

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ :	A1	(11) International Publication Number:	WO 99/24689
E21B 15/04, 7/08, 43/01		(43) International Publication Date:	20 May 1999 (20.05.99)
(21) International Application Number:	PCT/US98/16645	(81) Designated States:	AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, HR, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).
(22) International Filing Date:	11 August 1998 (11.08.98)	(30) Priority Data:	08/966,629 10 November 1997 (10.11.97) US
(71) Applicant:	MARATHON OIL COMPANY [US/US]; 539 South Main Street, Findlay, OH 45840 (US).	(72) Inventor:	COLLINS, Gary, J.; 2211 Landscape Way, Richmond, TX 77469 (US).
(74) Agents:	HUMMEL, Jack, L. et al.; Marathon Oil Company, P.O. Box 269, Littleton, CO 80160-0269 (US).		Published <i>With international search report.</i>

(54) Title: ASSEMBLY AND PROCESS FOR DRILLING AND COMPLETING MULTIPLE WELLS

(57) Abstract

An apparatus (10) and process are provided for drilling and completing multiple subterranean wells from a template which is secured within a cased well bore extending to the surface. An orienting cam having a bore (20) therethrough is positioned above the template such that the bore through the orienting cam is automatically aligned with one of at least two bores through the template. Fluid tight seals are provided between the orienting cam and the casing and between the orienting cam and one of the at least two bores through the template. Thereafter, a drill string including a drill bit is lowered from the surface of the earth through the casing, the bore through the orienting cam and the one bore through said template to drill a first subterranean well bore.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece			TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	NZ	New Zealand		
CM	Cameroon			PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakhstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

ASSEMBLY AND PROCESS FOR DRILLING AND COMPLETING MULTIPLE WELLS

CROSS-REFERENCE TO RELATED APPLICATIONS

- 5 This application is a continuation-in-part of copending United States patent application, Serial No. 08/548,565, filed November 11, 1997.

BACKGROUND OF THE INVENTION

FIELD OF THE INVENTION:

The present invention relates to an assembly and process for drilling 10 multiple subterranean wells from a cased wellbore extending to the surface, and more particularly, to such assembly and process for drilling and completing multiple subterranean wells through a template having at least two bores therethrough and being secured to casing wherein fluid is circulated to the surface during drilling via the casing.

15 DESCRIPTION OF RELATED ART:

Increasingly, well bores are being drilled into subterranean formations at an orientation which is purposely deviated from true vertical by means of conventional whipstock technology or a mud motor secured in the drill string adjacent the drill bit. In fractured subterranean formations, deviated wells are 20 utilized to increase the area of drainage defined by the well within the subterranean formation, and thus, increase production of hydrocarbons from the subterranean formation. An inherent problem in utilizing a conventional whipstock to drill a deviated well is that both the depth and radial orientation of the whipstock is set when the whipstock is positioned in the well bore and 25 cannot be changed without retrieving the whipstock from the well bore and changing the depth and/or radial orientation thereof.

In addition, wells drilled from offshore drilling platforms are usually deviated to increase the number of wells which can be drilled and completed from a single platform. Offshore drilling platforms which are utilized in deep 30 water to drill and complete wells in a subterranean formation vary in size, structure, and cost depending upon the water depth and the loads in which the platform will be set. For example, a platform may be constructed to be

supported in part by one leg or caisson which extends to the ocean floor or by as many as eight such legs or caissons. Costs of such offshore drilling platforms vary from approximately \$5,000,000 US to \$500,000,000 US. Each offshore drilling platform is equipped with a set number of slots via which 5 deviated wells can be drilled and completed through casings which are secured to the platform by conventional techniques.

Due to the significant capital expenditure required for these offshore platforms, templates and processes for drilling and completing multiple cased wells have been developed. During drilling operations utilizing such templates, 10 a conventional tubular riser is lowered into the surface or intermediate casing and inserted into one of the bores formed through the template. Once the riser is properly positioned within the bore, the surface or intermediate casing is cemented within the well bore by conventional techniques and a conventional drill string including a drill bit and mud motor (not illustrated) is transported 15 within the riser into the bore of the template whereupon the float valve or plug and any cement is drilled out of the template bore. Thereafter, a well bore is drilled by the drill string in a conventional manner with drilling mud and formation cuttings being circulated out of the well bore to the surface via the riser. The drill string is then withdrawn from the riser and, after the well is 20 equipped with any tubulars, the riser is withdrawn from template bore, rotated, and inserted into another bore through the template. An additional well can then be drilled and completed in a manner as just described. However, the manipulation of the riser at the surface to insert the same in and out of a given bore through a multi well template which is positioned within a cased well bore 25 at depths of up to ten thousand feet or more and to rotate the riser for insertion into another bore may be problematic. Thus, a need exists for an assembly and process for drilling and completing multiple cased wells through a multiple well template positioned within a cased well at a subterranean location which eliminates the need to use a downhole riser to connect a subsurface or 30 downhole template to the surface.

