Approximating the Held-Karp Bound for Metric TSP in Nearly Linear Work and Polylog Depth

Zhuan Khye (Cedric) Koh

Omri Weinstein Sorrachai Yingchareonthawornchai

Sequential computation

Sequential computation

Parallel computation

Sequential computation

Parallel computation

• Work = Total number of operations

Sequential computation

Parallel computation

- Work = Total number of operations
- Depth = Length of a longest chain of dependent operations

Sequential computation

Parallel computation

- Work = Total number of operations
- Depth = Length of a longest chain of dependent operations
- Fast parallel algorithm = Nearly linear work and polylog depth.

ullet Given an undirected graph G=(V,E) with edge costs $c\in\mathbb{R}^m_{\geq 0}$,

TSP: Find a minimum-cost Hamiltonian cycle in G.

ullet Given an undirected graph G=(V,E) with edge costs $c\in\mathbb{R}^m_{\geq 0}$,

TSP: Find a minimum-cost Hamiltonian cycle in *G*.

► Inapproximable

ullet Given an undirected graph G=(V,E) with edge costs $c\in\mathbb{R}^m_{\geq 0}$,

TSP: Find a minimum-cost Hamiltonian cycle in G.

Inapproximable

Metric TSP: Find a minimum-cost spanning tour in *G*.

ullet Given an undirected graph G=(V,E) with edge costs $c\in\mathbb{R}^m_{\geq 0}$,

TSP: Find a minimum-cost Hamiltonian cycle in G.

Inapproximable

Metric TSP: Find a minimum-cost spanning tour in *G*.

- ► APX-hard [Lampis '14]
- ▶ 3/2 approximation [Christofides '76] [Serdyukov '78]
- $ightharpoonup 3/2-10^{-36}$ approximation [Karlin, Klein, Oveis Gharan '22]

• Given an undirected graph G = (V, E) with edge costs $c \in \mathbb{R}^m_{\geq 0}$,

TSP: Find a minimum-cost Hamiltonian cycle in G.

► Inapproximable

Metric TSP: Find a minimum-cost spanning tour in *G*.

- ► APX-hard [Lampis '14]
- ▶ 3/2 approximation [Christofides '76] [Serdyukov '78]
- ▶ 3/2 10⁻³⁶ approximation [Karlin, Klein, Oveis Gharan '22]
- Metric TSP on $(G,c) \equiv \mathsf{TSP}$ on the metric completion (\hat{G},\hat{c})

 $\hat{G} = \text{Complete graph on } V$ $\hat{c}_{uv} = \text{Shortest path length between } u \text{ and } v \text{ in } G$

[Dantzig, Fulkerson, Johnson '54]

$$\min \ \hat{c}^{\top} x$$
s. t.
$$\sum_{v} x_{uv} = 2 \qquad \forall u \in V$$

$$\sum_{u \in S, v \notin S} x_{uv} \ge 2 \qquad \forall \emptyset \subsetneq S \subsetneq V$$

$$x_{uv} \ge 0 \qquad \forall u, v \in V$$

[Dantzig, Fulkerson, Johnson '54]

min
$$\hat{c}^{\top} x$$

s. t. $\sum_{v} x_{uv} = 2$ $\forall u \in V$
 $\sum_{u \in S, v \notin S} x_{uv} \ge 2$ $\forall \emptyset \subsetneq S \subsetneq V$
 $x_{uv} \ge 0$ $\forall u, v \in V$

• Used in many approximation/exact algorithms for TSP.

[Dantzig, Fulkerson, Johnson '54]

min
$$\hat{c}^{\top}x$$

s. t. $\sum_{v} x_{uv} = 2$ $\forall u \in V$
 $\sum_{u \in S, v \notin S} x_{uv} \ge 2$ $\forall \emptyset \subsetneq S \subsetneq V$
 $x_{uv} \ge 0$ $\forall u, v \in V$

- Used in many approximation/exact algorithms for TSP.
- The LP optimal value coincides with the Held-Karp bound.

[Dantzig, Fulkerson, Johnson '54]

min
$$\hat{c}^{\top}x$$

s. t. $\sum_{v} x_{uv} = 2$ $\forall u \in V$
 $\sum_{u \in S, v \notin S} x_{uv} \ge 2$ $\forall \emptyset \subsetneq S \subsetneq V$
 $x_{uv} \ge 0$ $\forall u, v \in V$

- Used in many approximation/exact algorithms for TSP.
- The LP optimal value coincides with the Held-Karp bound.

