n} d\mathbf{x}$$

$$= \int_{\Omega} w f_{\Omega} d\mathbf{x}$$

donde $\partial\Omega$ es la frontera del dominio Ω y n el vector unitario normal hacia afuera del dominio.

Formulación débil

• La integral sobre la frontera $\partial\Omega$ se puede descomponer como la suma de las integrales sobre las subfronteras $\partial_D\Omega$ y $\partial_N\Omega$.

$$\int_{\partial\Omega} w (\mathbf{a} \cdot \nabla u - \mathbf{b}u) \cdot \mathbf{n} dx$$

$$= \int_{\partial\Omega} w (\mathbf{a} \cdot \nabla u - \mathbf{b}u) \cdot \mathbf{n} dx$$

$$+ \int_{\partial\Omega} w (\mathbf{a} \cdot \nabla u - \mathbf{b}u) \cdot \mathbf{n} dx$$

$$\partial_{N}\Omega$$
(30)

Formulación débil

• Entonces podemos reescribir la ecuación (29) como

$$\int_{\Omega} \{\nabla w \cdot (\mathbf{a} \cdot \nabla u - \mathbf{b}u) + cuw\} d\mathbf{x} \qquad (31)$$

$$- \int_{\partial_D \Omega} w (\mathbf{a} \cdot \nabla u - \mathbf{b}u) \cdot \mathbf{n} d\mathbf{x}$$

$$- \int_{\partial_N \Omega} w (\mathbf{a} \cdot \nabla u - \mathbf{b}u) \cdot \mathbf{n} d\mathbf{x}$$

$$= \int_{\Omega} w f_{\Omega} d\mathbf{x}$$

Formulación débil

• Se requiere que la función de peso w se anule en la frontera Dirichlet y se cumpla que $(\boldsymbol{a}\cdot\nabla u-\boldsymbol{b}u)\cdot\boldsymbol{n}=g_{\partial_N}$ en la frontera Neumann.

$$\int_{\Omega} \left\{ \nabla w \cdot (\boldsymbol{a} \cdot \nabla u - \boldsymbol{b} u) + c u w \right\} d\boldsymbol{x} \qquad (32)$$

$$= \int_{\Omega} w f_{\Omega} d\boldsymbol{x} + \int_{\partial_{N} \Omega} w g_{\partial_{N}} d\boldsymbol{x}$$

Formulación débil

• La ecuación (32) se puede reescribir en forma compacta como

$$a(u,w) = L(w) \tag{33}$$

 El término izquierdo es conocido como forma bilineal de u y w, y se escribe como

$$a(u,w) \equiv \int_{\Omega} \{\nabla w \cdot (\boldsymbol{a} \cdot \nabla u - \boldsymbol{b}u) + cuw\} d\boldsymbol{x}$$
 (34)

• El término derecho es lineal en w y se escribe como

$$L(w) \equiv \int_{\Omega} w f_{\Omega} d\mathbf{x} + \int_{\partial_{N}\Omega} w g_{\partial_{N}} d\mathbf{x}$$
 (35)

Formulación débil

Finalmente la **forma débil** del problema BVP Ecs. (17-19) se puede formular como:

• Encontrar $u \in V$ tal que

$$a(u,w) = L(w), \quad \forall w \in W \tag{36}$$

donde

$$V = \{ u \in H^1(\Omega) : u = u_{\partial_D} \quad sobre \quad \partial \Omega \}$$
 (37)

$$W = \{ w \in H^1(\Omega) : w = 0 \quad sobre \quad \partial \Omega \}$$
 (38)

Aquí $H^1(\Omega)$ es el espacio de Sobolev de orden 1.

Aproximación de elementos finitos

- Para poder resolver el problema BVP se necesita transformar la formulación débil continua en una discreta.
- Esto se hace al introducir espacios finitos de las funciones de peso y de base, a menudo denotados por V_h ⊂ V y W_h ⊂ W.
- Entonces se debe encontrar una $u_h \in V_h \subset V$ tal que

$$A(u_h, w_h) = L(w_h); \quad \forall w_h \in W_h \subset W \tag{39}$$

La elección de V_h y W_h depende directamente del tipo de elemento finito que se aplique al problema.

