Final Project Report

Name: Chengyu Liang

NetID: cl1286

Conclusion:

In this research I self-designed Naïve bayes algorithm, perceptron, and implemented KNN algorithm for both face recognition and handwritten digit recognition. For Naïve bayes,

First, I developed an extractor that can crop the stitched together digital and face datasets into a uniform format without losing data.

To find a more suitable feature, I segmented each digital and face image into grids of 4 pixels in length and used the number of black and white pixels in each grid as an important feature. In the process of trying different feature lengths, I found that the best results for Naive bayes were obtained when the length of the grid was 4 (better than 1, 2 or even 7)

For my Naive Bayes algorithm, it works best on the face dataset, being able to correctly identify whether an image is a face or not with an accuracy of over 75 percent when using 100 percent of the training data. It can even achieve close to 70 percent correct using only 50 percent of the data. And when it works on digit recognition, taking 60% of the training set can ensure an accuracy of over 60 percent. Overall, using Naïve bayes algorithm can have lower Standard deviation and less time consumption than Perceptron algorithm.

For perception algorithm, I use every pixel in an image as feature, and that works better than the case that I split the image into grids, because it has a higher and more consistent accuracy. When using the perception algorithm, it takes more time to train, but for digit recognition, it is able to achieve close to 80% accuracy using all training data; for face recognition, it consistently achieves over 80% accuracy. But using perception may cost more time and higher Standard deviation.

For KNN, it works very well for digit recognition because it has a very high accuracy (over 80%) for some k value and good accuracy for face recognition. But the time consumption is too much.

1. Naïve Bayes for digit recognition

% of Dataset	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
Time for training	0.2 s	0.421 s	0.742 s	0.855 s	1.031 s	1.168 s	1.462 s	1.614 s	1.629 s	1.936 s
Accuracy	0.454	0.355	0.503	0.608	0.598	0.566	0.628	0.61	0.598	0.615
Time for training	0.195 s	0.407 s	0.71 s	0.81 s	1.028 s	1.141 s	1.422 s	1.895 s	1.623 s	1.87 s
Accuracy	0.418	0.518	0.635	0.556	0.568	0.58	0.62	0.604	0.596	0.615
Time for training	0.193 s	0.458 s	0.584 s	0.866 s	1.026 s	1.186 s	1.419 s	1.59 s	1.929 s	1.884 s
Accuracy	0.438	0.575	0.502	0.573	0.606	0.6	0.595	0.606	0.634	0.615
Time for training	0.204 s	0.462 s	0.694 s	0.79 s	1.106 s	1.097 s	1.277 s	1.704 s	1.878 s	2.018 s
Accuracy	0.416	0.403	0.561	0.543	0.567	0.611	0.626	0.629	0.609	0.615
Time for training	0.196 s	0.433 s	0.588 s	0.821 s	0.956 s	1.234 s	1.177 s	1.628 s	1.599 s	1.837 s
Accuracy	0.442	0.608	0.53	0.581	0.54	0.57	0.602	0.641	0.62	0.615
Mean of accuracy	0.434	0.492	0.546	0.572	0.576	0.585	0.614	0.618	0.611	0.615
Mean of Prediction error	0.566	0.508	0.454	0.428	0.424	0.415	0.386	0.382	0.389	0.385
Standard deviation	0.0146	0.0977	0.0494	0.0222	0.0238	0.0174	0.0133	0.0145	0.0142	0.0

