

Gênesis Soares Araújo

Objetivos:

- Identificar representações algébricas que expressem a relação entre grandezas;
- Interpretar gráfico cartesiano que represente relações entre grandezas;
- Resolver situação-problema cuja modelagem envolva conhecimentos algébricos.
- Utilizar informações expressas em gráficos ou tabelas para fazer inferências;
- Resolver problema com dados apresentados em tabelas ou gráficos;
- Analisar informações expressas em gráficos ou tabelas como recurso para a construção de argumentos.

Principais conceitos que você vai aprender:

- Função constante
- Função polinomial do 1º grau
- Estudo dos sinais das funções
- Situações-problema com funções polinomiais do 1.º grau

Existem certas funções f em que os valores de f(x) permanecem sempre o mesmo para qualquer valor real de x.

Existem certas funções f em que os valores de f(x) permanecem sempre o mesmo para qualquer valor real de x.

Exemplo

Preço único de uma passagem \rightarrow R\$ 3,50

Qualquer distância $\rightarrow x \ge 0$ (em quilômetros)

Existem certas funções f em que os valores de f(x) permanecem sempre o mesmo para qualquer valor real de x.

Exemplo

Preço único de uma passagem \rightarrow R\$ 3,50

Qualquer distância $\rightarrow x \ge 0$ (em quilômetros)

Distância (em km)	Valor da passagem (em R\$)
0	3,50
1	3,50
1,72	3,50
2,333	3,50

Gráfico

f(0) = 3,5; f(1) = 3,5; f(1,72) = 3,5; f(2,333...) = 3,5, e assim por diante, para qualquer valor real de \mathbf{x} não negativo.

Representação:

a) na forma tabular;

```
{(0; 3,5); (1; 3,5); (1,72; 3,5); (2,333...; 3,5)}
```

Representação:

a) na forma tabular;

b) num diagrama de flechas.

Formalizando

Dado um número real k, denomina-se função constante a função f: $\mathbb{R} \to \mathbb{R}$, definida por f(x) = k.

Formalizando

Dado um número real k, denomina-se função constante a função f: $\mathbb{R} \to \mathbb{R}$, definida por f(x) = k.

O gráfico de uma função constante f(x) = k é uma reta paralela ao eixo das abscissas, e a intersecção desse gráfico com o eixo das ordenadas é o ponto (0; k).

Formalizando

Dado um número real k, denomina-se função constante a função f: $\mathbb{R} \to \mathbb{R}$, definida por f(x) = k.

O gráfico de uma função constante f(x) = k é uma reta paralela ao eixo das abscissas, e a intersecção desse gráfico com o eixo das ordenadas é o ponto (0; k).

Situação:

Um terreno de forma retangular, de lados 30 m e 10 m, deverá ser dividido em duas partes conforme a figura.

Situação:

Um terreno de forma retangular, de lados 30 m e 10 m, deverá ser dividido em duas partes conforme a figura.

Observe que o perímetro do terreno ABCD é 80 m e o perímetro y do terreno BCEF é y = 2x + 20, para $0 \le x \le 30$.

A área do terreno ABCD é de 300 m² e a área A do terreno BCEF é de A = 10x, para $0 \le x \le 30$.

A área do terreno ABCD é de 300 m² e a área A do terreno BCEF é de A=10x, para $0 \le x \le 30$.

Tanto o perímetro quanto a área do terreno BCEF podem ser expressos por meio de uma função de um polinômio do 1º grau.

A área do terreno ABCD é de 300 m² e a área A do terreno BCEF é de A = 10x, para $0 \le x \le 30$.

Tanto o perímetro quanto a área do terreno BCEF podem ser expressos por meio de uma função de um polinômio do 1º grau.

Dados dois números reais **a** e **b**, com a \neq 0, denomina-se **função do 1º grau** ou **função afim** a função: $f: \mathbb{R} \to \mathbb{R} \mid f(x) = ax + b$

Função polinomial do 1º grau Particularidades

Considere a seguinte função afim: f(x) = ax + b

Particularidades

Considere a seguinte função afim:

$$f(x) = ax + b$$

I. Se b = 0, f(x) = ax é denominada de **função linear**.

Exemplo:

$$f(x) = 5x;$$

$$f(x) = x$$

Particularidades

Considere a seguinte função afim:

$$f(x) = ax + b$$

I. Se b = 0, f(x) = ax é denominada de **função linear**.

Exemplo:

$$f(x) = 5x;$$

$$f(x) = x$$

II. Se a = 1 e b = 0, f(x) = x é denominada de **função identid**ade.

Considere a seguinte função afim:

f:
$$\mathbb{R} \to \mathbb{R} \mid f(x) = ax + b$$

Considere a seguinte função afim:

f:
$$IR \rightarrow IR \mid f(x) = ax + b$$

O gráfico da função afim é sempre uma reta e pode ser determinado de diversas maneiras:

Considere a seguinte função afim:

f:
$$IR \rightarrow IR \mid f(x) = ax + b$$

O gráfico da função afim é sempre uma reta e pode ser determinado de diversas maneiras:

Conhecida a expressão algébrica da função, atribuem-se valores a x, obtendo-se os correspondentes valores de y = f(x).

Considere a seguinte função afim:

f:
$$IR \rightarrow IR \mid f(x) = ax + b$$

O gráfico da função afim é sempre uma reta e pode ser determinado de diversas maneiras:

Conhecida a expressão algébrica da função, atribuem-se valores a x, obtendo-se os correspondentes valores de y = f(x).

• Conhecidos dois pontos distintos pertencentes à função, isto é, dois pares (x; f(x)) dessa função, colocam-se os pontos no plano cartesiano e traça-se a reta.

