M2202 Analyse et méthodes numériques

Département Informatique IUT de

Plan

Développement limité

Fonctions équivalentes

Bibliographie

M2202

Approximations

Aurélie Nemours (1954)

M2202 Analyse et méthodes numériques

Informatique IUT de Saint-Dié

- Plan
- Développement limité
- Fonctions équivalentes

- Plan
 - Développement limité
- 3 Fonctions équivalentes
- 4 Bibliographie

M2202 Analyse et méthodes numériques

Département Informatiqual IUT de Saint-Dié

Plan

Développement limité

Fonctions

M2202 Analyse et méthodes numériques

Départemer Informatiqu IUT de Saint-Dié

Plan

Développement limité

Fonctions

Définitions

Soit f une fonction définie sur un voisinage d'un réel x_0 , sauf éventuellement en x_0 .

M2202 Analyse et méthodes numériques

Départemen Informatique IUT de Saint-Dié

Plan

Développement limité

Fonctions équivalentes

Bibliographie

Définitions

Soit f une fonction définie sur un voisinage d'un réel x_0 , sauf éventuellement en x_0 .

On dit que f admet un développement limité d'ordre n au voisinage de x_0 s'il existe un polynôme P de degré au plus n, un intervalle ouvert I de centre x_0 et une fonction ϵ définie sur I, sauf peut-être en x_0 , et de limite 0 en x_0

M2202 Analyse et méthodes numériques

Départemen Informatiqu IUT de Saint-Dié

Plan

Développement limité

Fonctions équivalentes

Bibliographie

Définitions

Soit f une fonction définie sur un voisinage d'un réel x_0 , sauf éventuellement en x_0 .

On dit que f admet un développement limité d'ordre n au voisinage de x_0 s'il existe un polynôme P de degré au plus n, un intervalle ouvert I de centre x_0 et une fonction ϵ définie sur I, sauf peut-être en x_0 , et de limite 0 en x_0 tels que pour tout $x \in I$, $x \neq x_0$, on ait :

M2202 Analyse et méthodes numériques

Départemen Informatique IUT de Saint-Dié

Plan

Développement limité

Fonctions équivalentes

Ribliographie

Définitions

Soit f une fonction définie sur un voisinage d'un réel x_0 , sauf éventuellement en x_0 .

On dit que f admet un développement limité d'ordre n au voisinage de x_0 s'il existe un polynôme P de degré au plus n, un intervalle ouvert I de centre x_0 et une fonction ϵ définie sur I, sauf peut-être en x_0 , et de limite 0 en x_0 tels que pour tout $x \in I$, $x \neq x_0$, on ait : $f(x) = P(x) + (x - x_0)^n \epsilon(x)$

M2202 Analyse et méthodes numériques

Départemen Informatique IUT de Saint-Dié

Plan

Développement limité

Fonctions équivalentes

Ribliographie

Définitions

Soit f une fonction définie sur un voisinage d'un réel x_0 , sauf éventuellement en x_0 .

On dit que f admet un développement limité d'ordre n au voisinage de x_0 s'il existe un polynôme P de degré au plus n, un intervalle ouvert I de centre x_0 et une fonction ϵ définie sur I, sauf peut-être en x_0 , et de limite 0 en x_0 tels que pour tout $x \in I$, $x \neq x_0$, on ait : $f(x) = P(x) + (x - x_0)^n \epsilon(x)$ P est appelé partie régulière du développement limité.

M2202 Analyse et méthodes numériques

Développement limité

Définitions

Soit f une fonction définie sur un voisinage d'un réel x_0 , sauf éventuellement en x_0 .

On dit que f admet un développement limité d'ordre n au voisinage de x_0 s'il existe un polynôme P de degré au plus n, un intervalle ouvert I de centre x_0 et une fonction ϵ définie sur I, sauf peut-être en x_0 , et de limite 0en x_0 tels que pour tout $x \in I$, $x \neq x_0$, on ait : $f(x) = P(x) + (x - x_0)^n \epsilon(x)$ P est appelé partie régulière du développement limité.

 $(x-x_0)^n \epsilon(x)$ est appelé reste ou terme complémentaire.

M2202 Analyse et méthodes numériques

Développement limité

Définitions

Soit f une fonction définie sur un voisinage d'un réel x_0 , sauf éventuellement en x_0 .

On dit que f admet un développement limité d'ordre n au voisinage de x_0 s'il existe un polynôme P de degré au plus n, un intervalle ouvert I de centre x_0 et une fonction ϵ définie sur I, sauf peut-être en x_0 , et de limite 0en x_0 tels que pour tout $x \in I$, $x \neq x_0$, on ait : $f(x) = P(x) + (x - x_0)^n \epsilon(x)$ P est appelé partie régulière du développement limité.

 $(x-x_0)^n \epsilon(x)$ est appelé reste ou terme complémentaire.

Remarques

M2202 Analyse et méthodes numériques

Départemer Informatiqu IUT de Saint-Dié

Plan

Développement limité

Fonctions équivalentes

Sibliographic

Définitions

Soit f une fonction définie sur un voisinage d'un réel x_0 , sauf éventuellement en x_0 .

On dit que f admet un développement limité d'ordre n au voisinage de x_0 s'il existe un polynôme P de degré au plus n, un intervalle ouvert I de centre x_0 et une fonction ϵ définie sur I, sauf peut-être en x_0 , et de limite 0 en x_0 tels que pour tout $x \in I$, $x \neq x_0$, on ait : $f(x) = P(x) + (x - x_0)^n \epsilon(x)$ P est appelé partie régulière du développement limité.

 $(x - x_0)^n \epsilon(x)$ est appelé reste ou terme complémentaire.

Remarques

- si f admet un développement limité en x_0 et si f n'est pas définie en x_0 , f admet $P(x_0)$ comme limite en x_0 . On peut alors prolonger f par continuité en x_0 en posant $f(x_0) = P(x_0)$.

M2202 Analyse et méthodes numériques

Départemer Informatiqu IUT de Saint-Dié

Plan

Développement limité

Fonctions équivalentes

Bibliographi

Définitions

Soit f une fonction définie sur un voisinage d'un réel x_0 , sauf éventuellement en x_0 .

On dit que f admet un développement limité d'ordre n au voisinage de x_0 s'il existe un polynôme P de degré au plus n, un intervalle ouvert I de centre x_0 et une fonction ϵ définie sur I, sauf peut-être en x_0 , et de limite 0 en x_0 tels que pour tout $x \in I$, $x \neq x_0$, on ait : $f(x) = P(x) + (x - x_0)^n \epsilon(x)$ P est appelé partie régulière du développement limité.

 $(x-x_0)^n \epsilon(x)$ est appelé reste ou terme complémentaire.

Remarques

- si f admet un développement limité en x_0 et si f n'est pas définie en x_0 , f admet $P(x_0)$ comme limite en x_0 . On peut alors prolonger f par continuité en x_0 en posant $f(x_0) = P(x_0)$.
- on peut écrire P(x) sous la forme (formule de Taylor) :

M2202 Analyse et méthodes numériques

Départemen Informatiqu IUT de Saint-Dié

Plan

Développement limité

Fonctions équivalentes

Bibliograph

Définitions

Soit f une fonction définie sur un voisinage d'un réel x_0 , sauf éventuellement en x_0 .

On dit que f admet un développement limité d'ordre n au voisinage de x_0 s'il existe un polynôme P de degré au plus n, un intervalle ouvert I de centre x_0 et une fonction ϵ définie sur I, sauf peut-être en x_0 , et de limite 0 en x_0 tels que pour tout $x \in I$, $x \neq x_0$, on ait : $f(x) = P(x) + (x - x_0)^n \epsilon(x)$ P est appelé partie régulière du développement limité. $(x - x_0)^n \epsilon(x)$ est appelé reste ou terme complémentaire.

Remarques

- si f admet un développement limité en x_0 et si f n'est pas définie en x_0 , f admet $P(x_0)$ comme limite en x_0 . On peut alors prolonger f par continuité en x_0 en posant $f(x_0) = P(x_0)$.
- on peut écrire P(x) sous la forme (formule de Taylor) :

$$P(x) = P(x_0) + \frac{x - x_0}{1!}P'(x_0) + \frac{(x - x_0)^2}{2!}P^{(2)}(x_0) + \dots + \frac{(x - x_0)^n}{n!}P^{(n)}(x_0)$$

M2202 Analyse et méthodes numériques

Départemen Informatique IUT de

Diam

Développement limité

Fonctions équivalentes

M2202 Analyse et méthodes numériques

Départemen Informatiqu IUT de Saint-Dié

Plan

Développement limité

Fonctions

Exemples

La formule de Taylor-Young permet d'obtenir un développement limité d'ordre n pour pour toute fonction f telle que $f^{(n)}(x_0)$ existe :

M2202 Analyse et méthodes numériques

Départemen Informatique IUT de Saint-Dié

Plan

Développement limité

Fonctions équivalentes

Ribliographie

Exemples

La formule de Taylor-Young permet d'obtenir un développement limité d'ordre n pour pour toute fonction f telle que $f^{(n)}(x_0)$ existe :

$$f(x) = f(x_0) + \frac{x - x_0}{1!} f'(x_0) + \dots + \frac{(x - x_0)^n}{n!} f^{(n)}(x_0) + (x - x_0)^n \epsilon(x)$$

M2202 Analyse et méthodes numériques

Départemen Informatique IUT de Saint-Dié

Plan

Développement limité

Fonctions équivalentes

Bibliographie

Exemples

La formule de Taylor-Young permet d'obtenir un développement limité d'ordre n pour pour toute fonction f telle que $f^{(n)}(x_0)$ existe :

$$f(x) = f(x_0) + \frac{x - x_0}{1!} f'(x_0) + \dots + \frac{(x - x_0)^n}{n!} f^{(n)}(x_0) + (x - x_0)^n \epsilon(x)$$
avec $\lim_{x \to x_0} \epsilon(x) = 0$

M2202 Analyse et méthodes numériques

Départemen Informatique IUT de Saint-Dié

Plar

Développement limité

Fonctions équivalentes

Ribliographie

Exemples

La formule de Taylor-Young permet d'obtenir un développement limité d'ordre n pour pour toute fonction f telle que $f^{(n)}(x_0)$ existe :

$$f(x) = f(x_0) + \frac{x - x_0}{1!} f'(x_0) + \dots + \frac{(x - x_0)^n}{n!} f^{(n)}(x_0) + (x - x_0)^n \epsilon(x)$$
avec $\lim_{x \to x_0} \epsilon(x) = 0$

M2202 Analyse et méthodes numériques

Départemen Informatique IUT de Saint-Dié

Plan

Développement limité

Fonctions équivalentes

Bibliographie

Exemples

La formule de Taylor-Young permet d'obtenir un développement limité d'ordre n pour pour toute fonction f telle que $f^{(n)}(x_0)$ existe :

$$f(x) = f(x_0) + \frac{x - x_0}{1!} f'(x_0) + \dots + \frac{(x - x_0)^n}{n!} f^{(n)}(x_0) + (x - x_0)^n \epsilon(x)$$
avec $\lim_{x \to x_0} \epsilon(x) = 0$

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots + \frac{x^{n}}{n!} + x^{n} \epsilon(x)$$

M2202 Analyse et méthodes numériques

Département Informatique IUT de Saint-Dié

Plan

Développement limité

Fonctions équivalentes

Bibliographie

Exemples

La formule de Taylor-Young permet d'obtenir un développement limité d'ordre n pour pour toute fonction f telle que $f^{(n)}(x_0)$ existe :

$$f(x) = f(x_0) + \frac{x - x_0}{1!} f'(x_0) + \dots + \frac{(x - x_0)^n}{n!} f^{(n)}(x_0) + (x - x_0)^n \epsilon(x)$$
avec $\lim_{x \to x_0} \epsilon(x) = 0$

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots + \frac{x^{n}}{n!} + x^{n} \epsilon(x)$$

$$\cos x = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} - \dots + (-1)^{n} \frac{x^{2n}}{(2n)!} + x^{2n+1} \epsilon(x)$$

M2202 Analyse et méthodes numériques

Départemen Informatique IUT de Saint-Dié

Plan

Développement limité

Fonctions équivalentes

Bibliographie

Exemples

La formule de Taylor-Young permet d'obtenir un développement limité d'ordre n pour pour toute fonction f telle que $f^{(n)}(x_0)$ existe :

$$f(x) = f(x_0) + \frac{x - x_0}{1!} f'(x_0) + \dots + \frac{(x - x_0)^n}{n!} f^{(n)}(x_0) + (x - x_0)^n \epsilon(x)$$
avec $\lim_{x \to x_0} \epsilon(x) = 0$

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots + \frac{x^{n}}{n!} + x^{n} \epsilon(x)$$

$$\cos x = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} - \dots + (-1)^{n} \frac{x^{2n}}{(2n)!} + x^{2n+1} \epsilon(x)$$

$$\sin x = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} - \dots + (-1)^{n} \frac{x^{2n+1}}{(2n+1)!} + x^{2n+2} \epsilon(x)$$

M2202 Analyse et méthodes numériques

Département Informatique IUT de Saint-Dié

Plan

Développement limité

Fonctions équivalentes

Bibliographie

Exemples

La formule de Taylor-Young permet d'obtenir un développement limité d'ordre n pour pour toute fonction f telle que $f^{(n)}(x_0)$ existe :

$$f(x) = f(x_0) + \frac{x - x_0}{1!} f'(x_0) + \dots + \frac{(x - x_0)^n}{n!} f^{(n)}(x_0) + (x - x_0)^n \epsilon(x)$$
avec $\lim_{x \to x_0} \epsilon(x) = 0$

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots + \frac{x^{n}}{n!} + x^{n} \epsilon(x)$$

$$\cos x = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} - \dots + (-1)^{n} \frac{x^{2n}}{(2n)!} + x^{2n+1} \epsilon(x)$$

$$\sin x = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} - \dots + (-1)^{n} \frac{x^{2n+1}}{(2n+1)!} + x^{2n+2} \epsilon(x)$$

$$(1+x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha - 1)}{2!} x^{2} + \dots + \frac{\alpha(\alpha - 1) \dots (\alpha - (n-1))}{n!} x^{n} + x^{n} \epsilon(x)$$

M2202 Analyse et méthodes numériques

Département Informatique IUT de Saint-Dié

Plan

Développement limité

Fonctions équivalentes

Bibliographie

Exemples

La formule de Taylor-Young permet d'obtenir un développement limité d'ordre n pour pour toute fonction f telle que $f^{(n)}(x_0)$ existe :

$$f(x) = f(x_0) + \frac{x - x_0}{1!} f'(x_0) + \dots + \frac{(x - x_0)^n}{n!} f^{(n)}(x_0) + (x - x_0)^n \epsilon(x)$$
avec $\lim_{x \to x_0} \epsilon(x) = 0$

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots + \frac{x^{n}}{n!} + x^{n} \epsilon(x)$$

$$\cos x = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} - \dots + (-1)^{n} \frac{x^{2n}}{(2n)!} + x^{2n+1} \epsilon(x)$$

$$\sin x = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} - \dots + (-1)^{n} \frac{x^{2n+1}}{(2n+1)!} + x^{2n+2} \epsilon(x)$$

$$(1+x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2!} x^{2} + \dots + \frac{\alpha(\alpha-1) \dots (\alpha-(n-1))}{n!} x^{n} + x^{n} \epsilon(x)$$

$$\frac{1}{1+x} = 1 + x + x^{2} + \dots + x^{n} + x^{n} \epsilon(x)$$

M2202 Analyse et méthodes numériques

Département Informatique IUT de

Sallit-D

Plan

Développement limité

Fonctions équivalentes

M2202 Analyse et méthodes numériques

Développement limité

Exemple :
$$f(x) = e^x$$
 au voisinage de 0

A l'ordre
$$n: e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!} + x^n \epsilon(x)$$

M2202 Analyse et méthodes numériques

Département Informatique IUT de

Plan

Développement limité

Fonctions équivalentes

Exemple :
$$f(x) = e^x$$
 au voisinage de 0

A l'ordre
$$n: e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!} + x^n \epsilon(x)$$

A l'ordre 1 :
$$e^x = 1 + x^1 + x^1 \epsilon(x)$$
 avec $\lim_{x \to 0} \epsilon(x) = 0$

M2202 Analyse et méthodes numériques

Développement limité

Exemple : $f(x) = e^x$ au voisinage de 0

A l'ordre
$$n: e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots + \frac{x^{n}}{n!} + x^{n} \epsilon(x)$$

A l'ordre $1: e^{x} = 1 + x^{1} + x^{1} \epsilon(x)$ avec $\lim_{x \to 0} \epsilon(x) = 0$

A l'ordre 1 :
$$e^x = 1 + x^1 + x^1 \epsilon(x)$$
 avec $\lim_{x \to 0} \epsilon(x) = 0$

M2202 Analyse et méthodes numériques

Département Informatique IUT de

Dlan

Développement limité

Fonctions équivalentes

M2202 Analyse et méthodes numériques

Département Informatique IUT de

Plan

Développement limité

Fonctions équivalentes

Exemple :
$$f(x) = e^x$$
 au voisinage de 0

A l'ordre
$$n: e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!} + x^n \epsilon(x)$$

M2202 Analyse et méthodes numériques

Développement limité

Exemple :
$$f(x) = e^x$$
 au voisinage de 0

A l'ordre
$$n: e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!} + x^n \epsilon(x)$$

A l'ordre $2: e^x = 1 + x + \frac{x^2}{2!} + x^2 \epsilon(x)$ avec $\lim_{x \to 0} \epsilon(x) = 0$

A l'ordre 2 :
$$e^x = 1 + x + \frac{x}{2!} + x^2 \epsilon(x)$$
 avec $\lim_{x \to 0} \epsilon(x) = 0$

M2202 Analyse et méthodes numériques

Développement

limité

Exemple : $f(x) = e^x$ au voisinage de 0

A l'ordre
$$n: e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots + \frac{x^{n}}{n!} + x^{n} \epsilon(x)$$

A l'ordre $2: e^{x} = 1 + x + \frac{x^{2}}{2!} + x^{2} \epsilon(x)$ avec $\lim_{x \to 0} \epsilon(x) = 0$

A l'ordre 2 :
$$e^x = 1 + x + \frac{x}{2!} + x^2 \epsilon(x)$$
 avec $\lim_{x \to 0} \epsilon(x) = 0$

M2202 Analyse et méthodes numériques

Département Informatique IUT de

Dlan

Développement limité

Fonctions équivalentes

M2202 Analyse et méthodes numériques

Département Informatique IUT de

Développement limité

Fonctions équivalentes

Exemple :
$$f(x) = e^x$$
 au voisinage de 0

A l'ordre
$$n: e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots + \frac{x^{n}}{n!} + x^{n} \epsilon(x)$$

M2202 Analyse et méthodes numériques

Développement limité

Exemple :
$$f(x) = e^x$$
 au voisinage de 0

A l'ordre
$$n: e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!} + x^n \epsilon(x)$$

A l'ordre $3: e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + x^3 \epsilon(x)$ avec $\lim_{x \to 0} \epsilon(x) = 0$

1 l'ordre 3 :
$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + x^3 \epsilon(x)$$
 avec $\lim_{x \to 0} \epsilon(x) = 0$

M2202 Analyse et méthodes numériques

Développement limité

Exemple : $f(x) = e^x$ au voisinage de 0

A l'ordre
$$n: e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!} + x^n \epsilon(x)$$

A l'ordre $3: e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + x^3 \epsilon(x)$ avec $\lim_{x \to 0} \epsilon(x) = 0$

A l'ordre 3 :
$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + x^3 \epsilon(x)$$
 avec $\lim_{x \to 0} \epsilon(x) = 0$

M2202 Analyse et méthodes numériques

Département Informatique IUT de

Dlan

Développement limité

Fonctions équivalentes

M2202 Analyse et méthodes numériques

Départemen Informatique IUT de Saint-Dié

Plan

Développement limité

Fonctions équivalentes

Bibliographie

Propriétés

1) Si un développement limité d'ordre n au voisinage de x_0 existe alors il est unique.

M2202 Analyse et méthodes numériques

Départemen Informatique IUT de Saint-Dié

Plar

Développement limité

Fonctions équivalentes

Bibliographie

Propriétés

- 1) Si un développement limité d'ordre n au voisinage de x_0 existe alors il est unique.
- 2) Si une fonction paire (respectivement impaire) admet un développement limité d'ordre n au voisinage de 0 alors ce développement ne possède que des puissances paires (respectivement impaires) de la variable.

