PAT-NO:

JP410240906A

DOCUMENT-IDENTIFIER: JP 10240906 A

TITLE:

HANDY SCANNER

PUBN-DATE:

September 11, 1998

INVENTOR-INFORMATION:

NAME

COUNTRY

FUJIEDA, ICHIRO MIZOGUCHI, MASANORI

ASSIGNEE-INFORMATION:

NAME

COUNTRY

NEC CORP N/A

APPL-NO: JP09041008

APPL-DATE: February 25, 1997

INT-CL (IPC): G06T001/00 , G06K007/10 , G06K009/00

ABSTRACT:

PROBLEM TO BE SOLVED: To obtain a fingerprint picture excellent in picture quality by providing a second scanning mode for obtaining a two-dimensional picture signal by moving an object to be read to a scanning direction on the reading part of a handy scanner part stored in a storing part.

SOLUTION: This scanner is constituted of a handy scanner part 10, scanner controlling part 20, and storing part 30. Then, this is provided with a first scanning mode for obtaining a seconddimensional picture signal by moving the reading part of a handy scanner part 10 to a scanning direction on an object to be read, and a second scanning mode for obtaining the second- dimensional picture signal by moving the object to be read to the scanning direction on the reading part of the handy scanner part 10 stored in the storing part 30. In this case, a fingerprint picture (the fingerprint face of

1/29/2007, EAST Version: 2.0.3.0

a finger) is used as the object to be read with narrow width in the second scanning mode. Moreover, the main face of a case 31 of the storing part 30 is made almost flat when it is covered with a cover 33 so that the storing part 30 can be functioned as a place where a wrist is rested.

COPYRIGHT: (C) 1998, JPO

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号

特開平10-240906

(43)公開日 平成10年(1998) 9月11日

(51) Int.CL* G 0 6 T G 0 6 K	1/00 7/10	微別記号	FI G06F 15/64 320P G06K 7/10 L F
	9/00		9/00 L
			審査請求 有 請求項の数7 OL (全 8 頁)
(21)出顧番号		特顧平9 -41008	(71)出版人 000004237 日本電気株式会社 東京都港区芝五丁目7番1号
(22)出顧日		平成9年(1997)2月25日	(72)発明者 藤枝 一郎 東京都港区芝五丁目7番1号 日本電気材 式会社内
			(72)発明者 溝口 正典 東京都港区芝五丁目7番1号 日本電気板 式会社内
			(74)代理人 弁理士 後藤 祥介 (外2名)

(54) 【発明の名称】 ハンディスキャナ

(57)【要約】 (修正有)

【課題】 指紋画像の読み取りが可能で、作業勝手がよく、電力を無駄に消費せず、優れた画質の指紋画像を得るハンディスキャナ。

【解決手段】 読み取り対象へ照明光を照射する線状光源13と、読み取り対象からの反射光を検出するリニアイメージセンサ12と、複数の光ファイバを東ね読み取り対象に接触して照明光および反射光を伝達する光ファイバ収束部材14を含む読み取り部とを小型のペン型筐体11内に備えたハンディスキャナ部10を有する。読み取り対象上にてスキャナ部の読み取り部を走査方向に移動させ2次元の画像信号を得る第1の走査モードと、主面上にスキャナ部の読み取り部を位置させた状態で、かつ着脱可能にスキャナ部を格納する格納部30と、スキャナ部の読み取り部上にて読み取り対象としての指下の指数面を走査方向に移動させて2次元の画像信号を得る第2の走査モードとを有する。

【特許請求の範囲】

【請求項1】 読み取り対象へ照明光を照射する線状光 源と、読み取り対象からの反射光を検出するリニアイメ ージセンサと、複数の光ファイバを束ねてなり、読み取 り対象に接触して照明光および反射光を伝達する光ファ イバ収束部材を含む読み取り部とを小型の筐体内に備え たハンディスキャナ部を有し、読み取り対象上にて前記 ハンディスキャナ部の読み取り部を走査方向に移動させ ることで2次元の画像信号を得る第1の走査モードを有 するハンディスキャナにおいて、主面を備え、該主面上 10 に前記ハンディスキャナ部の前記読み取り部を位置させ た状態で、かつ着脱可能に該ハンディスキャナ部を格納 する格納部を有し、前記格納部に格納された前記ハンデ ィスキャナ部の前記読み取り部上にて読み取り対象を走 査方向に移動させることで2次元の画像信号を得る第2 の走査モードを有することを特徴とするハンディスキャ ナ.

