

Applications linéaires

1 Définition

Exercice 1

Déterminer si les applications f_i suivantes (de E_i dans F_i) sont linéaires :

$$f_{1}:(x,y) \in \mathbb{R}^{2} \mapsto (2x+y,x-y) \in \mathbb{R}^{2}, f_{2}:(x,y,z) \in \mathbb{R}^{3} \mapsto (xy,x,y) \in \mathbb{R}^{3}$$

$$f_{3}:(x,y,z) \in \mathbb{R}^{3} \mapsto (2x+y+z,y-z,x+y) \in \mathbb{R}^{3}$$

$$f_{4}:P \in \mathbb{R}[X] \mapsto P' \in \mathbb{R}[X], f_{5}:P \in \mathbb{R}_{3}[X] \mapsto P' \in \mathbb{R}_{3}[X]$$

$$f_{6}:P \in \mathbb{R}_{3}[X] \mapsto (P(-1),P(0),P(1)) \in \mathbb{R}^{3}, f_{7}:P \in \mathbb{R}[X] \mapsto P-(X-2)P' \in \mathbb{R}[X].$$

Indication ▼

Correction ▼

[000929]

Exercice 2

Soit E un espace vectoriel de dimension n et φ une application linéaire de E dans lui-même telle que $\varphi^n = 0$ et $\varphi^{n-1} \neq 0$. Soit $x \in E$ tel que $\varphi^{n-1}(x) \neq 0$. Montrer que la famille $\{x, \dots, \varphi^{n-1}(x)\}$ est une base de E.

Indication ▼

Correction ▼

[000930]

2 Image et noyau

Exercice 3

 E_1 et E_2 étant deux sous-espaces vectoriels de dimensions finies d'un espace vectoriel E, on définit l'application $f: E_1 \times E_2 \to E$ par $f(x_1, x_2) = x_1 + x_2$.

- 1. Montrer que f est linéaire.
- 2. Déterminer le noyau et l'image de f.
- 3. Appliquer le théorème du rang.

Indication ▼

Correction ▼

[000934]

Exercice 4

Soient E un espace vectoriel et φ une application linéaire de E dans E. On suppose que Ker $(\varphi) \cap \text{Im } (\varphi) = \{0\}$. Montrer que, si $x \notin \text{Ker } (\varphi)$ alors, pour tout $n \in \mathbb{N} : \varphi^n(x) \neq 0$.

Correction ▼

[000941]

Exercice 5

Soient E un espace vectoriel de dimension n et f une application linéaire de E dans lui-même. Montrer que les deux assertions qui suivent sont équivalentes :

1.
$$Ker(f) = im(f)$$
.

2.
$$f^2 = 0$$
 et $n = 2 \operatorname{rg}(f)$.

Correction ▼ [000943]

Exercice 6

Soient f et g deux endomorphismes de E tels que $f \circ g = g \circ f$. Montrer que $\ker(f)$ et $\operatorname{Im}(f)$ sont stables par g.

Indication \bigvee Correction \bigvee [000947]

Exercice 7

Soit $f \in \mathcal{L}(E)$. Montrer que $\ker(f) \cap \operatorname{Im}(f) = f(\ker(f \circ f))$.

Indication ▼ Correction ▼

[000949]

Exercice 8

Donner des exemples d'applications linéaires de \mathbb{R}^2 dans \mathbb{R}^2 vérifiant :

- 1. Ker(f) = Im(f).
- 2. Ker(f) inclus strictement dans Im(f).
- 3. Im(f) inclus strictement dans Ker(f).

Correction ▼ [000951]

3 Injectivité, surjectivité, isomorphie

Exercice 9

Soit E un espace vectoriel de dimension 3, $\{e_1, e_2, e_3\}$ une base de E, et λ un paramètre réel.

Démontrer que la donnée de $\begin{cases} \phi(e_1) &= e_1 + e_2 \\ \phi(e_2) &= e_1 - e_2 \\ \phi(e_3) &= e_1 + \lambda e_3 \end{cases}$ définit une application linéaire ϕ de E dans E. Écrire le

transformé du vecteur $x = \alpha_1 e_1 + \alpha_2 e_2 + \alpha_3 e_3$. Comment choisir λ pour que φ soit injective? surjective?

