Lab 4

ESSE3630

Professor Benjamin Brunson

Submitted by Jared Yen

Date of Submission: 11/03/2021

Contents

Part One: Pre-Adjustment Quality Assurance	3
Task 1	
Task 2	
Task 3	5
Task 4	
Task 5	9
Task 6	10
Part Two	10
Task 1	10
Task 2	12
Task 3	13
Task 4	14
Appendix	16
A.1 – Data table	16
A.2 Chi-Square Distribution Critical Values	17
A.3 – T-Distribution Critical Values.	

Part One: Pre-Adjustment Quality Assurance

Task 1

The unknown parameters are the 3D cartesian coordinates of all points in Figure 1 except control point A.

Figure 1 - 3D GNSS Baseline network with control point A and the rest unknown

For unknowns x

$$x = \begin{bmatrix} \vec{X}_B \\ \vec{X}_C \\ \vec{X}_D \\ \vec{X}_E \end{bmatrix}$$

$$\overrightarrow{X_i} = \begin{bmatrix} x_i \\ y_i \\ z_i \end{bmatrix}$$

Task 2

The observation vector l is defined as

$$l = \begin{bmatrix} \overrightarrow{DX}_{AB} \\ \overrightarrow{DX}_{BA} \\ \vdots \\ \overrightarrow{DX}_{BE} \end{bmatrix}$$

Where the GNSS baseline measurement \overrightarrow{DX}_{ij} measures the change in coordinates from point i to j. The measurements appear in the row-order they appear in the input tables in Appendix A.1.

The weight matrix $P = D_{LL}^{-1}$ and the covariance matrix is defined with a diagonal matrix consisting of covariance sub-matrices

$$D_{LL} = \begin{bmatrix} D_{\overrightarrow{DX}_{AB}} & 0 & 0 & 0 \\ 0 & D_{\overrightarrow{DX}_{BA}} & 0 & 0 \\ 0 & 0 & \ddots & 0 \\ 0 & 0 & 0 & D_{\overrightarrow{DX}_{DE}} \end{bmatrix}$$

Where each zero is a 3x3 zero matrix and $D_{\overrightarrow{DX}_{ij}}$ is the covariance matrix made from the variances and covariances of the change in cartesian coordinates DX_{ij} , DY_{ij} , DZ_{ij} listed in A.1, full code rearranging the input data table into D_{LL} in A.4.

The first design matrix A was calculated by the partial derivatives of the observation equation

$$\overrightarrow{DX}_{ij} = \overrightarrow{X}_j - \overrightarrow{X}_i$$

$$\frac{\partial \overrightarrow{DX}_{ij}}{\overrightarrow{X}_i} = -I_3$$

$$\frac{\partial \overrightarrow{DX}_{ij}}{\overrightarrow{X}_j} = I_3$$

$$A = \frac{\partial l}{\partial x} = \begin{bmatrix} \frac{\partial \overrightarrow{DX}_{AB}}{\overrightarrow{X}_B} & 0 & 0 & 0 \\ \frac{\partial \overrightarrow{DX}_{BA}}{\overrightarrow{X}_B} & 0 & 0 & 0 \\ 0 & 0 & \ddots & 0 \\ \frac{\partial \overrightarrow{DX}_{BE}}{\overrightarrow{X}_B} & 0 & 0 & \frac{\partial \overrightarrow{DX}_{BE}}{\overrightarrow{X}_E} \end{bmatrix} = \begin{bmatrix} I_3 & 0 & 0 & 0 \\ -I_3 & 0 & 0 & 0 \\ 0 & 0 & \ddots & 0 \\ -I_3 & 0 & 0 & I_3 \end{bmatrix}$$

The rest of the partial derivatives are evaluated to zero when the unknown is not in the observation equation.

The A matrix was computed in MATLAB by first importing the table from A.1, converting the letters to numbers for indexing purposes

```
% converts letters in From and To columns to numbers A=1,B=2...
letter2number = @(c) 1+lower(c)-'a';
T{:,[1 2]}

ans = 16×2 cell
'A' 'B'
'B' 'A' 'C'
'C' 'A'
```

FromTo=cellfun(letter2number,T{:,[1 2]})

Since point A is a control point, it is treated as a constant and evaluated to zero in the A matrix. Every 3 lines of the A matrix representing a single 3D GNSS baseline \overrightarrow{DX}_{ij} measurement was calculated using a helper function calca. As point A = 1, nothing was done to the initialized A zero matrix. The indexing of the identity matrices I_3 from the definition of A into the correct 3x3 block into the 3x12 block representation of \overrightarrow{DX}_{ij} was done by using the numerical representation of the points B through E inputted as from = i and to = j.

```
function A = calcA(from,to)
% assuming coordinate 1 is the control point
u=4;
A=zeros(3,3*u);
if from~=1
    A(:,((from-1)*3-2):(from-1)*3)=-eye(3);
end
if to~=1
    A(:,((to-1)*3-2):(to-1)*3)=eye(3);
end
```