2. Perceptron for digit recognition

% of Dataset	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
Time for training	4.46 s	8.908 s	12.695 s	17.343 s	21.13 s	24.01 s	28.162 s	33.702 s	36.954 s	40.528 s
Accuracy	0.607	0.695	0.749	0.722	0.76	0.712	0.778	0.71	0.773	0.794
Time for training	4.991 s	9.801 s	13.293 s	18.276 s	22.445 s	24.436 s	29.014 s	33.636 s	39.323 s	40.276 s
Accuracy	0.695	0.741	0.725	0.654	0.727	0.748	0.742	0.78	0.767	0.792
Time for training	4.974 s	9.664 s	13.288 s	16.902 s	21.303 s	25.103 s	28.274 s	34.205 s	38.939 s	40.169 s
Accuracy	0.665	0.768	0.681	0.744	0.807	0.78	0.69	0.803	0.798	0.754
Time for training	4.413 s	8.867 s	12.595 s	16.602 s	21.496 s	24.8 s	29.541 s	34.335 s	36.872 s	40.166 s
Accuracy	0.487	0.76	0.769	0.787	0.776	0.688	0.714	0.779	0.765	0.755
Time for training	4.913 s	8.697 s	13.477 s	15.992 s	20.73 s	24.549 s	29.765 s	32.478 s	36.684 s	39.637 s
Accuracy	0.711	0.639	0.744	0.775	0.777	0.777	0.739	0.723	0.789	0.806
Mean of Accuracy	0.633	0.721	0.734	0.736	0.769	0.741	0.733	0.759	0.778	0.780
Mean of Prediction error	0.367	0.279	0.266	0.264	0.231	0.259	0.267	0.241	0.222	0.22
Standard deviation	0.0812	0.0480	0.0298	0.0471	0.0261	0.0361	0.0295	0.0360	0.0129	0.0215

3. Naïve Bayes for face recognition

% of Dataset	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
Time for training	0.024 s	0.03 s	0.038 s	0.06 s	0.067 s	0.085 s	0.101 s	0.106 s	0.133 s	0.154 s
Accuracy	0.54	0.64	0.753	0.827	0.813	0.793	0.727	0.813	0.793	0.767
Time for training	0.014 s	0.035 s	0.042 s	0.059 s	0.065 s	0.116 s	0.106 s	0.14 s	0.134 s	0.187 s
Accuracy	0.607	0.68	0.76	0.607	0.647	0.753	0.767	0.82	0.773	0.767
Time for training	0.015 s	0.047 s	0.042 s	0.059 s	0.066 s	0.084 s	0.12 s	0.111 s	0.144 s	0.165 s
Accuracy	0.527	0.6	0.727	0.793	0.773	0.533	0.707	0.667	0.8	0.767
Time for training	0.015 s	0.049 s	0.043 s	0.061 s	0.069 s	0.078 s	0.088 s	0.106 s	0.141 s	0.132 s
Accuracy	0.513	0.66	0.52	0.567	0.547	0.8	0.72	0.727	0.74	0.767
Time for training	0.015 s	0.051 s	0.044 s	0.054 s	0.067 s	0.11 s	0.09 s	0.108 s	0.139 s	0.137 s
Accuracy	0.513	0.747	0.753	0.613	0.7	0.8	0.733	0.593	0.673	0.767
Mean of Accuracy	0.540	0.665	0.703	0.681	0.696	0.736	0.731	0.724	0.756	0.767
Mean of Prediction error	0.46	0.335	0.297	0.319	0.304	0.264	0.269	0.276	0.244	0.233
Standard deviation	0.0350	0.0486	0.0920	0.1067	0.0941	0.1029	0.0201	0.0867	0.0463	0.0

4. Perceptron for face recognition

% of Dataset	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
Time for training	0.185 s	0.295 s	0.47 s	0.628 s	0.852 s	0.875 s	1.07 s	1.075 s	1.282 s	1.827 s
Accuracy	0.613	0.64	0.76	0.833	0.8	0.68	0.707	0.847	0.787	0.853
Time for training	0.178 s	0.353 s	0.437 s	0.653 s	0.91 s	0.854 s	1.084 s	1.251 s	1.418 s	1.417 s
Accuracy	0.6	0.773	0.833	0.82	0.84	0.727	0.793	0.767	0.76	0.78
Time for training	0.172 s	0.383 s	0.424 s	0.649 s	0.895 s	0.875 s	0.997 s	1.25 s	1.351 s	1.522 s
Accuracy	0.553	0.567	0.747	0.707	0.8	0.787	0.847	0.833	0.813	0.833
Time for training	0.183 s	0.292 s	0.449 s	0.637 s	0.97 s	0.847 s	1.014 s	1.223 s	1.26 s	1.497 s
Accuracy	0.607	0.707	0.8	0.74	0.833	0.76	0.793	0.773	0.773	0.8
Time for training	0.162 s	0.442 s	0.455 s	0.613 s	0.848 s	0.981 s	1.021 s	1.337 s	1.596 s	1.602 s
Accuracy	0.52	0.807	0.667	0.72	0.813	0.807	0.86	0.78	0.847	0.813
Mean of Accuracy	0.579	0.699	0.761	0.764	0.817	0.752	0.8	0.8	0.796	0.816
Mean of Prediction error	0.421	0.301	0.239	0.236	0.183	0.248	0.2	0.2	0.204	0.184

