Hybrid particle-field model for DNA

Sigbjørn Løland Bore Weekley Hylleraas seminar

10.05.2019

-2-

-2-

- Watson and Crick pairing
- Double helix formation

- Watson and Crick pairing
- Double helix formation
- Three types of helicies:
 - A-DNA
 - ► B-DNA
 - Z-DNA

► Human DNA: 1-3 m

Persistence length: 50 nm

Very flexible

X

- ► Human DNA: 1-3 m
- Persistence length: 50 nm
- Very flexible

► Human DNA: 1-3 m

Persistence length: 50 nm

Very flexible

- ► Human DNA: 1-3 m
- Persistence length: 50 nm
- Very flexible
- Environmental effects
 - Temperature
 - Salt

Reuse established CG-representations for DNA

- Reuse established CG-representations for DNA
- Model nonbonded interactions within hybrid particle-field framework

- Reuse established CG-representations for DNA
- Model nonbonded interactions within hybrid particle-field framework
- Parametrize the model

- Reuse established CG-representations for DNA
- Model nonbonded interactions within hybrid particle-field framework
- Parametrize the model
- Benchmark the model

- Reuse established CG-representations for DNA
- Model nonbonded interactions within hybrid particle-field framework
- Parametrize the model
- Benchmark the model
- No excuses, parallel implementation

The coarse-grained representation should fulfill:

- The coarse-grained representation should fulfill:
 - Represent the structural organization
 - ▶ 72 au per bead

- The coarse-grained representation should fulfill:
 - Represent the structural organization
 - > 72 au per bead
- 3SPN-Model of Juan de Pablo
- Replace nonbonded interactions

- The coarse-grained representation should fulfill:
 - Represent the structural organization
 - > 72 au per bead
- 3SPN-Model of Juan de Pablo
- Replace nonbonded interactions

Bonded interactions

$$H_0(\{\mathbf{r}\}) = \sum_{i}^{N_{\text{atom}}} \frac{1}{2} m_i \dot{\mathbf{r}}_i^2 + \sum_{i}^{N_{\text{bond}}} \frac{1}{2} k_r (r_i - r_{i0})^2 + \sum_{i}^{N_{\text{bend}}} \frac{1}{2} k_{\theta} (\theta_i - \theta_{i0})^2 - \sum_{i}^{N_{\text{tor}}} k_{\phi} \exp \left[-\frac{(\phi_i - \phi_{0i})^2}{2\sigma_{\phi}^2} \right],$$

Bonded interactions

$$\begin{split} H_0(\{\mathbf{r}\}) &= \sum_{i}^{N_{\text{atom}}} \frac{1}{2} m_i \dot{\mathbf{r}}_i^2 + \sum_{i}^{N_{\text{bond}}} \frac{1}{2} k_r (r_i - r_{i0})^2 \\ &+ \sum_{i}^{N_{\text{bend}}} \frac{1}{2} k_{\theta} (\theta_i - \theta_{i0})^2 - \sum_{i}^{N_{\text{tor}}} k_{\phi} \exp \left[-\frac{(\phi_i - \phi_{0i})^2}{2\sigma_{\phi}^2} \right], \end{split}$$

Bond	<i>r</i> _{i0} /nm	Bend	θ_{i0}/deg	Torsional	ϕ_{i0}/deg
S-P	0.3899	S-P-S	94.49	P-S-P-S	-154.8
P-S	0.3559	P-S-P	120.15	S-P-S-P	-179.2
S-A	0.4670	A-S-P	112.07	A-S-P-S	-32.8
S-T	0.4189	P-S-A	103.53	S-P-S-A	54.8
S-G	0.4829	T-S-P	116.68	T-S-P-S	-44.8
S-C	0.3844	P-S-T	92.06	S-P-S-T	58.0
		G-S-P	110.12	G-S-P-S	-29.1
		P-S-G	107.40	S-P-S-G	53.9
		C-S-P	110.33	C-S-P-S	-34.1
		P-S-C	103.79	S-P-S-C	57.0

Hybrid particle field method

Mesoscale potentials in molecular dynamics:

$$V_{\text{ext},i} = \frac{1}{\tilde{\phi}_0} \left(k_b T \sum_j \chi_{ij} \phi_j(\mathbf{r}) + \frac{1}{\kappa} \left(\sum_j \phi_j(\mathbf{r}) - \tilde{\phi}_0 \right) \right)$$

