

1. 네트워크의 기본 개념

목차

- 1. 네트워크
- 2. 네트워크 계층
- 3. IP, TCP, UDP
- 4. 인터넷
- 5. 클라이언트/서버모델
- 6. 인터넷 표준

네트워크 (1)

■ 용어정의 (continue)

- 네트워크
 - 실시간으로 데이터를 주고 받을수 있는 컴퓨터와 기타 장치들의 집합
- 노드 (node)
 - 네트워크에 연결된 장치 (device)
 - 컴퓨터, 프린터, 라우터, 브리지, 게이트웨이, 더미터미널
- 호스트 (host)
 - 기능을 완전히 갖추고 있는 컴퓨터 노드
 - 노드중 범용 컴퓨터를 호스트라고 함
- 주소 (address)
 - 노드를 유일하게 구별해 주는 일련의 바이트
- 도메인 이름 (노드의 이름)
 - 노드를 기억하기 쉽도록 노드에 부여한 이름

네트워크 (2)

■ 용어정의 (continue)

- 팻킷 스위칭 네트워크 (Packet-switched network)
 - 네트워크에 전송될 데이터는 패킷 덩어리로 분할
 - 각 팻킷은 독립적 처리
 - 각 팻킷은 전달자와 목적지 정보를 포함
 - 데이터를 작은 단위(팻킷) 단위로 분리하여 네트웍 회선 공유

■ 프로토콜

- 컴퓨터간의 통신 방법을 정의하는 규칙
 - HTTP (Hypertext Transfer Protocol)
 - » 웹 브라우저와 웹서버가 통신하는 방법 정의
 - IEEE 802.3
 - » 물리적 전선에서 비트가전기적인 신호로 바뀌는 방법 정의

네트워크 계층구조

■ TCP/IP 4계층 모델

네트워크 계층 (1)

■ 네트워크 인터페이스

- OSI의 물리층과 데이터 링크층의 혼합
- 물리층 : 서로 다른 컴퓨터를 연결하는데 쓰이는 전선,
- 광케이블⇨전자적 신호 교환
- 데이터 링크층: 데이터가 전기신호로 변환될때 발생하는
- 에러 정정이나 중복 검사수행

■ 인터넷 계층(네트워크층)

- 비트와 바이트가 어떻게 패킷을 구성하는가?
- 이기종 기계들이 서로를 찾을때 사용할 주소를 어떻게 구성하는가?
- IP(Internet Protocol)
 - 개방되어 있고, 플랫폼 독립적 ⇨ 이기종간의 통신 가능

네트워크 계층 (2)

■ IPv4 데이터그램의 구조

버전 헤더 길이 서비스 타입 데이터그램 길이 보할 모프셋 time-to-live(TTL) 프로토콜 헤더 체크섬 골발지 주소 목적지 주소 옵션	0 4	8	12	16	20	24	28	31	
time-to-live(TTL) 프로토콜 헤더 체크섬 출발지 주소 목적지 주소 옵션	버전 헤더 길이 사		서비스 타입		데이터그램 길이				
출발지 주소 목적지 주소 옵션		식별자		플	플래그 분할 오프셋				
목적지 주소 옵션	time-to-live(TTL)		프로토콜		헤더 체크섬				
옵션	출발지 주소								
<u></u>	목적지 주소								
GIOIEI	옵션								

7

네트워크 계층 (3)

■ 전송 계층

- 패킷이 순서대로 도착했는지, 손실된 패킷은 없는지를 검사
 - TCP : 손실된 패킷을 재전송, 순서대로 도착하게 함
 - (overload가 많음)
 - UDP : 패킷의 도착 순서에 무관
 - (overload가 적음)

■ 응용 계층

- 데이터를 사용자에게 전달하는 계층
- 다양한 프로토콜
 - HTTP, SMTP, POP, IMAP, FTP, FSP, TFTP, NFS, NNTP

IP (Internet Protocol)

■ IP의 특성

- 미 국방성의 후원으로 개발, 군사적인 특성을 내포
 - 견고하다
 - 두 지점 사이의 여러 경로를 통해 손상된 라우터를 우회하여 패킷 전달
 - 개방형이고 플랫폼 독립적
 - 이기종 시스템과 원할한 통신 보장

■ TCP의 역할

- IP 상위 계층에 존재하면서 두지점의 IP 패킷이 도착하였을을 통지
- 손상된 패킷에 대한 재전송 요청

UDP

- TCP 오버헤드 발생
 - 패킷 정렬, 통지, 재전송 요청
- 패킷의 데이터 손상, 정렬, 순서가 문제가 되지 않는경우에 UDP 이용
- 예: 비디오, 오디오 신호

포트 (Port)

