Complementation of Emerson-Lei Automata

Vojtěch Havlena¹ Ondřej Lengál¹ Barbora Šmahlíková¹

¹ Faculty of Information Technology, Brno University of Technology, Czech Republic

FoSSaCS'25

Transition-based Emerson-Lei Automata

automata over infinite words

- Fin(①) ∧ Inf(①)
- lacksquare $aa(bc)^{\omega} \notin \mathcal{L}(\mathcal{A})$
- lacksquare aabbb $(c)^\omega \in \mathcal{L}(\mathcal{A})$
- Emerson-Lei acceptance condition
 - $\vdash \Gamma = \{0, 0, \dots, k-1\}$
 - ▶ $\mathbb{EL}(\Gamma)$ are formulae according to the grammar $\alpha ::= tt \mid ff \mid \mathsf{Inf}(c) \mid \mathsf{Fin}(c) \mid (\alpha \land \alpha) \mid (\alpha \lor \alpha)$

Transition-based Emerson-Lei Automata

automata over infinite words

- Fin(①) ∧ Inf(①)
- lacksquare $aa(bc)^{\omega}
 otin \mathcal{L}(\mathcal{A})$
- lacksquare $aabbb(c)^\omega \in \mathcal{L}(\mathcal{A})$
- Emerson-Lei acceptance condition
 - $\vdash \Gamma = \{0, 0, \dots, k-1\}$
 - ▶ $\mathbb{EL}(\Gamma)$ are formulae according to the grammar $\alpha ::= tt \mid ff \mid Inf(c) \mid Fin(c) \mid (\alpha \land \alpha) \mid (\alpha \lor \alpha)$

- \blacksquare $\mathcal{A} = (Q, \delta, I, p, Acc)$ over colors Γ
 - Q finite set of states

 - I initial states
 - ▶ p: $\delta \to 2^{\Gamma}$ colouring of transitions and
 - ▶ $Acc \in \mathbb{EL}(\Gamma)$ acceptance condition
- run ρ over $w \in \Sigma^{\omega}$ is accepting if $infs_{\rho} \models \mathsf{Acc}$
- \blacksquare define the class of ω -regular languages

Transition-based Emerson-Lei Automata

automata over infinite words

- Fin(①) ∧ Inf(①)
- lacksquare $aa(bc)^\omega
 otin \mathcal{L}(\mathcal{A})$
- lacksquare $aabbb(c)^\omega \in \mathcal{L}(\mathcal{A})$
- Emerson-Lei acceptance condition
 - $\vdash \Gamma = \{0, 0, \dots, k-1\}$
 - ▶ $\mathbb{EL}(\Gamma)$ are formulae according to the grammar $\alpha ::= tt \mid ff \mid Inf(c) \mid Fin(c) \mid (\alpha \land \alpha) \mid (\alpha \lor \alpha)$

- ightharpoonup A = (Q, δ, I, p, Acc) over colors Γ
 - Q finite set of states
 - ▶ δ ⊆ Q × Σ × Q transition relation
 - ► I initial states
 - ▶ p: $\delta \to 2^{\Gamma}$ colouring of transitions and
 - ▶ $Acc \in \mathbb{EL}(\Gamma)$ acceptance condition
- run ρ over $w \in \Sigma^{\omega}$ is accepting if $infs_{\rho} \models Acc$
- \blacksquare define the class of ω -regular languages
- Büchi Acc = Inf(①)
- Co-Büchi Acc = Fin(①)
- **GBA** $Acc = \bigwedge_i Inf(\mathbf{1})$

TELA Complementation

Complementation:

■ Given A, get a TELA A^{\complement} such that $\mathcal{L}(A^{\complement}) = \overline{\mathcal{L}(A)}$.

TELA Complementation

Complementation:

■ Given \mathcal{A} , get a TELA $\mathcal{A}^{\complement}$ such that $\mathcal{L}(\mathcal{A}^{\complement}) = \overline{\mathcal{L}(\mathcal{A})}$.

