RIoT Strikes Back - Medan

Unleash the power of Espressif ESP32 Dual Core CPU

\$whoami

Albert Suwandhi, ST, MTI.

Lecturer - STMIK IBBI

Bachelor Degree in Electrical Engineering

Master Degree in Information Technology

https://id.linkedin.com/in/albertsuwandhi

albert.suwandhi@gmail.com

087868577265

IoT Typical Architecture

What are inside the Things

Interface

Today's Focus

ESPRESSIF

Espressif ESP8266

- SoC/MCU that integrates TCP/IP Stack and WiFi to enable it to connect to the network and communicate with other devices
- Made by Espressif China
- Have many modules, eq: ESP-01, ESP-02, ESP-12F, ESP-WROOM2
- It was sold as a Serial-WiFi adapter for other microcontrollers, however it is more powerful as the ESP8266 integrates a 32 bits microcontroller.

• Feature:

Microcontroller: Tensilica L106 (32 bits)

Clock Frequency: 80 MHz

WiFi: 802.11 b/g/n

Interfaces: SPI, I2C, I2S, UART, PWM

GPIO: 17 pins (12 mA max current)

ADC: 10 bits

Operating voltage: 3.3 V

ESP8266 Development Framework

Espressif ESP32

- CPU: Tensilica Xtensa 32-bit dual core, up to 240 MHz, 600 DMIPS.
- Operating voltage: 3.3V
- Memory: 448 KB ROM, 520 KB SRAM 16 KB SRAM in RTC, 1 Kbit of eFuse. External Flash: 512 KB to (4 x 16) MiB
- WiFi (802.11): b/g/n/e/i
- Bluetooth: v4.2 BR/EDR & BLE
- Peripherals: GPIOs, PWM, ADC, DAC, I2S, UART, SPI, I2C, CAN, RMII, Cap Touch

ESP32 Block Diagram

ESP32 Development Framework

ESP-IDF

ESP-IDF

- ESP IoT Development Framework (ESP-IDF) is the official development framework for ESP32.
- Built on Assembly, C and C++
- ESP-IDF is build on top of FreeRTOS.
- Advantages: More control over the low level APIs and the configurations
- Disadvantages: It is harder to getting started with
- More info: https://github.com/espressif/esp-idf

Arduino ESP32

- Arduino framework support for Espressif ESP32 platform
- Advantages: Easier to get started with, low level stuffs are hidden to developer, huge community and libraries.
- Trade Off: Lose control of the configurations & low level stuffs
- Can be embedded as ESP-IDF components
- More info : https://github.com/espressif/arduino-esp32

MicroPython

- A software implementation of the Python 3 programming language written in C, that is optimised to run on a microcontroller.
- Initially written by Damien George for PyBoard
- Easy to Learn High Level Language
- More info : https://micropython.org/

Mongoose OS

- An Operating System for connected products
- Language supported : C/C++ and JavaScript
- Relatively new in the market
- More info : https://mongoose-os.com/

ESP32 Module

and more...

ESP32 Boards (1)

Huzzah

Hornbill

ARS01119B

AnalogLamb ESP32

Node32S

FireBeetle

D-duino-32

and many more...

ESP32 Boards (2)

ESPectro32 (Front)

ESPectro32 (Back)

ESP8266 vs ESP32

Specifications	ESP8266	ESP32
MCU	Xtensa Single-Core 32-bit L 106	Xtensa Dual-Core 32-bit LX6 600 DMIPS
802.11 b/g/n Wi-Fi	Yes, HT20	Yes, HT40
Bluetooth	N/A	Bluetooth 4.2 and below
Typical Frequency	80 MHz	160 MHz
SRAM	160 kBytes	512 kBytes
Flash	SPI Flash up to 16 MBytes	SPI
GPIO	17	36
Hardware / Software PWM	None / 8 Channels	1 / 16 Channels
SPI/I2C/I2S/UART	2/1/2/2	4/2/2/2
ADC	10-bit	12-bit
CAN	N/A	1
Ethernet MAC Interface	N/A	1
Touch Sensor	N/A	Yes
Temperature Sensor	N/A	Yes
Working Temperature	-40° C – 125° C	-40° C – 125° C

ESP32 CPU

- Dual High Performance LX6 CPU: PRO (PROTOCOL CPU) and APP (APPLICATION CPU). We can refer to this cores as Core 0 and Core 1
- One (ULP) Ultra Low Power Processor During Sleep
- How can we run our firmware on two cores simultaneously?

KEEP CALM IT IS **DEMO** TIME

Test Scenario

We will use Arduino-ESP32 for the following scenario:

- Check on which core the application runs
- *Move application execution to another core
- Single Core Load Test: Arduino Mega, ESP8266 and ESP32
- *Run tasks simultaneously on different core and how to synchronize task using semaphore
- **ESP32**: Single Core vs Dual Core Speed Up

Hardware and tools used in the demo

- Arduino Mega + ESpectro + ESPectro32
- VS Code + PlatformIO

Codes in this session

https://github.com/albert.suwandhi/ RloT Strikes Back 2017

Thank You

