Capítulo 9: Sistemas contínuos e introdução à teoria de campo

(Parte I)

H. Terças

Instituto Superior Técnico (Departamento de Física)

9.2 Leis de conservação

9.3 Simetrias internas

9.4 Campo electromagnético

Até aqui, concentrámo-nos na formulação Lagrangeana e Hamiltoneana para sistemas discretos

$$L = L(q_i, \dot{q}_i, t), \quad H = H(q_i, p_i, t).$$

Neste capítulo, usaremos as técnicas da Mecânica Analítica para formular **sistemas contínuos**, descritos em termos de funções contínuas e diferenciáveis $\psi(q_i,t)$, também definidas como **campos**

$$q_i \to \psi(q_i, t)$$
.

Grande parte da física moderna está construída sobre o conceito de campo, sejam estes clássicos ou quânticos!

Consideremos uma rede infinita composta por osciladores harmónicos acoplados, com distância de equilíbrio a (constante de rede)

$$T = \frac{1}{2} \sum_{i} m \dot{\eta}_{i}^{2}, \quad V = \frac{1}{2} \sum_{i} k (\eta_{i+1} - \eta_{i})^{2}$$
$$L = \frac{1}{2} \sum_{i} \left[m \dot{\eta}_{i}^{2} - k (\eta_{i+1} - \eta_{i})^{2} \right]$$

Podemos escrever o Lagrangeano na seguinte forma

$$L = \frac{1}{2} \sum_{i} a \left[\frac{m}{a} \dot{\eta}_{i}^{2} - ka \left(\frac{\eta_{i+1} - \eta_{i}}{a} \right)^{2} \right] = \sum_{i} aL_{i}.$$

A equação do movimento correspondente é (ver série 5)

$$\frac{m}{a}\ddot{\eta}_i - ka\left(\frac{\eta_{i+1} - \eta_i}{a^2}\right) + ka\left(\frac{\eta_i - \eta_{i-1}}{a^2}\right) = 0.$$

Estamos interessados no limite em que $a \to 0$, de tal forma que $m/a \to \mu$ e $ka \to Y$, onde Y é o **módulo de Young**. Nesse mesmo limite,

$$\lim_{a \to 0} \frac{\eta_{i+1} - \eta_i}{a} = \lim_{a \to 0} \frac{\eta(x+a,t) - \eta(x,t)}{a} = \frac{\partial \eta}{\partial x}.$$

Finalmente, percebemos que (decomposição de Riemann)

$$\lim_{a \to 0} \sum_{i} a = \int dx,$$

o que permite escrever

$$L = \int \underbrace{\frac{1}{2} \left[\mu \dot{\eta}^2 - Y \left(\frac{\partial \eta}{\partial x} \right)^2 \right]}_{\mathcal{L}(\eta, \dot{\eta}, \partial_{\tau} \eta)} dx$$

A equação do movimento obtém-se no limite contínuo observando que

$$\lim_{a\to 0} \left[ka \left(\frac{\eta_{i+1} - \eta_i}{a^2} \right) - ka \left(\frac{\eta_i - \eta_{i-1}}{a^2} \right) \right] = Y \frac{\partial^2 \eta}{\partial x^2},$$

o que conduz à equação das ondas ($c_s = \sqrt{Y/\mu}$)

$$\frac{\partial^2 \eta}{\partial t^2} - c_s^2 \frac{\partial^2 \eta}{\partial x^2} = 0$$

De uma forma geral, para um campo $\varphi=\varphi(\mathbf{x},t)$ definimos o Lagrangeano à custa da integração da densidade Lagrangeana,

$$L = \int d^3x \mathcal{L}\left(\varphi, \frac{\partial \varphi}{\partial t}, \boldsymbol{\nabla} \varphi; \mathbf{x}, t\right).$$

Precisamos de obter a equação de Euler-Lagrange para $\mathcal{L}.$ Para tal, usamos o princípio de Hamilton

$$\delta S = \delta \int_{t_1}^{t_2} L dt = \delta \int_{t_1}^{t_2} \int_{x_1}^{x_2} \mathcal{L} \ d^3x dt = 0.$$

Agora, as variáveis são φ , $\dot{\varphi}$ e $\mathbf{\nabla} \varphi$, enquanto $\mathbf{x}=(x,y,z)$ e t são parâmetros.

$$\delta S = \int_{t_1}^{t_2} \int_{x_1}^{x_2} \left[\frac{\partial \mathcal{L}}{\partial \varphi} \delta \varphi + \frac{\partial \mathcal{L}}{\partial \dot{\varphi}} \delta \dot{\varphi} + \frac{\partial \mathcal{L}}{\partial \boldsymbol{\nabla} \varphi} \delta \boldsymbol{\nabla} \varphi \right] d^3x dt = 0$$

Aplicamos a condição de extremos fixos

$$\delta\varphi(t_1) = \delta\varphi(t_2) = 0, \quad \delta\varphi(x_1) = \delta\varphi(x_2) = 0$$

$$\bullet \int_{t_1}^{t_2} \frac{\partial \mathcal{L}}{\partial \dot{\varphi}} \delta \dot{\varphi} \ dt = \left. \frac{\partial \mathcal{L}}{\partial \dot{\varphi}} \delta \varphi \right|_{t_1}^{t_2} - \int_{t_1}^{t_2} \frac{\partial}{\partial t} \left(\frac{\partial \mathcal{L}}{\partial \dot{\varphi}} \right) \delta \varphi \ dt,$$

•
$$\int_{x_1}^{x_2} \frac{\partial \mathcal{L}}{\partial \boldsymbol{\nabla} \varphi} \delta \boldsymbol{\nabla} \varphi \ d^3 x = \frac{\partial \mathcal{L}}{\partial \boldsymbol{\nabla} \varphi} \delta \varphi \Big|_{x_1}^{x_2} - \int_{x_1}^{x_2} \boldsymbol{\nabla} \cdot \frac{\partial \mathcal{L}}{\partial \boldsymbol{\nabla} \varphi} \delta \varphi \ d^3 x.$$

$$\therefore \delta S = \int_{t_1}^{t_2} \int_{x_1}^{x_2} \left[\frac{\partial \mathcal{L}}{\partial \varphi} - \frac{\partial}{\partial t} \left(\frac{\partial \mathcal{L}}{\partial \dot{\varphi}} \right) - \boldsymbol{\nabla} \cdot \frac{\partial \mathcal{L}}{\partial \boldsymbol{\nabla} \varphi} \right] \delta \varphi d^3 x dt = 0.$$

Como as variações $\delta \varphi$ são infinitesimais e arbitrárias

$$\frac{\partial}{\partial t} \left(\frac{\partial \mathcal{L}}{\partial \dot{\varphi}} \right) + \boldsymbol{\nabla} \cdot \frac{\partial \mathcal{L}}{\partial \boldsymbol{\nabla} \varphi} - \frac{\partial \mathcal{L}}{\partial \varphi} = 0$$

$$\mathcal{L}\left(\varphi, \frac{\partial \varphi}{\partial t}, \frac{\partial \varphi}{\partial x}\right) = \frac{1}{2}\mu \left(\frac{\partial \varphi}{\partial t}\right)^2 - \frac{1}{2}Y \left(\frac{\partial \varphi}{\partial x}\right)^2,$$

temos

9.1 Sistemas contínuos 00000000000

•
$$\frac{\partial \mathcal{L}}{\partial \varphi} = 0$$
,

•
$$\frac{\partial}{\partial t} \frac{\partial \mathcal{L}}{\partial \partial_t \varphi} = \frac{\partial}{\partial t} \left(\mu \frac{\partial \varphi}{\partial t} \right) = \mu \frac{\partial^2 \varphi}{\partial t^2},$$

$$\bullet \ \frac{\partial}{\partial x} \frac{\partial \mathcal{L}}{\partial \partial_x \varphi} = -\frac{\partial}{\partial x} \left(Y \frac{\partial \varphi}{\partial x} \right) = -Y \frac{\partial^2 \varphi}{\partial x^2}.$$

