Teorema de Hurwitz

Javier López-Contreras

16 de juliol de 2022

Objectiu

L'objectiu de la presentació és demostrar el següent teorema.

Teorema (Hurwitz)

Sigui M una S.R. compacta de gènere g ≥ 2 , aleshores Aut(M) és finit i $|{\it Aut}({\it M})| \leq 84({\it g}-1)$

Comentari

Els casos petits els tenim controlats

- 1. g = 0, holomorfismes $f : \mathbb{P}_{\mathbb{C}} \mapsto \mathbb{P}_{\mathbb{C}}$. Möbius transformations.
- 2. g = 1, holomorfismes $f : \mathbb{C} \to \mathbb{C}$ que deixen invariant el reticle Λ . $\Longrightarrow F(z) = az + b$ amb $a\Lambda = \Lambda$, |a| = 1.

Esquema de la demostració

- Aut(M) és finit.
 - ► Teorema de gaps de Weierstrass.
 - Estudi dels punts de Weierstrass.
- $|Aut(M)| \le 84(g-1)$.
 - Estructura complexa a M/Aut(M).
 - ▶ Identitat de Riemann-Hurwitz al recobriment ramificat definit pel pas a quocient $\pi: M \mapsto M/Aut(M)$.

Recordatori Riemann-Hurwitz

Lema (Identitat de Riemann-Hurwitz)

Siguin R i T dues S.R. de gèneres g i γ respectivament. Sigui $f: R \mapsto T$ un holomorfisme no constant. Sigui N el grau del recobriment ramificat definit per f i

$$B = \sum_{P \in R} b_f(P),$$

on $b_f(P)$ és el número de ramificació de P a f. Aleshores,

$$g-2 = N(\gamma - 2) + 1 + \frac{B}{2}$$

Demostració feta a classe, aixecant una triangulació adient.

Teorema Gaps de Weierstrass

Teorema (Teorema Gaps de Weierstrass)

Sigui M una S.R. compacta de gènere g>0 i $P\in M$ un punt arbitrari. Aleshores, existeixen exactament g enters

$$1 = n_1 < n_2 < \cdots < n_g < 2g$$

tals que no hi ha cap funció f holomorfa a $M \setminus \{P\}$ i amb un pol d'ordre n_i a P.

• Non-gap si existeix $f \in L(D_n) \setminus L(D_{n-1})$ amb $D_n = nP$.

Per Riemann-Roch

- $I(D_n) I(K D_n) = n + 1 g$
- Si prenem n = 2g 1 > 2g 2, aleshores $I(D_n) = n + 1 g = g$
- $I(D_i) I(D_{i-1}) \le 1$. (RR o podries construir ϕ holomorfa)
- Els subespais vectorials $L(D_i) \setminus L(D_{i-1}) \cup \{0\} \in L(D_n)$ sempre tenen dimensió 0 o 1.
- Hi ha exactament g gaps entre [1, 2g 1].

Non-gaps

Siguin $1 < \alpha_1 < \dots < \alpha_g = 2g$ els non-gaps.

Proposició (Propietats dels Non-Gaps)

- 1. Formen un semi-grup additiu.
- 2. $\alpha_j + \alpha_{g-j} \geq 2g$. És igualtat per tot j sii $\alpha_1 = 2$.
- 3. $\sum_{i=1}^{g-1} \alpha_i \geq g(g-1)$ amb igualtat sii $\alpha_1 = 2$.
- 4. $\alpha_1 = 2 \implies \alpha_i = 2i$ i només passa a les M hiperel·líptiques.

Si
$$\alpha_j + \alpha_{g-j} < 2g \implies \alpha_k + \alpha_{g-j} < 2g \ \forall k \leq j$$
 i per ser semigrup, hi hauria
$$(g-j)_{i < \sigma-j} + (j)_{\sigma-i < j < \sigma} + (1)_{\sigma} = g+1$$

non-gaps $\leq 2g$, contradicció.

