DESAFIO DE INFERÊNCIA

FERNANDA PERES
PROFESSORA E
CONSULTORA NA ÁREA DE
ANÁLISE DE DADOS

AGENDA

- Entendendo o problema
- Sugestão de roteiro
- Resolução do desafio
- Resumo da aula

ENTENDENDO O PROBLEMA

Transtorno depressivo

Problema de saúde pública (prevalência de ≈ 10%) Multifatorial (fatores sociais, psicológicos, biológicos)

Estilo de vida saudável (OMS)

Prática regular de atividade física Alimentação saudável

Os dados

Resultados da pesquisa NHNES (*National Health and Nutrition Examination Survey*), realizada anualmente nos EUA para avaliar a **saúde e nutrição** de adultos e crianças Inclui dados demográficos, socioeconômicos, dietéticos e relacionados à saúde Período de 2005-2006

Perguntas a serem respondidas

- 1) Qual o **perfil** de indivíduos (adultos maiores de 18 anos) com sintomas depressivos nos EUA no período de 2005-2006?
- 2) Hábitos saudáveis de alimentação e atividade física estão **associados** a menores índices de depressão nesta população?

Duas bases de dados

DEMO_PHQ.csv

Dados **demográficos** e resultados do *Patient Health Questionnaire-9* (PHQ-9), usado para avaliar o grau de **sintomas depressivos**. Inclui apenas adultos.

PAG_HEI.csv

Dados referentes à atividade física e ao Healthy Eating Index (HEI), um questionário que avalia a qualidade da dieta. Inclui adultos e crianças.

SUGESTÃO DE ROTEIRO

ANÁLISE EXPLORATÓRIA (EDA) UNIVARIADA ANÁLISE EXPLORATÓRIA (EDA) BIVARIADA

TESTES DE HIPÓTESES ANÁLISE CRÍTICA DOS RESULTADOS Faça a **leitura** dos bancos e os **tratamentos** que julgar necessários nas variáveis.

Por exemplo, você pode realizar o tratamento das categorias 7 = "Se recusou a responder" e 9 = "Não sabe".

Combine os dois bancos fornecidos, utilizando a variável SEQN como chave única.

O banco de dados final deve conter 5334 observações dos adultos respondentes do NHANES.

Crie a variável **phq9**, correspondente ao escore do questionário PHQ-9, somando as variáveis DPQ010 a DPQ090.

Crie a variável **phq_grp** com a classificação do escore **phq9**, assumindo os valores:

- 0 ("sem sintomas") se phq9 < 5
- 1 ("sintomas leves") se 5 <= phq9 < 10
- 2 ("sintomas moderados") se 10 <= phq9 < 15
- 3 ("sintomas moderadamente severos") se 15 <= phq9 < 19
- 4 ("sintomas severos") se phq9 >= 20.

UNIVARIADA

BIVARIADA

ANÁLISE CRÍTICA DOS RESULTADOS Faça uma análise descritiva **univariada** de **todas** as variáveis da análise.

Para isso, use gráficos e tabelas.

Variáveis quantitativas (numéricas)

Exemplos:

Idade (anos)
Altura (m)
Valor gasto em compras (R\$)

Variáveis qualitativas (categóricas)

Exemplos:

Gênero Nível de escolaridade Faixa etária

Variáveis quantitativas (numéricas)

Medidas de posição e de dispersão:

Média Mediana Moda Desvio-padrão Percentis

Variáveis qualitativas (categóricas)

Frequências:

Absoluta (n) Relativa (%)

Qual gráfico utilizar?

Distribuição de variável numérica

Histograma Gráfico de densidade

Distribuição de variável categórica

Gráfico de barras

Faça uma análise descritiva **univariada** de **todas** as variáveis da análise.
Para isso, use gráficos e tabelas.

Avalie a quantidade de **casos faltantes** nas variáveis e decida como proceder em relação a eles.

