Reminder:

. N parties U,,..., Un

· Secret × E 20,13°

Basic:

· izn: U; raives ×; ← 20,15°

· i=n: Un receives ×n + ×, ×; - 20,13°

• Reconstruct via $\bigoplus_{i \in (n)} X_i^* = S_i^*$

Shamir:

· k points determine a unique polynomial P of degree (at most) k-1

· thoose distinct xi, and y; at random

• set P s.t. X = P(0) and for all $i : P(x_i) = y_i$ (with Lagrange Interpolation)

. for subset SE(n) of size k:

· evaluate PCO) to obtain x:

P(O) =
$$\sum_{j \in S} y_j L_{S,j}(O) - \sum_{j \in S} y_j \Lambda_{S,j} = X$$
=: $\lambda_{S,j}$, an k

Rempulsed via

the set (xi)ies

For all SEA,

- secret share x independently via $x_1^{(5)}, ..., x_{1c1}^{(5)}$

Betto:

- let I,..., Ik be the minimal sets to decide membership in A

- secret share x for all $i \in [k]$ separately: $x_1^{(i)},...,x_{1\Sigma_{i1}}^{(i)}$

W 5 c [n]:

-if $S \in \mathcal{A}$: $\exists I_i \subseteq S$ and $\times = \bigoplus_{j=1}^{|I_i|} \times_j^{(i)}$

- if S & U: all values look unitermly and independently random

Ex2.

- give node 1 (ksp. n) the label l=0 (ln=x)

. all other nodes receive random label

· edge (ij) has share lij = li & lj

· for since edges SSE:

-if path PES from 1 to n in S:

- etx: distribution of labels is independent of X (see plf below)

```
Exercise 3:
1. - pk = 5x, sk = x hash function
  - ligh(sk,m), set r= 5k, c = H(pk,r,m), s= k-cx mod q
                 output 0 = (r, c, s) (c is optional)
  - Verify (plk, m, a): duck r= 3° plkc and c-H(plk, r, m)
2. doose c, s - Zp at random
   set regipte
   transcript: (r,c,s)
3. language: {yo, ya: yo = 5x or ya = 5x}
    witness: x \in \mathbb{Z}_p s.t. y_0 = y_1 = y_2 or y_4 = y_2
k_0 \leftarrow 2p
r_0 \leftarrow 2r
r_0 \leftarrow 2r
r_0 \leftarrow 2r
                                      (X) numal Schnor
                                        (t) simulakd Schnor
C1,5, -2, (+)
Co= Co ⊕ C ← Zp
36 = K0 - C0 X 3(x) S01311C0 - Check 16 = 036 yo Cb
                                                    for be 20,13, c1 = C DC.
       if x = Dloga(ha), then similar (ro, co, so) instead
4. correcte: easy to check
   200-knowledge, simulate (x) and (+) at the same time
   soundness: given two transoripts with challenges C = d:
      . TA = ( ro, ra, C, Sa, Sz, C.)
      · T2 = (40,41, d, E1, E2, d)
      · have (i) c. # d. or (ii) coc. # dod.
      · (i): can extract dlog(he) as in Schnorr
              _____ dlog (ha) _____
      · (ii) ,
5. Let yo be verification key of signer with known xo: 40 = 9x0
   · follow above protocol with C= HCpk, pk, r, r, r, m)
   · hides whether x_0 or x_4 was used be. the underlying sometime is zero-knowledge
   · veitir with you knows that xo was used for signature generation
```

(because only signer knows x_4)

· but verifier could've signed via \times_1 him self \Longrightarrow not transfootbe

Introduction à la cryptologie TD n° 3 :Correction.

Exercice 1 (Partage de secret pour toute structure d'accès). On rappelle le protocole de partage de secret (n,n) où n utilisateurs partagent un secret, et ce secret ne peut être retrouvé que si les k utilisateurs collaborent ensemble. Pour cela, considérons un secret $S \in \{0,1\}^{\lambda}$. On tire de manière uniformément aléatoire $(S_1,\ldots,S_n) \in (\{0,1\}^{\lambda})^n$ conditionné à : $\sum S_i = S$. Ici la somme est sur \mathbb{F}_2^{λ} : c'est un XOR. De manière équivalente, on tire uniformément aléatoirement S_1,\ldots,S_{n-1} et on fixe $S_n = S - \sum_{i < n} S_i$: cette distribution est identique à la précédente. On voit que les n utilisateurs peuvent retrouver S en calculant la somme de leurs parts. Par contre, pour un sous-ensemble strict des n utilisateurs, la distribution des valeurs qu'il connaissent est uniformément aléatoire et indépendante ; en particulier ell est indépendante de S.

