```
import sys
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import scipy as sp
import seaborn as sns
from sklearn.datasets import load_iris
iris = load_iris()
iris.keys()
dict_keys(['data', 'target', 'target_names', 'DESCR', 'feature_names', 'filename'])
iris.target.shape
iris.data.shape
(150, 4)
iris['feature_names'] #칼럼명 확인
['sepal length (cm)',
      'sepal width (cm)',
      'petal length (cm)',
      'petal width (cm)']
# 훈련 데이터와 테스트 데이터 나누기
# train_test_split (문제, 답, random_state = 0) random_state는 패턴을 고정시켜주는 값
from sklearn.model_selection import train_test_split
X_train, X_test, Y_train, Y_test = train_test_split(iris['data'],
                                               iris['target'],
                                               random_state = 0)
## 시각화
# DataFrame에 들어가야 하는 데이터 타입 dictionary
# Series에 들어가는 데이터 타입 list
iris_df = pd.DataFrame(X_train, columns=iris.feature_names)
iris_df['y'] = Y_train
iris_df['y'] = iris_df['y'].astype('category') #범주형으로 타입 변경
sns.pairplot(iris_df.iloc[:,0:4])
# iloc : 인덱스로 선택
# loc : 칼럼으로 선택
```


판다스 플로팅 기능 pd.plotting.scatter_matrix(iris_df, c=Y_train, #색 figsize =(15,15), marker='x', hist_kwds={'bins':20}, #막대의 개수 s=60, alpha=0.8) #투명도

▼ 첫번째 모델 만들기

• knn model (k- nearest neighbor)

```
from sklearn.neighbors import KNeighborsClassifier
knn = KNeighborsClassifier(n_neighbors=1)
knn
```

KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski', metric_params=None, n_jobs=None, n_neighbors=1, p=2, weights='uniform')

```
# 학습
knn.fit(X_train, Y_train)

print(type(X_train)) # numpy.ndarray

# 예측
X_new = np.array([[5, 2.9, 1, 0.2]]) # 똑같이 numpy.ndarray 형태로

pred = knn.predict(X_new)
pred
```

<class 'numpy.ndarray'>
array([0])

```
pred_targetname = iris['target_names'][pred]
pred_targetname
```

e array(['setosa'], dtype='<U10')</pre>

```
# 평가하기
print("테스트 셋의 정확도 : {:.2f}".format(np.mean(pred == Y_test)))
#print("테스트 셋의 정확도 : {%.2f}") # %형태
```

테스트 셋의 정확도 : 0.34

▼ 타이타닉 셋으로 실습

```
titanic = pd.read_csv('./data/train.csv')
test = pd.read_csv('./data/test.csv')
titanic.head()
```


		PassengerId	Survived	Pclass	Nar	ne	Sex	Age	SibSp	Parch	n Ticl	ke t	Fare	Cabiı
	0	1	0	3	Braun Mr. Owe Har	en	male	22.0	1	() 21	A/5 171 7.	2500	Nal
	1	2	1	1	Cuming Mrs. Joh Bradl (Floren Brig	nn ^{ey} f ce	emale	38.0	1	() PC 17:	599 71.	2833	C8.
test.head()														
•		PassengerId	Pclass	Name	Sex	Age	SibSp	o Par	ch T	icket	Fare	Cabin	Emba	rked
	0	892	3	Kelly, Mr. James	male	34.5	()	0 3	30911	7.8292	NaN		Q
				Wilkes, Mrs.										

James female 47.0 1

pd.isnull(titanic).head()

893

3

(Ellen Needs)

1

8		Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarke
	0	False	False	False	False	False	False	False	False	False	False	True	Fals
	1	False	False	False	False	False	False	False	False	False	False	False	Fals
	2	False	False	False	False	False	False	False	False	False	False	True	Fals
	3	False	False	False	False	False	False	False	False	False	False	False	Fals
	4	False	False	False	False	False	False	False	False	False	False	True	Fals

S

NaN

0 363272 7.0000

titanic.isnull().sum()

titanic.Age.mean()

8

29.69911764705882

titanic.Age.fillna(30).head()

8

0 22.0

1 38.0

2 26.0

3 35.0

4 35.0

Name: Age, dtype: float64

titanic.Embarked.fillna(method='ffill').head()

0 S

1 C

2 S

3 S

4 S

Name: Embarked, dtype: object

titanic.Sex = pd.get_dummies(titanic.Sex)

titanic.head()

8		PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin
	0	1	0	3	Braund, Mr. Owen Harris	0	22.0	1	0	A/5 21171	7.2500	NaN
	1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs	1	38.0	1	0	PC 17599	71.2833	C85

titanic['Survived'] = titanic['Survived'].astype('category')

test.Sex = pd.get_dummies(test.Sex)

test.Age.fillna(30).head()

0 34.5

1 47.0

2 62.0

3 27.0

4 22.0

Name: Age, dtype: float64

test.isnull().sum()

Passenger I d	0
Pclass	0
Name	0
Sex	0
Age	86
SibSp	0
Parch	0
Ticket	0
Fare	1
Cabin	327
Embarked	0
	Pclass Name Sex Age SibSp Parch Ticket Fare Cabin

dtype: int64

```
## k=5로 설정
knn = KNeighborsClassifier(n_neighbors=3)
knn
    KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
                          metric_params=None, n_jobs=None, n_neighbors=3, p=2,
                          weights='uniform')
from sklearn.model_selection import train_test_split
f_names = ['Pclass', 'SibSp', 'Fare', 'Sex']
X_train, X_test, Y_train, Y_test = train_test_split(titanic[f_names],
                                                  titanic['Survived'],
                                                  random_state = 0)
knn.fit(X_train, Y_train)
#print(type(X_train)) # numpy.ndarray
#X_new = test[f_names]
#예측
pred = knn.predict(X_test)
pred
    array([0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0,
            0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
            1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0,
            1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1,
            1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1,
            0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0,
            0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0,
            1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0,
            1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1,
            0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1,
            0, 1, 1], dtype=int64)
an = pd.read_csv('./data/gender_submission.csv')
print("테스트 셋의 정확도 : {:.2f}".format(np.mean(pred == Y_test)))
    테스트 셋의 정확도 : 0.78
```