Chapitre 4 Fonctions exponentielles et logarithmiques CORRIGÉ DES NOTES DE COURS

Pages 3-4 Exercices préalables

- 1. 3^4
- 2. a) 27 b) 49 c) 64 d) 1 e) $\frac{1}{1000}$ f) 128 g) 100 h) 64
- 3. $\sqrt[7]{279936^3} = 279936^{\frac{3}{7}} = 216$
- 4. $\frac{2^{-17}a^3b^{-5}}{3^{12}b^8c^{-5}} = \frac{a^3c^5}{2^{17}3^{12}b^5b^8} = \frac{a^3c^5}{2^{17}3^{12}b^{13}}$
- 5. a) $\frac{1}{4^2}$ ou $\left(\frac{1}{4}\right)^2$ b) $\left(\frac{5}{3}\right)^1$ c) $\left(\frac{5}{2}\right)^1$ d) $3^5 \cdot 4^2$ e) $\frac{3x^2}{2}$
 - f) $\frac{4^4}{2^9}$ ou $\frac{1}{2^1}$ ou $\left(\frac{1}{2}\right)^1$ g) $\frac{3}{(x-4)^2}$ h) $\left(\frac{5}{2}\right)^4$ i) $2^4 \cdot 3^6$
- 6. a) $\left(\frac{1}{4}\right)^5$ b) $7^{\frac{3}{2}}$ c) $5^{\frac{11}{6}}$ d) $\left(\frac{1}{4}\right)^2$ e) $\left(\frac{1}{5}\right)^{\frac{1}{3}}$
- 7. a) $2^3 \cdot 5^4$ b) $2^5 a^6$ c) $\frac{8^{13}}{6^{\frac{1}{2}}}$ d) $3^2 \cdot 7^{\frac{2}{3}}$
- 8. a) L'égalité est fausse : $9 = 3^2$ b) L'égalité est vraie. c) L'égalité est vraie.
 - d) L'égalité est fausse : $\left(\frac{27}{125}\right)^3 = \left(\frac{3}{5}\right)^9$ e) L'égalité est vraie.
- 9. a) p-20%(p) = 100%(p) 20%(p) = 80%(p) = 0.8p
 - b) p + 5%(p) = 100%(p) + 5%(p) = 105%(p) = 1,05p
 - c) $p \frac{p}{2} = \frac{2p}{2} \frac{p}{2} = \frac{2p p}{2} = \frac{p}{2} = 0.5p$

Page 5 Mise au point #1

- 1. a) 125 b) $\frac{1}{8}$ c) 1 d) 3 e) -3 f) 7

- 1) 1

- 2. a) 486, 1458, 4374 b) $4, \frac{4}{9}, \frac{4}{81}$
- c) 2,5; 25; 250 d) 12, 3, $\frac{3}{4}$

- 3.
- a) 65, 325 b) 36, ..., 2916 c) $\frac{5}{8}$, ..., 160 d) 14, ..., 224

- 4. a) 5^7

- b) $-2^4 \times 3^2$ c) $2^{15} \times 3^2$ d) $-2^5 \times 3^5$

Pages 6-7 Exemples

1. Réponse: 88 insectes

Temps écoulé (semaines)	0	1	2	3	 t
Nombre d'insectes	180 224	90 112	45 056	22 528	 $180224 \cdot \left(\frac{1}{2}\right)^t$

2. Réponse : 640 bactéries

Temps écoulé (heures)	0	1	2	3	•••	t
Population	5	20	80	320		$5 \cdot 4^t$

3. *Réponse*: environ 0,11 hectares (soit l'équivalent d'une région circulaire de seulement 38 m de diamètre!)

Temps écoulé (semaines)	0	1	2	3		t
Superficie (hectares)	200	150	112,5	84,375	•••	$200 \cdot 0,75^{t}$

4. *Réponse*: environ 0,000 000 002 m (disons qu'elle ne rebondit plus!)

