KKBox's Churn Prediction Challenge

Can you predict when subscribers will churn?

KKBOX is Asia's leading music streaming service

대회 설명

- Kkbox 유료 사용자가 3월에 이탈할 것인가? (Logloss 사용)

- 어머나? 정답셋 유출! 대회 폭파??

- 4월 이탈예측으로 변경

- 데이터 수정

데이터 설명

파생변수 생성

transactions
msno
payment_method_id
payment_plan_days
plan_list_price
actual_amount_paid
is_auto_renew
transaction_date
membership_expire_date
is cancel

파생변수
msno
pay_30days
pay_7days
payday_sum_2015
payday_sum_2016
payday_sum_2017
avg_auto_renew
is_cancel
trans_cnt
fst_exp_date
lst_exp_date
sum_paydays
is_continuous
cancel_0_to_1_cnt
cancel_1_to_0_cnt
last_exp_month
unique_pay_method_cnt
max_pay_method
mean_diff_trans_exp
amt_per_day

user_logs		파생변수
msno		msno
date		sum_weight_logs_day
num_25		lst_day
num_50		log_count
num_75		mean_num_25
num_985		mean_num_50
num_100		mean_num_75
num_unq		mean_num_985
total_secs		mean_num_100
		mean_total_secs
		mean_rate_25
		mean_rate_50
		mean_rate_75
		mean_rate_985
		mean_rate_100
		median_visit_days

최종 데이터셋

- X 변수 39개
- Y 변수 is_churn

고객[[

target

	ı
msno	l
is_churn	l
sum_weight_logs_day	l
lst_day	l
log_count	ı
mean_num_25	ı
mean_num_50	ı
mean_num_75	ı
mean_num_985	ı
mean_num_100	ı
mean_total_secs	ı
mean_rate_25	ı
mean_rate_50	ı
mean_rate_75	ı
mean_rate_985	ı
mean_rate_100	ı
median_visit_days	ı
pay_30days	ı
pay_7days	ı
payday_sum_2015	ı
payday_sum_2016	ı
payday_sum_2017	ı
avg_auto_renew	ı
is_cancel	ı
trans_cnt	ı
fst_exp_date	ı
lst_exp_date	ı
sum_paydays	ı
is_continuous	ı
cancel_0_to_1_cnt	ı
cancel_1_to_0_cnt	ı
last_exp_month	ı
unique_pay_method_cnt	ı
max_pay_method	ı
mean_diff_trans_exp	ı
amt_per_day	١
city	۱
bd	١
gender	١
registered via	١
registration_init_time	١
v	1

User_logs 파생변수 15개

transaction 파생변수 19개

members 변수 5개

문제점

Unbalanced Data

Y변수 is_churn의 비율이 0:1 => 93:7

해결책: upsampling, downsampling, threshold 조정

=> 0,1을 나누는 것 때문에 시행한다고 생각. Logloss score에서는 필요 X

Feature Selection

해결책: Stepwise, forward, backward deletion, lasso.

⇒Tree based Model은 변수를 줄였을 때 성능향상이 일어나기보다는 성능이 조금이라도 떨어진다.

최종 모델

Gbm, Randomforest 두 모델의 조화평균 =>0.10246 (public) / 0.10389 (private) 13등!

- 왜 선택했나?

Deeplearning => 0.12212

Xgboost => 0.11408

Gbm = > 0.10376

Randomforest => 0.10322

- 0.10065 -> 10등 -> 다함께 한것
- 0.10389 -> 13등 -> 발표는 나 혼자 한 걸로
- 단, 10등에서 말소!!! ㅠㅠ
- 응??? 이유는?
- 계정 3개 사용
- 룰을 제대로 안 읽은 잘못.
- 그리고 10등까지 할 줄 몰랐음.
- 그래서 열심히 했지만 기록으로 남는게 없어요!
- 경험은 했지만~ 코드도 있지만~ 기록이 안남네요 ㅠㅠ

작업환경

〈실제 작업환경〉

- RAM 8G
- CPU i5
- Macbook pro
- Rstudio
- H20 packages

〈대회 후 작업환경〉

- RAM 64G
- CPU i7-8700K 12 cores
- OS Windows10
- Rstudio
- H20 packages
- docker

한계

Testset: 907,471

Trainset: 10,394,394

(2016년 2월 - 2017년 2월)

User_logs: 410,502,906

Members: 6,769,473

- 데이터가 너무 커서 시간이 너무 오래 걸린다.
- 캐글 대회 1등은 데이터 핸들링을 MS SQL로 했다고 한다.
- 데이터 핸들링 코드 짜는 거 제외 모두 돌리는데 최소 12시간은 걸렸음. 맥북으로는 transaction만 처리하는데 12시간 걸렸음.
- 모델을 한번 fitting 하는 시간도 한번에 40분 정도 걸려서 nfolds=3이 한계 지. 맥북으로는 2시간 정도?!(3배 차이)
- 그래서 모델 튜닝을 많이 못해본 것이 가장 아쉽다.
- 모델 튜닝하지 않고 기본 ntree=200, nfolds=3을 기본으로 피팅.
- 파생변수 만드는 것에 더 집중.

최종 결과 및 느낀점

- 어떤 것이든 룰을 먼저 확인.
- 모델 튜닝 부분이 부족.
- Docker를 활용하여 rstudio작업환경 구성법을 배움.
- 파생변수를 만들면서 dplyr을 아주 잘 활용할 수 있게 되었음.
- 코드를 짤 때부터 주석을 잘 달아둬야 한다.