A equação do movimento é, portanto, a equação das ondas

$$\frac{\partial^2 \varphi}{\partial t^2} - c_s^2 \frac{\partial^2 \varphi}{\partial x^2} = 0$$

Podemos resolver a equação das fazendo a decomposição em ondas planas

$$\varphi(x,t) = \sum_{k,\omega} \varphi_{k,\omega} e^{ikx - i\omega t}$$

e introduzindo na equação do movimento, obtemos

$$\sum_{k,\omega} \left(-\omega^2 + c_s^2 k^2 \right) \varphi_{k,\omega} e^{ikx - i\omega t} = 0.$$

Para coeficientes $\varphi_{k,\omega}$ arbitrário, obtemos a **relação de dispersão**

$$\omega = c_s k$$

As ondas propagam-se sem dispersão (velocidade de fase=velocidade de grupo)

$$v_f \equiv \frac{\omega}{k} = c_s, \quad v_g \equiv \frac{\partial \omega}{\partial k} = c_s.$$

Tal como na relatividade, em teoria de campo as coordenadas temporais e espaciais podem tratar-se de forma indiferenciada. Torna-se conveniente introduzir os **quadri-vectores** contravariantes¹

$$x^{\mu} \equiv (x^0, \mathbf{x}) = (t, x^1, x^2, x^3) = (t, \{x^i\}).$$

Assim,

$$\frac{\partial}{\partial t} = \frac{\partial}{\partial x^0}, \quad \nabla = \frac{\partial}{\partial \mathbf{x}} = \frac{\partial}{\partial x^i}.$$

Em termos dos quadri-vectores, a equação de Euler-Lagrange é

$$\sum_{\mu=0}^{3} \frac{d}{dx^{\mu}} \frac{\partial \mathcal{L}}{\partial \left(\frac{\partial \varphi}{\partial x^{\mu}}\right)} - \frac{\partial \mathcal{L}}{\partial \varphi} = 0,$$

ou, ainda, $\partial_{\mu}\equiv\frac{\partial}{\partial x^{\mu}}$ e $d_{\mu}\equiv\frac{d}{dx^{\mu}}$ (soma nos índices repetidos)

$$d_{\mu} \frac{\partial \mathcal{L}}{\partial \partial_{\mu} \varphi} - \frac{\partial \mathcal{L}}{\partial \varphi} = 0$$

¹Em relatividade, $x^0 = ct$.

$$\mathcal{L} = \mathcal{L}\left(\varphi_k, \partial_\mu \varphi_k; x^\mu\right)$$

então cada um deles obedece a uma equação do tipo²

$$d_{\mu} \frac{\partial \mathcal{L}}{\partial \partial_{\mu} \varphi_{k}} - \frac{\partial \mathcal{L}}{\partial \varphi_{k}} = 0,$$

resultando em n equações diferenciais parciais (k = (1, 2, ... n)). Em alguma literatura, costuma-se usar a notação $\partial_{\mu}\varphi_{k}=d_{\mu}\varphi_{k}\equiv \varphi_{k,\mu}$, resultando na forma compacta da equação de Euler-Lagrange³

$$d_{\mu} \frac{\partial \mathcal{L}}{\partial \varphi_{k,\mu}} - \frac{\partial \mathcal{L}}{\partial \varphi_{k}} = 0.$$

²Nota: para $L \neq L(x^{\mu})$, não há diferença entre d_{μ} e ∂_{μ} no primeiro termo da equação de Euler-Lagrange.

Tal como no caso discreto, as **teorias de campo** também contêm leis de conservação que podemos retirar directamente da densidade Lagrangeana 4 \mathcal{L} e das equações de Euler-Lagrange.

Por razões de clareza e simplicidade, consideremos uma teoria descrevendo um só campo⁵

$$\mathcal{L} = \mathcal{L}\left(\varphi, \partial_{\mu}\varphi; x^{\mu}\right).$$

Como sabemos, para retirar significado físico das quantidades, calculamos as suas derivadas totais 6

$$\frac{d\mathcal{L}}{dx^{\mu}} \equiv d_{\mu}\mathcal{L} = \frac{\partial \mathcal{L}}{\partial \varphi} \frac{d\varphi}{dx^{\mu}} + \frac{\partial \mathcal{L}}{\partial \partial_{\nu}\varphi} \frac{d(\partial_{\nu}\varphi)}{dx^{\mu}} + \frac{\partial \mathcal{L}}{\partial x^{\mu}}$$

$$= \frac{\partial \mathcal{L}}{\partial \varphi} d_{\mu}\varphi + \frac{\partial \mathcal{L}}{\partial \partial_{\nu}\varphi} d_{\mu}(\partial_{\nu}\varphi) + \partial_{\mu}\mathcal{L}$$

 $^{^4}$ Rapidamente, vamos começar a chamar $\mathcal L$ de "Lagrangeano", tout-court.

 $^{^5}$ A generalização para múltiplos campos $arphi_k$ é óbvia.

⁶Aqui distinguimos d_{μ} e ∂_{μ} , pois \mathcal{L} pode depender de x^{μ} .

Eliminamos $\frac{\partial \mathcal{L}}{\partial \omega}$ na equação anterior usando a equação de Euler-Lagrange

$$d_{\mu}\mathcal{L} = d_{\alpha} \frac{\partial \mathcal{L}}{\partial \partial_{\alpha} \varphi} d_{\mu} \varphi + \frac{\partial \mathcal{L}}{\partial \partial_{\nu} \varphi} d_{\mu} (\partial_{\nu} \varphi) + \partial_{\mu} \mathcal{L}.$$

Como φ é apenas função de x^{μ} , então $\partial_{\nu}\varphi = d_{\nu}\varphi$. Além disso, podemos mudar o índice mudo, $\alpha \rightarrow \nu$,

$$d_{\mu}\mathcal{L} = d_{\nu} \left(\frac{\partial \mathcal{L}}{\partial \partial_{\nu} \varphi} d_{\mu} \varphi \right) + \partial_{\mu} \mathcal{L}.$$

Usamos o δ^{ν}_{μ} para mudar o índice do lado esquerdo e escrever em termos de d_{ν} ,

$$d_{\nu} \left(\frac{\partial \mathcal{L}}{\partial \partial_{\nu} \varphi} d_{\mu} \varphi - \mathcal{L} \delta^{\nu}_{\mu} \right) = -\partial_{\mu} \mathcal{L} = -\partial_{\nu} \mathcal{L} \delta^{\nu}_{\mu}.$$

Quando $\mathcal{L} \neq \mathcal{L}(x^{\mu})$, então

$$d_{\nu} \left(\frac{\partial \mathcal{L}}{\partial \partial_{\nu} \varphi} d_{\mu} \varphi - \mathcal{L} \delta_{\mu}^{\nu} \right) = d_{\nu} T_{\mu}^{\nu} = 0$$

A quantidade T_{μ}^{ν} é um tensor de ordem 2 que recebe o nome de **tensor** de energia-momento

$$T^{\nu}_{\mu} = \frac{\partial \mathcal{L}}{\partial (\partial_{\nu} \varphi)} \partial_{\mu} \varphi - \mathcal{L} \delta^{\nu}_{\mu}$$

Esta quantidade é o equivalente da energia para o caso dos sistemas discretos, e é conservada caso a densidade Lagrangeana não dependa explicitamente das coordenadas x^{μ} .

