

 $Head \, to \, \underline{www.savemyexams.com} \, for \, more \, awe some \, resources \,$

AQA GCSE Maths: Higher

Linear Graphs

Contents

- # Equations of Straight Lines (y = mx + c)
- * Drawing Straight Line Graphs
- * Parallel Lines
- * Perpendicular Lines

Equations of Straight Lines (y = mx + c)

Your notes

Finding Equations of Straight Lines What is the equation of a straight line?

- The general **equation** of a **straight line** is **y** = **mx** + **c** where
 - *m* is the gradient
 - c is the y-intercept
 - The value where it cuts the y-axis
- y = 5x + 2 is a straight line with
 - gradient 5
 - y-intercept 2
- y = 3 4x is a straight line with
 - gradient -4
 - y-intercept 3

How do I find the equation of a straight line from a graph?

• Find the **gradient** by drawing a triangle and using

• gradient =
$$\frac{\text{rise}}{\text{run}}$$

- Positive for uphill lines, negative for downhill
- Read off the **y-intercept** from the graph
 - Where it cuts the y-axis
- Substitute these values into y = mx + c

What if no y-intercept is shown?

- If you can't read off the y-intercept
 - find any **point** on the line
 - substitute it into the equation

• Write
$$y = 6x + c$$

- Substitute in x = 2 and y = 15
 - $15 = 6 \times 2 + c$
 - 15 = 12 + c
- Solve for c
 - $\mathbf{c} = 3$
- The equation is y = 6x + 3

What are the equations of horizontal and vertical lines?

- A horizontal line has the equation y = c
 - c is the y-intercept
- A vertical line has the equation x = k
 - *k* is the *x*-intercept
- For example
 - y = 4
 - x = -2

Worked Example

(a) Find the equation of the straight line shown in the diagram below.

 $Head to \underline{www.savemyexams.com} for more awe some resources$

Find m, the gradient

Identify any two points the line passes through and work out the rise and run

Line passes through (2, 4) and (10, 0)

Head to www.savemyexams.com for more awesome resources

The rise is 4 The run is 8

Calculate the fraction run

$$\frac{\text{rise}}{\text{run}} = \frac{4}{8} = \frac{1}{2}$$

The slope is downward (downhill), so it is a negative gradient

gradient,
$$m = -\frac{1}{2}$$

Now find the *y*-intercept The line cuts the *y*-axis at 5

y-intercept,
$$c = 5$$

Substitute the gradient, m, and the y-intercept, c, into y = mx + c

$$y = -\frac{1}{2}x + 5$$

(b) Find the equation of the straight line with a gradient of 3 that passes through the point (5, 4).

Substitute m = 3 into y = mx + cLeave c as an unknown letter

$$y = 3x + c$$

Substitute x = 5 and y = 4 into the equation Solve the equation to find c

$$4 = 3 \times 5 + c$$
$$4 = 15 + c$$
$$-11 = c$$

You now know c

Replace c with -11 to complete the equation of the line

$$y = 3x - 11$$

Drawing Straight Line Graphs

Your notes

Drawing Linear Graphs

How do I draw a straight line from a table of values?

- You may be given a **table of values** with **no** equation
- Use the x and y values to form a point with **coordinates** (x, y)
 - Then **plot** these points
 - Use a ruler to draw a **straight line** through them
 - All points should lie on the line
- For example
 - The points below are (-3, 0), (-2, 2), ... etc

X	-3	-2	-1	0	1	2	3
У	0	2	4	6	8	10	12

How do I draw a straight line using y = mx + c?

- Use the equation to create your own table of values
 - Choose points that are **spread out** across the axes given
- For example, plot y = 2x + 1 on axes from x = 0 to x = 10
 - Substitute in x = 0, x = 5 and x = 10 to get y coordinates
 - Then plot those points

X	0	5	10
y	1	11	21

How do I draw a straight line without using a table of values?

• Assuming the equation is in the form y = mx + c

• A gradient of
$$\frac{a}{b}$$
 would be a units up for every b units right

What if the equation is not in the form y = mx + c?

