

*BDT Results

Deep Learning Model: p_T^{miss}

Regression Results

Resolving the p_T^{miss} Dilemma: Pre-Train finds a much more physically robust solution to the bimodal distribution.

Excellent, low-bias

prediction for ν_e and ν_u .

pt miss: magnitude of x,y

visible momentum.

components

- Simultaneously improving prediction for high- p_T^{miss} NC and ν_{τ} classes.
- Superior understanding, but still with remarkable bias.

Deep Learning Model: p_T^{miss}

Regression Results

- pt_miss: magnitude of x,y components visible_momentum.
- Resolving the p_T^{miss} Dilemma: Pre-Train finds a much more physically robust solution to the bimodal distribution.
 - Excellent, low-bias prediction for ν_e and ν_μ .
 - Simultaneously improving prediction for high- p_T^{miss} NC and ν_{τ} classes.
- Superior understanding, but still with remarkable bias.

Deep Learning Model: Lepton Momentum Magnitude

Regression Results

- The model successfully reconstructs the lepton and jet kinematics:
 - $\nu_{ au}$ **CC:** Challenge!
 - ν_{μ} CC: Misclassification of ν_{μ} as NC biasing the distribution.
- No direct info on the Primlepton is given to the model!
- Simultaneously successfully reconstructs the jet kinematics.

