Machine Learning Model Prediction

Data Preparation

Required Specific Libraries

```
# Import necessary libraries
\hbox{import numpy as np}\\
import pandas as pd
import matplotlib.pyplot as matplt
from matplotlib import rcParams
import seaborn as sns
%matplotlib inline
import warnings
warnings.filterwarnings("ignore")
# Import data preprocessing libraries and models
from \ sklearn.preprocessing \ import \ Standard Scaler, \ Label Encoder, \ Ordinal Encoder, \ One Hot Encoder
from sklearn.compose import make_column_transformer
from imblearn.over_sampling import SMOTE
# Import model evaluation and training utilities
from sklearn.model_selection import train_test_split
from \ sklearn. metrics \ import \ classification\_report, ConfusionMatrix Display, \ accuracy\_score, \ confusion\_matrix, \ precision\_score, \ recall\_score
# Import machine learning models
from sklearn.ensemble import RandomForestClassifier
from sklearn.svm import SVC
from sklearn.tree import DecisionTreeClassifier
from sklearn.linear_model import LogisticRegression
# Mount Google Drive to access datasets
from google.colab import drive
drive.mount('/content/drive')
Trive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount("/content/drive", force_remount=True).
```

Import dataset

Load the dataset into a DataFrame
dataframe = pd.read_csv('/content/drive/My Drive/Colab Notebooks/Exam/LA4PSchools.csv')

dataframe.head()

r	_	_
	→	₹.
٦	7	_

	StudentID	Gender	Year_02	Kinder_Age	Disability	NCCD- Funded	01.SES	02.SES	NumSibling	SiblingOrder	•••	HRSIW- 01-SOY	Counting- 01	Coun ⁻
0	SN35433053	Male	2020	5.5	Disability_Non- disable	0	104	104	3	3		49	4	
1	SN71277215	Female	2018	5.8	Disability_Non- disable	0	112	112	2	2		37	2	
2	SN40883127	Male	2021	5.9	Disability_Non- disable	0	120	109	2	2		30	2	
3	SN93063777	Male	2021	5.7	Disability_Non- disable	0	95	93	2	1		30	2	
4	SN84195329	Male	2021	5.8	Disability_Non- disable	0	98	98	1	1		32	2	

5 rows × 34 columns

	StudentID	Gender	Year_02	Kinder_Age	Disability	NCCD- Funded	01.SES	02.SES	NumSibling	SiblingOrder	•••	HRSIW- 01-SOY	Counting 0:
1995	SN72182891	Female	2016	4.9	Disability_Cognitive	0	114	114	2	1		32	
1996	SN69853705	Female	2021	4.6	Disability_Non- disable	0	95	93	1	1		45	2
1997	SN64915269	Male	2016	5.7	Disability_Non- disable	0	101	101	3	2		33	
1998	SN70943748	Female	2021	5.4	Disability_Non- disable	0	117	108	3	1		35	2
1999	SN70826435	Male	2017	5.6	Disability_Cognitive	0	95	95	2	2		19	1
5 rows	× 34 columns												
4)

 $print('No \ of \ tuples: ', dataframe.shape[0],'| \ No \ of \ features: ',dataframe.shape[1])$

No of tuples: 2000 | No of features: 34

dataframe.describe()

	Year_02	Kinder_Age	NCCD- Funded	01.SES	02.SES	NumSibling	SiblingOrder	NumAbvYear9	NumAbvDiploma	NumProf
count	2000.000000	2000.000000	2000.000000	2000.0000	2000.000000	2000.000000	2000.000000	2000.000000	2000.000000	2000.000000
mean	2018.640000	5.276400	0.089000	102.9415	102.117500	2.356500	1.748500	1.564000	0.886500	0.766500
std	1.664568	0.348129	0.284815	9.3859	9.150167	0.993932	0.865229	0.725374	0.837836	0.811977
min	2016.000000	4.500000	0.000000	78.0000	78.000000	1.000000	1.000000	0.000000	0.000000	0.000000
25%	2017.000000	5.000000	0.000000	95.0000	95.000000	2.000000	1.000000	1.000000	0.000000	0.000000
50%	2018.000000	5.300000	0.000000	101.0000	101.000000	2.000000	2.000000	2.000000	1.000000	1.000000
75%	2020.000000	5.500000	0.000000	113.0000	109.000000	3.000000	2.000000	2.000000	2.000000	1.000000
max	2021.000000	6.500000	1.000000	120.0000	120.000000	7.000000	6.000000	3.000000	2.000000	2.000000
8 rows ×	8 rows × 30 columns									
4)