• Equations will not always be presented in the form
$$y = mx + c$$

• Rearranging to
$$y = mx + c$$
 will make plotting these graphs easier

• Consider the equation
$$3x + 5y = 30$$

$$5y = -3x + 30$$

$$y = -\frac{3}{5}x + 6$$

• It can now be seen that the gradient is
$$-\frac{3}{5}$$
 and the y-intercept is 6

Make sure you only have 1 y on one side, rather than say, 5y

How can I plot equations in the form ax + by = c?

• Substitute in
$$x = 0$$
 to find the y-intercept

• When
$$x = 0$$
, $5y = 30$, so $y = 6$

• When
$$y = 0$$
, $3x = 30$, so $x = 10$

• The points (0, 6) and (10, 0) can then be plotted and joined with a straight line

Examiner Tips and Tricks

• Always plot at least 3 points (just in case one of your end points is wrong!)

Worked Example

On the same set of axes, draw the graphs of $\frac{y+1}{3} = x$ and $y = -\frac{3}{5}x + 3$.

Rearrange $\frac{y+1}{3} = x$ into the form y = mx + c to make it easier to plot

$$\frac{y+1}{3} = x$$

$$y+1=3x$$

$$y = 3x - 1$$

For y = 3x - 1, create a table of values

X	0	1	2
y	-1	2	5

Plot the points (0, -1), (1, 2) and (2, 5)

Connect with a straight line

Alternatively, start at the y-intercept (0, -1) and mark the next points 3 units up for every 1 unit to the right

For
$$y = -\frac{3}{5}x + 3$$
, create a table of values

Because of the fraction, x = 5 is a good point to include

X	0	3	5
y	3	1.2	0

Plot the points (0, 3), (3, 1.2) and (5, 0)

Connect with a straight line

Alternatively, start at the y-intercept (0, 3) and mark the next points 3 units down for every 5 units to the right

Parallel Lines

Your notes

Parallel Lines

What are parallel lines?

- Parallel lines are straight lines with the same gradient
 - Two parallel lines will **never meet**
 - They just stay side-by-side forever
- The equation of the line parallel to y = mx + c is y = mx + d
 - y=2x+1 and y=2x+5 are parallel
 - y=2x+1 and y=3x+1 are **not** parallel

How do I find the equation of a parallel line?

- For example, to find the equation of the line parallel to y = 2x + 1 which passes through the point (3, 14)
 - write the parallel line as y = 2x + d
 - using the same gradient of 2
 - substitute x = 3 and y = 14 into this equation
 - $14 = 2 \times 3 + d$
 - 14 = 6 + d
 - solve to find d
 - = d = 8
 - The equation is y = 2x + 8

Worked Example

Find the equation of the line that passes through the point (2, 1), which is parallel to the straight line y = 3x + 7.

Parallel means the gradient will be the same Use y = mx + d where m = 3

$$y = 3x + d$$

Substitute in x = 2 and y = 1

$$1 = 3 \times 2 + d$$

Simplify the equation

$$1 = 6 + d$$

Solve the equation to find d (by subtracting 6 from both sides)

$$-5 = d$$

Write out the final answer in the form y = mx + d

$$y=3x-5$$

Perpendicular Lines

Your notes

Perpendicular Lines

What are perpendicular lines?

- Perpendicular lines are straight lines which meet at right-angles (90°)
- One line may be referred to as a **normal** to the other line

How are the gradients of perpendicular lines related?

- Gradients m_1 and m_2 are perpendicular if $m_1 \times m_2 = -1$
 - For example
 - land-l
 - $\frac{1}{3}$ and -3
 - $-\frac{2}{3}$ and $\frac{3}{2}$
- The two gradients are **negative reciprocals** of one another
- We can use $m_2 = -\frac{1}{m_1}$ to find a perpendicular gradient

How can I tell if two lines are perpendicular?

- Given two lines in the form y = mx + c, simply check if their gradients (m) are negative reciprocals of one another
 - $y = \frac{1}{3}x + 10 \text{ and } y = -3x 18 \text{ are perpendicular}$
 - $y = \frac{1}{7}x + 16$ and y = 7x 8 are not perpendicular
- One or both of the equations may not be written in the form y = mx + c
 - In this case, you should rearrange both equations into the form y = mx + c

Their gradients can then be easily compared

How do I find the equation of a line perpendicular to another?

