Translated from Chinese (Simplified) to English - www.onlinedoctranslator.com

DATASHEET

AXP192

Enhanced single Cell Li-Battery and Power System Management IC

Table of contents

1. Summary	3
2. Features	4
3. Typical Application	5
4. Absolute Maximum Ratings	6
5. Electrical Characteristics	6
6. Typical Characteristics	9
7. Pin Description	13
8. Functional Block Diagram	15
9. Control and Operating	16
9.1 Working Mode and Reset (Power On/Off & Reset)	16
9.2 Power Path Management (IPS)	19
9.3 Adaptive Charger	twenty one
9.4 Backup Battery	twenty four
9.5 Multi-Power Outputs	twenty four
9.6 Default Voltage/Timing Setting25	
9.7 Signal Capture System	26
9.8 Multi-Function Pin Description	26
9.9 Timer	27
9.10 HOST interface and interrupt (TWSI and IRQ)	28
9.11 Registers	29
10. Package	52

1. Summary

AXP192It is a highly integrated power system management chip. It provides a simple, easy-to-use and flexibly configurable complete power solution for applications with single-cell lithium batteries (lithium-ion or lithium polymer) that require multiple power conversion outputs, fully meeting the requirements of the increasingly complex application processor system for relatively complex and precise control of power.

AXP192An adaptiveUSB-CompatibleCharger,3Buck Converter(Buck DC-DC converter,4Linear Regulator(LDO), voltage/current/temperature monitoring and other multi-channel12-Bit ADCTo ensure the safety and stability of the power supply system, AXP192Also integrated with over/under voltage (OVP/UVP), Over temperature(OTP). Overcurrent(OCP)And other protection circuits.

AXP192Smart power balance (Intelligent Power Select (IPS™)The circuit can beUSBIt can safely and transparently distribute power between the external AC adapter, lithium battery and application system load, and enable the application system to work normally when there is only external input power but no battery (or the battery is over-discharged/damaged).

AXP192With external adapter and USBAnd triple input capability such as battery, supporting rechargeable backup batteries.

AXP192Provides a two-wire serial communication interface to communicate with the host:Two Wire Serial Interface (TWSI)The application processor can use this interface to turn on or off certain power outputs, set their voltages, access internal registers and various measurement data (includingFuel Gauge. High precision (0.5%)'s electricity measurement data allows consumers to more clearly understand the status of electricity usage in real time, giving consumers an unprecedented equipment electricity usage experience.

AXP192supply6mm x 6mm 48-pin QFNEncapsulation.

Application Products

Handheld mobile devices

Smart Phone,PMP/MP4,number Digital Camera, Handheld Camera

Navigation equipmentGPS, PDA, Handheld digital

broadcast television receiver

Mobile Internet DevicesMID

 ${\bf Digital\ photo\ frame,\ portable DVD player,}$

Ultra-portable mobile computerUMPC and

UMPC-like,leaning machine

Application Processor Circuitry Application

Processor systems Other battery and multi-

power application systems

Pin Definition

2. Feature

Power Management (IPS)

oWide Input Voltage Range:

2.9V~6.3V (AMR:-0.3V~11V)

o Configurable efficient intelligent power balance IPS $^{\mbox{\tiny M}}$ system o

AdaptiveUSBOr AC adapter voltage and current limiting

(4.4V/500mA/100mA)

oThe equivalent internal resistance of the internal ideal diode is less than 100 m $\!\Omega$

• Fully integrated charger (Charger

obuilt-inMOSFETThe maximum charging current can reach1.4A o

Support battery temperature monitoring

 $o Comprehensive \ support USB Charging, in \ compliance \ with \ regulatory$

requirements oHigh charging accuracy, error less than 0.5%

osupport4.1V/4.15V/4.2V/4.36VVarious batteries o

Automatic charging process control

 $o Direct\ driveled Indicates\ charging\ status\ o Automatically\ adjust$

the charging current according to the system load

• spare battery (Backup Battery)

oBackup battery can be used toRTCModule power supply oSupport backup battery charging, charging current can be set

• 3Synchronous Buck Converter (DC-DC)

oDC-DC1: Available in0.7V~3.5VAdjust between

. .

25mV/step,Drive capability1.2A

oDC-DC2: Available in0.7-2.275VAdjust between

25mV/step,Drive capability1.6A,supportVRC oDC-

DC3: Available in0.7-3.5VAdjust between

25mV/step,Drive capability0.7A

• 4Linear Regulator (LDO) o

LDO1:30mA, always valid

oLDO2: Low noiseLDO,1.8V~3.3Vadjustable,

100mV/step,Drive capability200mA

oLDO3: Low noiseLDO, 1.8-3.3Vadjustable,

100mV/step,Drive capability200mA

oLDO100: Low noiseLDO, 1.8-3.3Vadjustable,

100mV/step, Drive capability 50mA

Note:VRC,Voltage Ramp Control, voltage slope

control.

• Signal acquisition system (Signal

Capture oBuilt-in16road12-bit ADC o

accept4External signal input

oProvides current and voltage data for batteries and external input power

according to

oBuilt-in high-precision coulomb counter andFuel gaugesystem oProvides rich power

management information, such as instantaneous power consumption

(mA or mW), remaining battery power (%or mAh),

charging status (%) and remaining battery life or charging

Electric time, etc.

oLow battery warning and protection

oProvide chip temperature information

• Application Processor Interface (Host Interface) oHostable

to passTWSIInterface for data exchange oFlexible

configurable interrupt management

oFlexible pin function settings, multipleGPIOCan be

Set asIO,PWMOther functions

oBuilt-in timer

o Provides four groups of registers that can be used when the system is shut down

Data Retention

• System Management(System Management o

Can be soft reset or hard reset

oSupport soft shutdown or hard shutdown, support external wake-up switch

machine

oSupport output voltage monitoring and self-diagnosis functions

oPWROKUsed for system reset or shutdown indication

oExternal power supply detection (insertion/removal/inadequate drive capability)

oAll output voltages support soft start

oOver/under voltage protection (OVP/UVP) o

Overcurrent protection (OCP)

oOver temperature protection (OTP)

osupportOTG VBUSPower status setting/monitoring

• High integration (Fully Integration

oInternally generated high-precision reference voltage (

0.5%) obuilt-inMOSFET

oCustomizable timing and output voltage

3. Typical Application

In On/off Manner A,5/48PIN pull high to IO power,29PIN pull high to LDO1,27PIN connect to LDO1 or HOST control signal In On/off Manner B,5/48PIN pull high to LDO1,27/29PIN connect to HOST control signal

4. Absolute Maximum Ratings

Symbol	Description	Value	Units
ACIN	Input VoltageInput voltage	- 0.3 to 11	V
VBUS	Input VoltageInput voltage	- 0.3 to 11	V
Tj	Operating Temperature RangeOperating temperature	- 40 to 130	°C
Ts	Storage Temperature RangeStorage and transportation temperature	- 40 to 150	°C
TLEAD	Maximum Soldering Temperature (at leads,10sec) Soldering	300	°C
	temperature		
V ESD	Maximum ESD stress voltage,Human Body Model	> 4000	V
	Antistatic ability		
PD	Internal Power Dissipation Internal	2100	mW
	power consumption tolerance		

5. Electrical Characteristics

V_{IN}=5V,BAT=3.8V,T_A= 25°C

SYMBOL	DESCRIPTION	CONDITIONS	MIN	TYP	MAX	UNITS
ACIN						
VIN	ACIN Input Voltage		3.8		6.3	V
Іоит	VουτCurrent Available Before Loading BAT	500mV Voltage Drop		2000		mA
Vuvlo	ACIN Under Voltage Lockout			3.8		V
V out	IPS Output Voltage		2.9		5.0	V
RACIN	Internal Ideal Diode On Resistance	PIN to PIN, ACIN to IPSOUT			200	mΩ
VBUS			1	I.		
VIN	VBUS Input Voltage		3.8		6.3	V
Іоит	VουτCurrent Available Before Loading BAT	400mV Voltage Drop		500	900	mA
V UVLO	VBUS Under Voltage Lockout			3.8		V
V out	IPS Output Voltage		2.9		5.0	V
Rvbus	Internal Ideal Diode On Resistance	PIN to PIN, VBUS to IPSOUT			300	mΩ
Battery Cha	arger					
V TRGT	BAT Charge Target Voltage		- 0.5%	4.2	+ 0.5%	V
Існа	Charge Current			780	1320	mA
Itrkl	Trickle Charge Current			10%		Існс

						mA
VTRKL	Trickle Charge Threshold Voltage			3.0		V
ΔVRECHG	Recharge Battery Threshold Voltage	Threshold Voltage Relative to VTARGET		- 100		mV
TTIMER1	Charger Safety Timer Termination Time	Trickle Mode		40		Min
TTIMER2	Charger Safety Timer Termination Time	CC Mode		480		Min
Iend	End of Charge Indication Current Ratio	CV Mode		10%	15%	Iснс mA
Backup Ba	ttery					
VTRGT	Backup Battery Charge Target Voltage		2.5	3.0	3.1	V
Існс	Backup Battery Charge Current		50	200	400	uA
IBackup	Current when using Backup Battery			10	15	uA
NTC						
VTL	Cold Temperature Fault	Charge	0	2.112	3.264	V
	Threshold Voltage	Discharge		3.226		
V_{TH}	Hot Temperature Fault Threshold	Charge	0	0.397	3.264	V
	Voltage	Discharge		0.282	3.201	
VTE	NTC Disable Threshold Voltage	Falling Threshold Hysteresis		0.2		V
Ideal Diode	•					
Rds(on)	Internal Ideal Diode On Resistance(BAT to IPSOUT)				100	mΩ