add targat variable as a boolean
dataframe['Year3_Writing_At_Risk'] = dataframe['Year3_Writing_At_Risk'].map({False: 0, True: 1})

dataframe.describe(include=["0"])

rcParams['figure.figsize'] = 10, 10 dataframe[['Year_02', 'Kinder_Age', 'NCCD-Funded', '01.SES', "02.SES", "NumSibling", "SiblingOrder", "NumAbvYear9", "NumAbvDiploma", "NumPrc

rcParams['figure.figsize'] = 10, 10 dataframe[['Burt-01-EOY', 'Clay-01-SOY', 'TextLevel-01-SOY', "TextLevel-01-MOY", "TextLevel-01-EOY", "TextLevel-02-SOY", "TextLevel-01-SOY", "TextLevel-01-EOY", "TextLeve

print(dataframe.dtypes)

_	StudentID	object
	Gender	object
	Year_02	int64
	Kinder Age	float64
	Disability	object
	NCCD-Funded	int64
	01.SES	int64
	02.SES	int64
	NumSibling	int64
	SiblingOrder	int64
	NumAbvYear9	int64
	NumAbvDiploma	int64
	NumProf	int64
	Burt-01-SOY	int64
	Burt-01-EOY	int64
	Clay-01-SOY	int64
	Clay-01-EOY	int64
	TextLevel-01-SOY	int64
	TextLevel-01-MOY	int64

```
TextLevel-01-EOY
                                         int64
     TextLevel-02-SOY
                                         int64
     TextLevel-02-MOY
                                         int64
     TextLevel-02-EOY
                                         int64
     WritingVocab-01-SOY
                                         int64
     HRSIW-01-SOY
                                         int64
     Counting-01
                                         int64
     Counting-02
                                         int64
     Place Value-01
                                         int64
     Place Value-02
                                         int64
     Addition and Subtraction-01
                                         int64
     Addition and Subtraction-02
                                         int64
     Multiplication and Division-01
                                         int64
     Multiplication and Division-02
                                         int64
     Year3_Writing_At_Risk
                                         int64
     dtype: object
numeric_df = dataframe.select_dtypes(exclude=['object'])
# Create correlation matrix plot for numeric features
fig = matplt.figure(figsize=(10, 10))
matplt.matshow(numeric_df.corr(),fignum=fig.number) # Correlation heatmap
matplt.colorbar()
matplt.xticks(np.arange(len(numeric_df.corr().columns)), numeric_df.corr().columns.values, rotation = 50)
matplt.yticks(np.arange(len(numeric_df.corr().columns)), numeric_df.corr().columns.values)
# Show correlation values inside the matrix
for (i, j), corr in np.ndenumerate(numeric_df.corr()):
    matplt.text(j, i, '{:0.1f}'.format(corr), ha='center', va='center', color='white', fontsize=8)
```


Preprocess the data

```
Dropping unnecessary data
```

Drop 'StudentID' column since it's not useful for the model

dataframe.drop(["StudentID"],axis=1,inplace=True)

Boxenplot visualization for selected columns to identify outliers columns = ["Multiplication and Division-01", "Multiplication and Division-02", 'Burt-01-EOY', 'Clay-01-SOY', 'Clay-01-EOY', 'TextLevel-01-SOY'

figure, ax = matplt.subplots(ncols=len(colomns), figsize=(5 * len(colomns),6), sharex = True)

for r in range(len(colomns)):
 (sns.boxenplot(y=dataframe[colomns[r]],data=dataframe, showfliers=True,ax=ax[r])).set(xlabel=colomns[r])

For Encoding Categorical data

dataframe.describe(include=['object'])

₹		Gender	Disability	
	count	2000	2000	ılı
	unique	2	5	
	top	Male	Disability_Non-disable	
	freq	1018	1381	

print(dataframe.dtypes)

