DATOS MASIVOS I

UNIDAD II MODELO DE MAPEO Y REDUCCIÓN

EXTENSIONES DE MAP – REDUCE

Entorno de Trabajo

Los entornos de trabajo de mapeo y reducción se encargan de:

Dividir los datos de entrada.

 Planificar la ejecución de los programas en todo el clúster.

Entorno de Trabajo

Los entornos de trabajo de mapeo y reducción se encargan de:

- Agrupar por llaves.
- Manejo de fallas.
- Administrar la comunicación entre máquinas.

Map – Reduce en Paralelo

Imagen tomada de J. Leskovec, A. Rajaraman, J. Ullman.

Nodo Maestro

Se encarga de la coordinación de las actividades en el clúster de cómputo.

 Estatus de las tareas / nodos: esperando, en progreso, completada.

Planifica las tareas de mapeo y reducción.

Nodo Maestro

Se encarga de la coordinación de las actividades en el clúster de cómputo.

- Cuando una tarea de mapeo está completa, el nodo maestro envía la localización y tamaño de los archivos intermedios a los nodos de reducción.
- Para detectar fallas, el nodo maestro periódicamente se comunica con demás nodos.

Flujo de Trabajo del Modelo Map – Reduce

 Las entradas y salidas son almacenadas en el sistema de archivo distribuido (DFS).

 Las tareas de mapeo son planificadas en nodos cercanos a la localización física de los datos.

Flujo de Trabajo del Modelo Map – Reduce

 Los resultados intermedios son almacenados en sistemas locales de archivos (nodos de mapeo y reducción). Con el objetivo de:

- Evitar tráfico en la red y,
- Sobrecargar de datos.

Flujo de Trabajo del Modelo Map – Reduce

 Las salidas son frecuentemente la entrada hacia otra tarea de mapeo.

Cuando falla el nodo de mapeo:

- Las tareas de mapeo completadas o en progreso se vuelven a programar para su ejecución.
- Los nodos de reducción son notificados indicando que la tarea de mapeo fue reprogramada.

Manejo de Fallas

Cuando falla el nodo de reducción.

• Únicamente las tareas en progreso son reprogramadas hacia otro nodo.

•

Manejo de Fallas

Cuando falla el nodo de maestro.

 Todas las tareas de mapeo y reducción son abortadas / canceladas.

El cliente es notificado.

¿Cuántas Tareas de Map – Reduce se deben Planificar?

Objetivo: identificar M (número de tareas de mapeo) y R (número de tareas de reducción) que deben ser planificadas.

• El número de tareas *M* usualmente es más grande que el número de nodos en el clúster.

¿Cuántas Tareas de Map – Reduce se deben Planificar?

 Mejora el balanceo de cargas y acelera la recuperación en caso de fallas.

• Usualmente R es más pequeño que M.

• El archivo de salida se reparte en los R nodos.

o Dificultad para programar directamente.

 Muchos algoritmos no se describen fácilmente con funciones de mapeo y reducción.

Problemas con el Modelo Map – Reduce

- o Cuellos de botella.
 - Para preservar la persistencia de los datos, el tiempo que se toma en dividir y almacenar los datos es considerable.

• Incurre en gastos considerables debido a la replicación de datos, E/S de disco y serialización.

Extensiones

Basadas en un sistema de archivos distribuido.

 Procesamiento se realiza de forma distribuida con muchas tareas repetitivas que son instancias de funciones definidas por el usuario.

• Incorporan estrategias de manejo de fallas.

Sistemas de Flujo de Trabajo

 El cómputo se expresa como un grafo acíclico que representa el flujo de trabajo de un conjunto de funciones.

- Que un vértice α se conecte a otro vértice b, representa que la salida de la función α es la entrada de la función b.
- El modelo Map Reduce es un sistema de flujo de trabajo con dos pasos.

Sistemas de Flujo de Trabajo

 Los datos fluyen de una función a otra y cada función se puede realizar en múltiples tareas con distintas partes de los datos de entrada.

 O Un nodo maestro se encarga de dividir las tareas en distintos nodos y resolver posibles fallas.

Apache SPARK extiende el modelo de programación Map – Reduce.

Extensión del modelo Map – Reduce.

- Se basa en un sistema de operaciones (transformaciones acciones) realizadas sobre colecciones de datos distribuidos (RDD).
- Actualmente, es el sistema más popular de flujo de datos.

Más rápido.

• Evita guardar resultados intermedios en disco.

• Activa la caché de datos para consultas repetitivas (ejemplo, para aprendizaje máquina).

Apache SPARK

 Presenta funciones extras (más allá de Map – Reduce).

Compatible con Apache Hadoop.

Es código abierto (Apache Foundation).