Accordingly, it is an object of the present invention to provide an assembly and process for drilling and completing multiple wells within

subterranean formation(s) from a cased well bore which eliminates the need to utilize a riser in conjunction therewith.

SUMMARY OF THE INVENTION

5 To achieve the foregoing and other objects, and in accordance with the purposes of the present invention, as embodied and broadly described herein, one characterization of the present invention is a process for drilling subterranean wells from a casing which extends from a subterranean depth to the surface of the earth and to which a downhole or subsurface template
10 having at least two bores therethrough is secured. The process comprises drilling a first subterranean well bore through one of the bores through the template and into a subterranean formation and circulating fluid to the surface via said casing during the step of drilling.

In another characterization of the present invention, a process for drilling
15 subterranean wells from a casing which extends from a subterranean depth to the surface of the earth and to which a downhole or subsurface template having at least two bores therethrough is secured is provided. The process comprises positioning an orienting cam having a bore therethrough above the template such that the bore through the orienting cam is aligned with one of the
20 at least two bores through the template. A fluid tight seal is provided between the orienting cam and the casing. A fluid tight seal is also provided between the orienting cam and one of the at least two bores through the template.

BRIEF DESCRIPTION OF THE DRAWINGS

25 The accompanying drawings, which are incorporated in and form a part of the specification, illustrate the embodiments of the present invention and, together with the description, serve to explain the principles of the invention.

In the drawings:

30 FIG. 1 is a perspective view of one embodiment of the assembly of the present invention which includes a positioning cam and a tubular seal assembly

and which is utilized in conjunction with a subsurface or downhole multiple well template;

FIG. 2 is a partially cutaway, perspective view of the assembly illustrated in FIG. 1;

5 FIG. 3 is a partially cutaway, 360° expanded view of the external surface of the positioning cam of the present invention;

FIG. 4 is a cross sectional view of a downhole or subsurface template;

10 FIG. 5 is a partially cutaway, perspective view of the assembly of FIGS. 1 and 2 depicting the seal assembly thereof sealingly positioned within a bore of a multiple well subsurface template;

FIG. 6 is a partially cutaway, perspective view of another embodiment of the assembly of the present invention depicting the seal assembly thereof sealingly positioned within a bore of a multiple well subsurface template;

15 FIG. 7 is a cross sectional view of yet another embodiment of the assembly of the present invention which depicts the seal assembly thereof as sealingly positioned within a bore of a multiple well subsurface template;

FIG. 8 is a perspective view of the positioning cam of the present invention which is utilized in conjunction with a tubular seal assembly and a multiple well subsurface template;

20 FIG. 9 is a perspective view of certain component parts of the positioning cam of the present invention;

FIG. 10 is a schematic illustration of the configuration of the groove which is formed in the external surface of the seal assembly of the present invention;

25 FIG. 11 is a cross sectional view of the embodiment of the assembly of the present invention illustrated in FIG. 7 which depicts the seal assembly thereof as withdrawn from engagement from a bore of a multiple well subsurface template and aligned with another bore of the multiple well subsurface template; and

30 FIG. 12 is a cross sectional view of the assembly of the present invention illustrated in FIG. 7 which depicts the seal assembly thereof as sealingly positioned within another bore of a multiple well subsurface template.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

As illustrated in FIG. 1, the assembly of the present invention which is illustrated generally as 10 facilitates the drilling and completion of multiple wells by means of a downhole or subsurface templates, such as the template 5 described in U.S. Patent No. 5,330,007 which is incorporated herein by reference. The apparatus 10 comprises a positioning cam 11 and a tubular seal assembly 40 which is secured to and depends from cam 11 in a manner described below. Cam 11 is provided with at least one annular seal 12, for example a moly glass seal ring(s) such as manufactured by Baker Oil Tools, 10 around the outer periphery thereof and a J-4 slot 14 formed in the external surface 13 thereof.

