Занятие 0. Тригонометрия, векторы.

1 Основные понятия

Рассмотрим прямоугольный треугольник, по определению $\sin x$, $\cos x$, $\operatorname{tg} x$, $\operatorname{ctg} x$ вводятся как:

$$\sin x = \frac{a}{c}$$
 $\cos x = \frac{b}{c}$ $\operatorname{tg} x = \frac{a}{b}$ $\operatorname{ctg} x = \frac{b}{a}$

Для этих тригонометрических функций выполнимы следующие соотношения:

$$\sin^2 x + \cos^2 x = 1$$

$$1 + \tan^2 x = \frac{1}{\cos^2 x}$$

$$\sin 2x = 2 \sin x \cos x = \frac{2 \operatorname{tg} x}{1 + \operatorname{tg}^2 x}$$

$$\cot 2x = \frac{1}{2 \operatorname{tg} x}$$

$$\cot 2x = \frac{1}{1 + \operatorname{tg}^2 x}$$

$$\cot 2x = \frac{1}{1 - \operatorname{tg}^2 x}$$

$$\cot 2x = \frac{1}{2 \operatorname{tg} x}$$

$$\cot 2x = \frac{1}{2 \operatorname{tg} x}$$

$$\cot 2x = \frac{1}{1 - \operatorname{tg}^2 x}$$

$$\cot 2x = \frac{1}{2 \operatorname{tg} x}$$

$$\cot 2x = \frac{1 - \operatorname{tg}^2 x}{2 \operatorname{tg} x}$$

$$\cot 2x = \frac{1 - \operatorname{tg}^2 x}{2 \operatorname{tg} x}$$

$$\cot 2x = \frac{1 - \operatorname{tg}^2 x}{2 \operatorname{tg} x}$$

$$\cot 2x = \frac{1 - \operatorname{tg}^2 x}{2 \operatorname{tg} x}$$

$$\cot 2x = \frac{1 - \operatorname{tg}^2 x}{2 \operatorname{tg} x}$$

$$\cot 2x = \frac{1 - \operatorname{tg}^2 x}{2 \operatorname{tg} x}$$

$$\cot 2x = \frac{1 - \operatorname{tg}^2 x}{2 \operatorname{tg} x}$$

$$\cot 2x = \frac{1 - \operatorname{tg}^2 x}{2 \operatorname{tg} x}$$

$$\cot 2x = \frac{1 - \operatorname{tg}^2 x}{2 \operatorname{tg} x}$$

$$\cot 2x = \frac{1 - \operatorname{tg}^2 x}{2 \operatorname{tg} x}$$

Отдельно выделим тождества, называемые формулами понижения степени:

$$\sin^2 x = \frac{1 - \cos 2x}{2} \quad \cos^2 x = \frac{1 + \cos 2x}{2}$$

Внимание все формулы не обязательно учить наизусть. Многие из приведеннных выше формул выводятся одна из другой. Можете заняться этим в качестве упражнения.

2 Тригонометрический круг

Для определения табличных значений тригонометрических функций часто используют **тригонометический круг**:

Рис. 1. Тригонометрический круг. Вычисление тригонометрических функций от разных аргументов.

Нарисуем круг с радиусом R=1, отложим луч под углом x от горизонтали и посмотрим на точку пересечния A луча с окружностью (поворот на 90° соответствует углу $\pi/2$). Координаты этой точки будут равны $(\sin x, \cos x)$. Таким образом, получим:

 $\cos x$ - длина проекции отрезка OA на горизонтальную ось

 $\sin x$ - длина проекции отрезка OA на вертикальную ось

 $\operatorname{tg} x$ - координата пересечения луча OA с вертикальной касательной к окружности $\operatorname{ctg} x$ - координата пересечения луча OA с горизонтальной касательной к окружности

На рисунке показаны способы подсчета тригонометрических функций от разных углов. Разберем подсчет на примере $\alpha=\pi/4$ (смотри рис. 1). Проводим луч под углом $\pi/4$ и смотрим на пересечение луча с двумя касательными. Получаем, что $tg(\pi/2)=ctg(\pi/2)=1$. Величины синуса и косинуса ищутся как проекции соответствующего отрезка на оси.

Следующие тождество называются формулами приведения:

$$\sin\left(\frac{\pi}{2} - x\right) = \cos x$$

$$\sin\left(\frac{\pi}{2} + x\right) = -\cos x$$

$$\sin\left(\pi - x\right) = \sin x$$

$$\sin\left(\pi + x\right) = -\sin x$$

$$\cos\left(\frac{\pi}{2} - x\right) = \sin x$$

$$\cos\left(\frac{\pi}{2} + x\right) = -\sin x$$

$$\cos\left(\pi - x\right) = -\cos x$$

$$\cos\left(\pi + x\right) = -\cos x$$

3

Существует достаточно простое правило для получения этих формул с помощью тригонометрического круга:

Алгоритм получения формулы приведения:

1. Если в аргументе функции стоит $n\pi/2$, где n — нечетное число, то функция меняется на конфигурацию:

$$\sin(n\pi/2 + x) \to \pm \cos(n\pi/2 + x); \quad \cos(n\pi/2 + x) \to \pm \sin(n\pi/2 + x)$$

$$tg(n\pi/2 + x) \rightarrow \pm ctg(n\pi/2 + x); \quad ctg(n\pi/2 + x) \rightarrow \pm tg(n\pi/2 + x)$$

Если n — четное натуральное число, то функция остается той же самой:

$$\sin(n\pi/2+x) \rightarrow \pm \sin(n\pi/2+x); \quad \cos(n\pi/2+x) \rightarrow \pm \cos(n\pi/2+x)$$

$$tg(n\pi/2 + x) \rightarrow \pm tg(n\pi/2 + x); \quad ctg(n\pi/2 + x) \rightarrow \pm ctg(n\pi/2 + x)$$

2. Теперь нужно разобраться только со знаком. Рассмотрим, как это делать на примере. Пусть нужно посчитать, чему равен $\sin(15\pi/2 + x)$. Сначала вычтем из аргумента $2\pi n$ так, чтобы $(15\pi/2 - 2\pi n) \in [0, 2\pi]$. При этом:

$$\sin(15\pi/2 + x) = \sin(\pi/2 + x) = \pm \cos x \tag{1}$$

Теперь предположим, что $0 \le x \le \pi/2$, тогда $\cos x > 0; \sin(\pi/2 + x) > 0$. Получаем, что в (1) слева и справа положительные числа. То есть выбираем знак «+».

3. Other: $\sin(15\pi/2 + x) = \cos x$

Рис. 2. Знаки тригонометрических функций в зависимости от аргумента.