TASK 3

School of Electronics Engineering VIT, Vellore

Registration No.	17BEC0656				
Student Name	SPARSH ARYA				
Course Code	ECE3003	CE3003 Slot & Semester			
Course code	ECESO03	Siot & Semester	FALL SEM 2019-20		
Course Name	Microcontroller and its applica	ations			
Program Title	TASK 3				
Date of Exp.	20-09-19	Date of Submission			
Faculty	A.Karthikeyan				

To write an 8051 ALP to generate a square wave of frequency 1kHz at pin 0 of port 1

Tools Required:

- 1. The timer mode is configured by transferring appropriate data to the TMOD register.
- 2. The initial count is transferred to the TL and TH registers
- 3. The port pins are complemented for generating the square wave and a delay sub routine is called
- 4. The delay subroutine is written with the help of timer.
- 5. The timer output is viewed using the Keil software.
- 6. The frequency of the output wave is measured by measuring the time period.
- 7. The inverse of the time period is calculated and compared to 1KHz.

ORG - - - - PSEUDO INSTRUCTION	Memory Address	Label	Mnem onics	Operands	addressing mode used	Machine cycle Require d	Memory Byte Require d	Type of Instruction	Comments	Flags getting affected by the Instruction.
TE TRANSFE R MODE CONFIGU ARTION 0002H HERE MOV TL1,#33H IMMEDIA TE 1 2 DATA TRANSFE R COUNT LOAD 0004H MOV TH1,#0FEH IMMEDIA TE 1 2 DATA TRANSFE R COUNT LOAD 0006H CPL P1.0 - 1 1 BIT COMPLIM ENT TO GENERAT E WAVE 0007H ACAL DELAY - 2 2 BRANCH DEALY TO GENERAT E TIME PERIOD 0009H SJMP HERE - 2 2 BRANCH LOOPING STATEME NT 000CH DELAY SETB TR1 - 1 1 BIT STARTS COUNTER OPERATI			ORG	-	-	-	-	INSTRUC-		
TE TRANSFE COUNT R COUNT LOAD O004H MOV TH1,#0FEH IMMEDIA TE TRANSFE R COUNT LOAD O006H CPL P1.0 - 1 1 BIT PORT COMPLIM ENT TO GENERAT E WAVE O007H ACAL L DELAY - 2 2 BRANCH DEALY TO GENERAT E TIME PERIOD O009H SJMP HERE - 2 2 BRANCH LOOPING STATEME NT O00CH DELAY SETB TR1 - 1 1 BIT MANIPUL ATION STARTS COUNTER OPERATI	0000Н		MOV	TMOD,#10H		1	2	TRANSFE	MODE CONFIGU	
TE TRANSFE COUNT LOAD O006H CPL P1.0 - 1 1 1 BIT PORT COMPLIM ENT TO GENERAT E WAVE O007H ACAL L L DELAY - 2 2 BRANCH DEALY TO GENERAT E TIME PERIOD O009H SJMP HERE - 2 2 BRANCH LOOPING STATEME NT O00CH DELAY SETB TR1 - 1 1 BIT MANIPUL ATION OPERATI	0002Н	HERE	MOV	TL1,#33H		1	2	TRANSFE	COUNT	
MANIPUL COMPLIM ENT TO GENERAT E WAVE	0004Н		MOV	TH1,#0FEH		1	2	TRANSFE	COUNT	
L TO GENERAT E TIME PERIOD 0009H SJMP HERE - 2 2 BRANCH LOOPING STATEME NT 000CH DELAY SETB TR1 - 1 1 BIT MANIPUL ATION OPERATI	0006Н		CPL	P1.0	-	1	1	MANIPUL	COMPLIM ENT TO GENERAT	
O00CH DELAY SETB TR1 - 1 BIT STARTS MANIPUL COUNTER ATION OPERATI	0007Н			DELAY	-	2	2	BRANCH	TO GENERAT E TIME	
MANIPUL COUNTER ATION OPERATI	0009Н		SJMP	HERE	-	2	2	BRANCH	STATEME	
	000СН	DELAY	SETB	TR1	-	1	1	MANIPUL	COUNTER OPERATI	
000EH AGAIN JNB TF1,AGAIN - 3 2 BRANCH LOOPING STATEME NT	000ЕН	AGAIN	JNB	TF1,AGAIN	-	3	2	BRANCH	STATEME	
O011H CLR TR1 - 1 1 BIT STOP MANIPUL TIMER ATION ACTION	0011H		CLR	TR1	-	1	1	MANIPUL	TIMER	

0012Н	CLR	TF1	-	1	1	BIT MANIPUL ATION	CLEAR TIMER FLAG	
RET								
END								

Results and Observations

OUTPUT BEFORE RUNNING THE CODE

OUTPUT AFTER RUNNING THE CODE.

