# ME 193B / 292B: Feedback Control of Legged Robots HW #5

#### Problem 1. Three-Link Walker: Control

In this problem, you will implement your first walking controller. We will use the model of the three-link walker similar to the one you've developed in HW#1 (The three link model considered here can be found in pg. 67 of [1]). Consider the following outputs to be controlled

$$y := \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} := \begin{bmatrix} \theta_3 - \theta_3^d \\ \theta_2 + \theta_1 \end{bmatrix}, \tag{1}$$

where  $\theta_3^d$  is set to a <u>constant value</u> and  $\theta_1, \theta_2$  and  $\theta_3$  correspond to the <u>absolute angles</u> of the links. This output corresponds to a simple walking behavior that enforces the torso angle to remain constant while commanding the swing leg to behave as the mirror image of the stance leg,  $\theta_1 = -\theta_2$ . Additionally, assume Leg-1 is the stance leg and the moment of inertias for the links is <u>zero</u>. The coefficient of static friction  $\mu = 0.8$ . A starter code is provided to you that computes the dynamics of the system in stance phase: D, C, G and B matrices, the contact forces that enforce the holonomic constraints at the stance foot, as well as the impact map  $\Delta$ . These are computed in terms of the generalized coordinates  $q := \begin{bmatrix} x & y & q_1 & q_2 & q_3 \end{bmatrix}^T$ , where x, y is the position of the hip and  $q_1, q_2, q_3$  correspond to the <u>relative angles</u> of the links.

- (a) Using the expressions for D, C, G, B and  $F_{st}$ , and with the state defined as  $s := \begin{bmatrix} q \\ \dot{q} \end{bmatrix}$ , compute the expressions for the vectors f(s) and g(s) such that  $\dot{s} = f(s) + g(s)u$ .
- (b) Using the transformation matrices T and d, compute the outputs y in terms of  $q_1, q_2$  and  $q_3$ .
- (c) Using the above expressions, compute the Lie Derivatives of the output:  $L_f y$ ,  $L_g y$ ,  $L_f^2 y$  and  $L_g L_f y$ .
- (d) Derive the relabeling matrix  $R \in \mathbb{R}^{5\times 5}$  that maps the pre-impact configuration to the post-impact configuration, i.e.

$$q^+ = Rq^- \tag{2}$$

$$\dot{q}^{+} = R\Delta_{\dot{q}} \left( q^{-}, \dot{q}^{-} \right), \tag{3}$$

where  $\Delta_{\dot{q}}(q^-,\dot{q}^-)$  was computed in Problem 2, HW#2. (Note that in HW#2, we did not consider the relabeling matrix to compute the post-impact velocities).

#### Problem 2. Three-Link Walker: Simulation

(a) We will now consider a slightly different form of controller than what was presented in class. This controller also does input-output linearization, but the convergence properties are faster. Consider the controller,

$$u = L_q L_f y^{-1} \left( -L_f^2 y + v \right) \tag{4}$$

$$v = \begin{bmatrix} \frac{1}{\epsilon^2} \psi_a \left( y_1, \epsilon \dot{y}_1 \right) \\ \frac{1}{\epsilon^2} \psi_a \left( y_2, \epsilon \dot{y}_2 \right) \end{bmatrix}, \tag{5}$$

$$\psi_a(x_1, x_2) := -\operatorname{sign}(x_2) |x_2|^a - \operatorname{sign}(\phi_a(x_1, x_2)) |\phi_a(x_1, x_2)|^{\frac{a}{2-a}}, \tag{6}$$

$$\phi_a(x_1, x_2) := x_1 + \frac{1}{2 - a} \operatorname{sign}(x_2) |x_2|^{2 - a}, \tag{7}$$

With the above controller, simulate the system for 10 walking steps (using ode45 in

MATLAB). Use the initial condition 
$$x_0 = \begin{bmatrix} -0.3827 \\ 0.9239 \\ 2.2253 \\ 3.0107 \\ 0.5236 \\ 0.8653 \\ 0.3584 \\ -1.0957 \\ -2.3078 \\ 2.0323 \end{bmatrix}$$
 and with  $\theta_3^d = \pi/6$ . Assume

impact to occur when  $\theta_1 = \pi/8$  (i.e. absolute angle of leg-1 (stance leg) is equal to  $\pi/8$  radians) and detect -ve to +ve crossings.

Provide plots of:

- i.  $\theta_1$  vs  $\dot{\theta}_1$ ,
- ii.  $u_1$  and  $u_2$  vs time (on the same plot).
- iii.  $F_{st}$  vs time (both components of  $F_{st}$  on the same plot).

with a = 0.9 and  $\epsilon = 0.1$ . The control input here enforces the outputs to converge to the origin in finite-time (See pg. 168 of [1] for more details). Use the animation script provided to visualize your simulation.

- (b) We will now check for the friction constraints at the stance foot. Specifically, we want  $F_{st}$  to satisfy the following conditions:
  - i. Vertical (second) component of  $F_{st}$  must be greater than 0, i.e. the ground cannot pull the robot and,
  - ii. The ratio of the horizontal (first) and vertical components of  $F_{st}$  must be less than the coefficient of static friction, i.e. we do not want the robot to slip.

Using the data from your simulation, check if the above conditions are met. Provide plots demonstrating this.

### Instructions

- 1. You may submit either a typeset or handwritten solution. In either case, submit a **PDF** version of your solutions on bCourses, with the naming convention: firstName\_lastName\_HW3.pdf.
- 2. Start each problem on a separate page.
- 3. You may choose to use a symbolic math package such as the Symbolic Math Toolbox (https://www.mathworks.com/help/symbolic/index.html) in MATLAB or Mathematica.

- 4. Do include all your code, if any.
- 5. Please submit a single pdf of your HW. (If typset on a computer, please save to pdf. If handwritten, please scan to pdf.)
- 6. **Honor Code.** You are to do your own work. Discussing the homework with a friend is fine. Sharing results or MATLAB code is not.

## References

[1] Eric R. Westervelt, Jessy W. Grizzle, Christine Chevallereau, Jun Ho Choi, and Benjamin Morris. Feedback Control of Dynamic Bipedal Robot Locomotion. *Crc Press*, 2007.