ELCE 705 DIGITAL SIGNAL PROCESSING

Sampling of continuous-time signals (4.6- 4.8 exclude 4.7.6)

Contents

- □ Change the sampling Rate
- □ Multirate signal processing
- □ Digital Processing of Analog Signals

Changing the Sampling Rate

□ A continuous-time signal can be represented by its samples as

$$x[n] = x_c(nT)$$

- Some applications require us to change the sampling rate
 - To obtain a new discrete-time signal from the same CT signal

$$x'[n] = x_c(nT')$$
 where $T \neq T'$

- One way of accomplishing this is to
 - Reconstruct the continuous-time signal from x[n]
 - Resample the continuous-time signal using new rate to get x'[n]
 - This requires analog processing which is often undesired
 - Target: get x'[n] directly from x[n]

Downsampling (Compressor)

- Sampling Rate Reduction by an Integer Factor
- □ Reduce the sampling rate of a sequence by "sampling" it

$$x_d[n] = x[nM] = x_c(nMT)$$
 $T_d = MT$

□ This is accomplished with a **sampling rate compressor**

- There will be no aliasing if $\frac{\pi}{T'} = \frac{\pi}{MT} > \Omega_N$

Frequency Domain Representation

□ Recall the DTFT of $x[n]=x_c(nT)$

$$X(e^{j\omega}) = \frac{1}{T} \sum_{k=-\infty}^{\infty} X_{c} \left(j \left(\frac{\omega}{T} - \frac{2\pi k}{T} \right) \right)$$

The DTFT of the downsampled signal can similarly written as

$$X_d \! \left(\! e^{j \omega} \right) \! = \frac{1}{T'} \sum_{r = -\infty}^{\infty} \! X_c \! \left(j \! \left(\frac{\omega}{T'} - \frac{2 \pi r}{T'} \right) \right) \! = \frac{1}{MT} \sum_{r = -\infty}^{\infty} \! X_c \! \left(j \! \left(\frac{\omega}{MT} - \frac{2 \pi r}{MT} \right) \right)$$

Let's represent the summation index as

$$r = i + kM$$
 where $-\infty < k < \infty$ and $0 \le i < M$

$$X_{d}\left(e^{j\omega}\right) = \frac{1}{M} \sum_{i=0}^{M-1} \left[\frac{1}{T} \sum_{k=-\infty}^{\infty} X_{c} \left(j \left(\frac{\omega}{MT} - \frac{2\pi k}{T} - \frac{2\pi i}{MT} \right) \right) \right]$$

And finally

$$X_d \left(e^{j\omega} \right) = \frac{1}{M} \sum_{i=0}^{M-1} X \left(e^{j \left(\frac{\omega}{M} - \frac{2\pi i}{M} \right)} \right)$$

Frequency Domain Representation of Downsampling: No Aliasing

Frequency Domain Representation

7

Upsampling

-Increasing the Sampling Rate by an Integer Factor

8

□ Increase the sampling rate of a sequence interpolating it

$$x_i[n] = x[n/L] = x_c(nT/L)$$
 $T_i = T/L$

□ This is accomplished with a sampling rate expander

Upsampling

☐ Upsampling consists of two steps

Expander
$$x_{e}[n] = \begin{cases} x[n/L] & n = 0, \mp L, \mp 2L, \dots \\ 0 & \text{else} \end{cases} = \sum_{k=-\infty}^{\infty} x[k] \delta[n-kL]$$
Interpolating (Low pass filter)

> Interpolating (Low pass filter)

Frequency Domain Representation of Expander

The DTFT of $x_e[n]$ can be written as

$$X_e\Big(e^{j\omega}\Big) = \sum_{n=-\infty}^{\infty} \left(\sum_{k=-\infty}^{\infty} x\big[k\big]\delta\big[n-kL\big]\right) e^{-j\omega n} \ = \ \sum_{k=-\infty}^{\infty} x\big[k\big]e^{-j\omega Lk} \ = \ X\Big(e^{j\omega L}\Big)$$

