Multiscale Inference for Nonparametric Time Trends

Marina Khismatullina ¹ Michael Vogt ¹

July 12, 2018

 1 University of Bonn

Table of contents

- 1. Introduction
- 2. Model
- 3. The multiscale method
- 4. Testing for a constant trend function
- 5. Conclusion

Introduction

Motivation

Figure 1: Yearly mean temperature in Central England from 1659 to 2017

- Does the observed time series have a trend at all?
- If so, which are the time regions where there is a strong trend?
- Is the trend decreasing or increasing in these regions?

Idea

Research question

Develop multiscale methods to test qualitative hypotheses about nonapametric time trends.

One time series is observed:

- Test the null hypothesis of the existence of a time trend.
- Identify time regions with upward or downward movement in the trend.

Multiple time series are observed:

• Detect which time trends are different and where.

Model

Model

We observe a single time series $\{Y_t : 1 \le t \le T\}$ of length T. The observations come from a following model:

$$Y_t = m\left(\frac{t}{T}\right) + \varepsilon_t$$

- m is an unknown trend function on [0, 1];
- $\{\varepsilon_t: 1 \leq t \leq T\}$ is a zero-mean stationary error process.

Literature

Multiscale approaches for independent data

- SiZer method (Chaudhuri and Marron, 1999, 2000)
- Testing monotonicity of the trend function (Hall and Heckman, 2000, Dümbgen and Spokoiny, 2001)

Multiscale methods for dependent data

 Extensions to SiZer method (Park et al. 2004, 2009, Rondonotti et al. 2007)

The multiscale method

Testing

Testing problem:

 $H_0: m=0$

 $H_1: m \neq 0$

Test Statistic

For a given location $u \in [0,1]$ and bandwidth h we construct the kernel averages

$$\widehat{\psi}_{T}(u,h) = \sum_{t=1}^{T} w_{t,T}(u,h) Y_{t},$$

where

$$w_{t,T}(u,h) = \frac{\Lambda_{t,T}(u,h)}{\{\sum_{t=1}^{T} \Lambda_{t,T}^{2}(u,h)\}^{1/2}},$$

$$\Lambda_{t,T}(u,h) = K\left(\frac{t/T - u}{h}\right) \left[S_{T,2}(u,h) - S_{T,1}(u,h)\left(\frac{t/T - u}{h}\right)\right],$$

$$S_{T,\ell}(u,h) = \frac{1}{Th} \sum_{t=1}^{T} K\left(\frac{t/T - u}{h}\right) \left(\frac{t/T - u}{h}\right)^{\ell}$$

for $\ell = 0, 1, 2$ and K is a kernel function.

Test Statistic

Test statistic is defined as follows

$$\widehat{\Psi}_{T} = \max_{(u,h) \in \mathcal{G}_{T}} \left\{ \left| \frac{\widehat{\psi}_{T}(u,h)}{\widehat{\sigma}} \right| - \lambda(h) \right\},\,$$

where

- $\hat{\sigma}^2$ is an appropriate estimator of the long-run variance σ^2 (Hall and Van Keilegom (2003));
- \mathcal{G}_T is the set of points (u, h) that are taken into consideration;
- $\lambda(h) = \sqrt{2 \log\{1/(2h)\}}$ is an additive correction term (Dümbgen and Spokoiny (2001)). Explanation

Test procedure

Gaussian version of the test statistic:

$$\Phi_T = \max_{(u,h)\in\mathcal{G}_T} \left\{ \left| \frac{\phi_T(u,h)}{\sigma} \right| - \lambda(h) \right\},\,$$

where

- $\phi_T(u,h) = \sum_{t=1}^T w_{t,T}(u,h) \frac{\sigma Z_t}{t}$;
- Z_t are independent standard normal random variables;
- $q_T(\alpha)$ is $(1-\alpha)$ quantile of Φ_T .

