PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2002-252014

(43) Date of publication of application: 06.09.2002

(51)Int.CI.

H01M 8/04 H01M 8/00 H02J 7/00

// H01M 8/10

(21)Application number: 2001-299792

(71)Applicant: CASIO COMPUT CO LTD

(22)Date of filing:

28.09.2001

(72)Inventor: SHIOTANI MASAHARU

(30)Priority

Priority number : 2000388398

Priority date: 21.12.2000

Priority country: JP

(54) POWER SUPPLY SYSTEM

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a power supply system which can excellently operate apparatus by applying it like a general-purpose chemistry battery to an existing device equipped with a function to urge a display of battery residual quantity, exchange of a battery, and charging, by detecting a fall of output voltage of a battery.

SOLUTION: The power supply system has a fuel pack 20A, in which a fuel FL for power generation is enclosed, and a power generation module 10A, which outputs electric power, which consists of predetermined output voltage, based on the fuel FL for power generation supplied from this fuel pack 20A. The power generation module 10A is constituted with a main power generation part 12, which generates the above electric power using the fuel FL for power generation supplied from fuel pack 20A, a residual quantity detection part 16, which detects the residual quantity of the fuel FL for power generation which remains in the fuel pack 20A, and an operation

control part 13, which controls the output voltage from the main power generation part 12 to have at least a characteristic that is equivalent to the general-purpose chemistry battery, based on the residual quantity of the fuel FL for power generation.

LEGAL STATUS

[Date of request for examination]

07.10.2002

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or

(19) 日本国特許庁 (J'P)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-252014 (P2002-252014A)

(43)公開日 平成14年9月6日(2002.9.6)

(51) Int.Cl.7		識別記号	FΙ	テーマコート*(参考)
H01M	8/04		H01M 8/04	P 5G003
	•			Z 5H026
	8/00		8/00	A 5H027
				Z.
H 0 2 J	7/00	303	H 0 2 J 7/00	303E
		審査請求	未請求 請求項の数19 OL	(全 52 頁) 最終頁に続く
(21)出願番号		特願2001-299792(P2001-299792)	(71)出願人 000001443	
			カシオ計算机	
(22)出願日		平成13年9月28日(2001.9.28)		【本町1丁目6番2号
			(72)発明者 塩谷 雅治	
(31)優先権主張番号		特願2000-388398 (P2000-388398)		5今井3-10-6 カシオ計算
(32)優先日		平成12年12月21日(2000.12.21)	機株式会社育	有概事 莱 所 内
(33) 優先権主	張国	日本(JP)	(74)代理人 100096699	4 -42-e4a
			弁理士 庭崎	
			Fターム(参考) 50003 A	
			5H026 A	
			5H027 A	A06 BA01 KKOO MMO8 MM26
	,		1	

(54)【発明の名称】 電源システム

(57) 【要約】

【課題】 電池の出力電圧の低下を検出して、電池残量の表示や電池の交換、充電を促す機能を備えた既存のデバイスに対して、汎用の化学電池と同様に適用して、良好に機器を動作させることができる電源システムを提供する。

【解決手段】 電源システムは、発電用燃料FLが封入された燃料パック20Aと、該燃料パック20Aから供給される発電用燃料FLに基づいて、所定の出力電圧からなる電力を出力する発電モジュール10Aと、を有し、発電モジュール10Aは、燃料パック20Aから供給される発電用燃料FLを用いて、上記電力を生成する主発電部12と、燃料パック20Aに残存する発電用燃料FLの残量を検出する残量検出部16と、少なくとも、発電用燃料FLの残量に基づいて、主発電部12からの出力電圧が、汎用の化学電池と同等の特性を有するように制御する動作制御部13と、を備えている。

【特許請求の範囲】

【請求項1】 発電用燃料が封入された燃料封入部と、 該燃料封入部から供給される前記発電用燃料を用いて電 力を発生する発電モジュールと、を備え、

前記発電モジュールは、経時的に出力電圧が変化することを特徴とする電源システム。

【請求項2】 前記発電モジュールは、各種汎用の化学 電池のうちの1種における経時的な電圧変化傾向に対応 した出力電圧特性に基づいて、前記電力を発生すること を特徴とする請求項1記載の電源システム。

【請求項3】 前記発電モジュールは、

前記発電用燃料を用いて所定の負荷を駆動するための第 1の電力を発生する第1の電源手段と、

少なくとも、前記第1の電源手段を動作制御するための 第2の電力を常時出力する第2の電源手段と、

前記第2の電力により動作し、少なくとも、前記第1の 電源手段における動作状態を制御するシステム制御手段 と、を具備していることを特徴とする請求項1又は2記 載の電源システム。

【請求項4】 前記システム制御手段は、少なくとも、前記第1の電源手段の動作状態を制御して、第1の電力の発生量を調整する出力制御部と、

少なくとも、燃料封入部に封入された発電用燃料の残量 に応じて、出力制御部を制御し、第1の電源手段により 生成される第1の電力の発生量を制御する動作制御部 と、を備えていることを特徴とする請求項3記載の電源 システム。

【請求項5】 前記電源システムは、前記燃料封入部に 封入された前記発電用燃料の残量を検出して、該残量に 関する検出情報を前記動作制御部に出力する残量検出手 段を備えていることを特徴とする請求項4記載の電源シ ステム。

【請求項6】 前記動作制御部は、前記燃料封入部における前記発電用燃料の残量と前記第1の電源手段により生成される前記第1の電力の電圧成分との相関関係を規定した相関テーブルを備え、

前記動作制御部からの前記検出信号に基づいて、前記相関テーブルを参照することにより、前記第1の電源手段における動作状態を調整するための制御信号を前記出力制御部に出力することを特徴とする請求項5記載の電源システム。

【請求項7】 前記相関テーブルは、前記発電用燃料の 残量の減少に伴って、前記第1の電源手段により生成さ れる前記第1の電力の電圧成分が一義的に低下する相関 関係を有していることを特徴とする請求項6記載の電源 システム。

【請求項8】 前記出力制御部は、前記動作制御手段からの前記制御信号に基づいて、前記第1の電源手段への前記発電用燃料の供給量を制御することにより、前記第1の電源手段により生成される前記第1の電力の電圧成

2

分を調整することを特徴とする請求項 6 又は 7 記載の電源システム。

【請求項9】 前記第1の電源手段及び前記第2の電源手段は、前記発電用燃料を用いた電気化学反応により、前記第1の電力及び第2の電力を発生する燃料電池であることを特徴とする請求項3乃至8のいずれかに記載の電源システム。

【請求項10】 前記第1の電源手段は、前記燃料封入部から供給される前記発電用燃料を用いた電気化学反応により、前記第1の電力を発生する燃料電池であることを特徴とする請求項3乃至8のいずれかに記載の電源システム。

【請求項11】 前記第1の電源手段は、前記発電用燃料を改質して、特定の成分を抽出する燃料改質器と、該特定の成分が供給される燃料極と、空気中の酸素が供給される空気極と、を備えた燃料改質型の燃料電池であることを特徴とする請求項9又は10記載の電源システム。

【請求項12】 前記第2の電源手段は、電力の蓄積が可能な蓄電装置であることを特徴とする請求項3乃至8のいずれかに記載の電源システム。

【請求項13】 前記第2の電源手段を構成する蓄電装置は、繰り返し充放電が可能な電気化学的な二次電池であることを特徴とする請求項12記載の電源システム。

【請求項14】 前記第2の電源手段を構成する蓄電装置は、繰り返し電荷の蓄積、放出が可能なコンデンサであることを特徴とする請求項12記載の電源システム。

【請求項15】 前記第2の電源手段は、前記燃料電池 又は前記発電装置から出力される電力を蓄積する蓄電装 置を備え、該蓄電装置に蓄積された前記電力を前記第2 の電力として、前記第1の電源手段又は前記出力制御部 の少なくともいずれか一方に出力することを特徴とする 請求項4乃至8のいずれかに記載の電源システム。

【請求項16】 前記電源システムは、前記燃料封入部及び前記電源モジュールからなる物理的外形形状が、前記各種汎用の化学電池のうちの1種と同等の形状及び寸法を有していることを特徴とする請求項2記載の電源システム。

【請求項17】 前記電源システムは、前記第1の電源 手段から出力される前記第1の電力により駆動する前記 負荷に対して、着脱可能に構成されていることを特徴と する請求項3乃至16のいずれかに記載の電源システム。

【請求項18】 前記電源システムは、前記第1の電源 手段から出力される前記第1の電力により駆動する前記 負荷に対して、少なくとも前記燃料封入部が着脱可能に 構成されていることを特徴とする請求項3乃至17のい ずれかに記載の電源システム。

【請求項19】 前記電源システムは、前記発電モジュールに対して、前記燃料封入部が、着脱可能に構成され

ていることを特徴とする請求項3乃至18のいずれかに 記載の電源システム。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、電源システムに関し、特に、汎用の化学電池との互換が可能な電源システムに関する。

[0002]

【従来の技術】従来、民生用や産業用のあらゆる分野において、様々な化学電池が使用されている。例えば、アルカリ乾電池やマンガン乾電池等の一次電池は、時計やカメラ、玩具、携帯型の音響機器等に多用されており、我が国に限らず、世界的な観点からも最も生産数量が多く、安価かつ入手が容易という特徴を有している。

【0003】一方、ニッケル・カドミウム蓄電池やニッケル・水素蓄電池、リチウムイオン電池等の二次電池は、近年普及が著しい携帯電話や携帯情報端末(PDA)、デジタルビデオカメラやデジタルスチルカメラ等の携帯機器に多用されており、繰り返し充放電ができることから経済性に優れた特徴を有している。また、二次電池のうち、鉛蓄電池は、車両や船舶の起動用電源、あるいは、産業設備や医療設備における非常用電源等として利用されている。

【0005】また、エネルギー資源の利用効率の観点から上記化学電池を検証すると、一次電池においては、放電可能エネルギーの概ね300倍のエネルギーを使用して生産されているため、エネルギー利用効率が1%にも満たない。これに対して、繰り返し充放電が可能で経済性に優れた二次電池であっても、家庭用電源(コンセント)等から充電を行う場合、発電所における発電効率や送電損失等により、エネルギー利用効率が概ね12%程度にまで低下してしまうため、必ずしもエネルギー資源の有効利用が図られているとは言えなかった。

【0006】そこで、近年、環境への影響(負担)が少なく、かつ、例えば、30~40%程度の極めて高いエ 50

4

ネルギー利用効率を実現することができる燃料電池をは じめとする各種の新たな電源システムや発電システム (以下、「電源システム」と総称する)が注目され、車 両用の駆動電源や家庭用のコジェネレーションシステム 等への適用を目的として、あるいは、上述したような化 学電池の代替えを目的として、実用化のための研究、開 発が盛んに行われている。なお、燃料電池をはじめと る各種の電源システムの具体的な構成等については、発 明の詳細な説明において詳述する。

[0007]

【発明が解決しようとする課題】しかしながら、今後、 燃料電池等のエネルギー利用効率が高い電源システムを 小型軽量化して、可搬型又は携帯型のポータブル電源と して利用し、かつ、上述したような化学電池の代替え (互換品)として適用する場合には、次に示すような問 題点を有している。

【0008】すなわち、化学電池を動作電源とする既存の携帯機器(特に、近年普及が著しい携帯電話や携帯情報端末)等においては、電池の消耗状態を検知して随時電池残量を表示する機能や、電池の出力電圧が所定の下限値になった場合に、電池の交換や充電を促すアラームやメッセージ等を通知する機能(以下、便宜的に「残量通知機能」と総称する)を備えたものが多い。

【0009】具体的には、一般的な化学電池における出力電圧の経時的な変化傾向(起電力特性)は、図42に示すように、放電に伴う時間の経過とともに、起電力特性Spが劣化して出力電圧が徐々に低下することが知られているので、この出力電圧の変化を検出して定期的又は継続的に電池残量や機器の駆動可能推定時間を表示したり、携帯機器等において動作が正常に行われる電圧範囲(動作保証電圧範囲)を下回る出力電圧に達した場合に、機器の利用者に電池の交換や充電等を促す通知(残量通知Ip)を行っている。

【0010】これに対して、燃料電池をはじめとするエネルギー利用効率が高い電源システムのほとんどは、基本的に所定の燃料を用いた発電装置であるので、図43に示すように、電源システムの出力電圧特性(起電力特性)Sfは、放電に伴う時間の経過(すなわち、燃料の残量)に関わりなく、発電部に供給される燃料の量等に基づいて任意に設定される。したがって、携帯機器等の仕様上、安定的な動作を実現することができる理想的な一定電圧Viが出力されるように設計されており、燃料がなくなること(燃料切れ)により、電源システムにおける発電動作が停止して出力電圧Viが0Vに瞬時に変化する。

【0011】そのため、このような起電力特性Sfを有する電源システム(燃料電池等)を、既存の携帯機器等の電源としてそのまま適用した場合、放電に伴う時間の経過による出力電圧の低下を検出することができないため、上述したような残量通知機能を全く利用することが

できなぐなるという問題を有している。また、今後、燃料電池をはじめとする電源システムを化学電池の代替えとして携帯機器等の電源に利用する場合には、燃料の残量を直接検出して、燃料の充填、補充や電源システム自体の交換を促すための機能や構成を、機器側に新たに備える必要があるため、携帯機器等における電源部周辺の構成の大幅な設計変更が必要となり、製品コストの上昇等を招くという問題を有していた。

【0012】そこで、本発明は、上述した問題点に鑑み、電池の出力電圧の低下を検出して、電池残量の表示 10 や電池の交換、充電を促す機能を備えた携帯機器等の既存のデバイスに対して、汎用の化学電池と同様に、そのまま電源として適用することができ、良好に機器を動作させることができる電源システムを提供することを目的とする。

[0013]

【課題を解決するための手段】本発明に係る電源システムは、発電用燃料が封入された燃料封入部と、該燃料封入部から供給される前記発電用燃料を用いて電力を発生する発電モジュールと、を備え、前記発電モジュールは、経時的に出力電圧が変化することを特徴としている。

【0014】すなわち、燃料封入部(燃料パック)に充填、封入された液体又は気体からなる発電用燃料、又は、該発電用燃料から供給される特定の成分(例えば、水素)を用いて発電を行う発電モジュール(発電器)を備えたボータブル型の電源システムにおいて、該発電による出力電圧特性(起電力特性)が、汎用の化学電池、すなわち、日本国内外で市販、あるいは、機器に付属して流通、販売される一次電池又は二次電池のうちの1種 30における経時的な電圧の変化傾向に応じた出力電圧となるように、発電モジュールにおける発電状態が制御される。

【0015】これにより、汎用の化学電池等の電圧変化傾向に応じた出力電圧特性を有するポータブル電源を実現することができるので、既存の携帯機器等の電源としてそのまま使用した場合であっても、この出力電圧の変化を検出して電池残量や機器の駆動可能推定時間を表示したり、電池の交換や充電等を促す機能を支障なく利用することができ、化学電池に対する互換性を高めた電源システムを提供することができる。

【0016】このような特徴を実現するために、本発明に係る電源システムは、発電モジュールが、前記発電用燃料を用いて所定の負荷を駆動するための第1の電力を発生する第1の電源手段と、少なくとも、前記第1の電源手段を動作制御するための第2の電力を常時出力する第2の電源手段と、前記第2の電力により動作し、少なくとも、前記第1の電源手段における動作状態を制御するシステム制御手段と、を具備しているものであってもよい。

۵

【0017】ここで、システム制御手段は、少なくとも、第1の電源手段の動作状態を制御して、第1の電力の発生量を調整する出力制御部と、少なくとも、燃料封入部に封入された発電用燃料の残量に応じて、出力制御部を制御し、第1の電源手段により生成される第1の電力の発生量を制御する動作制御部と、を備えた構成を有し、さらに、電源システムは、燃料封入部に封入された発電用燃料の残量を検出して、該残量に関する検出情報を動作制御部に出力する残量検出手段と、を備えた構成を有している。

【0018】すなわち、第2の発電手段により生成される第2の電力に基づいてシステム制御手段(出力制御部、システム制御手段)が駆動され、燃料封入部に残存する発電用燃料の量(残量)に応じて、第1の発電手段における第1の電力の発生量(発電状態)が制御される。これにより、電源システムの外部から燃料等の供給を受けることなく、発電モジュールにより自立的に発電状態を制御して、発電用燃料の残量に応じた所定の電力を発生、出力することができる。

【0019】この場合、システム制御手段(動作制御部)による第1の発電手段における発電状態の制御は、汎用の化学電池における経時的な電圧変化傾向、例えば、時間の経過に伴って出力電圧が一義的に低下する傾向に対応して、発電用燃料の残量と出力電圧(第1の電圧成分)との相関関係を予め規定した相関テーブルに基づいて実行されるものであってもよい。なお、第1の発電手段における発電状態の具体的な制御方法は、上記相関テーブルに基づいて、第1の電源手段への前記発電用燃料の供給量を制御することにより調整される。 【0020】これによれば、燃料封入部における発電用

燃料の残量に基づいて、該相関テーブルを参照し、発電部の燃料極への発電用燃料の供給量を調整することにより、簡易に出力電圧を設定制御することができるので、汎用の化学電池と同様の出力電圧特性を有し、電気的特性上、互換が可能な電源システムを提供することができる。

【0021】上記電源システムにおいて、より好ましい態様は、第1の電源手段及び第2の電源手段が、共に燃料封入部から供給される発電用燃料を用いた電気化学反応により、第1の電力及び第2の電力を発生する燃料電池を有している構成である。これにより、汎用の化学電池を用いて、電源システムの動作電力及び負荷の駆動電力を生成することができるとともに、汎用の化学電池における経時的な電圧変化傾向と同様の出力電圧特性をおける経時的な電圧変化傾向と同様の出力電圧特性をする電源システムを実現することができるので、既存の携帯機器等における残量通知機能等を良好に利用することができるとともに、化石燃料等のエネルギー資源の消費量を削減して有効な利用を図ることができる。

50 【0022】また、上記電源システムにおいて、第1の

電源手段のみを上記燃料電池により構成したものであってもよい。この場合、第1の電源手段は、発電用燃料を改質して、特定の成分を抽出する燃料改質器と、該特定の成分が供給される燃料極と、空気中の酸素が供給される燃料極と、空気中の酸素が供給される空気極と、を備えた燃料改質型の燃料電池として質型の燃料電池を適用した構成を適用した構成によれば、燃料電池に供給で電池を適用した構成によれば、燃料電池に供給で電池を範囲した構成することにより、発電用燃料の電力の量を簡易に制御するにより生成される第1の電力の量を簡易に制御するにより生成される第1の電力の量を簡易に制御するにより生成される第1の電力の量を簡易に制御するにより生成される第1の電力の量を簡易に制御するにより生成されていてきる。

【0024】また、上記電源システムにおいて、第2の 電源手段のみを上記燃料電池により構成したものであっ てもよい。この場合、第2の電源手段は、発電用燃料が 直接的に供給される燃料極と、空気中の酸素が供給され る空気極と、を備えた燃料直接供給型の燃料電池として の構成を適用することが好ましい。このような燃料直接 供給型の燃料電池を適用した構成によれば、簡易な構成 の燃料電池に燃料封入部から発電用燃料を供給するだけ で、自立的かつ継続的に高いエネルギー変換効率で所定 の電力(第2の電力)を生成してシステム制御手段に動 作電力として供給することができるので、特別な操作を 必要とすることなく、発電用燃料の残量に応じた電圧成 分を有する第1の電力を出力することができ、汎用の化 学電池と同等の電気的特性を有しつつ、取り扱いが簡易 な電源システムを提供することができるとともに、第2 の電源手段の規模を小型化することができる。

【0025】なお、上記電源システムにおいて、第2の電源手段に適用可能な構成としては、上記燃料電池の他に、燃料封入部に封入された液体燃料からなる発電用燃料の気化反応又は高圧気体燃料における封入圧力により生じる圧力エネルギーに基づいて、第2の電力を発生する発電装置(ガスタービン、ロータリーエンジン等と、電磁誘導や圧電変換の原理を用いた発電器との組み合わ 50

8

せ) や、電源システムの周辺と内部における温度差、又 は、発電用燃料を用いた触媒燃焼反応により生じる熱エ ネルギーによる高温と電源システム内外の他の領域にお ける定温との温度差、もしくは、燃料封入部に封入さ れ、液化された前記発電用燃料の気化反応により吸収さ れる熱エネルギーによる低温と前記電源システム内外の 他の領域における定温との温度差等に基づいて、熱電変 換により電力を発生する発電装置(温度差発電器)、発 電用燃料を用いた生物化学的反応に基づいて、前記第2 の電力を発生する発電装置(生物電池)、発電用燃料の 流体移動により生じる振動エネルギーに基づいて、前記 第2の電力を発生する発電装置(振動発電器)、電源シ ステムの外部から入射する光エネルギーに基づいて、光 電変換により前記第2の電力を発生する発電装置(太陽 電池)、電力の蓄積、放出が可能な蓄電装置(二次電 池、コンデンサ等)等であってもよい。

【0026】したがって、本発明に係る電源システムにおいては、第1及び第2の電源手段として、発電用燃料を用いて高いエネルギー変換効率で第1及び第2の電力を生成することができ、かつ、小型化や微細化が可能な構成を有する発電装置や蓄電装置の中から、電源システムの外形形状や電気的特性等に応じて適宜組み合わせた任意の構成を適用することができる。

【0027】ここで、第1の電源手段又は出力制御部の少なくともいずれか一方は、第2の発電手段から直接出力される第2の電力に基づいて、又は、上記燃料電池又は発電装置から出力される電力を蓄積する蓄電装置から放出された電力(第2の電力)に基づいて動作するものであってもよい。これによれば、第2の電源手段に応じて、第2の電源手段から直接供給される電力、又は、蓄電装置に蓄積され、駆動電力特性が高められた電力を起動電力として用いて、第1の電源手段を良好に起動して第1の電力を生成する発電動作に移行することができる。

【0028】また、上記電源システムに適用される発電 用燃料は、少なくとも、水素を主成分とする、又は、水 素からなる液体燃料又は液化燃料又は気体燃料、具体的 には、メタノールやエタノール、ブタノール等のアルコ ール系の液体燃料や、ジメチルエーテルやイソブタン、 天然ガス等の炭化水素からなる液化燃料、あるいは、水 素ガス等の気体燃料であって、特に、燃料封入部から発 電モジュールに供給される際の常温、常圧等の所定の環境条件の下で気体状態にあるものを良好に適用することができる。これにより、第1及び第2の電源手段に対 発電動作において、高いエネルギー変換効率で電力 を 生成することができるとともに、この発電動作に伴い 電力以外に生成される副生成物を比較的簡易な処理を 生成するに対いて、自然環境等への影響を大 幅に抑制することができる。

【0029】さらに、上記電源システムは、燃料封入部

及び電源モジュールを組み合わせた物理的外形形状が、 汎用の化学電池のうちの任意の1種と同等の形状及び寸 法を有するように構成されているものであってもよく、 これによれば、上記電気的特性のみならず、外形形状に おいても、汎用の化学電池との互換性を有することになるので、極めてエネルギー変換効率の高い電源システムになるを既存の化学電池の市場に支障なく普及させることがで きる。なお、本発明に係る電源システムは、燃料封入 を既存の化学電池と同等の形状及び寸法とする 場合に限らず、燃料封入部のみを汎用の化学電池と同等 の形状及び寸法に構成するものであってもよい。

【0030】ここで、上記電源システムは、第1の電源手段から出力される第1の電力により駆動する負荷に対して、システム全体が着脱可能な構成、又は、該負債で対して、少なくとも燃料封入部が着脱可能な構成、可能な構成を有していることが好ましい。これによれば、燃料封入部に封入された発電用燃料がなくなったときやりなくなったときに、燃料封入部を発電モジュールが取り外して新たな燃料封入部を発電モジュールを収入部に発電用燃料を注入して補充することができるととりに、電源システム全体又は燃料封入部をあたかも汎用の化学電池のように簡便に使用することができる。また、燃料封入部の交換や回収が可能となるので、電源システム自体の廃棄量を削減することができる。

[0031]

【発明の実施の形態】以下、本発明に係る電池システムの実施の形態について、図面を参照しながら説明する。まず、本発明に係る電源システムが適用される全体の概要について、図面を参照して説明する。図1は、本発明に係る電源システムの適用形態を示す概念図である。

【0032】本発明に係る電源システム1は、例えば、図1(a)、(b)に示すように、特定の電気・電子機器のほか、汎用の一次電池や二次電池により動作する既存の電気・電子機器(図1では、情報携帯端末を示す:以下、「デバイス」と総称する)DVCに対して、その全体もしくは一部が任意に装着及び取り外し(矢印P1参照)が可能であるとともに、該電源システム1の全体もしくはその一部が単独で携帯が可能なように構成され、かつ、電源システム1の所定の位置(例えば、後述するように、汎用の一次電池や二次電池と同等の位置)にプラス(+)極及びマイナス(-)極からなる電極が設けられた構成を有している。

【0033】次に、本発明に係る電池システムの基本構成について説明する。図2は、本発明に係る電源システムの基本構成を示すブロック図である。本発明に係る電源システム1は、図2(a)に示すように、大別して、液体燃料又は液化燃料又は気体燃料からなる発電用燃料

