井 HPC.NRW

PPCES: Machine and Deep Learning

Hands-on Exercises

General Information about Course Material

- Hands-on material and slide decks can be found on the PPCES website
 - https://blog.rwth-aachen.de/itc-events/en/event/ppces-2025/
- Download and extract material on desired machine
 - Separate folders for scikit-learn and PyTorch
 - scikit-learn available as regular Python (.py) and Jupyter Notebooks (.ipynb)

```
# change to the directory where you want to save your material
cd <working directory>

# download material and examples
wget https://hpc.rwth-aachen.de/ppces/ppces2025-ML-DL-labs.tar.gz

# unpack the tar file
tar -xzvf ppces2025-ML-DL-labs.tar.gz
```

3 Ways to Access the HPC Cluster

Classic / Batch Mode

Login via SSH SLURM Workload Manager

Module System Apptainer (Singularity)

Remote Desktop

Login via FastX Graphical Interface

Rest is the same as in Batch Mode

Interactive Mode

JupyterHub/Lab
Web Interface

Predefined Profiles

Accessing CLAIX – Hardware

- Dedicated hardware (and accounting) for the workshop
 - 4 CLAIX-2023-HPC nodes
 - 10 CLAIX-2023-ML nodes

	MPI & OpenMP	ML/DL
Advanced reservation	PPCES-m	PPCES-g
Compute time project	lect0138	

Example in batch script file:

#SBATCH --reservation=PPCES-m #SBATCH --account=lect0138

- Login nodes (full list <u>here</u>)
 - login23-2.hpc.itc.rwth-aachen.de (SSH)
 - login23-3.hpc.itc.rwth-aachen.de (SSH)
 - login23-x-1.hpc.itc.rwth-aachen.de (X-Server, remote desktop sessions, web access available)
 - login23-x-2.hpc.itc.rwth-aachen.de (X-Server, remote desktop sessions, web access available)

Accessing CLAIX – Accounts

- Members of RWTH (or affiliated persons)
 - HPC account + Two-factor-authentication (2FA) required:
 - https://regapp.itc.rwth-aachen.de/
 - Instructions (Step 3 Step 5)
 - If provided during survey, all permissions for dedicated hardware have already been granted
 - If not, please contact the IT center staff during the lab session!
- External participants
 - Temporary account and SSH key was sent to you by e-mail
 - Account: hpclab[01-20]
 - Key: Linux format (pem) or PuTTY/pageant format (ppk)
 - If you didn't get an e-mail, please contact the IT Center staff
 - Password: will be provided during the lab sessions
 - Hpclab accounts have all permissions for dedicated hardware
 - See Handout: HPC Cluster Access for further details

Accessing CLAIX – Access (SSH)

Access via SSH

- Access from within the RWTH network / eduroam via ssh:
 - ssh -Y <u>ab123456@login23-2.hpc.itc.rwth-aachen.de</u>
- Tools:
 - Linux: Bash/Zsh/... + SSH
 - PuTTY: https://www.putty.org/
 - GitBash for Windows: https://git-scm.com/download/win

Accessing CLAIX – Access (FastX)

- FastX3 (desktop client or browser)
 - Browser client: https://login23-x-2.hpc.itc.rwth-aachen.de:3300
 - Desktop client: login nodes (see slides before)
 - Select the correct application
 - Recommended: XFCE
 - May need to select "all applications" in filter at the top right corner of the Application box
 - Start the session
 - Click on the session (may have to click twice)
 - Open up a terminal
 - Bottom of the screen
 - Click the "terminal" icon

Part 1: Hands-on: scikit-learn

- Large Jobs / high demand → JupyterHub HPC
 - Special JupyterHub instance
 - Starts containers on HPC cluster nodes
 - https://jupyterhub.hpc.itc.rwth-aachen.de:9651

Alternatives

- Another RWTH JupyterHub
 - Cheaper standard servers under the hood
 - https://jupyter.rwth-aachen.de/hub/login
 - Profiles / kernles might differ
- Install JupyterLab in your local virtual environment
 - Execution happens on your local machine
 - Visual Studio Code integration available

Image: scientific-computing.com

- Step 1: Login to JupyterHub HPC
 - Similar to SSH or FastX login
 - You need your HPC 2FA again here