Motivation:

Model checking of linear-time properties

$$\underbrace{\mathcal{S}}_{\text{system}} \models \underbrace{\varphi}_{\text{property}} \leadsto \quad \mathcal{L}(\mathcal{A}_{\mathcal{S}}) \subseteq \mathcal{L}(\mathcal{A}_{\varphi}) \quad \leadsto \quad \mathcal{L}(\mathcal{A}_{\mathcal{S}}) \cap \mathcal{L}(\mathcal{A}_{\varphi}^{\complement}) = \emptyset$$

- Termination analysis of programs: Ultimate Automizer
 - removing traces with proved termination
 - difference automaton
- Decision procedures: implements negation
 - ▶ S1S: MSO over $(\omega, 0, +1)$
 - QPTL: quantified propositional temporal logic
 - ► HyperLTL, FO over Sturmian words
- Basic operation for inclusion/equivalence checking

- Labelling algorithm: repeat until $\mathcal{G} \neq \emptyset$ (i := 0)
 - 1 assign rank *i* to finite vertices and remove them
 - 2 assign rank *i* + 1 to engangered vertices and remove them
 - i := i + 2
- $w \notin \mathcal{L}(A)$ iff $\max(r) \leq 2n$

- Labelling algorithm: repeat until $\mathcal{G} \neq \emptyset$ (i := 0)
 - 1 assign rank *i* to finite vertices and remove them
 - 2 assign rank *i* + 1 to engangered vertices and remove them
 - i := i + 2
- $w \notin \mathcal{L}(A)$ iff $\max(r) \leq 2n$

- Labelling algorithm: repeat until $\mathcal{G} \neq \emptyset$ (i := 0)
 - 1 assign rank *i* to finite vertices and remove them
 - 2 assign rank i + 1 to engangered vertices and remove them
 - i := i + 2
- $w \notin \mathcal{L}(A)$ iff $\max(r) \leq 2n$
- complementation algorithm
 - guess rankings and check Inf(0)
 - macrostates (S, O, f)
 - ightharpoonup nonincreasing ranks wrt δ
 - even rank when traversing 0-transition
 - ▶ empty breakpoint ~> acc mark

Contribution

- negating φ and transforming to NNF (Fin(\odot) \sim \odot) $\overline{\varphi}$

 - ightharpoonup minimal models $\mathcal{M} = \{\{0\}, \{0, 2\}\}$

- negating φ and transforming to NNF (Fin(\odot) \sim \odot) $\overline{\varphi}$

 - ightharpoonup minimal models $\mathcal{M} = \{\{0\}, \{0, 2\}\}$
- labelling algorithm: repeat until $\mathcal{G} \neq \emptyset$ (i := 0)
 - set r(u) := i; $m(u) := \ell$ for finite vertices
 - remove assigned vertices from \mathcal{G}
 - 2 if there is endangered map $\mu: U \to \mathcal{M}$ then
 - r(u) := i + 1; $m(u) := \mu(v)$ for $v \in U$ and $u \in reach_{\mathcal{G}}(v)$
 - remove assigned vertices from G
 - $oxed{3}$ if there is no endangered map, return $oxed{\perp}$
 - 4 i := i + 2

- negating φ and transforming to NNF (Fin(\odot) \sim \odot) $\overline{\varphi}$

 - ightharpoonup minimal models $\mathcal{M} = \{\{0\}, \{1, 2\}\}$
- labelling algorithm: repeat until $\mathcal{G} \neq \emptyset$ (i := 0)
 - set r(u) := i; $m(u) := \ell$ for finite vertices
 - remove assigned vertices from G
 - 2 if there is endangered map $\mu: U \to \mathcal{M}$ then
 - r(u) := i + 1; $m(u) := \mu(v)$ for $v \in U$ and $u \in reach_{\mathcal{G}}(v)$
 - remove assigned vertices from G
 - $oxed{3}$ if there is no endangered map, return $oxed{\perp}$
 - 4 i := i + 2
- always terminates with $i \le 2n$
- $w \notin \mathcal{L}(A)$ iff the algorithm terminates with (r, m)
- ightharpoonup r is tight (or max(r) = 0)

- negating φ and transforming to NNF (Fin(\odot) \sim \odot) $\overline{\varphi}$

 - ightharpoonup minimal models $\mathcal{M} = \{\{0\}, \{0, 2\}\}$
- labelling algorithm: repeat until $\mathcal{G} \neq \emptyset$ (i := 0)
 - set r(u) := i; $m(u) := \ell$ for finite vertices
 - remove assigned vertices from G
 - **2** if there is endangered map $\mu: U \to \mathcal{M}$ then
 - r(u) := i + 1; $m(u) := \mu(v)$ for $v \in U$ and $u \in reach_{\mathcal{G}}(v)$
 - remove assigned vertices from G
 - $oxed{3}$ if there is no endangered map, return $oxed{\perp}$
 - i := i + 2
- always terminates with $i \le 2n$
- $w \notin \mathcal{L}(A)$ iff the algorithm terminates with (r, m)
- ightharpoonup r is tight (or max(r) = 0)

guess rankings and a minimal model for each state

- guess rankings and a minimal model for each state
- \blacksquare macrostates (S, O, f, μ)
- **accepting mark when leaving** macrostate with $O = \emptyset$

