Computational Complexity Theory

Lecture 4: Cook-Levin theorem (contd.)

Department of Computer Science, Indian Institute of Science

Recap: A natural NP-complete problem

 Definition. A Boolean formula is in <u>Conjunctive Normal</u> <u>Form</u> (CNF) if it is an AND of OR of literals.

e.g.
$$\phi = (x_1 \lor x_2) \land (x_3 \lor \neg x_2)$$

 Definition. Let SAT be the language consisting of all satisfiable CNF formulae.

• Theorem. (Cook 1971, Levin 1973) SAT is NP-complete.

Easy to see that SAT is in NP.

Need to show that SAT is NP-hard.

Recap: Cook-Levin theorem: Proof

 Main idea: Computation is *local*; i.e., every step of computation *looks at* and *changes* only constantly many bits; and this step can be implemented by a small CNF formula.

- Let $L \in \mathbb{NP}$. We intend to come up with a polynomial-time computable function $f: \times \longrightarrow \phi_{\times}$ s.t.,
 - \rightarrow x \in L \iff $\phi_x \in$ SAT
 - Notation: $|\phi_x| := \text{size of } \phi_x$ $= \text{number of } \lor \text{ or } \land \text{ in } \phi_x$

Recap: Cook-Levin theorem: Proof

• Language L has a poly-time verifier M such that $x \in L \iff \exists u \in \{0,1\}^{p(|x|)}$ s.t. M(x, u) = I

• Idea: For any fixed x, we can <u>capture the computation</u> of M(x, ..) by a CNF ϕ_x such that

```
\exists u \in \{0, I\}^{p(|x|)} s.t. M(x, u) = I \iff \phi_x is satisfiable
```

• For any fixed x, M(x, ..) is a deterministic TM that takes u as input and runs in time polynomial in |u|.

Recap: Cook-Levin theorem: Proof

- Main Theorem. Let N be a deterministic TM that runs in time T(n) on every input u of length n, and outputs 0/1. Then, (think of N = M(x, ..) for a fixed x.)
 - I. There's a CNF $\phi(u, "auxiliary variables")$ of size poly(T(n)) such that for every $u, \phi(u, "auxiliary variables")$ is satisfiable as a function of the "auxiliary variables" if and only if N(u) = 1.
 - 2. ϕ is computable in time poly(T(n)) from N,T & n.
- φ(u, "auxiliary variables") is satisfiable as a function of all the variables if and only if ∃u s.t N(u) = I.

Recap: Main theorem: Proof

- Step I. Let N be a deterministic TM that runs in time T(n) on every input u of length n, and outputs 0/1. Then,
 - I. There's a Boolean circuit ψ of size poly(T(n)) such that $\psi(u) = I$ if and only if N(u) = I.
 - 2. ψ is computable in time poly(T(n)) from N,T & n.

The key insight: ψ "encodes" N.

• Step 2. "Convert" circuit ψ to a CNF ϕ efficiently by introducing <u>auxiliary variables</u>.

- Assume (w.l.o.g) that N has a single tape and it writes its output on the first cell at the end of computation.
- A step of computation of N consists of
 - Changing the content of the current cell
 - Changing state
 - Changing head position
- Think of a 'compound' tape: Every cell stores the current state, a bit content and head indicator.

- Locality of computation: The bits in h_{i,j},
 b_{i,j} and q_{i,j} depend <u>only on</u> the bits in
 - $\triangleright h_{i-1,j-1}, b_{i-1,j-1}, q_{i-1,j-1},$
 - $> h_{i-1,j}, b_{i-1,j}, q_{i-1,j},$
 - $\triangleright h_{i-1,j+1}, b_{i-1,j+1}, q_{i-1,j+1}$

- Locality of computation: The bits in h_{i,j},
 b_{i,j} and q_{i,j} depend <u>only on</u> the bits in
 - $\triangleright h_{i-1,j-1}, b_{i-1,j-1}, q_{i-1,j-1},$
 - $> h_{i-1,j}, b_{i-1,j}, q_{i-1,j},$
 - $\triangleright h_{i-1,j+1}, b_{i-1,j+1}, q_{i-1,j+1}$

Recall Steps I and 2

- Step I. Let N be a deterministic TM that runs in time T(n) on every input u of length n, and outputs 0/1.
 Then,
 - I. There's a Boolean circuit ψ of size poly(T(n)) such that $\psi(u) = I$ if and only if N(u) = I.
 - 2. ψ is computable in time poly(T(n)) from N,T & n.
- Step 2. "Convert" circuit ψ to a CNF ϕ efficiently by introducing auxiliary variables.