Nombre de bonds	0	1	2	3		n
Hauteur de la balle (m)	12	9,6	7,68	6,144	•••	$12 \cdot \left(\frac{4}{5}\right)^n$

5. *Réponse* : 3229.91 \$

Temps écoulé (années)	0	1	2	3		t
Valeur du placement (\$)	1200	1224	1248,48	1273,45	•••	1200·1,02 ^t

Page 11 Exercice

c) même intensité d) g e) g f) f g) f h) même intensité a) *f* b) g

Page 13 Mise au point #2

1. a)
$$2 = \log (100)$$
 b) $3 = \log_5 (125)$ c) $3 = \log_{1/2} \left(\frac{1}{8}\right)$

d)
$$2 = \log_a (25)$$
 e) $m = \log_a (x)$ f) $x = \log_b (a)$

3. a)
$$\log_3(9) = 2$$
 b) $\log_5(625) = 4$ c) $\log_{2,5}(t) = s$ d) $\log_{1/8}(y) = x$ e) $\log_s(w) = v$ f) $\log_c(y) = x$

4. a)
$$6^2 = 36$$
 b) $n^z = 100$ c) $(0.75)^x = y$ d) $t^r = s$

Page 14 Exemples

1.
$$f(x) = 5 \cdot 3^x$$
 2. $g(x) = \frac{-1}{2} \left(\frac{2}{3}\right)^x$ 3. $h(x) = \frac{-1}{10} \cdot 5^x$

Page 15 Mise au point #3

1. a)
$$m = 3$$
, $n = -2$ b) $m = 6$, $n = 1,5$ c) $m = 100$, $n = 0,4$
2. a) $f(x) = 5(3)^x$ b) $f(x) = -4(5)^x$ c) $f(x) = (0,75)^x$

2. a)
$$f(x) = 3(3)^x$$
 b) $f(x) = -4(5)^x$ c) $f(x) = (0,75)^x$

3. a)
$$f(x) = 8(3)^x$$
 b) $f(x) = -4(5)^x$ c) $f(x) = 0.75(0.5)^x$

Page 18 Exemples

1.
$$f(x) = 3(1,2)^x - 2$$
 2. $g(x) = \frac{1}{8}(2)^x - 4$

Pages 20-21 Exemples

- 1. a) $N(t) = 250 \cdot 8^t$
- 2. $H(x) = 150 \cdot 0.75^x$ 3. $H(x) = 200 \cdot 0.4^x$

- b) 3h20 ou 200 minutes
- c) $N(t) = 230 \cdot 8^t + 20$

Nombre de bonds	0	$\frac{1}{1}$	2	3	4	5	6
Hauteur de la balle (cm)	200	80	32	12,8	5,12	2,048	0,8192

- 4. a) $V = 10000(0.8)^{0.5t}$ b) environ 2900\$
- 5. a) $N(t) = 5 \cdot 3^{\frac{t}{120}}$ b) $N(t) = 5 \cdot 3^{\frac{t}{2}}$ c) $N(t) = 5 \cdot 3^{30t}$ d) 2846 gouttes d'eau

Page 25 Mise au point #4

- 1. a = 12 b = 3 h = 1 k = -0.75 et c = 0.8

- 2. a) y = -3 b) y = 4 c) $y = \frac{-2}{3}$ d) y = 0
- 3. a) $f(x) = 3(4)^{x-10} + 2$ b) $f(x) = -(81)^{x-2} 5$
- 4. a) $f(x) = -50(125)^x 10$ b) $f(x) = \frac{-3}{16}(256)^x + 1$

Page 26 Exercice

- 1. a) Vrai b) Faux c) Faux d) Faux e) Vrai

Page 28 Mise au point #5

- 1. a) x = 6 b) x = -1,5 c) x = -1 d) $x = \frac{1}{2}$

- e) x = -4 f) x = 4 g) x = 2 h) $x = \frac{1}{4}$

- 2. a) x = -4 b) x = -20 c) $x = \frac{-1}{19}$ d) $x = \frac{11}{2}$ e) x = -5 f) $x = \frac{5}{2}$

Pages 29-30 Simulations financières

Simulation 1 : Placement de 2000\$ pour 5 ans à 6% (intérêt simple)

Temps écoulé (années)	0	1	2	3	4	5
Intérêt versé durant l'année (\$)		120	120	120	120	120
Valeur du placement (\$)	2000	2120	2240	2360	2480	2600

La valeur du placement après t années est donnée par la règle V = 2000 + 120t.

