Álgebra Universal e Categorias

– 1° teste (11 de abril de 2018) — duração: 2 horas _____

1. Seja $\mathcal{A}=(\{1,2,3,4,5\};f^{\mathcal{A}},g^{\mathcal{A}})$ a álgebra de tipo (2,1), onde $A=\{1,2,3,4,5\}$ e $f^{\mathcal{A}}$ e $g^{\mathcal{A}}$ são as operações definidas por

$f^{\mathcal{A}}$	1	2	3	4	5						
1	2	2	2	2	2						
1 2 3 4 5	2	2	2	2	2					4	
3	2	2	2	2	2	$g^{\mathcal{A}}(x)$	3	4	2	2	5
4	3	3	3	4	1						
5	3	3	3	3	5						

Dado $X \subseteq A$, define-se

$$\begin{array}{lll} X_0 & = & X; \\ X_{i+1} & = & X_i \cup \{h(x) \,|\, h \text{ \'e operaç\~ao } n\text{-\'aria em } \mathcal{A} \text{ e } x \in (X_i)^n, n \in \{1,2\}\}, i \in \mathbb{N}_0. \end{array}$$

Seja $X = \{1\}$. Para cada $k \in \mathbb{N}_0$, determine X_k . Indique $Sg^{\mathcal{A}}(X)$. Justifique.

Considerando $X = \{1\}$, tem-se

$$X_{0} = \{1\},\ X_{1} = X_{0} \cup \{f^{\mathcal{A}}(x,y) \mid x,y \in X_{0}\} \cup \{g^{\mathcal{A}}(x) \mid x \in X_{0}\} = \{1\} \cup \{2\} \cup \{3\} = \{1,2,3\},\ X_{2} = X_{1} \cup \{f^{\mathcal{A}}(x,y) \mid x,y \in X_{1}\} \cup \{g^{\mathcal{A}}(x) \mid x \in X_{1}\} = \{1,2,3\} \cup \{2\} \cup \{2,3,4\} = \{1,2,3,4\} \ X_{3} = X_{2} \cup \{f^{\mathcal{A}}(x,y) \mid x,y \in X_{2}\} \cup \{g^{\mathcal{A}}(x) \mid x \in X_{2}\} = \{1,2,3,4\} \cup \{2,3,4\} \cup \{2,3,4\} = \{1,2,3,4\}.$$

Além disso, $5 \neq f^{\mathcal{A}}(x,y)$ e $5 \neq g^{\mathcal{A}}(x)$, para quaisquer $x,y \in \{1,2,3,4\}$. Logo, para todo $k \geq 2$, $X_k = \{1,2,3,4\}$.

Uma vez que
$$Sg^{\mathcal{A}}(X)=\bigcup_{k\in\mathbb{N}_0}X_k$$
, então $Sg^{\mathcal{A}}(X)=\{1,2,3,4\}.$

2. Sejam $\mathcal{A}=(A;F)$ uma álgebra e $\alpha:\mathcal{A}\to\mathcal{A}$ um homomorfismo. Mostre que o conjunto dos pontos fixos de α , $P_{\alpha}=\{a\in A\,|\,\alpha(a)=a\}$, é um subuniverso de \mathcal{A} .

Por definição de P_{α} , é imediato que $P_{\alpha}\subseteq A$. Além disso, para qualquer símbolo de operação n-ário f e para quaisquer $x_1,\ldots,x_n\in P_{\alpha}$, $f^{\mathcal{A}}(x_1,\ldots,x_n)\in P_{\alpha}$. De facto, $f^{\mathcal{A}}(x_1,\ldots,x_n)\in A$, pois $f^{\mathcal{A}}$ é uma operação n-ária em A, e

$$\begin{array}{lcl} \alpha(f^{\mathcal{A}}(x_1,\ldots,x_n)) & = & f^{\mathcal{A}}(\alpha(x_1),\ldots,\alpha(x_n)) & (\alpha \text{ \'e um homomorfismo de } \mathcal{A} \text{ em } \mathcal{A}) \\ & = & f^{\mathcal{A}}(x_1,\ldots,x_n) & (x_1,\ldots,x_n \in P_\alpha) \end{array}$$

Desta forma, fica provado que P_{α} é um subuniverso de \mathcal{A} .

