Fall 2016 CIS 515

Fundamentals of Linear Algebra and Optimization Jean Gallier

Homework 3

October 25, 2016 Francine Leech, Reffat Manzur, Chen Xiang

Problem B1 (20 pts).

Let us prove this first for two subspaces. $E = U_1 \oplus U_2$ if and only if

(1)
$$E = U_1 + U_2$$

and

(2) $U_1 \cap U_2 = 0$

.

For (1), every vector $e \in E$ can be uniquely written as $e = u_{11} + u_{21}$ with $u_{11} \in U_1$ and $u_{21} \in U_2$.

For (2), let $e \in U_1 \cap U_2$. Since $e \in U_1$ and $e \in U_2$, then we can write,

- (1) e = e + 0 where $e \in U_1$ and $0 \in U_2$ and
- (2) e = 0 + 0 where $0 \in U_1$ and $e \in U_2$.

But $e = u_{11} + u_{21}$ is unique, so e = 0. Since $E = U_1 + U_P$, we will check uniqueness. Suppose $e = u_{11} + u_{21}$ and $e = u_{12} + u_{22}$ where $u_{11}, u_{12} \in U_1$ and $u_{21}, u_{22} \in U_2$. Then $u_{11} + u_{21} = u_{12} + u_{22}$, so $u_{11} - u_{12} = u_{22} - u_{21}$. Let x be a vector such that $x = u_{11} - u_{12} = u_{22} - u_{21}$. Then $x \in U_1$ and $x \in U_2$, and $u_{11} = u_{12}$ and $u_{22} = u_{21}$, so $x \in U_1 \cap U_2 = (0)$.

Now by induction we can extend our logic for any number of $p \geq 2$ subspaces of some vector space E.

Problem B2 (50 pts).

(1)

By definition an involution is a function f that is its own inverse.

 $f: E \to E$ is in an involution when $\forall x \in E: f(f(x)) = x$. Since $f^{-1} = f$, we just have to check that f(f(x)) = x for all x in the domain of f.

Let us find the inverse of f(x) = b - x where b is any real number. Let,

$$f(x) = a - x$$

$$y = a - x$$

$$f^{-1} = a - y$$

$$x = a - y$$

$$y = a - x$$

so $f(x) = f^{-1}(x)$. So it's an inverse of itself.

(2)

Let $u_1 = \frac{u + f(u)}{2}$ and $u_{-1} = \frac{u - f(u)}{2}$.

Next, we can find that we have something in both the spaces. $f(u_1) = f(\frac{u+f(u)}{2}) = \frac{f(u)+f(f(u))}{2} = \frac{f(u)+u}{2} = u_1$ $f(u_{-1}) = f(\frac{u-f(u)}{2}) = \frac{f(u)-f(f(u))}{2} = \frac{f(u)-u}{2} = u_{-1}$.

Next we need to look at uniqueness. Let $v_1 \in E_1$ and $\in E_{-1}$.

$$f(v_1) = v_1$$

$$f(v_1) = -v_1$$

 $v_1 = -v_1$ can only have this if $v_1 = -v_1 = 0$.

(3) Let the basis of E be $(\xi_i), i = 1, 2, \dots, n$, where $\xi_i = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1_i \\ 0 \\ \vdots \\ 0 \end{pmatrix}$. Define

 $f(\xi_i) = \begin{cases} \xi_i \ i = 1, 2, \cdots, k \\ -\xi_i \ i = k+1, k+2, \cdots, n \end{cases}$. Then $\forall u \in E$, we can write as $u = \sum_i \lambda_i \xi_i$ and

$$f(u) = \begin{pmatrix} \xi_1 \\ \xi_2 \\ \vdots \\ \xi_k \\ -\xi_{k+1} \\ -\xi_{k+2} \\ \vdots \\ -\xi_n \end{pmatrix} = I_{k,n-k} \cdot u. \text{ And } (f \circ f)(u) = I_{k,n-k} I_{k,n-k} I_{k,n-k} u = Iu = u. \text{ Thus } f \text{ is an } involution$$

Geometric interpretation of the action of f is that f(u) is the reflection of u across some axises. When k = n - 1, we can easily find that f(u) differs from u only in the last entry $f(u)_i = -u_i$, so it is the reflection across the n^{th} axis.

Problem B3 (50 pts).

(1)

(2)
$$\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \cdot \begin{pmatrix} \cos(-\theta) & -\sin(-\theta) \\ \sin(-\theta) & \cos(-\theta) \end{pmatrix}$$

$$= \begin{pmatrix} \cos(1) & -\sin(1) \\ \sin(1) & \cos(1) \end{pmatrix} \cdot \begin{pmatrix} \cos(-1) & -\sin(-1) \\ \sin(-1) & \cos(-1) \end{pmatrix}$$

$$= \begin{pmatrix} (\cos \theta \cdot \cos(-\theta)) \cdot (-\sin \theta \sin(-\theta)) & -\cos(\theta)0 \\ \sin(\theta)\cos(-\theta) + \cos \theta \sin(-\theta) & 1\cos(1) \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

(3) Because $\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta, \sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta,$

we have

$$R_{\alpha} \circ R_{\beta} = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \cdot \begin{pmatrix} \cos \beta & -\sin \beta \\ \sin \beta & \cos \beta \end{pmatrix}$$
$$= R_{\beta} \circ R_{\alpha} = R_{\alpha+\beta}$$

We can get

$$1.(R_{\alpha} \circ R_{\beta}) \circ R_{\gamma} = R_{\alpha+\beta+\gamma} = R_{\alpha} \circ (R_{\beta} \circ R_{\gamma})$$

$$2.R_{\alpha} \circ I = I \circ R_{\alpha} = R_{\alpha}$$

$$3.R_{\alpha} \circ R_{-\alpha} = I$$

$$4.R_{\alpha} \circ R_{\beta} = R_{\alpha+\beta} = R_{\beta} \circ R_{\alpha}$$

So rotations in the plane form a commutative group.

