НЯКОИ ПО-ВАЖНИ ДИСКРЕТНИ И НЕПРЕКЪСНАТИРАЗПРЕДЕЛЕНИЯ

§11. Биномно разпределение, разпределение на Поасон и геометрично разпределение.

Предстои да разгледаме някои разпределения на дискретни случайни величини, които се срещат често в практиката.

Ще припомним развитието на нютоновия бином

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k = a^n + \binom{n}{1} a^{n-1} b + \binom{n}{2} a^{n-2} b^2 + \dots + \binom{n}{k} a^{n-k} b^k + \dots + b^n,$$

коефициентите на който ще означаваме също и с C_n^k (виж §4) и са равни на

$$C_n^k = \binom{n}{k} = \frac{n(n-1)(n-2)\dots(n-k+1)}{k!}, \ k = 0,1,\dots,n, \ C_n^0 = \binom{n}{0} = 1, \ C_n^n = \binom{n}{n} = 1$$

Например

$$C_n^1 = n$$
, $C_n^2 = \frac{n(n-1)}{2}$, $C_n^3 = \frac{n(n-1)(n-2)}{1.2.3}$, $C_{14}^5 = \begin{pmatrix} 14\\5 \end{pmatrix} = \frac{14.13.12.11.10}{1.2.3.4.5} = 2002$.

Ще разглеждаме <u>последователност от взаимно независими опити,</u> т.е. такива опити, за които вероятността за настъпване на какъвто и да е резултат във всеки от тях не зависи от това какви резултати са настъпили в останалите опити. Независимите опити могат да се провеждат в еднакви или в различни условия. В първия случай вероятността за появяване на някакво събитие е една и съща, а във втория се мени от опит в опит.

Нека опитите се извършват при еднакви условия и във всеки от опитите наблюдаваме появата на някакво събитие A. Очевидно, вероятностите P(A) = p за поява (успешен опит) и $P(\overline{A}) = 1 - p = q$ за непоява (неуспешен опит) на събитието A не се променят.

Изложената схема на повторения на опитите, при която във всеки опит вероятността P(A) = p за сбъдване на събитието A е постоянна, се нарича схема на Бернули.

Формула на Бернули. Ако вероятността p за сбъдване на събитието A във всеки от n независими опита е постоянна, то вероятността за това, че в n опита събитието A ще настъпи k пъти е

$$C_n^k p^k q^{n-k}, k=0,1,...,n,$$

където q=1-p е вероятността на събитието \overline{A} .

Доказателство. Да означим с 1,2,...,n номерата на опитите. Ако събитието A е настъпило точно в k опита, то техните номера образуват една ненаредена k-торка (комбинация без повторения (§4)). Например основната комбинация (1,2...k) означава, че събитието A е настъпило в

първите k опита, а в останалите n-k опита - не е настъпило. Следователно, броят на различните случаи, в които A настъпва k пъти е C_n^k , като вероятността за всеки един от тези случаи е $p^k(1-p)^{n-k}=p^kq^{n-k}$ (опитите са независими), т.е.

$$P = \underbrace{p^{k} q^{n-k} + p^{k} q^{n-k} + \ldots + p^{k} q^{n-k}}_{C_{n}^{k} n \triangleright m u} = C_{n}^{k} p^{k} q^{n-k} . \bullet$$

Биномно разпределение.

Законът на разпределение на вероятностите на величина ξ , която приема възможни стойности $k=0,1,\ldots,n$ с вероятности

$$P(\xi=k) = P_{\xi}(k) = C_n^k p^k q^{n-k}, \quad (q=1-p)$$
(11.1)

се нарича <u>биномен с параметри n и p</u> (бележи се също $\xi \sim B(n,p)$).

Математическото очакване и дисперсията на биномно разпределена величина ξ са

$$E\xi = np , D\xi = npq . \tag{11.2}$$

Различните величини с биномно разпределение могат да бъдат разнообразни по смисъл, но може да бъдат обединени в случаите:

- ξ брой на поява на A в n опита, ако вероятността P(A) = p остава една и съща във всеки опит. Например, брой на попаденията в мишена от 25 опита, брой на успешните опити при състезание и т.н.
- ξ брой на обектите, притежаващи дадено свойство, ако обектите са краен брой и вероятността който и да е обект да притежава свойството е p. Например, брой на нестандартните изделия в дадена партида като вероятността за нестандартно изделие е p.

Получените в пример **7.3** разпределения са биномни с параметри p=0,1, n=2 и p=0,2, n=2.

Доказва се, че modama $M_o=k_0$ на величината ξ , (възможната стойност, за която вероятността $P_n(k)$ е най-голяма) се определя като цяло число, удовлетворяващо неравенството

$$np+p-1 \le k_0 \le np+p$$
 (11.3)

Формулите (11.2) за математическото очакване и дисперсията на величината ξ (брой на поява на A в n опита) ще получим като представим величината по друг начин. Нека ξ_i е индикатор (пример **7.1**) на събитието A за i-тия опит. Законът на разпределение на ξ_i е

$$\frac{\xi_i \mid 0 \mid 1}{P \mid q \mid p}$$
, $E\xi_i = p$, $D\xi_i = q(0-p)^2 + p(1-p)^2 = qp(q+p) = qp$.

Тъй като ξ_i приема единица, когато събитието A настъпи, то броят на поява на A в n опита е $\xi=\xi_1+\xi_2+\ldots+\xi_n$.

Тогава, съгласно свойствата на математическото очакване и дисперсията имаме

$$E\xi = E\xi_1 + E\xi_2 + \dots + E\xi_n = np,$$

$$D\xi = D\xi_1 + D\xi_2 + \dots + D\xi_n = npq. \blacklozenge$$

Пример 11.1. Стреля се 14 пъти по обект, вероятността за попадение в който при единичен изстрел е 0,2. Да се изчисли: а) най-вероятният брой попадения и неговата вероятност; б) вероятността за унищожаване на обекта, ако за това са необходими не по-малко от 4 попадения.

Решение. Да означим с ξ броя на попаденията. Тази величина има биномно разпределение с параметри p=0,2 и n=14, (т.е. $\xi \sim B(14;0,2)$), следователно, $P(\xi=k)=P_{\mathcal{F}}(k)=C_{14}^{\ \ \ }0,2^k0,8^{14-k},\ k=0,1,\dots,14$.

