

In the Claims:

1. (original) A method for processing and reusing gray water
2 for flushing a toilet bowl, comprising the following steps:
3 a) filtering said gray water to provide filtered water,
4 b) collecting said filtered water in a processing tank,
5 c) processing said filtered water by anodically oxidizing
6 said filtered water in said processing tank to provide
7 processed water, and
8 d) using said processed water for flushing said toilet
9 bowl in a toilet.
1. 2. (original) The method of claim 1, wherein said filtering
2 step comprises a coarse filtering operation and a fine
3 filtering operation for removing dirt, coloring agents, and
4 odor causing agents from said gray water.
1. 3. (original) The method of claim 2, wherein said fine
2 filtering is performed in said processing tank and said
3 coarse filtering is performed outside said processing tank.
1. 4. (original) The method of claim 3, further comprising using
2 an exchangeable, externally accessible fine filter in said
3 processing tank.
1. 5. (original) The method of claim 3, further comprising using
2 an exchangeable, externally accessible coarse filter in a
3 lavatory basin or next to a lavatory basin.

4538/WGF:ar

- 4 -

BEST AVAILABLE COPY

1 6. (original) The method of claim 1, wherein said step of
2 anodically oxidizing is performed to such an extent that
3 germ growth is prevented in or on any component of a water
4 distribution system through which said processed water is
5 distributed.

1 7. (original) The method of claim 1, further comprising
2 detecting through a sensor at least one filling level in
3 said processing tank to produce a control signal for
4 controlling a water flow.

1 8. (original) The method of claim 1, further comprising
2 providing an overflow discharge in said processing tank and
3 feeding said overflow discharge into a gray water
4 collecting conduit.

1 9. (original) The method of claim 8, further comprising
2 leading said gray water collecting conduit into an outboard
3 draining mast or device.

1 10. (currently amended) The method of claim 8, further
2 comprising leading said gray water collecting conduit into
3 a gray water collecting container. container near a
4 wastewater collecting tank.

1 11. (currently amended) [[the]] The method of claim [[10,]] 26,
2 further comprising pressurizing said gray water and passing

3 pressurized gray water through spray nozzles for rinsing
4 said wastewater collecting tank and other system
5 components.

1 12. (original) The method of claim 7, further comprising
2 detecting said at least one filling level as a minimum
3 filling level, producing said control signal as a minimum
4 level control signal for controlling a fresh water supply
5 faucet of a lavatory basin in a toilet for replenishing
6 water in said processing tank to a medium filling level
7 from a fresh water supply.

1 13. (original) The method of claim 12, further comprising
2 sensing an unoccupied status of said toilet to provide an
3 unoccupied control signal, and automatically opening said
4 fresh water faucet only in response to said minimum level
5 control signal and in response to said unoccupied control
6 signal.

1 14. (currently amended) The method of claim 12, further
2 comprising using an infrared detector and a toilet door
3 switch for producing an "occupied" signal to disable said
4 automatic opening of said fresh water supply faucet when
5 said toilet is occupied.

1 15. (original) The method of claim 1, further comprising
2 monitoring and controlling all system functions, status

3 characteristics and operations through a central processing
4 unit and respective sensors.

1 16. (original) The method of claim 15, further comprising
2 presetting in said central processing unit a defined
3 temperature range for water passing through a faucet in
4 said lavatory or toilet.

1 17. (original) The method of claim 1, further comprising
2 sensing a plurality of filling levels including a maximum
3 filling level and a minimum filling level in said
4 processing tank to produce respective control signals for
5 controlling the withdrawal of processed water from said
6 processing tank so that more processed water is withdrawn
7 from said processing tank in response to a higher filling
8 level signal and less processed water is withdrawn from
9 said processing tank in response to a lower filling level
10 signal.

1 18. (currently amended) The method of claim 1, further
2 comprising sensing a plurality of filling levels including
3 a high filling level and a low filling level in said
4 processing tank to produce respective high filling level
5 and low filling level control signals for controlling a
6 fresh water supply through a faucet [(or)] and a lavatory
7 basin in such a way so that a larger fresh water volume is
8 supplied into said processing tank through said faucet and
9 lavatory basin into said processing tank in response to

10 said low filling level signal and a smaller fresh water
11 volume is supplied into said processing tank through said
12 faucet and lavatory basin ~~into said processing tank~~ in
13 response to said high filling level control signal.

1 **19.** (original) An apparatus for processing and reusing gray
2 water, said apparatus comprising:

- 3 a) at least one filter having a filter inlet connected to
4 a source of said gray water, and a filter outlet,
- 5 b) a processing tank having an inlet connected to said
6 filter outlet,
- 7 c) means for anodically oxidizing filtered water in said
8 processing tank to provide processed, oxidized water,
9 and
- 10 d) a pump connected with a pump inlet to said processing
11 tank, an excess pressure valve connected to an outlet
12 of said pump, at least one rinsing spray nozzle
13 installed in a toilet bowl and connected to said
14 excess pressure valve for rinsing said toilet bowl in
15 response to a generated control signal for a
16 predetermined time interval at the end of which said
17 pump is automatically switched off and said excess
18 pressure valve is closed again.

1 **20.** (original) The apparatus of claim 19, wherein said pump is
2 a rotary pump.

- 1 **21.** (original) The apparatus of claim 19, wherein said pump
2 comprises a cylinder and a piston in said cylinder, said
3 apparatus further comprising a detector positioned for
4 detecting an end position of said piston indicating that
5 processed water in said cylinder has been discharged, said
6 detecting providing a control signal, a motor responsive to
7 said control signal for driving said piston back into a
8 starting position, whereby processed water is sucked into
9 said cylinder for a next toilet bowl rinse.
- 1 **22.** (original) The apparatus of claim 19, further comprising a
2 central control unit, sensors for providing status signals
3 to said central control unit, at least one first power
4 supply for said pump, a faucet for supplying fresh water to
5 a lavatory basin, at least one second power supply for a
6 faucet control, a suction device connected to said toilet
7 bowl, and at least one third power supply for said suction
8 device, and wherein said central control unit controls said
9 first, second and third power supplies in response to said
10 control signals.
- 1 **23.** (original) The apparatus of claim 22, further comprising a
2 communication area network (CANBUS) to which said central
3 control unit is connected for communicating with other
4 systems.
- 1 **24.** (original) The apparatus of claim 19, further comprising
2 separate conduits for freshwater, gray water and waste

4538/WGF:ar

- 9 -

BEST AVAILABLE COPY

3 water, and wherein a direct connection between said
4 conduits is avoided.

1 25. (original) The apparatus of claim 19, installed in an
2 aircraft.

1 26. (new) The method of claim 10, further comprising locating
2 said gray water collecting container near a wastewater
3 collecting tank.

1 27. (new) The method of claim 18, further comprising starting
2 replenishing water in said processing tank in response to
3 said low filling level control signal and stopping said
4 replenishing in response to said high filling level control
5 signal when water in said processing tank reaches said high
6 filling level.

[RESPONSE CONTINUES ON NEXT PAGE]

BEST AVAILABLE COPY