Упрощенная кинетическая схема горения керосин-кислородной смеси в камере ЖРД

А.В. Лепихов

Предложена упрощенная кинетическая схема и численная модель горения керосина марки RP-1 в кислороде (RP- $1/O_2$), ориентированная на условия, характерные для камер сгорания жидкостных ракетных двигателей.

Работа выполнена в интересах постановки вычислительных экспериментов лучисто-конвективного воздействия в донной области ракеты и ударно-волновых нагрузок на стартовое сооружение при запуске ЖРД первой ступени, точность компьютерного моделирования которых существенно зависит от распределения газодинамических параметров на срезе сопла в ядре потока и в пограничном слое, свойств смеси сопловых газов, профиля сопла.

Акцент сделан на конкретной марке керосина RP-1, что связано с необходимостью численного моделирования и анализа наземных и летных экспериментальных исследований струйных течений, выполненных ранее в США с использованием данной марки керосина.

Модель

Процесс разложения керосина марки RP-1 представлен одной брутто-реакцией, записываемой в следующем виде:

 $C_{12}H_{24}+6O_2 \rightarrow 12CO+12H_2$,

где компонент $C_{12}H_{24}$ является эффективным компонентом с термодинамическими характеристиками, соответствующими керосину марки RP-1.

В качестве энтальпии образования эффективного компонента $C_{12}H_{24}$ используется величина $\Delta H_f^{\theta} = -450$ кДж/моль.

Термодинамические свойства эффективного компонента C12H24 приняты аналогично [5]. Теплофизические свойства остальных компонентов приняты в соответствии с [8].

Упрощенная кинетическая схема горения смеси RP-1/O₂. k_f = $A \cdot T^B \cdot e^{-E/RT}$

№ п/п	Реакция	A	В	E
1	$C_{12}H_{24}+6O_2=>12CO+12H_2$	2.0E+13	0.0	2.177E+08
2	$CO+O+M \le CO_2+M$	5.3E+10	0.0	-1.900E+07
3	$CO+OH \le H+CO_2$	4.4E+03	1.5	-3.098E+06
4	$H_2+O_2 \le OH+OH$	1.7E+10	0.0	2.010E+08
5	H+O ₂ <=>O+OH	2.6E+11	0.0	7.033E+07
6	$OH+H_2 <=> H+H_2O$	2.2E+10	0.0	2.156e+07
7	$O+H_2 \le OH+H$	1.8E+07	1.0	3.726e+07
8	$OH+OH \le H_2O+O$	6.3E+10	0.0	4.560E+06
9	$H+H+M \le H_2+M$	6.4E+14	-1.0	0.0
10	$H+OH+M \le H_2O+M$	2.2E+19	-2.0	0.0

Примечание: Эффективность M составляет 2.5 для компонента H_2 , 16 для H_2 O и 1 для остальных компонент. Размерность принята в джоулях, молях* 10^{-3} , м³, секундах.

Тестирование

Термодинамический расчет — со [сеа] — со [алууз] — ндо [алууз] — он [сеа] — со [алууз] — он [сеа] — кон [алууз] — о [сеа] — о [алууз] — ндеа] — нде

Сравнение концентрации компонент в продуктах сгорания топливной смеси RP-1/O₂. с кодом NASA CEA

Зависимость температуры пламени от массового соотношения компонент RP-1 и O₂ в топливной смеси

Зависимость молярной массы смеси продуктов сгорания от массового соотношения компонент RP-1 и O_2 в топливной смеси

Расчетное распределение концентрации компонент соплового газа вдоль оси симметрии сопла РД-170

Сравнение результатов численного моделирования и паспортных данных для двигателя РД-170..

Параметр	Расчет	[Sutton2001]
Давление в КС, атм	244.7	245.3
Температура в КС, К	3830	3676
Среднее давление на срезе сопла, кПа	71.4	71.6
Тягав вакууме, кН	8169	7907

Оценка независимости решения от расчетной сетки

Вари	Расчетная сетка, яч			Осредненные параметры на срезе сопла			
	N_1	N ₂	N_3	Р, кПа	V, M/c	T, K	Тяга, кН
a	60	120	60	74.5	3190	1872	7633
б	100	120	60	74.2	3193	1866	7641
В	60	240	60	71.4	3223	1812	7713
Γ	60	120	100	74.3	3192	1868	7638
Д	60	120	30	73.2	3200	1831	7657
3	60	80	60	76.9	3163	1919	7568
e	60	300	60	71.1	3227	1807	7722
ж	60	400	70	70.8	3229	1800	8179

Наибольшее влияние на осредненные газодинамические характеристики сопла оказывает влияние сеточное разрешение расширяющейся части сопла в продольном направлении (параметр N_2).

Зависимость времени расчета модельной CFDзадачи от количества реагирующих

компонент. t0 – время расчета одной итерации для задачи с одним эффективным компонентом

Применение: расчет блочной струи [Musial1961]

КалориметрЛатими паршения

- Исследование давления, температуры и тепловых потоков в донной области ракеты с блочной ЖРД
- Выполнено N.T. Musial and J.J. Ward в аэродинамической трубе NASA Lewis Supersonic Wind Tunnel (SWT)
- Компоновка из четырех кислород/керосиновых (LO₂/JP-4) двигателей тягой \approx 2.2 кН работала от 10 до 12 секунд при наличии спутного потока воздуха, М \approx 2.75
- Для измерения параметров воздействия в донной области установлены калориметры и датчики давления

Варианты расчета:

Днище модели

- а) С постоянными газодинамическими параметрами, соответствующими значениям на срезе сопла. Расчет от критического сечения для эффективного профилированного сопла.
- б) С газодинамическими параметрами, заданными как функция от температуры по результатам термодинамического расчета. Расчет от камеры сгорания.
- в) с учетом физико-химических процессов в сопле ЖРД с помощью упрощенной модели горения смеси $RP-1/O_2$. Расчет выполнен от камеры сгорания.

Поле чисел Маха в донной области модели ракеты для расчетных случаев.

Распределение давления и теплового потока по поверхности днища модели

Литература

[Wang2001] Wang T. Thermophysics Characterization of Kerosene Combustion, Journal of Thermophysics and Heat Transfer, Vol. 15, No. 2 (2001), pp. 140-147.http://dx.doi.org/10.2514/2.6602

[McBride1993] McBride B.J., Gordon S., Reno M.A. Coefficients for Calculating Thermodynamic and Transport Properties of Individual Species // NASA Technical Memorandum 4513, 1993.

[Musial1961] Musial N.T., James J.W. Base Flow Characteristics for Several Four-clustered Rocket Configurations at Mach Numbers from 2.0 to 3.5 // NASA Technical Note D-1093. 1961.

[Sutton2001] Sutton G.P., Biblarz O. Rocket Propulsion Elements. 2001. 7th Edition.