Ιόνιο Πανεπιστήμιο – Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 2018-19

Αναπαράσταση Μη Αριθμητικών Δεδομένων

(κείμενο, ήχος και εικόνα στον υπολογιστή)

http://mixstef.github.io/courses/csintro/

Μ.Στεφανιδάκης

Η ερμηνεία της αναπαράστασης

 Αναπαράσταση δεδομένων

Στα ερωτήματα

αυτά μπορεί να

δεδομένα!

απαντήσει μόνο ο

προγραμματιστής

της εφαρμογής που χειρίζεται τα

- Κάπου στη μνήμη του υπολογιστή...
 - Βρίσκεται αποθηκευμένη η σειρά bits
 0100110111010001
- Πόσα σύμβολα αναπαριστά;
 - Πόσα bits ανά σύμβολο;
- Ποιος ο τύπος των δεδομένων;
- Ποια συγκεκριμένη ποσότητα συμβολίζει;
- Πώς θα το χειριστεί ο υπολογιστής;

Εισαγωγή στην Επιστήμη των Υπολογιστών - "Αναπαράσταση Μη Αριθμητικών Δεδομένων"

• Αναπαράσταση δεδομένων εντολές κείμενο αριθμοί μηχανής βίντεο συνεχείς (αναλογικές) σειρές bits αριθμοί ποσότητες (σύμβολα) Ψηφιοποίηση Διαδικασία μετατροπής συνεχών τιμών σε διακριτά σύμβολα Δεδομένα: ανεξάρτητα από τύπο και Διαδικασία αντιστοίχισης συμβόλων σε δυαδικούς αριθμούς προέλευση, στον Κωδικοποίηση υπολογιστή υπάρχουν σε μία Αποθήκευση δυαδικών αριθμών σε σειρές bits μορφή: 0 και 1 Εισαγωγή στην Επιστήμη των Υπολογιστών - "Αναπαράσταση Μη Αριθμητικών Δεδομένων"

Αναπαράσταση δεδομένων

Αναπαράσταση με δυαδικούς αριθμούς

 Αναπαράσταση δεδομένων

Σειρά n bits

- Δυαδικός αριθμός με n bits (n≥1) μπορεί να αναπαραστήσει 2ⁿ διαφορετικά σύμβολα
- Μη αριθμητικά δεδομένα
 - Κείμενο, εντολές μηχανής, ήχος, εικόνα...
 - Σύνολο διαφορετικών αντικειμένων (συμβόλων)
 - Αντιστοίχιση κάθε συμβόλου σε μοναδικό δυαδικό αριθμό (code point)
 - "Αναπαράσταση"
 - Η ακριβής αντιστοίχιση συνήθως ορίζεται σε ένα πρότυπο (standard)

Εισαγωγή στην Επιστήμη των Υπολογιστών - "Αναπαράσταση Μη Αριθμητικών Δεδομένων"

Αρχικές αναπαραστάσεις κειμένου

- Αναπαράσταση δεδομένων
- Κείμενο
- Οι πρώτες αναπαραστάσεις κειμένου
- Στον υπολογιστή
- 6-7 bits ανά χαρακτήρα
 - Πόσοι διαφορετικοί χαρακτήρες;
- Μη εκτυπώσιμοι χαρακτήρες
 - Χαρακτήρες ελέγχου
 - Ιδιαίτερα χρήσιμοι για τις συσκευές εξόδου της εποχής (εκτυπωτές, τηλέτυπα...)
 - Νέα γραμμή (LINE FEED LF)
 - Επιστροφή κεφαλής εκτύπωσης (CARRIAGE RETURN -
 - Καμπανάκι (BELL) κλπ

Εισαγωγή στην Επιστήμη των Υπολογιστών - "Αναπαράσταση Μη Αριθμητικών Δεδομένων"

11

Κείμενο σε κώδικα ASCII

- Αναπαράσταση δεδομένων
- Κείμενο
- Με 7 bits ανά
- χαρακτήρα και χρήση bytes, 1 bit Πόσοι επιπλέον χαρακτήρες με το bit αυτό:

- 7 bits ανά χαρακτήρα
 - 128 γαρακτήρες
 - Αναπαράσταση με τους αριθμούς 0...127
- Κανονικοί χαρακτήρες (εκτυπώσιμοι)
 - 32...64, 91...96, 123...126 = σημεία στίξης $\kappa.\dot{\alpha}.$ (32 = SPACE!)
 - 65...90 = κεφαλαία λατινικά (A-Z)
 - 97...122 = πεζά λατινικά (a-z)
- Χαρακτήρες ελέγχου (μη εκτυπώσιμοι)
 - 0...31, 127 επιζούν τα: 9 (TAB), 13/10 (CR/ LF, σήμανση "νέας γραμμής")

