

Construction of PV Module using MATLAB-SIMULINK

Power & Control Engineering Experiment T.A.: Cholmin Kim (Smartgrid Lab) Contact: calvin16@yonsei.ac.kr

Experiment Milestone

Progress Chart

Preview Requirements

- I-V and P-V curve and operation of PV array
- Concept of Maximum Power Point Tracking (MPPT) of PV
- Duty ratio and operation of boost converter
- Concept of PWM switching control

Experiment Objective

- Learn a basic usage of MATLAB/SIMULINK simulation tool
- Learn a basic concept of boost converter switching operation and duty ratio(D) with PWM control
- Learn a basic concept of duty ratio control with Maximum Power
 Point Tracking (MPPT) in boost converter connected a PV array

Switch Realization

Semiconductor Devices

- Bipolar Junction Transistor(BJT)
 - The BJT is a type of transistor that uses both electrons and holes as charge carriers. BJT is controlled by the input base current.
- Metal-Oxide-Semiconductor Field-Effect Transistor(MOSFET)

 MOSFET is a type of field-effect transistor(FET), most commonly fabricated by the controlled oxidation of silicon. MOSFET is controlled by the input gate voltage.

- Insulated-Gate Bipolar Transistor(IGBT)
 - IGBT is a three-terminal semiconductor device used as an high efficiency and fast switching.
 - The IGBT combines the simple gate-drive characteristics of MOSFETs with the highcurrent and low-saturation-voltage capability of BJTs.

Device Characteristic	Power Bipolar	Power MOSFET	IGBT
Voltage Rating	High < 1kV	High < 1kV	Very High >1kV
Current Rating	High <500A	Low < 200A	High >500A
Input Drive	Current, h _{FE} 20-200	Voltage, V _{GS} 3-10V	Voltage, V _{GE} 4-8V
Input Impedance	Low	High	High
Output Impedance	Low	Medium	Low
Switching Speed	Slow (uS)	Fast (nS)	Medium
Cost	Low	Medium	High

<Comparison Table>

PV Array

Photovoltaic System

Solar Cell

< PV Cell circuit model>

<PV I-V & P-V Curve>

PV Array

(a) PV cell \rightarrow PV panel \rightarrow PV array

(b) Example of PV array

- Picture (a) shows PV Cell connection changes in to PV panel and connection of PV panel changes in to PV array.
- Picture (b) shows connection of PV panel. Two series circuit of PV panel is connected parallel. So the output voltage will be 24 V and total current equals to 7.5 A (assume that PV panel produces 3.75 A at full sun). Maximum power of PV array would be 180 W.

Boost Converter

Definition

 Boost Converter is a switched-mode converter that is capable of producing an output voltage greater in magnitude than the input voltage (Step-up Converter)

Description

- Switching position $1\rightarrow2\rightarrow1$ occurs during one cycle
- Duty ratio(D) is the ratio of time when the switch is in position 1.
- D modulation range is between 0 and 1

Boost Converter

During one cycle, the equation below is obtained

$$\frac{(V_g)DT_s}{\text{position 1}} + \frac{(V_g - V)(1 - D)T_s}{\text{position 2}} = 0$$

Output voltage is then

$$V_{\rm o} = \frac{V_g}{1 - D}$$

 As seen from the voltage conversion ratio(M(D)), larger the duty ratio, larger the output voltage

lacktriangle Determination of Δi_L and Δv_C

- Inductor Current Ripple
 - Inductor current slope during subinterval 1:

$$\frac{di_L(t)}{dt} = \frac{v_L(t)}{L} = \frac{V_g}{L}$$

 Inductor current slope during subinterval 2:

$$\frac{di_L(t)}{dt} = \frac{v_L(t)}{L} = \frac{V_g - V_o}{L}$$

$$2\Delta i_L(Change\ in\ inductor\ current) = \frac{V_g}{L}DT_S$$

Solve for peak ripple:

$$\Delta i_L = \frac{V_g}{2L} DT_S$$

- Capacitor Voltage Ripple
 - Capacitor voltage slope during subinterval 1:

$$\frac{dv_c(t)}{dt} = \frac{i_c(t)}{C} = \frac{-V_o}{RC}$$

 Capacitor voltage slope during subinterval 2:

$$\frac{dv_c(t)}{dt} = \frac{i_c(t)}{C} = \frac{I}{C} - \frac{V_o}{RC}$$

- $-2\Delta v_c$ (Change in capacitor voltage) = $\frac{-V_o}{RC}DT_s$
- Solve for peak ripple:

$$\Delta v_c = \frac{V_o}{2RC} DT_s$$

Maximum Power Point Tracking (MPPT)

