Aufgabe A (23 Punkte, 23 Points)

Betrachten Sie die zweidimensionale Zufallsvariable $\tilde{X}=(X_1,X_2)$ mit der gemeinsamen Verteilungsfunktion

$$F(x_1, x_2) = \left[(1 - \exp\{-x_1\}) I_{(0,\infty)}(x_1) \right] \left[(1 - \exp\{-(x_2 - 1)\}) I_{(1,\infty)}(x_2) \right].$$

- a1) (8 Punkte) Ermitteln Sie die gemeinsame Dichtefunktion $f(x_1, x_2)$. Prüfen Sie zudem, ob X_1 und X_2 stochastisch unabhängig sind.
- a2) (8 Punkte) Bestimmen Sie die Momente

$$E[\tilde{X}] = \begin{pmatrix} E[X_1] \\ E[X_2] \end{pmatrix} \quad \text{und} \quad Var(\tilde{X}) = \begin{pmatrix} Var[X_1] & Cov[X_1, X_2] \\ Cov[X_1, X_2] & Var[X_2] \end{pmatrix}.$$

a3) (7 Punkte) Stellen Sie $P(X_1 < \frac{1}{2}X_2)$ als Integralausdruck dar und geben Sie den Integrationsbereich an. Führen Sie keine Berechnungen durch.

Consider the bivariate random variable $\tilde{X} = (X_1, X_2)$ with the joint cumulative distribution function

$$F(x_1, x_2) = \left[(1 - \exp\{-x_1\}) I_{(0,\infty)}(x_1) \right] \left[(1 - \exp\{-(x_2 - 1)\}) I_{(1,\infty)}(x_2) \right].$$

- a1) (8 Points) Derive the joint density function $f(x_1, x_2)$. Check whether X_1 and X_2 are stochastically independent.
- a2) (8 Points) Calculate the moments

$$E[\tilde{X}] = \begin{pmatrix} E[X_1] \\ E[X_2] \end{pmatrix} \quad and \quad Var(\tilde{X}) = \begin{pmatrix} Var[X_1] & Cov[X_1, X_2] \\ Cov[X_1, X_2] & Var[X_2] \end{pmatrix}.$$

a3) (7 Points) Provide $P(X_1 < \frac{1}{2}X_2)$ in form of an integral and state the range for the integration, where no actual calculations are required.

Aufgabe B (11 Punkte, 11 Points)

Sei X eine Zufallsvariable mit der Dichtefunktion

$$f(x) = \frac{\phi(x)}{\Phi(b) - \Phi(a)} I_{(a,b)}(x), \quad b > a,$$

wobei $\phi(\cdot)$ und $\Phi(\cdot)$ die Dichte- bzw. Verteilungsfunktion der Standardnormalverteilung darstellen. Zeigen Sie, dass für den Erwartungswert gilt

$$E[X] = \frac{\phi(a) - \phi(b)}{\Phi(b) - \Phi(a)}.$$

Let X denote a random variable with density function

$$f(x) = \frac{\phi(x)}{\Phi(b) - \Phi(a)} I_{(a,b)}(x), \quad b > a,$$

where $\phi(\cdot)$ and $\Phi(\cdot)$ correspond to density and cumulative density function of the standard normal distribution. Show that X has expectation

$$E[X] = \frac{\phi(a) - \phi(b)}{\Phi(b) - \Phi(a)}.$$

Aufgabe C (8 Punkte, 8 Points)

Die Folge von Zufallsvariablen $\{Y_n\}$ besitzt die Verteilungsfunktion

$$F_n(y) = \left(\frac{1 - \exp\{-y\}}{1 - \exp\{-\theta\}}\right)^n I_{[0,\theta]}(y), \qquad \theta > 0.$$

Überprüfen Sie für $\{Y_n\}$ die Konvergenz in Verteilung. Skizzieren Sie dafür das Verhalten von $F_n(y)$ für $n \to \infty$.

A sequence of random variables $\{Y_n\}$ has the cumulative distribution function

$$F_n(y) = \left(\frac{1 - \exp\{-y\}}{1 - \exp\{-\theta\}}\right)^n I_{[0,\theta]}(y), \quad \theta > 0.$$

Check whether $\{Y_n\}$ converges in distribution. Therefor, sketch the limiting behavior of $F_n(y)$ for $n \to \infty$.

Aufgabe D (18 Punkte, 18 Points)

Es sei $\{U_1, U_2, \dots, U_n\}$ eine Folge von *iid*-verteilten Zufallsvariablen aus einer Gleichverteilung auf dem Intervall (0,1) mit

$$f(u_i) = I_{(0,1)}(u_i), \quad i = 1, 2, \dots, n.$$

Ferner sei \mathbb{Z}_n das arithmetische Mittel dieser Zufallsvariablen, d.h.

$$Z_n = \frac{1}{n} \sum_{i=1}^n U_i \ .$$

- d
1) (6 Punkte) Zeigen Sie, dass für \mathbb{Z}_n Konvergenz im quadratischen Mittel gilt und geben Sie den Wahrscheinlichkeitsgrenzwert an.
- d2) (6 Punkte) Ermitteln Sie die asymptotische Verteilung von \mathbb{Z}_n .
- d3) (6 Punkte) Wie lautet die asymptotische Verteilung von $Y_n = -\ln(Z_n)$?

Let U_1, U_2, \ldots, U_n denote a sequence of identically distributed and independent random variables from a uniform distribution on the interval (0,1) with

$$f(u_i) = I_{(0,1)}(u_i), \quad i = 1, 2, \dots, n.$$

Further, let Z_n denote the arithmetic mean of the random variables, i.e.

$$Z_n = \frac{1}{n} \sum_{i=1}^n U_i \ .$$

- d1) (6 Points) Show that Z_n converges in mean square and provide the limiting value.
- d2) (6 Points) Derive the asymptotic distribution of Z_n .
- d3) (6 Points) Provide the asymptotic distribution of $Y_n = -\ln(Z_n)$.