Example of a spatial information model – in UML class diagram notation

ISO Geometry definitions (ISO 19125 – Simple Feature) END

ISO Metadata Package Definition (ISO 19115)

Figure 4 — Metadata packages

ISO Metadata Definition (ISO 19115)

Table 2 — Relationship between packages of metadata and metadata entities

Subclause Number	Package	Entity	UML Diagram	Data Dictionary
6.3.2.1	Metadata entity set information	MD_Metadata	A.2.1	B.2.1
6.3.2.2	Identification information	MD_Identification	A.2.2	B.2.2
6.3.2.3	Constraint information	MD_Constraints	A.2.3	B.2.3
6.3.2.4	Data quality information	DQ_DataQuality	A.2.4.1 A.2.4.2 A.2.4.3	B.2.4.1 B.2.4.2 B.2.4.3
6.3.2.5	Maintenance information	MD_MaintenanceInformation	A.2.5	B.2.5
6.3.2.6	Spatial representation information	MD_SpatialRepresentation	A.2.6	B.2.6
6.3.2.7	Reference system information	MD_ReferenceSystem	A.2.7	B.2.7
6.3.2.8	Content information	MD_ContentInformation	A.2.8	B.2.8
6.3.2.9	Portrayal catalogue information	MD_PortrayalCatalogueReference	A.2.9	B.2.9
6.3.2.10	Distribution information	MD_Distribution	A.2.10	B.2.10
6.3.2.11	Metadata extension information	MD_MetadataExtensionInformation	A.2.11	B.2.11
6.3.2.12	Application schema information	MD_ApplicationSchemaInformation	A.2.12	B.2.12
6.4.1	Extent information	EX_Extent	A.3.1	B.3.1
6.4.2	Citation and responsible party information	CI_Citation CI_ResponsibleParty	A.3.2	B.3.2

Usage in context of ISO TC211

- Packages with stereotype "ApplicationSchema" contains feature types. This stereotype is important for realization in GML.
- Classes with stereotype "FeatureType" represent geographic object types. This stereotype is important for realization in GML.
- Classes with stereotype "dataType" are sets of properties without identity. Such classes can not exist as single instances, only as attributes or components in other classes.
- Classes with stereotype "enumeration" are fixed lists of possible values. Attributes that use such lists may only take values from the list.
- Classes with stereotype "CodeList" are extendable lists of possible values.
- Classes with stereotype "interface" are conceptual classes. Such classes can not be used directly in data sets, they must be realized in other classes
- Classes with stereotype "Union" contains a list of types where only one may be used in one instance.

Some examples of UML class diagrams with spatial data context

«Enumeration» OwnerType

- + tribalNation:
- + federalGovernment:
- + state:
- localGovernment:
- + municipalGovernment;
- + notForProfit:
- + other:
- + private:
- + unknown:

«DataType» Framework::Identifier

- + identifier: CharacterString
- F iDAuthority: CharacterString [0..1]
- description: CharacterString [0..1]

«DataType» Framework::ExtendedAttributes

- + authority: CharacterString
- + link: ExternalResource [0..1]
- name: CharacterString
- + type: Datatypes
- + value: CharacterString

«Union» Parcel Geometry

- + polygon: GM_Polygon
- centroid: GM Point

«DataType» Framework::ExternalResource

- + url: anyURI
- urlType: ResourceTypes
- + urlDescription: CharacterString [0..1]

«DataType» Address

- recipientName: CharacterString
- + street1: CharacterString
- + street2: CharacterString [0..1]
- city: CharacterString
- stateCode: CharacterString
- zipCode: CharacterString

«CodeList» Framework::ResourceTypes

- + database:
- + documentation:
- + DTD:
- + metadata19115_19139;
- + metadataFGDC:
- + webPage:
- + webSite:
- + XMLSchema:

Design of Spatial Data Models

Sources

UML Information

- http://www.uml.org/ (OMG: Object Management Group) -> very rich content on resources for UML in general
- http://www.uml.org/HTB_Articulate_Class_Models_OMG.pdf -> "How to built Class Models" tutorial
- IBM UML Basics the Class diagram (very good introduction)
 https://developer.ibm.com/articles/the-class-diagram/

Wikipedia

http://en.wikipedia.org/wiki/Unified_Modeling_Language https://en.wikipedia.org/wiki/Class_diagram

Useful Links –UML in spatial data modeling

Description	URL
INSPIRE Consolidated UML Model	
UML best practices per ISO-TC211 (ISO Technical committee 211 – spatial standards)	https://github.com/ISO-TC211/UML-Best- Practices/wiki
UML Profile for GML (Geography Markup Language)	

UML Tools

- Modeliosoft
 - http://www.modeliosoft.com
- Visual Paradigm (Community Edition free in non-comerical use)
 - https://www.visual-paradigm.com/download/community.jsp
 - Online Version: https://online.visual-paradigm.com/de/
- Enterprise Architect
 - http://www.sparxsystems.de/uml/download-trial/
- > Star UML
 - http://staruml.io
- And many more

Hungry Mind Assignment 2

- Design a data model in UML Class diagram notation and choose one of the following topics:
 - Data model for a property cadaster in a GIS. You need to deal with parcels, buildings, property owners, taxes, parcel usage, etc. -> you might want to do some research
 - A street network applicable for routing
 - Sensor observation service for meteorological data (covering at least: temperature, wind, precipitation, air-humidity)
 - Your own topic
- ➤ Use a UML tool (see slide "UML Tools") best as a cloud service

Hungry Mind Assignment 2 (cont.)

Principle considerations

- Apply what we've discussed in class with regards to creation of a data model and the UML call diagram notation
- Address the principle requirements that the system must fulfill
- What information needs to be processed (class / entities)?
- How is the relationship between the classes?