Distributed Computing III

April 11, 2022

Richard Thomas

Presented for the Software Architecture course at the University of Queensland

Distributed Computing III

Software Architecture

April 11, 2022 Richard Thomas

1 Introduction

In our introduction to distributed systems we described the fallacies of distributed systems [?]. Some of these fallacies (e.g. the network is reliable, the network is secure and the topology never changes) apply Murphy's Law, if anything can go wrong it will, to the context of distributed systems. We will now move on to O'Toole's Commentary, Murphy was an optimist.

Large distributed systems consist of thousands of computing platforms, communicating over large distances and over unreliable internet connections. Failure of some part of the system is practically guaranteed [?], the system must be designed to cater for *partial failure*. Even for small systems, some part will eventually fail, so fault handling must be part of the design.

2 Detecting Faults

We mentioned that, paradoxically, distributed systems can be more reliable than non-distributed systems because a distributed system spreads risk of failure over multiple machines [?]. This is managed through health checks, load-balancing and auto-scaling. We have also described the use of transactions as a mechanism to deal with some potential failures that affect our storage of persistent data [?].

The challenge, particularly when implementing health checks, is determining when a fault has occurred. Most distributed systems communicate over a TCP/IP network. This introduces a layer of uncertainty in trying to determine if a fault exists. A message sent over a TCP/IP network may not be delivered, or the response may not be received. Possible causes of either fault include the following.

- The request sent to another service in the system may not have been delivered.
- The request may be delayed and is waiting in a queue to be processed. (e.g. either the network or the service is overloaded).
- The node running the service may have failed.
- The service may be busy and has temporarily stopped responding.
- The service may have processed the request and replied, but it has not been received.
- The response may be delayed and will be received later.

There are some techniques that can be used to identify some faults, but they are not perfect.

- If a compute node is running and reachable, but does not have a process listening on the destination
 port, the operating system should close or refuse the TCP connection. This should result in a RST or
 FIN packet being received by the message sender, with the caveat that the packet may be lost.
- If a process crashes but the compute node is still running, a monitor program running on the node can report the failure to a health monitoring sub-system.

- If a router knows that an IP address is not reachable, it can reply with a destination unreachable packet. But, the router has no additional ways of knowing if an address is not reachable as the rest of the system.
- If the system is running on your own hardware, you may be able to query network switches to detect link failures.

In general, despite the techniques above, the application needs to have a strategy to detect faults and to decide whether to retry a request or that a node is dead. Fault handling has to be responsive in light of the uncertainty of the fault. A general strategy is to retry sending a message a certain number of times and having a time limit. If no response is received within the time limit the system will then decide that the node is dead, will spin up a new node, and remove the dead node from the load balancer's list of active nodes.

The challenge with this strategy is deciding how many retry requests and how long to wait. Multiple retries can swamp an already overloaded node, reducing its performance even more or possibly leading to it crashing. In the first lecture on distributed systems we introduced exponential backoff as a mechanism to reduce the impact of retrying requests [?]. For more information about this strategy, see the retry design pattern [1]. Simple exponential backoff can introduce peaks of load around the exponential delay. Jitter can be added to the delay to spread out these peaks [2].

Determing how long to wait before deciding that a node is dead has its own challenges. If the system decides that a node is dead, then all clients who have sent messages to that node, and have not received a reply, will need to resend their messages to other nodes. Waiting too long reduces the system's responsiveness, as processes wait for a the dead node to reply. It may also reduce the system's overall performance as a backlog of requests need to be processed.

Waiting too short a time may lead to prematurely declaring a node dead. If the node is declared dead but it is just responding slowly because of system load, then resending messages to other nodes increases the load on other nodes. This can lead to a cascading failure, where all nodes are overloaded to the point that they are all declared dead. There is an additional problem of declaring a node dead, which is just slow to respond. It will still be processing requests until it is shutdown, but those requests will be resent to other nodes. This leads to the possibility that some actions will be performed twice.

One option to reduce the variability of message delays is to use UDP rather than TCP at the network level. UDP does not retransmit lost packets, which reduces the variability of transmission time. The drawback is that the system will need to manage more messages not being received, as it will not have the automated retransmission of packets provided by TCP. It depends on the type of system, which approach is more beneficial. If the system is transmitting financial data, the greater reliability of TCP probably outweighs the reduced message delay of UDP. Whereas a music streaming service will probably find that having less variability of delay is more beneficial than the reliability of TCP. (Receiving an audio packet, after it needed to be played, is pointless.)

3 Consensus

3.1 Behaving Nodes

Leaders & Locks

3.2 Byzantine Faults

Byzantine Generals Problem Idempotent

4 Consistency

- 4.1 Eventual Consistency
- 4.2 Linearizability
- 4.3 CAP Theorem

References

- [1] R. R. Singh, "Understanding retry pattern with exponential back-off and circuit breaker pattern." https://dzone.com/articles/understanding-retry-pattern-with-exponential-back, October 2016.
- [2] M. Brooker, "Understanding retry pattern with exponential back-off and circuit breaker pattern." https://aws.amazon.com/blogs/architecture/exponential-backoff-and-jitter/, March 2015.