In the name of God

Auto Encoders

Mehrnaz Faraz

Faculty of Electrical Engineering
K. N. Toosi University of Technology

Milad Abbasi

Faculty of Electrical Engineering
Sharif University of Technology

Auto Encoders

- An unsupervised deep learning algorithm —— Unlabeled data
- Are artificial neural networks
- Useful for dimensionality reduction and clustering

 \hat{x} is x's reconstruction

z is some latent representation or code and s is a non-linearity such as the sigmoid

Auto Encoders

• Simple structure:

Undercomplete AE

- Hidden layer is **Undercomplete** if smaller than the input layer
 - Compresses the input
 - Hidden nodes will be Good features for the training

Overcomplete AE

- Hidden layer is Overcomplete if greater than the input layer
 - No compression in hidden layer.
 - Each hidden unit could copy a different input component.

Deep Auto Encoders

- Deep Auto Encoders (DAE)
- Stacked Auto Encoders (SAE)

• First layer:

• Features of first layer:

Second layer:

• Features of second layer:

Using Deep Auto Encoder

- Feature extraction
- Dimensionality reduction

Classification x_1 a_1 $\boldsymbol{b_1}$ x_2 **Features Inputs** a_2 $\boldsymbol{b_2}$ x_3 a_3 x_4 **Encoder**

Using Deep Auto Encoder

Reconstruction

Using AE

- Denoising
- Data compression
- Unsupervised learning
- Manifold learning
- Generative model

Types of Auto Encoder

- Stacked auto encoder (SAE)
- Denoising auto encoder (DAE)
- Sparse Auto Encoder (SAE)
- Contractive Auto Encoder (CAE)
- Convolutional Auto Encoder (CAE)
- Variational Auto Encoder (VAE)

Generative Models

- Given training data, generate new samples from same distribution
 - Variational Auto Encoder (VAE)
 - Generative Adversarial Network (GAN)

Variational Auto Encoder

Variational Auto Encoder

- Use probabilistic encoding and decoding
 - Encoder: $q_{\emptyset}(z|x)$
 - Decoder: $p_{\theta}(x|z)$
- x: Unknown probability distribution
- z: Gaussian probability distribution

Training Variational Auto Encoder

Latent space:

Training Variational Auto Encoder

Generating new data:

Example: MNIST Database

Generative Adversarial Network

• VAE: x Encoder z Decoder \tilde{x}

GAN:

- Can generate samples
- Trained by competing each other
- Use neural network
- Z is some random noise (Gaussian/Uniform).
- Z can be thought as the latent representation of the image.

GAN's Architecture

• Overview:

Using GAN

Image generation:

Using GAN

Data manipulation:

Denoising Auto Encoder

Add noise to its input, and train it to recover this original.

Denoising Auto Encoder

Sparse Auto Encoder

- Reduce the number of active neurons in the coding layer.
 - Add sparsity loss into the cost function.
- Sparsity loss:
 - Kullback-Leibler(KL) divergence is commonly used.

Sparse Auto Encoder

$$J_{sparse}(w,b) = J(w,b) + \beta \sum_{j=1} KL(\rho \square \hat{\rho}_j)$$

$$KL(\rho \Box \hat{\rho}_j) = \rho \log \frac{\rho}{\hat{\rho}_j} + (1 - \rho) \log \frac{1 - \rho}{1 - \hat{\rho}_j}$$