

Using Reinforcement Learning for Power Plant Dispatch in Short-term Electricity Markets

Final Presentation - Case Challenge - Business Data Analytics: Application and Tools

Students: Dominik Röhrle, Louis Skowronek, Louis Karsch, Ingo Hartmann, Leandra Fleck

Agenda

Results

Outlook

Case: Using reinforcement learning we optimize the dispatch of a controllable power plant in the day-ahead market

3

Reinforcement learning facilitates efficient, real-time decision making for power plant dispatch amid increased market volatility and uncertainty.

As inputs we build upon generation forecasts and production actuals of wind and solar power

Excerpt from the dataset of generation actuals

Germany: Actual Generation per Production Type [MW]					
Time [hh:mm]	Wind		Solar		
	Onshore	Offshore	Solai		
07:00 - 07:15	16,669	4,398	5,464		
07:15 - 07:30	15,402	4,360	7,035		
07:30 - 07:45	14,036	4,413	8,785		
07:45 - 08:00	12,671	4,271	10,630		
08:00 - 08:15	11,411	4,155	12,608		
08:15 - 08:30	10,161	4,312	14,654		
08:30 - 08:45	9,092	4,398	16,591		
08:45 - 09:00	8,461	4,425	18,431		
09:00 - 09:15	7,955	4,654	20,173		
09:15 - 09:30	7,660	4,669	21,876		
09:30 - 09:45	7,659	4,614	23,531		
09:45 - 10:00	7,884	4,484	25,038		
10:00 - 10:15	8,304	4,640	26,430		

Excerpt from the dataset of generation forecasts

	ny: Day-ahead Generation Fored Wind		cast [MW]	
Time [hh:mm]	Onshore	Offshore	Solar	
07:00 - 07:15	18,590	3,964	5,159	
07:15 - 07:30	17,815	3,910	6,750	
07:30 - 07:45	17,002	3,853	8,551	
07:45 - 08:00	16,191	3,945	10,479	
08:00 - 08:15	15,046	3,889	12,534	
08:15 - 08:30	13,835	3,846	14,707	
08:30 - 08:45	12,610	3,946	16,935	
08:45 - 09:00	11,570	3,882	19,095	
09:00 - 09:15	10,809	3,756	21,168	
09:15 - 09:30	10,324	3,737	23,175	
09:30 - 09:45	9,867	3,867	25,043	
09:45 - 10:00	9,450	3,834	26,736	
10:00 - 10:15	9,169	3,787	28,227	

Intended output variables

Dispatch quantity in MW

Selling price per MW

Theory: Basics Reinforcement Learning

Source: Prof. Dr. J. M. Zöllner - Maschinelles Lernen I - Grundverfahren

Theory: Taxonomy of Reinforcement Learning

Source: Prof. Dr. J. M. Zöllner – Maschinelles Lernen I – Grundverfahren

Case Challenge - Business Data Analytics: Application and Tools

PPO Actor-Critic Implementation

Actions

Source: Prof. Dr. J. M. Zöllner – Machine Learning 2 – Advanced Methods

Actor

Actions

Observation

Mini Batches

Environment

Rewards

Critic

TD Error

■ PPO v2:

Optimize the problem:

$$\max_{\theta} J(\theta) = \mathbb{E}_{\tau \sim \pi_{\theta old}} \left[\min \left(\frac{\pi_{\theta}(a_t | s_t)}{\pi_{\theta old}(a_t | s_t)} \hat{A}_{old}(s_t, a_t), clip\left(\frac{\pi_{\theta}(a_t | s_t)}{\pi_{\theta old}(a_t | s_t)}, 1 - \epsilon, 1 + \epsilon \right) \hat{A}_{old}(s_t, a_t) \right) \right]$$

Update Critic φ

Valuation

$$\phi \leftarrow \phi - \alpha_c \frac{1}{|D|} \sum_{\tau \in D} \sum_{t=0}^{T} \frac{1}{2} \left\| V_{\phi}(s_t) - \left(R(s_t, a_t) + V_{\phi'}(s_{t+1}) \right) \right\|^2$$
Target

Results: Fine-tuning PPO via Grid Search

Average Reward After 50 000 Episodes for 3 Example Runs

Considered Hyperparameters

Batch Size: 16, 32, 64, 128

Update Time steps: 512, 1024, 2048

→ could be expanded to test more hyperparameters, but costly

Hyperparameters affect the convergence speed and stability of training. In our case higher time steps lead to lower convergence speed but higher stability of training.

Results: Comparison of PPO vs A2C (stable baselines)

Average Reward after 50 000 Episodes

PPO achieves a significantly higher average reward after learning more slowly as a more zurückhaltender algorithm.

Results: Reward functions using PPO - The reward function strongly impacts the RL-Agent's bidding behaviour

Bid Volume - Linear Scaled Reward Function

Bid Volume - Logarithmic Scaled Reward Function

10

Therefore, reward engineering is a crucial task when setting up optimal agents.

Further improvements of the agent can be achieved through enhancement of data inputs, the environment and the agent itself

Data Inputs

- Incorporate intra-day prices
- > Additional features (e.g., generation failures)

Environment

- Variable marginal costs (currently fixed)
- > Powerplant-related restrictions (e.g., energy storage, maintenance)

Agent

- Expand hyperparameter tuning
- Higher dimensional discrete action space (e.g., more than 50x50)
- Transition to continous action space

Backup

Profit of PPO using different Reward Functions

Average Profit after 50 000 Episodes

No Scaling (reward = profit) **Linear Scaling** Logarithmic Scaling

Bid Price converges to the marginal costs of the simulated Power Plant (mc=50)

Hyperparameter

lower_bound: -20000

upper_bound: 20000

batch_size: [16, 32, 64, 128]

n episodes: 50000

update timestep: [512, 1024, 2048]

n_epochs: 10

eps_clip: 0.22

gamma: 0.99

Ir_actor: 0.0002

■ lr_critic: 0.0008

Theory: Overview RL-Algorithm

Theory: Value-based and Policy-based

$$\theta \leftarrow \theta + \alpha * \nabla \theta \log \pi(a|s) * A(s, a)$$

-θ represents the parameters of the policy $\pi(a|s)$ that are updated

Case Challenge - Business Data Analytics: Application and Tools

- α is the learning rate that determines the step size of the parameter updates
- ∇θ log
- $\pi(a|s)$ is the gradient of the logarithm of the policy with respect to the parameters
- A(s,a) is the advantage function that estimates the advantage of taking action a in state s compared to the expected value

Bid Volume and Bid Price of PPO with Linear Scaled Reward **Function**

17

Bid Price converges to the marginal costs of the simulated Power Plant (mc=50)

Backup Folie

Plotting the Average Profit of the trained model on unseen data

Backup Folie (PPO vs A2C) stable baselines

