

B3 Planning under Uncertainty

Hanna Kurniawati

This session

- Uncertainty is ubiquitous in robotics
- Frameworks for planning (sequential decisionmaking) under uncertainty
 - Markov Decision Processes (MDPs)
 - Partially Observable MDPs (POMDPs)
 - Reinforcement Learning
- Offline Solving: Value Iteration
 - Value Iteration for MDP
 - Point-based Value Iteration for POMDP
- Online Solving: MCTS-based
 - MDP
 - POMDP

Uncertainty is ubiquitous in Robotics

https://www.pinterest.com.au/pin/205054589256148973/?d=t&mt=login

Of course ...

Not just in robot manipulation

https://metro.tempo.co/read/1207214/semrawut-di-tanah-abang-parkir-liar-dan-pedagang-di-trotoar/full&view=ok

The ubiquity of uncertainty ...

- Deterministic planning assumes knowledge about:
 - What will happen after an action is performed
 - The current state of the system
- In this session, we'll discuss how to account for uncertainty during planning
 - Ideally, we want general purpose methods: The method to compute the strategy can be used for many different types of robots in many different scenarios

This session

- ✓ Uncertainty is ubiquitous in robotics
- Frameworks for planning (sequential decisionmaking) under uncertainty
 - Markov Decision Processes (MDPs)
 - Partially Observable MDPs (POMDPs)
 - Reinforcement Learning
- Offline Solving: Value Iteration
 - Value Iteration for MDP
 - Point-based Value Iteration for POMDP
- Online Solving: MCTS-based
 - MDP
 - POMDP

Markov Decision Processes (MDPs)

- Discrete time step
- At any given time step, the agent's state is known exactly (fully observed)
- But, the effects of actions are not known exactly before the action is executed (non-deterministic action effects)
 - This means, a solution in the form of a path / trajectory is no longer sufficient
 - Instead, we need to compute a mapping from states to actions (namely, a policy)

Markov Decision Processes (MDPs)

T(s, a, s'): Transition function, cond. prob. func P(s' I s, a) s, s': States, a: action

R: Reward function

Defining an MDP Problem

Formally defined as a 4-tuples

(S, A, T, R):

- S: State space.
- A: Action space.
- T: transition function.

$$T(s, a, s') = P(S_{t+1} = s' | S_t = s, A_t = a).$$

R: Reward function.

R(s) or R(s, a) or R(s, a, s')

Markov Decision Processes (MDPs)

- Solving an MDP = finding the best policy π^*
- What does "best" means?
- Many objectives have been proposed
- Some commonly used are the policy that maximizes
 - Myopic: $E[R_t(s,a)|\pi,s]$
 - Finite horizon: $E\left[\sum_{t=0}^{k} R_t(s, a) \mid \pi, s_0\right]$
 - Infinite horizon: $E\left[\sum_{t=0}^{inf} \gamma^t R_t(s,a) \mid \pi, s_0\right]$

 s_0 : initial state

s: state

a: action

 $R_t(s, a)$: immediate

reward

γ: discount factor with

 $0 < \gamma < 1$

Value of a policy

• The expected total reward the agent will gather if it executes a policy π is called the value function and is denoted by V_{π} .

Optimal Value function

- Each policy has a corresponding value function.
- An optimal policy π^* is a policy whose corresponding value function is the maximum.
 - Meaning at each state, $V_{\pi^*}(s)$ is higher than (or at least the same as) V_{π} for any other policy π .
 - V_{π^*} is often simplified as V^*
 - In other words,

$$V^*(s) = \max_{a} \left(R(s, a) + \gamma \sum_{s'} T(s, a, s') V^*(s') \right)$$

A note

- There is a unique optimal value function V*
- But, there might be more than one optimal policy
 - If we know V*, the optimal policy can be generated easily

$$\pi^*(s) = \operatorname*{argmax}_{a} \left(R(s, a) + \gamma \sum_{s'} T(s, a, s') V^*(s') \right)$$

