2015年-2016 学年度第一学期 华中科技大学本科生课程考试试卷(A 卷)

课程名	称: _ 运	筹学(一)	果程类别	□公共 ■ 专业		式形式	<u>□开卷</u> ■闭卷	
所在院	系:自	动化学院	专业	及班级:_		考试	日期: <u>20</u>)15. 11. 20	
学	<u></u>		姓名	:		任课教师	:		
题号		<u> </u>	===	四	五.	六	七	总分	
分数									

得分	评卷人

一、(10 分) 某工厂每月生产 A、B、C 三种产品,单件 产品的原材料消耗量、设备台时的消耗量、资源限量及单 一 件产品利润如下图所示:

产品资源	A	В	С	资源限量
材料 (kg)	1.5	1.2	4	2500
设备(台时)	3	1.6	1.2	1400
利润(元/件)	10	14	12	

根据市场需求,预测三种产品最低月需求量分别是 150、260、120,最高需求量是 250、310、130,试建立该问题数学模型,使每月利润最大。请分别回答下列问题:

- (1) 求使该厂每月利润最大的生产计划数学模型;
- (2) 将此数学模型化为标准型。

解: (1) 设每月生产 A、B、C 产品的数量分别为 x_1, x_2, x_3 ,则每月利润最大的生产计划数学模型为

Max
$$z = 10x_1 + 14x_2 + 12x_3$$

s.t. $1.5x_1 + 1.2x_2 + 4x_3 \le 2500$
 $3x_1 + 1.6x_2 + 1.2x_3 \le 1400$
 $150 \le x_1 \le 250$
 $260 \le x_2 \le 310$
 $120 \le x_3 \le 130$
 $x_1, x_2, x_3 \ge 0$

(2) 引入松弛变量 $x_4, x_5, ..., x_{11}$, 化为标准型为:

Max
$$z = 10x_1 + 14x_2 + 12x_3$$

s.t. $1.5x_1 + 1.2x_2 + 4x_3 + x_4 = 2500$
 $3x_1 + 1.6x_2 + 1.2x_3 + x_5 = 1400$
 $x_1 - x_6 = 150$
 $x_1 + x_7 = 250$
 $x_2 - x_8 = 260$
 $x_2 + x_9 = 310$
 $x_3 - x_{10} = 120$
 $x_3 + x_{11} = 130$
 $x_1, x_2, \dots, x_{11} \ge 0$

得分	评卷人

二、(25分)用单纯形法求解线性规划问题

Max
$$z = -3x_1 + x_3$$

s.t. $x_1 + x_2 + x_3 \le 6$
 $-2x_1 + x_2 - x_3 \ge 1$
 $3x_2 + x_3 = 9$
 $x_1 \ge 0, x_2 \ge 0, x_3 \ge 0$

解:引入松弛变量 x_4, x_5 ,化成标准形式为

Max
$$z = -3x_1 + x_3$$

s.t. $x_1 + x_2 + x_3 + x_4 = 6$
 $-2x_1 + x_2 - x_3 - x_5 = 1$
 $3x_2 + x_3 = 9$
 $x_1, x_2, \dots, x_5 \ge 0$

引入人工变量 x_6, x_7 化为

Max
$$z = -3x_1 + x_3 - Mx_6 - Mx_7$$

s.t. $x_1 + x_2 + x_3 + x_4 = 6$
 $-2x_1 + x_2 - x_3 - x_5 + x_6 = 1$
 $3x_2 + x_3 + x_7 = 9$
 $x_1, x_2, \dots, x_7 \ge 0$

列出初始单纯形表为:

	C_{j}		-3	0	1	0	0	-M	-M	heta
C_{B}	$X_{\scriptscriptstyle B}$	b	x_1	x_2	x_3	x_4	x_5	x_6	x_7	O
0	x_4	6	1	1	1	1	0	0	0	6
-M	x_6	1	-2	[1]	-1	0	-1	1	0	1
-M	x_7	9	0	3	1	0	0	0	1	3
_	-Z	10M	-2M-3	4M	1	0	-M	0	0	

取 x_2 为换入变量, x_6 为换出变量,第一次迭代为:

	C_{j}		-3	0	1	0	0	-M	-M	
C_B	$X_{\scriptscriptstyle B}$	b	x_1	x_2	<i>x</i> ₃	x_4	x_5	x_6	x_7	θ
0	x_4	5	3	0	2	1	1	-1	0	5/3

0	x_2	1	<mark>-2</mark>	1	-1	0	-1	1	0	-
-M	x_7	<mark>6</mark>	<mark>[6]</mark>	0	4	0	3	-3	1	1
-2	Z	6M	6M-3	0	4M+1	0	3M	-4M	0	

取 x_1 为换入变量, x_7 为换出变量,第二次迭代为:

	C_{j}		-3	0	1	0	0	-M	-M	0
$C_{\scriptscriptstyle B}$	$X_{\scriptscriptstyle B}$	b	x_1	x_2	x_3	x_4	x_5	x_6	x_7	θ
0	x_4	2	0	0	0	1	-1/2	1/2	-1/2	-
0	x_2	3	0	1	1/3	0	0	0	1/3	9
-3	x_1	1	1	0	[2/3]	0	1/2	-1/2	1/6	3/2
-	Z	3	0	0	3	0	3/2	-M-3/2	-M+1/2	

取 x_3 为换入变量, x_1 为换出变量,第三次迭代为:

	C_{j}		-3	0	1	0	0	-M	-M	θ
$C_{\scriptscriptstyle B}$	$X_{\scriptscriptstyle B}$	b	x_1	x_2	x_3	X_4	x_5	x_6	x_7	Ø
0	x_4	2	0	0	0	1	-1/2	1/2	-1/2	
0	x_2	5/2	-1/2	1	0	0	-1/4	1/4	1/4	
1	x_3	3/2	3/2	0	1	0	3/4	-3/4	1/4	
_	Z	-3/2	-9/2	0	0	0	-3/4	-M+3/4	-M-1/4	

所有的检验数都非正,最优解为 $x^* = (0.5/2, 3/2, 2, 0, 0, 0)$,最优值 $z^* = 3/2$ 。

得分 评卷人

三、(10分)写出下述线性规划的对偶问题

Max
$$z = x_1 + 4x_2 + 3x_3$$

s.t. $2x_1 + 3x_2 - 5x_3 \le 2$
 $3x_1 - x_2 + 6x_3 \ge 1$
 $x_1 + x_2 + x_3 = 4$
 $x_1 \ge 0, x_2 \le 0, x_3$ 无约束

解:

Min
$$w = 2y_1 + y_2 + 4y_3$$

s.t. $2y_1 + 3y_2 + y_3 \ge 1$
 $3y_1 - y_2 + y_3 \le 4$
 $-5y_1 + 6y_2 + y_3 = 3$
 $y_1 \ge 0, y_2 \le 0, y_3$ 无约束

得分 评卷人

四 (15)、对于下列线性规划问题,设基变量 x_2 的系数 c_2

变化 Δc ,,在原最优解不变的条件下,确定c,的变化范

围。

$$\max z = 2x_1 + 3x_2$$

$$s.t.\begin{cases} x_1 + 2x_2 \le 8\\ 4x_1 \le 16\\ 4x_2 \le 12\\ x_1, x_2 \ge 0 \end{cases}$$