Problem B4 (110 pts).

(1) We can write
$$\begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = R_{\theta,(a_1,a_2)} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix}$$
 as:

$$\begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} + \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$$

Then,

$$c_1 = \cos\theta c_1 - \sin\theta c_2 + a_1 \tag{1}$$

$$c_2 = \sin\theta c_1 + \cos\theta c_2 + a_2 \tag{2}$$

Using the result for (c_1, c_2) as given in the problem and by substituting, we will check if the equations are true for when $\theta \neq k2\pi$.

For c_1 , we are given that

$$c_1 = \frac{1}{2\sin\frac{\theta}{2}}(\cos(\frac{\pi - \theta}{2})a_1) - \sin(\frac{\pi - \theta}{2})a_2)$$

$$\frac{1}{2} \frac{\cos(\frac{\pi-\theta}{2})}{\sin\frac{\theta}{2}}$$
 simplifies to $\frac{1}{2}$.

$$\frac{-1}{2} \frac{\sin(\frac{2\pi-\theta}{2})}{\sin \frac{\theta}{2}}$$
 simplifies to $\frac{1}{2} \cot \frac{\theta}{2}$.

$$c_1 = \frac{1}{2}(a_1 - \cot\frac{\theta}{2}a_2)$$

Similarly, for c_2 , it becomes

$$c_2 = \frac{1}{2}cot\frac{\theta}{2}a_1 + \frac{1}{2}a_2$$

Now by substitution into equation (1), we get:

$$\frac{1}{2}(a_1 - \cot\frac{\theta}{2}a_2)$$

$$= \cos\theta(\frac{1}{2}(a_1 - \cot\frac{\theta}{2}a_2)) - \sin\theta(\frac{1}{2}\cot\frac{\theta}{2}a_1 + \frac{1}{2}a_2) + a_1$$

$$= (\frac{\cos\theta}{2} - \frac{\sin\theta}{2}\cot\frac{\theta}{2} + 1)a_1 - \frac{1}{2}(\cos\theta\cot\frac{\theta}{2} + \sin\theta)a_2$$

Then, $\cos\theta - \sin\theta \cot\frac{\theta}{2} = -1$ and $\cos\theta \cot\frac{\theta}{2} + \sin\theta = \cot\frac{\theta}{2}$ so equation (1) on the right hand side simplifies to $c_1 = \frac{1}{2}(a_1 - \cot\frac{\theta}{2}a_2)$ and matches the left hand side of equation (1).

For equation (2), we get:

$$\frac{1}{2}\cot\frac{\theta}{2}a_1 + \frac{1}{2}a_2$$

$$= \sin\theta \frac{1}{2}(a_1 - \cot\frac{\theta}{2}a_2) + \cos\theta(\frac{1}{2}\cot\frac{\theta}{2}a_1 + \frac{1}{2}a_2) + a_2$$

$$= (\frac{\sin\theta}{2} + (\frac{1}{2}\cos\theta\cot\frac{\theta}{2}))a_1 + ((\frac{-1}{2}\sin\theta\cot\frac{\theta}{2} + \frac{\cos\theta}{2} + 1)a_2$$

Thus, the right hand side of equation (2) simplifies and $c_2 = \frac{1}{2}cot\frac{\theta}{2}a_1 + \frac{1}{2}a_2$. It is then clear that the unique fixed point is (c_1, c_2) where $\theta \neq k2\pi$ because $\cot\frac{\theta}{2}$ is undefined for where θ is a multiple of 2π .

(2)

$$\begin{pmatrix} y_1' + c_1 \\ y_2' + c_2 \end{pmatrix} = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} x_1' + c_1 \\ x_2' + c_2 \end{pmatrix} + \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$$

$$y_1' + \frac{1}{2}(a_1 - \cot\frac{\theta}{2}a_2) = \cos\theta x_1' + \cos\theta(\frac{1}{2}(a_1 - \cot\frac{\theta}{2}a_2)) - \sin\theta x_2' - \sin\theta(\frac{1}{2}(\cot\frac{\theta}{2}a_1 + a_2)) + a_1(\frac{\theta}{2}a_1 + a_2) + a_2(\frac{\theta}{2}a_1 + a_2) + a_2(\frac{\theta}{2}a_2 + a_2) + a_2(\frac{\theta}{2}a_1 + a_2) + a_2(\frac{\theta}{2}a_2 + a_2) + a_2(\frac{\theta}{2}a_1 + a_2) + a_2(\frac{\theta}{2}a_2 + a_2) + a_$$

$$= \cos\theta x_1' - \sin\theta x_2' + (\frac{\cos\theta}{2} + 1 - (\frac{\sin\theta\cot\frac{\theta}{2}}{2}))a_1 - \frac{1}{2}(\cos\theta\cot\frac{\theta}{2} + \sin\theta)a_2$$

