Natural Language Models and Interfaces Part B, lecture 2

Ivan Titov

Institute for Logic, Language and Computation

Today

- Parsing algorithms for CFGs
 - Recap, Chomsky Normal Form (CNF)
 - A dynamic programming algorithm for parsing (CKY)
 - Extension of CKY to support unary inner rules
- Parsing for PCFGs
 - Extension of CKY for parsing with PCFGs
- Parser evaluation (if we have time)

After this lecture you should be able to start working on the assignment step 2.1

Parsing

Parsing is search through the space of all possible parses

PCFG model

e.g., we may want either any parse, all parses or the highest scoring parse (if PCFG):The probability by the

 $\underset{T \in G(x)}{\operatorname{arg\,max}} P(T)$

Set of all trees given by the grammar for the sentence *x*

- Bottom-up:
 - One starts from words and attempt to construct the full tree
- Top-down
 - Start from the start symbol and attempt to expand to get the sentence

CKY algorithm (aka CYK)

- Cocke-Kasami-Younger algorithm
 - Independently discovered in late 60s / early 70s
- ▶ An efficient bottom up parsing algorithm for (P)CFGs
 - can be used both for the recognition and parsing problems
- Very important in NLP (and beyond)

We will start with the non-probabilistic version

Constraints on the grammar

The basic CKY algorithm supports only rules in the Chomsky Normal Form (CNF):

Unary preterminal rules (generation of words given PoS tags
$$N \to telescope$$
, $D \to the$, ...)
$$C \to C_1 C_2$$
Binary inner rules (e.g., $S \to NP\ VP,\ NP \to D\ N$)

- Any CFG can be converted to an equivalent CNF
 - Equivalent means that they define the same language

Makes linguists unhappy

- However (syntactic) trees will look differently
- It is possible to address it but defining such transformations that allows for easy reverse transformation

Transformation to CNF form

- What one need to do to convert to CNF form
 - lacktriangle Get rid of empty (aka epsilon) productions: $C
 ightarrow \epsilon$
 - Get rid of unary rules: $C \rightarrow C_1$
 - N-ary rules: $C \rightarrow C_1 \ C_2 \dots C_n \ (n > 2)$

Crucial to process them, as required for efficient parsing

Generally not a problem as there are not empty production in the standard (postporcessed) treebanks

Not a problem, as our CKY algorithm will support unary rules

Transformation to CNF form: binarization

▶ Consider $NP \rightarrow DT \ NNP \ VBG \ NN$

How do we get a set of binary rules which are equivalent?

$$NP \rightarrow DT X$$
 $X \rightarrow NNP Y$
 $Y \rightarrow VBG NN$

▶ A more systematic way to refer to new non-terminals

Transformation to CNF form: binarization

Instead of binarizing tules we can binarize trees on preprocessing:

Also known as **lossless Markovization** in the context of PCFGs

Can be easily reversed on postprocessing

Transformation to CNF form: binarization

Instead of binarizing tules we can binarize trees on preprocessing:

[Some illustrations and slides in this lecture are from Marco Kuhlmann]

- We a given
 - a grammar $G = (V, \Sigma, R, S)$
 - $m{v}$ a sequence of words $m{w}=(w_1,w_2,\ldots,w_n)$
- lacktriangle Our goal is to produce a parse tree for w
- lacktriangle We need an easy way to refer to substrings of w

start symbol

span (i, j) refers to words between fenceposts i and j

Key problems

- Recognition problem: does the sentence belong to the language defined by CFG?
 - Is there a derivation which yields the sentence?
- Parsing problem: what is a derivation (tree) corresponding the sentence?
 - Probabilistic parsing: what is the most probable tree for the sentence?