■ 포트

- 어플리케이션을 구별하기 위해 사용되는 번호
- 각 포트는 특정한 서비스를 제공하기 위해 사용
- 1~65535 사이의 숫자가 할당
- 1 ~1024는 잘 알려진 서비스를 위해 예약
 - finger, FTP, HTTP, E-mail
 - 유닉스 시스템에서는 루트 권한이 있는 프로그램만 이 영역 포트를 사용
 - NT, 메킨토시의 경우에는 특별한 권한 없이 사용가능
- 유닉스 시스템에서 현재 사용중인 포트
 - /etc/services 파일에 기록됨

대표적인 포트 할당

8			
프로토콜	포트	프로토콜	목적
echo	7	TCP/UDP	한 장치가 상대방의 입력에 대해 에코를 함으로써 두 장치가 연결할 수 있는지 확인하는 데 사용한다.
discard	9	TCP/UDP	서버가 전달받는 모든 데이터를 무시해 버리는 테스트 프로토콜로서 좀 쓸모없는 것이다.
daytime	13	TCP/UDP	서버 시스템의 현재 시간을 아스키 코드 방식으로 전달한다.
ftp-data	20	TCP	FTP는 잘 알려진 포트를 두 개 사용한다. 이 포트는 파일을 전송하는데 사용한다.
FTP	21	TCP	이 포트는 put이나 get처럼 FTP 명령어를 전송하는 데에 사용한다.
Telnet	23	TCP	Telnet은 대화식의 원격 명령행 세션을 위해 사용하는 프로토콜이다.
SMTP	25	TCP	메일 전송 프로토콜은 호스트 사이에서 메일을 주고 받기 위해 사용한다.
time	37	TCP/UDP	time 서버는 1900년 1월 1일 자정부터 현재까지 경과한 시간을 초 단위의 4 바이트, 빅 엔디안 정수로 리턴한다.
whois	43	TCP	whois는 인터넷 네트워크 관리자를 위한 디렉토리 서비스이다.
finger	79	TCP	finger는 한 명의 사용자 또는 로컬시스템에서 작업 중인 모든 사용자의 정보를 리턴해주는 서비스이다.
HTTP	80	TCP	HTTP는 월드와이드웹의 기초가 되는 프로토콜이다.
POP3	110	TCP	POP3는 우편 배달 프로토콜의 세 번째 버전이며 호스트에서 이따금 한번씩 연결하는 클라이언트에게 그 동안 쌓아놓았던 메일을 전송하 는 프로토콜이다.
NNTP	119	TCP	유즈넷 뉴스 전송이 NNTP의 일반적인 호칭이다.
RMI Registry	1099	TCP	자바 원격 객체에 대한 등록 서비스이다. '18장. 원격 메소드 호출'에서 살펴볼 것이다.

인터넷 & 방화벽

■ 인터넷

- IP 프로토콜을 사용하는 컴퓨터들의 집단
- 세상에서 가장 큰 IP기반의 네트워크

■ 인터넷 주소 클래스

- InterNIC(Interet Network Information Center)가 할당
 - ISP 라 불리는 중계자를 통해서 할당
- A,B,C,D,E의 다섯개의 클래스로 구성
- 보통 B,C 클래스를 할당 받아서 사용

■ 방화벽(Firewall)

- 내부 네트워크와 외부 네트워크를 잇는 하나의 통로를 사용
- 패킷을 조사하여 통과 규칙과 결정권을 가지는 패킷 필터

프랏시 서버

Proxy Server

- 어플리케이션 레이어에 기반
- 인증, 접근통제, 로깅 기능이 뛰어남
- 각 어플리케이션 별로 제어가 가능
- 처리속도가 늦음
- 로컬 캐쉬의 기능 구현 가능

클라이언트 - 서버

■ 클라이언트 / 서버 모델

- 큰 용량의 데이터들을 비싸고 고성능인 서버에 저장
- 프로그램 로직이나 사용자 인터페이스는 저가인 클라이언트에서 실행
- 서버의 종류
 - 파일 서버, 데이터베이스 서버
 - □ 데이터를 가공하지 않고 클라이언트에 보냄
 - 어플리케이션 서버
 - ⇒ 데이터를 분석하고 처리해서 클라이언트에 보냄

인터넷 표준 (1)

■ 네트워크와 프로토콜 관련 표준 기관

- IETF (Internet Engineering Task Force)
 - 비형식적, 개방적
 - 표준: TCP/IP, MIME, SMTP
- W3C (World Wide Web Consotium)
 - 기업들이 주체가 되어 만든 기관
 - 표준: HTTP, HTML, XML

인터넷 표준 (2)

■ 인터넷 표준 : RFC (Requests For Comments)

- 일반인들을 위한 정보
- NNTP와 같은 표준 인터넷 프로토콜을 위한 상세한 명세서
- 현재 2792까지 등록, 그 중 58개 만이 표준으로 제정 (2000. 3)
- 프로토콜 요구 수준
 - Required
 - Recommanded
 - Elective
 - Limited use
 - Not recommanded
 - Historic
 - Information