

Big Data Visualisation

Viewport-Driven Graph Data Reduction

Leipzig, 11.12.2020 Aljoscha Rydzyk

Overview

- Introduction and Related Work
 - Terms and Definitions
 - The Challenge of Big Data
 - Viewport-Driven Data Reduction (VDDR)
- VDDR on Graphs a New Approach:
 - Application Setup
 - Back End Data Representation
- Evaluation
- To Do List
- Example Presentation

Viewport-Driven Graph Data Reduction | Big Data Visualisation

The Challenge of Big Data

- Increasing amount of network-type data
- Big Data Graph
 - Keep representation clear and focused
 - Data reduction

Visual operations on graphs in multiple-second range

(Gómez-Romero, 2018)

Viewport-Driven Data Reduction

Viewport-driven data aggregation in relational data bases (Jugel, Jerzak et al. 2015)

A new approach to GraphMaps (Mondal and Nachmanson 2017)

Stream Data Object – "Wrapper"

- Vertices' label
- Edge label
- Vertices' degree
- Vertices' ID
- Edge ID

– ...

Back End Data Representation

3 Different Approaches:

Gradoop:

- edge set, vertex set
- batch baseline(Junghanns, Petermann et al. 2017)

Direct Wrapper Stream:

- wrapper and vertex stream source
- data sorted by degree

Adjacency Matrix:

- adjacency matrix, vertex stream source, wrapper map
- data sorted by degree

Back End Data Representation

- Batch

Back End Data Representation Direct Wrapper - Stream

Back End Data Representation Adjacency Matrix - Stream

Evaluation

- Evaluation on Galaxy Cluster of Leipzig University
- Parameters:
 - Different approaches (stream, batch)
 - Parallelism
 - Graph size (gigabyte scale)
 - Pre-layouted and non-layouted graphs
- Measured Quantities:
 - Back End procedure time scale
 - Back End memory consumption
 - Server-Client data transfer time scale
 - Layout rendering time scale

To Do List

- Client-side ad-hoc-layout
- Evaluation
- Deployment and integration into other services

Sources

- Gómez-Romero, J., et al. (2018). "Visualizing large knowledge graphs: A performance analysis." Future Generation Computer Systems 89: 224-238.
- Jugel, U., et al. (2015). "VDDA: automatic visualization-driven data aggregation in relational databases." The VLDB Journal 25(1): 53-77.
- Mondal, D. and L. Nachmanson (2017). "A new approach to GraphMaps, a system browsing large graphs as interactive maps." arXiv preprint arXiv:1705.05479.
- Junghanns, M., et al. (2017). "Distributed grouping of property graphs with GRADOOP." Datenbanksysteme für Business, Technologie und Web (BTW 2017).
- https://dbs.uni-leipzig.de/en/research/projects/gradoop
- https://flink.apache.org/

Thank You!

Aljoscha Rydzyk ar44xogu@studserv.uni-leipzig.de