Homework 6

Jaden Wang

Problem (1). From the example, we know that optimal trajectories are circles centered at $(\pm 1,0)$, one for each bang-bang control $u=\pm 1$ respectively. To reach the origin, we must eventually get on the switching curves Γ^1_+ and Γ^1_- since they are the only circles centered at $(\pm 1,0)$ that go through the origin. Moreover, the optimal control $u^* = -\text{sign}(\Lambda \cos(\omega t + \phi))$ flips signs and thus must switch every $\frac{\pi}{\omega} = \pi$ except that it might switch sooner at the beginning or in the end.

(a) When $x_1(0) = x_2(0) = 2$, we have the following optimal trajectory:

Figure 1: Magenta denotes the optimal trajectory and orange denotes the optimal switching curve. We first find circles centered at $(\pm 1,0)$ that go through (2,2) and pick the one that reaches the switching surface the fastest. In this case it is the blue circle centered at (-1,0). Then we switch to the green circle centered at (1,0) and continue for π unit of time to reach the next switching curve which happens to be Γ^1_- so we simply follow the singular curve to reach the origin.

Using $\widehat{\Gamma}$, we have the following trajectory:

Figure 2: Magenta denotes the non-optimal trajectory and orange denotes the non-optimal switching curve. We repeat the previous first step, reach a new switching curve at $x_2 = 0$, and switch to the other center. This time we don't have to switch every π so we simply reach the next switching curve to switch.

Since $\omega = 1$, the elapsed time is the same as the angle the trajectory traced out. By adding the angles together, we obtain that $t^* = 5.0194$ and $\hat{t} = 5.1685$.