3. Considere as álgebras $\mathcal{A}=(\mathbb{Z};+^{\mathcal{A}})$ e $\mathcal{B}=(\{a,b\};+^{\mathcal{B}})$ de tipo (2), onde $+^{\mathcal{A}}$ representa a adição usual em \mathbb{Z} e $+^{\mathcal{B}}:\{a,b\}\times\{a,b\}\to\{a,b\}$ é a operação binária em $\{a,b\}$ definida por

$$\begin{array}{c|cccc}
+^{\mathcal{B}} & a & b \\
\hline
a & a & b \\
b & b & a
\end{array}$$

Seja $\alpha: \mathbb{Z} \to \{a,b\}$ a aplicação definida por

$$\alpha(x) = \left\{ egin{array}{ll} a & ext{ se } x ext{ \'e par} \\ b & ext{ se } x ext{ \'e impar} \end{array}
ight.$$

(a) Mostre que a aplicação α é um epimorfismo de \mathcal{A} em \mathcal{B} .

Pretendemos mostrar que α é um homomorfismo e que é uma aplicação sobrejetiva.

Para quaisquer $x, y \in \mathbb{Z}$,

- se x e y são pares, então $x +^{\mathcal{A}} y$ é par, pelo que

$$\alpha(x +^{\mathcal{A}} y) = a = a +^{\mathcal{B}} a = \alpha(x) +^{\mathcal{B}} \alpha(y);$$

- se x e y são ímpares, então $x + ^{\mathcal{A}} y$ é par, pelo que

$$\alpha(x +^{\mathcal{A}} y) = a = b +^{\mathcal{B}} b = \alpha(x) +^{\mathcal{B}} \alpha(y);$$

- se x é par e y é ímpar, então $x+^{\mathcal{A}}y$ é ímpar, pelo que

$$\alpha(x +^{\mathcal{A}} y) = b = a +^{\mathcal{B}} b = \alpha(x) +^{\mathcal{B}} \alpha(y);$$

- se x é ímpar e y é par, então $x+^{\mathcal{A}}y$ é ímpar, pelo que

$$\alpha(x +^{\mathcal{A}} y) = b = b +^{\mathcal{B}} a = \alpha(x) +^{\mathcal{B}} \alpha(y).$$

Assim, para quaisquer $x, y \in \mathbb{Z}$, $\alpha(x + \mathcal{A} y) = \alpha(x) + \mathcal{B} \alpha(y)$. Logo α é um homomorfismo de \mathcal{A} em \mathcal{B} .

Para qualquer $y \in \{a,b\}$, existe $x \in \mathbb{Z}$ tal que $\alpha(x) = y$: de facto, se y = a, existe $x = 0 \in \mathbb{Z}$ tal que $\alpha(x) = y$; se y = b, existe $x = 1 \in \mathbb{Z}$ tal que $\alpha(x) = y$. Logo α é uma aplicação sobrejetiva.

(b) Justifique que $\mathcal{B} \cong \mathcal{A}/\ker \alpha$. Defina a operação da álgebra $\mathcal{A}/\ker \alpha = (\mathbb{Z}/\ker \alpha; +^{\mathcal{A}/\ker \alpha})$.

Uma vez que $\alpha:\mathcal{A}\to\mathcal{B}$ é um epimorfismo, então, pelo Teorema do Homomorfismo, tem-se $\mathcal{A}/\ker\alpha\cong\mathcal{B}$.