该线性规划的最优解时的单纯型表为:

	$c_j \rightarrow$		$c_j \rightarrow$		2	3	0	0	0
$C_{_B}$	$X_{\scriptscriptstyle B}$	b	x_1	x_2	x_3	X_4	x_5		
2	x_1	4	1	0	0	1/4	0		
0	<i>x</i> ₅	4	0	0	-2	1/2	1		

3	x_2	2	0	1	1/2	-1/8	0
	$c_j - z_j$		0	0	-3/2	-1/8	0

解:

由于 x_2 是基变量,因此,所有非基变量的检验数都有可能改变,由所有非基变量的检验数非负的要求,可得到:

$$\max_{j} \left\{ \sigma_{j} / \overline{a}_{rj} \left| \overline{a}_{rj} > 0 \right\} \le \triangle c_{2} \le \min_{j} \left\{ \sigma_{j} / \overline{a}_{rj} \left| \overline{a}_{rj} < 0 \right\} \right\}$$

即:

$$\frac{-3/2}{1/2} \le \triangle c_2 \le \frac{-1/8}{-1/8}$$
, $-3 \le \triangle c_2 \le 1$

可以得到 c_2 的变化范围: $0 \le c_2 \le 4$

得分	评卷人

试证明如下弱对偶性定理: 若 \bar{X} 是原问题的可行解, \bar{Y} 是对偶问题的可行解,则存在 $C\bar{X} \leq \bar{Y}b$ 。

由于 \bar{X} 是原问题的可行解,则应该满足约束条件,即: $A\bar{X} \leq b$ 。若 \bar{Y} 是对偶问题的可行解,则 $\bar{Y} \geq 0$,将 \bar{Y} 乘以上述不等式,可得到: $\bar{Y}A\bar{X} \leq \bar{Y}b$ 。

若 \overline{Y} 是对偶问题的可行解, \overline{Y} 应满足约束方程,即: $\overline{Y}A \geq C$,该式两端同时乘以 \overline{X} ,可以得到: $\overline{Y}A\overline{X} \geq C\overline{X}$,于是又: $C\overline{X} \leq \overline{Y}A\overline{X} \leq \overline{Y}b$,证毕。

得分	评卷人

六(25分)、求如下产销平衡表中运输问题的最 优解与最优值。

产地销地	甲	乙	丙	丁	产量
1	2	9	10	7	9
2	1	3	4	2	5
3	8	4	2	5	7
销量	3	8	4	6	

解:利用 vogel 方法产生初始解

产地销地	甲	乙	丙	丁	行差
1	2	9	10	7	[5]
2	1	3	4	2	1
3	8	4	2	5	2
列差	1	1	2	3	

第一步分配:

产地销地	甲	乙	丙	丁	产量
1	3				9

2					5
3					7
销量	3	8	4	6	

产地销地	甲	乙	丙	1	行差
1	2	9	10	7	2
2	1	3	4	2	1
3	8	4	2	5	2
列差		1	2	[3]	

第二步分配:

产地销地	甲	乙	丙	丁	产量
1	3				9
2				5	5
3					7
销量	3	8	4	6	

产地销地	F	乙	丙	丁	行差
1	2	9	10	7	2
2	1	3	4	2	
3	8	4	2	5	2
列差		5	[8]	2	

第三步分配:

产地销地	甲	乙	丙	丁	产量
1	3				9
2				5	5
3			4		7
销量	3	8	4	6	

产地销地	甲	乙	内	丁	行差
1	2	9	10	7	2
2	1	3	4	2	
3	8	4	2	5	1
列差		[5]		2	_

第四步分配:

产地销地	甲	Z	丙	丁	产量
1	3				9
2				5	5
3		3	4		7
销量	3	8	4	6	

产地销地	B_1	B_2	B_3	B_4	行差
1	2	9	10	7	2
2	1	3	4	2	
-3		4	2	5	
列差		9		7	

初解:

产地销地	B_1	B_2	B_3	B_4	产量
1	3	5		1	9
2				5	5
3		3	4		7
销量	3	8	4	6	

位势法判断最优解:

产地销地	B_1	B_2	B_3	B_4	u_i
1	2	9	3 <u>10</u>	7	0
2	4 1	-1 3	2 4	2	-5
3	118	4	2	5	-5
v_{j}	2	9	7	7	

位势法判断最优解:有一空格检验数小于0,所以该解进行调整。

产地销地	B_1	B_2	B_3	B_4	产量
1	3	(-1) 5		(+1)1	4
2		(+1)		(+1)5	9
3		3	4		4
销量	5	2	4	6	

调整量为5,调整后为:

产地销地	B_1	B_2	B_3	B_4	产量
1	3			6	9
2		5		0	5
3		3	4		7
销量	3	8	4	6	

调整后检验:

产地销地	B_1	B_2	B_3	B_4	u_{i}
1	2	1 9	4 10	7	0
2	4 1	3	3[4	2	-5
3	10 8	4	2	2 5	-4
v_j	2	8	6	7	

检验数都为正, 所以为最优解。

最优解为: $a_{11} = 3, a_{14} = 6, a_{22} = 5, a_{24} = 0, a_{32} = 3, a_{33} = 4$

运费为: z=3*2+6*7+5*3+0*2+3*4+4*2=83

2016年-2017 学年度第一学期 华中科技大学本科生课程考试试卷(A 卷)

课程名称:	运筹:	学(一)	课程	是类别	□公共课 ■专业课	考试形	形式 □	<u>]开卷</u> Ⅰ闭卷
所在院系:		加化学院	专业及	处班级: _		垮试日期:	2016. 1	1. 26
学 号:			姓名:		任	课教师:		
题号	—	1 1	111	四	五	六	总分	
分数								

得分 评卷人 一、(15 分)某公司生产的产品 A, B, C 和 D 都要经过下列工序: 刨、立铣、钻孔和装配。已知每单位产品所需工时及本月四道工序可用生产时间如下表所示:

工序	刨	立铣	钻孔	装配
产品				
A	2	2	2	3
В	1	1	2	1
C	1	1	1	2
D	2	1	1	3
可用生产时间	1800	2800	3000	6000
(小时)				

又知四种产品对利润贡献及本月最少销售需要单位如下:

产品	最少需要量	利润:元/单位
A	100	2
В	600	3
C	500	1
D	400	4

问该公司该如何安排生产使利润收入为最大? (只需建立模型)请分别回答下列问题:

- (1) 该公司应如何安排生产使利润最大? (只需建立模型)
- (2) 将此数学模型化为标准型。

解:(1)设生产四种产品分别 x_1, x_2, x_3, x_4 单位,则使利润最大的生产计划 数学模型为

Max
$$2x_1 + 3x_2 + x_3 + 4x_4$$

s.t. $2x_1 + x_2 + x_3 + 2x_4 \le 1800$
 $2x_1 + x_2 + x_3 + x_4 \le 2800$
 $2x_1 + 2x_2 + x_3 + x_4 \le 3000$
 $3x_1 + x_2 + 2x_3 + 3x_4 \le 6000$
 $x_1 \ge 100$
 $x_2 \ge 600$
 $x_3 \ge 500$
 $x_4 \ge 400$

