

- مدة إنجاز الموضوع هي أ ربع ساعات.
- يتكون الموضوع من خمسة تمارين مستقلة فيما بينها .
- يمكن إنجاز التمارين حسب الترتيب الذي يرغب فيه المترشح.

لا يسمح باستعمال الآلة الحاسبة كيفما كان نوعها لا يسمح باستعمال اللون الأحمر بورقة التحرير

الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2015 - الموضوع - مادة: الرياضيات - شعبة العلوم الرياضية (أ) و (ب)

التمرين الأول: (3 نقط)

$$(E): z^2$$
 - $(5+i\sqrt{3})z+4+4i\sqrt{3}=0$ المعادلة التالية: $(E): z^2$ - المعادلة التالية: $(E): z^2$

$$(E)$$
 اً) تحقق أن $(3$ - $i\sqrt{3}$ هو مميز المعادلة (0.25)

$$(b\dot{z}$$
 ، علما أن: (E) علما أن: $(b\dot{z}$ ، $(b\dot{z})$ علما أن: $(b\dot{z})$

$$b = (1 - i\sqrt{3})a$$
 : حقق أن $a = (0.25)$

معامد و ممنظم و مباشر.
$$b$$
 النقطة التي لحقها a و a النقطة التي لحقها b

$$\frac{p}{2}$$
 ميد العدد العقدي b_1 لحق النقطة b_1 صورة النقطة O بالدوران الذي مركزه D_1 العدد ال

$$\sqrt{3}$$
 بين أن B هي صورة B_1 بالتحاكي الذي مركزه A و نسبته A

$$arg\left(\frac{b}{b-a}\right) \equiv \frac{\pi}{6} \left[2\pi\right]$$
 جن تحقق أن: $\left[0.5\right]$

$$A$$
 و C د) لتكن C نقطة ، لحقها c ، تنتمى إلى الدائرة المحيطة بالمثلث C و تخالف C

$$\frac{c}{c-a}$$
 حدد عمدة للعدد العقدي

التمرين الثاني: (3 نقط)

0.5

 x^{1439} ب عددا صحیحا نسبیا بحیث: [2015] عددا صحیحا نسبیا بحیث

2015 و کا العددین x و 2015 -2

1436 أ) بين أن
$$d$$
 يقسم 1436

ب) استنتج أن
$$x$$
 و 2015 أوليان فيما بينهما.

$$x^{1440} \equiv 1 \ [31]$$
 و $x^{1440} \equiv 1 \ [13]$ و $x^{1440} \equiv 1 \ [5]$ و $x^{1440} \equiv 1 \ [6]$ و $x^{1440} \equiv 1 \ [6]$

$$x^{1440} \equiv 1 \ [2015]$$
 : ثم استنتج أن: $x^{1440} \equiv 1 \ [65]$: بين أن: $x^{1440} \equiv 1 \ [65]$

تمرين الثالث: (4 نقط)

نذكر أن
$$(-,+,+,-)$$
 حلقة واحدية وحدتها $\frac{0}{1}$ و أن $I=\xi_0^1$ و أن $(M_2(\cdot,+,+,-)$ زمرة تبادلية.

$$E = \{M(x)/x \div \}$$
 و نعتبر المجموعة $M(x) = \begin{cases} 1-x & x \\ -2x & 1+2x \end{cases}$ كل عدد حقيقي x نضع: $\frac{1}{2}$

الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2015 - الموضوع – مادة: الرياضيات – شعبة العلوم الرياضية (أ) و (ب)

$$("(x,y)$$
نزود E بقانون التركيب الداخلي T المعرف بما يلي: T المعرف بما يلي: T المعرف المعرف المعرف بما يلي: T

$$("x$$
ن ، نحو f المعرف بما يلي: $f(x)=M(x-1)$ المعرف ، نحو $f(x)=M(x-1)$

$$(E,T)$$
 ایین أن j تشاکل من $(+,+)$ نحو j

بين أن
$$(E,T)$$
 زمرة تبادلية.

$$("(x,y)$$
ن \dot{z}) $M(x)$ $M(y) = M(x + y + xy)$: بين أن -2 0.5

$$E$$
 ب استنتج أن E جزء مستقر من $M_2(`),`)$ و أن القانون " \times " تبادلي في $M_2(`),`$

$$E$$
 في T " في النسبة للقانون " X " في X " في X " في X .