Parsing one word

$$C \to w_i$$

 w_i

Parsing one word

Parsing one word

Parsing longer spans

$$C \rightarrow C_1 \ C_2$$

Parsing longer spans

Parsing longer spans

Signatures

- Applications of rules is independent of inner structure of a parse tree
- We only need to know the corresponding span and the root label of the tree
 - lacksquare Its signature [min, max, C]

Also known as an edge

CKY idea

- Compute for every span a set of admissible labels (may be empty for some spans)
 - Start from small trees (single words) and proceed to larger ones
- ▶ When done, check if S is among admissible labels for the whole sentence, if yes the sentence belong to the language
 - That is if a tree with signature [0, n, S] exists
- Unary rules?

$$S \to NP VP$$

$$VP \rightarrow M \ V$$
 $VP \rightarrow V$

$$NP \to N$$

$$NP \to N \ NP$$

$$N \rightarrow can$$

$$N \rightarrow lead$$

$$N \rightarrow poison$$

$$M \to can$$

$$M \to must$$

$$V \rightarrow poison \\ V \rightarrow lead$$

max = 1 max = 2 max = 3

S? min = 0 min = 1

 $S \to NP VP$

$$VP \rightarrow M V$$
 $VP \rightarrow V$

$$NP \to N$$

$$NP \to N NP$$

 $N \rightarrow can$ $N \rightarrow lead$ $N \rightarrow poison$

 $M \to can$ $M \to must$

Chart (aka parsing triangle)

$$V \to poison$$
 $V \to lead$

$$VP \to M V$$
 $VP \to V$

 $S \to NP \ VP$

$$NP \to N$$

$$NP \to N \ NP$$

$$N \rightarrow can$$
 $N \rightarrow lead$
 $N \rightarrow poison$

$$M \to can$$
 $M \to must$

$$V \to poison$$

$$V \to lead$$

$$VP \to M V$$
 $VP \to V$

 $S \to NP \ VP$

$$NP \to N$$

$$NP \to N \ NP$$

$$N \rightarrow can$$
 $N \rightarrow lead$
 $N \rightarrow poison$

$$M \to can$$
 $M \to must$

$$V \to poison$$

$$V \to lead$$

$$VP \rightarrow M V$$
 $VP \rightarrow V$

 $S \to NP \ VP$

$$NP \to N$$

$$NP \to N \ NP$$

$$N \rightarrow can$$
 $N \rightarrow lead$
 $N \rightarrow poison$

$$M \to can$$
$$M \to must$$

$$V \to poison$$

$$V \to lead$$

max = 1 max = 2 max = 3

 $\min = 0$ $\begin{bmatrix} 1 & & 4 & & 6 \\ & S? & & \\ & & 2 & & 5 \\ \\ & & & \\$

$$S \rightarrow NP VP$$

$$VP \rightarrow M V$$
 $VP \rightarrow V$

$$NP \to N$$

$$NP \to N NP$$

$$N \rightarrow can$$
 $N \rightarrow lead$ $N \rightarrow poison$

$$M \to can$$

$$M \to must$$

$$V \rightarrow poison \\ V \rightarrow lead$$

max = 1 max = 2 max = 3

min = 0 ? 2 ? min = 1 3 ?

$$VP \rightarrow M \ V$$

 $VP \rightarrow V$

$$NP \to N$$

$$NP \to N NP$$

$$N \rightarrow can$$
 $N \rightarrow lead$ $N \rightarrow poison$

$$M \to can$$

$$M \to must$$

$$V \rightarrow poison$$

$$V \rightarrow lead$$

max = 1 max = 2 max = 3 min = 0 min = 1 min = 2 min = 2 max = 3 min = 3

$$S \rightarrow NP VP$$

$$VP \rightarrow M V$$
 $VP \rightarrow V$

$$NP \to N$$

$$NP \to N NP$$

 $N \rightarrow can$ $N \rightarrow lead$ $N \rightarrow poison$

 $M \to can$ $M \to must$

 $V \rightarrow poison$ $V \rightarrow lead$

max = 1 max = 2 max = 3

$$S \to NP \ VP$$

$$VP \rightarrow M V$$
 $VP \rightarrow V$

$$NP \to N$$

$$NP \to N NP$$

 $N \rightarrow can$ $N \rightarrow lead$ $N \rightarrow poison$

 $M \to can$ $M \to must$

 $V \rightarrow poison \\ V \rightarrow lead$

min = 0	$egin{bmatrix} {\sf 1} & N, V & \ NP, VP & \ \end{pmatrix}$		
min = 1		$ \begin{array}{c} 2 \\ N, M \\ NP \end{array} $	
min = 2			NP, VP