【請求項2】 前記格納部は、これに格納される前記ハンディスキャナ部の前記読み取り部付近に、狭幅の読み取り対象について、これが走査方向に直角な幅方向の所定の位置に位置するように規制すると共に、これの走査方向の移動を案内するガイド部を備えている請求項1に記載のハンディスキャナ。

【請求項3】 前記格納部は、これに格納される前記ハンディスキャナ部のうちの少くとも狭幅の読み取り対象を読み取るために必要な領域を除く領域を覆うカバーを備えている請求項1または2に記載のハンディスキャナ。

【請求項4】 前記線状光源および前記リニアイメージ センサのうちの少くとも線状光源は、第2の走査モード 30 の際に、狭幅の読み取り対象に対応する領域のみが動作 する請求項1乃至3のいずれかに記載のハンディスキャナ。

【請求項5】 前記線状光源は、第2の走査モードの際に、狭幅の読み取り対象に対応する領域の発光強度が所定値以上である請求項1乃至4のいずれかに記載のハンディスキャナ。

【請求項6】 第2の走査モードの際に、前記リニアイメージセンサの受光素子の蓄積時間を所定値以上にするように制御するイメージセンサ制御手段を有する請求項 401乃至5のいずれかに記載のハンディスキャナ。

【請求項7】 前記格納部は、情報処理機器の筐体と一体である請求項1乃至6のいずれかに記載のハンディスキャナ。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、複数の受光素子を 直線状に配列してなるリニアイメージセンサを小型の筐 体内に備え、自らを読み取り対象上にて走査方向に移動 させることで2次元の画像信号を得る小型のハンディス 50 れる)をおいて各画素のTFT112bをオンし、フォ

キャナに関する。

[0002]

【従来の技術】この種のハンディスキャナとして、特願 平7-277334号では、ペン型筺体内に平行に完全 密着型のリニアイメージセンサを内蔵するハンディスキャナが提案されている。図8〜図11はこのハンディスキャナを説明するための図であり、図8は斜視図、図9 は走査方向に平行な切断面による断面図、図10は要部を概念的に示す走査方向に垂直な切断面による断面図、 ならびに図11は回路構成図である。

2

【0003】図8および図9を参照して、このハンディ スキャナは、例えば携帯情報端末機器のディスプレイ面 に対するタッチペンとしても機能するペン型筐体111 と、リニアイメージセンサ112と、線状光源113 と、光ファイバ収束部材114と、ロータリエンコーダ 115と、ローラ116と、スキャナ制御部120とに より構成されている。さらに、図10および図11をも 参照して、リニアイメージセンサ112は、その厚さ約 10ミクロン以下の接着層112dが、直径15~25 ミクロンの多数の光ファイバからなる光ファイバ収束部 材114に接着されている。光ファイバ収束部材114 の厚さは、1~2mmである。リニアイメージセンサ1 12は、厚さ1mm程度の透明基板112cの上に形成 されたフォトダイオード112aおよび薄膜トランジス タ(TFT)112bからなる線状配列された多数の画 素と、各画素のTFT112bを順番にオン/オフする ためのシフトレジスタ112fとにより構成されてい る。 画素の配列ピッチは、50~125ミクロン程度で ある。フォトダイオード112aは、透明基板112c 側の面が遮光されており、光ファイバ収束部材114側 から入射する光に対してのみ感度を有する。 隣り合う2 つのフォトダイオード112aの間には、 開口部112 eが設けられており、線状光源113からの光が透過す るようになっている。また、線状光源113は、発光素 子113aを多数線状に配列して構成されている。 さら に、スキャナ制御部120は、イメージセンサ駆動部1 21と、画像合成バッファ122と、線状光源駆動部1 23とを含んでいる。

【0004】次に、動作を説明する。原稿Dの読み取りは、このハンディスキャナを原稿D上を手動で走査しながら行う。このとき、スキャナ駆動部123は、線状光源113の全ての発光素子113aに電流を供給して発光させる。線状光源113から発せられた光は、リニアイメージセンサ112の開口部112e、接着層112d、および光ファイバ収束部材114を順に通過し、原稿Dを照明する。原稿Dからの反射光は、光ファイバ収束部材114および接着層112dを順に通過し、フォトダイオード112aによって検出される。イメージセンサ駆動部121は、所定の時間間隔(蓄積時間と呼ばかえ)またいて名画表のTET112bをオンし、フォ

