Mathematical Induction MCQs - Class 11 Mathematics

Prepared for Entry Test Preparation

Multiple Choice Questions

- **1.** What is the sum of the first n odd numbers $1+3+5+\cdots+(2n-1)$?
 - (a) n^2
 - **(b)** n(n+1)
 - (c) $\frac{n(2n-1)}{2}$
 - (d) 2n-1
- **2.** The sum $1 + 2 + 4 + \cdots + 2^{n-1}$ equals:
 - (a) $2^n 1$
 - (b) $2^{n+1}-1$
 - (c) 2^n
 - (d) 2^{n-1}
- **3.** For what positive integers n is $n^2 + n$ divisible by 2?
 - (a) All n
 - (b) Odd *n*
 - (c) Even n
 - (d) $n \ge 2$
- **4.** Prove $1+4+7+\cdots+(3n-2)=\frac{n(3n-1)}{2}$. What is the base case value for n=1?
 - (a) 1
 - (b) 2
 - (c) 3
 - (d) 4
- **5.** The sum $2 + 4 + 6 + \cdots + 2n$ equals:
 - (a) n(n+1)
 - (b) $2n^2$
 - (c) n(2n+1)
 - (d) $\frac{n(n+1)}{2}$
- **6.** For $n \ge 3$, which inequality holds?
 - (a) $n^2 > n+3$

- (b) $n^2 < n+3$
- (c) $n^2 = n + 3$
- (d) $n^2 \le n + 3$
- **7.** The sum $1 \times 2 + 2 \times 3 + \cdots + n(n+1)$ equals:
 - (a) $\frac{n(n+1)(n+2)}{3}$
 - (b) $\frac{n(n+1)}{2}$
 - (c) $\frac{n(n+1)(2n+1)}{6}$
 - (d) n(n+1)
- **8.** Prove $5^n 1$ is divisible by 4. What is the value for n = 1?
 - (a) 2
 - (b) 4
 - (c) 5
 - (d) 8
- **9.** The sum $\frac{1}{1\times 2} + \frac{1}{2\times 3} + \cdots + \frac{1}{n(n+1)}$ equals:
 - (a) $\frac{n}{n+1}$
 - (b) $\frac{n+1}{n}$
 - (c) $\frac{1}{n+1}$
 - (d) $\frac{n}{2n+1}$
- **10.** For $n \ge 4$, which holds true?
 - (a) $n! > n^2$
 - (b) $n! < n^2$
 - (c) $n! = n^2$
 - (d) $n! \le n^2$
- **11.** The sum $1^2 + 3^2 + 5^2 + \cdots + (2n-1)^2$ equals:
 - (a) $\frac{n(4n^2-1)}{3}$
 - (b) $n^2(2n^2-1)$
 - (c) $\frac{n(n+1)(2n+1)}{6}$
 - (d) $\frac{n(2n-1)}{2}$
- **12.** Prove $n^3 n$ is divisible by 6. What is the value for n = 1?
 - (a) 0
 - (b) 1
 - (c) 2

- (d) 6
- **13.** The sum $1^3 + 3^3 + 5^3 + \cdots + (2n-1)^3$ equals:
 - (a) $n^2(2n^2-1)$
 - (b) $\frac{n(4n^2-1)}{3}$
 - (c) $n(2n-1)^2$
 - (d) $\frac{n(n+1)(2n+1)}{6}$
- **14.** For an arithmetic progression, the n-th term is:
 - (a) $a_n = a_1 + (n-1)d$
 - (b) $a_n = a_1 r^{n-1}$
 - (c) $a_n = a_1 + nd$
 - (d) $a_n = a_1 + (n-1)d^2$
- **15.** The sum $\frac{1}{3} + \frac{1}{3^2} + \cdots + \frac{1}{3^n}$ equals:
 - (a) $\frac{1}{2} \left[1 \frac{1}{3^n} \right]$
 - (b) $\frac{1}{3^n}$
 - (c) $\frac{1}{2}$
 - (d) $1 \frac{1}{3^n}$
- **16.** Prove (x+1) is a factor of $x^{2n}-1$. For n=1, the expression is:
 - (a) $x^2 1$
 - (b) $x^2 + 1$
 - (c) x 1
 - (d) x + 1
- **17.** For n > 6, which holds?
 - (a) $3^n < n!$
 - (b) $3^n > n!$
 - (c) $3^n = n!$
 - (d) $3^n \le n!$
- **18.** The sum $1 \cdot 1! + 2 \cdot 2! + \cdots + n \cdot n!$ equals:
 - (a) (n+1)! 1
 - (b) n!
 - (c) (n+1)!
 - (d) n(n+1)!
- **19.** Prove $\ln x^n = n \ln x$ for $n \ge 0$. What is the base case for n = 0?

