# 第三章 描述性研究

## 本章内容

第一节 概 述 第二节 现况研究 第三节 生态学研究

## 第一节概述

#### 一、概念

利用已有的的资料或对专门调查的 资料,按不同地区、不同时间及不同人群特征 分组,描绘、叙述疾病或健康状态的分布情况

流行病学研究基础

## 二、种类

现况研究

病例报告

病例系列分析

个案调查

历史资料分析

随访研究

生态学研究

#### 三、用途

- 1. 描述医学事件的分布
- 2. 获得病因线索,提出病因假设

## 第二节 现况研究

概念二目持点共みみみみみ

### 一、概念

- ★研究特定时点或期间、特定范围内人群中某病或健康状况的分布,并研究有关变量与疾病或健康的关系的一种调查方法。
- ★又称:横断面研究 (Cross-sectional study)

患病率研究(Prevalence study)

### 二、现况研究的目的

- (一) 描述疾病或健康状况的三间分布。
- (二) 描述某因素与疾病或健康之间的关 联。
- (三)评价防制措施的效果。
- (四)确定高危人群

### 三 特 点

- ★一般不设对照组
- ★特定时点或期间的疾病状况
- **★**确定因果联系受限
- ★ 对不改变的暴露因素,可作因果推论
- ★ 用现在的暴露(特征)来替代或估计过去情况是有条件 的
- ★一般不能计算发病率,定期重复进行可获得发病率资料

## 四、现况研究的种类

- (一)普查
- 1. 概念

于一定时间内对一定范围的人群中每一成员所作的调查或检查。

### 2. 普查的目的

实现描述性研究的所有目的。

特点:普查普治。

#### 3. 普查的适用条件

- (1)适用于患病率较高的疾病。
- (2)疾病的检测手段和方法简单准确,最好有可靠有效的治疗方法。
- (3)调查范围小,人数少时,可直接用普查。
- (4)具备人力、物力和设备等条件,有完成普查的 可行性。
- (5)应能保证一定的普查率。

普查率 = 
$$\frac{实查人数}{应查人数}*100\%$$

一般不低于80%。

#### 3. 普查的优缺点

#### (1) 优点

- 1)设计特别是确定调查对象上比较简单。
- 2)不存在抽样误差。
- 3)可查出某人群中患某病的所有病人, 使其

得到及时治疗。

4)普查的同时也开展了一次医学科普教 育。

#### (2)缺点

- 1) 普查对象多,调查期限短,漏查是难免的。
- 2)参加普查的工作人员多,他们掌握调查技术和检验方法的程度不等,调查质量不易控制。
- 3) 患病率低,诊断技术复杂的疾病不宜进行普查。
- 4) 人力、物力耗费大。

### (二)抽样调查

#### 1. 概念

指只调查从某人群中抽出的一部分有 代表性的人(统计学上称为样本),根据 调查结果估计出人群某病的患病率或某特 征的情况。

## 2. 要抽取一个有代表性的样本, 就必须遵循

随机化原则 样本大小适当的原则。

### (1)随机化原则

指整个研究人群中的每一个单位(可以是个人,也可以是个人的集合体,如学校、连队、班级或居民委员会等)被选入样本的概率相等。

#### (2) 样本大小适当的原则

是指样本应达到一定数量, 样本过小时可能所抽出的样本的代表性不够; 样本过大不但浪费人力、物力, 而且工作量过大, 容易因调查不够细致而造成偏倚。

#### 3. 抽样调查的优缺点

#### (1) 优点:

省时、省力、省材料和省经费。

调查样本相对较小,因而较易集中人力、物力和器材设备,调查结果也易作到细致、准确。

#### (2)缺点:

设计、组织实施以及资料分析等方面比较复杂。

重复和遗漏不易发现。

不适用于变异过大的材料。

#### 四、现况调查的设计与实施

(一)选题和确定本次调查研究的目的

选题:

创新性、重要问题、实用性

目的:

明确、具体;

一次调查的病种不宜太多

#### (二)确定研究对象和调查方法

研究对象:

目标人群、调查人群

调查方法:

普查?抽样调查?

