Lecture 11-12: March 5, 2021

Computer Architecture and Organization-I Biplab K Sikdar

Multiplication of n-bit numbers in sign magnitude shift/addition technique

 $Y = y_7 y_6 \cdots y_1 y_0 = 01100101$ and $X = x_7 x_6 \cdots x_1 x_0 = 11011101$.

To get product $P = p_6 p_5 \cdots p_1 p_0$, 7 magnitude bits of Y and X are to be multiplied.

Here, P is the sum of partial products P_0, P_1, \dots, P_6 .

A partial product can be all 0s or $Y \times 2^i$ (that is, Y with i left shift).

	1100101	$y_6y_5y_4y_3y_2y_1y_0$
	1011101	$x_6x_5x_4x_3x_2x_1x_0$
0000000	1100101	P_0
0 00000 0	0000000	P_1
0000011	0010100	P_2
0000110	0101000	P_3
000 1100	1010000	P_4
00 00000	0000000	P_5
0 110010	1000000	P_6

In m/c, we can implement it by right shift of the register that stores product P. Consider accumulator A and register Q stores the product.

A stores most significant part of P, and Q stores least significant part of P.

A and Q are connected and form a single shift register.

Algorithm 0.1 In sign magnitude, we need to consider multiplier[n-2:0], multiplicand[n-2:0] and A[n-2:0].

Step 1: A[n-2:0] \leftarrow 0; C \leftarrow 0; M[n-2:0] \leftarrow multiplicand[n-2:0]; Q[n-2:0] \leftarrow multiplier[n-2:0]

Step 2: if $Q_0 \neq 0$, then $A \leftarrow A+M$

Step 3: right shift A, Q

Step 4: if $C \neq n$ -2 then increment C = C+1 and go to Step 2.

Step 5: output A, Q and exit.

Example 0.2 Here n=5. The magnitude is of 4-bit.

Acti	ion	CY	\boldsymbol{A}	Q	M	C
		0	0000	110 <u>1</u>	1010	0
+			1010			
		0	1010			
R	S	0	0101	011 <u>0</u>		1
R	S	0	0010	101 <u>1</u>		2
+			1010			
		0	1100			
R	S	0	0110	010 <u>1</u>		3
+			1010			
		1	0000			
R_{s}	S	1	1000	0010		

 $10 \times 13 = 130$

0.9.2 Fixed point multiplication in 2's complement

Multiplication in 2's complement can be done by modifying Algorithm 0.1.

Here, sign bits of multiplier and multiplicand are treated as magnitude.

Consider M = 0110 = 6 and Q = 1101 = -3 = 13 - 16 in 2's complement.

If Algorithm 0.1 is followed, product $P_{sign} = 0100 \ 1110 = 78$. But it should be -18.

The final product P needs correction as

$$P = P_{sign} - 2^4 \times M = 78 - 16 \times 6 = -18.$$

Let multiplicand $Y = y_{n-1} \cdots y_1 y_0$ and multiplier $X = x_{n-1} \cdots x_1 x_0$ in 2's complement.

- Case I: $y_{n-1} = x_{n-1} = 0$: Algorithm 0.1 can produce the correct result.
- Case II: $y_{n-1} = 1$ and $x_{n-1} = 0$: (Y = 1101 = -3 and X = 0110 = +6).

As per Algorithm 0.1 product P_{siqn} is 78 (incorrect).

Reason is - Algorithm 0.1 assumes partial products ($P_0 = 0000\ 0000,\ P_1 = 0001\ 1010,\ P_2 = 0011\ 0100,\ and\ P_3 = 0000\ 0000)\ P_i = 2^i\ Y\ x_i\ \forall_{i=0}^{n-1}$ as positive.

As multiplicand is negative, all partial products must be negative.

Correction needed in Step 3 of Algorithm 0.1: enter 1 in MSB if partial product is not 0.

• Case III: $y_{n-1} = 0$ and $x_{n-1} = 1$: Algorithm 0.1 results in incorrect product $P_{sign} = (2^n + X)Y$.

The correction needed is

$$P = P_{sign} - 2^n Y$$
.

• Case IV: $y_{n-1} = x_{n-1} = 1$: Algorithm 0.1 has to be corrected as in Case II/III.

Algorithm 0.2 Step 1:
$$A[n-1:0] \leftarrow 0$$
; $CY \leftarrow 0$; $Count \leftarrow 0$;

 $M[n-1:0] \leftarrow multiplicand[n-1:0]; Q[n-1:0] \leftarrow multiplier[n-1:0]$

Step 2: if $Q_0 \neq 0$, then $A \leftarrow A+M$

Step 3: right shift A, Q

$$AQ_i \leftarrow AQ_{i+1} \ \forall_{i=0}^{n-2}$$

$$A_{n-1} \leftarrow A_{n-1} \lor CY$$

Step 4: if Count $\neq n$ -2 then increment Count = Count+1; go to Step 2.

