ASSIGNMENT 6

15663 Computational Photograpy Fall 2023 DUE: December 08, 2023

1 Implementing structured-light triangulation (100 points)

1.1 Video processing (25 points)

Per-frame shadow edge estimation For each frame t, you need to estimate the lines $\lambda_h(t)$ and $\lambda_v(t)$, running along the right shadow edges on the unobstructed horizontal and vertical planar regions, respectively.

For the vertical planar region, we chose (250,0) as the upper-left corner and (800,300) as the bottom-right corner. For the horizontal planar region, we chose (200,660) as the upper-left corner and (830,768) as the bottom-right corner. The regions are shown below:

Figure 1: Caption

Visualization of the shadow edge estimates:

Figure 2: Caption

Per-pixel shadow time estimation To perform 3D reconstruction, you need to also estimate the per-pixel shadow times. For each pixel (x, y), you can estimate its shadow time $t_{shadow}(x, y)$ by finding the zero-crossing of the difference image $\Delta I(x, y, t)$ as a function of time t.

Visualization of the per-pixel shadow time estimates:

Figure 3: Caption

2 Intrinsic and extrinsic calibration (50 points)

Intrinsic calibration The resulting camera intrinsic parameters are saved in
./result/camera/intrinsic_calib.npz.

Calibration of ground planes The resulting camera extrinsic parameters are save in ./result/camera/extrinsic_calib.npz.

Calibration of shadow lines The 3D points P1, P2, P3 and P4 are saved in ./result/camera/reconstructed_points.npz.

Calibration of shadow planes The estimated shadow plane parameters (P1 and \hat{n} are saved in ./result/camera/shadow_planes.npz

2.1 Reconstruction (25 points)

First, crop the part of the image you want to reconstruct. Then, for each pixel p=(x,y) in this rectangle, fetch its shadow time $t_{shadow}(x,y)$. Next, fetch the shadow plane $S(t_{shadow}(x,y))$ for that frame. Backproject the pixel p into a 3D ray r. Finally, intersect this ray with the shadow plane $S(t_{shadow}(x,y))$. The resulting intersection point P is the reconstructed 3D point corresponding to pixel p.

Figure 4: Caption

Figure 5: Caption

Repeat this process for all pixels in your cropped image, to recover a 3D point cloud.

The reconstruction results for the frog sequence:

Figure 6: Caption

3 Build your own 3D scanner (100 points)

Object 1

Object 2