

LABORATORIO 3. Control de un sistema térmico

Guías de Prácticas de Laboratorio

Identificación: GL-AA-F-1

Número de Páginas: 6

Revisión No.: 2

Fecha Emisión: 2018/01/31

Laboratorio de:

Control Lineal

Titulo de la Práctica de Laboratorio:

LABORATORIO 3. Control de velocidad de un motor DC

Elaborado por:	Revisado por:	Aprobado por:
Ing. Leonardo Solaque, Ph.D Docente		
IM. Adriana Riveros, MSc. Docente	Ing. Olga Ramos	Ing. William Gómez
Ing. Andrés Castro, M.Sc. Docente	Jefe área Automatización y	Director de Programa
Ing. Vladimir Prada, Ph.D Docente	Control Programa de Ingeniería en Mecatrónica	Ingeniería en Mecatrónica
Programa de Ingeniería en Mecatrónica		

LABORATORIO 3. Control de un sistema térmico **Control de Cambios**

Descripción del Cambio	Justificación del Cambio	Fecha de Elaboración / Actualización
Se cambian las guías al nuevo formato	Nuevo formato para implementar	07/08/2018
Se cambian los sistemas a trabajar	Se requiere renovación semestral de guías	21/01/2019
Se cambian los sistemas a trabajar	Se requiere renovación semestral de guías	29/07/2019
Se cambian los sistemas a trabajar	Se requiere renovación semestral de guías	20/01/2020
Se cambian los sistemas a trabajar	Se requiere renovación semestral de guías	17/8/2020
Se cambian los sistemas a trabajar	Se requiere renovación semestral de guías	20/01/2021

LABORATORIO 3. Control de un sistema térmico

1. FACULTAD O UNIDAD ACADÉMICA: INGENIERÍA

2. PROGRAMA: INGENIERÍA EN MECATRÓNICA

3. ASIGNATURA: CONTROL LINEAL Y LABORATORIO

4. SEMESTRE: SÉPTIMO

5. OBJETIVOS:

General: Diseñar y simular un sistema de control para una planta térmica usando técnicas de diseño de PID (asignación de polos), e implementación del regulador mediante un circuito que represente al sistema integrodiferencial (PID) y cuyos valores se calculan en el diseño.

Específicos:

- Modelar una planta térmica de primer orden con retardo, así como sus representaciones en función de transferencia y espacio de estados.
- Identificar los estados presentes en el sistema y el tipo de respuesta ante entra escalón y ante entrada rampa.
- Diseñar dos reguladores tipo PID, uno para seguimiento a escalón y otro para rampa, mediante el uso de técnicas de asignación de polos y su simulación mediante operacionales en Proteus (diseñar, simular y probar el correcto funcionamiento).
- 6. MATERIALES, REACTIVOS, INSTRUMENTOS, SOFTWARE, HARDWARE O EQUIPOS DEL LABORATORIO – No aplica en las condiciones actuales y se deja opcional al estudiante para una eventual implementación de la planta en casa.

DESCRIPCIÓN (Material, reactivo, instrumento, software, hardware, equipo)	CANTIDAD	UNIDAD DE MEDIDA
Vasos plásticos	2	Unidad
Acetato	1	Unidad
Sistema de potencia térmica (puede ser un bombillo)	1	Unidad

LABORATORIO 3. Control de un sistema térmico

Fuentes - batería	1	Unidad
Multímetro	1	Unidad
Sensores térmicos	2	Unidad
Operacionales, resistencias y capacitores térmicos	Según diseño	Unidad

Ver diagrama siguiente como opción de montaje.

Figura 1: Sistema térmico

7. PRECAUCIONES CON LOS MATERIALES, REACTIVOS, INSTRUMENTOS Y EQUIPOS A UTILIZAR:

- Para el ingreso al laboratorio será necesaria la bata blanca.
- Se recomienda hacer un uso adecuado de los computadores.
- Es recomendable apagar los elementos si se va a realizar cualquier cambio en el circuito electrónico o en la parte mecánica del sistema.
- No exceder los valores máximos permitidos de voltajes y corrientes indicados para los dispositivos utilizados.
- Consultar en los manuales y datasheet correspondientes.
- No sobrepasar el máximo de potencia disipada por las resistencias.
- Respectar las medidas de bioseguridad.

