Part I

A First Course on General Relativity

By studying General Relativity, I spotted my weakness of being too submerged in details and not being able to solve problems systematically and as a whole

A person being able to master GR has the best advantage in analyzing business and tech problems right, which is why I study GR and Physics in general (Sorry, Einstein)

Chapter 1

Special Relativity

On "Principle of relativity (Galileo)"

Galilean invariance

Newton's laws of motion hold in all frames related to one another by a Galilean transformation. In other words, all frames related to one another by such a transformation are inertial (meaning, Newton's equation of motion is valid in these frames).¹ The proof has been given by the book on page 2.

1.5 - Construction of the coordinates used by another observer

Why would the tangent of the angle is the speed in Fig. 1.2?

Suppose \mathcal{O} and $\bar{\mathcal{O}}$ both start out at the same position where $\bar{\mathcal{O}}$ moves along the x at some speed. After t_1 , observer \mathcal{O} sees $\bar{\mathcal{O}}$ at position x_1 :

$$\bar{\mathcal{O}}_1 = (x_1, t_1)$$

Observer $\bar{\mathcal{O}}$, however, still sees themself at x=0:

$$\bar{\mathcal{O}}_1 = (0, t_1)$$

By definition where " \bar{t} is the locus of events at constant $\bar{x}=0$ ", \bar{t} is the straight line that passes the origin and the (x_1,t_1) :

¹Galilean invariance

1.6 Invariance of the interval

Why $(\Delta x)^2 + (\Delta y)^2 + (\Delta z)^2 - (\Delta t)^2 = 0$ for two events in the same light beam?

Let's say, in a simplified 1D case, event $\mathcal{E}=(x_0,t_0)$ and $\mathcal{P}=(x_1,t_1)$.

$$(\Delta x)^2 - (\Delta t)^2 = (x_1 - x_0)^2 - (t_1 - t_0)^2$$

Since the speed of light is 1,

$$(x_1 - x_0)^2 - (t_1 - t_0)^2 = (x_1 - x_0)^2 - (t_1 \times 1 - t_0 \times 1)^2 = (x_1 - x_0)^2 - (x_1 - x_0)^2 = 0$$

Why does the equation contains only $M_{\alpha\beta}+M_{\beta\alpha}$ terms when $\alpha\neq\beta$, which guarantees $M_{\alpha\beta}=M_{\beta\alpha}$?

$$\Delta \bar{s}^{2} = \sum_{\alpha=0}^{3} \sum_{\beta=0}^{3} \boldsymbol{M}_{\alpha\beta} \left(\Delta x^{\alpha} \right) \left(\Delta x^{\beta} \right)$$

Before spending too much time on expanding the equation, we can pick up a pair of indices of $(\alpha, \beta) = (\alpha^*, \beta^*)$ where $\alpha^* \neq \beta^*$. Then we would definitely have the following 2 terms in the expansion:

$$\boldsymbol{M}_{\alpha^*\beta^*} \left(\Delta x^{\alpha^*}\right) \left(\Delta x^{\beta^*}\right)$$

$$\boldsymbol{M}_{\beta^*\alpha^*} \left(\Delta x^{\beta^*}\right) \left(\Delta x^{\alpha^*}\right)$$

Since

$$\left(\Delta x^{\alpha^*}\right)\left(\Delta x^{\beta^*}\right) = \left(\Delta x^{\beta^*}\right)\left(\Delta x^{\alpha^*}\right)$$

We can then group these 2 terms and factor out the product, leaving

$$\left(\Delta x^{\alpha^*}\right)\left(\Delta x^{\beta^*}\right)\left(\boldsymbol{M}_{\alpha^*\beta^*}+\boldsymbol{M}_{\beta^*\alpha^*}\right)$$