SYMBOL	DESCRIPTION	CONDITIONS	MIN	TYP	MAX	UNITS			
Off Mode Co	Off Mode Current								
Іватогг	OFF Mode Current	BAT=3.8V		27		μΑ			
Isuspend	USB VBUS suspend Mode	BAT=3.8V,		86		μΑ			
	current	VBUS=5V,							
		N_VBUSEN=1							
Logic									
VIL	Logic Low Input Voltage			0.3		V			
VIH	Logic High Input Voltage			2		V			
TWSI									
V cc	Input Supply Voltage			3.3		٧			
ADDRESS	TWSI Address			0x68					
fscĸ	Clock Operating Frequency			400	1200	HkDJ			

tf	Clock Data Fall Time	2.2Kohm Pull High		60		ns
tr	Clock Data Rise Time	2.2Kohm Pull High		100		ns
DCDC				_		
fosc	Oscillator Frequency	Default		1.5		MHz
DCDC1			_	_		_
Ivin1	Input Current	PFM Mode		26		μΑ
		IDC1OUT=0				
Ilim1	PMOS Switch Current Limit	PWM Mode		1600		mA
Ірс10ит	Available Output Current	PWM Mode		1200		mA
V DC10UT	Output Voltage	Default	0.7	3.3	3.5	V
DCDC2						
Ivin2	Input Current	PFM Mode		20		μΑ
		Ідс200Т=0				
ILIM2	PMOS Switch Current Limit	PWM Mode		2300		mA
Ідс20ит	Available Output Current	PWM Mode		1600		mA
V DC2OUT	Output Voltage Range		0.7	1.25	2.275	V
DCDC3						
Ivina	Input Current	PFM Mode		20		uA
		Ідсзоит=0				
Ішмз	PMOS Switch Current Limit	PWM Mode		1000		mA
Ірсзоит	Available Output Current	PWM Mode		700		mA
V DC3OUT	Output Voltage Range		0.7	2.5	3.5	V

SYMBOL	DESCRIPTION	CONDITIONS	MIN	TYP	MAX	UNITS
LDO1			•	•		
V _{LDO1}	Output Voltage	ILDO1=1mA		1.25		V
			- 1%	1.8	1%	
			- 1%	2.5	1 90	
				3.3		
ILDO1	Output Current			30		mA
LDO2	•	•				
V _{LDO2}	Output Voltage	ILDO2=1mA	- 1%	3	1%	V
ILDO2	Output Current			200		mA
IQ	Quiescent Current			100		μΑ
PSRR	Power Supply Rejection Ratio	ILDO2=60mA,1KHz		TBD		dB
ем	Output Noise,20-80KHz	Vo=3V , Io=150mA		28		µ V RMS
LDO3						
V _{LDO3}	Output Voltage	ILDO3=1mA	- 1%	3.3	1%	V
Ігроз	Output Current			200		mA
IQ	Quiescent Current			100		μΑ
PSRR	Power Supply Rejection Ratio	ILDO3=10mA,1KHz		TBD		dB

Enhanced single Cell Li-Battery and Power System Management IC

ем	Output Noise,20-80KHz	Vo=1.8V , Io=150mA		18		μVrms
LDO 100						
V _{LDOIO0}	Output Voltage	ILDOIO0=1mA	- 1%	3.3	1%	V
ILDOIO0	Output Current			50		mA
IQ	Quiescent Current			90		μΑ
PSRR	Power Supply Rejection Ratio	ILDOIO0=10mA,1KHz		TBD		dB
ем	Output Noise,20-80KHz	Vo=1.8V, Io=30mA		18		µVкмs

6. Typical Characteristics

DC-DC Efficiency vs. Load (3.8Vin)

DC-DC Load Transient (Typical)

Enhanced single Cell Li-Battery and Power System Management IC

DC-DC Ripple

VREFVS Temperature

VTRGTVS Temperature

Off Mode Current vs VBAT

7. Pin Description

Num	Name	Туре	Condition	Function Description
1	SDA	IO		Data pin for serial interface, normally it connects a 2.2K
				resistor to 3.3VI/O power
2	SCK	I		It is the Clock pin for serial interface, normally it connects a
				2.2K resistor to 3.3VI/O power
3	N_RSTO	IO	DECOEUT71	LDO1 Reset output
			REG9EH[7]	GPIO[5]
4	N_OE	I		Power output on/off switch
				GND:on;IPSOUT:off
5	PWROK/	0	SYSEN=LDO1	Power good indication
	N_LBO			Low power detect output
6	N_VBUSEN	I		VBUS to IPSOUT Selection
				GND:IPSOUT select VBUS
				High:IPSOUT do not select VBUS
7	VIN2	PI		DCDC2 input source
8	LX2	IO		Inductor Pin for DCDC2
9	PGND2	G		NMOS Ground for DCDC2
10	DCDC2	I		DC-DC2 feedback pin
11	LDO3	0		Output Pin of LDO3
12	LDO2	0		Output Pin of LDO2
13	LDOIN	PI		Input to LDO2 and LDO3
14	VIN3	PI		DCDC3 input source
15	LX3	IO		Inductor Pin for DCDC3
16	PGND3	G		NMOS GND for DCDC3
17	DCDC3	I		Feed back to DCDC3
18	GPIO1	IO	REG	GPIO 2
			93H[2:0]	PWM 2
			95円[2:0]	ADC Input
19	GPIO0	IO	REG	GPIO 0
			90H[2:0]	Low noise LDO
			90円[2:0]	ADC Input
20	GPIO2	IO	REG	GPIO 1
			92H[2:0]	PWM 1
			920[2:0]	ADC Input
twenty one	APS	PI		Internal Power Input
twenty two	AGND	G		Analog Ground

AXP192

Enhanced single Cell Li-Battery and Power System Management IC

-				
twenty three	PWRON	I		Power On-Off key input,Internal 100k pull high to APS
twenty four	BIAS	IO		External 200Kohm 1% resistor
25	VREF	0		Internal reference voltage
26	VINT	РО		Internal logic power, 2.5V
27	PWREN	IO		it is the Low-voltage Power domain enable signal
28	LDO1	0		LDO1 output,for Host RTC block
29	SYSEN	IO		it is the High-voltage Power domain enable signal
30	BACKUP	IO		Backup battery pin
31	VBUS	ΡI		USB VBUS input
32,33	ACIN	PI		Adapter input
34,35	BAT	IO		Main Battery
36	CHGLED	0		charger status indication
37	TS	I		Battery Temperature sensor input or an external ADC input
38,39	IPSOUT	РО		System power source
40	EXTEN	0		External power module Enable
41	GPIO3	I	DECOEL IEZZ	GPIO3
42	GPIO4	I	REG95H[7]	GPIO4
43	NC	0		NC
44	VIN1	ΡI		DCDC1 input source
45	LX1	IO		Inductor Pin for DCDC1
46	PGND1	G		NMOS Ground for DCDC1
47	DCDC1	I		DCDC1 feedback pin
48	IRQ/	IO		IRQ output or wakeup
	WAKEUP			
49	EP	G		Exposed Pad, need to connect to system ground

8. Functional Block Diagram

9. Control and Operating

whenAXP192in working,TWSIinterfaceSCK/SDAPin pull-up to systemIOPower supply, thenHostThis interface can be used toAXP192 The working status can be flexibly adjusted and monitored, and rich information can be obtained.

Note: "HostRefers to the main processor of the application system. Note: The "external power supply" referred to below includes ACIN and VBUS enter.

9.1 Working Mode and Reset (Power On/Off & Reset)

Working mode button (PEK)

AXP192ofPWRONPin toGNDA button can be connected between them as an independent power buttonPower Enable Key(PEK) or Sleep/Wake button.AXP192It can automatically recognize "long press" and "short press" of this button and respond accordingly.

Several power on sources

1,ACIN,VBUSAnd battery access. 2, N_OEFrom high to low. 3,PEK.

Power On-Mode A

when SYSENPins and LDO1When connected together, AXP192In power on/off mode A.

N_OEWhen the required main power supply (ACINorVBUS>3.8V, the battery voltage is higher than the shutdown voltage) when connected, AXP192 It will automatically start up (whether it will automatically start up when external power is connected can be rewritten according to external needs).

And inN_OEis low and in shutdown state, the startup action needs to bePEKOperation is completed. In the case of external power or battery, N_OEA change from high to low will also causeAXP192Turn on the computer.

AXP192Can bePEK(The key press time exceeds "ONLEVEL")In practical applications,HostTiming(AlarmThe output signal can also be connected toPWRON—andPEKin parallel,AlarmWhen the signal is valid (low level), it is equivalent toPEKPress to alsoAXP192 Turn on the computer.

After booting up,DC-DCandLDOIt will start softly according to the set timing sequence. After the start is completed, it can beHostor throughPWRENThe pin turns the corresponding power supply on/off.

Power Off—Mode A

PEKLong press time is greater than IRQLEVELWhen PEKIn the interrupt service routine, HostYou can use the "Register REG32H[7]" Write "1"To notify AXP192 Enter shutdown mode. AXP192 When entering shutdown mode, all LDO1All power outputs except

In the following cases, AXP192Will automatically shut down:

- 1, input voltage is too low, low power protection;
- 2, the load is too large, causing the output voltage of the power supply to be too low, overload protection;
- 3, input voltage is too high, overvoltage protection (see the "Power Path Management" section for

details); 4,N_OEChange from low to high without shutting down within the set time;

5,PEKmore than theOFFLEVELWhen (default6S)The system automatically shuts down exceptLDO1Other outputs besides

AXP192The automatic protection mechanism can avoid irreversible damage to the powered devices when the application system is abnormal, thereby protecting the entire system.

Power On-Mode B

when SYSENPin Not ANDLDO1When connected together, AXP192In power on/off modeB.

