Formelsammlung MRT + A

Michi Fallegger, Mario Felder

24. November 2014

Inhaltsverzeichnis

1	Ma	trizen 5
	1.1	Grundlagen
	1.2	Rang
		1.2.1 Rang von Vektoren
		1.2.2 Rang einer Matrix
	1.3	Eigenwerte und Eigenvektoren
		1.3.1 Eigenwerte
	1.4	Zustandsvariabel
	1.5	$(sI-A)^{-1}$
2	Zus	tandsraum 11
	2.1	Regelungsnormalform der Zustandsgleichung 11
		2.1.1 Regelungsnormalform
		2.1.2 Beobachtungsnormalform
		2.1.3 Jordanische Normalform
	2.2	Steuerbarkeit und Beobachtbarkeit
		2.2.1 Steuerbarkeit
		2.2.2 Beobachtbarkeit
	2.3	Transformation
		2.3.1 Transformation in Regelungsnormalform (Steuernormalform)
		2.3.2 Transformation auf Beobachtungsnormalform 14
	2.4	Reglersynthese im Zustandsraum
		2.4.1 Vorfilter / Vorverstärker
		2.4.2 Beobachter

INHALTSVERZEICHNIS

3	\mathbf{Dig}	tale Regelung	17
	3.1	Schematische Darstellung	17
	3.2	Direkter/Indirekter Regler	18
	3.3	Digitaler PID	18
		3.3.1 I Anteil	18
		3.3.2 D Anteil	18
		3.3.3 Antireset-Windup	19
	3.4	z-Transformation	19
		3.4.1 Antworten	19
4	Um	formungstabelle	21

Matrizen

Grundlagen

Matrize

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{1n} \\ a_{21} & a_{22} & a_{23} & a_{2n} \\ a_{31} & a_{32} & a_{33} & a_{3n} \\ a_{m1} & a_{m2} & a_{m3} & a_{mn} \end{bmatrix}$$

A = [Spalten, Zeilen]

Transponierte

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{1n} \\ a_{21} & a_{22} & a_{23} & a_{2n} \\ a_{31} & a_{32} & a_{33} & a_{3n} \\ a_{m1} & a_{m2} & a_{m3} & a_{mn} \end{bmatrix}^{T} = \begin{bmatrix} a_{11} & a_{21} & a_{31} & a_{n1} \\ a_{12} & a_{22} & a_{32} & a_{n2} \\ a_{13} & a_{23} & a_{33} & a_{n3} \\ a_{1n} & a_{2m} & a_{3m} & a_{nm} \end{bmatrix}$$

$$\begin{split} \mathbf{Multiplikation} \\ \underline{\mathbf{A}}^*\underline{\mathbf{B}} = \begin{bmatrix} a_{11} & a_{21} \\ a_{12} & a_{22} \end{bmatrix} * \begin{bmatrix} b_{11} & b_{21} \\ b_{12} & b_{22} \end{bmatrix} = \begin{bmatrix} a_{11}*b_{11} + a_{21}*b_{12} & a_{11}*b_{21} + a_{21}*b_{22} \\ a_{12}*b_{11} + a_{22}*b_{12} & a_{12}*b_{21} + a_{22}*b_{22} \end{bmatrix} \end{split}$$

Orthogonal

Vektor a ist zum Vektor b orthogonal, wenn das Skalarprodukt a*b=0

ist. Dann ist auch \underline{b} orthogonal zu \underline{a} und wir sprechen daher von zwei orthogonalen Vektoren \underline{a} und \underline{b} .

Zwei orthogonale Nichtnullvektoren sind aufeinander senkrecht ($\cos(\alpha) = 0, \alpha = \frac{\pi}{2}$).

Determinante

$$det(A) = \begin{bmatrix} a & b \\ c & d \end{bmatrix} = a \cdot d - b \cdot c$$

1.2 Rang

1.2.1 Rang von Vektoren

Beschreibt die lineare Abhängigkeit und Unabhängigkeit von Vektoren. Eine Menge von m
 Vektoren $a_1,a_2,...,a_n$ (mit derselben Anzahl von Komponenten) bildet die folgende lineare Kombination:

$$c_1a_1 + c_2a_2 + \dots + c_ma_m$$

Daraus folgt:

$$c_1a_1 + c_2a_2 + \dots + c_ma_m = 0$$

Falls die einzige Möglichkeit darin besteht, c = um die Gleichung zu erfüllen, sind die Vektoren linear unabhängig.

Zwei Vektoren in der Ebene sind <u>linear abhängig</u>, wenn sie parallel sind.

$$\underline{a} - c * \underline{b} = 0 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Drei Vektoren in Anschauungsraum (3D) sind <u>linear abhängig</u>, wenn sie in einer Ebene liegen.

$$c_1 \cdot \underline{a} + c_2 \cdot \underline{b} + c_3 \cdot \underline{c} = 0$$

1.2.2 Rang einer Matrix

Die maximale Zahl der linear unabhängigen Zeilenvektoren einer Matrix \underline{A} heisst Rang. Es gilt:

$$r = Rang(A) \le m, n$$

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = Rang \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

Vorgehen (Horizontal):

- -1. Erste Zeile (oder die mit der tiefsten Zahlen) stehen lassen.
- -2. Dieser Schritt für alle Zeilen machen:

$$c_1 \cdot a_{11} + a_{21} = 0 \qquad \qquad c \begin{bmatrix} a_{21} & a_{22} & a_{23} \end{bmatrix}$$

-3. Entstehen in der Matrix horizontale gleiche Vektoren, so sind diese linear abhängig.

