Stuff related to tensor products of modal algebras

Daniel Rogozin

1 Preliminaries

The basic definitions according to [1].

Definition 1. An n-modal algebra is an algebra $\mathcal{B} = \langle B, \vee, \neg, \bot, \diamondsuit_1, \dots, \diamondsuit_n \rangle$, where $\mathcal{B} = \langle B, \vee, \neg, \bot \rangle$ is a Boolean algebra and for each $i = 1, \dots, n \diamondsuit_i$ is an order-preserving unary function obeying:

- 1. $\Diamond_i p \vee \Diamond_i q = \Diamond_i (p \vee q)$
- $2. \diamondsuit_i \bot = \bot$

Definition 2. An n-normal modal logic is a set of formulas containing Boolean tautologies, formulas $\Diamond_i p \lor \Diamond_i q \leftrightarrow \Diamond_i (p \lor q)$ and $\Diamond_i \bot \leftrightarrow \bot$ for i = 1, ..., n, and is closed under MP, Sub, and the monotonicity rule: from $\varphi \to \psi$ infer $\Diamond_i \varphi \to \Diamond_i \psi$.

Definition 3.

- 1. A Kripke n-frame is a structure $\mathcal{F} = \langle W, R_1, \dots, R_n \rangle$, where $R_i \subseteq W \times W$ for each $i = 1, \dots, n$.
- 2. Let \mathcal{F} be a Kripke frame. A Kripke model over \mathcal{F} is a tuple $\mathcal{M} = \langle \mathcal{F}, \vartheta \rangle$, where $\vartheta : PV \to 2^W$ is a valuation. Modalised formulas have the following semantics:

$$\mathcal{M}, x \models \Diamond_i \varphi \Leftrightarrow \exists y \in R_i(x) \mathcal{M}, y \models \varphi.$$

A formula φ is true in \mathcal{M} iff $||\varphi||_{\mathcal{M}} = W$. φ is valid in $\mathcal{F} = \langle W, R_1, \dots, R_n \rangle$ iff $||\varphi||_{\mathcal{M}} = W$ for every model \mathcal{M} over \mathcal{F} .

- 3. The complex algebra of a Kripke frame $\mathcal{F} = \langle W, R_1, \dots, R_n \rangle$ is a complete modal algebra defined as $\mathcal{F}^+ = \langle \mathcal{P}(W), \cup, \neg, \varnothing, R_1^{-1}, \dots, R_n^{-1} \rangle$.
- 4. A general n-frame is a structure $\mathcal{F} = \langle W, R_1, \dots, R_n, \mathcal{A} \rangle$, where \mathcal{A} is a subalgebra of $\langle W, R_1, \dots, R_n \rangle^+$.

Definition 4. Let \mathcal{F} be an n-frame, then $Log(\mathcal{F}) = \{\varphi \mid \mathcal{F} \models \varphi\}$. If \mathbb{F} is a class of n-frames, then $Log(\mathbb{F}) = \bigcap_{\mathcal{F} \in \mathbb{F}} Log(\mathcal{F})$. We use the same notation for logics of general frames and modal algebras.

We discuss the background on products of modal logics and products of Kripke frames [8] [9].

Definition 5. Let $\mathcal{F}_1 = \langle W_1, R_1^1, \dots, R_1^n \rangle$ be an n-frame and $\mathcal{F}_2 = \langle W_2, R_2^1, \dots, R_2^m \rangle$. The product frame of \mathcal{F}_1 and \mathcal{F}_2 is an n + m-frame of the form

$$\mathcal{F}_1 \times \mathcal{F}_2 = \langle W_1 \times W_2, R_h^1, \dots, R_h^n, R_n^1, \dots, R_n^m \rangle$$

such that for all $u_1, u_2 \in W_1$ and for all $v_1, v_2 \in W_2$,

$$\langle u_1, v_1 \rangle R_h^i \langle u_2, v_2 \rangle$$
 iff $u_1 R_1^i u_2$ and $v_1 = v_2$ for $1 \le i \le n$.
 $\langle u_1, v_1 \rangle R_v^j \langle u_2, v_2 \rangle$ iff $u_1 = u_2$ and $u_1 R_2^j u_2$ for $1 \le j \le m$.

This operation on Kripke frames commutes with disjoint unions, p-morphic images, and generated subframes.

Let \mathcal{L}_1 be a normal *n*-modal logic and \mathcal{L}_2 a normal *m*-modal logic, the product of \mathcal{L}_1 and \mathcal{L}_2 is defined as

$$\mathcal{L}_1 \times \mathcal{L}_2 = \operatorname{Log}(\operatorname{Frames}(\mathcal{L}_1) \times \operatorname{Frames}(\mathcal{L}_2))$$

Proposition 1.

