

Circuit Theory and Electronics Fundamentals

Lecture 23: Operational Amplifier Circuits

- Analogue negation circuit
- The addition circuit
- Summation circuits
- Subtraction circuits
- The subtraction of summations circuit

Remember: inverting amplifier with resistive feedback loop

$$\frac{v_O}{v_I} = -\frac{R_2}{R_1} \quad \text{Gain}$$

$$Z_I = \frac{v_I}{i_I} \Big|_{Z_L = \infty} = \frac{v_I}{v_I - 0} = R_2$$

$$Z_O = \frac{v_O}{R_1} = R_2 || 0 = 0$$

Compute the negative of an input voltage

Just make $R_1 = R_2 = R$

$$\frac{v_O}{v_I} = -\frac{R_2}{R_1} = -\frac{R}{R} = -1$$

Compute a weighted summation of the inputs

Compute the summation of the inputs: just make $R_i = R$

Compute summation using non-inverting amplifier (1)

$$v_{.} = \frac{R_{1}}{R_{1} + R_{2}} v_{O}$$

$$v_{.} = v_{+} = v_{I}$$

$$\frac{v_{O}}{v_{I}} = 1 + \frac{R_{2}}{R_{1}}$$

Compute summation using non-inverting amplifier (2)

Positive voltage amplifier

$$\frac{v_O}{v_I} = 1 + \frac{aR}{R} = 1 + a$$

$$k=1+a$$

$$v_O = k v_I, k > 1$$

Compute the summation using non-inverting amplifier (3)

$$v_{+}=v_{-}$$

$$v_{-}=\frac{R}{R+aR}v_{O}=\frac{1}{1+a}v_{O}=\frac{v_{O}}{k}$$

$$k=1+a>1$$

$$v_{-}=\frac{v_{O}}{k}$$

$$\sum_{i=1}^{n}\frac{v_{i}-\frac{v_{O}}{k}}{R}=0$$

$$\sum_{i=1}^{n}v_{i}-\frac{n}{k}v_{O}=0$$

$$v_{O}=\frac{k}{n}\sum_{i=1}^{n}v_{i}$$

$$\frac{k}{n}=1\Rightarrow k=n=1+a\Rightarrow a=n-1$$

$$v_{O}=\sum_{i=1}^{n}v_{i}$$

Compute weighted summation using non-inverting amplifier

To increase the weight w_i, decrease R_i

Compute the subtraction of two voltages

Compute the subtraction of two weighted voltage summations

Compute the subtraction of two weighted voltage summations

Conclusion

- Analogue negation circuit
- The addition circuit
- Summation circuits
- Subtraction circuits
- The subtraction of summations circuit