Feature Engineering, Bias-Variance Tradeoff (Reading: <u>Ch 14</u>, <u>Ch 15</u>)

Learning goals:

- Understand how feature engineering extends our repertoire of models.
- Learn about the many factors that affect the bias-variance tradeoff.

UC Berkeley Data 100 Summer 2019 Sam Lau

(Slides adapted from Sandrine Dudoit and Joey Gonzalez)

Announcements

- HW5 out, due Friday
- HW6 out Friday, due Tuesday

Feature Engineering

Linear Models Level Up

- Horsepower and mpg have a nonlinear relationship.
- Can still use linear regression to capture this!
- Feature engineering: creating new features from data to give model more complexity.

Adding Features

- For now, predict MPG from horsepower alone.
- Insight: Add a new column to X with horsepower².

	bias	hp	hp^2
0	1	130.0	16900.0
1	1	165.0	27225.0
2	1	150.0	22500.0
395	1	84.0	7056.0
396	1	79.0	6241.0
397	1	82.0	6724.0

Now we fit a quadratic function!

$$f_{\theta}(\mathbf{x}) = \theta_0 + \theta_1 x_1 + \theta_2 x_2$$
$$= \theta_0 + \theta_1 h p + \theta_2 h p^2$$

• This is still linear in **model weights** θ , so we call it a linear model.

(Demo)

Polynomial Regression

- For polynomial features of degree n, usually add every possible combination of columns.
 - 4 original columns, degree 2:

$$x_1, x_2, x_3, x_4,$$

 $x_1^2, x_2^2, x_3^2, x_4^2,$
 $x_1x_2, x_1x_3, x_1x_4, x_2x_3, x_2x_4, x_3x_4$

- Can end up being a lot of columns
- To cope, use kernel trick (covered in advanced courses)

Categorical Features

- Origin column is correlated with MPG. Can we use it?
- Idea: Encode categories as numbers in a smart way.
- Discuss: Why can't we just encode "usa" as 0, "japan" as 1, "europe" as 2?

One-Hot Encoding

 One-hot encoding makes one new column for each unique category:

One-Hot Encoding

• What do you expect the largest weight to be?

origin=usa	origin=europe	origin=japan
1	0	0
1	0	0
0	1	0
1	0	0
0	0	1
0	0	1

Can interpret weight as "contribution" of that category

One Hot Problem

- Problem: Adding a new column for each category makes columns of X linearly dependent! Why?
- One-hot columns always sum to 1:

bias	origin=usa		origin=europe	origin=japan
1		1	0	0
1		1	0	0
1		0	1	0
			+	+
1		1	0	0
1		0	0	1
1		0	0	1

This makes normal equations unsolvable.

$$\hat{oldsymbol{ heta}} = (oldsymbol{X}^ op oldsymbol{X})^{-1} oldsymbol{X}^ op oldsymbol{y}$$

Not invertible ^

Weight Interpretation

- Invertibility isn't a problem for gradient descent, but this still affects how we interpret the model weights.
- Linearly dependent columns can "swap" weights:
 - Left: All categories matter. Right: No categories matter!

Drop it Like it's Hot

- Simple fix: Drop the last one-hot column.
- In this case, the weight for USA can be interpreted as "change in MPG between USA and Japan".

Features feat. More Features

- Feature engineering is often domain-specific:
 - Standardizing: "How many SDs away from average?"
 - Log transform: Used to fit exponential models.
 - Absolute difference: "How different is the current temperature from 70°?"
 - Binning data, then one-hot encoding: "Are we driving during morning rush hour? Evening rush hour?"
 - Date-related features: year, month, weekday
 - Image-related features: blurring, edge detection, etc.

Break! Fill out Attendance: http://bit.ly/at-d100

The Bias-Variance Tradeoff

The Feature Question

- How do we know when to stop adding features?
 - E.g. degree 2 polynomial? Degree 10 polynomial?
- In general, adding a new feature decreases training error.
 Why?

How do we decide to keep a feature?

- Adding too many features causes overfitting.
- Approach from Data 8: split sample into a training set, validation set, and test set.
 - Fit all models on training set
 - Choose model with lowest validation error
 - Use test error as final error
- Tomorrow: cross-validation technique
- Intuition: we're trying to estimate model error on unseen data, so we need to validate using untrained data.

Bias Redux

- Remember estimator bias? Idea also applies to models.
- Unbiased models are able to fit the population model.
- If population model is:

Variance Redux

- Remember estimator variance?
- Models with high variance have very different fits for the same data.

Risk Redux

• Model risk is the expected loss for all possible model fits and for all input-output points in the population γ , z.

$$R(f_{\hat{\theta}}) = E(\ell(\gamma, f_{\hat{\theta}}(z)))$$

$$R(f_{\hat{\theta}}) = (E[f_{\hat{\theta}}(z)] - f_{\theta}^*(z))^2 + \mathrm{Var}(f_{\hat{\theta}}(z)) + \mathrm{Var}(\epsilon)$$

$$\mathbf{Model \, bias}$$

$$\mathbf{Model \, variance}$$

$$\mathbf{Irreducible \, error}$$

- Simple models have high bias and low variance
- Complex models have low bias and high variance

Bias and Var Visualized

3.5

Bias of linear model

Population

Bias and Var Visualized

Bias of model

Population

Bias-Variance Breakdown

If population model is linear and we use a linear model,
 bias is 0 (we get pop model on average), and:

$$\operatorname{Var}(f_{\hat{\theta}}(z)) \approx \sigma^2 \frac{p}{n}$$

 σ^2 is the variance of the error p is the number of features in training data n is the number of points in training data

- Decrease variance: remove features or collect more data
- Similar breakdown for all models but math is complicated.
 - E.g. For kNN, variance increases as k decreases.

Using the Bias-Variance Tradeoff

- Let's analyze models in terms of bias and variance.
- Model underfitting caused by too much bias.
- Model overfitting caused by too much variance.

Using the Bias-Variance Tradeoff

- Training error only reflects bias.
- Test error reflects bias and variance.
- This is why we can't see overfitting from training error.
- Test error goes down, then back up as var increases

Using the Bias-Variance Tradeoff

- Adding a good feature decreases bias.
- Adding any feature increases variance even if useless.
- Noise in test set only affects irreducible error $Var(\epsilon)$.
- Noise in training set only affects bias and Var(f).
- You need lots of data to model complex relationships.
 - E.g. neural networks have low bias but very high variance, so we often need tons of data to use them.

Summary

- Feature engineering generates flexible models using linear regression.
- The bias-variance tradeoff gives us guidelines for selecting models.
- Don't trust training error alone!