Упражнение за циклични групи, нормални групи и фактор групи. Първа теорема за хомоморфизмите

Иво Стратев

14 ноември $2020\,г.$

Съдържание

1	Под	цгрупи на циклични групи	3
	1.1	Подгрупи на групата на целите числа	3
	1.2	Подгрупи на групата на n -тите корени на единициата	4
2	Със	седни класове. Теорема на Лагранж. Нормални под-	
	гру	пи. Фактор групи	5
	2.1	Мултипликативен запис:	6
	2.2	Адитивен запис:	6
	2.3	Важни свойства ще ги напишем в мултипликативен запис	
		и само за левите съседни класове (за десните е аналогично)	6
	2.4	Теорема на Лагранж	7
	2.5	Примери	7
		$2.5.1$ \mathbb{R}^* и \mathbb{R}^+	7
		2.5.2 ℤи 6ℤ	7
		$2.5.3$ \mathbb{C}_8 и \mathbb{C}_4	8
	2.6	Нормални групи	9
	2.0	2.6.1 Важни неща	9
	2.7	1	9
	-	Фактор група	
	2.8	1 1	10
			10
			10
		$2.8.3$ \mathbb{Z} и $6\mathbb{Z}$	1

3	Една класика от Информатика 3.1 Решение	11 11
4	Първа теорема за хомоморфизмите	12
5	Схема за задачите ползващи първата теорема за хомоморфизмите	13
6	Първа порция примери 6.1 Решение:	14
7	Още един пример 7.1 Решение:	17 17
8	Още един пример 8.1 Решение:	18
9	Последна задача за хомоморфизми 9.1 Решение:	20 20
10	Задача от теория на числата 10.1 Решение:	23

1 Подгрупи на циклични групи

Нека си припомним каква ни беше дефиницията за подгрупа на дадена група.

Нека $< G, e, *, ()^{-1} >$ е група. Нека $H \subseteq G$. Казваме, че H образува подгрупа на $< G, e, *, ()^{-1} >$, ако

- 1. $e \in H$
- 2. $(\forall a \in H)(\forall b \in H)(a * b \in H)$
- 3. $(\forall a \in H)(a^{-1} \in H)$

Сега очевидно ако $\mathcal{A}=<A, e_{\mathcal{A}}, *_{\mathcal{A}}, inv_{\mathcal{A}}>$ и $\mathcal{B}=<B, e_{\mathcal{B}}, *_{\mathcal{B}}, inv_{\mathcal{B}}>$ са групи, за които е в сила

- 1. $e_{\mathcal{A}} = e_{\mathcal{B}}$
- 2. $(\forall b \in B)(\forall c \in B)(b *_{\mathcal{B}} c = b *_{\mathcal{A}} c)$
- 3. $(\forall b \in B)(inv_{\mathcal{B}}(b) = inv_{\mathcal{A}}(b))$

То \mathcal{B} е подгрупа на \mathcal{A} тогава и само тогава когато $B \subseteq A$.

Така нека сега дадем дефиниция за циклична група. Нека $< G, e, *, ()^{-1} >$ е група. Казваме, че тя е циклична, ако се поражда от един елемент. Тоест $(\exists g \in G)(G = < g > = \{g^z \mid z \in \mathbb{Z}\})$.

От лекции знаем, че $<\mathbb{Z},0,+,->$ е циклична група, защото $<1>=1\mathbb{Z}=\{z.1\mid z\in\mathbb{Z}\}=\mathbb{Z}.$ Също така, знаем, че с точност до изоморфизъм това е единствената циклична група от безкраен ред. Както и ако $n\in\mathbb{N}^+$, то групата на n-тите корени на единицата $<\mathbb{C}_n,1,.,()^{-1}>$ е циклична група (поражда се от елемента ω_n^1) и с точност до изоморфизъм е единствената циклична от ред n.

1.1 Подгрупи на групата на целите числа

Така нека $n \in \mathbb{N}$. Тогава $< n > = \{z.n \mid z \in \mathbb{Z}\} = n\mathbb{Z}$. Това са всички цели числа кратни на n. Очевидно < -n > = < n >. Ето няколко примера

1.
$$<0>=0\mathbb{Z}=\{0\}$$

$$2. < 1 > = 1\mathbb{Z} = \mathbb{Z}$$

$$3. < 2 > = \{z.2 \mid z \in \mathbb{Z}\} = \{z \in \mathbb{Z} \mid z \equiv 0 \pmod{2}\} = 2\mathbb{Z}$$

4.
$$<6> = \{z.6 \mid z \in \mathbb{Z}\} = \{z \in \mathbb{Z} \mid z \equiv 0 \pmod{6}\} = 6\mathbb{Z}$$

Е оказва се, че всяка подгрупа на целите числа е от вида $n\mathbb{Z}$ за някое естествено n. Това се доказва изключително лесно. Ето едно бързо доказателство. Първо нека $n \in \mathbb{N}$ и да видим, че $< n\mathbb{Z}, 0, +, ->$ е група.

- 1. 0.n=0 това е празната сума, по друг начин 0=n+(-n), тоест всеки случай $0\in n\mathbb{Z}$.
- 2. $a.n + b.n = (a + b).n \in n\mathbb{Z}$ тоест имаме затвореност относно събирането понеже сума от кратни на n е кратно на n.
- 3. -(a.n) = -a.n (очевидно)

Значи $n\mathbb{Z}$ образува подгрупа на $<\mathbb{Z},0,+,->$.

Задача за любознателните:

Нека M е множество такова, че $\{0\} \subset M \subset \mathbb{Z}$, което образува подгрупа на $(\mathbb{Z}, 0, +, -)$. Покажете, че $(\exists n \in \mathbb{N} \setminus \{0, 1\})(M = n\mathbb{Z})$.

Сега на въпроса каква е връзката между подгрупите на $<\mathbb{Z}, 0, +, ->$. Нека $n \in \mathbb{N}$ и $m \in \mathbb{N}$. Както видяхме $n\mathbb{Z}$ и $m\mathbb{Z}$ образуват подгрупи на $<\mathbb{Z}, 0, +, ->$. Очевидно $n\mathbb{Z}$ е подгрупа на $m\mathbb{Z}$ ТСТК $n\mathbb{Z} \subseteq m\mathbb{Z}$ понеже и двете са подгрупи на $<\mathbb{Z}, 0, +, ->$. От друга страна $n\mathbb{Z} \subseteq m\mathbb{Z} \longleftrightarrow (\forall z \in \mathbb{Z})(m \mid z.n)$. В частност при z = 1 получаваме $m \mid n$, тоест

$$n\mathbb{Z} \le m\mathbb{Z} \longleftrightarrow m \mid n$$

1.2 Подгрупи на групата на n-тите корени на единициата

Нека си припомним, че $\mathbb{C}_n = \{\omega_n^k \mid k \in \{0,1,\ldots,n-1\}\}$. Сега на готово ще използваме твърдението от лекции, че всяка подгрупа на циклична група е циклична. Тогава подгрупите на \mathbb{C}_n са точно цикличните групи

породени от някой елемент на \mathbb{C}_n . Тоест това са групите $<\omega_n^k>$, за някое $k\in\{0,1,\ldots,n-1\}$. Така сега използвайки следните две твърдения

1.
$$ord(\omega_n^k) = \frac{ord(\omega_n^1)}{gcd(ord(\omega_n^1), k)} = \frac{n}{gcd(n, k)}$$

2.
$$|<\omega_n^k>|=ord(\omega_n^k)$$

и имайки предвид, че $<\omega_n^k>$ е циклична група от краен ред. Получаваме $<\omega_n^k>=\mathbb{C}\frac{n}{\gcd(n,k)}$. Възможни са два случая

- 1. gcd(n,k) = 1 тогава $\langle \omega_n^k \rangle = \mathbb{C}_n$.
- 2. $d=\gcd(n,k)>1$ тогава $d\mid n$ и значи $<\omega_n^k>=\mathbb{C}\frac{n}{d}$ обаче щом $d\mid n,$ то $\frac{n}{d}\mid n$

Значи всички подгрупи на $<\mathbb{C}_n,1,.,()^{-1}>$ са $<\mathbb{C}_d,1,.,()^{-1}>$, където $d\mid n.$ Сега въпросът е кога \mathbb{C}_k е подгрупа на \mathbb{C}_d , това очевидно е ТСТК $\mathbb{C}_k\subseteq\mathbb{C}_d$. Използвайки, че ако $z\in\mathbb{C}$, то $z\in\mathbb{C}_d\longleftrightarrow z^d=1$. Получаваме $\mathbb{C}_k\subseteq\mathbb{C}_d$ ТСТК ($\forall s\in\{0,1,\ldots,k-1\}$)(($(\omega_k^s)^d=1$). В частност трябва да е изпълнено и за s=1, тоест $(\omega_k^1)^d=\omega_k^d=1$ е това се случва ТСТК $k\mid d$. Така $\mathbb{C}_k\subseteq\mathbb{C}_d\longleftrightarrow k\mid d$.

