LAB 2: Classification

Assignment 1 In this assignment you will experiment with five basic classification models from machine learning and statistical learning. The models are provided in the table below together with their names in scikit-learn:

Model Name	Scikit-learn name	Scikit-learn module
Decision Trees	sklearn.tree	DecisionTreeClassifier() [criterion='entropy']
Nearest Neighbor	sklearn.neighbors	KNeighborsClassifier()
Gaussian Naïve Bayes	klearn.naive_bayes	GaussianNB()
Logistic Regression	sklearn.linear_model	LogisticRegression()
Support Vector Machines	sklearn.svm	SVC [kernel='linear']

Table 1: Five basic classification models. Note the support vector machine in our experiments is linear a support vector machine (indicated with [kernel='linear']).

The classification models will be applied on nine data sets. The data sets are separated into three clusters:

Cluster	Data Sets
Experiment 1 data sets	expla.csv
	exp1b.csv
	exp1c.csv
Experiment 2 data sets	exp2a.csv
_	exp2b.csv
Experiment 3 data sets	exp3a.csv
	exp3b.csv
	exp3c.csv
	exp3d.csv

Table 2: Data Sets in three experimental clusters

The data sets between the clusters differ in terms of *class separability, class balances, input variable dependencies, input variable noise, and redundancy*. A detailed description can be found in Appendix: Data.

To estimate the generalization performance of the classification models you can use accuracy rate that can be estimated using the training data and cross validation. Possible scenarios how this can be implemented in Python are provided in Appendix: Estimating Accuracy Rates.

Assignment 1.1 Run the Nearest Neighbor classifier for the parameter k equal to 1, 5, 11, and 21, and record 10-fold cross-validation accuracy rate and confusion matrices for the data sets from Experiment 1. (Note that the parameter k is the parameter n_n eighbors in sklearn.neighbors.KNeighborsClassifier().)

- (a) Visualize the data sets from Experiment 1 (they are given with two input numeric variables).
- (b) For each of the data sets, how does the 10-fold cross-validation accuracy rates and confusion matrices vary as k increases? Explain this trend.
- (c) For each k Nearest Neighbor classifier (k in $\{1, 5, 11, 21\}$), how does the 10-fold cross-validation accuracy rates and confusion matrices vary as k increases? Explain this trend.
- (d) Repeat (b) and (c) for the Nearest Neighbor classifier that employs distance weighting by setting option weights ='distance'. Comment on the change in the generalization performance of the classifiers from the unweighted version for the same values of k and the reason for this change.
- (e) Run decision trees and logistic regression classifiers on these data sets, and compare their performance on the three data sets, as well as with the various *k*-NN classifiers. Explain the reasons for the observed differences in the generalization performance. Visualize the errors of the decision trees and logistic regression classifiers on the data sets from Experiment 1.

Assignment 1.2 Run all the five classifiers from Table 1 on the exp2a.csv data from the Experiment 2 cluster (see Table 2), and report 10-fold cross-validation accuracy rates and confusion matrices obtained.

- (a) What classifiers have a bad generalization performance and what classifiers have a good generalization performance? Comment on the collective characteristics of the variables in the exp2a.csv data that lead to such performance.
- (b) Can you improve the classifiers from (a) that have a bad generalization performance by changing the parameters when training those classifiers?

Run all the five classifiers from Table 1 on the exp2b.csv data from the Experiment 2 cluster (see Table 2), and report 10-fold cross-validation accuracy rates and confusion matrices obtained.

- (c) Which classifier shows the *biggest* drop of the generalization performance compared to the exp2a.csv data, and what is the reason for this drop?
- (d) Which classifier shows the *smallest* drop of the generalization performance compared to the exp2a.csv data, and what is the reason for this drop compared with the classifier identified in (c)?
- **1.3 Assignment** Run Gaussian Naive Bayes, Nearest Neighbor (k in $\{1, 5\}$) and decision tree on all the datasets from the Experiment 3 cluster (see Table 2) and record 10-fold cross-validation accuracy rates obtained.

