Theorem: distributions of transformations

Let $X=(X_1,\ldots,X_k)$ be a r.vec. Let $g:\mathbb{R}^k\to\mathbb{R}^i$ be a measurable function. Define Y=g(X) (is measurable because it's composition of measurable functions). Let P_X be the distribution of X. Then

$$P_Y(A) = P(Y \in A) = P(g(X) \in A) = P(X \in g^{-1}(A)) = P_X(g^{-1}(A)).$$

i.e. $P_Y = P_X \circ g^{-1}.$

It's also called pushforward operation.

Projection Maps

Consider the measurable spaces $(\Omega_1, \mathcal{F}_1), \ldots, (\Omega_k, \mathcal{F}_k)$. Define $\Omega = \Omega_1 \times \ldots \times \Omega_k$. Define

$$\mathcal{F} = \sigma(\mathcal{F}_1 \times \cdots \times \mathcal{F}_k).$$

Let $\pi_i: \Omega \to \Omega_i$ be the projection map

$$\pi_i(\omega_1,\ldots,\omega_k)=\omega_i.$$

Note. If $A = A_1 \times \cdots \times A_k$ then $\pi_i(A) = A_i$.

Let $\pi_i^{-1}(\mathcal{F}_i) = \{ A \subseteq \Omega : \pi_i(A) \in \mathcal{F}_i \}$. Then

$$\mathcal{F} = \sigma \left(\bigcap_{i=1}^k \pi_i^{-1}(\mathcal{F}_i) \right).$$

Note. The thing in the parenthesis do not equal. Their σ -fields equal. Moreover (TODO requires proof!),

$$\pi_i^{-1}(\mathcal{F}_i) \subseteq \mathcal{F} \Rightarrow \pi_i : \Omega \to \Omega_i \text{ is } \mathcal{F}/\mathcal{F}_i \text{ measurable.}$$

0.1 Marginal Distribution

Notice $\pi_i(X) = X_i$ is a composition of measurable functions hence it's measurable

Its distribution is $P_{X_i} = P_X \circ \pi_i^{-1}$. This is called **marginal distribution**.

Question: is there a corresponding marginal density? That is, we are looking for a function f_i such that $P_{X_i}(A) = \int_A f_i(t)dt$.

Guess: If we integrate the density over all the other r.v. To do this we need to change the order of integration using Fibini's Theorem. That is, we guess

$$f_i(x_i) = \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f(x_1, \dots, x_k) dx_1 \dots dx_{i-1} dx_{i+1} \dots dx_k.$$

And we would want to check that

$$\int_{A} f_{i}(x_{i}) dx_{i} = \int_{A} \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f(x_{1}, \dots, x_{k}) dx_{1} \dots dx_{i-1} dx_{i+1} \dots dx_{k} dx_{i}$$

$$\stackrel{\text{Fibini}}{=} \int_{-\infty}^{\infty} \cdots \int_{A} \cdots \int_{-\infty}^{\infty} f(x_{1}, \dots, x_{k}) dx_{1} \dots dx_{i-1} dx_{i+1} \dots dx_{k}$$

$$= P_{X}((-\infty, \infty) \times \cdots \times A \times \cdots \times (-\infty, \infty))$$

$$= P_{X_{i}}(A)$$

Definition: product space

Let $(\Omega_1, \mathcal{F}_1, \mu_1)$ and $(\Omega_2, \mathcal{F}_2, \mu_2)$ be measure spaces. Let's define the product σ -field $\mathcal{F} := \sigma(\mathcal{F}_1 \times \mathcal{F}_2)$. Define $\Omega = \Omega_1 \times \Omega_2$. Then (Ω, \mathcal{F}) is called the **product space**.

Proposition

Let \mathcal{F} be the product σ -field. Let $A \in \mathcal{F}$. Define the "slices":

$$A\big|_{\omega_1} := \{\omega_2 \in \Omega_2 : (\omega_1, \omega_2) \in A\}.$$

Then $A\big|_{\omega_1}$ and $A\big|_{\omega_2}$ are in \mathcal{F}_2 and \mathcal{F}_1 , respectively.

Proof

Let $\mathcal{G} = \{B \subseteq \Omega : B\big|_{\omega_1} \in \mathcal{F}_2 \text{ and } B\big|_{\omega_2} \in \mathcal{F}_1 \ \forall \ \omega_1, \omega_2 \in \Omega\}$. We wish to show that \mathcal{G} is a σ -field.

