

SEGUNDO SEMESTRE LETIVO DE 2020

PROVA P1

Escola	EACH	TURMA		Nota do aluno na PROVA			
Curso	Sistemas de Informação			Nota do aluno na PROVA			
Disciplina	Arquitetura de Computador	Data da Prova	12/11/20				
Professor	Clodoaldo Aparecido de Moraes Lima						
Aluno							
No. USP							

1ª Questão) Assuma que os estágios individuais de um fluxo de dados tem as seguintes latências

IF	ID	EX	MEM	WB
250 ps	350 ps	150 ps	300 ps	200 ps

Assuma que instruções executadas pelo processador são quebradas como segue

formato R	beq	lw	SW
45%	20%	20%	15%

- a) Qual é o tempo de ciclo em processador com pipeline e sem pipeline?
- b) Qual a latência da instrução lw em processador com pipeline e sem pipeline?
- c) Se pudermos dividir um estágio do fluxo de dados no pipeline em dois novos estágios, cada com metade do estágio original, qual estágio você dividiria e qual o novo ciclo de clock do processador?
- 2ª Questão) Supondo que melhoramos uma máquina fazendo as instruções de *adição* serem executadas 2 vezes mais rápidas, e as instruções de *multiplicação* 4 vezes mais rápidas. Se o tempo de execução de certo *benchmark* antes do melhoramento é de 100s, sendo 20s em adição e 40s em multiplicação.
- a) calcular o speedup
- b) calcular o fator de melhoramento total
- 3ª Questão) Suponhamos que melhoramos uma máquina fazendo todas as instruções de ponto-flutuante serem executadas 5 vezes mais rápido.
- a) Se o tempo de execução de certo benchmark antes do melhoramento é de 10s, qual seria o speedup se metade dos 10s é despendida em instruções de ponto-flutuante?
- b) Estamos procurando um benchmark para testar a nova unidade de ponto-flutuante acima, e queremos que o benchmark todo mostre um speedup de 3. Um benchmark é executado em 100s, com o antigo hardware de ponto-flutuante. Quanto do tempo de execução as instruções de ponto-flutuante devem corresponder nesse programa para que possamos produzir o speedup desejado nesse benchmark?
- 4ª Questão) Apresente os valores dos sinais de controle *ALUSrc*, *ALUOp*, *MemRead*, *MemWrite*, *RegWrite*, *MemtoReg* e *RegDst*, na implementação da instrução *addi* no MIPS pipeline, indicando em que estágio cada um desses sinais são usados.

UNIVERSIDADE DE SÃO PAULO

SEGUNDO SEMESTRE LETIVO DE 2020

PROVA P1

5ª Questão) Por que a instrução addi não pode ser considerada uma instrução de formato R, com opcode igual 000000?

6ª Questão) Descreva detalhadamente o que cada código faz

```
a)
      .text
                                           . text
      main:
                                           .globl main
      li $v0, 5
                                           main:
                                           li $a0, 5
      syscall
      move $t0, $v0
                                           jal Funcao
      li $v0, 5
                                           move $s0, $v0
      syscall
                                                $v0, 10
      move $t1, $v0
                                           syscall
      bgt $t0, $t1, t0_bigger
                                           Funcao:
      move $t2, $t1
                                           sub $sp,$sp,4
                                           sw $ra, 0($sp)
      b endif
      t0_bigger:
                                           li $t1, 1
                                           slti $t0, $a0, 2
      move $t2, $t0
                                           beq $t0, $zero, Calcula
      endif:
                                           add $v0, $zero, $zero
      move $a0, $t2
                                           beq $a0, $zero, Sai
      li $v0, 1
                                           add $v0, $t1, $zero
      syscal1
      li $v0,
              10
                                           Sai:
      syscall
                                           lw $ra, 0($sp)
                                            add $sp, $sp, 4
                                            jr $ra
                                            Calcula:
                                            add $a1, $a0, $zero
                                            Loop:
                                            sub $a1, $a1, $t1
                                            jal Multiplica
                                            add $a0, $v0, $zero
                                           bne $a1, $t1, Loop
                                            j Sai
                                           Multiplica:
                                           mult $a0, $a1
                                           mflo $v0
                                           jr $ra
```