Markov Decision Processes (MDPs)

- Discrete time step
- At any given time, the agent's state is known exactly (fully observed)
- But, the effects of actions are not known exactly before the action is executed (non-deterministic action effects)
 - This means, a solution in the form of a path / trajectory is no longer sufficient
 - Instead, we need to compute a mapping from states to actions (namely, a policy)

This session

- ✓ Uncertainty is ubiquitous in robotics
- Frameworks for planning (sequential decisionmaking) under uncertainty
 - ✓ Markov Decision Processes (MDPs)
 - Partially Observable MDPs (POMDPs)
 - Reinforcement Learning
- Offline Solving: Value Iteration
 - Value Iteration for MDP
 - Point-based Value Iteration for POMDP
- Online Solving: MCTS-based
 - MDP
 - POMDP

Partially Observable Markov Decision Processes (POMDPs)

- Discrete time step
- The effects of actions are not known exactly before the action is executed (non-deterministic action effects)
- In addition, at any given time, the agent's state is NOT known exactly (partially observed)

Partially Observable Markov Decision Processes (POMDPs)

Z(s', a, o): Observation function $P(o \mid s', a)$; $o \in O$

s': States, a: action, o: Observation

T(s, a, s'): Transition function P(s' I s, a)

s, s': States, a: action

R: Reward function

Partially Observable Markov Decision Processes (POMDPs)

Belief: Distribution over states

Solving a POMDP: Computing the best policy –maps beliefs to the best action

POMDP Model

- Main components:
 - State space (S)
 - Action space (A)
 - Observation space (O)

POMDP Model

- Main components:
 - State space (S) >
 - Action space (A)
 - Observation space (O)
 - Transition function (T)
 - T = P(s' | s, a)
 - Observation function (Z)
 - Z = P(o | s', a)
 - Reward function (R)
 - R(s, a)

Key to POMDPs: Belief

- Belief: distribution over the state space
 - The belief space is a simplex with dim = ISI-1
- Policy: mapping from beliefs to actions.

Key to POMDPs: Belief

- A belief is a sufficient statistics of the entire history of actions performed and observations perceived
- Hence, the 1st order Markov in POMDP is only in its model (transition and observation function)
- POMDPs policy is computed wrt to the entire history because it is computed wrt beliefs

Best policy

 Maps each belief to an action that maximizes the following objective function

$$V^*(b) = \max_{a \in A} \left(\sum_{s \in S} R(s, a)b(s) + \gamma \sum_{o \in O} P(o|b, a)V^*(b') \right)$$

Expected immediate reward

Expected total future reward

b': next belief after the system at belief b performs action a and observes o

 γ : discount factor (0,1)

Computationally intractable [Papadimitriou & Tsikilis'87, Madani, et.al.'99].

Relation between MDPs & POMDPs

 A POMDP can be viewed as an MDP in the belief space

$$V^*(b) = \max_{a \in A} \left(\sum_{s \in S} R(s, a)b(s) + \gamma \sum_{o \in O} P(o|b, a)V^*(b') \right)$$

belief space: R(b,a)

Immediate reward in the Total future reward in the belief space: $\sum_{a \in \mathcal{O}} P(b' \mid b, a, o) V(b')$

MDP can be viewed as as a degenerate POMDP

This session

- ✓ Uncertainty is ubiquitous in robotics
- Frameworks for planning (sequential decisionmaking) under uncertainty
 - ✓ Markov Decision Processes (MDPs)
 - ✓ Partially Observable MDPs (POMDPs)
 - Reinforcement Learning
- Offline Solving: Value Iteration
 - Value Iteration for MDP
 - Point-based Value Iteration for POMDP
- Online Solving: MCTS-based
 - MDP
 - POMDP

Intuitively,

- Reinforcement learning (RL) is a machine learning approach that learns by doing
 - The agent is not provided with a model of how the robot's world works and/or which states are good
 - Rather, the agent learns by trying and evaluations states and actions