#### (三) 抽样方法与样本含量

#### 1 抽样方法

#### (1) 非随机抽样

选择样本时,加入人主观因素,使总体中 每个个体被抽取的机会是不均等的

如典型抽样:试验者根据试验调查的目的、要求和被调查对象的总体情况,有意识地选择那些具有代表性的对象进行试验

#### (2)随机抽样

遵循随机化原则,保证总体中每一个对象 都有同等机会被选入作为研究对象

#### 常用的随机化抽样方法

- (1)单纯随机抽样
- (2)系统抽样
- (3)分层抽样
- (4)整群抽样
- (5)两级或多级抽样

#### 单纯随机抽样 Simple random sampling

- ◆也称简单随机抽样,最简单、最基本的抽样方法
- ◆从总体 N 个对象中,利用抽签或其他随机方法 抽取 n 个
- ◆总体中每个对象被抽到的概率相等

例:从10人中随机抽取1人 编号 1 2 3 4 5 6 7 8 9 10 查随机数字

|       | 1000个随机数字 |       |       |       |       |               |       |       |         |       |                   |
|-------|-----------|-------|-------|-------|-------|---------------|-------|-------|---------|-------|-------------------|
|       |           | 00-04 | 05-09 | 10-14 | 15-19 | 20-24         | 25-29 | 30-34 | 35-39   | 40-44 | 45-49             |
| 26927 | 01        | 15389 | 85205 | 18850 | 39226 | 42249         | 90669 | 96325 | 23248   | 60933 |                   |
|       | 02        | 85941 | 40756 | 82414 | 02015 | 13858         | 78030 | 16269 | 65978   | 01385 | 15345             |
| 77455 | 03        | 61149 | 69440 | 11286 | 88218 | 58925         | 03638 | 52862 | 2 62733 | 33451 |                   |
| 75577 | 04        | 05219 | 81619 | 10651 | 67079 | 92511         | 59888 | 84502 | 72095   | 83463 |                   |
|       | 05        | 41417 | 98326 | 87719 | 92294 | 46614         | 50948 | 64886 | 20002   | 97365 | 30976             |
|       | 06        | 28357 | 94070 | 20652 | 35774 | 16249         | 75019 | 21145 | 05217   | 47286 | 76305             |
|       | 07        | 17783 | 00015 | 10806 | 83091 | 91530         | 36466 | 39981 | 62481   | 49177 | 75779             |
|       | 80        | 40950 | 84820 | 29881 | 85966 | 62800         | 70326 | 84740 | 62660   | 77379 | 90279             |
| 90279 | 09        | 82995 | 64157 | 66164 | 41180 | 10089         | 41757 | 78258 | 96488   | 88629 |                   |
|       | 10        | 96754 | 17676 | 55659 | 44105 | 47361         | 34833 | 86679 | 23930   | 53249 | 27083             |
|       | 11        | 34357 | 88040 | 53364 | 71726 | 45690         | 66334 | 60332 | 22554   | 90600 | 71113             |
|       | 12        | 06318 | 37403 | 49927 | 57715 | 50423         | 67372 | 63116 | 48888   | 21505 | 80182             |
| 11551 | 13        | 62111 | 52820 | 07243 | 79931 | 89292         | 84767 | 85693 | 73947   | 22278 |                   |
|       | 14        | 47534 | 09243 | 67879 | 00544 | 23410         | 12740 | 02540 | 54440   | 32949 | <del>1</del> 3491 |
|       | <u>15</u> | 98614 | 75993 | 84460 | 62846 | <u>5984</u> 4 | 14922 | 48730 | 73443   | 48167 | 34770             |

