- Cartesian form: z = x + iyPolar form: $z = r(\cos \theta + i \sin \theta)$ Exponential form: $z = re^{i\theta}$
- Euler's formula: $e^{i\theta} = \cos \theta + i \sin \theta$
- de Moivre's formula: $\cos(n\theta) + i\sin(n\theta) = (\cos\theta + i\sin\theta)^n$
- $|z|^2 = z\bar{z}$ $\frac{1}{z} = \frac{\bar{z}}{|z|^2} = \frac{x}{|z|^2} i\frac{y}{|z|^2}$ $Re(z) = \frac{z + \bar{z}}{2}, Im(z) = \frac{z - \bar{z}}{2i}$
- Triangle equality: $|z+w| \le |z| + |w|$ Reverse triangle equality: $||z| - |w|| \le |z-w|$
- $\arg(z) = \{\theta : z = |z|e^{i\theta}\}$ $= \{\operatorname{Arg}(z) + 2\pi k : k \in \mathbb{Z}\}$ $-\pi < \operatorname{Arg}(z) \le \pi \text{ satisfies } z = |z|e^{i\operatorname{Arg}(z)}$
- Principal value: Arg(z), has discontinuity at all points z on the negative real axis
- $\arg(zw) = \arg(z) + \arg(w)$ $\arg(\bar{z}) = -\arg(z)$ $\operatorname{Arg}(zw) = \operatorname{Arg}(z) + \operatorname{Arg}(w) + 2k\pi$ $\operatorname{Arg}(\bar{z}) = -\operatorname{Arg}(z) + 2k\pi$
- open ϵ -disc: $D_{\epsilon}(z_0) = \{z \in \mathbb{C} : |z z_0| < \epsilon\}$ closed ϵ -disc: $\bar{D}_{\epsilon}(z_0) = \{z \in \mathbb{C} : |z - z_0| \le \epsilon\}$ punctured ϵ -disc: $D'_{\epsilon}(z_0) = \{z \in \mathbb{C} : 0 < |z - z_0| < \epsilon\} = D_{\epsilon}(z_0) \setminus \{z_0\}$

1 Holomorphicity

- f(z) = f(x + iy) = u(x, y) + iv(x, y)
- f continuous at z_0 : $\forall \epsilon > 0, \exists \delta > 0$ s.t. $|f(z_0) f(z)| < \epsilon$ whenever $z \in S$ satisfies $|z_0 z| < \delta$ e.g. $f(z) = z, \bar{z}, |z|$ is continuous
- f continuous \Leftrightarrow the preimage $f^{-1}(U)=\{z\in\mathbb{C}: f(z)\in U\}$ is open for all open $U\subseteq\mathbb{C}$
- $S\subseteq \mathbb{C}$ is closed & bounded + f continuous $\Rightarrow f(S)$ is closed & bounded
- f differentiable at z_0 : $U \subseteq \mathbb{C}$ is a neighbourhood of z_0 , $f: U \to \mathbb{C}$, the limit $f'(z_0) = \frac{df}{dz}(z_0) = \lim_{z \to z_0} \frac{f(z) f(z_0)}{z z_0}$ exists
- f holomorphic on U: f is differentiable at z_0 for every $z_0 \in U$
- f differentiable at $z_0 \Rightarrow f$ continuous at z_0
- Chain rule: $(f \circ g)'(z_0) = f'(g(z_0))g'(z_0)$
- C-R equations: $z_0 = x_0 + iy_0$, f = u + iv differentiable at $z_0 \Rightarrow$

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y}$$

- $f'(z_0) = \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y} + \frac{\partial v}{\partial y}$
- f = z hol $f = \bar{z}$ nowhere hol, nowhere differentiable $f = |z|^2$ only diff at the origin, nowhere hol
- hol \Rightarrow C-R C-R + partial derivatives continuous \Rightarrow hol
- $f, g \text{ hol} \Rightarrow f + g, fg, f/g(g \neq 0) \text{ hol}$
- complex polynomial $P(z) = \sum_{n=0}^{N} a_n z^n$ is hol on \mathbb{C}
- rational function R=P/Q is hol on $\{z\in\mathbb{C}: Q(z)\neq 0\}$
- U open + g hol on U + f hol on $g(U) \Rightarrow f \circ g$ is hol on U
- Harmonic: $\frac{\partial^2 h}{\partial x^2}(x,y) + \frac{\partial^2 h}{\partial y^2}(x,y) = 0$
- Harmonic conjugate: U open, u harmonic, then v is the harmonic conjugate of u if f=u+iv is hol on U
- u, v twice cont differentiable (i.e. all the 2nd partial derivatives of u, v are exist and continuous) + f(z) = u + iv is hol $\Rightarrow u, v$ are harmonic
- $\frac{\partial f}{\partial \bar{z}} = \frac{1}{2} \left(\frac{\partial u}{\partial x} \frac{\partial v}{\partial y} \right) + \frac{i}{2} \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right) = 0 \text{ iff C-R}$
- $\partial = \frac{1}{2} (\frac{\partial}{\partial x} i \frac{\partial}{\partial y})$ and $\bar{\partial} = \frac{1}{2} (\frac{\partial}{\partial x} + i \frac{\partial}{\partial y})$

