Sub 7

[Sequence | Sheet 1] Sequence No.: 1 Length of sequence: 582 Type of sequence: Amino acid Topology: Linear Class of sequence: Protein Sequence Met Ser Pro Ala Pro Arg Pro Ser Arg Cys Leu Leu Pro Leu 1 10 Leu Thr Leu Gly Thr Ala Leu Ala Ser Leu Gly Ser Ala Gln Ser 25 30 Ser Ser Phe Ser Pro Glu Ala Trp Leu Gln Gln Tyr Gly Tyr Leu 35 40 45 Pro Pro Gly Asp Leu Ars Thr His Thr Gln Ars Ser Pro Gln Ser 50. 55 60 Leu Ser Ala Ala Ile Ala Met Gin Lys Phe Tyr Gly Leu Gin 65 70 75 Val Thr Gly Lys Ala Asp\la Asp Thr Net Lys Ala Met Arg Arg 80 85 90 Pro Arg Cys Gly Val Pro Asp Lys Phe Gly Ala Glu lie Lys Ala 95 100 105 Asn Val Arg Arg Lys Arg Tyn Ala lle Gin Gly Leu Lys Trp Gin 110 115 His Asn Glu lle Thr Phe Cys \le Gln Asn Tyr Thr Pro Lys Yal 125 130 135 Gly Glu Tyr Ala Thr Tyr Glu Ala lle Arg Lys Ala Phe Arg Val 140 145 Irp Glu Ser Ala Thr Pro Leu Ar: Phe Ar: Glu Val Pro Tyr Ala

160

165

155

[Sequence Sheet 2]	
Sequence No.: 1\(\) (continued)	
Tyr lle Ar: Clu Cly His Clu Lys Cln Ala Asp lle Met 1	le Phé
170	180
Phe Ala Clu Cly Phe Wis Cly Asp Ser Thr Pro Phe Asp C	
185	195
Gly Gly Phe Leu Ala His Ala Tyr Phe Pro Gly Pro Asn I	
200 205	210
Gly Asp The His Phe Asp Ser Ala Glu Pro Trp The Val Ar	
215 220	225
Glu Asp Leu Asn Gly Asn Asp lle Phe Leu Val Ala Val Hi	
230 235	240
Leu Gly His Ala Leu Gly Leu Glu His Ser Ser Asp Pro Se	
245 250	255
lle Met Ala Pro Phe Tyr Gin Trp Met Asp Thr Giu Asn Ph	-
260 265	270
Leu Pro Asp Asp Asp Arg Arg Cly lie Gin Gin Leu Tyr Gi	
275 280	285
Glu Ser Gly Phe Pro Thr Lys Het Pro Pro Gln Pro Arg Th	r Thr
290 295	300
Ser Arg Pro Ser Val Pro Asp Lys Pro Lys Asn Pro Thr Tyr	- 2
305 310	315
Pro Asn lle Cys Asp Gly Asn Phe Asp Thr Val Ala Net Leu	λrg
320 \ 325	330
Gly Glu Met Phe Val Phe Lys Lys Ars Trp Phe Trp Ars Val	λrg
335	345
Asn Asn Gln Val Met Asp Cly Tyr Pro Met Pro lie Gly Cln	Phe
350 395	360
Trp Arg Gly Leu Pro Ala Ser lle Asn The Ala Tyr Glu Arg	lys
365 370	375
\.	
- 39 -	

