GATE MA 2009

EE25BTECH11030-AVANEESH

1	-	20	carry	one	mark	eac	h.
---	---	----	-------	-----	------	-----	----

1) The dimension	of the vector space $V =$	$= \{A = (a_{ij})_{n \times n} : a_{ij} \in \mathbb{C},$	$a_{ij} = -a_{ji}$ over \mathbb{R} 1s
a) n^2	b) $n^2 - 1$	c) $n^2 - n$	d) $n^2/2$

(GATE MA 2009)

2) The minimal polynomial associated with the matrix $\begin{pmatrix} 0 & 0 & 3 \\ 1 & 0 & 2 \\ 0 & 1 & 1 \end{pmatrix}$ is

a) $x^3 - x^2 - 2x - 3$

c) $x^3 - x^2 - 3x - 3$ d) $x^3 - x^2 + 3x - 3$

b) $x^3 - x^2 + 2x - 3$

(GATE MA 2009)

3) For the function $f(z) = \sin\left(\frac{1}{\cos(1/z)}\right)$, the point z = 0 is

a) a removable singularity

c) an essential singularity

b) a pole

d) a non-isolated singularity

(GATE MA 2009)

4) Let $f(z) = \sum_{n=0}^{\infty} z^n$ for $z \in \mathbb{C}$. If C: |z-i| = 2, then

$$\oint_C \frac{f(z)}{(z-i)^{16}} dz =$$

a) $2\pi i(1+15i)$

b) $2\pi i(1-15i)$

c) $4\pi i(1+15i)$

d) $2\pi i$

(GATE MA 2009)

5) For what values of α and β , the quadrature formula $\int_{-1}^{1} f(x) dx = \alpha f(-1) + f(\beta)$ is exact for all polynomials of degree ≤ 1 ?

a) $\alpha = 1, \beta = 1$ b) $\alpha = -1, \beta = 1$ c) $\alpha = 1, \beta = -1$ d) $\alpha = -1, \beta = -1$

(GATE MA 2009)

6) Let $f:[0,4] \to \mathbb{R}$ be a three times continuously differentiable function. Then the value of f[1,2,3,4]

a) $\frac{f''(\xi)}{3}$, for some $\xi \in (0,4)$ b) $\frac{f''(\xi)}{6}$, for some $\xi \in (0,4)$

c) $\frac{f'''(\xi)}{3}$, for some $\xi \in (0,4)$ d) $\frac{f'''(\xi)}{6}$, for some $\xi \in (0,4)$

(GATE MA 2009)

7) Which one of the following is **TRUE**?

- a) Every linear programming problem has a feasible solution.
- b) If a linear programming problem has an optimal solution then it is unique.
- c) The union of two convex sets is necessarily convex.
- d) Extreme points of the disk $x^2 + y^2 \le 1$ are the points on the circle $x^2 + y^2 = 1$.

(GATE MA 2009)

a) b) c)	Maximize $b^T w$ subject Maximize $b^T w$ sub		icted	ı I	$x \ge b$ and	
9) T	he resolvent kernel for	r the integral equation $u($	(x) =	$= F(x) + \int e^{t-x} u(t) dt \text{ is}$	S	(GATE MA 2009)
a)	$\cos(x-t)$	b) 1	c)	e^{-x}	d) $e^{2(t-t)}$	-x)
a) b) c)	$C = C[a, b]$ of all real-version Both (X, d_2) and (X, d_2) is complete, b	out (X, d_{∞}) is not complete out (X, d_2) is not complete	ons o	and $d_{\infty}(f,g) = \sup_{a \in \mathbb{R}} [a,b]$. Which is TF	p f(t) - RUE?	(GATE MA 2009) $g(t)$ on the space
	-					(GATE MA 2009)
a) b) c) d) 12) L a) b) c)	f is monotone $\{x: f(x) \ge a\}$ is meas $\{x: f(x) = a\}$ is meas. For each open set G et $\{e_n\}$ be an orthonorm $\lim_{n\to\infty}\langle x, e_n\rangle$ does not $\lim_{n\to\infty}\langle x, e_n\rangle = x $ $\lim_{n\to\infty}\langle x, e_n\rangle = 1$	surable for all $a \in \mathbb{R}$ $\subset \mathbb{R}$, $f^{-1}(G)$ is measurab	ole		∈ <i>H</i> . Th	(GATE MA 2009) nen
	$\lim_{n\to\infty}\langle x,e_n\rangle=0$					(GATE MA 2009)
	_	of \mathbb{R}^2 (with the usual to	opol	ogy) is		
	dense in \mathbb{R}^2 connected			separable compact		
14) Z	$_{2}[x]/\langle x^{2}+x^{2}+1\rangle$ is					(GATE MA 2009)
	a field with 8 element a field with 9 element			an infinite field NOT a field		
15) T	he number of element	s of a principal ideal don	maiı	ı can be		(GATE MA 2009)
a)	15	b) 25	c)	35	d) 36	
						(CATE MA 2000)

(GATE MA 2009)

16) Let F, G, H be pairwise independent with P(F) = P(G) = P(H) = 1/3 and $P(F \cap G \cap H) = 1/4$. The probability that at least one event among F, G and H occurs is

a) 11/12	b) 7/12	c) 5/12	d) 3/4
17) Let <i>X</i> be a	random variable such that	$E(X^2) = E(X) = 1$. Then $E(X)$	(GATE MA 2009)
a) 0	b) 1	c) 2 ¹⁰⁰	d) $2^{100} + 1$
19) For which	of the following distribution	on the week low of large num	(GATE MA 2009)
		on, the weak law of large num	
a) Normal	b) Gamma	c) Beta	d) Cauchy
19) If $D = \frac{d}{dx}$,	then the value of $\frac{1}{(xD+1)}(x^{-})$	¹) is	(GATE MA 2009)
a) $\log x$	b) $\frac{\log x}{x}$	c) $\frac{\log x}{x^2}$	d) $\frac{\log x}{x^3}$
20) The equation	on $(\alpha xy^3 + y\cos x)dx + (x^2)$	$y^2 + \beta \sin x)dy = 0 \text{ is exact for}$	(GATE MA 2009)
a) $\alpha = \frac{3}{2}$, β b) $\alpha = 1$, β	$= 1$ $= \frac{3}{2}$	c) $\alpha = 1, \beta = 1$ d) $\alpha = 1, \beta = \frac{2}{3}$	
			(GATE MA 2009)
	y two marks each. $\begin{pmatrix} 0 & 0 \\ 1+i\sqrt{3} & 0 \\ 0 & 1+2i \end{pmatrix}$, then the	trace of A^{102} is	
a) 0	b) 1	c) 2	d) 3
22) Which of the	e following matrices is NC	OT diagonalizable?	(GATE MA 2009)
a) $\begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$	b) $\begin{pmatrix} 1 & 0 \\ 3 & 2 \end{pmatrix}$	c) $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$	d) $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$
(1 -)	(° -)	(1 0)	(GATE MA 2009)
23) Let V be the	e column space of $A = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$	$\begin{pmatrix} -1\\2\\-1 \end{pmatrix}$. The orthogonal projection	on of $\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ on V is
a) $\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$	b) $\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$	c) $\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$	$d) \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$
24) Let $\sum_{n=-\infty}^{\infty} a_n$	$a_n(z+1)^n$ be the Laurent ser	ries expansion of $f(z) = \sin(t)$	(GATE MA 2009) $\frac{z}{z+1}$). Then $a_2 =$
a) 1	b) 0	c) cos(1)	d) $\frac{-1}{2}\sin(1)$

a) 1

(GATE MA 2009)

