Predict Future Sales

Final Report

Kaicheng Jia

CONTENTS

O1 INTRO

Why important?

02DATA

EDA Feature Engineering

03
ALGORITHM

Model Ensemble

04
RESULTS

Results Analysis

05 CONCLUSION

Project conclusion

O1 INTRODUCTION

Background

- In this project we will work with a challenging timeseries dataset consisting of daily sales data, kindly provided by one of the largest Russian software firms 1C Company.
- The task is to forecast the total amount of products sold in every shop for the test set in the next month.

02 DATA

Files

File descriptions

- sales_train.csv the training set. Daily historical data from January 2013 to October 2015.
- test.csv the test set. You need to forecast the sales for these shops and products for November 2015.
- sample_submission.csv a sample submission file in the correct format.
- items.csv supplemental information about the items/products.
- item_categories.csv supplemental information about the items categories.
- shops.csv- supplemental information about the shops.

Basic info of train

```
sales_train.info()
```

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 2935849 entries, 0 to 2935848

Data columns (total 6 columns):

date object

date_block_num int64

shop_id int64

item_id int64

item_price float64

item_cnt_day float64

dtypes: float64(2), int64(3), object(1)

memory usage: 134.4+ MB

	date	date_block_num	shop_id	item_id	item_price	item_cnt_day
0	02.01.2013	0	59	22154	999.00	1.0
1	03.01.2013	0	25	2552	899.00	1.0
2	05.01.2013	0	25	2552	899.00	-1.0
3	06.01.2013	0	25	2554	1709.05	1.0
4	15.01.2013	0	25	2555	1099.00	1.0

date - date in format dd/mm/yyyy

date_block_num - a consecutive month number, used for convenience. January 2013 is 0

shop_id - unique identifier of a shop

item_id - unique identifier of a product

item_price - current price of an item

item_cnt_day - number of products sold. predicting a monthly amount of this measure

Duplicated And Missing values

```
duplicated lines in sales_train is 5
missing value in sales_train is
date
date block num
shop id
item category id
item_id
item_price
item_cnt_day
dtype: int64
```

Item_cnt month trend

Item_price VS item_cnt

Basic info of shops

	shop_name	shop_id
0	!Якутск Орджоникидзе, 56 фран	0
1	!Якутск ТЦ "Центральный" фран	1
2	Адыгея ТЦ "Мега"	2
3	Балашиха ТРК "Октябрь-Киномир"	3
4	Волжский ТЦ "Волга Молл"	4

Shop_name: City|type|name

Волжский ТЦ "Волга Молл"

Volga shopping center "Volga Mall"

Shops VS item_cnt

Basic info of item_category

	item_category_name	item_category_id
0	РС - Гарнитуры/Наушники	0
1	Аксессуары - PS2	1
2	Аксессуары - PS3	2
3	Аксессуары - PS4	3
4	Аксессуары - PSP	4

Item_category_name: category|sub_cat

Служебные - Билеты	Service - Tickets
Чистые носители (шпиль)	Net carriers (spire)

item_category VS item_cnt

Basic info of items

	item_name	item_id	item_category_id
0	! ВО ВЛАСТИ НАВАЖДЕНИЯ (ПЛАСТ.) D	0	40
1	!ABBYY FineReader 12 Professional Edition Full	1	76
2	***В ЛУЧАХ СЛАВЫ (UNV) D	2	40
3	***ГОЛУБАЯ ВОЛНА (Univ) D	3	40
4	***КОРОБКА (СТЕКЛО) D	4	40

Item_name: name|sub_type1|sub_type2

! ВО ВЛАСТИ НАВАЖДЕНИЯ (ПЛАСТ.) D ! VO VLASTI NAVAZHDENIYA (PLAST.) D

Basic info of test

	ID	shop_id	item_id
0	0	5	5037
1	1	5	5320
2	2	5	5233
3	3	5	5232
4	4	5	5268

how many lines in train set: (2935849, 6) unique items in train set: 21807 unique shops in train set: 60 how many lines in test set: (214200, 3) unique items in test set: 5100 unique shops in test set: 42

