Regression Task — Linear, Ridge, and Lasso Regression

This section focuses on the **California Housing Prices** dataset to predict the **Median House Value** based on various demographic and geographic features.

We will explore three regression models:

- 1. Linear Regression (Manual Implementation)
 - Compute the optimal weights using the Normal Equation:
 (w = (X^T X)^{-1} X^T y)
 - Implement **Gradient Descent** as an alternative optimization method.
- 2. Regularized Regression Models
 - Ridge Regression (L2): adds a penalty on large weights to reduce overfitting.
 - Lasso Regression (L1): encourages sparsity by shrinking some weights to zero.
- 3. Scikit-Learn Implementations
 - Reapply the above models using LinearRegression, Ridge, and Lasso from sklearn.linear model.

We will analyze model performance using:

- Mean Squared Error (MSE)
- Mean Absolute Error (MAE)

Finally, we will plot **Validation Error vs. Regularization Parameter (\lambda)** and discuss the effects of regularization on bias-variance tradeoff.

Importing necessary libs

```
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LinearRegression, Ridge, LassoCV
from sklearn.metrics import mean_squared_error, mean_absolute_error
import matplotlib.pyplot as plt
```

Loading Data

```
In [23]: try: #Load data
```

```
data = pd.read_csv("California_Houses.csv")
  #target (y) and features (x)
  y = data["Median_House_Value"]
  x = data.drop(["Median_House_Value"], axis=1)
  print("Data loaded successfully.")

except FileNotFoundError:
  print("Error: 'California_Houses.csv' not found. Please check f exit(1)

# Spliting data
random_state = 47
x_train, x_temp, y_train, y_temp = train_test_split(x, y, test_size x_val, x_test, y_val, y_test = train_test_split(x_temp, y_temp, test)
print(f"Dataset split: Train={len(x_train)}, Validation={len(x_val)}
```

Data loaded successfully.
Dataset split: Train=14448, Validation=3096, Test=3096

Data Preprocessing

```
In [24]:
    scaler = StandardScaler()
    scaler.fit(x_train)

# Apply scaling to all sets
    x_train_scaled = scaler.transform(x_train)
    x_val_scaled = scaler.transform(x_val)
    x_test_scaled = scaler.transform(x_test)

# Adding bias column
    x_train_bias = np.c_[np.ones((len(x_train_scaled), 1)), x_train_scaled), 1)), x_val_scaled]
    x_test_bias = np.c_[np.ones((len(x_val_scaled), 1)), x_test_scaled)

# Converting target variables to numpy arrays
    y_train = y_train.values
    y_val = y_val.values
    y_test = y_test.values

results = {}
```

Manual Gradiant Descent implementation

```
In [25]: def gradient_descent(X, y, learning_rate, n_iterations, lambda_reg=
    m, n = X.shape
    # Initialize weights
    w = np.random.randn(n)
    # Exclude bias (w[0]) from regularization
    w[0] = 0.0
    cost_history = []

for i in range(n_iterations):
    predictions = X @ w
    errors = predictions - y

# Base gradient for Linear Regression
```

```
gradient = (2 / m) * (X.T @ errors)
   # Apply Ridge Regularization penalty to the gradient
   if reg_type == 'ridge':
       w_no_bias = w_copy()
       w no bias [0] = 0
        gradient += (2 * lambda_reg / m) * w_no_bias
   # Update weights
   w = w - (learning_rate * gradient)
   # Calculate total cost
   base\_cost = (1 / m) * np.sum(errors ** 2)
   if reg_type == 'ridge':
        reg_penalty = lambda_reg * np.sum(w[1:] ** 2) / m
        cost = base_cost + reg_penalty
   else:
        cost = base_cost
   cost_history.append(cost)
return w, cost_history
```

Helper funtion to calculate Mse and Mae

Manual Linear Regression (Normal Equation) implementation

```
In [27]: X_train, Y_train = x_train_bias, y_train

try:
    # Calculate weights using Normal Equation: w = (X^T X)^-1 X^T y
    XT = X_train.T
    w_normalEq = np.linalg.inv(XT @ X_train) @ XT @ Y_train

# Evaluate on the Test Set
    y_pred_ne = x_test_bias @ w_normalEq
    mse_ne, mae_ne = calculate_metrics(y_test, y_pred_ne)
    results['Linear_NormalEq'] = {'MSE': mse_ne, 'MAE': mae_ne, 'We
    print(f"Normal Eq Model: MSE=${mse_ne/1e6:.2f}M, MAE=${mae_ne:.except np.linalg.LinAlgError:
    print("Error: The matrix (X^T X) is singular and cannot be inveexit(1)
```

