Course-BTech

Course Code: CSET 105

Year- 2022

Name – Ayushman Pranav Rollno. – E21CSEU0245

Batch - EB10

Type- Core Course Name- Digital Logic Design Lab Semester- Even

Lab Assignment 4.1

Perform the following operations:

- a) Derive the Boolean expression.
- b) Write the truth table for the above expression.
- c) Write a Verilog code for each Boolean expression and then test using wave form and compare with truth table whether your circuit produced same output or not?
- 2. Represent the following gates using only NAND gates
 - A. NOT

```
playground
                            O Run
                                     Copy<sup>*</sup>
                                                          c"Run" please read this
                                                                                                                SV/Verilog Testbench
                                                                                                                            SV/Verilog Design
                                                                                         odule
gate1 (input a, output y);
assign y = ~(a&a);
       odule tb_gate;
       reg A;
wire Y;
        yushman Pranav E21CSEU0245
gatel al(.a(A),.y(Y));
                             ,A,Y);
           npvars(1);
VCD info: dumpfile dump.vcd opened for output.
A Result
     0
Finding VCD file...
```


Testbench.sv

```
module tb_gate;
        reg A;
        wire Y;
       //print
      //Ayushman Pranav E21CSEU0245
         gate1 a1(.a(A),.y(Y));
        initial
         begin
          A=1; #5;
          $display("A Result");
          $display("%b
                          %b'',A,Y);
          A=0; #5;
          $display("%b %b",A,Y);
         end
       initial begin
       $dumpfile("dump.vcd");
        $dumpvars(1);
       end
      endmodule
design.sv
      module
       gate1 (input a, output y);
       assign y = \sim(a\&a);
     endmodule
```

1a) Implement Not gate loving NAND gate NAND gate B Y = A.B.
Not gale A DA (ii) Let us $A = B$ Put $A - B$ in (i)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

B. AND

Testbench.sv

```
module tb_gate;
reg A,B;
wire Y;
//print
//Ayushman Pranav E21CSEU0245
gate1 a1(.a(A),.b(B),.y(Y));
initial
```

```
begin
   A=1; B=1; #5;
   $display("A B Result");
   $display("%b %b
                      %b",A,B,Y);
   A=1; B=0; #5;
   $display("%b %b
                      %b",A,B,Y);
   A=0; B=1; #5;
   $display("%b %b
                      %b",A,B,Y);
   A=0; B=0; #5;
   $display("%b %b
                      %b",A,B,Y);
  end
initial begin
$dumpfile("dump.vcd");
 $dumpvars(1);
end
endmodule
Design.sv
module
 gate1 (input a,b, output y);
 assign y = \sim (\sim (a\&b));
endmodule
```

2) AND gite using WAND goles
And jote And gate wing
A - Y = AB
Enfrancin Y=AB Using double invesion
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$AB \qquad AB = AB$
B A B AB AB
0010
La Logically Cymiralent

C. OR

Testbench.sv

```
module tb_gate;
 reg A,B;
 wire Y;
//print
//Ayushman Pranav E21CSEU0245
  gate1 a1(.a(A),.b(B),.y(Y));
 initial
  begin
   A=1; B=1; #5;
   $display("A B Result");
   $display("%b %b
                      %b'',A,B,Y);
   A=1; B=0; #5;
   $display("%b %b
                      %b",A,B,Y);
   A=0; B=1; #5;
   $display("%b %b
                      %b",A,B,Y);
   A=0; B=0; #5;
   $display("%b %b
                      %b",A,B,Y);
  end
initial begin
$dumpfile("dump.vcd");
 $dumpvars(1);
end
endmodule
```

Design.sv

module

gate1 (input a,b, output y);

assign $y = \sim (\sim a \& \sim b)$;

endmodule

3/	07 00	10	in	A (AD)	
	100	Line Line	The state of the s	g y x x x	i e	
			0			
		gate	Y.	1		
		,				
			A	1		
	#-) 01		11	
	- W	,		1	ABU	
	0			1	9-/	
	13		R			
			0 -			
	1	Y	= A .	B		
		-	= At	BC	Demor	(00)
				-		
	A R	SOP	AR	AR	AIB	
	1 1	0 0	0	1	13	
	1 0		0	1	1	
	0 1	1 0	0			
	0 0			_0	0	

D. NOR


```
Testbench.sv
module tb_gate;
 reg A,B;
 wire Y;
//print
//Ayushman Pranav E21CSEU0245
  gate1 a1(.a(A),.b(B),.y(Y));
 initial
  begin
   A=1; B=1; #5;
   $display("A B Result");
   $display("%b %b
                      %b'',A,B,Y);
   A=1; B=0; #5;
   $display("%b %b
                      %b",A,B,Y);
   A=0; B=1; #5;
   $display("%b %b
                      %b'',A,B,Y);
   A=0; B=0; #5;
   $display("%b %b
                      %b",A,B,Y);
  end
initial begin
$dumpfile("dump.vcd");
 $dumpvars(1);
end
```

