Problem Set 1 for EE227C (Spring 2018): Convex Optimization and Approximation

Instructor: Moritz Hardt

Email: hardt+ee227c@berkeley.edu

Graduate Instructor: Max Simchowitz

Email: msimchow+ee227c@berkeley.edu

January 29, 2018

Problem 1: Existence of the Subgradients

(A) Let \mathcal{X} be a convex set. Prove that that given any convex function $f \colon \mathcal{X} \to \mathbb{R}$ and any $x \in \mathcal{X}$, there exists at least one vector g, called a *subgradient* of f at x, such that $f(y) \ge f(x) + \langle g, y - x \rangle$ for all $y \in \mathcal{X}$.

To establish this claim, you may follow the steps below. We will only prove the existence under slightly restricted assumptions, but you can assume that the vector *g* above exists in full generality.

- **(A.1)** Define the *Epigraph* of f, $Epi(f) := \{(x,t) \in \mathcal{X} \times \mathbb{R} : f(x) \leq t\}$. Prove the Epi(f) is convex.
- (A.2) Recall the following definitions from real analysis:

Definition 1 (Boundary and Interior).

Using the separating hyperplane theorem from the notes (the full version, which applies to arbitrary convex sets not just compact ones), prove the supporting hyperplane theorem.

Theorem 1 (Supporting Hyperplane). Let $C \subset \mathbb{R}^n$ be a convex set, and let $x \in \text{Bd}(C)$. Then, there exists a nonzero $w \in \mathbb{R}^n$ such that, for all $y \in C$, $\langle w, y - x \rangle \ge 0$.

Hint: Find two (not-necessarily compact!) convex sets to apply the separating hyperplane theorem. You might want Int(C) to be one of them - and you should check that Int(C) is convex

- **(A.3)** Using part i) and ii), prove the existence of a subgradient at $x \in \mathcal{X}$. You may assume that $x \in \text{Int}(\mathcal{X})$ to avoid annoying edge cases.
 - **(B)** Let $\{f_i\}_{i\in I}$ be a (possibly infinite, uncountable) family of convex functions, and suppose that $f_i(x) < \infty$ for all $x \in \mathcal{X}$. Show that $f(x) := \sup_i f_i(x)$ is convex on \mathcal{X} (you may assume f(x) is finite).
 - (C) Using what we've proven about subgradients, prove that a function $f: \mathcal{X} \to \mathbb{R}$ is convex if and only if it can be written as the supremum of affine functions (e.g. supremum of functions of the form $f_i(x) = \langle a_i, x \rangle + b_i$)

Problem 2: Properties of Subgradients

Let f be a convex function over a domain \mathcal{X} . We will assume $x \in \text{Int}(\mathcal{X})$.

- (A) Show by way of example that the subgradient is not necssarily unique, but that the set of all subgradients is closed and convex. We will denote this $set \partial f(x)$.
- **(B)** Show that f has a directional derivative in each direction. Use this to conclude that a convex f is differentiable at x only if $\partial f(x) = {\nabla f(x)}$.
- **(C)** Show that if $g_1 \in \partial f_1(x)$ and $g_2 \in \partial f_2(x)$, then $g_1 + g_2 \in \partial (f_1 + f_2)(x)$.
- **(D)** Let $f(x) = \sup_i g_i(x)$ which g_i convex. Show that $\operatorname{Conv}\{\partial g_i(x)|g_i(x) = f(x)\} \subseteq \partial f$.
- **(E)** This problem is likely to be changed in further revisions Prove that if $f_i(x) = w_i^{\top} x b_i$ are a compact family of affine functions (i.e. $\{(w_i, b_i)\} \subset \mathbb{R}^{n+1}$ is compact), then the converse is true, namely $\partial f \subset \text{Conv}\{\partial g_i(x)|g_i(x)=f(x)\}$.

Problem 3: Subgradients of Norms

- (A) Subgradient of the ℓ_1 and ℓ_∞ -norms
- **(A.1)** Prove that, for all $x \in \mathbb{R}^n$, $||x||_1 = \sup_{y:||y||_\infty \le 1} \langle x, y \rangle$, $||x||_\infty = \sup_{y:||y||_1 \le 1} \langle x, y \rangle$.
- **(A.2)** Compute $\partial ||x||_1$ and $\partial ||x||_{\infty}$
 - **(B)** Subgradient of the L_1 -norm
- **(B.1)** Let $A \in \mathbb{R}^{m \times n}$. Let $\sigma_i(\cdot)$ denote the *i*-th singular value of a matrix. Using the inequality $\sum_{i=1}^{\min(n,m)} \sigma_i(AB) \leqslant \sum_{i=1}^{\min(n,m)} \sigma_i(A)\sigma_i(B)$ for all $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times m}$ (this is nontrivial, see <this Stack Exchange>), prove the following: For all $X \in \mathbb{R}^{m \times n}$,