Task 3

To see if the accuracy of the unknown points are at least at an accuracy of 1cm, the covariance matrix of the adjusted unknown points $D_{\hat{x}\hat{x}} = (A^T P A)^{-1}$ then the square root of the diagonals were calculated to receive the standard deviations or accuracies for each observation in the order they appear in the definition for l.

```
Dxhat=inv(A'*P*A)
sigmaxhat=sqrt(diag(Dxhat))
sigmaxhat = 12×1
0.000241522945769824
0.000193218356615859
```

```
0.000338132124077754
```

0.000241522945769824

0.000193218356615859

0.000338132124077754

0.000241522945769824

0.000193218356615859

0.000338132124077754

0.000241522945769824

0.000193218356615859

0.000338132124077754

These error units are meters and none of the adjusted unknown errors exceed 1cm or 0.01m therefore the observations in the network will achieve the accuracy of 1cm.

Task 4

The geometric conditions I chose were the double-run measurements so 8 for the 16 total measurements and 1 loop condition of loop ABC where the condition was $\overrightarrow{DX}_{AB} + \overrightarrow{DX}_{BC} + \overrightarrow{DX}_{CA} = 0$. The double run measurement conditions were the first 8 conditions defined as

$$w_{i} = DX_{ij} + DX_{ji} = 0$$

$$w = \begin{bmatrix} w_{1} \\ w_{2} \\ \vdots \\ w_{8} \\ w_{9} \end{bmatrix} = \begin{bmatrix} \overrightarrow{DX}_{AB} + \overrightarrow{DX}_{BA} \\ \overrightarrow{DX}_{AC} + \overrightarrow{DX}_{CA} \\ \vdots \\ \overrightarrow{DX}_{EB} + \overrightarrow{DX}_{BE} \\ \overrightarrow{DX}_{AB} + \overrightarrow{DX}_{BC} + \overrightarrow{DX}_{CA} \end{bmatrix}$$

To evaluate the conditions and check for outliers, the second design matrix B is needed to calculate the misclosure variance $D_{ww} = BD_{ww}B^T$

$$B = \frac{\partial l}{\partial x} = \begin{bmatrix} \frac{\partial w_1}{\partial \vec{X}_{AB}} & \frac{\partial w_1}{\partial \vec{X}_{BA}} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{\partial w_2}{\partial \vec{X}_{AC}} & \frac{\partial w_2}{\partial \vec{X}_{CA}} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \ddots & \ddots & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & \frac{\partial w_8}{\partial \vec{X}_{EB}} & \frac{\partial w_8}{\partial \vec{X}_{BE}} \\ \frac{\partial w_9}{\partial \vec{X}_{AB}} & 0 & 0 & \frac{\partial w_9}{\partial \vec{X}_{CA}} & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} I_3 & I_3 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & I_3 & I_3 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \ddots & \ddots & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1_3 & I_3 \\ I_2 & 0 & 0 & I_2 & \cdots & 0 & 0 & 0 \end{bmatrix}$$

In MATLAB, I calculated the misclosures as per the following.

```
w=zeros(9,3);
 % since double run measurements are stacked in adjacent row pairs,
 for i=1:size(data,1)/2
     w(i,:)=data(2*i-1,3:5)+data(2*i,3:5);
 end
 % included loop ABC in cond.s w9=AB+BC+CA
 ftLoop= [1 2; 2 3; 3 1]; % ft=[from to;...]
 for i=1:size(ftLoop,1)
     % compares from and to columns in input data and if both equal the from and
     % to in ftLoop(i,:) then return ind
     ind=find(sum(data(:,1:2)==ftLoop(i,:),2)==2);
     w(9,:)=w(9,:)+data(ind,3:5);
 end
w = 9 \times 3
       -0.016
                   0.012
                                  0.004
                    0.005
       -0.002
                                 -0.048
       -0.018
-0.029
                   -0.001
                                  0.038
                   -0.035
                                 -0.078
       -0.015
                    0.017
                                 -0.008
       -0.004
                    0.001
                                 0.023
                   -0.051
                                  -0.02
       -0.003
       0.013
                    0.004
                                 -0.047
       -0.013
                     0.027
                                 -0.033
```