Conjecture: The LP integrality gap is at most 4/3 [Goemans '95].

• LP relaxation of the 2-edge-connected spanning multisubgraph problem:

$$\begin{aligned} & \text{min } c^\top x \\ & \text{s. t. } \sum_{e \in \delta_G(S)} x_e \geq 2 \qquad \forall \, \emptyset \subsetneq S \subsetneq V \\ & \qquad \qquad x_e \geq 0 \qquad \forall \, e \in E. \end{aligned}$$

• LP relaxation of the 2-edge-connected spanning multisubgraph problem:

$$\begin{aligned} & \text{min } c^\top x \\ & \text{s. t. } \sum_{e \in \delta_G(S)} x_e \geq 2 \qquad \forall \, \emptyset \subsetneq S \subsetneq V \\ & \qquad x_e \geq 0 \qquad \forall \, e \in E. \end{aligned}$$

Fact: Subtour LP optimal value = 2-ECSM LP optimal value.

• LP relaxation of the 2-edge-connected spanning multisubgraph problem:

$$\begin{aligned} & \text{min } c^\top x \\ & \text{s. t. } \sum_{e \in \delta_G(S)} x_e \geq 2 \qquad \forall \emptyset \subsetneq S \subsetneq V \\ & x_e \geq 0 \qquad \forall \, e \in E. \end{aligned}$$

Fact: Subtour LP optimal value = 2-ECSM LP optimal value.

- Methods for solving the LP:
 - ▶ Ellipsoid: separation oracle is min cut

• LP relaxation of the 2-edge-connected spanning multisubgraph problem:

$$\begin{aligned} & \text{min } c^\top x \\ & \text{s. t. } \sum_{e \in \delta_G(S)} x_e \geq 2 \qquad \forall \emptyset \subsetneq S \subsetneq V \\ & x_e \geq 0 \qquad \forall \, e \in E. \end{aligned}$$

Fact: Subtour LP optimal value = 2-ECSM LP optimal value.

- Methods for solving the LP:
 - ▶ Ellipsoid: separation oracle is min cut
 - ► Held-Karp bound/heuristic: iterate over 1-trees

• LP relaxation of the 2-edge-connected spanning multisubgraph problem:

$$\begin{aligned} & \text{min } c^{\top} x \\ & \text{s. t. } \sum_{e \in \delta_G(S)} x_e \geq 2 \qquad \forall \emptyset \subsetneq S \subsetneq V \\ & x_e \geq 0 \qquad \forall \, e \in E. \end{aligned}$$

Fact: Subtour LP optimal value = 2-ECSM LP optimal value.

- Methods for solving the LP:
 - ▶ Ellipsoid: separation oracle is min cut
 - ► Held-Karp bound/heuristic: iterate over 1-trees
 - Multiplicative weight update (MWU)

• FPTAS which returns a $(1+\varepsilon)$ -approximate solution.

- ullet FPTAS which returns a (1+arepsilon)-approximate solution.
- Sequential algorithms:
 - $ightharpoonup \tilde{O}(n^4/\varepsilon^2)$ [Plotkin, Shmoys, Tardos '95]
 - $ightharpoonup \tilde{O}(m^2/\varepsilon^2)$ [Garg, Khandekar '02]
 - $ightharpoonup \tilde{O}(m/\varepsilon^2)$ [Chekuri, Quanrud '17]

- ullet FPTAS which returns a (1+arepsilon)-approximate solution.
- Sequential algorithms:
 - $ightharpoonup \tilde{O}(n^4/\varepsilon^2)$ [Plotkin, Shmoys, Tardos '95]
 - $ightharpoonup \tilde{O}(m^2/\varepsilon^2)$ [Garg, Khandekar '02]
 - $ightharpoonup \tilde{O}(m/\varepsilon^2)$ [Chekuri, Quanrud '17]

Main Result [KWY '25]

Parallel algorithm that runs in $\tilde{O}(m/\varepsilon^4)$ work and $\tilde{O}(1/\varepsilon^4)$ depth.

