Assignment3

Lars Mehwald and Daniel Salgado Moreno 13 November 2015

Regression analysis

Table 1: Regression analysis regarding robbery

	Dependent variable: robbery			
	(1)	(2)	(3)	(4)
${\bf Graduates With Houth Degree Rel}$	732.01* (381.96)	-554.94 (405.38)	$-1,021.30^{***}$ (334.82)	-997.71^{***} (333.67)
marriageRel	-237.86^{***} (75.14)	-164.10^{**} (71.83)	-17.68 (59.96)	12.67 (61.51)
${\bf Unemployed Percentage}$		18.86*** (2.70)	10.39*** (2.30)	11.22*** (2.32)
DensityPerSQRTkm100			14.96*** (1.07)	15.90*** (1.16)
MalePopulationRel				23.05** (11.18)
Constant	167.01*** (41.71)	71.88* (41.72)	13.61 (34.54)	$-1,143.31^{**}$ (562.35)
Observations R ²	408 0.03	408 0.13	408 0.42	408 0.42
Adjusted R ² Residual Std. Error	0.03 167.15 (df = 405)	$0.13 \\ 158.06 (df = 404)$	$0.41 \\ 129.90 (df = 403)$	$0.42 \\ 129.38 (df = 402)$

Note:

*p<0.1; **p<0.05; ***p<0.01

This regression output shows the results using 4 different specifications.