

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА

по курсу «Data Science»

Тема: «Прогнозирование конечных свойств новых материалов (композиционных материалов)»

Слушатель: Боркунов Юрий Александрович

Москва, **2023** год

Задание: Прогнозирование конечных свойств новых материалов (композиционных материалов).

На входе: данные о начальных свойствах компонентов композиционных материалов (количество связующего, наполнителя, температурный режим отверждения и т.д.).

На выходе: необходимо спрогнозировать ряд конечных свойств получаемых композиционных материалов.

Алгоритм выполнения работы:

- проведение анализа и предобработки данных;
- описание методов, которые предполагается использовать для решения поставленной задачи;
- > разработка, обучение и тестирование моделей;
- > написание нейронной сети, которая будет рекомендовать соотношение матрица-наполнитель;
- разработка приложения;
- создание репозитория в GitHub / GitLab с кодом исследования.

Произведено объединение двух Excel-таблиц с данными в один датасет. В параметре "угол нашивки,Град" только 2 значения, поэтому для удобства мы определили переменные как о и 1 и переименовали в "угол нашивки".

	1	3	4	5	6	7	8	9	10	11		1013	1014	1015	1016	1017	1018	1019	1020	1021
Соотношение матрица- наполнитель	1.857143	1.857143	2.771331	2.767918	2.569620	2.561475	3.557018	3.532338	2.919678	2.877358		2.310394	1.646235	2.806563	3.745862	2.758727	2.271346	3.444022	3.280604	3.705351
Плотность, кг/ м3	2030.000000	2030.000000	2030.000000	2000.000000	1910.000000	1900.000000	1930.000000	2100.000000	2160.000000	1990.000000		1931.146887	2014.772547	1872.864660	1914.629424	2000.506141	1952.087902	2050.089171	1972.372865	2066.799773
модуль /пругости, ГПа	738.736842	738.736842	753.000000	748.000000	807.000000	535.000000	889.000000	1421.000000	933.000000	1628.000000		554.010341	841.064806	996.018683	680.683701	934.564388	912.855545	444.732634	416.836524	741.475517
Количество отвердителя, м.%	50.000000	129.000000	111.860000	111.860000	111.860000	111.860000	129.000000	129.000000	129.000000	129.000000		96.749782	102.979906	146.199194	110.979100	143.021859	86.992183	145.981978	110.533477	141.397963
Содержание эпоксидных групп,%_2	23.750000	21.250000	22.267857	22.267857	22.267857	22.267857	21.250000	21.250000	21.250000	21.250000		22.146487	21.073367	21.559290	25.922635	21.379518	20.123249	19.599769	23.957502	19.246945
Температура вспышки, С_2	284.615385	300.000000	284.615385	284.615385	284.615385	284.615385	300.000000	300.000000	300.000000	300.000000		214.827727	271.490843	313.900486	309.796388	273.852679	324.774576	254.215401	248.423047	275.779840
оверхностная плотность, г/ м2	210.000000	210.000000	210.000000	210.000000	210.000000	380.000000	380.000000	1010.000000	1010.000000	1010.000000		56.242761	615.168127	799.634090	628.364550	65.105965	209.198700	350.660830	740.142791	641.468152
