Events and Probability

Event

Set of outcomes from an experiment.

Sample Space

Set of all possible outcomes Ω .

Intersection

Outcomes occur in both A and B

$$A \cap B$$
 or AB

Disjoint

No common outcomes, $AB = \emptyset$

$$\Pr(AB) = \Pr(A \mid B) = 0$$

Union

Set of outcomes in either A or B

$$A \cup B$$

Complement

Set of all outcomes not in A, but in Ω

$$A\overline{A} = \emptyset$$
$$A \cup \overline{A} = \Omega$$

Subset

A is a (non-strict) subset of B if all elements in A are also in $B - A \subset B$.

$$AB = A$$
 and $A \cup B = B$
$$\forall A : A \subset \Omega \land \emptyset \subset A$$

$$Pr(A) \le Pr(B)$$

$$Pr(B|A) = 1$$

$$Pr(A|B) = \frac{Pr(A)}{Pr(B)}$$

Identities

$$A(BC) = (AB) C$$

$$A \cup (B \cup C) = (A \cup B) \cup C$$

$$A(B \cup C) = AB \cup AC$$

$$A \cup BC = (A \cup B) (A \cup C)$$

Probability

Measure of the likeliness of an event Probability Density Function occurring

$$Pr(A)$$
 or $P(A)$

$$0 < \Pr\left(A\right) < 1$$

where a probability of 0 never happens, Probability that a random variable is less and 1 always happens.

$$\Pr(\Omega) = 1$$

$$\Pr(\overline{A}) = 1 - \Pr(A)$$

Multiplication Rule

For independent events A and B

$$\Pr\left(AB\right)=\Pr\left(A\right)\Pr\left(B\right).$$

For dependent events A and B

$$Pr(AB) = Pr(A | B) Pr(B)$$

Addition Rule

For independent A and B

$$\Pr(A \cup B) = \Pr(A) + \Pr(B) - \Pr(AB).$$

If $AB = \emptyset$, then Pr(AB) = 0, so that $\Pr(A \cup B) = \Pr(A) + \Pr(B).$

De Morgan's Laws

$$\overline{A \cup B} = \overline{A} \ \overline{B}$$
$$\overline{AB} = \overline{A} \cup \overline{B}.$$

$$\begin{split} \Pr\left(A \cup B\right) &= 1 - \Pr\left(\overline{A} \ \overline{B}\right) \\ \Pr\left(AB\right) &= 1 - \Pr\left(\overline{A} \cup \overline{B}\right) \end{split}$$

Bayes' Theorem

$$\Pr(A \mid B) = \frac{\Pr(B \mid A) \Pr(A)}{\Pr(B)}$$

Random Variables

Measurable variable whose value holds of observations. For a < c < b: some uncertainty. An event is when a random variable assumes a certain value or range of values.

Probability Distribution

The probability distribution of a random variable X is a function that links all outcomes $x \in \Omega$ to the probability that they will occur Pr(X = x).

Probability Mass Function

$$\Pr\left(X=x\right)=p_{x}$$

$\Pr\left(x_1 \le X \le x_2\right) = \int_{-\infty}^{x_2} f\left(x\right) dx$

Cumulative Distribution Function

than or equal to a particular realisation

F(x) is a valid CDF if:

- 1. F is monotonically increasing and continuous
- $2.\ \lim_{x\rightarrow -\infty}F\left(x\right) =0$
- 3. $\lim_{x\to\infty} F(x) = 1$

$$\frac{\mathrm{d}F\left(x\right)}{\mathrm{d}x} = \frac{\mathrm{d}}{\mathrm{d}x} \int_{-\infty}^{x} f\left(u\right) \mathrm{d}u = f\left(x\right)$$