• Think of $h_{i,j}$, $b_{i,j}$ and the bits of $q_{i,j}$ as <u>formal</u> Boolean variables.

auxiliary variables

cell j

- Locality of computation: The variables $h_{i,j}$, $b_{i,j}$ and $q_{i,i}$ depend only on the variables
 - $\triangleright h_{i-1,j-1}, b_{i-1,j-1}, q_{i-1,j-1},$
 - \triangleright h_{i-1,i}, b_{i-1,i}, q_{i-1,i}, and
 - $\triangleright h_{i-1,j+1}, b_{i-1,j+1}, q_{i-1,j+1}$

Hence,

$$b_{ij} = B_{ij}(h_{i-1,j-1}, b_{i-1,j-1}, q_{i-1,j-1}, h_{i-1,j}, b_{i-1,j}, q_{i-1,j}, h_{i-1,j+1}, b_{i-1,j+1}, q_{i-1,j+1})$$

= a fixed function of the arguments depending only on N's transition function δ .

• The above equality can be captured by a constant size CNF Ψ_{ij} . Also, Ψ_{ij} is easily computable from δ .

Hence,

$$b_{ij} = B_{ij}(h_{i-1,j-1}, b_{i-1,j-1}, q_{i-1,j-1}, h_{i-1,j}, b_{i-1,j}, q_{i-1,j}, h_{i-1,j+1}, b_{i-1,j+1}, q_{i-1,j+1})$$

= a fixed function of the arguments depending only on N's transition function δ .

• The above equality can be captured by a constant size CNF Ψ_{ij} . Also, Ψ_{ij} is easily computable from δ .

```
x = y iff (x \wedge y) \vee (\neg x \wedge \neg y) = 1.
```

Similarly,

$$\mathbf{h}_{ij} = \mathbf{H}_{ij}(\mathbf{h}_{i-1,j-1}, \mathbf{b}_{i-1,j-1}, \mathbf{q}_{i-1,j-1}, \mathbf{h}_{i-1,j}, \mathbf{b}_{i-1,j}, \mathbf{q}_{i-1,j}, \mathbf{h}_{i-1,j+1}, \mathbf{b}_{i-1,j+1}, \mathbf{q}_{i-1,j+1})$$

= a fixed function of the arguments depending only on N's transition function δ .

• The above equality can be captured by a constant size CNF Φ_{ij} . Also, Φ_{ij} is easily computable from δ .

• Similarly, k-th bit of q_{ij} where $1 \le k \le \log |Q|$

$$q_{ijk} = C_{ijk}(h_{i-1,j-1}, b_{i-1,j-1}, q_{i-1,j-1}, h_{i-1,j}, b_{i-1,j}, q_{i-1,j}, h_{i-1,j+1}, b_{i-1,j+1}, q_{i-1,j+1})$$

= a fixed function of the arguments depending only on N's transition function δ .

• The above equality can be captured by a constant size CNF θ_{ijk} . Also, θ_{ijk} is easily computable from δ .

• Let λ be the conjunction of Ψ_{ij} , Φ_{ij} and θ_{ijk} for all i, j, k.

```
    i ∈ [I,T(n)],
    j ∈ [I,T(n)], and
    k ∈ [I,log |Q|]
```

• λ is a CNF in the u-variables and the <u>auxiliary variables</u> $h_{i,j}$, $b_{i,j}$ and $q_{i,j,k}$ for all i,j,k. $|\lambda|$ is $O(T(n)^2)$.

• Let λ be the conjunction of Ψ_{ij} , Φ_{ij} and θ_{ijk} for all i, j, k.

```
    i ∈ [I,T(n)],
    j ∈ [I,T(n)], and
    k ∈ [I,log |Q|]
```

- λ is a CNF in the u-variables and the <u>auxiliary variables</u> $h_{i,j}, b_{i,j}$ and $q_{i,j,k}$ for all i,j,k. $|\lambda|$ is $O(T(n)^2)$.
- Define $\phi = \lambda \wedge b_{T(n), 1}$.