Using $\cos\theta - \sin\theta \cot\frac{\theta}{2} = -1$ and $\cos\theta \cot\frac{\theta}{2} + \sin\theta = \cot\frac{\theta}{2}$, the $\frac{1}{2}(a_1 - \cot\frac{\theta}{2}a_2)$ cancel out from both sides of the equation and then

$$y_1' = cos\theta x_1' - sin\theta x_2'$$

$$y_2' + c_2 = \sin\theta(x_1' + c_1) + \cos\theta(x_2' + c_2) + a_2$$

By substituting $\frac{1}{2} \left(\cot \frac{\theta}{2} a_1 + a_2 \right)$ for c_2 and $\frac{1}{2} \left(-\cot \frac{\theta}{2} a_2 + a_1 \right)$ for c_1 , we get

$$y_2' = sin\theta x_1' + cos\theta x_2'$$

Thus, the original affine map becomes

$$\begin{pmatrix} y_1' \\ y_2' \end{pmatrix} = R_\theta \begin{pmatrix} x_1' \\ x_2' \end{pmatrix}$$

(3) Use Matlab to show the action of the affine map $R_{\theta,(a_1,a_2)}$ on a simple figure such as a triangle or a rectangle, for $\theta = \pi/3$ and various values of (a_1, a_2) . Display the center (c_1, c_2) of the rotation.

What kind of transformations correspond to $\theta = k2\pi$, with $k \in \mathbb{Z}$? The four centers of rotation in the figure are represented by *.

When $\theta = k2\pi$, we have $\cos\theta = 1$ and $\sin\theta = 0$, so $y_1 = x_1 + a_1$ and $y_2 = x_2 + a_2$ and this indicates the transformation is a translation.

(4)

 $R_{\theta,(a_1,a_2)}$

$$\begin{pmatrix} y_1 \\ y_2 \\ 1 \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta & a_1 \\ \sin \theta & \cos \theta & a_2 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ 1 \end{pmatrix}$$

 $R_{-\theta,(b_1,b_2)}$

$$\begin{pmatrix} y_1 \\ y_2 \\ 1 \end{pmatrix} = \begin{pmatrix} \cos(-\theta) & -\sin(-\theta) & b_1 \\ \sin(-\theta) & \cos(-\theta) & b_2 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ 1 \end{pmatrix} = \begin{pmatrix} \cos(\theta) & \sin(\theta) & b_1 \\ -\sin(\theta) & \cos(\theta) & b_2 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ 1 \end{pmatrix}$$

$$R_{\theta,(a_{1},a_{2})} \cdot R_{-\theta,(b_{1},b_{2})} = \begin{pmatrix} \cos \theta & -\sin \theta & a_{1} \\ \sin \theta & \cos \theta & a_{2} \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \cos(\theta) & \sin(\theta) & b_{1} \\ -\sin(\theta) & \cos(\theta) & b_{2} \\ 0 & 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} \cos^{2} \theta + \sin^{2} \theta & \cos \theta \sin \theta - \cos \theta \sin \theta & \cos \theta b_{1} - \sin \theta b_{2} + a_{1} \\ \cos \theta \sin \theta - \cos \theta \sin \theta & \sin^{2} \theta + \cos^{2} \theta & \sin \theta b_{1} + \cos \theta b_{2} + a_{2} \\ 0 & 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

So $\cos \theta b_1 - \sin \theta b_2 + a_1 = 0$ and $\sin \theta b_1 + \cos \theta b_2 + a_2 = 0$.

Solve for
$$b_1$$
,

$$b_1 = \frac{-a_1 + \sin \theta b_2}{a}$$

$$b_1 = \frac{-a_1}{\cos\theta} + \frac{\sin\theta b_2}{\cos\theta}$$

$$b_1 = \frac{-a_1 + \sin \theta b_2}{\cos \theta}$$

$$b_1 = \frac{-a_1}{\cos \theta} + \frac{\sin \theta b_2}{\cos \theta}$$

$$b_1 = -\sec \theta a_1 + \tan \theta b_2$$

$$b_2 = \frac{-a_2 + \sin\theta b_1}{\cos\theta}$$

$$b_2 = \frac{-a_2}{\cos \theta} - \frac{\sin \theta b_1}{\cos \theta}$$

Solve for
$$b_2$$
,

$$b_2 = \frac{-a_2 + \sin \theta b_1}{\cos \theta}$$

$$b_2 = \frac{-a_2}{\cos \theta} - \frac{\sin \theta b_1}{\cos \theta}$$

$$b_2 = \sec \theta a_2 - \tan \theta b_1$$

Now plug in b_2 into b_1 .

$$b_1 = -\sec\theta a_1 + \tan\theta(\sec\theta a_2 - \tan\theta b_1)$$

$$b_1 = \sec \theta a_1 - \tan \theta \sec \theta a_2 - \tan^2 \theta b_1$$

$$(1 - tan^2\theta)b_1 = \sec\theta a_1 - \tan\theta \sec\theta a_2$$

$$b_1 = \frac{-\tan \theta}{\sec \theta} a_2 - \cos \theta a_1$$

$$b_1 = -\sin \theta a_2 - \cos \theta a_1$$

$$b_1 = -\sin\theta a_2 - \cos\theta a_1$$

Now plug b_1 into b_2 we get, $b_2 = \sin \theta a_1 - \cos \theta a_1$.

