Digital Attendance Recorder (D.A.R)

Memory and Protocol Specifications

Memory map

- 512-bytes of EEPROM is available on chip
- Every class requires 11-bytes
- 512 / 11 = 46 classes + 6-bytes to spare
- 46 classes are more than two weeks
- Every field has MSB on the left side
- Field values correspond to original values according to an index starting from 0 (see table 1)
- Note carefully the orientation of attendance bits.
- 1 last byte in EEPROM keeps track of number of classes currently stored in the memory

Serial Port data communication protocol b/w DAR and PC

Settings:

Baud rate 9600 bps

Start bit 1
Data bits 8
Parity none
Stop bit 1

		MSB [7]	[6]	[5]	[4]	[3]	[2]	[1]	LSB [0]		
	0	<	— Sub	ject —	->	V	— Моі	nth —		٦	2 bytes header
388	1	۳		-Day-		٨	Year	# of cl	asses	J	2 by
gdre	2	7	6	5	4	3	2	1	0	١	
Increasing memory address	3	15							8		ata
	4										
ä	5										e g
reasing	6										9 bytes ndance
	7										9 bytes attendance data
밀	8										at
١	9	63							56		
	10	\geq	\times	69					64	J	

Steps:

- [PC] "SEND" → [DAR]
 PC requests DAR to send the stored data.
- 2. [DAR] "YES" or "NO" \rightarrow [PC]
- 3. If "NO" then PC program terminates.
- 4. If "YES" then PC waits for DAR to send the complete burst of data.
- 5. DAR first sends a byte which contains the "number of classes" currently stored in it. It means ("number of classes" x 11) bytes will be sent towards PC.
- 6. DAR then sends the bytes in the order of increasing addresses as shown in fig.1
- 7. After every 11th byte, data for a new class begins.
- 8. [DAR] "FINISH" → PC
 After all the classes, DAR signals PC to terminate the connection.
- 9. PC software must then manipulate these bytes to retrieve human readable information from it and then save it to a file or database for permanent storage.

2-Byte Header										9-Byte Attendance		
Subject		Month		Day		Year		#	# of Classes	Attendance		
											Bit number	
SSD	0000	Jan	0000	1	00000	2007	0	1	00	Roll#01	0	
Opto	0001	Feb	0001	2	00001	2008	1	2	01	Roll#02	1	
VLSI	0010	Mar	0010	3	00010			3	10	Roll#03	2	
LCS	0011	Apr	0011	4	00011			4	11	Roll#04	3	
CS-2	0100	May	0100	5	00100					Roll#05	4	
DSP	0101	Jun	0101	6	00101						•••••	
MPAL	0110	July	0110	7	00110						•••••	
CCN	0111	Aug	0111								•••••	
NM	1000	Sep	1000							Roll#69	68	
		Oct	1001							Roll#70	69	
		Nov	1010	30	11101					Not used	70	
		Dec	1011	31	11110					Not used	71	

Written by: **Aamir Ahmed Khan**