Simulation 2 : Placement de 2000\$ pour 5 ans à 6% (intérêt composé annuellement)

Temps écoulé (années)	0	1	2	3	4	5
Intérêt versé durant l'année (\$)		120	127,20	134,83	142,92	151,50
Valeur du placement (\$)	2000	2120	2247,20	2 382,03	2 524,95	2 676,45

► La valeur du placement après t années est donnée par la règle $V = 2000 (1,06)^t$.

Simulation 3: Placement de 2000\$ pour 5 ans à 6% (intérêt capitalisé 2 fois/année)

Temps écoulé (années)	0	1/2	1	11/2	2		5
Valeur du placement (\$)	2000	2060	2121,80	2185,45	2251,02	•••	2687,83

► La valeur du placement après t années est donnée par la règle $V = 2000 (1,03)^{2t}$.

Simulation 4 : Placement de 2000\$ pour 5 ans à 6% (intérêt capitalisé mensuellement)

Temps écoulé (années)	0	1/12	2/12	3/12	4/12	•••	5
Valeur du placement (\$)	2000	2010	2020,05	2030,15	2040,30	•••	2697,70

La valeur du placement après t années est donnée par la règle $V = 2000 (1,005)^{12t}$.

Pages 31-32 Exercices sur les taux d'intérêts composés

1. a)
$$V = 2000(1,03)^t$$
 b) $V = 5000(1,04)^{2t}$ c) $V = 5000 \left(\frac{1801}{1800}\right)^{18t}$

où « V » représente la valeur (en \$) et « t » le nombre d'années écoulées

2. 1641,94\$

3. 2500\$

4. 9%

5. 20 ans (détails en classe...)

Page 33 Mise au point #6

- 1. $f(x) = 8(0,3)^x + 5$
- 2. a) 1 200\$
- b) 85%
- c) 1) 867\$
 - $2) \approx 626,41$ \$
 - $3) \approx 236,25$ \$

- 3. a) $\approx 1338,23$ \$
- b) $\approx 2.025,00$ \$

Page 35 Exemple

- a) i) 65 watts; ii) \approx 19,25 watts
- b) décroissante
- c) dom P : [0, 1000] jours et codom $P : [\approx 2,32;65]$ watts
- d) i) après $\approx 207,94$ jours; ii) après $\approx 628,48$ jours

Page 36 Mise au point #7

- 1. a) 6
- b) 3
- c) -1
- d) -3
- e) 1,5
- f) -0.5

- g) 2
- h) 1
- i) 0
- j) -2
- k) 0
- 1) 4

- 2. a) 1
- b) 2
- c) 4
- d) 128
- e) 2
- $f) \emptyset$

- g) 4
- h) $\mathbb{R}^*_+\setminus\{1\}$
- i) 1/32

Page 37 – Démonstrations des lois des logarithmes...

Il existe plusieurs façons de démontrer ces lois, mais en voici de bons exemples :

