Molecular Liquids

- Flexible molecules: polymers
- Polymers are molecular fragments linked together by chemical bonds
- Simplest polymers contain the same fragments (monomers)
- Proteins contain mixtures of monomers taken from the twenty naturally occurring amino acids

Polymers

- · History is typically divided into eras:
 - Stonge age
 - Bronze age
 - Iron age
 - In a similar way, in the 20^{th} century we entered the "Polymer age"
- Naturally occurring polymers (biopolymers) have been in used for centuries
 - e.g. natural rubber (from the "rubber-tree" plant)

1

Polymers

- In the 1800's polymers were synthesized, but misidentified as <u>small</u> colloids with "mysterious" non-covalent bonds
 - In reality, they are formed by very large molecules
- In 1920, Staudinger proposed the macromolecular hypothesis
 - Polymers are molecules made of covalently bonded monomers
 - Colloidal properties are attributed solely to the sizes of these large molecules

2

Polymers

- By 1929 several polymers were synthesized with well-defined structures
 - Thus, the Polymer Age was born
- Between 1930 and 1960, main concepts of polymers were established:
 - Macromolecular sizes (Kuhn)
 - Swelling of a single chain in a good solvent (Flory)
 - Thermodynamics of mixtures (Huggins and Flory)
 - Gelation (Flory and Stockmayer)
 - Rubber elasticity (Kuhn, James, and Guth)
 - Single-molecule models of polymer dynamics (Rouse and Zimm)

3

Polymers

- Between 1960 to 1980 main principles of modern polymer physics were developed:
 - The polymer chain and its confining tube (Edwards)
 - Semidilute solutions (des Cloizeaux and de Gennes)
 - Reptation theory of chain diffusion (de Gennes)
 - Doi-Edwards theory for the flow properties of polymer melts
- Details are still far from a full understanding, e.g.:
 - Polymer with associating groups bonded to their chains, polymer crystallization, liquid crystallline polymers, charged polymers
 - With their applications to DNA, RNA, proteins, polysaccharides

4

Polymers

- (poly)-(mer) means (many)-(parts)
 - Molecules consisting of many elementary units, called monomers
 - Monomers are structural repeating units of a polymer that are connected to each other by covalent bonds
 - Two general types of monomers:
 - Chemical monomer (the actual molecules)
 - Kuhn monomer (conceptually defined longer section of chain)
- Polymerization: chemical process by which monomers covalently bond to each other
 - # of monomers in a polymer is its

- (total) Molar mass $M = N M_{monomer}$

Polymers

- Homopolymers: Contain only one type of monomers
 - ... -A-A-A-A-A-A-...
- Heteropolymers: more types
 - Properties depend on fraction of each monomer type and sequence
 - Copolymers two different types of monomers
 - Terpolymers three types
 - Many biopolymers are heteropolymers
 - DNA four different types of monomers (nucleotides)
 - Proteins 20 different types (amino acids)

Polymers

Major factors determining properties:

- Degree of polymerization N
 - N < 20 typically called oligomer
 - Linear polymers 20 < N < billions (chromosome)
- Linkage
 - Boiling point and melting point increase with # of bonds

 Table 1.1
 Properties and applications of alkane hydrocarbons (following Sperling)

Number of C atoms	State at 25°C	Example	Uses
1–4	Simple gas	Propane	Gaseous fuels
5-15	Low-viscosity liquid	Gasoline	Liquid fuels and solvents
16-25	High-viscosity liquid	Motor oil	Oils and greases
20-50	Simple soft solid	Paraffin wax	Candles and coatings
>1000	Tough plastic solid	Polyethylene	Bottles and toys

Polymers

- Architecture
 - (a) linear, (b) ring, (c) star, (d) H, (e) comb, (f) ladder, (g) dendrimer, (h) randomly branched [used in bottles]

- Interconnected polymers = polymer network

Ideal Chains

- An idealized model for polymers (the SHO of polymer physics)
 - Does not consider interactions between monomers, except the covalent neighbors
- · "Real" chains:
 - Monomers interact with each other and with the solvent
 - Not entirely described by this model, although some may approximate it
 - Interactions could be effectively attractive or repulsive:
 - Dominant attractive (e.g. low T) \rightarrow collapsed conformation
 - Dominant repulsive (e.g. high T) → swollen polymer
 - At the θ-temperature, real chains are in conformations described by ideal chain models
 - θ-temperature : intermediate T at which attraction and repulsion are balanced

Conformations of Ideal Chains

· Simplest non-zero average is the mean-square

10

Conformations of Ideal Chains

- Flexible polymer with n+1 atoms
- Define r_i vector from atom A_{i-1} to A
- · With end-to-end vector

$$\vec{R}_n = \sum_{i=1}^n \vec{r}_i$$

 has average value (average is over different conformations of the same chain or different chains – ensemble average)

$$\langle \vec{R}_n \rangle = 0$$

 $= \left\langle \left(\sum_{i=1}^{n} \vec{r}_{i} \right) \cdot \left(\sum_{j=1}^{n} \vec{r}_{j} \right) \right\rangle$ $= \sum_{i=1}^{n} \sum_{j=1}^{n} \left\langle \vec{r}_{i} \cdot \vec{r}_{j} \right\rangle$

