Stochastic Control for Optimal Market-Making

Ashwin Rao

ICME, Stanford University

December 3, 2020

Overview

- Trading Order Book Dynamics
- Definition of Optimal Market-Making Problem
- 3 Derivation of Avellaneda-Stoikov Analytical Solution
- 4 Real-world Optimal Market-Making and Reinforcement Learning

Trading Order Book (TOB)

Basics of Trading Order Book (TOB)

- Buyers/Sellers express their intent to trade by submitting bids/asks
- These are Limit Orders (LO) with a price P and size N
- Buy LO (P, N) states willingness to buy N shares at a price $\leq P$
- Sell LO (P, N) states willingness to sell N shares at a price $\geq P$
- Trading Order Book aggregates order sizes for each unique price
- So we can represent with two sorted lists of (Price, Size) pairs

Bids:
$$[(P_i^{(b)}, N_i^{(b)}) | 1 \le i \le m], P_i^{(b)} > P_j^{(b)}$$
 for $i < j$
Asks: $[(P_i^{(a)}, N_i^{(a)}) | 1 \le i \le n], P_i^{(a)} < P_i^{(a)}$ for $i < j$

- We call $P_1^{(b)}$ as simply Bid, $P_1^{(a)}$ as Ask, $\frac{P_1^{(a)} + P_1^{(b)}}{2}$ as Mid
- We call $P_1^{(a)} P_1^{(b)}$ as Spread, $P_n^{(a)} P_m^{(b)}$ as Market Depth
- A Market Order (MO) states intent to buy/sell N shares at the best possible price(s) available on the TOB at the time of MO submission

Trading Order Book (TOB) Activity

A new Sell LO (P, N) potentially removes best bid prices on the TOB

Removal:
$$[(P_i^{(b)}, \min(N_i^{(b)}, \max(0, N - \sum_{j=1}^{i-1} N_j^{(b)}))) \mid (i : P_i^{(b)} \ge P)]$$

After this removal, it adds the following to the asks side of the TOB

$$(P, \max(0, N - \sum_{i:P_i^{(b)} \ge P} N_i^{(b)}))$$

- A new Buy MO operates analogously (on the other side of the TOB)
- A Sell Market Order N will remove the best bid prices on the TOB

Removal:
$$[(P_i^{(b)}, \min(N_i^{(b)}, \max(0, N - \sum_{j=1}^{i-1} N_j^{(b)}))) \mid 1 \le i \le m]$$

A Buy Market Order N will remove the best ask prices on the TOB

Removal:
$$[(P_i^{(a)}, \min(N_i^{(a)}, \max(0, N - \sum_{j=1}^{i-1} N_j^{(a)}))) \mid 1 \le i \le n]$$

TOB Dynamics and Market-Making

- Modeling TOB Dynamics involves predicting arrival of MOs and LOs
- Market-makers are liquidity providers (providers of Buy and Sell LOs)
- Other market participants are typically liquidity takers (MOs)
- But there are also other market participants that trade with LOs
- Complex interplay between market-makers & other mkt participants
- Hence, TOB Dynamics tend to be quite complex
- We view the TOB from the perspective of a single market-maker who aims to gain with Buy/Sell LOs of appropriate width/size
- By anticipating TOB Dynamics & dynamically adjusting Buy/Sell LOs
- Goal is to maximize *Utility of Gains* at the end of a suitable horizon
- If Buy/Sell LOs are too narrow, more frequent but small gains
- If Buy/Sell LOs are too wide, less frequent but large gains
- Market-maker also needs to manage potential unfavorable inventory (long or short) buildup and consequent unfavorable liquidation

Notation for Optimal Market-Making Problem

- We simplify the setting for ease of exposition
- Assume finite time steps indexed by t = 0, 1, ..., T
- Denote $W_t \in \mathbb{R}$ as Market-maker's trading PnL at time t
- Denote $I_t \in \mathbb{Z}$ as Market-maker's inventory of shares at time t $(I_0 = 0)$
- $S_t \in \mathbb{R}^+$ is the TOB Mid Price at time t (assume stochastic process)
- $P_t^{(b)} \in \mathbb{R}^+, N_t^{(b)} \in \mathbb{Z}^+$ are market maker's Bid Price, Bid Size at time t
- $P_t^{(a)} \in \mathbb{R}^+, N_t^{(a)} \in \mathbb{Z}^+$ are market-maker's Ask Price, Ask Size at time t
- Assume market-maker can add or remove bids/asks costlessly
- Denote $\delta_t^{(b)} = S_t P_t^{(b)}$ as Bid Spread, $\delta_t^{(a)} = P_t^{(a)} S_t$ as Ask Spread
- Random var $X_t^{(b)} \in \mathbb{Z}_{\geq 0}$ denotes bid-shares "hit" up to time t
- Random var $X_t^{(a)} \in \mathbb{Z}_{\geq 0}$ denotes ask-shares "lifted" up to time t

$$W_{t+1} = W_t + P_t^{(a)} \cdot \big(X_{t+1}^{(a)} - X_t^{(a)}\big) - P_t^{(b)} \cdot \big(X_{t+1}^{(b)} - X_t^{(b)}\big) \ , \ I_t = X_t^{(b)} - X_t^{(a)}$$