- (i) Slices of Ω are $\Omega_1 \in \mathcal{F}_1, \Omega_2 \in \mathcal{F}_2$.
- (ii) Take $B \in \mathcal{G}$. Notice

$$(B\big|_{\omega_1})^c = \{\omega_2 \in \Omega_2 : (\omega_1, \omega_2) \in B\}^c$$
$$= \{\omega_2 \in \Omega_2 : (\omega_1, \omega_2) \in B^c\}$$
$$= B^c\big|_{\omega_1}$$

And we know $(B|_{\omega_1})^c \in \mathcal{F}_2$ since \mathcal{F}_2 is a σ -field.

(iii) same technique as above.

It remains to show that \mathcal{F} is a subset of \mathcal{G} . Given $A_i \in \mathcal{F}_i$, notice

$$(A_1 \times A_2)\big|_{w_1} = \{\omega_2 \in \Omega_2 : (\omega_1, \omega_2) \in A_1 \times A_2\}$$
$$= \begin{cases} A_2 & \text{if } \omega_1 \in A_1 \\ \emptyset & \text{if } \omega_1 \notin A_1 \end{cases} \in \mathcal{F}_2$$

Likewise for the other. Thus $A_1 \times A_2 \in \mathcal{G}$. Since \mathcal{F} is the smallest σ -field containing sets of the form $A_1 \times A_2$, it follows that $\mathcal{F} \subseteq \mathcal{G}$.

Theorem

$$\mathcal{B}(\mathbb{R}^{n+m}) = \sigma(\mathcal{B}(\mathbb{R}^n) \times \mathcal{B}(\mathbb{R}^m)).$$

Definition: product measure

Given two spaces $(\Omega_1, \mathcal{F}_1, \mu_1), (\Omega_2, \mathcal{F}_2, \mu_2)$. Define a **product measure** as a measure $\mu = \mu_1 \times \mu_2$ on (Ω, \mathcal{F}) such that

$$\mu(A_1 \times A_2) = \mu_1(A_1) \cdot \mu_2(A_2) \ \forall \ A_i \in \mathcal{F}_i.$$

Theorem: Fubini's Theorem

Given two σ -finite measure spaces and their product measure space. If $f:\Omega\to\mathbb{R}$ is a measurable function such that $\int_{\Omega}|f|\ d\mu<\infty$, then

- 1) For almost all $\omega_1 \in \Omega_1$, $f(\omega_1, \omega_2)$ is an integrable function of ω_2 (vice-versa).
- 2) There exists an integrable $h: \Omega_1 \to \mathbb{R}$ such that

$$h(\omega_1) = \int_{\Omega_2} f(\omega_1, \omega_2) d\omega_2$$

for almost all ω_1 (vice versa).

3)

$$\int_{\Omega} f \ d\mu = \int_{\Omega_1 \times \Omega_2} f \ d(\mu_1 \times \mu_2) = \int_{\Omega_1} \left[\int_{\Omega_2} f(\omega_1, \omega_2) d\omega_2 \right] d\omega_1$$
$$= \int_{\Omega_2} \left[\int_{\Omega_1} f(\omega_1, \omega_2) d\omega_1 \right] d\omega_2$$

.

Lemma: 1

Suppose μ_1 and μ_2 are σ -finite. For every $A \in \mathcal{F} = \sigma(\mathcal{F}_1 \times \mathcal{F}_2)$, the function $h: \Omega_1 \to \mathbb{R}$ defined as

$$h(\omega_1) = \mu_2(A\big|_{\omega_1})$$

is \mathcal{F}_1 -measurable.

Proof

Case (1). μ_1, μ_2 are finite. Define $\mathcal{G} = \{B \in \mathcal{F} : h_B \text{ is } \mathcal{F}_1 - \text{measurable}\}$. We wish to show that \mathcal{G} is a λ -system.

(i) $\Omega \in \mathcal{G}$ because

$$h_{\Omega}(\omega_1) = \mu_2(\Omega|_{\omega_1}) = \mu_2(\Omega_2) < \infty.$$

Then h_{Ω} is a finite constant function which is measurable as we have shown in Lecture 9.

(ii) Take $B \in \mathcal{G}$,

$$h_{B^c}(\omega_1) = \mu_2(B^c\big|_{\omega_1})$$

$$= \mu_2((B\big|_{\omega_1})^c)$$

$$= \mu_2(\Omega_2) - \mu_2(B\big|_{\omega_1})$$

Since a constant function minus a measurable function is still \mathcal{F}_1 measurable, $B^c \in \mathcal{G}$.

(iii) Given B_n disjoint, using the same technique, we can show

$$h_{\bigcup_n B_i}(\omega_1) = \sum_n h_{B_i}(\omega_1).$$

The sum is measurable. Since the limit of measurable functions is measurable, taking $n \to \infty$ gives us a \mathcal{F}_1 measurable function. closure under countable disjoint union.