No	me	${f N}^o$	'IS
	_	e justifique brevemente as suas respostas nesta folha; e uma folha de exame para apresentar mais cálculos.	
1.	(1 valor) Sejam a = ((2,1) e $\mathbf{b} = (3,5)$. Existem escalares t e s tais que $t\mathbf{a} + s\mathbf{b} = (5, -8)$. \bigcirc Falso	
2.	(1 valor) Os vetores a	${f a}={f j}-{f k},{f b}={f k}-{f i}$ e ${f c}={f i}-{f j}$ de \mathbb{R}^3 são independentes. Falso	
3. (1 valor) Se o vetor $\mathbf{v} \in \mathbb{R}^3$ satisfaz $\mathbf{v} \times \mathbf{i} = 0$ e $\mathbf{v} \times \mathbf{j} = 0$, então é proporcio me. A pergunta original era " satisfaz $\mathbf{v} \times \mathbf{k} = 0$ então", e ficou mi " então \mathbf{v} é o vetor nulo" num cut & paste mal feito. Assim como ficou, a também Verdadeiro, mas apenas porque \mathbf{v} é necessariamente o vetor nulo, a \mathbf{k} por razões pouco interessantes. Peço desculpa)		inal era "satisfaz $\mathbf{v} \times \mathbf{k} = 0$ então", e ficou misturada com outra nulo" num cut & paste mal feito. Assim como ficou, a resposta correta é mas apenas porque \mathbf{v} é necessariamente o vetor nulo, que é proporcional	
	O Verdadeiro	○ Falso	
4.	(1 valor) Se os vetore Verdadeiro	es \mathbf{a} e \mathbf{b} de \mathbb{R}^n são ortogonais, então $\ \mathbf{a} + t\mathbf{b}\ \ge \ \mathbf{a}\ $ para todo $t \in \mathbb{R}$. \bigcirc Falso	
5.	(1 valor) Toda a base	e de \mathbb{R}^n é formada por n vetores.	
	○ Verdadeiro	○ Falso	
6.	$(1 \ valor)$ A reunião A de \mathbb{R}^n .	$A \cup B$ de dois subespaços vetoriais A e B de \mathbb{R}^n é um subespaço vetorial	
	O Verdadeiro	○ Falso	
7.	, ,	nulo de uma transformação linear $L:\mathbb{R}^n\to\mathbb{R}^m$ é trivial (ou seja, apenas , então a transformação é injetiva.	
	O Verdadeiro	○ Falso	
8.	(1 valor) Existe uma tiva).	transformação linear $L:\mathbb{R}^3 \to \mathbb{R}^2$ invertível (ou seja, injetiva e sobreje-	
	O Verdadeiro	○ Falso	

9. (1 valor) Sejam
$$\mathbf{a} = (0, 1, 1)$$
, $\mathbf{b} = (1, 0, 1)$ e $\mathbf{c} = (1, 1, 0)$. Determine, se existirem, escalares s, t e u tais que $s\mathbf{a} + t\mathbf{b} + u\mathbf{c} = (-2, 3, -1)$.

$$2\mathbf{a} - 3\mathbf{b} + \mathbf{c} = (-2, 3, -1)$$

10. (1 valor) Sejam $\mathbf{a} = (2, 1)$ e $\mathbf{b} = (3, 5)$. Esboce a região do plano

$$R = \{ t\mathbf{a} + s\mathbf{b} : 0 < t < 1 \text{ e } 0 < s < 1 \}$$

11. (1 valor) Sejam $\mathbf{v} = (1, 2, 3)$ e $\mathbf{w} = (3, 2, 1)$. Determine um escalar λ tal que $\mathbf{w} = \lambda \mathbf{v} + \mathbf{a}$ com \mathbf{a} ortogonal a \mathbf{v} .

$$\lambda = \frac{\mathbf{w} \cdot \mathbf{v}}{\|\mathbf{v}\|^2} = 5/7.$$

12. (1 valor) Determine uma equação cartesiana do plano $P \subset \mathbb{R}^3$ passando por $\mathbf{a} = (3, -2, 1)$ e ortogonal ao vetor $\mathbf{n} = (4, 3, -5)$.

$$4x + 3y - 5z = 1$$
.

