Man					
5 i, Mean weight of earhead in gms	No of earhead	Midvalue (x)	fx		
40-60	6 (F)	50	300		
60-80	8	40	560		
80 400	35	90	3150		
100 - 120	55	110	6050		
120-140	30	130	3900		
140-160	15	150	2250		
160-180	12	0F)	2040		
180-200	9	190	1710		
	N= 170	Z	Fx=19960		
Mean $(\bar{x}) = \frac{\sum fx}{N}$ from the table $\sum fx = 19400$ and $N = 170$					
= 19960	= 114.7176 = 117-411				
" Median					

Weight	f	commulative frequency
40 - 60	6	6
60-80	8	14
80 - 100	35	49
100 - 120	55	104) median class
120 - 140	30	134
140 - 160	15	149
160 - 180	12	161
180 - 200	9	170
	Lable	N = 170

 $\frac{N}{2} = \frac{170}{2} = 85$

$$L=100$$
, $h=20$, $f=55$, $c=49$
Median = $L+\frac{h}{T}(\frac{N}{2}-c)=100+\frac{20}{55}(85-49)=113.0909$

ii, Mode			1	from the	table	
weight	f			L=100,		(v)
40-60	6			fm = 55		ಬ
60 - 80	8			f, = 35		40 -
80-100	35	. 1		f 2 = 30		60 -
100-120	55 -	modal		h = 20		80
120 - 140	30		- 10 =	1 -t -fr	2-41	100
140-160	15		mode -	t that	2)+(+w-t)xt	120
160 - 180	12				Market Street	140
180-200	9		= 100+	(55-35)+	X 20	160
				(35-35)+	(22,20)	180
			= 100 +	8.889		
			= 108.8	89		F
(iv) Hamonic	Hean.			,	c 1	3
weight	f	Mid vo	due (x)	Xi	fi. z i	
40-60	6	50)	0.02	0.17	
60 -80	8	70		0.0143	0.1144	
80 -100	35	90		0.0111	0.3885	18/86
						A PROPERTY.

(iv) Hamonic	Hean.			
weight	f	Mid value (x)	1/21	fi. 1/2/
40-60	6	50	0.02	0.12
60 -80	8	-TO	0.0143	0.1144
80 -100	35	90	0.0111	0.3885
100-120	55	110	0.0091	0.5005
120-140	30	130	0.0077	0.231
140 - 160	15	150	0.0067	0.1005
160-180	12	(70	0.0059	80+0.0
180 - 200	9	190	0.0053	0.0417
	OFI = N			1.5734

from the table
$$N = 170$$

$$\frac{2}{11} f_1 \cdot \frac{1}{x_1} = 1.5734$$

Hamonic mean =
$$\frac{N}{\sum_{i=1}^{n} f_i \cdot \frac{1}{x_i}} = \frac{170}{1.5737}$$

= 108.0462

(v) Geometric
weight
40-60
60-80
80-100
100-120
120-140
140-160
160-180

from the

Geometric

6. Mean weight 60-64 65-69 40-74 75-79

Mean

S	(v) Geometr	ic Mean			
	weight	f	mid value(x)	10g x;	f; logx;
	40 - 60	6	50	1.6989	10.1934
	60 - 80	8	OF	1.8451	14.7608
	80 - 100	35	90	1.9542	68 397
	100-120	55	110	2.0414	112.277
T C/Xh	120-140	30	130	2.1139	63.417
(tm-f2) xh	140 - 160	15	150	2 · 1761	32.6415
X 20	160 - 180	12	170	2 2304	26.7648
s) × 20	180 - 200	9	190	2.2787	20.5083
		170			348.9598
	from the	table	N = 170		
A 400			Zfi logzi	= 348.9598	
. 1/21			U	5 F x log	xi \
~i ○·(≥	Geometri	c mean	n = Antilog	1=111	<u> </u>
11144					
.3885			= Antilog	348.9598	
.5005				1	
1.231			= Antilog (2.0527)	= 112.9016
.1005	6. Mean				
80+0	weight M	oo of sto	dents Mid	ralue	fx
.0477	60-64	5	6	2_	310
5734	65-69	9	6	7	603
18 6 L		16	7	2	1152
1	70-74	12	-7	++	924
	-15-79	8	1	32	656
The same of	80 - 84			2	zfx = 3645
B 66 1		N = 5			
		(=) =	Zfx = -	3645 =	72-9
Second 1	Mean	(2)	2	50	

