10/540621

PATENT

IN THE UNITED STATES PATENT AND CARRONARY OFFICE 4 JUN 2005

Mail Stop PCT

Intl.

Appl. No.: PCT/JP2003/017014

Applicant: Nobutoshi DOI et al.

Intl. Appl.

Filed: December 26, 2003

TC/A.U. : Not Assigned

Examiner : Not Assigned

Dkt. No. : NPR-171

Cust. No.: 20374

TRANSMITTAL OF ENGLISH LANGUAGE TRANSLATION OF PRIORITY APPLICATION & STATEMENT

Commissioner for Patents P.O. Box 1450 Alexandria, VA 22313-1450

June 24, 2005

Sir:

Applicants submit herewith an English language translation of the Japanese priority application, Japanese Patent Application No. 2002-379796, for the United States patent application identified above, with a statement that the translation is accurate.

U.S. National Stage of PCT/JP2003/017014 ENGLISH LANGUAGE TRANSLATION OF PRIORITY APPLICATION & STATEMENT

JC20 Rec'd PCT/PTO 2 4 JUN 2005

In the event any fees are required, please charge our Deposit Account No. 111833.

Respectfully submitted,

KUBOVCIK & KUBOVCIK

Keiko Tanaka Kubovcik

Reg. No. 40,428

The Farragut Building Suite 710 900 17th Street, N.W. Washington, D.C. 20006

Tel: (202) 887-9023 Fax: (202) 887-9093

KTK/jbf

Enclosure: English Language Translation of Priority

Application w/ Statement

18 MAR 2004

WIPO PCT

PCT/JP03/17014

日本国特許庁 JAPAN PATENT OFFICE

26.12.03

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日
Date of Application:

2002年12月27日

出 願 番 号 Application Number:

人

特願2002-379796

[ST. 10/C]:

[JP2002-379796]

出 願 Applicant(s):

ニプロ株式会社

上田 実

እናማማውለ**ተ**ዋና ር

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

特許庁長官 Commissioner, Japan Patent Office 2004年 3月 4日

【書類名】

特許願

【整理番号】

14-098

【あて先】

特許庁長官殿

【国際特許分類】

A61L 27/00

【発明者】

【住所又は居所】

大阪市北区本庄西3丁目9番3号 ニプロ株式会社内

【氏名】

土居 伸年

【発明者】

【住所又は居所】

大阪市北区本庄西3丁目9番3号 ニプロ株式会社内

【氏名】

村橋 秀明

【発明者】

【住所又は居所】

愛知県刈谷市板倉町2-10-3 サンビレッジ板倉1

0 2

【氏名】

畠 賢一郎

【特許出願人】

【識別番号】

000135036

【氏名又は名称】 ニプロ株式会社

【代表者】

佐野 實

【特許出願人】

【識別番号】

598167040

【住所又は居所】

愛知県日進市岩崎台2-415

【武名又は名称】

上田 実

【手数料の表示】

【予納台帳番号】

003919

為社会額】

21,000

【提出物件の目録】

【物件名】

明細書 1

一个多

図面

【物件名】

要約書

【プルーフの要否】

【書類名】 明細書

【発明の名称】 神経再生誘導管

【特許請求の範囲】

【請求項1】 生体分解性材料または生体吸収性材料で形成された管状体(A)が、内部に生体分解性材料または生体吸収性材料で形成されたスポンジ状のマトリックス(B)または/および直線状の神経誘導経路(C)を備え、且つ、管状体(A)の一方の端部に一定の空間部を設けてなる神経再生誘導管。

【請求項2】 空間部の長さが約1~20mmである、請求項1記載の神経再生誘導管。

【請求項3】 生体分解性材料が、生体内の分解酵素、酸またはアルカリにより分解するタンパク質、ポリペプチドまたはそれらの誘導体である、請求項1記載の神経再生誘導管。

【請求項4】 生体吸収性材料が、液体及び気体の浸透を許容する多孔質物質である、請求項1記載の神経再生誘導管。

【請求項5】 生体吸収性材料が、タンパク質、ポリペプチド、またはそれらの誘導体、多糖類またはそれらの誘導体、ポリ乳酸、ポリグリコール酸、グリコール酸と乳酸の共重合体、乳酸と ϵ - アミノカプロン酸の共重合体または脂肪族ポリエステルである、請求項1記載の神経再生誘導管。