Cam 11 is provided with a bore 20 therethrough (FIG. 2). Bore 20 has a first uniformly tapered portion 22, a second generally concentric annular portion 23, a third non-uniformly tapered portion 24, and terminates in an axially 15 offset portion 25. The non-uniformly tapered portion 24 serves as a diverter block or whipstock in a manner as hereinafter described. A generally annular profile 19 is provided in cam 11 adjacent the second annular portion 23 of bore 20. The lower portion of cam 11 is provided with screw threads 26. Tubular seal assembly 40 is provided with a bore 49 therethrough, at least one annular 20 seal 42, for example moly glass seal ring(s) such as manufactured by Baker Oil Tools, and a collet 44 having a plurality of fingers 47. Each finger is biased outwardly and a corresponding portion of the external surface of each finger is threaded. Above collet 44, the external surface of tubular 40 is provided with threads 41. As cam 11 and tubular assembly 40 are assembled prior to being 25 mated with a multi well template and positioned at a subsurface location within a well bore, threaded section 41 of tubular seal assembly 40 is engaged with the internal threads 26 of cam 11.

An example of a suitable downhole or subsurface template is illustrated in FIG. 4 generally as 100 and is comprised of a first upper section 101, an 30 elongated frame 107, and a plurality of tubular members 104. First upper section 101 is provided with two bores therethrough having lower threaded sections 102. The end face 112 of first section 101 is formed with indentations

115, 116 surrounding the intersection of the two bores. An elongated frame, for example I-beam or H-beam 107, is secured to the other end face of first section 101 by any suitable means, such as bolts. Generally C-shaped guides 109 are secured to I-beam or H-beam 107 along the length thereof such as by 5 welds. Tubular members 104 are positioned through guides 109 on each side of I-beam or H-beam 107 and mated with threaded sections 102 of the bores through first section 101. Guides 109 function in combination with elongated frame 107 to restrain and inhibit movement of tubular member(s) 104 positioned through such guides. Different tubular members 104 positioned on 10 the same side of I-beam or H-beam 107 are secured together by any suitable means, for example, threaded collar 105. The free end of each tubular member 104 is mated with a shoe 106 into which a float valve 126 is secured on one side of I-beam or H-beam 107 while a plug 136 is inserted into the other side of beam 107.

15 As illustrated in FIG. 4 bores 120, 130 are each provided with first sections 121, 131, second sections 123, 133, and third sections 125, 135, respectively. The first and second sections of bores 120, 130 define annular shoulders 122, 132 therebetween while the second and third sections of bores 120, 130 define annular shoulders 124, 134 therebetween. Bores 120, 130 20 may be arranged so as to diverge from each other from end face 112 toward end faces 114, 113, respectively. If arranged to diverge, the degree of such divergence usually should not exceed 2° over the entire length of template 100, and is preferably less than 1°. In the embodiment illustrated in FIG. 4, bore 130 is shorter than bore 120 to provide a portion of subterranean formation 25 between end faces 113 and 114 within which the drill string emanating from bore 130 may be deviated so as to minimize the possibility of interference between well bores which are drilled and completed in accordance with the present invention. Bores 120 and 130 may also be substantially identical in length. In either embodiment, one or both sides of I-beam 107 may be 30 provided with a whipstock(s) secured thereto below bore(s) 120 and/or 130 by any suitable means, such as welds, to further assist in minimizing interference

between the well bores drilled utilizing template 100 in accordance with the present invention.

As thus assembled, first section 101, beam 107 and tubular members 104 define a template 100 having two generally cylindrical bores 120, 130 therethrough. Exemplary of the relative dimensions of template 100, the length of first section may be 1.22 meters, beam 107 may be 9.14 meters, and intermediate or surface casing 90 may be 2.44 meters. Where each bore does not extend beyond frame 107, the length of bore 130 as measured from the bottom of first section 101 to end face 113 may be up to 9.14 meters or less, 5 while the length of bore 120 as measured from the bottom of first section 101 to end face 114 may be up to 13.72 meters or less. Where bore 130 extends beyond frame 107, the length of bore 130, as measured from the bottom of first section 101 to end face 113, may be up to a thousand meters or more, Bore 120 is longer than bore 130 and may be extended, as measured from the 10 bottom of first section 101 to end face 314, up to 3,048 meters or more depending upon the formations to be drilled and completed in accordance with the present invention.