M2202 Analyse et méthodes numériques

Départemen Informatique IUT de Saint-Dié

Plan

Développement limité

Fonctions équivalentes

Bibliographie

Propriétés

- 1) Si un développement limité d'ordre n au voisinage de x_0 existe alors il est unique.
- 2) Si une fonction paire (respectivement impaire) admet un développement limité d'ordre n au voisinage de 0 alors ce développement ne possède que des puissances paires (respectivement impaires) de la variable.
- 3) Une fonction continue admet un développement limité d'ordre 1 au voisinage de x_0 si et seulement si elle est dérivable en x_0 .

M2202 Analyse et méthodes numériques

Départemen Informatique IUT de Saint-Dié

Plar

Développement limité

Fonctions équivalentes

Bibliographi

Propriétés

- 1) Si un développement limité d'ordre n au voisinage de x_0 existe alors il est unique.
- 2) Si une fonction paire (respectivement impaire) admet un développement limité d'ordre n au voisinage de 0 alors ce développement ne possède que des puissances paires (respectivement impaires) de la variable.
- 3) Une fonction continue admet un développement limité d'ordre 1 au voisinage de x_0 si et seulement si elle est dérivable en x_0 .
- 4) Le développement limité d'ordre n à l'origine d'une fonction polynôme P de degré m est égal à ce polynôme si n > m.

M2202 Analyse et méthodes numériques

Départemen Informatique IUT de Saint-Dié

Plar

Développement limité

Fonctions équivalentes

Propriétés

- 1) Si un développement limité d'ordre n au voisinage de x_0 existe alors il est unique.
- 2) Si une fonction paire (respectivement impaire) admet un développement limité d'ordre n au voisinage de 0 alors ce développement ne possède que des puissances paires (respectivement impaires) de la variable.
- 3) Une fonction continue admet un développement limité d'ordre 1 au voisinage de x_0 si et seulement si elle est dérivable en x_0 .
- 4) Le développement limité d'ordre n à l'origine d'une fonction polynôme P de degré m est égal à ce polynôme si $n \ge m$.

Pour n < m on obtient ce développement en supprimant tous les termes de degré strictement supérieur à n.

M2202 Analyse et méthodes numériques

Départemen Informatique IUT de Saint-Dié

Plar

Développement limité

Fonctions équivalentes

Bibliograph

Propriétés

- 1) Si un développement limité d'ordre n au voisinage de x_0 existe alors il est unique.
- 2) Si une fonction paire (respectivement impaire) admet un développement limité d'ordre n au voisinage de 0 alors ce développement ne possède que des puissances paires (respectivement impaires) de la variable.
- 3) Une fonction continue admet un développement limité d'ordre 1 au voisinage de x_0 si et seulement si elle est dérivable en x_0 .
- 4) Le développement limité d'ordre n à l'origine d'une fonction polynôme P de degré m est égal à ce polynôme si $n \ge m$.

Pour n < m on obtient ce développement en supprimant tous les termes de degré strictement supérieur à n.

5) On peut toujours se ramener à un développement limité au voisinage de 0.

M2202 Analyse et méthodes numériques

Département Informatique IUT de Saint-Dié

Plan

Développement limité

Fonctions équivalentes

Bibliographie

M2202 Analyse et méthodes numériques

Départemen Informatiqu IUT de Saint-Dié

Plan

Développement limité

Fonctions équivalentes

Bibliographie

Exemples

Développement limité de $P(x) = 1 + 3x + 5x^2 + x^4 + x^6 - 5x^7$ au voisinage de 0.

M2202 Analyse et méthodes numériques

Département Informatique IUT de Saint-Dié

Plan

Développement limité

Fonctions équivalentes

Bibliographie

Exemples

Développement limité de $P(x) = 1 + 3x + 5x^2 + x^4 + x^6 - 5x^7$ au voisinage de 0.

à l'ordre 8 :

$$P(x) = 1 + 3x + 5x^{2} + x^{4} + x^{6} - 5x^{7} + x^{8}\epsilon(x) \ (\epsilon(x) = 0).$$

M2202 Analyse et méthodes numériques

Département Informatique IUT de Saint-Dié

Plan

Développement limité

Fonctions équivalentes

Exemples

Développement limité de $P(x) = 1 + 3x + 5x^2 + x^4 + x^6 - 5x^7$ au voisinage de 0.

à l'ordre 8 :

$$P(x) = 1 + 3x + 5x^{2} + x^{4} + x^{6} - 5x^{7} + x^{8}\epsilon(x) \ (\epsilon(x) = 0).$$

à l'ordre 7 :

M2202 Analyse et méthodes numériques

Département Informatique IUT de Saint-Dié

Plan

Développement limité

Fonctions équivalentes

Bibliographie

Exemples

Développement limité de $P(x) = 1 + 3x + 5x^2 + x^4 + x^6 - 5x^7$ au voisinage de 0.

à l'ordre 8 :

$$P(x) = 1 + 3x + 5x^2 + x^4 + x^6 - 5x^7 + x^8 \epsilon(x) \ (\epsilon(x) = 0).$$

à l'ordre 7 :

$$P(x) = 1 + 3x + 5x^{2} + x^{4} + x^{6} - 5x^{7} + x^{7} \epsilon(x) \ (\epsilon(x) = 0).$$

M2202 Analyse et méthodes numériques

Département Informatique IUT de Saint-Dié

Plar

Développement limité

Fonctions équivalentes

Sibliographie

Exemples

Développement limité de $P(x) = 1 + 3x + 5x^2 + x^4 + x^6 - 5x^7$ au voisinage de 0.

à l'ordre 8 :

$$P(x) = 1 + 3x + 5x^{2} + x^{4} + x^{6} - 5x^{7} + x^{8}\epsilon(x) \ (\epsilon(x) = 0).$$

à l'ordre 7 :

$$P(x) = 1 + 3x + 5x^{2} + x^{4} + x^{6} - 5x^{7} + x^{7} \epsilon(x) \ (\epsilon(x) = 0).$$

à l'ordre 6 :

M2202 Analyse et méthodes numériques

Département Informatique IUT de Saint-Dié

Plar

Développement limité

Fonctions équivalentes

ibliographie

Exemples

Développement limité de $P(x) = 1 + 3x + 5x^2 + x^4 + x^6 - 5x^7$ au voisinage de 0.

à l'ordre 8 :

$$P(x) = 1 + 3x + 5x^{2} + x^{4} + x^{6} - 5x^{7} + x^{8}\epsilon(x) \ (\epsilon(x) = 0).$$

à l'ordre 7 :

$$P(x) = 1 + 3x + 5x^{2} + x^{4} + x^{6} - 5x^{7} + x^{7} \epsilon(x) \ (\epsilon(x) = 0).$$

à l'ordre 6 :

$$P(x) = 1 + 3x + 5x^2 + x^4 + x^6 + x^6 \epsilon(x) \ (\epsilon(x) = -5x).$$

M2202 Analyse et méthodes numériques

Département Informatique IUT de Saint-Dié

Plar

Développement limité

Fonctions équivalentes

Exemples

Développement limité de $P(x) = 1 + 3x + 5x^2 + x^4 + x^6 - 5x^7$ au voisinage de 0.

à l'ordre 8 :

$$P(x) = 1 + 3x + 5x^{2} + x^{4} + x^{6} - 5x^{7} + x^{8}\epsilon(x) \ (\epsilon(x) = 0).$$

à l'ordre 7 :

$$P(x) = 1 + 3x + 5x^{2} + x^{4} + x^{6} - 5x^{7} + x^{7} \epsilon(x) \ (\epsilon(x) = 0).$$

à l'ordre 6 :

$$P(x) = 1 + 3x + 5x^2 + x^4 + x^6 + x^6 \epsilon(x) \ (\epsilon(x) = -5x).$$

à l'ordre 3 :

M2202 Analyse et méthodes numériques

Départemen Informatique IUT de Saint-Dié

Plar

Développement limité

Fonctions équivalentes

Exemples

Développement limité de $P(x) = 1 + 3x + 5x^2 + x^4 + x^6 - 5x^7$ au voisinage de 0.

à l'ordre 8 :

$$P(x) = 1 + 3x + 5x^{2} + x^{4} + x^{6} - 5x^{7} + x^{8}\epsilon(x) \ (\epsilon(x) = 0).$$

à l'ordre 7 :

$$P(x) = 1 + 3x + 5x^{2} + x^{4} + x^{6} - 5x^{7} + x^{7} \epsilon(x) \ (\epsilon(x) = 0).$$

à l'ordre 6 :

$$P(x) = 1 + 3x + 5x^2 + x^4 + x^6 + x^6 \epsilon(x) \ (\epsilon(x) = -5x).$$

à l'ordre 3 :

$$P(x) = 1 + 3x + 5x^{2} + x^{3}\epsilon(x) \ (\epsilon(x) = x + x^{3} - 5x^{4}).$$

M2202 Analyse et méthodes numériques

Département Informatique IUT de Saint-Dié

Plan

Développement limité

Fonctions équivalentes

Bibliographie

M2202 Analyse et méthodes numériques

Département Informatique IUT de

Plan

Développement limité

Fonctions équivalentes

Exemples

Développement limité de e^x à l'ordre 2 au voisinage de 1 :

M2202 Analyse et méthodes numériques

Départemen Informatique IUT de Saint-Dié

Plar

Développement limité

Fonctions équivalentes

Bibliographie

Exemples

Développement limité de e^x à l'ordre 2 au voisinage de 1 :

$$e^{x} = \frac{e^{(1+h)}}{e} = e^{1}e^{h} = e(1+h+\frac{h^{2}}{2}+h^{2}\epsilon_{1}(h)) = e+eh+e\frac{h^{2}}{2}+eh^{2}\epsilon_{1}(h)$$

M2202 Analyse et méthodes numériques

Développement limité

Exemples

Développement limité de e^x à l'ordre 2 au voisinage de 1 :

$$e^{x} = e^{(1+h)} = e^{1}e^{h} = e(1+h+\frac{h^{2}}{2}+h^{2}\epsilon_{1}(h)) = e+eh+e\frac{h^{2}}{2}+eh^{2}\epsilon_{1}(h)$$

avec $\epsilon_{1}(h) \to 0$ lorsque $h \to 0$

avec $\epsilon_1(h) \to 0$ lorsque $h \to 0$.

M2202 Analyse et méthodes numériques

Départemen Informatique IUT de Saint-Dié

Plar

Développement limité

Fonctions équivalentes

Bibliographie

Exemples

Développement limité de e^x à l'ordre 2 au voisinage de 1 :

$$e^{x} = e^{(1+h)} = e^{1}e^{h} = e(1+h+\frac{h^{2}}{2}+h^{2}\epsilon_{1}(h)) = e+eh+e\frac{h^{2}}{2}+eh^{2}\epsilon_{1}(h)$$

avec $\epsilon_1(h) \to 0$ lorsque $h \to 0$.

On obtient en écrivant h = x - 1:

M2202 Analyse et méthodes numériques

Départemen Informatique IUT de Saint-Dié

Plar

Développement limité

Fonctions équivalentes

Bibliographie

Exemples

Développement limité de e^x à l'ordre 2 au voisinage de 1 :

$$e^{x} = e^{(1+h)} = e^{1}e^{h} = e(1+h+\frac{h^{2}}{2}+h^{2}\epsilon_{1}(h)) = e+eh+e\frac{h^{2}}{2}+eh^{2}\epsilon_{1}(h)$$

avec $\epsilon_1(h) \to 0$ lorsque $h \to 0$.

On obtient en écrivant h = x - 1:

$$e^{x} = e + e(x - 1) + e \frac{(x - 1)^{2}}{2} + (x - 1)^{2} e \epsilon_{1}(x - 1)$$

M2202 Analyse et méthodes numériques

Départemen Informatique IUT de Saint-Dié

Plar

Développement limité

Fonctions équivalentes

Bibliographic

Exemples

Développement limité de e^x à l'ordre 2 au voisinage de 1 :

$$e^{x} = e^{(1+h)} = e^{1}e^{h} = e(1+h+\frac{h^{2}}{2}+h^{2}\epsilon_{1}(h)) = e+eh+e\frac{h^{2}}{2}+eh^{2}\epsilon_{1}(h)$$

avec $\epsilon_1(h) \to 0$ lorsque $h \to 0$.

On obtient en écrivant
$$h = x - 1$$
:

$$e^{x} = e + e(x - 1) + e^{\frac{(x - 1)^{2}}{2}} + (x - 1)^{2}e\epsilon_{1}(x - 1)$$

$$e^{x} = e + e(x - 1) + e \frac{(x - 1)^{2}}{2} + (x - 1)^{2} \epsilon_{2}(x)$$
 avec

$$\epsilon_2(x) = e\epsilon_1(x-1) \to 0 \text{ lorsque } x \to 1$$

M2202 Analyse et méthodes numériques

Département Informatique IUT de Saint-Dié

Plan

Développement limité

Fonctions équivalentes

Bibliographie

Remarque

M2202 Analyse et méthodes numériques

Département Informatique IUT de Saint-Dié

Plan

Développement limité

Fonctions équivalentes

Bibliographie

Remarque

Si f admet un développement limité d'ordre $n \ge 2$, cela n'implique pas l'existence de dérivées d'ordre supérieur ou égal à 2.

M2202 Analyse et méthodes numériques

Départemen Informatique IUT de Saint-Dié

Plan

Développement limité

Fonctions

Bibliographie

Remarque

Si f admet un développement limité d'ordre $n \ge 2$, cela n'implique pas l'existence de dérivées d'ordre supérieur ou égal à 2.

M2202 Analyse et méthodes numériques

Départemen Informatique IUT de Saint-Dié

Plar

Développement limité

Fonctions équivalentes

Bibliographi

Remarque

Si f admet un développement limité d'ordre $n \ge 2$, cela n'implique pas l'existence de dérivées d'ordre supérieur ou égal à 2.

Exemple

$$f(x) = \cos x + x^3 \sin \frac{1}{x}$$
 pour $x \neq 0$ et $f(0) = 1$ admet un développement

limité d'ordre 2 en 0

M2202 Analyse et méthodes numériques

Département Informatique IUT de Saint-Dié

Plar

Développement limité

Fonctions équivalentes

Bibliograph

Remarque

Si f admet un développement limité d'ordre $n \ge 2$, cela n'implique pas l'existence de dérivées d'ordre supérieur ou égal à 2.

$$f(x) = \cos x + x^3 \sin \frac{1}{x}$$
 pour $x \neq 0$ et $f(0) = 1$ admet un développement

limité d'ordre 2 en 0 :
$$f(x) = 1 - \frac{x^2}{2!} + x^2 \epsilon(x)$$

M2202 Analyse et méthodes numériques

Départemen[:] Informatique IUT de Saint-Dié

Plar

Développement limité

Fonctions équivalentes

Bibliograph

Remarque

Si f admet un développement limité d'ordre $n \ge 2$, cela n'implique pas l'existence de dérivées d'ordre supérieur ou égal à 2.

$$f(x) = \cos x + x^3 \sin \frac{1}{x}$$
 pour $x \neq 0$ et $f(0) = 1$ admet un développement

limité d'ordre 2 en 0 :
$$f(x) = 1 - \frac{x^2}{2!} + x^2 \epsilon(x) + x^2 \left(x \sin \frac{1}{x} \right)$$

M2202 Analyse et méthodes numériques

Départemen[:] Informatique IUT de Saint-Dié

Plar

Développement limité

Fonctions équivalentes

Bibliographi

Remarque

Si f admet un développement limité d'ordre $n \ge 2$, cela n'implique pas l'existence de dérivées d'ordre supérieur ou égal à 2.

$$f(x) = \cos x + x^3 \sin \frac{1}{x}$$
 pour $x \neq 0$ et $f(0) = 1$ admet un développement

limité d'ordre 2 en 0 :
$$f(x) = 1 - \frac{x^2}{2!} + x^2 \epsilon(x) + x^2 \left(x \sin \frac{1}{x}\right)$$

soit
$$f(x) = 1 - \frac{x^2}{2!} + x^2 \left(\epsilon(x) + x \sin \frac{1}{x} \right)$$

M2202 Analyse et méthodes numériques

Départemen[:] Informatique IUT de Saint-Dié

Plar

Développement limité

Fonctions équivalentes

Remarque

Si f admet un développement limité d'ordre $n \ge 2$, cela n'implique pas l'existence de dérivées d'ordre supérieur ou égal à 2.

$$f(x) = \cos x + x^3 \sin \frac{1}{x}$$
 pour $x \neq 0$ et $f(0) = 1$ admet un développement

limité d'ordre 2 en 0 :
$$f(x) = 1 - \frac{x^2}{2!} + x^2 \epsilon(x) + x^2 \left(x \sin \frac{1}{x}\right)$$

soit
$$f(x) = 1 - \frac{x^2}{2!} + x^2 \left(\epsilon(x) + x \sin \frac{1}{x} \right)$$
 mais $f^{(2)}(0)$ n'existe pas.

M2202 Analyse et méthodes numériques

Départemen Informatique IUT de Saint-Dié

Plan

Développement limité

Fonctions équivalentes

Bibliographie

Division suivant les puissances croissantes

M2202 Analyse et méthodes numériques

Départemen nformatiqu IUT de Saint-Dié

Plan

Développement limité

Fonctions

Division suivant les puissances croissantes

La division suivant les puissances croissantes à l'ordre n du polynôme A par le polynôme B tel que $B(0) \neq 0$ est donnée par $A = BQ_n + x^{n+1}R_n$, Q_n et R_n polynômes avec Q_n de degré $\leq n$.

M2202 Analyse et méthodes numériques

Départemen nformatiqu IUT de Saint-Dié

Plar

Développement limité

Fonctions

quivalentes

Division suivant les puissances croissantes

La division suivant les puissances croissantes à l'ordre n du polynôme A par le polynôme B tel que $B(0) \neq 0$ est donnée par $A = BQ_n + x^{n+1}R_n$, Q_n et R_n polynômes avec Q_n de degré $\leq n$.

Remarque

M2202 Analyse et méthodes numériques

Départemer nformatiqu IUT de Saint-Dié

Plan

Développement limité

Fonctions

Bibliograph

Division suivant les puissances croissantes

La division suivant les puissances croissantes à l'ordre n du polynôme A par le polynôme B tel que $B(0) \neq 0$ est donnée par $A = BQ_n + x^{n+1}R_n$, Q_n et R_n polynômes avec Q_n de degré $\leq n$.

Remarque

Le degré du polynôme nul est $-\infty$.

