CRPL-F 9.3

abonal Bureau of Standarus Library, N. W. Skilg.

AND 4 1952

Reference book not to be taken from the Library.

IONOSPHERIC DATA

ISSUED MAY 1952

U. S. DEPARTMENT OF COMMERCE
NATIONAL BUREAU OF STANDARDS
CENTRAL RADIO PROPAGATION LABORATORY
WASHINGTON, D. C.

NATIONAL BUREAU OF STANDARDS CENTRAL RADIO PROPAGATION LABORATORY WASHINGTON,D.C.

Issued 26 May 1952

IONOSPHERIC DATA

CONTENTS

					Page		
Symbols, Terminology, Conventions	•		•	2			
World-Wide Sources of Ionospheric Data .	•		9	5			
Hourly Ionospheric Data at Washington, D.	C.	٥	•	7.	12.	23.	46
Ionospheric Storminess at Washington, D. (J	•	•	7.	35		
Radio Propagation Quality Figures	•	•	•	8,	36		
Observations of Solar Flares	•	•	•	9.	37		
Observations of the Solar Corona	•		•	9.	38		
Relative Sunspot Numbers	•		•	10,	42		
Indices of Geomagnetic Activity	•	• •	•	11,	44		
Sudden Ionosphere Disturbances	•	•	•	11,	45		
Tables of Ionospheric Data	•		•	12			
Graphs of Ionospheric Data	•	•	•	46			
Index of Tables and Graphs of Ionospheric				50			
in CRPL-F93	•	• •	•	79			

SYMBOLS, TERMINOLOGY, CONVENTIONS

Beginning with data reported for January 1952, the symbols, terminology, and conventions for the determination of median values used in this report (CRPL-F series) conform as far as practicable to those adopted at the Sixth Meeting of the International Radio Consultative Committee (C.C.I.R.) in Geneva, 1951. Excerpts concerning symbols and terminology from Document No. 626-E of this Meeting are given on pages 2-7 of the report CRPL-F89, "Ionospheric Data," issued January 1952. Reprints of these pages are available upon request.

Beginning with data for January 1945, median values are published wherever possible. Where averages are reported, they are, at any hour, the average for all the days during the month for which numerical data exist.

The following conventions are used in determining the medians for hours when no measured values are given because of equipment limitations and ionospheric irregularities. Symbols used are those given in Document No. 626-E referred to above.

a. For all ionospheric characteristics:

Values missing because of A, C, F, L, M, N, Q, S, or T are omitted from the median count.

b. For critical frequencies and virtual heights:

Values of foF2 (and foE near sunrise and sunset) missing because of E are counted as equal to or less than the lower limit of the recorder. Values of h'F2 (and h'E near sunrise and sunset) missing for this reason are counted as equal to or greater than the median. Other characteristics missing because of E are omitted from the median count.

Values missing because of D are counted as equal to or greater than the upper limit of the recorder.

Values missing because of G are counted:

- 1. For foF2, as equal to or less than foF1.
- 2. For h'F2, as equal to or greater than the median.

The symbol W is included in the median count only when it replaces a height characteristic. This practice represents a change from that listed in issues previous to CRPL-F78.

Values missing for any other reason are omitted from the median count.

c. For MUF factor (M-factors):

Values missing because of G or W are counted as equal to or less than the median.

Values missing for any other reason are omitted from the median count.

d. For sporadic E (Es):

Values of fEs missing because of E or G (and B when applied to the daytime E region only) are counted as equal to or less than the median foE, or equal to or less than the lower frequency count of the recorder.

Values of fEs missing for any other reason, and values of h'Es missing for any reason at all are omitted from the median count.

Beginning with data for November 1945, doubtful monthly median values for ionospheric observations at Washington, D. C., are indicated by parentheses, in accordance with the practice already in use for doubtful hourly values. The following are the conventions used to determine whether or not a median value is doubtful:

- 1. If only four values or less are available, the data are considered insufficient and no median value is computed.
- 2. For the F2 layer, if only five to nine values are available, the median is considered doubtful. The E and F1 layers are so regular in their characteristics that, as long as there are at least five values, the median is not considered doubtful.
- 3. For all layers, if more than half of the values used to compute the median are doubtful (either doubtful or interpolated), the median is considered doubtful.

The same conventions are used by the CRPL in computing the medians from tabulations of daily and hourly data for stations other than Washington, beginning with the tables in IRPL-F18.

The tables and graphs of ionospheric data are correct for the values reported to the CRPL, but, because of variations in practice in the interpretation of records and scaling and manner of reporting of values, may at times give an erroneous conception of typical ionospheric characteristics at the station. Some of the errors are due to:

- a. Differences in scaling records when spread echoes are present.
- b. Omission of values when foF2 is less than or equal to foF1, leading to erroneously high values of monthly averages or median values.
- c. Omission of values when critical frequencies are less than the lower frequency limit of the recorder, also leading to erroneously high values of monthly average or median values.

These effects were discussed on pages 6 and 7 of the previous F-series report IRPL-F5.

Ordinarily, a blank space in the fEs column of a table is the result of the fact that a majority of the readings for the month are below the lower limit of the recorder or less than the corresponding values of foE. Blank spaces at the beginning and end of columns of h'Fl, foFl, h'E, and foE are usually the result of diurnal variation in these characteristics. Complete absence of medians of h'Fl and foFl is usually the result of seasonal effects.

The dashed-line prediction curves of the graphs of ionospheric data are obtained from the predicted zero-muf contour charts of the CRPL-D series publications. The following points are worthy of note:

- a. Predictions for individual stations used to construct the charts may be more accurate than the values read from the charts since some smoothing of the contours is necessary to allow for the longitude effect within a zone. Thus, inasmuch as the predicted contours are for the center of each zone, part of the discrepancy between the predicted and observed values as given in the F series may be caused by the fact that the station is not centrally located within the zone.
- b. The final presentation of the predictions is dependent upon the latest available ionospheric and radio propagation data, as well as upon predicted sunspot number.

c. There is no indication on the graphs of the relative reliability of the data; it is necessary to consult the tables for such information.

The following predicted smoothed 12-month running-average Zürich sunspot numbers were used in constructing the contour charts:

Month			Predicte	d Sunspo	t Number			
	1952	1951	1950	1949	1948	1947	1946	1945
December November October September August July June May		53 52 52 54 57 60 63 68	86 87 90 91 96 101 103 102	108 112 114 115 111 108 108	114 115 116 117 123 125 129 130	126 124 119 121 122 116 112	85 83 81 79 77 73 67	1945 38 36 23 22 20
April March	52 52	74 78	101 103	109 111	133 133	107 105	62 5 1	
February Jamuary	51 53	82 8 <i>5</i>	103 105	113 112	133 130	90 88	46 42	

WORLD-WIDE SOURCES OF IONOSPHERIC DATA

The ionospheric data given here in tables 1 to 66 and figures 1 to 132 were assembled by the Central Radio Propagation Laboratory for analysis and correlation, incidental to CRPL prediction of radio propagation conditions. The data are median values unless otherwise indicated. The following are the sources of the data in this issue:

University of Graz: Graz, Austria

British Department of Scientific and Industrial Research, Badio Research Board:

Falkland Is. Inverness, Scotland Singapore, British Malaya Slough, England Defence Research Board, Canada:

Baker Lake, Canada Churchill, Canada Fort Chimo, Canada Ottawa, Canada Prince Rupert, Canada Resolute Bay, Canada St. John's, Newfoundland Winnipeg, Canada

French Ministry of Maval Armaments (Section for Scientific Research):
Dakar, French West Africa
Djibouti, French Sommliland
Fribourg, Germany

Institute for Ionospheric Research, Lindau Uber Hortheim, Hannover, Germany:
Lindau/Harz, Germany

The Royal Netherlands Meteorological Institute: De Bilt, Holland

Icelandic Post and Telegraph Administration: Reykjavik, Iceland

Radio Regulatory Commission, Tokyo, Japan:
Akita, Japan
Tokyo (Kokubunji), Japan
Wakkanai, Japan
Yamagawa, Japan

Christchurch Geophysical Observatory, New Zealand Department of Scientific and Industrial Research:
Christchurch, New Zealand
Rarotonga, Cook Is.

Norwegian Defense Research Establishment, Kjeller per Lillestrom, Norway:
Oslo, Morway
Tromso, Norway

South African Council for Scientific and Industrial Research: Capetown, Union of South Africa Johannesburg, Union of South Africa

Research Laboratory of Electronics, Chalmers University of Technology, Gothenburg, Sweden:
Kiruna, Sweden

Research Institute of National Defence, Stockholm, Sweden: Upsala, Sweden

Post, Telephone and Telegraph Administration, Berne, Switzerland: Schwarzenburg, Switzerland

United States Army Signal Corps:
Adak, Alaska
Okinawa I.
White Sands, New Mexico

Wational Bursau of Standards (Central Radio Propagation Laboratory):
Anchorage, Alaska
Batavia, Ohio (mobile unit)
Baton Rouge, Louisiana (Louisiana State University)
Fairbanks, Alaska
Guam I.
Huancayo, Peru (Instituto Geofisico de Huancayo)
Maui, Hawaii
Marsarssuak, Greenland
Panama Canal Zone
Point Barrow, Alaska
Puerto Rico, W. I.
San Francisco, California (Stanford University)
Washington, D. G.

HOURLY IONOSPHERIC DATA AT WASHINGTON, D. C.

The data given in tables 67 to 78 follow the scaling practices given in the report IRPL-C61, "Report of International Radio Propagation Conference," pages 36 to 39, and the median values are determined by the conventions given above under "Symbols, Terminology, Conventions." Beginning with September 1949, the data are taken at Ft. Belvoir, Virginia.

IONOSPHERIC STORMINESS AT WASHINGTON, D.C.

Table 79 presents ionosphere character figures for Washington, D. C., during April 1952, as determined by the criteria given in the report IRPL-R5. "Criteria for Ionospheric Storminess." together with Cheltenham. Maryland, geomagnetic K-figures, which are usually covariant with them.

RADIO PROPAGATION QUALITY FIGURES

Table 80 gives provisional radio propagation quality figures for the North Atlantic area, for 01 to 12 and for 13 to 24 GCT, for each day in March 1952. Also indicated in the table are: (1) CRPL radio disturbance warnings for North Atlantic paths, (2) CEPL semi-weekly advance forecasts of probable disturbed periods, and (3) half-day averages of geomagnetic K-indices measured by the Cheltenham Magnetic Observatory of the U. S. Coast and Geodetic Survey.

The radio propagation quality figures are prepared from radio traffic and ionospheric data reported to CRFL by a method similar to that described in IRPL-R31, "North Atlantic Radio Propagation Disturbances, October 1943 through October 1945, " now out of print. The reports are submitted on various scales and for various time intervals. The observations for each Greenwich half day are averaged on the quality scale of the original reports. These half-day indices are then adjusted to the 1 to 9 quality figure scale. The conversion table was prepared by comparing the distribution of these indices for at least four months. usually a year, with a master distribution originally determined from analysis of many reports in 1946 made on the 1 to 9 quality figure scale. A report whose distribution is the same as the master is thereby converted linearly to the Q-figure scale. Each report is given a statistical weight which is the reciprocal of the departure from linearity. The half-daily radio propagation quality figures, beginning January 1948, is the weighted mean of the reports received for that period.

These quality figures are, in effect, a consensus of reported radio propagation conditions in the North Atlantic area. The reasons for low quality are not necessarily known and may not be ionospheric storminess alone. For instance, low quality may result from improper frequency usage for the path and time of day. Although, wherever it is reported, frequency usage is included in the rating of reports, it must often be an assumption that the reports refer to optimum working frequencies. It is more difficult to eliminate from the indices conditions of low quality because of multipath, interference, etc. Those considerations should be taken into account in interpreting research correlations between the Q-figures and solar, auroral, geomagnetic or similar indices.

Note. The North Pacific quality figures which have been published through October 1951 have been temporarily discontinued. Since the establishment of the North Pacific Radio Warning Service at Anchorage, Alaska, a larger number of reports are being received than were previously available in Washington. The preparation of the quality figures will be resumed when sufficient data have been accumulated for determination of conversion tables for these new reports.

OBSERVATIONS OF SOLAR FLARES

Table 81 gives the preliminary record of solar flares reported to the CRPL. These reports are communicated on a rapid schedule at the sacrifice of detailed accuracy. Definitive and complete records are published later in the Quarterly Bulletin of Solar Activity, I.A.U., in various observatory publications, and elsewhere. The present listing serves to identify and roughly describe the phenomena observed. Details should be sought from the reporting observatory.

Reporting directly to the CRPL are the following observatories: Mt. Wilson, McMath-Hulbert, U. S. Naval, Wendelstein, Kanzel and High Altitude at Sacramento Peak, New Mexico. The remainder report to Meudon (Paris), and the data are taken from the Paris-UESIgram broadcast, monitored fairly regularly by the CRPL. The data on solar flares reported from Sacramento Peak, New Mexico, communicated by the High Altitude Observatory at Boulder, Colorado, are provided by Harvard University as the result of work undertaken on an Air Materiel Command Research and Development Contract administered by the Air Force Cambridge Research Laboratories.

The table lists for each flare the reporting observatory, date, times of beginning and ending of observation, duration (when known), total area (corrected for foreshortening), and heliographic coordinates. For the maximum phase of the flare is given the time, intensity, area relative to the total area, and the importance. The column "SID observed" is to indicate when a sudden ionosphere disturbance, noted elsewhere in these reports, occurred at the time of a flare. Times are in Universal Time (GCT).

OBSERVATIONS OF THE SOLAR CORONA

Tables 82 through 84 give the observations of the solar corona during April 1952 obtained at Climax, Colorado, by the High Altitude Observatory of Harvard University and the University of Colorado. Tables 85 through 87 list the coronal observations obtained at Sacramento Peak, New Mexico, during April 1952, derived by the High Altitude Observatory from spectrograms taken by Harvard University as a part of its performance of an Air Materiel Command Research and Development Contract administered by the Air Force Cambridge Research Laboratories. The data are listed separately for east and west limbs at 5-degree intervals of position angle north and south of the Solar Equator at the limb. The time of observation is given to the nearest tenth of a day, GCT.

Table 82 gives the intensities of the green (5303A) line of the emission spectrum of the solar corona; table 83 gives similarly the intensities of the first red (6374A) coronal line; and table 84, the intensities of the second red (6702A) coronal line; all observed at Climax in April 1952.

Table 85 gives the intensities of the green (5303A) coronal line; table 86, the intensities of the first red (6374A) coronal line; and table 87, the intensities of the second red (6702A) coronal line; all observed at Sacramento Peak in April 1952.

The following symbols are used in tables 82 through 87: a, observation of low weight; -, corona not visible; and X, position angle not included in plates estimates.

RELATIVE SUNSPOT NUMBERS

Table 88 lists the daily provisional Zurich relative sunspot number, R_Z , as communicated by the Swiss Federal Observatory. Table 89 continues the new series of American relative sunspot numbers, R_{A^\dagger} . Beginning with 1951, the observations collected by the Solar Division, AAVSO, have been reduced according to a new procedure, such that only high quality observations of experienced observers are combined into R_{A^\dagger} . Observatory coefficients for each of the 28 selected observers were recomputed on data for 1948-1950, years when there was a wide range of solar activity. Otherwise, the procedure is that outlined in Publication of the Astronomical Society of the Pacific, 61, 13, 1949. The scale of the American numbers in 1951 differs from that of the reports for earlier years because of these changes, and the new series is designated R_{A^\dagger} rather than R_A . The American relative sunspot numbers appear monthly in these pages, as communicated by the Solar Division.

INDICES OF GEOMAGNETIC ACTIVITY

Table 90 lists various indices of geomagnetic activity based on data from magnetic observatories widely distributed throughout the world. The indices are: (1) preliminary international character-figures, C; (2) geomagnetic planetary three-hour-range indices, Kp; (3) magnetically selected quiet and disturbed days.

The C-figure is the arithmetic mean of the subjective classification by all observatories of each day's magnetic activity on a scale of O (quiet) to 2 (storm). The magnetically quiet and disturbed days are selected by the international scheme outlined on pages 219-227 in the December 1943 issue of Terrestrial Magnetism and Atmospheric Electricity. The details of the currently used method follow. For each day of a month, its geomagnetic activity is assigned by weighting equally the following four criteria: (1) C; (2) the sum of the eight Kp's; (3) the greatest Kp; and (4) the sums of the squares of the eight Kp's.

Ep is the mean standardized K-index from 11 observatories between geomagnetic latitudes 47 and 63 degrees. The scale is 0 (very quiet) to 9 (extremely disturbed), expressed in thirds of a unit, e.g., 5- is 4 2/3. 50 is 5 0/3, and 5+ is 5 1/3. This planetary index is designed to measure solar particle-radiation by its magnetic effects, specifically to meet the needs of research workers in the ionospheric field. A complete description of Kp has appeared in Bulletin 12b, "Geomagnetic Indices C and K, 1948," published in Washington, D. C., 1949, by the Association of Terrestrial Magnetism and Electricity, International Union of Geodesy and Geophysics. Tables of Kp for 1945-48 are in Bulletin 12b; for 1940-44 and 1949, in these CRPL-F reports, F65-67; for 1950, monthly in F68 and following issues. Current tables are also published quarterly in the Journal of Geophysical Research along with data on sudden commencements (sc) and solar flare effects (sfe).

The Committee on Characterization of Magnetic Disturbance, ATME, IUGG, has kindly supplied this table. The Meteorological Office, De Bilt, Holland, collects the data and compiles C and selected days. The Chairman of the Committee computes the planetary index.

SUDDEN IONOSPHERE DISTURBANCES

Table 91 lists the sudden ionosphère disturbances observed at Ft. Belvoir, Virginia, April 1952.

TABLES OF IONOSPHERIC DATA

				· Ta	ble 1			
Washir	gton, D.	C. (38.	7°N, 77.	10M)				April 1952
Time	h1F2	foF2	h'Fl	foFl	h ¹ E	foE	fEs	(M3000)F2
00	300	3.0						2,8
01	(300)	2.6						2.8
02	300	2.4						2.8
03	300	2,0						2.8
04	(30J)	1.8						3.0
05	(300)	2.0						2.9
06	270	3.2	250	-	120	1.7		3.2
07	320	3.9	230	3.4	110	2.3		3.1
08	380	4.3	220	3.8	110	2.6		2.9
09	400	4.7	210	4.0	110	2.8		2.8
10	420	4.9	200	4.2	100	3.0		2.8
11	420	5.1	200	4.3	100	3.1		2.8
12	400	5.4	200	4.3	100	3.2		2,8
13	360	5.7	200	4.2	100	3.2		2.8
2.44	350	5.8	210	4.2	100	3.1		3.0
15	330	5.6	220	4.1	100	3.0		3.0
16	340	5.4	230	3.9	100	2.7		3.0
17	300	5.4	230	3.5	110	2.4		3.0
1.8	280	5.6	250	dra-etrate	120	1.9		3.1
19	250	5.6						3.1
20	240	5.1						3.1
21	240	3.8						3.0
22	230	3.4						2.9
23	290	3.0						2.8

75.00 W.
Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

Tromso	Norway	(69.7°N,	19.0°E)	Table	3		1	March 1952
Time	h'F2	foF2	h'#1	foFl	h I E	fol	flia	(M3000)F2
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 17 18 19 20 21 22 23	(205) (325) (325) (325) (305) (305) 300 270 275 280 270 270 270 270 270 270 270	(2.5) (2.4) 3.0 3.3,7 4.45 4.7 4.7 4.7 4.3 4.0 13.8 (2.8) (2.8)	21,5 21,0 23,0 21,0 21,0 21,0 21,0 25,0 25,0 25,0	3.6 3.6 3.7 3.8 (3.6) (3.5)	120 125 120 130 130 130 120 125	1.8 2.0 2.2 2.h 2.6 2.5 2.5 2.3 2.1 2.0	3.8 3.5 1.0 1.0 3.6 2.8 2.7	3.0 (3.0) (3.0) (3.0) 2.8 3.1 3.2 3.2 3.2 3.1 3.1 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2

Time: 15.0°E. Sweep: 0.6 Mc to 25.0 Mc in 5 minutes, automatic operation.

Narsars	euak, Gre	enland ((61.2°N,	Table	5		1	March 1952
Time	h¹F2	foF2	h'Fl	foFl	h*E	foE	fEs	(M3000)F2
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23	(100) (100)	(2,4) (3.1) 3.6 4.0 4.0 5.0 5.0 5.1 (5.0) (4.6) (4.6) (4.6) (3.9) (3.0) (3.0) (3.0) (2.5)	290 (280) 260 270 280 300 300 300 310	(3.5) 3.6 3.8 3.8 3.8 (3.5)	 11:0 (11:0) (11:0) (11:0) (11:0) (11:0) 15:0 (11:0) 11:0	2.lı (2.5) (2.6) (2.7) (2.6) (2.7) (2.6) (2.7) (2.6) (2.7)	1.0 1.7 1.9 1.6 1.6 1.0 1.0	(2.6) (2.8) (2.8) (2.9) 2.9 2.7 2.6 2.7 2.6 2.7 (2.7) (2.7) (2.8) (2.8) (2.8) (2.9) (2.7) (2.6) (2.6) (2.6) (2.6) (2.6) (2.6) (2.6) (2.6) (2.6) (2.6) (2.6)

Time: 45.0°W. Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

				Table 2	2			
Point	Earrow, A	laska (71	1.3°N, 1	6.8°W)				March 1952
Time	h¹F2	foF2	h'F1	foFl	h * E	foE	fEq	(M3000)#2
00	(250)	(3.1)					7.C	(3.1)
01		(3.2)					6.5	
02	(260)	(2.8)					6.8 5.0	(3.0)
04	(310)	(2.8)					5.2	(3.0)
05	(300)	(>3.0)					5.2	(2.9)
06	(310)	(>3.1)					4.9	(3.0)
07	(300)	(3.1)					5.0	(3.1)
80		(>3.4) (3.7)			100 100	2.3	5.3	(3.0)
09 10	(310)	3.8	240	3.3	100	2.5	4.4	(3.0) 3.1
11	280	4.0	230	3.4	100	2.5	4.1	3.2
12	320	3.9	220	3.5	110	2.6		3.2
13	360	4.1	230	3.5	100	2.7		3.1
14	330	4-4	220	3.5	110 110	2.5		3.0
15 16	290 260	7.0 7.7	230 230	3.4 3.2	110	2.4	2. 0	3.2 3.1
17	240	3.9	230	2.9	110	2.0	2.0	3.2
18	250	3.6					3.0	3.1
19	250	(3.2)					3.9	(3.1)
20	280	2.6					5.0	(3.1)
21	(310)	(2.4)					7•3 7•0	(2.9)
23		(3.0)					6.8	

Time: 150.00W. Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

nchora		ka (61.2	-14 1 TTA.	7 N)			March 1952		
ime	h¹F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F	
00	300	2.0					2.7	3.0	
01	(320)	(1.9)					3.0	(3.0)	
02	(360)	(2.5)					3.0	(2.8)	
03	300	2.7					2.6	3.0	
04	340	2.3					2.5	2.8	
05 06	320 290	2.1						3.0	
07	280	3.4	240		110	1.8		3.1	
08	270	3.9	220	3.2	110	2.3		3.2 3.2	
09	310	4.2	220	3.4	100	2.4		3.0	
10	350	4.4	220	3.6	100	2.6		3.1	
11	330	4.6	210	3.8	100	2.7		3.2	
12	300	5.0	220	3.8	100	2.8		3.2	
13	340	4.5	220	3.7	110	2.9		3.0	
14	320	4.6	220	3.7	110	2.8		3.1	
15	270	4.7	220	3.6	110	2.6		3.2	
16	250	4.7	230		110	2.3		3.3	
17 18	250	4.7	230			2.1		3.3	
19	240 250	4.4						3.3	
20	250	3.0						3.2	
21	260	2.3						3.2 3.2	
22	270	2.2					2.1	3.1	
23	300	2.2					2.5	3.1	

Time: 150.00%. Sweep: 1.0 No to 25.0 No in 15 seconds.

				Table 6	<u>i</u>			
Oslo, ?	Norway (6	0.0°N, 1	1.1°E)				M	arch 1952
Time	P115	foF2	h'F1	foF1	h'E	foB	fBe	(M3000)F2
00	350	2.4						2.9
01	340	2.3					2.4	2.8
02	325	2.0					2.6	2. 8
03	350	2.0					2.2	2.8
04	345	2.0						2.8
05	3,30	2.0					2.0	2.8
06	290	2.4					1.8	3.0
07	260	3.2	2 30		120	1.7	1.7	3.2
08	250	3.8	2 30	3.3	115	2.1		3.2
09	310	4.3	225	3.5	110	2.3		3.1
10	330	4.6	220	3.8	110	2.5	2.3	3.1
11	310	4.7	210	3.8	110	2.6	2.7	3.2
12	320	4.9	220	3.9	110	2.6		3.0
13	300	5.0	220	3.9	110	2.6		3.2
14	295	5.1	225	3.8	115	2.6		3.2
15	265	5.2	225	3.7	115	2.4		3.2
16	250	4.9	230	3.4	115	2.2		3.2
17	250	11° d	235.		120	1.8		3.2
18	245	4.6			135	1.6		3.2
19	245	4.4				E		3.1
20	250	4.1						3.1
21	280	2.9						3.2
22	305	2.9						3.0
23	320	2.6						2.9

Time: 15.0° E. Sweep: 1.3 Mc to 1h.0 Mc in 8 minutes, automatic operation.

				Table 7				
Upsala,	Sweden	(59.8°N,	17.6°E)				M	arch 1952
Time	P.LS	foF2	h'J'l	foF1	h!E	foB	fBs *	(M2000)12
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23	325 330 355 350 350 320 280 260 320 320 305 300 270 250 250 250 300 325 300 325 300 325 300 325 300 325 300 325 300 320 320 320 320 320 320 320 320 320	2.1 2.2 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	235 230 225 220 220 220 220 230 235 255	3.3 3.7 3.8 3.9 4.0 3.9 3.5 (3.3)	130 120 115 115 115 115 115 120 120	E 1.99 2.2 2.4 2.5 2.6 2.7 2.6 2.6 2.5 2.6 2.5	2.4 2.2 2.4 2.4 2.5	(2.6) (2.6) (2.6) (2.5) 2.6 3.0 3.1 3.1 3.1 3.1 3.1 3.1 3.2 3.2 3.2 3.0 3.0 3.0 2.9 2.7 (2.7)

Time: $15.0^{\circ}E$. Sweep: 1.4 Mc to 17.0 Mc in 6 minutee, automatic operation.

				Table	2			
Graz,	Austria	(47.1°N,	15.5°E)				Ma	rch 1952
Time	Pils	foF2	h'F1	foFl	h!E	foB	fBs	(M2000)18
00	310	3.1						
01	310	3.0						
02	300	3.0						
03	300	3.0						
04	300	2.9						
04 05 06	265	2. 6						
06	270	2.8						
07	570	4.2						
08	240	4.9	200	3.7				
09	270		210	3.9				
10	270	5.9	200	4.0	115	3.0		
11	280	6.0	200	4.1				
12	280		200	4.2	110	3.2		
13	280		200	4.1	110	3.2		
14	260		200	4.0	110	3.2		
12 13 14 15 16 17	250	6.1	210	3.9		3.1		
16	250		210	3.8				
17	240							
18	240	6.1						
19	240							
20	250							
21	260	3.6						
22	300	3.3						
_23	310	3.2						

Time: 15.0°E.
Sweep: 2.5 Mc to 12.0 Mc in 2 minutes.

	Table 11								
San Fra	ncisco,	Californ:	la (37.4°	N, 122.	2°W)			March 1952	
Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2	
00 01 02	280 280 280	3.2 3.2 3.2						2.9 2.9 2.9	
03 04 05 06	280 270 270 270	3.1 3.1 3.0 3.2						2.9 2.9 3.0 3.1	
07 08 09 10 11 12 13 14 15 16 17 18	270 280 310 310 330 330 340 300 280 270 250 250 230	4555566665554 4555566665554	250 230 210 210 210 210 220 220 220 230 230	3.1 3.6 4.0 4.2 4.3 4.3 4.2 4.1 3.8	120 110 110 110 110 120 120 120 120	2.5 2.8 3.0 3.1 3.2 3.2 3.1 3.0 2.7 2.2	2•7 2•7 3•2	3.2 3.2 3.1 3.0 3.0 3.0 3.2 3.2 3.2 3.3 3.4	
20 21 22 23	250 270 280 270	3.6 3.2 3.3 3.2						3.1 3.0 2.9 3.0	

Time: 120.00W. Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

adak.	Alaska (5	1.9°N, 1	76.6°W)	Table 8			M	arch 1952
Time	F.LS	foF2	h1F1	foFl	h ! E	fol	fEs	SE(000EM)
00	290	2.8						2.9
01	300 300	2.8 2.8						2.8 2.8
02	290	(2.6)					1.1	(2.9)
04	290	(2.5)						(2.9)
05	290	2.4					2.2	(3.0)
06	260	(<2.9)	290	2.7	130	1.6	2.5	3.1
07	260 (280)	4.1 4.7	250 230	3.1 3.6	120 120	2.0	1.9 3.6	3.1 3.1
09	320	5.0	220	3.8	110	2.6	5.4	3.1
10	300	5.6	220	4.0	2.10	2.8	4.8	3.0
11	300	6.1	210	4.1	120	2.9	5.1	3.2
12	280 280	6.1 6.1	210 220	4.1 4.1	110	3.0 2.8	4.0 3.9	3.1 3.2
11/1	270	6.2	220	4.0	110	(2.8)	3.6	3.3
13 14 15	260	6.1	230	-	120	2.6	2.2	3.3
16	260	6.0	570	40 -00-00	120	2.4	2.3	3.3
17	240	5.7	240	-	120	2.0	1.8	3.4
18 19	230 240	5.2 4.8			(140)	(1.6)	2.3 1.7	3.3 3.1
20	240	4.0					1+1	3.2
21	250	3.4						3.1
22	260	3.1						3.0
23	280	2.8						2.9

Time: 180.00W. Sweep: 1.0 Mc to 25.0 Mc in 30 seconde.