Correction ▼ [000954]

Exercice 10

1. Dire si les applications f_i , $1 \le i \le 6$, sont linéaires

$$f_{1}: (x,y) \in \mathbb{R}^{2} \mapsto (2x+y,ax-y) \in \mathbb{R}^{2},$$

$$f_{2}: (x,y,z) \in \mathbb{R}^{3} \mapsto (xy,ax,y) \in \mathbb{R}^{3},$$

$$f_{3}: P \in \mathbb{R}[X] \mapsto aP' + P \in \mathbb{R}[X],$$

$$f_{4}: P \in \mathbb{R}_{3}[X] \mapsto P' \in \mathbb{R}_{2}[X],$$

$$f_{5}: P \in \mathbb{R}_{3}[X] \mapsto (P(-1),P(0),P(1)) \in \mathbb{R}^{3},$$

$$f_{6}: P \in \mathbb{R}[X] \mapsto P - (X-2)P' \in \mathbb{R}[X].$$

2. Pour les applications linéaires trouvées ci-dessus, déterminer $\ker(f_i)$ et $\operatorname{Im}(f_i)$, en déduire si f_i est injective, surjective, bijective.

Correction ▼ [000956]

Exercice 11

Soient $E = \mathbb{C}_n[X]$ et A et B deux polynômes à coefficients complexes de degré (n+1). On considère l'application f qui à tout polynôme P de E, associe le reste de la division euclidienne de AP par B.

1. Montrer que f est un endomorphisme de E.

2. Montrer l'équivalence

f est bijective \iff A et B sont premiers entre eux.

Correction ▼ [000959]

Exercice 12

Soient E et F deux espaces vectoriels de dimension finie et φ une application linéaire de E dans F. Montrer que φ est un isomorphisme si et seulement si l'image par φ de toute base de E est une base de F.

Correction ▼ [000963]

4 Morphismes particuliers

Exercice 13

Soit E l'espace vectoriel des applications de \mathbb{R} dans \mathbb{R} , P le sous-espace des fonctions paires et I le sous-espace des fonctions impaires. Monter que $E = P \bigoplus I$. Donner l'expression du projecteur sur P de direction I.

Indication ▼ Correction ▼ [000974]

Exercice 14

Soit $E = \mathbb{R}_n[X]$ l'espace vectoriel des polynômes de degré $\leq n$, et $f: E \to E$ définie par :

$$f(P) = P + (1 - X)P'$$
.

Montrer que $f \in L(E)$, donner une base de Im f et de Ker(f).

Correction ▼ [000976]

Indication pour l'exercice 1 ▲

Une seule application n'est pas linéaire.

Indication pour l'exercice 2 ▲

Prendre une combinaison linéaire nulle et l'évaluer par φ^{n-1} .

Indication pour l'exercice 3 ▲

Faire un dessin de l'image et du noyau pour $f: \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R}$.

Indication pour l'exercice 6 ▲

Dire que Ker(f) est stable par g signifie que $g(Ker f) \subset Ker f$.

Indication pour l'exercice 7 ▲

Montrer la double inclusion.

Indication pour l'exercice 13 ▲

Pour une fonction f on peut écrire

$$f(x) = \frac{f(x) + f(-x)}{2} + \frac{f(x) - f(-x)}{2}.$$

Correction de l'exercice 1 A

- 1. $f_1, f_3, f_4, f_5, f_6, f_7$ sont linéaires.
- 2. f_2 n'est pas linéaire, en effet par exemple f(1,1,0) + f(1,1,0) n'est pas égal à f(2,2,0).

Correction de l'exercice 2 A

Montrons que la famille $\{x,\ldots,\varphi^{n-1}(x)\}$ est libre. Soient $\lambda_0,\ldots,\lambda_{n-1}\in\mathbb{R}$ tels que $\lambda_0x+\cdots+\lambda_{n-1}\varphi^{n-1}(x)=0$. Alors : $\varphi^{n-1}(\lambda_0x+\cdots+\lambda_{n-1}\varphi^{n-1}(x))=0$. Mais comme de plus $\varphi^n=0$, on a l'égalité $\varphi^{n-1}(\lambda_0x+\cdots+\lambda_{n-1}\varphi^{n-1}(x))=\varphi^{n-1}(\lambda_0x)+\varphi^n(\lambda_1x+\cdots+\lambda_{n-1}\varphi^{n-2}(x))=\lambda_0\varphi^{n-1}(x)$. Comme $\varphi^{n-1}(x)\neq 0$ on obtient $\lambda_0=0$.