- You need to be able to find the equation of line that passes through a particular point and is perpendicular to another line
 - E.g. 5y = 4x + 30 which passes through the point (8, 3)
- Rearrange the equation into the form y = mx + c so that its gradient can be identified more easily

$$y = \frac{4}{5}x + 6$$

- Find the gradient of the perpendicular line
 - The gradient of the original line is $\frac{4}{5}$
 - $\blacksquare \quad \text{Therefore the } \mathbf{gradient} \ \mathbf{of} \ \mathbf{the} \ \mathbf{perpendicular} \ \mathsf{line} \ \mathsf{is} \ -\frac{5}{4}$
 - The perpendicular line has an equation in the form $y = -\frac{5}{4}x + c$
- ullet Substitute the given point into the equation for the perpendicular and solve for ${\cal C}$

Substitute (8, 3), into
$$y = -\frac{5}{4}x + c$$

$$= 3 = -\frac{5}{4}(8) + c$$

$$c = 13$$

- ullet Substitute the value of $oldsymbol{c}$ to find the **equation of the perpendicular**
 - The **equation** of the perpendicular line is $y = -\frac{5}{4}x + 13$
 - This could also be written as 4y = -5x + 52 or equivalent

Worked Example

The line L has equation y - 2x + 2 = 0.

Find the equation of the line perpendicular to L which passes through the point (2, -3).

Leave your answer in the form ax + by + c = 0 where a, b and c are integers.

Rearrange L into the form y = mx + c so we can identify the gradient

$$y-2x+2=0$$
$$y=2x-2$$

Gradient of L is 2

The gradient of the line perpendicular to L will be the negative reciprocal of 2

$$m=-\frac{1}{2}$$

Substitute the point (2, -3) into the equation $y = -\frac{1}{2}x + c$

Solve for $oldsymbol{c}$

$$y = -\frac{1}{2}x + c$$

$$-3 = -\frac{1}{2}(2) + c$$

$$-3 = -1 + c$$

$$c = -2$$

Write the full equation of the line

$$y = -\frac{1}{2}x - 2$$

The question asks for the line to be written in the form ax + by + c = 0 where a, b and c are integers

Move all the terms to the left hand side

$$\frac{1}{2}x + y + 2 = 0$$

Then multiply every term by 2, to ensure they are all integers

$$x + 2y + 4 = 0$$

How do I find the equation of a perpendicular bisector?

- A perpendicular bisector of a line segment cuts the line segment in half at a right angle
- Finding the **equation of the perpendicular bisector** of a line segment is very similar to finding the equation of a any perpendicular
 - Find the coordinates of the **midpoint** of the line segment
 - The perpendicular bisector will pass through this point
 - Find the gradient of the line segment
 - Then find the **negative reciprocal** of this gradient
 - This will be the gradient of the perpendicular bisector, m
 - Write the **equation** of the perpendicular bisector in the form y = mx + c
 - Substitute the midpoint of the line segment into the equation of the perpendicular bisector
 - Solve to find C
 - Write the full **equation** of the perpendicular bisector in the form y = mx + c
 - **Rearrange** the equation if the question requires a different form

Worked Example

Find the equation of the perpendicular bisector of the line segment joining the points (4, -6) and (8, 6).

Find the coordinates of the **midpoint** of the line segment

The perpendicular bisector will pass through this point

$$\left(\frac{4+8}{2}, \frac{-6+6}{2}\right) = (6,0)$$

Find the gradient of the line segment

$$\frac{-6-6}{4-8} = \frac{-12}{-4} = 3$$

Find the negative reciprocal of this

This will be the gradient of the perpendicular bisector, m

$$m = -\frac{1}{3}$$

Write the equation of the perpendicular bisector in the form y = mx + c

$$y = -\frac{1}{3}x + c$$

Substitute in the midpoint (6, 0) and solve to find ${m c}$

$$0 = -\frac{1}{3}(6) + c$$
$$0 = -2 + c$$
$$c = 2$$

Write the full equation of the perpendicular bisector

$$y = -\frac{1}{3}x + 2$$