Batavia	, Ohio (39.1°N,	84.1°W)	Table	10		М	arch 1952
T1me	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22	250 250 250 310 320 300 300 300 290 240 220 (240) (250)	3.08.6)5.4.1.3.2.8.0.8.1.4.8.6.4.2.2.3.5.8.3.0.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6	230 210 200 190 190 210 220 230 210	3.4 3.7 4.0 4.1 4.3 4.2 4.1 3.9 3.6	110 110 110 110 110 110 110 110	(2.1) 2.5 2.7 2.8 2.9 3.1 3.0 2.8 2.7 2.5		2.9 (2.9) (2.8) (2.9) (2.9) (2.9) (2.9) 3.2 3.1 3.1 3.1 3.1 3.2 3.2 3.2 3.2 3.3

Time: 75.0°W.
Sweep: 1.0 Mc to 25.0 Mc in 15 seconds. Hobile unit.

White	Sands, New		Ma	rch 1952				
Time	h'F2	foF2	h'Fl	foFl	h E	foE	fEs	(M3000)F2
00	280	3.2						2.9
01	280	3.2						2.9
02	270	3.2						3.0
03	260	3.2						3.0
04	260	3.1						3.0
05	280	3.0						3.0
06	260	3.3						3.1
07	250	4.8	240		120	1.9		3.3
08	270	5.4	220	3.7	110	2.4	3.0	3.3
09	300	5.7	210	4.0	100	2.8	3.2	3.2
10	300	6.0	200	4.2	100	3.0	3.3	3.1
11	320	6.9	200	4.3	100	3.1	3-4	3.0
12	300	7.4	200	4.3	110	3.2	3.3	3.0
13	300	7.4	220	4+3	110	3.2	3.0	3.1
14	290	7.3	220	4.3	110	3.1	3.2	3.1
15	290	7.1	220	4.2	110	3.0	2.7	3.2
16	270	6.9	220	3.8	110	2.7	2.4	3.2
17	250	6.9	270		110	2.2	3.1	3.3
18	230	6.2					2.8	3.4
19	220	4.5					2.3	3.3
20	250	3.7					2.3	3.1
21	270	3.3					2.1	3.0
22	280	3.3						3.0
23	290	3.3					2.1	2.9

Time: 105.0°W.
Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

				Table 1	.3			
Baton	Rouge,	Louisiana	(30.5°N,	91.2°W)				March 1952
Time	h'F	2 foF2	h'Fl	foF1	h'E	foE	fEs	(M3000)F2
-00	300	3.6						2.9
01	300	3.5						2.9
02	280							2.9
03	280							3.0
071	281							2.9
05	300							2.9
06	270							3.0
07	26		5710		130	2.1		3.3
08	28		570		120	2.5	3.9	3.2
09	300		220	(4.0)	120	(2.8)	4.7	3.1
10	330		210	4.4	110	3.0	4.0	3.0
11	330		210	4.5	110	3.2	4.0	3.0
12	320		570	4.5	110	3.3	3.7	3.0
13	310		240	h-4	120	3.2	4.2	3.0
14	300		230	4.4	120	3.2	4.0	3.0
15	300		240	4.3	120	2.9	4.6	3.1
16	28		5/10	(4.0)	120	2.7	3.9	3.2
17	260		250		130	2.2		3.2
18	24							3.3
19	24							3.2
20	27							2.9
21	300							2.9
22	300							2.8
23	30	0 3.6						2.9

Time: 90.0°W. Sweep: 1.0 Mc to 25.0 Mc in 30 seconds.

Maui, F	lawaii (2	0.8°N, 1	56.5°W)	Table :	<u>15</u>		M	arch 1952
Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23	270 260 270 250 260 270 280 250 (260) 300 310 320 280 270 250 220 240 280 280 280 280	3.6 3.1 2.9 2.4 2.6 2.6 2.6 7.6 9.9 11.3 13.2 11.9 12.3 13.2 11.9 12.3 13.3 13.6 13.6 13.6 13.6 13.6 13.6 13	2140 220 210 210 210 210 210 210 210 210 21	1-5 (4-6) 4-7 4-7 4-6 4-5 4-2	130 120 120 120 120 120 120 110 110 120 12	1.7 2.4 2.6 3.0 3.2 3.3 3.3 3.3 3.3 2.9 2.4	1.6 1.8 1.7 3.1 3.5 4.6 4.3 3.9 3.9 3.9 3.9 3.9 1.0	3.0 3.0 3.2 3.2 3.0 2.8 3.3 3.2 2.9 2.8 2.9 3.1 3.2 3.2 3.2 3.2 3.3 2.9 3.0 2.8 2.9 3.0 2.8 2.9 3.0 2.8 2.9 3.0 2.8 2.9 3.0 2.8 2.9 3.0 3.0 2.8 2.9 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0

Time: 150.0°W. Sweep: 1.0 Mc to 25.0 Nc in 15 seconde.

Panama Canal Zone (9.4%, 79.9%) Table 17 March 1952										
Time	h'F2	foF2	h'Fl	foFl	h¹E	foE	fEs	(M3000)F2		
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23	300 260 210 210 210 280 300 260 280 310 330 330 350 350 280 270 210 250 250 270 270 300	4.0 3.6 3.3 2.8 (3.0) 6.7 7.9 9.0 10.8 11.6 12.6 12.6 13.8 13.8	210 210 210 220 220 220 220 220 210 250	1.5 1.7 1.7 1.7 1.7 1.7 1.7	130 120 120 110 110 110 110 110 120	1.9 2.6 3.0 3.5 3.5 3.5 3.5 3.6 2.6	2.7 2.2 2.7 2.7 2.7 2.9 3.4 4.1 4.1 4.1 5.1 5.1 6.2 7 3.6 9 9 1.1 1.2 1.3 1.4 1.2 1.3 1.4 1.2 1.3 1.4 1.3 1.4 1.4 1.3 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4	2.8 3.1 3.1 2.8 2.8 2.7 3.0 2.8 2.8 2.8 2.7 2.8 3.0 3.0 3.0 3.0 3.0 2.9 2.8		

Time: 75.0°W. Sweep: 1.0 Mc to 25.0 Me in 15 seconds.

Okinawa	March 1952							
Time	h¹F2	foF2	h'F1	foFl	h'E	foE	fEs	(M3000)F2
	a I. (26. h1F2 300 280 270 250 260 250 260 290 310 320 320 320 280 280			foF1	130 120 120 120 120 120 120 120 120	2.0 2.5 (3.0) (3.2) 3.3 3.3 3.3 3.3 3.1 2.8	fEs 2.0 3.2 3.8 4.7 4.4 4.4 4.5 4.3	
17 18 19 20 21 22 23	260 250 230 (250) (300) (320) 320	11.4 9.6 8.0 5.9 4.8 4.8	260		130	2.3	3.5 3.2 2.9 3.0	3.2 3.2 3.3 2.9 2.6 2.7 2.7

Time: 127.5°E. Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

Puerto	Rico, W.	1. (18.5	N, 67.2	-W)				March 1952
Time	h¹F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
00	280	4.3					1.8	3.0
01	260	4.4						3.1
02	250	4.4						3.2
03	230	4.0						3.3
04	240	3.6						3.1
05	250	3.2						3.0
06	(<270)	3.1						2.9
07	230	4.9			(120)	1.8		3.5
08	240	5.8	220		100	(2.4)		3.4
09	270	6.6	220		100	2.8		3.3
10	280	7.8	220	(4.4)	100	3.1		3.2
11	280	8.9	220	(4.5)	100	3.3		3.1
12	280	9.4	210	4.5	100	3.4		3.1
13	280	9.5	220	4.5	100	3.4		3.1
14	280	9.9	220	(4.5)	100	3.3		3.2
15	270	9.9	220	(h.4)	100	3.2		3.2
16	260	9.5	220		100	3.G	4.0	3.3
17	250	8.6	220		100	2.5	3.8	3.4
18	220	8.1	230		110		3.2	3.4
19	210	6.8					2.6	3.4
20	220	5.2						3.1
21	240	4.6						3.0
22	280	4.2						2.9
23	290	4.2						2.9

Time: 60.0°W. Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

				Table	18			
Huanoay	o, Peru	(12.0°s,	75.3°W)		_			March 1952
Time	Fils	folk	h'Fl	foFl	hiZ	foB	fBs	(MS000)F2
∞	210	8.4					4.0	3.4
01	210	7.6					3.8	3.3
02	230	5.6					3.7	3.2
03	240	4.7					3.6	3.3
04	270	3.8					3.8	3.4
05	250	3.6						3.3
06	250	4.1					3.8	3.2
07	230	7.3			110	2.2	5.1	3.4
- 80	(260)	8.9	220	-	110	2.8	8.1	3.3
09	290	9.6	210	(4.2)	110		11.1	2.9
10	300	9.6	500	4.5	100		12.0	2.6
11	320	8.7	200	4.6	100		12.3	2.6
12	320	8.4	200	4.6	100		12.4	2.6
13	330	8.3	190	4.6	100		12.2	2.6
14	310	8.7	190	4.4	100		12.2	2.6
15 16	300	9.0	190		100		11.8	2.6
16	280	9.1	500		100		10.2	2.7
17	230	9.3			110		8.6	2.6
18	260	9.6			120		5 • 5	2.7
19	290	9.2						2.7
20	280	8.8						2.7
21	240	8.6						2.9
22	230	8.6						3.1
23	220	8.8						3.2

23 220 8.8 Tims: 75.0°W. Sweep: 1.0 Me to 25.0 Me in 15 seconds.

	e Bay, Oa			1.9°W)			Feb	ruary 1952
Time	Fills	foF2	P.L.	foFl	P.E	fol	fBs	(M3000)F2
00	250	3.2						3.0
01	250	2.8						2.9
02	260	3.0						2.9
03	250	3.3						2.9
04	270	3.0						3.0
05	270	3.0						3.0
06	260	3.2						3.0
07	?5ū	3.3						2.9
07 08 09	260	3.8						3.0
09	250	3.4						3.0
10	250	3.6						3.0
11	250	3.8						3.0
12	260	4.2						3.0
13	260	4.4						3.0
14	250	4.4						3.0
12 13 14 15 16 17	250	4.2						3.0
16	240	4.5						3.0
17	250	4.2						2.9
18	250	4.0						2.9
19 .	250	3.9						2.9
20	260	3.7						3.0
21	270	3.5						2.9
22	260	3.4						2.9
23	260	3.4						2.9

Time: 90.0°W.
Sweep: 1.0 Me to 25.0 Me in 15 seconds.

Table 21									
Fairbar	ks, Alasi	ka (64.9°	N, 147.	eow)			Feb	ruary 1952	
Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fЕв	(M3000)F2	
00							5.2		
01							5.7		
02							6.2		
03							6.0		
04							5.9		
05 06	(310)	(3.0)					5.5	(2.8)	
06	(300)	(3.0)					5.0	(2.9)	
07	(290)	(3.0)					3.0	(3.0)	
08	(260)	(3.5)						(3.1)	
09	260	4.2						3.2	
10	260	4.6						3.2	
11	260	5.1						3.2	
12	260	5.2						3.2	
13	260	5.4						3.2	
14 15	240	5.6						3.2	
15	250	5.4						3.3	
16	570	5.4						3.3	
17	250	4.8						3.2	
18	240	4.3						(3.1)	
19	(240)	(3.0)					3.2	(3.3)	
20	(280)	(2.5)					2.6		
21							5.0		
22							5.0		
23							5.0		

Time: 150.0°W. Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

				Table	23			
Churchi	11, Canad	la (58.8	N, 94.2	W)			Fel	bruary 1952
Time	FILS	foF2	h'F1	foF1	PIE	fol	₹Be	(M3000)F2

Church	III, Cana	Fe	bruary 1952					
Time	P.LS	foF2	h171	foF1	₽IE	fol	£3€	(M3000)F2
00	320	(2.9)					6.1	
01	320	(3.0)			10 miles		6.0	
02	320	(3.0)			-	(2.6)	5.0	
03 04	(310)	(2.6)			120	(2.2)	5.0	40-49-4D
04	(310)	(3.0)			120	2.6	4.4	
05	(300)	(3.4)			120	2.7	2.7	(3.2)
06		(3.5)			120	2.8	3.8	
07	(400)	(4.1)			110	3.8	4.0	-
08	330	4.0			120	3.2	4.8	(3.0)
09	280	4.6			110	3.0	4.0	3.3
10	290	5.0		400 mg 400	110	2.7		3.2
11	280	5.4	240		110	2.7		3.2
12	300	5.5	230		120	2.7		3.0
13	300	6.0	250	3.7				3.0
14	300	6.3	240	3.6	120	(2.6)		3.0
13 14 15 16	280	5.8	240		130	2.5		3.1
16	260	5.2			120	2.7		3.0
17	260	5.0			130	2.6		3.0
18	280	4.3			120	2.6	3.6	(3.1)
19	300	3.8			120	2.5	3.5	3.0
20	300	(3.6)			120	2.4	5.4	(3.0)
21	260	(3.4)			120	(2.3)	7.4	(3.0)
22	300	(3.0)					7.0	(3.2)
23	300	(2.8)					7.0	(3.2)

Time: 90.0°W. Sweep: 0.6 Mc to 20.0 Mc in 15 seconds.

Kiruna.	Sweden	(67.8°N.	20.5°E)	Table 2	20		Febr	uary 1952
Time	Fils	foF2	P.11	foFl	h · E	foE	fEq	(M3000)F
00		(2.9)					4.1	
01		(3.0)					3.5	
02		2.8					4.1	
03	(300)	3.0					3.4	
04	(310)	3.0					2.7	
05	(280)	3.2					2.2	
06	(280)	2.7						
07	260	3.1					1.0	
08	240	3.8						
09	245	4.4						
10	240	5.0						
11	240	5.6				2.3		
12	240	5.7				2.2		
13	250	5.5				2.1		
14	240	5.2						
15	235	4.5						
16	220	4.2						
17	240	3.9					2.4	
18	250	3.2					2.3	
19	(260)	3.2					4.0	
20	(260)	(2.8)					4.2	
21		(3.0)					4.0	
22		(3.2)					4.2	
23		(2.9)					3.0	

Time: 15.0°E.
Sweep: 0.8 Mc to 15.0 Mc in 30 seconds.

Baker I	Lake, Can	ada (64.	3 ⁰ N, 96.0	Table (W)	22		Febr	uary 1952
Time	h'F2	foF2	h'Fl	foFl	h¹E	foE	fEs	(M3000)F2
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23	300 300 310 330 350 300 320 310 300 320 320 300 320 300 320 300 300 320 300 30	2.8 2.2.7.7.6) 2.0.2.0.3.4.4.5.5.5.5.5.4.3.3.3.3.3.3.3.3.3.3.3	310 300 290 290	3.4 3.5 3.3 3.1	150 160 120 120 120 110 120 130 120 130 120 130 130 130	1.8 (1.8) (1.7) 1.9 2.3 2.4 2.9 3.1 2.9 3.0 2.6 2.5 2.5 2.1 (1.8) 1.8	7.59.108.05.00 7.59.108.05.00 7.10 8.12.7.00 8	2.7 2.7 2.7 2.7 2.6 2.7 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8

Time: 90.0°W.
Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

Fort Chimo, Canada (58.1 N, 68.3 W) February 1952		n 1. (c0 :		10 24	2000
, , , , , , , , , , , , , , , , , , , ,	Fort Unimo,	Canada (50.	L N, 00.3 W)	rebruary	1952

				- ''				
Time	Fils	foF2	h'Fl	foFl	h'E	foB	fBs	(M3000)15
00	(280)	3.0			100	2.9	4.6	
01	(300)	2.7			100	2.6	4.2	
02		(2.8)			100	3.1	4.0	
03		(3.3)			100	3.3	4.0	
04	(310)	(3.0)			100	3.0	4.0	
05	(300)	(2.7)			100	2.8	4.1	
06	(3/10)	(2.7)			100	2.8	4.5	(3.0)
07	270	3.6			100	2.7	4.0	3.2
08	260	4.4			100	2.5		3-4
09	250	4.8	***		100	2.7		3.2
10	260 290	5.3		3.6	100	2.6		3.2
11 12	300	5.9 6.0	550 570	3.7	100	2.7		3.0
13	300	5.5	230	3.8 3.8	110 100	2.7		3.0
14	270	5.2	200	3.6	100	2.4		3.0
15	250	5.1	240	5.0	110	2.3		3.1 3.0
16	260	4.2	240		100	2.5	1.7	3.1
17	260	3.8			100	2.8	1.3	3.0
18	300	3.3			100	2.8	4.6	2.9
19	260	3.2			100	2.8	4.6	(3.0)
20	(240)	3.2					5.9	(3.0)
21	(300)	2.8			100	2.3	5.0	(510)
22	270	2.8					5.0	(3.0)
23	(280)	2.8					5.1	

Time: 75.0°W.
Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

			Table	2			
Rupert,	Сапада	(54.3°N.	130.3°W)		Feb	ruary 1952
P₁12S	foF2	h'Fl	foFl	h1E	foE	fEe	(H3000)F2
3.10	1.7						3.0
310	1.8						3.0
300	1.9						3.0
320	1.9						2.9
330	1.8						3.0
340	1.9						2.8
350	1.9					1.4	2.8
300	2. 0						2.9
28 0	3.0				£		3.0
240	4.2			11.0	2.0		3.1
260	5.0	230	3.3				3.1
290	5.4	220	3.€				3.0
290	5.8	220	3.7				3.0
290	6.2		3.8				3.0
	6.5	220	3.7				3.0
250	6.5	230		120	2.4		3.1
240	5.8	5/ ¹ 0		110	2.2		3.2
240	6.0			120	2.0		3.1
230	5.2				E		3.1
230	4-1						3.0
240	3.0						3.0
270	2.0						3.0
290	1.9						3.0
280	1.8						3.0
	h ¹ //2 310 310 320 320 330 340 350 260 290 260 290 290 250 240 230 240 230 240 230 240 230 240 230	h:F2 foF2 3:0 1.7 3:0 1.8 3:0 1.9 3:0 1.9 3:0 1.9 3:0 1.9 3:0 1.9 3:0 2.0 2:0 2.0 2:0 5.0 2:0 5.0 2:0 6.2 2:0 6.5 2:0 6.5 2:0 6.5 2:0 6.5 2:0 6.5 2:0 5.6 2:0 5.6 2:0 5.0 2:0 5.2	h'F2 foF2 h'F1 310 1.7 310 1.8 300 1.9 320 1.9 330 1.8 300 1.9 330 2.0 20 20 20 20 20 20 20 5.0 230 290 5.1 220 290 5.1 220 290 6.2 220 280 6.5 220 280 6.5 220 250 6.5 230 210 5.6 210 230 5.2 230 4.1 210 3.0 270 2.0 290 1.9	Bupert Canada (\$4.3°N 130.3°N h*P2 foF2 h*F1 foF1 3:0 1.7 3:0 1.8 3:0 1.9 320 1.9 330 1.8 3.0 1.9 350 1.9 350 1.9 300 2.0 2.0 2.0 280 3.0 2.0 2.0 280 3.0 2.0 3.6 290 5.4 220 3.6 290 5.8 220 3.7 290 6.2 220 3.7 250 6.5 220 3.7 250 6.5 220 3.7 250 6.5 220 3.7 250 6.5 230 210 5.6 210 220 3.6 230 5.2 230 4.1 2.0 <td>h'F2 foF2 h'F1 foF1 n'E 3:0 1.7 3:0 1.8 3:0 1.9 3:0 1.9 3:0 1.9 3:0 1.8 3:0 1.9 3:0 1.8 3:0 1.9 3:0 1.8 3:0 1.9 3:0 1.8 3:0 1.9 3:0 1.9 3:0 1.9 3:0 1.9 3:0 1.9 3:0 1.9 3:0 1.9 3:0 1.9 3:0 1.9 3:0 1.9 3:0 1.9 3:0 1.9 3:0 1.9 3:0 1.9 3:0 1.9 3:0 1.0 2:0 20 3.6 1:0 20 2:0 3.7 110 2:0 3.6 2:0 3.7 110 2:0 3.6 2:0 3.7 110 2:0 5.8 2:0 3.7 110 2:0 5.8 2:0 3.7 110 2:0 1.9 2:0 1.9 2:0 1.9</td> <td>Bupert, Canada (54.3°N, 130.3°W) h*F2 foF2 h*F1 foF1 n*E foE 3:0 1.7 3:0 1.8 3:0 1.9 3:0 1.9 3:0 1.9 3:0 1.9 3:0 1.9 3:0 1.9 3:0 1.9 3:0 1.9 3:0 1.9 3:0 1.9 3:0 1.9 3:0 1.9 3:0 1.0 2.0 1.9 1.0 2.0 2.0 1.0 2.0 2.0 2.0 2.0 <td< td=""><td>Bupert, Canada (54.3°N, 130.3°V) Feb h[†]/2 foF2 h[†]/f1 foF1 h[†]/f2 foF2 ff8 1.3 350 1.7 1.8 1.3 300 1.9 2.0 330 1.8 2.0 330 1.8 2.0 350 1.9 2.0 330 1.8 2.1 360 1.9 2.0 350 2.0 2.1 280 3.0 2.0 280 3.0 2.0 280 3.0 2.0 280 5.0 230 3.3 1.0 290 5.1 220 3.6 110 290 5.8 220 3.7 110 290 6.2 220 3.8 110 270 290 6.5 220 3.7 120 210 5.6 210</td></td<></td>	h'F2 foF2 h'F1 foF1 n'E 3:0 1.7 3:0 1.8 3:0 1.9 3:0 1.9 3:0 1.9 3:0 1.8 3:0 1.9 3:0 1.8 3:0 1.9 3:0 1.8 3:0 1.9 3:0 1.8 3:0 1.9 3:0 1.9 3:0 1.9 3:0 1.9 3:0 1.9 3:0 1.9 3:0 1.9 3:0 1.9 3:0 1.9 3:0 1.9 3:0 1.9 3:0 1.9 3:0 1.9 3:0 1.9 3:0 1.9 3:0 1.0 2:0 20 3.6 1:0 20 2:0 3.7 110 2:0 3.6 2:0 3.7 110 2:0 3.6 2:0 3.7 110 2:0 5.8 2:0 3.7 110 2:0 5.8 2:0 3.7 110 2:0 1.9 2:0 1.9 2:0 1.9	Bupert, Canada (54.3°N, 130.3°W) h*F2 foF2 h*F1 foF1 n*E foE 3:0 1.7 3:0 1.8 3:0 1.9 3:0 1.9 3:0 1.9 3:0 1.9 3:0 1.9 3:0 1.9 3:0 1.9 3:0 1.9 3:0 1.9 3:0 1.9 3:0 1.9 3:0 1.9 3:0 1.0 2.0 1.9 1.0 2.0 2.0 1.0 2.0 2.0 2.0 2.0 <td< td=""><td>Bupert, Canada (54.3°N, 130.3°V) Feb h[†]/2 foF2 h[†]/f1 foF1 h[†]/f2 foF2 ff8 1.3 350 1.7 1.8 1.3 300 1.9 2.0 330 1.8 2.0 330 1.8 2.0 350 1.9 2.0 330 1.8 2.1 360 1.9 2.0 350 2.0 2.1 280 3.0 2.0 280 3.0 2.0 280 3.0 2.0 280 5.0 230 3.3 1.0 290 5.1 220 3.6 110 290 5.8 220 3.7 110 290 6.2 220 3.8 110 270 290 6.5 220 3.7 120 210 5.6 210</td></td<>	Bupert, Canada (54.3°N, 130.3°V) Feb h [†] /2 foF2 h [†] /f1 foF1 h [†] /f2 foF2 ff8 1.3 350 1.7 1.8 1.3 300 1.9 2.0 330 1.8 2.0 330 1.8 2.0 350 1.9 2.0 330 1.8 2.1 360 1.9 2.0 350 2.0 2.1 280 3.0 2.0 280 3.0 2.0 280 3.0 2.0 280 5.0 230 3.3 1.0 290 5.1 220 3.6 110 290 5.8 220 3.7 110 290 6.2 220 3.8 110 270 290 6.5 220 3.7 120 210 5.6 210

Time: 120.0°W. Sweep: 0.6 Mc to 20.0 Mc in 15 seconds.

				Table	27			
Lindau,	/Harz, Ge	ermany (5	1.6°N, 1	0.1°E)			Febr	uary 1952
Time	h¹F2	foF2	h¹Fl	foFl	htI	foE	fEs	(M3COO)F2
00	300	2.6					2.2	0.1
01	280	2.6					2.1	2.0
02	280	2.6					2.2	C + n
03	280	2.6					2.2	2.0
Oli	280	2.4					2.2	2.9
05	2.80	2.0					2.2	2.
06	290	2.0					2.8	3.0
07	270	2.5					2.1	3.40
08	230	4.6				E	2.0	3.1
0.9	230	> 5.6	220		111	2.2	3.2	3.1
10	240	6.1	210			2.4	3.2	3.4
11	240	6.5	210		1.6	2.6	3.4	3.4
12	240	6.6	210		1.0	2.7	3	+/1
13	240	6.4	210		1 0	c = 7	3.44	3.4
14	240	6.6	210		160	2.6	3.1	3.3
15	240	6.2	220		110	2.4	3.2	3.4
16	230	5.9	230		1.0	2.2	2.9	3.4
17	220	5.4				E	3.1	3.4
18	220	5.0					2.0	3.2
19	220	4.4					2.3	3.2
20	250	3.5					2.0	3.1
21	280	2.0					7.1	3.0
20	3 1	2.8					1	
	290	2.6						٠, ٠, ٠

Time: 10.0°E. Sweep: 1.0 kc to 16.0 ic in minute.

				Table				
St. Jo	hn's, New	of oundly	id (47.6°	N, 52.7	W)		Febru	ary 1952
Time	Pils	foF2	h'Fl	foFl	h'E	fol	fEs	(M3000)F2
00	3	2.4						2.9
01	3:00	2.4						2.0
02	310	2.2						2.9
03	30%	2.0						3.0
OL	300	2.1						3.0
05	300	2.0						3.1
06	300	2.2						3.1
07	250	4.0		40 40 40	120	1.9		3.4
08	230	5.0	270	2.9	110	2.3		3.4
09	250	5.6	220	3.6	110	2.5		3.1;
10	290	6.0	210	3.7	110	2,8		3.3
11	280	6.4	210	4.00	110	2.8		3.3
12	290	6.6	210	4,00	11	2.9		3.3
13	280	6.7	220	1,.0	110	2.5		3.3
14	280	6.8	220	3.8	110	2.7		3.3
15	260	6.7	230	3.5	12)	2.4		3+3
16	250	6.1	240	2.9	711	0.0		3.3
17	240	5.6						3.3
18	240	5.5						3 4 2
19	250	4.4						3.2
20	260	3.8						3.2
21	300	3.2						3.0
22	300	2.8						2.9
23	300	2.7						3.0

Time: 60.0°W. Sweep: 0.6 Mc to 20.0 Mc in 15 seconds.

De bil	t, Hollan	d (52.1°		Fuary 1952				
Time	5172	foF2	h'F1	foFl	h'E	foE	130	(M3000) 72
00	< 300	(2.4)						(2.9)
01	< 300	(24)						(29)
:5	< 290	(2.5)						
03 1. 1. 36	280	(2.2)						100-400 MP
	(270)	(2.0)						****
	(270)	(1.5)					2.0	
	00 00 10	(2.0						(3.0)
07	235	3.5			air en en	E		3.2
. 9 09	225	4.9	230		115	2.0	2.0	3.4
	220	5.8	215	3.6	110	2.3		3.4
30	200	6.2	210	3.6	110	2.5		3.4:
TJ	260	6.1	210	3.8	110	2.7		3-4
12	250	6. E.	210	3.9	110	2.7		3-4
13	< 250	6.L	205	3.9	110	2.7		3.4
11.	240	6.2	210	3.6	110	2.5		3.4
14	220	5.6	55C		110	2.2		3.4
16	220	5.8			120	2.0		3.5
7	210	5.3				Ε		3.4
1	220	4.7						3.2
	235	3.8						3.1
	270	2.9						2.9
	2.90	(2.6)						(3.0)
	1280	(2.1)						(2.9)
	(282)	(2.1.)						(20)

| (280) (2.4) | The: 0.00. | Whep. 1.4 Me to 16.6 Me in 7 minutes, automatic operation.

Winnip	eg, Canad	a (49.9°	N. 97.4°	Table			February 1952		
Time	P.LS	₹o₹2	h'Fl	foFl	h'E	foE	fEs	(N3000)F2	
00	3 '0	2.4					1.7	2.9	
01	300	2.2					3.3	2.9	
12	300	2.4					3.8	29	
03	330	2-2					L.0	(2.8)	
	320	2.4					3.5	2.9	
- 5	320	2.4					3.2	(2.9)	
	(300)	(2.6					3.0	(3.0)	
00.30	300	2-4			***			(2.9)	
	260	3.9				-		3.2	
	250	4.7	2.		120	2.2		3-2	
1 1	260	5.4	25		110	2.5		3.2	
il.	290	5.9	^	4.0	110	2.7		3.2	
12	290	6.2		3,0	110	2.8		3.2	
13	300	6.6		4.0	110	2.8		3.2	
14	280	6.9		L.O	110	2.7		3.2	
15	260	7.0	220		110	2, 6		3.3	
1ó	260	6.5	24		130	2.3		3.3	
17	250	6.2						3.3	
18	21.0	5.3						3.2	
1.3	250	4.1						3.0	
20	260	3.5						3.1	
21	300	2.9						3.0	
22	300	2.5						3.0	
23	300	2.5						3.0	

23 j 300 2.5 Time: 90.0°W. Sweep: 0.6 Mc to 20.0 Mc in 15 seconds.

