LCD and Temperature Sensors

Connect LCD to ARM

PIN CONFIGURATION FOR 16X2 LCD


```
PIN 1 - VSS PIN9 - D2
PIN 2 - VCC PIN10 - D3
PIN 3 - VEE PIN11 - D4
PIN4 - RS PIN12 - D5
PIN5 - R/W PIN13 - D6
PIN6 - EN PIN14 - D7
PIN7 - D0 PIN15 - BACKLIGHT +
PIN8 - D1 PIN16 - BACKLIGHT GND
```


Command	Code
Clear Display, Cursor to Home	0x0001
Cursor to Home	0x0002
Entry Mode:	
Cursor Decrement, Shift off	0x0004
Cursor Decrement, Shift on	0x0005
Cursor Increment, Shift off	0x0006
Cursor Increment, Shift on	0x0007
Display Control:	
Display, Cursor, and Cursor Blink off	8000x0
Display on, Cursor and Cursor Blink off	0x000C
Display and Cursor on, Cursor Blink off	0x000E
Display, Cursor, and Cursor Blink on	0x000F
Cursor / Display Shift: (nondestructive move)	
Cursor shift left	0x0010
Cursor shift right	0x0014
Display shift left	0x0018
Display shift right	0x001C
Display Function (2 rows for 4-bit data; big)	0x002C
Display Function (2 rows for 4-bit data; small))	0x0028
Display Function (1 row for 4-bit data; big)	0x0024
Display Function (1 row for 4-bit data; small)	0x0020

RS	R/W	Mode
0	0	Write Command (Write IR)
0	1	Read Status (Read IR)
1	0	Write DR
1	1	Read DR

Lab 9.1

•請在LCD上顯示自己的組別(兩位數),並且讓它從左到右依序顯示,每間格0.3秒到下一個動畫(請使用Systick_Handler)

```
int main() {
init();
SysTick_Config(1300000UL);
while (1) {}
return 0;
}
```

```
void SysTick_Handler() {
...
}
```

```
void init() {
for (int i = 0; i < 8; i++) {
   TM_GPIO_Init(GPIOA, LCD_dataPin[i], TM_GPIO_Mode_OUT, TM_GPIO_OType_PP,
   TM_GPIO_PUPd_UP, TM_GPIO_Speed_Medium);
}

TM_GPIO_Init(GPIOB, LCD_VSPin, TM_GPIO_Mode_OUT, TM_GPIO_OType_PP,
   TM_GPIO_PUPd_UP, TM_GPIO_Speed_Medium);

TM_GPIO_Init(GPIOB, LCD_RSPin, TM_GPIO_Mode_OUT, TM_GPIO_OType_PP,
   TM_GPIO_PUPd_UP, TM_GPIO_Speed_Medium);

TM_GPIO_Init(GPIOB, LCD_RWPin, TM_GPIO_Mode_OUT, TM_GPIO_OType_PP,
   TM_GPIO_PUPd_UP, TM_GPIO_Speed_Medium);

TM_GPIO_Init(GPIOB, LCD_ENPin, TM_GPIO_Mode_OUT, TM_GPIO_OType_PP,
   TM_GPIO_Init(GPIOB, LCD_ENPin, TM_GPIO_Mode_OUT, TM_GPIO_OType_PP,
   TM_GPIO_PUPd_UP, TM_GPIO_Speed_Medium);

init_LCD();
}</pre>
```

```
void init_LCD() {
WriteToLCD(0x38, 1); // Function Setting
WriteToLCD(0x06, 1); // Entering Mode
WriteToLCD(0x0C, 1); // Display on
WriteToLCD(0x01, 1); // Clear Screen
WriteToLCD(0x80, 1); // Move to top left
}
```



```
void WriteToLCD(int input, int isCmd)
TM GPIO SetPinLow(GPIOB, LCD RSPin);
TM GPIO SetPinHigh (GPIOB, LCD RSPin);
TM GPIO SetPinLow(GPIOB, LCD RWPin);
for (int index = 0; index < 8; index++)
TM GPIO SetPinHigh(GPIOA, LCD dataPin[index]);
TM GPIO SetPinLow(GPIOA, LCD dataPin[index]);
TM GPIO SetPinHigh (GPIOB, LCD ENPin);
delay ms(10);
TM GPIO SetPinLow(GPIOB, LCD ENPin);
delay ms(10);
```