Test procedure

For a given significance level $\alpha \in (0,1)$, we reject H_0 if $\widehat{\Psi}_T > q_T(\alpha)$.

Assumptions

- C1 The variables ε_t are weakly dependent.
- C2 It holds that $\|\varepsilon_t\|_q < \infty$ for some q > 4.
- $\mathcal{C}3$ Standard assumptions on the kernel function K.
- $\mathcal{C}4$ $|\mathcal{G}_{\mathcal{T}}| = \mathcal{O}(\mathcal{T}^{\theta})$ for some arbitrarily large but fixed constant $\theta > 0$.

$$\mathcal{G}_T = \big\{ (u,h) : u = t/T \text{ for some } 1 \leq t \leq T \text{ and } h \in [h_{\min},h_{\max}] \\$$
 with $h = t/T$ for some $1 \leq t \leq T \big\},$

- C5 $h_{\min} \gg T^{-(1-\frac{2}{q})} \log T$ and $h_{\max} = o(1)$.
- C6 Assume that $\hat{\sigma}^2 = \sigma^2 + o_p(\rho_T)$ with $\rho_T = o(1/\log T)$.

Proposition

Under our assumptions and under H_0 : m=0 it holds that

$$P(\widehat{\Psi}_T \leq q_T(\alpha)) = (1 - \alpha) + o(1).$$

Proposition

Under our assumptions and under local alternatives we have

$$P(\widehat{\Psi}_T \leq q_T(\alpha)) = o(1).$$

Strategy of the proof

■ Replace the statistic $\widehat{\Psi}_{\mathcal{T}}$ under $H_0: m=0$ by a statistic $\widetilde{\Phi}_{\mathcal{T}}$ with the same distribution and the property that

$$\left|\widetilde{\Phi}_{T}-\Phi_{T}\right|=o_{p}(\delta_{T}),$$

where $\delta_T = o(1)$. To do so, we make use of strong approximation theory for dependent processes as derived in Berkes et al. (2014)

• Using the anti-concentration results for Gaussian random vectors (Chernozhukov et al. 2015), prove that Φ_T does not concentrate too strongly in small regions of the form $[x - \delta_T, x + \delta_T]$, i.e.

$$\sup_{x\in\mathbb{R}}\mathrm{P}\big(|\Phi_T-x|\leq \delta_T\big)=o(1).$$

Show that

$$\sup_{x\in\mathbb{R}}\left|\mathrm{P}(\widetilde{\Phi}_{T}\leq x)-\mathrm{P}(\Phi_{T}\leq x)\right|=o(1).$$

Testing for a constant trend

function

Testing

Testing problem:

$$H_0: m' = 0$$

 $H_1: m' \neq 0$

$$H_1: m' \neq 0$$

Test Statistic

For a given location $u \in [0,1]$ and bandwidth h we construct the kernel averages

$$\psi_T'(u,h) = \sum_{t=1}^T w_{t,T}'(u,h) Y_t,$$

where

$$W'_{t,T}(u,h) = \frac{\Lambda'_{t,T}(u,h)}{\{\sum_{t=1}^{T} \Lambda'_{t,T}(u,h)^{2}\}^{1/2}},$$

$$\Lambda'_{t,T}(u,h) = K\left(\frac{t/T - u}{h}\right) \left[S_{T,0}(u,h)\left(\frac{t/T - u}{h}\right) - S_{T,1}(u,h)\right]$$

$$S_{T,\ell}(u,h) = \frac{1}{Th} \sum_{t=1}^{T} K\left(\frac{t/T - u}{h}\right) \left(\frac{t/T - u}{h}\right)^{\ell}$$

for $\ell = 0, 1, 2$ and K is a kernel function.