Normal Eq Model: MSE=\$4646.01M, MAE=\$49934.57

Manual Linear Regression (Gradient Descent) implementation

```
In [28]: learning_rate = 0.01
    n_iterations = 10000

# Run Gradient Descent for simple Linear Regression
    w_gd_linear, cost_history_gd_linear = gradient_descent(X_train, Y_t

# Evaluate on the Test Set
    y_pred_gd_linear = x_test_bias @ w_gd_linear
    mse_gd_linear, mae_gd_linear = calculate_metrics(y_test, y_pred_gd_results['Linear_GD'] = {'MSE': mse_gd_linear, 'MAE': mae_gd_linear,
    print(f"GD Model: Final Cost (MSE)={cost_history_gd_linear[-1]/1e6: print(f"GD Model: MSE=${mse_gd_linear/1e6:.2f}M, MAE=${mae_gd_linear}

GD Model: Final Cost (MSE)=4633.95M
    GD Model: MSE=$4664.58M, MAE=$50200.96
```

GD Cost Function History

```
In [29]: plt.figure(figsize=(8, 4))
   plt.plot(range(n_iterations), cost_history_gd_linear)
   plt.title('GD Cost Function History (Linear Regression)')
   plt.xlabel('Iterations')
   plt.ylabel('Cost (MSE)')
   plt.grid(True)
   plt.show()
```


Manual Ridge Tuning (Gradient Descent) implementation

```
In [30]: # Define lambda range for tuning
    # Using fewer iterations/lambdas for tuning to speed it up
    tuning_iterations = 1000
    lambdas = np.logspace(-3, 3, 50)
    ridge_val_errors = []
    best_lambda_ridge = 0
    min_val_error_ridge = float('inf')
```

```
# Loop through all lambda values to find the best one using the Val
 for lambda_reg in lambdas:
     # Tune Ridge
     w_ridge, _ = gradient_descent(X_train, Y_train, learning_rate,
     y_pred_val_ridge = x_val_bias @ w_ridge
     mse_val_ridge, _ = calculate_metrics(y_val, y_pred_val_ridge)
     ridge_val_errors.append(mse_val_ridge)
     if mse_val_ridge < min_val_error_ridge:</pre>
         min_val_error_ridge = mse_val_ridge
         best lambda ridge = lambda reg
 print(rf"Best Ridge $\lambda$: {best_lambda_ridge:.5f} (Val MSE: ${
 # Train and Evaluate final Manual Regularized Models on Test Set
 w_manual_ridge, _ = gradient_descent(X_train, Y_train, learning_rat
 y_pred_manual_ridge = x_test_bias @ w_manual_ridge
 mse_manual_ridge, mae_manual_ridge = calculate_metrics(y_test, y_pr
 results['Ridge_Manual'] = {'MSE': mse_manual_ridge, 'MAE': mae_manu
 print(f"Ridge (Manual): MSE=${mse_manual_ridge/1e6:.2f}M, MAE=${mae}
Best Ridge $\lambda$: 754.31201 (Val MSE: $5157.31M)
Ridge (Manual): MSE=$4817.40M, MAE=$51351.86
```

Plot Validation Error vs. Regularization Parameter

```
In [31]: plt.figure(figsize=(10, 5))
    plt.plot(lambdas, ridge_val_errors, label='Ridge Validation Error')
    plt.axvline(best_lambda_ridge, color='red', linestyle='--', label=r
    plt.xscale('log')
    plt.title(r'Validation Error vs. Regularization Parameter $\lambda$
    plt.xlabel(r'Regularization Parameter $\lambda$ (log scale)')
    plt.ylabel('MSE on Validation Set')
    plt.legend()
    plt.grid(True)
    plt.show()
```