Considerando a definição de $\ker \alpha$, tem-se

$$[0]_{\ker\alpha}=\{x\in\mathbb{Z}\,|\,(x,0)\in\ker\alpha\}=\{x\in\mathbb{Z}\,|\,\alpha(x)=\alpha(0)\}=\{x\in\mathbb{Z}\,|\,x\ \text{\'e par}\},$$

$$[1]_{\ker\alpha}=\{x\in\mathbb{Z}\,|\,(x,1)\in\ker\alpha\}=\{x\in\mathbb{Z}\,|\,\alpha(x)=\alpha(1)\}=\{x\in\mathbb{Z}\,|\,x\text{ \'e impar}\}.$$

Assim, $\mathbb{Z}/\ker\alpha=\{[0]_{\ker\alpha},[1]_{\ker\alpha}\}$. Logo a operação $+^{\mathcal{A}/\ker\alpha}$ é definida por

$$\begin{array}{c|c} +^{\mathcal{A}/\ker\alpha} & [0]_{\ker\alpha} & [1]_{\ker\alpha} \\ \hline [0]_{\ker\alpha} & [0]_{\ker\alpha} & [1]_{\ker\alpha} \\ [1]_{\ker\alpha} & [1]_{\ker\alpha} & [0]_{\ker\alpha} \end{array}$$

4. Sejam $\mathcal{A}=(A;F)$ uma álgebra, $\theta\in\mathrm{Con}\mathcal{A}$ e $\alpha:\mathcal{A}\to\mathcal{A}/\theta$ o homomorfismo definido por $\alpha(a)=[a]_{\theta}$, para todo $a\in A$. Justifique que α é um monomorfismo se e só se $\theta=\triangle_A$.

Suponhamos que α é um monomorfismo. Então α é um homomorfismo e é uma aplicação injetiva. Pretendese mostrar que $\theta=\triangle_A$ (onde $\triangle_A=\{(x,x)\,|\,x\in A\}$). Uma vez que θ é uma congruência em A, então θ é uma relação de equivalência em A e, em particular, é uma relação reflexiva. Logo $\triangle_A\subseteq\theta$. Além disso, para quaisquer $x,y\in A$,

$$\begin{array}{rcl} (x,y) \in \theta & \Rightarrow & [x]_{\theta} = [y]_{\theta} \\ & \Rightarrow & \alpha(x) = \alpha(y) & (\mathsf{defini} \tilde{\mathsf{pao}} \; \mathsf{de} \; \theta) \\ & \Rightarrow & x = y & (\alpha \; \acute{\mathsf{e}} \; \mathsf{injetiva}) \\ & \Rightarrow & (x,y) \in \triangle_A. \end{array}$$

Assim, $\theta \subseteq \triangle_A$ e, portanto, $\theta = \triangle_A$.

Reciprocamente, admitamos que $\theta = \triangle_A$. Então, para quaisquer $x, y \in A$,

$$\begin{array}{lll} \alpha(x) = \alpha(y) & \Rightarrow & [x]_{\theta} = [y]_{\theta} \\ & \Rightarrow & (x,y) \in \theta \\ & \Rightarrow & x = y & (\text{ pois } \theta = \triangle_A). \end{array}$$

Logo α é uma aplicação injetiva. Uma vez que α é um homomorfismo, então α é um monomorfismo.

5. Sejam $\mathcal{R}=(R;\wedge,\vee)$ um reticulado distributivo e $r\in R$. Seja θ_r a relação de equivalência em R definida por

$$(x,y) \in \theta_r$$
 sse $x \wedge r = y \wedge r$, para quaisquer $x,y \in R$.

Mostre que a relação θ_r é uma congruência em \mathcal{R} .

A relação θ é uma congruência em $\mathcal R$ se é uma relação de equivalência em R e é compatível com as operações de $\mathcal R$. Uma vez que θ é uma relação de equivalência em R, resta mostrar que θ é compativel com as operações \wedge e \vee .