M2202 Analyse et méthodes numériques

Département Informatique IUT de

Plan

Développement limité

Fonctions équivalentes

M2202 Analyse et méthodes numériques

Département Informatique IUT de Saint-Dié

Plan

Développement limité

Fonctions équivalentes

$$A(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!}$$

M2202 Analyse et méthodes numériques

Département Informatique IUT de Saint-Dié

Plan

Développement limité

Fonctions

Bibliographie

$$A(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!}$$
 $B(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!}$

M2202 Analyse et méthodes numériques

Développement limité

Exemple

$$A(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!}$$
 $B(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!}$

$$B(x) = 1 - \frac{\lambda}{2!} + \frac{\lambda}{4!}$$

Division à l'ordre 0 :

M2202 Analyse et méthodes numériques

Département Informatique IUT de Saint-Dié

Plan

Développement limité

Fonctions équivalentes

Exemple

$$A(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!}$$
 $B(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!}$

$$x - \frac{x^3}{6} + \frac{x^5}{120}$$

$$1 - \frac{x^2}{2!} + \frac{x^4}{4!}$$

0

M2202 Analyse et méthodes numériques

Département Informatique

nformatiqu IUT de Saint-Dié

Plar

Développement limité

Fonctions équivalentes

$$A(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!}$$
 $B(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!}$ Division à l'ordre 0 :

$$x - \frac{x^3}{6} + \frac{x^5}{120}$$

$$1 - \frac{x^2}{2!} + \frac{x^4}{4!}$$

$$x - \frac{x^3}{3!} + \frac{x^5}{5!} = \left(1 - \frac{x^2}{2!} + \frac{x^4}{4!}\right). \ 0 + x^{0+1} \left(1 - \frac{x^2}{3!} + \frac{x^4}{5!}\right)$$

M2202 Analyse et méthodes numériques

Département Informatique IUT de Saint-Dié

Plan

Développement limité

Fonctions équivalentes

M2202 Analyse et méthodes numériques

Département Informatique IUT de

Plan

Développement limité

Fonctions équivalentes

Bibliographie

$$A(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!}$$

M2202 Analyse et méthodes numériques

Département Informatique IUT de

Plan

Développement limité

Fonctions équivalentes

Bibliographie

$$A(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!}$$
 $B(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!}$

M2202 Analyse et méthodes numériques

Développement limité

Exemple

$$(x) = x - \frac{x^3}{2} + \frac{x}{2}$$

$$A(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!}$$
 $B(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!}$

Division à l'ordre 1 :

M2202 Analyse et méthodes numériques

Département Informatique IUT de Saint-Dié

Plan

Développement limité

Fonctions équivalentes

Bibliographie

Exemple

$$A(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!}$$
 $B(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!}$

$$x - \frac{x^3}{6} + \frac{x^5}{120}$$

$$-x$$
 $+\frac{x^3}{2}$ $-\frac{x^5}{24}$

$$\frac{x^3}{3} - \frac{x^5}{30}$$

x

Division à l'ordre 1 :

 $1 - \frac{x^2}{2!} + \frac{x^4}{4!}$

M2202 Analyse et méthodes numériques

Département Informatique IUT de Saint-Dié

Plan

Développement limité

Fonctions équivalentes

Exemple
$$A(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} \qquad B(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} \qquad \boxed{\text{Division à l'ordre 1}}:$$

$$x - \frac{x^3}{6} + \frac{x^5}{120} \qquad \qquad \boxed{1 - \frac{x^2}{2!} + \frac{x^4}{4!}}$$

$$-x + \frac{x^3}{2} - \frac{x^5}{24} \qquad \qquad \boxed{x}$$

$$x - \frac{x^3}{3!} + \frac{x^5}{5!} = \left(1 - \frac{x^2}{2!} + \frac{x^4}{4!}\right). \quad x + x^{1+1} \left(\frac{x^1}{3} - \frac{x^3}{30}\right)$$

M2202 Analyse et méthodes numériques

Département Informatique IUT de Saint-Dié

Plan

Développement limité

Fonctions équivalentes

M2202 Analyse et méthodes numériques

Département Informatique IUT de Saint-Dié

Plan

Développement limité

Fonctions équivalentes

Bibliographie

$$A(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!}$$

M2202 Analyse et méthodes numériques

Département Informatique IUT de

Plan

Développement limité

Fonctions équivalentes

Bibliographie

$$A(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!}$$
 $B(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!}$

M2202 Analyse et méthodes numériques

Développement limité

Exemple

$$(x) = x - \frac{x^3}{x^3} + \frac{x^3}{x^3}$$

$$A(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!}$$
 $B(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!}$

Division à l'ordre 2 :

M2202 Analyse et méthodes numériques

Département Informatique IUT de Saint-Dié

Plan

Développement limité

Fonctions équivalentes

Bibliographie

Exemple $A(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} \qquad B(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} \qquad \boxed{\text{Division à l'ordre 2}}:$ $x - \frac{x^3}{6} + \frac{x^5}{120} \qquad \qquad \boxed{1 - \frac{x^2}{2!} + \frac{x^4}{4!}}$ $-x + \frac{x^3}{2} - \frac{x^5}{24} \qquad \qquad x$

M2202 Analyse et méthodes numériques

Département Informatique IUT de Saint-Dié

Plan

Développement limité

Fonctions équivalentes

Exemple $A(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} \qquad B(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} \qquad \boxed{\text{Division à l'ordre 2}}:$ $x - \frac{x^3}{6} + \frac{x^5}{120} \qquad \qquad \boxed{1 - \frac{x^2}{2!} + \frac{x^4}{4!}}$ $-x + \frac{x^3}{2} - \frac{x^5}{24} \qquad \qquad x$ $x - \frac{x^3}{3!} + \frac{x^5}{5!} = \left(1 - \frac{x^2}{2!} + \frac{x^4}{4!}\right). \quad x + x^{2+1} \left(\frac{1}{3} - \frac{x^2}{30}\right)$

M2202 Analyse et méthodes numériques

Département Informatique IUT de

Dlan

Développement limité

Fonctions équivalentes

M2202 Analyse et méthodes numériques

Département Informatique IUT de Saint-Dié

Plan

Développement limité

Fonctions équivalentes

Bibliographie

$$A(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!}$$

M2202 Analyse et méthodes numériques

Département Informatique IUT de Saint-Dié

Plan

Développement limité

Fonctions équivalentes

Bibliographie

$$A(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!}$$
 $B(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!}$

M2202 Analyse et méthodes numériques

Développement limité

Exemple

$$A(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!}$$
 $B(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!}$

$$B(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!}$$

Division à l'ordre 3 :

16/63

M2202 Analyse et méthodes numériques

Développement limité

$$A(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!}$$
 $B(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!}$ Division à l'ordre 3:

$$x - \frac{x^3}{6} + \frac{x^5}{120}$$

$$-x$$
 $+\frac{x^3}{2}$ $-\frac{x^5}{24}$

$$\frac{x^3}{3}$$
 $-\frac{x^5}{30}$

$$-\frac{x^3}{3}$$
 $+\frac{x^5}{6}$ $-\frac{x^7}{72}$

$$\frac{2x^5}{15}$$
 $-\frac{x^7}{72}$

$$1 - \frac{x^2}{2!} + \frac{x^4}{4!}$$

$$x + \frac{x^3}{3}$$

M2202 Analyse et méthodes numériques

Département Informatique IUT de Saint-Dié

Plan

Développement limité

Fonctions équivalentes

Exemple
$$A(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} \qquad B(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} \qquad \boxed{\text{Division à l'ordre 3}}:$$

$$x - \frac{x^3}{6} + \frac{x^5}{120} \qquad \qquad \boxed{1 - \frac{x^2}{2!} + \frac{x^4}{4!}}$$

$$-x + \frac{x^3}{2} - \frac{x^5}{24}$$

$$\frac{x^3}{3} - \frac{x^5}{30}$$

$$-\frac{x^3}{3} + \frac{x^5}{6} - \frac{x^7}{72}$$

$$x - \frac{x^3}{3!} + \frac{x^5}{5!} = \left(1 - \frac{x^2}{2!} + \frac{x^4}{4!}\right). \left(x + \frac{x^3}{3}\right) + x^{3+1} \left(\frac{2x^1}{15} - \frac{x^3}{72}\right)$$

M2202 Analyse et méthodes numériques

Département Informatique IUT de

Dlan

Développement limité

Fonctions équivalentes

M2202 Analyse et méthodes numériques

Département Informatique IUT de Saint-Dié

Plan

Développement limité

Fonctions équivalentes

Bibliographie

$$A(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!}$$

M2202 Analyse et méthodes numériques

Département Informatique IUT de Saint-Dié

Plan

Développement limité

Fonctions équivalentes

Bibliographie

$$A(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!}$$
 $B(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!}$

M2202 Analyse et méthodes numériques

Développement limité

Exemple

$$A(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!}$$
 $B(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!}$

$$B(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!}$$

Division à l'ordre 4 :

M2202 Analyse et méthodes numériques

Département Informatique IUT de Saint-Dié

Plan

Développement limité

Fonctions équivalentes

Exemple
$$A(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} \qquad B(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} \qquad \boxed{\text{Division à l'ordre 4}}:$$

$$x - \frac{x^3}{6} + \frac{x^5}{120}$$

$$-x$$
 $+\frac{x^3}{2}$ $-\frac{x^5}{24}$

$$\frac{x^3}{3}$$
 $-\frac{x^5}{30}$

$$-\frac{x^3}{3}$$
 $+\frac{x^5}{6}$ $-\frac{x^7}{72}$

$$\frac{2x^5}{15}$$
 $-\frac{x^7}{72}$

$$1 - \frac{x^2}{2!} + \frac{x^4}{4!}$$

$$x + \frac{x^3}{3}$$

M2202 Analyse et méthodes numériques

Département Informatique IUT de Saint-Dié

Plan

Développement limité

Fonctions équivalentes

Exemple
$$A(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} \qquad B(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} \qquad \boxed{\text{Division à l'ordre 4}} :$$

$$x - \frac{x^3}{6} + \frac{x^5}{120} \qquad \qquad \boxed{1 - \frac{x^2}{2!} + \frac{x^4}{4!}}$$

$$-x + \frac{x^3}{2} - \frac{x^5}{24}$$

$$\frac{x^3}{3!} - \frac{x^5}{30}$$

$$-\frac{x^3}{3!} + \frac{x^5}{6!} - \frac{x^7}{72}$$

$$x - \frac{x^3}{3!} + \frac{x^5}{5!} = \left(1 - \frac{x^2}{2!} + \frac{x^4}{4!}\right). \left(x + \frac{x^3}{3}\right) + x^{4+1}\left(\frac{2}{2!} - \frac{x^2}{72}\right)$$

M2202 Analyse et méthodes numériques

Département Informatique IUT de

Plan

Développement limité

Fonctions équivalentes

M2202 Analyse et méthodes numériques

Département Informatique IUT de Saint-Dié

Plan

Développement limité

Fonctions équivalentes

Bibliographie

$$A(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!}$$

M2202 Analyse et méthodes

numériques

Développement limité

$$A(x) = x - \frac{x^3}{x^3} + \frac{x}{x^3}$$

$$A(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!}$$
 $B(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!}$

M2202

Analyse et méthodes numériques

Développement limité

$$A(x) = x - \frac{x^3}{2!} + \frac{x}{5!}$$

$$A(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!}$$
 $B(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!}$ Division à l'ordre 5 :

M2202

Analyse et méthodes numériques

Développement limité

Exemple

$$A(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!}$$
 $B(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!}$ Division à l'ordre 5 :

$$x - \frac{x^3}{6} + \frac{x^5}{120}$$

$$-x + \frac{x^3}{2} - \frac{x^5}{24}$$

$$\frac{x^3}{3} \qquad -\frac{x^5}{30}$$

$$-\frac{x^3}{3}$$
 $+\frac{x^5}{6}$ $-\frac{x^7}{72}$

$$\frac{2x^5}{15}$$
 $-\frac{x^7}{72}$

$$\frac{2x^5}{15}$$
 $-\frac{x^7}{72}$

$$-\frac{2x^5}{15}$$
 $+\frac{x^7}{15}$ $-\frac{x^9}{180}$

$$\frac{19x^7}{360}$$
 $-\frac{x^9}{180}$

 $1 - \frac{x^2}{2!} + \frac{x^4}{4!}$

 $x + \frac{x^3}{3} + \frac{2x^5}{15}$

18/63

$$\frac{19x^{1}}{360}$$
 $-\frac{x^{9}}{180}$

M2202 Analyse et méthodes numériques Département Informatique IUT de Saint-Dié

M2202 Analyse et méthodes numériques

Département Informatique IUT de Saint-Dié

Plan

Développement limité

Fonctions équivalentes

Bibliographie

M2202 Analyse et méthodes numériques

Département Informatique IUT de

Plan

Développement limité

Fonctions équivalentes

Bibliographie

$$A(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!}$$

M2202 Analyse et méthodes numériques

Département Informatique IUT de

Plan

Développement limité

Fonctions équivalentes

Bibliographie

$$A(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!}$$
 $B(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!}$

M2202 Analyse et méthodes numériques

Département Informatique IUT de

Plar

Développement limité

Fonctions équivalentes

Bibliographie

Exemple

$$A(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!}$$
 $B(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!}$

Division à l'ordre 5 :

M2202 Analyse et méthodes numériques

Département Informatique IUT de Saint-Dié

Plar

Développement limité

Fonctions

Bibliographie

$$\begin{split} A(x) &= x - \frac{x^3}{3!} + \frac{x^5}{5!} & B(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} & \boxed{\text{Division à l'ordre 5}} : \\ x - \frac{x^3}{3!} + \frac{x^5}{5!} &= \left(1 - \frac{x^2}{2!} + \frac{x^4}{4!}\right) \cdot \left(-x + \frac{x^3}{3} + \frac{2x^5}{15} \right) + x^{5+1} \left(\frac{19x^1}{360} - \frac{x^3}{180} \right) \end{split}$$

M2202 Analyse et méthodes numériques

Département Informatique IUT de Saint-Dié

Plan

Développement limité

Fonctions

):h::-----h::

Exemple

$$\begin{split} A(x) &= x - \frac{x^3}{3!} + \frac{x^5}{5!} & B(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} & \boxed{\text{Division à l'ordre 5}} : \\ x - \frac{x^3}{3!} + \frac{x^5}{5!} &= \left(1 - \frac{x^2}{2!} + \frac{x^4}{4!}\right) \cdot \left(\begin{array}{c} x + \frac{x^3}{3} + \frac{2x^5}{15} \end{array} \right) + x^{5+1} \left(\frac{19x^1}{360} - \frac{x^3}{180} \right) \end{split}$$

M2202 nalyse (

Analyse et méthodes numériques

Département Informatique IUT de Saint-Dié

Plar

Développement limité

Fonctions équivalentes

Bibliographie

Exemple

$$\begin{split} A(x) &= x - \frac{x^3}{3!} + \frac{x^5}{5!} & B(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} & \boxed{\text{Division à l'ordre 5}} : \\ x - \frac{x^3}{3!} + \frac{x^5}{5!} &= \left(1 - \frac{x^2}{2!} + \frac{x^4}{4!}\right) \cdot \left(-x + \frac{x^3}{3} + \frac{2x^5}{15} \right) + x^{5+1} \left(\frac{19x^1}{360} - \frac{x^3}{180} \right) \end{split}$$

$$A(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!}$$

M2202 Analyse et méthodes numériques

Département Informatique IUT de Saint-Dié

Plar

Développement limité

Fonctions équivalentes

Bibliographie

Exemple

$$\begin{split} A(x) &= x - \frac{x^3}{3!} + \frac{x^5}{5!} & B(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} & \boxed{\text{Division à l'ordre 5}} : \\ x &- \frac{x^3}{3!} + \frac{x^5}{5!} &= \left(1 - \frac{x^2}{2!} + \frac{x^4}{4!}\right) \cdot \left(\begin{array}{c} x + \frac{x^3}{3} + \frac{2x^5}{15} \\ \end{array} \right) + x^{5+1} \left(\frac{19x^1}{360} - \frac{x^3}{180} \right) \end{split}$$

$$A(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!}$$
 $B(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!}$

M2202 Analyse et méthodes numériques

Département Informatique IUT de

Plan

Développement limité

Fonctions équivalentes

Sibliographie

Exemple

$$A(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} \qquad B(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} \qquad \boxed{\text{Division à l'ordre 5}} : \\ x - \frac{x^3}{3!} + \frac{x^5}{5!} = \left(1 - \frac{x^2}{2!} + \frac{x^4}{4!}\right) \cdot \left(x + \frac{x^3}{3} + \frac{2x^5}{15}\right) + x^{5+1} \left(\frac{19x^1}{360} - \frac{x^3}{180}\right)$$

$$A(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!}$$
 $B(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!}$ Division à l'ordre 6 :

M2202 Analyse et méthodes numériques

Département Informatique IUT de Saint-Dié

Plar

Développement limité

Fonctions équivalentes

Bibliographie

Exemple

$$\begin{split} &A(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} & B(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} & \boxed{\text{Division à l'ordre 5}} : \\ & x - \frac{x^3}{3!} + \frac{x^5}{5!} = \left(1 - \frac{x^2}{2!} + \frac{x^4}{4!}\right) \cdot \left(- x + \frac{x^3}{3} + \frac{2x^5}{15} \right) + x^{5+1} \left(\frac{19x^1}{360} - \frac{x^3}{180} \right) \end{split}$$

$$\begin{split} A(x) &= x - \frac{x^3}{3!} + \frac{x^5}{5!} & B(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} & \text{Division à l'ordre 6} : \\ x - \frac{x^3}{3!} + \frac{x^5}{5!} &= \left(1 - \frac{x^2}{2!} + \frac{x^4}{4!}\right) \cdot \left(\begin{array}{c} x + \frac{x^3}{3} + \frac{2x^5}{15} \end{array} \right) + x^{6+1} \left(\frac{19}{360} - \frac{x^2}{180} \right) \end{split}$$

M2202 Analyse et méthodes numériques

Département Informatique IUT de Saint-Dié

Plan

Développement limité

Fonctions équivalentes

M2202 Analyse et méthodes numériques

Départemer Informatiqu IUT de Saint-Dié

Plar

Développement limité

Fonctions équivalentes

Bibliographie

Opérations

Soit f et g deux fonctions admettant un développement limité d'ordre $n \ge 1$ au voisinage de 0. Alors f + g,

M2202 Analyse et méthodes numériques

Départemer Informatiqu IUT de Saint-Dié

Plan

Développement limité

Fonctions équivalentes

Bibliographie

Opérations

Soit f et g deux fonctions admettant un développement limité d'ordre $n \ge 1$ au voisinage de 0. Alors f + g, λf ($\lambda \in \mathbb{R}$),

M2202 Analyse et méthodes numériques

Departemei Informatiqu IUT de Saint-Dié

Plar

Développement limité

Fonctions équivalentes

Bibliographie

Opérations

Soit f et g deux fonctions admettant un développement limité d'ordre $n \geq 1$ au voisinage de 0. Alors f+g, λf ($\lambda \in \mathbb{R}$), fg admettent un développement limité d'ordre n au voisinage de 0.

M2202 Analyse et méthodes numériques

Départemer Informatiqu IUT de Saint-Dié

Plar

Développement limité

Fonctions équivalentes

Sibliographie

Opérations

Soit f et g deux fonctions admettant un développement limité d'ordre $n \geq 1$ au voisinage de 0. Alors f+g, λf ($\lambda \in \mathbb{R}$), fg admettent un développement limité d'ordre n au voisinage de 0.

De même pour $\frac{f}{g}$ si $g(0) \neq 0$

M2202 Analyse et méthodes numériques

Départemer Informatiqu IUT de Saint-Dié

Plar

Développement limité

Fonctions équivalentes

Bibliographie

Opérations

Soit f et g deux fonctions admettant un développement limité d'ordre $n \geq 1$ au voisinage de 0. Alors f+g, λf ($\lambda \in \mathbb{R}$), fg admettent un développement limité d'ordre n au voisinage de 0.

De même pour $\frac{f}{g}$ si $g(0) \neq 0$ et $g \circ f$ si f(0) = 0.

M2202 Analyse et méthodes numériques

Département Informatique IUT de

Dlan

Développement limité

Fonctions équivalentes

Bibliographie

M2202 Analyse et méthodes numériques

Département Informatique IUT de Saint-Dié

Plan

Développement limité

Fonctions équivalentes

Opérations

De plus, si
$$f(x) = P(x) + x^n \epsilon_1(x)$$
 et $g(x) = Q(x) + x^n \epsilon_2(x)$ ($deg(P) \le n$, $deg(Q) \le n$):

M2202 Analyse et méthodes numériques

Départemen Informatique IUT de Saint-Dié

Plai

Développement limité

Fonctions équivalentes

Bibliographie

Opérations

De plus, si $f(x) = P(x) + x^n \epsilon_1(x)$ et $g(x) = Q(x) + x^n \epsilon_2(x)$ ($deg(P) \le n$, $deg(Q) \le n$):

La partie régulière du développement limité de la somme f + g est la somme des parties régulières P(x) + Q(x).

M2202 Analyse et méthodes numériques

Départemen[:] Informatique IUT de Saint-Dié

Plai

Développement limité

Fonctions équivalentes

Bibliographie

Opérations

De plus, si $f(x) = P(x) + x^n \epsilon_1(x)$ et $g(x) = Q(x) + x^n \epsilon_2(x)$ ($deg(P) \le n$, $deg(Q) \le n$):

La partie régulière du développement limité de la somme f + g est la somme des parties régulières P(x) + Q(x).

La partie régulière du développement limité du produit fg est la somme des termes de degré inférieur ou égal à n du produit P(x)Q(x).

M2202 Analyse et méthodes numériques

Départemen Informatique IUT de Saint-Dié

Plar

Développement limité

Fonctions équivalentes

Bibliographi

Opérations

De plus, si $f(x) = P(x) + x^n \epsilon_1(x)$ et $g(x) = Q(x) + x^n \epsilon_2(x)$ ($deg(P) \le n$, $deg(Q) \le n$):

La partie régulière du développement limité de la somme f + g est la somme des parties régulières P(x) + Q(x).