トダイオード112aに一定の電荷を蓄積する。この後、この電荷は光によって生成される電荷によって部分的に打ち消されるので、時間と共に減少する。したがって、次にTFT112bをオンするときに、フォトダイオード112aに流れ込む電荷を測定することにより、フォトダイオード112aが蓄積時間中に受けた光の総量を知ることができる。即ち、リニアイメージセンサ112の出力は、蓄積時間および光量に比例する。以上により、光ファイバ収束部材114を介してフォトダイオード112aに対応した領域の原稿Dの明暗情報を得ることができる。これと共に、このハンディスキャナの移動距離をローラ116とロータリエンコーダ115によって検出する。画像合成バッファ122により、リニアイメージセンサ112の出力とロータリエンコーダ115の出力を合成して、原稿Dの2次元画像を得る。

【0005】ところで、情報処理の分野等において、指 紋画像やこれを読み取った信号をID情報として用いる ことがある。従来、指紋画像を読み取るための装置とし て、例えば特開平4-190470号公報には、リニア イメージセンサを内蔵する指紋センサが開示されてい る。図12は、この指紋センサの構成を示す機略図であ る。図12を参照して、この指紋センサは、リニアイメ ージセンサ312と、線状光源313と、レンズ314 と、ロータリエンコーダ315と、ローラ316と、画 像合成バッファ322と、指台330とを有している。 この指紋センサは、線状光源313で照明される指F を、指台330の上で滑らせるように走査方向に移動し て用いられる。指Fからの反射光は、レンズ314によ ってリニアイメージセンサ312に結像される。 これと 共に、指Fの移動距離をローラ316とロータリエンコ 30 ーダ315によって検出する。 リニアイメージセンサ3 12とロータリエンコーダ315からの出力は、画像合 成バッファ322によって合成され、2次元の指紋画像 が得られる。この指紋センサは、リニアイメージセンサ を備え、2次元の画像信号を得るスキャナの一種であ る.

[0006]

【発明が解決しようとする課題】ここで、ハンディスキャナで指紋画像をも読み取りできれば、一つの装置で原稿および指紋画像の読み取りが可能であることになるので、合理的である。しかし、図8~図11に示したハンディスキャナや図12に示したスキャナは、指紋画像の読み取りに関し、以下の問題点を有している。

【0007】第1に、指紋画像の読み取り者本人は、一方の手でハンディスキャナの筐体を持ちながら、他方の手の指を走査する作業をしなければならず、作業勝手が悪い。

【0008】 第2に、指紋画像を読み取るときの読み取り幅はおよそ2cmもあれば十分である一方、ハンディスキャナやスキャナのリニアイメージセンサの読み取り

幅は一般の原稿サイズを考慮しておよそ10cm以上であることが多い。このため、指紋画像の読み取りには不要なセンサ領域で消費される光源等の消費電力が無駄である。この無駄な消費電力のために、ハンディスキャナやスキャナを例えば携帯情報端末機器等に組み合わせて使用するときに、これら機器の電池の消耗を早める。

【0009】第3に、図12に示したスキャナは、ハンディタイプではない。また、図12に示した構造では、 指表面の隆線部の光の反射光と谷線部のそれとに大差が 得られず、コントラストが低い指紋画像しか得られない。さらに、指は原稿よりも光の反射率が低いので、指 紋画像の画質が原稿読み取り時に比べて劣る。

【0010】本発明の課題は、指紋画像の読み取りが可能であることは勿論、その際の作業勝手がよいハンディスキャナを提供することである。

【0011】本発明の他の課題は、指紋画像の読み取りが可能であることは勿論、電力を無駄に消費しないハンディスキャナを提供することである。

【0012】本発明のさらに他の課題は、指紋画像の読 20 み取りが可能であることは勿論、優れた画質の指紋画像 を得られるハンディスキャナを提供することである。

[0013]