Para quaisquer $a_1, a_2, b_1, b_2 \in R$,

$$\begin{array}{lll} (a_1,b_1),(a_2,b_2)\in\theta & \Rightarrow & a_1\wedge r=b_1\wedge r \ \text{e} \ a_2\wedge r=b_2\wedge r \\ & \Rightarrow & (a_1\wedge r)\wedge (a_2\wedge r)=(b_1\wedge r)\wedge (b_2\wedge r) \\ & \Rightarrow & (a_1\wedge a_2)\wedge r=(b_1\wedge b_2)\wedge r \ \ (\land \ \text{\'e} \ \text{associativa, comutativa e idempotente}) \\ & \Rightarrow & (a_1\wedge a_2,b_1\wedge b_2)\in\theta. \end{array}$$

Para quaisquer $a_1, a_2, b_1, b_2 \in R$,

$$\begin{array}{lll} (a_1,b_1),(a_2,b_2)\in\theta & \Rightarrow & a_1\wedge r=b_1\wedge r \ \text{e} \ a_2\wedge r=b_2\wedge r \\ & \Rightarrow & (a_1\wedge r)\vee(a_2\wedge r)=(b_1\wedge r)\vee(b_2\wedge r) \\ & \Rightarrow & (a_1\vee a_2)\wedge r=(b_1\vee b_2)\wedge r) \ \ \text{(o reticulado \mathcal{R} \'e distributivo)} \\ & \Rightarrow & (a_1\vee a_2,b_1\vee b_2)\in\theta. \end{array}$$

Assim, θ é compatível com as operações \wedge e \vee e, portanto, θ é uma congruência em \mathcal{A} .

6. Seja $\mathcal{A}=(A;f^{\mathcal{A}},g^{\mathcal{A}})$ a álgebra de tipo (1,1) tal que $A=\{a,b,c,d\}$, $f^{\mathcal{A}}$ e $g^{\mathcal{A}}$ são as operações definidas por

e cujo reticulado de congruências pode ser representado por

Diga, justificando, se são verdadeiras ou falsas as seguintes afirmações:

(a)
$$\Theta(b,d) \cup \Theta(c,d) = \Theta(b,d) \vee \Theta(c,d)$$
.

Por definição, $\Theta(b,d)$ é a menor congruência em $\mathcal A$ que contem $\{(b,d)\}$.

Então, atendendo a que

- (i) $(b,d) \in \Theta(b,d)$;
- (ii) $\Theta(b,d)$ é reflexiva;
- (iii) $\Theta(b,d)$ é simétrica;
- (iv) $\Theta(b,d)$ é transitiva;
- (v) $\Theta(b,d)$ é compatível com as operações de A.

tem-se

- (vi) $\triangle_A \subseteq \Theta(b,d)$, por (ii);
- (vii) $(b,d) \in \Theta(b,d)$, por (i);
- (viii) $(d,b) \in \Theta(b,d)$, por (i) e (iii);
- (ix) $(f^{\mathcal{A}}(b), f^{\mathcal{A}}(d)) = (c, c), (f^{\mathcal{A}}(d), f^{\mathcal{A}}(b)) = (c, c) \in \Theta(b, d), \text{ por (vii), (viii) e (v);}$
- (x) $(g^{\mathcal{A}}(b), g^{\mathcal{A}}(d)) = (c, c), (g^{\mathcal{A}}(d), g^{\mathcal{A}}(b)) = (c, c) \in \Theta(b, d), \text{ por (vii), (viii) e (v).}$

Logo, a relação $\triangle_A \cup \{(b,d),(d,b)\}$ é uma congruência em $\mathcal A$ que contém $\{(b,d)\}$. Uma vez que $\triangle_A \cup \{(b,d),(d,b)\} \subseteq \Theta(b,d)$ e $\Theta(b,d)$ é a menor congruência em $\mathcal A$ que contém $\{(b,d)\}$, tem-se $\Theta(b,d) = \triangle_A \cup \{(b,d),(d,b)\}$.