Apache SPARK

- Soporta Java, Scala y Python.
- Principal contribución: Conjunto de datos distribuidos y resilentes (RDD).
- Integra *APIs* de alto nivel.
 - En las versiones más recientes de Spark incluye Dataframes y Datasets.
 - Ofrece *APIs* para agregar datos, lo cual permite soportar SQL.

Conjunto de Datos (Dataset)

Puede contener cualquier tipo de información.

Conjunto de Datos (Dataset)

Puede contener cualquier tipo de información.

Extraído de ://www.educba.com/

Resilent Distributed Dataset (RDD)

Archivo de objetos de un tipo.

• Estructura principal de Spark.

• Están particionados sobre los nodos del clúster.

Resilent Distributed Dataset (RDD)

• Son inmutables: cuando transformamos un *RDD*, realmente estamos creado uno nuevo.

Tolerante a fallos.

Pueden ser creados desde Hadoop.

Existen dos formas comunes para crear un RDD:

A través del objeto SparkContext.

A partir de conjuntos de datos externos.

El método *SparkContext.parallelize* nos permite crear un *RDD* a partir de una lista o tupla:

lista = ['en', 'un', 'lugar', 'de', 'la', 'mancha'] listardd = sc.parallelize(lista, 4)

• **sc** es una instancia de la clase SpαrkContext.

Creando un RDD usando SparkContext

 La lista se pasa como argumento a sc y se paralelizará automáticamente por Spark.

 El programador puede decidir en cuántas partes debe paralelizarse un RDD (por ejemplo 4).

Creando un RDD usando Conjuntos de Datos Externos

A partir de una fuente de almacenamiento utilizando la función textFile del SparkContext:

texto = sc.textFile("loremipsum.txt")

• Como argumento se pasa un archivo (texto) almacenado en disco.

• El método *textFile* cargaría el archivo como un *RDD*.

✓ Los RDDs no son valiosos solamente por los datos que contienen, sino por las operaciones que podemos realizar sobre ellos.

✓ Spark proporciona un conjunto de acciones para procesar y extraer información:

- collect ()
- reduce()
- count()
- first
- foreach()

collect() retorna todos los elementos de un RDD.

rdd = sc.parallelize([4, 1, 2, 6, 1, 5, 3, 3, 2])

lista = rdd.collect()

print ("El tercer elemento de la lista es%d"% lista[2])

>> El tercer elemento de la lista es 2

Importante: si el RDD es muy grande, se podría tener problemas al poner toda la colección en memoria.

count() retorna el número elementos del RDD.

rdd = sc.parallelize([4, 1, 2, 6, 1, 5, 3, 3, 2])

print("El RDD contiene %d elementos" %
rdd.count())

>> El RDD contiene 9 elementos

countByValue() retorna un diccionario con el número de apariciones de cada elemento en un RDD.

rdd = sc.parallelize([4, 1, 2, 6, 1, 5, 3, 3, 2])

rdd.countByValue()

>> 1:2, 2:2, 3:2, 4:1, 5:1, 6:1

reduce(func) agrega los elementos de un RDD según la función que se le pase como parámetro.

La función debe cumplir con las siguientes propiedades para que pueda ser calculada en paralelo.

✓ Conmutativa: (A + B) = B + AAsegurando que el resultado será independiente del orden de los elementos en el RDD.

✓ Asociativa: (A + B) + C = A + (B + C)Asegurando que cualquiera de los dos elementos asociados en la agregación a la vez no afecta el resultado final. Ejemplo: reduce()

Problema. Crear un *RDD* que multiplique por 2 sus valores y sumar los resultados:

rdd = sc.parallelize([1, 1, 1, 1, 2, 2, 2, 3, 3, 4])

Ejemplo: reduce()

Solución.

rddDos = rdd.map(lambda x: x*2)

finalSum = rddDos.reduce(lambda x, y: x + y)

print (finalSum)

>> 40

Ejemplo: reduceByKey()

Problema.

Crear un diccionario con elementos (x, 1) y sumar las apariciones por elemento.

```
rddText = sc.parallelize([ 'red', 'red', 'blue',
'green', 'green', 'yellow'])
rddAuxiliar = rddText.map( lambda x: (x, 1))
rddResult = rddAuxiliar.reduceByKey( lambda
x, y: x + y
print (rddResult.collect())
>> [('blue', 1), ('green', 2), ('yellow', 1), ('red',
```

Ejemplo: foreach()

foreαch() ejecuta la función que se le pasa por parámetro sobre cada elemento del RDD.

rdd.foreach(impar)

```
rdd = sc.parallelize([ 4, 1, 2, 6, 1, 5, 3, 3, 2, 4
def impar(x):
    if x% 2 == 1:
        print ("%d es impar"% x)
```

