

Rodzaj dokumentu:	Zasady oceniania rozwiązań zadań
Egzamin:	Egzamin maturalny
	Test diagnostyczny
Przedmiot:	Matematyka
Poziom:	Poziom podstawowy
	MMAP-P0-100,
	MMAP-P0-200, MMAP-P0-300,
Formy arkusza:	MMAP-P0-400, MMAP-P0-660,
	MMAP-P0-700, MMAP-P0-Q00,
	MMAP-P0-K00, MMAU-P0-100
Termin egzaminu:	7 grudnia 2023 r.
Data publikacji dokumentu:	12 grudnia 2023 r.

Uwagi ogólne:

- 1. Akceptowane są wszystkie rozwiązania merytorycznie poprawne i spełniające warunki zadania.
- 2. Jeżeli zdający poprawnie rozwiąże zadanie i otrzyma poprawny wynik, lecz w końcowym zapisie przekształca ten wynik i popełnia przy tym błąd, to może uzyskać maksymalną liczbę punktów.
- 3. Jeżeli zdający popełni błędy rachunkowe, które na żadnym etapie rozwiązania nie upraszczają i nie zmieniają danego zagadnienia, lecz stosuje poprawną metodę i konsekwentnie do popełnionych błędów rachunkowych rozwiązuje zadanie, to może otrzymać co najwyżej (n-1) punktów (gdzie n jest maksymalną możliwą do uzyskania liczbą punktów za dane zadanie).

Zadanie 1. (0-1)

Wymagania egzaminacyjne 2023 i 2024¹		
Wymaganie ogólne	Wymagania szczegółowe	
I. Sprawność rachunkowa.	Zdający:	
Wykonywanie obliczeń na liczbach	I.1) wykonuje działania ([] potęgowanie	
rzeczywistych, także przy użyciu	[]) w zbiorze liczb rzeczywistych;	
kalkulatora, stosowanie praw działań	I.4) stosuje związek pierwiastkowania	
matematycznych przy przekształcaniu	z potęgowaniem oraz prawa działań na	
wyrażeń algebraicznych oraz	potęgach i pierwiastkach.	
wykorzystywanie tych umiejętności przy		
rozwiązywaniu problemów w kontekstach		
rzeczywistych i teoretycznych.		

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

C

¹ Rozporządzenie Ministra Edukacji i Nauki z dnia 10 czerwca 2022 r. w sprawie wymagań egzaminacyjnych dla egzaminu maturalnego przeprowadzanego w roku szkolnym 2022/2023 i 2023/2024 (Dz.U. 2022, poz.1246).

Zadanie 2. (0-1)

Wymagania egzaminacyjne 2023 i 2024	
Wymaganie ogólne	Wymagania szczegółowe
III. Wykorzystanie i interpretowanie	Zdający:
reprezentacji.	I.1) wykonuje działania ([]
1. Stosowanie obiektów matematycznych	logarytmowanie) w zbiorze liczb
i operowanie nimi, interpretowanie pojęć	rzeczywistych;
matematycznych.	I.9) stosuje związek logarytmowania
	z potęgowaniem, posługuje się wzorami na
	logarytm [] ilorazu [].

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

D

Zadanie 3. (0-1)

Wymagania egzaminacyjne 2023 i 2024		
Wymaganie ogólne	Wymaganie szczegółowe	
I. Sprawność rachunkowa.	Zdający:	
Wykonywanie obliczeń na liczbach	I.8) wykorzystuje własności potęgowania	
rzeczywistych, także przy użyciu	i pierwiastkowania w sytuacjach	
kalkulatora, stosowanie praw działań	praktycznych, w tym do obliczania	
matematycznych przy przekształcaniu	procentów składanych z kapitalizacją	
wyrażeń algebraicznych oraz	roczną i zysków z lokat.	
wykorzystywanie tych umiejętności przy		
rozwiązywaniu problemów w kontekstach		
rzeczywistych i teoretycznych.		

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

В

Zadanie 4. (0-1)

Wymagania egzaminacyjne 2023 i 2024		
Wymaganie ogólne	Wymaganie szczegółowe	
III. Wykorzystanie i interpretowanie	Zdający:	
reprezentacji.	I.7) stosuje interpretację geometryczną	
2. Dobieranie i tworzenie modeli	i algebraiczną wartości bezwzględnej,	
matematycznych przy rozwiązywaniu	rozwiązuje równania i nierówności typu: []	
problemów praktycznych i teoretycznych.	$ x-2 <3[\ldots].$	

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

Α

Zadanie 5. (0-2)

Wymagania egzaminacyjne 2023 i 2024		
Wymaganie ogólne	Wymaganie szczegółowe	
IV. Rozumowanie i argumentacja.	Zdający:	
1. Przeprowadzanie rozumowań, także	I.2) przeprowadza proste dowody dotyczące	
kilkuetapowych, podawanie argumentów	podzielności liczb całkowitych i reszt	
uzasadniających poprawność rozumowania,	z dzielenia nie trudniejsze niż dowód	
odróżnianie dowodu od przykładu.	podzielności przez 24 iloczynu czterech	
	kolejnych liczb naturalnych.	

Zasady oceniania

- 2 pkt założenie, że n=2l+1 **oraz** przekształcenie wyrażenia $3n^2+4n+1$ do postaci $4(3l^2+5l+2)$ **oraz** zapisanie, że l jest liczbą całkowitą lub, że suma $3l^2+5l+2$ jest liczbą całkowitą ALBO
 - stwierdzenie, że składnik 4n jest podzielny przez 4, oraz założenie, że n=2l+1 **oraz** przekształcenie wyrażenia $3n^2+1$ do postaci $4(3l^2+3l+1)$ i zapisanie, że l jest liczbą całkowitą lub, że suma $3l^2+3l+1$ jest liczbą całkowitą, ALBO
 - przekształcenie wyrażenia $3n^2+4n+1$ do postaci (3n+1)(n+1) **oraz** stwierdzenie, że wyrażenie (3n+1)(n+1) jest iloczynem dwóch liczb parzystych, *ALBO*
 - przekształcenie wyrażenia $3n^2+4n+1$ do postaci $4(n^2+n)+(1-n)(1+n)$ **oraz** stwierdzenie, że wyrażenie $4(n^2+n)+(1-n)(1+n)$ jest sumą dwóch liczb podzielnych przez 4, *ALBO*

- przekształcenie wyrażenia $3n^2+4n+1$ do postaci $2(n^2+n)+(n+1)^2$ **oraz** stwierdzenie, że wyrażenie $2(n^2+n)+(n+1)^2$ jest sumą dwóch liczb podzielnych przez 4, *ALBO*
- rozpatrzenie przypadku, gdy n=4l+1, tj. przekształcenie wyrażenia $3n^2+4n+1$ do postaci $4(12l^2+10l+2)$ i zapisanie, że l jest liczbą całkowitą lub, że suma $12l^2+10l+2$ jest liczbą całkowitą **oraz** rozpatrzenie przypadku, gdy n=4l+3, tj. przekształcenie wyrażenia $3n^2+4n+1$ do postaci $4(12l^2+22l+10)$ i zapisanie, że l jest liczbą całkowitą lub, że suma $12l^2+22l+10$ jest liczbą całkowitą.
- 1 pkt założenie, że n=2l+1 oraz zapisanie wyrażenia $3n^2+4n+1$ w postaci $3(4l^2+4l+1)+4(2l+1)+1$ ALBO
 - stwierdzenie, że składnik 4n jest podzielny przez 4, oraz założenie, że n=2l+1 oraz przekształcenie wyrażenia $3n^2+1$ do postaci $3(4l^2+4l+1)+1$, *ALBO*
 - przekształcenie wyrażenia $3n^2 + 4n + 1$ do postaci (3n + 1)(n + 1), *ALBO*
 - przekształcenie wyrażenia $3n^2+4n+1$ do postaci $4(n^2+n)+(1-n)(1+n)$, *ALBO*
 - przekształcenie wyrażenia $3n^2+4n+1$ do postaci $2(n^2+n)+(n+1)^2$, *ALBO*
 - rozpatrzenie przypadku, gdy n=4l+1, tj. przekształcenie wyrażenia $3n^2+4n+1$ do postaci $4(12l^2+10l+2)$ i zapisanie, że l jest liczbą całkowitą lub, że suma $12l^2+10l+2$ jest liczbą całkowitą, ALBO
 - rozpatrzenie przypadku, gdy n=4l+3, tj. przekształcenie wyrażenia $3n^2+4n+1$ do postaci $4(12l^2+22l+10)$ i zapisanie, że l jest liczbą całkowitą lub, że suma $12l^2+22l+10$ jest liczbą całkowitą.