Εισαγωγή στην Επιστήμη των Υπολογιστών - "Αναπαράσταση Μη Αριθμητικών Δεδομένων"

Κώδικας ASCII

• Αναπαράσταση δεδομένων

ASCII: American

Standard Code for

Information Interchange

- Κείμενο
- Βασικό αρχικό πρότυπο αναπαράστασης κειμένου
 - 7 bits ανά χαρακτήρα

STANDARD ASCII ΚΩΔΙΚΑΣ

hex	char	hex	char	hex	char
20		40	@	60	,
21	!	41	Α	61	а
22	"	42	В	62	b
23	#	43	С	63	С
24	\$	44	D	64	d
25	%	45	Е	65	е
26	&	46	F	66	f
27		47	G	67	g
28	(48	Н	68	h
29)	49		69	i
2A	*	4A	J	6A	j
2B	+	4B	K	6B	k
2C	,	4C	L	6C	
2D	-	4D	M	6D	m
2E		4E	N	6E	n
2E	,	AF.	^	OF.	_

Εισαγωγή στην Επιστήμη των Υπολογιστών - "Αναπαράσταση Μη Αριθμητικών Δεδομένων"

10

Κείμενο σε κώδικα ASCII

- Αναπαράσταση δεδομένων
- Κείμενο

• Παράδειγμα

H	a	v	е		a		n	ì	С	е		d	a	У	!
72	97	118	101	32	97	32	110	105	99	101	32	100	97	121	33

Εφόσον η κωδικοποίηση είναι με 1 byte ανά χαρακτήρα, δεν τίθεται θέμα "little-" ή "bigendian"

- Γλώσσες προγραμματισμού
 - Συμβολοσειρά (string)
 - Σε γλώσσες όπως η C, το 0 (αριθμητικό) συμβολίζει το τέλος της συμβολοσειράς
 - Ο υπολογιστής μπορεί να κάνει πράξεις (π.χ. σύγκριση) με τη συμβολοσειρά

Εισαγωγή στην Επιστήμη των Υπολογιστών - "Αναπαράσταση Μη Αριθμητικών Δεδομένων"

12

Επεκτάσεις κώδικα ASCII

• Αναπαράσταση δεδομένων

Χρησιμοποιώντας

δεν είναι δυνατή η

τον ISO-8859-1

αναπαράσταση

των ελληνικών!

- Κείμενο
- Χρήση του 1 επιπλέον bit του byte
- 128 + 128 χαρακτήρες, αριθμοί 0...255
- 0...127 αντιστοιχούν στον αρχικό ASCII
- 127...255: επεκταμένα αλφάβητα
- Επέκταση αλφαβήτων (πρότυπα)
 - Χαρακτήρες που δεν υπάρχουν στον ASCII
 - Διαφορετικά ανά γλώσσα! Π.γ.:
 - ISO-8859-1: Δυτική Ευρώπη (Å, Ñ, Æ,ä, ø κλπ)
 - ΙSO-8859-7: Νέα Ελληνικά
 - ...και πολλά άλλα πρότυπα για τις υπόλοιπες γλώσσες
 - Επίσης: μη πρότυπες λύσεις
 - Για Windows, Mac ..

Εισαγωγή στην Επιστήμη των Υπολογιστών - "Αναπαράσταση Μη Αριθμητικών Δεδομένων"

13

15

Κείμενο σε κώδικα ISO-8859-7

- Αναπαράσταση δεδομένων
- Κείμενο

• Παράδειγμα

αναπαραστάσεις αλφαβήτων με 1 byte avá χαρακτήρα τείνουν να καταργηθούν!

Επέκταση κώδικα ASCII

- 0...127 όπως στον ASCII
- 128...159 πρόσθετοι χαρακτήρες ελέγχου
- 160...255 ελληνικά και σχετικά σύμβολα

Εισαγωγή στην Επιστήμη των Υπολογιστών - "Αναπαράσταση Μη Αριθμητικών Δεδομένων"

Κώδικας ISO-8859-7

- Αναπαράσταση δεδομένων
- Κείμενο

Εισαγωγή στην Επιστήμη των Υπολογιστών - "Αναπαράσταση Μη Αριθμητικών Δεδομένων"

14

Πρότυπο Unicode

- Αναπαράσταση δεδομένων

Με περισσότερα

από 1 bytes ανά

θέμα σειράς

bytes!