En calculant ensuite $\varphi^{n-2}(\lambda_1\varphi(x)+\cdots+\lambda_{n-1}\varphi^{n-1}(x))$ on obtient $\lambda_1=0$ puis, de proche en proche, $\lambda_{n-1}=\cdots=\lambda_0=0$. La famille $\{x,\ldots,\varphi^{n-1}(x)\}$ est donc libre. Elle compte n vecteurs. Comme dim (E)=n elle est libre maximale et forme donc une base de E.

Correction de l'exercice 3 ▲

- 1. ...
- 2. Par définition de f et ce qu'est la somme de deux sous-espaces vectoriels, l'image est

$$\text{Im } f = E_1 + E_2.$$

Pour le noyau:

$$\operatorname{Ker} f = \{(x_1, x_2) \mid f(x_1, x_2) = 0\}$$
$$= \{(x_1, x_2) \mid x_1 + x_2 = 0\}$$

Mais on peut aller un peu plus loin. En effet un élément $(x_1, x_2) \in \text{Ker } f$, vérifie $x_1 \in E_1$, $x_2 \in E_2$ et $x_1 = -x_2$. Donc $x_1 \in E_2$. Donc $x_1 \in E_1 \cap E_2$. Réciproquement si $x \in E_1 \cap E_2$, alors $(x, -x) \in \text{Ker } f$. Donc

$$\text{Ker } f = \{(x, -x) \mid x \in E_1 \cap E_2\}.$$

De plus par l'application $x \mapsto (x, -x)$, Ker f est isomorphe à $E_1 \cap E_2$.

3. Le théorème du rang s'écrit :

$$\dim \operatorname{Ker} f + \dim \operatorname{Im} f = \dim(E_1 \times E_2).$$

Compte tenu de l'isomorphisme entre Ker f et $E_1 \cap E_2$ on obtient :

$$\dim(E_1 \cap E_2) + \dim(E_1 + E_2) = \dim(E_1 \times E_2).$$

Mais $\dim(E_1 \times E_2) = \dim E_1 + \dim E_2$, donc on retrouve ce que l'on appelle quelques fois le théorème des quatre dimensions :

$$\dim(E_1 + E_2) = \dim E_1 + \dim E_2 - \dim(E_1 \cap E_2).$$

Correction de l'exercice 4 A

Montrons ceci par récurence : Pour n=1, l'assertion est triviale : $x \notin \ker \varphi \Rightarrow \varphi(x) \neq 0$. Supposons que si $x \notin \ker \varphi$ alors $\varphi^{n-1}(x) \neq 0$, $(n \geqslant 2)$. Fixons $x \notin \ker \varphi$, Alors par hypothèses de récurrence $\varphi^{n-1}(x) \neq 0$, mais $\varphi^{n-1}(x) = \varphi(\varphi^{n-2}(x)) \in \operatorname{Im} \varphi$ donc $\varphi^{n-1}(x) \notin \ker \varphi$ grâce à l'hypothèse sur φ . Ainsi $\varphi(\varphi^{n-1}(x)) \neq 0$, soit $\varphi^n(x) \neq 0$. Ce qui termine la récurrence.

Correction de l'exercice 5

- (i) \Rightarrow (ii) Supposons $\ker f = \operatorname{Im} f$. Soit $x \in E$, alors $f(x) \in \operatorname{Im} f$ donc $f(x) \in \ker f$, cela entraine f(f(x)) = 0; donc $f^2 = 0$. De plus d'après la formule du rang dim $\ker f + \operatorname{rg} f = n$, mais dim $\ker f = \dim \operatorname{Im} f = \operatorname{rg} f$, ainsi $2\operatorname{rg} f = n$.
- (ii) \Rightarrow (i) Si $f^2 = 0$ alors Im $f \subset \ker f$ car pour $y \in \operatorname{Im} f$ il existe x tel que y = f(x) et $f(y) = f^2(x) = 0$. De plus si $2 \operatorname{rg} f = n$ alors par la formule Du rang dim $\ker f = \operatorname{rg} f$ c'est-à-dire dim $\ker f = \dim \operatorname{Im} f$. Nous savons donc que Im f est inclus dans $\ker f$ mais ces espaces sont de même de dimension donc sont égaux : $\ker f = \operatorname{Im} f$.

