

Softwareprojektpraktikum Maschinelle Übersetzung

Matthias Huck, Markus Freitag {huck,freitag}@i6.informatik.rwth-aachen.de

Vorbesprechung 5. Aufgabe 9. Juni 2011

Human Language Technology and Pattern Recognition
Lehrstuhl für Informatik 6
Computer Science Department
RWTH Aachen University, Germany

Contents

1	Log-lineare Modellkombination	
2	Downhill-Simplex-Verfahren	7
3	Och's Minimum Error Rate Training (MERT)	18
4	Übuna 5	30

1 Log-lineare Modellkombination

Target Language Text

Log-lineare Modellkombination

Mathematisch:

$$egin{aligned} \hat{e}_1^{\hat{I}} &= rg \max_{e_1^I} \left\{ p(e_1^I | f_1^J)
ight\} \ &= rg \max_{e_1^I} \left\{ rac{\exp\left(\sum_{m=1}^M \lambda_m h_m(e_1^I, f_1^J)
ight)}{\sum_{ ilde{e}_1^I} \exp\left(\sum_{m=1}^M \lambda_m h_m(ilde{e}_1^I, f_1^J)
ight)}
ight\} \ &= rg \max_{e_1^I} \left\{ \sum_{m=1}^M \lambda_m h_m(e_1^I, f_1^J)
ight\} \end{aligned}$$

für Skalierungsfaktoren λ_m und Funktionen $h_m(e_1^I,f_1^J)$, $m=1,\ldots,M$.

Optimierung der Skalierungsfaktoren

$$\hat{e}_1^{\hat{I}} = rg \max_{e_1^{I}} \left\{ \sum_{m=1}^{M} oldsymbol{\lambda_m} h_m(e_1^{I}, f_1^{J})
ight\}$$

für Skalierungsfaktoren $oldsymbol{\lambda}_m$ und Funktionen $h_m(e_1^I,f_1^J),\, m=1,\ldots,M$.

Algorithmen zur Optimierung der Skalierungsfaktoren λ_m

- lacktriangle ideale Gewichtung der Einzelmodelle $h_m(e_1^I,f_1^J)$
- ▶ direkte Optimierung bzgl. des verwendeten Fehlermaßes
- ► finde ideale Gewichtung für in den Trainingsdaten nicht enthaltene sog. Development-Daten
- evaluiere Ergebnis auf ungesehenen Test-Daten

Optimieren auf N-Best Listen

- eine Optimierung benötigt viele Iterationen
 - sehr Zeitaufwendig verschiedene Parameter Konfigurationen immer wieder neu zu Übersetzen
- optimieren auf N-Best Listen
 - wiederhole das folgende (solange neue N-Best Listen Einträge generiert werden):
 - o erstelle eine N-Best Liste für jeden source Satz für die aktuellen Parameter
 - o füge die neu generierten mit den alten N-Best Listen zusammen
 - o optimiere die Parameter auf den zusammengefügten N-Best Listen
 - starte eine neue Iteration mit den neuen Parametern
- Vorteil
 - viel schneller
- Nachteil
 - gute Hypothesen könnten eventuell nicht betrachtet werden

2 Downhill-Simplex-Verfahren

Wie optimiert man nun die verschiedenen Skalierungsfaktoren?

- Downhill Simplex
 - > Hillclimbing-Verfahren
 - ▶ langsame Konvergierung, aber relativ robust
 - \triangleright Aufstellen eines M+1-Dimensionalen Vielkants (Simplex)
 - ▶ Schrittweise Verbesserung des schlechtesten Punktes
- **▶** zu verbessernde Kosten: z.B. *BLEU*

Algorithmus

Initialisierung:

ightharpoonup Simplex aufspannen: M+1 Werte berechnen

In jeder Schleife:

- **▶** Werte sortieren, Schwerpunkt berechnen
- ▶ versuchen, den schwächsten Punkt zu verbessern
- **▶** im Notfall den Simplex zusammenziehen

Schwächsten Punkt verbessern

- lacktriangleright Berechnung des Simplex-Schwerpunktes $x_0 = rac{\sum_{m=1}^M x_i}{M}$
- **▶** Verlagerung des schlechtesten Wertes
- durch Reflektion:

$$x_r = x_0 + \alpha(x_0 - x_{worst})$$

▶ durch Erweiterung:

$$x_e = x_0 + \gamma (x_0 - x_{worst})$$

durch Kontraktion:

$$x_c = x_{worst} +
ho(x_0 - x_{worst})$$

ightharpoonup typische Werte: $lpha=1.0, \gamma=2.0,
ho=0.5$

Schwächsten Punkt verbessern

- nicht möglich den schwächsten Punkt zu verbessern?
- ⇒ ziehe den ganzen Simplex zusammen

$$hd x_i = x_1 + \sigma(x_i - x_1) \qquad orall i \in \{2, \ldots, M+1\}$$

ightharpoonup typische Werte: $\sigma=0.5$

- ▶ die Optimierung endet, wenn
 - ho abs $(BLEU(x_i) BLEU(x_j)) \leq \epsilon$
 - > oder wenn z.B. eine bestimmte Anzahl an Iterationen erreicht wurde

