COLLÈGE CHEVREUL B.P. 4093 Douala Année scolaire 2006 / 2007

1ère Séauence / octobre 2006

Tle C	ÉPREUVE DE PHYSIQUE	Durée : 2H
		Coeff.: 4

Exercice 1 8 points

Dans un plan yOz les coordonnées d'une particule mobile sont données, en fonction du temps t, par :

$$\begin{cases} y = 0.4t - 1 \\ z = \frac{1}{2}(3 - 0.4t)(1 + 0.4t) \end{cases}$$

- 1. a) Déterminer l'équation de la trajectoire.
 - b) Préciser les positions ou dates limites si :
 - ▶ le mobile n'est repéré qu'à partir de l'instant t = 0
 - ▶ le sol est au niveau z = 0 du repère (et l'horizontal).
 - c) Tracer la trajectoire de M.
- 2. a) Donner en fonction de t, les composantes du vecteur-vitesse $\overrightarrow{v}(t)$ ainsi que son module.
 - b) Déterminer la norme et la direction du vecteur-vitesse dans les cas suivants :
 - à l'instant origine
 - quand l'altitude est maximale
 - ▶ au point S de contact avec le sol.
- 3. Donner de même les composantes de l'accélération d'abord selon Oy et Oz ensuite sur la base locale $(\overrightarrow{t}, \overrightarrow{n})$.

En déduire la valeur du rayon de combure de la trajectoire en fonction de t.

Exercice 2 4 points

Un objet ponctuel de masse m=50g, initialement au repos, est soumis à une force F variable au cours du temps. Le point se trouve à t=0 à l'origine d'un repère et F est toujours dirigée selon l'axe x'x. L'expression de F est : $F(t)=\lambda t$ où λ est une constante.

- 1. Enoncer le théorème du centre d'inertie et préciser sa limite de validité.
- 2. Dans quelle unité s'exprime la constante λ dans le Système International ?
- 3. On donne $\lambda = 3$ S.I. Ecrire la loi de variation de la vitesse ainsi que l'équation horaire du mouvement du point matériel.

Exercice 3 4 points

1. Trois charges q_1 , q_2 et q sont disposées suivant le schéma ci-dessous. Quelle force s'exerce sur q ? Quelle est sa direction ?

AB = 3 m; AC = 4 m

$$q_1 = 3.10^{-9} \text{ C}$$
; $q_2 = -5.10^{-9} \text{ C}$; $q = 2.10^{-9} \text{ C}$

2. Deux charge $q_1 = 10^{-8}$ C et $q_1 = -2$. 10^{-8} C sont placées en 2 points M et N tels que MN = 10 cm. Déterminer le point P où le champ est nul.

Exercice 4 4 points

Entre deux points A et B, de masse $m_A=2kg$ et $m_B=1$ kg, s'exercent des forces d'attraction d'intensité F=1 N. De plus A subit une force F_A , B une force F_B d'intensités : $F_A=2N$; $F_B=3N$. A l'instant t=0, A et B sont au repos en A_0 et B_0 et $A_0B_0=1m$ (voir schéma).

- 1. Ecrire les équations horaires des mouvements de A et B. En déduire celle du mouvement de leur centre de gravité G.
- 2. Montrer que le résultat obtenu confirme le théorème du centre d'inertie G.