- 33. (Amended) A scanning exposure method in which a pattern area of a mask is transferred onto a sensitive plate through a projection system in a scanning manner, the method comprising the steps of:
- (a) irradiating the mask with a radiation in order to project an image portion of said pattern area of the mask onto the plate through said projection system;
- (b) synchronously scanning each of the mask and the plate relative to said projection system in a scanning direction at a predetermined velocity ratio by using a scanning mechanism for the scanning exposure, wherein a scanning velocity of the mask is different from a scanning velocity of the plate;
- (c) detecting a deviation between an ideal positional relation and an actual positional relation of the mask and the plate at a term of the scanning exposure; and
- (d) correcting a position of the mask determined by said scanning mechanism for decreasing said detected deviation by using a fine moving mechanism provided on said scanning mechanism at the term of the scanning exposure.

	1	36. (Amended) A scanning exposure method in which a						
1000 M	2	pattern of a mask is transferred onto a sensitive plate						
	3	through a projection system in a scanning manner, the method						
	4	comprising the steps of:						
	5	(a) irradiating the mask with a radiation in order to						
	6	project an image of said pattern of the mask onto the plate						
	7	through said projection system;						
	8	(b) synchronously seathning each of the mask and the						
	9	plate relative to said projection system by using a scanning						
	10	mechanism for a scanning exposure wherein a scanning						
	11	velocity of the mask is different from a scanning velocity						
	12	of the plate;						
	13	(c) detecting a positional deviation between the mask						
	14	and the plate at a term of the scanning exposure; and						
	15	(d) correcting a position of the mask determined by						
	16	said scanning mechanism for decreasing said detected						

deviation at the term of the scanning exposure.

112 /2 12/2

17

96. (Amended) A method for manufacturing a circuitry element with use of the method as defined in claim 68.

1/18 1/8

128. (Amended) A method for manufacturing a circuitry element with use of a scanning exposure apparatus made by using the method as defined in claim 97.

Please add the following claims:

Aula >

--129. An apparatus according to claim 39, wherein during movement of said first object by said first driving system, said second driving system rotates said first object about a rotation axis passing through a predetermined point in an illumination region of exposure beam irradiated to said first object.--

--130. An apparatus according to claim 58, wherein said first measuring device includes a first interferometer system, and said second measuring device includes a second interferometer system.--

[6

--131. An apparatus according to claim 130, wherein:
said first interferometer system has a measuring axis
for measuring the position of said first object in said
first direction, a measuring axis for measuring the position
of said first object in a direction which crosses said first
direction and a measuring axis for measuring information on
rotation of said first object, and

said second interferometer system has a measuring axis
for measuring the position of said second object in said
second direction, a measuring axis for measuring the
position of said second object in a direction which crosses
said second direction and a measuring axis for measuring
information on rotation of said second object.--

17	1
M	2
(\mathcal{H})	3
\ \\\	4
\mathcal{I}	
	1
	2
	1 2 3
K	4 5 6
	\ ⁵
Up n	Ye.
Ce h	V
	_1
	2
	3
L	_4

132.	An	apparatus	according	to	claim	<u>/37,</u>	further
comprising:							

a fourth driving system which moves said second object in a direction crossing said second direction .--

--133. An apparatus according to claim 70, wherein during movement of said first object by said first driving system, said second driving system rotates said first object about a rotation axis passing through a predetermined point in an illumination region of exposure beam irradiated to said first object --

55

-134. A method according to claim 68, wherein said

first driving system is capable of moving said first object

by a longer distance than that moved by said second driving

system.--

--135. A method according to claim 68, wherein during movement of said first object by said first driving system at least a portion of said second driving system moves in said first direction in order to move said first object.--

--136. A method according to claim 94, wherein said second driving system moves the first object based on the detected relative relationship.--

29

July Olar 1

6

7

5

6

1

2

3

4

5

--137. A method according to claim 87, wherein said positional information of the first object includes positional information of said first object in a direction which crosses said first direction, and

said positional information of the second object includes positional information of said second object in a direction which crosses said second direction.--

--138. A method according to claim 87, wherein
said positional information of the first object
includes information on rotation of the first object; and
said positional information of the second object
includes information on rotation of the second object.--

--139. A method according to claim 98, wherein during movement of said first object by said first driving system, said second driving system rotates said first object about a rotation axis passing through a predetermined point in an illumination region of exposure beam irradiated onto said first object.--

--140. A method according to claim 97, further comprising:

providing a fourth driving system which moves said second object in a direction which crosses said second direction.