Considere a seguinte função afim:

f:
$$\mathbb{R} \to \mathbb{R} \mid f(x) = ax + b$$

O gráfico da função afim é sempre uma reta e pode ser determinado de diversas maneiras:

Conhecida a expressão algébrica da função, atribuem-se valores a x, obtendo-se os correspondentes valores de y = f(x).

- Conhecidos dois pontos distintos pertencentes à função, isto é, dois pares (x; f(x)) dessa função, colocam-se os pontos no plano cartesiano e traça-se a reta.
- Conhecido um ponto da função, isto é, um par (x; f(x)) e sua inclinação θ, tem-se:

 θ é a inclinação da reta e tg θ = a é a taxa de variação (coeficiente angular).

 θ é a inclinação da reta e tg θ = a é a taxa de variação (coeficiente angular).

Função crescente

 \rightarrow taxa de variação (tg) positiva \Rightarrow a > 0

 θ é a inclinação da reta e tg θ = a é a taxa de variação (coeficiente angular).

Função crescente

 \rightarrow taxa de variação (tg) positiva \Rightarrow a > 0

Função decrescente

 \rightarrow taxa de variação (tg) negativa \Rightarrow a < 0

 θ é a inclinação da reta e tg θ = a é a taxa de variação (coeficiente angular).

Função crescente

 \rightarrow taxa de variação (tg) positiva \Rightarrow a > 0

Função decrescente

 \rightarrow taxa de variação (tg) negativa \Rightarrow a < 0

Função decrescente

 \rightarrow taxa de variação (tg) nula \Rightarrow a = 0

Eixo x

O gráfico de uma função intercepta o eixo x quando a imagem f(x) é igual a zero. Esse ponto de intersecção do gráfico da função com o eixo das abscissas é muito importante e é chamado **raiz** da função (ou **zero** da função). Assim sendo, toda vez que procuramos a(s) raiz (raízes) de uma função, basta igualarmos a zero a sentença que representa f(x).

Eixo x

O gráfico de uma função intercepta o eixo x quando a imagem f(x) é igual a zero. Esse ponto de intersecção do gráfico da função com o eixo das abscissas é muito importante e é chamado **raiz** da função (ou **zero** da função). Assim sendo, toda vez que procuramos a(s) raiz (raízes) de uma função, basta igualarmos a zero a sentença que representa f(x).

No caso da função afim, teremos:

$$f(x) = 0 \Rightarrow ax + b = 0$$

Eixo x

O gráfico de uma função intercepta o eixo x quando a imagem f(x) é igual a zero. Esse ponto de intersecção do gráfico da função com o eixo das abscissas é muito importante e é chamado **raiz** da função (ou **zero** da função). Assim sendo, toda vez que procuramos a(s) raiz (raízes) de uma função, basta igualarmos a zero a sentença que representa f(x).

No caso da função afim, teremos:

$$f(x) = 0 \Rightarrow ax + b = 0$$

$$x = \frac{-b}{a}$$

Única raiz de uma função afim

Eixo y

O gráfico de uma função intercepta o eixo y quando o elemento x é igual a zero. Assim sendo, toda vez que procuramos a intersecção do gráfico da função com o eixo y, basta determinarmos a imagem do zero, ou seja, calcularmos f(0).

Eixo y

O gráfico de uma função intercepta o eixo y quando o elemento x é igual a zero. Assim sendo, toda vez que procuramos a intersecção do gráfico da função com o eixo y, basta determinarmos a imagem do zero, ou seja, calcularmos f(0).

No caso da função afim, teremos:

$$f(0) = a \cdot 0 + b \qquad \therefore \quad f(0) = b$$

Eixo y

O gráfico de uma função intercepta o eixo y quando o elemento x é igual a zero. Assim sendo, toda vez que procuramos a intersecção do gráfico da função com o eixo y, basta determinarmos a imagem do zero, ou seja, calcularmos f(0).

No caso da função afim, teremos:

$$f(0) = a \cdot 0 + b \qquad \therefore \quad f(0) = b$$

Portanto, a função afim tem intersecção com o eixo y no ponto de ordenada b.

Coeficiente linear:

O coeficiente b da função f(x) = ax+b é o chamado coeficiente linear. Ele determina o ponto onde a reta corta o eixo y.

Coeficiente angular(taxa de variação):

O coeficiente a fornece a taxa de variação da grandeza y em relação à grandeza x.

Resumo gráfico da função afim:

$$f(x) = ax + b$$

Observação: Os gráficos de funções identidade e lineares (y = x + b) são retas paralelas aos eixos coordenados que passam pela origem.

· Variação de sinais da função afim

Variação de sinais da função afim

$$y = ax + b$$
, com $a \neq 0$

$$y > 0$$
, para $x > \frac{-b}{a}$
 $y = 0$, para $x = \frac{-b}{a}$
 $y < 0$, para $x < \frac{-b}{a}$

· Variação de sinais da função afim

$$y = ax + b$$
, com $a \neq 0$

$$y > 0$$
, para $x > \frac{-b}{a}$

$$y = 0$$
, para $x = \frac{-b}{a}$

$$y < 0$$
, para $x < \frac{-b}{a}$

· Variação de sinais da função afim

$$y = ax + b$$
, com $a \neq 0$

$$y = 0$$
, para $x = \frac{-b}{a}$

$$y < 0$$
, para $x < \frac{-b}{a}$

$$y > 0$$
, para $x < \frac{-b}{a}$

$$y = 0$$
, para $x = \frac{-b}{a}$

$$y < 0$$
, para $x > \frac{-b}{a}$