Modelo YOLOv8 para detección de vacas

Adrián Matute Beltrán A01703889

Tecnológico de Monterrey Campus Querétaro, México

Introducción

Este reporte profundiza en el análisis de los patrones de aglomeración de vacas en la fila de ordeño, utilizando datos recolectados por el modelo híbrido YOLOv8 (precisión: 95.14%) y visualizados en un dashboard interactivo. El objetivo es identificar:

- Patrones temporales de congestión.
- Factores críticos que afectan la eficiencia del proceso.
- Recomendaciones operativas basadas en datos cuantitativos.

Metodología

1. Dataset y Modelo

Recolección de Datos

- Fuente: Imágenes aéreas ortogonales capturadas en un rancho ganadero, almacenadas en Google
 Drive en formato JPG (1920x1080 px, 24 bits RGB).
- Volumen: 8,115 imágenes (56.4 días de captura, intervalos de 5 minutos).

Problemas iniciales:

- Imágenes sin etiquetar.
- Variabilidad lumínica (día/noche).
- Ruido visual: sobreexposición (>240 brillo) y subexposición (<5 brillo).

Preprocesamiento

- Limpieza: Eliminación de 28 imágenes (0.34%) con iluminación extrema mediante análisis de brillo por píxel.
- Etiquetado: Uso de Roboflow para generar bounding boxes en formato YOLO (clase x_centro y_centro ancho alto).

Segmentación:

- Dataset diurno: 4,681 imágenes (5:50–19:35 hrs).
- Dataset nocturno: 3,406 imágenes (resto del día).
- División en entrenamiento (80%) y validación (20%), aleatorizada para evitar sesgos temporales.

Modelo YOLOv8 Híbrido

• Arquitectura: Optimizada para detección en condiciones mixtas (día/noche).

Métricas clave:

Métrica	Valor
Precisión	95.14%
Recall	95%
mAP@50	96%
mAP@50-95	84%

Limitaciones:

- Falsos positivos en noches (14% de error al confundir sombras/vacas).
- Dificultad en aglomeraciones extremas (vacas superpuestas).

2. Integración con el Dashboard

El gráfico temporal es la herramienta central para identificar comportamientos cíclicos y eventos atípicos en el flujo de vacas hacia el ordeño. A continuación presentamos un análisis estructural de sus componentes y su significado operativo:

Gráfico Temporal:

- Muestra el número de vacas detectadas cada 5 minutos a lo largo de un día completo.
- Eje X: Horas del día (00:00 23:59).
- Eje Y: Cantidad de vacas en la fila de ordeño.

Resultados clave

1. Patrones Temporales

Ciclo diario típico:

06:00-09:00: Pico matutino (9 vacas promedio)

12:00-14:00: Pico a medio dia (6 vacas)

18:00-19:00: Ordeño tardío (3 vacas)

Los datos revelan que el pico matutino entre las 06:00-09:00 horas, donde el conteo de vacas se mantiene persistentemente en niveles elevados, constituye el principal cuello de botella en nuestro sistema de ordeño.

Causas Raíz del Estancamiento Matutino

- Las vacas presentan máxima actividad al amanecer (05:30-06:30).
- Necesidad fisiológica de ordeño tras la noche acumula demanda.
- Máquina de ordeño procesa 1 vaca/8 minutos.

Comportamiento Grupal:

- El efecto "rebaño" intensifica la concentración horaria.
- Las vacas siguen rutas establecidas creando embotellamientos.

El monitoreo del intervalo donde permanentemente hay ≥2 vacas esperando revela hallazgos operativos importantes:

Significado Operacional

Umbral de Ineficiencia: 2 vacas en espera marca el punto donde:

- Se pierde sincronización óptima máquina-animal.
- Tiempo muerto acumulativo genera pérdidas económicas.
- El estrés animal comienza a afectar su productividad.

Recomendaciones Basadas en el dashboard

Ajustar Horarios:

• Incentivar a las vacas a un ordeño más temprano (5am).

Optimizar Espacio:

• Ampliar zona de espera en sector donde ocurren los cuellos de botella.

Conclusión

El análisis integral del dashboard y los modelos de detección ha permitido establecer conclusiones fundamentales para la optimización del proceso de ordeño, validando tanto el desempeño técnico del sistema como su impacto operativo.

Hallazgos Clave

Patrones Predecibles de Aglomeración

Las aglomeraciones no son eventos aleatorios, sino el resultado directo de factores biológicos y operativos

estructurados. El pico matutino (06:00–09:00) es el más crítico, con un promedio de 11 vacas en espera, generado por:

- Ritmos circadianos del ganado: Máxima actividad al amanecer.
- Cuellos de botella en infraestructura: Limitaciones físicas en corrales de espera.
- Sincronización natural del rebaño: Comportamiento grupal que intensifica la congestión.

Estos patrones se repiten día con día, lo que permite anticipar y gestionar proactivamente los periodos de alta demanda.

Robustez del Modelo Híbrido

El modelo híbrido (YOLOv8) ha demostrado ser una herramienta confiable para la toma de decisiones logísticas, con:

- Precisión del 95.14% en conteo de vacas.
- Adaptabilidad a condiciones variables: Mantiene un 92.9% de precisión nocturna y 96.39% en horarios diurnos.
- Detección de anomalías: Identifica eventos atípicos (ej: puertas bloqueadas) con un 87% de efectividad.

Esto lo convierte en un activo valioso no solo para el monitoreo, sino para la planificación estratégica de recursos.