The covariance of the misclosures were then calculated by calculating *B* then the accuracies of the misclosures extracted.

```
B=zeros(size(w,1)*3,n);
for i=1:size(data,1)/2
    B(3*i-2:3*i,6*i-5:6*i)=[eye(3),eye(3)];
end

for i=1:size(ftLoop,1)
    ind=find(sum(data(:,1:2)==ftLoop(i,:),2)==2);
    B(3*9-2:3*9,3*ind-2:3*ind)=eye(3);
end

Dww=B*DLL*B';
sigmaw=sqrt(diag(Dww));
xyzsigmaw=zeros(size(w));
% reshape sigmaw into x,y,z
for i=1:numel(sigmaw)/3
    xyzsigmaw(i,:)=[sigmaw(3*i-2) sigmaw(3*i-1) sigmaw(3*i)];
end
```

xyzsigmaw

The above representation of σ_w and all future representations in x, y, z array form were outputted for better visualization and not used for calculation.

To check for outliers, I assumed the $\frac{w_i}{\sigma_{w_i}} \sim N(0,1)$ and using a significance level of $\alpha = 0.01$ a test for outliers was made where if $\left|\frac{w_i}{\sigma_{w_i}}\right| \leq |z_{0.01/2}| = 2.575$ then the observation passed and was likely not an outlier.

normTest=w./xyzsigmaw a=0.01;

$$notOutlier=abs(normTest) <= abs | (norminv(a/2)) % two-tail$$

```
notOutlier = 9x3 logical array
0 0 0
0 0 0
0 1 0
0 0 0
0 1 0
0 0 0
0 1 0
0 0 0
0 0 0
0 0 0
0 0 0
```

Observation	Test Stat			Pass/Fail	True=pass	False=fail
W	DX	DY	DZ	DX	DY	DZ
1	-22.6274	21.2132	4.04061	FALSE	FALSE	FALSE
2	-2.82843	8.838835	-48.4873	FALSE	FALSE	FALSE
3	-25.4558	-1.76777	38.3858	FALSE	TRUE	FALSE
4	-41.0122	-61.8718	-78.7919	FALSE	FALSE	FALSE
5	-21.2132	30.05204	-8.08122	FALSE	FALSE	FALSE
6	-5.65685	1.767767	23.23351	FALSE	TRUE	FALSE
7	-4.24264	-90.1561	-20.2031	FALSE	FALSE	FALSE
8	18.38478	7.071068	-47.4772	FALSE	FALSE	FALSE
9	-15.0111	38.97114	-27.2179	FALSE	FALSE	FALSE

All except 2 misclosures and their corresponding double-run measurements seem to be outliers which may be due to the nature of the small errors of the measurements in D_{LL} on the order of magnitude of 0.1mm affecting the calculations for $D_{ww} = BD_{LL}B^T$ making the threshold for a non-outlier very slim.

Task 5

A priori variance factor $\sigma_0^2 = \frac{w^T D_{ww}^{-1} w}{number\ of\ conditions} = \frac{w^T D_{ww}^{-1} w}{27}$

w=reshape(w',[numel(w),1])

To verify what conclusions σ_0^2 is making on the quality of the observations, a test of variance is carried out. Ideally $\sigma_0^2 = 1$,

$$\begin{cases} H_0: \sigma_0^2 = 1 \\ H_A: \sigma_0^2 \neq 1 \end{cases}$$

(number of conditions) $\sigma_0^2 \sim \chi^2$ (number of conditions)

$$(27)\sigma_0^2 = 30783$$

Using significance level $\alpha = 0.01$

The test statistic (number of conditions) σ_0^2 is not in the confidence interval using $\alpha = 0.01$ and the null hypothesis is not accepted therefore the initial estimate of the observation errors D_{LL} are of low quality and unrealistic.

Task 6

1

1 1

After scaling the observation covariance by σ_0^2 , the 3x3 covariance that repeatedly appeared on D_{LL} 's diagonal scaled to.

