Graduate Homework In Mathematics

Number Theory

王胤雅

201911010205

201911010205@mail.bnu.edu.cn

Beijing Normal University

ROBEM I Prove that 3|n(n+1)(2n+1), where $n \in \mathbb{Z}$.

SOUTHOW. 1. If $n = 3k, k \in \mathbb{Z}$, then 3|n(n+1)(2n+1).

- 2. If n = 3k+1, $k \in \mathbb{Z}$, then 2n+1 = 2(3k+1)+1 = 6k+3 = 3(2k+1), then $3 \mid n(n+1)(2n+1)$.
- 3. If n = 3k + 2, $k \in \mathbb{Z}$, then n + 1 = 3k + 3 = 3(k + 1), then $3 \mid n(n + 1)(2n + 1)$.

ROBLEM II If $a, b \in \mathbb{Z}$, $b \neq 0$, prove: $\exists s, t \in \mathbb{Z}$ s.t.

$$a = bs + t, |t| \le \frac{|b|}{2}$$

and when b is odd, s, t are unique, how about that b is even?

SOUTION. First of all, when $b \geq 0$, by Euclidean division, $\exists u, v \in \mathbb{Z}$, s.t. $a = bu + v, 0 \leq v < b$. If $|v| \leq \frac{|b|}{2}$, then s = u, t = v. If $\frac{|b|}{2} < v < |b|$, then s = u + 1, t = v - b, where $|t| \leq \frac{|b|}{2}$. So when b < 0, only need to consider a, -b > 0, then $\exists p, q \in \mathbb{Z}$, s.t. a = (-b)p + q = b(-p) + q, let s = -p, t = q.

When b is odd, if $a = bs_1 + t_1 = bs_2 + t_2$, where $|t_1|, |t_2| \le \frac{|b|}{2}$. Then $|t_1|, |t_2| \le \frac{|b|-1}{2} < \frac{|b|}{2}$. So $b(s_1 - s_2) = t_2 - t_1$, then $|b| \mid |t_2 - t_1|$. And $|t_1 - t_2| \le |t_1| + |t_2| < |b|$, then $|t_1 - t_2| = 0$. Thus, $s_1 = s_2, t_1 = t_2$.

When b is even, consider $a = bx + \frac{b}{2} \exists x \in \mathbb{Z}$, then $a = b(x+1) - \frac{b}{2}$. For $a \notin \{bx + \frac{b}{2} : x \in \mathbb{Z}\}$, then a = bm + n, where $|n| \leq \frac{|b|}{2}$. Then by the same reason in the situation when b is odd, we can get $\exists |s, t|$ s.t. a = bs + t, where $|t| \leq \frac{|b|}{2}$.

ROBEM III Use Problem II to prove $\forall a, b \in \mathbb{Z}, b \neq 0, \exists \gcd(a, b), \text{ and show its argorithm.}$ Use the argorithm and Euclidean algorithm to compute $\gcd(76501, 9719)$.

SOUTION. 1. If a=0, then $\gcd(a,b)=b$. If $a\neq 0$, since $\gcd(a,b)=\gcd(|a|,|b|)$, we only need to consider $a,b\in\mathbb{N}^+$. Without loss of generality, assume $a\geq b>0$, then by Problem II, then $\exists s,t\in\mathbb{Z}$ s.t. a=bs+t, where $|t|\leq \frac{b}{2}$. If t=0, then $\gcd(a,b)=b$. If |t|>0, then by $\gcd(a,b)=\gcd(b,|t|)$ and Problem II again, we get $\exists s_1,t_1\in\mathbb{Z},|t_1|\leq \frac{|t|}{2}$ such that $b=|t|s_1+t_1$. Repeat the process above, until it appears that the remainder becomes 0. That is because $t_0:=t$ is finite, and the remainder $t_{k+1}=\frac{t_k}{2},k\geq 0$. So we will get these equations:

$$a = bs + t_{0}, 0 < |t_{0}| < \frac{|b|}{2},$$

$$b = |t_{0}|s_{1} + t_{1}, 0 < |t_{1}| < \frac{|t_{0}|}{2},$$

$$|t_{0}| = |t_{1}|s_{2} + t_{2}, 0 < |t_{2}| < \frac{|t_{1}|}{2},$$

$$.....$$

$$|t_{n-1}| = |t_{n}|s_{n+1} + t_{n+1}, 0 < |t_{n+1}| < \frac{|t_{n}|}{2},$$

$$|t_{n}| = |t_{n+1}|s_{n+2}.$$

$$(1)$$

So we can get $gcd(a, b) = gcd(b, |t_0|) = \cdots = gcd(|t_n|, |t_{n+1}|) = |t_{n+1}|$

