Exercices de renforcement

Math'ematiques

Exercice 2

Dans le plan affine euclidien, on considère le rectangle ABCD et DEC un triangle isocèle rectangle en E, le point E n'est pas sur [AB] tels que AB = 2; BC = 1 et DE = CE et g la fonction scalaire de Leibniz associée aux points pondérés (A, 1), (B, 1), (C, 1) (D, 1), (E, 2)

- 1. Construire l'isobarycentre G_1 des points A,B,C et le barycentre G_2 des points pondérés (D,1) et (E,2)
- 2. Démontre que $g(G)=\frac{g(A)+g(B)+g(C)+g(D)+2g(E)}{g(A)=g(B)=20}$ et que g(A)=g(B)=20; g(C)=g(D)=g(E)=14
- 3. a. Déduis-en que $g(M) = 6MG^2 + \frac{41}{6}$ b. Quel est l'ensemble (E_a) des points M du plan tels que : $MA^2 + MB^2 + MC^2 + MD^2 + 2ME^2 = 8$
- 4. Quel est l'ensemble (E_b) des points M du plan tels que : $MA^2 + MB^2 + MC^2 + MD^2 + 2ME^2 = 3$
- 5. Soit \mathcal{W} le plan vectoriel associé à \mathcal{P} et f la fonction vectorielle de Leibniz associée aux points pondérés (E,2),(D,-1),(C,-1) définie par $f(M)=2\overrightarrow{ME}-\overrightarrow{MD}-\overrightarrow{MC}$
- a. Montre que f est une fonction qui admet un vecteur constant que l'on précisera.
- b. Détermine et construis l'ensemble E_2 des points M de \mathcal{P} tels que : $2MA^2 MD^2 MC^2 = -2$.

Exercice 2

L'espace est rapporté à un repère orthonormé direct $(O; \vec{i}, \vec{j}, \vec{k})$. On donne les points A(-1; 2; 3), B(-1; 2; -2) et C(-3; 0; 4) et on désigne par I le barycentre des points pondérées (A; 2) et (B, 3)

- 2 . Détermine les coordonnées du point ${\cal I}.$
- 3 . Soit $({\cal D})$ l'ensemble des points ${\cal M}$ de l'espace tels que :

$$(2\overrightarrow{MA} + 3\overrightarrow{MB})\Lambda(\overrightarrow{MA} - \overrightarrow{MC}) = 0$$

a. Démontre que (D) est une droite dont-on donnera un repère.

3 . Soit (
$$\Delta$$
) la droite de représentation paramétrique :
$$\begin{cases} x=-1-2\alpha\\ y=2-2\alpha\\ z=-2+\alpha \end{cases}$$

- a. Démontre que (Δ) et (D) sont strictement parallèles.
- b. Détermine une équation cartésienne du plan (P) déterminé par (Δ) et (D).
- c. Donne une représentation paramétrique du plan (P)
- 4. a. Soit (Q) le plan d'équation cartésienne : x+y=0 et H(1;2;0) b. Démontre que (Q) est perpendiculaire à (P).
 - c. Calcul la distance d(H; (P)) et d(H; (Q))

Exercice 2

Dans l'espace orienté muni d'un repère orthonormé direct $(O; \vec{i}, \vec{j})$, on considère le point A(1,1,1) et les plans (P) et (Q) d'équation respectives : x+y+z-1=0 et x+y-2z-4=0

- 5. a. Démontre que les plan (P) et (Q) sont perpendiculaires.
 - b. Donne un repère de leur droite d'intersection (Δ)
- 6. a. Vérifie si $A \in (\Delta)$?
- 7. Calcule la distance du point A à la droite (Δ) .
- 8. Soit (D) la droite passant par A et perpendiculaire au plan (P).
 - a. Détermine une représentation paramétrique de (D).
 - b. En déduis les coordonnées du point H, projeté orthogonal du point A sur le plan (P) .
- 9. Soit (R) le plan passant par A et perpendiculaire aux plans (P) et (Q)
 - a. Détermine une équation cartésienne du plan (R).
 - b. Détermine $(P) \cap (Q) \cap (R)$

Exercice 2

Soit ABCDE une pyramide régulière telle que : ABCD est un carré ; la droite (AE) est perpendiculaire au plan (ABC) et AB = AD = 1m. La pyramide est séparée en deux compartiments par le plan (P) passant par le milieux du segment [ED] et les points A, C et la droite (Δ) de système d'équation cartésiennes :

$$x - 1 = y - \frac{1}{6} = z + \frac{5}{6}$$

- 1 . Détermine dans le repère $(A;\overrightarrow{AB},\overrightarrow{AD},\overrightarrow{AE})$ les coordonnées des points $D\,;\!C$ et I
- 2 . Justifie que le plan (P) a pour équation x-y+z=0

- 3. Déduis-en les coordonnées du points S intersection de (P) et de (Δ) .
- 4 . calcul l'aire de la surface de séparation .
- 5 . a. Calcul le volume du compartiment en forme du tétraè dre ACDL b. Déduis le volume du second compartiment

Exercice 3

On considère les nombres complexes
$$Z_1 = 1 + i\sqrt{3}$$
; $Z_2 = 1 - i$; $Z_3 = \frac{Z_1}{Z_2}$; $Z_4 = (i - \sqrt{3})^5$; $Z_5 = (-\sqrt{2} - i\sqrt{2})^3$ et $Z_6 = \frac{Z_4^4}{Z_5^2}$; $Z_7 = Z_4^5 \times Z_5^3$

- 11. Écris Z_1 et Z_2 sous forme trigonométrique .
- 12. Donne la forme algébrique et trigonométrique de Z_3 .
- 13. a. Donne la forme algébrique de Z_4 et de Z_5 .
 - b. Déduis le calcul de \mathbb{Z}_6 et de \mathbb{Z}_7