|       | 1000个随机数字 |       |       |       |       |       |       |       |         |         |       |
|-------|-----------|-------|-------|-------|-------|-------|-------|-------|---------|---------|-------|
|       |           | 00-04 | 05-09 | 10-14 | 15-19 | 20-24 | 25-29 | 30-34 | 35-39   | 40-44   | 45-49 |
| 26927 | 01        | 15389 | 85205 | 18850 | 39226 | 42249 | 90669 | 96325 | 5 23248 | 8 60933 |       |
|       | 02        | 85941 | 40756 | 82414 | 02015 | 13858 | 78030 | 16269 | 65978   | 3 01385 | 15345 |
| 77455 | 03        | 61149 | 69440 | 11286 | 88218 | 58925 | 03638 | 52862 | 2 62733 | 3 33451 |       |
| 75577 | 04        | 05219 | 81619 | 10651 | 67079 | 92511 | 59888 | 84502 | 7209    | 5 83463 |       |
|       | 05        | 41417 | 98326 | 87719 | 92294 | 46614 | 50948 | 64886 | 20002   | 2 97365 | 30976 |
|       | 06        | 28357 | 94070 | 20652 | 35774 | 16249 | 75019 | 21145 | 05217   | 7 47286 | 76305 |
|       | 07        | 17783 | 00015 | 10806 | 83091 | 91530 | 36466 | 39981 | 62481   | 49177   | 75779 |
|       | 80        | 40950 | 84820 | 29881 | 85966 | 62800 | 70326 | 84740 | 62660   | 77379   | 90279 |
| 90279 | 09        | 82995 | 64157 | 66164 | 41180 | 10089 | 41757 | 78258 | 96488   | 88629   |       |
|       | 10        | 96754 | 17676 | 55659 | 44105 | 47361 | 34833 | 86679 | 23930   | 53249   | 27083 |
|       | 11        | 34357 | 88040 | 53364 | 71726 | 45690 | 66334 | 60332 | 2 22554 | 4 90600 | 71113 |
|       | 12        | 06318 | 37403 | 49927 | 57715 | 50423 | 67372 | 63116 | 48888   | 3 21505 | 80182 |
| 11551 | 13        | 62111 | 52820 | 07243 | 79931 | 89292 | 84767 | 85693 | 3 73947 | 7 22278 | }     |
|       | 14        | 47534 | 09243 | 67879 | 00544 | 23410 | 12740 | 02540 | 54440   | 32949   | 13491 |
|       | 15        | 98614 | 75993 | 84460 | 62846 | 59844 | 14922 | 48730 | 73443   | 3 48167 | 34770 |

## 系统抽样 Systemic sampling

- 又称机械抽样
- 按照一定顺序, 机械每隔若干单位抽取一个单位
- 方法
- > 将总体各个个体单位按某种标志排列、连续编号
- 根据总体数 N 和确定的样本数 n , 计算抽样距离 (N/n)
- 第一段距离内,随机抽取一个号码,作为第一个调查样本单位
- > 将第一个样本单位的号码加上抽样距离,得到第二个样本单位,以此类推,直至满足样本量

- 系统抽样的优点
  - (1)可以不知道总体单位数
  - (2)大样本易于操作。
- 系统抽样的缺点

总体单位有周期性,会影响代表性

### 分层抽样 Stratified sampling

- ◆将总体单位按某种特征分为若干次级总体(层)
- ◆从每一层内单纯随机抽样
- ◆按比例分配,最优分配
- ◆抽样误差最小

### 整群抽样 Cluster sampling

- ◆将总体分成若干群组,抽取部分群组
- ◆单纯整群抽样 调查被抽到的群组中的全部个体
- ◆二阶段抽样 调查部分个体

#### 整群抽样特点:

易于组织实施 抽样误差较大,增加 1/2 样本量 群间差异越小,抽取群越多,抽样误差越小

## 多级抽样 Multistage sampling

- ◆用于大型流行病学调查
- ◆方法
  - ▶从总体中抽取范围较大的单元(一级抽样)
  - ▶从一级单元中抽取范围较小的单元(二级抽样)
  - ▶依次类推

- 2. 样本含量估计
  - (1)决定样本大小的因素
    - 1) 容许误差
    - 2) 预期患病率或标准差

#### (2)样本含量的计算

1)计量资料 
$$n = \frac{4s^2}{d^2}$$

公式中 n 为样本含量, d 为容许误差, 即样本均数与总体均数之差,由调查设计者根据实际情况规定。 s 为样本标准差。

例: 欲调查某病病人血红蛋白含量,根据以往的经验, s = 3.0g/100ml ,要求误差不超过 0.5g/100ml ,则该调查样本大小为:

$$n = \frac{4s^2}{d^2} = \frac{4 \times 3.0^2}{0.5^2} = 144(\text{\AA})$$

# 2) 计数资料

当容许误差 d=0.1P 时,则 N=400×Q/P

当容许误差 d=0.15P 时,则 N=178×Q/P

当容许误差 d=0.2P 时,则 N=100×Q/P

上式中P是某病患病率, Q=1 - P, N即样本数量。 此公式适用于呈二项分布性质的资料, 且患病率不太大或太小的情况。

# 3) 患病率很低疾病的样本含量估计 按泊松分布期望值的可信限进行估计。 例如:

某地的肝癌患病率估计为 20/10 万, 欲对该地的肝癌患病情况进行调查, 问应抽多少人? 如果随机抽 1 万人, 按估计的患病率计算, 可能发现 2 例病人。

# 参考 Poisson 分布可信限表,期望值为 2 的 90% 可信限下限为 0.355,上限为 6.30。

#### Poisson 分布期望值的可信限

| 期望值 | 0.95   |       | 0.90   |       |
|-----|--------|-------|--------|-------|
|     | 下限     | 上限    | 下限     | 上限    |
| 0   | 0.0000 | 3.69  | 0.0000 | 3.00  |
| 1   | 0.0253 | 5.57  | 0.0513 | 4.74  |
| 2   | 0.242  | 7.22  | 0.355  | 6.30  |
| 3   | 0.619  | 8.77  | 0.818  | 7.75  |
| 4   | 1.09   | 10.24 | 1.37   | 9.15  |
| 5   | 1.62   | 11.67 | 1.97   | 10.51 |

这样我们就有可能见不到病例,使调查工作失 去意义。

当期望值为4时,90%可信限下限为1.37,即有90%的机会可见到病例。

这样,抽取 20000 人可满足期望值为 4 的要求

如采用整群抽样,样本量须加大,可粗定为加大简单随机抽样的样本量的 1/2 ,即应抽取 30000 人。

$$n = \frac{1 - 0.0002}{0.0002} \times 100 = 499900$$

# (四)确定疾病的测量方法

应尽量采用简单、 易行的技术和灵敏度 高的检验方法。

(五)确定研究变量及其定义和测量方 法

明确的定义、可靠的测量方法

如:腰围

(六) 拟订调查表 调查表类型:

一览表式

一人一表式

问题类型:

开放式、封闭式、复合式

#### 调查表(一人一表)

主要包括三个部分。

第一部分,即一般性项目

包括姓名、年龄、 性别、出生年月、出生地、文化程度、职业、民族、工作单位、现住址等。 便于核查,补填或更正而设置的. 人口学资料

# 第二部分,即调查研究项目 调查研究的实质部分。

#### 几项原则供参考:

- ①与本次调查有关的项目一项也不能缺。
- ② 每个调查项目都要用通俗的文字准确无误地表达出来 不应使被调查者产生误解或出现不同的理解。
- ③ 应尽量选用那些能以客观指标来回答的问题询问调查对象。
- ④ 问题由易到难