• Goal to maximize $\mathbb{E}[U(W_T + I_T \cdot S_T)]$ for appropriate concave $U(\cdot)$

Markov Decision Process (MDP) Formulation

- Order of MDP activity in each time step $0 \le t \le T 1$:
 - Observe $State := (t, S_t, W_t, I_t)$
 - Perform $Action := (P_t^{(b)}, N_t^{(b)}, P_t^{(a)}, N_t^{(a)})$
 - Experience TOB Dynamics resulting in:
 - random bid-shares hit = $X_{t+1}^{(b)} X_t^{(b)}$ and ask-shares lifted = $X_{t+1}^{(a)} X_t^{(a)}$
 - update of W_t to W_{t+1} , update of I_t to I_{t+1}
 - stochastic evolution of S_t to S_{t+1}
 - Receive next-step (t+1) Reward R_{t+1}

$$R_{t+1} := \begin{cases} 0 & \text{for } 1 \le t+1 \le T-1 \\ U(W_{t+1} + I_{t+1} \cdot S_{t+1}) & \text{for } t+1 = T \end{cases}$$

• Goal is to find an *Optimal Policy* π^* :

$$\pi^*(t, S_t, W_t, I_t) = (P_t^{(b)}, N_t^{(b)}, P_t^{(a)}, N_t^{(a)})$$
 that maximizes $\mathbb{E}[\sum_{t=1}^T R_t]$

• Note: Discount Factor when aggregating Rewards in the MDP is 1

Avellaneda-Stoikov Continuous Time Formulation

- We go over the landmark paper by Avellaneda and Stoikov in 2006
- They derive a simple, clean and intuitive solution
- We adapt our discrete-time notation to their continuous-time setting
- ullet $X_t^{(b)}, X_t^{(a)}$ are Poisson processes with hit/lift-rate means $\lambda_t^{(b)}, \lambda_t^{(a)}$

$$\begin{split} dX_t^{(b)} &\sim Poisson(\lambda_t^{(b)} \cdot dt) \text{ , } dX_t^{(a)} \sim Poisson(\lambda_t^{(a)} \cdot dt) \\ \lambda_t^{(b)} &= f^{(b)}(\delta_t^{(b)}) \text{ , } \lambda_t^{(a)} &= f^{(a)}(\delta_t^{(a)}) \text{ for decreasing functions } f^{(b)}, f^{(a)} \\ dW_t &= P_t^{(a)} \cdot dX_t^{(a)} - P_t^{(b)} \cdot dX_t^{(b)} \text{ , } I_t = X_t^{(b)} - X_t^{(a)} \text{ (note: } I_0 = 0) \end{split}$$

- Since infinitesimal Poisson random variables $dX_t^{(b)}$ (shares hit in time dt) and $dX_t^{(a)}$ (shares lifted in time dt) are Bernoulli (shares hit/lifted in time dt are 0 or 1), $N_t^{(b)}$ and $N_t^{(a)}$ can be assumed to be 1
- This simplifies the Action at time t to be just the pair: $(\delta_t^{(b)}, \delta_t^{(a)})$
- TOB Mid Price Dynamics: $dS_t = \sigma \cdot dz_t$ (scaled brownian motion)
- Utility function $U(x) = -e^{-\gamma x}$ where $\gamma > 0$ is coeff. of risk-aversion

Hamilton-Jacobi-Bellman (HJB) Equation

• We denote the Optimal Value function as $V^*(t, S_t, W_t, I_t)$

$$V^*(t, S_t, W_t, I_t) = \max_{\delta_t^{(b)}, \delta_t^{(a)}} \mathbb{E}\left[-e^{-\gamma \cdot (W_T + I_T \cdot S_T)}\right]$$

• $V^*(t, S_t, W_t, I_t)$ satisfies a recursive formulation for $0 \le t < t_1 < T$:

$$V^*(t, S_t, W_t, I_t) = \max_{\delta_t^{(b)}, \delta_t^{(a)}} \mathbb{E}[V^*(t_1, S_{t_1}, W_{t_1}, I_{t_1})]$$

