《概率论与数理统计》期末考试卷(B)参考答案

- 一、填空题〖每小题 5 分, 共计 25 分〗
- 1、设 A,B,C 是三个随机事件,则 A,B,C 三个事件中恰好有两个发生的事件可表示为____ $ABC \cup ABC \cup ABC$ _____。
- **2**、设随机变量 X 与 Y 相互独立,且 $X \sim N(\mu_1, \sigma_1^2)$, $Y \sim N(\mu_2, \sigma_2^2)$,则 $Z = aX + bY \sim \underline{N(a\mu_1 + b\mu_2, a^2\sigma_1^2 + b^2\sigma_2^2)} \underline{\qquad}$ (其中 a 和 b 为常数,且 $ab \neq 0$)。
- 3、已知 $X \sim N(\mu, \sigma^2)$, x_1, \dots, x_n 来自总体 X 的样本 (n>1),则 $\sum_{i=1}^n \left(\frac{x_i \mu}{\sigma}\right)^2$ 服从的分布为_____ $\chi^2(n)$ ____。
- 4、已知 $X \sim N(\mu, \sigma^2)$, x_1, \dots, x_n 来自总体 X 的样本 (n>1),其样本均值和样本方差分别记为 x 和 s^2 。 σ^2 的置信度为 $1-\alpha$ 的双侧置信区间是

$$\left[\frac{(n-1)s^2}{\chi^2_{1-\alpha/2}(n-1)}, \frac{(n-1)s^2}{\chi^2_{\alpha/2}(n-1)}\right]; 相应的所用枢轴量为 __{\underline{}} - \frac{(n-1)s^2}{\sigma^2} \sim \chi^2(n-1)$$

(注: 指明分布)。

- 5、本教程中参数估计方法主要有____点估计和区间估计____。
- 二、〖计 12 分〗有两箱零件:第一箱装 50 件,其中 20 件为一等品;第二箱装 30 件,其中 18 件为一等品。现从两箱中随意挑出一箱,然后从该箱中先后 任取两个零件(注:不放回抽样)。试求:
 - (1) 第一次取出的零件是一等品的概率;
- (2)已知第一次取出的是一等品的条件下,第二次取出的零件仍是一等品的概率。
- **解:** 记取出第i 箱的事件为 A_i ,第j次取出的是一等品的事件分别为 B_j ,j=1,2。有条件知:

$$P(A_1) = P(A_2) = 0.5$$
(1)
$$P(B_1) = P(A_1)P(B_1 \mid A_1) + P(A_2)P(B_1 \mid A_2)$$

$$= 0.5 \times \frac{C_{20}^1}{C_{50}^1} + 0.5 \times \frac{C_{18}^1}{C_{20}^1} = 0.5;$$

(2)由

三、〖计 **10** 分〗设随机变量 $X \sim N(0,1)$,试求 $Y = X^2$ 的概率密度函数 $P_Y(y)$ 。解:由 $X \sim N(0,1)$ 知: $Y = X^2$ 的取值范围为 $[0,+\infty)$ 。

 $\forall y \in R$, 有: 当 $y \le 0$ 时, $F_y(y) = 0$;

当
$$y > 0$$
 时, $F_Y(y) = P(Y = X^2 \le y) = P(-\sqrt{y} \le X \le \sqrt{y})$
= $\Phi(\sqrt{y}) - \Phi(-\sqrt{y}) = 2\Phi(\sqrt{y}) - 1$

因此,
$$F_{Y}(y) = \begin{cases} 2\Phi(\sqrt{y}) - 1 & y > 0 \\ 0 & y \leq 0 \end{cases}$$
 于是,

$$p_{Y}(y) = F'_{Y}(y) = \begin{cases} \frac{e^{-\frac{y}{2}}}{\sqrt{2\pi}}, & y > 0 \\ 0, & y \le 0 \end{cases}$$