Median			
weight	No of students	commolative	frequency.
60-64	5 (f)	5	
65 -69	9 1 1 1 1	19	
70-74	16	30)-	- median day
75-79	12	42	40
80 - 84	8	50	
	50		

from the table N=50
$$\frac{N}{2} = \frac{50}{2} = 25$$

$$L = 69.5$$
, $h = 5$, $f = 16$, $C = 14$

Median = $L + \frac{h}{f} \left(\frac{N}{2} - C \right)$

= $69.5 + \frac{5}{16} \left(25 - 14 \right) = 72.9375$

Mode
weight No. of students
$$L = 69.5$$

 $60-69$ 5 $fm = 16$
 $65-69$ 9 $f_1 = 9$
 $70-79$ 16 7 model $f_2 = 12$
 $75-79$ 12 $h = 5$
 $80-89$ 8

mode =
$$l + \frac{f_m - f_1}{(f_m - f_2)} \times 5 = 72.6818$$

Variance and weight N 60-64 65-69 40-74 45-79 80-84

from

stand

1. let P(A and bog

iet R d

P(R/A) = 1

P(R/B) =

Probability
P(B|R)

and standard deviation. Variance No of students weight fd2 dr Mid values d= xi-A B-64 500 100 -10 65-69 67 225 25 10-74 0 (72)A 0 15 - 79 12 77 5 25 300 80 - 84 8 100 800 82 10 1825 50 from the table N = 50 Zfd= 1825 Variance = $\frac{5}{1=1}$ fid: $\frac{1825}{50}$ = 36.5 standard deviation = Traviance = 136.5 = 6.0415 II-TIAU 1. let P(A), P(B) be the probabilities selecting bag A and bog B respectively .. p(A) = 1 and p(B) = 1 let R denote Red ball P(RfA) = probability that red ball is drawn from bag A P(R/B) = probability that red ball is drawn from bag B probability that the red ball is drawn from bog B P(RB) P(B) P(B|R) P(R/A) . P(A) + P(R/B) . P(B)

7.

lian class

$$\frac{5}{9} \cdot \frac{1}{2}$$

$$\frac{3}{5} \cdot \frac{1}{2} + \frac{5}{9} \cdot \frac{1}{2}$$

$$\frac{1}{2} \left(\frac{5}{9} \right) = \frac{5}{9}$$

$$\frac{1}{2} \left(\frac{3}{5} + \frac{5}{9} \right) = \frac{3}{5} + \frac{5}{9} = 0.4868$$

2. let p(x), p(y), $p(\xi)$ be the probabilites that the businessman goes to hotel X, Y, ξ respectively p(x) = 20; $\xi = \frac{20}{100} = 0.2$

$$p(y) = 50\%. = \frac{50}{100} = 0.5$$

$$P(7) = 301. = \frac{30}{100} = 0.3$$

let A be the faulty plumbing

$$P(A|X) = 5.1. = \frac{5}{100} = 0.05$$

$$P(A/x) > 81. = \frac{8}{100} = 0.08$$

probability that the businessman's room having faulty plumbing is assigned to hotel Z

$$P(2|A) = \frac{P(A|X) \cdot P(X)}{P(A|X) \cdot P(X) + P(A|X) \cdot P(Y) + P(A|X) \cdot P(X)}$$

3 × 0

J. K Ne know E p(xi) i=0

= p(0) + p(1)= 0+k+.

since

ii, Frabale

P(x <6) =

P(x >6)

P(OCXCS

$$p(x) = 0 \quad k \quad 2k \quad 2k \quad 3k \quad k^{2} \quad 2k^{2} \quad 4k^{2} + k$$

$$p(x) = 0 \quad k \quad 2k \quad 2k \quad 3k \quad k^{2} \quad 2k^{2} \quad 4k^{2} + k$$

$$p(x) = 1$$

$$p(x) = 1$$

$$p(x) + p(x) + p(x) + p(x) + p(x) + p(x) + p(x) + p(x)$$

$$p(x) + p(x) + p(x) + p(x) + p(x) + p(x) + p(x)$$

$$p(x) + q(x) + q(x) + q(x) + q(x) + q(x)$$

$$p(x) + q(x) + q(x) + q(x) + q(x)$$

$$p(x) + q(x) + q(x) + q(x) + q(x)$$

$$p(x) + q(x) + q(x) + q(x) + q(x)$$

$$p(x) + q(x) + q(x) + q(x) + q(x)$$

$$p(x) + q(x)$$

= 0.4808

that

faulty

(2)

respectively

Given,
$$p(x \le k) > 1/2$$
, find the minimum value of k (1) Hean, variable of k (2) Hean, $k = 1$, $k = 1$,

= 66K2+3

= 66 (100)

= 66+

= (0 ×0

7-1/4

= (0+1

standard

4406

variance (02)

The first standard deviation.