13. (1 valor) Calcule a distância entre o ponto $\mathbf{b} = (4, -1, 2)$ e o plano P do exercício 12.

$$\operatorname{dist}(\mathbf{b}, P) = \frac{|\mathbf{n} \cdot (\mathbf{b} - \mathbf{a})|}{\|\mathbf{n}\|} = \sqrt{2}/5.$$

14. (1 valor) Determine uma base de \mathbb{R}^3 contendo os vetores $\mathbf{a} = (2, 1, -1)$ e $\mathbf{b} = (1, 3, -2)$. Por exemplo, \mathbf{a} , \mathbf{b} e $\mathbf{a} \times \mathbf{b} = (1, 3, 5)$.

15. (1 valor) Calcule a área do triângulo de vértices $\mathbf{a} = (3,1)$ e $\mathbf{b} = (2,2)$ e $\mathbf{c} = (1,5)$, o conjunto $C = \{ t\mathbf{a} + s\mathbf{b} + u\mathbf{c} : s \ge 0, t \ge 0, u \ge 0, s + t + u = 1 \} \subset \mathbb{R}^2$.

$$\frac{1}{2} \left| \text{Det} \left(\begin{array}{cc} -1 & 1 \\ -2 & 4 \end{array} \right) \right| = 1.$$

16. (1 valor) Calcule a área do triângulo de vértices $\mathbf{i}=(1,0,0),\ \mathbf{j}=(0,1,0)$ e $\mathbf{k}=(0,0,1),$ o conjunto $\Delta=\{\ t\mathbf{i}+s\mathbf{j}+u\mathbf{k}:\ s\geq 0\,,\ t\geq 0\,,\ u\geq 0\,,\ s+t+u=1\}\subset\mathbb{R}^3.$

$$\frac{1}{2} \| (\mathbf{k} - \mathbf{i}) \times (\mathbf{j} - \mathbf{i}) \| = \frac{1}{2} \| - \mathbf{i} - \mathbf{j} - \mathbf{k} \| = \frac{\sqrt{3}}{2}.$$

17. (1 valor) Calcule o volume do paralelepípedo de lados $\mathbf{a} = 2\mathbf{i} - 3\mathbf{k}$, $\mathbf{b} = 5\mathbf{j} - 7\mathbf{k}$ e $\mathbf{c} = 3\mathbf{i} + 4\mathbf{k}$.

$$|\mathbf{a} \cdot \mathbf{b} \times \mathbf{c}| = \left| \det \begin{pmatrix} 2 & 0 & -3 \\ 0 & 5 & -7 \\ 3 & 0 & 4 \end{pmatrix} \right| = 85.$$

18. (1 valor) Seja $R : \mathbb{R}^2 \to \mathbb{R}^2$ a transformação linear tal que $R(\mathbf{i}) = \frac{\sqrt{3}}{2}\mathbf{i} + \frac{1}{2}\mathbf{j}$ e $R(\mathbf{j}) = -\frac{1}{2}\mathbf{i} + \frac{\sqrt{3}}{2}\mathbf{j}$. Determine $R^3(2\mathbf{i} - 3\mathbf{j})$.

R é uma rotação anti-horária de um ângulo $\pi/6$, portanto R^3 é uma rotação anti-horária de um ângulo $\pi/2$, que envia $R^3(\mathbf{i}) = \mathbf{j}$ e $R^3(\mathbf{j}) = -\mathbf{i}$. Consequentemente,

$$R^3(2\mathbf{i} - 3\mathbf{j}) = 3\mathbf{i} + 2\mathbf{j}$$

- 19. (1 valor) Seja $L: \mathbb{R}^3 \to \mathbb{R}^3$ a transformação linear definida por L(x,y,z) = (x+y+z,x+y,z). Determine o espaço nulo, a imagem, a nulidade e a ordem de L.
 - O espaço nulo é a reta $\mathbb{R}(1,-1,0)$ e a imagem é o plano x-y-z=0. A nulidade é 1 e a ordem é 2.
- 20. (1 valor) Seja $M: \mathbb{R}^3 \to \mathbb{R}^3$ a transformação linear definida por M(x,y,z) = (y+z,z+x,x+y). Diga se M é invertível. Caso afirmativo, determine a transformação inversa.
 - É invertível, e a inversa é $M^{-1}(x,y,z) = (-x/2 + y/2 + z/2, x/2 y/2 + z/2, x/2 + y/2 z/2).$

