$1^{\underline{o}}$ Exame - Turma especial - MA-327 - 29/03/12

1.(2pts) Decida em quais casos abaixo W é subespaço de \mathbb{R}^3 . Nos casos afirmativos axiba uma base de W.Justifique suas respostas.

a)
$$W = \{(x, y, z) \in \mathbb{R}^3; \ 2x + y - z = 0\}$$

b) $W = W_1 \cup W_2$, onde

$$W_1 = \{(x, y, z) \in \mathbb{R}^3; \ x = y = z\} \ \text{e} \ W_2 = \{(x, y, z) \in \mathbb{R}^3; \ 2x = y = z\}.$$

2.(3pts) Seja $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ o operador linear cuja matriz, A, na base canônica é dada por:

$$A = \left(\begin{array}{rrr} 1 & 0 & 2 \\ -1 & 0 & 1 \\ 1 & 1 & 2 \end{array}\right)$$

- a) Encontre os auto-valores de T.
- b) Para cada auto valor encontre o subespaço dos auto-vetores associados.
- c) T é operador diagonálizavel? Em caso de resposta afirmativa encontre uma matriz, 3×3 , P tal que $P^{-1}AP$ seja matriz diagonal.
- **3.(2pts)** Considere o espaço vetorial \mathbb{R}^4 com o produto interno usual e W o subespaço gerado pelos vetores $v_1 = (1, 0, 1, 0)$, $v_2 = (0, 1, 0, 1)$ e $v_3 = (1, 1, 0, 1)$.
- a) Encontre uma base ortogonal de W.
- b) Encontre uma base para W^{\perp} . (Lembre que: $W^{\perp}=\{v\in\mathbb{R}^4; < v,w>=0,\; \forall w\in W\}$)
- **4.(3pts)** Responda falso ou verdadeiro a cada uma das afirmações abaixo. Justifique suas respostas (respostas sem justificativas não serão consideradas)
- a) A função $S:\mathbb{R}^3\longrightarrow\mathbb{R}^3$ definida por $S(x,y,z)=(x-y,y^2-z^2,z+y)$ é função linear.
- b) Sejam W e K subespaços de \mathbb{R}^n , com dimensão de W igual a n-1 e $W\subseteq K$. Se $W\neq K$ então $K=\mathbb{R}^n$.
- c) Seja $T:\mathbb{R}^3\longrightarrow\mathbb{R}^3$ um operador linear. Se $u,v\in\mathbb{R}^3$ são vetores não nulos tais que T(u)=2u e T(v)=3v então $\{u,v\}$ é um conjto linearmente independente (L.I).

BOA PROVA