南方冶金学院考试试题

考试科目		考试日期_		
班级	学号	姓名	成绩	

- 一、解答下列各题(每小题6分,共计60分)
 - 1、 图示电路中,已知2CW15的稳定电压为8伏,试画出U0的大致波形。

- 2、已知某小功率管的基极电流 I_B =20 uA,电流放大系数 β =49,则其输入电阻 I_{be} =?
- 3、(a)根据发射极电压 V_E 的变化趋势,用箭头把下面分压式偏置电路稳定静态工作点的物理过程填完整。

- (b) 当温度在室温范围内升高时,对于固定偏置电路,其晶体管的 I_{B-} , I_{C-} , U_{CE-} 。
- 4、图示电路中,有哪些交流反馈?指出反馈元件。判定反馈类型。

5、试用相位条件判断图示电路能否产生自激振荡,指出反馈信号取自何处?

- 6、图示电路中,已知交流电频率f=50HZ,负载电阻 $R_L=120\,\Omega$,直流输出电压 $U_0=30V$
- (1) 求直流负载电流,
- (2) 求二极管的整流电流 I_D 和反向电压 U_{RM} ,
- (3) 计算滤波电容的容量。

8、由逻辑电路图写出F函数表达式,再用最少与非门实现该逻辑函数(表达式)

9、主从JK触发器初始状态为零态,在CP作用下,试画出Q端的波形。

- 10、有两个同型号的TTL与非门器件,甲电路的关门电平 $V_{\rm off}$ =1.1伏,乙电路的关门电平 $V_{\rm off}$ =0.9伏,试问输入低电平时的抗干扰能力哪个大?
- 二、(10分)已知图示射极输出器的Ucc=12V, R_B =560k Ω , R_E =10k Ω , R_L =15k Ω ,晶体管的 β =50, I_E =0.6^{mA} (1)画微变等效电路图,
- (2)求rbe和ri
- (3)求电压放大倍数 Au (计算值)

三、(10分)在理想情况下求图示电路的 R_2 上流过的电流 I_0 =? 已知 R_1 =50k, R_F =50k, R_3 =25k, R_2 =10k, R_4 =1K。 U_i =0.1伏。

CP	Q ₃	Q_2	Q ₁	Q_0
0				
1				
2				
3				
4				

答案

1,

- 2, $r_{de}=1.6k$
- 3, a. t°C $I_C \downarrow$, $I_E \downarrow$, $U_{BE} \uparrow I_B \uparrow I_C \uparrow$
 - B. 不变,增大,减小;
- 4、R₁单级串联电流负反馈。

R3单级串联电压负反馈。

 R_1 、 R_2 、 R_4 ,两级串联电流负反馈。

- 5、(a) 不能、取自C₁
 - (b) 不能, 取自L2

$$I_c = 6 \times \frac{U_0}{R_L} = \frac{30}{120} = 250 \text{mA}$$

$$I_D = \frac{I_L}{2} = 125 \text{mA}$$

$$U_2 = \frac{V_0}{1.2} = \frac{30}{1.2} = 25V$$

$$\mathbf{U_{RM}} = \sqrt{2}\mathbf{U_2} = 35\mathbf{V}$$

$$\tau = (3_{3}5)\frac{T}{2} = 0.03 - 0.05$$

$$C = \frac{\tau}{R_{\tau}} = 250 \sim 417^{\mu F}$$

$$R_{78} = 9.1 / / 8.2 \approx 4.3 K$$

$$V_B = \frac{12}{9.1 + 8.2} \times 8.2 = 5.7V$$

$$I_B = \frac{V_B - U_{BE}}{R_B + \beta R_E} = \frac{5.7 - 0.7}{4.3 + 20 \times 0.62} \approx 0.3 \text{mA}$$

$$\frac{I_{cs}}{\beta} = \frac{12 - 0.3}{20(2..4 + 0.62)} \approx 0.2 \text{mA}$$

$$I_{B}$$
 $\rangle \frac{I_{CS}}{\beta}$.: 晶体管工作在饱和状态

8. F=
$$(A+B)$$
 $(A+C)$ =A • A+AC+AB+BC
=A+BC=A+BC = A • BC

9、

10、甲电路抗學狀體力强。| | | | |

二、(10分)

(1)

$$V_{be}(\overline{2})300 + (\beta + 1)\frac{26}{I_{\mathbf{E}}} = 300 + 51 \times \frac{26}{0.6} = 2.5k$$

$$r_i = R_B //[(\beta + 1)R_E //R_L] = 560 //(51 \times 10 //15) = 560 //306$$

= 198 K

$$A_{\text{v}(\overline{3})} \frac{(1+B)R_{\text{E}} // R_{\text{L}}}{r_{\text{de}}^{2} + (1+\beta)R_{\text{E}} // R_{\text{L}}} = \frac{306}{2.5 + 306} = 0.99$$

三、(10分)

$$I_{F} = I_{1} = \frac{U_{i}}{R_{1}} = \frac{0.1}{50} = 2 \times 10^{-6} A$$

$$: -I_F R_F = I_4 R_4$$

$$I_4 = -\frac{R_F}{R_A}I_F = -\frac{50}{1} \times 2 \times 10^{-6} = -10^{-4} A$$

$$I_0 = I_4 - I_F = -10^{-4} - 2 \times 10^{-6} = -102 \times 10^{-6} A$$

四(10分)

CP	Q ₃	Q ₂	Q ₁	Q_0
0	0	0	0	0
1	0	0	0	1
2	0	0	1	1
3	0	1	1	0
4	1	1	0	1

五、(10分)

Ср	С	В	A
	Q ₃	Q_2	Q_1
0	0	1	0
1	0	1	1
2	0	0	1
3	1	0	1
4	1	0	0
5	1	1	0
6	0	1	0
7	0	1	1