ΧΡΗΣΤΟΣ - ΠΑΝΑΓΙΩΤΗΣ ΠΑΛΑΜΙΔΑΣ 1115201800140

Σημειώσεις για κώδικα:

- Στην main καλώ 3 φορές τη συνάρτηση syndiasmos_D_NR στην οποία κάθε φορά περνάω μια συνάρτηση με την παράγωγό της και το διάστημα στο οποίο θέλω να βρω τη ρίζα.
- Αντίστοιχα κάνω και για τη συνάρτηση syndiasmos_D_T.
- Κανονικά οι συναρτήσεις αυτές δεν επιστρέφουν κάτι, όμως για να μπορέσω να κάνω την άσκηση 1.3, επιστρέφω ένα πίνακα με όλα τα υπολογισμένα 'χ' καθώς και τον αριθμό επαναλήψεων που έγιναν για να προσεγγίσουμε την ρίζα -> ([x,iterations], όπου x = πίνακας με 'x' και iterations = αριθμός επαναλήψεων).
- Έτσι στη main υπολογίζω τόσο το απόλυτο σφάλμα, όσο και την σύγκλιση την οποία και μπορείτε να δείτε (αυτούς τους αριθμούς χρησιμοποιώ και για την 1.3).
- Οι πίνακες z[1,2,3,4] χρησιμοποιούνται για τον υπολογισμό του απόλυτου σφάλματος, ενώ οι πίνακες e[1,2,3,4,5,6] για την μελέτη της σύγκλισης
- Τέλος, στη main, χρησιμοποιώ τη συνάρτηση graph_NR (και έχω σε σχόλια την graph_T μιας και είναι ακριβώς ίδια) έτσι ώστε να εμφανιστεί η γραφική παράσταση των 2 συναρτήσεων.

ΣΥΝΔΥΑΣΜΟΣ ΔΙΧΟΤΟΜΗΣΗΣ & NR						
	[a,b]	хО	x1	n		
n	[-1.5,0]	-0.9375	-0.9999992743 3122	32		
	[1.5,3]	1.99987792968 75	2	15		
f2	[1,3]	1.3203125	1.31907367685 736	12		

ΠΙΝΑΚΑΣ_1

	ΣΥΝΔΥΑΣΜΟ	Σ ΔΙΧΟΤΟΜΗΣΗΣ δ	& ΤΕΜΝΟΥΣΑΣ	
	[a,b]	x0	x1	n
f1	[-1.5,0]	-0.9375	-0.9999985927 75782	43
	[1.5,3]	1.99987792968 75	1.9999999999 273	16
f2	[1,3]	1.3203125	1.31907367685 781	13

ΠΙΝΑΚΑΣ_2

Διάστημα μέσα στο οποίο βρίσκεται η ρίζα. Η ρίζα που προκύπτει μετά της διχοτόμηση. [a,b]:

χ0:

Η ρίζα που προκύπτει μετά και τη μέθοδο NR/Τέμνουσας. χ1:

Ο αριθμός των επαναλήψεων. n:

1.3) MELERN ZYTENISHS

$$\int_{L} (x) = (x+1)^{3} (x-2) \quad \xi = -1$$

$$\int_{L} (x) = (x+1)^{3} (x-2) \quad \xi = 2$$

$$\int_{L} (x) = (x+1)^{3} (x-2) \quad \xi = 2$$

$$\int_{L} (x) = (x+1)^{3} (x-2) \quad \xi = 2$$

$$\int_{L} (x) = (x+1)^{3} (x-2) \quad \xi = 2$$

$$\int_{L} (x) = (x+1)^{3} (x-2) \quad \xi = 2$$

$$\int_{L} (x) = (x+1)^{3} (x-2) \quad \xi = 2$$

$$\int_{L} (x) = (x+1)^{3} (x-2) \quad \xi = 2$$

SL-NR	, n	1En1	1Enl	fr-NR n	1 lenl	1 18n1
	1	0,25	0,5	1	0,25	2
	2	0,125	0.5	2	0,125	4
	3	0.0675	1	3	0.0625	8
***************************************	}	1	1	1	1	!
	31	1.0885 P-06		14	1.49035 e-03	1,999
***************************************	32	7.8668e-07	-	15	4,4408P. e-16	-

13-NR	n	123/	Xn+1-Xn Xn-Xn-1 P	1-74v n	1 1841	1841
	1		L		0,75	0,5
	2	-	2	2	0,125	015
	1	-	C+ 4=9	}	1	3
	10	-	8 44=10	41	2.46950-P-D6	0.754877
	11	_	0,79099	42	1.86417-6-06	0.754877
	12	-	0,789790	43	1.40722e-06	times.

f2-74/1	n	18/1	18n1 18n-11°	13-74V n	1/84	Xu+1-Xu
	1	0.25	0.5			0.5
	2	0,125	ois	2	-	0.5
	1	!	Į.	}	-	1 54=10
	4	0,000244	0.00012206	11	-	4
l'	5	2,9799 e-08	0,0002441	12	_	0,m973 /5
	6	7.27418. e-12	-	13		0,007193

(1.4)

VIA NR .:

Special form $(x \times 1)^3 (x - 2)$ | $\xi = -1$ Propose form $(x \times 1)^3 (x - 2)$ | $\xi = -1$ Apoin Guyedian Eiven popularian

Eniams $\lim_{x \to 3} \{x(x)\} = -3$ | $\{x(x)\} = -3$ |

6) $f(x) = (x+1)^3(x-2)$ | $\xi = 2$ | $f(\xi) = 0$ | x = 1 | $f(\xi) = 27 \neq f(\xi)$ | $f(x) = (x+1)^2(4x-5)$ | $f(x) = (x+1)^$

 $f_3(x) = e^{x} - x^2 - 2$ | $\xi = \rho i \int_{x} f_3(\xi) = 0$ which $f_3(\xi) \neq 0 \neq f_3(\xi)$ $f_3(x) = e^{x} - 2x$ | $f_3(\xi) = 0$ which $f_3(\xi) \neq 0 \neq f_3(\xi)$ | $f_3(\xi) \neq 0 \neq f_3(\xi)$ | $f_3(x) = e^{x} - 2x$ | $f_3(\xi) = 0$ which $f_3(\xi) \neq 0 \neq f_3(\xi)$ | $f_3(\xi) \neq 0 \neq f_3(\xi)$ |

 $(\alpha) \rightarrow n=32$ $(B) \rightarrow n=15$ (Apx n (a) Eival n nio apyn, and PINACA. 1 $(\gamma) \rightarrow n=12$

Tix Téprovex:

- orav exoupe norldin pija, in pédoborus rins réfivousas siver pappien significan p=L (ani Dempia)
- €) από θεωρία, για μέθοδο τέμνουρως, η συχελ είναι καλοτερη από δραμμική (όχι τετραγωνική) καποκό (ρ=1,7)

fr → n=43 {
fr → n=16 } Aρα n fr Eivan n nio αργή, από Πτηρια-2
fr → n=13