

DATA MINING ASSIGNMENT 2 ANALYSIS AND MODELLING OF PHARMACEUTICAL DATA FOR OPINION MINING AND DRUG CHARACTERISTICS

PYTHON CODE APPENDIX

Student Name	Vyoma Mohan
Student Id	D22124454
Subject	Data Mining
Subject Code	DATA 9900
Course	TU059
Stream	Data Science (DS)
Year	First year
Assignment	Assignment 2
Deadline	8 th Jan 2023

This document contains only python code snippets. For rest, please refer report.

Python code related to importing and cleaning the training dataset:

[1] Reading the excel file

Reading the raw data from the file
raw_med_data = pd.read_csv('drugLib_raw/drugLibTrain_raw.tsv',sep='\t')
display(raw_med_data.head(5))

	Unnamed: 0	urlDrugName	rating	effectiveness	sideEffects	condition	benefitsReview	sideEffectsReview	commentsReview
0	2202	enalapril	4	Highly Effective	Mild Side Effects	management of congestive heart failure	slowed the progression of left ventricular dys	cough, hypotension , proteinuria, impotence ,	monitor blood pressure , weight and asses for
1	3117	ortho-tri- cyclen	1	Highly Effective	Severe Side Effects	birth prevention	Although this type of birth control has more c	Heavy Cycle, Cramps, Hot Flashes, Fatigue, Lon	I Hate This Birth Control, I Would Not Suggest
2	1146	ponstel	10	Highly Effective	No Side Effects	menstrual cramps	I was used to having cramps so badly that they	Heavier bleeding and clotting than normal.	I took 2 pills at the onset of my menstrual cr
3	3947	prilosec	3	Marginally Effective	Mild Side Effects	acid reflux	The acid reflux went away for a few months aft	Constipation, dry mouth and some mild dizzines	I was given Prilosec prescription at a dose of
4	1951	lyrica	2	Marginally Effective	Severe Side Effects	fibromyalgia	I think that the Lyrica was starting to help w	I felt extremely drugged and dopey. Could not	See above

[2] Checking for null values

Check for null values in the dataset
raw_med_data.isna().sum()
#raw_med_data.isna().sum().sum()

Unnamed: 0 0 urlDrugName 0 rating 0 effectiveness 0 sideEffects condition benefitsReview 0 sideEffectsReview 2 commentsReview dtype: int64

[3] Remove the reviews without alphanumeric characters

Remove the reviews and conditions that don't have alphanumeric characters in them

med_cleaned = raw_med_data.drop(raw_med_data[~raw_med_data.commentsReview.str.contains('[a-zA-Z]',na=True)].index)

med_cleaned = med_cleaned.drop(med_cleaned[~med_cleaned.sideEffectsReview.str.contains('[a-zA-Z]',na=True)].index)

med_cleaned = med_cleaned.drop(med_cleaned[~med_cleaned.condition.str.contains('[a-zA-Z]',na=True)].index)

display(med_cleaned)

med_cleaned.shape

	Unnamed: 0	urlDrugName	rating	effectiveness	sideEffects	condition	benefitsReview	sideEffectsReview	commentsReview
0	2202	enalapril	4	Highly Effective	Mild Side Effects	management of congestive heart failure	slowed the progression of left ventricular dys	cough, hypotension , proteinuria, impotence ,	monitor blood pressure , weight and asses for
1	3117	ortho-tri- cyclen	1	Highly Effective	Severe Side Effects	birth prevention	Although this type of birth control has more C	Heavy Cycle, Cramps, Hot Flashes, Fatigue, Lon	I Hate This Birth Control, I Would Not Suggest

[4] Rename columns and drop unnecessary columns

```
# Rename the columns
med_cleaned.rename(columns={'Unnamed: 0': 'Unnamed', 'urlDrugName': 'DrugName', 'rating':'Rating','effectiveness'
'sideEffects':'SideEffects','condition':'Condition','benefitsReview':'BenefitsReview',
                                      'sideEffectsReview':'SideEffectsReview','commentsReview':'CommentsReview'}, inplace=True)
# Drop the column that is not described
med cleaned = med cleaned.drop('Unnamed', axis=1)
display(med_cleaned)
         DrugName Rating Effectiveness
                                                                              Condition
                                                                                                                                                             CommentsReview
                                                                         management of
                                                                                           slowed the progression of left ventricular dys...
                                                                                                                         cough, hypotension , proteinuria, impotence , ...
                                                                                                                                                        monitor blood pressure.
           enalapril
                           4 Highly Effective Mild Side Effects
           ortho-tri-
                                                      Severe Side
                                                                                           Although this type of birth
                                                                                                                        Heavy Cycle, Cramps, Hot Flashes, Fatigue, Lon...
                                                                                                                                                      I Hate This Birth Control, I
```

control has more c

Would Not Suggest...

