Cheat Sheet

Confidence Interval: Inferring about a population parameter from a sample statistic

- The confidence level, γ , represents how confident we are the interval will contain the population parameter (population proportion or population mean).
- To get z^* , find z^* such that $P(|Z| < z^*) = \gamma$. To do that, first get percentile, ℓ , from confidence level (γ) :

$$\ell = \frac{\gamma + 1}{2}$$

then, use the z-table to find z^* such that $P(Z < z^*) = \ell$.

Proportion

The population proportion, p, is estimated with an interval (to indicate uncertainty) based on a sample proportion, \hat{p} .

• Bounds:

$$\hat{\rho} \pm z^* \sqrt{\frac{\hat{p}(1-\hat{\rho})}{n}}$$

- Necessary sample size for a given margin of error:
 - If \hat{p} is known:

$$n = \hat{p}(1 - \hat{p}) \left(\frac{z^{\star}}{ME}\right)^{2}$$

- If \hat{p} is unknown, assume it is 0.5 to be conservative

$$n = \frac{1}{4} \left(\frac{z^{\star}}{ME} \right)^2$$

Mean

The population mean, μ , is estimated with an interval (to indicate uncertainty) based on a sample mean, \bar{x} .

- Bounds:
 - If σ is known:

$$\bar{x} \pm z^{\star} \cdot \frac{\sigma}{\sqrt{n}}$$

- If σ is unknown, use the sample standard deviation (and t^*). Remember, df = n - 1. To get t^* , find t^* such that $P(|T| < t^*) = \gamma$ and df = n - 1.

$$\bar{x} \pm t^* \cdot \frac{s}{\sqrt{n}}$$

• Necessary sample size for a given margin of error:

$$n = \left(\frac{z^* \sigma}{ME}\right)^2$$