Math 301 Vocabulary

Jacob Jashinsky

Sections 1.1 - 1.2

Statement: This is a declarative statement that is classified as either true or false. It cannot be true or false in some cases but always. No ambiguity is allowed.

Negation: It is the logical opposite of a statement. If p represents a true statement then $\sim p$ is a false statement.

Conjunction: combining of two statements. p and q is the same as $p \wedge p$. The conjunction is true only when both statements are true.

Disjunction: Combining two statements by using the term or, denoted $p \vee q$. Using only the inclusive definition, meaning that both p and q could happen. It's not just one or the other.

Implication or Conditional: If p, then q, denoted $p \Rightarrow q$. It's an if-statement. An implication is false if the antecedent is true and the consequent is false.

Antecedent: In the statement, If p, then q, the p is the antecedent.

Consequent: In the statement, If p, then q, the q is the consequent.

Biconditional: The statement of the form p if and only if q, denoted $p \iff q$. Which is implying two conditional statements, $p \Rightarrow q$ and $q \Rightarrow p$, hence the prefix bi.

Tautology: When a compound statement is true in all cases it is called a tautology. "the negation of a conjunction is logically equivalent to the dis-junction of the negations." See page 25 for a list.

Universal Quantifier: is the symbol, \forall , which mean, for all. So for example, $\forall x, p(x)$, for all of x, the function is true.

Existential Quantifier: There exists, denoted \exists so for example. \exists $x \ni p$ which reads, there exists and x such that the statement p is true.

Such that: is the symbol, \ni .

Sections 1.3 - 1.4

Inductive Reasoning: Drawing a conclusion from observations. Inductive reasoning leads to a conjucture.

Counterexample: Using an example to prove the original statement false, this can be used when \forall statements are used.

Deductive reasoning: Applying a general principle to a particular case. (the general case could mean using n).

Hypothesis: When an implication is a theorem. The antecedent is the hypothesis.

Conclusion: When an implication is a theorem, the consequent is the conclusion.

Contrapositive: The contrapositive of the statement $p \Rightarrow q$ is $\sim q \Rightarrow \sim p$. They are logically equivalent.

Converse: The converse of the statement $p \Rightarrow q$ is $q \Rightarrow p$. They are not always logically equivalent.

Inverse: The inverse of the statement $p \Rightarrow q$ is $\sim p \Rightarrow \sim q$. They are not always logically equivalent.

Contradiction: A contradiction can be shown by negating a statement and showing that there is a contradiction.

Building blocks of proof:

Proof by Contradiction: To prove by contradiction we assume p and $\sim q$ and deduce the contradiction.

Proof by cases: Some proofs are large or encompasses a general region. The proof could be broken up into cases that each could have their own proof.

Sections 2.1 - 2.2

Subset: $A \subseteq B$, A is a subset of B. A is contained in B.

Proper subset: $A \subset B$, A is a subset of B. A is contained in B, but there exists an element in B that is not in A.

Equal Sets: A = B, if $A \subseteq B$ and $B \subseteq A$.

Interval: Is a set of real numbers, (a,b), [a,b], [a,b), (a,b].

Empty set: A set with no elements. \varnothing . An empty set is a subset of every set.

Union: $A \cup B$, read "A union B", or read "A or B".

Intersection: $A \cap B$, read "A intersect B", or read "A and B".

Complement: $A \setminus B = \{x : \in A \cap x \notin B\}$. This is the complement of B.

Disjoint sets: Two set that do not intersect. Also called mutually exclusive.

Indexed family: $\bigcap_{j \in J} A_j = \{x : x \in A_j \text{ for some } j \in J\}$ and also $\bigcup_{j \in J} A_j = \{x : x \in A_j \text{ for some } j \in J\}$

Ordered pairs: $(a, b) = \{\{a\}, \{a, b\}\}$

Cartesian product: $A \times B$ is the set of all ordered pairs (a,b) such that $a \in A$ and $b \in B$. $A \times B = \{(a,b) : a \in A \text{ and } b \in B\}$.

Relation between A and B: Is a subset of the ordered pairs of a cartesian product.

Equivalence Relation: Is a relation that has the properties of being reflexive, symmetric, and transitive for all $x, y, z \in S$.

Reflexive: xRx

Symmetric: If xRy, then yRx.

Transitive: If xRy and yRz, then xRz exists.

Partition: Is a subset of some set S. Every element in S is in a subset and there is no overlap between the subsets.

Sections 2.2 - 2.3

Domain of f: denoted dom f. Set A is the domain of the function $f: A \to B$.

Range of f: denoted dom f, is the set of all second elements of members of f, where b is the second element of the ordered pairs $(a, b) \in f$.

