模組 F - 演算法模組

注意事項:為與國際競賽接軌,本次競賽不提供本地端 XAMPP 環境,選手需將成果傳送至遠端評分系統,確認作答成果。

近年來,愈來愈多商業系統採用網頁應用程式的方式呈現,在不同的行業中,都有該行業需要解決的問題,許多的問題背後都有不同的演算法,在這個模組要測試你是否有可以解決這些問題。

本模組採即時自動評分。實際競賽試題與測試資料會有30%的變動。

工作要求

你必須從 STDIN 讀取各項的測試資料,並輸出至 STDOUT,每個題組有多個測試資料,必須全部通過才有分數,輸出中不可有多餘的文字。

各題的執行時間必須在 10 秒內完成,使用的記憶體大小必須少於 128MB。

範例題目

題目

輸入有多行,每行有兩個正整數 a b,中間使用單一空白分隔,請輸出 a+b 的結果,若 a 為-1 時表示測資輸入結束。

測試資料

輸入	輸出
1 2	3
3 4	7
-1	
5 9	14
0 9	9
0 0	0
5 1000	1005
-1	

範例程式碼

```
<?php
while(($line = readline()) !== false) {
    $numbers = explode(' ', $line);
    $num1 = $numbers[0];

    if($num1 === '-1')
        break;

    $num2 = $numbers[1];

    echo $num1 + $num2;
    echo "\n";
}</pre>
```

題目

計算最大公因數

給定一串數字·計算其最大公因數 (greatest common divisor)。

測試資料第一行會有一個正整數 n·接下來有 n 行文字·每行有一個數字 i·

 $1 <= i <= 2^{31}-1$ · 請輸出 n 個數字之間的最大公因數。

輸入	輸出
3	25
50 75 100	
75	
100	
4	1
29	
11	
19	
50	

題目

找出眾數

給定一串數字,找出這串數字的眾數。眾數為一組資料中出現次數最多的數值。眾數可能是一個數,但也可能是多個數。若資料的數值出現次數相同且無其他數值時,則不存在眾數。

測試資料第一行會有一個正整數 n,接下來有 n 行文字,每行有一個數字 i, $1 <= i <= 2^{31}-1$,請輸出 n 個數字之間的眾數,當有多組時,請由數值小到大每行輸出一個,若不存在,則輸出-1。

輸入	輸出
3	-1
50 75 100	
75	
100	
5	2
5	5
5	
2	
8	
2	

題目

判斷完美數

當一個數字的所有的真因子(即除了自身以外的因數)的和剛好為本身時,即為完美數,請判斷輸入的數字是否為完美數。

測試資料第一行會有一個正整數 n · 接下來有 n 行文字 · 每行有一個數字 i · $1 <= i <= 2^{63}$ -1 · 若i 為完美數則輸出 Y · 否則輸出 N 。

輸入	輸出
3	N
4	Υ
28	N
28 100	

題目

匯率換算

給定銀行的牌告匯率,進行各種貨幣與新台幣的轉換。

測試資料第一行會有一個正整數 m,接下來有 m 行文字,每行有一個數字 oabcd,o 為三位數英文貨幣代碼,a、b、c、d 精準到小數點第五位,其中 a 與 b 為 現金匯率,c 與 d 為即期匯率,a 與 c 為買入匯率,b 與 d 為賣出匯率。

接下來有一個數字n,表示接下來有n個客戶,每行有四個部分wxyz。

- w 為交易方式,A 代表使用銀行帳戶交易,C 代表使用現金交易。
- x 為兌換前貨幣別
- y 為兌換後貨幣別
- z 為兌換數量, z >= 0

x、y 至少一個為 TWD。

對於每個客戶,請輸出其交易後的貨幣數量,精準到小數點第五位,無條件捨去,不足五位補 0。

W3HV 54.1	
輸入	輸出
2	2700.00000
TWD 1 1 1 1	97.43423
USD 27 28 27.5 27.711	
2	
C USD TWD 100	
A TWD USD 2700	
2	55.00000
TWD 1 1 1 1	7.58620
MYR 5.5 7.25 0 0	
2	
C TWD MYR 10	
C MYR TWD 55	

題目

Luhn 演算法(Luhn algorithm)·是一種簡單的校驗和演算法·一般用於驗證身份識別碼·例如發卡行識別碼、國際行動裝置辨識碼(IMEI)·美國國家提供商標識號碼·或是加拿大社會保險號碼。你現在要判斷輸入的數字是否可以通過檢核。

Luhn 演算法會通過校驗碼對一串數字進行驗證,校驗碼會被加到這串數字的末尾處,從而得到一個完整的身份識別碼。

以數字「79927398713」為例·為計算其校驗位是否正確·我們先取前 N-1 個數字·也就是「7992739871」進行計算:

- 1. 從從右往左, 奇數位乘 2 (例如, 1*2=2), 然後將兩位數字的個位與十位相加(例如, 16: 1+6=7, 18: 1+8=9)
- 2. 把得到的數字加在一起(本例中得到67)
- 3. 將該數字乘以9 (603)
- 4. 取其個位數字(3),得到校驗位
- 5. 將計算出來的校驗位與輸入的校驗位進行比較判斷是否一致

原始數字	7	9	9	2	7	3	9	8	7	1	
乘 2	7	<u>18</u>	9	<u>4</u>	7	<u>6</u>	9	<u>16</u>	7	<u>2</u>	
將數字相加	7	9	9	4	7	6	9	7	7	2	=67

測試資料第一行會有一個正整數 n.接下來有 n 行文字,每行有一組要檢查的數字,每行會有任意長度的文字,只有數字或空格才是正常的輸入內容,若包含不合法的字元,或是無法通過 Luhn的檢查,請輸出 N.若通過檢查,則輸出 Y。