 χ_{ii} : Flory-Huggins parameter. κ : compressibility. $\tilde{\phi}_0$: system density.

$$\sum_{i < i} V_i$$

Hybrid particle field method

Mesoscale potentials in molecular dynamics:

$$V_{\text{ext},i} = \frac{1}{\tilde{\phi}_0} \left(k_b T \sum_j \chi_{ij} \phi_j(\mathbf{r}) + \frac{1}{\kappa} \left(\sum_j \phi_j(\mathbf{r}) - \tilde{\phi}_0 \right) \right)$$

 χ_{ij} : Flory-Huggins parameter. κ : compressibility. $\tilde{\phi}_0$: system density.

Nonbonded interactions

$$W_{
m elec}\left[
ho
ight] = \int {
m d}{f r} \; V_{
m Coul}({f r})
ho({f r})$$

$$W_{\text{non-elec}}\left[\{\phi\}\right] = \frac{1}{\tilde{\phi}_0} \int d\mathbf{r} \left[\frac{k_b T}{2} \sum_{k,\ell} \chi_{k\ell} \phi_k(\mathbf{r}) \phi_\ell(\mathbf{r}) + \frac{1}{2\kappa} \left(\sum_k \phi_k(\mathbf{r}) - \tilde{\phi}_0 \right)^2 \right]$$

	Р	S	Α	Т	С	G	W
Р	χ_{PP}	0	0	0	0	0	ΧPW
S	0	0	0	0	0	0	0
Α	0	0	0	χ_{NN}	0	0	χ_{NW}
Τ	0	0	χ_{NN}	0	0	0	χ_{NW}
С	0	0	0	0	0	χ_{NN}	χ_{NW}
G	0	0	0	0	χ_{NN}	0	χ_{NW}
W	χρW	0	χ_{NW}	χ_{NW}	$\chi_{\it NW}$	$\chi_{\it NW}$	0

10.05.2019

Parametrization

- Parameters of the model:
 - $ightharpoonup k_r, k_\theta, k_\phi, \chi_{NW}, \chi_{NN}, \chi_{PP}, \chi_{PW}$

Parametrization

- Parameters of the model:
 - \blacktriangleright k_r , k_θ , k_ϕ , χ_{NW} , χ_{NN} , χ_{PP} , χ_{PW}
- Goals:
 - Reproduces well the strcuture of B-DNA
 - Reproduce the persistence length of SS- and DS-DNA

Optimization procedure(1): Fitness parameter

$$\eta = \frac{1}{N} \sqrt{\sum_{i=1}^{N} (\mathbf{r}_{i,1} - \mathbf{r}_{i,2})^2}$$

Kabsch algorithm

Optimization procedure(1): Fitness parameter

$$\eta = \frac{1}{N} \sqrt{\sum_{i=1}^{N} (\mathbf{r}_{i,1} - \mathbf{r}_{i,2})^2}$$

Kabsch algorithm

Optimization procedure(1): Fitness parameter

$$\eta = \frac{1}{N} \sqrt{\sum_{i=1}^{N} (\mathbf{r}_{i,1} - \mathbf{r}_{i,2})^2}$$

Kabsch algorithm

Optimization procedure(2): Optimization method

- Requirements:
 - No gradients
 - Handle noisy fitness
 - Few function calls

Optimization procedure(2): Optimization method

- ▶ Requirements:
 - No gradients
 - Handle noisy fitness
 - Few function calls

Bayesian Optimization

Optimization procedure(3): Implementation

Application of optimization

- ▶ 32 bp DNA, 100 mM salt
- ▶ 120ns

Application of optimization

- ▶ 32 bp DNA, 100 mM salt
- ▶ 120ns

Application of optimization

Applications: Structural properties

Best set:

- $\chi_{NW} = 19.0 \, \text{kJ} \, \text{mol}^{-1}$
- $\chi_{NN} = -12.7 \,\text{kJ} \,\text{mol}^{-1}$
- $\chi_{PW} = -7.2 \, \text{kJ} \, \text{mol}^{-1}$
- $\chi_{PP} = -4.2 \, \text{kJ} \, \text{mol}^{-1}$