Formally,

- An RL agent is an MDP agent where the transition and/or reward functions are not initially known
 - S: State space.
 - A: Action space.
 - T: transition function.

$$T(s, a, s') = P(S_{t+1} = s' | S_t = s, A_t = a).$$

- R: Reward function.
 - R(s, a).
- Need to try & explore

At least one of these is not known

POMDP for Reinforcement Learning (RL) aka. Bayesian Reinforcement Learning

RL: MDP with missing components

- State space (S_{MDP})
- Action space (A_{MDP})
- Transition function (T_{MDP})
- Reward function (R_{MDP})

Not known

Construct a POMDP where

- The states are MDP states X parameters of the T_{MDP} & R_{MDP}
- Essentially, partial observability on which MDP model is the right model
- A, T, R follows from the particular MDP model
- O & Z are observations & observation function about which MDP model is correct

POMDP for Reinforcement Learning (RL) aka. Bayesian Reinforcement Learning

Beliefs in POMDP becomes distribution over the possible MDP models

POMDP for Reinforcement Learning (RL) aka. Bayesian Reinforcement Learning

 Belief update means updates in the agent's understanding on which model is correct

POMDP automatically balances the trade-off between generating accurate model and to achieve the goal

In many cases, can achieve the goal without knowing the exact model

In a nutshell...

MDP:

- Non-deterministic action effects + fully observable
- A degenerate POMDP

POMDP:

- Non-deterministic action effects + partially observable
- MDP in the belief space

• RL:

- MDP without transition and/or reward functions
- Problem-wise, it's essentially a POMDP, where partial observability is caused by incomplete information about the underlying MDP problem.

This session

- ✓ Uncertainty is ubiquitous in robotics
- ✓ Frameworks for planning (sequential decision-making) under uncertainty
 - ✓ Markov Decision Processes (MDPs)
 - ✓ Partially Observable MDPs (POMDPs)
 - ✓ Reinforcement Learning
- Offline Solving: Value Iteration
 - Value Iteration for MDP
 - Point-based Value Iteration for POMDP
- Online Solving: MCTS-based
 - MDP
 - POMDP

Solving: Offline vs Online

Offline

- Compute the policy before runtime
- During runtime, only use the policy
 - Can think of the policy as a lookup table

Online

- At every step, the agent is given a short amount of time to compute the best action for the current step
- Combine offline and online

Value Iteration for MDP

Offline method; Iterate calculating the optimal value

of a state until convergence.

Algorithm:

Initialize $V^0(s) = R(s, a)$ for all s Loop

For all s {

$$V^{t+1}(s) = \max_{a} \left(R(s,a) + \gamma \sum_{s'} T(s,a,s') V^{t}(s') \right)$$

}

t = t + 1

Until $V^{t+1}(s)=V^t(s)$ for all s (impl: max_s $IV^{t+1}(s)-V^t(s)I < 1e-7$)

Guarantee to converge to V*

Often called value update or Bellman update or Bellman backup.

Value Iteration – Approximately Optimal

- No guarantee we'll reach optimal in finite time.
- However, it's guaranteed we can get close to optimal within finite time. In fact, polynomial in ISI, IAI, $1/(1-\gamma)$.
- If we want to ensure that we are ε close to optimal, then #iterations should be

$$\left[\frac{\log\left(\frac{2R_{max}}{\varepsilon(1-\gamma)}\right)}{\log\left(\frac{1}{\gamma}\right)}\right]$$

Value Iteration – Issues

- Issues when the state space is large?
 - Computing Bellman update at every steps
 - Policy representation
- POMDP can be viewed as MDP in the belief space
 - Value iteration?