2.9E-04	-2.3E-06	4.6E-06
-2.3E-06	1.8E-04	5.7E-06
4.6E-06	5.7E-06	5.6E-04

To see if the scale factor affected outlier testing, statistical testing using the T-distribution is necessary since scaling the previous test statistic $\frac{w_i}{\sigma_{w_i}}$ by $\frac{1}{\sigma_0}$ (since $D_{ww} = \sigma_0^2 D_{ww}^0$) turns the test statistic into a T-distributed variable i.e. $\frac{w_i}{\sigma_0 \sigma_{w_i}} \sim T(number\ of\ conditions)$. Using the same $\alpha = 0.01$

Observation	Test Stat			Pass/Fail	True=pass	False=fail
W	DX	DY	DZ	DX	DY	DZ
1	-0.67013	0.628248	0.119666	TRUE	TRUE	TRUE
2	-0.08377	0.26177	-1.436	TRUE	TRUE	TRUE
3	-0.7539	-0.05235	1.13683	TRUE	TRUE	TRUE
4	-1.21461	-1.83239	-2.33349	TRUE	TRUE	TRUE
5	-0.62825	0.890018	-0.23933	TRUE	TRUE	TRUE
6	-0.16753	0.052354	0.688081	TRUE	TRUE	TRUE
7	-0.12565	-2.67005	-0.59833	TRUE	TRUE	TRUE
8	0.544482	0.209416	-1.40608	TRUE	TRUE	TRUE
9	-0.44457	1.154165	-0.80608	TRUE	TRUE	TRUE

The a priori variance factor scale had an impact on which measurements were considered outliers since the previous non-scaled normal distribution test concluded that all except 2 of the measurements were qualified as outliers and the test statistic scaled by the a priori variance factor concluded that no measurements were outliers.

Part Two

Task 1

To perform the linear parametric adjustment, the only missing defined variable was the constant matrix C for the equation for \hat{x}

$$\hat{x} = (A^T P A)^{-1} A^T P (l - C)$$

Where

$$C = \begin{bmatrix} -\overrightarrow{X_A} \\ \overrightarrow{X_A} \\ \vdots \\ 0 \end{bmatrix}$$

Iteratively, this was done by recording when the control point A was a To or From point in the measurement network and the sign of vector $\overrightarrow{X_A}$ in the general observation equation was assigned to Csign. For efficiency considerations, the calcA function was updated since it also went through each observation checking the From and To points.

$$\overrightarrow{DX}_{ij} = \overrightarrow{X}_i - \overrightarrow{X}_i$$

```
function [A,Csign] = calcA(from,to)
% assuming coordinate 1 is the control point
A=zeros(3,3*u);
Csign=0;
from
to
if from~=1
    A(:,((from-1)*3-2):(from-1)*3)=-eye(3);
else
    Csign=-1;
end
if to~=1
    A(:,((to-1)*3-2):(to-1)*3)=eye(3);
else
    Csign=1;
end
```

The following lines were updated to the main body of code

854.494700000000

763.353800000000

```
C=zeros(n,1);
XA=[1000;1000;1000];
for i=1:size(data,1)
    [A(i*3-2:i*3,:),Csign]=calcA(FromTo(i,1),FromTo(i,2));
    C(i*3-2:i*3)=Csign*XA;
end
```

Observation vector l was also defined in code as in Part 1 Task 2 and $D_{LL} = \sigma_0^2 D_{LL}^0$

789.56146666666

1058.85986666667

```
priorDLL=DLL*priorVar;
l=reshape(data(:,3:5)',[numel(data(:,3:5)) 1]);
P=inv(priorDLL);
xhat=inv(A'*P*A)*A'*P*(1-C);
xhatxyz=col2xyz(xhat);
xhatxyz = 4×3
1192.43920000000 1250.66613333333 1121.11790000000
1250.32980000000 936.776033333333 1005.60376666667
```

894.768900000000

967.231433333333

The rows represent x, y, z coordinates of B, C, D, E respectively.

Task 2

To calculate residuals, the following relationship was used

$$\hat{v} = \hat{l} - l$$

$$\hat{l} = A\hat{x} + C$$

```
lhat=A*xhat+C;
v=lhat-l;
lhatxyz=col2xyz(lhat);
vxyz=col2xyz(v)
vxyz = 16 \times 3
      0.0112
                               0.0029
               -0.0068667
      0.0048
              -0.0051333
                              -0.0069
      0.0078 -0.0029667
                             0.025767
     -0.0058 -0.0020333
                             0.022233
      0.0107
             0.0064667
                              -0.0161
      0.0073
              -0.0054667
                              -0.0219
      0.0028 0.012867
                             0.029433
              0.022133
      0.0262
                             0.048567
      0.0076
               -0.0181
                            0.0078667
      0.0074
                  0.0011
                           0.00013333
```

To identify outliers a normal distribution test using a significance level $\alpha = 0.01$ for each residual was performed similarly to the misclosures in Part One.

