

Active Clamp Flyback Using GaN Power IC for Power Adapter Applications

Linqxiao (Lincoln) Xue, Staff Applications Engineer, <u>lingxiao.xue@navitassemi.com</u>

Jason Zhang, VP Applications, <u>jason.zhang@navitassemi.com</u>

March 29th 2017

How to Improve Power Adapter Density?

Traditional Travel Adapter and Chargers

- Added power in USB PD and Quick Charge requires dramatically higher power density (>20 W/in³)
- Higher efficiency and lower power loss are required in high density adapters
- How to dramatically improve the power density?

Outline

- Limitations of standard flyback
- Active clamp flyback's benefits and drawbacks
- Improvement of active clamp flyback (ACF)
- GaN half-bridge power IC enables high density ACF
- Experimental results and conclusion

QR Flyback Hits Performance Ceiling

- Frequency-dependent losses
 - Leakage inductance loss
 - Snubber/clamp losses
 - Partial hard-switching loss at high line
 - Slow turn-on loss to minimize EMI
- Difficult to improve efficiency at high frequency

DCM,这里应该是Lr+Lm和S1的等效电容之间的震荡

ACF Enables ZVS and High Frequency Switching

- No snubber losses, all leakage energy is recovered
- ZVS soft switching over entire operation range
- ZCS soft turn-off for output rectifier
- Clean waveforms reduce EMI
- Enable small adapter design with high-frequency switching

ACF Operation

这个过程中S1的结电容会不会参与进来?

- ZVS is achieved by magnetizing inductance current
- Rectifier current is the difference between i_{Im} and i_{Ir}
- i_{Lr} returns to i_{Lm} by the end of S2 ON interval for rectifier ZCS

Drawbacks of Traditional ACF

- Difficult to shape the current to achieve
 ZCS and minimize rms current
- Conduction loss is high
- Not compatible with SR controllers

New ACF Using Secondary Resonance

- S1 ON interval is the same as primary resonant
- In S2 ON interval
 - C_o/n² << C_r, Co resonates with Lr
 - i_{Lr} centers around a line lower but in parallel with i_{Lm}
 - ZCS is easily achieved. No rectifier current double dipping

New ACF Simplifies SR and Reduces Current RMS

- i_{Lr} current can be easily shaped
- No rectifier current dipping issue. Simplifies SR
- Reduced rms current and conduction loss

Experimental Result of RMS Reduction

Efficiency Benefit of New ACF

- 0.4 W power loss reduction
- ~0.8% efficiency improvement

Advantages of Using GaN in ACF

	IPA60R299CP	NV6260 (per FET)
Voltage Rating (V)	650	650
R _{DS(ON)}	270	160
C _o (tr) (pF)	120	50
Q _g (nC)	22	2.5
Q _{rr} (nC)	3900	0

- GaN ACF needs only 0.2A negative current for ZVS vs. Si's 0.5A
- GaN ACF RMS is only 0.9A vs. Si's 1.1A
- GaN has <u>no</u> body diode loss
- Low high-frequency gate-charge loss

Half-Bridge iDrive GaN Power IC

- Internal level-shift, bootstrap
- Range from 150-600 mOhm (650V)
- Single component
- Ground-referenced PWM signals
- Active Clamp Flyback, Half-Bridge, LLC, etc.

GaN Power IC Simplifies ACF

GaN Power IC Efficiency Advantage

Power Loss: GaN vs. Si

Efficiency: GaN vs. Si

- GaN reduces power loss by 0.6W
- GaN boosts efficiency by 1.2%

High Density 65W Adapter Using ACF and GaN

2.63 x 1.32 x 0.62 in

Power density 22 W/in³ (including case)

Conclusion

- USB-PD and QC demand high density solutions
- QR flyback hits performance ceiling
- ACF overcomes QR limitations and enables high frequency operation
- New ACF using secondary resonance improves ACF's operation and efficiency
- GaN is uniquely suitable for high frequency operation
- Half-Bridge GaN Power IC simplifies ACF design and improves density
- An example of 65W ACF adapter using GaN and secondary resonance achieves 22W/in³ density, while meeting thermal and EMI requirement

Active Clamp Flyback Using GaN Power IC for Power Adapter Applications 12 30MHz 40

Linqxiao (Lincoln) Xue, Staff Applications Engineer, <u>linxiao.xue@navitassemi.com</u>

Jason Zhang, VP Applications, <u>jason.zhang@navitassemi.com</u>

March 29th 2017 GaN Power IC Navitas GaN Power

Waveform: QR vs. ACF

Startup in CCM and Hard-Switching

• Start-up in CCM: hard-switched, body diode reverse recovery...

Lr Resonant Interval

ACF Primary Current Dip

Current Dip Benefits

• Current dip ↑

SR double turn-on •

• Current dip \uparrow RMS value $i_{Lr(RMS)}$ \downarrow

Current Dip: Adding 2.2nF Cj