				Table	30			
ochwarz	enburg,	, Switzerland (46.8°N, 7.3°E'						ruary 1952
Time	P112	foF2	h'Fl	foFl	h¹ E	foE	fla	(N3000)F2
00	290	3.0						3+3
01	285	3.0						3-3
02	300	2.9						3.2
3 04	270	3.0						3.2
04	265	2.9						3.3
05	250	2.5						3.3
06	255	2.2						3.5
07	250	2.6				400-400 AD		3.5
08	210	4.2			100	2.0		3.8
09	210	5.5			100	2.2		3.9
10	200	6.4			100	2.5		3.9
11	210	6.8			100	2.8		3.8
12	200	7.0			100	2.8		3.8
1.3	205	6.8			100	2.9		3-9
14	215	6.5			1.00	2.8		3.8
15	200	6.5			100	2.6		3.8
16	215	6.5			100	2.4		3.8
17	210	6.0						3.8
18	210	5.1						3.7
19	205	4.6						3.7
20	225	3.8						3.6
21	250	3.4						3.5
22	270	3.2						3.3
23	260	3.2						3.3

Time: 15.0°E. Cwcop: 1.0 Mc to 25.0 Ye in 30 seconds.

			Table 3	1			
Canada	(45.4°N,	75.7°W)		_		Feb	ruary 1952
P.LS	foF2	h ¹ Fl	foF1	h ! E	foE	fEs	ST(000EM)
							2.8
							2.8
							2. 8
	1.9						2.8
	2.0						2.8
	2.0						2.8
	1.9						2.9
	3-1			110	1.9		3.0
270	4.6			120	2.1		3.2
250	5.3	220	3.2	110	2.4		3.2
	6.0	220	3.8	120			3.1
	6.1	220	3.9	110			3.1
	6.6	220					3.1
	6.7	220	4.0				3.0
	7.0	220	3.9	110	2.3		3.0
	7.0	230	3.7	120			3.0
	6.7	570		120			3.1
							3.0
	5.5						3.0
240	5.0						3.0
250	3.9						3.0
280	3.0						2.9
300	2.7						2, 9
300	2.7						2.8
	112 300 320 300 300 300 300 300 200 200 20	h'F2 foF2 300 2.1 320 2.3 300 2.9 310 2.0 310 2.0 310 2.0 310 2.0 3.1 2.0 2.5 5.3 2.5 6.6 2.5 6.7 2.5 2.	h'F2 foF2 h'F1 300 2.1 320 2.3 300 2.2 300 2.2 300 2.0 310 2.0 (300) 1.9 260 3.1 2b0 1.6 250 5.3 220 260 6.0 220 280 6.1 220 280 6.7 220 280 6.7 220 280 7.0 220 270 7.0 230 250 6.7 210 250 6.7 210 250 6.7 210 250 6.7 210 250 6.7 210 250 6.7 210 250 6.7 210 250 6.7 210 250 6.7 210 250 6.7 210 250 6.7 210 250 6.7 210 250 6.7 210 250 6.7 210 250 6.7 210	Canada (Li5-Li N, 75.7°W) hTZ foF2 hTT foF1 300 2.1. 320 2.2 300 1.9 300 2.0 310 2.0 (300) 1.9 260 3.1 210 1.6 250 5.3 220 3.2 260 6.0 220 3.8 280 6.1 220 3.9 280 6.6 220 1.0 280 7.0 220 3.9 280 6.7 220 1.0 280 7.0 220 3.9 270 7.0 220 3.9 270 7.0 220 3.9 270 7.0 220 3.9 270 7.0 220 3.9 270 7.0 220 3.9 270 7.0 220 3.9 270 7.0 220 3.9 270 7.0 220 3.9 270 7.0 220 3.9 270 7.0 220 3.9 280 6.7 210 210 6.2 210 5.5 210 5.5 210 5.5 210 5.0 250 3.9 280 3.0 300 2.7	h'F2 foF2 h'F1 foF1 h'F	Canada (15.10%, 75.70%) hT2 foF2 hT1 foF1 hTE foE 300 2.4 300 2.2 300 1.9 300 2.0 310 2.0 (300) 1.9 260 3.1 210 1.6 120 2.1 280 6.1 220 3.9 110 2.8 280 6.7 220 4.0 110 2.9 280 6.7 220 4.0 110 2.9 280 6.7 220 3.9 110 2.8 280 6.7 220 3.9 110 2.3 280 6.6 223 1.0 110 2.9 280 7.0 220 3.9 110 2.8 280 6.7 220 4.0 110 2.9 280 7.0 230 3.7 120 2.9 250 6.7 210 120 2.2 210 5.5 210 5.5 220 5.9 280 3.0 280 3.0 280 3.0 280 3.0 280 3.0 280 3.0 280 3.0	Canada (15.10%, 75.70%) hT2 foF2 hT1 foF1 hTE foE fEe 300 2.1 300 2.1 300 2.2 300 1.9 300 2.0 310 2.0 (300) 1.9 260 3.1 210 1.6 250 5.3 220 3.2 110 2.1 260 6.0 220 3.8 120 2.7 280 6.1 220 3.9 110 2.8 280 6.7 220 1.0 110 2.8 280 6.7 220 1.0 110 2.8 280 6.7 220 3.9 110 2.8 280 6.7 220 3.9 120 2.3 280 6.6 220 1.0 110 2.8 280 6.7 220 3.9 120 2.8 280 6.7 220 3.9 120 2.8 280 6.7 220 3.9 120 2.8 280 6.7 220 3.9 120 2.8 280 6.7 220 3.9 120 2.8 280 6.7 220 3.9 120 2.8 280 6.7 220 3.9 120 2.8 280 7.0 230 3.7 120 2.6 250 6.7 210 120 2.2 210 5.5 210 5.0 250 3.9 280 3.0 300 2.7

Time: 75.0°W. Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

				Table	33			
Wakkan	ai, Japan	(45.4°N	, 141.7°	E)			Jar	nuary 1952
Time	PINS	foF2	h131	foF1	h'E	fol	17ks	(M3000)15
20	310	3.2						2.8
Ol	320	3.1						2.7
02	310	3.2						2.7
03	300	3.3						2.8
04	290	3.0						2.8
05	280	3.0						2.8
06	300	2.6						2.9
07	290	4.2						2.9
08	270	5.7			120	2.2		3.2
09	280	7.4			130	2.6		3.1
70	280	8.4			140	2.8		3.1
11	270	8.2			120	2.8		3.2
12	280	7.7	260	4.0	130	****		3.1
13	280	7.1			120	2.8		3.1
14	280	7.2			130	2.6		3.2
15	270	6.5			120	-		3.2
16	260	5.6						3.2
17	280	4.4						3.0
18	290	4.0						3.0
19	300	3.2						3.0
20	300	3.0						2.8
21	370	3.0						2.7
22	350	3.0						2.6
23	350	3.2						2.7

Time: 135.0°E.
Sweep: 1.0 Mc to 15.5 Mc in 2 minutes.

Tokyo,	Japan (3	5.7°N, 1	39•5°E)	Table	35		Jan	uary 1952
Time	F.13	foJ2	h'F1	foF1	PIE	foE	fBe	(M3000)12
00	3 00	3.0					2.0	2.8
01	300	3.1					2.0	2.9
02	260	3.3					2.0	3.0
03	260	3.0					1.8	3.0
07	290	2.6					1.7	2.9
05 06	300	2.6						2.9
06	280	2.6						3.1
07	5/10	4.7		es sales	150	1.6		3.3
08	270	6.3	240	40.00	120	2.2		3.4
09	5/10	7.0	570		110	2.6		3+3
10	270	9.3	230	4.4	120	2.9	3.6	3.3
11	260	10.0	230	4.5	110	3.0		3.3
12	260	8.4	230		110	3.1		3.4
13	260	7.5	230	4.3	110	3.0		3.3
14	260	7.0	230		110	2.9		3.3
15	250	7.1	230	10.05-00	110	2.5		3.4
16	230	5.9	-		110	2.1		3.4
17	230	4.8			140	1.5	2.0	3.3
18	570	4.0					1.7	3.1
19	250	3.7						3.2
20 21	250	3.4					1.8	3.2
22	270	3.0						3.0
	310 320	2.8					1.7	2.8
23	320	3 .0						2.8

Time: 135.0°E. Sweep: 1.0 Mc to 17.2 Mc in 2 minutes.

Time	h¹F2	foF2	h'Fl	foFl	h'E	0.0		ary 1952
00	1	1017	41 1 1	1011	U.T	foE	fEs	(M3C00)F2
Ol							4-4	
02	(340)	(3.4)					4.6	
03							4.6	
04	(310)	(2.5)					3.9	(2.9)
05	290	2.8					3.0	(3.0)
06	280	(2.8)					2.2	3-2
07	(270)	(2.4)					(2.2)	(3.2)
80	(260)	(2.3)					, ,	(3.1)
09	(240)	2.9						3-2
10	240	4.0						3-3
12	220	4.8						3.5
13	230	5.4 5.6						3.5
11.	230	5.2						3.4
13 14 15	240	5.0						3.3
16	220	4.7						3.3
17	250	(3.3)					2.0	3.3
18	(260)	(3.0)					3.0	(3.1)
19	(310)	(2.7)					4.0	
20							4.1	
21	(300)						4.2	
22							4.5	
23							5.5	

Time: 15.0 W. Sweep: 1.0 Mc to 25.0 Mc in 18 seconds.

Akita,	Japan (3	9.7°N, 1	40.1°E)				Ja	nuary 1952
Time	Pils	foF2	h'#1	foFl	hII	fol	fBe	(M3000)F2
00	300	3.2					1.4	2.9
Ol	290	3.2					1.8	2.9
02	260	3.3					1.4	3.1
03	250	3.1					1.6	3.1
04	250	3.0					1.2	3.0
05	280	2.8						3.0
06	270	2.6						3.0
07	240	4.6			130	1.7		3.3
08	220	6.1			120	2.0		3.5
09	240	7.3	230		110	2.6		3.3
10	250	8.9	230	4.0	110	2.8		3.4
11	240	9.2	230	4.2	110	2.9		3.4
12	230	7.8	220	4.2	110	3.0		3.5
13	230	7.0	220	4.0	110	2.9		3.4
14	230	7.0	220	3.7	110	2.8		3.4
15	230	6.6	220	3.3	110	2.4		3.5
16	220	5.8			120	2.0		3.5
17	220	4.5					1.7	3.3
18	230	3.8					2.0	3.2
19	230	3.7						3.2
20	250	3.2						3.2
21	290	2.9						2.9
55	300	3.0					2.2	2.8
23	300	3.1						0.0

23 \ 300 3.4 Time: 135.0°E. Sweep: 1.0 Mc to 17.0 Mc in 15 minutes, manual operation.

Yamagav	wa, Japan	(31.2°N,	130.60	E)	36		Ja	nuary 1952
Time	P.123	foF2	h'F1	foFl	h I E	fol	TEs	(M3000)F2
00	300	3.0					2.2	2.8
ol	280	3.0					2.2	3.0
02	260	3.2					2.5	3.1
03 04	5110	3.2					2.5	3.3
04	230	2.7					2.0	3.3
05	300	2.4					2.2	2.8
06	290	2.4					1.9	3.0
07	250	3.2						3.1
08	230	6.0			120	1.9		3.5
09	230	6.7	210		110	2.5	3.4	3.5
10	250	7.6	220		100	2.8	4.3	3.3
11	250	9.3	220	4.5	100	3.1	4.4	3.4
12	250	9.6	220	4.6	100	3.2	4.5	3.4
13	250	8.4	220	4.5	100	3.2	4.3	3.4
13 14 15 16	250	8.0	210		100	3.0	4.0	3.4
15	250	7.3	220	-	100	2.9	3.9	3.3
10	230	6.8	220	40 mil 40	100	2.5	3.9	3.4
17	, 550	6.5			100	1.8	3.2	3.4
18	210	4.7					3.0	3.4
19	230	4.1					2.5	3.2
20	240	4.2					2.3	3.2
21	270	3.4					2.2	3.2
22	260	2.8					2.2	3.0
23	300	2.9					2.2	2, 8

Time: 135.0°E. Sweep: 1.0 Mc to 22.0 Mc in 2 minutes.

	Table 37									
Guam I	. (13.6°N	, 144.9°	E)				Jan	uary 1952		
Time	F.LS	foF2	P.L.	foFl	h'E	fol	fäs	(M3000)F2		
00	240	5.4						3.1		
01	. 260	5.0						3.2		
02	250	4.6						3.2		
03	240	3.8						3.3		
C4	250	3.4						3.2		
05	270	2.6						3-2		
06	(270)	2.8						3.2		
07	260	4.6						3.3		
08	(270)	7.2	240		120	2.5		3.2		
09	290	9.4	220		110	2.9	3.1	3.1		
10	310	9.8	220	4.5	110	3.1	4.1	2.9		
11	310	8.9	210	4.7	(110)	(3.3)	4.3	2.6		
12	330	8.4	200	4.7	(110)		4.4	2.4		
13	340	8.4	200	(4.7)	(120)		4.2	2.4		
14	370	8.6	220				4.1	2.5		
15 16	320	9.0	230		(110)			2.7		
16	300	9.8	240		(120)			2.8		
17	270	10.1	240		(120)	2.5		3.0		
18	250	9.8					3.0	3.2		
19	240	9.2						3.1		
20	240	8.8					2.7	3.1		
21	570	8.5					2.7	3.1		
22	270	7.2					2.7	3.3		
23	230	6.2					2.4	3.3		

Time: 150.0°E.
Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

						able 39			
Johanne	esburg,	Union	of	S.	Africa	(26.2°s,	28.1°E)	January	1952
	1.177.0		7.0	_	1.00-				

Time	FillS	foF2	h'Fl	foFl	h¹ E	foE	fBe	SE(000EM)
00	250	4.6					2.2	2.9
ol	270	4.2					2.2	2.9
02	260	3.8					2.2	2.9
03	270	3.7					2.4	3.0
04	260	3.3					2.0	3.0
05	260	3.3					1.9	3.0
06	250	4.9	240		120	2.0	2.7	3.2
07	290	5.6	220	4.0	110	2.6	3.5	3.0
-08	35↑	6.3	550	4.5	110	3.0	3.8	2.8
09	340	7.0	210	4.6	110	3.4	4.1	2.8
10	350	7.6	200	4.8	110	3.5	4.0	2.8
11	340	8.5	200	4.9	110	3.7	4.2	2.8
12	330	8.5	200	4.9	110	3.8	4.3	2.8
13	340	8.5	210	4.9	110	3.7	4.1	2.8
14	330	8.7	210	4.8	110	3.6	4.0	2.9
15	310	8.7	210	4.6	110	3.5	4.0	2.9
16	300	8.3	220	4.5	110	3.3	3.8	3.0
17	280	7.6	220	4.1	110	2.0	3.7	3.1
18	260	6.9	230	3 • 4	120	2.4	3.1	3.1
19	250	6.5					2.8	3.0
20	250	6.5					2.5	3.0
21	240	5.8					2.0	3.0
22	260	5.0					2.2	2.9
23	280	4.7					2.4	2.8

Time: 30.0°E. Sweep: 1.0 Mc to 15.0 Mc in 7 seconds.

Table 41

Christchurch, New Zealand (43.6°S, 172.7°E)								nuary 1952
Time	P.LS	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000) F2
00	260	5.3					3.2	2.7
Ol	280	4.7					3.8	2.8
02	280	4.2					3.2	2.8
03	28.0	3.5					3.2	2.8
04	290	3.1					3.1	2.9
05	270	3.5				1.4	3.5	3.0
06	280	14.2	250	3.6		2.3	4.4	3.0
07	380	11.8	240	4.0		2.7	5.2	3.0
08	380	5.5	230	4.3		3.0	5.6	2.9
09	350	5.9	220	4.5		3.2	6.2	3.0
10	370	6.0	220	4.6		3.4	6.6	3.0
11	360	5.9	240	4.7		3.5	6.5	2.9
12	390	6.0	220	4.7		3.5	5.9	2.9
13	360	6.2	220	4.7		3.5	5.2	2.9
14	380	6.1	220	4.6		3.5	6.0	2.9
15	350	6.2	230	4.6		3.3	4.8	2.9
16	350	6.3	2l-J	4.4		3.1	4.4	2.9
17	330	6.7	240	4.2		2.8	4.4	2.9
18	50.0	6.P	250	3.7		2.4	3.2	3.0
19	270	7.0	270	2.9		1.6	3.0	3.0
20	260	6.3				1.2	3.0	2.8
21	270	6.2					2.5	2.8
22	280	6.C					2.9	2.8
23	280	5.8					2.8	2.8

Time: 172.5°E.
Sweep: 1.0 Mc to 13.0 Mc in 1 minute 55 seconds.

aro tor	nga I. (2	1.35, 1	59.5W)				Jan	ua ry 1952
Time	F.1.5	Skot	h'F1	foF1	h¹E	foE	13e	(N3000)F2
00	270	3.8					3.2	3.0
01	250	7.5					3.0	2.9
02	270	6.1					3.0	2.8
03	300	5.7					3.0	2.8
04	300	5.7					3.1	2.8
05	280	5.0					3.0	2.8
06	280	5.6				E	3.5	2.9
07	250	6.9	250	4.2	120	2.5	3.9	3.0
08	300	7.5	240	4.5	110	3.0	4.3	3.0
09	320	8.3	220	4.9	110	3.3	4.6	2.8
10	350	9.4	210	5.0	110	3.5	5.3	2.7
11	360	11.C	210	5.0	110	3.6	4.8	2.7
12	340	12.5	220	5.0	110	3.6	5.1	2.8
13 14	330	12.6	230	5.0	110	3.6	4.9.	2.8
14	320	13.3	240	4.9	110	3.6	4.7	2.9
15	310	12.2	220	4-8	110	3.4	4.3	3.0
16	300	12.0	240	4.6	110	3.2	4.4	3.0
17	280	10.0	250	4.2	110	2.9	4.2	3.0
18	250	8.2				2.3	4.1	3.0
19	280	7.5				E	4.1	2.6
20	330	8.2					4.2	2.6
21	320	8.4					4.0	2.7
22	320	8.1					3.9	2.7
23	300	8.3					3.6	2.8

22 300 8.3 Time: 157.5°W. Sweep: 2.0 Mc to 16.0 Mc, manual operation.

Capoto	an, Union	of S. A	frica (3	4.2°s, 1	.8.3°E)		Janu	ary 1952
Time	FILS	foF2	h'Fl	foFl	h1I	fo₽	fBa	(M3000)F2
00	290	3.9					2.1	2.8
01	300	3.9					2.2	2.8
02	290	3.8					2.1	2.8
03	280	3.7					2.0	2.9
04	270	3.5					1.9	2.9
05	280	3.2					1.9	2.9
06	260	4.0			120	1.8	2.0	3.1
07	280	5.1	240	3.7	120	2.2	3.0	3.0
08	350	5.8	230	4.1	110	2.8	3.6	2.8
09	350	8.6	220	4.5	110	3.1	3.7	2.8
10	360	6.9	220	4.6	110	3.4	3.8	2.8
11	350	7.7	200	4.8	110	3.6	4.1	2.8
12	350	7.8	210	4.8	110	3.6	4.0	2.8
13	340	8.C	210	4.8	110	3.6	4.5	2.8
14	350	7.9	210	4.8	110	3.6	4.3	2.8
15	340	7.6	210	4.7	110	3.5	3.9	2.9
16	3 30	7.2	210	4.6	110	3.3	4.0	2.9
17	310	7.1	220	4-4	110	3.1	3.7	3.0
18	300	6.8	220	4.0	110	2.8	3.3	3.1
19	260	6.7	250	3.4	120	2.2	2.9	3.1
20	250	6.4					2.0	3.1
21	230	5.8						3.1
22	250	4.8					2.0	3.0
23	270	h-1						2.0

23 270 4.1

Time: 30.0°E.

Sweep: 1.0 Mc to 15.0 Mc in 7 seconds.

			Tabl	e 42°			
ss, Scot	land (57.	4°N, 4.2	°W)			Dec	ember 1951
F.LS	folls	h'Fl	foFl	P.E	fol	fBe	(N3000)F2
(350)							26
335						1.0	(2.6)
325	(2.5)						2.6
330	1.5					0.9	2.6
315	1.6					3.0	2.7
300	(2.0)					2.9	2.7
295	(1.9)					2.9	3.0
	(2.2)						(2.8)#
	(2.4)						(2.9)
				120	1.8		3.2
							3.3
							3.4
		285 1				2.3	3.4
							3.4
		250 #					3.4
						2.4	3.4
					,		3.3
							3.2
							3.2
							3.0
							2.8
							2.8
							2.7
							2.7
	(350) 335 325 330 315 300	h'P2 foT2 (350) (1.8) 335 (1.5) 325 (2.5) 330 1.5 315 1.6 300 (2.0) 295 (1.9) 330 (2.2) 285 (2.1) 215 1.0 230 5.7 230 6.1 235 7.0 230 7.4 235 7.2 290 6.3 230 5.8 260 3.6 280 (2.6) 315 (2.1) 310 2.2 360 (2.3)	h'F2 foF2 h'F1 (350) (1.3) 335 (1.5) 325 (2.5) 330 (2.5) 315 1.6 300 (2.0) 295 (1.9) 330 (2.2) 285 (2.1) 215 1.0 230 5.7 230 6.1 230 7.4 235 7.2 250 # 230 5.8 250 1.8 260 3.6 280 (2.6) 315 (2.1) 310 2.2 360 (2.3)	ss, Scotland (57.40N, 4.20W) h'F2 foF2 h'F1 foF1 (350) (1.3) 325 (2.5) 325 (2.5) 330 1.5 315 1.6 300 (2.0) 295 (1.9) 330 (2.2) 285 (2.1) 245 h.0 230 5.7 230 6.1 235 7.0 285 t' 230 7.1 235 7.2 250 # 220 6.3 230 5.8 250 1.8 260 3.6 280 (2.6) 315 (2.1) 310 2.2 360 (2.6) 315 (2.1)	h'F2 foF2 h'F1 foF1 h'F2	ss, Scotland (57.4°N, 4.2°W) h	ss, Scotland (57.h°N, h.2°W) Dec h°F2 f°F2 h°F1 f°F2 h°F2 f°F3 f

23 | 365 (2.1)
Time: 0.0°.
Sweep: 0.67 Mc to 25.0 Mc in 5 minutes.
"Average values except foll and fis, which are median values.
One or two observations only.

	Sable	43
2,71		

Slaugh	, England	(C) COM	A 60 ET	HEUTS 4	2.			3 2 2 4 2
								mber 1951
Time	P.LS	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
00	310	2,7					2.6	2.6
01	295	2.8					3.2	2.7
02	290	2.8					3.2	2.7
03	295	2.3					3.1	2.7
04	280	2.2					3.4	2.8
05	285	2.1					4.0	2.9
06	305	2.0					3.3	2.8
07	290	2.2					3.7	2.8
80	240	4.1			140	1.7	3.8	3.2
09	235	5.7	290 #	3.2#	135	2.0	4.1	3.4
10	235	7.0	240	3.5	135	2.3	4.4	3.4
11	235	7.5	235	3.5	135	2.4	4.5	3.4
12	235	7.3	235	3.6	135	2.5	4.6	3.3
13	235	7.5	235	3.6	135	2.4	4.5	3.3
14	235	7.6	240 #	3.4#	135	2.3	4.2	3.3
15 16	230	7.0	275 *	3.7#	140	2.0	4.2	3.4
	225	5.8				1.7 #	3.9	3.3
17	230 245	5.0					2.9	3.2
19		4.1					2.4	3.1
	26.5	3.0						3.0
20 21	285	2.9						2.8
	305	2.6					2.3	2.8
22	310	2.8					2.5	2.7
23	320	2.8					2.5	2.6

Time: 0.00.
Sweep: 0.55 Mc to 16.5 Mc in 5 minutes.
*Average values except for 2 and fEs, which are median values.
*One or two observations only.

			Table 45
			700 020

	vik, Icel						Nove	mber 1951
Pime	h'T2	foF2	h'Tl	foll	h'Z	foll	#Bs	(M3000)#2
00	370	(3.6)					5.1	(3.0)
01	390	(3.9)					4.5	(2.9)
02	390	(3.8)					4.6	(2.8)
03	340	(3.7)					4.8	3.0
04	320	3.9					4.3	3.1
05	300	3.5					3.4	3.1
06	290	2.8			10-17-10			3.1
07	300	2.4				-		3.1
08	270	2.6			40 00 40			3.1
09	250	4.2			120	1.5		3.3
10	240	5.2		***		00 10 10		3.5
11	SPO	6.0	494.00	19 00 00	-			3.4
12	2140	6.3	-50		-	OR 97:00		3.4
13	250	6.4			~~	-		3.3
13 14 15 16	250	5.6		-	00 m vg			3.4
15	260	5.0			140	2.7		3.3
	270	4-4			120	-	2.6	3.2
17	300	3.6				may.	3.6	3.2
18	320	(3.4)					4.4	3.1
19	330	(4.1)					5.0	(3.2)
19 20 21	(370)	(3.8)					5.0	(2.8)
57	380	(3.5)					5.6	(3:0)
22	360	(3.7)					4.6	(3.0)
23	340	(3.7)					4.8	(3.0)

Time: 15.0°W. Sweep: 1.0 Mg to 25.0 Mg in 18 seconds.

				Table 4	2°			
Slough,	England	(51.5°N,	0.6°W)				Nov	ember 1951
Time	P123	foFS	h'Fl	foFl	h'X	folk	₹%g	SK(ODORK)
00	315	2.7					2.4	2.6
01	305	2.6					2.9	2.6
05	305	2.7					2 .8	2,6
03	295 280	2.4					2.9	2.7
04	280	2.2					3.2	2.8
03 04 05 06 07 08	280	2.2					3.3	2.9
06	295	2.1					3.0	2.8
07	250	3.4			160	1.8	3.2	3.0
08	570	5.4	255	3.5	140	2.0	3.9	3.3
09 30	570	6.6	240	3.6	125	2.3	4.0	3.4
30,	235	7.6	230	3.7	120	2.5	4.0	3.3
11	570	8.0	225	3.9	125	2.7	4.3	3.3
12 13 14 15 16	240	8.0	550	3.9	125	2.7	4.2	3.4
13	235	8.0	235 250 #	3.7	125	2.7	4.5	3+2
24	235 230	7.9	250 #	3.6	125	2.5	4.4	3,3
15	530	7.4		3,44	1,30	2.2	3.6	3,3
	230	6.9			145	1.8	3.2 3.2 3.0	3.3
17	225	6.1					3.2	3.2
18	230	4.8					3.0	3.2
19	250	3.6					2.4	3.0
20	295	2,8					2.4	2.8
21	320	2.7					2.4	2.7
22	330	2.8					2.2	2.6
23	330	2.8						2.6

Time: 0.0°.
Sweep: 0.55 Mc to 16.5 Mc in 5 minutes.
*Average values except fof2 and fEs, which are median values,
*One or two observations only.

Table 440

	ore, Brit							ember 1951
Time	h'F2	foF2	h'Fl	foFl	h'R	foE	fBe	(N3000)F2
00	275	5.1						2.6
Ol	280	4.9						2.7
02	270	4.5						2.9
03	285	3.8						2.8
04	295	3.5						2.8
05	260	3.6						3.0
06	265	4.1			1			2.9
07	270	6.6	245		120	2.5		2.9
۵8	305	>7.4	230		120	2.9	3.9	2.6
09	325	8.3	215	(4.4)	(115)	(3.3)	4.0	2.5
10	360	8.8	210	(4.7)	(110)	(3.3)	4.0	2.2
11	375	9.0	210	4.8	. (115)	(3.6)	4.0	2.1
12	395	9.4	210	4.8			4.1	2.1
13	365	9.7	210	4.7			4.0	2.3
14	345	10.0	205	(4.7)			4.0	2.3
15 16	360	10.1	220	(4.4)			3.9	2.3
17	340	10.1	235		(120)	(2.8)	4.2	2.4
18	305 280	10.4	255		(130)	(2.5)	4.0	2.4
		10.2					3.9	2.4
19	275	9.4						2.5
20	315	9.2						2.6
21	270	9.6						3.0
22	230	8.3						3.2 2.8
23	250	5.5						2.8

Z3 t C20 Time: 105,0°E,
Sweep: 2.2 Mc to 16.0 Mc in 1 minute.
*Average values except foF2 and fEs, which are median values.

				Table	460			
Inverse	es, Scot	land (57.	49N, 4.2	°W)			Nov	omber 1951
Time	P. I.S.	foF2	h'#1	foFl	hIE	foE	2Ba	(M3000) I/S
00	(365)	(2.2)						2.4
01	355	(2.0)						2.4
02	340	1.8						2.5
03	330	(2.0)						2.6
04	310	(1.9)						2.7
04 05 06	310	(1.9					2.9	2.7
06	300	(2.0)						2.8#
07	290	(24)						2.7#
08 09	245	3.9	(270)#	(3.1)#	140	1.8	2.3	3.0
09	235	5.4	. 0	3.1#	130	5.0	2.9	3.3
10	240	6.6	5704	3.5#	1.30	2.3		3.3
11	245	6.8	552	(3.7)₽	130	2.4		3.4
10 11 12 13 14 15 16 17 18	235	7.4	230	3.7#	130	2.5		3.4
13	235	7.4	225		130	2.4		3.4
1.4	235	7.2			135	2.3		3.3
15	230	6.8			145	2.1		3.3
16	230	6.6			150	1.9		3.2
17	235	5.8						3.2
18	250	4.5						3.1
	265	3.0						3.0
50	(310)	(2.1)						2.7
21	325	5.0						2.6
25	(360)	1.9						2.5
23	(360)	(5.0)						2.5

Time: 0.0°.
Sweeps 0.67 Me to 25.0 Me in 5 minutes.
*Average values except fo#2 and f#s, which are median values.
*One or two observations only.

