CS 2850 – Networks HW 3

jfw225

September 2022

- 1. Let b_i be the bid made by the *i*-th bidder, and let b_j be the bid made by the *j*-th bidder where $i, j \in \{2, 3\}$ and $i \neq j$. Suppose that bidder *i* bids at least as much as bidder *j* (i.e. $b_i \geq b_j$). In order to win, we must bid $b_1 > b_i$ for the item. Since this is a second-price sealed-bid auction, we will pay b_i for the item if we win which yields a payoff of $v_1 b_i$. If instead we lose the auction, then our payoff is zero. From this, we consider two cases:
 - Case 1: $\mathbf{b_i} > \mathbf{v_1}$ If $b_i > v_1$ is the second highest bet and we won the auction, then it must be the case that we bid more than v_1 . In this case, we are guaranteed to have a payoff of $v_1 b_i \leq 0$. Notice that winning when $b_i > v_1$ is at best as valuable as not playing at all. Thus, we should never bid more than v_1 when $b_i > v_1$.
 - Case 2: $\mathbf{b_i} \leq \mathbf{v_1}$ In this case, we know that both b_i and b_j are at $\overline{\text{most } v_i}$. We will still pay b_i for the item, but we are guaranteed to have a payoff of at least zero. More specifically, our payoff is $v_1 b_i \geq 0$. Notice that when $b_i \leq v_1$, a bid of $b_1 = v_i$ is guaranteed to yield the exact same payoff as a bid of $b_1 > v_i$.

Thus, bidding above $v_1 = 30$ never increases the payoff and only adds additional risk. Therefore, our friend is incorrect and we should never bid more than 30.

2. Let $\psi_i(R, v_i, b_i, b_j)$ be the payoff for bidder i when placing a bid of b_i for an object valued at v_i while facing off in a two-buyer auction against some other bidder j who places a bid of b_j . In addition, the auction is a second-price auction with a reserve price R. Let us further define this payoff function as

$$\psi_i\left(R,v_i,b_i,b_j\right) = \begin{cases} 0 & \text{if } b_i \leq b_j \text{ or } b_i \leq R, \\ v_i - \max\{b_j,R\} & \text{if } b_i > b_i \text{ and } b_i > R. \end{cases}$$

(a) Let us refer to the opposing buyer as bidder j and ourselves as bidder i. From the question, we know that R = 10 and our value is $v_i = 15$. Our goal is to bid such that our expected payoff is maximized, or

rather, pick a value b_i such that $\mathbb{E}\left[\psi_i\left(R, v_i, b_i, b_j\right)\right]_{b_j}$ is maximized, where the expected payoff is given by

$$\mathbb{E}\left[\psi_{i}\left(R,v_{i},b_{i},b_{j}\right)\right]_{b_{j}} = \sum_{b \in \{5,10,15\}} \mathbb{P}\left(b_{j} = b\right) \cdot \psi_{i}\left(R = 10,v_{i} = 15,b_{i},b_{j} = b\right).$$

Computing each value of b_i gives us

$$\mathbf{b_{i}} = \mathbf{5}: \quad \mathbb{E}\left[\psi_{i}\left(R, v_{i}, b_{i} = 5, b_{j}\right)\right]_{b_{j}} = \frac{1}{3} \cdot 0 + \frac{1}{3} \cdot 0 + \frac{1}{3} \cdot 0$$

$$= 0,$$

$$\mathbf{b_{i}} = \mathbf{10}: \quad \mathbb{E}\left[\psi_{i}\left(R, v_{i}, b_{i} = 10, b_{j}\right)\right]_{b_{j}} = \frac{1}{3}(15 - 10) + \frac{1}{3}(15 - 10) + \frac{1}{3} \cdot 0$$

$$= \frac{5}{3},$$

$$\mathbf{b_{i}} = \mathbf{15}: \quad \mathbb{E}\left[\psi_{i}\left(R, v_{i}, b_{i} = 15, b_{j}\right)\right]_{b_{j}} = \frac{1}{3}(15 - 15) + \frac{1}{3}(15 - 10) + \frac{1}{3} \cdot 0$$

$$= \frac{5}{3}.$$

Since choosing $b_i = 15$ has a higher win probability than any other value and also yields an expected at least as good as the next choice, we should bid $b_i = 15$.

(b) something similar