⁷ª Questão) Considere o seguinte loop em MIPS

UNIVERSIDADE DE SÃO PAULO

SEGUNDO SEMESTRE LETIVO DE 2020

PROVA P1

LOOP: slt \$t2, \$0, \$t1 bne \$t2, \$0, DONE subi \$t1, \$t1, 1 addi \$s2, \$s2, 2 i LOOP

DONE:

a)Assuma que o registrador \$t1 é inicializado com o valor 0. Qual é o valor no registrador \$S2 assumindo que \$S2 inicialmente possui valor zero.

b)Para o código escrito em assembly MIPS, escreva a rotina equivalente em C. Assuma que os registradores \$\$1, \$\$2, \$\$t1 e \$\$t2 são inteiros A, B, i e temp, respectivamente.

8ª Questão) Traduza o seguinte código em C para assembly MIPS. Use o número mínimo de instruções. Assuma que os valores de a, b, i e j estão armazenados nos registradores \$s0, \$s1, \$t0 e \$t1 respectivamente. Também, assuma que registrador \$s2 armazene o endereco base da vetor D

```
for (i=0; i<=a; i++)
for (j=0; j<=b; j++)
D[4*j] = i + j;
```

9ª Questão) Traduza o seguinte loop para C. Assuma que o inteiro i é armazenado no registrador \$t1, \$s2 armazena o inteiro chamado result, e \$s0 armazena o endereço base do inteiro MemArray

```
addi $t1, $0, $0
LOOP: Iw $s1, 0($s0)
add $s2, $s2, $s1
addi $s0, $s0, 4
addi $t1, $t1, 1
slti $t2, $t1, 100
beq $t2, $0, LOOP
```

10ª Questão) Os problemas neste exercício referem-se a seguinte sequência de instruções, e suponha que seja executada em um pipeline de 5 estágios:

```
add $5, $2, $1
or $3, $5, $3
Iw $3, 4 ($5)
Iw $2, 0 ($2)
sw $3, 0 ($5)
```

a)Se não houver encaminhamento ou detecção de conflito, insira nops para garantir a execução correta.

b)Use nops apenas quando um conflito não puder ser evitado alterando ou reorganizando essas instruções. Você pode assumir o registro \$7 pode ser usado para manter valores temporários em seu código modificado.

c)Se o processador tem encaminhamento, mas esquecemos de implementar a unidade de detecção de conflito, o que acontece quando este código é executado?

11ª Questão) Os problemas neste exercício referem-se a seguinte sequência de instruções, e suponha que seja executada em um pipeline de 5 estágios:

```
add $5, $2, $1
Iw $3, 4($5)
or $3, $5, $3
Iw $2, 0($2)
sw $3, 0($5)
```

a)Se não houver encaminhamento ou detecção de conflito, insira nops para garantir a execução correta.

b)Use nops apenas quando um conflito não puder ser evitado alterando ou reorganizando essas instruções. Você pode assumir o registro \$7 pode ser usado para manter valores temporários em seu código modificado.

UNIVERSIDADE DE SÃO PAULO

SEGUNDO SEMESTRE LETIVO DE 2020

PROVA P1

c)Se o processador tem encaminhamento, mas esquecemos de implementar a unidade de detecção de conflito, o que acontece quando este código é executado?

12ª Questão) Assuma que o seguinte código é executado sobre um processador pipeline com 5 estágio, com adiantamento e um preditor de desvio (o qual assume que todo desvio para trás é tomado)

Label1: sw \$2, 20 (\$4)

beq \$2, \$3, Label2 //tomado

add \$1, \$6, \$4 slti \$2, \$s1, 100

Label2: beq \$1, \$2, Label1//não tomado

and \$1, \$1, \$4 lw \$2, 0(\$s1)

a)Desenhe o diagrama de execução para este código, assumindo que não há slots de atraso e o que desvio executa no estágio MEM

b)Qual é o speed-up alcançado ao mover a execução de desvio para o estagio DI. Assuma que a comparação no estágio DI não afeta o tempo de ciclo de clock.