四、 $\mathbb{C}[12\,\mathcal{G}]$ 设随机变量 X 的期望和方差都存在,分别记为 μ 和 σ^2 。

 x_1, \dots, x_n 是来自总体 X 的样本(n > 1),试求参数 μ 和 σ^2 的矩估计量,并 判断它是否是无偏估计。

解: 由题给条件,可令:
$$\begin{cases} \mu = E(X) = \overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_{i} \\ \mu^{2} + \sigma^{2} = E(X^{2}) = \overline{x^{2}} = \frac{1}{n} \sum_{i=1}^{n} x_{i}^{2} \end{cases}$$

解得:
$$\begin{cases} \widehat{\mu} = \overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_{i} \\ \widehat{\sigma^{2}} = \frac{1}{n} \sum_{i=1}^{n} x_{i}^{2} - \overline{x}^{2} \frac{1}{n} \sum_{i=1}^{n} x_{i}^{2} - \overline{x}^{2} \end{cases}$$

由于

$$E(\widehat{\mu}) = E(\overline{x}) = \frac{1}{n}E(\sum_{i=1}^{n} x_i) = \frac{1}{n} \cdot n \cdot \mu = \mu$$

$$E(\widehat{\sigma}^2) = E(\frac{1}{n}\sum_{i=1}^{n} x_i^2 - \overline{x}^2) = \frac{n-1}{n} \cdot \sigma^2 \neq \sigma^2$$

因此, $\hat{\mu} = x$ 是参数 μ 的无偏估计, $\hat{\sigma}^2$ 是参数 $\hat{\sigma}^2$ 的有偏估计。

五、〖计 10 分〗为比较两个小麦品种的产量,选择 18 块条件相似的试验田,采用相同的耕作方法做试验。现测得播种甲品种 X 的 8 块试验田的产量和播种乙品种 Y 的 10 块试验田的产量(单位:kg/亩),计算得它们的样本均值和方差分别是 x=569.38, $S_x^2=2140.55$; y=487.00,

 $S_y^2 = 3256.22$ 。假设 X 和 Y 是相互独立,且都服从正态分布。试检验:在显著性水平 $\alpha = 0.05$ 下,两个小麦品种的产量的均值是否相等?解:不妨设 $\sigma_1^2 = \sigma_2^2 = \sigma^2$

- 1) 提出假设 H_0 : $\mu_1 = \mu_2$, H_1 : $\mu_1 \neq \mu_2$;
- 2) 构造检验统计量: $t = \frac{x-y}{S_w \sqrt{\frac{1}{m} + \frac{1}{n}}} \sim t(m+n-2)$, 其中 $S_w = \sqrt{\frac{(m-1)S_x^2 + (n-1)S_y^2}{m+n-2}}$

3)对于显著水平 $\alpha=0.05$,双侧检验的拒绝域为 $F \leq F_{\alpha/2}(m-1,n-1)$ 或 $|t| \geq t_{1-\alpha/2}(m+n-2)$,此处 m=8, n=10 , $t_{0.975}(16)=2.1199$,由题意得拒绝域 为 $W=\{t \mid |t|>2.1199\}$ 。

4)由样本值 $\overline{x} = 569.38$, $\overline{y} = 487.00$, $S_x^2 = 2140.55$ 和 $S_y^2 = 3256.22$, 算得 $|t| = \frac{569.38 - 487}{S_w \sqrt{\frac{1}{8} + \frac{1}{10}}} = 3.3009$;

- 5) 因落入拒绝域,所以拒绝 H_0 ,接受 H_1 ,即认为两个小麦品种的产量的均值是不相等的。
- 六、〖计 14 分〗现收集了 16 组金钢中的碳含量x 与强度y 的数据,整理数据如下:

$$\overline{x} = 0.125$$
, $\overline{y} = 45.789$, $l_{xx} = 0.3024$, $l_{xy} = 25.522$, $l_{yy} = 2432.457$

假定 y 对 x 具有近似线性关系, 试求: (1) y 对 x 的线性回归方程; (2)

对建立的回归方程进行显著性检验($\alpha = 0.05$);(3)当 x = 0.20,计算 y 的 预测区间($\alpha = 0.05$)。

解: (1) 由
$$\hat{\beta}_1 = \frac{l_{xy}}{l_{xx}} = \frac{25.522}{0.3024} \approx 84.3981$$
,

$$\hat{\beta}_0 = \overline{y} - \hat{\beta}_1 \overline{x} = 45.789 - 84.3981 \times 0.125 = 35.2392$$