Reagrupe ou **recodifique** as variáveis que julgar necessário.

Faça uma análise bivariada de **sintomas de depressão** (phq9 ou phq_grp) com as **características demográficas**. Descreva o perfil com maiores prevalências de sintomas de depressão.

Faça uma análise bivariada de **características demográficas** x **hábitos saudáveis**. Qual perfil possui hábitos mais saudáveis?

Faça uma análise bivariada de **sintomas de depressão** (phq9 ou phq_grp) com os **hábitos saudáveis** (variáveis de atividade física e *Healthy Eating Index*). O que podemos observar?

Qual gráfico utilizar?

Relação entre duas variáveis numéricas

Gráfico de dispersão

Relação entre duas variáveis categóricas

Gráfico de barras agrupadas

Relação entre uma variável **numérica** e uma **categórica**

Gráfico boxplot

Faça o(s) teste(s) de hipóteses adequado(s) para avaliar a **significância estatística** das diferenças nas **características demográficas** apontadas na análise bivariada. Quais são as características que apresentam diferenças estatisticamente significativas para a frequência de sintomas de depressão?

Faça o(s) teste(s) de hipóteses adequado(s) para avaliar se existe **associação** entre **hábitos saudáveis** e sintomas de depressão.

Algumas opções de testes de hipóteses:

Avaliar a relação entre Teste de correlação de Pearson duas variáveis numéricas Avaliar a associação entre Teste qui-quadrado de independência duas variáveis categóricas Comparar as **médias** de **dois** Teste-t independente grupos independentes Comparar as **médias** de **mais** Teste F (ANOVA) de dois grupos independentes

- 1. Qual **tipo de estudo** está sendo empregado pelo NHANES? Experimental ou observacional?
- 2. Avalie as possíveis fontes de **viés** presentes na análise.
- 3. A partir da análise realizada, podemos afirmar que hábitos saudáveis possuem um **efeito causal** na prevenção de depressão?
- 4. Quais são as **limitações** das análises realizadas?0 que pode ser feito para **melhorar**?
- 5. Quais **outras variáveis/informações** poderiam ter sido coletadas para esta análise?

RESOLUÇÃO DO DESAFIO

LEITURA DO BANCO E TRATAMENTO DOS DADOS

Importação das bibliotecas

```
[ ] import pandas as pd
  import numpy as np
  import seaborn as sns
  import matplotlib.pyplot as plt
  import statsmodels.api as sm

[ ] from google.colab import drive
  drive.mount('/content/drive', force_remount = True)
```

Mounted at /content/drive

Carregamento dos bancos de dados

```
[ ] demo_phq = pd.read_csv('/content/drive/My Drive/Colab Notebooks/Desafio de inferência - Tera/DEMO_PHQ.csv')

pag_hei = pd.read_csv('/content/drive/My Drive/Colab Notebooks/Desafio de inferência - Tera/PAG_HEI.csv')
```

[5] demo_phq.info() # Informações de 5334 adultos

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5334 entries, 0 to 5333
Data columns (total 15 columns):

Data	columns (total 15 columns):
#	Column	Non-Null Count	Dtype
0	SEQN	5334 non-null	int64
1	DPQ010	4836 non-null	float64
2	DPQ020	4836 non-null	float64
3	DPQ030	4836 non-null	float64
4	DPQ040	4836 non-null	float64
5	DPQ050	4836 non-null	float64
6	DPQ060	4836 non-null	float64
7	DPQ070	4836 non-null	float64
8	DPQ080	4836 non-null	float64
9	DPQ090	4836 non-null	float64
10	RIAGENDR	5334 non-null	int64
11	RIDAGEYR	5334 non-null	int64
12	RIDRETH1	5334 non-null	int64
13	DMDEDUC	5334 non-null	int64
14	INDFMINC	5287 non-null	float64
dtype	es: float6	54(10), int64(5)	
memo	ry usage:	625.2 KB	

