Proposition 1

Prove that $\forall P, Q \in \mathbb{B}.(P \implies Q) \iff (\neg P \lor Q).$

Proof:

We need to prove this equivalence by proving both directions.

Let's start with:

$$P \implies Q \Rightarrow \neg P \lor Q$$

Assume $P \implies Q$ holds. By the definition of implication, this means that:

- If P is true, then Q is true.
- \bullet If P is false, the implication holds regardless of Q's truth value.

Now, we show that $\neg P \lor Q$ holds by considering two cases:

- Case 1: P is false. In this case, $\neg P$ is true, and thus $\neg P \lor Q$ holds regardless of the value of Q.
- Case 2: P is true. Since $P \implies Q$, we know Q must also be true. Therefore, $\neg P \lor Q$ holds because Q is true.

Thus, we have shown that $P \implies Q \Rightarrow \neg P \lor Q$.

Now let's continue to prove $\neg P \lor Q \Rightarrow P \implies Q$

Assume $\neg P \lor Q$ holds. We will show that $P \implies Q$ follows by considering two cases:

- Case 1: P is false. In this case, $\neg P$ is true, and therefore $\neg P \lor Q$ holds regardless of the value of Q. Since P is false, $P \Longrightarrow Q$ is true.
- Case 2: P is true. Since $\neg P \lor Q$ holds, and P is true, Q must also be true. Therefore, $P \implies Q$ holds.

Thus, we have shown that $\neg P \lor Q \Rightarrow P \implies Q$.

Since we have proven both directions, we conclude that:

$$P \implies Q \iff \neg P \lor Q$$

Proposition 2

Prove that $\forall n \in \mathbb{N}$. $\sum_{i=0}^{n} i^3 = \frac{1}{4}n^2(n+1)^2$.

Proof:

We will use mathematical induction on n to prove this statement.

Base Case: For n=0, the left-hand side is $\sum_{i=0}^{0} i^3 = 0^3 = 0$. The right-hand side is $\frac{1}{4} \times 0^2 \times (0+1)^2 = 0$. Thus, the base case holds.

Inductive Step: Assume that the statement is true for some $k \in \mathbb{N}$,

$$\sum_{i=0}^{k} i^3 = \frac{1}{4}k^2(k+1)^2$$

We need to prove that the statement is true for k+1,

$$\sum_{i=0}^{k+1} i^3 = \frac{1}{4}(k+1)^2(k+2)^2$$

Starting from the inductive hypothesis:

$$\sum_{i=0}^{k+1} i^3 = \left(\sum_{i=0}^{k} i^3\right) + (k+1)^3$$

Substitute the inductive hypothesis:

$$\sum_{i=0}^{k+1} i^3 = \frac{1}{4}k^2(k+1)^2 + (k+1)^3$$

Factor out $(k+1)^2$ from the terms:

$$\sum_{i=0}^{k+1} i^3 = (k+1)^2 \left(\frac{1}{4} k^2 + (k+1) \right)$$

Simplify the expression inside the parentheses:

$$\sum_{i=0}^{k+1} i^3 = (k+1)^2 \left(\frac{k^2 + 4k + 4}{4} \right)$$

$$= (k+1)^2 \left(\frac{(k+2)^2}{4}\right)$$
$$= \frac{1}{4}(k+1)^2(k+2)^2$$

Thus, the inductive step holds. By the principle of mathematical induction, the statement is true for all $n \in \mathbb{N}$.

Collaborators: None