

Министерство науки и высшего образования Российской Федерации федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Робототехники и комплексной автоматизации» КАФЕДРА «Системы автоматизированного проектирования (РК-6)»

ОТЧЕТ О ВЫПОЛНЕНИИ ДОМАШНЕГО ЗАДАНИЯ

по дисциплине «Вычислительная математика»

Студент:	Антоненко Григорий Андреевич
Группа:	PK6-53B
Тип задания:	Домашнее задание
Тема:	Ортогональные системы функций

Студент	подпись, дата	$\frac{\text{Антоненко }\Gamma.A}{\Phi_{\text{амилия, И.О.}}}$
Преподаватель	подпись, дата	Фамилия, И.О.

Содержание

ртогональные системы функций
Задание
Решение
Теоретическая часть
Практическая часть
Заключение

Ортогональные системы функций

Задание

Задача 3.9

Ортогональные системы функций весьма широко используются в прикладной математике. Например, частью решения уравнения Шрёдингера для атома с одним электроном являются так называемые многочлены Лагерра $L_k(x)$, где k обозначает степень многочлена, которые задаются следующей рекурсивной формулой:

$$L_{k+1}(x) = \frac{1}{k+1} \left[(2k+1-x)L_k(x) - kL_{k-1}(x) \right], \tag{1}$$

где $L_0(x) = 1$ и $L_1(x) = 1 - x$. Многочлены Лагерра составляют систему функций, ортогональных на интервале $[0; \infty)$ с весом $\omega(x) = e^{-x}$. Требуется продемонстрировать, что это верно для первых трех многочленов $L_0(x)$, $L_1(x)$, $L_2(x)$.

Решение

Теоретическая часть

Теорема о линейно независимой системе функций

Пусть $\{\phi_i\}_{i=0}^n$ — система полиномов, где полином ϕ_i имеет степень i. Тогда $\{\phi_i\}_{i=0}^n$ является линейно независимой системой функций на [a;b].

Если линейно независимая система полиномов является ортогональной, то верно следующее равенство:

$$\langle \phi_n(x), P_k(x) \rangle_{\omega} = \int_a^b \omega(x) \phi_n(x) P_k(x) dx = 0,$$
 (2)

где n — максимальная степень полинома, $P_k(x)$ — полином любой степени $k < n, \, \omega(x)$ — весовая функция.

Практическая часть

Определим множество полиномов Лагерра $\{L_i\}_{i=0}^{n=2}$:

$$L_0(x) = 1$$

 $L_1(x) = 1 - x$
 $L_2(x) = \frac{x^2 - 4x + 2}{2}$

Теперь для k = 0, 1 по формуле (2) найдем скалярное произведение полиномов с $L_2(x)$

1.
$$k = 0$$

$$\langle L_2(x), L_0(x) \rangle_{\omega} = \int_0^{\infty} e^{-x} \left(\frac{x^2 - 4x + 2}{2} \right) dx = I_0$$

Интегрируем по частям (дважды): $\int u dv = uv - \int v du$

$$e^{-x}dx = dv \implies v = -e^{-x}, \quad \frac{x^2 - 4x + 2}{2} = u \implies du = (x - 2)dx$$

$$I_0 = -\frac{x^2 - 4x + 2}{2}e^{-x}\Big|_0^\infty + \int_0^\infty e^{-x}(x - 2)dx$$

Обозначим получившийся в качестве слагаемого интеграл как I_1

$$e^{-x}dx = dv \implies v = -e^{-x}, \quad x - 2 = u \implies du = dx$$

$$I_1 = -(x-2)e^{-x}\Big|_0^\infty + \int_0^\infty e^{-x} dx = -(x-2)e^{-x} - e^{-x}$$

Тогда

$$I_0 = -\frac{x^2 - 4x + 2}{2}e^{-x}\Big|_0^{\infty} - (x - 2)e^{-x}\Big|_0^{\infty} - e^{-x}\Big|_0^{\infty}$$

При $x \to \infty$: $I_0 = 0$, так как $e^{-\infty} = 0$ При x = 0: $I_0 = -1 + 2 - 1 = 0$

