華中科技大學

课程实验报告

课程名和	尔:		数据结构实验	
		基于	链表结构线性表的操作实现	见
	专业现	至级:		
	学	号:		
	姓	名:		
	指导拳	如师:		

网络空间安全学院

报告日期:_____

目 录

1	链式循	f环队列的设计	1
	1.1	需求分析	1
	1.2	总体设计	1
	1.3	算法设计	1
	1.4	系统实现	2
	1.5	系统测试	3
	1.6	结果分析	3
	1.7	实验小结	3
2	链式栈	建栈与操作	4
	2.1	需求分析	4
	2.2	总体设计	4
	2.3	算法设计	4
	2.4	系统实现	7
	2.5	系统测试	7
	2.6	结果分析	7
	2.7	实验小结	8
3	一元稀	6疏多项式加减运算	9
	3.1	需求分析	9
	3.2	总体设计	9
	3.3	算法设计	9
	3.4	系统实现	13
	3.5	系统测试	13
	3.6	结果分析	14
	3.7	实验小结	14
4	一元稀	6疏多项式运算的升级功能	15
	4.1	需求分析	15
	4.2	总体设计	15
	4.3	算法设计	16
	4.4	系统实现	17
	4.5	系统测试	18
	4.6	结果分析	18
	4.7	实验小结	19
参	考文献	}	20
17/-	上 点	工体才方决体构织州事实现的派组官	21

1 链式循环队列的设计

1.1 需求分析

1.1.1 功能需求

以链表作为物理结构,使用 C 语言编程实现循环队列的基本功能,可参考 约瑟夫环的设计。依据循环队列的功能,实现对输入/输出数据进行入队/出队操 作,能够处理满队/空队等边界情况。

1.1.2 输入输出需求

使用链表建立容量为 8 的循环空队列,下标依次记为 0,1,2...,7,指定起始位置 (队首)下标 i,读入数据后从起始位置 i 顺序存储整数序列,队列满队(读入 8 个元素)之后停止读入;输出时,如果输出个数大于存储最大容量 8 则输出 "Error",否则如果输出个数大于已存储元素个数(即会发生空队列输出)则输出 "Fault";如果队列已满则先输出"Full",然后从起始位置开始顺序输出 k 个数据,否则直接顺序输出 k 个数据。

输入形式: 非负整数序列 n,i,k,e1,e2,...,en。(n 为读入元素个数,i 为队首下标,k 为输出个数)

输出形式: 非负整数序列"Full",e1',e2',...,ek'或"Error"或"Fault"。 ("Full"只有在队满时才会输出,后面是循环队列中存储的 k 元素)

1.2 总体设计

整个程序分为建立循环队列并初始化和入队/出队处理两个部分。

1.3 算法设计

链式队列入队/出队系统如图 1-1 所示。

图 1-1 链式队列入队/出队系统

1.4 系统实现

本程序全程在 Microsoft Visual Studio 2022 上编写、编译、调试、运行,并最终在 Educoder 平台上运行通过。

主要函数以及功能如表 1-1 所示。

函数名	主要功能
int main()	实现队列入队和出队功 能
void init()	完成链式队列的创建与 初始化

表 1-1 主要函数及功能

1.5 系统测试

支持 Educoder 平台的所有可见测试用例与隐藏测试用例,均通过,如图 1-2 所示。

图 1-2 通过所有测试

1.6 结果分析

成功通过所有的给定测试用例,表明该链式循环队列操作程序设计成功实现使用需求。(若存在测试用例没有通过,试分析原因,下同)

1.7 实验小结

略。(在实验中遇到的问题,以及解决方案等,下同)

2 链式栈建栈与操作

2.1 需求分析

2.1.1 功能需求

以链表作为物理结构,使用 C 语言编程实现栈的基本功能。依据栈的功能,实现对输入/输出数据进行入栈/出栈操作,能够处理溢出等边界情况。

2.1.2 输入输出需求

建立链式栈(长度=5)来存储多项式序列并合并,之后逆序输出。

输入形式:

按幂次升序输入多项式序列

c1 e1 c2 e2...cn en; c1' e1' c2' e2'...cn' en'

输出形式:

将两多项式合并,按幂次降序输出多项式序列。

注:

两多项式序列中没有相等的幂次(即不存在 1<=i<=n, 1<=j<=n', 使得 ei=ei')。其中 ci,ci'为整数,代表系数; ei,ei'为整数,代表指数; ';'为分隔符。

2.2 总体设计

整个程序分为字符串读取系统,链表合并系统2个部分。

字符串读取系统将读入的字符串数据转化为数值存入链表的结点中,同时 实现对于中断标志';'的判断。

链表合并系统将两个多项式链表进行按顺序比较合并,实现幂次降序排列。

2.3 算法设计

字符串读取系统,链表合并系统分别如图 2-1,2-2 所示。

图 2-1 字符串读取系统

图 2-2 链表合并系统

2.4 系统实现

本程序全程在 Microsoft Visual Studio 2022 上编写、编译、调试、运行,并最终在 Educoder 平台上运行通过。

主要函数以及功能如表 2-1 所示。

函数名	主要功能
int main()	实现读取多项式、合并 多项式、输出多项式功 能
void create_node(pstack	为多项式的一项创建结
new_node, int coef, int exp)	点
pstack push(pstack top, pstack	完成入栈操作
new_node)	

