

VJ1214 - Consolas y dispositivos

Bloque 1: Arquitectura de computadores

Aritmética booleana

Libros de referencia

• Capítulo 2

http://nand2tetris.org/chapters/chapter%200 2.pdf

• Capítulos 2 y 5

https://montoliu.github.io/docs/LibroMOOCC odInfo.pdf

• Capítulos 2 y 6

1. Suma de números binarios

Índice de contenidos

- 1. Suma de números binarios
- 2. Números binarios negativos
- 3. Sumadores
- 4. ALU

1. Suma de números binarios

Primer sumando	Segundo sumando	Resultado	Acarreo
0	0	0	No
0	1	1	No
1	0	1	No
1	1	0	Si

1. Suma de números binarios

- 1. Suma de números binarios
- ¿Qué ocurre si la suma de los dos dígitos más representativos produce acarreo?

1. Suma de números binarios

• ¿Qué ocurre si la suma de los dos dígitos sentativos produce acarreo?

(overflow)

1 0 0 1

1 0 1 1

2? 0 1 0 0

2. Números binarios con signo

• Los números binarios con signo se representan usando un sistema de codificación llamado Complemento a 2.

1. Suma de números binarios

2. Números binarios con signo

•Con el mismo número de bits el número positivo máximo se reduce a la mitad.

Sin signo	Positivos		
		1	
Con signo	Negativos	Positivos	

2. Números binarios con signo

- •Dado un número x:
 - Si es positivo:
 - Binario
 - Si es negativo, tres pasos:
 - 1. Convertir |x| a binario
 - 2. Cambiar 0s por 1s y viceversa
 - 3. Sumar 1

en

•Expresa el número 3₁₀ en Complemento a 2 con N=4:

N es el número de bits del número

-3₁₀ Expresa el número Complemento a 2 con N=4:

Complemento a 2

Complemento a 2

•Expresa el número 3_{10} en Complemento a 2 con N=4:

Es positivo $3_{10} \equiv 0011_{2}$

Complemento a 2

- •Expresa el número - 3_{10} en Complemento a 2 con N=4:
 - Es negativo
 - Paso 1: $|-3_{10}| = 3_{10} \equiv 0011_2$
 - Paso 2: 0011, -> 1100,
 - Paso 3: 1100₂ + 1₂ = 1101₂
- •El resultado es $-3_{10} \equiv 1101_2$

Complemento a 2

•Expresa el número 3_{10} en Complemento a 2 con N=4:

Es positivo
$$3_{10} \equiv 0011_2$$

•El resultado es: $3_{10} \equiv 0011_2$

Complemento a 2

•Rango:

$$[-2^{N-1}, +2^{N-1}-1]$$

•Con N=4, sin signo

$$[0, +2^{N}-1]$$
 $[0, 15]$

•Con N=4, con signo, en Ca2

$$[-2^{N-1}, +2^{N-1}-1]$$
 $[-8, +7]$

$$[-8, +7]$$

Complemento a 2

- •Restar A B, es equivalente a sumar A y el Ca2 de B.
- •Veremos que esta propiedad es fundamental en el diseño de la ALU.

Complemento a 2

•Con N=8, sin signo

$$[0, +2^{N}-1]$$
 $[0, 255]$

•Con N=8, con signo, en Ca2

$$[-2^{N-1}, +2^{N-1}-1]$$
 $[-128, +127]$

Complemento a 2

•A=5₁₀, B=3₁₀ ¿A-B? con N=4

Complemento a 2

•Pregunta: ¿Para qué se usa?

- •Positivo:
 - •Los positivos empiezan por "0" y los negativos por "1".
 - Única representación del cero.
 - Facilita el diseño de los procesadores.

