Mecánica Cuántica I Tarea № 1

Prof. : J. Rogan Ayud. : V. Muñoz

Fecha de publicación: 11 de abril de 2001. Fecha de entrega: 19 de abril de 2001.

1. Muestre que en un scattering de Compton, producto del cual, respecto a la dirección de incidencia del fotón, el electrón es dispersado en un ángulo ϕ y el fotón en un ángulo θ , la relación entre estos ángulos viene dada por:

$$\cot \phi = \left(1 + \frac{h\nu}{m_e c^2}\right) \tan(\theta/2) \ .$$

2. Considerar los polinomios con coeficientes reales de grado menor o igual que 4, definidos en $-1 \le x \le 1$, para los cuales se define el producto interno:

$$(P(x),Q(x)) = \int_{-1}^{1} P(x) Q(x) dx .$$

A partir de la base $\{1, x, x^2, x^3, x^4\}$ obtener una base ortonormal y representar el vector $\psi(x) = x^2 - 1$ respecto de ella.

3. En el espacio vectorial del problema anterior, considere el operador

$$\check{A}P_n(x) = \frac{dP_n}{dx} .$$

Encontrar la matriz \mathcal{A} que representa a \check{A} en la base $\{\phi_n = x^n/n!\}$. Encontrar la matriz \mathcal{B} del operador $\check{A}^2 = d^2/dx^2$ y verificar que $\mathcal{B} = \mathcal{A}^2$.

4. Sea \check{H} un operador autohermítico definido positivo, i.e.

$$\langle u|\check{H}|u\rangle \ge 0 \qquad \forall |u\rangle.$$

Demostrar que cualesquiera que sean $|u\rangle$ y $|v\rangle$,

$$|\langle u|\check{H}|v\rangle|^2 \le \langle u|\check{H}|u\rangle\langle v|\check{H}|v\rangle$$
,

y que la igualdad $\langle u|\check{H}|u\rangle=0$ implica necesariamente $\check{H}|u\rangle=0$. Demostrar, por otra parte, que tr $\check{H}\geq 0$ y que la igualdad no se cumple más que si $\check{H}=0$.

- 5. Demuestre que:
 - (a) $e^{\check{S}\check{A}\check{S}^{-1}} = \check{S}e^{\check{A}}\check{S}^{-1}$.
 - (b) Si \check{A} es diagonalizable, entonces det $e^{\check{A}}=e^{\operatorname{tr}\check{A}}$.
 - (c)

$$\frac{d\check{A}^{-1}(\lambda)}{d\lambda} = -\check{A}^{-1}(\lambda) \frac{d\check{A}(\lambda)}{d\lambda} \check{A}^{-1}(\lambda) \ .$$

6. (a) Considere los siguientes operadores hermíticos:

$$\check{A} = \left(\begin{array}{cc} 0 & i \\ -i & 0 \end{array} \right) \; , \qquad \check{B} = \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right) \; .$$

Encuentre los autoestados y autovalores de \check{A} y \check{B} , evalúe $\check{C}=-i[\check{A},\check{B}]$ y verifique que $\Delta\check{A}\,\Delta\check{B}\geq |\langle\check{C}\rangle|/2$.

(b) Considere el operador:

$$\check{A} = \left(\begin{array}{cc} -7 & -20i \\ -6i & 15 \end{array} \right) .$$

Calcule $e^{i\check{A}}$ y verifique que la matriz resultante sea unitaria.