

知识总览

分页、分段管理方式中最大的优缺点

分段+分页的结合——段页式管理方式

段页式管理方式

段表、页表

如何实现地址变换

分页、分段的优缺点分析

	优点	缺点
分页管理	内存空间利用率高, <mark>不会产生外部</mark> 碎片,只会有少量的页内碎片	不方便按照逻辑模块实现信息的共享和保护
分段管理	很方便按照逻辑模块实现信息的共 享和保护	如果段长过大,为其分配很大的连续空间会很不方便。另外,段式管理 <mark>会产生外部碎片</mark>

某分段(20MB)

分段管理中产生的外部碎片也可以用"紧凑"来解决,只是需要付出较大的时间代价

分段+分页=段页式管理

段页式管理的逻辑地址结构

分段系统的逻辑地址结构由段号和段内地址(段内偏移量)组成。如:

31	 16	15	 0
段号		段内地址	

段页式系统的逻辑地址结构由段号、页号、页内地址(页内偏移量)组成。如:

31	 16	15 12	11	 0
段号		页号	页内偏移量	

段号的位数决定了每个进程最多可以分几个段 页号位数决定了每个段最大有多少页 页内偏移量决定了页面大小、内存块大小是多少

在上述例子中,若系统是按字节寻址的,则 段号占16位,因此在该系统中,每个进程最多有 2¹⁶ = 64K 个段 页号占4位,因此每个段最多有 2⁴ = 16页 页内偏移量占12位,因此每个页面\每个内存块大小为 2¹² = 4096 = 4KB

"分段"对用户是可见的,程序员编程时需要显式地给出段号、段内地址。而将各段"分页"对用户是不可见的。系统会根据段内地址自动划分页号和页内偏移量。

因此段页式管理的地址结构是二维的。

每个页面对应一个页表项,每个页表项由页号、页面存放的内存块号组成。每个页表项长度相等,页号是隐含的。

王道考研/CSKAOYAN.COM

知识回顾与重要考点

将地址空间按照程序自身的逻辑关系划分为若干个段,在将各段分为大小相等的页面

分段+分页

将内存空间分为与页面大小相等的一个个内存块,系统以块为单位为进程分配内存

逻辑地址结构: (段号, 页号, 页内偏移量)

段表、页表

每个段对应一个段表项。各段表项长度相同,由段号(隐含)、 页表长度、页表存放地址 组成

每个页对应一个页表项。各页表项长度相同,由页号(隐含)、页面存放的内存块号组成

1. 由逻辑地址得到段号、页号、页内偏移量

- 2. 段号与段表寄存器中的段长度比较、检查是否越界
- 3. 由段表始址、段号找到对应段表项
- 4. 根据段表中记录的页表长度,检查页号是否越界
- 5. 由段表中的页表地址、页号得到查询页表, 找到相应页表项
- 6. 由页面存放的内存块号、页内偏移量得到最终的物理地址

地址变换

7. 访问目标单元

第一次——查段表、第二次——查页表、第三次——访问目标单元

访问一个逻辑地址所需访存次数

 \odot

可引入快表机构,以段号和页号为关键字查询快表,即可直接找到 最终的目标页面存放位置。引入快表后仅需一次访存

△ 公众号: 王道在线

b站: 王道计算机教育

抖音: 王道计算机考研