Sistem IoT Deteksi Gerak dan Pemantauan Suhu Berbasis ESP32 dengan Notifikasi Telegram dan Bluetooth

Dosen Pengampu:

Muh. Akbar Yasin, S.T, M.T.

Disusun Oleh:

Alif Faidz	22315005
Muh Syahnul Ilham	22315008
Teguh Hidayat	22315010
Fathir Al Ghifary Badallah	22315017
Desti Yusriyyah	22315014
Rathi Natalia	22315019

PROGRAM STUDI SISTEM DAN TEKNOLOGI INFORMASI FAKULTAS TEKNIK UNIVERSITAS MUHAMMADIYAH KENDARI

1. PENGENALAN

1.1 Tujuan

Dokumen ini bertujuan untuk mendefinisikan kebutuhan perangkat lunak dari sistem IoT berbasis ESP32 yang memantau suhu dan mendeteksi gerakan. Sistem ini akan memberikan notifikasi melalui **Telegram** dan **Bluetooth** secara real-time ketika gerakan terdeteksi atau suhu melebihi ambang batas yang telah ditentukan.

1.2 Lingkup Sistem

Sistem terdiri dari:

- Mikrokontroler ESP32
- Sensor suhu & kelembapan (DHT11 atau sejenis)
- Sensor gerak PIR (HC-SR501)
- Modul komunikasi Telegram (API Bot telegram)
- Komunikasi Bluetooth (ESP32 built-in)
- Notifikasi real-time ke pengguna via Telegram dan Bluetooth

Definisi Istilah

- ESP32: Mikrokontroler dengan kemampuan Wi-Fi dan Bluetooth.
- DHT11: Sensor suhu dan kelembapan digital.
- PIR Sensor: Sensor gerak berbasis inframerah pasif.
- Bot Telegram: Bot otomatis yang mengirimkan pesan melalui API Telegram.
- Bluetooth: Komunikasi nirkabel jarak dekat.

2. DESKRIPSI UMUM

2.1 Fungsi Sistem

- Membaca suhu dan kelembapan secara berkala.
- Mendeteksi gerakan menggunakan sensor PIR.
- Mengirimkan notifikasi via Telegram saat terjadi peristiwa tertentu (gerakan/suhu tinggi).
- Mengirimkan data suhu dan status gerakan via Bluetooth.
- Menampilkan data ke serial monitor atau (opsional) OLED display.

2.2 Karakteristik Pengguna

- Pemilik rumah untuk keamanan dan monitoring lingkungan.
- Pengembang IoT untuk eksperimen.
- Peneliti yang butuh pengawasan suhu/gerakan secara real-time.

2.3 Batasan Sistem

- Wi-Fi harus tersedia untuk mengirim ke Telegram.
- Bluetooth hanya dalam jangkauan terbatas (~10m).
- Telegram bergantung pada token bot dan koneksi ke server.

3. KEBUTUHAN FUNGSIONAL

Id	Nama Fitur	Deskripsi
F01	Pembacaan Sensor	Sistem membaca suhu dan kelembapan setiap 2 detik
F02	Deteksi Gerakan	Sensor PIR mendeteksi pergerakan manusia
F03	Kirim Telegram	Jika gerakan terdeteksi atau suhu > ambang, sistem kirim pesan Telegram.
F04	Kirim Bluetooth	Kirim data suhu dan gerakan ke perangkat Bluetooth secara real-time
F05	Logging Serial	Menampilkan log ke serial monitor untuk debugging
F06	(Opsional) Tampilan	Menampilkan data ke OLED display (jika digunakan)

4. KEBUTUHAN NON FUNGSIONAL

ID	Kebutuhan	Deskripsi
NF01	Stabilitas Sistem	Sistem harus mampu berjalan secara kontinu tanpa mengalami gangguan atau crash dalam jangka waktu yang lama.
NF02	Keamana Data	Informasi sensitif seperti token Telegram harus disimpan dengan aman dan tidak boleh terekspos ke publik.
NF03	Respon Cepat	Waktu respon pengiriman notifikasi (Telegram/Bluetooth) setelah mendeteksi peristiwa tidak boleh lebih dari 1 detik.
NF04	Kemudahan Pengembangan	Sistem dirancang agar mudah dikembangkan lebih lanjut, misalnya untuk integrasi cloud, aplikasi mobile, atau sensor tambahan
NF05	Ketahanan Koneksi	Sistem harus mampu secara otomatis menyambung kembali ke jaringan Wi-Fi jika terjadi pemutusan koneksi

5. Antarmuka Sistem

5.1 Perangkat Keras

- ESP32 (board mikrokontroler)
- DHT22 / DHT11
- PIR Motion Sensor (HC-SR501)

5.2 Perangkat Lunak

- Arduino IDE / PlatformIO
- Library ESP32 WiFi, UniversalTelegramBot, BluetoothSerial
- Bot Telegram dengan API Token
- Komunikasi serial melalui USB

5.3 Desain aplikasi android

6. UML Sistem

• User case

• Sequence diagram kirim perintah ke esp32 via aplikasi android (bluetooth)

• Sequence diagram kirim perintah ke esp32 untuk mengirim data sensor ke telegram bot

7. Contoh Notifikasi Telegram

• Peringatan! Gerakan terdeteksi pada 06/08/2025 pukul 10:34

• Suhu Tinggi: 32.5°C (ambang: 30°C)

• Data Saat Ini: Suhu: 28.6°C | Kelembapan: 60% | Status: Tidak ada gerakan

8. Rencana Pengujian

ID	Skenario Uji	Ekspektasi
T01	Sensor mendeteksi gerakan	Telegram mengirim pesan
T02	Suhu melebihi ambang	Telegram mengirim pesan
T03	Bluetooth aktif	
T04	Perintah Perintah	Menjalankan instruksi berdasarkan perintah