

National Quality Control Laboratory Hospital Road , KNH Complex, P.O. Box 29726, 00202 Nairobi, Kenya Telephone: 2726963, +254 - 020 - 3544525/30 • Fax: 2718073

Email: info@nqcl.go.ke Website: www.nqcl.go.ke

SAMPLE INFORMATION FORM

Date Sample Submitted:	Laborat	ory Reference	No:	
Product Generic/Brand Name:				
Product Chemical Name:				
Product Description:				
Product Presentation:				
Label claim: -				
Batch/Lot No: Date of manufacture: Name of Client and		Date of E	se No: xpiry:	
Address: Client Reference No: Manufacturer:				
Country of Origin:	Sample Issued	l:	Samples Returned	
Test(s) requested: a) b) c) d) e) f)		U.S.P B.P	specify year and exact pag	
Analyst:	Signature:		Date:	
Checked by:	Signature:		Date:	
Approved by:	Signature:		Date:	

RELATIVE DENSITY & ASSAY DATA FORM: SYRUPS/SUSPENSIONS

Determination of Suspension/Syrup Relative Density:

Pyknometer Mass (g)	Pyknometer + Water (g)	Pyknometer + Sample (g)
	Mean:	Mean:
Mass of V Mass of S	Vater (g):ample (g):	
	Mass of Sample (g)	
Relative Density of Sample	Mass of Water (g)	=
Sampl	e Relative Density =	

MICROBIOLOGICAL ASSAY OF ERYTHROMYCIN SUSPENSION

Method of Analysis No.: Micro/MoA003

Adapted from the USP 34 NF 29 2011 Vol. 1 Page 70 (Antibiotics - Microbial Assay)

MICROBIOLOGY LAB NO.	DATE RECEIVED	DATE TEST SET	DATE OF RESULTS		
SAMPLE AND STANDARD PREPARATION					

Preparation of Standard solution:

Taking into consideration its potency (as Erythromycin Base), weigh accurately a weight of the standard equivalent to approx. 25mg of Erythromycin into a 25mL volumetric flask. Add a little methanol and sonicate for 10 minutes to dissolve. Allow to cool and then make to volume with methanol. Dilute 5mL of the resultant solution to 25mL using Buffer Solution pH 8.0. This gives solution S_3 i.e. Standard Stock Solution (\sim 0.2 mg/mL).

The standard solution should be prepared in <u>duplicate</u> (Std A & B).

NB: The esteric form of Erythromycin in the Standard used should be the same as that in the sample, i.e. EthylSuccinate.

Preparation of the Sample Solution:

Reconstitute the suspension as directed, and determine its relative density. Weigh accurately a weight of the suspension equivalent to approx. 125mg Erythromycin to a 100mL volumetric flask. Add a little methanol and sonicate for 10 minutes to dissolve. Allow to cool and make up to volume with methanol. Take 10mL of this solution into a 25mL volumetric flask and top up with methanol. Transfer 10mL of the resultant solution to a 25mL volumetric flask and make up to volume with Buffer Solution pH 8.0. This gives solution T_3 i.e. Sample Stock Solution ($\sim 0.2 \text{ mg/mL}$).

The sample solution should be prepared in triplicate (Test A, B, & C).

Preparation of the test solutions:

Dilute both Solutions S_3 and T_3 as follows:

Dilute 5mL to 10mL using Buffer Solution pH 8.0; this gives solutions S_2 and T_2 respectively.

From the S₂ and T₂ solution take 5mL and dilute to 10mL with Buffer Solution pH 8.0; this yields solutions S_1 and T_1 respectively.

Preparation of Innoculum:

From a recently grown slant of Bacillus pumilus, subculture onto a plate of Nutrient Agar and incubate at 35 ° C for 5 days or until sufficient growth is attained. Harvest the growth using sterile water or normal saline into a test-tube or sterile bottle.

Preparation of the Media:

Weigh Antibiotic Assay Medium No. 1 and reconstitute with water as prescribed by the manufacturer to give a volume sufficient for analysis. Autoclave at 121° C for 15minutes. Allow cooling to about 50 ° C before adding the innoculum (approx. 4mL of the suspension of Bacillus pumilus harvested). Swirl the bottle to mix the innoculum while avoiding introduction of air bubbles.

Preparation of the plates:

Measure out 25mL of the inoculated media using a measuring cylinder into each of the plates to be used for the assay. Let the plate settle for about 1hour. When the media has hardened enough, make 6 cylindrical wells using the borer and the template guide in each plate. Label the wells with the solutions to be put into each well, in the following order: T_2 - T_3 - T_1 - S_3 - S_1 - S_2 .