د) تحقق أن
$$M(-1)$$
 هو العنصر المحايد في (E,T) و أن I هو العنصر المحايد في $M(-1)$.

$$("x \div ` - \{-1\})$$
 $M(x)'$ $M(x)' = \frac{-x}{1+x} = 1$ (0.25) نحقق أن: $M(x)' = 1$

بين أن
$$(E,T,')$$
 جسم تبادلي. (0.75)

التمرين الرابع: (6.5 نقط)

الجزء الأول: لتكن f الدالة العددية المعرفة على المجال $[0,+\infty[$ بما يلي:

$$x > 0$$
 اذا کان $f(x) = x(1 + \ln^2 x)$ و $f(0) = 0$

الكن C المنحنى الممثل للدالة f في المستوى المنسوب إلى معلم متعامد و ممنظم للدالة f

المحصل عليها.
$$\lim_{x \to +\infty} \frac{f(x)}{x}$$
 و $\lim_{x \to +\infty} \frac{f(x)}{x}$ و $\lim_{x \to +\infty} f(x)$ النتيجة المحصل عليها. 0.5

$$0$$
 متصلة على اليمين في f متصلة على اليمين في 0.25

ب) أحسب
$$\lim_{x\to 0^+} \frac{f(x)}{x}$$
 ثم أول مبيانيا النتيجة المحصل عليها.

$$[0,+\infty[$$
 من أجل $x>0$ من أجل $x>0$ ثم استنتج أن الدالة f تزايدية قطعا على المجال $f'(x)$ من أجل 0.5

$$e^{-1}$$
 أوصولها I يقبل نقطة انعطاف المنحنى e^{-1} المنحنى أن المنحنى e^{-1}

$$y=x$$
 : ب) أدرس الوضع النسبي للمنحنى (C) بالنسبة للمستقيم الذي معادلته $y=x$

$$(e^{-1} = 0.4)$$
 نشئ المنحنى (C) ونأخذ: 0.5

$$("n
eq
otag)$$
 $u_{n+1} = f(u_n)$ و $u_0 = e^{-1}$ المعرفة بما يلي: $u_0 = e^{-1}$ المعرفة بما يلي: نعتبر المتتالية العددية $u_{n-1} = u_0 = e^{-1}$ المعرفة بما يلي: $u_0 = e^{-1}$ المعرفة بما يلي:

د. و بين أن المتتالية
$$(u_n)_{v^3}$$
 تزايدية قطعا ثم استنتج أنها متقاربة.

$$\lim_{n} u_n = l$$
: نضع: 3

$$e^{-1} \le l \le 1$$
 : بين أن (0.25

NS 24

الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2015 - الموضوع - مادة: الرياضيات - شعبة العلوم الرياضية (أ) و (ب)

 $F(x) = \int_{1}^{x} f(t) dt$ يلي: لتكن $F(x) = \int_{1}^{x} f(t) dt$ الدالة العددية المعرفة على المجال $[0, +\infty[$

$$p,+ \pm [$$
 على المجال $h: x \ a \ x \ ln \ x : M: x \ a \ b: x \ a \ x \ ln \ x : M: x \ a \ b: x \ a \ x \ ln \ x \ display = 0.25] على المجال $h: x \ a \ x \ ln \ x \ display = 0.25$$

$$(\forall x > 0)$$
 $\int_{1}^{x} t \ln^{2}(t) dt = \frac{x^{2}}{2} \ln^{2}(x) - \int_{1}^{x} t \ln(t) dt$ (0.5)

$$(\forall x > 0)$$
 $F(x) = -\frac{3}{4} + \frac{3x^2}{4} - \frac{x^2}{2}ln(x) + \frac{x^2}{2}ln^2(x)$ (7.5)

$$[0,+\infty[$$
 المجال على المجال F متصلة على المجال أ -2 0.25

$$\int_{0}^{1} f(x) dx$$
 ب) أحسب $\lim_{x \to 0^{+}} F(x)$ ثم استنتج قيمة التكامل $\lim_{x \to 0} F(x)$ 0.5 التمرين الخامس: (3.5) نقط)

