Q3. Nonlinear Filters

```
import q3_simulator_class as sim
import matplotlib.pyplot as plt
import numpy as np
from sklearn.preprocessing import normalize
import time
```

(a) EKF

The EKF uses the Jacobian matrices of the state transition and measurement models to linearize around the current estimate.

Extended Kalman Filter (EKF):

- Nonlinear Update: Uses a nonlinear measurement model
- Linearization of Measurement Model: The EKF linearizes the measurement model using the Jacobian matrix evaluated at the predicted state.
- Kalman Gain and State Update: Similar to KF, but using the Jacobian for updates.
- Covariance Update: Updated similarly to KF.

Some parameters

```
In [ ]: # Define update parameters
         n_{steps} = 100
         dt = robot.dt # [s]
         # Define base station localtion, pj
         p_1 = robot.base_station_locs[0] # [m]
         p_2 = robot.base_station_locs[1] # [m]
         # Define noise matrix
         Q = robot.q_mat # process noise
         R = robot.r_mat # measuremnt noise
         # Define control input
         s_t = 1 \# speed input [m/s]
         phi_t = lambda t: np.sin(t) # rotation rate input [rad/s] (as a function of t)
         # Define initial state estimation
         mu_0 = np.array([0, 0, 0]) # mean, [m,m,rad]
         sigma_0 = 0.1 * np.eye(3) # cov
         # A (function), Jacobian of state transition matrix (f(xt,ut))
         A_{\text{func}} = \text{lambda} \text{ mu, u: np.array}([[1, 0, -dt * u[0] * np.sin(mu[2])],
                                        [0, 1, dt * u[0] * np.cos(mu[2])],
                                        [0, 0, 1]])
         # C_func = lambda mu: np.block([[(mu[:2] - p_1) / np.sqrt(np.sum((mu[:2] - p_1) **
                                      [(mu[:2] - p_2) / np.sqrt(np.sum((mu[:2] - p_2) ** 2)),
         # C (function), Jacobian of the measurement model (Yt)
         C_{func} = lambda mu: np.block([[(mu[:2] - p_1) / np.linalg.norm(mu[:2] - p_1), 0],
                                    [(mu[:2] - p_2) / np.linalg.norm(mu[:2] - p_2), 0]])
```

Initialize State

```
In [ ]: state = mu_0 # assume initial state = initial state estimation
   robot = sim.MobileRobotSimulator()
   pos_hist, meas_hist, u_hist = robot.simulate(state, n_steps)
```

EKF function + Updated State

```
In [ ]: def EKF(mu_0, sigma_0, u_arr, y_arr, A, C, Q, R):
            mu update = [mu 0] # Updated state mean
            cov_update = [sigma_0] # Updated state covariance
            mu_pred = [] # Predicted state mean
            cov pred = [] # Predicted state covariance
            A list = []
            C_list = []
            for t, (u, y) in enumerate(zip(u_arr, y_arr)):
                # Current state estimate for Jacobian calculation
                mu cur = mu update[-1]
                # Compute Jacobians for the current estimate
                A_t = A(mu_cur, u)
                C_t = C(mu_cur)
                # PREDICT
                mu_bar_next, _ = robot.noiseless_dynamics_step(mu_cur, t = t) # nonlinear
                sigma_bar_next = A_t @ cov_update[-1] @ A_t.T + Q # Predict the next covar
                # UPDATE
                K_t_numerator = sigma_bar_next @ C_t.T
                K t denominator = C_t @ sigma_bar_next @ C_t.T + R
                K_t = K_t_numerator @ np.linalg.inv(K_t_denominator) # Kalman gain
                # Observation prediction
                expected_y = robot.noiseless_measurement_step(mu_cur) # non-linear measure
                # print(mu_bar_next.shape, K_t.shape, y.shape, expected_y.shape)
                mu_next = mu_bar_next + K_t @ (y - expected_y) # Updated state mean
                sigma_next = (np.eye(len(mu_0)) - K_t @ C_t) @ sigma_bar_next # Updated st
                # Collect results for output
                mu_update.append(mu_next) # store the updated
                cov update.append(sigma next)
                mu_pred.append(mu_bar_next) # Store the predicted
                cov_pred.append(sigma_bar_next)
                A_list.append(A_t) # store the Jacobians
                C_list.append(C_t)
            return np.array(mu_update[1:]), np.array(cov_update[1:]), np.array(mu_pred), np.array
        mu update, cov update, mu pred, cov pred, A arr, C arr = EKF(mu 0, sigma 0, u hist,
```