•A=
$$5_{10}$$
, B= 3_{10} ¿A-B? con N=4

$$5_{10} \equiv 0101_{2}$$

 $-3_{10} \equiv 1101_{2}$ (en Ca2)

•A=5₁₀, B=3₁₀ ¿A-B? con N=4

$$5_{10} \equiv 0101_{2}$$
 0 1 0 1
 $-3_{10} \equiv 1101_{2}$ (en Ca2) -100 -100 -100 -100

Complemento a 2

Complemento a 2

$$5_{10} \equiv 0101_{2}$$
 0 1 0 1
 $-3_{10} \equiv 1101_{2}$ (en Ca2) $\frac{1}{2} = \frac{1}{2} = \frac{1}{$

Complemento a 2

•
$$A=2_{10}$$
, $B=3_{10}$ ¿A-B? con N=4

Complemento a 2

$$A=5_{10}$$
, $B=3_{10}$ ¿A-B? con $N=4$

$$5_{10} \equiv 0101_{2}$$
 (en Ca2) $0 \quad 1 \quad 0 \quad 1$
 $-3_{10} \equiv 1101_{2}$ (en Ca2) $-3_{10} = 2_{10}$
 $2_{10} \equiv 0010_{2}$ $0 \quad 0 \quad 1 \quad 0$

•
$$A=2_{10}$$
, $B=3_{10}$ ¿A-B? con N=4

$$2_{10} \equiv 0010_{2}$$

 $-3_{10} \equiv 1101_{2}$ (en Ca2)

$A=2_{10}$, B=3₁₀ ¿A-B? con N=4

$$2_{10} \equiv 0010_{2}$$
 0 0 1 0
 $-3_{10} \equiv 1101_{2}$ (en Ca2) -100

Complemento a 2

•A=2₁₀ No es necesario descartar el último acarreo
$$-3_{10} \equiv 1101_2$$
 (en Ca)

•A=2₁₀ No es necesario con N=4

0 0 1 0

1 1 0 1

1 1 1 1

Complemento a 2

$$A=2_{10'}$$
 B=3₁₀ ¿A-B? con N=4

$$2_{10} \equiv 0010_{2}$$
 0 0 1 0
 $-3_{10} \equiv 1101_{2}$ (en Ca2) $\frac{1}{2} = \frac{1}{2} = \frac{1}$

Complemento a 2

Decimal	Binario		
-8	1000		
-7	1001	NI /I	NI_Q
-6	1010	N=4	N=8
-5	1011	2 = 0011	2 = 0000 0011
-4	1100	$3_{10} \equiv 0011_{2}$	$3_{10} \equiv 0000 \ 0011_2$
-3	1101	10 2	10 2
-2	1110		
-1	1111		
0	0000		
1	0001		
2	0010		
3	0011		
4	0100		
-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7	0101		
6	0110		
7	0111		

Complemento a 2

$$A=2_{10'} B=3_{10} A-B? con N=4$$

$$2_{10} \equiv 0010_{2}$$

 $-3_{10} \equiv 1101_{2}$ (en Ca2)
$$2_{10}-3_{10} = -1_{10}$$

$$0 \ 0 \ 1 \ 0$$

$$1 \ 1 \ 1 \ 1$$

$$2_{10}$$
- 3_{10} = -1_{10}
- 1_{10} = 1111_{2} (en Ca2)

Decimal	Binario		
-8	1000		
-7	1001	N=4	N=8
-6	1010	14-4	IV-0
-5	1011	2 = 0011	2 = 0000 0011
-4	1100	$3_{10} \equiv 0011_{2}$	$3_{10} \equiv 0000 \ 0011_2$
-3	1101		_
-2	1110		
-8 -7 -6 -5 -4 -3 -2 -1 0	1111	5 = 0101	$5_{10} \equiv 0000 \ 0101_2$
0	0000	$5_{10} \equiv 0101_2$	10
	0001		
2	0010		
3	0011		
4	0100		
2 3 4 5 6 7	0101		
6	0110		
7	0111		

Decimal	Binario
-8	1000
-7	1001
-6	1010
-5	1011
-4	1100
-3	1101
-2	1110
-1	1111
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111