Fribou	rg, Germa	ny (48.1	on, 7.8°	Table .	48		Nove	mber 1951
Time	h!F2	foF2	h'Fl	foFl	h*E	foE	fEs	(M3000)F2
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23	300 290 270 260 240 275 225 225 235 240 235 240 220 220 220 225 230 230 230 230 230 230 230 230 230 230	321187521403892889814811 333322246788878765443233	235 220 225 225 225 235	(4, 1) (3, 8)	123 115 121 110 115 119 121 122 123	4. C.	2.0 2.0 2.0 2.0 1.8 2.2 3.0 3.0 3.0 2.7 2.7 2.7 2.9 2.1 2.9 2.1	2.7 2.8 2.8 2.9 3.1 2.9 3.45 3.45 3.45 3.45 3.44 3.3 3.44 3.3 3.44 3.3 3.45 3.47

Time: Local. Sweep: 1.25 Me to 20.0 Me in 10 minutes, automatic operation.

Table 49 Djibouti, French Somaliland (11.5°N, 43.1°E) November 1951 foF2 (8.6) Time 00 01 02 03 04 05 06 07 08 09 11 12 13 14 15 16 17 18 19 20 22 23 h!F2 fEs (M3000)F2 (3.2) (7.7) (5.8) 4.4 (4.0) 6.1 8.4 9.9 10.0 11.0 11.4 42.1 3.0 3.7 4.2 4.8 5.7 5.2 4.7 5.4 4.1 3.7 3.0 (3.2) (3.5) (3.6) 9.4 (4.0)

Time: Local.

Sweep: 1.25 Mc to 20.0 Mc in 10 minutes.automatic operation.

Table 510

				Table 5	1"			
Falkla	and Is.	(51.7°S,	57.8°W)		_		Nov	ember 1951
Time	P.ES	foF2	h'F1	foF1	PIE	foE	£8€	(M3000)F2
00	310							2.5
01	310	7.4						2.6
02	300	7.0						2.6
03	310	6.8						2.6
04	300		300#	3.2				2.5
05	290		280	4.0	150	2.3	2.6	2.6
06	300	8.2	260	4.4	140	2.6	3.4	2.6
07	320		570	4.5	130	2.9	4.2	2.7
80	330		570	4.7	120	3.1	4.6	2.7
09	330		240	4.8	120	3.2	5.0	2.7
10	330		230	4.9	120	3.3	4.6	2.7
11	340		230	5.0	120	3.4	4.7	2.7
12	330		230	4.9	120	3.4	4.4	2.8
13	320		570	4.9	120	3.5	4.3	2.9
14	310		240	4.7	120	3.3	4.6	3.0
15	310		5/10	4.7	120	3.2	4.3	3.0
16	300	7.4	570	4.5	120	3.0	4:2	3.0
17	280		250	4.1	130	2.6	4.6	3.0
18	270				150#	2.3	4.2	2.9
19	280						3.9	2.9
20	290						3.6	2.7
21	300						3.1	2.6
22	310	0.8					2.9	2.6
23	310	7.8					2.7	2.5

23 310 7.8 4.1

Time: 60.0°W.
Sweeps 2.2 Mc to 16.0 Mc in 1 minute.

"Average values except foF2 and fEs, which are median values.

#One or two observations only.

				Table				
Dakar,	French	West Afri	ca (14.6	ON, 17.4	°W)		Oct	ober 1951
Time	PIES	foF2	h'F1	foF1	h'E	foE	ſ₿ ₆	(M3000)#2
00	255	(>12.8)						
Ol	240	(>12.8)						(>3.4)
02	225	(>10.0)						(3.6)
03	230	(>7.0)						3.5
04	235	5.6						3+3
05	240	4.6						3.4
06	255	6.1				1.6	3.0	3.5
07	570	9.0	570		111	2.5	2.5	3.5
08	255	11.2	230	-	104	3.0	3-7	3.4
09	270	12.4	225		104	3.4		3.3
10	285	13.4	215	5.1	102	3.6		<3.2
11	295	13.6	210	5.1	101	3.7		3.0
12	295	(13.7)	205	5.2	101	3.8		2.8
13	320	13.4	210		101	3.6		2.8
214	(340)	(14.0)	225		101	3.5	4.0	2.8
15	(300)		230		101	3.2	3.8	2.9
16	(290)	(14.0)	240		101	2.8	3.7	(3.0)
17	255	(14.0)	255			2.2	3.8	2.9
18	280	(13.6)					3.4	2.8
19	302	(>14.0)					2.8	
20	255	14.0					2.5	
21	248	14.0						
22	265	(>14.0)						
23	265	(13.0)						

Time: Local.

Sweep: 1.25 Mc to 20.0 Mc in 10 minutes, automatic operation.

fable 50°

	ore, Brit							mber 1951
Time	h'F2	foF2	h'71	foFl	h'E	folk	₫Be	(M3000)F2
00	250	6.6						2.9
01	275	5.7						2.9
02	275	5.3						2.9
03	260	4.8						2.9
04	260	4.4						3.0
05	260	3.9						3.1
06	265	5.6						3.1
07	280	7.6	250		120	2.5	3.2	3.0
08	295	8.6	220		120 ,	3.1 "	3.8	2.8
09	310	8.9	215	4.6	120#	3.2#	4.0	2.4
10	350	9.3	210	4.8			4.1	2.1
11	355	9.6	205	4.9			4.2	2.3
12	350	10.2	200	4.9			4.3	2.2
13	350	10.6	205	4.8			4.2.	2.3
14	340	10.6	210	4.7		ш	4.2	2.3
15	320	11.0	215	4.5	120	3.3#	4.2	2.3
16	310	11.0	235	4.0#	115	2.8	4.0	2.4
17	290	10.8	250		150#	2.4	4.0	2.3
18	295	10.7					3.2	2.4
19	325	10.3						2.5
20	310	10.3						2.6
21	265	10.6						2.8
22	220	10.8						3.2
23	225	8.4						3.1

Time: 105.0°E.
Sweep: 2.2 % to 16.0 Mc in 1 minute.
*Average values oxcept foF2 and fEs, which are median values.
*One or two observations only.

Revkia	vik, Icel	and (6)	19v. 21.	ROut)	<u> </u>		00	tober 1951
Time	F.LS	fol2	h'F1	foFl	h'E	fol	file	(M2000)F2
00	390	(3.8)					4.7	(2.8)
01	(380)	(3.8)					4.6	(2.8)
02	360	(3.5)					4.3	(2.8)
03	340	(3.3)					4.4	(2.9)
04	300	(3.0)					3.6	(3.0)
05	290	(2.8)			-		3.0	(3.0)
06	300	(2.8)					2.1	(3.1)
07	280	3.2			110	1.7		3.1
08	260	4.3			120	2.0		3.3
09	260	5.1	570		120	2.3		3.3
10	270	5.6	240	(3.5)	110	2.4		3.2
11	280	6.0	250	(3.6)	110	2.4		3.2
12	280	6.0	230	(3.5)	120	2.5		3.2
13	270	5.8	240	3.5	120	2.6		3.2
14	260	5.9	240	(3.5)	110	2.5		3.2
15	260	5.9	240	3.4	120	2.4		3.2
16	250	5.4			120	2.2		3.2
17	260	(5.4)			120	1.9		(3.1)
18	300	(4.2)					3.1	(3.0)
19	310	(3.7)					4.3	(3.0)
20	340	(3.8)					3.4	(3.0)
21	330	(3.5)					4.1	(3.1)
22	350	(3.8)					5.6	(3.0)
23	350	(3.8)					4.8	(2.8)

Time: 15.0°W.

Sweep: 1.0 Mc to 25.0 Mc in 18 seconds.

Table 54

Djibou	ibouti, French Somaliland (11.5°N, 43.1°E)						October 1951	
Time	P.LS	foF2	h'F1	foFl	h'E	fol	fBe	(M3000)F2
00								
01	l							
02	I							
03								
04	1							
05								
06		5.7					4.1	
07		7.9					4.5	
08]	9.4					L.8	
09		10.0					6.0	
10	ł	10.7					6.3	
11	ĺ	10.3					6.8	
12		10.3					6.9	
13	Ì	11.1					6.7	
14		11.1					6.3	
15 16		12.0					5.8	
16		12.0					5.0	
17		11.1					4.5	
18		10.7					4.1	
19								
20								
21								
22								
23								

Time: Local.
Sweep: 1.25 Mc to 20.0 Mc in 10 minutes, automatic operation.

Table 55° Falkland Is. (51.7°S, 57.8°W) Octob										
Time	h'F2	foF2	h'F1	foFl	h1E	foE	fBa	SI(000EK)		
00	330	6.2						2.6		
01	330	5.9						2.5		
02	310	5.8						2.6		
03	310	5.5						2.7		
04	310	5.4						2.7		
05	270	5.9	250#	4.0#				2.8		
06	570	6.7	570#	3.3#	140	2.3		3.1		
07	260	7.2	5/10	4.2	130	2.6	3.0	3.1		
08	260	7.8	540	4.4	120	2.9	4.2	3.0		
09	290	9.0	230	4.7	120	3.1	4.7	2.9		
10	280	5.8	230	4.8	120	3.2	4.8	3.0		
11	290	9.8	230	4.9	120	3.3	4.6	3.0		
12	290	10.0	230	4.8	110	3.3	4.6	3.0		
13 14	280	9.7	230	4.7	120	3.2	4.3	3.1		
14	270	8.8	230	4.5	110	3.1	3.8	3.1		
15	260	8.4	230	4.3	120	3.0	3.2	3.2		
16	260	8.2	250	4.1	130	2.7	2.6	3.2		
17	2 50	8.0			140	2.3		3.1		
18	250	8.1						3.1		
19	260	7.9					2.7	3.0		
20	280	7.6					2.8	2.8		
21	280	7.0					_ , , ,	2.7		
22	300	6.6						2.6		
23	310	6.2						2.6		

Time: 60.0°W.

Sweep: 2.2 Mc to 16.0 Mc in 1 minute.

*Average values except foF2 and fFs, which are median values.

*fone or two observations only.

Table 57										
Dakar,	French	West Afri	ca (14.6	ON, 17.4	(wo		August 1951			
Time	h'F2	foF2	h' Fl	foFl	h'E	foE	fBa	(M3000)F2		
05 01 00	350 340 310	4.6 4.3 4.1					1.7	2.4 2.5 2.6		
03 04	295 280	4.2 4.0					1.9	2.7		
05 06 07	270 245 240	3.8 5.6 6.5	230		111	1.7	2.6 3.4 3.9	3.0 3.2 3.2		
08	270 310 340	7.3 7.6 8.6	220 220	4.8	109	3.1 3.5	4.6	3.0 2.7		
10 11 12	360 375	10.2	220 215 210	5.1 5.3 5.3	105 103 103	3.8 3.9 4.0	5.9 5.9 5.0	2.6 2.6 2.6		
13 14	365 365 345	11.8 12.6 12.9	210 220 225	5.3 5.2 5.0	103 105 105	3.9 3.7	4.4	2.6 2.6		
15 16 17	330 300	13.3	240 245	4.8	103	3.5 3.1 2.6	4.8 4.0 3.8	2.5 2.6 2.6		
18 19	260 265	13.0 10.4	255			2.0	3.8 3.6	2.8 2.8		
20 21 22	300 330 350	8.0 6.2 5.5					3.0 2.6 2.8	2.6 2.5 2.4		
23	355	5.2					- 40	2.4		

Time:

0.00.

Time: Local. Sweep: 1.25 Mc to 20.0 Mc in 10 minutes, automatic operation.

Table 59 San Francisco, California (37.4°N, 122.2°W) December 1942 (M2000)F2 Time PIES foF2 h'Fl foFl h'E fol fEa 110 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 220 220 210 210 210 210 260 260 260 260 260 260 270 210 220 230 210 210 210 210 2.2 2.0 2.1 2.7 2.9 3.0 3.0 2.8 120 115 110 110 110 110 110 220 220 220 220 220 220 220 2.5 3.4 3.8 4.0 4.0 3.9 3.6 23 230

Reykja	vik, Icel		1°N, 21.	E-M)			Septe	mber 1951
Time	h'F2	foF2	h'F1	foFl	h'E	foE	fEe	(M3000)F2
00	(380)	(3.9)					4.7	(2.7)
01							4.6	
0.5	340	(4.2)					4-7	(2.7)
03		(3.8)					5.0	(2.9)
04	(330)	(3.3)					4.6	(3.0)
05	300	3.4			120		4.2	3.0
06	280	3.9			110	2.1	3.0	3.1
07	260	4.6			110	2.2		3.2
08	290	5.2	220		110	2.6		3.2
09	310	5.1	230	4.0	110			3.2
10	320	5.4	230	4.2	110			3.1
11	310	5.6	230	4.0	100	3.0		3.1
12	360	5.4	5710	4.2	110	3.1		2.8
13	350	5.5	230	4.0	120	3.1		3.1
14	310	5.4	230	4.0	110			3.0
15	330	5.2	240	3.8	120	2.9		3.1
16	310	5.0	240	3.8	120	2.6		3.0
17	300	4.9	230		130	2.5	3.0	3.0
18	320	4.6			120	2.2	3.2	3.0
19	300	4.2					3.7	3.0
20	340	(4.0)					4.4	(2.9)
21	340	(4.0)					5.3	(2.9)
22	360	(4.1)					4.9	(2.8)
23	360	(/1,0)					h - h	(2-8)

Time: 15.0° W. Sweep: 1.0 Mc to 25.0 Mc in 18 seconds.

				Table				
Dakar,	French W	est Afri	ca (14.6	DN, 17.4	°W)			July 1951
Time	p.ls	foF2	h'Fl	foFl	h'E	foE	fEs	SI(000EM)
71me 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18	315 320 315 330 310 270 252 290 328 370 430 452 440 400 300 318 262 270 305	10-F2 4.0 3.7 3.6 3.7 3.6 3.7 3.6 6.7 7.4 8.2 9.3 10.4 11.3 12.0 12.0 11.6 9.8 6.6	235 230 222 220 220 225 235 230 235 235 235 255	(5.1) (5.2) (5.1) (5.0) (4.8)	(143) 112 109 107 105 105 107 109 113 119	1.9 2.5 (3.1) 3.5 3.8 (3.9) 3.8 3.7 3.5 3.5 3.2 2.7 (2.0)	3.7 3.48 2.7 3.66 3.7 4.3 2.8 3.5 6.8 3.5 6.8 3.5 6.8 3.5 6.8 3.5 6.8 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9	(M3000)#2 (2.5) (2.6) (2.6) (2.6) (2.6) (2.6) 3.0 3.2 3.0 2.8 2.6 2.5 2.6 2.7 2.7 (2.8) (2.6)

Time: Local.

Sweep: 1.25 Mc to 20.0 Mc in 10 minutes, automatic operation.

	Table 60									
San Fra	ncieco,	Californ	ia (37.4	⁰ N, 122.	2 ⁰ W)	_	Nov	ember 1942		
Time	p.15	foF2	h'F1	foFl	hIE	fol	fBs	(M3000)%2		
00	220	6.8					3.2	3.4		
01	210	5.6					3.2	3.4		
02	220	3.4					3.2	3.2		
03	230	3.2					2.8	3.2		
OL	240	2.8					2.7	3.2		
05	250	2.8					3.2	3.0		
06	250	3.0					3.2	3.0		
07	260	3.2					3.2	3.0		
08	250	3.3					3.2	3.0		
09	250	3.3					3.2	3.0		
10	260	3.3					3.1	3.0		
11	250	3.4					2.8	3.0		
12	250	3.3					3.0	3.0		
13	250	3.3					2.9	3.0		
14	240	3.2					2.8	3.0		
15	230	5.0			120	1.6	3.0	3.2		
16	230	6.8	220	3.2	115	2.3	3.2	3.4		
17	210	7.0	220	3.5	110	2.6	3.2	3.4		
18	240	7.9	220	4.0	110	2.8	3.3	3.2		
19	260	8.7	220	4.1	110	3.0	3.2	man m		
20	250	8.8	220	4.1	110	3.0	3.2			
21	250	8.2	230	4.1	110	3.0	3.2			
22	250	8.0	220	3.9	110	2.8	3.2			
.23	240	7.4	230	3.4	110	2.6	3.2	3.2		
TH mos	0.00									

Time: 0.00.

				Table	61			
San Fra	meisco,	Californ	ia (37.4	ON, 122.	2°W)		Oc	tober 1942
Time	Fils	foF2	P.L.	foFl	h1E	foE	fBe	(M3000)12
00	240	7.1	230	3.4	1.20	2.4	3.0	3.2
01	230	6.1	240	2.7		2.1	2.7	3.4
02	220	4.4					3.1	3.2
03	570	3.3					2.7	3.2
04	260	3.0					2.8	3.2
05	300	2.9					2.8	3.0
06	280	3.1					3.2	3.0
07	280	3.2					2.8	3.0
08	290	3.2					3.2	3.0
09	280	3.2					2.6	3.0
10	280	3.2					2.4	3.0
11	280	3.2					2.6	3.0
12	270	3.2					2.6	3.0
13	270	3.2					2.4	3.0
14	260	3.4					2.4	3.0
15	250	5-5	510	3.1		2.1	2.2	3.2
16	250	6.4	22	3.6	120	2.5	3.2	3.2
17	260	6.5	210	4.0	120	2.8	3.2	3.2
1.	290	6.9	500	4.2	120	3.0	3.2	3.0
19	280	7.3	200	4.4	115	3.1		3-0
20	270	8.0	210	4.3	115	3.2		>3.0
21	280	8.0	220	4.3	120	3.1		>3.0
22	280	7.6	230	4.2	120	3.0		3.0
23	200	7.6	230	11.0	120	2.8		2 2

23 | 260 Time: 0.0°.

					Le 63			
San Fr	ancisco,	Californ	ia (37.4	N, 122.	2°W)			May 1942
Time	p.l.s	foF2	h1F1	foFl	h'E	foE	fEs	SE(0002M)
00	310	6.2	230	3.3	120	2.7	3.0	3.0
01	300	5.9	230	3.2	120	2.4	3.0	3.0
02	280	6.0	240	2.8		(2.2)	3.0	3.2
03	250	6.3					3.0	3.2
04	270	5.9					3.0	3.2
05	260	5.4					2.9	3.0
06	290	3.6					3.2	3.0
07	320	3.3					2.8	3.0
90	320	3.3					2.3	2.8
09	320	3.3					2.8	2.8
10	320	3.3					2.6	2.8
11	320	3.2					2.5	2.8
12	310	3.1					2.7	3.0
13	310	3.1					2.6	3.0
14	320	3.6	240	2.9	(130)	(2.2)	2.8	3.0
15	340	5.3	240	3.2	120	2.4	2.8	3.0
16	370	5.7	240	3.3	120	2.6	3.2	2.8
17	350	6.0	220	3.4	120	2.8	5.2	2.8
18	370	6.0	2 20	3.5	115	2.9	5.3	2.8
19	350	6.2	210	3.4	115	2.8	5.3	3.0
20	350	6.3	220	3.5	115	2.7	5.3	2. 8
21	350	6.5	(220)	3.5	115	2.9	5.3	2.9
22	340	6.5	(220)	3.4	115	2.9		3.0
23	320	6.5	235	3.4	120	2.8	3.0	3.0

Time: 0.0°.

San Fr	ancisco,	Californ	ia (37.4		1e 65 2 ⁰ W)			March 1942 (M3000)F2
Time	b'F2	foF2	h'Fl	foFl	h1E	foE	fEq	SI(000EM)
00	(260)		250	4.5	130	2.8		
01	270				140	2.4		
02	260							
03	250	(5.0)						
04	270	4.8					2.5	
05	300	4.6						
06	320	4.0						
07	320	4.0						
08	340	4.1						
09	350	3.8						
10	350	3.6						
11	350	3.6						
12	350	3.5						
13 14	350	3.3						
	320 280	3.5				0 0		
15 16			270		1.20	2.3		
17			270 250		130	2.6		
18			5/10		130 130	3.1 3.3		
19			240		1.30			
20			250		130	3.3 3.4		
21			240		120	3.4		
22			570		130	3.4		
23			250		120	3.1		

Time: 0.0°.

				Table				
San Fr	ancisco,	Californ	ia (37.4	°N, 122.	2°W)		Septe	mber 1942
Time	p.lls	foF2	h ¹ Fl	foFl	h1E	foE	fZe	(M3000)15
00	280	6.4	230	3.8	120	2.6	3.2	3.0
01	250	6.0	230	3.2	120	2.2	3.2	3.2
02	230	5.5					2.8	3.2
03	240	4.2					2.8	3.0
04	250	3.3					3.0	3.0
05	260	3.2					3.0	2.8
06	280	3.2					2.6	2.8
07	280	3.2					2.4	2.8
08	260	3.1					2.6	2.8
09	270	3.2					2.3	2.8
10	260	3.2					2.5	2.8
11	280	3.1					2.4	2.8
12	260	3.2					2.5	3.0
13	270	3.0					2.7	3.0
1),	260	4.0				-	2.6	3.0
15	290	4.6	230	3.5	115	2.2	3.4	3.0
16	310	5.6	220	3.9	120	2.6	3.4	3.0
17	300	6.2	210	4.0	115	2.9	3.2	3.0
18	320	6.2	210	4.2	115	3.1	3.3	2.8
19	320	6.4	200	4.3	115	3.2	3.2	2.8
20	310	7.2	200	4.3	115	3.2		2.8
21	300	7.4	220	4.3	115	3.2		3.0
22	290	7.2	220	4.2	110	3.1		>3.0
.23	280	6.4	220	4.0	115	3.0	3.2	3.0

Time: 0.00.

				Table				
San Fr	ancisco,	Californ	iia (37.L	N, 122	2 W)			.8 .8 .4
Time	p.l.E.S	foF2	h'Fl	foFl	₽₁E	foE	fEs	(M3000)1S
00	250	7.1	225		110	2.8		
01	570	7.1	235		115	2.5	2.8	
02	235	7.1					2.8	
03	220	6.9					2.4	
04	245	6.2					2.4	
05	260	4.6					2.4	
06	270	4.1						
07	270	4.0						
08	295	3.7						
09	305	3.6						
10	310	3.6						
11	300	3.5						
12	290	3.4						
13	290	3.4						
14	250	5.0				2.0	2.3	
15	270	5.9	220	3.1	120	2.4	2.8	
16	270	6.14	220		115	2.6	3.0	
17	290	6.9			115	2.9	, , ,	
18	300	6.8			115	3.1		
19	320	7.1			110	3.2		
20	310	7.4			110	3.3		
21	325	7.6			100	3.1		
22	280	7.3			110	3.3		
2.2	260	2 7			7.05	3 0		

23 260 Time: 0.0°.

				Table	66			
San Fra	ancisco,	Californ	in (37.4	°N, 122.	2°W)		Feb	ruary 1942
Time	P.LS	foF2	p. L.	foFl	P₁E	foE	fEe	(M3000)#2
00	(260)				120	2.6		
ol	250				400 007-000	2.3		
02	240						2.4	
03	260	3.2						
04	(300)	3.2						
05	300	3.0						
06	330	3.0						
07	330	3.2						
08	3 30	3.2						
09	310	3.2						
10	340	3.1						
11	330	3.2						
12	330	3.2						
13	350	3.2						
14	340	3.1						
15	280					and estimate		
16	260				120	2.4		
17	250				150	2.8		
18	250				120	3.1		
19					120	3.2		
20					120	3.3		
21					110	3.2		
22	(250)				120	3.2		
23	(260)				120	3.0		

Time: 0.00.

TABLE 67 Central Radia Propagation Laboratary, National Bureau of Standards, Washington 25, D.C.

Form adopted June 1946

IONOSPHERIC DATA

Standards	ution)		23	(300) s	300 %	(330) 5	(360) 5	N X	5(080)	(270)3	× S	320 5	(J)	2403	280	270	(280)5	(280)5	300	300	(300)5	FK	270	FK	320 €	260	270	270	2,70	240	260	(300)A	(320) A		25220	0340	27
	A.C.K	ACK	22	300 x	(300) S	5 (018)	(30) x	v ×	(270)5	320	(320) 5	320 5	2705	280	280	360	340	(230)3	040	270	(286)5	N X	(260)5	S	300 8	300 S	240	250	740	250	270	300	320 K			280	27
National Bureau of	า		23	(300) \$	300 X	(240)5	(260) S	(290) S	276 5	390	230 K	260	230 5	940	250	730	(260) 5	250	340	240	220	330 K	430	230 K	(260) X	240	220	230	230	230	250	(320) A	300 K			240	30
ionai	Scaled by: Mc C.	Calculated by: EJW.	20	260 K	250 H		230 K	(276) S	250	230	240 K	250	320	(220)5	230	230	340	250	230	220	220	230 K		×	Suc &	240	230	340	240	230	340	210	250 K			2,40	30
Nat	Scaled	Calculo	61	[260] C	250 H	250	250 K	250 K	250 K	250	250 K	250 K	230	230	230	220	230	[260] A	240	230	230	260 K	230	250 K	270 K	(240) A	230	340	260	250	270	250	Sto K			250	30
			<u>®</u>	280 € [260 K	320	280 K	300 K	780 K	260	(300) L	280 K	260	270	Σ	950	270	270 1	280.	260	360	330 K	260	240 H	320 K	260 (280	270	270	270	340	310	310 X			280	39
, D.C.			-11	300) L	250 K	370	330 K	310 K	350 K	300	340 K	330 K	300	240	3	0	290	280	320	270	240	4 OFF	340	400 K	430 K	240	310	280	310	280	007	270	370 K			300	24
ington 25			9	350 K (310 K	370 H	380 K	380 K	yoo x	350	470K	330 K	340	310	3	340	300	280	350	300	320	× 654	320	400 K	5% K	290	240	240	320	340	340	370	452 K			340	29
Central Radia Propagatian Laboratory, National Bureau of Standards, Washington 25, D.C.	I.		12	340 €	740 K	330 ₩	400 K	A 10 K	430 K	310	470 K	350 K	320	330	2	320	310	240	390	320	330	460 K	310	580 K	G K	320	300	310	330	300	430	340	1640 K	100340		330	39
of Standa	- A	Time	4	420 K	320 K	360 H	450 H	470 F	560 K	320	580 K	380 K	340	340	ξ	310	300	310	360	330	320	G K	320	550 H	G K	350	310	330	340	320	370 H	380 H	D			350	39
Bureau		Mean Ti	13	450 8	340 K	370	360 H	6 K	y S	350	540 K	Swo K	340 14	350	ž	330	350	320	410	350	330	610 K	340	× 0817	6 *	340	360	330	370	300	H 0/77	340	G			360	24
, Nationa	OINDAHAGONOI	75°W	12	(570)\$	300 K	350	GK	G K	S. X	400	6 *	520 K	380	320	360	310	340	320 H	450	370 #	360	550 K	380	470 K	G K	360	360	330	400 H	320	W 01+	7000	G K			200	30
aboratary	200	7	=	6 K	300 #	500 F	6 *	6 ×	O K	430	G *	560 H	420	370	H 017	300	360	370 H	500	350 #	330	GK	330	Cuo X	G K	350	310 "	300	340	C	067	007	6 K			420	29
agation L	5		0	G K	[300] [500	GR	S	0	440 #	S.	550 M	380	430	380 W	330 H	360	350	520	370 H	350 M	Q *	7 (258)	340 H	6 K	310	300	330 #	340	C	460 M	420	GK			420	29
odia Prop			60	6 1	240 K	GK	у 9	G K	ر د	400	P.	G	H 017	15086]	370 H	370	[320]"	370	500	400 H	340 M	6 *	360	350	GK	380	270	310	780 W	C	370	00#	G K			400	2.6
entral R			80	G K	y 7	450 K	6 4	G K	G #	-1	S X	S P	380	330 W	320	320 H	300 4	300	400	350 H	270	500 K	500	340	G A	370	240 H	310	330 W	C	7 (098)	9	0			380	27
0			07	6 *	x 7	× 092	6 ×	230 K	6	7	× 7	y 7	[320]	310	7(088)	320	340	7 (028)	(360)	360	780 W	7[0117]	360	300	370 K	G K	270	340	320 "	C	320	(320)	G K			320	25
			90	270 K	300 K	300 K	300 K	270 K	280 K	370	360 A	270 K	270	250	260	260 H	260	240	250	270	260	(320)	[320]	250	280 K	Z60 A	240	270	250	J	260	7 (008)	260 ×			270	29
1952 1952			0.5	1	FK	(320) S	EK	SK	(386) 5	(350)	FK	SX	(320) 5	(370)5	300	270	(280)5	5 (082)	240	(380) 5 (300) 5	(300) 5	(260) 5 (270) 5 (320) 4	270	[360] 5	(340) \$	(240) S	270	360	270	2	280	320	(310) 8			(300)	27
	2	M∘I.	04		FK	(330) S (320) S	FK	SK	EK	350	S K	N E	(300) 5		240 5	370	350	270	(300) 5	(380) 5	270	(260)5	380	270	(370) \$ (340) x	FR	250	(270)	270	U	250	350	FK			(300)	27
April	(Month)	Wol. 77 gnos,	03	(350) S	150 K	(370) S	FK	390 K	EK	376 5	SA	A X	(3/0) 5	300 5	270 5	230	250	260	(300) 5	280	300	(274) 5	FR	270	(310) 5	FX	270	270	270	C	270	(370)5	K (370)5			300	27
E	(Unit) Off., D.C.	Lot 38.7°N	02	(530) 5	280 K	(320) \$	(340) S	286 K	EK	310 5	SK	×	320	340	280 5	(380) 5	260	(370)5	300	(300) 5	300	340	FK	370	S	(350) S	300	270	270	ઇ	300	310	350 K			300	2.5
Km	shingt	Lot 38	io	(300) S	(280) 5	(300) 5 (300) 5	(OCE)	(330) 5	SK	(270) 5	(300)	S	300 5	240 5	(340) 3	300	2.70	(270)5 (270)5		(310) 5 (310) 5	(300) 5		FK	- 1	EK	(310) S	390	270	270	340	300	350	(320) S			(300)	12
h'F2	(Characteristic)		00	300 €	(300) 5	(300) S	(3/0) 3	(370) 8 (330) S	S X	(250)5	(310) \$	S	300	(380) 2	3 06 6	(300) 5	040	(370)5	(480) 5 280	(310) 5	340	(280)5 (289)5	FK		FX	300 K	270	370	370	340	300	300	(330)"	Contract of the Contract of th		300	77
	(Cha		σλ		-CV	O December 1	Service Servic		CONTRACTOR OF STREET	econc.	0	0	0	-	, N	-	4	ம		7		6	000	10	22	23	CHURN	122	-	-	33.1	SHEEDLER		70	1 2 1	encount's	t t

Sweep 1.0 Mc ta 25.0 Mc in 0.25 min

Manual

Automatic

National Bureau of Standards (Institution)

A.C.K

0J 0J

NO. K

2.8 F

O.0 MX P. P. A1.0 M

90

0.5

04

Long 77. 1º W

Lat 38.7°N

erved or Washin gron, D.C.