【課題を解決するための手段】本発明によれば、読み取 り対象へ照明光を照射する線状光源と、読み取り対象か らの反射光を検出するリニアイメージセンサと、複数の 光ファイバを束ねてなり、読み取り対象に接触して照明 光および反射光を伝達する光ファイバ収束部材を含む読 み取り部とを小型の筐体内に備えたハンディスキャナ部 を有し、読み取り対象上にて前記ハンディスキャナ部の 読み取り部を走査方向に移動させることで2次元の画像 信号を得る第1の走査モードを有するハンディスキャナ において、主面を備え、該主面上に前記ハンディスキャ **ナ部の前記読み取り部を位置させた状態で、かつ着脱可** 能に該ハンディスキャナ部を格納する格納部を有し、前 記格納部に格納された前記ハンディスキャナ部の前記読 み取り部上にて読み取り対象を走査方向に移動させるこ とで2次元の画像信号を得る第2の走査モードを有する ことを特徴とするハンディスキャナが得られる。

【0014】本発明によればまた、前記線状光源および前記リニアイメージセンサのうちの少くとも線状光源は、第2の走査モードの際に、狭幅の読み取り対象に対応する領域のみが動作する前記ハンディスキャナが得られる。

【0015】本発明によればさらに、前記線状光測は、 第2の走査モードの際に、狭幅の読み取り対象に対応す る領域の発光強度が所定値以上である前記ハンディスキ ャナが得られる。

【0016】本発明によればまた、第2の走査モードの 際に、前記リニアイメージセンサの受光素子の蓄積時間 50 を所定値以上にするように制御するイメージセンサ制御

手段を有する前記ハンディスキャナが得られる。 [0017]

【発明の実施の形態】以下、図面を参照して、本発明の 実施の形態によるハンディスキャナを説明する。

【0018】 [実施の形態1] 図1~図4は本発明の実 施の形態1によるハンディスキャナを説明するための図 であり、図1は斜視図、図2は走査方向に平行な切断面 による断面図、図3は要部を概念的に示す走査方向に垂 直な切断面による断面図、ならびに図4は回路構成図で ある。

【0019】図1を参照して、本ハンディスキャナは、 ハンディスキャナ部10と、スキャナ制御部20と、格 納部30とにより構成されている。 そして、 本ハンディ スキャナは、読み取り対象上にてハンディスキャナ部1 〇の後述する読み取り部を走査方向に移動させることで 2次元の画像信号を得る第1の走査モードと、格納部3 0に格納されたハンディスキャナ部10の読み取り部上 にて読み取り対象を走査方向に移動させることで2次元 の画像信号を得る第2の走査モードとを有している。 尚、本例では、第2の走査モードは、指紋画像(指(指 20 れているので、ローラ16が安定して回転する。

の指紋面))を狭幅の読取り対象としている。 【0020】本ハンディスキャナは、指紋画像読み取り 時に、ハンディスキャナ部10を手に持つ必要がないの で、指の走査を安定して行える。また、ハンディスキャ ナ部10を格納部30から取り出せば、通常の原稿等を 読取り対象として、読み取りできる。

【0021】図2をも参照して、ハンディスキャナ部1 0は、図8~図11に示した従来のハンディスキャナと 同様に、例えば携帯情報端末機器のディスプレイ面に対 するタッチペンとしても機能するペン型筐体11と、読 30 み取り対象からの反射光を検出するリニアイメージセン サ12と、読み取り対象へ照明光を照射する線状光源1 3と、複数の光ファイバを束ねてなり、読み取り対象に 接触して照明光および反射光を伝達する光ファイバ収束 部材14を含む読み取り部と、ロータリエンコーダ15 と、ローラ16とを有している。ペン型筐体11はその 断面が約1cm四方である。

【0022】光ファイバ収束部材14は、指紋の隆線・ 谷線のコントラストを強調すると共に、指を押し付けた ときに機械的な強度を発揮する。

【0023】格納部30は、主面を備え、主面上にハン ディスキャナ部10の読み取り部を位置させた状態で、 かつ着脱可能にハンディスキャナ部10を格納する筐体 31と、筐体31に格納されるハンディスキャナ部10 の読み取り部付近に、狭幅の読み取り対象である指が走 査方向に直角な幅方向の所定の位置に位置するように規 制すると共に、この指が走査方向の移動を案内する指が イド部32と、筐体31に格納されるハンディスキャナ 部10のうちの少くとも指を読み取るために必要な領域 を除く領域を覆う開閉可能なカバー33とを備えてい