□ The output of the expander is frequency-scaled

Frequency Domain Representation of Interpolator

11

□ The DTFT of the desired interpolated signals is

☐ The extrapolator output is given as

□ Apply the LPF

Interpolator in Time Domain

12

- □ Get an interpolation formula for $x_i[n]$ in terms of x[n]
- □ The low-pass filter impulse response is

$$h_i[n] = \frac{\sin(\pi n / L)}{\pi n / L}$$

Hence the interpolated signal is written as

$$x_{i}[n] = \sum_{k=-\infty}^{\infty} x[k] \frac{sin(\pi(n-kL)/L)}{\pi(n-kL)/L}$$

Note that

$$\begin{split} &h_{_{i}}\big[0\big]=1\\ &h_{_{i}}\big[n\big]=0 \qquad n=\mp L,\mp 2L,\ldots \end{split}$$

□ Therefore the filter output can be written as

$$x_i[n] = x[n/L] = x_c(nT/L) = x_c(nT')$$
 for $n = 0, \mp L, \mp 2L, ...$

Linear Interpolation

□ The impulse response of the filter is

$$h_{lin}[n] = \begin{cases} 1 - |n|/L & |n| \le L \\ 0 & otherwise \end{cases}$$

□ The interpolated output

Compare the frequency response

 $H_{lin}(e^{j\omega}) = \frac{1}{L} \left[\frac{\sin(\omega L/2)}{\sin(\omega/2)} \right]^2$

Changing the Sampling Rate by Non-Integer Factor

Combine decimation and interpolation for non-integer factors

The two low-pass filters can be combined into a single one

Changing the sampling rate by 4/3

Example

17

Contents

- □ Changing the sampling Rate
- □ Multirate signal processing
- □ Digital Processing of Analog Signals

Multirate Signal Processing

- Change sampling rate by
 - Interpolation
 - Decimation
 - Combine them
- Multirate signal processing
 - Reduce the amount of computation required by sampling rate conversion
 - Two basic methods are discussed

Interchange of filtering with compressor

$$Y(e^{j\omega}) = H(e^{j\omega}) \frac{1}{M} \sum_{i=0}^{M-1} X(e^{j(\omega/M - 2\pi i/M)})$$

$$= H(e^{j\omega}) X_a(e^{j\omega}).$$

$$X_b(e^{j\omega}) = H(e^{j\omega M}) X(e^{j\omega}) \qquad X_{[n]} \qquad X_{[n]} \qquad Y(e^{j\omega}) = \frac{1}{M} \sum_{i=0}^{M-1} X(e^{j(\omega/M - 2\pi i/M)}) H(e^{j(\omega - 2\pi i)})$$

Interchange of filtering with expander

$$Y(e^{j\omega}) = H(e^{j\omega L})X_b(e^{j\omega})$$

Multistage Interpolation

- Decimation or interpolation ratios are large
 - Significant reduction in computation through multistage
 - Interpolated FIR filter $H(z) = H_1(z)H_2(z^{M_1}) \quad h[n] = h_1[n] * \sum_{k=-\infty}^{\infty} h_2[k]\delta[n kM_1]$ $\xrightarrow{x[n]} \quad H_1(z) \qquad \downarrow M_1 \qquad H_2(z) \qquad \downarrow M_2 \qquad \tilde{x}_d[n]$ $\xrightarrow{x[n]} \quad H_1(z) \qquad H_2(z^{M_1}) \qquad \downarrow M_1 \qquad \downarrow M_2 \qquad \tilde{x}_d[n]$ $\downarrow M_1 \qquad \downarrow M_2 \qquad \tilde{x}_d[n]$ $\downarrow M_1 \qquad \downarrow M_2 \qquad \tilde{x}_d[n]$ $\downarrow M_1 \qquad \downarrow M_2 \qquad \tilde{x}_d[n]$

Multistage Decimation

- Low pass filter: pass band gain OdB, stop band gain -40dB
- □ L=100: transition band $0.008\pi \sim 0.012\pi$, FIR order 709
- □ L=10: transition band $0.09 \pi \sim 0.11 \pi$, FIR order 142