(2) 引入松弛变量 $x_5, x_6, ..., x_1$, 化为标准型为:

Max
$$2x_1 + 3x_2 + x_3 + 4x_4$$

s.t. $2x_1 + x_2 + x_3 + 2x_4 + x_5 = 1800$
 $2x_1 + x_2 + x_3 + x_4 + x_6 = 2800$
 $2x_1 + 2x_2 + x_3 + x_4 + x_7 = 3000$
 $3x_1 + x_2 + 2x_3 + 3x_4 + x_8 = 6000$
 $x_1 - x_9 = 100$
 $x_2 - x_{10} = 600$
 $x_3 - x_{11} = 500$
 $x_4 - x_{12} = 400$
 $x_1, x_2, \dots, x_{12} \ge 0$

二、(20 分) 用大 M 法求解线性规划问题

Max
$$z = 2x_1 - x_2 - 2x_3$$

s.t. $x_1 + 2x_2 + x_3 \le 4$
 $2x_1 - x_2 + x_3 \ge 1$
 $2x_1 + x_3 = 4$
 $x_1 \ge 0, x_2 \ge 0, x_3 \ge 0$

解:引入松弛变量 x_4, x_5 ,化成标准形式为

Max
$$z = 2x_1 - x_2 - 2x_3$$

s.t. $x_1 + 2x_2 + x_3 + x_4 = 4$
 $2x_1 - x_2 + x_3 - x_5 = 1$
 $2x_1 + x_3 = 4$
 $x_1, x_2, \dots, x_5 \ge 0$

引入人工变量 x_6, x_7 化为

Max
$$z = 2x_1 - x_2 - 2x_3 - Mx_6 - Mx_7$$

s.t. $x_1 + 2x_2 + x_3 + x_4 = 4$
 $2x_1 - x_2 + x_3 - x_5 + x_6 = 1$
 $2x_1 + x_3 + x_7 = 4$
 $x_1, x_2, \dots, x_7 \ge 0$

列出初始单纯形表为:

	C_{j}		2	-1	-2	0	0	-M	-M	θ
C_{B}	$X_{\scriptscriptstyle B}$	b	x_1	x_2	x_3	x_4	x_5	x_6	x_7	θ
0	x_4	4	1	2	1	1	0	0	0	4
-M	x_6	1	[2]	-1	1	0	-1	1	0	1
-M	x_7	4	2	0	1	0	0	0	1	4
_	-Z	5M	2+4M	-1-M	-2+2M	0	-M	0	0	

取 x_1 为换入变量, x_6 为换出变量,第一次迭代为:

	C_{j}		2	-1	-2	0	0	-M	-M	θ
$C_{\scriptscriptstyle B}$	$X_{\scriptscriptstyle B}$	b	x_1	x_2	x_3	x_4	x_5	x_6	x_7	Ø
0	x_4	<mark>7/2</mark>	0	5/2	1/2	1	1/2	-1/2	0	7
2	x_1	1/2	1	-1/2	1/2	0	-1/2	1/2	0	-
-M	x_7	3	0	1	0	0	[1]	-1	1	3
_	Z	3M-1	0	M	-3	0	1+M	-2M-1	0	

取 x_5 为换入变量, x_7 为换出变量,第二次迭代为:

	C_{j}		2	-1	-2	0	0	-M	-M	θ
C_{B}	$X_{\scriptscriptstyle B}$	b	x_1	x_2	x_3	x_4	x_5	x_6	x_7	θ
0	x_4	2	0	2	1/2	1	0	0	-1/2	
2	x_1	2	1	0	1/2	0	0	0	1/2	
0	x_5	3	0	1	0	0	1	-1	1	
-:	Z	-4	0	-1	-3	0	0	-M	-M-1	

所有的检验数都非正,最优解为 $x^* = (2,0,0,2,3,0,0)$,最优值 $z^* = 4$ 。

得分	评卷人

三、(15 分)下表中给出某一求极大化问题的单纯形表,请问表中 a_1, a_2, c_1, c_2, d 为何值时以及表中变量属于

哪一种类型时有:

- a) 表中解为唯一最优解;
- b) 表中解为无穷多最优解之一;
- c) 下一步迭代将以 x_1 替换基变量 x_5 ;
- d) 该线性规划问题具有无界解;

		x_1	x_2	x_3	X_4	x_5
x_3	d	4	a ₁	1	0	0
x_4	2	-1	-5	0	1	0
x_5	3	a_2	-3	0	0	1
$c_j - z_j$		c_1	c ₂	0	0	0

答:

- a) 表中解为唯一最优解: $d \ge 0, c_1 < 0, c_2 < 0$:
- b) 表中解为无穷多最优解之一: $d \ge 0, c_1 \le 0, c_2 \le 0, c_1 * c_2 = 0$;
- c) 下一步迭代将以 x_1 替换基变量 x_5 : $d \ge 0, c_1 > 0, a_2 > 0, \frac{3}{a_2} < \frac{d}{4}$
- d) 该线性规划问题具有无界解: $d \ge 0, c_2 > 0, a_1 \le 0$;

得分	评卷人

四、(10 分)已知线性规划的最优解为 x*=(0,0,4,4) ¹。试利用互补松弛定理求对偶问题最优解。

$$\max z = x_1 + 2x_2 + 3x_3 + 4x_4$$

$$\begin{cases} x_1 + 2x_2 + 2x_3 + 3x_4 \le 20 & (1a) \\ 2x_1 + x_2 + 3x_3 + 2x_4 \le 20 & (1b) \\ x_1 - x_2 + x_3 - x_4 \le 1 & (1c) \\ x_1, x_2, x_3, x_4 \ge 0 & (1b) \end{cases}$$

解:对偶问题为:

由于 $x_3*=x_4*=4>0$,是松约束,故(2c)与(2d)是紧约束,即对 Y*成立等式:

$$\begin{cases} 2y_1^* + 3y_2^* + y_3^* = 3 \\ 3y_1^* + 2y_2^* - y_3^* = 4 \end{cases}$$

把 x*代入原问题三个约束中,可知(1c)是松的,故 y_3 *=0,然后解方程组:

$$\begin{cases} 2y_1^* + 3y_2^* = 3\\ 3y_1^* + 2y_2^* = 4 \end{cases}$$
得到:
$$\begin{cases} y_1^* = \frac{6}{5}\\ y_2^* = \frac{1}{5} \end{cases}$$

故对偶最优解为: Y*=(6/5, 1/5, 0), z*=w*=28

得分	评卷人

五、(20分)某厂生产三种产品受到两种原材料的限制。 为求最大利润,求得最终单纯形表如下表所示。其中 *x*₄, *x*₅为松驰变量。

- (1) 利用最终单纯形表求各产品的单位销售价格 c_1 , c_2 , c_3 。
- (2) c3增加到多少,仍能使现行计划保持最优。
- (3) 计算这两种原料的影子价格,如果能以每单位 2 元的价格在市场上购入更多的原料 6,是否合算?又若 6的价格为 5 元呢?