2 Съседни класове. Теорема на Лагранж. Нормални подгрупи. Фактор групи

Нека < G, e, op, inv > е група. По естествен начин операцията $op: G \times G \to G$ може да бъде разширена до операция $OP_{left}: G \times \mathcal{P}(G) \to \mathcal{P}(G)$. По следния начин $OP_{left}(g,S) = \{op(g,s) \mid s \in S\}$. Аналогично можем да дефинираме $OP_{right}: \mathcal{P}(G) \times G \to \mathcal{P}(G)$. По следния начин $OP_{right}(S,g) = \{op(s,g) \mid s \in S\}$. Сега ако H образува подгрупа на < G, e, op, inv >. То множеството $OP_{left}(g,H)$ се нарича ляв съседен клас на H по g, а множеството $OP_{right}(H,g)$ се нарича десен съседен клас на H по g.

2.1 Мултипликативен запис:

Ако < $G,1,.,()^{-1}>$ е мултипликативно записана група. И H образува нейна подгрупа, то

- 1. $gH = \{gh \mid h \in H\}$ е левия съседен клас на H по g.
- 2. $Hg = \{hg \mid h \in H\}$ е десния съседен клас на H по g.

2.2 Адитивен запис:

Ако < G, 0, +, -> е адитивно записана група. И H образува нейна подгрупа, то

- 1. $g + H = \{g + h \mid h \in H\}$ е левия съседен клас на H по g.
- 2. $H+g=\{h+g\mid h\in H\}$ е десния съседен клас на H по g.

2.3 Важни свойства ще ги напишем в мултипликативен запис и само за левите съседни класове (за десните е аналогично)

Нека $< G, e, ., ()^{-1} >$ е група и H образува нейна подгрупа. Нека $g \in G$ е произволен. Дефинираме релацията \sim в G. Така $a \sim b \longleftrightarrow aH = bH$. Тогава

- 1. \sim е релация на еквивалетност
- $2. \ [a]_{\sim} = aH$
- 3. $\{gH\mid g\in G\}$ е разбиване на G
- $4. \ a \sim b \longleftrightarrow b \in aH$
- 5. $a \sim b \longleftrightarrow ab^{-1} \in H$
- 6. gH образува подгрупа на $(G,e,.,()^{-1})$ ТСТК g=e, тоест единствения съседен клас, който е група е самото H (H=eH)
- 7. gH и H са равномощни $(h\mapsto gh$ е биекция)

С G: H бележим множеството на левите съседни класове тоест $G: H = \{gH \mid g \in G\}$). Мощността на множеството G: H се нарича индекс на групата образувана от H в $< G, e, ., ()^{-1} >$. Тоест индексът на групата образувана от H е |G: H|.

2.4 Теорема на Лагранж

Нека $< G, e, ., ()^{-1} >$ е крайна група и H образува нейна подгрупа. Тогава |G| = |H|.|G:H|. Следствие $|G:H| = \frac{|G|}{|H|}.$

2.5 Примери

$\mathbf{2.5.1}$ \mathbb{R}^* и \mathbb{R}^+

Да си припомним, че $\mathbb{R}^* = \mathbb{R} \setminus \{0\}$ и $< \mathbb{R}^*, 1, ., ()^{-1} >$ е група. Също така $\mathbb{R}^+ = \{r \in \mathbb{R} \mid r > 0\}$ и $\mathbb{R}^- = \{r \in \mathbb{R} \mid r < 0\}$. Понеже произведение на положителни е положително и обратен на положително е положително, то \mathbb{R}^+ образува подгрупа на $< \mathbb{R}^*, 1, ., ()^{-1} >$. Нека намерим кои са съседните класове и на колко е равен индексът на \mathbb{R}^+ . Нека $a \in \mathbb{R}^*$. Тогава са възможни два случая

- 1. a > 0. Тогава $a\mathbb{R}^+ = \{ar \mid a \in \mathbb{R}^+\} = \mathbb{R}^+$
- 2. a < 0. Тогава $a\mathbb{R}^+ = \{ar \mid a \in \mathbb{R}^+\} = \mathbb{R}^-$

Ползвахме, че $x\mapsto ax$ е биекция в \mathbb{R} . От друга страна $a\mathbb{R}^+=b\mathbb{R}^+\longleftrightarrow \frac{a}{b}\in\mathbb{R}^+\longleftrightarrow \frac{a}{b}>0\longleftrightarrow sign(a)=sign(b)\longleftrightarrow (a\in\mathbb{R}^+\ \&\ b\in\mathbb{R}^+)\ \lor\ (a\in\mathbb{R}^-\ \&\ b\in\mathbb{R}^-).$ Значи $\mathbb{R}^*:\mathbb{R}^+=\{\mathbb{R}^+,\mathbb{R}^-\}.$ Така $|\mathbb{R}^*:\mathbb{R}^+|=2.$

2.5.2 \mathbb{Z} и $6\mathbb{Z}$

Нека $a\in\mathbb{Z}$. Да разделим a с частно и остатък на 6. Тоест a=6s+r и $0\leq r<6$. Тогава $a+6\mathbb{Z}=\{a+6z\mid z\in\mathbb{Z}\}=\{6s+r+6z\mid z\in\mathbb{Z}\}=\{r+6(z+s)\mid z\in\mathbb{Z}\}=\{r+6z\mid z\in\mathbb{Z}\}=r+6\mathbb{Z}$. Ползвахме, че $z\mapsto z+s$ е биекция в \mathbb{Z} . От друга страна $a+6\mathbb{Z}=b+6\mathbb{Z}\longleftrightarrow a-b\in 6\mathbb{Z}\longleftrightarrow 6\mid a-b\longleftrightarrow a\equiv b\pmod{6}$. Ясно е, че класовете на еквивалетност са

- $1.6\mathbb{Z}$
- 2. $1 + 6\mathbb{Z}$
- 3. $2 + 6\mathbb{Z}$
- 4. $3 + 6\mathbb{Z}$
- 5. $4 + 6\mathbb{Z}$
- 6. $5 + 6\mathbb{Z}$

Така $|\mathbb{Z}: 6\mathbb{Z}| = 6$.