Check observable

```
In [ ]: def check_observability_from_step(A_arr, C_arr):
    # Initialize parameters
    is_observable_from = None
    last_known_observable = False

# Number of steps to check
    total_steps = len(A_arr)
```

```
for k in range(1, total_steps + 1): # Start from 1 to avoid zero-step scenario
        rank_O_k, state_dimension, is_observable = calculate_observability(A_arr, (
        # Output results only if state changes
        if is observable and not last known observable:
            print(f"System becomes observable from step {k} onwards (0-index)")
            is observable from = k
            last known observable = True
        elif not is_observable and last_known_observable:
            print(f"System loses observability at step {k} (0-index)")
            last known observable = False
        # print every step's detail (comment out)
        # print(f"Step {k}: Rank = {rank 0 k}, Dimension = {state dimension}, Obser
    return is observable from
# Call the function
observable_from_step = check_observability_from_step(A_arr, C_arr)
if observable from step is not None:
    print(f"The system is consistently observable from step {observable_from_step}
else:
   print("The system is never fully observable within the given steps.")
```

System becomes observable from step 2 onwards (0-index)
The system is consistently observable from step 2 onwards. (0-index)

Plot EKF

```
In []: # plot error ellipse from Pset2
import scipy
from scipy.stats import chi2

def error_ellipse(ax, mu, sig, p=0.95):
    # Ellipse
    t = np.linspace(0, 2*np.pi, 100)
    circ = np.array([np.cos(t), np.sin(t)]).T
    # calculate stretch
    r = chi2.ppf(p, df=2)
    eta = scipy.linalg.sqrtm(sig) * np.sqrt(r)
    ellipse = circ @ eta + mu

# Draw
    ax.plot(ellipse[:,0], ellipse[:,1], color='k', alpha=0.2, label="Error Ellipse")
```

```
labeled = True

# Plot Error Ellipse
for t in range(mu_update.shape[0]):
    mean = mu_update[t,:2] # mean for pos
    cov = cov_update[t,:2, :2] # cov for pos
    error_ellipse(ax, mean, cov)

handles, legends = ax.get_legend_handles_labels()
plt.legend(handles[:8], legends[:8])
plt.show()
```


(b) UKF

```
In [ ]: def UKF(robot=robot, mu0=mu_0, sig0=sigma_0, Q=Q, R=R, yrun_hist=meas_hist, n_steps
            # Initialize arrays to store predicted and updated means and covariances
            mu_pred_UKF = np.zeros((n_steps + 1, mu0.shape[0])) # (101, 3)
            sig_pred_UKF = np.zeros((n_steps + 1, sig0.shape[0], sig0.shape[0])) # (303, 3)
            mu update UKF = np.zeros like(mu pred UKF)
            sig_update_UKF = np.zeros_like(sig_pred_UKF)
            # Set initial predicted and updated states
            mu_pred_UKF[0, :] = mu0
            sig_pred_UKF[0, ...] = sig0
            mu update UKF[0, :] = mu0
            sig_update_UKF[0, ...] = sig0
            # Unscented Transform function
            def unscented_transform(mean, cov, lam=2):
                n = cov.shape[0]
                 sqrt_cov = np.sqrt(lam + n) * sqrtm(cov)
                sigma_points = np.tile(mean, (2 * n + 1, 1))
                weights = lam / (lam + n) * np.ones((2 * n + 1, 1))
```

```
for i in range(1, n + 1):
            sigma_points[i] += sqrt_cov[:, i - 1]
            weights[i] = 1 / (2 * (lam + n))
            sigma points[i + n] -= sqrt cov[:, i - 1]
            weights[i + n] = 1 / (2 * (lam + n))
        return sigma_points, weights
   # Function to invert the Unscented Transform
    def unscented_transform_inverse(sigma_points, weights):
        mean = np.sum(weights * sigma_points, axis=0)
        cov = (sigma_points - mean).T @ (weights * (sigma_points - mean))
        return mean, cov
   # Unscented Kalman Filter
    for t in range(1, n_steps + 1):
        # Prediction step
        sigma_points_pred, weights_pred = unscented_transform(mu_update_UKF[t - 1,
        sigma_points_pred_ = np.copy(sigma_points_pred)
       for i in range(sigma_points_pred_.shape[0]):
            sigma_points_pred_[i], _ = robot.noiseless_dynamics_step(sigma_points_r
       mu_pred, sig_pred = unscented_transform_inverse(sigma_points_pred_, weights
        sig_pred += Q # Adding process noise
       # Update step
        sigma_points_update, weights_update = unscented_transform(mu_pred, sig_pred
       y_pred = np.zeros((sigma_points_update.shape[0], 2))
       for i in range(y pred.shape[0]):
            y_pred[i] = robot.noiseless_measurement_step(sigma_points_update[i])
       y_exp, sig_y = unscented_transform_inverse(y_pred, weights update)
        sig_y += R # Adding measurement noise
        sig_xy = (sigma_points_update - mu_pred).T @ (weights_update * (y_pred - y_
        kalman_gain = np.transpose(np.linalg.solve(sig_y.T, sig_xy.T))
       mu_update = mu_pred + kalman_gain @ (yrun_hist[t - 1] - y_exp)
        sig_update = sig_pred - kalman_gain @ sig_xy.T
        # Record predictions and updates
       mu_pred_UKF[t, :] = mu_pred
        sig_pred_UKF[t, ...] = sig_pred
       mu_update_UKF[t, :] = mu_update
        sig_update_UKF[t, ...] = sig_update
    return mu pred UKF, sig pred UKF, mu update UKF, sig update UKF
mu pred UKF, sig pred UKF, mu update UKF, sig update UKF = UKF()
```

