Chapter 1

Introduction to Cryptography and Data Security

1.1 Literature Recommendations

Course Textbooks: [Sti95] or [Sch93].

Further Reading - the following books are excellent supplements to the course textbook:

- [AM97] great compilation of theoretical and practical aspects of many crypto schemes.
 Unique since it includes many theoretical topics that are hard to find otherwise. Highly recommended.
- 2. [Sta95] Very readable treatment of algorithms and standards relevant to cryptography in networks.

1.2 Overview

Brief History of Cryptography

• Private-Key: all encryption and decryption schemes dating from BC to 1976.

Figure 1.1: Overview on the field of cryptology

- Public-Key: in 1976 the first public-key scheme was introduced by Diffie-Hellman key exchange protocol.
- Hybrid Approach: in today's protocol, very often hybrid schemes are applied which use private and public-key algorithms.

1.3 Private-Key Cryptosystems

Sometimes these schemes are also referred to as *symmetric*, *single-key*, and *secret-key* approaches.

Problem Statement: Alice and Bob want to communication over an un-secure channel (e.g., computer network, satellite link). They want to prevent Oscar (the bad guy) from listening.

Solution: Use of private-key cryptosystems (these have been around since BC) such that if Oscar reads the encrypted version y of the message x over the un-secure channel, he will not be able to understand its content because x is what really was sent.

Figure 1.2: Private-key cryptosystem

Some important definitions:

- 1a) x is called the "plaintext"
- 1b) $\mathcal{P} = \{x_1, x_2, \dots, x_p\}$ is the (finite) "plaintext space"
- 2a) y is called the "ciphertext"
- 2b) $C = \{y_1, y_2, \dots, y_c\}$ is the (finite) "ciphertext space"
- 3a) k is called the "key"
- 3b) $\mathcal{K} = \{k_1, k_2, \dots, k_l\}$ is the finite "key space"
- 4a) There are l encryption functions $e_{k_i}: \mathcal{P} \rightarrow \mathcal{C}$ (or: $e_{k_i}(x) = y$)
- 4b) There are l decryption functions $d_{k_i}: \mathcal{C} \rightarrow \mathcal{P}$ (or: $d_{k_i}(y) = x$)
- 4c) e_{k_1} and d_{k_2} are inverse functions if $k_1 = k_2 : d_{k_i}(y) = d_{k_i}(e_{k_i}(x)) = x$ for all $k_i \in \mathcal{K}$

Example: Data Encryption Standard (DES)

- $\mathcal{P} = \mathcal{C} = \{0, 1, 2, \dots, 2^{64} 1\}$ (each x_i has 64 bits: $x_i = 010 \dots 0110$)
- $\mathcal{K} = \{0, 1, 2, \dots, 2^{56} 1\}$ (each k_i has 56 bits)
- encryption (e_k) and decryption (d_k) will be described in Chapter 4

1.4 Cryptanalysis

Definition: The science of recovering the plaintext x from the ciphertext y without the knowledge of the key (Oscar's job).

Rules of the game:

The cryptanalysis rules are known as Kerckhoff's Principle:

- 1. Oscar knows the cryptosystem (encryption and decryption algorithms).
- 2. Oscar does not know the key.

1.4.1 Attacks against Cryptoalgorithms

1. Ciphertext-only attack

Oscar's knowledge: some $y_1 = e_k(x_1), y_2 = e_k(x_2), \dots$

Oscar's goal : obtain x_1, x_2, \ldots or the key k.

2. Known plaintext attack

Oscar's knowledge: some pairs $(x_1, y_1 = e_k(x_1)), (x_2, y_2 = e_k(x_2))...$

Oscar's goal : obtain the key k.

3. Chosen plaintext attack

Oscar's knowledge: some pairs $(x_1, y_1 = e_k(x_1)), (x_2, y_2 = e_k(x_2))...$ of which he can choose $x_1, x_2,...$

Oscar's goal : obtain the key k.

4. Chosen ciphertext attack

Oscar's knowledge: some pairs $(x_1, y_1 = e_k(x_1)), (x_2, y_2 = e_k(x_2))...$ of which he can choose

 y_1, y_2, \dots

Oscar's goal : obtain the key k.