De modo análogo, determina-se $\Theta(c,d)$. Uma vez que $\Theta(c,d)$ é a menor congruência em $\mathcal A$ que contém $\{(c,d)\}$, tem-se

- $\triangle_A \subseteq \Theta(c,d)$;
- $(c,d) \in \Theta(c,d)$;
- $(d,c) \in \Theta(c,d)$;
- $-(f^{A}(c), f^{A}(d)) = (c, c), (f^{A}(d), f^{A}(c)) = (c, c) \in \Theta(c, d);$
- $(g^{\mathcal{A}}(c), g^{\mathcal{A}}(d)) = (d, c), (g^{\mathcal{A}}(d), g^{\mathcal{A}}(c)) = (c, d) \in \Theta(c, d).$

A relação $\triangle_A \cup \{(c,d),(d,c)\}$ é uma menor congruência em \mathcal{A} que contém $\{(c,d)\}$. Como a menor congruência em \mathcal{A} que contem $\{(c,d)\}$ é $\Theta(c,d)$, então $\Theta(c,d) = \triangle_A \cup \{(c,d),(d,c)\}$.

Assim,

$$\Theta(b,d) \cup \Theta(c,d) = \triangle_A \cup \{(b,d), (d,b), (c,d), (d,c)\}.$$

A relação $\Theta(b,d) \vee \Theta(c,d)$ é a menor congruência em \mathcal{A} que contem $\Theta(b,d)$ e $\Theta(c,d)$, pelo que

$$\Theta(b,d) \vee \Theta(c,d) = \Theta(b,d) \cup \Theta(c,d) \cup \{(b,c),(c,b)\}.$$

Logo $\Theta(b,d) \cup \Theta(c,d) \neq \Theta(b,d) \vee \Theta(c,d)$.

(b) Se \mathcal{B} e \mathcal{C} são álgebras tais que $\mathcal{A} \cong \mathcal{B} \times \mathcal{C}$, então \mathcal{B} é a álgebra trivial ou \mathcal{C} é a álgebra trivial.

Caso existam álgebras \mathcal{B} e \mathcal{C} , ambas não triviais, tais que $\mathcal{A}\cong\mathcal{B}\times\mathcal{C}$, então a álgebra \mathcal{A} não é directamente indecomponível. A álgebra \mathcal{A} é directamente indecompnível se só se as únicas congruências fator de \mathcal{A} são \triangle_A e ∇_A . Recorde-se que, dada uma congruência θ_1 de \mathcal{A} , diz-se que θ_1 é uma congruência fator de \mathcal{A} se existe $\theta_2\in\mathrm{Con}\mathcal{A}$ tal que $\theta_1\cap\theta_2=\triangle_A$, $\theta_1\vee\theta_2=\nabla_A$ e $\theta_1\circ\theta_2=\theta_2\circ\theta_1$. No caso do reticulado $\mathrm{Con}\mathcal{A}$ indicado anteriormente, verifica-se que, para quaisquer $\theta_1,\theta_2\in\mathrm{Con}\mathcal{A}$,

- se $\theta_1, \theta_2 \in \text{Con} A \setminus \{\nabla_A\}$, então $\theta_1 \vee \theta_2 \neq \nabla_A$;
- se $\theta_1 = \nabla_A$ e $\theta_2 \in \operatorname{Con} A \setminus \{\triangle_A\}$, então $\theta_1 \cap \theta_2 = \theta_2 \neq \triangle_A$;
- \triangle_A e ∇_A são claramente congruências fator de \mathcal{A} ,

e, portanto, as únicas congruências fator de \mathcal{A} são \triangle_A e ∇_A . Assim, a álgebra \mathcal{A} é diretamente indecomponível. Por conseguinte, se \mathcal{B} e \mathcal{C} são álgebras tais que $\mathcal{A}\cong\mathcal{B}\times\mathcal{C}$, então \mathcal{B} é a álgebra trivial ou \mathcal{C} é a álgebra trivial.

