Circles

Definition 1 (Circle). Let o and x be points in an ordered geometry with a segment congruence.

1. The circle with center at o and passing through x is the set

$$C_o(x) = \{ y \mid \overline{oy} \cong \overline{ox} \}.$$

2. We say that a point z is interior to the circle $C_o(x)$ if either z = o or there is a point $y \in C_o(x)$ such that [ozy], and define the interior of $C_o(x)$ to be the set

int
$$C_o(x) = \{z \mid z = o \text{ or } [ozy] \text{ for some } y \in C_o(x)\}.$$

3. We say that a point z is exterior to the circle $C_o(x)$ if there is a point $y \in C_o(x)$ such that [oyz], and define the exterior of $C_o(x)$ to be the set

ext
$$C_o(x) = \{z \mid [oyz] \text{ for some } y \in C_o(x)\}.$$

Examples

 \mathbb{R}^2 Let $O = (o_1, o_2)$ and $A = (a_1, a_2)$ be points in the Cartesian plane. Then $\mathcal{C}_O(A)$ consists of all points $X = (x_1, x_2)$ which satisfy the equation

$$(x_1 - o_1)^2 + (x_2 - o_2)^2 = (a_1 - o_1)^2 + (a_2 - o_2)^2.$$