Ejemplo: foreach()

```
rdd = sc.parallelize([ 4, 1, 2, 6, 1, 5, 3, 3, 2, 4 ])

def impar(x):
    if x% 2 == 1:
        print ("%d es impar"% x)

rdd.foreach(impar)
```

>> 1 es impar 1 es impar 5 es impar 3 es impar 3 es impar Ejemplo: saveAsTextFile()

saveAsTextFile(directorio) guarda el RDD como un conjunto de archivos de texto dentro de directorio.

collectAsMαp() retorna los elementos de un RDD clave/valor como un diccionario de python.

```
sc.parallelize ([( 'a', 'b' ),( 'c', 'd' )]).collectAsMap()
```

>> 'a': 'b', 'c': 'd'

Ejemplo: Otras Funciones

Función	Valor que retorna
first()	Devuelve el primer valor del <i>RDD</i> .
mean()	Devuelve el valor medio.
variance()	Devuelve la varianza.
stdev()	Devuelve la desviación estándar.
take(n)	Devuelve una lista con los <i>n</i> elementos del <i>RDD</i> .

Transformaciones

No siempre se podrá ejecutar las acciones directamente sobre un RDD, debido a las siguientes razones:

- o El *RDD* podría no estar en un formato adecuado.
- El RDD podría tener más datos de los necesarios a analizar.
- El RDD podría no contener todos los datos necesarios.

Transformaciones

Antes de realizar acciones sobre los *RDD*, primero deben realizarse transformaciones sobre los *RDDs*:

• Para garantizar que cada *RDD* contenga los datos unificados, filtrados y formateados para evitar errores.

Transformaciones

- Al aplicar una transformación sobre un RDD original, regresará un nuevo *RDD*.
- Las transformaciones no modifican el *RDD* original.

• Spark evalúa las transformaciones de manera 'perezosa' (*lazy evaluation*).

Transformaciones Más Comunes

Las transformaciones construyen *RDDs* a través de operaciones como las siguientes:

- **√** *map*()
- √filter()
- ✓sample()
- ✓union()

map(func) retorna un nuevo RDD, resultado de pasar cada uno de los elementos de un RDD original como parámetro de la función.

rdd = sc.parallelize([4, 0, 2, 6, 1, 5, 3, 9, 7, 8])

t1 = rdd.map(lambda x: x * 2)

t1.collect()

>> [8, 0, 4, 12, 2, 10, 6, 18, 14, 16]

filter(func) retorna un nuevo RDD que contiene los elementos que cumplen la función.

num = sc.parallelize ([1, 2, 3, 4, 5, 6, 100, 2000, 4000])

menor50 = num.filter(lambda x: x < 50)

menor50.collect()

>> [1, 2, 3, 4, 5, 6]

distinct() retorna un nuevo RDD que contiene una sola copia de los diferentes elementos del RDD.

num = sc.parallelize([1, 2, 3, 4, 4, 3, 2, 5])

num.distinct().collect()

>> [4, 1, 5, 2, 3]

union() retorna un nuevo RDD, el cual contiene la unión de los elementos de un RDD y del RDD que se le pasa como argumento.

```
city1 = sc.parallelize([ 'Barcelona', 'Madrid',
'Paris'])
city2 = sc.parallelize([ 'Madrid', 'Londres',
'Roma'])
```

```
city1 = sc.parallelize([ 'Barcelona', 'Madrid',
'Paris' ])
city2 = sc.parallelize([ 'Madrid', 'Londres',
'Roma'])
city1.union(city2).collect()
>> [ 'Barcelona', 'Madrid', 'Paris', 'Madrid',
'Londres', 'Roma']
```

Transformaciones: Otras Funciones

Función	Valor que retorna
intersection()	Devuelve la intersección de dos <i>RDDs</i> .
keys()	Devuelve únicamente las llaves del <i>RDD</i> .
sortBy(func)	Ordena un <i>RDD</i> según un criterio.

Características de un Grafo Acíclico Dirigido (DAG)

✓ Cada tarea de *Spark* crea un DAG para que se ejecute en un clúster.

✓ Los DAG pueden tener cualquier número de estados (Map – Reduce, tiene 2 estados predefinidos).

Características de un Grafo Acíclico Dirigido (DAG)

✓ Caché de datos.

✓ Los DAG permiten programar hilos complejos de ejecución en paralelo.

Componentes del Ecosistema HADOOP

Componentes del Ecosistema HADOOP

MapReduce 2, Spark, HBase, etc MapReduce YARN Resource Manager **HDFS HDFS** Hadoop 1

Hadoop 2

Módulos de *Apache Spark*

J. Leskovec, A.Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org