2 Some Complex functions

Exponential

- $\exp(z) = \exp(x + iy) = e^x(\cos y + i\sin y)$
- $\exp(z + 2\pi i) = \exp(z)$ $|\exp(a + ib)| = e^a$ $\arg(\exp(a + ib)) = \{b + 2k\pi, k \in \mathbb{Z}\}$ $\exp(nz) = (\exp(z))^n$
- $z = x + iy, w = a + ib, \exp(z) = \exp(w) \Rightarrow x = a, y b = 2k\pi$
- Given $z \in \mathbb{C} \setminus \{0\}$, $\exp(a+ib) = z \Leftrightarrow e^a = |z| \Leftrightarrow a = \ln|z|, b \in \arg(z)$

Cosine & sine & hyperbolic

- $\cos(z) := \frac{e^{iz} + e^{-iz}}{2}, \sin(z) := \frac{e^{iz} e^{-iz}}{2i}$
- $\cos(z)$ and $\sin(z)$ are hol on \mathbb{C}
- $\tan(z) = \frac{\sin(z)}{\cos(z)}, \cot(z) = \frac{1}{\tan(z)}, \sec(z) = \frac{1}{\sin(z)}$
- $\sin(z+w) = \sin(z)\cos(w) + \cos(z)\sin(w)$ $\cos(z+w) = \cos(z)\cos(w) - \sin(z)\sin(w)$
- $\sin(x + iy) = \sin(x)\cosh(y) + i\cos(x)\sinh(y)$ $\cos(x + iy) = \cos(x)\cosh(y) + i\sin(x)\sinh(y)$
- $\cosh(z) := \frac{e^z + e^{-z}}{2}, \sinh(z) = \frac{e^z e^{-z}}{2}$

HCoV Cheat Sheets Author: s1889985

• $\sinh(iz) = i\sin z, \cosh(iz) = \cos z$

Logarithm

- $\log(z) := \{ w \in \mathbb{C} : \exp(w) = z \}$
- $w = \log(z) = \log(re^{i\theta}) = \ln|z| + i\arg(z)$ = $\{\ln|z| + i\theta : \theta \in \arg z\}$ = $\{\ln|z| + i\operatorname{Arg}(z) + 2\pi ik : k \in \mathbb{Z} \}$ = $\{\ln r + i\theta + i2\pi k : k \in \mathbb{Z} \}$
- $\log(zw) = \log(z) + \log(w)$ i.e. $u \in \log(zw)$ iff $\exists v_i \in \log(z), v_2 \in \log(w)$ s.t. $u = v_1 + v_2$
- $\log(1/z) = -\log(z)$ i.e. $u \in \log(1/z)$ iff $-u \in \log(z)$
- Principal branch: $Log(z) := \ln|z| + iArg(z), z$ is non-zero

the non-positive real axis is a branch cut of this function, the origin is a branch point

• Branch cut: $L_{z_0,\phi} = \{z \in \mathbb{C} : z = z_0 + re^{i\theta}, r \geq 0\}$ Cut plane: $D_{z_0,\phi} = \mathbb{C} \backslash L_{z_0,\phi}$ ($L_{0,\phi} = L_{\phi}, D_{0,\phi} = D_{\phi}$, the cut plane associated with the principal branch of the arg and log

