

Fakultät Mathematik Institut für Stochastik, Professur für Angewandte Stochastik

STOCHASTIK

Prof. Dr. Anita Behme

Sommersemester 2019

Autor : Eric Kunze

E-Mail : eric.kunze@mailbox.tu-dresden.de

Inhaltsverzeichnis

0	Einleitung	2
1	Wahrscheinlichkeitsräume	3
	1.1 Grundbegriffe der Wahrscheinlichkeitstheorie	3

— Kapitel 0 — EINLEITUNG

Literatur

Georgii : Stochastik (5. Auflage)Schilling : Wahrscheinlichkeit

■ Bauer: Wahrscheinlichkeitstheorie (5. Auflage)

 \blacksquare Krengel : Einführung in die W-Theorie und Statistik

Was ist Stochastik?

Altgriechisch SStochastikos" $(\sigma \tau \chi \alpha \tau \iota \kappa \zeta) \sim \beta$ charfsinnig im Vermuten"

Fragestellungen stammen insbesondere aus dem Glücksspiel, heute vielmehr auch aus der Versicherungsund Finanzmathematik - überall da, wo Zufall / Risiko / Chance auftaucht.

Was ist mathematische Stochastik?

- Beschreibt zufällige Phänomene in einer exakten Sprache.

 Bsp.: "Beim Würfeln erscheint jedes sechste Mal (im Schnitt) die Augenzahl 6" Gesetz der großen Zahlen
- lässt sich in zwei Teilgebiete unterteilen: Wahrscheinlichkeitstheorie & Statistik Die W-Theorie beschreibt und untersucht konkret gegebene Zufallssituationen. Dagegen zieht die Statistik Schlussfolgerungen aus Beobachtungen. Dabei benötigt sie die Modelle der W-Theorie - umgekehrt benötigt auch die W-Theorie die Statistik zur Bestätigung der Modelle.
- In diesem Semester konzentrieren wir uns auf die Wahrscheinlichkeitstheorie.

Kapitel 1

WAHRSCHEINLICHKEITSRÄUME

1.1 Grundbegriffe der Wahrscheinlichkeitstheorie

Ergebnisraum

Welche möglichen Ausgänge eines zufälligen Geschehens interessieren uns?

■ Beispiel

Würfeln: Augenzahl, aber nicht Lage, Fallhöhe, usw.

Definition 1.1.1 (Ergebnisraum)

Die Menge der relevanten Ergebnisse eines Zufallgeschehens nennen wir **Ergebnisraum** und bezeichnen diesen mit Ω .

■ Beispiel

- Würfeln: $\Omega = \{1, 2, \dots, 6\}$
- Wartezeiten: $\Omega = \mathbb{R}_+ = [0, \infty)$ (also überabzählbar)

Ereignisse

Oft interessiert man sich gar nicht für das konkrete Ergebnis des Zufallsexperiments, sondern nur für das Eintreten gewisser Ereignisse.

■ Beispiel

Würfeln: Zahl ist > 3

Wartezeiten: Wartezeit ist ≤ 5 Minuten

Wir wollen also Teilmengen des Ergebnisraums betrachten, d.h. Elemente von $\mathcal{P}(\Omega)$ (Potenzmenge), denen eine Wahrscheinlichkeit zugeordnet werden kann d.h. welche *messbar* sind.

Definition 1.1.2 (Ereignisraum)

Sei $\Omega \neq \emptyset$ ein Ergebnisraum und \mathcal{F} eine σ -Algebra auf Ω , d.h. eine Familie von Teilmengen von Ω , sodass

- (1) $\Omega \in \mathcal{F}$
- (2) $A \in \mathcal{F} \Rightarrow A^{\complement} \in \mathcal{F}$
- (3) $A_1, A_2, \dots \in \mathcal{F} \Rightarrow \bigcup_{i > 1} A_i \in \mathcal{F}$

Dann heißt (Ω, \mathcal{F}) Ereignisraum oder messbarer Raum.