- guess rankings and a minimal model for each state
- \blacksquare macrostates (S, O, f, μ)
- **accepting mark when leaving** macrostate with $O = \emptyset$
- ensure transition consistency
 - ightharpoonup nonincreasing ranks wrt δ
 - [decrease] rank for transitions incompatible with μ
 - ▶ [decrease] rank when model changes
 - ▶ assign ℓ to states with even rank

- guess rankings and a minimal model for each state
- \blacksquare macrostates (S, O, f, μ)
- **accepting mark when leaving** macrostate with $O = \emptyset$
- ensure transition consistency
 - ightharpoonup nonincreasing ranks wrt δ
 - [decrease] rank for transitions incompatible with μ
 - [decrease] rank when model changes
 - ▶ assign ℓ to states with even rank

- use tight rankings Idea of Schewe'09,FKV'06
 - ▶ allow only consistent models: (S, μ) -tightness
- waiting and tight part
 - guess the point with tight rankings

use tight rankings

- Idea of Schewe'09,FKV'06
- ▶ allow only consistent models: (S, μ) -tightness
- waiting and tight part
 - guess the point with tight rankings
- \blacksquare macrostates $2^Q \cup \{(S, O, f, i, \mu)\}$
 - f is (S, μ) -tight
 - \triangleright $O \subseteq S \cap f^{-1}(i)$
 - $ightharpoonup \mu$ is consistent

use tight rankings

- Idea of Schewe'09,FKV'06
- ▶ allow only consistent models: (S, μ) -tightness
- waiting and tight part
 - guess the point with tight rankings
- \blacksquare macrostates $2^Q \cup \{(S, O, f, i, \mu)\}$
 - \blacktriangleright f is (S, μ) -tight
 - \triangleright $O \subseteq S \cap f^{-1}(i)$
 - $\blacktriangleright \mu$ is consistent

- state complexity
 - ▶ Inf-TELA: $\mathcal{O}(k^n \cdot \text{tight}(n+1)) = \mathcal{O}(n(0.76nk)^n)$ for $k = |\mathcal{M}|$
 - ▶ GBAs: $\mathcal{O}(k^n \cdot \text{tight}(n+1))$ for k colors

use tight rankings

- Idea of Schewe'09,FKV'06
- ▶ allow only consistent models: (S, μ) -tightness
- waiting and tight part
 - guess the point with tight rankings
- \blacksquare macrostates $2^Q \cup \{(S, O, f, i, \mu)\}$
 - f is (S, μ) -tight
 - \triangleright $O \subseteq S \cap f^{-1}(i)$
 - $\blacktriangleright \mu$ is consistent

- state complexity
 - ▶ Inf-TELA: $\mathcal{O}(k^n \cdot \text{tight}(n+1)) = \mathcal{O}(n(0.76nk)^n)$ for $k = |\mathcal{M}|$
 - ▶ GBAs: $\mathcal{O}(k^n \cdot \text{tight}(n+1))$ for k colors

■ Relaxed run DAG \mathcal{G}_{W}^{Δ}

- restriction to Δ with sampling
- no 10-edges
- accepting incomplete runs
- ▶ inf-often sampling (arbitrary)

■ Complementation algorithm

- check Inf(2) using rank-based
- change the ranking domain after sampling

- Relaxed run DAG \mathcal{G}_{W}^{Δ}
 - restriction to Δ with sampling
 - ▶ no ①-edges
 - accepting incomplete runs
 - inf-often sampling (arbitrary)
- Complementation algorithm
 - check Inf(2) using rank-based
 - change the ranking domain after sampling

- Sampling is steered by the Algorithm
 - when the accepting mark is emitted (empty breakpoint)

$Fin(\mathbf{0}) \wedge \varphi$

- lacksquare modular construction based on a subprocedure $\mathbb{S}^{arphi}_{\Delta}$ for arphi
- acceptance checking of relaxed run DAGs

