							1-	1=1
Reg	No.:		*	Name:			JĒ	D
		APJ ABDUL H	KAI	LAM TECHN	OL	OCICAL UNI	VER	SVTY
SI	XTH S	EMESTER B.TEC						• 11
				Course Code	e: C	S352		•
	37.1	Course	e na	me: COMPREH	IEN	SIVE EXAM (CS	S)	
Max	x. Marks	s: 50						Duration: 1 Hour
Insti	ructions:	which only ONE is	uestic to be c s corr option	ons: 50 answered. Each ques ect. a is chosen, it will not	tion n	rks for wrong answers vill be followed by 4 pos onsidered for valuation		nswers of
				PART A- COM	IM C	ON COURSES		
1.		dius of convergence		K-1				
	a)	1	,	2	c)	3	d)	0
2.		on of $y''' - y' = 0$				•		
	a)	$c_1 + (c_2 + c_3 x)e^x$	b)	$c_1 e^x + c_2 e^{-x}$	c)	$c_1 + c_2 e^x + c_3 e^{-x}$	d)	$c_1 + (c_2 + c_3 x)e^{-x}$
3.		s m is attached to tw degree of freedom s			ving	spring constant k. N	l <mark>atur</mark> a	I frequency of the
	a)	$\sqrt{2k/m}$	b)	$\sqrt{3k/m}$	c)	$\sqrt{4k/m}$	d)	$\sqrt{k/m}$
4.	A ball Tensio	of weight 100N is ton in the cord is						
• :	a)	86.6	b)	50	c)	•75.5	d)	0
5.	The description	esired features or challity for a given task	aract	eristics of the desi	,		,	
*	a)	Design Function	b)	Design	c)	Design analysis	d)	Design Functions
6.	In 'Ho	use of Quality' the i	coof	Constraints represents:				
	a)	Relationship between customer and manufacturer	b)	Inter— relationship between technical	c)	Relation between customer and technical requirements	d)	*Customer requirements
7.	Lowes	t atmospheric tempe	eratu	requirements re is observed in				
	a)	Troposphere	b)	Stratosphere	c)	Thermosphere	d)	Mesosphere
8.		rial Symbiosis aims		- zanospitoto	-)	2 Hormosphere	u)	Mesosphere
		J WILLIO						

		a)	zero waste generation	,	energy efficiency	c)	_	h employment eration	d)	industrial mechanisation
9.	A	5 cr	n long line is parall	el to	VP and inclined a	it 30° 1	to H	P. What is its len	igth	in the front view?
		a)	4.33 cm	b)	2.5 cm	c)	5 cı	n	d)	2.88 cm
10.	A cylinder is placed on H.P on its base and section plane is inclined to V.P and perpendicular to H.P cutting the solid the section gives									
		a)	parabola	b)	circle	c)	rect	angle	d)	ellipse
					PART B- C	ORE (COL	URSES		
11.		Wh	ich of the following	g are	tautologies?					
			1. p ∨ ~p	2.	p ∧ ~p	3. p \	v (q	∨ ~q)	4	4. p ∨(q ∧ ~q)
		a)	1 and 3	b)	3 and 4	c) :	2 and 4	d)	1 and 2
12.		G=	{0,1,2,3,4,5} is a gree?	oup 1	under multiplication	on mo	dulc	6. Which are the	е сус	clic generators
		a)	1, 3, and 5	b)	1 and 5	c	()	1, 2, and 3	d)	1, 2, 3, 4. and 5
13.		If A	$A = {\alpha, \mu}$ and $B = {1, 2}$	2,3},	what is n(AXB)?					
		a)	4	b)	6	c	:) !	5	d)	3
14.			very team has to ployed?	ay 19	games in a round	l robin	leag	gue, totally how	man	y matches are to be
		a)	250	b)	300	c	:)	200	d)	190
15.		Fine	d the com <mark>plement c</mark>	of 2 in	n the la <mark>ttice (</mark> S ₆₀ , I	O) whe	ere I) is Divisor		8
		a)	2	b)	15	c	:)	6	d)	None of these
16.		Cor	overse of $P \rightarrow Q$ is							
		a)	$1P \rightarrow 1Q$	b)	$Q \rightarrow P$	c)	$1Q \rightarrow 1P$	d)	$P \xrightarrow{\cdot} Q$
17.		Eve	ery chain is a	<u>. </u>	ttice					
*		a)	distributive	b)	complemented	c	:)	com <mark>p</mark> lete	d)	bounded
18.		Wh	ich of th <mark>e</mark> following	g is n	ot efficiently supp	orted	by a	singly linked lis	t?	
» ,		a)	Accessing an element in the current position	b)	Insertion after current position		,	Insertion before current position	d)	Traversing to the position immediately after the current position
19.	×		e inorder and preord pectively. What is t						d [a 6	•
		a)	bfecgda	b)	edbgfca	С	:)	edbfgca	d)	defgbca
20.		Cor	nsider the following	g loop)					
		for	i = 1 to n							•

