Kara findet automatisch einen Weg durch den Wald

Kara hat einen Autopiloten, der verhindert, dass sie an	8.		¥			A.	馬			.
Baumstümpfen anstößt.	460		¥		<i>-</i>	400°	400°	<i>A</i>		400
Im Bild ist der Weg, den sie ausgehend von der linken	⋖	∢	∢		<i>₽</i>			∢	∢	∢
unteren Ecke nimmt, durch Pfeilspitzen markiert.			450	A.	- A-	100				<u> </u>
Der Autopilot von Kara funktioniert sehr einfach – sie	#80 #8		<i>.</i>		480 			办		4750
prüft vor jedem Schritt, ob sie vor einem Baum steht	悬				A.			<i>A</i> -		
oder nicht und verhält sich dann unterschiedlich.	8	>	Y	<u> </u>	-		A			_
Beschreibe diesen Sachverhalt mit eigenen Worten.	_		¥		425			瓜		480 A
2. Die Methode isTreeFront () von Kara gibt true (wahr) Baum steht. Ansonsten gibt sie false (falsch) zurück. Im Struktogramm kann diese Methode in einer bedingt Vervollständige dieses Struktogramm, mit den Methode und this.move().	ten A	nw	eisı	ung	g ve	erwe	end	et v	ver	
Wahr					_		_		_	Falsc
3. Schreibe das Struktogramm aus 2. in Java-Code um:										
4. Öffne die Datei "12 Kara bedingte Anweisung" in Blue 2. in die Methode act ().	eJ und	d sc	hre	ibe	dei	n Ja	ıva-	-Co	de a	aus
5. Teste dein Programm.										

gleichen Weg. Um ein wenig mehr Abwechslung ins Spiel zu bringen wird die **Falsch-Sequenz** der bedingten Anweisung durch folgenden Code ersetzt:

6. Mit dem bisherigen Autopiloten läuft Kara in der Regel nach einiger Zeit immer auf dem

Kara findet automatisch einen Weg durch den Wald

		Falsch		
int zufallsZahl;				
zufallsZahl=zufall(6);				
zufallsZahl==5				
Wahr		Falsch		
this.turnLeft();	this.move()	;		

Beschreibe in eigenen Worten, was diese Sequenz bewirkt – die Methode private in
zufall(int grenze) gibt eine Zufallszahl zwischen 0 und grenze-1 zurück.

Duo anomamiano diego Cogueng in dein Ierro Duo anomam eine				
Programmiere diese Sequenz in dein Java-Programm ein:				

7. Bedingungen für bedingte Anweisungen

A	В	С
if (zahl == 5){	if (this.isTreeFront()){	if (isVisible){
die oder sein kann.	die den Wertoderzurückgibt.	die den Wert, oderhaben kann.

Datentyp für B und C

Java stellt für die Speicherung von wahr/falsch-Werten den Datentyp boolean zur Verfügung.

- Deklaration des privaten Attributs is Visible:
- Kopf der öffentlichen Methode isTreeFront():

- 8. Programmieraufgaben
- a) Setze den Java-Code von 6. in der act()-Methode des Käfers um.
- b) Teste dein Programm.
- c) Suche die Stelle in der Klasse Welt, in der ein Käfer erzeugt wird und verändere das Programm so, dass jetzt zwei oder mehr Käfer durch den Wald laufen.