C_{j}		c_1	c_2	c_3	0	0	
$C_{\scriptscriptstyle B}$	$X_{\scriptscriptstyle B}$	b	x_1	x_2	x_3	\mathcal{X}_4	x_5
c_1	x_1	1	1	0	1	3	-1
c_2	x_2	2	0	1	1	-1	2
-	Z	8	0	0	-4	-3	-4

解(1)利用最终单纯形表 x_4 , x_5 的检验数,

0-3 $c_1+c_2=-3$ 及 $0+c_1-2$ $c_2=-4$ 解得, $c_1=2$, $c_2=3$ 。 利用最终单纯形表 x_3 的检验数 $\sigma_3=c_3-c_1-c_2=-4$, $c_3=1$ 。

- (2) c_3 为非基变量的目标函数系数,则 c_3 的改变只是影响 x_3 的检验数, $\sigma_3 = c_3 c_1 c_2 = c_3 5 \le 0$, $c_3 \le 5$ 仍能使现行计划保持最优。
- (3) 两种原料影子价格分别为 3 和 4。若 b_2 的市场价格为 2,合算;为 5,则不合算。

得分	评卷人

六、(20分)已知某种产品有产地 I, II, III, 其每月产量分别为 50吨、100吨、150吨, 将其销往 A, B, C, D, E

五个产地,其每月需要的销量分别为 25 吨、115 吨、60 吨、30 吨、70 吨。其产销平衡表与单位运价表如下表所示。

销地产地	A	В	С	D	Е	产量
I	10	15	22	20	40	50
II	24	40	18	33	28	100
III	30	35	37	38	25	150
销量	25	115	60	30	70	

求:

- (1) 试用最小元素法确定初始调拨方案:
- (2) 求最优调拨方案。

解:用最小元素法确定初始解。

(1) 用最小元素法确定初始解为:

销地	A	В	С	D	Е
产地					
I	25	25			
II		10	60	30	
III		80			70

(2) 方法一: 用位势法对最小元素法求得的初始解判断是否为最优解,

销地产地	A	В	С	D	Е	u_{i}
I	10	15	22 29	20 12	40 35	0
II	24 -9	40	18	33	28 <mark>-2</mark>	25
III	30 <mark>0</mark>	35	37 <mark>24</mark>	38 10	25	20
v_{i}	10	15	-7	8	5	

有检验数为负数,需要调整:

销地产地	A	В	С	D	Е
I	25 (-1)	⁻ 25 (+1)			
II	+1	10 (-1)	60	30	
III		80			70

调整为:

销地	A	В	С	D	Е
产地					
I	15	35			
II	10		60	30	
III		80			70

用位势法计算检验数

销地	A	В	С	D	Е	u_{i}
产地						·
I	10	15	22 18	20 1	40 35	0
II	24	40 11	18	33	28 <mark>9</mark>	14
III	30 <mark>0</mark>	35	37 13	38 -1	25	20
v_{i}	10	15	4	19	5	

还有检验数为负数,再进行一次调整,得到最优解。

销地	A	В	С	D	Е
产地					
I		50			
II	25		60	15	
III		65		15	70

(3) 方法二:可以用 vogel 法直接求出初始解,并经检验为最优解。

销地	A	В	С	D	Е
产地					
Ι		50			
II	25		60	15	
III		65		15	70

(4) 最优的运费为:

$$z = 50*15 + 25*24 + 60*18 + 33*15 + 65*35 + 15*38 + 25*70$$
$$= 7520$$

2017年-2018 学年度第一学期 华中科技大学本科生课程考试试卷(A 卷)

课程名	称:_	运筹学(一)	课程类别	□公共课 ■专业课	考试形式	<u>□开卷</u> ■闭卷
所在院	孫:_	自动化学院	专业及班级:		试日期: <u></u>	2017. 11. 18
学	号:		姓名:	任课	· 教师:	

题号	1	11	111	四	五	六	总分
分数							

得分	-	评卷人	— ,	(20分)		解如卜线性规划问题
						$x z = 2x_1 + x_2 + 3x_3$
			I			$\begin{cases} x_1 + x_2 + x_3 \le 7 \end{cases}$
					a +	$2x_1 - 3x_2 + 5x_3 \le 8$
					S.l. <	$\begin{cases} x_1 + x_2 + x_3 \le 7 \\ 2x_1 - 3x_2 + 5x_3 \le 8 \\ x_1 - 2x_3 \ge 1 \end{cases}$
						$x_1, x_2, x_3 \ge 0$

解:将模型化为如下:

 $\max z = 2x_1 + x_2 + 3x_3$

$$\max z = 2x_1 + x_2 + 3x_3$$

$$s.t.\begin{cases} x_1 + x_2 + x_3 + x_4 & = 7 \\ 2x_1 - 3x_2 + 5x_3 + x_5 & = 8 \\ x_1 - 2x_3 - x_6 + x_7 & = 1 \end{cases}$$

$$x_i \ge 0, \quad i = 1, 2, \dots, 8$$

列出初始单纯形表

			2	1	3	0	0	0	-M	
		b	x_1	x_2	x_3	x_4	x_5	x_6	x_7	θ
0	X_4	7	1	1	1	1	0	0	0	7
0	X_5	8	2	-3	5	0	1	0	0	4
-M	x_7	1	[1]	0	-2	0	0	-1	1	1
	$c_j - z_j$		<mark>2+M</mark>	1	3-2M	0	0	-M	0	

选择 x_1 为换入变量, x_7 为换出变量,进行迭代得到:

			2	1	3	0	0	0	-M	
		b	x_1	x_2	x_3	x_4	x_5	x_6	x_7	θ
0	X_4	6	0	1	3	1	0	1	-1	2
0	x_5	6	0	-3	[9]	0	1	2	-2	6/9
2	x_1	1	1	0	-2	0	0	-1	1	
	$c_j - z_j$		0	1	<mark>7</mark>	0	0	2	-M-2	

选择 x_3 为换入变量, x_5 为换出变量,进行迭代得到:

			2	1	3	0	0	0	-M	
		b	x_1	x_2	x_3	x_4	x_5	x_6	x_7	θ
0	x_4	4	0	[2]	0	1	-1/3	1/3	-1/3	
3	x_3	2/3	0	-1/3	1	0	1/9	2/9	-2/9	
2	x_1	7/3	1	-2/3	0	0	2/9	-5/9	5/9	

$c_i - z_i$	0	10/3	0	0	-7/9	4/9	-M-4/9	

选择 x_2 为换入变量, x_4 为换出变量,进行迭代得到:

			2	1	3	0	0	0	-M	
		b	x_1	x_2	x_3	x_4	x_5	x_6	x_7	θ
1	x_2	2	0	1	0	1/2	-1/6	1/6	-1/6	
3	x_3	4/3	0	0	1	1/6	1/18	5/18	-5/18	
2	x_1	11/3	1	0	0	1/3	1/9	-4/9	4/9	
	$c_j - z_j$		0	0	0	-5/3	-2/9	-5/9	-M+5/9	