Модуль упругости при растяжении, ГПа	70.000000	70.000000	70.000000	70.000000	70.000000	75.000000	75.000000	78.000000	78.000000	78.000000		78.143609	79.154469	72.815552	76.030555	67.633752	73.090961	72.920827	74.734344	74.042708
Ірочность при растяжении, МПа	3000.000000	3000.000000	3000.000000	3000.000000	3000.000000	1800.000000	1800.000000	2000.000000	2000.000000	2000.000000		1939.307550	2518.516089	2443.482888	2466.925422	3102.539548	2387.292495	2360.392784	2662.906040	2071.715856
Потребление смолы, г/м2	220.000000	220.000000	220.000000	220.000000	220.000000	120.000000	120.000000	300.000000	300.000000	300.000000		87.270139	232.428214	307.265172	152.184720	229.780372	125.007669	117.730099	236.606764	197.126067
Угол нашивки	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000		1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000
Плотность	4.000000	5.000000	5.000000	5.000000	5.000000	7.000000	7.000000	7.000000	7.000000	9.000000		7.683346	5.048503	5.240448	8.057020	8.736592	9.076380	10.565614	4.161154	6.313201
нашивки	60.000000	47.000000	57.000000	60.000000	70.000000	47.000000	57.000000	60.000000	70.000000	47.000000		62.785021	59.837798	52.044507	47.067229	60.277805	47.019770	53.750790	67.629684	58.261074
Средне	ее и меді	ианное	значени	ия для к	аждого	столбца	3	оотношени 250	е матрица-н	наполнител	IЬ 250 -	Плотно	ость, кг/м3		модуль у	пругости, Г	Па 250		отвердител	ія, м.%
								200			200 -			200			200			
○ d4	f.mean()							150			150 -			150			150			
U 01	·illean()							100			100 -			100			100			
С. Соотношение матрица-наполнитель Плотность, кг/м3 модуль упругости, гПа Количество отвердителя, м.% Содержание эпоксидных групп,%_2 Температура вспышки, С_2 Поверхностная плотность, г/м2 Модуль упругости при растяжении, гПа Прочность при растяжении, мПа Потребление смолы, г/м2 Угол нашивки шаг нашивки Плотность нашивки dtype: float64				2.93 1975.73 739.92 110.57 22.24 285.88 482.73 73.32 2466.92 218.42 0.49 6.89 57.15	4888 3233 0769 4390 2151 1833 8571 2843 3144 1691 9222 3929	Содержание эпоксидных гру 300 150 250 150 150 150 150 150 150 150 150 150 1			локсидных групп,% 2 300 Темг 250 150 100 25 30 100 100	Температура вспышки, С 2 Температура вспышки, С 2		C_2 Rc 200 150 100 50	0 500	1000 1500 2000 0 13 ПЛОТНОСТЬ, Г/МЖОДУ 150 1000 1000 1000 1000 1000 1000 1000		200 яжении, ГПа				
[25] df	f.median()						50 -			150 - 100 - 50 -			200			100			
Пл мо Со Те По Мо	отношени потность, радуль упр пличество держание мператур верхност дуль упр почность отреблени	кг/м3 угости, отверди эпокси, а вспыши ная пло угости и	ГПа ителя, и дных гру ки, С_2 тность, при раст тяжении,	и.% /пп,%_2 г/м2 гяжении,	гпа	2.90 1977.62 739.66 110.56 22.23 285.89 451.86 73.26 2459.52 219.19	1657 4328 4840 0744 6812 4365 8805 4526	2000	2000 300 FHOCTS HAMI	пвки	0 -	100 2:	300	400	0.00 0.25	0.50 0.75	1.00	o s	10	15