0.5

0.25

$$x>0$$
 نعتبر الدالة $g(x)=\int_{x}^{2x}\frac{e^{-t}}{t}dt$ و $g(0)=\ln 2$ يما يلي: $g(x)=\int_{x}^{2x}\frac{e^{-t}}{t}dt$ و المعرفة على المجال $g(x)=\int_{x}^{2x}\frac{e^{-t}}{t}dt$

$$(\forall x > 0)$$
 $(\forall t \in [x, 2x])$ $e^{-2x} \le e^{-t} \le e^{-x}$: بين أن (أ -1)

$$(\forall x > 0)$$
 $e^{-2x} \ln 2 \le g(x) \le e^{-x} \ln 2$ بين أن: 0.5

ج) استنتج أن الدالة
$$\,g\,$$
 متصلة على اليمين في $\,0\,$.

$$x>0$$
 من أجل $g'(x)$ من أحسب $g'(x)$ من أجل g من أجل على المجال من أن الدالة g من أجل g من أجل g

(يمكنك استعمال مبر هنة التزايدات المنتهية)
$$(\forall t > 0)$$
 $-1 \le \frac{e^{-t} - 1}{t} \le -e^{-t}$: نا بين أن -3 0.5

$$(\forall x > 0)$$
 $-1 \le \frac{g(x) - \ln 2}{x} \le \frac{e^{-2x} - e^{-x}}{x}$: نب بین آن 0.5

ج) استنتج أن الدالة
$$g$$
 قابلة للاشتقاق على اليمين في 0 .

انتهي

الامتحان الوطني الموحد للبكالوريا الدورة العادية 2015

- عناصر الإجابة -

المركز الوطني للتقويم والامتحانات والتوجيه

NR 24

4	مدة الإنجاز	الرياضيات	المادة
9	المعامل	شعبة العلوم الرياضية (أ) و (ب)	الشعبة أو المسلك

سلم التنقيط	عناصر الإجابة	التمرين الأول
0.25	التحقق	([†] -1
0.5	$a=1+i\sqrt{3}$ و $b=4$: نحصل على	ب)
0.25	التحقق	(ਣ
0.5	$b_{\!\scriptscriptstyle 1} = a ig(1\!-\!iig) = ig(1\!+\!i\sqrt{3}ig) ig(1\!-\!iig)$ نحصل على:	(^j -2
0.5	$\mathbf{b}-\mathbf{a}=\sqrt{3}\left(\mathbf{b}_{1}-\mathbf{a} ight)$ التحقق من أن:	ب)
0.5	$arg\left(rac{b}{b-a} ight)$ $\equiv rac{\pi}{6} \left[2\pi ight]$ الذن $\frac{b}{b-a} = rac{2}{\sqrt{3}}e^{irac{p}{6}}$: نحصل على	(&
0.5	النقط C و A و B و متداورة اذن $\frac{c}{c-a}$, $\frac{b}{b-a}$ و نحصل $arg \frac{c}{c-a}$ و نحصل على $arg \frac{c}{c-a}$ و نحصل $arg \frac{c}{c-a}$ و نحصل على $arg \frac{c}{c-a}$ و نحصل على $arg \frac{c}{c-a}$ و نحصل $arg \frac{c}{c-a}$	(2
	arg $\frac{c}{c-a}$: $\frac{p}{6}$ $[2p]$: تمنح 0,25 في حالة توصل التلميذ إلى النتيجة	
سلم التنقيط	عناصر الإجابة	التمرين الثاني
0.25	مبرهنة بوزو انطلاقا من الملاحظة أو أية طريقة صحيحة أخرى	-1
0.5		(¹ -2
0.5	الاستنتاج	ب)
0.75	تطبيق مبرهنة فيرما ثلاث مرات و تمنح 0.25ن عن كل تطبيق	([†] -3
0.5	5و 13 أوليين فيما بينهما	ب)