$$||X||_{\text{op}} := \max_{Y \in \mathbb{R}^{m \times n} ||Y||_{\text{nuc}} \le 1} \langle X, Y \rangle \text{ and } ||X||_{\text{nuc}} = \max_{Y \in \mathbb{R}^{m \times n} : ||Y||_{\text{op}} \le 1} \langle X, Y \rangle , \tag{1}$$

where $\|X\|_{\text{op}} := \sigma_{\max}(X)$, $\|Y\|_{\text{nuc}} := \sum_{i=1}^{\min(n,m)} \sigma_i(Y)$, and $\langle X,Y \rangle := \text{tr}(X^\top Y)$. You may want to refresh yourself on the relationship between traces, eigenvalues and singular values, and some trace tricks. Feel free to use the bound $\sum_i \lambda_i(A) \leqslant \sum_i \sigma_i(A)$ for any squared matrix A.

- **(B.2)** Compute $\partial ||X||_{op}$ and $\partial ||X||_{nuc}$. Under what conditions is each subgradient unique?
 - **(C)** Let $\|\cdot\|$ be an arbitary norm (not necessarily Euclidean!) on \mathbb{R}^n . Define the dual norm $\|y\|_* := \sup_{x:\|x\| \leq 1} \langle x, y \rangle$.
- **(C.1)** Show that the dual norm is a norm, and describe its subgradient.
- **(C.2)** Show that for all $g, w \in \mathbb{R}^n$, $|\langle g, w \rangle| \leq ||g||_* ||w||$
- **(C.3)** Let f be a convex function on a convex domain \mathcal{X} . Show that f is L-Lipschitz on \mathcal{X} if an only if, for all $x \in \mathcal{X}$, all $g \in \partial f(x)$, and all $y \in \mathcal{X}$, $\langle g, y x \rangle \leqslant L \|x y\|$. Conclude that, if $x \in \text{Int}(\mathcal{X})$, f is L-Lipschitz, and $g \in \partial f(x)$ then $\|g\|_* \leqslant L$.

Problem 4: Extensions for Gradient Descent

- **(A)** In this exercise, you will show some generalizations of the basic grdient descent analysis we saw in class.
- **(A.1)** Prove the following statement:

Proposition 1. Let Ω be a convex domain of radius R, and let f be a convex function on Ω . Let $x_0 \in \Omega$, and let $x_t = \Pi_{\Omega}(x_{t-1} - \eta g_t)$, where $\mathbb{E}[g_t | g_1, \dots, g_{t-1}] \in \partial f(x_{t-1})$, and $\sup_t \mathbb{E}[\|g_t\|^2] \leqslant L^2$ and $\eta = \frac{LR}{\sqrt{T}}$. Prove that

$$\operatorname{Exp}\left[f\left(\frac{1}{T}\sum_{t=1}^{T}x_{t}\right)\right] \leqslant \inf_{x \in \Omega}f(x) + \dots \tag{2}$$

You fill in the

(A.2) Prove the following statement:

Proposition 2. Let Ω be a convex domain of radius R, Let f_1, f_2, \ldots, f_T be L-Lipschitz, convex functions on Ω . Given any $x_0 \in \Omega$, let $x_t = \Pi_{\Omega}(x_{t-1} - \eta g_t)$, where $g_t \in \partial f_{t-1}(x_{t-1})$, and $\eta = \frac{LR}{\sqrt{T}}$. Prove that

$$\frac{1}{T} \sum_{t=1}^{T} f_t(x_t) \leqslant \inf_{x \in \Omega} \frac{1}{T} \sum_{t=1}^{T} f_t(x) + \dots$$
 (3)

You fill in the

(B) In this problem we show that in the stochastic setting, smoothness of the function f does not help. Let $\Omega = [-1,1]$, let σ be a random variable with $\Pr[\sigma = 1] = \Pr[\sigma = -1] = 1/2$, fix an $\epsilon \in (0,1/4)$. Let z_1, z_2, \ldots, z_T be T i.i.d random variables, such that $z_i | \sigma$ are mutually independent, and

$$\Pr[z_i = 1|\sigma] = 1/2 + \sigma\epsilon \text{ and } \Pr[z_i = -1|\sigma] = 1/2 - \sigma\epsilon$$
 (4)

You will need the following information

Lemma 1. Let σ and z_1, z_2, \ldots, z_T be as above. Then there exists a universal constant C such that, if $T \leq C\epsilon^{-2}$, any algorithm which returns an estimate $\widehat{\sigma}$ of σ from observing z_1, z_2, \ldots, z_T satisfies $\Pr[\widehat{\sigma} \neq \sigma] \geqslant \frac{1}{4}$, where \Pr is taking over the randomness in σ , z_1, \ldots, z_T , and any randomness in the algorithm.

