Need to work out P^{m} projection operator.

For example, if both chains are prepared in $40 | Y_0 \rangle$, then take a 1-site measurement, results in $\frac{1}{12}(10) \omega(0) + 11700(1)$ at kth site, it would be

 $|Beu^{\vec{m}}\rangle = \int_{\Sigma}^{1} (c_{k}^{\dagger} | vac_{k} \otimes c_{k}^{\dagger} | vac_{k} \otimes I + | vac_{k} \otimes I | vac_{k} \otimes I)$ which means kith sites are either both filled or both empty and $P^{\vec{m}} = |Bel^{\vec{m}}\rangle < Bel^{\vec{m}}|$.

Homever, this product form is generally hard to evaluate when we have to change busis. Indead, we can consider the operator cici and cici. By anticommunication relation,

 $\begin{cases}
C_{i}C_{i} & C_{i} | vac \rangle = 0 \\
C_{i}C_{i} & C_{i} | vac \rangle = C_{i} | vac \rangle = 11 \rangle_{i}
\end{cases}$ $\begin{cases}
C_{i}C_{i} & c_{i} | vac \rangle = | vac \rangle = | vac \rangle = 10 \rangle_{i}
\end{cases}$ $C_{i}C_{i} & | vac \rangle = 0$

thus $C_i^{\dagger}C_i$ filters out 117i while $C_iC_i^{\dagger}$ filters out 107i

Therefore we can write $P^{\overrightarrow{m}} = C_iC_i^{\dagger}\otimes C_iC_i^{\dagger} + C_i^{\dagger}C_i\otimes C_i^{\dagger}C_i$ What we need to evaluate is the partial trace

of correlation matrix, which can be expressed as

I want to get a dored formula Cmn = \(\frac{1}{3} \left(\frac{1}{4} \left(\frac{1}{5} \omega \cdot \frac{1}{5} \left(\frac{1}{4}) = \) \(\frac{1}{5} \omega \cdot \frac{1}{5} \left(\frac{1}{4}) + \) \(\frac{1}{5} \omega \cdot \frac{1}{5} \omega \cdot \frac{1}{5} \left(\frac{1}{4}) + \) \(\frac{1}{5} \omega \cdot \frac{1}{5} \omega \cdot \frac{1}{5} \left(\frac{1}{4}) + \) \(\frac{1}{5} \omega \cdot \frac{1}{5} \omega \cdot \frac{1}{5} \omega \cdot \frac{1}{5} \left(\frac{1}{5} \omega \cdot \frac{1}{5} \left(\frac{1}{5} \omega \cdot \frac{1}{5} \omega \cdot \frac{1}{5} \left(\frac{1}{5} \omega \cdot \frac{1}{5} \omega \cdot \frac{1}{5} \left(\frac{1}{5} \omega \cdot \frac{1}{5} \omega \cdot \frac{1}{5} \omega \cdot \frac{1}{5} \left(\frac{1}{5} \omega \cdot \frac{1}{5} \omega \cdot \frac{1}{5} \omega \cdot \frac{1}{5} \omega \cdot \frac{1}{5} \left(\frac{1}{5} \omega \cdot \frac{1}{5} \ome where $|+\rangle = \frac{pm}{\sqrt{pm}} |G\rangle \otimes |G\rangle$ and $|G\rangle$ is the ground state. 2-site fermionic chain, Take the easiest example for which is maximally entangled on ground state $|G\rangle = \int_{\Sigma}^{1} (C_{\cdot}^{\dagger}|Vac\rangle + C_{\circ}^{\dagger} vac\rangle)$ If we evaluate EE for site 1 with 1G>⊗1G>, it is $C_{11} = \sum_{i=0}^{\infty} \langle G | \otimes \langle G | C_i^{\dagger} C_i \otimes C_i^{\dagger} C_i | G \rangle \otimes | G \rangle = 1$ which results in S = 0 After measurement, the ground state is projected into $| \psi \rangle = \int_{\Sigma}^{L} (C^{\dagger} | vac \rangle \otimes C^{\dagger} | vac \rangle + C^{\dagger} | vac \rangle \otimes C^{\dagger} | vac \rangle)$

For this state, $(4|C_m^{\dagger}C_j\otimes C_j^{\dagger}C_n|4) = \delta_{mn}$, so it's easy to evalute that $C_i = \frac{1}{2} \cdot (4|C_i^{\dagger}C_i\otimes C_i^{\dagger}C_i|4) = \frac{1}{2}$ which results in $S = \ln 2$ and this entanglement is purely induced by measurement P^m