

MSc in Data Science

Delivery Date: 13/12/2020

MSc in Data Science

Machine Learning

Academic Year: 2020-2021

Exercise 1: Regression and Classification

You are provided with a dataset, about rental bikes between years 2011 and 2012. The identity of the dataset can be found in the following link:

- Bike Sharing in Washington D.C. Dataset: https://www.kaggle.com/marklvl/bike-sharing-dataset/home
- The dataset can be found in the following link: https://www.kaggle.com/marklvl/bike-sharing-dataset

The dataset is available also in the GitHub repository of the course, at:

https://github.com/MSc-in-Data-

Science/class material/tree/master/semester 1/Machine Learning/datasets/bike-sharing-dataset

For this exercise, we will use only the dataset contained in file "day.csv": https://github.com/MSc-in-Data-Science/class material/blob/master/semester 1/Machine Learning/datasets/bike-sharing-dataset/day.csv

Using this dataset, you are requested to learn a set of models according to the following restrictions:

a) Classification

Treating the problem as a classification problem¹, use a decision tree to learn a classification model that predicts the number of persons that used a bicycle (column "cnt") based on the available features. Ensuring that overfitting has not occurred, use the learned model to identify the two most prominent features.

b) Linear regression

Treating the learning task as a regression problem, develop a linear regression object that predicts the number of persons that used a bicycle from all the available **numeric** features. Perform the experiment 3 times, each time with a different learning rate a, and plot the loss with respect to the training epochs required for the model to converge². Which value of a has been more suitable and why? For one of the two prominent features selected in step a), and by using only a single instance from the training set, plot the loss with respect to $(y - \hat{y})^3$. Finally, describe your processing workflow for modelling the data.

¹ You can also convert the values of the "cnt" feature into a set of categorical values (i.e. 10 categories), with pandas.cut().

² If you use scikit-learn, you can get the loss in each epoch using a similar approach to the one shown in: https://datascience.stackexchange.com/questions/28411/how-to-plot-cost-versus-number-of-iterations-in-scikit-learn

³ You can use sklearn.linear_model.SGDRegressor() with max_iter=1, and its partial_fit() method, to simulate a single step of gradient descent.

MSc in Data Science

c) Logistic regression

Treating the problem as a **binary classification problem**⁴, apply logistic regression that predicts the if "few" or "many" persons have used a bicycle from all the available **numeric** features. For one of the two prominent features selected in step a), plot the loss with respect to $(y - \hat{y})$.

In case you want to implement gradient descent from scratch in python, the following resources (among others that you can find online) may help you towards this direction:

- Gradient descent with Python:
 https://www.pyimagesearch.com/2016/10/10/gradient-descent-with-python/
- Gradient Descent Example for Linear Regression: https://github.com/mattnedrich/GradientDescentExample
- Gradient Descent implemented in Python using numpy: https://gist.github.com/ajmaradiaga
 https://gist.github.com/ajmaradiaga
- (Batch) gradient descent algorithm:
 http://www.bogotobogo.com/python/python numpy batch gradient descent algorithm.p
- Python Tutorial on Linear Regression with Batch Gradient Descent: http://ozzieliu.com/2016/02/09/gradient-descent-tutorial/
- How to Implement Linear Regression with Stochastic Gradient Descent from Scratch with Python:
 - https://machinelearningmastery.com/implement-linear-regression-stochastic-gradient-descent-scratch-python/

⁴ You can also convert the values of the "cnt" feature into a set of categorical values (i.e. 2 categories), with pandas.cut().