The final answer for b_1 and b_2 in terms of θ , a_1 , and a_2 is,

$$b_1 = -\sin\theta a_2 - \cos\theta a_1$$

$$b_2 = \sin \theta a_1 - \cos \theta a_1$$

(5)

 $R_{\beta,(b_1,b_2)}$:

$$\begin{pmatrix} y_1 \\ y_2 \\ 1 \end{pmatrix} = \begin{pmatrix} \cos\beta & -\sin\beta & b_1 \\ \sin\beta & \cos\beta & b_2 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ 1 \end{pmatrix}$$

 $R_{\alpha,(a_1,a_2)}$:

$$\begin{pmatrix} y_1 \\ y_2 \\ 1 \end{pmatrix} = \begin{pmatrix} \cos\alpha & -\sin\alpha & a_1 \\ \sin\alpha & \cos\alpha & a_2 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ 1 \end{pmatrix}$$

$$R_{\beta,(b_1,b_2)} \circ R_{\alpha,(a_1,a_2)} \to$$

$$\begin{pmatrix} \cos\beta & -\sin\beta & b_1 \\ \sin\beta & \cos\beta & b_2 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \cos\alpha & -\sin\alpha & a_1 \\ \sin\alpha & \cos\alpha & a_2 \\ 0 & 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} \cos\beta\cos\alpha - \sin\beta\sin\alpha & -\cos\beta\sin\alpha - \sin\beta\cos\alpha & \cos\beta a_1 - \sin\beta a_2 + b_1 \\ \sin\beta\cos\alpha + \cos\beta\sin\alpha & -\sin\beta\sin\alpha + \cos\beta\cos\alpha & \sin\beta a_1 + \cos\beta a_2 + b_2 \\ 0 & 0 & 1 \end{pmatrix}$$

Using the trig identities from part 4, we get:

$$\begin{pmatrix}
cos(\alpha + \beta) & -sin(\alpha + \beta) & t_1 \\
sin(\alpha + \beta) & cos(\alpha + \beta) & t_2 \\
0 & 0 & 1
\end{pmatrix}$$

Indeed, this matrix represents $R_{\alpha+\beta,(t_1,t_2)}$ where $t_1 = \cos\beta a_1 - \sin\beta a_2 + b_1$ and $t_2 = \sin\beta a_1 + \cos\beta a_2 + b_2$.

Furthermore,

$$R_{\beta,(b_1,b_2)} \circ R_{\alpha} \to$$

$$\begin{pmatrix} \cos\beta & -\sin\beta & b_1 \\ \sin\beta & \cos\beta & b_2 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \cos\alpha & -\sin\alpha & 0 \\ \sin\alpha & \cos\alpha & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} \cos(\alpha+\beta) & -\sin(\alpha+\beta) & b_1 \\ \sin(\alpha+\beta) & \cos(\alpha+\beta) & b_2 \\ 0 & 0 & 1 \end{pmatrix}$$

However, $R_{\alpha} \circ R_{\beta,(b_1,b_2)} \rightarrow$

$$\begin{pmatrix} \cos\alpha & -\sin\alpha & 0\\ \sin\alpha & \cos\alpha & 0\\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \cos\beta & -\sin\beta & b_1\\ \sin\beta & \cos\beta & b_2\\ 0 & 0 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} \cos(\alpha+\beta) & -\sin(\alpha+\beta) & \cos\alpha b_1 - \sin\alpha b_2\\ \sin(\alpha+\beta) & \cos(\alpha+\beta) & \sin\alpha b_1 + \cos\alpha b_2\\ 0 & 0 & 1 \end{pmatrix}$$

so generally,

$$R_{\beta,(b_1,b_2)} \circ R_{\alpha} \neq R_{\alpha} \circ R_{\beta,(b_1,b_2)}$$

Problem B5 (80 pts).

(1) Because U is a subspace of \mathbb{R}^n , then $0 \in U$, we have $a = a + 0 \in \mathcal{A}$

Affine subspace of dimension 0 are points. Affine subspace of dimension 1 are lines. Affine subspace of dimension 2 are planes.

Any $a + u \in \mathcal{A}$, $a + v \in \mathcal{A}$, then the affine combination is $\lambda(a + u) + (1 - \lambda)(a + v) = a + \lambda u + (1 - \lambda)v$, because U is subspace of \mathbb{R}^n , $\lambda u + (1 - \lambda)v \in U$, then $a + \lambda u + (1 - \lambda)v \in \mathcal{A} \Rightarrow \lambda(a + u) + (1 - \lambda)(a + v) \in \mathcal{A}$. Affine subspace is closed under affine combinations.

