Trumpiausių kelių apskaičiavimas

Vieslav Lapin

Uždavinys I

- Duotas svorinis (n,m)-grafas G=(V,U,C)
 - V viršunių aibė;
 - U briaunų aibė;
 - C briaunų svorių aibė;
- Rasti trumpiausius kelius tarp visų viršūnių porų.
- Šio uždavinio sprendimas:
 - matrica D=[d_{ij}]
 - $-d_{ij}$ = trumpiausio kelio tarp viršūnių i ir j poros

Uždavinys II

- Jei mus domina ir per kurias viršūnes kelias eina, tada dar papildomai reikalinga
 - Matrica P=[p_{ij}]
 - p_{ij} rodo, kuria kryptimi (į kurią viršūnę arba iš kurios viršūnės) iš viršūnės einama.

Uždavinio sprendimo metodai

- Deikstros metodas
- Floido metodas

Deikstros metodas

- Apskaičiujami trumpiausi keliai nuo viršūnės s iki visų likusių viršūnių
- Gauname d[1..n] ir prec[1..n]
- Į Deikstros algoritmą kreipiamasi, kai s kinta nuo 1 iki n
- d matricos D s-toji eilutė
- prec matricos P s-toji eilutė

Floido metodas

- (n,m)-grafo G=(V,U,C) viršūnės sunumeruotos iš eilės einančiais natūraliaisiais skaičiais nuo 1 iki n.
- matrica D gaunama nuosekliai apskaičiuojant matricas D⁰, D¹,..., D^m, ..., Dⁿ.
- $D^m = [d_{ij}^m]$ i = 1, n, j = 1, n elementas reiškia ilgį trumpiausio kelio tarp i ir j viršūnių, kai tarpinėmis šio kelio viršūnėmis gali būti tik viršūnės su numeriais nuo 1 iki m.

Floido metodas

- Jei tarp viršūnių i ir j nurodyto tipo kelio nėra, tai $d_{ij}^m = \infty$
- Apibrėžkime matricą D^{0.}

•
$$d_{ij}^0 = \begin{cases} c(i,j), & jei \quad (i,j) \in U, \\ \infty, & jei \quad (i,j) \notin U, \\ 0, & jei \quad i=j, \end{cases}$$
 visiems $i = \overline{1,n}, \quad j = \overline{1,n}.$

Floido metodas

Kaip iš matricos D^{m-1}apskaičiuoti matricą D^m,
m=1, 2, ..., n?

•
$$d_{ij}^{m} = \min(d_{ij}^{m-1}, d_{im}^{m-1} + d_{mj}^{m-1})$$

$$d_{ij}^{m} = \begin{cases} d_{ij}^{m-1}, & jei \quad d_{ij}^{m-1} \leq d_{im}^{m-1} + d_{mj}^{m-1}, \\ d_{im}^{m-1} + d_{mj}^{m-1} & prie \check{\text{singu atveju}}, \end{cases}$$

Trumpiausias ilgis tarp i ir j

- Mus domina ne tik trumpiausio kelio tarp viršūnių i ir j ilgis, bet ir per kokias viršūnes šis kelias eina.
- Tam tikslui apibrėšime matricas P^0 , P^1 , ..., P^m , ..., P^n .
- P^m elementas p_{ij}^m reiškia numerį viršūnės, į kurią tiesiogiai trumpiausias kelias veda iš viršūnės i į viršūnę j.

$$p_{ij}^{0} = \begin{cases} j, & jei \quad (i,j) \in U, \\ 0, & jei \quad (i,j) \notin U, \end{cases}$$

$$p_{ij}^{m} = \begin{cases} p_{ij}^{m-1}, & jei \quad d_{ij}^{m-1} \leq d_{im}^{m-1} + d_{mj}^{m-1}, \\ p_{im}^{m-1} & priešingu \ atveju, \end{cases}$$

Pseudokodas

• **For** i := 1 to n **do** — For j= 1 to n do d[i][j] = inf • prec[i][j] = 0 - d[i][i] = 0• **For** (i,j) in U //Iteruojame per visas briaunas - d[i][j] = w(i,j)- prec[i][j] = j • **For** k := 1 to n **do** - For i := 1 to n do • **For** j := 1 to n **do** - If d[i][j] > d[i][k] + d[k][j] then(i)[v2] = d[i][k] + d[k][j]» prec[i][j] = prec[i][k]

Pavyzdys – Pasiruošimas

D ⁰	1	2	3	4
1	0	1	2	1
2	2	0	5	inf
3	6	7	0	2
4	1	inf	4	4

P ⁰	1	2	3	4
1	0	2	3	4
2	1	0	3	0
3	1	2	0	4
4	1	0	3	0

D^0	1	2	3	4
1	0	1	2	1
2	2	0	5	inf
3	6	7	0	2
4	1	inf	4	4

P ⁰	1	2	3	4
1	0	2	3	4
2	1	0	3	0
3	1	2	0	4
4	1	0	3	0

D^1	1	2	3	4
1	0	1	2	1
2	2	0	4	3
3	6	7	0	2
4	1	2	3	0

P ¹	1	2	3	4
1	0	2	3	4
2	1	0	1	1
3	1	2	0	4
4	1	1	1	0

D^1	1	2	3	4
1	0	1	2	1
2	2	0	4	3
3	6	7	0	2
4	1	2	3	0

P ¹	1	2	3	4
1	0	2	3	4
2	1	0	1	1
3	1	2	0	4
4	1	1	1	0

D ²	1	2	3	4
1	0	1	2	1
2	2	0	4	3
3	6	7	0	2
4	1	2	3	0

P ²	1	2	3	4
1	0	2	3	4
2	1	0	1	1
3	1	2	0	4
4	1	1	1	0

D ²	1	2	3	4
1	0	1	2	1
2	2	0	4	3
3	6	7	0	2
4	1	2	3	0

P ²	1	2	3	4
1	0	2	3	4
2	1	0	1	1
3	1	2	0	4
4	1	1	1	0

D ³	1	2	3	4
1	0	1	2	1
2	2	0	4	3
3	6	7	0	2
4	1	2	3	0

P ³	1	2	3	4
1	0	2	3	4
2	1	0	1	1
3	1	2	0	4
4	1	1	1	0

D ³	1	2	3	4
1	0	1	2	1
2	2	0	4	3
3	6	7	0	2
4	1	2	3	0

P ³	1	2	3	4
1	0	2	3	4
2	1	0	1	1
3	1	2	0	4
4	1	1	1	0

D ⁴	1	2	3	4
1	0	1	2	1
2	2	0	4	3
3	3	4	0	2
4	1	2	3	0

P ⁴	1	2	3	4
1	0	2	3	4
2	1	0	1	1
3	4	4	0	4
4	1	1	1	0

Uždavinys

