Esercizio 1

Con riferimento alla struttura in figura, portare a termine le seguenti consegne

- 1. Tracciare il diagramma di struttura libera
- Tracciare il diagramma dello sforzo normale N
 Tracciare il diagramma del taglio T
 Tracciare il diagramma del momento M

Esercizio 2.

La struttura in figura è soggetta nel tratto AB a una variazione termica uniforme ΔT_m . Sia α il coefficiente di dilatazione termica. Assumendo $EA=+\infty$ e $GA_t=+\infty$, risolvere la struttura adoperando il metodo delle forze portando a termine i seguenti punti.

- 1. Scegliere un'incognita iperstatica e disegnare il sistema principale.
- 2. Tracciare il diagramma del momento flettente del sistema 0
- 3. Tracciare i diagrammi di forza normale e momento flettente del sistema 1.
- 4. Determinare l'incognita iperstatica e tracciare il diagramma del momento effettivo assumendo $\Delta T =$ $q\ell^3$ αEI

Esercizio 3

Una trave incastrata ha lunghezza L ed è soggetta a un momento torcente \boldsymbol{M}_t in corrispondenza dell'estremo libero. La sezione della trave è in parete sottile, come in figura.

Si assuma b=10cm, s=0.5cm L=200cm, $M_t=10\mathrm{kNcm},\,\mathrm{G=80GPa}$

Si svolgano sinteticamente negli spazi predisposti I seguenti punti:

- Si calcoli l'inerzia torsionale della sezione e la rotazione dell'estremo libero
 Si determini la tensione tangenziale massima
- 3. Assumendo una tensione ammissibile $\sigma_0=200 MPa$, si verifichi la sezione adoperando sia il criterio di Tresca che il criterio di von Mises

