Correction_TD2_Torseurs

Exercice 1:

Dans un repère orthonormé direct $R(O, \vec{i}, \vec{j}, \vec{k})$, on considère le champ de vecteurs $\vec{v}(M)$ dont les composantes sont définies en fonction des coordonnées (x, y, z) de M par :

$$\begin{vmatrix} v_x = 1 + 3y - tz \\ v_y = -3x + 2tz \end{vmatrix}$$
 où t est un paramètre réel.
 $\begin{vmatrix} v_z = 2 + tx - t^2y \end{vmatrix}$

1- Calculer le vecteur $\vec{v}(M)$ au point O.

2- Pour quelles valeurs de t, ce champ est antisymétrique ?

3- Pour chaque valeur trouvée de t, déterminer les éléments de réduction du torseur (résultante et moment en O).

4- Décomposer le torseur associé à $\vec{v}(M)$ en une somme d'un couple et d'un glisseur dont on indiquera les éléments de réduction.

5- Déterminer la position de l'axe central du torseur pour t = 0 et t=2.

Corrigé

1- Le point O a pour coordonnés :
$$O = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \implies \overrightarrow{V(O)} = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}$$
.

2- Equiprojectivité, on utilise les points O et M;

$$tq : \overrightarrow{V(O)OM} = \overrightarrow{V(M)OM} \Rightarrow \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} . \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 + 3y - tz \\ 2tz - 3x \\ 2 + tx - t^2y \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$\Rightarrow t^2 - 2t = 0 \Rightarrow t = 0 \text{ ou } t = 2.$$

Le champ $\overrightarrow{V(M)}$ est équiprojectif pour t = 0 ou t = 2; $\overrightarrow{V(M)}$ est un torseur pour ces valeurs de t.

3- Pour
$$t = 0$$
, on a $\vec{R}(t = 0) = \begin{pmatrix} 0 \\ 0 \\ -3 \end{pmatrix}$;
Pour $t = 2$, on a $\vec{R}(t = 2) = \begin{pmatrix} -4 \\ -2 \\ -3 \end{pmatrix}$;

4- Soit les deux torseurs associés à t = 0: $[\mathfrak{I}_0]$ et à t = 2: $[\mathfrak{I}_2]$;

Calculons pour les deux valeurs l'invariant scalaire :

$$I_0 = \vec{V}(O) \cdot \vec{R}(t=0) = -6 \neq 0$$

$$I_2 = \vec{V}(0).\vec{R}(t=2) = -10 \neq 0$$

Donc les deux torseurs sont quelconques (ni glisseur ni couple) chacun peut cependant etre décomposé en la somme d'un glisseur et d'un couple :

$$\begin{split} & [\mathfrak{I}_0] = \left[\vec{V}(O), \vec{R}(\mathsf{t} = 0) \right] = \left[\vec{V}(O), 0 \right] + \left[0, \vec{R}(\mathsf{t} = 0) \right] \\ & \text{De meme} : \left[\mathfrak{I}_2 \right] = \left[\vec{V}(O), \vec{R}(\mathsf{t} = 2) \right] = \left[\vec{V}(O), 0 \right] + \left[0, \vec{R}(\mathsf{t} = 2) \right] \\ & \text{Donc} : \begin{cases} \text{Couples} : \vec{C}(M) = \vec{V}(O) = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} \ \forall M \\ \text{Glisseurs} : \vec{G}(M) = \vec{0} + \vec{R}(\mathsf{t}) \land \overrightarrow{OM} \end{split}$$

5- Soit $P \in$ à l'axe central du torseur, la positionde P par rapport à O est donnée par :

$$\overrightarrow{OP} = \frac{\overrightarrow{R}(t) \wedge \overrightarrow{V(M)}}{R^2} + \lambda \overrightarrow{R} \text{ avec } \lambda \in R$$

