16. Dimensionality Reduction STA3142 Statistical Machine Learning

Kibok Lee

Assistant Professor of
Applied Statistics / Statistics and Data Science
{Apr 30, May 2}, 2024

Announcement

No class @ week 10 (May 7, 9)

- No class & no final exam @ week 16
 - Assignment 5 is the replacement
 - You should submit A5 for your attendance @ week 16

Midterm Grading

Ongoing; we are trying to release it this week

- If you don't agree with the Honor code your midterm score is 0.
 - If you didn't write the pledge and your name on the first page properly, you receive 0 point.
 - If you did so, your submission will be graded after you complete it.
 - Your academic career is built on academic honesty.

Post-Midterm

- Let's solve some questions that you felt difficult.
- A survey will be out together with midterm results.
 - To determine questions we are going to solve together

- If you feel you didn't do well,
 - You are not alone; other students would too.
 - Problem-solving skills can be improved by practice.
 - E.g., Derive ML algorithms we have learned from scratch
 - Don't just memorize them

Assignment 3

- Due Friday 5/3, 11:59pm
- Topics
 - (Programming) K-Nearest Neighbors
 - (Math) MLE vs. MAP
 - (Math) Kernel Methods
 - (Math/Programming) SVM Primal
- Please read the instruction carefully!
 - Submit one <u>pdf</u> and one <u>zip</u> file separately
 - Write your code only in the designated spaces
 - Do not import additional libraries
 - ...
- If you feel difficult, consider to take **option 2**.

Outline

- Principal component analysis (PCA)
 - vs. Fisher's Linear Discriminant (FLD)
 - Kernel PCA
- Independent Component Analysis (ICA)
 - Maximum Likelihood Estimation
 - Maximizing Non-Gaussianity
- t-Distributed Stochastic Neighbor Embedding (t-SNE)

Principal Component Analysis

Dimensionality Reduction

- High-dimensional data may have a low-dimensional structure.
- E.g., Digit images below consist of 28x28 pixels.

- Only 3 degrees of freedom in this example: horizontal, vertical translations and rotations.
- All variabilities can be represented with 3 numbers with a nonlinear mapping: $[0,1]^{28\times28} \rightarrow (t_x, t_y, r)$

Principal Component Analysis

• Given a set of data $\{\mathbf{x}^{(n)}\}_{n=1}^{N}$ in a D-dimensional space, (D can be arbitrarily large)

• Find a subspace of dimension M < D that captures most of its variability

- PCA can be described as either:
 - Maximizing the variance of the projection
 - Minimizing the squared approximation error

PCA: Two Different Intuitions

Approximate with the projection:

Maximize the variance

 Minimize the squared error

PCA: Two Different Intuitions

- Approximate with the projection:
- With a constraint $\sum_{n} (\mathbf{x}^{(n)})^2 = const$
- Maximize the

variance: $\sum_{n} (\tilde{\mathbf{x}}^{(n)})^2$

 Minimize the squared error:

$$\sum_{n=1}^{N} \left(\mathbf{x}^{(n)} - \tilde{\mathbf{x}}^{(n)} \right)^2$$

PCA: Formulation

- Given a set of data $\left\{\mathbf{x}^{(n)}\right\}_{n=1}^N$ where $\mathbf{x}^{(n)} \in \mathbb{R}^D$,
 - Sample mean:

$$\bar{\mathbf{x}} = \frac{1}{N} \sum_{n=1}^{N} \mathbf{x}^{(n)} \in \mathbb{R}^{D}$$

• Data covariance:

$$S = \frac{1}{N} \sum_{n=1}^{N} (\mathbf{x}^{(n)} - \overline{\mathbf{x}}) (\mathbf{x}^{(n)} - \overline{\mathbf{x}})^{T} \in \mathbb{R}^{D \times D}$$

- Let \mathbf{u}_1 be the first principal component.
 - Length 1: ${\bf u}_1^T {\bf u}_1 = 1$
 - Projection of $\mathbf{x}^{(n)}$ onto $\mathbf{u}_1 : \mathbf{u}_1^T \mathbf{x}^{(n)}$