N=4 N=8
$$3_{10} \equiv 0011_2 \quad 3_{10} \equiv 0000 \ 0011_2$$

$$5_{10} \equiv 0101_2$$
 $5_{10} \equiv 0000 \ 0101_2$

$$-2_{10} \equiv 1110_{2} -2_{10} \equiv 1111 \ 1110_{2}$$

Complemento a 2

Decimal	Binario
-8	1000
-7	1001
-6	1010
-5	1011
-4	1100
-3	1101
-2	1110
-1	1111
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111

N=4 N=8
$$3_{10} \equiv 0011_{2} \quad 3_{10} \equiv 0000 \quad 0011_{2}$$

$$5_{10} \equiv 0101_{2} \quad 5_{10} \equiv 0000 \quad 0101_{2}$$

$$-2_{10} \equiv 1110_{2} \quad -2_{10} \equiv 1111 \quad 1110_{2}$$

$$-6_{10} \equiv 1010_{2} \quad -6_{10} \equiv 1111 \ 1010_{2}$$

3. Sumadores

3. Sumadores

а	b	suma	acarreo
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

а	b	С	suma	acarreo
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

3. Sumadores

а	b	suma	acarreo
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

3. Sumadores

- Realiza la suma entre a y b
- **a** y **b** son números binarios de 16 bits
- El resultado es un número de 16 bits
- No se tiene en cuenta el acarreo final

3. Sumadores

а	b	suma	acarreo
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Ahora es tu turno.

Inténtalo varias veces antes de continuar con la siguiente diapositiva

3. Sumadores

- Realiza la suma entre a y 1
- **a** es un número binario de 16 bits
- El resultado es un número binario de 16 bits
- No se tiene en cuenta el acarreo final

suma =
$$\bar{a}b + a\bar{b} = xor(a,b)$$

acarreo = ab

а	b	suma	acarreo
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

3. Sumadores

suma = $\overline{ab} + a\overline{b}$

acarreo = ab

а	b	suma	acarreo
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

3. Sumadores

а	b	С	suma	acarreo
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

3. Sumadores

suma = $\bar{a}b + a\bar{b} = xor(a,b)$ acarreo = ab

а	b	suma	acarreo
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

3. Sumadores

а	b	С	suma	acarreo
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Ahora es tu turno.

Inténtalo varias veces antes de continuar con la siguiente diapositiva

suma

acarreo

3. Sumadores

suma

acarreo

Full Adder

3. Sumadores

3. Sumadores

- Realiza la suma entre **a** y **b**
- **a** y **b** son números binarios de 16 bits
- El resultado es un número de 16 bits
- No se tiene en cuenta el acarreo final

- a y b son números binarios do 16 hits
- El resultado es un núm

Ahora es tu turno.

Inténtalo varias veces antes de continuar con la siguiente diapositiva

No se tiene en cuenta

3. Sumadores

3. Sumadores

3. Sumadores

- Realiza la suma entre a y 1
- a es un número binario de 16 bits
- El resultado es un número binario de 16 bits
- No se tiene en cuenta el acarreo final

3. Sumadores

3. Sumadores

- **a** es un número binari**a**

El resultado es un núm

No se tiene en cuenta

Ahora es tu turno.

Inténtalo varias veces antes de continuar con la siguiente diapositiva

3. Sumadores

3. Sumadores

3. Sumadores

3. Sumadores

4. ALU

4. ALU

x[16] ALU f(x,y) = out[16]y[16]

4. ALU

•ATENCIÓN:

• Este diseño la ALU no detecta el desbordamiento.