15

As illustrated in FIGS. 4 and 5, template 100 is preferably secured to a section of conductor, surface, or intermediate casing 90 by any suitable means, 20 such as by threads or welds. Casing 90 is provided with an inwardly extending dog or key 92. The external surface of cam 11 is provided with a J-4 slot 14 which in conjunction with key 92 functions to orient tubular 40 for insertion into either bore 120 or 130 in a manner hereinafter described.

In operation, template 100 is secured to the bottom section or joint of 25 surface or intermediate casing 90 at the surface by any suitable means, such as screw threads. Assembly 10 is lowered within this bottom section or joint of surface or intermediate casing 90 until key 92 contacts slot 14 in the external surface of cam 11. The inclined surfaces of slot 14 cause cam 11 and the tubular seal assembly to rotate until key 92 assumes position 14a as illustrated 30 in FIG. 3. As thus oriented, tubular seal assembly 40 will be aligned with and positioned within bore 120 of template 100 such that collet fingers 47 engage threaded section 127 of bore 120 and seal(s) 42 of seal assembly 40 engage

the internal walls of first section 121 of bore 120 so as to provide a fluid tight seal therebetween. As illustrated in FIGS. 2 and 5, annular seal(s) 12 of assembly 10 engage the internal surface of the bottom section or joint of surface or intermediate casing 90 so as to provide a fluid tight seal 5 therebetween.

Preferably, the internal surface of the bottom section or joint of surface or intermediate casing 90 is polished so as to ensure the integrity of the seal formed upon engagement by annular seal(s) 12 of assembly 10.

As thus assembled, surface or intermediate casing 90 is positioned 10 within well bore 54 by securing additional sections or joints of casing together in a conventional manner as the casing string is lowered into the well bore as will be evident to a skilled artisan. Casing 90 is then cemented within well bore 54 by conventional techniques. A conventional drill string including a drill bit and mud motor (not illustrated) is lowered within casing 90 and is funneled 15 through bore 20 by means of first and third tapered portions 22 and 24 and through bore 49 in seal assembly 40 and into bore 120 of template 100 whereupon valve 126 and cement, if any, is drilled out of bore 120. Thereafter, a first well bore is drilled by the drill string in a conventional manner as will be evident to the skilled artisan with drilling mud and formation cuttings being 20 circulated out of the well bore and through bores 20 and 49 in the assembly and casing 90 to the surface. Seals 12 and 42 function to isolate bore 130 of the template and a significant portion of the external surface of cam 11 and seal assembly 40 from circulated drilling mud. This first well bore can be drilled in a vertical or deviated orientation. Thereafter, the drill string is pulled to the 25 surface and casing which is equipped with a liner hanger can be lowered into the first well bore through bores 20 and 49 in the assembly by means of drill pipe and secured to template 10 and cemented within the first well bore by conventional techniques.

The drill string is equipped with a suitable pulling tool near the lower end 30 thereof. The drill string is lowered within casing 90 and funneled through bore 20 by means of first and third tapered portions 22 and 24 until the pulling tool is engaged within annular profile 19 in bore 20 of the assembly 10. The drilling

string is then raised thereby causing collet fingers 147 to disengage from threaded section 127 of bore 120 so as to permit the assembly 10 to be raised until engagement of key 92 within slot 14 causes the orienting cam 11 to automatically rotate until key 92 to assumes position 14b within slot 14 (FIG. 5 3). Subsequent lowering of the drill string causes the cam to rotate until key 92 is positioned at 14c within slot 14. In this orientation, tubular seal assembly 14 will be aligned with and positioned within bore 130 of template 100 such that collet fingers 47 engage threaded section 137 of bore 130 and seal(s) 42 of seal 10 assembly 40 engage the internal walls of first section 131 of bore 130 so as to provide a fluid tight seal therebetween. As illustrated in FIGS. 2 and 5, annular seal(s) 12 of cam 11 engage the internal surface of the bottom section or joint of surface or intermediate casing 90 so as to provide a fluid tight seal therebetween. Thereafter, the drill string is utilized to drill plug 136 out of bore 15 130 of template 100. The drill string is passed through bore 30 and a second well bore is drilled in a conventional manner with drilling mud and formation cuttings being circulated out of the second well bore and through bores 20 and 49 in the assembly and casing 90 to the surface. Seals 12 and 42 function to isolate bore 120 of the template and a significant portion of the external surface 20 of cam 11 and seal assembly 40 from circulated drilling mud. The second well bore can also be drilled in a vertical or deviated orientation. Thereafter, the drill string is pulled to the surface. Casing which is equipped with a suitable liner hanger is then lowered into the second well bore through bores 20 and 49 in assembly 10 by means of drill pipe and is secured to template 100, and thus 25 surface or intermediate casing 90, by conventional means. The casing can be cemented within the second well bore. The drill string is equipped with a suitable pulling tool and lowered within casing 90 until the pulling tool becomes engaged within annular notch 19 in bore 20. Subsequent lifting of the drill string causes collet fingers 147 to disengage from threaded section 137 of bore 130. Engagement of key 92 in slot 14 causes key 92 to disengage from slot 14 thereby permitting the drill string and assembly 10 to be raised to the surface. Assembly 10 can be utilized in conjunction with a downhole or

