Package 'Rdta'

January 27, 2024

Version 1.0.1
Date 2024-1-26
Title Data Transforming Augmentation for Linear Mixed Models
Author Hyungsuk Tak, Kisung You, Sujit K. Ghosh, and Bingyue Su
Maintainer Hyungsuk Tak <hyungsuk.tak@gmail.com></hyungsuk.tak@gmail.com>
Depends R (>= 2.2.0)
Imports MCMCpack(>= 1.4-4), mvtnorm(>= 1.0-11), Rdpack, stats
Description We provide a toolbox to fit univariate and multivariate linear mixed models via data transforming augmentation. Users can also fit these models via typical data augmentation for a comparison. It returns either maximum likelihood estimates of unknown model parameters (hyperparameters) via an EM algorithm or posterior samples of those parameters via MCMC. Also see Tak et al. (2019) <doi:10.1080 10618600.2019.1704295="">.</doi:10.1080>
License GPL-2
Encoding UTF-8
RdMacros Rdpack
RoxygenNote 6.1.1
NeedsCompilation no
Repository CRAN
Date/Publication 2024-01-27 07:30:10 UTC
R topics documented:
lmm
Index

2 lmm

lmm	Fitting univariate and multiviarate linear mixed models via data trans- forming augmentation

Description

The function 1mm fits univariate and multivariate linear mixed models (also called two-level Gaussian hierarchical models) whose first-level hierarchy is about a distribution of observed data and second-level hierarchy is about a prior distribution of random effects.

Usage

```
lmm(y, v, x = 1, n.burn, n.sample, tol = 1e-10,
  method = "em", dta = TRUE, print.time = FALSE)
```

Arguments

у	Response variable. In a univariate case, it is a vector of length k for the observed data. In a multivariate case, it is a $(k \text{ by } p)$ matrix, where k is the number of observations and p denotes the dimensionality.
V	Known measurement error variance. In a univariate case, it is a vector of length k . In a multivariate case, it is a (p, p, k) array of known measurement error covariance matrices, i.e., each of the k array components is a $(p \text{ by } p)$ covariance matrix.
Х	(Optional) Covariate information. If there is one covariate for each object, e.g., weight, it is a vector of length k for the weight. If there are two covariates for each object, e.g., weight and height, it is a $(k \text{ by } 2)$ matrix, where each column contains a covariate variable. Default is no covariate $(x = 1)$.
n.burn	Number of warming-up iterations for a Markov chain Monte Carlo method. It must be specified for method = "mcmc"
n.sample	Number of iterations (size of a posterior sample for each parameter) for a Markov chain Monte Carlo method. It must be specified for method = "mcmc"
tol	Tolerance that determines the stopping rule of the EM algorithm. The EM algorithm iterates until the change of log-likelihood function is within the tolerance. Default is 1e-10.
method	"em" will return maximum likelihood estimates of the unknown hyper-parameters and "mcmc" returns posterior samples of those parameters.
dta	A logical; Data transforming augmentation is used if dta = TRUE, and typical data augmentation is used if dta = FALSE.
print.time	A logical; TRUE to display two time stamps for initiation and termination, FALSE otherwise.

Imm 3

Details

For each group i, let y_i be an unbiased estimate of random effect θ_i , and V_i be a known measurement error variance. The linear mixed model of interest is specified as follows:

$$[y_i \mid \theta_i] \sim N(\theta_i, V_i)$$
$$[\theta_i \mid \mu_{0i}, A) \sim N(\mu_{0i}, A)$$
$$\mu_{0i} = x_i' \beta$$

independently for i = 1, ..., k, where k is the number of groups (units) and dimension of each element is appropriately adjusted in a multivariate case.

The function 1mm produces maximum likelihood estimates of hyper-parameters, A and β , their update histories of EM iterations, and the number of EM iterations if method is "em".

For a Bayesian implementation, we put a jointly uniform prior distribution on A and β , i.e.,

$$f(A,\beta) \propto 1$$
,

which is known to have good frequency properties. This joint prior distribution is improper, but their resulting posterior distribution is proper if $k \ge m+p+2$, where k is the number of groups, m is the number of regression coefficients, and p is the dimension of y_i . We note that an R package Rgbp also fits this model in a univariate case (p=1) via ADM (approximation for density maximization). 1mm produces the posterior samples through a Gibbs sampler if method is "bayes".

Value

The outcome of 1mm is composed of:

A If method is "mcmc". It contains the posterior sample of A.

beta If method is "mcmc". It contains the posterior sample of β .

A.mle If method is "em". It contains the maximum likelihood estimate of A.

beta.mle If method is "em". It contains the maximum likelihood estimate of beta.

A.trace If method is "em". It contains the update history of A at each iteration.

beta.trace If method is "em". It contains the update history of beta at each iteration.

n.iter If method is "em". It contains the number of EM iterations.