functions will be denoted by D, i.e. $D = D_{-\pi}$

- $\phi < \operatorname{Arg}_{\phi}(z) \le \phi + 2\pi$, so $\operatorname{Arg} = \operatorname{Arg}_{-\pi}$
- $\operatorname{Log}_{\phi}(z) = \ln|z| + i\operatorname{Arg}_{\phi}(z) : \mathbb{C}\setminus\{0\} \to \{a+bi: a \in \mathbb{R}, \phi < b \le \phi + 2\pi\}$
- $z = \exp(\text{Log}_{\phi}(z))$, but $\text{Log}_{\phi}(\exp(z)) = z$ is not true
- Log_{\phi} is hol on $D_{0,\phi} = \mathbb{C} \backslash L_{0,\phi}$, Log'_{\phi}(z) = 1/z
- $g: U \to \mathbb{C}$ hol on $U \Rightarrow \operatorname{Log}_{\phi}(g(z))$ is hol on $U \cap g^{-1}(D_{\phi})$

in particular, if g is hol on $\mathbb{C} \Rightarrow \operatorname{Log}_{\phi}(g(z))$ is hol on $g^{-1}(D_{\phi})$ i.e. at points z s.t. $g(z) \in D_{\phi}$

Complex powers

- $z^{\alpha} = \{\exp(\alpha w) : w \in \log(z)\}$ $= \{\exp(\alpha \ln |z| + i\alpha \operatorname{Arg}(z) + i\alpha 2\pi k) : k \in \mathbb{Z}\}$ $= \{\exp(\alpha \operatorname{Log}(z)) \exp(i\alpha 2\pi k) : k \in \mathbb{Z}\}$ $\exp(i\alpha 2\pi k) = 1, \alpha = n \in \mathbb{Z}$
- if $\alpha \in \mathbb{Z} \Rightarrow$ exactly one value of z^{α} if $\alpha = p/q$, where p,q coprime, $q \neq 0 \Rightarrow$ exactly q values of z^{α}

if α irrational or non-real \Rightarrow infinitely many values of z^{α}

$$\begin{split} \bullet \ 1^{1/q} &= \{ \exp(i2\pi k/q) : k \in \mathbb{Z} \} \\ &= \{ 1, w, w^2, ..., w^{q-1} \} \\ \text{where } w := \exp(i2\pi/q) \text{ are the } q \text{ roots of unity} \\ z^{1/q} &= \{ \exp(\operatorname{Log}(\mathbf{z}/q) \exp(i2\pi k/q) : k \in \mathbb{Z} \} \\ &= \{ |z|^{1/q} \exp(i\operatorname{Arg}(z)/q) w^k : k = 0, ..., q-1 \} \\ z^{p/q} &= \{ |z|^{p/q} \exp(ip\operatorname{Arg}(z)/q) w^{pk} : k = 0, ..., q-1 \} \end{split}$$

- for $\alpha = a + ib$ where $b \neq 0, \exp(i\alpha 2\pi k) = \exp(i(a+ib)2\pi k) = \exp(i2\pi ka) \exp(-2\pi kb)$
- Principal branch: $z^{\alpha} = \exp(\alpha \text{Log}(z))$
- a branch of z^{α} is hol on D_{ϕ} on which the associated branch $\operatorname{Log}_{\phi}$ is hol, and for all $z \in D_{\phi}$, $\frac{d}{dz}z^{\alpha} = \alpha z^{\alpha-1}$

e.g. $z^z = \exp(z\text{Log}z)$ is hol on set D on which Log(z) is hol, $\frac{d}{dz}z^z = \frac{d}{dz}\exp(z\text{Log}(z)) = \exp(z\text{Log}(z))(\text{Log}(z) + 1)$

• $z^{\alpha}z^{\beta}=z^{\alpha+\beta}$ is true if principal branch is chosen for each power function $(zw)^{\alpha}=z^{\alpha}w^{\alpha}$ is not true in general for the principal branch in each case

3 Conformal maps & MT

- MT: $f(z) = \frac{az+b}{cz+d}$, $ad \neq bc$
- Extended complex plane: $\tilde{\mathbb{C}} \cup \{\infty\}$ $a + \infty = \infty, b \cdot \infty = \infty, b/0 = \infty, b/\infty = 0$
- f fixes the point at infinity: $f(\infty) = \infty$
- MT f = composition of finite translations + rotations + dilations + (one inversion, if do not fix the point at infinity)
- MT maps circlines to circlines
- two triplets of distinct points $(z_1, z_2, z_3), (w_1, w_2, w_3),$ there exists a unique MT f s.t. $f(z_i) = w_i$
- Cross ratio $[z_1, z_2, z_3, z_4] = \frac{z_1 z_3}{z_1 z_4} \frac{z_2 z_4}{z_2 z_3}$, sends (z_2, z_3, z_4) to $(1, 0, \infty)$
- MT $f \Rightarrow [f(z_1), f(z_2), f(z_3), f(z_4)] = [z_1, z_2, z_3, z_4]$
- if $[z_1, z_2, z_3, z_4] = [w_1, w_2, w_3, w_4] \Rightarrow \exists MT \text{ s.t.}$ $h(z_i) = w_i$