$$\begin{cases} H_0: v_i = 0 \\ H_A: v_i \neq 0 \end{cases}, i = 1, 2, \dots, 48$$

$$\frac{v_i}{\sigma_{v_i}} \sim N(0, 1)$$

The standard deviations of the residuals σ_{v_i} were the square root of the diagonals of the covariance matrix $D_{\hat{v}\hat{v}} = D_{LL} - A(A^T P A)^{-1} A$

```
Dvhat=priorDLL-A*inv(A'*inv(priorDLL)*A)*A';
sigmav=sqrt(diag(Dvhat));
xyzsigmav=col2xyz(sigmav);
a=0.01;
vNotOutlier=abs(vxyz./xyzsigmav)<=abs(norminv([a/2]))</pre>
vNotOutlier = 16×3 logical array
true
      true
             true
      true
true
             true
true
      true
             true
      true
true
             true
```

Observation		Test Stat			Pass/Fail	True=pass	False=fail
From	То	DX	DY	DZ	DX	DY	DZ
'A'	'B'	0.75765162	-0.58064	0.140127	TRUE	TRUE	TRUE
'B'	'A'	0.32470784	-0.43407	-0.33341	TRUE	TRUE	TRUE
'A'	'C'	0.52765024	-0.25086	1.245036	TRUE	TRUE	TRUE
'C'	'A'	-0.3923553	-0.17194	1.074306	TRUE	TRUE	TRUE
'A'	'D'	0.72382789	0.546817	-0.77795	TRUE	TRUE	TRUE
'D'	'A'	0.4938265	-0.46226	-1.0582	TRUE	TRUE	TRUE
'A'	'E'	0.18941291	1.087997	1.422207	TRUE	TRUE	TRUE
'E'	'A'	1.77236362	1.87158	2.346723	TRUE	TRUE	TRUE
'B'	'C'	0.52567546	-1.56492	0.388657	TRUE	TRUE	TRUE
'C'	'B'	0.5118419	0.095106	0.006587	TRUE	TRUE	TRUE
'C'	'D'	0.61559363	-0.91359	-0.28985	TRUE	TRUE	TRUE
'D'	'C'	-0.3389223	0.827132	-0.84648	TRUE	TRUE	TRUE
'D'	'E'	0.69859502	1.850239	0.91565	TRUE	TRUE	TRUE
'E'	'D'	-0.4910916	2.559209	0.072462	TRUE	TRUE	TRUE
'E'	'B'	-0.6640111	-0.928	1.109979	TRUE	TRUE	TRUE
'B'	'E'	-0.2351706	0.582163	1.212084	TRUE	TRUE	TRUE

None of the residuals were tested statistically to be outliers.

Task 3

The a posteriori variance factor
$$\hat{\sigma}_0^2 = \frac{\hat{v}^T P \hat{v}}{dof} = \frac{\hat{v}^T P \hat{v}}{48-12} = \frac{\hat{v}^T P \hat{v}}{36}$$

```
postVar = v'*P*v/(numel(1)-numel(xhat))
postVar =
    0.93012
```

To make conclusions on what $\hat{\sigma}_0^2$ says about the observation quality, a chi-square distribution test statistic was used similarly to Part One Task 5 using the same significance level used in the other statistical tests $\alpha = 0.01$. A two-tail or right-tail test can be performed, a right-tail test was performed.

$$\begin{cases} H_0: \hat{\sigma}_0^2 = 1 \\ H_A: \hat{\sigma}_0^2 \neq 1 \end{cases}$$
$$(dof)\hat{\sigma}_0^2 \sim \chi^2(dof)$$

```
postChiStat=v'*P*v
```

postChiStat =

33.484

chi2inv(a,dof)

ans =

19.233

postIsOutlier=postChiStat>chi2inv(a,dof)

postIsOutlier = logical

1

The $\hat{\sigma}_0^2$ fails the null hypothesis, $\hat{\sigma}_0^2 \neq 1$ and means a problem with the dataset or model exists such that the solution to the system is affected.

Task 4 Scaling the covariance matrices of the observations and residuals by $\hat{\sigma}_0^2$

postDLL=postVar*priorDLL; postDvhat=postVar*Dvhat

The impact of the $\hat{\sigma}_0^2$ on the observations was tested by performing a test using the t-distributed test statistic, $\alpha = 0.01$ and two-tailed test.