Soit a, b, m et $n \in \mathbb{R}_+^*$ et $a \neq 1, b \neq 1$

Lois	Démonstrations
1. $\log_a(1) = 0$	$a^0 = 1 \iff \log_a(1) = 0$
2. $\log_a(a) = 1$	$a^1 = a \iff \log_a(a) = 1$
	1°) $a^{\log_a(m)} = n$
$3. a^{\log_a(m)} = m$	$2^{\circ}) \log_a(n) = \log_a(m)$
$3. u \circ \cdots = m$	3°) $n=m$
	$4^{\circ}) \ a^{\log_a(m)} = m$
$A \log (mn) = \log (m) + \log (n)$	1°) $mn = m \cdot n$
4. $\log_a(mn) = \log_a(m) + \log_a(n)$	$2^{\circ}) \ a^{\log_a(mn)} = a^{\log_a(n)} \cdot a^{\log_a(n)}$
$\int \log (m) - \log (m) \log (n)$	3°) $a^{\log_a(mn)} = a^{\log_a(m) + \log_a(n)}$
5. $\log_a\left(\frac{m}{n}\right) = \log_a\left(m\right) - \log_a\left(n\right)$	$4^{\circ}) \log_a(mn) = \log_a(m) + \log_a(n)$
	$\log_a(m^n) = \log_a(\underbrace{m \cdot m \cdot m \cdots m}_{a \cdot b \cdot a})$
	n jois
$6. \log_a(m^n) = n \log_a(m)$	$= \underbrace{\log_a(m) + \log_a(m) + + \log_a(m)}_{n \text{ fois}}$
	$= n \log_a(m)$
	1°) $\log_a(m) = n$
	2°) $a^n = m$
	$3^{\circ}) \log_b(a^n) = \log_b(m)$
$7 \log_b(m) = \log_b(m)$	$4^{\circ}) \ n\log_b(a) = \log_b(m)$
7. $\log_a(m) = \frac{\log_b(m)}{\log_b(a)}$	$\log_b(m)$
	$5^{\circ}) \ n = \frac{\log_b(m)}{\log_b(a)}$
	6°) $\log_a(m) = \frac{\log_b(m)}{\log_b(a)}$
	$\log_a(m) = \log_b(a)$
$8. \log_a\left(\frac{1}{m}\right) = -\log_a\left(m\right)$	$\log_a\left(\frac{1}{m}\right) = \log_a\left(m^{-1}\right) = -\log_a\left(m\right)$
9. $\log_a(b) = \frac{1}{\log_b(a)}$	$\log_a(b) = \frac{\log(b)}{\log(a)} = \left(\frac{\log(a)}{\log(b)}\right)^{-1} = \left(\log_b(a)\right)^{-1} = \frac{1}{\log_b(a)}$
10. $\log_{1/a}(m) = -\log_a(m)$	$\log_{1/a}(m) = \frac{\log(m)}{\log(1/a)} = \frac{\log(m)}{\log(a^{-1})} = \frac{\log(m)}{-\log(a)} = -\log_a(m)$

Page 38 Exemples

$$Ex.1: \ln(5^x \cdot 6^{2x}) = \ln(5^x) + \ln(6^{2x}) = x \cdot \ln(5) + 2x \cdot \ln(6)$$

$$Ex.2: 5\log_2(x) + \log_2(x+4) = \log_2(x^5) + \log_2(x+4) = \log_2(x^5 \cdot (x+4)) = \log_2(x^6 + 4x^5)$$

$$Ex.3: \log_5(10) = \frac{\log(10)}{\log(5)} = \frac{1}{\log(5)} \approx 1,431$$

Ex.4:
$$\log_4(8) = \log_4(2^3) = 3 \cdot \log_4(2) = 3 \cdot \frac{1}{2} = \frac{3}{2}$$

$$Ex.5: x = \log_5(25) = 2$$

$$Ex.6: x = \log_3\left(\frac{1}{81}\right) \Leftrightarrow 3^x = \frac{1}{81} \Leftrightarrow 3^x = \frac{1}{3^4} \Leftrightarrow 3^x = 3^{-4} \Leftrightarrow x = -4$$

Ex.7:
$$x = \log_5(6) = \frac{\log(6)}{\log(5)} \approx 1{,}113$$

Page 39 Mise au point #8

- 1. a) $\log_c(2) + \log_c(m) + \log_c(n)$
 - c) $\log_3(4) + 2\log_3(x)$
 - e) $3\log_4(m) + 3\log_4(n) + 3$
 - g) $\frac{1}{2}\log_4(x) + 2$