The terms of expanded $\Delta \bar{s}^2$ can be expressed in a matrix of

$$\begin{bmatrix} \boldsymbol{M}_{00}\Delta x^0 \Delta x^0 & \boldsymbol{M}_{01}\Delta x^0 \Delta x^1 & \boldsymbol{M}_{02}\Delta x^0 \Delta x^2 & \boldsymbol{M}_{03}\Delta x^0 \Delta x^3 \\ \boldsymbol{M}_{10}\Delta x^1 \Delta x^0 & \boldsymbol{M}_{11}\Delta x^1 \Delta x^1 & \boldsymbol{M}_{12}\Delta x^1 \Delta x^2 & \boldsymbol{M}_{13}\Delta x^1 \Delta x^3 \\ \boldsymbol{M}_{20}\Delta x^2 \Delta x^0 & \boldsymbol{M}_{21}\Delta x^2 \Delta x^1 & \boldsymbol{M}_{22}\Delta x^2 \Delta x^2 & \boldsymbol{M}_{23}\Delta x^2 \Delta x^3 \\ \boldsymbol{M}_{30}\Delta x^3 \Delta x^0 & \boldsymbol{M}_{31}\Delta x^3 \Delta x^1 & \boldsymbol{M}_{32}\Delta x^3 \Delta x^2 & \boldsymbol{M}_{33}\Delta x^3 \Delta x^3 \end{bmatrix}$$

Because the off-diagonal terms always appear in pairs above, we could effectively replace them with their mean value:

$$oldsymbol{M}_{lpha^*eta^*} = oldsymbol{M}_{eta^*lpha^*} = rac{(oldsymbol{M}_{lpha^*eta^*} + oldsymbol{M}_{eta^*lpha^*})}{2}$$

where $\alpha^* \neq \beta^*$. And since $m{M}_{\alpha\beta} = m{M}_{etalpha}$ if lpha = eta, we conclude that

$$oldsymbol{M}_{lphaeta} = oldsymbol{M}_{etalpha}$$
 for all $lpha$ and eta

Why do we have the 2nd term in equation

$$\Delta \bar{s}^2 = \boldsymbol{M}_{00} \left(\Delta r\right)^2 + \left[2\left(\sum_{i=1}^3 \boldsymbol{M}_{0i} \Delta x^i\right) \Delta r\right] + \sum_{i=1}^3 \sum_{i=1}^3 \boldsymbol{M}_{ij} \Delta x^i \Delta x^j$$

$$\Delta \bar{s}^2 = \sum_{\alpha=0}^{3} \sum_{\beta=0}^{3} \boldsymbol{M}_{\alpha\beta} \left(\Delta x^{\alpha} \right) \left(\Delta x^{\beta} \right) \tag{1.1}$$

$$=\sum_{\alpha=0}^{0}\sum_{\beta=0}^{3}\boldsymbol{M}_{\alpha\beta}\left(\Delta x^{\alpha}\right)\left(\Delta x^{\beta}\right)+\sum_{\alpha=0}^{3}\sum_{\beta=0}^{0}\boldsymbol{M}_{\alpha\beta}\left(\Delta x^{\alpha}\right)\left(\Delta x^{\beta}\right)+\sum_{\alpha=1}^{3}\sum_{\beta=1}^{3}\boldsymbol{M}_{\alpha\beta}\left(\Delta x^{\alpha}\right)\left(\Delta x^{\beta}\right)\tag{1.2}$$

$$= \sum_{\beta=0}^{3} \boldsymbol{M}_{0\beta} \Delta t \left(\Delta x^{\beta} \right) + \sum_{\alpha=0}^{3} \boldsymbol{M}_{\alpha 0} \left(\Delta x^{\alpha} \right) \Delta t + \sum_{\alpha=1}^{3} \sum_{\beta=1}^{3} \boldsymbol{M}_{\alpha \beta} \left(\Delta x^{\alpha} \right) \left(\Delta x^{\beta} \right)$$
(1.3)

$$=\boldsymbol{M}_{00}\left(\Delta t\right)^{2}+\sum_{\beta=1}^{3}\boldsymbol{M}_{0\beta}\Delta t\left(\Delta x^{\beta}\right)+\sum_{\alpha=1}^{3}\boldsymbol{M}_{\alpha0}\left(\Delta x^{\alpha}\right)\Delta t+\sum_{\alpha=1}^{3}\sum_{\beta=1}^{3}\boldsymbol{M}_{\alpha\beta}\left(\Delta x^{\alpha}\right)\left(\Delta x^{\beta}\right)\tag{1.4}$$

$$= \boldsymbol{M}_{00} \left(\Delta t\right)^{2} + \left[2\left[\sum_{i=1}^{3} \boldsymbol{M}_{0i} \Delta t \left(\Delta x^{i}\right)\right]\right] + \sum_{\alpha=1}^{3} \sum_{\beta=1}^{3} \boldsymbol{M}_{\alpha\beta} \left(\Delta x^{\alpha}\right) \left(\Delta x^{\beta}\right)$$
(1.5)