Instruções: responda e justifique brevemente as suas respostas nesta folha; se realmente necessário, utilize uma folha de exame para apresentar mais cálculos.

- 1. $(1 \ valor)$ Se o sistema linear AX = B admite duas soluções diferentes, então admite infinitas soluções.
- 2. (1 valor) Existem infinitas matrizes quadradas 2×2 A tais que $A^2 = I$.
- 3. (1 valor) Se $A \in B$ são matrizes quadradas $n \times n$ então Det(A+B) = DetA + DetB.
 - Verdadeiro Falso
- 4. (1 valor) Se a matriz quadrada N é nilpotente, ou seja, $N^k=0$ para algum inteiro $k\geq 1$, então $\mathrm{Det} N=0$.
 - O Verdadeiro O Falso
- 5. (1 valor) Se 0 é um valor próprio do operador $L: \mathbb{R}^n \to \mathbb{R}^n$ então L não é invertível.
- 6. (1 valor) Todo operador $L: \mathbb{R}^2 \to \mathbb{R}^2$ admite pelo menos um valor próprio.
- 7. (1 valor) Se λ é um valor próprio do operador L, então $\lambda^2 \lambda$ é um valor próprio do operador $L^2 L$.
 - Verdadeiro Falso
- 8. (1 valor) A matriz

$$\left(\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array}\right)$$

é diagonalizável.

- O Verdadeiro O Falso
- 9. (1 valor) Seja $T: \mathbb{R}^3 \to \mathbb{R}^2$ a transformação linear tal que $T(\mathbf{i}) = \mathbf{i} 2\mathbf{j}$, $T(\mathbf{j}) = -\mathbf{i} + 2\mathbf{j}$ e $T(\mathbf{k}) = 2\mathbf{j}$. Determine a matriz que representa T relativamente às bases canónicas e o valor de T(1, 1, 1).

A matriz que representa T é

$$\left(\begin{array}{ccc} 1 & -1 & 0 \\ -2 & 2 & 2 \end{array}\right)$$

e T(1,1,1) = (0,2).

10. (1 valor) Sejam $M: \mathbb{R}^2 \to \mathbb{R}^3$ e $L: \mathbb{R}^3 \to \mathbb{R}^2$ as transformações lineares definidas por M(x,y)=(x-y,2x+y,x-3y) e L(x,y,z)=(x+2y-z,3x-y+z). Calcule as matrizes das composições S=LM e T=ML relativamente às bases canónicas.

A matriz que representa S=LM é

$$\left(\begin{array}{ccc} 1 & 2 & -1 \\ 3 & -1 & 1 \end{array}\right) \left(\begin{array}{ccc} 1 & -1 \\ 2 & 1 \\ 1 & -3 \end{array}\right) = \left(\begin{array}{ccc} 4 & 4 \\ 2 & -7 \end{array}\right)$$

e a matriz que representa T=ML é

$$\left(\begin{array}{ccc} 1 & -1 \\ 2 & 1 \\ 1 & -3 \end{array}\right) \left(\begin{array}{ccc} 1 & 2 & -1 \\ 3 & -1 & 1 \end{array}\right) = \left(\begin{array}{ccc} -2 & 3 & -2 \\ 5 & 3 & -1 \\ -8 & 5 & -4 \end{array}\right)$$

11. (1 valor) Seja $L: \mathbb{R}^2 \to \mathbb{R}^2$ o operador definido por L(x,y) = (x+y,x+y). Determine a matriz que define L relativamente à base formada por $\mathbf{v}_1 = (2,1)$ e $\mathbf{v}_2 = (1,1)$.