❖ What is MPPT

- System to maximize the output in any condition
- There are techniques to find the maximum power point (Perturb and Observe, Incremental Conductance, Constant Voltage, Current Sweep)
- Incremental Conductance algorithm predicts the effect of voltage change with PV array current and voltage changes.

Yor

SMARTGRID LABORATORY

PV Generator Simulation

PV Cell & Array

PV Cell Circuit


```
figure(1)
plot(out.PV_voltage0,out.PV_power0)
xlabel('PV Voltage(V)')
ylabel('PV Power(W)')
title('PV P-V Characteristic Curve')
|
figure(2)
plot(out.PV_voltage0,out.PV_current0)
xlabel('PV Voltage(V)')
ylabel('PV Current(A)')
title('PV I-V Characteristic Curve')
```

 This code must be written on the Matlab Workspace

Simulation Result

Draw the plots of the P-V Curve & I-V Curve.

PV Array Circuit

Connect a parallel resistor to PV array.

Maximum Power Operating Point

- Check I-V & P-V Curve of PV array.
- Changing module data and the array data yields waveforms of different voltage ranges.

Maximum Power Operating Point (MPOP)

- Derive basic PV generating power at 1000W/m2 and 25 deg.
- This plot implies a MPOP and voltage operation range.

Discussion (PV Array)

 Change the resistance, check the output voltage and current and draw the PV V-I curve.

(Temperature = 25° C)

Resistance (Ω)	Voltage (V)	Current (A)

Discussion (PV Array)

Change the resistance, figure out the MPOP.
 (Temperature = 25°C)

Resistance (Ω)	Voltage (V)	Current (A)

PV Generator Simulation

Boost Converter

Boost Converter Circuit

Boost Converter

- When the Boost Converter is connected to the ideal voltage source, the output voltage can be boosted according to the duty ratio (D).
- Figure out the duty ratio in the right side. D=??

Switching signal

Specification of System Circuit Component (Boost Converter)

Parameter	Given Value
Input Voltage	100 V
On/Off Switch	IGBT/Diode
Capacitance (C)	5000 μF
Inductance (L)	80 mH
Resistance (R)	$5~\Omega$

Simulation Result

Inductor current

Discussion (Boost Converter)

 Plot the output voltage ripple & inductor current and figure out the magnitude of ripple with changing the capacitance

Capacitance (C)	Voltage Ripple	Current Ripple

Discussion (Boost Converter)

 Plot the output voltage ripple & inductor current and figure out the magnitude of ripple with changing the inductance

Inductance (L)	Voltage Ripple	Current Ripple

PV Generator Simulation

PV Array & Boost Converter Design

PV Array and Boost Converter System Circuit

Specification of System Circuit Components (PV Array & Boost Converter)

Parameter	Given Value
Irradiance	500 W/m^2
Temperature	25 Deg.
PV Module data	Trina Solar TSM-250PA05.08
PV Parallel strings	10 parallel strings
PV Series connected modules per string	20 module string
PV side Capacitance (C)	1000 μF
Output side Capacitance (C)	5000 μF
Inductance (L)	80 mH

Simulation Result

Output voltage is doubled. Why?

Discussion (Boost Converter)

 Change duty ratio (D) of Boost converter and check the output voltage variation.

Duty Ratio (D)	Input voltage (V)	Output voltage (V)

Using MPPT Controller

Incremental Conductance Technique to find the maximum power point

PV+Boost+MPPT Controller circuit

MPPT Controller

Discussion (Boost Converter + PV)

Write the code (Check the algorithm p.33)

Discussion (Boost Converter + PV)

Plot the duty ratio and input/output voltage of the converter

Check the output power of the PV array and compare with the

output power of the converter.

