SEDs, f_{ν} and f_{λ} 's

Nic "What Have I got wrong here" Ross December 28, 2017

Abstract

"README" and "Cheat Sheet" to SEDs, f_{ν} and f_{λ} and all that carry-on...

1 Definitions, terms and Units

Physical Quantity	symbol	Unit name	Units	e.g. $\log(\text{OoM})$
spectral flux density ^a	f_{ν}		${ m W} { m m}^{-2} { m Hz}^{-1}$	-2735
spectral flux density	$f_{ u}$		${\rm erg}~{\rm s}^{-1}~{\rm cm}^{-2}~{\rm Hz}^{-1}$	-2432
spectral flux density	$f_{ u}$	Janksy	$10^{-26} \; \mathrm{W} \; \mathrm{m}^{-2} \; \mathrm{Hz}^{-1}$	μ to 10's of milli
spectral flux density	$f_{ u}$	Jansky	$10^{-23} \text{ erg s}^{-1} \text{ cm}^{-2} \text{ Hz}^{-1}$	μ to 10's of milli
spectral flux density	f_{λ}		${ m W} { m m}^{-2} { m m}^{-1}$	
spectral flux density	f_{λ}		${ m W} { m m}^{-2} \ \mu { m m}^{-1}$	
	c	_1 _2		10 10
^a energy density _b _	νf_{ν}	$\mathrm{erg} \; \mathrm{s}^{-1} \; \mathrm{cm}^{-2}$		-1216
<u> </u>	νF_{ν}			
c _	Т	$\mathrm{erg}\ \mathrm{s}^{-1}\ \mathrm{Hz}^{-1}$		26 - 34
_	$L_{ u}$	erg s nz		20 - 34
^a Luminosity	$\nu L_{ u}$	${\rm erg~s^{-1}}$		43 - 47
Lummosity	-			
^a Luminosity	L	${ m erg~s^{-1}}$		43 - 47

Table 1: a see e.g. Fig. 10 of ?. b e.g. URL [1] c e.g. Bourne et al. (2011)

•	•	
		,

Name	Symbol	Unit name	Unit sym-	Dimension	Notes
			bol		
Radiant energy	$Q_{ m e}$	Joule	J	${ m M} \ { m L}^2 \ { m T}^{-2}$	Energy of electromagnetic radiation.
Radiant energy density	w_e	Joule per cubic metre	$\mathrm{J/m^3}$	${ m M} \ { m L}^{-1} \ { m T}^{-2}$	Radiant energy per unit volume.
Radiant flux	$\phi_{ m e}$	Watt	W = J/s	${ m M~L^2~T^{-3}}$	Radiant energy emitted per unit time ^{a} .
	$\phi_{\mathrm{e},\nu}$	Watt per hertz	m W/Hz	$M L^2 T^2$	Radiant flux per unit frequency or wavelength.
Spectral flux	or	or	or	or	
	$\phi_{\mathrm{e},\lambda}$	Watt per metre	W/m	${ m M~L~T^{-3}}$	

Table 2: **STRAIGHT FROM:** https://en.wikipedia.org/wiki/Optical_depth $^a{\rm Also}$ sometimes called "radiant power".

Unit Name	Physical Quantity	symbos	Units
Janksy	spectral flux density	$f_{ u}$	$10^{-26} \text{ W m}^{-2} \text{ Hz}^{-1}$
Jansky	spectral flux density	$f_{ u}$	$10^{-23} \text{ erg s}^{-1} \text{ cm}^{-2} \text{ Hz}^{-1}$

Table 3: e.g. Fig. 10 of Richards et al. (2006b).

From Table 2, to get from L_{ν} to νL_{ν} , at say 1.0 μ m, you just have to multiply by 3×10^{14} (Hz), and this gives e.g. $\approx 3\times10^{44}$ erg s⁻¹ :-)

$$m_{\rm AB} = -2.5 \log_{10} \left(\frac{f_{\nu}}{3631 \text{ Jy}} \right)$$
 (1)

$$= -2.5 \log_{10} \left(\frac{f_{\nu}}{J_{y}} \right) + 8.90 \tag{2}$$

$$= -2.5 \log_{10} f_{\nu} - 48.60 \tag{3}$$

with the -48.6 thing coming in if in cgs units of erg s⁻¹ cm⁻² Hz⁻¹.