- ullet FPTAS which returns a (1+arepsilon)-approximate solution.
- Sequential algorithms:
 - $ightharpoonup \tilde{O}(n^4/\varepsilon^2)$ [Plotkin, Shmoys, Tardos '95]
 - $ightharpoonup \tilde{O}(m^2/\varepsilon^2)$ [Garg, Khandekar '02]
 - $ightharpoonup \tilde{O}(m/\varepsilon^2)$ [Chekuri, Quanrud '17]

Main Result [KWY '25]

Parallel algorithm that runs in $\tilde{O}(m/\varepsilon^4)$ work and $\tilde{O}(1/\varepsilon^4)$ depth.

Framework: Width-independent epoch-based MWU.

[Garg, Könemann '07] [Fleischer '00] [Luby, Nisan '93] [Young '01]

• Initialize edge weights as w = 1/c.

- Initialize edge weights as w = 1/c.
- ullet Given a fixed lower bound λ on the mincut value, define

$$\mathcal{C}^* := \{ \textit{C} \text{ cut } : \textit{w}(\textit{C}) < (1 + \varepsilon)\lambda \}.$$

- Initialize edge weights as w = 1/c.
- ullet Given a fixed lower bound λ on the mincut value, define

$$\mathcal{C}^* := \{ C \text{ cut } : w(C) < (1+\varepsilon)\lambda \}.$$

While $C^* \neq \emptyset$:

- **1** Select cut(s) from C^* .
- Multiplicatively increase w along these cuts.

an epoch

- Initialize edge weights as w = 1/c.
- ullet Given a fixed lower bound λ on the mincut value, define

$$\mathcal{C}^* := \{ C \text{ cut } : w(C) < (1+\varepsilon)\lambda \}.$$

While $C^* \neq \emptyset$:

- 1 Select cut(s) from C^* .
- 2 Multiplicatively increase w along these cuts.
- $\lambda \leftarrow \lambda(1+\varepsilon)$ and a new epoch begins.

> an <mark>epoc</mark>ł

- Initialize edge weights as w = 1/c.
- ullet Given a fixed lower bound λ on the mincut value, define

$$\mathcal{C}^* := \{ \textit{C} \text{ cut } : \textit{w}(\textit{C}) < (1 + \varepsilon)\lambda \}.$$

While $C^* \neq \emptyset$:

- 1 Select cut(s) from C^* .
- 2 Multiplicatively increase w along these cuts.
- $\lambda \leftarrow \lambda(1+\varepsilon)$ and a new epoch begins.
- Terminate when $||w||_{\infty}$ is big.

> an epoch

While $C^* \neq \emptyset$:

- **1** Select cut(s) from C^* .
- **2** Multiplicatively increase $w^{(t)}$ along these cuts.

While $C^* \neq \emptyset$:

- **1** Select cut(s) from C^* .
- **2** Multiplicatively increase $w^{(t)}$ along these cuts.

Sequential MWU: Select one cut from C^*

While $C^* \neq \emptyset$:

- **1** Select cut(s) from C^* .
- **2** Multiplicatively increase $w^{(t)}$ along these cuts.

Sequential MWU: Select one cut from C^*

While $C^* \neq \emptyset$:

- **1** Select cut(s) from C^* .
- Multiplicatively increase w^(t) along these cuts.

Sequential MWU: Select one cut from C^*

 $\implies \tilde{O}(m/\varepsilon^2)$ iterations [Garg, Könemann '07] [Fleischer '00].

While $C^* \neq \emptyset$:

- **1** Select cut(s) from C^* .
- **2** Multiplicatively increase $w^{(t)}$ along these cuts.

Sequential MWU: Select one cut from C^*

 $\implies \tilde{O}(m/\varepsilon^2)$ iterations [Garg, Könemann '07] [Fleischer '00].

Parallel MWU: Select all cuts from C^*

While $C^* \neq \emptyset$:

- **1** Select cut(s) from C^* .
- **2** Multiplicatively increase $w^{(t)}$ along these cuts.

Sequential MWU: Select one cut from C^*

 $\implies \tilde{O}(m/\varepsilon^2)$ iterations [Garg, Könemann '07] [Fleischer '00].

Parallel MWU: Select all cuts from C^*

Epoch-Based MWU

While $C^* \neq \emptyset$:

- **1** Select cut(s) from C^* .
- **2** Multiplicatively increase $w^{(t)}$ along these cuts.

