TS Lista 3

Zad 1. Ramkowanie i kodowanie CRC

Ramkowanie jest realizowane poprzez metodę rozpychania bitów. Dane dzielone są na segmenty S_i po 8 bitów. Następnie dla każdego segmentu S_i obliczany jest jego kod CRC:

$$CRC = S_i - Q \cdot G$$
 , gdzie

$$G = x^3 + x + 1 \cong 1011$$

W ciele \mathbb{Z}_2 obliczenie reszty z dzielenia S_i przez G sprowadza się do cyklicznego szukania pierwszego od lewej bitu $\mathbf{1}$ w S_i i wykonywania operacji XOR, na |G| bitach S_i , do wyzerowania.

$$KOD(S_i) = S_i || CRC$$

Zakodowany segment jest opakowany obustronnie w ramki 0111110 . Jeżeli zakodowany segment zawiera ciąg bitów który wygląda jak ramka, dostawiane jest w ten ciąg 0. np. 0101111101 \longrightarrow 010111110101 . Zakodowany ciąg $KOD(S_i)$ jest sprawdzany poprzez ponowne policzenie reszty R' z dzielenia przez generator G. Jeżeli R'=0, znaczy że podczas transmisji nie doszło do zmiany w pakiecie. W przeciwnym wypadku pakiet wraz z jego ramkowaniem jest odrzucany.

Zad 2. Symulacja CSMA/CD

Symulacja jest realizowana poprzez ustawienie k stacji ST_i podłączonych do jednego kabla C, o długości L reprezentowanego przez ————. Prędkość symulacji można zmieniać przez parametr fps .

Każda stacja ST_i , umieszczona na pozycji x reprezentowana przez $\|ST_x\|$ wysyła bity * w losowym kierunku, z odstępem czasu 0.2 sekundy. Jeżeli przez L jednostek czasu w x nie było żadnego bitu, stacja ST_i transmituje. W przeciwnym wypadku czeka.

Kolizje są wykrywane przez wszystkie stacje jednocześnie (jest to możliwe przez pomiar napięcia). W wypadku kolizji stacje zapisują odpowiedni komunikat; czekają losową ilość czasu, nie mniej niż L/2 jednostek w celu

zapobiegnięcia ponownej kolizji.

Jeżeli stacja wykryła więcej niż 128 kolizji, zapisuje odpowiedni komunikat i przestaje wysyłać bity.

Zatem stacje wysyłają bity zgodnie ze schematem CSMA/CD:

