Plan Manuscript

Marius Duvillard

13 mars 2024

Table des matières

1	Intr	roduction	3
	1.1	Contexte industriel	3
		1.1.1 Fabrication du combustible de fission	3
		1.1.2 Broyeur à boulet	3
		1.1.3 Régimes d'écoulement	3
		1.1.4 Méthodes de mesures	3
		1.1.5 Concept de Jumeau Numérique	3
		1.1.6 Objectif : Appliquer assimilation de données à ces modèles	3
2	\mathbf{Ass}	imilation de données	3
	2.1	Approches stochastiques	3
		2.1.1 Modèle stochastique du système	3
		2.1.2 Probability formula	3
		2.1.3 Estimation	3
	2.2	Filtre Bayésien	3
		2.2.1 Filtre particulaire	3
		2.2.2 Formulation variationnelle (3DVar)	4
		2.2.3 Méthodes Hybrides - RML	4
	2.3	Filtre de Kalman	4
		2.3.1 Filtre de Kalman d'Ensemble	4
3	Mo	délisation physique (Méthodes particulaires)	4
	3.1	Méthode de simulation des écoulements granulaires dans un tam-	
		bour en rotation	4
	3.2	Présentation DEM	4
	3.3	Méthode SPH	4
	3.4	Méthode MPM-PIC	4
	3.5	Méthode VM \rightarrow Problème fluide incompressible et similarité avec	
		SPH / VIC et MPM	4
	3.6	Contenu et objectif	4

4	Ensemble Data Assimilation pour la simulation particulaire -		
Article 1			
	4.1 Adaptation du Filtre de Kalman d'Ensemble	4	
	4.2 Focus approximation des méthodes particulaires	4	
	4.3 Schéma de remaillage	4	
	4.4 Focus problème VM	4	
	4.5 Filtres adaptés	5	
5	Data Assimilation par alignement de champs	5	
6	Conclusion	5	

1 Introduction

1.1 Contexte industriel

1.1.1 Fabrication du combustible de fission

- voir Giraud : p.1-6 - voir Orozco : p.3-9

1.1.2 Broyeur à boulet

- Orozco?

1.1.3 Régimes d'écoulement

- voir pouliquen.pdf - voir Orozco

1.1.4 Méthodes de mesures

- voir Bastien + dossier mesures

1.1.5 Concept de Jumeau Numérique

- voir session FJOH

1.1.6 Objectif : Appliquer assimilation de données à ces modèles

2 Assimilation de données

2.1 Approches stochastiques

2.1.1 Modèle stochastique du système

Inspiré de 3.4.2 de Asch, et Carpentier p.41

2.1.2 Probability formula

2.1.3 Estimation

Carpentier, chapitre 2, pages 27-36 Asch pages 78-82 Evensen 2.1.7 inférence bayésienne

2.2 Filtre Bayésien

Carpentier page 42 Asch page 91 Evensen 2.2

2.2.1 Filtre particulaire

3.7 de Asch CoursEC section 5

- 2.2.2 Formulation variationnelle (3DVar)
- 2.2.3 Méthodes Hybrides RML
- 2.3 Filtre de Kalman
- 2.3.1 Filtre de Kalman d'Ensemble

Bocquet, Lecture 2 CoursEC 7.2

3 Modélisation physique (Méthodes particulaires)

3.1 Méthode de simulation des écoulements granulaires dans un tambour en rotation

- voir Arseni 2020 - voir EFEM - Mishra / Orozco / Chong / Chandra / Zuo / Zhu - Présenter les méthodes continues et discrètes (voir cours PARTICLES) dans une perspective d'assimilation de données

- 3.2 Présentation DEM
- 3.3 Méthode SPH
- 3.4 Méthode MPM-PIC
- 3.5 Méthode VM \rightarrow Problème fluide incompressible et similarité avec SPH / VIC et MPM
- 3.6 Contenu et objectif
- 4 Ensemble Data Assimilation pour la simulation particulaire - Article 1
- 4.1 Adaptation du Filtre de Kalman d'Ensemble
 - -¿ choix d'une formulation in ensemble space à partir des mesures
- 4.2 Focus approximation des méthodes particulaires
 - −¿ approximation et regression
- 4.3 Schéma de remaillage
 - -¿ Redistribution
- 4.4 Focus problème VM
 - –¿ Cas test

4.5 Filtres adaptés

5 Data Assimilation par alignement de champs

 $- \+ \!\!\! ;$ Placer la biblio dans la partie 1.2 si associée à DA ou dans un 1.3 si trop dfférent (ex : OT)

6 Conclusion