Analysis screenshots

cvclen

[1] Check unique number of drugs and conditions

1 Highly Effective

```
# How many medicines are produced by the pharmaceutical company
med_cleaned['DrugName'].nunique()
```

birth prevention

Effects

502

```
med_cleaned['Condition'].nunique()
```

1422

[2] Distribution of effectiveness with pie chart

```
effectiveness_counts = med_cleaned.Effectiveness.value_counts()
effectiveness_counts_labels = effectiveness_counts.index.to_list()
print(effectiveness_counts)
fig = px.pie(med_cleaned, values= effectiveness_counts, names=effectiveness_counts_labels)
fig.show()
```

[3] Distribution of side effects with pie chart

```
side_effect_serious_counts = med_cleaned.SideEffects.value_counts()
side_effect_serious_counts_labels = side_effect_serious_counts.index.to_list()
print(side_effect_serious_counts)
fig = px.pie(med_cleaned, values = side_effect_serious_counts, names = side_effect_serious_counts_labels)
fig.show()
```

[4] How many drugs have an average rating of 10

```
# Average rating of all the drugs
avg_rating = med_cleaned.groupby(['DrugName']).mean()
display(avg_rating.sort_values('Rating', ascending = False).head(5))
# How many have an average rating of 10
avg_rating[avg_rating.Rating == 10].count()
```

[5] Name the medicines with 10 rating

```
rating_10 = avg_rating[avg_rating.Rating == 10]
rating_10 = rating_10.sort_values('DrugName')
rating_10_names = rating_10.index.to_list()

fig = go.Figure(data=[go.Table(header=dict(values=['Medicine Name', 'Medicine Name'
```

[6] Correlation between rating and effectiveness

Contingency table:

```
# Correlation between rating and effectiveness
# Does the rating depend on how effetive the medicine is
rat_effect_cont = pd.crosstab(index=med_cleaned['Effectiveness'], columns=med_cleaned['Rating'])
display(rat_effect_cont)
```

Chi square:

```
# Chi-sq test for rating vs
stat, p, dof, expected = chi2_contingency(rat_effect_cont)
print(stat)
print(p)
print(dof)
# Since more than 2 categories for the variable, cannot do fisher exact
```

Cramer v:

```
#Calculate cramer's v
# V = V(X2/n) / min(c-1, r-1)

cramer1_N = rat_effect_cont.sum().sum()
print(cramer1_N)
minimum_dimension = min(rat_effect_cont.shape)-1
print(minimum_dimension)

result = np.sqrt((stat/cramer1_N) / minimum_dimension)
print(result)

#There are 36 degrees of freedom
#For them, 0.5 shows a strong effect for cramer's v
```

[7] Which condition do we have a lot of reviews for:

```
#Which condition do we have a lot of reviews for

print(med_cleaned['Condition'].nunique())

condi_count = med_cleaned.groupby(['Condition']).count()

condi_count = condi_count.drop('Rating', axis=1)
    condi_count = condi_count.drop('Effectiveness', axis=1)
    condi_count = condi_count.drop('SideEffects', axis=1)
    condi_count = condi_count.drop('BenefitsReview', axis=1)
    condi_count = condi_count.drop('SideEffectsReview', axis=1)
    condi_count = condi_count.drop('CommentsReview', axis=1)
    condi_count = condi_count.drop('CommentsReview', axis=1)
    condi_count.rename(columns={'DrugName': 'Count'}, inplace=True)

display(condi_count.sort_values('Count',ascending = False).head(10))
```

1422

Displaying top 10 as a bar chart:

[8] Finding the best drugs for a condition

```
#Best rated drugs for a condition
best_med = med_cleaned
best_med = best_med.loc[best_med['Rating'].eq(best_med.groupby('Condition')['Rating'].transform('max')), :]
display(best_med.sort_values('Condition').head(10))
```

	DrugName	Rating	Effectiveness	SideEffects	Condition	BenefitsReview	SideEffectsReview	CommentsReview
703	tramadol	9	Highly Effective	Mild Side Effects	2 compressed discs in neck	Completely eliminated neck pain. Interestingly	Slight euphoria, slight tiredness, but cannot	I've had 2 compressed discs in neck for over 5
2792	chantix	10	Highly Effective	Mild Side Effects	20 year pack a day smoker	Definately helps control the urge to smoke. W	Disrupted sleep is the only side effect so far	2 pills a day as prescribed. I recommend it,

Studying the rating distribution of best drugs:

```
# Studying the rating distribution
best_meds_overall_dist = best_med.groupby(['Rating']).count()
#best_meds_overall_dist = best_meds_overall_dist.drop('Rating', axis=1)
best_meds_overall_dist = best_meds_overall_dist.drop('Effectiveness', axis=1)
best_meds_overall_dist = best_meds_overall_dist.drop('SideEffects', axis=1)
best_meds_overall_dist = best_meds_overall_dist.drop('BenefitsReview', axis=1)
best_meds_overall_dist = best_meds_overall_dist.drop('SideEffectsReview', axis=1)
best_meds_overall_dist = best_meds_overall_dist.drop('CommentsReview', axis=1)
best meds overall dist = best meds overall dist.drop('Condition', axis=1)
best_meds_overall_dist.rename(columns={'DrugName': 'Count'}, inplace=True)
print(best_meds_overall_dist)
best_meds_overall = best_meds_overall_dist.Count.to_list()
best_meds_overall_names = best_meds_overall_dist.index.to_list()
print(best_meds_overall_names)
fig = px.bar(best_med, x=best_meds_overall_names, y=best_meds_overall,
                title="Rating distribution for the best rated medicines",
                labels=dict(x="Rating", y="Count of Reviews", color=best_meds_overall_names))
fig.show()
```

