

Lecture 14

Review

Note: these slides are a summary of most of the topics we have covered during the course, but they may not cover all topics/problems that could appear on the midterm exam

Reminders and Announcements

- Office hours:
 - Wednesday, March 19th, 5pm-6pm
 - Thursday, March 20th, 9am-10am

Midterm: Thursday, March 20th, 5:00pm-6:15pm

Midterm: Thursday, March 20th, 5:00pm-6:15pm

- If you are located in Blacksburg, then you should take the exam in-person in TORG 1050, even if you are enrolled in the virtual section of the course
- If you are enrolled in the virtual campus, please email me by March 5th indicating if you
 will take the exam virtually or in-person in Arlington or Blacksburg
- Will cover the topics in lectures 1-6 (packaging overview and electrical design) and 9-13 (transmission lines and thermal design)
- The lecture on March 18th will be a review session → come ready with questions or topics you would like to cover
- You will <u>not</u> be asked to do any simulations for the midterm
- The problems will be a mix of conceptual short response and calculation problems
- Things to bring to the exam: writing utensils & non-programmable calculator
- An equation/reference sheet and extra paper will be provided by the proctor
- The reference sheet will be uploaded to Canvas next week; you do <u>not</u> need to print out the reference sheet

R, C, L Overview

• Resistance, R

- Unit: Ohms, Ω
- Effects: damping, voltage drop, loss $(P = I^2R)$
- Types: DC & AC (skin effect)
- Ohm's Law: V = IR
- Capacitance, C
 - Unit: Farad, F
 - Definition: amount of charge stored per volt
 - Effects: coupling, resonance
 - $\circ I = C \frac{dV}{dt}$

Inductance, L

- Unit: Henry, H
- Definition: ratio of magnetic flux linked by a loop of current to the current
- Effects: coupling, resonance, voltage drop/overshoot

$$\circ V = L \frac{dI}{dt}$$

 Every current-carrying conductor has some R and L

Summary: Types

- Resistance
 - DC (temperature dependent)
 - AC (skin and proximity effects)
- Capacitance
 - Between overlapping conductors
 - Between adjacent conductors

- Inductance
 - Self/partial inductance
 - Mutual inductance
 - Total/loop/effective inductance

Summary: Consequences

- Resistance
 - Power loss
 - Heating
 - Ground bounce

- Capacitance
 - Delay
 - Noise
 - Oscillation

- Inductance
 - Delay
 - Noise
 - Oscillation
 - Voltage overshoot

Summary: Mitigation Approaches

Resistance

- DC increase conductivity, decrease length, increase area
- AC increase circumference/ perimeter, multiple smaller conductors in parallel

Capacitance

- Minimize overlapping areas
- Increase spacing between traces/interconnects
- Low dielectric constant

Inductance

- Reduce loop area
- Decrease conductor length
- Decrease spacing between the source and return paths
- Increase spacing between conductors with same current direction
- Use decoupling capacitors
- Arrange conductors
 perpendicular to minimize
 unwanted coupling

DC Resistance

- Critical components
 - Interconnects
 - Substrate traces/vias
 - Terminals
- V = IR, $P = I^2R$
- $R = \frac{\rho l}{A_c}$
 - ρ = resistivity, $\Omega \cdot m$
 - $\sigma = 1/\rho = \text{conductivity}$, S/m
 - l = length, m
 - A_c = cross-sectional area, m²

Example: DC Resistance of Wire Bond

- 50 µm (2 mil*) gold wire bond with 10 mm length
- $\rho_{gold@25C}$ = 2.2 x 10⁻⁸ Ω ·m
- What is the resistance of the wire bond at room temperature?

$$R_{25\mathrm{C}} =
ho_{25\mathrm{C}} l/A_c$$
 $l=10~\mathrm{mm}=0.01~\mathrm{m}$ $A_c=\pi r^2=\pi (2.5~\mathrm{x}~10^{-5}~\mathrm{m})^2$ $R_{25\mathrm{C}}=(2.2~\mathrm{x}~10^{-8}~\Omega\cdot\mathrm{m})\cdot(0.01~\mathrm{m})~/~(\pi (2.5~\mathrm{x}~10^{-5}~\mathrm{m})^2)=$ **0.11** Ω

What if you have 5 wire bonds in parallel?

$$R_{eq} = R / 5 = 0.11 \Omega / 5 = 0.022 \Omega = 22 \text{ m}\Omega$$

*1 mil = 0.001 inch

Example: DC Resistance of PCB Trace

- 200-mm-long, 0.1-mm-wide PCB trace with 1 oz* copper
- $\rho_{copper@25C} = 1.7 \text{ x } 10^{-8} \Omega \cdot \text{m}$
- 1 oz copper = 1.37 mils = 0.00137 in = 0.034798 mm
- What is the resistance of the copper trace at room temperature?

$$R_{25\text{C}} = \rho_{25\text{C}} l/A_c$$
 $l = 200 \text{ mm} = 0.2 \text{ m}$
 $A_c = t \cdot w = (3.5 \times 10^{-5} \text{ m}) \cdot (1 \times 10^{-4} \text{ m}) = 3.5 \times 10^{-9} \text{ m}^2$
 $R_{25\text{C}} = (1.7 \times 10^{-8} \ \Omega \cdot \text{m}) \cdot (0.2 \ \text{m}) / (3.5 \times 10^{-9} \ \text{m}^2) = \textbf{0.97} \ \Omega$
... at room temperature

10

*1 oz of copper rolled out over 1 sq. ft.

Temperature Dependence of DC Resistance

- Resistance of conductors increases with temperature
- The fractional change in resistance is proportional to the change in temperature:
- $R_1 = R_0 \cdot [1 + \alpha (T_1 T_0)]$
 - R_0 = resistance at T_0 , Ω
 - T_1 = temperature of interest, K or °C
 - α = temperature coefficient, 1/K or 1/°C
- This linear approximation can be used if α does not change much with T and $\alpha \Delta T \ll 1$
- When T_0 is room temperature,

Temperature Coefficient of Resistance, α

$$R_1 = R_0 \cdot [1 + \alpha (T_1 - T_0)]$$

- Gold: $\alpha = 3.4 \times 10^{-3} / ^{\circ}\text{C}$
- Silver: $\alpha = 3.8 \times 10^{-3} / ^{\circ}\text{C}$
- Aluminum: $\alpha = 3.9 \times 10^{-3} / ^{\circ}\text{C}$
- Platinum: $\alpha = 3.9 \times 10^{-3} / ^{\circ}\text{C}$
- Copper: $\alpha = 4.0 \times 10^{-3} / ^{\circ}\text{C}$

Example: DC Resistance of PCB Trace at 100 °C

200-mm-long, 0.1-mm-wide PCB trace with 1 oz copper

$$R_1 = \rho_{25C} l / A \cdot [1 + \alpha (T_1 - 25^{\circ} C)]$$

$$R_{25C} = \frac{\rho_{25C} l}{\Delta} = (1.7 \times 10 - 8 \Omega \cdot m) \cdot (0.2 m) / (3.5 \times 10 - 9 m^2) = 0.97 \Omega$$

• What is the resistance of the copper trace at 100°C?

$$\alpha_{copper} = 4.0 \times 10^{-3} / ^{\circ} \text{C}$$

$$R_{100C} = R_{25C} \cdot [1 + (4.0 \times 10^{-3} / ^{\circ}C) (100 ^{\circ}C - 25 ^{\circ}C)] = 1.25 \Omega$$

>30 % increase!