La partie régulière du développement limité du produit fg est la somme des termes de degré inférieur ou égal à n du produit P(x)Q(x).

La partie régulière du développement limité du quotient $\frac{f}{g}$ est le quotient suivant les puissances croissantes à l'ordre n de P(x) par Q(x).

M2202 Analyse et méthodes numériques

Départemen Informatique IUT de Saint-Dié

Plai

Développement limité

Fonctions équivalentes

Ribliographi

Opérations

De plus, si $f(x) = P(x) + x^n \epsilon_1(x)$ et $g(x) = Q(x) + x^n \epsilon_2(x)$ ($deg(P) \le n$, $deg(Q) \le n$):

La partie régulière du développement limité de la somme f + g est la somme des parties régulières P(x) + Q(x).

La partie régulière du développement limité du produit fg est la somme des termes de degré inférieur ou égal à n du produit P(x)Q(x).

La partie régulière du développement limité du quotient $\frac{f}{g}$ est le quotient suivant les puissances croissantes à l'ordre n de P(x) par Q(x).

La division suivant les puissances croissantes d'un polynôme A par un polynôme B tel que $B(0) \neq 0$ est donnée par $A = BQ_n + x^{n+1}R_n$, Q_n et R_n polynômes avec Q_n de degré $\leq n$.

M2202 Analyse et méthodes numériques

Départemen Informatique IUT de Saint-Dié

Plan

Développement limité

Fonctions équivalentes

Bibliograph

Opérations

De plus, si $f(x) = P(x) + x^n \epsilon_1(x)$ et $g(x) = Q(x) + x^n \epsilon_2(x)$ ($deg(P) \le n$, $deg(Q) \le n$):

La partie régulière du développement limité de la somme f + g est la somme des parties régulières P(x) + Q(x).

La partie régulière du développement limité du produit fg est la somme des termes de degré inférieur ou égal à n du produit P(x)Q(x).

La partie régulière du développement limité du quotient $\frac{f}{g}$ est le quotient suivant les puissances croissantes à l'ordre n de P(x) par Q(x).

La division suivant les puissances croissantes d'un polynôme A par un polynôme B tel que $B(0) \neq 0$ est donnée par $A = BQ_n + x^{n+1}R_n$, Q_n et R_n polynômes avec Q_n de degré $\leq n$.

La partie régulière du développement limité de la composée $g \circ f$ est la somme des termes de degré inférieur ou égal à n de $Q \circ P(x)$.

M2202 Analyse et méthodes numériques

Département Informatique IUT de

Plan

Développement limité

Fonctions équivalentes

M2202 Analyse et méthodes numériques

Département Informatique IUT de Saint-Dié

Plan

Développement limité

Fonctions équivalentes

Bibliographie

Exemple:
$$e^x + \sin x$$

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + x^{3} \epsilon(x)$$

M2202 Analyse et méthodes numériques

Département Informatique IUT de Saint-Dié

Plan

Développement limité

Fonctions équivalentes

Bibliographie

Exemple: $e^x + \sin x$ $e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + x^3 \epsilon(x)$ $\sin x = x - \frac{x^3}{3!} + x^3 \epsilon(x)$

M2202 Analyse et méthodes numériques

Département Informatique IUT de

Plan

Développement limité

Fonctions équivalentes

Bibliographie

Exemple:
$$e^x + \sin x$$

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + x^3 \epsilon(x)$$

$$\sin x = x - \frac{x^3}{3!} + x^3 \epsilon(x)$$

$$e^x + \sin x = \left(1 + x + \frac{x^2}{2!} + \frac{x^3}{3!}\right) + \left(x - \frac{x^3}{3!}\right) + x^3 \epsilon(x)$$

M2202 Analyse et méthodes numériques

Départemen Informatique IUT de Saint-Dié

Plan

Développement limité

Fonctions équivalentes

ibliographie

Exemple:
$$e^x + \sin x$$

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + x^3 \epsilon(x)$$

$$\sin x = x - \frac{x^3}{3!} + x^3 \epsilon(x)$$

$$e^x + \sin x = \left(1 + x + \frac{x^2}{2!} + \frac{x^3}{3!}\right) + \left(x - \frac{x^3}{3!}\right) + x^3 \epsilon(x)$$

$$e^x + \sin x = 1 + 2x + \frac{x^2}{2!} + x^3 \epsilon(x)$$

M2202 Analyse et méthodes numériques

Département Informatique IUT de

Plan

Développement limité

Fonctions équivalentes

Bibliographie

M2202 Analyse et méthodes numériques

Département Informatique IUT de Saint-Dié

Plar

Développement limité

Fonctions équivalentes

Bibliographie

$$e^x = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + x^3 \epsilon(x)$$

M2202 Analyse et méthodes numériques

Développement limité

$$e^{x} = 1 + x + \frac{x^{2}}{2} + \frac{x^{3}}{6} + x^{3} \epsilon(x)$$

$$\sin x = 0 + x + 0.x^{2} - \frac{x^{3}}{6} + x^{3} \epsilon(x)$$

$$\sin x = 0 + x + 0.x^2 - \frac{x^3}{6} + x^3 \epsilon(x)$$

M2202 Analyse et méthodes numériques

Développement limité

$$e^{x} = 1 + x + \frac{x^{2}}{2} + \frac{x^{3}}{6} + x^{3} \epsilon(x)$$

$$\sin x = 0 + x + 0.x^{2} - \frac{x^{3}}{6} + x^{3} \epsilon(x)$$

$$\sin x = 0 + x + 0.x^2 - \frac{x^3}{6} + x^3 \epsilon(x)$$

$$e^{x} \sin x =$$

M2202 Analyse et méthodes numériques

Développement limité

$$e^{x} = 1 + x + \frac{x^{2}}{2} + \frac{x^{3}}{6} + x^{3} \epsilon(x)$$

$$\sin x = 0 + x + 0.x^{2} - \frac{x^{3}}{6} + x^{3} \epsilon(x)$$

$$\sin x = 0 + x + 0.x^2 - \frac{x^3}{6} + x^3 \epsilon(x)$$

$$e^x \sin x = 1.0$$

M2202 Analyse et méthodes numériques

Développement limité

$$e^{x} = 1 + x + \frac{x^{2}}{2} + \frac{x^{3}}{6} + x^{3} \epsilon(x)$$

$$\sin x = 0 + x + 0.x^{2} - \frac{x^{3}}{6} + x^{3} \epsilon(x)$$

$$\sin x = 0 + x + 0.x^2 - \frac{x^3}{6} + x^3 \epsilon(x)$$

$$e^{x} \sin x = 1.0 + (1.x + x.0)$$

M2202 Analyse et méthodes numériques

Développement limité

$$e^{x} = 1 + x + \frac{x^{2}}{2} + \frac{x^{3}}{6} + x^{3} \epsilon(x)$$

$$\sin x = 0 + x + 0.x^{2} - \frac{x^{3}}{6} + x^{3} \epsilon(x)$$

$$e^{x} \sin x = 1.0 + (1.x + x.0) + \left(1.0x^{2} + x.x + \frac{x^{2}}{2}.0\right)$$

M2202 Analyse et méthodes numériques

Département Informatique IUT de Saint-Dié

Plar

Développement limité

Fonctions

$$e^{x} = 1 + x + \frac{x^{2}}{2} + \frac{x^{3}}{6} + x^{3} \epsilon(x)$$

$$\sin x = 0 + x + 0.x^{2} - \frac{x^{3}}{6} + x^{3} \epsilon(x)$$

$$e^{x} \sin x = 1.0 + (1.x + x.0) + \left(1.0x^{2} + x.x + \frac{x^{2}}{2}.0\right) + \left(1.\left(-\frac{x^{3}}{6}\right) + \frac{x^{2}}{2}.x + \frac{x^{3}}{6}.0\right)$$

M2202 Analyse et méthodes numériques

Département Informatique IUT de Saint-Dié

Plar

Développement limité

Fonctions équivalentes

ibliographie

Exemple :
$$e^x \sin x$$

$$e^x = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + x^3 \epsilon(x)$$

$$\sin x = 0 + x + 0.x^{2} - \frac{x^{3}}{6} + x^{3} \epsilon(x)$$

$$e^{x} \sin x = 1.0 + (1.x + x.0) + \left(1.0x^{2} + x.x + \frac{x^{2}}{2}.0\right) + \left(1.\left(-\frac{x^{3}}{6}\right) + \frac{x^{2}}{2}.x + \frac{x^{3}}{6}.0\right) + x^{3} \epsilon(x)$$

M2202 Analyse et méthodes numériques

Département Informatique IUT de Saint-Dié

Plar

Développement limité

Fonctions équivalentes

ibliographie

$$e^x = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + x^3 \epsilon(x)$$

$$\sin x = 0 + x + 0.x^{2} - \frac{x^{3}}{6} + x^{3} \epsilon(x)$$

$$e^{x} \sin x = 1.0 + (1.x + x.0) + \left(1.0x^{2} + x.x + \frac{x^{2}}{2}.0\right) + \left(1.\left(-\frac{x^{3}}{6}\right) + \frac{x^{2}}{2}.x + \frac{x^{3}}{6}.0\right) + x^{3} \epsilon(x)$$

$$e^x \sin x = x + x^2 + \frac{x^3}{3} + x^3 \epsilon(x)$$

M2202 Analyse et méthodes numériques

Département Informatique IUT de Saint-Dié

Plan

Développement limité

Fonctions équivalentes

Bibliographie

M2202 Analyse et méthodes numériques

Informatiqu IUT de Saint-Dié

Plan

Développement limité

Fonctions équivalentes

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} + x^5 \epsilon(x)$$

M2202 Analyse et méthodes numériques

Développement limité

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} + x^5 \epsilon(x)$$
$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + x^5 \epsilon(x)$$

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + x^5 \epsilon(x)$$

M2202 Analyse et méthodes numériques

Développement limité

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} + x^5 \epsilon(x)$$
$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + x^5 \epsilon(x)$$

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^3}{4!} + x^5 \epsilon(x)$$

$$\tan x = \frac{\sin x}{\cos x}$$

M2202 Analyse et méthodes numériques

Département Informatique IUT de

Plan

Développement limité

Fonctions équivalentes

M2202 Analyse et méthodes numériques

Département Informatique IUT de

Plan

Développement limité

Fonctions équivalentes

$$1 - \frac{x^2}{2} + \frac{x^4}{24}$$

$$x + \frac{x^3}{3} + \frac{2x^5}{15}$$

M2202 Analyse et méthodes numériques

Département Informatique IUT de Saint-Dié

Plan

Développement limité

Fonctions équivalentes

M2202 Analyse et méthodes numériques

Département Informatique IUT de Saint-Dié

Plan

Développement limité

Fonctions équivalentes

M2202 Analyse et méthodes numériques

Département Informatique IUT de Saint-Dié

Plan

Développement limité

Fonctions équivalentes

Bibliographie

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} + x^5 \epsilon(x)$$

M2202 Analyse et méthodes numériques

Développement limité

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} + x^5 \epsilon(x)$$
$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + x^5 \epsilon(x)$$

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + x^5 \epsilon(x)$$

M2202 Analyse et méthodes numériques

Développement limité

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} + x^5 \epsilon(x)$$

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + x^5 \epsilon(x)$$

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} + x^5 \epsilon(x)$$

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + x^5 \epsilon(x)$$

$$\tan x = \frac{\sin x}{\cos x} = x + \frac{x^3}{3} + \frac{2x^5}{15} + x^5 \epsilon(x)$$

M2202 Analyse et méthodes numériques

Développement limité

Exemple: tan x

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} + x^5 \epsilon(x)$$

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + x^5 \epsilon(x)$$

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} + x^5 \epsilon(x)$$

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + x^5 \epsilon(x)$$

$$\tan x = \frac{\sin x}{\cos x} = x + \frac{x^3}{3} + \frac{2x^5}{15} + x^5 \epsilon(x)$$

Remarque

M2202 Analyse et méthodes numériques

Développement limité

Exemple: tan x

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} + x^5 \epsilon(x)$$

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + x^5 \epsilon(x)$$

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} + x^5 \epsilon(x)$$

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + x^5 \epsilon(x)$$

$$\tan x = \frac{\sin x}{\cos x} = x + \frac{x^3}{3} + \frac{2x^5}{15} + x^5 \epsilon(x)$$

Remarque

$$\tan x = \frac{\sin x}{\cos x} = x + \frac{x^3}{3} + \frac{2x^5}{15} + x^6 \epsilon(x)$$

M2202 Analyse et méthodes numériques

Département Informatique IUT de

Plan

Développement limité

Fonctions équivalentes

M2202 Analyse et méthodes numériques

Département Informatique IUT de Saint-Dié

Plan

Développement limité

Fonctions équivalentes

Exemple :
$$e^{\sin x}$$

$$e^{u} = 1 + u + \frac{u^{2}}{2!} + \frac{u^{3}}{3!} + u^{3} \epsilon(u)$$

M2202 Analyse et méthodes numériques

Développement limité

Exemple : $e^{\sin x}$

$$e^{u} = 1 + u + \frac{u^{2}}{2!} + \frac{u^{3}}{3!} + u^{3} \epsilon(u)$$

$$u = x - \frac{x^{3}}{6}$$

$$u=x-\frac{x}{6}$$

M2202 Analyse et méthodes numériques

Département Informatique IUT de Saint-Dié

Plan

Développement limité

Fonctions équivalentes

Exemple:
$$e^{\sin x}$$

$$e^{u} = 1 + u + \frac{u^{2}}{2!} + \frac{u^{3}}{3!} + u^{3} \epsilon(u)$$

$$u = x - \frac{x^3}{6}$$

$$u^2 = \left(x - \frac{x^3}{6}\right)^2 = x^2 + \cdots$$

M2202 Analyse et méthodes numériques

Développement limité

Exemple :
$$e^{\sin x}$$

$$e^{u} = 1 + u + \frac{u^{2}}{2!} + \frac{u^{3}}{3!} + u^{3} \epsilon(u)$$

$$u = x - \frac{x^3}{6}$$

$$u^{2} = \left(x - \frac{x^{3}}{6}\right)^{2} = x^{2} + \cdots$$

$$u^{3} = u \cdot u^{2} = x^{3} + \cdots$$

$$u^3 = u.u^2 = x^3 + \cdots$$

M2202 Analyse et méthodes numériques

Développement limité

Exemple :
$$e^{\sin x}$$

$$e^{u} = 1 + u + \frac{u^{2}}{2!} + \frac{u^{3}}{3!} + u^{3} \epsilon(u)$$

$$u = x - \frac{x^3}{6}$$

$$u^2 = \left(x - \frac{x^3}{6}\right)^2 = x^2 + \cdots$$

$$u^{3} = (x^{3} + x^{3} + \dots + x^{3})$$

$$u^{2} = \left(x - \frac{x^{3}}{6}\right)^{2} = x^{2} + \cdots$$

$$u^{3} = u.u^{2} = x^{3} + \cdots$$

$$e^{\sin x} = 1 + x - \frac{x^{3}}{6} + \frac{x^{2}}{2} + \frac{x^{3}}{6} + x^{3} \epsilon(x)$$

Exemple : $e^{\sin x}$

 $=1+x+\frac{x^2}{2}+x^3\epsilon(x)$

M2202 Analyse et méthodes numériques

Département Informatique IUT de Saint-Dié

Plan

Développement limité

Fonctions équivalentes

ibliographie

$$\begin{split} e^u &= 1 + u + \frac{u^2}{2!} + \frac{u^3}{3!} + u^3 \epsilon(u) \\ u &= x - \frac{x^3}{6} \\ u^2 &= \left(x - \frac{x^3}{6}\right)^2 = x^2 + \cdots \\ u^3 &= u.u^2 = x^3 + \cdots \\ e^{\sin x} &= 1 + x - \frac{x^3}{6} + \frac{x^2}{2} + \frac{x^3}{6} + x^3 \epsilon(x) \end{split}$$

M2202 Analyse et méthodes numériques

Département Informatique IUT de Saint-Dié

Plan

Développement limité

Fonctions équivalentes

M2202 Analyse et méthodes numériques

Département Informatique IUT de Saint-Dié

Plan

Développement limité

Fonctions équivalentes

Bibliographie

Dérivation

Soit f une fonction de classe C^{∞} sur un intervalle ouvert contenant 0.

M2202 Analyse et méthodes numériques

Départemen Informatique IUT de Saint-Dié

Plan

Développement limité

Fonctions équivalentes

Dérivation

Soit f une fonction de classe C^{∞} sur un intervalle ouvert contenant 0. Le développement limité de f d'ordre n au voisinage de 0 est $f(x) = P(x) + x^n \epsilon(x)$.

M2202 Analyse et méthodes numériques

Départemen Informatique IUT de Saint-Dié

Plai

Développement limité

Fonctions équivalentes

Dérivation

Soit f une fonction de classe C^{∞} sur un intervalle ouvert contenant 0. Le développement limité de f d'ordre n au voisinage de 0 est $f(x) = P(x) + x^n \epsilon(x)$.

Celui de f'(x) est alors $P'(x) + x^{n-1} \epsilon(x)$.

M2202 Analyse et méthodes numériques

Département Informatique IUT de

Plar

Développement limité

Fonctions équivalentes

Bibliographie

Dérivation

Soit f une fonction de classe C^{∞} sur un intervalle ouvert contenant 0. Le développement limité de f d'ordre n au voisinage de 0 est $f(x) = P(x) + x^n \epsilon(x)$.

Celui de f'(x) est alors $P'(x) + x^{n-1} \epsilon(x)$.

M2202 Analyse et méthodes numériques

Département Informatique IUT de Saint-Dié

Plar

Développement limité

Fonctions équivalentes

Bibliographie

Dérivation

Soit f une fonction de classe C^{∞} sur un intervalle ouvert contenant 0. Le développement limité de f d'ordre n au voisinage de 0 est $f(x) = P(x) + x^n \epsilon(x)$.

Celui de f'(x) est alors $P'(x) + x^{n-1} \epsilon(x)$.

$$\frac{1}{1-x} = 1 + x + x^2 + \dots + x^n + x^n \epsilon(x)$$
 donne

M2202 Analyse et méthodes numériques

Départemen Informatique IUT de Saint-Dié

Plai

Développement limité

Fonctions équivalentes

Dérivation

Soit f une fonction de classe C^{∞} sur un intervalle ouvert contenant 0. Le développement limité de f d'ordre n au voisinage de 0 est $f(x) = P(x) + x^n \epsilon(x)$.

Celui de f'(x) est alors $P'(x) + x^{n-1} \epsilon(x)$.

$$\frac{1}{1-x} = 1 + x + x^2 + \dots + x^n + x^n \epsilon(x) \text{ donne}$$

$$\left(\frac{1}{1-x}\right)' = 0 + 1 + 2x + 3x^2 + \dots + nx^{n-1} + x^{n-1} \epsilon(x) \text{ soit}$$

M2202 Analyse et méthodes numériques

Départemen Informatique IUT de Saint-Dié

Plai

Développement limité

Fonctions équivalentes

Dérivation

Soit f une fonction de classe C^{∞} sur un intervalle ouvert contenant 0. Le développement limité de f d'ordre n au voisinage de 0 est $f(x) = P(x) + x^n \epsilon(x)$. Celui de f'(x) est alors $P'(x) + x^{n-1} \epsilon(x)$.

$$\frac{1}{1-x} = 1 + x + x^2 + \dots + x^n + x^n \epsilon(x) \text{ donne}$$

$$\left(\frac{1}{1-x}\right)' = 0 + 1 + 2x + 3x^2 + \dots + nx^{n-1} + x^{n-1}\epsilon(x) \text{ soit}$$

$$\frac{-1}{(1-x)^2} \cdot (-1) = \frac{1}{(1-x)^2} = 1 + 2x + 3x^2 + \dots + nx^{n-1} + x^{n-1}\epsilon(x)$$

M2202 Analyse et méthodes numériques

Départemen Informatique IUT de Saint-Dié

Plan

Développement limité

Fonctions équivalentes

M2202 Analyse et méthodes numériques

Départemei Informatiqu IUT de Saint-Dié

Plar

Développement limité

Fonctions équivalentes

Bibliographie

Intégration

Soit f une fonction dérivable sur un voisinage de 0 dont la dérivée admet un développement limité d'ordre $n: f'(x) = P(x) + x^n \epsilon(x)$.

