Problem 2.10

Consider the function

$$g(t) = \delta\left(t + \frac{1}{2}\right) - \delta\left(t - \frac{1}{2}\right)$$

which consists of two delta functions at $t = \pm \frac{1}{2}$. The integration of g(t) with respect to time t yields the unit rectangular function $\operatorname{rect}(t)$. Using Eq. (2.79), show that $\operatorname{rect}(t) \Leftrightarrow \operatorname{sinc}(f)$

Solution

To begin, consider the transform pair

$$\delta(t) \rightleftharpoons 1$$

Hence, the Fourier transform of g(t) is

$$G(f) = \exp(j\pi ft) - \exp(-j\pi ft)$$

from which we readily deduce that G(0). Hence, applying Eq. (2.79) in the text yields

$$\mathbf{F}[\operatorname{rect}(t)] = \frac{1}{j2\pi f} [\exp(j\pi f) - \exp(-j\pi f)]$$
$$= \frac{\sin(\pi f)}{\pi f} = \operatorname{sinc}(f)$$

where we have used the identity

$$\sin(\pi f) = \frac{1}{2j} (e^{j\pi f} - e^{-j\pi f})$$