4 Integral

- f is integrable $\Leftrightarrow u, v$ are integrable in the real sense
- continuous function are integrable
- $\int_a^b f(t)dt = F(b) F(a)$, F is antiderivative of f
- $\left| \int_a^b f(t)dt \right| \le \int_a^b |f(t)|dt$
- Parametrized curve Γ connecting z_0 and z_1 : a continuous function $\gamma:[t_0,t_1]\to\mathbb{C}$ s.t. $\gamma(t_0)=z_0,\gamma(t_1)=z_1$

writing $z_0 = z_0 + iy_0 \rightarrow \gamma(t) = x(t) + iy(t) \rightarrow x(t_0) = x_0, y(t_0) = y_0$

 Γ is regular: if γ is continuously differentiable and $\gamma'(t) \neq 0$ for all $t \in (t_0, t_1)$

- $\int_{\Gamma} f(z)dz = \int_{t_0}^{t_1} f(\gamma(t))\gamma'(t)ft$
- arclength $\ell(\Gamma) := \int_{t_0}^{t_1} |\gamma'(t)| dt$ = $\int_{t_0}^{t_1} \sqrt{x'(t)^2 + y'(t)^2} dt$

HCoV Cheat Sheets Author: s1889985

• M-L lemma: Γ is a regular curve, $f:\Gamma\to\mathbb{C}$ is continuous, then

$$\left| \int_{\Gamma} f(z) dz \right| \leq \int_{\Gamma} |f(z)| |dz| \leq \max_{z \in \Gamma} |f(z)| \ell(\Gamma)$$

since f continuous on Γ , Γ is a closed and bounded subset of \mathbb{C} , f is indeed bounded on Γ , and the values $\max |f|, \min |f|$ are attained on Γ

- $\int_{-\Gamma} f(z)dz = -\int_{\Gamma} f(z)dz$
- $\int_{\Gamma} f(z)dz = \sum_{i=1}^{n} \int_{\Gamma_i} f(z)dz$
- \bullet Path-independence lemma: D domain, f continuous, then

f has antiderivative F in D $\Leftrightarrow \int_{\Gamma} f(z)dz = 0$ for all closed contous Γ in D $\Leftrightarrow \int_{\Gamma} f(z)dz$ are independent of the path Γ , and depend only on the endpoints

- Jordan curve theorem: a loop Γ , $\mathbb{C} = Int(\Gamma) \cup \Gamma \cup Ext(\Gamma)$
- CIT: Γ loop, f hol inside & on $\Gamma \Rightarrow \int_{\Gamma} f(z)dz = 0$
- D simply-connected domain, f hol on $D \Rightarrow f$ has antiderivative on D
- $\int_{\Gamma} \frac{1}{z z_0} = \begin{cases} 2\pi i & \text{if } z_0 \in \text{Int}(\Gamma) \\ 0 & \text{otherwise} \end{cases}$
- CIF: Γ loop, f hol inside & on $\Gamma, z_0 \in \text{Int}(\Gamma) \Rightarrow f(z_0) = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(z)}{z z_0} dz$
- GCIF: Γ loop, f hol inside & on $\Gamma, z_0 \in \text{Int}(\Gamma) \Rightarrow$ $f^{(n)}(z_0) = \frac{n!}{2\pi i} \int_{\Gamma} \frac{f(z)}{(z z_0)^{n+1}} dw$
- Morera's theorem: D domain, f continuous, $\int_{\Gamma} f(z)dz = 0$ for all loops $\Gamma \subseteq D \Rightarrow f$ hol
- Cauchy estimate: f hol on $D, \bar{D}_R(z_0) \subseteq D, |f(z)| \le M \Rightarrow |f^{(n)}(z_0)| \le \frac{n!M}{R^n},$ where $R = |z - z_0|$
- Liouville's theorem: f hol & bounded on $\mathbb{C} \Rightarrow f$ is constant
- Maximum modulus principle: f hol & bounded on D, if |f(z)| achieves its max at $z_0 \in D \Rightarrow f$ is constant on D
- Max/Min principle: ϕ harmonic & bounded above or below M, $\phi(z_0) = M$ for some $z_0 \in D \Rightarrow \phi$ is constant on D