0.000000

6.916144

57.341920

Угол нашивки

Плотность нашивки

dtype: float64

Все признаки, кроме "Угол нашивки" имеют нормальное распределение.

Разведочный анализ данных

Все признаки, кроме "Угол нашивки" имеют нормальное распределение. "Ящики с усами" показывают наличие выбросов во всех столбцах, кроме углов нашивки.

между парой признаков

"ящик с усами"

Произведено обнаружение выбросов методом трех сигм и межквартильного расстояния. Правило трех сигм (3-sigma rule) - правило, утверждающее, что вероятность того, что случайная величина отклонится от своего математического ожидания более чем на три среднеквадратических отклонения. Межквартильный диапазон набора данных, часто сокращенно IQR, представляет собой разницу между первым квартилем (25-й процентиль) и третьим квартилем (75-й процентиль) набора данных.

6.931939

57.562887

Шаг нашивки

Плотность нашивки

6.972862

57.584225

Нормализация данных методом MinMaxScaller()

min_max_Scaler = preprocessing.MinMaxScaler()
col = df.columns
result = min_max_Scaler.fit_transform(df)
min_max_Scaler_df = pd.DataFrame(result, columns = col)
min_max_Scaler_df.describe().T

	count	mean	std	min	25%	50%	75%	max
Соотношение матрица-наполнитель	922.0	0.499412	0.187858	0.0	0.371909	0.495189	0.629774	1.0
Плотность, кг/м3	922.0	0.502904	0.188395	0.0	0.368184	0.511396	0.624719	1.0
модуль упругости, ГПа	922.0	0.451341	0.201534	0.0	0.305188	0.451377	0.587193	1.0
Количество отвердителя, м.%	922.0	0.506200	0.186876	0.0	0.378514	0.506382	0.638735	1.0
Содержание эпоксидных групп,%_2	922.0	0.490578	0.180548	0.0	0.366571	0.488852	0.623046	1.0
Температура вспышки, С_2	922.0	0.516739	0.190721	0.0	0.386228	0.516931	0.646553	1.0
Поверхностная плотность, г/м2	922.0	0.373295	0.217269	0.0	0.204335	0.354161	0.538397	1.0
Модуль упругости при растяжении, ГПа	922.0	0.487343	0.196366	0.0	0.353512	0.483718	0.617568	1.0
Прочность при растяжении, МПа	922.0	0.503776	0.188668	0.0	0.373447	0.501481	0.624299	1.0
Потребление смолы, г/м2	922.0	0.507876	0.199418	0.0	0.374647	0.510143	0.642511	1.0
Угол нашивки	922.0	0.510846	0.500154	0.0	0.000000	1.000000	1.000000	1.0
Шаг нашивки	922.0	0.503426	0.183587	0.0	0.372844	0.506414	0.626112	1.0
Плотность нашивки	922.0	0.503938	0.193933	0.0	0.376869	0.504310	0.630842	1.0

- 0.06

- 0.04

- 0.02

- -0.02

- -0.04

-0.06

Разработка и обучение модели

Перед нами стоит задача регрессии – прогноз на основе выборки объектов с различными признаками. Построим модели для прогноза модуля упругости при растяжении и прочности при растяжении.

Разбиваем данные на обучающую и тестовую выборки

```
X_u = df_norm.drop(['Модуль упругости при растяжении, ГПа'], axis=1)
X_p = df_norm.drop(['Прочность при растяжении, МПа'], axis=1)
y_u = df_norm[['Модуль упругости при растяжении, ГПа']]
y_p = df_norm[['Прочность при растяжении, МПа']]
X_train_u, X_test_u, y_train_u, y_test_u = train_test_split(X_u, y_u, test_size=0.3, random_state=42)
X_train_p, X_test_p, y_train_p, y_test_p = train_test_split(X_p, y_p, test_size=0.3, random_state=42)
```

Метод линейной регрессии.

Определим несколько параметров:

- R₂(или Коэффициент детерминации)- это статистическая мера, которая показывает степень вариации зависимой переменной из-за независимой переменной;
- Средняя квадратическая ошибка;
- Средняя абсолютная ошибка.

```
model = LinearRegression()
model = LinearRegression()
model.fit(X_train_u,y_train_u)
                                                                                                          model.fit(X_train_p,y_train_p)
predictions = model.predict(X test u)
                                                                                                          predictions = model.predict(X test p)
r_sq = model.score(X_u, y_u)
                                                                                                          r sq = model.score(X p, y p)
print('coefficient of determination:', r_sq) # коэффициент детерминации. R2 (или Коэффициент детерминации)
                                                                                                          print('coefficient of determination:', r sq) # коэффициент детерминации
print(
                                                                                                          print(
  'mean squared error : ', mean squared error(y test u, predictions)) #Средняя квадратическая ошибка
                                                                                                             'mean squared error : ', mean squared error(y test p, predictions)) #средняя квадратическая ошибка
print(
                                                                                                          print(
  'mean_absolute_error : ', mean_absolute_error(y_test_u, predictions)) #Средняя абсолютная ошибка
                                                                                                             'mean absolute_error : ', mean_absolute_error(y_test_p, predictions)) #Средняя абсолютная ошибка
coefficient of determination: 0.0054214924703653855
                                                                                                          coefficient of determination: 0.01040217342102201
mean squared error: 0.042832542319332874
                                                                                                          mean squared error: 0.037238059902490565
mean_absolute_error : 0.16952044227222318
                                                                                                          mean absolute error: 0.1551905647370025
```

Получим прогнозы и выведем соответствующие графики.

