IN THE CLAIMS:

Please amend the claims as indicated in the complete listing of pending claims listed below.

1. (currently amended) A cryptographic method, including:

receiving at a first entity a second public key MA;

generating at least one of a first session key K_B and a first secret S_B -based on the second public key M_A ;

generating a first random nonce N_B;

encrypting the first random nonce N_B with at least one of the first session key K_B and using at least a first password P_B and a first public key M_B the first secret S_B-to obtain an encrypted random nonce;

transmitting the encrypted random nonce from the first entity;

receiving a in-response to transmitting the encrypted random nonce; and

authenticating through determining, receiving at the first entity a data signal whether

the response includes containing a correct modification of the first random nonce. N_B+1; and

if the received modification of the first random nonce $N_B + 1$ was correctly performed then performing at least one of

- (i) opening a communication link at the first computer, and
- (ii) generating a first initialization vector I_B.
- (currently amended) The method of claim 1-which includes determining whether the received modification was correctly performed wherein said encrypting the first random nonce N_B includes:

generating a first secrete S_B from at least the first password P_B and the first public key M_B ; and

encrypting the first random nonce N_B using at least the first secrete S_B.

- 3. (currently amended) The method of claim 2 wherein determining whether the received modification was correctly performed includes said authenticating includes: checking whether the a received modification of the first random nonce N_B+1 equals a modification of the first random nonce N_B+1 by the first entity.
- 4. (currently amended) The method of claim 2 wherein determining whether the received modification was correctly performed includes said authenticating includes: checking whether the a received modification of the first random nonce N_B+1-less a modification thereof as applied thereto by the first entity equals the first random nonce N_B+1.
- (currently amended) The method of elaim 1-claim 2 wherein generating the first session key K_B includes includes:

presenting a numeric parameter B_B,

generating a first random number R_B, and

setting computing the first session key K_B equal to from the second public key M_A raised to the exponential power of the first random number R_B , modulo \underline{a} parameter β_B .

- 6. (currently amended) The method of elaim 1-claim 2 wherein generating the first secret S_B is generated includes employing using a combining function, function f_B on at least the first password P_B and the first public key M_B.
- 7. (currently amended) The method of claim 6 wherein employing the combining function, f_B , includes the first secret S_B is generated generating a first public key M_B , using the combining function f_B function, f_B , then being employed on a on the first password P_B and on at least one of the second public key M_A and the first public key M_B .
- 8. (currently amended) The method of elaim 7-claim 2 wherein employing the combining function, f_B , on a first password P_B and on at least one of the second public key M_A and the first public key M_B includes gaid generating the first secrete S_B includes:

combining the second public key M_A and the first public key M_B with the first password P_B to produce a first result, and hashing the first result with a secure hash.

- 9. (original) The method of claim 8 wherein the secure hash is a one-way hash function.
- 10. (original) The method of claim 9 wherein the one-way hash function is one of the Secure Hash Algorithm, the Message Digest 5, Snefru, Nippon Telephone and Telegraph Hash, and the Gosudarstvennyl Standard.

11. (currently amended) The method of elaim 6-claim 2 wherein said generating the first secrete S_B includes: employing the combining function, f_B, includes employing a plurality of combining functions to produce the first secret S_B, wherein each of the plurality of combining function produces a prior result, wherein employing a first combining function includes

generating a first public key MB, and

employing the first combining function on a the first password P_B and on at least one of the second public key M_A and the first public key M_B to generate a first combined result, and

employing each subsequent combining functions includes

- employing a combining function on a prior the first combined result and on at least one of the second public key M_A , the first password P_B , and the first public key M_B to generate a second combined result, wherein the prior result produced by the last combining function is the first secret S_B .
- 12. (currently amended) The method of elaim 6-claim 2 wherein encrypting the first random nonce N_B includes employing is encrypted using a symmetrical encryption algorithm.
- 13. (original) The method of claim 12, wherein the symmetrical encryption algorithm is one of the Data Encryption Standard and the block cipher CAST.
- 14. (currently amended) The method of <u>claim 2 elaim 6</u> wherein encrypting the first random nonce N_B includes superencrypting the first random nonce N_B.

- (currently amended) The method of claim 14, wherein superencrypting the first random nonce N_B includes includes: superencrypting encrypting the first random nonce N_B with the first session key K_B and at least one of the second public key MA, a parameter CB, a parameter BB, a first public key M_B, the first session key K_B, a first password P_B, and the first secret S_B to produce the first encrypted result; and encrypting the first encrypted result using the first session key K_B.
- 16. (currently amended) The method of-elaim 1 claim 2 wherein said transmitting the encrypted random nonce from the first entity includes includes: transmitting to a second entity a first the first public key M_B to establish the session key at the second entity; and wherein said authenticating includes:
 - decrypting the response using the first session key K_B the received signal is encrypted based on at least one of a second session key KB and a second secret S_B, and wherein the second session key K_B and the second secret S_B are based on the first public key M_B to generate a first decrypted result; and

decrypting the first decrypted result using the first secret S_B.