Sequential MWU: Select one cut from C^*

 $\implies \tilde{O}(m/\varepsilon^2)$ iterations [Garg, Könemann '07] [Fleischer '00].

Parallel MWU: Select all cuts from C^*

 $\implies \tilde{O}(\log(|\mathcal{C}^*|)/\varepsilon^4)$ iterations [Luby, Nisan '93] [Young '01].

Epoch-Based MWU

While $C^* \neq \emptyset$:

- **1** Select cut(s) from C^* .
- Multiplicatively increase w^(t) along these cuts.

Sequential MWU: Select one cut from C^*

 $\implies \tilde{O}(m/\varepsilon^2)$ iterations [Garg, Könemann '07] [Fleischer '00].

Parallel MWU: Select all cuts from C^*

- $\implies \tilde{O}(\log(|\mathcal{C}^*|)/\varepsilon^4)$ iterations [Luby, Nisan '93] [Young '01].
- $\implies \tilde{O}(1/\varepsilon^4)$ iterations because $|\mathcal{C}^*| = O(n^2)$ for cuts.

• Parallel MWU can incur $\Omega(n^2)$ work.

• Parallel MWU can incur $\Omega(n^2)$ work.

• Parallel MWU can incur $\Omega(n^2)$ work.

New Selection Rule:

1 Fix a representative set $S \subseteq C^*$.

• Parallel MWU can incur $\Omega(n^2)$ work.

New Selection Rule:

1 Fix a representative set $S \subseteq \mathcal{C}^*$.

• Parallel MWU can incur $\Omega(n^2)$ work.

- 1) Fix a representative set $S \subseteq C^*$.
- 2 In every iteration, select $S \cap C^*$ as long as it is nonempty.

• Parallel MWU can incur $\Omega(n^2)$ work.

- **1** Fix a representative set $S \subseteq C^*$.
- 2 In every iteration, select $S \cap C^*$ as long as it is nonempty.

• Parallel MWU can incur $\Omega(n^2)$ work.

- 1) Fix a representative set $S \subseteq C^*$.
- 2 In every iteration, select $S \cap C^*$ as long as it is nonempty.

• Parallel MWU can incur $\Omega(n^2)$ work.

- 1) Fix a representative set $S \subseteq C^*$.
- 2 In every iteration, select $S \cap C^*$ as long as it is nonempty.

• Parallel MWU can incur $\Omega(n^2)$ work.

- 1) Fix a representative set $S \subseteq C^*$.
- 2 In every iteration, select $S \cap C^*$ as long as it is nonempty.
- **3** Repeat Steps 1 and 2 until $C^* = \emptyset$.

• Parallel MWU can incur $\Omega(n^2)$ work.

- 1) Fix a representative set $S \subseteq C^*$.
- 2 In every iteration, select $S \cap C^*$ as long as it is nonempty.
- **3** Repeat Steps 1 and 2 until $C^* = \emptyset$.

• Parallel MWU can incur $\Omega(n^2)$ work.

New Selection Rule:

- 1) Fix a representative set $S \subseteq C^*$.
- 2 In every iteration, select $S \cap C^*$ as long as it is nonempty.
- **3** Repeat Steps 1 and 2 until $C^* = \emptyset$.

 S_1

• Parallel MWU can incur $\Omega(n^2)$ work.

New Selection Rule:

- 1 Fix a representative set $S \subseteq \mathcal{C}^*$.
- 2 In every iteration, select $S \cap C^*$ as long as it is nonempty.
- **3** Repeat Steps 1 and 2 until $C^* = \emptyset$.

 S_1

• Parallel MWU can incur $\Omega(n^2)$ work.

New Selection Rule:

- 1 Fix a representative set $S \subseteq \mathcal{C}^*$.
- 2 In every iteration, select $S \cap C^*$ as long as it is nonempty.
- **3** Repeat Steps 1 and 2 until $C^* = \emptyset$.

 S_1

• Parallel MWU can incur $\Omega(n^2)$ work.

New Selection Rule:

- **1** Fix a representative set $S \subseteq C^*$.
- **2** In every iteration, select $S \cap C^*$ as long as it is nonempty.
- **3** Repeat Steps 1 and 2 until $C^* = \emptyset$.

 S_1

Definition

The sequence $S = (S_1, \dots, S_\ell)$ of representative sets is called a core-sequence of the epoch.