Design.sv

endmodule

module

gate1 (input a,b, output y);

assign y = ((-(a&-b));

endmodule

4) No	or gate using	2 AMD	NAND
	Ā		
4-			
			9
\mathcal{B} —	AB AB	11	
	B	7 = A	B
		= A	B
		= 49((A+B)
	(Dem.	regon's La	w > .
0	0	110	
7	ISABAB	A+B	A+3
	10000.		0
	00101	.1	0
0	11010	1	0
2	0 1 1 1	0	1
	ALLE ALLE ALLE ALLE ALLE ALLE ALLE ALLE	Let Let	

E. XOR

Testbench.sv

```
module tb_gate;
```

reg A,B;

wire Y;

//print

```
//Ayushman Pranav E21CSEU0245
  gate1 a1(.a(A),.b(B),.y(Y));
 initial
  begin
   A=1; B=1; #5;
   $display("A B Result");
   $display("%b %b
                      %b",A,B,Y);
   A=1; B=0; #5;
   $display("%b %b
                      %b",A,B,Y);
   A=0; B=1; #5;
   $display("%b %b
                      %b'',A,B,Y);
   A=0; B=0; #5;
   $display("%b %b
                      %b",A,B,Y);
  end
initial begin
$dumpfile("dump.vcd");
 $dumpvars(1);
end
endmodule
Design.sv
module
 gate1 (input a,b, output y);
 assign y = ((a\&((a\&b)))\&(b\&((a\&b)));
endmodule
```

EXOR 110 11 Alpain	
5) XOR gale using NANI)	— :. — :.
A PAB	_; _;
A AB BAB	—,. —,.
	—.;, —.;,
BAB	
F(ABC) = A AB BAB	—, —,
$= A \cdot \overline{AB} + B \cdot \overline{AB}$ $= A(\overline{A} + \overline{B}) + B(\overline{A} + \overline{B})$ $= P\overline{A} + P\overline{B} + P\overline{B} + P\overline{B}$	
$= P\overline{A} + R\overline{B} + B\overline{A} + B\overline{B}$ $= A\overline{B} + A\overline{B}$ $= A\overline{B} + B\overline{B}$	
ABIBA A B A B AB AB BAB BAB F(ABC)	
1 1001110000	
0 0 1 1 0 1 0 0 0	
Logically Equivalent	
Trogrand Equivaent	

F. XNOR

Testbench.sv

```
module tb_gate;
reg A,B;
wire Y;
//print
//Ayushman Pranav E21CSEU0245
gate1 a1(.a(A),.b(B),.y(Y));
```

```
initial
  begin
   A=1; B=1; #5;
   $display("A B Result");
   $display("%b %b
                     %b",A,B,Y);
   A=1; B=0; #5;
   $display("%b %b
                     %b",A,B,Y);
   A=0; B=1; #5;
   $display("%b %b
                     %b",A,B,Y);
   A=0; B=0; #5;
   $display("%b %b
                     %b",A,B,Y);
  end
initial begin
$dumpfile("dump.vcd");
 $dumpvars(1);
end
endmodule
Design.sv
module
 gate1 (input a,b, output y);
 assign y = ((a\&((a\&b)))\&(b\&((a\&b)));
endmodule
```

6)	XNOR wing NAMD
2	A
[1	
-	
=	A AB BAB
=	A. AB + BAB
=	$A(\bar{a}+\bar{a})+B(\bar{a}+\bar{b})$
=	$\frac{A\overline{A} + A\overline{B} + \overline{B}B}{A\overline{B} + \overline{B}B} = A + BB$
=	AB + AB = A + B
=	AB - PB
=	(A+B)(A+B) NA + AB+ AB BB
7	AA TABT AB BB
= =	$AB+\overline{AB}$
	A O B
	A B A B AB AB ABLAB A DB
	1 1 0 0 1 0 1 1
	10010000
	0 1 1 0 0 0 0 0
	001101
	· · · · · · · · · · · · · · · · · · ·

3. Write a Verilog code to verify Absorption Law and then test using wave form and compare with truth table whether your circuit produced same output or not?

Testbench.sv

module tb_gate;

```
reg A,B;
 wire Y;
//print
//Ayushman Pranav E21CSEU0245
  gate1 a1(.a(A),.b(B),.y(Y));
 initial
  begin
   A=1; B=1; #5;
   $display("A B Result");
   $display("%b %b
                     %b",A,B,Y);
   A=1; B=0; #5;
   $display("%b %b
                      %b'',A,B,Y);
   A=0; B=1; #5;
   $display("%b %b
                     %b",A,B,Y);
   A=0; B=0; #5;
   $display("%b %b
                     %b'',A,B,Y);
  end
initial begin
$dumpfile("dump.vcd");
 $dumpvars(1);
end
endmodule
```