а) По формула (11.3) изчисляваме най-вероятния брой:

$$\begin{array}{c} 14.0,\!2-0,\!8\!\leq\!k_0\!\leq\!14.0,\!2+0,\!2\implies2\!\leq\!k_0\!\leq\!3\text{ , т.е. }\xi\!=\!2\text{ или }\xi\!=\!3\text{ , за които}\\ P_{\xi}(2)\!=\!C_{14}^20,\!2^20,\!8^{12}\!\approx\!0,\!25\text{ , }P_{\xi}(3)\!=\!C_{14}^30,\!2^k0,\!8^{11}\!\approx\!0,\!25\text{ .} \end{array}$$

6)
$$P(\xi \ge 4) = 1 - P(\xi < 4) = 1 - P_{\xi}(0) - P_{\xi}(1) - P_{\xi}(2) - P_{\xi}(3) \approx 0.302$$
.

Забележка 11.1. Очевидно, ако събитието A се появява k пъти в серия от n опита, то събитието \overline{A} се появава n-k пъти, т.е. за биномно разпределените величини $\xi \sim B(n,p)$ - брой на поява на A и $\overline{\xi} \sim B(n,q)$ - брой на поява на \overline{A} е изпълнено $P(\xi = k) = P(\overline{\xi} = n-k) = C_n^k \, p^k \, q^{n-k}$.

Разпределение на Поасон. При големи стойности на n и малки стойности на p коефициентът C_n^k става много голям, а произведението p^kq^{n-k} - много малко, с което грешките от изчисленията нарастват. Но ако от $E\xi=np$ изразим $p=E\xi/n$, то (прегрупираме множителите)

$$\begin{split} P_{\xi}(k) = &\binom{n}{k} p^k \, q^{n-k} = \frac{n.(n-1)...[n-(k-1)]}{k!} \bigg(\frac{E\xi}{n} \bigg)^k \bigg(1 - \frac{E\xi}{n} \bigg)^{n-k} = \\ &= \frac{(E\xi)^k}{k!} \frac{n}{n} \bigg(1 - \frac{1}{n} \bigg) ... \bigg(1 - \frac{k-1}{n} \bigg) \bigg(1 - \frac{E\xi}{n} \bigg)^n \bigg(1 - \frac{E\xi}{n} \bigg)^{-k} < \\ &< \frac{(E\xi)^k}{k!} \bigg(1 - \frac{E\xi}{n} \bigg)^n \to \frac{(E\xi)^k}{k!} \, e^{-E\xi} \, \text{ при } n \to \infty. \end{split}$$

Следователно, $P_{\xi}(k) = C_n^k p^k q^{n-k} \approx \frac{\lambda^k}{k!} e^{-\lambda}$, където $\lambda = E \xi = np$. (11.4)

По този начин получаваме нова формула за пресмятане на вероятностите, която зависи от един параметър, равен на математическото очакване на величината. С това величината с разпределение B(n,p) при голямо n и малко p се доближава до друго разпределение, което се нарича разпределение на Поасон.

Казваме, че дискретната случайна величина ξ е разпределена по закона на Поасон с параметър $\lambda>0$ ($\xi\sim Po(\lambda)$), когато приема изброимо много стойности $0,1,2,\ldots,n,\ldots$ и

$$P(\xi=k) = p_{\xi}(k) = \frac{\lambda^k}{k!} e^{-\lambda}, \ k=0,1,...,n,...$$
 (11.5)

Ще проверим, че и тук $\sum_{k=0}^{\infty} P(\xi = k) = 1$. Действително,

$$\sum_{k=0}^{\infty} P(\xi=k) = e^{-\lambda} \sum_{k=0}^{\infty} \frac{\lambda^k}{k!} = e^{-\lambda} e^{\lambda} = 1 \text{, тъй като } \sum_{k=0}^{\infty} \frac{\lambda^k}{k!} \text{ е развитието на } e^{\lambda} \text{ в ред.}$$

Математическото очакване и дисперсията на величина ξ със разпределение по закона (11.5) са $E\xi=\lambda,\quad D\xi=\lambda$.

Законът на Поасон се нарича също закон на редките явления, защото случайна величина, която се състои в поява на събитие A в n опита при големи стойности на параметъра n и малки стойности на P(A) = p << 1, съгласно формула (11.4), се счита за разпределена по закона на Поасон с параметър $\lambda = np$ (математическото очакване на съответната биномна величина).

Друг, много често срещан случай на поасоново разпределение е така нареченият <u>прост (поасонов) поток от събития</u> – последователност от събития, които настъпват в случаен момент на интервала t от времето и която има свойствата:

- <u>стационарност</u> вероятността P(k) за настъпването на k събития за време t да зависи само от k и дължината t на интервала от времето;
- <u>отсъствие на последствие</u> P(k) не зависи от това колко събития са настъпили преди началото на разглеждания интервал от време;
- <u>ординарност</u> появяване на две и повече събития за малък интервал от време е практически невъзможно.

Средният брой a на събития, които настъпват за единица време, се нарича uнтензивност на потока.

При изпълнение на тези условия, величината ξ - брой на събитията, настъпили за интервал от време с дължина t, има разпределение на вероятностите (11.5), където $\lambda = at$ е средният брой събития, настъпващи за време t. Такива величини са, например, броят на обаждания по телефона, брой на колите, минаващи за време t на дадено кръстовище и др.

Пример 11.2. Вероятността за попадение в целта при всеки изстрел е равна на 0,001. Да се намери вероятността от 1000 изстрела да има не по-малко от 2 попадения в целта (събитие A).

Решение. Ще приложим формулата на Поасон, за което изчисляваме np=1000.0,001=1 , $e^{-\lambda}=e^{-1}=0,3679$, т.е. $P_{1000}(k)\approx\frac{0,3679}{k!}$, $k=0,1,2,\dots$ Тогава $P(\xi\ge 2)=1-P(\xi<2)=1-P(\xi=0)-P(\xi=1)=0,2641$.

Пример 11.3. Средният брой поръчки за такси, постъпващи в диспечерски пункт за 1 минута, е равен на 3. Да се намери вероятността, че за 2 минути ще постъпят: а) 4 ; б) по-малко от 4; в) поне една поръчка. ($e^{-6} = 0,0025$). Отг. а) 0,1339;б) 0,1522; в) 0,9975.

Накрая ще отбележим и други разпределения на дискретни случайни величини, някои от които вече разгледахме в примери.

Геометрично разпределение.

 $\begin{array}{lll} \hline \textit{Геометрично разпределение} & \textit{с параметър} & 0$

Такава е величината ξ - брой на проведените опити до поява на събитието A, вероятността на което във всеки опит е P(A)=p, разгледана в пример **7.2.**

Геометричното разпределение играе важна роля в теорията на масовото обслужване.

