Final exam: Thurs 12/14, 8:00-11:00 am, 132 Berier Hall
TWO reference sheets (2x front and back) allowed
Cumulative: everything from the course is fair game
See email for full policies

Today: 260 minutes of prepared problems
then anything you want to talk about

Examples:

1)(Rem. 4.3.13) Let D be a digraph and let $x,y \in V(D)$. Use network flows to prove that $K'(x,y) = \lambda'(x,y)$.

K'(x,y) = size of a minimum x,y -edge cut $\lambda'(x,y)$ = maximum num. of edge -disjoint x,y-paths Remark: This is one of 4 versions of Menger's Thm.

Pf: If $\exists k$ edge-disjoint x,y-paths, then every x,y-edge cut must contain $\supseteq 1$ edge from every path, so has $\supseteq k$ edges. Thus, $k'(x,y) \supseteq \lambda'(x,y)$.

Conversely, consider D as a network w/ source

 \times and sink y, where every edge has capacity 1. By the integrality theorem (4.3.12), there is a maximum flow f where all edge flows are integers. Let k be value of this flow; f then determines a set of k x,y-paths and since every edge flow is 0 or 1, these paths are edge disjoint. Thus $\lambda(x,y) \ge k$.

By the max-flow, min-cut thm., I a (minimum) edge cut [S,T] w/ capacity k. Since every edge has capacity 1, this means that [S,T] consists of k edges, and since [S,T] is an x,y-edge cut, we have $K'(x,y) \le k$. Combining these facts yields $\lambda'(x,y) \ge k'(x,y)$, so $\lambda'(x,y) = k'(x,y)$.

2) (2.1.32) Let G:conn. graph, e \(E(G)\). Prove that a) e is a cut-edge \(\Lefta\) e belongs to every spanning tree b) e is a loop \(\Lefta\) e belongs to no spanning tree

Pf: a) e is a cut-edge & Gre is disconn.

For every spanning tree T of G

WTS: Gre is conh. => Tre is conh. for some Spanning tree T of G

Pf: Take a spanning tree T of Gre.
Then Tre = T is conn.

b) =>) Thees have no cycles, so no loops.

←) If e is not a loop, let T be a spanning free
of G. Either eeE(T) or Tue contains a cycle.

Let $f \in E(T)$ be another edge in that cycle (such an edge exists since e is not a loop). Then, $(Tve) \cdot f$ is conn. and has the same number of edges as T, so is a spanning tree containing e.

3) (3.1.29) a) Prove that every bipartite graph has a matching of size $\geq \frac{e(G)}{\Delta(G)}$

b) Let H be a subgraph of $k_{n,n}$ $w/ > (k-1)_n$ edges. Prove that H has a matching of size $\geq k$.

Pf: a) Recall the König-Egervary Thm: a'(6) = B(6) for all bipartite graphs where

x'(G)=maximum site of matching

B(G)=minimum site of vertex cover

Every vertex in a vertex cover must cover $\leq \Delta(G)$ edges, so the vertex cover has $\geq e(G)/\Delta(G)$ vertices. By König-Egerväry, $a'(G) = g(G) \geq e(G)/\Delta(G)$.

6 U = V(G) U: vertex cover

 $\forall e \in E(G), \geq 1$ endpoint of e is in U we U is an endpoint of $\leq \Delta(G)$ edges $e \in E(G)$.

U = {U,,-,Uk}

Q: how many edges are "covered" by U?

i.e. how many edges have 31 endpoint in U? this number is

$$a \leq d(u_1) + d(u_2) + \cdots + d(u_k) \leq \Delta(G) + \cdots + \Delta(G)$$

k terms

= k \((6)

If U is a vertex cover, $\alpha = e(G)$, so $e(G) \le k \Delta(G) = |U| \Delta(G)$, so $|U| \ge \frac{e(G)}{\Delta(G)}$

b) For a subgraph H of $k_{n,n}$, $\triangle(H) \le n$, and by assumption, e(H) > (k-1)n. By part a, $a'(H) \ge e(H) / (k-1)n \ge \frac{(k-1)n}{n} = k-1$,

So d(H) 2 k.

4) (4.1.10): Determine the smallest 3-regalar Simple graph G with K(G) = 1
(vertex) connectivity

Pf: By Theorem 4.1.11, K(G) = K'(G) for 3-regular Simple graphs, so we find the smallest 3-regular Simple graph $G \otimes K'(G) = 1$.

Let G be a 3-reg. simple graph w/ K'(G) = 1. Let H
be a component of Gre for some cut edge e. Since
H has a vertex of deg. 3, h(H) = 4. By the
deg. sum formula,

so h(H)-1 is even, so n(H) is odd, and so $h(H) \geq 5$. Thus, $h(C) \geq 10$.

5) Let G be a P_q -free simple graph (no induced subgraph isom. to P_q). Prove that the greedy coloring algorithm uses $\chi(G)$ colors for any vertex order.

Pf: Let $V_1,...,V_n$ be an ordering of V(G), and suppose the greedy colorino alg. uses k colors wr.t. this ordering. We show that $\omega(G) \supseteq k$, so $\chi(G) \supseteq k$ Since $\omega(G) \le \chi(G) \le k \le \omega(G)$.

Let f be the proper coloring obtained via the greedy alg. and let i be the smallest integer s.t. G has a clique Q = fui, -., uk} of vertices colored i, i+1,--, k. (Clearly, i ≤ k since Ghas a vertex of color k) If i>1, by the greedy alg., each elt. of Q has

a neighbor of color i-1. Let x be a vertex of color i-1 that is adjacent to the most vertices of Q. By the choice of i, $\exists z \in Q \setminus N(x)$. Let $w \in N(z)$ have color i-1; by the choice of x, $|N(x) \cap Q| \ge |N(w) \cap Q|$, so $\exists y \in (N(x) \cap Q) \setminus N(w)$. Since x and w have

x is adjacent to y, but not to z or w y is adj. to x and z, but not to w z is adj. to y and w, but not to x

the same color, they are non adjacent. To

summarize,

So $V[\{x,y,z,w\}] \cong P_{4}$. Therefore, if G is P_{4} -free, i=1, so |Q|=k, $\omega(G) \ge k$.

for us: Jordan curve theorem means that any closed curve (i.e. the boundary of a face of a plane graph) has an inside and an outside, and the only way to get from the inside to the outside is to cross the curve.

N(x)

N(x) indep. set \Rightarrow every edge has ≥ 1 endpoint not in N(x)

Zd(v) = Z (# endpoints of e not in N(x))
vx N(x) e c E(G)

= \(\lambda \cdot \cdot