Downhill Simplex

Algorithm 1: Downhill Simplex

```
while Optimierungskriterium nicht erreicht do
```

```
SORTIERE Simplexpunkte nach Wert: BLEU(x_1) \geq BLEU(x_2) \geq \cdots \geq BLEU(x_{M+1});
BERECHNE Schwerpunkt x_0 aller Punkte ausser x_{M+1};
if BLEU(x_1) > BLEU(x_r) > BLEU(x_M) then
  REFLEKTIERE, d.h. ersetze x_{M+1} durch x_r;
else if BLEU(x_r) > BLEU(x_1) then
  if BLEU(x_e) > BLEU(x_r) > BLEU(x_1) then
    EXPANDIERE, d.h. ersetze x_{M+1} durch x_e;
  else
    REFLEKTIERE, d.h. ersetze x_{M+1} durch x_r;
else
                                                              // BLEU(x_r) < BLEU(x_M)
  if BLEU(x_c) > BLEU(x_{M+1}) then
    KONTRAHIERE , d.h. ersetze x_{M+1} durch x_c;
  else
    KOMPRIMIERE Simplex, x_i = x_1 + \sigma(x_i - x_1) \quad \forall i \in \{2, \ldots, M+1\};
```


3 Och's Minimum Error Rate Training (MERT)

- **▶** Basiert auf der Powell's Methode
- ► Üblicherweise schneller und stabiler als Downhill Simplex
- ▶ Ansatz: es wird jeweils nur ein Parameter λ_k auf einmal verändert
- ▶ Idee: nicht jede Position wird berechnet, sondern nur die wesentlichen

$$\sum_{m} \lambda_{m} h_{m}(e_{1}^{I}, f_{1}^{J}) = \sum_{m
eq k} \lambda_{m} h_{m}(e_{1}^{I}, f_{1}^{J}) + \lambda_{k} h_{k}(e_{1}^{I}, f_{1}^{J})$$

Gesamtkosten von einer einzigen Übersetzung

Schnittpunkte der N-Best Hypothesen für Satz Eins

Schnittpunkte der N-Best Hypothesen für Satz Zwei

Update eines Parameters

- ightharpoonup berechne BLEU an jedem Schnittpunkt (bzw. in der Mitte zwischen 2 Schnittpunkten)
- ightharpoonup update den aktuellen Parameter auf den Wert des Schnittpunktes mit dem geringsten BLEU
- ▶ optimiere den nächsten Parameter

Schnittpunkt-Berechnung

Offset = y-Wert der Geraden bei (z.B.) x=0Steigung = Differenz der y-Werte bei z.B. x=0 und x=1

$$(\mathsf{Offset}(b) - \mathsf{Offset}(a))/(\mathsf{Steigung}(a) - \mathsf{Steigung}(b))$$

Grundalgorithmus:

- sortiere Geraden nach Steigung
- ightharpoonup warum? -> die Gerade mit der geringsten Steigung ist die Gerade bei $-\infty$
- berechne Schnittpunkte von links nach rechts
- ightharpoonup die Gerade mit der größten Steigung ist die Gerade bei ∞

Eliminiere niedriger gelegene Linien

Vergleiche Schnittpunkte

Vergleiche Schnittpunkte

Algorithmus

Algorithm 2: MERT

INITIALISIERE;

while Neue Hypothese produziert wird do

while Parameter ändern sich do

Berechne neue (zufällige) Parameter-Reihenfolge;

for Jeden Parameter do

Berechne alle Schnittpunkte aller N-Best Listen;

Berechne BLEU neu für alle Schnittpunkte (effizient!);

_Wähle besten Parameter;

Erzeuge neue N-Best Liste mit neuen Parametern;

Füge die neuen N-Best Einträge zu der alten Liste hinzu

4 Übung 5

- ▶ Optimierung der Skalierungsfaktoren in der log-linearen Modellkombination
 - > Downhill Simplex
 - **⊳ MERT**
 - Effiziente Schnittpunktberechnung
 - Effiziente BLEU Berechnung
 - \circ ist es notwendig an jedem Schnittpunkt BLEU komplett neu zu berechnen?
 - Begrenzung der Veränderung eines Parameters?
 - ▶ Normierung der Parameter?
 - ▶ N-Best Listen Größe?
 - weitere Ideen?

Berechnung der Konvexen Hülle

Algorithm 3: Line Sweep Algorithmus

```
input: Array a der Größe K mit Linien sortiert nach Steigung. j=0
for (i = 0 \dots K - 1;) do
  SETZE currentIntersection = a[i];
  SETZE currentIntersection.previous = minimum;
  if 0 < j then
     while Steigung von a[j-1] == Steigung von currentIntersection, aber Offset geringer do
       VERRINGERE j;
     while (0 < j) do
        SETZE currentIntersection.previous auf Schnittpunkt mit a[j-1];
        if a[j-1].previous < currentIntersection.previous then

    break:

        VERRINGERE j;
     if 0 == i then
        currentIntersection.previous = minimum;
        a[inc(j)] = currentIntersection;
  else
    a[inc(j)] = currentIntersection;
GIB a[0 \dots j] als Lösung;
```


Fragen?

Viel Erfolg!