subsurface multiple well drilling template to drill and complete wells from onshore drilling rigs, subsea well heads or offshore platforms.

In accordance with another embodiment of the present invention as illustrated in FIG. 6, cam 11 is provided with a threaded bore 30 in one face thereof adjacent axially offset portion 25 of bore 20. Cam 11 and tubular assembly 40 are assembled by engaging threaded section 41 of tubular seal assembly 40 within threaded bore 30 of cam 11. As thus constructed, when tubular seal assembly 40 is aligned with and positioned within bore 130 of template 100 in a manner as described above with reference to FIGS. 1-5, bore 10 20 of cam 11 will function to funnel a conventional drill string into bore 120 of template 100 during drilling operations as described above. In this embodiment, annular seal(s) 42 may not be needed since the close tolerance between tubular seal assembly 40 and bore 130 of template 100 when the seal assembly is inserted therein (as illustrated in FIG. 6) functions to effectively 15 prevent drill cuttings from being deposited in bore 130. When annular seal(s) 42 are employed, the seals are positioned above collet 44 as illustrated in FIG. 6.

Another embodiment of the assembly of the present invention is illustrated in FIG. 7. The apparatus of the present invention is illustrated 20 generally as 200 and comprises a positioning cam 211 and a tubular seal assembly 240 which is secured to and depends from cam 211 in a manner described below. Cam 211 is provided with at least one annular seal 212, for example moly glass seal ring(s) such as manufactured by Baker Oil Tools, around the outer periphery thereof and a J-4 slot 214 formed in the external 25 surface 213 thereof (FIG. 8). Cam 211 is also provided with a bore 220 therethrough of varying diameter so as to define first and second annular shoulders 221 and 222. At least one annular seal 223, for example moly glass seal ring(s) such as manufactured by Baker Oil Tools, is provided about the outer periphery of bore 220 near one end thereof. A pin 215 having an 30 enlarged head portion 216 is positioned within a bore 217 which extends through cam 211 from bore 220 to external surface 213.

A tubular seal assembly 240 is provided with a bore 249 therethrough and is comprised of sections which are secured together by any suitable means, such as screw threads, thereby defining a generally annular, external shoulder 241. One end portion 242 of tubular seal assembly 240 is enlarged 5 so as to define an annular shoulder 244 about the external diameter of assembly 240. A beveled profile 243 is provided within the internal surface of enlarged end portion 242, while a slot 247 (FIG. 10) is provided in the external surface of tubular seal assembly 240 intermediate the length thereof. A slot 218 (FIG. 8) is formed in the external surface 213 of cam 211 and preferably 10 has a generally longitudinal orientation. A locking mechanism illustrated generally as 250 in FIG. 9 comprises a generally cylindrical body 251 having a slot or groove 252 formed in one end face thereof and a tongue or protuberance 253 projecting from the other end face thereof. An elongated bar 254 is positioned within slot 252 intermediate the length of bar 254. As 15 assembled, bar 254 is positioned within slot 218 in cam 211 and body 251 is positioned within a bore 228 which extends through cam 211 from bore 220 to external surface 213. Preferably, bore 228 is not radially aligned with bore 217 as illustrated in FIG. 7. Tongue 253 extends into slot 247 in the external surface of the tubular seal assembly 20 240. When assembly 200 is lowered into casing 90 which has been previously cemented within a well bore 54, tongue 253 is initially positioned at 247a in slot 247. In this position, bar 254 is bent within slot 218.