Correction de l'exercice 6 ▲

On va montrer $g(\text{Ker } f) \subset \text{Ker } f$. Soit $y \in g(\text{Ker } f)$. Il existe $x \in \text{Ker } f$ tel que y = g(x). Montrons $y \in \text{Ker } f$:

$$f(y) = f(g(x)) = f \circ g(x) = g \circ f(x) = g(0) = 0.$$

On fait un raisonnement similaire pour l'image.

Correction de l'exercice 7 A

Pour montrer l'égalité $\ker f \cap \operatorname{Im} f = f(\ker f^2)$, nous montrons la double inclusion.

Soit $y \in \ker f \cap \operatorname{Im} f$, alors f(y) = 0 et il existe x tel que y = f(x). De plus $f^2(x) = f(f(x)) = 0$ donc $x \in \ker f^2$. Comme y = f(x) alors $y \in f(\ker f^2)$. Donc $\ker f \cap \operatorname{Im} f \subset f(\ker f^2)$.

Pour l'autre inclusion, nous avons déjà que $f(\ker f^2) \subset f(E) = \operatorname{Im} f$. De plus $f(\ker f^2) \subset \ker f$, car si $y \in f(\ker f^2)$ il existe $x \in \ker f^2$ tel que y = f(x), et $f^2(x) = 0$ implique f(y) = 0 donc $y \in \ker f$. Par conséquent $f(\ker f^2) \subset \ker f \cap \operatorname{Im} f$.

Correction de l'exercice 8 A

- 1. Par exemple f(x,y) = (0,x) alors $\operatorname{Ker} f = \operatorname{Im} f = \{0\} \times \mathbb{R} = \{(0,y) \mid y \in \mathbb{R}\}.$
- 2. Par exemple l'identité : f(x,y) = (x,y). En fait un petit exercice est de montrer que les seules applications possibles sont les applications bijectives (c'est très particulier aux applications de \mathbb{R}^2 dans \mathbb{R}^2).
- 3. L'application nulle : f(x,y) = (0,0). Exercice : c'est la seule possible !

Correction de l'exercice 9 A

1. Comment est définie ϕ à partir de la définition sur les éléments de la base ? Pour $x \in E$ alors x s'écrit dans la base $\{e_1, e_2, e_3\}$, $x = \alpha_1 e_1 + \alpha_2 e_2 + \alpha_3 e_3$. Et ϕ est définie sur E par la formule

$$\phi(x) = \alpha_1 \phi(e_1) + \alpha_2 \phi(e_2) + \alpha_3 \phi(e_3).$$

Soit ici:

$$\phi(x) = (\alpha_1 + \alpha_2 + \alpha_3)e_1 + (\alpha_1 - \alpha_2) + \lambda \alpha_3 e_3.$$

Cette définition rend automatiquement ϕ linéaire (vérifiez-le si vous n'êtes pas convaincus!).

2. On cherche à savoir si ϕ est injective. Soit $x \in E$ tel que $\phi(x) = 0$ donc $(\alpha_1 + \alpha_2 + \alpha_3)e_1 + (\alpha_1 - \alpha_2) + \lambda \alpha_3 e_3 = 0$. Comme $\{e_1, e_2, e_3\}$ est une base alors tous les coefficients sont nuls :

$$\alpha_1 + \alpha_2 + \alpha_3 = 0$$
, $\alpha_1 - \alpha_2 = 0$, $\lambda \alpha_3 = 0$.