【請求項6】 生体分解性材料または生体吸収性材料がコラーゲンである、請求項1記載の神経再生誘導管。

【請求項7】 管状体(A)が、繊維性材料で構成される、請求項1記載の神経再生誘導管。

【請求項8】 繊維性材料は、短繊維、長繊維、糸状体、綿状体、編織布、または不織布である、請求項7記載の神経再生誘導管。

【講家項○】 スポンジ状のマトリックス(B)は、コラーゲンスポンジである、請求項1記載の神経再生誘導管。

【請求項10】 神経誘導経路(C)が、少なくとも1本以上の繊維からなり、管状体(A)の内部に長軸方向に挿入されて形成されたものである、請求項1記載の神経再生誘導管。

【請求項12】 神経誘導経路(C)が、スポンジ状のマトリックス(B)中を貫通するように設けられた、請求項1記載の神経再生誘導管。

【請求項13】 神経誘導経路(C)が、繊維または中空繊維である、請求項1記載の神経再生誘導管。

【請求項14】 空間部に挿入された中枢側神経端と管状体(A)、および末梢側神経端と管状体(A)の空間部を設けてない端部とを生体用縫合糸で縫合する、請示項1記載の神経再生誘導管の使用方法。

【発明の詳細な説明】

[0001]

『汽門『属する技術分野』

本元元に、神経再生誘導管に関する。さらに詳細には、病変、損傷のために切断したヒト組織または器官、例えば神経繊維、微細血管などを再生するための器具に関する。

100021

【従来の技術】

事故や災害あるいは疾患により、ヒトの神経、腱などの組織または器官が損傷し、自己の回復力により損傷部を治癒できない場合には、知覚、感覚、運動能力等に障害が発生している。このような患者に対して、近年の顕微鏡下で損傷部位を表している。このような患者に対して、近年の顕微鏡下で損傷部位を表している。なが、切断された部位を接続する外科縫合手術や、自己の神経・腱などを他の部位から採取し、移植することにより失われた機能を回復する自己神経移植などの治療が効果をあげている。

·· (0 3]

しかしながら、欠損した領域が大きすぎる場合は上記接続による修復は不可能であり、ある程度の障害が発生してもその損傷部分の障害よりも重要度が低いととこれが必要であった。 このような場合、最初に発生した部位の障害よりも重要度が低いとはいえ、損傷

を受けていない健常な他の部分の神経を採取するので、その部位には知覚、感覚、運動能力などの障害を発生させることになる。

自己神経移植の一例として、まず腓腹神経を採取し、損傷部分に該神経の移植を行うことが挙げられるが、通常、足首から足の甲部分の皮膚感覚等が消失することが問題であった。

このため、他の部分(足首など)に支障を来すことなく、損傷部分の修復が可能な治療方法が切望されていた。

[0004]

そこで、損傷部位に人工器具を用いて神経細胞増殖の足場を形成し、神経を再生させて、もとの機能を回復させる方法について、これまで種々の研究がなされてきた。

例えば、異物が体内に残留することのない生体吸収性材料からなる管状体を用いて、神経を再生しようとする試みがなされている。(非特許文献1参照)

[0005]

しかしながら、管状体のみを用いた場合、切断された神経の両端部から若干の 細胞増殖は見られるが、切断した神経が再度接合して回復することは困難であっ た。これは、細胞が増殖する場合、一般的に管状体の足場に付着し、そこから切 断部分を埋める方向に増殖して行くが、切断部分を覆うのみでは切断端の間に空 隙があり、その部分を全て埋め尽くすまでの間に細胞の増殖が止まるためである

[0006]

0

そこで、さらに、生体吸収性材料の管状体内部に神経細胞の増殖を誘導する足場を形成し、神経を再生させる種々の試みがなされている。例えば、管状体内部にコラーゲンの繊維束を挿入し、フィブロネクァン (FN) でコーティングしたものがある (特許文献1、非特許文献2参照)。

[0007]

しかしながら、かかる神経再生誘導管は管状体の端部を神経と縫合するため、 チェーブ端部が縫合部で裂けやすく、治療中に神経再生誘導管が神経から脱離してしまう恐れがあった。また、神経端部と誘導管端部を縫合するだけであったた

[0008]

このため、両端に神経を挿入する空間部を有する神経再生誘導管を用いた神経 再生が試みられている(特許文献2参照)。

[0009]

