0. As shown in Figure 1.13, Freddy Flintstone wishes to drive his car with square wheels along a strange road. How should you design the road so that his ride is perfectly smooth, i.e., so that the center of his wheel travels in a horizontal line? (Hints: Start with a square with vertices at $(\pm 1, \pm 1)$, with center

FIGURE 1.13

C at the origin. If $\alpha(s) = (x(s), y(s))$ is an arclength parametrization of the road, starting at (0, -1), consider the vector $\overrightarrow{OC} = \overrightarrow{OP} + \overrightarrow{PQ} + \overrightarrow{QC}$, where $P = \alpha(s)$ is the point of contact and Q is the midpoint of the edge of the square. Use $\overrightarrow{QP} = s\alpha'(s)$ and the fact that \overrightarrow{QC} is a unit vector orthogonal to

 \overrightarrow{QP} . Express the fact that C moves horizontally to show that $s = -\frac{y'(s)}{x'(s)}$; you will need to differentiate