Pour
$$\lambda = 0$$
, $\overrightarrow{OP}_0 = \frac{\overrightarrow{R}(t) \wedge \overrightarrow{V(0)}}{R^2}$,

Donc pour
$$t = 0$$
, $\vec{R}(t = 0) = \begin{pmatrix} 0 \\ 0 \\ -3 \end{pmatrix}$, $\vec{V}(\vec{O}) = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}$, on obtient alors : $\vec{OP}_0 = -\frac{1}{3}\vec{J}$

L'axe central pour t = 0, passe par P_0 et parralèle à $\vec{R}(t = 0) \Longrightarrow$ parralèle à \vec{k} . de la meme façon on obtient l'axe central pour t = 2:

L'axe central pour
$$t=0$$
, passe par $P_0=\begin{pmatrix} -4/29\\-5/29\\2/29 \end{pmatrix}$ et parralèle à $\vec{R}(t=2)=\begin{pmatrix} -4\\-2\\-3 \end{pmatrix}$.

1

Exercice 2:

Dans un repère $(O, \vec{x}, \vec{y}, \vec{z})$, on considère les trois glisseurs définis par les trois vecteurs :

$$\vec{V}_1 = (1,0,-1)$$
 d'origine $A = (1,0,0)$

$$\vec{V}_2 = (1,2,2)$$
 d'origine $B = (0,1,0)$

$$\vec{V}_{2}$$
=(λ, μ, ν) d'origine C =(0,0,1)

Soit [T] la somme des trois glisseurs.

- 1- Déterminer (λ, μ, ν) pour que [T] soit un couple et trouver son moment.
- 2- Déterminer la relation que doit lier λ , μ et ν pour que [T] soit un glisseur?
- 3- Dans le cas où $(\lambda, \mu, \nu)=(-2,0,-1)$, trouver les équations de l'axe central de [T]. Que peuton dire de la direction de l'axe central ?

Corrigé

On peut écrire le torseur
$$[T] = [\vec{R}, \vec{M}]$$
 avec $\vec{R} = \vec{v}_1 + \vec{v}_2 + \vec{v}_3$ et $\vec{M}_O = \overrightarrow{OA} \wedge \vec{v}_1 + \overrightarrow{OB} \wedge \vec{v}_2 + \overrightarrow{OC} \wedge \vec{v}_3$

On obtient
$$\vec{M}_o = \begin{pmatrix} 2 - \mu \\ 1 + \lambda \\ -1 \end{pmatrix}$$

1- Pour avoir un couple, il faut et il suffit qu'on ait
$$\vec{R} = \vec{0}$$
 or $\vec{R} = \begin{pmatrix} \lambda + 2 \\ \mu + 2 \\ \nu + 1 \end{pmatrix}$

D'où on a un couple pour $\lambda = -2$, $\mu = -2$ et $\nu = -1$.

Alors
$$\vec{M}_p = \vec{M}_O = \begin{pmatrix} 4 \\ -1 \\ -1 \end{pmatrix} \quad \forall P$$
.

2- Pour avoir un glisseur il faut et il suffit que l'on ait : $\vec{R} \bullet \vec{M}_p = 0$ et $\vec{R} \neq \vec{0}$, avec $\vec{M}_p = \vec{M}_O + \vec{R} \wedge \overrightarrow{OP}$. Par conséquent,

$$\vec{R} \bullet \vec{M}_p = \vec{R} \bullet \left(\vec{M}_O + \vec{R} \wedge \overrightarrow{OP} \right) = \vec{R} \bullet \vec{M}_O + \vec{R} \bullet (\vec{R} \wedge \overrightarrow{OP}) = \vec{R} \bullet \vec{M}_O$$

L'invariant scalaire de [T] est $I = \vec{R} \cdot \vec{M}_p = \vec{R} \cdot \vec{M}_O$

$$\vec{R} \bullet \vec{M}_O = 0 \Rightarrow 4\lambda - \mu - \nu + 5 = 0 \text{ et } \vec{R} \neq \vec{0} \Rightarrow (\lambda, \mu, \nu) \neq (-2, -2, -1).$$

2- Soit P(x, y, z), on veut l'ensemble des points P où $\vec{M}_p /\!/ \overline{R}$.