	f	for j = i + 1 to n		**			1.	-			
		print "Hi"	1	•							
	The	e asymptotic time co	omple	exity of above loop is	5		9				
	a)	$O(n^3)$	b)	O(n log n)	c)	$O(n^2)$	d)	O(n)			
21.	Tin	ne complexity of in	sertin	g a new node at the r	niddl	e of a single linked	list is	5			
	a)	O(log n)	b)	O(1)	c)	O(n log n)	d)	O(n)			
22.		th only enqueue and ck using queue?	dequ	ueue operations, how	man	y queues will you r	need to	o implement a			
	a)	4	(b)	3	c)	2	(d)	1			
23.	Ins			f(key)= key mod 7, 98 and 11 into the tal		The state of the s					
	a)	3	(b)	5	c)	4	(d)	6			
24.	The following sequence of operations are performed on a stack:										
	PU	SH(10), PUS <mark>H(2</mark> 0),	POP	, PUSH(10), PUSH(20), P	POP <mark>, PO</mark> P, <mark>PO</mark> P, PU	JSH(2	20), POP			
	The	e sequence of values	s pop	ped out is:							
	a)	20,10,20,10,20	(b)	20,20,10,10,20	c)	10,20,20,10,20	(d)	20,20,10,20,10			
25.	Con	nsider the given gra	mmai								
	S→	AB									
	A)	→ BB/a									
	B	AB/b									
	Cho	oose incorrect states	nent.			•					
٧	a)	aaab can be derived from above grammar.	. (b)	bbab can be derived from above grammar.	(c)	abba can be derived from above grammar.	(d)	abbab can be derived from above grammar.			
26.	Let	N be an NFA and v	w be a	string. We say that	N acc	epts w. if		grammar.			
	a)	All computation paths of N on w reach an accept state.	(b)	Exactly one computation path of N on w reaches an accept state.	c)	No computation paths of N on w reach an accept state.	(d)	At least computation paths of N on w reach an accept state.			
27.				uage, L= $\{w \in \{0, 1\}$ es the above language		is a palindrome },	Which				
	a)	$S \rightarrow 0S0 \mid 1S1 \mid \epsilon$	(b)	$S \rightarrow 0S0S \mid 1S1S$ $\mid \epsilon$	c)	S → 0S0 1S1 0 1	(d)	$S \to 0S0 1S1 0 1 \epsilon$			