- (2) At least from (1) we know $a \in \mathcal{A}$, \mathcal{A} is not empty. For any $b \in \mathcal{A}$, we can find u, write as b = a + u. Then $b a \in U$, a + U = a + b a + U = b + U.
- (3) Choose $x a \in U_a$, $y a \in U_a$, $\lambda, \mu \in \mathbb{R}$, then compute $\lambda(x a) + \mu(y a) = \frac{1}{\lambda + \mu}(\frac{\lambda}{\lambda + \mu}(x a) + \frac{\mu}{\lambda + \mu}(y a)) = \frac{\lambda}{\lambda + \mu}x + \frac{\mu}{\lambda + \mu}y a$. Because \mathcal{A} is closed under affine combinations, we have $\frac{\lambda}{\lambda + \mu}x + \frac{\mu}{\lambda + \mu}y \in \mathcal{A}$, then $\lambda(x a) + \mu(y a) = \frac{\lambda}{\lambda + \mu}x + \frac{\mu}{\lambda + \mu}y a \in \mathbb{R}^n$, U_a is a subspace of \mathbb{R}^n .

For any $u \in U_a$, we can write as u = x - a = x + (b - a) - b. The sum of coefficients of x, b, a is 1 - 1 + 1 = 1, and \mathcal{A} is closed under affine combinations, then $u = x + (b - a) - b \in \mathcal{A} - b \Rightarrow u \in U_b$. U_a does not depend on the choice of $a \in \mathcal{A}$, $U_a = U_b$ for all $a, b \in \mathcal{A}$. So $U_a = U = \{y - x \in \mathbb{R}^n \mid x, y \in \mathcal{A}\}$ and $\mathcal{A} = a + U$, for any $a \in \mathcal{A}$.

(4)If $\mathcal{A} \cap \mathcal{B} = (x)$, then we can find x = a + u = b + v where $a \in \mathcal{A}, b \in \mathcal{B}, u, v \in U$. Write b = a + u - v, thus $b \in \mathcal{A} \Rightarrow \mathcal{A} = \mathcal{B}$, which is against $\mathcal{A} \neq \mathcal{B}$. We have $\mathcal{A} \cap \mathcal{B} = \emptyset$ if $\mathcal{A} \neq \mathcal{B}$ and \mathcal{A}, \mathcal{B} are parallel.

Problem B6 (120 pts). (Affine frames and affine maps) (1)

We can write the λ 's and u's as a unique linear combination such that,

$$\lambda_0 u_0 + \ldots + \lambda_n u_n = 0$$

Since this is true, the only value for $\sum_{i} \lambda_{i}$ is 0. We can rewrite this unique linear combination by subtracting u_{0} from each u_{i} to get

$$\lambda_1(u_1 - u_0) + \ldots + \lambda_n(u_n - u_0) + \sum_{i=1}^{n} (u_i + u_0) = 0$$

Since $\sum_{i} \lambda_{i} = 0$, the linear combination of the difference between $(u_{i} - u_{0})$ is also linearly independent.

The subset of a linearly independent set of vectors is also a linearly independent set, so

$$\lambda_1(u_1 - u_0) + \ldots + \lambda_m(u_m - u_0) + \sum_{i=1}^{m} (u_i + u_0) = 0$$

where $m \leq n$ is linearly independent. Since the difference between the subset of vectors are linearly independent, then $\sum_i \lambda_i = 0$ must be true. So u_0 can be added to

$$\lambda_1(u_1 - u_0) + \ldots + \lambda_m(u_m - u_0) + \sum_{i=1}^{m} (u_i + u_0) = 0$$

to get the linear combination,

$$\lambda_0 \hat{u}_0 + \lambda_1 \hat{u}_1 + \ldots + \lambda_m \hat{u}_m + = 0$$

Since $\sum_{i} \lambda_{i} = 0$ is still true, then $\hat{u}_{0}, \dots, \hat{u}_{m}$ are linearly independent.

(2)

We proved in 6.1 that the linear combination

$$\lambda_0 \hat{u}_0 + \lambda_1 \hat{u}_1 + \ldots + \lambda_m \hat{u}_m = 0$$

is linearly independent and $\sum_{i} \lambda_{i} = 0$.

We can rewrite the linear combination by subtracting some u_i from each u to get

$$\lambda_0(\hat{u}_0 - \hat{u}_i) + \lambda_a(\hat{u}_1 - \hat{u}_i) + \ldots + \lambda_m(\hat{u}_m - \hat{u}_i) = 0$$

The linear combination can be written by factoring out the u_i to get

$$\lambda_0 \hat{u}_0 + \lambda_1 \hat{u}_1 + \ldots + \lambda_m \hat{u}_m - \sum_i \lambda_i \hat{u}_i = 0$$

The first set of terms of m-1 terms in the equations are a subset of the original m terms from where we started. Since a subset of a linearly independent set is linearly independent, then the m-1 terms are linearly independent and $\sum_{i}^{m-1} \lambda_{i} = 0$. This leaves the last term in the equation, $\sum_{i} \lambda_{i} \hat{u}_{i}$. We know that the u's are unique, so they cannot equal 0, this means that the λ_{i} 's = 0. So, the m vectors $u_{j} - u_{i}$ for $j \in \{0, \ldots, m\}$ with $j - i \neq 0$ are linearly independent.

Any m+1 vectors (u_0, u_1, \ldots, u_m) such that the m+1 vectors $(\widehat{u}_0, \ldots, \widehat{u}_m)$ are linearly independent are said to be *affinely independent*.