しかしながら、この場合、神経再生誘導管を神経欠損部の長さに応じて切断した後に、締結スリーブ(短い管状体)を両端に接続し、神経を挿入するための空間部を形成する必要があった。

[0010]

【特許文献1】

特開平5-237139号公報

【特許文献2】

特許第2939750号公報

【非特許文献1】

鈴木ら著,人工臓器,1998年,第27巻,第2号,p.490~49

【非特許文献2】

島田ひろき等著,人工臓器,1993年,第22巻,第2号,p.359-363

[0011]

【発明が解決しようとする課題】

本発明の課題は、特別な器具、操作を要することなく、管状体の内部に神経を 有機能は、特別な器具、操作を要することなく、管状体の内部に神経を 有機能に一個に対象に対象に対象を表現できる。 増殖伸長していくことができる神経再生誘導管を提供することにある。

[0012]

"等決するための手段】

今

金明はこのような課題に鑑みてなされたものであり、生体分解性材料または

生体吸収性材料で形成された管状体(A)が、内部に生体分解性材料または生体 吸収性材料で形成されたスポンジ状のマトリックス(B)または/および直線状 の神経誘導経路(C)を備えた神経再生誘導管において、管状体(A)の一方の 端部に一定の空間部を設けることによって、上記課題が解決されることを見出し 、本発明に到達した。

[0013]

すなわち、本発明は、

- (1)生体分解性材料または生体吸収性材料で形成された管状体(A)が、内部 に生体分解性材料または生体吸収性材料で形成されたスポンジ状のマトリックス
- (B) または/および直線状の神経誘導経路(C) を備え、且つ、管状体(A) の一方の端部に一定の空間部を設けてなる神経再生誘導管、
- (2)空間部の長さが約1~20mmである、上記(1)記載の神経再生誘導管
- (3)生体分解性材料が、生体内の分解酵素、酸またはアルカリにより分解する タンパク質、ポリペプチドまたはそれらの誘導体である、上記(1)記載の神経 再生誘導管、
- (4) 生体吸収性材料が、液体及び気体の浸透を許容する多孔質物質である、上記(1) 記載の神経再生誘導管、
- (5) 生体吸収性材料が、タンパク質、ポリペプチド、またはそれらの誘導体、 多糖類またはそれらの誘導体、ポリ乳酸、ポリグリコール酸、グリコール酸と乳酸の共重合体、乳酸と ϵ - アミノカプロン酸の共重合体または脂肪族ポリエステルである、上記(1)記載の神経再生誘導管、
- (6)生体分解性材料または生体吸収性材料がコラーゲンである、上記(1)記載の神経再生誘導管、
- (7) 管状体(A)が、繊維性材料で構成される、上記(1)記載の神経再生誘導管、
- (8) 繊維性材料は、短繊維、長繊維、糸状体、綿状体、編織布、または不織布である、上記(7) 記載の神経再生誘導管、
- (9) スポンジ状のマトリックス (B) は、コラーゲンスポンジである、上記 (

- 1) 記載の神経再生誘導管、
- (10)神経誘導経路(C)が、少なくとも1本以上の繊維からなり、管状体(A)の内部に長軸方向に挿入されて形成されたものである、上記(1)記載の神経再生誘導管、
- (11)神経誘導経路(C)が、少なくとも1つ以上の中空繊維から成り、管状体(A)の内部に長軸方向に形成されている、上記(1)記載の神経再生誘導管
- (12)神経誘導経路(C)が、スポンジ状のマトリックス(B)中を貫通するように設けられた、上記(1)記載の神経再生誘導管、
- (13)神経誘導経路(C)が、繊維または中空繊維である、上記(1)記載の神経再生誘導管、および
- (14)空間部に挿入された中枢側神経端と管状体(A)、および末梢側神経端と管状体(A)の空間部を設けてない端部とを生体用縫合糸で縫合する、上記(1)記載の神経再生誘導管の使用方法。

である

[0014]

【発明の実施の形態】

本発明において、生体分解性材料または生体吸収性材料で形成された管状体(A)とは、管状(中空)の成形品であり、その断面形状は円形のものに限定されず、楕円形や多角形など再生すべき神経組織に応じて種々選択することができるが、好ましくは、円形である。該管状体(A)は周囲にある組織の浸潤から神経がみ立する空間を確保する役割を果す。本発明の管状体(A)としては特に、生体分解性または生体吸収性材料からなる繊維性材料で構成された管状体などが好ましい。この場合、該繊維性材料としては、短繊維、長繊維、糸状体、綿状体、綿、本語布などが例示される。該繊維性材料の繊維径は通常、約5~1000μmであり、好ましくは約10~100μmである。また、該繊維が約0~200μm、好ましくは約0~100μmの間隙で巻きつけられた管状体(A)が

管状体(A)の外径は、通常、約0.1~50mmであり、好ましくは約0.