Rewriting in stochastic differential form, we have the HJB Equation

$$\max_{\delta_t^{(b)}, \delta_t^{(a)}} \mathbb{E}[dV^*(t, S_t, W_t, I_t)] = 0 \text{ for } t < T$$

$$V^*(T, S_T, W_T, I_T) = -e^{-\gamma \cdot (W_T + I_T \cdot S_T)}$$

- Change to $V^*(t, S_t, W_t, I_t)$ is comprised of 3 components:
 - Due to pure movement in time t
 - Due to randomness in TOB Mid-Price S_t
 - Due to randomness in hitting/lifting the Bid/Ask
- With this, we can expand $dV^*(t, S_t, W_t, I_t)$ and rewrite HJB as:

$$\begin{split} \max_{\delta_t^{(b)}, \delta_t^{(a)}} & \{ \frac{\partial V^*}{\partial t} dt + \mathbb{E} \big[\sigma \frac{\partial V^*}{\partial S_t} dz_t + \frac{\sigma^2}{2} \frac{\partial^2 V^*}{\partial S_t^2} (dz_t)^2 \big] \\ & + \lambda_t^{(b)} \cdot dt \cdot V^*(t, S_t, W_t - S_t + \delta_t^{(b)}, I_t + 1) \\ & + \lambda_t^{(a)} \cdot dt \cdot V^*(t, S_t, W_t + S_t + \delta_t^{(a)}, I_t - 1) \\ & + (1 - \lambda_t^{(b)} \cdot dt - \lambda_t^{(a)} \cdot dt) \cdot V^*(t, S_t, W_t, I_t) \\ & - V^*(t, S_t, W_t, I_t) \} = 0 \end{split}$$

We can simplify this equation with a few observations:

- $\mathbb{E}[dz_t] = 0$
- $\mathbb{E}[(dz_t)^2] = dt$
- ullet Organize the terms involving $\lambda_t^{(b)}$ and $\lambda_t^{(a)}$ better with some algebra
- Divide throughout by dt

$$\begin{split} \max_{\delta_{t}^{(b)}, \delta_{t}^{(a)}} &\{ \frac{\partial V^{*}}{\partial t} + \frac{\sigma^{2}}{2} \frac{\partial^{2} V^{*}}{\partial S_{t}^{2}} \\ &+ \lambda_{t}^{(b)} \cdot (V^{*}(t, S_{t}, W_{t} - S_{t} + \delta_{t}^{(b)}, I_{t} + 1) - V^{*}(t, S_{t}, W_{t}, I_{t})) \\ &+ \lambda_{t}^{(a)} \cdot (V^{*}(t, S_{t}, W_{t} + S_{t} + \delta_{t}^{(a)}, I_{t} - 1) - V^{*}(t, S_{t}, W_{t}, I_{t})) \} = 0 \end{split}$$

Next, note that $\lambda_t^{(b)} = f^{(b)}(\delta_t^{(b)})$ and $\lambda_t^{(a)} = f^{(a)}(\delta_t^{(a)})$, and apply the max only on the relevant terms

$$\begin{split} & \frac{\partial V^*}{\partial t} + \frac{\sigma^2}{2} \frac{\partial^2 V^*}{\partial S_t^2} \\ & + \max_{\delta_t^{(b)}} \{ f^{(b)}(\delta_t^{(b)}) \cdot (V^*(t, S_t, W_t - S_t + \delta_t^{(b)}, I_t + 1) - V^*(t, S_t, W_t, I_t)) \} \\ & + \max_{\delta_t^{(a)}} \{ f^{(a)}(\delta_t^{(a)}) \cdot (V^*(t, S_t, W_t + S_t + \delta_t^{(a)}, I_t - 1) - V^*(t, S_t, W_t, I_t)) \} = 0 \end{split}$$

This combines with the boundary condition:

$$V^*(T, S_T, W_T, I_T) = -e^{-\gamma \cdot (W_T + I_T \cdot S_T)}$$

• We make an "educated guess" for the structure of $V^*(t, S_t, W_t, I_t)$:

$$V^{*}(t, S_{t}, W_{t}, I_{t}) = -e^{-\gamma(W_{t} + \theta(t, S_{t}, I_{t}))}$$
(1)

and reduce the problem to a PDE in terms of $\theta(t, S_t, I_t)$

• Substituting this into the above PDE for $V^*(t, S_t, W_t, I_t)$ gives:

$$\begin{split} &\frac{\partial \theta}{\partial t} + \frac{\sigma^2}{2} \big(\frac{\partial^2 \theta}{\partial S_t^2} - \gamma \big(\frac{\partial \theta}{\partial S_t} \big)^2 \big) \\ &+ \max_{\delta_t^{(b)}} \Big\{ \frac{f^{(b)} \big(\delta_t^{(b)} \big)}{\gamma} \cdot \big(1 - e^{-\gamma \big(\delta_t^{(b)} - S_t + \theta(t, S_t, I_t + 1) - \theta(t, S_t, I_t) \big)} \big) \Big\} \\ &+ \max_{\delta_t^{(a)}} \Big\{ \frac{f^{(a)} \big(\delta_t^{(a)} \big)}{\gamma} \cdot \big(1 - e^{-\gamma \big(\delta_t^{(a)} + S_t + \theta(t, S_t, I_t - 1) - \theta(t, S_t, I_t) \big)} \big) \Big\} = 0 \end{split}$$

