

Modul TA.PR+SY **Zugmittelgetriebe**

3. Teil: Kettentriebe

FH Zentralschweiz

Hochschule Luzern Technik & Architektur

Inhalt

- Geschichte, Entwicklung
- Kettentypen und Aufbau
- Anwendungsbeispiele
- Kettenräder
- Polygoneffekt
- Dimensionierung und Auslegung
- Gestaltung
- Schmierung und Verschleiss
- Kräfte im Kettenzug
- Schwingungen und Geräusche

Geschichte und Entwicklung

- Die ersten Ketten sind keltischen Ursprungs. (ca. 200 v. Chr.)
- Leonardo da Vinci (1452 1519)
 befasste sich in seinem reichen
 Schaffen intensiv mit Ketten.

Handskizzen und Modell nach Leonardo da Vinci

© HSLU PR+SY_H16: Kettengetriebe

Hochschule Luzern

Geschichte und Entwicklung

 Erst im 19. Jahrhundert erfuhr die Kette durch den Franzosen André Galle (1828) und den Schweizer Hans Renold (GB Patent 1880) ihre wirtschaftliche Bedeutung.

Patent GB1219, 1880 Hans Renold

Aktuelle Entwicklungen

Hochschule Luzern Technik & Architektur

Aufbau und Funktion

• Antriebsketten (Leistungsübertragung)

• Förderketten (Transport)

• Lastketten (Heben von Lasten)

Aufbau und Funktion

Lastkette: Flyerkette

• Buchsenkette

Klassische Antriebskette

Zahnkette (Laschenkette)

© HSLU PR+SY_H16: Kettengetriebe

Hochschule Luzern

Aufbau Zahnkette

Die Zahnkette setzt sich zusammen aus:

- 1: Zahnlaschen
- 2: Führungslaschen
- 3: Wiegegelenk bestehend aus 2 Profilzapfen
- 4: Nietscheiben

• Verschleissverhalten der Rollen- und Zahnkette

Unterschiedlicher Verschleiss von Innen- und Aussenlasche bei Rollenketten

Gleichmässiger Verschleiss der Kettenglieder

© HSLU PR+SY_H16: Kettengetriebe

Anwendungsbeispiel Zahnkette

• Zahnketten in einem Antrieb

Bild: Bosch Rexroth

Hochschule Luzern

© HSLU PR+SY_H16: Kettengetriebe

Anwendungsbeispiel Laschenkette

CVT Continuously Variable Transmission
 Avail Multimorie für A 4 vand A 6

12

Anwendungsbeispiele Flyerketten

Werkzeugmaschine, Bearbeitungszentrum

Gegengewichtsketten bei Türen und Toren

13

Hochschule Luzern Technik & Architektur

Anwendungsbeispiel: Stapelkran mit Flyerketten

Diplomarbeit Légert, Leisibach, HSLU 2006

Stapelkran der Firma Gersag Krantechnik GmbH, Reiden

15

Kettenräder

Bauformen

Removal mit augenchwellfar Nobe

• Werkstoffe:

bis 30 Zähne; v_{Kette} < 7 m/s

unlegierte Stähle, E295, C35, C45

höhere Geschwindigkeiten, Vergütungs- oder Einsatzstähle

C35, C45, 42CrMo4, C15, 15Cr3, 16MnCr5

Grossräder, GJL, GS

• Verzahnung:

$$\tau = \frac{360^{\circ}}{z}$$

Teilungswinkel

$$d = \frac{p}{\sin\left(\frac{\tau}{2}\right)} = \frac{p}{\sin\left(\frac{180^{\circ}}{z}\right)}$$

Teilkreisdurchmesser

Hochschule Luzern

© HSLU PR+SY_H16: Kettengetriebe

17

Polygoneffekt

 Infolge der vieleckförmigen Auflage der Kette schwankt der wirksame Durchmesser am Rad. Die gleichförmige Drehbewegung des Rades wird so in eine ungleichförmige Geschwindigkeit des Kettentrums umgewandelt; es entsteht der so genannte Polygoneffekt.

