Biostatistics: Types of Data Analysis

Theresa A Scott, MS

Vanderbilt University
Department of Biostatistics
theresa.scott@vanderbilt.edu
http://biostat.mc.vanderbilt.edu/TheresaScott

Theresa A Scott, MS (Vandy Biostats)

Data Analysis

1 / 29

Goals of data analysis

- \triangleright (1) To describe (summarize) the population of interest by describing what was observed in the (study) sample.
 - Employs *descriptive statistics*, which involves
 - Summarizing continuous variables using the mean, standard deviation, range, and percentiles (including the median).
 - Summarizing categorical variables using raw and relative frequencies.
- \triangleright (2) To use patterns in the (study) sample data to draw inferences about the population represented.
 - Employs inferential statistics, which involves
 - Confidence intervals.
 - Hypothesis tests & p-values.
 - Correlation and determining associations.
 - Determing relationships, estimating effects, and making predictions using regression analysis.

Theresa A Scott, MS (Vandy Biostats)

Recall some key terms

- *Population* of interest and (study) *sample*.
 - Key to being able to generalize your findings to the population how representative your study sample is of the population.
- - Outcome
 - Predictor
 - Confounder
 - Additional descriptor
- > Types of collected variables:
 - Continuous, which includes discrete numeric.
 - Categorical, which includes binary and ordinal.
- Definitions given in the 'Biostatistics and Research' lecture.

Theresa A Scott, MS (Vandy Biostats)

Data Analysis

3 / 20

Revisiting specific aim(s)/objective(s)

- ▷ Nice if the wording of the specific aim(s)/objective(s) conveys the statistical analysis that is/will be used.
- Some examples:
 - *To describe* the distributions of risk factors among a cohort of women with breast cancer.
 - *To compare* the presentation, evaluation, diagnosis, treatment, and follow-up of. . .
 - *To estimate* the incidence of skin cancer among elderly smokers and non-smokers.
 - *To determine* whether a significant association exists between cigarette smoking and pancreatic cancer.
 - *To determine* the effect of X on Y once adjusted for Z.
 - To predict the probability of surviving one-year post-surgery . . .

Theresa A Scott, MS (Vandy Biostats)

Descriptive Statistics

Theresa A Scott, MS (Vandy Biostats)

Data Analysis

5 / 29

Summarizing individual continuous variables

- \triangleright Mean (average) \pm standard deviation (SD).
 - SD = measure of variability (dispersion) around the mean.
 - Empirical rule: If the distribution of a variable approximates a bell-shaped curve (ie, is normally distributed), approximately 95% of the variable's values lie within 2 SDs of the mean.
 - Both influenced by *outliers* bad descriptors if not bell-shaped.
- - Also influenced by outliers.
- \triangleright Percentiles values that divide an ordered continuous variable into 100 groups with at most 1% of the values in each group.
 - The p-th percentile is the value that p% of the data are less than or equal to (ie, p% of the data lie below it).
 - Follows that (100-p)% of the data lie above it.

Continuous variables, cont'd

▶ Percentiles, cont'd:

- Example: if the 85% percentile of household income is \$60,000, then 85% of households have incomes of \leq \$60,000 and the top 15% of households have incomes of >\$60,000.
- *Not* influenced by outliers great descriptors no matter shape.
- Good 3-number summary: lower quartile (25th percentile), median (50th percentile), and the upper quartile (75th percentile), which describe
 - Central tendency = median (ie, the value in the middle when the data is arranged in order).
 - Spread = difference between the upper and lower quartiles (ie, the 'inter-quartile range', IQR).
 - Symmetry (ie, skewness) compare the difference between the upper quartile and the median with the difference between the median and the lower quartile.

Theresa A Scott, MS (Vandy Biostats)

Data Analysis

7 / 20

Summarizing individual categorical variables

- > Raw and relative frequencies
 - Raw: counts; number of times a particular value is obtained in the sample.
 - Relative: proportions or percentages; frequency of a particular value divided by the total number of observations.
- Example: Distribution of blood types in a sample of 25 people.

Blood Type	% (N)
A	20% (5/25)
В	32% (8/25)
O	32% (8/25)
AB	16% (4/25)

Theresa A Scott, MS (Vandy Biostats)

Summarizing combinations of variables

- Calculate the median, quartiles, mean, SD, etc of a continuous variable among the subsets with each value of a categorical variable.
- *Cross-tabulate* two (or more) categorical variables using contingency tables (allow you to report marginal frequencies).
- \triangleright Example: Height and race of a sample of N = 2735 subjects receiving either a new drug or placebo.¹

		Drug	Placebo
	N	N = 2165	N = 570
Weight (lbs)	2661	191±50 (148 196 233)	188±48 (149 194 229)
Race	2696		
Afr American		41% (868/2134)	38% (215/562)
Caucasian		47% (996/2134)	50% (283/562)
Other		13% (270/2134)	11% (64/562)

 $^{^{}m 1}$ The number of $\it missing$ values is inferred via the 'N' column and the denominator frequencies.