DC and AC Resistance

- Direct current (DC) flows uniformly in a conductor
- With high-frequency alternating current (AC), current crowds along the conductor surface
- Current density = flow of charge per unit area [Amps / m²]

Skin Depth

- $\bullet \ R_{AC} = \rho l / A_{eff}$
- $A_{eff} = \pi (d \delta \delta^2)$, when $r \gg \delta$
 - A_{eff} = effective cross sectional area
 - \circ d = diameter, m
 - δ = skin depth, m
- $\delta = \sqrt{(\rho / (\pi f \mu))}$
 - ρ = resistivity, Ω ·m
 - \circ f = frequency, Hz
 - $\circ \mu = \text{permeability}, H/m$
 - μ_0 = permeability of free space $\approx 4\pi \times 10^{-7}$ H/m
 - μ_r = relative permeability

$$\mu = \mu_0 \mu_r$$

Why do we need $r \gg \delta$ for the (simple) A_{eff} equation?

Current Density for Different Skin Depths

Position in Wire

Example: AC Resistance of Wire Bond

- 50 µm (2 mil*) gold wire bond with 10 mm length
- $\rho_{aold} = 2.2 \times 10^{-8} \Omega \cdot m$
- What is the AC resistance of the wire bond at 150 MHz?

$$R_{AC} = \rho l / A_{eff}$$

$$\boldsymbol{\delta} = \sqrt{(\boldsymbol{\rho} / (\boldsymbol{\pi} f \boldsymbol{\mu}))}$$

$$= \sqrt{(2.2 \cdot 10^{-8} \,\Omega \cdot \text{m} / (\pi \,(150\text{MHz})(4\pi * 10^{-7}\text{H/m})))} = 6.095 \cdot 10^{-6}\text{m}$$

$$A_{eff} = \pi (d \delta - \delta^2)$$

$$= \pi \left((5 \cdot 10^{-5} \text{m}) 6.095 \cdot 10^{-6} \text{m} - (6.095 \cdot 10^{-6} \text{m})^{2} \right) = 8.41 \cdot 10^{-10} \text{m}^{2}$$

$$R = (2.2 \times 10^{-8} \ \Omega \cdot m) \cdot (0.01 \ m) / (8.41 \times 10^{-10} \ m^2) = 0.26 \ \Omega$$

→ 2.3x higher than the DC resistance

*1 mil = 0.001 inch

AC Resistance of Rectangular Conductors (First-Order Approximation)

- E.g., ribbon bonds, PCB traces
- $R_{AC} = \rho l / A_{eff}$
- When $2\delta \ll w$ and t

$$\circ A_{eff} = wt - (w - 2\delta)(t - 2\delta)$$

$$\circ A_{eff} = 2w\delta + 2t\delta - 4\delta^2$$

$$\circ A_{eff} = 2\delta(w + t - 2\delta)$$

- $\delta = \sqrt{(\rho / (\pi f \mu))}$
- When $2\delta \ge w$ or t

$$\circ A_{eff} = wt$$

Keller, R.B. (2023). Skin Effect. In: Design for Electromagnetic Compatibility--In a Nutshell. Springer, Cham. https://doi.org/10.1007/978-3-031-14186-7_10

Example: AC Resistance of PCB Trace

- 200-mm-long, 0.1-mm-wide PCB trace with 1 oz* copper
- $\rho_{copper} = 1.7 \text{ x } 10^{-8} \ \Omega \cdot \text{m}$
- 1 oz copper = 1.37 mils = 0.00137 in = 0.034798 mm
- What is the AC resistance of the copper trace at 150 MHz?

$$R_{AC} = \rho l / A_{eff}$$

$$\delta = \sqrt{(\rho / (\pi f \mu))}$$

$$= \sqrt{(1.7 \cdot 10^{-8} \,\Omega \cdot m / (\pi \,(150 \text{MHz})(4\pi * 10^{-7} \text{H/m})))} = 5.36 \cdot 10^{-6} \text{m}$$

$$A_{eff} = 2\delta (w + t - 2\delta)$$

$$= 2(5.36 \cdot 10^{-6} \text{m})(1 \cdot 10^{-4} \text{m} + 3.5 \cdot 10^{-5} \text{m} - 2(5.36 \cdot 10^{-6} \text{m}))$$

$$= 1.33 \cdot 10^{-9} \text{m}^{2}$$

$$R_{AC} = (1.7 \times 10^{-8} \,\Omega \cdot \text{m}) \cdot (0.2 \,\text{m}) / (1.33 \times 10^{-9} \,\text{m}^{2}) = 2.56 \,\Omega$$

→ 2.6x higher than the DC resistance

Resistance Reduction Methods

DC Resistance

$$R_1 = \rho_0 l / A \cdot [1 + \alpha (T_1 - T_0)]$$

- Material
 - High electrical conductivity (low electrical resistivity)
- Geometry
 - Increase cross-sectional area
 - Decrease length
 - Parallel conductors
- Application
 - Decrease temperature
 - Decrease current

AC Resistance

$$\delta = \sqrt{(\rho / (\pi f \mu))}$$

- Material
 - Conductors with low permeability and low resistivity
- Geometry
 - Increase circumference/perimeter
 - Use wide flat conductor
 - Parallel smaller conductors
- Application
 - Decrease frequency

Summary: Resistance

- DC resistance at room temperature: $R = \rho l/A$
- Temperature correction: $R = R_0 \cdot [1 + \alpha (T T_0)]$
- AC resistance
 - Skin effect: $\delta = \sqrt{(\rho / (\pi f \mu))}$

- \circ Related to circumference, ρ , and μ of conductor, and frequency
- Effective area for circular conductors: $A_{eff} = \pi (d\delta \delta^2)$, when $\delta \ll r$
- Effective area for rectangular conductors: $A_{eff} = 2\delta(w + t 2\delta)$, when $2\delta \ll w$ and t

Self Inductance: Wire (Round Conductor)

•
$$L_{self} = \frac{\mu}{2\pi} l \left[\ln \left(\frac{l}{r} + \sqrt{1 + \frac{l^2}{r^2}} \right) - \sqrt{1 + \frac{r^2}{l^2}} + \frac{r}{l} + \frac{1}{4} \right]$$

- \circ l = length in meters
- \circ r = radius in meters
- $\mu = \mu_0 \mu_r \approx (4\pi \text{ x } 10^{-7} \text{ H/m})(1) \approx (4\pi \text{ x } 10^{-7} \text{ H/m})$ (for non-ferromagnetic conductors)
- For straight wires (does not consider curvature)

Self Inductance: Wire (Round Conductor)

When $l \gg r$:

•
$$L_{self} = 0.002l \left[\ln \left(\frac{2l}{r} \right) - \frac{3}{4} \right]$$
 (µH) (cm)

- \circ l = length in centimeters
- \circ r = radius in centimeters
- For straight wires (does not consider curvature)

- Rule of thumb for inductance of a wire per unit length:
 - Self inductance ~25 nH/in (~1 nH/mm = 10 nH/cm = 0.01 μ H/cm)

Self Inductance: Rectangular Conductor

 In case of DC, low frequency, or a thin rectangular conductor, Grover gives the following self inductance formula:

•
$$L_{self} = 0.002l \left(\ln \left(\frac{2l}{w+t} \right) + 0.50049 + \frac{w+t}{3l} \right)$$
 (pH) (cm)

- w = width in centimeters
- l = length in centimeters
- *t* = thickness in centimeters

Example: Inductance of Parallel Wire Bonds

- If we have two identical wire bonds in parallel (electrically and physically), would $L_{eq} = L_p/2$?
 - Only if the wires are far apart!
 - If the wires are close together, there will be mutual inductance, M

$$L_{parallel} = \frac{L_{p1}L_{p2} - M^2}{L_{p1} + L_{p2} - 2M}$$

If
$$L_{p1}=L_{p2}=L_{p},$$

$$L_{parallel}=\frac{L_{p}+M}{2}$$

Mutual Inductance

- *M* = mutual inductance
 - Measure of shared field lines per amp of current in one conductor
- Crosstalk
 - Δi in one conductor induces V in the other
- Can increase total L for conductors carrying current in the same direction
- Return path cancellation could reduce total L

$$V_{induced} = M \frac{dI}{dt}$$

Figure 7-24. Origin of Mutual Inductance

Mutual Inductance

•
$$M = 0.002l \left[\ln \left(\frac{l}{s} + \sqrt{1 + \left(\frac{l}{s} \right)^2} \right) - \sqrt{1 + \left(\frac{s}{l} \right)^2} + \frac{s}{l} \right]$$
• $l = \text{length in centimeters}$

- \circ s =conductor spacing in centimeters

• When $s \ll l : M = \frac{\mu l}{2\pi} \left| \ln \left(\frac{2l}{s} \right) - 1 \right|$

Figure 7-24. Origin of Mutual Inductance

Mutual Inductance

•
$$M = 0.002l \left[\ln \left(\frac{l}{s} + \sqrt{1 + \left(\frac{l}{s} \right)^2} \right) - \sqrt{1 + \left(\frac{s}{l} \right)^2} + \frac{s}{l} \right]$$
• $l = \text{length in centimeters}$

- \circ s =conductor spacing in centimeters

•
$$V = L_1 \frac{dI}{dt} - M_{12} \frac{dI}{dt} + IR + L_2 \frac{dI}{dt} - M_{12} \frac{dI}{dt}$$

•
$$V = (L_1 + L_2 - 2M_{12}) \frac{dI}{dt} + IR$$

Example: Inductance of Adjacent Wires

 Find the equivalent inductance of two adjacent wires carrying current in opposite directions with 1-mm diameter, 10-cm length, and spaced 10 mm apart.

 $d = 1 \text{mm} \stackrel{i}{\longleftarrow} \stackrel{i}{\longleftarrow} \frac{1}{l} = 10 \text{cm}$

• For $r \ll l$ (0.05cm $\ll 10$ cm), the self inductance of each wire is:

$$L(\mu H) = 0.002(10 \text{cm}) \left[\ln \frac{(2)(10 \text{cm})}{0.05 \text{cm}} - \frac{3}{4} \right] = 0.02[5.99 - 0.75] = \mathbf{0.105} \ \mu \mathbf{H}$$

• For $s \ll l$ (1cm \ll 10cm), the mutual inductance is:

$$M = 0.002(10 \text{cm}) \left[\ln \left(\frac{2(10 \text{cm})}{(1 \text{cm})} \right) - 1 \right] = \mathbf{0.040} \, \mu \text{H}$$

Example: Inductance of Adjacent Wires

Find the equivalent inductance of two adjacent wires carrying current in opposite directions with 1-mm diameter, 10-cm length, and spaced 10 mm apart.

Total inductance for the return circuit:

$$L_{eq} = L_1 + L_2 - 2M_{12}$$

= 2(0.105 \(\mu\text{H}\)) - 2(0.042 \(\mu\text{H}\))
= 0.126 \(\mu\text{H}\)

If s is very large such that M_{12} is negligible, then $L_{tot} = 2(0.105 \,\mu\text{H})$ $\rightarrow 40\%$ reduction in L_{tot} due to M_{12}

 $l = 10 \, \text{cm}$

Example: Capacitor Mounted to PCB

 L_p = partial inductance M = mutual inductance of parallel components

$$\begin{split} L_{total} &= Lp_{trace1} + Lp_{pad1} + Lp_{cap} + Lp_{pad2} + Lp_{trace2} + Lp_{via2} \\ &+ Lp_{plane} + Lp_{via1} - 2M_{via-via} - 2M_{plane-trace} \end{split}$$

Effective Inductances for Different Structures

Wire above a ground plane

•
$$L_{eff} = \frac{\mu l}{2\pi} \cosh^{-1} \left(\frac{2s}{d}\right)$$
, where $l = \text{length}$, $d = \text{diameter}$, $s = \text{spacing}$

- Package examples: TAB, QFP w/ ground plane
- ∘ Typical inductance range: 1 10 nH
- Assumes $s \ll l$, and $d \ll s$

•
$$L_{eff} = \frac{\mu ls}{w}$$
, where $l = length$, $w = width$, $s = spacing$

- Package examples: PGA, BGA
- Typical inductance range: 0.25 1 nH
- Assumes $s \ll l$

Example: Parallel Planes

A multi-layer ball grid array (BGA) package has copper plane layers used to supply both the V_{dd} and the ground (GND). Find the effective inductance for a pair of planes with dimensions of 1 cm by 1 cm, and a spacing of 6 mils.

- $L_{eff} = \frac{\mu ls}{w}$, where l = w = 1 cm = 0.01 m, s = 6 mils = 1.5e-4 m
- $\mu = \mu_0 \mu_r \approx 4\pi \times 10^{-7} \text{H/m} = 1.26 \text{e-6 H/m}$
- $L_{eff} = (1.26e-6 \text{ H/m})(1.5e-4 \text{ m}) = 0.19 \text{ nH}$

$V = L \, dI/dt$

Summary: Inductance

- Inductive delay: $\tau = L/R$
- Self inductance: L_p
 - \circ Example: L_{p1} , L_{p2} , L_{p3} , L_{p4}
- Mutual inductance: M
 - Example: $-M_{p1-3}$, $-M_{p2-4}$
 - Subtractive: current flowing in opposite directions (this example)
- Loop inductance: L_{total}
- Example: $L_{total} = L_{p1} + L_{p2} + L_{p3} + L_{p4} 2M_{p1-3} 2M_{p2-4}$

$$V = L \, dI/dt$$

Summary: Inductance

35

- Example 2: Additive
 - Two parallel wires with current in the same direction
 - Self inductance: L_{p1} , L_{p2}
 - Mutual inductance: M
 - Positive