2.5.3 С₈ и С₄

Понеже $4 \mid 8$, то \mathbb{C}_4 образува подгрупа на $<\mathbb{C}_8,1,.,()^{-1}>$. Така че можем да говорим за съседни класове и индекс. Ето един трик

$$\omega_4^k = \cos\left(\frac{2k\pi}{4}\right) + i\sin\left(\frac{2k\pi}{4}\right) = \cos\left(\frac{2(2k)\pi}{8}\right) + i\sin\left(\frac{2(2k)\pi}{8}\right) = \omega_8^{2k}$$

Нека си припомним с пример, че $\omega_8^{21} = \omega_8^{16+5} = \omega_8^{2.8}.\omega_8^5 = 1^2.\omega_8^5 = \omega_8^5$. Тоест можем да редуцираме степента до остатък на 8. Сега смятаме

1.
$$\omega_8^0 \mathbb{C}_4 = 1 \mathbb{C}_4 = \mathbb{C}_4 = \{1, \omega_8^2, \omega_8^4, \omega_8^6\} = \{\omega_8^0, \omega_8^2, \omega_8^4, \omega_8^6\}$$

2.
$$\omega_8^1 \mathbb{C}_4 = \omega_8^1 \{1, \omega_8^2, \omega_8^4, \omega_8^6\} = \{\omega_8^{1+0}, \omega_8^{1+2}, \omega_8^{1+4}, \omega_8^{1+6}\} = \{\omega_8^1, \omega_8^3, \omega_8^5, \omega_8^7\}$$

3.
$$\omega_8^2 \mathbb{C}_4 = \omega_8^2 \{1, \omega_8^2, \omega_8^4, \omega_8^6\} = \{\omega_8^{2+0}, \omega_8^{2+2}, \omega_8^{2+4}, \omega_8^{2+6}\} = \{\omega_8^2, \omega_8^4, \omega_8^6, \omega_8^0\}$$

4.
$$\omega_8^3 \mathbb{C}_4 = \omega_8^3 \{1, \omega_8^2, \omega_8^4, \omega_8^6\} = \{\omega_8^{3+0}, \omega_8^{3+2}, \omega_8^{3+4}, \omega_8^{3+6}\} = \{\omega_8^3, \omega_8^5, \omega_8^7, \omega_8^1\}$$

5.
$$\omega_8^4 \mathbb{C}_4 = \omega_8^4 \{1, \omega_8^2, \omega_8^4, \omega_8^6\} = \{\omega_8^{4+0}, \omega_8^{4+2}, \omega_8^{4+4}, \omega_8^{4+6}\} = \{\omega_8^4, \omega_8^6, \omega_8^0, \omega_8^2\}$$

6.
$$\omega_8^5 \mathbb{C}_4 = \omega_8^5 \{1, \omega_8^2, \omega_8^4, \omega_8^6\} = \{\omega_8^{5+0}, \omega_8^{5+2}, \omega_8^{5+4}, \omega_8^{5+6}\} = \{\omega_8^5, \omega_8^7, \omega_8^1, \omega_8^3\}$$

7.
$$\omega_8^6 \mathbb{C}_4 = \omega_8^6 \{1, \omega_8^2, \omega_8^4, \omega_8^6\} = \{\omega_8^{6+0}, \omega_8^{6+2}, \omega_8^{6+4}, \omega_8^{6+6}\} = \{\omega_8^6, \omega_8^0, \omega_8^2, \omega_8^4\}$$

8.
$$\omega_8^7 \mathbb{C}_4 = \omega_8^7 \{1, \omega_8^2, \omega_8^4, \omega_8^6\} = \{\omega_8^{7+0}, \omega_8^{7+2}, \omega_8^{7+4}, \omega_8^{7+6}\} = \{\omega_8^7, \omega_8^1, \omega_8^3, \omega_8^5\}$$

Тоест $\mathbb{C}_8: \mathbb{C}_4=\{\{\omega_8^0,\omega_8^2,\omega_8^4,\omega_8^6\},\{\omega_8^1,\omega_8^3,\omega_8^5,\omega_8^7\}\}$. Така

$$|\mathbb{C}_8:\mathbb{C}_4|=2=rac{8}{4}=rac{|\mathbb{C}_8|}{|\mathbb{C}_4|}$$
 (Лагранж). Това което забелязваме е, че

разглеждайки съседният клас на \mathbb{C}_4 по ω_8^k . Ако k е четно, то резултата е множеството от тези на четна степен, съответно ако k е нечетно, то резултата е множеството от тези на нечетна степен.

2.6 Нормални групи

Нека $< G, e, ., ()^{-1} >$ е група и H образува нейна подгрупа. Казваме, че подгрупата образувана от H на групата $< G, e, ., ()^{-1} >$ е нормална, ако $(\forall g \in G)(gH = Hg)$.

2.6.1 Важни неща

- 1. H образува нормална подгрупа на $< G, e, ., ()^{-1} > \text{TCTK}$ $(\forall g \in G)(\forall h \in H)(g^{-1}hg \in H).$
- 2. Ако < $G, e, ., ()^{-1}$ > е абелева група, то всяка нейна подгрупа е нормална.
- 3. Ако |G:H|=2, то H образува нормална подгрупа на $< G, e, ., ()^{-1}>$.

2.7 Фактор група

Нека $< G, e, ., ()^{-1} >$ е група и H образува нейна нормална подгрупа. Тогава в множеството $G: H = \{gH \mid g \in G\}$ можем да въведем групова операция. Това, че H е нормална подгрупа ни позволява да го направим, иначе нямаше да е групова операция ... Та дефинираме следната операция

$$aH*bH=(a.b)H\quad ([a]_{\sim_H}*[b]_{\sim_H}=[a.b]_{\sim_H})$$

Така казахме, че * е групова операция. Нека видим, че наистина получаваме група:

- 1. (aH*bH)*cH = (a.b)H*cH = ((a.b).c)H = (a.(b.c))H = aH*(b.c)H = aH*(bH*cH)
- 2. aH*H = aH*eH = (a.e)H = aH if H*aH = eH*aH = (e.a)H = aH
- 3. $aH*a^{-1}H=(a.a^{-1})H=eH=H$ и $a^{-1}H*aH=(a^{-1}.a)H=eH=H$

Значи можем преспокойно да твърдим, че относно новата операция * $(aH)^{-1}=a^{-1}H$. Така групата $< G:H,H,*,()^{-1}>$ се нарича фактор група на $< G,e,.,()^{-1}>$ по нормалната ѝ подгрупа образувана от H и се бележи с G/H.

Четири вметвания:

- 1. Ако $< G, e, ., ()^{-1} >$ е абелева група, то всяка нейна фактор група е абелева.
- 2. Ако < $G, e, ., ()^{-1} >$ е циклична група, то всяка нейна фактор група е циклична.
- 3. Ако $< G, e, ., ()^{-1} >$ е крайна група, то всяка нейна фактор група е крайна.
- 4. Редът на една фактор група G/H съвпада с индексът на H в G.

2.8 Примери

2.8.1 \mathbb{R}^* и \mathbb{R}^+

Понеже $<\mathbb{R}^*,1,.,()^{-1}>$ е абелева, то и $<\mathbb{R}^+,e,.,()^{-1}>$ е абелева, а значи и нормална подгрупа. Значи е коректно да разгледаме фактор групата $\mathbb{R}^*/\mathbb{R}^+$. Както видяхме $\mathbb{R}^*:\mathbb{R}^+=\{\mathbb{R}^+,\mathbb{R}^-\}$. Да видим как се смята в тази фактор група, тя е абелева, така че

1.
$$\mathbb{R}^+ * \mathbb{R}^+ = 1\mathbb{R}^+ * 1\mathbb{R}^+ = (1.1)\mathbb{R}^+ = \mathbb{R}^+$$

2.
$$\mathbb{R}^+ * \mathbb{R}^- = 1\mathbb{R}^+ * (-1)\mathbb{R}^+ = (1.(-1))\mathbb{R}^+ = (-1)\mathbb{R}^+ = \mathbb{R}^-$$

3.
$$\mathbb{R}^- * \mathbb{R}^- = (-1)\mathbb{R}^+ * (-1) * \mathbb{R}^+ = (-1, -1)\mathbb{R}^+ = 1\mathbb{R}^+ = \mathbb{R}^+$$

Тоест очевидно нещата се случват точно както се случват в подгрупата $<\{1,-1\},1,.,()^{-1}>$ на $<\mathbb{R}^*,1,.,()^{-1}>$, която е циклична, защото $\{1,-1\}=<-1>$.