所有检验数都为复数,得到最优解为: $x_1 = 11/3$, $x_2 = 2$, $x_3 = 4/3$

最优值为: z = 40/3

得分	评卷人

二、(15分)已知线性规划问题如下:

$$\max z = x_1 + 3x_2$$
s.t.
$$\begin{cases} 5x_1 + 10x_2 \le 50 \\ x_1 + x_2 \ge 1 \\ x_2 \le 4 \\ x_1 \ge 0, x_2 \ge 0 \end{cases}$$

已知该问题的最优解为(2,4),利用对偶性质写出对偶问题的最优解。

解:该问题的对偶问题为:

min
$$w = 50y_1 + y_2 + 4y_3$$

s.t.
$$\begin{cases} 5y_1 + y_2 \ge 1 \\ 10y_1 + y_2 + y_3 \ge 3 \\ y_1 \ge 0, \ y_2 \le 0, \ y_3 \ge 0 \end{cases}$$

将 $x^* = (2,4)$ 代入原问题可知: $x_1 + x_2 > 1$ 为严格不等式, 所以 $y_2^* = 0$ 。

由对偶问题性质可知:

$$\begin{cases} 5y_1^* = 1 \\ 10y_1^* + y_3^* = 3 \end{cases} (或者 \begin{cases} 5y_1^* = 1 \\ 50y_1^* + 4y_3^* = 14 \end{cases}, \quad 或者 \begin{cases} 10y_1^* + y_3^* = 3 \\ 50y_1^* + 4y_3^* = 14 \end{cases})$$
解之得: $y_1^* = 1/5$, $y_2^* = 1$ 。

所以,对偶问题的最优解是 $y^* = (1/5,0,1)$,最优值 min w = 14。

得分	评卷人	

三、(15分)已知线性规划问题及其最优单纯形表(见表1)

max
$$z = -x_1 - x_2 + 4x_3$$

s.t.
$$\begin{cases} x_1 + x_2 + 2x_3 \le 9 \\ x_1 + x_2 - x_3 \le 2 \\ -x_1 + x_2 + x_3 \le 4 \\ x_1 \ge 0, x_2 \ge 0, x_3 \ge 0 \end{cases}$$

表1

	C_{j}		C_{j}		C_{j}		C_{j}		C_{j}		-1	-1	4	0	0	0
$C_{\scriptscriptstyle B}$	x_{B}	b	x_1	x_2	x_3	x_4	x_5	x_6								
-1	x_1	1/3	1	-1/3	0	1/3	0	-2/3								
0	x_5	6	0	2	0	0	1	1								

第4页共14页

4	x_3	13/3	0	2/3	1	1/3	0	1/3
	$\sigma_{_{j}}$		0	-4	0	-1	0	- 2

若约束的右端列向量
$$b=\begin{bmatrix}9\\2\\4\end{bmatrix}$$
变成列向量 $\begin{bmatrix}3\\2\\3\end{bmatrix}$,在上述最优单纯形表的基础上

求新问题的最优解。

解: 先求解最优单纯形表中列向量 b 所对应的解变为

$$X_{B} = B^{-1}(b + \Delta b) = \begin{bmatrix} 1/3 & 0 & -2/3 \\ 0 & 1 & 1 \\ 1/3 & 0 & 1/3 \end{bmatrix} \begin{bmatrix} 3 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} -1 \\ 5 \\ 2 \end{bmatrix}$$

因为-1小于0,用对偶单纯形法继续迭代:

	C_{j}		-1	-1	4	0	0	0
C_{B}	x_B	b	x_1	x_2	x_3	x_4	X_5	x_6
-1	x_1	-1	1	— 1/3	0	1/3	0	[-2/3]
0	x_5	5	0	2	0	0	1	1
4	x_3	2	0	2/3	1	1/3	0	1/3
	$\sigma_{_j}$		0	-4	0	-1	0	-2

经过一次迭代得到最优单纯形表

C_{j}		-1	-1	4	0	0	0	
$C_{\scriptscriptstyle B}$	x_B	b	x_1	x_2	x_3	x_4	x_5	x_6

0	x_6	3/2	-3/2	1/2	0	-1/2	0	1
0	x_5	7/2	3/2	3/2	0	1/2	1	0
4	x_3	3/2	1/2	1/2	1	1/2	0	0
	$\sigma_{_j}$		-3	-3	0	-2	0	0

因此,新问题的最优解为 $x^* = (0,0,3/2)$,最优值 max $z^* = 6$ 。

得分	评卷人

四. (20 分) 已知某运输问题的产销平衡表和单位运价 表如表 2 所示, 试求最优的运输调拨方案。

表 2

				<i>-</i> -		
销地	B1	В2	В3	В4	В5	产量
产地						
A1	10	2	3	15	9	25
A2	5	10	15	2	4	30
A3	15	5	14	7	15	22
A4	20	15	13	M	8	28
销量	20	18	30	12	25	

解:

vogel 法确定初始解

销地	B1	В2	ВЗ	B4	В5	行差
产地						
A1	10	2	3	15	9	1
A2	5	10	15	2	4	2
A3	15	5	14	7	15	2
A4	20	15	13	M	8	5

第6页共14页

	列差	5	3	10	5	4	
第	一步						
	销地	B1	В2	В3	В4	В5	产量
	产地						
	A1			25			25
	A2						30
	A3						22
	A4						28
	销量	20	18	30	12	25	

调整行差、列差

销地	В1	В2	ВЗ	В4	В5	行差
产地						
A1	10	2	3	15	9	
A2	<mark>5</mark>	10	15	2	4	2
А3	15	5	14	7	15	2
A4	20	15	13	M	8	5
列差	10	5	1	5	4	

第二步:

· — > •						
销地	B1	В2	ВЗ	В4	В5	产量
产地						
A1			25			25
A2	20					30
A3						22
A4						28
销量	20	18	30	12	25	

第 7 页 共 14 页

调整行差、列差

<u></u>						
销地	В1	В2	В3	B4	В5	行差
产地						
A1	10	2	3	15	9	
A2	<mark>5</mark>	10	15	2	4	2
А3	15	5	14	7	15	2
A4	20	15	13	M	8	5
列差		5	1	<mark>5</mark>	4	

第三步:

>・						
销地	B1	В2	ВЗ	В4	В5	产量
产地						
A1			25			25
A2	20			10		30
А3						22
A4						30
销量	20	20	30	12	25	

调整行差、列差

J	定17 左、 27左						
	销地	В1	В2	В3	В4	В5	行差
	产地						
	A1	10	2	3	15	9	1
	A2	5	10	15	2	4	
	A3	15	5	14	<mark>7</mark>	15	2
	A4	20	15	13	M	8	5
	列差	<mark>10</mark>	10	1	<mark>M</mark>	7	

第 8 页 共 14 页

第三步:

销地	B1	В2	В3	В4	В5	产量
产地						
A1			25			25
A2	20			10		30
А3				2		22
A4						28
销量	20	18	30	12	25	

调整行差、列差

	m 14 /m · > 4/m						
	销地	В1	B2	В3	В4	В5	行差
	产地						
_	A1	10	2	3	15	9	1
	A2	<mark>5</mark>	10	15	<mark>2</mark>	4	2
	A3	15	<mark>5</mark>	14	7	15	9
	A4	20	15	13	M	8	5
	列差	<mark>10</mark>	10	1		7	

第四步:

销地	B1	В2	В3	В4	В5	产量
产地						
A1			25			25
A2	20			10		30
A3		18		2		22
A4						28
销量	20	18	30	12	25	

第 9 页 共 14 页

调整行差、列差

箑	17 左、 列左								
/	销地	В1	В	2	ВЗ	В	4	В5	行差
j	产地								
	A1	10	2		3	1	5	9	1
	A2	5	10	0	15	2	2	4	2
	А3	15	5		14	7	<mark>7</mark>	15	1
	A4	20	1.	5	13	N	1	8	5
	列差				1			7	

第五步,即为初始解:

	11/41					
销地	B1	В2	В3	В4	В5	产量
产地						
A1			25			25
A2	20			10		30
А3		18	2	2		22
A4			3		25	28
销量	20	18	30	12	25	

判断解是不是最优解,用位势法。

٠.	91/11/C 1 /CAX	v = / • /		- •			
	销地	В1	В2	В3	B4	В5	位势
	产地						
	A1	10,	2,	3	15,	9,	0
		11	8		19	11	
	A2	<mark>5</mark>	10,	15,	2	4,	6
			10	6		0	
	A3	15,	<mark>5</mark>	14	<mark>7</mark>	15,	11

第 10 页 共 14 页

	5				6	
A4	20,	15,	<mark>13</mark>	M,	8	10
	11	11		M		
位势	-1	-6	3	-4	-2	

该解己是最优解。

最优值为: z=3*25+5*20+2*10+5*18+14*2+7*2+13*3+8*25=566

得分	评卷人

五、(15 分)试建立如下问题的目标规划模型(只建模 不求解)。

- 1) 根据市场信息,产品 I 的销售量有下降的趋势,故考虑产品 I 的产量不大于产品 II:
- 2) 超过计划供应的原材料时,需用高价采购,会使成本大幅度增加;
- 3) 应尽可能充分利用设备台时,但不希望加班;
- 4) 应尽可能达到并超过计划利润指标 56 元。

表3

	I	II	拥有量
原材料(kg)	2	1	11
设备(hr)	1	2	13
利润(元/件)	8	10	

解:设 x_1, x_2 分别表示产品 I, II 的产量,其目标规划模型如下:

$$\min z = P_1 d_1^+ + P_2 d_2^+ + P_3 \left(d_3^- + d_3^+ \right) + P_4 d_4^-$$

$$\begin{cases} x_1 - x_2 + d_1^- - d_1^+ = 0 \\ 2x_1 + x_2 + d_2^- - d_2^+ = 11 \end{cases}$$

$$s.t.\begin{cases} x_1 + 2x_2 + d_3^- - d_3^+ = 13 \\ 8x_1 + 10x_2 + d_4^- - d_4^+ = 56 \\ x_1, x_2, d_i^-, d_i^+ \ge 0, i = 1, 2, 3, 4 \end{cases}$$

得分	评卷人

六、(15分)有甲乙丙丁4个工人,要分别指派他们完成 ABCD 不同的4项工作,每人做各项工作所消耗的时间如表4所示。应如何指派工作,才能使总的消耗时间最少?

表 4

工作	A	В	C	D
工人				
	4	10	6	7
乙	2	7	6	3
丙	3	3	4	4
丁	4	6	6	3

解:

设 0-1 型决策变量为 x_{ij} ,其中, x_{ij} =1 表示指派第 i 个工人完成第 j 项工作, x_{ij} =0 表示不指派第 i 个工人完成第 j 项工作,i,j=1,2,3,4。第 1,2,3,4 个工人分别代表甲乙丙丁。第 1,2,3,4 项工作分别代表 ABCD 四项工作。记 C_{ij} 表示第 i 个工人完成第 j 项工作所消耗的时间,i,j=1,2,3,4。则指派问题的数学模型为:

$$\min_{x} Z = \sum_{i=1}^{4} \sum_{j=1}^{4} C_{ij} x_{ij}$$

s. t.
$$\sum_{i=1}^{4} x_{ij} = 1, i = 1,2,3,4$$

$$\sum_{i=1}^{4} x_{ij} = 1, j = 1,2,3,4$$

$$x_{ij} = 0 \, \ \vec{\cancel{x}} \, 1, i, j, = 1, 2, 3, 4$$

采用匈牙利法求解,步骤入下所示。

(1) 将矩阵

的每行元素都减去该行的最小值,得到

第 12 页 共 14 页

$$\begin{bmatrix} 0 & 0 & 1 & 1 \\ 1 & 3 & 3 & 0 \end{bmatrix}$$

(2) 将(1)中的结果矩阵的每列都减去该列的最小值,得到

(3) 在(2)中的结果矩阵的各行各列中寻找独立 0元,并记以@。@所在行和列的其他 0元素记为**Ø**。得到

(4) 独立 0 元的个数为 3<4, 还未找到最优解,需要增加 0 元。将(3)中的结果矩阵中无⑩的行,标记√。得到

(5) 在(4)中的结果矩阵中标记√的行中0元所在的列,标记为√。得到

(6) 在(5)的结果矩阵中,标记√的列中◎元所在的行,标记为√。得到

(7) 标记为√的行中所有 0 元所在列都已被标记为√。在 (6) 中的结果矩阵中,将无√的行,以及标记为√的列划线,得到

第 13 页 共 14 页

(8) 选取(7)中的结果矩阵中未被划线覆盖的元素中的最小元素,也就是 1。将标记√的行的所有元素都减去最小元素,再将标记为√的列的所有元素都加上最小元素。得到

(9) 重复(3)的处理。在(8)的结果矩阵中重新寻找独立0元。得到

(10)独立0元的个数为4个,因此,找到最优解。

最优解为: $x_{13} = x_{21} = x_{32} = x_{44} = 1$,其余 x_{ij} 都为 0。最优值 $Z=C_{13} + C_{21} + C_{32} + C_{44} = 14$.

因此,应指派甲完成工作 C,乙完成工作 A,丙完成工作 B,丁完成工作 D。此时总耗时最少,为 Z=14。

2017年-2018 学年度第一学期 华中科技大学本科生课程考试补考试卷

课程名称:	运筹学(一)	课程类别	□公共课 ■专业课 考试形式	<u>□开卷</u> ■闭卷
所在院系:	自动化学院	专业及班级:	考试日期: _	
学 号:_		姓名:	任课教师:	

题号	_	11	111	四	五	总分
分数						

得分	评卷人	一、(20分)试求解如下线性规划问题
		$\max z = 2x_1 + x_2 + 3x_3$
		$\left(x_1 + x_2 + x_3 \le 7 \right)$
		$2x_1 - 3x_2 + 5x_3 \le 8$
		$s.t.\begin{cases} x_1 + x_2 + x_3 \le 7\\ 2x_1 - 3x_2 + 5x_3 \le 8\\ x_1 - 2x_3 \ge 1 \end{cases}$