Design.sv

```
module gate1 (input a,b, output y); assign y = a|(a\&b);
```


4. Write a Verilog code to verify Transposition Law and then test using wave form and compare with truth table whether your circuit produced same output or not?


```
Testbench.sv
module tb_gate();
 reg A,B,C;
 wire Y;
//print
//Ayushman Pranav E21cseu0245
 gate1 a1(.a(A),.b(B),.c(C),.y(Y));
 initial begin
  A=1;B=1;C=1;#5;
  $display("A B C Result");
    $display("%b %b %b %b",A,B,C,Y);
 A=1;B=1;C=0;#5;
  $display("%b %b %b %b",A,B,C,Y);
 A=1;B=0;C=1;#5;
  $display("%b %b %b %b",A,B,C,Y);
 A=1;B=0;C=0;#5;
  $display("%b %b %b %b",A,B,C,Y);
 A=0;B=1;C=1;#5;
  $display("%b %b %b %b",A,B,C,Y);
 A=0;B=1;C=0;#5;
  $display("%b %b %b %b",A,B,C,Y);
 A=0;B=0;C=1;#5;
  $display("%b %b %b %b",A,B,C,Y);
```

```
A=0;B=0;C=0;#5;
$display("%b %b %b %b",A,B,C,Y);

end

// EP wave
initial begin
$dumpfile("dump.vcd");
$dumpvars(1);
end
endmodule

Design.sv

module
gate1 (input a,b,c, output y);
assign y = (a&b)|(~a&c);
endmodule
```

Am	5)	Tr	ons	ontro	m	los						
	AB + A'C = (A+C)(B'+B) $= AB' + AB + CB' + CB$ $= AB + CA' + CB$											
	-		1	=	15	BI	BCtI	9-6				
	-		-		- 1	1)					
	Congensus low = AB + A'C											
	1	0		110	1	A'+B	(and Value)				
-	1	<u>_B</u>		I	0	HTD	(A1C)(A'18		AB+AC			
	1	i	0	1	0			10				
	1	0	1	1	0	0	D	00	0			
	1	0	0	i	0	0	0	0 0	10			
	0	1	1	1	1	. 1	- 1	01	1			
	0	1	0	0	i	1	0	0 0	0			
	0	0	1	1	1	1	1	0 1	1			
	0	0	0	0	1	1 ,	0	0 0	0			
							> logico	Ill. Ca	wiselest			

5. Write a Verilog code to verify Consensus Law and then test using wave form and compare with truth table whether your circuit produced same output or not?


```
    Log

          Share
[2022-04-15 13:04:18 UTC] iverilog '-Wall' design.sv testbench.sv && unbuffer vvp a.out
VCD info: dumpfile dump.vcd opened for output.
A B C Result
111
       1
1 1 0
       1
1 0 1
1 0 0
       0
0 1 1
       1
0 1 0
       0
0 0 1
       1
0 0 0
       0
Finding VCD file...
./dump.vcd
[2022-04-15 13:04:20 UTC] Opening EPWave...
Done
```


Testbench.sv

```
module tb_gate();

reg A,B,C;

wire Y;

//print

//Ayushman Pranav E21cseu0245

gate1 a1(.a(A),.b(B),.c(C),.y(Y));

initial begin

A=1;B=1;C=1;#5;

$display("A B C Result");
```

```
$display("%b %b %b %b",A,B,C,Y);
 A=1;B=1;C=0;#5;
  $display("%b %b %b %b",A,B,C,Y);
 A=1;B=0;C=1;#5;
  $display("%b %b %b %b",A,B,C,Y);
 A=1;B=0;C=0;#5;
  $display("%b %b %b %b",A,B,C,Y);
 A=0;B=1;C=1;#5;
  $display("%b %b %b %b",A,B,C,Y);
 A=0;B=1;C=0;#5;
  $display("%b %b %b %b",A,B,C,Y);
 A=0;B=0;C=1;#5;
  $display("%b %b %b %b",A,B,C,Y);
 A=0;B=0;C=0;#5;
  $display("%b %b %b %b",A,B,C,Y);
 end
// EP wave
 initial begin
  $dumpfile("dump.vcd");
      $dumpvars(1);
 end
endmodule
Design.sv
module
 gate1 (input a,b,c, output y);
```

assign $y = (a\&b)|(\sim a\&c);$ endmodule

Section 1	
Ams-4) Consençus law
=	AB + A'C + BC = AB + A'C AB + A'C + BC(A+A')
7	AB + A'C + BC(A+A')
75	AB+ A'C+BCA+ BCA'
=	AB(1+C) + A'C(1+B)
=	AB + A'C
	1
	Negation Law
A	3 C
h	
	- AB+AC
LUT	

								RC		1
A	B	C	Ā	Ē	E	AB	·AC	Be	ABHA	C MB+AC+ B
1	1	1	0.	0	0	1	0	1	1.	
1	1	6	0	0	1	1	0	0	1	
,	6	1.	0	1	0	6	0	0.	0	0
1	0	6	b	7	1	6	0	8	0	0
(2)	1	1	1	0	0	0	f	}	_'_/	1
0	1	6	1	6	1	0	0	O	0	0
e	b	1	1	1	0	0	1	0	1	1
0	0	0	1	1	1	0	0	0	0	10
								3		
								1 4	logical	lly
							+		V ego	/
				*.			1		1	