- (a) How does the performance of the different classifiers compare for each dataset?
- (b) How does the performance of each classifier vary as the number of variables is increased from datasets exp3a.csv to exp3d.csv? Which properties of the classifiers lead to such a variation in performance?

Assignment 2. (Extra) To illustrate the problem of model overfitting, generate a two-dimensional dataset containing 1500 labeled instances, each of which is assigned to one of two classes, 0 or 1. Instances from each class have to be generated as follows:

- Instances from class 1 are generated from a mixture of 3 Gaussian distributions, centered at [6,14], [10,6], and [14 14], respectively.
- Instances from class 0 are generated from a uniform distribution in a square region, whose sides have a length equals to 20.

Plot the generated data so that: all instances from class 1 are shown in **red** while those from class 0 are shown in **black**.

Reserve 80% of the labeled data for training and the remaining 20% for testing. Then fit decision trees of different maximum depths (from 2 to 50 with step of 2) to the training set and plot their respective accuracy rates when applied to the training and test sets.

- (a) Identify on the plot the region of underfitting, overfitting and optimality.
- (b) Repeat the assignment for nearest neighbor (k from 1 to 101 with step of 1), and support vector machines for (C from 0.01 to 2 with step of 0.01).

Report. Submit a report with your answers to the assignments.

Appendix: Data

Cluster	Data Sets	Description	
Experiment 1 data sets	expla.csv	The data sets are given with two input numeric	
	exp1b.csv	variables X and Y, and one class discrete variable	
	exp1c.csv	'class' with two values 1 and -1. The "1" class	
		consists of normally distributed data points in the	
		rectangle determined by points (-1,-1), (-1,1),	
		(1,1),(1,-1). The class "-1" consists of normally	
		distributed data points outside that rectangle. The	
		expla.csv set consists of 200 data points for	
		each class. The exp1b.csv set consists of 100	
		data points for class "1" and 100 data points for	
		class "-1". The explc.csv set consists of 20	
		data points for class "1" and 100 data points for	
F	0	class "-1".	
Experiment 2 data sets	exp2a.csv exp2b.csv		
	expzb.csv		
		100	
		100 - C L A S S S	
		200	
		S	
		200	
		300	
		400	
		500	
		500	
		600	
		C	
		700 <mark>- A -</mark>	
		700 - A -	
		800	
		2	
		900	
		1000	
		1000	
		1 2 3 4 5	
		1-4 are attributes and 5 is the class label	
		m 4	
		The explaces set is given on the diagram. The	
		exp1b.csv set includes the 4 variables in the	
		exp1a.csv set and 95 additional noisy variables for the same set of instances. The	
		values for the noisy variables are randomly	
		assigned from the uniform distribution on	
		assistica irotii die amioriii distribution on	
		[0,1000].	

Cluster	Data Sets	Description
Experiment 3 data sets	exp3a.csv exp3b.csv exp3c.csv exp3d.csv	The exp3a.csv dataset contains two variables (X1, X2) whose values are taken from a uniform distribution between 0 and 1. The class label 1 is assigned for the instances whose x1+x2 is greater than the median of the x1+x2 values computed from all the rows. Class label 0 is assigned to the remaining instances. The exp3b.csv dataset has the same structure as the exp3a.csv dataset except that it has 10 variables. The exp3c.csv dataset has the same structure as the exp3a.csv dataset except that it has 20 variables. The exp3c.csv dataset has the same structure as the exp3a.csv dataset except that it has 20 variables.

Appendix: Estimating Accuracy Rates

For estimating accuracy rates you use function cross_val_score from the sklearn.model selection module.

For estimating confusion matrices you use function confusion_matrix from the sklearn.metrics module. Note that it has to be used in a combination with function cross_val_predict from the sklearn.model_selection module. Example of code:

```
from sklearn.model_selection import cross_val_predict
from sklearn.metrics import confusion_matrix
Y_pred = cross_val_predict(MyClassifier, X, Y, cv=10)
# X is the input data matrix and Y is output vector
conf mat = confusion matrix(Y, Y pred)
```