### Eletrônica II EE 640

### Fotodetectores e Sensor de Pixel Ativo

Prof. Fabiano Fruett

UNICAMP – FEEC - DSIF Sala 207

www.dsif.fee.unicamp.br/~fabiano

**Fotodetectores** 

Sensores (conversores de energia no domínio radiante - distribuída no espectro eletromagnético - para energia no domínio elétrico).

Alguns tipos são:

Fotoresistores ou *Light Dependent Resistor* (LDR) Fotodiodos Fototransistores *Charge-Coupled Device* (CCD)

### **Active-Pixel Sensor (APS)**

- Cada pixel (sensor radiante) contém, além do fotodetector, um circuito eletrônico (amplificador)
- CMOS APS estão se tornando extremamente comuns em câmeras de telefones celulares e computadores
- Os APSs são normalmente apresentados na forma de Circuito Integrado, sendo dispostos em um array de pixels ou Focal Plane Array (FPA)
- Os APSs sugiram como uma alternativa aos Charge-Coupled Devices (CCSs)

### APS vs. CCD

- APSs surgiu como alternativa aos sensores
   CCDs que eram padrão para imagem digital
- APSs combinam sensor e eletrônica em um mesmo chip
- APSs são mais baratos que os CCDs
- Consumo de potências e escalonamento também são favoráveis aos APSs

### 1970 – Primeiro CCD 8 Bit, Bell Labs





Willard Boyle (left) and George Smith (right). Courtesy of Lucent Technologies.

Década de 70

### **CMOS APS**



Fonte: http://en.wikipedia.org/wiki/File:Matrixw.jpg#filelinks

Etapas de processo de conversão de energia entre os domínios radiante e elétrico em um sensor semicondutor genérico

- Luz incide na superfície do semicondutor
- A Luz é transmitida passando pela cobertura e sendo absorvida pelo silício
- Fótons absorvidos geram pares elétron-lacuna
- Excesso de carga é gerado
- Carga é convertida em um sinal elétrico

ADICIONAR AO CAPÍTULO EFICIÊNICA QUÂNTICA

### Geração radiante em um semicondutor

Energia do fóton:

$$E_{ph} = h\nu = \frac{hc}{\lambda}$$

h é a constante de Planck c a velocidade da luz no vácuo  $\lambda$  é o comprimento de onda do fóton v é a frequência do fóton



a) 
$$E_{ph} = \frac{hc}{\lambda} > E_g$$

b) 
$$E_{ph} = \frac{hc}{\lambda} < E_g$$

### Espectro Eletromagnético



### Radiometria e Fotometria

- Radiometria refere-se a medida da energia eletromagnética. Os termos de radiometria aplicam-se em qualquer parte do espectro eletromagnético.
- Fotometria refere-se a parte do espectro visível. Fotometria leva em conta a eficiência visual da luz pelo olho humano

11

### Curva de eficiência luminosa relativa

- Radiometria aplica-se a todos os comprimentos de onda do espectro eletromagnético
- Fotometria aplica-se apenas a porção do espectro visível

 $P_{V} = P_{R} V_{\lambda}$ 



### Unidades radiométricas e fotométricas

| Symbol     | Radiometric                                    | Fotometric                                       | Definition           |
|------------|------------------------------------------------|--------------------------------------------------|----------------------|
| (SI units) |                                                |                                                  |                      |
| Q          | Radiant energy [J]                             | Luminous energy [Talbot]                         |                      |
| Р, Ф       | Radiant power or flux [W]                      | Luminous power or flux [lm]                      | $\Phi = dQ \cdot dt$ |
| E          | Irradiance [W m <sup>-2</sup> ]                | Illuminance [lm m <sup>-2</sup> ]                | Power per unit area  |
| I          | Radiant intensit [W sr <sup>-1</sup> ]         | Luminous intensity [lm sr <sup>-1</sup> ]        | Power per unit solid |
|            |                                                |                                                  | angle                |
| L          | Radiance [W m <sup>-2</sup> sr <sup>-1</sup> ] | Luminance [lm m <sup>-2</sup> sr <sup>-1</sup> ] | Radiant/luminous     |
|            |                                                |                                                  | intensity per unit   |
|            |                                                |                                                  | projected area in a  |
|            |                                                |                                                  | given direction      |