Complementary CDF (Survival Function)

$$\Pr\left(X>x\right)=1-\Pr\left(X\leq x\right)=1-F\left(x\right)$$

p-Quantiles

$$F\left(x\right) = \int_{-\infty}^{x} f\left(u\right) du = p$$

Special Quantiles

Lower quartile
$$q_1$$
: $p = \frac{1}{4}$

Median m : $p = \frac{1}{2}$

Upper quartile q_2 : $p = \frac{3}{4}$

Interquartile range IQR: $q_2 - q_1$

Quantile Function

$$x = F^{-1}\left(p\right) = Q\left(p\right)$$

Expectation (Mean)

Expected value given an infinite number

$$\begin{split} \mathbf{E}\left(X\right) &= \, - \int_{a}^{c} F\left(x\right) \mathrm{d}x \\ &+ \int_{c}^{b} \left(1 - F\left(x\right)\right) \mathrm{d}x + c \end{split}$$

Variance

Measure of spread of the distribution (average squared distance of each value from the mean).

$$\operatorname{Var}(X) = \sigma^{2} = \operatorname{E}(X^{2}) - \operatorname{E}(X)^{2}$$

Standard Deviation

$$\sigma = \sqrt{\operatorname{Var}(X)}$$

Distribution	Restrictions	PMF	CDF	$\mathrm{E}\left(X\right)$	Var(X)
$X \sim \text{Uniform}\left(a, \ b\right)$	$x \in \{a, \dots, b\}$	$\frac{1}{b-a+1}$	$\frac{x-a+1}{b-a+1}$	$\frac{a+b}{2}$	$\frac{\left(b-a+1\right)^2-1}{12}$
$X \sim \operatorname{Bernoulli}\left(p\right)$	$p \in [0,1], x \in \{0,1\}$	$p^{x} (1-p)^{1-x}$	1-p	p	$p\left(1-p\right)$
$X \sim \text{Binomial}(n, p)$	$x \in \{0, \dots, n\}$	$\binom{n}{x}p^x\left(1-p\right)^{n-x}$	$u \equiv 0 u \rightarrow 1$	np	$np\left(1-p\right)$
$N \sim \text{Poisson}(\lambda)$	$n \ge 0$	$\frac{\lambda^n e^{-\lambda}}{n!}$	$e^{-\lambda} \sum_{u=0}^{n} \frac{\lambda^u}{u!}$	λ	λ

Table 1: Discrete probability distributions.

Distribution	Restrictions	PDF	CDF	$\mathrm{E}\left(X\right)$	$\mathrm{Var}\left(X ight)$
$X \sim \text{Uniform}(a, b)$ $T \sim \text{Exp}(\eta)$	a < x < b $t > 0$	$\eta e^{\frac{1}{b-a}}$	$1 - e^{\frac{x-a}{b-a}}$	$rac{a+b}{2} \ 1/\eta$	$rac{\left(b-a ight)^2}{12} 1/\eta$
$X \sim \mathcal{N}\left(\mu, \ \sigma^2\right)$	$x \in \{0, \dots, n\}$	$\frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$	$\frac{1}{2}\left(1 + \operatorname{erf}\left(\frac{x-\mu}{\sigma\sqrt{2}}\right)\right)$	μ	σ^2

Table 2: Continuous probability distributions.

	Discrete	Continuous
Valid probabilities	$0 \leq p_x \leq 1$	$f(x) \ge 0$
Cumulative probability	$\sum_{u \leq x} p_u$	$\int_{-\infty}^{x} f(u) du$ $\int_{\Omega} x f(x) dx$ $\int_{\Omega} g(x) f(x) dx$
$\mathrm{E}\left(X ight)$	$\sum_{\Omega}^{n \leq x} x p_x$	$\int_{\Omega} x f(x) dx$
$\mathrm{E}\left(g\left(X\right)\right)$	$\sum_{\Omega}g\left(x\right) p_{x}$	$\int_{\Omega} g(x) f(x) dx$
$\mathrm{Var}\left(X ight)$	$\sum_{\Omega} (x - \mu)^2 p_x$	$\int_{\Omega} (x - \mu)^2 f(x) \mathrm{d}x$

Table 3: Probability rules for univariate X.