Plot UKF

```
In []: # PLOT result (traj)

# Plot true pose
fig_ukf = robot.plot_pose_history(pos_hist, show_plot=False)

# Plot updated traj
ax = fig_ukf.axes[0]
ax.plot(mu_update_UKF[:,0], mu_update_UKF[:,1], color='r', label="Updated Position")
```

```
# Plot the updated pose
labeled = False
for px, py, theta in mu_update_UKF:
    plt.scatter(px, py,
                edgecolors='red', facecolors='none',
                s=50, zorder=2,
                marker=(3, 0, -90 + np.rad2deg(theta)),
                label="pose" if not labeled else None)
    labeled = True
# Plot Error Ellipse
for t in range(mu update UKF.shape[0]):
    mean = mu_update_UKF[t,:2] # mean for pos
    cov = sig_update_UKF[t,:2, :2] # cov for pos
    error ellipse(ax, mean, cov)
handles, legends = ax.get_legend_handles_labels()
plt.legend(handles[:8], legends[:8])
plt.show()
```


(c) PF

```
np.random.seed(42)
   particle_history = np.zeros((n_steps + 1, num_particles, initial_state_mean.sha
   particles = np.random.multivariate_normal(initial_state_mean, initial_state_cov
   weights = np.ones(num particles) / num particles
   particle history[0] = particles
   # Measurement likelihood function
   measurement likelihood = lambda y, x: np.exp(-0.5 * (y - robot.noiseless measurement))
   for t in range(1, n_steps + 1):
        predicted_particles = np.zeros_like(particles)
        predicted_weights = np.zeros_like(weights)
       for i in range(num_particles):
           predicted_particles[i], _ = robot.noisy_dynamics_step(particles[i], t=t
           predicted_weights[i] = measurement_likelihood(measurement_history[t-1],
       # Normalize weights
       weights = predicted_weights / np.sum(predicted_weights)
       # Resampling step
       resample_indices = np.random.choice(num_particles, size=num_particles, p=we
       particles = predicted particles[resample indices]
       particle_history[t] = particles
       # Reset weights after resampling
       weights = np.ones(num_particles) / num_particles
   return particle_history, weights
p_hist, _ = PF(n_steps, mu_0, sigma_0)
```

Plot PF

```
In [ ]: # PF
        # Plot true pose
        fig_PF = robot.plot_pose_history(pos_hist, show_plot=False)
        ax = fig_PF.axes[0]
        # Plot updated traj
        mu_update_PF = np.mean(p_hist, axis=1)
        for t in range(1, mu_update.shape[0]):
             plt.scatter(p_hist[t, :, 0], p_hist[t, :, 1], color='k', alpha=0.05, s=3) # par
        ax.plot(mu_update_PF[:,0], mu_update_PF[:,1], color='r', label="Updated Position Hi
         # Plot the updated pose
        labeled = False
         for px, py, theta in mu update PF:
             plt.scatter(px, py,
                         edgecolors='red', facecolors='none',
                         s=50, zorder=2,
                         marker=(3, 0, -90 + np.rad2deg(theta)),
                         label="pose" if not labeled else None)
            labeled = True
         handles, legends = ax.get legend handles labels()
         plt.legend(handles[:8], legends[:8])
         plt.show()
```


(d) Plot

Plots for EKF, UKF, and PF are shown in the previous section

(e) Computation Time

The computation time for PF >> UKF \sim = EKF. From the notebook output, we can see the time took for both UKF and EKF are nearly zero, which indicating the difference be in \sim ms. But for the PF, we can see it took 11.7s second for the computation which is much larger than other two filters.