Aproximación de elementos finitos

- En el método de elemento finito, el dominio es particionado en m elementos que no se traslapan, tal que $\Omega = \bigcup_{e=1}^{m} \Omega_e$.
- Cada vértice de un elemento es un nodo, y la coordenada x_j del nodo j es llamada coordenada nodal.
- Por lo tanto, si el dominio está representado por n nodos, podemos aproximar u(x) mediante u_h con

$$u_h(\mathbf{x}) = \tilde{u}(\mathbf{x}) = \sum_{j=1}^n u_j \phi_j(\mathbf{x}) + u_0(\mathbf{x})$$
 (40)

donde $\phi_j(\mathbf{x})$ son las funciones base, u_j son los valores nodales y $u_0(\mathbf{x})$ es una función que satisface las condiciones de frontera.

Aproximación de elementos finitos

- Las funciones base para cada nodo son diferentes de cero solo sobre ciertos elementos.
- Esto provee localidad, lo que lleva a una matriz dispersa.
- Por ello, para cualquier punto x, como máximo dos funciones de base contribuyen en la sumatoria dada en la ecuación (40).
- Esto conduce a la formulación estándar de elemento finito al usar funciones base que están restringidas a los elementos, conocidas como funciones de forma.

Aproximación de elementos finitos

 Usando la aproximación de elemento finito en la formulación débil discreta expresada en la ecuación (39) nos limitamos a las funciones que son de la forma expresada en la ecuación (40). Sustituyendo la igualdad 40 en la ecuación (39) resulta

$$\sum_{j=1}^{n} u_{j} \int_{\Omega} \left\{ \nabla w_{h} \cdot (\boldsymbol{a} \cdot \nabla \phi_{j} - \boldsymbol{b} \phi_{j}) + c \phi_{j} w_{h} \right\} d\boldsymbol{x} \tag{41}$$

$$- \int_{\partial \Omega} w_{h} (\boldsymbol{a} \cdot \nabla u_{0} - \boldsymbol{b} u_{0}) \cdot \boldsymbol{n} d\boldsymbol{x}$$

$$= \int_{\Omega} w_{h} f_{\Omega} d\boldsymbol{x}; \qquad \forall w_{h} \in W_{h} \subset W$$

Aproximación de elementos finitos

 En la ecuación integral anterior se tienen n incógnitas u_j, por lo tanto se necesitan n ecuaciones independientes para obtener una única solución. Una selección obvia es considerar que w_h ∈ {φ_i}ⁿ_{i=1}. Entonces, la formulación débil discreta sería

$$\sum_{j=1}^{n} u_{j} \int_{\Omega} \left\{ \nabla \phi_{i} \cdot (\boldsymbol{a} \cdot \nabla \phi_{j} - \boldsymbol{b} \phi_{j}) + c \phi_{j} \phi_{i} \right\} d\boldsymbol{x} \quad (42)$$

$$- \int_{\partial \Omega} \phi_{i} (\boldsymbol{a} \cdot \nabla u_{0} - \boldsymbol{b} u_{0}) \cdot \boldsymbol{n} d\boldsymbol{x}$$

$$= \int_{\Omega} \phi_{i} f_{\Omega} d\boldsymbol{x}; \qquad i = 1, ..., n$$

Problema con condiciones de frontera (BVP) Método de residuos pesados Formulación débil Aproximación de elementos finitos Ejemplo en 1-D

Aproximación de elementos finitos

• Esto genera un sistema de *n* ecuaciones algebraicas lineales:

$$\mathbf{K} \cdot \mathbf{u} = \mathbf{f} \tag{43}$$

donde

$$K_{ij} \equiv \int_{\Omega} \left\{ \nabla \phi_i \cdot (\boldsymbol{a} \cdot \nabla \phi_j - \boldsymbol{b} \phi_j) + c \phi_j \phi_i \right\} d\boldsymbol{x}$$
 (44)

У

$$f_i \equiv \int_{\Omega} \phi_i f_{\Omega} \tag{45}$$

Las condiciones *esenciales* de frontera son impuestas modificando $\boldsymbol{K} \vee \boldsymbol{f}$.