C+ <class 'pandas.core.frame.DataFrame'>
RangeIndex: 9424 entries, 0 to 9423
Data columns (total 17 columns):

Data	columns (total 17 columns)):	
#	Column	Non-Null Count	Dtype
0	SEQN	9424 non-null	int64
1	PAG_MINW	7150 non-null	float64
2	ADHERENCE	7150 non-null	float64
3	HEI2015C1_TOTALVEG	8549 non-null	float64
4	HEI2015C2_GREEN_AND_BEAN	8549 non-null	float64
5	HEI2015C3_TOTALFRUIT	8549 non-null	float64
6	HEI2015C4_WHOLEFRUIT	8549 non-null	float64
7	HEI2015C5_WHOLEGRAIN	8549 non-null	float64
8	HEI2015C6_TOTALDAIRY	8549 non-null	float64
9	HEI2015C7_TOTPROT	8549 non-null	float64
10	HEI2015C8_SEAPLANT_PROT	8549 non-null	float64
11	HEI2015C9_FATTYACID	8549 non-null	float64
12	HEI2015C10_SODIUM	8549 non-null	float64
13	HEI2015C11_REFINEDGRAIN	8549 non-null	float64
14	HEI2015C12_SFAT	8549 non-null	float64
15	HEI2015C13_ADDSUG	8549 non-null	float64
16	HEI2015_TOTAL_SCORE	8549 non-null	float64
dtype	es: float64(16), int64(1)		
memor	ry usage: 1.2 MB		

Inner Join

Left Join

Right Join

Full Outer Join


```
df = demo_phq.merge(pag_hei, on = 'SEQN', how = 'left')
df.info()
# Resulta em um banco com 5334 pessoas, só adultos
```

C <class 'pandas.core.frame.DataFrame'>
 Int64Index: 5334 entries, 0 to 5333

Data columns (total 31 columns):

	,	, -	
#	Column	Non-Null Count	Dtype
0	SEQN	5334 non-null	int64
1	DPQ010	4836 non-null	float64

Tratamento das variáveis

Vamos substituir por valores ausentes os códigos que, de acordo com o dicionário, correspondiam a categorias ausentes.

Para a variável RIDRETH1, vamos agrupar as categorias 5 e 2, que correspondem a "outros".

Para a variável renda ("INDFMINC"), como há muitas categorias, vamos tratá-la como numérica, usando a média dos valores da categoria.

```
replace map = {
  "DPQ010": {7: np.nan, 9: np.nan},
  "DPQ020": {7: np.nan, 9: np.nan},
  "DPQ030": {7: np.nan, 9: np.nan},
  "DPQ040": {7: np.nan, 9: np.nan},
  "DPQ050": {7: np.nan, 9: np.nan},
  "DPQ060": {7: np.nan, 9: np.nan},
  "DPQ070": {7: np.nan, 9: np.nan},
  "DPQ080": {7: np.nan, 9: np.nan},
  "DPQ090": {7: np.nan, 9: np.nan},
  "RIDRETH1": {5: 2}, # Other
  "DMDEDUC": {7: np.nan, 9: np.nan},
  "INDFMINC": {1: np.mean([0,4999]), 2: np.mean([5000,9999]),
               3: np.mean([10000,14999]),4: np.mean([15000,19999]),
               5: np.mean([20000,24999]),6: np.mean([25000,34999]),
               7: np.mean([35000,44999]), 8: np.mean([45000,54999]),
               9: np.mean([55000,64999]), 10: np.mean([65000,74999]),
               11: 75000, 12: np.mean([20000, 90000]), 13: np.mean([0, 19999]),
               77: np.nan, 99: np.nan}
}
df2 = df.replace(replace map)
```