χαρακτήρα τίθεται

αποθήκευσης των

- Κείμενο
- Για την αναπαράσταση όλων των αλφαβήτων!
 - Έχουν οριστεί σχεδόν 100.000 χαρακτήρες
 - Καλύπτει ιδεογράμματα, φωνητικές αναπαραστάσεις κλπ
 - Θα μπορούσε να καλύψει πάνω από 1 εκ. χαρακτήρες! (0 ... 10FFFF)
 - Κάθε χαρακτήρας αναπαρίσταται με περισσότερα από ένα bytes
 - Συνήθεις κωδικοποιήσεις: UCS-2 (ή UTF-16) και UTF-8
 - Το πρότυπο Unicode περιέχει επίσης
 - πληροφορία ισοδύναμων ή παρόμοιων χαρακτήρων
 - οδηγίες συνδυασμών τόνων/διακριτικών και γραμμάτων

Εισαγωγή στην Επιστήμη των Υπολογιστών - "Αναπαράσταση Μη Αριθμητικών Δεδομένων"

Unicode σε κωδικοποίηση UTF-8 • Αναπαράσταση μεταβλητού μήκους

- δεδομένων
- Κείμενο

• Αναπαράσταση μεταβλητού μήκους

Unicode	Κωδικοποίηση UTF-8				
007F	0xxxxxxx				
807FF	110xxxxx 10xxxxxx				
800FFFF	1110xxxx 10xxxxxx 10xxxxxx				
1000010FFFF	11110xxx 10xxxxxx 10xxxxxx 10xxxxxx				

Η κωδικοποίηση UTF-8 τείνει να επικρατήσει σε όλα τα προγράμματα που χειρίζονται κείμενα Unicode!

- Το βασικό λατινικό αλφάβητο (ASCII) χρησιμοποιεί 1 byte ανά χαρακτήρα
 - Προς τα πίσω συμβατότητα
- Τα ελληνικά, 2 bytes
 - Ποια η κωδικοποίηση κατά UTF-8 του τελευταίου παραδείγματος;

Εισαγωγή στην Επιστήμη των Υπολογιστών – "Αναπαράσταση Μη Αριθμητικών Δεδομένων"

Εναλλακτικά: διανυσματικά γραφικά • Αναπαράσταση Περιγραφή σχημάτων δεδομένων • Κείμενο Ως σύνολο ευθύγραμμων και καμπύλων Ήχος τμημάτων • Εικόνα Με συντεταγμένες Εύρεση σημείων μέσω μαθηματικού τύπου Εύκολη αλλαγή μεγέθους γραφικών Χωρίς παραμόρφωση των σχημάτων Εισαγωγή στην Επιστήμη των Υπολογιστών – "Αναπαράσταση Μη Αριθμητικών Δεδομένων" 23

Παράδειγμα: απλή αναπαράσταση pixels με 16,7 εκ. χρώματα

- 3 bytes/pixel (24bits): R(ed) G(reen) B(lue)
 - 256 στάθμες ανά συνιστώσα χρώματος 256x256x256 = 16.777.216 χρώματα
 - εικόνες με μεγαλύτερο βάθος χρώματος
 - 32 έως 48 bits

Εισαγωγή στην Επιστήμη των Υπολογιστών - "Αναπαράσταση Μη Αριθμητικών Δεδομένων"

Αναπαράσταση βίντεο

- Αναπαράσταση δεδομένων
- Κείμενο
- Ήχος
- Εικόνα
- Βίντεο
- "Κινούμενη εικόνα" (καρέ)
 - όπως αναπαριστούμε τις απλές εικόνες
 - αλλά: με χρήση συμπίεσης
 - Για μείωση όγκου δεδομένων
 - Γειτονικά καρέ έχουν πολλές ομοιότητες

Εισαγωγή στην Επιστήμη των Υπολογιστών - "Αναπαράσταση Μη Αριθμητικών Δεδομένων"

24

22

Κωδικοποίηση εντολών μηχανής • Αναπαράσταση δεδομένων opcode operand1 operand2 operandN • Κείμενο • Ήχος • Εικόνα Περιγράφουν την προέλευση των δεδομένων εισόδου (αριθμό καταχωρητή, διεύθυνση μνήμης κλπ) και τον προορισμό των δεδομένων εξόδου (αποτέλεσμα πράξης) Περιγράφει το είδος της πράξης που θα εκτελεστεί • Βίντεο • Εντολές Μηχανής Το είδος της πράξης προσδιορίζει τον τύπο, την προέλευση και τον αριθμό των δεδομένων που συμμετέχουν στην πράξη! 25 Εισαγωγή στην Επιστήμη των Υπολογιστών – "Αναπαράσταση Μη Αριθμητικών Δεδομένων"