5 Series

• $\sum_{j=0}^{\infty} z_j$ is convergent if partial sums $S_n = \sum_{j=0}^{n} z_j$ is a convergent sequence, with limit S, we say $\sum_{j=0}^{\infty} z_j = S$

- $\sum_{j=0}^{\infty} z_j$ convergent $\Rightarrow z_n \to 0$ as $n \to 0$ $z_n \not\to 0$ as $n \to 0 \Rightarrow$ divergent $z_n \to 0$ as $n \to 0 \not\Rightarrow$ convergent eg. $\sum_{j=1}^{\infty} \frac{1}{j} \left(\sum_{j=1}^{n} \frac{1}{j} = \ln(n+1) = \infty \text{ as } n \to \infty \right)$
- $\sum_{n=1}^{\infty} \frac{1}{n^p}$ convergent if p > 1
- Comparison test: $|z_n| \leq M_n$ for all sufficiently large n, where $\sum_{j=0}^{\infty} M_j$ is convergent, $M_n \geq 0 \Rightarrow \sum_{j=0}^{\infty} z_j$ is convergent
- $\sum_{j=0}^{\infty} c^j$ is convergent iff $|c| < 1, \sum_{j=0}^{\infty} c^j = \frac{1}{1-c}$
- Ratio test: $L=\lim_{n\to\infty}\left|\frac{z_{n+1}}{z_n}\right|$ L<1 convergent, L>1 divergent, L=1 you know nothing

When the terms become functions

- Converge pointwise: for each $z \in S, \forall \epsilon > 0, \exists N \in \mathbb{N} \text{ s.t. } |f_n(z) f(z)| < \epsilon \text{ whenever } n \geq N$ Converge uniformly: $\forall \epsilon > 0, \exists N \in \mathbb{N} \text{ s.t. } \text{ for all } z \in S, |f_n(z) - f(z)| < \epsilon \text{ whenever } n \geq N$ uniform \Rightarrow pointwise
- converge pointwise / uniformly \Leftrightarrow partial sum converge pointwise / uniformly
- $f_n: S \to \mathbb{C}$ a sequence of continuous functions, f_n converges uniformly to $f: S \to \mathbb{C} \Rightarrow f$ is continuous
- Weierstrass M-test: $|f_n(z)| \leq M_n$ for all sufficiently large n, where $\sum_{j=0}^{\infty} M_j$ is convergent, $M_n \geq 0 \Rightarrow \sum_{j=0}^{\infty} f_j(z)$ converges uniformly
- $\sum_{j=0}^{\infty} M_j$ converges $\Leftrightarrow \exists n_1 \in \mathbb{N}$ s.t. $\left| \sum_{j=0}^{\infty} M_j \sum_{j=0}^n M_j \right| < \epsilon \text{ whenever } n \ge n_1$
- $f_n: S \to \mathbb{C}$ a sequence of continuous functions, f_n converges uniformly to f, Γ a contour inside $S \Rightarrow \int_{\Gamma} f_n(z) dz$ converges to $\int_{\Gamma} f(z) dz$
- Integral and Sum: $f_n: S \to \mathbb{C}$ a sequence of continuous functions, $\sum_{j=0}^{\infty} f_j(z)$ converges uniformly on S, Γ a contour inside $S \Rightarrow$

$$\int_{\Gamma} \sum_{j=0}^{\infty} f_j(z) dz = \sum_{j=0}^{\infty} \int_{\Gamma} f_j(z) dz$$

• D simply-connected domain, f_n hol on D, f_n converges uniformly to $f: D \to \mathbb{C} \Rightarrow f$ hol on D

Power series

- $\sum_{j=0}^{\infty} a_j(z-z_0)^j$ (Given f hol at z_0)
- For power series, $\exists R \in [0, \infty] \cup \infty$ s.t. the series converges on $D_R(z_0)$ converges uniformly on $\bar{D}_r(z_0)$ for any $r \in [0, R)$ diverges on $\mathbb{C} \setminus \bar{D}_R(z_0)$ R is the radius of convergence