PPCES: Machine and Deep Learning

- Step 2: Configure and start your JupyterLab server
 - Request resources on the HPC cluster
 - General Settings

JupyterLab Profile
 Python 3.9 – c23

Billing Project lect0138

Partition c23ms

Advanced Settings

Number of Tasks

– CPUs per task6

Memory per Node: 20 GB

Max duration max. 1h

ReservationPPCES-g

Hands-on: scikit-learn

- Exercise 1: Clustering with Iris Dataset
 - Load dataset
 - Train clustering model (here: Kmeans clustering)
 - Apply dimensionality reduction (PCA)
 - Visualize and compare against true labels

- Exercise 2: Regression with California Housing Dataset
 - Load dataset
 - Apply preprocessing techniques (Standardization)
 - Train regression model (here: RandomForest)
 - Model performance evaluation and visualization

Part 2: Hands-on: PyTorch

Hands-on: PyTorch (with classical SSH)

Exercise: Train ResNet model with CIFAR-10 dataset

- Model: ResNet
 - Popular model for image classification
 - Winner of ILSVRC 2015
 (ImageNet Large Scale Visual Recognition Challenge)
 - Tackles vanishing gradient problem
- Dataset: CIFAR-10
 - Several images of 10 different classes
 - Airplane, automobile, bird, cat, dog, frog, ...
- Single GPU (Task 1), Distributed (Task 2)

Diagram: Choi, Hyungeun & Ryu, Seunghyoung & Kim, Hongseok. (2018). Short-Term Load Forecasting based on ResNet and LSTM

Hands-on: PyTorch (with classical SSH)

– Note: We will use a container for this exercise!

	File	Description
Provided by us	set_vars.sh	Shell script that sets environment variables for DDP and container
	submit_job.sh	Submits a batch job to SLURM, which loads the required container module and executes the Python code
Your job	train_model.py	Python code that is responsible for training and testing the model

- About: submit job.sh
 - Option to run with1 GPU or 2 GPUs (distributed)
 - Option to enable explicit monitoring (nvidia-smi)

```
# execute with a single GPU
sbatch submit_job.sh

# execute with nvidia-smi monitoring
sbatch --export=ENABLE_MONITORING=1 submit_job.sh

# execute with 2 GPUs (distributed)
sbatch --ntasks-per-node=2 --gres=gpu:2 submit_job.sh

# check for status
squeue --me -a
```

Example

Output and scaling behavior

```
Epoch 2/2
          Step
                        391
Epoch 2/2
          Step
                  20 /
                        391
Epoch 2/2
          Step
                 40 /
                        391
Epoch 2/2
          Step
                 60 /
                        391
                 80 /
                        391
Epoch 2/2
          Step
                100 /
Epoch 2/2
          Step
                        391
          Step
Epoch 2/2
                120 /
                        391
Epoch 2/2
                140 /
                        391
          Step
Epoch 2/2
          Step
                160 /
                        391
                180 /
Epoch 2/2
          Step
                        391
                200 /
Epoch 2/2
                        391
          Step
Epoch 2/2
          Step
                220 /
                        391
Epoch 2/2
                240 /
                        391
          Step
Epoch 2/2
          Step
                260 /
                        391
Epoch 2/2
          Step
                280 /
                        391
                 300 /
Epoch 2/2
          Step
                        391
Epoch 2/2
          Step
                320 /
                        391
Epoch 2/2
                340 /
                        391
          Step
Epoch 2/2
          Step
                360 /
                        391
          Step 380 / 391
Epoch 2/2
Epoch 2/2 Elapsed: 47.857 sec
                                Acc: 0.642
Epoch 2/2 Test Acc: 0.648
```


Troubleshooting Section

- Problem: PyTorch throws errors when executing distributed variant
 - "Port already in use"
 - Reasons: You will potentially be working on a shared machine (with only 2 of 4 GPUs)

Solution: Select a different port

Troubleshooting Section

- Problem: Be carful with using \$ (pwd) or \$PWD inside a container
 - This might return /rwthfs/... which is not mounted by default
 - What's interesting:
 - /work/<user-id>/ is mounted by default
 - /rwthfs/rz/cluster/work/<user-id>/ is not although pointing to the same path
 - Cause: Can occur when working with multiplexers like tmux on the host system

– Solution:

- Map the directories that you want to use in the container
- Also see hands-on examples