17. (currently amended) The method of claim 1 claim 2, wherein the response includes signal further includes a combination of a second random nonce N_A and a modification of the first random nonce; and wherein, subsequent to generating the first initialization vector I_B, the method further including includes: extracting the second random nonce NA from the response;

15.

modifying the second random nonce N_A to obtain a modified second random nonce $N_{A_R}+1$;

encrypting the modified second random nonce NAn+1 with at least one of using the

first session key K_B and the first secret S_B to obtain an encrypted package; and transmitting the encrypted package from the first-computer; entity.

in response to transmitting the encrypted random nonce, receiving at the first
computer a request to open a communication channel; and
opening the communication channel.

18. (currently amended) The method of claim 17 wherein <u>said</u> encrypting the modified second random nonce N_{A_R}+1 includes includes:

generating a string of random bits IB;

encrypting-it with the first initialization vector I_B a combination of the string of random bits I_B and the modified second random nonce using the first secret S_B to generate a first result; and

encrypting the first result using the first session key K_B.

- 19. (currently amended) The method of claim 17 wherein the encrypted package is transmitted for authentication of the first entity in opening communication channel is a two-way communication channel.
- 20. (currently amended) A computer readable storage medium containing executable computer program instructions which, when executed, cause a first computer system to perform a cryptographic method including:
 receiving at the first computer system a second public key M_A;

generating at least one of a first session key K_B and a first secret S_B -based on the second public key M_A ;

generating a first random nonce N_B;

encrypting the first random nonce N_B with at least one of the first session key K_B and using at least a first password P_B and a first public key M_B the first secret S_B to obtain an encrypted random nonce;

transmitting the encrypted random nonce from the first computer system;

authenticating through determining whether a in-response to transmitting the

encrypted random nonce, receiving at the first computer system a data signal

includes containing a correct modification of the first random nonce N_B+1;

and

- if the received modification of the first random nonce N_B+1 was correctly performed than performing at least one of
 - (i) opening a communication link at the first computer system and
 - (ii) generating a first initialization vector I_B.
- 21. (currently amended) A distributed readable storage medium containing executable computer program instructions which, when executed, cause a first computer system and a second computer system to perform a computer cryptographic method through a network, the method comprising:

receiving at a at the first computer system a second public key MA;

generating at the first computer system at least one of a first session key K_B and a first secret S_B -based on the second public key M_A ;

generating at the first computer system a first random nonce N_{B} ;

- encrypting at the first computer system the first random nonce N_B with at least one of

 the first session key K_B and using at least a first password P_B and a first public

 key M_B the first secret S_B-to obtain an encrypted random nonce;
- transmitting the encrypted random nonce and the first public key M_B from the first computer system to the second computer system to establish the session key at the second computer system;
- receiving at the first computer system from the second computer system a in-response to transmitting the encrypted random nonce; and
- authenticating the second computer system at the first computer system through $\frac{\text{determining , receiving at the first computer system a data signal-whether the}}{\text{response includes containing a correct modification of the first random nonce}}$
- if the received modification of the first random nonce N_B+1 was correctly performed then performing at least one of
 - (i) opening a communication link between the first computer system and the second computer system, and
 - (ii) generating a first initialization vector I_B.
- 22. (currently amended) A computer system for performing a cryptographic method through a network, the computer system comprising:
 - a processor;
 - a network interface coupled to the network and coupled to the processor, the network interface receiving a page to receive a request including information on at least one of a user identification and a user password; and

- a file-storage device coupled to the processor, the file-storage device to store storing copies of at least one of a user identification and a user password corresponding to the user identification under control of a file management system, and wherein the processor is to perform performs a method, including including:
 - receiving at the processor a second public key M_A through the network interface;
 - generating at least one of a first session key K_B and a first secret S_B -based on the second public key M_A ;

generating a first random nonce N_B;

- encrypting the first random nonce N_B with at least one of the first session key K_B and using at least the user password and a first public key M_B the

 first secret S_B to obtain an encrypted random nonce;
- transmitting the encrypted random nonce from the processor and the first public key M_B through the network interface;
- authenticating through determining whether a in-response to transmitting the encrypted random nonce, receiving at the processor a data signal containing includes a correct modification of the first random nonce

 N_B+1; and
- if the received modification of the first random nonce $N_B + 1$ was correctly performed then performing at least one of
 - (i) opening a communication link at the processor and
 - (ii) generating a first initialization vector I_B.
- 23. (currently amended) The computer system of claim 22 wherein the network may be is

a network operating according to a hypertext transfer protocol; and the first public key M_B is transmitted with the encrypted random nonce for session key exchange.

