EJERCICIO 05

Estudiante: Ricardo Fabian Espinosa Largo

Enunciado: Generar las funciones/métodos que devuelvan las suma, resta y multiplicación de un arreglo bidimensional cuadrado; mismo que se lo recibe como parámetro.

Análisis:

Entrada	Proceso	Salida
filas, columnas	matriz1, matriz2, suma, resta, multiplicacion, filas, columnas, esCuadrada	

En este ejercicio primero utilizo un ciclo para validar que la matriz sea cuadrada, luego usando subprocesos realizo los cálculos de suma, resta y multiplicación, enviando como parámetros la matriz vacía por referencia para que meta el resultado, las dos matrices con las que opera y numero de filas y columnas, además utilizo un subproceso adicional para presentar en consola las matrices.

```
Pseudocodigo:
//Autor: Ricardo Fabian Espinosa Largo
Algoritmo Ejercicio_05
       //Metodo principal
       Definir matriz1, matriz2, suma, resta, multiplicacion, filas, columnas Como Entero;
       Definir esCuadrada Como Logico;
       Repetir
               Escribir "Ingresa el valor de las filas de la matriz";
              Escribir "Ingresa el valor de las columnas de la matriz";
              Leer columnas;
              Si filas == columnas Entonces
                      esCuadrada = Verdadero;
              SiNo
                      esCuadrada = Falso;
                      Escribir "¡La matriz debe ser cuadrada!";
              Fin Si
       Hasta Que (esCuadrada == Verdadero)
       Dimension matriz1[filas, columnas];
       Dimension matriz2[filas, columnas];
       Dimension suma[filas, columnas];
       Dimension resta[filas, columnas];
       Dimension multiplicacion[filas, columnas];
       llenarMatriz(matriz1, filas, columnas);
       Escribir "Matriz 1:";
       presentarMatriz(matriz1, filas, columnas);
       llenarMatriz(matriz2, filas, columnas);
       Escribir "Matriz 2:";
       presentarMatriz(matriz2, filas, columnas);
       sumaMatriz(matriz1, matriz2, filas, columnas, suma);
       Escribir "Suma:";
       presentarMatriz(suma, filas, columnas);
       restaMatriz(matriz1, matriz2, filas, columnas, resta);
       Escribir "Resta:";
       presentarMatriz(resta, filas, columnas);
       multiplicaMatriz(matriz1, matriz2, filas, columnas, multiplicacion);
```

```
Escribir "Multiplicacion:";
       presentarMatriz(multiplicacion, filas, columnas);
FinAlgoritmo
SubProceso llenarMatriz (matriz, filas, columnas) //Metodo para llenar la matriz con numeros aleatorios
       Para i<-1 Hasta filas Con Paso 1 Hacer
               Para j<-1 Hasta columnas Con Paso 1 Hacer
                      matriz[i,j] = azar(89)+11; //Imprimi solo valores de dos cifras para tabular bonito la matriz
               Fin Para
       Fin Para
FinSubProceso
SubProceso presentar Matriz (matriz, filas, columnas) //Metodo para presentar la matriz
       Para i<-1 Hasta filas Con Paso 1 Hacer
               Para j<-1 Hasta columnas Con Paso 1 Hacer
                      Escribir matriz[i,j], " | " Sin Saltar;
               Fin Para
               Escribir " ";
       Fin Para
FinSubProceso
SubProceso sumaMatriz (matriz1, matriz2, filas, columnas, suma Por Referencia) //Metodo para sumar las
matrices
       Para i<-1 Hasta filas Con Paso 1 Hacer
               Para j<-1 Hasta columnas Con Paso 1 Hacer
                      suma[i,j] = matriz1[i,j] + matriz2[i,j];
               Fin Para
       Fin Para
FinSubProceso
SubProceso restaMatriz (matriz1, matriz2, filas, columnas, resta Por Referencia) //Metodo para restar las
matrices
       Para i<-1 Hasta filas Con Paso 1 Hacer
               Para j<-1 Hasta columnas Con Paso 1 Hacer
                      resta[i,j] = matriz1[i,j] - matriz2[i,j];
               Fin Para
       Fin Para
FinSubProceso
SubProceso multiplicaMatriz (matriz1, matriz2, filas, columnas, multiplicacion Por Referencia) //Metodo para
multiplicar las matrices
       Para i<-1 Hasta filas Con Paso 1 Hacer
               Para j<-1 Hasta columnas Con Paso 1 Hacer
                      Para k<-1 Hasta filas Con Paso 1 Hacer
                              multiplicacion[i, j] = multiplicacion[i, j] + matriz1[i, k] * matriz2[k, j]
                      Fin Para
               Fin Para
       Fin Para
FinSubProceso
```

Prueba de escritorio:

```
PSeInt - Ejecutando proceso EJERCICIO_05
*** Ejecución Iniciada. ***
Ingresa el valor de las filas de la matriz
> 3
Ingresa el valor de las columnas de la matriz
> 4
¡La matriz debe ser cuadrada!
Ingresa el valor de las filas de la matriz
> 3
Ingresa el valor de las columnas de la matriz
> 3
Matriz 1:
62 | 78 | 83 |
35 | 99 | 51 |
90 | 22 | 35 |
Matriz 2:
58 | 35 | 12 |
88 | 34 | 90 |
48 | 91 | 20 |
Suma:
120 | 113 | 95 |
123 | 133 | 141 |
138 | 113 | 55 |
Resta:
4 | 43 | 71 |
-53 | 65 | -39 |
42 | -69 | 15 |
Multiplicacion:
14444 | 12375 | 9424 |
13190 | 9232 | 10350 |
8836 | 7083 | 3760 |
*** Ejecución Finalizada. ***
```