

Contribución de la dieta

La dieta es uno de los factores más importantes que influyen en la composición y abundancia de la microbiota intestinal.

Dieta de Ursus americanus

Omnívoros

- Raíces
- Bayas
- Pescado
- Carne
- Insectos
- Larvas
- Plantas

Método

1MGnify

Descargamos las secuencias de datos de MGnify y las cargamos en R

merge_phyloseq

Se unieron los dos objetos phyloseg

2 Limpiar

Eliminación de aquellas samples que tuvieran NA en Family y Genus

tax_glom

Diferente otu > Este método fusiona especies que tienen la misma taxonomía.

Phyloseq

oso_familia

oso_genero

```
> oso_limpio_G_1
> oso_limpio_F_1
                                                                       phyloseg-class experiment-level object
phyloseq-class experiment-level object
                                                                       otu_table()
                                                                                     OTU Table:
                                                                                                          544 taxa and 85 samples ]
otu_table()
             OTU Table:
                                [ 719 taxa and 85 samples ]
                                                                       sample_data() Sample Data:
sample_data() Sample Data:
                                [ 85 samples by 63 sample variables ]
                                                                                                          85 samples by 64 sample variables ]
                                [ 719 taxa by 7 taxonomic ranks ]
                                                                                                          544 taxa by 7 taxonomic ranks ]
tax_table() Taxonomy Table:
                                                                       tax_table()
                                                                                     Taxonomy Table:
```

pez_familia

pez_genero

```
pez_limpio_F_1
                                                                         > pez_limpio_G_1
phyloseq-class experiment-level object
                                                                         phyloseg-class experiment-level object
otu_table()
              OTU Table:
                                 [ 1133 taxa and 261 samples ]
                                                                         otu_table() OTU Table:
                                                                                                           [ 915 taxa and 261 samples ]
sample_data() Sample Data:
                                 [ 261 samples by 63 sample variables ]
                                                                                                           [ 261 samples by 63 sample variables ]
                                                                         sample_data() Sample Data:
                                 [ 1133 taxa by 7 taxonomic ranks ]
tax_table()
              Taxonomy Table:
                                                                                       Taxonomy Table:
                                                                                                           [ 915 taxa by 7 taxonomic ranks ]
                                                                         tax_table()
```


Curvas de rarefacción

Curvas de rarefacción

ÍNDICE DE SIMPSON OSOS: FAMILIA

ÍNDICE DE SIMPSON PEZ: FAMILIA

ÍNDICE DE SIMPSON OSOS: GÉNERO

ÍNDICE DE SIMPSON PEZ: GÉNERO

Diagrama de Venn: FAMILIA

Diagrama Venn: GÉNERO

GRÁFICAS DE ABUNDANCIA RELATIVA

OSO: FAMILIA

¿Qué familias comparten?

Bacteroidaceae

Medioambientales.
Encontradas en el tracto
intestinal y en las membranas
mucosas de animales de
sangre caliente.

Helicobacteraceae

Se encuentran en la vía digestiva de los mamíferos.

Lashnospiraceae

Presentes en boca, garganta y tracto digestivo; ayudan a digerir la fibra. De las bacterias más abundantes en tracto digestivo de herbívoros.

Enterococcaceae

Encontrado en baja abundancia en microbiota intestinal.

Pseudomonadaceae

Bacterias Gram negativas que usualmente se encuentran en el suelo o en el agua.

Peptostreptococcaceae

Habitantes bien conocidos del tracto digestivo.

OSO: GÉNERO

PEZ: GÉNERO

¿Qué géneros comparten?

Pseudomonas

Bacterias de vida libre ampliamente distribuidas en el suelo, el agua, los ambientes marinos y en la piel de los animales

Acinetobacter

Ampliamente diseminadas en la naturaleza (agua y suelo). Patógeno para peces.

Las huellas intestinales de mamíferos, aves, peces e insectos, se pueden recuperar de material vegetal y animal en descomposición

Rubricoccaceae

Saprospiraceae

Schleiferiaceae

Simkaniaceae

Saccharospirillaceae

Sphingomonadaceae

Thermoactinomycetaceae

Streptomycetaceae

Thioprofundaceae

Thiotrichaceae

Trueperaceae

Veillonellaceae

Verrucomicrobiaceae

Xanthobacteraceae

Xanthomonadaceae

Familia oso

Familia peces

Genero osos

Genero peces

Conclusiones

- No es su principal alimento
- No se sabe si es por el consumo de peces

FODA

Análisis de microbiota nuevo.

Debilidades

No se sabe con exactitud si las especies compartidas es debido a que comen pescado.

Oportunidades

Ver si el mismo caso se repite con otros osos para hacer un análisis de microbioma y ver qué tan relevantes son las especies encontradas.

Amenazas

Bases pesadas; los datos (variables) son diferentes en las bases de datos dependiendo de dónde se saquen.

Final de Genómica:(

¡Gracias!

CREDITS: This presentation template was created by **Slidesgo**, including icon by **Flaticon**, and infographics & images from **Freepik**

Please keep this slide for attribution

Referencias

- Centro Latinoamericano y del Caribe de Información en Ciencias de la Salud. (2009). Bacteroidaceae.
 Consultado en: https://decs.bvsalud.org/es/ths/resource/?id=1461
- Centro Latinoamericano y del Caribe de Información en Ciencias de la Salud. (2009). Bacteroidaceae.
 Consultado en: https://decs.bvsalud.org/es/ths/resource/?id=11986
- Centro Latinoamericano y del Caribe de Información en Ciencias de la Salud. (2009). Bacteroidaceae.
 Consultado en: https://decs.bvsalud.org/es/ths/resource/?id=56924
- Lory, S. (2014). The Family Enterococcaceae. In: Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F. (eds) The Prokaryotes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30120-9_346
- Salazar de Vegasa¹, Elsa Zuleima, & Nieves², Beatríz. (2005). Acinetobacter spp: Aspectos microbiológicos, clínicos y epidemiológicos. Revista de la Sociedad Venezolana de Microbiología, 25(2), 64-71. Recuperado en 21 de junio de 2023, de http://ve.scielo.org/scielo.php?script=sci_arttext&pid=S1315-25562005000200003&Ing=es&tIng=e s.
- Segata, N., Haake, S. K., Mannon, P., Lemon, K. P., Waldron, L., Gevers, D., Huttenhower, C., & Izard, J. (2012). Composition of the adult digestive tract bacterial microbiome based on seven mouth surfaces, tonsils, throat and stool samples. Genome biology, 13(6), R42. https://doi.org/10.1186/gb-2012-13-6-r42