• If
$$s << l: M = \frac{\mu l}{2\pi} \left[\ln \left(\frac{2l}{s} \right) - 1 \right]$$

• Total inductance if $L_{p1} = L_{p2}$:

$$\circ L_{parallel} = (L_p + M) / 2$$

Example: Inductive Delay

- Assume that the source and return paths are close enough such there is 2 nH of mutual inductance between them.
- $V_{dd} = 5 \text{ V}, R = 50 \Omega, L_1 = L_2 = 5 \text{ nH},$ M = 2 nH
- $L_{total} = (2)(5 \text{ nH}) (2)(2 \text{ nH}) = 6 \text{ nH}$
- $\tau = L_{total}/R = 6 \text{ nH} / 50 \Omega = 0.1 \text{ ns}$
- \triangleright Subtractive M reduces L_{eff} and τ

dI/dt or ΔI Noise

- Transient currents (through interconnects, leads, traces) cause voltage fluctuations on power supply rails due to parasitic inductances
- This is simultaneous switching noise (SSN) or dI/dt noise or ΔI noise
- Required charge to energize load to supply voltage V_{dd} : $Q = C \cdot V_{dd}$
- Current draw: $\Delta I = C \cdot V_{dd} / \Delta t$
- If there are N gates switching simultaneously, the current draw from the power supply becomes $\Delta I = N \cdot C \cdot V_{dd} / \Delta t$
- $\Delta V = L\left(\frac{dI}{dt}\right) \rightarrow \Delta I = \Delta V \cdot \Delta t / L_{max}$
- Maximum acceptable inductance: $L_{max} = \Delta t^2 \cdot \Delta V / (N \cdot C \cdot V_{dd})$

Example: dI/dt Noise

• A power supply is supplying 5 CMOS chips with 1 pF load each and a switching time of 1 ns. What is the maximum allowable parasitic inductance L_{max} between the power supply and the chips to achieve a variation in the power supply voltage V_{dd} of \leq 1 %?

•
$$L_{max} \leq \Delta t^2 \Delta V / N C V_{dd}$$

•
$$L_{max} \le (1 \text{ ns})^2 (0.01) (V_{dd}) / ((5)(0.001 \text{ nF})V_{dd}) = \mathbf{2 nH}$$

What if the chip is a single power device with load of 1 nF and 10 ns switching, and \leq 10 % V_{dd} variation is acceptable?

• $L_{max} \le (10 \text{ ns})^2 (0.1) (V_{dd}) / ((1 \text{ nF}) V_{dd}) = 10 \text{ nH}$

Decoupling Capacitors

Example: L = 10 pH, 1000 circuits draw 10 A in 0.25 ns.

Find the noise voltage.

•
$$\Delta V = 400 \text{ mV}$$

 $\Delta V = L_{\rm eff} (dI/dt)$

Design C_{pkg} to reduce the noise voltage to 200 mV. $C = \Delta I \Delta t / \Delta V$

•
$$C_{pkg} = 12.5 \text{ nF}$$

If $L_{pkg} = 5$ pH, find the frequency above which C_{pkg} loses effectiveness. $f_{max} = \frac{1}{2\pi \sqrt{2L} - C}$

•
$$f_{max} = 637 \text{ MHz}$$

Example: Capacitive Delay

- $V_{dd} = 5 \text{ V}$; $R_{on} = 50 \Omega$; $C + C_g = 10 \text{ pF}$
- $\tau = RC_{total} = (50 \Omega)(10 \text{ pF}) = 0.5 \text{ ns}$

How long will it take for V_{load} to rise to 50 % of V_{supply} ?

- $V_{load}(t) = V_{dd}[1 e^{-t/\tau}]$
- $-\ln(1-(0.5)(5 \text{ V})/5 \text{ V}) = 0.69$
- $t_{50\%} = 0.69\tau =$ **0.35** ns
- $t_{90\%} = 2.3\tau = 1.15 \text{ ns}$

Capacitance (Overlapping Conductors)

- Q = CV
- Taking derivative:

$$\circ I = dQ/dt$$

$$\circ I = C dV/dt$$

- $C = \varepsilon A/d$
 - ε = permittivity

$$\mathbf{E} = \varepsilon_r \varepsilon_0$$

- $\varepsilon_0 = 8.86 \times 10^{-12} \text{ F/m}$, permittivity of free space
- \circ A = overlapping area
- $\circ d = distance$

Example: Capacitance (Overlapping Conductors)

- Al₂O₃ substrate (e.g., DBC): $\varepsilon_r = 9.4$
- FR4 substrate (e.g., PCB): $\varepsilon_r = 4.4$
- $C = \varepsilon A/d = \varepsilon_0 \varepsilon_r A/d$
 - $\varepsilon_0 = 8.86 \times 10^{-12} \, \text{F/m}$
 - $\circ A = 10 \text{ mm x 4 mm} = 40 \text{ mm}^2$
 - \circ C = (8.86 x 10⁻¹² F/m)(ε_r)(4 x 10⁻⁵ m²) / (0.0005 m)
 - $C_{Al2O3} = 6.7 \text{ pF}$ (Q3D: 7.7 pF)
 - $\circ C_{FR4} = 3.12 \text{ pF}$ (Q3D: 3.7 pF)
- Substrate materials with higher relative permittivity (dielectric constant) have higher parasitic capacitance

Example: Capacitance (Adjacent Conductors)

- Formula for adjacent conductors with equal widths:
- $C' = 0.122 \ t/s + 0.0905 \ (1 + \varepsilon_r)a \ [pF/cm]$
- $a = \log (1 + 2 w/s + 2 \sqrt{w/s} + w^2/200)$
- *s* = distance between two adjacent conductors, mm
- *t* = thickness, mm
- w = conductor width, mm
- $\varepsilon = \text{permittivity}$
- C = C'l
- l = parallel running length, cm

Example: Capacitance (Adjacent Conductors)

- $C' = 0.122 \ t/s + 0.0905 \ (1 + \varepsilon_r)a \ [pF/cm]$
- $a = \log (1 + 2 w/s + 2 \sqrt{w/s} + w^2/200)$
- C = C'l

Find the capacitance between the adjacent traces.

