

### AH512

## HIGH-SENSITIVITY HALL-EFFECT SWITCH SENSOR

These Hall-effect switch integrated circuits are monolithic integrated circuit consisting of a voltage regulator, Hall-voltage generator, differential amplifier, schmitt trigger, temperature compensation circuit. Its input is a magnetic flux density signal and output is a digital voltage signal.

#### **FEATURES**

- . Wide supply voltage range
- . Fast response time
- . Wide frequency and temperature range
- . Long operating life
- . Small size, convenient installing
- . Output compatible with all digital logic families

## TYPICAL APPLICATIONS

- . Contactless switch
- . Position control
- . Speed measurement
- . Revolution detection
- . Isolation measurement
- . Brushless d.c motor
- . Automotive ignitor

### **ABSOLUTE MAXIMUM RATING**

| Parameter                   | Symbol          | Value     | Unit |
|-----------------------------|-----------------|-----------|------|
| Supply voltage              | V <sub>CC</sub> | 24        | V    |
| Magnetic flux density       | В               | Unlimited | mT   |
| Output OFF voltage          | V <sub>ce</sub> | 50        | V    |
| Continuous output current   | I <sub>OL</sub> | 50        | mA   |
| Operating temperature range | T <sub>A</sub>  | -40~125   | °C   |
| Storage temperature range   | Ts              | -55~150   | °C   |

### **ELECTRICAL CHARACTERISTICS**

T<sub>A</sub>=25°C

| Parameter                 | Symbol          | Test conditions                           | Type and Value |      |     | Unit  |
|---------------------------|-----------------|-------------------------------------------|----------------|------|-----|-------|
|                           |                 |                                           | min            | typ  | max | Offic |
| Supply voltage            | Vcc             |                                           | 4.5            | -    | 24  | V     |
| Output saturation voltage | V <sub>OL</sub> | Iout=20mA B>B <sub>OP</sub>               | -              | 200  | 400 | mV    |
| Output leakage current    | I <sub>OH</sub> | Vout=24V B <b<sub>RP</b<sub>              | -              | 0.1  | 10  | μА    |
| Supply current            | Icc             | V <sub>CC</sub> =Output open              | -              | -    | 10  | mA    |
| Output rise time          | t <sub>r</sub>  | R <sub>L</sub> =820Ω C <sub>L</sub> =20PF | -              | 0.12 | -   | μS    |
| Output fall time          | t <sub>f</sub>  | R <sub>L</sub> =820Ω C <sub>L</sub> =20PF | -              | 0.18 | -   | μS    |



| <u></u>       |                 |                | VCC- 110 Z 1V |     |      |  |
|---------------|-----------------|----------------|---------------|-----|------|--|
| Parameter     | Symbol          | Type and Value |               |     | Unit |  |
|               |                 | min            | typ           | max | Unit |  |
| Operate point | B <sub>OP</sub> |                | 4.0           | 6.0 | mT   |  |
| Release point | $B_RP$          | -6.0           | -4.0          |     | mT   |  |
| Hysteresis    | Вн              | 2.0            | 4.0           | -   | mT   |  |

 $V_{CC} = 4.5 \sim 24 V$ 

NOTE: 1mT=10GS

### **BLOCK DIAGRAM**

## **MAGNETIC-ELECTRICAL** TRANSFER CHARACTERISTICS





#### **DIMENSIONS** ( in: mm)



TO -92T Package and Active Area

# Cautions

- 1. When install, should as full as possible decrease the mechanical stress acting on the Hall IC, to avoid the influence of the operate point and release point.
- 2. On the premise of ensuring welding quality, use as possible as low welding temperature as short time.

