Trường Đại Học Bách Khoa Tp.HCM Hệ Đào Tạo Từ Xa Khoa Khoa Học và Kỹ Thuật Máy Tính

Mạng máy tính căn bản

Bài giảng 8: Tầng Mạng

Tham khảo:

Chương 4: "Computer Networking – A top-down approach" Kurose & Ross, 5th ed., Addison Wesley, 2010.

Chương 4: Tầng mạng

Muc tiêu:

- hiểu các được nguyên lý đằng sau các dịch vụ tầng mạng:
 - các mô hình dịch vụ tầng mạng
 - chuyển tiếp so với định tuyến
 - một bộ định tuyến làm việc ntn
 - định tuyến (chọn đường đi)
 - xử lý với vấn đề qui mô mạng
 - chủ đề nâng cao: IPv6, tính di động
- diễn giải, hiện thực trong Internet

Chương 4: Tầng Mạng

- 4. 1 Giới thiệu
- 4.2 Mạch ảo và mạng gói tin
- 4.3 Bên trong bộ định tuyến là gì?
- 4.4 IP: Internet Protocol
 - Định dạng gói tin
 - Đánh địa chỉ IPv4
 - ICMP
 - IPv6

- 4.5 Các giải thuật định tuyến
 - Trạng thái liên kết
 - Véc-tơ Khoảng cách
 - Định tuyến phân cấp
- 4.6 Định tuyến trongInternet
 - RIP
 - OSPF
 - BGP
- 4.7 Định tuyến quảng bá
 và gửi nhiều đích

Tầng mạng

- truyền đoạn dữ liệu từ máy gửi tới máy nhân
- máy gửi đóng gói đoạn thành gói tin
- máy nhận, phát gói tin lên tầng vân chuyến
- giao thức tầng mạng network nằm trong mọi máy, BĐT
- BĐT kiểm tra trường mào đầu trong mọi gói IP đi qua nó

Hai chức năng quan trong của tầng Mang

- chuyển tiếp: di chuyển các gói tin từ đầu vào của BĐT tới đầu ra thích hợp
- định tuyến: xác định đường đi cho gói tin từ nguồn tới đích.
 - các giao thức định tuyến

ý nghĩa tương đồng: Du lịch

- định tuyến: quá trình lập ra đường đi từ điểm xuất phát tới đích
- chuyển tiếp: quá trình đi qua một trạm trung gian

Tác động qua lại giữa định tuyến và chuyển tiếp

MẠNG MÁY TÍNH CĂN BẢN Bài giảng 8 - Chương 4: Tâng Mạng

Thiết lập kết nối

- một trong những chức năng quan trọng trong một vài kiến trúc mạng:
 - ATM, frame relay, X.25
- trước khi gói tin di chuyển, hai máy đầu cuối và các BĐT trung gian thiết lập một kết nối ảo
 - BĐT tham gia vào quá trình thiết lập
- dịch vụ kết nối ở tầng mạng và truyền tải:
 - mạng: giữa 2 máy (BĐT có thể tham gia vào quá trình này trong trường hợp mạch ảo - VC)
 - truyền tải: giữa hai tiến trình

Mô hình dịch vụ mạng

Hỏi: *Mô hình dịch vụ* nào cho "kênh" truyền tải gói tin từ ng/gửi tới ng/nhận?

Những dịch vụ mẫu cho những gói tin riêng lẻ:

- phân phát đảm bảo
- phân phát đảm bảo với độ trễ ngắn hơn 40 msec

Những dịch vụ mẫu cho luồng gói tin:

- phân phát đúng-trật-tự
- đảm bảo băng thông tối thiểu cho luồng
- hạn chế những thay đổi trong khoảng cách giữa các gói

Các mô hình dịch vụ tầng Mạng:

Kiến trúc	Mô hình	Đảm bảo ?				Phản hồi
Mạng	Dịch vụ	Băng thông	g Mất gói	Trật tự	Timing	Tắc nghẽn
Internet	nỗ lực tốt nhất	không	không	không	không	không (suy từ mất gói)
ATM	CBR	vận tốc cố định	có	có	CÓ	không có tắc nghẽn
ATM	VBR	vận tốc đảm bảo	có	có	CÓ	không có tắc nghẽn
ATM	ABR	đảm bảo tối thiểu	không	có	không	có
ATM	UBR	không	không	có	không	không

Chương 4: Tầng Mạng

- 4. 1 Giới thiêu
- 4.2 Mạch ảo và mạng gói tin
- 4.3 Bên trong bộ định tuyến là gì?
- 4.4 IP: Internet Protocol
 - Định dạng gói tin
 - Đánh địa chỉ IPv4
 - ICMP
 - IPv6

- 4.5 Các giải thuật định tuyến
 - Trạng thái liên kết
 - Véc-tơ Khoảng cách
 - Định tuyến phân cấp
- 4.6 Định tuyến trongInternet
 - RIP
 - OSPF
 - BGP
- 4.7 Định tuyến quảng bá và gửi nhiều đích

Dịch vụ hướng kết nối và không kết nối

- mạng gói tin cung cấp dịch vụ không kết nối tầng mạng
- mạng mạch ảo cung cấp dịch vụ hướng kết nối tầng mạng
- tương tự như dịch vụ tầng truyền tải, nhưng:
 - dịch vụ: từ máy-tới-máy
 - không có sự lựa chọn: mạng cung cấp loại này hoặc kia, người dùng ko có quyền lựa chọn
 - hiện thực: trong lõi của mạng

Mach ảo

"đường đi cho gói tin từ nguồn-tới-đích tương tự như là mach điên thoai"

- thiên về hiệu suất
- mạng hoạt động dọc theo đường đi từ nguồn-tới-đích
- với mỗi phiên liên lạc, thiết lập cuộc gọi trước khi dữ liệu thực sự truyền đi và ngắt cuộc gọi sau khi hoàn thành.
- mỗi gói tin mang kí hiệu định danh của mạch ảo (VC) (không phải địa chỉ của máy đích)
- mọi BĐT trên đường đi nguồn-đích duy trì "trạng thái" cho mỗi kết nối qua nó
- tài nguyên của liên kết, BĐT (băng thông, bộ nhớ tạm) có thể được phân phát cho VC (tài nguyên chuyên dụng = dịch vụ đảm bảo

Hiện thực mạch ảo (VC)

một VC gồm có:

- 1. đường đi từ nguồn tới đích
- 2. số VC, một số cho một đoạn đường đi
- mục trong bảng chuyển tiếp trong các BĐT dọc đường đi
- gói tin thuộc VC sẽ mang theo số VC (thay vì địa chỉ đích)
- số VC có thể thay đổi trên mỗi liên kết.
 - Số VC mới được cung cấp bởi bảng chuyển tiếp tại từng BĐT

Bảng chuyển tiếp

Bảng chuyển tiếp trong BĐT tây-bắc:

cổng vào	số VC đi vào	cổng ra	số VC đi ra
1 2	12 63	3 1	22 18
3	7	2	17
1	97	3	87

Các BĐT duy trì thông tin trạng thái kết nối

15

Mạch ảo: các giao thức báo hiệu

- dùng để thiết lập, duy trì và ngắt VC
- dùng trong ATM, frame-relay, X.25
- không dùng trong Internet hiện nay

16

Mạng gói tin

© 2011

- không thiết lập cuộc gọi ở tầng mạng
- BĐT: không lưu trạng thái của kết nối đầu cuối-đầu cuối
 - không có khái niệm "kết nối" ở tầng mạng
- gói tin được chuyển tiếp dùng địa chỉ đích
 - các gói tin giữa cùng một cặp nguồn-đích có thể đi theo những đường khác nhau

Bảng chuyển tiếp

Có thể có tới 4 tỉ mục

Phạm vi địa chỉ đích	Cổng liên kết
11001000 00010111 00010000 00000000 đến 11001000 00010111 00010111 11111111	0
11001000 00010111 00011000 00000000 đến 11001000 00010111 00011000 11111111	1
11001000 00010111 00011001 00000000 đến 11001000 00010111 00011111 11111111	2
ngoài ra	3

Trùng lặp tiền tố dài nhất

Trùng lặp tiền tố	Cổng liên kết
11001000 00010111 00010	0
11001000 00010111 00011000	1
11001000 00010111 00011	2
ngoài ra	3

Ví dụ:

DA: 11001000 00010111 00010110 10100001 Cổng ra nào?