\overline{z}	Gender	object
	Year_02	int64
	Kinder_Age	float64
	Disability	object
	NCCD-Funded	int64
	01.SES	int64
	02.SES	int64
	NumSibling	int64
	SiblingOrder	int64
	NumAbvYear9	int64
	NumAbvDiploma	int64
	NumProf	int64
	Burt-01-SOY	int64
	Burt-01-EOY	int64
	Clay-01-SOY	int64
	Clay-01-EOY	int64
	TextLevel-01-SOY	int64
	TextLevel-01-MOY	int64
	TextLevel-01-EOY	int64
	TextLevel-02-SOY	int64
	TextLevel-02-MOY	int64
	TextLevel-02-EOY	int64
	WritingVocab-01-SOY	int64
	HRSIW-01-SOY	int64
	Counting-01	int64
	Counting-02	int64
	Place Value-01	int64
	Place Value-02	int64
	Addition and Subtraction-01	int64
	Addition and Subtraction-02	int64
	Multiplication and Division-01	int64
	Multiplication and Division-02	int64

```
Year3_Writing_At_Risk
                                           int64
     dtype: object
for d in dataframe.select_dtypes(include = 'object'):
    print(dataframe[d].value_counts())
    print("")
→ Gender
     Male
                1018
     Female
                982
     Name: count, dtype: int64
     Disability
     Disability Non-disable
                                     1381
     Disability_Cognitive
                                      469
     Disability_SocialEmotional
                                       73
     Disability_Physical
                                       67
     Disability_Sensory
                                       10
     Name: count, dtype: int64
# Data transformation: replace categorical values for 'Gender'
change_values = {
  'Gender': {
    'Male': 0,
    'Female': 1
  }
}
dataframe.replace(change_values, inplace=True)
dataframe.head()
→
                                                                                                                            HRSIW- Counting- Coun
                                                       NCCD-
         Gender Year_02 Kinder_Age
                                         Disability
                                                              01.SES 02.SES NumSibling SiblingOrder NumAbvYear9 ...
                                                      Funded
                                                                                                                             01-SOY
                                                                                                                                            01
                                       Disability_Non-
                                   5.5
                                                                                        3
      0
              0
                     2020
                                                           0
                                                                 104
                                                                          104
                                                                                                       3
                                                                                                                     2
                                                                                                                                 49
                                                                                                                                             4
                                              disable
                                       Disability_Non-
                     2018
                                   5.8
                                                                                        2
                                                                                                                     2
                                                                                                                                             2
                                                           0
                                                                  112
                                                                          112
                                                                                                       2
                                                                                                                                 37
      1
              1
                                              disable
                                       Disability_Non-
                                   5.9
      2
              0
                     2021
                                                                                        2
                                                                                                       2
                                                                                                                     2
                                                                                                                                             2
                                                           0
                                                                 120
                                                                          109
                                                                                                                                 30
                                              disable
                                       Disability_Non-
      3
              0
                     2021
                                   5.7
                                                                  95
                                                                           93
                                                                                        2
                                                                                                       1
                                                                                                                     0
                                                                                                                                 30
                                                                                                                                             2
                                              disable
                                       Disability_Non-
                     2021
                                                                                                                                             2
              0
                                   5.8
                                                           0
                                                                  98
                                                                           98
                                                                                                       1
                                                                                                                     2
                                                                                                                                 32
                                                                                        1
                                              disable
     5 rows × 33 columns
print(dataframe.dtypes)
\overline{2}
     Gender
                                           int64
     Year_02
                                           int64
                                         float64
     Kinder_Age
     Disability
                                          object
     NCCD-Funded
                                           int64
     01.SES
                                           int64
     02.SES
                                           int64
     NumSibling
                                           int64
     SiblingOrder
                                           int64
     NumAbvYear9
                                           int64
     NumAbvDiploma
                                           int64
     NumProf
                                           int64
     Burt-01-SOY
                                           int64
```