 Al_2O_3 substrate (e.g., DBC): $\varepsilon_r = 9.4$

$$C' = 1.1 \text{ pF/cm}$$

$$C = 2.2 pF$$

(Q3D: 1.3 pF for $t_{Al2O3} = 1 \text{ mm}$)

(Q3D: 2.1 pF for $t_{Al2O3} = 5 \text{ mm}$)

Transit Time of Electrical Signal

- Electrical signals propagate at the speed of light (3 x 10⁸ m/s in air)
- Kirchhoff's Laws neglect the finite velocity of electrical signals, and therefore fail when the time delay or phase shift due to that finite velocity becomes significant
- E.g., in air, there is ~1 ns time delay per 1 ft of travel
 - This is significant if the clock rate of the circuit is 1 GHz
- Transmission line theory accounts for this delay
- Speed of light is slower in dielectric packaging materials than in air

Propagation Delay & Time Delay

The propagation velocity of any electrical signal in a material is

$$v_p = \frac{c}{\sqrt{\varepsilon_r \mu_r}}$$
 [m/s]

where $c=2.998\times 10^8$ m/s (speed of light in a vacuum) and $\frac{1}{\sqrt{\varepsilon_r\mu_r}}$ is the velocity factor; for non-magnetic media, the expression simplifies to $\frac{c}{\sqrt{\varepsilon_r}}$

- The propagation delay is $\frac{\sqrt{\varepsilon_r \mu_r}}{c}$ [s/m]
- The time delay is the propagation delay times the length: $\frac{\sqrt{\varepsilon_r \mu_r}}{c} \times l$ [s]
- Wavelength: $\lambda = c/f$ in air, where f is the frequency in Hertz
- The wavelength λ of a single-frequency signal in a medium with parameters ε_r and μ_r :

$$\lambda = \frac{c}{f\sqrt{\varepsilon_r \mu_r}} \quad [m]$$

Transmission Line Consideration

- The propagation delay for package interconnects may <u>not</u> be negligible if the signal rise times t_r are *fast*
- Transmission line effects should be considered if the time delay of the interconnect is greater than the rise time of the signal
- Another way to think about it: the wavelength λ of the signal should be greater than the length of the interconnect l (the length the signal needs to travel)
- Check for transmission line effects by comparing:

Time delay to rise time t_r or Wavelength λ to length l

Consider Transmission-Line Effects When...

Waveforms are "fast"

or

Interconnects are "long"

$$t_r \le (33.3 \text{ ps/cm}) \sqrt{\varepsilon_r} \times 2l$$
 $l > \frac{0.5 t_r}{(33.3 \text{ ps/cm}) \sqrt{\varepsilon_r}}$

where t_r = signal rise time (ps); l = interconnect length (cm)

For an interconnect to behave as a transmission line, t_r has to be **less** than the round-trip (21) time delay of the interconnect.

Example: Transmission Line Check

For 500 MHz clock with a rise time of 200 ps and 2 cm interconnect in $\varepsilon_r = 4$, should the transmission line effects be considered?

- Time approach: $t_r \leq (33.3 \text{ ps/cm}) \sqrt{\varepsilon_r} \times 2l$
 - $t_r = 200 \text{ ps}$
 - $t_r \le 33.33\sqrt{4} \ (2)(2 \ \text{cm}) = 266 \ \text{ps} \ \rightarrow \ t_r = 200 \ \text{ps} < 266 \ \text{ps}$
- Length approach: $l > \frac{0.5 t_r}{(33.3 \ ps/cm) \sqrt{\varepsilon_r}}$
 - $0.5(200 \text{ ps}) / (33.33)\sqrt{4} = 1.5 \text{ cm} \rightarrow l = 2 \text{ cm} > 1.5 \text{ cm}$
- > Yes, transmission line effects should be considered!

Transmission Line Equivalent Circuit

Parallel Conducting Strips

Coaxial Cable

- We can draw the equivalent circuit for a short section Δz of the transmission line, where $\Delta z << \lambda$
- The equivalent circuit for section Δz will provide the time delay and phase shift
- Using circuit theory, we can assume that the Δz equivalent circuits provide a direct connection from one end to the other
- This equivalent circuit can be treated using KVL and KCL

Transmission Line Equivalent Circuit

Example

(Ideal) Parallel Conducting Strips

The total interconnect length is 1 cm, and Δz is 0.1 µm such that it satisfies $\Delta z << \lambda$. Find the number of Δz segments.

• $l/\Delta z = 1 \text{ cm}/0.1 \mu\text{m} = 100,000 \text{ segments}$

Microstrip Transmission Line

Microstrip Structure

$\begin{array}{c|c} \textbf{air} & \textbf{a} \\ \hline \varepsilon_0 & \textbf{b} \\ \hline \end{array}$

Transmission Line Formulas

$$\varepsilon_{\text{eff}} = \varepsilon_0 \left[\frac{\varepsilon_r + 1}{2} + \frac{\varepsilon_r - 1}{2} \frac{1}{\sqrt{1 + 12b/a}} \right]$$

$$v_p = \frac{1}{\sqrt{\mu \varepsilon_{\text{eff}}}}$$

$$Z_0 = \frac{1}{2\pi} \sqrt{\frac{\mu}{\varepsilon_{\text{eff}}}} \ln \left(\frac{8b}{a} + \frac{a}{4b} \right) \qquad a < b$$

$$Z_0 = \sqrt{\frac{\mu}{\varepsilon_{\text{eff}}}} \frac{1}{\frac{a}{b} + 1.393 + 0.667 \ln \left(\frac{a}{b} + 1.444 \right)} \qquad a > b$$

Effective permittivity, ε_{eff}

 $\varepsilon = \varepsilon_0 \varepsilon_r$, where ε_r = relative dielectric constant and ε_0 = 8.854 × 10⁻¹⁴ F/cm $\mu = \mu_0 \, \mu_r$, where μ_r = relative permeability and μ_0 = 4 π × 10⁻⁹ H/cm Propagation velocity, v_p in cm/s

Characteristic impedance, Z_0 in Ω a and b in cm

Embedded Microstrip Transmission Line

Embedded Microstrip Structure

Transmission Line Formulas

$$v_p = \frac{1}{\sqrt{\mu \varepsilon}}$$

$$Z_0 = \frac{60}{\sqrt{\varepsilon_r + 1.41}} \ln \left(\frac{5.98h}{0.8w + t} \right)$$

 $\varepsilon = \varepsilon_0 \varepsilon_r$, where ε_r = relative dielectric constant and ε_0 = 8.854 × 10⁻¹⁴ F/cm $\mu = \mu_0 \, \mu_r$, where μ_r = relative permeability and μ_0 = 4 π × 10⁻⁹ H/cm Propagation velocity, v_p in cm/s Characteristic impedance, Z_0 in Ω h, t, and w in cm

Stripline Transmission Line

Stripline Structure

Transmission Line Formulas

$$v_p = \frac{1}{\sqrt{\mu \varepsilon}}$$

$$Z_0 = \frac{30\pi}{\sqrt{\varepsilon_r}} \frac{b}{a_{\text{eff}} + 0.441b}$$

$$a_{\text{eff}} = \begin{cases} a & a > 0.35b \\ a - \left(0.35 - \frac{a}{b}\right)^2 b & a < 0.35b \end{cases}$$

Effective dimension, a_{eff} in cm

 $\varepsilon = \varepsilon_0 \varepsilon_r$, where $\varepsilon_r =$ relative dielectric constant and $\varepsilon_0 = 8.854 \times 10^{-14}$ F/cm

 $\mu = \mu_0 \mu_r$, where $\mu_r = \text{relative permeability and } \mu_0 = 4\pi \times 10^{-9} \text{ H/cm}$