13

### Ângulo sólido Steradian (sr)



Fonte: http://www.schorsch.com/kbase/glossary/solid\_angle.html

### Reflexão, refração e retransmissão



Refletância  $\, \mathfrak{R} \,$ 

$$I_0 = I - I_r$$

A refletância da interface determina a quantidade da intensidade transmitida, que efetivamente penetra na mídia:

$$I_0 = (1 - \Re)I$$

 $\begin{tabular}{ll} \textbf{Transmitancia} (1-\Re) & \textbf{da interface Si-ar} \\ \textbf{para diferentes espessuras da camada} \\ \textbf{do oxido} \\ \end{tabular}$ 



Fonte: D.W. de Lima Monteiro, CMOS-based integrated wavefront sensor, Ph.D. Thesis TU Delft, 2002

### Absorção

A absorção de fótons refere-se a atenuação de sua energia por um processo de conversão para outras formas de energia.



Consideramos aqui que a irradiação monocromática transmitida é:  $I(x) = I_0$ 

$$\Delta I(x) = I(x + \Delta x) - I(x)$$

$$\Delta I(x) = -\alpha I(x) \Delta x$$

 $\alpha$  é o coeficiente de absorção

$$\frac{\partial I(x)}{\partial x} = -\alpha I(x)$$

Integrando esta equação diferencial temos:

Beer's law:

$$I(x) = I_0 \exp(-\alpha x)$$

17







### Geração





### Geração

A quantidade de portadores gerados, a partir da superfície até uma determinada profundidade (d), devido a uma irradiação monocromática  $E_0$  com  $\lambda < \lambda_{\rm max}$  sendo transmitida através de um semicondutor, pode ser calculada da seguinte forma:

$$r_{g} = \eta_{i} \frac{E_{0} \lambda}{hc} (1 - \exp(-\alpha d)) \quad [\text{m}^{-2} \, \text{s}^{-1}]$$

$$\eta_{i} \quad \text{eficiência quântica interna} \quad \text{- Conversão térmica} \quad \text{- Bandgap indireto}$$

$$\eta_{i} \quad \eta_{i} \quad \text{Max} \quad \text{Si} \quad 40\% \quad \text{GaAs} \quad 70\%$$

$$0.4 \quad 0.2 \quad 0.4 \quad 0.4 \quad 0.2 \quad 0.4 \quad 0.4 \quad 0.2 \quad 0.4 \quad 0.4$$

## Portadores fotogerados em diferentes regiões de uma estrutura p-n



Os portadores fotogerados podem:

- Recombinar imediatamente
- Recombinar depois de algum tempo
- Separar imediatamente pela ação de um campo elétrico

23

Fonte: D.W. de Lima Monteiro, CMOS-based integrated wavefront sensor, Ph.D. Thesis TU Delft, 2002

### Camada de depleção - junção pn

Junção pn sem polarização



Junção pn com polarização reversa



$$W_d = \left(\frac{2\varepsilon_0 \varepsilon_{Si} \phi}{q} \frac{N_A + N_D}{N_A N_D}\right)^{\frac{1}{2}}$$

$$\phi = \frac{kT}{q} \ln \left( \frac{N_A N_D}{n_i^2} \right)$$

$$W_{d} = \left(\frac{2\varepsilon_{0}\varepsilon_{Si}}{q} \frac{N_{A} + N_{D}}{N_{A}N_{D}} (\phi + V_{b})\right)^{\frac{1}{2}}$$

24

Fonte: D.W. de Lima Monteiro, CMOS-based integrated wavefront sensor, Ph.D. Thesis TU Delft, 2002

### Camada de depleção - MOS



$$x_d = \sqrt{\frac{2\varepsilon}{qN_A}\phi_S}$$

 $\phi_S$  é o potencial na superfície do semicondutor

$$V_G = \frac{\sqrt{2\varepsilon N_A \phi_S}}{C_{OX}} + \phi_S$$

Cria-se um "poço potencial", onde elétrons gerados fotonicamente serão armazenados e posteriormente transferidos. Este é o princípio de funcionamento de um Charge-Couple-Device (CCD).

