Mid2 Part1

1 Steady Electric Currents

1.1 Current Density and Ohm's Law

$$I = \int_{S} J \cdot ds \quad (A)$$

where J is the volume current density or current density, defined by

$$J = Nqu \quad (A/m^2)$$

where N is the number of charge carriers per unit volume, each of charges q moves with a velocity u.

Since Nq is the free charge per unit volume, by $\rho = Nq$, we have:

$$J = \rho u \quad (A/m^2)$$

For conduction currents,

$$J = \sigma E \quad (A/m^2)$$

where $\sigma = \rho_e \mu_e$ is conductivity, a macroscopic constitutive parameter of the medium. $\rho_e = -Ne$ is the charge density of the drifting electrons and is negative. $u = -\mu_e E$ (m/s) where μ_e is the electron mobility measured in $(m^2/V \cdot s)$.

Materials where $J = \sigma E$ (A/m²) holds are called ohmic media. The form can be referred as the point form of Ohm's law.

Thus, the resistance is defined as

$$R = \frac{l}{\sigma S}$$
 (Ω)

where l is the length of the homogeneous conductor, S is the area of the uniform cross section. The conductance G (reciprocal of resistance), is defined by

$$G = \frac{1}{R} = \sigma \frac{S}{l} \quad (S)$$

1.2 Electromotive Force and Kirchhoff's Voltage Law

A steady current cannot be maintained in the same direction in a closed circuit by an electrostatic field, which is:

$$\oint_C \frac{1}{\sigma} J \cdot dl = 0$$

Kirchhoff's voltage law: around a closed path in an electric circuit, the algebraic sum of the emf's (voltage rises) is equal to the algebraic sum of the voltage drops across the resistance, which is:

$$\sum_{j} V_{j} = \sum_{k} R_{k} I_{k} \quad (V)$$

1.3 Equation of Continuity and Kirchhoff's Current Law

Equation of continuity:

$$\nabla \cdot J = -\frac{\partial \rho}{\partial t} \quad (A/m^3)$$

where ρ is the volume charge density.

For steady currents, as $\partial \rho / \partial t = 0$, $\nabla \cdot J = 0$. By integral, we have Kirchhoff's current law, stating that the algebraic sum of all the currents flowing out of a junction in an electric circuit is zero:

$$\sum_{i} I_{j} = 0$$

For a simple medium conductor, the volume charge density ρ can be expressed as:

$$\rho = \rho_0 e^{-(\rho/\epsilon)t} \quad (C/m^3)$$

where ρ_0 is the initial charge density at t = 0. The equation implies that the charge density at a given location will decrease with time exponentially.

Relaxation time: an initial charge density ρ_0 will decay to 1/e or 36.8% of its original value:

$$\tau = \frac{\epsilon}{\sigma} \quad (s)$$

1.4 Power Dissipation and Joule's Law

For a given volume V that the total electric power converted to heat is:

$$P = \int_{V} \mathbf{E} \cdot \mathbf{J} dv$$

$$P = \int_{I} E d\ell \int_{S} J ds = VI = I^{2}R$$

1.5 Boundary Conditions

1.5.1 Governing Equations for Steady Current Density

• Differential form:

$$\nabla \cdot \mathbf{J} = 0$$
$$\nabla \times \left(\frac{\mathbf{J}}{\sigma}\right) = 0$$

• Integral form:

$$\oint_{S} \mathbf{J} \cdot d\mathbf{s} = 0$$

$$\oint_{C} \frac{1}{\sigma} \mathbf{J} \cdot d\ell = 0$$

1.5.2 Boundary Conditions

• Normal Component:

$$J_{1n} = J_{2n}$$

• Tangential Component:

$$\frac{J_{1t}}{J_{2t}} = \frac{\sigma_1}{\sigma_2}$$

Combining with boundary conditions of electric field:

$$\begin{split} J_{1n} &= J_{2n} &\rightarrow \sigma_1 E_{1n} = \sigma_2 E_{2n} \\ D_{1n} &- D_{2n} = \rho_s &\rightarrow \epsilon_1 E_{1n} = \epsilon_2 E_{2n} \end{split}$$

Surface charge density on the interface:

$$\rho_s = \left(\epsilon_1 \frac{\sigma_2}{\sigma_1} - \epsilon_2\right) E_{2n} = \left(\epsilon_1 - \epsilon_2 \frac{\sigma_1}{\sigma_2}\right) E_{1n}$$

If medium 2 is a much better conductor than medium 1:

$$\rho_s = \epsilon_1 E_{1n} = D_{1n}$$

1.6 Example

- (HW5-2) The space between two parallel conducting plates each having an area S is filled with an inhomogeneous ohmic medium whose conductivity varies linearly from σ_1 at one plate (y=0) to σ_2 at the other plate (y=d). A d-c voltage V_0 is applied across the plates as shown in the figure. Determine
 - a) the total resistance between the plates.
 - b) the surface charge densities on the pates.
 - c) the volume charge density and the total amount of charge between the plates.

1.7 Quiz 3 Recap

- Two lossy dielectric media with permittivities and conductivities (ϵ_1, σ_1) and (ϵ_2, σ_2) are in contact. An electric field with a magnitude E_1 is incident from medium 1 upon the interface at an angle α_1 measured from the common normal, as shown in the figure.
 - a) Find the magnitude and direction of \mathbf{E}_2 in medium 2.
 - b) Find the surface charge density at the interface.
 - c) Compare the results in parts (a) and (b) with the case in which both media are perfect dielectrics.

- A d-c voltage V_0 is applied across a cylindrical capacitor of length L. The radii of the inner and outer conductors are a and b, respectively. The space between the conductors is filled with two different lossy dielectrics having, respectively, permittivity ϵ_1 and conductivity σ_1 in the region a < r < c, and permittivity ϵ_2 and conductivity σ_2 in the region c < r < b. Determine
 - a) the current density in each region,
 - b) the surface charge densities on the inner and outer conductors and at the interface between the two dielectrics.