계단시간지속론리의 한가지 성질과 그것의 모형검사 알고리듬에 대한 연구

림권, 조영선

현실에서 제기되는 과학기술적문제들을 첨단수준에서 해결하는데서 실시간체계들의 안전성담보는 매우 중요한 문제로 나선다.

선행연구[1, 2]에서는 실시간체계의 실시간요구들을 형식적으로 서술하고 검사하는 도구로 지속론리가 연구되였다. 선행연구[1, 3]에서는 시간구간의 유한성과 무한성 그리고 어떤 시점에서의 상태변화를 고찰하면서 통신이나 계산과정이 매우 짧은 상태들에 대하여서는 그 경과시간을 령으로 처리하였다.

그러나 엄밀한 의미에서는 그 시간이 매우 짧아도 령으로는 될수 없으며 또 령이라고 보는 시각에도 체계내부에서는 여러가지 상태변화들이 일어나는 경우가 있다.

론문에서는 \mathbf{R}^+ 를 시간구조로 한 종전의 지속론리를 보존적으로 확장하여 계단시간이라는 새로운 시간구조우에서 지속론리를 정의하고 모형검사를 진행하였다.

1. 계단시간지속론리

계단시간구조를 정의하기 위해 다음의 표현들을 약속한다. \mathbf{R}^+ 를 부아닌 실수전부의 모임, \mathbf{Z}^+ 를 부아닌 옹근수전부의 모임이라고 하자. 시간구조에서 \mathbf{R}^+ 는 련속시간을, \mathbf{Z}^+ 는 리산시간을 의미하며 \mathbf{R}^+ 를 매크로시간구조, \mathbf{Z}^+ 를 마이크로시간구조라고도 한다. \mathbf{R}^+ 의 원소들을 $t_1, t_2, \cdots, \mathbf{Z}^+$ 의 원소들을 t_1, t_2, \cdots 으로 표시한다.

정의 1 다음의 조건 ①-④를 만족시키는 쌍 (ST, <)을 계단시간구조라고 한다.

- ① $ST \subseteq \mathbf{R}^+ \times \mathbf{Z}^+ \circ | \mathfrak{P}$.
- ② <는 ST 우의 사전식순서이다. 즉

$$(t_1, i_1) < (t_2, i_2)$$
 iff $t_1 < t_2 \lor (t_1 = t_2 \land i_1 < i_2)$

이다.

③ <는 단조성을 가진다. 즉

$$t_1 < t_2 \land (t_1, i_1) \in ST \land (t_2, i_2) \in ST$$

이면 $i_1 \leq i_2$ 이다.

④ ST 는 무한경과성을 가진다. 즉

$$\pi_1(t, i) = t, \ \pi_2(t, i) = i$$

라고 할 때 $\pi_1(ST) = \mathbf{R}^+$, $\pi_2(ST) = \mathbf{Z}^+$ 이다.

한편 ST 우에서의 구간모임은 다음과 같이 령시간구간도 포함되게 정의한다.

Intv(
$$ST$$
, <) = {[b , e] | b , $e \in ST$, $b \le e$ }

이때 시간구간
$$[b, e]$$
의 길이는 $e-b=(\pi_1(e)-\pi_1(b), \pi_2(e)-\pi_2(b))$ 이며
$$l=\pi_1(e)-\pi_1(b), \ \eta=\pi_2(e)-\pi_2(b)$$

일 때 $l \in \mathbb{R}^+$ 이고 $\eta \in \mathbb{Z}^+$ 이다.

계단시간구조우에서의 지속론리를 다음과 같이 정의한다.

이제 고찰하는 체계의 원자적인 성질들을 표시하는 원자공식전부의 모임을 Pvar로, 원자공식들을 p, q, r, \dots 등으로 표시하면 Pvar는 체계의 어떤 측면을 고찰하려고 하는 가에 따라 결정된다.