Standard deviation	0.0362	0.0873	0.0561	0.0523	0.0166	0.045	0.054	0.0332	0.031	0.0254
deviation										

KNN for face recognition with 30 %	With 60% training data (Time: 35.218 s)	With 100% training data (Time: 52.849
training data(Time: 15.208 s)		s)
K = 3; Accuracy: 0.65333333333333333	K = 3; Accuracy: 0.5333333333333333	K = 3; Accuracy: 0.546666666666666
K = 5; Accuracy: 0.646666666666666	K = 5; Accuracy: 0.56	K = 5; Accuracy: 0.5733333333333333
K = 7; Accuracy: 0.5933333333333333	K = 7; Accuracy: 0.54	K = 7; Accuracy: 0.586666666666667
K = 9; Accuracy: 0.626666666666667	K = 9; Accuracy: 0.52	K = 9; Accuracy: 0.56
K = 11; Accuracy: 0.666666666666666	K = 11; Accuracy: 0.52	K = 11; Accuracy: 0.5533333333333333
K = 13; Accuracy: 0.6733333333333333	K = 13; Accuracy: 0.5266666666666666	K = 13; Accuracy: 0.5333333333333333
K = 15; Accuracy: 0.6933333333333333	K = 15; Accuracy: 0.5266666666666666	K = 15; Accuracy: 0.56
K = 17; Accuracy: 0.6733333333333333	K = 17; Accuracy: 0.5133333333333333	K = 17; Accuracy: 0.56
K = 19; Accuracy: 0.7	K = 19; Accuracy: 0.5133333333333333	K = 19; Accuracy: 0.5533333333333333
K = 21; Accuracy: 0.7133333333333333	K = 21; Accuracy: 0.5133333333333333	K = 21; Accuracy: 0.5533333333333333
K = 23; Accuracy: 0.7	K = 23; Accuracy: 0.5133333333333333	K = 23; Accuracy: 0.546666666666666
K = 25; Accuracy: 0.72	K = 25; Accuracy: 0.5133333333333333	K = 25; Accuracy: 0.546666666666666
K = 27; Accuracy: 0.686666666666666	K = 27; Accuracy: 0.5133333333333333	K = 27; Accuracy: 0.546666666666666
K = 29; Accuracy: 0.7133333333333334	K = 29; Accuracy: 0.5133333333333333	K = 29; Accuracy: 0.54
K = 31; Accuracy: 0.7	K = 31; Accuracy: 0.5133333333333333	K = 31; Accuracy: 0.526666666666666
K = 33; Accuracy: 0.7533333333333333	K = 33; Accuracy: 0.5133333333333333	K = 33; Accuracy: 0.54
K = 35; Accuracy: 0.7533333333333333	K = 35; Accuracy: 0.5133333333333333	K = 35; Accuracy: 0.54
K = 37; Accuracy: 0.7533333333333333	K = 37; Accuracy: 0.5133333333333333	K = 37; Accuracy: 0.54
K = 39; Accuracy: 0.7333333333333333	K = 39; Accuracy: 0.5133333333333333	K = 39; Accuracy: 0.54
K = 41; Accuracy: 0.76	K = 41; Accuracy: 0.5133333333333333	K = 41; Accuracy: 0.54
K = 43; Accuracy: 0.686666666666666	K = 43; Accuracy: 0.513333333333333	K = 43; Accuracy: 0.546666666666666
K = 45; Accuracy: 0.64	K = 45; Accuracy: 0.513333333333333	K = 45; Accuracy: 0.5666666666666667
K = 47; Accuracy: 0.673333333333333	K = 47; Accuracy: 0.52	K = 47; Accuracy: 0.56
K = 49; Accuracy: 0.613333333333333	K = 49; Accuracy: 0.5133333333333333	K = 49; Accuracy: 0.5666666666666667
K = 51; Accuracy: 0.586666666666667	K = 51; Accuracy: 0.513333333333333	K = 51; Accuracy: 0.56