On écrit
$$\vec{M}_p = \vec{M}_O + \vec{R} \wedge \overrightarrow{OP} = \alpha \, \vec{R}$$
. Comme on peut écrire $\vec{M}_p \wedge \vec{R} = \vec{0}$

On trouve z = -1, $x = -\frac{1}{2}$. L'axe central est la parallèle à \vec{y} passant par le point $(-\frac{1}{2}, y, -1)$.

Exercice 3:

Dans un repère orthonormé $(O, \vec{x}, \vec{y}, \vec{z})$, on considère les torseur $[T_1]$ et $[T_2]$ dont les éléments de réduction en O sont respectivement $\left[\cos(\alpha), \sin(\alpha), 0; -a\sin(\alpha), a\cos(\alpha), 0\right]$ et $\left[\cos(\alpha), -\sin(\alpha), 0; -a\sin(\alpha), -a\cos(\alpha), 0\right]$, a et α sont des constantes non nulles données avec $\alpha \in [0, \pi[$.

- 1- Préciser la nature des torseurs $[T_1]$ et $[T_2]$.
- 2- λ_1 et λ_2 étant deux réels, soit $[T] = \lambda_1[T_1] + \lambda_2[T_2]$. Trouver l'invariant scalaire I de [T], le produit scalaire (ou le comoment) de $[T_1]$ et $[T_2]$. Trouver une relation entre I et ce comoment.

Corrigé

Les deux torseurs sont donnés par

 $[T_1] = [\vec{R}_1, \vec{M}_1]$ et $[T_2] = [\vec{R}_2, \vec{M}_2]$ avec $\alpha \in]0,\pi[$ et a une constante non nulle. Les résultantes sont données par $\vec{R}_1 = (\cos(\alpha), \sin(\alpha), 0)$ et $\vec{R}_2 = (-a\sin(\alpha), a\cos(\alpha), 0)$. Les moments sont données par $\vec{M}_1 = (-a\sin(\alpha), a\cos(\alpha), 0)$ et $\vec{M}_2 = (-a\sin(\alpha), -a\cos(\alpha), 0)$.

- 1- On examine les invariants scalaires I_1 et I_2 de $[T_1]$ et $[T_2]$ ($I_1 = \vec{R}_1 \cdot \vec{M}_1, I_2 = \vec{R}_2 \cdot \vec{M}_2$). On trouve $I_1 = 0$ et $I_2 = 0$ or \vec{R}_1 et \vec{R}_2 ne peuvent être nuls, donc on a $[T_1]$ et $[T_2]$ sont des glisseurs.
- 2- T réduit en O est défini par

$$[T] = \lambda_1[T_1] + \lambda_2[T_2] = \begin{bmatrix} (\lambda_1 + \lambda_2)\cos(\alpha) & -a(\lambda_1 + \lambda_2)\sin(\alpha) \\ (\lambda_1 - \lambda_2)\sin(\alpha) & a(\lambda_1 - \lambda_2)\cos(\alpha) \\ 0 & 0 \end{bmatrix}$$

L'invariant scalaire $I = \vec{R} \cdot \vec{M} = -4a\lambda_1\lambda_2\sin(\alpha)\cos(\alpha)$, donc en général [T] n'est pas un glisseur puisque $I \neq 0$ (sauf pour $\alpha = \frac{\pi}{2}$).

Le comoment des deux torseurs est défini par :

$$[T_1] \bullet [T_2] = \vec{M}_1 \cdot \vec{R}_2 + \vec{M}_2 \cdot \vec{R}_1 = -4 a \sin(\alpha) \cos(\alpha) = \frac{I}{\lambda_1 \lambda_2}.$$