(1.C) \$ <1.0 F 2.4 × × 1.0 E (2.2) K

1952

April

30

19 €

1.8 F

2.0F 1.95

1 25 F

3.0

1.7 K K 1.7 3 < 1.0 E < 1.0 E X . 0 E

21 F 22 K 22 K K1.53

S

41.0 E N

30 E K (1.4) 5 K (2.0) 5 (2.4) & (22) \$ W[2.1] \$ < 1.0 E

(3.2) S

39 25 5

(1.9)5

3.0 F

3.

3.4

3.4

3.25

3.2 F

19 S

946 June

TABLE 68
Central Rodia Propagation Labaratary, National Bureou of Standards, Washington 25, D.C.

ONOSPHERIC DATA

435 (35) 295 4.7% 2.7 × 12.0 5 302 27 F (35) × (2.6) × 38KK183 Colculoted by: EJW, ACK K5 2 # 3 8 5 W 2. Z (40)E 30K K255 5,35 3,65 3.2 K 05 45 8 17.1 7 3 40 2.0 8.9 50 43 Scaled by: PACC. K455 S.0 K (4.3)5 47 K 5,25 43× 5.2 5.0 6 5.0 5.5 4.6 4.8 2.6 5.7 4.5 4.00 9 (7.2)5 43 8 635 474 SYK S.4 K 8.6 K 116.6 13 45K 46K 43K S.0 K 4.9 3 5.2 6.3 5 5.0 5 5.3 6.0 9:5 78 6.5 5.7 (i) 5.3 % 5.1.8 (50) 5.45 45× ポンド 500 インス 6.0 4.5 0.0 53 74:5 3.5 5 4.9 000 7.3 28 6.3 Z 45x 90 K 5.01 7.00 X S.4K 49K 5.0 % 4.6 K 78 K HIK 5.4 53 5.7 1:5 7:5 6.6 5 5.1 0.9 6.4 4.3 50 50 Z 8.6 K 47K 48K 48 K 43× 5.3# S.2 K S.0 K 4.6x 5.1K 4.0x 4:5 7.9 4.9 5.0 \$ 5 4.9 5.3 50 6.2 6:5 7.0 9 (.) Ź X 9 8 ナロヤ S.0 X × 27 45K 5.48 43 K <3.8 g 524 47 K 4. 4K 5 5.6 00 5.6 7.5 50 ? 6.5 6.4 87 79 7 2 Z 5.8 H 4.7H + 6 7 43× 43 × 5.2 1 (5:0) # 4.7K 1408 44.0g 73 K <4.1 9 7.0 K 8.0 K 0.9 6.0 6.3 3.6 9.0 5.2 7.9 5.9 7.0 5.00 6.0 5.9 4 Ź S.0 X <+19 <+0 %</td> 50.00 × 47 4.75 5.7# 8.5 5.5 و. 5.0 5.5 5.8 2.7 و و 0.0 5.8 6.9 10 Σ <4.0g 6.7 K <4.29 4.6 K 6.04 4.2× <4.0 % 75° W 5.4 # 5.2# S.3K 5.4 5.6 3:6 50 5.0 5 5.0 ر م 5.3 7:3 9.9 2 <4.0 G <3.8 8 < 4.0 g < 4.0 g <3.64 <3.88 <3.98 <4.08 <3.7€ <3.8 € <4.0 € <4.0 € <39% <408 <4.18 5.9H 46 50F 43× 434 4:5 S. 4.N <399 8 <408 <408 6.0 % S.OK <38€ <40€ 6.0 % 5.6K 70 K 4.7 4115 464 5.4 44 (4.8) 5.1 15 7 - 9 5.7 7.5 50 (4.0° 5.64 48 h 5.6 14 54 25 0.5 53 50 7. 4.9 2.7 6.05 4386X <3.8 S [5.0]M <3.98 414 5,5 # 4.74 474 0.5 日十十日 43.78 0:0 5.2 5.6 45 5 0.9 46.4 4.6K 4.74 4.34 < 3.5°6 <3.86 9255 3.95 4.4 <3.7¢ 7.6 5.0 4 K 4.03 5.64 4.2 4.3 5.0 85 2,6 6.3 47 2.9 KK3.75 3.95 3.2K 25 K 43.2 K 2.8 K 3.3 K (18) × 2.7 × <3.4 8 (3.8) 5 < 3.4° 2.7 K K 3.85 1. 1. 10. 3.0K 3.6K 404 454 3.0 4 < 3.3 6 3.85 4.5 4.2 7.4 7 4.00 3.9 3.9 30 5 07

3.7H

7.

3.0

30

00

(3.4) 5

3.6 4.0 6.2

1.8 F

(24) § (20) F

200

315 (3.0)5

300

2.4×

2.95

3.0

3.1

33

5

2.5

3.0

(1)

(3.5) \$ 3.6

3.4

(18)5 (20)F

2.3 F 2.1 F (1.8)F

2.7 F 25 F

83

20F

2.4 F 2.3 F

2.8 F

9

3.1

2.3 5 (2.1)F

25F 2.45

2.9 €

4.0

X

1.0 m

F K </.) F

K(1.9) 7 K(1.7) 7

F x K(1.7) \$ < 1.0 E

T X

2.4 E 41.7) =

(3.5)F

(41)5

200

0

2.5 m

27.7

<1.0.1>

3.5

7

0 /

力力

1.8 × 1.5 5

3

200

3.0

34

2.6

20

2.75

36 F

5.0

4.0

47 7: 32

#5

9: 5.7

00

4.9

0.9

0.9 43 45 6.2

6.4

6.3

2.6

5.44

9:5

2.2

5.3 M

N / S

424

3.6

2.3

25

2.7

3.0

3.2 7.7 48 - 9

4.7

67 6.2

45.5 45.9 44.08

5.7 #

5.6 #

3

S.0 M

5.0

4.8"

27

60

22

3.

3.0 F (3)

3.2

3.1 F (2.7)5

J

J

A 00 A

J

ل

J

J

000

6.0

6.0

J

J

67

6.0

3.7 3.9

3

42

5.0

m i

9.9 9.5 5.2

3 5.7

6.2

63

4.6 7.9 6.0

6.4

5.9

ري دي

5.7

5.8 H

3.4

7.5

20.7

4.4

7 2.5

2.2 F

25 %

2.7 F

30 F

3.4

4.3

2.5

(1.9)

(2.2)F

2.45

3.0

2.7 K

3(61)

M(1.7)P

<1.0 € <1.0 € 1.75

(1.4) E

(1.97 K

11.0 %

3.7

7.4

2.0

00

00

1.9 K

1.5 3K 1.73

2.0 L

3.3 55

6.1

1.8 F

1.9 F

73.50

5.5

2

17.22

3.7

2 30

33 300

2.

33

7.4

25F

2.4

53 3.6 30 (2.7)E

3.2 K

34

451

47K

45×

43K

418

44.18

441G

<4.0g

<4.0 g

<3.9 G

43.6 g

135R

3.0 K

2.2.2

V.0.F

(1.7) FX(1.4) 5

(25)

7.9

5.6

5

5.0

7.5 J

<3.06

3.6

3.4

2.4 €

(1,7)5

(2.1) \$

3

6.2

3.7

3.2 30

6.2

3.0

3.4

30

1:5 30

5.6

75

3:4

2.4

3:6

50

5:7 29

5.4

5.1

4.9

4.7

43

3.9 39

37

2.0

00. 00

2.0 2

7.4

7

30

26

300

30 lgn,

73

27

30

33

29

29

29

200

30

30

30

29

29

4

30

20

334 (3.E)

3.5

(39)5 (36)

3.0

3.4

Sweepling Mc to25.0 Mc In0.25 min

Monual Cl Automatic (C)

TABLE 69 Centrol Rodio Propogotion Loborolory, National Bureou of Standards, Washington 25, D.C.

			_										_											-											ecusive jos	
ords	ution)	6	2330	3.9 5	3.0 %	2.5 F	2.04	1.0 45	3.15	2.4	(1.9)5 X(9.1)	3.3	3.0 €	3.0	3.4	3.2	(J. Cr. 7)	(3.5)5	2.6	4.4 F	3.0	[1.5] \$	3.5	<1.0 F	2.2 5	3.2	3.7	3.3	2.6	3.4	3.2 F	2.7 F	2.74		3.0	30
Stand	(Institution)	A.C.K	2230	(4.3) x	36 /	2.6 F	20 K	18 ×	3.25	2.00	(2 0) X	3.45	3.0 %	3.25	(3.7)5	(3.5)5	35	(3.8)5	00.7	4.7	3.1	1.7 K	3.5	(1.0 F	2.5 7	3.7	4.0	3.8	3.1	4.2	4.0	3.2	3.2.7		3.2	30
Burrou of	ACK.	E.J.W.	2130	4.0 x	3.8 K	3.1) 5	2.2 K	1(6.1)	3.5	2.6 F	2.3 K	3.5	3.5.8	3.6	3.9)5	(3.6) 5	3.8	4.5	3.2	3.0	3.6	2.4 1	4.2	2.0 K	3.0 K	4.3	4.7	4.7	4.2	5.3	4.5	3.6	3.3 1		3.6	30
and Bu	Scoted by: MCC.	Colculoted by: E.J.W., A.C.K	2030	[4.2]%	3.00 TX	3.8 5	4.0 K	2.7 %	3.8 5	3.5.6	(3.7)x	4.4	4.8 5	[4.5]	4.6	48. F	4.4	5.3	4.1	4.1	4.7	4 . 1 K	5.2	4.7 1	3.7 K	5.3	6.0	5.6	5.4	6.2	5.2	4.0	3.5 K		4.4	30
National	Scoled	Calcu	1930	C	6.2 1	51.5	5.2 K	40 K	5.7 4	8.4	5.0 1	5.3	1.7	5.7	54	5.5	5.3	6.0	5.0	5.3	4.9	4.8 x	4.9	5.0 K	4.6 *	2.6	7.1	6.5	5.8	7.0	5.6	4.4	3.9 4		5.5	39
			1830	Served	73 8	5.6	S.1 X	4.5 x	6.15	5.15	¥ 6.4	5.1 *	7.7	6.2	K	6.2	6.2	6.7	5.4	0.9	7.3	x 1.4 X	4.7	4.0.4	4.3 %	5.5	0.0	49	5.4	9.7	5.0	6.44	4.3 4		0.9	29
o, U.C.			1730	- 1	8.4 K	4.9	52 K	4.5 K	5.2 1	5.3	4.8 ×	5.0 A	8.8	8.5	٤	9.7	8.9	1.7	5.2	5.6	5.6	4.3 1	5.7	4.94	4.2 K	8.8	7.7	7.7	0.7	7.7	4.7	5.8	4.5 K		5.6	27
Z notenin			1630	4.74	9.2 K	4.5	5.3 K	5.1 4	16.7	5.4	x 7.6 x	5.0 K	5.6	5.7	٤	4.9	6:5	5.0	4.9	6.0	4.9	4.3 4	5.6	454	4.0 K	0.7	7.7	4.9	5.9	1.7	4.6	8.9	4.14		5.6	79
ords, Was	∢		1530	5.0 K	12 S. A.	S.0 H	5.0 1	4.6 K	4.6 %	5.4	4.4	5.2	6.3	5.8	¥	1 4 P	9	4.9	4.7	6.1	6.2	4.5	3.6	4.9 K	(3.P K	1.3	7.5	4.7	4.9	6.0	4.9	1.7	4.3 4		5.4	29
of Stond	NA	те	1430	4.5 K	8.0 A	5.6 F	x 8.4	4.c.K	4.5"	5.9	4.4	5.3	5.4	6.0	٤	58	6.5	4.9	5.0	6.2	5.0	42 1	6.0	454	(3.9 K	6.1	7.9	2.7	6.3	6.0	5.1	0.9	414		5.00	25.00
of Bureou		- Mean Time	1330	4.74	7.8 K	5.8 "	4.6 %	4.5K	84.1.4×	1.9	4.4 K	S.3 K	5.5	5.6	¥	6.0	7.0	9.7	5.0	6.0	0.9	4.4"	5.6	5.21	(4.0 G	0.9	7.3	6.0	5.5	1.9	5.4	4.7	24.0 K		5.6	2/ 2/ 2
ry, Nation	IONOSPHERIC	75° W	1230	4.7 K	1. 4. N	5.4	4.9 K	K41 G	44.1 6	5.8	4.4 K	4.C K	5.5 M	5.4	5.4	5.7	4 7.7	1.7	4.9	4.5	5.8	4.3 K	5.4	15.0)	416	2.6	8.9	5.6 H	3.6	6.0	5.4	5.2	CH.15		5.4	30
Loborolo	2007	7	1130	(4.0 G	6.9 1	4.5	(4.3)x	4.7K	(4.0 G	5.2	(4.2	X 4.5 %	5.4	5.7	52 H	5.7	5.5	1.2 M	5.0	5.4	5.4	(4.0 G	5.3	5.5	(4.0 4	5.7	62	5.2	55 H	C	5.3	5.1	(d.) G		6.3	2/2
pogofion	2		1030	24-0-H	16.5 K		C4.0 K	K(4.0) &	24.0 g	(4.7)"	84.0 K	4.3 K	6.3	5.3	S.0 H	5.4	8-6 H	5.4F	(4.5)5	S.0 M	5.5	<4.0g	5.6		4.0 G	5.7 #	4.9	8.5	5.3 #	U	5.2	5.0	44.1K		5.6	2.9
rodio Pro			0860	13.9 K	6.0 F	(4.0 K	638 F	(3.9 G	(4.0 G	4.7	8 0.47	(4.0 K	5.1	4.9	4.8 4	5.7	4.7	6.3	4.5	4.6	5.4	(4.0 g	5.2	3:6	1 43.8 G	3.6	4.7	5:8	N 1.5	U	4.8 4	4.5	43.9 K		4.7	7,
Centrol Rodio Propagation Laboratory, National Bureau of Standards, Washington 23, U.C.			0830	<36 €	5.3 K	(3.8 g	(3.7 K	(3.8 G	(3.9) &	4.4	(3.8 G	(3.9 G	7 74	5.0	451	80 %	5.0	5.0	47	4.3 "	5.4	42"	4.8	5.9	43.6 K	5.3	5.9	5.2	5.2	U	47"	424	<3.7x		7.7	29
			0730	<3.6 €	4.41	3.4%	<3.4°€>	3.4 K	(38)5	4.2	3.7 %	(3.6 %	424	4.5	4.3 "		6.0 H	8.4	4.2	(4.2)"	4.8	3.9	1:4	4.8	(3.3 G	2(6.6)	5.3	8.4	7 +	U	4.6 H	(3.8)F	(3.5G		42	27
			0630	3.1 x	3.4 K	3.1 K	3.0 K	3.1 1	3.1 K	3.4.	3.34	3.41	3.6	H 0.7	(3.8)	3.9	7.7	4.2	3.4	3.6	4.2	R.	3.7	4.3	3.0	3.2. 1	4.7	8.4	3.9.	J	(3.9)5	3.5	3.3 K		3.5	29
952	}		0530		A.2.K		(1.9) 5	5 10	2.1 /	2.4	K 2.2 3	4.2	2.48	2.45	2.5	2.8	2.8	3.0	2.8	7.7	3.1	2.7	4.9	3.1	_		3.54	3.5	cs cs	U	3.3	00	2.8 A		2.7	77
		7. P.W	0430	<1.0 E	41.0 E	2.7K	41.0 K	x 5	(1.1) \$	1.95	41.0 E	(1.0	2.3 F	(1.7)	19 F	1.9	5(8.1)	2.3 F	2.5	2.1	2.2	1.7 F	1.6 3	2.0	[2.0]	K <1.0 E	1.6 %	2.2	2.1 6	υ	8.9	2.0 F	N L		61	47
April	(Month)	Wol.77 gno.	0330	(1.7) \$ (1.0 E <1.0 E	1.7 #	2.5 K	<1.0 E	5 17	(10 E	2.0 5	FK	(1.0 K	2.4.5		(2.2)	2.4	(2.5) 6 (2.2)	2.8 F	8 8	2.3 F	2.2		1.8 1	2.7	1.7 %	<1.0 €	1.8 F	2.4.2	2.4.	U	3.3	1.5	\sim		8.0	47
S.	(Unit)	Lot 38.7°N	0130 0230	(1.7) \$	30 %	1176		2.0 %	(10 E	2.0	FK	<1.0 E	2.6 5	2.4 6	2.5	(3.0)5		2.9	3.0	4.7	4.2	(23)5	1.9 1	2.8	(2.0)	K (1.6) 5 (1.4) 5 (1.0)	(2.0)	2.7	4.7	J	3.1	[1.8] 5	1(1.5) 5		2.2	78
~	oshinatr	Lot3			3.5 K	~	(2.1) F			2.2 F		X Y	(4.7)	2.4 F	2.6 F	3.1	2.9 F	_	3.3	2.5	23	2.5	1.8 J	3.0	7 1	K (1.6) F	2.3 F	2.9	4.9	J	2.9	2.7 H	[2.1] K		2.5	27
60 170	(Characteristic) (Unit)		0030	(2.5)	(3.8) x	3.2 K	3(6.8)	218	1.73	2.9.6	2.64	M(1.7)3	3.23	2.7	28.8	3.2	(3.6)	3.2	1.6	2.5	2.6	49	1.53	3.4	410 K	1.9 2	2.8 F	3.2 %	3.0	4.8 %	3.2	4.7	20 7			30
4	9	- Cose	Day	-		3	4	S	9	7	8	6	0	=	11.2	13	=	11.5	91	11	80	6.1	5.0	2:1	2.5	2.3	2.4	2:5	216	2.2	2(8	5;6	340	31	Medlion	Count

Sweep 1.0 Mc to 25.0 Mc Ind. 25 min

Manuel [] Automotic []

Central Radia Propagation Laboratory, National Bureau of Standards, Washington 25, D.C.

Km April 1952 Centrol Radio Propagation Laboratory, National Bureau of Standards (Linstitution) ONOSPHERIC DATA Scaled by: McC. 2 ACK	75°W Mean Time Colculated by: E.V	01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16	210x 2104 1804 2104 220x 210x 210x 230t	210x 220x 220x 200x 200x 250x 230x 230x	240 x 240 x 230 220 200 210 4 230# 220 240	230 200 H 190 1 180H 2001 210A	210 K 200 K 190 H 190 K 180 K (200) 230 x 230 x 240 x 240 x	220 K 200 K 190 K 180 K 190 K 210 K 230 K	230 210 200 200 210 210 220 220	200 x 200 K 210 K 180 K 190 K 210 K 240 K 230 K 240 K	210 x 200 x 170 1 200 x 200 x 200 x 240 x 240 x 240 x	210# 200# 190# 210 190# 200 210 220	210 200 H 190 H 190 H 200 200 200	200 200 20°# 190# 210# M M M M M	210 210 200 200 200 210 240	220 220 [229" [2294 220 220	210# 230 210 200# 200# 200 230 230 200# 210 A	230 220 220	AA	240 210 200 210 200 210 190 200 230 230 230 240	230 220K 210 x 200 x 200 x 110 x 200 x	200 190 210 200	210 180 1 240K 240K 220 1 230 4 230 1 220 1	Q x 220x 200 " 170 / 210 / 210 x 210 x	200 # 200	230 210 210 210 1904 1907 190 200 210 220 210 230 260	200	220 230 210 200" 190 180" 210 200" 230 230 230 250	J	240 230 230 220 240	230 220 190H 190 190	230x 230x		250 230 220 210 200 200 200 210 220 230 230 250	9 26 29 29 29 27 27 27 27 29 29 20 20	
(Characteretic) (Unit)	erved of WGSI	-		_ 2	3	4	. 5	9		8	6	0		12	113	. 41	15	9		81	61	20	221	22	223	224	925	226	227	928	29	30	31	Coledion	Count	

Sweep L. Q Mc to R. B. Q Mc in 0.25 min Monual D Automatic 30

Manuel [] Autamatic [3]

dian un.

6 20

TABLE 71 Centrol Radia Propagatian Loboratory, National Bureou af Standards, Washington 25, D.C.

Form adopted June 1946

National Bureau of Standards

Scaled by: McC. , A.C.K.

DATA IONOSPHERIC

. 1952

00

ay

9

00 σ N 10 4 2 ~

9

8 6 0

23 Calculated by: E.J.W., A.C.K 22 2 20 6 3.1 9 8 3. Y 1 <u>∞</u> Q 3.4 K 3.4 × 3.5 × 7.5 X 34 K (g. 5) 4.0 9 3.5 35 61 3.7 12.7 3,6 ر را آن 3 5 3.2 K × C.53 (9.00 × 3.7 K 39 4 3.7 x × 6.5 (3. 6. A 8 80 4.0 3.0 80 63.9 4.0 60 Pj 4.0 4.0 (3) 4.0 4 00 5 3.9 3.9 4.1 9 4.0 x 4.0 x 3.9 4 4.0 3.9 3.8 K 9 4.0 × (3.9)x 4.3 4.0 4.0 3.7" 4.0 40% 4 4 7:1 4.3 4.1 4.00 4.7 3.9 4.4 4 64 3 2 4.4 4.0 x 4.3 x × 6.0 4.34 10 K 4.1 K 45. SweepJ.Q Mc to 25.Q Mc In 0.25 min 40% 1.0 K 4.0 4.1 1.1 4.0 4 4.3 4 4.3 4/2 7 4.5 ξ __ Mean Time XAX F m 4.1 4 (40)K 4.1 K 1.1 X 14.374 4.1 K 4/3 47 10 40 4.00 44 4.0 4.0 4.5 4.3 4.4 4.2 4.3 4.3 4. 4.4 4.5 2/3 403 5 4.5 4.6 4.3 x 7.5 K *0× 4.0 K 444 40.7 HOK 1.23 K 4.04 4 22 % 4.2 4.3 44 4.0 4.5 4.5 7. 44 44 7.7 4.3 1/6 43 17 2 75°W 40x 4.1× 4.3 x 10 X YOK ×0% 444 4.4M 4. 3 E 1, 30 x 4,02 4/4 424 1.0 h 4.3 4/02 4.3 (4.4) 44 7:17 43 300 4.5 4.1 = C 4.0 K 4.33 E 7.7 1 [4.274 4.00 11 4.1 # 7.0X 4.0 K 4.3 K 4.0 X 4.27 (4.0)5 J. 8 X × 0. 3.6 x (3.8) x (3.9) x 40% 4.2 F4.17 [4.3]A 4.4 43 4.0 4.3 4 4.2 4.3 4.5 4.02 4.1 9 9 4,03 ¥ 6.5 4.3 X 405 (A) 00 17 3.7% (3.8)8 3.9 x 4.0 (4.1) 7.02 4.1 1,0 20 39 4.1 4.2 4.0 4.0 5 δο Dj 3.9 60 7. 4.0 4.0 1 60 × 16.65 (a) (b) 3.2 H 36 x η (Ο (Β) 3.6 (4.0) 3.7 3.00 6,5 4.1 (1) (3) (O) 3.2 00 00 3.8 6 90 3 o Nj 9) 3.7 4.0 000 200 08 2 4 3.4 x (3,3) 3.4.7 200 16 (3) (3.2) 9.5 3.7 4.5 3.4 3.6 3.4 33 07 2 Ý 0 4 ¥ 0 90 0 0 00 05 0 Lat 38.7°N Long 77.1°W 03 bserved at Washington, D.C. 02 ō

Form adopted June 1946

National Bureau of Standards

A.C.K

Mc C.

Scaled by:

 $TABLE \quad 72$ Central Radio Propagatian Labaratary, National Bureau of Standards, Washington 25, D.C.

IONOSPHERIC

April (Month)

F. Observed at

Washington, D.C

Sweep 1.0 Mc ta 25.0 Mc In 0.25 min

Manual [] Autamatic [3]

Form adopted June 1946

National Bureau of Standards Mc C. (Institution) A.C. K.

IONOSPHERIC DATA

952

(Characteristic) (Unit) (Month)

C. (Institution) A.C. K.	W. A.C.K.	. 53																									SECTION.							
Scoled by: Mc C	d by: E.J.	19 20 21		27.1834																														rang
		17 18	2.3 K (1.9) 5	2.3 K 1.9 K	2.3 1.8	2.3 K 2.0 K	2.2 K 3.0 K	22K 1.8 K	22 1.8	2.4 K 2.0 K	2.4 K 1.9 K	2.3 (1.8)	2.4 17	X	2.3 1.8	9.4 1.9	AAA	9.4 1.9	2.3 1.9	2.3 1.8 #	2.3 K 2.0 H	2.4 2.0	2.4 K 1.8 K	2.3 K 1.9 K	2.4 1.8	2.5 1.9 M	[2.4] A [1.9]	2.5 2.0	2.5 1.9	2.1 H	2.4 2.2	2.4 K 2.1 H		
		.91	298 2.78	3.0 K 3.7 K	2.9 3.7	2.9 K 2.7 K	2.8 K 2.6 K	2.9 K 2.7 K	2.9 2.7 #	(24) K 2.6 K	2.4 K 3.7 K	.0 2.8	074 2.8	3	3.1 2.6	3.0 2.8		3.0 2.7	3.0 2.7	2.9 2.7	3,0 K 2.7 K	3.0 2.7	2.8 K	30 K 3.9 K	3.0 0.8	30 2.8	2.9	1.8	1. 3.9	3.6 2.8	0 27	O K [2.8]#	The state of the s	140
1	Time	14	3.0 K	3.1 K	3.1 2.	3.0 K	(3.0) P	3.0 K	3.0 H	3.0 K	3.0 K	3.1	3.a . [3.0]	N	3.2 3.	(3,1) A 3.	A	(3,1) 1 3.	3.1	3.1	31 K	3.1 3.	3.1 K	3.2 K	3.1 3.	3.2	(32) # 31	3.2 3.1	3.2 3.1	3.2	3,2 3.	3.1 K 3.0		
	W Mean Time	12 13	(32) P 31 K	32 X 32 X	3.2 3.1	3.1 K 3.1 K	(3.1) P (3.6) P	3.1 K (3.1) R	3.1	[3.1] A 3.1 K	3.1 K 3.1 K	32 32	AAA		(32) 6 32	AA	(32) P 32	(32) 7 (3.2) 4	3.2 3.2	3.2 (3.2) P	3.3 K 3.2 K	3.3 3.3	×	32 K 32 K	3.3 3.2	3.3 3.3	AAA	3.3		[3.2] # (3.2) 8	[32]A 3.2	32 K 32 K		
OKATI LONOI	75°W	=	(31) R	x (3.1) p	3.1	K 31 K	K (3.1) P (3			K [3,1] 5		[31] A		3.1	A (3	A	(32) 4	3.1	3.1	32	¥		[3.2] #	32 K	(3.3) P	3.2	3.2	(a)		(32)	[32] #	X 31 K		
2		01 60	(4.4)	2.8 × 3.0	2.8 K 3.0	2.8 K 3.0	2.8 K 3.0	2.8 K 3.0 "	3.8	2.8 K	2.8 K 3.6	3.8	28 3.0	2.9 (3.0)	(2.8) A	[2.9] MA	2.9 3.1	2.8 3.0	3.8 2.4	(2.9) 7 3.1	3.1	(3.8) 6 3.1	3.1	2.8 K 3.0	2.4 (31)P	3.0 (3.1)P	AA	3.0 (3.1)	S	[2.4]4 (3.1)	2.9 3.0	2.4 K 3.1		
		7 08	1 4 251	2 K 2.5 K	4 3.6 1	2 K 2.5 K	2 K 2.5 K	2 K 2.5 K	2 H 2.6	2 K 2.5 K	2 K 2.5 K	3) 8 (2.6) 8	3 2.6	3 2.7	2.6	3 2.7 1	3 (2.6) P	ع 2.0	3 2.6 #	3 2.7	a (2.6) p	2 2.4 (3 2.7	SK 2.7 K	4 K 2.8 H		7.8 2.8	80:08	J	2.7	2.6	1 K 2.7 K		
		06 07	1.6 * 8	S X 22	1.7 4 3.1	1.7 K 2nd	1.7 K 3.2	1.7 K 22	5 3.2	17 4 23	1.7 8 2.2	1.7 " (3.3)	A 3.	1.7 2	1.8 3.	1.7 3	1.6	5 2.	1.7 3.5	1.7 3.	9	(1.7) 0 3.	3	(1.9) A 2.5	1.9 H 2.4	1.9 3.4	1.8 2.4	1.9 2.4	2	1.9 2.5	1.9 2.4	1.9 X 2.4		
(Month)	Wo1.77 png	03 04 05							-																									casa
(Unit) (Month) Washington D. C.	Lat 38.7°N, Long	0 02 0																																
(Characteristic)		Day 00 0																																

Sweep 1.0 Mc to 250 Mc in 0.25 min Monual [Automatic [] adopted June

TABLE 74 Central Radia Prapagatian Laboratary, National Bureau of Standards, Washington 25, D.C.