Test Statistic

Test statistic is defined as follows

$$\widehat{\Psi}_T' = \max_{(u,h) \in \mathcal{G}_T} \Big\{ \Big| \frac{\widehat{\psi}_T'(u,h)}{\widehat{\sigma}} \Big| - \lambda(h) \Big\},\,$$

where

- $\lambda(h) = \sqrt{2 \log\{1/(2h)\}}$ is an additive correction term;
- \mathcal{G}_T is the set of points (u, h) that are taken into consideration;
- $\hat{\sigma}^2$ is an appropriate estimator of the long-run variance σ^2 .

Test procedure

Gaussian version of the test statistic:

$$\Phi_T' = \max_{(u,h) \in \mathcal{G}_T} \left\{ \left| \frac{\phi_T'(u,h)}{\sigma} \right| - \lambda(h) \right\},\,$$

where

- $\phi'_{T}(u,h) = \sum_{t=1}^{T} w'_{t,T}(u,h) \sigma Z_{t};$
- Z_t are independent standard normal random variables;
- $q'_T(\alpha)$ is $(1-\alpha)$ quantile of Φ'_T .

Test procedure

For a given significance level $\alpha \in (0,1)$, we reject H_0 if $\widehat{\Psi}'_T > q'_T(\alpha)$.

Proposition

Under our assumptions and under $H_0: m'=0$ it holds that $P\big(\widehat{\Psi}_T' \leq q_T'(\alpha)\big) = (1-\alpha) + o(1).$

Proposition

Under our assumptions and under local alternatives, we have $\mathrm{P}\big(\widehat{\Psi}_T' \leq q_T'(\alpha)\big) = o(1).$

Define

$$\Pi_{T}^{+} = \left\{ I_{u,h} = [u - h, u + h] : (u,h) \in \mathcal{A}_{T}^{+} \text{ and } I_{u,h} \subseteq [0,1] \right\}$$

$$\Pi_{T}^{-} = \left\{ I_{u,h} = [u - h, u + h] : (u,h) \in \mathcal{A}_{T}^{-} \text{ and } I_{u,h} \subseteq [0,1] \right\}$$

with

$$\mathcal{A}_{T}^{+} = \left\{ (u, h) \in \mathcal{G}_{T} : \frac{\widehat{\psi}_{T}'(u, h)}{\widehat{\sigma}} > q_{T}'(\alpha) + \lambda(h) \right\}$$
$$\mathcal{A}_{T}^{-} = \left\{ (u, h) \in \mathcal{G}_{T} : -\frac{\widehat{\psi}_{T}'(u, h)}{\widehat{\sigma}} > q_{T}'(\alpha) + \lambda(h) \right\}$$

Proposition

Under our assumptions, for events
$$E_T^+ = \left\{ \forall I_{u,h} \in \Pi_T^+ : m'(v) > 0 \text{ for some } v \in I_{u,h} \right\} \text{ it holds that and }$$

$$E_T^- = \left\{ \forall I_{u,h} \in \Pi_T^- : m'(v) < 0 \text{ for some } v \in I_{u,h} \right\} \text{ it holds that }$$

$$P(E_T^+) \geq (1 - \alpha) + o(1)$$

$$P(E_T^-) \geq (1 - \alpha) + o(1)$$

Minimal intervals

An interval $I_{u,h} \in \Pi_T^+$ is called **minimal** if there is no other interval $I_{u',h'} \in \Pi_T^+$ with $I_{u',h'} \subset I_{u,h}$.

Define

$$\Pi_T^{min,+} = ext{ set of minimal intervals from } \Pi_T^+,$$
 $E_T^{min,+} = \left\{ \forall I_{u,h} \in \Pi_T^{min,+} : m'(v) > 0 \text{ for some } v \in I_{u,h} \right\}$

Since $E_T^{min,+} = E_T^+$, we have

$$P(E_T^{min,+}) \ge (1-\alpha) + o(1).$$

Testing for presence of time trend in temeprature data

Simulation results of the multiscale test for constant trend function

Table 1: Size of the multiscale test.

	nominal size α									
_										
T	0.01	0.05	0.1							
250	0.004	0.039	0.092							
350	0.012	0.051	0.069							
500	0.006	0.047	0.094							
1000	0.014	0.058	0.105							

Power of the multiscale test for different slope parameters β .

