Задача 75

Полная электронная формула атома кальция в основном состоянии:

$$_{20}$$
Ca $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2$

Полная электронная формула атома кальция в возбужденном состоянии:

$$_{20}$$
Ca* $1s^2 2s^2 2p^6 3s^2 3p^6 4s^1 4p^1$

Распределение валентных электронов по квантовым ячейкам:

В нормальном состоянии:

В возбужденном состоянии:

(При переходе атома кальция в возбужденное состояние один электрон с 4s-подуровня перемещается на 4p-подуровень).

В нормальном состоянии у атома кальция нет неспаренных валентных электронов на внешнем энергетическом уровне, значит валентность атома кальция в нормальном (стандартном) состоянии равна $0.~(\mathrm{B}=0)$

В возбужденном состоянии у атома кальция 2 неспаренных валентных электрона на внешнем энергетическом уровне, значит валентность атома кальция в возбужденном состоянии равна 2.

$$(B* = 2)$$

Нейтральный атом кальция обладает диамагнитными свойствами, так как у атома кальция отсутствуют неспаренные электроны.

Орбитали внешнего энергетического уровня атома кальция в основном состоянии (одна 4sорбиталь):

Задача 108

Энергетическая диаграмма молекулы $\,{\rm O}_2\,$

Порядок связи частицы равен полуразности электронов на связывающих и разрыхляющих орбиталях.

$$n = \frac{N - N^*}{2} = \frac{8 - 4}{2} = 2$$

В молекуле O_2 имеются неспаренные электроны на молекулярных орбиталях, поэтому молекула O_2 является парамагнитной.

Энергетическая диаграмма молекулы Na₂

Порядок связи равен полуразности электронов на связывающих и разрыхляющих орбиталях:

$$n = \frac{N - N^*}{2} = \frac{2 - 0}{2} = 1$$

В молекуле Na_2 отсутствуют неспаренные электроны на молекулярных орбиталях, поэтому молекула Na_2 является диамагнитной.

Чем больше порядок связи, тем связь прочнее. Таким образом, в молекуле O_2 связь более прочная.

<u>Задача 183</u>

Рассмотрим молекулу CNBr

Валентный угол N-C-Br равен180°

Краткие электронные формулы атомов:

 C^* [He] $2s^1 2p^3$ (атом углерода в возбужденном состоянии)

Механизм образования связей в молекуле CNBr:

Тип гибридизации атома углерода: sp-гибридизация.

Две sp—гибридные орбитали атома углерода перекрываются с двумя p-орбиталями атомов брома и азота (показано черными линиями). Образуются σ -связи. Красными линиями показано перекрывание негибридных p-орбиталей атома углерода с p-орбиталями атома азота (образуются π -связи)

Геометрическая форма молекулы: линейная

*Рассмотрим молекулу РbF*₂

Валентный угол F-Pb-F равен180°

Краткие электронные формулы атомов:

Pb [Xe
$$4f^{14} 5d^{10}$$
] $6s^2 6p^2$

F [He]
$$2s^2 2p^5$$

Механизм образования связей в молекуле в молекуле PbF₂:

Атом свинца находится в состоянии sp^2 -гибридизации. На гибридизацию и геометрическую форму частицы оказывает влияние одна неподеленная электронная пара. Две sp^2 -гибридные орбитали атома свинца перекрываются с двумя p-орбиталями двух атомов фтора. Образуются σ -связи.

Геометрическая структура молекулы: угловая.

Задача 217

Металл – Sn
$$\rho = 5,75 \text{ г/см}^3 = 5750 \text{ кг/м}^3$$

$$a = 6,46 \cdot 10^{-10} \text{ м}$$

Молярная масса олова:

$$M = 118,7$$
 г/моль = $118,7 \cdot 10^{-3}$ кг/моль

Число формульных единиц рассчитаем, исходя из формулы:

$$\rho = \frac{m}{V} = \frac{ZM}{a^3 \cdot N_A}$$

$$Z = \frac{\rho \cdot a^3 \cdot N_A}{M}$$

$$Z = \frac{5750 \text{кг/m}^3 \cdot (6,46 \cdot 10^{-10} \text{ m})^3 \cdot 6,022 \cdot 10^{23} \text{ моль}^{-1}}{118.7 \cdot 10^{-3} \text{ кг/моль}} = 8$$

Структурный тип кристаллической решетки: алмазоподобная, так как Z = 8.

Эффективный радиус:

$$r = \frac{a\sqrt{3}}{8}$$
$$r = \frac{6.46 \cdot 10^{-10} \,\mathrm{M} \cdot \sqrt{3}}{8} = 1.4 \cdot 10^{-10} \,\mathrm{M}$$

Ячейка:

Координационное число: К = 4

<u>Задача 318</u>

$$Br_2 + NaCrO_2 + NaOH \rightarrow NaBr + Na_2CrO_4 + H_2O$$
 $CrO_2^- + 4OH^- - 3\overline{e} \rightarrow CrO_4^- + 2H_2O \begin{vmatrix} 3 \\ 2 \end{vmatrix} \begin{vmatrix} 6 \\ 3 \end{vmatrix}$ восстановление $Br_2 + 2\overline{e} \rightarrow 2Br^- \qquad \begin{vmatrix} 2 \\ 3 \end{vmatrix} \begin{vmatrix} 6 \\ 3 \end{vmatrix}$ восстановление $3Br_2 + 2CrO_2^- + 8OH^- \rightarrow 6Br^- + 2CrO_4^- + 4H_2O$ $3Br_2 + 2NaCrO_2 + 8NaOH \rightarrow 6NaBr + 2Na_2CrO_4 + 4H_2O$ Br_2 – окислитель; $NaCrO_2$ – восстановитель