4. ALU

4. ALU

ZX	nx	zy	ny	f	no	out
1	0	1	0	1	0	0
1	1	1	1	1	1	1
1	1	1	0	1	0	-1
0	0	1	1	0	0	х
1	1	0	0	0	0	У
0	0	1	1	0	1	!x
1	1	0	0	0	1	!y
0	0	1	1	1	1	-x
1	1	0	0	1	1	-y

4. ALU

Entradas

• x: primer operando

• y:segundo operando

zx: poner a cero x nx: negar x (cambiar 0's por 1's)

• zy: poner a cero y

• ny: negar y (cambiar 0's por 1's)

• f: 1 para ADD, 0 para AND • no: negar la salida (cambiar 0's por 1's)

Salidas

• out: salida

• zr: 1 si out es igual a cero • ng: 1 si out es negativo

4. ALU

zx	nx	zy	ny	f	no	out
0	1	1	1	1	1	x+1
1	1	0	1	1	1	y+1
0	0	1	1	1	0	x-1
1	1	0	0	1	0	y-1
0	0	0	0	1	0	х+у
0	1	0	0	1	1	х-у
0	0	0	1	1	1	у-х
0	0	0	0	0	0	х&у
0	1	0	1	0	1	x y

4. ALU

zx	nx	zy	ny	f	no	out
0	1	1	1	1	1	x+1
1	1	0	1	1	1	y+1
0	0	1	1	1	0	x-1
1	1	0	0	1	0	y-1
0	0	0	0	1	0	x+y
0	1	0	0	1	1	х-у
0	0	0	1	1	1	у-х
0	0	0	0	0	0	х&у
0	1	0	1	0	1	x y

4. ALU

ZX	nx	zy	ny	f	no	out
0	1	0	0	1	1	х-у

- x se niega (nx)
- y permance igual
- out se niega (no), después de realizar la suma
- Ejemplo x=7, y=1
 - x -> 0000 0000 0000 0111
 - y -> 0000 0000 0000 0001

4. ALU

ZX	nx	zy	ny	f	no	out
0	1	1	1	1	1	x+1
1	1	0	1	1	1	y+1
0	0	1	1	1	0	x-1
1	1	0	0	1	0	y-1
0	0	0	0	1	0	x+y
0	1	0	0	1	1	х-у
0	0	0	1	1	1	у-х
0	0	0	0	0	0	х&у
0	1	0	1	0	1	x y

4. ALU

	ZX	nx	zy	ny	f	no	out
ĺ	0	1	0	0	1	1	х-у

- x se niega (nx)
- y permance igual
- out se niega (no), después de realizar la suma
- Ejemplo x=7, y=1

4. ALU

ZX	nx	zy	ny	f	no	out
0	0	1	1	1	0	x-1

- x permanece sin cambios
- y primero se hace cero (zy) y luego se niega (ny).

 - y -> 0000 0000 0000 0000 y -> 1111 1111 1111 1111 (es el número -1)
- f es 1, la función es suma:
 - out = x + (-1)

4. ALU

zx	nx	zy	ny	f	no	out
0	1	0	0	1	1	х-у

- x se niega (nx)
- y permance igual
- out se niega (no), después de realizar la suma
- Ejemplo x=7, y=1

 - y -> 0000 0000 0000 0001 <u>-> 0000 0000 0000 0001</u>
 - 1111 1111 1111 1001

4. ALU

ZX	nx	zy	ny	f	no	out
0	1	0	0	1	1	х-у

- x se niega (nx)
- y permance igual
- out se niega (no), después de realizar la suma
- Ejemplo x=7, y=1

1111 1111 1111 1001

• Negar out

-> 0000 0000 0000 0110

Ahora es tu turno.

Inténtalo varias veces antes de mirar la solución en Internet

4. ALU

ZX	nx	zy	ny	f	no	out
0	1	1	1	1	1	x+1

- x se niega (nx)
- y se pone a cero y se niega (será todo unos)
- out se niega (no), después de realizar la suma
- Ejemplo x=5

• y

-> 1111 1111 1111 1111 1111 1111 1111 1001

• Negar out

-> 0000 0000 0000 0110

4. ALU

•¿Cómo implementar la ALU?:

• Proyecto 02

•Ayuda:

- Harán falta las siguientes puertas ya implementadas en el proyecto 01:
 - Mux16 (6)
 - Not16 (3)
 - And16 (1)
 - Add16 (1)
 - Or8Way (2) [ORi8o1b1]
 - Or (1)
 - Not (1)