DA: 11001000 00010111 00<mark>011000 10101</mark>010 Cổng ra nào?

Mạng gói tin hay mạch ảo: tại sao?

Internet (gói tin)

- dữ liệu trao đổi giữa máy tính với nhau
 - dịch vụ "mềm dẻo" service, không y/cầu cao về t/g.
- các máy đầu cuối "thông minh"
 - có thể thích nghi, kiểm soát, phục hồi lỗi
 - đơn giản bên trong mạng, phức tạp ở "rìa"
- nhiều loại liên kết
 - nhiều đặc tính khác nhau
 - rất khó để có dịch vụ cùng loại

ATM (VC)

- tiến hoá từ điện thoại
- mô phỏng cuộc nói chuyện của con người:
 - yêu cầu thời gian chính xác, tính tin cậy
 - cần đảm bảo dịch vụ
- máy đầu cuối "câm (dumb)"
 - điện thoại
 - phức tạp bên trong mạng

Chương 4: Tầng Mạng

- 4. 1 Giới thiệu
- 4.2 Mạch ảo và mạng gói tin
- 4.3 Bên trong bộ định tuyến là gì?
- 4.4 IP: Internet Protocol
 - Định dạng gói tin
 - Đánh địa chỉ IPv4
 - ICMP
 - IPv6

- 4.5 Các giải thuật định tuyến
 - Trạng thái liên kết
 - Véc-tơ Khoảng cách
 - Định tuyến phân cấp
- 4.6 Định tuyến trongInternet
 - RIP
 - OSPF
 - BGP
- 4.7 Định tuyến quảng bá và gửi nhiều đích

Tổng quan về kiến trúc Bộ Định Tuyến

Hai chức năng chính của BĐT:

- chạy giải thuật/giao thức định tuyến (RIP, OSPF, BGP)
- chuyển tiếp các gói tin từ đầu vào tới đầu ra

TÍNH CĂN BẢN

Chức năng của cổng vào

Tầng liên kết: ở chương sau

- chuyển mạch ko tập trung:
- cho đích của gói tin, tìm cổng ra sử dụng bảng chuyển mạch trong bộ nhớ của cổng vào
- mục tiêu: hoàn thành xử lý ở cổng vào với 'tốc đô đường truyền'
- xếp hàng: nếu gói tin tới nhanh hơn tốc độ chuyển tiếp vào cơ cấu chuyển mạch

Ba loại cơ cấu chuyển mạch

24

Chuyển mạch thông qua Bộ Nhớ

BĐT thế hệ đầu tiên:

- máy tính truyền thống với cơ chế chuyển mạch dưới sự điều khiển trực tiếp của CPU
- gói tin được chép vào bộ nhớ hệ thống
- vận tốc bị hạn chế bởi băng thông của bộ nhớ (mỗi gói đi qua mạch bus 2 hai lần)

Chuyển gói thông qua mạch dẫn Buýt

- gói tin đi từ bộ nhớ của cổng vào tới bộ nhớ của cổng ra thông qua một mạch buýt chia sẻ (shared bus)
- tranh giành buýt: tốc độ chuyển mạch bị hạn chế bởi băng thông của buýt
- 32 Gbps bus, Cisco 5600: vận tốc vừa phải cho các BĐT truy cập và xí nghiệp

Chuyển mạch thông qua một Mạng Liên Kết Lẫn Nhau

- khắc phục được hạn chế băng thông của bus
- thiết kế cao cấp: chia gói tin thành những ô độ dài xác định, chuyển các ô đó qua cơ cấu c/mạch.
- Cisco 12000: chuyển 60 Gbps thông qua một mạng kết nối lẫn nhau