0 pkt – rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania.

Uwaga:

Jeżeli zdający sprawdza prawdziwość tezy tylko dla wybranych wartości n, to otrzymuje **0 punktów** za całe rozwiązanie.

Przykładowe pełne rozwiązania

Sposób I

Ponieważ liczba n jest nieparzysta, więc zapisujemy ją w postaci n=2l+1, gdzie $l\in\mathbb{Z}$. Wówczas badana liczba ma postać

$$3n^2 + 4n + 1 = 3(2l + 1)^2 + 4(2l + 1) + 1 = 3(4l^2 + 4l + 1) + 8l + 4 + 1$$

= $12l^2 + 12l + 3 + 8l + 5 = 12l^2 + 20l + 8 = 4(3l^2 + 5l + 2)$

Egzamin maturalny z matematyki (poziom podstawowy). Test diagnostyczny – grudzień 2023 r.

Ponieważ $l \in \mathbb{Z}$, więc również $3l^2 + 5l + 2$ jest liczbą całkowitą. Zatem iloczyn $4(3l^2 + 5l + 2)$ jest podzielny przez 4. To należało wykazać.

Sposób II

Liczba $3n^2+4n+1$ jest sumą trzech składników. Składnik 4n jest podzielny przez 4 dla dowolnej liczby całkowitej n. Wystarczy zatem udowodnić, że liczba $3n^2+1$ jest podzielna przez 4 dla dowolnej nieparzystej liczby n. Ponieważ liczba n jest nieparzysta, więc zapisujemy ją w postaci n=2l+1, gdzie $l\in\mathbb{Z}$. Wówczas liczba $3n^2+1$ ma postać

$$3n^2 + 1 = 3(2l + 1)^2 + 1 = 3(4l^2 + 4l + 1) + 1 = 12l^2 + 12l + 3 + 1$$

= $12l^2 + 12l + 4 = 4(3l^2 + 3l + 1)$

Ponieważ $l \in \mathbb{Z}$, więc również $3l^2 + 3l + 1$ jest liczbą całkowitą. Zatem iloczyn $4(3l^2 + 3l + 1)$ jest podzielny przez 4. To należało wykazać.

Sposób III

Obliczamy wyróżnik trójmianu kwadratowego $3n^2 + 4n + 1$ oraz jego pierwiastki

$$\Delta = 4^{2} - 4 \cdot 3 \cdot 1 = 16 - 12 = 4$$

$$n_{1} = \frac{-4 + 2}{6} = -\frac{2}{6} = -\frac{1}{3}$$

$$n_{2} = \frac{-4 - 2}{6} = -\frac{6}{6} = -1$$

Następnie zapisujemy liczbę $3n^2 + 4n + 1$ w postaci iloczynu

$$3n^2 + 4n + 1 = 3\left(n + \frac{1}{3}\right)(n+1) = (3n+1)(n+1)$$

Liczba n jest nieparzysta, zatem liczby 3n+1 oraz n+1 są parzyste (suma dwóch liczb nieparzystych). Stąd iloczyn (3n+1)(n+1) jest liczbą podzielną przez $2 \cdot 2$, czyli przez 4. To należało wykazać.

Sposób IV

Zapisujemy liczbę $3n^2 + 4n + 1$ w postaci sumy dwóch liczb podzielnych przez 4

$$3n^2 + 4n + 1 = 4n^2 - n^2 + 4n + 1 = 4n^2 + 4n + 1 - n^2 = 4(n^2 + n) + (1 - n)(1 + n)$$

Liczba $4(n^2+n)$ jest podzielna przez 4 dla dowolnej liczby całkowitej n.

Liczba n jest nieparzysta, zatem liczby 1-n oraz 1+n są parzyste (różnica oraz suma dwóch liczb nieparzystych). Stąd iloczyn (1-n)(1+n) jest liczbą podzielną przez $2\cdot 2$, czyli przez 4. Zatem liczba $3n^2+4n+1$ jest podzielną prze 4 jako suma dwóch liczb podzielnych przez 4.

Sposób V

Rozważmy dwa przypadki: gdy n jest liczbą, która przy dzieleniu przez 4 daje resztę 1, oraz gdy n jest liczbą, która przy dzieleniu przez 4 daje resztę 3.

Jeśli n jest liczbą, która przy dzieleniu przez 4 daje resztę 1, to możemy ją zapisać w postaci n=4l+1, gdzie $l\in\mathbb{Z}$. Wówczas badana liczba ma postać

$$3n^2 + 4n + 1 = 3(4l + 1)^2 + 4(4l + 1) + 1 = 3(16l^2 + 8l + 1) + 16l + 4 + 1$$

= $48l^2 + 24l + 3 + 16l + 5 = 48l^2 + 40l + 8 = 4(12l^2 + 10l + 2)$

Ponieważ $l\in\mathbb{Z}$, więc suma $12l^2+10l+2$ jest liczbą całkowitą. Zatem iloczyn $4(12l^2+10l+2)$ jest podzielny przez 4.

Jeśli n jest liczbą, która przy dzieleniu przez 4 daje resztę 3, to możemy ją zapisać w postaci n=4l+3, gdzie $l\in\mathbb{Z}$. Wówczas badana liczba ma postać

$$3n^2 + 4n + 1 = 3(4l + 3)^2 + 4(4l + 3) + 1 = 3(16l^2 + 24l + 9) + 16l + 12 + 1$$

= $48l^2 + 72l + 27 + 16l + 13 = 48l^2 + 88l + 40 = 4(12l^2 + 22l + 10)$

Ponieważ $l\in\mathbb{Z}$, więc suma $12l^2+22l+10$ jest liczbą całkowitą. Zatem iloczyn $4(12l^2+22l+10)$ jest podzielny przez 4.

Zadanie 6. (0-1)

Wymagania egzaminacyjne 2023 i 2024		
Wymaganie ogólne	Wymaganie szczegółowe	
III. Wykorzystanie i interpretowanie reprezentacji.1. Stosowanie obiektów matematycznych i operowanie nimi, interpretowanie pojęć matematycznych.	Zdający: IV.1) rozwiązuje układy równań liniowych z dwiema niewiadomymi [].	

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

С

Zadanie 7. (0-1)

Wymagania egzaminacyjne 2023 i 2024		
Wymaganie ogólne Wymagania szczegółowe		
III. Wykorzystanie i interpretowanie reprezentacji.1. Stosowanie obiektów matematycznych i operowanie nimi, interpretowanie pojęć matematycznych.	Zdający: II.1) stosuje wzory skróconego mnożenia na: $(a+b)^2$, $(a-b)^2$, a^2-b^2 ; II.5) mnoży i dzieli wyrażenia wymierne.	

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

С

Zadanie 8. (0-1)

Wymagania egzaminacyjne 2023 i 2024	
Wymaganie ogólne	Wymagania szczegółowe
III. Wykorzystanie i interpretowanie	Zdający:
reprezentacji.	III.5) rozwiązuje równania wielomianowe
1. Stosowanie obiektów matematycznych	postaci $W(x) = 0$ dla wielomianów
i operowanie nimi, interpretowanie pojęć	doprowadzonych do postaci iloczynowej
matematycznych.	[];
	V.2) oblicza wartość funkcji zadanej wzorem
	algebraicznym.

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

D

Zadanie 9. (0-3)

Wymagania egzaminacyjne 2023 i 2024	
Wymaganie ogólne	Wymaganie szczegółowe
IV. Rozumowanie i argumentacja.	Zdający:
4. Stosowanie i tworzenie strategii przy	III.1) przekształca równania i nierówności w
rozwiązywaniu zadań, również w sytuacjach	sposób równoważny;
nietypowych.	III.5) rozwiązuje równania wielomianowe
	postaci $W(x) = 0$ dla wielomianów []
	takich, które dają się doprowadzić do
	postaci iloczynowej [] metodą
	grupowania.