2. The argorithm of 1:

```
1 — This function is to find the remainder of two integers x,y, where y is not 0.
2 —Input: x,y : two integers
3 —Output: the absoute value of remainder of x,y, whose absoute value is smaller than half of absoute
       value of y.
4 local remainder_half = function(x, y)
    if x \% y = 0 then
     return 0
    elseif y \% 2 \sim= 0 then
      if \operatorname{math.abs}(x \% y) \le \operatorname{math.abs}(y) / 2 then
        return math.abs(x % y)
9
10
11
        return math.abs(x \% y - y)
      end
12
13
      if math.abs(x % y) = math.abs(y) / 2 then
14
        return math.abs(x % y)
15
16
        if math.abs(x \% y) < math.abs(y / 2) then
17
          return math.abs(x % y)
18
19
20
         return math.abs(x \% y - y)
        end
21
       end
    end
23
24 end
25 — This function is to find the maximum common factor of two integels x,y, where x is not 0 or y is not 0.
26 —Input: x,y: two integels
  --Output: gcd(x,y): the maximum common factor of x,y
local function gcd(x, y)
    if math.abs(x) > math.abs(y) then
      local a = x
30
31
      x = y
      y = a
32
33
    end
34
    if x = 0 then
     return math.abs(y)
35
      return gcd(remainder\_half(y, x), x)
37
38
    end
39 end
```

3. Two ways to compute the gcd(76501, 9719):

(a) Use the argorithm in 1

$$76501 = 8 \times 9719 - 1251$$

$$9719 = (-8) \times (-1251) - 289$$

$$-1251 = 4 \times (-289) - 95$$

$$-289 = 3 \times (-95) - 4$$

$$-95 = 24 \times (-4) + 1$$

$$-4 = (-4) \times 1 + 0$$

(b) Use Euclidean algorithm:

$$76501 = 7$$
 $\times 9719$ $+8468$
 $9719 = 1$ $\times 8468$ $+1251$
 $8468 = 6$ $\times 1251$ $+962$
 $1251 = 1$ $\times 962$ $+289$
 $962 = 3$ $\times 289$ $+95$
 $289 = 3$ $\times 95$ $+4$
 $95 = 23$ $\times 4$ $+3$
 $4 = 1$ $\times 3$ $+1$
 $3 = 3$ $\times 1$ $+0$

So gcd(76501, 9719) = 1.

ROBEM IV Let $F(x) = \sum_{k=0}^{n} a_k x^n \in \mathbb{Z}[x]$, where $a_0, a_n \neq 0$. Then reasonable root $\frac{p}{q}$ of F(x) must satisfy that $p|a_0, q|a_n, \gcd(p, q) = 1$. Therefore, $\sqrt{2}$ is not reasonable.

SOUTION. Since $F(\frac{p}{q}) = \sum_{k=0}^{n} a_k (\frac{p}{q})^k = 0$, then $\sum_{k=0}^{n} a_k p^k q^{n-k} = 0$. Then $-a_n p^n = \sum_{k=0}^{n-1} a_k p^k q^{n-k} = p(\sum_{k=1}^{n-1} a_k p^{k-1} q^{n-k}) + a_0 q^n = q(\sum_{k=0}^{n-1} a_k q^{n-k-1} p^k)$. Since $\gcd(p,q) = 1$, then $q \mid a_n, p \mid a_0$. Since $F(x) = x^2 - 2$ s.t. $F(\sqrt{2}) = 0$. If $\sqrt{2}$ is reasonable, then $\sqrt{2} = \frac{p}{q}$. Thus, $p \mid 2, q \mid 1$, so $\sqrt{2} = 2, 1$, which is contradict with the define of $\sqrt{2}$!