In operation, template 100 is secured to the bottom section or joint of surface or intermediate casing 90 at the surface by any suitable means, such 25 as screw threads and the surface or intermediate casing 90 is positioned within well bore 54 by securing additional sections or joints of casing together in a conventional manner as the casing string is lowered into the well bore as will be evident to a skilled artisan. Assembly 200 is then lowered within this bottom section or joint of surface or intermediate casing 90 by means of a suitable tool 30 secured to drill pipe and engaged within beveled profile 243 in the internal surface of enlarged end portion 242. Assembly 200 is lowered until key 92 contacts slot 214 in the external surface of cam 211. The inclined surfaces of

slot 214 cause cam 211 and the tubular seal assembly to rotate until key 92 assumes position 14a as illustrated in FIG. 3. As thus oriented, tubular seal assembly 240 will be aligned with bore 120 of template 100. As illustrated in FIG. 10, tongue 253 is initially positioned at 247a within slot 247 in tubular assembly 240 and secures tubular assembly 240 in a retracted position as illustrated in FIG. 11. In this position, the enlarged head portion 216 of pin 215 is received within recess 248 in the external surface of assembly 240 and shoulder 241 on the exterior of tubular assembly 240 contacts shoulder 222 within bore 220 so as to retain assembly 240 within bore 220. Movement of tongue 253 within slot 247 is inhibited by the configuration of slot 247. Application of sufficient force, e.g. 25,000 psi, to bar 254 via drill pipe (not illustrated), assembly 240, slot 247 and tongue 253 is necessary to overcome the force exerted upon tongue 253 in slot 247 by bar 254 being bent within slot 218 and permit bar 254 to move into the elongated portion of slot 247.

Alternatively, slot 247a may be aligned with the elongated portion of the slot and head 216 of pin 215 may be spring loaded to retain tongue 253 at the lower end of slot 247 until sufficient force, e.g. 25,000 psi, is applied to retract head 216. Assembly 240 is then lowered through bore 220 and into bore 120 of template 100. Seal(s) 245 of seal assembly 240 engage the internal walls of first section 121 of bore 120 so as to provide a fluid tight seal therebetween. Shoulder 242 of seal assembly 240 abuts shoulder 221 of bore 220 and seal(s) 223 provide for a fluid tight seal. In this lowered position, tubular seal assembly 240 forces pin 215 into recess 94 in the wall of casing 90 to further secure cam 211 to casing 90. Also, sufficient force, e.g. 50,000 psi, must be applied to bar 254 via drill pipe, assembly 240, slot 247 and tongue 253 to bend bar 254 within slot 218 and permit tongue 253 to be positioned at 247b within slot 247. The force necessary to move tongue 253 to position 247b also unlatches the tool which is secured to drill pipe from engagement with profile 243. As illustrated in FIG. 7, annular seal(s) 212 of assembly 200 engage the internal surface of the bottom section or joint of surface or intermediate casing 90 so as to provide a fluid tight seal therebetween. Preferably, the internal surface of the bottom section or joint of surface or intermediate casing 90 is polished

so as to ensure the integrity of the seal formed upon engagement by annular seal(s) 212 of assembly 200. It will be evident to a skilled artisan that slot 214 as utilized in this embodiment of the assembly of the present invention will be configured similarly to slot 14 as illustrated in FIG. 3 except that the vertical portions of slot 214 which correspond to positions 214a and 214c will be shortened since tubular seal assembly 240 is slidably secured to positioning cam 211 and thus can be lowered into engagement with a bore of a multiple well template once the cam has been aligned in a manner as just described.

The drill string with suitable tool secured thereto is lifted to the surface 10 and casing 90 is then cemented within well bore 54 by conventional techniques. A conventional drill string including a drill bit and mud motor (not illustrated) is lowered within casing 90 and is funneled through bore 220 by means of tapered portion 227 of bore 220 and through bore 249 in seal assembly 240 and into bore 120 of template 100 whereupon valve 126 and 15 cement, if any, is drilled out of bore 120. Thereafter, a first well bore is drilled and completed in a manner as described above with respect to FIGS. 1-5.

When appropriate, it is preferred to position assembly 200 within the bottom section of surface or intermediate casing 90 at the surface such that seal(s) 245 of seal assembly 240 engage the internal walls of first section 121 20 of bore 120 in the manner as described above. In this embodiment, cam 211 and seal assembly 240 are fully assembled to template 100 at the surface and the surface or intermediate casing 90 with template 100 secured thereto is positioned within well bore 54 by securing additional sections or joints of casing together in a conventional manner as the casing string is lowered into the well 25 bore. In this manner, the need to utilize drill pipe having a suitable tool secured thereto to positioned assembly 200 downhole within template 100 is eliminated.