Например, група от хора чакат пред дадено гише. Често се приема, че вероятността да пристигне още един човек за единица време е p, а да не пристигне е q=1–p. Тогава, времето T на пристигане на следващия клиент е величина с геометрично разпределение като събитието T=k означава, че следващият клиент е пристигнал след k минути.

Хипергеометрично разпределение. (виж пример 4.2.)

 $\frac{\textit{Хипергеометрично}}{\textit{числа}} \stackrel{\textit{разпределение}}{\textit{параметри}} \stackrel{\textit{C}}{\textit{параметри}} \stackrel{\textit{параметри}}{\textit{натуралните}} + \textit{патуралните}$ $i=0,1,2,...,\min(M,n) \;,\; \textit{за която} \;\; P(\xi=i) = \frac{C_M^i C_{N-M}^{n-i}}{C_N^n} \;.$ $\textit{Тук } E\xi = np \;,\;\; D\xi = \frac{N-n}{N-1} np(1-p) \;,\;\; \textit{където} \;\; p = \frac{M}{N} \;.$

Типичен пример за величина с хипергеометрично разпределение е броят на познатите числа при игрите на спорт-тото "5 от 35" или "6 от 49". Например, ако означим с ξ броят на познатите числа от играта "6 от 49", то $N\!=\!49$ - общ брой на числата, $M\!=\!6$ - брой на печелившите числа, $n\!=\!6$ - брой на попълнените числа във фиша. Тогава възможните

стойности на ξ са i = 0,1,...,6 с вероятности $P(\xi = i) = \frac{C_6^i C_{43}^{6-i}}{C_{49}^6}$ (виж също пример **4.3**)

Упражнения.

- 1. Вероятността за попадение в целта при един изстрел е p (събитие A). Да се намери законът за разпределение величината ξ брой на попаденията в 4 опита.
- 2. Какво е по-вероятно за един от двама равносилни шахматисти да спечели : a) 3 от 4 или 5 от 8 партии; б) не по-малко от 3 от 4 партии или не по-малко 5 от 8 партии.
- 3. Хвърлени са 6 правилни зарчета. Каква е вероятността за падането на: a) поне една; б) точно една; в) точно две единици.
- 4. При предаването на съобщение вероятността за изкривяване на всеки знак е 0,1. Каква е вероятността съобщение от а) 5 знака; б) 300 знака да бъде прието правилно.
- 5. Транспортират се 500 изделия като вероятността за повреда на изделие по пътя е 0,002. Да се намери вероятността, че са повредни: а) 3 изделия; б) помалко от 3; в) повече от три; г.) поне едно изделие.
- 6. Дадена е случайната величина $\xi \sim B(8,1/3)$. Да се намерят $P(\xi \leq 2) P(\xi \geq 2)$.
- 7. Потокът от заявките, постъпващи в телефонна централа, е прост поасонов поток с интензитет 30 обаждания на 1 час. Да се намери вероятността, че за 1 минута ще постъпят не по-малко от 2 заявки.
- 8. Зарче се хвърля 5 пъти. Да се намери вероятността на събитията: а) нито веднъж не се пада шестица; б) поне веднъж се пада шестица; в) шестица се пада поне 4 пъти.
- 9. Вероятността за печалба от един лотариен билет е 0,01. Да се определи колко билета трябва да се закупят, че с вероятност не по-малка от 0,95, да има поне един печеливш билет.
- 10. В една кутия има 6 бели и 4 черни топки. а) От кутията се изтеглят 3 топки по схемата без връщане. Намерете вероятностите на събитията А={три от топките са бели}, В={поне една от тях е бяла}. б) От кутията се изтеглят 3 топки по схемата с връщане. За случайната величина ξ брой на изтеглените бели топки да се намерят законът на разпределението, $E\xi$, $D\xi$ и $\sigma\xi$.
- 11. За биномно разпределена величина е известно, че $E\xi$ = 3,75 , $\sigma\xi$ = 0,25 $\sqrt{15}$. Да се намери плътността на вероятностите и начертае графиката й. Да се намери $P(2 \le \xi < 4)$.
- 12. Даден е законът на разпределение на дискретната величина ξ : $\frac{\xi}{P} \begin{vmatrix} -1 & 0 & 2 & 4 & 5 \\ p & 0,3 & p & 0,2 & 0,3 \end{vmatrix}$. Да се намерят: а) p; б) $E\xi$, $D\xi$ и $\sigma\xi$, в) $P(0 \le \xi < 3)$.
- 13. В една кутия има 6 бели и 4 черни топки. От кутията се изтегля една топка. Ако изтеглената топка е бяла, то тя се връща в кутията, ако е черна се отстранява.
- а) Да се съставят законите на величините ξ_i брой на тегленията до поява на iтата черна топка и да се намерят математическите им очаквания (i =1,2,3,4).
- б) Да се намери математическото очакване на $\xi = \xi_1 + \xi_2 + \xi_3 + \xi_4$. Да се опише какъв е смисълът на величината ξ и нейното математическо очакване.
- 14. Урна съдържа 3 червени и 7 черни топки. Ако се изтегли червена топка, тя се отстранява, а ако се изтегли черна се връща. Средно колко пъти трябва да се

теглят топки, докато се изтеглят и трите червени топки?
15. Известно е, че вероятността за повреда на поне един елемент в устойство,

15. Известно е, че вероятността за повреда на поне един елемент в устоиство, състоящо се от 10 еднотипни елементи е 0,2. Да се намери вероятността за повреда на един елемент.

§12. Равномерно и показателно разпределение. Сума на две и повече случайни величини.

Ще разгледаме случайна величина ξ с плътност (виж пример **10.1**)

$$p_{\xi}(x) = egin{cases} rac{1}{b-a}, & x \in [a,b] \\ 0, & x
otin [a,b] \end{cases}$$
 - равномерно разпределение в интервала $[a,b]$,

$$E\xi = \frac{a+b}{2}$$
, $D\xi = \frac{(b-a)^2}{12}$.

Равномерно разпределение имат величини, за които нямаме основание да смятаме, че приемат някои възможни стойности по-често от други.

Пример 12.1. На кръстовище е монтиран светофар, който свети 1 мин. зелено и 0,5 мин. червено. Автомобил се приближава към кръстовището в случаен момент, който не е свързан с работата на светофара. Да се намери вероятността, че автомобилът ще пресече кръстовището без да спира (събитие A).

Решение. Моментът ξ на пристигане на автомобилът е случайна величина, равномерно разпределена в интервала (0;1,5], равен на периода на смяна на светлината на светофара (фиг. 12.1).