Como não há dependência explicita de ${\cal L}$ nas coordenadas, a lei de conservação também pode ser escrita na forma 7

$$d_{\nu}T_{\mu}^{\nu} = \partial_{\nu}T_{\mu}^{\nu} = 0, \quad (\nabla \cdot \mathbf{T} = 0)$$

Afinal, qual o porquê do nome "tensor de energia-momento" para T_μ^ν ?

Vejamos as suas componentes

$$T_0^0 = \frac{\partial \mathcal{L}}{\partial (\partial_0 \varphi)} \partial_0 \varphi - \mathcal{L} = \frac{\partial \mathcal{L}}{\partial \dot{\varphi}} \dot{\varphi} - \mathcal{L}.$$

Se $\mathcal{L} = \mathcal{T} - \mathcal{V}$ e $\mathcal{T} \sim \dot{\varphi}^2$, então T_0^0 é a densidade de energia.

• Exemplo: a corda vibrante. $\mathcal{L} = \frac{1}{2}\mu \left(\frac{\partial \varphi}{\partial t}\right)^2 - \frac{1}{2}Y \left(\frac{\partial \varphi}{\partial x}\right)^2$,

$$T_0^0 = \frac{\partial \mathcal{L}}{\partial \dot{\varphi}} \dot{\varphi} - \mathcal{L} \delta_0^0 = \frac{1}{2} \mu \left(\frac{\partial \varphi}{\partial t} \right)^2 + \frac{1}{2} Y \left(\frac{\partial \varphi}{\partial x} \right)^2 = \mathcal{E}$$

Quanto às outras componentes,

$$T_1^1 = T_x^x = \frac{\partial \mathcal{L}}{\partial (\partial_x \varphi)} \frac{\partial \varphi}{\partial x} - \mathcal{L} = -\frac{1}{2} Y \left(\frac{\partial \varphi}{\partial x} \right)^2 - \frac{1}{2} \mu \left(\frac{\partial \varphi}{\partial t} \right)^2 = -\mathcal{E}$$

$$\operatorname{Tr}(\mathbf{T}) = T^{\mu}_{\mu} = T^{0}_{0} + T^{1}_{1} = 0$$

Quanto às componentes não-diagonais,

$$T_0^1 = \frac{\partial \mathcal{L}}{\partial \partial_x \varphi} \dot{\varphi} = -\underbrace{Y \frac{\partial \varphi}{\partial x}}_{\text{tensão}} \overset{\text{vel.}}{\dot{\varphi}} = \text{corrente de densidade energia},$$

$$T_1^0 = rac{\partial \mathcal{L}}{\partial \dot{\varphi}} rac{\partial \varphi}{\partial x} = \mu \dot{\varphi} rac{\partial \varphi}{\partial x} = \text{densidade de momento linear}.$$

De uma forma geral, para 4 dimensões espacio-temporais ($\mu=\{0,1,2,3\}$), podemos decompor o tensor energia-momento em

$$T_{\mu}^{\nu} = T_0^0 + T_0^j + T_j^0 + T_j^i, \quad \text{onde}$$

$$\left\{ \begin{array}{rcl} T_0^0 & \equiv \mathcal{E} & = \text{densidade de energia} \\ T_0^i & \equiv j^i & = \text{densidade de corrente energia} \\ T_i^0 & \equiv p_i & = \text{densidade de momento linear} \\ T_i^j & \equiv T_j^i & = \text{tensor de estresse}^8 \end{array} \right.$$

⁸Detalhes na cadeira de Física dos Meios Contínuos.

Podemos aproveitar, então, para verificar se no caso da corda vibrante existe, ou não, conservação do tensor energia-momento⁹

$$\begin{split} \partial_{\nu}T_{1}^{\nu} &= \partial_{0}T_{1}^{0} + \partial_{1}T_{1}^{1} \\ &= \frac{\partial}{\partial t}\left(\mu\frac{\partial\varphi}{\partial t}\frac{\partial\varphi}{\partial x}\right) + \frac{\partial}{\partial x}\left[-\frac{\mu}{2}\left(\frac{\partial\varphi}{\partial t}\right)^{2} - \frac{Y}{2}\left(\frac{\partial\varphi}{\partial x}\right)^{2}\right] \\ &= \mu\left(\frac{\partial^{2}\varphi}{\partial t^{2}}\frac{\partial\varphi}{\partial x} + \frac{\partial\varphi}{\partial t}\frac{\partial^{2}\varphi}{\partial x\partial t}\right) - \mu\left(\frac{\partial\varphi}{\partial t}\frac{\partial^{2}\varphi}{\partial t\partial x} + Y\frac{\partial\varphi}{\partial x}\frac{\partial^{2}\varphi}{\partial x^{2}}\right) \\ &= \frac{\partial\varphi}{\partial x}\underbrace{\left(\mu\frac{\partial^{2}\varphi}{\partial t^{2}} - Y\frac{\partial^{2}\varphi}{\partial x^{2}}\right)}_{=0} \checkmark \end{split}$$

$$\begin{array}{lll} \partial_{\nu}T_{0}^{\nu} & = & \partial_{0}T_{0}^{0} + \partial_{1}T_{0}^{1} \\ \\ & = & \frac{\partial}{\partial x}\left(-Y\frac{\partial\varphi}{\partial t}\frac{\partial\varphi}{\partial x}\right) + \frac{\partial}{\partial t}\left[\frac{\mu}{2}\left(\frac{\partial\varphi}{\partial t}\right)^{2} + \frac{Y}{2}\left(\frac{\partial\varphi}{\partial x}\right)^{2}\right] \\ \\ & = & \dots \\ \\ & = & \frac{\partial\varphi}{\partial t}\underbrace{\left(\mu\frac{\partial^{2}\varphi}{\partial t^{2}} - Y\frac{\partial^{2}\varphi}{\partial x^{2}}\right)}_{=0}\checkmark \end{array}$$

A. Simetrias discretas

Como vimos no caso dos sistemas discretos, as simetrias estavam intimamente relacionadas com leis de conservação. O teorema de Nöther estabelece uma maneira de calcular as cargas conservadas dada uma determinada simetria contínua.

Antes disso, vejamos que algumas teorias de campo $\mathcal{L}(\varphi, \partial_{\mu}\varphi; x^{\mu})$ contêm **simetrias discretas**.