In boot modeBUnder this condition, each power supply output isSYSEN/PWRENControl, when SYSEN/PWRENWhen high, its corresponding power path output is turned on, otherwise the output is turned off.

With the methodAThe difference is that each power-on source will only occur whenWAKEUPA low level pulse is generated on the pin to notifyHOST Pull upSYSEN/

Note: This method is intended for PXAIn applications with processors of similar series and power management methods.

Power Off—Mode B

If shutdown modeAThe shutdown source described, each shutdown method will not be shut down directly immediatelyAXP192The output isN_LBOA low level signal is generated on the pin to notify the system to pull downSYSEN/PWRENEnter shutdown mode; if2SThe system is not pulled down SYSEN/PWREN, butAXP192Automatic shutdown; of courseHOSTYou can also directly pull downSYSEN/PWRENEnter the corresponding shutdown mode.

Note: Same as boot modeB, shutdown modeBAlso envisioned forPXANote: Some processors have sleep (Sleep,SYSEN/PWRENall the way low, all the way high) and deep sleep (Deep Sleep, SYSEN/PWRENAll are low, exceptLDO1All outputs are off) in two modes.

Sleep and wakeup

existMannerAAnd when the computer is turned on, if the system needs to enterSleepmode, and turn off one or more of the power supplies, then theREG31[3] Control, decide whetherPEKShort press signal triggerwakeup,letPMURestore the output power of each channel toREG31[3] Placed1When the power is turned off, each power supply is turned on in sequence according to the specified power-on sequence.

As followsSleepandwakeupMode its control flow.

System reset function and output monitoring function (PWROK/N_LBO)

In the on/off modeADown:

AXP192ofPWROKCan be used as a reset signal for the application system.AXP192During the boot process,PWROKOutput low level, when the output voltage of each power supply reaches the preset value stably,PWROKWill be pulled high, thereby achieving a power-on reset of the application system.

During the normal operation of the application system, AXP192The voltage and load conditions of each output are always monitored, and in the case of overload or undervoltage, PWROKOutput low level immediately to reset the application system to prevent malfunction and possible data errors.

In the on/off modeBDown:

This pin is used as N_LBOSignal, its low level is used to indicate that the system needs to enter shutdown mode. The specific function is the same as the shutdown modeBDescription State.

9.2 Power Path Management (IPS)

AXP192The power input can come from a lithium batteryBAT,USB VBUSInput, external power supplyACIN(Such as AC adapterAC Adapter),IPSSelect the appropriate power distribution method according to the status of the external power supply and the lithium battery.

- O When only the lithium battery is connected and no external power is input, the lithium battery is used for power supply; When the external power is connected
- O (VBUSOrACIN), external power supply is used first; when the battery is connected, when the external power supply is removed, it will immediately and
- O "seamlessly" switch to lithium battery power supply; when VBUS and ACINWhen both are connected at the same time, the priority is given to ACINPower supply
- O and charge the lithium battery; ifACINWhen the driving capacity is insufficient, it will be opened in timeVBUSPathway, realizationACIN/VBUSIf the driving
- O capability is still insufficient, the charging current will be reduced until0, and then use batteries to supplement the power supply;

0

See the following diagram:

As shown in the figure above, when ACINWhen the load capacity is insufficient, IPSOUTVoltage drops, BATFrom the original charging to discharging and ACIN Together they provide load current.

 $Ho stable\ to\ pass TWSI access AXP192 The\ internal\ registers\ are\ used\ to\ set IPS parameters\ and\ read\ their\ feedback\ information.$

Voltage/current limiting mode and pass-through mode

In order not to affectUSBcommunication,VBUSThe channel works by default in "VBUSVoltage Limiting Mode. In this mode,AXP192WillVBUS

The voltage is maintained at a settable reference voltageVHOLDAbove, to meetUSBspecification.VHOLDThe default is 4.4V, can be registered in

Reg30H[5:3]Adjustment.

If the systemUSB VBUSIf the current draw is limited, a current limiting mode is available (see register REG30H[1]), current limit value optional500mA/100mA(registerReg30H[0]).

If the system only usesUSBPower supply without mindingUSBCommunication, or useUSBThe power adapter can be modified by register REG30H[6] WillAXP192Set toVBUSDirect mode", at this timeAXP192The power demand of the application system will be met first.USB HostThe driving ability is too weak or the system power consumption is too high.VBUSVoltage belowVHOLD,AXP192Will issueIRQ,informHost VBUS Power supply is weak, indicatingUSB Communications may be affected and subsequent actions may beHostSoftware determines.

AXP192's response when external power is plugged in

AXP192The external power supply can be automatically detected. AXP192After detecting that an external power supply is plugged in, it will automatically determine whether the external power supply is available and set the result in the corresponding register. IRQ, notifyHost.

The register status bits and meanings of the external power supply are shown in the following table:

Status bits of registers	meaning			
registerREG00H[7]	Indicates external adapter powerACINdoes it exist			
registerREG00H[6]	Indicates external adapter powerACINit's usable or not			
registerREG00H[5]	Indicates external power supplyVBUSdoes it exist			
registerREG00H[4]	Indicates external power supplyVBUSit's usable or not			
registerREG00H[3]	Indicates that an external power supply is connected VBUShour, VBUSIs the voltage higher than VHOLD			
registerREG00H[1]	Indicates external power supplyACIN/VBUSIs it inPCBShort circuit			
registerREG00H[0]	Indicates whether the system isACIN/VBUSTrigger boot			

"Indicates that external power is connected/BUShour,VBUSIs the voltage higher thanVHold"This flag allowsHostUpon receiptIRQ7 Time (referring toVBUSPower supply capacity is weak), judgeVBUSIs it because the system load is connected and pulled down or because the external power supply voltage itself is lower than VHOLD, so as to facilitateHostThe software decides whether to continue operating in voltage limiting mode or change to pass-through mode.

Whether to use VBUS as the input power supply

AXP192Whether to useVBUSAs the input power supply, N_VBUSEN and registers REG30H[7]To decide:

N_VBUSEN	REG30H[7]	Input Power	meaning
Low	0	VBUS	VBUSValid and noACINWhen using
Low	1	VBUS	VPLISWhen validVPLISAs input newer
High	1	VBUS	VBUSWhen validVBUSAs input power
High	0	ACIN/BAT	Not selectedVBUS

Low battery warning and low battery protection (auto shutdown)

AXP192Two levels of low battery warning voltage can be setVwarningand automatic shutdown voltageVoFF, andAPSOnce you find APSLower thanVwarning, then issueIRQ19.ifAPSLower thanVoFF,AXP192Automatically enter shutdown mode, turn offLDO1All outputs except

VWARNINGCOnfigurableLEVEL1/LEVEL2, when APSThe voltage drops below LEVEL2 Issued later IRQ30, APSThe voltage rises again to LEVEL1 This will be automatically cleared after IRQ.

VwarningandVoffThe default values are available in registersREG3AH,REG3BHandREG31H Bit[2:0]set up.

Overvoltage protection

When the external power supply voltage exceeds 6.3 Vhour, APX19 x is sue IRQ1/4, indicating that the external power supply is over-voltage. 7 V, AXP192 Automatic shut-down.

9.3 Adaptive Charger

AXP192An integrated constant current/constant voltage charger can automatically control the charging cycle, and the built-in safety clock can automatically stop charging without processor intervention. This charger can automatically adjust the charging current according to the system power consumption, and also has battery detection, trickle charging and activation functions. The built-in temperature detection circuit can automatically reduce the charging current when the temperature is too high or too low.

Start of the adaptive charging process

The charger is enabled by default (it can be disabled by setting the register, see "RegisterREG33H")When the external power supply is connected,AXP192First, determine whether the external power supply is available for charging. If the external power supply is available and the charging function is turned on,AXP192

Automatically starts charging processHostissueIRQ, indicating that the charging process has started. At the same time,CHGLEDThe pin outputs a low level and can drive an external light-emitting diode to indicate the charging status.

Schematic diagram of voltage and current during charging process

Two marking voltages

AXP192

Enhanced single Cell Li-Battery and Power System Management IC

VTRGT, charging target voltage.VTRGTCan be set by register, default is4.2V(See RegisterREG33H[6:5]")At the same time, when the external power supply voltage is low,AXP192The charging target voltage will be adjusted automatically.

VRCH, automatic recharge voltage.VRCH=VTRGT-0.1V.

recharging current

The charging current can be set by registerREG33H[3:0]The default value is450mAor780mA.

Charging process

If the battery voltage is lower than 3.0V, the charger automatically enters the pre-charge mode, and the charging current is the preset value 1/10.if 40 Minutes (This time is adjustable, see "Register REG34H"), the battery voltage still cannot reach 3.0V, the charger automatically enters the battery activation mode. For details, see "Battery Activation Mode".

Once the battery voltage is higher than 3.0 V, the charger starts to enter the constant current mode. If the charging current is less than the preset value 65%When IRQ17This notifies you that "the external power supply is insufficient and the charging current has not reached the set value, which will extend the charging time. If you want to charge faster, it is recommended to replace the power supply with a stronger one or turn off the power-intensive functions."

When the battery voltage reaches the target voltageVTRGTAfter that, the charger enters constant voltage mode from constant current mode, and the charging current decreases.

When the charging current is lower than the preset value10%or15%When (can be set, see "RegisterREG33H"), the charging cycle ends, charging stops, and when charging is finished,AXP192Will issueIRQ18,CHGLEDThe pin stops indicating the charging status.VRCH

When the battery is fully charged, it will automatically start to recharge and sendIRQ17.

In non-precharge mode, if 480 minutes (this time can be adjusted, see "Register REG34H"), the charging cycle has not ended, the charger will automatically enter the battery activation mode.

Battery activation mode

Whether entering the battery activation mode from the pre-charge mode or the constant current charge mode (when the timer times out), AXP192Will issue IRQ10, indicating that the battery may be damaged.

