Précipitation et oxydoréduction

/7 1 On ajoute $n = 10^{-5}$ mol d'ions Cl⁻ dans $V_0 = 10$ mL de nitrate d'argent (Ag⁺,NO₃⁻) à $c_0 = 10^{-3}$ mol·L⁻¹. On donne p K_s (AgCl) = 9,8. Obtient-on un précipité de chlorure d'argent AgCl? Trouver la valeur limite pCl_{lim} du début de précipitation de ce solide; tracer alors son diagramme d'existence en fonction de pCl.

FIGURE 21.1 – Diagramme d'existence de AgCl

/6 2 La solubilité de $AgCl_{(s)}$ dans l'eau pure est $s_{pur} \approx 1.3 \times 10^{-5} \text{ mol} \cdot \text{L}^{-1}$. Calculer sa solubilité s'il y a déjà $c = 0.1 \text{ mol} \cdot \text{L}^{-1}$ de Cl^- en solution, et comparer à la situation pure. Comment s'appelle cet effet? On donne $pK_s(AgCl) = 9.8$.

1	Équation		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		
	Initial	$\xi = 0$	n	0	cV
	Final	$\xi_f = \xi_{\rm eq}$	$n-\xi_{\rm eq}$	$\xi_{ m eq}$	$cV + \xi_{eq}$

C'est l'effet d'ions communs

$$\begin{array}{ccc}
\boxed{2} & n_{\text{dis,max}} = \xi_{\text{eq}} = sV & \Rightarrow & \begin{cases} [\text{Ag}^+]_{\text{eq}} = s \\ [\text{Cl}^-]_{\text{eq}} = \frac{cV + \xi_{\text{eq}}}{V} = c + s \end{cases} \\
\boxed{3} & K_s = \frac{s(c+s)}{(c^\circ)^2} & \stackrel{s}{\Leftrightarrow} c \quad c^{\circ 2}K_s \approx s \times c \Leftrightarrow \boxed{s \approx \frac{K_s}{c}c^{\circ 2}} \\
\Rightarrow \underline{s = 1,8 \times 10^{-9} \, \text{mol} \cdot \text{L}^{-1}} & \ll c \quad \checkmark
\end{array}$$

/3 3 Pour une demi-équation $\alpha \text{Red} + \beta \text{H}_2 \text{O}_{(l)} = \gamma \text{Ox} + \delta \text{H}_{(aq)}^+ + \text{ne}^-$

Donner l'expression du potentiel de NERNST en fonction de la température, puis sa forme simplifiée à 25 °C.

$$E(\text{Ox/Red}) = E^{\circ}(\text{Ox/Red}) + \frac{RT}{n\mathcal{F}} \ln \frac{a_{\text{Ox}}^{\gamma}[\text{H}^{+}]^{\delta}}{a_{\text{Red}}^{\alpha}c^{\circ\delta}} \Rightarrow \boxed{E(\text{Ox/Red}) = E^{\circ}(\text{Ox/Red}) + \frac{0.06}{n} \log \frac{a_{\text{Ox}}^{\gamma}[\text{H}^{+}]^{\delta}}{a_{\text{Red}}^{\alpha}c^{\circ\delta}}}$$

/4 | 4 | Donner les demi-équations puis les potentiels des couples suivants :

$$\diamondsuit \ \operatorname{Fe}_{(\operatorname{aq})}^{2+}/\operatorname{Fe}_{(\operatorname{s})} : \ \operatorname{Fe}_{(\operatorname{s})} = \operatorname{Fe}_{(\operatorname{aq})}^{2+} + 2 \operatorname{e}^{-}$$

$$\diamondsuit \ \operatorname{MnO}_{4(\operatorname{aq})}^{-}/\operatorname{Mn}_{(\operatorname{aq})}^{2+} :$$

$$\operatorname{MnO}_{4(\operatorname{aq})}^{-}/\operatorname{Mn}_{(\operatorname{aq})}^{2+} :$$

$$\operatorname{MnO}_{4(\operatorname{aq})}^{-}/\operatorname{Mn}_{(\operatorname{aq})}^{2+} + 4 \operatorname{H}_{2}\operatorname{O}_{(\operatorname{l})} = \operatorname{MnO}_{4(\operatorname{aq})}^{-} + 8 \operatorname{H}_{(\operatorname{aq})}^{+} + 5 \operatorname{e}^{-}$$

$$E = E^{\circ} \left(\operatorname{MnO}_{4}^{-}/\operatorname{Mn}^{2+} \right) + \frac{0,06}{5} \log \left(\frac{[\operatorname{MnO}_{4}^{-}][\operatorname{H}^{+}]^{8}}{[\operatorname{Mn}^{2+}]c^{\circ 8}} \right)$$

$$\diamondsuit \ \operatorname{Fe}_{(\operatorname{aq})}^{3+}/\operatorname{Fe}_{(\operatorname{aq})}^{2+} = \operatorname{Fe}_{(\operatorname{aq})}^{3+} + \operatorname{e}^{-}$$

$$\diamondsuit \ \operatorname{H}_{(\operatorname{aq})}^{+}/\operatorname{H}_{2}(\operatorname{g}) = 2 \operatorname{H}_{(\operatorname{aq})}^{+} + 2 \operatorname{e}^{-}$$

$$E = E^{\circ} \left(\operatorname{H}^{+}/\operatorname{H}_{2} \right) + \frac{0,06}{2} \log \left(\frac{[\operatorname{H}^{+}]^{2}p^{\circ}}{c^{\circ 2}p_{\operatorname{H}_{2}}} \right)$$

$$E = E^{\circ} \left(\operatorname{H}^{+}/\operatorname{H}_{2} \right) + \frac{0,06}{2} \log \left(\frac{[\operatorname{H}^{+}]^{2}p^{\circ}}{c^{\circ 2}p_{\operatorname{H}_{2}}} \right)$$