Author(s)

Hyungsuk Tak (maintainer), Kisung You, Sujit K. Ghosh, and Bingyue Su

References

Tak, You, Ghosh, Su, Kelly (2019), "Data Transforming Augmentation for Heteroscedastic Models" <doi:10.1080/10618600.2019.1704295>

4 Imm

Examples

```
### Univariate linear mixed model
# response variable for 10 objects
y <- c(5.42, -1.91, 2.82, -0.14, -1.83, 3.44, 6.18, -1.20, 2.68, 1.12)
# corresponding measurement error standard deviations
se <- c(1.05, 1.15, 1.22, 1.45, 1.30, 1.29, 1.31, 1.10, 1.23, 1.11)
# one covariate information for 10 objects
x \leftarrow c(2, 3, 0, 2, 3, 0, 1, 1, 0, 0)
## Fitting without covariate information
# (DTA) maximum likelihood estimates of A and beta via an EM algorithm
res <- lmm(y = y, v = se^2, method = "em", dta = TRUE)
# (DTA) posterior samples of A and beta via an MCMC method
res <- 1mm(y = y, v = se^2, n.burn = 1e1, n.sample = 1e1,
           method = "mcmc", dta = TRUE)
\# (DA) maximum likelihood estimates of A and beta via an EM algorithm
res <- lmm(y = y, v = se^2, method = "em", dta = FALSE)
# (DA) posterior samples of A and beta via an MCMC method
res <- 1mm(y = y, v = se^2, n.burn = 1e1, n.sample = 1e1,
           method = "mcmc", dta = FALSE)
## Fitting with the covariate information
# (DTA) maximum likelihood estimates of A and beta via an EM algorithm
res <- 1mm(y = y, v = se^2, x = x, method = "em", dta = TRUE)
# (DTA) posterior samples of A and beta via an MCMC method
res <- lmm(y = y, v = se^2, x = x, n.burn = 1e1, n.sample = 1e1,
           method = "mcmc", dta = TRUE)
# (DA) maximum likelihood estimates of A and beta via an EM algorithm
res <- lmm(y = y, v = se^2, x = x, method = "em", dta = FALSE)
# (DA) posterior samples of A and beta via an MCMC method
res <- lmm(y = y, v = se^2, x = x, n.burn = 1e1, n.sample = 1e1,
           method = "mcmc", dta = FALSE)
### Multivariate linear mixed model
# (arbitrary) 10 hospital profiling data (two response variables)
y1 <- c(10.19, 11.53, 16.28, 12.32, 12.84, 11.85, 14.81, 13.24, 14.43, 9.35)
y2 <- c(12.06, 14.97, 11.50, 17.88, 19.21, 14.69, 13.96, 11.07, 12.71, 9.63)
y \leftarrow cbind(y1, y2)
# making measurement error covariance matrices for 10 hospitals
n \leftarrow c(24, 34, 38, 42, 49, 50, 79, 84, 96, 102) # number of patients
v0 <- matrix(c(186.87, 120.43, 120.43, 250.60), nrow = 2) # common cov matrix
temp <- sapply(1 : length(n), function(j) { v0 / n[j] })</pre>
v \leftarrow array(temp, dim = c(2, 2, length(n)))
# covariate information (severity measure)
severity <- c(0.45, 0.67, 0.46, 0.56, 0.86, 0.24, 0.34, 0.58, 0.35, 0.17)
## Fitting without covariate information
```

Rdta 5

```
# (DTA) maximum likelihood estimates of A and beta via an EM algorithm
res <- lmm(y = y, v = v, method = "em", dta = TRUE)
# (DTA) posterior samples of A and beta via an MCMC method
res <- lmm(y = y, v = v, n.burn = 1e1, n.sample = 1e1,
           method = "mcmc", dta = TRUE)
# (DA) maximum likelihood estimates of A and beta via an EM algorithm
res <- lmm(y = y, v = v, method = "em", dta = FALSE)
# (DA) posterior samples of A and beta via an MCMC method
res <- lmm(y = y, v = v, n.burn = 1e1, n.sample = 1e1,
           method = "mcmc", dta = FALSE)
## Fitting with the covariate information
# (DTA) maximum likelihood estimates of A and beta via an EM algorithm
res \leftarrow lmm(y = y, v = v, x = severity, method = "em", dta = TRUE)
# (DTA) posterior samples of A and beta via an MCMC method
res \leftarrow lmm(y = y, v = v, x = severity, n.burn = 1e1, n.sample = 1e1,
           method = "mcmc", dta = TRUE)
# (DA) maximum likelihood estimates of A and beta via an EM algorithm
res <- lmm(y = y, v = v, x = severity, method = "em", dta = FALSE)
# (DA) posterior samples of A and beta via an MCMC method
res <- lmm(y = y, v = v, x = severity, n.burn = 1e1, n.sample = 1e1,
           method = "mcmc", dta = FALSE)
```

Rdta

Data Transforming Augmentation for Linear Mixed Models

Description

The R package **Rdta** provides a toolbox to fit univariate and multivariate linear mixed models via data transforming augmentation. Users can also fit these models via typical data augmentation for a comparison. It returns either maximum likelihood estimates of unknown model parameters (hyper-parameters) via an EM algorithm or posterior samples of those parameters via a Markov chain Monte Carlo method.

6 Rdta

Details

Rdta 7

Package: Rdta
Type: Package
Version: 1.0.1
Date: 2024-1-26
License: GPL-2
Main functions: 1mm

Author(s)

Hyungsuk Tak (maintainer), Kisung You, Sujit K. Ghosh, and Bingyue Su

References

Tak, You, Ghosh, Su, Kelly (2019), "Data Transforming Augmentation for Heteroscedastic Models" <doi:10.1080/10618600.2019.1704295>

Index

```
1mm, 2, 7
Rdta, 5
Rdta-package (Rdta), 5
```