1 Patterns in coin-tossing

Say in words (exercise *X*'s general pattern):

Fix pattern HTTHT. Toss fair coin until see this pattern — requires W tosses where W is random, $t \le W < \infty$ a.s.

What is EW?

Consider the strategy

- bet \$1 that toss i is H
- if win, bet \$2 that toss i + 1 is T
- if win, bet \$4 that toss i + 2 is T
- if win, bet \$8 that toss i + 3 is H
- if win, bet \$16 that toss i + 4 is T

Do strategy for each $1 \le i \le W$, stop after toss W.

W is a stopping time, so the optional sampling theorem implies $\mathbb{E}[\text{profit}] = 0$.

$$cost = W (1.1)$$

$$return = 32 + 4 = 36 (1.2)$$

$$profit = return - cost (1.3)$$

$$0 = \mathbb{E}[\text{profit}] = \mathbb{E}[36 - W] = 36 - \mathbb{E}W \tag{1.4}$$

$$\mathbb{E}W = 36\tag{1.5}$$

2 MG proof of Radon-Nikodym

Theorem 2.1 (Radon-Nikodym). Let (S, S, μ) be a probability space, $S = \sigma(A_i, i \ge 0)$ countable events.

If $v \ll \mu$, $v(S) < \infty$, then \exists measurable $h: S \to [0, \infty]$ such that $v(A) = \int_A h d\mu$ for all $A \in \mathcal{S}$.

 $h = \frac{dv}{d\mu}$ is the Radon-Nikodym density of $vwrt\mu$.

Heuristics:
$$h(s) = \frac{dv}{d\mu}(s) = \lim_{A \downarrow \{s\}} \frac{v(A)}{\mu(A)}$$
.

Proof. Define $\mathcal{F}_n = \sigma(A_i, 1 \le i \le n)$ finite field with 2^n atoms.

Define $X_n(s) = \frac{\nu(F)}{\mu(F)}$ for atom $F \ni s$.

= $\nu(F)$ for each $F \in \mathcal{F}_n$

Claim: (X_n, \mathcal{F}_n) is a MG. Justification: Take $G \in \mathcal{F}_{n-1}$.

$$G = \underbrace{(G \cap A_n)}_{G_1} \cup \underbrace{(G \cap A_n^c)}_{G_2} \tag{2.1}$$

$$\mathbb{E}X_n 1_G = \mathbb{E}X_n 1_{G_1} + \mathbb{E}X_n 1_{G_2} \tag{2.2}$$

Equation (2.3)
$$\implies = \nu(G_1) + \nu(G_2) = \nu(G) = \mathbb{E}X_{n-1}1_G$$
 (2.3)

$$X_{n-1} = \mathbb{E}[X_n \mid \mathcal{F}_{n-1}] \tag{2.4}$$

By MG convergence theorem, $X_n \to X_\infty$ for some $X_\infty \ge 0$ a.s. If we prove $(X_n, n \ge 1)$ is UI, then Theorem from Lecture 20 implies $X_n = \mathbb{E}[X_\infty \mid \mathcal{F}_n]$ hence

$$\mathbb{E}X_{\infty}1_F = \mathbb{E}X_n1_F = \nu(F)$$
 eq. (2.3)

$$\mathbb{E}X_{\infty}1_F = \nu(F) \qquad \forall F \in \cup_n \mathcal{F}_n \qquad (2.6)$$

$$\mathbb{E}X_{\infty}1_{F} = \nu(F) \qquad \forall F \in \sigma\left(\cup_{n}\mathcal{F}_{n}\right) = \mathcal{S}$$
 (2.7)

$$\nu(F) = \mathbb{E}_{\mu} X_{\infty} 1_F = \int_F X_{\infty} d\mu \tag{2.8}$$

(2.9)

So X_{∞} is R-N density $\frac{dv}{d\mu}$ and we are done.