Plot best medicine vs. severity:

Plot best medicine vs. Effectiveness:

[9] Correlation: rating and side effects

Contingency table:

```
# Correlation between rating and side effects
# Does the rating depend on how bad the side effects are
rat_se_cont = pd.crosstab(index=med_cleaned['SideEffects'], columns=med_cleaned['Rating'])
display(rat_se_cont)
```

Chisq:

```
# Chi-sq test for rating vs side-effects
stat2, p2, dof2, expected2 = chi2_contingency(rat_se_cont)
print(stat2)
print(p2)
print(dof2)
# Since more than 2 categories for the variable, cannot do fisher exact
```

Cramer V:

```
#Calculate cramer's v
# V = V(X2/n) / min(c-1, r-1)

cramer2_N = rat_se_cont.sum().sum()
print(cramer2_N)
minimum_dimension2 = min(rat_se_cont.shape)-1
print(minimum_dimension2)

result2 = np.sqrt((stat2/cramer2_N) / minimum_dimension2)
print(result2)

#There are 36 degrees of freedom
#For them, 0.4 shows a strong effect for cramer's v

3099
4
0.4442284721296169
```

[10] Correlation: Effectiveness and side effects

Contingency table:

```
# Correlation between rating and side effects
# Does the rating depend on how bad the side effects are
eff_se_cont = pd.crosstab(index=med_cleaned['Effectiveness'], columns=med_cleaned['SideEffects'])
display(eff_se_cont)
```

Chisq:

```
# Chi-sq test for effectiveness vs sideeffects
stat3, p3, dof3, expected3 = chi2_contingency(eff_se_cont)
print(stat3)
print(p3)
print(dof3)
# Since more than 2 categories for the variable, cannot do fisher exact
```

Cramer V:

```
#Calculate cramer's v
# V = V(X2/n) / min(c-1, r-1)

cramer3_N = eff_se_cont.sum().sum()
print(cramer3_N)
minimum_dimension3 = min(eff_se_cont.shape)-1
print(minimum_dimension3)

result3 = np.sqrt((stat3/cramer3_N) / minimum_dimension3)
print(result3)

#There are 16 degrees of freedom
#For them, 0.2 shows a strong effect for cramer's v
```

3099 4

0.2330083640182357

[11] Analyse highly effective but extremely severe side effects

Filter medicines:

Plot ratings as bar graph:

Count of conditions in this category:

[12] Ineffective and extremely severe medicines:

Filter medicines:

Plot ratings as bar graphs:

Look for alternatives for such medicines:

Plot ratings as bar graph:

[13] Adding sentiment column for ML:

```
med_cleaned['Sentiment'] = np.where(med_cleaned['Rating'] > 5, 'Positive', 'Negative')
display(med_cleaned.head(5))
```

Exporting the training data after cleaning:

```
# Exporting the excel
med_cleaned.to_csv("MedCleanedTrainingSet.csv", index = False)
```

Cleaning and exporting the test set:

Reading the data:

```
# Reading the raw data from the file
raw_med_test_data = pd.read_csv('drugLib_raw/drugLibTest_raw.tsv',sep='\t')
display(raw_med_test_data.head(5))
```

Null checks on data:

```
# Check for null values in the dataset
raw_med_test_data.isna().sum()
```

Remove non alpha numeric reviews:

```
# Remove the reviews and conditions that don't have alphanumeric characters in them

raw_med_test_data = raw_med_test_data.drop(raw_med_test_data[~raw_med_test_data.commentsReview.str.contains('[a-zA-Z]',na=True)].

raw_med_test_data = raw_med_test_data.drop(raw_med_test_data[~raw_med_test_data.sideEffectsReview.str.contains('[a-zA-Z]',na=True)].

raw_med_test_data = raw_med_test_data.drop(raw_med_test_data[~raw_med_test_data.condition.str.contains('[a-zA-Z]',na=True)].inde)

display(raw_med_test_data)

raw_med_test_data.shape
```

Rename columns/ Drop unnecessary:

Add sentiment column:

```
#Adding column for ML
raw_med_test_data['Sentiment'] = np.where(raw_med_test_data['Rating'] > 5, 'Positive', 'Negative')
display(raw_med_test_data.head(5))
```

Export:

```
#Export into excel
raw_med_test_data.to_csv("MedCleanedTestSet.csv", index = False)
```

Additional snippets for conclusions:

[1] Highly effective medicines with severe side effects rating distribution

Get such medicines:

Plot rating distribution as bar graph:

Conclusion:

This concludes the code appendix where the snippets of the python code are pasted. For full interpretation, plots and results please refer to the report in the respective sections.