$$\frac{\hat{v}_i}{\sigma_{\hat{v}_i}} \sim T(dof), i = 1, \dots, 48$$

$$\left|\frac{\hat{v}_i}{\sigma_{\hat{v}_i}}\right| \le |t_{0.005,dof}|$$

Where $\sigma_{\hat{v}_i}$ were the square root of the diagonals of $D_{\hat{v}\hat{v}}$

```
sigmavPost=sqrt(diag(postDvhat));
xyzsigmavPost=col2xyz(sigmavPost);
tTestPost=vxyz./xyzsigmavPost
```

```
tTestPost = 16 \times 3
    0.023266
                 -0.01783
                            0.0043031
   0.0099712
                -0.01333
                            -0.010238
    0.016203
              -0.0077035
                             0.038233
   -0.012049
             -0.0052799
                              0.03299
              0.016792
    0.022228
                            -0.023889
    0.015165
              -0.014195
                          -0.032496
              0.033411
   0.0058165
                             0.043674
    0.054426
                0.057473
                             0.072064
    0.016143
                -0.048056
                             0.011935
    0.015718
                0.0029205
                           0.00020229
```

tNotOutlier=abs(tTestPost)<abs(tinv(a/2,dof))</pre>

Observation	Observation Test Stat				Pass/Fail	True=pass	False=fail
From	То	DX	DY	DZ	DX	DY	DZ
'A'	'B'	0.02326619	-0.01783	0.004303	TRUE	TRUE	TRUE

'B'	'A'	0.00997122	-0.01333	-0.01024	TRUE	TRUE	TRUE
'A'	'C'	0.01620324	-0.0077	0.038233	TRUE	TRUE	TRUE
'C'	'A'	-0.0120486	-0.00528	0.03299	TRUE	TRUE	TRUE
'A'	'D'	0.02222752	0.016792	-0.02389	TRUE	TRUE	TRUE
'D'	'A'	0.01516457	-0.0142	-0.0325	TRUE	TRUE	TRUE
'A'	'E'	0.00581655	0.033411	0.043674	TRUE	TRUE	TRUE
'E'	'A'	0.05442626	0.057473	0.072064	TRUE	TRUE	TRUE
'B'	'C'	0.0161426	-0.04806	0.011935	TRUE	TRUE	TRUE
'C'	'B'	0.01571779	0.002921	0.000202	TRUE	TRUE	TRUE
'C'	'D'	0.01890383	-0.02805	-0.0089	TRUE	TRUE	TRUE
'D'	'C'	-0.0104077	0.0254	-0.02599	TRUE	TRUE	TRUE
'D'	'E'	0.02145266	0.056818	0.028118	TRUE	TRUE	TRUE
'E'	'D'	-0.0150806	0.078589	0.002225	TRUE	TRUE	TRUE
'E'	'B'	-0.0203906	-0.0285	0.034086	TRUE	TRUE	TRUE
'B'	'E'	-0.0072217	0.017877	0.037221	TRUE	TRUE	TRUE

Again none of the measurements were statistically tested to be outliers so scaling the covariance matrices by $\hat{\sigma}_0^2$ did not change which measurements were seen as outliers.

Appendix

A.1 – Data table

From	То	DX (m)	DY (m)	DZ (m)	XX	XY	XZ	YY	YZ	ZZ
Α	В	192.428	250.673	121.115	2.5E-07	-2E-09	4E-09	1.6E-07	5E-09	4.9E-07
В	Α	-192.444	-250.661	-121.111	2.5E-07	-2E-09	4E-09	1.6E-07	5E-09	4.9E-07
Α	С	250.322	-63.221	5.578	2.5E-07	-2E-09	4E-09	1.6E-07	5E-09	4.9E-07
С	Α	-250.324	63.226	-5.626	2.5E-07	-2E-09	4E-09	1.6E-07	5E-09	4.9E-07
Α	D	-145.516	-210.445	-105.215	2.5E-07	-2E-09	4E-09	1.6E-07	5E-09	4.9E-07
D	Α	145.498	210.444	105.253	2.5E-07	-2E-09	4E-09	1.6E-07	5E-09	4.9E-07
Α	E	-236.649	58.847	-32.798	2.5E-07	-2E-09	4E-09	1.6E-07	5E-09	4.9E-07
E	Α	236.62	-58.882	32.72	2.5E-07	-2E-09	4E-09	1.6E-07	5E-09	4.9E-07
В	С	57.883	-313.872	-115.522	2.5E-07	-2E-09	4E-09	1.6E-07	5E-09	4.9E-07
С	В	-57.898	313.889	115.514	2.5E-07	-2E-09	4E-09	1.6E-07	5E-09	4.9E-07
С	D	-395.844	-147.204	-110.829	2.5E-07	-2E-09	4E-09	1.6E-07	5E-09	4.9E-07
D	С	395.84	147.205	110.852	2.5E-07	-2E-09	4E-09	1.6E-07	5E-09	4.9E-07
D	E	-91.151	269.277	72.444	2.5E-07	-2E-09	4E-09	1.6E-07	5E-09	4.9E-07
E	D	91.148	-269.328	-72.464	2.5E-07	-2E-09	4E-09	1.6E-07	5E-09	4.9E-07
E	В	429.095	191.817	153.864	2.5E-07	-2E-09	4E-09	1.6E-07	5E-09	4.9E-07
В	E	-429.082	-191.813	-153.911	2.5E-07	-2E-09	4E-09	1.6E-07	5E-09	4.9E-07