PCA: Derivation

Maximize the variance on the projected space:

$$\frac{1}{N} \sum_{n=1}^{N} \left(\mathbf{u}_{1}^{T} \mathbf{x}^{(n)} - \mathbf{u}_{1}^{T} \overline{\mathbf{x}} \right)^{2} = \mathbf{u}_{1}^{T} S \mathbf{u}_{1}$$

- Subject to $\mathbf{u}_1^T \mathbf{u}_1 = 1$
- Using the Lagrange multiplier:

$$\max_{\mathbf{u}_1} \mathbf{u}_1^T S \mathbf{u}_1 + \lambda_1 (1 - \mathbf{u}_1^T \mathbf{u}_1)$$

- Derivative is zero when $S\mathbf{u}_1 = \lambda_1 \mathbf{u}_1$
 - i.e., the maximum variance is the largest eigenvalue $\mathbf{u}_1^T S \mathbf{u}_1 = \lambda_1$, and \mathbf{u}_1 is the largest eigenvector.

PCA: Derivation

- Repeat to find the M eigenvectors of the data covariance matrix S corresponding to the M largest eigenvalues (power iteration)
- Or, perform eigenvalue decomposition $S = U\Lambda U^T$, and then take the first M eigenvectors

 We can arrive at the same result by minimizing the sum of the squared error of the projection.

PCA: Two Different Formulations

Maximizing the variance

$$\max_{U} J_1(U) = \operatorname{tr}(U^T S U)$$

Equivalent to minimizing the squared error

$$\min_{U} J_2(U) = \frac{1}{N} \sum_{n=1}^{N} \|\mathbf{x}^{(n)} - UU^T \mathbf{x}^{(n)}\|^2$$

- Cf. Fisher's linear discriminant (FLD) $\max_{W} J_{\text{FLD}}(W) = \text{tr}((W^T S W)^{-1}(W^T S_B W))$
 - Supervised learning; S_B requires supervision (labels)

PCA Example: Digit Image

The mean and first four PCA eigenvectors.

- The eigenvalue spectrum:
 - We do not need many eigenvectors to approximate images.

PCA Example: Digit Image

• Compress the image representation by using the first M eigenvectors and discarding the less important information.

Mean

$$\lambda_1 = 3.4 \cdot 10^5$$

$$\lambda_2 = 2.8 \cdot 10^5$$

$$\lambda_3 = 2.4 \cdot 10^5$$

$$\lambda_4 = 1.6 \cdot 10^5$$

PCA Example: Digit Image

• Compress the image representation by using the first M eigenvectors and discarding the less important information.

PCA Example: Eigenfaces

Training face images

Test example

Images from www.cse.unr.edu/~bebis/CS485/Lectures/Eigenfaces.ppt

PCA: Limitations

- Maximizing the variance is not always the best way to make the structure visible.
- Comparison with Fisher's linear discriminant (FLD)

PCA vs. FLD

Principal component analysis (PCA)

- Unsupervised learning
- Learning objective:

$$\max_{U} J_{\text{PCA}}(U) = \text{tr}(U^T S U)$$

Solved by eigenvalue decomposition

$$SU = U\Lambda$$

Fisher's linear discriminant (FLD)

- Supervised learning
- Learning objective:

$$\max_{W} J_{\text{FLD}}(W) = \text{tr}((W^T S W)^{-1}(W^T S_B W))$$

Solved by generalized eigenvalue decomposition

$$S_BW = SW\Lambda$$

PCA vs. FLD

Principal component analysis (PCA)

- Unsupervised learning
- Learning objective:

$$\max_{U} J_{\text{PCA}}(U) = \text{tr}(U^T S U)$$

- Reduced dimension $M: 1 \leq M \leq D$
 - By taking the first M largest eigenvectors

Fisher's linear discriminant (FLD)

- Supervised learning
- Learning objective:

$$\max_{W} J_{\text{FLD}}(W) = \text{tr}((W^T S W)^{-1}(W^T S_B W))$$

- Reduced dimension $M: 1 \le M \le \operatorname{rank}(S_B) \le K 1$
 - By taking the first M largest eigenvectors

Number of classes

Dimension of input data

PCA vs. FLD

- Principal component analysis (PCA)
 - Unsupervised learning
 - Learning objective:

$$\max_{U} J_{\text{PCA}}(U) = \text{tr}(U^T S U)$$

Can be kernelized

- Fisher's linear discriminant (FLD)
 - Supervised learning
 - Learning objective:

$$\max_{W} J_{\text{FLD}}(W) = \text{tr}((W^T S W)^{-1}(W^T S_B W))$$

Can be kernelized

Kernel PCA

• Suppose the regularity that allows dimensionality reduction is nonlinear.

