Switches

- Bridge multivía
- Aprendizaje
 - Usa la dirección **origen** del frame
 - Alimenta una tabla de conmutación, tabla de direcciones asociada al port o interfaz
- Conmutación
 - Usa la dirección destino del frame
 - Crea virtualmente un circuito privado entre ambos ports
 - Los circuitos entre ports funcionan independiente y simultáneamente

Ethernet y switches

- En Ethernet tradicional
 - Mecanismo de acceso al medio CSMA/CD
 - Las conversaciones ocupan un medio compartido
 - Cada nodo necesita detectar y resolver las colisiones
 - Los enlaces funcionan en modo Half Duplex
- En Ethernet conmutada
 - Las conversaciones utilizan circuitos virtuales y no hay colisiones
 - Modo Full Duplex (802.3X)

Arquitectura

Múltiples circuitos simultáneos

Agregación

- Cascada
 - Limitada por el ancho de banda de las interfaces
 - S1

 S2

 S3

 Server

- Stack o apilado
 - Usa el ancho de banda del switching fabric
 - Tecnologías propietarias, no interoperables

Administración

- Ninguna
- Interfaz web
- Telnet o SSH
- Protocolos de administración como SNMP u otros propietarios

Acciones

- Consultar estado de interfaces
- Habilitar/deshabilitar interfaces
- Habilitar/deshabilitar protocolos
- Asociar ports con conjuntos de MACs permitidas
- Definir VLANs

Switching y routing

Routers

- Sistema operativo sobre una máquina multipropósito o sobre un hardware especializado
- Función de conmutación en capa 3 y por software
- Switching router: conmutación en capa 2 pero con asistencia del hardware
- Switches "de capa 3" o L3
 - Funcionalidades similares al router
 - Máquina de conmutación especializada
 - Realiza forwarding por hardware → menor latencia

Redundancia

- Tolerancia a fallos
- Múltiples caminos

STP, Spanning Tree Protocol

- IEEE 802.1D
 - Permite eliminar los ciclos, creando un árbol
 - Todos los switches intercambian BPDUs (Bridge Protocol Data Units) en multicast
 - El switch con BID (prioridad + MAC) más baja es elegido raíz
 - Cada switch identifica su port designado, el que lo comunica con el switch raíz al menor costo (a mayor velocidad)
 - Los restantes ports quedan en estado bloqueado (intercambian sólo BPDUs, no datos)
- Otros protocolos
 - RSTP, TRILL

Broadcasts

- Los frames de broadcast deben ser inundados
 - Lo mismo ocurre cuando la estación destino no está en la TC
- Los broadcasts de nivel 2 son necesarios
 - Cuando la dirección destino es de broadcast por imposición de un protocolo (ARP, Microsoft SMB/CIFS)
- Efectos negativos del tráfico de broadcast
 - Sobre el ancho de banda disponible
 - Sobre la CPU de los hosts, debido a interrupciones

VLANs

- Redes virtuales (Virtual LANs)
 - Dominios de broadcast al igual que las LANs
- Selección de ports del switch por algún criterio
 - Definición estática
 - VLAN 1 = {ports 3, 5, 6 a 12}; VLAN 2 = {ports 1, 2, 4}
 - Pueden existir ports compartidos (VLANs superpuestas)
 - Definición dinámica
 - Por MAC, por tipo de protocolo de red, por subred IP...

VLANs

- Cada VLAN constituye un dominio de broadcast
- Una vez definida, cada VLAN queda incomunicada de las demás en el mismo switch

VLANs

- Segmentan los dominios de broadcast sin necesidad de un router
- Pero se necesita un router para relacionarlas

Infraestructura conmutada

- Los principios de cableado estructurado se mantienen en el diseño de infraestructuras de LAN conmutada
- La conmutación permite independizarse de la topología física
 - Con un router, una subred → un tendido
 - Con un switch, una VLAN → cualquier agregado de radios de la estrella de cableado estructurado

Topología de VLANs

Diseño de LAN conmutada

- Los switches pueden formar jerarquías
 - Para colectar el cableado y dar conectividad, estructurar el ancho de banda, distribuir la administración, y propagar las VLANs
- Diferentes diseños de LAN
 - Acceso, Distribución, Núcleo
 - Red plana, todos los elementos en nivel 2
 - Backbone colapsado, un router hacia los switches
 - Router on stick, un router con un troncal hacia un switch

Propagación de VLANs

Protocolos

- Trunking
 - IEEE 802.1q, trunking
 - ISL, propietario
- Prioridades
 - IEEE 802.1p, prioridades
- VLANs
 - GARP, protocolo genérico de difusión
 - GVRP, registración de membrecía de VLANs
 - VTP, propietario para difusión de configuración
- IEEE 802.1d, STP (spanning tree protocol)