This session

- ✓ Uncertainty is ubiquitous in robotics
- ✓ Frameworks for planning (sequential decisionmaking) under uncertainty
 - ✓ Markov Decision Processes (MDPs)
 - ✓ Partially Observable MDPs (POMDPs)
 - ✓ Reinforcement Learning
- Offline Solving: Value Iteration
 - √ Value Iteration for MDP
 - Point-based Value Iteration for POMDP
- Online Solving: MCTS-based
 - MDP
 - POMDP

Point-based Value Iteration

Idea:

- Represent the belief space with a set of small but representative sampled beliefs
- Iteratively apply Bellman update only on this set of sampled beliefs
- Interpolate to beliefs that have not been sampled

Policy representation: α -vector

- This representation uses the piecewise linear convex property of POMDP's optimal value function
- The value function is represented by a set Γ of α -vectors, where ach α -vector is a gradient of a linear function
- $V^*(b) = \max_{\alpha \in \Gamma} \alpha \cdot b$

Policy representation: α -vector

• Each α -vector also corresponds to an action, which is actually the root of a policy tree

The value if an agent having belief b executes a policy tree corresponds to a line.

How to sample beliefs (distributions)?

- Assuming we start from an initial belief b₀
 - Sample an action & an observation
 - Sampling beliefs == expanding a belief tree rooted at b₀

To keep sampled beliefs small

 Sample from beliefs reachable under an optimal policy from the initial belief (b₀)

Problem: We don't know the optimal policy...

H. Kurniawati and D. Hsu and W. S. Lee. SARSOP: Efficient point-based POMDP planning by approximating optimally reachable belief spaces. In RSS'08. RSS'21 Test of Time Award

Successive Approximations of the Reachable Space under Optimal Policies (SARSOP)

Successively interleave sampling & value estimation

H. Kurniawati and D. Hsu and W. S. Lee. SARSOP: Efficient point-based POMDP planning by approximating optimally reachable belief spaces. In RSS'08. RSS'21 Test of Time Award

And ...

- Use simple machine learning method to predict the value function of a newly sampled belief b, $\widehat{V}^*(b)$
 - If the predicted value $\widehat{V}^*(b)$ is likely to improve $\widehat{V}^*(b_0)$, expand b
 - To expand b
 - Maintain upper & lower bound of $V^*(b)$
 - Select an action to expand b based on the upper bound

Select an observation based on the gap between upper & lower bounds

Once a belief is sampled

Improve the value function estimated

Progression with Offline Solver

SARSOP (Kurniawati, et.al.'08, RSS'21 Test of Time Award)
Tag in ~ 6sec
Up to ISI ~ 100K, 2h

PBVI (Pineau'03): Tag ISI = 870, 50h

Temizer, et.al. Study of next-gen TCAS (improve safety of TCAS by 20X)

Horowitz & Burdick

This session

- ✓ Uncertainty is ubiquitous in robotics
- ✓ Frameworks for planning (sequential decisionmaking) under uncertainty
 - ✓ Markov Decision Processes (MDPs)
 - ✓ Partially Observable MDPs (POMDPs)
 - ✓ Reinforcement Learning
- ✓ Offline Solving: Value Iteration
 - √ Value Iteration for MDP
 - ✓ Point-based Value Iteration for POMDP
- Online Solving: MCTS-based
 - MDP
 - POMDP

Changes from Offline Solving

- Does not need the exact transition and reward model
 - Use a generative model (can be a simulator)
 - Computes a good policy by interacting with the simulator
- Assume: Initial state is known

- Combines tree search & Monte Carlo
- Monte Carlo
 - A sampling-based method to approximate the value of complicated functions, i.e., the ones that are too difficult/time consuming to compute exactly.
 - In MDP, can be used to approximate the expected total future reward if the agent follows an optimal policy.

$$V_{\pi^*}(s) = R(s, a) + \gamma \sum_{s'} T(s, \pi(s), s') V_{\pi^*}(s')$$

- Build the search tree based on the outcomes of the simulated plays.
- Iterate over 4 main components:
 - Selection: Choose the best path

A node: state & value

- Build the search tree based on the outcomes of the simulated playouts.
- Iterate over 4 main components:
 - Selection: Choose the best path
 - Expansion: When a terminal node is reached, add a child node