解:将模型化为如下:

$$\max z = 2x_1 + x_2 + 3x_3$$

$$\int_{a_{1}}^{b_{1}} x_{1} + x_{2} + 3x_{3}$$

$$\int_{a_{2}}^{b_{3}} x_{1} + x_{2} + x_{3} + x_{4} + x_{4} = 7$$

$$\int_{a_{3}}^{b_{4}} 2x_{1} - 3x_{2} + 5x_{3} + x_{5} = 8$$

$$\int_{a_{4}}^{b_{4}} x_{1} - 2x_{3} - x_{6} + x_{7} = 1$$

$$\int_{a_{4}}^{b_{4}} x_{1} + x_{2} + 3x_{3}$$

$$\int_{a_{4}}^{b_{4}} x_{2} + x_{3} + 3x_{4}$$

$$\int_{a_{4}}^{b_{4}} x_{2} + x_{3} + 3x_{4}$$

$$\int_{a_{4}}^{b_{4}} x_{1} + x_{2} + 3x_{3}$$

$$\int_{a_{4}}^{b_{4}} x_{2} + x_{3} + 3x_{4}$$

$$\int_{a_{4}}^{b_{4}} x_{2} + x_{4}$$

$$\int_{a_{4}}^{b_{4}} x_{2} + x_{4}$$

$$\int_{a_{4}}^{b_{4}} x_{3} + x_{4}$$

$$\int_{a_{4}}^{b_{4}} x_{4} + x_{4}$$

列出初始单纯形表

			2	1	3	0	0	0	-M	
		b	x_1	x_2	x_3	x_4	x_5	x_6	x_7	θ
0	x_4	7	1	1	1	1	0	0	0	7
0	x_5	8	2	-3	5	0	1	0	0	4
-M	x_7	1	[1]	0	-2	0	0	-1	1	1
	$c_j - z_j$		<mark>2+M</mark>	1	3-2M	0	0	-M	0	

选择 x_1 为换入变量, x_7 为换出变量,进行迭代得到:

			2	1	3	0	0	0	-M	
		b	x_1	x_2	x_3	x_4	x_5	x_6	x_7	θ
0	x_4	6	0	1	3	1	0	1	-1	2
0	x_5	6	0	-3	[9]	0	1	2	-2	6/9
2	x_1	1	1	0	-2	0	0	-1	1	
	$c_j - z_j$		0	1	<mark>7</mark>	0	0	2	-M-2	

选择 x_3 为换入变量, x_5 为换出变量,进行迭代得到:

			2	1	3	0	0	0	-M	
		b	x_1	x_2	x_3	x_4	x_5	x_6	x_7	θ
0	x_4	4	0	[2]	0	1	-1/3	1/3	-1/3	
3	x_3	2/3	0	-1/3	1	0	1/9	2/9	-2/9	
2	x_1	7/3	1	-2/3	0	0	2/9	-5/9	5/9	

$c_i - z_i$	0	10/3	0	0	-7/9	4/9	-M-4/9	

选择x,为换入变量,x₄为换出变量,进行迭代得到:

			2	1	3	0	0	0	-M	
		b	x_1	x_2	x_3	x_4	x_5	x_6	x_7	θ
1	x_2	2	0	1	0	1/2	-1/6	1/6	-1/6	
3	x_3	4/3	0	0	1	1/6	1/18	5/18	-5/18	
2	x_1	11/3	1	0	0	1/3	1/9	-4/9	4/9	
	$c_j - z_j$		0	0	0	-5/3	-2/9	-5/9	-M+5/9	

所有检验数都为复数,得到最优解为: $x_1=11/3$, $x_2=2$, $x_3=4/3$

最优值为: z = 40/3

得分	评卷人	
		<u> </u>

二、(15分)已知线性规划的最优解为 x*=(0,0,4,

4) ^T。试利用互补松弛定理求对偶问题最优解。

$$\max z = x_1 + 2x_2 + 3x_3 + 4x_4$$

$$\begin{cases} x_1 + 2x_2 + 2x_3 + 3x_4 \le 20 & (1a) \\ 2x_1 + x_2 + 3x_3 + 2x_4 \le 20 & (1b) \\ x_1 - x_2 + x_3 - x_4 \le 1 & (1c) \\ x_1, x_2, x_3, x_4 \ge 0 & \end{cases}$$

解:对偶问题为:

第 3 页 共 13 页

由于 $x_3*=x_4*=4>0$,是松约束,故(2c)与(2d)是紧约束,即对 Y*成立等式:

$$\begin{cases} 2y_1^* + 3y_2^* + y_3^* = 3 \\ 3y_1^* + 2y_2^* - y_3^* = 4 \end{cases}$$

把x*代入原问题三个约束中,可知(1c)是松的,故 y_3 *=0,然后解方程组:

$$\begin{cases} 2y_1^* + 3y_2^* = 3 \\ 3y_1^* + 2y_2^* = 4 \end{cases}$$
得到:
$$\begin{cases} y_1^* = \frac{6}{5} \\ y_2^* = \frac{1}{5} \end{cases}$$

故对偶最优解为: Y*= (6/5, 1/5, 0), z*=w*=28

得分	评卷人

三、(15分)某厂生产三种产品受到两种原材料的限制。 为求最大利润,求得最终单纯形表如下表所示。其中 *x₄*, *x₅* 为松驰变量。

- (1) 利用最终单纯形表求各产品的单位销售价格 c_1 , c_2 , c_3 。
- (2) c3增加到多少,仍能使现行计划保持最优。
- (3) 计算这两种原料的影子价格,如果能以每单位2元的价格在市场上购入更多的原料 &,是否合算?又若 &的价格为5元呢?

	C_{j}		c_1	c_2	c_3	0	0
C_{B}	$X_{\scriptscriptstyle B}$	b	x_1	x_2	x_3	\mathcal{X}_4	x_5
c_1	x_1	1	1	0	1	3	-1
c_2	x_2	2	0	1	1	-1	2
-	z	8	0	0	-4	-3	-4

解(1)利用最终单纯形表 x_4 , x_5 的检验数,

$$0-3 c_1+ c_2=-3$$
 及 $0+c_1-2 c_2=-4$ 解得, $c_1=2$, $c_2=3$ 。 利用最终单纯形表 x_3 的检验数 $\sigma_3=c_3-c_1-c_2=-4$, $c_3=1$ 。

- (2) c_3 为非基变量的目标函数系数,则 c_3 的改变只是影响 x_3 的检验数, $\sigma_3 = c_3 c_1 c_2 = c_3 5 \le 0$, $c_3 \le 5$ 仍能使现行计划保持最优。
- (3) 两种原料影子价格分别为 3 和 4。若 b_2 的市场价格为 2,合算;为 5,则不合算。

得分	评卷人

四. (20 分) 已知某运输问题的产销平衡表和单位运价 表如表 2 所示, 试求最优的运输调拨方案。

表 9

				12 4		
销地	В1	В2	В3	В4	В5	产量
产地						
A1	10	2	3	15	9	25
A2	5	10	15	2	4	30
A3	15	5	14	7	15	22
A4	20	15	13	M	8	28
销量	20	18	30	12	25	

解:

vogel 法确定初始解

销地	В1	В2	В3	В4	В5	行差
产地						
A1	10	2	3	15	9	1
A2	5	10	15	2	4	2
А3	15	5	14	7	15	2
A4	20	15	13	M	8	5
列差	5	3	10	5	4	

第一步

销地	B1	В2	ВЗ	В4	В5	产量
产地						
A1			25			25
A2						30
А3						22
A4						28
销量	20	18	30	12	25	

