Dynamic Programming

- Not a specific algorithm, but a technique (like Divide-and-Conquer and Greedy algorithms)
- ▶ Developed back in the day (1950s) when "programming" meant "tabular method" (like linear programming)
- Used for optimization problems
 - ▶ Find a solution with the optimal value
 - Minimization or maximization

Dynamic Programming

Four-step (two-phase) method:

- 1. Characterize the structure of an optimal solution
- 2. Recursively define the value of an optimal solution
- 3. Compute the value of an optimal solution in a bottom-up fashion
- 4. Construct an optimal solution from computed information

Problem statement:

How to cut a rod into pieces in order to maximize the revenue you can get?

- ▶ Input: 1) A rod of length n
 - 2) an array of prices p_i for a rod of length i, $i = 1, \ldots, n$
- $lackbox{Output: The maximum revenue r_n obtainable for rods whose length sum to $n$$

Example

$length\ i$	1	2	3	4	5	6	7	8	9	10
$\begin{array}{c} \text{length } i \\ \text{price } p_i \end{array}$										
r_i	1	5	8	10	13	17	18	22	25	30

 $ightharpoonup r_i$: maximum revenue of a rod of length i

A brute-force solution:

cut up a rod of length n in 2^{n-1} different ways

 $\mathsf{Cost} \colon\thinspace \varTheta(2^{n-1})$

Dynamic Programming - Phase I:

Since every optimal solution r_n has a leftmost cut with length i, the optimal revenue r_n is given by

$$r_{n} = \max\{p_{1} + r_{n-1}, p_{2} + r_{n-2}, \dots, p_{n-1} + r_{1}, p_{n}\}$$

$$= \max_{1 \le i \le n} \{p_{i} + r_{n-i}\}$$

$$= p_{i_{*}} + r_{n-i_{*}}$$
(2)

where

 i_* = the index attains the maximum = the length of the leftmost cut

Dynamic Programming - Phase II:

How to compute r_n by the expression (1) ?

- 1. Recursive solution:
 - top-down, no memoization
 - Cost:

$$T(n) = 1 + \sum_{j=0}^{n-1} T(j) = \Theta(2^n)$$

- 2. Iterative solution
 - bottom-up, memoization
 Pseudocode see next page
 - ► Cost:

$$T(n) = \Theta(n^2)$$

Pseudocode

```
cut-rod(p,n)
// an iterative (bottom-up) procedure for finding "r" and
// the optimal size of the first piece to cut off "s"
Let r[0...n] and s[0...n] be new arrays
r[0] = 0
for j = 1 to n
    // find q = \max\{p[i] + r[j-i]\} for 1 <= i <= j
    q = -infty
    for i = 1 to j
        if q < p[i] + r[j-i]
           q = p[i] + r[j-i]
           s[i] = i
        end if
    end for
    r[i] = q
end for
return r and s
```

Example

$length\ i$	1	2	3	4	5	6	7	8	9	10
price p_i	1	5	8	9	10	17	17	20	24	30
r_i	1	5	8	10	13	17	18	22	25	30
s_i	1	2	3	2	2	6	1	2	3	10

- $ightharpoonup r_i$: maximum revenue of a rod of length i
- ▶ s_i : optimal size of the first piece to cut Note: $s_i = i_*$ in expression (2).