2.8.2 ℂ₈ и ℂ₄

Както видяхме $\mathbb{C}_8:\mathbb{C}_4=\{\{\omega_8^0,\omega_8^2,\omega_8^4,\omega_8^6\},\{\omega_8^1,\omega_8^3,\omega_8^5,\omega_8^7\}\}$. Нека означим

1.
$$A = \{\omega_8^0, \omega_8^2, \omega_8^4, \omega_8^6\} = \mathbb{C}_4 = 1\mathbb{C}_4$$

2.
$$B = \{\omega_8^1, \omega_8^3, \omega_8^5, \omega_8^7\} = \omega_8^1 \mathbb{C}_4$$

Понеже $<\mathbb{C}_8,1,.,()^{-1}>$ е циклична, в частност е и абелева. То $<\mathbb{C}_4,1,.,()^{-1}>$ е нормална и факторът $\mathbb{C}_8/\mathbb{C}_4$ е циклична от ред 2, тоест е изоморфна на \mathbb{C}_2 . Като сметки

1.
$$A * A = 1\mathbb{C}_4 * 1\mathbb{C}_4 = (1.1)\mathbb{C}_4 = \mathbb{C}_4 = A$$

2.
$$A * B = 1\mathbb{C}_4 * \omega_8^1 \mathbb{C}_4 = (1.\omega_8^1)\mathbb{C}_4 = \omega_8^1 \mathbb{C}_4 = B$$

3.
$$B * B = \omega_8^1 \mathbb{C}_4 * \omega_8^1 \mathbb{C}_4 = \omega_8^2 \mathbb{C}_4 = 1 \mathbb{C}_4 = A$$

2.8.3 \mathbb{Z} и $6\mathbb{Z}$

Понеже алгебриците са пестеливи от към запис, то $r+6\mathbb{Z}$ означаваме още с \overline{r} . Така $\mathbb{Z}: 6\mathbb{Z} = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}\}$. Също така множеството $\mathbb{Z}: 6\mathbb{Z}$ бележим с \mathbb{Z}_6 . Действието тук се случва по модул остатък на 6. Например ако групата запишем така $<\mathbb{Z}_6, \overline{0}, \oplus, \ominus>$, то

1.
$$\overline{2} \oplus \overline{3} = \overline{2+3} = \overline{5}$$

2.
$$\overline{4} \oplus \overline{3} = \overline{4+3} = \overline{7} = \overline{1}$$

$$3. \ominus \overline{4} = \overline{-4} = \overline{6-4} = \overline{2}$$

3 Една класика от Информатика

Нека $\alpha=\cos\left(\frac{\pi}{33}\right)+i\sin\left(\frac{\pi}{33}\right)$. Нека $\beta=\alpha^{28}$. Нека $G=<\alpha>$. Нека $H=<\beta>$.

- а) Намерете редовете на α , β , G и H.
- б) Да се намерят всички подгрупи на $(G, 1, ., ()^{-1})$ и да се направи схема на включванията между тях.
- в) Да се реши уравнението $G/H \cong \mathbb{Z}_t$.
- г) Да се реши уравнението $G/<\alpha^s>\cong H.$

3.1 Решение

а) Човек трябва да е много съобразителен и да забележи, че липсва една 2-ка в числителя ... Ей това е нещото, което наказва невнимателните млади Информатици ... Така $\alpha=\cos\left(\frac{2\pi}{66}\right)+i\sin\left(\frac{2\pi}{66}\right)=\omega_{66}^1$. Тогава $G=<\alpha>=<\omega_{66}^1>=\mathbb{C}_{66}$. Така $\operatorname{ord}(\alpha)=|G|=|\mathbb{C}_{66}|=66$. За β имаме $\beta=\alpha^{28}=(\omega_{66}^1)^{28}=\omega_{66}^{28}=\omega_{2.3.11}^{2.2.7}=\omega_{33}^{14}$. Използвайки, че $\operatorname{gcd}(33,14)=1$ получаваме, че $H=<\beta>=<\omega_{33}^1=0$ и значи $\operatorname{ord}(\beta)=|H|=|\mathbb{C}_{33}|=33$.

б) От предната $G = \mathbb{C}_{66}$. Естествените делители на 66 са $\{1, 2, 3, 6, 11, 22, 33, 66\}$. Тогава подгрупите са тези образувани от \mathbb{C}_d за $d \in \{1, 2, 3, 6, 11, 22, 33, 66\}$.

- в) $G/H=\mathbb{C}_{66}/\mathbb{C}_{33}\cong\mathbb{C}_2\cong\mathbb{Z}_2$ Значи t=2.
- г) Искаме да решим уравнението $\mathbb{C}_{66}/<\alpha^s>\cong\mathbb{C}_{33}$, което свеждаме до $<\alpha^s>=\mathbb{C}_2$. Тоест искаме $|<\alpha^s>|=2$, но $|<\alpha^s>|=ord(\alpha^s)$. От друга страна $ord(\alpha^s)=\frac{ord(\alpha)}{gcd(ord(\alpha),s)}=\frac{66}{gcd(66,s)}$. Значи търсим s, такова че $\frac{66}{gcd(66,s)}=2$, тоест $\frac{1}{gcd(66,s)}=\frac{2}{66}=\frac{1}{33}$. Значи gcd(66,s)=33. Очевидно това се случва когато $s\equiv 33\pmod{66}$. Понеже gcd(66,66z+33)=gcd(66,33)=33.

4 Първа теорема за хомоморфизмите

Нека $\mathcal{A}=<A, e_{\mathcal{A}}, *_{\mathcal{A}}, inv_{\mathcal{A}}>$ и $\mathcal{B}=<B, e_{\mathcal{B}}, *_{\mathcal{B}}, inv_{\mathcal{B}}>$ са групи. Нека $\varphi:A\to B$ е хомоморфизъм от \mathcal{A} към \mathcal{B} . Тоест

$$(\forall x \in A)(\forall y \in A)(\varphi(x *_{\mathcal{A}} y) = \varphi(x) *_{\mathcal{B}} \varphi(y))$$

- . Тогава
 - 1. $\operatorname{Ker}(\varphi) = \{a \in A \mid \varphi(a) = e_{\mathcal{B}}\}$ образува **нормална** подгрупа на \mathcal{A} .
 - 2. $\operatorname{Im}(\varphi)=\varphi[A]=\{\varphi(a)\mid a\in A\}$ образува подгрупа на $\mathcal{B}.$
 - 3. $A/\mathrm{Ker}(\varphi) \cong \mathrm{Im}(\varphi)$

5 Схема за задачите ползващи първата теорема за хомоморфизмите

Нека $\mathcal{A}=<A,e_{\mathcal{A}},*_{\mathcal{A}},inv_{\mathcal{A}}>$ и $\mathcal{B}=<B,e_{\mathcal{B}},*_{\mathcal{B}},inv_{\mathcal{B}}>$. Нека $C\subseteq A$. Искаме да докажем, че

- 1. C образува нормална подгрупа на A.
- 2. $A/C \cong B$.

За тази цел трябва да измислим подходящо изображение $\varphi:A\to B,$ което да е такова, че

- 1. φ е хомоморфизъм от \mathcal{A} към \mathcal{B} .
- 2. φ е сюрективно, което ще ни подсигури ${\rm Im}(\varphi) = B$.
- 3. $Ker(\varphi) = C$

Ако имаме такова изображение по първата теорема за хомоморфизмите заключаваме, че C образува нормална подгрупа на \mathcal{A} и $A/C \cong B$. И така за да решим задачата трябва кажем как точно ще разсъждаваме, че да измислим изображението, което търсим. Идеята е да тръгнем от зад на пред ... Да предположим, че имаме изображение $\varphi: A \to B$, което е хомоморфизъм, ще видим как трябва да действа φ , така че $\mathrm{Ker}(\varphi) = C$. Нека $x,y \in A$ са такива, че $\varphi(x) = \varphi(y)$. Тогава

$$\varphi(x) = \varphi(y) \longleftrightarrow$$

$$\varphi(x) *_{\mathcal{B}} inv_{\mathcal{B}}(\varphi(y)) = e_{\mathcal{B}} \longleftrightarrow$$

$$\varphi(x) *_{\mathcal{B}} \varphi(inv_{\mathcal{A}}(y)) = e_{\mathcal{B}} \longleftrightarrow$$

$$\varphi(x *_{\mathcal{A}} inv_{\mathcal{A}}(y)) = e_{\mathcal{B}} \longleftrightarrow$$

$$x *_{\mathcal{A}} inv_{\mathcal{A}}(y) \in \operatorname{Ker}(\varphi) \longleftrightarrow$$

$$x *_{\mathcal{A}} inv_{\mathcal{A}}(y) \in C$$

Значи искаме x и y да имат един и същ образ ТСТК $x *_{\mathcal{A}} inv_{\mathcal{A}}(y) \in C$. Сега ако $Ker(\varphi) = C$, то C образува нормална подгрупа на \mathcal{A} и тогава $x *_{\mathcal{A}} inv_{\mathcal{A}}(y) \in C$ е еквивалетно с $x *_{\mathcal{A}} C = y *_{\mathcal{A}} C$. Това е просто вметка, която цели да ни каже, че същност искаме двете релации $\varphi(x) = \varphi(y)$ и $x *_{\mathcal{A}} C = y *_{\mathcal{A}} C$ да съвпадат! Та ако имаме хубав критерий (под хубав имаме предвид такъв, който включва равенство!) за принадлежност