Zasady oceniania

3 pkt – poprawna metoda rozwiązania równania i obliczenie wszystkich rozwiązań równania:

$$\left(-\sqrt{5}\right),\ \left(-\frac{3}{2}\right),\ \sqrt{5}\ .$$

2 pkt – przekształcenie równania $2x^3 + 3x^2 = 10x + 15$ do postaci W(x) = 0, gdzie W jest iloczynem wielomianów stopnia co najwyżej drugiego **oraz** rozwiązanie jednego z równań wynikającego z tego rozkładu, np.

$$(2x+3)(x^2-5) = 0$$
 i $x = -\frac{3}{2}$

ALBO

– przekształcenie równania $2x^3+3x^2=10x+15\,$ do postaci W(x)=0, gdzie W jest wielomianem rozłożonym na czynniki liniowe, np.

$$W(x) = (2x + 3)(x - \sqrt{5})(x + \sqrt{5}),$$

ALBO

– przekształcenie równania $2x^3 + 3x^2 = 10x + 15$ do postaci W(x) = 0, gdzie W jest wielomianem stopnia trzeciego **oraz** obliczenie jednego z pierwiastków wielomianu W **oraz** poprawne podzielenie wielomianu W przez odpowiedni dwumian, np.

$$x = -\frac{3}{2}$$
 i $(2x^3 + 3x^2 - 10x - 15)$: $\left(x + \frac{3}{2}\right) = 2x^2 - 10$, ALBO

– przekształcenie równania $2x^3 + 3x^2 = 10x + 15$ do postaci alternatywy równań **oraz** rozwiązanie jednego z nich, tj. zapisanie:

$$(2x + 3 = 0, x^2 - 5 = 0)$$
 oraz $x = -\frac{3}{2}$ albo $(2x + 3 = 0, x^2 - 5 = 0)$ oraz $(x = -\sqrt{5}, x = \sqrt{5})$, albo $(2x + 3 = 0, x - \sqrt{5} = 0, x + \sqrt{5} = 0)$ oraz $x = -\sqrt{5}$, albo

$$(2x + 3 = 0, x - \sqrt{5} = 0, x + \sqrt{5} = 0)$$
 oraz $x = \sqrt{5}$, albo

$$(2x + 3 = 0, x - \sqrt{5} = 0, x + \sqrt{5} = 0)$$
 oraz $x = -\frac{3}{2}$.

1 pkt – przekształcenie równania $2x^3+3x^2=10x+15\,$ do postaci W(x)=0, gdzie W jest iloczynem wielomianów stopnia co najwyżej drugiego, np. $W(x)=(2x+3)(x^2-5)$ ALBO

- zapisanie jednego rozwiązania wymiernego równania $2x^3 + 3x^2 = 10x + 15$ lub dwóch rozwiązań niewymiernych tego równania, jeśli te rozwiązania nie zostały otrzymane w wyniku zastosowania błędnej metody, *ALBO*
- przekształcenie równania $2x^3 + 3x^2 = 10x + 15$ do postaci alternatywy równań, (np. 2x + 3 = 0, $x^2 = 5$), przy czym alternatywa musi wynikać z poprawnego wnioskowania.

0 pkt – rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania.

Uwaqi:

- 1. Jeżeli zdający zapisze tylko trzy poprawne rozwiązania równania, to otrzymuje 1 punkt za całe rozwiązanie.
- **2.** Jeżeli zdający uzyska tylko dwa poprawne rozwiązania $x=\sqrt{5}$ oraz $x=-\sqrt{5}$ w wyniku dzielenia obustronnie równania przez dwumian (2x+3) <u>z podaniem</u> odpowiednich założeń, to otrzymuje **2 punkty** za całe rozwiązanie.
- **3.** Jeżeli zdający uzyska dwa poprawne rozwiązania $x = \sqrt{5}$ oraz $x = -\sqrt{5}$ w wyniku dzielenia obustronnie równania przez dwumian (2x + 3) <u>bez podania</u> odpowiednich założeń lub w wyniku zauważenia, że obie strony równania $x^2(2x + 3) = 5(2x + 3)$ zawierają ten sam czynnik 2x + 3, to otrzymuje **1 punkt** za całe rozwiązanie.
- **4.** Jeżeli zdający uzyska trzy poprawne pierwiastki wielomianu, lecz traktuje równanie jako nierówność (podaje zbiór rozwiązań w postaci przedziału/ sumy przedziałów), to otrzymuje **2 punkty** za całe rozwiązanie.
- **5.** Jeżeli zdający przy przekształcaniu równania do postaci W(x) = 0 zapisuje czynnik (2x + 3) z wykładnikiem 2, to może otrzymać co najwyżej **2 punkty** za całe rozwiązanie (za zapisanie alternatywy równań oraz za rozwiązanie równań tej alternatywy).

Przykładowe pełne rozwiązania

Sposób I

Przekształcamy równanie równoważnie, stosując metodę grupowania wyrazów:

$$2x^{3} + 3x^{2} = 10x + 15$$
$$2x^{3} + 3x^{2} - 10x - 15 = 0$$
$$x^{2}(2x + 3) - 5(2x + 3) = 0$$
$$(2x + 3)(x^{2} - 5) = 0$$

$$(2x+3)(x-\sqrt{5})(x+\sqrt{5}) = 0$$

$$2x+3 = 0 \quad \text{lub} \quad x-\sqrt{5} = 0 \quad \text{lub} \quad x+\sqrt{5} = 0$$

$$x = -\frac{3}{2} \quad \text{lub} \quad x = \sqrt{5} \quad \text{lub} \quad x = -\sqrt{5}$$

Rozwiązaniami równania są liczby: $\left(-\sqrt{5}\right)$, $\left(-\frac{3}{2}\right)$, $\sqrt{5}$.

Sposób II

Przekształcamy równanie równoważnie, stosując metodę grupowania wyrazów:

$$2x^{3} + 3x^{2} = 10x + 15$$

$$2x^{3} + 3x^{2} - 10x - 15 = 0$$

$$2x(x^{2} - 5) + 3(x^{2} - 5) = 0$$

$$(2x + 3)(x^{2} - 5) = 0$$

$$(2x + 3)(x - \sqrt{5})(x + \sqrt{5}) = 0$$

$$2x + 3 = 0 \quad \text{lub} \quad x - \sqrt{5} = 0 \quad \text{lub} \quad x + \sqrt{5} = 0$$

$$x = -\frac{3}{2} \quad \text{lub} \quad x = \sqrt{5} \quad \text{lub} \quad x = -\sqrt{5}$$

Rozwiązaniami równania są liczby: $\left(-\sqrt{5}\right)$, $\left(-\frac{3}{2}\right)$, $\sqrt{5}$.

Sposób III

Przekształcamy równanie równoważnie:

$$2x^3 + 3x^2 = 10x + 15$$
$$2x^3 + 3x^2 - 10x - 15 = 0$$

Obliczamy $W\left(-\frac{3}{2}\right)=0$ i stwierdzamy, że liczba $\left(-\frac{3}{2}\right)$ jest pierwiastkiem wielomianu $W(x)=2x^3+3x^2-10x-15$.

Zatem wielomian W jest podzielny przez dwumian $x+\frac{3}{2}$. Dzielimy wielomian W przez dwumian $x+\frac{3}{2}$ i otrzymujemy

$$(2x^3 + 3x^2 - 10x - 15): \left(x + \frac{3}{2}\right) = 2x^2 - 10$$

Zatem
$$W(x) = \left(x + \frac{3}{2}\right)(2x^2 - 10) = 2\left(x + \frac{3}{2}\right)(x^2 - 5) = 2\left(x + \frac{3}{2}\right)\left(x - \sqrt{5}\right)\left(x + \sqrt{5}\right)$$
.