After the first well is drilled, the drill string which is equipped with a suitable pulling tool attached near the lower end thereof is lowered within casing 90 and funneled through bore 230 by means of tapered portion 227 and 30 through bore 249 of seal assembly 240 until the pulling tool is engaged within annular profile 243 in seal assembly 240. The drill string is then raised until sufficient pressure is exerted upon rod 254 to bend same thereby permitting

tongue 253 to rotate and move within slot 247. Assembly 200 is raised until shoulder 241 abuts shoulder 222 thereby causing head 216 of pin 215 to be retracted into annular recess 248 which is formed in the external surface of tubular seal assembly 240 and thereby permitting cam 211 to also be raised.

5 Engagement of key 92 within slot 214 causes the orienting cam 211 to automatically rotate until key 92 assumes position 214b (FIG. 3) within slot 214. Subsequent lowering of the drill string causes the cam to rotate until key 92 is positioned at 214c within slot 214. In this orientation, tubular seal assembly 240 will be aligned with bore 130 of template 100 such that seal(s)

10 242 of seal assembly 240 will engage the internal walls of first section 131 of bore 130 upon being lowered so as to provide a fluid tight seal therebetween. Once seal assembly is completely lowered, pin 215 will be forced into engagement with annular recess 94 in the internal surface of casing 90. Thereafter, the drill string is utilized to drill plug 136 out of bore 130 of template

15 100. The drill string is passed through bore 130 and a second well bore is drilled and completed in a manner as described above with respect to FIGS. 1-5.

The drill string is then raised to the surface which causes the pulling tool to be engaged within profile 243 in tubular seal assembly. Engagement of key 20 92 with slot 214 causes key 92 to disengage from slot 214 thereby permitting the drill string and assembly 200 to be raised to the surface. Assembly 200 can be utilized in conjunction with a downhole or subsurface multiple well drilling template to drill and complete wells from onshore drilling rigs, subsea well heads or offshore platforms. Although the assembly of the present invention 25 has been illustrated and described as being utilized in conjunction with a subsurface or downhole template having two bores therethrough, it will be evident to a skilled artisan that the assembly can be utilized with a subsurface or downhole template having three or more bores. When three bores are provided through the template, slot 14 or 214 on the outer surface of cam 11 30 or 211 will be reconfigured in a manner as will be evident to a skilled artisan to permit rotation of cam 11 or 211 in 120° increments. When more than three bores are provided through the template, slot 14 or 214 on the outer surface of

cam 11 or 211 will be reconfigured to permit rotation of cam 11 or 211 in degreed increments as will be evident to a skilled artisan. Further, expandable slips (not illustrated) may be utilized in lieu of collet 44 as will be evident to a skilled artisan.

- 5 While the foregoing preferred embodiments of the invention have been described and shown, it is understood that the alternatives and modifications, such as those suggested and others, may be made thereto and fall within the scope of the invention.

I claim:

1 1. A process for drilling subterranean wells from a casing which
2 extends from a subterranean depth to the surface of the earth and to which a
3 downhole or subsurface template having at least two bores therethrough is
4 secured, said process comprising:

5 positioning an orienting cam having a bore therethrough above
6 said template such that said bore through said orienting cam is aligned
7 with one of the at least two bores through the template;

8 securing said orienting cam to said another of the at least two
9 bores through the template such that said orienting cam remains as
10 positioned; and circulating fluid to the surface via said bore in said
11 orienting cam and via said casing during drilling a first subterranean well
12 bore through said one of said bores and into a subterranean formation.

1 2. The process of claim 1 further comprising:

2 repositioning said orienting cam above said template such that
3 said bore through said orienting cam is aligned with said another of the
4 at least two bores through the template.

1 3. The process of claim 2 further comprising:

2 securing said orienting cam to said one of said bores through the
3 template such that said orienting cam remains as repositioned.

1 4. The process of claim 3 further comprising:

2 circulating fluid to the surface via said casing during drilling a
3 into a subterranean formation.

1 5. The process of claim 1 further comprising:

2 providing a fluid tight seal between said orienting cam and
3 another of the at least tow bores through the template.

1 6. The process of claim 5 wherein said step of providing a fluid tight
2 seal between said orienting cam and said another of the at least two bores
3 through the template comprises inserting a portion of a tubular assembly which
4 is sealingly secured to and slidingly depends from said cam into said another
5 bore, said portion of said tubular assembly which is inserted into said another

6 bore of said template having substantially annular seals about the exterior
7 thereof.

1 7. The process of claim 3 wherein said step of securing comprises
2 releasably locking said tubular assembly in the position where said portion of
3 said tubular assembly is inserted into said another bore of said template.

