Review

Only two major core topologies emerge as robust solutions: a negative feedback loop with a buffering node and an incoherent feedforward loop with a proportioner node.

Minimal circuits containing these topologies are, within proper regions of parameter space, sufficient to achieve adaptation.

More complex circuits that robustly perform adaptation all contain at least one of these topologies at their core.

Assignment 6

Reproducing Fig.3 in the following literature:

Ma, W., A. Trusina, et al. (2009). "Defining Network Topologies that Can Achieve Biochemical Adaptation." 138(4): 760-773.

Pointing out: Sensitivity and Precision

2.5 Design principles in interlinked positive and negative feedback loops

Outline

- Interlinked positive and negative feedback loops produces robust, tunable oscillations.
- Interlinking positive and negative feedback loops creates a tunable motif in gene regulatory networks.
- Modulation of dynamic modes by interplay between positive and negative feedback loops

Interlinked positive and negative feedback loops produces robust, tunable oscillations.

A simple negative feedback loop of interacting genes or proteins has the potential to generate sustained oscillations. However, many biological oscillators also have a positive feedback loop, raising the question of what advantages the extra loop imparts.

Positive feedback loops in biological oscillators

Oscillator	Period	Positive feedback	Refs.
Sino-atrial pacemaker	~1 s	Depolarization → Na ⁺ channel	(29)
		activation → depolarization	
Calcium spikes	~100 s	Cytoplasmic Ca ²⁺ → PLC → IP ₃ →	(25, 30, 31)
		cytoplasmic Ca ²⁺	
		Cytoplasmic Ca ²⁺ → IP ₃ R →	
		cytoplasmic Ca ²⁺	
		Cytoplasmic Ca ²⁺ → IP ₃ R -l	
		ER Ca ²⁺ -I SOC → cytoplasmic Ca ²⁺	()
Myxobacterial gliding	~10 min	None known	(22)
Animal cell cycle	~30 min	Cdk1 → Cdc25 → Cdk1	(32, 33)
(Xenopus laevis embryos)		Cdk1 - Wee1 - Cdk1	
		Cdk1 - Myt1 - Cdk1	()
Somitogenesis	~30 min	DeltaC → Notch → DeltaC	(34)
Yeast cell cycle	~2 hours	CLN1,2 transcription → CDK1 →	(<i>6</i> , <i>35–39</i>)
(S. cerevisiae)		CLN1,2 transcription	
		CDK1 - Sic1 - CDK1	
N	100 '	CDK1 - Cdh1 - CDK1	(40, 44)
NF-κB responses	~100 min	None known	(40, 41)
p53 responses	~100 min	p53 → PTEN - Akt → Mdm2 - p53	(42, 43)
Animal and and	24 5	p53 → p21 - Cdk2 - Rb - Mdm2 - p53	(44)
Animal cell cycle	~24 hours	CDK2 - Rb - E2F → CDK2	(44)
(somatic cells)		$Cdk1 \rightarrow Cdc25 \rightarrow Cdk1$	
		Cdk1 - Wee1 - Cdk1	
Circulian shuthon	24 hours	Cdk1 - Myt1 - Cdk1	(45)
Circadian rhythm (mammals)	~24 hours	BMAL1 → Rora → BMAL1	(45)
Circadian rhythm (Drosophila)	~24 hours	$CLK \to PDP1 \to CLK$	(45)
Circadian rhythm (fungi)	~24 hours	$FRQ \to WC-1 \to FRQ$	(46)
Circadian rhythm (cyanobacteria)	~24 hours	KaiC-SP - KaiA - KaiC-SP	(26)
(Cyanobacteria)			

Positive feedback provides an oscillator with a tunable frequency and nearly constant amplitude

Schematic view of the Xenopus embryonic cell cycle

Amplitude/frequency curves for various strengths of positive feedback (r)

The frequency of the oscillator was changed by varying the rate constant for cyclin B synthesis, *k*synth.

Frequency as a function of k_{synth} for various strengths of positive feedback

Tsai TY-C, Choi YS, Ma W, Pomerening JR, Tang C, Ferrell JE, Jr. Science. 2008; **321**(5885): 126-9.

