1.4 HW3

Question 26

Let f be a simple function, taking its distinct values on disjoint sets E_1, \ldots, E_N . Show that f is measurable if and only if E_1, \ldots, E_N are measurable.

Proof. WOLG, let f take value a_n on E_n and

$$a_1 < a_2 < \cdots < a_N$$

If E_1, \ldots, E_N are all measurable, we see that for each $a \in \mathbb{R}$

$$\{f \geq a\} = \{f \geq a_n\} = E_n \sqcup \cdots \sqcup E_N \text{ is measurable}$$

where n is the smallest integer such that $a_n \ge a$. We have prove the if part. To see the only if part hold true, observe that for all $n \in \{1, \ldots, N-1\}$

$$E_n = \{f \ge a_n\} \setminus \{f \ge a_{n+1}\}$$
 is measurable

and

$$E_N = \{ f \ge a_N \}$$
 is measurable

Question 27

Let f be defined and measurable on \mathbb{R}^n . If T is a nonsingular linear transformation of \mathbb{R}^n , show that $f(T\mathbf{x})$ is measurable. (If $E_1 = {\mathbf{x} : f(\mathbf{x}) > a}$, and $E_2 = {\mathbf{x} : f(T\mathbf{x}) > a}$, show that $E_2 = T^{-1}E_1$)

Proof. Fix $a \in \mathbb{R}$. We are required to show

$$\{\mathbf{x}: f(T\mathbf{x}) > a\}$$
 is measurable

Because f is measurable, we know $\{\mathbf{x}: f(\mathbf{x}) > a\}$ is measurable. The proof then follows from noting

$$\{\mathbf{x}: f(T\mathbf{x}) > a\} = T^{-1}(\{\mathbf{x}: f(\mathbf{x}) > a\})$$

and the fact that $T^{-1}: \mathbb{R}^n \to \mathbb{R}^n$ as a linear transformation preserve measurability.

Question 28

Give an example to show that $\varphi \circ f$ may not be measurable if $\varphi, f : \mathbb{R} \to \mathbb{R}$ are measurable and finite. (Let F be the Cantor-Lebesgue function and let f be its inverse suitably defined. Let φ be the characteristic function of a set of measure zero whose image under F is not measurable.) Show that the same may be true even if f is continuous. (Let g(x) = x + F(x) and consider $f = g^{-1}$)

Proof. Let $F:[0,1] \to [0,1]$ be the Cantor-Lebesgue function, $\mathcal{C} \subseteq [0,1]$ be the classical ternary Cantor set. Note that $F(\mathcal{C}) = [0,1]$. By axiom of choice, we can let \mathcal{C}' be some subset of \mathcal{C} such that $F|_{\mathcal{C}'}: \mathcal{C}' \to [0,1]$ is a bijection. We can now define $f: \mathbb{R} \to \mathbb{R}$ by

$$f(x) \triangleq \begin{cases} (F|_{\mathcal{C}'})^{-1}(x) & \text{if } x \in [0, 1] \\ x & \text{if } x \notin [0, 1] \end{cases}$$

 $f: \mathbb{R} \to \mathbb{R}$ is measurable because f is increasing. Let V be a non-measurable set contained by [0,1], and let $E \triangleq f(V)$. Define $\varphi: \mathbb{R} \to \mathbb{R}$ by

$$\varphi(x) \triangleq \begin{cases} 1 & \text{if } x \in E \\ 0 & \text{otherwise} \end{cases}$$

Note that E is measurable because

$$V \subseteq [0,1] \implies E = f(V) = (F|_{\mathcal{C}'})^{-1}(V) \subseteq \mathcal{C}'$$

It then follows that $\varphi: \mathbb{R} \to \mathbb{R}$ is measurable. Lastly, to see $\varphi \circ f: \mathbb{R} \to \mathbb{R}$ is not measurable, observe that

$$(\varphi \circ f)^{-1}(\{1\}) = f^{-1}(E) = V$$
 is not measurable

where the last inequality follows since $f|_V:V\to E$ is a bijection.