- **(B.1)** Construct a function on f_{σ} such that $\mathbb{E}[z_i|\sigma] = \nabla f_{\sigma}(x)$ for all $x \in \Omega$. What is the optimum x_{σ}^* of f_{σ} ? What is the "smoothness" of f_{σ} ?
- **(B.2)** Show that there is a universal constant C' such that, for $T \leq C' \epsilon^{-2}$, $\mathbb{E}[f_{\sigma}(x_{T+1}) \min_{x \in [-1,1]} f_{\sigma}(x)] \geq \epsilon$, where $\operatorname{Exp}_{\sigma}$ is taken over the randomness in σ, z_1, \ldots, Z_T , and any randomness in the algorithm.

Problem 5: Generalized Projections

In this problem, we introduce a useful generalization of gradient descent. Let $\mathcal{X} \subseteq \mathcal{D} \subseteq \mathbb{R}^n$ be convex sets, and let $\Phi : \mathcal{D} \to \mathbb{R}$ be a strictly convex, continuously differentiable map such that $\|\nabla \Phi(x)\|$ diverges on $\mathrm{Bd}(\mathcal{D})$, and for any sequence $x_n \in \mathcal{D}$ such that $\lim \|x_n\| = \infty$, and $\nabla \Phi(\mathcal{D}) = \mathbb{R}^n$. We call Φ a *mirror map*.

(A) Define the Bregman Divergence

$$D_{\Phi}(x,y) = f(x) - f(y) - \nabla f(y)^{\top}(x-y)$$
(5)

and the associated Φ projection

$$\Pi_{\mathcal{X}}^{\Phi}(y) := \arg\min_{x \in \mathcal{X}} D_{\Phi}(x, y) \tag{6}$$

Show that $\Phi(x) = \frac{1}{2} ||x||_2^2$ is a mirror map for $\mathcal{D} = \mathbb{R}^n$, and compute $D_{\Phi}(x,y)$ and explain what $\Pi_{\mathcal{X}}^{\Phi}(y)$ corresponds to

(B) Prove that, for all $x \in \mathcal{X}$ and $y \in \mathcal{D}$,

$$(\nabla \Phi(\Pi_{\mathcal{X}}^{\Phi}(y)) - \nabla \Phi(y))^{\top} (\Pi_{\mathcal{X}}^{\Phi}(y) - x) \le 0 \tag{7}$$

and conclude that

$$D_{\phi}(x, \Phi_{x}(y)) + D_{\phi}(\Phi_{x}(y), y) \leqslant D_{\Phi}(x, y) \tag{8}$$

What does this reduce to when $\Phi(x) = \frac{1}{2} ||x||_2^2$? For the above, you may use the following lemma:

Lemma 2. Let f be convex, and let \mathcal{X} be a closed convex set on which f is differentiable. Then $x^* \in \arg\min_{x \in \mathcal{X}} f(x)$, if and only if, for all $x \in \mathcal{X}$, $\nabla f(x^*)^\top (x^* - y) \leq 0$ for all $y \in \mathcal{X}$.

(C) Consider the following algorithm, known as mirror descent. Let $\mathcal{X} \subset \mathcal{D}$ and Φ be as above, let $f: \mathcal{X} \to \mathbb{R}$ be convex, let $x_1 \in \mathcal{X}$. Fix an $\eta > 0$. For $t \geqslant 1$, define y_{t+1} such that $\nabla \Phi(y_{t+1}) - \nabla \Phi(x_t) = -\eta g_t$, where $g_t \in \partial f(x_t)$. Prove the following:

Theorem 2. Let $\|\cdot\|$ be an *arbitrary* norm on \mathcal{X} , and suppose that Φ is a κ strongly-convex mirror map with respect to $\|\cdot\|$ on \mathcal{X} . Suppose that f is L-Lipschitz with respect to $\|\cdot\|$. Prove that

$$f\left(\frac{1}{T}\sum_{s=1}^{T}x_{s}\right) - \min_{x \in \mathcal{X}}f(x) \leqslant \frac{D(x^{*}, x_{1})}{\eta} + \eta \frac{L^{2}T}{\kappa}$$
(9)

Recall that Φ is κ -strongly convex with respect to $\|\cdot\|$ if and only $\Phi(x) - \Phi(y) \le \nabla \Phi(x)^{\top} (x-y) + \frac{\kappa}{2} \|x-y\|^2$.