Theresa A Scott, MS (Vandy Biostats)

Data Analysis

0 / 20

Inferential Statistics

Confidence intervals

- ▶ Because impossible to collect data from the entire population, must use the data collected in the sample to *estimate* the population parameter – a *point estimate*.
- Durable Unlikely that the value of the point estimate will be equal to the value of the population parameter because have only collected one sample from the population.
- ▶ Therefore, the value of the point estimate is used to construct an *interval estimate* for the population parameter.
- ▶ Will be able to state, with some confidence, that the population parameter lies within this interval thus, a *confidence interval*.

Theresa A Scott, MS (Vandy Biostats)

Data Analysis

11 / 29

Confidence intervals, cont'd

- \triangleright Definition: a y% confidence interval (CI) for an unknown population parameter Y is an interval calculated from sample values by a procedure such that if a large number of independent samples is taken, y% of the intervals obtained will contain Y.
- ▶ Most often report 95% confidence intervals.
- Description via an example: "We are 95% confident that mean total cholesterol on this new statin will be 10 to 20 mg/dl lower than on the old formulation."
 - CANNOT STATE: "There's a 95% probability that mean total cholesterol on this new statin will be 10 to 20 mg/dl lower than on the old formulation."
- Description Note Note 1 Description Note 1 Description Note 25% Cl indicates inadequate sample size. Description Note 25% Cl indicates inadequate sample size.

Hypothesis testing

- Wish to test a hypothesis about the value of a population parameter − eg, that it equals a specific value.
- ▶ In order to do so, we sample the population and compare our observations with theory.
 - If the observations disagree with the theory, the hypothesis is rejected.
 - If not, we conclude either that the theory is true or that the sample did not detect the difference between the real and hypothesized values of the population parameter.
- ▶ IMPORTANT: Hypothesis testing involves *proof by contradiction*.
 - Support for our hypothesis is obtained by showing that the converse is false.

Theresa A Scott, MS (Vandy Biostats)

Data Analysis

13 / 29

Hypothesis testing, cont'd

- ▷ Elements of a hypothesis test:
 - 11 Null hypothesis (H_0): hypothesis under test; referred to as the 'straw man' something set up solely to be knocked down.
 - 2 Alternative hypothesis (H_a) : usually the hypothesis we seek to support on the basis of the information contained in the sample.
 - 3 Test statistic: a function of the sample measurements upon which the statistical decision will be based.
 - 4 Rejection region: the values of the test statistic for which the null hypothesis is rejected.

Decision:

■ If for a particular sample, the computed value of the test statistic falls in the rejection region, we reject the null hypothesis and accept the alternative hypothesis.

Hypothesis testing, cont'd

- \triangleright Answer: Determined by the choice of α the probability of rejecting the null hypothesis when the null hypothesis is true (ie, the probability of a *Type I error*).
- \triangleright The value of α is also called the *significance level* of the test.
- \triangleright Although small values of α are recommended, the actual size of α to use in an analysis is chosen somewhat arbitrarily.
 - Two commonly used values are $\alpha = 0.05$ and $\alpha = 0.01$.

▶ NOTE: *Type II error* can also be made – failing to reject the null hypothesis when it is false.

■ β (probability of a Type II error) and power (1- β ; probability of correctly rejecting the null hypothesis) are discussed in the 'Sample Size' lecture.

Theresa A Scott, MS (Vandy Biostats)

Data Analysis

15 / 29

Hypothesis testing, cont'd

Still have a problem:

- One person may choose to implement a hypothesis test with α = 0.05, whereas another person might prefer α = 0.01.
- In turn, it is possible for these 2 people to analyze the same data and reach opposite conclusions one concluding that the null hypothesis should be rejected at $\alpha=0.05$; the other deciding the null hypothesis should *not* be rejected with $\alpha=0.01$.

Solution:

- Calculate the p-value the smallest level of significance α for which the observed data indicate that the null hypothesis should be rejected (ie, the attained significance level).
- The smaller a *p*-value becomes, the more compelling the *evidence* that the null hypothesis should be rejected.
 - NOTE: a smaller *p*-value does not indicate greater *significance*.