ONOSPHERIC DATA

1952

Mc, Km

Es (Characteristic)

Observed at Washington, D.C.

National Bureau of Standards (Institution) Scaled by: McC. A.C.K

125/20 110 30 150 13110 30 110 30 ш W W ш Ш Ш W Ш ш ш Ш щ Ш ш w ш W ш 122/160 33110 30/30 31110 3.2 110 1.3 150 Calculated by: E.J.W., A.C.K 30 Ш Ш w ш Ш W Ш W ш Ш ш * ш ¥ ш W ш ш ш ш 26 110 125 110 13 140 2.51/40 2.3 100 011 120 2.9/30 30 ~ E ш Ш * W W ш W ш W W 56/30 1.2 130 x3110 33 110 50 * 30 ш W ш ш ш Ш W W LL ш W W W ¥ 32 130 1 33/120 40 120 64/20 3.1/20 00/ 11 120 1.3 100 100 * <u>6</u> U W 29 шШ Ш w w ш ш ш W W ч ш W Ч 2.0100 2/120 60,70 * B b B b B b B B y y 52 6 b B B 6 ξ B B P B B B B B 110 35 110 90 B * * P P 29 P B P Ŷ G B B P P b P 6 -U B P B B B Ò B ξ b 35,30 35 100 011 06 66/201 2 P Ġ b P Y B ξ B Ġ B P P Y b J P B * 29 9 6 b B P Y B 26,00 45/20 30/20 4.11/20 0110 36/10 36/10 29 B b b P B Y B Y 2 P P b P b B S ξ B P b b P y B b 47/20 37 110 01104 70/10 6.0/20 29 B P B P 4 £ P B P b 6 b B * b Y B P P P 6 B B B 5 5.0/20 01104 011 1.4 381/00 8.01/10 36 110 b Ġ Y ξ Y b Ŷ b B B Ġ B B 29 3 6 Y B Y P Ŀ G Y P 33 100 #2110 7.0 120 54/100 100/30 53/20 011 14 3.3 110 35/20 011 9.9 34 110 * 30 Y P y Y Y P P Ŷ b 2 b b b B P b Ü B 75° W 1.2/20 1801/30 24 100 101105 74 120 01198 3.5 110 42 110 110 00/00 * 29 B P B = B B Ġ P B B Y b P P U b b b P Y P 94 100 33/10 58 110 10.01/20 45,20 33/20 72/30 601,00 b P b Y Y b B B B B b P P P B B S P ** 29 0 P B U P 4.3/00 011 04 3.3/20 B E b B B J J Ŋ P Ġ B P P b b 700 60 b b P 3 3 r B P 0 43/20 60/130 14/40 011 6.4 b P P * J b b B b B B Q Ŋ b P b P 29 b b S P S P b 08 Ġ b U 26 100 58 100 001/09 081 701/00 Y 29 B P P Y P P 6 P B 166 b b P P J b U P P ж ж 6 P b 07 **b** 22/20 1.7/30 46/110 20110 011 P S b S B P B b B Ŋ 6 B B P B P P B 4 W 6 b B S b U 32/10 2.2/40 37,120 37 110 12 110 U 20 Ę W ш W S w IJ ш W ш ш ш W ш W ш ш ш 33 110 35 130 40 130 28 04 U ш ш Ш ш ш Lang 77, 1° W ш Ш ш U W W ш ш Ш Ų 38/20 23 110 15 110 110 23 100 28 100 7 W W W W W ш ш W ш ш ш U ш W W Ш ш ш w 2.3 120 38 110 21130541100 191,20 22 110 Lat 38. 7°N S 00 02 IJ ш ш Ę ш ш W u ш Ш ш w W U ш Ш 23 130 150 120 36 110 26/10 ш E 30 ш w ч IJ W W ш ш Ш ш ш W 9 A ш 28 130 2.7 110 W 30 ш 8 Ш ш W Ш Ш W Ш Ш Ш W i w ш ш ш ш Ш W ш ш ш * Aedlan ount 2 7 6 2 13 N М 4 9 80 = -2 4 5 9 17 8 6 20 2 22 23 24 25 56 Doy 27 28 29 30

MEDIAN fes LESS THAN foe OR LESS THAN LOWER FREQUENCY LIMIT OF THE RECORDER

Sweep 1.0 Mc ta25.0 Mc In0.25 min Manual

Autamatic

Manual

Manual

Automatic

Manual

dian

30

 $\text{TABLE} \quad 75 \\ \text{Central Radio Propagation Laboratary, National Bureau of Standards, Washington 25, D.C.}$

Form adopted June 1946 of Standards A.C.K

Bureau

National

IONOSPHERIC

April

(M1500)F2

1.01 (1.8) 1.87 N 4 N 1.9 4 (000) 0.0 6:1 6.1 (1.8) 6. 0.0 6. 0. 0. 0 1.8 0 39 0 14 0.0 K121 5 K 1.9. 1.2 K (020)F (67) 1,7 K (0.0) (1.8) & 7 6.7 5 K(7)3 (1.2)3 (6.7) 20 K 6.1 000 0.00 6.1 1.3 6:1 1.8 000 6.1 1.3 9 E.J. W. X 00.00 X X 0.00 X X (23) (20)5 (7.8) \$ 1.7 5 20.00 0.0 00 0.0 20,00 0 0.0 0.00 00. 2 3.0 (-2.1) 5 2.10 1.9 * 201 S / S 20.00 1.00 0.0 000 0.5 0.0 7.0 2.1 90 50.00 0 3 3 0.0 Scaled by: 2.1.C 5(1.6) 200 8,0 % 2.0 (2.2) 0.0 3.3 3.00 0.0 1.0 0.0 3 3 5.0 2.2 6.3 0.00 0.0 0.0 0.0 0.0 3.1 9 <u>o</u> 1.9* 2.0 x (1.8)* 20.0 3.2 9.0 3 3 5,5 6.1 1.9 3 3 6. 3 00 00 3.1 0.0 1.9 8 1.8 0.0 0.0 6.1 0.0 3 0.0 3 3 0 0 1.8 1.0 2.5 0.0 8. 6 2.1 0.0 00 0 000 1.6 0.0 5 8 2.1 3 6. 3 1.9 × 6.1 5 1.00 % 0.0 0.0 ./.00 ξ 5.3 2.0 2.00 0.00 1.7 020 6.1 1.3 3. 3.5 0.0 500 6.1 1.7 1.0 1.6 00 90 6. 6.1 6.1 00 1.5 x 0.0 10 0 0.0 3.5 8 1.8 0.0 0 60 3 0.0 0.0 1.7 1.00 1.50 0 0.0 00 2.1 30 3 3.1 8 50,00 0.0 00 1.74 17 11 (1.4) | 今~ | ~~ | ~~ | ~~ | ~~ | ~~ | Sweep 1.0 Mc t<u>a 25.0 Mc In 0.25 m</u>in 4 1.00 1.6 1.9 3 07.02 0.0 20 0.0 0.0 1.60 0.0 0 3.1 1.00 0.0 0.0 0.0 000 1.00 9 / 0.50 O 3 O 1.7 X 8 1.6 + 0.0 1.9 0 6. 0.0 1.8 61 Ċ 1.6 0,50 1.00 0 1.7 1.00 10 0 0.0 2.1 0. 2 3 1.00 3 Q CAR 50.0 A (1.6) S 6.1 1.6 2.2 0.0 00 0.00 6.1 1.80 2.3 1.8 0.0 67 1.6 1.9 6 0.0 C 1.6 8 6.1 Q 25° W 0.00 H 8.0 X 's 0 ٠ ص 1.6K 6.7 3 mg 0.0 0 6.1 10 0.0 5,3 0.0 1.9 3.1 6.1 3,3 67 U C Ō O CO 5 v O 1.6 x 4 1.7 2 H(67) 3 4 1,00 6.7 0.00 2,2 29 3 00 0. 00 20 2.0 0.00 1.7 U 2.1 1.00 6.7 0 O × 0.5 1.04 1.9 6. 00 000 4.00 6.1 0.0 0.0 1.7 0.70 3.0 6.1 0. 5 O O U 0.7 300 C \x (5) K(17)3 20° 2.3 1.7 0.0 3 1.00 2.4 0.00 0.00 03.2 6.1 O 000 2.1 6.1 O C 1.9 60 U J U 0 O (1.7)5 200 1.00 2.3 000 1.00 2000 0.0 6. 6,3 9 0.0 1460 67.50 000 2.2 1.00 J. 0.1 0 Ç S 20 x 21 K 8.1× 0.0 3 60 450 0.0 2.2 20.00 2.4 3 5.3 3 20 7. 2.2 8 9. 8 03.1 20.00 90 3 U (1.7) 1.8 4 (6.7) 1 80 × (1.7)E (1.2) F K(0.1) 8 20 A (87) 2.0 0.0 0.0 0.0 0.0 000 8.0 6,3 0.0 0.0 6. 67 120 05 9 3 U (0.0) (1.9) (87) (1.7)5 (6.6)7 Lat 38.7°N, Long 77.1°W 0.00 0.0 2.1 0.5 00 20.00 0.00 2.2 200 6.1 0 1.75 (1.8) Fx K(26)3 2000) (1.7) *(1.8) F S 60.50 18 4 (18) \$ (1.8) (20) 5 X (61) Washington, D. C. 03 0.0 6.1 070 1.8 00 6.1 1.20 0 0.00 8.1 6.9 1.8 x (1.9) 5x 1.9 2 1.9 F 1.9 5 0.7 20 K (1.9) (17)5 S 184 194 00 (0.1)5 (1.8) A 0.00 000 61 20 1.8 6.1 6.1 1.8 6.1 6. 02 U + 07 1.9 5 (67) 200 4(1.8)3 K(1.9)5 7(61) 5(81) (1.8) 5 (1.8) 5 6.7 6.7 (17) 0.0 6.0 2.0 0.00 20 (87) 1.8 0.1 6.1 19 6.7 67 20 õ K(17) 5 K 184 (18)5 20 A 2(61) 2007 1.0 1.0 1.8)5 (1.8)5 0.00 (8.1) 6.0 6.1 6.1 67 0.0 0.0 (6.7) 8 6.1 6 0.0 000 90 0. Ö 67 Observed of

20

6

8

23 24

6

0

00

9

М

2

4 5 9

Form adopted June 1946

	, D. G.
	Woshington 25,
	Stondords,
	of
92	Bureau
TABLE	Labbrotory, Notional
	Propogotion
	Rodio
	Centrol

0 2									1																												
of Standards	1 ~ 1	A. C. K.	23	27 x	x (28) 5	(2.7) F	278	27 E	305	2.8 F	(26)5	27	295	48	2.8	79 F	(30)5	(29)F	28	78	28	K(26)5	38	EK	2.9 K	2.9	30	30.	305	3.1	2.9	2.9	(27) F			28	29
Bureau of	(Institution)		22	(2.7) s	(26) E K	2.6 5	26 F	2.6 ×	2.8 F	29 F	(26)3	2.7	3.0	29	(3.8)5	(3 0)F	5 (6.2)	(2.9) 5	2.9	2	3.0	2.6 K	29	x (2.6)3	30 E	30	2.9	30	3.15	30	2.8	27	76 K			2.9	30
] .	E.J. W.	12		265K	(27)5	30 K	2.75	295	295	33) x x	2.9	31	3.0	30 (30/5 (.	2.8	30	30	3/	23	3.2 K	31	32K K	30K	31	0 0	31	3.2	3.0	30	27	25K			30	30
National	Mc C	by:	20		31 K	185	315	7 8 x 4 x	3/5	(31/5	315	30	3.2	3.1.5	3.1	31	31	2.9	3.1	33	3.2	3.1 K	3.2	30×	31 S	30	3.2	32	3.0	3./	30	34	28K			31	30
	Scoled by:	Colculoted			3.0 % X	30		318	318	(31)3 (.	31KK.	3.0	33	23	4	K	7	7	4	w	(32)5	3.0 K	31	30K	30K	_	2		0	0	0	0	OX			31	29
	. ,			30 K	32 K K 3	28	0 N×	SK	ωx	32 (X X	3/K	3.2	32	m 3	33 3	32 3	31 3.	31 3.	32 3	30 (3	29K 3	3.1	(27) # -	30 K	2 3	5	3.2 3	31 3	50	8	8	OK			3/	29
					314 3	2.8	30 K 3	314 2	2.9K 3	0	2.9 K 2.	X O	_	31.	Į.	31	31	31	31	32 3	3.0	e K	31 3	27 K (4	2.8 K 3	31 3	3	7	0	8 11	7 2	_	O X 3			0	29
Central Radio Propagation Labbratory, Notional Bureau of Standards, Washington 25, D.C.					29K 3	2.8 H 2	× 8	28K 3	28K 2	2.9 3	2.5 K 2	3.1 K 3	30 3			32 3	_	7	0	7	6	6 ×	0	2.7 K 2	3 ×	2	11 2	3.1 3	0	2 3	8	6.	7 K 3.			0	29
, Woshing			1 9		30 K 2	3.0 H 2	27K 2	2.8 K 2	27K 2	0	2.6 K 2	3.0 K	7	.1 3	Z Z	3.1 3	0	2 3	9 3	3	2	7 x 2	2 3	3 K	GK 2	1 3:	6 1	_	0	2 3.	7 3.	2.9 2.	2 K			0	29
stondords	DAIA				29K 3	27 11 3.	6 X	2.6 K 2.	25 K 2	3.	2.4 K 2.	2.8 K 3.	3.0 3.	3.0 3.1	K	31 3	3.1 3	3.0 3.2	30 2.	3.0 3	0 3	GK	2 3	(2.1) K 2	×	0 31	0. 3.1	1 3.	0	1 3	7# 2.	2 11	* X 22			0	-
reau of S		Meon Time	H	×	¥	00	5 XX	G K 2	×	9 3.	5 K	rx x	31" 3	3.0 3	X	_			-	0	0	Y	1 3.	24K (2	A.	0 3.	8 3.	1 3.	0 3	1 3	6# 2	7 2	X.			00	4 29
tionol Bu	25	- 1	1	(24) x 2.7	OK 2.8'	4	X 2.6	X	K	7 # 2.	K 2	7.5 K 7.	8 3	_	0	3 3.	4	304 3	7 2.8	3	0 3	2.5 × 23	9 3	×	× .	E	8	2 3	8# 3	1 3.	4	7 2	R. A.			7	29
otory, No	CONOSPHERIO	75°W	-		32% 30	5 F 2.9	X	y .	K G	8 27	A.	÷χ	4	9 32	3.	3 3	0 27	8# 30	5	6.7 40	2 30	ž.	1 2.9	2.1 K 2.5	κ ρ	2.9	7	3 32	1 3.8	E.	4 2.6'	9 3.	X P			2	30
on Labbr		1	=		30 k 3:	6 2.5	X G	K G	K	05 2.8	* G	4K 2.4	9 2.8	7 2.9	3 11 28	3 H 33	30	4	5 7.	3	0# 3.2	X	31	××	Y.	2 30	1 30	#	1 3.	U	I.	8 28	K G			8	79
Propogoti			0	×	ωX	2 ×	K	K G	, x	9 (2.8) 4	KG	×	8 # 8	2.8" 2,	3.0# 29	30	3.0	0.3.0	77	30" 30	8# 30	A P	0 2.8	9 27	Α P	0	4 3	2 31	4" 3.	U	0 2.6	8	×	,		7	29
Rodio			60	x P	30K 32	5 K G	· K	K	KG	3	K	X	~	1" 2.	2 3.0	2.9 HC	W "	2 30	9 2	1" 30	4 2.0) 5 S	6	2.9	A P	W	* W	D	K 3	U	# B	7	K			2	28
Centro			90			X O X	Y.	× G	K	5 2.9	J. S.	SX G	35 2.9	3	2	30	33	3	~	2	3	15 K(26)5	2.6	30	Y.	30	3.2	3.2	1 32	C	700	9	K			~	79
		ı	07	λ P	14 (31)3	X 33 X	γ	X 3.3	K	32	K K(31) 3	X	,,)	3.2	27	18 1	3.2	33	30	31	33	(25)	30	2.8	X 34K	¥ Ø	34	32	30	U	32	33	×			\dashv	29
			H	K 3/K	K 30K	x 31	K 30	£ 30	18 31K	F 33	x 33	K 31	1F 32	11 32	JF 31	31	F 32	35	32	32	34	32	3.3	3.2	15 31	8 33	34	34	3.2	U	3.2	F 31	K 32			-	29
952	-	>	0.5	×	×	1× 27	× E	S	(26)	F 27)F E	K	15 (27)F	í I	F (2.8)F	28	3.0	F 30	129	30	3.0	F 30	0 2.9	28	x (2.5) K	K K(31) &	F 3.1	F 33	3/	U	30	15 29	X 2.9			-	23
Ē	(Month)	77.1°W	0.4		x F	5 (27) F	k E	5 5	K E	5 2.7	x (24)5	K	s (28)E	F (27)F	F 2.8F	30	15 (3.0)F	5 30	27	31	30	F 3.2	×	31	T.	×	5 31	F 29	31	U	- 1	15 (2.5)5	rs F			+	20
April	٥,	, Long.		7	K 32 %	£ K (27) 5	k E	£ 14 (25)3	× E	F 2.6	F	KE	14	F 27 F	F 2.9 F	32	F (30)}	31	27	F 30	2.8	30	27		x (2.9) x	- 1	F (30)5	F. 2.9	30	U		§ (2.6)5	K(01)			7	74
	Washington	Lat 38.7°N	1	- 1	X 29 X	£ K(29) \$	5	x 28	J. E	F 28	F	F	F 2.7	f 2.8 F	52	28	F 2.9	30	2.8	2.8	F 2.7	~	5 2.8 K	. 4		K (28) K	(27)F	7 %	29	Ü	F 2.7		K (27) K			28	74
))F2	, (S) Was	Lat.			2	27	F (27) F	£ 27	x x(27)	F 3.0	£ K(29)7	5 K(28)F	28	F 29 F	2.9	5 28	F (28)F	30	5 28	2.8	. !	F 3.0F	3 K(27) 3	30	X	TT.	29'	30	3.0	30	-	\dashv	F (26) K		\perp	\dashv	7.8
(M3000)F2	(Chorauteristic)		00	X 205	27 x	K(27)	(2.7)	26	27'	30	30	K(27)3	38	291	29	(2.7) 5	2.8	30	(2.9)5	28	28	305	x(26)3		E	30	3.0	30	29	2.9	2.9	2.8	(28)F			~	79
Ž	5	200) O	-	2	W	4	ıO.	9	7	00	0	0	=	2	<u>+</u>	4	15	9	17	8	6-	20	2	22	23	24	25	56	27	28	59	30	<u>-</u>		edion	onu

Sweep 1.0 Mc to 25.0 Mc In 0.25 min Monual □ Automotic 🖾

 $\mathsf{TABLE} \quad \mathsf{77}$ Central Radio Propagation Laboratory, National Bureau of Standards, Washington 25, D. C.

Form adopted June 1946

National Bureau of Standards	Scoled by: Mc C. (Institution), A. C. K.	Colculated by: E.J.W. A.C.K.	19 20 21 22 23																						Q.X			Control Contro									
			8	_	9	2	7	X 7 X	K K	2	7	Y	~	7	M	7	۲.	7	7	7	7	Xt, E		×	351	7	77	7		7	3.3		X 34K		1	#	
Rodio Propogotion Loborotory, Notional Bureau of Standords, Washington 25, D.C.			-13	7	2		- 1				35	35	7		W	~	2	7	7.8	7	3.6		3	3.5	33	7	3.5	7	3.4	3.7	3 4	3.7	X 3.4K		2.6	14	
ashington			91	3.5	3	- (7.5K		X	¥	35	3.5	M	~	36		3.6	3.7	2	3.78	Sant Accord	36	3	3	9	3	35	3.6	3.5	3.5	X 3.6		9 6	X ox	
ndords, w	۵				3.5 K	_	K 3.5 K	x (3 E) X	3.64		3.5	3.5	3	3.5	M	2	3.7	3.5 H	3.6	7.5	H 3.5	¥	-	3.7		3.6	3.6	3.7	7 35	3.7	37	3.7	3.6			8	
ou of Stor	DAIA	Time	4	3.9	3	3.6			X 3.8 X		K 3.5 K		8.8	3.74	M	8.9	3.7	3.00	3.8	3.5	3.6	3.7		130	-	3.5	3.5	3.6	3.6	3.74	3.7	3.6	3.84		3.7	Sweep 1.0 Mc to 250 Mc In 0.25 min	
nol Burec	2	Meon Time	50			3.5 H		(3.8) 5	3.8	3	20	w	1			3.7	A	3.6		7 6	36	3	3.8	37			3.5	3.8	37	38	3.6	3.6	3.9K		300	5 0 Mc Ir	
ory, Notio	T T	75°W	2	EX7	3.5	3.6		38 K			4.0 X		4.6				3.7			distribution.	7:0	BOK				38	3.8 4	29	3.6	3.00	37	3.7	3.8		5.8	Mc to 2	
Loboroto	CNOSPERIO	7	1 1		407						3.9 K	4.0X	3.70			3.7	3.6	3.6	3.7 11		39	_	3.6	35	4.0 X	4.0	J. 9 W.		4.0	J	4.04	3.9	4.2K		3.9	veep 1.0	
pogotion	2		01		2	-	2.7 XZ		4.0 X					3.7	3.74	37	A	3.6 H	3.7	3.7 H	00					39	374	3.7	_	J	4.04	3.7	J. / K		3.7	1 02 7 Sv	
Rodio Pro			60	E 60 X	3.6	3.5		(3.T)x	(3.7)x	6.0	3.9H	4.14	3.6 H	(3.7)4	3.7	3.6	M	3.5	3.6	4.1	4.07	3.6 K	3.8 H	3.6		BYH	63	H 7. 6	3.77	U	3.6		4.0%	The state of the s	20	0 70	
Centrol			90	W. 7	57	3.3 X	3.7x	3.7 K		7	3.6 X	J.6 X	3.5	3.6		57	3.7	7	3.4	3.74	3.7	35K	3.7	3.5	3.64	-	2	3.7	3.0	U	(3.5)2		3.7 K		3.7	ç.	
			07	3.5 F	7	B	354	G	3.5 %	~	× ,2	× ×	7	9.7	(37)4	3.6	7	7	7	3.4	3	3.5	4.8	7	G	3.6	7	7	3.7	0	33	(3.7)	3.44		3.	4/	
			90													G	G	0	0	7	7	7	7	7	S A	G	7,	7	7	V	G	7	O Ā	-		Canada Ca	
1952			0.5																																		
		, Long 77.1° W	0 4		-														-								a. sexual			-							
April			03																																		
	Washington, D.C	Lot 38.7°N	02																																		
F!		Lot	ō								.																										
(M3000)F	(Characteristic)	5	00																																		
Σ	(Character	i peno	Day	-	2	m	4	2	9	7	8	6	.0		2	2	14	15	9	17	8	6	50	51	22	101	24	25	93	27	28	59	90	-20	dion		

Form adopted June 1946 of Standards A. C. K.

(Institution)

Bureau

National Mc C.

Scoled by:

 $\text{TABLE} \quad 78$ Central Rodio Propagation Laborotory, National Bureau of Standords, Washington 25, D.C.

1952

A pril

(M 1500) E

Washington, D.C.

Observed at

ĝ

2

4

9

00 6 0

IONOSPHERIC DATA

A.C.K 23 22 Calculated by: E.J. W. 2 20 6 4.0 X (41) P 402 (3.7) S 3.5 K 4.0% 3.7.4 FO.F 43 4.2 K 4.0 0.4 4.1 1.71 4.3 4.2 4.4 4.0 * * 3 8 300 3.9 1 8 7 89 V K. / X 4.3K 4°K X/7 X/X 4.1 K 4.3× 4.0% £ 12. 1: * 42 4.3 オナナ 4.2 1.4 7 4.2 1:4 Ŧ 4.2 7:2 4.0 E 4.2 7 4.2 X 4.24 4.14 4.04 4.0 X 414 4.2 K 384 7 x x 17.7 4.1 4.3 7 7 4.4 4.4 7 7 42 80 4.2 9 ナス 42 X (A.2)K 4.01 4.0 × 4.0 4.1 7.7 4.2 14,2 4.3 to 41 4.2 N 7 2 T T d(1.4) 4.24 (4.x) A 4.2 X 4.2 x (4 4) K (4 2) K 4.3 K 43x 4.2× 4.3K 398 42 K (42) K 42K 7 4.3 (41) 4. -7 4.3 +. 2. 4.1 7 44 7: 4.0 43 4 .0 Mc to 25.0 Mc in 0.25 m E V Mean Time # SX 4.3K 4.4× (4.3) P (4.1)P 4.2× 42x d (1.7) 4.3 4.1× 4.2× 4.2 42 7. 4.2 10 4.3 4.4 4: 4.7 + T £ X A 4.2 K (4.2)P x(0.+) (4.2) (4.2)P (4.2)P 4.1K A X8.4 4.31 (4.2) R (7.3) R 4.3K 39K 4.2 4.0 4.0 7 43 42 4.2 7: 4.0 2 V 75° W T V T V X 4.4 4. 4× 14.1× 4.3K (4.3)K X 8:4 AK × (H. 1) P (42) P (41) P 4.2 4.4 4.7 4.0 7: 4.3 42 + 7 4.1 = A T T A 22 4.2× * 2 x 7.2× 4.2 K 4.4× 4.3× X 00.53 (42) A (6.4) (4.1) (4.2)X 4.2 (4.3) 42 4.0 4.3 26 4.3 1.4 7.3 4.2 4.2 1 9 4 U King X 4.2 K (4.3)P 42× (4.1) P * +· + (4.2) P 4.1 K 1 × ¥5.7 4.3× 4.2 4.2 4.2 43 4.3 4.3 4.3 4.2 4.2 60 + 4.1 7 A. Z 4.2K 4.2× # #X (4.1)K 4.2% 42x 4.2 190 (4.2) 4.3 7(14) 1+ 4.2 4.2 42 1 4.2 1: 4.3 4.1 90 + 7 39 4.2 x 40 K 43x 4. X 4.1 K XXX 4.2× 4.1H x + .4 (4.3) 4.2 1 7 4.1 4.3 7.3 4.2 3.9 43 87 3.9 4.0 68 1:4 39 39 07 4 4 K 4.2 × 4.4 4.2 # 2 4.2 4.2 4:0 90 7 4.3 5 4.1 V V 0.5 Lot 38.7°N Long 77.1°W 04 03 02 5 00 lion

9

~ 00 0 0

2

2 20 Manuel [Automotic []

Table 79

Ionospheric Storminess at Washington, D. C.

April 1952

Day	Ionospheric 00-12 GCT	character* 12-24 GCT	Principal Beginning GCT	storms End GCT	Geomagnetic 00-12 GCT	character** 12-24 GCT
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	4 4 4 4 4 2 4 4 2 1 1 0 1 1 2	4434415412121132	##### 679 600 600 600 600 600 600 600 600 600 600	00 00 00 00 00 00 00 00 00 00 00 00 00	456555544533332344	454544443322233323427
18 19 20 21 22 23 24 25 26 27 28 29 30	2 1 5 7 4 1 1 1 3 4	252451322226	1300 1500 00 00 00 00	CO C	1 3 3 4 5 4 2 2 2 2 4 5 5	3 4 2 7 3 3 3 2 2 2 3 5 4

*Tonosphere character figure (I-figure) for ionospheric storminess at Washington, D. C., during 12-hour period, on an arbitrary scale of 0 to 9, 9 representing the greatest disturbance.

**Average for 12 hours of Cheltenham, Maryland, geomagnetic K-figures on an arbitrary scale of 0 to 9, 9 representing the greatest disturbance.
----Dashes indicate continuing storm.

###Storm began at 1700 GCT on March 30, 1952.

Provisional Radio Propagation Quality Figures
(Including Comparisons with CRPL Warnings and Forecasts)

March 1952

Day	North Atlantic quality figure	CRPL* Warning	GRPL Forecasts (J-reports)	Geo- mag- netic ^K Ch	
	Half day GCT (1) (2)	Half day GCT (1) (2)		Half day GCT (1) (2)	Scales: Quality Figures (1)- Useless
1 2 3 4 5	(3) (4) (4) 5 5 (4) (2) (3) (2) (3)	บ บ พ พ ฬ พ พ	x	(4) 2 1 1 1 (5) (5) (4) (5) (5)	(2)- Very poor (3)- Poor (4)- Poor to fair 5 - Pair 6 - Fair to good 7 - Good 8 - Very good 9 - Excellent
6 7 8 9	(2) (2) (3) (2) (2) (2) (3) (3) (3) (3)	W W W W W W W W	X X X X	(6) (4) (4) (4) (4) (4) (4) (4) (4) (4)	Geomagnetic K _{Ch} - O to 9, 9 representing the greatest disturbance; K _{Ch} > 4 indicates significant disturbance, enclosed in () for emphasis. Symbols:
11 12 13 14 15	(4) (3) (4) (3) (4) 5 5 5 6 5	₩ ₩ U	X X	(4) 3 3 3 3 3 2 2 2 3	W Disturbed conditions expected U Unstable conditions expected N No disturbance expected X Probable disturbed date
16 17 18 19 20	5 (3) (4) 5 5 6 6			3 3 (4) 3 (4) 2 1 2 2 1	Scoring: H Storm (Q<4) hit (M) Storm severer than predicted
21 22 23 24 25	6 (4) (3) (3) (3) (3) (2) (3) (3) (3)	W W W W W W W W	X X X	(4) (5) (4) 3 (5) (4) (5) (4) (4) (4)	M Storm missed G Good day forecast O Overwarning Scoring by half day according to following table:
26 27 28 29 30 31	5 (4) 5 (4) 5 6 7 6 5 5 (2) (3)	W - W U U U	x x	3 3 3 3 1 2 1 2 3 (5) (6) (4)	Quality Figure ≪3 4 5 ≫ 6 W H H O O U (M) H H O N M M G G X H H O O
Score: H (M) M G		Warning N.A. 34 1 5 21	Forecast N.A. 30 0 8 22 2		

^{*}Broadcast on WWV, Washington, D.C. Times of warnings recorded to nearest half day as broadcast.

