176. For testing

$$H_0: p = p_0$$
 versus $H_1: p \neq p_0$,

suppose we observe $X_1,...,X_n \sim \text{IID Bernoulli}(p)$

- (a) Derive an expression for $-2\log\{\lambda(\mathbf{x})\}$ where $\lambda(\mathbf{x})$ is the likelihood ratio test statistic.
- (b) Use R to simulate $-2\log\{\lambda(\mathbf{x})\}$. Simulate 5000 replications of samples of sizes n=10,30,50,100 and 500, each for three values of $p_0=0.25,0.5$ and 0.9. Compare the histogram of the test statistic with the χ_1^2 PDF. Create QQ plots of the empirical statistics vs the χ_1^2 distribution. Compute the empirical 25th, 50th, 75th, 90th, 95th, and 99th percentiles and compare them to the χ_1^2 percentiles and put these in a table. How does increasing the sample size affect the fit of the χ_1^2 distribution the empirical distribution of $-2\log\{\lambda(\mathbf{x})\}$? Does the value of p_0 affect the approximation? Explain.