第二篇 自己动手,给FlagPerf添加一个测试

case

书接前回,我们在这里《<u>自己动手,给FlagPerf添加一款AI框架</u>》介绍了如何给FlagPerf添加一款AI框架。这次呢,我们给各位喜欢自己动手的小伙伴们准备了开发教程。欢迎大家一起给FlagPerf添砖加瓦!

1. FlagPerf架构和代码结构简介

在动手之前,咱们先一起看看FlagPerf的整体架构,以便了解工作内容。FlagPerf目前是这样子的:

最右侧是自动化测试工具,包括了整个benchmark任务生命周期管理,包括每个测试任务的容器环境准备、任务启动、任务运行过程中系统信息的收集、等待任务结束后的日志收集等等。咱们添加一个新测试case时,在这部分主要包括模型定义和训练相关逻辑即可。其余部分皆有通用的模块支持实现。

左侧上面的蓝色框内是标准化的benchmark测试集。包括标准化的模型训练benchmark case实现,和多个框架的支持。这里也涉及到AI框架的添加,主要在通用的benchmark driver中实现AI框架的driver支持。同样的,训练中打印日志、注册和处理Event等已有通用的模块处理,用户完全不用操心。如果你觉得哪里能做得更完善,也可以一并修改了提PR哦~

左侧绿色的"异构芯片模型适配优化层"是异构芯片厂商需要适配的啦,咱们这里可以不考虑。

这里的标准case(以下简称case)是指**模型+AI框架**的一个组合。那么,咱们要添加一个case,具体要做什么呢?咱们先看这张FlagPerf目录结构图,下载代码后,在training目录下执行tree -L 3命令就可以看到(这里只列出咱们关心的哈):

石宏游8447	├── README.md # 模型re	adme					
	pytorch #GLM-pytor	ch case					
石旅游 8441	nvidia # nvidia机器上的ca	se运行配置					
	bert-paddle						
_ nt 9.A41	Config						
石流地	cpm-pytorch						
	config # 建议包括1x	1,1x2,1x4,1	x8,2x8的面	置,下同			
石流路8441	environment_va	ıriables.sh #a	容器内设置	环境变量的	 的脚本。如	口有需要,	请添加。
	requirements.tx	t # case所依束	负的包				
石宏皓844	extern extern						
	docker_image #构建容	器镜像所需文	7 件,每个标	匡架一个目	录		
工 未施 8AA	—— paddle						
	—— pytorch						
	tensorflow1						
石流路8441	tensorflow2						
	glm-pytorch						
石宏皓8441	config						
	extern						
石 宏皓 8A4	—— nvidia_monitor.py # nv	idia机器的监	控项采集程	序			
	– requirements.txt # FlagPer	f依赖包					
	 run_benchmarks #启动训	练任务的主体	工程序所在 路	各径。			
石流路	config # 启动训练任务的	 内配置目录					
	├── cluster_conf.py # 集	群配置:节点	(的ip列表和	Issh端口			
石流路8441	test_conf.py # case	·配置: FlagP	erf的部署路	格径和运行	的cases机	艮据测试需	需要修改
	paddle # 每个框架一个E	」 目录,里面有/	启动对应框	架任务的關	却本		
start_	_ <framework>_task.py,下同</framework>	石旅縣8441					
	start_paddle_task.p	ру					
万流路844	—— prepare_in_container.p	y # 启动训练	任务前初始	化容器环境	竟		
	—— pytorch						
	start_pytorch_task.	ру					
石波路 8441	—— run.py # 启动和管理任约	号的入口程序					

石庞皓844	tensorflow2	
	start_tensorflow2_task.p	у
wt 9AA1	- utils #测试任务管理的工具模块	

以上,涉及新增case的部分,主要是以下几个部分

• 构建case业务逻辑: 这里主要包括模型、训练逻辑、训练入口程序run_pretraining.py

• 添加case配置: 这里包括case基本配置和nvidia适配的配置

• 调试验证case:运行测试并修改case,直到达标

• 添加相关文档:模型和case readme

那么接下来,咱们就以添加resnet50-pytorch的case为例,讲讲具体怎么做。其中,对容器环境的准备,基于nvidia的GPU环境完成,已经在上篇文章《<u>自己动手,给FlagPerf添加一款Al框架</u>》中有过介绍,在此不再赘述。

2. 自己动手,新增case

2.1 构建case业务逻辑

1. 实现模型训练主体逻辑

在training/benchmarks下添加<model>/<framework>子目录,pytroch和paddle的标准case可参考下面的目录结构组织代码:

石石油3441	- config	#【必	选】c	ase基本的	配置目录		
	- dataload	lers #	定义da	ataset和o	dataload	er _{石泥湖 8441}	
石流游8441	- model	# 定义	く模型				
	- optimize	ers #5	定义优	化器, fp1	6_optim	izer,loss_sc	aler等
	readme.	md #	【必选	t] case	文档		
	run_pretocs/run_p		0.,			下入口脚本, 反	可以使用
石宏郎 0443	-schedule	ers # ភ	定义LR	schedul	er _{石泥湖 84} 41		
	train #ភ	官义训练	练主要:	逻辑.traii	ner, evalı	uator, traini	ing_state等