[Sequence Sheet \3]
Sequence No.: 1 (continued)
Asp Gly Lys Phe Val Phe Phe Lys Gly Asp Lys His Trp Val Phé
380 \ 385 \ 390
Asp Glu Ala Ser Leu Glu Pro Gly Tyr Pro Lys His lle Lys Glu
395 400 405
Leu Gly Arg Gly Leu Pro Thr Asp Lys lle Asp Ala Ala Leu Phe
410 415 420
Trp Met Pro Asn Gly Lys Thr Tyr Phe Phe Ar: Gly Asn Lys Tyr
425 430 435
Tyr Ars Phe Asn Clu Clu Leu Ars Ala Yal Asp Ser Clu Tyr Pro
440 445 450
Lys Asn lle Lys Val Trp Glu Gly He Pro Glu Ser Pro Arg Gly
455 460 465
Ser Phe Met Gly Ser Asp Glu Val Phe Thr Tyr Phe Tyr Lys Gly
470 475 480
Asn Lys Tyr Tro Lys Phe Asn Asn Gln Lys Leu Lys Val Glu Pro
485 490 495
Gly Tyr Pro Lys Ser Ala Leu Ars Asp Trp Net Gly Cys Pro Ser
500 505 510
Cly Cly Arg Pro Asp Clu Cly Thr Clu Clu Clu Thr Clu Val Jle
515 \$20 525
lle lle Glu Val Asp Glu Glu Gly Gly Gly Ala Val Ser Ala Ala
530 535 540
Ala Val Val Leu Pro Val Leu Leu Leu Leu Leu Val Leu Ala Val
545 550 555
Cly Leu Ala Val Phe Phe Phe Ars Ars His Cly The Pro Ars Ars
560 565 570
Leu Leu Tyr Cys (In Arg Ser Leu Leu Sp Lys Val
575 580

[Sequence Sheet 4]

Sequence No.: 2

Length of sequence: 3403

Type of sequence: Nucleic acid

Number of chain: Double strand

Topology: Linear

Class of sequence: cDNA to mRNA

Origin:

Species: Human

Tissue: Placent

[Sequence Shelet 5] Sequence No.: (continued) AGTTCAGTGCCTACC GAMGACAAAGGCGCC CCGAGGGAGTGGCGG TGCGACCCCAGGGCG 60 TEGGCCCGGCCGCG AGCCACACTGCCCGG CTGACCCGGTGGTCT CGGACCATGTCTCCC 120 MetSerPro GCCCCAAGACCCTCC CGTTGTGTCCTGCTC CCCCTGCTCACGCTC GGCACCGCGCTCGCC 180 AlaProArgProSer ArgCysLeuLeuleu ProLeuLeuThrLeu GlyThrAlaLeuAla 10 TCCCTCGGCTCGGCC CAAAGCAGQAGCTTC AGCCCCGAAGCCTGG CTACAGCAATATGGC 240 SerLeuGlySerAla GlnSerSerSerPhe SerProGluAlaTrp LeuGlnGlnTyrGly TACCTGCCTCCGGG GACCTACGTACCCAC ACACAGCGCTCACCC CAGTCACTCTCAGCG 300 TyrLeuProProGly AspLeuArgThrHis ThrGlnArgSerPro GlnSerLeuSerAla 55 GCCATCGCTGCCATG CAGAAGTTTTACGCC TTGCAAGTAACAGGC AAAGCTGATGCAGAC AlalleAlaAlaMet GlnLysPheTyrGly LeuGlnValThrGly LysAlaAspAlaAsp 360 20 ACCATGAAGGCCATG AGGCGCCCCGATGT GGTGTTCCAGACAAG TTTGGGGCTGAGATC 420 ThrMetLysAlaMet ArgArgProArgCys GlyValProAspLys PheGlyAlaGlulle ८८ AAGGCCAATGTTCGA AGGAAGCGCTACGCC ATCCAGGGTCTCAAA TGGCAACATAATGAA 480 LysAlaAsnValArg ArgLysArgTyrAla l\eGlnGlyLeuLys TrpGlnHisAsnGlu ATTACTTTCTGCATC CAGAATTACACCCCC AAOGTGGGCGAGTAT GCCACATACGAGGCC lleThrPheCysIle GlnAsnTyrThrPro Lys∜alGlyGluTyr AlaThrTyrGluAla 540 ATTCGCAAGGCGTTC CGCGTGTGGGAGAGT GCCACACCACTGCGC TTCCGCGAGGTGCCC IleArgLysAlaPhe ArgValTrpGluSer AlaTh ProleuArg PheArgGluValPro 600 TATGCCTACATCCGT GAGGGCCATGAGAAG CAGGCCGACATCATG ATCTTCTTTGCCGAG TyrAlaTyrlleArg GluGlyHisGluLys GlnAlaAsAlleMet HePhePheAlaGlu 660 -170 175

[Sequence Sheet 6]
Sequence No. 2 (continued)

