Chapitre 4 ANALYSE DE LA VARIANCE (ANOVA)

L'Analyse de Variance à un facteur (ANOVA 1)

- A. Introduction
- B. Formulation du modèle
- C. Conditions d'application de l'ANOVA
- D. Mesure de la décomposition de la SCE
- E. Test de Tukey

Introduction

21 candidats, 3 examinateurs (resp. 6,8 et 7 étudiants)

Examinateur	Α	В	С
Notes	10,11,11	8,11,11,13	10,13,14,14
	12,13,15	14,15,16,16	15,16,16
Effectif	6	8	7
Moyenne	12	13	14

[&]quot;effet d'examinateur"?

Forêt 1	Forêt 2	Forêt 3
23,3	18,9	22,5
24,4	21,1	22,9
24,6	21,1	23,7
24,9	22,1	24,0
25,0	22,5	24,0
26,2	23,5	24,5

"effet de plantation"?

Introduction

Objectif = Quand utiliser l'ANOVA?

- → Pour tester l'effet d'une variable explicative dite facteur controlé (chaque facteur a k niveaux ou modalités) sur les moyennes d'une variable quantitative Y
- → l'ANOVA teste si toutes les moyennes sont égales

ANOVA 1

Possibilités et limites

Permet de tester si toutes les moyennes sont égales (au niveau α)...

...mais si on rejette H_0 , l'ANOVA ne dit pas lesquelles

Les erreurs

Types d'ANOVA

Fixe : les traitements sont déterminés (manipulés) par le chercheur

Aléatoires : les modalités sont choisies au hasard dans une population de modalités: on peut estimer l'effet du facteur pour d'autres modalités non étudiées

Données identiques, modèles différents, calculs identiques mais seulement pour l'ANOVA à un critère de classification!

ANOVA fixe: rendement agricole

sable		argile		terreau
	21	1	6	23
	20	1	8	31
	16	1	1	24

n _i	3	3	3	9 = N
$T_{i.}$	57	45	78	180 = T
\overline{y}_{i}	19	15	26	20

ANOVA aléatoire: poids de l'ours noir

- variable dépendante est le poids,
- facteur (X) = site, p=3
- Question = effet site, audelà des sites étudiés

Modèle : données

Un seul facteur F k niveaux k échantillons de tailles respectives $n_1, ..., n_k$ Effectif total $n_1 = n_2 \ \forall i, i = n_2$

$$n_i = n_j \forall i, j \Rightarrow$$
 $n = \sum_{i=1}^k n_i$ expérience équilibrée

À chaque expérience, on mesure la valeur de la variable Y. Données

Niveau (population)	Nb. obs.	Valeurs de Y
1	n_1	$y_{11}, y_{12}, \ldots, y_{1n_1}$
2	n ₂	$y_{21}, y_{22}, \ldots, y_{2n_2}$
:	:	
k	n _k	$y_{k1}, y_{k2},, y_{kn_k}$

Les p moyennes sontelles identiques?

Les modalités de A influencent-elles Y?

$$Y_{ij} = \mu + \alpha_i + e_{ij}$$

moyenne de Y

effet de la ième modalité (constante). Ho : $\alpha_i = 0$ erreur aléatoire

Modèle:

$$y_{ij} = \mu_i + \mathcal{E}_{ij}, \quad i = 1,...I \text{ et } j = 1,...,J$$

Test de comparaison des moyennes :

Hypothèse nulle (H0) : $\mu_1 = \mu_2 = ... = \mu_I$ Contre (H1) : Les μ_i ne sont pas tous égaux.

=> Utilisation de l'analyse de la variance à un facteur.

Conditions d'application de l'ANOVA

les k échantillons sont indépendants et de loi Normale.

Les y_{ij} sont des réalisations de la v.a. $Y_{ij} \sim \mathcal{N}(m_i, \sigma^2)$ et Y_{ij} , $Y_{i'j'}$ indépendantes pour $i \neq i'$ ou $j \neq j'$.