M2202 Analyse et méthodes numériques

Départemer Informatiqu IUT de Saint-Dié

Plar

Développement limité

Fonctions équivalentes

Bibliographic

Intégration

Soit f une fonction dérivable sur un voisinage de 0 dont la dérivée admet un développement limité d'ordre $n: f'(x) = P(x) + x^n \epsilon(x)$.

Alors f admet au voisinage de 0 un développement limité d'ordre n:

$$f(x) = f(0) + \int_0^x P(t)dt + x^{n+1}\epsilon(x).$$

M2202 Analyse et méthodes numériques

Département Informatique IUT de

Plan

Développement limité

Fonctions équivalentes

```
Exemple: ln(1+x)
```

M2202 Analyse et méthodes numériques

Département Informatique IUT de Saint-Dié

Plan

Développement limité

Fonctions équivalentes

Exemple :
$$ln(1+x)$$

$$\frac{1}{1-x} = 1 + x + x^2 + \dots + x^n + x^n \epsilon(x)$$
 donne par composition :

M2202 Analyse et méthodes numériques

Départemen Informatiqu IUT de Saint-Dié

Plan

Développement limité

Fonctions équivalentes

Exemple :
$$ln(1+x)$$

$$\frac{1}{1-x} = 1 + x + x^2 + \dots + x^n + x^n \epsilon(x) \text{ donne par composition :}$$

$$\frac{1}{1+x} = \frac{1}{1-(-x)} = 1 - x + (-x)^2 + (-x)^3 + \dots + (-x)^n + x^n \epsilon(x)$$

$$= 1 - x + x^2 - x^3 + \dots + (-1)^n x^n + x^n \epsilon(x)$$

M2202 Analyse et méthodes numériques

Développement limité

Exemple:
$$\ln(1+x)$$

$$\frac{1}{1-x} = 1 + x + x^2 + \dots + x^n + x^n \epsilon(x) \text{ donne par compart}$$

$$\begin{split} \frac{1}{1-x} &= 1 + x + x^2 + \dots + x^n + x^n \epsilon(x) \text{ donne par composition :} \\ \frac{1}{1+x} &= \frac{1}{1-(-x)} = 1 - x + (-x)^2 + (-x)^3 \dots + (-x)^n + x^n \epsilon(x) \\ &= 1 - x + x^2 - x^3 \dots + (-1)^n x^n + x^n \epsilon(x) \end{split}$$
 Comme
$$\ln(1+x)' = \frac{1}{1+x}$$

$$Comme ln(1+x)' = \frac{1}{1+x}$$

M2202 Analyse et méthodes numériques

Développement limité

Exemple:
$$ln(1+x)$$

$$\frac{1}{1-x} = 1 + x + x^2 + \dots + x^n + x^n \epsilon(x) \text{ donne par composition :}$$

$$\frac{1}{1+x} = \frac{1}{1-(-x)} = 1 - x + (-x)^2 + (-x)^3 + \dots + (-x)^n + x^n \epsilon(x)$$

$$= 1 - x + x^2 - x^3 + \dots + (-1)^n x^n + x^n \epsilon(x)$$
Comme $\ln(1+x)' = \frac{1}{1+x}$

$$= 1 - x + x^{2} - x^{3} \cdots + (-1)^{n} x^{n} + x^{n} \epsilon(x)$$

$$Comme ln(1+x)' = \frac{1}{1+x}$$

$$\ln(1+x) = \ln(1+0) + x - \frac{x^2}{2} + \frac{x^3}{3} + \dots + (-1)^n \frac{x^{n+1}}{n+1} + x^{n+1} \epsilon(x)$$

M2202 Analyse et méthodes numériques

Départemer Informatiqu IUT de Saint-Dié

Plan

Développement limité

Fonctions équivalentes

Exemple :
$$ln(1+x)$$

$$\frac{1}{1-x} = 1 + x + x^2 + \dots + x^n + x^n \epsilon(x) \text{ donne par composition :}$$

$$\frac{1}{1+x} = \frac{1}{1-(-x)} = 1 - x + (-x)^2 + (-x)^3 + \dots + (-x)^n + x^n \epsilon(x)$$

$$= 1 - x + x^2 - x^3 + \dots + (-1)^n x^n + x^n \epsilon(x)$$

$$Comme ln(1+x)' = \frac{1}{1+x}$$

$$\ln(1+x) = \ln(1+0) + x - \frac{x^2}{2} + \frac{x^3}{3} + \dots + (-1)^n \frac{x^{n+1}}{n+1} + x^{n+1} \epsilon(x)$$

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} + \dots + (-1)^n \frac{x^{n+1}}{n+1} + x^{n+1} \epsilon(x)$$

M2202 Analyse et méthodes numériques

Département Informatique IUT de

Plan

Développement limité

Fonctions équivalentes

Bibliographie

M2202 Analyse et méthodes numériques

Département Informatique IUT de

Plan

Développement limité

Fonctions équivalentes

Bibliographie

Définition

Soit f une fonction définie sur un voisinage de x_0 , sauf peut-être en x_0 .

M2202

Analyse et méthodes numériques

Informatiqu IUT de Saint-Dié

Plar

Développement limité

Fonctions équivalentes

Bibliographie

Définition

Soit f une fonction définie sur un voisinage de x_0 , sauf peut-être en x_0 . Si la fonction f n'admet pas de de développement limité au voisinage de x_0 , mais si $(x-x_0)^k f(x)$ (k>0) admet un développement limité d'ordre n au voisinage de x_0 :

M2202

Analyse et méthodes numériques

Départemer Informatiqu IUT de Saint-Dié

Plar

Développement limité

Fonctions équivalentes

ibliographie

Définition

Soit f une fonction définie sur un voisinage de x_0 , sauf peut-être en x_0 . Si la fonction f n'admet pas de de développement limité au voisinage de x_0 , mais si $(x-x_0)^k f(x)$ (k>0) admet un développement limité d'ordre n au voisinage de x_0 :

$$(x-x_0)^k f(x) = a_0 + a_1(x-x_0) + a_2(x-x_0)^2 + \dots + a_n(x-x_0)^n + (x-x_0)^n \epsilon(x)$$
 alors

M2202

Analyse et méthodes numériques

Départemen Informatique IUT de Saint-Dié

Plar

Développement limité

Fonctions équivalentes

ibliographie

Définition

Soit f une fonction définie sur un voisinage de x_0 , sauf peut-être en x_0 . Si la fonction f n'admet pas de de développement limité au voisinage de x_0 , mais si $(x-x_0)^k f(x)$ (k>0) admet un développement limité d'ordre n au voisinage de x_0 :

$$(x - x_0)^k f(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)^2 + \dots + a_n(x - x_0)^n + (x - x_0)^n \epsilon(x) \text{ alors}$$

$$f(x) = \frac{a_0}{(x - x_0)^k} + \frac{a_1}{(x - x_0)^{k-1}} + \frac{a_2}{(x - x_0)^{k-2}} + \dots + a_n(x - x_0)^{n-k} + (x - x_0)^{n-k} \epsilon(x)$$

M2202

Analyse et méthodes numériques

Départemer Informatiqu IUT de Saint-Dié

Plai

Développement limité

Fonctions équivalentes

Bibliograph

Définition

Soit f une fonction définie sur un voisinage de x_0 , sauf peut-être en x_0 . Si la fonction f n'admet pas de de développement limité au voisinage de x_0 , mais si $(x-x_0)^k f(x)$ (k>0) admet un développement limité d'ordre n au voisinage de x_0 :

$$(x - x_0)^k f(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)^2 + \dots + a_n(x - x_0)^n + (x - x_0)^n \epsilon(x)$$
 alors
$$f(x) = \frac{a_0}{(x - x_0)^k} + \frac{a_1}{(x - x_0)^{k-1}} + \frac{a_2}{(x - x_0)^{k-2}} + \dots + a_n(x - x_0)^{n-k} + (x - x_0)^{n-k} \epsilon(x)$$

On dit que f admet un développement limité généralisé d'ordre n-k au voisinage de x_0 .

M2202 Analyse et méthodes numériques

Départemen Informatique IUT de Saint-Dié

Plan

Développement limité

Fonctions équivalentes

Bibliographie

M2202 Analyse et méthodes numériques

Informatiqu IUT de Saint-Dié

Plar

Développement limité

Fonctions équivalentes

Bibliographie

Exemple

Au voisinage de 0 :
$$\frac{1}{x^2 - x^3} = \frac{1}{x^2(1-x)}$$

M2202 Analyse et méthodes numériques

nformatiqu IUT de Saint-Dié

Plar

Développement limité

Fonctions

quivalentes

Exemple

Au voisinage de 0 :
$$\frac{1}{x^2 - x^3} = \frac{1}{x^2(1-x)}$$

$$\frac{x^2}{x^2 - x^3} = \frac{1}{1 - x} = 1 + x + x^2 + x^3 + \dots + x^n + x^{n+1} + x^{n+2} + x^{n+2} \epsilon(x)$$

M2202 Analyse et méthodes numériques

Développement limité

Exemple

Au voisinage de 0 :
$$\frac{1}{x^2 - x^3} = \frac{1}{x^2(1-x)}$$

$$\frac{x^2}{x^2 - x^3} = \frac{1}{1 - x} = 1 + x + x^2 + x^3 + \dots + x^n + x^{n+1} + x^{n+2} + x^{n+2} \epsilon(x)$$

$$\text{donne } \frac{1}{x^2 - x^3} = \frac{1}{x^2} + \frac{1}{x} + 1 + x + \dots + x^{n-2} + x^{n-1} + x^n + x^n \epsilon(x)$$

donne
$$\frac{1}{x^2 + x^3} = \frac{1}{x^2} + \frac{1}{x} + 1 + x + \dots + x^{n-2} + x^{n-1} + x^n + x^n \epsilon(x^n)$$

M2202 Analyse et méthodes numériques

Département Informatique IUT de Saint-Dié

Plan

Développement limité

Fonctions équivalentes

Bibliographie

M2202 Analyse et méthodes numériques

Informatiqu IUT de Saint-Dié

Plan

Développement limité

Fonctions

Pibliographia

Exemple

Soit f une fonction définie sur un voisinage de $-\infty$ ou $+\infty$.

M2202 Analyse et méthodes numériques

Départemer nformatiqu IUT de Saint-Dié

Plar

Développement limité

Fonctions équivalentes

Bibliographie

Exemple

Soit f une fonction définie sur un voisinage de $-\infty$ ou $+\infty$.

On se ramène au cas précédent en posant $y = \frac{1}{y}$ et en étudiant

$$g(y) = f\left(\frac{1}{y}\right)$$
 au voisinage de 0, sauf peut-être en 0.

M2202 Analyse et méthodes numériques

Département Informatique IUT de

Plan

Développement limité

Fonctions équivalentes

M2202 Analyse et méthodes numériques

Département Informatiquation IUT de Saint-Dié

Plan

Développement limité

Fonctions équivalentes

Bibliographie

Exemple

Au voisinage de $+\infty$, en posant $y = \frac{1}{y}$:

$$\frac{x^3}{x-1} = \frac{1}{y^2 - y^3} = \frac{1}{y^2} + \frac{1}{y} + 1 + y + \dots + y^{n-2} + y^{n-1} + y^n + y^n \epsilon(y).$$

M2202 Analyse et méthodes numériques

Département Informatiqu IUT de Saint-Dié

Plar

Développement limité

Fonctions équivalentes

Bibliographie

Exemple

Au voisinage de $+\infty$, en posant $y = \frac{1}{x}$:

$$\frac{x^3}{x-1} = \frac{1}{y^2 - y^3} = \frac{1}{y^2} + \frac{1}{y} + 1 + y + \dots + y^{n-2} + y^{n-1} + y^n + y^n \epsilon(y).$$

On obtient :

M2202

Analyse et méthodes numériques

Développement limité

Exemple

Au voisinage de $+\infty$, en posant $y = \frac{1}{x}$:

$$\frac{x^3}{x-1} = \frac{1}{y^2 - y^3} = \frac{1}{y^2} + \frac{1}{y} + 1 + y + \dots + y^{n-2} + y^{n-1} + y^n + y^n \epsilon(y).$$

On obtient:
$$\frac{x^3}{x-1} = x^2 + x + 1 + \frac{1}{x} + \dots + \frac{1}{x^{n-2}} + \frac{1}{x^{n-1}} + \frac{1}{x^n} + \frac{1}{x^n} \epsilon\left(\frac{1}{x}\right)$$

M2202 Analyse et méthodes numériques

Développement limité

Exemple

Au voisinage de $+\infty$, en posant $y = \frac{1}{x}$:

$$\frac{x^3}{x-1} = \frac{1}{y^2 - y^3} = \frac{1}{y^2} + \frac{1}{y} + 1 + y + \dots + y^{n-2} + y^{n-1} + y^n + y^n \epsilon(y).$$

On obtient:
$$\frac{x^3}{x-1} = x^2 + x + 1 + \frac{1}{x} + \dots + \frac{1}{x^{n-2}} + \frac{1}{x^{n-1}} + \frac{1}{x^n} + \frac{1}{x^n} \epsilon \left(\frac{1}{x}\right)$$

soit
$$\frac{x^3}{x-1} = x^2 + x + 1 + \frac{1}{x} + \dots + \frac{1}{x^{n-2}} + \frac{1}{x^{n-1}} + \frac{1}{x^n} + \frac{1}{x^n} \epsilon(x)$$

M2202 Analyse et méthodes numériques

Département Informatique IUT de Saint-Dié

Plan

Développement Iimité

Fonctions équivalentes

Bibliographie

Guêpe "Fairy Fly" par Spike Walker

M2202 Analyse et méthodes numériques

Département Informatique IUT de Saint-Dié

Plan

Développement limité

Fonctions équivalentes

Bibliographie

M2202 Analyse et méthodes numériques

Départemen Informatique IUT de Saint-Dié

Plan

Développemen[.] Iimité

Fonctions équivalentes

Bibliographie

Définitions

Soit f une fonction définie sur un voisinage de x_0 (réel, $+\infty$ ou $-\infty$), sauf peut-être en x_0 ou sur un voisinage à gauche (partie contenant un intervalle $]a, x_0[)$ ou à droite (partie contenant un intervalle $]x_0, a[)$.

M2202 Analyse et méthodes numériques

Départemen Informatique IUT de Saint-Dié

Plar

Développemen limité

Fonctions équivalentes

Définitions

Soit f une fonction définie sur un voisinage de x_0 (réel, $+\infty$ ou $-\infty$), sauf peut-être en x_0 ou sur un voisinage à gauche (partie contenant un intervalle $]a, x_0[)$ ou à droite (partie contenant un intervalle $]x_0, a[)$. On dit que f est équivalente à g sur un voisinage de x_0

M2202 Analyse et méthodes numériques

Départemen Informatique IUT de Saint-Dié

Plai

Développemen

Fonctions équivalentes

ibliographie

Définitions

Soit f une fonction définie sur un voisinage de x_0 (réel, $+\infty$ ou $-\infty$), sauf peut-être en x_0 ou sur un voisinage à gauche (partie contenant un intervalle $]a,x_0[)$ ou à droite (partie contenant un intervalle $]x_0,a[)$. On dit que f est équivalente à g sur un voisinage de x_0 s'il existe un voisinage (respectivement un voisinage à gauche ou à droite) de x_0 $V(x_0)$ sur lequel f et g sont définies, sauf peut-être en x_0 , et une fonction ϵ définie sur $V(x_0)$, sauf peut-être en x_0 , tendant vers 0 en x_0 , telle que pour tout $x \in V(x_0)$, éventuellement $x \neq x_0$,

M2202 Analyse et méthodes numériques

Départemen Informatiqu IUT de Saint-Dié

Plar

Développemen

Fonctions équivalentes

quivalences

Définitions

Soit f une fonction définie sur un voisinage de x_0 (réel, $+\infty$ ou $-\infty$), sauf peut-être en x_0 ou sur un voisinage à gauche (partie contenant un intervalle $]a, x_0[)$ ou à droite (partie contenant un intervalle $]x_0, a[)$. On dit que f est équivalente à g sur un voisinage de x_0 s'il existe un voisinage (respectivement un voisinage à gauche ou à droite) de x_0 $V(x_0)$ sur lequel f et g sont définies, sauf peut-être en x_0 , et une fonction ϵ définie sur $V(x_0)$, sauf peut-être en x_0 , tendant vers g en g0, telle que pour tout g1.

M2202 Analyse et méthodes numériques

Départemen Informatique IUT de Saint-Dié

Plai

Développemen

Fonctions équivalentes

Définitions

Soit f une fonction définie sur un voisinage de x_0 (réel, $+\infty$ ou $-\infty$), sauf peut-être en x_0 ou sur un voisinage à gauche (partie contenant un intervalle $]a,x_0[)$ ou à droite (partie contenant un intervalle $]x_0,a[)$. On dit que f est équivalente à g sur un voisinage de x_0 s'il existe un voisinage (respectivement un voisinage à gauche ou à droite) de x_0 $V(x_0)$ sur lequel f et g sont définies, sauf peut-être en x_0 , et une fonction ϵ définie sur $V(x_0)$, sauf peut-être en x_0 , tendant vers 0 en x_0 , telle que pour tout $x \in V(x_0)$, éventuellement $x \neq x_0$, $f(x) = g(x) + g(x)\epsilon(x)$.

Notation

M2202 Analyse et méthodes numériques

Départemen Informatiqu IUT de Saint-Dié

Plai

Développemen

Fonctions équivalentes

Bibliographie

Définitions

Soit f une fonction définie sur un voisinage de x_0 (réel, $+\infty$ ou $-\infty$), sauf peut-être en x_0 ou sur un voisinage à gauche (partie contenant un intervalle $]a,x_0[)$ ou à droite (partie contenant un intervalle $]x_0,a[)$. On dit que f est équivalente à g sur un voisinage de x_0 s'il existe un voisinage (respectivement un voisinage à gauche ou à droite) de x_0 $V(x_0)$ sur lequel f et g sont définies, sauf peut-être en x_0 , et une fonction ϵ définie sur $V(x_0)$, sauf peut-être en x_0 , tendant vers 0 en x_0 , telle que pour tout $x \in V(x_0)$, éventuellement $x \neq x_0$, $f(x) = g(x) + g(x)\epsilon(x)$.

Notation

 $f \sim g$ au voisinage de x_0 ou $f \underset{x_0}{\sim} g$.

M2202 Analyse et méthodes numériques

Départemen Informatique IUT de Saint-Dié

Plar

Développeme limité

Fonctions équivalentes

M2202 Analyse et méthodes numériques

Départemer Informatiqu IUT de Saint-Dié

Plar

Développement limité

Fonctions équivalentes

Bibliographie

Remarque

S'il existe un voisinage (respectivement à gauche ou à droite) de x_0 sur lequel g ne s'annule pas, sauf peut-être en x_0 , alors

M2202 Analyse et méthodes numériques

Départemei Informatiqu IUT de Saint-Dié

Plar

Développement limité

Fonctions équivalentes

Remarque

S'il existe un voisinage (respectivement à gauche ou à droite) de x_0 sur lequel g ne s'annule pas, sauf peut-être en x_0 , alors

$$f \sim_{x_0} g \Leftrightarrow \lim_{x \to x_0} \frac{f(x)}{g(x)} = 1$$

M2202 Analyse et méthodes numériques

Département Informatique IUT de Saint-Dié

Plan

Développemei

Fonctions équivalentes

Bibliographie

M2202 Analyse et méthodes numériques

Département Informatique IUT de Saint-Dié

Plan

Développemen limité

Fonctions équivalentes

Bibliographie

Exemples

$$\sin x \sim x : \sin x = x + x \epsilon(x).$$

M2202 Analyse et méthodes numériques

Département Informatique IUT de Saint-Dié

Plar

Développemen

Fonctions équivalentes

Bibliographie

Exemples

$$\sin x \sim_0 x : \sin x = x + x \epsilon(x).$$

Un polynôme est équivalent à son monôme

M2202 Analyse et méthodes numériques

Département Informatique IUT de Saint-Dié

Plar

Développement limité

Fonctions équivalentes

Bibliographie

Exemples

 $\sin x \sim x : \sin x = x + x \epsilon(x).$

Un polynôme est équivalent à son monôme

- de plus haut degré au voisinage de $\pm \infty$,

M2202 Analyse et méthodes numériques

Département Informatique IUT de Saint-Dié

Plan

Développement limité

Fonctions équivalentes

Ribliographie

Exemples

 $\sin x \sim x : \sin x = x + x \epsilon(x).$

Un polynôme est équivalent à son monôme

- de plus haut degré au voisinage de $\pm\infty$,
- de plus bas degré au voisinage de 0.