• Special cases:

- Special cases:
 - \triangleright $S = (S_1, ..., S_\ell)$ where $|S_i| = 1$ for all $i \in [\ell] \implies$ sequential MWU.

- Special cases:
 - $ightharpoonup \mathcal{S} = (S_1, \dots, S_\ell)$ where $|S_i| = 1$ for all $i \in [\ell] \implies$ sequential MWU.
 - \triangleright $S = (C^*) \implies$ parallel MWU.

- Special cases:
 - \triangleright $S = (S_1, ..., S_\ell)$ where $|S_i| = 1$ for all $i \in [\ell] \implies$ sequential MWU.
 - $ightharpoonup \mathcal{S} = (\mathcal{C}^*) \implies \text{parallel MWU}.$

Theorem [KWY '25]

If MWU uses a core-sequence of length $\leq \ell$ with sets of size $\leq k$ in every epoch, then the number of iterations is

$$\tilde{O}\left(\frac{\ell\log(k)}{\varepsilon^4}\right).$$

- Special cases:
 - $ightharpoonup \mathcal{S} = (S_1, \dots, S_\ell)$ where $|S_i| = 1$ for all $i \in [\ell] \implies$ sequential MWU.
 - $ightharpoonup \mathcal{S} = (\mathcal{C}^*) \implies \text{parallel MWU}.$

Theorem [KWY '25]

If MWU uses a core-sequence of length $\leq \ell$ with sets of size $\leq k$ in every epoch, then the number of iterations is

$$\tilde{O}\left(\frac{\ell\log(k)}{\varepsilon^4}\right).$$

• Tradeoff between ℓ and k.

Core-Sequence for 2-ECSM LP

Theorem [KWY '25]

For 2-ECSM LP, every epoch has a core-sequence of length $\tilde{O}(1)$, in which every set has size $\tilde{O}(n)$.

Core-Sequence for 2-ECSM LP

Theorem [KWY '25]

For 2-ECSM LP, every epoch has a core-sequence of length $\tilde{O}(1)$, in which every set has size $\tilde{O}(n)$.

• Despite $|\mathcal{C}^*| = O(n^2)$, only need to select $\tilde{O}(n)$ of them!

Core-Sequence for 2-ECSM LP

Theorem [KWY '25]

For 2-ECSM LP, every epoch has a core-sequence of length $\tilde{O}(1)$, in which every set has size $\tilde{O}(n)$.

• Despite $|\mathcal{C}^*| = O(n^2)$, only need to select $\tilde{O}(n)$ of them!

Theorem [KWY '25]

There is a parallel FPTAS for the Held–Karp bound that runs in $\tilde{O}(m/\varepsilon^4)$ work and $\tilde{O}(1/\varepsilon^4)$ depth.

Finding a Good Core-Sequence

- $\tilde{O}(1)$ sets
- Every set has size $\tilde{O}(n)$

Definition

Fix a spanning tree T of G. A cut C k-respects T if $|C \cap E(T)| = k$.

Definition

Fix a spanning tree T of G. A cut C k-respects T if $|C \cap E(T)| = k$.

1-respecting cut

Definition

Fix a spanning tree T of G. A cut C k-respects T if $|C \cap E(T)| = k$.

1-respecting cut

2-respecting cut

Definition

Fix a spanning tree T of G. A cut C k-respects T if $|C \cap E(T)| = k$.

Theorem [Karger '00]

There exists a family \mathcal{T} of $O(\log n)$ spanning trees such that w.h.p., every cut in \mathcal{C}^* 1- or 2-respects some $\mathcal{T} \in \mathcal{T}$.

ullet For every tree $T\in\mathcal{T}$, let

$$\mathcal{C}_{\mathcal{T}}^* := \{ C \in \mathcal{C}^* : |C \cap E(\mathcal{T})| \le 2 \}.$$

ullet For every tree $T\in\mathcal{T}$, let

$$C_T^* := \{ C \in C^* : |C \cap E(T)| \le 2 \}.$$

ullet By Karger's Theorem, it suffices to find a good core-sequence for \mathcal{C}_T^* .

ullet For every tree $T\in\mathcal{T}$, let

$$C_T^* := \{ C \in C^* : |C \cap E(T)| \le 2 \}.$$

- By Karger's Theorem, it suffices to find a good core-sequence for $\mathcal{C}_{\mathcal{T}}^*$.
- For simplicity, assume that *T* is a path.