(D) A common setup for mirror descent is on the simplex, where $\mathcal{D}: \{x: x[i] > 0 \forall i \in [n]\}$, $\mathcal{X}:=\{x\in\mathcal{D}: \|x\|_1=1\}$, and $\Phi(x)=\sum_i x[i]\log x[i]$. Given an iterate x_t , compute the updates y_{t+1} and x_{t+1} . Here, x[i] is the i-th coordinate of x.

Background

- (A) A ball of radius ϵ about x is the set $\{y : \|y x\|_2 \le \epsilon\}$. One can also consider balls with other norms, but they are all qualitatively equivalent to the Euclidean norm.
- **(B)** For a set $\mathcal{X} \subset \mathbb{R}^n$, its closure $\overline{\mathcal{X}}$ is defined as the set of all $x \in \mathbb{R}^n$ (not necessarily in \mathcal{X}) such that, for all $\epsilon > 0$, there exists a $y \in \mathcal{X}$ such that $\|x y\| \le \epsilon$. In other words, for every $\epsilon > 0$, the ball of radius ϵ around x intersects \mathcal{X} . Int(\mathcal{X}) is defined as the set of all points $x \in \mathcal{X}$ such that there exists an $\epsilon > 0$ for which, for all $y : \|x y\| \le \epsilon$, $y \in \mathcal{X}$; it other words, for some $\epsilon > 0$, the ball of radius $\epsilon > 0$ around x lies entirely in \mathcal{X} . Lastly, we define the boundary $\mathrm{Bd}(\mathcal{X}) := \overline{\mathcal{X}} \mathrm{Int}(\mathcal{X}) = \{x \in \overline{\mathcal{X}} : x \notin \mathrm{Int}(\mathcal{X})\}$.
- **(C)** A set is said to be *open* if $\mathcal{X} = \operatorname{Int} \mathcal{X}$, and closed if $\mathcal{X} \supseteq \operatorname{Bd}(\mathcal{X})$. A set $\mathcal{X} \subset \mathbb{R}^n$ is called compact if and only if it is closed and bounded.
- **(D)** Given a set of real numbers $\{a_i\}_{i\in I}$ (here I is an index set), $\sup_{i\in I} \{a_i\}$ is the smallest $a\in\mathbb{R}$ such that $a\geqslant a_i$ for all $i\in I$. If there is no such smallest a, $\sup\{a_i\}_{i\in I}=\infty$. Otherwise, $\sup\{a_i\}_{i\in I}=a_*\in\mathbb{R}$, and for every $\epsilon>0$, there exists some $i=i(\epsilon)\in I$ such that $a_i\geqslant a_*-\epsilon$.
- **(E)** When there exists an i_* such that $a_{i_*} = \sup\{a_i\}_{i \in I}$, we say that the supremum is attained, and may replace sup with max for maximum. A finite set always has a maximum. When a maximum exists, we write $\arg\max_{i \in I} \{a_i\} := \{a_i : i \in I, a_i = \{\sup_{i' \in I} a_{i'}\}\}$ to denote the set of maximizers.
- **(F)** inf $\{a_i\}_{i\in I}$ is defined as the least $a\in\mathbb{R}$ such that $a_i\geqslant a$ for all $i\in I$, and analogous properties hold.
- **(G)** Defining $f(x) = \sup_{i \in I} f_i(x)$, means that for every x, compute $\sup_{i \in I} \{f_i(x)\}$.
- **(H)** A norm is $\|\cdot\|$ is a function from $\mathbb{R}^n \to \mathbb{R}_{\geq 0}$ such that $\|\alpha x\| = |\alpha| \|x\|$ for any $\alpha \in \mathbb{R}$, $\|x + y\| \leq \|x\| + \|y\|$, and $\|x\| \geq 0$, and $\|x\| = 0 \iff x = 0$.
- (I) A sequence x_n is said to converge to a limit x_* if, for every $\epsilon \ge 0$, there is an $N = N(\epsilon)$ sufficiently large that $||x_n x_*|| \le \epsilon$ for all $n \ge N$. We then write $\lim_{n \to \infty} x_n = x_*$.
- (J) If f is continuous and $\lim_{n\to\infty} x_n = x_*$, then $\lim_{x_n\to\infty} f(x_n) = f(x_*)$. If f is continuous and $\mathcal X$ is compact, then $-\infty < \inf_{x\in\mathcal X} f(x) \leqslant \sup_{x\in\mathcal X} < \infty$. Moreover, there exist x_- and $x_+ \in \mathcal X$ such that $f(x_i) = \inf_{x\in\mathcal X} f(x)$ and $x_+ = \sup_{x\in\mathcal X} f(x)$; hence, $\arg\min_{x\in\mathcal X} f(x)$ and $\arg\max_{x\in\mathcal X} f(x)$ are well-defined, and we can replace sup and max with inf and min.