2. <u>Показателно (експоненциално разпределение)</u> – величина ξ с плътност

$$p_{\xi}(x) = \begin{cases} \lambda e^{-\lambda x}, & x \ge 0 \\ 0 & x < 0 \end{cases} \quad \text{if } E\xi = \frac{1}{\lambda} \text{ if } D\xi = \frac{1}{\lambda^2}.$$
 (12.2)

Показателно разпределение имат случайните величини:

- продължителност на работа на части от оборудване,
- време на разпад на радиоактивен атом.
- продължителност на телефонен разговор,

най-общо казано, времето до настъпване на някакво събитие.

Пример 12.2. (Връзка между разпределението на Поасон и показателното разпределение). Да разгледаме прост поасонов поток от събития с интензивност λ (например пристигане на пътници на автобусна спирка) и величината T - времето от момента на наблюдение до първото настъпване на събитие (например времето от заминаването на поредния автобус до пристигането на първия пътник на спирката). Да се докаже, че величината T има показателно разпределение с параметър λ .

Решение. Интензивността λ на потока е равна на средния брой на настъпващи събития за единица време. Следователно, вероятността за време t да настъпят k събития (да пристигнат k пътника) е $P(k,t) = \frac{(\lambda t)^k e^{-\lambda t}}{k!}$ (Поасон) .

Ще намерим функцията на разпределение $F_T(t) = P(T \le t)$. За целта трябва да определим вероятността $P(T \le t)$ за всяко t.

Ако t < 0, то, очевидно, $F_T(t) = 0$.

Ако $t \ge 0$, то имаме $P(T \le t) = 1 - P(T > t)$. Събитието P(T > t) означава, че за време t не е настъпило нито едно събитие, т.е. $P(T > t) = P(0,t) = e^{-\lambda t}$, следователно $F_T(t) = 1 - e^{-\lambda t}$.

От тук,
$$p_T(t) = F_T'(t) = \lambda e^{-\lambda t}$$
, $t \ge 0$ и е $p_T(t) = 0$ при $t < 0$.

Пример 12.3. Изследвайки броя на падналите метеорити в Сахара, е установено, че средно на 10 дни някъде в Сахара пада малък метеорит. Каква е вероятността, че метероит ще падне в първия ден от наблюдението между 6 и 18 часа.

Решение. Случайната величина T — времето от започването на наблюдението до първото падане на метеорит има показателно разпределение, за което $ET=\frac{1}{\lambda}{=}10 \Rightarrow \lambda{=}0{,}1 \Rightarrow p_T(t){=}0{,}1e^{-0{,}1t}\,, \ t{>}0\,,$ $F_T(t){=}1{-}e^{-0{,}1t}\,.$ Тогава

$$P(6uaca < T < 18uaca) = P\left(\frac{1}{4} < T < \frac{3}{4}\right) = F_T\left(\frac{3}{4}\right) - F_T\left(\frac{1}{4}\right) = 0,0479.$$

Сума на две и повече независими непрекъснати случайни величини. Да разгледаме сумата $\zeta=\xi+\eta$ на две случайни величини. Величината ζ приема възможна стойност $\zeta=z$, ако сумата от приетите стойности от величините ξ и η е равна на z. В такъв случай, ако величината ξ е приела стойност $\xi=u$, то величината η трябва да приеме стойността $\eta=z-u$. Така се получава, че плътността на величина ζ е

$$p_{\zeta}(z) = \int_{-\infty}^{\infty} p_{\xi}(u) p_{\eta}(z - u) du ,$$

където $p_{\xi}(x)$ и $p_{\eta}(x)$ са плътностите на величините ξ и η (функцията

 $p_{\mathcal{E}}(x)$ се нарича <u>конволюция на функциите</u> $p_{\mathcal{E}}(x)$ и $p_{\eta}(x)$).

Както вече знаем, ако случайните величини ξ и η са независими, за математическото очакване и дисперсията на величината $\zeta=\xi+\eta$ имаме

$$E\zeta = E\xi + E\eta$$
, $D\zeta = D\xi + D\eta$.

Пример 12.4. Като използуваме тези резултати, ще намерим плътностите на величините, които са сума на две, три и повече независими величини, имащи показателно разпределение с един и същ параметър λ .

Решение. Нека величините $\xi_1, \xi_2, \dots \xi_n, \dots$ имат плътност на разпределение (12.2).

1) За плътността на $\zeta_2 = \xi_1 + \xi_2$ имаме $p_{\zeta_2}(z) = \int\limits_{-\infty}^{\infty} p_{\xi_1}(u) p_{\xi_2}(z-u) du$, където z е произволно. Подинтегралната функция е различна от нула, ако u е решение на системата неравенства $\begin{vmatrix} u \geq 0 \\ z-u \geq 0 \end{vmatrix}$, т.е. $0 \leq u \leq z$, затова

$$\begin{split} p_{\zeta_2}(z) &= \int\limits_{-\infty}^{\infty} p_{\xi_1}(u) p_{\xi_2}(z-u) du = \int\limits_{0}^{z} \lambda e^{-\lambda u} . \lambda e^{-\lambda(z-u)} du = \lambda^2 e^{-\lambda z} \int\limits_{0}^{z} du = \lambda^2 e^{-\lambda z} z \ . \end{split}$$
 Следователно,
$$p_{\zeta_2}(z) = \begin{cases} \lambda^2 z e^{-\lambda z} & z \geq 0 \\ 0 & z < 0 \end{cases}.$$

2) За плътността на $\zeta_3 = \xi_1 + \xi_2 + \xi_3 = \zeta_2 + \xi_3$ по аналогичен начин получаваме

$$p_{\zeta_2}(z) = \int\limits_{-\infty}^{\infty} p_{\zeta_2}(u) \, p_{\xi_3}(z-u) du = \int\limits_{0}^{z} \lambda^2 e^{-\lambda u} \, . \lambda e^{-\lambda(z-u)} u du = \frac{\lambda^3 z^2}{2!} e^{-\lambda z} \; \; \text{sa} \; \; z \ge 0 \; .$$

По индукция може да се докаже, че величината $\zeta_n = \xi_1 + \xi_2 + \ldots + \xi_n$ има плътност на разпределение (сменяме z с x)

$$p_{\zeta_n}(x) = \begin{cases} \frac{\lambda^n x^{n-1}}{(n-1)!} e^{-\lambda x} & x \ge 0 \\ 0 & x < 0 \end{cases}, \quad E\zeta_n = \frac{n}{\lambda}, \quad D\zeta_n = \frac{n}{\lambda^2},$$

Графиките на плътностите на разпределение при $\lambda = 2$ и n = 3,...,7 са дадени на фиг 12.2

§13. Нормален закон на разпределение.

Ще разгледаме една величина, която има изключително значение както за теорията на вероятностите, така и за статистиката.

