Cognitive Algorithms - Exercise Sheet 5

Unsupervised Learning

Department of Machine Learning - TU Berlin

Disclaimer

For each exercise, but particularly for exercises involving calculations:

Show your work or you will not receive (full) credit!

Furthermore: Exercises marked with an asterisk * are not required and don't contribute towards the credit you receive, but you are welcome to do them because they are fun.

Task 1 - Eigenvalues and Eigenvectors of Special Matrices [1.5 points]

Recall an eigenvector of a square matrix $A \in \mathbb{R}^{d \times d}$ is defined as a non-zero vector $\mathbf{v} \in \mathbb{R}^d$ such that $A\mathbf{v} = \lambda \mathbf{v}$ where $\lambda \in \mathbb{C}$ is called the eigenvalue of A corresponding to \mathbf{v} .

1. Which $d \times d$ matrices have only real eigenvalues?

[0.5 points]

2. Consider an arbitrary **triangular** matrix. What are the corresponding **eigenvalues** of this matrix?

[0.5 points]

3. Consider an arbitrary diagonal matrix.

What are the corresponding eigenvalues and eigenvectors of this matrix? [0.5 points]

Task 2 - A PCA example [4 points]

Consider a data set with two data points: $X = \begin{bmatrix} -1 & 1 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \in \mathbb{R}^{d \times n} = \mathbb{R}^{3 \times 2}$.

- 1. Use **standard PCA** to project the data onto a 1-dimensional subspace. Recall you have to do the following steps:
 - (a) Compute the empirical covariance matrix $\hat{\Sigma} \in \mathbb{R}^{3\times3}$ of the data. [0.5 points]
 - (b) The first principal direction $\mathbf{w} \in \mathbb{R}^3$, $\|\mathbf{w}\| = 1$ is given by the eigenvector of S corresponding to the largest eigenvalue. [1 point]
 - (c) Compute the projected data $H = \mathbf{w}^{\top} X$. [0.5 points]
- 2. Use $\bf linear~Kernel~PCA$ to obtain the same result. Recall you have to do the following steps:
 - (a) Compute the kernel matrix $\mathbb{R}^{2\times 2}\ni K=X^{\top}X$ of the data. [0.5 points]

- (b) Compute a linear combination of the data points $\alpha \in \mathbb{R}^2$ as the eigenvector of K corresponding to the largest eigenvalue. [1 point]
- (c) Compute $\mathbf{w} = X\alpha$. You should obtain a scaled version of the standard PCA result. [0.5 points]

Task 3 - Covariance matrix and eigenvalues [3 points]

For each of the three scenarios below, sketch two 2-dimensional Gaussian data sets (one sketch with uncorrelated and one sketch with correlated features) whose distribution's covariance matrix has the following two eigenvalues:

1.
$$\lambda_1 = 1, \lambda_2 = 1$$
 [1 point]

2.
$$\lambda_1 = 1, \lambda_2 = 5$$
 [1 point]

3.
$$\lambda_1 = 1, \lambda_2 = 0$$
 [1 point]

If it is impossible to sketch, explain why.

Hint: Remember the following fact from the lecture. The variance of a data set projected onto a direction $\mathbf{w} \in \mathbb{R}^D, ||\mathbf{w}|| = 1$ can be computed as $\mathbf{w}^{\top} \Sigma \mathbf{w}$, where Σ denotes the data covariance matrix. If \mathbf{w} is an eigenvector of Σ with corresponding eigenvalue λ , then $\mathbf{w}^{\top} \Sigma \mathbf{w} = \mathbf{w}^{\top} \lambda \mathbf{w} = \lambda \mathbf{w}^{\top} \mathbf{w} = \lambda$.

Task 4 - Covariance matrix and eigenvalues II [1.5 points]

1. Consider a square matrix $S \in \mathbb{R}^{d \times d}$, and an eigenvector \mathbf{v} of S with corresponding eigenvalue λ , i.e. $S\mathbf{v} = \lambda \mathbf{v}$.

Prove that \mathbf{v} is also an eigenvector of the scaled matrix $S_{\alpha} := \alpha S$ for any $\alpha \in \mathbb{R}$. [1 point]

- 2. Give an example for an orthogonal matrix that is not a rotation matrix. [0.5 point]
- 3. Consider a centered data set $X \in \mathbb{R}^{d \times n}$ with corresponding covariance matrix $\Sigma = \frac{1}{N} X X^{\top}$, and an eigenvector \mathbf{v} of Σ with corresponding eigenvalue λ , i.e. $\Sigma \mathbf{v} = \lambda \mathbf{v}$. Suppose we rotate the data, $X \mapsto UX$ where $U \in \mathbb{R}^{d \times d}$ is a rotation matrix $(UU^T = U^T U = I)$.

Prove that λ is an eigenvalue of the covariance matrix of the rotated data set, $U = \frac{1}{N}UX(UX)^{\top}$. Furthermore show that the eigenvectors of the covariance matrix of the rotated data are just the eigenvectors of the original data, but rotated by U, too.

Task 5 - Non-negative matrix factorization [2 points]

You apply NMF to a dataset $X \in \mathbb{R}^{4\times 3}$.

After training, your reconstruction $\tilde{X} = W \cdot H = [\tilde{X}_1, \tilde{X}_2, \tilde{X}_3]$ looks like this

$$ilde{X}_1 = egin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix} \qquad \qquad ilde{X}_2 = egin{bmatrix} 0 \\ 1 \\ 0 \\ 1 \end{bmatrix} \qquad \qquad ilde{X}_3 = egin{bmatrix} 1 \\ 2 \\ 2 \\ 1 \end{bmatrix}$$

where corresponding encoding $H = [\mathbf{h}_1, \mathbf{h}_2, \mathbf{h}_3]$ has the following values

$$\mathbf{h}_1 = [1, 0, 0]^{\top}$$
 $\mathbf{h}_2 = [0, 1, 0]^{\top}$ $\mathbf{h}_3 = [0, 0, 1]^{\top}$.

Compute W.