Result: The 8051 has successfully performed the operation of generating a timer of 1KHz. The waveform has been plotted by Keil software.

To write an 8051 ALP to generate a square wave of frequency 0.5kHz at pin 0 of port 1

Tools Required:

- 1. The timer mode is configured by transferring appropriate data to the TMOD register.
- 2. The initial count is transferred to the TL and TH registers.
- 3. The port pins are complemented for generating the square wave and a delay sub routine is called
- 4. The delay subroutine is written with the help of timer.
- 5. The timer output is viewed using the Keil software.
- 6. The frequency of the output wave is measured by measuring the time period.
- 7. The inverse of the time period is calculated and compared to 1KHz.

		onics		addressing mode used	Machine cycle Required	Memory Byte Require d	Type of Instruction	Comments	Flags getting affected by the Instruction.
		ORG	-	-	-	-	PSEUDO INSTRUC- TION		
0000Н		MOV	TMOD,#01 H	IMMEDIA TE	1	2	DATA TRANSFE R	TIMER MODE CONFIGU ARTION	
0002Н	HERE	MOV	TL0,#66H	IMMEDIA TE	1	2	DATA TRANSFE R	INITIAL COUNT LOAD	
0004Н		MOV	THO,#0FCH	IMMEDIA TE	1	2	DATA TRANSFE R	INITIAL COUNT LOAD	
0006Н		CPL	P1.0	-	1	1	BIT MANIPUL ATION	PORT COMPLIM ENT TO GENERAT E WAVE	
0007Н		ACAL L	DELAY	-	2	2	BRANCH	DEALY TO GENERAT E TIME PERIOD	
0009Н		SJMP	HERE	-	2	2	BRANCH	LOOPING STATEME NT	
000СН	DELAY	SETB	TR0	-	1	1	BIT MANIPUL ATION	STARTS COUNTER OPERATI ON	
000ЕН	AGAIN	JNB	TF0,AGAIN	-	3	2	BRANCH	LOOPING STATEME NT	
0011H		CLR	TR0	-	1	1	BIT MANIPUL ATION	STOP TIMER ACTION	

0012Н	CLR	TF0	-	1	1	BIT MANIPUL ATION	CLEAR TIMER FLAG	
RET								
END								

Results and Observations

OUTPUT BEFORE RUNNING THE CODE

OUTPUT AFTER RUNNING THE CODE.

Result:

The 8051 has successfully performed the operation of generating a timer of 1KHz. The waveform has been plotted by Keil software.

To write an 8051 ALP to toggle the bits of port 0,1 and 2.

Tools Required:

- 1. Transfer high bits to the ports port 0, port 1 and port 2.
- 2. Call the delay sub routine using ACALL function.
- 3. Transfer low bits to the ports 0 1 and 2.
- 4. Call the delay sub routine using ACALL function in order to enable toggle.
- 5. Using SJMP instruction repeat the above steps iteratively
- 6. Using the nested loop fashion write a delay sub routine.
- 7. Observe the output at the respective ports.
- 8. Observe the waveform and its characteristics.

Memory Address	Label	Mnem onics	Operands	addressing mode used	Machine cycle Required	Memory Byte Require d	Type of Instruction	Comments	Flags getting affected by the Instruction.
		ORG	-	-	-	-	PSEUDO INSTRUC- TION		
0000Н	HERE	MOV	P0,#55H	-	1	2	DATA TRANSFE R		
0002Н		MOV	P1,#55H	-	1	2	DATA TRANSFE R		
0004H		MOV	P2,#55H	-	1	2	DATA TRANSFE R		
0006Н		ACAL L	DELAY	-	2	2	BRANCH		
0008Н		MOV	P0,#0AAH	-	1	2	DATA TRANSFE R		
000AH		MOV	P1,#0AAH	-	1	2	DATA TRANSFE R		
000CH		MOV	P2,#0AAH	-	1	2	DATA TRANSFE R		
000EH		SJMP	HERE	-	2	2	BRANCH		
0010H	DELAY	MOV	R1,#200H	IMMEDIA TE	1	2	DATA TRANSFE R		
0012H	BACK	MOV	R2,#200H	IMMEDIA TE	1	2	DATA TRANSFE R		
0014H	AGAIN	DJNZ	R2,AGAIN	-	2	2	BRANCH		
0016Н	-	DJNZ	R1,BACK	-	2	2	BRANCH		
RET									

END					

OUTPUT

R1=71H

R0=0AH

Results and Observations

Result:

The 8051 ALP to perform toggling of bits at the ports has been successfully verified with proper waveforms.

To write an 8051 ALP to transfer data from port 1 to port 2

Tools Required:

- 1. Data to be handled is initially stored in the Accumulator register.
- 2. The data is then transferred to the Port 1.
- 3. The data is transferred from Port 1 to Accumulator
- 4. Then, Data transfer from Accumulator to Port 2 occurs.
- 5. Finally, the output at the ports are observed and the waveform is plotted.