графики прогноза и тестовых данных

Метод k-ближайших соседей.

```
knn = KNeighborsRegressor(n_neighbors=5)
knn.fit(X train u, y train u)
y_pred_u_knn = knn.predict(X_test_u)
mae_knr = mean_absolute_error(y_pred_u_knn, y_test_u)
mse_knn_elast = mean_squared_error(y_test_u, y_pred_u_knn)
print('K Neighbors Regressor Results Train:')
print("Test score: {:.2f}".format(knn.score(X_train_u, y_train_u)))# Оценка тренировочной выборки
print('K Neighbors Regressor Results:') # результаты регрессора соседей
print('KNN MAE: ', round(mean absolute error(y test u, y pred u knn))) # Средняя абсолютная ошибка
print('KNN MAPE: {:.2f}'.format(mean absolute percentage error(y test u, y pred u knn))) # Средняя абсолютная ошибка в процентах
print('KNN_MSE: {:.2f}'.format(mse_knn_elast)) # средняя квадратическая ошибка
print("KNN RMSE: {:.2f}".format (np.sqrt(mse knn_elast))) # Среднеквадратическая ошибка
print("Test score: {:.2f}".format(knn.score(X test u, y test u)))# Оценка тестовой выборки
K Neighbors Regressor Results Train:
Test score: 0.18
K Neighbors Regressor Results:
KNN MAE: 0
KNN MAPE: 0.68
KNN MSE: 0.05
KNN RMSE: 0.23
Test score: -0.22
```

Здесь будет применена функция GridSearch — поиск лучших параметров в фиксированной сетке возможных значений.

CV – перекрёстная проверка (кросс-валидация, Cross-validation), метод, который показывает, что модель не переобучилась.

Результаты:

R2-score Модуль упругости при растяжении: -0.014

R2-score Прочность при растяжении: -0.002

R2<0-разработанная модель даёт прогноз даже хуже, чем простое усреднение.

Случайный лес.

Здесь будет применена функция RandomizedSearchCV. Она реализует метод «подгонки» и «оценки». В отличие от GridSearchCV, проверяются не все значения параметров, а из указанных распределений выбирается фиксированное количество значений параметров.

оценочные метрики для модуля упругости при растяжении

```
knn = KNeighborsRegressor(n_neighbors=5)
knn.fit(X_train_u, y_train_u)
y_pred_u_knn = knn.predict(X_test_u)
mae_knr = mean_absolute_error(y_pred_u_knn, y_test_u)
mse_knn_elast = mean_squared_error(y_test_u, y_pred_u_knn)
print('K Neighbors Regressor Results Train:')
print("Test score: {:.2f}".format(knn.score(X_train_u, y_train_u)))# Оценка тренировочной выборки
print('K Neighbors Regressor Results:') # результаты регрессора соседей
print('KNN_MAE: ', round(mean_absolute_error(y_test_u, y_pred_u_knn))) # Средняя абсолютная ошибка
print('KNN_MAPE: {:.2f}'.format(mean_absolute_percentage_error(y_test_u, y_pred_u_knn))) # Средняя абсолютная ошибка в процентах
print('KNN_MSE: {:.2f}'.format(mse_knn_elast)) # средняя квадратическая ошибка
print("KNN_RMSE: {:.2f}".format (np.sqrt(mse_knn_elast))) # Среднеквадратическая ошибка
print("Test score: {:.2f}".format(knn.score(X_test_u, y_test_u)))# Оценка тестовой выборки
K Neighbors Regressor Results Train:
Test score: 0.18
K Neighbors Regressor Results:
KNN_MAE: 0
KNN MAPE: 0.68
KNN MSE: 0.05
KNN RMSE: 0.23
Test score: -0.22
```

оценочные метрики для прочности при растяжении

```
rfr = RandomForestRegressor(n_estimators=15, max_depth=7, random_state=33)
rfr.fit(X train p, y train p.values)
y_pred_p_forest = rfr.predict(X_test_p)
mae_rfr = mean_absolute_error(y_pred_p_forest, y_test_p)
mse_rfr_elast = mean_squared_error(y_test_p, y_pred_p_forest)
print('Random Forest Regressor Results Train:')
print("Test score: {:.2f}".format(rfr.score(X_train_p, y_train_p)))
print('Random Forest Regressor Results:')
print('RF_MAE: ', round(mean_absolute_error(y_test_p, y_pred_p_forest)))
print('RF_MAPE: {:.2f}'.format(mean_absolute_percentage_error(y_test_p, y_pred_p_forest)))
print('RF_MSE: {:.2f}'.format(mse_rfr_elast))
print("RF_RMSE: {:.2f}".format (np.sqrt(mse_rfr_elast)))
print("Test score: {:.2f}".format(rfr.score(X_test_p, y_test_p)))
Random Forest Regressor Results Train:
Test score: 0.48
Random Forest Regressor Results:
RF_MAE: 0
RF MAPE: 8769553567468.01
RF MSE: 0.04
RF RMSE: 0.20
```