Wahrscheinlichkeit

Wir ordnen nun den Ereignissen Wahrscheinlichkeiten mittels einer Abbildung $\mathbb{P} \colon \mathcal{F} \to [0,1]$ zu, sodass

- (N) Normierung: $\mathbb{P}(\Omega) = 1$
- (A) Additivität: Für paarweise disjunkte Ereignisse $A_1, A_2, \dots \in \mathcal{F}$ ist $\mathbb{P}\left(\bigcup_{i \geq 1} A_i\right) = \sum_{i \geq 0} \mathbb{P}(A_i)$.
- (N), (A) und die Nichtnegativität von \mathbb{P} werden als Kolmogorov-Axiome bezeichnet (nach Kolmogorov: Grundbegriffe der Wahrscheinlichkeitstheorie, 1933).

Definition 1.1.3 (Wahrscheinlichkeit)

Sei (Ω, \mathcal{F}) ein Ereignisraum und $\mathbb{P} \colon \mathcal{F} \to [0, 1]$ eine Abbildung mit den Eigenschaften (N) und (A). Dann heißt \mathbb{P} Wahrscheinlichkeitsmaß oder auch Wahrscheinlichkeitsverteilung.

Aus der Definition folgen direkt die folgenden Eigenschaften:

Satz 1.1.4 (Rechenregelen für Wahrscheinlichkeitsmaße)

Sei \mathbb{P} ein W-Maß auf einem Ereignisraum (Ω, \mathcal{F}) und $A, B, A_1, A_2, \dots \in \mathcal{F}$. Dann gilt:

- (1) $\mathbb{P}(\emptyset) = 0$
- (2) Endliche Additivität: $\mathbb{P}(A \cup B) + \mathbb{P}(A \cap B) = \mathbb{P}(A) + \mathbb{P}(B)$ und $\mathbb{P}(A) + \mathbb{P}(A^{\complement}) = 1$
- (3) Monotonie: $A \subseteq B \implies \mathbb{P}(A) \leq \mathbb{P}(B)$
- (4) σ -Subadditivität: $\mathbb{P}\left(\bigcup_{i\geq 1}A_i\right)\leq \sum_{i\geq 1}\mathbb{P}(A_i)$
- (5) σ -Stetigkeit: Wenn $A_n \nearrow A$ (d.h. $A_1 \subseteq A_2 \subseteq \cdots$ und $A = \bigcup_{i=1}^{\infty} A_i$) oder $A_n \searrow A$, so gilt $\mathbb{P}(A_n) \to \mathbb{P}(A)$ für $n \to \infty$

Beweis. siehe MINT oder Schillings Lehrbuch

Beispiel 1.1.5

Für einen beliebigen Ereignisraum (Ω, \mathcal{F}) und ein beliebiges Element $\xi \in \Omega$ definiert

$$\delta_{\xi}(A) := \begin{cases} 1 & \xi \in A \\ 0 & \text{sonst} \end{cases}$$

ein (degeneriertes) W-Maß auf (Ω, \mathcal{F}) , welches wir als **Dirac-Maß** oder Dirac-Verteilung bezeichnen.

Beispiel 1.1.6

Wir betrachten das Zufallsexperiment "Würfeln mit einem fairen, 6-seitigen Würfel" mit der Ergebnismenge $\Omega = \{1, \dots, 6\}$ und Ereignisraum $\mathcal{F} = \mathcal{P}(\Omega)$. Setzen wir aus Symmetriegründen

$$\mathbb{P}(A) = \frac{\#A}{6}$$

mit #A = |A| = Kardinalität. Dies definert ein W-Maß.

Beispiel 1.1.7 (Wartezeiten an der Bushaltestelle)

Ergebnisraum $\Omega = \mathbb{R}_+$ und Ereignisraum Borel'sche σ -Algebra $\mathcal{F} = \mathcal{B}(\mathbb{R}_+)$. Ein mögliches W-Maß können wir durch

$$\mathbb{P}(A) := \int_{A} \lambda e^{-\lambda x} \, \mathrm{d}x$$

für einen Parameter $\lambda > 0$ festlegen. (offensichtlich gelten $\mathbb{P}(\Omega) = 1$ und die σ -Additivität aufgrund der σ -Additivität des Integrals). Wir bezeichnen dieses Maß als **Exponentialverteilung**. (Warum gerade dieses Maß für Wartezeiten gut geeigent ist, sehen wir später.)

4