Análise dos valores ausentes

DMDEDUC

0	df2.isna().sum().sort_valu	es(ascending=False)	0	100*df2.isna().sum().sort_	values(ascending=False)/df2.shape[0]
₽	phq9 phq_grp2 phq_grp DPQ080 DPQ010 DPQ030 DPQ020 DPQ040 DPQ050 DPQ050 DPQ070 DPQ090 HEI2015C2_GREEN_AND_BEAN HEI2015C7_TOTPROT HEI2015C8_SEAPLANT_PROT HEI2015C11_REFINEDGRAIN HEI2015C10_SODIUM HEI2015C10_SODIUM HEI2015C5_WHOLEGRAIN HEI2015C6_TOTALDAIRY HEI2015C12_SFAT HEI2015C12_SFAT HEI2015C3_TOTALFRUIT HEI2015C1_TOTALVEG HEI2015C1_TOTALVEG HEI2015C13_ADDSUG	535 535 535 507 507 505 503 503 502 500 274 274 274 274 274 274 274 274		phq9 phq_grp2 phq_grp DPQ080 DPQ010 DPQ030 DPQ020 DPQ040 DPQ050 DPQ050 DPQ070 DPQ090 HEI2015C2_GREEN_AND_BEAN HEI2015C7_TOTPROT HEI2015C8_SEAPLANT_PROT HEI2015C11_REFINEDGRAIN HEI2015C10_SODIUM HEI2015C5_WHOLEGRAIN HEI2015C6_TOTALDAIRY HEI2015C12_SFAT HEI2015C12_SFAT HEI2015C4_WHOLEFRUIT HEI2015C3_TOTALFRUIT HEI2015C1_TOTALVEG HEI2015C1_TOTALVEG HEI2015C13_ADDSUG INDFMINC	5.136858 5.136858 5.136858 5.136858 5.136858 5.136858 5.136858 5.136858
	INDFMINC	160		DMDEDUC	0.149981

Criação da variável escore PHQ

```
[13] df2["phq9"] = df2[["DPQ010",
                        "DPQ020",
                        "DPQ030",
                        "DPQ040",
                        "DPQ050",
                        "DPQ060",
                        "DPQ070",
                        "DPQ080",
                        "DPQ090"]].sum(axis = 'columns', skipna = False)
[14] df2['phq9'].describe()
              4799.000000
    count
                 2.732236
    mean
     std
                3.727676
    min
                0.000000
     25%
                0.000000
     50%
                1.000000
     75%
                4.000000
                27.000000
    max
    Name: phq9, dtype: float64
```

Criação da variável phq_grp

Vamos classificar os escores de acordo com a literatura

```
conditions = [
     (df2['phq9'].isna()),
     (df2['phq9'] \le 5),
     (df2['phq9'] > 5) & (df2['phq9'] <= 9),
     (df2['phq9'] > 9) & (df2['phq9'] <= 14),
     (df2['phq9'] > 14) & (df2['phq9'] <= 19),
     (df2['phq9'] > 19)
   values = [np.nan, 0, 1, 2, 3, 4]
   df2["phq grp"] = np.select(conditions, values) # Construindo a variável
   df2[["phq grp"]].value counts(sort = False) # Avaliando as frequências
phq_grp
   0.0
              4013
   1.0
               489
   2.0
               201
   3.0
                73
   4.0
                23
   dtype: int64
```

Como há poucas pessoas nas categorias 2, 3 e 4, vamos agrupá-las:

```
[16] df2["phq_grp2"] = df2["phq_grp"].replace([3, 4], 2)
    df2[["phq grp2"]].value counts(sort = False)
    phq grp2
    0.0
                4013
    1.0
                 489
    2.0
                 297
    dtype: int64
```

- 2) Como o percentual de missing está abaixo de 10% para todas as variáveis, não faremos nenhum tratamento para os casos faltantes.

1) Para as etapas de análise exploratória e teste de hipótese, utilizaremos a variável phq_grp2, com 3 níveis de sintomas de depressão.