A **inversão de paridade**, \mathcal{P} , corresponde a uma reflexão nas coordenadas espaciais (mantendo o tempo inalterado)

$$\mathcal{P}(x, y, z, t) = (-x, -y, -z, t).$$

O Lagrangeano da corda vibrante é simétrico para esta transformação?

$$\mathcal{P}\left\{\mathcal{L}\left(\varphi_{t}, \varphi_{x}; x, t\right)\right\} = \mathcal{L}\left(\varphi_{t}, \varphi_{-x}; -x, t\right)$$

$$= \frac{1}{2}\mu \left(\frac{\partial \varphi}{\partial t}\right)^{2} - \frac{1}{2}Y \left(\frac{\partial \varphi}{\partial (-x)}\right)^{2}$$

$$= \frac{1}{2}\mu \left(\frac{\partial \varphi}{\partial t}\right)^{2} - \frac{1}{2}Y \left(\frac{\partial \varphi}{\partial x}\right)^{2}$$

$$= \mathcal{L}\left(\varphi_{t}, \varphi_{x}; x, t\right)$$

Isto reflecte a isotropia do espaço!

A **inversão no tempo**, \mathcal{T} , corresponde à inversão do sentido do tempo (mantendo o espaço inalterado)

$$\mathcal{T}(x, y, z, t) = (x, y, z, -t).$$

O Lagrangeano da corda vibrante é simétrico para esta transformação?

$$\mathcal{T}\left\{\mathcal{L}\left(\varphi_{t},\varphi_{x};x,t\right)\right\} = \mathcal{L}\left(\varphi_{-t},\varphi_{x};x,-t\right)$$

$$= \frac{1}{2}\mu\left(\frac{\partial\varphi}{\partial(-t)}\right)^{2} - \frac{1}{2}Y\left(\frac{\partial\varphi}{\partial x}\right)^{2}$$

$$= \frac{1}{2}\mu\left(\frac{\partial\varphi}{\partial t}\right)^{2} - \frac{1}{2}Y\left(\frac{\partial\varphi}{\partial x}\right)^{2}$$

$$= \mathcal{L}\left(\varphi_{t},\varphi_{x};x,t\right)$$

Isto reflecte a homogeneidade do tempo!

Podemos verificar que, para o caso do Lagrangeano em estudo,

$$\mathcal{PT}\left\{\mathcal{L}\left(\varphi,\partial_{\mu}\varphi;x^{\mu}\right)\right\} = \mathcal{TP}\left\{\mathcal{L}\left(\varphi,\partial_{\mu}\varphi;x^{\mu}\right)\right\} = \mathcal{L}\left(\varphi,\partial_{\mu}\varphi;x^{\mu}\right).$$

Daqui conclui-se

$$\mathcal{PT} - \mathcal{TP} = [\mathcal{P}, \mathcal{T}] = 0.$$

As transformações discretas \mathcal{P} e \mathcal{T} comutam. Este resultado tem implicações importantes sobre a natureza do espectro (i.e. relação de dispersão) das teorias de campo (real ou complexa).

$$\mathcal{V}\varphi = -\varphi.$$

Rapidamente, podemos ver que o Lagrangeano da corda vibrante também contém esta simetria:

$$\mathcal{V}\{\mathcal{L}\left(\varphi,\partial_{x}\varphi,\partial_{t}\varphi;x^{\mu}\right)\} = \mathcal{L}\left(-\varphi,-\partial_{x}\varphi,-\partial_{t}\varphi;x^{\mu}\right) = \mathcal{L}\left(\varphi,\partial_{x}\varphi,\partial_{t}\varphi;x^{\mu}\right).$$

Esta invariância reflecte a isotropia das vibrações na rede (de forma grosseira, indica que deformar a rede para "para a esquerda" custa a mesma energia que a deformar "para a direita".)

As teorias de campo <u>relativistas</u> gozam de outra simetria discreta, para a chamada **conjugação de carga**, \mathcal{C} . Se $\psi(x^{\mu})$ designar um campo relativista de uma partícula e $\bar{\psi}(x^{\mu})$ o da sua anti-partícula,

$$\mathcal{C}\psi(x^{\mu}) = \bar{\psi}(x^{\mu}).$$

As simetrias \mathcal{PT} , \mathcal{CP} e \mathcal{CPT} são requeridas na maioria das teorias de campo descrevendo partículas elementares.

As suas **violações** são problemas muito importantes e actuais na Física Moderna (em geral, requerem mecanismos que levam à necessidade de introduzir novas partículas no Modelo Standard)

Embora as discussões em torno das simetrias discretas sejam extremamente interessantes, ainda surgem muito fora do contexto da Mecânica Analítica.

B. Simetrias contínuas

Leis de conservação, como contempladas pelo teorema de Nöther, são consequência de **simetrias contínuas**.

As simetrias contínuas são caracterizadas por um parâmetro λ , de tal forma que para $\lambda=0$ temos a transformação indentidade.

A transformação de escala

$$\varphi(x^{\mu}) \to \varphi_{\lambda}(x^{\mu}) \equiv e^{\lambda} \varphi(x^{\mu}),$$

a translação no tempo

$$\varphi(\mathbf{x},t) \to \varphi_{\lambda}(\mathbf{x},t) = \varphi(\mathbf{x},t+\lambda)$$

e a translação no espaço

$$\varphi(\mathbf{x},t) \to \varphi_{\lambda}(\mathbf{x},t) = \varphi(\mathbf{x} + \boldsymbol{\lambda},t)$$

são exemplos importantes de transformações contínuas.

C. Transformações infinitesimais

Consideremos a classe de **transformações infinitesimais** de parâmetro λ definidas como

$$\delta\varphi \equiv \left. \frac{\partial \varphi_{\lambda}}{\partial \lambda} \right|_{\lambda=0}.$$

Alguns exemplos:

• Transformação de escala infinitesimal, $\varphi_{\lambda}=e^{\lambda}\varphi$

$$\delta\varphi=\varphi$$

• Translação infinitesimal no tempo, $\varphi_{\lambda}(\mathbf{x},t) = \varphi(\mathbf{x},t+\lambda)$

$$\delta\varphi = \frac{\partial\varphi}{\partial t}$$

• Translação de campo, $\varphi_{\lambda} = \varphi + \lambda f$

$$\delta \varphi = f$$

Um Lagrangeano diz-se **invariante** ou **simétrico** para uma transformação contínua se

$$\partial_{\lambda} \mathcal{L} (\varphi_{\lambda}, \partial_{\mu} \varphi_{\lambda}; x^{\mu}) |_{\lambda=0} = 0.$$

Para a corda vibrante, é o que acontece para o caso das translações de tempo e espaço (invariância de Galileu).

Na verdade, ser invariante para transformações infinitesimais corresponde a satisfazer a **condição variacional** para essa transformação

$$\left. \frac{\partial \mathcal{L}}{\partial \lambda} \right|_{\lambda=0} = \left[\frac{\partial \mathcal{L}}{\partial \varphi} \underbrace{\delta_{\varphi}}_{\partial_{\mu} \varphi |_{\lambda=0}} + \frac{\partial \mathcal{L}}{\partial (\partial_{\lambda} \varphi)} \underbrace{\partial_{\mu} \delta_{\varphi}}_{\partial_{\lambda} \partial_{\mu} \varphi |_{\lambda=0}} \right] = \delta \mathcal{L} = 0.$$

D. Transformações de divergência

Invariâncias continuam a verificar-se se adicionarmos uma "derivada total" no espaço-tempo, i.e. uma **divergência**

$$\mathcal{L}' = \mathcal{L} + d_{\mu}W^{\mu},$$

pois o Lagrangeano satisfaz as mesmas equações de Euler-Lagrange

$$EL[\mathcal{L}'] \equiv \frac{\partial \mathcal{L}'}{\partial \varphi} + d_{\mu} \frac{\partial \mathcal{L}'}{\partial (\partial_{\mu} \varphi)} = 0 = \frac{\partial \mathcal{L}}{\partial \varphi} + d_{\mu} \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \varphi)} \equiv EL[\mathcal{L}]$$

Dizemos que o Lagrangeano dispõe de **simetria de divergência** caso a transformação infinitesimal $\varphi \to \varphi_\lambda = \delta \varphi$ resulte em

$$\delta \mathcal{L} = d_{\mu} W^{\mu}.$$

 \therefore Assim, a simetria variacional $\delta \mathcal{L}$ surge como um caso particular da simetria de divergência.