- b) $\log_5(7) + 2\log_5(x+2)$
- d) $\log_2(5) + \log_2(a) 2\log_2(b)$
- f) $2\log_6(2) + 2\log_6(x+1)$
- h) $\log (x+2) + \log (x-2)$

g) ≈ -0.301 h) ≈ 0.383

- 2. a) log₂ (40)
- b) log₄ (15)
- c) ln (14)

d) log (5)

- e) $\log_2(54)$
- f) log (3)

- 3. a) ≈ 0.954
- b) $\approx 1,146$ c) $\approx 1,653$ d) $\approx 1,954$

- e) $\approx 1,699$ f) $\approx 4,225$ i) ≈ 0.812

 - i) ≈ 3.196
- 4. $\log(5)$

Page 40 Exercices

- **1.** $x \approx 13{,}158$ **2.** $x \approx 2{,}71$ **3.** $x \approx 3{,}576$ **4.** $x \approx -0{,}486$

Pages 41-42 Exemples

1.
$$x = \log_{54}(6) \approx 0,449$$

2.
$$x = \log_{4.9}(7) \approx 1,224$$

3.
$$x = \log_{\frac{1024}{3}}(9) \approx 0.377$$

4.
$$x = \frac{9}{7 \cdot \log_3(5) - 15} \approx -1,897$$

Page 43 Mise en situation – La nappe d'huile (version ultime)

- b) Pendant environ 7,66 heures, soit environ 7h40min.
- c) La règle devient : $S = -12\left(\frac{1}{4}\right)^{t/120} + 17$

Page 44 Mise en situation – Crise financière

$$V(t) = \begin{cases} -20 \cdot (5,2)^{t} + 60 & 0 \le t \le 0,42 \\ 20 & 0,42 \le t \le 1,42 \\ 20 \cdot (0,95)^{3(t-1,42)} & t \ge 1,42 \end{cases}$$

On a V(0) = 40. On cherche la valeur de t qui engendre V(t) = 10.

Avec la troisième partie de la fonction, on obtient $t \approx 5,9249$ (environ 5 ans et 11 mois). La réponse finale est donc : en août 2014.

Pages 45-47 Exemples

1.
$$x = 19$$

2.
$$x = 4$$

3.
$$x = \frac{1}{2}$$

5.
$$x = 4$$

1.
$$x = 19$$
 2. $x = 4$ **3.** $x = \frac{1}{2}$ **4.** $x \in \emptyset$ **5.** $x = 4$ **6.** $x = \frac{48}{11}$

7.
$$x = 8$$

7.
$$x = 8$$
 8. $x = \frac{3}{2}$

Page 51 Exemple

Page 52 Exemple

a)
$$f(x) = 2 \log_3 (-(x-1)) - 4$$

- Dom $f: -\infty$, 1
- Codom $f: \mathbb{R}$
- Zéro: -8
- Signes: $f(x) \ge 0 \ \forall \ x \in]-\infty$, -8]et $f(x) \le 0 \ \forall \ x \in [-8, 1[$ Signes: $g(x) \le 0 \ \forall \ x \in]-\infty$; -2]
- Variation : Décroissante sur tout son domaine
- Ordonnée à l'origine : -4

b)
$$g(x) = 3 \log_{1/4} (-(x+1))$$

- Dom $g: -\infty, -1$
- Codom $g: \mathbb{R}$
- Zéro: -2
- Variation : Croissante sur tout son domaine
- Ordonnée à l'origine : aucune
- Équation de l'asymptote : x = 1 Équation de l'asymptote : x = -1

Page 53 Situation-problème

Durée des observations : $88,641 = 20 \cdot (1,015)^t \iff t \approx 100 \text{ ans}$

Taux moyen pour Ste-Asymptote : $\frac{88641 - 20000}{100} \approx 686,41$ hab./année

Taux moyen pour Log City : $\frac{P_2(100) - P_2(0)}{100} = \frac{99481 - 216000}{100} \approx -1165,19 \text{ hab./année}$

Pages 55-56 Exemples

- **1.** $h(x) = \log_{0.5}(x-2)$ **2.** $g(x) = \log_6(x+3)$ **3.** $f(x) = \log_3(0.5(x-2))$