Kernel PCA

• (Linear) PCA can be performed on a feature space:

$$\{\mathbf{x}^{(n)}\}_{n=1}^{N} \to \{\phi(\mathbf{x}^{(n)})\}_{n=1}^{N}$$

• Together with a nonlinear feature mapping ϕ , PCA performs a nonlinear dimensionality reduction.

Kernel PCA

 Define a kernel to avoid having to evaluate the feature vectors explicitly

$$k(\mathbf{x}, \mathbf{x}') = \phi(\mathbf{x})^T \phi(\mathbf{x}')$$

- PCA can be expressed in terms of the kernel.
 - Need centering the kernel matrix (to zero mean)

$$K' = K - LK - KL + LKL$$

- Where $L = \frac{1}{N} \mathbf{1}_N \mathbf{1}_N^T$ is the $N \times N$ matrix with all 1/N.
- Solved by eigenvalue decomposition

FLD can be kernelized in a similar way.

Independent Component Analysis

Independent Component Analysis

ICA is used for blind source separation.

- Suppose m independent signals are mixed, and sensed by m independent sensors.
 - E.g., Cocktail party with speakers and microphones.
 - E.g., EEG with brain wave sources and sensors.

 Can we reconstruct the original signals, given the mixed data from the sensors?

Independent Component Analysis

- The sources s must be independent and non-Gaussian.
 - If not, there is no way to find unique independent components.
- Assume the sensor signals x is a linear mixing (transformation) of the sources s.
 - x = As
 - $s = Wx \ (W = A^{-1})$
- *A* is called bases; *W* is called filters.

ICA Algorithms

- Maximum Likelihood Estimation
 - Bell and Sejnowski (1995)

Maximizing Non-Gaussianity

ICA: Maximum Likelihood

- Let $p_s(s_i)$ be the density function of each source s_i .
- By definition, all sources are independent:

$$p(s) = \prod_{i=1}^{M} p_s(s_i)$$

• Substituting s=Wx to get the data distribution:

$$p(x) = \prod_{j=1}^{M} p_s(w_j^T x) \cdot |W|$$

• Modeling the CDF of source distribution as sigmoid:
$$\int_{-\infty}^{s} p_s(s')ds' = g(s) = \frac{1}{1 + \exp(-s)}$$

ICA: Maximum Likelihood

• Substituting s = Wx to get the data distribution:

$$p(x) = \prod_{j=1}^{M} p_s(w_j^T x) \cdot |W|$$

• Modeling the CDF of source distribution as sigmoid:
$$\int_{-\infty}^{s} p_s(s')ds' = g(s) = \frac{1}{1 + \exp(-s)}$$

Log-likelihood

$$\ell(W) = \sum_{i=1}^{N} \left(\sum_{j=1}^{M} \log g'(w_j^T x^{(i)}) + \log|W| \right)$$

ICA: Maximum Likelihood

Log-likelihood

$$\ell(W) = \sum_{i=1}^{N} \left(\sum_{j=1}^{M} \log g'(w_j^T x^{(i)}) + \log|W| \right)$$

• Update rule (Note: $\nabla_W |W| = |W|W^{-T}$)

$$W \coloneqq W + \alpha \left(\begin{bmatrix} 1 - 2g(w_1^T x^{(i)}) \\ 1 - 2g(w_2^T x^{(i)}) \\ \vdots \\ 1 - 2g(w_M^T x^{(i)}) \end{bmatrix} (x^{(i)})^T + W^{-T} \right)$$

ICA Algorithms

- Maximum Likelihood Estimation
 - Bell and Sejnowski (1995)

