RL: Introduction

What drives us?

Marius Lindauer

Winter Term 2021

AutoML: Hyperparameters of an SVM

Degree of the polynomial kernel function ('poly'), Ignored by all other kernels,

Definition

Let

 \blacktriangleright λ be the hyperparameters of an ML algorithm $\mathcal A$ with domain Λ ,

Definition

Let

- $ightharpoonup \lambda$ be the hyperparameters of an ML algorithm ${\mathcal A}$ with domain Λ ,
- $\blacktriangleright \ \mathcal{D}_{opt}$ be a dataset which is split into $\mathcal{D}_{\text{train}}$ and \mathcal{D}_{val}

Definition

Let

- \triangleright λ be the hyperparameters of an ML algorithm $\mathcal A$ with domain Λ ,
- lackbox \mathcal{D}_{opt} be a dataset which is split into $\mathcal{D}_{ ext{train}}$ and $\mathcal{D}_{ ext{val}}$
- $lackbox{c}(\mathcal{A}_{\pmb{\lambda}},\mathcal{D}_{train},\mathcal{D}_{valid})$ denote the cost of $\mathcal{A}_{\pmb{\lambda}}$ trained on $\mathcal{D}_{\text{train}}$ and evaluated on \mathcal{D}_{val} .

Definition

Let

- $ightharpoonup \lambda$ be the hyperparameters of an ML algorithm ${\mathcal A}$ with domain ${f \Lambda}$,
- $\blacktriangleright~\mathcal{D}_{opt}$ be a dataset which is split into $\mathcal{D}_{\text{train}}$ and \mathcal{D}_{val}
- $\blacktriangleright \ c(\mathcal{A}_{\pmb{\lambda}}, \mathcal{D}_{train}, \mathcal{D}_{valid}) \ \text{denote the cost of} \ \mathcal{A}_{\pmb{\lambda}} \ \text{trained on} \ \mathcal{D}_{\text{train}} \ \text{and evaluated on} \ \mathcal{D}_{\text{val}}.$

The *hyper-parameter optimization (HPO)* problem is to find a hyper-parameter configuration that minimizes this cost:

$$\pmb{\lambda}^* \in \mathop{\arg\min}_{\pmb{\lambda} \in \pmb{\Lambda}} c(\mathcal{A}_{\pmb{\lambda}}, \mathcal{D}_{train}, \mathcal{D}_{valid})$$