Obliczamy pierwiastki wielomianu W:

Egzamin maturalny z matematyki (poziom podstawowy). Test diagnostyczny – grudzień 2023 r.

$$2\left(x + \frac{3}{2}\right)(x - \sqrt{5})(x + \sqrt{5}) = 0$$

$$x + \frac{3}{2} = 0 \quad \text{lub} \quad x - \sqrt{5} = 0 \quad \text{lub} \quad x + \sqrt{5} = 0$$

$$x = -\frac{3}{2} \quad \text{lub} \quad x = \sqrt{5} \quad \text{lub} \quad x = -\sqrt{5}$$

Rozwiązaniami równania są liczby: $\left(-\sqrt{5}\right)$, $\left(-\frac{3}{2}\right)$, $\sqrt{5}$.

Sposób IV

Przekształcamy równanie do postaci alternatywy dwóch równań

$$2x^3 + 3x^2 = 10x + 15$$
$$x^2(2x + 3) = 5(2x + 3)$$

Zatem

$$2x + 3 = 0$$
 lub $x^2 = 5$ $x = -\frac{3}{2}$ lub $x = \sqrt{5}$ lub $x = -\sqrt{5}$

Rozwiązaniami równania są liczby: $\left(-\sqrt{5}\right)$, $\left(-\frac{3}{2}\right)$, $\sqrt{5}$.

Sposób V

Przekształcamy równanie równoważnie

$$2x^3 + 3x^2 = 10x + 15$$
$$x^2(2x + 3) = 5(2x + 3)$$

Zatem $x = -\frac{3}{2}$ jest rozwiązaniem tego równania.

Rozwiązujemy równanie
$$x^2(2x+3)=5(2x+3)$$
 w zbiorze $\left(-\infty,-\frac{3}{2}\right)\cup\left(-\frac{3}{2},+\infty\right)$
$$x^2(2x+3)=5(2x+3) \ /:(2x+3)$$

$$x^2=5$$

$$x=\sqrt{5} \quad \text{lub} \quad x=-\sqrt{5}$$

Rozwiązaniami równania są liczby: $\left(-\sqrt{5}\right)$, $\left(-\frac{3}{2}\right)$, $\sqrt{5}$.

Zadanie 10. (0-1)

Wymagania egzaminacyjne 2023 i 2024		
Wymaganie ogólne Wymaganie szczegółowe		
III. Wykorzystanie i interpretowanie reprezentacji.1. Stosowanie obiektów matematycznych i operowanie nimi, interpretowanie pojęć matematycznych.	Zdający: V.5) interpretuje współczynniki występujące we wzorze funkcji liniowej.	

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepełna lub niepoprawna albo brak odpowiedzi.

Rozwiązanie

PF

Zadanie 11.1. (0-1)

Wymagania egzaminacyjne 2023 i 2024		
Wymaganie ogólne Wymaganie szczegółowe		
II. Wykorzystanie i tworzenie informacji.	Zdający:	
1. Interpretowanie i operowanie	V.4) odczytuje z wykresu funkcji: [] zbiór	
informacjami przedstawionymi w tekście,	wartości [].	
zarówno matematycznym, jak		
i popularnonaukowym, a także w formie		
wykresów, diagramów, tabel.		

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

С

Zadanie 11.2. (0-1)

Wymagania egzaminacyjne 2023 i 2024	
Wymaganie ogólne	Wymaganie szczegółowe
II. Wykorzystanie i tworzenie informacji.	Zdający:
1. Interpretowanie i operowanie	V.4) odczytuje z wykresu funkcji: []
informacjami przedstawionymi w tekście,	przedziały, w których funkcja przyjmuje
zarówno matematycznym, jak	wartości większe (nie mniejsze) lub
i popularnonaukowym, a także w formie wykresów, diagramów, tabel.	mniejsze (nie większe) od danej liczby [].

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

(2,6)

Zadanie 11.3. (0-2)

Wymagania egzaminacyjne 2023 i 2024	
Wymaganie ogólne	Wymaganie szczegółowe
II. Wykorzystanie i tworzenie informacji.	Zdający:
1. Interpretowanie i operowanie	V.9) wyznacza wzór funkcji kwadratowej na
informacjami przedstawionymi w tekście,	podstawie informacji o tej funkcji lub o jej
zarówno matematycznym, jak	wykresie.
i popularnonaukowym, a także w formie	
wykresów, diagramów, tabel.	

Zasady oceniania

2 pkt – dwie poprawne odpowiedzi.

1 pkt – jedna poprawna odpowiedź.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

AΒ

Zadanie 11.4. (0-1)

Wymagania egzaminacyjne 2023 i 2024	
Wymaganie ogólne	Wymaganie szczegółowe
II. Wykorzystanie i tworzenie informacji. 1. Interpretowanie i operowanie informacjami przedstawionymi w tekście, zarówno matematycznym, jak i popularnonaukowym, a także w formie wykresów, diagramów, tabel.	Zdający: V.12) na podstawie wykresu funkcji y = f(x) szkicuje wykresy funkcji y = f(x - a) [].

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

В

Zadanie 12. (0-1)

Wymagania egzaminacyjne 2023 i 2024	
Wymaganie ogólne	Wymagania szczegółowe
II. Wykorzystanie i tworzenie informacji.	Zdający:
1. Interpretowanie i operowanie	V.13) posługuje się funkcją wykładniczą []
informacjami przedstawionymi w tekście,	do opisu i interpretacji zagadnień
zarówno matematycznym, jak	związanych z zastosowaniami
i popularnonaukowym, a także w formie	praktycznymi;
wykresów, diagramów, tabel.	V.2) oblicza wartość funkcji zadanej wzorem
	algebraicznym.

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

D

Zadanie 13. (0-1)

Wymagania egzaminacyjne 2023 i 2024	
Wymaganie ogólne	Wymaganie szczegółowe
III. Wykorzystanie i interpretowanie	Zdający:
reprezentacji.	VI.4) stosuje wzór na n -ty wyraz [] ciągu
2. Dobieranie i tworzenie modeli	arytmetycznego.
matematycznych przy rozwiązywaniu	
problemów praktycznych i teoretycznych.	

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

Α

Zadanie 14. (0-1)

Wymagania egzaminacyjne 2023 i 2024	
Wymaganie ogólne	Wymagania szczegółowe
III. Wykorzystanie i interpretowanie	Zdający:
reprezentacji.	VI.1) oblicza wyrazy ciągu określonego
2. Dobieranie i tworzenie modeli	wzorem ogólnym;
matematycznych przy rozwiązywaniu	VI.5) stosuje wzór [] na sumę
problemów praktycznych i teoretycznych.	n początkowych wyrazów ciągu
	geometrycznego.

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepełna lub niepoprawna albo brak odpowiedzi.

Rozwiązanie

PF

Zadanie 15. (0-1)

Wymagania egzaminacyjne 2023 i 2024	
Wymaganie ogólne	Wymaganie szczegółowe
III. Wykorzystanie i interpretowanie	Zdający:
reprezentacji.	VI.6) wykorzystuje własności ciągów []
Dobieranie i tworzenie modeli	geometrycznych [].
matematycznych przy rozwiązywaniu	
problemów praktycznych i teoretycznych.	

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

Α

Zadanie 16. (0-2)

Wymagania egzaminacyjne 2023 i 2024	
Wymaganie ogólne	Wymaganie szczegółowe
III. Wykorzystanie i interpretowanie reprezentacji.1. Stosowanie obiektów matematycznych	Zdający: VII.1) wykorzystuje definicje funkcji: [] cosinus i tangens dla kątów od 0° do 180°
i operowanie nimi, interpretowanie pojęć matematycznych.	[].

Zasady oceniania

2 pkt – dwie poprawne odpowiedzi.

1 pkt – jedna poprawna odpowiedź.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

16.1. B

16.2. D

Zadanie 17. (0-1)

Wymagania egzaminacyjne 2023 i 2024	
Wymaganie ogólne	Wymagania szczegółowe
III. Wykorzystanie i interpretowanie reprezentacji. 1. Stosowanie obiektów matematycznych i operowanie nimi, interpretowanie pojęć	Zdający: VII.1) wykorzystuje definicje funkcji: sinus, cosinus i tangens dla kątów od 0° do 180° [];
matematycznych.	VII.2) korzysta z wzorów $\sin^2 \alpha + \cos^2 \alpha = 1$, $\operatorname{tg} \alpha = \frac{\sin \alpha}{\cos \alpha}$.