M2202

Analyse et méthodes numériques

Département Informatique IUT de Saint-Dié

Plar

Développement limité

Fonctions équivalentes

Bibliographie

Exemples

 $\sin x \sim_0 x : \sin x = x + x \epsilon(x).$

Un polynôme est équivalent à son monôme

- de plus haut degré au voisinage de $\pm\infty$,
- de plus bas degré au voisinage de 0.

Exemples

M2202

Analyse et méthodes numériques

Département Informatique IUT de Saint-Dié

Plar

Développement limité

Fonctions équivalentes

Bibliographie

Exemples

$$\sin x \sim x : \sin x = x + x \epsilon(x).$$

Un polynôme est équivalent à son monôme

- de plus haut degré au voisinage de $\pm\infty$,
- de plus bas degré au voisinage de 0.

Exemples

$$2x^3 + 5x^2 - x \sim 2x^3$$

M2202

Analyse et méthodes numériques

Fonctions équivalentes

Exemples

$$\sin x \sim x : \sin x = x + x \epsilon(x).$$

Un polynôme est équivalent à son monôme

- de plus haut degré au voisinage de $\pm \infty$,
- de plus bas degré au voisinage de 0.

Exemples

$$2x^{3} + 5x^{2} - x \underset{\pm \infty}{\sim} 2x^{3}$$
$$2x^{3} + 5x^{2} - x \underset{\sim}{\sim} -x$$

$$2x^3 + 5x^2 - x \sim -x$$

M2202 Analyse et méthodes numériques

Départemen Informatique IUT de

Plan

Développemei

Fonctions équivalentes

Bibliographie

M2202 Analyse et méthodes numériques

Départemer Informatiqu IUT de Saint-Dié

Plan

Développemen limité

Fonctions équivalentes

Bibliographie

Propriétés

M2202 Analyse et méthodes numériques

Départemen Informatique IUT de Saint-Dié

Plan

Développemen limité

Fonctions équivalentes

Bibliographie

Propriétés

1)
$$f \sim_{x_0} f$$

M2202 Analyse et méthodes numériques

Fonctions équivalentes

Propriétés

- 1) $f \sim f$
- 2) si $f \sim_{x_0} g$ alors $g \sim_{x_0} f$

M2202 Analyse et méthodes numériques

Département Informatique IUT de Saint-Dié

Plar

Développement limité

Fonctions équivalentes

Bibliographie

Propriétés

- 1) $f \sim_{x_0} f$
- 2) si $f \sim g$ alors $g \sim f$
- 3) si $f \underset{x_0}{\sim} g$ et $g \underset{x_0}{\sim} h$ alors $f \underset{x_0}{\sim} h$

M2202 Analyse et méthodes numériques

Département Informatique IUT de Saint-Dié

Plar

Développement limité

Fonctions équivalentes

Propriétés

- 1) $f \sim_{x_0} f$
- 2) si $f \sim_{x_0} g$ alors $g \sim_{x_0} f$
- 3) si $f \sim_{x_0}^{x_0} g$ et $g \sim_{x_0}^{x_0} h$ alors $f \sim_{x_0}^{x_0} h$
- 4) si $f \underset{x_0}{\sim} g$ et $h \underset{x_0}{\sim} i$ alors $fh \underset{x_0}{\sim} gi$

M2202 Analyse et méthodes numériques

Départemen Informatique IUT de Saint-Dié

Plar

Développement limité

Fonctions équivalentes

Bibliographie

Propriétés

- 1) $f \sim_{x_0} f$
- 2) si $f \sim g$ alors $g \sim f$
- 3) si $f \sim_{x_0} g$ et $g \sim_{x_0} h$ alors $f \sim_{x_0} h$
- 4) si $f \underset{x_0}{\sim} g$ et $h \underset{x_0}{\sim} i$ alors $fh \underset{x_0}{\sim} gi$
- 5) Soit $\alpha > 0$. Si $f \underset{x_0}{\sim} g$ alors $f^{\alpha} \underset{x_0}{\sim} g^{\alpha}$

M2202 Analyse et méthodes numériques

Départemen Informatique IUT de Saint-Dié

Plar

Développemen limité

Fonctions équivalentes

Bibliographie

Propriétés

- 1) $f \sim f$
- 2) si $f \sim g$ alors $g \sim f$
- 3) si $f \underset{x_0}{\sim} g$ et $g \underset{x_0}{\sim} h$ alors $f \underset{x_0}{\sim} h$
- 4) si $f \underset{x_0}{\sim} g$ et $h \underset{x_0}{\sim} i$ alors $fh \underset{x_0}{\sim} gi$
- 5) Soit $\alpha > 0$. Si $f \underset{x_0}{\sim} g$ alors $f^{\alpha} \underset{x_0}{\sim} g^{\alpha}$
- 6) Si $f \sim g$ et g ne s'annule pas sur $V(x_0)$ alors $\frac{1}{f} \sim \frac{1}{g}$

M2202 Analyse et méthodes numériques

Département Informatique IUT de Saint-Dié

Plar

Développement limité

Fonctions équivalentes

Propriétés

- 1) $f \sim_{x_0} f$
- 2) si $f \sim g$ alors $g \sim f$
- 3) si $f \underset{x_0}{\sim} g$ et $g \underset{x_0}{\sim} h$ alors $f \underset{x_0}{\sim} h$
- 4) si $f \underset{x_0}{\sim} g$ et $h \underset{x_0}{\sim} i$ alors $fh \underset{x_0}{\sim} gi$
- 5) Soit $\alpha > 0$. Si $f \sim_{x_0} g$ alors $f^{\alpha} \sim_{x_0} g^{\alpha}$
- 6) Si $f \sim_{x_0} g$ et g ne s'annule pas sur $V(x_0)$ alors $\frac{1}{f} \sim_{x_0} \frac{1}{g}$
- 7) Si $f \sim g$ et si g admet une limite en x_0 alors f y admet la même limite.

M2202 Analyse et méthodes numériques

Départemen Informatique IUT de Saint-Dié

Plar

Développemen limité

Fonctions équivalentes

Bibliographie

Propriétés

- 1) $f \sim_{x_0} f$
- 2) si $f \sim g$ alors $g \sim f$
- 3) si $f \sim_{x_0} g$ et $g \sim_{x_0} h$ alors $f \sim_{x_0} h$
- 4) si $f \sim_{x_0} g$ et $h \sim_{x_0} i$ alors $fh \sim_{x_0} gi$
- 5) Soit $\alpha > 0$. Si $f \underset{x_0}{\sim} g$ alors $f^{\alpha} \underset{x_0}{\sim} g^{\alpha}$
- 6) Si $f \sim_{x_0} g$ et g ne s'annule pas sur $V(x_0)$ alors $\frac{1}{f} \sim_{x_0} \frac{1}{g}$
- 7) Si $f \sim_{x_0} g$ et si g admet une limite en x_0 alors f y admet la même limite.
- 8) Si $f \sim g$ alors il existe un voisinage de x_0 (respectivement un voisinage
- à gauche, à droite) sur lequel f et g ont le même signe.

M2202 Analyse et méthodes numériques

Départemen Informatique IUT de Saint-Dié

Plar

Développemen^a limité

Fonctions équivalentes

Bibliographic

Propriétés

- 1) $f \sim_{x_0} f$
- 2) si $f \underset{x_0}{\sim} g$ alors $g \underset{x_0}{\sim} f$
- 3) si $f \sim_{x_0} g$ et $g \sim_{x_0} h$ alors $f \sim_{x_0} h$
- 4) si $f \sim_{x_0} g$ et $h \sim_{x_0} i$ alors $fh \sim_{x_0} gi$
- 5) Soit $\alpha > 0$. Si $f \sim g$ alors $f^{\alpha} \sim g^{\alpha}$
- 6) Si $f \sim_{x_0} g$ et g ne s'annule pas sur $V(x_0)$ alors $\frac{1}{f} \sim_{x_0} \frac{1}{g}$
- 7) Si $f \sim_{x_0} g$ et si g admet une limite en x_0 alors f y admet la même limite.
- 8) Si $f \sim g$ alors il existe un voisinage de x_0 (respectivement un voisinage
- à gauche, à droite) sur lequel f et g ont le même signe.
- 9) Si f admet un développement généralisé au voisinage de x_0 de la forme $f(x) = a_n(x x_0)^n + (x x_0)^n \epsilon(x)$ $(a_n \neq 0)$

M2202 Analyse et méthodes numériques

Département Informatique IUT de Saint-Dié

Plar

Développemen limité

Fonctions équivalentes

Bibliographic

Propriétés

- 1) $f \sim_{x_0} f$
- 2) si $f \sim_{x_0} g$ alors $g \sim_{x_0} f$
- 3) si $f \sim_{x_0} g$ et $g \sim_{x_0} h$ alors $f \sim_{x_0} h$
- 4) si $f \sim_{x_0} g$ et $h \sim_{x_0} i$ alors $fh \sim_{x_0} gi$
- 5) Soit $\alpha > 0$. Si $f \underset{x_0}{\sim} g$ alors $f^{\alpha} \underset{x_0}{\sim} g^{\alpha}$
- 6) Si $f \sim_{x_0} g$ et g ne s'annule pas sur $V(x_0)$ alors $\frac{1}{f} \sim_{x_0} \frac{1}{g}$
- 7) Si $f \sim g$ et si g admet une limite en x_0 alors f y admet la même limite.
- 8) Si $f \sim g$ alors il existe un voisinage de x_0 (respectivement un voisinage
- à gauche, à droite) sur lequel f et g ont le même signe.
- 9) Si f admet un développement généralisé au voisinage de x_0 de la forme $f(x) = a_n(x x_0)^n + (x x_0)^n \epsilon(x)$ ($a_n \neq 0$) alors $f \sim a_n(x x_0)^n$

M2202 Analyse et méthodes numériques

Département Informatique IUT de Saint-Dié

Plan

Développemer limité

Fonctions équivalentes

Bibliographie

M2202 Analyse et méthodes numériques

Département Informatique IUT de Saint-Dié

Plan

Développeme

Fonctions équivalentes

Sibliographie

Remarques

En général, les équivalents ne s'additionnent pas :

M2202 Analyse et méthodes numériques

Département Informatique IUT de Saint-Dié

Plan

Développemen limité

Fonctions équivalentes

Bibliographie

Remarques

En général, les équivalents ne s'additionnent pas :

$$x+1 \underset{0}{\sim} 1$$

M2202 Analyse et méthodes numériques

Département Informatique IUT de Saint-Dié

Plar

Développement limité

Fonctions équivalentes

Bibliographie

Remarques

En général, les équivalents ne s'additionnent pas :

$$x + 1 \sim 1$$

 $-1 \sim -1$

M2202 Analyse et méthodes numériques

Département Informatique IUT de Saint-Dié

Plar

Développement limité

Fonctions équivalentes

Remarques

En général, les équivalents ne s'additionnent pas :

$$x + 1 \sim 1$$

 $-1 \sim -1$

mais $x \neq 0 + 0\epsilon(x) = 0$ sur un voisinage de 0.

M2202 Analyse et méthodes numériques

Département Informatique IUT de Saint-Dié

Plan

Développement limité

Fonctions équivalentes

ibliographie

Remarques

En général, les équivalents ne s'additionnent pas :

$$x + 1 \sim 1$$

 $-1 \sim -1$

mais $x \neq 0 + 0\epsilon(x) = 0$ sur un voisinage de 0.

De même pour la composition :

M2202 Analyse et méthodes numériques

Département Informatique IUT de Saint-Dié

Plan

Développement limité

Fonctions équivalentes

Bibliographie

Remarques

En général, les équivalents ne s'additionnent pas :

$$x + 1 \sim 1$$

 $-1 \sim -1$

mais $x \neq 0 + 0\epsilon(x) = 0$ sur un voisinage de 0.

De même pour la composition :

$$x + \sqrt{x} \underset{+\infty}{\sim} x : \frac{x + \sqrt{x}}{x} = 1 + \frac{1}{\sqrt{x}} \text{ et } 1 + \frac{1}{\sqrt{x}} \to 1.$$

M2202 Analyse et méthodes numériques

Département Informatique IUT de Saint-Dié

Plar

Développemen limité

Fonctions équivalentes

Remarques

En général, les équivalents ne s'additionnent pas :

$$x + 1 \sim 1$$

 $-1 \sim -1$

mais $x \neq 0 + 0\epsilon(x) = 0$ sur un voisinage de 0.

De même pour la composition :

$$x + \sqrt{x} \underset{+\infty}{\sim} x : \frac{x + \sqrt{x}}{x} = 1 + \frac{1}{\sqrt{x}} \text{ et } 1 + \frac{1}{\sqrt{x}} \to 1.$$

$$\text{Mais } \frac{e^{x+\sqrt{x}}}{e^{\sqrt{x}}} = e^{x+\sqrt{x}-\sqrt{x}} = e^x \text{ et } e^x \underset{x \to +\infty}{\to} +\infty.$$

M2202 Analyse et méthodes numériques

Départemen Informatique IUT de Saint-Dié

Plai

Développemer limité

Fonctions équivalentes

Bibliographie

Remarques

En général, les équivalents ne s'additionnent pas :

$$x + 1 \sim 1$$

 $-1 \sim -1$

mais $x \neq 0 + 0\epsilon(x) = 0$ sur un voisinage de 0.

De même pour la composition :

$$x + \sqrt{x} \underset{+\infty}{\sim} x : \frac{x + \sqrt{x}}{x} = 1 + \frac{1}{\sqrt{x}} \text{ et } 1 + \frac{1}{\sqrt{x}} \to 1.$$

$$\text{Mais } \frac{e^{x+\sqrt{x}}}{e^{\sqrt{x}}} = e^{x+\sqrt{x}-\sqrt{x}} = e^x \text{ et } e^x \underset{x \to +\infty}{\to} +\infty.$$

Dans le cas de limites finies, la composition est possible.

M2202 Analyse et méthodes numériques

Département Informatique IUT de Saint-Dié

Plan

Développeme limité

Fonctions équivalentes

M2202 Analyse et méthodes numériques

Département Informatique IUT de

Plan

Développer

Fonctions

équivalentes

Equivalents usuels

 $\sin x \sim x$

M2202

Analyse et méthodes numériques

Fonctions équivalentes

$$\sin x \sim x$$

$$\sin x \sim x \\ \cos x - 1 \sim -\frac{x^2}{2}$$

M2202

Analyse et méthodes numériques

Informatiqu IUT de Saint-Dié

Plan

Développemen limité

Fonctions équivalentes

Bibliographie

$$sin x \sim x$$

$$cos x - 1 \sim -\frac{x^2}{2}$$

$$tan x \sim x$$

M2202

Analyse et méthodes numériques

Informatiqu IUT de Saint-Dié

Plan

Développement limité

Fonctions équivalentes

Bibliographie

$$\sin x \sim x \\ \cos x - 1 \sim -\frac{x^2}{2} \\ \tan x \sim x \\ e^x - 1 \sim x$$

M2202

Analyse et méthodes numériques

Informatiqu IUT de Saint-Dié

Plan

Développemen limité

Fonctions équivalentes

$$\sin x \sim x
\cos x - 1 \sim -\frac{x^2}{2}
\tan x \sim x
e^x - 1 \sim x
\ln(1+x) \sim x$$

M2202

Analyse et méthodes numériques Exemple

Départemen Informatiqu IUT de

Plan

Développemer

Fonctions équivalentes

Bibliographie

M2202 Analyse et méthodes numériques

Départemen Informatique IUT de

Plan

Développemer limité

Fonctions équivalentes

Bibliographie

Exemple

Limite lorsque x tend vers 0 de $f(x) = \frac{(\cos x - 1)(\sin x)^2}{x^3 \ln(1+x)}$

M2202 Analyse et méthodes numériques

Département Informatique IUT de

Plan

Développemen limité

Fonctions équivalentes

Bibliographie

Exemple

Limite lorsque x tend vers 0 de $f(x) = \frac{(\cos x - 1)(\sin x)^2}{x^3 \ln(1+x)}$

$$f(x) = \frac{(\cos x - 1)(\sin x)^2}{x^3 \ln(1 + x)} \sim \frac{-\frac{x^2}{2}x^2}{x^3 \cdot x} = -\frac{1}{2}$$

M2202 Analyse et méthodes numériques

Départemen Informatique IUT de Saint-Dié

Plar

Développement limité

Fonctions équivalentes

Bibliographie

Exemple

Limite lorsque x tend vers 0 de $f(x) = \frac{(\cos x - 1)(\sin x)^2}{x^3 \ln(1+x)}$

$$f(x) = \frac{(\cos x - 1)(\sin x)^2}{x^3 \ln(1 + x)} \sim \frac{-\frac{x^2}{2}x^2}{x^3 \cdot x} = -\frac{1}{2}$$

On en déduit $\lim_{x\to 0} f(x) = -\frac{1}{2}$

M2202 Analyse et méthodes numériques

Département Informatique IUT de Saint-Dié

Plar

Développement limité

Fonctions équivalentes

Bibliographie

Exemple

Limite lorsque x tend vers 0 de $f(x) = \frac{(\cos x - 1)(\sin x)^2}{x^3 \ln(1+x)}$

$$f(x) = \frac{(\cos x - 1)(\sin x)^2}{x^3 \ln(1 + x)} \sim \frac{-\frac{x^2}{2}x^2}{x^3 \cdot x} = -\frac{1}{2}$$

On en déduit $\lim_{x\to 0} f(x) = -\frac{1}{2}$

Application à l'étude locale d'une fonction : tangente

M2202

Analyse et méthodes numériques

Départemen Informatique IUT de

Dlan

Développeme

Fonctions équivalentes

Bibliographie

Application à l'étude locale d'une fonction : tangente

M2202 Analyse et méthodes numériques

Fonctions équivalentes

Tangente

Soit f une fonction admettant un développement limité d'ordre $n \geq 2$ au voisinage de 0 :

Département Informatique IUT de Saint-Dié

Application à l'étude locale d'une fonction : tangente

M2202 Analyse et méthodes numériques

Département Informatique IUT de Saint-Dié

Plan

Développemen

Fonctions équivalentes

Bibliographie

Tangente

Soit f une fonction admettant un développement limité d'ordre $n \ge 2$ au voisinage de 0 : $f(x) = a_0 + a_1(x - x_0) + a_n(x - x_0)^n + (x - x_0)^n \epsilon(x)$ $(a_n \ne 0)$. On a alors $f(x) - (a_0 + a_1(x - x_0)) \sim_{x_0} a_n(x - x_0)^n$ et

M2202 Analyse et méthodes numériques

Département Informatique IUT de Saint-Dié

Plar

Développement

Fonctions équivalentes

Bibliographie

Tangente

Soit f une fonction admettant un développement limité d'ordre $n \ge 2$ au voisinage de 0 : $f(x) = a_0 + a_1(x - x_0) + a_n(x - x_0)^n + (x - x_0)^n \epsilon(x)$ $(a_n \ne 0)$. On a alors $f(x) - (a_0 + a_1(x - x_0)) \sim_{x_0} a_n(x - x_0)^n$ et

- si n est pair, la courbe C_f reste d'un même côté de la tangente en x_0

M2202 Analyse et méthodes numériques

Département Informatique IUT de Saint-Dié

Plar

Développemen[.] Iimité

Fonctions équivalentes

Bibliographie

Tangente

Soit f une fonction admettant un développement limité d'ordre $n \ge 2$ au voisinage de $0: f(x) = a_0 + a_1(x - x_0) + a_n(x - x_0)^n + (x - x_0)^n \epsilon(x)$ $(a_n \ne 0)$. On a alors $f(x) - (a_0 + a_1(x - x_0)) \sim a_n(x - x_0)^n$ et

- si n est pair, la courbe C_f reste d'un même côté de la tangente en x_0

M2202 Analyse et méthodes numériques

Département Informatique IUT de Saint-Dié

Plan

Développemen[.] Iimité

Fonctions équivalentes

Bibliographie

Tangente

Soit f une fonction admettant un développement limité d'ordre $n \ge 2$ au voisinage de $0: f(x) = a_0 + a_1(x - x_0) + a_n(x - x_0)^n + (x - x_0)^n \epsilon(x)$ $(a_n \ne 0)$. On a alors $f(x) - (a_0 + a_1(x - x_0)) \sim a_n(x - x_0)^n$ et

- si n est pair, la courbe C_f reste d'un même côté de la tangente en x_0

M2202 Analyse et méthodes numériques

Département Informatique IUT de Saint-Dié

Dlan

Développeme

Fonctions équivalentes

Bibliographie

Département Informatique IUT de Saint-Dié

M2202 Analyse et méthodes numériques

Départemen Informatique IUT de Saint-Dié

Dlar

Développemei

Fonctions équivalentes

Bibliographie

Département Informatique IUT de Saint-Dié

M2202 Analyse et méthodes numériques

Département Informatique IUT de Saint-Dié

Dlan

Développeme

Fonctions équivalentes

Bibliographie

Tangente

$$f(x) - (a_0 + a_1(x - x_0)) \sim a_n(x - x_0)^n$$

- si n est impair, la courbe C_f traverse la tangente en x_0

M2202 Analyse et méthodes numériques

Département Informatique IUT de Saint-Dié

Dlar

Développemen

Fonctions équivalentes

Bibliographie

Tangente

$$f(x) - (a_0 + a_1(x - x_0)) \sim a_n(x - x_0)^n$$

- si n est impair, la courbe C_f traverse la tangente en x_0 (point d'inflexion).

