H形滾軋 操作流程

(零)存取位置: 先將其資料設定好目標位置,以防止存取位置跑到預設的 地方使其找不到自己所需的資料。

(一) 匯入材料: 將欲分析的料件用 INVENTOR 做繪圖, 然後在將其轉成 SAT

滾輪(材料型態設定):

之後點選 (移除面)去選擇一個不影響分析的面做移除,才能夠完成剛體的設定。

液輪(Rp 設定): Rp 點的設定是方便後續可以做旋轉移動軸的一個根據,同時若先前沒有將材料設定為剛體,也能依靠 Rp 點做後續的剛體的設定。

將其滾輪給予 RP 點以方便後續作運用,並依照圖中所圈選的部分給予材料設為鋼體防止材料變形。

料件(材料型態設定):

圖 1-3 為我們這次的要分析的料件,因為料件會變形因此不需做鋼體與 Rp 點的設定

滾輪2(材料型態設定):

同圖 1-1 一樣需要做 Rp 點跟做鋼體的設定,防止分析的時候滾輪的變形,設定步驟跟圖 1-1 完全相同。

(二)材料性質:設定其材料數值,使模組能夠以材料性質下去做分析。

⇒ Edit Material	×
Name: AL Description:	<u></u>
Material Behaviors Density Elastic	
Plastic	
	₽
Density Distribution: Uniform	
Number of field variables: 0 0	
Mass Density 1 2.7E-009	
STEP2 密度輸入 2.7E-09	
OK Can	

設定 Young' smodulus 奥 Poisson' sratio

圖 2-3 的設定數值如下:

	Yield stess	Plastic strain	
1	296	0	
2	300	0.15	
3	350	0.2	
4	400	0. 25	
5	450	0.3	
6	500	0.35	
7	600	0.39	
8	626	0.42	

之後選擇 把你設定的性質匯入材料中。

從 將材料性質,給予你要的物體這個部分只有料材圖 1-3 料件需要做材料性質的設定,圖 2-4 為設定完材料性質,其他的部分因為是鋼體則不需要做材料性質的設定。

(三)組合:可將物體匯入並且組合,同時須確認是否需要做組合上的移動 或調整。

將所有物件從 匯入,最後按 ctrl 建全選全部,使其如圖 3-1 組合。

(四)step:設定分析時的參數,讓分析能正確且穩定的顯示。

選擇 並去判斷是在 Initial(分析前)還是 step-1(開始分析後)去做其設定。

STEP1 選擇 Initial

做參數上的設定,然後途中的部分可以看使用者要分析到幾秒而去擬定目前是使用 0.1 與 1E-5。且 1e-5 指時間的增量,每 1e-5 去做一次增量。

(五)interaction:去做接觸關係與摩擦力的設定。

這邊分別是設定接觸關係與摩擦力的部分,目前的分析較為簡易因此使用 general contact 讓其自動去算接觸關係。

(六)load:設定給予滾輪與料材固定與位移的重要步驟。

滾輪:設定其他固定與位移的部分,點選 做設定。

STEP8

STEP9 選擇 Continue

然後選擇滾輪 RP 點的部分作固定,點選圖 6-1 上面的 RP 點去做定位。

滾輪:滾輪2的固定部分與滾輪完全相同,只有UR1的部分不同其他全部打勾做鎖定,保持讓滾輪不產生位移與晃動。(相關設定參考 STEP1~STEP11)

滾輪:最後需要給予一個轉動使其能夠做運作,但是滾輪2的部分需要給予同 滾輪1但轉向相反的轉速(皆須指定在 RP 點上)。

之後點選沖頭的 RP 點定位

這邊設定 0.1 的原因是因為我們再(m) STEP 的部份的時候設定總分析時長為 0.1 。

料材:料材的部分同上操作。

💠 Edit Bou	ndary Condition	×		
Name: BC	.5			
Type: Dis	placement/Rotation			
Step: a10	Step-1 (Dynamic, Explicit)			
Region: Set	-14 🍃			
CSYS: (Glo	obal) 🕽 🙏			
Distribution:	Uniform	f(x)		
□ U1:				
□ U2:		L		
☑ U3:	-75			
UR1:		radians		
UR2:	STEP19	radians	%-75	的位置
☐ UR3:		radians	,	- 0 0- 0
Amplitude:	Amp-1	\wedge		
	displacement boundary con e reapplied in subsequent			
Ol	Cance	I		

(七)網格:每個物件都要分別設定其往個才能作完整且正確的分析。

先點選 Pate,再去 設定網格的大小。

	Module: Mesh	Model: Model-1	Object: O Assen	nbly Part: 🛊 1077-1	~
--	--------------	----------------	-----------------	-----------------------	---

再選擇 去建立網格,點選 OK 後就完成了,再依序將其他部分做網格。

(八)分析:最後的一個步驟,也是最為核心的分析

點選 去新增一個存取分析結果的檔案名稱。

A rist.	1
♣ Edit Job	
Name: Job-2	
Model: Model-1 STEP1 可選取電腦分析時使用	的核心等
Analysis product: Abaqus/Explicit	
Description:	
Submission General Memory Parallelization Precision	
Use multiple processors 2	
Use GPGPU acceleration 1 🕏	
Abaqus/Explicit	
Number of domains: 1	
Parallelization method: Domain	
Multiprocessing mode: Default	
STEP2 ## @ ok	
OK Cancel	

分析結果(S)

分析結果(U)