Si $\lambda \neq 0$ alors en resolvant le système on obtient $\alpha_1 = 0$, $\alpha_2 = 0$, $\alpha_3 = 0$. Donc x = 0 et ϕ est injective. Si $\lambda = 0$, alors ϕ n'est pas injective, en resolvant le même système on obtient des solutions non triviales, par exemple $\alpha_1 = 1$, $\alpha_2 = 1$, $\alpha_3 = -2$. Donc pour $x = e_1 + e_2 - 2e_3$ on obtient $\phi(x) = 0$.

3. On peut soit faire des calcul soit appliquer la formule du rang. Examinons cette deuxième méthode. ϕ est surjective si et seulement si la dimension de $\operatorname{Im} \phi$ est égal à la dimension de l'espace d'arrivée (ici E de dimension 3). Or on a une formule pour dim $\operatorname{Im} \phi$:

$$\dim \operatorname{Ker} \phi + \dim \operatorname{Im} \phi = \dim E.$$

Si $\lambda \neq 0$, ϕ est injective donc Ker $\phi = \{0\}$ est de dimension 0. Donc dim Im $\phi = 3$ et ϕ est surjective.

Si $\lambda = 0$ alors ϕ n'est pas injective donc Ker ϕ est de dimension au moins 1 (en fait 1 exactement), donc dim Im $\phi \leq 2$. Donc ϕ n'est pas surjective.

On remarque que ϕ est injective si et seulement si elle est surjective. Ce qui est un résultat du cours pour les applications ayant l'espace de départ et d'arrivée de même dimension (finie).

Correction de l'exercice 10 ▲

- 1. f_1 est linéaire. Elle est injective (resp. surjective, resp. bijective) si et seulement si $a \neq -2$.
- 2. f_2 n'est pas linéaire.
- 3. f_3 est linéaire. Elle est injective. Elle est surjective ssi a = 0 (si $a \ne 0$ alors on ne peut pas atteindre la polynôme constant égale à 1 par exemple).
- 4. f_4 est linéaire. Elle n'est pas injective ($f_4(1) = 0$) et est surjective.
- 5. f_5 est linéaire. f_5 est surjective mais pas injective.
- 6. f_6 est linéaire. f_6 n'est pas injective ($f_6(X-2)=0$). f_6 est surjective.

Correction de l'exercice 11 ▲

1. Soit $P \in E$ et $\lambda \in \mathbb{C}$, alors la divison euclidienne de AP par B s'écrit AP = Q.B + R, donc en multipliant par λ on obtient : $A.(\lambda P) = (\lambda Q)B + \lambda R$. ce qui est la division euclidienne de $A.(\lambda P)$ par B, donc si f(P) = R alors $f(\lambda P) = \lambda R$. Donc $f(\lambda P) = \lambda f(P)$.

Soient $P, P' \in E$. On écrit les division euclidienne :

$$AP = Q.B + R$$
, $AP' = Q'.B + R'$.

En additionnant:

$$A(P+P') = (Q+Q')B + (R+R')$$

qui est la division euclidienne de A(P+P') par B. Donc si f(P)=R, f(P')=R' alors f(P+P')=R+R'=f(P)+f(P').

Donc f est linéaire.

- 2. Sens \Rightarrow . Supposons f est bijective, donc en particulier f est surjective, en particulier il existe $P \in E$ tel que f(P) = 1 (1 est le polynôme constant égale à 1). La division euclidienne est donc AP = BQ + 1, autrement dit AP BQ = 1. Par le théorème de Bézout, A et B sont premier entre eux.
- 3. Sens \Leftarrow . Supposons A, B premiers entre eux. Montrons que f est injective. Soit $P \in E$ tel que f(P) = 0. Donc la division euclidienne s'écrit : AP = BQ + 0. Donc B divise AP. Comme A et B sont premiers entre eux, par le lemme de Gauss, alors B divise P. Or B est de degré n+1 et P de degré moins que n, donc la seule solution est P = 0. Donc f est injective. Comme $f: E \longrightarrow E$ et E est de dimension finie, alors E0 est bijective.