Codomain: Set B is the codomain of the function $f: A \to B$.

Function from A to B: A function from A to B, $f:A\to B$ is nonempty relation $f\subseteq A\times B$ that satisfies the following assumptions. 1. Existence: For all a in A there exists a b in B such that $(a,b)\in f$. 2. Uniqueness: If $(a,b)\in f$ and $(a,c)\in f$, then b=c. (vertical line test).

Surjective: A function is surjective if B = rng f.

Injective: A function is injective (one to one) if f(a) = f(a') and a = a'.

Bijective: A function is bijective if it is both injective and surjective.

Image of a set: For the function $f: A \to B$, let $C \subseteq A$. f(C) is called the image of C in B.

Pre-image of a set: For the function $f: A \to B$, let $D \subseteq B$. $f^{-1}(D)$ is called the Pre-image of D in A.

Composition of functions: $f \circ g : A \to C$, where $f : A \to B$ and $g : B \to C$.

Inverse function: $f^{-1} = \{(y, x) \in B \times A : (x, y) \in f\}$

Identity function: A function defined on set A that maps element in A onto itself.

Equinumerous: $S \sim T$, the two sets are set equivalent if there exists a bijective function that maps S on to $T, f: S \to T$.

Finite: A set S is finite if $S = \emptyset$, or if there exists $n \in \mathbb{N}$ and bijective function $f : \{1, 2, 3, ..., n\} \to S$.

Infinite: If a set is not finite it is infinite.

Cardinal number: It is the number of elements in a set or the n in the set I_n .

Transfinite: If a cardinal number is not finite then it is transfinite.

Denumerable: A set is denumerable if there exists a bijection $f: \mathbb{N} \to S$.

Countable: It is a finite or denumerable set.

Uncountable: It is a set that is not countable.

Power set: $\wp(S)$ is the collection of all the subsets of S.

Section 3.1

Well-ordering property of N: If S is a nonempty subset of N, then there exists an element $m \in S$ such that $m \leq k$ for all $k \in S$.

Principle of mathematical induction: Let P(n) be a statement that is either true or false for each $n \in \mathbb{N}$. then P(n) is true for all $n \in \mathbb{N}$, provided that,

a. P(1) is true, and

b. for each $k \in \mathbb{N}$, if P(k) is true, then P(k+1) is true.

Basis for induction: Part (a) of the principle of mathematical induction.

Induction step: Part (b) of the principle of mathematical induction.

Induction hypothesis: Assuming that P(k) is true in part (b) is known as the induction hypothesis.

Section 3.3

Upper bound: Let S be s subset of \mathbb{R} . If there exists a real number m such that $m \geq s$ for all $s \in S$, then m is called an upper bound, and S is bounded above.

Lower bound: Let S be s subset of \mathbb{R} . If there exists a real number m such that $m \leq s$ for all $s \in S$, then m is called an lower bound, and S is bounded below.

Bounded set: The set S is bounded if it is bounded above and below.

Maximum: If m is an upper bound of S and $m \in S$, then m is called the maximum of S. $m = \max S$.

Minimum: If m is a lower bound of S and $m \in S$, then m is called the minimum of S. $m = \min S$.

Supremum: If S is bounded above the least upper bound of S is called its supremum, denoted, $\sup S$, iff

a. $m \ge s$ for all $s \in S$ and,

b. if m' < m, then there exists $s' \in S$ such that s' > m'.

Infimum: If S is bounded below the greatest upper bound of S is called its Infimum, denoted, inf S, iff

- a. $m \leq s$ for all $s \in S$ and,
- b. if m' > m, then there exists $s' \in S$ such that s' < m'.

Completeness axiom: Every nonempty subset S of \mathbb{R} that is bounded above has a least upper bound. That is, sup S exists and is a real number.

Archimedean property: The set \mathbb{N} of natural numbers is unbounded above in \mathbb{R} .

Density of the rationals: \mathbb{Q} is done in \mathbb{R} , or that between any two real numbers there is a rational number.

Sections 3.4 and 3.5

Neighborhood: Let $\epsilon > 0$ and $x \in \mathbb{R}$. A neighborhood of x is a set of the form $N(x; \epsilon) = \{y \in \mathbb{R} : |x - y| < \epsilon\}$

Deleted neighborhood: Let $\epsilon > 0$ and $x \in \mathbb{R}$. A deleted neighborhood of x is a set of the form $N^*(x;\epsilon) = \{y \in \mathbb{R} : 0 < |x-y| < \epsilon\}$

Interior Point: Let $S \subseteq \mathbb{R}$. A point x in \mathbb{R} is an interior point of S if there exists a neighborhood N of x such that $N \subseteq S$

Boundary Point: If for every neighborhood N of x, $N \cap S \neq \emptyset$ and $N \cap (\mathbb{R} \setminus S) \neq \emptyset$, then x is called a boundary point of S.