- Build the search tree based on the outcomes of the simulated playouts.
- Iterate over 4 main components:
 - Selection: Choose the best path
 - Expansion: When a terminal node is reached, add a child node n
 - Simulation: Simulate from the newly added node n, to estimate its value

- Build the search tree based on the outcomes of the simulated playouts.
- Iterate over 4 main components:
 - Selection: Choose the best path
 - Expansion: When a terminal node is reached, add a child node n
 - Simulation: Simulate from the newly added node n, to estimate its value
 - Backpropagation: Update the value of the nodes visited in this iteration
- Many variants

Commonly used MCTS for MDP

- Build the search tree based on the outcomes of the simulated playouts.
- Iterate over 4 main components:
 - Selection: Choose the best path
 - Expansion: When a terminal node is reached, add a child node n
 - Simulation: Simulate from the newly added node n, to estimate its value
 - Backpropagation: Update the value of the nodes visited in this iteration

Node Selection

- Multi-armed bandit to select which action to use
 - In general, use a method called Upper Confidence Bound (UCB).
 - Choose an action a to perform at s as: $\pi_{UCT}(s) = \operatorname*{arg\,max}_{a \in A} Q(s,a) + c \sqrt{\frac{\ln(n(s))}{n(s,a)}}$ Exploitation Exploration

C: A constant indicating how to balance exploration & exploitation, need to be decided by trial & error.

n(s): #times node s has been visited.

n(s,a): #times the out-edge of s with label a has been visited.

 MCTS + UCB is often called Upper Confidence Bound for Trees (UCT)

Simulation

- Often called rollout
- Essentially, a way to estimate the optimal value of the newly added state
- In practice,
 - Use heuristic, e.g., greedy, solution of deterministic case
 - Important for performance

Backpropagation

- Essentially, updating the Q values
 - $Q(s, a) = (Q(s, a) \times N(s, a) + q) / (N(s, a) + 1)$
 - N(s) = N(s) + 1
 - N(s, a) = N(s, a) + 1

This session

- ✓ Uncertainty is ubiquitous in robotics
- ✓ Frameworks for planning (sequential decisionmaking) under uncertainty
 - ✓ Markov Decision Processes (MDPs)
 - ✓ Partially Observable MDPs (POMDPs)
 - ✓ Reinforcement Learning
- ✓ Offline Solving: Value Iteration
 - √ Value Iteration for MDP
 - ✓ Point-based Value Iteration for POMDP
- Online Solving: MCTS-based
 - **✓** MDP
 - POMDP

The Tree is now Belief Tree

- Nodes represent beliefs
- Edges represent pairs of action and observation

POMDP Solving: MCTS-based

- Sample: History in MCTS style
- Action selection: UCB1 wrt beliefs

David and Joel Veness. "Monte-Carlo planning in large POMDPs." NeurIPS'10

This session

- ✓ Uncertainty is ubiquitous in robotics
- ✓ Frameworks for planning (sequential decision-making) under uncertainty
 - ✓ Markov Decision Processes (MDPs)
 - ✓ Partially Observable MDPs (POMDPs)
 - ✓ Reinforcement Learning
- ✓ Offline Solving: Value Iteration
 - √ Value Iteration for MDP
 - ✓ Point-based Value Iteration for POMDP
- ✓ Online Solving: MCTS-based
 - **✓** MDP
 - **✓** POMDP

What's Next?

- Other approaches for solving or approximately solving MDPs/POMDPs
 - Policy Iteration
 - LP
 - Deep Learning
 - Integrated Planning and Learning
- For robotics problems, approximate solvers for
 - Continuous high-dimensional state, action, and observation spaces
 - Long planning horizon
 - Complex dynamics

Wait...

- How about RL solving?
 - RL can be framed as a POMDP, and so if we can solve POMDP, we can solve RL ©
 - Next lecture is about RL