其它框架如tensorflow2等的参考目录结构待有待后续补充。

2. 实现训练入口程序

建议复制docs/dev/run_pretraining.py.example作为
training/benchmarks/<model>/<framework>/run_pretraining.py脚本,根据该脚本中的标记TODO
的位置进行修改,串接整个训练pipeline,是不是很方便~

2.2 添加配置文件

涉及标准Case实现的配置有2个:基本配置和 nvidia适配的配置。

基本配置是模型训练及运行环境相关的配置参数,nvidia适配的配置是指标准Case运行在Nvidia GPU环境的配置参数。后者在运行时会覆盖标准Case的基础配置参数。

由于FlagPerf的一些代码设定,对配置文件路径和内容有一定要求。

a) case基本配置

i)标准Case基本配置

路径: <model>-<framework>/config/_base.py。定义模型训练相关的所有参数,及case运行环境需要的基本参数。模型名称、模型结构、数据集、checkpoint、超参数、分布式参数等。

配置项说明如下

必选参数:

- vendor,值为"nvidia"即可,会在运行FlagPerf时被配置在test_conf里的vendor值覆盖。
- data_dir,值为"/home/datasets"即可,会在运行FlagPerf时被配置在test_conf中对应case配置项data_dir_container覆盖

可选参数:

- train_data: 训练数据路径,填写相对data_dir的路径
- eval_data:评估数据路径,填写相对data_dir的路径
- init_checkpoint: 初始化模型checkpoint,填写相对data_dir的路径

其它模型训练相关参数,例如初始learning rate等,可参考docs/dev/standard-case-config-base.py.example

ii)可改写配置项

路径: <model>-<framework>/config/mutable_params.py。定义厂商(含nvidia)可覆盖的_base 中参数列表。主要是和vendor和运行环境相关的配置项,定义为mutable_params数组。

厂商可以在training/<vendor>/<model>-<framework>/config/config_xxxxx.py中,重新定义参数值,从而实现对于case的基本配置_base.py配置参数的覆盖。 例如: mutable_params = ['vendor',

'local_rank', 'train_batch_size'], 其中vendor为必选项。

b) nvidia适配的配置

在Nvidia GPU上运行所需的配置文件放在training/nvidia/<model>-<framework>/config目录下,可以看作是nvidia适配标准Case的配置项,由于训练规模和训练方法不同,可以给出多个配置文件。

建议包含: 1x1, 1x2, 1x4, 1x8, 2x8的配置。

在FlagPerf运行时,会根据test_conf里的case配置项选择加载哪个配置文件。配置文件命名规范为:config_<machine_model>X<nnodes>X<nproc>.py。例如单机4卡的A100环境运行,使用config_A100x1x4.py,这里主要放置是厂商适配case时可覆盖的参数,一般定义在自己设备上跑该case最优的配置。

此外,如果该标准Case在预先构建的nvidia镜像中无法直接运行,需要一定的环境配置和依赖包安装,请添加environment_variables.sh和requirements.txt。

2.3 测试验证case

3.1 修改测试的配置

仅仅需要修改两个配置文件,位于training/run_benchmarks/config路径下,就可以跑起来一个测试case了。

cluster_conf.py 中修改HOSTS为实际运行FlagPerf的节点的IP,SSH_PORT设置为实际的ssh端口,一般可以使用默认值22,无需修改。

test_conf.py中一般需要修改两处。

FLAGPERF_PATH_HOST: 改为FlagPerf在主机上的部署路径

CASES: 设置为希望测试的case列表。

备注:如果该模型的配合不存在,则需要添加。只需要执行utils/gen_dummy_benchmark.py脚本,给出厂商、框架名、配置模块名和数据目录几个参数,即可生成一个空的模型case配置。具体参见上一篇文章《自己动手,给FlagPerf添加一款AI框架》中的第3节。

3.2 启动测试

一条命令即可启动一组测试,在修改好配置的服务器上,进入training目录,运行如下命令 python3 ./run_benchmarks/run.py

可看到测试执行过程,为了防止断网等情况,推荐使用nohup python3 ./run_benchmarks/run.py & 来启动测试

观察日志输出,看看是否达到测试达标要求。如不达标,修改case,直到满足测试达标要求。测试达标要求参考《标准case规范》的 3.6节。

2.4 添加相关文档

模型README文档(首次添加该模型的case时,需要填写)及 case README文档 符合文档模版要求。 文档模版请参考:模型readme模版和case readme模版。

经过以上四个步骤,恭喜你,成功的完成了一个标准case的添加流程。赶快给FlagPerf项目提交PR吧,感谢您为FlagPerf项目做出的贡献!