1.5 Some Number Theory

Modulo operation:

Question: What is 12 mod 9?

Answer: $12 \mod 9 \equiv 3$

or $12 \equiv 3 \mod 9$.

Definition 1.5.1 Modulo Operation

Let $a, r, m \in \mathbb{Z}$ (where \mathbb{Z} is a set of all integers) and m > 0. We write

 $a \equiv r \mod m \text{ if } m \text{ divides } r - a.$

"m" is called the modulus.

"r" is called the remainder.

Some remarks on the modulo operation:

• How is the remainder computed?

It is always possible to write $a \in \mathbb{Z}$, such that

$$a = q \cdot m + r; \, 0 \le r < m$$

Now since $a - r = q \cdot m$ (m divides a - r) and $a \equiv r \mod m$.

Note that $r \in \{0, 1, 2, \dots, m-1\}.$

Example:

$$a = 42; m = 9$$

 $42 = 4 \cdot 9 + 6$ therefore $42 \equiv 6 \mod 9$.

• C programming command : "%" (C can return a negative value)

$$r$$
 = 42 % 9 returns $r = 6$

but ${\tt r}$ = -42 % 9 returns ${\tt r}$ = -6 \rightarrow if remainder is negative, add modulus m:

$$-6+9=3\equiv -42 \bmod 9$$

Ring:

Definition 1.5.2 The "ring Z_m " consists of:

1. The set
$$Z_m = \{0, 1, 2, \dots, m-1\}$$

2. Two operations "+" and " \times " for all $a, b \in Z_m$ such that:

•
$$a+b \equiv c \mod m \ (c \in Z_m)$$

•
$$a \times b \equiv d \mod m \ (d \in Z_m)$$

Example: m = 9

$$Z_9 = \{0, 1, 2, 3, 4, 5, 6, 7, 8\}$$

$$6 + 8 = 14 \equiv 5 \bmod 9$$

$$6 \times 8 = 48 \equiv 3 \mod 9$$

Definition 1.5.3 Some important properties of the ring $Z_m = \{0, 1, 2, ..., m-1\}$

- 1. The additive identity is the element zero "0": $a + 0 = a \mod m$, for any $a \in \mathbb{Z}_m$.
- 2. The additive inverse "-a" of "a" is such that $a+(-a) \equiv 0 \mod m$: -a=m-a, for any $a \in \mathbb{Z}_m$.
- 3. Addition is closed: i.e., for any $a, b \in Z_m$, $a + b \in Z_m$.
- 4. Addition is commutative: i.e., for any $a, b \in Z_m$, a + b = b + a.
- 5. Addition is associative: i.e., for any $a, b \in Z_m$, (a+b) + c = a + (b+c).
- 6. The multiplicative identity is the element one "1": $a \times 1 \equiv a \mod m$, for any $a \in \mathbb{Z}_m$.
- 7. The multiplicative inverse " a^{-1} " of "a" is such that $a \times a^{-1} = 1 \mod m$: An element a has a multiplicative inverse " a^{-1} " if and only if gcd(a, m) = 1.
- 8. Multiplication is closed: i.e., for any $a, b \in Z_m$, $ab \in Z_m$.
- 9. Multiplication is commutative: i.e., for any $a, b \in Z_m$, ab = ba.
- 10. Multiplication is associative: i.e., for any $a, b \in Z_m$, (ab)c = a(bc).

Some remarks on the ring Z_m :

- Roughly speaking, a ring is a structure in which we can add, subtract, multiply, and sometimes divide.
- **Definition 1.5.4** If gcd(a, m) = 1, then a and m are "relatively prime" and the multiplicative inverse of a exists.

Example:

i) Question: does multiplicative inverse exist with 15 mod 26?

Answer: yes — gcd(15, 26) = 1

ii) Question: does multiplicative inverse exist with 14 mod 26?

