MA427 Lecture 2 The geometry of LP

Giacomo Zambelli

January 21, 2019

Today's lecture

- Proving the duality theorem and characterising unbounded problems
- Linear, affine, conic, and convex combinations
- Faces of polyhedra
- ► Vertices of polyhedra

LP duality

Theorem (Strong Duality Theorem)

Given a matrix $A \in \mathbb{R}^{m \times n}$ and vectors $c \in \mathbb{R}^n$, $b \in \mathbb{R}^m$, let

$$P := \{x : Ax \le b\}, \quad D := \{u : u^{\top}A = c^{\top}, u \ge 0\}.$$

If P and D are both nonempty, then

$$\max\{c^{\top}x : Ax \le b\} = \min\{u^{\top}b : u^{\top}A = c^{\top}, u \ge 0\},\$$

and there exist $x^* \in P$ and $y^* \in D$ such that $c^\top x^* = u^{*\top} b$.

► Direction max ≤ min

$$c^{\top}x = (u^{\top}A)x = u^{\top}(Ax) \leq u^{\top}b.$$

▶ Direction min ≤ max: via Fourier-Motzkin elimination.

► Consider the feasibility problem

$$z - c^{\top} x \leq 0$$
$$Ax \leq b$$

► Consider the feasibility problem

$$z - c^{\top} x \leq 0$$
$$Ax \leq b$$

► Apply Fourier-Motzkin elimination to all *x_i* variables, but keep *z*.

Consider the feasibility problem

$$z - c^{\top} x \leq 0$$
$$Ax \leq b$$

- Apply Fourier-Motzkin elimination to all x_i variables, but keep z.
- ▶ The resulting system can be reduced to a single inequality

$$z \leq \beta$$

► Consider the feasibility problem

$$z - c^{\top}x \leq 0$$

 $Ax \leq b$

- Apply Fourier-Motzkin elimination to all x_i variables, but keep z.
- ▶ The resulting system can be reduced to a single inequality

$$z \leq \beta$$

There exists a solution (z, \bar{x}) to the original system with $z = \beta$; we get $\max\{c^{\top}x : Ax \leq b\} = \beta$.

► Consider the feasibility problem

$$z - c^{\top} x \leq 0$$
$$Ax \leq b$$

- Apply Fourier-Motzkin elimination to all x_i variables, but keep z.
- ▶ The resulting system can be reduced to a single inequality

$$z \leq \beta$$

- There exists a solution (z, \bar{x}) to the original system with $z = \beta$; we get $\max\{c^{\top}x : Ax \leq b\} = \beta$.
- We can express $z \leq \beta$ as a nonnegative combination (u_0, u^*) of the original system. It follows that $u^{*\top}A = c^{\top}$ and $u^{*\top}b = \beta$.

Unbounded objectives

Theorem

Given a matrix $A \in \mathbb{R}^{m \times n}$ and vectors $c \in \mathbb{R}^n$, $b \in \mathbb{R}^m$, let

$$P := \{x : Ax \le b\}, \quad D := \{u : u^{\top}A = c^{\top}, u \ge 0\}.$$

Assume that $P \neq \emptyset$. Then the primal program $\max\{c^{\top}x: x \in P\}$ is unbounded if and only if $D = \emptyset$, which is equivalent to the existence of a vector \bar{y} with $A\bar{y} \leq 0$, $c^{\top}\bar{y} > 0$.

Proof.

► Farkas' lemma: $D = \emptyset \Leftrightarrow \exists \bar{y} : A\bar{y} \leq 0, c^{\top}\bar{y} > 0.$

Unbounded objectives

Theorem

Given a matrix $A \in \mathbb{R}^{m \times n}$ and vectors $c \in \mathbb{R}^n$, $b \in \mathbb{R}^m$, let

$$P := \{x : Ax \le b\}, \quad D := \{u : u^{\top}A = c^{\top}, u \ge 0\}.$$

Assume that $P \neq \emptyset$. Then the primal program $\max\{c^\top x : x \in P\}$ is unbounded if and only if $D = \emptyset$, which is equivalent to the existence of a vector \bar{y} with $A\bar{y} \leq 0$, $c^\top \bar{y} > 0$.

Proof.

- ► Farkas' lemma: $D = \emptyset \Leftrightarrow \exists \bar{y} : A\bar{y} \leq 0, c^{\top}\bar{y} > 0.$
- ▶ $D \neq \emptyset$: Strong duality gives an upper bound on $\max\{c^{\top}x : x \in P\}$.