Definició (Punt de Weierstrass)

Un punt s'anomena de Weierstrass si els seus gaps no estan exactament a $\{1, 2, \cdots, g\}$, es a dir $\alpha_1 \neq g+1$ Al conjunt de punts de Weierstrass de M el denotem com W(M).

Proposició

- 1. W(M) és discret.
- 2. $|W(M)| \ge 2g + 2$ amb igualtat només a les M hiperel·líptiques.

Dues possibles demostracions

- Estudiant l'existència de diferencials holomorfs adequats.
 (Farkas-Kra)
- Estudiants els punts d'inflexió d'un sistema lineal, el generat pel divisor canònic. (Miranda)

Existència de diferencials

Proposició

Un punt P d'una S.R. M compacta de gènere $g \geq 2$ és de Weierstrass si i només si existeix una 1-forma diferencial holomorfa amb un zero d'ordre $\geq \dim \Omega(M) = g$ at P.

És equivalent a $I(gP) \ge 1$, que implica que hi ha un non-gap a [1,g], pel que P es Weierstrass.

Sistemes Lineals

Definició (Sistema lineal Complet d'un divisor)

Sigui $D \in Div(X)$, definim el seu sistema lineal complet com

$$|\mathit{D}| = \{\mathit{E} \in \mathit{Div}(\mathit{X}) \mid \mathit{E} \sim \mathit{D} \; \mathsf{and} \; \mathit{E} \geq 0\}$$

.

Un sistema lineal serà un subespai linear (projectiu) de |D|.

Proposició

Si M és una S.R. compacta, l'aplicació S és bijectiva.

$$S:\mathbb{P}(L(D))\mapsto |D|$$

$$[f] \mapsto (f) - D$$

Tenim $(f) = (g) \implies (f/g) = 0 \implies f/g \in H(M)$ i com M és compacta $\implies f = cg$

Proposició

- 1. Un automorfisme deixa W(M) invariant
- 2. Hi ha un morfisme de grups natural ρ : $Aut(M) \mapsto Perm(W(M))$.
- 3. $Ker(\rho)$ és finit.

Prenem $Id \neq T \in Aut(M)$.

- Fix(T) és discret pel Principi d'Identitat
- T pot tenir com a màxim 2g + 2 punts fixos
 - ▶ Prenem P no fix i $f \in K(M)$ tal que el seu divisor polar sigui -rP amb r < g + 1.
 - ▶ $h = f f \circ T \in K(M)$ té divisor polar $-rP r(T^{-1}(P)) \implies$ té com a màxim $2r \le 2g + 2$ zeros.
 - ▶ Tots els punts fixos de *T* són zeros d'*h*.

Si M no és hiperel·líptica, ρ és injectiva.

Si M és hiperel·líptica $Ker(\rho) = \{Id, J\}$, J la involució hiperel·líptica.

Corol·lari

Aut(M) és finit.

Pel primer teorema d'isomorfisme

$$Aut(M)/Ker(\rho) \simeq Im(\rho) \subseteq Perm(W(M))$$

Estructura complexa de M/H

Proposició

Sigui $H \subseteq Aut(M)$ un subgrup finit. Per tot $P \in M$, $H_P = \{h \in H \mid h(P) = P\}$ és cíclic.

En una carta, h_1, h_2, \cdots compleixen $h_i(0) = 0$ i formen un grup \Longrightarrow $\exists f$ conformal que envia un obert a D^2 tal que $f^{-1}h_i f$ és una rotació.

Escollim la d'angle mínim i serà generadora.

Corol·lari

M/H té una estructura de S.R. compatible amb $\pi: M \mapsto M/H$.

- Donat un $P \in M/H$, sigui $h: M \mapsto M$ l'automorfisme tal que $H_P = \langle h \rangle$.
- Coordenades locals a P sobre un obert U fix per h.
- Si la coordenada local a P és z, $z^{|H_P|}$ és coordenada local a P.

Propietats del revestiment $\pi: M \mapsto M/H$

Proposició

- 1. És de grau |H|
- 2. El número de ramificació d'un P és $b_{\pi}(P) = |H_P| 1$.

