16 Problems: Linear Independence

- 1. Let B^n be the space of $n \times 1$ bit-valued matrices (i.e., column vectors) over the field $\mathbb{Z}_2 := \mathbb{Z}/2\mathbb{Z}$. Remember that this means that the coefficients in any linear combination can be only 0 or 1, with rules for adding and multiplying coefficients given here.
 - (a) How many different vectors are there in B^n ?
 - (b) Find a collection S of vectors that span B^3 and are linearly independent. In other words, find a basis of B^3 .
 - (c) Write each other vector in B^3 as a linear combination of the vectors in the set S that you chose.
 - (d) Would it be possible to span B^3 with only two vectors?

Hint for Problem 1

- 2. Let e_i be the vector in \mathbb{R}^n with a 1 in the *i*th position and 0's in every other position. Let v be an arbitrary vector in \mathbb{R}^n .
 - (a) Show that the collection $\{e_1,\ldots,e_n\}$ is linearly independent.
 - (b) Demonstrate that $v = \sum_{i=1}^{n} (v \cdot e_i) e_i$.
 - (c) The span $\{e_1, \ldots, e_n\}$ is the same as what vector space?