За величината ξ с плътност на разпределение

$$p_{\xi}(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-a)^2}{2\sigma^2}}$$
 (13.1)

се казва, че е подчинена на <u>нормален закон (закон на Гаус)</u> с параметри a и σ . Параметрите a и σ съвпадат с основните числени характеристики

$$a = E\xi$$
, $\sigma = \sigma\xi = \sqrt{D\xi}$
 $a_{\xi} = 0$, $e_{\xi} = 0$

За краткост казваме, че величината с плътност (13.1) има $N(a,\sigma)$ - разпределение ($\xi \sim N(a,\sigma)$). От графиката на $p_{\xi}(x)$, дадена на фиг. 13.1, се вижда, че максимумът й съвпада с математическото очакване, а кривата е толкова по-стръмна, колкото по малко е средно квадратичното отклонение. Абсциси на инфлексните точки на функцията са числата $a-\sigma$ и $a+\sigma$.

Величината със закон на разпределение N(0,1), се нарича <u>стандартна нормална величина</u> и обикновено се означава с Z. Графиката на <u>плътността</u>

$$\varphi(x) = p_Z(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$$

на стандартната нормална величина е дадена на фиг. 13.2. Лицето на защрихованата област е равно на стойността на функцията на разпределение

$$F(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{t^2}{2}} dt$$
, $F(-x) = 1 - F(x)$.

Стойностите на функцията F(x) за $x \ge 0$ се вземат от таблица (стр.168). От свойствата на функцията на разпределение следват равенствата:

$$P(Z < \beta) = F(\beta)$$
, $P(Z > \alpha) = 1 - F(\alpha)$,
 $P(\alpha < Z < \beta) = F(\beta) - F(\alpha)$

Например, P(Z<1,46)=F(1,46)=0,9279;

$$P(Z \ge 2,21) = 1 - F(2,21) = 1 - 0,9864 = 0,0136$$
;
 $P(Z < -0,3) = F(-0,3) = 1 - F(0,3) = 1 - 0,6179 = 0,3821$;
 $P(0 < Z < 1) = F(1) - F(0) = 0.8413 - 0.5 = 0.3413$.

За нормално разпределената величина $\xi \sim N(a,\sigma)$ е в сила формулата:

$$P(\alpha < \xi < \beta) = F\left(\frac{\beta - a}{\sigma}\right) - F\left(\frac{\alpha - a}{\sigma}\right)$$
(13.2)

приложение на която са частните случаи:

$$P(\xi < \beta) = F\left(\frac{\beta - a}{\sigma}\right), \quad P(\alpha < \xi) = 1 - F\left(\frac{\alpha - a}{\sigma}\right)$$

$$P(|\xi - a| < \delta) = 2F\left(\frac{\delta}{\sigma}\right) - 1 \tag{13.3}$$

Последната формула дава вероятността величината ξ да се отклони от математическото си очакване не повече от δ . Например,

$$P(|\xi - a| < 2\sigma) = 2F\left(\frac{2\sigma}{\sigma}\right) - 1 = 2.F(2) - 1 = 0.9544$$
.
 $P(|\xi - a| < 3\sigma) = 2F\left(\frac{3\sigma}{\sigma}\right) - 1 = 2.F(3) - 1 = 0.9973$.

Тъй като 0,9973 е близко до 1, то в сила е така наричаното

<u>Правило на трите сигми</u>: за нормално разпределена величина е изпълнено приближеното равенство

$$P(|\xi-a|<3\sigma)\approx1$$
,

т.е. неравенството $|\xi - a| < 3\sigma$ е практически достоверно.

Забележка 13.2. В някои справочници е дадена таблица за

$$\Phi(z) = \frac{1}{\sqrt{2\pi}} \int\limits_0^z e^{-\frac{x^2}{2}} dx \;, \quad \Phi(-z) = \Phi(z)$$

За x > 0 между двете функции имаме връзката

$$F(x) = 0.5 + \Phi(x)$$

Функцията на Лаплас се използува по същия начин - за величина със закон на разпределение $N(a,\sigma)$ имаме

$$P(\alpha < \xi < \beta) = \Phi\left(\frac{\beta - a}{\sigma}\right) - \Phi\left(\frac{\alpha - a}{\sigma}\right), \qquad P(|\xi - a| < \delta) = 2\Phi\left(\frac{\delta}{\sigma}\right)$$

Фундаменталната роля, която има нормалното разпределение се обяснява с това, че сума от независими случайни величини с нарастването на броя на събираемите асимптотически се доближава до нормално разпределена величина, което се доказва в централната аранична теорема (§15).

Друго свойство на нормалното разпределение:

Теорема 13.1. Ако са дадени две независими величини с нормално разпределение $X_1 \in N(a_1,\sigma_1)$ и $X_2 \in N(a_2,\sigma_2)$, то сумата им е нормално разпределена величина с математическо очакване a_1+a_2 и дисперсия $\sigma_1^2+\sigma_2^2$, т.е. $X_1+X_2 \in N(a_1+a_2,\sqrt{\sigma_1^2+\sigma_2^2})$.

Теоремата може да се обобщи за повече събираеми.

Пример 13.1. Големината ξ на произвежданите от завод детайли е нормално разпределена случайна величина с a=1,5cm (проектна големина), $\sigma=0,04cm$ (точност на изработката). а) Да се пресметне вероятността произведено изделие да е нестандартно, ако се допуска отклонение от проектната големина $\pm 0,07$. б) Какво отклонение от проектната големина може да се очаква с вероятност 0.97?

Решение. a) $P(A) = P(|\xi - 1.5| > 0.07) = 1 - P(|\xi - 1.5| < 0.07)$.

По формула (13.3)
$$P(|\xi-1.5| \le 0.07) = 2F\left(\frac{0.07}{0.04}\right) - 1 = 2F(1.75) - 1 \approx 0.92$$
. (от таблицата $F(1.75) = 0.9599$), Следователно, $P(A) = 1 - 0.92 = 0.08$.

б) Търсим за каква стойност на ε е изпълнено $P(|\xi-1.5|\!\!<\!\!\varepsilon)\!\!=\!0.97$. Отново по формула (13.3) :

$$P(|\xi-1.5|<\varepsilon)=2F\left(\frac{\varepsilon}{0.04}\right)-1=0.97 \Rightarrow F\left(\frac{\varepsilon}{0.04}\right)=0.985$$
,

откъдето от таблицата определяме $\frac{\mathcal{E}}{0.04}$ = 2,17 \Rightarrow \mathcal{E} \approx 0,09 .