Positive feedback and oscillation

Relaxation oscillator

Pomerening, J. R., E. D. Sontag, et al. (2003). <u>Nat Cell Biol 5(4):</u> 346-351.

From a hysteretic switch to a relaxation oscillator

Hysteretic steady-state response of CDK1 to Cyclin B

Oscillations due to CDK1 activation and inactivation in the limit of slow cyclin B synthesis and degradation

A looser relation between the oscillations and the hysteretic steady-state response

Amplitude/frequency curves for various legacy oscillators

(A) Negative feedback—only models.

(B) Positive-plus-negative feedback models.

Randomly parameterized oscillator models

$$\frac{dA}{dt} = k_1(1-A) - \frac{k_2C^{n1}}{K_1^{n1} + C^{n1}}A$$

$$\frac{dB}{dt} = k_3(1-B) - \frac{k_4A^{n2}}{K_2^{n2} + A^{n2}}B$$

$$\frac{dC}{dt} = k_5(1-C) - \frac{k_6B^{n3}}{K_3^{n3} + B^{n3}}C$$

$$\frac{dA}{dt} = k_1(1-A) - \frac{k_2C^{n1}}{K_1^{n1} + C^{n1}}A + k_7(1-A)\frac{A^{n4}}{K_4^{n4} + A^{n4}}$$

$$\frac{dB}{dt} = k_3(1-B) - \frac{k_4A^{n2}}{K_2^{n2} + A^{n2}}B$$

$$\frac{dC}{dt} = k_5(1-C) - \frac{k_6B^{n3}}{K_3^{n3} + B^{n3}}C$$

Amplitude/frequency curves for the randomly parameterized models

Summary I

The positive feedback loops in natural biological oscillators possesses two performance advantages over simple negative feedback loops:

- (i) the ability to tune the oscillator's frequency without changing its amplitude;
- (ii) a greater robustness and reliability.

Interlinking positive and negative feedback loops creates a tunable motif in gene regulatory networks

Examples of biological systems with interlinked positive and negative feedback loops

Schematic depiction of the model

The transcription factor X induces expression of genes y₁ and y₂. The activation of X by Y₁ encloses a positive feedback while the repression of X by Y₂ yields a negative feedback.

Model

$$\frac{d[X]}{dt} = V_x \frac{\left(\frac{[Y_1]}{K_{y_1x}}\right)^n}{1 + \left(\frac{[Y_1]}{K_{y_1x}}\right)^n + \left(\frac{[Y_2]}{K_{y_2x}}\right)^n} - d_x[X] + b_x S, \quad (1)$$

$$\frac{d[Y_1]}{dt} = V_{y_1} \frac{\left(\frac{[X]}{K_{xy_1}}\right)^n}{1 + \left(\frac{[X]}{K_{xy_1}}\right)^n} - d_{y_1}[Y_1] + b_{y_1}, \tag{2}$$

$$\frac{d[Y_2]}{dt} = V_{y_2} \frac{\left(\frac{[X]}{K_{xy_2}}\right)^n}{1 + \left(\frac{[X]}{K_{xy_2}}\right)^n} - d_{y_2}[Y_2] + b_{y_2}.$$
(3)

Transition from bistability to oscillation

Enhancing the PFL

Reversion from oscillation to bistability

Enhancing the NFL

Two-parameter bifurcation diagram with S=1

Summary II

Our results suggests the performance advantages of positive and negative feedback loops:

It is unnecessary to change the topology of such systems in order to perform distinct functions.

Modulation of dynamic modes by interplay between positive and negative feedback loops

Abstract model

Wang LS, Li NX, Chen JJ, Zhang, XP, Liu F and Wang W. Phys. Rev. E, 97: 042412 (2018).

Negative feedback is required but not sufficient for oscillation

 $k_{sc1} = 0$

Dual Role of PFL in producing oscillation

Spontaneous transition between dynamic modes

Transition in domination of feedback loops leads to variation in the dynamic modes

Summary III

PFL plays a dual role in NFL-mediated oscillations depending on the strength of the NFL.

Alternation in the predomination of feedback loops results in the transition from oscillation to bistability.

Assignment 7

Reproducing Figures 5 in the literature: Tian, X.-J., X.-P. Zhang, et al. (2009). Physical Review E **80**(1): 011926-011928.

