Stability and oscillations of disks in the Galactic Center

Lucas Pouw, Tim van der Vuurst, Yannick Badoux

A binary system in the S cluster close to the supermassive black hole Sagittarius A*

Florian Peißker, Michal Zajaček, Lucas Labadie, Emma Bordier, Andreas Eckart, Maria Melamed & Vladimír Karas

A binary system in the S cluster close to the supermassive black hole Sagittarius A*

Florian Peißker [™], Michal Zajaček, Lucas Labadie, Emma Bordier, Andreas Eckart, Maria Melamed & Vladimír Karas

A binary system in the S cluster close to the supermassive black hole Sagittarius A*

Florian Peißker , Michal Zajaček, Lucas Labadie, Emma Bordier, Andreas Eckart, Maria Melamed & Vladimír Karas

A binary system in the S cluster close to the supermassive black hole Sagittarius A*

Florian Peißker , Michal Zajaček, Lucas Labadie, Emma Bordier, Andreas Eckart, Maria Melamed & Vladimír Karas

Circumprimary? Circumbinary?

Binary system (D9) + perturber (Sgr A*) = Oscillations

Special moment!

- No merger
- No full evaporation
- Survived the GC
- Survived the Kozai oscillations
- Survived Sgr A*

How stable is this system?

Implementation

Gravity N-body integrator: Huayno (Jänes et al., 2014)

Hydrodynamics code: Fi (Hernquist and Katz, 1989; Gerritsen and Icke, 1997;
 Pelupessy et al., 2004)

Bridge: AMUSE's classical 2nd-order bridge integrator

Initial conditions

 Values in the table taken from Peißker et al. (2024) and GRAVITY
 Collaboration et al. (2023)

Missing: inner and outer radii of the disk

Variable	Value
$M_{\mathrm{SgrA}*}$	$4.30 \cdot 10^6 M_{\odot}$
$M_{ m D9a}$	$2.80M_{\odot}$
$M_{ m D9b}$	$0.73M_{\odot}$
$M_{ m disk}$	$1.6 \cdot 10^{-6} M_{\odot}$
$a_{ m out}$	$9.1 \cdot 10^3 \text{ AU}$
$e_{ m out}$	0.32
$a_{ m in}$	$1.59~\mathrm{AU}$
$e_{ m in}$	0.45
$i_{f mut}$	102.55°
$\omega_{ ext{in}}$	311.75°

Disk radii

• Inner radius: 4.5 AU, from Mardling & Aarseth (2001):

$$a_{\rm out} > 2.8 \cdot \frac{a_{\rm in}}{1 - e_{\rm out}} \cdot \left(1 - 0.3 \frac{i_{\rm mut}}{180^{\circ}}\right) \cdot \left[\left(1 + \frac{m_3}{m_{\rm bin}}\right) \cdot \frac{1 + e_{\rm out}}{\sqrt{1 - e_{\rm out}}}\right]^{2/5}$$

Outer radius: 13.4 AU, which is ⅓ of the Hill Radius:

$$R_{\rm H} = a(1 - e) \left(\frac{m_{\rm bin}}{m_{\rm bin} + M_{\rm SMBH}}\right)^{1/3}$$

Particle loss in the disk

Particles lost both at the inner and outer edge of the disk

Idea: iteratively scale the disk based on the inner and outer particle loss (if so desired)

Stopping conditions: at most 250,000 years or when half the disk particles lost

Conclusions

• In the absence of the S-star cluster, there is a stable configuration for a circumbinary disk close to Sgr. A*.

 The Kozai oscillations of the disk trace those of the binary and are absent if there is no binary.

The binary is necessary in order to keep a flat disk.

Huayno vs. Hermite

Validation: Energy Error

- Gravity energy error
- Disk mass low, negligible

Validation: Convergence tests

- Two disk sizes
 - MA criterion R_□/3
 - Stable disk