10

FLが封入された燃料パック(燃料封入部)20と、少

なくとも、該燃料パック20から供給される発電用燃料 FLに基づいて、上記デバイスDVCの駆動状態(負荷 状態) に対応した電力 E G を発生 (発電) する発電モジ ュール10と、燃料パック20及び発電モジュール10 相互を物理的に結合するとともに、燃料パック20に封 入された発電用燃料FLを発電モジュール10に供給す る燃料送出経路等を備えたインターフェース部(以下、 「I/F部」と略記する) 30と、を有し、各構成が相 互に、もしくは、任意の形態で分離(着脱)可能に、あ るいは、一体的に構成されている。ここで、I/F部3 0は、図2(a)に示したように、上記燃料パック20 及び発電モジュール10と独立した構成を有しているも のであってもよいし、図2(b)、(c)に示すよう に、上記燃料パック20又は発電モジュール10のいず れかと一体的に、あるいは、燃料パック20又は発電モ ジュール10の双方に分割して構成されているものであ ってもよい。

【0034】以下、各ブロックの構成について、具体的に説明する。

[第1の実施形態]

(A) 発電モジュール 1 0

図3は、本発明に係る電源システムに適用される発電モジュールの第1の実施形態を示すブロック図である。

【0035】図3に示すように、本実施形態に係る発電 モジュール10Aは、大別して、I/F部30を介して 燃料パック20から供給される発電用燃料を用いて、所 定の電力(第2の電力)を、常時、自立的に発生して、 少なくとも、電源システム1に接続されるデバイスDV Cに内蔵され、負荷LD(デバイスDVCの各種機能を 有する素子又はモジュール)の駆動制御を行うコントロ ーラCNTの駆動電力(コントローラ電力)、及び、発 電モジュール10A内に設けられた後述する動作制御部 13の動作電力として出力する副電源部 (第2の電源手 段) 11と、副電源部11から供給される電力により動 作し、電源システム1全体の動作状態を制御する動作制 御部13と、I/F部30を介して燃料パック20から 供給される発電用燃料又は該発電用燃料から抽出された 特定の燃料成分を用いて、所定の電力(第1の電力)を 発生して、少なくとも、電源システム1に接続されるデ バイスDVCの各種機能(負荷LD)を駆動する負荷駆 動電力として出力する主発電部 (第1の電源手段) 12 と、動作制御部13からの動作制御信号に基づいて、少 なくとも、主発電部12への発電用燃料の供給量を制御 する出力制御部14と、動作制御部13からの動作制御 信号に基づいて、少なくとも、主発電部12を待機状態 から発電可能な動作状態に移行(起動)するように制御 する起動制御部15と、を有して構成されている。ここ で、本実施形態に係る動作制御部13、出力制御部14 及び起動制御部15は、本発明におけるシステム制御手

段を構成する。

【0036】また、発電モジュール10Aは、発電モジ ユール10A内又はI/F部30A内もしくは燃料パッ ク20EAのいずれか(ここでは、発電モジュール10 A内) に、燃料パック20Aに残存する発電用燃料FL の量(残量)を検出し、その残量検出信号を上記動作制 御部13に出力する残量検出部16が設けられた構成を 有している。すなわち、本実施形態に係る電源システム 1は、システムの外部(発電モジュール10A、燃料パ ック20及びI/F部30以外)からの燃料供給や制御 に依存することなく、電源システム1に接続されるデバ イスDVCに対して、所定の電力(負荷駆動電力)を出 力可能なように構成されている。

【0037】<副電源部11>本実施形態に係る発電モ ジュールに適用される副電源部11は、図3に示したよ うに、燃料パック20から供給される発電用燃料FLが 有する物理的又は化学的エネルギー等を用いて、電源シ ステム1の起動動作に必要な所定の電力 (第2の電力) を、常時、自立的に発生する構成を有している。そし て、この電力は、大別して、デバイスDVCに内蔵さ れ、その駆動状態を制御するコントローラの駆動電力 (コントローラ電力)、並びに、発電モジュール10A 全体の動作状態を制御する動作制御部13及び燃料パッ ク20Aに封入された発電用燃料FLの残量を検出する 残量検出部16の動作電力として常時供給される電力E 1と、発電モジュール10Aの起動時に、少なくとも、 出力制御部14 (構成によっては、主発電部12を含 む)及び起動制御部15、残量検出部16に対して、起 動電力(電圧・電流)として供給される電力E2からな る。なお、残量検出部16の動作電力となる電力は、常 時供給されるもののほか、起動制御部15による発電モ ジュール 10 A の起動時以降に供給されるように構成さ れていてもよい。

【0038】副電源部11の具体的な構成としては、例 えば、燃料パック20から供給される発電用燃料FLを 用いた電気化学反応によるもの(燃料電池)や触媒燃焼 反応等に伴う熱エネルギーによるもの(温度差発電)を 良好に適用することができるほか、燃料パック20に封 入された発電用燃料FLの封入圧力や燃料の気化によっ て生じるガス圧力を用いて発電器を回転させて電力を発 生する力学的なエネルギー変換作用等によるもの(ガス タービン発電等)、また、発電用燃料FLを栄養源とす る微生物等による代謝(光合成、呼吸等)により生じる 電子を捕獲し、直接電力へと変換するもの(生物化学発 *

 $CH_3OH + H_2O \rightarrow 6H + + 6e^- + CO_2$

【0042】一方、空気極112に空気(酸素02)が 供給されると、次の化学反応式(2)に示すように、触 媒反応により負荷114を経由した電子 (e-) とイオ ※

> $6 \text{ H} + + (3/2) \text{ O}_2 + 6 \text{ e}^- \rightarrow 3 \text{ H}_2 \text{ O}$ $\cdot \cdot \cdot (2)$

12

*電)、上記封入圧力やガス圧力に基づく発電用燃料FL の流体エネルギーにより生じる振動エネルギーを電磁誘 導の原理を利用して電力に変換するもの(振動発電)、 二次電池(充電池)やコンデンサ等の電力蓄積手段単体 からの放電によるもの、さらには、上述した発電を行う 各構成により生成された電力を、電力蓄積手段(二次電 池やコンデンサ等)に蓄積して放出(放電)させるよう にしたもの等を適用することができる。

【0039】以下に、各々の具体例について、図面を参 照して簡単に説明する。

(副電源部の第1の構成例) 図4は、本実施形態に係る 電源モジュールに適用可能な副電源部の第1の構成例を 示す概略構成図である。ここでは、上述した電源システ ムの構成(図3)を適宜参照しながら説明する。第1の 構成例においては、副電源部の具体例として、燃料パッ ク20から直接供給される発電用燃料FLを用い、電気 化学反応により電力 (第2の電力) を発生する燃料直接 供給方式を採用した固体高分子型の燃料電池の構成を有

【0040】図4に示すように、本構成例に係る副電源 部11Aは、概略、所定の触媒微粒子が付着した炭素電 極からなる燃料極(カソード)111と、所定の触媒微 粒子が付着した炭素電極からなる空気極(アノード)1 12と、燃料極111と空気極112の間に介装された イオン導電膜(交換膜)113と、を有して構成されて いる。ここで、燃料極111には、燃料パック20に封 入された発電用燃料(例えば、メタノール等のアルコー ル類及び水)が直接供給され、一方、空気極112には 大気中の酸素ガス(02)が供給される。

【0041】この副電源部(燃料電池)11Aにおける 電気化学反応の一例は、具体的には、メタノール(CH 3OH)及び水(H2O)が燃料極111に直接供給さ れると、次の化学反応式 (1) に示すように、触媒反応 により電子 (e-) が分離して水素イオン (プロトン; H+) が発生し、イオン導電膜113を介して空気極1 12側に通過するとともに、燃料極111を構成する炭 素電極により電子(e‐)が取り出されて負荷114 (電源システム内外の所定の構成;ここでは、デバイス DVCのコントローラCNT、動作制御部13、主発電 部12、出力制御部14等)に供給される。なお、この 触媒反応により生成される水素イオン以外の微量の二酸 化炭素 (CO2) は、例えば、燃料極111側から大気 中に排出される。

※ン導電膜113を通過した水素イオン(H+)と空気中 の酸素ガス (〇2) が反応して水 (H2〇) が生成され る。

 $\cdot \cdot \cdot (1)$

【0043】このような一連の電気化学反応(化学反応 50 式(1)及び(2))は、概ね室温程度の比較的低温の

環境下で進行する。ここで、空気極112で発生する副 生成物である水(H2O)を回収し、燃料極111側に 必要量を供給することにより、上記化学反応式 (1) に 示した触媒反応の原料物質として再利用することができ るとともに、燃料パック20に予め備蓄(封入)される 水 (H2O) の量を大幅に減らすことができるので、燃 料パック20の容積を大幅に縮小しつつ、副電源部11 を長時間、継続的に動作させて、所定の電力を供給する ことが可能となる。なお、空気極112で発生する水 (H2〇) 等の副生成物を回収、再利用する副生成物回 収手段の構成については、主発電部12における同様の 構成と併せて後述する。

【0044】このような構成を有する燃料電池を副電源 部に適用することにより、他の方式(例えば、後述する 燃料改質型の燃料電池)に比較して周辺構成を必要とし ないので、副電源部11Aの構成を簡素化かつ小型化す ることができるとともに、例えば、発電モジュール10 Aに対して燃料パック20を結合する極めて簡易な操作 のみで、I/F部30に設けられた燃料輸送管を介して 毛細管現象により所定量の発電用燃料が副電源部11A (燃料極111) に自動的に送入されて、上記化学反応 式(1)及び(2)に基づく、発電動作を開始、継続す ることができる。

【0045】したがって、燃料パック20からの発電用 燃料の供給が継続する限り、副電源部11Aにより所定 の電力が常時、自立的に生成され、デバイスDVCのコ ントローラ電力並びに動作制御部13及び残量検出部1 6の動作電力、さらには、主発電部12又は出力制御部 14に対する起動電力として供給することができる。ま た、上述したような燃料電池においては、発電用燃料か ら電気化学反応を利用して直接電力を発生しているの で、極めて高い発電効率を実現することができ、エネル・ ギー資源の有効利用や副電源部を含む発電モジュールの 小型化を図ることができるとともに、振動や騒音がない ので、汎用の一次電池や二次電池と同様に、広範な機器 への利用が可能となる。

【0046】なお、本構成例における燃料電池において は、燃料パック20から供給される発電用燃料としてメ タノールを適用した場合についてのみ示したが、本発明 はこれに限定されるものではなく、少なくとも、水素元 素を少なくとも有する液体燃料、液化燃料、及び気体燃 料のいずれかであればよい。具体的には、上述したメタ ノールやエタノール、ブタノール等のアルコール系の液 体燃料や、ジメチルエーテルやイソブタン、天然ガス

(CNG) 等の炭化水素からなる液化燃料、あるいは、 水素ガス等の気体燃料であって、特に、燃料パック20 から副電源部11Aに供給される際の常温、常圧等の所 定の環境条件の下で気体状態にあるものを良好に適用す ることができる。

14

施形態に係る電源モジュールに適用可能な副電源部の第 2の構成例を示す概略構成図である。第2の構成例にお いては、副電源部の具体例として、燃料パック20に封 入された発電用燃料が有する圧力エネルギー(封入圧力 やガス圧力)により圧力駆動機関(ガスタービン)を駆 動し、その駆動エネルギーを電力に変換する発電装置と しての構成を有している。

【0048】図5(a)、(b)に示すように、本構成 例に係る副電源部11Bは、概略、複数の羽根が円周の 所定の方向に沿って湾曲しつつ、略放射状に配列され、 かつ、自在に回転が可能なように構成された可動羽根1 22aと、可動羽根122aの回転中心に直結され、周 知の電磁誘導あるいは圧電変換の原理に基づいて、可動 羽根122aの回転エネルギーを電力に変換する発電器 125と、複数の羽根が可動羽根122aの外周側に沿 って、可動羽根122aとは逆方向に湾曲しつつ、略放 射状に配列され、かつ、可動羽根122aに対して相対 的に固定された固定羽根122bと、可動羽根122a と固定羽根122bとからなるガスタービン122への 気化された発電用燃料(燃料ガス)の供給を制御する吸 気制御部123と、ガスタービン122通過後の発電用 燃料の排出を制御する排気制御部124と、を有して構 成されている。ここで、ガスタービン122、吸気制御 部123及び排気制御部124からなる副電源部11B の構成は、半導体製造技術等により蓄積された微細加工 技術をはじめとする、いわゆる、マイクロマシン製造技 術を適用することにより、例えば、単一のシリコンチッ プ121上の微小空間に集積化して形成することができ る。なお、図5 (a) においては、ガスターピン122 の構成を明確にするために、可動羽根122a及び固定 羽根122bが便宜的に露出するように示した。

【0049】このような副電源部11Bにおいて、例え ば、図5(b)に示すように、吸気制御部123を介し てガスタービン122の固定羽根122b側から可動羽 根122a側に、燃料パック20内に封入された液体燃 料が気化した高圧の燃料ガスを吸入(矢印P2参照)す ることにより、固定羽根122bの湾曲方向に沿って燃 料ガスの渦流が生じ、該渦流によって、可動羽根122 aが所定の方向に回転して、発電器125を駆動する。 これにより、燃料ガスが有する圧力エネルギーがガスタ ービン122及び発電器125を介して電力に変換され る。

【0050】すなわち、本構成例に係る副電源部11B に適用される発電用燃料は、少なくとも、吸気制御部1 23が開放されてガスタービン122に吸入される際に 高圧気体の状態で吸入され、また、排気制御部124が 開放されてガスタービン122内の気体が、気圧の低い 方、例えば、常圧である外気に向けて排出されることに 伴って生じる圧力差に基づく気体の流動により、可動羽 【0047】(副電源部の第2の構成例)図5は、本実 50 根122aを所定の方向に所定の回転速度(又は、回転

数)で回転させ、発電器125において所定の電力を発生する。

【0051】そして、可動羽根122aの回転に寄与し、圧力が低下した(圧力エネルギーが消費された)燃料ガスは、排気制御部124を介して副電源部11Bの外部に排出される。なお、図3に示した発電モジュール10Aにおいては、副電源部11から排出された燃料ガス(排出ガス)をそのまま電源システム1の外部に排出する構成を示したが、本発明はこれに限定されるものではなく、後述する実施形態に示すように、主発電部12における発電用燃料として再度利用する構成を有するものであってもよい。

【0052】したがって、本構成例に係る副電源部11 Bにおいては、燃料パック20から供給される発電用燃料 (燃料ガス) FLは、必ずしも燃焼性 (あるいは、可燃性) を有している必要はなく、特に、電力の生成に利用された燃料ガスを、そのまま電源システム1の外部に排出する構成にあっては、発電用燃料FLを排出ガスとして排出することを考慮すれば、不燃性又は難燃性を有し、さらに、毒性がない方が望ましい。なお、発電用燃料が燃焼性又は毒性がある成分を含む物質からなる場合は、排出ガスを外部に排出する前に難燃化や無毒化する処理が必要となることはいうまでもない。

【0053】なお、本構成例に係る副電源部11Bのように、燃料ガスの圧力エネルギーに基づいて、電力を発生する構成においては、燃料ガスが副電源部11B(ガスターピン122)内を通過するのみで、上述した燃料電池における電気化学反応のように、副生成物(水等)が発生することがないので、発電用燃料として不燃性又は難燃性であって、毒性がない物質を適用する場合や、燃焼性又は毒性を有する物質であっても、電源システラは、水の外部に排出する前に難燃化や無毒化する処理を行う構成を有している場合には、排出ガスを回収する手段を備える必要はない。

【0054】このような構成を有する発電装置を副電源部に適用することにより、上述した第1の構成例と同様に、発電モジュール10Aに対して燃料パック20を結合する極めて簡易な操作のみで、I/F部30を介して高圧の発電用燃料(燃料ガス)FLが副電源部11B

(ガスタービン122) に自動的に送入されて、上記発電動作を開始、継続することができ、さらに、発電用燃料FLの供給が継続する限り、副電源部11Bにより所定の電力を常時、自立的に生成して、電源システム1内外の所定の構成に供給することができる。

【0055】(副電源部の第3の構成例)図6は、本実施形態に係る電源モジュールに適用可能な副電源部の第3の構成例を示す概略構成図である。第3の構成例においては、副電源部の具体例として、燃料パック20に封入された発電用燃料FLが有する圧力エネルギー(封入圧力やガス圧力)により圧力駆動機関(ロータリーエン

16

ジン) を駆動し、その駆動エネルギーを電力に変換する 発電装置としての構成を有している。

【0056】図6に示すように、第3の構成例に係る副電源部11Cは、外周が概略、楕円型の作動空間131aの内壁に沿って中心軸133の周囲を回転する略三角形状の断面を有するローター132と、中心軸133に直結された発電器(図示を省略)と、を有して構成されている。ここで、副電源部11Cの構成は、上述した各構成例と同様に、マイクロマシン製造技術を適用することがのより、例えば、ミリメートルオーダーの微小空間に集積化して形成することができる。

【0057】このような構成を有する副電源部11Cにおいて、吸気口134aからほぼ常温に保たれている作動空間131a内に液体の状態の燃料を封入すると、燃料が気化膨張するとともに、排気口134b側を低圧、例えば、常圧に制御することにより、作動空間131aの内壁とローター132により形成される各作動室間に気圧差が生じ、図6(a)~(c)に示すように、気化した燃料ガスが吸入口134aから排気口134b方向に流動することにより、燃料ガスの圧力によりローター132がその内周を中心軸133の外周に沿うように回転する(矢印P3)。これにより、燃料ガスが有するに力エネルギーが中心軸133の回転エネルギーに変換される。

【0058】ここで、本構成例に適用される発電器は、上述した第2の構成例と同様に、電磁誘導や圧電変換等の周知の原理を用いた発電器を良好に適用することができる。また、本構成例においても、燃料ガスの圧力エネルギーに基づいて、電力を発生する構成を有しているので、燃料ガスは副電源部11C(ハウジング131内の作動空間131a)内を通過するのみで、電力が生成されるので、発電用燃料として必ずしも燃焼性(あるいは、可燃性)を有している必要はなく、少ならもので、気化して所定の体積に膨張されるような高圧の燃料ガスとなる物質であれば良好に適用することができる。

【0059】したがって、このような構成を有する発電装置を副電源部に適用することにより、上述した各構成例と同様に、発電モジュール10Aに対して燃料パック20を結合する極めて簡易な操作のみで、I/F部30を介して高圧の発電用燃料(燃料ガス)FLが副電源部11C(作動空間131a)に自動的に送入されて、上記発電動作を開始、継続することができ、さらに、発電用燃料FLの供給が継続する限り、副電源部11Cにより所定の電力を常時、自立的に生成して、電源システム1内外の所定の構成に供給することができる。

【0060】(副電源部の第4の構成例)図7は、本実

施形態に係る電源モジュールに適用可能な副電源部の第4の構成例を示す概略構成図である。第4の構成例においては、副電源部の具体例として、燃料パック20に封入された発電用燃料FLの触媒燃焼反応に基づいて熱エネルギーを発生することにより生じる温度差を利用した熱電変換発電により電力を発生する発電装置としての構成を有している。

【0061】図7(a)に示すように、第4の構成例に 係る副電源部11Dは、概略、発電用燃料FLを触媒燃 焼させて熱エネルギーを発生させる触媒燃焼部141 と、概ね一定の温度を保持する定温部142と、触媒燃 焼部141を第1の温度端、定温部142を第2の温度 端として、該第1及び第2の温度端間に接続された熱電 変換素子143と、を備えた温度差発電器の構成を有し ている。ここで、熱電変換素子143は、図7(b)に 示すように、2種類の半導体又は金属(以下、便宜的に 「金属等」という) MA、MBの端部相互が接合(例え ば、金属等MAの両端部に、各々金属等MBが接合)さ れ、各接合部N1、N2が上記触媒燃焼部141(第1 の温度端)及び定温部142(第2の温度端)に各々接 続された構成を有している。また、定温部142は、例 えば、電源システム1が装着されるデバイスDVCに設 けられた開口部等を介して、常時外気に晒され、略一定 の温度を保持するように構成されている。 なお、図 7 に 示した温度差発電器からなる副電源部11Dの構成は、 上述した各構成例と同様に、マイクロマシン製造技術を 適用することにより、微小空間に集積化して形成するこ とができる。

【0062】このような構成を有する副電源部11Dにおいて、図7(c)に示すように、燃料パック20に封入された発電用燃料(燃焼ガス)FLがI/F部30を介して、触媒燃焼部141に供給されると、触媒燃焼反応により発熱して、触媒燃焼部141(第1の温度端)の温度が上昇する。一方、定温部142の温度は、ほぼ一定に保持されるように構成されているので、触媒燃焼部141と定温部142との間には温度差が発生する。そして、この温度差に基づいて、熱電変換素子143におけるゼーベック効果により、所定の起電力が発生して電力が生成される。

【0063】具体的には、第1の温度端(接合部N1)における温度をTa、第2の温度端(接合部N2)における温度をTb(< Ta)と規定した場合、該温度Ta、Tb間の差が微小である場合には、図7(b)に示した出力端子0a、0b間に、 $Vab=Sab \times (Ta-Tb)$ の電圧が生じる。ここで、Sabは、金属等MA、MBの相対ゼーベック係数である。

【0064】したがって、このような構成を有する発電装置を副電源部に適用することにより、上述した各構成例と同様に、発電モジュール10Aに対して燃料バック20を結合する極めて簡易な操作のみで、1/F部30

18

を介して発電用燃料(液体燃料又は液化燃料又は気体燃料)が副電源部11D(触媒燃焼部141)に自動的に送入されて、触媒燃焼反応に伴う熱エネルギーが発生し、上記温度差発電器による発電動作を開始、継続することができ、さらに、発電用燃料FLの供給が継続する限り、副電源部11Dにより所定の電力を常時、自立的に生成して、電源システム1内外の所定の構成に供給することができる。

【0065】なお、本構成例においては、触媒燃焼部141と定温部142における温度差に基づいて、ゼーベック効果により電力を発生する温度差発電器について説明したが、本発明は、これに限定されるものではなく、金属の加熱により金属表面から自由電子が放出される熱電子放出現象に基づいて、電力を発生する構成を有するものであってもよい。

【0066】(副電源部の第5の構成例)図8は、本実施形態に係る電源モジュールに適用可能な副電源部の第5の構成例を示す概略構成図である。第5の構成例においては、副電源部の具体例として、燃料パック20に封入された発電用燃料(液体燃料)FLが気化反応に基づいて熱エネルギーを吸収することにより生じる温度差を利用した熱電変換発電により電力を発生する発電装置としての構成を有している。

【0067】図8(a)に示すように、第5の構成例に 係る副電源部11Eは、概略、発電用燃料(特に、液化 燃料)FLを気化させた場合に熱エネルギーを吸収する ことにより実現される冷熱を保持する冷熱保持部151 と、概ね一定の温度を保持する定温部152と、冷熱保 持部151を第1の温度端、定温部152を第2の温度 端として、第1及び第2の温度端間に接続された熱電変 換素子153と、を備えた温度差発電器の構成を有して いる。ここで、熱電変換素子153は、上述した第4の 構成例(図7(b)参照)に示したものと同等の構成を 有している。また、定温部152は、電源システム1内 外の他の領域に接触又は晒されることにより、略一定の 温度を保持するように構成されている。なお、図8に示 した温度差発電器からなる副電源部11Eの構成も、上 述した各構成例と同様に、微小空間に集積化して形成さ れる。

【0068】このような構成を有する副電源部11Eにおいて、図8(b)に示すように、例えば、燃料パック20に所定の圧力条件で封入された発電用燃料(液化燃料)FLがI/F部30を介して、副電源部11Eに供給され、常温、常圧等の所定の環境条件に移行することにより、発電用燃料FLが気化し、その際、周囲から熱エネルギーを吸収して、冷熱保持部151の温度が低下する。一方、定温部152の温度は、ほぼ一定に保持されるように構成されているので、冷熱保持部151と定温部152との間には温度差が発生する。そして、この温度差に基づいて、熱電変換素子153におけるゼーベ

ック効果により、上述した第4の構成例に示したものと 同様に、所定の起電力が発生して電力が生成される。

【0069】したがって、このような構成を有する発電 装置を副電源部に適用することにより、上述した各構成 例と同様に、発電モジュール10Aに対して燃料パック 20を結合する極めて簡易な操作のみで、I/F部30 を介して発電用燃料 (液化燃料) FLが副電源部11E に自動的に送入されて、気化反応により熱エネルギーが 吸収されて冷熱が生じ、上記温度差発電器による発電動 作を開始、継続することができ、さらに、発電用燃料下 Lの供給が継続する限り、副電源部11Eにより所定の 電力を常時、自立的に生成して、電源システム1内外の 所定の構成に供給することができる。なお、本構成例に おいては、冷熱保持部151と定温部152における温 度差に基づいて、ゼーベック効果により電力を発生する 温度差発電器について説明したが、本発明は、これに限 定されるものではなく、熱電子放出現象に基づいて、電 力を発生する構成を有するものであってもよい。