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

Α

Zadanie 18. (0-1)

Wymagania egzaminacyjne 2023 i 2024	
Wymaganie ogólne	Wymaganie szczegółowe
III. Wykorzystanie i interpretowanie	Zdający:
reprezentacji.	IX.2) posługuje się równaniem prostej na
1. Stosowanie obiektów matematycznych	płaszczyźnie w postaci kierunkowej, w tym
i operowanie nimi, interpretowanie pojęć	wyznacza równanie prostej o zadanych
matematycznych.	własnościach (takich jak na przykład []
	prostopadłość do innej prostej []).

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

D

Zadanie 19. (0-1)

Wymagania egzaminacyjne 2023 i 2024	
Wymaganie ogólne	Wymaganie szczegółowe
III. Wykorzystanie i interpretowanie reprezentacji.1. Stosowanie obiektów matematycznych i operowanie nimi, interpretowanie pojęć matematycznych.	Zdający: IX.2) posługuje się równaniem prostej na płaszczyźnie w postaci kierunkowej, w tym wyznacza równanie prostej o zadanych własnościach (takich jak na przykład [] równoległość [] do innej prostej []).

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

В

Zadanie 20. (0-1)

Wymagania egzaminacyjne 2023 i 2024	
Wymaganie ogólne	Wymaganie szczegółowe
III. Wykorzystanie i interpretowanie	Zdający:
reprezentacji.	IX.4) posługuje się równaniem okręgu
1. Stosowanie obiektów matematycznych	$(x-a)^2 + (y-b)^2 = r^2$.
i operowanie nimi, interpretowanie pojęć	
matematycznych.	

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

Α

Zadanie 21. (0-1)

Wymagania egzaminacyjne 2023 i 2024	
Wymaganie ogólne Wymaganie szczegółowe	
III. Wykorzystanie i interpretowanie	Zdający:
reprezentacji.	IX.3) oblicza odległość dwóch punktów
2. Dobieranie i tworzenie modeli	w układzie współrzędnych.
matematycznych przy rozwiązywaniu	
problemów praktycznych i teoretycznych.	

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

D

Zadanie 22. (0-1)

Wymagania egzaminacyjne 2023 i 2024	
Wymaganie ogólne Wymagania szczegółowe	
IV. Rozumowanie i argumentacja.	Zdający:
1. Przeprowadzanie rozumowań, także	VIII.5) stosuje własności kątów wpisanych
kilkuetapowych, podawanie argumentów	i środkowych;
uzasadniających poprawność rozumowania,	VIII.7) stosuje twierdzenie [] o kącie
odróżnianie dowodu od przykładu.	między styczną a cięciwą.

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

В

Zadanie 23. (0-1)

Wymagania egzaminacyjne 2023 i 2024	
Wymaganie ogólne Wymagania szczegółowe	
II. Wykorzystanie i tworzenie informacji.	Zdający:
1. Interpretowanie i operowanie	VIII.4) korzysta z własności kątów
informacjami przedstawionymi w tekście,	i przekątnych w [] rombach [];
zarówno matematycznym, jak	VIII.11) stosuje funkcje trygonometryczne
i popularnonaukowym, a także w formie	do wyznaczania długości odcinków
wykresów, diagramów, tabel.	w figurach płaskich oraz obliczania pól figur.

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

C

Zadanie 24. (0-2)

Wymagania egzaminacyjne 2023 i 2024	
Wymaganie ogólne	Wymagania szczegółowe
IV. Rozumowanie i argumentacja.	Zdający:
4. Stosowanie i tworzenie strategii przy	VIII.1) wyznacza promienie i średnice
rozwiązywaniu zadań, również w sytuacjach	okręgów, długości cięciw okręgów oraz
nietypowych.	odcinków stycznych, w tym
	z wykorzystaniem twierdzenia Pitagorasa;
	VIII.8) korzysta z cech podobieństwa
	trójkątów.

Zasady oceniania

2 pkt – poprawna metoda i obliczenie promienia okręgu \mathcal{O} : r=7.

- 1 pkt stwierdzenie i wykazanie, że trójkąty *APC* oraz *BPD* są podobne *ALBO*
 - stwierdzenie i wykazanie, że trójkąty APD oraz BPC są podobne, ALBO
 - zapisanie równości, wynikającej z podobieństwa trójkątów lub twierdzenia o siecznych, prowadzącej do obliczenia długości odcinka PA, np.

$$\frac{|PA|}{|PD|} = \frac{|PC|}{|PB|}, \ |PA| \cdot |PB| = |PC| \cdot |PD|.$$

0 pkt – rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania.

Przykładowe pełne rozwiązania

Sposób I

Z warunków zadania otrzymujemy:

- $| \angle ABD | = | \angle ACD |$, ponieważ są to kąty wpisane oparte na tym samym łuku AD,
- $| \angle BAC | = | \angle BDC |$, ponieważ są to kąty wpisane oparte na tym samym łuku BC,
- $| \angle APC | = | \angle BPD |$, ponieważ są to kąty wierzchołkowe.

Zatem trójkąty ACP oraz BPD są podobne na podstawie cechy KKK (kąt – kąt – kąt).

Z podobieństwa trójkątów ACP oraz BPD otrzymujemy:

$$\frac{|PA|}{|PD|} = \frac{|PC|}{|PB|}$$

$$\frac{|PA|}{5} = \frac{8}{4}$$

$$|PA| = 10$$

$$|AB| = |AP| + |PB| = 10 + 4 = 14$$

Zatem promień r okręgu \mathcal{O} jest równy:

$$r = \frac{1}{2} \cdot |AB| = \frac{1}{2} \cdot 14 = 7$$

Sposób II

Z warunków zadania otrzymujemy:

- $| \angle ADC | = | \angle ABC |$, ponieważ są to kąty wpisane oparte na tym samym łuku AC,
- $| \angle BAD | = | \angle BCD |$, ponieważ są to kąty wpisane oparte na tym samym łuku BD,
- $| \not APD | = | \not APC |$, ponieważ są to kąty wierzchołkowe.

Zatem trójkąty APD oraz BPC są podobne na podstawie cechy KKK (kąt – kąt – kąt).

Z podobieństwa trójkątów APD oraz BPC otrzymujemy:

$$\frac{|PA|}{|PC|} = \frac{|PD|}{|PB|}$$

$$\frac{|PA|}{8} = \frac{5}{4}$$

$$|PA| = 10$$

$$|AB| = |AP| + |PB| = 10 + 4 = 14$$

Zatem promień r okręgu \mathcal{O} jest równy:

$$r = \frac{1}{2} \cdot |AB| = \frac{1}{2} \cdot 14 = 7$$

Sposób III

Korzystamy z twierdzenia o siecznych okręgu:

$$|PA| \cdot |PB| = |PC| \cdot |PD|$$
$$|PA| \cdot 4 = 8 \cdot 5$$
$$|PA| = 10$$

Obliczamy długość średnicy okręgu AB:

$$|AB| = |AP| + |PB| = 10 + 4 = 14$$

Zatem promień r okręgu \mathcal{O} jest równy:

$$r = \frac{1}{2} \cdot |AB| = \frac{1}{2} \cdot 14 = 7$$

Zadanie 25. (0-1)

Wymagania egzaminacyjne 2023 i 2024	
Wymaganie ogólne	Wymagania szczegółowe
III. Wykorzystanie i interpretowanie	Zdający:
reprezentacji.	X.1) rozpoznaje wzajemne położenie
3. Tworzenie pomocniczych obiektów	prostych w przestrzeni [];
matematycznych na podstawie istniejących,	X.2) posługuje się pojęciem kąta między
w celu przeprowadzenia argumentacji lub	prostą a płaszczyzną;
rozwiązania problemu.	X.4) oblicza objętości [] graniastosłupów
	i ostrosłupów […].