·	_	ngular region R in \mathbb{R}^2 . Then	$iv(x, y)$ for $\xi - x + iy \in \mathbb{C}$.	.i C is tile
		$\oint_C \frac{\partial u}{\partial y} dx + \frac{\partial u}{\partial x} dy =$		
a) 1	b) 0	c) 2 <i>π</i>	d) π	
		continuously differentiable. So φ . If the order of convergence	uppose that the iterates x_{n+}	$MA 2009)$ $x_1 = \varphi(x_n),$
a) $\varphi'(\xi) = 0$, $\varphi''(\xi)$ b) $\varphi'(\xi) \neq 0$, $\varphi''(\xi)$	· ·	c) $\varphi'(\xi) = 0$, φ'' d) $\varphi'(\xi) \neq 0$, φ''		
27) Let $f:[0,2]$ approximation is		ntinuously differentiable. If		MA 2009) ror in the
a) $\frac{f'(5)}{J_2}$ for some b) $\frac{f'(5)}{2}$ for some	$\xi \in (0,2)$ $\xi \in (0,2)$	c) $\frac{f''(\xi)}{3}$ for some d) $\frac{f''(\xi)}{6}$ for some	$\xi \xi \in (0,2)$ $\xi \xi \in (0,2)$	
28) For fixed $t \in z = 400$ for $t = $	\mathbb{R} , consider: Max $z =$	$3x + 4y, \ x + y \le 100, \ x + 3$	•	MA 2009) num value
a) 50	b) 100	c) 200	d) 300	
29) Minimize $z =$	$2x_1 - x_2 + x_3 + 5x_4 +$	$2x_5$, subject to:	(GATE 1	MA 2009)
		$x_1 - 2x_4 + x_5 = 6$ $x_2 + x_4 - 4x_5 = 3$ $x_3 + 3x_1 + 2x_5 = 10$ $x_j \ge 0, \ j = 1, \dots, 5$		
is				
a) 28	b) 19	c) 10	d) 9	
,	ngarian method, the op	otimal value of the assignmen		MA 2009) ix is given
by		$ \begin{pmatrix} 5 & 23 & 14 & 8 \\ 10 & 25 & 1 & 23 \\ 35 & 16 & 15 & 12 \\ 16 & 23 & 11 & 7 \end{pmatrix} $		

d) 44

(GATE MA 2009) 31) Which of the following sequence $\{f_n\}_{n=1}^{\infty}$ of functions does NOT converge uniformly on [0,1]?

c) 26

b) 52

is

a) 29

(GATE MA 2009)

d) both are topologies on \mathbb{R}

 $\tau_2 = \{G \subseteq \mathbb{R} : G \text{ is countable or } \mathbb{R} \setminus G \text{ is countable} \}.$

b) τ_1 is a topology on \mathbb{R} but τ_2 is NOT a topology on \mathbb{R} c) τ_2 is a topology on \mathbb{R} but τ_1 is NOT a topology on \mathbb{R}

a) neither τ_1 not τ_2 is a topology on $\mathbb R$

Then:

38) Which one of the following ideals of the ring $\mathbb{Z}[i]$ of Gaussian integers is NOT maximal?