【0070】 (副電源部の第6の構成例) 図9は、本実 施形態に係る電源モジュールに適用可能な副電源部の第 6の構成例を示す概略構成図である。第6の構成例にお いては、副電源部の具体例として、燃料パック20に封 入された発電用燃料に対する生物化学的な反応を利用し て電力を発生する発電装置としての構成を有している。

【0071】図9に示すように、第6の構成例に係る副 電源部11Fは、概略、発電用燃料を栄養源として成育 する微生物や生体触媒(以下、便宜的に「微生物等」と いう) BIOが貯蔵された生体培養槽161と、該生体 培養槽161内に設けられた陽極側電極161a及び陰 極側電極161bと、を備えた構成を有している。この ような構成において、燃料パック20からI/F部30 を介して発電用燃料FLを供給することにより、上記生 体培養槽161内で微生物等BIOによる呼吸等の代謝 等(生物化学的反応)が生じて電子(e-)が生成され る。そして、この電子を陽極側電極161aにより捕獲 することにより、出力端子Oa、Obから所定の電力が 得られる。

【0072】したがって、このような構成を有する発電 装置を副電源部に適用することにより、上述した各構成 例と同様に、発電モジュール10Aに対して燃料パック 20を結合する極めて簡易な操作のみで、I/F部30 を介して微生物等BIOの栄養源となる発電用燃料FL が副電源部11F (生体培養槽161) に自動的に送入 されて、微生物等BIOの生物化学的な反応による発電 動作が開始され、さらに、発電用燃料の供給が継続する 限り、所定の電力を常時、自立的に生成して、電源シス テム1内外の所定の構成に供給することができる。 な お、上記生物化学的反応において、微生物等BIOによ る光合成を利用して電力の生成を行う場合にあっては、 例えば、電源システム1が装着されるデバイスDVCに 50 てもよいし、次に示すように、上述した各副電源部11

設けられた開口部等を介して、外光が入射するように構 成することにより、所定の電力を常時自立的に生成して 供給することができる。

【0073】(副電源部の第7の構成例)図10は、本 実施形態に係る電源モジュールに適用可能な副電源部の 第7の構成例を示す概略構成図である。第7の構成例に おいては、副電源部の具体例として、燃料パック20か ら供給される発電用燃料の流体移動により生じる振動工 ネルギーを電力に変換する発電装置としての構成を有し ている。

【0074】図10 (a) に示すように、第7の構成例 に係る副電源部11Gは、概略、液体又は気体からなる 発電用燃料が所定方向に移動することにより、少なくと も一端側が振動可能なように構成され、その振動端17 1aに電磁コイル173が設けられた振動子171と、 電磁コイル173に対向して永久磁石174が設けら れ、発電用燃料の移動に対して振動を生じない固定子1 72と、を備えた振動発電器としての構成を有してい る。このような構成において、図10(b)に示すよう に、燃料パック20からI/F部30を介して発電用燃 料FLを供給することにより、発電用燃料FLの流動方 向に対して概ね直交する方向(図中、矢印P4)に、固 定子172に対して振動子171 (振動端171a) が 所定の振動数で振動を生じる。この振動により永久磁石 174と電磁コイル173間の相対位置に変化が生じる ことにより、電磁誘導が発生して、電磁コイル173を 通じて所定の電力が得られる。

【0075】したがって、このような構成を有する発電 装置を副電源部に適用することにより、上述した各構成 例と同様に、発電モジュール10Aに対して燃料パック 20を結合する極めて簡易な操作のみで、I/F部30 を介して流体としての発電用燃料FLが副電源部11G に自動的に送入されて、流体移動に伴う振動子171の 振動エネルギーの変換による発電動作が開始され、さら に、発電用燃料FLの供給が継続する限り、所定の電力 を常時、自立的に生成して、電源システム1内外の所定 の構成に供給することができる。

【0076】なお、上述した各構成例は、発電モジュー ル10Aに適用される副電源部11の一例を示したに過 ぎず、本発明に係る電源システムの構成を何ら限定する ものではない。要するに、本発明に適用される副電源部 11は、燃料パック20に封入された液体燃料又は液化 燃料又は気体燃料が直接的に供給されることにより、副 電源部11内部で電気化学反応や電磁誘導、発熱、吸熱 反応に伴う温度差等、エネルギーの変換作用に基づいて 電力を発生することができるものであれば、他の構成を 有するものであってもよく、例えば、ガスタービンやロ ータリーエンジン以外のガス圧力駆動エンジンと電磁誘 導や圧電変換による発電器とを組み合わせたものであっ

と同等の発電装置に付加して、電力蓄積手段(蓄電装置)を備え、副電源部11により発電された電力(第2の電力)の一部を蓄電した後、電源システム1(主発電部12)の起動時に、主発電部12又は出力制御部14に対して起動電力として供給するように構成したものを適用することもできる。

【0077】(副電源部の第8の構成例)図11 (a)、図11(b)は、本実施形態に係る電源モジュ ールに適用可能な副電源部の第8の構成例を示す概略構 成図である。図11(a)に示すように、第8の構成例 に係る副電源部11Hは、概略、燃料パック20に封入 された発電用燃料(液体燃料又は液化燃料又は気体燃 料)FLがI/F部30に設けられ燃料輸送管を介して 毛細管現象により直接的に供給されることにより自立的 に電力(第2の電力)を発生することができる発電装置 (例えば、上述した各構成例に示した副電源部) 181 と、該発電装置181により生成された電力の一部を蓄 積する2次電池又はコンデンサ等からなる電荷蓄積部1 82と、動作制御部13からの動作制御信号に基づい て、電荷蓄積部182への電力の蓄積、放出を切り換え 設定するスイッチ183と、を備えた構成を有してい る。

【0078】このような構成において、燃料パックからの発電用燃料の供給が持続している間、常時駆動している発電装置181により生成された電力は、デバイスDVCのコントローラ電力及び動作制御部13の動作電力として出力されるとともに、その一部がスイッチ183を介して電荷蓄積部182に蓄積される。そして、例ラCNTから出力される、負荷LDがオフ状態がら起動してオン状態に切り替わる負荷駆動情報を端子部184を介して受け取り、デバイスDVC(負荷LD)の駆動を検出した場合には、動作制御部13から出力される動作制御信号に基づいて、スイッチ183の接続状態が切り替わり、電荷蓄積部182に蓄積されていた電力が主発電部12又は出力制御部14に対して起動電力として供給される。

【0079】したがって、このような構成を有する副電源部によれば、発電装置181により単位時間当たりに生成される電力を駆動電力特性の低いもの(微弱な電力)に設定した場合であっても、電荷蓄積部182に蓄積された電力を瞬時に放出することにより、主発電部12又は出力制御部14に対して、十分に駆動電力特性が高い電力を供給することができる。よって、発電装置181の発電能力を十分小さいものに設定することができるので、副電源部11の構成を小型化することができる。

【0080】また、図11(b)に示すように発電装置 181を省略して予めチャージアップされた電荷蓄積部 182のみを副電源部として構成するようにしてもよ 22

い。電荷蓄積部182は、コントローラCNTへのコン トローラ電力及び負荷LDへの負荷駆動電力を供給する 機能を有する。負荷LDでの負荷駆動電力の消費に伴い 電荷蓄積部182の電荷蓄積量が所定の量まで減衰する ことを動作制御部13が検知したら、電荷蓄積部182 と、出力制御部14及び主発電部12との間で起動制御 部として機能するスイッチ183が閉じて、電荷蓄積部 182が出力制御部14及び主発電部12に駆動電力を 供給する。次いで、駆動開始した出力制御部14が主発 電部12に燃料等を供給し、主発電部12は発電して電 荷蓄積部182をチャージアップさせる。そして、動作 制御部13からの動作制御信号に基づいてスイッチ18 3を切り替えると、電荷蓄積部182で蓄積された電荷 が負荷駆動電力として負荷LDに出力される。電荷蓄積 部182で蓄積された電荷になれば主発電部12の発電 は停止する。このような構造にすれば、デバイスDVC のコントローラCNTから負荷駆動情報を得ることなし に電荷蓄積部182の電荷の蓄積状態のみで主発電部1 2が発電及び発電の停止を行うので、端子部184及び 起動制御部15が不要となり、デバイスDVCもコント ローラCNTから負荷駆動情報を提供する構造でなくて もよい。

【0081】上記実施形態では、スイッチ182は電荷蓄積部182から主発電部12及び出力制御部14への電力供給並びに主発電部12から電荷蓄積部182への電荷の蓄積と、電荷蓄積部182から負荷LDへの負荷駆動電力の供給と、に切り替えたが、電荷蓄積部182から主発電部12及び出力制御部14への電力供給並びに主発電部12から電荷蓄積部182への電荷の蓄積と、主発電部12から負荷LDへの負荷駆動電力の直接供給と、に切り替えてもよい。

【0082】<主発電部12>本実施形態に係る発電モジュールに適用される主発電部12は、図3に示したように、動作制御部13による起動制御に基づいて、燃料パック20から供給される発電用燃料FLが有する物理的又は化学的エネルギー等を用いて、デバイスDVC

(負荷LD)を駆動するために必要な所定の電力(第1の電力)を発生する構成を有している。主発電部12の具体的な構成としては、例えば、燃料パック20から供給される発電用燃料FLを用いた電気化学反応によるもの(燃料電池)や、燃焼反応に伴う熱エネルギーによるもの(温度差発電)、燃焼反応等に伴う圧力エネルギーを用いて発電器を回転させて電力を発生する力学的なまルギー変換作用等によるもの(内燃、外燃機関発電)、また、発電用燃料FLの流体エネルギーや熱エネルギーを電磁誘導の原理等を利用して電力に変換するもの(電磁流体力学発電、熱音響効果発電等)等、種々の形態を適用することができる。

【0083】ここで、主発電部12により生成される電力(第1の電力)は、デバイスDVC全体の各種機能

(負荷 L D) の駆動を行う主電源であるため、駆動電力 特性が高く設定される。したがって、上述した副電源部 11により生成され、デバイスDVCのコントローラ電 力や動作制御部13、残量検出部16の動作電力等とな る電力(第2の電力)とはその性質を異にする。

【0084】以下に、各々の具体例について、図面を参 照して簡単に説明する。

(主発電部の第1の構成例) 図12は、本実施形態に係 る電源モジュールに適用可能な主発電部の第1の構成例 を示す概略構成図であり、図13は、本構成例に係る主 発電部に適用される燃料改質部における水素生成過程を 示す概念図である。ここでは、上述した電源システムの 構成 (図3) を適宜参照しながら説明する。第1の構成 例においては、主発電部の具体例として、燃料パック2 0 から出力制御部 1 4 を介して供給される発電用燃料 F Lを用い、電気化学反応により電力を発生する燃料改質 方式を採用した固体高分子型の燃料電池の構成を有して いる。

【0085】図12に示すように、主発電部12Aは、 大別して、燃料パック20から供給される発電用燃料F Lに対して所定の改質反応を利用して、発電用燃料FL に含有される所定の燃料成分(水素)を抽出する燃料改 質部 (燃料改質器) 210aと、燃料改質部210aに より抽出された燃料成分を利用して電気化学反応によ

 $CH_3OH + H_2O \rightarrow 3H_2 + CO_2$

 $CO+H_2O \rightarrow CO_2+H_2$

【0088】ここで、図13 (b) に示すように、水蒸 気改質反応において副生成物として生成される一酸化炭 素(CO)を除去するための選択酸化触媒部210cを 燃料改質部210aの後段に付設して、水性シフト反応 及び選択酸化反応からなる各過程を介して、一酸化炭素 (CO) を二酸化炭素 (CO2) 及び水素 (H2) に変 ※

【0089】さらに、選択酸化反応過程において、水性 シフト反応により二酸化炭素 (СО2) と水素 (Н2) に変換されなかった一酸化炭素(CO)に対して酸素 $CO+(1/2)O_2 \rightarrow CO_2$

上記一連の燃料改質反応により生成される水素以外の微 量の生成物(主に、二酸化炭素)は、発電モジュール1 0 Aに設けられた排出孔(図示を省略;具体構成例にお いて後述する)を介して、大気中に排出される。なお、 このような機能を有する燃料改質部の具体的な構成につ いては、他の構成とともに、後述する具体構成例におい て詳しく説明する。

【0090】燃料電池本体210bは、図12に示すよ うに、上述した副電源部11に適用される燃料直接供給 方式の燃料電池と同様に、概略、例えば、白金やパラジ ウム、さらには白金・ルテニウム等の触媒微粒子が付着 した炭素電極からなる燃料極(カソード)211と、白 金等の触媒微粒子が付着した炭素電極からなる空気極 (アノード) 2 1 2 と、燃料極 2 1 1 と空気極 2 1 2 の 50 すように、燃料極 2 1 1 における触媒反応により電子

24

*り、負荷214(負荷LD)を駆動するための所定の電 力(第1の電力)を発生する燃料電池本体210bと、 を有して構成されている。

【0086】燃料改質部210aは、図13 (a) に示 すように、概略、燃料パック20から出力制御部14を 介して供給される発電用燃料FLに対して、蒸発及び水 蒸気改質反応からなる各過程を介して、燃料成分を抽出 し、燃料電池本体210bに供給する。例えば、メタノ ール(CH3OH)及び水(H2O)を発電用燃料FL として、水素ガス (H2) を生成する場合にあっては、 まず、蒸発過程において、液体燃料であるメタノール及 び水をヒータで概ね100℃以上に加熱することによ り、メタノール (CH3OH) 及び水 (H2O) を気化

【0087】次いで、水蒸気改質反応過程においては、 上記気化したメタノール(CH3OH)及び水(H 20)をヒータで概ね300℃若しくはそれ以上の温度 に加熱することにより、49.4kJ/molの熱エネルギー を吸熱して、次の化学反応式(3)に示すように、水素 (H2) と微量の二酸化炭素 (CO2) が生成される。 なお、この水蒸気改質反応においては、水素(H 2)と 二酸化炭素(CO2)以外に副生成物として微量の一酸 化炭素(CO)が生成される場合がある。

 $\cdot \cdot \cdot (3)$

※換して、有害物質の排出を抑止するように構成してもよ い。具体的には、水性シフト反応過程において、一酸化 炭素 (CO) に対して水(水蒸気; H2O) を反応させ ることにより40.2kJ/molの熱エネルギーを発熱し て、次の化学反応式(4)に示すように、二酸化炭素 (CO₂)と水素 (H₂)が生成される。

 $\cdot \cdot \cdot (4)$

★ (O2) を反応させることにより283. 5kJ/molの熱 エネルギーを発熱して、次の化学反応式 (5) に示すよ うに、二酸化炭素 (CO2) が生成される。

. . . (5)

間に介装されたフィルム状のイオン導電膜(交換膜) 2 13と、を有して構成されている。ここで、燃料極21 1には、後述する出力制御部14により供給量が制御さ れた発電用燃料FLから、上記燃料改質部210aによ り抽出された水素ガス (H2) が供給され、一方、空気 極212には大気中の酸素ガス(02)が供給される。 これにより、以下に示す電気化学反応により発電が行わ れ、負荷214(デバイスDVCの負荷LD)に対して 所定の駆動電力(電圧・電流)となる電力が供給され る。

【0091】本構成例に係る主発電部12における電気 化学反応の一例は、具体的には、燃料極211に水素ガ ス (H2) が供給されると、次の化学反応式 (6) に示

(e-)が分離して水素イオン(プロトン;H+)が発生し、イオン導電膜 2 1 3 を介して空気極 2 1 2 側に通過するとともに、燃料極 2 1 1 を構成する炭素電極により電子 (e-)が取り出されて負荷 2 1 4 に供給される。

 $3 \text{ H }_2 \rightarrow 6 \text{ H}^+ + 6 \text{ e}^- \qquad \cdots \qquad (6)$

 $6 H^{++} (3/2) O_2 + 6 e^{-} \rightarrow 3 H_2 O$

【0093】このような一連の電気化学反応(化学反応 式(6)及び(7))は、概ね60~80℃の比較的低 温の環境下で進行し、電力(負荷駆動電力)以外の副生 成物は、基本的に水(H2O)のみとなる。ここで、空 気極212において生成される副生成物である水 (H2 O) を回収し、上述した燃料改質部210aに必要量を 供給することにより、発電用燃料FLの燃料改質反応や 水性シフト反応に再利用することができるとともに、燃 料改質反応のために燃料パック20に予め備蓄(封入) される水(H2O)の量を大幅に減らすことができ、さ らには、燃料パック20内に設けられた副生成物を回収 する副生成物回収手段への回収量を大幅に減らすことが できる。なお、空気極212で発生する水(H2〇)等 の副生成物を回収、再利用する副生成物回収手段の構成 については、上述した副電源部11における副生成物回 収手段(副電源部11の第1の構成例参照)とともに併 せて後述する。

【0094】なお、上述したような電気化学反応により生成され、負荷214に供給される電力は、主発電部12A(燃料電池本体210bの燃料極211)に供給される水素ガス (H_2)の量に依存する。したがって、出力制御部14を介して主発電部12に供給される発電用燃料(実質的には水素ガス)FLの量を制御することにより、デバイスDVCに供給される電力を任意に調整することができ、例えば、汎用の化学電池のうちの1種と同等になるように設定することができる。

【0095】このような構成を有する燃料改質方式の燃料電池を主発電部に適用することにより、出力制御部14により発電用燃料FLの供給量を制御することにきるので、負荷駆動情報に基づいて、デバイスDVC(負荷LD)の駆動状態に応じた適切な発電動作を実現することができる。また、燃料電池としての構成を適用することができる。また、燃料電池としての構成を適用することができる。また、燃料電池としての構成を適用することができる。で、極めて高い発電効率を実現することができるので、極めて高い発電効率を実現することができる。発電用燃料FLの効率的な消費や主発電部12を含む発電モジュール10Aの小型化を図ることができる。

【0096】なお、上述した副電源部(第1の構成例参照)11と同様に、発電用燃料FLとしてメタノールを適用した場合についてのみ示したが、本発明はこれに限定されるものではなく、少なくとも、水素元素を少なくとも含む液体燃料又は液化燃料又は気体燃料であればよ

26

*【0092】一方、空気極212に空気が供給されると、次の化学反応式(7)に示すように、空気極212における触媒反応により負荷214を経由した電子(e-)とイオン導電膜213を通過した水素イオン(H+)と空気中の酸素ガス(O2)が反応して水(H2O)が生成される。

→ 3 H₂O · · · (7)

い。したがって、メタノールやエタノール、ブタノール 等のアルコール系の液体燃料や、ジメチルエーテルやイソブタン、天然ガス等の常温常圧下で気化される炭化水素からなる液化燃料、あるいは、水素ガス等の気体燃料 等を良好に適用することができる。

【0097】ここで、発電用燃料FLとして、液化された水素や水素ガスをそのまま利用する場合にあっては、本構成例に示したような燃料改質部210aを必要とすることなく、出力制御部14により供給量のみを制御した発電用燃料FLを、燃料電池本体210bに直接供給する構成を適用することができる。また、主発電部12の構成として、燃料改質方式の燃料電池のみを示したが、本発明はこれに限定されるものではなく、上述した副電源部(第1の構成例参照)11と同様に、電力発生効率は低いが燃料直接供給方式の燃料電池を適用して、上記液体燃料や液化燃料、気体燃料等を用いて電力を発生するものであってもよい。

【0098】(主発電部の第2の構成例)図14は、本実施形態に係る電源モジュールに適用可能な主発電部の第2の構成例を示す概略構成図である。第2の構成例においては、主発電部の具体例として、燃料パック20から出力制御部14を介して供給される発電用燃料FLを用い、燃焼反応に伴う圧力エネルギーによりガス燃焼タービン(内燃機関)を駆動し、その駆動エネルギーを電力に変換する発電装置としての構成を有している。

【0099】図14(a)、(b)に示すように、本構 成例に係る主発電部12Bは、概略、複数の羽根が円周 の所定の方向に沿って湾曲しつつ、略放射状に配列され た吸気羽根 2 2 2 in及び排気羽根 2 2 2 outが連結し て、自在に回転が可能なように構成された可動羽根22 2と、複数の羽根が可動羽根222(吸気羽根222in 及び排気羽根222out)の外周側に沿って、可動羽根 222とは逆方向に湾曲しつつ、略放射状に配列され、 かつ、可動羽根222に対して相対的に固定された吸気 羽根 2 2 3 in及び排気羽根 2 2 3 outからなる固定羽根 223と、可動羽根222により吸入された発電用燃料 (燃料ガス) FLを所定のタイミングで燃焼する燃焼室 224と、燃焼室224に吸入された燃料ガスに点火す る点火部225と、可動羽根222の回転中心に直結さ れ、周知の電磁誘導あるいは圧電変換の原理に基づい て、可動羽根222の回転エネルギーを電力に変換する 発電器228と、可動羽根222と固定羽根223から なるガス燃焼タービンへの気化された燃料ガスの供給

(吸入)を制御する吸気制御部226と、ガス燃焼タービンにおける燃焼後の燃料ガス(排出ガス)の排出を制御する排気制御部227と、を有して構成されている。ここで、ガス燃焼タービン、吸気制御部226及び排し制御部227を備えた主発電部12Bの構成は、上述を利力してシン製造技術を通用することにより、例えば、シリコンチップ221上のまりメートルオーダーの微小空間に集積化して形成することができる。なお、図14(a)においては、ガス燃焼タービンの構成を明確にするために、吸気羽根222in、223inが便宜的に露出するように示した。

【0100】このような主発電部12Bにおいて、例えば、図14(b)に示すように、吸気制御部226を介してガス燃焼タービンの吸気羽根222in、223in側から吸入した燃料ガスを、燃焼室224において所定のタイミングで点火部225で点火、燃焼し、排気羽根222out、223out側から排出することにより(矢印P5)、可動羽根222及び固定羽根223の湾曲方向に沿って燃料ガスの渦流が生じ、該渦流によって、燃料ガスの吸入、排出が自動的に行われて、可動羽根222が所定の方向に連続的に回転し、発電器228を駆動する。これにより、燃料ガスによる燃料エネルギーがガス燃焼タービン及び発電器228を介して電力に変換される。

【0102】このような構成を有するガス燃焼タービンを主発電部に適用することにより、上述した第1の構成例と同様に、発電用燃料FLの供給量を調整する簡易な制御方法により、任意の電力を発生することができるができる。また、微細化したガス燃焼タービンとしての構成を適用することにより、比較的にエネルギー変換効率で電力を発生して、発電用燃料FLの効率的な消費を図りつつ、主発電部12を含む発電モジュール10Aの小型化を図ることができる。

【0103】(主発電部の第3の構成例)図15は、本 50

28

実施形態に係る電源モジュールに適用可能な主発電部の第3の構成例を示す概略構成図である。第3の構成例においては、主発電部の具体例として、燃料パック20から出力制御部14を介して供給される発電用燃料FLを用い、燃焼反応による圧力エネルギーによりロータリーエンジン(内燃機関)を駆動し、その駆動エネルギーを電力に変換する発電装置としての構成を有している。

【0104】図15に示すように、第3の構成例に係る主発電部12Cは、外周が概略、楕円型の作動空間231aを有するハウジング231、及び、作動空間231aの内壁に沿って偏心しながら回転する略三角形状の断面を有するローター232、圧縮された燃料ガスを点火、燃焼させる点火部234を備えた周知のロータリーエンジンと、中心軸233に直結された発電器(図のテンジンと、中心軸233に直結された発電器(図のテンジンと、中心軸233に直結された発電器(ロータリーエンジンからなる主発電部12Cの構成は、上述した各構成例と同様に、マイクロマシン製造技術を適用することにより、微小空間に集積化して形成することができる。

【0105】このような構成を有する主発電部12Cに おいて、ローター232が回転することによる吸気、圧 縮、燃焼(爆発)、排気の各行程を繰り返すことによ り、燃料ガスの燃焼により生じる圧力エネルギーを回転 エネルギーに変換して発電器に伝達する。すなわち、吸 気行程においては、図15(a)に示すように、吸気口 235aから燃料ガスが吸入されて、作動空間231a の内壁とローター232により形成される所定の作動室 ASに充填され、次いで、圧縮行程において、図15 (b) に示すように、作動室AS内の燃料ガスが高い圧 力に圧縮された後、燃焼行程において、図15(c)に 示すように、所定のタイミングで点火部234により燃 料ガスを点火、燃焼(爆発)させ、排気行程において、 図15(d)に示すように、燃焼後の排出ガスが作動室 ASから排気口235bを介して排出される。この一連 の駆動行程において、燃焼行程における燃料ガスの爆 発、燃焼に伴う圧力エネルギーにより、ローター232 の所定方向(矢印Р6)への回転が維持されて、中心軸 233への回転エネルギーの伝達が継続される。これに より、燃料ガスによる燃焼エネルギーが中心軸233の 回転エネルギーに変換されて、該中心軸233に接続さ れた発電器(図示を省略)により電力に変換される。

