■ myz@seas.upenn.edu | 🕯 www.mingyuanzhang.com | 🖸 moshimowang | 🛅 mingyuanzhang | 🕏 Mingyuan Zhang

Summary.

- Ph.D. student researcher working on machine learning and artificial intelligence.
- Conduct independent research on how to **design good algorithms with performance guarantees** for various machine learning problems.
- Methodologies include probability, statistics, machine learning, optimization, and programming.
- Produced 7 manuscripts (6 of them as the lead author); published 5 of them in major machine learning and natural
 language processing conferences, including top-tier conferences such as ICML, NeurIPS, and EMNLP.
- Looking for opportunities to apply theoretical insights to solve real-world problems in machine learning, data science, and/or quantitative research.

Education

Ph.D. in Computer and Information Science.

2018 - 2024 (Expected)

University of Pennsylvania, Philadelphia, Pennsylvania, USA

GPA: 4.00/4.00

• Advisor: Prof. Shivani Agarwal. Thesis: Statistical Machine Learning for Complex Classification Problems.

B.S. in Honors Mathematics, Honors Statistics, Computer Science, and Data Science.

2018

University of Michigan, Ann Arbor, Michigan, USA

GPA: 3.92/4.00

• Highest Honors in Mathematics and Honors in Statistics.

Research

Statistical Machine Learning for Complex Classification Problems.

Aug. 2018 - Present

Design good algorithms with performance guarantees. Advised by Prof. Shivani Agarwal. University of Pennsylvania

- Design algorithms for machine learning problems involving additional complexities beyond standard settings; these include multi-label classification, learning with noisy labels, weakly supervised learning, optimizing complex performance measures, and multiclass classification with a specific function class.
- Prove performance guarantees for the designed algorithms to show the performance improves with more data.
- Design and execute experiments using tools such as scikit-learn, TensorFlow, and PyTorch in order to validate the theories and benchmark the proposed algorithms against others.
- Produced 5 first-authored manuscripts; published 4 of them in major conferences on machine learning, including top-tier conferences such as ICML and NeurIPS.

Foreseeing the Benefits of Incidental Supervision.

Nov. 2019 - June 2020

Measure the quality of incidental/weak supervision signals. Advised by Prof. Dan Roth.

University of Pennsylvania

- We proposed a unified measure to quantify the benefits of different incidental signals for a given target task.
- The manuscript of this work was published in EMNLP 2021, a top-tier conference on natural language processing.

Publications

${\bf Multiclass\ Learning\ from\ Noisy\ Labels\ for\ Non-decomposable\ Performance\ Measures.}$

To appear

Mingyuan Zhang, Shivani Agarwal.

In Proceedings of the 27th International Conference on Artificial Intelligence and Statistics (AISTATS), 2024.

Foreseeing the Benefits of Incidental Supervision.

[Link]

Hangfeng He, Mingyuan Zhang, Qiang Ning, Dan Roth.

In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing (EMNLP), 2021.

Learning from Noisy Labels with No Change to the Training Process.

[Link]

Mingyuan Zhang, Jane Lee, Shivani Agarwal.

In Proceedings of the 38th International Conference on Machine Learning (ICML), 2021.

Bayes Consistency vs. H-Consistency: The Interplay between Surrogate Loss Functions and the Scoring Function Class.

[Link]

Mingyuan Zhang, Shivani Agarwal.

In Advances in Neural Information Processing Systems (NeurIPS), 2020. Spotlight paper.

FEBRUARY 2024 MINGYUAN ZHANG · RÉSUMÉ

Convex Calibrated Surrogates for the Multi-Label F-Measure.

[Link]

Mingyuan Zhang, Harish G. Ramaswamy, Shivani Agarwal.

In Proceedings of the 37th International Conference on Machine Learning (ICML), 2020.

Multi-Label Learning from Noisy Labels.

Mingyuan Zhang, Shivani Agarwal.

Under review.

On the Minimax Regret in Online Ranking with Top-k Feedback.

[Link]

Mingyuan Zhang, Ambuj Tewari.

Preprint, 2023.

Multiclass and Multi-Label Learning with General Losses.

H. G. Ramaswamy, **M. Zhang**, B. S. Babu, S. Agarwal, A. Tewari, R. C. Williamson.

In preparation.

Skills

Programming Languages Python, C++, Matlab, R.

Machine Learning Libraries scikit-learn, TensorFlow, PyTorch, Hugging Face, OpenAI API.

Natural Languages English, Mandarin Chinese.

Courses_

Graduate level: Real Analysis (A), Probability Theory (A), Discrete Stochastic Processes (A), Numerical Linear Algebra (A+), Combinatorial Theory (A+), Complex Variables (A), Applied Functional Analysis (A), Nonlinear Programming (A+), Statistical Inference (A), Linear Models (A), Analysis of Multivariate and Categorical Data (A), Statistical Learning (A), Time Series Analysis (A-), Machine Learning (A), Information Theory (A+), Statistical Signal Processing (A).

Undergraduate level: Intermediate Microeconomics Theory (A+), Intermediate Macroeconomics Theory (A), Game Theory (A+), Theoretical Statistics (A+), Statistical Computing Methods (A+), Numerical Methods (A+), Programming and Data Structures (A+), Data Structures and Algorithms (A+), Algorithms (A), Randomized Algorithms (A+), Database Management Systems (A), Computer Vision (A), Information Retrieval (A).

Honors, Awards, Certificates_

2017-2018 Outstanding Achievement in Mathematics Awards , University of Michigan		USA
2023	Deep Learning Specialization, DeepLearning.Al	Coursera
2023	DeepLearning.AI TensorFlow Developer Specialization, DeepLearning.AI	Coursera
2023	TensorFlow: Advanced Techniques Specialization, DeepLearning.Al	Coursera
2023	Natural Language Processing Specialization, DeepLearning.Al	Coursera
2023	Machine Learning Engineering for Production (MLOps) Specialization, DeepLearning.Al	Coursera
2024	Generative AI with Large Language Models, DeepLearning.AI	Coursera

Teaching & Service

Head Teaching Assistant — Machine learning.

Spring of 2020, 2021, 2022

CIS 520: A graduate-level machine learning course.

University of Pennsylvania

• Managed the TA team (\sim 10 TAs) for a large class (\sim 100 students) to help students learn effectively, held weekly office hours, made homework and exam questions, and administrated and graded exams.

Grader — Various math courses.

2015 - 2018

Various linear algebra and probability courses.

University of Michigan

Graded weekly assignments for six (undergraduate and graduate level) linear algebra and probability courses.

Reviewers — Various machine learning conferences and journals.

2021 - 2024

NeurIPS, ICLR, AISTATS, JMLR, IEEE PAMI.

Reviewed more than 30 papers in total.