към множеството C сравнително лесно можем да се досетим какво да е изображението вземайки предвид, че образите искаме да са елементите на B! Нека видим няколко примера :)

6 Първа порция примери

Нека $\mathcal{C}=<\mathbb{C}^*,1,.,()^{-1}>$. Да се докаже, че M образува нормална подгрупа на \mathcal{C} и $\mathbb{C}^*/M\cong S$, където

- а) $M = \mathbb{U}$ и $S = \mathbb{R}^+$
- б) $M = \mathbb{R}^+$ и $S = \mathbb{U}$
- в) $M = \mathbb{R}^*$ и $S = \mathbb{U}$

6.1 Решение:

Първо това, че M образува нормална подгрупа на \mathcal{C} , можем да решим генерално в тази порция примери така: И в трите примера знаем или лесно можем да съобразим, че M образува подгрупа на \mathcal{C} . Тоест $< M, 1, ., ()^{-1} >$ е подгрупа на $< \mathbb{C}^*, 1, ., ()^{-1} >$, която е абелева. Следователно M образува нормална подгрупа на \mathcal{C} . (Като можем лесно да се измъкнем е хубаво да го направим!)

- а) Търсим изображение $\varphi: \mathbb{C}^* \to \mathbb{R}^+$, което е сюрективен хомоморфизъм и $\mathrm{Ker}(\varphi) = \mathbb{U}$. Така нека първо разгледаме трите множества, които имаме и да сме сигурни, че имаме хубав (такъв с равенство) критерий за принадлежност към \mathbb{U} .
 - 1. Понеже $\mathbb C$ образува поле, то $\mathbb C^*=\mathbb C\setminus\{0\}$. Имаме $x\in\mathbb C^*\iff x\in\mathbb C\ \&\ x\neq 0$.
 - 2. $\mathbb{R}^+ = \{r \in \mathbb{R} \mid r > 0\}$. Имаме $x \in \mathbb{R}^+ \iff x \in \mathbb{R} \ \& \ x > 0$.
 - 3. $\mathbb{U}=\{z\in\mathbb{C}\mid |z|=1\}$. Mmame $x\in\mathbb{U}\iff x\in\mathbb{C}^*\ \&\ |x|=1$.

Искаме

$$\varphi(x) = \varphi(y) \longleftrightarrow \frac{x}{y} \in \mathbb{U} \longleftrightarrow \left| \frac{x}{y} \right| = 1 \longleftrightarrow \frac{|x|}{|y|} = 1 \longleftrightarrow |x| = |y|$$

От друга страна ако $x \in \mathbb{C}^*$, то |x| > 0 понеже $|x| = 0 \iff x = 0$ и $|x| \ge 0$. Значи ако $x \in \mathbb{C}^*$, то $|x| \in \mathbb{R}^+$. Нека тогава пробваме с изображението $\varphi(x) = |x|$ и да проверим, че то ни върши работа.

- 1. $\varphi(x.y) = |x.y| = |x|.|y| = \varphi(x).\varphi(y)$ Значи φ е XMM.
- 2. Нека $r \in \mathbb{R}^+$. В частност $r \in \mathbb{C}^*$. Но $r = |r| = \varphi(r)$. Значи φ е сюрекция.
- 3. $x\in\mathbb{U}\iff x\in\mathbb{C}^*\ \&\ |x|=1\iff x\in\mathbb{C}^*\ \&\ \varphi(x)=1\iff x\in\mathrm{Ker}(\varphi).$ Значи $\mathrm{Ker}(\varphi)=\mathbb{U}.$

От първата теорема за XMM имаме $\mathbb{C}^*/\mathrm{Ker}(\varphi)\cong \mathrm{Im}(\varphi)$, тоест $\mathbb{C}^*/\mathbb{U}\cong \mathbb{R}^+$.

б) Търсим изображение $\varphi: \mathbb{C}^* \to \mathbb{U}$, което е сюрективен хомоморфизъм и $\mathrm{Ker}(\varphi) = \mathbb{R}^+$. Така търсим критерий за принадлежност към \mathbb{R}^+ , в който да участва равенство. Ами ние вече използвахме едно свойство на елементите включващо равенство. Именно $x \in \mathbb{R}^+ \iff x \in \mathbb{C}^* \& x = |x|$. Нека пробваме с него. Искаме

$$\varphi(x) = \varphi(y) \longleftrightarrow \frac{x}{y} \in \mathbb{R}^+ \longleftrightarrow \frac{x}{y} = \left| \frac{x}{y} \right| \longleftrightarrow \frac{x}{y} = \frac{|x|}{|y|} \longleftrightarrow \frac{x}{|x|} = \frac{y}{|y|}$$

Получихме $\varphi(x)=\varphi(y)\longleftrightarrow \frac{x}{|x|}=\frac{y}{|y|}$. Забележете, че от двете страни на равенствата x и y са разделени. Това ни помага да усетим каква информация искаме нашият хомоморфизъм да прехвърли от едната група към другата! След това всичко опира до правилния пренос на информацията ... Така ние искаме $\varphi(x)\in\mathbb{U}$, тоест $\varphi(x)\in\mathbb{C}^*$ & $|\varphi(x)|=1$. Човек лесно съобразява, че ако $x\in\mathbb{C}^*$, то $|x|\in\mathbb{R}^+$ и значи $\frac{x}{|x|}\in\mathbb{C}^*$. Я дайте да сметнем модула на $\frac{x}{|x|}$, на колко ли е равен ?

$$\left|\frac{x}{|x|}\right| = \frac{|x|}{||x||} = \frac{|x|}{|x|} = 1$$

Значи излезе, че ако $x \in \mathbb{C}^*$, то $\frac{x}{|x|} \in \mathbb{U}$. Много неочаквано ... Дали пък няхме специален термин когато разделяхме един вектор на дължината му ? Да веее имаме нормираност му викахме на това с

идеята, че дължината на нормиран вектор винаги е 1-ца. Спомени от 1-ви курс :) Така значи пробваме с изображението $\varphi(x) = \frac{x}{|x|}$.

- 1. $\varphi(x.y) = \frac{x.y}{|x.y|} = \frac{x.y}{|x|.|y|} = \frac{x}{|x|} \cdot \frac{y}{|y|} = \varphi(x) \cdot \varphi(y)$ Значи φ е XMM.
- 2. Нека $z\in\mathbb{U}$. В частност $z\in\mathbb{C}^*$. Но тогава $\varphi(z)=\frac{z}{|z|}=\frac{z}{1}=z$. Значи φ е сюрекция.
- 3. $x \in \mathbb{R}^+ \iff x \in \mathbb{C}^* \& x = |x| \iff x \in \mathbb{C}^* \& \varphi(x) = \frac{x}{|x|} = \frac{x}{x} = 1 \iff x \in \mathrm{Ker}(\varphi)$. Значи $\mathrm{Ker}(\varphi) = \mathbb{R}^+$.

От първата теорема за XMM имаме $\mathbb{C}^*/\mathrm{Ker}(\varphi)\cong \mathrm{Im}(\varphi)$, тоест $\mathbb{C}^*/\mathbb{R}^+\cong \mathbb{U}$.