Table 2:
$$\beta = 1.25$$

Table 3:
$$\beta = 1.875$$

Table 4:
$$\beta = 2.5$$

	nominal size α			nominal size α			-	nominal size α			
T	0.01	0.05	0.1	T	0.01	0.05	0.1	T	0.01	0.05	0.1
250	0.085	0.252	0.341	250	0.318	0.621	0.714	250	0.693	0.898	0.937
350	0.236	0.396	0.470	350	0.648	0.796	0.865	350	0.929	0.981	0.990
500	0.315	0.577	0.669	500	0.793	0.943	0.967	500	0.986	1.000	1.000
1000	0.763	0.900	0.936	1000	0.997	1.000	1.000	1000	1.000	1.000	1.000

Conclusion

Conclusion

We developed multiscale methods to test qualitative hypothese about nonparametric time trends:

- whether the trend is present at all;
- whether the trend function is constant;
- in which time regions there is an upward/downward movement in the trend.

We derived asymptotic theory for the proposed tests.

As an application of our method, we analyzed the behavior of the yeraly mean temperature in Central England from 1659 to 2017.

Thank you!

Model

We observe n time series $\mathcal{Y}_i = \{Y_{it} : 1 \leq t \leq T\}$ of length T for $1 \leq i \leq n$

$$Y_{it} = m_i \left(\frac{t}{T}\right) + \alpha_i + \varepsilon_{it}$$

where

- m_i is an unknown trend function on [0,1], that are Lipschitz continuous and normalized such that $\int_0^1 m_i(u) du = 0$;
- α_i is an intercept term;
- $\mathcal{E}_i = \{ \varepsilon_{it} : 1 \le t \le T \}$ is a zero-mean stationary error process;
- \mathcal{E}_i are independent across i.

Model

Not observed variables

$$Y_{it}^{o} = Y_{it} - \alpha_i = m_i \left(\frac{t}{T}\right) + \varepsilon_{it}$$

can be approximated by

$$\widehat{Y}_{it} = Y_{it} - \widehat{\alpha}_i = Y_{it} - \frac{1}{T} \sum_{i=1}^{I} Y_{it}.$$

By construction

$$Y_{it}^{o} - \widehat{Y}_{it} = \widehat{\alpha}_i - \alpha_i = \frac{1}{T} \sum_{i=1}^{T} \varepsilon_{it} + \frac{1}{T} \sum_{i=1}^{T} m_i(t/T) = O_P(T^{-1/2}).$$

Test Statistic

For a given location $u \in [0,1]$, bandwidth h and a pair of time series i and j we construct the kernel averages

$$\widehat{\psi}_{ij,T}(u,h) = \sum_{t=1}^{T} w_{t,T}(u,h) (\widehat{Y}_{it} - \widehat{Y}_{jt}),$$

where

$$w_{t,T}(u,h) = \frac{\Lambda_{t,T}(u,h)}{\{\sum_{t=1}^{T} \Lambda_{t,T}^{2}(u,h)\}^{1/2}},$$

$$\Lambda_{t,T}(u,h) = K\left(\frac{t/T - u}{h}\right) \left[S_{T,2}(u,h) - S_{T,1}(u,h)\left(\frac{t/T - u}{h}\right)\right],$$

$$S_{T,\ell}(u,h) = \frac{1}{Th} \sum_{t=1}^{T} K\left(\frac{t/T - u}{h}\right) \left(\frac{t/T - u}{h}\right)^{\ell}$$

for $\ell = 0, 1, 2$ and K is a kernel function.