Maximizing Non-Gaussianity

ICA: Maximizing non-Gaussianity

- Common steps of ICA (e.g., <u>FastICA</u>):
- 1. Preprocessing: $\tilde{\mathbf{x}} \leftarrow \mathbf{x}$
 - Centering: Subtracting data mean $\mathbb{E}[\widetilde{\mathbf{x}}] = \mathbf{0}$
 - PCA Whitening: Decorrelation and standardization $\mathbb{E}[\tilde{\mathbf{x}}\tilde{\mathbf{x}}^T] = I$
- 2. Find orthogonal unit vectors along which that the non-Gaussianity are maximized:

$$\max_{W} L(W\tilde{\mathbf{x}})$$
 s.t. $WW^T = I$

• Where $L(\cdot)$ can be log cosh, Kurtosis, L1-norm, ...

ICA Preprocessing: PCA Whitening

Whitening can be done by a linear transformation:

$$\tilde{\mathbf{x}} = V\mathbf{x}$$

Such that they are uncorrelated & unit variance:

$$\mathbb{E}[\tilde{\mathbf{x}}\tilde{\mathbf{x}}^T] = I$$

- From the eigenvalue decomposition of covariance $S = U \Lambda U^T$
- PCA whitening transformation matrix:

$$V = \Lambda^{-1/2} U^T$$

Because

$$\mathbb{E}[\tilde{\mathbf{x}}\tilde{\mathbf{x}}^T] = \mathbb{E}[V\mathbf{x}\mathbf{x}^TV^T] = I$$

ICA Preprocessing: PCA Whitening

PCA whitening transformation matrix:

$$V = \Lambda^{-1/2} U^T$$

ICA Preprocessing: PCA Whitening

PCA whitening transformation matrix:

$$V = \Lambda^{-1/2} U^T$$

Decorrelation: Project to the principal components

ICA Preprocessing: PCA Whitening

PCA whitening transformation matrix:

$$V = \Lambda^{-1/2} U^T$$

- Decorrelation: Project to the principal components
- Standardization: Scale each axis to have unit var.

ICA: Maximizing non-Gaussianity

Kurtosis is a measure of the tailedness:

$$\operatorname{Kurt}[X] = \operatorname{E}\left[\left(\frac{X - \mu}{\sigma}\right)^{4}\right] = \frac{\operatorname{E}\left[(X - \mu)^{4}\right]}{\left(\operatorname{E}\left[(X - \mu)^{2}\right]\right)^{2}} = \frac{\mu_{4}}{\sigma^{4}}$$

- All Gaussian random variables have a Kurtosis of 3.
- Maximizing Kurtosis results in increasing the non-Gaussianity.

ICA: Maximizing non-Gaussianity

PCA whitening transformation matrix:

$$V = \Lambda^{-1/2} U^T$$

- Decorrelation: Project to the principal components
- Standardization: Scale each axis to have unit var.

ICA: Maximizing non-Gaussianity

PCA whitening transformation matrix:

$$V = \Lambda^{-1/2} U^T$$

- Decorrelation: Project to the principal components
- Standardization: Scale each axis to have unit var.
- Kurtosis maximization: Rotate to maximize non-Gaussianity

Input signals and density

Whitened signals and density

Separated signals after 1 step of FastICA

Separated signals after 2 steps of FastICA

Separated signals after 3 steps of FastICA

Separated signals after 4 steps of FastICA

Separated signals after 5 steps of FastICA

ICA: Summary

- ICA is used for blind-source separation.
- ICA can be done by
 - Maximum likelihood estimation
 - Maximizing non-Gaussianity
 - E.g., PCA whitening followed by kurtosis maximization
- ICA components can be used for features.
- Difficult to learn overcomplete (or redundant) bases due to the orthogonality constraint
 - Overcompleteness is good in the sense that
 - Representation can be more compact/sparse
 - Robust to noise

Linear Dimensionality Reduction

- Fisher's linear discriminant (FLD)
 - Supervised learning
- Principal component analysis (PCA)
- Independent component analysis (ICA)
- Sparse coding
- Multidimensional scaling (MDS)

t-Distributed Stochastic Neighbor Embedding

van der Maaten and Hinton, JMLR'08

t-SNE: Motivation

- Given a collection of high-dimensional data $\{x^{(1)}, ..., x^{(N)}\}$, how can we get a sense of how they are arranged in data space?
- We would like to compress the high-dimensional data into a lower-dimensional space while preserving distance and neighborhood structure.

