START: 09:15

- 1. Bisection Method (+)
- False Position Method (+)
- 3. Newton-Raphson Method (+) (
 4. Secant Method (Today)
- $\begin{array}{ccc}
 \mathbb{D}\left(f_{(x)} = e^{-\chi} \chi\right) \\
 \mathbb{D} f_{(x)} = \chi^3 5\chi + 1
 \end{array}$
- (3) (5) -

- Need:
- 1. Notebook,
- 2. Calculator
- 3. Excel

$$\frac{f(x) = e^{-X} - x}{f'(x) = -e^{-X} - 1}$$

$$\times_{n+1} = \times_n - \frac{f(x)}{f'(x)}$$

$$f(o) = 1$$

$$\int_{1}^{1} (o) = -2$$

$$\times_{1} = X_{0} - \frac{f(o)}{f'(o)} = 0 - \frac{1}{2} = \frac{1}{2}$$

$$X_{1} = 0.5$$

- ♦ Örnek : f(x) = x² + 4x² 3 denklemini Newton-Raphson yöntemini kullanarak x₀ = 0.
- f(x) = x¹ + 4x² − 3 ⇒ f'(x) = 3x² + 8x
- $x_i = 0.7$ 'den bisşleyenek lédes doğru yekleşəlim Derduma Kriteri (histə Smriama $f(x_i) = f(x_i)$
- $x_1 = 0.7 \frac{f(0.7)}{f'(0.7)} = 0.7 \frac{(-0.6670)}{7.07} = 0.7986 \qquad |x_1 x_0| = |0.7986 0.7| = 0.0986$
- $x_2 = x_1 \frac{f(x_1)}{f'(x_1)} = 0.7986 \frac{0.0602}{8.3019} = 0.7913$ $|x_2 x_1| = |0.7913 0.7986| = 0.007$
- $x_1 = x_2 \frac{f(x_2)}{f'(x_2)} = 0.7913 \frac{0.0003}{8.2092} = 0.7913$ $|x_3 x_2| = |0.7913 0.7913| = 0.00004$
- 3. Newton's equation $y^3-2y-5=0$ has a root near y=2. Starting with $y_0=2$, compute $y_1,y_2,$ and $y_3,$ the next three Newton-Raphson

estimates for the root. Solution: Let $f(y)=y^2-2y-5$. Then $f'(y)=3y^2-2$, and the Newton Method produces the recurrence

$$y_{n+1} = y_n - \frac{y_n^3 - 2y_n - 5}{3y_n^2 - 2} = \frac{2y_n^3 + 5}{3y_n^2 - 2}$$

(there was no good case for simplification here). Start with the estimate $y_0=2$. Then $y_1=21/10=2.1$. It follows that (to calculator accuracy) $y_2=2.09456121$ and $y_3=2.094561482$. These are almost the numbers that Newton obtained (see the notes). But Newton in

x		fx	
	0	1	
	1	-3	0,25
	0,25	0,234375	0,186440678
0,186	440678	0,074277312	0,201736256
0,20	1736256	-0,000471116	0,201639853
0,20	1639853	-8,64229E-07	0,201639676
0,20	1639676	1,03527E-11	0,201639676

old point X1 = 0.25 X2 = 0.186460678 $X_{3}=X_{2}-\frac{f(x_{1})\cdot(x_{1}-x_{2})}{f(x_{1})-f(x_{2})}$

 $X_{3} = 0.186 L L 0678 - \frac{0.07 L 1277 J 12 (0.25 - 0.1864 L 0678)}{(-0.23 L 377) - (0.676277 J 1)}$

X1-0.20173656

Menten-2
$$X_{n+1} = X_n - \frac{f(x_n)}{f(x_n)} = X_n - \frac{f(x_n)(X_{n-n} - X_n)}{f(x_n)}$$

$$Slope = f(x_n)$$

$$f(x_n) = \frac{f(x_n)}{f(x_n)} = \frac{f(x_n)}{f($$

Find an approximation to J5 correct to four decimel places using the secont method.

J5 = 1

$$X = \sqrt{5}$$

$$X = \sqrt{5}$$

$$\sqrt{2} = 5$$

$$\sqrt{2} = 5$$

$$\sqrt{2} = 5$$

$$\sqrt{2} = 0$$
fundam

numeric method Page