Hypothesis testing, cont'd

- \triangleright Assuming a specific value of α , the *p*-value can be used to implement an α -level hypothesis test:
 - If the *p*-value $\leq \alpha$, then you reject the null hypothesis.
 - If the *p*-value > alpha, then you *fail to reject* the null hypothesis *null hypothesis is never accepted*.
- ▷ REMEMBER: P-values provide evidence against a hypothesis, never evidence in favor of it.
- - The null hypothesis is usually stated as the absence of a difference or an effect.
 - The alternative hypothesis can be *one* or *two-sided*.
 - Two-sided states only that a difference/effect exists (ie, the effect \neq 0).
 - One-sided specifies the direction of the difference/effect (ie, the difference between group A and group is > 0.)

Theresa A Scott, MS (Vandy Biostats)

Data Analysis

17 / 29

Hypothesis testing, cont'd

- H_0 : There is *no* difference between the true mean reaction times (to a stimulus) for men and women.
 - $ar{\mathbf{x}}_{men} = ar{\mathbf{x}}_{women}
 ightarrow ar{\mathbf{x}}_{men} ar{\mathbf{x}}_{women} = \mathbf{0}.$
- H_a : There is a difference (ie, $\bar{x}_{men} \bar{x}_{women} \neq 0$).
- Data: Independent random samples of 50 men and 50 women $-\bar{x} \pm SD$ is 3.6 ± 0.18 seconds for the men, while 3.8 ± 0.14 seconds for the women.
- Based on the observed data, p-value = 0.0124.
- Thus, if $\alpha = 0.05$, we reject the null hypothesis and conclude that there is a *significant* difference between the true mean reaction times for men and women.
- However, if $\alpha = 0.01$, we *fail* to reject the null hypothesis and conclude that we failed to find a significant difference.

Theresa A Scott, MS (Vandy Biostats)

Hypothesis testing, cont'd

\triangleright Problems with *p*-values:

- Statistical significance does not indicate clinical significance.
- A small *p*-value by itself only tells half the story it gives you no information about magnitude (and depending, direction).
- You can't make any conclusion from a large *p*-value (only perhaps that your sample size was too small).
 - 'Absence of evidence is not the evidence of absence'.

- Report estimated confidence intervals (CIs) in addition to *p*-values can glean *clinical* significance.
- Perform hypothesis tests with Cls look to see whether the Cl contains the null value.
 - Example: With a CI for a difference, does it contain 0?
 - Example: With a CI for an odds ratio, does it contain 1?

Theresa A Scott, MS (Vandy Biostats)

Data Analysis

19 / 29

Correlation

- A quantitative measure of association between 2 *continuous* variables (ie, the degree to which they change together).
 - Pearson correlation describes the direction and relative strength of a linear relationship.
 - Always between -1 and 1.
 - The closer it is to ± 1 , the closer to a *perfect* linear relationship.
 - Can use hypothesis test to determine if significant (ie, \neq 0).
 - Spearman's rank correlation does not assume a linear relationship; only a monotonic one when X increases, Y always increases or stays flat, or Y always decreases or stays flat.
 - Can also use hypothesis test to determine if significant.

▷ IMPORTANT:

- Neither is an estimate of the *slope*.
- Correlation ⇒ Causation
- Correlation ⇒ Agreement

Determining if an association exists

- Use tests of association to determine if two variables (one continuous and one categorical or both categorical) are independent.
 - Two variables are associated if one variable affects the value/distribution of the values of the other.
 - Example: Association between race (categorical predictor) and presence of disease (categorical outcome).
- □ Testing for a difference in the distribution of a variable between groups ⇔ testing for an association between a group (predictor) variable and an outcome variable.
 - Example: Difference in the distribution of cholesterol (continuous outcome) between genders (categorical predictor).
 - Also includes paired data (eg, difference in the distribution of test scores before and after a didactics class).

Theresa A Scott, MS (Vandy Biostats)

Data Analysis

21 / 20

Determining if an association exists, cont'd

- ▶ Incorporates hypothesis testing:
 - *Null* hypothesis proposes the variables are independent.
 - Example: There is no difference in the frequency of drinking well water between subjects who develop peptic ulcer diseases and those who do not.
 - *Alternative* hypothesis proposes that they are associated.
 - Can be either *one-sided* (eg, drinking well water is *more* common among subjects who develop peptic ulcers) or *two-sided* (eg, the frequency of drinking well water is different in subjects who develop peptic ulcers).

 \triangleright If test's p-value $\le \alpha$ (eg, 0.05), conclude that the two variables are significantly associated.

 \triangleright p-value $> \alpha$ does not mean that there is no association in the population; only means you failed to find one in your study sample.