Each assay uses a total of 18 plates, thus:

- □ 3 plates having Std A and Test A test solutions,
- □ 3 plates having Std A and Test B test solutions,
- □ 3 plates having Std A and Test C test solutions,
- □ 3 plates having Std B and Test A test solutions,
- □ 3 plates having Std B and Test B test solutions,
- □ 3 plates having Std B and Test C test solutions.

Performing the Test:

Using the 100- μ L micropipette transfer 100 μ L of each of the Solutions into the appropriately labeled wells. After completion, allow the petri dishes to stand for 2 hours before incubating them at 35 °C for about 18-24 hours.

Read the diameters of the zones of inhibition using a caliper and record them in the table.

Calculations:

Calculate the amount of Erythromycin in each of the samples using the formulae below:

```
E = \frac{1}{4}[(S_3+T_3)-(S_1+T_1)]
F = \frac{1}{3}[(T_3+T_2+T_1)-(S_3+S_2+S_1)]
b = E/\log \text{ Dose Ratio}
m = F/b
Antilog m = Factor
% Label Claim = Factor X [Std] X 100
[Smp]
```

Where S_3 , S_2 , S_1 , T_3 , T_2 , T_1 is the average diameters per each sample

[S t d] is the Final Concentration of Erythromycin Standard, and [Smp] is the Expected Concentration of Erythromycin Sample

	Sample and Standard Preparation				
Analyst:		Head, Biological Analysis Unit:			
Date:		Date:			
Analyst:					
Date:					

		Zon	e Diameters (mm)		
Std Weight A (mg) Std Weight B (mg) Smp Vol/Mass A (mL/mg)						
	Std Pote	ency				
		Sam	ple A / Stand	ard A		
Petri Dish	S_1	S_2	S_3	T ₁	T ₂	T ₃
1						
2						
3						
		Sam	ple A / Stand	ard B		
Petri Dish	S_1	S_2	S_3	T ₁	T_2	T_3
1						
2						
3						
Smp	Vol/Mass B	(mL/mg)				
		Sam	ple B / Stand	ard A		
Petri Dish	S_1	S_2	S_3	T ₁	T_2	T_3
1						
2						
3						
		Sam	ple B / Stand	ard B		
Petri Dish	S_1	S_2	S_3	T ₁	T_2	T_3
1						
2						
3						
Smp	Vol/Mass C	(mL/mg)				
		Sam	ple C / Stand	ard A		
Petri Dish	S ₁	S ₂	S_3	T ₁	T ₂	T ₃
1						
2						
3						
		Sam	ple C/Stand	ard B		
Petri Dish	S ₁	S ₂	S_3	T ₁	T ₂	T ₃
1						
2						
3						

MICROBIAL COUNT

MICKOBIOLOGY LAB NO.		DATE RECEIVED		DATE TEST SET		DATE OF RESULTS	
		SAMPLE P	REPAF	RATION			
		SAMPLE	KEPAF	KATION			
		PE					
		KES	SULTS	CFU X 100		Negative Control	
	Plate 1						
Nutrient Agar	Plate 2						
O		Average (A)				
				CFU X 100		Negative Control	
	Plate 1						
Sabourauds Dextrose	Plate 2						
Agar		Average (B)				
Total CFU (Sum of A	verages A and B)				
NB: Where no CFU are for Limits: Not More Than 5			Less T	han 100 CFU (C	olony Forn	ning Units).	
CONCLUSION: The Product		Complies	With the requirements of the Microbial Limit Test.				
		Does Not Com	ply				
Analyst:			Hea	d, Biological An	alysis Uni	t:	
Date:					Date	2:	
Analyst:							
Date:							

	REAGENTS USED							
			Lot/Batch	Date	Expiry			
	Reagent Name	Manufacturer	No.	Opened	Date	Remarks		
1.								
2.								
3.								
4.								
5.								
6.								
7.								
8.								

	EQUIPMENT USED						
	Equipment Name	NQCL No./Code	Date of Last Calibration	Date of Next Calibration	Remarks		
1.	Equipment tune	11,2021101,0000			TOTAL		
2.							
3.							
4.							
5.							
6.							
7.							
8.							

APPENDIX

Describe in Summary the reagent preparation procedures including mobile phase and buffer	Describe in Summar	v the reagent pr	eparation pro	cedures including	mobile phas	se and buffers
--	---------------------------	------------------	---------------	-------------------	-------------	----------------

Report any other tests carried out on the sample.

	WORKSHEET TRACKING								
No.	ACTIVITY	FROM: OFFICER/ ANALYST	SIGNATURE	TO: OFFICER/ ANALYST	SIGNATURE	DATE			
1									
2									
3									
4									
5									
6									
7									