Burt-01-EOY

Clay-01-SOY

Clay-01-EOY

TextLevel-01-SOY

TextLevel-01-MOY

TextLevel-01-EOY

TextLevel-02-SOY

TextLevel-02-MOY

TextLevel-02-EOY

WritingVocab-01-SOY

int64

```
HRSIW-01-SOY
                                           int64
     Counting-01
                                           int64
     Counting-02
                                           int64
     Place Value-01
                                           int64
     Place Value-02
                                           int64
     Addition and Subtraction-01
                                           int64
     Addition and Subtraction-02
                                           int64
     Multiplication and Division-01
                                           int64
     Multiplication and Division-02
                                           int64
     Year3_Writing_At_Risk
                                           int64
     dtype: object
dataframe_copy = dataframe
# One-Hot Encode 'Disability' feature and merge with the original dataframe
disability_transformer = make_column_transformer(
  (OneHotEncoder(), ['Disability']),
 remainder='passthrough',
  verbose_feature_names_out=False
)
dataframe = dataframe_copy
disability_transformed = disability_transformer.fit_transform(dataframe)
dataframe = pd.DataFrame(disability_transformed, columns=disability_transformer.get_feature_names_out())
dataframe.head(20)
₹.
                                             Disability_Disability_Non-
          Disability_Disability_Cognitive
                                                                           Disability_Disability_Physical Disability_Disability_Sensory Disabili
                                                                  disable
      0
                                        0.0
                                                                      1.0
                                                                                                        0.0
                                                                                                                                         0.0
      1
                                        0.0
                                                                       1.0
                                                                                                         0.0
                                                                                                                                         0.0
      2
                                        0.0
                                                                       1.0
                                                                                                         0.0
                                                                                                                                         0.0
      3
                                        0.0
                                                                       1.0
                                                                                                        0.0
                                                                                                                                         0.0
      4
                                        0.0
                                                                       1.0
                                                                                                         0.0
                                                                                                                                         0.0
      5
                                        0.0
                                                                       1.0
                                                                                                        0.0
                                                                                                                                         0.0
      6
                                        0.0
                                                                       1.0
                                                                                                         0.0
                                                                                                                                         0.0
      7
                                        0.0
                                                                       1.0
                                                                                                        0.0
                                                                                                                                         0.0
      8
                                        0.0
                                                                       1.0
                                                                                                        0.0
                                                                                                                                         0.0
      9
                                        0.0
                                                                       1.0
                                                                                                        0.0
                                                                                                                                         0.0
      10
                                        0.0
                                                                       10
                                                                                                        0.0
                                                                                                                                         0.0
                                        0.0
      11
                                                                       1.0
                                                                                                        0.0
                                                                                                                                         0.0
                                        0.0
                                                                                                        0.0
                                                                                                                                         0.0
      12
                                                                       1.0
                                        0.0
                                                                                                        0.0
                                                                                                                                         0.0
      13
                                                                       1.0
                                        0.0
                                                                       1.0
                                                                                                        0.0
                                                                                                                                         0.0
      14
      15
                                        0.0
                                                                      0.0
                                                                                                         1.0
                                                                                                                                         0.0
      16
                                         1.0
                                                                      0.0
                                                                                                        0.0
                                                                                                                                         0.0
      17
                                         1.0
                                                                      0.0
                                                                                                        0.0
                                                                                                                                         0.0
                                                                                                                                         0.0
      18
                                        0.0
                                                                       1.0
                                                                                                        0.0
                                         1.0
                                                                      0.0
                                                                                                         0.0
                                                                                                                                         0.0
     20 rows × 37 columns
    4
dataframe.shape
     (2000, 37)
print(dataframe.dtypes)
Disability_Disability_Cognitive
                                                 float64
     {\tt Disability\_Disability\_Non-disable}
                                                 float64
```

Disability_Disability_Physical

float64

```
Disability_Disability_Sensory
                                          float64
Disability_Disability_SocialEmotional
                                          float64
Gender
                                          float64
Year_02
Kinder_Age
                                          float64
                                          float64
NCCD-Funded
                                          float64
01.SES
                                          float64
02.SES
                                          float64
NumSibling
                                          float64
SiblingOrder
                                          float64
NumAbvYear9
                                          float64
                                          float64
NumAbvDiploma
NumProf
                                          float64
Burt-01-SOY
                                          float64
                                          float64
Burt-01-EOY
Clay-01-SOY
                                          float64
Clay-01-EOY
                                          float64
TextLevel-01-SOY
                                          float64
                                          float64
TextLevel-01-MOY
TextLevel-01-EOY
                                          float64
TextLevel-02-SOY
                                          float64
                                          float64
TextLevel-02-MOY
TextLevel-02-EOY
                                          float64
WritingVocab-01-SOY
                                          float64
HRSIW-01-SOY
                                          float64
Counting-01
                                          float64
Counting-02
                                          float64
Place Value-01
                                          float64
                                          float64
Place Value-02
Addition and Subtraction-01
                                          float64
Addition and Subtraction-02
                                          float64
Multiplication and Division-01
                                          float64
                                          float64
Multiplication and Division-02
Year3_Writing_At_Risk
                                          float64
dtype: object
```

Visualize correlations between features and the target variable 'Year3_Writing_At_Risk'
cor_relation=dataframe.corrwith(dataframe["Year3_Writing_At_Risk"])
cor_relation.plot(kind='bar')
matplt.show()