(c) A álgebra $\mathcal A$ é subdiretamente irredutível.

A álgebra \mathcal{A} é subdiretamente irredutível se e só se \mathcal{A} é a álgebra trivial ou o conjunto parcialmente ordenado $\mathrm{Con}\mathcal{A}\setminus\{\triangle_A\}$ tem elemento mínimo. Obviamente, a álgebra \mathcal{A} não é trivial (pois $|A|=4\neq 1$. Também é claro que o conjunto parcialmente ordenado $\mathrm{Con}\mathcal{A}\setminus\{\triangle_A\}$, representado por

não tem elemento mínimo, pois não existe $\theta \in \operatorname{Con} \mathcal{A} \setminus \{\triangle_A\}$ tal que $\theta \subseteq \sigma$, para todo $\sigma \in \operatorname{Con} \mathcal{A} \setminus \{\triangle_A\}$. Logo a álgebra \mathcal{A} não é subdiretamente irredutível.

7. Considere os operadores de classes de álgebras H e S. Mostre que SHS é um operador de fecho.

O operador SHS é um operador de fecho se, para quaisquer classes de álgebras \mathbf{K} e \mathbf{K}' ,

- (i) $\mathbf{K} \subseteq SHS(\mathbf{K})$;
- (ii) $(SHS)^2(\mathbf{K}) = SHS(\mathbf{K})$;
- (iii) $\mathbf{K} \subseteq \mathbf{K}' \Rightarrow SHS(\mathbf{K}) \subseteq SHS(\mathbf{K}')$.

Tal como se prova seguidamente, as condições (i), (ii) e (iii) são, de facto, satisfeitas.

- (i) Para qualquer operador $O \in \{H, S, P, I, I_P\}$ e para qualquer classe de álgebras \mathbf{K} , tem-se $\mathbf{K} \subseteq O(\mathbf{K})$. Assim, $\mathbf{K} \subseteq S(\mathbf{K})$, $S(\mathbf{K}) \subseteq HS(\mathbf{K})$, $HS(\mathbf{K}) \subseteq SHS(\mathbf{K})$, donde resulta que $\mathbf{K} \subseteq SHS(\mathbf{K})$.
- (ii) De (i) segue que, para qualquer classe de álgebras \mathbf{K} , $S(\mathbf{K}) \subseteq SSHS(\mathbf{K})$, donde $HS(\mathbf{K}) \subseteq HSSHS(\mathbf{K})$ e, portanto, $SHS(\mathbf{K}) \subseteq SHSSHS(\mathbf{K})$. Para qualquer classe de álgebras \mathbf{K} , também se tem

$$\begin{array}{lcl} SHSSHS(\mathbf{K}) & = & SHSHS(\mathbf{K}) & (S^2 = S) \\ & \subseteq & SHHSS(\mathbf{K}) & (SH \subseteq HS) \\ & = & SHS(\mathbf{K}) & (H^2 = H, S^2 = S). \end{array}$$

Logo $(SHS)^2 = SHS$.

(iii) Para qualquer operador $O \in \{H, S, P, I, I_P\}$ e para quaisquer classes de álgebra \mathbf{K} e \mathbf{K}' ,

$$\mathbf{K} \subseteq \mathbf{K}' \Rightarrow O(\mathbf{K}) \subseteq O(\mathbf{K}').$$

Assim,

$$\mathbf{K} \subseteq \mathbf{K}' \Rightarrow S(\mathbf{K}) \subseteq S(\mathbf{K}') \Rightarrow HS(\mathbf{K}) \subseteq HS(\mathbf{K}') \Rightarrow SHS(\mathbf{K}) \subseteq SHS(\mathbf{K}').$$