Applications: Structural properties

Best set:

- $\chi_{NW} = 19.0 \, \text{kJ} \, \text{mol}^{-1}$
- $\chi_{NN} = -12.7 \, \text{kJ} \, \text{mol}^{-1}$
- $\chi_{PW} = -7.2 \, \text{kJ} \, \text{mol}^{-1}$
- $\chi_{PP} = -4.2 \, \text{kJ} \, \text{mol}^{-1}$

10 05 2019

Applications: Structural properties

Best set:

- $\chi_{NW} = 19.0 \, \text{kJ} \, \text{mol}^{-1}$
- $\chi_{NN} = -12.7 \, \text{kJ} \, \text{mol}^{-1}$
- $\chi_{PW} = -7.2 \, \text{kJ} \, \text{mol}^{-1}$
- $\chi_{PP} = -4.2 \,\text{kJ} \,\text{mol}^{-1}$

Property	simulation	expt.
Bases per turn	9.6 ± 0.3	10
Rise pr bp/nm	$0.34(5) \pm 0.01$	0.34
Radius/nm	0.88 ± 0.04	0.94

Applications: Hairpin-formation

Applications: Hairpin-formation

Applications: Hairpin-formation

$$\langle \hat{\mathbf{t}} \cdot \hat{\mathbf{t}}_I \rangle = e^{-I/I_p}, \quad \mathbf{t} \equiv \mathbf{r}_{P,i+10} - \mathbf{r}_{P,i}$$

$$\left\langle \hat{\mathbf{t}} \cdot \hat{\mathbf{t}}_{I} \right\rangle = e^{-I/I_{p}}, \quad \mathbf{t} \equiv \mathbf{r}_{P,i+10} - \mathbf{r}_{P,i}$$

► Experimental: I_P =40-60 nm

$$\left\langle \hat{\boldsymbol{t}} \cdot \hat{\boldsymbol{t}}_{I} \right\rangle = e^{-I/I_{p}}, \quad \boldsymbol{t} \equiv \boldsymbol{r}_{P,i+10} - \boldsymbol{r}_{P,i}$$

► Experimental: I_P =40-60 nm

► Experimental: I_P =40-60 nm

$$\left\langle \hat{\mathbf{t}} \cdot \hat{\mathbf{t}}_{I} \right\rangle = e^{-I/I_{p}}, \quad \mathbf{t} \equiv \mathbf{r}_{P,i+10} - \mathbf{r}_{P,i}$$

$$\begin{array}{c} 1 \\ 0.8 \\ \hline \vdots \\ 0.6 \\ \vdots \\ 0.4 \\ 0.2 \\ 0 \\ \hline \end{array}$$

$$\begin{array}{c} 0.6 \\ \vdots \\ 0.4 \\ 0.2 \\ 0 \\ \hline \end{array}$$

$$\begin{array}{c} 0.6 \\ \vdots \\ 0.7 \\ 0.8 \\ \vdots \\ 0.8 \\ 0.9 \\$$

► Experimental: I_P =40-60 nm

► Simulation: *I*_P =43 nm

Both are too stiff!

- Redo optimization to get better SS-strand behaviour
 - Less stiff k_d
 - ▶ Limit $\chi_{NW} \leq 10 \text{ kJ mol}^{-1}$

- Redo optimization to get better SS-strand behaviour
 - Less stiff k_d
 - ▶ Limit $\chi_{NW} \le 10 \text{ kJ mol}^{-1}$
- Applications on longer doublestranded DNA

- Redo optimization to get better SS-strand behaviour
 - Less stiff k_φ
 - ▶ Limit $\chi_{NW} \leq 10 \text{ kJ mol}^{-1}$
- Applications on longer doublestranded DNA
- Investigate the effect of salt on persistence length

- Redo optimization to get better SS-strand behaviour
 - Less stiff k_d
 - ▶ Limit $\chi_{NW} \leq 10 \text{ kJ mol}^{-1}$
- Applications on longer doublestranded DNA
- Investigate the effect of salt on persistence length
- Plans for applying optimization on other systems

Acknowledgements

Morten Ledum Michele Cascella