Podemos ver que a simetria para translacção no tempo é uma simetria de divergência para o caso da teoria de campo da corda,

$$\mathcal{L} = \frac{1}{2}\mu \left(\frac{\partial \varphi}{\partial t}\right)^2 - \frac{1}{2}Y \left(\frac{\partial \varphi}{\partial x}\right)^2.$$

Sob a acção de $\delta \varphi \equiv \partial_{\lambda} \varphi(x,t+\lambda)|_{0} = \partial_{t} \varphi$,

$$0 = \delta \mathcal{L} = \frac{\partial \mathcal{L}}{\partial \varphi} \frac{\partial \varphi}{\partial t} + \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \varphi)} \frac{\partial (\partial_{\mu} \varphi)}{\partial t} = d_{t} \mathcal{L} = d_{\mu} \left(\mathcal{L} \delta_{t}^{\mu} \right) \equiv d_{\mu} W^{\mu}.$$

Ou seja, a quantidade $W^\mu = \mathcal{L} \delta^\mu_t = \mathcal{L} \delta^\mu_0$ é conservada 10

$$d_0 \mathcal{L} \underbrace{\delta_0^0}_{-1} + d_1 \mathcal{L} \delta_0^1 = 0.$$

Neste caso, $\mathcal{L}=\mathrm{constante}$ em virtude da simetria para translação temporal.

Teorema de Nöther

Consideremos uma teoria de campo

$$\mathcal{L}(\varphi, \partial_{\mu}\varphi; x^{\mu}).$$

Sob a transformação infinitesimal de parâmetro λ definida por $\delta \varphi \equiv \partial_\lambda \varphi_\lambda|_0$, a variação no Lagrangeano é então ¹¹

$$\begin{split} \delta \mathcal{L} &= \frac{\partial \mathcal{L}}{\partial \varphi} \delta \varphi + \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \varphi)} \delta \partial_{\mu} \varphi \\ &= \frac{\partial \mathcal{L}}{\partial \varphi} \delta \varphi - d_{\mu} \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \varphi)} \delta \varphi + d_{\mu} \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \varphi)} \delta \varphi + \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \varphi)} \delta \partial_{\mu} \varphi \\ &= -\mathrm{EL}[\mathcal{L}] \delta \varphi + d_{\mu} j^{\mu}, \end{split}$$
 onde $j^{\mu} = \frac{\partial \mathcal{L}}{\partial (\partial_{\nu} \varphi)} \delta \varphi.$

Teorema de Nöther

Caso o Lagrangeano seja simétrico para a transformação, então

$$\delta \mathcal{L} = 0 \Longrightarrow d_{\mu} j^{\mu} = \text{EL}[\mathcal{L}] \delta \varphi.$$

Por condição, $\mathrm{EL}[\mathcal{L}] = 0$, então j^{μ} pode ser vista como uma **corrente** conservada

$$\delta \mathcal{L} = 0 \Longrightarrow j^{\mu} = \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \varphi)} \delta \varphi = \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \varphi)} \left. \frac{\partial \varphi_{\lambda}}{\partial \lambda} \right|_{0} = \text{const.}$$

È importante perceber que a corrente j^{μ} depende da forma específica da transformação φ_{λ} . Esta é a versão do **Teorema de Nöther para** campos.

De uma forma mais geral, suponhamos que a transformação infinitesimal define uma simetria de divergência,

$$\delta \mathcal{L} = d_{\mu} V^{\mu}$$
.

Usando a dedução anterior, temos que

$$d_{\mu}V^{\mu} = -\mathrm{EL}[\mathcal{L}]\delta\varphi + d_{\nu}j^{\nu}.$$

Mudando o índice mudo $(\nu \to \mu)$ para colocar tudo em evidência,

$$d_{\mu} \left(j^{\mu} - V^{\mu} \right) = \text{EL}[\mathcal{L}] \delta \varphi = 0,$$

o que implica que a corrente conservada seja definida como

$$\tilde{j}^{\mu} = j^{\mu} - V^{\mu} = \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \varphi)} \left. \frac{\partial \varphi_{\lambda}}{\partial \lambda} \right|_{0} - V^{\mu}$$

Teorema de Nöther

Como exemplo, podemos tentar recuperar a conservação da energia. Consideremos a simetria de translação no tempo

$$\delta \varphi = \left. \frac{\partial \varphi_{\lambda}(x, t + \lambda)}{\partial \lambda} \right|_{0} = \left. \frac{\partial \varphi}{\partial t} = \partial_{0} \varphi.$$

Para uma teoria de campo que seja simétrica para esta transformação, podemos introduzir uma divergência

$$\delta \mathcal{L} = 0 \Longrightarrow d_{\mu}(\mathcal{L}\delta_0^{\mu}) = 0,$$

pelo que a corrente conservada é

$$j^{\mu} = \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \varphi)} \partial_{0} \varphi - \mathcal{L} \delta_{0}^{\mu} = T_{0}^{\mu},$$

Assim, $d_{\mu}j^{\mu}=\partial_{\mu}j^{\mu}$ implica a equação da continuidade¹²

$$\frac{\partial \rho}{\partial t} + \boldsymbol{\nabla} \cdot \boldsymbol{j} = 0$$

9.3 Simetrias internas

Até aqui, consideramos Lagrangeanos para campos φ reais. Assim, as únicas simetrias que podemos observar são **simetrias externas**. Teorias de campo complexas contêm simetrias adicionais, chamadas **simetrias internas**.

• Exemplo: Teoria de Klein-Gordon. Seja $\psi(x^{\mu}) = \psi(ct, x)$ um campo relativista complexo,

$$\mathcal{L}(\psi, \psi^*, \partial_{\mu}\psi, \partial_{\mu}\psi^*) = -\sqrt{-g} \left(g^{\mu\nu} \partial_{\mu}\psi^* \partial_{\nu}\psi + \frac{m^2 c^2}{\hbar^2} \psi^* \psi \right).$$

Para o caso de interesse, usamos a métrica de Minkowskii (espaço-tempo plano 13) $g^{\mu\nu}={\rm diag}(1,-1)$ tal que $ds^2=g^{\mu\nu}dx_\mu dx_\nu=c^2dt^2-dx^2$

$$\mathcal{L} = \partial_{\mu} \psi^* \partial^{\mu} \psi - \frac{m^2 c^2}{\hbar^2} \psi^* \psi.$$

$$\mathcal{L} = \partial_{\mu} \psi^* \partial^{\mu} \psi - \frac{m^2 c^2}{\hbar^2} \psi^* \psi.$$

9.3 Simetrias internas 000000

A equação de Euler-Lagrange é¹⁴

$$\partial_{\nu} \frac{\partial \mathcal{L}}{\partial (\partial_{\nu} \psi)} - \frac{\partial \mathcal{L}}{\partial \psi} = 0.$$

•
$$\frac{\partial \mathcal{L}}{\partial \psi} = -\frac{m^2 c^2}{\hbar^2} \psi^*$$

•
$$\partial_{\nu} \frac{\partial \mathcal{L}}{\partial(\partial_{\nu}\psi)} = \partial_{\nu} \left[\frac{\partial(\partial^{\mu}\psi)}{\partial(\partial_{\nu}\psi)} \partial_{\mu}\psi^{*} \right] = \underbrace{\frac{\partial x^{\mu}}{\partial x_{\nu}}}_{g^{\mu\nu}} \partial_{\nu}\partial_{\mu}\psi^{*} = \partial_{\nu}\partial^{\nu}\psi^{*} \equiv \Box\psi^{*}$$

$$\left[\left(\Box + \frac{m^{2}c^{2}}{\hbar^{2}} \right)\psi^{*} = 0 \right],$$

onde $\Box = \partial_{\mu}\partial^{\mu} = \frac{1}{c^2}\frac{\partial^2}{\partial t^2} - \nabla^2$ é o **d'Alembertiano**.

