MATH 525

Section 1.11 - Error-detecting codes

September 4, 2020

September 4, 2020 1 / 4

Let v be the sent codeword, e the error pattern, and w the received word. Then:

$$w = v + e$$
.

We say that code C detects the error pattern e if and only if $v + e \notin C$ for all $v \in C$.

Example

Let $C = \{00000, 10101, 00111, 11100\}$. Determine whether C detects each of the error patterns: e = 10101, e = 01010, and e = 11011.

Definition

The (minimum) distance of a block code C is defined as:

$$d(C) = \min\{d(u,v) \mid u,v \in C, u \neq v\}$$

=
$$\min\{\operatorname{wt}(u+v) \mid u,v \in C, u \neq v\}.$$

September 4, 2020 2 / 4

Theorem

If d(C) = d, then C detects all non-zero error patterns of weight d-1 or less. Moreover, there is at least one error pattern of weight d which C will not detect.

Definition

A code C is said to be a t-error-detecting code if it detects all error patterns of weight t or less and it does not detect at least one error pattern of weight t+1.

For example, $C = \{000, 111\}$ detects all error patterns of weight two or less.

Section 1.11 September 4, 2020 3 / 4

Remarks: Two alternative ways for determining the error patterns that C will detect:

- The IMLD table can be used to determine the error patterns that a code *C* will detect: Regard an element *e* in the first column as an error pattern. Then *C* detects *e* if and only if no codeword appears in the row led by *e* (excluding the last entry).
- 2 C does not detect e if and only if v + e = u where $u, v \in C$. Thus, C does not detect e if and only if e = v + u where $u, v \in C$. After determining all the error patterns that C does not detect, the remaining error patterns will be detected by C.

Section 1.11 September 4, 2020 4 / 4