GGCTTCCATGGCGAC AGACGCCCTTCGAT GGTGAGGGCGGCTTC CTGGCCCA	TGCCTAC 720
GlyPheHisGlyAsp SerThrProPheAsp GlyGluGlyGlyPhe LeuAlaHi	sAlaTyr
TTCCCAGGGCCCAAC ATTGGAGGAGACACC CACTTTGACTCTGCC GAGCCTTG	GACTGTC 780
PheProGlyProAsn IleGlyGlyAspThr HisPheAspSerAla GluProTr	pThrVal
AGGAATGAGGATCTG AATGGAAATGACATC TTCCTGGTGGCTGTG CACGAGCTG	GGGCCAT 840
ArgAsnGluAspLeu AsnGlyAsnAspIle PheLeuValAlaVal HisGluLeu	
GCCCTGGGGCTCGAG CATTCGAGTGACCCC TCGGCCATCATGGCA CCCTTTTAC	CCAGTGG 900
AlaLeuGlyLeuGlu HisSerSerAspPro SerAlaIleMetAla ProPheTy	-GlnTrp
ATGGACACGGAGAAT TTTGTGCTTCCCGAT GATGACCGCCGGGGC ATCCAGCAA	CTTTAT 960
MetAspThrGluAsn PheValLeuProAsp AspAspArgArgGly IleGlnGln	LeuTyr
GGGGGTGAGTCAGGG TTCCCCACCAAGATC CCCCCTCAACCCAGG ACTACCTCC	CGGCCT 1020
GlyGlyGluSerGly PheProThrLysMet ProProGlnProArg ThrThrSer	ArgPro
TCTGTTCCTGATAAA CCCAAAAACCCCACC TATGGGCCCAACATC TGTGACGGG	AACTTT 1080
SerValProAspLys ProLysAsnProThr TyrGlyProAsnIle CysAspGlyA	AsnPhe
GACACCGTGGCCATG CTCCGAGGGGAGATG TTTCTCTTCAAGAAG CGCTGGTTCT	ΓGGCGG 1140
AspThrValAlaMet LeuArgGlyGluMet PheWalPheLysLys ArgTrpPhel	rodedd 1140 FrpArg
GTGAGGAATAACCAA GTGATGGATGGATAC CCAATGCCCATTGGC CAGTTCTGGC	CGGGGC 1200
ValArgAsnAsnGln ValMetAspGlyTyr ProMetRrolleGly GlnPheTrpA 345 350 355 360	irgGly
CTGCCTGCGTCCATC AACACTGCCTACGAG AGGAAGGATGGCAAA TTCGTCTTCT	TCAAA 1260
LeuProAlaSerIle AsnThrAlaTyrGlu ArgLysAspClyLys PheValPheP 365 370 375 380	heLys
GGAGACAAGCATTGG GTGTTTGATGAGGCG TCCCTGGAACCTGGC TACCCCAAGC	ACATT 1320
GlyAspLysHisTrp ValPheAspGluAla SerLeuGluProGly TyrProLysH 395 390 395 400	islle

[Sequence Sheet 7]

Sequence No.: $\sqrt{2}$ (continued)