Slide credit: Kai-Wen Zhao

t-SNE: Motivation

- Given a collection of high-dimensional data $\{x^{(1)}, ..., x^{(N)}\}$, how can we get a sense of how they are arranged in data space?
- t-SNE visualization of MNIST:

Slide credit: Kai-Wen Zhao

Stochastic Neighbor Embedding

- SNE converts Euclidean distances to similarities.
 - Interpreted as probabilities P^i over neighbors of $x^{(i)}$.
- Then, we find embedding Q^i that approximates P^i .

$$P^{i} = \left\{ p^{1|i}, p^{2|i}, \dots, p^{N|i} \right\} \qquad p^{j|i} = \frac{\exp\left(-\left\| x^{(i)} - x^{(j)} \right\|^{2} / 2\sigma_{i}^{2} \right)}{\sum_{k \neq i} \exp\left(-\left\| x^{(i)} - x^{(k)} \right\|^{2} / 2\sigma_{i}^{2} \right)}$$

$$Q_{i} = \left\{ q^{1|i}, q^{2|i}, \dots, q^{N|i} \right\} \qquad q^{j|i} = \frac{\exp\left(-\left\| y^{(i)} - y^{(j)} \right\|^{2} \right)}{\sum_{k \neq i} \exp\left(-\left\| y^{(i)} - y^{(k)} \right\|^{2} \right)}$$

$$p^{i|i} = 0, \ q^{i|i} = 0$$

• SNE minimizes the KL divergence:

$$C = \sum_{i} KL(P^{i}||Q^{i}) = \sum_{i} \sum_{j} p^{j|i} \log \frac{p^{J|i}}{q^{j|i}}$$

Symmetric SNE

- SNE converts Euclidean distances to similarities.
 - Interpreted as probabilities P^i over neighbors of $x^{(i)}$.
- Symmetrize p and q:

$$p^{ij} = \frac{p^{j|i} + p^{i|j}}{2N} \qquad p^{j|i} = \frac{\exp\left(-\left\|x^{(i)} - x^{(j)}\right\|^{2} / 2\sigma_{i}^{2}\right)}{\sum_{k \neq i} \exp\left(-\left\|y^{(i)} - y^{(j)}\right\|^{2}\right)} \qquad p^{j|i} = \frac{\exp\left(-\left\|x^{(i)} - x^{(i)}\right\|^{2} / 2\sigma_{i}^{2}\right)}{\sum_{k \neq i} \exp\left(-\left\|y^{(i)} - y^{(j)}\right\|^{2}\right)} \qquad q^{j|i} = \frac{\exp\left(-\left\|y^{(i)} - y^{(j)}\right\|^{2}\right)}{\sum_{k \neq i} \exp\left(-\left\|y^{(i)} - y^{(i)}\right\|^{2}\right)} \qquad p^{i|i} = 0, \ q^{i|i} = 0$$

• Symmetric SNE minimizes the KL divergence:

$$C = KL(P||Q) = \sum_{i,j} p^{ij} \log \frac{p^{ij}}{q^{ij}}$$

t-SNE

- SNE converts Euclidean distances to similarities.
 - Interpreted as probabilities P^i over neighbors of $x^{(i)}$.
- Symmetrize p and q, Student's t-distribution for q:

$$p^{ij} = \frac{p^{j|i} + p^{i|j}}{2N} \qquad p^{j|i} = \frac{\exp\left(-\left\|x^{(i)} - x^{(j)}\right\|^{2} / 2\sigma_{i}^{2}\right)}{\sum_{k \neq i} \exp\left(-\left\|x^{(i)} - x^{(j)}\right\|^{2} / 2\sigma_{i}^{2}\right)}$$