From (1) and (2), the vector (u_0, u_1, \ldots, u_m) are affinely independent iff for any any choice of i, with $0 \le i \le m$, the m vectors $u_j - u_i$ for $j \in \{0, \ldots, m\}$ with $j - i \ne 0$ are linearly independent. If m = n, we say that n + 1 affinely independent vectors (u_0, u_1, \ldots, u_n) form an affine frame of \mathbb{R}^n .

(3) Because (u_0, u_1, \ldots, u_n) is an affine frame of \mathbb{R}^n , then from above we can get a basis in \mathbb{R}^{n+1} , which is $\widehat{u}_0, \ldots, \widehat{u}_n$. For any $v \in \mathbb{R}^n$, we denote $\widehat{v} = (v, 1)$, then it can be uniquely written as the combination of (\widehat{u}_i) , such that $\widehat{v} = \sum_i \lambda_i \widehat{u}_i$. From the last row of equation, we know there should be $\sum_i \lambda_i = 1$. Along with $v = \sum_i \lambda_i u_i$, we can get the conclusion. From $e_i = u_i - u_0$, for $i = 1, \ldots, n$, substitute u_i with e_i , we get $v = \sum_{i=1}^n \lambda_i (e_i + u_0) + \lambda_0 u_0 = \sum_i \lambda_i u_0 + \sum_{i=1}^n \lambda_i e_i = u_0 + \sum_{i=1}^n \lambda_i e_i$. When $u_i = u_0 + e_i$ for $i = 1, \ldots, n$, denote the vector

 $\widehat{u}_i = (u_0 + e_i, 1)$. Suppose $\sum_i \lambda_i \widehat{u}_i = 0$, such that

$$\sum_{i} \lambda_{i} u_{0} + \sum_{i} \lambda_{i} e_{i} = 0$$

$$\sum_{i} \lambda_{i} = 0$$

$$\Rightarrow \sum_{i} \lambda_{i} e_{i} = 0$$

$$\Rightarrow \lambda_{i} = 0, \ i = 1, 2, \dots, n$$

So $\widehat{u}_0, \ldots, \widehat{u}_n$ are linearly independent, thus (u_0, u_1, \ldots, u_n) is an affine frame of \mathbb{R}^n . From above, for any $v \in \mathbb{R}^n$, there is $v = u_0 + x_1 e_1 + \cdots + x_n e_n$, substitute e_i with u_i get

$$v = (1 - (x_1 + \dots + x_x))u_0 + x_1u_1 + \dots + x_nu_n,$$

(4)

We can write $f(u) = f(u_0\lambda_0 + u_1\lambda_1 + \ldots + u_n\lambda_n) = \lambda_0 f(u_0) + \lambda_1 f(u_1) + \ldots + \lambda_n f(u_n) = \lambda_0 v_0 + \lambda_1 v_1 + \ldots + \lambda_n v_n$. So we can define a function $f: \mathbb{R}^n \to \mathbb{R}^m$ as above, such that $f(\lambda_0 u_0 + \lambda_1 u_1 + \ldots + \lambda_n u_n) = \lambda_0 v_0 + \lambda_1 v_1 + \ldots + \lambda_n v_n$. The function is unique, however we have to check if it is affine.

To check if it is affine, we first pick $w_1, \ldots, w_p \in \mathbb{R}^n$ and a set of $\mu_1 + \ldots + \mu_p = 1$. We can write linear combination of μ and w, such that, $f(\mu_1 w_1 + \ldots + \mu_p w_p) = \mu_1 f(w_1) + \ldots + \mu_p f(w_p)$. Now we can rewrite all the w's as the affine frame, such that,

$$w_1 = \sum_{i=0}^n \lambda_i^1 \mu_i, \dots, w_p = \sum_{i=0}^n \lambda_p^p \mu_p$$

Now we can expand and regroup in terms of the frame vectors.

$$f(u_1(\sum_{i=0}^n \lambda_i^1 \mu_i)) + \ldots + u_p(\sum_{i=0}^n \lambda_i^p \mu_i)) = f((\sum_{j=1}^p \mu_j \lambda_0^j) u_0, \ldots, (\sum_{j=1}^p \mu_j \lambda_n^j) u_n)$$

Now we take the coefficient out and set equal to 1, this works out because $\sum_i \lambda_1 = 1$ and $\sum_i \mu_1 = 1$.

$$1 = (\sum_{j=1}^{p} \mu_j \lambda_0^j) v_0 + \ldots + (\sum_{j=1}^{p} \mu_j \lambda_n^j) v_n)$$

Now regroup,

$$1 = \mu_1(\sum_{i=1}^n \lambda_i^1 v_i) + \ldots + \mu_p(\sum_{i=1}^n \lambda_i^n v_i)$$

Because of our original definition,

$$w_1 = \sum_{i=0}^n \lambda_i^0 \mu_i, \dots, w_p = \sum_{i=0}^n \lambda_p^p \mu_p$$

we can conclude that

$$1 = \mu_1 f(w_1) + \ldots + \mu_p f(w_p)$$

so f is an affine combination.