Test Statistic

Our multiscale statistic is defined as follows

$$\begin{split} \widehat{\Psi}_{n,T} &= \max_{1 \leq i < j \leq n} \widehat{\Psi}_{ij,T}, \\ \widehat{\Psi}_{ij,T} &= \max_{(u,h) \in \mathcal{G}_T} \Big\{ \Big| \frac{\widehat{\psi}_{ij,T}(u,h)}{(\widehat{\sigma}_i^2 + \widehat{\sigma}_j^2)^{1/2}} \Big| - \lambda(h) \Big\}, \end{split}$$

where

- $\lambda(h) = \sqrt{2 \log\{1/(2h)\}}$ is an additive correction term;
- \mathcal{G}_T is the set of points (u, h) that are taken into consideration;
- $\hat{\sigma}_i^2$ is an appropriate estimator of the long-run variance σ_i^2 .

Test procedure

Testing problem:

$$H_0: m_1 = m_2 = \ldots = m_n$$

Gaussian version of the test statistic:

$$\Phi_{n,T} = \max_{1 \le i < j \le n} \Phi_{ij,T},$$

$$\Phi_{ij,T} = \max_{(u,h) \in \mathcal{G}_T} \left\{ \left| \frac{\phi_{ij,T}(u,h)}{(\widehat{\sigma}_i^2 + \widehat{\sigma}_j^2)^{1/2}} \right| - \lambda(h) \right\},$$

where

$$\phi_{ij,T}(u,h) = \sum_{t=1}^{T} w_{t,T}(u,h) \left\{ \widehat{\sigma}_i \left(Z_{it} - \frac{1}{T} \sum_{t=1}^{T} Z_{it} \right) - \widehat{\sigma}_j \left(Z_{jt} - \frac{1}{T} \sum_{t=1}^{T} Z_{jt} \right) \right\};$$

 Z_t are independent standard normal random variables;

$$q_{n,T}(\alpha)$$
 is $(1-\alpha)$ quantile of $\Phi_{n,T}$.

Test procedure

For a given significance level $\alpha \in (0,1)$, we reject H_0 if $\widehat{\Psi}_{n,T} > q_{n,T}(\alpha)$.

Proposition

Supose that \mathcal{E}_i are independent across i and satisfy $\mathcal{C}1-\mathcal{C}2$ for each i. Under our remaining assumptions and under $H_0: m_1=m_2=\ldots=m_n$ it holds that

$$P(\widehat{\Psi}_{n,T} \leq q_{n,T}(\alpha)) = (1-\alpha) + o(1).$$

Proposition

Let the conditions of previous proposition be satisfied. Under local alternatives we have

$$P(\widehat{\Psi}_{n,T} \leq q_{n,T}(\alpha)) = o(1).$$

Clustering, group structure

- The null hypothesis $H_0: m_1 = m_2 = \ldots = m_n$ is violated.
- There exist sets or groups of time series G_1, \ldots, G_N with $N \le n$ and $\{1, \ldots, n\} = \bigcup_{\ell=1}^N G_\ell$ such that for each $1 \le \ell \le N$ we have $m_i = g_\ell$ for all $i \in G_\ell$, where g_ℓ are group-specific trend functions.
- For any $\ell \neq \ell'$, the trends $g_{\ell,T}$ and $g_{\ell',T}$ differ in the following sense: There exists $(u,h) \in \mathcal{G}_T$ with $[u-h,u+h] \subseteq [0,1]$ such that $g_{\ell,T}(w) g_{\ell',T}(w) \geq c_T \sqrt{\log T/(Th)}$ for all $w \in [u-h,u+h]$ or $g_{\ell',T}(w) g_{\ell,T}(w) \geq c_T \sqrt{\log T/(Th)}$ for all $w \in [u-h,u+h]$, where $0 < c_T \to \infty$.

Clustering, algorithm

Dissimilarity measure between two sets of time series S and S':

$$\widehat{\Delta}(S, S') = \max_{\substack{i \in S, \\ j \in S'}} \widehat{\Psi}_{ij, T}.$$

Clustering algorithm

Step 0 (Initialization): Let $\widehat{G}_i^{[0]} = \{i\}$ denote the *i*-th singleton cluster for $1 \leq i \leq n$ and define $\{\widehat{G}_1^{[0]}, \ldots, \widehat{G}_n^{[0]}\}$ to be the initial partition of time series into clusters.

