

The need for optimization

A baseline neural network

- Actual Value of Target: 13
- Error: Actual Predicted = 4

A baseline neural network

- Actual Value of Target: 13
- Error: Actual Predicted = o

Predictions with multiple points

- Making accurate predictions gets harder with more points
- At any set of weights, there are many values of the error
- ... corresponding to the many points we make predictions for

Loss function

- Aggregates errors in predictions from many data points into single number
- Measure of model's predictive performance

Squared error loss function

Prediction	Actual	Error	Squared Error
10	20	-10	100
8	3	5	25
6	1	2	25

Total Squared Error: 150

Mean Squared Error: 50

Loss function

Loss function

- Lower loss function value means a better model
- Goal: Find the weights that give the lowest value for the loss function
- Gradient descent

- Imagine you are in a pitch dark field
- Want to find the lowest point
- Feel the ground to see how it slopes
- Take a small step downhill
- Repeat until it is uphill in every direction

Gradient descent steps

- Start at random point
- Until you are somewhere flat:
 - Find the slope
 - Take a step downhill

Optimizing a model with a single weight

Let's practice!

- If the slope is positive:
 - Going opposite the slope means moving to lower numbers
 - Subtract the slope from the current value
 - Too big a step might lead us astray
- Solution: learning rate
 - Update each weight by subtracting learning rate * slope

- To calculate the slope for a weight, need to multiply:
 - Slope of the loss function w.r.t value at the node we feed into
 - The value of the node that feeds into our weight
 - Slope of the activation function w.r.t value we feed into

- To calculate the slope for a weight, need to multiply:
 - Slope of the loss function w.r.t value at the node we feed into
 - The value of the node that feeds into our weight
 - Slope of the activation function w.r.t value we feed into

Actual Target Value = 10

- Slope of mean-squared loss function w.r.t prediction:
 - 2 * (Predicted Value Actual Value) = 2 * Error
 - · 2 * -4

- To calculate the slope for a weight, need to multiply:
 - Slope of the loss function w.r.t value at the node we feed into
 - The value of the node that feeds into our weight
 - Slope of the activation function w.r.t value we feed into

- To calculate the slope for a weight, need to multiply:
 - Slope of the loss function w.r.t value at the node we feed into
 - The value of the node that feeds into our weight
 - Slope of the activation function w.r.t value we feed into

- To calculate the slope for a weight, need to multiply:
 - Slope of the loss function w.r.t value at the node we feed into
 - The value of the node that feeds into our weight

Actual Target Value = 10

- Slope of mean squared loss function = 2 * -4 * 3
- = -24
- If learning rate is 0.01, the new weight would be
- 2 0.01(-24) = 2.24

Network with two inputs affecting prediction

Code to calculate slopes and update weights

```
In [1]: import numpy as np
In [2]: weights = np.array([1, 2])
In [3]: input_data = np.array([3, 4])
In [4]: target = 6
In [5]: learning_rate = 0.01
In [6]: preds = (weights * input_data).sum()
In [7]: error = preds - target
In [8]: print(error)
5
```


Code to calculate slopes and update weights

```
In [9]: gradient = 2 * input_data * error
In [10]: gradient
Out[10]: array([30, 40])
In [11]: weights_updated = weights - learning_rate * gradient
In [12]: preds_updated = (weights_updated * input_data).sum()
In [13]: error_updated = preds_updated - target
In [14]: print(error_updated)
-2.5
```


Let's practice!

- Allows gradient descent to update all weights in neural network (by getting gradients for all weights)
- Comes from chain rule of calculus
- Important to understand the process, but you will generally use a library that implements this

- Trying to estimate the slope of the loss function w.r.t each weight
- Do forward propagation to calculate predictions and errors

ReLU Activation Function Actual Target Value = 10

ReLU Activation Function Actual Target Value = 10 Error = 3

- Go back one layer at a time
- Gradients for weight is product of:
 - 1. Node value feeding into that weight
 - 2. Slope of loss function w.r.t node it feeds into
 - 3. Slope of activation function at the node it feeds into

ReLU Activation Function

- Need to also keep track of the slopes of the loss function w.r.t node values
- Slope of node values are the sum of the slopes for all weights that come out of them

Let's practice!

Backpropagation in practice

ReLU Activation Function Actual Target Value = 10 Error = 3

- Top weight's slope = 1 * 6
- Bottom weight's slope = 3 * 6

Calculating slopes associated with any weight

- Gradients for weight is product of:
 - 1. Node value feeding into that weight
 - 2. Slope of activation function for the node being fed into
 - 3. Slope of loss function w.r.t output node

Current Weight Value	Gradient
0	0
1	6
2	0
3	18

Current Weight Value	Gradient
0	0
1	6
2	0
3	18

Current Weight Value	Gradient
0	0
1	6
2	0
3	18

Current Weight Value	Gradient
0	0
1	6
2	0
3	18

Current Weight Value	Gradient
0	0
1	6
2	0
3	18

Backpropagation: Recap

- Start at some random set of weights
- Use forward propagation to make a prediction
- Use backward propagation to calculate the slope of the loss function w.r.t each weight
- Multiply that slope by the learning rate, and subtract from the current weights
- Keep going with that cycle until we get to a flat part

Stochastic gradient descent

- It is common to calculate slopes on only a subset of the data ('batch')
- Use a different batch of data to calculate the next update
- Start over from the beginning once all data is used
- Each time through the training data is called an epoch
- When slopes are calculated on one batch at a time: stochastic gradient descent

Let's practice