Prediction of oxygen uptake dynamics by machine learning analysis of wearable sensors during activities of daily living

NINA ZHANG

215319003

Load Packages Load some packages we will use.

- library(tidyverse)
- library(tidytext)
- library(corrplot)
- library(doMC)
- library(caret)

Import Data

- Import "Kaggle_Data.csv" into R.
- data = read_csv('Kaggle_Data.csv')

Exploratory Data Analysis Visualize the features in the data.

Visualize the distribution of Oxygen

Visualize the correlations between these features.

Visualize the relationship between predictors and Oxygen.

Modeling

- Data Split
- Split the data into training set(70%) and test set(30%).
- We will fit random forest, xgboost and neural network using 10-fold cross-validation.

Random Forest

- Tune hyper-parameters for a random forest on the training set.
- The final parameters for random forest are as follows.
- RF\$bestTune

Fit random forest using best hyper-parameters on training set.

XGBoost

- Tune hyper-parameters for xgboost on training set.
- The final parameters for xgboost are as follows.
- XGBoost\$bestTune

Fit xgboost using best hyper-parameters on training set.

Neural Network

- Tune hyper-parameters for neural network on training set.
- The final parameters for the neural network are as follows.
 NNET\$bestTune

Fit neural network using best hyper-parameters on training set.

Model Evaluation

- Predict Oxygen using three models on test set.
- Calculate RMSE, MAE and R-squared for three models on test set.

Visualize these metric results.