max = 2

max = 1

max = 3

 $N \rightarrow can$ $N \rightarrow lead$ $N \rightarrow poison$

 $M \to can$ $M \to must$

$$V \rightarrow poison \\ V \rightarrow lead$$

$$S \rightarrow NP VP$$

$$VP \rightarrow M V$$
 $VP \rightarrow V$

$$NP \to N$$
$$NP \to N NP$$

$$N \rightarrow can$$
 $N \rightarrow lead$ $N \rightarrow poison$

$$\begin{aligned} M \to can \\ M \to must \end{aligned}$$

$$V \to poison$$

$$V \to lead$$

$$S \to NP VP$$

$$VP \to M V$$
 $VP \to V$

$$NP \to N$$
$$NP \to N \ NP$$

$$N \rightarrow can$$
 $N \rightarrow lead$ $N \rightarrow poison$

$$M \to can$$

$$M \to must$$

$$V \rightarrow poison \\ V \rightarrow lead$$

$$S \to NP VP$$

$$VP \rightarrow M V$$
 $VP \rightarrow V$

$$NP \to N$$
$$NP \to N \ NP$$

$$N \rightarrow can$$
 $N \rightarrow lead$ $N \rightarrow poison$

$$M \to can$$

$$M \to must$$

$$V \rightarrow poison \\ V \rightarrow lead$$

$$S \to NP \ VP$$

$$VP \rightarrow M V$$
 $VP \rightarrow V$

$$NP \to N$$

$$NP \to N \ NP$$

$$N \rightarrow can$$
 $N \rightarrow lead$ $N \rightarrow poison$

$$M \to can$$

$$M \to must$$

$$V \rightarrow poison$$
 $V \rightarrow lead$

$$S \rightarrow NP VP$$

$$VP \rightarrow M V$$
 $VP \rightarrow V$

$$NP \to N$$

$$NP \to N NP$$

$$N \rightarrow can$$
 $N \rightarrow lead$ $N \rightarrow poison$

$$M \to can$$

$$M \to must$$

$$V \rightarrow poison$$
 $V \rightarrow lead$

max = 1 max = 2 max = 3

$$\min = 0 \quad \begin{bmatrix} 1 & N, V & 4 & NP \\ NP, VP & & & \\ \end{bmatrix}$$

$$\min = 1 \quad \begin{bmatrix} 2 & N, M & 5S, VP, \\ NP & & NP \\ \end{bmatrix}$$

$$\min = 2 \quad \begin{bmatrix} 3 & N, V \\ NP, VP \\ \end{bmatrix}$$

 $S \rightarrow NP \ VP$

$$\begin{array}{c} VP \to M \ V \\ VP \to V \end{array}$$

$$NP \to N$$

$$NP \to N \ NP$$

$$N \rightarrow can$$
 $N \rightarrow lead$ $N \rightarrow poison$

$$M \to can$$

$$M \to must$$

$$V \rightarrow poison \\ V \rightarrow lead$$

 $VP \to M \ V$

CKY in action

 $VP \to V$ $NP \rightarrow N$ $NP \rightarrow N NP$

$$max = 1$$
 $max = 2$ $max = 3$

min = 0	$\begin{bmatrix} 1 & N, V \\ NP, VP \end{bmatrix}$	⁴ NP		
min = 1		$egin{array}{c} 2 \\ N, M \\ NP \end{array}$	${5 \atop NP}$	
min = 2			NP, VP	

Check about unary rules: no unary rules here

 $N \to poison$ $M \to can$ $M \to must$

 $N \to can$

 $N \rightarrow lead$

$$V \rightarrow poison$$
 $V \rightarrow lead$

max = 1 max = 2 max = 3

 $\min = 0 \quad \begin{bmatrix} 1 & N, V \\ NP, VP \end{bmatrix} \quad \begin{bmatrix} 4 & NP \\ NP, VP \end{bmatrix} \quad \begin{bmatrix} 6 \\ ? \\ NM \\ NP \end{bmatrix} \quad \begin{bmatrix} 5 \\ S, VP, \\ NP \end{bmatrix}$ $\min = 1 \quad \begin{bmatrix} 3 & N, V \\ NP, VP \end{bmatrix}$ $\min = 2 \quad \begin{bmatrix} NP, VP \\ NP \end{bmatrix}$