=

a) $\langle 1+i \rangle$	b) $\langle 1 - i \rangle$	c) $\langle 2+i \rangle$	d) (3 +	$i\rangle$
39) If $Z(G)$ denotes the	centre of a group G , then	the order of the quotient	group $G/$	(GATE MA 2009) $Z(G)$ cannot be
a) 4	b) 6	c) 15	d) 25	
40) Which group is NOT	Covelie?			(GATE MA 2009)
	cyclic:			
a) $\operatorname{Aut}(\mathbb{Z}_4)$	b) $\operatorname{Aut}(\mathbb{Z}_6)$	c) $\operatorname{Aut}(\mathbb{Z}_8)$	d) Aut((\mathbb{Z}_{10})
41) Let <i>X</i> be a non-negative	tive integer valued random	variable with $E(X^2) = 3$	and $E(X)$	(GATE MA 2009) = 1. Then
	$\sum_{i=1}^{\infty} i F$	$P(X \ge i) =$		
a) 1	b) 2	c) 3	d) 4	
				(GATE MA 2009)
42) Let X be a random \mathbf{v}	variable with probability de	ensity function $f \in \{f_o, f_1\}$, where	,
	$f_o(x) = \begin{cases} 2x \\ 0, \end{cases}$	if $0 < x < 1$ otherwise		
and	$f_1(x) = \begin{cases} 3x^2 \\ 0, \end{cases}$	$ \begin{array}{ll} 2, & \text{if } 0 < x < 1 \\ & \text{otherwise} \end{array} $		
For testing the null hyppowerful test is	pothesis H_o : $f \equiv f_1$ at le	evel of significance $\alpha = 0$).19, the	power of the most
a) 0.729	b) 0.271	c) 0.615	d) 0.38	5
43) Let <i>X</i> and <i>Y</i> be indep	endent and identically distri	buted $U(0, 1)$ random varia	ables. The	(GATE MA 2009) en $P(Y < (X - 1/2)^2)$
a) 1/12	b) 1/4	c) 1/3	d) 2/3	
P: If $x_n \to x$ in X then	$Tx_n \rightarrow y$ in Y then $Tx = y$. In the property of the proper	→ Y be a linear map. Cons	ider the s	(GATE MA 2009) statements:
45) If $y(x) = x$ is a solu general solution is	tion of the differential equ	variation $y'' - \left(\frac{2}{x^2} + \frac{1}{x}\right) \left(xy^1 - \frac{1}{x}\right)$	y) = 0, 0	(GATE MA 2009) $0 < x < \infty$, then its

a) $(\alpha + \beta e^{-2x})x$	b) $(\alpha + \beta e^{2x})x$
46) Let $P_n(x)$ be the	Legendre polynomi
	$\int_{-1}^{1} \left(\frac{1}{2} \right)^{n} dx$
then $n =$	
a) 2	b) 3
47) The integral surf $y = 1 + t$, $z = 1 + t^2$	
a) $z = xy + \frac{1}{2}(x^2 - y^2)$ b) $z = xy + \frac{1}{4}(x^2 - y^2)$	²) ² ²) ²

c)
$$\alpha x + \beta e^x$$

d)
$$(\alpha e^x + \beta)x$$

(GATE MA 2009)

omial of degree n such that $P_n(1) = 1, n = 1, 2, ...$ If

$$\int_{-1}^{1} \left(\sum_{j=1}^{n} \sqrt{j(2j+1)} P_j(x) \right)^2 dx = 20$$

c) 4

d) 5

(GATE MA 2009)

equation $y\frac{\partial z}{\partial x} + x\frac{\partial z}{\partial y} = x^2 + y^2$ and passing through the curve x = 1 - t,

c)
$$z = xy + \frac{1}{8}(x^2 - y^2)^2$$

d) $z = xy + \frac{1}{16}(x^2 - y^2)^2$

(GATE MA 2009)

48) For the diffusion problem $u_t = u_{xx}$, $0 < x < \pi$, t > 0, u(0, t) = 0, $u(\pi, t) = 0$ and $u(x, 0) = 3\sin 2x$ the solution is given by

a) $3e^{-t} \sin 2x$

b) $3e^{-4t} \sin 2x$

c) $3e^{-9t} \sin 2x$

d) $3e^{-2t} \sin 2x$

(GATE MA 2009)

49) A simple pendulum, consisting of a bob of mass m connected with a string of length a, is oscillating in a vertical plane. If the string is making an angle θ with the vertical, then the expression for the Lagrangian is given as

a)
$$ma^2 \left(\dot{\theta}^2 - \frac{2g}{a} \sin^2 \frac{\theta}{2} \right)$$

b) $2mga \sin^2 \frac{\theta}{2}$

c) $ma^2 \left(\frac{\dot{\theta}^2}{2} - \frac{2g}{a} \sin^2 \frac{\theta}{2}\right)$ d) $\frac{ma^2}{2} \left(\dot{\theta}^2 - \frac{2g}{a} \cos \theta\right)$