In battery activation mode, Charger Always charge the battery with a small current. If the battery voltage can reach VRCH, then exit the activation mode and issue IRQ11.

 $AXP192In\ the\ register REG01HIndicates\ whether\ the\ charger\ is\ in\ battery\ activation\ mode.$

CHGLED

CHGLEDThe pin is used to indicate the charging status and alarm. It has four states: charging, not charging, battery abnormality alarm and external power supply overvoltage alarm. CHGLEDyesNMOS Open Drain(The output of the open drain type can directly drive a light-emitting diode through a current limiting resistor to display these four states. Its performance in each state is shown in the following table:

Enhanced single Cell Li-Battery and Power System Management IC

state	Performance	Notes
Charging	Low level	
Not Charging	High resistance	
Battery abnormality	25% duty 1HzJump	The charger enters battery activation mode, or the battery temperature is too high or too low
Overpressure	25% duty 4HzJump	External power input voltage is too high

Battery temperature detection

During charging/use,AXP192Can be done throughTSThe pin is connected to a thermistor to monitor the battery temperature. The circuit diagram is as follows:

In the above figure,VTH/VTLThey are high temperature and low temperature threshold settings, which can be set through registersREG38H/39H/3CH/3DHset up, VTE=0.2V. It is recommended to use a temperature sensitive resistor25°C10Kohm, Accuracy1%ofNTCThermistor.AXP192will beTSThe pin sends a constant current, which can be set to20uA,40uA,60uA,80uAFour (see registerREG84H), to adapt to differentNTCThis current flows through the thermistor and a detection voltage is obtained.AXP192passADCMeasure the voltage value and compare it with the set value, and then issue the correspondingIRQOr pause charging.

If the resistance of the thermistor is too large or too small, additional resistors can be connected in parallel or series in its path to expand its detection range.

If the battery does not have a thermistor, you can TSThe pin is connected to ground. AXP192Automatically disable the battery temperature monitoring function.

Battery detection

AXP192The presence of a battery is automatically detected and marked in the register (see RegisterREG01H) and issueIRQ13,IRQ14.

The battery detection function can beHostControl open or close (see registerREG32H).

9.4 Backup Battery

AXP192Supports the use and charging of backup batteries when there is no main power supply (BAT/ACIN/VBUS)When it exists,LDO1The input source is a backup battery, and its output is used to maintain the operation of some circuits such as the system real-time clock.

When main power is present, the REG35H[7]To charge the backup battery, the target voltage is by default 3.0V(accessible REG35H[6:5]Setting), the default charging current is 200uA(You can also REG35H[1:0]set up).

9.5 Multi-Power Outputs

 $\label{eq:action} {\sf AXP192The\ multiple\ output\ voltages\ and\ functions\ provided\ are\ listed\ as\ follows:}$

Output Path	type	Default voltage	Application examples	Drive capability
DCDC1	BUCK	Configurable	3.3VI/O	1200 mA
DCDC2	BUCK	Configurable	1.25Vcore	1600 mA
DCDC3	BUCK	Configurable	2.5Vddr	700 mA
LDO1	LDO	Configurable	RTC	30 mA
LDO2	LDO	Configurable	Analog/FM	200 mA
LDO3	LDO	Configurable	1.8V HDMI	200 mA
LDO _{IO0}	LDO	Configurable	Vmic	50 mA

AXP192Include3Synchronous BuckDC-DC,4roadLDO, multiple startup timings and control methods.DC-DCThe default operating frequency is1.5MHz, which can be adjusted by setting registers, and small inductor and capacitor components can be used as peripherals.3indivualDC-DCCan be set toPWM mode or automatic mode (byAXP192Automatically switch according to the load size), see "RegisterREG80H".

DC-DC1/2/3

DCDC1/3The output voltage range is0.7-3.5V,DCDC2The output voltage is0.7-2.275V, which can be set by registers (see "Register REG23H 26H 27H 29H").

DCDC1/2/3Output capacitor recommended10uF X7RAbove smallESRCeramic capacitor; when the output voltage is set to 2.5VWhen the above, it is recommended to use 2.2uHInductor, 2.5VIt is recommended to use the following 4.7uHThe inductor saturation current must be greater than the maximum current required by the power path. 50% above.

The following is a list of recommended inductors and capacitors:

inductance			
model	Current Specifications	DC internal resistance	
Murata LQH55PN2R2NR0	2100mA@2.2uH	30mOhm	
Murata LQH55PN4R7NR0	1400mA@4.7uH	60mOhm	
Murata LQH44PN2R2MP0	2000mA@2.2uH	49mOhm	
Murata LQH44PN4R7MP0	1700mA@2.2uH	80mOhm	
TDK VLF5010ST-2R2M2R3	2700mA@2.2uH	41mOhm	

TDK VLF5014ST-4R7M1R7	1700mA@4.7uH	98mOhm
TDK SLF6045T-4R7N2R4-3PF	2400mA@4.7uH	27mOhm
capacitance		
model	Temperature characteristics	Tolerance
TDK C2012X5R0J475K	X5R/X7R	10%@4.7uF
TDK C2012X5R0J106K	X5R/X7R	10%@10uF
Murata GRM31E71A475K	X7R	10%@4.7uF
Murata GRM21E71A106K	X7R	10%@10uF
Murata GRM31E71A106K	X7R	10%@10uF

LD01

LDO1Always on, it can be used as the real-time clock circuit of the application system (RTC)Provides uninterrupted power supply with a driving capability of 30mA.

LDO2/3

LDO2/3It adopts low noise design and can provide power for the analog circuit of the application system. Its driving capability is 200mA.

LDO₁₀₀

LDO:00It also adopts a low noise design, and the output drive capability is50mA.

Soft Start

allDC-DCandLDOBoth support soft-start output establishment mode to avoid the impact of sudden current changes on the input path during startup.

Self-diagnosis: load monitoring and current limiting protection

allDC-DCandLDOAll of them have load monitoring and current limiting functions. When the load current exceeds its driving capability, each output voltage will drop to protect the internal circuit.DC-DCThe output voltage is lower than the set voltage85%hour,AXP192Automatic shutdown. At the same time, the system automatically records which output voltage is too low to cause shutdown (see registerREG46H[5:2])and issue the correspondingIRQ.

allDC-DCNo external Schottky diode and resistor divider feedback circuit is required.DC-DC, just need to change the correspondingLXJust leave the pin floating.

9.6 Default Voltage/Timing Setting

 ${\sf AXP192} The\ default\ voltage\ and\ startup\ sequence\ of\ each\ power\ supply\ can\ be\ customized.$

Startup sequence: includes8Level start, that is0-7, among which7Level means that this power supply is not started by default when powered on.0-6Level means1-7Start this power supply step by step. At the same time, you can set the time interval for each step start, the optional range is1,4,16mS.

Default voltage setting: EachDCDC/LDOThe configurable range includes the selection from the lowest voltage to the highest voltage. For more information about this part, please refer to the "Default Configuration Instructions" document.

9.7 Signal Capture

A typical battery charge monitor usually estimates the battery charge by measuring the battery voltage. AXP192Multi-channel12-Bit ADCIn addition to measuring battery voltage, it can also measure battery current and external power supply voltage and current. At the same time, a battery charge and discharge coulomb meter is integrated inside. Host The battery power can be calculated more accurately based on these data. In addition, rich power information such as the system's real-time power consumption, remaining battery power, battery charging progress, remaining battery usage time, and remaining full charge time can also be calculated.

VariousADCThe enable control and sampling speed can be controlled by registerREG82H,83H,84HTo set, the sampling results are stored in the corresponding registers, see the register description.ADCData class.GPIO[3:0]The input range can be set by registerREG85HThe battery current direction is charging or discharging.REG00H[2]To indicate.

Channel	000Н	STEP	FFF
Battery Voltage	0mV	1.1mV	4.5045V
Bat discharge current	0mA	0.5mA	4.095A
Bat charge current	0mA	0.5mA	4.095A
ACIN volatge	0mV	1.7mV	6.9615V
ACIN current	0mA	0.625mA	2.5594A
VBUS voltage	0mV	1.7mV	6.9615V
VBUS current	0mA	0.375mA	1.5356A
Internal temperature	- 144.7°C	0.1°C	264.8°C
APS voltage	0mV	1.4mV	5.733V
TS pin input	0mV	0.8mV	3.276V
GPIO0	0/0.7V	0.5mV	2.0475/2.7475V
GPIO1	0/0.7V	0.5mV	2.0475/2.7475V
GPIO2	0/0.7V	0.5mV	2.0475/2.7475V
GPIO3	0/0.7V	0.5mV	2.0475/2.7475V

9.8 Multi-Function Pin Description

GPIO[4:0]

can be used asGPIO[4:0],ADC Input(monitoring external signals),LDO,PWMFor details, seeREG90H-96Hillustrate.

N_RSTO

LDO1Status monitoring signal (pull up toLDO1) orGPIO5, seeREG9Eillustrate.

CHGLED

 $Charging\ status\ indication,\ over-temperature\ and\ over-voltage\ alarm\ functions,\ and GPOF unction,\ usage\ see REG32 Hillustrate.$

IRQ(WAKEUP)

when AXP192In power on/off mode AWhen this pin is used IRQS tatus indication pin, when an interrupt occurs, its output is pulled low to notify HOST Perform interrupt processing and pull up to the system IO power supply.

when AXP192In power on/off mode BWhen this pin is used WAKEUPTrigger signal indication, pull up to LDO1For its specific functions, please refer to the startup method Billustrate.

PWROK(N_LBO)

In power on/off mode A, it is the system reset signal (pull up to the system IO power supply), in the on/off mode B, it is the shutdown indication signal (upper Pull to LDO1), refer to "9.2 Power On, Power Off and Reset" "System Reset Function and Output Monitoring Function".

