Formulalar. Tengkuchli formulalar

Oldingi paragrafda asosan mantiqiy amallarni oʻrganib chiqdik. Endi bu amallar orasida bogʻlanishlar mavjudligini koʻrsatamiz. Buning uchun tengkuchli mulohazalar tushunchasini kiritamiz.

$$x_1, x_2, x_3, ..., x_n$$
 (1)

n ta mulohaza berilgan bo'lsin.

3.1-ta'rif. (1) mulohazalami inkor, diz'yunkstiya, kon'yunkstiya, implikastiya va ekvivalenstiya mantiqiy amallar vositasi bilan ma'lum tartibda birlashtirib hosil etilgan murakkab mulohazaga formula deb aytamiz.

Masalan: $[x_1 \lor (x_2 \land x_3)] \to x_4$; $[x_1 \land (x_2 \to x_3)] \lor (x_4 \leftrightarrow x_5)$; $(x \leftrightarrow y) \land (x \lor y)$; $(x \to y) \land (y \to z) \to (z \to x)$ murakkab mulohazalar formulalar bo'ladilar. Qavslar mulohazalar ustida mantiqiy amallarning qay tartibda bajarilishini ko'rsatadi.

Endi formula tushunchasiga matematik ta'rif beraylik. Bu tushuncha quyidagicha aniqlanadi.

- **3.2-ta'rif.** 1) har qanday $x_1, x_2, ..., x_n$ mulohazalarning istalgan biri formuladir,
- 2) agar A va B larning har biri formula bo'lsa, u holda $(A \wedge B)$, $(A \vee B)$,
- $(A \rightarrow B)$, $(A \leftrightarrow B)$ va \overline{A} lar ham formulalardir.
- 3) 1 va 2-bandlarda ko'rsatilgan ifodalardan tashqari boshqa hech qanday ifoda formula bo'la olmaydi.

 $x_1, x_2, ..., x_n$ o'zgaruvchilarni elementar formulalar deb ataymiz.

Keyinchalik formulani lozim bo'lgandagina $f(x_1, x_2, ..., x_n)$ funkstiya shaklida belgilashdan foydalanamiz.

Har qanday formula uchun chinlik jadvali tuzish mumkin. Buning uchun asosiy chinlik jadvallaridan ketma-ket foydalanish kerak.

Masalan, $(x \land y) \to (\overline{x \lor y})$ formulaning chinlik jadvali quyidagicha bo'ladi:

х	у	- x	хлу	_ x∨y		$(x \land y) \rightarrow (x \lor y)$
ch	ch	yo	ch	ch	yo	yo
ch	yо	yо	yo	yо	d	ch
yо	ch	ch	yo	ch	yо	ch
yо	yо	ch	yo	ch	yo	ch

Shunday qilib, har qanday formulaga (ch, yo) to'plamining bir elementi mos qilib qo'yiladi.

3.3-ta'rif. A va B formulalar berilgan bo'lsin. (1) elementar mulohazalarning har bir qiymatlari satri uchun A va B formulalarning mos qiymatlari bir xil bo'lsa, A va B formulalarga tengkuchli formulalar deb aytiladi va bu A = B tarzda belgilanadi. (1) qatorning kamida bitta qiyatlari satri uchun A va B formulalarning mos qiymatlari bir xil bo'lmasa, u holda A va B formulalarga tengkuchlimas formulalar deb aytiladi va $A \neq B$ ko'rinishda belgilanadi.

A va B formulalarning tengkuchli bo'lish-bo'lmasligi ular uchun tuzilgan chinlik jadvallari yordamida aniqlanadi. Misollar. 1. $\bar{x} \lor y = A$ va $B = x \to y$ formulalar benilgan bo'lsin.

х	y	- x	$\bar{x} \vee y$	$x \rightarrow y$
ch	ch	yo	ch	ch
ch	yо	yo	yo	yо
yo	ch	ch	ch	ch
yо	yо	ch	ch	ch

Jadvaldan ko'rinib turibdiki, to'rtala qiymatlar satri uchun A va B formulalarning mos qiymatlari bir xil. Demak, ta'rifga asosan A = B.

2. $x \lor x = x$ tengligi isbot etilsin. $A = x \lor x$, B = x.

х	$x \vee x$
ch	ch
yo	yo

Demak, jadvalga asosan A = B.

3.
$$A = (x \vee \overline{x}) \wedge y$$
, $B = y$.

х	y	-	x \(\frac{1}{x} \)	$(x \vee \overline{x}) \wedge y$
ch	ch	yo	ch	ch
ch	yо	yо	ch	yo
yо	ch	ch	ch	ch
yо	yо	ch	ch	yo

Demak, $(x \lor \overline{x}) \land y = y$.

Xuddi shunday quyidagi tengkuchliliklarni isbotlash mumkin:

4.
$$x \vee \overline{x} = y \vee \overline{y}$$
, 5. $x \vee (x \wedge y) = x$,

$$5. x \vee (x \wedge y) = x,$$

$$6.(x \lor \overline{x}) \rightarrow y = (x \land \overline{x}) \lor y, \quad 7. \ x \lor (y \land z) = (x \lor y) \land (x \lor z).$$

Oddiy algebrada tenglik belgisi «=» quyidagi aksiomalarni qanoatlantiradi: 1) ixtiyoriy a son uchun a = a (refleksivlik); 2) agar a = b bo'lsa, u holda b = a (simmetriklik); 3) agar a = b, b = c bo'lsa, u holda a = c (tranzitivlik) bo'ladi.

Shunga o'xshash, mulohazalar algebrasida, ekvivalentlik ta'rifidan osonlik bilan ko'rish mumkinki, u refleksiv, simmetrik va tranzitiv, ya'ni

- 1) ixtiyoriy x mulohaza uchun x = x;
- 2) ixtiyoriy ikki x va y mulohazalar uchun, agar x≡y bo'lsa, u holda

 $y \equiv \chi$

3) ixtiyoriy x,y,z uchta mulohazalar uchun $x \equiv y$ va $y \equiv z$ bo'lsa, u holda $x \equiv z$.