• The boundary condition is:

$$\theta(T, S_T, I_T) = I_T \cdot S_T$$

Indifference Bid/Ask Price

- It turns out that $\theta(t, S_t, I_t + 1) \theta(t, S_t, I_t)$ and $\theta(t, S_t, I_t) \theta(t, S_t, I_t 1)$ are equal to financially meaningful quantities known as *Indifference Bid and Ask Prices*
- Indifference Bid Price $Q^{(b)}(t, S_t, I_t)$ is defined as:

$$V^{*}(t, S_{t}, W_{t} - Q^{(b)}(t, S_{t}, I_{t}), I_{t} + 1) = V^{*}(t, S_{t}, W_{t}, I_{t})$$
(2)

- $Q^{(b)}(t, S_t, I_t)$ is the price to buy a share with guarantee of immediate purchase that results in Optimum Expected Utility being unchanged
- ullet Likewise, Indifference Ask Price $Q^{(a)}(t,S_t,I_t)$ is defined as:

$$V^{*}(t, S_{t}, W_{t} + Q^{(a)}(t, S_{t}, I_{t}), I_{t} - 1) = V^{*}(t, S_{t}, W_{t}, I_{t})$$
(3)

- $Q^{(a)}(t, S_t, I_t)$ is the price to sell a share with guarantee of immediate sale that results in Optimum Expected Utility being unchanged
- ullet We abbreviate $Q^{(b)}(t,S_t,I_t)$ as $Q^{(b)}_t$ and $Q^{(a)}(t,S_t,I_t)$ as $Q^{(a)}_t$

Indifference Bid/Ask Price in the PDE for θ

• Express $V^*(t, S_t, W_t - Q_t^{(b)}, I_t + 1) = V^*(t, S_t, W_t, I_t)$ in terms of θ :

$$-e^{-\gamma(W_t - Q_t^{(b)} + \theta(t, S_t, I_t + 1))} = -e^{-\gamma(W_t + \theta(t, S_t, I_t))}$$

$$\Rightarrow Q_t^{(b)} = \theta(t, S_t, I_t + 1) - \theta(t, S_t, I_t)$$
(4)

• Likewise for $Q_t^{(a)}$, we get:

$$Q_t^{(a)} = \theta(t, S_t, I_t) - \theta(t, S_t, I_t - 1)$$
 (5)

ullet Using equations (4) and (5), bring $Q_t^{(b)}$ and $Q_t^{(a)}$ in the PDE for heta

$$\begin{split} \frac{\partial \theta}{\partial t} + \frac{\sigma^2}{2} \Big(\frac{\partial^2 \theta}{\partial S_t^2} - \gamma \Big(\frac{\partial \theta}{\partial S_t} \Big)^2 \Big) + \max_{\delta_t^{(b)}} g \Big(\delta_t^{(b)} \Big) + \max_{\delta_t^{(a)}} h \Big(\delta_t^{(b)} \Big) = 0 \\ \text{where } g \Big(\delta_t^{(b)} \Big) &= \frac{f^{(b)} \Big(\delta_t^{(b)} \Big)}{\gamma} \cdot \Big(1 - e^{-\gamma \left(\delta_t^{(b)} - S_t + Q_t^{(b)} \right)} \Big) \\ \text{and } h \Big(\delta_t^{(a)} \Big) &= \frac{f^{(a)} \Big(\delta_t^{(a)} \Big)}{\gamma} \cdot \Big(1 - e^{-\gamma \left(\delta_t^{(a)} + S_t - Q_t^{(a)} \right)} \Big) \end{split}$$

Optimal Bid Spread and Optimal Ask Spread

• To maximize $g(\delta_t^{(b)})$, differentiate g with respect to $\delta_t^{(b)}$ and set to 0

$$e^{-\gamma(\delta_{t}^{(b)^{*}} - S_{t} + Q_{t}^{(b)})} \cdot (\gamma \cdot f^{(b)}(\delta_{t}^{(b)^{*}}) - \frac{\partial f^{(b)}}{\partial \delta_{t}^{(b)}}(\delta_{t}^{(b)^{*}})) + \frac{\partial f^{(b)}}{\partial \delta_{t}^{(b)}}(\delta_{t}^{(b)^{*}}) = 0$$

$$\Rightarrow \delta_{t}^{(b)^{*}} = S_{t} - Q_{t}^{(b)} + \frac{1}{\gamma} \cdot \ln\left(1 - \gamma \cdot \frac{f^{(b)}(\delta_{t}^{(b)^{*}})}{\frac{\partial f^{(b)}}{\partial \delta_{t}^{(b)}}(\delta_{t}^{(b)^{*}})}\right)$$
(6)

