Blatt 01 (unkorrigiert)

1.1 12 Bauteile, davon 2 defekt. Mit welcher Wahrscheinlichkeit ist/sind unter 4 ausgewählten ...

Alle möglichen Kombinationen:

$$\binom{12}{4} = 495$$

a) kein defektes Bauteil:

$$P(X) = {8 \choose 4} / {12 \choose 4} = {70 \over 495} pprox 14, 1\%$$

b) 1 defektes Bauteil:

$$P(X) = {8 \choose 3} * {4 \choose 1} / {12 \choose 4} = {56 * 6 \over 495} pprox 45,3\%$$

a) 2 defekte Bauteile:

$$P(X) = {8 \choose 2} * {4 \choose 2} / {12 \choose 4} = {28*6 \over 495} pprox 33,9\%$$

1.2 Wie zuverlässig ist der Test?

	Test ok	Test fail	
normgerecht	0,98	0,02	0,96
kaputt	0,05	0,95	0,04

$$P(X) = rac{0,96*0,98}{0,96*0,98+0,04*0,05} pprox 99,79\%$$

1.3 Mit welcher Wahrscheinlichkeit wird die Sendung zurückgeschickt?

Sendung wird zurückgeschickt.

Gegenereignis zu, "wenn 0 oder 1 Diskette defekt"

$$P(X) = 1 - rac{inom{90}{5} + inom{90}{4} * inom{10}{1}}{inom{100}{5}} pprox 7,686\%$$

1.4

	Prog 1	Prog 2	
Inf	20	35	55
CV	40	5	45
	60	40	

a) X: Prog 1 unter den CVIern

$$P(X) = 40/45 = 88,9\%$$

b) X: Prog 1 unter den Inf

$$P(X) = 20/55 = 36,4\%$$

a) X: Inf unter den Prog2-Usern

$$P(X) = 35/40 = 87,5\%$$

1.5 Mit welcher Wahrscheinlichkeit wird die Serie nicht ausgeliefert?

100 Drucker, davon 5 defekt. Zum Test werden 5 gezogen. Wenn im Test n > 0 defekte -> Sendung wird nicht ausgeliefert.

Gegenereignis zu, "wenn 0 alle heil"

$$P(X) = 1 - rac{inom{95}{5}}{inom{100}{5}} pprox 23,04\%$$