# Architecture Synthesis I

Scheduling with Pipeline Resources, Integer Linear Programming, Iterative Algorithms

Exercise class 10

Presenter:
Jürgen Mattheis

In cooperation with: Pascal Walter Based on the lecture of: Marco Zimmerling

January 31, 2023

University of Freiburg, Chair for Embedded Systems

# Gliederung

Organisation

Overview

Task 1

Task 2

Task 3

# Organisation



# Organisation I

► feedback for me: https://forms.gle/f3YN8EFrZ1vsfPoC6



► feedback from students in the last exercise class: don't overexplain tasks at the beginning so there's enough time for the tasks at the end

# Organisation I

the exercise class videos on youtube do now have a title containing the topics covered in the exercises of the corresponding exercise class



# Overview



# Overview Scheduling



Jürgen Mattheis Architecture Synthesis I University of Freiburg





# Task 1 I

#### Scheduling with Pipeline Resources



Jürgen Mattheis Architecture Synthesis I University of Freiburg

#### Scheduling with Pipeline Resources

#### Solution 1.1:

```
LIST(G_S(V_S, E_S), G_R(V_R, E_R), \alpha, \beta, priorities){
 t = 1:
 REPEAT {
   FORALL v_k \in V_T {
    Determine candidates U_{t,k} to be scheduled;
    Determine set of occupied resources O_{t,k};
    Choose subset S_t \subseteq U_{t,k} with maximal priority
     and |S_{t,k}| + |O_{t,k}| \leq \alpha(v_k);
    \tau(v_i) = t \ \forall v_i \in S_k: }
   t = t + 1:
 } UNTIL (v_n planned)
 RETURN (\tau): }
```

### Scheduling with Pipeline Resources

#### Solution 1.1:



- $ightharpoonup O_{t,k}$  is the set of resources of type k that are occupied in the time slot t and are not yet available for the following operation. On each of these resources exactly one operation is executed in a pipeline-interval.
- ▶  $O_{t,k} = \{v_s : \beta(v_s) = v_t \land \tau(v_s) < t < \tau(v_s) + PI\}$  instead of  $T_{t,k} = \{v_s : \beta(v_s) = v_t \land \tau(v_s) < t < \tau(v_s) + w(v_s, v_t)\}$

#### Scheduling with Pipeline Resources

## Solution 1.2:

without pipelining:

| t   | k              | $U_{r,k}$ | $T_{r,k}$ | $S_{t,k}$ |
|-----|----------------|-----------|-----------|-----------|
| 0   | n              | v3        | -7,8      | v3        |
|     | 12             | v1 v2     | -         | v1        |
| 1   | r <sub>1</sub> |           | -<br>v3   | -         |
|     | 12             | v2        | v1        | -         |
| 2   | n              |           | -         | -         |
|     | r <sub>2</sub> | v2 v5     | vI        |           |
| 3   | r <sub>1</sub> |           | -         | -         |
|     | 12             | v2 v5     | v1        | -         |
| - 4 | r <sub>1</sub> |           |           | -         |
|     | 12             | v5        |           | v2        |
| 5   |                | -         |           |           |
|     | r <sub>2</sub> | v5        | v2        | -         |
| 6   | r <sub>1</sub> |           |           |           |
|     | 72             | -<br>v5   | -<br>v2   |           |
| 7   | r <sub>1</sub> | -         |           |           |
|     | r <sub>2</sub> | v5        | v2        |           |
| 8   | n              | v4        | -         | v4        |
|     | 12             | v5        |           | V5        |
| 9   | r <sub>1</sub> |           | v4        |           |
|     | 72             |           | ν5        |           |
| 10  | r <sub>1</sub> |           | -         |           |
|     | r <sub>2</sub> |           | ν5        |           |
| 11  | η              |           | -         |           |
|     | r <sub>2</sub> | -         | ν5        |           |
| 12  | r <sub>1</sub> | -         | -         |           |
|     | r <sub>2</sub> | νδ        | -         | νő        |
| 13  | r <sub>1</sub> | -         | -         |           |
|     | r <sub>2</sub> | -         | νő        |           |
| 14  | n              | -         | -         | -         |
|     | r <sub>2</sub> | -         | νő        |           |
| 15  | r <sub>1</sub> | -         | -         | -         |
|     | 12             | -         | νő        | -         |
| 15  | r <sub>1</sub> | -         | -         |           |
|     | r <sub>2</sub> | -         | -         | -         |

#### Scheduling with Pipeline Resources

#### Solution 1.2: U, , 0, , r<sub>1</sub> $r_1$ r<sub>1</sub> $r_1$ $r_1$ r<sub>2</sub> r<sub>2</sub> r<sub>2</sub> 10 r<sub>2</sub> 11 12