$\mathsf{Fin}(\mathbf{0}) \wedge \varphi$

- lacksquare modular construction based on a subprocedure $\mathbb{S}^{arphi}_{\Delta}$ for arphi
- acceptance checking of relaxed run DAGs
- master algorithm simulates creation of relaxed run DAGs
 - ▶ master's macrostates $2^Q \times 2^Q \times M$

$\mathsf{Fin}(\mathbf{0}) \wedge \varphi$

- lacksquare modular construction based on a subprocedure $\mathbb{S}^{arphi}_{\Delta}$ for arphi
- acceptance checking of relaxed run DAGs
- master algorithm simulates creation of relaxed run DAGs
 - ightharpoonup master's macrostates $2^Q \times 2^Q \times M$
- subprocedure $\mathbb{S}^{\varphi}_{\Delta} = (\mathsf{M}, \mathsf{M}_0, \mathsf{Succ}_{\Delta}, \mathsf{EmptyBreak})$
 - M: set of macrostates
 - M₀: set of initial macrostates
 - ► Succ_A : $2^Q \times \Sigma \times M \rightarrow 2^M$: transition function
 - ► EmptyBreak: empty breakpoint predicate; EmptyBreak ~> acc mark

$Fin(\bullet) \wedge \varphi$

- lacksquare modular construction based on a subprocedure $\mathbb{S}^{arphi}_{\Delta}$ for arphi
- acceptance checking of relaxed run DAGs
- master algorithm simulates creation of relaxed run DAGs
 - ▶ master's macrostates $2^Q \times 2^Q \times M$
- lacksquare subprocedure $\mathbb{S}^{\varphi}_{\Delta} = (\mathsf{M}, \mathsf{M}_0, \mathsf{Succ}_{\Delta}, \mathsf{EmptyBreak})$
 - M: set of macrostates
 - M₀: set of initial macrostates
 - ► Succ_A : $2^Q \times \Sigma \times M \rightarrow 2^M$: transition function
 - ► EmptyBreak: empty breakpoint predicate; EmptyBreak ~ acc mark
- $lue{}$ correctness: $\mathcal G$ is not acc wrt φ iff EmptyBreak holds ∞ -often on $\mathcal G$

$Fin(\mathbf{0}) \wedge \varphi$

- lacksquare modular construction based on a subprocedure $\mathbb{S}^{arphi}_{\Delta}$ for arphi
- acceptance checking of relaxed run DAGs
- master algorithm simulates creation of relaxed run DAGs
 - ▶ master's macrostates $2^Q \times 2^Q \times M$
- lacksquare subprocedure $\mathbb{S}^{\varphi}_{\Delta} = (\mathsf{M}, \mathsf{M}_0, \mathsf{Succ}_{\Delta}, \mathsf{EmptyBreak})$
 - M: set of macrostates
 - M₀: set of initial macrostates
 - ► Succ_{Δ} : $2^Q \times \Sigma \times M \rightarrow 2^M$: transition function
 - ► EmptyBreak: empty breakpoint predicate; EmptyBreak ~ acc mark
- lacksquare correctness: $\mathcal G$ is not acc wrt φ iff EmptyBreak holds ∞ -often on $\mathcal G$
- complexity: split $Succ_{\Delta} = SuccAct_{\Delta} \cup SuccTrack_{\Delta} + macrostates$
 - active, tracking transition functions
 - simpler structure for tracking; richer for active
 - EmptyBreak for active only

Modular Construction Instantiation $Fin(0) \wedge \varphi$

- Co-Büchi ($\varphi = tt$)
 - $ightharpoonup M^{tt} = 2^Q$
 - ightharpoonup automaton size: $\mathcal{O}(3^n)$

Modular Construction Instantiation $Fin(0) \land \varphi$

- Co-Büchi ($\varphi = tt$)
 - $ightharpoonup M^{tt} = 2^Q$
 - ightharpoonup automaton size: $\mathcal{O}(3^n)$
- Rabin automata ($\varphi = Inf(2)$); single Rabin pair

- ightharpoonup single Rabin pair: $\mathcal{O}(\text{tight}(n+1))$
- ▶ Rabin automaton: $\mathcal{O}(\text{tight}(n+1)^k) = \mathcal{O}(n^k(0.76n)^{nk})$