Nous arrivons à la question de l'exercice. Soient I_1, \ldots, I_m les éléments minimaux pour l'inclusion dans \mathcal{A} . L'idée est simplement de réaliser, pour chaque I_k , une instance indépendante du protocole ci-dessus. Si un ensemble $A \subseteq [1, n]$ d'utilisateurs est dans \mathcal{A} , il existe $I_k \subseteq A$ et les utilisateurs dans I_k peuvent calculer le secret grâce à l'instance correspondante. Par contre, pour $A \notin \mathcal{A}$, la distribution des valeurs connues par les utilisateurs de A, dans toute les instances, est un ensemble de valeurs indépendantes et uniformément aléatoires, en particulier indépendantes de S.

Exercice 2 (Graphes et partage de secret). Soit $S \in \{0,1\}^n$ le secret. On associe un label dans $\{0,1\}^n$ à chaque sommet de G de la manière suivante. Le sommet 1 a le label $\ell_1 = 0$. Le sommet n a le label $\ell_n = S$. Pour 1 < i < n, le sommet i a un label ℓ_i tiré uniformément aléatoirement et de manière indépendante dans $\{0,1\}^n$. On associe ensuite à l'arête (i,j) la valeur $a_{i,j} = \ell_i \oplus \ell_j$. L'utilisateur associé à l'arête (i,j) reçoit cette valeur.

On identifie les utilisateurs avec les arêtes du graphe. Si un ensemble A d'utilisateurs contient un chemin du sommet 1 au sommet n, il suffit de calculer la somme des $a_{i,j}$ le long de ce chemin pour trouver S. Réciproquement, si un ensemble d'utilisateurs A ne contient pas de tel chemin, alors considérons le graphe dont les arêtes sont dans A. Dans ce graphe, les sommets 1 et n sont dans des composantes connexes distinctes (sinon il existerait un chemin). Soit C la composante connexe contenant n. Prenons une valeur δ arbitraire dans $\{0,1\}^n$. Définissons la fonction f_{δ} sur les labels des sommets telle que $f_{\delta}((\ell_i)_{i\leq n}) = (\ell'_i)_{i\leq n}$ avec :

$$\ell_i' = \begin{cases} \ell_i \oplus \delta \text{ si } i \in C \\ \ell_i \text{ sinon.} \end{cases}$$

Cette fonction translate donc les labels des sommets par δ sur C, et laisse les autres labels inchanges. On remarque que cette fonction conserve les valeurs $a_{i,j}$, quel que soit le choix de δ . Par contre elle correspond au secret $S' = S \oplus \delta$ et non plus S. Le point crucial est les suivant : f_{δ} est une bijection entre l'ensemble des labels ℓ_i correspondant au secret S et compatibles avec les valeurs $a_{i,j}$ connues des utilisateurs de A, et l'ensemble des ℓ_i' correspondant au secret S' et compatibles avec les (mêmes) valeurs $a_{i,j}$ connues des utilisateurs de A. Comme toutes les distributions sont uniformes, il s'ensuit que la probabilité que le secret soit S ou soit S' conditionné à la connaissance des utilisateurs de A est la même. Les secrets S et S' ont donc la même probabilité, pour n'importe quel S' ($\delta = S' \oplus S$ étant arbitraire) : les utilisateurs de A n'apprennent donc rien sur la valeur de S.

Exercice 3 (Partage de secret pour signature à verificateur designé). voir solution au-dessus.

Exercice 4 (Problème de la demande en mariage). Une manière de faire est la suivante.

- 1. Alice et Bob génèrent une clef ElGamal partagée suivant le protocole vu en cours, puis chiffrent le message « mariage! » avec la clef publique, pour obtenir un chiffré c_0 .
- 2. Si Alice veut se marier, elle re-randomise le chiffré c_0 en un c_1 (on rappelle qu'ElGamal permet de rerandomiser le chiffré d'un message m, sans modifier le message et sans connaître la clef : il suffit de multiplier le composant de gauche du chiffré par g^s , et le composant de droite par g^s , où g est la clef publique et g est quelconque). Si elle ne veut pas se marier, elle remplace les deux composants du chiffré par des valeurs aléatoires uniformes.
- 3. Bob fait de même en partant de c_1 pour obtenir le chiffré c_2 .
- 4. Alice et Bob déchiffrent de manière conjointe le chiffré c_2 suivant le protocole vu en cours. S'ils obtiennt le message « mariage! », c'est que les deux souhaitent se marier.