ANGGNGCTGGGCCG	1 GGGGTGCCTACCGAG	ANGATTGATGCTGCT	CTCTTCTGGATGCCC	1380
LysGluLeuGlyArg 405	g ClyLeuProThrAsp 4/0	LyslieAspAlaAla &/S	LeuPheTrpMetPro	
AATGGAAAGACCTAG	TICTTCCGTGGAAAC	AAGTACTACCGTTTC	AACGAAGAGCTCAGG	1440
AsnGTyLysThrTyi 425	PhePheA gGIyAsn	LysTyrTyrArgPhe 435	AsnGluGluLeuArg	
GCAGTGGATAGCGAG	TACCCCAADAACATC	AAAGTCTGGGAAGGG	ATCCCTGAGTCTCCC	1500
AlaValAspSerGlu 445	TyrProLysNsnIIc #\$0	LysValTrpGluGly #S\$	IleProGluSerPro 460	
AGAGGGTCATTCATG	CGCAGCGATGAGTC	TTCACTTACTTCTAC	AAGGGGAACAAATAC	1560
ArgGlySerPheMet 445	GlySerAspGlyVal 470	PheThrTyrPheTyr 475	LysGlyAsnLysTyr 480	
	CAGAAGCTGAAGGTA	GAACCGGGCTACCCC	AAGTCAGCCCTGAGG	1620
TrpLysPheAsnAsn 485	CInLysLeuLysVaV 490	GluProGlyTyrPro 495	LysSerAlaLeuArg <i>Soo</i>	•
	CCATCGGGAGGCCGG	CCGGATGAGGGGACT	GAGGAGGAGACGGAG	1680
AspTrpNetGlyCys \$05	ProSerGlyGlyArg 510	ProAspGluGlyThr 575	GluGluGluThrGlu محزی	
GTGATCATCATTGAG	GTGGACGAGGAGGGC	сфссососсостельс	CCCCCTCCCCTCGTG	1740
جخرح. AalllellelleCln	ValAspCluGluGly 530	Clacialasser	AlaAlaValVal S40	
CTGCCCGTGCTGCTG	CTGCTCCTGGTGCTG	CCCGTCGCCCTTGCA	GTCTTCTTCAGA	1800
LeuProValLeuLeu 545	LeuLeuLeuValLeu 550	AlaValGlyLeuAla SSS	ValPhePhePheArg 560	
CGCCATGGGACCCCC	AGGCGACTGCTCTAC	TECCACCETTECETE	CTGGACAAGGTCTGA	1860
ArgHisGTyThrPro ぴら	ArgArgLeuLeuTyr <i>\$70</i>	CysGlnArgSerLeu 575	LeuAspLysVal	
CGCCCATCCGCCGGC	CCGCCCACTCCTACC	ACANGGACTTTGCCT	CTGAAGGCCAGTGGC	1920
AGCAGGTGGTGGTGG	GTGGGCTGCTCCCAT	сстсссбасссст	CCCCGCAGCCTCCTT	1980

[Sequence Sheet 8]
Sequence No.: 2 (continued)

GCTTCTCTCTCCC CTCCCTGGCCTCCTT CACCCTGACCGCCTC CCTCCCTGCCCCC	2040
GGCATTGCATCTTCC CTAGATAGGTCCCCT GAGGGCTGAGTGGGA GGGCGGCCCTTTCCA	2100
GCCTCTGCCCCTCAG GGGAACCCTGTAGCT TTGTGTCTGTCCAGC CCCATCTGAATGTGT	2160
TGGGGGCTCTGCACT TGAAGGCAGGACCCT CAGACCTCGCTGGTA AAGGTCAAATGGGGT	2220
CATCTGCTCCTTTTC CATCCCCTGACATAC CTTAACCTCTGAACT CTGACCTCAGGAGGC	2280
TCTGGGGAACTCCAG CCCTGAAAGCCCCAG GTGTACCCAATTGGC AGCCTCTCACTACTC	2340
TTTCTGGCTAAAAGG AATCTAATCTTGTTG AGGGTAGAGACCCTG AGACAGTGTGAGGGG	2400
GTGGGGACTGCCAAG CCACCCTAAGACCTT GGGAGGAAAACTCAG AGAGGGTCTTCGTTG	2460
CTCAGTCAGTCAAGT TCCTCGGAGATCTTC CTCTGCCTCACCTAC CCCAGGGAACTTCCA	2520
AGGAAGGAGCCTGAG CCACTGGGGACTAAG TGGGCAGAAAACC CTTGGCAGCCCTGTG	2580
CCTCTCGAATGTTAG CCTTGGATGGGGCTT TCACAGTTACAAGAG CTGAAACCAGGGGTG	2640

[Sequence Sheet 9]

Sequence No.: $\sqrt{2}$ (continued)