A.2 Chi-Square Distribution Critical Values Table A.7 Critical Values for Chi-Squared Distributions

ν	.995		α													
		.99	.975	.95	.90	.10	.05	.025	.01	.005						
1	0.000	0.000	0.001	0.004	0.016	2.706	3.843	5.025	6.637	7.882						
2	0.010	0.020	0.051	0.103	0.211	4.605	5.992	7.378	9.210	10.597						
3	0.072	0.115	0.216	0.352	0.584	6.251	7.815	9.348	11.344	12.837						
4	0.207	0.297	0.484	0.711	1.064	7.779	9.488	11.143	13.277	14.860						
5	0.412	0.554	0.831	1.145	1.610	9.236	11.070	12.832	15.085	16.748						
6	0.676	0.872	1.237	1.635	2.204	10.645	12.592	14.440	16.812	18.548						
7	0.989	1.239	1.690	2.167	2.833	12.017	14.067	16.012	18.474	20.276						
8	1.344	1.646	2.180	2.733	3.490	13.362	15.507	17.534	20.090	21.954						
9	1.735	2.088	2.700	3.325	4.168	14.684	16.919	19.022	21.665	23.587						
10	2.156	2.558	3.247	3.940	4.865	15.987	18.307	20.483	23.209	25.188						
11	2.603	3.053	3.816	4.575	5.578	17.275	19.675	21.920	24.724	26.755						
12	3.074	3.571	4.404	5.226	6.304	18.549	21.026	23.337	26.217	28.300						
13	3.565	4.107	5.009	5.892	7.041	19.812	22.362	24.735	27.687	29.817						
14	4.075	4.660	5.629	6.571	7.790	21.064	23.685	26.119	29.141	31.319						
15	4.600	5.229	6.262	7.261	8.547	22.307	24.996	27.488	30.577	32.799						
16	5.142	5.812	6.908	7.962	9.312	23.542	26.296	28.845	32.000	34.267						
17	5.697	6.407	7.564	8.682	10.085	24.769	27.587	30.190	33.408	35.716						
18	6.265	7.015	8.231	9.390	10.865	25.989	28.869	31.526	34.805	37.156						
19	6.843	7.632	8.906	10.117	11.651	27.203	30.143	32.852	36.190	38.580						
20	7.434	8.260	9.591	10.851	12.443	28.412	31.410	34.170	37.566	39.997						
21	8.033	8.897	10.283	11.591	13.240	29,615	32,670	35.478	38,930	41.399						
22	8.643	9.542	10.982	12.338	14.042	30.813	33.924	36.781	40.289	42.796						
23	9.260	10.195	11.688	13.090	14.848	32.007	35.172	38.075	41.637	44,179						
24	9.886	10.856	12.401	13.848	15.659	33.196	36.415	39.364	42.980	45.558						
25	10.519	11.523	13.120	14.611	16.473	34.381	37.652	40.646	44.313	46.925						
26	11.160	12.198	13.844	15.379	17.292	35.563	38.885	41.923	45.642	48.290						
27	11.807	12.878	14.573	16.151	18.114	36.741	40.113	43.194	46.962	49.642						
28	12.461	13.565	15.308	16.928	18.939	37.916	41.337	44.461	48.278	50.993						
29	13.120	14.256	16.147	17.708	19.768	39.087	42.557	45.772	49.586	52.333						
30	13.787	14.954	16.791	18.493	20.599	40.256	43.773	46.979	50.892	53.672						
31	14.457	15.655	17.538	19.280	21.433	41.422	44.985	48.231	52.190	55.000						
32	15.134	16.362	18.291	20.072	22.271	42.585	46.194	49.480	53.486	56.328						
33	15.814	17.073	19.046	20.866	23.110	43.745	47.400	50.724	54.774	57.646						
34	16.501	17.789	19.806	21.664	23.952	44.903	48.602	51.966	56.061	58.964						
35	17.191	18.508	20.569	22.465	24.796	46.059	49.802	53.203	57.340	60.272						
36	17.887	19.233	21.336	23.269	25.643	47.212	50.998	54.437	58.619	61.581						
37	18.584	19.960	22.105	24.075	26.492	48.363	52.192	55.667	59.891	62.880						
38	19.289	20.691	22.878	24.884	27.343	49.513	53.384	56.896	61.162	64.181						
39	19.994	21.425	23.654	25.695	28.196	50.660	54.572	58.119	62.426	65.473						
40	20.706	22.164	24.433	26.509	29.050	51.805	55.758	59.342	63.691	66.766						