2. k = 1

$$\langle L_2(x), L_1(x) \rangle_{\omega} = \int_0^{\infty} e^{-x} \left(\frac{x^2 - 4x + 2}{2} \right) (1 - x) dx = I_0$$
$$I_0 = \int_0^{\infty} \left(\frac{-x^3 + 5x^2 - 6x + 2}{2} \right) e^{-x} dx$$

Интегрируем по частям (трижды): $\int u dv = uv - \int v du$

$$e^{-x}dx = dv \implies v = -e^{-x}, \quad \frac{-x^3 + 5x^2 - 6x + 2}{2} = u \implies du = \frac{-3x^2 + 10x - 6}{2}dx$$

$$I_0 = -\frac{-x^3 + 5x^2 - 6x + 2}{2}e^{-x}\Big|_0^\infty + \int_0^\infty \left(\frac{-3x^2 + 10x - 6}{2}\right)e^{-x}dx$$

Обозначим получившийся в качестве слагаемого интеграл как I_1

$$e^{-x}dx = dv \implies v = -e^{-x}, \quad \frac{-3x^2 + 10x - 6}{2} = u \implies du = (-3x + 5)dx$$

$$I_1 = -\frac{-3x^2 + 10x - 6}{2}e^{-x}\Big|_0^\infty + \int_0^\infty (-3x + 5)e^{-x}dx$$

Обозначим получившийся в качестве слагаемого интеграл как I_2

$$e^{-x}dx = dv \implies v = -e^{-x}, \quad -3x + 5 = u \implies du = -3dx$$

$$[t] \bullet (None) \otimes (None) \bullet (None), (None)((None))$$

$$I_{2} = -(-3x+5)e^{-x}\Big|_{0}^{\infty} + \int_{0}^{\infty} -3e^{-x}dx$$
$$I_{2} = -(-3x+5)e^{-x}\Big|_{0}^{\infty} + 3e^{-x}\Big|_{0}^{\infty}$$

Выражение для I_0 :

$$I_0 = -\frac{-x^3 + 5x^2 - 6x + 2}{2}e^{-x}\bigg|_0^{\infty} - \frac{-3x^2 + 10x - 6}{2}e^{-x}\bigg|_0^{\infty} - (-3x + 5)e^{-x}\bigg|_0^{\infty} + 3e^{-x}\bigg|_0^{\infty}$$

При $x \to \infty$: $I_0 = 0$, так как $e^{-\infty} = 0$ При x = 0: $I_0 = -1 + 3 - 5 + 3 = 0$

Заключение

- 1. Изучен признак ортогональности системы линейно нехависимых функции
- 2. Показано, что первые 3 полинома Лагерра образуют ортогональную систему линейно независимых функций.

Список использованных источников

- 1. Першин А.Ю. Лекции по курсу «Вычислительная математика». Mockba, 2018-2021. C. 140. URL: https://archrk6.bmstu.ru/index.php/f/810046.
- 2. Соколов, А.П. Инструкция по выполнению лабораторных работ (общая). Москва: Соколов, А.П., 2018-2021. С. 9. URL: https://archrk6.bmstu.ru. (облачный сервис кафедры PK6).
- 3. Соколов, А.П. Инструкция по выполнению заданий к семинарским занятиям (общая). Москва: Соколов, А.П., 2018-2022. С. 7. URL: https://archrk6.bmstu.ru. (облачный сервис кафедры PK6).
- 4. Першин А.Ю. Сборник задач семинарских занятий по курсу «Вычислительная математика»: Учебное пособие. / Под редакцией Соколова А.П. [Электронный ресурс]. Москва, 2018-2021. С. 20. URL: https://archrk6.bmstu.ru. (облачный сервис кафедры РК6).
- 5. Першин А.Ю., Соколов А.П. Сборник постановок задач на лабораторные работы по курсу «Вычислительная математика»: Учебное пособие. [Электронный ресурс]. Москва, 2021. С. 54. URL: https://archrk6.bmstu.ru. (облачный сервис кафедры РК6).

Выходные данные

Антоненко Γ .А.Отчет о выполнении домашнего задания по дисциплине «Вычислительная математика». [Электронный ресурс] — Москва: 2023. — 6 с. URL: https://sa2systems.ru: 88 (система контроля версий кафедры PK6)

Постановка: Ф доцент кафедры РК-6, PhD А.Ю. Першин Решение и вёрстка: студент группы РК6-53Б, Антоненко Г.А.

2023, осенний семестр