• $R = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right|$

(NOTE: doesn's assert that R can always be evaluated by taking the limit, since this limit does not in general exist)

e.g.
$$a_j = \begin{cases} 1 & j \text{ is oven} \\ 2 & j \text{ is odd} \end{cases}$$

• $f(z) = \sum_{j=0}^{\infty} a_j (z - z_0)^j$ is hol on $D_R(z_0)$

Taylor series

• $\sum_{j=0}^{\infty} \frac{f^{(j)}(z_0)}{j!} (z - z_0)^j$ Maclaurin series: $z_0 = 0$

• Taylor series theorem: f hol on $D_R(z_0) \Rightarrow$ the Taylor for f centred at z_0 converges to f(z) for all $z \in D_R(z_0)$ & converges uniformly on $D_r(z_0)$ for all $0 \le r < R$

i.e. Taylor of f centred at z_0 will converge to f(z) everywhere inside the largest open disc centred at z_0 , on which f is hol

- U is open $+ f: U \to \mathbb{C}$ is analytic: if at every point $z \in U, f$ can be expressed as a convergent power series
- U is open, $f: U \to \mathbb{C}$ hol, $\Rightarrow f$ is analytic

•
$$\exp(z) = \sum_{j=0}^{\infty} \frac{z^j}{j!} \quad \frac{1}{1-z} = \sum_{n=0}^{\infty} z^n$$

$$\cos(z) = \sum_{j=0}^{\infty} (-1)^j \frac{z^{2j}}{(2j)!}$$

$$\sin(z) = \sum_{j=0}^{\infty} (-1)^j \frac{z^{2j+1}}{(2j+1)!}$$

• $f'(z) = \sum_{j=0}^{\infty} \frac{f^{(j+1)}(z_0)}{j!} (z - z_0)^j$ for $z \in D_R(z_0)$, where f hol on $D_R(z_0)$

i.e. Taylor for f' is found by differentiating Taylor for f term-by-term

Laurent series

• $\sum_{j=-\infty}^{\infty} a_j (z-z_0)^j$

•
$$A_{r,R}(z_0) = \{z \in \mathbb{C} : r < |z - z_0| < R\}$$

 $\bar{A}_{r,R}(z_0) = \{z \in \mathbb{C} : r \le |z - z_0| \le R\}$

• Laurent series theorem: f hol on $A_{r,R}(z_0) \Rightarrow f$ can be expressed as a Laurent series centred at z_0 which converges on $A_{r,R}(z_0)$ & converges uniformly on $\bar{A}_{r_1,R_1}(z_0)$ where $r < r_1 \le R_1 < R \le \infty$, the coefficients are given by

$$a_j = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(z)}{(z - z_0)^{j+1}} dz$$

for any loop Γ lying inside $A_{r,R}(z_0)$ and containing z_0 in its interior

• trick: $\frac{1}{1-z} = \frac{1}{-z(1-\frac{1}{z})}$

Singularities

- singularity: if f is not hol at z_0 isolated sigularity: if $\exists R > 0$ s.t. f is hol on $D'_R(z_0)$
- **zero**: f is hol on the neighbourhood of z_0 , if $f(z_0) = 0$

zero of order m: if $f(z_0) = f'(z_0) = ... = f^{(m-1)}(z_0) = 0, f^{(m)}(z_0) \neq 0$

isolated zero: if $\exists R>0$ s.t. $f(z)\neq 0$ for $z\in D_R'(z_0)$

- f is hol on the neighbourhood of z_0 , with a zero of finite order at $z_0 \Rightarrow z_0$ is isolated
- f is hol on the neighbourhood of z_0 , $f(z_n) = 0$ for a sequence of distinct points $z_n \in U$ which converge to $z_0 \Rightarrow f$ is identically zero on some disc centred at z_0
- $z_0 \in \mathbb{C}$ is s singularity of a rational function $f = P/Q \Rightarrow z_0$ is isolated
- isolated singularity:
 - removable singularity: if $a_j = 0$ for all $j < 0 \Leftrightarrow$ no negative powers, $f(z) = \sum_{j=0}^{\infty} a_j (z z_0)^j$
 - **pole of order** m: if $a_j = 0$ for j < -m and $a_{-m} \neq 0 \Leftrightarrow f(z) = \sum_{j=-m}^{\infty} a_j (z z_0)^j$
 - essential singularity: infinite numbers of non-zero terms with nagative powers
- for removable singularity z_0 of f which is hol on $D'_R(z_0)$, $f(z_0)$ can be re-defined so taht f is hol at z_0

$$f(z) = \begin{cases} f(z) & z \neq z_0 \\ \lim_{\zeta \to z_0} f(\zeta) & z = z_0 \end{cases}$$