(5) Let (a_0, \ldots, a_n) be any affine frame in \mathbb{R}^n and let (b_0, \ldots, b_n) be any n+1 points in \mathbb{R}^n . From (4), we know there is a unique affine map f such that $f(a_i) = b_i$, $i = 0, \ldots, n$. From (3), we know for any b_i , we can write as the affine combination of (a_i) , such that $b_i = \sum_j \lambda_j^i a_j$, $\sum_j \lambda_j^i = 1$. Thus we can write those equations as

$$\begin{pmatrix} b_0 & b_1 & \cdots & b_n \\ 1 & 1 & \cdots & 1 \end{pmatrix} = \begin{pmatrix} a_0 & a_1 & \cdots & a_n \\ 1 & 1 & \cdots & 1 \end{pmatrix} \begin{pmatrix} \lambda_0^0 & \lambda_0^1 & \cdots & \lambda_0^n \\ \lambda_1^0 & \lambda_1^1 & \cdots & \lambda_1^n \\ \lambda_2^0 & \lambda_2^1 & \cdots & \lambda_2^n \\ \vdots & \cdots & \cdots & \vdots \\ \lambda_n^0 & \lambda_n^1 & \cdots & \lambda_n^n \end{pmatrix}$$
$$\Rightarrow A = \begin{pmatrix} \widehat{a}_0 & \widehat{a}_1 & \cdots & \widehat{a}_n \end{pmatrix}^{-1} \cdot \begin{pmatrix} \widehat{b}_0 & \widehat{b}_1 & \cdots & \widehat{b}_n \end{pmatrix}$$

the $(n+1) \times (n+1)$ matrix A corresponding to the unique affine map f such that

$$f(a_i) = b_i, \quad i = 0, \dots, n,$$

is given by

$$A = \left(\widehat{b}_0 \quad \widehat{b}_1 \quad \cdots \quad \widehat{b}_n\right) \left(\widehat{a}_0 \quad \widehat{a}_1 \quad \cdots \quad \widehat{a}_n\right)^{-1}.$$

When (a_0, \ldots, a_n) is the canonical affine frame with $a_i = e_{i+1}$ for $i = 0, \ldots, n-1$ and $a_n = (0, \ldots, 0)$ there is

$$(\widehat{a}_0 \quad \widehat{a}_1 \quad \cdots \quad \widehat{a}_n) = \begin{pmatrix} a_0 & a_1 & \cdots & a_n \\ 1 & 1 & \cdots & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & 0 & 0 \\ 0 & 0 & \cdots & 1 & 0 \\ 1 & 1 & \cdots & 1 & 1 \end{pmatrix}$$

$$(\widehat{a}_{0} \quad \widehat{a}_{1} \quad \cdots \quad \widehat{a}_{n}) \cdot \begin{pmatrix} 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & 0 & 0 \\ 0 & 0 & \cdots & 1 & 0 \\ -1 & -1 & \cdots & -1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & 0 & 0 \\ 0 & 0 & \cdots & 1 & 0 \\ 1 & 1 & \cdots & 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & 0 & 0 \\ 0 & 0 & \cdots & 1 & 0 \\ -1 & -1 & \cdots & -1 & 1 \end{pmatrix}$$

$$= I$$

$$\begin{pmatrix} 1 & 0 & \cdots & 0 & 0 \\ 1 & 0 & \cdots & 0 & 0 \end{pmatrix}$$

$$\Rightarrow (\widehat{a}_0 \quad \widehat{a}_1 \quad \cdots \quad \widehat{a}_n)^{-1} = \begin{pmatrix} 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & 0 & 0 \\ 0 & 0 & \cdots & 1 & 0 \\ -1 & -1 & \cdots & -1 & 1 \end{pmatrix}.$$

(6) Choose $u_i \in f(\mathcal{A})$, $u_i = f(a_i)$, $a_i \mathbb{A}$ and $\lambda_i \in \mathbb{R}$, $\sum_i \lambda_i = 1$. The affine combination of u_i is $\sum_i \lambda_i u_i = f(\sum_i \lambda_i a_i)$. Because \mathcal{A} is affine subspace then $\sum_i \lambda_i a_i \in \mathcal{A}$, which means $\sum_i \lambda_i u_i \in f(\mathcal{A})$, then $f(\mathcal{A})$ is affine subspace too.

To do the same thing, $v_i \in f^{-1}(\mathcal{B})$, $v_i = f^{-1}(b_i)$, $b_i \in \mathcal{B}$ and $\mu_i \in \mathbb{R}$, $\sum_i \mu_i = 1$. The affine combination of v_i is $\sum_i \mu_i v_i = f(\sum_i \mu_i b_i)$. Because \mathcal{B} is affine subspace then $\sum_i \mu_i b_i \in \mathcal{B}$, which means $\sum_i \mu_i v_i \in f(\mathcal{B})$, then $f^{-1}(\mathcal{B})$ is affine subspace too.