• If all bonds are the same length $I = |\mathbf{r}_i|$, use angle between bond vectors \mathbf{r}_i and \mathbf{r}_i

 $\langle R^2 \rangle \equiv \langle R_n^2 \rangle$

$$\vec{r}_i \cdot \vec{r}_i = l^2 \cos \theta_{ii}$$
 so that

end-to-end distance

$$\langle R^2 \rangle = l^2 \sum_{i=1}^n \sum_{j=1}^n \langle \cos \theta_{ij} \rangle$$

Conformations of Ideal Chains

- Special Case: Freely Jointed Chain Model
 - Constant bond length I
 - No correlations between directions of bond vectors

$$\langle \cos \theta_{ij} \rangle = 0 \text{ for } i \neq j$$

 $\langle \cos \theta_{ii} \rangle = 1 \text{ for } i = j$

- thus

$$\langle R^2 \rangle = l^2 \sum_{i=1}^n \sum_{j=1}^n \langle \cos \theta_{ij} \rangle$$

= $n l^2$

13

Conformations of Ideal Chains

 Typical polymer chains, however, have angle correlations – at least between nearest neighbors

 $\langle \cos \theta_{ii} \rangle \neq 0$

From restricted bond angles and steric hindrance

 But because in ideal chains there are no interactions between far neighbors, in general

$$\underset{_{|i-j|\to\infty}}{lim}\langle\cos\theta_{ij}\rangle\!=\!0$$

• Can show that for any bond vector *i*, (C' finite)

$$C'_{i} \equiv \sum_{i=1}^{n} \langle \cos \theta_{ij} \rangle$$

14

Conformations of Ideal Chains

• Typical polymer chain

$$\langle R^2 \rangle = l^2 \sum_{i=1}^n \sum_{j=1}^n \langle \cos \theta_{ij} \rangle = l^2 \sum_{i=1}^n C'_i = C_n n l^2$$

• Where C_n is Flory's characteristic ratio

$$C_n = \frac{1}{n} \sum_{i=1}^n C'_i$$

• The fact that <R2> is proportional to nl2 is the main property of *ideal chains*

15

Conformations of Ideal Chains

- Properties of C_n
 - An infinite chain has a value of $C_{\scriptscriptstyle \infty}$
 - Real chains with finite length have a lower value of C',
 - $C_n > 1$ for all polymers
 - Ideal chain models ignore steric hindrance for far away bonds, resulting in $C_{\rm n}$ saturating at a value of $C_{\rm \omega}$ for long chains

 $\langle R^2 \rangle \simeq C_{\infty} n \, l^2$ - Typical values of C_{\infty} are between 7 to 9

Equivalent Description

- Ideal polymers can be described in a unified way (independent of chemical structure)
- Define the equivalent freely jointed chain
 - Purpose is to describe with <R²> = number X length²
 Define N = freely-jointed effective bonds of length b
 - Where *b* is the effective bond length called **Kuhn**
- · Recipe:
 - Given R_{max} (max end-to-end), define $R_{max} = N b$
 - And $< R^2 > = N b^2$
 - But because

$$\langle R^2 \rangle = N b^2 = b R_{max} = C_{\infty} n l^2$$

e.g. $R_{max} = nl\cos(\theta/2)$ example of R_{max}

17

Equivalent Description

• Then, for the **Kuhn monomers**

$$N = \frac{R_{max}^2}{C_{max} n l^2}$$

with Kuhn lengths

$$b = \frac{\langle R^2 \rangle}{R} = \frac{C_{\infty} n l^2}{R}$$

then, the root-mean-square end-to-end distance

$$R_0 = \sqrt{\langle R^2 \rangle} = b N^{1/2}$$

valid for all flexible linear polymers in the ideal state with N>>1. All chemical specific characteristics are contained in the Kuhn length and monomer

Models of Ideal Chains

• Freely Rotating Chain Model

- All bond lengths and bond angles are fixed
- All torsion angles are equally probable

- In this case

$$C_{\infty} = \frac{1 + \cos \theta}{1 - \cos \theta}$$

- scale at which correlations decay

$$s_p = -\frac{1}{\ln(\cos\theta)}$$

notes

Models of Ideal Chains

• Worm-like Chain Model

- Special case of the freely rotating model for small values of the bond angle
- Good for stiff polymers, such as DNA

- In this case
$$C_{\infty} = \frac{1 + \cos \theta}{1 - \cos \theta} \simeq \frac{2 - (\theta^2/2)}{(\theta^2/2)} \simeq \frac{4}{\theta^2}$$
 s_{μ}

- With persistence length
$$l_p \equiv s_p l = l \frac{2}{\theta^2}$$

- With a Kuhn length
$$b = l \frac{C_{\infty}}{\cos(\theta/2)} \simeq l \frac{4}{\theta^2} = 2l_p$$