调整行差、列差

销地	В1	В2	ВЗ	В4	В5	行差
产地						
A1	10	2	3	15	9	
A2	<mark>5</mark>	10	15	2	4	2
А3	15	5	14	7	15	2
A4	20	15	13	M	8	5
列差	10	5	1	5	4	

第二步:

第 6 页 共 13 页

销地	В1	В2	В3	В4	В5	产量
产地						
A1			25			25
A2	20					30
А3						22
A4						28
销量	20	18	30	12	25	

调整行差、列差

销地	В1	В2	В3	В4	В5	行差
产地						
A1	10	2	3	15	9	
A2	<mark>5</mark>	10	15	2	4	2
А3	15	5	14	7	15	2
A4	20	15	13	M	8	5
列差		5	1	<mark>5</mark>	4	

第三步:

销地	В1	В2	ВЗ	B4	В5	产量
产地						
A1			25			25
A2	20			10		30
А3						22
A4						30
销量	20	20	30	12	25	

调整行差、列差

第 7 页 共 13 页

销地	B1	В2	В3	В4	В5	行差
产地						
A1	10	2	3	15	9	1
A2	<mark>5</mark>	10	15	2	4	
А3	15	5	14	<mark>7</mark>	15	2
A4	20	15	13	M	8	5
列差	10	10	1	M	7	

第三步:

销地	В1	В2	В3	В4	В5	产量
产地						
A1			25			25
A2	20			10		30
А3				2		22
A4						28
销量	20	18	30	12	25	

调整行差、列差

, .	4 1 1 2 1 7 1 2 1								
	销地	В1	В2	В3	В4	В5	行差		
	产地								
_	A1	10	2	3	15	9	1		
	A2	<mark>5</mark>	10	15	<mark>2</mark>	4	2		
	A3	15	<mark>5</mark>	14	<mark>7</mark>	15	9		
	A4	20	15	13	M	8	5		
	列差	<mark>10</mark>	10	1		7			

第四步:

第 8 页 共 13 页

销地	B1	В2	ВЗ	B4	В5	产量
产地						
A1			25			25
A2	20			10		30
А3		18		2		22
A4						28
销量	20	18	30	12	25	

调	整行差、列差						
	销地	В1	B2	В3	В4	В5	行差
	产地						
	A1	10	2	3	15	9	1
_	A2	5	10	15	2	4	2
	A3	15	<mark>5</mark>	14	<mark>7</mark>	15	1
	A4	20	15	13	M	8	5
	列差			1		7	

第五步,即为初始解:

销地	B1	В2	ВЗ	B4	В5	产量
产地						
A1			25			25
A2	20			10		30
A3		18	2	2		22
A4			3		25	28
销量	20	18	30	12	25	

判断解是不是最优解,用位势法。

第 9 页 共 13 页

销地	В1	В2	В3	В4	В5	位势
产地						
A1	10,	2,	3	15,	9,	0
	11	8		19	11	
A2	<mark>5</mark>	10,	15,	2	4,	6
		10	6		0	
A3	15,	<mark>5</mark>	<mark>14</mark>	<mark>7</mark>	15,	11
	5				6	
A4	20,	15,	<mark>13</mark>	М,	8	10
	11	11		M		
位势	-1	-6	3	-4	-2	

该解已是最优解。

最优值为: z=3*25+5*20+2*10+5*18+14*2+7*2+13*3+8*25=566

得分	评卷人

五、(15分)有甲乙丙丁4个工人,要分别指派他们完成 ABCD 不同的4项工作,每人做各项工作所消耗的时间如表4所示。应如何指派工作,才能使总的消耗时间最少?

表 4

工作	A	В	C	D
工人				
甲	4	10	6	7
乙	2	7	6	3
丙	3	3	4	4
丁	4	6	6	3

解:

设 0-1 型决策变量为 x_{ij} ,其中, x_{ij} =1 表示指派第 i 个工人完成第 j 项工作, x_{ij} =0 表示不指派第 i 个工人完成第 j 项工作,i,j=1,2,3,4。第 1,2,3,4 个工人分别代表甲乙丙丁。第 1,2,3,4 项工作分别代表 ABCD 四项工作。记 C_{ij} 表示第 i 个工人完成第 j 项工作所消耗的时间,i,j=1,2,3,4。则指派问题的数学模型为:

第 10 页 共 13 页

$$\min_{x} Z = \sum_{i=1}^{4} \sum_{j=1}^{4} C_{ij} x_{ij}$$

s.t.
$$\sum_{i=1}^{4} x_{ij} = 1, i = 1,2,3,4$$

$$\sum_{i=1}^{4} x_{ij} = 1, j = 1,2,3,4$$

$$x_{ij} = 0 \, \vec{\cancel{x}} \, 1, i, j, = 1, 2, 3, 4$$

采用匈牙利法求解, 步骤入下所示。

(1) 将矩阵

的每行元素都减去该行的最小值,得到

(2) 将(1)中的结果矩阵的每列都减去该列的最小值,得到

(3) 在(2)中的结果矩阵的各行各列中寻找独立 0元,并记以@。@所在行和列的其他 0元素记为Ø。得到

(4) 独立 0元的个数为 3<4,还未找到最优解,需要增加 0元。将(3)中的结果矩阵中无⑩的行,标记√。得到

第 11 页 共 13 页

(5) 在(4)中的结果矩阵中标记√的行中0元所在的列,标记为√。得到

(6) 在(5)的结果矩阵中,标记√的列中◎元所在的行,标记为√。得到

(7) 标记为√的行中所有 0 元所在列都已被标记为√。在 (6) 中的结果矩阵中,将无√的行,以及标记为√的列划线,得到

$$\begin{vmatrix} \mathbf{0} & 6 & 1 & 3 & | \sqrt{} \\ \mathbf{0} & 5 & 3 & 1 & | \sqrt{} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} \\ \mathbf{1} & \mathbf{3} & \mathbf{2} & \mathbf{0} \\ \sqrt{} & & & & | \end{aligned}$$

(8) 选取(7)中的结果矩阵中未被划线覆盖的元素中的最小元素,也就是1。将标记√的行的所有元素都减去最小元素,再将标记为√的列的所有元素都加上最小元素。得到

$$\begin{array}{c|ccccc}
\hline{0} & 5 & 0 & 2 & \sqrt{} \\
\hline{0} & 4 & 2 & 0 & \sqrt{} \\
\hline{1} & \boxed{0} & \boxed{0} & \boxed{1} \\
\hline{2} & \boxed{3} & \boxed{2} & \boxed{0} \\
\sqrt{} & & & & & \\
\end{array}$$

(9) 重复(3)的处理。在(8)的结果矩阵中重新寻找独立0元。得到

第 12 页 共 13 页

(10)独立0元的个数为4个,因此,找到最优解。

最优解为: $x_{13} = x_{21} = x_{32} = x_{44} = 1$,其余 x_{ij} 都为 0。最优值 $Z=C_{13}+C_{21}+C_{32}+C_{44}=14$.

因此,应指派甲完成工作 C, 乙完成工作 A, 丙完成工作 B, 丁完成工作 D。此时总耗时最少,为 Z=14。