Problema con condiciones de frontera (BVP) Método de residuos pesados Formulación débil Aproximación de elementos finitos Ejemplo en 1-D

Problema BVP en 1-D

- Dado el siguiente problema con condiciones de frontera para una ecuación elíptica general de segundo orden en 1-D.
- Resolver usando el método de elementos finitos con funciones de peso y de base lineales.
- La ecuación diferencial es

$$-\frac{d}{dx}\left(a\frac{du}{dx}\right) + \frac{d}{dx}(bu) + cu = f_{\Omega}; \quad x \in [x_{min}, x_{max}] \quad (46)$$

donde a, b, c y f_{Ω} son constantes.

• Las condiciones de frontera son

$$u(x_{min}) = u_{min} \quad y \quad u(x_{max}) = u_{max} \quad \text{where } \quad (47) \quad \text{where} \quad (4$$

Dominio y malla del problema

- El dominio del problema es el intervalo $[x_{min}, x_{max}]$.
- La malla consiste en la partición del dominio en E intevalos uniformes $h = x_i x_{i-1}, i = 1, ..., E$.

Figura 1: Dominio y malla del problema.

Funciones de peso y de base

• Las funciones de peso y de base son lineales y se definen como

$$\ell_i(x) = \begin{cases} \ell_i^1(x) = \frac{x - x_{i-1}}{h}, & x_{i-1} \le x \le x_i, \\ \ell_i^2(x) = \frac{x_{i+1} - x_i}{h}, & x_i \le x \le x_{i+1} \end{cases}$$
(48)

donde $h = x_i - x_{i-1}, i = 1, ..., E$.

Funciones de peso y de base

 En la Figura 2 se muestran las funciones lineales de peso y de base

Figura 2: Funciones de peso lineales, con $h = x_i - x_{i-1}, i = 1, ..., E$

Solución aproximada

• La solución aproximada tiene la siguiente forma

$$u_h(x) = \sum_{j=1}^{E} u_j \ell_j(x) + u_{min} \ell_0^2(x) + u_{max} \ell_E^1(x)$$
 (49)

donde u_i , i = 1, ..., E, son los valores de la solución aproximada en los nodos.

Problema con condiciones de frontera (BVP) Método de residuos pesados Formulación débil Aproximación de elementos finitos **Ejemplo en 1-D**

Sistema de ecuaciones

$$u_{j-1} \int_{x_{j-1}}^{x_{j}} \left\{ a \frac{d\ell_{j}^{1}}{dx} \frac{d\ell_{j-1}^{2}}{dx} - b \frac{d\ell_{j}^{1}}{dx} \ell_{j-1}^{2} + c\ell_{j}^{1} \ell_{j-1}^{2} \right\} dx$$

$$+ u_{j} \int_{x_{j-1}}^{x_{j+1}} \left\{ a \left(\frac{d\ell_{j}}{dx} \right)^{2} - b \frac{d\ell_{j}}{dx} \ell_{j} + c(\ell_{j})^{2} \right\} dx$$

$$+ u_{j+1} \int_{x_{j}}^{x_{j+1}} \left\{ a \frac{d\ell_{j}^{2}}{dx} \frac{d\ell_{j+1}^{1}}{dx} - b \frac{d\ell_{j}^{2}}{dx} \ell_{j+1}^{1} + c\ell_{j}^{2} \ell_{j+1}^{1} \right\} dx$$

$$= \int_{x_{j-1}}^{x_{j+1}} \ell_{j} f_{\Omega} dx - u_{min} \int_{x_{0}}^{x_{1}} \left\{ a \frac{d\ell_{j}^{1}}{dx} \frac{d\ell_{0}^{2}}{dx} - b \frac{d\ell_{1}^{1}}{dx} \ell_{0}^{2} + c\ell_{1}^{1} \ell_{0}^{2} \right\} dx$$