정의 2 계단시간지속론리의 공식은 다음과 같이 구성된다.

$$P := p \mid \neg P \mid P_1 \land P_2 \mid P_1 \lor P_2 \mid P_1 \to P_2$$

$$F := \lceil P \rceil^0 \mid \lceil P \rceil \mid \eta \text{ op } k \mid \left(k_1 \cdot \sum P_1 + \dots + k_m \cdot \sum P_m \right) \text{ op } k \mid$$

$$l \text{ op } c \mid \left(c_1 \cdot \int P_1 + \dots + c_n \cdot \int P_n \right) \text{ op } c$$

$$\Phi := \mid F \mid \neg \Phi \mid \Phi_1 \land \Phi_2 \mid \Phi_1 \lor \Phi_2 \mid \Phi_1 \to \Phi_2 \mid \Phi_1 \land \Phi_2$$

여기서 $op \in \{=, \leq, \geq\}, k \in \mathbb{Z}^+, c \in \mathbb{R}^+$ 이다.

계단시간지속론리공식의 의미는 형태별로 다음과 같이 정의한다.

우선 ST를 계단시간구조, [b, e]를 ST의 시간구간이라고 하면 [b, b]는 ST의 한점 구간을 의미한다. 조건 《마이크로시점이 같은 ST의 시점들의 모임은 어떤 유한개의 구간으로 분할되며 매개 구간의 점들에 대하여 L의 값은 같다.》를 만족시키는 넘기기 $L:ST \rightarrow 2^{Pvar}$ 를 ST의 해석이라고 한다.

점인 3 P형태의 계단시간지속론리공식의 의미는 다음과 같이 정의된다.

 $(ST, [b, b]) \models p \text{ iff } p \in L(b) \circ \vdash$.

 $(ST, [b, b]) \models \neg P \text{ iff } (ST, [b, b]) \not\models P \circ \vdash$

 $(ST, [b, b]) \models P_1 \land P_2 \text{ iff } (ST, [b, b]) \models P_1 \circ \square (ST, [b, b]) \models P_2 \circ \square$

 $(ST, [b, b]) \models P_1 \lor P_2 \text{ iff } (ST, [b, b]) \models P_1 \circ | 커나 (ST, [b, b]) \models P_2 \circ | 다.$

 $(ST, [b, b]) \models P_1 \rightarrow P_2 \text{ iff } (ST, [b, b]) \models P_1 \text{ ol 면 } (ST, [b, b]) \models P_2 \text{ ol 다}.$

정의 4 F형태의 계단시간지속론리공식의 의미는 다음과 같이 정의된다.

 $(ST, [b, e]) \models \lceil P \rceil$ iff $b \le i \le e$ 인 임의의 점 i에서 P가 참이다.

 $(ST, [b, e]) \models \eta \text{ op } k \text{ iff } (\pi_2(e) - \pi_2(b)) \text{ op } k \circ] \vdash .$

 $(ST, [b, e]) \models (k_1 \cdot \sum P_1 + \dots + k_m \cdot \sum P_m) op \ k \text{ iff } (k_1 \cdot eval(\sum P_1, [b, e]) + \dots + k_m \cdot eval(\sum P_m, [b, e])) op \ k \mid r \mid \cdot.$

여기서 $eval(\sum P, [b, e])$ 는 [b, e]에서 P가 참이 된 총회수라고 하자.

 $(ST, [b, e]) \models lop c \text{ iff } (\pi_1(e) - \pi_1(b)) op c \circ \vdash$

