Uvod v računalništvo (UvR) Računski modeli

Danijel Skočaj Univerza v Ljubljani Fakulteta za računalništvo in informatiko

Literatura: Invitation to Computer Science, poglavje 12

v1.0 Št. leto 2013/14

Cilji predavanja

- Razumeti namen konstruiranja modelov
- Opisati komponente Turingovega stroja
- Razumeti zakaj je Turingov stroj dober model računskega agenta
- Razumeti relacijo med algoritmom in programom Turingovega stroja
- Simulirati delovanje Turingovega stroja
- Napisati preproste Turingove stroje, ki rešujejo enostavne probleme
- Opisati pomen Church-Turingove teze
- Razumeti kaj pomeni nerešljiv problem

Uvod

- Obstajajo problemi za katere ne obstaja algoritmična rešitev
 - Lahko dokažemo, da ne more obstajati algoritem, ki bi lahko rešil dan problem
- Model računskega agenta
 - ohranimo samo najbolj pomembne lastnosti oz. operacije
 - "idealni" računski agent
- Model
 - zajame pomembne lastnosti pravega agenta (oz. fenomena)
 - je običajno podan v različnem (manjšem) merilu
 - opusti nekatere (nepomembne) podrobnosti
 - nima vseh funkcionalnosti
- Napovedovanje z modeli
 - z opazovanjem obnašanja modela napovemo obnašanje
 - varneje, bolj poceni, lažje
 - omogoča tesiranje ne da bi zgradili pravega agenta (fenomena)

Model računskega agenta

- Model računskega agenta mora
 - brati vhodne podatke
 - shranjevati in brati podatke iz pomnilnika
 - izvajati ukaze v odvisnosti od trenutnega vhoda in trenutnega stanja
 - proizvesti rezultat
- Turingov stroj

Turingov stroj

- Lastnosti Turingovega stroja:
- Ima trak, neskončen v obeh smereh
 - vsako polje na traku hrani en simbol
 - abeceda: končna množica simbolov, ki se berejo in zapisujejo na trak
 - na traku so zapisani vhodni podatki
 - trak služi kot pomnilnik
- Vedno je v enem od končno mnogo stanj (1 do k)
- Ukazi za Turingov stroj
 - v odvisnosti od trenutnega stanja in vhoda
 - zapiši nov simbol, spremeni stanje, ter se premakni za eno polje levo ali desno

Turingov stroj

- Izvajanje ukazov:
 - if (v stanju i) and (prebere simbol j) then
 - zapiši simbol k na trak (v trenutno polje)
 - spremeni stanje v stanje s (ki lahko ostane enako)
 - premakni se v smer d (za eno polje)
 - pravilo: (*i*, *j*, *k*, *s*, *d*)
- Primer
 - pravilo: (1, 0, 1, 2, right)
 - if (stanje=1) and (vhod=0) then
 - zapiši 1
 - pojdi v stanje 2
 - premakni se desno

Primer

(1, 0, 1, 2, right)

Turingov stroj kot računski model

- Množica pravil: program Turingovega stroja
- Prvo stanje je vedno 1
- Stroj vedno začne brati najbolj levo neprazno polje
- Ne smeta obstajati dve pravili z istim stanjem in vhodnim simbolom
 - Se izogiba dvoumnostim
- Če ne obstaja nobeno pravilo za trenutno stanje in vhodni simbol, se stroj ustavi
- Turingov stroj je torej primeren model računskega agenta:
 - bere vhodne podatke s traku
 - trak uporablja kot pomnilnik s katerega bere in na katerega zapisuje podatke
 - izvaja akcije v odvisnosti od trenutnega stanja in vhoda
 - proizvede rezultat in ga zapiše na trak

Turingov stroj kot model algoritma

- Model algoritma mora biti:
 - ... popolnoma urejeno zaporedje ...
 - ... nedvoumnih in učinkovito izračunljivih operacij ...
 - ... proizvede rezultat ...
 - ... se ustavi v končnem času.
- Je Turingov stroj primeren model algoritma?

Turingov stroj kot model algoritma

- ... popolnoma urejeno zaporedje ...
 - začetno stanje in začetna pozicija traku sta definirani
 - največ eno pravilo se lahko hkrati sproži
 - definirano je kaj se zgodi, če ni nobenega ustreznega pravila
 - ⇒ Turingov stroj ve kje začeti in kaj kdaj storiti
- ... nedvoumnih in učinkovito izračunljivih operacij ...
 - ukazi Turingovega stroja popolnoma specificirajo kaj naj stroj naredi
 - ukazi ne morejo biti dvoumni
- ... se ustavi v končnem času.
 - Turingov stroj gre lahko v mrtvo zanko (kot slabi algoritmi)
 - lahko zagotovimo, da se ustavi pri pravilnem reševanju pravega problema
- ... proizvede rezultat ...
 - izhod je zapisan na traku, ko se Turingov stroj ustavi
- ⇒ Turingov stroj je torej dober model algoritma!

