Constrained Optimization Simplex Method

WQD7011 Numerical Optimization

Recall

- Solving linear optimization problem using graphical solution...
 - Feasible in real-life problem?

- Creator: George Dantzig (1946)
- 1940s marks the start of modern era in optimization
- Enable economists to formulate large models and analyze them in a systematic and efficient way
- Still continually improved and now it has reached high level of sophistication

- Still the most widely used of all optimization tools. WHY?
 - ✓ Advanced state of software
 - ✓ Guaranteed convergence to a global minimum
 - ✓ Uncertainty in the model makes linear model more appropriate than an overly complex non-linear model.

A system of linear inequalities defines a polytope as a feasible region. The simplex algorithm begins at a starting vertex and moves along the edges of the polytope until it reaches the vertex of the optimal solution.

Linear programs are usually stated and analyzed in the following standard form:

min
$$c^T x$$
, subject to $Ax = b$, $x \ge 0$

- where c and x are vectors \mathbb{R}^n , b is a vector in \mathbb{R}^n , and A is an $m \times n$ matrix.
- Given

$$\min c^T x$$
, subject to $Ax \le b$

How do you convert the inequality constraint to equality?

Given

 $\min c^T x$, subject to $Ax \le b$

- How do you convert the inequality constraint to equality?
- Adding <u>slack</u> or <u>surplus</u> variable.
 - If $Ax \le b$, we use slack variable:
 - \blacksquare Becomes $Ax + S_1 = b$
 - If $Ax \ge b$, we use surplus variable:
 - ightharpoonup Becomes $Ax S_1 = b$

Solve the following LP problem by using simplex method:

Maximize
$$Z=12x_1+16x_2$$
 , subject to
$$10x_1+20x_2\leq 120$$

$$8x_1+8x_2\leq 80$$

$$x_1 \text{ and } x_2\geq 0$$

Step 1: Convert the objective function and constraints to standard form.

Maximize
$$Z=12x_1+16x_2+0S_1+0S_2$$
 , subject to,
$$10x_1+20x_2+S_1=120\\8x_1+8x_2+S_2=80\\x_1,x_2,S_1,S_2\geq 0$$

Step 2: Transform the standard form to initial simplex table.

Maximize
$$Z=12x_1+16x_2+0S_1+0S_2$$
 , subject to
$$10x_1+20x_2+S_1=120\\ 8x_1+8x_2+S_2=80\\ x_1,x_2,S_1,S_2\geq 0$$

	CB _i	C_{j}	12	16	0	0	Solution	Ratio
		Basic Variable	x_1	x_2	\mathcal{S}_1	S_2		
	0	S_1	10	20	1	0	120	
N	0	S_2	8	8	0	1	80	
\		Z_{j}						
	1	$Z_j - C_j$						

■ Step 3: Calculate $Z_j = \sum_{i=1}^2 CB_i \times a_{ij}$ and $C_j - Z_j$.

CB_i	C_{j}	12	16	0	0	Solution	Ratio
	Basic Variable	x_1	x_2	\mathcal{S}_1	S_2		
0	$\int S_1$	10	20	1	0	120	
0	S_2	8	8	0	1	80	
	Z_{j}	0	0	0	0	0	
	$C_j - Z_j$	12	16	0	0	0	

Optimality conditions

For maximization:

$$\left(C_i - Z_j\right) \le 0$$

For maximization:

$$\left(C_i - Z_j\right) \ge 0$$

■ Step 4: Check the optimality condition for $C_i - Z_i$.

CB_i	C_{j}	12	16	0	0	Solution	Ratio
	Basic Variable	x_1	x_2	S_1	S_2		
0	S_1	10	20	1	0	120	
0	S_2	8	8	0	1	80	
	Z_j	0	0	0	0	0	
	$C_j - Z_j$	12	16	0	0	0	

Have not found optimal solution yet! Continue to the next step...

- Step 5: Prepare Table for Iteration 1.
 - a) Find key columns, key rows, key elements first.

	CB_i	$/ c_j$	12	16	0	0	Solution	Ratio
		Basic Variable	x_1	<i>x</i> ₂	S_1	S_2		
	Ø	\mathcal{S}_1	10	20	1	0	120	
	0	S_2	8	8	0	1	80	
		Z_{j}	0	0	0	0	0	
V		$C_j - Z_j$	12	16	0	0	0	

Key column because largest value of $(C_j - Z_j)$

- Step 5: Prepare Table for Iteration 1.
 - b) Find key columns, key rows, key elements first.