M2202 Analyse et méthodes numériques

Département Informatique IUT de Saint-Dié

Plan

Développement

Fonctions équivalentes

Bibliographie

Tangente

$$f(x) - (a_0 + a_1(x - x_0)) \sim a_n(x - x_0)^n$$

- si n est impair, la courbe C_f traverse la tangente en x_0 (point d'inflexion).

M2202 Analyse et méthodes numériques

Département Informatique IUT de Saint-Dié

Plan

Développement

Fonctions équivalentes

Bibliographie

Tangente

$$f(x) - (a_0 + a_1(x - x_0)) \sim a_n(x - x_0)^n$$

- si n est impair, la courbe C_f traverse la tangente en x_0 (point d'inflexion).

M2202

Analyse et méthodes numériques

Informatique
IUT de

Plan

Développemer limité

Fonctions équivalentes

Bibliographie

M2202 Analyse et méthodes numériques

Départemen Informatique IUT de Saint-Dié

Plan

Développemer

Fonctions équivalentes

Bibliographie

Exemple

Au voisinage de 0 $f(x) = e^{\sin x} = 1 + x + \frac{x^2}{2} + x^2 \epsilon(x)$.

M2202 Analyse et méthodes numériques

Département Informatique IUT de Saint-Dié

Plan

Développemer

Fonctions équivalentes

Bibliographie

Exemple

Au voisinage de 0 $f(x) = e^{\sin x} = 1 + x + \frac{x^2}{2} + x^2 \epsilon(x)$. La tangente à C_f en 0 a pour équation y = 1 + x et

M2202 Analyse et méthodes numériques

Départemen Informatique IUT de Saint-Dié

Plan

Développemen limité

Fonctions équivalentes

Bibliographie

Exemple

Au voisinage de 0 $f(x) = e^{\sin x} = 1 + x + \frac{x^2}{2} + x^2 \epsilon(x)$.

La tangente à C_f en 0 a pour équation y = 1 + x et

$$f(x) - (1+x) \sim \frac{x^2}{2}$$

M2202 Analyse et méthodes numériques

Départemen Informatique IUT de Saint-Dié

Plai

Développemen limité

Fonctions équivalentes

ibliographie

Exemple

Au voisinage de 0 $f(x) = e^{\sin x} = 1 + x + \frac{x^2}{2} + x^2 \epsilon(x)$.

La tangente à C_f en 0 a pour équation y = 1 + x et

$$f(x) - (1+x) \sim \frac{x^2}{2}$$

On en déduit que C_f est localement au-dessus de sa tangente en 0 (concavité tournée vers le haut).

M2202 Analyse et méthodes numériques

Départemen Informatiqu IUT de Saint-Dié

Plai

Développemer limité

Fonctions équivalentes

Bibliographie

Exemple

Au voisinage de 0 $f(x) = e^{\sin x} = 1 + x + \frac{x^2}{2} + x^2 \epsilon(x)$.

La tangente à C_f en 0 a pour équation y = 1 + x et

$$f(x) - (1+x) \sim \frac{x^2}{2}$$

On en déduit que C_f est localement au-dessus de sa tangente en 0 (concavité tournée vers le haut).

M2202 Analyse et méthodes numériques

Informatiqu IUT de Saint-Dié

Plan

Développeme

Fonctions équivalentes

Bibliographie

46/63

M2202 Analyse et méthodes numériques

Informatiqu IUT de Saint-Dié

Plai

Développemen

Fonctions

équivalentes

Point d'inflexion

Soit f une fonction deux fois dérivable sur un intervalle ouvert I.

M2202 Analyse et méthodes numériques

Départemer Informatiqu IUT de Saint-Dié

Plar

Développement

Fonctions équivalentes

ibliographie

Point d'inflexion

Soit f une fonction deux fois dérivable sur un intervalle ouvert I. Si C_f admet un point d'inflexion en un point d'abscisse x_0 alors $f^{(2)}(x_0) = 0$.

M2202 Analyse et méthodes numériques

Départemer Informatiqu IUT de Saint-Dié

Plai

Développement

Fonctions équivalentes

Bibliographi

Point d'inflexion

Soit f une fonction deux fois dérivable sur un intervalle ouvert I.

Si C_f admet un point d'inflexion en un point d'abscisse x_0 alors $f^{(2)}(x_0) = 0$.

Si $f^{(2)}$ s'annule en $x_0 \in I$ en changeant de signe alors x_0 est l'abscisse d'un point d'inflexion de C_f .

M2202 Analyse et méthodes numériques

Département Informatique IUT de Saint-Dié

Plar

Développeme

Fonctions équivalentes

Bibliographie

M2202 Analyse et méthodes numériques

Département Informatique IUT de Saint-Dié

Dlar

Développeme

Fonctions équivalentes

Bibliographie

M2202 Analyse et méthodes

numériques

Fonctions équivalentes

M2202 Analyse et méthodes numériques

Département Informatique IUT de

Plar

Développemer

Fonctions équivalentes

Bibliographie

M2202 Analyse et méthodes numériques

Département Informatique IUT de Saint-Dié

Dlan

Développeme limité

Fonctions équivalentes

Bibliographie

Département Informatique IUT de Saint-Dié

M2202 Analyse et méthodes numériques

Départemen Informatique IUT de Saint-Dié

Plar

Développemen

Fonctions équivalentes

Bibliographie

Asymptote

Les courbes C_f et C_g représentant deux fonctions f et g sont dites asymptotes en $+\infty$ (respectivement $-\infty$) si $f(x) - g(x) \to 0$ (respectivement $f(x) - g(x) \to 0$).

M2202 Analyse et méthodes numériques

Départemen Informatique IUT de Saint-Dié

Plai

Développemen

Fonctions équivalentes

ibliographie

Asymptote

Les courbes C_f et C_g représentant deux fonctions f et g sont dites asymptotes en $+\infty$ (respectivement $-\infty$) si $f(x) - g(x) \to 0$

(respectivement
$$f(x) - g(x) \rightarrow 0$$
).

Soit f une fonction admettant un développement limité généralisé au voisinage de $+\infty$ (respectivement $-\infty$):

M2202 Analyse et méthodes numériques

Départemen Informatique IUT de Saint-Dié

Plai

Développemen

Fonctions équivalentes

ibliographie

Asymptote

Les courbes C_f et C_g représentant deux fonctions f et g sont dites asymptotes en $+\infty$ (respectivement $-\infty$) si $f(x)-g(x)\to 0$

(respectivement
$$f(x) - g(x) \rightarrow 0$$
).

Soit f une fonction admettant un développement limité généralisé au voisinage de $+\infty$ (respectivement $-\infty$) :

$$f(x) = \alpha x + \beta + \frac{\gamma}{x^n} + \frac{1}{x^n} \epsilon(x) \ (\gamma \neq 0).$$

M2202 Analyse et méthodes numériques

Départemen Informatiqu IUT de Saint-Dié

Plai

Développeme

Fonctions équivalentes

Bibliographi

Asymptote

Les courbes C_f et C_g représentant deux fonctions f et g sont dites asymptotes en $+\infty$ (respectivement $-\infty$) si $f(x) - g(x) \to 0$

(respectivement
$$f(x) - g(x) \rightarrow 0$$
).

Soit f une fonction admettant un développement limité généralisé au voisinage de $+\infty$ (respectivement $-\infty$) :

$$f(x) = \alpha x + \beta + \frac{\gamma}{x^n} + \frac{1}{x^n} \epsilon(x) \ (\gamma \neq 0).$$

Alors la droite D d'équation $y = \alpha x + \beta$ est asymptote à C_f en $+\infty$ (respectivement $-\infty$).

M2202 Analyse et méthodes numériques

Départemen Informatique IUT de Saint-Dié

Pla

Développeme

Fonctions équivalentes

Bibliograph

Asymptote

Les courbes C_f et C_g représentant deux fonctions f et g sont dites asymptotes en $+\infty$ (respectivement $-\infty$) si $f(x) - g(x) \to 0$

(respectivement
$$f(x) - g(x) \rightarrow 0$$
).

Soit f une fonction admettant un développement limité généralisé au voisinage de $+\infty$ (respectivement $-\infty$) :

$$f(x) = \alpha x + \beta + \frac{\gamma}{x^n} + \frac{1}{x^n} \epsilon(x) \ (\gamma \neq 0).$$

Alors la droite D d'équation $y = \alpha x + \beta$ est asymptote à C_f en $+\infty$ (respectivement $-\infty$).

On a alors $f(x) - (\alpha x + \beta) \sim \frac{\gamma}{\pm \infty}$ et le signe de γ donne la position de la courbe par rapport à l'asymptote.

M2202 Analyse e

Exemple

Analyse et méthodes numériques

Départemen Informatique IUT de Saint-Dié

Dlan

Développemer

Fonctions équivalentes

Bibliographie

M2202 Analyse et méthodes numériques

Département Informatique IUT de

Dlan

Développemen

Fonctions équivalentes

Bibliographie

Exemple

$$f(x) = \frac{2x}{1 + e^{\frac{1}{x}}}$$
 pour $x \neq 0$ et $f(0) = 0$.

M2202 Analyse et méthodes numériques

Département Informatique IUT de Saint-Dié

Plan

Développemen

Fonctions équivalentes

Bibliographie

Exemple

$$f(x) = \frac{2x}{1 + e^{\frac{1}{x}}}$$
 pour $x \neq 0$ et $f(0) = 0$.

Au voisinage de $\pm \infty$, on a $f(x) = x - \frac{1}{2} + \frac{1}{24x^2} + \frac{1}{x^2} \epsilon(x)$.

M2202 Analyse et méthodes numériques

Départemen Informatique IUT de Saint-Dié

Plar

Développemen

Fonctions équivalentes

Bibliographie

Exemple

$$f(x) = \frac{2x}{1 + e^{\frac{1}{x}}}$$
 pour $x \neq 0$ et $f(0) = 0$.

Au voisinage de
$$\pm \infty$$
, on a $f(x) = x - \frac{1}{2} + \frac{1}{24x^2} + \frac{1}{x^2} \epsilon(x)$.

On en déduit que
$$D: y = x - \frac{1}{2}$$
 et C_f sont asymptotes en $+\infty$

(respectivement
$$-\infty$$
),

M2202 Analyse et méthodes numériques

Départemen Informatique IUT de Saint-Dié

Plar

Développement

Fonctions équivalentes

Bibliographie

Exemple

$$f(x) = \frac{2x}{1 + e^{\frac{1}{x}}}$$
 pour $x \neq 0$ et $f(0) = 0$.

Au voisinage de
$$\pm \infty$$
, on a $f(x) = x - \frac{1}{2} + \frac{1}{24x^2} + \frac{1}{x^2} \epsilon(x)$.

On en déduit que $D: y = x - \frac{1}{2}$ et C_f sont asymptotes en $+\infty$

(respectivement
$$-\infty$$
), que $f(x) - \left(x - \frac{1}{2}\right) \underset{\pm \infty}{\sim} \frac{1}{24x^2}$

M2202 Analyse et méthodes numériques

Départemen Informatique IUT de Saint-Dié

Plar

Développement

Fonctions équivalentes

ibliographie

Exemple

$$f(x) = \frac{2x}{1 + e^{\frac{1}{x}}}$$
 pour $x \neq 0$ et $f(0) = 0$.

Au voisinage de $\pm \infty$, on a $f(x) = x - \frac{1}{2} + \frac{1}{24x^2} + \frac{1}{x^2} \epsilon(x)$.

On en déduit que $D: y = x - \frac{1}{2}$ et C_f sont asymptotes en $+\infty$

(respectivement $-\infty$), que $f(x) - \left(x - \frac{1}{2}\right) \underset{\pm \infty}{\sim} \frac{1}{24x^2}$ et donc que C_f est au-dessus de l'asymptote en $+\infty$ (respectivement $-\infty$).

M2202 Analyse et méthodes numériques

Départemen Informatique IUT de Saint-Dié

Plai

Développement

Fonctions équivalentes

Bibliographie

Exemple

$$f(x) = \frac{2x}{1 + e^{\frac{1}{x}}}$$
 pour $x \neq 0$ et $f(0) = 0$.

Au voisinage de $\pm \infty$, on a $f(x) = x - \frac{1}{2} + \frac{1}{24x^2} + \frac{1}{x^2} \epsilon(x)$.

On en déduit que $D: y = x - \frac{1}{2}$ et C_f sont asymptotes en $+\infty$

(respectivement $-\infty$), que $f(x) - \left(x - \frac{1}{2}\right) \underset{\pm \infty}{\sim} \frac{1}{24x^2}$ et donc que C_f est au-dessus de l'asymptote en $+\infty$ (respectivement $-\infty$).

M2202

Analyse et méthodes numériques

Départemen Informatique IUT de

Plan

Développemer

Fonctions équivalentes

M2202

Analyse et méthodes numériques

Fonctions équivalentes

Exemple
$$f(x) = \frac{2x}{1+e^{\frac{1}{x}}}$$

$$1 + e^{\frac{1}{x}} = 1 + e^{y} = 1 + 1 + y + \frac{y^{2}}{2} + \frac{y^{3}}{6} + y^{3}\epsilon(y) = 2 + y + \frac{y^{2}}{2} + \frac{y^{3}}{6} + y^{3}\epsilon(y)$$

M2202

Analyse et méthodes numériques

Fonctions équivalentes

Exemple
$$f(x) = \frac{2x}{1+e^{\frac{1}{x}}}$$

$$1 + e^{\frac{1}{x}} = 1 + e^{y} = 1 + 1 + y + \frac{y^{2}}{2} + \frac{y^{3}}{6} + y^{3} \epsilon(y) = 2 + y + \frac{y^{2}}{2} + \frac{y^{3}}{6} + y^{3} \epsilon(y)$$

$$2$$

$$-2 - y - \frac{y^{2}}{2} - \frac{y^{3}}{6}$$

$$-y - \frac{y^{2}}{2} - \frac{y^{3}}{6}$$

$$y + \frac{y^{2}}{2} + \frac{y^{3}}{4} + \frac{y^{4}}{6}$$

$$+ \frac{y^{3}}{12} + \frac{y^{4}}{6}$$

$$- \frac{y^{3}}{12} - \frac{y^{4}}{48} - \frac{y^{5}}{144}$$

$$\frac{2 + y + \frac{y^2}{2} + \frac{y^3}{6}}{2}$$

$$1-\tfrac{y}{2}+\tfrac{y^3}{24}$$

 $\frac{y^4}{8}$ $-\frac{y^5}{48}$ $-\frac{y^6}{144}$

M2202

Analyse et méthodes numériques

Fonctions équivalentes

Exemple
$$f(x) = \frac{2x}{1+e^{\frac{1}{x}}}$$

$$1 + e^{\frac{1}{x}} = 1 + e^{y} = 1 + 1 + y + \frac{y^{2}}{2} + \frac{y^{3}}{6} + y^{3}\epsilon(y) = 2 + y + \frac{y^{2}}{2} + \frac{y^{3}}{6} + y^{3}\epsilon(y)$$

$$2$$

$$-2 \quad -y \quad -\frac{y^{2}}{2} \quad -\frac{y^{3}}{6}$$

$$-y \quad -\frac{y^{2}}{2} \quad -\frac{y^{3}}{6}$$

$$y \quad +\frac{y^{2}}{2} \quad +\frac{y^{3}}{4} \quad +\frac{y^{4}}{6}$$

$$+\frac{y^{3}}{12} \quad +\frac{y^{4}}{6}$$

$$-\frac{y^{3}}{12} \quad -\frac{y^{4}}{24} \quad -\frac{y^{5}}{48} \quad -\frac{y^{6}}{144}$$

$$\frac{3}{1} + y^3 \epsilon(y)$$

 $2 + y + \frac{y^2}{2} + \frac{y^3}{6}$

$$1 - \frac{y}{2} + \frac{y^3}{24}$$

$$1 - \frac{y}{2} + \frac{y^3}{24}$$

$$\frac{2}{1+e^{y}}=1-\frac{y}{2}+\frac{y^{3}}{24}+y^{3}\epsilon(y)$$

 $\frac{y^4}{9}$ $-\frac{y^5}{49}$ $-\frac{y^6}{144}$

M2202 Analyse et

méthodes numériques

Fonctions équivalentes

M2202

Analyse et méthodes numériques

Fonctions équivalentes

$$\frac{2}{1+e^{y}} = 1 - \frac{y}{2} + \frac{y^{3}}{24} + y^{3} \epsilon(y)$$

$$f(x) = x \cdot \frac{2}{1+e^{\frac{1}{x}}} = x \left(1 - \frac{y}{2} + \frac{y^{3}}{24} + y^{3} \epsilon(y)\right) = x \left(1 - \frac{1}{2x} + \frac{1}{24x^{3}} + \frac{1}{x^{3}} \epsilon(x)\right)$$

M2202 Analyse et méthodes numériques

Département Informatique IUT de

Plan

Développemen

Fonctions équivalentes

Bibliographie

$$\begin{split} &\frac{2}{1+e^{y}}=1-\frac{y}{2}+\frac{y^{3}}{2^{4}}+y^{3}\epsilon(y)\\ &f(x)=x.\frac{2}{1+e^{\frac{1}{x}}}=x\left(1-\frac{y}{2}+\frac{y^{3}}{2^{4}}+y^{3}\epsilon(y)\right)=x\left(1-\frac{1}{2x}+\frac{1}{24x^{3}}+\frac{1}{x^{3}}\epsilon(x)\right)\\ &f(x)=x-\frac{1}{2}+\frac{1}{24x^{2}}+\frac{1}{\sqrt{2}}\epsilon(x) \end{split}$$

M2202 Analyse et méthodes numériques

Départemen Informatique IUT de Saint-Dié

Plar

Développement limité

Fonctions équivalentes

$$\begin{split} \frac{2}{1+e^y} &= 1 - \frac{y}{2} + \frac{y^3}{24} + y^3 \epsilon(y) \\ f(x) &= x \cdot \frac{2}{1+e^{\frac{1}{x}}} = x \left(1 - \frac{y}{2} + \frac{y^3}{24} + y^3 \epsilon(y) \right) = x \left(1 - \frac{1}{2x} + \frac{1}{24x^3} + \frac{1}{x^3} \epsilon(x) \right) \\ f(x) &= x - \frac{1}{2} + \frac{1}{24x^2} + \frac{1}{x^2} \epsilon(x) \\ f(x) &- \left(x - \frac{1}{2} \right) = \frac{1}{24x^2} + \frac{1}{x^2} \epsilon(x) \end{split}$$

M2202 Analyse et méthodes numériques

Département Informatique IUT de

Plar

Développemen limité

Fonctions équivalentes

Bibliographie

$$\frac{2}{1+e^{y}} = 1 - \frac{y}{2} + \frac{y^{3}}{24} + y^{3} \epsilon(y)$$

$$f(x) = x \cdot \frac{2}{1+e^{\frac{1}{x}}} = x \left(1 - \frac{y}{2} + \frac{y^{3}}{24} + y^{3} \epsilon(y)\right) = x \left(1 - \frac{1}{2x} + \frac{1}{24x^{3}} + \frac{1}{x^{3}} \epsilon(x)\right)$$

$$f(x) = x - \frac{1}{2} + \frac{1}{24x^{2}} + \frac{1}{x^{2}} \epsilon(x)$$

$$f(x) - \left(x - \frac{1}{2}\right) = \frac{1}{24x^{2}} + \frac{1}{x^{2}} \epsilon(x)$$

$$f(x) - \left(x - \frac{1}{2}\right) \underset{\pm \infty}{\sim} \frac{1}{24x^{2}}$$

M2202 Analyse et méthodes numériques

Informatique IUT de Saint-Dié

Plan

Développeme

Fonctions équivalentes

M2202 Analyse et méthodes numériques

Informatiqu IUT de Saint-Dié

Plar

Développement

Fonctions équivalentes

Sibliographie

Définition

Deux suites sont équivalentes si il existe une suite (ϵ_n) de limite 0 telle que $u_n = v_n + v_n \epsilon_n$ à partir d'un certain rang.

