

Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

Домашнее задание №_1_

по курсу

«Сжижение природного газа»

Вариант 7

Группа: Э4-111

Выполнил студент:

Жалялетдинов Р.Х.

Проверил:

Кротов А.С.

Москва 2020 г.

Начальные условия задания и выбор смесевого ХА:

Цель работы: оптимизировать состав смесевого хладагента с учётом ограничении для снижения потребляемой мощности компрессора. Составить исходные данные для проектирования компонентов цикла (компрессор, ABO, теплообменник, испаритель).

Варианты домашнего задания

№ варианта	Недорекуперация в ТОА, К	Температура термостатирования/ожижения, °C	Тип хладагента	Температура после ABO, °C
1	1	Минус 100	Горючий	0
2	2	Минус 100	Негорючий	35
3	3	Минус 90	Горючий	10
4	4	Минус 90	Негорючий	35
5	5	Минус 80	Горючий	20
6	6	Минус 80	Негорючий	35
7	7	Минус 70	Горючий	30

T.к. по условию смесевой XA – горючий, то была выбрана смесь из метана C1, этана C2 и пропана C3.

Ограничения будут учтены при оптимизации.

Ограничения:

Недорекуперация в ТОА;

Давление всасывания не менее 120 кПа;

Температура нагнетания не более 120°С;

Отсутствие жидкости на входе в компрессор.

Расчет и оптимизация для цикла термостатирования:

1. Технологическая схема цикла:

2. Таблица параметров основных точек:

[]	Energ	y Stream	ns-	
		Lk-2	0-2	Qt
Heat Flow	kW	59,39	69,39	10,00

				Materi	al Stream	В					
		1-2	2-2	3-2	4-2	5-2	5-3	C2-1	C3-1	4-3	C1-1
Vapour Fraction		1,0000	0,9439	0,0000	0,1470	1,0000	1,0000	<empty></empty>	<empty></empty>	0,1830	<empty></empty>
Temperature	С	120,0	30,00	-55,03	-70,00	16,24	16,24	<empty></empty>	<empty></empty>	-62,05	<empty></empty>
Pressure	bar	15,00	15,00	15,00	1,999	1,999	1,999	<empty></empty>	<empty></empty>	1,999	<empty></empty>
Molar Flow	Nm3/h(gas)	691,6	691,6	691,6	691,6	691,6	691,6	95,57	507,6	691,6	88,46
Mass Flow	kg/h	1190	1190	1190	1190	1190	1190	128,2	998,6	1190	63,32
Liquid Volume Flow	m3/h	2,543	2,543	2,543	2,543	2,543	2,543	0,3605	1,971	2,543	0,2115
Heat Flow	kW	-783,2	-852,6	-1021	-1021	-842,6	-842,6	<empty></empty>	<empty></empty>	-1011	<empty></empty>

			Con	npositions	k.					
	1-2	2-2	3-2	4-2	5-2	5-3	C2-1	C3-1	4-3	C1-1
Comp Mole Frac (Ethane)	0,1382	0,1382	0,1382	0,1382	0,1382	0,1382	1,0000	0,0000	0,1382	0,000
Comp Mole Frac (Propane)	0,7339	0,7339	0,7339	0,7339	0,7339	0,7339	0,0000	1,0000	0,7339	0,000
Comp Mole Frac (i-Butane)	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,000
Comp Mole Frac (Methane)	0,1279	0,1279	0,1279	0,1279	0,1279	0,1279	0,0000	0,0000	0,1279	1,000

3. Q-Т диаграммы теплообменных аппаратов:

4. Параметры и условия расчета в оптимизаторе:

		С			D	
essi	ure	Phase	(Comp)	FLow	(C1, C2,	C3)
99	bar		1,0000		63,32 I	g/h
00	bar		1,0000		128,2	g/h
1,2	200	59	9,39 kW		998,61	g/h
			1,000			
			1,000			

Nur	LHS Cell	Current Value	Cor	RHS Cell	Current Value	Penalty Value
1	A5	7,0231	=	A6	7,0000	1,0000
2	C3	1,0000	=	C6	1,0000	1,0000
3	C4	1,0000	=	C7	1,0000	1,0000
4	B3	1,9992	>	B5	1,2000	1,0000
5	D3	63,315	>		<empty></empty>	1,0000
6	D4	128,22	>		<empty></empty>	1,0000
7	D5	998,63	>		<empty></empty>	1,0000
8	A7	119,98	=	A8	120,00	1,0000

В итоге получилась смесь со следующими концентрациями компонентов:

Расчет и оптимизация для цикла ожижения:

Параметры цикла ожижения:

Ожижаемый газ – 50% этана, 50% пропана;

Доля пара на выходе из ожижителя – 0;

Расход - 1000 кг/ч;

Температура ожижаемого потока на выходе – согласно таблице;

Температура ожижаемого потока на входе – температура после АВО;

Потери давления в теплообменниках отсутствуют;

Изоэнтропный КПД компрессора – 0,75.

1. Технологическая схема цикла:

2. Таблица параметров основных точек:

					Material S	treams						
		1-2	2-2	3-2	4-2	5-2	5-3	C2-1	C3-1	C1-1	NG	LNG
Vapour Fraction		1,0000	0,0182	0,0000	0,0456	1,0000	1,0000	<empty></empty>	<empty></empty>	<empty></empty>	1,0000	0,0000
Temperature	C	195,7	30,00	-70,00	-76,96	16,59	16,59	<empty></empty>	<empty></empty>	<empty></empty>	30,00	-70,00
Pressure	bar	29,48	29,48	29,48	1,200	1,200	1,200	<empty></empty>	<empty></empty>	<empty></empty>	1,358	1,358
Molar Flow	Nm3/h(gas)	1251	1251	1251	1251	1251	1251	740,1	504,6	5,974	604,4	604,4
Mass Flow	kg/h	1990	1990	1990	1990	1990	1990	993,0	992,8	4,276	1000	1000
Liquid Volume Flow	m3/h	4,765	4,765	4,765	4,765	4,765	4,765	2,792	1,959	1,428e-002	2,313	2,313
Heat Flow	kW	-1254	-1611	-1767	-1767	-1442	-1442	<empty></empty>	<empty></empty>	<empty></empty>	-704,9	-874,3

				Compos	itions						
	1-2	2-2	3-2	4-2	5-2	5-3	C2-1	C3-1	C1-1	NG	LNG
Comp Mole Frac (Ethane)	0,5918	0,5918	0,5918	0,5918	0,5918	0,5918	1,0000	0,0000	0,0000	0,5000	0,5000
Comp Mole Frac (Propane)	0,4035	0,4035	0,4035	0,4035	0,4035	0,4035	0,0000	1,0000	0,0000	0,5000	0,5000
Comp Mole Frac (i-Butane)	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,000
Comp Mole Frac (Methane)	0,0048	0,0048	0,0048	0,0048	0,0048	0,0048	0,0000	0,0000	1,0000	0,0000	0,000

Ener	gy St	reams		
	1	Lk-2 1	0-2	
Heat Flow	kW	187,9	357,2	

3. Q-Т диаграммы теплообменных аппаратов: Для холодного и горячего потоков (горящий – аддитивный тепловой поток из прямого и продукционного потоков):

Для всех трех потоков:

E-100-2 — 🗆 X

4. Параметры и условия расчета в оптимизаторе:

В итоге получилась смесь со следующими концентрациями компонентов:

	Mole Fractions
Ethane	0,5918
Propane	0,4035
i-Butane	0,0000
Methane	0,0048