$$- u_{max} \int_{x_{E-1}}^{x_{E}} \left\{ a \frac{d\ell_{E-1}^{2}}{dx} \frac{d\ell_{E}^{1}}{dx} - b \frac{d\ell_{E-1}^{2}}{dx} \ell_{E}^{1} + c\ell_{E-1}^{2} \ell_{E}^{1} \right\} dx, \quad j = 2, \dots,$$

$$Martin A. Diaz-Viera$$

$$45/62$$

Sistema de ecuaciones

Si los coeficientes son constantes resulta

$$u_{j-1} \left\{ -\frac{a}{h} - \frac{b}{2} + \frac{ch}{6} \right\}$$

$$+ u_{j} \left\{ \frac{2a}{h} + \frac{2ch}{3} \right\}$$

$$+ u_{j+1} \left\{ -\frac{a}{h} + \frac{b}{2} + \frac{ch}{6} \right\}$$

$$= \int_{x_{j-1}}^{x_{j+1}} \ell_{j} f_{\Omega} dx - u_{min} \left\{ -\frac{a}{h} - \frac{b}{2} + \frac{ch}{6} \right\}$$

$$- u_{max} \left\{ -\frac{a}{h} + \frac{b}{2} + \frac{ch}{6} \right\}, \quad j = 2, ..., E - 2$$

Sistema de ecuaciones

- El sistema de ecuaciones lineales resultante posee una matriz en forma tridiagonal.
- El cual puede ser resuelto numéricamente mediante el método de Thomas.
- De manera alternativa usando el método de descomposición LU.
- Ambos métodos previamente mencionados son métodos directos por lo que se aplican cuando las matrices son relativamente pequeñas.
- Para sistemas de ecuaciones lineales grandes con matrices bandeadas se suele recurrir a métodos iterativos como del tipo del Gradiente Conjugado.

Problema modelo Esquema theta (θ) general Caso para $\theta = 0$ (completamente explícito) Caso para $\theta = 1$ (completamente implícito)

Problema modelo

 Problema modelo con valores de frontera y condiciones iniciales:

$$\mathcal{L}_{\underline{x},t}u=f_{\Omega}; \qquad \forall (\underline{x},t) \in \Omega$$
 (52)

$$u = u_{\partial}(\underline{x}, t); \quad \forall \underline{x} \in \partial \Omega \quad y \quad \forall t > t_0$$
 (53)

$$u = u_0(\underline{x}); \quad \forall \underline{x} \in \Omega \quad y \quad t = t_0$$
 (54)

Problema modelo

• El operador parabólico general de 2do orden definido como:

$$\mathcal{L}_{\underline{x},t}u \equiv \frac{\partial u}{\partial t} - \nabla \cdot \left(\underline{\underline{a}} \cdot \nabla u\right) + \nabla \cdot \left(\underline{\underline{b}}u\right) + cu; \tag{55}$$

- a_{ij} es un tensor simétrico, positivo definido, acotado y suave a tramos en Ω ,
- Ω dominio acotado con frontera $\partial \Omega$.

Problema modelo

Resulta de utilidad considerar al operador parabólico como:

$$\mathcal{L}_{\underline{x},t}u \equiv \frac{\partial u}{\partial t} + \mathcal{L}_{\underline{x}}u; \tag{56}$$

• $\mathcal{L}_{\underline{x}}$ es un operador en términos de las derivadas espaciales dado por:

$$\mathcal{L}_{\underline{x}}u \equiv -\nabla \cdot \left(\underline{\underline{a}} \cdot \nabla u\right) + \nabla \cdot (\underline{b}u) + cu; \tag{57}$$

 Es la representación en forma conservativa del operador elíptico general de segundo orden.

