Dresden OCL2 in MOFLON

10 Jahre Dresden-OCL - Workshop

ES Real-Time Systems Lab

Prof. Dr. rer. nat. Andy Schürr
Dept. of Electrical Engineering and Information Technology
Dept. of Computer Science (adjunct Professor)

Felix Klar

www.es.tu-darmstadt.de

Felix.Klar@es.tu-darmstadt.de

Outline

- Metamodels are Languages A Motivation
- Metamodeling Goals
- MOFLON OCL
- MOFLON Architecture
- MOFLON Scenarios
- Demo (Integration Scenario TiE-CDDS)
- Future Activities

Metamodeling – Goals

Constraints

- Constraints for detailed definition of language
- Definition of erroneous states
- Rules to comly with special design guidelines

- (Meta-)Modeling of language constructs
- Definition of language structure
- Domain specific semantics

Metamodel

- Transformationen to repair erroneous models
- Conversion of incompatible models into design compliant models
- Automatic adaption to design guidelines

Abstract Syntax

Transformation

Model

A Solution

(OCL) Constraints in MOFLON – **MOF Editor**

- MOF allows to add constraints to every MOF element
- MOFLON has an underlying MOF metamodel repository
- → MOFLON MOF editor may add constraints to elements

(OCL) Constraints in MOFLON – **Generated Implementations**

MOFLON allows to generate metamodel implementations (Java/JMI)

TECHNISCHE MOFLON – Architecture UNIVERSITÄT DARMSTADT Domain Specific Meta Models, Tool Representations MOFLON **Visual SDM Editor XML** Interchange **CASE Tools Visual MOF 2.0 Editor Visual TGG Editor** (XMI, GXL) Fujaba (Rational Rose, import etc.)

TECHNISCHE MOFLON – Architecture UNIVERSITÄT DARMSTADT Domain Specific Meta Models, Tool Representations MOFLON **Visual SDM Editor XML** Interchange **CASE Tools Visual MOF 2.0 Editor Visual TGG Editor** (XMI, GXL) Fujaba (Rational Rose, import etc.) instantiate instantiate, instantiate] instantiate instantiate refine **MOF 2.0 Graph Transformation Constraints TGGs** Metamodell (OCL, Java) Fujaba refine repair generate

TECHNISCHE MOFLON – Architecture UNIVERSITÄT DARMSTADT Domain Specific Meta Models, Tool Representations MOFLON **XML** Interchange **Visual SDM Editor CASE Tools Visual MOF 2.0 Editor Visual TGG Editor** (XMI, GXL) Fujaba (Rational Rose, import etc.) instantiate instantiate instantiate] instantiate instantiate refine **MOF 2.0 Graph Transformation Constraints TGGs** Metamodell (OCL, Java) Fujaba refine repair generate transform transform **↓**transform **XSLT Transformation OCL Compiler Velocity Transformation** MOMoC Dresden Fujaba

Case Study – Statechart Editor (STaX)

Integration Example – Class diagrams / database schemata

domain specific language, e.g. Class Diagrams

domain specific language, e.g. Database Schemata

Tool Integration Scenario (CD / DS)

Outline

- Metamodels are Languages A Motivation
- Metamodeling Goals
- MOFLON OCL
- MOFLON Architecture
- MOFLON Scenarios
- Demo (Integration Scenario TiE-CDDS)
- Future Activities

TiE-CDDS – Focus on Constraints in CD (1) Generate Code from MOF model (CD metamodel)

TiE-CDDS – Focus on Constraints in CD (2) Integration Framework

TiE-CDDS – Focus on Constraints in CD (3) Model Browser

TiE-CDDS – Focus on Constraints in CD (4) Integration Framework

TiE-CDDS – Focus on Constraints in CD (5) Forward Translation to DB representation

