Arithmetic geometry notes

Soham Chowdhury July 18, 2017

Contents

I	Basic notions	-
1	Algebraic integers 1.1 Properties of integrality	3 3
A	Complex analysis A.1 Holomorphy	ļ
В	Modular forms	(

Part I Basic notions

Chapter 1

Algebraic integers

Pellentesque condimentum, magna ut suscipit hendrerit, ipsum augue ornare nulla, non luctus diam neque sit amet urna.

The Dude

Fix a domain A integrally closed in K := K(A). Let L|K be a finite extension, and B the integral closure of A in L. This is the AKLB *diagram*:

$$\begin{array}{ccc} \mathsf{K} & & & \mathsf{L} \\ \uparrow & & \uparrow \\ \mathsf{A} & & & \mathsf{B} \end{array}$$

1.1 Properties of integrality

Integrality is stable under the ring operations: one would like the following to hold, and they do:

This is a corollary of the following:

Theorem 1.1.1 (Module-theoretic characterization of integrality). A finite number of b_i are integral over $A \iff the \ ring \ A[b_1, \ldots, b_n]$ is finitely generated as an A-module.

Corollary 1.1.2. *If* α *and* b *are integral over* A, *so are* $\alpha + b$ *and* αb .

Theorem 1.1.3 (Integrality is transitive). *Consider ring extensions* $A \subseteq B \subseteq C$. $A \subseteq B$ *integral and* $B \subseteq C$ *integral* $\iff A \subseteq C$ *integral*.

Proof.
$$A \subseteq C$$
 integral implies $A \subseteq B$ integral. (Why?)

Theorem 1.1.4. Any element $l \in L$ is equal to b/a for $b \in B$ and $a \in A$.

Proof. Consider an element $l \in L$. The minimal polynomial m_l of l over K gives rise to a polynomial over A

$$\alpha_n l^n + \alpha_{n-1} l^{n-1} + \dots + \alpha_0 = 0$$

by clearing denominators. Now observe that $\ell := a_n l$ is integral over A: multiplying by a_n^{n-1} gives an equation of the form

$$\ell^n + \alpha'_{n-1}\ell^{n-1} + \cdots + \alpha'_0 = 0.$$

This shows that taking $b/a = \ell/a_n$ works.

Remark 1.1.5. Notice that K(B) = L. Indeed, $B \subset L$ so $K(B) \subset L$, and the result above shows that $L \subset K(B)$ (set-theoretically, $L \subset B \times A \subset B \times B$).

Theorem 1.1.6. $l \in L$ is integral over A iff its minimal polynomial μ_l over K has coefficients in A.

Proof. If $\mu := \mu_l \in A[x]$ then we have integrality of l over A by definition. Consider now the case of an integral l with minimal polynomial $\mu \in K[x]$. From integrality over A we know that l is a root of some $g \in A[x]$. Then $\mu|g$ in K[x], so all zeros of μ are zeros of g and hence integral over A.

By Vietà, the coefficients a_i are given by elementary symmetric polynomials in the roots and are hence, by Corollary 1.1.2, integral over A themselves. The a_i are elements of K, so, in this case, integrality over A means that $a_i \in K$, and hence $\mu \in A[x]$.

1.2 The trace and the norm

Given $x \in L$, multiplication by x determines an endomorphism

$$T_x : \alpha \mapsto x\alpha$$

of the K-vector space L. We define the trace and norm maps

$$\operatorname{Tr}_{\mathsf{L}|\mathsf{K}}(z) = \operatorname{tr}\mathsf{T}_z$$

 $\operatorname{Nm}_{\mathsf{L}|\mathsf{K}}(z) = \det\mathsf{T}_z$

Let n = [L : K]. The characteristic polynomial

$$\chi_z(t) = \det(tI - T_z)$$

= $t^n - a_1 t^{n-1} + \dots + (-1)^n a_n \in K[i]$

contains coefficients $a_1 = Tr_{L|K}(z)$ and $a_n = Nm_{L|K}(z)$.

Remark 1.2.7. If this isn't immediately clear, think Vietà. (This will be one of the recurring themes throughout this chapter.)

1.3 Galois-theoretic interpretations

Fix an algebraic closure $\bar{K} = K^{\alpha lg}$ of K.

Proposition 1.3.8. *If* L|K *is separable, letting* $\sigma:L\to \bar{K}$ *vary over the* K-embeddings of L into \bar{K} , we have

- 1. $\chi_z(t) = \prod_{\sigma} (t \sigma z)$
- 2. $\operatorname{Tr}_{\mathsf{L}|\mathsf{K}}(z) = \sum_{\sigma} \sigma z$
- 3. $\operatorname{Nm}_{L|K}(z) = \prod_{\sigma} \sigma z$

Proof. Let d = [L : K(x)]. The characteristic polynomial is a power

$$\chi_z = \mu_z^d$$

where d = [L : K(z)]. Part 1 easily implies the others, by Vietà's formulas.

Theorem 1.3.9. For a tower of finite extensions $K \subseteq L \subseteq M$, we have

$$Tr_{L|K} \circ Tr_{M|L} = Tr_{M|K}$$

 $Nm_{L|K} \circ Nm_{M|L} = Nm_{M|K}$

1.4 Integral bases

Definition 1.4.10. The **discriminant** of a basis α_i of a separable extension L|K is defined by

$$d(\alpha_1, \ldots, \alpha_n) = det((\sigma_i \alpha_i))^2$$

where the σ_i are the K-embeddings $L \hookrightarrow \bar{K}$.

Proposition 1.4.11. For L|K a separable extension with basis α_i , the function

$$(x, y) = Tr_{L|K}(xy)$$

yields a nondegenerate bilinear form on the K-vector space L.

Corollary 1.4.12. *For* L|K *and* α_i *as above,*

$$d(\alpha_1,\ldots,\alpha_n)\neq 0.$$

Proof. The form has matrix

$$M = Tr_{L|K}((\alpha_i \alpha_i))$$

with respect to the given basis. The nondegeneracy of the form, which we have from Proposition 1.4.11, is equivalent to the statement that det $M \neq 0$, whence the claim follows.

Lemma 1.4.13. Let (α_i) be a basis of L|K contained in B, with $d=d(\alpha_1,\ldots,\alpha_n)$. Then

$$dB \subseteq A\alpha_1 + \cdots + A\alpha_n$$
.

Proposition 1.4.14. *If* L|K *is separable and* A *is a PID, every finitely generated* B-submodule $M \neq 0$ *of* L *s a free* A-module *of rank* [L:K].

Corollary 1.4.15. B admits an integral basis over A.

Proposition 1.4.16. Let M|K and N|K be two Galois extensions with $M \cap N = K$, with m = [M:K] and n = [N:K]. Fix integral bases $(\alpha_i)_{1 \le i \le m}$ of M|K and $(\beta_j)_{1 \le j \le n}$ of N|K respectively, with discriminants μ and ν respectively. If μ and ν are relatively prime, with $x\mu + y\nu = 1$ for some $x, y \in A$, then $(\alpha_i \beta_j)$ is an integral basis of MN, with discriminant $m^{\nu}n^{\mu}$.

Proposition 1.4.17. If $\mathfrak{i}\subseteq\mathfrak{j}$ are two nonzero finite \mathscr{O}_K -submodules of K, then $(\mathfrak{j}:\mathfrak{i})$ is finite. Moreover,

$$d(\mathfrak{i}) = (\mathfrak{j} : \mathfrak{i})^2 d(\mathfrak{j})$$

holds.

Appendix A Complex analysis

A.1 Holomorphy

Appendix B Modular forms