в) Търсим изображение $\varphi: \mathbb{C}^* \to \mathbb{U}$, което е сюрективен хомоморфизъм и $\mathrm{Ker}(\varphi) = \mathbb{R}^*$. За целта първо търсим критерий с равенство за принадлежност към \mathbb{R}^* . Понеже $\mathbb{R}^* \subset \mathbb{C}^*$, то дайте да видим какво значи едно ненулево комплексно число да е ненулево реално. Нека z = a + ib и $(a,b) \neq (0,0)$. Ако се случи, че $b \neq 0$, то $z \notin \mathbb{R}^*$. Значи ако, $z \in \mathbb{R}^*$, то z = a + i0. Но тогава комплексно спрегнатото на z е a - i0, което е z. Тоест $z \in \mathbb{R}^*$, то $z = \overline{z}$. Е ясно е и обратното включване. Та значи ето го критерия за принадлежност към \mathbb{R}^* . $x \in \mathbb{R}^* \iff x \in \mathbb{C}^*$ & $x = \overline{x}$. Нека пробваме с него. Искаме

$$\varphi(x) = \varphi(y) \longleftrightarrow \frac{x}{y} \in \mathbb{R}^* \longleftrightarrow \frac{x}{y} = \overline{\left(\frac{x}{y}\right)} \longleftrightarrow \frac{x}{y} = \overline{\frac{x}{y}} \longleftrightarrow \frac{x}{\overline{x}} = \frac{y}{\overline{y}}$$

Получихме $\varphi(x)=\varphi(y)\longleftrightarrow \frac{x}{\overline{x}}=\frac{y}{\overline{y}}$. Забележете, че променливите пак се разделиха, значи това е информацията, която искаме да прехвърлим. Сега остава човек да съобрази, че ако $x\in\mathbb{C}^*$, то $\frac{x}{\overline{x}}\in\mathbb{U}$. Първо ако $x\in\mathbb{C}^*$, то е ясно, че $\frac{x}{\overline{x}}\in\mathbb{C}^*$. Сега ако $x\in\mathbb{C}^*$, то $\left|\frac{x}{\overline{x}}\right|=\frac{|x|}{|\overline{x}|}=\frac{|x|}{|x|}=1$. Значи $\varphi:\mathbb{C}^*\to\mathbb{U}$ и $\varphi(x)=\frac{x}{\overline{x}}$ е коректно дефинирано. Да видим, че ни върши работа.

1.
$$\varphi(x.y) = \frac{x.y}{\overline{x.y}} = \frac{x.y}{\overline{x}.\overline{y}} = \frac{x}{\overline{x}} \cdot \frac{y}{\overline{y}} = \varphi(x) \cdot \varphi(y)$$
 Значи φ е XMM.

- 2. Нека $z \in \mathbb{U}$. В частност $z \in \mathbb{C}^*$. Но тогава $\varphi(z) = \frac{z}{\overline{z}} = \frac{z.z}{\overline{z}.z} = \frac{z^2}{|z|^2} = \frac{z^2}{1^2} = z^2$. Значи нека $s = \sqrt{z}$. Тогава $|s| = \sqrt{|z|} = \sqrt{1} = 1$ Значи $s \in \mathbb{U}$ и $\varphi(s) = s^2 = (\sqrt{z})^2 = z$. Значи φ е сюрекция.
- 3. $x \in \mathbb{R}^* \iff x \in \mathbb{C}^* \& x = \overline{x} \iff x \in \mathbb{C}^* \& \varphi(x) = \frac{x}{\overline{x}} = \frac{x}{x} = 1 \iff x \in \text{Ker}(\varphi)$. Значи $\text{Ker}(\varphi) = \mathbb{R}^*$.

От първата теорема за XMM имаме $\mathbb{C}^*/\mathrm{Ker}(\varphi)\cong \mathrm{Im}(\varphi)$, тоест $\mathbb{C}^*/\mathbb{R}^*\cong \mathbb{U}$.

7 Още един пример

Да се докаже, че $\mathbb{U}/\mathbb{C}_n \cong \mathbb{U}$.

7.1 Решение:

Първо защо \mathbb{C}_n образува подгрупа на $<\mathbb{U},1,.,()^{-1}>$? Ами нека $z\in\mathbb{C}_n$. Тогава $z=|z|(\cos{(Arg(z))}+i\sin{(Arg(z))})$. Тогава от Моавър 1 имаме $z^n=|z|^n(\cos{(n.Arg(z))}+i\sin{(n.Arg(z))})=1$. Значи $|z|^n=1$. Понеже $|z|\geq 0$, то |z|=1 и значи $z\in\mathbb{U}$. Така $\mathbb{C}_n\subseteq\mathbb{U}$. Обаче $<\mathbb{C}_n,1,.,()^{-1}>$ е група. Значи $<\mathbb{C}_n,1,.,()^{-1}>$ е подгрупа на $<\mathbb{U},1,.,()^{-1}>$. Даже е и нормална понеже е абелева. Имаме директен критерий за принадлежност към \mathbb{C}_n , в който участва равенство. $x\in\mathbb{C}_n\iff x\in\mathbb{U} \& x^n=1$. Търсим изображение $\varphi:\mathbb{U}\to\mathbb{U}$, което е сюрективен хомоморфизъм и $\mathrm{Ker}(\varphi)=\mathbb{C}_n$. Искаме

$$\varphi(x) = \varphi(y) \longleftrightarrow \frac{x}{y} \in \mathbb{C}_n \longleftrightarrow \left(\frac{x}{y}\right)^n = 1 \longleftrightarrow \frac{x^n}{y^n} = 1 \longleftrightarrow x^n = y^n$$

Получихме $\varphi(x) = \varphi(y) \longleftrightarrow x^n = y^n$. Така въпросът е дали ако $x \in \mathbb{U}$, то $x^n \in \mathbb{U}$? Ами ако $x \in \mathbb{U}$, то |x| = 1 и $|x^n| = |x|^n = 1$. Значи да ако, $x \in \mathbb{U}$, то $x^n \in \mathbb{U}$. Значи $\varphi(x) = x^n$ е коректно изображение от \mathbb{U} към \mathbb{U} . Да проверим че ни върши работа.

- 1. $\varphi(x.y) = (x.y)^n = x^n.y^n = \varphi(x).\varphi(y)$. Значи φ е XMM.
- 2. Нека $z \in \mathbb{U}$. Имаме, че $\varphi(z) = z^n$. Нека $s = \sqrt[n]{z}$. Тогава $|s| = \sqrt[n]{|z|} = \sqrt[n]{1} = 1$. Значи $s \in \mathbb{U}$. От друга страна $\varphi(s) = s^n = (\sqrt[n]{z})^n = z$. Значи φ е сюрекция.

3. Имаме $x \in \mathbb{C}_n \iff x \in \mathbb{U} \& x^n = 1 \iff x \in \mathbb{U} \& \varphi(x) = 1 \iff x \in \text{Ker}(\varphi)$. Значи $\text{Ker}(\varphi) = \mathbb{C}_n$.

От първата теорема за XMM имаме $\mathbb{U}/\mathrm{Ker}(\varphi) \cong \mathrm{Im}(\varphi)$, тоест $\mathbb{U}/\mathbb{C}_n \cong \mathbb{U}$.

8 Още един пример

Нека $H_n = \{z \in \mathbb{C}^* \mid (\exists r \in \mathbb{R}^+)(\exists s \in \mathbb{C}_n)(z = r.s)\}$. Да се докаже, че

- а) $< H_n, 1, ., ()^{-1} >$ е група.
- 6) $H_n = \{ z \in \mathbb{C}^* \mid z^n = |z|^n \}.$
- в) H_n образува нормална подгрупа на $\langle H_{n^2}, 1, ..., ()^{-1} \rangle$.
- Γ) $H_{n^2}/H_n \cong \mathbb{C}_n$.