Propagation velocity, v_p in cm/s

Characteristic impedance, Z_0 in Ω

a and b in cm

The stripline is centered between the two ground planes

Reflection

- When a signal traveling in a transmission line encounters a <u>change in impedance</u>, a <u>reflected signal</u> is generated
- Any mismatch in impedance (e.g., from a termination) will generate a reflection
- For RF or microwave designs, reflections and standing waves are minimized by terminating the line with an impedance equal to the line wave impedance

Reflection

- When a signal traveling in a transmission line encounters a change in impedance, a reflected signal is generated
- ρ = reflection coefficient
- When $R_s = Z_0$, $\rho_s = 0$
- When $R_o = Z_0$, $\rho_o = 0$

Reducing Transmission Line Effects

- Slow down rise times such that $t_r > (33.3 \text{ ps/cm}) \sqrt{\varepsilon_r} \times 2l$
 - Minimizes impact of the line delay on the circuit performance
- Use materials with low dielectric constant ε_r
 - \circ Increases propagation velocity/reduces delay $v_p = 1/\sqrt{LC}$
- Reduce length of the line such that $l < 0.5 t_r/(33.3 \text{ ps/cm}) \sqrt{\varepsilon_r}$
 - Minimizes impact of the line delay on the circuit performance
 - Reduces transmission line losses
- Match impedances
 - Reduces reflection
 - Vary parasitic L and C by changing the line geometry $Z_0 = \sqrt{L/C}$

Modes of Thermal Transport

$$T = \frac{kA_c \Delta T}{L}$$

Conduction

- Flow of heat from a region of higher temperature to a region of lower temperature within a solid, stationary liquid, or static gaseous medium
- Direct energy exchange among molecules

Convection

 $q = hA_S \Delta T$

- Transfer of heat from a solid to a *fluid in motion*
- Mechanisms:
 - Exchange among nearly-stationary molecules adjacent to the solid surface (as in conduction)
 - Transport of heat away from the solid surfaces by the bulk motion of the fluid

Radiation

$$Q = \varepsilon \sigma F_{12} A_s \left(T_1^4 - T_2^4 \right)$$

- Heat transfer is a result of the emission and absorption of the energy contained in the electromagnetic waves or photons
- Can occur across a vacuum or any medium that is transparent to infrared wavelengths
- Not linearly dependent on the temperature difference

Thermal Resistance R_{th}

- Fourier's Law is analogous to Ohm's Law:
 - Heat $q \rightarrow \text{current } I$
 - Temperature drop $\Delta T \rightarrow \text{voltage drop } \Delta V$
 - Thermal resistance $R_{th} \rightarrow$ electrical resistance R

Thermal:

$$\Delta T = qR_{th} \to R_{th} = \frac{\Delta T}{q} \begin{bmatrix} \mathbf{K} \\ \mathbf{W} \end{bmatrix}$$

Electrical:

$$\Delta V = IR \to R = \frac{\Delta V}{I} \quad [\Omega]$$

Thermal and Electrical Conduction

Thermal Conduction

Electrical Conduction

$$q = \frac{kA_c \Delta T}{L} \quad [W]$$

$$I = \frac{\sigma A_c \Delta V}{L} \quad [A]$$

k is a material property

 σ is a material property

$$R_{th} = \frac{L}{kA_c} \quad [\text{K/W}]$$

$$R = \frac{L}{\sigma A_c} \quad [\Omega]$$

Depends on:

Material (k)Length (L)Cross-sectional Area (A_c)

Depends on:

Material (σ) Length (L)Cross-sectional Area (A_c)

Series: algebraic sum Parallel: sum of inverses Series: algebraic sum Parallel: sum of inverses

Example: Heat Conduction

Calculate the temperature difference across a 1-mm-thick layer of thermal grease with k = 1 W/(m-K). Assume a 1 W heat source spread *uniformly* over a 1 cm² area.

- q = 1 W
- $L = t_{TG} = 1 \text{ mm} = 0.001 \text{ m}$
- $k_{TG} = 1 \text{ W/(m-K)}$
- $A_c = 1 \text{ cm}^2 = 1 \text{ x } 10^{-4} \text{ m}^2$

•
$$T_1 - T_2 = \frac{qL}{kA_c} = \frac{(1 \text{ W})(0.001\text{m})}{(1\frac{\text{W}}{\text{m}\cdot\text{K}})(1\times10^{-4}\text{m}^2)} = 10^{\circ}\text{C}$$

> T_2 is 10°C lower than T_1 due to the high R_{th} of the thermal grease

$$T_1 - T_2 = \frac{qL}{kA_C}$$

Package Thermal Resistance

- θ_{ia} can be separated into two parts:
 - \circ Junction-to-case, θ_{jc}
 - \circ Case-to-ambient, θ_{ca}

$$\theta_{ja} = \theta_{jc} + \theta_{ca}$$

- Junction-to-case, θ_{jc}
 - Depends on the internal construction of the package
 - \circ Depends on length, cross-sectional area, and k
- Case-to-ambient, θ_{ca}
 - Depends on the mounting and cooling techniques
 - Depends on wetted surface area and h

Thermal Resistances in Series and Parallel

$$R_{th,1-2} = R_1 + R_2 + R_3 + R_4$$

$$R_{th,1-2} = \left(\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}\right)^{-1}$$

Lateral Heat Spreading

Heat Spreading

- Heatsink thermal resistance is high
- Low h (e.g., natural convection)
- Heatsink has low k

- Heatsink thermal resistance is low
- *High h* (e.g., forced liquid cooling)
- Heatsink has high k

Heat Spreading Angle α

- Heatsink thermal resistance is high
- Low h (e.g., natural convection)
- Heatsink has low k

$$R_{th,cond} = \frac{L}{kA_c}$$

Heat Spreading Approximation

 A 45° spreading angle is a common approximation/ simplification for heat spreading in materials with high thermal conductivity

 For a 45° spreading angle, the width at the base of the heat spreading is

$$w_{spread} = 2L + w$$

Heat Spreading Approximation

 If the heat source is square, then the base area of the heat spreading is

$$A_{spread} = w_{spread} \times w_{spread}$$

$$= (2L + w)(2L + w)$$

Heat Spreading Approximation

• The effective area A_{eff} for the heat flow through this layer can be approximated by averaging the heat source area A_{die} and the base area A_{spread} :

$$A_{eff} = (A_{spread} + A_{die}) / 2$$

$$= [(2L + w)(2L + w) + (w \times w)] / 2$$

Lateral Heat Spreading

➤ Choose base plate width & thickness such that the base plate width≈ heat spreading width at the base

Example: Heat Spreading

Find the thermal resistance of a copper base plate with dimensions of 15 \times 15 \times 4 mm³. The dimensions of the heat-generating component (die) on top of the base plate are 5 \times 5 \times 1 mm³. Assume a heat spreading angle of 45°.

