oparciu o znane wzory i reguły różniczkowania obliczpochodne: $\left(5x^4 - \frac{3}{x^3} + 4\sqrt[4]{x^3}\right)', \quad \left(\frac{10^x}{\cos x}\right)', \quad (\cos x^3 \operatorname{tg} x)'$

2 Stosując regułę de l'Hospitala oblicz granice:

 $\lim_{x \to 1} \frac{x^2 + x - 2}{x^3 - 1}, \quad \lim_{x \to 0} \frac{x \sin x}{e^x - 1 - x}$

3 Wyznacz przedziały monotoniczności i ekstrema lokalne funkcji $y = 3x^4 + 8x^3 - 12x^2 - 48x$.

4 Oblicz $\int \left(\frac{3}{x^4} + \frac{2}{\sqrt[3]{x}}\right) dx$, $\int \cos^5 x \sin x dx$, $\int x \cos x dx$.

5 Wyznacz pole zawarte pomiędzy liniami $y = x^2$,

6 Oblicz $\int_{1}^{2} \left(4x - \frac{1}{x^2}\right) dx$, $\int_{0}^{1} x^2 (1 - x^3)^3 dx$.

oparciu O znane wzory i reróżniczkowania guly pochodne: oblicz $\left(5x^4 - \frac{3}{x^3} + 4\sqrt[4]{x^3}\right)', \quad \left(\frac{10^x}{\cos x}\right)', \quad \left(\cos x^3 \operatorname{tg} x\right)'$ **2** Stosując regulę de l'Hospitala oblicz granice: $\lim_{x \to 1} \frac{x^2 + x - 2}{x^3 - 1}, \quad \lim_{x \to 0} \frac{x \sin x}{e^x - 1 - x}$ **3** Wyznacz przedziely magasta.

3 Wyznacz przedziały monotoniczności i ekstrema lokalne funkcji $y = 3x^4 + 8x^3 - 12x^2 - 48x$.

4 Oblicz $\int \left(\frac{3}{x^4} + \frac{2}{3\sqrt{x}}\right) dx$, $\int \cos^5 x \sin x dx$, $\int x \cos x dx$.

5 Wyznacz pole zawarte pomiędzy liniami $y = x^2$,

6 Oblicz $\int_{1}^{2} \left(4x - \frac{1}{x^2}\right) dx$, $\int_{0}^{1} x^2 (1 - x^3)^3 dx$.

W oparciu znane wzory i guły różniczkowania oblicz pochodne: $\left(5x^4 - \frac{3}{x^3} + 4\sqrt[4]{x^3}\right)', \quad \left(\frac{10^x}{\cos x}\right)', \quad \left(\cos x^3 \operatorname{tg} x\right)'$ **2** Stosując regulę de l'Hospitala oblicz granice: $\lim_{x \to 1} \frac{x^2 + x - 2}{x^3 - 1}, \quad \lim_{x \to 0} \frac{x \sin x}{e^x - 1 - x}$ **3** Wygnego produciela

3 Wyznacz przedziały monotoniczności i ekstrema lokalne funkcji $y = 3x^4 + 8x^3 - 12x^2 - 48x$.

4 Oblicz $\int \left(\frac{3}{x^4} + \frac{2}{\sqrt[3]{x}}\right) dx$, $\int \cos^5 x \sin x dx$, $\int x \cos x dx$.

5 Wyznacz pole zawarte pomiędzy liniami $y = x^2$,

6 Oblicz $\int_{1}^{2} \left(4x - \frac{1}{x^2}\right) dx$, $\int_{0}^{1} x^2 (1 - x^3)^3 dx$.

 \mathbf{II}

O znane wzory i oparciu guły różniczkowania oblicz pochodne: $\left(6x^7 + \frac{2}{x^2} - \frac{3}{\sqrt[3]{x}}\right)'$, $\left(\frac{\arcsin x}{\arctan \operatorname{gr} x}\right)'$, $\left(x^2 \ln(x^2 - 3x + 1)\right)'$ **2** Stosując regułę de l'Hospitala oblicz granice:

 $\lim_{x \to 0} \frac{\sin x}{e^x - 1}, \quad \lim_{x \to 0} \frac{\cos x - 1}{x^2}$

3 Wyznacz przedziały monotoniczności i ekstrema lokalne funkcji $y = 3x^4 - 8x^3 - 18x^2 + 72x$.

4 Oblicz $\int \left(3\sin x - \frac{3}{x^2}\right) dx$, $\int \frac{dx}{(1+x^2)\operatorname{arctg} x}$, $\int x^2 \ln x dx$.

5 Wyznacz pole zawarte pomiędzy liniami $y = x^2$,

6 Oblicz $\int_{1}^{4} \left(\frac{1}{\sqrt{x}} + \sqrt{x} \right) dx$, $\int_{-1}^{1} \frac{x dx}{(2+x)^2}$.

1 W oparciu znane wzory i re-O guły różniczkowania obliczpochodne: $\left(6x^7 + \frac{2}{x^2} - \frac{3}{\sqrt[3]{x}}\right)', \quad \left(\frac{\arcsin x}{\arctan x}\right)', \quad \left(x^2 \ln(x^2 - 3x + 1)\right)'$ **2** Stosując regułę de l'Hospitala oblicz granice: $\lim_{x \to 0} \frac{\sin x}{e^x - 1}, \quad \lim_{x \to 0} \frac{\cos x - 1}{x^2}$ **3** Wyznacz przedziały monotoniczności i ekstrema lobalna funkcji w 2.4 a.3.3 10.2 + 72.

kalne funkcji $y = 3x^4 - 8x^3 - 18x^2 + 72x$.

4 Oblicz $\int \left(3\sin x - \frac{3}{x^2}\right) dx$, $\int \frac{dx}{(1+x^2)\operatorname{arctg} x}$, $\int x^2 \ln x dx$.

5 Wyznacz pole zawarte pomiędzy liniami $y = x^2$,

6 Oblicz $\int_{1}^{4} \left(\frac{1}{\sqrt{x}} + \sqrt{x}\right) dx$, $\int_{1}^{1} \frac{x dx}{(2+x)^2}$.

W znane oparciu wzory i różniczkowania guły oblicz pochodne: $\left(6x^7 + \frac{2}{x^2} - \frac{3}{\sqrt[3]{x}}\right)', \quad \left(\frac{\arcsin x}{\arctan \operatorname{gr}(x)}\right)', \quad \left(x^2 \ln(x^2 - 3x + 1)\right)'$ **2** Stosując regulę de l'Hospitala oblicz granice:

 $\lim_{x \to 0} \frac{\sin x}{e^x - 1}, \quad \lim_{x \to 0} \frac{\cos x - 1}{x^2}$

3 Wyznacz przedziały monotoniczności i ekstrema lokalne funkcji $y = 3x^4 - 8x^3 - 18x^2 + 72x$.

4 Oblicz $\int \left(3\sin x - \frac{3}{x^2}\right) dx$, $\int \frac{dx}{(1+x^2)\operatorname{arctg} x}$, $\int x^2 \ln x dx$.

5 Wyznacz pole zawarte pomiędzy liniami $y = x^2$,

6 Oblicz $\int_{1}^{4} \left(\frac{1}{\sqrt{x}} + \sqrt{x}\right) dx$, $\int_{1}^{1} \frac{x dx}{(2+x)^2}$.