Polyphase decompositions

□ h[n] as superposition of M subsequences

$$h[n] = \sum_{k=0}^{M-1} h_k[n-k] \qquad k=0, 1, ..., M-1$$

$$h_k[n] = \begin{cases} h[n+k], & n = \text{integer multiple of } M \\ 0, & \text{otherwise.} \end{cases}$$

Polyphase decompositions

Decompose to M parallel filters

$$H(z) = \sum_{k=0}^{M-1} E_k(z^M) z^{-k}$$

$$e_k[n] = h[nM + k] = h_k[nM]$$

Polyphase implementation of decimation filters

Polyphase implementation of interpolation filters

Contents

- □ Changing the sampling Rate
- □ Multirate signal processing
- □ Digital Processing of Analog Signals

Ideal Conversion

29

☐ Assume ideal D/C and C/D conversion

- □ In practice, however
 - Continuous-time signals are not perfectly bandlimited
 - D/C and C/D converters can only be approximated with D/A and A/D converters
- □ A more realistic model for digital signal processing

Prefiltering to Avoid Aliasing

30

- Desirable to minimize sampling rate
 - Minimizes amount of data to process
 - Remove high frequencies (noises) that are not of interest
- A low-pass anti-aliasing filter would improve both aspects
- An ideal anti-aliasing filter $\mathsf{H}_{\mathsf{aa}}\big(j\Omega\big) = \begin{cases} 1 & \left|\Omega\right| < \Omega_{\mathsf{c}} < \pi \, / \, \mathsf{T} \\ 0 & \left|\Omega\right| > \Omega_{\mathsf{c}} \end{cases}$
- The effective response is $H_{eff}(j\Omega) = \begin{cases} H(e^{j\Omega T}) & |\Omega| < \Omega_c \\ 0 & |\Omega| > \Omega_c \end{cases}$
- □ In practice an ideal low-pass filter is not possible hence

$$H_{eff}(j\Omega) \approx H_{aa}(j\Omega)H(e^{j\Omega T})$$

This would require sharp-cutoff analog filters which are expensive

Oversampled A/D Conversion

□ The idea is

- to use a simple analog anti-aliasing filter
- Use higher than required sampling rate
- implement sharp anti-aliasing filter in discrete-time
- Downsample to desired sampling rate

Example

Analog-to-Digital (A/D) Conversion

33

- □ Ideal C/D converters convert continuous-time signals into infinite-precision discrete-time signals
- □ In practice, implement C/D converters as the cascade of

- ☐ The sample-and-hold device holds current/voltage constant
- □ The A/D converter converts current/voltage into finite-precisions number
- ☐ The ideal sample-and-hold device has the output

$$x_0(t) = \sum_{n=-\infty}^{\infty} x[n]h_0(t-nT)$$
 $h_0(t) = \begin{cases} 1, & 0 < t < T \\ 0, & \text{else} \end{cases}$

Sample and Hold

24

☐ An ideal sample-and-hold system

□ Time-domain representation of sample-and-hold operation

A/D Converter Model

35

□ An practical A/D converter can be modeled as

- □ The C/D converter represent the sample-hold-operation
- Quantizer transforms input into a finite set of numbers

$$\boldsymbol{\hat{x}}[n] = \boldsymbol{Q}\big(\boldsymbol{x}[n]\big)$$

□ Most of the time uniform quantizers are used

Uniform Quantizer

Two's Complement Numbers

Representation for signed numbers in computers

Integer two's-complement

$$\begin{array}{l} -\,a_{_{0}}2^{_{B}}\,+\,a_{_{1}}2^{_{B-1}}\,+\ldots\,+\,a_{_{B}}2^{_{0}} \\ -\,a_{_{0}}2^{_{0}}\,+\,a_{_{1}}2^{_{-1}}\,+\ldots\,+\,a_{_{B}}2^{_{-B}} \end{array}$$

Fractional two's-complement

$$-a_0^2 2^0 + a_1^2 2^{-1} + ... + a_B^2 2^{-B}$$

Example B+1=3 bit two's-complement numbers

$-a_0 2^2 + a_1 2^1 + a_2 2^0$	
Binary Symbol	Numerical Value
011	3
010	2
001	1
000	0
111	-1
110	-2
101	-3
100	-4