【0106】ここで、発電器の構成は、上述した第2の構成例と同様に、電磁誘導や圧電変換による周知の発電器を適用することができる。また、本構成例においても、燃料ガスの燃焼エネルギーに基づいて、電力を発生する構成を有しているので、発電用燃料(燃料ガス)Fしは、少なくとも、発火性又は燃焼性を有することを必要とする。また、燃焼後の燃料ガス(排出ガス)を電源システム1の外部にそのまま排出する構成を適用する場合にあっては、排出ガスが燃焼性又は毒性がある成分を

含む場合は、排出ガスを外部に排出する前に難燃化や無毒化する処理を行うか、該排出ガスを回収する手段を備える必要があることはいうまでもない。

【0107】このような構成を有するロータリーエンジンを主発電部に適用することにより、上述した各構成例と同様に、発電用燃料FLの供給量を調整する簡易な制御方法により、任意の電力を発生することができるので、デバイスの駆動状態に応じた適切な発電動作を実現することができる。また、微細化したロータリーエンジンとしての構成を適用することにより、比較的簡易な構成、かつ、振動の少ない動作により電力を発生しつつ、主発電部12を含む発電モジュール10Aの小型化を図ることができる。

【0108】(主発電部の第4の構成例)図16は、本実施形態に係る電源モジュールに適用可能な主発電部の第4の構成例を示す概略構成図である。ここでは、第4の構成例に適用される周知のスターリングエンジンの基本構造(2ピストン形、ディスプレーサ形)のみを示し、その動作を簡単に説明する。第4の構成例においては、主発電部の具体例として、燃料パック20から出力20制御部14を介して供給される発電用燃料FLを用い、燃焼反応による熱エネルギーによりスターリングエンジン(外燃機関)を駆動し、その駆動エネルギーを電力に変換する発電装置としての構成を有している。

【0109】第4の構成例に係る主発電部12Dにおいて、2ピストン形スターリングエンジンは、図16

(a)に示すように、概略、互いに作動ガスが往復可能に構成された高温(膨張)側のシリンダ241a及び低温(圧縮)側のシリンダ242a、これらのシリンダ241a、242a内にあって、互いに90°の位相差を有して往復運動するようにクランク軸243に接続された高温側ピストン241b及び低温側ピストン242b、高温側のシリンダ241aを加熱する加熱器244、低温側のシリンダ242aを冷却する冷却器244、低温側のシリンダ242aを冷却する冷却器245、クランク軸243の軸芯に接続されたフライホイール246を備えた周知のスターリングエンジンと、クランク軸243に直結された発電器(図示を省略)と、を有して構成されている。

【0110】このような構成を有する主発電部12Dにおいては、高温側のシリンダ241aを燃料ガスの燃焼に伴う熱エネルギーにより常時加熱し、低温側のシリンダ242aを外気等、電源システム1内外の他の領域に接触又は晒されることにより常時冷却した状態に保持し、等容加熱、等温膨張、等容冷却、等温圧縮の各行程を繰り返すことにより、高温側ピストン241b及び低温側ピストン242bを往復運動させる運動エネルギーを、クランク軸243の回転エネルギーに変換して発電器に伝達する。

【0111】すなわち、等容加熱行程においては、作動ガスの熱膨張を開始して高温側ピストン241bが下降

30

し始めると、高温側シリンダ241aと連続した空間で ある小さい容積の低温側のシリンダ242aは、高温側 ピストン241bの急下降に伴う減圧で低温側ピストン 242bが上昇し、低温側シリンダ242aの冷却した 作動ガスが高温側シリンダ241aに流入する。次い で、等温膨張行程においては、高温側シリンダ241a 内に流入された冷却された作動ガスは十分熱膨張して高 温側シリンダ241a及び低温側のシリンダ242a内 の空間の圧力を上昇し、高温側ピストン241b及び低 温側ピストン242bがともに下降する。次いで、等容 冷却行程においては、低温側ピストン242bの下降に より低温側シリンダ242a内の空間が増大され、それ に伴い高温側シリンダ241a内の空間が収縮して高温 側ピストン241bが上昇し、高温側シリンダ241a の作動ガスが低温側シリンダ242aに流入して冷却さ れる。そして、等温圧縮行程においては、低温側シリン ダ242a内の空間を満たす冷却された作動ガスは収縮 し、連続した低温側シリンダ242a及び高温側シリン ダ241a内の空間はともに減圧され、高温側ピストン 241b及び低温側ピストン242bがともに上昇し て、作動ガスが圧縮される。この一連の駆動行程におい て、燃料ガスの加熱、冷却に伴うピストンの往復運動に より、クランク軸243の所定方向(矢印P7)への回 転が維持される。これにより、作動ガスの圧力エネルギ -がクランク軸243の回転エネルギーに変換されて、 該クランク軸243に接続された発電器(図示を省略) により電力に変換される。

【0112】一方、第4の構成例に係る主発電部12D において、ディスプレーサ形スターリングエンジンは、 図16(b)に示すように、概略、ディスプレーサピス トン241dにより隔壁され、互いに作動ガスが往復可 能な高温空間と低温空間を有するシリンダ241c、こ のシリンダ241c内にあって、往復運動可能に構成さて れたディスプレーサピストン241d、シリンダ241 c内の圧力変化に応じて往復運動するパワーピストン2 42d、ディスプレーサピストン241d及びパワーピ ストン242dが互いに90°の位相差を有するように 接続されたクランク軸243、シリンダ241cの一端 側(高温空間側)を加熱する加熱器244、シリンダ2 41 c の他端側 (低温空間側) を冷却する冷却器 24 5、クランク軸243の軸芯に接続されたフライホイー ル246を備えた周知のスターリングエンジンと、クラ ンク軸243に直結された発電器(図示を省略)と、を 有して構成されている。

【0113】このような構成を有する主発電部12Dにおいては、シリンダ241cの高温空間側を燃料ガスの燃焼に伴う熱エネルギーにより常時加熱し、低温空間側を常時冷却した状態に保持し、等容加熱、等温膨張、等容冷却、等温圧縮の各行程を繰り返すことにより、ディスプレーサピストン241d及びパワーピストン242

dを所定の位相差で往復運動させる運動エネルギーを、 クランク軸243の回転エネルギーに変換して発電器に 伝達する。

【0114】すなわち、等容加熱行程においては、ディ スプレーサピストン241dが加熱器244による作動 ガスの熱膨張が開始し上昇し始めると、低温空間側の作 動ガスが高温空間側に流入して加熱される。次いで、等 温膨張行程においては、増量した高温空間側の作動ガス が熱膨張して圧力が上昇することにより、パワーピスト ン242dが上昇する。次いで、等容冷却行程において は、加熱器244による熱膨張した作動ガスの低温空間 側への流入によりディスプレーサピストン241dが下 降すると、高温空間側の作動ガスが低温空間側に流入し て冷却される。そして、等温圧縮行程においては、低温 空間側のシリンダ241c内で冷却された作動ガスが収 縮して低温空間側のシリンダ241c内を減圧しパワー ピストン242 dが下降する。この一連の駆動行程にお いて、作動ガスの加熱、冷却に伴うピストンの往復運動 により、クランク軸243の所定方向(矢印P7)への 回転が維持される。これにより、作動ガスの圧力エネル 20 ギーがクランク軸243の回転エネルギーに変換され て、該クランク軸243に接続された発電器(図示を省 略)により電力に変換される。

【0115】ここで、発電器の構成は、上述した第2、第3の構成例と同様に、電磁誘導や圧電変換による周知の発電器を適用することができる。また、図16に示したスターリングエンジンを備えた主発電部12Dの構成も、上述した各構成例と同様に、微小空間に集積化して形成される。さらに、本構成例においても、燃料ガスの燃焼に伴う熱エネルギーに基づいて、電力を発生する構成を有しているので、発電用燃料(燃料ガス)は、少なくとも、発火性又は燃焼性を有している必要がある。

【0116】このような構成を有するスターリングエンジンを主発電部に適用することにより、上述した第3の構成例と同様に、発電用燃料FLの供給量を調整する簡易な制御方法により、任意の電力を発生することができるので、デバイスDVC(負荷LD)の駆動状態に応じた適切な発電動作を実現することができる。また、微細化したスターリングエンジンとしての構成を適用することにより、比較的簡易な構成、かつ、振動の少ない動作により電力を発生しつつ、主発電部12を含む発電モジュール10Aの小型化を図ることができる。

【0117】なお、上述した第2乃至第4の構成例においては、発電用燃料FLの燃焼反応に基づくガス圧力の変化を回転エネルギーを介して電力に変換する発電装置として、ガス燃焼タービン、ロータリーエンジン及びスターリングエンジンを備えたものを示したが、本発明はこれに限定されるものではなく、パルス燃焼エンジン等の各種の内燃機関又は外燃機関と、周知の電磁誘導あるいは圧電変換の原理を適用した発電器とを組み合わせた

32

ものを適用できることはいうまでもない。

【0118】(主発電部の第5の構成例)図17は、本 実施形態に係る電源モジュールに適用可能な主発電部の 第5の構成例を示す概略構成図である。第5の構成例に おいては、主発電部の具体例として、燃料パック20か ら出力制御部14を介して供給される発電用燃料FLを 用い、燃焼反応(酸化反応)に基づいて熱エネルギーを 発生することにより生じる温度差を利用した熱電変換発 電により電力を発生する発電装置としての構成を有して いる。

【0119】図17 (a) に示すように、第5の構成例 に係る主発電部12Eは、概略、発電用燃料FLを燃焼 反応 (酸化反応) させて熱エネルギーを発生させる燃焼 加熱器251と、概ね一定の温度を保持する定温部25 2と、燃焼加熱器251を第1の温度端、定温部252 を第2の温度端として、第1及び第2の温度端間に接続 された熱電変換素子253と、を備えた温度差発電器の 構成を有している。ここで、熱電変換素子253は、図 7 (b) に示したものと同等の構成を有している。ま た、燃焼加熱器251は、発電用燃料FLが供給される ことにより、燃焼反応を継続的に維持して高温を保持 し、一方、定温部252は、電源システム1内外の他の 領域に接触又は晒されることにより、略一定の温度(例 えば、常温又は低温)を保持するように構成されてい る。なお、図17に示した温度差発電器からなる主発電 部12日の構成も、上述した各構成例と同様に、微小空 間に集積化して形成される。

【0120】このような構成を有する主発電部12Eにおいて、図17(b)に示すように、燃料パック20に封入された発電用燃料が出力制御部14を介して、燃焼加熱器251に供給されると、発電用燃料の供給量に応じて燃焼(酸化)反応が進行して発熱し、燃焼加熱器251の温度が上昇する。一方、定温部252の温度は、ほぼ一定に設定されるように構成されているので、燃焼加熱器251と定温部252との間には温度差が発生する。そして、この温度差に基づいて、熱電変換素子253におけるゼーベック効果により、所定の起電力が発生して電力が生成される。

【0121】このような構成を有する温度差発電器を主発電部に適用することにより、上述した各構成例と同様に、発電用燃料FLの供給量を調整する簡易な制御方法により、任意の電力を発生することができるので、デバイスDVC(負荷LD)の駆動状態に応じた適切な発電動作を実現することができる。また、微細化した温度差発電器としての構成を適用することにより、比較的簡易な構成、かつ、振動のない動作により電力を発生しつつ、主発電部12を含む発電モジュール10Aの小型化を図ることができる。なお、本構成例においては、燃焼加熱器251と定温部252における温度差発電器で、ゼーベック効果により電力を発生する温度差発電器

について説明したが、本発明は、これに限定されるものではなく、熱電子放出現象に基づいて、電力を発生する 構成を有するものであってもよい。

【0122】(主発電部の第6の構成例)図18は、本 実施形態に係る電源モジュールに適用可能な主発電部の 第6の構成例を示す概略構成図である。第6の構成例に おいては、主発電部の具体例として、燃料パック20か ら出力制御部14を介して供給される発電用燃料FLを 用い、電磁流体力学の原理により電力(起電力)を発生 する発電装置としての構成を有している。

【0123】図18 (a) に示すように、第6の構成例 に係る主発電部12Fは、概略、導電性流体からなる発 電用燃料FLが所定の流束で通過する流路の側壁を構成 し、相互に対向する一対の電極ELa、ELbと、電極 ELa、ELbの対向方向及び発電用燃料FLの流路方 向のいずれにも垂直な方向に所定の強さの磁界を発生す るNd-Fe-B系のネオジム永久磁石からなる磁界発 生手段MGと、各電極ELa、ELbに個別に接続され た出力端子Oc、Odと、を備えたMHD(Magneto-Hy dro-Dynamics;電磁流体力学)発電器の構成を有してい る。ここで、発電用燃料FLは、プラズマや液体金属、 導電性物質を含有する液体又は気体等の導電性流体(作 動流体)であって、電極ELa、ELbに平行な方向 (矢印P8) に流動するように流路が形成されている。 なお、本構成例に係る主発電部12Fにおいても、上述 した各構成例と同様に、マイクロマシン製造技術を適用 して、微小空間に集積化して形成される。

【0124】このような構成を有する主発電部12Fにおいて、図18(b)に示すように、磁界発生手段MGにより発電用燃料の流路方向に垂直に磁界Bを発生させ、流東uで発電用燃料(導電性流体)FLを流路方向に移動させることにより、ファラデーの電磁誘導の法則に基づいて、発電用燃料FLが磁界を横切るときに起電力u×Bが誘導され、発電用燃料FLが有するエンタルピーが電力に変換され、出力端子Oc、Od間に接続された負荷(図示を省略)に電流が流れる。これにより、発電用燃料FLが有する熱エネルギーが直接電力に変換される。

【0125】なお、MHD発電器の流路通過後の発電用燃料(導電性流体)FLを電源システム1の外部にそのまま排出する構成を適用する場合にあっては、発電用燃料FLが燃焼性又は毒性がある成分を含む場合は、発電用燃料FLを外部に排出する前に難燃化や無毒化する処理を行うか、該発電用燃料FLを回収する手段を備える必要があることはいうまでもない。

【0126】このような構成を有するMHD発電器を主発電部に適用することにより、流路を移動する発電用燃料FLの速度を調整する簡易な制御方法により、任意の電力を発生することができるので、デバイスDVCの駆動状態に応じた適切な発電動作を実現することができ

34

る。また、微細化したMHD発電器としての構成を適用 することにより、駆動部品を必要としない極めて簡易な 構成により電力を発生しつつ、主発電部12を含む発電 モジュール10Aの小型化を図ることができる。

【0127】なお、上述した各構成例は、発電モジュール10Aに適用される主発電部12の一例を示したに過ぎず、本発明に係る電源システムの構成を何ら限定するものではない。要するに、本発明に適用される主発電部12は、燃料パック20Aに封入された液体燃料又はで、燃料又は気体燃料が直接的又は間接的に供給されることにより、主発電部12内部で電気化学反応や発熱、吸熱反応に伴う温度差、圧力エネルギーや熱エネルギーの変換作用、電磁誘導等に基づいて電力を発生することができるものであれば、他の構成を有するものであってもよく、例えば、熱音響効果による外力発生手段と電磁誘導や圧電変換による発電器とを組み合わせたもの等を良好に適用することができる。

【0128】また、上述した各構成例のうち、第2乃至第5の構成例を適用した主発電部12においては、主発電部12に供給された発電用燃料FLを燃焼反応等させて熱エネルギーを取り出す際の点火動作のために、図3に示したように、上述した副発電部11から供給される電力(第2の電力)を起動電力として用いるように構成されている。

【0129】<動作制御部13>本実施形態に係る発電モジュールに適用される動作制御部13は、図3に示すように、上述した副発電部11から供給される動作電力(第2の電力)により動作し、本実施形態に係る電源システム1内外の各種情報、すなわち、電源システム1に接続されるデバイスDVC(負荷LD)の駆動状態に関する情報(負荷駆動情報)や、燃料パック20Aに封入された発電用燃料FLの残量等の電源システム1の動作状態に関する情報に基づいて、動作制御信号を生成、出力し、後述する主発電部12における動作状態を制御はよる。ここで、負荷駆動情報とは、デバイスDVCにおいて、コントローラCNTにより負荷LDを駆動制御する際に出力される特定の信号情報や、負荷LDの駆動状態(起動/負荷変動等)に応じて変動する負荷駆動電力(第1の電力)の電圧変化等をいう。

【0130】すなわち、動作制御部13は、具体的には、主発電部12が動作していない状態からデバイスDVC(負荷LD)の起動への移行に伴って、コントローラCNTから出力された負荷駆動情報を端子部184を介して検出した場合には、事前に後述する残量検出部16からの残量検出信号に基づく発電用燃料FLの残量データを参照し、起動動作を正常に実行することができる量の発電用燃料FLが残存しているか否かを判断した後、後述する起動制御部15に対して、出力制御部14及び主発電部12を起動させるための動作制御信号を出力する(起動制御)。

【0131】また、動作制御部13は、主発電部12が 動作している状態においては、残量検出部16からの残 量検出信号に基づく発電用燃料の残量データを逐次参照 し、主発電部12からの出力電圧の全体的な傾向とし て、例えば、デバイスDVC自体が、通常用いられる汎 用の電池からの出力をモニタリングして、この電池の出 力残量 (電池残量) を検出するという機能を有する場 合、発電用燃料FLの残量が減少するにしたがって、主 発電部12により生成される電力(特に、出力電圧) が、そのデバイスDVCで通常用いられる汎用の電池の 経時的な出力特性に応じて経時的に徐々に変化(低下) するように制御するための動作制御信号を出力制御部1 4に出力し、それを受けて後述するように主発電部12 が、燃料残量情報も兼ねている負荷駆動電力(出力電 圧)を負荷LD及びコントローラCNTに経時的に低下 するように出力するように設定されている。

【0132】また、デバイスDVCが、通常用いられる 汎用の電池からの出力をモニタリングして電池の出力残 量を検出するという機能を有しておらず、かつ、本発明 の電源システム1からの燃料残量情報をコントローラC NTに受信できる機能を有している場合、動作制御NT 3は、デバイスDVCに内蔵されたコントローラCNT に対して、実際の残量データ自体や、残量データを端子 に対して、実際の残量データを端子で トローラで判断できるように変換したデータを端子部1 84を介してデバイスDVCのコントローラCNTに出 力するようにしてもよい(出力電圧制御)。

【0133】したがって、動作制御部13は、発電用燃料の残量と電源システム(主発電部12)の出力電圧との相関関係が一義的に規定された相関テーブルを備え、残量検出部16からの残量検出信号に基づいて、該相関テーブルを参照し、主発電部12における電力の発生量(発電量)を所定の出力電圧特性に対応して変化させるための動作制御信号を出力制御部14に対して出力する。このようにしてデバイスDVCはこのデータにより駆動可能な残量や駆動可能な残り時間等の燃料残量情報を得ることができる。

【0134】バッテリの出力を読み取ることによって電池残量を算出した従来のデバイスDVCでは、周囲の温度や連続使用時間等の状況の違いによってバッテリの出力が均一な経時的変位をとらないために、算出した電池残量と実際の電池残量との間に大きな誤差を生じることがあるが、本発明によれば、燃料パック20内の燃料の物理的残量を検出した残量データを用いているので、より周囲の影響が小さい正確な残量判定をすることができる。

【0135】なお、動作制御部13は、主発電部12が動作している状態で、例えば、デバイスDVC(負荷LD)の駆動状態の変動に伴って、正極及び負極から出力される負荷駆動電力の電圧変化に関連した負荷駆動情報を端子部184を介して検出した場合には、出力制御部

36

14に対して、主発電部12から負荷LDに供給される 負荷駆動電力(第1の電力)が、負荷LDの駆動状態に 対応した適切な値となるように、主発電部12における 電力の発生量(発電量)を調整するための動作制御信号 を出力するものであってもよい(フィードバック制 御)。

【0136】さらに、動作制御部13は、主発電部12が動作している状態で、例えば、上記フィードバック制御を実行しているにも関わらず、デバイスDVC(負荷LD)に供給されている負荷駆動電力が過剰となる状態に関連した負荷駆動情報を端子部184を介して所定の時間継続して検出した場合や、デバイスDVCからの負荷停止に関する負荷駆動情報を検出した場合には、起動制御部15に対して、出力制御部14及び主発電部12の動作を停止させるための動作制御信号を出力するものであってもよい(停止制御)。

【0137】加えて、動作制御部13は、残量検出部16により発電用燃料FLの急激な減少等の残量異常を検出した場合には、該残量異常に関する検出信号に基づいて、主発電部12における電力の生成を停止(具体的には、主発電部12への発電用燃料FLの供給遮断)するための動作制御信号を出力制御部14に対して出力して、主発電部12の発電動作を停止するとともに、残量異常に関する情報をデバイスDVCに内蔵されたコントローラCNTに対して出力して、デバイスDVCの使用者(ユーザー)に通知するようにしてもよい。

【0138】なお、電源システム1の外形形状として、後述するように、汎用の化学電池のように正極と負極の端子電極によりデバイスDVC(負荷LD)と電気的に接続された構成を適用する場合にあっては、正極及口を強力や燃料残量情報を兼ねた負荷駆動電力を供給即立を供給できる。なができる。なお、その変動を端子部184を介して動作制御財態を検出するように構成することができる。なお、主発電部12から負荷駆動電力の出力が開始されれば、この電力でコントローラ電力の出力を停止してもよい。

【0139】<出力制御部14>図19は、本発明に係る電源システムに適用される発電モジュールの一実施形態の他の例の要部構成を示すブロック図である。本実施形態に係る発電モジュールに適用される出力制御部14は、図3に示すように、直接又は起動制御部15を介して、動作制御部13から出力される動作制御信号に基づいて、上述した副発電部11から供給される電力(起動電力)により動作し、主発電部12における動作状態(起動動作、定常動作、停止動作、電力の発生量(発電

【0140】具体的には、例えば、発電用燃料の流量や 吐出量を調整する流量調整手段等を備え、上述した各構

量))を制御する。

成例に示した主発電部12において、所定の電力からなる負荷駆動電力を生成、出力するために必要な量の発電 用燃料(液体燃料、液化燃料又は気体燃料)が供給され るように、動作制御信号に基づいて流量調整手段を制御 する。

【0141】なお、本実施形態において、主発電部12として上述した第1の構成例(図12参照)に示した燃料改質方式の燃料電池の構成を適用した場合にあっては、図19に示すように、出力制御部14の構成として、動作制御部13からの動作制御信号に基づいて、主発電部12Aに供給される発電用燃料(燃料電池本体210bに供給する水素ガス)の量を制御する燃料制御部14aと、主発電部12Aに供給される空気(燃料電池本体210bに供給される酸素ガス)の量を制御する空気制御部14bと、を備えるようにしてもよい。

【0142】この場合、燃料制御部14aは、動作制御部13から出力される動作制御信号に基づいて、燃料電池本体210bにおいて、所定の電力(第1の電力)を発生するために必要な量の水素ガス(H2)となる分の発電用燃料や水等を、燃料パック20から取り込んで燃料改質部210aに供給する制御並びに主発電部12内でのヒータの加熱温度の制御を行う。燃料パック20からの供給量及びヒータの加熱温度は、燃料の残量の減衰に伴う動作制御部13からの信号にしたがって徐々に逓減するように設定されている。

【0143】また、空気制御部14bは、上記水素ガスを用いた電気化学反応(化学反応式(6)及び(7)参照)に応じた必要な量の酸素ガス(O2)を、大気中から取り込んで燃料電池本体210bの空気極212に供給する制御を行う。このような燃料制御部14a及び空気制御部14bにより主発電部12への水素ガス

(H2) 及び酸素ガス (O2) の供給量を調整することにより、主発電部12 (燃料電池本体210b) における電気化学反応の進行状態が制御され、負荷駆動電力となる電力の発生量(発電量)が制御される。

【0144】ここで、空気制御部14bは、主発電部12における単位時間当たりの酸素の最大消費量に相当する空気を供給することができるものであれば、主発電部12の空気極212に供給する酸素ガスの量を制御することなく、主発電部12の動作時に常に供給するように設定されていてもよい。すなわち、図19に示した発電モジュール10Aの構成においては、出力制御部14は、電気化学反応の進行状態を燃料制御部14aのみで制御し、空気制御部14bの代わりに後述するような通気孔(スリット)を設け、主発電部12における電気化学反応に用いられる最低限以上の量の空気(酸素)が該通気孔を介して、常時供給されるように構成されているものであってもよい。

【0145】 <起動制御部15>本実施形態に係る発電 モジュールに適用される起動制御部15は、図3に示し 38

たように、上述した副発電部11から供給される電力により動作し、動作制御部13から出力される動作制御信号に基づいて、少なくとも、出力制御部14(構成によっては、主発電部12を含む)に対して電力(起動電力)を供給して、主発電部12を待機状態から発電可能な動作状態に移行する起動制御を行う。

【0146】具体的には、図19に示した構成にあっては、起動制御部15は、主発電部12A(燃料電池本体210b)が動作していない状態で、動作制御部13から主発電部12Aを起動させるための動作制御信号を受け取ると、燃料制御部14a、空気制御部14b及び主発電部12A(燃料改質部210a)に対して、副電源部11から出力される起動電力を供給して動作状態に制御し、燃料電池本体210bの燃料極211に水素ガス(H2)を、また、空気極212に酸素ガス(O2)を供給することにより、燃料電池本体210bを起動させて、所定の電力(第1の電力)を発生する動作状態(定常状態)に移行させる。