• f, g hol at z_0 , where z_0 is a zero of g of order m, if z_0 not a zero of $f \Rightarrow$

f/g has **pole of order** m at z_0

if z_0 zero of order k of $f \Rightarrow$

f/g has pole of order m-k at z_0 if m>k, has removable singularity at z_0 if $m\leq k$

6 Residue calculus

- f hol on $D'_R(z_0)$, isolated singularity at z_0 , $\operatorname{Res}(f,z_0)=a_{-1}$ the coefficient of $(z-z_0)^{-1}$ in the Laurent expansion of f centred at z_0 valid on $D'_R(z_0)$
- f hol on $D'_R(z_0)$, **isolated singularity** at z_0 , Γ a loop inside $D'_R(z_0), z_0 \in \text{Int}(\Gamma) \Rightarrow$ $\int_{\Gamma} f(z) dz = 2\pi i a_{-1} = 2\pi i \text{Res}(f, z_0)$
- f hol on $D'_R(z_0)$, removable singularity at $z_0 \Rightarrow \operatorname{Res}(f, z_0) = 0$
- f hol on $D_R'(z_0)$, with **a pole of order** m at $z_0 \Rightarrow \operatorname{Res}(f, z_0) = \lim_{z \to z_0} \frac{1}{(m-1)!} \frac{d^{m-1}}{dz^{m-1}} ((z-z_0)^m f(z))$

1st order: $Res(f, z_0) = \lim_{z \to z_0} (z - z_0) f(z)$

2nd order: $\operatorname{Res}(f, z_0) = \lim_{z \to z_0} \left[(z - z_0)^2 f(z) \right]'$

- g, h hol on $D'_R(z_0)$, h has a simple zero at z_0 , $g(z_0) \neq 0$, define $f = g/h \Rightarrow \text{Res}(f, z_0) = \frac{g(z_0)}{h'(z_0)}$
- Cauchy residue theorem: Γ loop, f hol inside & on Γ except for finitely many isolated singularities $z_1, ..., z_k \in \text{Int}(\Gamma) \Rightarrow$

$$\int_{\Gamma} f(z)dz = 2\pi i \sum_{j=1}^{k} \operatorname{Res}(f, z_{j})$$

- f is meromorphic on D: if for all $z \in D$ either f has a pole of some finite order at z or f is hol at z
- The argument principle: Γ loop, f meromorphic on $\operatorname{Int}(\Gamma)$, f hol & non-zero on $\Gamma \Rightarrow \frac{1}{2\pi i} \int_{\Gamma} \frac{f'(z)}{f(z)} dz = N_0(f) N_{\infty}(f)$ # **zeros** of f inside Γ , counted with multiplicity: $N_0(f) = \sum_{j=1}^l \operatorname{order}$ of w_j

poles of f inside Γ , counted with multiplicity: $N_{\infty}(f) = \sum_{i=1}^{k} \text{ order of } z_j$

- Rouche's theorem: Γ loop, f,g hol inside & on Γ s.t. for all $z \in \Gamma, |f(z)-g(z)| < |f(z)| \Rightarrow N_0(f) = N_0(g)$
- Open mapping theorem: f non-constant and hol on $D \Rightarrow$ the image of D under $f, f(D) = \{f(z) : z \in D\}$, is an open subset of \mathbb{C}
- Maximum modulus theorem: f non-constant and hol on $D \Rightarrow |f(z)|$ does not attain a maximum on D

Trigonometric integrals

• $\cos \theta = \frac{1}{2}(z + \frac{1}{z}), \sin \theta = \frac{1}{2i}(z - \frac{1}{z}), d\theta = \frac{dz}{iz}$ $\int_0^{2\pi} R(\cos \theta, \sin \theta) d\theta = \int_{C_1(0)} \frac{1}{iz} R\left(\frac{z+z^{-1}}{2}, \frac{z-z^{-1}}{2i}\right) dz$