الصفحة 2 4

NR 24

الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2015 - عناصر الإجابة - مادة: الرياضيات - شعبة العلوم الرياضية (أ) و (ب)

	65و1	: أوليين فيما بينهما	
-4	توظيف	0.5 1436′ 1051- 2015′ 749= 1 و x^{1439} ؛ 1436 [2015] العلاقتين:	0.5
التمرين الثالث		عناصر الإجابة	سلم التنقيط
([†] -1	التشاكل	0.5 ن	0.5
ب)	= <i>E</i>	0.5 0.25	0.5
	صورة	زمرة تبادلية بتشاكل	
([†] -2	المتساو	بة 0.5	0.5
ب)	الاستنت	0.5 0.25	0.5
	التبادلي	0.25	
(€	التوزيه	بة 0.5	0.5
(7	- 1)	0.5 هو العنصر المحايد	0.5
	<i>I</i> هو	العنصر المحايد	
([†] -3	المتساو	ية 0.25	0.25
(ب	استنتاج	0.75 من السؤال 3- أ) أن كل عنصر من E يخالف M (-1) يقبل مماثل عنصر من (1)	0.75
	باقي ال	فاصيات	
التمرين الرابع		عناصر الإجابة	سلم التنقيط
الجزء الأول	-1	حساب النهايتين	0.5
		التأويل المبياني	
	(† -2	0.25	0.25
	(÷	حساب النهاية	0.5
		التأويل المبياني	
	(5	حساب المشتقة	0.5
		الرتابة	
	(^j -3	نقطة الإنعطاف	0.25
	ب)	0.25	0.25

الصفحة
<u>3</u>
4

NR 24

الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2015 - عناصر الإجابة مادة: الرياضيات - شعبة العلوم الرياضية (أ) و (ب)

0.5	يتم الأخذ بعين الإعتبار نقطة الإنعطاف و الفرع اللا نهائي و نصف المماس	(ē	
0.5		-1	الجزء الثاني
0.5	الرتابة	-2	
	التقارب		
0.25		([†] -3	
0.5	l=1	ب)	
0.25		(1	الجزء الثالث
0.5		ب)	
0.5		(ट	
0.25		([†] -2	
0.5	$\lim_{x\to 0^+} F(x) = -\frac{3}{4}$	ب)	
	$0.25 \int_{0}^{1} f(x) dx = -F(0) = -\lim_{x \to 0^{+}} F(x) = \frac{3}{4}$		
	0 لأن الدالة F متصلة على اليمين في F		
سلم التنقيط	عناصر الإجابة	(التمرين الخامس
0.5			(† -1
0.5			(÷
0.25			(E
0.75	بة الإشتقاق	قابلي	-2
	ن.5 $g'(x) = \frac{e^{-2x} - e}{x}$	-x	
0.5	ق مبرهنة التزايدات		([†] -3
	$\left(\forall t>0\right) \left(\exists s\in\left]0,t\right[\right) : \frac{e^{-t}-1}{t}=-e^{-s}$ پية	المنن	
	أطير ${ m e}^{-{ m s}}$ كما تقبل أية طريقة صحيحة أخرى	ثم ت	

0.5	توظيف نتيجة السؤال 3-أ)	(÷
0.5	0.25 $\lim_{x \to 0^+} \frac{e^{-2x} - e^{-x}}{x} = -1$	(E
	$\lim_{{ m x} o 0^+} rac{{ m g}({ m x}) - { m g}(0)}{{ m x}} = -1$	