【0147】また、起動制御部15は、主発電部12Aが駆動している状態で、動作制御部13から主発電部12A(燃料電池本体210b)を停止させるための動作制御信号を受け取ると、少なくとも、燃料制御部14a及び空気制御部14bを制御して、燃料電池本体210bへの水素ガス(H2)及び酸素ガス(O2)の供給を停止することにより、燃料電池本体210bにおける電力の生成(発電)を停止させて、副発電部11、及び、該副発電部11からの電力(動作電力、コントローラ電力)により動作制御部13及びデバイスDVCのコントローラCNTのみが動作している待機状態に移行させる。

【0148】なお、ここでは、主発電部12として、燃 料改質方式の燃料電池を適用し、起動制御部15により 出力制御部14 (燃料制御部14 a及び空気制御部14 b) 及び主発電部12Aへの起動電力の供給を制御し て、主発電部 1 2 A への発電用燃料及び空気の供給、遮 断を制御することにより、主発電部12Aの動作状態 (起動動作、停止動作)を制御する場合について説明し たが、上述した他の構成例(例えば、内燃機関や外燃機 関等を備えた発電装置)を主発電部12に適用する場合 であっても、略同等の制御により、主発電部12の動作 状態が制御される。また、主発電部12として、燃料直 接供給方式の燃料電池を適用する場合等、主発電部12 において起動電力を必要とすることなく、発電用燃料の 供給、遮断を制御するだけで、起動制御部15により出 力制御部14 (燃料制御部14a) に対してのみ起動電 力の供給を制御するものであってもよい。

【0149】さらに、図3に示した構成においては、起動制御部15及び出力制御部14(図19に示した構成においては、燃料制御部14a)には、副発電部11からの電力が動作電力又は起動電力として供給されるが、

主発電部12の定常動作時に出力制御部14等で消費する電力が副発電部11から供給される電力のみでは十分でない場合には、副発電部11からの電力に加えて、主発電部12で生成される電力の一部を出力制御部14等に出力することにより維持することができる(図3、図19中、点線矢印参照)。

【0150】このとき、電源システムとして、デバイスに駆動電源として供給される電力が損なわれないように、出力制御部14は、出力制御部14自体で消費される電力の上積み分に相当する発電用燃料及びデバイスに供給される電力分に相当する発電用燃料の総量を、主発電部12に供給するように制御部14点により、上記発電用燃料の総量を燃料を210点に供給するとともに、発料電池本体210点により、燃料電池本体210点において満額ので気を整生(発電)するために必要な酸素量を対す空気を燃料電池本体210点の空気極212に供給するように制御する。

【0151】<残量検出部16>本実施形態に係る発電モジュールに適用される残量検出部16は、図3に示したように、上述した副発電部11から供給される電力により動作し、燃料パック20A内に残存する発電用燃料FLの量を検出して動作制御部13に対して残量検出信号を出力するものであって、例えば、燃料パック20A内に発電用燃料FLが液体の状態で封入されている場合には、光学センサ等により燃料の液面を計測する手法や燃料を透過した光の減衰(減光率)等の変化を計測する手法等を採用することにより、発電用燃料FLの残量を検出する。

【0152】 (B) 燃料パック20A

本発明に係る電源システムに適用される燃料パック20 Aは、例えば、その組成成分に水素を含有する液体燃料 や液化燃料、又は、気体燃料からなる発電用燃料FL が、充填、封入された密閉性の高い燃料貯蔵容器であっ て、図2に示したように、発電モジュール10に対し て、I/F部30Aを介して着脱可能に結合された構 成、又は、一体的に結合された構成を有している。ここ で、燃料パック20Aに封入された発電用燃料FLは、 後述するI/F部30Aに設けられた燃料送出経路を介 して発電モジュール10Aに取り込まれ、上述した出力 制御部14により、デバイスDVCの駆動状態(負荷状 態) に対応しつつ、主発電部12からの出力電圧の全体 的な傾向として、発電用燃料FLの残量に応じた所定の 出力電圧特性に対応した電力(第1の電力)を発生する ために必要な量の発電用燃料FLが、主発電部12に随 時供給される。

【0153】また、副発電部11として、上述したように、燃料パック20Aに封入された発電用燃料FLの一部を用い、電気化学反応や触媒燃焼反応、力学的なエネ

40

ルギー変換作用等を利用して、電力(第2の電力)を発生する構成を適用する場合には、少なくとも、デバイスDVCのコントローラ電力及び動作制御部13の動作電力となる電力を発生するために必要な最低限の供給量の発電用燃料FLが、I/F部30Aを介して副発電部11に常時供給される。

【0154】特に、電源システム1として、発電モジュ ール10Aと燃料パック20Aが着脱可能な構成を適用 した場合にあっては、燃料パック20Aが発電モジュー ル10Aに結合された状態でのみ、発電モジュール10 Aに発電用燃料FLを供給する。この場合、燃料パック 20Aは、発電モジュール10Aに結合されていない状 態では、内部に封入された発電用燃料FLが燃料パック 20 A外部に漏出しないように、例えば、燃料パック 2 0 A内部の燃料封入圧力やバネ等の物理的な圧力等によ り閉止する制御弁等からなる燃料漏出防止手段を備え、 I/F部30Aを介して発電モジュール10Aに結合さ れることにより、I/F部30Aに設けられ、燃料漏出 防止手段による漏出防止機能を解除する手段(漏出防止 解除手段) が接触又は押圧することによって、例えば、 上記制御弁の閉止状態を解除して、燃料パック20Aに 封入された発電用燃料FLをI/F部30Aを介して発 電モジュール10Aに供給する。なお、この構成を有す る燃料パック20Aにおいては、燃料パック20Aに封 入された発電用燃料FLがなくなる前に、発電モジュー ル10Aから燃料パック20Aが分離された場合には、 上記燃料漏出防止手段の漏出防止機能が再び作動するこ とにより (例えば、漏出防止解除手段が非接触状態とな ることにより、上記制御弁が再び閉止状態になって)、 発電用燃料FLの漏出が防止され、燃料パック20A単 独での持ち運びが可能となる。

【0155】ここで、燃料パック20Aは、上述したような燃料貯蔵容器としての機能を有しつつ、特定の環境条件下において、元来自然界に存在し、かつ、自然を構成する物質、又は、環境汚染等の発生を生じない物質を外の変換が可能な材料により構成されていることが好好をい。すなわち、燃料パック20Aは、例えば、自然界中投棄又は埋め立て処理された場合であっても、土壌中の微生物や酵素等の働き、あるいは、太陽光線の照射、水や大気等により、自然界に無害な物質(元来自然界に大力をである。 がつ、自然を構成する物質(元来自然界に大力をである。 ができる。 の解特性を有する高分子材料(プラスチック)等により構成することができる。

【0156】また、燃料パック20Aは、人為的な加熱・焼却処理や薬品・化学処理等を行った場合であっても、有機塩素化合物(ダイオキシン類;ポリ塩化ジベンソバラジオキシン、ポリ塩化ジベンソフラン)や塩化水素ガス、重金属等の有害物質もしくは環境汚染物質を発

生しない、又は、発生が抑制された材料により構成されているものであってもよい。ここで、燃料パック20Aを構成する材料(例えば、上記高分子材料)は、封入される発電用燃料FLとの接触により、少なくとも短期間で分解されるおそれがなく、また、封入される発電用燃料FLを、少なくとも短期間で燃料としての利用が不可能となるほど変質させるものではないことはいうまでもなく、さらに、該高分子材料により構成された燃料パック20Aが、外的な物理的応力に対して十分な強度を有しているものであることもいうまでもない。

【0157】なお、上述したように、化学電池のリサイクルによる回収率は、僅か20%程度に過ぎず、残りの80%程度が自然界に投棄、又は、埋め立て処理されている現状を鑑みると、燃料パック20Aの材料としては、分解特性を有する材料、特に、生分解性プラスチックを適用することが望ましく、具体的には、石油系又は植物系原料から合成される化学合成型の有機化合物を含む高分子材料(ポリ乳酸、脂肪族ポリエステル、共重合ポリエステル等)や、微生物産生型のバイオポリエステル、トウモロコシやサトウキビ等の植物系原料から抽出されるでんぷんやセルロース、キチン、キトサン等からなる天然物利用型の高分子材料等を良好に適用することができる。

【0158】また、本実施形態に係る電源システム1に

用いられる発電用燃料FLとしては、少なくとも、発電 用燃料FLが封入された上記燃料パック20Aが、自然 界に投棄、又は、埋め立て処理されて、大気中や土壌 中、水中に漏れ出した場合であっても、自然環境に対し て汚染物質とならないこと、上述した発電モジュール1 OAの主発電部12において、高いエネルギー変換効率 30 で電力を発生することができること、所定の封入条件 (圧力、温度等) の下で安定した液体状態又は気体状態 を保持し、好ましくは、常温、常圧下で気化して気体の 状態で発電モジュール10Aに供給される燃料物質であ ることが好ましく、具体的には、上述したメタノールや エタノール、ブタノール等のアルコール系の液体燃料 や、常温、常圧下で気体であるジメチルエーテルやイソ ブタン、天然ガス等の炭化水素からなる液化燃料、もし くは、水素ガス等の気体燃料を良好に適用することがで きる。なお、後述するように、燃料パック内の発電用燃 料の封入状態を安定化させる燃料安定化手段等の構成を 設けて、電源システムの安全性をより高めるようにする

【0159】このような構成を有する燃料パック20A 及び発電用燃料FLによれば、本実施形態に係る電源システム1の全部又は一部(燃料パック20Aや発電用燃料FL等)が、仮に自然界に投棄された場合や、人為的に埋め立て処理、焼却処分、薬品処理等された場合であっても、自然環境に対して大気や土壌、水質の汚染、あるいは、環境ホルモンの生成等を大幅に抑制することが

こともできる。

42

でき、環境破壊の防止や自然環境の美観悪化の抑制、人体に対する悪影響の防止に寄与することができる。

【0160】また、燃料パック20Aを発電モジュール10Aに対して、着脱可能に構成した場合にあっては、封入された発電用燃料の残量が減少、又は、なくなった場合には、燃料パック20Aへの発電用燃料FLの補充や燃料パック20Aの交換、再利用(リサイクル)を行うことができるので、燃料パック20Aや発電モジュール10Aの廃棄量を大幅に削減することができるリサイクルシステムの構築に寄与することができる。また、単一の発電モジュール10Aに対して、新たな燃料パック20Aを交換して取り付け、デバイスDVCに装着して利用することができるので、汎用の化学電池と略同様に、簡便な使用形態の電源システムを提供することができる。

【0 1 6 1】 なお、発電モジュール 1 0 A の副電源部 1 1及び主発電部12における電力の発生に際し、電力以 外に副生成物が生じる場合であって、該副生成物が周辺 環境に悪影響を及ぼす場合や、デバイスDVCに対して 動作不良等の機能上の影響を及ぼす場合等には、後述す る副生成物回収手段により回収された該副生成物を保持 する手段を、燃料パック20A内部に設けた構成を適用 することができる。この場合、燃料パック20Aは、発 電モジュール 10 A から取り外された状態では、燃料パ ック20A内(回収保持手段)に一旦回収保持された副 生成物が燃料パック20A外部に漏出しないように、例 えば、副生成物を吸収、吸着固定、定着等することがで きる吸収ポリマーや、バネ等の物理的な圧力等により閉 止する制御弁等を備えた構成を適用することができる。 副生成物の回収保持手段の構成については、上記副生成 物回収手段とともに併せて後述する。

【0162】(C) I/F部30AA

本発明に係る電源システムに適用されるI/F部30A は、図2に示したように、少なくとも、発電モジュール 10Aと燃料パック20Aを物理的に結合するととも に、燃料パック20Aに封入された発電用燃料FLを、 燃料送出経路を介して、所定の状態で発電モジュール1 0 A に供給する機能を備えている。ここで、上述したよ うに、電源システム1として、発電モジュール10Aと 燃料パック20Aが着脱可能な構成を適用した場合にあ っては、I/F部30Aは、上記燃料送出経路に加え、 燃料パック20Aに設けられた燃料漏出防止手段の漏出 防止機能を解除する漏出防止解除手段を備えている。さ らに、後述するように、発電モジュール10Aの副電源 部11及び主発電部12において生成される副生成物を 回収する副生成物回収手段をも備えた構成を適用する場 合にあっては、該副生成物を燃料パック20A内に送出 するための副生成物回収経路を設けた構成を有してい

【0163】 I / F部30Aは、具体的には、燃料送出

経路を介して、燃料パック20Aに所定の条件(温度、 圧力等)の下で封入された発電用燃料FLを液体燃料と して、あるいは、気化して気体燃料(燃料ガス)として 発電モジュール10A (副電源部11及び主発電部1 2) に供給する。したがって、発電モジュール10Aと 燃料パック20AがI/F部30Aを介して一体的に構 成された電源システムにおいては、燃料パック20Aに 封入された発電用燃料FLが、燃料送出経路を介して、 常時発電モジュール10Aに常時供給可能な状態にあ り、一方、発電モジュール10Aと燃料パック20Aが I/F部30Aを介して着脱可能に構成された電源シス テムにおいては、燃料パック20Aが発電モジュール1 0 A に結合されることにより、燃料パック 2 0 A に設け られた燃料漏出防止手段の漏出防止機能が漏出防止解除 手段により解除され、燃料送出経路を介して、発電モジ ユール10Aに発電用燃料FLが供給可能な状態とな

【0165】<全体動作>次に、上述した構成を有する 電源システムの全体動作について、図面を参照して説明 する。図20は、電源システムの概略動作を示すフロー チャートである。ここでは、上述した電源システムの構 成(図3)を適宜参照して説明する。

44

(ステップS107~S110)と、上記負荷LDの停止に基づいて、主発電部12への発電用燃料FLの供給を遮断して、電力の生成を停止する停止動作(ステップS111~S114)と、を実行するように制御される。これにより、既存のデバイスDVCにおいても適用可能な電源システムが実現される。

【0 1 6 7】(A)初期動作

【0168】一方、発電モジュール10Aと燃料パック20Aが着脱可能に構成された電源システムにおいては、燃料パック20AをI/F部30Aを介して発電モジュール10Aに結合することにより、燃料パック20Aに設けられた燃料漏出防止手段の漏出防止機能が解料され、燃料パック20Aに封入された発電用燃料が燃料送出経路の毛細管現象により燃料送出経路内を移動して、発電モジュール10Aの副電源部11に自動的に供給され(ステップS101)、副電源部11において、少なくとも、上記動作電力及びコントローラ電力とは、かなくとも、上記動作電力及びコントローラ電力となる電力(第2の電力)が自立的に生成され、常時継続的に出力される(電源システムがデバイスに接続されるまでは、動作制御部13及び残量検出部16の動作電力となる電力のみが出力される)(ステップS102)。

【0169】これにより、発電モジュール10Aの動作制御部13及び残量検出部16が動作状態になって、デバイスDVCからの負荷駆動情報及び残量検出部16からの残量検出信号を監視する。また、電源システムがデバイスDVCに接続されることにより、副電源部11により生成される電力の一部がコントローラ CNTに供給されて、コントローラ CNTが駆動状態になって、デバイスDVCの負荷LDの駆動を制御するとともに、該駆動状態を電源システム1(発電モジュール10A)の動作制御部13に負荷駆動情報として通知する。

【0170】(B)起動動作

次いで、起動動作においては、デバイスDVCの使用者 等が負荷LDを駆動するための操作を行うと、コントロ ーラCNTから発電モジュールIOAの動作制御部13に対して負荷駆動電力となる電力(第1の電力)の供給を要求する電力供給要求信号が負荷駆動情報として出力される。動作制御部13は、電源システム1の端子部184を介して入力される電圧変位からなる該負荷駆動情報を受け取ると(ステップS103)、発電モジュール10Aの起動動作に先立って、残量検出部16から出力される残量検出信号に基づく発電用燃料FLの残量データを参照し、該起動動作を正常に実行可能な量の発電用燃料FLが残存しているか否かを判断する(ステップS104)。

【0171】ここで、発電用燃料FLの残量に異常が検出された場合(例えば、残量がゼロの場合)には、動作制御部13は、デバイスDVCに内蔵されたコントローラCNTに対して、残量異常に関する燃料残量情報を出力して、デバイスDVCの使用者に通知するとともに、起動動作を中止する。一方、燃料バック20Aに十分な発電用燃料FLが残存していると判断した場合には、起動制御部15に対して主発電部12における発電動作を開始(起動)するための動作制御信号を出力する(ステップS105)。

【0172】起動制御部15は、動作制御部13からの動作制御信号に基づいて、出力制御部14及び主発電部12に対して、副電源部11により生成される電力の一部を起動電力として供給することにより(ステップS106)、燃料パック20に封入された発電用燃料FLを、出力制御部14を介して主発電部12に供給して、資荷駆動電力となる電力(第1の電力)を発生させてデバイスDVC(負荷LD)に出力する動作を行う(ステップS107)。これにより、デバイスDVCにおける負荷LDの駆動要望に対して、発電用燃料が供給されて主発電部12が自動的に起動し、所定の出力電圧からなる負荷駆動電力が供給されるので、汎用の化学電池と略同等の電力的特性を実現しつつ、負荷LDを良好に駆動することができる。

【0173】なお、この起動動作において、動作制御部13は、主発電部12により生成され、デバイスDVCに供給される電力(負荷駆動電力)の電圧変化を負荷駆動情報の一つとして監視し、該電圧データそのもの、もしくは、所定の電圧に到達したことを示す起動終了信号を、デバイスDVCのコントローラCNTに出力するように構成されているものであってもよい。これにより、負荷駆動電力の電圧値に基づいて、負荷LDの駆動状態を制御する構成を有するデバイスDVCに対しても、電源として良好に適用することができる。

【0174】(C) 定常動作

次いで、上記起動動作後の定常動作においては、負荷駆動電力の出力電圧の全体的な制御(経時的な電圧制御) として、動作制御部13は、負荷LDの停止等に基づいて後述する停止動作に移行するまでは、常時又は定期的 50 46

に残量検出部16からの残量検出信号を検出して発電用燃料FLの残量データを監視し(ステップS109)、該残量データに基づいて、発電用燃料の残量と出力電圧との相関関係が規定された所定の相関テーブルを参照し(ステップS110)、主発電部12における電力の発生量(発電量)が所定の出力電圧特性に応じて変化するように制御するための動作制御信号を出力制御部14に対して出力する(ステップS111)。

【0175】ここで、動作制御部13は、上記相関テーブルを参照することにより、後述するように、発電モジュール10Aから出力される負荷駆動電力の出力電圧が、例えば、汎用の化学電池(例えば、マンガン電池、アルカリ電池、アルカリボタン電池、リチウムコイン電池等)のうちの1種における経時的な電圧変化傾向と同等の出力電圧特性を示して変化するように制御するための動作制御信号を出力する。このとき、動作制御部13は、デバイスDVCに内蔵されたコントローラCNTに対して、実際の残量データ自体や残量比率もしくは電力を出力することが可能な推定残り時間等を燃料残量情報として出力する。

【0176】出力制御部14は、動作制御部13からの動作制御信号に基づいて、主発電部12に供給する発電用燃料FLの量を調整して(ステップS112)、デバイスDVCに供給される負荷駆動電力の出力電圧が上記出力電圧特性に応じて電圧に設定されるように制御する(ステップS113)。これにより、電源システム1からデバイスDVCに供給される負荷駆動電力の出力電圧が、汎用の化学電池の同等の経時的な変化傾向を示すので、該出力電圧や燃料残量情報に基づいて、デバイスDVCに内蔵されたコントローラCNTが有する既存の残量通知機能を良好に動作させて、定期的又は継続的に電池残量や負荷LDの駆動可能推定時間を、デバイスDVCの使用者に通知することができる。

【0177】また、負荷駆動電力の出力電圧の部分的な 制御(個別的な電圧制御)として、動作制御部13は、 上述した全体的な制御に加えて、主発電部12からデバ イスDVCに供給される負荷駆動電力の出力電圧の変化 を負荷駆動情報として受け取り、該負荷駆動電力の出力 電圧が所定の電圧範囲(上述した汎用の化学電池におけ る出力電圧特性に対応して変化する出力電圧の変動許容 範囲)内に設定されるように、主発電部12において生 成される電力の量(発電量)を増減制御するための動作 制御信号を出力制御部14に出力するようにしてもよ い。これにより、出力制御部14が、動作制御部13か らの動作制御信号に基づいて、主発電部12に供給する 発電用燃料FLの量を調整して、デバイスDVCに供給 される負荷駆動電力の出力電圧が上記電圧範囲に設定さ れるようにフィードバック制御が実行されるので、デバ イスDVC側の負荷LDの駆動状態(負荷状態)の変化 により、負荷駆動電力に電圧変化が生じた場合であって

も、該負荷LDの駆動に伴って変化するデバイスDVC の消費電力に対応した電力を供給することができる。

【0178】加えて、デバイスDVCのコントローラC NTにより、負荷LDの駆動状態が把握され、該駆動状 態に応じた電力の供給を電源システム側に要求する機能 を備えている場合にあっては、負荷駆動電力の出力電圧 のより部分的な制御として、動作制御部13は、コント ローラCNTからの電力変更要求信号を負荷駆動情報と して受け取り、主発電部12において生成される電力を 上記要求に応じた出力電圧に設定するための動作制御信 号を出力制御部14に出力するようにしてもよい。これ により、出力制御部14が、動作制御部13からの動作 制御信号に基づいて、主発電部12に供給する発電用燃 料FLの量を調整して、デバイスDVCに供給される負 荷駆動電力の出力電圧が上記要求に応じた電圧に設定さ れるように制御が行われて、デバイスDVC側の負荷L Dの駆動状態(負荷状態)に応じて適切な電力が供給さ れるので、負荷LDの駆動状態の変化に伴う負荷駆動電 力の電圧変化が大幅に抑制され、デバイスDVCにおけ る動作異常の発生を抑制することができる。

【0179】ここで、上述した負荷駆動電力の出力電圧の全体的な制御に適用される出力電圧特性ついて、詳しく説明する。図21は、本実施形態に係る電源システムの出力電圧の経時変化を示す特性図である。ここでは、上述した電源システムの構成(図3)を適宜参照しつつ、汎用の化学電池及び従来の燃料電池における起電力特性(出力電圧特性;図42、図43参照)と対比しながら説明する。

【0180】図21に示すように、本実施形態に係る電源システムにおける出力電圧特性(説明の都合上、便宜的に「第1の出力電圧特性Sa」と記す)は、例えば、図42に示した汎用の化学電池における放電に伴う出力電圧の経時的な変化傾向(起電力特性Sp)と略同等の変化傾向を示すように出力電圧が制御される。すなわち、発電モジュール20Aの主発電部12における発電状態が、放電に伴う時間の経過(換言すれば、燃料パック10Aにおける液体燃料の残量)に応じて減衰するように、少なくとも出力制御部14による主発電部12への発電用燃料FLの供給量が制御(減少設定)される。

【0181】具体的には、本実施形態に係る出力電圧の制御方法は、上述したように、まず、残留検出部16により燃料パック20Aに残存する発電用燃料FLの量が検出され、その残量検出信号が常時(継続的)又は定期的に動作制御部13に入力されるが、ここで、発電用燃料FLの残量は、主発電部12における電力の生成に伴う時間の経過に応じて減少するので、発電用燃料FLの残量と経過時間とは密接な相関関係を有している。

【0182】一方、動作制御部13は、予め図42に示した汎用の化学電池(マンガン電池、アルカリ電池、アルカリボタン電池、リチウムコイン電池等)における放 50

48

電に伴う出力電圧の経時的な変化傾向に対応するように、発電用燃料FLの残量と出力電圧との相関関係が一義的に規定された第1の出力電圧特性Saを有する相関テープルを備えている。これにより、動作制御部13は、残量検出信号による発電用燃料FLの残量を放電に供う時間の経過に対応付け、図21に示した特性出線(第1の出力電圧特性Sa)に基づいて、一義的電圧を決定し、この出力電圧に対応した最重な電子との出力電圧に対応した最重なで、で、次体燃料の残量と出力電圧との相関関係を一義に規定するとは、図4に示したように、発電用燃料を見たは、図4に示したように、発電用燃料を設定するとは、図4に示したように、発電用燃料を設定するとは、図4に示したように、発電用燃料を変化して出力電圧が1対1で対応する関係を変化し、図21に示した特性曲線のように、曲線的な変化であってもよい。

【0183】また、汎用の化学電池の出力は、例えば、単1型~単5型やコイン型のように容量に応じて出力電圧の経時的変位は異なるので、本実施形態に係る電源システムの形状、大きさは、後述するように汎用の化学電池の規格に則った汎用の化学電池の形状、大きさに従うともに、動作制御部13の相関テーブル(出力電圧特性)は、発電用燃料FLの残量に応じた出力電圧に合致は近似もしくは相似するように設定されている。したがって、例えば、本発明の単1型の燃電源システムの出力電圧の経時的変化の軌跡は、JIS規格の単1型のでがって、例えば、本発明の単1型の燃電源システムの出力電圧の経時的変化の軌跡に合同、或いは、時間軸に沿って拡大又は縮小するように設定されている。