Memory Address	Label	Mnem onics	Operands	addressing mode used	Machine cycle Required	Memory Byte Require d	Type of Instruction	Comments	Flags getting affected by the Instruction.
		ORG	-	-	-	-	PSEUDO INSTRUC- TION		
0000Н		MOV	A,#0FFH	IMMEDIA TE	1	2	DATA TRANSFE R	Data to be transferre d is copied into CPU register	
0002Н		MOV	P1,A	REGISTER DIRECT	1	1	DATA TRANSFE R	Data first sent to port 1	
0003Н	HERE	MOV	A,P1	REGISTER DIRECT	1	1	DATA TRANSFE R	Intended data transfer from port	

							to CPU first	
0004Н	MOV	P2,A	REGISTER DIRECT	1	1	DATA TRANSFE R	Data transfer from CPU to another PORT	
0005Н	SJMP	HERE	-	2	2	BRANCH	Jump statement to execute a loop	
	END	-	-	_	-	PSEUDO		

Program:

OUTPUT

A = 0FFH

Results and Observations

Result:

The 8051 ALP to perform transfer of data between ports via clock pulses has been successfully executed.

Hardware implementation of port pin output toggling visualized as blinking of LED

Tools Required:

- 1. Transfer high bits to the ports 0,1 and 2.
- 2. Call the delay sub routine using ACALL
- 3. Transfer low bits to the ports p0,p1,p2.
- 4. Call the delay sub routine using ACALL
- 5. Using SJMP instruction repeat the above steps iteratively
- 6. Using the nested loop fashion write a delay sub routine.

Memory Address	Label	Mnem onics	Operands	addressing mode used	Machine cycle Required	Memory Byte Require d	Type of Instruction	Comments	Flags getting affected by the Instruction.
		ORG	-	-	-	-	PSEUDO INSTRUC- TION		
0000Н	HERE	MOV	P0,#55H	-	1	2	DATA TRANSFE R		
0002Н		MOV	P1,#55H	-	1	2	DATA TRANSFE R		
0004H		MOV	P2,#55H	-	1	2	DATA TRANSFE R		
0006Н		ACAL L	DELAY	-	2	2	BRANCH		
0008Н		MOV	P0,#0AAH	-	1	2	DATA TRANSFE R		
000AH		MOV	P1,#0AAH	-	1	2	DATA TRANSFE R		
000CH		MOV	P2,#0AAH	-	1	2	DATA TRANSFE R		
000ЕН		SJMP	HERE	-	2	2	BRANCH		
0010H	DELAY	MOV	R1,#200H	IMMEDIA TE	1	2	DATA TRANSFE R		
0012H	BACK	MOV	R2,#200H	IMMEDIA TE	1	2	DATA TRANSFE R		
0014H	AGAIN	DJNZ	R2,AGAIN	-	2	2	BRANCH		
0016Н	-	DJNZ	R1,BACK	-	2	2	BRANCH		
RET									

END						
OUTPU	ΙΤ					
R	1=71H					
R	0=0AH					
Results	and O	hserva	ations			
	, and 0	2001 40	200110			

DISPLAY OF HARDWARE OUTPUT

Result:

The 8051 ALP to perform blinking of LED has been successfully executed and outputs have been verified.

Hardware implementation of data transfer from port 1 to port 2

Tools Required:

- 1. Data to be handled is initially stored in the Accumulator register.
- 2. The data is then transferred to the Port 1
- 3. Actual data transfer from Port 1 to Accumulator
- 4. Data transfer from Accumulator to Port 2.
- 5. The output is observed at the hardware.

Memory Address	Label	Mnem onics	Operands	addressing mode used	Machine cycle Required	Memory Byte Require d	Type of Instruction	Comments	Flags getting affected by the Instruction.
		ORG	-	-	-	-	PSEUDO INSTRUC- TION		
0000Н		MOV	A,#0FFH	IMMEDIA TE	1	2	DATA TRANSFE R	Data to be transferre d is copied into CPU register	
0002Н		MOV	P1,A	REGISTER DIRECT	1	1	DATA TRANSFE R	Data first sent to port 1	
0003Н	HERE	MOV	A,P1	REGISTER DIRECT	1	1	DATA TRANSFE R	Intended data transfer from port to CPU first	
0004H		MOV	P2,A	REGISTER DIRECT	1	1	DATA TRANSFE R	Data transfer from CPU to	

							another PORT	
0005Н	SJMP	HERE	-	2	2	BRANCH	Jump statement to execute a loop	
	END	-	-	-	-	PSEUDO		

Output:

A = 0FFH

Results and Observations

Result:
The 8051 ALP to perform transfer of data from port 1 to 2 has been successfully executed and outputs have been verified.