For the second part. Define $g:[0,1] \to [0,2]$ by

$$g(x) \triangleq x + F(x)$$

Because $F:[0,1] \to [0,1]$ is increasing, we may deduce

$$x < y \text{ and } x, y \in [0, 1] \implies x + F(x) < y + F(y)$$

This implies g is strictly increasing. Note that g is continuous because g is the addition of two continuous function, and note that g(0) = 0, g(1) = 2. This allow us to deduce $g:[0,1] \to [0,2]$ is a bijection. Now, observe that $[0,1] \setminus \mathcal{C}$ is a countable union of disjoint

open interval. For each connected components $I \subseteq [0,1] \setminus \mathcal{C}$, because F maps I to some constant, we see g(I) is also an interval with the same length |g(I)| = I. Then from $|[0,1] \setminus \mathcal{C}| = 1$, we can deduce $|g([0,1] \setminus \mathcal{C})| = 1$, which implies $g(\mathcal{C}) = 1$. We then can let V be some non-measurable set contained by $g(\mathcal{C})$. Define $h : \mathbb{R} \to \mathbb{R}$ by

$$h(x) \triangleq \begin{cases} g^{-1}(x) & \text{if } x \in [0, 2] \\ \frac{x}{2} & \text{if } x \notin [0, 2] \end{cases}$$

 $h: \mathbb{R} \to \mathbb{R}$ is measurable because it is increasing. Let $E \triangleq h(V)$. We see $E \subseteq \mathcal{C}$, which implies E is measurable, so when we define $\varphi: \mathbb{R} \to \mathbb{R}$ by

$$\varphi(x) \triangleq \begin{cases} 1 & \text{if } x \in E \\ 0 & \text{if } x \notin E \end{cases}$$

we see $\varphi: \mathbb{R} \to \mathbb{R}$ is also measurable. Lastly, to see $\varphi \circ h: \mathbb{R} \to \mathbb{R}$ is not measurable, observe

$$(\varphi \circ h)^{-1}(\{1\}) = h^{-1}(E) = V$$

Question 29

- (a) Show that the limit of a decreasing (increasing) sequence of functions upper (lower) semicontinuous at \mathbf{x}_0 is upper (lower) semicontinuous at \mathbf{x}_0 . In particular, the limit of a decreasing (increasing) sequence of functions continuous at \mathbf{x}_0 is upper (lower) semicontinuous at \mathbf{x}_0 .
- (b) Let f be upper semicontinuous and less than ∞ on [a, b]. Show that there exists continuous f_k on [a, b] such that $f_k \searrow f$. (First show that there exist continuous f_k on [a, b] such that $f_k \searrow f$)

Proof. (a) Let $f_n \searrow f$ and f_n be upper semicontinuous at \mathbf{x}_0 . Fix ϵ . Because $f_n(\mathbf{x}_0) \searrow f(\mathbf{x}_0)$, we know there exists some N such that $f_N(\mathbf{x}_0) < f(\mathbf{x}_0) + \epsilon$. Because $f \leq f_N$ everywhere and f_N is upper semicontinuous at \mathbf{x}_0 , we have

$$\limsup_{\mathbf{x} \to \mathbf{x}_0} f(\mathbf{x}) \le \limsup_{\mathbf{x} \to \mathbf{x}_0} f_N(\mathbf{x}) \le f_N(\mathbf{x}_0) < f(\mathbf{x}_0) + \epsilon$$

Because ϵ can be arbitrary small, we have shown

$$\limsup_{\mathbf{x}\to\mathbf{x}_0} f(\mathbf{x}) \le f(\mathbf{x}_0)$$

i.e., f is also upper semicontinuous. The second part of question (a) ask us to prove the same thing with stronger hypothesis that f_n are continuous at \mathbf{x}_0 , which implies f_n are upper semicontinuous at \mathbf{x}_0 , so it immediately follows from what we have proved.