So, with $\nu f_{\nu} = \lambda f_{\lambda}$, we can have:

$$f_{\nu} = \frac{\lambda^2}{c} f_{\lambda} \tag{4}$$

(5)

Now, if f_{ν} is in Jansky's and λ is in Å then, c must be in Å s⁻¹, i.e., $c = 3 \times 10^{18}$ Å s⁻¹. Then you just replace:

$$f_{\nu} = \frac{\lambda^2}{c} f_{\lambda} \tag{6}$$

$$f_{\nu}(\text{in Jy}) = 1 \times 10^{23} / (3e18) \frac{\lambda^2}{\mathring{A}} f_{\lambda}$$
 (7)

$$f_{\nu}(\text{in Jy}) = 0.3 \times 10^5 \times \lambda^2 \times f_{\lambda}$$
 (8)

$$f_{\nu}(\text{in Jy}) = 3.34e4 \times \lambda^2 \times f_{\lambda}$$
 (9)

$$\frac{f_{\nu}}{[\text{Jansky}]} = 33,356 \left(\frac{\lambda}{[\text{Å}]}\right)^2 \frac{f_{\lambda}}{\text{ergs}^{-1}\text{cm}^{-2}\text{Å}^{-1}}$$
(10)

with 1 cm being $1 \times 10^8 \text{Å}$ and $c = 2.99792 \times 10^{10} \text{ cm s}^{-1}$.

Following e.g. URL [5],

$$f_{\nu} = A \times \lambda f_{\gamma} \tag{11}$$

$$f_{\nu}(\text{in Jy}) = 6.626 \times 10^{-8} \frac{\lambda}{[\mu m]} f_{\gamma}$$
 (12)

(13)

where f_{ν} is the 'energy flux', aka the spectral flux density, measured in Janskys (10^{-26} W m⁻² Hz⁻¹), f_{γ} is the 'photon flux' measured in s⁻¹ m⁻² μ m⁻¹, λ is the wavelength measured in μ m and Planck's constant is $6.626 \times 10^{-34} \text{ m}^2 \text{ kg s}^{-1}$ (i.e. $6.626 = 34 \times 126 = 6.626 = 8$).

Take your f_{ν} measurements that are in Jy. (Ensure they are in Jy! If they're in magnitudes, convert them to Jy first; see 'magnitude' discussion above.) Multiply by 1×10^{-23} to get them into cgs units. Multiply these f_{ν} values by $\frac{c}{\lambda^2}$ to get them into f_{λ} . Multiply them by λ to get them into λf_{λ} . WATCH YOUR UNITS. NB: $c=2.997924\times 10^{10}~{\rm cm~sec^{-1}}$.

Also note/recall,

$$\nu f_{\nu} = \lambda f_{\lambda} \tag{14}$$

with units of ergs s^{-1} cm⁻².

Unit Conversions 2

Flux density to AB

The flux density in Jy can be converted to a magnitude basis: (straight from Wiki!! ;-):

$$S_{\nu}[\mu Jy] = 10^{6} \cdot 10^{23} \cdot 10^{-AB+48.6/2.5}$$
 (15)
= $10^{(23.9-AB)/2.5}$ (16)

$$= 10^{(23.9-AB)/2.5} \tag{16}$$

(17)

3 \mathbf{WISE}

The source flux density, in Jansky [Jy] units, is computed from the calibrated WISE (Vega) magnitudes, m_{Vega} using: N.B the WISE webpage (given in the URL notes below) uses F_{ν} for source flux density. I'm going to stick with my convention and use little f, f_{ν} ,

$$f_{\nu}[\mathrm{Jy}] = f_{\nu,0} \times 10^{(-m_{\mathrm{Vega}}/2.5)}$$
 (18)

where $f_{\nu,0}$ is the zero magnitude flux density corresponding to the constant that gives the same response as that of Alpha Lyrae (Vega). For most sources, the zero magnitude flux density, derived using a constant powerlaw spectra, is appropriate and may be used to convert WISE magnitudes to flux density [Jy] units. Table 1 lists the zero magnitude flux density (column 2) for each WISE band.

For sources with steeply rising MIR spectra or with spectra that deviate significantly from f_{ν} =constant, including cool asteroids and dusty star-forming galaxies, a color correction is required, especially for W3 due to its wide bandpass. With a given flux correction, f_c , the flux density conversion is given by:

 $f_{\nu}[\mathrm{Jy}] = (f_{\nu,0}^*/f_c) \times 10^{(-m_{\mathrm{Vega}}/2.5)}$ (19)

where $f_{\nu,0}^*$ is the zero magnitude flux density derived for sources with powerlaw spectra: $f_{\nu} \propto \nu^2$, listed in Table 1 (column 3) and the flux correction, f_c , listed in Table 2 for $f_{\nu} \propto \nu^{-\alpha}$, where the index α ranges from: -3, -2, -1, 0, 1, 2, 3, and 4, and for blackbody spectra, $B_{\nu}(T)$ for a variety of temperatures, and for stars of two main-sequence spectral types (K2V and G2V).

4 Links

- $[1] \ http://www.iasf-milano.inaf.it/\sim polletta/templates/images/new_Arp220_template.jpg$
- [2] http://www.astro.soton.ac.uk/~td/flux_convert.html
- [3] http://coolwiki.ipac.caltech.edu/index.php/Units
- [4] http://wise2.ipac.caltech.edu/docs/release/allsky/expsup/sec4_4h.html
- [5] http://www.astro.ljmu.ac.uk/ ikb/convert-units/node1.html
- $[6]\ http://xingxinghuang.blogspot.co.uk/2013/06/hello-everybody-if-you-still-get.html$

References