Test de shapiro-wilkson (sur les résidus)

Autrement dit, pour chaque i, $(y_{ij})_{j \leq n_i}$, ..., y_{in_i} est un échantillon standard.

L'écart-type (théorique) est le même pour tous les niveaux. La moyenne (théorique) peut varier avec le niveau.

Homogénéité des variances ou homoscédasticité.

Test de Bartlett

1. Indépendance:

- Pas de test statistique simple pour étudier l'indépendance.
- Les conditions de l'expérience choisie nous déterminent si nous sommes dans le cas de l'indépendance.

2. Normalité:

Test de **Shapiro-Wilk** sur l'ensemble des résidus

(H0): les résidus suivent une loi normale

(H1): les résidus ne suivent pas une loi normale

• <u>Statistique de test</u> :

$$W = \frac{\left(\sum_{i=1}^{[n/2]} a_i (x_{(n-i+1)} - x_{(i)})\right)^2}{\sum_{i=1}^{n} (x_i - \overline{x})^2}$$

 $\mathcal{X}_{(i)}$ correspond à la série des données triées, et a_i sont des constantes fournies par des tables spécifiques.

• <u>Décision</u> : On rejette H0 si $W < W_{crit}$.

Les valeurs seuils W_{crit} pour différents risques α et effectifs n sont lues dans la table de Shapiro-Wilk.

3. Homogénéité:

Test de Bartlett:

Comparaison multiple de variances

(H0):
$$\sigma_1^2 = \sigma_2^2 = \dots = \sigma_I^2$$

(H1) : les σ^2_I ne sont pas toutes égales

 $\underline{ \text{Statistique de test}} : \left[B_{obs} = \frac{1}{C} [(n-1)\ln(s^2_R) - \sum_{i=1}^{I} (n_i - 1)\ln(s^2_{c,i})] \right]$

avec
$$C = 1 + \frac{1}{3(I-1)} \left(\left(\sum_{i=1}^{I} \frac{1}{n_i - 1} \right) - \frac{1}{n-1} \right)$$

et B_{obs} suit une loi du Khi-Deux à I-1 ddl.

■ <u>Décision</u> : Si B_{obs} < c \rightarrow (H0) vraie

Exemple: forêt

Application à l'exemple :

$$\overline{y_1} = 24,75$$

$$\overline{y_2} = 21,53$$

$$\overline{y_3} = 23,6$$

$$s_1 = 0.83$$

$$s_2 = 2,49$$

$$s_3 = 0.57$$

Hauteur des arbres en fonction des forêts

Nombre d'observations : n = I*J = 6*3=18

 Normalité (Shapiro): nombre d'observations trop faible pour tester sur chaque forêt donc on va tester sur tout l'échantillon.

Test de Shapiro-Wilk			
W=0.9748	P-value=0.882		

p-value = 0.882 > 0.05 donc on accepte H0 => normalité.

 Homogénéité (Bartlett): nombre d'observations trop faible pour tester sur chaque forêt donc on va tester sur tout l'échantillon.

Test de Bartlett				
B=2.8279	Df=2	P-value= 0.2432		

p-value = 0.2432 donc on accepte H0 => homogénéité des variances

ANOVA 1

Propriété fondamentale

Dans une ANOVA, la variance totale est répartie en deux composantes:

intergroupe: variance des moyennes des différents groupes (modalités)

intragroupe (erreur): variance des observations autour de la moyenne du groupe

Propriété fondamentale

Variation due au facteur :

dispersion des moyennes autour de la moyenne générale.

$$SC_{tot} = SC_F + SC_R$$

Variation totale:

dispersion des données autour de la moyenne générale.

Variation résiduelle :

dispersion des données à l'intérieur de chaque échantillon autour de sa moyenne.