Observe: An assignment to u and the auxiliary variables satisfies λ if and only if it "captures" the computation of N on the assigned input u for T(n) steps.

Observe: An assignment to u and the auxiliary variables satisfies λ if and only if it "captures" the computation of N on the assigned input u for T(n) steps.

• Hence, an assignment to u and the auxiliary variables satisfies ϕ if and only if N(u) = 1, i.e., for every u,

 $\phi(u, \text{``auxiliary variables''}) \in SAT \iff N(u) = I.$

Recall the Main Theorem

- Main Theorem. Let N be a deterministic TM that runs in time T(n) on every input u of length n, and outputs 0/1. Then,
 - I. There's a CNF $\phi(u, "auxiliary variables")$ of size poly(T(n)) such that for every $u, \phi(u, "auxiliary variables")$ is satisfiable as a function of the "auxiliary variables" if and only if N(u) = 1.
 - 2. ϕ is computable in time poly(T(n)) from N,T & n.
- φ(u, "auxiliary variables") is satisfiable as a function of all the variables if and only if ∃u s.t N(u) = I.

Main theorem: Comments

- ϕ is a CNF of size $O(T(n)^2)$ and is also computable from N,T and n in $O(T(n)^2)$ time.
- Remark I. With some more effort, size ϕ can be brought down to $O(T(n), \log T(n))$.
- Remark 2. The reduction from x to ϕ_x is not just a poly-time reduction, it is actually a <u>log-space reduction</u> (we'll define this later).

Main theorem: Comments

- ϕ is a function of u and some "auxiliary variables" (the b_{ij} , h_{ij} and q_{ijk} variables).
- Observe that once u is fixed the values of the "auxiliary variables" are also determined in any satisfying assignment for ϕ .

3SAT is NP-complete

 Definition. A CNF is a called a k-CNF if every clause has at most k literals.

e.g. a 2-CNF
$$\phi = (x_1 \lor x_2) \land (x_3 \lor \neg x_2)$$

 Definition. k-SAT is the language consisting of all satisfiable k-CNFs.

3SAT is NP-complete

 Definition. A CNF is a called a k-CNF if every clause has at most k literals.

e.g. a 2-CNF
$$\phi = (x_1 \lor x_2) \land (x_3 \lor \neg x_2)$$

 Definition. k-SAT is the language consisting of all satisfiable k-CNFs.

Theorem. 3-SAT is NP-complete.

Proof sketch: $(x_1 \lor x_2 \lor x_3 \lor \neg x_4)$ is satisfiable iff $(x_1 \lor x_2 \lor z) \land (x_3 \lor \neg x_4 \lor \neg z)$ is satisfiable.

More NP-complete problems

NP complete problems: Examples

Independent Set
Clique
Vertex cover
O/I integer programming
Max-Cut (NP-hard)

- 3-coloring planar graphs Stockmeyer 1973
- 2-Diophantine solvability Adleman & Manders 1975

Ref: Garey & Johnson, "Computers and Intractability" 1979

NPC problems from number theory

 SqRootMod: Given natural numbers a, b and c, check if there exists a natural number x ≤ c such that

$$x^2 = a \pmod{b}$$
.

Theorem: SqRootMod is NP-complete.

Manders & Adleman 1976

NPC problems from number theory

Variant_IntFact: Given natural numbers L, U and N, check if there exists a natural number d ∈ [L, U] such that d divides N.

 Claim: Variant_IntFact is NP-hard under <u>randomized</u> <u>poly-time reduction</u>.

Reference:

https://cstheory.stackexchange.com/questions/4769/an-np-complete-variant-of-factoring/4785

A peculiar NP problem

 Minimum Circuit Size Problem (MCSP): Given the truth table of a Boolean function f and an integer s, check if there is a circuit of size ≤ s that computes f.

- Easy to see that MCSP is in NP.
- Is MCSP NP-complete? Not known!

A peculiar NP problem

 Minimum Circuit Size Problem (MCSP): Given the truth table of a Boolean function f and an integer s, check if there is a circuit of size ≤ s that computes f.

- Easy to see that MCSP is in NP.
- Is MCSP NP-complete? Not known!
- Multi-output MCSP is NP-hard under poly-time randomized reductions. (Ilango, Loff, Oliveira 2020)