A matriz que representa L nesta base é

$$\left(\begin{array}{cc} 1 & -1 \\ -1 & 2 \end{array}\right) \left(\begin{array}{cc} 1 & 1 \\ 1 & 1 \end{array}\right) \left(\begin{array}{cc} 2 & 1 \\ 1 & 1 \end{array}\right) = \left(\begin{array}{cc} 0 & 0 \\ 3 & 2 \end{array}\right)$$

12. (1 valor) Determine, se existir, a inversa da matriz

$$A = \left(\begin{array}{ccc} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 1 \end{array}\right) .$$

$$A^{-1} = \left(\begin{array}{rrr} -1 & 0 & 1\\ 1 & -1 & 0\\ 0 & 1 & 0 \end{array} \right)$$

13. (1 valor) Calcule os determinantes das matrizes $B \in B^3$, se

$$B = \left(\begin{array}{cccc} 0 & 0 & 2 & 3 \\ 1 & 2 & 3 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 2 & 3 & 0 \end{array}\right).$$

 $Det B = -4 e Det(B^3) = -64.$

14. (1 valor) Determine um sistema linear definido por uma matriz em escada de linhas que seja equivalente ao sistema linear

$$\begin{cases} x - 2y + z &= 2\\ 2x + y - 2z &= 1\\ 3x + y - 3z &= -5 \end{cases}.$$

e calcule as suas soluções.

Um sistema equivalente é

$$\begin{cases} x & -2y & +z & = 2 \\ 5y & -4z & = -3 \\ -2z & = -34 \end{cases}.$$

e a única solução é (x, y, z) = (11, 13, 17).

15. (1 valor) Dê um exemplo de um sistema de 3 equações lineares em 3 incógnitas cujo espaço das soluções seja uma reta. Determine as suas soluções.

Por exemplo, o sistema

$$\begin{cases} x = 0 \\ y = 0 \\ x + y = 0 \end{cases}.$$

cuja soluções são os pontos da reta $\mathbb{R}(0,0,1)$

16. (1 valor) Seja $\operatorname{Pol}_2(\mathbb{R})$ o espaço linear real dos polinómios $f(t) = a + bt + ct^2$ com coeficientes reais e grau ≤ 2 . Determine a matriz do operador derivação $D : \operatorname{Pol}_2(\mathbb{R}) \to \operatorname{Pol}_2(\mathbb{R})$, definido por (Df)(t) = f'(t), relativamente à base formada por 1, t, e $(t^2 - 1)/2$.

$$D = \left(\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{array}\right)$$

17. (1 valor) Determine os valores e os vetores próprios do operador $D: \operatorname{Pol}_2(\mathbb{R}) \to \operatorname{Pol}_2(\mathbb{R})$ definido no exercício 16.

O único valor próprio é $\lambda = 0$, e os vetores próprios são proporcionais ao polinómio constante f(t) = 1.

18. (1 valor) Seja B uma matriz real 3×3 com valores próprios 2, 3 e 4. Calcule o determinante e o traço da matriz B^{-1} .

Os valores próprios de A^{-1} são 1/2, 1/3 e 1/4, o determinante é $Det(A^{-1})=1/Det A=1/24$ e o traço é $Tr A^{-1}=13/12$.

19. (1 valor) Determine os valores próprios e os vetores próprios do operador $L: \mathbb{R}^2 \to \mathbb{R}^2$ definido na base canónica pela matriz

$$C = \left(\begin{array}{cc} 1 & -1 \\ 2 & 4 \end{array}\right)$$

Os valores próprios são 2 e 3, e os vetores próprios são proporcionais a $\mathbf{v}_2 = (1, -1)$ e $\mathbf{v}_3 = (-1, 2)$, respetivamente.

20. (1 valor) Diagonalize, se possível, a matriz

$$C = \left(\begin{array}{cc} 1 & -1 \\ 2 & 4 \end{array}\right)$$

ou seja, determine uma matriz invertível Utal que $C=U^{-1}\Lambda U$ com Λ matriz diagonal.

$$C = U^{-1}\Lambda U$$
 se $U = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$ e $\Lambda = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}$