CAGCTGTCAGGTAGG CTGGGGCCGGTGGGA GAGGCCCGGGTCAGA GCCCTGGGGGTGAGC	2700
CTTANGGCCACAGAG ANACAACCTTGCCCA AACTCAGGCAGCTGG GGCTGAGGCCCAAAG	2760
GCAGNACAGCCAGAG GGGGGGGGGGGGCAC CAAAAAGGAAAATGA GGACGTGCAGCAGCA	2820
TTGGAAGGCTGGGGC CCGGCAGCCAGGTTA AAGCTAACAGGGGGC CATCAGGGTGGGCTT	2880
GTGGAGCTCTCAGGA AGGGCCCTCAGGAAG GCACACTTGCTCCTG TTGGTCCCTGTCCTT	2940
GCTGCCCAGGCAGGG TGGAGGGGAAGGGTA GGGCAGCCAGAGAAA GGAGCAGAGAAGGCA	3000
CACAAACGAGGAATG AGGGGCTTCACGAGA GGCCACAGGGCCTGG CTGGCCACGCTGTCC	3060
CGGCCTGCTCACCAT CTCAGTGAGGGACAG GAGCTGGGGCTGCTT AGGCTGGGTCCACGC	3120
TTCCCTGGTGCCAGC ACCCCTCAAGCCTGT CTCACCAGTGGCCTG CCCTCTCGCTCCCCC	3180
ACCCAGCCCACCCAT TGAAGTCTCCTTGGG TCCCAAAGGTGGGCA TGGTACCGGGGACTT	3240
GGGAGAGTGAGACCC AGTGGAGGGAGGAAG AGGAGGGATGTGG GGGGGTGGGGCACGG	3300
GTAGGGGAAATGGGG TGAACGGTGCTGGCA GTTCGCCTAGATTTC TGTCTTGTTTTT	3360
TTTGTTTTGTTTAAT GTATATTTTTATTAT AATTATTATATAT	

[Sequence Sheet 10]

Sequence No. 3

Length of sequence: 7

Type of sequence: Amino acid

Topology: Linear

Class of sequence: Peptide

Fragment type: $\[\]$ Intermediate fragment

5

Sequence

1

Pro Arg Cys Gly Val Pro Asp

1

[Sequence Sheet 11]

Sequence No.: 4

Length of sequence: 9

Type of sequence: Amino acid

Topology: Linear

Class of sequence: Peptide

Fragment type: Intermediate fragment

Sequence

Gly Asp Ala His Phe Asp Asp Glu

1

5

[Sequence Sheet 12]

Sequence No.: 5

Length of sequence: 20

Type of sequence: Nucleic acid

Number of chain: Double strand

Topology: Linear

Class of sequence: Other nucleic acid, synthetic DNA

Sequence

CC(C/A)(C/A) G(G/A/C) TG(T/C)(C/G) G(G/A/C)(G/A)(A/T) G(C/T) CC

(T/A)GA

[Sequence Sheet 13]

Sequence No.:

Length of sequence: 25

Type of sequence: Nucleic acid

Number of chain: Double strand

Topology: Linear

Class of sequence: Other nucleic acid, synthetic DNA

Sequence

(T/C) TC (G/A) T (G/C) (G/A/C) TC (G/A) TC (G/A) AA (G/A) TG (G/A) (G/A)

(C/A/T) (G/A) TC (T/C)

[Sequence Sheet 14]

Sequence No.: 7

Length of sequence: 27

Type of sequence: $Amin^{1}q$ acid

Topology: Linear

Class of sequence: Peptide

Fragment type: Intermediate fragment

Sequence

		1							
Gly	Gly	Gly	Ala	Val	Ser	Ala	Ala	Ala	Val
1				5					10
Val	Leu	Pro	Val	Leu	Leu	Leu	Leu	Leu	Val
			Val	15					20
Leu	Ala	Val	e f Γλ	Leu	Ala	Val	Phe	Phe	Phe
			\	25					

[Sequence Sheet 15

Sequence No.: 8

Length of sequence: 14

Type of sequence: $Am \nmid no$ acid

Topology: Linear

Class of sequence: Pertide

Sequence

Arg Glu Val Pro Tyr Ala Tyr IIe Arg Glu

1 5

Gly His Glu Lys

[Sequence Sheet 16]

Sequence No.: 9

Length of sequence: 14

Type of sequence: Amino adid

Topology: Linear

Class of sequence: Peptide

Sequence

Gly Asp Asn Phe Asp Thr Val Ala Met Leu 1 5 10 Arg Gly Glu Met [Sequence Sheet 17] Sequence No.: 10 Length of sequence 15 Type of sequence: Amino acid Topology: Linear Class of sequence: Peptide Sequence Pro Lys Ser Ala Arg **L**eu Asp Trp Met Gly 1 10 Cys Pro Gly Ser Gly