- $w_{die} = 5 \text{ mm}$
- $A_{die} = 5 \text{ mm x } 5 \text{ mm} = 25 \text{ mm}^2$
- $L_{BP} = 4 \text{ mm}$
- $w_{BP} = 15 \text{ mm}$

Check that $w_{spread} \leq w_{BP}$:

• $w_{spread} = (2L + w_{die}) = 2(4mm) + 5mm = 11 mm < 15 mm$

Example: Heat Spreading

Find the thermal resistance of a copper base plate with dimensions of 15 \times 15 \times 4 mm³. The dimensions of the heat-generating component (die) on top of the base plate are 5 \times 5 \times 1 mm³. Assume a heat spreading angle of 45°.

- $w_{die} = 5 \text{ mm}$
- $A_{die} = 5 \text{ mm x } 5 \text{ mm} = 25 \text{ mm}^2$
- $L = L_{BP} = 4 \text{ mm}$
- $A_{spread} = (2L_{BP} + w_{die})(2L_{BP} + w_{die})$ = (2(4mm) + 5mm)(2(4mm) + 5mm)= 169 mm^2

Example: Heat Spreading

Find the thermal resistance of a copper base plate with dimensions of 15 x 15 x 4 mm³. The dimensions of the heat-generating component (die) on top of the base plate are 5 x 5 x 1 mm³. Assume a heat spreading angle of 45°.

•
$$A_{eff} = (A_{spread} + A_{die}) / 2$$

= $(169 \text{ mm}^2 + 25 \text{ mm}^2) / 2$
= $97 \text{ mm}^2 = 0.000097 \text{ m}^2$

• $R_{th,BP} = L_{BP} / (k_{BP} A_{eff})$ = 0.004 m / [(390 W/(mK))(9.7e-5 m²)]

= 0.106 K/W

Example: Smaller Base Plate Area

- Silicon die: 5 x 5 x 1 mm
- Copper baseplate: 5 x 5 x 4 mm
- Find the thermal resistance of the base plate.
- $A_{spread} = A_{BP} = A_{die}$
- $\bullet R_{th,BP} = L_{BP} / (k_{BP} A_{BP})$
 - $= 0.004 \text{ m} / [(390 \text{ W/(mK)})(2.5e-5 \text{ m}^2)]$
 - = 0.410 K/W
- $ightharpoonup R_{th,BP}$ increases by $\mathbf{4x}$ because there is no room for heat spreading (A_{BP} is smaller)

Example: Thicker Base Plate Area

- Silicon die: 5 x 5 x 1 mm
- Copper baseplate: 15 x 15 x 6 mm

Check that $w_{spread} \leq w_{BP}$:

- $w_{spread} = (2L + w_{die}) = 2(6mm) + 5mm = 17 mm > 15 mm!$
- The bottom of the base plate is not helping with the heat spreading

Base Plate/Heat Spreader

$$R_{th,conv} = \frac{1}{hA_s}$$

For the same h,

$$R_{th,convA_1} > R_{th,convA_2}$$

*note: if h is high, then Z heat flow > X, Y heat flow, so heat spreading is low and the baseplate becomes less effective.

Heat Spreading in MCM = Thermal Coupling: Common Base Plate

Impact of Thermal Coupling

- Large dies may have greater ΔT across the area, and therefore worse thermal spreading than smaller dies
- Several smaller dies with the same overall area have a lower R_{th}
- If the spacing between chips is small, the chips heat up one another (thermal coupling)
- Greater spacing between chips further lowers R_{th}

Thermal Vias

- Vias can reduce the vertical R_{th}
- The equivalent vertical (Z-direction) thermal conductivity is:

$$k_{zz} = k_m a_m + k_i (1 - a_m)$$

where

- $k_m = k$ of metal
- a_m = fraction of the *cross-sectional* area occupied by the metal vias
- $k_i = k$ of the insulator

Example: Thermal Vias

PCB has a through-hole via density of 25 per cm² of board area. The via hole diameter is 0.43 mm, and its inner surface is plated with 15- μ m-thick copper. Calculate the equivalent thermal conductivity value k_{zz} for this PCB. Use $k_{Cy} = 390$ W/mK and $k_i = 0.2$ W/mK.

Example: Thermal Vias

Equivalent thermal conductivity in Z direction:

$$k_{zz} = k_m a_m + k_i (1 - a_m)$$

- Need a_m (fraction of the cross-sectional area occupied by the via metal)
- To find a_m , need the effective conducting area for each via
 - Via hole diameter = 0.43 mm
 - Via copper plating = 0.015 mm
 - Effective via conducting area = Total via area non-conductive via area

$$A_{cond} = \pi \left(\frac{0.43 \text{mm}}{2}\right)^2 - \pi (0.43 \text{mm}/2 - 0.015 \text{mm})^2 = 0.01956 \text{mm}^2$$

$$a_m = 25 \frac{\text{vias}}{\text{cm}^2} \times 0.0001956 \text{cm}^2 = 0.004889$$

•
$$k_{zz} = 390 \frac{W}{m \cdot K} (0.004889) + 0.2 \frac{W}{m \cdot K} (1 - 0.004889) = 2.11 \frac{W}{m \cdot K}$$

Metal Planes

• Metal planes can reduce the lateral R_{th} by increasing the effective thermal conductivity in the XY plane:

$$k_{xy} = k_m t_m + k_i (1 - t_m)$$

where

- $k_m = k$ of metal
- t_m = fraction of the *thickness* occupied by the metal planes
- $k_i = k$ of the insulator

Example: Metal Planes

A PCB has two power layers and two ground layers, each with a 50-µmthick copper plane. The power and ground layers are separated by 200µm-thick dielectric (insulator) layers. Calculate the equivalent thermal conductivity value k_{xy} for this PCB. Use $k_{Cu} = 390$ W/mK and $k_i = 0.2$ W/mK

Example: Metal Planes

Equivalent thermal conductivity in XY direction:

$$k_{xy} = k_m t_m + k_i (1 - t_m)$$

- Need t_m (fraction of the thickness area occupied by the metal planes)
 - Total metal thickness = 50 μm/layer x 4 layers = 200 μm
 - Total insulator thickness = 200 μm/layer x 5 layers = 1000 μm

$$t_m = \frac{200 \mu m}{1200 \mu m} = 0.167$$

•
$$k_{xy} = 390 \frac{W}{m \cdot K} (0.167) + 0.2 \frac{W}{m \cdot K} (1 - 0.167) = 65.17 \frac{W}{m \cdot K}$$

 Note: if there are unfilled vias cutting through the plane, the XY thermal conductivity will be reduced

Example: Metal Planes

• If L = w for the PCB, the equivalent thermal resistance in XY direction:

$$R_{th,xy} = \frac{L}{k_{xy}A} = \frac{1}{\left(65.17 \frac{W}{\text{m} \cdot \text{K}}\right)(0.0012\text{m})} = 12.8 \text{ K/W}$$

