## Musterlösung zum Übungsblatt 6 der Vorlesung "Grundbegriffe der Informatik"

## Aufgabe 6.1

a) Ein Jahr hat 365,25 Tage, das sind 365, 25·24 Stunden, das sind 365, 25·24·3600 Sekunden, was 31,5576 Megasekunden entspricht.

| Alter               | 19    | 20    | 21    | 22    | 23    | 24    | 25    |
|---------------------|-------|-------|-------|-------|-------|-------|-------|
| Alter am Geburtstag | 20    | 21    | 22    | 23    | 24    | 25    | 26    |
| Gigasekunden        | 0,631 | 0,662 | 0,694 | 0,725 | 0,757 | 0,788 | 0,820 |

b) Eine Sekunde enthält 1000 ms, das heißt, in einer Sekunde werden 100 Byte geschrieben.

Um von den Gigasekunden zu den geschriebenen Gibibyte zu kommen, muss der Wert mit  $\frac{100 \cdot 10^9}{1024^3} = 93,132$  multipliziert werden.

Beispiel: Alter: 21 Jahre  $\rightarrow$  0,694 Gigasekunden  $\rightarrow$  64,658 Gibibyte.

## Aufgabe 6.2

- a) Das Wort acab wird auf 001000001 abgebildet.
- b) Das Wort baab wird auf 0010000001 abgebildet.
- c) So ein Wort gibt es nicht: Da die ersten drei Zeichen 000 sind, muss das erste Zeichen ein a sein. Die nächsten beiden Zeichen nach dem codierten a wären 01; dies würde den Möglichkeiten a, b, c für das zweite Zeichen widersprechen.
- d) So ein Wort gibt es nicht: Da 00101 mit 1 aufhört, muss auch das letzte codierte Zeichen mit 1 aufhören und somit muss das letzte Zeichen b sein. Dann müssten vor der letzten 1 jedoch zwei Nullen stehen, was nicht der Fall ist.
- e) Angenommen, es gäbe zwei Wörter  $w_1, w_2 \in \{a, b, c\}^*$ , für die  $w_1 \neq w_2$  und  $C(w_1) = C(w_2)$  gilt.

Sei  $i \in \mathbb{N}_0$  die erste Stelle, an der sich  $w_1$  und  $w_2$  unterscheiden, für die also gilt:  $w_1(i) \neq w_2(i)$ .

Da beide Wörter die gleiche Codierung besitzen, muss eines der Zeichen  $w_1(i), w_2(i)$  ein Präfix des anderen Zeichens sein.

Dies geht nur, wenn ohne Beschränkung der Allgemeinheit  $w_1(i) = \mathbf{a}$  und  $w_2(i) = \mathbf{b}$  gilt.

Da beide Wörter die gleiche Codierung besitzen, muss  $w_1(i+1) = c$  gelten, da auf die beiden Nullen, durch die a codiert wird, wegen der Codierung von  $w_2(i) = b$  durch 001 eine 1 folgen muss.

Wir betrachten die Anzahl der Nullen, die auf diese 1 folgen, bis entweder das codierte Wort zu Ende ist oder eine weitere 1 enthält:

Falls auf  $w_1(i+1)$  k mal das Zeichen a und dann das Zeichen b folgt, ist diese Anzahl an Nullen 1+2k+2=2(k+1)+1, was eine ungerade Zahl ist.

Falls auf  $w_1(i+1)$  k mal das Zeichen a und dann das Zeichen c folgt, ist diese Anzahl an Nullen 1 + 2k = 2(k+1) + 1, was ebenfall eine ungerade Zahl ist.

Falls auf  $w_2(i)$  k mal das Zeichen a und dann das Zeichen b folgt, ist diese Anzahl an Nullen 2k + 2 = 2(k + 1), was eine gerade Zahl ist.

Falls auf  $w_2(i)$  k mal das Zeichen a und dann das Zeichen c folgt, ist diese Anzahl an Nullen 2k, was ebenfalls eine gerade Zahl ist.

Dies ist ein Widerspruch, weshalb es keine zwei Wörter  $w_1, w_2 \in \{a, b, c\}^*$  geben kann, für die  $w_1 \neq w_2$  und  $C(w_1) = C(w_2)$  gilt.

Alternativ: Angenommen, es gäbe zwei Wörter  $w_1, w_2 \in \{a, b, c\}^*$ , für die  $w_1 \neq w_2$  und  $C(w_1) = C(w_2)$  gilt.

Sei  $i \in \mathbb{N}_0$  die letzte Stelle, an der sich  $w_1$  und  $w_2$  unterscheiden, für die also gilt:  $w_1(i) \neq w_2(i)$ .

Für jedes der drei möglichen Zeichen sind die letzten beiden Stellen der Codierung verschieden; da alle darauf folgenden Zeichen gleich sind, können die beiden Codierungen nicht gleich sein.

## Aufgabe 6.3

a) Zerlegen in Viererblöcke: 0000 0001 0011 0001 0011 0000 0000 1110 0001 0000
Absolute Häufigkeiten:

| 0000 | 0001 | 0011 | 1110 |
|------|------|------|------|
| 4    | 3    | 2    | 1    |

Relative Häufigkeiten:

| 0000 | 0001 | 0011 | 1110 |
|------|------|------|------|
| 0,4  | 0,3  | 0,2  | 0,1  |

b) Aus Platzgründen definieren wir die Variablen a=0000, b=0001, c=0011, d=1110.



c) 0000 0001 0011 0001 0011 0000 0000 1110 0001 0000  $\rightarrow$  1 01 001 01 001 1 1 000 01 1  $\rightarrow$  1010010100111000011