- 1. Let \mathcal{L}_1 , \mathcal{L}_2 be modal logics, then $\mathcal{L}_1 * \mathcal{L}_2 \subseteq \mathcal{L}_1 \times \mathcal{L}_2$.
- 2. Let \mathcal{L}_1 , \mathcal{L}_2 be Kripke complete modal logics, then $\mathcal{L}_1 \times \mathcal{L}_2 = \text{Log}(\text{Frames}_r(\mathcal{L}_1) \times \text{Frames}_r(\mathcal{L}_2))$, where $\text{Frames}_r(\mathcal{L}_i) = \{ \mathcal{F} \in \text{Frames}(\mathcal{L}_i) \mid \mathcal{F} \text{ is rooted } \} \text{ for } i = 1, 2.$

1.1 Axiomatising products

The following properties hold for a product frame having the form $\mathcal{F} = \langle W, R_1, \dots, R_n \rangle$:

- 1. (left commutativity) $\forall x, y, z \in W (xR_iy \& yR_iz \Rightarrow \exists u \in W (xR_iu \& uR_iz))$
- 2. (right commutativity) $\forall x, y, z \in W (xR_iy \& yR_iz \Rightarrow \exists u \in W (xR_iu \& uR_iz))$
- 3. (Confluence) $\forall x, y, z \in W(xR_iy \& xR_iz \Rightarrow \exists u \in W(yR_iu \& zR_iu))$

The properties are expressed as modal formulas as well:

- 1. $\operatorname{\mathbf{comm}}_{ij}^{\mathbf{l}} = \Diamond_{j} \Diamond_{i} p \to \Diamond_{i} \Diamond_{j} p$
- 2. $\operatorname{\mathbf{comm}}_{ij}^{\mathbf{r}} = \Diamond_i \Diamond_j p \to \Diamond_j \Diamond_i p$
- 3. $\mathbf{cr}_{ij} = \Diamond_i \Box_j p \to \Box_i \Diamond_j p$

Definition 6. Given unimodal modals logics $\mathcal{L}_1, \ldots, \mathcal{L}_n$, the commutator

$$[\mathcal{L}_1,\ldots,\mathcal{L}_n]$$

is the smallest n-modal logic containing \mathcal{L}_i and axioms $\mathbf{comm}_{ij}^{\mathbf{l}}$, $\mathbf{comm}_{ij}^{\mathbf{r}}$, and \mathbf{cr}_{ij} for $i, j \in \{1, \ldots, n\}$ with $i \neq j$.

Since $\mathbf{comm}_{ij}^{\mathbf{l}}$, $\mathbf{comm}_{ij}^{\mathbf{r}}$, and $\mathbf{comm}_{ij}^{\mathbf{r}}$ are Salqvist formulas, one has

Proposition 2. If $\mathcal{L}_1, \ldots, \mathcal{L}_n$ are canonical, then $[\mathcal{L}_1, \ldots, \mathcal{L}_n]$ is canonical, and thus, elementary and Kripke complete.

Moreover, one has

Proposition 3.
$$[\mathcal{L}_1, \ldots, \mathcal{L}_n] \subseteq \mathcal{L}_1 \times \cdots \times \mathcal{L}_n$$
.

If the converse inclusion holds, then $\mathcal{L}_1, \ldots, \mathcal{L}_n$ are *product-mathcing*, see [3]. The examples of product-matching logics are Horn axiomatisable ones [9]. In particular, the following equality holds for Kripke complete and Horn axiomatisable logics $\mathcal{L}_1, \mathcal{L}_2, \mathcal{L}_3$:

$$\mathcal{L}_1 \times \mathcal{L}_2 \times \mathcal{L}_3 = (\mathcal{L}_1 \times \mathcal{L}_2) \times \mathcal{L}_3 = \mathcal{L}_1 \times (\mathcal{L}_2 \times \mathcal{L}_3)$$

Generally, this is an open question whether the product of modal logics is associative.

2 Tensor products of modal algebras. The basic definitions and results

Definition 7. A commutative associative algebra

Definition 8. Tensor product of them

Definition 9. Tensor product of modal algebras

Definition 10. Tensor product of general frames

TODO: describe related underlying results

3 Note on incomplete modal logics

TODO: consider the system containing GL, McKinsey, seriality, and linearity.

4 Solution of Problem 1

5 Solution of Problem 4

Definition 11. A finitely axiomatisable normal modal logic

References

- [1] A. Chagrov and M. Zakharyaschev. Modal Logic. Oxford logic guides. Clarendon Press, 1997.
- [2] Dov Gabbay, Ilya Shapirovsky, and Valentin Shehtman. Products of modal logics and tensor products of modal algebras. *Journal of Applied Logic*, 12(4):570–583, 2014.
- [3] Dov M Gabbay and Valentin B Shehtman. Products of modal logics, part 1. Logic journal of IGPL, 6(1):73–146, 1998.
- [4] Robert Goldblatt. Logics of time and computation. csli, 1987.
- [5] Robert Goldblatt. Varieties of complex algebras. Annals of pure and applied logic, 44(3):173–242, 1989.
- [6] Christopher Hampson, Stanislav Kikot, Agi Kurucz, and Sérgio Marcelino. Non-finitely axiomatisable modal product logics with infinite canonical axiomatisations. Annals of Pure and Applied Logic, page 102786, 2020.
- [7] Robin Hirsch and Ian Hodkinson. Step by step-building representations in algebraic logic. *The Journal of Symbolic Logic*, 62(1):225–279, 1997.
- [8] Agi Kurucz. Combining modal logics. Handbook of modal logic, 3:869–924, 2007.
- [9] Agi Kurucz, Frank Wolter, Michael Zakharyaschev, and Dov M Gabbay. *Many-dimensional modal logics: Theory and applications*. Elsevier, 2003.