Polygoneffekt

- Randbedingungen GIS Kettenzug GCH 160
- 6 Taschen, Kette 3x9 mm, $d_T = 34.5$ mm, $v_{Kette_max} = 16$ m/min
- m = 100 kg, c = 810 N/mm

© HSLU PR+SY_H16: Kettengetriebe

23

Hochschule Luzern Technik & Architektur

Dimensionierung und Auslegung von Kettentrieben

• Einflussfaktoren auf die Lebensdauer einer Kette:

Dimensionierung und Auslegung von Kettentrieben

• Bruchfestigkeit Bei dieser Belastung tritt ein Gewaltbruch ein.

• Dauerfestigkeit Belastung die unter Wechsel- und

Schwellbetrieb zu einem Dauerbruch führt.

• Verschleissfestigkeit Der Verschleiss in den Kettengelenken und die

daraus entstehenden Kettenlängungen bestimmen die zulässige Belastung.

Nutzbarer Leistungsbereich eines Kettentriebes (Doppelt logarithmische Darstellung)

- a: Betriebszeitfestigkeit der Laschen und Bolzen
- b: Verschleisswiderstand
- c: Betriebszeitfestigkeit der Rollen und Buchsen

© HSLU PR+SY_H16: Kettengetriebe

25

Hochschule Luzern Technik & Architektu

Dimensionierung und Auslegung von Kettentrieben

Die Leistungsdiagramme gelten für die folgenden Voraussetzung:

- Zähnezahl des kleinen Rades $z_1 = 19$
- Übersetzung i = 3
- 2 Wellen
- Kettenlänge von x = 100 Gliedern
- einwandfreie Schmierung
- stossfreier Betrieb
- 15'000 h Lebenserwartung
- maximal 3 % Längung der Kette durch Verschleiss

Dimensionierung und Auslegung von Kettentrieben

Kettenauswahl mit Hilfe von Leistungsdiagrammen

• Liegen abweichende Betriebsverhältnisse vor, so muss die Diagrammleistung P_D unter Berücksichtigung der Einflussgrössen ermittelt werden:

$$P_D = \frac{P_n * K_A * f_1}{f_2 * f_3 * f_4 * f_5 * f_6}$$

f ₁ f ₂ f ₃ f ₄ f ₅	Zähnezahlfaktor Wellenabstandfaktor Kettenformfaktor Wellenfaktor Lebensdauerfaktor	TB 17-5 TB 17-6 $f_3 = 0.8$ gekröpft, sonst 1 $f_4 = 0.9^{(n-2)}$, 2 Welle $f_4 = 1$ $f_5 = (15000/L_h)^{1/3}$	
f_6	Schmierfaktor	тв 17-7	

© HSLU PR+SY_H16: Kettengetriebe

28

Hochschule Luzern

Dimensionierung und Auslegung von Kettentrieben

Charakteristika und Merkmale von Kettentrieben

- Wirkungsgrad bei guter Schmierung bis 0.98
- Übersetzungen bis i = 5 ist üblich, bis i = 7 oder grösser nur in Sonderfällen
- Geschwindigkeiten: günstig bis 7 m/s

normal bis 12 m/s

möglich bis 25 m/s

 Zähnezahlen: < 11 womöglich vermeiden

11 - 13 für Kettengeschwindigkeiten < 4 m/s 14 - 16 für Kettengeschwindigkeiten < 7 m/s bevorzugte Zähnezahlen für Kleinräder 17 - 24 38 - 76 günstige Zähnezahlen für Grossräder

> 120 aus technischen und wirtschaftlichen Gründen vermeiden

Zulässige Gelenkflächenpressung für Dauerbelastung

bei guter Schmierung: bei unzureichender Schmierung: N/mm²normal $p_{zul} = 15 \text{ N/mm}^2$ bei Nachschmierung $p_{zul} = 30$ $p_{zul} = 7 \text{ N/mm}^2$ $p_{zul} = 60$ N/mm² hoch $\rho_{zul} = I$ IN/mm² $\rho_{zul} = 4$ N/mm² geringe Verschmutzung

 $p_{zul} = 120$ N/mm² sehr hoch Trockenlauf und

kurzzeitig Verschmutzung

Gestaltung von Kettentrieben

• Anordnung von Kettentrieben, Kettenführungen und Kettenspanner

Anordnung bei zwei Kettenrädern

Kettenspanner Roll-Ring

Kettenspanner Rosta

Hochschule Luzern

© HSLU PR+SY_H16: Kettengetriebe

34

Gestaltung von Kettentrieben

• Anwendungsbeispiel Roll-Ring Kettenspanner

Kettenantrieb für Bodenbearbeitungsmaschine der Baertschi Agrartecnic, Hüswil

© HSLU PR+SY_H16: Kettengetriebe 35

Schmierung

• Schmierbereiche nach DIN ISO 10823 TB 17-8

Bereiche:

- Manuell in regelmäßigen Abständen erfolgende Ölzufuhr durch Sprühdose, Ölkanne oder Pinsel
- 2 Tropfschmierung
- 3 Ölbad oder Schleuderscheibe
- 4 Druckumlaufschmierung mit Filter und gegebenenfalls Ölkühler

Hochschule Luzern

© HSLU PR+SY_H16: Kettengetriebe

36

Schmierung und Kettenverschleiss

• Verschleiss in Abhängigkeit von Schmierung und Betriebszeit

- 1: Trockenlauf
- 2: Erstschmierung
- 3: teilweiser Trockenlauf
- 4: unzureichende Schmierung durch Verschmutzung oder ungeeignetes Schmiermittel
- 5: optimale Schmierung

Kräfte im Kettenzug

- Die statische Kettenzugkraft ergibt sich aus: $F_t = \frac{P_1}{v}$ (17.14)
- Die Kettenzugkraft wird von Schwellkräften überlagert. Die resultierende Schwellkraft setzt sich aus folgenden Komponenten zusammen:
 - Fliehzugkraft F_z
 - Stützzugkraft F_S
 - Schwell- und Stosskräfte aus den antriebs- und abtriebsseitigen Ungleichförmigkeiten
 - Schwell- und Stosskräfte durch den Polygoneffekt

Fliehzugkraft

 Reaktion der radialen Fliehkraft der Kette. Abhängig vom Metergewicht der Kette und der Kettengeschwindigkeit. Ab v > 7 m/s unbedingt berücksichtigen.

$$F_Z = q * v^2$$
 (17.15) q : Längengewicht in kg/m

© HSLU PR+SY_H16: Kettengetriebe

39

Hochschule Luzern Technik & Architektur

Kräfte im Kettenzug

Stützzugkraft

Wirkt im Los- und Lasttrum. Ist abhängig vom Trumgewicht, dem Durchhang sowie vom Neigungswinkel des jeweiligen Trums.

Bei einwandfrei montiertem Kettentrieb mit 1% - 2% Durchhang des Kettentrums ist die Stützzugkraft ohne Bedeutung. Bei grossen Achsabständen kann die Kraft aber sehr gross werden.

Bei annähernd horizontaler Lage des Leertrums gilt:

idel. KWi 17 K

(17.16)

Schwingungen in Kettentrieben

 Der Polygoneffekt und die Rundlauffehler der Verzahnung verursachen transversale Schwingung

$$f_{eq} = \frac{\lambda}{2*l} * \sqrt{\frac{F}{q}}$$

- q: Längengewicht kg/m
- Die longitudinalen Schwingungen werden ebenfalls durch den Polygoneffekt hervorgerufen.

$$f_{el} = \frac{\lambda}{2*l} * \sqrt{\frac{c_{rel} * F_B}{q}}$$

$$c_{rel} = \frac{c * l}{F_r}$$

41

© HSLU PR+SY H16: Kettengetriebe

Hochschule Luzern

Schwingungen und Geräusche

Schwingungen

• Der Betrieb im Resonanzdrehzahlbereich mit Übereinstimmung von Eigen- und Erregerfreguenzen sollte vermieden werden. (Unsicherheitsbereich der Frequenzen von 10% berücksichtigen)

$$f_{err} = v * \frac{z_1 * n_1}{60}$$
 v: Ordnungszahl der Erregung

Geräusche

- Die spezifischen Kettentriebgeräusche entstehen hauptsächlich durch das Aufschlagen der Kettenrollen auf die Zahnflanken beim Einlaufen der Kette in die Verzahnung.
- Der Schalldruckpegel kann wie folgt berechnet werden: (Im Abstand von 5 cm des Kettenrades gemessen)

$$p_{sch} = 20\log\left[1.135*10^{-6}*p^{3}*n^{1.5}*z^{1.5}*\sin\left(\frac{360^{\circ}}{z} + \gamma\right)\right]$$