Improper integrals

- Cauchy principal value: p.v. $\int_{-\infty}^{\infty} f(x)dx := \lim_{\rho \to \infty} \int_{-\rho}^{\rho} f(x)dx$
- Jordan lemma: R = P/Q rational function, $Q \neq 0$, $\deg(Q) \geq \deg(P) + 1$, $a \in \mathbb{R}$ non-zero $\lim_{\rho \to \infty} \int_{C_{\rho}^{+}} \exp(iaz) \frac{P(z)}{Q(z)} dz = 0$, if a > 0 $\lim_{\rho \to \infty} \int_{C_{\alpha}^{-}} \exp(iaz) \frac{P(z)}{Q(z)} dz = 0$, if a < 0
- Convert $R(x)\cos(ax)$, $R(x)\sin(ax)$ into real or imaginary part of $R(x)\exp(iax)$

e.g.
$$\int_{-\infty}^{\infty} \frac{x \sin x}{1 + x^2} dx$$
 is the imaginary part of
$$\int_{-\infty}^{\infty} \frac{x \exp(ix)}{1 + x^2} dx$$
, consider contour C_{ρ}^+

• e.g. $\int_{-\infty}^{\infty} \frac{e^{ax}}{e^x + 1} dx$, consider contour rectangular loop Γ_{ρ} (contour C_{ρ}^+ contains infinity poles in $\rho \to \infty$, hard to calculate)

Improper integrals with pole z = c

- $\int_{a}^{c} f(x)dx = \lim_{r \downarrow 0} \int_{a}^{c-r} f(x)dx$ $\int_{c}^{b} f(x)dx = \lim_{s \downarrow 0} \int_{c+s}^{b} f(x)dx$ $\int_{a}^{b} f(x)dx = \lim_{r \downarrow 0} \int_{a}^{c-r} + \lim_{s \downarrow 0} \int_{c+s}^{b}$ $r \downarrow 0: r \to 0 \text{ through positive values only}$
- p.v. $\int_{-\infty}^{\infty} f(x)dx = \lim_{\rho \to \infty, r \downarrow 0} \left(\int_{-\rho}^{c-r} + \int_{c+r}^{\rho} \right)$
- Consider 2 types of contour:
 - the contour around a singularity, from c-r to c+r, and $-C_r^+(c)$
 - a small circular arc S_r , parametrized by $\gamma(\theta) = c + r \exp(i\theta)$ for $\theta \in [\theta_0, \theta_1]$ for some $0 \le \theta_0 < \theta_1 \le 2\pi$
- $\lim_{r\downarrow 0} \int_{S_r} f(z)dz = i(\theta_1 \theta_0)\operatorname{Res}(f, c)$

Evaluate infinite series, calc $\int_{\Gamma_N} f(z)dz$

- $R = P/Q, Q \neq 0, \deg Q \deg P \geq 2$ $\int_0^\infty R(x)dx = -\sum_{\text{poles } z_k} \operatorname{Res}(f, z_k)$ $f(z) = \log(z)R(z)$
- For $\int_0^\infty R(x)dx$, $f(z) = \log(z-a)R(z)$
- R = P/Q, $\deg Q \deg P \ge 2$ $\sum_{n = -\infty, n \ne z_k}^{\infty} R(n) = -\sum_{\text{poles } z_k \text{ of } R} \text{Res}(f, z_k)$ $f(z) = \pi \cot(\pi z) R(z)$
- R = P/Q, $\deg Q \deg P \ge 2$ $\sum_{n=-\infty, n \ne z_k}^{\infty} (-1)^n R(n) = -\sum_{\text{poles } z_k \text{ of } R} \operatorname{Res}(f, z_k)$ $f(z) = \pi \csc(\pi z) R(z)$
- eg. $\sum_{n=-\infty}^{\infty} \frac{1}{n^2} \to f(z) = \frac{\cot(\pi z)}{z^2}$ eg. $\sum_{n=-\infty}^{\infty} \frac{(-1)^{n+1}}{n^2} \to f(z) = \frac{\csc(\pi z)}{z^2}$ eg. $\sum_{n=-\infty}^{\infty} \frac{1}{n^2+1} \to f(z) = \frac{\pi \cot(\pi z)}{z^2+1}$ eg $\sum_{n=-\infty}^{\infty} \frac{1}{(n-1/2)^2} \to f(z) = \frac{\pi \cot(\pi z)}{(z-1/2)^2}$
- Γ loop with 0 in its interior $\binom{n}{k} = \frac{1}{2\pi i} \int_{\mathbb{R}} \frac{(1+z)^n}{z^{k+1}} dz$