BEAM DEFLECTION FORMULAE

BEAM TYPE	SLOPE AT FREE END	DEFLECTION AT ANY SECTION IN TERMS OF x	MAXIMUM DEFLECTION		
1. Cantilever Beam – Concentrated load <i>P</i> at the free end					
V O	$\theta = \frac{Pl^2}{2EI}$	$y = \frac{Px^2}{6EI} (3l - x)$	$\delta_{\text{max}} = \frac{Pl^3}{3EI}$		
2. Cantilever Beam – Concentrated load <i>P</i> at any point					
$\begin{array}{c c} a & P & b \\ \hline y & l & \delta_{\text{max}} \end{array}$	$\theta = \frac{Pa^2}{2EI}$	$y = \frac{Px^2}{6EI} (3a - x) \text{ for } 0 < x < a$ $y = \frac{Pa^2}{6EI} (3x - a) \text{ for } a < x < l$	$\delta_{\text{max}} = \frac{Pa^2}{6EI} (3l - a)$		
3. Cantilever Beam – Uniformly distributed load ω (N/m)					
v l x δ_{max}	$\theta = \frac{\omega l^3}{6EI}$	$y = \frac{\omega x^2}{24EI} \left(x^2 + 6l^2 - 4lx \right)$	$\delta_{\text{max}} = \frac{\omega l^4}{8EI}$		
4. Cantilever Beam – Uniformly varying load: Maximum intensity ω _o (N/m)					
$\omega = \frac{\omega_{o}}{l}(l-x)$ ω_{o} v l δ_{max}	$\theta = \frac{\omega_o l^3}{24EI}$	$y = \frac{\omega_o x^2}{120lEI} \left(10l^3 - 10l^2 x + 5lx^2 - x^3 \right)$	$\delta_{\text{max}} = \frac{\omega_{\text{o}} l^4}{30EI}$		
5. Cantilever Beam – Couple moment <i>M</i> at the free end					
$ \begin{array}{c c} l & \downarrow x \\ \hline 0 & \delta_{\text{max}} \end{array} $	$\theta = \frac{Ml}{EI}$	$y = \frac{Mx^2}{2EI}$	$\delta_{\text{max}} = \frac{Ml^2}{2EI}$		

BEAM DEFLECTION FORMULAS

BEAM TYPE	SLOPE AT ENDS	DEFLECTION AT ANY SECTION IN TERMS OF x	MAXIMUM AND CENTER DEFLECTION		
6. Beam Simply Supported at Ends – Concentrated load <i>P</i> at the center					
θ_1 θ_2 δ_{max}	$\theta_1 = \theta_2 = \frac{Pl^2}{16EI}$	$y = \frac{Px}{12EI} \left(\frac{3l^2}{4} - x^2 \right) \text{ for } 0 < x < \frac{l}{2}$	$\delta_{\text{max}} = \frac{Pl^3}{48EI}$		
7. Beam Simply	Supported at Ends – Concent	trated load P at any point			
	$\theta_1 = \frac{Pb(l^2 - b^2)}{6lEI}$ $\theta_2 = \frac{Pab(2l - b)}{6lEI}$	101 $u \setminus x \setminus t$	$\delta_{\text{max}} = \frac{Pb(l^2 - b^2)^{3/2}}{9\sqrt{3} lEI} \text{ at } x = \sqrt{(l^2 - b^2)/3}$ $\delta = \frac{Pb}{48EI} (3l^2 - 4b^2) \text{ at the center, if } a > b$		
8. Beam Simply Supported at Ends – Uniformly distributed load ω (N/m)					
δ_{max}	$\theta_1 = \theta_2 = \frac{\omega l^3}{24EI}$	$y = \frac{\omega x}{24EI} \left(l^3 - 2lx^2 + x^3 \right)$	$\delta_{\text{max}} = \frac{5\omega l^4}{384EI}$		
9. Beam Simply Supported at Ends – Couple moment <i>M</i> at the right end					
θ_1 θ_2 λ λ	$\theta_1 = \frac{Ml}{6EI}$ $\theta_2 = \frac{Ml}{3EI}$	$y = \frac{Mlx}{6EI} \left(1 - \frac{x^2}{l^2} \right)$	$\delta_{\text{max}} = \frac{Ml^2}{9\sqrt{3} EI} \text{ at } x = \frac{l}{\sqrt{3}}$ $\delta = \frac{Ml^2}{16EI} \text{ at the center}$		
10. Beam Simply Supported at Ends – Uniformly varying load: Maximum intensity ω ₀ (N/m)					
$\omega = \frac{\omega_{o}}{l} x \qquad \omega_{o} \qquad x$	$\theta_1 = \frac{7\omega_0 l^3}{360EI}$ $\theta_2 = \frac{\omega_0 l^3}{45EI}$	$y = \frac{\omega_0 x}{360lEI} \left(7l^4 - 10l^2 x^2 + 3x^4\right)$	$\delta_{\text{max}} = 0.00652 \frac{\omega_{\text{o}} l^4}{EI} \text{ at } x = 0.519 l$ $\delta = 0.00651 \frac{\omega_{\text{o}} l^4}{EI} \text{ at the center}$		