(b) Define $f_n: [a,b] \to [-\infty,\infty]$ by

$$f_n(x) \triangleq \sup_{p \in [a,b]} \left(f(p) - n |x - p| \right)$$

Fix n. We first show that $f_n: [a,b] \to [-\infty,\infty]$ is continuous. Fix ϵ , and let $x,y \in [a,b]$ satisfy $|x-y| < \frac{\epsilon}{n}$. For all $p \in [a,b]$, we may use reverse triangle inequality to show that

$$\left| \left(f(p) - n |x - p| \right) - \left(f(p) - n |y - p| \right) \right| = n \left| \left(|x - p| - |y - p| \right) \right| \le n |x - y| < \epsilon$$

This implies

$$f(p) - n|x - p| + \epsilon > f(p) - n|y - p| > f(p) - n|x - p| - \epsilon$$

Taking supremum on both side, we have

$$f_n(x) + \epsilon = \sup_{p \in [a,b]} \left(f(p) - n |x - p| \right) + \epsilon \ge \sup_{p \in [a,b]} \left(f(p) - n |y - p| \right) = f_n(y)$$

In summary,

$$f_n(x) + \epsilon \ge f_n(y) \ge f_n(x) - \epsilon$$

Because ϵ is arbitrary, we have shown f_n is (uniform) continuous. We now show f_n is decreasing. Fix $x \in [a, b]$ and n < m. Observe that for all $p \in [a, b]$

$$f(p) - m |x - p| < f(p) - n |x - p|$$

Taking supremum on both side, we have

$$f_m(x) = \sup_{p \in [a,b]} \left(f(p) - m |x - p| \right) \le \sup_{p \in [a,b]} \left(f(p) - n |x - p| \right) = f_n(x)$$

Because x is arbitrary, this implies f_n is indeed decreasing. Lastly, we show $f_n \to f$. Fix $x_0 \in [a, b]$ and ϵ . Because f is finite and upper semicontinuous on [a, b], we may let $M \in \mathbb{R}$ be the upper bound of f on [a, b] and let δ satisfy

$$\sup_{[x_0 - \delta, x_0 + \delta]} f(x) \le f(x_0) + \epsilon$$

Let $N > \frac{M - (f(x_0) + \epsilon)}{\delta}$. If $p \in [x_0 - \delta, x_0 + \delta]$, then $f(p) - N |p - x_0| \le f(p) \le f(x_0) + \epsilon$. If $p \notin [x_0 - \delta, x_0 + \delta]$, then

$$|f(p) - N|p - x_0| \le M - N|p - x_0| < f(x_0) + \epsilon$$

Letting p run through [a, b], we now see

$$f_N(x_0) = \sup_{p \in [a,b]} \left(f(p) - N |p - x_0| \right) \le f(x_0) + \epsilon$$

Because ϵ and x_0 are arbitrary, and f_n is decreasing, we have shown $f_n \to f$.

Question 30

Let f_k be a sequence of measurable function defined on a measurable set E with finite measure. If $|f_k(\mathbf{x})| \leq M_{\mathbf{x}} < \infty$ for all k and for each $\mathbf{x} \in E$, show that given $\epsilon > 0$, there exists closed $F \subseteq E$ and finite M such that $|E - F| < \epsilon$ and $|f_k(\mathbf{x})| \leq M$ for all k and $\mathbf{x} \in F$.

Proof. Define for all $n \in \mathbb{N}$

$$E_n \triangleq \bigcap_{k=1}^{\infty} \{ f_k \le n \}$$

Because f_k are measurable on E, we know E_n are measurable. Because for all $\mathbf{x} \in E$, $\sup_{n \in \mathbb{N}} |f_n(\mathbf{x})| < \infty$, we see that $E_n \nearrow E$. Then because E is of finite measure, we know there exists some N such that

$$|E \setminus E_N| < \frac{\epsilon}{2}$$

Because E_N is measurable, we know there exists some closed $F \subseteq E_N$ such that

$$|E_N \setminus F| < \frac{\epsilon}{2}$$

It then follows that

$$|E \setminus F| < \epsilon$$

and for all $\mathbf{x} \in F$,

$$\mathbf{x} \in F \implies \mathbf{x} \in E_N \implies |f_k(\mathbf{x})| < N \text{ for all } k \in \mathbb{N}$$

Question 31

If f is measurable on E, define $\omega_f(a) \triangleq |\{f > a\}|$ for $a \in \mathbb{R}$. If $f_k \nearrow f$, show $\omega_{f_k} \nearrow \omega_f$. If $f_k \stackrel{m}{\to} f$, show that $\omega_{f_k} \to \omega_f$ at each point of continuity of ω_f . (For the second part, show that if $f_k \stackrel{m}{\to} f$, then $\limsup_{k\to\infty} \omega_{f_k}(a) \leq \omega_f(a-\epsilon)$ and $\liminf_{k\to\infty} \omega_{f_k}(a) \geq \omega_f(a+\epsilon)$ for all $\epsilon > 0$).