R2-score Модуль упругости при растяжении: -0.013 R2-score Прочность при растяжении: -0.002

Написание нейронной сети, которая будет рекомендовать матрица-наполнитель.

```
# Определяем входы и выходы

X_MN = df.drop(['Соотношение матрица-наполнитель'], axis=1)

y_MN = df[['Соотношение матрица-наполнитель']]

# Разбиваем выборки на обучающую и тестовую

X_train_MN, X_test_MN, y_train_MN, y_test_MN = train_test_split(X_MN, y_MN, test_size=0.3, random_state=1)

X_array = np.array(df['Соотношение матрица-наполнитель'])

normalized_arr = preprocessing.normalize([x_array])

print(normalized_arr)
```

Применим функцию активации SELU, она сочетает в себе оба преимущества классического RELU со

свойствами самонормализации.

```
modelMN = Sequential()
modelMN.add(Dense(128))
modelMN.add(BatchNormalization())
modelMN.add(ReLU())
modelMN.add(Dense(128, activation='selu'))
modelMN.add(BatchNormalization())
modelMN.add(Dense(64, activation='selu'))
modelMN.add(BatchNormalization())
modelMN.add(Dense(32, activation='selu'))
modelMN.add(BatchNormalization())
modelMN.add(ReLU())
modelMN.add(Dense(16, activation='selu'))
modelMN.add(Dense(16, activation='selu'))
modelMN.add(Dense(11))
modelMN.add(Dense(11))
modelMN.add(Activation('selu'))
```

Построение модели и определение её параметров. SGD-стохастический градиентный спуск с мини-пакетами — вариант, при котором коэффициенты меняются после обсчета N элементов выборки, то есть для каждой тренировочной итерации алгоритм выбирает случайное подмножество набора данных. Частота обновления параметров выше, меньше требуется оперативной памяти, эффективность вычислений высокая.

**ModelMN.compile(optimizer=tf.optimizers.SGD(learning_rate=0.02, momentum=0.5), loss='mean_absolute_error', metrics=['mse', "mape"])

```
tf.keras.callbacks.EarlyStopping(
    monitor='val_loss',
    min delta=0,
    patience=10,
    verbose=1.
    mode='auto',
    baseline=None,
    restore_best_weights=False,
···start_from_epoch=0
)#-Параметры ранней остановки для претотвращения "переоснащения" модели.
<keras.callbacks.EarlyStopping at 0x7feaf83fc070>
 # Минимизируемая функция потерь
loss=keras.losses.SparseCategoricalCrossentropy()
historyMN=modelMN.fit(
    X train MN,
    y_train_MN,
    batch_size = 64,
    epochs=100,
    verbose=1,
    validation split = 0.2,
```

```
modelMN.evaluate(X_test_MN, y_test_MN)
[0.7727224230766296, 0.9130035638809204, 33.527462005615234]
scores = modelMN.evaluate(X_train_MN,y_train_MN)
print("\n%s: %.2f%%" % (modelMN.metrics names[1], scores[1]*100))
                                           - 0s 1ms/step - loss: 0.7020 - mse: 0.7867 - mape: 31.4950
mse: 78.67%
                                                 График потерь модели
 2.50
                                                                                       Ошибка на обучающей выборке
                                                                                       Ошибка на тестовой выборке
 2.25
 2.00
Значение ошибки
 1.75
 1.50
 1.25
 0.75
                            20
                                               40
                                                                                                        100
                                                       Эпохи
                                        Тестовые и прогнозные значения: Keras neuronet
Соотношение матрица/наполнитель
  -50
  -100
  -150
 -200
                           50
                                           100
                                                                             200
                                                                                              250
                                                 Количество наблюдений
```

Средняя абсолютная ошибка.

loss: 0.7727 - mse: 0.9130 - mape: 33.5275

Model MAE: [0.7727224230766296, 0.9130035638809204, 33.527462005615234] МАЕ среднего значения: Соотношение матрица-наполнитель 0.741552

Разработка приложения

```
from flask import Flask
app = Flask(__name__)
@app.route('/')
def index():
    return "WELCOME!!! This is the home page"
if __name__ == "__main__":
    app.run()
```

Создание репозитория

https://github.com/YuriKoss/YuriKoss.git