Lemma 2.2. *Suppose* $\nu \ll \mu$. $\forall \varepsilon > 0$, $\exists \delta(\varepsilon) > 0$ *such that*

$$\mu(A) \le \delta(\varepsilon) \implies \nu(A) \le \varepsilon$$
 (2.10)

Proof. If false for ε , $\exists A_n$ such that $\mu(A_n) \leq 2^{-n}$ and $\nu(A_n) > \varepsilon$. Consider $\Lambda = \{A_n \text{ i.o.}\}$. By Borel-Cantelli, $\mu(\Lambda) = 0$ but $\nu(\Lambda) \geq \varepsilon$, contradicting $\nu \ll \mu$.

Claim: (X_n) is UI.

Justification: By eq. (2.3), $\mathbb{E} X_n 1_{X_n \geq b} = \nu(X_n \geq b)$. Given $\varepsilon > 0$, take b such that $\frac{\nu(S)}{b} \leq \delta(\varepsilon)$. Then

$$\nu(X_n \ge b) \le \frac{\mathbb{E}X_n}{b} = \frac{\nu(S)}{b} \le \delta(\varepsilon)$$
 (2.11)

lemma
$$2.2\nu(X_N \ge b) \le \varepsilon$$
 (2.12)

$$\Longrightarrow \sup_{n} \mathbb{E} X_{n} 1_{X_{n} \ge b} \le \varepsilon \tag{2.13}$$

The above proof relies on martingale convergence theorem for existence of R-N density X_{∞} . It also only holds for countable events.

3 Azuma's inequality

Theorem 3.1 (Azuma's inequality). Let $S_n = \sum_{i=1}^n X_i$ be a MG with $|X_i| \le 1$ a.s. Then for $\lambda > 0$,

$$P(S_n \ge \lambda \sqrt{n}) \le e^{-\lambda^2/2} \tag{3.1}$$

SO

$$P(|S_n| \ge \lambda \sqrt{n}) \le 2e^{-\lambda^2/2} \tag{3.2}$$

Lemma 3.2. If $\mathbb{E}Y = 0$ and $|Y| \le 1$, then $\mathbb{E}e^{\alpha Y} \le e^{\alpha^2/2}$ for all α .

Proof of Lemma 3.2.

$$\mathbb{E}e^{\alpha Y} \leq_{\text{convexity}} \mathbb{E}L(Y) = L(\mathbb{E}Y) = L(0) = (e^{\alpha} + e^{-\alpha})/2 \leq_{\text{calculus}} e^{\alpha^2/2}$$
(3.3)

Calculus: coefficient of α^{2n} in series expansion

$$\frac{1}{(2n)!} \le \frac{1}{2^n n!} \tag{3.4}$$

Proof of Azuma (Theorem 3.1). Apply lemma 3.2 to conditional distribution of X_i given \mathcal{F}_{i-1}

$$\mathbb{E}[e^{\alpha X_i} \mid \mathcal{F}_{i-1}] \le e^{\alpha^2/2} \tag{3.5}$$

$$\mathbb{E}[e^{\alpha S_n} \mid \mathcal{F}_{n-1}] = e^{\alpha S_{n-1}} \mathbb{E}[e^{\alpha X_n} \mid \mathcal{F}_{n-1}) \le e^{\alpha^2/2} e^{\alpha S_{n-1}}]$$
(3.6)

(3.7)

Take E and apply tower property

$$\mathbb{E}[e^{\alpha S_n}] \le e^{\alpha^2/2} \mathbb{E}e^{\alpha S_{n-1}} \tag{3.8}$$

$$\mathbb{E}[e^{\alpha S_n}] \le \left(e^{\alpha^2/2}\right)^n = e^{\alpha^2 n/2} \tag{3.9}$$