Teorema de Automorfismes de Hurwitz

Teorema (Hurwitz)

Sigui M una S.R. compacta de gènere $g \ge 2$, aleshores Aut(M) = G és finit i $|Aut(M)| \le 84(g-1)$

- Denotem $v_P = |G \cdot P|$
- Trobem $B = \sum b_{\pi}(P) = \sum (|G_P| 1) = N \sum \left(1 \frac{1}{|v_P|}\right)$.
- La identitat de Riemann-Hurwitz

$$2g - 2 = N(2\gamma - 2) + N\sum \left(1 - \frac{1}{|v_P|}\right)$$

• Observem $2 \le |v_P| \implies 1/2 \le (1 - 1/v_P) \le 1$

Casos I

Case $I: \gamma \geq 2$.

In this case we obtain from (1.3.1) that

$$2g-2 \ge 2N$$
 or $N \le g-1$.

Case II: $\gamma = 1$.

In this case (1.3.1) becomes

$$2g - 2 = N \sum_{j=1}^{r} \left(1 - \frac{1}{v_j} \right). \tag{1.3.2}$$

If r = 0, then also g = 1 (we assumed g > 1). This is the basic fact (the left hand side of (1.3.1) is ≥ 2) that will be used repeatedly. Thus (1.3.2) implies

$$2g - 2 \ge \frac{1}{2}N$$
 or $N \le 4(g - 1)$.

Case III: $\gamma = 0$.

We rewrite (1.3.1) as

$$2(g-1) = N\left(\sum_{j=1}^{r} \left(1 - \frac{1}{v_j}\right) - 2\right),\tag{1.3.3}$$

and conclude that

$$r \ge 3$$

(since 2(g-1) > 0, N > 1, and $(1 - 1/v_i) < 1$ for each j).

Casos II

If $r \ge 5$, then (1.3.3) gives

$$2(g-1) \ge \frac{1}{2}N$$
 or $N \le 4(g-1)$.

If r = 4, then it cannot be that all the v_j are equal to 2. Thus, at least one is ≥ 3 , and (1.3.3) gives

$$2(g-1) \ge N(\frac{3}{2} + \frac{2}{3} - 2)$$
 or $N \le 12(g-1)$.

It remains to consider the case r = 3. Without loss of generality we assume

$$2 \le v_1 \le v_2 \le v_3. \tag{1.3.4}$$

Clearly $v_3 > 3$ (otherwise the right hand side of (1.3.3) is negative). Furthermore, $v_2 \ge 3$. If $v_3 \ge 7$, then (1.3.3) yields

$$2(g-1) \ge N(\frac{1}{2} + \frac{2}{3} + \frac{6}{7} - 2)$$
 or $N \le 84(g-1)$.

If $v_3 = 6$ and $v_1 = 2$, then $v_2 \ge 4$ and

$$N \le 24(g-1).$$

If $v_3 = 6$ and $v_1 \ge 3$ (recall (1.3.4)), then

$$N \le 12(g-1).$$

If $v_3 = 5$ and $v_1 = 2$, then $v_2 \ge 4$ and

$$N \le 40(q-1)$$
.

If $v_3 = 5$ and $v_1 \ge 3$, then

$$N \leq 15(q-1)$$
.

If $v_3 = 4$, then $v_1 \ge 3$ and

$$N \le 24(g-1).$$

This exhaustion (of cases) completes the proof.

S'assoleix?

genus g	Largest possible Aut(X)	<i>X</i> ₀	Aut(X ₀)
2	48	Bolza curve	GL ₂ (3)
3	168 (Hurwitz bound)	Klein quartic	PSL ₂ (7)
4	120	Bring curve	S ₅
5	192		
6	150		
7	504 (Hurwitz bound)	Macbeath curve	PSL ₂ (8)
8	336		
9	320		
10	432		
11	240		

Definició (Quàrtica de Klein)

Els punts $(x, y, z) \in \mathbb{P}^2$ tal que

$$x^3y + y^3z + z^3x = 0$$