Attention. Dans la solution ci-dessus, si Bob ne suit pas la description du protocole honnêtement, il pourrait trouver le choix d'Alice : il rerandomise $c_2 = c_1 \cdot (g^m \cdot y^t, g^t)$. Si Alice a voté oui, la message obtenu sera $g^m \cdot \ll$ mariage! ». Malheureusement, Alice ne réalise pas que Bob a triché (sous l'hypothèse de DDH).

Exercice 5 (Sécurité du protocole de signature de Groth).

1. On demande les chiffrées des messages m=0 et m=1. On obtient r_1, r_2, r_1', r_2' tels que :

$$y_1^{r_1}y_2^{r_2} = y_3$$
 $gy_1^{r_1'}y_2^{r_2'} = y_3$

On peut alors forger une signature pour un message quelconque m, en effet on a :

$$y_1^{(m-1)r_1} y_2^{(m-1)r_2} = y_3^{m-1}$$
$$g^m y_1^{mr_1'} y_2^{mr_2'} = y_3^m$$

donc en combinant:

$$g^m y_1^{mr_1' - (m-1)r_1} y_2^{mr_2' - (m-1)r_2} = y_3.$$

La signature $(mr'_1 - (m-1)r_1, mr'_2 - (m-1)r_2)$ est donc valide pour le message m.

- 2. L'équation (1) de l'énoncé implique qu'une signature (r_1, r_2) ne peut être valide que pour un unique message m (le log discret de $y_3y_1^{-r_1}y_2^{-r_2}$ en base g).
- 3. (a) Les variables y_1 , y_2 , y_3 sont indépendantes (chacune est uniformément aléatoire), seule y_3 dépend de c_s donc nous pouvons limiter notre attention à y_3 . Il suffit de remarquer que la distribution de y_3 conditionnée à $c_s = c$, pour tout c fixé, reste uniformément aléatoire à cause du choix uniforme de b_s , en particulier elle ne dépend pas de c.
 - (b) On vérifie que la signature $(b_s m a_s, c_s)$ est valide. D'autre part on a vu que c_s est uniformément aléatoire même conditionné à la clef publique, et $r_1 = b_s m a_s$ est l'unique exposant donnant une signature correcte pour $r_2 = c_s$. C'est donc la même distribution qu'une signature véritable : en effet le même relation existe entre r_1 et r_2 dans une signature générée en suivant le protocole (le protocole tel qu'il est écrit tire r_1 uniformément et déduit r_2 , mais on voit que les rôles de r_1 et r_2 sont complètement symétriques et qu'on peut faire l'inverse).

(c) Supposons que \mathcal{A} produit une contrefaçon sur un message $m^* \neq m$. Il produit donc r_1^* , r_2^* tels que :

$$g^{m^*}y_1^{r_1^*}y_2^{r_2^*} = y_3$$

$$g^{m^*}g^{a_sr_1^*}h^{r_2^*} = g^{b_s}h^{c_s}$$

$$g^{(m^*+a_sr_1^*-b_s)(c_s-r_2^*)^{-1}} = h.$$

L'inversion $(c_s - r_2^*)^{-1}$ est valide parce qu'on a supposé $r_2^* \neq r_2 = c_s$.

- 4. Comme déjà remarqué plus haut, les rôles de r_1 et r_2 sont complètement symétriques dans ce protocole, donc on peut réécrire le même raisonnement en échangeant les rôles de y_1 (et ses exposants) et y_2 (et ses exposants).
- 5. Soit \mathcal{B} l'algorithme qui tire $b \leftarrow \{0,1\}$ uniformément aléatoirement et qui exécute \mathcal{B}_b (qui fait luimême appel à \mathcal{A}). On a vu que la distribution de la clef publique, et de la signature du message demandé par \mathcal{A} sont identiques à celle des clefs publiques et signatures légitimes (en particulier elles sont identiques pour les deux choix de b). L'algorithme \mathcal{A} produit donc une signature forgée (r_1^*, r_2^*) pour un message m^* avec probabilité ϵ , après avoir éventuellement demandé la signature (r_1, r_2) d'un message choisi m. Nous avons vu que $(r_1^*, r_2^*) \neq (r_1, r_2)$, donc $r_1 \neq r_1^*$ ou $r_2 \neq r_2^*$, donc avec probabilité au moins 50% l'hypothèse de l'algorithme \mathcal{B}_b est satisfaite. Avec probabilité au moins $\epsilon/2$ on retrouve donc le logarithme discret de h en base g.