¹⁴Como $\mathcal{L} \neq \mathcal{L}(x^{\mu}), d_{\mu} = \partial_{\mu}.$

Como o operador de Klein-Gordon ($\Box + m^2c^2/\hbar^2$) é real, podemos tomar o complexo conjugado

9.3 Simetrias internas 000000

$$\left(\Box + \frac{m^2 c^2}{\hbar^2}\right)\psi = 0.$$

Procurando soluções do tipo $\psi({\bf x},t)=\sum \psi_{{\bf k},\omega}e^{-i\omega t+i{\bf k}\cdot{\bf x}}$, obtemos a seguinte relação de dispersão

$$\hbar\omega = E = \sqrt{m^2c^4 + \hbar^2k^2c^2}.$$

Trata-se da energia de uma partícula livre de momento $p = \hbar k$, i.e.

$$p = \frac{h}{\lambda}.$$

Esta é uma das formas da famosa relação de de Broglie, revelando a dualidade onda-partícula em mecânica guântica.

Uma das simetrias internas do Lagrangeano de Klein-Gordon é a famosa simetria de fase, ou simetria para o grupo unitário de dimensão 1, $U(1)^{15}$

9.3 Simetrias internas 0000000

$$\psi \to \psi_{\lambda} = e^{i\lambda}\psi, \quad \psi^* \to \psi_{\lambda}^* = e^{-i\lambda}\psi^*.$$

É fácil observar que

$$\mathcal{L}(\psi_{\lambda}, \psi_{\lambda}^*, \partial_{\mu}\psi_{\lambda}, \partial_{\mu}\psi_{\lambda}^*) = \mathcal{L}(\psi, \psi^*, \partial_{\mu}\psi, \partial_{\mu}\psi^*),$$

pelo que $\delta \psi = \partial_{\lambda} \psi_{\lambda}|_{\lambda=0} = i \psi \; (\delta \psi^* = -i \psi^*)$. Uma vez que, por simetria $\delta \mathcal{L} = 0$, e que, por definição

$$\delta \mathcal{L} = \frac{\partial \mathcal{L}}{\partial \psi} \delta \psi + \frac{\partial \mathcal{L}}{\partial \psi^*} \delta \psi^* + \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \psi)} \delta \partial_{\mu} \psi + \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \psi^*)} \delta \partial_{\mu} \psi^*,$$

repetimos a técnica para eliminar os termos $\partial_{\mu}\psi$ e $\partial_{\mu}\psi^*$ para obter

$$\delta \mathcal{L} = \text{EL}[\mathcal{L}] \delta \psi + \text{EL}^*[\mathcal{L}] \delta \psi^* - d_{\mu} \left(\frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \psi)} \delta \psi + \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \psi^*)} \delta \psi^* \right)$$

Daqui retiramos imediatamente que $d_{\mu}j^{\mu}=0$, onde a corrente conservada é

$$j^{\mu} = i \left(\frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \psi)} \psi - \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \psi^{*})} \psi^{*} \right)$$
$$= i \left(\psi \partial^{\mu} \psi^{*} - \psi^{*} \partial^{\mu} \psi \right).$$

Em componentes, $j^{\mu} = (c\rho, \mathbf{j})$, temos¹⁶

$$\rho = i \left(\psi \frac{\partial \psi^*}{\partial t} - \psi^* \frac{\partial \psi}{\partial t} \right),$$

$$\mathbf{j} = -i \left(\psi \nabla \psi^* - \psi^* \nabla \psi \right),$$

que satisfazem a equação da continuidade

$$\frac{\partial \rho}{\partial t} + \boldsymbol{\nabla} \cdot \mathbf{j} = 0.$$

 $^{^{16}}$ Atenção: Por causa da métrica de Minkowskii, $\partial_{\mu}=(c^{-1}\partial_{t},\nabla)$ e $\partial^{\mu}=(c^{-1}\partial_{t},-\nabla)$

Outra simetria interna interessante é a invariância para o grupo SU(2), que acontece para **campos vectoriais** $\Psi = (\psi_1, \psi_2)^T$. As entradas ψ_1 e ψ_2 podem ser graus de liberdade de **spin**, por exemplo.

Um Lagrangeano para partículas relativistas com spin pode ser construído a partir do Lagrangeano de Klein-Gordon¹⁷,

$$\mathcal{L}(\Psi,\Psi^{\dagger},\partial_{\mu}\Psi,\partial_{\mu}\Psi^{\dagger}) = \partial_{\mu}\Psi^{\dagger}\partial^{\mu}\Psi - \frac{m^{2}c^{2}}{\hbar^{2}}\Psi^{\dagger}\Psi,$$

onde $\Psi^\dagger = (\psi_1^*, \psi_2^*).$ Consideremos a transformação unitária

$$\Psi(x^{\mu}) \to \Psi_{\lambda}(x^{\mu}) = \mathbf{U}(\lambda)\Psi.$$

A transformação infinitesimal correspondente é

$$\delta\Psi = \left.\frac{\partial \mathbf{U}(\lambda)}{\partial \lambda}\right|_{\lambda=0} \Psi \equiv i\boldsymbol{\tau}\Psi.$$

De uma forma genérica, uma transformação infinitesimal representada pelas matrizes au é

$$\delta \Psi = i \boldsymbol{\tau} \Psi, \quad \delta \Psi^{\dagger} = -i \boldsymbol{\tau}^{\dagger} \Psi^{\dagger}.$$

Pode-se demonstrar que, para transformações unitárias,

$$\mathbf{U}(\lambda)^{\dagger}\mathbf{U}(\lambda) = \mathbb{I} \Longrightarrow \boldsymbol{\tau}^{\dagger} = \boldsymbol{\tau},$$

i.e. a matriz infinitesimal au é **hermítica**. Não nos queremos alongar muito neste aspecto; pretendemos apenas calcular qual a corrente conservada para estes casos. Para isso, começamos por observar que

$$\mathcal{L}(\Psi_{\lambda}, \Psi_{\lambda}^{\dagger}, \partial_{\mu}\Psi_{\lambda}, \partial_{\mu}\Psi_{\lambda}^{\dagger}) = \mathcal{L}(\Psi, \Psi^{\dagger}, \partial_{\mu}\Psi, \partial_{\mu}\Psi^{\dagger}),$$

ou seja, $\delta \mathcal{L} = 0$. Usando a definição, podemos demonstrar (fica como exercício)

$$j^{\mu} = i \left(\Psi \boldsymbol{\tau} \partial^{\mu} \Psi^{\dagger} - \Psi^{\dagger} \boldsymbol{\tau} \partial^{\mu} \Psi \right)$$

