计算机组成与设计 课程实验报告

学号: 202200400053 | 姓名: 王宇涵 | 班级: 2202

实验题目:

LPM_ROM 实验

实验目的:

- (1) 掌握 FPGA 中 Ipm ROM 的设置,作为只读存储器 ROM 的工作特性和配置方法;
- (2) 用文本编辑器编辑 mif 文件配置 ROM, 学习以 mif 格式文件加载于 lpm ROM 中;
- (3) 在初始化存储器编辑窗口编辑 mif 文件配置 ROM;
- (4) 验证 FPGA 中 LPM_ROM 的功能。

实验软件和硬件环境:

软件环境:

QuartusII 软件

硬件环境:

- 1.实验室台式机
- 2.计算机组成与设计实验箱

实验原理和方法:

实验内容:

实验中主要掌握三方面的内容: 1、LPM_ROM 的参数设置; 2、LPM_ROM 中数据的写入,即初始化文件的编写; 3、LPM ROM 的实际应用,在实验台上的调试方法。

实验步骤:

参考《程序存储器数据存储器参考资料》中的 LPM_ROM 的设计过程。下载示例工程文件(图 7)至实验台上的 FPGA,选择实验台模式为 0,24 位数据输出由数码 8 至数码 3 显示,6 位地址由键 2、键 1 输入,键 1 负责低 4 位,地址锁存时钟 CLK 由键 8 控制,每一次上升沿,将地址锁入,数码管 8/7/6/5/4/3 将显示 ROM 中输出的数据。发光管 6 至 1 显示输入的 6 位地址值。

图 7-1 LPM ROM 的结构

Addr	+0	+1	+2	+3	+4	+5	+6	+7
00	018108	00ED82	00C050	00E004	00B005	01A206	959A01	00E00F
08	00ED8A	00ED8C	00A008	008001	062009	062009	070A08	038201
10	001001	00ED83	00ED87	00ED99	00ED9C	31821D	31821F	318221
18	318223	00E01A	00A01B	070A01	00D181	21881E	019801	298820
20	019801	118822	019801	198824	019801	018110	000002	000003
28	000004	000005	000006	000007	000008	000009	00000A	00000B
30	00000C	00000D	00000E	00000F	000010	000011	000012	000013
38	000014	000015	000016	000017	000018	000019	00001A	00001C

图 7-2 ROM 初始化文件 ROM A.mif 的内容

实验任务:

实验前认真复习 LPM-ROM 存储器部分的有关内容;用图形编辑设计 lpm rom。

- 1、要求用 LPM 元件库设计 LPM ROM, 地址总线宽度 address[]和数据总线宽度 q[]分别为 6 位和 24 位。
- 2、建立相应的工程文件,设置 lpm rom 数据参数, lpm ROM 配置文件的路径(ROM A.mif),并设置

在系统 ROM/RAM 读写允许,以便能对 FPGA 中的 ROM 在系统读写。3、锁定输入输出引脚。4、完成全程编译。5、下载 SOF 文件至 FPGA,改变 lpm_ROM 的地址 a[5..0],外加读脉冲,通过实验台上的数码管比较读出的数据是否与初始化数据(rom4.mif 中的数据)一致。6、打开 QuartusII 的在系统存储模块读写工具,了解 FPGA 中 ROM 中的数据,并对其进行在系统写操作。(3)记录实验数据,写出实验报告。

实验步骤:

(1) 设计 rom1 且原理图输入:根据所示电路,完成电路原理图设计。

(2) 管脚锁定:完成原理图中输入、输出的管脚锁定。

- (3)原理图编译、适配和下载:在 Quartus II 环境中选择 EP4CE6/10 器件,进行原理图的编译和适配,无误后完成下载。
 - (4) 功能测试:

打开读写单元,发现 rom1 的数据如图所示

实验箱输入地址: 0011 读出数据为 FE4946, 符合预期结果

输入地址:0100读出数据为BCF1AE,符合预期结果

通过软件改变地址 1101 处的值为 C161BC, 再通过实验箱读数, 符合预期结果.

(5) 生成元件符号。

仿真结果:

本次实验不方便通过仿真结果展示过程,因此用实际操作图文代替.

结论分析与体会:

通过本次实验,我掌握了 FPGA 中 lpm_ROM 的设置和工作特性,学习了如何在 FPGA 中配置只读存储器(ROM)。通过使用文本编辑器编辑 mif 文件并加载到 lpm_ROM 中,使我进一步了解了更直观便捷的配置方式。

实验验证了 FPGA 中 Ipm_ROM 的功能,通过实际操作确认了 ROM 输出数据与初始化数据一致,使我对其实际应用和工作原理有了更深刻的理解。

此外,我学习了 LPM_ROM 的参数设置,包括地址总线宽度和数据总线宽度的配置,通过图形编辑设计 lpm_rom 并建立相应工程文件,掌握了数据参数和配置文件路径的设置。这次实验不仅让我熟悉了 lpm ROM 的使用,还提升了我对 FPGA 设计和调试的能力,为以后的复杂设计打下了坚实的基础。

期间我们也遇到了一些问题:

1. 发现通过软件修改 ROM 数据后,再读入显示数据并未修改?

答:需要修改后再右键点击 write data 的按钮, 而不是先点击再修改.

2. 发现输出不符合预期?

答:仔细检查后发现数据并未按如期修改成功,解决1问题后成功解决.