Theresa A Scott, MS (Vandy Biostats)

Determining if an association exists, cont'd

▶ When testing for a difference in a continuous outcome, commonly used tests of association (ie, t-test) assume the continuous outcome is normally distributed – *parametric* tests.

- *Non-parametric* tests don't assume normality; test is performed on the raw values converted to *ranks*.
- If normality holds, a non-par test is 95% as efficient as its par equivalent.
- If normality *does not* hold, non-par test can be arbitrarily more efficient and powerful than its par equivalent.
- Result of par test (ie, *p*-value) can be highly influenced by outliers; non-par tests are not (because based on ranks).
- Sometimes see others use tests/graphics to assess normality and run a par or non-par test based on the result.
 - Not a good approach test of normality may not have adequate power to detect non-normality.

Theresa A Scott, MS (Vandy Biostats)

Data Analysis

23 / 29

Determining if an **association** exists, *cont'd*

Purpose	Type of outcome	Test to use
Compare paired	Continuous	Paired t-test
responses		[Wilcoxon signed-rank test]
Compare 2	Continuous	Student's t-test
(independent) groups		[Wilcoxon rank-sum/
		Mann-Whitney U test]
Compare >2	Continuous	1-way ANOVA
(independent) groups		[Kruskal Wallis test]
Compare ≥2	Categorical	Chi-square test
(independent) groups	$(\geq 2 \text{ levels})$	(Fisher's exact test
		when cell counts $<$ 5 $)$

- 'Group' defined by a categorical variable (≥ 2 levels).
- Non-parametric equivalent test given in [] brackets.

Theresa A Scott, MS (Vandy Biostats)

Determining if an association exists, cont'd

- ▶ Limitations to just performing tests of association:
 - Blur the distinction between statistical & *clinical* significance.
 - Possible for a difference of little clinical importance to achieve a high degree of statistical significance.
 - Cannot conclude clinical relevance from small p-value.
 - Very often, not only would you like to determine if an association or difference exists, but would also like to estimate the *magnitude* and *direction/shape* of the effect.
 - Can only look at one pair of variables at a time (a single predictor variable and the primary outcome variable); cannot incorporate confounders. (True of correlation too!)
 - Cannot incorporate other possible complexities of your data (eg, repeated measurements within subjects and cluster sampling).

Theresa A Scott, MS (Vandy Biostats)

Data Analysis

25 / 29

Regression analysis

- Determining relationships and making predictions an extension of testing for associations:
 - Allows you to estimate the significance, direction/shape, and magnitude of the *effect* of ≥1 predictor variables on the outcome variable – ie, determine if the outcome is significantly affected by ≥1 of the predictors.
 - Allows you to incorporate confounders by adjusting the predictor-outcome association for the predictor-confounder and confounder-outcome relationships.
 - Results may be used to *predict* the outcome of subjects that were not sampled but are from the same population.
 - Specific regression analysis used based on type of outcome Multiple Linear (continuous), Logistic (binary), Proportional Odds (ordinal), or Cox Proportional Hazards (time to event).

Theresa A Scott, MS (Vandy Biostats)

Regression analysis, cont'd

▷ IMPORTANT:

- All regression analyses make *assumptions* (eg, the observations are independent; variance of the error is constant).
 - Must assess whether the assumptions are violated.
- All regression analyses (by default) assume a *linear* relationship between each *continuous* predictor and the outcome.
 - Most can be extended to fit non-linear relationships (eg, by using restricted cubic splines).
- Interpretation of effect estimates depends on type of regression:
 - Linear example: Holding all other predictors constant, the outcome increases/decreases Y units per 1-unit increase of X.
 - Logistic example: The *odds* of the outcome occurring are Y times higher/lower for group X1 compared to group X2, holding all other predictors constant.
- 95% Cls should be reported for all effect estimates.

Theresa A Scott, MS (Vandy Biostats)

Data Analysis

27 / 20

Pitfalls to avoid

- ▷ Pitfalls in regression modeling:
 - Casewise deletion of missing data.
 - Categorizing continuous variables.
 - Not using clinical knowledge to specify the model.
 - Inappropriate linearity assumptions.
 - Using stepwise variable selection (ie, deciding based on p-values).
 - Fitting more complex model than data allows (ie, overfitting).
 - Lack of model validation (if appropriate).
- ▶ Pitfalls in reporting & analysis in general:
 - Reporting only favorable results.
 - Deleting 'outliers' based on observed response values.
 - Non-reproducible analyses/results.

References

- - http://www.tufts.edu/~gdallal/LHDP.HTM
- *Mathematical Statistics with Applications* (5th edition) by Wackerly, Mendenhall, and Schaeffer.

Theresa A Scott, MS (Vandy Biostats)

Data Analysis

29 / 29