2

Fonte: D.W. de Lima Monteiro, CMOS-based integrated wavefront sensor, Ph.D. Thesis TU Delft, 2002



### Fotodiodo em modo fotocondutivo

Quando uma junção semicondutora é polarizada reversamente e uma fonte de luz monocromática, com  $E_{\rm ph} > E_{\rm g}$ , incide sobre sua superfície, tem-se um acréscimo na corrente de polarização reversa, sendo:

$$i_{\lambda} = \frac{\eta E A q \lambda}{hc}$$
  $\eta = (1 - \Re) \eta_i \left( e^{-\alpha d_p} - e^{-\alpha d_n} \right)$ 

E é a irradiação luminosa incidente

A a área incidente

q a carga do portador

 $\boldsymbol{\eta}$  a eficiência quântica total

 $\lambda$ o comprimento de onda da luz incidente



### **Detectores coloridos**

- Modulação da camada de depleção
- Filtros coloridos
- Junções empilhadas



Ref: P. French and S. Middelhoek, Sensors, TUDelft





### Característica I-V de uma junção pn



Fonte: http://hyperphysics.phy-astr.gsu.edu/hbase/Electronic/ietron/pdio4.gif

### Modelo Eletrônico do fotodiodo



- $I_P$  é a corrente fotogerada
- R<sub>sh</sub> é a resistência paralela
- $C_D$  é a capacitância de depleção do diodo em condição de polarização reversa

### **Pixel Passivo**



### Fonte:

G. P. Weckler. Operation of p-n junction photodetectors in a photon flux integration mode. IEEE J. Solid-State Circuits, vol. SC-2, 65–73, 1967.

D. W. de Lima Monteiro. CMOS Integrated Wavefront Sensor. DUP Science, 2002

## Pixel ativo — circuito conceitual V<sub>rst</sub> V<sub>rst</sub> V<sub>out</sub> Solution Tempo [s]

# Pixel ativo Fotodiodo Transistor de Reset (T1) Seguidor de fonte (T2) Seletor de linha (T3) A fonte de corrente T4 não faz parte do pixel Fonte: P. Noble. Self-scanned image detector arrays. IEEE Trans. Electron Devices, 15, 1968. F. S. Campos. Sistemas de Imagem CMOS com Alta Responsividade e Elevada Faixa Dinâmica. Tese de Doutorado, FEEC, UNICAMP (2008).

# Realizações • APS em tecnologia NMOS porta metálica do CCS-UNICAMP Projeto: Simulação: Simulação: VDD Vesaida Vesai





## Resultados experimentais fabricação do APS



Fonte: André Furtado, Fabricação e Caracterização de Sensor de Pixel Ativo com Tecnologia NMOS de Porta Metálica, Dissertação de mestrado, FEEC, UNICAMP, 2009



### Transistor NMOS porta metálica



Fonte: André Furtado, Fabricação e Caracterização de Sensor de Pixel Ativo com Tecnologia NMOS de Porta Metálica, Dissertação de mestrado, FEEC, UNICAMP, 2009



Fonte: André Furtado, Fabricação e Caracterização de Sensor de Pixel Ativo com Tecnologia NMOS de Porta Metálica, Dissertação de mestrado, FEEC, UNICAMP, 2009

### APS – corrente de escuro



Fonte: André Furtado, Fabricação e Caracterização de Sensor de Pixel Ativo com Tecnologia NMOS de Porta Metálica, Dissertação de mestrado, FEEC, UNICAMP, 2009

### Referências Bibliográficas

- André Santos de Oliveira Furtado, Dissertação de Mestrado, Fabricação e Caracterização de Sensor de Pixel Ativo com Tecnologia NMOS de Porta Metálica, Unicamp, FEEC, dezembro 2009
- J. Wilson and J. Hawkes, Optoelectronics, Prentice Hall, ISBN 0-13-103961-
- S. Middelhoek, S. A. Audet and P. J. French, "Silicon Sensors", Delf University of Technology, 2000

FIM