Why would $M_{0i}=0$ for i=1,2,3 and $M_{ij}=-M_{00}\delta_{ij}$ in Equation 1.5?

Note that this statement is based on the aforementioned assumption that $\Delta \bar{s}^2 = \Delta s^2 = 0$, which has been proved here. Therefore, by 1.5, we have

$$\Delta \bar{s}^2(\Delta t, \Delta x_1) - \Delta \bar{s}^2(\Delta t, \Delta x_2) \tag{1.6}$$

$$= \boldsymbol{M}_{00} \left(\Delta t\right)^{2} + 2 \left[\sum_{i=1}^{3} \boldsymbol{M}_{0i} \Delta t \left(\Delta x^{i}\right)\right] + \sum_{\alpha=1}^{3} \sum_{\beta=1}^{3} \boldsymbol{M}_{\alpha\beta} \left(\Delta x^{\alpha}\right) \left(\Delta x^{\beta}\right)$$
(1.7)

$$= 2\left[\sum_{i=1}^{3} \boldsymbol{M}_{0i} \Delta t \left(\Delta x_{1}^{i}\right)\right] + \sum_{\alpha=1}^{3} \sum_{\beta=1}^{3} \boldsymbol{M}_{\alpha\beta} \left(\Delta x_{1}^{\alpha}\right) \left(\Delta x_{1}^{\beta}\right) -$$

$$2\left[\sum_{i=1}^{3} \boldsymbol{M}_{0i} \Delta t \left(\Delta x_{2}^{i}\right)\right] - \sum_{\alpha=1}^{3} \sum_{\beta=1}^{3} \boldsymbol{M}_{\alpha\beta} \left(\Delta x_{2}^{\alpha}\right) \left(\Delta x_{2}^{\beta}\right)$$
(1.8)

$$=\sum_{\alpha=1}^{3}\sum_{\beta=1}^{3}\boldsymbol{M}_{\alpha\beta}\left(\Delta x_{1}^{\alpha}\right)\left(\Delta x_{1}^{\beta}\right)-\sum_{\alpha=1}^{3}\sum_{\beta=1}^{3}\boldsymbol{M}_{\alpha\beta}\left(\Delta x_{2}^{\alpha}\right)\left(\Delta x_{2}^{\beta}\right)+$$

$$2\left[\sum_{i=1}^{3} \boldsymbol{M}_{0i} \Delta t \left(\Delta x_{1}^{i}\right)\right] - 2\left[\sum_{i=1}^{3} \boldsymbol{M}_{0i} \Delta t \left(\Delta x_{2}^{i}\right)\right]$$
(1.9)

$$=\sum_{\alpha=1}^{3}\sum_{\beta=1}^{3}\boldsymbol{M}_{\alpha\beta}\left[\left(\Delta x_{1}^{\alpha}\right)\left(\Delta x_{1}^{\beta}\right)-\left(\Delta x_{2}^{\alpha}\right)\left(\Delta x_{2}^{\beta}\right)\right]+$$

$$2\left[\sum_{i=1}^{3} \boldsymbol{M}_{0i} \Delta t \left(\Delta x_{1}^{i} - \Delta x_{2}^{i}\right)\right] \tag{1.10}$$

We won't be able to go further unless with some assumed relationships between Δx_1^i and Δx_2^i . Let's step back and re-think about this problem then.

We go through all these for the proof of invariance of the interval. This is to work out a relation between Δs^2 and $\Delta \bar{s}^2$. So the details is about Δx_1^i and Δx_2^i but the goal is to derive some form of $\Delta \bar{s}^2 = f\left(\Delta s^2\right)$. Let work on 1.10 directly toward that goal then