Model Training

```
# Split features and target for modeling
depent_axis = dataframe["Year3_Writing_At_Risk"]
independent_axis = dataframe.drop(["Year3_Writing_At_Risk"],axis=1)
```

Scaling Dataset from Standardize

```
[-0.55347604, 0.66949677, -0.18617505, ..., 0.64257572, -1.28381903, 0.26241365],
[-0.55347604, 0.66949677, -0.18617505, ..., -1.08826797, 1.10357108, -1.03345623],
...,
[-0.55347604, 0.66949677, -0.18617505, ..., -0.22284613, -1.28381903, 0.26241365],
[-0.55347604, 0.66949677, -0.18617505, ..., 1.50799757, -0.09012398, 0.26241365],
[1.80676294, -1.49365919, -0.18617505, ..., -0.22284613, 1.10357108, 2.85415341]])
```

Split dataset into training and test sets

```
sns.countplot(x='Year3_Writing_At_Risk',data=dataframe)
```

```
<axes: xlabel='Year3_Writing_At_Risk', ylabel='count'>
```



```
dataframe['Year3_Writing_At_Risk'].value_counts()
print("Presentage of people stroking = ")
len(dataframe[dataframe['Year3_Writing_At_Risk'] == 1])/len(dataframe)*100

Presentage of people stroking = 33.3000000000000004

# Balance the target classes using SMOTE (Synthetic Minority Over-sampling)
independent_axis, depent_axis = SMOTE().fit_resample(independent_axis, depent_axis)
sns.countplot(x=depent_axis, data=dataframe)
```


Split dataset into training and test sets

```
# Split data into training and testing sets
x_train,x_test,y_train,y_test = train_test_split(independent_axis,depent_axis,test_size=0.2,random_state=42)
```

RandomForest Classifier

```
y_pred = best_model.predict(x_test)
r_accuracy = best_model.score(x_test, y_test)
cm = confusion_matrix(y_test, y_pred)
print('Presentage of Random Forest Classifier scores')
print(f'Random Forest Classifier Model accuracy\t: {r_accuracy}')
print(f'Presentage\t: {"{:.1%}".format(r_accuracy)}')
print(classification_report(y_test, y_pred))
print('Confusion Matrix:')
cmd = ConfusionMatrixDisplay(confusion_matrix=cm)
fig, ax = matplt.subplots(figsize=(3, 3))
cmd.plot(ax=ax)
matplt.show()
→ Presentage of Random Forest Classifier scores
     Random Forest Classifier Model accuracy : 0.8202247191011236
                     : 82.0%
                                recall f1-score
                   precision
                                                    support
              0.0
                        0.82
                                   0.84
                                             0.83
                                                        279
                        0.82
                                             0.81
                                                        255
         accuracy
                                             0.82
                                                        534
        macro avg
                        0.82
                                   0.82
                                             0.82
                                                        534
                        0.82
                                  0.82
                                             0.82
                                                        534
     weighted avg
     Confusion Matrix:
                                         225
                                         200
                233
                             46
                                         175
      True label
                                         150
```

Save Random ForestClassifier best model

205

1

1

0

Predicted label

```
# Save the model as a pickle file
import pickle
model_filename = '/content/drive/My Drive/Colab Notebooks/Exam/random_forest_model.pkl'
with open(model_filename, 'wb') as file:
   pickle.dump(best_model, file)
print(f'Model saved as {model_filename}')
Model saved as /content/drive/My Drive/Colab Notebooks/Exam/random_forest_model.pkl
```

125

100

50

Support Vector Classifier

```
model = SVC()
model.fit(x_train, y_train)
y_pred = model.predict(x_test)
s_accuracy = model.score(x_test, y_test)
y_pred = model.predict(x_test)
cm = confusion_matrix(y_test, y_pred)
```

```
print('Presentage of Support vector Classifier scores')
print(f' Support vector Classifier Model accuracy\t: {s_accuracy}')
print(f'Presentage\t: {"{:.1%}".format(s_accuracy)}')
print(classification_report(y_test, y_pred))
print('Confusion Matrix - ')
cmd = ConfusionMatrixDisplay(confusion_matrix=cm);
figure, ax = matplt.subplots(figsize=(3,3))
cmd.plot(ax=ax)
→ Presentage of Support vector Classifier scores
     Support vector Classifier Model accuracy
                                                     : 0.7471910112359551
     Presentage
                    : 74.7%
                   precision
                                recall f1-score support
              0.0
                        0.76
                                  0.75
                                            0.76
                                                       279
              1.0
                        0.73
                                  0.75
                                            0.74
                                                       255
                                            0.75
                                                       534
        accuracy
                        0.75
                                  0.75
                                                       534
                                            0.75
        macro avg
     weighted avg
                        0.75
                                  0.75
                                            0.75
                                                       534
     Confusion Matrix -
     <sklearn.metrics._plot.confusion_matrix.ConfusionMatrixDisplay at 0x78629f1a3e80>
```


