University of California at San Diego – Department of Physics – TA: Shauna Kravec

Quantum Mechanics A (Physics 212A) Fall 2018 Worksheet 9 – Solutions

Problems

1. Variational Method

Consider the special case of dim $\mathcal{H}=2$, with Hamiltonian

$$\mathbf{H} = \begin{pmatrix} a+c & b \\ b & a-c \end{pmatrix}$$

with a, b, c real. Parametrizing the variational state as

$$|\varphi(\alpha)\rangle = \begin{pmatrix} \cos \alpha/2 \\ \sin \alpha/2 \end{pmatrix},$$

find the values of $\alpha = \alpha_0$ which extremize the expectation value of the Hamiltonian. Show that this reproduces the eigenstates:

$$|\chi_{+}\rangle = \begin{pmatrix} \cos \theta/2 \\ \sin \theta/2 \end{pmatrix}, \quad |\chi_{-}\rangle = \begin{pmatrix} -\sin \theta/2 \\ \cos \theta/2 \end{pmatrix}.$$

where $\tan \theta = b/c$.

Note that
$$\hat{H} = a\mathbb{1} + bX + cZ$$
 so $\hat{H}|\alpha\rangle = \begin{pmatrix} (a+c)\cos\frac{\alpha}{2} + b\sin\frac{\alpha}{2} \\ (a-c)\sin\frac{\alpha}{2} + b\cos\frac{\alpha}{2} \end{pmatrix}$

 $\langle \hat{H} \rangle_{\alpha} = a + b \sin(\alpha) + c \cos(\alpha)$ which has extremum at $\tan(\alpha) = \frac{b}{c}$

This is the answer we get from exact diagonalization as well.

2. The Feynman-Hellmann theorem.

Suppose the Hamiltonian depends on a parameter s, $\mathbf{H} = \mathbf{H}(s)$. Suppose E(s) is a non-degenerate eigenvalue with normalized eigenvector $|\phi(s)\rangle$. Show that

$$\partial_s E(s) = \langle \phi(s) | \partial_s \mathbf{H}(s) | \phi(s) \rangle.$$

First we note that $E(s) = \langle \phi(s) | \hat{H}(s) | \phi(s) \rangle$ and $1 = \langle \phi(s) | \phi(s) \rangle$

Using the chain rule: $\partial_s E(s) = \langle \phi(s) | \partial_s \hat{H}(s) | \phi(s) \rangle + E(s) [\langle \partial_s \phi(s) | \phi(s) \rangle + \langle \phi(s) | \partial_s \phi(s) \rangle]$

But by normalization and the chain rule: $[\langle \partial_s \phi(s) | \phi(s) \rangle + \langle \phi(s) | \partial_s \phi(s) \rangle] = \partial_s 1 = 0$

This proves the theorem.