• To maximize $g(\delta_t^{(a)})$, differentiate h with respect to $\delta_t^{(a)}$ and set to 0

$$e^{-\gamma(\delta_{t}^{(a)^{*}} + S_{t} - Q_{t}^{(a)})} \cdot (\gamma \cdot f^{(a)}(\delta_{t}^{(a)^{*}}) - \frac{\partial f^{(a)}}{\partial \delta_{t}^{(a)}}(\delta_{t}^{(a)^{*}})) + \frac{\partial f^{(a)}}{\partial \delta_{t}^{(a)}}(\delta_{t}^{(a)^{*}}) = 0$$

$$\Rightarrow \delta_{t}^{(a)^{*}} = Q_{t}^{(a)} - S_{t} + \frac{1}{\gamma} \cdot \ln\left(1 - \gamma \cdot \frac{f^{(a)}(\delta_{t}^{(a)^{*}})}{\frac{\partial f^{(a)}}{\partial \delta_{t}^{(a)}}(\delta_{t}^{(a)^{*}})}\right)$$
(7)

• (6) and (7) are implicit equations for $\delta_t^{(b)}$ and $\delta_t^{(a)}$ respectively

Solving for θ and for Optimal Bid/Ask Spreads

Let us write the PDE in terms of the Optimal Bid and Ask Spreads

$$\frac{\partial \theta}{\partial t} + \frac{\sigma^{2}}{2} \left(\frac{\partial^{2} \theta}{\partial S_{t}^{2}} - \gamma \left(\frac{\partial \theta}{\partial S_{t}} \right)^{2} \right)
+ \frac{f^{(b)} \left(\delta_{t}^{(b)^{*}} \right)}{\gamma} \cdot \left(1 - e^{-\gamma \left(\delta_{t}^{(b)^{*}} - S_{t} + \theta(t, S_{t}, I_{t} + 1) - \theta(t, S_{t}, I_{t}) \right)} \right)
+ \frac{f^{(a)} \left(\delta_{t}^{(a)^{*}} \right)}{\gamma} \cdot \left(1 - e^{-\gamma \left(\delta_{t}^{(a)^{*}} + S_{t} + \theta(t, S_{t}, I_{t} - 1) - \theta(t, S_{t}, I_{t}) \right)} \right) = 0$$
(8)

with boundary condition $\theta(T, S_T, I_T) = I_T \cdot S_T$

- \bullet First we solve PDE (8) for θ in terms of ${\delta_t^{(b)}}^*$ and ${\delta_t^{(a)}}^*$
- In general, this would be a numerical PDE solution
- Using (4) and (5), we have $Q_t^{(b)}$ and $Q_t^{(a)}$ in terms of ${\delta_t^{(b)}}^*$ and ${\delta_t^{(a)}}^*$
- Substitute above-obtained $Q_t^{(b)}$ and $Q_t^{(a)}$ in equations (6) and (7)
- Solve implicit equations for $\delta_t^{(b)}$ and $\delta_t^{(a)}$ (in general, numerically)

Building Intuition

- Define Indifference Mid Price $Q_t^{(m)} = \frac{Q_t^{(b)} + Q_t^{(a)}}{2}$
- To develop intuition for Indifference Prices, consider a simple case where the market-maker doesn't supply any bids or asks

$$V^*(t, S_t, W_t, I_t) = \mathbb{E}[-e^{-\gamma(W_t + I_t \cdot S_T)}]$$

• Combining this with the diffusion $dS_t = \sigma \cdot dz_t$, we get:

$$V^*(t,S_t,W_t,I_t) = -e^{-\gamma(W_t+I_t\cdot S_t - \frac{\gamma \cdot I_t^2\cdot\sigma^2(T-t)}{2})}$$

• Combining this with equations (2) and (3), we get:

$$Q_{t}^{(b)} = S_{t} - (2I_{t} + 1) \frac{\gamma \sigma^{2}(T - t)}{2} , Q_{t}^{(a)} = S_{t} - (2I_{t} - 1) \frac{\gamma \sigma^{2}(T - t)}{2}$$

$$Q_{t}^{(m)} = S_{t} - I_{t} \gamma \sigma^{2}(T - t) , Q_{t}^{(a)} - Q_{t}^{(b)} = \gamma \sigma^{2}(T - t)$$

• These results for the simple case of no-market-making serve as approximations for our problem of optimal market-making

Building Intuition

- Think of $Q_t^{(m)}$ as inventory-risk-adjusted mid-price (adjustment to S_t)
- If market-maker is long inventory $(I_t > 0)$, $Q_t^{(m)} < S_t$ indicating inclination to sell than buy, and if market-maker is short inventory, $Q_t^{(m)} > S_t$ indicating inclination to buy than sell
- Armed with this intuition, we come back to optimal market-making, observing from eqns (6) and (7): $P_t^{(b)^*} < Q_t^{(b)} < Q_t^{(m)} < Q_t^{(a)} < P_t^{(a)^*}$
- Think of $[P_t^{(b)^*}, P_t^{(a)^*}]$ as "centered" at $Q_t^{(m)}$ (rather than at S_t), i.e., $[P_t^{(b)^*}, P_t^{(a)^*}]$ will (together) move up/down in tandem with $Q_t^{(m)}$ moving up/down (as a function of inventory position I_t)

