Question Number	Scheme	Marks	ò
3.(a)	$4x^{2} - 8x + 7 = l(x^{2} - 2mx + m^{2}) + n$	M1	
	l=4 2ml=8 m=1	A1	
	$lm^2 + n = 7 n = 3$	A1	(3)
	ALT: $4(x^2-2x)+7=4(x-1)^2+3$	M1A1A1	(3)
(b)	$(i) f(x)_{\min} = 3$	B1ft	
	(ii) when $x=1$	B1ft	(2)
			[5]

Notes

- (a) Note: there is only one method mark in part (a). The method MUST be complete for award of this mark
- M1 for setting the given expression or f(x) equal to $l(x-m)^2 + n$ and attempting to expand the $(x-m)^2$ into 3 terms, ie., $(x^2 \pm Amx \pm m^2)$ where $A \neq 0$
- A1 for the values of l = 4, and m = 1. Accept embedded values. If there is an error transferring the correct embedded value, isw.
- A1 for the value of n = 3

ALT

- M1 for taking 4 as a common factor of the term in x^2 and 2x, and attempting to complete the square (usual rules please refer to General Guidance)
- A1 for achieving $4[(x-1)^2-1]+7$ Penalise poor bracketing unless final answer is correct.
- A1 for the final answer $\{f(x)\}=4(x-1)^2+3$. Accept answers embedded in the expression. If there is an error transferring the correct embedded value, isw.
- (b)
- B1ft for minimum = 3 (ft their value of n)
- B1ft for x = 1 (ft their value for m)

There must be no transposition of the 3 and the 1 unless it is clear they write f(x) = 3 and x = 1