Step r (Iteration): Let $\widehat{G}_1^{[r-1]},\ldots,\widehat{G}_{n-(r-1)}^{[r-1]}$ be the n-(r-1) clusters from the previous step. Determine the pair of clusters $\widehat{G}_{\ell}^{[r-1]}$ and $\widehat{G}_{\ell'}^{[r-1]}$ for which

$$\widehat{\Delta}\big(\widehat{G}_{\ell}^{[r-1]},\widehat{G}_{\ell'}^{[r-1]}\big) = \min_{1 \leq k < k' \leq n-(r-1)} \widehat{\Delta}\big(\widehat{G}_{k}^{[r-1]},\widehat{G}_{k'}^{[r-1]}\big)$$

and merge them into a new cluster.

Clustering, theoretical properties

The estimator of the number of groups is

$$\widehat{\textit{N}} = \min \Big\{ \textit{r} = 1, 2, \dots \Big| \max_{1 \leq \ell \leq \textit{r}} \widehat{\Delta} \big(\widehat{\textit{G}}_{\ell}^{[\textit{n}-\textit{r}]} \big) \leq \textit{q}_{\textit{n},\textit{T}}(\alpha) \Big\}.$$

Proposition

Let the conditions of previous propositions be satisfied. Then

$$P\left(\left\{\widehat{G}_{1},\ldots,\widehat{G}_{\widehat{N}}\right\} = \left\{G_{1},\ldots,G_{N}\right\}\right) \geq (1-\alpha) + o(1)$$

and

$$P(\widehat{N} = N) \ge (1 - \alpha) + o(1).$$

Testing for equality of different temperature time trends

Multiscale Inference for Nonparametric Time Trends

Idea behind the additive correction

Consider the uncorrected statistic

$$\widehat{\Psi}_{\mathcal{T}, \mathsf{uncorrected}} = \max_{(u,h) \in \mathcal{G}_{\mathcal{T}}} \Big| \frac{\widehat{\psi}_{\mathcal{T}}(u,h)}{\widehat{\sigma}} \Big|$$

under the null hypothesis H_0 : m=0 and under simplifying assumptions:

- the errors ε_i are i.i.d. normally distributed;
- $\widehat{\sigma} = \sigma$:
- $\mathcal{G}_T = \{(u_k, h_l)|u_k = (2k-1)h_l \text{ for } 1 \le k \le 1/2h_l, 1 \le l \le L\}.$

$$\widehat{\Psi}_{\textit{T}, \text{uncorrected}} = \max_{1 \leq l \leq L} \max_{1 \leq k \leq 1/2h_l} \left| \frac{\widehat{\psi}_{\textit{T}}(u_k, h_l)}{\sigma} \right|$$

$$\widehat{\Psi}_{\textit{T}, uncorrected} = \max_{1 \leq \textit{I} \leq \textit{L}} \max_{1 \leq \textit{k} \leq 1/2\textit{h}_{\textit{I}}} \Big| \frac{\widehat{\psi}_{\textit{T}}(\textit{u}_{\textit{k}}, \textit{h}_{\textit{I}})}{\sigma} \Big|$$

$$\Rightarrow \max_k \frac{\psi_{\mathcal{T}}(u_k,h_l)}{\sigma} = \sqrt{2\log(1/2h_l)} + o_P(1) \to \infty$$
 as $h \to 0$ and the stochastic behavior of $\widehat{\Psi}_{\mathcal{T},\text{uncorrected}}$ is dominated by $\frac{\widehat{\psi}_{\mathcal{T}}(u_k,h_l)}{\sigma}$ for small

Multiscale Inference for Nonparametric Time Trends