	CB_i	$/ c_j$	12	16	0	0	Solution	Ratio
		Basic Variable	x_1	<i>x</i> ₂	\mathcal{S}_1	S_2		
	Ø	\mathcal{S}_1	10	20	1	0	120	120/20=6
	0	S_2	8	8	0	1	80	80/8=10
		Z_{j}	0	0	0	0	0	
V		$C_j - Z_j$	12	16	0	0	0	

Key row because smallest value of ratio

- Step 5: Prepare Table for Iteration 1.
 - c) Find key columns, key rows, key elements first.

CB_i	$\int C_j$	12	16	0	0	Solutio	Ratio
	Basic Variable	x_1	<i>x</i> ₂	S_1	S_2	n	
0/	S_1	10	20	1	0	120	120/20=6
Ø	S_2	8	8	0	1	80	80/8=10
	Z_j	0	0	0	0	0	
V	$C_j - Z_j$	12	16	0	0	0	

Intersection between key row and key column = key element

- Step 5: Prepare Table for Iteration 1.
 - d) identify entering and departing variables

	CB_i C_j		12	16	0	0	Solutio	Ratio
		Basic Variable	x_1	x_2	\mathcal{S}_1	S_2	n	
	0 /	(S_1)	10	20	1	0	120	120/20=6
M	0/	S_2	8	8	0	1	80	80/8=10
\mathbb{N}		Z_{j}	0	0	0	0	0	
M		$C_j - Z_j$	12	16	0	0	0	

 x_2 is entering variable while S_1 is departing variable.

- Step 5: Prepare Table for Iteration 1.
 - e) filling in the elements

 $C_j - Z_j$

	CB_i	C_{j}		12	16	0			0	Solutio	Ra	tio	
\		Basic		x_1	x_2	S_1			S_2	n			
		Vøriable									Divide	e all ini	tial
	16	$\int x_2$		1/2	1	1/2	0		0	6	l value	with k	
\setminus	0	$/$ S_2	,								eleme	ent.	
		Z_i		CB_i	C_{j}	12	10	6	0	0	Solution	Ratio	
1	W /	J			Basic	χ,	(x.		S ₄	Sa			

CB_i	C_{j}	12	16	0	0	Solution	Ratio
	Basic Variable	<i>x</i> ₁	x_2	S_1	S_2		
0	(S_1)	10	20	1	0	120	120/20=6
0	S_2	8	8	0	1	80	80/8=10
	Z_j	0	0	0	0	0	
	$C_j - Z_j$	12	16	0	0	0	

1 st .	2^{nd} .
8 - (8*10)/20	8 - (8*20)/20
= 4	= 0
3rd.	4 th .

 $0 - (8*1)/20 \mid 1 - (8*0)/20$ = -2/5

 5^{th} . 80 - (8*120)/20 = 32

- Step 5: Prepare Table for Iteration 1.
 - e) filling in the elements

	CB_i	$oldsymbol{c_{j_{/}}}$	12	16	0	0	Solution	Ratio	
		Basic Variable	x_1	x_2	S_1	S_2		New Valu	
	16	x_2	1/2	1	1/20	0	6	= Old Val	
	0 /	S_2	4	0	-2/5	1	32	- (Cor Ke Col * Cor	У
M								Kov	

= Old Value
- (Cor Key
Col * Cor
Key
Row)/Key
Element

CB_i	C_{j}	12	16	0	0	Solution	Ratio
	Basic Variable	x_1	x_2	S_1	S_2		
0	(S_1)	10	20	1	0	120	120/20=6
0	S_2	8	8	0	1	80	80/8=10
	Z_j	0	0	0	0	0	
	$C_j - Z_j$	12	16	0	0	0	

■ Step 6: Calculate Z_j and $C_j - Z_j$.

CB_i	C_{j}	12	16	0	0	Solutio	Ratio
	Basic Variable	x_1	<i>x</i> ₂	\mathcal{S}_1	S_2	n	
16 /	x_2	1/2	1	1/20	0	6	
0 /	S_2	4	0	-2/5	1	32	
	Z_{j}	8	16	4/5	0		
	$C_j - Z_j$	4	0	-4/5	0		

Step 7: Is the optimality condition met?

	CB_i	C_{j}	12	16	0	0	Solutio	Ratio
		Basic Variable	x_1	x_2	\mathcal{S}_1	S_2	n	
	16 /	x_2	1/2	1	1/20	0	6	
	0 /	S_2	4	0	-2/5	1	32	
		Z_{j}	8	16	2/5	0		
X		$C_j - Z_j$	4	0	-2/5	0		

Continue...

Simple Method Exercise

Solve the following linear programming problem using Table solution:

Maximize
$$3x_1 + 2x_2$$

With subject to, $2x_1 + x_2 \le 18$
 $2x_1 + 3x_2 \le 42$
 $3x_1 + x_2 \le 24$
 $x_1, x_2 \ge 0$

Exercise this week...

Code the simplex method using Table Solution in Python, then test the codes using the two examples in this slides.

Discuss on Group Assignment