 $5\sim25\,\mathrm{mm}$ である。また、内径は、通常、約0.05~40 mm であり、好ましくは約0.3~20 mm である

該管状体(A)は、その内腔部分にコラーゲンスポンジと直線状の神経誘導経路(C)が設けられていることが好ましい。

[0015]

本発明において、スポンジ状のマトリックス(B)は神経再生の補助手段の1つである。スポンジ状のマトリックス(B)は、例えば、コラーゲンスポンジ、コラーゲン繊維などから構成される。スポンジ状のマトリックス(B)は、その内部で再生する神経の細胞に対して適切な密度と足場をあたえる。また、コラーゲン繊維から構成された短繊維、綿状体、不織布なども同様な効果が期待される。

スポンジ状のマトリックス (B) が、コラーゲンスポンジである場合、該スポンジ層の空隙率は、通常、約 $70\sim99.9\%$ 、好ましくは約 $80\sim99\%$ である。このコラーゲンスポンジは、長手方向に貫通する直線状の神経誘導経路(C)を1つ以上有している。

[0016]

さらに、他の補助手段は直線状の神経誘導経路(C)であり、再生する神経細胞に成長する方向性をあたえて、中枢側神経端が末梢側神経端に接合する時間を短縮することができる。神経誘導経路(C)は、具体的には多数の長繊維、糸状体、織布、編物などで構成されるか、あるいは中空繊維である。

[0017]

本発明において、管状体(A)の一方の端部に設けられた一定の空間部とは、管状体(A)の内腔部分であって、端部から一定の長さまでの空間部であり、マトリックス(B)、神経誘導経路(C)、その他の部材が挿入されていない部分である。神経細胞が成長するのは主に中枢側神経端のみであり、中枢側神経端だけチューブ内に挿入できればよく、両側に挿入部を設ける必要はない。空間部の長さ(深さ)は、通常、約1~20mmであり、好ましくは、約3~15mmである。

[0018]

本発明の生体分解性材料とは、生体内の分解酵素、酸またはアルカリにより分 解する材料であって、体液の浸透を許容する多孔質であることが特徴であり、例 えば、コラーゲン、ゼラチンなどのタンパク質、ポリペプチド、またはそれらの 誘導体が挙げられる。また、生体吸収性材料とは、体液の浸透を許容する多孔質 物質であり、例えば、タンパク質、ポリペプチド、またはそれらの誘導体、多糖 類またはそれらの誘導体、ポリ乳酸、ポリグリコール酸、グリコール酸と乳酸の 共重合体、乳酸とεーアミノカプロン酸の共重合体、またはラクチド重合体など の脂肪族ポリエステル(特許文献2参照)が挙げられる。これらの材料のうち、 特にコラーゲンが好ましい。

本発界に使用されるコラーゲンとしては、その由来は特に限定されないが、一 般的には、牛、豚、鳥類、魚類、霊長類、兎、羊、鼠、人などが挙げられる。ま た、コラーゲンはこれらの皮膚、腱、骨、軟骨、臓器などから公知の各種抽出方 法により得られるものであるが、これらの特定の部位に限定されるものではない 。きゃ、、実発男に利用されるコラーゲンのタイプについては、特定の分類可能 な型に限定されるものではないが、取扱い上の観点から、I、III、IV型が好適 である。これらの材料から管状体(A)を製造するには常法に従う。

100191

本発明の一実施態様は、繊維径が約10~100 μ mであるコラーゲン繊維を 集束した、外径約0.5~20mmおよび内径約0.3~15mmである管状体 (A) の内部に、空隙率が約70~99.9%であるコラーゲンスポンジを備え 、さらに該スポンジを貫通して前記管状体(A)の内部長軸方向に設けられた直 絶 で隙部を少なくとも1つ有する神経再生誘導管である。