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

Α

Zadanie 26. (0-3)

Wymagania egzaminacyjne 2023 i 2024	
Wymaganie ogólne	Wymagania szczegółowe
III. Wykorzystanie i interpretowanie	Zdający:
reprezentacji.	X.2) posługuje się pojęciem kąta między
3. Tworzenie pomocniczych obiektów	prostą a płaszczyzną;
matematycznych na podstawie istniejących,	X.3) rozpoznaje w graniastosłupach
w celu przeprowadzenia argumentacji lub	i ostrosłupach kąty między odcinkami
rozwiązania problemu.	(np. krawędziami, krawędziami
	i przekątnymi), oblicza miary tych kątów;
	X.4) oblicza objętości [] ostrosłupów,
	również z wykorzystaniem trygonometrii
	i poznanych twierdzeń.

Zasady oceniania

- 3 pkt poprawna metoda obliczenia wysokości ściany bocznej ostrosłupa $\,$ oraz poprawny wynik: $h_b=10.$
- 2 pkt obliczenie współczynnika proporcjonalności: x=2 *ALBO*
 - obliczenie długości krawędzi podstawy: a=12, ALBO
 - obliczenie wysokości ostrosłupa: H = 8,
 - zapisanie, że H=8 i $\frac{1}{2}a=6$ **oraz** sprawdzenie, że dla tych danych liczbowych objętość ostrosłupa jest równa 384,
 - zapisanie równania z jedną niewiadomą h_b wysokością ściany bocznej, np.

$$\frac{1}{3} \cdot \left(\frac{6}{5}h_b\right)^2 \cdot \frac{4}{5}h_b = 384,$$

- obliczenie objętości $V_1=48\,$ ostrosłupa o krawędzi podstawy $a_1=6\,$ i wysokości $H_1=4$, podobnego do rozpatrywanego **oraz** obliczenie skali podobieństwa tych ostrosłupów, np. $k=\sqrt[3]{\frac{384}{48}}=2.$
- 1 pkt oznaczenie połowy krawędzi podstawy jako 3x i zapisanie wysokości ostrosłupa jako 4x **oraz** zapisanie wysokości ściany bocznej jako 5x, gdzie x jest współczynnikiem proporcjonalności *ALBO*
 - oznaczenie połowy krawędzi podstawy jako 3x i zapisanie wysokości ostrosłupa jako 4x **oraz** zapisanie równania z jedną niewiadomą x prowadzącego do wyznaczenia krawędzi podstawy oraz wysokości ostrosłupa, np.

$$\frac{1}{3} \cdot (6x)^2 \cdot 4x = 384,$$
ALBO

 zapisanie dwóch równań z niewiadomymi a oraz H prowadzących do wyznaczenia krawędzi podstawy oraz wysokości ostrosłupa, np.

$$\frac{H}{\frac{1}{2}a} = \frac{4}{3} \text{ oraz } \frac{1}{3} \cdot a^2 \cdot H = 384,$$
ALBO

- zapisanie zależności pomiędzy długością krawędzi podstawy oraz wysokością ściany bocznej np. $\frac{\frac{1}{2}a}{h_b}=\frac{3}{5}$ **oraz** zapisanie zależności pomiędzy wysokością ostrosłupa oraz wysokością ściany bocznej, np. $\frac{H}{h_b}=\frac{4}{5}$,
- obliczenie objętości $V_1=48$ ostrosłupa o krawędzi podstawy $a_1=6$ i wysokości $H_1=4$, podobnego do rozpatrywanego **oraz** zapisanie stosunku objętości tych ostrosłupów, np. $\frac{V}{V_1}=\frac{384}{48}$.

0 pkt – rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania.

Uwagi:

- 1. Jeżeli zdający przyjmuje w rozwiązaniu, że jedna ze ścian bocznych ostrosłupa jest trójkątem równobocznym i wykorzystuje to do obliczenia wysokości ściany bocznej, to otrzymuje **0 punktów** za całe rozwiązanie, o ile nie nabył prawa do innej liczby punktów.
- 2. Jeżeli jedynym błędem zdającego jest:
 - a) zastosowanie niepoprawnej definicji jednej funkcji trygonometrycznej
 - b) błędne zastosowanie twierdzenia Pitagorasa
 - c) zastosowanie niepoprawnej tożsamości $\sqrt{x^2 + y^2} = x + y$
 - d) uwzględnienie we wzorze na objętość ostrosłupa połowy długości krawędzi podstawy

i rozwiązanie zostanie doprowadzone konsekwentnie do końca, to zdający może otrzymać **1 punkt** za całe rozwiązanie, o ile nie nabył praw do innej liczby punktów. Jeżeli zdający popełni więcej niż jeden z wymienionych błędów a) – d), to otrzymuje **0 punktów** za całe rozwiązanie.

- 3. Jeżeli zdający jedynie zapisze lub obliczy długość przeciwprostokątnej trójkąta prostokątnego o przyprostokątnych długości 3 i 4, to otrzymuje 0 punktów.
- **4.** Jeżeli zdający poprawnie obliczy wysokość ściany bocznej ostrosłupa opuszczoną z wierzchołka podstawy na krawędź boczną, to otrzymuje **3 punkty**.

Przykładowe pełne rozwiązania

Sposób I

Przyjmujemy oznaczenia:

 α – miara kąta pomiędzy wysokością ściany bocznej a podstawą,

a – długość krawędzi podstawy,

H – wysokość ostrosłupa,

 h_b – wysokość ściany bocznej ostrosłupa,

V – objętość ostrosłupa,

 P_p – pole podstawy ostrosłupa.

Egzamin maturalny z matematyki (poziom podstawowy). Test diagnostyczny – grudzień 2023 r.

Zauważamy, że $\alpha \in (0^\circ, 90^\circ)$ oraz $a>0, \ H>0$ i $h_b>0.$

Ponieważ O jest punktem przecięcia przekątnych kwadratu, więc $|OE| = \frac{1}{2}a$.

W trójkącie prostokątnym SOE mamy

$$\operatorname{tg} \alpha = \frac{|SO|}{|OE|} = \frac{H}{\frac{1}{2}a} = \frac{4}{3}$$

Zatem |SO| = 4x oraz |OE| = 3x (zobacz rysunek)

Z twierdzenia Pitagorasa otrzymujemy:

$$|SE|^2 = |SO|^2 + |OE|^2$$

$$(h_b)^2 = H^2 + \left(\frac{1}{2}a\right)^2$$

$$(h_b)^2 = (4x)^2 + (3x)^2 = 16x^2 + 9x^2 = 25x^2$$

$$h_b = 5x$$

Ponadto

$$V = \frac{1}{3} \cdot Pp \cdot H = \frac{1}{3} \cdot a^2 \cdot H = \frac{1}{3} \cdot (6x)^2 \cdot 4x = \frac{1}{3} \cdot 36x^2 \cdot 4x = 48x^3$$

Stąd, że V=384, otrzymujemy

$$48x^3 = 384$$
$$x^3 = 8$$
$$x = 2$$

Obliczamy wysokość $\,h_b\,$ ściany bocznej ostrosłupa:

$$h_b = 5x = 10$$

Sposób II

Przyjmujemy oznaczenia:

 α – miara kąta pomiędzy wysokością ściany bocznej a podstawą,

a – długość krawędzi podstawy,

H – wysokość ostrosłupa,

h_b – wysokość ściany bocznej ostrosłupa,

V – objętość ostrosłupa,

 P_p – pole podstawy ostrosłupa.

Zauważamy, że $\alpha \in (0^{\circ}, 90^{\circ})$ oraz $\alpha > 0$, H > 0 i $h_b > 0$.

Ponieważ O jest punktem przecięcia przekątnych kwadratu, więc $|OE| = \frac{1}{2}a$.