$$Q_{t}^{(m)} - P_{t}^{(b)^{*}} = \frac{Q_{t}^{(a)} - Q_{t}^{(b)}}{2} + \frac{1}{\gamma} \cdot \ln\left(1 - \gamma \cdot \frac{f^{(b)}(\delta_{t}^{(b)^{*}})}{\frac{\partial f^{(b)}}{\partial \delta_{t}^{(b)}}(\delta_{t}^{(b)^{*}})}\right)$$
(9)

$$P_{t}^{(a)*} - Q_{t}^{(m)} = \frac{Q_{t}^{(a)} - Q_{t}^{(b)}}{2} + \frac{1}{\gamma} \cdot \ln\left(1 - \gamma \cdot \frac{f^{(a)}(\delta_{t}^{(a)*})}{\frac{\partial f^{(a)}}{\partial \delta_{t}^{(a)}}(\delta_{t}^{(a)*})}\right)$$
(10)

Simple Functional Form for Hitting/Lifting Rate Means

- ullet The PDE for heta and the implicit equations for ${\delta_t^{(b)}}^*, {\delta_t^{(a)}}^*$ are messy
- We make some assumptions, simplify, derive analytical approximations
- ullet First we assume a fairly standard functional form for $f^{(b)}$ and $f^{(a)}$

$$f^{(b)}(\delta) = f^{(a)}(\delta) = c \cdot e^{-k \cdot \delta}$$

• This reduces equations (6) and (7) to:

$$\delta_t^{(b)*} = S_t - Q_t^{(b)} + \frac{1}{\gamma} \ln\left(1 + \frac{\gamma}{k}\right)$$
 (11)

$$\delta_t^{(a)*} = Q_t^{(a)} - S_t + \frac{1}{\gamma} \ln \left(1 + \frac{\gamma}{k}\right)$$
 (12)

 $\Rightarrow {P_t^{(b)}}^*$ and ${P_t^{(a)}}^*$ are equidistant from $Q_t^{(m)}$

• Substituting these simplified $\delta_t^{(b)^*}, \delta_t^{(a)^*}$ in (8) reduces the PDE to:

$$\frac{\partial \theta}{\partial t} + \frac{\sigma^2}{2} \left(\frac{\partial^2 \theta}{\partial S_t^2} - \gamma \left(\frac{\partial \theta}{\partial S_t} \right)^2 \right) + \frac{c}{k + \gamma} \left(e^{-k \cdot \delta_t^{(b)^*}} + e^{-k \cdot \delta_t^{(a)^*}} \right) = 0$$
 (13)

with boundary condition $\theta(T, S_T, I_T) = I_T \cdot S_T$

Simplifying the PDE with Approximations

- Note that this PDE (13) involves ${\delta_t^{(b)}}^*$ and ${\delta_t^{(a)}}^*$
- However, equations (11), (12), (4), (5) enable expressing $\delta_t^{(b)^*}$ and $\delta_t^{(a)^*}$ in terms of $\theta(t, S_t, I_t 1), \theta(t, S_t, I_t), \theta(t, S_t, I_t + 1)$
- \bullet This would give us a PDE just in terms of θ
- Solving that PDE for θ would not only give us $V^*(t, S_t, W_t, I_t)$ but also $\delta_t^{(b)^*}$ and $\delta_t^{(a)^*}$ (using equations (11), (12), (4), (5))
- To solve the PDE, we need to make a couple of approximations
- First we make a linear approx for $e^{-k\cdot\delta_t^{(b)^*}}$ and $e^{-k\cdot\delta_t^{(a)^*}}$ in PDE (13):

$$\frac{\partial \theta}{\partial t} + \frac{\sigma^2}{2} \left(\frac{\partial^2 \theta}{\partial S_t^2} - \gamma \left(\frac{\partial \theta}{\partial S_t} \right)^2 \right) + \frac{c}{k+\gamma} \left(1 - k \cdot \delta_t^{(b)^*} + 1 - k \cdot \delta_t^{(a)^*} \right) = 0$$
 (14)

• Equations (11), (12), (4), (5) tell us that:

$$\delta_t^{(b)*} + \delta_t^{(a)*} = \frac{2}{\gamma} \ln \left(1 + \frac{\gamma}{k} \right) + 2\theta(t, S_t, I_t) - \theta(t, S_t, I_t + 1) - \theta(t, S_t, I_t - 1)$$