- 24. (currently amended) A cryptographic method, comprising:
 - receiving at a first entity a second public key M_A and a and an encrypted second random number N_A encrypted with a second password P_A;
 - generating at least one of a first session key K_B and a first secret S_B -based on the second public key M_A ;
 - decrypting, employing using at least a first password P_B and the second public key M_A , to retrieve the a second random number N_A from the encrypted second random number N_A encrypted with the second password P_A ;
 - modifying the second random number N_A to obtain a modified second random number N_A+1 ;
 - encrypting the modified second random number N_{A_B}+1-with using at least one of the

 first password P_B and a first public key M_B first session key K_B and the first

 secret S_B-to obtain an encrypted random package; and

 transmitting the encrypted random package from the first entity; and
 - in response to transmitting the encrypted random package, at least one of
 - (i) receiving at the first entity a request to open a communication link, and
 (ii) receiving at the first entity an encrypted data package.
- 25. (currently amended) The method of claim 24, wherein said decrypting includes:

 decrypting receiving the encrypted second random number N_A-using the first session

 key K_B to generate a first decrypted result; and

 decrypting the first decrypted result using at least the first password P_B and the

second public key M_A encrypted with the second password P_A includes receiving the second random number N_A superencrypted with the second password P_A and at least one of the second password P_A , the second public key M_A , a parameter α_A , and a parameter β_B .

26. (currently amended) The method of claim 24 wherein <u>said</u> generating the first session key K_B includes:

presenting a numeric parameter BB,

generating a first random number R_B, and

computing setting the first session key K_B equal to from the first second public key M_A raised to the exponential power of the first random number R_B , modulo a parameter B_B .

- 27. (currently amended) The method of claim 24 wherein said decrypting includes:

 generating the a first secret S_B includes employing using a combining function

 function, f_B on at least the first password P_B and the second public key M_A.
- 28. (currently amended) The method of claim 27 wherein the first secret S_B is generated employing the combining function, f_B , includes

generating a first public key M_B, and

employing using the combining f_B function, f_B , on a the first password P_B and on at least one of the second public key M_A and the first public key M_B .

- 29. (currently amended) The method of claim 28 wherein said generating the first secret

 SB employing the combining function, fB, on a first password PB and on at least one
 of the second public key MA and the first public key MB includes:
 combining the second public key MA and the first public key MB with the first
 password PB to produce a first result, and
 hashing the first result with a secure hash.
- 30. (original) The method of claim 29 wherein the secure hash is a one-way hash function.
- 31. (original) The method of claim 30 wherein the one-way hash function is one of the Secure Hash Algorithm, the Message Digest 5, Snefru, Nippon Telephone and Telegraph Hash, and the Gosudarstvennyl Standard.
- 32. (currently amended) The method of claim 27 wherein employing the combining function, f_B , includes employing a plurality of combining functions to produce said generating the first secret S_B , wherein each of the plurality of combining function produces a prior result, wherein employing a first combining function includes includes:

generating a first public key M_B, and

employing the first combining function on a the first password P_B and on at least one of the second public key M_A and the first public key M_B to generate a first combined result, and

employing each subsequent combining functions includes

- employing a combining the first combined result function on a prior result and on at least one of the second public key M_A, the first password P_B, and the first public key M_B to generate a second combined result, wherein the prior result produced by the last combining function is the first secret S_B.
- 33. (currently amended) The method of claim 24, wherein <u>said</u> encrypting the modified second random number N_{AB}+1-includes superencrypting the modified second random number-N_{AB}+1.
- 34. (currently amended) The method of claim 24, further including:

 generating a first random number N_B wherein; and

 wherein said encrypting the modified second random number N_{AB}+1 includes

 includes:

encrypting as a first data signal a combination of the first random number N_B and the modified second random number. $N_{A_B}+1$, and wherein

receiving at the first computer an encrypted data package includes receiving a second data signal encrypted to at least one of a second session key K_A and a second secret S_A, the second data signal including a second initialization vector I_A and a modified first random nonce N_B+1;

retrieving the modified first random nonce N_B+1 from the encrypted data package; and

if the retrieved modification of the first random nonce N_B+1 less was correctly performed then

sending from the first entity a request to open a two way communication channel.