LABORATORIO 3. Control de un sistema térmico

8. PROCEDIMIENTO, MÉTODO O ACTIVIDADES:

 \triangleright Encontrar el modelo matemático que corresponde al sistema de la Figura 1, considerando como salida θ_2 .

Donde:

- θ_1 temperatura de la recamara 1 en grados Kelvin [K]
- θ_2 temperatura de la recamara 2 en grados Kelvin [K]
- q_i flujo de calor de entrada en Julios por segundo [J/s] o Watts
- $C_1 \ y \ C_2$ Capacitancia térmica en Julio por Kelvin $\left[\frac{J}{K}\right]$
- temperatura ambiente θ_a .
- Partiendo del sistemna sugerido antes, diseñar usando técnicas por asignación de polos un control PID para la temperatura de la recamara uno, tal que cumpla los siguientes parámetros: ess = 0, ζ = 0.95 y ts = 95% del tiempo de establecimiento en lazo abierto. Lo anterior para seguir escalón, rampa y parábola en simulación. Repita el procedimiento para controlar la segunda recámara.
- Simular el control de θ_2 para seguimiento a una referencia tipo escalón desde Matlab. Repetirlo para seguimiento a rampa.
- Montar el sistema de operacionales que implemente el PID y probar en lazo cerrado.
- Verificar el funcionamiento de los controladores y comentar.

9. RESULTADOS ESPERADOS:

- Controladores PID para seguimiento de escalón, rampa, en el sistema térmico recamara 1 y 2 - simulación.
- Respuesta en simulación (Matlab) de la planta controlada, observando la señal de control, el error y la salida.
- Sistemas controlados mediante diseño por PID y sistema físico.
- Informe en formato IEEE

LABORATORIO 3. Control de un sistema térmico

10. CRITERIO DE EVALUACIÓN A LA PRESENTE PRÁCTICA:

Por medio de esta práctica se desarrollarán las siguientes competencias:

- Habilidad para identificar, formular y resolver problemas complejos de Ingeniería aplicando principios de Ingeniería, ciencias y matemáticas.
- Habilidad para comunicarse efectivamente ante un rango de audiencias.
- Capacidad de funcionar de manera efectiva en un equipo cuyos miembros juntos proporcionan liderazgo, crean un entorno colaborativo e inclusivo, establecen metas, planifican tareas y cumplen objetivos.
- Capacidad de desarrollar y llevar a cabo la experimentación adecuada, analizar e interpretar datos, y usar el juicio de Ingeniería para sacar conclusiones.

Las competencias descritas anteriormente se evaluarán mediante los siguientes indicadores:

- ldentifica las variables que intervienen en un problema de ingeniería.
- Propone y/o formula modelos que representan las relaciones de las variables de un problema.
- Identifica y aplica leyes, teoremas, principios para la solución de problemas de ingeniería.
- Establece los requerimientos de ingeniería que permiten la adecuada operación de un sistema, a fin de cumplir normativas y necesidades del usuario final.
- Maneja las herramientas tecnológicas y computacionales para la solución de problemas complejos de ingeniería.
- Presenta sus ideas en forma clara y concisa, utilizando un lenguaje apropiado al contexto.
- Utiliza diferentes formas de comunicación con el fin de transmitir sus ideas, dependiendo del tipo de audiencia.
- Redacta apropiadamente informes utilizando formatos estandarizados, referenciando, y utilizando reglas gramaticales y ortográficas.
- Se comunica adecuadamente con los integrantes del equipo, con el fin de desarrollar las tareas dentro de un entorno colaborativo, para cumplir los objetivos del proyecto.

LABORATORIO 3. Control de un sistema térmico

- Identifica los parámetros asociados a la problemática, sus variables de entrada y los resultados esperados.
- Formula y ejecuta el protocolo experimental.
- Analiza e interpreta los resultados obtenidos tras la experimentación (en laboratorios y/o mediante el uso de herramientas computacionales).
- Concluye sobre resultados obtenidos, aplicando juicios de ingeniería.