ANÁLISE EXPLORATÓRIA (EDA) UNIVARIADA

```
var quant = [
    "RIDAGEYR",
    "INDFMINC",
    "PAG MINW",
    "HEI2015C1 TOTALVEG",
    "HEI2015C2 GREEN AND BEAN",
    "HEI2015C3 TOTALFRUIT",
    "HEI2015C4 WHOLEFRUIT",
    "HEI2015C5 WHOLEGRAIN",
    "HEI2015C6 TOTALDAIRY",
    "HEI2015C7 TOTPROT",
    "HEI2015C8 SEAPLANT PROT",
    "HEI2015C9 FATTYACID",
    "HEI2015C10 SODIUM",
    "HEI2015C11 REFINEDGRAIN",
    "HEI2015C12 SFAT",
    "HEI2015C13 ADDSUG",
    "HEI2015 TOTAL SCORE",
    "phq9"]
var quali = [
    "RIAGENDR",
    "RIDRETH1",
    "DMDEDUC",
    "ADHERENCE",
    "phq grp2"
```

Variáveis numéricas

Vui	idvelo fidificiiodo							
0	df2[var_quant].describe(percentiles	=	[.01,	.25,	.5,	.75,	.99]).round(2)	

₽		RIDAGEYR	INDFMINC	PAG_MINW	HEI2015C1_TOTALVEG	HEI2015C2_GREEN_AND_BEAN
	count	5334.00	5174.00	5334.00	5060.00	5060.00
	mean	45.09	40787.68	471.77	3.20	1.81
	std	20.15	24247.24	780.35	1.47	2.14
	min	18.00	2499.50	0.00	0.00	0.00
	1%	18.00	2499.50	0.00	0.00	0.00
	25%	27.00	17499.50	35.00	2.06	0.00
	50%	43.00	39999.50	210.00	3.22	0.06
	75%	62.00	69999.50	568.93	4.83	4.50
	99%	85.00	75000.00	3672.06	5.00	5.00
	max	85.00	75000.00	10777.83	5.00	5.00

Dado que uma semana tem, no máximo, 160 horas (10.080 min) não é possível que alguém tenha feito 10777 min de exercícios semanais. Nesse caso, iremos truncar a variável PAG_MINW em 3600 min (60 horas semanais).

```
[93] df2['PAG_MINW_trunc'] = np.where(df2['PAG_MINW'] > 3600, df2['PAG_MINW'])

[94] df2[['PAG_MINW', 'PAG_MINW_trunc']].describe(percentiles = [.01, .25, .5, .75, .99]).round(2)
```

	PAG_MINW	PAG_MINW_trunc
count	5334.00	5334.00
mean	471.77	454.86
std	780.35	663.05
min	0.00	0.00
1%	0.00	0.00
25%	35.00	35.00
50%	210.00	210.00
75%	568.93	568.93
99%	3672.06	3600.00
max	10777.83	3600.00

[95] # Criando a variável PAG_MIN em horas
df2['PAG_HW'] = df2['PAG_MINW_trunc']/60

Gráficos histograma

```
[97] for var in var_quant:
    sns.histplot(df2[var], kde=True)
    plt.show()
```


Gráficos de barras para as variáveis categóricas

Definição de uma função para criar esses gráficos

```
[ ] def grafico_barras_prop(data, variable):
    (data[[variable]]
        .value_counts(normalize=True, sort = False)
        .rename("Proportion")
        .reset_index()
        .pipe((sns.barplot, "data"), x=variable, y="Proportion"))
    plt.ylim(0,1)
    plt.show()
```


ANÁLISE EXPLORATÓRIA (EDA) BIVARIADA

Gráficos boxplot das variáveis numéricas por grupo

Definição de uma função para criar esses gráficos

for var in var quali:

grafico barras prop grp(df2.replace(label quali), var)

TESTES DE HIPÓTESES

IDADE E SINTOMAS DEPRESSIVOS

Os três **grupos** de depressão diferem quanto à **idade**?