Esquema theta (θ) general

• Si integramos con respecto al tiempo la ecuación (52) en el intervalo $[t_n, t_{n+1}]$, se obtiene que:

$$u^{n+1}-u^n+\int_{t_n}^{t_{n+1}}\left[\mathcal{L}_{\underline{x}}u-f_{\Omega}\right]dt=0; \qquad (58)$$

• Al desarrollar el término bajo la integral de la Ec. (58) como una serie de Taylor respecto a un punto intermedio t^* en el intervalo $[t_n, t_{n+1}]$ resulta:

$$\left[\mathcal{L}_{\underline{x}}u - f_{\Omega}\right] = \left[\mathcal{L}_{\underline{x}}u - f_{\Omega}\right]_{t^*} + \frac{\partial}{\partial t} \left[\mathcal{L}_{\underline{x}}u - f_{\Omega}\right]_{t^*} (t - t^*) + O(t - t^*)^2$$
(59)

Esquema theta (θ) general

Entonces la integral se transforma en:

$$\int_{t_n}^{t_{n+1}} \left[\mathcal{L}_{\underline{X}} u - f_{\Omega} \right] dt = \left[\mathcal{L}_{\underline{X}} u - f_{\Omega} \right]_{t^*} k + O(k^2); \quad (60)$$

donde $k = t_{n+1} - t_n$ es el paso en el tiempo.

• Al sustituir (60) en (58) se obtiene

$$\frac{u^{n+1}-u^n}{k}+\left[\mathcal{L}_{\underline{x}}u-f_{\Omega}\right]_{t^*}+O(k)=0; \qquad (61)$$

Esquema theta (θ) general

- El punto t^* se puede expresar como $t_n + \theta k$, donde $0 \le \theta \le 1$
- Entonces el segundo miembro de (61) se puede aproximar mediante una interpolación lineal de la siguiente manera:

$$\left[\mathcal{L}_{\underline{X}}u - f_{\Omega}\right]_{t^*} \cong (1 - \theta) \left[\mathcal{L}_{\underline{X}}u - f_{\Omega}\right]_{t_n} + \theta \left[\mathcal{L}_{\underline{X}}u - f_{\Omega}\right]_{t_{n+1}} \tag{62}$$

 Finalmente se obtiene la siguiente discretización con respecto al tiempo, conocida como esquema theta:

$$\frac{u^{n+1}-u^n}{k}+(1-\theta)\left[\mathcal{L}_{\underline{x}}u-f_{\Omega}\right]^n+\theta\left[\mathcal{L}_{\underline{x}}u-f_{\Omega}\right]^{n+1}+O(k)=0;$$
(63)

Caso para $\theta = 0$ (completamente explícito)

 Para θ = 0, es decir con respecto al punto t_n se obtiene un esquema en diferencias hacia delante en el tiempo, también conocido como esquema completamente explícito, ya que el paso n+1 se obtiene de una expresión algebraica de los términos del paso anterior n.

$$\frac{u^{n+1}-u^n}{k}+\left[\mathcal{L}_{\underline{x}}u-f_{\Omega}\right]^n+O(k)=0; \tag{64}$$

$$u^{n+1} \cong u^n - k \left[\mathcal{L}_{\underline{x}} u - f_{\Omega} \right]^n; \tag{65}$$

Es un esquema muy simple, pero se ha demostrado que es condicionalmente estable cuando:

$$k \leq 1/2(\Delta x)^2;$$

Caso para $\theta = 1$ (completamente implícito)

• Para $\theta = 1$, es decir con respecto al punto t_{n+1} se obtiene un esquema en diferencias *hacia atrás* en el tiempo, también conocido como esquema *completamente implícito*:

$$\frac{u^{n+1} - u^n}{k} + \left[\mathcal{L}_{\underline{x}} u - f_{\Omega} \right]^{n+1} + O(k) = 0; \tag{67}$$

$$u^{n+1} + k \left[\mathcal{L}_{\underline{x}} u - f_{\Omega} \right]^{n+1} \cong u^n; \tag{68}$$

Este esquema es incondicionalmente estable.

