

planetmath.org

Math for the people, by the people.

generalized eigenspace

Canonical name GeneralizedEigenspace
Date of creation 2013-03-22 17:23:36
Last modified on 2013-03-22 17:23:36

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 8

Author CWoo (3771) Entry type Definition Classification msc 15A18

Related topic GeneralizedEigenvector

Let V be a vector space (over a field k), and T a linear operator on V, and λ an eigenvalue of T. The set E_{λ} of all generalized eigenvectors of T corresponding to λ , together with the zero vector 0, is called the *generalized* eigenspace of T corresponding to λ . In short, the generalized eigenspace of T corresponding to λ is the set

$$E_{\lambda} := \{ v \in V \mid (T - \lambda I)^{i}(v) = 0 \text{ for some positive integer } i \}.$$

Here are some properties of E_{λ} :

- 1. $W_{\lambda} \subseteq E_{\lambda}$, where W_{λ} is the eigenspace of T corresponding to λ .
- 2. E_{λ} is a subspace of V and E_{λ} is T-invariant.
- 3. If V is finite dimensional, then $\dim(E_{\lambda})$ is the algebraic multiplicity of λ .
- 4. $E_{\lambda_1} \cap E_{\lambda_2} = 0$ iff $\lambda_1 \neq \lambda_2$. More generally, $E_A \cap E_B = 0$ iff A and B are disjoint sets of eigenvalues of T, and E_A (or E_B) is defined as the sum of all E_{λ} , where $\lambda \in A$ (or B).
- 5. If V is finite dimensional and T is a linear operator on V such that its characteristic polynomial p_T splits (over k), then

$$V = \bigoplus_{\lambda \in S} E_{\lambda},$$

where S is the set of all eigenvalues of T.

6. Assume that T and V have the same properties as in (5). By the Jordan canonical form theorem, there exists an ordered basis β of V such that $[T]_{\beta}$ is a Jordan canonical form. Furthermore, if we set $\beta_i = \beta \cap E_{\lambda_i}$, then $[T|_{E_{\lambda_i}}]_{\beta_i}$, the matrix representation of $T|_{E_{\lambda}}$, the restriction of T to E_{λ_i} , is a Jordan canonical form. In other words,

$$[T]_{\beta} = \begin{pmatrix} J_1 & O & \cdots & O \\ O & J_2 & \cdots & O \\ \vdots & \vdots & \ddots & \vdots \\ O & O & \cdots & J_n \end{pmatrix}$$

where each $J_i = [T|_{E_{\lambda_i}}]_{\beta_i}$ is a Jordan canonical form, and O is a zero matrix.

- 7. Conversely, for each E_{λ_i} , there exists an ordered basis β_i for E_{λ_i} such that $J_i := [T|_{E_{\lambda_i}}]_{\beta_i}$ is a Jordan canonical form. As a result, $\beta := \bigcup_{i=1}^n \beta_i$ with linear order extending each β_i , such that $v_i < v_j$ for $v_i \in \beta_i$ and $v_j \in \beta_j$ for i < j, is an ordered basis for V such that $[T]_{\beta}$ is a Jordan canonical form, being the direct sum of matrices J_i .
- 8. Each J_i above can be further decomposed into Jordan blocks, and it turns out that the number of Jordan blocks in each J_i is the dimension of W_{λ_i} , the eigenspace of T corresponding to λ_i .

More to come...

References

[1] Friedberg, Insell, Spence. Linear Algebra. Prentice-Hall Inc., 1997.