Smart Factory Team Project

Wafer Map Failure Pattern Recognition & Classification using Transfer Learning

> 데이터사이언스학과 이성호, 허준봉, 야오와말

2 Dataset(WM-811K) Explain

3 Few-shot Learning

4 Future Work

Electrical Die Sorting

- 웨이퍼 상태에서 전기적 특성 검사를 통해 각 칩들이 정상 동작하는지 검사하는 공정
- 각각의 Die에 대해 불량품을 선별하는 검사 진행
- 불량품 중 수선 가능한 Die 양품화
- 반도체 수율 향상에 기여하는 공정 (수율: 하나의 웨이퍼에 들어갈 수 있는 최대 칩 개수 양품의 개수)

* Die: 전자 회로가 집적되어있는 IC칩

1. Eelectrical Test & Wafer Burn In

- ET Test: IC 동작에 필요한 각각의 소자에 직류 전압, 전류 특성 파라미터를 테스트하여 정상 작동 여부를 검사한다.
- WBI: 웨이퍼 상에 일정 온도로 가열한 후, 웨이퍼 상에 직류/교류 전압을 인가하여 제품의 잠재성 불량 요소를 색출한다.

2. Pre-Laser

• 전기적 신호를 통해 상온보다 높거나 낮은 온도에서 불량 여부를 판정하고, 불량품 중에서 수정 가능한 칩을 Laser Repari Step으로 보낸다.

3. Laser Repari & Post Laser

• Pre Laser에서 선별된 수정가능한 칩을 모아 Laser Beam을 통해 수정한다. 그 후, 정상 동작하는지 확인한다.

4. Tape Laminate & Bale Grinding

• 미세화가 필요한 제품군에 들어갈 IC를 위해 웨이퍼 후면을 갈아 얇게 만드는 과정이다. 파티클로부터 웨이퍼를 보호하기 위해 전면부에 UV Tape를 씌우고 연마가 완료되면 다시 벗겨준다.

5. Linking

• 불량품으로 판정된 칩에 특수 잉크를 찍어 불량품을 식별한다.

Part 2 Dataset (WM-811K) Explain

Dataset(WM-811K) Explain

df.head()

	waferMap	dieSize	IotName	waferIndex	trianTestLabel	failureType
0	$\hbox{\tt [[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,}\\$	1683.0	lot1	1.0	[[Training]]	[[none]]
1	[[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	1683.0	lot1	2.0	[[Training]]	[[none]]
2	[[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	1683.0	lot1	3.0	[[Training]]	[[none]]
3	[[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	1683.0	lot1	4.0	[[Training]]	[[none]]
4	[[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	1683.0	lot1	5.0	[[Training]]	[[none]]

```
df=pd.read_pickle("../input/LSWMD.pkl")
df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 811457 entries, 0 to 811456
Data columns (total 6 columns):
waferMap
                  811457 non-null object
                  811457 non-null float64
dieSize
lotName
                  811457 non-null object
waferIndex
                  811457 non-null float64
trianTestLabel
                  811457 non-null object
                  811457 non-null object
failureType
dtypes: float64(2), object(4)
```

memory usage: 37.1+ MB

- 본 데이터셋은 "Kaggle WM—811K wafer map" 이라는 데이터셋이다.
- 해당 데이터셋과 불량 표기 방법은 2015 IEEE Transactions on Semiconductor Manufacturing에 발표된 "Wafer Map Failure Pattern Recognition and Similarity Ranking for Large-Scale Data Sets" 에서 공개되었다.
- 본데이터셋은 1채널 이미지인 waferMap을 X, failureType을 Y로 사용한다.

Dataset(WM-811K) Explain

- 172,950 wafers have labels while 78.7% wafers with no label based on failureType variable filtering.
- Only 3.1% wafers (25,519 wafers) have real failure patterns while 147,431 wafers were still labeled none

Dataset(WM-811K) Explain

<Sample of Wafer Map Failure Type>

Few-shot Learning

소량의 데이터(few-shot)만으로도 뛰어난 학습을 하는 모델 만들어보자!

Part 3

Few-shot Learning

Transfer-Learning

Meta-Learning

Few-shot Learning

Transfer Learning

- 대량의 데이터로 Pre-trained 모델을 학습 후 소량의 데이터(few-shot) 으로 재학습 $\phi \leftarrow \theta \alpha \nabla_{\theta} \mathcal{L}(\theta, \mathcal{D}^{\mathrm{tr}})$ training data for new tas
- pre-trained parameter(θ)를 가져와 new task에 맞게 optimization 목표는 new task를 위한 최적의 Φ 구하기

Meta Learning

• 여러개의 Task 를 동시에 학습 & 각 Task 간의 차이도 학습 (meta- parameter) $\min_{\theta} \sum_{\mathrm{task}\ i} \mathcal{L}(\frac{\theta - \alpha \nabla_{\theta} \mathcal{L}(\theta, \mathcal{D}_i^{\mathrm{tr}})}{\mathcal{D}_i^{\mathrm{ts}}})$

• 전체 학습 이후 소량의 데이터(few-shot) 으로도 추론 할 수 있는 범용적인 모델 생성

첫째

Create environmental assumption (Few Wafer Data)

둘째

Training Meta-learning model (Metric or Optimizer based)

셋째

Transfer Learning for Wafer Defect Detection

넷째

Compare performance with base model

Thank you