1-respecting cut

2-respecting cut

ullet For every tree $T\in\mathcal{T}$, let

$$C_T^* := \{ C \in C^* : |C \cap E(T)| \le 2 \}.$$

- ullet By Karger's Theorem, it suffices to find a good core-sequence for \mathcal{C}_T^* .
- For simplicity, assume that *T* is a path.

1-respecting cut

2-respecting cut

• \mathcal{C}_T^* can still be as large as $O(n^2)$.

2-Respecting Cuts

2-Respecting Cuts

Definition

Fix a root $r \in V$. A 2-respecting cut $\{e_i, e_j\}$ crosses r if r lies on the subpath between e_i and e_j .

2-Respecting Cuts

Definition

Fix a root $r \in V$. A 2-respecting cut $\{e_i, e_j\}$ crosses r if r lies on the subpath between e_i and e_j .

2-Respecting Cuts

Definition

Fix a root $r \in V$. A 2-respecting cut $\{e_i, e_j\}$ crosses r if r lies on the subpath between e_i and e_j .

2-Respecting Cuts

Definition

Fix a root $r \in V$. A 2-respecting cut $\{e_i, e_j\}$ crosses r if r lies on the subpath between e_i and e_j .

2-Respecting Cuts

Definition

Fix a root $r \in V$. A 2-respecting cut $\{e_i, e_j\}$ crosses r if r lies on the subpath between e_i and e_i .

r-Crossing Lemma

If every 2-respecting cut in C_T^* crosses r, then $|C_T^*| = O(n)$.

• Let k and ℓ be the number of edges to the left and right of r respectively.

- Let k and ℓ be the number of edges to the left and right of r respectively.
- Define a matrix $M \in \{0,1\}^{k \times \ell}$ as

$$M_{e_i,e_j} := egin{cases} 1, & ext{if } \{e_i,e_j\} \in \mathcal{C}_{\mathcal{T}}^* \ 0, & ext{otherwise}. \end{cases}$$

- Let k and ℓ be the number of edges to the left and right of r respectively.
- Define a matrix $M \in \{0,1\}^{k \times \ell}$ as

$$M_{e_i,e_j} := egin{cases} 1, & ext{if } \{e_i,e_j\} \in \mathcal{C}_{\mathcal{T}}^* \ 0, & ext{otherwise}. \end{cases}$$

- Let k and ℓ be the number of edges to the left and right of r respectively.
- Define a matrix $M \in \{0,1\}^{k \times \ell}$ as

$$M_{e_i,e_j} := egin{cases} 1, & ext{if } \{e_i,e_j\} \in \mathcal{C}_{\mathcal{T}}^* \ 0, & ext{otherwise}. \end{cases}$$

Claim: Every anti-diagonal of M has at most one 1.

- Let k and ℓ be the number of edges to the left and right of r respectively.
- Define a matrix $M \in \{0,1\}^{k \times \ell}$ as

$$M_{e_i,e_j} := egin{cases} 1, & ext{if } \{e_i,e_j\} \in \mathcal{C}_{\mathcal{T}}^* \ 0, & ext{otherwise}. \end{cases}$$

Claim: Every anti-diagonal of *M* has at most one 1.

- Let k and ℓ be the number of edges to the left and right of r respectively.
- Define a matrix $M \in \{0,1\}^{k \times \ell}$ as

$$M_{e_i,e_j} := egin{cases} 1, & ext{if } \{e_i,e_j\} \in \mathcal{C}_{\mathcal{T}}^* \ 0, & ext{otherwise}. \end{cases}$$

Claim: Every anti-diagonal of M has at most one 1.

- Let k and ℓ be the number of edges to the left and right of r respectively.
- Define a matrix $M \in \{0,1\}^{k \times \ell}$ as

$$M_{e_i,e_j} := egin{cases} 1, & ext{if } \{e_i,e_j\} \in \mathcal{C}_{\mathcal{T}}^* \ 0, & ext{otherwise}. \end{cases}$$

Claim: Every anti-diagonal of M has at most one 1.