Builtin Scikit-Learn Implementation

```
In []: # Use scaled data WITHOUT manually added bias
                    X_train_sk, Y_train_sk = x_train_scaled, y_train
                    X_test_sk = x_test_scaled
                    print("\n--- 4. Scikit-learn Linear Regression ---")
                    sk linear = LinearRegression()
                    sk_linear.fit(X_train_sk, Y_train_sk)
                    y_pred_sk_linear = sk_linear.predict(X_test_sk)
                    mse_sk_linear, mae_sk_linear = calculate_metrics(y_test, y_pred_sk_
                    results['Linear_SKLearn'] = {'MSE': mse_sk_linear, 'MAE': mae_sk_li
                    print(f"SKLearn Linear: MSE=${mse_sk_linear/1e6:.2f}M, MAE=${mae_sk_linear/1e6:.2f}M, MA
                    print("\n--- 5. Scikit-learn Ridge Regression ---")
                    sk_ridge = Ridge(alpha=best_lambda_ridge)
                    sk_ridge.fit(X_train_sk, Y_train_sk)
                    y_pred_sk_ridge = sk_ridge.predict(X_test_sk)
                    mse_sk_ridge, mae_sk_ridge = calculate_metrics(y_test, y_pred_sk_ri
                    results['Ridge_SKLearn'] = {'MSE': mse_sk_ridge, 'MAE': mae_sk_ridg
                    print(f"SKLearn Ridge (alpha={best_lambda_ridge:.5f}): MSE=${mse_sk}
                    print("\n--- 6. Scikit-learn Lasso Regression ---")
                    lasso_alphas = np.logspace(-6, 2, 100)
                    # 2. Create and fit the LassoCV model to find the best alpha
                    sk_lasso_cv = LassoCV(alphas=lasso_alphas, max_iter=20000, cv=5)
                    sk_lasso_cv.fit(X_train_sk, Y_train_sk)
                    # 3. Get the best alpha that LassoCV found
                    best_lambda_lasso_sklearn = sk_lasso_cv.alpha_
                    y_pred_sk_lasso = sk_lasso_cv.predict(X_test_sk)
                    # 5. Calculate metrics
                    mse_sk_lasso, mae_sk_lasso = calculate_metrics(y_test, y_pred_sk_la
                    results['Lasso_SKLearn'] = {'MSE': mse_sk_lasso, 'MAE': mae_sk_lass
```

Final Reporting and Analysis

```
print(f"SKLearn Lasso (alpha={best_lambda_lasso_sklearn:.5f}): MSE=
--- 4. Scikit-learn Linear Regression ---
SKLearn Linear: MSE=$4646.01M, MAE=$49934.57
--- 5. Scikit-learn Ridge Regression ---
SKLearn Ridge (alpha=754.31201): MSE=$4817.40M, MAE=$51351.86
--- 6. Scikit-learn Lasso Regression ---
SKLearn Lasso (alpha=0.79248): MSE=$4646.10M, MAE=$49935.80
```

```
In [33]: print("\n" + "=" * 50)
         print("
                              FINAL MODEL PERFORMANCE REPORT")
         print("=" * 50)
         report_data = {
              'Model': [], 'Implementation': [], 'MSE (Test)': [], 'MAE (Test
         for key, metrics in results.items():
             model_name, impl = key.split('_')
             report_data['Model'].append(model_name)
             report_data['Implementation'].append(impl)
             report_data['MSE (Test)'].append(metrics['MSE'])
             report_data['MAE (Test)'].append(metrics['MAE'])
         final_report = pd.DataFrame(report_data)
         # Print final report table in markdown format
         print(final_report.to_markdown(index=False, floatfmt=".2f"))
         print("\n" + "=" * 50)
```

FINAL MODEL PERFORMANCE REPORT

Model	Implementation	MSE (Test)	MAE (Test)
:	:	:	:
Linear	NormalEq	4646010387.57	49934.57
Linear	GD	4664575189.17	50200.96
Ridge	Manual	4817399148.16	51351.86
Linear	SKLearn	4646010387.57	49934.57
Ridge	SKLearn	4817399065.58	51351.86
Lasso	SKLearn	4646102522.05	49935.80

Final Comments and Comparison

Comparison of Manual vs. Scikit-learn

The Manual implementations of Linear and Ridge regression yielded MSE and MAE values highly consistent with their optimized Scikit-learn counterparts.

This validates the correctness of the custom Gradient Descent and Normal Equation implementation.

Comparison of Models (Linear vs. Ridge vs. Lasso)

Linear Regression (Baseline): MSE = \$4646.01M

Ridge Regression (L2): MSE = \$4817.40M

Lasso Regression (L1): MSE = \$4720.28M

...

Conclusion on Regularization: The Linear Regression model performed best. This suggests the baseline model was already a strong fit, and overfitting was not a significant issue on this dataset.