Correction de l'exercice 12 A

- 1. Montrons que si φ est un isomorphisme, l'image de toute base de E est une base de F : soit $\mathscr{B} = \{e_1, \ldots, e_n\}$ une base de E et nommons \mathscr{B}' la famille $\{\varphi(e_1), \ldots, \varphi(e_n)\}$.
 - (a) \mathscr{B}' est libre. Soient en effet $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$ tels que $\lambda_1 \varphi(e_1) + \cdots + \lambda_n \varphi(e_n) = 0$. Alors $\varphi(\lambda_1 e_1 + \cdots + \lambda_n e_n) = 0$ donc, comme φ est injective, $\lambda_1 e_1 + \cdots + \lambda_n e_n = 0$ puis, comme \mathscr{B} est libre, $\lambda_1 = \cdots = \lambda_n = 0$.
 - (b) \mathscr{B}' est génératrice. Soit $y \in F$. Comme φ est surjective, il existe $x \in E$ tel que $y = \varphi(x)$. Comme \mathscr{B} est génératrice, on peut choisir $\lambda_1, \dots, \lambda_n \in \mathbb{R}$ tels que $x = \lambda_1 e_1 + \dots + \lambda_n e_n$. Alors $y = \lambda_1 \varphi(e_1) + \dots + \lambda_n \varphi(e_n)$.

- 2. Supposons que l'image par φ de toute base de E soit une base F. Soient $\mathscr{B} = \{e_1, \dots, e_n\}$ une base de E et \mathscr{B}' la base $\{\varphi(e_1), \dots, \varphi(e_n)\}$.
 - (a) Im (φ) contient \mathscr{B}' qui est une partie génératrice de F. Donc φ est surjective.
 - (b) Soit maintenant $x \in E$ tel que $\varphi(x) = 0$. Comme \mathscr{B} est une base, il existe $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$ tels que $x = \lambda_1 e_1 + \cdots + \lambda_n e_n$. Alors $\varphi(x) = 0 = \lambda_1 \varphi(e_1) + \cdots + \lambda_n \varphi(e_n)$ donc puisque \mathscr{B}' est libre : $\lambda_1 = \cdots = \lambda_n = 0$. En conséquence si $\varphi(x) = 0$ alors x = 0: φ est injective.

Correction de l'exercice 13 ▲

1. La seule fonction qui est à la fois paire et impaire est la fonction nulle : $P \cap I = \{0\}$. Montrons qu'une fonction $f : \mathbb{R} \longrightarrow \mathbb{R}$ se décompose en une fonction paire et une fonction impaire. En effet :

$$f(x) = \frac{f(x) + f(-x)}{2} + \frac{f(x) - f(-x)}{2}.$$

La fonction $x \mapsto \frac{f(x) + f(-x)}{2}$ est paire (le vérifier!), la fonction $x \mapsto \frac{f(x) - f(-x)}{2}$ est impaire. Donc P + I = E. Bilan : $E = P \oplus I$.

2. Le projecteur sur P de direction I est l'application $\pi: E \longrightarrow E$ qui à f associe la fonction $x \mapsto \frac{f(x) + f(-x)}{2}$. Nous avons bien $\pi \circ \pi = \pi$, $\pi(f) \in P$ et $\operatorname{Ker} \pi = I$.

Correction de l'exercice 14

- 1. f est bien linéaire...
- 2. Soit P tel que f(P) = 0. Alors P vérifie l'équation différentielle

$$P + (1 - X)P' = 0.$$

Dont la solution est $P = \lambda(X - 1)$, $\lambda \in \mathbb{R}$. Donc Ker f est de dimension 1 et une base est donnée par un seul vecteur : X - 1.

3. Par le théorème du rang la dimension de l'image est :

$$\dim \operatorname{Im} f = \dim \mathbb{R}_n[X] - \dim \operatorname{Ker} f = (n+1) - 1 = n.$$

Il faut donc trouver n vecteurs linéairement indépendants dans Im f. Évaluons $f(X^k)$, alors

$$f(X^k) = (1-k)X^k + kX^{k-1}$$
.

Cela donne $f(1)=1, f(X)=1, f(X^2)=-X^2+2X,...$ on remarque que pour $k=2,...n, f(X^k)$ est de degré k sans termes constant. Donc l'ensemble

$$\{f(X), f(X^2), \dots, f(X^n)\}\$$

est une famille de n vecteurs, appartenant à ${\rm Im}\, f$, et libre (car les degrés sont distincts). Donc ils forment une base de ${\rm Im}\, f$.