【0184】すなわち、上述したように、発電用燃料FLの残量と経過時間とは密接な相関関係を有するものであるが、その関係は、必ずしも汎用の化学電池における電池残量と放電に伴う経過時間との関係とは一致しなくてもよい。すなわち、主発電部12の構成として燃料電池等を適用した場合にあっては、エネルギー変換効率が汎用の化学電池に比較して高くなる特徴を有しているので、例えば、図21における第2の出力電圧特性Sbに示すように、汎用の化学電池における経時的な電圧変化傾向に対応した第1の出力電圧特性Saよりも長い時間単位で電圧が変化(低下)するものであってもよい。

【0185】具体的には、第1の出力電圧特性Saにおいて、動作保証電圧範囲の下限を電圧 V_0 とし、電圧 V_0 に至るまでの時間を T_0 としたときに、時間 T_0 の半分の時間、つまり、残りの寿命が半分になるときの時間を $T_{0.5}$ とし、そのときの電圧を $V_{0.5}$ とする。ここで、デバイスDVCに内蔵されたコントローラCNTが、電源システムの出力電圧を電圧 V_0 に達したと検知すると残量通知 I_a を行うように予め設定されている。【0186】一方、第2の出力電圧特性Sbにおいて、

発電用燃料FLの残量がほぼなくなるときの電圧を上記化学電池の電圧 V_0 と等しくなるようにし、電圧 V_0 に至るまでの時間を T_0 ′としたときに、時間 T_0 ′の半分の時間、つまり、残りの寿命が半分になるときの時間を $T_{0.5}$ ′とし、そのときの電圧を上記化学電池の電圧 $V_{0.5}$ と等しくなるように設定されている。

【0187】すなわち、燃料パック20Aに封入された発電用燃料FLの残量が半分になったときに発電モジュール10Aから出力される電圧が、汎用の化学電池の動作保証電圧範囲での起電力の残量が半分になったときの電圧と等しく、発電用燃料FLの残量がほぼなくなりかけたときの電圧が、汎用の化学電池の動作保証電圧範囲での起電力の残量がほぼなくなりかけたときの電圧と等しいように、出力制御部14による発電用燃料FLの供給量や酸素又は空気の供給量を制御する。

【0188】このように、デバイスDVCの電源として本実施形態に係る電源システムを適用した場合、放電に伴う経過時間に関わらず、発電用燃料FLの残量に基づいて一義的に決定された出力電圧が、デバイスDVCの動作保証電圧範囲を下回る電圧に達した場合に、デバイスDVCにより電池の交換や充電等を促す残量通知Ibが行われることになり、このタイミングは、汎用化学電池を用いたときの残量通知Iaのタイミングと一致させる必要はない。

【0189】したがって、本実施形態に係る電源システムの寿命(発電用燃料FLの減少に伴い、出力電圧がデバイスDVCの動作保証電圧範囲の下限を下回る時点)To´は、汎用の化学電池の寿命Toと一致させる必要はなく、時間軸Tに沿って拡大又は縮小した軌跡を描くような時間ー出力電圧特性にすればよい。なお、残量検出部16は、発電用燃料FLの残量が半分に達したときや、ほぼなくなるときのみに限らず残量が33%、25%のとき等のように、より細かく分割された発電用燃料FLの残量を検知してもよく、いずれも化学電池の起電力の残量に応じた出力電圧とほぼ一致するような出力電圧に設定すればよい。

【0190】このような出力電圧特性を有する電源システムによれば、動作電力として既存のデバイスDVCに適用した場合、電源システムからの出力電圧が、汎用の化学電池と同等の経時的な変化傾向を示すので、デバイスDVCに内蔵されたコントローラCNTにより、この出力電圧の変化を検出することにより、既存の残量通知機能を良好に動作させて、定期的又は継続的に電池残量やデバイスDVCの駆動可能推定時間を表示したり、デバイスDVCの動作保証電圧範囲を下回る電圧に達した場合に、デバイスDVCにより電池の交換や充電等を促す残量通知を正確に行うことができる。

【0191】また、後述するように、本実施形態に係る 電源システム(発電モジュール)を、マイクロマシン製 造技術を適用して微小空間に集積化して小型軽量化し、 s٨

市販の化学電池と同等の外形形状や寸法に構成することにより、外形形状及び電圧特性において市販の化学電池との完全な互換性を実現することができ、既存の電池市場における普及を一層容易なものとすることができる。これにより、環境問題やエネルギー利用効率等の点で課題が多い既存の化学電池に替えて、燃料電池等のエネルギー利用効率が高い電源システムを支障なく普及させることができるので、環境への影響を抑制しつつ、エネルギー資源の有効利用を図ることができる。

【0192】(D)停止動作

次いで、停止動作においては、動作制御部13は、負荷LDの停止に関する負荷駆動情報を受け取った場合には(S108)、主発電部12における電力の生成を停止するための動作制御信号を出力制御部14に出力する(ステップS114)。出力制御部14は、動作制御部13からの動作制御信号に基づいて、主発電部12への発電用燃料FLの供給を遮断して(ステップS115)、主発電部12の動作を停止し(ステップS116)、デバイスDVCへの負荷駆動電力の供給を停止する。

【0193】具体的には、上述した定常動作においてフィードバック制御を行った場合であっても、動作制御部13により、デバイスDVCに供給される負荷駆動電力の出力電圧が所定の電圧範囲を逸脱する状態が所定時間継続して検出された場合には、動作制御部13は、該出力電圧異常を負荷駆動情報として扱い、主発電部12における電力の生成を停止するための動作制御信号を出力制御部14に出力する。

【0194】すなわち、デバイスDVCのユーザー等が 負荷LDを停止する操作を行うことにより、あるいは、 電源システム1がデバイスDVCから取り外されること 等により、負荷がなくなると、上述した定常動作におい て、負荷駆動電力の出力電圧を所定の電圧範囲に設定す るフィードバック制御等を行った場合であっても、予め 設定した負荷駆動電力の電圧範囲を逸脱するため、動作 制御部13により、このような状態が一定時間以上継続 して検出された場合には、デバイスDVCの負荷LDが 停止または無くなったと判断して主発電部12における 発電動作を停止する。

【0195】また、デバイスDVCのコントローラCNTにより、負荷LDの停止状態が把握され、電力の供給停止を電源システム側に要求する機能を備えている場合にあっては、動作制御部13は、コントローラCNTからの電力停止要求信号を負荷駆動情報として受け取り、主発電部12における電力の生成を停止するための動作制御信号を出力制御部14に出力する。これにより、デバイスDVCにおける負荷LDの停止等に対して、発電用燃料の供給が遮断されて主発電部12が自動的に停止するので、発電用燃料FLの効率的な消費を図りつつ、汎用の化学電池と略同等の電力的特性を実現することが

できる。

【0196】さらに、残量検出部16により発電用燃料FLの残量の急激な減少等の残量異常が検出された場合には、動作制御部13は、該残量異常に関する検出信号に基づいて、主発電部12における電力の生成を停止するための動作制御信号を出力制御部14に対して出力して、主発電部12の発電動作を停止するとともに、コントロラCNTに対して、デバイスDVCの使用者に通知するものであったよい。これに通知するものであったより、燃料FLで通知するものであったより、燃料FLの漏出等の異常状態の発生を迅速に検出して、デバイスの以上の漏出等の異常状態の発生を迅速に検出して、おりVCの使用者に対して、適切な対処を講じるように報知することができる。

【0197】このように、本実施形態に係る電源システムによれば、電源システムの外部から燃料等の供給を受けることなく、電源システムに接続される負荷LDの駅動状態(負荷駆動情報)及び発電用燃料FLの残量して、所定の駆動電源となる電力の供給、停止制御をで、電力の発生量の調整制御を行うことができるので、現地への負担が小さく、かつ、エネルギー変換効率が極いて高い電源システムを提供することができる。これがより、環境問題やエネルギー利用効率等の点で課題がより、環境問題やエネルギー利用効率等の点で課題がより、環境問題やエネルギー利用効率等の点で課題がステムを既存の電池に替えて、本実施形態に係る電源シテムを既存の電池市場で支障なく普及させることができる。

【0198】 [第2の実施形態] 次に、本発明に係る電源システムに適用される発電モジュールの第2の実施形態について、図面を参照して説明する。図22は、本発明に係る電源システムに適用される発電モジュールの第2の実施形態を示すブロック図である。ここで、上述した第1の実施形態と同等の構成については、同一の符号を付して、その説明を簡略化又は省略する。

【0199】上述した第1の実施形態に係る発電モジュール10Aにおいては、副電源部11において利用された発電用燃料FLを排出ガスとして電源システム1の外部にそのまま排出するか、あるいは、後述する副生成物回収手段により回収する構成について言及したが、本電施形態に係る発電モジュール10Bにおいては、副電化力を消費を開放に分変化を伴った場合である。 11における発電動作が発電用燃料FLの成分変化を伴わない場合、もしくは、成分変化を伴った場合であっても特定の燃料成分が含まれている場合には、副電部11において利用された発電用燃料FLを、主発電部12における発電用燃料として、そのまま、もしくは、特定の燃料成分を抽出して再度利用する構成を有している。

【0200】具体的には、図22に示すように、本実施 形態に係る発電モジュール10Bは、上述した第1の実 施形態(図3参照)と同様の構成及び機能を有する副電 52

源部11と、主発電部12と、動作制御部13と、出力制御部14と、起動制御部15と、残量検出部16と、を備え、特に、副電源部11において電力の生成に利用された後の発電用燃料(排出ガス)の全部又はその一部が、発電モジュール10Bの外部に排出されることなく、出力制御部14を介して、主発電部12に供給されるように構成されている。

【0201】すなわち、本実施形態に適用される副電源部11は、燃料パック20からI/F部30を介して供給される発電用燃料FLの燃料成分を消費、変換することなく、所定の電力(第2の電力)を発生、出力することができる構成(例えば、上述した第1の実施形態における第2、第3、第5又は第7の構成例に示した発電装置)、もしくは、発電用燃料FLの燃料成分を消費、変換する場合であっても、主発電部12における発電動作に利用可能な燃料成分を含む排出ガスを生成する構成

(例えば、上述した第1の実施形態における第4又は第6の構成例に示した発電装置)を有している。

【0202】また、主発電部12として、上述した第1の実施形態における第1乃至第6の構成例に示した発電装置を適用する場合にあっては、燃料パック20に封入される発電用燃料FLとして、発火性又は燃焼性を有する燃料物質、例えば、メタノールやエタノールブタノール等のアルコール系の液体燃料やジメチルエーテルやイソブタン、天然ガス等の炭化水素からなる液化燃料、水素ガス等の気体燃料が適用される。

【0203】すなわち、上記液体燃料や液化燃料は、所定の封入条件(温度、圧力等)で燃料パック20に封入された状態では液体であり、副電源部11に供給される際の常温、常圧等の所定の環境条件に移行することにり、気化して高圧の燃料ガスとなり、また、気体燃料は、所定の圧力で圧縮した状態で燃料パック20に封入され、副電源部11に供給される際に、封入圧力に応料され、副電源部11に供給される際に、対入圧力に応料た高圧の燃料ガスとなるので、このような発電用燃料下したより、例えば、副電源部11において燃料がスの正力、を発生したで電力(第2の電力)を発生した後、主発電部12において副電源部11の排出ガスを用いた電気化学反応や燃焼反応等により電力(第1の電力)を発生することができる。

【0204】 [第3の実施形態] 次に、本発明に係る電源システムに適用される発電モジュールの第3の実施形態について、図面を参照して説明する。図23は、本発明に係る電源システムに適用される発電モジュールの第3の実施形態を示すブロック図である。ここで、上述した第1の実施形態と同等の構成については、同一の符号を付して、その説明を簡略化又は省略する。

【0205】上述した第1及び第2の実施形態に係る発電モジュール10A、10Bにおいては、副電源部11として、燃料パック20から供給される発電用燃料FLを用いて、所定の電力(第2の電力)を常時、自立的に

発生する構成を適用した場合について説明したが、本実施形態に係る発電モジュールにおいては、副電源部が燃料パック20に封入された発電用燃料FLを用いることなく、所定の電力を常時、自立的に発生する構成を有している。

【0206】具体的には、図23に示すように、本実施形態に係る発電モジュール10Cは、上述した第1の実施形態(図3参照)と同様の構成及び機能を有する主発電部12と、動作制御部13と、出力制御部14とと動制御部15と、残量検出部16と、を備えるととをに、燃料パック20に封入された発電用燃料FLを用いることなく、所定の電力(第2の電力)を常時、自立的に発生する副電源部11を備えた構成を有している。副電源部11の具体的な構成としては、例えば、電源システム1の周辺環境における温度差に基づく熱電変換によるもの(温度差発電)のほか、電源システム1の外部から入射する光エネルギーに基づく光電変換によるもの(太陽光発電)等を良好に適用することができる。

【0207】以下に、本実施形態に係る副電源部の具体 例を図面を参照して簡単に説明する。

(第1の構成例) 図24は、本実施形態に係る電源モジュールに適用可能な副電源部の第1の構成例を示す概略構成図である。第1の構成例においては、副電源部の具体例として、電源システム1内外の周辺環境における温度差を利用した熱電変換発電により電力を発生する発電装置としての構成を有している。

【0208】図24(a)に示すように、第1の構成例に係る副電源部11Sは、例えば、電源システム1の一端側に設けられた第1の温度保持部311と、電源システム1の他端側に設けられた第2の温度保持部312と、第1の温度保持部311側に一端側が接続されるとともに、第2の温度保持部312側に他端側が接続された熱電変換素子313と、を備えた温度差発電器の構成を有している。ここで、第1及び第2の温度保持部311、312は、電源システム1内外の周辺環境の温度状態に応じて、その保持する熱量が随時変化するように構成されているとともに、第1及び第2の温度保持部311、312における温度が相互に異なるように、配置位置が設定されている。

【0209】具体的には、例えば、第1及び第2の温度保持部311、312のいずれか一方が、電源システム1が装着されるデバイスDVCに設けられた開口部等

(図示を省略)を介して、常時外気に晒され、定温に保持されるようにした構成を適用することができる。また、熱電変換素子313は、上述した第1の実施形態における第4の構成例(図7(b)参照)に示したものと同等の構成を有している。なお、本構成例においても、温度差発電器からなる副電源部11Sの構成は、上述した実施形態に示した構成と同様に、マイクロマシン製造技術を適用することにより、微小空間に集積化して形成 50

することができる。

【0210】このような構成を有する副電源部11Sにおいて、図24(b)に示すように、電源システム1の周辺環境における温度分布の偏りに伴って、第1及び第2の温度保持部311、312間に温度勾配が生じることにより、熱電変換素子313におけるゼーベック効果により、該温度勾配による熱エネルギーに応じた起電力が発生して電力が生成される。

【0211】したがって、このような構成を有する発電 装置を副電源部に適用することにより、電源システム1 の周辺環境において温度分布の偏りが存在する限り、副 電源部11Sにより所定の電力が常時、自立的に生成さ れ、電源システム1内外の各構成に供給することができ る。また、この構成によれば、燃料パック20に封入さ れた発電用燃料FLの全てを主発電部12における電力 (第1の電力) の生成に利用することができるので、発 電用燃料FLの効率的な消費を実現することができると ともに、負荷駆動電力としての電力を長期にわたってデ バイスDVCに供給することができる。なお、本構成例 においては、周辺環境における温度分布の偏りに対し て、ゼーベック効果により電力を発生する温度差発電器 について説明したが、本発明は、これに限定されるもの ではなく、金属の加熱により金属表面から自由電子が放 出される熱電子放出現象に基づいて、電力を発生する構 成を有するものであってもよい。

【0212】(非燃料型副電源部の第2の構成例)図25は、本実施形態に係る電源モジュールに適用可能な副電源部の第2の構成例を示す概略構成図である。第2の構成例においては、副電源部の具体例として、電源システム1の外部から入射する光エネルギーを利用した光電変換発電により電力を発生する発電装置としての構成を有している。

【0213】図25(a)に示すように、第1の構成例に係る副電源部11Tは、例えば、p型半導体321とn型半導体322を接合させた周知の光電変換セル(太陽電池)を備えた構成を有している。このような光電変換セルに所定の波長の光(光エネルギー)LTが照射されると、光起電力効果によりp-n接合部323付近において電子-正孔対が発生し、光電変換セル内の電界によって分極した電子(-)がn型半導体322に、また、正孔(+)がp型半導体321に拡散(ドリフト)してp型半導体321及びn型半導体322の各々に設けられた電極間(出力端子Oe、Of間)に起電力が発生して電力が生成される。

【0214】ここで、一般に、既存のデバイスにおける電池(又は、電源ユニット)の収納スペースは、デバイスの背面側等の光エネルギー(具体的には、太陽光や照明光)が入射しにくい位置に配置されていたり、デバイス内部に完全に収納する構成を有していたりするため、副電源部に対して光が十分に入射しない可能性がある。

56

そこで、本構成例に係る副電源部11Tを適用した電源システム1を、デバイスDVCに装着する場合にあっては、図25(b)に示すように、少なくとも、副電源部11T又は発電モジュール10C部分に外光しTの入射が可能なように、デバイスDVCに予め開口部(又は、光透過部)HLを設けた構成や、デバイスDVCの筐体を透明もしくは半透明の光透過性の部材により構成することにより、副電源部11Tにおいて所定の電力を発生するために必要な最低限の光エネルギー(所定の波長の光)が入射するような構成を適用する必要がある。

【0215】したがって、このような構成を有する発電装置を副電源部に適用することにより、デバイスDVCを屋外や屋内等の所定の光エネルギーが入射する環境の下で使用する限り、副電源部11Tにより所定の電力が常時、自立的に生成され、電源システム1内外の各構成に供給することができる。また、この構成によれば、主発電12における電力(第1の電力)の生成に利用を発電ができるので、発電用燃料FLの効率的な消費、限することができる。なお、本構成例においては発現することができる。なお、本構成例においては最近できる。なお、本構成のにおいてはなる。なお、本発明は、これに限定を取りな構成のみを示したが、本発明は、これに限定理に基づくものを適用するものであってもよい。

【0216】<副生成物回収手段>次に、上述した各実施形態に係る電源システムに適用可能な副生成物回収手段について、図面を参照して説明する。図26は、本発明に係る電源システムに適用可能な副生成物回収手段の一実施例を示すブロック図である。ここで、上述した各実施形態と同等の構成については、同一の符号を付して、その説明を簡略化又は省略する。

【0217】上述した各実施形態において、主発電部12や副電源部11として、燃料パック20に封入された発電用燃料FLを用いて、電気化学反応や燃焼反応により所定の電力を発生する構成(上記各構成例に示した主発電部や副電源部)を適用した場合にあっては、電力以外に副生成物が排出される場合がある。このような副生成物の中には、自然界に排出されることにより環境をの原因となる物質や、電源システムが装着されてもデバイスの動作不良の原因となる物質を含む場合も必要だめ、このような副生成物の排出を極力抑制する必要性から、以下に示すような副生成物回収手段を備えた構成を適用することが好ましい。

【0218】本発明に係る電源システムに適用可能な副生成物回収手段は、図26に示すように、上述した各実施形態と同等の構成及び機能を有する発電モジュール10D、燃料パック20D及びI/F部30Dにおいて、例えば、発電モジュール10D内に、主発電部12における電力の発生に際して生成される副生成物の全部又はその一部の成分を回収する分離回収部17が設けられて

いるとともに、燃料パック20D内に、上記回収された 副生成物を固定的に保持する回収保持部21が設けられ た構成を有している。なお、ここでは、主発電部12に おいて生成される副生成物を回収する場合についてのみ 詳しく説明するが、副電源部11に対しても同様に適用 が可能であることはいうまでもない。

【0219】分離回収部17は、上述した各構成例に示した構成を有し、燃料パック20Dから供給される発電用燃料FLを用いた電気化学反応や燃焼反応等により、少なくとも、電源システム1が装着されたデバイスDVCに対して、負荷駆動電力(電圧・電流)となる電力を発生する主発電部12(副電源部11を含むものであってもよい)において、該電力の発生の際に生成される副生成物、もしくは、該副生成物のうち特定の成分を分離して、I/F部30Dに設けられた副生成物回収経路を介して、燃料パック20D内に設けられた回収保持部21に送出する。

【0220】なお、上述した各構成例を適用した主発電

部12(副電源部11を含むものであってもよい)にお

20 いて、電力を発生する際に生成される副生成物として

は、水(H 2 O) や窒素酸化物(N O x) 、硫黄酸化物 (SOx) 等があり、これらの全て、又は、その一部、 もしくは、特定の成分のみが分離回収部17により回収 されて副生成物回収経路に送出される。なお、回収され た副生成物が液体状態の場合には、例えば、副生成物回 収経路の内径を連続的に変化するように形成することに より、毛細管現象を利用して分離回収部17から回収保 持部21へ副生成物を自動的に送出することができる。 【0221】また、回収保持部21は、燃料パック20 Dの内部、又は、その一部に設けられ、燃料パック20 Dが発電モジュール10Dに結合された状態においての み、上記分離回収部17により回収された副生成物の送 入、保持が可能となるように構成されている。すなわ ち、燃料パック20Dが発電モジュール10Dに対して 着脱可能に構成された電源システムにおいては、燃料パ ック20Dが発電モジュール10Dから分離された状態 で、回収、保持された副生成物又は特定の成分が燃料パ ック20Dの外部に漏出もしくは排出されないように、 回収保持部21に固定的又は不可逆的に保持されるよう

【0222】ここで、上述したように、主発電部12における電力の生成により、水(H2O)や窒素酸化物(NOx)、硫黄酸化物(SOx)が副生成物として生成される場合にあっては、水(H2O)は常温常圧下で液体状態であるので、副生成物回収経路を介して、回収保持部21に良好に送出されるが、窒素酸化物(NOx)や硫黄酸化物(SOx)等のように、気化点が常圧で概ね常温未満であり、気体状態にある副生成物の場合には、体積が膨大になり、予め設定された回収保持部21の容積を超過する可能性があるので、分離回収部1

に構成されている。

7内及び回収保持部2.1内の気圧を高くすることにより、回収された副生成物を液化して当該体積を縮小して回収保持部21に保持されるように構成してもよい。

【0223】したがって、回収保持部21の具体的な構成としては、上記回収された副生成物や特定の成分を不可逆的に吸収、吸着固定、定着等することができる構成、例えば、回収保持部21内に吸収ポリマーが充填された構成や、上述した燃料パック20に備えられた燃料漏出防止手段と同様に、回収保持部21の内部圧力やバネ等の物理的な圧力等により閉止する制御弁等の回収物漏出防止手段を備えた構成を良好に適用することができる。

【0224】そして、このような構成を有する副生成物 回収手段を備えた電源システムにおいて、図12に示し たような燃料改質方式の燃料電池を主発電部12Aに適 用した場合にあっては、燃料改質部210aにおける水 蒸気改質反応、水性シフト反応及び選択酸化反応(化学 反応式(1)~(3)) に伴って、水素ガス(H2)と ともに生成される二酸化炭素(CO2)、及び、燃料電 池本体210bにおける電気化学反応(化学反応式 (6)、(7))に伴って、電力(第1の電力)の発生 とともに生成される水(H2O)が、副生成物として主 発電部12から排出されることになるが、二酸化炭素 (CO₂) の排出量は極めて微量であり、デバイスへの 影響もほとんどないため、非回収物質として電源システ ム外に排出され、一方、水 (H2O) 等が分離回収部1 7により回収されて、例えば、毛細管現象等を利用して 副生成物回収経路を介して、燃料パック20D内の回収 保持部21に送出され、不可逆的に保持される。

【0225】ここで、主発電部12(燃料電池本体)における電気化学反応(化学反応式(2)、(3))は、概ね60~80℃程度で進行するため、主発電部12において生成される水(H_2O)は、ほぼ水蒸気(気体)の状態で排出される。そこで、分離回収部17は、例えば、主発電部12から排出される水蒸気を冷却することにより、あるいは、圧力を加えることにより、水(H_2O)の成分のみを液化して、他の気体成分から分離することにより回収する。

【0226】なお、本実施例においては、少なくとも、主発電部12の構成として燃料改質方式の燃料電池を適用し、発電用燃料としてメタノール(CH3OH)を適用した場合を示したため、電力の発生に伴う副生成物の大半が水(H2O)であって、その他、微量の二酸化炭素(CO2)を電源システム外に排出することにより、分離回収部17における特定の成分(すなわち、水)の分離、回収を比較的簡易に実現することができるが、発電用燃料としてメタノール以外の物質を適用した場合や、主発電部12として燃料電池以外の構成を適用した場合には、水(H2O)とともに、例えば、比較的大量の二酸化炭素(CO2)や窒素酸化物(NOx)、硫黄

58

酸化物 (SOx) 等が生成される場合もある。このような場合には、分離回収部17において上述した分離方法により、例えば、液体である水と、その他の大量に生成される特定の気体成分 (二酸化炭素等) を分離した後、燃料パック20D内に設けられた単一又は複数の回収保持部21に、合一又は個別に保持するようにしてもよい

