Number Systems

Number Systems (cont)

Scientific Notation (cont)

$$0.06640625_{10} = 0.6640625 \times 10^{(-1)}$$

Convert to Binary

Once you have a number in Base 2, 8, or 16 then the conversion to any of the other is direct

$$0.00010001_2$$
 = .0001 0001 Base 2 use every 4 digits to convert to Base 16
 = 0.1 1 Base 16 = 0.11_{16}
 0.00010001_2 = .000 100 010 Base 2 use every 3 digits to convert to Base 8
 .0 4 2 = 0.042_8

As a check convert Base 8 result back to Base 10 and see if same value

Therefore $0.6650625x10^{-1} = 0.10001x2^{-3} = 0.42x8^{-1} = 0.11x16^{0}$ where the base is represented by the power exponent

Quickest Conversion for Integer

Example converting base 10 to base 16, then base 2, and finally base 8

1023.60546875

The approach should be to split the number between the integer and float. 2 parts, convert the integer first, then the floating part

Here is how I quickly convert the integer, I mod with the base, divide by the base and repeat for each digit till less than 1 All the following are integer operations, no floats/fractions involved

1023
$$\rightarrow$$
 1023 % 16 = F 1 (1023/16 = 63) % 16 = F 2 (63/16 = 3) % 16 = 3 3

So, 1023 Base 10 is equivalent to 3FF Base 16

Convert to Base 2

3 F F
$$\rightarrow$$
 Base 16 0011 1111 1111 \rightarrow Base 2

Convert to Base 8

001 111 111 111
$$\rightarrow$$
 Base 2 1 7 7 7 \rightarrow Base 8

As a check, convert the Base 8 solution back to Base 10, if agree then all intermediate steps check. Is 1777 Base 8 = 1023 Base 10 Add

Quick Float

Quickest Conversion for Float

Example converting base 10 to base 16, then base 2, and finally base 8

1023.60546875

Now for the quick conversion of the fraction. Simply multiply by the base and keep the integer, repeat with remainder

0.60546875 Base 10					Value	Digit
0.60546875	X	16	=	9.6875	9	1
0.6875	X	16	=	11	В	2

There is no fraction/decimal to continue therefore 0.60546875 Base 10 = 0.9B Base 16

Converting Base 16 to Base 2

Checking Base 8 final value and comparing to Base 10 starting point will assure all intermediate steps were correct.

$$4x8^{-1}$$
 $6x8^{-2}$ $6x8^{-3}$ 0.09375 0.01171875 = $0.60546875 \rightarrow Base 10$

It checks, so the conversion equivalence is

$$1023.60546875_{10}$$
 = $3FF.9B_{16}$ = 1111111111.10011011_2 = 1777.466_8
 $0.102360546875 \times 10^{\circ}(4)$ = $0.3FF9B \times 16^{\circ}(3)$ = $0.1111111111110011011 \times 2^{\circ}(10)$ = $0.1777466 \times 8^{\circ}(4)$