Отчет по проекту: Задачи по случайным графам

Бахурин Виктор и Стахова Екатерина

29 мая 2025 г.

Содержание

1	Вве	цение	1
2	Опи	сание кода	1
	2.1	Используемые инструменты	1
	2.2	UML-диаграмма	2
	2.3	Реализованные алгоритмы	2
		$2.3.1 fast_chromatic_number() \dots \dots \dots \dots \dots$	2
		$2.3.2$ $fast_max_independent_set_size()$	2
		2.3.3 $greedy()$	2
3	Опи	сание экспериментов	2
	3.1	Эксперимент 1	2
		3.1.1 Цель	2
		3.1.2 Результаты	3
	3.2	Эксперимент 2	5
		3.2.1 Цель	5
		3.2.2 Результаты	5
	3.3	Эксперимент 3	7
		3.3.1 Цель	7
		3.3.2 Результаты	8
	3.4	Эксперимент 4	8
		3.4.1 Цель	8
		3.4.2 Результаты	9
	3.5	Промежуточный вывод	9
	3.6	Эксперимент 5	10
		3.6.1 Цель	10
		369 Результаты	10

1 Введение

Часть I. Исследование свойств характеристики

2 Описание кода

2.1 Используемые инструменты

• Язык программирования: Python 3.10

- Основные библиотеки: numpy, networkx, matplotlib, scikit-learn
- Система контроля версий: Git (GitHub/GitLab)
- Дополнительные инструменты: Jupyter Notebook, PyCharm, Google Colab

2.2 UML-диаграмма

Мы не реализовывали свои классы.

2.3 Реализованные алгоритмы

2.3.1 fast chromatic number()

- **Назначение**: Вычисление хроматического числа для случайного графа построенного на данной выборке.
- Входные данные: list выборка
- Выходные данные: int хроматическое число
- **Сложность**: O(nlog(n))

2.3.2 fast max independent set size()

- **Назначение**: Вычисление размера максимального независимого множества для случайного графа построенного на данной выборке.
- Входные данные: graph граф
- Выходные данные: int размер независимого множества
- **Сложность**: O(n+m)

2.3.3 *greedy()*

- Назначение: Жадное построение множества А, максимизирующие мощность критерия, при заданной допустимой ошибки первого рода.
- Входные данные: T_H_0 , T_H_1 , α два набора наблюдений и максимальная допустимая ошибка первого рода.
- **Выходные данные**: A, *current_error*, power множество A, ошибка первого рода, мощность критерия.
- Сложность: O(nlog(n))

3 Описание экспериментов

3.1 Эксперимент 1

3.1.1 Цель

Исследовать, как ведет себя числовая характеристика T в зависимости от параметров распределений и , зафиксировав размер выборки и параметр процедуры построения графа KNN.

3.1.2 Результаты

Мы получили интересный результат. График для нормального распределения выглядит хаотичнее, чем график для Student-t(); в графике Student-t() прослеживается рост $E[in_\delta(G)]$ с ростом параметра . И еще одно интересное наблюдение: для интересующих нас параметров распределений v_0 и $_0$ график распределения Student-t() ниже графика нормального распределения.

Рис. 1: $E[in_\delta(G)]$ для KNN графа построенного на $Normal(0,\sigma)$

Рис. 2: $E[in_\delta(G)]$ для KNN графа построенного на Student-t()

Графики экспоненциального и gamma-распределения выглядят хаотично. Не прослеживается никакая зависимость от параметров.

Рис. 3: Максимальная степень вершины для KNN графа построенного на $Exp(\sigma)$

Рис. 4: Максимальная степень вершины для KNN графа построенного на *Gamma*()

3.2 Эксперимент 2

3.2.1 Цель

Исследовать, как ведет себя числовая характеристика T в зависимости от параметров распределений и , зафиксировав размер выборки и параметр процедуры построения графа dist.

3.2.2 Результаты

Характеристика (G) на дистанционном графе показывает разные результаты для разных выборок. Для нормального распределения с ростом параметра σ хроматическое число убывает, а для распределения Student-t() с ростом параметра у $\chi(G)$ наоборот растет.

Рис. 5: $E[\chi(G)]$ для dist графа построенного на $Normal(0,\sigma)$

Рис. 6: $E[\chi(G)]$ для dist графа построенного на Student-t()

Размер максимального независимого множества убывает с увеличением параметра q и v. Однако для гамма-распределения зависимость несколько более хаотичная.

Рис. 7: Размер макс. независимого множества для dist графа построенного на $Exp(\sigma)$

Рис. 8: Размер макс. независимого множества для dist графа построенного на *Gamma*()

3.3 Эксперимент 3

3.3.1 Цель

Исследовать, как ведет себя числовая характеристика T в зависимости от параметров процедуры построения графа KNN и размера выборки при фиксированных значениях $\theta=\theta_0$ и $v=v_0$.

3.3.2 Результаты

Рис. 9: $E[in_\delta(G)]$ для KNN графа

График для Normal выше, чем график для Student. Это может помочь в проверке истинности H_0 и H_1 .

Рис. 10: Макс. степень вершины для KNN графа

При больших k график Гамма-распределения находится выше экспоненциального распределения.

3.4 Эксперимент 4

3.4.1 Цель

Исследовать, как ведет себя числовая характеристика T в зависимости от параметров процедуры построения дистанционного графа и размера выборки при фиксированных значениях $\theta=\theta_0$ и $v=v_0$.

3.4.2 Результаты

Рис. 11: $E[\chi(G)]$ для dist графа

К сожалению, данные графики не сильно отличаются, в среднем график для Student-t() ниже, чем график $Normal(0, \sigma)$.

Рис. 12: Размер макс. независимого множества для dist графа

Экспонента в среднем выше, чем гамма-распределение.

3.5 Промежуточный вывод

Если обобщить результаты, полученные в предыдущих пунктах, то можно заметить, что каждая из характеристик показывает разные значения на случайных графах, построенных на распределениях Student-t() и нормальном распределении $Normal(0,\sigma)$. Это означает, что существует возможность использовать их для проверки истинности гипотез H_0 и H_1 . Аналогичные рассуждения верны для экспоненциального и гамма распределений.

3.6 Эксперимент 5

3.6.1 Цель

Построить множество A в предположении $\theta = \theta_0$ и $v = v_0$ при максимальной допустимой вероятности ошибки первого рода $\alpha = 0.055$. Оценить мощность полученного критерия.

3.6.2 Результаты

Для каждой характеристики удалось построить множество А.

Используя характеристику in $\delta(G)$ на графе KNN получен следующий результат:

Ошибка первого рода $\alpha = 0.035$.

Мощность полученного критерия 0.717.

Используя характеристику $\chi(G)$ на графе dist получен следующий результат:

Ошибка первого рода $\alpha = 0.045$.

Мощность полученного критерия 0.594.

В первом случае результат значительно лучше.

Используя характеристику макс. степень вершины в графе knn получен следующий результат:

Ошибка первого рода $\alpha = 0.039$.

Мощность полученного критерия 0.303.

Используя характеристику размер макс. независимого множества в графе dist получен следующий результат:

Ошибка первого рода $\alpha = 0.053$.

Мощность полученного критерия 0.314.