Cổng ra

- Sự nhớ tạm diễn ra khi các gói tin đến từ cơ cấu c/mạch nhanh hơn tốc độ truyền tải
- Nguyên lý lập chương trình sẽ lựa chọn giữa những gói tin đang xếp hàng để truyền tải

Xếp hàng ở Cổng Ra

- nhớ tạm khi mà tốc độ tới vượt quá tốc độ của đường đi ra
- xếp hàng (trễ) và mất gói là do tràn bộ nhớ tạm của công ra!

Nhớ tạm bao nhiều thì đủ?

- RFC 3439: bộ nhớ đệm trung bình bằng RTT "trung bình" (khoảng 250 msec) nhân với băng thông của liên kết C
 - vd, C = 10 Gps :bô nhớ 2.5 Gbit
- Giá trị khuyến cáo: với N luồng, bộ nhớ tạm bằng

Xếp hàng ở cổng vào

packet can be transferred

- Cơ cấu chuyển mạch làm việc chậm hơn tốc độ cổng vào -> xếp hàng có thể xảy ra ở cổng vào
- Khóa đầu-dòng (HOL blocking): gói tin xếp ở đầu dòng ngăn các gói khác di chuyển về trước
- độ trễ xếp hàng và mất gói là do tràn bộ nhớ tạm ở công vào!

Chương 4: Tầng Mạng

- 4. 1 Giới thiêu
- 4.2 Mạch ảo và mạng gói tin
- 4.3 Bên trong bộ định tuyến là gì?
- 4.4 IP: Internet Protocol
 - Định dạng gói tin
 - Đánh địa chỉ IPv4
 - ICMP
 - IPv6

- 4.5 Các giải thuật định tuyến
 - Trạng thái liên kết
 - Véc-tơ Khoảng cách
 - Định tuyến phân cấp
- 4.6 Định tuyến trongInternet
 - RIP
 - OSPF
 - BGP
- 4.7 Định tuyến quảng bá và gửi nhiều đích

Tầng mạng của Internet

Chức năng của tầng mạng của máy tính, BĐT

Chương 4: Tầng Mạng

- 4. 1 Giới thiệu
- 4.2 Mạch ảo và mạng gói tin
- 4.3 Bên trong bộ định tuyến là gì?
- 4.4 IP: Internet Protocol
 - Định dạng gói tin
 - Đánh địa chỉ IPv4
 - ICMP
 - IPv6

- 4.5 Các giải thuật định tuyến
 - Trạng thái liên kết
 - Véc-tơ Khoảng cách
 - Định tuyến phân cấp
- 4.6 Định tuyến trongInternet
 - RIP
 - OSPF
 - BGP
- 4.7 Định tuyến quảng bá và gửi nhiều đích

Định dạng gói tin IP

Trường Đại Học Bách Khoa Tp.HCM Khoa Khoa Học và Kỹ Thuật Máy Tính

Bài giảng 8 - Chương 4: Tâng Mạng

© 2011

Phân đoạn & ghép đoạn IP

- liên kết trong mạng có kích thước truyền tải tối đa MTU - là kích thước lớn nhất có thể của một khung dữ liệu lớp liên kết.
 - các loại liên kết khác nhau sẽ có MTU khác nhau
- gói tin IP lớn được chia ra ("phân đoạn")
 - một gói tin trở thành vài gói tin
 - chỉ "ghép đoạn" tại đích đến cuối cùng
 - các bit trong mào đầu IP được dùng để xác định và sắp thứ tự các đoạn

36

Phân đoạn & ghép đoạn IP

Ví dụ

- gói tin 4000 byte
- MTU = 1500 bytes

1480 bytes trong trường dữ liệu

khoảng cách = 1480/8

Một gói tin lớn bị chia thành vài gói tin nhỏ hơn

length	ID	fragflag	offset
=1500	=x	·····=1·····	=185

length	ID	fragflag	offset
=1040			=370