第二章 递归状态估计

于小咸

1.

这道题目与2.4.2的例题很相似,练习离散贝叶斯滤波的使用。根据题意可知:

$$bel(X_0 = broken) = 0.01 \tag{1}$$

$$bel(X_0 = not_broken) = 0.01$$

$$= 0.01$$

$$= 0.99$$

$$(2)$$

$$p(Z_t < 1|X_t = broken) = 1 (3)$$

$$p(Z_t < 1|X_t = not_broken) = 1/3 \tag{4}$$

其中 Z_t 表示 t 时刻距离传感器的测量值,在 $0 \sim 3m$ 范围内连续取值; X_t 表示距离传感器的状态,取值为离散的 broken , not_broken 。

下面根据贝叶斯滤波算法进行计算,由于这道题中没有对距离传感器进行任何控制,因此贝叶斯滤波的第一步(预测)并不改变系统状态的置信度:

$$\bar{bel}(X_t) = bel(X_{t-1}) \tag{5}$$

贝叶斯滤波的第二步(观测),题干中介绍到 $Z_t < 1$,于是有以下递推式

$$bel(X_t = broken)$$
 = $\eta p(Z_t < 1 | X_t = broken) \bar{bel}(X_t = broken)$ (6)

$$bel(X_t = not_broken) = \eta p(Z_t < 1 | X_t = not_broken) \overline{bel}(X_t = not_broken)$$
 (7)

其中 n 为归一化因子

$$\eta = [p(Z_t < 1 | X_t = broken)\bar{bel}(X_t = broken) +
p(Z_t < 1 | X_t = not_broken)\bar{bel}(X_t = not_broken)]^{-1}$$
(8)

对以上5、6、7式代入先验初值1、2进行迭代,即可得到各个时刻距离传感器故障的概率如下

时刻	$bel(X_t = broken Z_t < 1)$	$bel(X_t = not_broken Z_t < 1)$	η
0	0.01	0.99	
1	0.029411764705882353	0.9705882352941176	2.941176470588235
2	0.08333333333333333	0.916666666666666	2.83333333333333
3	0.2142857142857143	0.7857142857142857	2.5714285714285716
4	0.45000000000000007	0.55	2.1
5	0.7105263157894737	0.2894736842105263	1.5789473684210524
6	0.8804347826086958	0.11956521739130438	1.2391304347826089
7	0.9566929133858267	0.043307086614173235	1.0866141732283463
8	0.9851351351351351	0.014864864864864866	1.0297297297297296
9	0.9949954504094631	0.0050045495905368526	1.0100090991810737
10	0.9983262325015215	0.0016737674984783934	1.0033475349969567

最后推导公式:

$$bel(X_{t} = broken) = \eta_{t} \times 1 \times bel(X_{t-1} = broken)$$

$$= \eta_{t} \eta_{t-1} \times 1 \times bel(X_{t-2} = broken)$$

$$= \prod_{i=0}^{n} \eta_{i} bel(X_{0} = broken)$$

$$bel(X_{t} = not_broken) = \eta_{t} \times \frac{1}{3} \times bel(X_{t-1} = not_broken)$$

$$= \eta_{t} \eta_{t-1} \times \frac{1}{3} \times bel(X_{t-2} = broken)$$

$$= \prod_{i=0}^{n} \eta_{i} \times \frac{1}{3^{n}} \times bel(X_{0} = not_broken)$$

$$(10)$$

其中 $\prod_{i=0}^n \eta_i$ 满足归一化要求,即

$$\prod_{i=0}^{n} \eta_i = \left[bel(X_0 = broken) + \frac{1}{3^n} \times bel(X_0 = not_broken)\right]^{-1}$$
 (11)

因此, 传感器失效的概率为

$$bel(X_t = broken) = \frac{bel(X_0 = broken)}{bel(X_0 = broken) + \frac{1}{3^n} \times bel(X_0 = not_broken)}$$
 (12)

2.

3.

4.

5.

6.