Teste **ANOVA** (F): compara as médias de mais de dois grupos

Hipóteses do teste ANOVA:

- H0: não há diferença entre as médias dos grupos
- H1: **há** pelo menos uma diferença entre as médias dos grupos

Os três **grupos** de depressão diferem quanto à **idade**?

Teste **ANOVA** (F): compara as médias de mais de dois grupos

Hipóteses do teste ANOVA:

- H0: os três grupos de depressão não diferem quanto à média de idade
- H1: há pelo menos uma diferença na média de idade entre os três grupos de depressão

Os três **grupos** de depressão diferem quanto à **idade**?

Como p > 0,05 → Não rejeitamos H0

Conclusão: os três grupos de depressão não diferem estatisticamente quanto à média de idade

Exercícios físicos e sintomas depressivos

Os três **grupos** de depressão diferem quanto ao tempo dedicado a **exercício físico**, por semana?

Teste **ANOVA** (F): compara as médias de mais de dois grupos

Hipóteses do teste ANOVA:

- H0: os três grupos de depressão não diferem quanto à média de tempo gasto com exercício físico
- H1: há pelo menos uma diferença na média de tempo gasto com exercício físico entre os três grupos de depressão

Os três **grupos** de depressão diferem quanto ao tempo dedicado a **exercício físico**, por semana?

Como p < 0,05 → Rejeitamos H0

Conclusão: há <u>pelo menos uma diferença</u> na média de tempo gasto com exercício físico entre os três grupos de depressão

Quais grupos diferem entre si?

Para responder a essa pergunta, faremos o teste post-hoc de Tukey

```
from statsmodels.stats.multicomp import pairwise tukeyhsd
tukey = pairwise_tukeyhsd(df_aux["PAG_HW"],
                  df aux['phq grp2'],
                   alpha = 0.05)
                                                            50
print(tukey)
Multiple Comparison of Means - Tukey HSD, FWER=0.05
group1 group2 meandiff p-adj
                                lower
                                        upper reject
                                                            20
                                                           10
          1.0 -0.6978 0.3919 -1.948 0.5524 False
   0.0
   0.0 2.0 -3.3156 0.001 -4.8852 -1.7459
                                                  True
   1.0
          2.0 -2.6178 0.004 -4.538 -0.6975
                                                  True
                                                                           Sintomas leves
                                                                Sem sintomas
                                                                                     Sintomas mod-graves
                                                                             phq grp2
```

GÊNERO E SINTOMAS DEPRESSIVOS

A proporção de pessoas em cada **grupo** de depressão varia de acordo com o **gênero**?

Teste qui-quadrado: avalia a associação entre duas variáveis categóricas

Hipóteses do teste qui-quadrado:

- H0: não há associação entre as duas variáveis
- H1: **há** associação entre as duas variáveis

A proporção de pessoas em cada **grupo** de depressão varia de acordo com o **gênero**?

Teste qui-quadrado: avalia a associação entre duas variáveis categóricas

Hipóteses do teste qui-quadrado:

- H0: não há associação entre gênero e a presença de sintomas depressivos
- H1: há associação entre gênero e a presença de sintomas depressivos

A proporção de pessoas em cada **grupo** de depressão varia de acordo com o **gênero**?

Como p < 0,05 → Rejeitamos H0

Conclusão: há associação entre gênero e a presença de sintomas depressivos

Como se dá essa diferença?

RESUMO DA AULA

T

TAKEAWAY #1

Não há uma única solução. Há várias respostas e caminhos possíveis

TAKEAWAY #2

Há associação entre os sintomas depressivos, gênero e realização de exercícios físicos

Não podemos fazer inferências causais - estudo observacional.

TAKEAWAY #3

A ideia é que tenha sido desafiador!

TAKEAWAY #4

O desafio é diferente para cada um.

Estamos em níveis diferentes e tudo bem.