Problem B7 (30 pts). Let A be any $n \times k$ matrix

(1) If choose $u \in ker(A)$, Au = 0 then

$$\Rightarrow (A^{\top}A)u = A^{\top}(Au) = 0$$
$$\Rightarrow u \in ker(A^{\top}A)$$
$$\Rightarrow ker(A) \subseteq ker(A^{\top}A)$$

For the opposite, choose $v \in ker(A^{\top}A)$ then

$$\Rightarrow (A^{\top}A)u = A^{\top}(Au) = 0$$
$$\Rightarrow Au \in ker(A^{\top})$$

We need to prove $u \in ker(A)$, if not suppose $Au = x \neq 0$, then $(A^{\top}x)^{\top} = x^{\top}A = 0$, multiply u on both sides, we have $x^{\top}Au = x^{\top}x = 0 \Rightarrow x = 0$, which is against the assumption, thus $u \in ker(A) \Rightarrow ker(A^{\top}A) \subseteq ker(A)$. From $ker(A) \subseteq ker(A^{\top}A)$, $ker(A^{\top}A) \subseteq ker(A)$, get $ker(A^{\top}A) = ker(A)$. From the equation dim(ker(A))rank(A) = dim(E) = k, we can easily find $rank(A^{\top}A) = rank(A) = k - dim(ker(A)) = k - dim(ker(A^{\top}A))$. We can use the same way to prove $ker(AA^{\top}) = ker(A^{\top})$ and $rank(AA^{\top}) = A^{\top}$.

(2) From above, we know $\operatorname{rank}(A^{\top}A) = \operatorname{rank}(A)$. $\operatorname{rank}(A) \leq \min\{k, n\} = k$, because A has independent column vectors (a_i) $i = 1, 2, \dots k$, then $\operatorname{rank}(A) = k \Rightarrow \operatorname{rank}(A^{\top}A) = k \cdot A^{\top}A$ has full rank, it is invertible.

First we need to prove two things:

$$(AB)^{\top} = B^{\top}A^{\top}$$

 $(A^{-1})^{\top} = (A^{\top})^{-1}$

Here is the simple proof:

$$(AB)_{ij}^{\top} = \sum_{k} a_{jk} b_{ki} = \sum_{k} b_{ki} a_{jk} = (B^{\top} A^{\top})_{ij}$$

$$(A^{-1})^{\top} A^{\top} = (AA^{-1})^{\top} = I$$

$$\Rightarrow (A^{-1})^{\top} = (A^{\top})^{-1}$$

Then

$$P^{2} = A(A^{T}A)^{-1}A^{T} \cdot A(A^{T}A)^{-1}A^{T}$$

$$= A(A^{T}A)^{-1}(A^{T}A)(A^{T}A)^{-1}$$

$$= A(A^{T}A)^{-1}A^{T}$$

$$= P$$

$$P^{T} = (A(A^{T}A)^{-1}A^{T})^{T}$$

$$= A(A^{T}A)^{-1})^{T}A^{T}$$

$$= A((A^{T}A)^{-1})^{T}A^{T}$$

$$= A(A^{T}A)^{-1}A^{T}$$

$$= A(A^{T}A)^{-1}A^{T}$$

$$= P$$

When k = 1, P is symmetric matrix with trace(P) = 1. If $A = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}$ then P looks like

$$P = \frac{1}{\sum_{i} a_{i}^{2}} \begin{pmatrix} a_{1}^{2} & a_{1}a_{2} & a_{1}a_{3} & \cdots & a_{1}a_{n} \\ a_{1}a_{2} & a_{2}^{2} & a_{2}a_{3} & \cdots & a_{2}a_{n} \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ a_{1}a_{n} & a_{2}a_{n} & a_{3}a_{n} & \cdots & a_{n}^{2} \end{pmatrix}.$$

(3) Choose any $x \in \mathbb{R}^n$, the image of P is $Px = A(A^{\top}A)^{-1}A^{\top}x = A[(A^{\top}A)^{-1}A^{\top}x]$, there is $y \in \mathbb{R}^k$ makes Px = Ay, so the image of P is the subspace V spanned by a_1, a_2, \dots, a_n . When $u \in U$, $u \in ker(P)$, we can get $Pu = A(A^{\top}A)^{-1}A^{\top}u = 0$, multiply A^{\top} on both sides, $A^{\top}A(A^{\top}A)^{-1}A^{\top}u = A^{\top}u = 0 \Rightarrow ker(P) \subseteq ker(A^{\top})$. So the nullspace U of P is the set of vectors such that $A^{\top}u = 0$. Geometric interpretation of U is that U contains vectors that are orthogonal to the image of A.

First we need to prove that for any $x \in \mathbb{R}^n$, Px is the closest vector in V. Because $(Px - x)^{\top}(Px) = (x^{\top}P^{\top} - x^{\top})Px = 0$, so Px - x is perpendicular to Px, which means P is a projection of \mathbb{R}^n onto subspace spanned by (a_i) $i = 1, 2, \dots k$.

Then what we only need to do is to prove $V^0 = U$. Choose $u \in U$, from above we know $A^{\top}u = 0$, thus any $Ax \in V$ we have $(Ax)^{\top}y = x^{\top}A^{\top}y = 0 \Rightarrow U \subseteq V^0$. For any $v \in V^0$, we have $(Ax)^{\top}v = x^{\top}A^{\top}v = 0$, because we can choose any $x \in \mathbb{R}^n$, then must have the result $A^{\top}x = 0 \Rightarrow V^0 \subseteq U$. (Otherwise we can construct (e_i) $i = 1, 2, \dots, n$ and then $(e_1, e_2, \dots, e_n)^{\top}A^{\top}v = I \cdot A^{\top}v = 0$). As a conclusion $U = V^0 \Rightarrow \mathbb{R}^n = V^0 \oplus V = U \oplus V$.

TOTAL: 460 points.