A Topography of Climate Change Research

Max Callaghan^{1,2}

¹Mercator Research Institute on Global Commons and Climate Change, Torgauer Straße, 10829 Berlin, Germany

²School of Earth and Environment, University of Leeds, Leeds LS2 9JT, United Kingdom

Draft current May 20, 2019

- The massive expansion of scientific literature on climate change challenges the Inter-
- 2 governmental Panel on Climate Change (IPCC)'s ability to assess the science according
- to its objectives. Moreover, the number and variety of papers hinders researchers of
- 4 the science-policy interface from making objective judgements about those IPCC as-
- sessments. In this paper, we present a novel application of a machine-reading approach
- 6 to model the topical content of papers on climate change. This dynamic topic model
- provides the basis for a topography of climate change literature. The thematic devel-
- 8 opment of the field is outlined and used to inform an analysis of the topics which are
- better and less well covered by IPCC reports.
- We know that the scientific literature on climate change is growing rapidly [1], and that this growth
- poses problems for the IPCC, whose task it is to provide a comprehensive and transparent summary
- 12 of it [2]. Despite this, we know little about thematic trends within the literature, or how the IPCC
- 3 performs in reflecting this growing body of knowledge on climate change. Understanding these
- $_{14}$ trends is a crucial task if we are to assess and improve comprehensiveness in global environmental
- 15 assessments.
- Table 1 depicts the scale of the challenge to the IPCC. In the years since the publication of AR5,
- as much literature has been published as in the 30 years previously. Moreover, not only are more
- articles being published, but the vocabulary of climate knowledge has expanded. While the 8,539
- documents published in AR2 contained 12,480 unique words, the 201,606 documents published in
- AR6 contain a vocabulary of 94,746 unique words.

	AR1	AR2	AR3	AR4	AR5	AR6
Years	1986-1989	1990-1994	1995-2000	2001-2006	2007-2013	2014-
Documents	1,167	8,539	21,716	38,750	134,413	201,606
Words	2000	12480	23346	34637	71867	94746
New words	change (560)	oil (287)	downscaling (217)	sres (234)	biochar (1791)	mmms (313)
	climate (428)	deltac (283)	degreesc (187)	petm (95)	redd (1113)	cop21 (234)
	co2 (318)	whole (256)	ncep (130)	amf (88)	cmip5 (679)	c3n4 (214)
	climatic (289)	$\tan (254)$	fco (107)	sf5cf3 (86)	cmip3 (587)	sdg (187)
	model (288)	landscape (249)	pfc (98)	clc (81)	mofs (299)	zika (182)
	atmospheric	alternative	otcs (98)	embankment	sdm (297)	ndcs (168)
	(281)	(243)		(81)		
	effect (280)	availability (242)	dtr (95)	cwd (79)	mof (275)	indc (164)
	global (224)	life (239)	nee (89)	etm (75)	biochars (252)	indes (134)

Table 1: Growth of Literature on Climate Change. A glossary of acronyms is provided in SI

Such analysis provides a limited insight into the evolution of the literature since 1980s. We use

topic modelling to produce a topographic map.

expand

Social Sciences in IPCC citations

- It was argued after the fifth assessment report that the IPCC needs to do more to incorporate knowledge from the social sciences [3], and a scientometric study of the the third assessment report claimed the IPCC gave a greater *emphasis* to natural sciences and, within the social sciences, to
- economics. The study, however, operationalised disciplinary emphasis as simply the number of
- $_{28}$ citations from each field. Here we look at representativeness, that is, the share of IPCC citations in
- 29 each field divided by the share of all climate related documents in that field.
- Looked at this way, we see that the social sciences were indeed under-represented in earlier assessment reports, but by the fifth assessment report were over-represented. Although economics was previously over-represented among social sciences, while others were under-represented, more subdisciplines of the social sciences are now over-represented.

Figure 1: A map of the literature on climate change. Document positions are obtained by reducing the topic scores to two dimensions via t-SNE Documents are coloured by web of science discipline category. Topic labels are placed in the center of each of the large clusters of documents associated with each topic.

Figure 2: The representation within the IPCC of each discipline over time

References

- [1] Michael Grieneisen and Minghua Zhang. The Current Status of Climate Change Research.

 Nature Climate Change, 1:72–73, 2011.
- [2] Jan C. Minx, Max Callaghan, William F. Lamb, Jennifer Garard, and Ottmar Edenhofer. Learning about climate change solutions in the IPCC and beyond. *Environmental Science & Policy*, 2017.
- [3] David G. Victor. Embed the social sciences in climate policy David Victor. *Nature*, 520:7–9, 2015.