8.1 Решение:

- а) Очевидно $H_n \subset \mathbb{C}^*$ и $1 \in H_n$. Ще покажем, че е затворено относно умножението и относно обратен елемент. Нека $a \in H_n$ и нека $b \in H_n$. Тогава нека $r_a \in \mathbb{R}^+$, $r_b \in \mathbb{R}^+$, $s_a \in \mathbb{C}_n$ и $s_b \in \mathbb{C}_n$. Тогава $a.b = (r_a.s_a).(r_b.s_b) = (r_a.r_b)(s_a.s_b)$. Понеже \mathbb{R}^+ и \mathbb{C}_n образуват подгрупи на $< \mathbb{C}^*, 1, ., ()^{-1} >$, то $a.b \in H_n$. Също така $a^{-1} = (r_a.s_a)^{-1} = s_a^{-1}.r_a^{-1} = r_a^{-1}.s_a^{-1}$ и значи $a^{-1} \in H_n$. Следователно $< H_n, 1, ., ()^{-1} >$ е подгрупа на $< \mathbb{C}^*, 1, ., ()^{-1} >$. В частност е и група.
- б) Нека $z \in \mathbb{C}^*$ е такова, че $z^n = |z|^n$. Нека тригонометричния вид на z е $|z|(\cos(\alpha) + i\sin(\alpha))$. Тогава $z^n = |z|^n(\cos(n\alpha) + i\sin(n\alpha)) = |z|^n$. Значи $\cos(n\alpha) + i\sin(n\alpha) = 1 = 1 + i0$. Значи $\cos(n\alpha) = 1$ и $\sin(n\alpha) = 0$. Решенията на тази система са $n\alpha = 2k\pi$ за $k \in \mathbb{Z}$. Обаче тогава $\alpha = \frac{2k\pi}{n}$ и както знаем от първи курс решенията с точност до кратност на 2π са само n за $k \in \{0, 1, \dots, n-1\}$. Но тогава $z = |z|\omega_n^k$ за $k \in \{0, 1, \dots, n-1\}$. Значи $\{z \in \mathbb{C}^* \mid z^n = |z|^n\} \subseteq H_n$. Обратното включване е директно от тригонометричния вид на всяко комплексно (получава се $z^n = r^n$...)
- в) От а) имаме, че $H_n, 1, ., ()^{-1} >$ е абелева група. Единственото, което трябва да видим е, че $H_n \subseteq H_{n^2}$, което е доста лесно. Нека

- $z \in H_n$. Тогава от б) $z^n = |z|^n$. Тогава $z^{n^2} = z^{n.n} = (z^n)^n = (|z|^n)^n = |z|^{n.n} = |z|^{n^2}$. Значи $z \in H_{n^2}$. Следователно $H_n \subseteq H_{n^2}$. Вземайки предвид, че $< H_n, 1, ..., ()^{-1} >$ е абелева група получаваме, че е нормална подгрупа на $< H_{n^2}, 1, ..., ()^{-1} >$.
- г) Вече имаме и критерий за принадлежност към H_n с равенство. Така, че търсим изображение $\varphi: H_{n^2} \to \mathbb{C}_n$, което е сюрективен хомоморфизъм и $\mathrm{Ker}(\varphi) = H_n$. Искаме

$$\varphi(x) = \varphi(y) \longleftrightarrow \frac{x}{y} \in H_n \longleftrightarrow \left(\frac{x}{y}\right)^n = \left|\frac{x}{y}\right|^n \longleftrightarrow \frac{x^n}{y^n} = \frac{|x|^n}{|y|^n} \longleftrightarrow \frac{x^n}{|x|^n} = \frac{y^n}{|y|^n}$$

Получихме $\varphi(x)=\varphi(y)\longleftrightarrow \frac{x^n}{|x|^n}=\frac{y^n}{|y|^n}.$ Така въпросът е дали ако $x\in H_{n^2},$ то $\frac{x^n}{|x|^n}\in\mathbb{C}_n$? Ами ако $x\in H_{n^2},$ то $x^{n^2}=|x|^{n^2}.$ Сега за да видим, че $\frac{x^n}{|x|^n}\in\mathbb{C}_n$ трябва да видим, че на повдигнат на n-та степен дава 1. Тогава ако $x\in H_{n^2},$ то $\left(\frac{x^n}{|x|^n}\right)^n=\frac{x^{n^2}}{|x|^{n^2}}=\frac{|x|^{n^2}}{|x|^{n^2}}=1.$ Значи да ако, $x\in H_{n^2},$ то $\frac{x^n}{|x|^n}\in\mathbb{C}_n.$ Значи $\varphi(x)=\frac{x^n}{|x|^n}$ е коректно изображение от H_{n^2} към $\mathbb{C}_n.$ Да проверим, че ни върши работа.

- (а) $\varphi(x.y) = \frac{(x.y)^n}{|x.y|^n} = \frac{x^n.y^n}{|x|^n.|y|^n} = \frac{x^n}{|x|^n}.\frac{y^n}{|y|^n} = \varphi(x).\varphi(y)$. Значи φ е XMM.
- (б) Искаме да видим, че φ е сюрекция. Нека тогава вземем произволен елемент на \mathbb{C}_n . Нека това $z=\omega_n^k$ за някое $k\in\{0,1,\ldots,n-1\}$. Искаме да намерим $x\in H_{n^2}$, такова че $\varphi(x)=z$. Ами човек ако поогледа така двете множества и му дойдат някакви спомени от 1-ви курс ще се усети кой е директния кандидат. Хубаво е той да има модул 1 понеже $|z|=|\omega_n^k|=1$. Нека пробваме с $\omega_{n^2}^k$. $\varphi(\omega_{n^2}^k)=\frac{(\omega_{n^2}^k)^n}{1^n}=(\omega_{n^2}^n)^k=(\omega_n^1)^k=\omega_n^k=z$. Сега остава да се убедим, че $\omega_{n^2}^k\in H_{n^2}$. Имаме $|\omega_{n^2}^k|=1$ и $(\omega_{n^2}^k)^{n^2}=1$. Значи $(\omega_{n^2}^k)^{n^2}=1=|\omega_{n^2}^k|^{n^2}$. Така $\omega_{n^2}^k\in H_{n^2}$ и $\varphi(\omega_{n^2}^k)=\omega_n^k=z$. Следователно φ е сюрекция.

(в) Имаме $x \in H_n \iff x \in H_{n^2} \& x^n = |x|^n \iff x \in H_{n^2} \& \frac{x^n}{|x|^n} = 1 \iff x \in H_{n^2} \& \varphi(x) = 1 \iff x \in \operatorname{Ker}(\varphi).$ Значи $\operatorname{Ker}(\varphi) = H_n.$

От първата теорема за XMM имаме $H_{n^2}/\mathrm{Ker}(\varphi)\cong \mathrm{Im}(\varphi)$, тоест $H_{n^2}/H_n\cong \mathbb{C}_n$.

9 Последна задача за хомоморфизми

Нека

1.
$$G = \left\{ \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} \mid a \in \mathbb{Q}^* \& b \in \mathbb{Q} \right\}$$

$$2. \ M = \left\{ \begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix} \mid a \in \mathbb{Q}^* \right\}$$

3.
$$H = \left\{ \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} \mid b \in \mathbb{Q} \right\}$$

Да се докаже, че

- а) G образува група относно операцията умножение на квадратни матрици с рационални коефициенти.
- б) M образува подгрупа на групата образувана от G и тя е изоморфна на $<\mathbb{Q}^*,1,.,()^{-1}>$.
- в) H образува нормална подгрупа на групата образувана от G и $G/H\cong <\mathbb{Q}^*,1,.,()^{-1}>.$

9.1 Решение:

а) Следкато искаме да докажем, че G образува група относно операцията умножение на квадратни матрици с рационални коефициенти. То логично е проверим, че $G \subseteq GL_2(\mathbb{Q})$. Нека $a \in \mathbb{Q}^*$ и $b \in \mathbb{Q}$ и нека $m = \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix}$. Тогава $\det(m) = a \neq 0$. Значи m е неособена матрица с рационални коефициенти, знаем че рационалните числа