[0020]

また、本発明の別な実施態様は、繊維径が約10~100μmであるコラーゲ こ 編作 音楽した、外径約 C. 5-20 mmおよび内径約 O. 3~10 mmであ る管状体(A)の内部に、空隙率が約70~99、9%であるコラーゲンスポン ジと、そのスポンジを貫通するように直線状の誘導経路(C)として、直径約5 ~ : ○ ○ ○ . mのコラーゲン繊維を内腔部分の約 5 ~ 7 0 %の容積に相当する量 を押入し、もしくは、該スポンジ層を貫通するように直径約5~1000μmの

[0021]

本発明の神経再生誘導管の製造法について以下に詳述する。

まず、管状体(A)の製法の一例として、生体分解性材料または生体吸収性材料、例えばコラーゲンの溶液から常法に準じ、繊維状材料、例えば短繊維、長繊維、糸状体、綿状体、編織布、不織布などを作成し、該材料から管状体を製造する方法が挙げられる。この場合、コラーゲンを溶解する溶媒は、既知のいかなる物質を用いても良いが、常法に準じて水を使用することが好ましい。コラーゲン溶液濃度は、約0.1~30wt%であり、好ましくは約0.5~10wt%である。コラーゲン繊維を製造すための押出成形法としては、特に制限されないが、通常、凝固浴はエチルアルコールであり、押出速度は約100~500mm/秒である。凝固浴から取り出した繊維の冷却は、コラーゲンの変性が起きる約40℃付近以下であれば良いが、好ましくは約4℃~20℃に保つ。該繊維径は約10μm~100μmであることが好ましい。

[0022]

上記繊維性材料から管状体(A)を作製するには、例えば、コラーゲン溶液を 紡糸した連続繊維を、一定長さを有する管状基材に巻取ることにより、繊維方向 が一定な連続した繊維巻取り物を得ることができる。該管状基材を取り除くこと によって繊維巻取り物は中空な管状体を形成する。該管状体を末梢神経または脊 椎神経などの神経の修復または再生のために用いる場合、好ましくは、該管状体 の管壁の厚さは、約0.1mm~5mmの範囲が適しており、外径は約0.3~ 20mm、内径(内腔)は約0.1~10mmをよび長さは任意である。内腔部 分の直径は接続される神経の直径に依存するが、再に約0.5mm~10mmの 範囲がきじている。

[0023]

次に、管状体(A)の内腔部分に神経を再生するための補助手段および神経を 挿工する一定の空間部を設ける。

管状体(A)の内腔部分に充填されたスポンジ状マトリックス(B)は、コラ

[0024]

スポンジ状のマトリックス(B)とは、目視判定あるいは顕微鏡下に観察して、均一もしくは不均一な大きさの多数の空隙を有する区画が連続または不連続に分散した多孔質を構成した状態をいう。該内腔に形成するスポンジ状のマトリックスは、使用するコラーゲン溶液のコラーゲン濃度を変化させ、コラーゲン濃度の高いものから、順次、コラーゲン濃度を少ないものを充填する。充填するコラーゲン溶液の濃度を調整することにより、空隙が異なる層を有するマトリックスを得ることができ、用途に応じた種々の形態のものを形成することができる。管状体内腔の容積に対する、充填されたコラーゲン重量の割合を、充填率として表した場合、約0.05~30%が好ましく、さらに好適な充填率は、約0.5~15%である。

[0025]

神経誘導経路(C)は、管状体(A)の中空内部に設けられたコラーゲンスポンジを貫通するように設置されることが好ましい。

神経誘導経路(C)がコラーゲン繊維から構成される場合、コラーゲン繊維の 直に、通常、約5~1000 μ mであり、好ましくは約10~100 μ mであ る。また、前記管状体(A)の内部容積に対して、約5~70%、好ましくは約 10~60%に相当する量が挿入されていることが好ましい。

仲柱誘導経路(C)が中空繊維である場合の製造方法の一例として、スポンジ

[0026]

スポンジ状のマトリックス(B)および神経誘導経路(C)は、管状体(A)の長さより短くなるように作製される。かつ、スポンジ状のマトリックス(B)および/または神経誘導経路(C)は、管状体(A)の一端に接して内部に配置される。これによって、もう一方の端部に、神経を挿入するための一定の空間部が形成される。

