Теортест-1 (Вариант 61)

Тема – определенный интеграл

Задача 1

Выберите все верные утверждения (множества A и B имеют площадь):

- 1. площадь одной точки равна нулю;
- 2. площадь графика любой функции равна нулю;
- 3. площадь $A \cup B$ равна сумме площадей A и B;
- 4. $S(A) = S(A \cap B) + S(A \setminus B)$;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 2

Пусть функция u=u(t) – первообразная для функции v=v(t) на [a,b]. Выберите все верные на [a,b] утверждения (C – произвольная постоянная):

- 1. dv = udt + C;
- 2. u = dv + C:
- 3. u = dv;
- 4. du = vdt:

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 3

Пусть f(x), x(t) – дифференцирумые функции. Выберите все верные утверждения (при соответствующей замене) :

- 1. $\int f(\sqrt{x})dx = 2 \int f(t)\sqrt{t}dt;$
- 2. $\int f(x)dx = \int f(1/t)\frac{dt}{t^2};$
- 3. $\int f(1/x)dx = -\int \frac{f(t)dt}{t^2};$
- 4. $\int \frac{f(x)}{\ln x} dx = \int f(e^t) dt$;

Задача 4

Выберите все функции, имеющие дробно-рациональные первообразные:

- 1. $\frac{x^9}{x^5+1}$;
- 2. $\frac{x^4}{(x^5+1)^3}$;
- $3. \frac{x^4}{x^2-1};$
- 4. $\frac{x}{x^2-1}$;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 5

Пусть функции $f, g: [a, b] \to \mathbb{R}$. Выберите все верные утверждения:

- 1. Если $c \in [a, b]$ и f интегрируема на [a, c] и на (c, b], то f интегрируема и на [a, b];
- 2. Если f и g интегрируемы на [a,b], то $f \cdot g$ тоже интегрируема на [a,b];
- 3. Если f интегрируема на [a,b], то |f| тоже интегрируема на [a,b];
- 4. Если $c \in [a,b]$ и f интегрируема на [a,c) и на [c,b], то f интегрируема и на [a,b];

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 6

Пусть $f:[a,b]\to\mathbb{R};\ \sigma_{\tau}(\xi)$ — интегральная сумма для f, построенная по разбиению τ с оснащением $\xi;\ s_{\tau},\ S_{\tau}$ — нижняя и верхняя суммы Дарбу. Выберите все верные утверждения:

- 1. $\forall \tau \ \forall \varepsilon > 0 \ \exists \xi \colon \sigma_{\tau}(\xi) < s_{\tau} \varepsilon;$
- 2. $\forall \tau, \xi \colon s_{\tau} \leq \sigma_{\tau}(\xi) \leq S_{\tau};$
- 3. $\forall \tau \colon s_{\tau} < S_{\tau};$
- 4. $\forall \tau \ \forall \varepsilon > 0 \ \exists \xi : \ \sigma_{\tau}(\xi) > S_{\tau} + \varepsilon;$

Задача 7

Пусть $f \in R[a,b], F(x) = \int_a^x f(t)dt$. Выберите все верные утверждения:

- 1. F ограничена на [a, b];
- 2. F непрерывна на [a, b];
- 3. $\int_{a}^{b} f(x)dx = F(b) F(a);$
- 4. F дифференцируема на [a,b];

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 8

Функция $f \in R[0,10]$ и $-1 \le f(x) \le 10$ на [0,10]. Выберите отрезки, содержащие значение интеграла $\int_{-\ln 2}^0 \frac{f(x)}{e^x} dx$:

- 1. [-10; 0];
- 2. [-0.25; 10];
- 3. [-2; 10];
- 4. [0.5; 5];

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 9

Пусть f интегрируема и $f \ge 0$ на [a,b]. Выберите все достаточные условия для того, чтобы $\int_a^b f(x) dx > 0$:

- 1. f непрерывна в точке a и f(a) = 1;
- 2. f(a) = f(b) = 1;
- 3. f непрерывна на [a,b] и f(a+b)=1;
- 4. f(a) > 0, f(b) > 0;

Задача 10

Выберите все верные утверждения:

- 1. Длина любого пути не меньше длины вписанной в его носитель ломаной;
- 2. Любая кривая имеет неотрицательную длину;
- 3. Длина кривой определяется как супремум длин всевозможных параметризаций кривой;
- 4. Длины противоположных путей равны;
- 5. Спрямляемы только кусочно-гладкие кривые;