образуват поле, значи m е обратима. Тоест $m \in GL_2(\mathbb{Q})$. Следователно $G \subseteq GL_2(\mathbb{Q})$. Знаем, че $< GL_2(\mathbb{Q}), E_2, ., ()^{-1} >$ образува група, така че ще покажем, че G образува нейна подгрупа. Нека $a \in \mathbb{Q}^*$ и $b \in \mathbb{Q}$ и нека $m = \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix}$. Нека $c \in \mathbb{Q}^*$ и $d \in \mathbb{Q}$ и нека $t = \begin{pmatrix} c & d \\ 0 & 1 \end{pmatrix}$. Тогава $t = \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix}$. $t = \begin{pmatrix} ac & ad + b \\ 0 & 1 \end{pmatrix}$. Сега понеже $t = \mathbb{Q}^*$ и $t = \mathbb{Q}^*$ и $t = \mathbb{Q}^*$ очевидно $t = \mathbb{Q}^*$ и $t = \mathbb{Q}^*$

- б) Ще докажем, че $< M, E_2, ., ()^{-1} > \cong < \mathbb{Q}^*, 1, ., ()^{-1} >$ и тогава по изоморфизъм $< M, E_2, ., ()^{-1} >$ ще е група, понеже $< \mathbb{Q}^*, 1, ., ()^{-1} >$ е група. Поглеждайки множеството M смятам, че е задължително студент във ФМИ втори семестър не зависимо кой курс да съобрази, кое изображение е очевидна биекция от M към \mathbb{Q}^* . Именно $\varphi\left(\begin{pmatrix} q & 0 \\ 0 & 1 \end{pmatrix}\right) = q$. След като, това че $\varphi: M \to \mathbb{Q}^*$ е очевидно, че е биекция остава да видим, че φ запазва бинарната операция. Нека $x \in \mathbb{Q}^*$ и нека $y \in \mathbb{Q}^*$. Тогава $\varphi\left(\begin{pmatrix} x & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} y & 0 \\ 0 & 1 \end{pmatrix}\right) = \varphi\left(\begin{pmatrix} x.y & 0 \\ 0 & 1 \end{pmatrix}\right) = x.y = \varphi\left(\begin{pmatrix} x & 0 \\ 0 & 1 \end{pmatrix}, \varphi\left(\begin{pmatrix} y & 0 \\ 0 & 1 \end{pmatrix}\right)$. Значи φ е биективен хомоморфизъм, тоест изоморфизъм. Следователно $< M, E_2, ., ()^{-1} >$ е група. Това, че е подгрупа на $< G, E_2, ., ()^{-1} >$ е очевидно, защото е очевидно, че $M \subseteq G$.
- в) Използвайки първата теорема за хомоморфизмите ще докажем $G/H \cong < \mathbb{Q}^*, 1, ., ()^{-1} >,$ с което "безплатно"ще получим, че H образува нормална подгрупа на $< G, E_2, ., ()^{-1} >$. Първо ни трябва критерий за принадлежност към H, който да отделя от елементите на G със свойство, което е изразимо с равенство. Ами поглеждайки, че H

 $\left\{\begin{pmatrix}1&b\\0&1\end{pmatrix}\mid b\in\mathbb{Q}\right\}.$ То очевидно $H=\left\{\begin{pmatrix}a&b\\0&1\end{pmatrix}\in G\mid a=1\right\}.$ Значи пробваме с този критерий. Като търсим изображение $\psi:G\to\mathbb{Q}^*,$ което е сюрективен хомоморфизъм и $\mathrm{Ker}(\psi)=H.$

$$\psi\left(\begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix}\right) = \psi\left(\begin{pmatrix} c & d \\ 0 & 1 \end{pmatrix}\right) \longleftrightarrow \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} c & d \\ 0 & 1 \end{pmatrix}^{-1} \in H \longleftrightarrow \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} c^{-1} & -d.c^{-1} \\ 0 & 1 \end{pmatrix} \in H \longleftrightarrow \begin{pmatrix} ac^{-1} & b - adc^{-1} \\ 0 & 1 \end{pmatrix} \in H \longleftrightarrow ac^{-1} = 1 \longrightarrow a = c$$

Значи

$$\psi\left(\begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix}\right) = \psi\left(\begin{pmatrix} c & d \\ 0 & 1 \end{pmatrix}\right) \longleftrightarrow a = c$$

Значи информацията, която искаме да прехвърляме е каква е стойността на елемента на първи ред и първи стълб. Ако $\begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} \in G$, то $a \in \mathbb{Q}^*$. Значи $\psi \begin{pmatrix} \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} \end{pmatrix} = a$ е коректно дефинирано изображение от G към \mathbb{Q}^* . Ще покажем, че то ни върши работа.

$$\begin{array}{ll} 1. \;\; \psi\left(\begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} c & d \\ 0 & 1 \end{pmatrix}\right) = \psi\left(\begin{pmatrix} ac & ad+b \\ 0 & 1 \end{pmatrix}\right) = \\ a.c = \psi\left(\begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix}\right).\psi\left(\begin{pmatrix} c & d \\ 0 & 1 \end{pmatrix}\right). \; \text{Значи} \;\; \psi \;\; \text{е хомоморфизъм.} \end{array}$$

- 2. Искаме да видим, че ψ е сюрекция. Нека $q \in \mathbb{Q}^*$. Тогава $\begin{pmatrix} q & 0 \\ 0 & 1 \end{pmatrix} \in G$ и $\psi \begin{pmatrix} \begin{pmatrix} q & 0 \\ 0 & 1 \end{pmatrix} \end{pmatrix} = q$. Значи ψ е сюрекция.
- 3. Както видяхме $H = \left\{ \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} \in G \mid a = 1 \right\}$. Очевидно $H = \{ g \in G \mid \psi(g) = 1 \} = \mathrm{Ker}(\psi)$.

Така от първата теорема за хомоморфизмите $G/H\cong<\mathbb{Q}^*,1,.,()^{-1}>$ и H образува нормална подгрупа на $< G,E_2,.,()^{-1}>$.

10 Задача от теория на числата

Нека $a, b \in \mathbb{Z}$ са такива, че gcd(a, b) = 5. Да се намери на колко може да е равно gcd(13a + 36b, 2a + 5b)?

10.1 Решение:

Нека d = gcd(13a + 36b, 2a + 5b). Тогава

$$d = \gcd(13a + 36b, 2a + 5b) = \gcd(12a + a + 30b + 6b, 2a + 5b) =$$
$$\gcd(6(2a + 5b) + a + 6b, 2a + 5b) = \gcd(a + 6b, 2a + 5b) =$$
$$\gcd(2a - a + 5b + b, 2a + 5b) = \gcd(b - a, 2a + 5b).$$

Тогава $d \mid 5(b-a) + (-1)(2a+5b)$ значи $d \mid 7a$. Но $d \mid 2(b-a) + 1(2a+5b)$ значи $d \mid 7b$. Щом $d \mid 7a$ и $d \mid 7b$, то по дефиниция $d \mid gcd(7a,7b)$. Но gcd(7a,7b) = 7.gcd(a,b) = 7.5. Значи $d \mid 7.5$. Тогава $d \in \{1,5,7,35\}$. Видяхме d = gcd(b-a,2a+5b). Но $5 \mid b-a$ и $5 \mid 2a+5b$ следователно $5 \mid d$. Значи остава $d \in \{5,35\}$. Сега остава да проверим, кои от тези случай могат да се реализират. Търсим конкретни a и b така, че gcd(a,b) = 5 и d = 5. Да пробваме с b = 5 и a = 0. Първо ясно е, че gcd(5,0) = 5. gcd(5-0,2.0+5.5) = gcd(5,25) = 5. Значи d = 5 при b = 5 и a = 0. Търсим конкретни a и b така, че gcd(a,b) = 5 и d = 35. Да пробваме с b = 5 и a = 5. Първо ясно е, че gcd(5,5) = 5. gcd(5-5,2.5+5.5) = gcd(0,7.5) = 7.5 = 35. Значи d = 35 при b = 5 и a = 5.

Отговор: 5 и 35