W trójkącie prostokątnym SOE mamy

$$\operatorname{tg} \alpha = \frac{|SO|}{|OE|} = \frac{H}{\frac{1}{2}a} = \frac{4}{3}$$

Zatem

$$H = \frac{4}{3} \cdot \frac{1}{2}a = \frac{2}{3}a$$

Ponadto

$$V = \frac{1}{3} \cdot P_p \cdot H = \frac{1}{3} \cdot a^2 \cdot H = \frac{1}{3} \cdot a^2 \cdot \frac{2}{3} a = \frac{2}{9} a^3$$

Stąd, że V = 384, otrzymujemy

$$\frac{2}{9}a^3 = 384$$

Egzamin maturalny z matematyki (poziom podstawowy). Test diagnostyczny – grudzień 2023 r.

$$a^{3} = 384 : \frac{2}{9} = 384 \cdot \frac{9}{2} = 1728$$

$$a = 12$$

$$H = \frac{2}{3}a = \frac{2}{3} \cdot 12 = 8$$

Z twierdzenia Pitagorasa obliczamy wysokość $\,h_b\,$ ściany bocznej ostrosłupa:

$$|SE|^2 = |SO|^2 + |OE|^2$$

$$(h_b)^2 = H^2 + \left(\frac{1}{2}a\right)^2$$

$$(h_b)^2 = 8^2 + 6^2 = 64 + 36 = 100$$

$$h_b = 10$$

Sposób III

Przyjmujemy oznaczenia:

 α – miara kąta pomiędzy wysokością ściany bocznej a podstawą,

a – długość krawędzi podstawy,

H – wysokość ostrosłupa,

h_b – wysokość ściany bocznej ostrosłupa,

V – objętość ostrosłupa,

 P_n – pole podstawy ostrosłupa.

Zauważamy, że $\alpha \in (0^{\circ}, 90^{\circ})$ oraz $\alpha > 0$, H > 0 i $h_b > 0$.

Ponieważ O jest punktem przecięcia przekątnych kwadratu, więc $|OE| = \frac{1}{2}a$.

$$\left(\frac{4}{3}\cos\alpha\right)^2 + \cos^2\alpha = 1$$

$$\frac{16}{9}\cos^2\alpha + \cos^2\alpha = 1$$

$$\frac{25}{9}\cos^2\alpha = 1$$

$$\cos^2\alpha = \frac{9}{25}$$

Stąd $\cos \alpha = \frac{3}{5}$, ponieważ α jest kątem ostrym.

Zatem
$$\sin \alpha = \frac{4}{3} \cdot \cos \alpha = \frac{4}{3} \cdot \frac{3}{5} = \frac{4}{5}$$

Z trójkata prostokatnego AOS otrzymujemy

$$\sin \alpha = \frac{H}{h_b}$$
 oraz $\cos \alpha = \frac{\frac{1}{2}a}{h_b}$

Zatem

$$\frac{H}{h_b} = \frac{4}{5} \quad \text{oraz} \quad \frac{\frac{1}{2}a}{h_b} = \frac{3}{5}$$

$$H = \frac{4}{5}h_b \quad \text{oraz} \quad a = \frac{6}{5}h_b$$

Ponadto

$$V = \frac{1}{3} \cdot P_p \cdot H = \frac{1}{3} \cdot a^2 \cdot H = \frac{1}{3} \cdot \left(\frac{6}{5}h_b\right)^2 \cdot \frac{4}{5}h_b = \frac{1}{3} \cdot \frac{36}{25}h_b^2 \cdot \frac{4}{5}h_b = \frac{48}{125}h_b^3$$

Stąd, że V = 384, otrzymujemy

$$\frac{48}{125}h_b^3 = 384$$

$$h_b^3 = 384 : \frac{48}{125} = 384 \cdot \frac{125}{48} = 1000$$

$$h_b = 10$$

Egzamin maturalny z matematyki (poziom podstawowy). Test diagnostyczny – grudzień 2023 r.

Sposób IV

Rozważmy ostrosłup prawidłowy czworokątny $A_1B_1C_1D_1S_1$ o wysokości 4 i krawędzi podstawy długości 6.

Objętość tego ostrosłupa jest równa

$$V_1 = \frac{1}{3} \cdot 6^2 \cdot 4 = 48$$

Ostrosłup ten jest podobny do danego ostrosłupa, a stosunek ich objętości jest równy sześcianowi skali podobieństwa. Zatem

$$k^3 = \frac{V}{V_1} = \frac{384}{48} = 8$$

Stąd k=2.

Ponieważ wysokość S_1E_1 ściany bocznej ostrosłupa $A_1B_1C_1D_1S_1$ jest równa 5, więc szukana wysokość ściany bocznej danego ostrosłupa jest równa $5 \cdot 2 = 10$.

Zadanie 27. (0-2)

Wymagania egzaminacyjne 2023 i 2024	
Wymaganie ogólne	Wymagania szczegółowe
IV. Rozumowanie i argumentacja. 4. Stosowanie i tworzenie strategii przy rozwiązywaniu zadań, również w sytuacjach nietypowych.	Zdający: XI.1) zlicza obiekty w prostych sytuacjach kombinatorycznych; XI.2) zlicza obiekty, stosując reguły mnożenia i dodawania (także łącznie) []; VI.6) wykorzystuje własności ciągów [] arytmetycznych [] do rozwiązywania zadań, również osadzonych w kontekście
	praktycznym.

Zasady oceniania

- 2 pkt poprawna metoda i obliczenie liczby numerów CAN spełniających warunki zadania: 840.
- 1 pkt podanie liczby możliwości wyboru pierwszej, drugiej i trzeciej cyfry numeru CAN ALBO
 - wypisanie czterech trzywyrazowych ciągów arytmetycznych: (9, 6, 3), (8, 5, 2),
 (7, 4, 1), (6, 3, 0),
 ALBO
 - zapisanie liczby możliwości wyboru czwartej, piątej i szóstej cyfry numeru CAN:
 7 · 6 · 5.

0 pkt – rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania.

Uwagi:

- 1. Jeżeli zdający błędnie przyjmie, że w numerze CAN nie występuje cyfra 0 i konsekwentnie poda liczbę wszystkich numerów CAN, w których nie występuje cyfra 0, to otrzymuje 1 punkt za całe rozwiązanie.
- **2.** Jeżeli zdający zapisze tylko 840, to otrzymuje **1 punkt** za całe rozwiązanie.

Przykładowe pełne rozwiązanie

Liczba wszystkich sześciocyfrowych numerów CAN spełniających warunki zadania jest iloczynem liczby możliwości ustawienia cyfr na trzech pierwszych miejscach i liczby możliwości ustawienia czwartej, piątej i szóstej cyfry.

Na pierwszych trzech miejscach znajdują się cyfry, które tworzą ciąg arytmetyczny o różnicy (-3). Cztery trzywyrazowe ciągi spełniają powyższy warunek: (9,6,3), (8,5,2), (7,4,1), (6,3,0).

Egzamin maturalny z matematyki (poziom podstawowy). Test diagnostyczny – grudzień 2023 r.

Czwartą cyfrę w numerze CAN możemy ustawić na 7 sposobów. Piątą cyfrę – na 6 sposobów. Szóstą cyfrę – na 5 sposobów.

Zatem liczba wszystkich sześciocyfrowych numerów CAN, spełniających warunki zadania, jest równa: $4 \cdot 7 \cdot 6 \cdot 5 = 840$.

Zadanie 28. (0-1)

Wymagania egzaminacyjne 2023 i 2024	
Wymagania ogólne	Wymaganie szczegółowe
I. Sprawność rachunkowa.	Zdający:
Wykonywanie obliczeń na liczbach	XII.1) oblicza prawdopodobieństwo
rzeczywistych, także przy użyciu	w modelu klasycznym.
kalkulatora, stosowanie praw działań	
matematycznych przy przekształcaniu	
wyrażeń algebraicznych oraz	
wykorzystywanie tych umiejętności przy	
rozwiązywaniu problemów w kontekstach	
rzeczywistych i teoretycznych;	
III. Wykorzystanie i interpretowanie	
reprezentacji.	
2. Dobieranie i tworzenie modeli	
matematycznych przy rozwiązywaniu	
problemów praktycznych i teoretycznych.	

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

С

Zadanie 29.1 (0-1)

Wymagania egzaminacyjne 2023 i 2024	
Wymaganie ogólne	Wymaganie szczegółowe
II. Wykorzystanie i tworzenie informacji.	Zdający:
Interpretowanie i operowanie	XII.1) oblicza prawdopodobieństwo
informacjami przedstawionymi w tekście,	w modelu klasycznym.
zarówno matematycznym, jak	
i popularnonaukowym, a także w formie	
wykresów, diagramów, tabel.	