(GATE MA 2009)

50) The extremal of the functional $\int_0^1 \left(y + x^2 + \frac{y^2}{4} \right) dx$, y(0) = 0, y(1) = 0 is

a) $4(x^2 - x)$

b) $3(x^2 - x)$

c) $2(x^2 - x)$

d) $x^2 - x$

(GATE MA 2009)

Common Data Questions

Common Data Questions 51 and 52:

Let $T:\mathbb{R}^3 \to \mathbb{R}^3$ be the linear transformation defined by

$$T(x_1, x_2, x_3) = (x_1 + 3x_2 + 2x_3, 3x_1 + 4x_2 + x_3, 2x_1 + x_2 - x_3)$$

51) The dimension of the range space of T^2 is

a) 0

b) 1

c) 2

d) 3

(GATE MA 2009)

52) The dimension of the null space of T^3 is

a) 0	b) 1	c) 2	d) 3	
Common Data for Qu	nestions 53 and 54:			(GATE MA 2009)
Let $y_1(x) = 1 + x$ and y	$e_2(x) = e^x$ be two solutions	of $y''(x) + P(x)y'(x) + Q(x)$	y(x) = 0.	
53) $P(x) =$				
a) $1 + x$	b) $-1 - x$	c) $\frac{1+x}{x}$	d) $\frac{-1-x}{x}$	
54) The set of initial co	nditions for which there is	NO solution is:		(GATE MA 2009)
a) $y(0) = 2$, $y'(0) = 1$ b) $y(1) = 0$, $y'(1) = 1$		c) $y(1) = 1$, $y'(1) = 0$ d) $y(2) = 1$, $y'(2) = 2$		
Common Data for Qu	nestions 55 and 56:			(GATE MA 2009)
Let X and Y be randon	n variables having the join	t probability density functi	on	
	$f(x,y) = \begin{cases} \frac{1}{\sqrt{2\pi y}} e^{\frac{-1}{2y}(x-y)^2}, \\ 0, \end{cases}$	if $-\infty < x < \infty, 0 < y < otherwise$	< 1	
55) The variance of X i	`			
a) 1/12	b) 1/4	c) 7/12	d) 5/12	,
56) The covariance betw	ween X and Y is			(GATE MA 2009)
a) 1/3	b) 1/4	c) 1/16	d) 1/12	,
Linked Answer Quest	ions			(GATE MA 2009)
Statement for Linked	Answer Questions 57 an	nd 58:		
Consider the function j	$f(z) = \frac{e^{iz}}{z(z^2+1)}$			
57) The residue of f at	the isolated singular point	in the upper half-plane $\{z\}$	$= x + iy \epsilon$	$\mathbb{C}: y > 0$ is:

c) e^{-2}

c) $2\pi(1+e)$

d) 1

d) $-\pi(1+e^{-1})$

(GATE MA 2009)

(GATE MA 2009)

Statement for Linked Answer Questions 59 and 60:

58) The Cauchy Principal Value of the integral $PV \int_{-\infty}^{\infty} \frac{\sin x}{x^2 + 1} dx$ is

b) $\pi(1 - e^{-1})$

b) $\frac{1}{2}e$

a) $-\frac{1}{2}e$

a) $-2\pi(1+2e^{-1})$

Let $f(x,y) = kxy - x^3y - xy^3$ for $(x,y) \in \mathbb{R}^2$, where k is a real constant. The directional derivative of f at the point (1,2) in the direction of the unit vector $u = \left(\frac{-1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ is $\frac{15}{\sqrt{2}}$

59) The value of k is

a) 2

b) 4

c) 1

d) -2

(GATE MA 2009) 60) The value of f at a local minimum in the rectangular region $R = \{(x, y) \in \mathbb{R}^2 : |x| \le \frac{3}{2}, |y| \le \frac{3}{2}\}$ is

a) -2

b) -3

c) -7

d) 0

(GATE MA 2009)

END OF QUESTION PAPER