DS18B20

Programmable Resolution 1-Wire Digital Thermometer

Digital Thermometer

- Unique 1-Wire interface requires only one port pin for communication
- Multidrop capability simplifies distributed temperature sensing applications
- Requires no external components
- Can be powered from data line. Power supply
- range is 3.0V to 5.5V
- Zero standby power required
- Measures temperatures from -55°C to +125°C. Fahrenheit equivalent is -67°F to +25
- ±0.5°C accuracy from -10°C to +85°C
- Thermometer resolution is programmable from 9 to 12 bits
- Converts 12-bit temperature to digital word in 750 ms (max.)

PIN ASSIGNMENT

8-Pin SOIC (150 mil)

PIN DESCRIPTION

GND - Ground

DQ - Data In/Out

V_{DD} - Power Supply Voltage

NC - No Connect

One Wire Communication

• 透過DQ以及時序的搭配來達到input 以及output都透過一條線即可

Block Diagram

Scratchpad Memory

Temperature Representation

	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
LS BYTE	2 ³	2 2	21	20	2-1	2-2	2 -3	2-4
	BIT 15	BIT 14	BIT 13	BIT 12	BIT 11	BIT 10	BIT 9	BIT 8
MS BYTE	S	S	S	S	S	26	2 ⁵	24

S = SIGN

特性

- 64-bit ROM 儲存裝置的特別辨識碼(以便識別多個溫度計)
- Scratchpad 擁有 2-byte 溫度暫存器、警示暫存器(過高溫或是過低溫)及設定暫存器(精度設定),後三者為與 EEPROM 溝通所以是非揮發的。
- 溫度精度可以調成為 9 bits, 10 bits, 11 bits 及 12 bits
 - 分別為 0.5, 0.25, 0.125 及 0.0625
 - 預設為 12 bits

控制流程

- 每次要完成一個Operation都必須經過三個步驟
 - Initialization
 - ROM Command
 - DS18B20 Function Command

Initialization

• 透過 One Wire Protocol 告訴 DS18B20 我們準備要下指令給它了

ROM Command

- 若同時在匯流排上有很多 DS18B20 我們可以透過 ROM Command 來找尋特定的 DS18B20。
- 也可以用來偵測是否有任一 Device 有超溫或是溫度過低的現象。
 - Search ROM [0xF0]
 - Read ROM [0x33]
 - Match ROM [0x55]
 - Skip ROM [0xCC]
 - Alarm Search [0xEC]
- 若只有一個 DS18B20,我們可以使用 Skip ROM 這個指令

DS18B20 Function Command

- 這些指令是用來讀寫 Scratchpad Memory 的。
 - Convert T [0x44]
 - Write Scratchpad [0x4E]
 - Read Scratchpad [0xBE]
 - Copy Scratchpad [0x48]
 - Recall E^2 [0xB8]
 - Read Power Supply [0xB4]

Convert T[emperature]

- 開始讀取環境溫度並且利用ADC轉換
- 溫度將會放在 Scratchpad Memory 的前兩個 byte
- 不同精度需要不同的轉換時間
 - 9-bit -> 93.75 ms
 - 10-bit -> 187.5 ms
 - 11-bit -> 375 ms
 - 12-bit -> 750 ms
- 若轉換完成後,透過one wire 讀取一個 bit 會得到 1,反之則代表還正在進行溫度轉換。

Write Scratchpad

• 分別寫入 3 bytes 的資料到 Scratchpad 裡

Configuration:

BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
0	R1	R0	1	1	1	1	1

Figure 5. TH and TI Register Format

Figure 10. Configuration Register

Table 2. Thermometer Resolution Configuration

R1	R0	RESOLUTION (BITS)	MAX CONVERSION TIME	
0	0	9	93.75ms	(t _{CONV} /8)
0	1	10	187.5ms	(t _{CONV} /4)
1	0	11	375ms	(t _{CONV} /2)
1	1	12	750ms	(t _{CONV})

Copy Scratchpad

• 將 T_H , T_L 及 Configuration 從 Scratchpad Memory 寫到 EEPROM 裡面(非揮發性記憶體)。

Recall E^2

• 將 T_H , T_L 及 Configuration 從 EEPROM (非揮發性記憶體)讀到 Scratchpad Memory 裡面。

Read Power Supply

- 若接線方式為 Parasitic Mode (寄生方式),則在 one wire 1-bit 讀取 時會拿到 low
- 若接線方式為 External Power Supply, 則在 one wire 1-bit 讀取時會拿到 high

One Wire Protocol (Initialization)

- Master 把電壓壓低(0)最少 480 us
- Master 釋放 wire(改成input)並且因為pull-up resistor所以會電壓 拉高
- 當 DS18B20 偵測到正緣,它會等待 15us 到 60us 然後把電壓壓低 60us 到240us
- 當我們偵測到 DS18B20 有把電壓壓低,我們便知道 DS18B20 已經初始化了

One Wire Protocol (Initialization)


```
uint8_t OneWire_Reset(OneWire_t* OneWireStruct) {
/* Line low, and wait 480us */
ONEWIRE INPUT (OneWireStruct);
ONEWIRE LOW (OneWireStruct);
ONEWIRE OUTPUT (OneWireStruct);
ONEWIRE DELAY(480);
/* Release line and wait for 70us */
ONEWIRE INPUT (OneWireStruct);
ONEWIRE DELAY(70);
/* Check bit value */
/* Delay for 410 us */
ONEWIRE DELAY(410);
```

One Wire Protocol (Read 1 bit)

- 每一次的 read operation 最少都要有 60us
- 連續兩次之間要間格最少 1us
- •由 Master 把 DQ 拉低最少 1us 然後釋放DQ(改成input) 表示開始讀取。
- DS18B20 將會開始放 0 (low) 或是 1 (high) 在DQ上
- DS18B20 所送出來的 data 只會有效 15us (從Master把DQ拉低開始算),也就是說, Master 必須要在 15us 內把值讀進來

One Wire Protocol (Write 1 bit)

- 每一次的 write operation 最少都要有 60us
- 連續兩次之間要間格最少 1us
- Master Write 1
 - 由 Master 把 DQ 拉低
 - 15us 內釋放DQ(改成input)
- Master Write 0
 - 由 Master 把 DQ 拉低
 - 維持至少 60us

One Wire Protocol (Note)

- 所有的 Operation 都是透過負緣觸發(從高電位變成低電位的時候),因此請注意原本的電位。
- •由於 DQ 有接一個 Pull-up resistor,若將 DQ 設置為 input 時,空 角位的狀態會是 high,也就是當對方沒有給任何 input 時則為 high,當對方給 low 時,則為 low,對方給 high 時,還是 high

```
void OneWire_WriteBit(OneWire_t* OneWireStruct, uint8_t bit) {
   ONEWIRE_INPUT(OneWireStruct);
   if (bit) {
      /* Set line low */
      ONEWIRE_LOW(OneWireStruct);
      ONEWIRE_OUTPUT(OneWireStruct);
      ...
      /* Bit high */
      ONEWIRE_INPUT(OneWireStruct);
      ...
   } else {
      /* Set line low */
      ONEWIRE_LOW(OneWireStruct);
      ONEWIRE_OUTPUT(OneWireStruct);
      ONEWIRE_OUTPUT(OneWireStruct);
      ...
   }
   ONEWIRE_INPUT(OneWireStruct);
}
```

接線 (External Power Supply)

接線 (Parasitic Mode)

Reference

• http://datasheets.maximintegrated.com/en/ds/DS18B20.pdf (Datasheet)