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

С

Zadanie 29.2 (0-1)

Wymagania egzaminacyjne 2023 i 2024	
Wymagania ogólne	Wymaganie szczegółowe
II. Wykorzystanie i tworzenie informacji. 1. Interpretowanie i operowanie informacjami przedstawionymi w tekście, zarówno matematycznym, jak i popularnonaukowym, a także w formie wykresów, diagramów, tabel; IV. Rozumowanie i argumentacja. 3. Dobieranie argumentów do uzasadnienia poprawności rozwiązywania problemów, tworzenie ciągu argumentów, gwarantujących poprawność rozwiązania i skuteczność w poszukiwaniu rozwiązań zagadnienia.	Zdający: XII.2) [] znajduje [] dominantę.

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepełna lub niepoprawna albo brak odpowiedzi.

Rozwiązanie

А3

Zadanie 30. (0-4)

Wymagania egzaminacyjne 2023 i 2024	
Wymaganie ogólne Wymaganie szczegółowe	
III. Wykorzystanie i interpretowanie reprezentacji.2. Dobieranie i tworzenie modeli matematycznych przy rozwiązywaniu problemów praktycznych i teoretycznych.	Zdający: XIII) rozwiązuje zadania optymalizacyjne w sytuacjach dających się opisać funkcją kwadratową.

Zasady oceniania

- 4 pkt poprawna metoda obliczenia długości krótszej podstawy trapezu o największym polu i obliczenie największego pola trapezu **oraz** poprawne wyniki: $b=3~\mathrm{dm},~P=112,5~\mathrm{dm}^2.$
- 3 pkt zapisanie poprawnego wzoru na pole trapezu w zależności od zmiennej $\,b\,$ oraz prawidłowe obliczenie pierwszej współrzędnej wierzchołka paraboli: $\,b=3\,$ ALBO

 - zapisanie poprawnej nierówności między średnią geometryczną i średnią arytmetyczną dla liczb dodatnich, np. (12+b) i (18-b) $\sqrt{(12+b)(18-b)} \leq \frac{12+b+18-b}{2}$, ALBO
 - wyznaczenie pochodnej funkcji P oraz obliczenie jej miejsca zerowego, np. $P'(b)=-b+3,\ b=3.$
- 2 pkt zapisanie poprawnego wzoru na pole trapezu w zależności od jednej zmiennej: $P(b) = \frac{1}{2}(12+b)(18-b) \ \text{lub} \ P(h) = \frac{1}{2}(30-h)h.$
- 1 pkt zapisanie związku między krótszą podstawą a wysokością trapezu: b+h=18 **oraz** zapisanie wzoru na pole trapezu w zależności od dwóch zmiennych: $P(b)=\frac{1}{2}(12+b)h.$

0 pkt – rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania.

Uwagi:

- **1.** Jeżeli zdający zapisze pole trapezu jako funkcję P jednej zmiennej, ale otrzyma wartość pierwszej współrzędnej wierzchołka paraboli zawierającej wykres funkcji P, która leży poza dziedziną funkcji P, to może otrzymać co najwyżej **2 punkty** za całe rozwiązanie.
- **2.** Jeżeli zdający zapisze pole trapezu jako funkcję P jednej zmiennej, a następnie obliczy wartości tej funkcji dla pierwszej współrzędnej wierzchołka i dwóch argumentów leżących

- symetrycznie względem pierwszej współrzędnej wierzchołka i nie odwoła się do własności wykresu funkcji kwadratowej, to otrzymuje co najwyżej **3 punkty** za całe rozwiązanie.
- 3. Jeżeli zdający nie zapisze pola trapezu jako funkcji jednej zmiennej, a jedynie oblicza wartości pola dla wybranych par liczb b oraz h i na tej podstawie wskazuje największą wartość pola, to za całe rozwiązanie otrzymuje 0 punktów, o ile nie nabył prawa do innej liczby punktów.

Przykładowe pełne rozwiązanie

Sposób I

Przyjmujemy oznaczenia:

a = 12 - duższa podstawa trapezu,

b − krótsza podstawa trapezu,

h – wysokość trapezu.

Z warunków zadania otrzymujemy:

$$b + h = 18$$

Stąd wyznaczamy h:

$$h = 18 - b$$

Pole trapezu wyrażamy jako funkcję zmiennej b:

$$P(b) = \frac{1}{2}(12+b)(18-b) = -\frac{1}{2}(b+12)(b-18)$$

Wyznaczamy dziedzinę funkcji P. Z warunków zadania wynika, że:

$$b > 0$$
 oraz $h = 18 - b > 0$ oraz $b < 12$

Zatem

$$b > 0$$
 oraz $b < 18$ oraz $b < 12$

Zmienna b może przyjmować wartość z przedziału (0,12).

Wykresem funkcji P jest fragment paraboli skierowanej ramionami do dołu. Obliczamy pierwszą współrzędną wierzchołka paraboli:

$$p = \frac{-12 + 18}{2} = \frac{6}{2} = 3 \in (0, 12)$$

Zatem funkcja *P* przyjmuje wartość największą dla argumentu 3.

Dla b = 3 pole tego trapezu jest równe:

$$P(3) = \frac{1}{2}(12+3)(18-3) = 112,5$$

Największe pole równe 112,5 dm² ma trapez, którego krótsza podstawa ma 3 dm.

Egzamin maturalny z matematyki (poziom podstawowy). Test diagnostyczny – grudzień 2023 r.

Sposób II

Przyjmujemy oznaczenia:

a = 12 – dłuższa podstawa trapezu,

b − krótsza podstawa trapezu,

h − wysokość trapezu.

Z warunków zadania otrzymujemy:

$$b + h = 18$$

Stąd wyznaczamy b:

$$b = 18 - h$$

Pole trapezu wyrażamy jako funkcję zmiennej h:

$$P(h) = \frac{1}{2}(12 + 18 - h)h = \frac{1}{2}(30 - h)h$$

Wyznaczamy dziedzinę funkcji P. Z warunków zadania wynika, że:

$$h > 0$$
 oraz $b = 18 - h > 0$ oraz $b = 18 - h < 12$

Zatem

$$h > 0$$
 oraz $h < 18$ oraz $h > 6$

Zmienna h może przyjmować wartość z przedziału (6, 18).

Wykresem funkcji *P* jest fragment paraboli skierowanej ramionami do dołu. Obliczamy pierwszą współrzędną wierzchołka paraboli:

$$p = \frac{30+0}{2} = 15 \in (6,18)$$

Zatem funkcja *P* przyjmuje wartość największą dla argumentu 15.

Dla h = 15 pole tego trapezu jest równe:

$$P(15) = \frac{1}{2}(30 - 15)15 = 112,5$$

Obliczamy długość krótszej podstawy trapezu:

$$b = 18 - 15 = 3$$

Największe pole równe 112,5 dm² ma trapez, którego krótsza podstawa ma 3 dm.

Sposób III

Przyjmujemy oznaczenia:

a = 12 – dłuższa podstawa trapezu,

b − krótsza podstawa trapezu,

h − wysokość trapezu.

Z warunków zadania otrzymujemy:

$$b + h = 18$$

Stąd wyznaczamy h:

$$h = 18 - b$$

Pole trapezu wyrażamy jako funkcję zmiennej b:

$$P(b) = \frac{1}{2}(12+b)(18-b)$$

Z nierówności między średnią geometryczną i średnią arytmetyczną dla liczb dodatnich (12+b) i (18-b) otrzymujemy

$$\sqrt{(12+b)(18-b)} \le \frac{12+b+18-b}{2}$$

$$\sqrt{(12+b)(18-b)} \le 15$$

Stąd

$$(12+b)(18-b) \le 225$$

przy czym równość zachodzi tylko wtedy, gdy 12 + b = 18 - b, czyli dla b = 3.

Wtedy pole trapezu jest największe i równe $P(3) = \frac{1}{2} \cdot 225 = 112,5.$