НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО Факультет систем управления и робототехники

Электротехника

Лабораторная работа №21 СИНТЕЗ ПРЕОБРАЗОВАТЕЛЯ ДВОИЧНОГО (ДВОИЧНО-ДЕСЯТИЧНОГО) КОДА В СЕМИСЕГМЕНТНЫЙ

Вариант 3R382

Студент: Кирбаба Д.Д.

Группа: R3338

Преподаватель: Китаев Ю.В.

г. Санкт-Петербург 2023

Цель работы

Изучение преобразователей кодов.

Ход работы

Рис. 1: Блок-схема преобразователя и фрагмент подключения отдельного светодиода (сегмента).

Заполним таблицу истинности преобразователя:

Decimal	8	4	2	1	Segments										
	х3	x2	x1	x0	Ya	Yb	Yc	Yd	Ye	Yf	Yg				
0	0	0	0	0	1	1	1	1	1	1	0				
1	0	0	0	1	0	1	1	0	0	0	0				
2	0	0	1	0	1	1	0	1	1	0	1				
3	0	0	1	1	1	1	1	1	0	0	1				
4	0	1	0	0	0	1	1	0	0	1	1				
5	0	1	0	1	1	0	1	1	0	1	1				
6	0	1	1	0	1	0	1	1	1	1	1				
7	0	1	1	1	1	1	1	0	0	0	0				
8	1	0	0	0	1	1	1	1	1	1	1				
9	1	0	0	1	1	1	1	1	0	1	1				
а	1	0	1	0	0	0	0	1	1	0	1				

Рис. 2: Таблица истинности преобразователя.

В соответствии с вариантом 3R382 необходимо выполнить работу для 3-х сегментов ЖК дисплея $A,\ B,\ E.$

Набор высвечиваемых цифр: 0123456789а.

Составим таблицу Карно и уравнения для каждого из трех заданных сегментов:

Karnaugh map Ya					Karnaugh map Yb					Karnaugh map Ye				
	~x2, ~x3	~x2, x3	x2, x3	x2, ~x3		~x2, ~x3	~x2, x3	x2, x3	x2,~x3		~x2, ~x3	~x2, x3	x2, x3	x2, ~x3
~x0, ~x1	1	0	1	1	~x0, ~x1	1	1	1	1	~x0, ~x1	1	0	0	1
~x0, x1	0	1	1	1	~x0, x1	1	0	1	0	~x0, x1	0	0	0	1
x0, x1	х	X	X	X	x0, x1	х	х	х	х	x0, x1	х	х	X	X
x0, ~x1	1	1	X	0	x0, ~x1	1	1	X	0	x0, ~x1	1	0	X	1
Ya = ~x0*x2 + x1*x3 + x0*~x2 + ~x0*~x1*~x3					Yb = ~x0*~x1 + ~x1*~x2 + ~x2*~x3 + x2*x3					Ye = ~x1*~x3 + x2*~x3				

Рис. 3: Таблицы Карно и уравнения для 3-х сегментов.

Рис. 4: Построенная блок-схема моделирования.

Моделируя данную схему, свечение сегмента в соответствующих кодах преобразователя соответствует желаемому.

Выводы

В данной работе был проведен синтез преобразователя двоичного кода в семисегментный. В начале работы была построена требуемая таблица истинности для корректного вывода результата на сегменты. Затем, по ней были построены карты Карно и соответствующие уравнения для функций $Ya,\ Yb,\ Ye.$

Сконструированные уравнения были построены в модели и по результатам моделирования я убедился, что задание выполнено верно, так как все десятичные цифры на экране корректно отображаются по задаваемым двоичным кодам.