The Book of Math (Notes)

Kevin Kuo

November 13, 2020

Forward and Disclaimer

These are math notes made by a student (with a physics major and math minor) based off text books. It may contain misconceptions and misinterpretations, thus should not be viewed in the same light of a text book. Use at your own risk and mental sanity.

Symbols

Logic

Name	Symbol	Comment
Exists	3	There exists at least one
For all	A	
Not exists	∄	There does not exist
Exists one	∃!	There only exists one and only one
And	\wedge	
Or	V	Inclusive or
Not	¬	
Logically implies	\Longrightarrow	If
Logically implied by	←	Only if
Logically equivalent	\iff	If and only if
Implies	\longrightarrow	
Implied by	←	
Double Implication	\longleftrightarrow	

Set Notation

Name	Symbol	Comment
Empty Set	Ø	The set that is empty
Natural Numbers	\mathbb{N}	Set of natural numbers not containing 0, equivalent to
		the set of positive integers
Integers	$\mathbb Z$	Set of integers
Rational Numbers	\mathbb{Q}	
Algebraic Numbers	\mathbb{A}	
Real Numbers	\mathbb{R}	
Complex Numbers	$\mathbb C$	
In	€	
Not in	∉	
Owns	Э	Has an element
Proper Subset	C	Subset that is not itself
Subset	\subseteq	
Superset)	Superset that is not itself
Proper Superset	⊇	

Power set	ေ
Union	U
Intersection	\cap
Difference	\

Relationships

Name	Symbol	Comment
Defined	Ė	
Approximate	≈	
Equivalent	≡	Isomorphic (Group Theory)
Congruent	≅	Homomorphic (Group Theory)
Proportional	\propto	

Operators

Name	Symbol	Comment
	\oplus	
	\otimes	
	\odot	
	0	Convolution
Dagger	†	Complex conjugate transpose of a matrix

Arrows

Name	Symbol	Comment
Maps to	\mapsto	

Hebrew

Name	\mathbf{Symbol}	Comment
Aleph	×	Carnality of infinite sets that can be well ordered

Other

Name	\mathbf{Symbol}	Comment
Real part	R	Real part of a number
Imaginary part	I	Imaginary part of a number

Contents

Ι	Logic	1
1	Proofs	3
II	Numbers	5
2	Natural $\mathbb N$	7
3	Integers \mathbb{Z}	9
4	Rationals $\mathbb Q$	11
5	Constructible	13
6	$\textbf{Algebraic} \ \mathbb{A}$	15
7	Reals $\mathbb R$	17
8	Complex $\mathbb C$	19
II	I Real Analysis	21
IV	Complex Analysis	25
9	Conformal Mapping	29

V Ordinary Differential Equations	31
VI Nonlinear Dynamics	33
VII Partial Differential Equations	35
VIII Integral Equations	39
IX Linear Algebra	41
10 Markov Chains	43
X Tensors	45
XI Riemann Geometry	47
XII Abstract Algebra	49
11 Groups	51
12 Rings	53
12.1 Ideals	53
13 Integral Domains	55
14 GCD Domains	57
15 Unique Factorization Domains	59
16 Principal Ideal Domains	61
17 Fields	63

XIII Galois Theory	65
XIV C-Star Algebra	69
XV Set Theory	71
XVI Model Theory	73
XVII Statistics	7 5
XVIII Tips and Tricks	77
18 Integration Techniques	7 9
18.1 DI Method (Integration Table)	79
18.2 Feynman Integration	79
XIX Index	81
XX Bibliography	83

Part I

Logic

Proofs

Part II

Numbers

Natural \mathbb{N}

Integers \mathbb{Z}

Rationals \mathbb{Q}

Constructible

Algebraic \mathbb{A}

Reals \mathbb{R}

Complex $\mathbb C$

Part III Real Analysis

Books Used:

1. Kenneth A. Ross - Elementary Analysis (2nd Ed.) $\left[1\right]$

Part IV Complex Analysis

Books Used:

1. Brown and Churchill - Complex Variables and Applications $\left[2\right]$

Conformal Mapping

${\bf Part~V}$ ${\bf Ordinary~Differential~Equations}$

Part VI Nonlinear Dynamics

Part VII Partial Differential Equations

Calculus of Variations

Part VIII Integral Equations

Part IX Linear Algebra

Markov Chains

Part X

Tensors

Part XI Riemann Geometry

Part XII Abstract Algebra

Groups

Rings

12.1 Ideals

Integral Domains

GCD Domains

Unique Factorization Domains

Principal Ideal Domains

Fields

Part XIII Galois Theory

Lie Algebra

Part XIV

C-Star Algebra

Part XV
Set Theory

Part XVI Model Theory

Part XVII

Statistics

Part XVIII Tips and Tricks

Chapter 18

Integration Techniques

- 18.1 DI Method (Integration Table)
- 18.2 Feynman Integration

Part XIX Index

Part XX Bibliography

Bibliography

- [1] Kenneth A. Ross. *Elementary Analysis*. Springer, 2 edition, 2013.
- [2] James Ward Brown and Ruel V. Churchill. *Complex Variables and Applications*. McGraw-Hill Education, 9 edition, 2014.