é uma corrente conservada, $d_{\mu}j^{\mu}=\partial_{\mu}j^{\mu}=0.$

Como já viram em Electromagnetismo, as equações que governam a evolução dos campos ${\bf E}$ e ${\bf B}$ são as celebradas **equações de Maxwell**

$$\nabla \cdot \mathbf{E} = \frac{\rho}{\epsilon_0}, \quad \nabla \cdot \mathbf{B} = 0,$$

$$\nabla \times \mathbf{E} + \frac{\partial \mathbf{B}}{\partial t} = 0, \quad \nabla \times \mathbf{B} - \frac{1}{c^2} \frac{\partial \mathbf{E}}{\partial t} - \mu_0 \mathbf{j} = 0.$$

Os campos "físicos" ${f E}$ e ${f B}$ são obtidos a partir dos **potenciais padrão** 18

$$\mathbf{E} = -\boldsymbol{\nabla}\phi - \frac{\partial\mathbf{A}}{\partial t}, \quad \mathbf{B} = \boldsymbol{\nabla}\times\mathbf{A}.$$

Questão: Como (e para quê) é que podemos usar as técnicas de Mecânica Analítica neste caso?

A esperança é que, tratando os campos de forma covariante, poderemos chegar retirar algumas propriedades gerais do electromagnetismo¹⁹.

Usamos $x^{\mu}=(ct,\mathbf{x})$ (e, portanto, $x_{\mu}=g_{\mu\nu}x^{\nu}=(ct,-\mathbf{x})$) e definimos o quadrivector potencial $A_{\mu}=(\phi/c,-\mathbf{A})$ e o tensor de Faraday $F_{\mu\nu}$

$$F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} = \begin{bmatrix} 0 & E_{x}/c & E_{y}/c & E_{z}/c \\ -E_{x}/c & 0 & -B_{z} & B_{y} \\ -E_{y}/c & B_{z} & 0 & -B_{x} \\ -E_{z}/c & -B_{y} & B_{x} & 0 \end{bmatrix}$$

A "subida" e a "descida" de índices é feita recorrendo à métrica,

$$A^{\mu}=g^{\mu\nu}A_{\nu}=(\phi/c,\mathbf{A}),\quad F^{\mu}_{\nu}=g^{\mu\alpha}F_{\alpha\nu},\quad F^{\mu\nu}=g^{\mu\alpha}g^{\nu\beta}F_{\alpha\beta}, \text{onde}$$

$$F^{\mu\nu} = \begin{bmatrix} 0 & -E_x/c & -E_y/c & -E_z/c \\ E_x/c & 0 & -B_z & B_y \\ E_y/c & B_z & 0 & -B_x \\ E_z/c & -B_y & B_x & 0 \end{bmatrix}$$

$$j_{\mu} = (c\rho, -\mathbf{j}), \quad j^{\mu} = g^{\mu\nu} j_{\nu} = (c\rho, \mathbf{j}).$$

Assim, o Lagrangeano para o campo electromagnético é definido como²⁰

$$\mathcal{L}(A_{\mu}, \partial_{\nu} A_{\mu}) = -\frac{1}{4\mu_0} F_{\mu\nu} F^{\mu\nu} + j_{\mu} A^{\mu},$$

cujas equações de Euler-Lagrange são (para cada componente α)

$$\frac{\partial \mathcal{L}}{\partial A_{\alpha}} - \partial_{\beta} \frac{\partial \mathcal{L}}{\partial (\partial_{\beta} A_{\alpha})} = 0.$$

Usando a propriedade

$$\frac{\partial(\partial_{\mu}A_{\nu})}{\partial(\partial_{\beta}A_{\alpha})} = \delta_{\mu}^{\beta}\delta_{\nu}^{\alpha},$$

retiramos (após alguma álgebra...) que a equação do movimento é

$$-\partial_{\beta}F^{\alpha\beta} = \partial_{\beta}F^{\beta\alpha} = \mu_0 j^{\alpha}.$$

Podemos obter as equações de Maxwell percorrendo os índices livres α^{21} .

$$\partial_{\beta}F^{\beta\alpha} = \mu_0 j^{\alpha}.$$

$$F^{\beta\alpha} = \begin{bmatrix} 0 & -E_x/c & -E_y/c & -E_z/c \\ E_x/c & 0 & -B_z & B_y \\ E_y/c & B_z & 0 & -B_x \\ E_z/c & -B_y & B_x & 0 \end{bmatrix}$$

•
$$\underline{\alpha = 0}$$
:

$$\frac{1}{c}\frac{\partial F^{00}}{\partial t} + \frac{\partial F^{10}}{\partial x} + \frac{\partial F^{20}}{\partial y} + \frac{\partial F^{30}}{\partial z} = \mu_0 \rho,$$

$$\Leftrightarrow \frac{\partial E_x}{\partial x} + \frac{\partial E_y}{\partial y} + \frac{\partial E_z}{\partial z} = c^2 \mu_0 \rho$$

$$\therefore \nabla \cdot \mathbf{E} = \frac{\rho}{\epsilon_0}$$

Podemos obter as equações de Maxwell percorrendo os índices livres α^{22} .

$$\partial_{\beta} F^{\beta\alpha} = \mu_0 j^{\alpha}.$$

$$F^{\beta\alpha} = \begin{bmatrix} 0 & -E_x/c & -E_y/c & -E_z/c \\ E_x/c & 0 & -B_z & B_y \\ E_y/c & B_z & 0 & -B_x \\ E_z/c & -B_y & B_x & 0 \end{bmatrix}$$

• $\alpha = 1$:

$$\frac{1}{c}\frac{\partial F^{01}}{\partial t} + \frac{\partial F^{11}}{\partial x} + \frac{\partial F^{21}}{\partial y} + \frac{\partial F^{31}}{\partial z} = \mu_0 j^1,$$

$$\Leftrightarrow -\frac{1}{c^2}\frac{\partial E_x}{\partial t} + \frac{\partial B_z}{\partial y} - \frac{\partial B_y}{\partial z} = \mu_0 j_x.$$

Repetindo o procedimento para $\underline{\alpha=2}$ e $\underline{\alpha=3}$ e somando, temos

$$\nabla \times \mathbf{B} - \frac{1}{c^2} \frac{\partial \mathbf{E}}{\partial t} = \mu_0 \mathbf{j}.$$

$$F^{\beta\alpha} = \begin{bmatrix} 0 & -E_x/c & -E_y/c & -E_z/c \\ E_x/c & 0 & -B_z & B_y \\ E_y/c & B_z & 0 & -B_x \\ E_z/c & -B_y & B_x & 0 \end{bmatrix}$$

As restantes equações de Maxwell (sem fontes) obtêm-se recorrendo à seguinte propriedade da permutação cíclica dos índices²³

$$\partial_{\alpha}F^{\mu\nu} + \partial_{\nu}F^{\alpha\mu} + \partial_{\mu}F^{\nu\alpha} = 0.$$

• $\alpha = 0, \ \mu = 1, \ \nu = 2$:

$$\partial_0 F^{12} + \partial_2 F^{01} + \partial_1 F^{20} = 0$$

$$\Leftrightarrow \frac{1}{c} \frac{\partial B_z}{\partial t} - \frac{1}{c} \frac{\partial E_x}{\partial y} + \frac{1}{c} \frac{\partial E_y}{\partial x} = 0.$$