輸入	輸出
3	Υ
79927398713	N
79927398714	N
1234567831	
4	Υ
4291 1966 1372 1345	Υ
1966	N
1372	N
123AB0	

題目

密碼規則檢查

強密碼可以降低密碼被猜中的機率,假設密碼可以由不同類型的字元組成:

- 數字 0123456789
- 大寫英文 ABCDEFGHIJKLMNOPQRSTUVWXYZ
- 小寫英文 abcdefghijklmnopqrstuvwxyz
- 特殊符號 ~!@#\$%^&*()_+=-\|';":/.,?><

請依照以下規則判斷密碼強度:

- 四種類型的組合都有: 4
- 四種組合中只有三個: 3
- 四種組合中只有兩個: 2
- 四種組合中只有一個: 1

測試資料第一行會有一個正整數 \mathbf{n} ,接下來有 \mathbf{n} 行文字,每行有一串文字 \mathbf{s} ,每行請輸出該密碼的強度。

輸入	輸出
4	3
45Af	4
Qwe!@#123	1
100	2
45Af Qwe!@#123 100 QaQ	

題目

提供給你一組數字的順序,試著排列他們,找到下一個大的數值。若沒有的話,則回傳最小的 數值。

測試資料第一行會有一個正整數 $m \cdot 1 <= m <= 10$ · 代表接下來有 m 組資料。每組資料有兩行,第一行有一個正整數 $n \cdot 1 <= n <= 100$ · 代表接下來有 n 個數字 · 下一行會有 n 個數字 $n \cdot 1 <= i <= n \cdot 0 <= num[i] <= 9 \cdot 數字之間用空白分隔。$

每組資料輸出一行結果,每行輸出一個數值。

輸入	輸出
2	231
3	123
2 1 3	
3	
3 2 1	
2	5111
4	9
1 5 1 1	
1	
9	

題目

Hash table 在撰寫一些邏輯時時常使用,但遇到非數字的 key 時需要做一些轉換才可以用成數值表達出他的 hash value,在這裡你需要依以下規則實作字串的 hash function。

這個 hash function 已經於其他語言實做出來了,由於該語言使用二進位儲存數值,因此有數值表達範圍的限制 $(-2^{31} \sim 2^{31}-1)$,在你的實作中,也必須模擬出這個行為,以讓計算出來的 hash value 可以於不同語言中使用。

給定一字串 str·長度為 n·str[i] 表示該字串中第 i 個字元的 ASCII code·hash value 的計算方式為:

$$str[0]*31^{(n-1)} + str[1]*31^{(n-2)} + ... + str[n-1]*31^{(0)}$$

輸入的第一行有一個正整數 n,接下來有 n 行文字,每行不超過 65536 個字元,請輸出該字串的 hash value。

輸入	輸出
5	97
a	2987074
abcd	92599395
abcde	-1424385949
abcdef	-1206291356
abcdefg	
1	-323643840
Ааааааааааааааааааааааа	
ааааааааааааааааааааааа	
ааааааааааааааааааааааа	
aaaaaaaaaaaaaaa	
(備註: 100 個 a)	

題目

給定一個只包含'('、')'和'*'三種類型字元的字串,寫一個程式來檢查這個字符串是否有效。一個 合法的字串必須符合以下規則:

- 1. 任何左括號'('必須有一個相應的右括號')'。
- 2. 任何右括號')'必須有一個相應的左括號'('。
- 3. 左小括號'('必須放在相應的右小括號')'之前。
- 4. '*'可以被視為單個右括號')'或單個左括號'('或空白。
- 5. 空白也是有效的。

輸入的第一行有一個正整數 n · 接下來有 n 行文字 · 每行為一個要驗證的字串 · 字串長範圍為 [1, 100] · 對於合法的字串 · 請輸出 Y · 否則請輸出 N

輸入	輸出
5	Υ
()	Υ
(*)	Υ
((*)	Υ
((*)*	N
())*	

題目

計算最佳的股票利益。

給定一個整數序列 p[i],長度為 n,裡面包含第i 天的股價,由於資金有限,買入後必須要賣出,才可以進行下一次買賣,也不可以賣出沒有擁有的股票。

請計算出經過最多 m 次的買與賣後,可以獲得最多的利益為多少。

輸入的第一行有兩個正整數 $m \cdot n \cdot m$ 代表最多可以買與賣幾次, $n \cdot n$ 代表下一行有 $n \cdot m$ 個數字,美個數字代表第 $i \cdot T$ 天的股價,請你輸出最多進行 $m \cdot p$ 買賣後,可以獲得的最高利益。

W2H-42-11	
輸入	輸出
2 4	4
9 4 8 7	
	(第二天買第三天賣) · (8-4) = 4
2 4	5
9 4 8 9	
	(第二天買第三天賣,接著同天買入後,第四天
	賣 出),(8-4) + (9-8) = 5
1 4	5
9 4 8 9	
	(第二天買第四天賣)·(9-4) = 5

選手注意事項

以下說明時用到 XX 代表選手個人的崗位編號,Y 代表模組編號

- 將完成的結果上傳至評分網站,評分網站網址為 <u>http://judge.web</u>,並且在競賽時間結束前評分完成
- 將完成的結果**備份**至網站根目錄,用 XX_Module_Y 作為資料夾名稱,檔名為 pZZ.php,ZZ 為題目編號,因網頁無 STDIN,因此使用瀏覽器瀏覽網頁無法執行是正常情況
- 各題的執行時間必須在 10 秒內完成,使用的記憶體大小必須少於 128MB。