M2202 Analyse et méthodes numériques

Informatique IUT de

Plan

Développement limité

Fonctions équivalentes

Bibliographic

Définition

Deux suites sont équivalentes si il existe une suite (ϵ_n) de limite 0 telle que $u_n = v_n + v_n \epsilon_n$ à partir d'un certain rang.

Notation

M2202

Analyse et méthodes numériques

Informatique IUT de Saint-Dié

Plar

Développement limité

Fonctions équivalentes

Ribliographic

Définition

Deux suites sont équivalentes si il existe une suite (ϵ_n) de limite 0 telle que $u_n = v_n + v_n \epsilon_n$ à partir d'un certain rang.

Notation

$$u_n \underset{+\infty}{\sim} v_n$$
 ou $u_n \sim v_n$.

M2202 Analyse et méthodes numériques

Départemen Informatique IUT de

Plar

Développemer limité

Fonctions équivalentes

Bibliographie

Définition équivalente

M2202 Analyse et méthodes numériques

Département Informatique IUT de Saint-Dié

Plan

Développement limité

Fonctions équivalentes

Bibliographie

Définition équivalente

Si la suite (v_n) ne s'annule pas à partir d'un certain rang $u_n \sim v_n$ signifie $\lim_{n \to +\infty} \frac{u_n}{v_n} = 1$.

M2202 Analyse et méthodes numériques

Département Informatique IUT de Saint-Dié

Plar

Développement limité

Fonctions équivalentes

Bibliographie

Définition équivalente

Si la suite (v_n) ne s'annule pas à partir d'un certain rang $u_n \sim v_n$ signifie $\lim_{n \to +\infty} \frac{u_n}{v_n} = 1$.

M2202 Analyse et méthodes numériques

Département Informatique IUT de Saint-Dié

Plar

Développemen limité

Fonctions équivalentes

Définition équivalente

Si la suite (v_n) ne s'annule pas à partir d'un certain rang $u_n \sim v_n$ signifie $\lim_{n \to +\infty} \frac{u_n}{v_n} = 1$.

$$u_n = \frac{n-1}{n^2} \ (n \ge 1).$$

M2202 Analyse et méthodes numériques

Département Informatique IUT de Saint-Dié

Plan

Développemen limité

Fonctions équivalentes

Définition équivalente

Si la suite (v_n) ne s'annule pas à partir d'un certain rang $u_n \sim v_n$ signifie $\lim_{n \to +\infty} \frac{u_n}{v_n} = 1$.

$$u_n = \frac{n-1}{n^2} \ (n \ge 1).$$

 $v_n = \frac{1}{n} \ (n \ge 1).$

M2202 Analyse et méthodes numériques

Département Informatique IUT de Saint-Dié

Plar

Développemen limité

Fonctions équivalentes

Définition équivalente

Si la suite (v_n) ne s'annule pas à partir d'un certain rang $u_n \sim v_n$ signifie $\lim_{n \to +\infty} \frac{u_n}{v_n} = 1$.

$$\begin{split} u_n &= \frac{n-1}{n^2} \ (n \ge 1). \\ v_n &= \frac{1}{n} \ (n \ge 1). \\ \frac{u_n}{v_n} &= \frac{\frac{n-1}{n^2}}{\frac{1}{2}} = \frac{n(n-1)}{n^2} = \frac{n^2-n}{n^2} = \frac{n^2(1-1/n)}{n^2} = 1 - \frac{1}{n} \ (n \ge 1). \end{split}$$

M2202 Analyse et méthodes numériques

Département Informatique IUT de Saint-Dié

Plar

Développemen limité

Fonctions équivalentes

Définition équivalente

Si la suite (v_n) ne s'annule pas à partir d'un certain rang $u_n \sim v_n$ signifie $\lim_{n \to +\infty} \frac{u_n}{v_n} = 1$.

$$\begin{split} u_n &= \frac{n-1}{n^2} \ (n \ge 1). \\ v_n &= \frac{1}{n} \ (n \ge 1). \\ \frac{u_n}{v_n} &= \frac{\frac{n-1}{n^2}}{\frac{1}{n}} = \frac{n(n-1)}{n^2} = \frac{n^2 - n}{n^2} = \frac{n^2(1-1/n)}{n^2} = 1 - \frac{1}{n} \ (n \ge 1). \\ \lim_{n \to +\infty} \frac{u_n}{v_n} &= \lim_{n \to +\infty} \left(1 - \frac{1}{n}\right) = 1. \end{split}$$

M2202 Analyse et méthodes numériques

Départemen Informatique IUT de Saint-Dié

Plar

Développemen limité

Fonctions équivalentes

Bibliographie

Définition équivalente

Si la suite (v_n) ne s'annule pas à partir d'un certain rang $u_n \sim v_n$ signifie $\lim_{n \to +\infty} \frac{u_n}{v_n} = 1$.

$$\begin{split} u_n &= \frac{n-1}{n^2} \ (n \ge 1). \\ v_n &= \frac{1}{n} \ (n \ge 1). \\ \frac{u_n}{v_n} &= \frac{\frac{n-1}{n^2}}{\frac{1}{n}} = \frac{n(n-1)}{n^2} = \frac{n^2-n}{n^2} = \frac{n^2(1-1/n)}{n^2} = 1 - \frac{1}{n} \ (n \ge 1). \\ \lim_{\substack{n \to +\infty \\ n \to +\infty}} \frac{u_n}{v_n} &= \lim_{\substack{n \to +\infty \\ n \to +\infty}} \left(1 - \frac{1}{n}\right) = 1. \\ \text{On en déduit } u_n \sim v_n. \end{split}$$

M2202 Analyse et méthodes numériques

Département Informatique IUT de

Plar

Développemei limité

Fonctions équivalentes

M2202 Analyse et méthodes numériques

Département Informatique IUT de Saint-Dié

Plan

Développemen

Fonctions équivalentes

M2202 Analyse et méthodes numériques

Départemen Informatique IUT de Saint-Dié

Plan

Développemei imité

Fonctions équivalentes

M2202 Analyse et méthodes numériques

Département Informatique IUT de

Plan

Développement limité

Fonctions équivalentes

Bibliographie

Propriétés

Les propriétés énumérées dans le cas des fonctions s'étendent aux suites équivalentes.

M2202 Analyse et méthodes numériques

Département Informatique IUT de

Saint-Die

Plar

Développemen limité

Fonctions équivalentes

Bibliographie

Propriétés

Les propriétés énumérées dans le cas des fonctions s'étendent aux suites équivalentes.

En particulier :

M2202 Analyse et méthodes numériques

Département Informatique IUT de Saint-Dié

Plar

Développement limité

Fonctions équivalentes

Propriétés

Les propriétés énumérées dans le cas des fonctions s'étendent aux suites équivalentes.

En particulier :

Si $u_n \sim v_n$ et $\lim_{n \to +\infty} v_n = L$ finie ou non alors $\lim_{n \to +\infty} u_n = L$.

M2202 Analyse et méthodes numériques

Départemen Informatique IUT de Saint-Dié

Plar

Développement limité

Fonctions équivalentes

Bibliographie

Propriétés

Les propriétés énumérées dans le cas des fonctions s'étendent aux suites équivalentes.

En particulier :

Si $u_n \sim v_n$ et $\lim_{n \to +\infty} v_n = L$ finie ou non alors $\lim_{n \to +\infty} u_n = L$.

M2202 Analyse et méthodes numériques

Département Informatique IUT de Saint-Dié

Plar

limité

Fonctions équivalentes

Bibliographie

Propriétés

Les propriétés énumérées dans le cas des fonctions s'étendent aux suites équivalentes.

En particulier :

Si
$$u_n \sim v_n$$
 et $\lim_{n \to +\infty} v_n = L$ finie ou non alors $\lim_{n \to +\infty} u_n = L$.

$$u_n = \frac{n-1}{n^2} \ (n \ge 1).$$

M2202 Analyse et méthodes numériques

Département Informatique IUT de Saint-Dié

Plar

Développemer limité

Fonctions équivalentes

Bibliographic

Propriétés

Les propriétés énumérées dans le cas des fonctions s'étendent aux suites équivalentes.

En particulier :

Si $u_n \sim v_n$ et $\lim_{n \to +\infty} v_n = L$ finie ou non alors $\lim_{n \to +\infty} u_n = L$.

$$u_n = \frac{n-1}{n^2} \ (n \ge 1).$$

 $v_n = \frac{1}{n} \ (n \ge 1).$

M2202 Analyse et méthodes numériques

Départemen Informatique IUT de Saint-Dié

Plai

Développemer limité

Fonctions équivalentes

Propriétés

Les propriétés énumérées dans le cas des fonctions s'étendent aux suites équivalentes.

En particulier :

Si $u_n \sim v_n$ et $\lim_{n \to +\infty} v_n = L$ finie ou non alors $\lim_{n \to +\infty} u_n = L$.

Exemple 1

$$u_n = \frac{n-1}{n^2} \ (n \ge 1).$$

 $v_n = \frac{1}{n} \ (n \ge 1).$

On a $u_n \sim v_n$

M2202 Analyse et méthodes numériques

Fonctions équivalentes

Propriétés

Les propriétés énumérées dans le cas des fonctions s'étendent aux suites équivalentes.

En particulier :

Si $u_n \sim v_n$ et $\lim_{n \to +\infty} v_n = L$ finie ou non alors $\lim_{n \to +\infty} u_n = L$.

$$u_n = \frac{n-1}{n^2} \ (n \ge 1).$$

 $v_n = \frac{1}{n} \ (n \ge 1).$

$$v_n=\frac{1}{n}(n\geq 1)$$

On a
$$u_n \sim v_n$$
 et $\lim_{n \to +\infty} v_n = \lim_{n \to +\infty} \frac{1}{n} = 0$.

M2202 Analyse et méthodes numériques

Fonctions équivalentes

Propriétés

Les propriétés énumérées dans le cas des fonctions s'étendent aux suites équivalentes.

En particulier :

Si $u_n \sim v_n$ et $\lim_{n \to +\infty} v_n = L$ finie ou non alors $\lim_{n \to +\infty} u_n = L$.

$$u_n = \frac{n-1}{n^2} \ (n \ge 1).$$

 $v_n = \frac{1}{n} \ (n \ge 1).$

$$v_n=\frac{1}{n}\ (n\geq 1)$$

On a
$$u_n \sim v_n$$
 et $\lim_{n \to +\infty} v_n = \lim_{n \to +\infty} \frac{1}{n} = 0$.
On en déduit $\lim_{n \to \infty} u_n = 0$.

On en déduit
$$\lim_{n \to +\infty} u_n = 0$$
.

M2202 Analyse et méthodes numériques

Département Informatique IUT de

Plar

Développemei limité

Fonctions équivalentes

M2202 Analyse et méthodes numériques

Département Informatique IUT de Saint-Dié

Plan

Développemen

Fonctions équivalentes

M2202 Analyse et méthodes numériques

Département Informatique IUT de Saint-Dié

Plan

Développeme limité

Fonctions équivalentes

M2202 Analyse et méthodes numériques

Informatiqu IUT de Saint-Dié

Plai

Développemen limité

Fonctions équivalentes

$$u_n = n^2 + n \cos n + 17 \ (n \ge 0).$$

M2202 Analyse et méthodes numériques

Départemer Informatiqu IUT de Saint-Dié

Plai

Développement limité

Fonctions équivalentes

Bibliographic

Exemple 2

$$u_n = n^2 + n\cos n + 17 \ (n \ge 0).$$

 $n^2 + n\cos n + 17 = n^2\left(1 + \frac{\cos n}{n} + \frac{17}{n^2}\right) \Rightarrow n^2 + n\cos n + 17 \sim n^2.$

4014914515 5 000

M2202

Analyse et méthodes numériques

Fonctions équivalentes

$$u_n = n^2 + n \cos n + 17 \ (n \ge 0).$$

$$n^2 + n\cos n + 17 = n^2\left(1 + \frac{\cos n}{n} + \frac{17}{n^2}\right) \Rightarrow n^2 + n\cos n + 17 \sim n^2.$$

$$\lim_{n\to+\infty}n^2=+\infty.$$

M2202

Analyse et méthodes numériques

Fonctions équivalentes

$$u_n = n^2 + n \cos n + 17 \ (n \ge 0).$$

$$n^2 + n\cos n + 17 = n^2\left(1 + \frac{\cos n}{n} + \frac{17}{n^2}\right) \Rightarrow n^2 + n\cos n + 17 \sim n^2.$$

$$\lim_{n\to+\infty}n^2=+\infty.$$

On en déduit
$$\lim_{n\to +\infty} u_n = +\infty$$
.

M2202

Analyse et méthodes numériques

Département Informatique IUT de Saint-Dié

Plan

Développemei limité

Fonctions équivalentes

Bibliographie

M2202

Analyse et méthodes numériques

Départemer Informatiqu IUT de Saint-Dié

Plan

Développemen limité

Fonctions équivalentes

M2202 Analyse et méthodes numériques

Département Informatique IUT de

Plan

Développemei

Fonctions équivalentes

Bibliographie

M2202 Analyse et méthodes numériques

Département Informatique IUT de Saint-Dié

Plan

Développement limité

Fonctions équivalentes

$$u_n = \frac{n^2 + n\cos n + 17}{3n^2 + 1} \ (n \ge 1).$$

M2202

Analyse et méthodes numériques

Fonctions équivalentes

$$u_n = \frac{n^2 + n\cos n + 17}{3n^2 + 1} \ (n \ge 1).$$

$$n^2 + n\cos n + 17 \sim n^2.$$

M2202

Analyse et méthodes numériques

Départemer Informatiqu IUT de Saint-Dié

Plar

Développement limité

Fonctions équivalentes

Bibliographie

$$u_n = \frac{n^2 + n\cos n + 17}{3n^2 + 1} \quad (n \ge 1).$$

$$n^2 + n\cos n + 17 \sim n^2.$$

$$3n^2 + 1 = 3n^2 \left(1 + \frac{1}{n^2}\right) \Rightarrow 3n^2 + 1 \sim 3n^2.$$

M2202

Analyse et méthodes numériques

Fonctions équivalentes

$$u_n = \frac{n^2 + n\cos n + 17}{3n^2 + 1} \ (n \ge 1).$$

$$n^2 + n\cos n + 17 \sim n^2.$$

$$3n^{2} + 1$$

$$n^{2} + n\cos n + 17 \sim n^{2}.$$

$$3n^{2} + 1 = 3n^{2}\left(1 + \frac{1}{n^{2}}\right) \Rightarrow 3n^{2} + 1 \sim 3n^{2}.$$

On en déduit
$$u_n = \frac{n^2 + n \cos n + 17}{3n^2 + 1} \sim \frac{n^2}{3n^2} = \frac{1}{3}$$

M2202 Analyse et méthodes numériques

Département Informatique IUT de Saint-Dié

Plar

Développement limité

Fonctions équivalentes

Bibliographi

$$u_n = \frac{n^2 + n\cos n + 17}{3n^2 + 1} \quad (n \ge 1).$$

$$n^2 + n\cos n + 17 \sim n^2.$$

$$3n^2 + 1 = 3n^2 \left(1 + \frac{1}{n^2}\right) \Rightarrow 3n^2 + 1 \sim 3n^2.$$

$$n^2 + n\cos n + 17 \qquad n^2$$

On en déduit
$$u_n = \frac{n^2 + n \cos n + 17}{3n^2 + 1} \sim \frac{n^2}{3n^2} = \frac{1}{3}$$
,

$$\operatorname{puis} \lim_{n \to +\infty} u_n = \frac{1}{3}.$$

M2202 Analyse et méthodes numériques

Département Informatique IUT de Saint-Dié

Plan

Développemer limité

Fonctions équivalentes

Bibliographie

M2202 Analyse et méthodes numériques

Informatique IUT de Saint-Dié

Plan

Développemen

Fonctions équivalentes

Département Informatique IUT de Saint-Dié

Plan

Développement limité

Fonctions équivalentes

Bibliographie

Département Informatique IUT de Saint-Dié

Département Informatique IUT de Saint-Dié

Plan

Développement limité

Fonctions équivalentes

Bibliographie

Nombre et hasard (V 154), Aurélie Nemours, 1991

Département Informatique IUT de Saint-Dié

Plan

Développemen limité

Fonctions équivalentes

Bibliographie

Victor Vasarelly, (1908-1997)

Département Informatique IUT de

Plan

Développement limité

Fonctions équivalentes

Bibliographie

Départemer Informatiqu IUT de Saint-Dié

Plan

Développemei

Fonctions équivalentes

Bibliographie

Bibliographie et webographie

Cours d'analyse d'Antoine Rauzy - Éditions ESKA

Départemen Informatique IUT de Saint-Dié

Plan

Développement limité

Fonctions équivalentes

Bibliographie

- Cours d'analyse d'Antoine Rauzy Éditions ESKA
- ② Théorie et applications de l'analyse de Murray R. Spiegel -McGraw-Hill

Départemen Informatique IUT de Saint-Dié

Plar

Développemen limité

Fonctions équivalentes

Bibliographie

- Cours d'analyse d'Antoine Rauzy Éditions ESKA
- ② Théorie et applications de l'analyse de Murray R. Spiegel -McGraw-Hill
- 4 Analyse de J. Lelong-Ferrand Dunod Université

Départemen Informatique IUT de Saint-Dié

Plar

Développement limité

Fonctions équivalentes

Bibliographie

- Cours d'analyse d'Antoine Rauzy Éditions ESKA
- 2 Théorie et applications de l'analyse de Murray R. Spiegel -McGraw-Hill
- 4 Analyse de J. Lelong-Ferrand Dunod Université
- http://fr.wikipedia.org

Départemen Informatique IUT de Saint-Dié

Plai

Développement limité

Fonctions équivalentes

Bibliographie

- Cours d'analyse d'Antoine Rauzy Éditions ESKA
- ② Théorie et applications de l'analyse de Murray R. Spiegel -McGraw-Hill
- 4 Analyse de J. Lelong-Ferrand Dunod Université
- http://fr.wikipedia.org
- www.infinite-art.com

Départemen Informatique IUT de Saint-Dié

Plai

Développement limité

Fonctions équivalentes

Bibliographie

- Cours d'analyse d'Antoine Rauzy Éditions ESKA
- ② Théorie et applications de l'analyse de Murray R. Spiegel -McGraw-Hill
- 3 Analyse de J. Lelong-Ferrand Dunod Université
- http://fr.wikipedia.org
- www.infinite-art.com
- 6 www.futura-sciences.com

Départemen Informatique IUT de Saint-Dié

Plai

Développement limité

Fonctions équivalentes

Bibliographie

- Cours d'analyse d'Antoine Rauzy Éditions ESKA
- ② Théorie et applications de l'analyse de Murray R. Spiegel -McGraw-Hill
- 3 Analyse de J. Lelong-Ferrand Dunod Université
- http://fr.wikipedia.org
- www.infinite-art.com
- 6 www.futura-sciences.com
- http://abcmaths.free.fr

Départemen Informatique IUT de Saint-Dié

Plai

Développement limité

Fonctions équivalentes

Bibliographie

- 1 Cours d'analyse d'Antoine Rauzy Éditions ESKA
- ② Théorie et applications de l'analyse de Murray R. Spiegel -McGraw-Hill
- 3 Analyse de J. Lelong-Ferrand Dunod Université
- http://fr.wikipedia.org
- www.infinite-art.com
- 6 www.futura-sciences.com
- http://abcmaths.free.fr

