← Special applications: Face recognition & Neural style transfer

Quiz, 10 questions

point		face recognition requires comparing a new picture against K person's faces.
		True
		False
1 point	2.	Why do we learn a function $d(img1,img2)$ for face verification? (Select all that apply.) This allows us to learn to predict a person's identity using a softmax output
		unit, where the number of classes equals the number of persons in the database plus 1 (for the final "not in database" class).
		This allows us to learn to recognize a new person given just a single image of that person.
		Given how few images we have per person, we need to apply transfer learning. We need to solve a one-shot learning problem.
1 point	3.	In order to train the parameters of a face recognition system, it would be reasonable to use a training set comprising 100,000 pictures of 100,000 different persons. True
		False
1 point	4.	Which of the following is a correct definition of the triplet loss? Consider that $\alpha>0$. (We encourage you to figure out the answer from first principles, rather than just refer to the lecture.)
		$\bigcirc max(f(A) - f(N) ^2 - f(A) - f(P) ^2 + \alpha, 0)$
		$\bigcap max(\left \left f(A)-f(N) ight ight ^2-\left \left f(A)-f(P) ight ight ^2-lpha,0)$
		$\bigcap max(f(A) - f(P) ^2 - f(A) - f(N) ^2 - \alpha, 0)$
1 point	5.	Consider the following Siamese network architecture:
		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
		The upper and lower neural networks have different input images, but have exactly the same parameters.
		True False
1 point	6.	You train a ConvNet on a dataset with 100 different classes. You wonder if you can find a hidden unit which responds strongly to pictures of cats. (I.e., a neuron so that, of all the input/training images that strongly activate that neuron, the majority are cat pictures.) You are more likely to find this unit in layer 4 of the network than in layer 1.
		True False

True False

CIAI AL 10 ¹ question point		In the deeper layers of a ConvNet, each channel corresponds to a difference to which the act detector. The style matrix $G^{[l]}$ measures the degree to which the act feature detectors in layer l vary (or correlate) together with each other.	ferent feature ivations of different
		True	
		C False	
1 point	9.	In neural style transfer, what is updated in each iteration of the optin	nization algorithm?
		igcap The pixel values of the generated image G	
		The neural network parameters	
		The regularization parameters	
		lacksquare The pixel values of the content image C	
1 point	10.	You are working with 3D data. You are building a network layer whos size 32x32x32x16 (this volume has 16 channels), and applies convolu of dimension 3x3x3 (no padding, stride 1). What is the resulting outp	tions with 32 fi l ters
		30x30x30x16	
		Undefined: This convolution step is impossible and cannot be because the dimensions specified don't match up.	e performed
		30x30x30x32	
deactiva	tion of r	nderstand that submitting work that isn't my own may result in permanent ny Coursera account. ut Coursera's Honor Code	failure of this course or
Leamin	ore abo	ut Coursera's Florior Code	
			Submit Quiz

