report_2022266

Section A

	Lakshay Kumar DATE
	2022266
	Lakshay Kumarr 2022266E SECTION-A
Rep	PART-A
	The state of the s
@	We took stride = I and padding = 0. :. Both height (M) & width(N) will be seduced by, Output height = I+M-K Output night = I-K+N Result feature map dimension = (I+M-K) x(I-K+N)
	Outlet with = 1-1/41
	=> Result feature map dimension = (1+M-K) x(1-K+N)
6	For a single pixel in output feature map:
•	Kernel of size KXX spans K² positions in the input image. Each kernel element perform; one multiplication with the corresponding input pixel. A total of K² multiplication.
2	produce a single output pixel. This requires K-1 addition
3	Channels : Total noig open. - Multiplication - PXK2 - Addition - PXK2-1
9	Total Mul - $P \times K^2$ Total Add - $P \times K^2 - 1$:. Total Op = $P \times K^2 + P \times K^2 - 1$ $\Rightarrow P \times 2K^2 - 1$

Section B

1. Implement the k-means clustering: Initialization, Assignment, Update, Convergence Check (convergence threshold of 1e-4.)

```
Final Centroids after convergence:
[[ 5.8 2.125 ]
[ 4.2 -0.05555556]]
```

2. Final centroids

3. Provided initialization vs Random initialization of centroids

4. The optimal number of clusters using the Elbow method.

Elbow Method for Optimal k

KMeans Clustering with k=4

SECTION-C

1. Data Preparation

Files already downloaded and verified Files already downloaded and verified

Train dataset size: 12000

Validation dataset size: 3000

Test dataset size: 3000

2. Visualization

Training Dataset

Validation Dataset

4. Training the model

```
Epoch 1/15
Train Loss: 0.7458, Train Accuracy: 0.6713, Val Loss: 0.5634, Val Accuracy: 0.7817
Best model saved at epoch 1
Epoch 2/15
Train Loss: 0.5171, Train Accuracy: 0.7963, Val Loss: 0.4982, Val Accuracy: 0.8080
Best model saved at epoch 2
Epoch 3/15
Train Loss: 0.4610, Train Accuracy: 0.8193, Val Loss: 0.4453, Val Accuracy: 0.8237
Best model saved at epoch 3
Epoch 4/15
Train Loss: 0.4148, Train Accuracy: 0.8381, Val Loss: 0.4200, Val Accuracy: 0.8367
Best model saved at epoch 4
Epoch 5/15
Train Loss: 0.3878, Train Accuracy: 0.8521, Val Loss: 0.4221, Val Accuracy: 0.8363
Epoch 6/15
Train Loss: 0.3653, Train Accuracy: 0.8582, Val Loss: 0.3833, Val Accuracy: 0.8507
Best model saved at epoch 6
Epoch 7/15
Train Loss: 0.3437, Train Accuracy: 0.8668, Val Loss: 0.3813, Val Accuracy: 0.8550
Best model saved at epoch 7
Epoch 8/15
Train Loss: 0.3254, Train Accuracy: 0.8729, Val Loss: 0.3868, Val Accuracy: 0.8483
Epoch 9/15
Train Loss: 0.3124, Train Accuracy: 0.8822, Val Loss: 0.3465, Val Accuracy: 0.8680
Best model saved at epoch 9
Epoch 10/15
Train Loss: 0.2914, Train Accuracy: 0.8877, Val Loss: 0.3651, Val Accuracy: 0.8610
Train Loss: 0.2881, Train Accuracy: 0.8901, Val Loss: 0.3411, Val Accuracy: 0.8720
Best model saved at epoch 11
Epoch 12/15
Train Loss: 0.2719, Train Accuracy: 0.8944, Val Loss: 0.3507, Val Accuracy: 0.8630
Epoch 13/15
Train Loss: 0.2628, Train Accuracy: 0.9017, Val Loss: 0.3295, Val Accuracy: 0.8737
Best model saved at epoch 13
Epoch 14/15
Train Loss: 0.2503, Train Accuracy: 0.9074, Val Loss: 0.3194, Val Accuracy: 0.8763
Best model saved at epoch 14
Epoch 15/15
Train Loss: 0.2426, Train Accuracy: 0.9087, Val Loss: 0.3335, Val Accuracy: 0.8710
Final model saved.
```