$$(ST, [b, e]) \models \left(c_1 \cdot \int P_1 + \dots + c_n \cdot \int P_n\right) op \ c \quad \text{iff} \quad \left(c_1 \cdot \int_{\pi_1(b)}^{\pi_1(e)} P_1 + \dots + c_n \cdot \int_{\pi_1(b)}^{\pi_1(e)} P_n\right) op \ c \quad \text{iff} \quad \left(c_1 \cdot \int_{\pi_1(b)}^{\pi_1(e)} P_1 + \dots + c_n \cdot \int_{\pi_1(b)}^{\pi_1(e)} P_n\right) op \ c \quad \text{iff} \quad \left(c_1 \cdot \int_{\pi_1(b)}^{\pi_1(e)} P_1 + \dots + c_n \cdot \int_{\pi_1(b)}^{\pi_1(e)} P_n\right) op \ c \quad \text{iff} \quad \left(c_1 \cdot \int_{\pi_1(b)}^{\pi_1(e)} P_1 + \dots + c_n \cdot \int_{\pi_1(b)}^{\pi_1(e)} P_n\right) op \ c \quad \text{iff} \quad \left(c_1 \cdot \int_{\pi_1(b)}^{\pi_1(e)} P_1 + \dots + c_n \cdot \int_{\pi_1(b)}^{\pi_1(e)} P_n\right) op \ c \quad \text{iff} \quad \left(c_1 \cdot \int_{\pi_1(b)}^{\pi_1(e)} P_1 + \dots + c_n \cdot \int_{\pi_1(b)}^{\pi_1(e)} P_n\right) op \ c \quad \text{iff} \quad \left(c_1 \cdot \int_{\pi_1(b)}^{\pi_1(e)} P_1 + \dots + c_n \cdot \int_{\pi_1(b)}^{\pi_1(e)} P_n\right) op \ c \quad \text{iff} \quad \left(c_1 \cdot \int_{\pi_1(b)}^{\pi_1(e)} P_1 + \dots + c_n \cdot \int_{\pi_1(b)}^{\pi_1(e)} P_n\right) op \ c \quad \text{iff} \quad \left(c_1 \cdot \int_{\pi_1(b)}^{\pi_1(e)} P_1 + \dots + c_n \cdot \int_{\pi_1(b)}^{\pi_1(e)} P_n\right) op \ c \quad \text{iff} \quad \left(c_1 \cdot \int_{\pi_1(b)}^{\pi_1(e)} P_1 + \dots + c_n \cdot \int_{\pi_1(b)}^{\pi_1(e)} P_n\right) op \ c \quad \text{iff} \quad \left(c_1 \cdot \int_{\pi_1(b)}^{\pi_1(e)} P_1 + \dots + c_n \cdot \int_{\pi_1(b)}^{\pi_1(e)} P_n\right) op \ c \quad \text{iff} \quad \left(c_1 \cdot \int_{\pi_1(b)}^{\pi_1(e)} P_1 + \dots + c_n \cdot \int_{\pi_1(b)}^{\pi_1(e)} P_1 + \dots +$$

정의 5 Φ형태의 계단시간지속론리공식의 의미는 다음과 같이 정의된다.

(ST, [b, e]) |= F의 의미는 정의 3에서와 같다.

 $(ST, [b, e]) \models \neg \Phi \text{ iff } (ST, [b, e]) \not\models \Phi \circ \mid \neg \vdash$.

 $(ST, [b, e]) \models \Phi_1 \land \Phi_2 \text{ iff } (ST, [b, e]) \models \Phi_1 \circ \square (ST, [b, e]) \models \Phi_2 \circ \square.$

 $(ST, [b, e]) \models \Phi_1 \lor \Phi_2$ iff $(ST, [b, e]) \models \Phi_1 \circ$ 기가나 $(ST, [b, e]) \models \Phi_2 \circ$ 다.

 $(ST, [b, e]) \models \Phi_1 \rightarrow \Phi_2$ iff $(ST, [b, e]) \models \Phi_1 \circ \exists \exists (ST, [b, e]) \models \Phi_2 \circ \exists \exists ...$

 $(ST, [b, e]) \models \Phi_1 \cap \Phi_2$ iff 어떤 $m(b \le m \le e)$ 이 있어서

 $(ST, [b, m]) \models \Phi_1 \circ \square (ST, [b, m]) \models \Phi_2 \circ \square.$

2. 모형검사알고리듬

아래에 임의로 주어진 시간자동체가 다음과 같은 형태의 계단시간지속론리의 공식을 만족시키는가를 검사하는 모형검사알고리듬을 제기한다.

성질 0 < c < 1, $\alpha = \{i \mid s_i = \neg P\}$ 라고 할 때

$$C_{\min} \leq l \leq C_{\max} \Rightarrow \left(\sum_{i \in \alpha} \int_{\pi_1(b_i)}^{\pi_1(e_i)} \neg P \leq c \cdot l \right) \wedge \left(\sum_{i \in \alpha} \sum_{[\pi_2(b_i), \ \pi_2(b_i)]} \neg P \leq m \cdot k \right)$$

이다. 이 공식을 간단히 ①로 표시한다.