Decision Tree Classifier

```
model = DecisionTreeClassifier()
model.fit(x_train, y_train)
y_pred = model.predict(x_test)
d_accuracy = model.score(x_test, y_test)
cm = confusion_matrix(y_test, y_pred)
print('Decision Tree scores')
print(f'Decision Tree Model accuracy\t: {d_accuracy}')
print(f'Presentage\t: {"{:.1%}".format(d_accuracy)}')
print(classification_report(y_test, y_pred))
print('Confusion Matrix - ')
print(confusion_matrix(y_test, y_pred))
print('Confusion Matrix - ')
cmd = ConfusionMatrixDisplay(confusion_matrix=cm);
figure, ax = matplt.subplots(figsize=(3,3))
cmd.plot(ax=ax)
```

```
→ Decision Tree scores
    Decision Tree Model accuracy
                                    : 0.7265917602996255
                    : 72.7%
    Presentage
                  precision
                               recall f1-score
                                                  support
                       0.75
                                 0.72
                                           0.73
                                                      279
             0.0
             1.0
                       0.70
                                 0.74
                                           0.72
                                                      255
                                           0.73
                                                      534
        accuracy
                       0.73
                                 0.73
                                           0.73
                                                      534
       macro avg
    weighted avg
                       0.73
                                 0.73
                                           0.73
                                                      534
    Confusion Matrix -
    [[200 79]
     [ 67 188]]
    Confusion Matrix -
    <sklearn.metrics._plot.confusion_matrix.ConfusionMatrixDisplay at 0x78629f2ea620>
```


Logistic Regression

```
model = LogisticRegression()
model.fit(x_train, y_train)
y_pred = model.predict(x_test)

l_accuracy = model.score(x_test, y_test)

cm = confusion_matrix(y_test, y_pred)

print('Logistic Regression scores')
print(f'Logistic Regression Model accuracy\t: {l_accuracy}')
print(f'Percentage\t: {"{:.1%}".format(l_accuracy)}')
print(classification_report(y_test, y_pred))

print('Confusion Matrix - ')
print(confusion_matrix(y_test, y_pred))

print('Confusion Matrix - ')
cmd = ConfusionMatrixDisplay(confusion_matrix=cm);
figure, ax = matplt.subplots(figsize=(3,3))
cmd.plot(ax=ax)
```

```
→ Logistic Regression scores

    Logistic Regression Model accuracy
                                           : 0.6928838951310862
    Percentage
                   : 69.3%
                  precision
                              recall f1-score support
                       0.71
                                0.71
                                          0.71
                                                     279
             0.0
             1.0
                       0.68
                                0.68
                                          0.68
                                                     255
                                          0.69
                                                     534
        accuracy
                       0.69
                                0.69
                                          0.69
                                                     534
       macro avg
    weighted avg
                       0.69
                                0.69
                                          0.69
                                                     534
    Confusion Matrix -
    [[197 82]
     [ 82 173]]
    Confusion Matrix -
```

Visualize model accuracies

```
import pandas as pd
import matplotlib.pyplot as plt
model_accuracies = {
    'Random Forest': r_accuracy,
    'Support Vector Classifier': s_accuracy,
    'Decision Tree': d_accuracy,
    'Logistic Regression': l_accuracy
df = pd.DataFrame(list(model_accuracies.items()), columns=['Model', 'Accuracy'])
plt.figure(figsize=(10, 6))
plt.bar(df['Model'], df['Accuracy'], color=['skyblue', 'orange', 'green', 'red'])
plt.title('Model Accuracy Comparison', fontsize=16)
plt.xlabel('Model', fontsize=14)
plt.ylabel('Accuracy', fontsize=14)
for index, value in enumerate(df['Accuracy']):
    plt.text(index, value + 0.005, "{:.1%}".format(value), ha='center', fontsize=12)
plt.show()
```