Week-8

Mathematics for Data Science - 1 Exponential and Logarithm Tutorials

- 1. If $3\log_p 9 2\log_q 27 = 2\log_{p^{-1}q} 81$, where p and q are two distinct positive real numbers, then show that $p = q^3$ or $q = p^3$.
- 2. Consider the equation $\log_5(x^2 + x + 5) + \log_4(x) = 3$. How many integers x satisfy the equation?

 \bigcirc 0

 \bigcirc 1

 \bigcirc 2

 \bigcirc 3

3. For isomerization reaction of compound F to compound G, Arrhenius constant is given by equation $A = A_0 e^{-\frac{E_a}{RT}}$ where A_0, E_a, R, T are pre-exponential factor $(A_0 = e^{35})$, activation energy (kJ), universal gas constant $(8.314\ J\ mol^{-1}\ K^{-1})$ and temperature (^0K) respectively. Arrhenius equation gives the temperature dependence of the reaction rates. For different values of temperature T, Arrhenius constant (A) are given in the Table M1W9A-1. If we use the method to minimise the Sum Squared Error (SSE), what is the most likely activation energy from the given options?

A(T)	0.00018	0.0027	0.030	0.26
T	750	796	850	896

Table 1: Table M1W9A-1

 $\bigcirc E_a = 272 \ kJ$

 $\bigcirc E_a = -272 \ kJ$

 $\bigcirc E_a = 438 \ kJ$

 $\bigcirc E_a = -438 \ kJ$

4. The table shows the different points on a coordinate plane. All the points can be divided in two groups G1 and G2. It is sure that points a and b belong to groups G1 and G2 respectively. Anita found a way that if she can draw a curve which divides all the points in two groups as shown in figure. She some how found the equation of the curve to be $f(x) = \frac{1}{1+e^{-2x+9}}$.

Point	x	y	Group
a	1	0.5	G1
b	5	0.5	G2
c	4	0.2	
d	4	0.8	
e	3	0.8	
f	7	0.8	

- (a) Find what was the logic to separate the points.
- (b) Assign G1 or G2 to each point based on that particular logic.

- 5. Suppose p and q are two non-zero natural numbers and q = p + 1. Consider two functions $f(x) = \log_p(q^x 1)$ and $g(x) = \log_q(p^x + 1)$. Find the co-ordinates where f and g will intersect.
- 6. Find the roots of the equation $x^{(\frac{3}{4}(\log_3 x)^2 + \frac{5}{4}\log_3 x^{-4})} = 3^3$.