Data Mining

Intro to Classification and Regression

Classification and Regression

Classification:

- predicts categorical class labels
- Constructs classification models based on training data and uses the models in classifying new data

Regression:

- models continuous-valued functions, i.e., predicts unknown or missing numeric values
- Example Applications
 - credit approval- classify loan application by their likelihood of defaulting on payments
 - target marketing
 - medical diagnosis
 - treatment effectiveness analysis

Classification Applications

- Example Applications (continued)
 - Image processing: interpretation of digital images in radiology, recognizing 3-D objects, outdoor image segmentation
 - Language processing : text classification
 - Software development : estimate the development effort of a given software module
 - Pharmacology: drug analysis
 - Molecular biology : analyzing amino acid sequences
 - Medicine: cardiology, analyzing sudden infant death syndrome, diagnosing thyroid disorder
 - Manufacturing : classify equipment malfunctions by their cause

Classification—A Two-Step Process

- Model construction: describing a set of predetermined classes
 - Each tuple/sample is assumed to belong to a predefined class, as determined by the class label attribute
 - The set of tuples used for model construction: training set
 - The model is represented as classification rules, decision trees,
 mathematical formulae, neural networks, or an ensemble of these
- Model usage: for classifying future or unknown objects
 - Estimate accuracy of the model
 - The set of tuples used for testing the performance of the model: test data
 - The known label of test sample is compared with the classified result from the model
 - Accuracy rate is the percentage of test set samples that are correctly classified by the model
 - Test set is independent of training set, otherwise over-fitting will occur

Classification

Learn a method for predicting the instance class from pre-labeled (classified) instances

Class 2

Many approaches:
Regression,
Decision Trees,
Nearest Neighbor,
Support Vector
Machines, Neural
Networks,

. . .

Loan approval problem with a single variable

x₁: credit score (FICO score)

y: 1-approve, 0-deny

Credit Score	Loan Status
750	1
725	0
700	0
650	0
726	1
645	0
800	1

Loan approval problem with a single variable

Credit Score	Loan Status
750	1
725	0
700	0
650	0
726	1
645	0
800	1

Loan approval problem with a single variable

Credit Score	Loan Status
750	1
725	0
700	0
650	0
726	1
645	0
800	1

Loan approval problem

x₁: credit score (FICO score)

x₂: income

(may include other features)

y: 1-approve, 0-deny

Training Data

Credit Score	Income	Loan Status
750	113000	1
725	26000	0
700	54000	0
650	45000	0
726	89500	1
645	78500	0
800	87050	1

Test data:

for a new applicant with credit score 715 and income 68500, will the loan application be approved?

Linear Regression

$$y = \theta_0 + \theta_1 x_1 + \theta_2 x_2$$
$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2$$

Regression

- $h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2$, h() is a linear combination of the components of X
 - In vector form : $h_{\theta}(\mathbf{x}) = \theta^{\mathsf{T}}\mathbf{x}$
- The class separating function:
 - In 2-dimensions: a line
 - In 3-dimensions: a plane
 - In >3 dimension: hyperplane