- (a) 0
- (b) 1
- (c) $\ln x$
- (d) x
- **20.** The sum $1^2 2^2 + 3^2 4^2 + \cdots + (-1)^{n-1}n^2$ equals:
 - (a) $\frac{(-1)^{n-1}n(n+1)}{2}$
 - (b) $\frac{n(n+1)}{2}$
 - (c) $\frac{n(2n+1)}{6}$
 - (d) $(-1)^n n^2$

Solutions and Explanations

- **1. Answer: a** n^2 *Explanation*: From Q.2, the sum of the first n odd numbers is $1+3+\cdots+(2n-1)=n^2$.
- **2. Answer: a** 2^n-1 *Explanation*: From Q.4, the geometric series sum is $1+2+\cdots+2^{n-1}=2^n-1$.
- **3. Answer: a** All n *Explanation*: From Q.21(i), $n^2+n=n(n+1)$, which is divisible by 2 for all positive integers n.
- **4. Answer: a** 1 *Explanation*: From Q.3, base case: n = 1, 3(1) 2 = 1, and $\frac{1(3\cdot 1 1)}{2} = \frac{2}{2} = 1$.
- **5. Answer: a** n(n+1) *Explanation*: From Q.6, the sum of even numbers is $2+4+\cdots+2n=n(n+1)$.
- **6. Answer: a** $n^2 > n+3$ *Explanation*: From Q.33, $n^2 > n+3$ holds for $n \ge 3$.
- **7. Answer: a** $\frac{n(n+1)(n+2)}{3}$ *Explanation*: From Q.9, the sum is $1 \times 2 + 2 \times 3 + \cdots + n(n+1) = \frac{n(n+1)(n+2)}{3}$.
- **8. Answer: b** 4 *Explanation*: From Q.21(iii), base case: n = 1, $5^1 1 = 4$, which is divisible by 4.
- **9. Answer: a** $\frac{n}{n+1}$ Explanation: From Q.11, the sum is $\frac{1}{1\times 2} + \cdots + \frac{1}{n(n+1)} = \frac{n}{n+1}$.
- **10.** Answer: a $n! > n^2$ Explanation: From Q.36, $n! > n^2$ for $n \ge 4$.
- **11. Answer: a** $\frac{n(4n^2-1)}{3}$ *Explanation*: From Q.19, the sum of squares of odd numbers is $1^2+3^2+\cdots+(2n-1)^2=\frac{n(4n^2-1)}{3}$.
- **12. Answer: a** 0 *Explanation*: From Q.21(v), base case: n = 1, $1^3 1 = 0$, which is divisible by 6.
- **13. Answer:** a $n^2(2n^2-1)$ *Explanation*: From Q.24, the sum of cubes of odd numbers is $1^3+3^3+\cdots+(2n-1)^3=n^2(2n^2-1)$.

- **14. Answer: a** $a_n = a_1 + (n-1)d$ *Explanation*: From Q.17, the n-th term of an arithmetic progression is $a_n = a_1 + (n-1)d$.
- **15. Answer: a** $\frac{1}{2} \left[1 \frac{1}{3^n} \right]$ *Explanation*: From Q.22, the geometric series sum is $\frac{1}{3} + \frac{1}{3^2} + \dots + \frac{1}{3^n} = \frac{1}{2} \left[1 \frac{1}{3^n} \right]$.
- **16. Answer: a** x^2-1 *Explanation*: From Q.25, base case: n=1, $x^{2\cdot 1}-1=x^2-1$, which has x+1 as a factor.
- **17. Answer: a** $3^n < n!$ *Explanation*: From Q.35, $3^n < n!$ for n > 6.
- **18. Answer: a** (n+1)! 1 *Explanation*: From Q.16, the sum is $1 \cdot 1! + 2 \cdot 2! + \cdots + n \cdot n! = (n+1)! 1$.
- **19. Answer: a** 0 *Explanation*: From Q.31, base case: n=0, $\ln x^0=\ln 1=0=0\cdot \ln x$.
- **20. Answer: a** $\frac{(-1)^{n-1}n(n+1)}{2}$ *Explanation*: From Q.23, the alternating sum is $1^2-2^2+3^2-\cdots+(-1)^{n-1}n^2=\frac{(-1)^{n-1}n(n+1)}{2}$.