COM3110/4115/6115: Text Processing Information Retrieval: Term Manipulation

Mark Stevenson

Department of Computer Science University of Sheffield

Overview

- Definition of the information retrieval problem
- Approaches to document indexing
 - manual approaches
 - automatic approaches
- Automated retrieval models
 - boolean model
 - ranked retrieval methods (e.g. vector space model)
- Term manipulation:
 - stemming, stopwords, term weighting
- Evaluation

What counts as a term?

Common to just use the words, but pre-process them for generalisation

- Tokenisation: split words from punctuation (get rid of punctuation)
 e.g. word-based. → word based three issues: → three issues
- Capitalisation: normalise all words to lower (or upper) case
 e.g. Cat and cat should be seen as the same term, but should we conflate Turkey and turkey?
- Lemmatisation: conflate different inflected forms of a word to their basic form (singular, present tense, 1st person):

```
e.g. cats, cat 	o cat have, has, had 	o have worried, worries 	o worry
```

• Stemming: conflate morphological variants by chopping their affix:

WORRY WORRIED WORRIES WORRYING WORRYINGLY GALL GALLED GALLEY GALLERY

What counts as a term? (ctd)

- Normalisation: heuristics to conflate variants due to spelling, hyphenation, spaces, etc.
 - e.g. USA and U.S.A. and U.S.A. \rightarrow USA
 - e.g. chequebook and cheque book \rightarrow cheque book
 - e.g. word-sense and word sense \rightarrow word-sense
- Single vs. multi-word terms
 - e.g. recognise phrases, e.g. Sheffield University
 - Multi-word indexing, e.g. bigram indexing, each bigram is a term in the index: pease porridge in the pot

pease porridge porridge in in the the pot

 Issue: index increase in size due to large number of possible phrases, esp. for larger n-grams

Word Frequency and Term Usefulness

- The most and least frequent terms are not the most useful for retrieval
- (Figure from van Rijsbergen (1979) Information Retrieval http://www.dcs.gla.ac.uk/Keith/Preface.html)

Stop words

- Use Stop list removal to exclude "non-content" words
- Usually most frequent (and least useful for retrieval)

а	always	both
about	am	being
above	among	со
across	amongst	could

- greatly reduces the size of the inverted index
- but what if we want to search for *phrases* that include these terms?
 - Kings of Leon
 - Let it be
 - To be or not to be
 - Flights to London

Term Weighting

What do we use for the inverted index?

- binary weights 0/1: whether or not term is present in document
 - But documents with multiple occurrences of query keyword may be more relevant
- Frequency of term in document: like the examples we have seen
 - But what if the term is also frequent in collection?
 - Common terms: not very useful for discriminating relevant documents
- Frequency in document vs in collection: weight terms highly if
 - ◆ They are **frequent** in relevant documents . . . but
 - They are infrequent in collection as a whole

• Key concepts:

document collection	D	collection (set) of documents
size of collection	D	total number of documents in collection
term freq	$tf_{w,d}$	number of times w occurs in document d
collection freq	cf_w	number of times w occurs in collection
document freq	df_w	number of documents containing w

The informativeness of terms

- Idea that *less common* terms are *more useful* to finding relevant docs:
 - i.e. these terms are more informative
- Is this idea best addressed using document frequency or collection frequency?
- Consider following counts (from New York Times data, |D| = 10000):

Word	cf _w	df _w
insurance	10440	3997
try	10422	8760

- term insurance semantically focussed, term try very general
 - · document frequency reflects this difference
 - collection frequency fails to distinguish them (i.e. very similar counts)

- Informativeness is inversely related to (document) frequency
 - i.e. *less common* terms are *more useful* to finding relevant documents *more common* terms are *less useful* to finding relevant documents
- Compute metric such as: $\frac{|D|}{df_w}$
 - \diamond Value reduces as df_w gets larger, tending to 1 as df_w approaches |D|

e.g.
$$\frac{10000}{3997} = 2.5$$
 (insurance) $\frac{10000}{8760} = 1.14$ (try)

- \diamond Value very large for small df_w over-weights such cases
 - e.g. $\frac{10000}{350} = 28.6$ (mischief)
- To moderate this, take log: Inverse document frequency (idf)

$$idf_{w,D} = log \frac{|D|}{df_w}$$

$$log \frac{10000}{3997} = 0.398 \text{ (insurance)} \qquad log \frac{10000}{8760} = 0.057 \text{ (try)} \qquad log \frac{10000}{350} = 1.456 \text{ (mischief)}$$

- BUT Not all terms describe a document equally well
- Putting it all together: tf.idf
 - Terms which are frequent in a document are better:

$$tf_{w,d} = freq_{w,d}$$

Terms that are rare in the document collection are better:

$$idf_{w,D} = log \frac{|D|}{df_w}$$

Combine the two to give tf.idf term weighting:

$$tf.idf_{w,d,D} = tf_{w,d} \cdot idf_{w,D}$$

 Most commonly used method for term weighting. Used in other fields too (e.g. summarisation)

tf.idf example:

Term	tf	df	D	idf	tf .idf
the	312	28,799	30,000	0.018	5.54
in	179	26,452	30,000	0.055	9.78
general	136	179	30,000	2.224	302.50
fact	131	231	30,000	2.114	276.87
explosives	63	98	30,000	2.486	156.61
nations	45	142	30,000	2.325	104.62
haven	37	227	30,000	2.121	78.48

For term the:

$$idf(the) = log_{10}(\frac{30,000}{28,799}) = 0.018$$

$$tf.idf(the) = 312 \cdot 0.018 = 5.54$$

Putting things together

Example: Vector Space Model, tf.idf term weighting, cosine similarity

 tf.idf values for words in two documents D₁ and D₂, and in a query Q "hunter gatherer Scandinavia":

	Q	D_1	D_2
hunter	19.2	56.4	112.2
gatherer	34.5	122.4	0
Scandinavia	13.9	0	30.9
30,000	0	457.2	0
years	0	12.4	0
BC	0	200.2	0
prehistoric	0	45.3	0
deer	0	0	23.6
rifle	0	0	452.2
Mesolithic	0	344.2	0
$\sqrt{\sum_{i=1}^{n} x_i^2}$	41.9	622.9	467.5

(i.e. length of vector)

•
$$sim(\vec{q}, \vec{d}) = cos(\vec{q}, \vec{d}) = \frac{\sum_{i=1}^{n} q_i d_i}{\sqrt{\sum_{i=1}^{n} q_i^2} \sqrt{\sum_{i=1}^{n} d_i^2}}$$

Putting things together (ctd)

•
$$sim(\vec{q}, \vec{d}) = cos(\vec{q}, \vec{d}) = \frac{\sum_{i=1}^{n} q_i d_i}{\sqrt{\sum_{i=1}^{n} q_i^2} \sqrt{\sum_{i=1}^{n} d_i^2}}$$
 $cos(Q, D_1) = \frac{(19.2 * 56.4) + (34.5 * 122.4) + \dots + (0 * 0) + (0 * 344.2)}{41.9 * 622.9}$
 $= \frac{5305.68}{26071.72}$
 $= 0.20$
 $cos(Q, D_2) = \frac{(19.2 * 112.2) + (34.5 * 0) + \dots + (0.0 * 452.2) + (0.0 * 0.0)}{41.9 * 467.5}$
 $= \frac{2583.8}{19570.0}$
 $= 0.13$

• so document D_1 is more similar to Q than D_2

Summary

- Term manipulation
 - Pre-processing
 - tokenisation, stemming, stop word removal ...
- Term weighting
 - Binary
 - Term frequency
 - ◆ TF.IDF