1 8. The process of claim 1 wherein the step of positioning said
2 orienting cam above said template such that said bore through said orienting
3 cam is aligned with said another of the at least two bores through the template
4 comprises contacting said cam with a key which is secured to said casing, said
5 key and said cam cooperating upon contact to align a riser with said another
6 of the at least two bores through the template.

1 9. The process of claim 2 wherein the step of repositioning said
2 orienting cam above said template such that said bore through said orienting
3 cam is aligned with said one of the at least two bores through the template
4 comprises contacting said cam with a key which is secured to said casing, said
5 key and said cam cooperating during contact to align a riser with said one of
6 the at least two bores through the template.

1 10. The process of claim 1 wherein said first subterranean well bore is
2 drilled by passing a drill string including a drill bit from the surface through said
3 casing, said bore through said orienting cam and said another bore through
4 said template.

1 11. The process of claim 10 wherein said fluid is circulated from the
2 surface through said drill string and back to the surface via said first
3 subterranean well bore, said another of the at least two bores through the
4 template, said bore through said orienting cam and an annulus defined
5 between said drill string and said casing.

1 12. The process of claim 4 wherein said second subterranean well bore
2 is drilled by passing a drill string including a drill bit from the surface through
3 said casing, said bore through said orienting cam and said one bore through
4 said template.

1 13. The process of claim 12 wherein said fluid is circulated from the
2 surface through said drill string and back to the surface via said second
3 subterranean well bore, said one of the at least two bores through the template,
4 said bore through said orienting cam and an annulus defined between said drill
5 string and said casing.

1 14. The process of claim 3 further comprising:
2 providing a fluid tight seal between said orienting cam and said one of
3 the at least tow bores through the template.

1 15. The process of claim 14 wherein said step of providing a fluid tight
2 seal between said orienting cam and said one of the at least two bores through
3 the template comprises inserting a portion of a tubular assembly which is
4 sealingly secured to and slidingly depends from said cam into said one bore,
5 said portion of said tubular assembly which is inserted into said one bore of
6 said template having substantially annular seals about the exterior thereof.

1 16. The process of claim 15 wherein said step of securing comprises
2 releasably locking said tubular assembly in the position where said portion of
3 said tubular assembly is inserted into said one bore of said template.

1 17. The process of claim 1 further comprising:
2 providing a fluid tight seal between said orienting cam and said casing.
1 18. All inventions described herein.

1/11

FIG. 1

2/11

FIG. 2

3/11

FIG. 3

4 / 11

FIG. 4

FIG. 5

FIG. 6

7/11

FIG. 7

8/11

FIG. 8

9/11

FIG. 9

10 / 11

FIG. 11

11/11
FIG. 12

INTERNATIONAL SEARCH REPORT

International application No. PCT/US98/16645

A. CLASSIFICATION OF SUBJECT MATTER

IPC(6) :E21B 15/04, 7/08, 43/01

US CL :Please See Extrn Sheet.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.S. : 166/313, 341, 345, 366, 50, 52, 382, 381
175/61, 78, 79, 117.6, 117.5Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
noneElectronic data base consulted during the international search (name of data base and, where practicable, search terms used)
none**C. DOCUMENTS CONSIDERED TO BE RELEVANT**

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	US 3,357,489 A (Brown) 12 December 1967 (12/12/67). See Figure 1 and the Abstract.	1-17
A	US 4,606,410 A (Becker et al) 19 August 1986 (19/08/86). See Figure 2A.	1-17
A	US 5,560,435 A (Sharp) 01 October 1996 (01.10.96). See the entire document.	1-17

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:	"T"	later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
A document defining the general state of the art which is not considered to be of particular relevance	"X"	document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
E earlier document published on or after the international filing date	"Y"	document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
L document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)	"&"	document member of the same patent family
O document referring to an oral disclosure, use, exhibition or other means		
P document published prior to the international filing date but later than the priority date claimed		

Date of the actual completion of the international search

14 OCTOBER 1998

Date of mailing of the international search report

17 DEC 1998

Name and mailing address of the ISA/US
Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231

Facsimile No. (703) 305-3230

Authorized officer

DENNIS L. TAYLOR

Telephone No. (703) 308-2168

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US98/16645

A. CLASSIFICATION OF SUBJECT MATTER:

US CL :

166/313, 341, 345, 366;
175/61, 117.6

THIS PAGE BLANK (USPTO)