Lecture Notes in Measure Theory

Ashish Kujur

Last Updated: August 12, 2022

Introduction

This is a set of lecture notes which I took for reviewing stuff that I typed after taking class from *Dr. Sachindranath Jayaraman*. All the typos and errors are of mine.

Contents

§1	Lecture 1 — 10th August 2022 — Review of things done in the previous semester	1
	§1.1 Definitions and Some Results	1
	§1.2 Dynkin's pi-lambda theorem; Measures and their properties	2

\$1 Lecture 1 — 10th August 2022 — Review of things done in the previous semester...

§1.1 Definitions and Some Results

Definition §1.1.1 (algebra). Let Ω be nonempty set. An algebra \mathscr{F} is a collection of subsets of Ω satisfying the following properties:

- 1. $\Omega \in \mathcal{F}$,
- 2. $A \in \mathscr{F} \Rightarrow A^c \in \mathscr{F}$ and
- 3. \mathscr{F} is closed under finite unions.

It immediately follows from the definition an algebra of sets is closed under taking finite intersections.

Definition §1.1.2 (σ -algebra). Let Ω be nonempty set. A σ -algebra \mathscr{F} is a collection of subsets of Ω satisfying the following properties:

- 1. $\Omega \in \mathcal{F}$,
- 2. $A \in \mathscr{F} \Rightarrow A^c \in \mathscr{F}$ and

3. \mathcal{F} is closed under countable unions.

Fact §1.1.3. Let Ω be a set, $\mathscr{F} \subseteq \mathscr{P}(\Omega)$. \mathscr{F} is an σ -algebra iff \mathscr{F} is an algebra that is continuous from below, that is, if $\{A_n\}_{n\in\mathbb{N}}\subseteq\mathscr{F}$ and $A_n\subset A_{n+1}$ for all $n\in\mathbb{N}$ then $\bigcup_n A_n\in\mathscr{F}$.

Definition §1.1.4 (σ -algebra generated by a subset of power set). Let Ω be a nonempty set. Given an nonempty collection $\mathscr C$ of subsets of Ω , the σ -algebra generated by $\mathscr C$, $\sigma(\mathscr C)$ is defined to be the intersection of all σ -algebra containing $\mathscr C$. Notationally,

$$\sigma(\mathscr{C}) = \bigcap \{ \sigma - \text{algebra that contains } \mathscr{C} \}$$

Definition §1.1.5 (Borel σ -algebra). If Ω is a topological space then the Borel σ -algebra is the smallest σ -algebra containing the open sets of Ω.

Fact §1.1.6. *If* $\Omega = \mathbb{R}^n$ *the Borel* σ *-algebra is generated by*

- $\{(a_1, b_1) \times (a_2, b_2) \times \cdots \times (a_n, b_n) \mid -\infty \le a_i < b_i \le b_i \le +\infty \}$
- $\{(-\infty, a_1) \times (-\infty, a_2) \times \cdots (-\infty, a_n) \mid a_1, a_2, \dots, a_n \in \mathbb{R}\}$
- $\{(a_1,b_1)\times(a_2,b_2)\times\cdots\times(a_n,b_n)\mid a_i,b_i\in\mathbb{Q}\}$

Definition §1.1.7 (π -system, λ -system). A collection $\mathscr C$ of subsets of Ω is called a π -system if $\mathscr C$ is closed under finite- \cap .

A collection \mathcal{L} of subsets of Ω is called a λ -system if the following hold:

- $\Omega \in \mathcal{L}$.
- $A, B \in \mathcal{L}$ and $A \subseteq B$ implies $B \setminus A \in \mathcal{L}$
- if $\{A_n\}_{n\in\mathbb{N}}\subset\mathcal{L}$ and $A_n\subset A_{n+1}$ for all $n\in\mathbb{N}$ then $\bigcup_n A_n\in\mathcal{L}$

Definition §1.1.8. Let \mathscr{C} be a collection of nonempty subsets of a nonempty set Ω . The *λ*-system generated by \mathscr{C} , denoted as $\lambda(\mathscr{C})$ is the intersection of all λ -systems containing \mathscr{C} .

§1.2 Dynkin's pi-lambda theorem; Measures and their properties

Theorem §1.2.1 (Dynkin $\pi - \lambda$ theorem). *If* \mathscr{C} *is a* π -system of a nonempty set Ω then $\lambda(\mathscr{C}) = \sigma(\mathscr{C})$. Equivalently, if \mathscr{L} is a λ -system that contains \mathscr{C} then $\mathscr{L} \supset \lambda(\mathscr{C})$.

Definition §1.2.2. Let \mathscr{F} be a σ -algebra of subsets of Ω . A extended real valued function μ on \mathscr{F} is called a *measure* if the following hold:

- 1. $\mu(A) \ge 0$ for all $A \in \mathcal{F}$,
- 2. $\mu(\emptyset) = 0$

- 3. If $\{A_n\}_{n\in\mathbb{N}}\subset \mathscr{F}$ such that $\bigcup A_n\in \mathscr{F}$ and $A_n\cap A_m=\emptyset$ for all $m\neq n$ then $\mu(\bigcup_{i\in\mathbb{N}}A_i)=\sum_i\mu(A_i)$
- **Example §1.2.3** (Some examples of measures). 1. Let $\Omega \neq \emptyset$, $\mathscr{F} = \mathscr{P}(\Omega)$. We define μ on \mathscr{F} by $\mu(A)$ is the number of elements of A if A is finite and $\mu = +\infty$ if A contains infinitely many elements. Then μ is a measure on \mathscr{F} .
 - 2. Let $\Omega = [0,1]$ and $\mathscr{F} = \mathscr{B}([0,1])$. Let $\{p_n\}$ be a sequence of numbers in [0,1] such that $\sum p_i = 1$. Define $\mu(A) = \sum_{i \in \mathbb{N}} p_i \delta_{p_i}(A)$. Then μ is a measure on \mathscr{F} .
 - 3. Let F be a non-decreasing right-continuous function on \mathbb{R} . Define μ_F to be Lebesgue-Stieljes measure induced by F. Recall that $\mu_F((a,b]) = b a$. Then μ_F is an example of σ -finite Radon measure on the Borel σ -algebra on \mathbb{R} .

Theorem §1.2.4. Let \mathscr{F} be a σ -algebra on a nonempty set Ω . Let $\mu: \mathscr{F} \to \overline{\mathbb{R}}$ be a function. μ is a measure on \mathscr{F} iff

- 1. μ is finitely additive (that is, if $A, B \in \mathscr{F}$ such that $A \cap B = \emptyset$ then $\mu(A \cup B) = \mu(A) + \mu(B)$) and
- 2. μ is continuous from below (that is, if $\{A_n\}$ is nondecreasing sequence of elements from \mathscr{F} then $\mu(\bigcup (A_i)) = \lim_{n \to \infty} \mu(A_n)$).