る。格納部30は、本例では独立した単体であるが、ノ ートパソコンやキーボード等の情報処理機器の筐体に取 り付けられるか、あるいは情報処理機器の筐体と一体に されてもよい。また、断面が約1cm四方のペン型筐体 11を格納する格納部30の筐体31の厚さは1.5c m程度以下でよい。 指ガイド部32は、 ローラ16の軸 受けに近いところに設けられている。

【0024】本ハンディスキャナでは、ローラ16と光 ファイバ収束部材14とが突出しているので、指の走査 10 が安定して行える。また、指ガイド部32により、リニ アイメージセンサの所定の領域にて、指紋を検出でき る。また、ペン型筐体11の断面が約1cm四方で、格 納部30の肉厚が1.5cm程度でよいので、ノートバ ソコンやキーボードの筐体に違和感なく一体化すること ができる。さらに、格納部30の筐体31の主面はカバ ー33で覆うことによりほぼ平らになり、格納部30が 手首の置き場所としても機能するので、キーボードと一 体化した際には、キー入力の助けになる。また、指ガイ ド部32がローラ16の軸受け部に近いところに配置さ

【0025】図3および図4をも参照して、リニアイメ ージセンサ12は、図10および図11に示した従来の リニアイメージセンサ112と同様に、その厚さ約10 ミクロン以下の接着層12dが、直径15~25ミクロ ンの多数の光ファイバからなる光ファイバ収束部材14 に接着されている。光ファイバ収束部材14の厚さは、 1~2mmである。 リニアイメージセンサ1 2は、 厚さ 1 mm程度の透明基板 1 2 c の上に形成されたフォトダ イオード12aおよび薄膜トランジスタ (TFT) 12 bからなる線状配列された多数の画素と、各画素のTF T12bを順番にオン/オフするためのシフトレジスタ 12fとにより構成されている。画素の配列ピッチは、 50~125ミクロン程度である。 フォトダイオード1 2aは、透明基板12c側の面が遮光されており、光フ ァイバ収束部材14側から入射する光に対してのみ感度 を有する。隣り合う2つのフォトダイオード12aの間 には、開口部12eが設けられており、線状光源13か らの光が透過するようになっている。

【0026】線状光源13は、発光素子13aを多数線 状に配列して構成されている。さらに、スキャナ制御部 20は、リニアイメージセンサ12を駆動するイメージ センサ駆動部21と、画像合成バッファ22と、線状光 源駆動部23とを含んでいる。

【0027】さらに、線状光源13は、複数の発光ダイ オード等の発光素子を直線状に配列して構成されてい る。 線状光源13は、指Fの表面での照度の均一性を保 つために、リニアイメージセンサ12から例えば数mm の距離を離して設置される。

【0028】さて、線状光源13は、原稿の読み取り幅 50 に対応した第1の発光素子群13aと、指幅に対応した

領域の第2の発光索子群13bとを含んでいる(図 4)。ただし、第2の発光素子群13bには、第1の発 光素子群13aの発光素子の一部が兼用的に含まれてい る。第2の発光素子群13bは、第1の発光素子群13 aの約5倍の発光強度を持っている。本例では、第1お よび第2の発光素子群13aおよび13bはそれぞれ同 じ出力を持つ発光素子により構成されているが、各発光 素子の配列密度を変えてあるので、第2の発光素子群1 3 bは、第1の発光素子群13aの約5倍の発光強度を 発揮する。第2の発光素子群13bの発光強度は、第1 の発光素子群13 a に相対的に強ければよいのではな く、所定の発光強度を持っている必要がある。所定の発 光強度は、後述するように、読み取り対象としての指の 指紋面の光の反射率やコントラストが原稿等のものより も低いことを補えるように、決定される。 第2の発光素 子群13bを所定の発光強度にする実現手段としては、 発光素子自体の出力によってもよい。

【0029】また、線状光源13は、後述するように、第2の走査モードの際に、指に対応する第2の発光素子群13bのみが動作する。即ち、第2の走査モードの際には、このモードでは不要な発光素子を発光させないので、本ハンディスキャナは無駄に電力を消費しない。また、第2の発光素子群13bにより指Fに対応した領域のみが照明されて、良好な画質の指紋画像が得られる。【0030】尚、第2の走査モードの際の節電手段としては、リニアイメージセンサ12を第2の走査モードの際に指に対応する領域のみ動作するものでもよい。ただし、前記発光素子による手段よりも節電効果は低い。【0031】次に、図1~図4を参照して、本ハンディスキャナの動作を説明する。