9.9 Timer

AXP192Contains an internal timer that can be set by registerREG8AH[6:0]The timer value can be changed with a minimum resolution of minutes (Minute), the timer will be set after it times outREG8AH[7].

9.10 HOST Interface and Interrupt (TWSI and IRQ)

picture2:Multi Read and Write

Hostable to passTWSIInterface AccessAXP192The registers have the operation sequence shown in the figure above, supporting standard100KHzor

400 KHz Frequency, maximum speed can reach 1.2 MHz, and supports continuous read/write operations. The device address is 69H (Read) and 68H (Write).

When certain events occur,AXP192By pulling lowIRQThe interrupt mechanism is used to remindHostand save the interrupt status in the interrupt status register (see RegisterREG44H,registerREG45H,registerREG46H,registerREG47H), write to the corresponding status register bit1The corresponding interrupt is cleared. When there is no interrupt event,IRQOutput pulled high (via external pull-up 51KEach interrupt can be masked via the interrupt control register (see RegisterREG40H,registerREG41H,registerREG42H,register REG43H).

Location	Interrupt number	meaning	Location	Interrupt number	meaning
register44H[7]	IRQ1	power supplyACINOverpressure	register46H[7]	IRQ16	ICInternal over temperature
register44H[6]	IRQ2	power supplyACINinsert	register46H[6]	IRQ17	Insufficient charging current
register44H[5]	IRQ3	power supplyACINRemove	register46H[5]	IRQ18	DCDC1Voltage is too low
register44H[4]	IRQ4	power supplyVBUSOverpressure	register46H[4]	IRQ19	DCDC2Voltage is too low
register44H[3]	IRQ5	power supplyVBUSinsert	register46H[3]	IRQ20	DCDC3Voltage is too low
register44H[2]	IRQ6	power supplyVBUSRemove	register46H[2]		reserve
register44H[1]	IRQ7	VBUSVoltage less than	register46H[1]	IRQ22	PEKdog
		VHOLD			
register44H[0]		reserve	register46H[0]	IRQ23	PEKPress
register45H[7]	IRQ8	Battery access	register47H[7]	IRQ24	N_OEPower on
register45H[6]	IRQ9	Battery Removal	register47H[6]	IRQ25	N_OEShutdown
register45H[5]	IRQ10	Entering battery activation mode	register47H[5]	IRQ26	VBUSefficient
register45H[4]	IRQ11	Exit battery activation mode	register47H[4]	IRQ27	VBUSinvalid
register45H[3]	IRQ12	Charging	register47H[3]	IRQ28	VBUS Session Valid
register45H[2]	IRQ13	finished charging	register47H[2]	IRQ29	VBUS Session End
register45H[1]	IRQ14	Battery temperature is too high	register47H[1]	reserve	
register45H[0]	IRQ15	Battery temperature is too low	register47H[0]	IRQ30	Low battery warning

9.11 Registers

No.1Group, Power Control

address	Register Description	R/W	default value
00	Power Status Register	R	
01	Power Mode/Charge Status Register	R	
04	OTG VBUSStatus Register	R	
06-0B	Data Cache Register0-5	R/W	F0/0F/00/FF/
			00/00
10	EXTEN & DC-DC2Switch Control Register	R/W	X5H
12	DC-DC1/3 & LDO2/3Switch Control Register	R/W	XHf
twenty three	DC-DC2Voltage Setting Register	R/W	16H
25	DC-DC2Voltage slope parameter setting register	R/W	00H

26	DC-DC1Voltage Setting Register	R/W	68H
27	DC-DC3Voltage Setting Register	R/W	48H
28	LDO2/3Voltage Setting Register	R/W	CFH
30	VBUS-IPSOUTPath Setup Register	R/W	60H
31	VoFFShutdown voltage setting register	R/W	ХЗН
32	Shutdown, battery test,CHGLEDControl Register	R/W	46H
33	Charge Control Register1	R/W	8H
34	Charge Control Register2	R/W	41H
35	Backup Battery Charging Control Register	R/W	22H
36	PEKParameter Setting Register	R/W	5DH
37	DCDCConverter operating frequency setting register	R/W	08H
38	Battery charging low temperature alarm setting register	R/W	A5
39	Battery charging high temperature alarm setting register	R/W	1FH
3A	APSLow batteryLevel1Setting Registers	R/W	68H
3B	APSLow batteryLevel2Setting Registers	R/W	5F
3C	Battery discharge low temperature alarm setting register	R/W	FCH
3D	Battery discharge high temperature alarm setting register	R/W	16H
80	DCDCWorking mode setting register	R/W	E0H
82	ADCEnable setting register1	R/W	83H
83	ADCEnable setting register2	R/W	80H
84	ADCSampling rate setting,TS pinControl Register	R/W	32H
85	GPIO [3:0]Input Range Setting Register	R/W	XOt
86	GPIO1 ADC IRQRising edge threshold setting	R/W	FFH
87	GPIO1 ADC IRQFalling edge threshold setting	R/W	00H
8A	Timer Control Register	R/W	00H
8B	VBUSMonitoring Setting Register	R/W	00H
8F	Over temperature shutdown control register	R/W	01H

No.2Group,GPIOControl

address	Register Description	R/W	default value
90	GPIO0Control Register	R/W	07H
91	GPIO0 LDOMode Output Voltage Setting Register	R/W	A0H
92	GPIO1Control Register	R/W	07H
93	GPIO2Control Register	R/W	07H
94	GPIO[2:0]Signal Status Register	R/W	00H
95	GPIO[4:3]Function Control Register	R/W	00H
96	GPIO[4:3]Signal Status Register	R/W	00H
97	GPIO[2:0]Pull-down control register	R/W	00H
98	PWM1Frequency Setting Register	R/W	00H
99	PWM1Duty cycle setting register1	R/W	16H
9A	PWM1Duty cycle setting register2	R/W	0BH

Enhanced single Cell Li-Battery and Power System Management IC

9B	PWM2Frequency Setting Register	R/W	00H
9C	PWM2Duty cycle setting register1	R/W	16H
9D	PWM2Duty cycle setting register2	R/W	0BH
9E	N_RSTO (GPIO5)Control Register	R/W	20H

No.3Group, Interrupt Control Class

address	Register Description	R/W	default value
40	IRQEnable Control Register1	R/W	8H
41	IRQEnable Control Register2	R/W	FFH
42	IRQEnable Control Register3	R/W	3BH
43	IRQEnable Control Register4	R/W	C1H
4A	IRQEnable Control Register5	R/W	00H
44	IRQStatus Register1	R/W	00H
45	IRQStatus Register2	R/W	00H
46	IRQStatus Register3	R/W	00H
47	IRQStatus Register4	R/W	00H
4D	IRQStatus Register5	R/W	00H

No.4Group,ADCData Class

address	Register Description	R/W
56	ACINVoltageADCData High8Bit	R
57	ACINVoltageADCData low4Bit	R
58	ACINCurrentADCData High8Bit	R
59	ACINCurrentADCData low4Bit	R
5A	VBUSVoltageADCData High8Bit	R
5B	VBUSVoltageADCData low4Bit	R
5C	VBUSCurrentADCData High8Bit	R
5D	VBUSCurrentADCData low4Bit	R
5E	AXP192Internal temperature monitoringADCData High8Bit	R
5F	AXP192Internal temperature monitoringADCData low4Bit	R
62	TSenterADCData High8By default, the battery temperature is monitored.	R
63	TSenterADCData low4By default, the battery temperature is monitored.	R
64	GPIO0VoltageADCData High8Bit	R
65	GPIO0VoltageADCData low4Bit	R
66	GPIO1VoltageADCData High8Bit	R
67	GPIO1VoltageADCData low4Bit	R
68	GPIO2VoltageADCData High8Bit	R
69	GPIO2VoltageADCData low4Bit	R
6A	GPIO3VoltageADCData High8Bit	R
6B	GPIO3VoltageADCData low4Bit	R

Enhanced single Cell Li-Battery and Power System Management IC

70	High instantaneous battery power8Bit	R
71	Battery instantaneous power8Bit	R
72	Battery power is low momentarily8Bit	R
78	High battery voltage8Bit	R
79	Low battery voltage4Bit	R
7A	High battery charging current8Bit	R
7B	Battery charging current is low5Bit	R
7C	High battery discharge current8Bit	R
7D	Battery discharge current is low5Bit	R
7E	APSHigh voltage8Bit	R
7F	APSLow voltage4Bit	R

Note: The battery power calculation method is:

Pbat =Register Value* VoltageLSB*CurrentLSB/1000Among them, the voltage

LSBfor1.1mV, currentLSBfor0.5mAThe calculation result unit ismW.

address	Register Description	R/W	default value
В0	Battery Charge Coulomb Counter Data Register [31:24]	R/W	00H
B1	Battery Charge Coulomb Counter Data Register [23:16]	R/W	00H
B2	Battery Charge Coulomb Counter Data Register [15:8]	R/W	00H
В3	Battery Charge Coulomb Counter Data Register [7:0]	R/W	00H
B4	Battery Discharge Coulomb Counter Data Register [31:24]	R/W	00H
B5	Battery Discharge Coulomb Counter Data Register [23:16]	R/W	00H
В6	Battery Discharge Coulomb Counter Data Register [15:8]	R/W	00H
B7	Battery Discharge Coulomb Counter Data Register [7:0]	R/W	00H
B8	Coulomb Counter Control Register	R/W	00H

 $Coulomb\ calculation\ method: C = 65536\ *CurrentLSB* (Charging\ coulomb\ counter\ value\ -\ discharging\ coulomb\ counter\ value)\ / 3600\ /\ ADCS ampling\ rate. Where: ADCS ampling\ rate\ reference REG84HS etting\ of\ currentLSB for 0.5 mA;\ The\ unit\ of\ calculation\ result\ ismAh.$