Asymptotic Expansion of θ in I_t

• With this expression for $\delta_t^{(b)^*} + \delta_t^{(a)^*}$, PDE (14) takes the form:

$$\frac{\partial \theta}{\partial t} + \frac{\sigma^2}{2} \left(\frac{\partial^2 \theta}{\partial S_t^2} - \gamma \left(\frac{\partial \theta}{\partial S_t} \right)^2 \right) + \frac{c}{k + \gamma} \left(2 - \frac{2k}{\gamma} \ln \left(1 + \frac{\gamma}{k} \right) - k \left(2\theta(t, S_t, I_t) - \theta(t, S_t, I_t + 1) - \theta(t, S_t, I_t - 1) \right) \right) = 0$$
(15)

• To solve PDE (15), we consider this asymptotic expansion of θ in I_t :

$$\theta(t, S_t, I_t) = \sum_{n=0}^{\infty} \frac{I_t^n}{n!} \cdot \theta^{(n)}(t, S_t)$$

- So we need to determine the functions $\theta^{(n)}(t,S_t)$ for all $n=0,1,2,\ldots$
- For tractability, we approximate this expansion to the first 3 terms:

$$\theta(t, S_t, I_t) \approx \frac{\theta^{(0)}(t, S_t)}{\theta^{(0)}(t, S_t)} + I_t \cdot \theta^{(1)}(t, S_t) + \frac{I_t^2}{2} \cdot \theta^{(2)}(t, S_t)$$

Approximation of the Expansion of θ in I_t

- We note that the Optimal Value Function V^* can depend on S_t only through the current Value of the Inventory (i.e., through $I_t \cdot S_t$), i.e., it cannot depend on S_t in any other way
- This means $V^*(t, S_t, W_t, 0) = -e^{-\gamma(W_t + \theta^{(0)}(t, S_t))}$ is independent of S_t
- This means $\theta^{(0)}(t, S_t)$ is independent of S_t
- So, we can write it as simply $\theta^{(0)}(t)$, meaning $\frac{\partial \theta^{(0)}}{\partial S_t}$ and $\frac{\partial^2 \theta^{(0)}}{\partial S_t^2}$ are 0
- Therefore, we can write the approximate expansion for $\theta(t, S_t, I_t)$ as:

$$\theta(t, S_t, I_t) = \frac{\theta^{(0)}(t)}{t} + I_t \cdot \theta^{(1)}(t, S_t) + \frac{I_t^2}{2} \cdot \theta^{(2)}(t, S_t)$$
 (16)

Solving the PDE

• Substitute this approximation (16) for $\theta(t, S_t, I_t)$ in PDE (15)

$$\begin{split} &\frac{\partial \theta^{(0)}}{\partial t} + I_t \frac{\partial \theta^{(1)}}{\partial t} + \frac{I_t^2}{2} \frac{\partial \theta^{(2)}}{\partial t} + \frac{\sigma^2}{2} \left(I_t \frac{\partial^2 \theta^{(1)}}{\partial S_t^2} + \frac{I_t^2}{2} \frac{\partial^2 \theta^{(2)}}{\partial S_t^2} \right) \\ &- \frac{\gamma \sigma^2}{2} \left(I_t \frac{\partial \theta^{(1)}}{\partial S_t} + \frac{I_t^2}{2} \frac{\partial \theta^{(2)}}{\partial S_t} \right)^2 + \frac{c}{k + \gamma} \left(2 - \frac{2k}{\gamma} \ln \left(1 + \frac{\gamma}{k} \right) + k \cdot \theta^{(2)} \right) = 0 \end{split}$$

with boundary condition:

$$\theta^{(0)}(T) + I_T \cdot \theta^{(1)}(T, S_T) + \frac{I_T^2}{2} \cdot \theta^{(2)}(T, S_T) = I_T \cdot S_T$$
(17)

- We will separately collect terms involving specific powers of I_t , each yielding a separate PDE:
 - Terms devoid of I_t (i.e., I_t^0)
 - Terms involving I_t (i.e., I_t^{1})
 - Terms involving I_t^2

Solving the PDE

ullet We start by collecting terms involving I_t

$$\frac{\partial \theta^{(1)}}{\partial t} + \frac{\sigma^2}{2} \cdot \frac{\partial^2 \theta^{(1)}}{\partial S_t^2} = 0 \text{ with boundary condition } \theta^{(1)}(T, S_T) = S_T$$

• The solution to this PDE is:

$$\theta^{(1)}(t, S_t) = S_t \tag{18}$$

• Next, we collect terms involving I_t^2

$$\frac{\partial \theta^{(2)}}{\partial t} + \frac{\sigma^2}{2} \cdot \frac{\partial^2 \theta^{(2)}}{\partial S_t^2} - \gamma \sigma^2 \cdot \left(\frac{\partial \theta^{(1)}}{\partial S_t}\right)^2 = 0 \text{ with boundary } \theta^{(2)}(T, S_T) = 0$$

• Noting that $\theta^{(1)}(t, S_t) = S_t$, we solve this PDE as:

$$\theta^{(2)}(t, S_t) = -\gamma \sigma^2 (T - t) \tag{19}$$

Solving the PDE

ullet Finally, we collect the terms devoid of I_t

$$\frac{\partial \theta^{(0)}}{\partial t} + \frac{c}{k+\gamma} \left(2 - \frac{2k}{\gamma} \ln\left(1 + \frac{\gamma}{k}\right) + k \cdot \theta^{(2)}\right) = 0 \text{ with boundary } \theta^{(0)}(T) = 0$$