Caso para $\theta = 1/2$ (Crank- Nicolson)

• Para $\theta=1/2$, es decir con respecto al punto $t_{n+1/2}$ se obtiene un esquema en diferencias centrales en el tiempo, también conocido como esquema de Crank- Nicolson:

$$\frac{u^{n+1} - u^{n}}{k} + \frac{1}{2} \left[\mathcal{L}_{\underline{x}} u - f_{\Omega} \right]^{n+1} + \frac{1}{2} \left[\mathcal{L}_{\underline{x}} u - f_{\Omega} \right]^{n} + O(k^{2}) = 0;$$

$$(69)$$

$$u^{n+1} + \frac{1}{2} k \left[\mathcal{L}_{\underline{x}} u - f_{\Omega} \right]^{n+1} \cong u^{n} - \frac{1}{2} k \left[\mathcal{L}_{\underline{x}} u - f_{\Omega} \right]^{n};$$

$$(70)$$

Es un método incondicionalmente estable y es más preciso que los dos métodos anteriores.

Características generales

- El método de volumen finito se basa en la ecuación de balance global en lugar de las ecuaciones de balance local.
- La ecuación de balance global se aplica para pequeños volúmenes de control definida por la malla computacional.
- Esta propiedad permite que el método de volumen finito sea localmente conservativo a diferencia del método de elementos finitos.
- Por esta razón este método se aplica más para modelos de fluidos, mientras que para sólidos se aplica más el método de elementos finitos.

Método de volumen finito

El método de volumen finito se define según sea:

- La malla y los volúmenes de control
- El método de aproximación de los términos bajo la integral
- El método de integración numérica

Volumen de control

Vertex-centered FVM 1D u_i u_{i+1} v_i v_{i+1} v_i v_{i+1} v_{i+1} v_{i+1} v_{i+1} v_{i+1} v_{i+1} v_{i+1} v_{i+1} (a) Centrado en vértices

Cell-centered FVM

(b) Centrado en celdas

Figura 3: Ejemplos de volumen de control en 1-D.

Volumen de control

Figura 4: Ejemplos de volumen de control en 2-D.

References

- Galerkin, B.G.; Series development for some cases of equilibrium of plates and beams. Wjestnik Ingenerow Petrograd, vol. 19, 897–903 1915.
- [2] Courant, Richard and Friedrichs, K.O.; Interaction of Shock and Rare-faction Waves in One-dimensional Media. Courant Institute of Mathematical Sciences, New York University, 1943.
- [3] A. Quarteroni, A. Valli; Domain Decomposition Methods for Partial Differential Equations. Clarendon Press Oxford 1999.
- [4] A. Toselli, O. Widlund; Domain Decomposition Methods Algorithms and Theory. Springer, 2005.
- [5] B. D. Reddy; Introductory Functional Analysis With Applications to Boundary Value Problems and Finite Elements. Springer 1991.
- [6] B. F. Smith, P. E. Bj\(\textit{0}\) rstad, W. D. Gropp; Domain Decomposition, Parallel Multilevel Methods for Elliptic Partial Differential Equations. Cambridge University Press, 1996.
- [7] B. I. Wohlmuth; Discretization Methods and Iterative Solvers Based on Domain Decomposition. Springer, 2003.
- [8] I. Foster; Designing and Building Parallel Programs. Addison-Wesley Inc., Argonne National Laboratory, and the NSF, 2004.
- [9] G. Herrera; Análisis de Alternativas al Método de Gradiente Conjugado para Matrices no Simétricas. Tesis de Licenciatura, Facultad de Ciencias, UNAM, 1989.
- [10] I. Herrera, M. Díaz; Modelación Matemática de Sistemas Terrestres (Notas de Curso en Preparación).
 Instituto de Geofísica. (UNAM).
- [11] I. Herrera; Un Análisis del Método de Gradiente Conjugado. Comunicaciones Técnicas del Instituto de Geofísica, UNAM; Serie Investigación, No. 7, 1988.

Introducción Método de elementos finitos Esquemas theta (heta) de discretización en el tiempo Método de volumen finito References

Gracias!!!

Preguntas / Comentarios