공식 ♥의 모형검사알고리듬

M 을 임의로 주어진 시간자동체, Φ 를 검사하여야 할 계단시간지속론리의 공식이라고 하자. 그리고 자동체 M 은 부분순환이 없다고 가정한다. 즉 경로가 유한인 자동체에 대하여 검사를 진행한다. 이때 알고리듬을 다음과 같이 구성한다.

- ① 자동체 *M* 의 정규표현식 *L*(*r*)를 찾는다.
- ② 정규표현식 L(r)에 의하여 생성되는 임의의 경로 path에 대하여 $path \models \mathbf{\Phi}$ 가 성립하는가를 다음과 같이 검사한다.

가정으로부터 정규표현식에 의하여 생성되는 경로는 유한개로서 그것을 $path_1, \, \cdots, \, path_k$ 라고 하자.

- ㄱ) $C_{\min} \le l \le C_{\max}$ 에 대하여 $\exists S_j \in S$, $path_{\tau} \left(\int S_j \right) \le 0$ $(\tau = \overline{1, k})$ 이면 걸음 L)로 가고 $\forall S_j \in S$, $path_{\tau} \left(\int S_j \right) > 0$ 이면 검사를 중지한다.
- ㄴ) $0<\exists c<1$ 에 대하여 $path_{\tau}\Big(\int S_j\Big)\leq c\cdot l$ 이면 걸음 ㄷ)로 가고 $0<\forall c<1$ 에 대하여 $path_{\tau}\Big(\int S_j\Big)>c\cdot l$ 이면 검사를 중지한다.
- 다) $\exists k \in \omega$, $m = |\alpha|$ 에 대하여 $path_{\tau}(\eta) \leq m \cdot k$ 이면 걸음 리)로 가고 $path_{\tau}(\eta) > m \cdot k$ 이면 검사를 중지한다.

킨 다음 걸음 ㄱ)부터 ㄹ)까지 반복한다. $path_{\tau}\Biggl(\sum_{i\in\alpha}S_{i}\Biggr)\neq path_{\tau}(\eta)$ 인 경우에는 $path_{\tau}\not\models \mathbf{\Phi}$ 라고 판정하고 검사를 중지한다.

③ 모든 τ 에 대하여 $path_{\tau} \models \mathbf{\Phi}$ 이면 $M \models \mathbf{\Phi}$ 라고 판정하고 검사를 중지한다.

결국 계단시간지속론리공식 Φ는 다음과 같이 구성된 자동체에서 접수된다는것을 알 수 있다.

정리 M = (S, T, L)을 자동체, Φ 를 우에서 정의한 계단시간지속론리의 공식이라고 하자.

 $S = \{S_1, S_2, S_3\}$ 은 상태들의 모임이고 $T = \{(S_1, t_1) \rightarrow S_2, (S_2, t_2) \rightarrow S_3, (S_3, t_3) \rightarrow S_1\}$ 은 이행규칙들의 모임이다. 여기서 $t_1 > 0$, $t_2 = 0$, $t_1 > t_3 > 0$ 이다.

 $L: S \to Atoms$ 인 함수이다. 여기서 $e_i, b_i \in ST$ 일 때 $t_i = e_i - b_i$ 이다.

이때 주어진 자동체에 대하여 $M \models \mathbf{\Phi}$ 가 성립한다.

결국 계단시간지속론리를 리용하면 일부 실시간체계들의 모형화설계에서 지속시간 이 대단히 짧아 무시되였던 상태들도 모두 체계의 모형화에 반영할수 있다.

참 고 문 헌

- [1] Changil Choe et al.; UNU/IIST, 5, 375, 2007.
- [2] Miaomiao Zhang et al.; UNU/IIST, 12, 332, 2005.
- [3] Univan Ahn et al.; Communications in Computer and Information Science, 742, 211, 2014.

주체107(2018)년 6월 5일 원고접수

A Property of Step Time Frame Duration Calculus and Its Model Checking Algorithm

Rim Kwon, Jo Yong Son

Duration calculus represents a logical approach to formal design of real time systems.

In this paper, duration calculus is defined over step time frame, a new time frame which is an extended to design the states of real time systems in more detail and then we prove a property of this duration calculus.

Key words: duration calculus, model checking, real time system