$$q^{ij} = \frac{\left(1 + \left\|y^{(i)} - y^{(j)}\right\|^{2}\right)^{-1}}{\sum_{k \neq i} \left(1 + \left\|y^{(k)} - y^{(l)}\right\|^{2}\right)^{-1}} \qquad q^{j|i} = \frac{\exp\left(-\left\|y^{(i)} - x^{(j)}\right\|^{2} / 2\sigma_{i}^{2}\right)}{\sum_{k \neq i} \exp\left(-\left\|y^{(i)} - y^{(j)}\right\|^{2}\right)}$$

$$p^{i|i} = 0, \ q^{i|i} = 0$$

• t-SNE minimizes the KL divergence:

$$C = KL(P||Q) = \sum_{i,j} p^{ij} \log \frac{p^{ij}}{q^{ij}}$$

From SNE to t-SNE

SNE

Modelization:

$$p^{j|i} = \frac{\exp\left(-\left\|x^{(i)} - x^{(j)}\right\|^{2} / 2\sigma_{i}^{2}\right)}{\sum_{k \neq i} \exp\left(-\left\|x^{(i)} - x^{(k)}\right\|^{2} / 2\sigma_{i}^{2}\right)}$$
$$q^{j|i} = \frac{\exp\left(-\left\|y^{(i)} - y^{(j)}\right\|^{2}\right)}{\sum_{k \neq i} \exp\left(-\left\|y^{(i)} - y^{(k)}\right\|^{2}\right)}$$

Cost function:

$$C = \sum_{i} KL(P_i||Q_i)$$

Derivatives:

$$\frac{dC}{dy} = 2\sum_{i} \left(p^{j|i} - q^{j|i} + p^{ij} - q^{ij} \right) \left(y^{(i)} - y^{(j)} \right)$$

Symmetric SNE

Modelization:

$$p^{ij} = \frac{p^{j|i} + p^{i|j}}{2N}$$

$$q^{ij} = \frac{\exp\left(-\left\|y^{(i)} - y^{(j)}\right\|^{2}\right)}{\sum_{k \neq l} \exp\left(-\left\|y^{(k)} - y^{(l)}\right\|^{2}\right)}$$

Cost function:

$$C = KL(P||Q)$$

Derivatives:

$$\frac{dC}{dy} = 4\sum_{j} \left(p^{ij} - q^{ij} \right) \left(y^{(i)} - y^{(j)} \right)$$

Faster optimization

t-SNE

Modelization:

$$p^{ij} = \frac{p^{j|i} + p^{i|j}}{2N}$$

$$q^{ij} = \frac{\left(1 + \|y^{(i)} - y^{(j)}\|^2\right)^{-1}}{\sum_{k \neq l} \left(1 + \|y^{(k)} - y^{(l)}\|^2\right)^{-1}}$$

Cost function:

$$C = KL(P||Q)$$

Derivatives:

$$\frac{dC}{dy^{(i)}} = 4\sum_{j} \left(p^{ij} - q^{ij} \right) \left(y^{(i)} - y^{(j)} \right) \left(1 + \left\| y^{(i)} - y^{(j)} \right\|^2 \right)^{-1}$$

- Faster optimization
- More robust to noise (heavy tailed t-dist.)

t-SNE: Summary

Advantages:

- Nonlinear dimensionality reduction while preserving distance and neighborhood structure
- Probabilistic interpretation: Minimizing the KL divergence between the pdf of inputs and outputs
 - Input is modeled by Gaussian distribution
 - Output is modeled by Student's t-distribution

Disadvantages:

- Quadratic w.r.t. the number of data: $O(N^2)$
- Non-convex optimization
- Non-parametric; cannot reuse learned mappings
 - Cf. Parametric t-SNE (van der Maaten and Hinton, AISTATS'09)
- Hyperparameter tuning required

Nonlinear Dimensionality Reduction

- Isometric feature mapping (ISOMAP)
- Locally linear embedding (LLE)
- t-distributed stochastic neighbor embedding (t-SNE)
 - van der Maaten and Hinton (2008)
- Uniform manifold approximation and projection (UMAP)
 - McInnes et al. (2018)
- t-SNE and UMAP are commonly used for visualizing features in deep learning

Next: Neural Networks