Записки по ДИС2 КН2 - Лекция 2

02.03.2023

Класове интегруеми функции.

Твърдение 1 Нека $f:[a,b] \to \mathbb{R}$ е ограничена и имаме произволно разбиване на интервала, в който е дефинирана. $\tau: a = x_0 < x_1 < x_2 < ... < x_n = b$. Тогава $s_f(\tau) = \inf\{\sigma_f(\tau, \xi) : \xi - npedcmaвителна точка\}; S_f(\tau) = \sup\{\sigma_f(\tau, \xi) : \xi - npedcmaвителна точка\}.$

Доказателство:

Def. 1 Нека $d(\tau) := \max\{x_i - x_{i-1} : i \in \{1, ..., n\}\}$ и $\tau : a = x_0 < ... < x_n = b$. Казваме, че сумите на Риман за $f : [a, b] \to \mathbb{R}$ имат граница $I \in \mathbf{R}$, когато $d(\tau)$ клони към 0, ако за всяко $\varepsilon \geq 0$ съществува $\delta \geq 0$, такова че за всеки избор на подразбиване τ на [a, b] с $d(\tau) \leq \delta$ и за всеки избор на предствавителна точка е в сила $|\sigma_f(\tau; \xi) - I| \leq \varepsilon$.

Lemma 1 Нека $\tau: a = x_0 < x_1 < x_2 < ... < x_n = b$ е подразбиване на [a,b]. Нека $\tau^* \geq \tau$, τ^* се получава от τ чрез прибавянето на k точки. Тогава $0 \leq S_f(f) - S_f(\tau^*) \leq ...$ Нека $m := \inf_{[a,b]} f \ u := \sup_{[a,b]} f$

 ${f Th. \ 1} \ Heкa \ f: [a,b] o \mathbb{R} \ u$ нека съществува $\lim_{x o \infty} \sigma_f (au; \ \xi) = I$. Тогава $f \in {f C}$ ограничена, $f \in {f C}$ интегруема по Риман и $\int_a^b f = I$.

Доказателство: Нека $f:[a,b]\to\mathbb{R}$ и $\epsilon>0$ е достатъчно голямо. Нека $\epsilon=3>0$ е фиксирано, откъдето следва:

$$\exists \delta > 0 \forall \tau, d(\tau) < \delta \forall \xi - \tau : |\sigma_f(\tau, \xi) - I| < 3.$$

Нека $\tau: a = x_0 < x_1 < x_2 < ... < x_n = b$ е такова, че $d(\tau) < \delta$. Тогава за всеки избор на $\xi_i \in [x_{i-1}, x_i]$, $i \in \{1, ..., n\}$ е в сила

$$I - 3 < \sum_{i=1}^{n} f(\xi_i)(x_i - x_{i-1}) < I + 3$$

Достатъчно е да докажем, че f е ограничена в $[x_{i-1}, x_i]$. Фиксираме $\xi_j \in [x_{j-1}, x_j], j \neq i$.

.

Th. 2 $A\kappa o\ f:[a,b]\to\mathbb{R}$ е интегруема по Риман (следователно $u\ f$ е ограничена), то съществува $\lim_{x \to \infty} \sigma_f(\tau; \xi) = \int_0^{\sigma} f$.

Основни свойства на интеграла

(I) Линейност

 $[f,g:[a,b] o\mathbb{R}$ интегруеми $\lambda\in\mathbb{R}\Rightarrow f+g,\lambda f$ са интегруеми и

$$\int_{a}^{b} (f+g) = \int_{a}^{b} f + \int_{a}^{b} g$$

$$\int_{a}^{b} \lambda f = \lambda \int_{a}^{b} f$$

$$\sigma_{f+g}(\tau,\xi) = \sigma_{f}(\tau,\xi) + \sigma_{f}(\tau,\xi)$$

$$\sigma_{\lambda f}(\tau,\xi) = \lambda \sigma_{f}(\tau,\xi)$$

 $\boxed{\epsilon>0}, \lim_{d(\tau)\to 0}\sigma_f(\tau,\xi)=\int^b f \longrightarrow \exists \delta_1>0 \ \forall \tau,d(\tau)<\delta_1 \ \forall \xi$ - представителна точка за τ :

$$|\sigma_f(\tau,\xi) - \int_a^b f| < \frac{\varepsilon}{2}$$

 $S_g o \exists \delta_2 > 0 \ orall au, d(au) < \delta_2 \ orall \xi$ - представителна точка за $au: |\sigma_g(au, \xi) - \int^0 g| < rac{arepsilon}{2}$

 $\delta := \min \delta_1, \delta_2 > 0$ au - подразбиване, $d(au) < \delta$ au ξпредставителна

$$\Rightarrow \left|\sigma_{f+g}(\tau,\xi) - \left(\int_a^b f + \int_a^b g\right)\right| = \left|\left(\sigma_f(\tau,\xi) - \int_a^b f\right) + \left(\sigma_g(\tau,\xi) - \int_a^b g\right)\right| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

(II) Адитивност $f:[a,b] \to \mathbb{R}, \ f$ - интегруема, $\ < c < b$

Тогава $f\Big|_{[a,c]}, f\Big|_{[c,b]}$ са интегруеми и $\int_a^b f = \int_a^c + \int_c^b f$ f - интегруема \Rightarrow Съществува τ - подразбиване на $[a,b],\ S_f(\tau)-s_f(\tau)<\varepsilon$

 $au^* = au \cup \{c\} \Rightarrow S_f(au^*) - s_f(au^*) < arepsilon$, където $au^* = au_1 \cup au_2$, au_1 - подразбиване на [a,c], au_2 - подразбиване на [c,b]

$$S_f(\tau^*) = S_f(\tau_1) + S_f(\tau_2), \ s_f(\tau^*) = s_f(\tau_1) + s_f(\tau_2)$$

$$S - f(\tau^*) - s_f(\tau^*) = \left[S_f(\tau_1) - s_f(\tau_1) \right] + \left[S_f(\tau_2) - s_f(\tau_2) \right]$$

 au_n - подразбиване на [a,b], съдържащо c като деляща точка, ξ_n - представителна

точка за $\tau_n, d(\tau_n) \longrightarrow 0$ $\tau_n = \tau_n^{'} \cup \tau_n^{''}, \tau_n^{'}$ - подразбиване на $[a,c], \tau_n^{''}$ - подразбиване на [c,b] $\sigma_f(\tau_n,\xi_n) = \sigma_f(\tau_n^{'},\xi_n^{'}) + \sigma_f(\tau_n^{''},\xi_n^{''})$

$$\int_a^b f \qquad \int_a^c f \qquad \int_c^b f$$

Уговорка: Нека $f: \Delta \to \mathbb{R}, \ \Delta$ - интервал, $a,b \in \Delta, \ a < b,$ тогава:

$$\overline{\int_a^a f := 0} \quad \int_a^b := -\int_b^a$$