1. The president of a large university has been studying the relationship between male/female supervisory structures in his institution and the level of employees' job satisfaction. The results of a recent survey are shown in the table below. Conduct a test at the 5% significance level to determine whether the level of job satisfaction depends on the boss/employee gender relationship.

Boss/Employee

Level of Satisfaction	Male/ Female	Female/Male	Male/Male	Female/Female
Satisfied	60	15	50	15
Neutral	27	45	48	50
Dissatisfied	13	32	12	55

 H_0 = Level of satisfaction and boss/employee gender relationship are independent. H_1 = Level of satisfaction and boss/employee gender relationship are dependent.

We need to calculate the expected frequency of the values;

Level of Satisfaction	Male/ Female	Female/Male	Male/Male	Female/Female
Satisfied	33.1754	30.5213	36.49	39.81043
Neutral	40.2844	37.0616	44.31	48.34123
Dissatisfied	26.5403	24.4171	29.19	31.84834

Next, calculate chi-square value for each cell and find out the grand chi-square by adding them.

Level of Satisfaction	Male/ Female	Female/Male	Male/Male	Female/Female
Satisfied	21.6896	7.89322	4.999	15.46221
Neutral	4.38071	1.70036	0.307	0.056919
Dissatisfied	6.90796	2.35495	10.13	16.82974

By adding these values, we can find the chi-square value of 92.7087. Also, by running the right-tailed chi-square distribution test (with degrees of freedom being 6), we calculate the p-value to be less than 0.0001. This p-value is less than our nominal alpha of .05, therefore we reject the null and conclude that the level of job satisfaction depends on the boss/employee gender relationship.

- 2. Using the Birthwgt file in the SASHELP directory (if you do not find it in the SASHELP directory, the data file is also posted on the datasets folder on blackboard so you can import it), examine if low birth weight and race are dependent. Also examine if low birth weight is related to married.
 - 1. H_0 = Low birth weight and race are independent.
 - H_1 = Low birth weight and race are dependent.

By conducting table analysis on SAS, we are given the expected frequency table (Appendix A.1), the chi-square value, and the corresponding p-value (Appendix A.2). With the p-value being less than the nominal alpha of .05, we can reject null and conclude that low birth weight and race are dependent.

Also, by looking at the distribution graph (Appendix A.3), we can observe that the frequency of low birth weight is higher for black babies compared to other races.

2. H_0 = Low birth weight and marital status are independent.

 H_1 = Low birth weight and marital status are dependent.

By conducting table analysis on SAS, we are given the expected frequency table (Appendix B.1), the chi-square value, and the corresponding p-value (Appendix B.2). With the p-value being less than the nominal alpha of .05, we can reject null and conclude that low birth weight and marital status are dependent.

Also, by looking at the distribution graph (Appendix B.3), we can observe that the frequency of low birth weight is higher for babies of married couples compared to unmarried couples.

3. A test was conducted to identify if "Weight_Status" and "BP_Status" are dependent. Interpret the results.

H_o = Weight status and blood pressure status are independent.

 H_1 = Weight status and blood pressure status are dependent.

Chi-square p-value (<0.0001) being less than alpha, we can reject null and conclude that the weight and blood pressure status are dependent.

By observing the distribution graph, we can see that for people with high blood pressure, the number of overweight people outnumbers the number of normal and underweight people. Also, for high BP, normal-weight people outnumber underweight people. For normal BP, we can observe a similar trend where overweight people outnumber normal and underweight people. However, for optimal BP, we can see normal weight and overweight are almost the same and they outnumber the underweight people. We can also observe that overweight people more frequently have high blood pressure followed by normal BP. Normal weight and underweight people more frequently have normal blood pressure.

APPENDIX A

A.1

Frequency	Table of LowBirthWgt by Race							
Expected		Race						
	LowBirthWgt	Asian	Black	Hispanic	Native	White	Total	
	No	4821 4798.7	12115 12982	20623 20337	869 865.31	53431 52876	91859	
	Yes	403 425.29	2018 1150.6	1516 1802.3	73 76.688	4131 4686.1	8141	
	Total	5224	14133	22139	942	57562	100000	

A.2

Statistics for Table of I	LowBirthWgt by Race
---------------------------	---------------------

Statistic	DF	Value	Prob
Chi-Square	4	834.5047	<.0001
Likelihood Ratio Chi-Square	4	720.0042	<.0001
Mantel-Haenszel Chi-Square	1	274.8167	<.0001
Phi Coefficient		0.0914	
Contingency Coefficient		0.0910	
Cramer's V		0.0914	

A.3

APPENDIX B

B.1

Frequency	Table of Married by LowBirthWgt			
		LowBirthWgt		
	Married	No	Yes	Total
	No	61245	4585	65830
	Yes	30614	3556	34170
	Total	91859	8141	100000

B.2

Statistics for Table of Married by LowBirthWgt

Statistic	DF	Value	Prob
Chi-Square	1	356.3369	<.0001
Likelihood Ratio Chi-Square	1	344.6650	<.0001
Continuity Adj. Chi-Square	1	355.8768	<.0001
Mantel-Haenszel Chi-Square	1	356.3333	<.0001
Phi Coefficient		0.0597	
Contingency Coefficient		0.0596	
Cramer's V		0.0597	

B.3