[0027]

上記方法で得られる神経再生誘導管は、必要によりさらに種々公知の物理的または化学的架橋処理を施してもよい。架橋処理を施す段階は問わない。すなわち各種架橋処理を施した管状体、マトリックス、神経誘導経路などで神経再生誘導管を形成しても良いし、神経再生誘導管を形成した後各種架橋処理を施しても良い。また、2種以上の架橋処理を併用しても良く、その際、処理の順序は問わない。この架橋処理により、生体内に移植された際に分解・吸収される時間を、未架橋の場合に比較して飛躍的に遅延させることが可能となり、また物理的強度も向上する。したがって、神経再生誘導管で神経の欠損部を補填または補綴する場合に、組織の再生を完了するまでの期間、体内で必要な強度を維持することが可能となる。

物理的架橋方法の例としてはγ線照射、紫外線照射、電子線照射、プラズマ照射、熱脱水反応による架橋処理などが挙げられ、化学的架橋方法の例としては、例えばジアルデヒド、ポリアルデヒドなどのアルデヒド類、エポキシ類、カルボジイミド類、イソシアネート類などとの反応、タンニン処理、クロム処理などが挙げられる。

また、上記方法で得られる神経再生誘導管は、生分解性物質でコーティングを施してもよい。生分解性物質としては、コラーゲン、ヒアルロン酸などが挙げられる。

さらに、各種成長因子、薬剤等を含浸させ、細胞増殖能を活性化することもで

きる。

[0028]

本発明の人工血管は、医療用として使用する前に、γ線滅菌、紫外線滅菌等の公知の方法によって、滅菌処理を施すことが好ましい。熱滅菌は、生体分解性材料または生体吸収性材料としてコラーゲンを用いる場合、コラーゲンの耐熱性の低さから好ましくない。

[0029]

本発明の神経再生誘導管は、生体内で損傷した神経組織に、常法に従って縫合し、生体内で自然に治癒するまで放置する。本発明において、神経とは生体の神経組織であり、特にヒトの末梢神経または脊椎神経などが好ましい。

縫合手段は通常の生体用縫合糸でもって、空間部に挿入された中枢側神経端と 誘導管の管状体(A)、および末梢側神経端と誘導管の空間部を設けてない端部 を縫合するものである。空間部に挿入された中枢側神経端は、管状体(A)の端 部から一定の長さ挿入された部分のどこを管状体(A)と縫合してもよいため、 従来と比べて縫合手術を容易に行うことができる。切断された神経の場合には、 このように神経再生誘導管と切断された神経端とを縫合することのみで神経の再 生が見られる。

また、本発明により得られる神経誘導管は、コラーゲンが元来持ち合わせている、生体内および体表面における分解性および吸収性を有し、毒性もほとんどなく、自体公知の方法に従って、医療用目的で人間や動物に安全に使用できる。

本発明においては、神経再生誘導管について記載しているが、同様の管状物を他の記念に用いることもできる。例えば、人工気管、人工食道、人工尿管等として、組織工学分野・再生医療分野における補填および補綴目的で体内に移植することができる。

10030]

【実施例】

次に本発明を実施例により詳細に説明するが、本発明はこれら実施例に限定されるこのではない。

(実施例1)

まず、酵素可溶化コラーゲンを水に溶解して5%水溶液を作製し、常法に準じて凝固浴中に押出すことにより、直径約 160μ mのコラーゲン繊維を作製した。

次に、得られたコラーゲン繊維を直径2.5mmのポリフッ化エチレン系繊維製の円筒鋳型に巻き付けた。乾燥後1%コラーゲン水溶液を含浸させ、続いて5%コラーゲン水溶液を含浸させて、円筒鋳型に巻きつけた糸状物を溶解しながら5%コラーゲン水溶液を塗布した。このようにコラーゲン繊維を巻付けた後コラーゲン水溶液を含浸させることによって層を積層して、コラーゲン製の管状体を形成させた。さらに、この管状体の最外層にコラーゲン繊維を巻き付けた。巻き付け後に作製された管状体に対して、熱架橋処理を行った。次に、熱架橋された筒状体にコラーゲン水溶液を含浸させ、再び熱架橋処理を行った。管状体を乾燥させた後、熱架橋を行い、内径2.5mm、外径3.3mm、長さ5cmのコラーゲン製の管状体1を作製した。該管状体1の内腔に長さ4.5cmのコラーゲン繊維束2を挿入し、片端に長さ5mmの空間部3を設けた(図1参照)。内腔部分がコラーゲン繊維からなる構造を持つ、全体がコラーゲンから成る神経再生誘導管を作製した。

