ML-PREP Training Session PROGRAM

Mark Asch - ML-PREP

2025

Outline

Day	Topic	Links
1	Machine Learning	Lectures
		Examples
2	Geostatistics	Lectures
		Examples
3	Wave propagation	Lectures
		Examples
4	Research projects	Directory

1. PLEASE CLICK ON THE LINKS

- 2. The mornings will be dedicated to lectures.
- 3. The afternoons will concentrate on practical examples and exercises.

DAY 1: MACHINE LEARNING

Advanced ML

- Pre-requisites
 - ⇒ Basics of Machine Learning: lecture notes and examples are here.
- Theory:
 - ⇒ how to choose a method?
 - \Rightarrow cross-validation and tuning
 - ⇒ evaluation and performance metrics
 - ⇒ causality and correlation
 - ⇒ features and model selection
 - ⇒ PINN
- Examples and Exercises:

DAY 2: GEOSTATISTICS and MACHINE LEARNING

Geostatistics & ML

- Pre-requisites:
 - ⇒ Basic course lecture notes
- Theory:
 - ⇒ Geostatistics
 - → probability and stochastic processes
 - → variograms
 - \rightarrow kriging
 - ⇒ Geospatial data analysis and machine learning
 - → model evaluation
 - → spatial cross-validation
- Examples and Exercises

DAY 3: WAVE PROPAGATION

Wave Propagation

- Pre-requisites
- Theory:
 - ⇒ basics of seismic wave propagation: harmonic waves, acoustic waves, seismic waves
 - ⇒ finite difference method
 - ⇒ finite element method
 - \Rightarrow spectral element method
- Examples and Exercises

DAY 4: RESEARCH PROJECTS

Propositions

- 1. Landslide inventory using ensemble, tree-based machine learning.
- 2. Extensive machine learning study of parameters in the Factor of Safety formula of Newmark.
- 3. Coupling seismic wave propagation with landslide triggering (Newmark equation).

TRAINING OVERVIEW

Where do we begin?

- Different starting points and prior experience:
 - ⇒ mathematics, statistics, probability theory
 - ⇒ data science and machine learning
 - \Rightarrow GIS and geospatial data

Where do we arrive?

- Unique end point that ensures everyone is at the same level of knowledge of:
 - ⇒ machine learning,
 - ⇒ geospatial data analysis,
 - ⇒ basic seismic wave propagation.

How do we get there?

- Presentation of tools in a big toolbox.
- Understanding why, and not just how!
- Ethical, reproducible and responsible science...

ML for Science

- Motivation: see initial lecture.
- Objective: find the mapping (function, pattern) f that relates outcomes Y (observations, measurements) to explanatory variables (inputs, features, causes) X, such that

$$Y = f(X) + \epsilon,$$

where ϵ represents the intrinsic uncertainty (noise) of the underlying phenomenon.

ullet In practice, we will seek an approximation \hat{f} to f such that the resulting

$$\hat{Y} = \hat{f}(X)$$

is as close as possible to Y.

This is done by minimizing a suitable loss function

$$\mathcal{L} = \left\| Y - \hat{Y} \right\|.$$

The PTP method

- PTP = Please the Professor... (or the Boss)
- In Machine Learning we are strongly tempted to do our best by minimizing the model error:
 - ⇒ RMSE (root mean-squared error) for regression problems,
 - ⇒ CEE (cross-entropy error) for classification problems.
- Recall the XKCD cartoon: "stir the pile until the answer looks right"
 - → This is NOT reproducible, NOT responsible, NOT ethical.

What goes wrong here?

• The bias-variance tradeoff:

- Option 1: fit the noise \Rightarrow high accuracy (low bias), but large uncertainty (high variance)—overfitting.
- Option 2: compromise ⇒ lower accuracy (higher bias), but lower uncertainty (lower variance)

• Double-descent phenomenon (for DNNs):

What is the objective?

- The principal objective is good predictive performance, NOT good training accuracy.
- Mathematically, recall the trained ML model for Y = f(X), f unknown,

$$\hat{f} \colon X \to \hat{Y}$$

- Prediction: for $(X^*,Y^*) \notin (X,Y),$ how accurate is $\hat{f}(X^*)$?
- In other words, if

$$\hat{f} \colon X^* \to \hat{\hat{Y}},$$

then how big is the error

$$\left\|\hat{\hat{Y}} - Y^*\right\|?$$

How do we avoid the trap?

- By definition, unseen data has not been seen in the training...
- Best effort in this case is to use
 - ⇒ nested cross-validation for tuning and testing
 - ⇒ repeated cross-validation for training and testing
- Then to report confidence intervals, taking uncertainty into account—not just the "best" result (see PTP metod above).

SUMO

EDA

SciML & PINN

WARNING: ML is not everything!

- ML depends on data availability and data quality without these we cannot obtain good models and reliable predictions.
- ML should be coupled with classical modeling approaches
 - ⇒ statistics
 - ⇒ differential equations
 - ⇒ empirical knowledge.
- ML (IMHO) will never replace human researchers, and we should not be fooled by apparent fluency as exhibited by LLMs, where we forgo explainability, transparency and reproducibility.

References

- G. James, D. Witten, T. Hastie, R. Tibshirani, J. Taylor. An Introduction to Statistical Learning. Springer. 2023. ISL Site
- 2. C. Wikle, A. Zammit-Mangion, N. Cressie. *Spatio-Temporal Statistics with R.* CRC Press. 2019. https://spacetimewithr.org/
- 3. H.P. Langtangen. Finite Difference Computing with PDEs: A Modern Software Approach. Springer Cham. 2017. Download pdf
- 4. H. Igel. Computational Seismology: A Practical Introduction. Oxford University Press, 2017. website