Repetindo para as diferentes permutações $\mu \neq \nu$ e somando,

²³A demonstração, que é imediata, fica para exercício...

$$F^{\beta\alpha} = \begin{bmatrix} 0 & -E_x/c & -E_y/c & -E_z/c \\ E_x/c & 0 & -B_z & B_y \\ E_y/c & B_z & 0 & -B_x \\ E_z/c & -B_y & B_x & 0 \end{bmatrix}$$

As restantes equações de Maxwell (sem fontes) obtêm-se recorrendo à seguinte propriedade da permutação cíclica dos índices²⁴

$$\partial_{\alpha}F^{\mu\nu} + \partial_{\nu}F^{\alpha\mu} + \partial_{\mu}F^{\nu\alpha} = 0.$$

•
$$\alpha = 2, \ \mu = 1, \ \nu = 3$$
:

$$\partial_2 F^{13} + \partial_3 F^{21} + \partial_1 F^{32} = 0$$

$$\Leftrightarrow \frac{\partial B_y}{\partial y} + \frac{\partial B_z}{\partial z} + \frac{\partial B_y}{\partial x} = 0.$$

Simetria padrão (ou de gauge)

Explicitamente, a equação $\partial_{\beta}F^{\beta\alpha}=\mu_{0}j^{\alpha}$ escreve-se

$$\begin{array}{rcl} \partial_{\beta} \left(\partial^{\beta} A^{\alpha} - \partial^{\alpha} A^{\beta} \right) & = & \mu_{0} j^{\alpha} \\ \Box A^{\alpha} - \partial^{\alpha} \partial_{\beta} A^{\beta} & = & \mu_{0} j^{\alpha} \\ \Box A^{\alpha} - \partial^{\alpha} \left(\frac{1}{c^{2}} \frac{\partial \phi}{\partial t} + \boldsymbol{\nabla} \cdot \mathbf{A} \right) & = & \mu_{0} j^{\alpha}. \end{array}$$

Existem várias maneiras de fixar a relação entre ϕ e ${\bf A}$. A esse procedimento dá-se o nome de **fixação de padrão** (ou *gauge fixing*).

No padrão de Lorentz, o último termo é nulo,

$$\frac{1}{c^2}\frac{\partial \phi}{\partial t} + \boldsymbol{\nabla} \cdot \mathbf{A} = 0,$$

pelo que $\Box A^{\alpha} = \mu_0 j^{\alpha}$, i.e.²⁵

$$\frac{1}{c^2} \frac{\partial^2 \phi}{\partial t^2} - \nabla^2 \phi = \frac{\rho}{\epsilon_0}, \qquad \frac{1}{c^2} \frac{\partial^2 \mathbf{A}}{\partial t^2} - \nabla^2 \mathbf{A} = \mu_0 \mathbf{j}.$$

Simetria padrão (ou de gauge)

Explicitamente, a equação $\partial_{\beta}F^{\beta\alpha}=\mu_{0}j^{\alpha}$ escreve-se

$$\begin{array}{rcl} \partial_{\beta} \left(\partial^{\beta} A^{\alpha} - \partial^{\alpha} A^{\beta} \right) & = & \mu_{0} j^{\alpha} \\ \Box A^{\alpha} - \partial^{\alpha} \partial_{\beta} A^{\beta} & = & \mu_{0} j^{\alpha} \\ \Box A^{\alpha} - \partial^{\alpha} \left(\frac{1}{c^{2}} \frac{\partial \phi}{\partial t} + \boldsymbol{\nabla} \cdot \mathbf{A} \right) & = & \mu_{0} j^{\alpha}. \end{array}$$

Existem várias maneiras de fixar a relação entre ϕ e \mathbf{A} . A esse procedimento dá-se o nome de **fixação de padrão** (ou gauge fixing).

No padrão de Coulomb,

$$\nabla \cdot \mathbf{A} = 0$$
,

pelo que $\Box A^{\alpha} - \partial^{\alpha} \partial_0 A^0 = \mu_0 j^{\mu}$, i.e.²⁶

$$\nabla^2 \phi = -\frac{\rho}{\epsilon_0}, \qquad \frac{1}{c^2} \frac{\partial^2 \mathbf{A}}{\partial t^2} - \nabla^2 \mathbf{A} - \frac{1}{c} \frac{\partial \mathbf{\nabla} \phi}{\partial t} = \mu_0 \mathbf{j}.$$

Consideremos a seguinte mudança de padrão

$$\tilde{A}_{\mu} = A_{\mu} + \partial_{\mu} \Lambda,$$

onde $\Lambda = \Lambda(x^{\mu})$ é um escalar arbitrário.

$$\begin{split} \tilde{F}_{\mu\nu} &= \partial_{\mu}\tilde{A}_{\nu} - \partial_{\nu}\tilde{A}_{\mu} \\ &= \partial_{\mu}(A_{\nu} + \partial_{\nu}\Lambda) - \partial_{\nu}(A_{\mu} + \partial_{\mu}\Lambda) \\ &= F_{\mu\nu}. \end{split}$$

 \therefore A teoria livre $(\mathcal{L} \sim F^2)$, i.e., para $j^{\mu} = 0$ (sem correntes, ou termos de fonte) é automaticamente invariante para a transformação padrão!

Na presença de fontes, o Lagrangeano no novo padrão é

$$\tilde{\mathcal{L}} = -\frac{1}{4\mu_0} F_{\mu\nu} F^{\mu\nu} + j^{\mu} A_{\mu} + j^{\mu} \partial_{\mu} \Lambda,$$

o que, à primeira vista, parece indicar quebra da invariância de padrão. Contudo, das equações do movimento,

$$j^{\mu} = \frac{1}{\mu_0} \partial_{\nu} F^{\nu\mu} = \frac{1}{\mu_0} \partial_{\nu} \left(\partial^{\nu} A^{\mu} - \partial^{\mu} A^{\nu} \right),$$

$$\partial_{\mu}j^{\mu} = \frac{1}{\mu_0} \left(\partial_{\mu} \Box A^{\mu} - \partial_{\nu} \Box A^{\nu} \right) = 0.$$

Assim, o último termo no Lagrangeano pode ser escrito como

$$\partial_{\mu}(j^{\mu}\Lambda) - \Lambda \partial_{\mu}j^{\mu} = \partial_{\mu}\tilde{j}^{\mu}.$$

Este último termo é uma **divergência**, que deixa a acção $S=\int \mathcal{L}dx^{\mu}$ invariante, como tão bem sabemos.

Na presença de fontes, o Lagrangeano no novo padrão é

$$\left| ilde{\mathcal{L}} = \mathcal{L} + d_{\mu} ilde{j}^{\mu}
ight|$$

$$j^{\mu} = \frac{1}{\mu_0} \partial_{\nu} F^{\nu\mu} = \frac{1}{\mu_0} \partial_{\nu} \left(\partial^{\nu} A^{\mu} - \partial^{\mu} A^{\nu} \right),$$
$$\partial_{\mu} j^{\mu} = \frac{1}{\mu_0} \left(\partial_{\mu} \Box A^{\mu} - \partial_{\nu} \Box A^{\nu} \right) = 0.$$

A teoria de campo electromagnética é simétrica para transformações de padrão. É, portanto, um exemplo de uma teoria padrão (ou teoria de gauge).