- 35. (currently amended) The method of claim 34 which-includes further includes:

 receiving at the first entity a response to the encrypted random package;

 decrypting the response to obtain a combination of a string of random bits and a

 modified first random nonce; and
 - retrieving the modified first random nonce from the combination of the string of random bits and the modified first random nonce;
 - determining whether the retrieved-modified first random nonce modification-was correctly-performed modified from the first random number N_B .
- 36. (currently amended) The method of claim 35 wherein <u>said</u> determining whether the <u>retrieved modification modified first random nonce</u> was correctly <u>modified performed includes-includes:</u>
 - checking whether the retrieved modification of the modified first random nonce N_B+1 equals a modification of the first random nonce as applied to the first random nonce N_B+1 by the first entity.
- 37. (currently amended) The method of claim 35 wherein <u>said</u> determining whether the <u>received modification modified first random nonce</u> was correctly <u>modified performed</u> <u>includes includes:</u>
 - checking whether the received modification of the modified first random nonce N_B+1 less a modification thereof as applied thereto by the first entity equals the first random nonce N_B+1 .
- 38. (currently amended) A computer readable storage medium containing executable computer program instructions which, when executed, cause a first computer system

to perform a cryptographic method including:

- receiving at the first computer system a second public key M_A and an encrypted second random number N_A encrypted with a second password P_A ;
- generating at least one of a first session key K_B and a first secret S_B -based on the second public key M_A ;
- decrypting, using at least employing a first password P_B and the second public key M_A , to retrieve the second random number N_A from the encrypted second random number N_A encrypted with the second password P_A ;
- modifying the second random number N_A to obtain a modified second random number N_A+1 ;
- encrypting the modified second random number N_A+1-with using at least one of the

 first session key K_B and the first secret S_B-the first password P_B and a first

 public key M_B to obtain an encrypted random package;
- transmitting the encrypted random package from the first computer system for authentication; and
- in response to transmitting the encrypted random package, at least one of
 - (i) receiving at the first computer system a request to open a communication link, and
 - (ii) receiving at the first computer system an encrypted data package.
- 39. (currently amended) A distributed readable storage medium containing executable computer program instructions which, when executed, cause a first computer system and a second computer system to perform a cryptographic method through a network, the method including:

- receiving, from the second computer system and at the first computer system, a second public key M_A and a and an encrypted second random number N_A encrypted with a second password P_A ;
- generating at least one of a first session key K_B and a first secret S_B -based on the second public key M_A ;
- decrypting, using at least employing a first password P_B and the second public key $\underline{M_A}$, to retrieve the a second random number N_A from the encrypted second random number N_A encrypted with the second password P_A ;
- modifying the second random number N_A to obtain a modified second random number N_A+1 ;
- encrypting the modified second random number N_A+1 with using at least one of the

 first session key K_B and the first secret S_B the first password P_B and a first

 public key M_B to obtain an encrypted random package;
- transmitting the encrypted random package from the first computer system to the second computer system; and
- in response to transmitting the encrypted random package, at least one of

 (i) receiving at the first computer system a request to open a communication

 link, and
 - (ii) receiving at the first computer system an encrypted data package.
- 40. (currently amended) A computer system for performing a cryptographic method through a network, the computer system comprising:
 - a processor;
 - a network interface coupled to the network and coupled to the processor, the network interface receiving a page to receive a request including information on at

least one of a user identification and a user password; and

- a file-storage device coupled to the processor, the file-storage device to store storing copies of at least one of a user identification and a user password associated with the user identification under control of a file management system, and wherein the processor performs is to perform a method, including receiving at the processor a second public key M_A and a and an encrypted
 - second random number-N_A-enerypted with a second password P_A

 through the network interface;
 - generating at least one of a first session key K_B and a first secret S_B -based on the second public key M_A ;
 - decrypting, using at least employing a first password P_B and the second public key M_A , to retrieve the second random number N_A from the encrypted second random number N_A encrypted with the second password P_A ;
 - modifying the second random number N_A to obtain a modified second random number N_A+1 ;
 - encrypting the modified second random number N_A+1 with using at least one of the first session key K_B and the first secret S_B the first password P_B and a first public key M_B , to obtain an encrypted random package;
 - transmitting the encrypted random package from the processor through the network interface; and
 - in response to transmitting the encrypted random package, at least one of

 (i) receiving at the processor a request to open a communication link,

 and
 - (ii) receiving at the processor an encrypted data package.

41. (currently amended) The computer system of claim 40 wherein the network may be is a network operating according to a hypertext transfer protocol; and the first public key M_B is transmitted for session key exchange before the encrypted second random number is received.