【0227】このように、本実施例に係る副生成物回収手段を適用した電源システムによれば、発電モジュール10Dにより電力を発生する際に生成される副生成物のうち、少なくとも1成分が燃料パック20D内に設けられた回収保持部21に不可逆的に保持されることにより、電源システム外部への排出又は漏出が抑制されるので、副生成物(例えば、水)によるデバイスDVCの動作不良や劣化等の発生を防止することができるとともに、副生成物を保持した燃料パック20Dを回収することにより、該副生成物を自然環境に負担を与えない方法で適切に処理して、副生成物(例えば、二酸化炭素)による自然環境の汚染や地球温暖化等を防止することができる。

【022.8】なお、上述したような分離回収方法により回収された副生成物は、以下に示すような保持動作により回収保持部内に不可逆的に保持される。図27は、本実施例に係る副生成物回収手段による副生成物の保持動作を示す概略図である。ここで、上述した各実施形態と同等の構成については、同一の符号を付して、その説明を簡略化又は省略する。

【0229】図27(a)に示すように、本実施例に係る燃料パック20Dは、一定の容積を有し、例えば、メタノール等の発電用燃料FLが封入、充填された燃料封入空間22Aと、分離回収部17から送出される水等の副生成物が保持される回収保持空間22Bと、後述するように、回収保持空間22Bの容積を相対的に可変し、回収保持空間22Bを燃料封入空間22Aから隔絶する回収袋23と、燃料封入空間22Aに封入された発電圧燃料FLを出力制御部14に供給する燃料供給弁24Aと、分離回収部17から送出される副生成物を回収保持空間22Bに取り込むための副生成物取込弁24Bと、を有して構成されている。

【0230】ここで、燃料供給弁24A及び副生成物取込弁24Bは、上述したように、いずれも、燃料パック20DがI/F部30Dを介して発電モジュール10Dに結合された状態でのみ、発電用燃料FLの供給や副生成物の取り込みが可能となるように、例えば、燃料パック20D内部の発電用燃料FLや副生成物の圧力やバネ等の物理的な圧力等により閉止する制御弁の機能を備えた構成を有している。なお、上述したように、副生成物取込弁24Bに制御弁の機能を設ける替わりに、回収保持空間22Bに吸収(吸水)ポリマー等を充填した構成を有するものであってもよい。

22Bに取込、保持される。

【0231】このような構成を有する燃料パック20Dにおいて、図27(a)に示すように、燃料封入空間22Aに封入された発電用燃料が燃料供給弁24Aを介して発電モジュール10D(主発電部12、副電源部11)に供給されることにより、所定の電力を発生する動作が実行されるとともに、上記分離回収部17により電力の発生に伴って生成された副生成物のうち、特定の成分(例えば、水)のみが分離、回収されて、副生成物回収経路及び副生成物取込弁24Bを介して回収保持空間

【0232】これにより、図27(b)、(c)に示すように、燃料封入空間22Aに封入された発電用燃料FLの容積が減少するとともに、相対的に、回収保持空間22Bに保持される特定の成分又は物質の容積が増大する。このとき、回収保持空間22Bに吸収ポリマー等を充填した構成を適用することにより、回収され、取り込まれた副生成物の実質的な容積に比較して、より大きな容積を有するように回収保持空間22Bの容積を制御することができる。

【0233】したがって、燃料封入空間22Aと22Bの関係は、発電モジュール10における電力の発生(発電)動作に伴って、単に、相対的に増減するだけでなく、回収保持空間22Bに保持された副生成物の量に応じて、図27(b)に示すように、所定の圧力で回収袋23を外方に押圧することにより、燃料封入空間22Aに封入された発電用燃料FLに圧力が印加されることになるので、発電モジュール10Dへの発電用燃料FLの供給を適切に行うことができ、図27(c)に示すように、回収保持空間22Bに保持される副生成物により、燃料封入空間22Aに封入された発電用燃料FLをほぼ完全になくなるまで供給することができる。

【0234】なお、本実施例においては、発電モジュール10Dに付設された分離回収部17により分離、回収した副生成物の全て又は一部を回収して燃料パック20D内に保持するとともに、非回収物質を電源システム1外に排出する場合について説明したが、回収された副生成物(例えば、水)の全部又は一部を発電モジュール10D(特に、主発電部12、副電源部11)における電力の発生の際の燃料成分として再利用する構成を有するものであってもよい。

【0235】具体的には、主発電部12(副電源部11を含むものであってもよい)として、燃料電池からなる発電装置を適用した構成にあっては、水が副生成物の一部として生成されるが、上述したように、燃料改質方式の燃料電池においては、発電用燃料の水蒸気改質反応等において水を必要とするので、図26中、点線矢印で示すように、回収された副生成物のうち、水の一部を主発電部12に供給して、これらの反応に再利用するように構成することができる。これによれば、水蒸気改質反応等のために発電用燃料FLとともに燃料パック20Dに

60

予め封入しておく水の量、また、回収保持部 2'1 に保持される副生成物(水)の量を削減することができるので、一定の容量の燃料パック 2 0 Dに対してより多くの発電用燃料 F L を封入することができ、電源システムとしての電力供給能力の向上を図ることができる。

【0236】<燃料安定化手段>次に、上述した各実施 形態に係る電源システムに適用可能な燃料安定化手段に ついて、図面を参照して説明する。図28は、本発明に 係る電源システムに適用可能な燃料安定化手段の一実施 例を示すブロック図である。ここで、上述した各実施形 態と同等の構成については、同一の符号を付して、その 説明を簡略化又は省略する。

【0237】本発明に係る電源システムに適用可能な燃料安定化手段は、図28に示すように、上述した各実施形態と同等の構成及び機能を有する発電モジュール10F、燃料パック20F及びI/F部30Fにおいて、I/F部30F又は燃料パック20Fのいずれか(ここでは、燃料パック20Fに、燃料パック20Fに対して、燃料パック20Fに対して、燃料パック20Fがら発電モジュール10F(副電源部11、主発電部12)への発電用燃料FLの供給を停止する供給制御弁25と、燃料パック20F内の発電用燃料FLの供給を停止する供給制御弁25と、燃料パック20F内の発電用燃料FLの対入状態を所定の安定化状態に制御する圧力制御弁26が設けられた構成を有している。

【0238】供給制御弁25は、燃料パック20Fに封入された発電用燃料FLの温度が所定のしきい値を超過して上昇することにより自動的に作動して、燃料送出経路への発電用燃料FLの温度の上昇に伴って燃料パック20F内の圧力が上昇することにより、弁が閉じる制御弁26は、燃料パック20Fに封入された発電用燃料FLの温度の上昇に伴って、燃料パック20F内の圧力が所定のしまりに進過して上昇することにより自動的に作動して、燃料パック20F内の圧力を低下させる。具体的には、燃料パック20F内の圧力を低下させる。具体的には、燃料パック20F内の圧力が上昇することにより、弁が開く圧力開放弁(リリース弁)を良好に適用することができる。

【0239】これにより、例えば、電源システムをデバイスDVCに装着した状態で、発電モジュール10Fにおける電力の生成やデバイスの負荷の駆動に伴う発熱等により、燃料パック20F内の温度や圧力が上昇した場合には、自動的に発電用燃料FLの供給停止動作、圧力開放動作が行われるので、発電用燃料FLの封入状態を安定化することができる。

【0240】そして、上述した電源システムの全体動作 (図20参照)において、電源システムを起動動作する 場合に、動作制御部13は、事前に供給制御弁25の動 作状態、すなわち、燃料パッタ20Fからの発電用燃料 FLの供給状態を参照し、発電用燃料FLが正常に供給 されているか否かを判断した後、当該動作を実行する。 ここで、上述した燃料安定化手段(特に、圧力制御弁2 6)による発電用燃料FLの封入状態の安定化動作にも 関わらず、発電用燃料FLの供給遮断が検出された場合 には、動作制御部13は、デバイスDVCに内蔵された コントローラCNTに対して、発電用燃料FLの封入異 常に関する情報を出力して、デバイスDVCの使用者に 通知する。

61

【0241】また、上述した電源システムの全体動作(図20参照)において、電源システムの定常動作(フィードバック制御)を継続する場合に、動作制御部13は、供給制御弁25の動作状態、すなわち、燃料パック20Fからの発電用燃料FLの供給状態を逐次参照し、燃料安定化手段(特に、圧力制御弁26)による安定化動作にも関わらず、発電用燃料FLの供給遮断が検出された場合、もしくは、デバイスDVCへの負荷駆動電力の急激な低下を負荷駆動情報として受け取った場合には、動作制御部13は、発電用燃料FLの封入異常に関する情報をデバイスDVCに内蔵されたコントローラCNTに対して出力して、デバイスDVCの使用者に通知する。

【0242】これにより、燃料パック20F内の発電用燃料FLの封入条件(温度、圧力等)の異常に起因する発電用燃料FLの変質や発電モジュール10Fにおける動作異常(例えば、出力電圧不良)、燃料パック20Fから電源システム1外部への発電用燃料FLの漏出等の発生を迅速に検出して、燃焼性を有する発電用燃料FLの安全性を確保した信頼性の高い電源システムを提供することができる。

【0243】 <外形形状>次に、本発明に係る電源システムに適用可能な外形形状について、図面を参照して説明する。図29は、本発明に係る電源システムに適用可能な外形形状の具体例を示す概略構成図であり、図30は、本発明に係る電源システムに適用される外形形状と、汎用の化学電池の外形形状との対応関係を示す概念図である。

【0244】上述したような構成を有する電源システムにおいて、燃料パック20をI/F部30を介して発電モジュール10に結合した状態、又は、これらを一体的に構成した状態における外形形状は、例えば、図29に示すように、JIS規格に則った汎用の化学電池に多のにまった、リエンのの形電池41、42、43や、特殊形状ののに非円形電池44、45、46の規格に則ってよりに形成されているとともに、上述した発電モジュールのに形成されているとともに、上述した発電モジュールの正板であれているとともに、上述した発電モジュールの面でであるというによいというにより生成されているとともに、上述した発電を対立されているとともに、上述した発電を対立されているとともに、上述した発電を対立されているとともに、上述した発電を対立されているとともに、上述した発電を対立されているとともに、上述した発電を対立されているとともに、上述した発電を対立されているとともに、上述した発電を対立されているとともに、上述した発電を対立されているとともに、上述した発電を対立されているというに対している。

れるように構成されている。

【0245】具体的には、例えば、燃料電池を適用した主発電部(図12参照)においては、燃料電池本体210bの燃料極211が負極端子に、また、空気極212が正極端子に電気的に接続された構成を有している。また、ガス燃焼エンジンやロータリーエンジン等の内燃、外燃機関と電磁誘導等を利用した発電器(図14乃至図16参照)とを組み合わせた構成や、温度差発電器やMHD発電器を適用した主発電部(図17、図18参照)においては、各々の発電器の出力端子が正極端子及び負極端子に電気的に接続された構成を有している。

62

【0246】ここで、円形電池41、42、43は、具体的には、市販のマンガン乾電池やアルカリ乾電池、ニッケル・カドミウム電池、リチウム電池等に最も多用され、対応する機器も多いシリンダ型(円柱型:図29

(a)) や、腕時計等に利用されるボタン型(図29

(b))、カメラや電子手帳等に利用されるコイン型(図29 (c))等の外形形状を有している。

【0247】一方、非円形電池44、45、46は、具体的には、コンパクトカメラやデジタルスチルカメラ等、使用する機器の形状等に対応して個別に設計(カスタマイズ)された特殊形状型(図29(d))や、携帯音響機器や携帯電話等の小型薄型化に対応した角形(図29(e))、平型(図29(f))等の外形形状を有している。

【0248】なお、上述したように、本発明に係る電源システムに搭載される発電モジュール10の各構成は、既存のマイクロマシン製造技術を適用することにより、例えば、ミリメートルオーダー乃至ミクロンオーダーにマイクロチップ化、あるいは、マイクロプラント化することができる。また、発電モジュール10の主発電部12として、例えば、高いエネルギー利用効率を実現することができる燃料電池やガス燃焼タービン等を適用することができる燃料電池やガス燃焼タービン等を適用することができるといい、既存の化学電池と同等(又は、それ以上)の電池容量を実現するために必要となる発電用燃料の量を比較的少量に抑制することができる。

【0249】したがって、本実施形態に係る電源システムにおいて、図29に示した既存の電池形状を良好に実現することができ、例えば、図30(a)、(b)に示すように、燃料パック20を発電モジュール10に結合した状態、又は、両者を一体的に構成した状態における外形寸法(例えば、長さLa、直径Da)が、図30

(c) に示すような汎用の化学電池 47 の外形寸法(例えば、長さLp、直径Dp)と略同等になるように構成することができる。

【0250】なお、図30においては、本発明に係る電源システムの着脱構造(結合関係)と外観形状との関係を概念的に示したものにすぎず、具体的な電極構造等を考慮したものではない。本発明に係る電源システムに各電池形状を適用した場合の、発電モジュール10及び燃

料パック20の着脱構造と、電極構造との関係について は、後述する実施例において詳しく説明する。

【0251】また、図29に示した外形形状はいずれも、JIS規格に則って市販、又は、デバイスに付属して流通、販売されている化学電池の一例であって、本発明の適用が可能な構成例のごく一部を示したものに過ぎない。すなわち、本発明に係る電源システムに適用可能な外形形状は、上記具体例以外であってもよく、例えば、世界各国で流通、販売されている化学電池、あるいは、将来実用化が予定されている化学電池の形状に合致し、さらには、電気的特性をも合致するように設計することができることはいうまでもない。

【0252】次いで、本発明に係る電源システムに上述した各電池形状を適用した場合の発電モジュール10及び燃料パック20の着脱構造と、電極構造との関係について、図面を参照して詳しく説明する。

(着脱構造の第1の実施例) 図31 (a) ~図31

(d) 及び図31 (e) ~図31 (h) は、それぞれ本発明の第1の実施例に係る電源システムの燃料パック及びホルダー部を上方向、前方向、横方向、後方向から見た外形形状を示す概略構成図であり、図32は、本実施例に係る電源システムにおける発電モジュール及び燃料パックの着脱構造を示す概略図である。ここで、上述した各実施形態と同等の構成については、その説明を簡略化又は省略する。

【0253】図31(a)~図31(d)及び図31(e)~図31(h)に示すように、本実施例に係る電源システムは、発電用燃料が所定の条件で封入された燃料パック51と、該燃料パックが着脱可能に構成されたホルダー部52と、を備えて構成されている。ここで、燃料パック51は、上述した各実施形態と同等の構成及び機能を有しているので、その説明を省略する。

【0254】ホルダー部52は、上述した各実施形態と同等の構成を有する発電モジュール10Xが収納され、正極端子EL(+)が設けられた発電部52aと燃料パック51との間に介在するI/F部として機能部52な付向部52bを連結するとと、発電部52aと対向部52bを連結部52cと、行っと、発電部52aと対向部52b及び連結部52cによりを電が、上記燃料パック51を結ず、といるででででいる。ことが、上記燃料パック51を組まれた貫通した空間SP1が、上記燃料パック51を組まれた関通した空間SP1が、上記燃料パック51をは、対向部52bの当接部分の周囲にバネが等の弾性をなる、対向部52bの当接部分の周囲にバネが等の弾性をは、対向部52bの当接部分の周囲にバネは高に、中央に孔を有する凸部52dと、凸部52dの副生成物回収経路52eと、を備えている。

【0255】このような構成を有する電源システムにおいて、図32(a)に示すように、発電部、対向部及び連結部により構成される空間SP1に対して、燃料パッ

64

ク51の燃料供給弁24A(詳しくは、図39において 後述する)が設けられた燃料送出口(一端側)51aを ホルダー部52に当接させて支点とし、燃料パック51 の他端側51bを旋回させて押し込むことにより(図 中、矢印P9)、図32(b)に示すように、該燃料パック51の底部(他端側)51bが対向部52bによりに、 とき、燃料送出が空間SP1に収納される。こと、燃料送出なる燃料送出管52f(詳して、 は、図39においるとき、燃料に対ったで姿勢が固定に は、図39においた発生とによりが、バインで変勢が固定とれている燃料供給弁24Aを押し下げることにより燃料 に対入された発電用燃料下して、燃料パック51 に対入された発電用燃料下して、燃料に対入された発電の は、図39において後述する)内及び燃料 は、図39において後述する)内及び燃料 は、図39において後述する)内及び燃料 は、図39においた発電も は、図39により自動的に搬送されて、発電モジュール10Xに供給される。

【0256】ここで、電源システムは、燃料パック51が空間SP1に収納され、ホルダー部52に結合された状態において、例えば、上述した円柱形状の汎用の化学電池(図29(a)、図30(c)参照)と略同等の外形形状及び寸法を有するように構成されている。また、このとき、燃料パック51が空間SP1に正常に収納された状態で、燃料パック51の燃料送出口51aが発電部52a側の燃料送出経路に良好に当接して接続するように、燃料パック51の他端側51bを適当な力で押圧するとともに、燃料パック51がホルダー部52から1の他端側51bと対向部52bの当接部分が適当な押圧力で係合するように構成されていることが望ましい。

【0257】具体的には、図32(a)、(b)に示すように、例えば、副生成物である水等を回収するために燃料パック51の他端側51bに形成された副生成物取込弁24Bが配置された凹部と、対向部52bの当接部分の周囲にバネ材等の弾性を有する凸部52dとの間での係合機構を適用することができる。このとき、凸部52dに押し上げられることで副生成物取込弁24Bが閉じた状態から開いた状態になるとともに、副生成物回収経路52eと連結するため(図31(e)参照;詳しくは、図39において後述する)、副生成物回収経路52eを経由して送出される副生成物が、燃料パック51内に設けられた回収袋23(図27参照)に回収可能となる。

【0258】これにより、上述した全体動作(図20参照)において説明したように、副電源部11において、自立的に電力(第2の電力)が生成されて、少なくとも、発電モジュール10内の動作制御部13に動作電力が供給される。また、本実施形態に係る電源システムが所定のデバイスDVCに装着されることにより、副電源部11により生成ざれた電力の一部が発電部52aに設けられた正極端子EL(+)及び対向部52bに設けられた負極端子EL(-)を介して、デバイスDVCに内

蔵されたコントローラCNTに駆動電力として供給される(初期動作)。

【0259】したがって、汎用の化学電池と同様に簡易に取り扱うことができ、汎用の化学電池と同一又は同等の外形形状及び寸法(ここでは、円柱形状)を有するとともに、同一又は同等の電気的特性を有する電力を供給することができる完全互換の電源システムを実現することができるので、既存の携帯機器等のデバイスに対して、汎用の化学電池と全く同様に、動作電力として適用することができる。

【0260】特に、本実施例に係る電源システムにおいて、発電モジュールとして燃料電池を備えた構成を適用し、かつ、発電部52a(発電モジュール10X)に対して着脱可能に構成された燃料パック51として、上よした分解性プラスチの材料を適用することにネル等のができるのができることができることができる。また、本実施例に係る電源システムは、燃料パック51が収納されるので、燃料パック51の対向ことにより、燃料パック51の着脱を簡易かつ確実に行うことができる。

【0261】(着脱構造の第2の実施例)図33(a)~図33(c)は、それぞれ本発明の第2の実施例に係る電源システムの燃料パックを前方向、横方向、後方向から見た外形形状を示す概略構成図であり、図33

(d) ~図31(g)は、それぞれ本発明に係る電源システムのホルダー部を上方向、前方向、横方向、後方向から見た外形形状を示す概略構成図であり、図34は、本実施例に係る電源システムにおける発電モジュール及び燃料パックの着脱構造を示す概略図である。ここで、上述した各実施形態と同等の構成については、その説明を簡略化又は省略する。

【0262】図33(a)~図33(g)に示すように、本実施例に係る電源システムは、発電用燃料が所定の条件で封入された燃料パック61と、該燃料パック61が着脱可能に構成されたホルダー部62と、を備えて構成されている。ここで、燃料パック61は、上述した各実施形態と同等の構成及び機能を有しているので、その説明を省略する。

【0263】ホルダー部62は、大別して、発電モジュール10Xが収納され、正極端子EL(+)が設けられた発電部62aと、負極端子EL(-)が設けられた対向部62bと、発電部62aと負極端子EL(-)を電気的に接続する連結部62cと、を有して構成されている。ここで、発電部62a、対向部62b及び連結部62c

66

により囲まれた凹状の空間 S P 2 が、上記燃料パック 6 1 を結合した際の収納位置となる。

【0264】このような構成を有する電源システムにおいて、図34(a)に示すように、発電部62a、対向部62b及び連結部62cにより構成される空間SP2に対して、燃料パック61の燃料送出口61aを発電部62a側の燃料送出経路に当接させつつ、燃料パック61を嵌合させることにより(図中、矢印P10)、図34(b)に示すように、燃料パック61が空間SP2に収納されるとともに、燃料パック61の漏出防止機能が解除されて、燃料パック61に封入された発電用燃料FLが燃料送出経路を介して、発電部62aに内蔵された発電モジュール10Xに供給される。

【0265】ここで、電源システムは、上述した第1の 実施例と同様に、燃料パック61が空間SP2に収納され、ホルダー部62に結合された状態において、例え ば、上述した円柱形状の汎用の化学電池(図29

(a)、図30(c)参照)と略同等の形状及び寸法を有するように構成されている。また、このとき、燃料パック61が空間SP2に正常に収納された状態で、燃料パック61がホルダー部62から不用意に脱落することを防止するために、燃料パック61の外形形状がホルダー部62の空間SP2の内部形状に係合する構成を有することが望ましい。

【0266】これにより、上述した第1の実施例と同様に、汎用の化学電池と同様に簡易に取り扱うことができ、かつ、汎用の化学電池と同一又は同等の外形形状及び電気的特性を有する完全互換型のポータブル型の電源システムを実現することができる。また、発電モジュールに適用する発電装置の構成や着脱可能な燃料パックの構成材料を適切に選択することにより、環境への影響を大幅に抑制して、既存の化学電池の投棄や埋め立て処理による環境問題やエネルギー資源の有効利用の問題等を良好に解決することができる。

【0267】(着脱構造の第3の実施例)図35(a)~図35(c)は、それぞれ本発明の第3の実施例に係る電源システムの燃料パックを前方向、横方向、後方向から見た外形形状を示す概略構成図であり、図35

(d) ~図35 (f) は、それぞれ本発明に係る電源システムのホルダー部を前方向、横方向、後方向から見た外形形状を示す概略構成図であり、図36 (a) ~図36 (c) は、本実施例に係る電源システムにおける発電モジュール及び燃料パックの着脱構造を示す概略図である。ここで、上述した各実施形態と同等の構成については、その説明を簡略化又は省略する。

【0268】図35(a)~図35(f)に示すように、本実施例に係る電源システムは、発電用燃料が所定の条件で封入された燃料パック71と、該燃料パック71が複数本収納可能に構成されたホルダー部72と、を備えて構成されている。ここで、燃料パック71は、上

述した各実施形態と同等の構成及び機能を有するとともに、特に、その外形形状が汎用の化学電池、例えば、単3型マンガン電池等と同等の形状及び寸法を有するように構成されている。

【0269】ホルダー部72は、大別して、発電モジュール10Xが収納され、同一端面に正極端子EL(+)及び負極端子EL(ー)が設けられた発電部72aと、発電部72aとの間に空間SP3を有するように設けられた上部カバー72bと、空間SP3への燃料パック71の収納、取り出しを可能とするとともに、空間SP3内に収納された燃料パック71を押圧固定する開閉カバー72cと、を有して構成されている。

【0270】このような構成を有する電源システムにお いて、図36 (a) に示すように、ホルダー部72の開 閉カバー12cを開状態として空間SP3の一面側を開 放状態として、複数本 (ここでは、2本) の燃料パック 71を同一の向きに挿入した後、図36(b)、(c) に示すように、開閉カバー72cを閉状態とすることに より、燃料パック71が空間SP3に収納されるととも に、開閉カバー72cが燃料パック71の他端側71b を押圧して、燃料パック71の燃料送出口71aを発電 部72a側の燃料送出経路(I/F部;図示を省略)に 当接させることにより、燃料パック71の漏出防止機能 が解除されて、燃料パック71に封入された発電用燃料 FLが燃料送出経路を介して、発電部72aに内蔵され た発電モジュール10×に供給される。ここで、本実施 例に係る電源システムは、燃料パック71が空間SP3 に収納され、ホルダー部72に結合された状態におい て、例えば、上述した特殊形状の化学電池(図29

(d) 参照) と略同等の外形形状及び寸法を有するよう に構成されている。

【0271】これにより、既存の特殊形状の化学電池と同一又は同等の外形形状及び電気的特性を有する完全互換型のポータブル型の電源システムを実現することができるとともに、発電モジュールに適用する発電装置の構成や着脱可能な燃料パックの構成材料を適切に選択することにより、環境への影響を大幅に抑制して、既存の化学電池の投棄や埋め立て処理による環境問題やエネルギー資源の有効利用の問題等を良好に解決することができる。また、本実施例においては、燃料パックが汎用の化学電池と同等の外形形状及び寸法を有するように構成されているので、汎用の化学電池を電池ホルダーに収納した後、デバイスに装着するような構成を有する電源システムと略同様に、簡易な使用形態の電源システムを提供することができる。