5. Testing

Plot Training and Validation Metrics

Evaluate Test Dataset Accuracy and F1-Score

Test Loss: 0.3294
Test Accuracy: 0.8703
Test F1-Score: 0.8698

Plot Confusion Matrices for Train, Val, and Test Datasets

Confusion Matrix - Test Dataset

Confusion Matrix - Train Dataset

6. Training an MLP

Define the MLP Model

```
Model Architecture:
MLPModel(
   (fc1): Linear(in_features=3072, out_features=64, bias=True)
   (relu): ReLU()
   (fc2): Linear(in_features=64, out_features=3, bias=True)
)
```

Training the MLP Model

```
Epoch 1/15
Train Loss: 0.6841, Train Accuracy: 0.7179, Val Loss: 0.6499, Val Accuracy: 0.7403
Best model saved at epoch 1
Epoch 2/15
Train Loss: 0.5649, Train Accuracy: 0.7773, Val Loss: 0.6175, Val Accuracy: 0.7600
Best model saved at epoch 2
Epoch 3/15
Train Loss: 0.5064, Train Accuracy: 0.8030, Val Loss: 0.5971, Val Accuracy: 0.7667
Best model saved at epoch 3
Epoch 4/15
Train Loss: 0.4601, Train Accuracy: 0.8175, Val Loss: 0.5864, Val Accuracy: 0.7670
Best model saved at epoch 4
Epoch 5/15
Train Loss: 0.4260, Train Accuracy: 0.8363, Val Loss: 0.5889, Val Accuracy: 0.7753
Epoch 6/15
Train Loss: 0.3907, Train Accuracy: 0.8531, Val Loss: 0.5818, Val Accuracy: 0.7740
Best model saved at epoch 6
Epoch 7/15
Train Loss: 0.3660, Train Accuracy: 0.8622, Val Loss: 0.6088, Val Accuracy: 0.7803
Epoch 8/15
Train Loss: 0.3417, Train Accuracy: 0.8728, Val Loss: 0.6088, Val Accuracy: 0.7767
Epoch 9/15
Train Loss: 0.3097, Train Accuracy: 0.8832, Val Loss: 0.6058, Val Accuracy: 0.7860
Epoch 10/15
Train Loss: 0.2992, Train Accuracy: 0.8866, Val Loss: 0.6569, Val Accuracy: 0.7787
Epoch 11/15
Train Loss: 0.2764, Train Accuracy: 0.9008, Val Loss: 0.6424, Val Accuracy: 0.7793
Epoch 12/15
Train Loss: 0.2509, Train Accuracy: 0.9085, Val Loss: 0.7072, Val Accuracy: 0.7670
Epoch 13/15
Train Loss: 0.2286, Train Accuracy: 0.9192, Val Loss: 0.6404, Val Accuracy: 0.7860
Epoch 14/15
Train Loss: 0.2047, Train Accuracy: 0.9277, Val Loss: 0.6920, Val Accuracy: 0.7743
Epoch 15/15
Train Loss: 0.1947, Train Accuracy: 0.9310, Val Loss: 0.7125, Val Accuracy: 0.7877
Final MLP model saved.
```

7. Infer and Compare

Evaluate MLP Model on Test Data

```
MLP Test Performance:
Loss: 0.5212, Accuracy: 0.7997, F1-Score: 0.7992
```

Plot Confusion Matrix for MLP Model

Confusion Matrix: [[757 94 149] [87 855 58] [124 89 787]]

Compare Results with CNN


```
MLP Model Confusion Matrix:
Confusion Matrix:
[[757 94 149]
[ 87 855 58]
[124 89 787]]
```