【0032】(第1の走査モード)第1の走査モードで は、ハンディスキャナ部10を格納部30から取り出し て、読み取り対象としての例えば原稿上にて、ハンディ スキャナ部10の読み取り部を走査方向に移動させるこ とで、2次元の画像信号を得る。このとき、線状光源駆 動部23(図4)は、線状光源13の第1の発光素子群 13aのみに電流を供給し、これらの素子を発光させ る。第1の走査モードは、図8~図11に示した従来の ハンディスキャナの動作とほぼ同じである。即ち、ハン ディスキャナ部10を格納部30から取り出せば、通常 の原稿読み取り用のハンディスキャナとして機能する。 【0033】 (第2の走査モード) 第2の走査モードで は、格納部30に格納されたハンディスキャナ部10の 読み取り部上にて、読み取り対象としての指の指紋面を 走査方向に移動させることで2次元の画像信号を得る。 詳しくは、 指Fを指ガイド部32に接触させた状態か ら、光ファイバ収束部材14とローラ16の両方に指F を接触させながら移動させる。このとき、線状光源制御 部23 (図4) は、線状光源13の第2の発光素子群1 3bのみを点灯させる。第2の発光素子群13bが発す 50

る光は、図3に示すように、リニアイメージセンサ12 の開口部12e、光ファイバ収束部材14を順に通過 し、指Fを照明する。

【0034】さて、図3において、指Fが光ファイバ収 東部材14の近傍にない領域**の**では、指からの反射光は 存在しない。 指Fが光ファイバ収束部材14の近傍にあ るが接触はしていない領域②では、指Fからの反射光は 光ファイバ収束部材14を通過してフォトダイオード1 2aにより検出される。指Fが光ファイバ収束部材14 に接触している領域◎を詳しく見れば、空気層の隙間が ある領域 (指の谷線に相当) と、隙間無く指Fが密着し ている領域 (指の隆線に相当) とに分かれることがわか る。 谷線では、 領域のと同様にして、 反射光がフォトダ イオード12aにより検出される。しかし、隆線では、 光が吸収、散乱されて、フォトダイオード12aに到達 する成分は僅かになる。以上の結果、隆線と谷線のコン トラストの高い指紋の1次元の明暗情報が得られる。 【0035】そして、指Fをローラ16に接触させなが ら移動させるときのロータリエンコーダ 1 5 の出力と、 順次得られる指紋の1次元の明暗情報とを、画像合成バ ッファ22によって合成し、2次元の指紋画像を得る。 【0036】図5は、本ハンディスキャナが得た指紋画 像の一例を概略的に示した図である。背景は黒く、指の 周辺部は白い。指が接触した部分では、隆線が黒く、谷 線が白く写っている。

【0037】図6は、図5の中心付近の画素値を示すプロファイルである。この画素値は、読み取り部に白紙、 黒紙を密着させたときの値をそれぞれ、255、0として規格化したものである。図5の隆線、谷線に対応する 領域の画素値はそれぞれ、1~5、40~60程度である。即ち、隆線と谷線とのコントラスト比が少なくとも1:10位確保できている。また、指からの反射光は、白紙からの反射光に比べて約1/5の強度である。即ち、第2の発光素子群13bと第1の発光素子群13aが発する光量の比を5:1にしたのは、この結果に基づいている。

【0038】 [実施の形態2] 本発明の実施の形態2は、読み取り対象としての指の指紋面の光の反射率やコントラストが、原稿等のものよりも低いことを補う手段であり、実施の形態1とは異なる例である。

【0039】実施の形態2のハンディスキャナでは、ハンディスキャナ部のリニアイメージセンサを駆動するイメージセンサ駆動部は、第2の走査モードの際に、リニアイメージセンサの受光素子の前述した蓄積時間を、所定値以上にするように制御する。尚、線状光源としては、図11等に示した従来の線状光源113と同様のものを使用してもよい。実施の形態2では、イメージセンサ駆動部により、指紋画像の読み取り時には原稿読み取り時に比べて蓄積時間を約5倍に設定し、光信号を長く蓄積することで、イメージセンサの出力を増加させ、画