Unbounded objectives

Theorem

Given a matrix $A \in \mathbb{R}^{m \times n}$ and vectors $c \in \mathbb{R}^n$, $b \in \mathbb{R}^m$, let

$$P := \{x : Ax \le b\}, \quad D := \{u : u^{\top}A = c^{\top}, u \ge 0\}.$$

Assume that $P \neq \emptyset$. Then the primal program $\max\{c^{\top}x: x \in P\}$ is unbounded if and only if $D = \emptyset$, which is equivalent to the existence of a vector \bar{y} with $A\bar{y} \leq 0$, $c^{\top}\bar{y} > 0$.

Proof.

- ► Farkas' lemma: $D = \emptyset \Leftrightarrow \exists \bar{y} : A\bar{y} \leq 0, c^{\top}\bar{y} > 0.$
- ▶ $D \neq \emptyset$: Strong duality gives an upper bound on max{ $c^{\top}x : x \in P$ }.
- ▶ $D = \emptyset$: For any $\bar{x} \in P$, $\lambda > 0$,

$$\bar{x} + \lambda \bar{y} \in P$$
, $\lim_{z \to 0} c^{\top} (\bar{x} + \lambda \bar{y}) = \infty$.

The geometry of Linear Programming

Hyperplanes, half-spaces and polyhedra

Given $a \in \mathbb{R}^n$, $a \neq 0$, and $\beta \in \mathbb{R}$:

- ▶ hyperplane: $\{x \in \mathbb{R}^n \mid a^\top x = \beta\}$.
- ▶ half-space: $\{x \in \mathbb{R}^n \mid a^\top x \leq \beta\}$.
- polyhedron: intersection of half-spaces = feasible region of LP.

Linear, affine, convex, and conic combinations

Linear combinations and linear spaces

 $\mathbf{x} \in \mathbb{R}^n$ is a linear combination of $x^1, \ldots, x^q \in \mathbb{R}^n$ if $\exists \lambda_1, \ldots, \lambda_q$:

$$x = \sum_{j=1}^{q} \lambda_j x^j.$$

- $x^1, \ldots, x^q \in \mathbb{R}^n$ are linearly independent, if $\sum_{j=1}^q \lambda_j x^j = 0$ implies that $\lambda_i = 0, j = 1, \ldots, q$.
- Linear space: set closed under taking linear combinations = intersection of hyperplanes through the origin

$$\mathcal{L} = \{ x \in \mathbb{R}^n : Ax = 0 \}$$

- **Basis**: maximal set of linearly independent vectors in \mathcal{L} .
- Dimension of \mathcal{L} : cardinality of any basis, equals $\dim(\mathcal{L}) = n \text{rk}(A)$.

Linear combinations and linear spaces

Affine combinations and affine spaces

 $\mathbf{x} \in \mathbb{R}^n$ is a affine combination of $x^1, \dots, x^q \in \mathbb{R}^n$ if $\exists \lambda_1, \dots, \lambda_q, \sum_{j=1}^q \lambda_j = 1$,

$$x = \sum_{j=1}^{q} \lambda_j x^j.$$

- ▶ $x^0, x^1, ..., x^q \in \mathbb{R}^n$ are affinely independent, if $\sum_{j=0}^q \lambda_j x^j = 0$, $\sum_{j=0}^q \lambda_j = 0$ implies that $\lambda_i = 0, j = 0, ..., q$.
- ► Equivalently, none of the vectors can be written as an affine combination of the others.
- ► Affine space: set closed under taking affine combinations:

$$\mathcal{A} = \{ x \in \mathbb{R}^n : Ax = b \}$$

Dimension

- ▶ Basis of affine space: maximal set of affinely independent vectors in A.
- ▶ *Dimension* of set $S \subseteq \mathbb{R}^n$: maximum number of affinely independent vectors in S minus one.
- $ightharpoonup dim(\emptyset) = -1.$
- ▶ If $A = \{x \in \mathbb{R}^n : Ax = b\} \neq \emptyset$, then dim(A) = n rk(A).

Conic combinations and cones

▶ $x \in \mathbb{R}^n$ is a *conic combination* of $x^1, \ldots, x^q \in \mathbb{R}^n$ if $\exists \lambda_1, \ldots, \lambda_q \geq 0$:

$$x = \sum_{j=1}^{q} \lambda_j x^j.$$

- Cone: set closed under taking conic combinations.
- ▶ cone(S): cone generated by set $S \subseteq \mathbb{R}^n$.