Applying Markov inequality with $\phi = \exp$

$$P(S_n \ge \lambda \sqrt{n}) \le \frac{\mathbb{E}e^{\alpha S_n}}{e^{\alpha \lambda \sqrt{n}}} \le e^{\alpha^2 n/2 - \alpha \lambda \sqrt{n}}$$
(3.10)

Minimize over α by taking $\alpha = \lambda / \sqrt{n}$

$$P(S_n \ge \lambda \sqrt{n}) \le e^{\alpha^2 n/2 - \alpha \lambda \sqrt{n}} = e^{-\lambda^2/2}$$
(3.11)

4 Method of bounded differences

Corollary 4.1. *Take* $(\xi_i, 1 \le i \le n)$ *independent, arbitrary state spaces.*

Take \mathbb{R} -valued $Z = f(\xi_1, \xi_2, \dots, \xi_n)$ such that if $\tilde{x} = (x_1, \dots, x_n)$ and $\tilde{y} = (y_1, \dots, y_n)$ differ in one coordinate only (i.e. $|\{i: y_i \neq x_i\}| = 1$), then $|f(\tilde{x}) - f(\tilde{y})| \leq 1$.

Then
$$P(|Z - \mathbb{E}Z| \ge \lambda \sqrt{n}) \le 2e^{-\lambda^2/2}$$
 for $\lambda > 0$.

This is useful for analysis of random algorithms: consider randomized traveling salesman where the tour \tilde{x} is changed at a single location $y_i \neq x_i$.

Proof. WLOG assume $\mathbb{E}Z = 0$. Write $S_m = \mathbb{E}[Z \mid \mathcal{F}_m]$ where $\mathcal{F}_m = \sigma(\xi_i, 1 \leq i \leq m)$, so $(S_m, 1 \leq m \leq n)$ is a MG.

If we can show " S_m has bounded differences"

$$|S_m - S_{m-1}| \le 1 \tag{4.1}$$

then Azuma's inequality (theorem 3.1) yields the desired conclusion.

Lemma 4.2. If Y is such that any 2 possible values within 1, then $|Y - \mathbb{E}Y| \le 1$.

Proof. min supp $Y \le Y \le \max \sup Y$ and min supp $Y \le \mathbb{E}Y \le \max \sup Y$ so

$$|Y - \mathbb{E}Y| \le \max \operatorname{supp} Y - \min \operatorname{supp} Y \le 1$$
 (4.2)

If we know all $(\xi_i, i \neq m)$ then apply lemma 4.2 conditionally

$$|Z - \underbrace{\mathbb{E}[Z \mid \xi_i, i \neq m]}_{Z^*}| \le 1 \tag{4.3}$$

(4.4)

Lemma 4.3. *If* W *is independent of* (Y, \mathcal{G}) *, then* $\mathbb{E}[Y \mid \mathcal{G}, W] = \mathbb{E}[Y \mid \mathcal{G}]$ *.*

By lemma 4.3

$$\mathbb{E}[Z^* \mid \mathcal{F}_m] = \mathbb{E}[Z^* \mid \mathcal{F}_{m-1}, \xi_m] = \mathbb{E}[Z^* \mid \mathcal{F}_{m-1}]$$
(4.5)

tower property
$$\implies = \mathbb{E}[Z \mid \mathcal{F}_{m-1}]$$
 (4.6)

(4.7)

This is nice: Z and Z^* are both conditioned on the same σ -field \mathcal{F}_m so

$$|S_m - S_{m-1}| = |\mathbb{E}[Z \mid \mathcal{F}_m] - \mathbb{E}[Z \mid \mathcal{F}_{m-1}]| \tag{4.8}$$

$$= |\mathbb{E}[Z \mid \mathcal{F}_m] - \mathbb{E}[Z^* \mid \mathcal{F}_m]| \tag{4.9}$$

$$\leq \mathbb{E}[|Z - Z^*| \mid \mathcal{F}_m] \tag{4.10}$$

Equation (4.3)
$$\implies \le 1$$
 (4.11)