Пример 13.2. Случайната величина ξ е подчинена на закона N(2,1) . Да се намери плътността на вероятностите и вероятността на събитието $0<\xi<3$.

Упражнения.

- **1.** Да се изчислят: F(1,2), F(-2), F(2,34), F(-0,75).
- **2.** За величината $Z \sim N(0,1)$ да се изчислят вероятностите:

$$P(1.5 < Z < 2.34)$$
, $P(-1.2 < Z < 2.2)$, $P(-2.5 < Z < 2.5)$, $P(Z < 1.44)$,

$$P(Z<-2.2)$$
, $P(Z>0.35)$, $P(Z>-2.6)$.

- **3.** Дадена е случайната величина $X \sim N(36,10)$. Да се изчислят: a) P(X>48); P(30< X<40); б) P(|X-36|<0.03).
- **4.** Дадена е величината $\xi \sim N(56,10)$. Да се намерят: $P(\xi > 68)$, $P(56 < \xi < 65)$, $P(42 < \xi < 52)$, $P(\xi < 36)$.
- **5.** За нормално разпределената величина е дадено, че $P(\xi > 58,39) = 0,0217$, $P(\xi < 41,82) = 0,0287$. Да се намерят математическото очакване и средно квадратичното отклонение на величината.
- **6.** Да се намери x, ако а) F(x) = 0.9660, б) F(x) = 0.3783, в) F(x) = 0.9495,

г)
$$F(x) = 0.0224$$
, д) $F(x-3) = 0.0591$, e) $F\left(\frac{x}{3}\right) = 0.8087$, ж) $F(2-x) = 0.6217$.

- 7. Дължината на детайл е нормално разпределена величина с математическо очакване 450 мм и средно квадратично отклонение 3 мм. Да се намери вероятността произволно избран детайл да има дължина между 444 мм и 452 мм.
- **8.** Установено е, че средната височина X на 11-годишните момчета е 146 см със средно квадратично отклонение 8 см.
- а) Какво разпределение може да да приемем за величината X? Какъв е процентът на момчетата, които са високи между 138 см и 154 см?
- б) Какъв е процентът на момчетата, които са по-ниски от 130 см?
- в) Какъв е процентът на момчетата, които са по-високи от 162 см?
- 9. Спортист счита, че времето, за което пробягва 200м, е нормално разпределена случайна величина като средното му постижение е 22,8 сек.
- а) Ако е известно, че в 20% от случаите времето му е над 23,3 сек, да се пресметне средно квадратичното отклонение σX :
- б) Най-доброто постижение в клуба е 21,82. Да се намери вероятността спортистът да надмине рекорда, ако $\sigma X = 0.42$

§14. Други разпределения на непрекъснати случайни величини

В тази глава ще използуваме функция, наречена

Гама-функция:
$$\Gamma(z) = \int_{0}^{\infty} x^{z-1}e^{-x}dx$$
 със свойства

1) $\Gamma(1)=1$, 2) $\Gamma(z+1)=z\Gamma(z)$. $\Rightarrow \Gamma(n+1)=n!$, n -цяло.

3) $\Gamma(z)\Gamma(1-z)=\frac{\pi}{\sin z\pi}$.

От свойство 3) се получава важното следствие

$$\int\limits_{0}^{\infty}e^{-\frac{x^{2}}{2}}dx\!=\!\sqrt{\frac{\pi}{2}}\;\;(\underline{\textit{uнтеграл на Поасон}}) \qquad \qquad (\text{полагаме }z\!=\!\frac{1}{2}$$

Ще разгледаме някои разпределения, които намират широко приложение в статистиката и които са свързани със стандартното нормално разпределение N(0.1) .

Хи-квадрат разпределение.

Ако $\xi_1, \dots, \xi_k \in N(0,1)$, то казваме, че величината $\xi = \xi_1^2 + \dots + \xi_k^2$ има χ^2 - разпределение с k степени на свобода. (хи-квадратразпределение) с означение $\xi \sim \chi^2(k)$.

Математическото очакване и дисперсията на величината са $E\xi = k$, $D\xi = 2k$.

Плътността на разпределение на величината е

$$p_{\xi}(x) = \begin{cases} \frac{1}{2^{\frac{k}{2}} \Gamma\left(\frac{k}{2}\right)} x^{\frac{k}{2} - 1} e^{-\frac{x}{2}}, & x \ge 0\\ 0, & x < 0 \end{cases}.$$

На фиг.14.1 са дадени графики при различни стойности на параметъра k. Има таблици за критичните точки или квантилите на тази величина в зависимост от броя k на степените на свобода.

Квантилът от ред p на величина с k степни на свобода ще означаваме с $\chi^2_p(k)$, а стойността му е дадена таблицата на стр. 170.

Ще отбележим, че има и други означения, а също че в някои литературни източници степените на свобода се означават с df ($degree\ of\ freedom$).

Таблицата за квантилите при дадено k дава стойността $x = \chi_p^2(k)$, за която лицето на защрихованата област е равна на p (фиг 14.2)

Фиг.14.2.

Пример 14.1. Дадена е величината $\xi \sim \chi^2(12)$. Да се намерят тези нейни възможни стойности χ_1^2 и χ_2^2 , за които $P(\xi < \chi_1^2) = P(\xi > \chi_2^2) = 0{,}025$. Да се намери $P(\chi_1^2 < \xi < \chi_2^2)$

Решение. Очевидно, χ_1^2 е квантилът от ред 0,025 на величината ξ , който намираме от таблицата: $\chi_1^2 = \chi_{0.025}^2(12) = 4,40$.

 χ_2^2 е критичната точка от ред 0,025. Имаме

$$P(\xi > \chi_2^2) = 1 - P(\xi \le \chi_2^2) = 1 - 0.025 = 0.975$$

т.е. χ_2^2 е квантил от ред 0,975 и $\chi_2^2 = \chi_{0.975}^2(12) = 23,34$ (фиг.15.3).

Фиг.14.3.

Накрая изчисляваме

$$P(\chi_1^2 < \xi < \chi_2^2) = 1 - P(\xi \le \chi_1^2) - P(\xi \ge \chi_2^2) = 1 - 0.025 - 0.025 = 0.95$$

Разпределение на Стюдънт.

Ако $\xi \in N(0,1)$ и η има χ^2 - разпределение с k степени на свобода, то казваме, че величината $\zeta = \frac{\xi}{\sqrt{\frac{\eta}{k}}}$ има разпределение на

Стюдънт (t - разпределение) с k степни на свобода (пишем $\zeta \sim t(k)$).