 $S \rightarrow NP VP$

$$VP \rightarrow M V$$
 $VP \rightarrow V$

$$NP \to N$$

$$NP \to N NP$$

$$N \rightarrow can$$
 $N \rightarrow lead$ $N \rightarrow poison$

$$M \to can$$

$$M \to must$$

$$V \rightarrow poison \\ V \rightarrow lead$$

max = 1 max = 2 max = 3

 $S \to NP VP$

$$VP \rightarrow M V$$
 $VP \rightarrow V$

$$NP \to N$$

$$NP \to N NP$$

$$N \rightarrow can$$
 $N \rightarrow lead$ $N \rightarrow poison$

$$M \to can$$

$$M \to must$$

$$V \to poison$$

$$V \to lead$$

max = 2max = 1max = 3

mid = 1

min = 0	$ \begin{array}{c} 1 & N, V \\ NP, VP \end{array} $	4 NP	^{6}S , NP
min = 1		$ \begin{array}{c} 2 \\ N, M \\ NP \end{array} $	5S, VP, NP
			N, V
min = 2			NP, VP

$$VP \rightarrow M V$$
 $VP \rightarrow V$

 $S \to NP \ VP$

$$NP \to N$$

$$NP \to N \ NP$$

$$N \rightarrow can$$

$$N \rightarrow lead$$

$$N \rightarrow poison$$

$$M \to can$$

$$M \to must$$

$$V \rightarrow poison \\ V \rightarrow lead$$

max = 1 max = 2 max = 3

mid = 2

min = 0	$\begin{bmatrix} 1 & N, V \\ NP, VP \end{bmatrix}$	4 NP	$egin{array}{c} {f 6}_{m S},NP \ S(?!) \end{array}$
min = 1		$ \begin{array}{c c} 2 & N, M \\ NP & \end{array} $	5S, VP, NP
			$\left egin{array}{ccc} {\sf 3} & N,V & \\ NP,VP & \end{array} ight $
min = 2			

 $S \to NP \ VP$

$$VP \rightarrow M V$$
 $VP \rightarrow V$

$$NP \to N$$

$$NP \to N \ NP$$

$$N \rightarrow can$$

$$N \rightarrow lead$$

$$N \rightarrow poison$$

$$M \to can$$

$$M \to must$$

$$V \rightarrow poison \\ V \rightarrow lead$$

max = 1 max = 2 max = 3

mid = 2

$$\min = 0 \quad \begin{bmatrix} 1 & N, V & 4 & NP & 6 \\ NP, VP & & S(?!) & \\ \end{bmatrix}$$

$$\min = 1 \quad \begin{bmatrix} 2 & N, M & 5 \\ NP & & NP \\ \end{bmatrix}$$

$$3 \quad N \quad V$$

Apparently the sentence is ambiguous for the grammar: (as the grammar overgenerates)

$$VP \rightarrow M V$$

 $VP \rightarrow V$

 $S \to NP \ VP$

$$NP \to N$$

$$NP \to N NP$$

$$N \rightarrow can$$
 $N \rightarrow lead$ $N \rightarrow poison$

$$M \to can$$

$$M \to must$$

$$V \rightarrow poison \\ V \rightarrow lead$$

Ambiguity

No subject-verb agreement, and poison used as an intransitive verb

Apparently the sentence is ambiguous for the grammar: (as the grammar overgenerates)

CKY more formally

Here we assume that labels (C) are integer indices

▶ Chart can be represented by a Boolean array chart [min] [max] [C]

max = 3

- ightharpoonup Relevant entries have 0 < min < max \leq n
- chart[min][max][C] = true if the signature (min, max, C) is already added to the chart; false otherwise.

max = 1 max = 2

In the assignment code we use a class Chart but its access methods are similar

Implementation: preterminal rules

```
for each wi from left to right
  for each preterminal rule C -> wi
    chart[i - 1][i][C] = true
```

