LABORATOR #11

EX#1 Fie seturile de date ataşate

- (iii) sample_Poisson.npy; (i) sample_Bernoulli_1.npy;
- (ii) sample_Bernoulli_2.npy; (iv) sample_Exp.npy;

Creați un fișier în Python[®] prin care, pentru fiecare set de date (x_1, x_2, \ldots, x_n) de la (i)-(iv):

- (a) să se afișeze într-o figură histograma datelor;
- (b) folosind (a), să se sugereze o estimare pentru parametrul distribuției.

EX#2 Fie seturile de date ataşate

- (i) sample_Bernoulli.npy; (iii) sample_Geom.npy;
- (ii) sample_Poisson.npy; (iv) sample_Exp.npy;

Creați un fișier în Python[®] prin care, pentru fiecare set de date (x_1, x_2, \dots, x_n) de la (i)-(iv):

- (a) să se afișeze într-o figură histograma datelor;
- (b) să se afișeze într-o figură graficul funcției log-verosimilitate $\log L(x_1, x_2, \dots x_n, \theta)$ corespunzătoare setului de date (x_1, x_2, \ldots, x_n) :
 - (i) $\log L(x_1, x_2, \dots x_n, \theta) = \log \theta \sum_{i=1}^n x_i + \log(1 \theta)(n \sum_{i=1}^n x_i), \ \theta \in (0, 1);$
 - (ii) $\log L(x_1, x_2, \dots x_n, \theta) = -n \theta + \log \theta \sum_{i=1}^n x_i \sum_{i=1}^n \log(x_i!), \ \theta \in (0, 50);$ (iii) $\log L(x_1, x_2, \dots x_n, \theta) = n \log \theta + \log(1 \theta)(\sum_{i=1}^n x_i n), \ \theta \in (0, 1);$

 - (iv) $\log L(x_1, x_2, \dots x_n, \theta) = -n \log(1/\theta) \theta \sum_{i=1}^n x_i, \theta \in (0, 50);$
- (c) să se determine estimarea $\hat{\theta}$ a parametrului distribuției care maximizează funcția de log-verosimilate corespunzătoare asociată setului de date:
 - (i) $\hat{\theta} = \frac{1}{n} \sum_{i=1}^{n} x_i;$ (ii) $\hat{\theta} = \frac{1}{n} \sum_{i=1}^{n} x_i;$
- (iii) $\hat{\theta} = \frac{n}{\sum_{i=1}^{n} x_i};$ (iv) $\hat{\theta} = \frac{n}{\sum_{i=1}^{n} x_i};$
- (d) să se afișeze în figura de la (b) graficul punctului $(\hat{\theta}, \log L(x_1, x_2, \dots x_n, \hat{\theta}))$.
- $\mathbf{EX\#3}$ Fie setul de date (x_1, x_2, \dots, x_n) din fişierul ataşat sample_Normal.npy. Creați un fişier în Python® prin care
 - (a) să se afișeze într-o figură histograma datelor;

(b) știind că primul parametru al distribuției este $\mu=0$, să se afișeze într-o figură graficul funcției log-verosimilitate

$$\log L_2(x_1, x_2, \dots x_n, \theta_2) = -n \log(\sqrt{2\pi\theta_2}) - \frac{1}{2\theta_2} \sum_{i=1}^n (x_i - \mu)^2$$

corespunzătoare setului de date (x_1, x_2, \dots, x_n) , pentru $\theta_2 \in (0, 0.1)$;

- (c) să se determine estimarea $\hat{\theta}_2 = \frac{1}{n} \sum_{i=1}^n (x_i \mu)^2$ pentru al doilea parametru al distribuției care maximizează funcția de log-verosimilate corespunzătoare asociată setului de date;
- (d) să se afișeze în figura de la (b) graficul punctului $(\hat{\theta_2}, \log L_2(x_1, x_2, \dots x_n, \hat{\theta_2}));$
- (e) știind că al doilea parametru al distribuției este $\sigma^2=0.01$, să se afișeze într-o figură graficul funcției log-verosimilitate

$$\log L_1(x_1, x_2, \dots x_n, \theta_1) = -n \log(\sqrt{2\pi\sigma^2}) - \frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \theta_1)^2$$

corespunzătoare setului de date (x_1, x_2, \ldots, x_n) , pentru $\theta_1 \in (-1, 1)$;

- (f) să se determine estimarea $\hat{\theta_1} = \frac{1}{n} \sum_{i=1}^n x_i$ pentru primul parametru al distribuției care maximizează funcția de log-verosimilate corespunzătoare asociată setului de date;
- (g) să se afișeze în figura de la (b) graficul punctului $(\hat{\theta_1}, \log L_1(x_1, x_2, \dots x_n, \hat{\theta_1}))$.

Indicații Python®: numpy, scipy.stats, matplotlib.pyplot, matplotlib.pyplot.hist