 $Ray: cone(r) = \{\lambda r : \lambda \ge 0\}.$

The geometric interpretation of Farkas' lemma

Theorem (Farkas' lemma)

Exactly one of the following two systems has a feasible solution:

- $ightharpoonup Ax = b, x \ge 0$

The geometric interpretation of Farkas' lemma

Theorem (Farkas' lemma)

Exactly one of the following two systems has a feasible solution:

- $ightharpoonup Ax = b, x \ge 0$
- $\blacktriangleright u^{\top} A \leq 0, u^{\top} b > 0$
- \triangleright Columns of A: A^1, A^2, \dots, A^n

$$C = cone(\{A_1, A_2, \dots, A_n\})$$

= $\{y \in \mathbb{R}^m : \exists x \in \mathbb{R}^n, x \ge 0, y = Ax\}.$

- ▶ Primal system feasible if and only if $b \in C$
- ▶ Dual system is feasible:

$$H = \{ y \in R^m : u^\top y \le 0 \}$$

$$b \notin H \supseteq C$$

Convex combinations and convex sets

▶ $x \in \mathbb{R}^n$ is a convex combination of $x^1, \ldots, x^q \in \mathbb{R}^n$ if $\exists \lambda_1, \ldots, \lambda_q \geq 0, \sum_{i=1}^q \lambda_i = 1$:

$$x = \sum_{j=1}^{q} \lambda_j x^j.$$

► Convex set: closed under taking convex combinations.

Convex combinations and convex sets

▶ Half-spaces are convex: $H = \{x \in \mathbb{R}^n : a^\top x \leq \beta\}.$

$$x^{1}, x^{2} \in H, \ x = \lambda_{1}x^{1} + \lambda_{2}x^{2}, \ 0 \le \lambda_{1}, \lambda_{2}, \ \lambda_{1} + \lambda_{2} = 1$$

 $a^{T}x = a^{T}(\lambda_{1}x^{1} + (1 - \lambda_{1})x^{2}) \le \lambda_{1}\beta + (1 - \lambda_{1})\beta = \beta$

Convex combinations and convex sets

▶ Half-spaces are convex: $H = \{x \in \mathbb{R}^n : a^\top x \leq \beta\}.$

$$x^{1}, x^{2} \in H, \ x = \lambda_{1}x^{1} + \lambda_{2}x^{2}, \ 0 \le \lambda_{1}, \lambda_{2}, \ \lambda_{1} + \lambda_{2} = 1$$

 $a^{T}x = a^{T}(\lambda_{1}x^{1} + (1 - \lambda_{1})x^{2}) \le \lambda_{1}\beta + (1 - \lambda_{1})\beta = \beta$

- ▶ Intersections of convex sets are convex.
- Consequently, every polyhedron is convex.

Linear, affine, convex, and conic combinations

Valid inequalities

An inequality $c^{\top}x \leq \delta$ is valid for $P \subseteq \mathbb{R}^n$ if $c^{\top}x \leq \delta$ is satisfied by every point in P.

Theorem

Let $P := \{x \in \mathbb{R}^n : Ax \leq b\}$ be a nonempty polyhedron. An inequality $c^\top x \leq \delta$ is valid for P if and only if there exists $u \geq 0$ such that $u^\top A = c^\top$ and $u^\top b \leq \delta$.

Valid inequalities

An inequality $c^{\top}x \leq \delta$ is valid for $P \subseteq \mathbb{R}^n$ if $c^{\top}x \leq \delta$ is satisfied by every point in P.

Theorem

Let $P := \{x \in \mathbb{R}^n : Ax \leq b\}$ be a nonempty polyhedron. An inequality $c^\top x \leq \delta$ is valid for P if and only if there exists $u \geq 0$ such that $u^\top A = c^\top$ and $u^\top b \leq \delta$.

Proof - "if" part: If $u^{\top}A = c^{\top}$, $u^{\top}b \leq \delta$, $u \geq 0$:

$$c^{\top}x = (u^{\top}A)x = u^{\top}(Ax) \le u^{\top}b \le \delta.$$

Valid inequalities

An inequality $c^{\top}x \leq \delta$ is valid for $P \subseteq \mathbb{R}^n$ if $c^{\top}x \leq \delta$ is satisfied by every point in P.

Theorem

Let $P:=\{x\in\mathbb{R}^n:Ax\leq b\}$ be a nonempty polyhedron. An inequality $c^\top x\leq \delta$ is valid for P if and only if there exists $u\geq 0$ such that $u^\top A=c^\top$ and $u^\top b\leq \delta$.

