PyTorch Cheatsheet - Part 1

Useful activation function and torch.nn.functional

• Linear function: y = WX + b where W and X are vectors of size N (number of dimensions to the input).

```
torch.nn.Linear(in_features, out_features, bias=True, device=None, dtype=None)
```

• Sigmoid function: $\frac{1}{1+e^{-z}}$ where z is the logit(s).

```
torch.nn.functional.sigmoid(input)
```

- Softmax function: $p(Y=t|x) = \frac{\exp(w_t^T x)}{\sum_{y \in \{0,...,C-1\}} \exp(w_y^T x)}$

torch.nn.functional.softmax(input, dim=None, _stacklevel=3, dtype=None)[source]

Loss Functions

• Mean squared error: $\ell(x, t; w) = (y - t)^2$

```
torch.nn.MSELoss(size_average=None, reduce=None, reduction='mean')
```

- Minimum log-likelihood: $\ell(x,t;w) = \sum_{(x^{(i)},t^{(i)}) \in \mathcal{D}} -\log p(t|x)$
 - Combined with binary classification: $\ell(x,t;w) = \sum_{(x^{(i)},t^{(i)})\in\mathcal{D}} \log(1+\exp(-t^{(i)}w^Tx^{(i)}))$
 - Combined with softmax: $\ell(x,t;w) = \sum_{(x^{(i)},t^{(i)})\in\mathcal{D}} \left(-w_{t^{(i)}}^T x + \log \sum_{c\in\{0,\dots,C-1\}} \exp(w_c^T x)\right)$

torch.nn.CrossEntropyLoss(weight=None, size_average=None, ignore_index=-100, reduce=None,
 reduction='mean', label_smoothing=0.0)[source]

- · Cross Entropy Loss:
 - Linear (SVM formulation): $\ell(x,t;w) = \frac{|W[1:]|}{2} + C\sum \max\left(0,1-t^{(i)}\cdot Wx^{(i)}\right)^2$
 - Logistic: $\ell(x,t;w) = -t \log y (1-t) \log (1-y)$

Optimizers and torch.optim

In standard gradient descent, the update rule is: $\mathbf{w}_{k+1} = \mathbf{w}_k - \alpha \nabla f(\mathbf{w}_k)$. In gradient descent with momentum, we introduce a velocity term $v_k : v_{k+1} = \beta v_k - \alpha \nabla f(\mathbf{w}_k)$ and $\mathbf{w}_{k+1} = \mathbf{w}_k + v_{k+1}$ where: α is the learning rate, $\beta \in [0,1]$ is the momentum coefficient, and v_k is the velocity term.

The following are some useful optimizers provided by the torch optim library including:

Stochastic gradient descent

```
torch.optim.SGD(params, lr=0.001, momentum=0, dampening=0, weight_decay=0, nesterov=False, *,
    maximize=False, foreach=None, differentiable=False, fused=None)[source]
```

PyTorch datasets

Required functions for dataset class:

- __init__: The __init__ method is the constructor for the new dataset.
- __len__: The __len__ method overrides the len() function in Python to determine the length of the dataset.
- __getitem__: The __getitem__ method overloads the use of brackets to index items in a dataset.

There are lots of cool dataloader attributes and methods including:

- batch_size: number of examples in each batch or call to the dataloader
- shuffle: Boolean option to shuffle dataset each pass or epoch through the dataset
- sampler: Sampler object that specifies how data will be extracted from the dataset. For example, the SubsetRandomSampler allows us to specify indices within the larger dataset to sample at random.

Other useful equations

- Gradient descent: $\mathbf{w} \leftarrow \mathbf{w} \alpha \frac{\partial \mathcal{E}}{\partial \mathbf{w}}$
- Closed form solution for linear regression: $W = (X^T X)^{-1} X^T T$
- L2 Regularization with MSE: $L(w) = \|y Xw\|^2 + \lambda \|w\|_2^2$, closed form linear regression solutions: $W = (X^TX + \lambda I_d)^{-1}X^Ty$
- Support Vector Machines Margins at WX=1 and WX=-1, border at WX=0. Margin width =2/|W|

Sample Code

```
Here is a sample, two-dimensional logistic classifier code:
import numpy as np
import matplotlib.pyplot as plt
import torch
import torch.nn as nn
from torch.utils.data import Dataset
from torch.utils.data import DataLoader
from torch.utils.data import SubsetRandomSampler
class LogisticRegression(nn.Module):
   def __init__(self, N):
        super().__init__()
        self.w = nn.Parameter(torch.ones(N))
        self.b = nn.Parameter(torch.zeros(1))
    def forward(self, x):
        return 1/(1+torch.exp(-(self.w@x+self.b)))
class TwoClassDataset(Dataset):
    # don't forget the self identifier!
    def __init__(self, N, sigma):
        self.N = N # number of data points per class
        self.sigma = sigma # standard deviation of each class cluster
        self.plus_class = self.sigma*torch.randn(N, 2) + torch.tensor([-1, 1])
        self.negative_class = self.sigma*torch.randn(N, 2) + torch.tensor([1, -1])
        self.data = torch.cat((self.plus_class, self.negative_class), dim=0)
        self.labels = torch.cat((torch.ones(self.N), torch.zeros(self.N)))
    def __len__(self):
        return len(self.labels)
    def __getitem__(self, idx):
        x = self.data[idx]
        y = self.labels[idx]
        return x, y # return input and output pair
N = 100
sigma = 1.5
dataset = TwoClassDataset(N, sigma)
plus_data = dataset.plus_class
negative_data = dataset.negative_class
# create indices for each split of dataset
N train = 60
N_val = 20
N_{test} = 20
indices = np.arange(len(dataset))
np.random.shuffle(indices)
train_indices = indices[:N_train]
val_indices = indices[N_train:N_train+N_val]
test_indices = indices[N_train+N_val:]
# create dataloader for each split
batch_size = 8
train_loader = DataLoader(dataset, batch_size=batch_size, sampler=SubsetRandomSampler(train_indices)
val_loader = DataLoader(dataset, batch_size=batch_size, sampler=SubsetRandomSampler(val_indices))
test_loader = DataLoader(dataset, batch_size=batch_size, sampler=SubsetRandomSampler(test_indices))
criterion = nn.BCELoss(reduction='mean') # binary cross-entropy loss, use mean loss
logreg_model = LogisticRegression(2) # initialize model
optimizer = torch.optim.SGD(logreg_model.parameters()) # initialize optimizer
n_{epoch} = 200  # number of passes through the training dataset
loss_values, train_accuracies, val_accuracies = [], [], []
for n in range(n_epoch):
    epoch_loss, epoch_acc = 0, 0
    for x_batch, y_batch in train_loader:
        optimizer.zero_grad()
        predictions = logreg_model(x_batch.unsqueeze(-1)).squeeze(-1)
        loss = criterion(predictions, y_batch)
        loss.backward()
        optimizer.step()
```