Proof. Suppose $f_n \nearrow f$. We know that for all $a \in \mathbb{R}$

$$\{f_n > a\} \nearrow \{f > a\}$$

This implies

$$\omega_{f_n}(a) = |\{f_n > a\}| \nearrow |\{f > a\}| = \omega_f(a)$$

Because a is arbitrary, we have shown $\omega_{f_n} \nearrow \omega_f$.

Suppose $f_n \stackrel{m}{\to} f$. Fix ϵ . Observe that for all $a \in \mathbb{R}$ and $n \in \mathbb{N}$

$$\{f_n > a\} \subseteq \{|f_n - f| > \epsilon\} \cup \{f > a - \epsilon\}$$

Measuring both side, we get

$$\omega_{f_n}(a) = |\{f_n > a\}| \le |\{|f_n - f| > \epsilon\}| + |\{f > a - \epsilon\}| = |\{|f_n - f| < \epsilon\}| + \omega_f(a - \epsilon)$$

Then because $f_n \stackrel{m}{\to} f$ implies $|\{|f_n - f| < \epsilon\}| \to 0$, if we take limit superior on both side, we get

$$\limsup_{n \to \infty} \omega_{f_n}(a) \le \omega_f(a - \epsilon)$$

Again, observe that for all $a \in \mathbb{R}$ and $n \in \mathbb{N}$

$$\{f > a + \epsilon\} \subseteq \{|f_n - f| > \epsilon\} \cup \{f_n > a\}$$

Measuring both side, we get

$$\omega_f(a+\epsilon) = |\{f > a+\epsilon\}| \le |\{|f_n - f| > \epsilon\}| + |\{f_n > a\}| = |\{|f_n - f| > \epsilon\}| + \omega_{f_n}(a)$$

Then because $f_n \stackrel{m}{\to} f$ implies $|\{|f_n - f| < \epsilon\}| \to 0$, if we take limit inferior on both side, we get

$$\omega_f(a+\epsilon) \le \liminf_{n\to\infty} \omega_{f_n}(a)$$

Now, if ω_f is continuous at a, we have

$$\omega_f(a+\epsilon) \searrow \omega_f(a)$$
 and $\omega_f(a-\epsilon) \nearrow \omega_f(a)$ as $\epsilon \searrow 0$

This then implies

$$\liminf_{n\to\infty} \omega_{f_n}(a) = \limsup_{n\to\infty} \omega_{f_n}(a) = \omega_f(a)$$

as we wished.

Question 32

If f is measurable and finite almost everywhere on [a, b], show that given $\epsilon > 0$, there is a continuous g on [a, b] such that $|\{f \neq g\}| < \epsilon$. Formulate and prove a similar result in \mathbb{R}^n by combining Lusin's Theorem with the Tietze extension Theorem.

Proof. Let $E \triangleq \{x \in [a,b] : f(x) \in \mathbb{R}\}$. E is measurable because f is measurable on [a,b]. It is clear that f is indeed measurable on E. By Lusin's Theorem, there exists some closed set $F \subseteq E$ such that $|E \setminus F| < \epsilon$ and $f|_F : F \to \mathbb{R}$ is continuous. Because F is compact, (bounded by [a,b]), Tietze extension Theorem give us some continuous $g : [a,b] \to \mathbb{R}$ such that g = f on F. It then follows that

$$\{f \neq g\} \subseteq [a,b] \setminus F$$

which give us the desired estimation

$$|\{f \neq g\}| \le (b-a) - |F| = |E| - |F| < \epsilon$$

We may formulate the same result by

If f is measurable and finite almost everywhere on some compact $K \subseteq \mathbb{R}^d$, then for all ϵ , there exists continuous g on K such that $|\{f \neq g\}| < \epsilon$.

and give exactly the same argument to prove it.