Плътността на величината $\zeta \sim t(k)$ се получава по формулата

$$p_t(x) = Cx^{\frac{k}{2} - 1} \left(1 + \frac{x^2}{k}\right)^{-\frac{k+1}{2}}, x \in (-\infty, \infty),$$
(14.1)

където $C = \frac{1}{\sqrt{k\pi}} \frac{\Gamma\!\!\left(\frac{k+1}{2}\right)}{\Gamma\!\!\left(\frac{k}{2}\right)}$ е константа. Функцията (14.1) е четна, затова

графиката й е симетрична относно оста $O_{\mathcal{V}}$ (фиг.14.4).

Частен случай при k=1 е разпределението на Коши $p(x) = \frac{1}{\pi(1+x^2)}$ (пример **9.2**).

Квантилът от ред p на t-разпределението ще означаваме с $t_p(k)$, където k са степените на свобода.

От таблицата на стр. 169 могат да се определят квантилите от редове 0,9, 0,95, и т.н., които намират най-широко приложение.

Пример 14.2. Да се намери симетричен относно началото интервал, в който величината $\mathcal{E} \sim t(12)$ попада с вероятност 0.9.

Решение. Търсим x, за което $P(-x < \xi < x) = P(|\xi| < x) = 0,9$. Тъй като графиката на функцията е симетрична, то

$$P(\xi < -x) = P(\xi > x) = \frac{1}{2}(1 - 0.9) = 0.05$$
,

т.е. x е критична точка от ред 0,05. Като имаме предвид връзката между квантил и критична точка, получаваме (виж таблицата на стр. 169):

$$x = t_{0.05}^{(kr)}(12) = t_{1-0.05}(12) = t_{0.95}(12) = 1,78$$
.

Забележка 14.1. Освен таблица за квантилите на t-разпределението, има и таблици, даващи при дадени p и k вероятността $P(-x<\xi< x)=P(|\xi|< x)=p$.

И двете таблици са съставени от стойностите на x, за които лицето на област под графиката на плътността на разпределение е равно на p, но за първата тази област е дадена на фиг. 14.5а (едностранна област), а за втората — на фиг. 14.5б. (двустранна област). Ако означим а t_p и t_p' числата, получени от двете таблици при една и съща стойност на p, то имаме връзката

Фиг.14.5а.

Фиг.14.5б.

Разпределение на Фишер-Снедекор.

Ако $\xi\sim\chi^2(k_1)$ и $\eta\sim\chi^2(k_2)$, то за величината $\zeta=rac{\dfrac{\xi}{k_1}}{\dfrac{\eta}{k_2}}$ казваме, че

има <u>F-разпределение със степени на свобода</u> k_1 и k_2 (разпределение на <u>Фишер-Снедекор</u>), което записваме като $\zeta \sim F(k_1, k_2)$).

Плътността на тази величина е (фиг 14.6)

Фиг.14.6.

$$p_{\xi}(x) = \begin{cases} C(k_2 + k_1 x)^{-\frac{k_1 + k_2}{2}} x^{\frac{k_1}{2} - 1}, & x \ge 0, \\ 0, & x < 0 \end{cases} \qquad C = \frac{\Gamma\left(\frac{k_1 + k_2}{2}\right)}{\Gamma\left(\frac{k_1}{2}\right) \Gamma\left(\frac{k_2}{2}\right)} (k_1)^{\frac{k_1}{2}} (k_2)^{\frac{k_2}{2}}.$$

За стойностите $\alpha = 0,1, \ 0.05$ и т.н. при дадени k_1 и k_2 са съставени

таблици **за критичните точки** $F_{\alpha}^{kr}(k_1,k_2)$ на разпределението (виж стр. 171 и 172), т.е. възможната стойност $F_{\alpha}^{kr}(k_1,k_2)$ на величината $\mathcal{L} \sim F(k_1,k_2)$, за която (фиг.14.7)

$$P(\zeta > F_{\alpha}^{kr}(k_1,k_2)) = \alpha$$
.

Напомняме отново връзката между квантил $F_p(k_1,k_2)$ от ред p и критична точки от ред $1\!-\!p$:

$$F_p(k_1, k_2) = F_{1-p}^{kr}(k_1, k_2)$$
(14.2)

Освен това от определението на разпределението на Фишер следва, че ако $\zeta \sim F(k_1,k_2)$ и $\omega \sim F(k_2,k_1)$, то $\zeta = \frac{1}{\omega}$. Тогава, за произволно $x_1 > 0$ събититието $\{\zeta > x_1\}$ е еквивалентно на събитието $\left\{\frac{1}{\omega} > x_1\right\}$, което може да се представи във вида $\left\{\omega < \frac{1}{x_1}\right\}$.

Нека x_1 е критична точка от ред α на $\zeta \sim F(k_1,k_2)$, т.е. $P(\zeta>x_1)=\alpha$. Тогава $P\bigg(\omega<\frac{1}{x_1}\bigg)=\alpha$ и, следователно, $\frac{1}{x_1}$ е квантил от ред α на разпределението $\omega\sim F(k_2,k_1)$.

По този начин получаваме следната връзка между квантилите и критичните точки на разпределенията $F(k_1,k_2)$ и $F(k_2,k_1)$:

$$F_{\alpha}(k_1, k_2) = \frac{1}{F_{\alpha}^{kr}(k_2, k_1)}, \quad F_{\alpha}^{kr}(k_1, k_2) = \frac{1}{F_{\alpha}(k_2, k_1)}$$
 (14.3)

НАЙ-ВАЖНИ ДИСКРЕТНИ И НЕПРЕКЪСНАТИ РАЗПРЕДЕЛЕНИЯ

1. Б<u>иномно разпределение с параметри n и p:</u> $\xi \sim B(n,p)$, ако възможните и стойности са $k=0,1,\dots,n$ и:

$$P(\xi=k) = p_{\xi}(k) = C_n^k p^k q^{n-k}, E\xi = np, D\xi = npq (q=1-p)$$

Случаи на биномно разпределение: ξ - брой на поява на събитие A в n опита, ако във всеки опит P(A) = p.

2. <u>Разпределение на Поасон с параметър</u> $\lambda > 0$:($\xi \sim Po(\lambda)$), когато приема изброимо много стойности $0,1,2,\ldots,n,\ldots$ и

$$P(\xi = k) = p_{\xi}(k) = \frac{\lambda^k}{k!} e^{-\lambda}, \quad k = 0, 1, ..., n, ..., \quad E\xi = \lambda, \quad D\xi = \lambda.$$

Случаи на разпределение на Поасон:

- 1) $\xi \sim B(n,p)$ като параметърът е n много голям, а параметърът p много малък (редки явления), тогава $\xi \sim Po(\lambda)$ като $\lambda = np$.
- 2) ξ брой на настъпващите за даден интервал от време елементарни събития при прост поток от събития интензивност λ .

