WHAT IS CLAIMED IS:

1	1. A cleaning system adapted for cleaning semiconductor processing
2	equipment, said cleaning system comprising:
3	a remote dissociator coupled to said equipment by a transport mechanism;
4	a local dissociator integrally related to said equipment; and
5	a precursor disposed in said remote dissociator;
6	wherein said remote dissociator is operable to dissociate said precursor to
7	create a first plurality of cleaning radicals, said cleaning radicals entering said transport
8	mechanism, a first portion of said cleaning radicals entering said equipment and a second
9	portion of said cleaning radicals recombining to create a plurality of less reactive
10	elements in said transport mechanism, said less reactive elements entering said
]]11	equipment, and said local dissociator operable to dissociate a portion of said less reactive
12	elements to create a second plurality of cleaning radicals.
[] 1	
	2. The cleaning system of claim 1 further comprising an optical
j 2	endpoint detector, wherein said detector indicates completion of a cleaning of said
3 1 1 1	equipment.
]] 1	3. The cleaning system of claim 1, wherein said remote dissociator
· 2	provides a greater than 75% dissociation efficiency, whereby PFCs in an exhaust from
3	said cleaning system are reduced.
1	4. The cléaning system of claim 1, wherein said first portion of said
2	cleaning radicals is less than said second portion of said cleaning radicals.
1	5. The cleaning system of claim 1, wherein said second plurality of
2	cleaning radicals includes ions.
1	6. The cleaning system of claim 5, wherein said cleaning radicals
2	include at least one of: Cl, F, Cl ions, or F ions.
1	7. A method of cleaning a semiconductor processing equipment, said
1	method comprising:
3	introducing a precursor to a dissociator;
<i>J</i> ⊿	dissociating said precursor to create a first plurality of radicals;
7 (Considerating said precursor to create a first pluranty of fadicals,
	· /\

	5	introducing a first portion of said first plurality of radicals to said
	6	equipment, a second portion of said first plurality of radicals re-associating to create less
	7	reactive elements;
	8	introducing said less reactive elements to said equipment; and
	9	dissociating said less reactive elements to form a second plurality of
1	10	radicals in said equipment.
_	1	8. The method of claim 7, wherein said dissociating said precursor
$\mathcal{I}_{\mathcal{I}}$	2	provides at least 75% dissociation efficiency, whereby PFCs in an exhaust from said
χ	3	system equipment are reduced.
Ø	1	9. The method of claim 7, wherein said second portion of said first
/D	2	plurality of radicals is greater than said first portion of said first plurality of radicals.
100 100 100 100 100		
1,5	1	10. The method of claim 9, wherein said precursor comprises a
farm time form	2	flourinated species capable of supplying atomic flourine.
Ħ.	1	11. The method/of claim 7, wherein said second plurality of radicals
	2	includes cleaning ions.
I		
	1	12. The method of claim 11, wherein said cleaning ions include at least
le l	2	one of F ions or Cl ions.
	1	13. The method of claim 7, wherein said dissociating said less reactive
	2	elements creates physical sputtering.
	1	14. The method of claim 7, wherein said less reactive elements include
	2	at least one of F ₂ or Cl ₂ /
	1	15. The method of claim 7, further comprising: introducing a second
	2	precursor to said equipment.
	1	16. The method of claim 15, wherein said second precursor comprises
	2	
M	<i></i>	oxygen.
	1	17. The method of claim 16, wherein said oxygen combines with
, v	2	carbon on said equipment to form CO _y .

	1	18. A method of cleaning a semiconductor processing equipment, said
	2	method comprising:
	3	introducing a first precursor to a remote dissociator;
	4	dissociating said first precursor to create a first plurality of radicals;
	5	introducing said first plurality of radicals to said equipment;
	60	introducing a second precursor to said remote dissociator;
CA		dissociating said second precursor to create a second plurality of radicals;
D	8	introducing a first portion of said second plurality of radicals to said
	9	equipment, a second portion of said second plurality of radicals re-associating to create
(m)	10 /	less reactive elements;
(١٠)	11/	introducing said less reactive elements to said equipment; and
(2) (2)	12	dissociating said less reactive elements to form a third plurality of radicals
lim, lim	13	in said equipment.
\$9.\$		
Ų¶	1	19. The method of claim 18, wherein said third plurality of radicals
	2	comprise Cl and said first plurality of radicals comprise F.
es b	1	20. The method of claim 18, wherein said dissociating said first
	2	precursor includes forming a first plasma and said dissociating said less reactive elements
lish	3	includes forming a second plasma.
	1	21. A semiconductor equipment cleaning system comprising:
	2	a housing;
	3	a remote dissociator configured to dissociate a first gas remote from said
	4	housing, said dissociation forming a second gas;
	5	a gas delivery system to introduce a portion of said first gas, a portion of
	6	said second gas, and a re-associated portion of said second gas into said housing.
	7	a local dissociator configured to dissociate said re-associated portion of
	8	said second gas;
	9	a controller for controlling said remote dissociator, said gas delivery
	10	system, and said local dissociator; and
	11	a memory coupled to said controller, said memory comprising a computer-
	12	readable medium having a computer readable program embodied therein for directing

13	operation of said semiconductor cleaning system, said computer-readable program
14	comprising:
) 15	an instruction to control said remote dissociator;
18	an instruction to control said gas delivery system; and
17	an instruction to control said local dissociator.
1	22. A computer-readable storage medium having a computer-readable
2	program embodied therein for directing operation of a semiconductor cleaning system,
3	said semiconductor cleaning system comprising an equipment, a remote dissociator, a
4	local dissociator, and a gas delivery system configured to introduce a gas from said
5	remote dissociator into said equipment, said computer-readable program including
6	instructions for operating said semiconductor cleaning system in accordance with the
6 7 8 9	following:
[] [] 8	introducing a precursor to said remote dissociator;
1 9	dissociating said precursor to create a first plurality of radicals;
# 10	introducing a first portion of said first plurality of radicals to said
11 (=) 11	equipment by way of said gas delivery system, a second portion of said first plurality of
12	radicals re-associating to create less reactive elements;
ļ⊪ ļ <u>Ļ</u> J13	introducing said less reactive elements to said equipment by way of said
14	gas delivery system; and
15	dissociating said less reactive elements to form a second plurality of
16	radicals in said equipment.