SHM Motion: Translation, rotation, vibration/oscillation periodic motion f(t) = f(t+T) e.g. sin 25t, con 25t if periodic over same path to oscillatory motion elasticity & Jososowood F A 0 B SHM is a special type of periodic motion where restoring force on particle is proportional to displacement & directed to the mean position. oscillation between point A & B, mean position O. at time to particle is at P & displacement & x. F- restories free F d - x or F = -kx. or ma = -kx Small excitation $a = -\frac{k}{m}x = -\omega \hat{x}$ Characteristies (1) Linear motion -> to-n-fo in straight Line.
(2) f x - x. linear harmonie motion & angular harmonie motion. (torsional pendulum) c pendulum)
f x = x complete oscillation: one point to same point. (time period) amplitude: maximum displacement en bet sides. frequency: no. of oscillations in 1 second. phase: displacement, velocity, accelaration & direction of motion. After 1 ascillation, phase & same. t=0, initial phase. Relation between SHM & winform circular motion 0A = 2, 0B = 4 $0 = \omega t$ $S = \alpha \theta$ $= 0 p \cos(\theta + d) = a \cos(\theta + d)$ = a los(w++1)

speed v= wa, centripetal acc fr= = wa

Accelaration of A is component of for along X,0X2 $f_A = -f_r (\omega s(\omega t + d)) = -\omega^2 a (\omega s(\omega t + d)) = -\omega^2 a$

: fA d-2.

Similarly, OB = y = Opsin(0+d) = a sin(wt+d)

Acceleration of B is $f_B = -f_r \sin(0+d) = -wasin(we+d) = -wy$

: fod - y.

.. SHM is defined as the projection of uniform circular motion along diameter of circle.

Graphical representation

Time period = T.

y = asin 2/t (SHM along y-axis)

Displacement In SHM, displacement at time t is the distance of the particle from the mean position.

a= a cos wt

x = a sind = a sin wt

Similarly, y = acos wt & y = a sin wt.

So, eq. of SHM can be derived from any instant t.

 $x = \alpha \cos(\theta + d) = \alpha \cos(\omega t + d)$ Similarly, n= asin(0+x) = asin(wt+x).

if initial position is X1 (2nd pic) then n= acos(wt-d)

or n= a sin(wt-d)

Velocity & accelaration

velocity of SHM is component of the particle's velocity along x-axis at time t.

V = aw, V parallel to OA = V coso = $aw cost = aw \sqrt{1-\frac{2l^2}{a^2}}$

n= asino

$$\therefore \quad \nabla^2 = \omega \int a^2 - x^2$$

 v_{max} is at x=0, $v_{\text{max}}=a\omega$. Q x=a, v=0.

Same with acceleration =) SHM is the projection along X-axis is component of acceleration along x-axis. fe = - wa I component around x1x2 $\mathring{s} = \mathring{\omega} a \cos \theta = -\mathring{\omega} a \cos \omega t = -\mathring{\omega} x$.

$$f = -\omega^2 u$$

fmax = - war when x=ta, fmax = ± war.

 $f_{\text{min}} = 0$ when x = 0.

x = asin wt, $v = x = aw cos wt = aw \sqrt{1-a^2}$ Calculus: $= \omega \sqrt{a^2 \times x^2}$.

 $f = n = -a\omega \sin \omega t = -\omega n$

Time period $T = \frac{2\pi}{\omega} = 2\pi \sqrt{\frac{a}{4}}$

w= fx (neglect)

x= asin wt = asin = t

v = aw cos wt = aw cos +t

f = - aw sinwt = - aw sin = t

Scanned by CamScanner

Phase you see, a f w (angular velocity) are constant. (amplitude) $\theta = \omega t$ is changing = phase. $\frac{1}{2}$ $\frac{1}{2}$ $\frac{\theta_2}{\lambda_1}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ 42 42 $y = {}^{\alpha}y_2$ y = 0 y = 9/2 $y_1 = \infty$ 04 = 180° 02=90 B3 = 150 0, = 30° V= downwards. V= downwards V = 0 v upwards 2 particles. $\phi = \theta_1 - \theta_2 = 0$ (in phase) phase difference = 180° (out place) Differential form & solution Homogeneous, 2 order, ODE with contact F = -kx w $m\dot{x} = -kx$ $c\sigma$ $\dot{x} + \dot{\omega}\dot{x} = 0$, $\omega = \int_{\dot{m}}^{k}$ Solution: Multiply by 2x 2xx+ 2wxx =0 Integrating if it = - wat + c when displacement is maximum, x=a, n=0. $v = x = \pm \omega \sqrt{\alpha^2 - \kappa^2}$ or $\pm \frac{dx}{\sqrt{\alpha^2 - x^2}} = \omega dt$, Integrating $\sin^2 \frac{\alpha}{\alpha} = \omega t + \beta$ n= acin(wt+p) See, n= a cos(w++\$) also satisfy x+wx=0. asin (wt+d) = a sin wt cos\$ + a cos wt sin\$ = Asinwt + Buswt. In operator form, $\frac{d^2x}{dt^2} = D^2x$, $\frac{dx}{dt} = D^2x$ $D_{x}^{2} + \omega_{x}^{2} = 0$ $D_{y}^{2} = \omega^{2}$ $D_{z}^{2} = \omega^{2}$: General rolution x = A e i wt + B e

(W) 1. Oscillatory motion of a particle & represented by $x = ae^{i\omega t}$. Establish the motion is SHM. Similarly it $x = a\cos\omega t + b\sin\omega t$ then SHM.

=
$$a\cos\omega t + b\sin\omega t$$
 then SHM.
 $\alpha = ae^{i\omega t}$, $\dot{\alpha} = ai\omega e^{i\omega t}$, $\dot{\alpha} = -a\omega^2 e^{i\omega t}$
= $-\omega^2 \alpha$ (SHM)

 $\alpha = a\cos\omega t + b\sin\omega t$, $\alpha = -a\omega\sin\omega t + b\omega\cos\omega t$ $\dot{\alpha} = -a\omega^2\cos\omega t - b\omega^2\sin\omega t = -\omega^2\kappa$ (SHM)

- 2. Which periodie motion is not oscillatory? -> earth around sun or moon around earth.
- 3. Dimension of force compant of vibrating spring.

HW 1. In SHM, displacement is $x = a \sin(\omega t + \beta)$. at t = 0, $x = x_0$ with velocity v_0 , show that $a = \sqrt{x_0^2 + \frac{v_0^2}{\omega^2}} f \tan \beta = \frac{\omega x_0}{v_0}$.

- 2. Particle is vibrated at frequency 5HZ in SHM. Show that when displacement exceeds 10⁻² metre, the particle loses contact with the vibrator. Given g = 9.8 m/s²
- 3. In SHM, a partiele hou speed 80 cm/s & 60 cm/s with displacent 3 cm & 4 cm. Calculate amplitude of vibration