[0031]

(実験例1)神経再生実験

実施例1で作製した神経再生誘導管を用いて犬の神経再生実験を実施した。再生する組織としては犬末梢神経を選択した。

大腓骨神経を切断して30mmの欠損部位を作製した。この欠損部の長さに合わせて、予め25kGyのγ線滅菌処理を行った神経再生誘導管の空間部を設けていない一端部を切断して35mmのチューブ片を作製した。切断端と反対側にある空間部の長さは5mmとした。大腓骨神経の中枢側をチューブ片端のスペースに挿えし、10-0ポリアミド系総合系により複数箇所総合固定した。他端は神経の切断端(末梢側)に10-0ポリアミド系総合系により複数箇所総合固定した。他端は神経の切断端(末梢側)に10-0ポリアミド系総合系により複数箇所総合固定した。

実施例1にて作製した神経再生誘導管は、中枢側神経端部が確実に神経再生誘導管の空間部に挿入されるため、縫合を容易に行うことができた。縫合固定後、

[0032]

【発明の効果】

本発明の神経再生誘導管は、一方の端部のみに神経を挿入する空間部を設ける構造により、手術時に空間部を設けていない端部側を、神経欠損長に応じて切断し、容易に長さを調節できる。

また、再生していく細胞に対し、成長の足場と共に成長の方向性をあたえることで、迅速かつ確実に目的の神経欠損部を再生し、修復することが可能である。

さらに、一方の端部に一定の空間部を有するため、神経端部(中枢側)が確 実工神経変生誘導管内部に挿入され、神経の再生方向を確実に誘導管内部に誘導 するここできる。また縫合部分の隙間から外部の細胞が浸潤することがない。

さらに、本発明の神経再生誘導管を用いた場合、空間部に挿入された中枢側神経端は、管状体(A)の端部から一定の長さ挿入されたどの部分を管状体(A)と経合にてもよいため、従来と比べて縫合手術を容易に行うことができ、また、神経を神経再生誘導管と強固に縫合することができる。

【図面の簡単な説明】

【図1】 本発明の神経再生誘導管の軸方向断面を示す図面である。

【符号の説明】

- ~ 管状体
- 2 コラーゲン繊維束
- 3 空間部

【書類名】 図面【図1】

【書類名】 要約書

【要約】

【課題】特別な器具、操作を要することなく、管状体の内部に神経を挿入し、容易に縫合固定を行うことができ、神経細胞が効率よく、正しい方向へ増殖伸長していくことができる神経再生誘導管を提供すること

【解決手段】生体分解性材料または生体吸収性材料で形成された管状体(A)が、内部に生体分解性材料または生体吸収性材料で形成された直線状の神経誘導経路を有するマトリックス(B)を備え、且つ、管状体(A)の一方の端部に一定の空間部を設けてなる神経再生誘導管。

【選択図】 図1

特許出願の番号 特願2002-379796

受付番号 50201985421

書類名 特許願

担当官 第四担当上席 0093

作成日 平成15年 3月18日

<認定情報・付加情報>

【提出日】 平成14年12月27日

【特許出願人】 申請人

【識別番号】 000135036

【住所又は居所】 大阪府大阪市北区本庄西3丁目9番3号

【氏名又は名称】 ニプロ株式会社

【特許出願人】

【識別番号】 598167040

【住所又は居所】 愛知県日進市岩崎台2-415

【氏名又は名称】 上田 実

特願2002-379796

出願人履歴情報

識別番号

[000135036]

1. 変更年月日

2001年 4月 3日

[変更理由]

名称変更

住 所

大阪府大阪市北区本庄西3丁目9番3号

氏 名 ニプロ株式会社

特願2002-379796

出願人履歴情報

識別番号

[598167040]

1. 変更年月日

2001年 6月29日

[変更理由]

住所変更

住 所

愛知県日進市岩崎台2-415

氏 名

上田 実

2. 変更年月日

2004年 1月16日

[変更理由]

住所変更

住 所

愛知県名古屋市東区白壁4丁目92番地

氏 名

上田 実