() broadcast for one-quarter day. Blanks signify N.

Table 81

Solar Flares, March 1952

SID	ved	The community of the co
Import-		9 8
Rela-	Area of Maximum (Tenths)	
Int.	Maxi- mum	10
Time	Maxi- mum (GCT)	2110 1625 2315
tion Long-	itude Diff (Deg)	E02 W13 W13
Date Time Dura- Area tion (Fill) Position Lati- Long- Long- (of) Begin- End- ning ning 1952 (GCT) (Min) (Hemisph) (Deg) (Deg) Mar.14 2101B 2130 23280 27 2250B 23280 2250B 508 M13	\$08 \$08 \$08	
Area (Mil)	(of) (Visible) (Hemisph)	70 60 120
		101
me rved	End- ing (GCT)	2130 1630 2328Q
Ti. Obse	Begin- ning (GCT)	2101B 1621 2250B
Date	1952	Mar.14 27 27
Observa- tory		Boulder " "

Flare on March 14 was observed visually; position, area, and intensity were estimated. NOTE:

B Flare started before given time A Flare ended after given time Q Time reported as questionable

ERRATUM: CRPL-F92, p.44, table 82 -- The second box heading should read, "Date 1952."

Table 82a

Coronal observations at Climax, Colorado (5303A), east limb

Date				Deg	ree	s n	ort	h c	ıf t	he s	ol	ar	eqı	nt.	OI"				no				Deg	gree	8 8	out	h c	of t	he	sol	ar	equ	ato	r			
GCT	90	85	80	75	70	65	60	55	50	45 4	0	35	30	25	20	15	10	5		5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90
1952																																					
Apr. 1.7	! -	-	_	-	3	6	9	10	10	10	8	9	9	10	18	21	17	33	10	3	2	2	2	3	3	3	3	4	3	2	-	gm2	-	_	-	-	-
4.8	-	_	_	-	-	-	2	3	3	4	4	3	3	3	3	3	3	3	4	6	16	11	12	10	5	3	3	5	4	3	3	-	-	-	-	-	-
5.7	-	_	_	-	-	-	-	2	3	3	3	2	-	-	3	3	3	4	10	12	20	18	15	12	6	5	3	. 3	3	3	3	_	_	_	-	-	-
7.8a	Х	Х	Х	-	-	_	-	_	3	3	3	_	_	-	_	-	ځ	4	4	2	6	6	6	3	3	2	2	2	3	3	. 3	3	-	_	-	-	-
8.8a 10.0a	_	_	_	_	_	_	- v	- v		1.],	3	3	3	3	3	3	ر د	2	3	2	2	2	2	2	2	2	3	3	3	_	_	_	_	_	_	
11.7a		_	_	_	_	_	3	λ	3	3	2	2	2	3	3	2	2	2	3	3	3	1	3	3	3	3	3	2	2	2	_	_	_	_	_	_	_
14.8	X	X	χ	y	_	-	_	_	_	_	_	_	_	_	-	_	3	3	5	7	12	7	7	Ĺ	3	3	3	3	3	3	_	_	_	_	_	_	_
15.8	_	_	_	_	_	_	_ a	_a	L ್ಷa	ι_a	_a	a	_=	3 _	a _:	a 3	a ge	6	12	15	21	18	16	10	6	6	5	5	58	1 3e	1 3a	38	1 _a	_a	_a	_a	a _
16.6	-	_	-	-	-	-	-	-	-	-	-	-	_	-	3	3	Ĺ	4	4	9	13	13	14	6	4	4	Ĺ	4	4	3	3	3	-	-	_	_	_
17.7	-	-	-	-	-	_	-	-	-	3	3	3	3	4	5	6	6	6	6	6	9	12	12	10	4	3	3	3	3	3	3	3	_	_	-	-	-
18.6	-	-	_	-	-	-	-	-	-	-	-	-	-	3	3	5	6	8	9	10	12	10	10	5	3	3	3	3	3	3	_	-	_	-	-	**	-
19.6		_	_	-	_	_	-	-	_	3	3.	3	3	3	6	9	10	10	10	10	12	8	6	3	3	-	-	-	-	em.	_	-	-	-	_	-	-
23.6	-	_	_	-	-	3	3	5	4	6	4	3	3	4	7	8	12	- 8	6	1,3	3	_	_	_	-	_	-	-	-	-	_	_	_	-	_	-	-
24.6 25.6	-	_	_	_	_	3	3	ز	2	2	3	3	2	9	13			16	18	15	3	کے	3	3	_	-	_	-	_	-	_	-	_	_	_	-	-
26.6	_	_	_	_	_	_	_)	2	٦	2	٦	6	9	-				22	13	6	7	1	2	_	_	_	_	_	_	_	_	_	_	_	_	_
27.6	_	_	-	_	_	3	3	3	L	Ĺ	Ĺ	Ž									13	5	1	L	· 1	Į,	1	li.	3	3	_	_	_	_	_	_	_

 $\underline{ \text{Table 83a}}$ Coronal observations at Climax, Colorado (6374A), east $\underline{ \text{limb}}$

Date	1				Dea	ree	s r	ort	h c	2 1	the	so.	lar	901	ıa t.o	or .				00				Des	TAA	S 5	out	h c	of t	he	sol	ar	A a l	1a t.o	····			_
GCT	90	8	5 8	<u>0</u>	75	70	65	60	55	50			35				15	10	5	100	5	10			25				45					70		80	85	90
1952 Apr. 1.7 4.8 5.7 7.8 8.8 10.0 11.7 11.8 15.8 16.6 17.7 18.6	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	8	3333 333 333 333 3433 3433 3433	3 3 3 3 3 3 3 3 3 3 3 3 3 4	75 3332233X43334	3 3 3 2 2 3 3 2 5 3 4	3 3 3 2 2 3 3 3 3 4	3 3 2 2 2 X 2 2 2 3 3 3 3 2 2	3 2 2 2 X 2 2 2 X 2 2	2 2 3 2 - X - 2	2 2 3 3 2 X - 2	2 3 3 2 3 - 2	2 4 3 2 3 - 3	25 4 3 3 - 3	25 2 5 3 6 3 4	3 4 4 2 5	4 3 6 3 3 2 4	3 4 12 3 3 2 4 3 3 2 4 3 3 2 3 3 2 3 3 2 3 2	21 4 4 2 3 2	28 4 3 2 3 2 4 2 3 3 3 3 9 9	5 8 2 5 2 3 2 3 3 3 6 4 10 15	10 6 4 3 2 3 3 3 3 18 12 4 4 9 5										3 3 5 3 2 2 3 3		70 2 4 3 2 2 2 2 3	75 3 3 3 2 3 2 3	44332333	34332333	35332343
19.6 23.6 24.6 25.6 26.6 27.6	1	3 - 3	44333	4 4 5 4 3 4	455444	4 3 4 3	4 4 3 3 3 3	2 2 3 2 2	3 - 2 2	2 3 2 2	2 3 2 2	2 3 2 2	2 3 - 2 2	2 3 3 - 2 2	5 3 3 3 3 3 3	3 3 6 6 6	6 4 9 3 6 3	2 3 2 3 2	6 5 6 12 6 2	9 6 13 3 3 13	15 4 7 3 3 4	549233	2 4 3 2 3 3	253235	2 4 2 3 3	335323	433322	343222	4 4 3 2 2 3	433223	433222	333232	343232	3 3 2 2 2 2	333223	3 3 2 2 3	353233	3 4 3 2 3

Table 84a

Coronal observations at Climax, Colorado (6702A), east limb

ate						Deg	gree	9 1	nort	h o	of t	he	80.	lar	eqt	usto	T				00				Deg	gree	8 8	sout	h (of i	the	SQ.	lar	ΘQ1	na to	OΤ°			
GCT		90	3 (35	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	- 5	0	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90
1952	>																				-																		
Apr.		-		_	_	_	_	_	_	_	_	_	2	2	2	2	3	4	4	5	3	13	2	2	2	2	2	-	_	_	_	_	_	_	_	_	-	_	_
1	4.8	-		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	***	2	2	13	3	3	3	2	2	_	_	_	_	_	_	-	_	_	_	_	-
	5.7	- 1-		-	_	_	_	_		_	_	-	_	_	_	_	_	-	400	2	2	3	3	3	3	3	2	2	2	2	2	_	-	_	_	_	_	_	-
	7.8	a X		χ	Χ	-	_	_		-	-	_	_	_	_	_	_	_	2	2	2	2	2	2	2	2	2	2	2	2	_	_	-	_	_	_	_	-	-
	8.8	a -	-	_	-	-	_		949	-	-	-	_	_	_	_	_	_	-	2	2	2	2	2	2	2	2	2	2	_	_	_	-	_	_	_	_	_	-
	10.0	a -	-	-	_	_		_	Χ	X	Х	Х	_	_	_	_	_	_	_	_	2	2	2	2	2	2	2	2	2	2	2	2	-	_	_	_	-	-	-
	11.7			-	***	-	_	_	-	_	_	_	-	-	-	_	_	_	_	2	2	2	2	2	2	2	2	2	2	2	_	_	_	_	_	_	_	_	-
	14.8			χ	Χ	Х	_	-	-	_	****	-	_	-	_	_		-	_	2	2	2	3	3	3	3	3	3	3	3	2	_	_	_	_	_	-	_	_
	15.8	-	-	_	_	-	_	_	_a	_a	r _a	_a	a	8	_a	a	2a	· 28	28	2 a	3	14	5	3	3	3	3	2	2	2	_a	_ =	1 _a	_8	ı_a	_ =	a _a	_8	L _
	16.6	-	•	-	_	_	_	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	4	3	3	3	2	2	2	2	_	_	_	-	_	_	_	_	-
	17.7			-	_	_	-	_	-	_	_	_	-	P-0	-	_	2	2	2	2	2	2	2	2	2	2	2	2	2	_	_	_	-	_	_	-	_	-	_
	18.6		-	-	_	-	_	_	-	_	-	_	_	_	_	_	_	2	2	2	2	2	2	2	2	2	2	2	2	2	2	_	_	_	-	-	_	_	-
	19.6		-	-	-	_	_	_	-	_		_	_	2	2	2	2	3	3	3	3	13	3	2	2	2	2	2	2	_	_	_	_	_	_	_	_	-	-
	23.6		-	-	-	-	_	_	-	-	***	_	_	_	-	_	_		2	2	2	2	2	2	2	2	2	2	2	2	-	-	_	-	_	-	_	-	-
	24.6		•	-	_	_	-	_	-	-	-	-	_	_	2	2	2	3	3	3	3	2	2	-	-	_	-	_	-	_	_	-	-	-	-	_	_	-	-
	25.6		-	-	-			-	-	-	4100.00	. 5	2	2	2	2	3	3	4	4	3	3	3	2	2	2	2	2	2	_	_	-	-	-	_	-	-	-	-
	26.6		-	-	_	-	-		_	-	_	-		2	2	3	3	1	4	3	3	3	_	-	_	-	_	_	_	-	-	-	_	-	_	-	-	_	-
	27.6	- [-	41	-			-	-	_	_		**	_	_	-	2	3	4	4	4	3	13	2	2	2	2	2	-	_	_	-	_	-	_	-	_	_	-	-

Table 82b

Coronal observations at Climax, Colorado (5303A), west limb

Date				Deg	ree	8 8	out	h	of t	the	80.	lar	equ	mt	m				00				Deg	ree	s n	ort	h o	î t	he	80	lar	equ	nto	r			
GCT	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	.5	10	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90
1952																				-																	
Apr. 1.7	_	-	_	_	_	2	3	3	3	4	4	5	6	9	10	12	18	29	18	13	10	5	4	4	3	3	4	4	3	3	-	-	_	-	-	_	-
4.8	_	-	_	3	4	4	3	3	3	4	4	3	4	5	6	9	12	11	13		10	7	8	5	4	5	4	4	4	4	3	3	3	3	3	_	_
5•7	-	-	_	-	_	-	-	-	-	3	3	3	4	9	13	18	15	18	35	21	18	15	8	4	3	3	5	6	5	4	3	3	_	_	-	_	_
7.8a	-	-	_	-	-	-	X	X	Х	Х	Х	Х	X	Х	Х	Х	Х	Х	X	X	X	X	X	X	X	Х	X	Х	X	Х	Х	X	X	Х	Х	Х	Х
8.8a	_	_	_	-	-	-	-	_	_	-	_	-	_	-	-	_	_	3	4	4	4	3	3	3	3	3	3	3	3	3	3	3	3	3	_	_	_
10.0	_	_	-	-	_	-	-	_	_	_	-	_	-	-	_	3	3	3	23	26	23	75	TO	77	0	4	4	4	7	2	4	3	2	-	_	-	_
11.7	_	_	_	-	_	-	-	~		_	~	- v	- v	~	5	3	12	15	18	23		15	17	- C	۲. ۲۲	1.	J,	2	7	1	3	v		v		- v	X
14.8	_a	_ _a	_a	_ _a	_a	-	X	X	Ă I.	. A.	Y	V.	A N	. A	A Q	7	9	12	16	18	16	16	16	0	7	4	4	6	6	1,	2	Λ	_	Λ.	^	_	_
15.8 16.6		_	_	_	_	_	3	5	4	4	7	7	7	5	.6	9	10	12	13	16	111	11	13	8	6	Ji	Ĭ,	6	6	7	Ĭı.	_	_	_	_	_	_
17.7	_	_	_	_	_	_	3	3	3	1,	ĺ.	3	3	5	6	6	-8	10	8	6	5	-Ji	-lı	6	li	3	L	5	3	3	3	_	_	_	_	_	_
18.6	_	_	_	_	1,	h	Ĩ,	Ĩ.	J,	J.	1	5	6	8	10	11	13	9	8	5	6	L	3	3	3	3	4	Ĺ	3	_	_	_	_	_	_	_	_
19.6	_	_	_	2	2	3	3	3	3	3	3	6	8	9	16	15	16	9	8	8	10	6	Ĩ4	3	Ĺ	4	3	4	3	3	3	3	_	_	_	-	_
23.6	_	_	_	_	3	3	3	6	3	3	5	3	4	5	6	6	8	12	6	5	5	4	6	5	5	5	7	6	5	4	3	3	_	_	-	_	-
24.6	_	-	_	3	3	3	3	3	3	3	4	3	3	3	6	13		18	21	5	4	4	5	5	5	4	6	5	4	4	3	_	_	_	_	_	_
25.6	_	_	_	3	3	3	3	3	4	4	3	3	3	6	9	15		19	15	6	9	6	4	4	4	4	4	4	3	4	3	-	_	-	_	-	-
26.6	-	-	_	-	-	3	3	3	3	3	3	3	5	9	12	16	15	18	10	9	15	7	4	3	3	3	4	6	4	4	_	_	-	-	-	_	_
27.6	-	-	-	-	_	3	3	4	4	4	4	3	8	12	13	12	12	13	11	12	18	6	4	3	3	3	3	3	3	3	3	~	_	-	-	_	-

Table 83b

Coronal observations at Climax, Colorado (6374A), west limb

Date				Deg	zree	8 8	sout	th o	of t	the	so.	lar	eqt	1a to	or				100	-			Deg	ree	a n	ort	h c	of t	the	80.	lar	equ	uto	T			_
GCT	90	85			70			55		45				25		15	10	5	10.	5	10	15		25									70		80	85	90,
1952																				-																	•
Apr. 1.7	3	3	3	2	2	2	_	_		2	2	_	_	_	-	2	4	18	3	5	14	10	6	5	3	3	2	2	3	3	3	3	3	3	3	3	3
4.8	5	3	4	4	3	3	2	2	2	2	2	2	2	5	6	4	3	4	17	15	3	3	3	3	4	3	3	5	2	2	2	2	2	3	4	3	3
5•7	3	3	3	3	3	3	2	2	2	2	3	3	3	5	6	2	2	6	21	3	6	5	5	5	3	4	4	3	2	2	2	2	2	2	3	3	3
7.8a	3	3	3	3	3	3	X	Х	Χ	Х	Х	Х	Х	Х	Х	X	X	Χ	X	X	Х	Χ.	X	X	X	X	X	Х	Χ	Χ	Х	X	Х	X	Х	Х	Х
8.8a	2	2	2	2	2	2	2	2	2	2	2	2	2	3,	3	3	5	7	7	6	3	3	2	3	3	2	2	2	2	2	2	2	2	2	2	2	2
19.0	3	4	4	3	3	3	3	3	3	4	3	3	4	4	5	8	3	3	4	4	4	3	3	3	3	3	3	3	_	-	_	_	3	3	3	3	3
11.7	4	4	4	4	3	4	2	2	2	2	2	3	3	3	5	4	4	3	2	19	2	2	6	2	2	2	2	.2	2	2	2	2	3	3	3	3	3
14.8	26 26	ر 2a	ز 1 a	ز Laa	ر امد ا	3	X	X	X	Х	X	X	X	X	X	6	5	4	5	4	7	3	3	2	2	2	2	2	3	3	3	X	X	Χ	Х	X	X
15.8 16.6	2	2	٠ ٠	٦.	. 3-	ر ۲	ز	2	ر	ر	4	4	4	4	4	3	3	4	7	14	7	_	_	_	_	_	_	2	2	2	2	2	3	3	3	3	3
17.7	2	2	2	4	2	2	ر ا.	5	5	ر ا.	1.	1.	1.	4	2	2	ر	0	4	3	0	1.	2	1.	4	ر	ار	ر	2	2	2	2	2	٥	4	4	2
18.6	7	2	2	2	2	2	4	2	2	4 2	2	2	4	2	2	2	2	4	ر	2	5	4	2	1.	4	4	4	2	2	2	2	2	2	ر	ر	2	2
19.6	7	3	3	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	3	0	7	4	7	J.	2	2	3	3	3	3	2	1.	را	1.
23.6	Ĭ.	Ĭ.	Ĭı.),	3	3	3	3	3	3	3	5	7	5	3	3	2	3	1	3	3	3	3	3	3	3	2	2	2	3	2.	3	3	2	7	4	1.
24.6	L	3	3	3	3	3	3	3	3	3	3	Ĺ	ξ	5	6	7	5	12	ılı	5	5	3	3	2	Ĭ,	Ĭ,	3	3	2	3	3	3	3	J.	Ĭ,	J,	1,
25.6	3	3	3	3	3	3	3	_	3	3	Ĺ	3	5	Ĺ	5	ı.	5	12	5	6	8	Ĺ	3	2	3	3	2	2	2	2	2	2	2	2	2	3	3.
26.6	2	3	3	3	4	3	3	3	2	3	3	:4	13	. ś	·3	6	3	8	4	3	16	4	5	3	3	3	2	2	2	2	2	2	2	2	2	3	3
27.6	3	3	3	3	4	3	3	3	3	3	3	3	3	3	3	3	5	4	5	4	15	6	3	4	5	4	5	3	3	3	3	3	3	3	3	4	3
																									_												_

Table 84b

Coronal observations at Climax, Colorado (6702A), west limb

Date				Deg	ree	9 8	sout	th	of 1	the	30.	lar	e a1	ua t	or				Τ.,	J	_		Dec	gree	s r	ort	h c	ne t	the	ao.	lar	eat	ato)T°			_
GCT	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5	d o	15	10			25		35	40	45	50	55	60	65	70	75	80	85	90
1952 .																				Ĺ																	
Apr 1.7	_	_	_	-	-	_	_	_	_	_	_	_	_	-	-	2	3	Ъ	2	2	2	2	2	2	2	2	_	_	_	_	_	_	_	_	_	_	_
4.8	-	_	_	_	_	_	_	ome	_		_	_	-	2	2	2	2	2	2	2	2	2	2	2	2	2	_	_	_	_	_	_	_	_	_	_	_
5•7	-	-	_	-	_	-	_	_	_	_	_	_	2	2	2	2	2	4	5	3	2	2	2	_	_	_	_	_	-		_	_	_	_	_	_	_
7.8a	-	_	-	-	_	_	Х	Х	Х	X	Χ	X	Х	Х	X	Х	Х	Х	Х	X	Х	Х	Х	Х	Х	Х	X	Х	Х	Х	Х	Х	Х	χ	Χ	Х	X
8.8a	_	-	-	_	_	-	_	-	_	-	2	2	2	2	2	2	2	2	2	-	_	-	_		_	_	_	_	_	-	_	-	_	_	_	_	_
10.0	-	_	_	_	_	-	_	_	_	_	_	-	_	_	_	_	_	-	2	2	2	2	2	2	2	3	3	3	3	2	2	_	_	-	_	_	-
11.7	-	-	_	-	_	-	-	-	_	_	-	_	-	_	_	-	-	2	3	4	4	3	3	2	2	2	2	2	2	2	-	-	_	_	_	_	_
14.8	- a	_ a	_ a	. - a	- ι_a	-	Х	Х	Х	X	Χ	Χ	Х	Х	X	2	2	2	3	4	4	3	3	2	2	2	2	2	-	_	-	Χ	X	Х	Х	X	Х
15.8		-			_~	-	-	-	_	2	2	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	2	2	2	_	_	_	_	-	-	-	-
16.6	_	-	_	-	_	-	_	-	-	_	-	_	-	-	_	_	2	2	2	3	3	3	3	2	2	2	2	2	2	2	_	_	_	_	_	_	٠-
17.7 18.6	_	_	_	_	_	-	-	_	_	2	2	2	2	2	2	2	2	3	3	3	3	2	2	2	2	2	2	2	2	2	_	_	_	_	_	_	_
19.6	-	_	_	_	_	_	639	_	_	_	_	_	2	2	2	2	2	2	2	2	2	2	2	2	2	-	-	_	_	-	_	-	-	_	-	_	-
23.6	_	_	_	person.	_	_	_	-	-	2	-	_	-	2	2	2	3	3	3	2	3	2	2	_	_	_	_	_	_	_	_	-	_	-	_	-	-
24.6	_	_	_	_	_	_		_	_	~	۷	2	2	2	2	2	2	2	2	12	2	2	2	2	2	2	2	2	2	2	2	2	(80)	-	_	-	-
25.6	_	_	_	_	_		-	_	_	_	_	_	-	2	2	2	1.	1.	2	2	2	~	_	_	-	_	_	_	_	-	-	-	_	_	=	-	-
26.6	_	_	_	_	_	_	_	2	2	2	2	2	2	2	2	2	2	4	2	2	2	~	2	-	_	-	_	_	_	-	_	_	_	-	_	_	-
27.6	_	_	_	_	_	_	_	_	_	_	_	_	_		_	2	3	3	2	14	_	_	_	_	_	_	_	-	-	_	_	****	4340	_	-	-	-
	<u>. </u>															۷.			12	1-					_				-					-		-	_

Table 85a

Coronal observations at Sacramento Peak, New Mexico (5303A), east limb

Date				Deg	ree	s n	ort	h of	C th	e 3	olar	eq	uat	OF				00											ar e						
GCT	90	85	80	75	70	65	60	55 :	50 4	5 4	0 35	30	25	20	15	10	5	L	5	10	15 2	20 2	5 30	3	5 40	45	50	55	60 6	55	70 '	75	80	85	90
1952			_	•			2	,	_		, ,	_		3.0	n 1.	2.0	20	20	20	2		0		_	2 2	2	-	^		_					
Apr. 1.8	2	2	2	2	2	ز	ز	4	۶ ۱.	0	3 5	ر ر	9 7	10	14	12	20	11.	T.	3	۷.	2	2 7	2	ל ל יי	3	2	2	2	2	2	2	_	2	2
3.7	3	3	3	2	2	2	2	2	5	5.	4 5	- 5	5	8	6	5	3	5	5	6	7	5	6	5	รี่นี	2	2	5	Ŀ	2	2	2	2	_	_
7.7€	2	2	2	2	2	2	2	2	3	3	3 3	3	4	4	3	3	5	5	4	4	4	5	5 6	5	5 4	4	5	4	3	3	3	2	2	2	2
9.7	-	-	-	-	-	-	-	3	8	5	7 7	7	6	5	5	5	6	6	8	7	7	8	7	5	<u> 2</u> 4	. 4	4	4	5	5	4	3	3	2	2
13.9a	2	2	2	2	2	2	3	3	2	3	3 3	3	3	3	3	2	2	2	2	2	3	4	4 !	2	6 6	5	5	4	4	3	2	3	2	3	3
14.7 15.8	2	2	2	2	2	2	2	2	2	3	נינ הו	3	3	ر	ر	را),	5	8	2) 1),	16 1)],]	1 (9	4 5	1,	3	از	2	1,	2	2	9	3	3
18.8		_	2	2	2	2	3	3	2	3	2 3	Ĺ	. li	5	8	ıï	บ	14	15	15		6 1	4 1	Ĺ	5 4	L	3	1	6	L	3	2	2	2	_
26.9a	3	3	3	3	3	4	Ĩ4	5	8	14	4 5	5	6	20	_	/	16		22	15	12	8	5 .	3	4 5	4	3	2	2	ż	4	3	3	4	2
29.7a	2	3	3	3	3	3	5	7 :	11 1	.5 1			20				41			16	11 1	.3	8 1	3	8 6	8	9.	10	5	5	5	ħ.	4	2	2
30.9a	3	4	4	4	3	3	3	5	8	6	7 7	11	12	14	22	26	28	27	16	11	8	R	8 9	9 1	0 8	6	5	6	6	6	6	6	8	4	4

Table 86a

Coronal observations at Sacramento Peak, New Mexico (6374A), east limb

Date					Tee							ar	eqı	nto	r				00								h o	f t	he	sol	Ar	equ	ato	r			
GCT	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5	Ľ	5	10	15	20	25 .	30	35 4	40	45	50	55	60	65	70	75	80	85	90
1952	2	2	2	2	2	2	_	2	2		_	2	2	2	2	3	3	9	10	5	3	3),	3	2	5	3	2	2	2	2	2	_	_	_	3	2
Apr. 1.8 2.8	2	3	3	3	3	2	2	2	2	2	2	2	2	3	2	3	3	14	12	5	4	3	2	3	3	3	3	2	-	-	3	2	2	2	-	2	2
3.7 7.7a	2	2	2	2	2.	2	2	2	2	2	2	2	2	3	3	3 lı	3 L	3	3 L	2	2	2	2	2	3	3	2	2	2	2	2	2	2	2	3	3	2
9.7	3	2	4	3	ź	3	2	2	2	_	-	2	3	4	4	4	4	3	14	2	3	3	2	2	2	2	5	5	4	3	2	2	2	2	2	2	4
13.9a 14.7	3	2	2	2	2	2	2	2	2	2	3	2 և	3 <u>L</u>	2 5	5	2 5	2 5	5	5	<u>ь</u>	3 13	11	3	2	2	2	2	2	2	2	2	3	2	2	2	3	3
15.8	2	2	3	2	-	_	2	-	-	=	-	2	2	3	3	3	3	2	2	2	2	3	3		-	-	_	-	-	-	_	2	-	-	2	2	-
18.8 26.9a	3	3	3	2	4	2	2	3	3	2	5	3	2	3	2	3	2	2	4	3	3	3	3	2	2	2	2	2	2	2	3	2	2	2	2	2	2
29.7a	5	5	5	7	4	4	3	2	3	3	2	4	3	2	3	3	5	5	14	15	6	3	3	14	4	4	3	2	5	5	5	5	3	5	4	1	5
30.9a	6	5	7	7	5	4	3	3	4	4	2	3	8	9	10	1	11	16	13	13	8	ל	3	4	3	2	۷	2	3	4	4	3	3	3	4	4	>

Table 87a

Coronal observations at Sacramento Peak, New Mexico (6702A), east limb

Date					ree																	1	Deg	ree	8 8	out	h c	đ t	he	80]	lar	equ	nto	T			
GCT	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5		5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90
1952																																					
Apr. 1.8	-	_	_	_	_	_	_	_)	2	2	2	2	2	3	2	2	4	3	_	_	_	_	_	_	_	_	_	-	_	_	-	_	_	_	_	-
2.8	-	_	_	-	_	-	_	\Rightarrow	2	2	2	2	2	2	2	2	-	_	-	_	_	_	_	_	-	_	_	-	_	_	_	_	_	_	_	_	-
3.7	-	-	_	_	-	_	-	-	\Rightarrow	_	-	_	2	2	2	2	2	2	-	_	_	_	-	_	_	_	-	-	_	-	_	_	_	_	_	_	-
7.7a	-	-	_	-	-	_	_	_	-	_	-	_	_	_	_	_	2	2	2	2	2	2	_	_	_	-	_	_	_	-	-	-	_	_	_	_	-
9.7	-	-	_	_	_	_	-	-	-	_	-	$\overline{}$	_	_	_	_	_	-		_	_	_	-	_	-	-	_	-	_	-	_	_	_	_	_	_	-
13.9a	-	_	_	-	_	-	_	_	-	_	_	_	_	_	_	_	_	-	-	2	2	2	2	2	-	_	_	_	_	_	_	-	_	_	_	, -	-
14.7	_	_	_	_	-	-	-	-	_	_	_	_	_	_	_	_	865	2	2	2	2	2	2	2	-	-	_	_	_	-	_	_	_	_	_	_	-
15.8	i –	_	_	_	_	_	2	2	2	2	_	-	_	-	-	-	_	_	-	-	_	_	_	-	_	-	-	_	-	-	_	_	_	_	_	_	-
18.8	-	_	_	-	_	-	_	-	-	-	_	_	_	_	-	-	2	2	2	2	2	3	2	2	2	_	_	_	_	_	-	_	-	_	_	_	-
26.9a	-	_	-	_	-	_	_	\rightarrow	2	2	2	2	2	3	3	4	4	4	4	4	-	_	$\overline{}$	_	-	_	_	_	_	_	_	_	_	_	_	_	-
29.7a	-	_	_	_	-	_	-	_	-	-	2	2	3	2	3	4	5	5	5	4	2	2	2	2	2	2	2	3	2	2	2	2	2	2	2	2	3
30.9a	-	_	_	-	_	_	_	_	_	_	_	_	2	4	3	4	4	5	5	4	4	4	4	3	3	3	-	-	_	_	-	_	_	_	_	_	-