Closed set: A set S is closed iff its complement $\mathbb{R} \setminus S$ is open.

Open set: A set S is open iff S = int S.

Accumulation point: Let S be a subset of \mathbb{R} . A point x in \mathbb{R} is an accumulation points of S if every deleted neighborhood of x contains a point of S. The set is denoted S'

Isolated point: If $x \in S$ and $x \notin S'$, then x is called an isolated point of S.

Closure of a set: Denoted cl S. cl $S = S \cup S'$, or that cl $S = S \cup \text{bd}S$.

Compact Set: A set S is said to be compact if whenever it is contained in the union of a family F of open sets, it is contained in the union of some finite number of the sets in F.

Open Cover: If F is a family of open sets whos union contains S, then F is called an open cover of S.

Subcover: If $Z \subseteq F$ and Z is also an open cover of S, then Z is called a subcover of S.

Heine-Borel theorem: A subset of \mathbb{R} is compact iff S is closed and bounded.

Bolzano-Weierstrass theorem: If a bounded subset S of \mathbb{R} contains infinitely many points, then there exists at least one points in \mathbb{R} that is an accumulation point of S.

Section 4.1

Sequence: A sequence is a function whose domain is the set \mathbb{N} of natural numbers, denoted (s_n) .

Convergent Sequence: (s_n) is said to converge to the real numbers s, provided that

For every $\epsilon > 0$, there exists a $N \in \mathbb{N}$ such that $\forall n \in \mathbb{N}, n \geq N$ implies that $|s_n - s| < \epsilon$.

Limit of a Sequence: If (s_n) converges to s, then s is called the limit of the sequence (s_n) . $\lim s_n = s$

Divergent Sequence: A series that does not converge to a real number is divergent.

Bounded Sequence: (s_n) is said to be bounded if the range $\{s_n : n \in \mathbb{N}\}$ is a bounded set, that is, if there exists an $M \geq 0$ such that $|s_N| \leq M$ for all $n \in \mathbb{N}$.

Sections 4.2 - 4.3

4.2.1 Limit Theorems: Suppose $\lim s_n = s$ and $\lim t_n = t$, then

- a. $\lim(s_n + t_n) = s + t$
- b. $\lim(ks_n) = ks$ and $\lim(k + s_n) = k + s$.
- c. $\lim(s_n t_n) = st$
- d. $\lim(s_n/t_n) = s/t$

Diverge to $+\infty$: A sequence (s_n) diverges to $+\infty$, and we write $\lim s_n = +\infty$ provided that for every $m \in \mathbb{R}$ there exists an $N \in \mathbb{N}$ such that $n \geq N$ implies that $s_n > M$.

Diverge to $-\infty$: A sequence (s_n) diverges to $-\infty$, and we write $\lim s_n = -\infty$ provided that for every $m \in \mathbb{R}$ there exists an $N \in \mathbb{N}$ such that $n \geq N$ implies that $s_n < M$.

Theorem 4.2.4: Suppose $\lim s_n = s$ and $\lim t_n = t$. If $s_n \le t_n$ for $n \in \mathbb{N}$ then s < t.

In other words, so long as you can show that s_n is always less than t_n than the limit of s_n is less than the limit of t_n .

Theorem 4.2.12: Let $s_n \leq t_n$ for all $n \in \mathbb{N}$.

- a. If $\lim s_n = +\infty$, then $\lim t_n = +\infty$.
- b. If $\lim t_n = -\infty$, then $\lim s_n = -\infty$.

Because the we know the limit of one we can show the limit of the other because we know the relationship $s_n \leq t_n$.

Theorem 4.2.13: Let s_n be a sequence of positive numbers, then $\lim(s_n) = +\infty$ iff $\lim(1/s_n) = 0$.

Increasing Sequence: The sequence s_n is increasing if $s_n \leq s_{n+1}$ for all $n \in \mathbb{N}$.

Decreasing Sequence: The sequence s_n is decreasing if $s_n \geq s_{n+1}$ for all $n \in \mathbb{N}$.

Monotone Sequence: A sequence is monotone if it is increasing or decreasing.

Cauchy Sequence: A sequence (s_n) of real numbers is said to be a Cauchy sequence if for each $\epsilon > 0$ there exists an $N \in \mathbb{N}$ such that $m, n \geq N$ implies that $|s_n - s_m| < \epsilon$.

Cauchy Convergence Criterion: A sequence of real numbers is convergent iff it is a Cauchy sequence.