

TRIBHUVAN UNIVERSITY INSTITUTE OF ENGINEERING

Examination Control Division 2078 Kartik

Exam.		Back	
Level	BE	Full Marks	80
Programme	BEI	Pass Marks	32
Year / Part	I/I	Time	3 hrs.

Subject: - Digital Logic (EX 401)

- ✓ Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt <u>All</u> questions.
- ✓ The figures in the margin indicate Full Marks. ✓ Assume suitable data if necessary.

V	Assume suitable data if necessary.		
1.	List out the advantages of digital signal over the analog signal.	[3]	
2.	. Explain ASCII and EBCDIC codes with example.	[1.5+1.5]	
3.	. Convert the following number system.	[2×2]	
	a) (5A.B) ₁₆ =(?) _{Excess-3} b) (1011011) ₂ =(?) _{BCD}		
4	Define universal gates with example. Explain positive and negative logic.	[2+2]	
5	. Design three input exclusive NOR gate using NOR gates only.	[3]	
6	Given function F=A(B'+C)+BD, change into its canonical form. Define max term and min term. [3+2]		
7	aplify the given function using K-map $F=\Pi(0,1,4,7,8,10,11,12)$ and $D=(2,3,6,9,15)$ and lement the final expression using NAND gate only. [4+2]		
8	Define and design 2-bit binary fast adder. Draw the circuit diagram of full substractor using half substractor. [5+2]		
9	. Implement the given function $F=\Sigma(0,1,3,6,10,12,14)$ using 8×1 MUX only.	[4]	
1	 Define race around condition. What are the limitation of SR flip flop? Conver flop to SR flip flop. 	t JK flip [2+2+4]	
. 1	1. Mention the application of shift Register. Explain the circuit diagram of 3-bit tail ring counter.	switched [2+4]	
1	2. Design the synchronous MOD-6 counter using -ve edge triggered JK flip flop.	[6]	
1	3. Design a sequential machine that detects three consecutive zeros from an instream x by making output y=1. (Use SR flip flop in your design)	nput data [10]	
1	4. Differentiate between PROM and PLA. Implement the following boolean function PAL.	ons using [2+2×2]	
	a) $A(x,y,z) = \Sigma(2, 4, 5, 7)$ b) $B(x,y,z) = \Sigma(0, 2, 6)$		
1	5. Explain the operation of digital clock with neat and clean diagram.	[5]	