Singular Value Decomposition

datascience@berkeley

$$A = \begin{bmatrix} 0.5 & 1.5 \\ 2 & 3 \end{bmatrix} = \begin{bmatrix} \lambda_1 \\ \lambda_2 \end{bmatrix}$$

A =
$$U \leq V^T$$

A = $U \leq V^T$

A =

A

datascience@berkeley

A

$$V^T$$

Singular Value Decomposition

100 200 300 400 500

SVD Compression

100 200 300 400 500

100 200 300 400 500

PCA

Berkeley school of information