则 y 关于 x 的回归直线方程为: $\hat{y} = 35.2392 + 84.3981x$ 。

(2) 对回归方程显著性检验,经计算有:

$$S_T = l_{yy} = 2432.457$$
 , $f_T = 15$

 $S_R = \hat{\beta}_1^2 l_{xx} = 84.3981^2 \times 0.3024 = 2154.0081, \quad f_R = 1$ $S_R = S_T - S_R = 2432.457 - 2154.0081 = 278.4489, \quad f_R = 14$

由题意得拒绝域为 $F \ge F_{1-\alpha}(1,14)$,查表 $F_{0.95}(1,14) = 4.60$ 。由计算得

$$\widehat{F} = \frac{S_R}{S_e/14} = \frac{2154.0081}{278.4489/14} = 108.3004$$

由于 $\hat{F} \geq F_{1-\alpha}(1,8)$,落入拒绝域,因此,在显著水平 $\alpha = 0.05$ 下建立的回归方程是显著的。

(3) 当x = 0.2 时, $\hat{y} = 52.1188$ 。在 $\alpha = 0.05$ 时, $t_{0.975}(14) = 2.1448$,

$$\hat{\sigma} = \sqrt{\frac{278.4489}{14}} = 4.4597$$
,则

$$\delta = 4.4597 \times 2.1448 \times \sqrt{1 + \frac{1}{16} + \frac{(0.2 - 0.125)^2}{0.3024}} = 9.9455$$

从而 \hat{y} 的置信度为 0.95 的预测区间

$$52.1188 \pm 9.9455 = (42.1733, 62.0643)$$

七、〖计 12 分〗设随机变量 $X \sim Ga(\alpha, \lambda)$,其特征函数为

$$\varphi_X(t) = (1 - it/\lambda)^{-\alpha}$$

试求: (1) 利用特征函数计算E(X)和Var(X);

(2) 利用特征函数证明: Γ -分布对参数 α 具有可加性。

证明: (1) 由 $\varphi_X(t) = (1 - it/\lambda)^{-\alpha}$,则

$$\varphi_X'(t) = \frac{\alpha i}{\lambda} (1 - it/\lambda)^{-\alpha - 1}, \quad \varphi_X''(t) = -\frac{\alpha(\alpha + 1)}{\lambda^2} (1 - it/\lambda)^{-\alpha - 2}$$

于是,有

$$E(X) = \frac{\varphi_X'(0)}{i} = \frac{\alpha}{\lambda}, \quad D(X) = -\varphi_X''(0) + [\varphi_X'(0)]^2 = \frac{\alpha}{\lambda^2}$$

(2) 假设 X_1 ~ $Ga(\alpha_1,\lambda)$, X_2 ~ $Ga(\alpha_2,\lambda)$,且 X_1 与 X_2 独立。由特征函数的性质知:

$$\varphi_{X_1+X_2}(t) = \varphi_{X_1}(t)\varphi_{X_2}(t) = (1-it/\lambda)^{-\alpha_1} \times (1-it/\lambda)^{-\alpha_2} = (1-it/\lambda)^{-(\alpha_1+\alpha_2)}$$
 由随机变量的特征函数唯一性知: $X_1 + X_2 \sim Ga(\alpha_1 + \alpha_2, \lambda)$,即结论成立。

八、〖计5分〗人的大脑,表面是一层灰色的褶皱状"皮质",里面充满了"白

质"。不同的皮质位置i,执行不同的功能。白质的功能是传递信息,使得皮质的任意两个位置有可能相互交换信息。如今,运用核磁共振技术,可以实时检测大脑皮质的活性变化。有人测量了大脑皮层活跃程度的熵S(其定义为 $S=-\sum_i p_i \ln p_i$,其中 p_i 表示大脑皮层的某位置i处于活跃状态的概率。

值S越大,则表明大脑运转的随机性越强)与创造性思维能力 Creativity 的关系,结果如下图所示。

试问: S 与 Creativity 的关系是正相关还是负相关?请说明理由或列出研究计划。

答:正相关。具体回答这里略去。