

Sardar Patel Institute of Technology

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058, India

(Autonomous College Affiliated to University of Mumbai)

End Semester Examination

August 2021

Max. Marks: 60 Duration: 2 hours Class: FE Semester: II

Course Code: MA201 Branch: ETRX/EXTC/IT/COMPS

Name of the Course: Differential Equations and Complex Analysis

Instructions:

(1) All Questions are Compulsory

(2) Assume suitable data if necessary

(3) Full working to be shown

(4) Start each section on a fresh page.

Question No.	Section1	Max. Marks	СО
Q.1			1
(A)	Solve: $2(1 + x^2\sqrt{y})ydx + (x^2\sqrt{y} + 2)xdy = 0$ OR	5	
	Solve: $tany \frac{dy}{dx} + tanx(1 - cosy) = 0$		
(B)	Using Euler's method find the approximate value of y at $x = 0.1$ (exact up	5	
	to 4 decimal places) for the differential equation $\frac{dy}{dx} = x - y^2$, with initial		
	conditions $y(0)=1$ in 5 steps.		
Q.2			2
(A)	Solve the system of differential equations	7	
	$\frac{dx}{dt} = 4x - 3y - 4t^2 + 5t$ $\frac{dy}{dt} = 6x - 7y - 6t^2 + 7t + 1$		
(B)	Solve:	8	
	$\left(\frac{d^2}{dx^2} - \frac{2}{x^2}\right) \left(\frac{d}{dx} + \frac{1}{x}\right) y = \cos\left(\log x\right)$		
Q.3			3
(A)	The current 'i' in a circuit, containing a resistance R, and a condenser of capacity C, and connected to a constant emf E is given by, $Ri + \frac{q}{c} = \frac{E}{R}$. Find the charge 'q' if given that $q=0$ when $t=0$.	5	

THUTE ON THE CHANGE OF THE CHA

Sardar Patel Institute of Technology

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058, India

(Autonomous College Affiliated to University of Mumbai)

Q.4	Section2		4
(A)	List down all the roots of $x^6 - 1 = 0$. Hence, find the roots of $x^4 + x^2 + 1 = 0$ that are common to $x^6 - 1 = 0$.	6	
(B)	If $tanh(\alpha + i\beta) = x + iy$ prove that, (i) $x^2 + y^2 + 1 = 2xcoth2\alpha$ (ii) $x^2 + y^2 + 2ycot2\beta = 1$ OR If $cos(\theta + i\emptyset) = re^{i\alpha}$ prove that, (i) $r^2 = \frac{1}{2}(cosh2\emptyset + cos2\theta)$ (ii) $tan\alpha = -tan\theta tanh\emptyset$	6	
(C)	If \sqrt{i}^{∞} = $\alpha + i\beta$ prove considering the principal value, (i) $\alpha^2 + \beta^2 = e^{\frac{-\pi\beta}{2}}$ (ii) $\tan\left(\frac{\alpha\pi}{4}\right) = \frac{\beta}{\alpha}$	6	
Q.5			5
(A)	Using Milne Thompson's method, construct an analytic function $f(z) = u + iv \text{ if } u = \frac{sinx + sinhy}{coshy - cosx}$	6	
Q.6			6
(A)	Evaluate $\oint (z^3 + z + 1 - 2\overline{z})dz$ over the curve C, where C is the circle $x^2 + y^2 = 2$. OR Evaluate $\oint \frac{z^2 + 1}{(z-1)^2(z-2)}dz$ over the curve $ z-2 = 2$.	6	
	ALL THE BEST 😊		