Model-Driven Software Development at Real-Time Systems Lab

Future Work – OCL

- Activate more features of Dresden OCL in MOFLON
 - MOF editor
 - User friendly OCL syntax checking
 - OCL expression completion
 - MOFLON code generator
 - Initial Values (init)
 - Queries?
 - ...
- We bootstrap our MOFLON MOF Metamodel periodically
 - Add more OCL constraints to our MOF Metamodel
 - Regenerate MOFLON MOF implementation
 - Activate constraint checking in MOFLON
 - → Model Verification

Further reading

- A. Königs, A. Schürr: "Tool Integration with Triple Graph Grammars A Survey", in: R. Heckel (ed.), Proceedings of the SegraVis School on Foundations of Visual Modelling Techniques, Amsterdam: Elsevier Science Publ., 2006; Electronic Notes in Theoretical Computer Science, Vol. 148, 113-150.
- F. Klar, S. Rose, A. Schürr: "TiE A Tool Integration Environment", Proceedings of the 5th ECMDA Traceability Workshop, 2009; CTIT Workshop Proceedings, Vol. WP09-09, 39-48
- F. Klar, S. Rose, A. Schürr: "A Meta-Model-Driven Tool Integration Development Process", Proceedings of the 2nd International United Information Systems Conference, 2008; Lecture Notes in Business Information Processing, 201-212.
- C. Amelunxen, A. Königs, T. Rötschke, A. Schürr: "MOFLON: A Standard-Compliant Metamodeling Framework with Graph Transformations", in: A. Rensink, J. Warmer (eds.), Model Driven Architecture Foundations and Applications: Second European Conference, Heidelberg: Springer Verlag, 2006; Lecture Notes in Computer Science (LNCS), Vol. 4066, Springer Verlag, 361-375.
- A. Königs: "Model Integration and Transformation A Triple Graph Grammar-based QVT Implementation", Technische Universität Darmstadt, Phd Thesis, 2009.

Time for questions and discussion

Thank you for your attention...

Backup Slides

Motivation

- Models are widely used in engineering disciplines
- Need for tool support that enables model-editing
- Domain experts want domain specific languages (DSL)
 - → domain specific models
- do not build model editors from scratch each time
 - → reuse functionality
 - → use meta-information

MOFLON – Main Features

- MOF2.0 editor (draw metamodels that comply to MOF2.0 standard)
 - → build Domain Specific Languages (DSLs)
- based on the CASE-tool framework Fujaba
- possibility to extend MOFLON by own plugins
- interoperabilty (import / export)
- transform metamodel instances with model transformations (SDM, TGG)
- generate code (JMI-compliant) from DSLs
- instantiate models of the DSL (= repositories)
- basic editing support for generated repositories
- Standard compliance!

Related Approaches

standards graph-	proaches based on -/modeltransformation					classic meta-CASE approaches				text based approaches					
Mor Oci Morios Chr. Chr. Microsoft DSI Chr. Poundiagen Tt. Sq. thi															
Abstract syntax	+	+	+	+	0	0	0	+	+	0	+	+	+	0	+
Concrete syntax				+	+		+	+	+	+	+	+			
Static semantics	+	+	0	+	+	+	0	0		+	0	+	0	0	
Dynamic semantics	+	+	+	+	+	+	+	0	0				+		0
Model analysis	+	+	+	+	+	0	+	0		+		0	+	0	+
Model transformation	+	+	+	+	+	+	+	0				0	+	0	+
Model integration	+	+	+	+	0	+							0		0
Acceptability	+	+	0		0	+		+		0	+	0	0	+	+
Scaleability	+	+		0		0		0							0
Tool availability		0	0	+	+	+	+	+	0	0	+	+	+	+	0
Expressiveness	+	+	0	+	+	0	0	0	0	0	0	0	+	0	0

from Amelunxen, Königs, Rötschke, and Schürr,

"MOSL: Composing a Visual Language for a Metamodeling Framework" in IEEE Symposium on Visual Languages and Human-Centric Computing (VLHCC 2006), September, 2006, 81-84

