

Tambura Açılması Gereken Yiv Sayısı

İkiz makaralı palanga sistemine sahip bir kaldırma düzeneğinde:

$$Z \times \pi \times D_t = i \times H \rightarrow Z = \frac{i \times H}{\pi \times D_t}$$

Z: yiv sayısı, Dt: Tambur çapı

H:kaldırma yüksekliği

i:kanca bloğundaki makara sayısı

$$i \times H = L_h$$

Lh:Tambura sarılan halat uzunluğu

Yük tam aşağıda iken, halatın en az 1.5 sarım tambur üzerinde kalması gerektiğinden; yiv sayısı:

$$Z = \frac{i \times H}{\pi \times D_t} + (1.5 - 3)$$

Bu yiv sayısı simetrik tamburun bir tarafına açılması gereken yiv sayısı olur.

Toplam yiv sayısı bunun iki katı olur.

Tamburda yiv açılması gereken boy:

Ly=Z x s Z:yiv sayısı

Lh: Tambura sarılması gereken halat uzunluğu ise, açılması gereken yiv sayısı:

$$Z = \frac{L_h}{\pi \times D_t} + (1.5 - 3)$$

Tambur et kalınlığı

Tambur yükün kaldırılması sırasında; yüzey basıncı, burulma ve eğilme gerilmelerine maruz

$$\tau = \frac{M_b}{\frac{\pi}{16} \frac{(d_1^4 - d_2^4)}{d_1}}$$

$$\sigma_e = \frac{M_e}{W_e} = \frac{M_e}{\frac{\pi}{32} \frac{(d_1^4 - d_2^4)}{d_1}}$$

<u> Mukayese Gerilmesi</u>

$$\sigma_{muk} = \sqrt{\sigma_{e}^2 + 3\tau^2} \le \sigma_{em}$$

Yüzey basıncına göre kontrol ise: Deneysel olarak;

$$P = 0.85 \frac{F_h}{h \times s} \le P_{em}$$

Eğilme gerilmesi için yine yaklaşık olarak bir kabulle ince cidarlarda h ≤ Dt ise,

$$\sigma_e = \frac{4}{\pi} \frac{M_e}{h \times Dt^2}$$

alınabilir.

Başlangıç hesaplarda;

 $h \cong s$

alınabilir.

Tambura Gelen Halat Kuvvetleri

2 makaralı 4 taşıyıcı halata sahip bir kaldırma düzeneğinde halat kuvveti;

Yükün geri kalan Q/4+Q/4=Q/2'si tambur tarafından taşınır.

8 taşıyıcı halat için tambura gelen kuvvet ise; Q/8+Q/8=Q/4 olur. Yükün geri kalan 3Q/4 ise dengeleme makarası üzerinden köprü bloğu tarafından taşınır.

18

PROBLEM

10 ton yük taşıyan bir vincin tabur çapı Dt=350mm. Kaldırma düzeni 4 taşıyıcı halatlı ikiz makara sistemidir.

Halat çapı d=16mm.

Kaldırma yüksekliği 10m'dir.

Makara çapı Dm=250mm'dir.

ÇÖZÜM

Tambura açılması gereken yiv sayısı(tamburun bir tarafina);

$$Z = \frac{2 \times H}{\pi \times D_t} + (1.5...3)$$

$$Z = \frac{2 \times 10}{0.35 \times \pi} + 1.5 \cong 21$$

Tambur yivleri arasındaki mesafe;

$$s = d + (1.....3) = 16 + 2 = 18mm$$

Tamburun yiv açılması gereken uzunluğu;

$$L = z \times s = 21 \times 18 = 378mm$$

Toplam tambur uzunluğu;

 $(L_0=250 \text{ mm ise})$

$$L_t = 378 + 250 + 378 \cong 1000mm$$

Halat Makaraları

Halat makaralarının çapları daha önce halat bahsinde geçen hesaplamalara göre yapılacaktır.

Bu hesap ile bulunan çaplar halat ekseninden geçen çaptır.

Makaraların diğer boyutları ise DIN 15062'de

PROBLEM

10 ton yük taşıyan bir vincin tambur çapı D_T =350 mm. Kaldırma düzeni 4 taşıyıcı halatlı ikiz makara sistemi. Halat çapı d=16 mm. Kaldırma yüksekliği 10 m' dir. Makara çapı D_m =250 mm.

