MATH3301 Tutorial 4

1. (a) Let $G = \{f_1, f_2, f_3, f_4\}$ where f_1, f_2, f_3, f_4 are real-valued functions on \mathbb{R}^{\times} defined as:

$$f_1(x) = x$$
, $f_2(x) = \frac{1}{x}$, $f_3(x) = -x$, $f_4(x) = -\frac{1}{x}$ $(x \in \mathbb{R}^{\times})$.

Is (G, \circ) a group under the function composite \circ ? Explain your answer. If it is a group, is it an abelian group, a cyclic group?

(b) Let
$$GL_2(\mathbb{Z}_2) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a, b, c, d \in \mathbb{Z}_2, \det \begin{pmatrix} a & b \\ c & d \end{pmatrix} \neq 0 \right\}.$$

Show that under matrix multiplication, $GL_2(\mathbb{Z}_2)$ is a non-abelian group of order 6.

- (c) Compute the order of every element in $GL_2(\mathbb{Z}_2)$.
- (d) Is $GL_2(\mathbb{Z}_2) \cong S_3$? Explain why if no and give an isomorphism if yes.
- 2. A lattice diagram for (subgroups of) a group is a diagram so that a line running downward from a subgroup H to a subgroup K means that K is a subgroup of H. e.g.

Lattice diagram for \mathbb{Z}_4

Lattice diagram for $\mathbb{Z}_2 \times \mathbb{Z}_2$

(a) Draw the lattice diagrams for the groups: (i) \mathbb{Z}_{12} and (ii) $GL_2(\mathbb{Z}_2)$.

[Hint: Use the Lagrange theorem to figure out the *possible* order of subgroups.]

- (b) Which subgroup(s) in \mathbb{Z}_{12} is isomorphic to \mathbb{Z}_4 ? Answer the same question for $GL_2(\mathbb{Z}_2)$.
- 3. Consider the group $G = \mathbb{Z}_8^{\times} \times \mathbb{Z}_{12}$, and the subgroups $H = \langle 3 \rangle \times \langle 4 \rangle$ and $K = \langle 3 \rangle \times \langle 6 \rangle$.
 - (a) Find all the elements in G whose orders are 6.
 - (b) Is $\langle (3,4) \rangle = H$? Is $\langle (3,6) \rangle = K$? [Hint: Evaluate ord((3,4)) and ord((3,6)).]
 - (c) Evaluate all (left-)cosets of H and [G:H]. Do the same for K.
 - (d) Draw the lattice diagram of G.

- 4. Let $\phi: G_1 \to G_2$ be a homomorphism between groups. We abuse the notation with e for the identity elements in G_1 and G_2 . Prove the following statements:
 - (a) The image $\phi(H)$ is a subgroup of G_2 , for any subgroup H of G_1 .
 - (b) The pre-image $\phi^{-1}(K)$ is a subgroup of G_1 , for any subgroup K of G_2 .
 - (c) If one of G_1 or G_2 is a finite abelian group, then $\phi(G_1)$ is finite abelian.
 - (d) If one of G_1 or G_2 is cyclic, then $\phi(G_1)$ is cyclic.
- 5. Let $\phi: G_1 \to G_2$ be a homomorphism between groups. We abuse the notation with e for the identity elements in G_1 and G_2 . Prove or disprove, with justification, the statements:
 - (a) If $\psi: G_2 \to G_1$ is a function such that both $\phi \circ \psi$ and $\psi \circ \phi$ are the identity map, then ψ is a group isomorphism.
 - (b) If ϕ is bijective, then $\phi^{-1}(g) = \phi(g^{-1})$ for all $g \in G_1$.
 - (c) The pre-image $\phi^{-1}(K)$ is abelian if K is an abelian subgroup of G_2 .
 - (d) The pre-image $\phi^{-1}(K)$ is cyclic if K is a cyclic subgroup of G_2 .
 - (e) If $|G_1| = 2024$ and $K := \phi^{-1}(\{e\})$, then |K| is not divisible by primes greater than 24.
- 6. Evaluate with explanation the number of nontrivial homomorphisms ϕ in each case below:
 - (a) $\phi: \mathbb{Z} \to \mathbb{Z}$.
 - (b) $\phi: \mathbb{Z} \to \mathbb{Z}$ is surjective.
 - (c) $\phi: \mathbb{Z} \to \mathbb{Z}_2$.
 - (d) $\phi: \mathbb{Z}_2 \times \mathbb{Z}_4 \to \mathbb{Z}_2 \times \mathbb{Z}_5$.
 - (e) $\phi: \mathbb{Z}_{12} \to \mathbb{Z}_4$.
 - (f) $\phi: \mathbb{Z}_4 \to \mathbb{Z}_{12}$.
 - (g) $\phi: \mathbb{Z} \times \mathbb{Z} \to 2\mathbb{Z}$.
 - (h) $\phi: 2\mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$.