Paper 9 Question 2

VLSI design - question B

PR — VLSI Design

Sketch designs for an *n*-input NAND gate in CMOS using:

- static CMOS
- dynamic CMOS
- pseudo-nMOS [3×2 marks]

Assuming that a conducting p-channel has a resistance γ times that of a similarly sized n-channel, annotate your circuit diagrams with suitable widths for the transistors, and explain the reasons for their values. [3×2 marks]

Calculate the logical effort and the parasitic delay of each design.

[3×2 marks]

Which is likely to be fastest for the case when n = 4 and $\gamma = 3$? What difference would it make if the circuit were driving a large capacitative load? [2 marks]

Solution

	[3×2]
Static: pull-ups each γ wide in parallel, pull-downs each n wide in series. Dynamic: pull-up $\gamma/2$ wide, pull-downs and evaluate each $n+1$ wide in series Pseudo-nMOS: pull-up $\gamma/3$, pull-downs each $4n/3$ wide in series.	[2] [2] [2]
Static: $g = (\gamma + n)/(\gamma + 1)$, $p = (n\gamma + n)/(\gamma + 1) = n$. Dynamic: $g = (n+1)/(\gamma + 1)$, $p = (\gamma/2 + n + 1)/(\gamma + 1)$. Pseudo-nMOS: rising $g = 4n/(\gamma + 1)$, falling $g = 4n/3(\gamma + 1)$, average $g = 8n/3(\gamma + 1)$,	[2] [2]
$p = (4n + \gamma)/3(\gamma + 1).$	[2]
Dynamic CMOS has the lowest unitless delay. It also has the lowest effort delay.	[2]