Jürgen Mattheis Architecture Synthesis I University of Freiburg

#### Scheduling with Pipeline Resources

#### Solution 1.2: U, , 0, , S, , V1 , V2 V3 $V_2$ , $V_5$ V2 Vs Vs. $V_A$ \_ V<sub>4</sub> V4 V<sub>6</sub> 10 11

12

University of Freiburg

\_

\_

## Solution 1.2:



► the resulting latency is 12



Jürgen Mattheis Architecture Synthesis I

## Task 2 I

#### Integer Linear Programming

#### Task 2.1:



- ► resource type r₁: multiplication operation takes 2 time units and 2 units of this resource type are allocated
- resource type r<sub>2</sub>: all other ALU Operations take 1 time unit and 2 units of this resource type are allocated

## Task 2 II

### Integer Linear Programming

## Requirements 2.1:

```
\begin{split} & \mathsf{ASAP}(G_S(V_S, E_S), w) \ \{ \\ & \tau(v_0) = 1; \\ & \mathsf{REPEAT} \ \{ \\ & \mathsf{Determine} \ v_i \ \mathsf{whose} \ \mathsf{predec.} \ \mathsf{are} \ \mathsf{planed}; \\ & \tau(v_i) = \max\{\tau(v_j) + w(v_j) \ \forall (v_j, v_i) \in E_S \} \\ & \} \ \mathsf{UNTIL} \ (v_n \ \mathsf{is} \ \mathsf{planned}); \\ & \mathsf{RETURN} \ (\tau); \\ \} \end{split}
```

## Task 2 III

### Integer Linear Programming

## Requirements 2.1:

```
\begin{split} \mathsf{ALAP}(G_S(V_S, E_S), w, L_{max}) \ \{ \\ \tau(v_n) &= L_{max} + 1; \\ \mathsf{REPEAT} \ \{ \\ \quad \mathsf{Determine} \ v_i \ \mathsf{whose} \ \mathsf{succ.} \ \mathsf{are} \ \mathsf{planed}; \\ \tau(v_i) &= \min\{\tau(v_j) \ \forall (v_i, v_j) \in E_S\} - w(v_i) \\ \} \ \mathsf{UNTIL} \ (v_0 \ \mathsf{is} \ \mathsf{planned}); \\ \mathsf{RETURN} \ (\tau); \\ \} \end{split}
```

## Task 2 IV

#### Integer Linear Programming

## Solution 2.1:



7

## Task 2 V

#### Integer Linear Programming

### Solution 2.1:





## Task 2 VI



Jürgen Mattheis

## Task 2 I

### Integer Linear Programming

#### Solution 2.2:

7

► (i) Objective function:

$$\min \quad L = \tau \left( v_n \right) - \tau \left( v_0 \right)$$

► (ii) Introduction of binary variables:

$$x_{1,1} + x_{1,2} = 1$$
  $1 \cdot x_{1,1} + 2 \cdot x_{1,2} = \tau(v_1)$ 

$$x_{2,1} + x_{2,2} = 1$$
  $1 \cdot x_{2,1} + 2 \cdot x_{2,2} = \tau(v_2)$ 

$$x_{3,3} + x_{3,4} = 1$$
  $3 \cdot x_{3,3} + 4 \cdot x_{3,4} = \tau(v_3)$ 

$$x_{4.5} + x_{4.6} = 1$$
  $5 \cdot x_{4.5} + 6 \cdot x_{4.6} = \tau(v_4)$ 

$$x_{5.6} + x_{5.7} = 1$$
 6 ·  $x_{5.6} + 7$  ·  $x_{5.7} = \tau (v_5)$ 

## Task 2 II

### Integer Linear Programming

#### Solution 2.2:

1

$$x_{6,1} + x_{6,2} + x_{6,3} = 1$$
  $1 \cdot x_{6,1} + 2 \cdot x_{6,2} + 3 \cdot x_{6,3} = \tau (v_6)$   
 $x_{7,3} + x_{7,4} + x_{7,5} = 1$   $3 \cdot x_{7,3} + 4 \cdot x_{7,4} + 5 \cdot x_{7,5} = \tau (v_7)$   
 $x_{8,1} + \ldots + x_{8,5} = 1$   $1 \cdot x_{8,1} + \ldots + 5 \cdot x_{8,5} = \tau (v_8)$   
 $x_{9,3} + \ldots + x_{9,7} = 1$   $3 \cdot x_{9,3} + \ldots + 7 \cdot x_{9,7} = \tau (v_9)$   
 $x_{10,1} + \ldots + x_{10,6} = 1$   $1 \cdot x_{10,1} + \ldots + 6 \cdot x_{10,6} = \tau (v_{10})$   
 $x_{11,2} + \ldots + x_{11,7} = 1$   $2 \cdot x_{11,2} + \ldots + 7 \cdot x_{11,7} = \tau (v_{11})$ 