- Let k and ℓ be the number of edges to the left and right of r respectively.
- Define a matrix $M \in \{0,1\}^{k \times \ell}$ as

$$M_{e_i,e_j} := egin{cases} 1, & ext{if } \{e_i,e_j\} \in \mathcal{C}_{\mathcal{T}}^* \ 0, & ext{otherwise}. \end{cases}$$

Claim: Every anti-diagonal of M has at most one 1.

$$2(1+\varepsilon)\lambda > w(\delta_G(P)) + w(\delta_G(Q)) \ge w(\delta_G(P \setminus Q)) + w(\delta_G(Q \setminus P))$$

- Let k and ℓ be the number of edges to the left and right of r respectively.
- Define a matrix $M \in \{0,1\}^{k \times \ell}$ as

$$M_{e_i,e_j} := egin{cases} 1, & ext{if } \{e_i,e_j\} \in \mathcal{C}_{\mathcal{T}}^* \ 0, & ext{otherwise}. \end{cases}$$

Claim: Every anti-diagonal of M has at most one 1.

$$2(1+\varepsilon)\lambda > w(\delta_G(P)) + w(\delta_G(Q)) \ge w(\delta_G(P \setminus Q)) + w(\delta_G(Q \setminus P))$$

$$\implies P \setminus Q \text{ or } Q \setminus P \text{ belongs to } \mathcal{C}_T^*.$$

Good Core-Sequence for $\mathcal{C}_{\mathcal{T}}^*$

• First set in the core-sequence

$$S_0 := \{ C \in \mathcal{C}_T^* : |C \cap E(T)| = 1 \}.$$

First set in the core-sequence

$$S_0 := \{ C \in \mathcal{C}_T^* : |C \cap E(T)| = 1 \}.$$

• For $i \ge 1$, decompose T into paths \mathcal{P}_i of length 2^i .

First set in the core-sequence

$$S_0 := \{ C \in \mathcal{C}_T^* : |C \cap E(T)| = 1 \}.$$

• For $i \ge 1$, decompose T into paths \mathcal{P}_i of length 2^i . Set

$$S_i := \{C \in \mathcal{C}_T^* : |C \cap E(P)| = 2 \text{ for some } P \in \mathcal{P}_i\}.$$

First set in the core-sequence

$$S_0 := \{ C \in \mathcal{C}_T^* : |C \cap E(T)| = 1 \}.$$

- For $i \geq 1$, decompose T into paths \mathcal{P}_i of length 2^i . Set
 - $S_i := \{C \in \mathcal{C}_T^* : |C \cap E(P)| = 2 \text{ for some } P \in \mathcal{P}_i\}.$
- By r-crossing lemma, $|S_i| = O(n)$ for all i.

• Introduced core-sequence as a new selection rule for MWU.

- Introduced core-sequence as a new selection rule for MWU.
- Parallel FPTAS that runs in nearly linear work and polylog depth for
 - ► Held-Karp bound and k-ECSM LP
 - ▶ k-ECSS LP

- Introduced core-sequence as a new selection rule for MWU.
- Parallel FPTAS that runs in nearly linear work and polylog depth for
 - ► Held-Karp bound and k-ECSM LP
 - ▶ k-ECSS LP
- Future directions:
 - ► Apply core-sequence to other implicit packing/covering LPs

- Introduced core-sequence as a new selection rule for MWU.
- Parallel FPTAS that runs in nearly linear work and polylog depth for
 - ► Held-Karp bound and k-ECSM LP
 - ▶ k-ECSS LP
- Future directions:
 - Apply core-sequence to other implicit packing/covering LPs
 - **Better dependence on** ε

- Introduced core-sequence as a new selection rule for MWU.
- Parallel FPTAS that runs in nearly linear work and polylog depth for
 - ► Held-Karp bound and k-ECSM LP
 - ▶ k-ECSS LP
- Future directions:
 - Apply core-sequence to other implicit packing/covering LPs
 - **Deliver** Better dependence on ε
 - Extension to streaming/distributed models

- Introduced core-sequence as a new selection rule for MWU.
- Parallel FPTAS that runs in nearly linear work and polylog depth for
 - ► Held-Karp bound and k-ECSM LP
 - ▶ k-ECSS LP
- Future directions:
 - Apply core-sequence to other implicit packing/covering LPs
 - **Deliver** Better dependence on ε
 - Extension to streaming/distributed models

Thank You!