Répartition de la somme des carrés totale

$$\begin{split} & \operatorname{SCE}_{\mathsf{T}} &= \operatorname{SCE}_{\mathsf{A}} + \operatorname{SCE}_{\mathsf{R}(=\mathsf{E})} \\ & \sum_{p=1}^{p} \sum_{i=1}^{n_i} (Y_{ij} - \overline{Y}_{..})^2 = \sum_{i=1}^{p} \sum_{j=1}^{n_i} (\overline{Y}_{i.} - \overline{Y}_{..})^2 + \sum_{i=1}^{p} \sum_{j=1}^{n_i} (Y_{ij} - \overline{Y}_{i.})^2 \\ &= \operatorname{SCE}_{\mathsf{inter}} + \operatorname{SCE}_{\mathsf{intra}} \\ &= \operatorname{SCE}_{\mathsf{B}} + \operatorname{SCE}_{\mathsf{W}} \end{split}$$

Tableau d'ANOVA

Sources de variat	Somme ion des carrés	Degré de liberté (<i>ddl</i>)	Carré moyen (CM)	F
Totale	$\sum_{i=1}^{k} \sum_{j=1}^{n_i} (Y_{ij} - \overline{Y})^2$	n - 1	SCET/dd	
Facteu r	$\sum_{i=1}^{k} n_i \left(\overline{Y}_i - \overline{Y} \right)^2$	p - 1	SCEA/d dl	$\frac{CM_A}{CM_R}$
Résidu s	$\sum_{i=1}^{k} \sum_{j=1}^{n_i} (\mathbf{Y}_{ij} - \overline{\mathbf{Y}}_i)^2$	n - p	SCER/d dl	

Décision

TEST DE FISHER:

$$| (H0) : \mu_1 = \mu_2 = ... = \mu_I$$

(H1): Les μ_i ne sont pas tous égaux.

Si les 3 conditions (Indépendance, Normalité et Homogénéité) sont vérifiées et si (H0) est vraie,

$$F_{obs} = \frac{CM_F}{CM_P} \sim F_{I-1,n-I}$$

<u>Décision</u>: Pour un seuil donné α (5% en général) les tables de Fisher nous fournissent une valeur critique c telle que :

$$P_{H_0}(F_{I-1,n-1} < c) = 1 - \alpha$$

Alors:

si $F_{obs} < c \rightarrow \text{HO est vraie}$

si $F_{obs} \ge c \rightarrow H1$ est vraie

Exemple

sal	ole arg	gile tei	rreau		Lo
	21	16	23		
	20	18	31		
	16	11	24		
$T_{i.}$	57	45	78]	180
SC	$E_T = 21^2 +$	$-20^2 + \dots$	$-\frac{180^2}{9}$	= 2	264
SC	$_{E}$ 57 ²	45 ²	180^{2}	= 1	86

Exemple

SV	SCE	ddl	СМ	Fde Teine
Α	186	2	93	7,15 Belle au Nature
R	78	6	13	

8

$$F_{6,\alpha=0,05}^2 = 5,14$$

→ Conclusion ?

264

Comparaison multiple

But : classer les traitements par groupes qui sont significativement différents.

 <u>Test de Tukey</u>: test de la différence franchement significative (HSD= honestly significative difference)

- S'applique sur un facteur si :
- Les 3 conditions fondamentales sont vérifiées,
- Le facteur est à effet fixe, avec au moins 3 modalités,
- Le facteur a un effet significatif sur la réponse.

Méthode:

- Pour chaque paire i et l de groupes, on calcule un IC de niveau $(1-\alpha)$ % de la différence $(\mu_i \mu_l)$.
- Si zéro appartient à l'IC, les moyennes ne sont pas jugées significativement différentes au niveau α.

Exemple:

	Diff	Lower	Upper	P-value
2-1	-3.22	-4.92	-1.51	0.0005
3-1	-1.15	-2.86	0.56	0.22
3-2	2.07	0.36	3.77	0.02

0 est dans l'intervalle de confiance de 3-1 → les hauteurs moyennes dans les forêts 1 et 3 ne sont pas significativement différentes.