- Alternatively, could find the thermal resistance of the copper layer in XY and the insulator layer in XY and then use the parallel rule:
- $R_{th,xy,Cu} = \frac{L}{k_{Cu}A} = \frac{1}{\left(390\frac{W}{m\cdot K}\right)(0.00005m)} = 51.2\frac{K}{W} \text{ per layer} \rightarrow \div 4 = 12.8\frac{K}{W}$
- $R_{th,xy,i} = \frac{L}{k_{xy}A} = \frac{1}{\left(0.2 \frac{W}{m \cdot K}\right)(0.0002m)} = 25000 \frac{K}{W} \text{ per layer} \rightarrow \div 5 = 5000 \frac{K}{W}$
- $R_{th,xy,Cu} \parallel R_{th,xy,i} = \left(\frac{1}{12.8\text{K/W}} + \frac{1}{5000\text{K/W}}\right)^{-1} = 12.8 \text{ K/W}$

Metal Planes

- Metal planes spread heat laterally, which reduces local temperature rises
- FEA simulation of 7.5 mm² chip dissipating 1 W on different PCBs
 - Adding a plane of 1 oz copper reduces the maximum ΔT by 86 %
 - 1 oz \rightarrow 2 oz reduces ΔT_{max} by 35 %
 - 2 oz \rightarrow 4 oz reduces ΔT_{max} by 35 %

4 oz Copper:
$$\Delta T_{max} = 9$$
 °C

Convection

- Transfer of heat between the surface of a body and a fluid in motion
- Newton's Law of Cooling:

$$q = hA_s(T_s - T_f)$$

- q = heat (W)
- $h = \text{convective heat transfer coefficient (W/(m^2K))}$
- A_s = wetted surface area (m²)
- T_s = surface temperature (°C)
- T_f = bulk temperature of fluid (°C)
- Rearranging the above equation:

$$\frac{1}{hA_s} = \frac{\left(T_s - T_f\right)}{q} \rightarrow R_{th,conv} = \frac{1}{hA_s}$$

Conduction & Convection Thermal Resistances

$$q = \frac{kA_c(T_h - T_c)}{L} \qquad R_{th,cond} = \frac{L}{kA_c}$$

q = heat(W)

k = thermal conductivity (W/(m·K))

 $A_c = \text{cross-sectional area (m}^2\text{)}$

L = length q needs to travel (m)

 $T_h = \text{hot temperature (°C)}$

 $T_c = \text{cold temperature (°C)}$

$$q = hA_s(T_s - T_f)$$
 $R_{th,conv} = \frac{1}{hA_s}$

 $h = \text{heat transfer coefficient (W/(m}^2\text{K)})$

 A_s = wetted surface area (m²)

 $T_s = \text{surface temperature (°C)}$

 T_f = bulk temperature of fluid (°C)

Convection Heat Transfer Coefficient h

$$q = hA_s(T_s - T_f)$$

- h depends on the properties of the fluid, the velocity of the fluid, and the surface geometry
- h can be determined empirically or analytically

Cooling Method	h (W/(m²K))
Free (natural) convection	5 – 25
Forced convection, air	25 – 250
Forced convection, water	100 — 10,000
Boiling water	1,000 - 50,000
Condensing steam	5,000 - 100,000

Types of Convection

- Free (or natural)
 - Occurs due to buoyancy effects: hotter fluid adjacent to a hot surface rises, leading to the transfer of heat from the hot surface

Forced

- Occurs when heat is transported from a hot surface by a fluid stream moved by an external stimulant (e.g., fan, pump)
- Mixed (combination of free and forced)
 - Occurs when the forced fluid velocity is low such that heat transfer due to free and forced convection are of similar magnitudes

Example: Convection

Calculate the average temperature of a 20 cm x 20 cm PWB dissipating 10 W cooled by natural convection in air at 35 °C from both sides.

- q = 10 W
- $h = 5 \text{ W/m}^2 \text{K}$
- $A_S = 20 \text{ cm} \times 20 \text{ cm} = 0.04 \text{ m}^2 \text{ (per side)}$

•
$$R_{th,conv,total} = \left(\frac{1}{hA_s}\right) || \left(\frac{1}{hA_s}\right) = \frac{1}{2hA_s}$$

- $T_f = 35 \, ^{\circ}\text{C}$
- $T_S = \left(\frac{q}{2hA_S}\right) + T_f = \frac{(10 \text{ W})}{2\left(5\frac{\text{W}}{\text{m}^2\text{K}}\right)(0.04 \text{ m}^2)} + 35^{\circ}\text{C} = 60^{\circ}\text{C}$

March 18, 2025

Example: Convection

Estimate the power dissipation from the same PWB to maintain the same average temperature if it were cooled using air in two-sided forced convection, flowing at a sufficiently high velocity (4–5 m/s) across the surface of the PWB to yield an h of 25 W/m²K.

- $T_{s} = 60 \, ^{\circ}\text{C}$
- $T_f = 35 \, ^{\circ}\text{C}$
- $h = 25 W/m^2 K$
- $A_s = (20 \text{ cm x } 20 \text{ cm}) = 0.04 \text{ m}^2 \text{ (per side)}$
- q = ?
- $q = 2h(A_s)(T_s T_f) = 2\left(25\frac{W}{m^2K}\right)(0.04 \text{ m}^2)(60^{\circ}\text{C} 35^{\circ}\text{C}) = 50 \text{ W}$
 - > 5x higher power dissipation with forced convection

Example: Package Thermal Resistance

Find the junction temperature, T_j , of the die if it dissipates 1 W of heat and has the below specifications.

- $T_a = 25 \, ^{\circ}\text{C}$
- $A_c = 10 \times 10 \text{ mm}^2$ (for all components)
- Solder die attach: $k_1 = 50 \text{ W/(m-K)}$, $L_1 = 0.1 \text{ mm}$
- Cu lead frame: $k_2 = 390 \text{ W/(m-K)}$, $L_2 = 1 \text{ mm}$
- EMC: $k_3 = 0.23$ W/(m-K), $L_3 = 1$ mm
- Forced convection (bottom): $h = 200 \text{ W/m}^2\text{K}$
- Assume other sides are thermally insulated, that the die is at a uniform temperature, and that the heat flow is uniformly distributed in each layer.

Example: Package Thermal Resistance

$$R_{th,cond} = rac{E}{kA_c}$$
 $R_{th,conv} = rac{1}{kA_c}$

- $T_j T_a = qR_{th,j-a}$
- $R_{th,j-a} = R_1 + R_2 + R_3 + R_4$
- $R_1 = \frac{L_1}{k_1 A} = \frac{100 \times 10^{-6} \text{m}}{\left(50 \frac{\text{W}}{\text{mK}}\right) (1 \times 10^{-4} \text{m}^2)} = 0.02 \text{ K/W}$
- $R_2 = \frac{L_2}{k_2 A} = \frac{1 \times 10^{-3} \text{m}}{(390 \frac{\text{W}}{\text{mK}})(1 \times 10^{-4} \text{m}^2)} = 0.03 \text{ K/W}$
- $R_3 = \frac{L_3}{k_3 A} = \frac{1 \times 10^{-3} \text{ m}}{\left(0.23 \frac{\text{W}}{\text{mK}}\right) (1 \times 10^{-4} \text{m}^2)} = 43 \text{ K/W}$
- $R_4 = \frac{1}{hA} = \frac{1}{(200 \frac{W}{m^2 K})(1 \times 10^{-4} m^2)} = 50 \text{ K/W}$