Implementation: binary rules

```
for each max from 2 to n

for each min from max - 2 down to 0

for each syntactic category C

for each binary rule C -> C1 C2

for each mid from min + 1 to max - 1

if chart[min][mid][C1] and chart[mid][max][C2] then

chart[min][max][C] = true
```

Implementation: unary rules

```
for each max from 1 to n
                                             new bounds!
  for each min from max - 1 down to 0
   // First, try all binary rules as before.
    // Then, try all unary rules.
    for each syntactic category C
      for each unary rule C -> C1
        if chart[min][max][C1] then
          chart[min][max][C] = true
```

But we forgot something!

Unary closure

What if the grammar contained 2 rules:

$$A \to B$$

$$B \to C$$

▶ But C can be derived from A by a chain of rules:

$$A \to B \to C$$

 One could support chains in the algorithm but it is easier to extend the grammar, to get the reflexive transitive closure

$$\begin{array}{ccc} A \to B & A \to A \\ B \to C & B \to B \\ A \to C & C \to C \end{array}$$

Convenient for programming reasons in the PCFG case

Implementation: skeleton

```
// int n = number of words in the sequence

// int m = number of syntactic categories in the grammar

// int s = the (number of the) grammar's start symbol

boolean[][][] chart = new boolean[n + 1][n + 1][m]

// Recognize all parse trees built with with preterminal rules.

// Recognize all parse trees built with inner rules.

return chart[0][n][s]
```

Algorithm analysis

Time complexity?

```
for each max from 2 to n

for each min from max - 2 down to 0

for each syntactic category C

for each binary rule C -> C1 C2

for each mid from min + 1 to max - 1
```

A few seconds for sentences under < 20 words for a non-optimized parser

- $heta(n^3|R|)$, where |R| is the number of rules in the grammar
- There exist algorithms with better asymptotical time complexity but the `constant' makes them slower in practice (in general)

Practical time complexity

Time complexity? (for the PCFG version)

[Plot by Dan Klein]

Today

- Parsing algorithms for CFGs
 - Recap, Chomsky Normal Form (CNF)
 - A dynamic programming algorithm for parsing (CKY)
 - Extension of CKY to support unary inner rules
- Parsing for PCFGs
 - Extension of CKY for parsing with PCFGs
- Parser evaluation (if we have time)

Probabilistic parsing

- We discussed the recognition problem:
 - check if a sentence is parsable with a CFG
- Now we consider parsing with PCFGs
 - Recognition with PCFGs: what is the probability of the most probable parse tree?
 - Parsing with PCFGs: What is the most probable parse tree?

Distribution over trees

- Let us denote by G(x) the set of derivations for the sentence x
- The probability distribution defines the scoring $\,P(T)$ over the trees $\,T\in G(x)\,$
- Finding the best parse for the sentence according to PCFG:

$$\underset{T \in G(x)}{\operatorname{arg\,max}} P(T)$$

CKY with PCFGs

- ▶ Chart is represented by a double array chart [min] [max] [C]
 - It stores probabilities for the most probable subtree with a given signature
- chart [0] [n] [S] will store the probability of the most probable full parse tree

Intuition

covers all words

btw min and mid

$$C \rightarrow C_1 \ C_2$$

covers all words

btw mid and max

For every C choose C_1 , C_2 and mid such that

$$P(T_1) \times P(T_2) \times P(C \to C_1 C_2)$$

is maximal, where T_1 and T_2 are left and right subtrees.

Implementation: preterminal rules

```
for each wi from left to right
  for each preterminal rule C -> wi
    chart[i - 1][i][C] = p(C -> wi)
```

Implementation: binary rules

```
for each max from 2 to n
  for each min from max - 2 down to 0
    for each syntactic category C
      double best = undefined
      for each binary rule C -> C1 C2
         for each mid from min + 1 to max - 1
           double t_1 = chart[min][mid][C_1]
           double t<sub>2</sub> = chart[mid][max][C<sub>2</sub>]
           double candidate = t_1 * t_2 * p(C \rightarrow C_1 C_2)
           if candidate > best then
             best = candidate
      chart[min][max][C] = best
```

