TD 4 - CALCULUS

- (1) Consider the recurrent sequence defined for n > 0 by $u_n = u_{n-1} + \frac{1}{u_{n-1}}$ and $u_0 = 1$. Examine whether this sequence converges to a finite limit or not.
- (2) Do the following series converge?
 - (a) $\sum_{n\geq 0} \frac{(n+2)^2}{2^{n+2}}$,
 - (b) $\sum_{n\geq 0} 0.9999^n$,
 - (c) $\sum_{n\geq 2} (-1)^{n-1} \frac{n^2-n}{n^2+n}$ (Note: kind of tricky!).
- (3) **Nature of functions.** Are the functions given below injective from their domain to \mathbb{R} ? Surjective? Continuous on \mathbb{R} ?
 - (a) $f(x) = x^3$,
 - (b) $g(x) = x^3 x$,
 - (c) h(x) = |x| (floor of x is defined as the largest integer at most equal to x),
 - $(d) \ j(x) = |x|,$
 - (e) $k(x) = \frac{1}{x}$.