【0272】(第4の実施例)図37(a)~図37(c)は、それぞれ本発明の第4の実施例に係る電源システムの燃料パックを前方向、横方向、後方向から見た外形形状を示す概略構成図であり、図37(d)~図31(f)は、それぞれ本発明に係る電源システムのホル

68

ダー部を上方向、横方向、前方向から見た外形形状を示す概略構成図であり、図38は、本実施例に係る電源システムにおける発電モジュール及び燃料パックの着脱構造を示す概略図である。ここで、上述した各実施形態と同等の構成については、その説明を簡略化又は省略す

【0273】図37(a)~図37(f)に示すように、本実施例に係る電源システムは、発電用燃料が所定の条件で封入された燃料パック81と、該燃料パック81が複数本収納可能に構成されたホルダー部82と、を備えて構成されている。ここで、燃料パック81は、上述した第3の実施例と同様に、その外形形状が汎用の化学電池と同等の形状及び寸法を有するように構成されている。ホルダー部82は、大別して、発電モジュール10Xが収納され、同一端面に正極端部82は、大別して発電部82aと対向する面を有する対向のま2bと、発電部82aと対向部82bを連結するベース部82cとの収納位置となる。

【0274】このような構成を有する電源システムにおいて、図38(a)に示すように、発電部82a、対向部82b及びベース部82cにより構成される空間SP4に対して、燃料パック81の燃料送出口(一端側)81aを発電部82a側の燃料送出経路(I/F部;図示を省略)に当接させて支点とし、燃料パック81の他端側81bを旋回させて押し込むことにより(図中、矢印P11)、図38(b)に示すように、該燃料パック81の他端側81bが対向部82bに当接して固定され、複数本(ここでは、2本)の燃料パック81が空間SP4に同一の向きに収納される。このとき、燃料パック81に対入された発電用燃料FLが燃料送出経路を介して、発電82aに内蔵された発電モジュール10Xに供給され

【0275】ここで、電源システムは、燃料パック81が空間SP4に収納され、ホルダー部82に結合された状態において、例えば、上述した特殊形状の化学電池(図29(d)参照)と略同等の外形形状及び寸法を有するように構成されている。また、このとき、燃料パック81が空間SP4に正常に収納された状態で、燃料パック81の燃料送出口81aが発電部82a側の燃料送出経路に良好に当接して接続するとともに、燃料パック81がホルダー部82から不用意に脱落することをは、は1がホルダー部82から不用意に脱落することを防止するために、上述した第1の実施例と同様に、図38(a)、(b)に示すように、燃料パック81の他端側81bと対向部82bの当接部分が適当な押圧力で係るするように構成されている。これにより、上述した第3

の実施例と同様の作用効果を有する電源システムを実現することができる。なお、ホルダー部62、72、82には、いずれもホルダー部52の燃料送出管52fと同等の機能を有する燃料送出管が設けられ、さらに、いずれも副生成物回収経路52eと同等の副生成物回収経路が設けられている。

【0276】(具体的構成例)次に、上述した各実施形態(各構成例を含む)のいずれかを適用した電源システム全体の具体構成例について、図面を参照して説明する。図39は、本発明に係る電源システム全体の具体的構成例を示す要部概略構成図である。また、図40は、本具体構成例に適用される燃料改質部の他の構成例を示す概略図であり、図41は、本具体構成例に適用される燃料改質部の他の構成例を示す概略図である。ここでは、料改質部の他の構成例を示す概略図である。ここでは、主発電部12として燃料改質方式の燃料電池が適用されているものとする。また、上述した各実施形態及び各構成例を適宜参照し、同等の構成については、同一の符号を付して、その説明を簡略化する。

【0277】図39に示すように、本具体構成例に係る電源システム1Aは、図2に示したように、発電モジュール10と燃料パック20がI/F部30を介して着脱可能に構成され、全体として図29(a)又は図30に示したように円柱形状からなる外形形状を有している。また、これらの構成(特に、発電モジュール10)が、マイクロマシン製造技術等を用いて微小空間に構成され、汎用の化学電池と同等の外形寸法を有するように構成されている。

【0278】発電モジュール10は、概略、円柱形状の 円周側面に沿って延在し、相互に分離して積層形成され た燃料電池からなる主発電部12と、主発電部12を駆 30 動するための電力を供給する副電源部11(図示を省 略)と、円柱状の発電モジュール10内部に、深さ及び 幅がそれぞれ500μm以下の燃料流路が接続されるよ うに積層形成された水蒸気改質反応ユニット210A (燃料改質部210a;詳しくは後述する)と選択酸化 反応ユニット210C (選択酸化触媒部210c)と、 発電モジュール10内部にマイクロチップ化されて収納 された動作制御部13及び起動制御部15等を搭載した コントロールチップ90と、発電モジュール10の円柱 側面から上記主発電部12の空気極212(図12参 照) まで貫通し、外部の空気を取り入れる複数の通気孔 (スリット) 14 c と、上記空気極212側において生 成される副生成物(水等)を液化(凝結、凝縮)して分 離回収する分離回収部17と、回収した副生成物の一部 を水蒸気改質反応ユニット210Aに供給する副生成物 供給経路17aと、円柱上面から上記主発電部12の空 気極まで貫通し、少なくとも、主発電部の燃料極側や水 蒸気改質反応ユニット210A、選択酸化反応ユニット 210 Cにおいて生成され、非回収物質である副生成物 (二酸化炭素等) を発電モジュールの外部に排出する排

70

出孔14 dと、を備えて構成されている。

【0279】燃料パック20(51、61、71、81)は、概略、図26に示した構成と同様に、主発電部12に供給される発電用燃料FLが充填、封入される燃料封入空間22Aと、上記分離回収部17により回収された副生成物(水)を固定的に保持する回収保持空間22B(回収保持部21)と、発電モジュール10との境界にあって、発電用燃料FLの漏出を防止する燃料供給弁24A(燃料漏出防止手段)と、回収保持された副生成物(回収物)の漏出を防止する副生成物取込弁24B(回収物漏出防止手段)と、を有して構成されている。ここで、燃料パック20は、上述したような分解性プラスチックにより形成されている。

【0280】このような構成を有する燃料パック20を、発電モジュール10及びI/F部30と結合すると、燃料送出管52fがバネで姿勢が固定されている燃料供給弁24Aを押し下げて燃料パック51の漏出防止機能を解除して、燃料パック51に封入された発電用燃料FLが毛細管52g内及び燃料送出管52f内での表面張力により発電モジュール10(水蒸気改質反応ユニット210A等)まで自動的に搬送される。

【0281】また、I/F部30は、燃料パック20に封入された発電用燃料FLを主発電部12や必要に応じて副電源部11に供給する燃料送出管52fと、上記主発電部12において生成され、分離回収部17により回収された副生成物(水)の全部又は一部を、燃料パック20に送出する副生成物回収経路52eと、を有して構成されている。なお、図示を省略したが、発電モジュール10又は燃料パック20もしくはI/F部30には、図3、図28に示したように、燃料パック20の燃料対入空間22Aに封入された発電用燃料FLの残量を検出する残量検出手段(残量検出部16)や、発電用燃料FLの封入状態を安定化させる燃料安定化手段(供給制御弁25、圧力制御弁26等)が設けられた構成を有している。

【0282】ここで、本具体構成例に係る電源システムに適用される水蒸気改質反応ユニット210Aの構成は、例えば、図40に示すように、シリコン等の微小基板201の一面側に、半導体製造技術等の微細加工技術を用いて、所定の溝形状及び所定の平面パターンを有するように設けられた燃料吐出部202a、水吐出部202b、燃料気化部203a、水気化部203b、混合部203c、改質反応流路204、水素ガス排気部205と、上記改質反応流路204の形成領域に対応する領域であって、例えば、微小基板201の他面側に設けられた薄膜ヒータ206と、を備えて構成されている。

【0283】燃料吐出部202a及び水吐出部202bは、上述したような水蒸気改質反応における原料物質となる発電用燃料及び水を、例えば、所定の単位量ごとに液状粒として流路内に吐出する流体吐出機構を有してい

る。したがって、燃料吐出部202a及び水吐出部20 2bにおける発電用燃料又は水の吐出量に基づいて、例 えば、上記化学反応式(3)式に示した水蒸気改質反応 の進行状態が制御されることになるため(詳しくは、後 述する薄膜ヒータ206からの熱量も密接に関連す

る)、燃料吐出部202a及び水吐出部202bは、上述した出力制御部14(燃料制御部14a)における燃料供給量の調整機能の一部を担う構成を有している。

【0284】燃料気化部203a及び水気化部203bは、それぞれ発電用燃料及び水の沸点等の揮発条件に応じて加熱されるヒータであって、これらのヒータは、副電源部11からの電力で駆動される出力制御部14によって、燃料吐出部202a及び水吐出部202bから液状粒として吐出された発電用燃料又は水を、図13

(a) に示した蒸発過程のように所定の温度に加熱して 気化させることにより燃料流路の内圧を所定の圧力に設 定するされるように制御され、燃料ガスの流路と水蒸気 の流路とが連結された混合部203cにおいて、燃料ガ スと水蒸気とが混合するようになっている。

【0285】改質反応流路204及び薄膜ヒータ206は、上記混合部203cにおいて生成された混合ガスを改質反応流路204に導入し、改質反応流路204の内壁面に付着形成された銅-錫(Cu-Zn)系の触媒(図示を省略)、及び、改質反応流路204の形成領域に対応して設けられた薄膜ヒータ206から、改質反応流路204に供給される所定の熱エネルギーに基づいて、図13(a)及び上記化学反応式(3)に示した水蒸気改質反応を生じさせて、水素ガス(H2)を生成する(水蒸気改質反応過程)。

【0286】水素ガス排気部205は、改質反応流路204において生成された水素ガスと一酸化炭素との混合ガスを排出して、選択酸化反応ユニット210Cにおける水性シフト反応過程及び選択酸化反応過程を介して、一酸化炭素(CO)を除去した後、主発電部12を構成する燃料電池の燃料極に供給する。これにより、主発電部12において、上記化学反応式(6)及び(7)に基づく一連の電気化学反応が生じて、所定の電力が生成される。

【0287】このような構成を有する電源システムにおいて、上述した全体動作(初期動作、起動動作、定常動作、停止動作)に則して、例えば、I/F部30を介して発電モジュール10に燃料パック20が結合されると、燃料供給弁24A(燃料漏出防止手段)による漏出防止機能が解除されて、燃料パック20の燃料封入空間22Aに封入された発電用燃料(例えば、メタノール)FLが、燃料送出経路31を介して直接副電源部11を構成する燃料電池の燃料極に供給されて、第2の電力が生成される。この電力は、コントロールチップ90に搭載された動作制御部13に動作電力として供給されるとともに、電源システム1Aが図示を省略した正極端子及

72

び負極端子を介して電気的に接続されたデバイスDVC (図示を省略) に内蔵されたコントローラCNTに駆動 電力として供給される。

【0288】そして、動作制御部13が上記コントローラCNTからデバイスDVCの負荷LDの駆動状態に関する情報を受け取ると、起動制御部15に動作制御信号を出力して、副電源部11により生成される電力の一部を用いて、水蒸気改質反応ユニット210Aの薄膜ヒータ206を加熱するとともに、所定量の発電用燃料及び水を水蒸気改質反応ユニット210Aの改質反応流路204に吐出する。これにより、上述した化学反応式

(3)~(5)に示した水蒸気改質反応及び選択酸化反応により、水素ガス(H_2)及び二酸化炭素(CO_2)が生成され、水素ガス(H_2)は、主発電部12を構成する燃料電池の燃料極に供給されて第1の電力が生成され、デバイスDVCの負荷 L Dに負荷駆動電力として供給されるとともに、二酸化炭素(CO_2)は、例えば、発電モジュール10の上面に設けられた排出孔14dを介して発電モジュール10(電源システム1A)の外部に排出される。

【0289】また、主発電部12における発電動作に際して生成される副生成物(水蒸気等の気体)は、分離回収部17において、冷却されて液化されることにより、水とそれ以外の気体成分とに分離し、水のみを回収して一部を副生成物供給経路17aを介して、上記水蒸気改質反応ユニット210Aに供給するとともに、それ以外の水を副生成物回収経路を介して、燃料パック20内の回収保持空間22Bに不可逆的に保持される。

【0290】したがって、本具体構成例に係る電源システム1Aによれば、電源システム1Aの外部から燃料の補給を受けることなく、駆動される負荷(デバイスDVC)の駆動状態及び発電用燃料FLの残量に応じた適切な電力(第1の電力)を自立的に出力することができるので、汎用の化学電池と同等の電気的特性及び簡易な取り扱いを実現しつつ、高いエネルギー変換効率で発電動作を行うことができるとともに、少なくとも燃料パック20の自然界への投棄、埋め立て等に対して、環境への負担が少ないポータブル型の電源システムを実現することができる。

【0291】なお、本具体構成例においては、主発電部12や水蒸気改質反応ユニット210A等において生成され、回収された副生成物(水)の一部を水蒸気改質反応ユニット210Aに供給して再利用する構成を示したが、このような構成を適用しない電源システムにおいては、燃料パック20に発電用燃料(メタノール等)とともに封入された水を利用して、水蒸気改質反応ユニット210Aにおける水蒸気改質反応を実行する。

【0292】したがって、このように予め水が混合して 封入された発電用燃料を用いて発電動作を行う場合にあ っては、図41に示すように、水蒸気改質反応ユニット

210Aの構成として、微小基板201の一面側に、燃料吐出部202、燃料気化部203、改質反応流路204及び水素ガス排気部205のみからなる単一の流路が形成された構成を適用することができる。

[0293]

【発明の効果】以上説明したように、本発明によれば、燃料封入部(燃料パック)に充填、封入された液体又は気体からなる発電用燃料、又は、該発電用燃料から供給される特定の成分(例えば、水素)を用いて発電を行う発電モジュール(発電器)を備えたポータブル型の電源システムにおいて、該発電による出力電圧特性(起電力特性)が、汎用の化学電池、すなわち、日本国内外で電販、あるいは、機器に付属して流通、販売される一次電池又は二次電池のうちの1種における経時的な電圧の変化傾向に応じた出力電圧となるように、発電モジュールにおける発電状態が制御される。

【0294】これにより、汎用の化学電池等の電圧変化傾向に応じた出力電圧特性を有するポータブル電源を実現することができるので、既存の携帯機器等の電源としてそのまま使用した場合であっても、この出力電圧の変化を検出して電池残量や機器の駆動可能推定時間を表示したり、電池の交換や充電等を促す機能を支障なく利用することができ、化学電池に対する互換性を高めた電源システムを提供することができる。

【0295】このような特徴を実現するために、第2の発電手段により生成される第2の電力に基づいてシステム制御手段(出力制御部、システム制御手段)が駆動され、燃料封入部に残存する発電用燃料の量(残量)に応じて、第1の発電手段における第1の電力の発生量(発電状態)が制御されるように構成することにより、電源システムの外部から燃料等の供給を受けることなく、発電モジュールにより自立的に発電状態を制御して、発電用燃料の残量に応じた所定の電力を発生、出力することができる。

【0296】この場合、システム制御手段(動作制御部)による第1の発電手段における発電状態の制御は、汎用の化学電池における経時的な電圧変化傾向、例えば、時間の経過に伴って出力電圧が一義的に低下する傾向に対応して、発電用燃料の残量と出力電圧(第1の電力の電圧成分)との相関関係を予め規定した相関テープルに基づいて実行されるものであってもよく、これば、燃料封入部における発電用燃料の残量に基づいて、該相関テーブルを参照し、発電部の燃料極への発電用燃料の供給量を調整することにより、簡易に出力電圧を設定制御することができるので、汎用の化学電池と同様の出力電圧特性を有し、電気的特性上、互換が可能な電源システムを提供することができる。

【0297】上記電源システムにおいて、より好ましい 態様は、第1の電源手段及び第2の電源手段が、共に燃 料封入部から供給される発電用燃料を用いた電気化学反 50 74

応により、第1の電力及び第2の電力を発生する燃料電池を有している構成であり、これにより、汎用の化学電池に比較して、極めてエネルギー利用効率の高い燃料電池を用いて、電源システムの動作電力及び負荷の駆動電力を生成することができるとともに、汎用の化学電池における経時的な電圧変化傾向と同様の出力電圧特性を有する電源システムを実現することができるので、既存の携帯機器等における残量通知機能等を良好に利用することができるとともに、化石燃料等のエネルギー資源の消費量を削減して有効な利用を図ることができる。

【0298】また、上記電源システムにおいて、第1の電源手段のみを上記燃料電池により構成したものであってもよく、この場合、第1の電源手段は、発電用燃料を改質して、特定の成分を抽出する燃料改質器と、該特定の成分が供給される燃料極と、空気中の酸素が供給される空気極と、を備えた燃料改質型の燃料電池としての構成を適用することが好ましい。このような燃料改質型の燃料電池を適用した構成によれば、燃料電池に供給される発電用燃料の量を制御することにより、第1の電源の機能できるとともに、発電用燃料の有する化学エネルギーから極めて高いエネルギー変換効率で電力を生成することができる電源システムを実現することができる。

【0299】また、上記電源システムにおいて、第2の 電源手段のみを上記燃料電池により構成したものであっ てもよく、この場合、第2の電源手段は、発電用燃料が 直接的に供給される燃料極と、空気中の酸素が供給され る空気極と、を備えた燃料直接供給型の燃料電池として の構成を適用することが好ましい。このような燃料直接 供給型の燃料電池を適用した構成によれば、簡易な構成 の燃料電池に燃料封入部から発電用燃料を供給するだけ で、自立的かつ継続的に高いエネルギー変換効率で所定 の電力 (第2の電力) を生成してシステム制御手段に動 作電力として供給することができるので、特別な操作を 必要とすることなく、発電用燃料の残量に応じた電圧成 分を有する第1の電力を出力することができ、汎用の化 学電池と同等の電気的特性を有しつつ、取り扱いが簡易 な電源システムを提供することができるとともに、第2 の電源手段の規模を小型化することができる。

【0300】なお、上記電源システムにおいて、第1及び第2の電源手段としては、上述した燃料電池の他、発電用燃料を用いて高いエネルギー変換効率で第1及び第2の電力を生成することができ、かつ、小型化や微細化が可能な構成を有する種々の発電装置や蓄電装置の中から、電源システムの外形形状や電気的特性等に応じて適宜組み合わせた任意の構成を適用することができる。

【0301】また、上記電源システムに適用される発電 用燃料は、少なくとも、水素を主成分とする、又は、水 素からなる液体燃料又は液化燃料又は気体燃料、具体的 には、メタノールやエタノール、ブタノール等のアルコ

ール系の液体燃料や、ジメチルエーテルやイソプタン、 天然ガス等の炭化水素からなる液化燃料、あるいは、水 素ガス等の気体燃料であって、特に、燃料封入部から発 電モジュールに供給される際の常温、常圧等の所定の環 境条件の下で気体状態にあるものを良好に適用することができるので、第1及び第2の電源手段における発電動 作において、高いエネルギー変換効率で電力を生成する ことができるとともに、この発電動作に伴って電力以外 に生成される副生成物を比較的簡易な処理で無毒化や難 燃化することができる。

【0302】さらに、上記電源システムは、燃料封入部及び電源モジュールを組み合わせた物理的外形形状が、汎用の化学電池のうちの任意の1種と同等の形状及び寸法を有するように構成されているものであってもよく、これによれば、上記電気的特性のみならず、外形形状においても、汎用の化学電池との互換性を有することになるので、極めてエネルギー変換効率の高い電源システムを既存の化学電池の市場に支障なく普及させることができる。

【図面の簡単な説明】

【図1】本発明に係る電源システムの適用形態を示す概念図である。

【図2】本発明に係る電源システムの基本構成を示すブロック図である。

【図3】本発明に係る電源システムに適用される発電モジュールの第1の実施形態を示すブロック図である。

【図4】本実施形態に係る電源モジュールに適用可能な 副電源部の第1の構成例を示す概略構成図である。

【図5】本実施形態に係る電源モジュールに適用可能な副電源部の第2の構成例を示す概略構成図である。

【図 6】本実施形態に係る電源モジュールに適用可能な 副電源部の第3の構成例を示す概略構成図である。

【図7】本実施形態に係る電源モジュールに適用可能な 副電源部の第4の構成例を示す概略構成図である。 76

【図8】本実施形態に係る電源モジュールに適用可能な 副電源部の第5の構成例を示す概略構成図である。

【図9】本実施形態に係る電源モジュールに適用可能な 副電源部の第6の構成例を示す概略構成図である。

【図10】本実施形態に係る電源モジュールに適用可能な副電源部の第7の構成例を示す概略構成図である。

【図11】本実施形態に係る電源モジュールに適用可能な副電源部の第8の構成例を示す概略構成図である。

【図12】本実施形態に係る電源モジュールに適用可能な主発電部の第1の構成例を示す概略構成図である。

【図13】本構成例に係る主発電部に適用される燃料改 質部における水素生成過程を示す概念図である。

【図14】本実施形態に係る電源モジュールに適用可能な主発電部の第2の構成例を示す概略構成図である。

【図15】本実施形態に係る電源モジュールに適用可能な主発電部の第3の構成例を示す概略構成図である。

【図16】本実施形態に係る電源モジュールに適用可能な主発電部の第4の構成例を示す概略構成図である。

【図17】本実施形態に係る電源モジュールに適用可能な主発電部の第5の構成例を示す概略構成図である。

【図18】本実施形態に係る電源モジュールに適用可能な主発電部の第6の構成例を示す概略構成図である。

【図19】本発明に係る電源システムに適用される発電モジュールの一実施形態の他の例の要部構成を示すプロック図である。

【図20】電源システムの概略動作を示すフローチャートである。

【図21】本実施形態に係る電源システムの出力電圧の 経時変化を示す特性図である。

【図22】本発明に係る電源システムに適用される発電 モジュールの第2の実施形態を示すブロック図である。

【図23】本発明に係る電源システムに適用される発電 モジュールの第3の実施形態を示すプロック図である。

【図24】本実施形態に係る電源モジュールに適用可能な副電源部の第1の構成例を示す概略構成図である。

【図25】本実施形態に係る電源モジュールに適用可能な副電源部の第2の構成例を示す概略構成図である。

【図26】本発明に係る電源システムに適用可能な副生成物回収手段の一実施例を示すブロック図である。

) 【図27】本実施例に係る副生成物回収手段による副 成物の保持動作を示す概略図である。

【図28】本発明に係る電源システムに適用可能な燃料 安定化手段の一実施例を示すブロック図である。

【図29】本発明に係る電源システムに適用可能な外別形状の具体例を示す概略構成図である。

【図30】本発明に係る電源システムに適用される外表形状と、汎用の化学電池の外形形状との対応関係を示概念図である。

【図31】本発明に係る電源システムに既存の化学電流の外形形状を適用した場合の第1の実施例を示す概略

O

20

成図である。

【図32】本実施例に係る電源システムにおける発電モジュール及び燃料パックの着脱構造を示す概略図である。

【図33】本発明に係る電源システムに既存の化学電池 の外形形状を適用した場合の第2の実施例を示す概略構 成図である。

【図34】本実施例に係る電源システムにおける発電モジュール及び燃料パックの着脱構造を示す概略図である。

【図35】本発明に係る電源システムに既存の化学電池 の外形形状を適用した場合の第3の実施例を示す概略構 成図である。

【図36】本実施例に係る電源システムにおける発電モジュール及び燃料パックの着脱構造を示す概略図である。

【図37】本発明に係る電源システムに既存の化学電池 の外形形状を適用した場合の第4の実施例を示す概略構 成図である。

【図38】本実施例に係る電源システムにおける発電モジュール及び燃料パックの着脱構造を示す概略図である。

【図39】本発明に係る電源システム全体の具体的構成例を示す要部概略構成図である。

78

*【図40】本具体構成例に適用される燃料改質部の一構成例を示す概略図である。

【図41】本具体構成例に適用される燃料改質部の他の構成例を示す概略図である。

【図42】汎用の化学電池における出力電圧の経時的な変化傾向(起電力特性)を示す図である。

【図43】従来技術における燃料電池における起電力特性を示す図である。

【符号の説明】

L D C N T

10 電源システム 発電モジュール 10,10A~10F 11, 11A~11H 副電源部 12,12A~12F 主発電部 動作制御部 出力制御部 1 4 起動制御部 1 5 残量検出部 16 分離回収部 1 7 20,20D~20F 燃料パック $30, 30D \sim 30F$ デバイス DVC 負荷

コントローラ

【図32】 【図2】 【図1】 DVC 燃料パック 発電用燃料 F.L (=)(a) 燃料パック 発電モジュール (b) (b) (b) 1/F部 燃料パック 発言モジュ・

(a)

【図3】

【図4】

【図6】

【図13】

【図14】

【図15】

【図16】

(b)

【図19】

【図20】

【図24】

フロントページの続き

(51) Int. Cl. 7 // H 0 1 M 8/10 識別記号

F I H 0 1 M 8/10 テーマコード(参考)

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.