When
$$f(x) = \frac{1}{100} x_1 p(x_1) + x_2 p(x_2) + x_3 p(x_3) + x_4 p(x_4) + x_5 p(x_5) + x_6 p(x_6) + x_4 p(x_4) + x_5 p(x_5) + x_5 p(x_6) + x_4 p(x_4) + x_5 p(x_6) + x_$$

+10=1

d) P(OCXCS)

0 1 2 3 4 5 P(x) K 3K SK FK 9K 11K

we know that sum of the probabilities = 1.

$$\frac{6}{5} p(x_i) = 1$$

= P(0)+P(1)+P(2)+P(3)+A(4)+P(5)+P(6)

= 49K =1

b) mean

= 0+3K+10K+21K+36K+55K+78K

$$= 203k = \frac{203}{49} = 0.7347$$

c) variance
$$(\sigma^{2}) = E(x^{2}) - (E(x))^{2}$$

$$= \sum_{i=0}^{6} x_{i}^{2} P(x) - M^{2}$$

= (0xx+12x3x+22x5x+3x7x+4x9x+5x11x+6x13k)-(0.7347)2

= (0+3K+ 20K+63K+144K+275K+468K)-(0.7347)

- 19.8571 - 0.5398 = 19.3173

5. Given mean, t standard we have

P (26 5 X = P(-0.8

= p(0 < Z

= 0.28

= 0.765

P(x z X = 45

P(X >1

= 0.5

= 0.5

= 0.1

d)
$$p(o < x < 5) = p(x=1) + p(x=2) + p(x=3) + p(x=4)$$

= $3k + 5k + 7k + 9k$
= $24k = \frac{24}{49} = 0.4898$
5. Given

5. Given

mean,
$$\mu = 30$$

standard deviation, $\sigma = 5$

we have $z = \frac{x - \mu}{\sigma}$

$$P(26 \le X \le 40) = P(-0.8 \le 2 \le 2)$$

$$= P(-0.8 \le 2 \le 0) + P(0 \le 2 \le 2)$$

$$= P(0 \le 2 \le 0.8) + P(0 \le 2 \le 2)$$

$$[::P(-2.1 \le 2 \le 0) = P(0 \le 2 \le 2)]$$

$$p(x \ge 45) = p(z \ge 3)$$

= 0.5 - p(0<2<3)
= 0.5 - 0.4987
= 0.0013

25 P(26)

*x13 k)-

347)2

standard deviation, = 2.5

i, How many students score between 12 and 15 p(125×515)

$$x = 12$$
 , $z = \frac{12-14}{2.5} = \frac{-2}{2.5} = -0.8$

$$x = 15$$
 , $z = \frac{15 - 14}{2.5} = \frac{1}{2.5} = 0.4$

probability that the students got marks between 12 and 15 i.e., $p(12 \le X \le 15) = 0.4435$... No of students who score between 12 and 15 $= NX p(12 \le X \le 15) = 1000 \times 0.4435$ = 443.5 = 444

$$= \frac{18 - 14}{2.5} = \frac{4}{2.5} = 1.6$$

$$p(x>18) = p(z>1.6)$$

probability that the students got marks above 18 i.e., p(x>18) = 0.0548.

f(x < 18) f(x < 18)

probability i.e., p(x < no of sta

- 0.9452

No. of students who score above 18 = Nx p(x > 18) $= 1000 \times 0.0548$

$$J_{0}, P(x<18)$$

$$= \frac{X-14}{2.5} = \frac{4}{2.5} = 1.6$$

$$P(x<18) = P(2>16)$$

$$P(0<2<16) + 0.5$$

$$= 0.5 + 0.4452$$

- 0.9452

probability that the students got marks below 18 i.e., p(x < 18) = 0.9452No of students who score below 18 = $N \times p(x < 18)$

= 1000 x0.9452 = 945.2 = 945