(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2005 年6 月2 日 (02.06.2005)

PCT

(10) 国際公開番号 WO 2005/050042 A1

(51) 国際特許分類?:

F16D 3/04

PCT/JP2004/017186

(22) 国際出願日:

(21) 国際出願番号:

2004年11月18日(18.11.2004)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ: 特願 2003-392145

2003 年11 月21 日 (21.11.2003) JP 特願2004-014051 2004 年1 月22 日 (22.01.2004) JP 特願2004-015970 2004 年1 月23 日 (23.01.2004) JP 特願2004-183559 2004 年6 月22 日 (22.06.2004) JP

(71) 出願人 (米国を除く全ての指定国について): N T N 株式会社 (NTN CORPORATION) [JP/JP]; 〒5500003 大阪市西区京町堀1丁目3番17号 Osaka (JP).

- (72) 発明者; および
- (75) 発明者/出願人 (米国についてのみ): 野▲崎▼ 孝志 (NOZAKI TAKASHI) [JP/JP]; 〒4388510 静岡県磐田市東貝塚 1 5 7 8 番地 N T N株式会社内 Shizuoka (JP). 持田博之 (HAKAMATA HIROYUKI) [JP/JP]; 〒4388510 静岡県磐田市東貝塚 1 5 7 8 番地 N T N株式会社内 Shizuoka (JP). 曽根 啓助 (SONE KEISUKE) [JP/JP]; 〒4388510 静岡県磐田市東貝塚 1 5 7 8 番地 N T N株式会社内 Shizuoka (JP). 葉山佳彦 (HAYAMA YOSHIHIKO) [JP/JP]; 〒4388510 静岡県磐田市東貝塚 1 5 7 8 番地 N T N株式会社内 Shizuoka (JP).
- (74) 代理人: 鎌田 文二, 外(KAMADA BUNJI et al.); 〒 5420073 大阪府大阪市中央区日本橋 1 丁目 1 8 番 1 2 号 Osaka (JP).
- (81) 指定国 (表示のない限り、全ての種類の国内保護が可能): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR,

[続葉有]

(54) Title: SHAFT COUPLING

(54) 発明の名称: 軸継手

FET AVAILABLE COPY

(57) 要約: 軸方向にコンパクトな構造で、伝達動力や偏心量の制約が少なく、しかも安価で組付性に優れた軸継手を提供することを課題とする。 対向する入出力軸A、Bの軸端部に嵌め込んだプレート1、2の対向面に、複数の案内溝5、6を相手側のプレートの対応する位置の案内溝と直交するように設け、両プレート1、2の案内溝5、6の交差位置に配した鋼球3が、保持器4にプレート径方向の移動を転立された状態で、駆動側のプレート1に押され、案内溝5、6内を転動しながら従動側のプレート2を押して動力を伝達するように伝達されたより、摩擦抵抗が少なくなり、大きな動力をスムーズに伝達しれにより、摩擦抵抗が少なくなり、大きな動力をスムーズに伝達した。ことともに、偏心量の変更にも容易に対応できる。また、両プレート1、2間の部品が鋼球3と保持器4のみで高い組付精度を必要とした。軸方向にコンパクトで安価な構造となり、組付性も向上した。

BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FL, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) 指定国(表示のない限り、全ての種類の広域保護が可能): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ (AT, BE, BG,

CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:

— 国際調査報告書

2文字コード及び他の略語については、定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。