K = 53; Accuracy: 0.5733333333333334	K = 53; Accuracy: 0.5133333333333333	K = 53; Accuracy: 0.54666666666666666666666666666666666666
K = 55; Accuracy: 0.573333333333334	K = 55; Accuracy: 0.52	K = 55; Accuracy: 0.56
K = 57; Accuracy: 0.553333333333333	K = 57; Accuracy: 0.52	K = 57; Accuracy: 0.56
K = 59; Accuracy: 0.56	K = 59; Accuracy: 0.526666666666666	K = 59; Accuracy: 0.5733333333333333
K = 61; Accuracy: 0.5666666666666667	K = 61; Accuracy: 0.52666666666666666666666666666666666666	K = 61; Accuracy: 0.58
K = 63; Accuracy: 0.54	K = 63; Accuracy: 0.526666666666666	K = 63; Accuracy: 0.56666666666666666
K = 65; Accuracy: 0.52666666666666	K = 65; Accuracy: 0.5333333333333333	K = 65; Accuracy: 0.5866666666666667
K = 67; Accuracy: 0.52	K = 67; Accuracy: 0.5333333333333333333333333333333333333	K = 67; Accuracy: 0.6066666666666667
K = 69; Accuracy: 0.5	K = 69; Accuracy: 0.54666666666666666666666666666666666666	K = 69; Accuracy: 0.5933333333333334
K = 71; Accuracy: 0.49333333333333333	K = 71; Accuracy: 0.5333333333333333	K = 71; Accuracy: 0.5933333333333334
K = 73; Accuracy: 0.486666666666667	K = 73; Accuracy: 0.5533333333333333	K = 73; Accuracy: 0.6
K = 75; Accuracy: 0.486666666666667	K = 75; Accuracy: 0.5533333333333333333333333333333333333	K = 75; Accuracy: 0.62
K = 77; Accuracy: 0.486666666666667	K = 77; Accuracy: 0.5666666666666666666666666666666666666	K = 77; Accuracy: 0.6
K = 79; Accuracy: 0.486666666666667	K = 79; Accuracy: 0.5666666666666667	K = 79; Accuracy: 0.62
K = 81; Accuracy: 0.486666666666667	K = 81; Accuracy: 0.5866666666666667	K = 81; Accuracy: 0.6333333333333333333333333333333333333
K = 81; Accuracy: 0.48666666666666666666666666666666666666	K = 83; Accuracy: 0.59333333333333334	K = 83; Accuracy: 0.66
K = 85; Accuracy: 0.48666666666666666666666666666666666666	K = 85; Accuracy: 0.64	K = 85; Accuracy: 0.68
K = 87; Accuracy: 0.48666666666666666666666666666666666666	K = 87; Accuracy: 0.6866666666666666666666666666666666666	K = 87; Accuracy: 0.6866666666666666666666666666666666666
K = 89; Accuracy: 0.48666666666666666666666666666666666666	K = 89; Accuracy: 0.7066666666666666666666666666666666666	K = 89; Accuracy: 0.7
K = 91; Accuracy: 0.48666666666666666666666666666666666666	K = 91; Accuracy: 0.74	K = 89, Accuracy: 0.7 K = 91; Accuracy: 0.72
K = 91; Accuracy: 0.48666666666666666666666666666666666666	K = 91; Accuracy: 0.74 K = 93; Accuracy: 0.76	K = 91; Accuracy: 0.72 K = 93; Accuracy: 0.7466666666666667
K = 95; Accuracy: 0.48666666666666666666666666666666666666	K = 95; Accuracy: 0.76 K = 95; Accuracy: 0.8	K = 95; Accuracy: 0.74666666666666666666666666666666666666
	I	<u> </u>
K = 97; Accuracy: 0.486666666666666	K = 97; Accuracy: 0.7866666666666666	K = 97; Accuracy: 0.766666666666666