Unary (reflexive transitive) clo

The fact that the rule is composite needs to be stored to recover the true tree

$$A \rightarrow B \quad 0.1$$

$$B \rightarrow C \quad 0.2$$

$$A \rightarrow B \quad 0 \quad A \rightarrow A \quad 1$$

$$B \rightarrow C \quad 0.2 \quad B \rightarrow B \quad 1$$

$$A \rightarrow C \quad 0.2 \times 0.1 \quad C \rightarrow C \quad 1$$

Note that this is not a PCFG anymore as the rules do not sum to I for each parent

$$A \rightarrow B$$
 0.1 $A \rightarrow B$ 0.1 $A \rightarrow A$ 1
 $B \rightarrow C$ 0.2 \Rightarrow $B \rightarrow C$ 0.1 $B \rightarrow B$ 1
 $A \rightarrow C$ 1. $e - 5$ $A \rightarrow C$ 0.02 $C \rightarrow C$ 1

What about loops, like: $A \rightarrow B \rightarrow A \rightarrow C$?

Recovery of the tree

- For each signature we store backpointers to the elements from which it was built (e.g., rule and, for binary rules, midpoint)
 - start recovering from [0, n, S]

- Be careful with unary rules
 - Basically you can assume that you always used an unary rule from the closure (but it could be the trivial one $\,C \to C\,$)

Speeding up the algorithm (approximate search)

Basic pruning (roughly):

- For every span (i,j) store only labels which have the probability at most N times smaller than the probability of the most probable label for this span
- Check not all rules but only rules yielding subtree labels having non-zero probability

Coarse-to-fine pruning

Parse with a smaller (simpler) grammar, and precompute (posterior) probabilities for each spans, and use only the ones with non-negligible probability from the previous grammar

Today

- Parsing algorithms for CFGs
 - Recap, Chomsky Normal Form (CNF)
 - A dynamic programming algorithm for parsing (CKY)
 - Extension of CKY to support unary inner rules
- Parsing for PCFGs
 - Extension of CKY for parsing with PCFGs
- Parser evaluation

Parser evaluation

Though has many drawbacks it is easier and allows to track state-of-the-art across many years

- Intrinsic evaluation:
 - Automatic: evaluate against annotation provided by human experts (gold standard) according to some predefined measure
 - Manual: ... according to human judgment
- Extrinsic evaluation: score syntactic representation by comparing how well a system using this representation performs on some task
 - E.g., use syntactic representation as input for a semantic analyzer and compare results of the analyzer using syntax predicted by different parsers.

Standard evaluation setting in parsing

- Automatic intrinsic evaluation is used: parsers are evaluated against gold standard by provided by linguists
- ▶ There is a standard split into the parts:
 - training set: used for estimation of model parameters
 - development set: used for tuning the model (initial experiments)
 - test set: final experiments to compare against previous work

Automatic evaluation of constituent parsers

The most standard measure; we will focus on it

- Exact match: percentage of trees predicted correctly
- Bracket score: scores how well individual phrases (and their boundaries) are identified
- Crossing brackets: percentage of phrases boundaries crossing
- Dependency metrics: scores dependency structure corresponding to the constituent tree (percentage of correctly identified heads)

Brackets scores

Subtree signatures for CKY

- The most standard score is bracket score
- lacktriangle It regards a tree as a collection of brackets: [min, max, C]
- The set of brackets predicted by a parser is compared against the set of brackets in the tree annotated by a linguist
- Precision, recall and FI are used as scores

Bracketing notation

▶ The same tree as a bracketed sequence

```
(S

(NP (PN My) (N Dog))

(VP (V ate)

(NP (D a ) (N sausage))

)
```

Brackets scores

$$Pr = \frac{\text{number of brackets the parser and annotation agree on}}{\text{number of brackets predicted by the parser}}$$

$$Re = \frac{\text{number of brackets the parser and annotation agree on}}{\text{number of brackets in annotation}}$$

$$F1 = \frac{2 \times Pr \times Re}{Pr + Re}$$

Harmonic mean of precision and recall

Preview: FI bracket score

We will introduce these models next time