

MEDIDAS POSITIVAS

Alan Reyes-Figueroa Teoría de la Medida e Integración

(AULA 12) 27.FEBRERO.2023

Deseamos generalizar las propiedades que posee la medida de Lebesgue.

Definición

Sea X un conjunto no vacío, y \mathcal{A} una σ -álgebra en X. Una **medida (positiva)** en X es una función $\mu : \mathcal{A} \to [0, \infty)$ que satisface:

- i) $\mu(\varnothing) = 0$,
- ii) Para cualquier colección enumerable $\{A_k\}_{k\geq 1}\subseteq \mathcal{M}$, de conjuntos disjuntos a pares $(A_i\cap A_i=\varnothing,$ para $i\neq j)$, vale

$$\mu\Big(\bigcup_{k>1} A_k\Big) = \sum_{k>1} \mu(A_k).$$
 (σ -aditividad)

Obs! Cuando valen las condiciones (i) y (ii) anteriores, pero $\mathcal A$ no es una σ -álgebra, decimos que μ es una **pre-medida**.

Obs! Siempre se requiere verificar que $\bigcup_k A_k \in \mathcal{A}$. Cuando \mathcal{A} es una σ -álgebra, y los $A_k \in \mathcal{A}$ esto no es necesario, pero en el caso de pre-medidas, se requiere más cuidado: **Antes de calcular** $\mu(B)$, **se debe verificar que** $B \in \mathcal{A}$.

Definición

Sea \mathcal{A} una σ -álgebra en X. El par (X, \mathcal{A}) se llama un **espacio mesurable**. Cuando fijamos una medida $\mu: \mathcal{A} \to \mathbb{R}$, llamamos a la estructura (X, \mathcal{A}, μ) un **espacio de medida**.

Definición

Una **medida finita** (o **medida compacta**) es aquella donde $\mu(X) < \infty$.

Una **medida de probabilidad** es aquella donde $\mu(X) = 1$. En este caso, denotamos usualmente $\mu = \mathbb{P}$, y al espacio $(X, \mathcal{A}, \mathbb{P})$ le llamamos un **espacio de probabilidad**.

Una medida $\mu: \mathcal{A} \to \mathbb{R}$ es σ -finita si \mathcal{A} contiene alguna secuencia $\{A_k\}_{k\geq 1}$ tal que $A_k \nearrow X$ y $\mu(A_k) < \infty$ para todo $k \geq 1$.

Teorema (Propiedades de medidas positivas)

Sea (X, A, μ) un espacio de medida, y sean $A, B, A_k, B_k \in A$, para todo $k \ge 1$. Entonces:

- 1) (aditividad) $A \cap B = \emptyset \implies \mu(A \cup B) = \mu(A) + \mu(B)$.
- 2) (monotonía) $A \subseteq B \implies \mu(A) \le \mu(B)$.
- 3) (diferencia) $A \subseteq B$ y $\mu(B) < \infty \implies \mu(B A) = \mu(B) \mu(A)$.
- 4) (inclusión-exclusión) $\mu(A \cup B) = \mu(A) + \mu(B) \mu(A \cap B)$.
- 5) (sub-aditividad) Para todo $n \in \mathbb{N}$, $\mu\left(\bigcup_{k=1}^{n} A_{k}\right) \leq \sum_{k=1}^{n} \mu(A_{k})$.
- 6) (continuidad inferior) $A_k \nearrow A \implies \mu(A) = \lim_k \mu(A_k) = \sup_k \mu(A_k)$.
- 7) (continuidad superior) $B_k \searrow B$ y $\mu(B) < \infty \implies \mu(B) = \lim_k \mu(B_k) = \inf_k \mu(B_k)$.
- 8) (σ -sub-aditividad) $\mu\Big(\bigcup_{k\geq 1} A_k\Big) \leq \sum_{k\geq 1} \mu(A_k)$.

Prueba: (1) (aditividad) $A \cap B = \emptyset \implies \mu(A \cup B) = \mu(A) + \mu(B)$.

Hacemos $A_1 = A$, $A_2 = B$ y $A_k = \emptyset$, para $k \ge 3$. Entonces $\{A_k\}_k$ es una secuencia de conjuntos disjuntos a pares, cuya unión es $A \cup B$. Del axioma (ii), entonces

$$\mu(A \cup B) = \mu\left(\bigcup_{k>1} A_k\right) = \sum_{k>1} \mu(A_k) = \mu(A) + \mu(B).$$

(2) (monotonía) $A \subseteq B \implies \mu(A) \le \mu(B)$.

Como $A \subseteq B$, entonces $B = A \cup (B - A)$ es una unión disjunta. Por la propiedad (1), y como μ es una medida positiva, tenemos

$$\mu(B) = \mu(A) + \underbrace{\mu(B-A)}_{>o} \ge \mu(A).$$

(3) (diferencia)
$$A \subseteq B$$
 y $\mu(B) < \infty \implies \mu(B - A) = \mu(B) - \mu(A)$.