• Noting that $\theta^{(2)}(t, S_t) = -\gamma \sigma^2(T - t)$, we solve as:

$$\theta^{(0)}(t) = \frac{c}{k+\gamma} \left(\left(2 - \frac{2k}{\gamma} \ln\left(1 + \frac{\gamma}{k}\right)\right) (T-t) - \frac{k\gamma\sigma^2}{2} (T-t)^2 \right) \tag{20}$$

- This completes the PDE solution for $\theta(t, S_t, I_t)$ and hence, for $V^*(t, S_t, W_t, I_t)$
- \bullet Lastly, we derive formulas for $Q_t^{(b)},Q_t^{(a)},Q_t^{(m)},{\delta_t^{(b)}}^*,{\delta_t^{(a)}}^*$

Formulas for Prices and Spreads

• Using equations (4) and (5), we get:

$$Q_t^{(b)} = \theta^{(1)}(t, S_t) + \underbrace{(2I_t + 1)}_{2} \cdot \theta^{(2)}(t, S_t) = S_t - (2I_t + 1) \frac{\gamma \sigma^2(T - t)}{2}$$
(21)

$$Q_t^{(a)} = \theta^{(1)}(t, S_t) + \underbrace{(2I_t - 1) \cdot \theta^{(2)}}_{2}(t, S_t) = S_t - (2I_t - 1) \frac{\gamma \sigma^2 (T - t)}{2}$$
(22)

• Using equations (11) and (12), we get:

$$\delta_t^{(b)^*} = \frac{(2I_t + 1)\gamma\sigma^2(T - t)}{2} + \frac{1}{\gamma}\ln(1 + \frac{\gamma}{k})$$
 (23)

$$\delta_t^{(a)*} = \frac{(1-2I_t)\gamma\sigma^2(T-t)}{2} + \frac{1}{\gamma}\ln(1+\frac{\gamma}{k})$$
 (24)

Optimal Bid-Ask Spread
$$\delta_t^{(b)*} + \delta_t^{(a)*} = \gamma \sigma^2 (T - t) + \frac{2}{\gamma} \ln \left(1 + \frac{\gamma}{k}\right)$$
 (25)

Optimal "Mid"
$$Q_t^{(m)} = \frac{Q_t^{(b)} + Q_t^{(a)}}{2} = \frac{P_t^{(b)^*} + P_t^{(a)^*}}{2} = S_t - I_t \gamma \sigma^2 (T - t)$$
(26)

Back to Intuition

- ullet Think of $Q_t^{(m)}$ as inventory-risk-adjusted mid-price (adjustment to S_t)
- If market-maker is long inventory $(I_t > 0)$, $Q_t^{(m)} < S_t$ indicating inclination to sell than buy, and if market-maker is short inventory, $Q_t^{(m)} > S_t$ indicating inclination to buy than sell
- Think of $[P_t^{(b)^*}, P_t^{(a)^*}]$ as "centered" at $Q_t^{(m)}$ (rather than at S_t), i.e., $[P_t^{(b)^*}, P_t^{(a)^*}]$ will (together) move up/down in tandem with $Q_t^{(m)}$ moving up/down (as a function of inventory position I_t)
- Note from equation (25) that the Optimal Bid-Ask Spread $P_t^{(a)^*} P_t^{(b)^*}$ is independent of inventory I_t
- Useful view: $P_t^{(b)^*} < Q_t^{(b)} < Q_t^{(m)} < Q_t^{(a)} < P_t^{(a)^*}$, with these spreads:

Outer Spreads
$$P_t^{(a)^*} - Q_t^{(a)} = Q_t^{(b)} - P_t^{(b)^*} = \frac{1}{\gamma} \ln \left(1 + \frac{\gamma}{k}\right)$$

Inner Spreads
$$Q_t^{(a)} - Q_t^{(m)} = Q_t^{(m)} - Q_t^{(b)} = \frac{\gamma \sigma^2 (T - t)}{2}$$

Real-world Market-Making and Reinforcement Learning

- Real-world TOB dynamics are non-stationary, non-linear, complex
- Frictions: Discrete Prices/Sizes, Constraints on Prices/Sizes, Fees
- Need to capture various market factors in the State & TOB Dynamics
- This leads to Curse of Dimensionality and Curse of Modeling
- The practical route is to develop a simulator capturing all of the above
- Simulator is a Market-Data-learnt Sampling Model of TOB Dynamics
- Using this simulator and neural-networks func approx, we can do RL
- References: 2018 Paper from University of Liverpool and 2019 Paper from JP Morgan Research
- Exciting area for Future Research as well as Engineering Design