Proof - "if" part: If $u^{\top}A = c^{\top}$, $u^{\top}b \leq \delta$, $u \geq 0$:

$$c^{\top}x = (u^{\top}A)x = u^{\top}(Ax) \le u^{\top}b \le \delta.$$

Proof - "only if" part: If $c^{\top}x \leq \delta$ is valid, then $\max\{c^{\top}x: x \in P\} \leq \delta$. Apply duality.

For a polyhedron P and a valid inequality $c^{\top}x \leq \delta$, a face is

$$F := P \cap \{x \in \mathbb{R}^n : c^\top x = \delta\}$$

For a polyhedron P and a valid inequality $c^{\top}x \leq \delta$, a face is

$$F := P \cap \{x \in \mathbb{R}^n : c^\top x = \delta\}$$

- ▶ The inequality $c^{\top}x \leq \delta$ defines the face F.
- ► The hyperplane $\{x \in \mathbb{R}^n : c^\top x = \delta\}$ is the *supporting* hyperplane of F.
- Every face of a polyhedron is a polyhedron.
- ▶ \emptyset and P are always faces. If $F \neq \emptyset, P$, then F is a *proper* face.
- **Facet**: inclusionwise maximal proper face.

Theorem

Let $P:=\{x\in\mathbb{R}^n: a_i^{\top}x\leq b_i,\ i\in M\}$, assume $P\neq\emptyset$. For any $I\subseteq M$, the set

$$F_{I} := \{ x \in \mathbb{R}^{n} : a_{i}^{\top} x = b_{i}, i \in I, a_{i}^{\top} x \leq b_{i}, i \in M \setminus I \}$$

is a face of P. Conversely, if F is a nonempty face of P, then $F = F_I$ for some $I \subseteq M$.

Theorem

Let $P := \{x \in \mathbb{R}^n : a_i^\top x \le b_i, i \in M\}$, assume $P \ne \emptyset$. For any $I \subseteq M$, the set

$$F_{I} := \{ x \in \mathbb{R}^{n} : a_{i}^{\top} x = b_{i}, i \in I, a_{i}^{\top} x \leq b_{i}, i \in M \setminus I \}$$

is a face of P. Conversely, if F is a nonempty face of P, then $F = F_I$ for some $I \subseteq M$.

Proof - F_I is a face: set $c = \sum_{i \in I} a_i$, $\delta = \sum_{i \in I} b_i$.

Theorem

Let $P := \{x \in \mathbb{R}^n : a_i^\top x \le b_i, i \in M\}$, assume $P \ne \emptyset$. For any $I \subseteq M$, the set

$$F_{I} := \{ x \in \mathbb{R}^{n} : a_{i}^{\top} x = b_{i}, i \in I, a_{i}^{\top} x \leq b_{i}, i \in M \setminus I \}$$

is a face of P. Conversely, if F is a nonempty face of P, then $F = F_I$ for some $I \subseteq M$.

Proof - F_I is a face: set $c = \sum_{i \in I} a_i$, $\delta = \sum_{i \in I} b_i$. Proof - every nonempty face defined as $\{x \in P : c^\top x = \delta\}$ can be written as F_I : Apply duality:

$$\max\{c^{\top}x : x \in P\} = \min\{u^{\top}b : u^{\top}A = c^{\top}, u \ge 0\}.$$

Dual optimal \bar{u} : set

$$I = \{i \in M : \bar{u}_i > 0\}.$$

Apply complementary slackness.

The three ways of defining vertices

Definition I - a face of dimension 0

Definition

A face of dimension 0 is called a vertex.

► That is, for a polyhedron $P \subseteq \mathbb{R}^n$, $x^* \in P$ is a *vertex* of P if for some valid inequality $c^\top x \leq \delta$,

$$\{x^*\} = P \cap \{x \in \mathbb{R}^n : c^\top x = \delta\}.$$

▶ Equivalently, $c^\top x < c^\top x^*$ for every $x \in P \setminus \{x^*\}$.

Definition II - basic feasible solution

Definition

A point $x^* \in \mathbb{R}^n$ is a *basic feasible solution* of the system

$$a_i^{\top} x \leq b_i, i \in M$$

if there are n linearly independent constraints that are binding at x^* .

Quiz: basic solutions

$$x_1$$
 $+x_2$ = 1
 x_2 $+x_3 \le 1$
 x_1 $+x_3 \ge 1$
 x_1 $+2x_2$ $+x_3 \ge 2$
 x_1 $+x_2$ $+x_3 \ge 1$

Which of these points are basic feasible solutions?