3. Нормално разпределение с параметри a и σ : $\xi \sim N(a,\sigma)$), ако възможните и стойности са $x \in (-\infty,\infty)$ и

$$\begin{split} p_{\xi}(x) &= \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-a)^2}{2\sigma^2}} \,, \\ E\xi &= a \,, \quad D\xi = \sigma^2 \,, \quad \sigma\xi = \sqrt{D\xi} = \sigma \quad a_{\xi} = 0, \quad e_{\xi} = 0 \\ P(\alpha < \xi < \beta) &= F\left(\frac{\beta - a}{\sigma}\right) - F\left(\frac{\alpha - a}{\sigma}\right), \qquad P(|\xi - a| < \delta) = 2F\left(\frac{\delta}{\sigma}\right) - 1 \,, \end{split}$$

където $F(x)=rac{1}{\sqrt{2\pi}}\int\limits_{-\infty}^x e^{-rac{t^2}{2}}dt$ е функцията на разпределение на $Z\sim N(0,1)$.

- 4. Други разпределения с приложенив в статистиката:
- χ^2 разпределение с k степени на свобода: $\xi \sim \chi^2(k)$, ако $\xi = \xi_1^2 + \ldots + \xi_k^2$.
- <u>Разпределение на Стюдънт</u> с k степни на свобода: $\zeta \sim t(k)$, ако $\zeta = \frac{\xi}{\sqrt{\eta/k}} \text{ , където } \xi \in N(0,1) \text{ } u \text{ } \eta \in \chi^2(k) \text{ .}$
- <u>Разпределение на Фишер-Снедекор със степени на свобода</u> k_1 и k_2 : $\zeta \sim F(k_1,k_2) \text{ , ако } \zeta = \frac{\xi}{k_1} \cdot \frac{\eta}{k_2} \text{ , където } \xi \sim \chi^2(k_1) \text{ и } \eta \sim \chi^2(k_2) \text{ .}$

Общи задачи.

- 1. Какво разпределение има величината и какви са параметрите на разпределението й, ако величината е: а) брой на печатните грешки на страница от книга, ако е известно, че средно на 20 страници има по 1 грешка; б) брой на победите на един спортист в 5 състезания, като вероятността за победа във всяко от тях е 0.8; в) количество лекарство в ампула от 10 мг, ако за произволна ампула количеството лекарство в интервала (9.91; 10.09). г) продължителност (в години) на експлоатация на уред, ако е установено, че средната продължителност за уреди от този тип е 2 години; д) теглото на стока, измерено без систематическа грешка. ако точността на теглилката е ± 10 г.
- **2.** Дадена е случайната величина $X \sim N(55,10)$. Да се изчислят а) P(X > 70); 6) P(55 < X < 65); в) P(42 < X < 52).
- 3. Средният брой на грешните свързвания в автоматична телефонна централа е $\lambda\!=\!0,\!5$. a) Да се напише формулата за плътността на величината ξ брой на грешните свързвания. Да се намери вероятността да има: a) точно три, б) повече от три грешни свързвания.

- **4.** Съобщение, се състои от 3 символа. Всеки символ, независимо от останалите се изкривява с вероятност 0,1. а) Каква е вероятността съобщението да бъде прието без изкривяване. За по-голяма надеждост, съобщението се предава 2 пъти. б) Да се състави законът на величината ξ брой на вярно предадените съобщения и намерят математическото очакване и дисперсията й. в) Каква е вероятността поне едно от съобщенията да е прието без изкривяване?
- **5.** Теглото на жителите на дадена област е нормално разпределена случайна величина със средна стойност 80 кг и средно отклонение 8кг. а) Да се скицира графиката на плътността на теглото X на жител от областта. б) Какъв е процентът на жителите, които са по-тежки от 90 кг? в) Каква е вероятността случайно избран жител да е по-лек от 60 кг?
- 6. Средният брой съобщения за 1 час по електронната поща е 0,6. а) Каква е вероятността за 1 час да има повече от 1 съобщения? б) Пощата е проверявана в 10. 11. 12 и 13 часа. Каква е вероятността да не е получено нито едно съобщение?
- 7. Времето за извършване на дадена работа е нормално разпределена случайна величина с математическо очакване 60 минути и средно квадратично отклонение 30 минути. Каква е вероятността че произволно избран работник: а) ще завърши работата за по-малко от 30 минути; б) за какво време ще извършат работата 99% от работниците?
- 8. Случайната величина ξ има разпределение на Поасон с математическо очакване $E\xi$ =1 . Да се намери: a) $P(\xi < 2)$; б) $P(\xi > 2)$.
- 9. Известно е, че 20% от студентите работят. a) Да се състави таблицата на разпределение на величината брой на работещите сред 3 произволно избрани студента. б) Да се намерят математическото очакване и дисперсията на величината.
- **10.** Дадена е случайната величина $\xi \sim B(8,1/3)$. Да се намери: a) $P(\xi \le 2)$, б) $P(\xi \ge 2)$.
- **11.** В аквариум има 2 големи и 3 малки рибки. Ако се хване малка рибка, тя се пуска обратно в аквариума, ако се хване голяма се продава. Колко средно опита трябва да се извършат, че в аквариума да останат само малки рибки?
- **12.** Отборът *A* печели кой да е мач с вероятност 2/3. Каква е вероятността от 4 мача отборът да спечели не по-малко от половината?
- **13.** Ако $\xi \sim B(10,0,4)$ и $\eta \sim N(0,1)$, какви са математическото очакване и дисперсията на величината $\xi + \eta$.
- **14.** За да се спечели награда, тряба да се съберат 5 различни картинки, поставени по случаен начин във всеки пакет детски бонбони. Средно колко пакета трябва да се закупят, за да се съберат десетте различни картинки?
- **15.** Да се изчисли $P(\xi < 0.95)$, ако: а) $\xi \sim \chi^2(12)$; б) $\xi \sim t(13)$; $\xi \sim F(8.10)$.
- **16.** В кутия има 4 червени и 5 черни топки. Изважда се една топка и ако е червена, се връща обратно, ако е черна се отстранява. Да се намери колко е средният брой тегления докато се отстранят всички черни топки.
- 17. Автомат пълни бутилки като съдържанието им по стандарт е 300 мл. Ако съдържанието на бутилката е по-малко от 290, то тя се бракува. Какъв е процентът на бракуваните бутилки? в) Ако съдържанието на бутилката е повече от 315, то предприятието търпи загуби. Какъв е процентът на препълнените бутилки?