27

Tambura açılması gereken yiv sayısı (tamburun bir tarafına)
$$Z = \frac{2 \times H}{\pi \times D_T} + (1,5....3)$$

$$Z = \frac{2 \times 10}{0,35 \times \pi} + 1,5 \cong 21$$
 adet yiv

 $\label{eq:continuous_continuous$

PROBLEM

Şekildeki kaldırma düzeneğinde;

Q=12500 daN kaldırılan yük H=8 m/dak kaldırma hızı

I_N=2 tambura sarılan halat sayısı

makara verimi=0,97

 $\sigma_{\rm em} = 12000 \mid \text{N/cm}^{\text{2}}$

 $D_Z \cong 1,4 \times D_T$ tahrik dişlisi çapı

 $\ell_0 = 3 \times d$ olduğuna göre;

- Halat çapı d
- Tambur çapı D_⊤
- Tamburun devir sayısını
- Aks ve tambura gelen kuvvetleri
- Aks çapını hesaplayınız

Çözüm:

a) Halata gelen maksimum kuvvet

b) $D_T = c\sqrt{F_H} = 7\sqrt{3222} = 397,3 \text{mm}$ $D_T = 400 \text{ mm}$

c) Halat hızı (sarım hızı)

 $V_H = I_H \times V_K = 2 \times 12,5 = 25 \text{ m/dak}$

 $V_{H} = D_{T} \times \pi \times \eta_{T} dan$ $\eta_{T} = \frac{V_{H}}{D_{T} \times \pi} = \frac{25}{0.40 \times \pi} = 19.9 d/dak$

d) Kaldırma yüksekliği 8 m olduğundan tamburun bir tarafına sarılan halat boyu L_H=16 m olur.

Bir tarafa açılması gereken yiv sayısı

$$Z = \frac{L_{H}}{D_{T} \times \pi} + (1,5...3) = \frac{16}{0,40 \times \pi} + 2 = 12,73 + 2 = 15$$

Sekildeki kaldırma düzeneği 15 ton vük kaldırma kapasiteli ve 10 m kaldırma yüksekliğine sahiptir. (Halat sayısı 4)

$$\begin{array}{c} \ell_0 = & 3d \\ V_k = & 15 \text{ m/dak (kaldırma hızı)} \\ D_z = & 1,4 D_T \\ \eta = & 0,97 \\ \end{array}$$
 a) Halat, makara tambur capını b) Tamburun diğer (ℓ_0,ℓ,L_T) uzunluklarını ve devir sayısını hesaplayınız. c) Aks ve tambura gelen kuvvetleri d)Aks çapını hesaplayınız

$$F_{H} = \frac{Q}{2} \times \frac{1-\eta}{1-\eta^{i}} = \frac{150000}{2} \times \frac{1-0.97}{1-0.97^{2}} = 38071 \text{ N}$$

$$d = 0.105\sqrt{30871} = 20.48 \text{mm}$$

$$d = 22 \text{ mm}$$

$$D_{m} = 2.23\sqrt{37081} = 43.51 \text{mm}$$

$$D_{m} = 465 \text{ mm alınabilir.}$$

$$D_{T} = 2.07\sqrt{37081} = 403.8 \text{mm}$$

$$D_{T} = 427 \text{ mm}$$

$$\left(\frac{d}{D_{T}} = 0.051\right)$$

b) Tamburun bir tarafına açılması gereken yiv sayısı
$$Z = \frac{i \times H}{\pi \times D_T} = \frac{2 \times 10}{\pi \times 427 \times 10^{-3}} = 14.9 + 1.5 = 16.4$$

$$Z = 17$$
 Yiv açılması gereken boy:
$$L_1 = Z \times S$$

$$S = d + b = 22 + 2 = 24 \text{ mm}$$

$$L_1 = 17 \times 24 = 408 \text{ mm}$$

$$L_{T} = 2 \underbrace{\ell_{0}}_{1} + 2 L_{1} + 0,5 D_{T}$$

$$L_{T} = 2 \times (3 \times 22) + 2 \times 408 + 0,5 \times 427$$

$$L_{T} = 1161,5 \text{ mm}$$

$$V_{k} = 15 \text{ m/dak}$$

$$V_{k} = \frac{15}{60} = 0,4 \text{ m/s}$$

Tahrik kuvvetinin iletmesi gereken döndürme momenti; $\begin{aligned} & \textbf{M}_d = \textbf{M}_b = 16256317 \text{ Nmm} \\ & \textbf{Buna göre;} \\ & \textbf{M}_d = F_c \times \frac{D_Z}{2} \\ & F_C = \frac{2 \times M_d}{D_Z} \\ & \textbf{D}_Z = \textbf{1,4} \times \textbf{D_T} = \textbf{1,4} \times \textbf{427} = \textbf{597,8} \\ & \textbf{F}_C = \frac{2 \times 16256317}{597,8} = 54387 \textbf{N} \end{aligned}$

 F_{C} ve F_{D} yataklarına gelen kuvvetler;

Y yönde $F_{CY} = F_{DY} = F_{H}$ olur.