Modular Construction Instantiation $Fin(0) \land \varphi$

- Co-Büchi ($\varphi = tt$)
 - $ightharpoonup M^{tt} = 2^Q$
 - ightharpoonup automaton size: $\mathcal{O}(3^n)$
- Rabin automata ($\varphi = Inf(2)$); single Rabin pair

$$\mathsf{M}^{\mathsf{inf}} = \overbrace{2^Q \cup (\mathcal{T} \times 2^Q \times \{0, 2, \dots, 2n-2\})}^{\mathsf{N}_{\mathsf{Track}}} \cup \overbrace{(\mathcal{T} \times \{0, 2, \dots, 2n-2\})}^{\mathsf{N}_{\mathsf{Track}}}$$

- ightharpoonup single Rabin pair: $\mathcal{O}(\text{tight}(n+1))$
- Rabin automaton: $\mathcal{O}(\text{tight}(n+1)^k) = \mathcal{O}(n^k(0.76n)^{nk})$
- Generalized Rabin automata ($\varphi = \bigwedge_i Inf(\mathbf{1})$)
 - $\qquad \qquad \mathsf{M}^{\wedge \mathsf{inf}} = 2^Q \cup (\mathcal{T} \times 2^Q \times \{0,2,\dots,2n-2\} \times \mathsf{LM}) \cup (\mathcal{T} \times \{0,2,\dots,2n-2\} \times \mathsf{LM})$
 - ▶ Gen. Rabin automaton: $\mathcal{O}(\ell^{nk} \text{tight}(n+1)^k)$; ℓ number of Infs; k pairs

Modular Construction Instantiation $Fin(0) \land \varphi$

- \blacksquare Co-Büchi ($\varphi = tt$)
 - $ightharpoonup M^{tt} = 2^Q$
 - ightharpoonup automaton size: $\mathcal{O}(3^n)$
- Rabin automata ($\varphi = Inf(2)$); single Rabin pair

$$\mathsf{M}^{\mathsf{inf}} = \overbrace{2^Q \cup (\mathcal{T} \times 2^Q \times \{0, 2, \dots, 2n-2\})}^{\mathsf{M}_{\mathsf{Track}}} \cup \underbrace{(\mathcal{T} \times \{0, 2, \dots, 2n-2\})}^{\mathsf{N}_{\mathsf{Track}}}$$

- ightharpoonup single Rabin pair: $\mathcal{O}(\text{tight}(n+1))$
- Rabin automaton: $\mathcal{O}(\text{tight}(n+1)^k) = \mathcal{O}(n^k(0.76n)^{nk})$
- Generalized Rabin automata ($\varphi = \bigwedge_i Inf(\mathbf{1})$)
 - $\qquad \qquad \mathsf{M}^{\wedge \mathsf{inf}} = 2^Q \cup (\mathcal{T} \times 2^Q \times \{0, 2, \dots, 2n-2\} \times \mathsf{LM}) \cup (\mathcal{T} \times \{0, 2, \dots, 2n-2\} \times \mathsf{LM})$
 - ▶ Gen. Rabin automaton: $\mathcal{O}(\ell^{nk} \text{tight}(n+1)^k)$; ℓ number of Infs; k pairs
- TELA: $\mathcal{O}(k^{n2^k} \text{tight}(n+1)^{2^k}) = \mathcal{O}(k^{n2^k}(0.76nk)^{n2^k})$; k colours

- rank-based complementation of TELA
 - ► Inf-TELA
 - ightharpoonup modular construction for Fin $\wedge \varphi$
 - better upper-bounds than the SOTA

- rank-based complementation of TELA
 - ► Inf-TELA
 - ightharpoonup modular construction for Fin $\wedge \varphi$
 - better upper-bounds than the SOTA
- what's more in the paper?
 - details of constructions
 - parity automata
 - proofs

- rank-based complementation of TELA
 - ► Inf-TELA
 - ightharpoonup modular construction for Fin $\wedge \varphi$
 - better upper-bounds than the SOTA
- what's more in the paper?
 - details of constructions
 - parity automata
 - proofs
- next steps?
 - implementation
 - practical optimisations

- rank-based complementation of TELA
 - ► Inf-TELA
 - ightharpoonup modular construction for Fin $\wedge \varphi$
 - better upper-bounds than the SOTA
- what's more in the paper?
 - details of constructions
 - parity automata
 - proofs
- next steps?
 - implementation
 - practical optimisations

THANK YOU!