## Task 2 III

#### Integer Linear Programming

#### Solution 2.2:

1

► (iii) Data dependencies:

$$au(v_3) - au(v_1) \ge 2 \quad au(v_3) - au(v_2) \ge 2$$
 $au(v_4) - au(v_3) \ge 2 \quad au(v_5) - au(v_4) \ge 1$ 
 $au(v_7) - au(v_6) \ge 2 \quad au(v_5) - au(v_7) \ge 2$ 
 $au(v_9) - au(v_8) \ge 2 \quad au(v_{11}) - au(v_{10}) \ge 1$ 
 $au(v_n) - au(v_5) \ge 1 \quad au(v_n) - au(v_9) \ge 1$ 
 $au(v_n) - au(v_{11}) \ge 1$ 
 $au(v_1), au(v_2), au(v_6), au(v_8), au(v_{10}) \ge au(v_0) \ge 1$ 

## Task 2 IV

### Integer Linear Programming

### Solution 2.2:

Z

- (iv) Resource limitations:
  - ightharpoonup t=1:

$$x_{1,1} + x_{2,1} + x_{6,1} + x_{8,1} \le 2$$
$$x_{10,1} \le 2$$

t = 2:

$$x_{1,1} + x_{1,2} + x_{2,1} + x_{2,2} + x_{6,1} + x_{6,2} + x_{8,1} + x_{8,2} \le 2$$
  
 $x_{10,2} + x_{11,2} \le 2$ 

t = 3:

$$x_{1,2} + x_{2,2} + x_{6,2} + x_{6,3} + x_{8,2} + x_{8,3} + x_{3,3} + x_{7,3} \le 2$$
  
 $x_{10,3} + x_{11,3} + x_{9,3} \le 2$ 

# Task 2 V

#### Solution 2.2:

► 
$$t = 4$$
:

$$x_{6,3} + x_{8,3} + x_{8,4} + x_{3,3} + x_{3,4} + x_{7,3} + x_{7,4} \le 2$$
  
 $x_{10,4} + x_{11,4} + x_{9,4} \le 2$ 

$$t = 5$$

$$x_{8,4} + x_{8,5} + x_{3,4} + x_{7,4} + x_{7,5} \le 2$$
  
 $x_{10,5} + x_{11,5} + x_{9,5} + x_{4,5} \le 2$ 

$$t = 6$$
:

$$x_{8,5} + x_{7,5} \le 2$$
  
 $x_{10,6} + x_{11,6} + x_{9,6} + x_{4,6} + x_{5,6} \le 2$ 

$$\rightarrow$$
  $t=7$ 

$$(0 \le 2)$$
$$x_{11,7} + x_{9,7} + x_{5,7} \le 2$$

# Integer Linear Programming I

#### Solution 2.3:

1

- ► Restating the resource limitations, and introducing additional variables:
  - ightharpoonup t=1:

$$x_{1,1} + x_{2,1} + x_{6,1} + x_{8,1} \le \alpha(r_1)$$
  
 $x_{10,1} \le \alpha(r_2)$   
[...]

► Latency limitations:

$$L = \tau (v_n) - \tau (v_0) \le \bar{L} = 6$$

► New objective function:

$$min C = \alpha(r_1) \cdot c(r_1) + \alpha(r_2) \cdot c(r_2) = 2 \cdot \alpha(r_1) + \alpha(r_2)$$





## Tasks 3 I

## Iterative Algorithms



# Tasks 3 II

### Iterative Algorithms

#### Solution 3.1:



$$\tau(\nu_2) - \tau(\nu_1) \ge 10$$

$$\qquad \qquad \tau\left(\nu_{3}\right) - \tau\left(\nu_{2}\right) \geq 10$$

$$\qquad \qquad \tau\left(\nu_{4}\right) - \tau\left(\nu_{3}\right) \geq 10$$

$$\qquad \qquad \tau\left(\nu_{1}\right) - \tau\left(\nu_{5}\right) \geq 5 - 1 \cdot P$$

## Tasks 3 III

### Iterative Algorithms

### Solution 3.2:



► solve system of inequalities for P:

$$ightharpoonup 0-25 \ge 5-P \Leftrightarrow P_{min}=30$$

$$L = 30$$



# Tasks 3 IV

#### Iterative Algorithms



## Tasks 3 V

### Iterative Algorithms

#### Solution 3.3:



- $\vdash \tau(\nu_1) \tau(\nu_5) \geq 5 n \cdot 10 \Leftrightarrow n_{min} = 3$
- $\blacktriangleright$  we have to add 2 more tokens on the edge between  $v_5$  and  $v_1$
- L = 30



# Tasks 3 VI

### Iterative Algorithms