Primeri

- Primeri za demonstracijo delovanja Turingovega stroja:
 - Invertiranje bitov
 - Paritetni bit
 - Eniški inkrement
 - Eniško seštevanje
- Diagram stanj: vizualna prestavitev algoritma Turingovega stroja (pravil)

Primer: Invertiranje bitov

- Naloga: v zaporedju bitov spremeni vsak 1 v 0 in vsak 0 v 1
- Rešitev:
 - invertiraj posamezen bit na traku in se prestavi desno
 - vstavi se, ko naletiš na b
- Pravila:

 b	1	0	0	1	b	
 b	0	0	0	1	b	
 b	0	1	0	1	b	
 b	0	1	1	1	b	
 b	0	1	1	0	b	

Primer: Paritetni bit

Naloga:

- na koncu niza 0 in 1 postavi paritetni bit
- število vseh 1 mora biti liho

Rešitev:

- Stanje 1 predstavlja sodo pariteto do danega trenutka
- Stanje 2 predstavlja liho pariteto do danega trenutka
- Vhodni simbol 0 ne spremeni stanja
- Vhodni simbol spremeni stanje 0 v 1 ter 1 v 0
- Ko stroj naleti na vhodni simbol b, naj zapiše partitetni bit in gre v stanje 3 za katerega ni nobenega pravila => se bo zaustavil

Primer: Paritetni bit

Pravila:

 b	1 (1)	0	0	1	b	b	
 b	1	0 (2)	0	1	b	р	
 b	1	0	0 (2)	1	b	р	
 b	1	0	0	1 (2)	b	b	
 b	1	0	0	1	b (1)	b	
 b	1	0	0	1	1	b (3)	

Primer: Eniški inkrement

- Naloga: povečaj število predstavljeno v eniškem sistemu za ena
- Rešitev: pomakni se do konca na desno in dodaj 1
- Pravila:

 b	1 (1)	1	1	1	b	b	
 b	1	1 (1)	1	1	b	b	
 b	1	1	1 (1)	1	b	b	
 b	1	1	1	1 (1)	b	b	
 b	1	1	1	1	b (1)	b	
 b	1	1	1	1	1	b (2)	

Primer: Eniški inkrement

Boljša rešitev: dodaj 1 na levi strani

Pravila:

 b	b	1 (1)	1	1	1	b	
 b	b (1)	1	1	1	1	b	
 b (2)	1	1	1	1	1	b	

Računska kompleksnost Θ(1) namesto Θ(n)

The Number to Be Incremented, n	Number of St	eps Required	
	Algorithm 1	Algorithm 2	
10	12	2	
100	102	2	
1,000	1,002	2	
10,000	10,002	2	

Primer: Eniško seštevanje

- Naloga: seštej dve eniški števili, ki sta na traku razmejeni z b
- Rešitev: zbriši dve 1 na levi strani ter zamenjaj vmesni b z 1

Pravila:

Church-Turingova teza

"Če obstaja algoritem, ki reši neko nalogo (z manipulacijo s simboličnimi podatki), potem obstaja tudi Turingov stroj, ki reši isto nalogo."

- Teza ni dokazana, najbrž niti ni dokazljiva, skoraj gotovo pa drži
 - nihče še ni nikoli na nobenem problemu dokazal nasprotno
 - za vse druge računske modele so pokazali, da so ekvivalentni Turingovemu stroju

Nerešljivi problemi

- Turingov stroj definira meje izračunljivosti
- Če problem ne more biti rešen s Turingovim strojem, ne more biti rešen niti z algoritmom
 - je neizračunljiv oz. nerešljiv
- Obstajajo neizračunljivi problemi!
- Dokaz: Problem zaustavitve
 - Ali obstaja Turingov stroj, ki na vhodu prejme program Turingovega stroja ter zanj ugotovi ali se bo ustavil ali ne?
 - Dokaz s protislovjem => takšen Turingov stroj ne obstaja => ta problem je nerešljiv => ne obstaja niti algoritem, s katerim bi ga lahko rešili!

Povzetek

- Modeli nam omogočajo predvidevati obnašanje in testirati
- Turingov stroj je model računskega agenta
- Programi Turingovega stroja so množice pravil za delovanje
- Programi Turingovega stroja modelirajo algoritme
- Primeri Turingovega stroja:
 - Invertiranje bitov
 - Paritetni bit
 - Eniški inkrement
 - Eniško seštevanje
- Church-Turingova teza trdi, da se lahko vsak algoritem izvede s Turingovim strojem
- Nekateri problemi nimajo algoritmične rešitve
- Problem zaustavitve je nerešljiv problem
 - za ta problem ne obstaja Turingov stroj, ki bi ga rešil