$-a_0 2^0 + a_1 2^{-1} + a_2 2^{-2}$	
Binary Symbol	Numerical Value
0.11	3/4
0.10	2/4
0.01	1/4
0.00	0
1.11	-1/4
1.10	-2/4
1.01	-3/4
1.00	-4/4

Example

Quantization Error

39

Quantization error: $e[n] = \hat{x}[n] - x[n]$

- difference between the original and quantized value
- \square If quantization step is \triangle the quantization error:

$$-\,\Delta\,/\,2\,<\,e\big[n\big]<\,\Delta\,/\,2$$

- As long the input does not clip
- Based on this fact we may use the following simplified model with assumption:
 - e[n] is uniformly distributed random variable
 - Is uncorrelated with the signal x[n]
- The variance of e[n] is then

And the **signal-to-noise ratio** of quantization noise for B+1 bits $_{e}$

$$SNR = 6.02B + 10.8 - 20 log_{10} \left(\frac{X_m}{\sigma_x} \right)$$

D/C Conversion

40

Perfect reconstruction requires filtering with ideal LPF

$$X_r(j\Omega) = X(e^{j\Omega T})H_r(j\Omega)$$

 $X(e^{j\Omega T})$: FT of sampled signal

 $X_{r}(j\Omega)$: FT of reconstructed signal

□ The ideal reconstruction filter

$$H_{r}(j\Omega) = \begin{cases} T & |\Omega| < \pi / T \\ 0 & |\Omega| > \pi / T \end{cases}$$

□ The time domain reconstructed signal is

$$x_r(t) = \sum_{n=-\infty}^{\infty} x[n] \frac{\sin[\pi(t-nT)/T]}{\pi(t-nT)/T}$$

□ In practice we cannot implement an ideal reconstruction filter

D/A Conversion

41

□ The practical way of D/C conversion is an D/A converter

□ It takes a binary code and converts it into continuous-time output

$$x_{DA}(t) = \sum_{n=-\infty}^{\infty} X_m \hat{x}_B[n] h_0(t - nT) = \sum_{n=-\infty}^{\infty} \hat{x}[n] h_0(t - nT)$$

Using the additive noise model for quantization

$$x_{DA}(t) = \sum_{n=-\infty}^{\infty} x[n]h_0(t-nT) + \sum_{n=-\infty}^{\infty} e[n]h_0(t-nT) = x_0(t) + e_0(t)$$

□ The signal component in frequency domain can be written as

$$X_0(j\Omega) = X(e^{j\Omega T})H_0(j\Omega)$$

To recover the desired signal component, a compensated reconstruction filter is needed: $H_{\bullet}(i\Omega)$

 $\tilde{H}_{r}(j\Omega) = \frac{H_{r}(j\Omega)}{H_{0}(j\Omega)}$

Compensated Reconstruction Filter

42

□ The frequency response of zero-order hold is

$$H_0(j\Omega) = \frac{2\sin(\Omega T/2)}{\Omega}e^{-j\Omega T/2}$$

Therefore the compensated reconstruction filter should be

$$\widetilde{H}_r \left(j\Omega \right) = \begin{cases} \frac{\Omega T/2}{\sin(\Omega T/2)} e^{j\Omega T/2} & \left| \Omega \right| < \pi/T \\ 0 & \left| \Omega \right| > \pi/T \end{cases}$$
Zero-order hold
$$|H_0(j\Omega)|$$

$$-\frac{2\pi}{T} - \frac{\pi}{T} \qquad 0 \qquad \frac{\pi}{T} \qquad \frac{2\pi}{T} \qquad \Omega$$

$$-\frac{\pi}{T} \qquad \frac{\pi}{T} \qquad \Omega$$

Digital processing of analog signals

$$Y_{a}(J\Omega) = \bar{H}_{r}(J\Omega)H_{0}(J\Omega)H(e^{J\Omega T})H_{aa}(J\Omega)X_{c}(J\Omega)$$

$$H_{\text{eff}}(j\Omega) = \tilde{H}_r(j\Omega)H_0(j\Omega)H(e^{j\Omega T})H_{\text{aa}}(j\Omega)$$

THE END