Step 5: if $Q_0 = 0$, then right shift; go to Step 8

Step 6: $A \leftarrow A+M$; right shift

Step 7: $A \leftarrow A-M$

Step 8: Output A,Q

Action	CY	A	Q	M	Count
	0	0000	110 <u>1</u>	1010	0
+		1010			
	0	1010			
RS	0	1101	011 <u>0</u>		1
RS	0	1110	101 <u>1</u>		2
+		1010			
	1	1000			
RS	1	1100	010 <u>1</u>		
+		1010			
	1	0110			
RS	1	1011	001 <u>0</u>		
_		1010			
		0001	0010	Product	

This requires at least p additions/subtractions (p: number of 1s in multiplier). Further, correction (subtraction) is needed if multiplier is negative.

0.9.3 Booth's algorithm for multiplication in 2's complement

Andrew Donald Booth (British) has proposed Booth's algorithm.

Let consider computation of Product $P = M \times Q$, where Q is the multiplier and

$$Q = 0$$
 $i=4$ 3210 $1110 = 14$.

Therefore, $P = 14 \times M = (+16 - 2) \times M = +2^4 \times M - 2^1 \times M$.

Similarly, for the multiplier

$$P = +2^{10} \times M - 2^7 \times M + 2^5 \times M - 2^1 \times M$$
.

Total number of additions/subtractions is 4 only. It signifies

- (i) Number of additions/subtractions may be less than the number of 1s in multiplier. It depends on number of flips (0 to 1 or 1 to 0) in multiplier.
- (ii) If i^{th} and $(i-1)^{th}$ bit-pair of multiplier is 10, then subtraction is needed.
- (iii) If i^{th} and $(i-1)^{th}$ bit-pair of multiplier is 01, then addition is required.

Features In Booth's algorithm of 2's complement multiplication,

- i) No correction is needed as required for Algorithm 0.2,
- ii) Negative and positive numbers are treated uniformly,
- iii) Computation of product is faster than Algorithm 0.2.

While computing product of Booth's algorithm scans multiplier $X = x_{n-1}x_{n-2} \cdots x_2x_1x_0$ considering adjacent bits x_ix_{i-1} .

• If $x_i x_{i-1} = 01$, multiplicand Y is added to partial product PP_{i-1} . = 10, Y is subtracted from PP_{i-1} .

Folled by a left shift to get PP_i. Here, PP_i defines product of Y and $x_i x_{i-1} \cdots x_2 x_1 x_0$.

• If $x_i = x_{i-1}$, then only left shift of PP_{i-1} is carried out to get PP_i .

LSB of multiplier X is the $i=0^{th}$ bit.

A bit x[0]=0 is appended with LSB of X to facilitate bit pair for i=0.

Multiplicand M = 1010 and multiplier Q is 1101.

Action	AC	Q	M	Count
	0000	110 <u>10</u>	1010	3
_	1010			
	0110			
RS	0011	011 <u>01</u>		2
+	1010			
	1101			
RS	1110	101 <u>10</u>		1
_	1010			
	0100			
RS	0010	010 <u>11</u>		0
RS	0001	00101		

The product is AC[3:0]-Q[4:1] = 00010010.

Hardware realization of Booth's multiplier is in Figure 30.

Figure 30: Booth's multiplication algorithm hardware realization

Multiplier control unit compares two least significant bits of register Q and generates appropriate control signals (Add, Sub, RSHIFT, Down Counter, etc).

Limitations: Booth's agorithm enhances speed of multiplication for runs of 1s in multiplier.

For an n-bit multiplier with $\frac{n}{2}$ isolated 1s, Booth's algorithm becomes more costly. For such a case, Booth's algorithm needs n additions/subtractions.

Let multiplier X = 01010101. Number of additions/subtractions needed 8.

$$X$$
 - $Multiplier = 01010101$

Q - Multiplier with augmented 0 at least significant position = 010101010

Number of 01 pairs in Q (additions in Booth's algorithm) = 4

Number of 10 pairs (subtractions in Booth's algorithm) = 4

0.9.4 Bit-pair multiplication scheme

If $(i+1)^{th}$, i^{th} , and $(i-1)^{th}$ bits in multiplier are 101, then as per Booth's algorithm,

$$PP_{i+1} = PP_{i-1} + 2^{i}Y - 2^{i+1}Y$$

= $PP_{i-1} - 2^{i}Y$.

So, for bit pair 101, a subtraction can replace an addition and a subtraction.

Similarly, for 010

$$PP_{i+1} = PP_{i-1} - 2^{i}Y + 2^{i+1}Y$$

= $PP_{i-1} + 2^{i}Y$.

Hence two arithmatic operations can be replaced by a single operation.

Actions to be taken for all such 8 bit pairs are described in following table.

i+1	i	i-1	Action
0	0	0	$PP_{i+1} = PP_{i-1}$
0	0	1	$PP_{i+1} = PP_{i-1} + 2^{i}Y$
0	1	0	$PP_{i+1} = PP_{i-1} + 2^{i}Y$
0	1	1	$PP_{i+1} = PP_{i-1} + 2^{i+1}Y$
1	0	0	$PP_{i+1} = PP_{i-1} - 2^{i+1}Y$
1	0	1	$PP_{i+1} = PP_{i-1} - 2^{i}Y$
1	1	0	$PP_{i+1} = PP_{i-1} - 2^{i}Y$
1	1	1	$PP_{i+1} = PP_{i-1}$