Курс "Теория случайных процессов". Итоговая контрольная работа.

1. (3 балла)

(і) Дайте определение Винеровского интеграла

$$I(f) := \int_{a}^{b} f(t)dW_{t} \tag{1}$$

через предел ступенчатых функций. В (1) использованы следующие обозначения: W_t - Броуновское движение, $a, b \in \mathbb{R}$, и f(t) – детерминированная функция из пространства $L^2([a,b])$.

- (ii) Докажите, что определение не зависит от выбора последовательности ступенчатых функций.
- (iii) Докажите, что I(f) имеет нормальное распределение для любой функции $f \in L^2([a,b])$ и укажите среднее и дисперсию величины I(f).

2. (3 балла)

- (i) Дайте определение процесса восстановления S_n и считающего процесса $N_t.$
- (ii) Объясните, как связаны преобразование Лапласа плотности распределения приращения $(S_n S_{n-1})$ и преобразование Лапласа функции $U(t) = \mathbb{E}[N_t]$.
- (iii) Найдите плотность распределения процесса восстановления для случая, когда приращение $(S_n S_{n-1})$ имеет экспоненциальное распределение.

3. (2 балла) Докажите, что процесс $X_t = t(W_t)^2$ является решением стохастического дифференциального уравнения

$$dX_t = \left(\frac{X_t}{t} + t\right)dt + 2\sqrt{tX_t}\operatorname{sign}(W_t)dW_t,$$

где W_t - Броуновское движение, а функция $\mathrm{sign}(x)$ определяется следующим образом:

$$\operatorname{sign}(x) = \begin{cases} 1, & \text{если } x > 0; \\ -1, & \text{если } x < 0, \\ 0, & \text{если } x = 0. \end{cases}$$

- 4. (2 балла) Пусть $X_t = e^{2W_t}$, где W_t Броуновское движение.
 - (i) Докажите, что процесс не является гауссовским.
 - (ii) Найдите математическое ожидание и ковариационную функцию этого процесса.
 - (iii) Выясните, является ли процесс
 - стационарным в широком смысле;
 - стационарным в узком смысле.