REG 00H: Input power status

Bit	describe	R/W
7	ACINPresence indication	R
	0:ACINdoes not exist;1:ACINexist	
6	instructACINit's usable or not	R
5	VBUSPresence indication	R
	0:VBUSdoes not exist;1:VBUSexist	
4	instructVBUSit's usable or not	R
3	instructVBUSIs the access greater than before use?Vногд	R
2	Indicates the direction of battery current	R
	0:The battery is discharging;1:The battery is charged	

1	instructACINandVBUSIs the input inPCBShort-circuited	
0	Indicates whether the boot source isACINorVBUS	R
	0:Boot source nonACIN/VBUS;1:The startup source isACIN/VBUS	

REG 01H: Power supply working mode and charging status indication

Bit	describe	R/W
7	instructAXP192Is it overheated?	R
	0:Not overheated;1:Over temperature	
6	Charging Instructions	R
	0:Not charging or charging is complete;1:Charging	
5	Battery status indicator	R
	0:No battery connected toAXP192;1:The battery is connected toAXP192	
4	Reserved, cannot be changed	R
3	Indicates whether the battery has entered activation mode	R
	0:The battery activation mode has not been entered;1:Entered battery activation mode	
2	Indicates whether the charging current is less than the expected current	R
	0:The actual charging current is equal to the expected current;1:The actual charging current is less than the expected current	
1	AXP192Power on/off mode indication	R
	0:WayA;1:WayB	
0	Reserved, cannot be changed	R

REG 02H: USB OTG VBUS status indication

Bit	describe	R/W
7-3	Reserved, cannot be changed	
2	instructVBUSis it effective,1Indicates validity	R
1	instructVBUS Session A/Bis it effective,1Indicates validity	R
0	instructSession Endstate,1Indicates validity	R

REG 06-0BH: Data Cache

Note: As long as the external power supply, battery or backup battery is available, this data will be saved and will not be affected by power on and off. The default value isF0/0F/00/FF/00/00H

REG 10H:EXTEN & DC-DC2 output control

default value:XXH

Bit	describe		R/W	default value
7-3	Reserved, cannot be changed			
2	EXTENSwitch Control	0:closure;1:Open	R W	Χ
1	Reserved, cannot be changed			
0	DC-DC2Switch Control	0:closure;1:Open	R W	Х

Note:XIt depends on the customization. The following values $\,$ are XThe same applies to the .

REG 12H: Power output control

default value:XXH

Bit	describe		R/W	default value
7	Reserved, cannot be changed		R W	Х
6	EXTENSwitch Control	0:closure;1:Open	R W	Х
5	Reserved, cannot be changed		R W	Х
4	DC-DC2Switch Control	0:closure;1:Open	R W	Х
3	LDO3Switch Control		R W	Х
2	LDO2Switch Control		R W	Х
1	DC-DC3Switch Control		R W	Х
0	DC-DC1Switch Control		R W	Х

Note:REG12Hbit6/4Corresponding toREG10Hbit2/0.

REG 23H: DC-DC2 output voltage setting

default value:16H

Bit	describe		R/W	default value
7-6	Reserved, cannot be changed			
5	DC-DC2Output voltage settingBit5	0.7-2.275V,25mV/step	R W	Х
4	DC-DC2Output voltage settingBit4		R W	Х
3	DC-DC2Output voltage settingBit3		R W	Х
2	DC-DC2Output voltage settingBit2		R W	Х
1	DC-DC2Output voltage settingBit1		R W	Х
0	DC-DC2Output voltage settingBit0		R W	Х

REG 25H: DC-DC2 dynamic voltage regulation parameter settings

default value:00H

Bit	describe		R/W	default value
7-3	Reserved, cannot be changed			
2	DC-DC2 VRCEnable control	DC-DC2 VRCEnable control		0
	0:Open;1:closure			
1	Reserved, cannot be changed		R W	0
0	DC-DC2 VRCVoltage rise slope control	0: 25mV/15.625us=1.6mV/us	R W	0
		1: 25mV/31.250us=0.8mV/us		

REG 26H: DC-DC1 output voltage setting

default value:68H

Bit		describe	R/W	default value
7	Reserved, cannot be changed			
6	DC-DC1Output voltage settingBit6	0.7-3.5V,25mV/step	R W	Х
5	DC-DC1Output voltage settingBit5		R W	Х
4	DC-DC1Output voltage settingBit4		R W	Х
3	DC-DC1Output voltage settingBit3		R W	Х
2	DC-DC1Output voltage settingBit2		R W	Х
1	DC-DC1Output voltage settingBit1		R W	Х
0	DC-DC1Output voltage settingBit0		R W	Х

REG 27H: DC-DC3 output voltage setting

default value:48H

Bit		describe		default value
7	Reserved, cannot be changed			
6	DC-DC3Output voltage settingBit6	0.7-3.5V,25mV/step	R W	Χ
5	DC-DC3Output voltage settingBit5		R W	Χ
4	DC-DC3Output voltage settingBit4		R W	Х
3	DC-DC3Output voltage settingBit3		R W	Χ
2	DC-DC3Output voltage settingBit2		R W	Х
1	DC-DC3Output voltage settingBit1		R W	Х
0	DC-DC3Output voltage settingBit0		R W	Χ

REG 28H: LDO2/3 output voltage setting

default value:CFH

Bit	describe		R/W	default value
7	LDO2Output voltage settingBit3	1.8-3.3V,100mV/step	R W	Χ
6	LDO2Output voltage settingBit2		R W	Χ
5	LDO2Output voltage settingBit1		R W	Χ
4	LDO2Output voltage settingBit0		R W	Χ
3	LDO3Output voltage settingBit3	1.8-3.3V,100mV/step	R W	Χ
2	LDO3Output voltage settingBit2		R W	Χ
1	LDO3Output voltage settingBit1		R W	Х
0	LDO3Output voltage settingBit0		R W	Χ

REG 30H:VBUS-IPSOUT path management

default value:6X

Bit		describe	R/W	default value
7	VBUSWhen availableVBUS-IPSOUTPath selection control signal 0:Depend onN_VBUSEN pinDecide		R W	0
	whether to open this channel 1:VBUS-IPSOUTThe pathway can be selected to be open regardless			
	ofN_VBUSENstatus			
6	VBUS VHOLDVoltage limiting control 0:No		R W	1
	pressure limit;1:Pressure Limit			
5	VHOLDSET upBit 2	000: 4.0V;001: 4.1V;010: 4.2V 011:	R W	1
4	Vногоset upBit 1	4.3V;100: 4.4V;101: 4.5V 110: 4.6V;	R W	0
3	Vногоset upBit 0	111: 4.7V	R W	0
2	Reserved, cannot be changed			
1	VBUSCurrent limiting control enable signal		R W	Х
	0:closure;1:Open		_	
0	VBUSCurrent limit selection when current limit control is turned on		R W	0
	0:500mA;1:100mA			

REG 31H:VoffShutdown voltage setting

default value:X3H

Bit	describe	R/W	default value
7-4	Reserved, cannot be changed		
3	SleepModePWRONShort press wake-up function enable setting:		

	0: Short press wake-up function off					
	1: Short press to wake up the function					
	thisbitAutomatically clear after writing0, so each time you enterSleepNeed to write again before mode1					
2	Voffset upBit2	000-2.6V;	001-2.7V;	010-2.8V;	R W	0
1	Voffset upBit1	011-2.9V;	100-3.0V;	101-3.1V;	R W	1
0	Voffset upBit0	110-3.2V;	111-3.3V		R W	1

REG 32H: Shutdown setting, battery detection and CHGLED pin control

default value:46H

Bit		describe	R/W	default value
7	WayAShutdown control	WayAShutdown control		0
	This bit is written1Will be closedAXP192Output	This bit is written1Will be closedAXP192Output		
6	Battery monitoring function setting bits:0:closure;1:O	pen	R W	1
5-4	CHGLEDPin function settings	00:High resistance	R W	00
		01: 25% 1HzFlash		
		10: 25% 4HzFlash		
		11:Output low level		
3	CHGLEDPin Control Settings	0:Controlled by charging function	R W	0
		1:By registerREG 32HBit[5:4]control		
2	Reserved, cannot be changed			
1-0	N_OEAfter changing from low to highAXP192Shutdown	00: 0.5S;01: 1S; 10:	R W	10
	delay time	2S;11: 3S		

REG 33H: Charging control 1

Bit	describe	R/W	default value
7	Charging function enable control bit, including internal channel and external channel		1
	0:closure,1:Open		
6:5	Charging target voltage setting	R W	10
	00:4.1V;01:4.15V;10:4.2V;11:4.36V		
4	End of charge current setting	R W	0
	0:Charging current is less than10%End charging when setting value		
	1:Charging current is less than15%End charging when setting value		
3-0	Internal path charging current setting	R W	1000
	0000:100mA;0001:190mA; 0010:280mA; 0011:360)mA;	
	0100:450mA;0101:550mA; 0110:630mA; 0111:700)mA;	

1000:780mA;1001:880mA;1010:960mA;1011:1000mA;	
1100:1080mA;1101:1160mA;1110:1240mA;1111:1320mA	

REG 34H: Charge control 2

default value:41H

Bit		describe		default value
7	Precharge timeout settingBit1	00: 30 min;01: 40min;	R W	0
6	Precharge timeout settingBit0	10: 50min;11: 60min	R W	1
5-3	External path charging current setting		R W	000
	scope300-1000mA,100mA/step, default value300mA			
2	External path enable setting during charging		R W	0
	0:closure;1:Open			
1	Timeout setting in constant current modeBit1	00: 7Hours;01: 8Hours;	R W	0
0	Timeout setting in constant current modeBit0	10: 9Hours;11: 10Hours	R W	1

