- 1. A line charge of uniform density ρ_l in free space forms a semicircle of radius b. Determine the magnitude and direction of the electric field intensity at the center of the semicircle.
- 2. Three uniform line charges— ρ_{l1} , ρ_{l2} , and ρ_{l3} , each of length L—form an equilateral triangle. Assuming that $\rho_{l1} = 2\rho_{l2} = 2\rho_{l3}$, determine the electric field intensity at the center of the triangle.
- 3. Two infinitely long coaxial cylindrical surfaces, r = a and r = b (b > a), carry surface charge densities ρ_{sa} and ρ_{sb} , respectively.
 - a) Determine **E** everywhere.
 - b) What must be the relation between a and b in order that **E** vanishes for r > b?
- 4. Determine the work done in carrying a $-2(\mu C)$ charge from $P_1(2, 1, -1)$ to $P_2(8, 2, -1)$ in the field $\mathbf{E} = \mathbf{a_x} y + \mathbf{a_y} x$
 - a) along the parabola $x = 2y^2$.
 - b) along the straight line joining P_1 and P_2 .
- 5. A finite line charge of length L carrying uniform line charge density ρ_l is coincident with the x-axis.
 - a) Determine V in the plane bisecting the line charge.
 - b) Determine **E** from ρ_l directly by applying Coulomb's law.
 - c) Check the answer in part (b) with $-\nabla V$.
- 6. A charge Q is distributed uniformly over the wall of a circular tube of radius b and height h. Determine V and \mathbf{E} on its axis
 - a) at a point outside the tube, then
 - b) at a point inside the tube.