質を向上する。

【0040】 [実施の形態3] 本発明による実施の形態 3は、ハンディスキャナ部の線状光源の変形例である。 【0041】図7は、実施の形態3によるハンディスキ ャナの要部を走査方向に平行な切断面で切断した縦断面 図である。尚、図7において、実施の形態1と同一部ま たは同様部には、図2と同符号を付している。実施の形 態3のハンディスキャナでは、線状光源13として、有 機薄膜のエレクトロルミネッセンス (EL) を利用する 有機EL光源13′を用いる。有機EL光源13′は、 例えば厚さ1mm程度のガラス板上に、透明電極、有機 薄膜、および不透明電極の順に積層して構成される。有 機EL光源13′は、均一に発光するので、図7に示す ように、有機EL光源13′をリニアイメージセンサ1 2に密着して配置できる。この場合、厚さ約5mmのハ ンディスキャナ部を実現できる。 尚、有機E L光源 1 3'であっても、実施の形態1による線状光源13と同 様に、第2の走査モードの際に指幅に対応する領域のみ が動作するようにしてもよいし、第2の走査モードの際 に指幅に対応する領域の発光強度が所定値以上にである 20 ようにしてもよい。

[0042]

【発明の効果】本発明によるハンディスキャナは、読み 取り対象へ照明光を照射する線状光源と、読み取り対象 からの反射光を検出するリニアイメージセンサと、複数 の光ファイバを束ねてなり、読み取り対象に接触して照 明光および反射光を伝達する光ファイバ収束部材を含む 読み取り部とを小型の筐体内に備えたハンディスキャナ 部を有し、読み取り対象上にてハンディスキャナ部の読 み取り部を走査方向に移動させることで2次元の画像信 30 号を得る第1の走査モードを有するハンディスキャナに おいて、主面を備え、主面上にハンディスキャナ部の読 み取り部を位置させた状態で、かつ着脱可能にハンディ スキャナ部を格納する格納部を有し、格納部に格納され たハンディスキャナ部の読み取り部上にて読み取り対象 を走査方向に移動させることで2次元の画像信号を得る 第2の走査モードを有しているため、指紋画像の読み取 りが可能であることは勿論、その際の作業勝手がよく、 電力を無駄に消費せず、優れた画質の指紋画像を得られ

【図面の簡単な説明】

【図1】本発明の実施の形態1によるハンディスキャナ を示す斜視図である。

【図2】図1に示すハンディスキャナの要部を走査方向 に平行な切断面で切断した縦断面図である。

【図3】図1に示すハンディスキャナの要部を概念的に 示す走査方向に垂直な切断面による断面図である。

10

【図4】図1に示すハンディスキャナの回路構成図であ る.

【図5】図1に示すハンディスキャナで得られた指紋画 像の一例を概略的に示す図である。

【図6】図5に示す指紋画像の縦線に沿った画素値を示 す図である。

【図7】本発明の実施の形態2によるハンディスキャナ の要部を走査方向に平行な切断面で切断した縦断面図で

【図8】従来例によるハンディスキャナを示す斜視図で ある。

【図9】図8に示すハンディスキャナの要部を走査方向 に平行な切断面で切断した縦断面図である。

【図10】図8に示すハンディスキャナの要部を概念的 に示す走査方向に垂直な切断面による断面図である。

【図11】図8に示すハンディスキャナの回路構成図で ある。

【図12】従来例による指紋センサとしてのスキャナの 要部を示す図である。

【符号の説明】

10、10′ ハンディスキャナ部

11, 111 ペン型筐体

リニアイメージセンサ 12, 112, 312

12a、112a フォトダイオード

12b、112b 薄膜トランジスタ (TFT)

12c、112c 透明基板

12d、112d 接着層

12e、112e 開口部

12f、112f シフトレジスタ

13, 113, 313 線状光源

13' 有機EL光源

13a 第1の発光素子群

13b 第2の発光素子群

光ファイバ収束部材 14, 114

ロータリエンコーダ 15, 115, 315

16, 116, 316 ローラ

スキャナ制御部 20,120

イメージセンサ駆動部 21, 121

22, 122, 322 画像合成バッファ

線状光源駆動部 23, 123

> 格納部 30

31 筺体

指ガイド部 32

33 カバー

113a 発光業子

レンズ 314

指台 330

9

【図10】

【図12】

