PHYS 20323/60323: Fall 2020- LaTeX Example

1. Consider a particle confined in a two-dimensional infinite square well

$$V(x,y) = \begin{cases} 0, & \text{if } 0 \le x \le a, \ 0 < y < a \\ \infty, & \text{otherwise} \end{cases}$$
 (1)

The eigenfunctions have the form:

$$\Psi(x,y) = \frac{2}{a}\sin(\frac{n\pi x}{a})\sin(\frac{m\pi y}{a})$$
(2)

with the corresponding energies being given by:

$$E_{nm} = (n^2 + m^2) \frac{\pi^2 \hbar^2}{2ma^2} \tag{3}$$

- (a) (5 Points) What are the levels of degeneracy of the five lowest energy values?
- (b) (5 Points) Consider a perturbation given by:

$$\hat{H}' = a^2 V_0 \delta(x - \frac{a}{2}) \delta(y - \frac{a}{2}) \tag{4}$$

Calculate the first order correction to the ground state energy.

2. The following questions refer to the stars in the Table below.

Note: There may be multiple answers.

Name	Mass	Luminosity	Lifetime	Temperature	Radius
Zeta	$60.\ M_{sun}$	$10^6 L_{sun}$	8.0×10^5 years		
Epsilon	$6.0~M_{sun}$	$10^3 L_{sun}$		20,000 K	
Delta	$2.0~M_{sun}$		5.0×10^8 years		$2 R_{sun}$
Beta	$1.3~M_{sun}$	$3.5 L_{sun}$			
Alpha	$1.0~M_{sun}$				$1 R_{sun}$
Gamma	$0.7~M_{sun}$		$4.5 \times 10^{10} \text{ years}$	5000 K	

- (a) (4 Points) Which of these stars will produce a planetary nebula at the end of their life?
- (b) (4Points) Elements heavier than *Carbon* will be produced in which stars?