# 第三部分,即调查者部分

- 调查质量的评价
- 记录特别的情况
- 列出"调查者"和"调查日期", 有助于查询和明确责任。

# (七) 挑选和培训调查员。

调查员选择

工作认真、吃苦耐劳、遵守纪律

培训

工作的意义 科学严谨的态度 相关技术

考核

# (八)进行现场调查

- **❖通过测定或检查的方法收集**
- ❖直接用调查表询问研究对象

方式:面访、通信调查、电话调查、自我管理式调查。

# (九)调查资料整理、分析

① 检查与核对原始资料

检查原始资料的准确性、完整性,填补缺漏,删 去重

复, 纠正错误。

②数据库建立

### ③ 统计描述

#### ✓ 率的计算

患病率、感染率等

人群分布

地区分布

重复的现况调查可分析时间分布

#### ✓ 计量资料

均数、中位数、几何均数、百分位数、标

#### 准差

人群分布 地区分布

#### ④ 对比分析

分布差异 影响分布的因素

# 五、现况调查中常见的偏倚及其防止

- (一) 偏倚的概念
- 1. 误差:测得值与真实值之差。
  - (1)抽样误差 由于抽样产生得样本指标与总体参数之差。
  - (2)系统误差

由于某些较恒定的因素造成的测得值倾向性得偏离真实值。

# 在流行病学上系统误差被称为

# 偏倚

# 2. 偏倚产生的环节

设计、实施、资料处理和分析

#### 3. 偏倚的控制

找到偏倚产生的原因,消除偏倚。

#### 如:

通过正确的设计控制偏倚; 严格校正仪器、培训实验人员控制偏倚。

# (二) 现况调查中可能发生的偏倚

- 1. 选择偏倚
  - (1)研究对象选择方法不当引起的偏倚
  - (2) 无应答偏倚 应答率要高于 90%
  - (3)幸存者偏倚
- 2. 信息偏倚
  - (1)调查对象所引起的偏倚 报告偏倚
  - (2)调查员偏倚
  - (3)测量偏倚

# (二) 防止产生偏倚的措施

#### 针对偏倚产生的原因采取相应措施。

- 在设计中明确规定为随机样本的,必须严格遵守随机化的原则。尽量提高应答率。设法补查一部分无应答者并作分析。
- 2. 训练调查员并对其进行监督和质量控制。
- 3. 选用精良的仪器设备并事先作好校准。在整个调查中所用试剂力求一致,以消除可能引起的差异。
- 4. 采用适当技术控制调查者偏倚

# 第三节 生态学研究

# 一、定义

以群体为观察、分析单位,通过描述 不同人群某因素的暴露情况与疾病的频率 ,分析该因素与疾病的关系。

# 二、生态学研究的方法

#### 1. 生态比较研究

比较不同人群中某疾病的发病率、死亡率或健康状态的差别,了解某些因素的出现率与疾病率的关系,从而获得病因的线索。

#### 2. 生态趋势研究

连续观察一个或多个人群中平均暴露水平 的改变和某疾病的发病率、死亡率的变化的关系

0

# 不同国家反应停销售量与短肢畸形关

| Ti- |                |        |
|-----|----------------|--------|
| 国家  | 反应停销售量<br>(公斤) | 短肢畸形例数 |
| 奥地利 | 207            | 8      |
| 比利时 | 258            | 26     |
| 英国  | 5769           | 349    |
| 荷 兰 | 140            | 25     |
| 挪 威 | 60             | 11     |
| 葡萄牙 | 37             | 2      |
| 瑞士  | 113            | 6      |
| 西德  | 30099          | 5000   |



图4-19 西德反应停销售总量(虚线)与短肢畸形病例数(实线)的时间分布(流行病学研究实例1984年)

# 三、生态学研究的用途

- ★提供病因线索,产生病因假设
- ★评估人群干预措施的效果

# 四优点

- ★ 经济 , 出结果快
- **★**提供病因未明疾病的病因线索
- ★ 对个体剂量无法测量的情况,是唯一可供选择的方法
- ★ 适用于研究因素暴露变异范围小,较难测量暴露与疾病的关系
- ★ 人群干预措施的评价及估计疾病发展趋势

#### 五、生态学研究的局限性

- ★出现生态学谬误
- ★ 难以控制混杂因素
- ★ 存在多重共线性问题
- **★ 难以确定因果联系**

# 生态学谬误

 在生态学研究中,生态学谬误是此类研究最主要的缺点,其是由于生态学研究是由各个不同情况的个体 "集合"而成的群体(组)为观察和分析的单位,以 及存在的混杂因素等原因而造成的研究结果与真实情况不符。

#### • A 班和 B 班

A 班学一门课的平均时间是 10 小时,平均成绩是 90 分;

B 班学生学这门课的平均时间是 15 小时,平均成绩是 80

结论: 学习时间和成绩是负相关的。

学习起点不同,智力水平不同

# 难以控制混杂因素

- 1964-1965 年 28 个国家
- 平均每日猪肉摄入量与乳腺癌猪肉摄入量与乳腺癌死亡率
- ・强正相关
- 猪肉摄入量与乳腺癌可能有联系
- · 猪肉摄入量可能是乳腺癌危险因素(蔬菜摄入 减少、脂肪摄入增加)的一个标志

# 存在多重共线性问题

- · GDP 与恶性肿瘤(环境污染)
- · GDP 与糖尿病(肥胖)

# 难以确定因果联系

- 时间顺序
- ・初步的研究
- 二手资料
- ・生态学谬误

# The end