REG 35H: Backup battery charging control

default value:22H

Bit		describe	R/W	default value
7	Backup battery charging enable control	Backup battery charging enable control		0
	0:closure;1:Open			
6:5	Backup battery charging target voltage setting		R W	01
	00:3.1V;01:3.0V;10:3.0V;11:2.5V			
4-2	Reserved, cannot be changed			
1:0	Backup Battery Charge Current Setting	00: 50uA;01: 100uA; 10:	R W	10
		200uA;11: 400uA		

REG 36H: PEK key parameter setting

default value:5DH

Bit	describe		R/W	default value
7	Power on time settingBit1	00: 128mS;01: 512mS; 10:	R W	0
6	Power on time settingBit0	1S; 11: 2S.	R W	1
5	Long press time settingBit1	00: 15;01: 1.55; 10:	R W	0
4	Long press time settingBit0	2S;11: 2.5S.	R W	1

3	Automatic shutdown function setting when the key press time is longer than the shutdo	own time	R W	1
	0:closure;1:Open			
2	After power on is completePWROKSignal delay		R W	1
	0:32mS;1:64mS			
1	Power off time settingBit1	00: 4S;01: 6S; 10:	R W	0
0	Power off time settingBit0	8S;11: 10S.	R W	1

REG 37H: DC-DC operating frequency setting

default value:08H

Bit		describe	R/W	default value
7-4	Reserved, cannot be changed			
3	DC-DCSwitching frequency settingBit 3	Each level changes5%,default value1.5MHz	R W	1
2	DC-DCSwitching frequency settingBit 2		R W	0
1	DC-DCSwitching frequency settingBit 1		R W	0
0	DC-DCSwitching frequency settingBit 0		R W	0

REG 38H: $V_{\text{LTF-charge}}Battery\ charging\ low\ temperature\ threshold\ setting$

default value:A5

Bit		describe		default value
7-0	Battery low temperature threshold setting during charging,M	M*10H,whenM=A5HTime Correspondence2.112V;	R W	A5
		Applicable voltage0V~3.264V		

V_{LTF-charge}= M * 10H * 0.0008V

REG 39H:VHTF-chargeBattery charging high temperature threshold setting

default value:1FH

Bit	describe		R/W	default value
7-0	Battery high temperature threshold setting during charging,N	N*10H,whenN=1FH,correspond0.397V;	R W	1FH
		Applicable voltage0V~3.264V		

V_{HTF-charge}= N * 10H * 0.0008V

REG 3AH: APS low power level 1

default value:68H

Bit	describe	R/W	default value

7-0	APSLow power setting level1	R W	68H

REG 3BH: APS low power level 2

default value:5F

Bit	describe	R/W	default value
7-0	APSLow power setting level2	R W	5F

REG3AH,REG3BHcorrespondingAPSThe voltage is set to the following relationship (assuming the register value isn): Vwarning = 2.8672 + 1.4mV * n * 4

REG 3CH:VLTF-dischargeBattery discharge low temperature threshold setting

default value:FCH

Bit	describe M*10H,whenM=FCHTime Correspondence3.226V;		R/W	default value
7-0	Battery low temperature threshold setting during discharge,M	M*10H,whenM=FCHTime Correspondence3.226V;	R W	FCH
		Applicable voltage0V~3.264V		

VLTF-discharge= M * 10H * 0.0008V

REG 3DH:Vhtf-dischargeBattery discharge high temperature threshold setting

default value:16H

Bit				default value
7-0	Battery high temperature threshold setting during discharge,N	N*10H,whenN=16H,correspond0.282V;	R W	16H
		Applicable voltage0V~3.264V		

VLTF-discharge= N * 10H * 0.0008V

REG 80H: DC-DC operating mode selection

Bit		describe		default value
7-4	Reserved, cannot be changed			
3	DC-DC1Working mode control	0:PFM/PWMAutomatic switching	R W	0
2	DC-DC2Working mode control	1:fixedPWM	R W	0
1	DC-DC3Working mode control		R W	0
0	Reserved, cannot be changed			

REG 82H: ADC enable 1

default value:83H

Bit		describe	R/W	default value
7	battery voltageADCEnable	0:closure,1:Open	R W	1
6	Battery CurrentADCEnable		R W	0
5	ACINVoltageADCEnable		R W	0
4	ACINCurrentADCEnable		R W	0
3	VBUSVoltageADCEnable		R W	0
2	VBUSCurrentADCEnable		R W	0
1	APSVoltageADCEnable		R W	1
0	TSPinsADCFunction Enablement		R W	1

REG 83H: ADC enable 2

default value:80H

Bit	describe		R/W	default value
7	AXP192Internal temperature monitoringADCEnable	0:closure,1:Open	R W	1
6-4	Reserved, cannot be changed			
3	GPIO0 ADCFunction Enablement	0:closure,1:Open	R W	0
2	GPIO1 ADCFunction Enablement		R W	0
1	GPIO2 ADCFunction Enablement		R W	0
0	GPIO[3] ADCFunction Enablement		R W	0

REG 84H: ADC sampling rate setting, TS pin control

default value:32H

Bit		describe	R/W	default value
7	ADCSampling rate settingBit 1	25×2n	R W	0
6	ADCSampling rate settingBit 0	The sampling rates are25,50,100,200Hz	R W	0
5-4	TSPin output current setting:		R W	11
	00:20uA;01:40uA;10:60uA;11:80uA			
3	Reserved, cannot be changed			
2	TSPin function selection		R W	0
	0:Battery temperature monitoring function,1:External inde	pendentADCInput Path		
	TSPin current output mode setting	00:closure	R W	1
1-0		01:Output current during charging	R W	0

	10: ADCInput during sampling can save power	
	11:Always open	

REG 85H: ADC input range

default value:XOt

Bit		describe	R/W	default value
7-4	Reserved, cannot be changed			
3	GPIO3 ADCInput range	0:0-2.0475V	R W	0
2	GPIO2 ADCInput range	1:0.7-2.7475V	R W	0
1	GPIO1 ADCInput range		R W	0
0	GPIO0 ADCInput range		R W	0

REG 86H: GPIO1 ADC IRQ rising edge threshold setting

default value:FFH

Bit	describe	R/W	default value
7-0	oneLSBfor8mV	R W	FF

REG 87H: GPIO1 ADC IRQ falling edge threshold setting

default value:00H

Bit	describe	R/W	default value
7-0	oneLSBfor8mV	R W	00

REG 8AH: Timer control

Bit	describe	R/W	default value
7	Timer timeout	R W	0
	Write1Clear this status		
6-0	Set the timing time in minutes	R W	0000000
	Write full0Then turn off this timer		

REG 8BH: VBUS pin monitoring SRP function control

default value:00H

Bit	describe	R/W	default value
7-6	Reserved, cannot be changed		
5-4	VBUSEffective voltage setting	R W	00
	00:4.0V;01:4.15V;10:4.45V;11:4.55V		
3	VBUS ValidDetection function settings:0:closure,1:Open	R W	0
2	VBUS SessionDetection function settings:0:closure,1:Open	R W	0
1	Discharge VBUSDischarge function setting	R W	0
	0:closureVBUSThe discharge resistance;1:useVBUSDischarge resistance		
0	Charge VBUSCharging function settings	R W	0
	0:disconnectVBUSCharging resistor;1:useVBUSCharging resistorVBUSCharge		

REG 8FH: Over temperature shutdown and other function settings

default value:01H

Bit	describe	R/W	default value
7-3	Reserved, cannot be changed	R W	0
2	AXP192Internal over-temperature shutdown function setting	R W	0
	0:Do not shut down;1:Shutdown		
1-0	Reserved, cannot be changed		

REG 90H: GPIO0 function setting

Bit	de	sscribe	R/W	default value
7-3	Reserved, cannot be changed		R W	0
2	GPIO0Pin function settingsBit 2	000:NMOSOpen-drain output	R W	1
		001:Universal input function		
		010:Low noiseLDO		
1	GPIO0Pin function settingsBit 1	011:reserve	R W	1
		100:ADCenter		
0	GPIO0Pin function settingsBit 0	101:Output Low	R W	1
		11X:Floating		

REG 91H: Output voltage setting when GPIO0 is in LDO mode

default value:A0H

Bit	describe	R/W	default value
7-4	GPIO0 LDOOutput voltage setting in mode	R W	1010
	0000: 1.8V;0001: 1.9V;0010: 2.0V;0011: 2.1V; 0100:		
	2.2V;0101: 2.3V;0110: 2.4V;0111: 2.5V; 1000: 2.6V;		
	1001: 2.7V;1010: 2.8V;1011: 2.9V; 1100: 3.0V;1101:		
	3.1V;1110: 3.2V;1111: 3.3V		
3-0	Reserved, cannot be changed		

REG 92H: GPIO1 function setting

default value:07H

Bit		describe	R/W	default value
7-3	Reserved, cannot be changed		R W	0
2	GPIO1Pin function settingsBit 2	000:NMOSOpen-drain output	R W	1
		001:Universal input function		
		010:PWM1Output, high level isVINT, cannot add		
1	GPIO1Pin function settingsBit 1	less than100KPull-down resistor	R W	1
		011:reserve		
0	GPIO1Pin function settingsBit 0	100:ADCenter	R W	1
		101:Output Low		
		11X:Floating		

REG 93H: GPIO2 function setting

Bit		describe	R/W	default value
7-3	Reserved, cannot be changed		R W	0
2	GPIO2Pin function settingsBit 2	000:NMOSOpen-drain output	R W	1
		001:Universal input function		
		010:PWM2Output, high level isVINT, cannot add		
1	GPIO2Pin function settingsBit 1	less than100KPull-down resistor	R W	1
		011:reserve		
0	GPIO2Pin function settingsBit 0	100:ADCenter	R W	1
		101:Output Low		
		11X:Floating		

