Stock Portfolio Optimization

An Algorithmic Improvement in Python's View

GU Shuting, HE Anshan, HE Meiyi, QIU Jiayu, WEN Weiyang

> Center for Data Science New York University

March 12 2019

Background: Stock Portfolio

- Stock portfolio investment is the art and science of making decisions about investing mix of stocks.
- Allocate portfolio investment across stocks

Stock Name	Weights	Return	Variance
Google	50%	3%	0.01
Apple	30%	2%	0.02
Facebook	20%	1%	0.03

- Mean Return = $50\% \times 3\% + 30\% \times 2\% + 20\% \times 1\% = 2.3\%$
- Risk = $50\% \times 0.01 + 30\% \times 0.02 + 20\% \times 0.03 = 0.017$
- Our goal: Choose weights to minimize the risk of a portfolio given an objective return.

Mean-variance portfolio selection

Equivalent formula:

$$\min_{\alpha} \frac{1}{2} \alpha' V \alpha$$

s.t. $\hat{\mu}' \alpha = \hat{r}$

where

 $\alpha \in \mathbb{R}^n$ is a weight vector $V \in \mathbb{R}^{n \times n}$ is a covariance matrix of a portfolio $\hat{\mu} \in \mathbb{R}^n$ is a mean return vector $\hat{r} \in \mathbb{R}$ is the objective return

Analytical Solution

- Lagrangian function: $\mathcal{L} = \frac{1}{2}\alpha' V \alpha + \nu(\hat{\mu}' \alpha \hat{r})$
- Set graident to 0: $\nabla_{\alpha}\mathcal{L} = V\alpha + \nu\hat{\mu} = 0 \Rightarrow \alpha = -\nu V^{-1}\hat{\mu}$
- Substitute into constraint: $\hat{r} = \hat{\mu}' \alpha = -\nu \hat{\mu}' V^{-1} \hat{\mu} \Rightarrow \nu = -\frac{\hat{r}}{\hat{\mu}' V^{-1} \hat{\mu}}$
- Thus, $\alpha^* = \hat{r} \cdot \frac{V^{-1}\hat{\mu}}{\hat{\mu}'V^{-1}\hat{\mu}} = \hat{r}\gamma^*$

Potential Problems

However, it is not ideal in real market situations.

- The constraints are too basic for actual transactions.
 e.g. No short-sells constraints, Diversitification constraints
- There are tens of thousands stocks in the world, not to mention other forms of assets.
-

General Optimizer

As a typical constrained quadratic optimization problem, we can also apply built-in functions (e.g. scipy.optimize.minimize.SLSQP()) from SciPy to solve it.

Result

Potential Problems

- As shown in the previous result, the portfolio optimization is slow.
- The result may not converge.

Project Plan

- Optimization in SciPy remains in the quadratic camp and many cannot incorporate constrains.
- Karmarka et al. (1950) proposes combining duality theory with Newton method, which can help us to reformulate the problem into a linear one.
- Our plan is to survey the active researches in this area, develop/implement a better optimization algorithm in python.
- Can be further improved by using CUDA, cython, etc.