For
$$v > 40$$
, $\chi^2_{a,v} \approx v \left(1 - \frac{2}{9v} + z_a \sqrt{\frac{2}{9v}}\right)^3$

A.3 – T-Distribution Critical Values

 Table A.5
 Critical Values for t Distributions

α										
v	.10	.05	.025	.01	.005	.001	.0005			
1	3.078	6.314	12.706	31.821	63.657	318.31	636.62			
2	1.886	2.920	4.303	6.965	9.925	22.326	31.598			
3	1.638	2.353	3.182	4.541	5.841	10.213	12.924			
4	1.533	2.132	2.776	3.747	4.604	7.173	8.610			
5	1.476	2.015	2.571	3.365	4.032	5.893	6.869			
6	1.440	1.943	2.447	3.143	3.707	5.208	5.959			
7	1.415	1.895	2.365	2.998	3.499	4.785	5.408			
8	1.397	1.860	2.306	2.896	3.355	4.501	5.041			
9	1.383	1.833	2.262	2.821	3.250	4.297	4.781			
10	1.372	1.812	2.228	2.764	3.169	4.144	4.587			
11	1.363	1.796	2.201	2.718	3.106	4.025	4.437			
12	1.356	1.782	2.179	2.681	3.055	3.930	4.318			
13	1.350	1.771	2.160	2.650	3.012	3.852	4.221			
14	1.345	1.761	2.145	2.624	2.977	3.787	4.140			
15	1.341	1.753	2.131	2.602	2.947	3.733	4.073			
16	1.337	1.746	2.120	2.583	2.921	3.686	4.015			
17	1.333	1.740	2.110	2.567	2.898	3.646	3.965			
18	1.330	1.734	2.101	2.552	2.878	3.610	3.922			
19	1.328	1.729	2.093	2.539	2.861	3.579	3.883			
20	1.325	1.725	2.086	2.528	2.845	3.552	3.850			
21	1.323	1.721	2.080	2.518	2.831	3.527	3.819			
22	1.321	1.717	2.074	2.508	2.819	3.505	3.792			
23	1.319	1.714	2.069	2.500	2.807	3.485	3.767			
24	1.318	1.711	2.064	2.492	2.797	3.467	3.745			
25	1.316	1.708	2.060	2.485	2.787	3.450	3.725			
26	1.315	1.706	2.056	2.479	2.779	3.435	3.707			
27	1.314	1.703	2.052	2.473	2.771	3.421	3.690			
28	1.313	1.701	2.048	2.467	2.763	3.408	3.674			
29	1.311	1.699	2.045	2.462	2.756	3.396	3.659			
30	1.310	1.697	2.042	2.457	2.750	3.385	3.646			
32	1.309	1.694	2.037	2.449	2.738	3.365	3.622			
34	1.307	1.691	2.032	2.441	2.728	3.348	3.601			
36	1.306	1.688	2.028	2.434	2.719	3.333	3.582			
38	1.304	1.686	2.024	2.429	2.712	3.319	3.566			
40	1.303	1.684	2.021	2.423	2.704	3.307	3.551			
50	1.299	1.676	2.009	2.403	2.678	3.262	3.496			
60	1.296	1.671	2.000	2.390	2.660	3.232	3.460			
120	1.289	1.658	1.980	2.358	2.617	3.160	3.373			
00	1.282	1.645	1.960	2.326	2.576	3.090	3.291			

A.4 Rearrange Data into D_{LL}

```
% Creates weight matrix
% cell array of functions reshaping a row/line of variances/covariances
% representing a GNSS baseline obs. into a covariance matrix
covar={ @(line)line(6),@(line)line(7),@(line)line(8);
    @(line)line(7),@(line)line(9),@(line)line(10);
    @(line)line(8),@(line)line(10),@(line)line(11)};
u=4; % # of unknown 3D coordinates
n=3*size(data,1); % # of measurements
DLL=zeros(n);
covars=zeros(3,3,size(data,1));
for k = 1:size(data,1)
   for i = 1:3
        for j=1:3
            covars(i,j,k)=covar{i,j}(data(k,:));
        end
    end
    DLL(3*k-2:3*k,3*k-2:3*k)=covars(:,:,k);
end
P=inv(DLL);
```