Como $A \subseteq B$ y $\mu(B) < \infty$, de la propiedad de monotonia (2), obtenemos que $\mu(A) < \infty$. Restando $\mu(A)$ en ambos lados de la ecuación $\mu(B) = \mu(A) + \mu(B - A)$, tenemos

$$\mu(B) - \mu(A) = \mu(B - A).$$

(4)] (inclusión-exclusión)
$$\mu(A \cup B) = \mu(A) + \mu(B) - \mu(A \cap B)$$
.

Para cualesquiera $A, B \in \mathcal{A}$, podemos escribir la unión $A \cup B$ como unión disjunta de tres conjuntos en \mathcal{A} :

$$A \cup B = [A - (A \cap B)] \cup [B - (A \cap B)] \cup [A \cap B].$$

De nuevo, la propiedad (1) garantiza que

$$\mu(A \cup B) = \mu(A - (A \cap B)) + \mu(B - (A \cap B)) + \mu(A \cap B)$$

= $(\mu(A) - \mu(A \cap B)) + (\mu(B) - \mu(A \cap B)) + \mu(A \cap B)$
= $\mu(A) + \mu(B) - \mu(A \cap B)$.

(5) (sub-aditividad) Para todo $n \in \mathbb{N}$, $\mu(\bigcup_{k=1}^{n} A_k) \leq \sum_{k=1}^{n} \mu(A_k)$.

Probamos por inducción sobre n. Usando el principio de inclusión-exclusión (4):

$$\mu(A_1 \cup A_2) = \mu(A_1) + \mu(A_2) - \underbrace{\mu(A_1 \cap A_2)}_{>0} \le \mu(A_1) + \mu(A_2).$$

Asumiendo que $\mu(A_1 \cup \ldots \cup A_n) \leq \sum_{k=1}^n \mu(A_k)$, de nuevo el principio de inclusión-exclusión

$$\mu(A_{1} \cup A_{2} \cup \ldots \cup A_{n+1}) = \mu\left(\bigcup_{k=1}^{n} A_{k}\right) + \mu(A_{n+1}) - \mu\left(\bigcup_{k=1}^{n} A_{k} \cap A_{n+1}\right)$$

$$\leq \mu\left(\bigcup_{k=1}^{n} A_{k}\right) + \mu(A_{n+1}) \leq \sum_{k=1}^{n} \mu(A_{k}) + \mu(A_{n+1}) = \sum_{k=1}^{n+1} \mu(A_{k}).$$

(6) (continuidad inferior) $A_k \nearrow A \implies \mu(A) = \lim_k \mu(A_k) = \sup_k \mu(A_k)$.

Sea $A = \bigcup_{k \ge 1} A_k$. Consideremos los conjuntos, definidos por

$$B_1 = A_1, \ B_2 = A_2 - A_1, \ B_3 = A_3 - (A_1 \cup A_2), \ \dots \ B_k = A_k - \bigcup_{i=1}^{R-1} A_i, \ \forall k \geq 2.$$

Observe que todos los $B_k \in \mathcal{A}$. Además, por inducción es simple verificar que

$$\bigcup_{k=1}^n B_k = A_n$$
, $\forall n \in \mathbb{N}$, de modo que $\bigcup_{k \geq 1} B_k = \bigcup_{k \geq 1} A_k = A$.

Por σ -aditividad, tenemos

$$\mu(A) = \sum_{k>1} \mu(B_k) = \lim_{n\to\infty} \sum_{k=1}^n \mu(B_k) = \lim_{n\to\infty} \mu\left(\bigcup_{k=1}^n B_k\right) = \lim_{n\to\infty} \mu(A_n).$$

(7) (continuidad superior) $B_k \searrow B$ y $\mu(B) < \infty \implies \mu(B) = \lim_k \mu(B_k) = \inf_k \mu(B_k)$.

Como $B_k \setminus_A B$, entonces $B_k \subseteq B_1$, para todo $k \ge 1$.

En particular, de la propiedad de monotonía (2), $\mu(B_1) < \infty$ implica que $\mu(B_1 - B_k) < \infty$, para todo $k \ge 1$.

Además,

$$B_k \searrow B \ \Rightarrow \ B_1 - B_k \nearrow B_1 - B,$$

y este último límite también tiene medida $\mu(B_1-B)<\infty$.

Por (6) y la propiedad de diferencias (3), tenemos que

$$\mu(B_1) - \lim_k \mu(B_k) = \lim_k \left(\mu(B_1) - \mu(B_k) \right) = \lim_k \mu(B_1 - B_k) = \mu(B_1 - B) = \mu(B_1) - \mu(B).$$

Esto muestra que $\lim_{k} \mu(B_k) = \mu(B)$.

(8) (σ -sub-aditividad) $\mu\Big(\bigcup_{k>1} A_k\Big) \leq \sum_{k>1} \mu(A_k)$.

De la sub-aditividad (5), tenemos $\mu\Big(\bigcup_{k=1}^n A_k\Big) \leq \sum_{k=1}^n \mu(A_k)$. Luego,

$$\mu\Big(\bigcup_{k=1}^{\infty} A_k\Big) = \mu\Big(\lim_{n} \bigcup_{k=1}^{n} A_k\Big) = \lim_{n} \mu\Big(\bigcup_{k=1}^{n} A_k\Big) \leq \lim_{n} \sum_{k=1}^{n} \mu(A_k) \leq \sum_{k=1}^{\infty} \mu(A_k). \square$$