REG 94H: GPIO[2:0] signal status setting and monitoring

default value:00H

Bit		describe	R/W	default value
7	Reserved, cannot be changed		R	
6	GPIO2Input Status	0:Input low level	R	
5	GPIO1Input Status	1:Input high level	R	
4	GPIO0Input Status		R	
3	Reserved, cannot be changed			
2	GPIO2Output Settings	0:Output low level, groundNMOSOpen 1:	R W	0
1	GPIO1Output Settings	Output floating, groundedNMOSclosure	R W	0
0	GPIO0Output Settings		R W	0

REG 95H: GPIO[4:3] pin function setting

default value:00H

Bit		describe	R/W	default value
7	GPIO[4:3]control:		R W	0
	1:GPIOFunction			
6-4	Reserved, cannot be changed		R W	0
3:2	GPIO4Pin function settingsBit 1-0	00:External charging control	R W	00
		01:NMOSOpen drain output port4		
		10:General purpose input port4		
		11:Undefined		
1:0	GPIO3Pin Function SettingBit1-0	00:External charging control	R W	00
		01:NMOSOpen drain output port3		
		10:General purpose input port3		
		11: ADCenter		

REG 96H: GPIO[4:3] signal status setting and monitoring

Bit	describe	R/W	default value
7-6	Reserved, cannot be changed	R	

5	GPIO4Input Status	0:Input low level	R	
4	GPIO3Input Status	1:Input high level	R	
3-2	Reserved, cannot be changed			
1	GPIO4Output Settings	0:Output low level,NMOSOpen 1:	R W	0
0	GPIO3Output Settings	Floating,NMOSclosure	R W	0

REG 97H: Pull-down setting when GPIO[2:0] is used as input

default value:00H

Bit	describe		R/W	default value
7-3	Reserved, cannot be changed			
2	GPIO2Pull-down resistor control when used as input	0:Turn off the pull-down resistor	R W	0
1	GPIO1Pull-down resistor control when used as input	1:Use a pull-down resistor	R W	0
0	GPIO0Pull-down resistor control when used as input		R W	0

REG 98H: PWM1 output frequency setting

default value:00H

Bit	describe	R/W	default value
7-0	PWM1Output frequency settingX	R W	00H

REG 99H: PWM1 duty cycle setting 1

default value:16H

Bit	describe	R/W	default value
7-0	PWM1Duty cycle settingY1	R W	16H

REG 9AH: PWM1 duty cycle setting 2

Bit	describe	R/W	default value
7-6	PWM1Duty cycle settingY2	R W	0BH

REG 9BH: PWM2 output frequency setting

default value:00H

Bit	describe	R/W	default value
7-0	PWM2Output frequency settingX	R W	00H

REG 9CH: PWM2 duty cycle setting 1

default value:16H

Bit	describe	R/W	default value
7-0	PWM2Duty cycle settingY1	R W	16H

REG 9DH: PWM2 duty cycle setting 2

default value:0BH

Bit	describe	R/W	default value
7-6	PWM2Duty cycle settingY2	R W	0BH

Note:PWMOutput frequency =2.25MHz / (X+1) / Y1

PWMOutput duty cycle =Y2 / Y1

REG 9EH: N_RSTO (GPIO5) pin function setting

Bit	describe	R/W	default value
7	N_RSTOPin function settings	R W	0
	0:N_RSTO,LDO1Condition monitoring;1:General purpose input and output ports5		
6	N_RSTOAs general purpose input and output port5set	R W	0
	up 0:NMOSOpen drain output; 1:Universal input function		
5	N_RSTOAs output port5Settings 0:	R W	1
	Output low level,NMOSOpen; 1:Floating,NMOSclosure		
4	N_RSTOAs input port5Status 0:	R	
	Input low level;1:Input high level		
3-0	Reserved, cannot be changed	R W	0000

REG 40H: IRQ enable 1

default value:8H

Bit	describe	R/W	default value
7	ACINOverpressureIRQEnable	R W	1
6	ACINAccessIRQEnable	R W	1
5	ACINRemoveIRQEnable	R W	0
4	VBUSOverpressureIRQEnable	R W	1
3	VBUSAccessIRQEnable	R W	1
2	VBUSRemoveIRQEnable	R W	0
1	VBUSAvailable but less thanVноLDIRQEnable	R W	0
0	Reserved, cannot be changed	R W	0

REG 41H: IRQ enable 2

default value:FFH

Bit	describe	R/W	default value
7	Battery accessIRQEnable	R W	1
6	Battery removalIRQEnable	R W	1
5	Battery activation modeIRQEnable	R W	1
4	Exit battery activation modeIRQEnable	R W	1
3	ChargingIRQEnable	R W	1
2	finished chargingIRQEnable	R W	1
1	Battery overheatingIRQEnable	R W	1
0	Battery low temperature IRQE nable	R W	1

REG 42H: IRQ enable 3

default value:3BH

Bit	describe	R/W	default value
7	AXP192Internal over temperatureIRQEnable	R W	0
6	The charging current is less than the set currentIRQEnable	R W	0
5	DC-DC1The output voltage is less than the set valueIRQEnable	R W	1
4	DC-DC2The output voltage is less than the set valueIRQEnable	R W	1
3	DC-DC3The output voltage is less than the set valueIRQEnable	R W	1
2	Reserved, cannot be changed		
1	Short keyIRQEnable	R W	1

0	Long pressIRQEnable	R W	1	l
---	---------------------	-----	---	---

REG 43H: IRQ enable 4

default value:C1H

Bit	describe	R/W	default value
7	N_OEPower onIRQEnable	R W	1
6	N_OEShutdownIRQEnable	R W	1
5	VBUSefficientIRQEnable	R W	0
4	VBUSinvalidIRQEnable	R W	0
3	VBUS Session A/B IRQEnable	R W	0
2	VBUS Session End IRQEnable	R W	0
1	Reserved, cannot be changed	R W	1
0	APSLow pressureIRQEnable	R W	1

REG 4AH: IRQ enable 5

default value:00H

Bit	describe	R/W	default value
7	Timer timed outIRQEnable	R W	0
6-3	Reserved, cannot be changed	R W	0
2	GPIO2Input edge triggerIRQEnable	R W	0
1	GPIO1Input edge triggerIRQEnable	R W	0
0	GPIO0Input edge triggerIRQEnable	R W	0

REG 44H: IRQ status 1

Bit	describe	R/W	default value
7	ACINOverpressureIRQstate	R W	0
6	ACINAccessIRQstate	R W	0
5	ACINRemoveIRQstate	R W	0
4	VBUSOverpressureIRQstate	R W	0
3	VBUSAccessIRQstate	R W	0
2	VBUSRemoveIRQstate	R W	0
1	VBUSAvailable but less thanVноLpIRQstate	R W	0
0	Reserved, cannot be changed	R W	0

REG 45H: IRQ status 2

default value:00H

Bit	describe	R/W	default value
7	Battery accessIRQstate	R W	0
6	Battery removalIRQstate	R W	0
5	Battery activation modeIRQstate	R W	0
4	Exit battery activation modeIRQstate	R W	0
3	ChargingIRQstate	R W	0
2	finished chargingIRQstate	R W	0
1	Battery overheatingIRQstate	R W	0
0	Battery low temperatureIRQstate	R W	0

REG 46H: IRQ status 3

default value:00H

Bit	describe	R/W	default value
7	AXP192Internal over temperatureIRQstate	R W	0
6	The charging current is less than the set currentIRQstate	R W	0
5	DC-DC1The output voltage is less than the set valueIRQstate	R W	0
4	DC-DC2The output voltage is less than the set valueIRQstate	R W	0
3	DC-DC3The output voltage is less than the set valueIRQstate	R W	0
2	Reserved, cannot be changed		
1	Short keyIRQstate	R W	0
0	Long pressIRQstate	R W	0

REG 47H: IRQ status 4

Bit	describe	R/W	default value
7	N_OEPower onIRQstate	R W	0
6	N_OEShutdownIRQstate	R W	0
5	VBUSefficientIRQstate	R W	0
4	VBUSinvalidIRQstate	R W	0
3	VBUS Session A/B IRQstate	R W	0
2	VBUS Session End IRQstate	R W	0

1	Reserved, cannot be changed	R W	0
0	APSLow pressureIRQstate,APSVoltage belowWarning Level 2Postposition, exceedingWarning Level 1	R W	0
	Later will be cleared0		

REG 4DH: IRQ state 5

default value:00H

Bit	describe	R/W	default value
7	Timer timed outIRQstate	R W	0
6-3	Reserved, cannot be changed	R W	0
2	GPIO2Input edge triggerIRQstate	R W	0
1	GPIO1Input edge triggerIRQstate	R W	0
0	GPIO0Input edge triggerIRQstate	R W	0

 $Note: All IRQ The\ corresponding\ bit\ of\ the\ status\ register\ is\ written 1 The\ corresponding\ status\ will\ be\ cleared.$

REG B8H: Coulomb meter control

Bit	describe	R/W	default value
7	Coulomb meter switch control	R W	0
6	Coulomb counter pause control, this bit is written1The coulomb counting will be suspended and this bit will self-clear	R W	0
5	Clear the coulomb counter control. This bit is written1The coulomb counter will be cleared and this bit will clear itself	R W	0
4-0	Reserved, cannot be changed	R W	0

10. Package

© 2011 X-Powers Limited - All rights reserved

X-Powers cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a X-Powers product. No circuit patent licenses, copyrights, or other intellectual property rights are implied. X-Powers reserves the right to make changes to the specifications and products at any time without notice.