[•] ID - an ld that represents a (Shop, Item) tuple within the test set

Feature Engineering

- Data Preprocessing (won't be mentioned here)
- Split features & Label Encoding
- Lag features & Mean Encoding
- Dummy variable & Other features
- Merge features

Split features & Label Encoding

item_cnt_day

item_price

item_name

shop_name

item_category name

sum

mean

item_cnt_month

item_price_mont

split name

Label Encoding

item_f1_code

city_code

type_code

item_f2_code

shop_type_code

subtype_code

ID

item_id

shop_id

item_category_id

date

date_block_num

city_code	shop_type_code	item_category_id	item_f1_code	item_f2_code	type_code	subtype_code
0	5	40	729	138	10	4
0	5	19	729	138	5	10
0	5	30	729	138	8	53
0	5	23	729	138	5	16
0	5	40	729	138	10	4

20	5	55	729	138	12	2
20	5	64	729	138	13	41
20	5	55	729	138	12	2
20	5	40	853	138	10	4
20	5	37	364	138	10	1

Lag features & Mean Encoding

 Mean Encoding: Sum "item_cnt_month" of the same "data_block_num" and the features in the center column, then divide its frequency.

```
date_avg_item_cnt_lag_
date_item_avg_item_cnt_lag
date_shop_avg_item_cnt_la
date_cat_avg_item_cnt_lag_
date_cat_item_f1_avg_item_cnt_la
date_cat_item_f2_avg_item_cnt_la
date_city_avg_item_cnt_lag_
date_shop_type_avg_item_cnt_l
date_shop_type_avg_item_cnt_l
date_shop_subtype_avg_item_cnt_t
delta_price_la
N = 1/2/3/6/12
```

Dummy variable & ____ Other features

hist_min_item_price

hist_max_item_pric

item_first_sale

item_shop_first_sal

holidays

- The lowest daily price per item in history
- The highest daily price per item in history
- The first daily sales of an item in history
- The first daily sales of a pair in history
- The number of Russian official holidays in every month

Merge features

- Original features: 4
- Split features & Label Encoding:

- Lag features & Mean Encoding: 19
- Dummy variable & Other features: 7

	date_block_num	item_cnt_month	item_id	shop_id	city_code	shop_type_code	item_category_id	item_f1_code
0	0	0.0	19	2	0	5	40	729
1	0	1.0	27	2	0	5	19	729
2	0	0.0	28	2	0	5	30	729
3	0	0.0	29	2	0	5	23	729
4	0	0.0	32	2	0	5	40	729
***		1105	062/	6 ro	WS X	39 colu	mns	***
11056272	34	0.0	18454	45	20	5	55	729
11056273	34	0.0	16188	45	20	5	64	729
11056274	34	0.0	15757	45	20	5	55	729
11056275	34	0.0	19648	45	20	5	40	853
11056276	34	0.0	969	45	20	5	37	364

03 ALGORITHM

ALGORITHMs

LinearRegression

A linear approach to model ing the relationship betwee n a scalar response and one or more explanatory variables. The case of one explanatory variable is called simple linear regression. For more than one explanatory variable, the process is called multiple linear regression.

Not employed

RandomForest

An ensemble learning me thod for classification, re gression and other tasks t hat operates by constructing a multitude of decision trees at training time and outputting the class that is the mode of the classes or mean prediction (regression) of the individual trees.

employed

XGBoost

XGBoost implements machine learning algori thms under the Gradient Boosting framework. It provides a parallel tree boosting that solve man y data science problems in a fast and accurate w ay.

employed

LightGBM

A fast, distributed, high performance gradient b oosting (GBT, GBDT, GBRT, GBM or MAR T) framework based on decision tree algorithms, used for ranking, classif ication and many other machine learning tasks

employed

Prediction without Parameters Tuning

EVALUATION METRIC:

Root Mean Square Error均方根误差

RMSE(X,h) =
$$\sqrt{\frac{1}{m} \sum_{i=1}^{m} (h(x^{(i)}) - y^{(i)})^2}$$

	Train_rmse	Valid_rmse	Test_rmse
lightGBM	0.69266	0.89392	0.91685
XGBoost	0.68734	0.89816	0.91812

XGBoost Parameters:

The overall parameters have been divided into 3 categories by XGBoost authors:

- 1. General Parameters: Guide the overall functioning
- 2. Booster Parameters: Guide the individual booster (tree/regression) at each step
- 3. Learning Task Parameters: Guide the optimization performed

8 Booster Parameters:

eta (default=0.3, alias: learning rate)

Step size shrinkage used in update to prevents overfitting. After each boosting step, we can directly get the weights of new features, and eta shrinks the feature weights to make the boosting process more conservative. range: [0,1]

gamma (default=0, alias: min_split_loss)

Minimum loss reduction required to make a further partition on a leaf node of the tree. The larger gamma is, the more conservative the algorithm will be.

range: [0,∞)

max_depth (default=6)

Maximum depth of a tree. Increasing this value will make the model more complex and more likely to overfit. 0 is only accepted in lossguided growing policy when tree_method is set as hist and it indicates no limit on depth. Beware that XGBoost aggressively consumes memory when training a deep tree.

range: [0,∞)

min_child_weight (default=1)

Minimum sum of instance weight needed in a child. If the tree partition step results in a leaf node with the sum of instance weight less than min_child_weight, then the building process will give up further partitioning. In linear regression task, this simply corresponds to minimum number of instances needed to be in each node. The larger min_child_weight is, the more conservative the algorithm will be.

range: [0,∞)

8 Booster Parameters:

```
subsample (default=1)
```

Subsample ratio of the training instances. Setting it to 0.5 means that XGBoost would randomly sample half of the training data prior to growing trees. and this will prevent overfitting. Subsampling will occur once in every boosting iteration.

range: (0,1]

colsample_bytree (default=1)

The subsample ratio of columns when constructing each tree. Subsampling occurs once for every tree constructed.

range: (0, 1], the default value of 1, and specify the fraction of columns to be subsampled.

alpha (default=0, alias: reg_alpha)

L1 regularization term on weights. Increasing this value will make model more conservative.

lambda (default=1, alias: reg_lambda)

L2 regularization term on weights. Increasing this value will make model more conservative.

1 other Parameters:

n_estimators (alias: num_boosting_rounds)

Tuning Methods:

Early Stopping

```
model = xgb.train(params, d_train, 10000, watchlist, early_stopping_rounds=100, verbose_eval=10)
```

Train until valid-rmse hasn't improved in 100 rounds.

sklearn.model_selection.GridSearchCV from Scikit-learn

```
CV:

cv_params = {'n_estimators': [550, 575, 600, 650, 675]}

other_params = {'learning_rate': 0.1, 'max_depth': 5, 'min_child_weight': 1, 'colsample_bytree': 0.8, 'gamma': 0, 'reg_alpha': 0, 'reg_lambda': 1}
```

Final Values:

```
params['eta'] = 0.01
params['min_child_weight'] = 2
params['colsample_bytree'] = 0.8
params['subsample'] = 0.8
params['max_depth'] = 5
params['gamma'] = 0
params['lambda'] = 0.3
params['alpha'] = 0.6
```


Best iteration:[850]

test_rmse:0.90912

Model Ensembling

1st level models 2nd level models Prediction

O4 RESULTS

RESULTS

test_rmse:0.90912

date_item_avg_item_cnt_lag_1
date_cat_item_f1_avg_item_cnt_lag_1
item_id
hist_min_item_price
hist_max_item_price
item_first_sale
delta_price_lag

05 CONCLUSION

THANKS FOR WATCHING