WND C D: 4 4 20.0/	W/4 1000/ 4 : : 1 4 (T' 25 01 :)
KNN for Digit recognition with 30 %	With 100% training data (Time:35.01min)
training data(Time: 23.57min)	Tr. 2 4 0.001
K = 3; Accuracy: 0.854	K = 3; Accuracy: 0.881
K = 5; Accuracy: 0.845	K = 5; Accuracy: 0.864
K = 7; Accuracy: 0.838	K = 7; Accuracy: 0.859
K = 9; Accuracy: 0.835	K = 9; Accuracy: 0.852
K = 11; Accuracy: 0.83	K = 11; Accuracy: 0.848
K = 13; Accuracy: 0.822	K = 13; Accuracy: 0.842
K = 15; Accuracy: 0.821	K = 15; Accuracy: 0.841
K = 17; Accuracy: 0.811	K = 17; Accuracy: 0.842
K = 19; Accuracy: 0.801	K = 19; Accuracy: 0.836
K = 21; Accuracy: 0.799	K = 21; Accuracy: 0.831
K = 23; Accuracy: 0.794	K = 23; Accuracy: 0.823
K = 25; Accuracy: 0.782	K = 25; Accuracy: 0.824
K = 27; Accuracy: 0.785	K = 27; Accuracy: 0.823
K = 29; Accuracy: 0.771	K = 29; Accuracy: 0.812
K = 31; Accuracy: 0.766	K = 31; Accuracy: 0.811
K = 33; Accuracy: 0.762	K = 33; Accuracy: 0.804
K = 35; Accuracy: 0.759	K = 35; Accuracy: 0.805
K = 37; Accuracy: 0.75	K = 37; Accuracy: 0.8
K = 39; Accuracy: 0.742	K = 39; Accuracy: 0.79
K = 41; Accuracy: 0.738	K = 41; Accuracy: 0.79
K = 43; Accuracy: 0.739	K = 43; Accuracy: 0.793
K = 45; Accuracy: 0.737	K = 45; Accuracy: 0.785
K = 47; Accuracy: 0.731	K = 47; Accuracy: 0.784
K = 49; Accuracy: 0.728	K = 49; Accuracy: 0.781
K = 51; Accuracy: 0.727	K = 51; Accuracy: 0.776
K = 53; Accuracy: 0.725	K = 53; Accuracy: 0.773
K = 55; Accuracy: 0.718	K = 55; Accuracy: 0.77
K = 57; Accuracy: 0.715	K = 57; Accuracy: 0.768
K = 59; Accuracy: 0.707	K = 59; Accuracy: 0.768
K = 61; Accuracy: 0.703	K = 61; Accuracy: 0.763
K = 63; Accuracy: 0.701	K = 63; Accuracy: 0.761
K = 65; Accuracy: 0.698	K = 65; Accuracy: 0.761
K = 67; Accuracy: 0.692	K = 67; Accuracy: 0.756
K = 69; Accuracy: 0.688	K = 69; Accuracy: 0.753
K = 71; Accuracy: 0.686	K = 71; Accuracy: 0.749
K = 73; Accuracy: 0.681	K = 73; Accuracy: 0.751
K = 75; Accuracy: 0.673	K = 75; Accuracy: 0.746
K = 77; Accuracy: 0.673	K = 77; Accuracy: 0.744
K = 79; Accuracy: 0.67	K = 79; Accuracy: 0.743
K = 81; Accuracy: 0.667	K = 81; Accuracy: 0.74
K = 83; Accuracy: 0.658	K = 83; Accuracy: 0.738
K = 85; Accuracy: 0.654	K = 85; Accuracy: 0.738
K = 87; Accuracy: 0.651	K = 87; Accuracy: 0.732
K = 89; Accuracy: 0.653	K = 89; Accuracy: 0.73
K = 91; Accuracy: 0.649	K = 91; Accuracy: 0.726
K = 93; Accuracy: 0.645	K = 93; Accuracy: 0.727
K = 95; Accuracy: 0.642	K = 95; Accuracy: 0.726
K = 97; Accuracy: 0.638	K = 97; Accuracy: 0.721
K = 99; Accuracy: 0.637	K = 99; Accuracy: 0.718