28.	A Turing machine that is able to simulate other Turing machines									
	a)	Nested Turing machines	(b)	Universal Turing machine	c)	Counter machine	(d)	Multi-tape Turing Machine		
29.		ile applying pumpi and fragment it in		mma over a regular l	angua	age, we consider a s	tring			
	a)	2	(b)	5	c)	3	(d)	6		
30.		w many states will i		ere for the minimum b}?	state	DFA that accepts s	trings	which ends with		
	a)	1	(b)	2	c)	3	(d)	4		
31.	Wh	ich of the following	gope	rators is not present	in an	y regular expression	n?			
	a)	union	(b)	concatenation	c)	Kleene closure	(d)	division		
32.	The	page table contain	s	-						
	a)	base address of each page in physical memory	(b)	page offset	c)	page size	(d)	none of the mentioned		
33.	Which of the following statements are true?									
	I. Shortest remaining time first scheduling may cause starvation									
	II. Preemptive scheduling may cause starvation									
	III.	Round robin is bett	er tha	an FCFS in terms of	respo	nse time				
	a)	I only	(b)	I <mark>and II</mark> I only	c)	II and III only	(d)	I, II and III		
34.	If the disk head is located initially at 32, find the number of disk moves required with FCFS if the disk queue of I/O blocks requests are 98, 37, 14, 124, 65, 72									
	a)	• 319	(b)	326	c)	338	(d)	360		
35.	Ac	ounting sémaphore	is ini	tialized to 4. Then 8	P(wa	it) and 3 V (signal)	opera	ations are		
	performed on the semaphore. The final value of the semaphore is									
	a)	1	(b)	-1	c)	2	(d)	-2		
36.	Simplest way of deadlock recovery is									
	a)	Roll back		Pre-empt resource	c)	Lock one of the process	(d)	Kill the one of the process		
37.		pose that a process upleted, it goes to the		"Blocked" state wait	ing fo	or some I/O service	. Whe	en the service is		
	a)	Running state	(b)	Ready state	c)	Suspended state	(d)	Terminated state		
38.	In fi	ixed size partition,	the de	egree of multiprogram	nmin	g is bounded by				
	a)	the number of partitions	(b)	the CPU utilization	c)	the memory size	(d)	all of the mentioned		

39.	Which of the following register automatically increments its contents during the instruction execution?						e instruction	
	a)	Instruction Register(IR)	(b)	Program Counter(PC)	c)	General Purpose register	(d)	Link Register
40.			tual e	exponent in the IEEE	singl	e precision standar	d for	floating point
	a)	-126 to 127	(b)	-127 to 127	c)	-128 to 128	(d)	-126 to 126
41.	The call	•	ng the	e main memory as soo	on as	a word is removed	from	the Cache is
	a)	write-through	(b)	write-back	c)	protected write	(d)	cache-write
42.	Inst	ruction decoder of	a CPI	J				
43.	a)	Decodes the instruction and carries out the arithmetic and logical operations	(b)	Decodes the instruction and generates the corresponding control signals.	c)	Decodes and stores the instruction currently being decoded.	(d)	None of the above
43.								
	a)	00001111	` ,	11110000	c)	00010000	(d)	01110000
44.	A computer uses 32-bit byte addressing. The computer uses a 2-way associative cache with a capacity of 32KB. Each cache block contains 16 bytes. Calculate the number of bits in the TAG, SET, and OFFSET fields of a main memory address.							
4 5.		-		TAG=16, SET=12, OFFSET=4 on R with a relation Sees of the join respect			(d) S has	TAG=16, SET=8, OFFSET=8 n tuples then the
	a)	m + n and 0	b)	mn and 0	c)	m + n and m – n	d)	mn and m + n
46.	dep		→ {C	e R = (E, F, G, H, I, i), {F} \rightarrow {I,J}, {E,I				
	a)	$\{E,F\}$	b)	$\{E,F,H\}$	(c)	$\{E,F,H,K,L\}$	d)	{E}
47.		very non-prime attration will be in	ribute	is fully functionally	depe	ndent on the primar	ry key	, then the
	a)	BCNF	(b)	2NF	c)	1NF	(d)	3NF
48.	Suppose that we have an ordered file with $r = 30,000$ records stored on a disk with block size B = 1024 bytes. File records are of fixed size and are unspanned, with record length $R = 100$ bytes. The blocking factor and the number of blocks needed for the file are							

- 10 and 3000
- (b) 3000 and 10
- 10 and 300-
- (d) 8 and 3000

49. What does the following query do?

UPDATE student

SET marks = marks*1.10;

- It increases the (b) It decreases the marks of all the students by 10%
- marks of all the students by 90%
- It increases the marks of all the students by 110%
- (d) It is syntactically wrong
- 50. Amongst the ACID properties of a transaction, the 'Durability' property requires. that the changes made to the database by a successful transaction persist
 - Except in case of an operating system crash
- (b) Except in case of a disk crash
- Except in case of a power failure
- (d) Always, even if there is a failure of any kind