Table 85b

Coronal observations at Sacramento reak, New Maxico(5393A), west limb

Date				Deg	ree	8 8	out	h o	e t	he	sol	ar	equ	ato	Œ.				00				Deg	ree	8 n				he								
GCT	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5	L	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90
1952 Apr. 1.8 2.8 3.7 7.7a 13.9 14.7 15.8 26.9a 29.7a 30.9a	2 3 3 2 2 2	231223221215	2 2 2 2 2 2 3 1 5	2 2 2 2 2 2 3 . 4	2 2 2 2 2 2 2 3 2 4	22232 1223585	3,3332 - 233605	33433 - 233516	3442 - 2234588	4342 - 2245376	2432 2244386	544322353376	544323358357	655323358367	8653224594	865433440569	14 94 35 55 12 8 20	18 16 11 5 3 12 8 5 13 11 22 14	16 18 10 10 3 12 9 6 7 12 18	10 14 8 10 11 11 11 11 11 11 11	12 11	10 8 4 6 13 12 12 6 13 6	4554543115760	3553×4305558	3533X3153358	3434x0454337	3334x6345436	2333X4455435	2334×3554435	2435X5644435	2434X4432445	2334X4233334	2 3 2 4 X 3 2 3 2 4 2 5	- 324 x 323 - 326	1324X232 1225	223323331323	2232 223 1323

<u>Table 86b</u>

Coronal observations at Sacramento Peak, New Mexico (6374A), west limb

ate				Deg	ree	8 8	out	h c	of t	he	so]	ar	eq	uato)(P				00	1			Deg	ree	e n	ortl	1 0	f t	he	sol	ar (equ	utα	r			
GCT	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5	1	5	10	15	20	25	30	35 4	40	45	50	55	60 (55	70	75	80	85	9
.952	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	_	2	n 1.	16	3	77	ויי	7	_	_	٠2	2	2	_	_	_		1			2	
pr. 1.8 2.8	2	2	2	-	3	2	-	_	2	2	3	4	2	3	2			16	13	12	5	8	7	7	6	6	2	5	4	3	2	2	3	2	2	3	
3.7	2	2	2	_	2	2	2	2	2	2	2	2	2	_	3	3	10	5	12	8	4	3	2	2	2	2	2	3	3	2	2	2	_	-	-	-	,
7•7a	2	2	3	2	3	2	2	2	2	3	2	2	2	2	2	2	3	3	5	2	5	2	5	4	3	2	2	2	2	2	2	2	2	2	2	2	
9.7a	4	3	3	4	4	3	3	3	2	2	2	4	4	5	4	5	5	4	4	8	4	3	2	2	X	X	Х	Х	X	X	. Х	X	X	X	X	3	
13.9 14.7	3	2	2	3	2	2	2	2	3	2	3	3	5	5	5	1	5	3	2	3	5	Į,	2	3	_	_	2	_	_	_	_	_	-	2	2	2	-
15.8	_	2	2	2	3	2	2	_	_	_	2	_	3	2	_	_	3	3	_	6	8	3	_	_	400	_	_	_	-	_	-	-	-	_	_	3	
18.8	2	-	_	3	-	2	2	2	3	3	3	3	3	3	3	3	2	2	2	2	8	7	6	6	4	3	3	_	_	2	-	2	2	3	4	4	
26.9a	2	3	3	3	3	2	2	4	4	2	2	2	2	Х	X	X	Х	X	4	3	8	13	4	4	2	2	2	2		2	2	2	3	2	3	3	
29.7a	4	5	3	4	3	3	2	2	2	2	3	3	X	Х	X	2	3	2	3	4	3	5	5	4	5	8 .	ΓÖ	7	4	3	4	3	4	2	3	4	
30.9a	5	5	5	6	4	4	3	3	3	3	3	3	Х	Х	Х	3	' 3	4	3	3	4	4	3	2	2	ŢŢ.	5	Ö	0	5	5	3	3	5	5	5	-

Table 87b

Coronal observations at Sacramento Peak, New Mexico (6702A), west limb

Date										the									ò					gree											e.		
GCT	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5	10	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90
1952																																					
Apr. 1.8	-	-	-	-	~	COMP.	-	-	2	2	2	_	600	000		000	2	2	2	2	2	2	-	_	-	-	-	-	-	-	-	00	-	-	-	-	-
2.8		-	-	***	-	-	-	-	2	2	2	2	2	2	2	2	3	3	3	2	an	-	me	-	-	643	-	-	-	-	-	de	940	-	_	0.00	-
3.7	-	-	-	_	663	-	-	-	-	649	-	0.00	me	-	-	-	400	400		000	900	-	410	œ	-	and	470	400	-	0.0	-	-	-	-	coun	69	-
7 • 7a		-	-	-	-	-	***	7	-	-	000	-	-	-	-	0.00	2	2	2	2	2	60	(80)	400	(80)	-	COTTON	-	-	000	-	-	-	-	esta	-	000
9•7 a	-	-	-	-	***	40	-	call)	-	-	-	-	-	-	-		-	-	-	-	600	040	-	X	X	Х	Х	X	X	X	X	X	X	Х	X	-	-
13.9	-	-	-	-	-	-	-	-	-	2	2	2	2	2	2	2	2	2	2	2	2	3	2	3	3	2	2	2	-	co	-	-	cun	_	000	-	dia
14.7	-	-	-	-	000	-	-	-	-	-	-	-	440	0.00	-	-	2	2	3	14	3	3	3	3	2	2	grade	-	-	610	-	-	•		000	-	-
15.8	-	-	-	-	-	-	-	-	-	-	~	-	_	an a	_	-	***	2	2	3	3	3	3	2	2	2	-	-	-	-		-	-	-	-	-	80
18.8	-	-	. •••	-	-	(62)	-	-	-	-	0.0	-	679	000	_	2	2	2	2	2	2	2	-	-	610	60	-	-	-	-	***	-	-	-	-	-	6/9
26.9a	-		-	-		00	-	-	-	-	-	-	-	X	Х	X	Х	X.	-	-	-		_	-	-	CHIR	-	-		_	***	_	040	-	-		cam
29.78	3	-	-	-		-	· 2	2	2	-	-	-	X	X	X	-	2	2	2	2	2	2	2	2	600		-	-	_	-	-	00		-	-	-	-
30.9a	-	•••	-		***	-	***	-	***	-	***		X	X	X	-	-	-	-	-		-	-	-	980	-	-	-	-	***	-	-	***	990	-	400	-

Table 88

Zurich Provisional Relative Sunspot Numbers

April 1952

Date	R _Z *	Date	RZ*
1	28	17	7
2	16	18	17
3	21	19	33
4	26	. 20	53
5	37	21	62
6	33	22	50
7	37	23	38
8	40	24	26
9	32	25	15
10	30	26	26
11	46	27	16
12	28	28	17
13	22	29	32
14	19	30	42
15	7		
16	8	Mean:	28.8

^{*}Dependent on observations at Zurich Observatory and its stations at Locarno and Arosa.

Table 89

American Relative Sunspot Numbers

March 1952

Date	R _{A 1} *	Date	R _{A 1} *
1	0	17	16
2	0	18	11,
3	0	19	11
14	0	20	0
5	8	21	0
6	11	22	0
7	11,	23	0
8	13	24	10
9	14	25	31
10	31	26	35
11	30	27	56
12	34	28	85
13	30	29	80
14	25	30	85
15	26	31	7171
16	20	Mean:	23.3

^{*}Combination of reports from 28 observers; see page 10.

Table 90

Indices of Geomagnetic Activity for March 1952

Preliminary values of international Character-figures, C; Geomagnetic planetary three-hour-range indices, Kp; Magnetically selected quiet and disturbed days

Gr. Day 1952	С	Values Kp three-hour interval 1 2 3 4 5 6 7 8	Sum	Final Selected Days
1	0.8	4- 4- 3+ 3+ 4- 3+ 1+ 1-	230	Five
2	0.1	10 3- 1- 2- 1+ 1- 1- 1-	10-	Quiet
3	1.5	0+ 10 2+ 2- 6- 5- 6+ 7-	29-	2
4	1.6	6- 6+ 60 6+ 50 5+ 6- 5+	46-	14
5	1.7	60 7- 5+ 6+ 60 6+ 60 7+	500	19
6 7 8 9	1.6 1.5 1.5 1.5 1.4	80 7+ 6+ 5- 4- 50 3+ 6+ 5- 6- 50 7- 6- 50 4+ 5- 60 40 5- 50 4+ 5+ 50 60 4+ 4+ 5- 4- 1+ 6- 50 5+	450 410 41+ 40+ 37+	20 28
11	1.2	5+ 40 4- 4- 40 4+ 5+ 4-	340	Five Disturbed
12	1.0	4+ 3+ 3- 30 40 3+ 40 30	28-	
13	0.7	3- 2+ 30 20 3+ 20 2+ 3+	210	
14	0.2	20 2+ 10 30 2+ 1+ 1- 2+	150	
15	1.0	20 30 30 20 30 3- 40 4+	240	
16	1.0	20 3+ 4+ 40 30 4- 4- 40	280	7 31
17	1.1	4-5-40 4- 5- 4+ 30 30	310	
18	0.6	2+ 3+ 3+ 3- 2+ 4- 10 20	21-	
19	0.4	20 10 2- 10 2- 2+ 3- 20	14+	
20	0.0	0+ 1+ 2- 2+ 1- 0+ 10 10	9-	
21	1.3	3- 4- 5- 5- 6- 5- 4- 6-	35+	Ten
22	1.2	5- 50 40 3+ 2+ 30 4+ 6-	32+	Quiet
23	1.5	70 4+ 50 4+ 3+ 40 6- 40	38-	1
24	1.4	50 6- 50 5+ 50 50 5- 4+	400	2
25	1.0	2+ 3+ 5- 4+ 5- 4- 40 3+	30+	13
26	0.8	5- 30 1+ 2- 30 3- 40 3-	230	14
27	0.9	20 40 4- 3+ 3+ 4+ 3- 3-	260	18
2 8	0.1	2- 20 10 1- 1+ 1- 1+ 10	10-	19
2 9	0.4	1- 10 10 3- 3- 1+ 20 30	14+	20
30	1.4	3+ 4- 20 20 4+ 60 60 7-	340	26
31	1.6	8- 60 7- 5+ 40 60 5+ 50	460	28
Mean	1.03			29

Table 89

American Relative Sunspot Numbers

March 1952

Date	R _{A 1} *	Date	R _{A 1} *
1	0	17	16
2	0	18	14
3	0	19	11
14	0	20	0
5	8	21	0
6	11	22	0
7	71,	23	0
8	13	5/1	10
9	14	25	31
10	31	26	35
11	30	27	56
12	34	28	85
13	30	29	80
14	25	30	85
15	26	31	Ţ [‡] Ţ [‡]
16	20	Mean:	23.3

^{*}Combination of reports from 28 observers; see page 10.

Table 90

Indices of Geomagnetic Activity for March 1952

Preliminary values of international Character-figures, C; Geomagnetic planetary three-hour-range indices, Kp; Magnetically selected quiet and disturbed days

Gr.		Values Kp		Final
Day 1952	С	three-hour interval 1 2 3 4 5 6 7 8	Sum	Selected Days
1 2 3 4 5	0.8 0.1 1.5 1.6 1.7	4- 4- 3+ 3+ 4- 3+ 1+ 1- 10 3- 1- 2- 1+ 1- 1- 1- 0+ 10 2+ 2- 6- 5- 6+ 7- 6- 6+ 60 6+ 50 5+ 6- 5+ 60 7- 5+ 6+ 60 6+ 60 7+	230 10- 29- 46- 500	Five Quiet 2 14 19
6 7 8 9 10	1.6 1.5 1.5 1.5 1.4	80 7+ 6+ 5- 4- 50 3+ 6+ 5- 6- 50 7- 6- 50 4+ 5- 60 40 5- 50 4+ 5+ 50 60 4+ 4+ 5- 4- 1+ 6- 50 5+	450 410 41+ 40+ 37+	20 28
11 12 13 14 15	1.2 1.0 0.7 0.2 1.0	5+ 40 4- 4- 40 4+ 5+ 4- 4+ 3+ 3- 30 40 3+ 40 30 3- 2+ 30 20 3+ 20 2+ 3+ 20 2+ 10 30 2+ 1+ 1- 2+ 20 30 30 20 30 3- 40 4+	340 28- 210 150 240	Five Disturbed 4 5 6
16 17 18 19 20	1.0 1.1 0.6 0.4 0.0	20 3+ 4+ 40 30 4- 40 40 40 5- 40 40 20 20 10 2- 10 2- 2+ 3- 20 0+ 1+ 2- 2+ 1- 0+ 10 10	280 310 21- 14+ 9-	7 31
21 22 23 24 25	1.3 1.2 1.5 1.4 1.0	3- 4- 5- 5- 6- 5- 4- 6- 5- 50 40 3+ 2+ 30 4+ 6- 70 4+ 50 4+ 3+ 40 6- 40 50 6- 50 5+ 50 50 5- 4+ 2+ 3+ 5- 4+ 5- 4- 40 3+	35+ 32+ 38- 400 30+	Ten Quiet 1 2 13
26 27 28 29 30 31	0.8 0.9 0.1 0.4 1.4 1.6	5- 30 1+ 2- 30 3- 40 3- 20 40 4- 3+ 3+ 4+ 3- 3- 2- 20 10 1- 1+ 1- 1+ 10 1- 10 10 3- 3- 1+ 20 30 3+ 4- 20 20 4+ 60 60 7- 8- 60 7- 5+ 40 60 5+ 50	230 260 10- 14+ 340 460	14 18 19 20 26 28
Mean	1.03			29

Table 91
Sudden Ionosphere Disturbances Observed at Washington, D. C.

April 1952

1952 Day	GC! Beginni		Location of transmitters	Relative intensity at minimum ^a	Other phenomena
April 4	2225	2310	Mexico	0.2	Terr.mag.pulse** 2215-2235 Solar flare*** 2218

*Ratio of received field intensity during SID to average field intensity before and after, for station XEWW, 9500 kilocycles, 3000 kilometers distant.

**As observed on Cheltenham magnetogram of the United States Coast and Geodetic Survey.

***Time of observation at High Altitude Observatory, Boulder, Colorado.

Note: Observers are invited to send to the CRPL information on times of beginning and end of sudden ionosphere disturbances for publication as above. Address letters to the Central Radio Propagation Laboratory, National Bureau of Standards, Washington 25, D. C.

LIMITING FREQUENCY = 3 Mc

—— LIMITING FREQUENCY = 5 Mc

—— LIMITING FREQUENCY = 7 Mc.

Fig. 28. OKINAWA I. MARCH 1952

FEBRUARY 1952

Fig. 43. BAKER LAKE, CANADA

64.3°N, 96.0°W

Index of Tables and Graphs of Ionospheric Data

in CRPL-F93

Adak, Alaska March 1952. Akita, Japan January 1952. Anchorage, Alaska March 1952. Baker Lake, Canada February 1952 Batavia, Ohie March 1952. Baton Eouge, Louisiana March 1952. Baton Eouge, Louisiana March 1952. Capetown, Union of South Africa January 1952. Christchurch, Hew Zealand January 1952. Christchurch, Hew Zealand February 1952. Dakar, French West Africa October 1951. August 1953. July 1951. De Bilt, Holland February 1952. De Bilt, Holland February 1952. De Bruary 1952. Tairbanks, Alaska February 1952. Fairbanks, Alaska February 1952. Faikland Is. November 1951. October 1951. November 1951. October 1951. November 1951. October 1951. Bort Chim, Canada February 1952. Fribung, Germany November 1951. Graz, Austria March 1952. Thanuary 1952. Fibuncy, Germany November 1951. January 1952. Fairbanks, Caska February 1952. Fibuncy, Germany November 1951. January 1952. January 19		Table page	Figure page
March 1952 . 13 49 Akite, Japan January 1952 . 17 62 Anchorage, Alaska March 1952 . 12 47 Baker Leke, Canada February 1952 . 15 56 Batavia, Chio March 1952 . 13 50 Baton Bouge, Louisiana March 1952 . 14 52 Capetown, Union of South Africa January 1952 . 18 65 Christchurch, New Zealand January 1952 . 18 66 Churchill, Cemada February 1952 . 15 57 Dakar, French West Africa October 1951 . 20 72 August 1951 . 21 74 July 1951 . 21 74 De Bilt, Holland February 1952 . 16 58 Dibouti, French Somaliland November 1951 . 20 72 Fairbanks, Alaska February 1952 . 15 56 Falkland Is. November 1951 . 20 72 Fairbanks, Alaska February 1952 . 15 56 Falkland Is. November 1951 . 20 71 October 1951 . 20 72 Fairbanks, Alaska February 1952 . 15 56 Falkland Is. November 1951 . 20 71 October 1951 . 21 73 Fort Chimo, Canada February 1952 . 15 57 Fibourg, Germany November 1951 . 19 69 Graz, Austria March 1952 . 13 50 Guam I. January 1952 . 18 64 Huancayo, Feru March 1952 . 14 54 Huancayo, Feru March 1951 . 18 66	Adab dlaska		
Akite, Japan January 1952 Anchorage, Alaska March 1952. Baker Lake, Canada February 1952 Batavia, Chio March 1952. Baton Rouge, Louisiana March 1952. Baton Rouge, Louisiana March 1952. Capetown, Union of South Africa January 1952. Christchurch, New Zealand January 1952. Christchurch, New Zealand January 1952. Christchurch, New Zealand February 1952 Dakar, French West Africa October 1951. De Bilt, Bolland February 1952 Djibouti, French Somaliland November 1951. De Cotober 1951.		13	49
January 1952			
Anchorage, Alaska March 1952		17	62
Baker Lake, Canada		·	
February 1952 15 56	March 1952	12	47
### Baton Rouge, Louisiana March 1952 14 52 ### Baton Rouge, Louisiana March 1952 14 52 ### Capetown, Union of South Africa January 1952 18 65 ### Chiristchurch, New Zealand January 1952 18 66 ### Churchill, Geneda February 1952 15 57 ### Dakar, French West Africa 0ctober 1951 20 72 ### July 1951 21 74 ### De Bilt, Holland February 1952 16 58 ### Djibouti, French Somaliland November 1951 20 70 ### Cotober 1951 20 70 ### Cotober 1951 20 71 ### Cotober 1951 21 73 ### February 1952 15 56 ### February 1952 15 57 ### Fort Chimo, Canada February 1952 15 57 #### Fort Chimo, Canada February 1952 15 57 ###### Fort Chimo, Canada February 1952 15 57 ###################################			
March 1952 13 50 Baton Rouge, Louisiana March 1952 14 52 Capetown, Union of South Africa January 1952 18 65 Christchurch, Mew Zealand January 1952 18 66 Churchill, Canada February 1952 15 57 Dakar, French West Africa 0ctober 1951 20 72 74 July 1951 21 74 74 De Bilt, Holland February 1952 16 58 Djibouti, French Somaliland November 1951 20 72 Fairbanks, Alaska February 1952 15 56 Falkland Is November 1951 20 71 October 1951 21 73 Fort Chimo, Canada February 1952 15 57 Fribourg, Germany November 1951 19 69 Graz, Austria March 1952 18 64 Huancayo, Peru March 1952 18 64 Huancayo, Peru March 1951 19 18 66 March 1952 18 March 1952 19 Huancayo, Peru March 1952 18 March 1952 19 Huancayo, Peru March 1951 18 66 March 1952 18 March 1952 19 Huancayo, Peru March 1951 18 66		15	56
## Baton House, Louisiana March 1952		2.0	40
March 1952 14 52 Capetown, Union of South Africa January 1952 18 65 Christchurch, New Zealand January 1952 18 66 Churchill, Canada February 1952 15 57 Dakar, French West Africa 0ctober 1951 20 72 August 1951 21 74 July 1951 21 74 De Bilt, Eolland February 1952 16 58 Djibouti, French Somaliland November 1951 20 70 October 1951 20 72 Fairbanks, Alaska February 1952 15 56 Falkland Is November 1951 20 71 October 1951 21 73 Fort Chimo, Canada February 1952 15 57 Fribourg, Germany November 1951 19 69 Graz, Austria March 1952 18 64 Huancayo, Peru March 1952 18 64 Huancayo, Feru March 1952 14 54 Inverness, Scotland December 1951 18 66		13	50
Capetown, Union of South Africa January 1952		211	50
January 1952		2044	26
Christchurch, New Zealand January 1952		18	65
January 1952 18 66		250	0)
Churchill, Ganada February 1952		18	66
February 1952 15 57 Dakar, French West Africa 20 72 October 1951 21 74 July 1951 21 74 De Bilt, Holland 74 February 1952 16 58 Djibouti, French Somaliland 20 70 October 1951 20 72 Fairbanks, Alaska 76 72 Fairbanks, Alaska 76 73 February 1952 15 56 Falkland Is 20 71 October 1951 21 73 Fort Chime, Canada 70 70 Fribourg, Germany 70 70 November 1952 15 57 Fribourg, Germany 70 70 Narch 1952 13 50 Guam I 70 70 March 1952 18 64 Huancayo, Peru 75 March 1952 14 54 Inverness, Scotland 75 December 1951 18 66 December 1951 18 Decembe			
Dakar, French West Africa October 1951		15	57
October 1951	Dakar, French West Africa		
August 1951 July 1951 De Bilt, Holland February 1952 Djibouti, French Somaliland November 1951 October 1951 February 1952 Fairbanks, Alaska February 1952 Falkland Is. November 1951 October 1951 October 1951 Fort Chimo, Canada February 1952 Fribourg, Germany November 1951 March 1952 January 1952 Is Fundary 1953 Is Fundary 1953 Is Fundary 1953 Is Fundary 1954 Inverness, Scotland December 1951		20	72
July 1951 21 74 De Bilt, Holland 58 Djibouti, French Somaliland 20 70 November 1951 20 72 Fairbanks, Alaska 20 72 February 1952 15 56 Falkland Is. 20 71 November 1951 20 71 October 1951 21 73 Fort Chimo, Canada 21 73 Fribourg, Germany 19 69 Morat 1952 13 50 Guan I. January 1952 18 64 Huancayo, Peru March 1952 14 54 Inverness, Scotland December 1951 18 66		21	74
De Bilt, Holland February 1952		21	74
Djibouti, French Somaliland November 1951	De Bilt, Holland		
November 1951	February 1952	16	58
October 1951			
Fairbanks, Alaska February 1952	November 1951		•
February 1952		20	72
Falkland Is. November 1951 20 71 October 1951 21 73 Fort Chimo, Canada 15 57 Fribourg, Germany 15 57 November 1951 19 69 Graz, Austria 13 50 Guam I. January 1952 18 64 Huancayo, Peru March 1952 14 54 Inverness, Scotland December 1951 18 66		3 4	e l
November 1951	Talland Is	45	50
October 1951		20	วา
Fort Chimo, Canada February 1952	Optobor 1961		•
February 1952		fudb	13
Fribourg, Germany November 1951		1.5	57
November 1951		4)	21
Graz, Austria March 1952		19	69
March 1952		-,	•
Guam I. January 1952		13	50
Huancayo, Peru March 1952			_
March 1952	January 1952	18	64
Inverness, Scotland December 1951	Huancayo, Peru		
December 1951	March 1952	14	54
Movember 1951			
	Movember 1951	19	68

Index (CRPL-F93, continued)

			Table page	Figure page
Johannesburg, Union of South Afr	don			
January 1952			18	65
Kiruna, Sweden	• • • • •			
February 1952			15	55
Lindau/Harz, Germany				
February 1952			16	59
Maui, Hawaii March 1952			14	53
Warsarssuak, Greenland	• • • • •	• • •	14	53
March 1952			12	48
Okinawa I.		• • •		
March 1952			14	52
Oslo, Norway				
March 1952			12	48
Ottawa, Canada			3.0	(3
February 1952	• • • • •	• • •	17	61
March 1952			14	54
Point Barrow, Alaska		• • •	27	<i>)</i> -
March 1952			12	46
Prince Rupert, Canada				
February 1952		• • •	16	58
Puerto Rico, W. I.				
March 1952		• • •	14	53
Barotonga I.			10	64
January 1952	• • • • •	• • •	18	O44
February 1952			15	55
Reykjavik, Iceland	• • • •	• • •	-)))
January 1952			17	61
November 1951			19	68
October 1951			20	71
September 1951			21	73
St. John's, Newfoundland				
February 1952		• • •	16	60
San Francisco, California			• •	
March 1952			13	51
December 1942			21	75
November 1942			21	75
October 1942			22	76
September 1942			22	76
May 1942			22 22	77 77
April 1942			22	78
March 1942			22	78
geordary 1942	• • • •	• • •	LL	70

Index (CRPL-F93, concluded)

Table page	Figure page
Schwarzenburg, Switzerland	
February 1952	60
Singapore, British Malaya	
December 1951	67
Movember 1951	70
Slough, England	10
December 1951	67
November 1951	69
January 1952	63
Tromso. Norway	
March 1952	47
Upsala, Sweden	•
March 1952	49
Wakkanai, Japan	
January 1952	62
Washington, D. C.	
April 1952	46
White Sands, New Mexico	
March 1952	51
Winnipeg, Canada	۲0
February 1952	59
Yamagawa, Japan January 1952	63

CRPL and IRPL Reports

[A list of CRPL Section Reports is available from the Central Radio Propagation Laboratory upon request] Daily:

Radio disturbance warnings, every half hour from broadcast station WWV of the National Bureau of Standards.

Telephoned and telegraphed reports of ionospheric, solar, geomagnetic, and radio propagation data.

CRPL-J. Radio Propagation Forecast (of days most likely to be disturbed during following month).

Semimonthly:

CRPL-Ja. Semimonthly Frequency Revision Factors For CRPL Basic Radio Propagation Prediction Reports.

Monthly:

CRPL—D. Basic Radio Propagation Predictions—Three months in advance. (Dept. of the Army, TB 11-499-, monthly supplements to TM 11-499; Dept. of the Navy, DNC 13 () series; Dept. of the Air Force, TO 16-1B-2 series.)

Ionospheric Data. CRPL-F.

*IRPL—A. Recommended Frequency Bands for Ships and Aircraft in the Atlantic and Pacific. *IRPL—H. Frequency Guide for Operating Personnel.

Circulars of the National Bureau of Standards:
NBS Circular 462. Ionospheric Radio Propagation.
NBS Circular 465. Instructions for the Use of Basic Radio Propagation Predictions.

Reports issued in past:

IRPL-C61. Report of the International Radio Propagation Conference, 17 April to 5 May 1944.

IRPL-G1 through G12. Correlation of D. F. Errors With Ionospheric Conditions.

IRPL—R. Nonscheduled reports:

R4. Methods Used by IRPL for the Prediction of Ionosphere Characteristics and Maximum Usable Frequencies.

R5. Criteria for Ionospheric Storminess.

R6. Experimental Studies of Ionospheric Propagation as Applied to the Loran System.

R7. Second Report on Experimental Studies of Ionospheric Propagation as Applied to the Loran System.

R9. An Automatic Instantaneous Indicator of Skip Distance and MUF.

R10. A Proposal for the Use of Rockets for the Study of the Ionosphere. **R6.

**R11. A Nomographic Method for both Prediction and Observation Correlation of Ionosphere Characteristics.

**R12. Short Time Variations in Ionospheric Characteristics.

R14. A Graphical Method for Calculating Ground Reflection Coefficients.

**R15. Predicted Limits for F2-Layer Radio Transmission Throughout the Solar Cycle.

**R17. Japanese Ionospheric Data—1943.

R18. Comparison of Geomagnetic Records and North Atlantic Radio Propagation Quality Figures—October 1943 Through May 1945.

**R21. Notes on the Preparation of Skip-Distance and MUF Charts for Use by Direction-Finder Stations. (For distances out to 4000 km.)

**R23. Solar-Cycle Data for Correlation with Radio Propagation Phenomena.

**R24. Relations Between Band Width, Pulse Shape and Usefulness of Pulses in the Loran System.

- **R25. The Prediction of Solar Activity as a Basis for the Prediction of Radio Propagation Phenomena.

 **R26. The Ionosphere as a Measure of Solar Activity.

 R27. Relationships Between Radio Propagation Disturbance and Central Meridian Passage of Sunspots

 Grouped by Distance From Center of Disc.
- **R30. Disturbance Rating in Values of IRPL Quality-Figure Scale from A. T. & T. Co. Transmission Disturbance Reports to Replace T. D. Figures as Reported.

 **R31. North Atlantic Radio Propagation Disturbances, October 1943 Through October 1945.

**R33. Ionospheric Data on File at IRPL.

**R34. The Interpretation of Recorded Values of fEs.

**R35. Comparison of Percentage of Total Time of Second-Multiple Es Reflections and That of fEs in Excess of 3 Mc.

IRPL-T. Reports on tropospheric propagation:

T1. Radar operation and weather. (Superseded by JANP 101.)

T2. Radar coverage and weather. (Superseded by JANP 102.) CRPL—T3. Tropospheric Propagation and Radio-Meteorology. (Rei (Reissue of Columbia Wave Propagation Group WPG-5.)

^{*}Items bearing this symbol are distributed only by U. S. Navy. They are issued under one cover as the DNC 14() Series. **Out of print; information concerning cost of photostat or microfilm copies is available from CRPL upon request.