- (A) (1/2, 1/2, 1/2)
- (B) (1,0,1)
- (C) (0,1,0)

Definition III - extreme points

Definition (Extreme points)

A point $x^* \in P$ is an *extreme point* of the polyhedron P, if x^* cannot be written as a proper convex combination of some points in P.

Theorem

Let $P = \{x \mid Ax \leq b\}$ be a polyhedron in \mathbb{R}^n , where $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$. Given a point $x^* \in P$, the following are equivalent.

- (i) x^* is a vertex of P.
- (ii) x^* is a basic feasible solution of the system $Ax \leq b$.
- (iii) x^* is an extreme point of P.

Theorem

Let $P = \{x \mid Ax \leq b\}$ be a polyhedron in \mathbb{R}^n , where $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$. Given a point $x^* \in P$, the following are equivalent.

- (i) x^* is a vertex of P.
- (ii) x^* is a basic feasible solution of the system $Ax \leq b$.
- (iii) x^* is an extreme point of P.

Proof: (i) \Rightarrow (iii): $x^* = P \cap \{x : c^\top x = \delta\}$, and assume $x^* = \lambda x' + (1 - \lambda)x''$, for $x', x'' \in P$, $0 < \lambda < 1$.

$$\delta = c^{\top} x^* = \lambda c^{\top} x' + (1 - \lambda) c^{\top} x'' \le \delta$$

This implies $c^{\top}x' = c^{\top}x'' = \delta$, therefore $x' = x'' = x^*$.

Theorem

Let $P = \{x \mid Ax \leq b\}$ be a polyhedron in \mathbb{R}^n , where $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$. Given a point $x^* \in P$, the following are equivalent.

- (i) x^* is a vertex of P.
- (ii) x^* is a basic feasible solution of the system $Ax \leq b$.
- (iii) x^* is an extreme point of P.

Proof: (iii) \Rightarrow (ii):

- Let x^* be an extreme point, satisfying the inequalities $A'x \le b'$ at equality. Assume $\operatorname{rk}(A') < n$.
- ▶ There exists $y \neq 0$: A'y = 0.
- ▶ For some $\varepsilon > 0$, both $x \varepsilon y$ and $x + \varepsilon y$ are in P.

Theorem

Let $P = \{x \mid Ax \leq b\}$ be a polyhedron in \mathbb{R}^n , where $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$. Given a point $x^* \in P$, the following are equivalent.

- (i) x^* is a vertex of P.
- (ii) x^* is a basic feasible solution of the system $Ax \leq b$.
- (iii) x^* is an extreme point of P.

Proof: (ii) \Rightarrow (i):

- ▶ x^* basic feasible, satisfying the inequalities $A'x \le b'$ at equality with $\operatorname{rk}(A') = n$.
- ▶ Let $c = \sum_i a'_i$, $\delta = \sum_i b'_i$.
- ► Then, $P \cap \{x : c^{\top}x = \delta\} = \{x^*\}.$

Existence of vertices

Not all polyhedra have vertices.

$$x_1 + x_2 + x_3 \le 1,$$

 $x_1 + x_2 \ge 0,$
 $x_3 \ge 0,$

Existence of vertices

Theorem

Let $P = \{x \mid Ax \leq b\}$ be a polyhedron in \mathbb{R}^n , where $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$. Assume that the problem is feasible, that is, $P \neq \emptyset$. Then, the following three properties are equivalent:

- (i) There exists a basic feasible solution in P.
- (ii) The matrix A has rk(A) = n.
- (iii) The only solution of Az = 0 is z = 0.

Existence of vertices

Theorem

Let $P = \{x \mid Ax \leq b\}$ be a polyhedron in \mathbb{R}^n , where $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$. Assume that the problem is feasible, that is, $P \neq \emptyset$. Then, the following three properties are equivalent:

- (i) There exists a basic feasible solution in P.
- (ii) The matrix A has rk(A) = n.
- (iii) The only solution of Az = 0 is z = 0.

Theorem

If a linear programming problem that has a basic feasible solutions admits an optimum, then there exists an optimum which is a basic feasible solution.

An important consequence

Theorem

If a linear programming problem that has a basic feasible solutions admits an optimum, then there exists an optimum which is a basic feasible solution.

- Note that the number of basic solutions to a linear system is finite (how many?)
- Therefore, to solve an LP problem, we only need to consider a finite number of possibilities.
- How to do this efficiently?

A common misunderstanding

$$\begin{array}{ccc} \max & x_1+x_2 \\ & x_1+x_2 & \leq & 1 \\ & x_1,x_2 \geq 0 \end{array}$$

The previous theorem says that at at least one optimal solution is basic, but there may be also non-basic optimal solutions.