Answer: no — $gcd(14, 26) \neq 1$

• The modulo operation can be applied whenever we want:

$$(a+b) \mod m = [(a \mod m) + (b \mod m)] \mod m.$$

$$(a \times b) \mod m = [(a \mod m) \times (b \mod m)] \mod m.$$

Example: $3^8 \mod 7 = ?$

i)
$$3^8 = 3^4 \cdot 3^4 = (81 \mod 7) \cdot (81 \mod 7) \equiv 4 \cdot 4 = 16 \equiv 2 \mod 7$$
.

ii)
$$3^8 = 6561 \equiv 2 \mod 7$$
, since $6561 = 937 \cdot 7 + 2$.

As we see, it is almost always of computational advantage to apply the modulo reduction as soon as we can.

• The ring Z_m , and thus the integer arithmetic with the modulo operation, is of central importance to modern public-key cryptography. In practice, the integers are represented with 150–2048 bits.

1.6 Simple Blockciphers

Recall:

Figure 1.3: Classification of private-key systems

Idea: The message string is divided into blocks (or cells) of equal length that are then encrypted and decrypted.

Input: message string $\bar{X} \to \bar{X} = x_1, x_2, x_3, \dots, x_n$, where each x_i is one block.

Cipher: $\bar{Y} = y_1, y_2, y_3, \dots, y_n$; with $y_i = e_k(x_i)$ where the key k is fixed.

1.6.1 Shift Cipher

One of the most simple ciphers where the letters of the alphabet are assigned a number as depicted in Table 1.1.

A	В	С	D	Е	F	G	Н	I	J	K	L	М
0	1	2	3	4	5	6	7	8	9	10	11	12
N	О	Р	Q	R	S	Т	U	V	W	X	Y	Z
13	14	15	16	17	18	19	20	21	22	23	24	25

Table 1.1: Shift cipher table

Definition 1.6.1 Shift Cipher

Let
$$\mathcal{P} = \mathcal{C} = \mathcal{K} = Z_{26}$$
. $x \in \mathcal{P}, y \in \mathcal{C}, k \in \mathcal{K}$.

Encryption: $e_k(x) = x + k \mod 26$.

Decryption: $d_k(y) = y - k \mod 26$.

Remark:

If k = 3 the the shift cipher is given a special name — "Caesar Cipher".

Example:

$$k = 17,$$

plaintext:

$$X = x_1, x_2, \dots, x_6 = ATTACK.$$

$$X = x_1, x_2, \dots, x_6 = 0, 19, 19, 0, 2, 10.$$

encryption:

$$y_1 = x_1 + k \mod 26 = 0 + 17 = 17 \mod 26 = R$$

$$y_2 = y_3 = 19 + 17 = 36 \equiv 10 \mod 26 = K$$

 $y_4 = 17 = R$
 $y_5 = 2 + 17 = 19 \mod 26 = T$
 $y_6 = 10 + 17 = 27 \equiv 1 \mod 26 = B$

ciphertext: $Y = y_1, y_2, \dots, y_6 = R K K R T B$.

Attacks on Shift Cipher

- 1. Ciphertext-only: Try all possible keys (|k| = 26). This is known as "brute force attack" or "exhaustive search".
 - Secure cryptosystems require a sufficiently large key space. Minimum requirement today is $|K| > 2^{80}$, however for long-term security, $|K| \ge 2^{100}$ is recommended.
- 2. Same cleartext maps to same ciphertext \Rightarrow can also easily be attacked with letter-frequency analysis.

1.6.2 Affine Cipher

This cipher is an extension of the Shift Cipher $(y_i = x_i + k \mod m)$.

Definition 1.6.2 Affine Cipher Let $P = C = Z_{26}$.

encryption: $e_k(x) = a \cdot x + b \mod x$.

key: k = (a, b) where $a, b \in \mathbb{Z}_{26}$.

decryption: $a \cdot x + b = y \mod 26$.

 $a \cdot x = (y - b) \bmod 26.$

 $x = a^{-1} \cdot (y - b) \bmod 26.$

restriction: gcd(a, 26) = 1 in order for the affine cipher to work since

 a^{-1} does not always exist.

Question: How is a^{-1} obtained?

Answer: $a^{-1} \equiv a^{11} \mod 26$ (the proof for this is in Chapter 6)

or by trial-and-error for the time being.