X yönünde ise F_{CX} F_{CX} F_{CX} F_{CX} F_{CX} F_{CX} F_{DX} F_{DX}

Aks çapı için $M_{e} = \sqrt{M_{ex}^{2} + M_{ey}^{2}}$ $M_{e} = \sqrt{(51840,6\times60)^{2} + (38071\times60)^{2}}$ $M_{e} = 3859100,4$ Nmm

$$\sigma_{e} = \frac{M_{E}}{W} \le \sigma_{em}$$

$$W = \frac{3859100,4}{120} = 32156,2 \text{ mm}^{3}$$

$$W = \frac{\pi \times d^{3}}{32}$$

$$d = \sqrt[3]{\frac{32 \times 32159,2}{\pi}}$$

$$d = 68,93 \cong 69 \text{ mm}$$

Yiv açılması gereken boy: $L=Z\times S=15\times (20+3)=345\text{ mm}$ Toplam tambur uzunluğu $L_T=2\ \ell+2L+0,5\times D_T=2\times 3d+2L+0,5\times D_T$ $L_T=2\times 3\times 20+2\times 345+0,5\times 400=1010\text{ mm}$ Tahrik dişlisi çapı: $D_Z\cong 1,4\times D_T=1,4\times 400=560\text{ mm}$

$$\begin{split} & \text{Tambura etkiyen döndürme momenti} \\ & M_b = 2\times F_H \times \frac{D_T}{2} = 2\times 3222 \times \frac{0.4}{2} = 1289 \\ & \text{daNm} \\ & \text{Tahrik dişlisinin iletmesi gereken döndürme momenti} \\ & M_{b_z} = M_b = 1289 \\ & \text{daNm buna göre F}_{\varsigma} \text{ gevre kuvveti} \\ & F_{\varsigma} = \frac{M_b}{D_{Z_2'}} = \frac{1289}{0.28} = 4600 \\ & \text{daN} \end{split}$$

 $\begin{aligned} F_{Bx} = & F_{C} = 4600 \text{ daN o halde} \\ F_{A} = & F_{Ay} \Rightarrow F_{A} = 3222 \text{ daN} \end{aligned}$ $\begin{aligned} F_{B} = & \sqrt{F_{Bx}^{2} + F_{By}^{2}} = \sqrt{4600^{2} + 3222^{2}} = 5616 \text{ daN} \end{aligned}$ Yataklara gelen kuvvetler $\begin{aligned} F_{Cy} = & F_{Dy} = F_{N} = 3222 \text{ daN} \end{aligned}$ X yönünde etkiyen kuvvet $\begin{aligned} F_{Cx} \times 1130 - F_{Bx} \times 60 = 0 \text{ dan} \end{aligned}$

 $F_{CX} = \frac{4600 \times 60}{1130} = 244 \text{ daN}$ $F_{DX} = F_{BX} - F_{CX} = 4600 - 244 = 4356 \text{ daN}$ $F_{C} = \sqrt{F_{CX}^{2} + F_{CY}^{2}} = 3231 \text{ daN}$ $F_{D} = \sqrt{F_{DX}^{2} + F_{DY}^{2}} = 5418 \text{ daN}$

e) Eğilme momenti (Aks çapının hesabı)
$$M_{ey} = F_{cy} \times 0,06 \text{ m} = 3222 \times 0,06 = 193 \text{ daNm}$$

$$M_{ex} = F_{DX} \times 0,06 \text{ m} = 4356 \times 0,06 = 261 \text{ daNm}$$

$$M_{e} = \sqrt{M_{ex}^{2} + M_{ey}^{2}} = 325 \text{ daNm}$$

$$\sigma_{e} = \frac{M_{e}}{W_{e}} = \sigma_{em}$$

$$W_{e} = \frac{M_{e}}{\sigma_{em}} = \frac{32500 \text{daNcm}}{1200 \text{daN/cm}^{2}}$$

$$W_{e} = \frac{\pi \times d^{3}}{32} \text{ den}$$

$$d = 65 \text{ mm Aks çapı}$$