* Rak afa matrix
⇒ we define the nank of A ∈ R man
grank(A) = dim(R(A))
No.
Idimention of mangel
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
dimention of space spand by Columns of A
(nontorivial facts)
\Rightarrow $\operatorname{nank}(A) = \operatorname{nank}(A^{T})$
⇒ mak(A) is maximum number of independent Columns (on nows) of A. So nank (A) < min(n,m)
=> 9 ank (A) + chan A/(A) - an
Conservation of dimension Son degree of freedom Snak (A) + d. 1/(1)
enak (A) + dim N(A) = M
· nank (A) is dimension of set 'hit' by the mapping y=Ax.
· dm N(A) is domination of set of a comband to zero by y= Ax.

	* Application: fast matrix-voctor multiplication
	=> mood to Compute
	y=Ax, AERmxn — D
	A=BC, BERMXA, CERTXM
	y=B(x)
4.	=> Computing y using foollowing the the following no of operations:
g -	1) mn
	(m+m) re = mre + mre (D)
A A	=> Savings can be considerable if on K min (m, n)
	* Full nak matrices
nd	> We say A is fill mank if mank (A) = min (m,n)
	· Foor square motorice, full orank means non singular.
	· Foor skinny motorices (m>mi), full orank means Columns are independent
	· For fat matrices (m (m), full onak moons nows are independent.
	[Square] Skimmy [Fat]

* Change of Coordinates

>> Standard basis vectors in RM; (e,,e2, --. en)

Where, $Q_i = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$ ith row

So obviously we have

DC = X, e, + x2e2 + - - + Anen

Where a: one Called the Coordinates of a

(in the Stadard) basis)

=> If (t, t2, --- tn) is another basis for Rn
We have

 $\alpha = \widehat{\alpha}_1 t_1 + \widehat{\alpha}_2 t_2 + \dots + \widehat{\alpha}_n t_n$

Where \widetilde{x}_i are coordinate of of in the basis $(t_i, t_2 - - t_n)$

 \Rightarrow define $T = [t_1, t_2 - - t_n] lo, <math>x = T \propto$

 $\widehat{x} = T^{\dagger}x$

Tis inventible since

=7	1	trasforms	(Standard	bed's)	Courdinal d	P
	I into t - Coardindes.					,

$$T_{\widetilde{\mathfrak{G}}} = AT\widetilde{\mathfrak{T}}$$

$$\widetilde{\mathfrak{G}} = (T^{-1}AT)\widetilde{\mathfrak{T}}$$

$$\Rightarrow \|\alpha\| = \sqrt{\alpha_1^2 + \alpha_2^2 + \dots + \alpha_m^2} = \sqrt{\alpha^2} \alpha$$

$$0 \quad \|\alpha\| = 0 \Leftrightarrow \alpha = 0$$

$$\Rightarrow$$
 900t -mean -square (RMS) value of vactor $\alpha \in \mathbb{R}^n$
 \Rightarrow 9ms $(\alpha) = \left(\frac{1}{n} \sum_{i=1}^{n} \alpha_i^2\right)^{1/2} = \frac{\|\alpha\|}{m}$

$$\Rightarrow$$
 noom defines distance between vectors:
 $dist(x,y) = ||x-y||$

* Inner Product

* Co

 $\Rightarrow f$

=> (1

* Cauchy - Schwartz inequality and agle between vectors

=> for any $\alpha, y \in \mathbb{R}^{n}$, $|x^{T}y| \leq ||x|| ||y||$

=> (unsigned) angle between voctors in RM defined as

 $\Theta = \angle(\alpha, \gamma) = \cos^{-1} \frac{\alpha T \gamma}{\|\alpha\| \|\beta\|}$

thus, Scty = lally 1 Coso

- · octo >0 mease L(OL,y) is cente
- · xty 20 means 261, w is obtuse.

> 2 × 1 x 1 x 5 d of defines a half space with ordered normal victor y, and boundary passing through 0.