表 2-1 主要函数及功能

2.5 系统测试

支持 Educoder 平台的所有可见测试用例与隐藏测试用例,均通过,如图 2-

图 2-3 测试通过

2.6 结果分析

成功通过所有的给定测试用例,表明该链式栈操作程序设计成功实现使用

需求。

2.7 实验小结

3 一元稀疏多项式加减运算

3.1 需求分析

3.1.1 功能需求

对两个一元稀疏多项式进行加减运算,运算结果按照幂次从高到低依次输出多项式的幂次和系数。

3.1.2 输入输出需求

对两个一元稀疏多项式进行加减运算。

输入形式:

c1 e1 c2 e2..... cn1 en1 \pm c1' e1' c2' e2'......cn2' en2'; ci, ci'为浮点数,分别为两个多项式第 i 项的系数; ei, ei'为整数,分别为两个多项式第 i 项的指数,指数乱序排列; \pm 为加号或减号。

输出形式:

将运算后的结果多项式按幂次降序排列,依次输出结果多项式的系数和指数。

3.2 总体设计

整个程序分为字符串读取系统,多项式链表排序系统,多项式链表加减系统3个部分。

字符串读取系统将读入的字符串数据转化为数值存入链表的结点中,同时 实现对于加减符号'±'的判断。

多项式链表排序系统分别将两个多项式按幂次降序排序,为之后的加减运 算做准备。

多项式链表加减系统对两个多项式进行加减。

3.3 算法设计

字符串读取系统,多项式链表排序系统,多项式链表加减系统分别如图 3-1,3-2,3-3 所示。

图 3-1 字符串读取系统

图 3-2 多项式链表排序系统

图 3-3 多项式链表加减系统

3.4 系统实现

本程序全程在 Microsoft Visual Studio 2022 上编写、编译、调试、运行,并最终在 Educoder 平台上运行通过。

主要函数以	及功能如表 3-1	所示.
工女的奴以	/X ->// HK \\H\X\ / =1	アル / 」 / 」 、 。

函数名	主要功能
int main()	实现读取多项式、输出 多项式功能
pstack poly_sort(pstack top)	实现对多项式进行排序 的功能
void calculate(pstack A, pstack B);	实现对两个多项式进行 加法运算的功能
void display(pstack A)	实现按 ci, ei 格式输出 多项式各项
void create_node(pstack new_node, int coef, int exp)	实现创建结点的功能
pstack push(pstack top, pstack new_node)	实现结点入栈的功能

表 3-1 主要函数及功能

3.5 系统测试

支持 Educoder 平台的所有可见测试用例与隐藏测试用例,均通过,如图 3-4 所示。

图 3-4 测试通过

3.6 结果分析

成功通过所有的给定测试用例,表明该一元稀疏多项式加减运算器成功实现使用需求。

3.7 实验小结

4 一元稀疏多项式运算的升级功能

4.1 需求分析

4.1.1 功能需求

对一元稀疏多项式的加减运算提供升级功能,满足以下几点:

可以实现自然语言格式的输入输出;可以处理输入项的幂次有重复的情况;可以处理输入项的次序是按幂次乱序的情况。

4.1.2 输入输出需求

对两个一元稀疏多项式进行加减运算。

输入形式: (c1x^e1±c2x^e2±...±cnx^en1)±(c1'x^e1'±c2'x^e2'±...±cn'x^en2')

- ci, ci'为浮点数,分别为两个多项式第 i 项的系数;
- ei, ei'为整数,分别为两个多项式第i项的指数;

多项式按幂次乱序排列。

输出形式: c1x^e1±c2x^e2±...±cnx^en1 按幂次降序排列

注意,输出形式需满足常见的数学多项式的书写形式。 比如如下特殊情况:

当系数为±1 且指数不为 0 时, 1 省略;

当指数为0时, x 和指数省略;

当系数为0时,该项省略:

加一个负数,需要表示成减一个正数;

等等。

4.2 总体设计

整个程序分为字符串匹配转换系统、多项式链表排序系统,多项式链表加减系统、字符串输出系统4个部分。

字符串匹配转换系统将用户输入的自然表达式转换为链表,每个链表保存一项的信息,从表头至表尾呈降幂排列(如果输入不为降幂会进行自动调整,如果输入中存在两项次数相同会进行自动合并,如果输入为0则表为空)。

字符串输出系统将结果多项式的链表进行输出。

4.3 算法设计

字符串匹配转换系统与字符串输出系统如图 4-1,4-2 所示,多项式链表排序系统和多项式链表加减系统已在第三关报告中给出,此处不再次给出。

图 4-1 输入字符串匹配系统

输出字符串系统

实现函数: void display(pstack A);

图 4-2 输出字符串系统

4.4 系统实现

本程序全程在 Microsoft Visual Studio 2022 上编写、编译、调试、运行,并最终在 Educoder 平台上运行通过。

主要函数以及功能如表 4-1 所示。

函数名	主要功能
int main()	实现按自然语言格式读 取多项式的功能,并调

	用其他系统中的函数
pstack poly_sort(pstack top)	实现对多项式进行排序 的功能
void calculate(pstack A, pstack B);	实现对两个多项式进行 加法运算的功能
void display(pstack A)	实现自然语言格式输出 多项式各项
void create_node(pstack new_node, int coef, int exp)	实现创建结点的功能
pstack push(pstack top, pstack new_node)	实现结点入栈的功能

表 4-1 主要函数及功能

4.5 系统测试

支持 Educoder 平台的所有可见测试用例与隐藏测试用例,均通过,如图 4-3 所示。

图 4-3 测试通过

4.6 结果分析

成功通过所有的给定测试用例,表明该一元稀疏多项式加减运算器的升级功能需求成功实现。

4.7 实验小结

参考文献

- [1] 严蔚敏等. 数据结构(C语言版). 清华大学出版社
- [2] Larry Nyhoff. ADTs, Data Structures, and Problem Solving with
- C++. Second Edition, Calvin College, 2005
 - [3] 严蔚敏等.数据结构题集(C语言版). 清华大学出版社

附录 基于链式存储结构线性表实现的源程序