1.3 Eigenwerte und Eigenvektoren

1.3.1 Eigenwerte

$$A\underline{v} = \lambda \underline{v}$$

Derjenige Wert λ für welchen die obige Gleichung eine Lösung $x \neq 0$ hat heisst der Eigenwert der Matrix A.

Die korrespondierende Lösung $\underline{\mathbf{x}} \neq 0$ heisst der Eigenvektor der Matrix A.

$$A \cdot \underline{x} = \lambda \cdot \underline{x}$$

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \lambda \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Homogenes, lineares Gleichungssystem

$$(A - \lambda \cdot I)\underline{x} = \underline{0}$$

Lösung nach Cramer: Eigenwert bestimmen

$$D(\lambda) = det(A - \lambda I) = 0$$
 $\lambda I = \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix}$

$$\lambda_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \qquad a\lambda^2 + b\lambda + c = 0$$

Eigenvektor

$$v = A - \lambda \cdot I$$

1.4 Zustandsvariabel

Es gibt allgemeine Untersuchungen über das Systemverhalten, beispielsweise über die Steuerbarkeit und Beobachtbarkeit von Systemen, die sich nur im Zeitbereich durchführen lassen.

Aus diesem Grund ist es angebracht im Zeitbereich zu bleiben. Es ist zweckmässig, die auftretende Differentialgleichung durch Einführen von Zwischengrössen in Systeme von Differentialgleichungen erster Ordnung zu verwandeln.

$$a_n \cdot y^n + a_{n-1} \cdot y^{n-1} + \dots + a_2 \ddot{y} + a_1 \dot{y} + a_0 y = b_0 u$$
 $a_n \neq 0$

Dann kann man als Zwischengrössen $x_1, x_2, ..., x_n$ die Ausgangsgrösse y und ihre Ableitungen nehmen:

$$x_1 = y$$
, $x_2 = \dot{y}$, $x_3 = \ddot{y}$,..., $x_{n-1} = y^{n-2}$ $x_n = y^{n-1}$

Aus der Definition folgen die einfachen Differentialgleichungen.:

$$\dot{x}_1 = x_2, \qquad \dot{x}_2 = x_3 \qquad , ..., \qquad \dot{x}_{n-1} = x_n$$

1.5
$$(sI - A)^{-1}$$

$$(sI - A)^{-1} = \frac{adj((sI - A)^{-1})}{det((sI - A)^{-1})}$$

$$adj\begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

Zustandsraum

2.1 Regelungsnormalform der Zustandsgleichung

$$G(s) = \frac{b_0 + b_1 s + b_2 s^2 + \dots + b_n s^n}{a_0 + a_1 s + a_2 s^2 + \dots + a_n s^n}$$

2.1.1 Regelungsnormalform

$$\dot{x} = \underbrace{\begin{bmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 1 \\ -\frac{a_0}{a_n} & -\frac{a_1}{a_n} & -\frac{a_2}{a_n} & \dots & -\frac{a_{n-1}}{a_n} \end{bmatrix}}_{\mathbf{A}} \cdot x + \underbrace{\begin{bmatrix} 0 \\ 0 \\ \dots \\ 0 \\ \frac{1}{a_n} \end{bmatrix}}_{\mathbf{b}} \cdot u$$

$$y = \underbrace{\begin{bmatrix} b_0 - a_0 \frac{b_n}{a_n} & b_1 - a_1 \frac{b_n}{a_n} & \dots & b_{n-1} - a_{n-1} \frac{b_n}{a_n} & \end{bmatrix}}_{\mathbf{c}^T} \cdot x + \underbrace{\begin{bmatrix} b_n \\ a_n \end{bmatrix}}_{\mathbf{d}} \cdot u$$

2.1.2 Beobachtungsnormalform

$$\dot{x} = \underbrace{\begin{bmatrix} 0 & 0 & 0 & \dots & -\frac{a_0}{a_n} \\ 1 & 0 & 0 & \dots & -\frac{a_1}{a_n} \\ 0 & 1 & 0 & \dots & -\frac{a_2}{a_n} \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 1 & -\frac{a_{n-1}}{a_n} \end{bmatrix}}_{\mathbf{A}} \cdot x + \underbrace{\begin{bmatrix} b_0 - b_n \frac{a_0}{a_n} \\ b_1 - b_n \frac{a_1}{a_n} \\ b_2 - b_n \frac{a_2}{a_n} \\ \dots & \dots & \dots \\ b_{n-1} - b_n \frac{a_{n-1}}{a_n} \end{bmatrix}}_{\mathbf{b}} \cdot u$$

2.1.3 Jordanische Normalform

- Bevorzugte Verwendung, wenn Pole vom System bekannt sind
- System ist vollständig entkoppelt, wenn alle Pole reell und einfach vorkommen
- A ist Diagonalmatrix mit λ_i : Pole

$$\dot{x} = \underbrace{\begin{bmatrix} \lambda_1 & 0 & 0 & \dots & 0 \\ 0 & \lambda_2 & 0 & \dots & 0 \\ 0 & 0 & \lambda_2 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & \lambda_n \end{bmatrix}}_{\mathbf{A}} \cdot x + \underbrace{\begin{bmatrix} 1 \\ 1 \\ \dots \\ 1 \end{bmatrix}}_{\mathbf{b}} \cdot u$$

$$y = \underbrace{\begin{bmatrix} r_1 & r_2 & \dots & r_n \end{bmatrix}}_{c^T} \cdot x + \underbrace{\begin{bmatrix} r_0 \end{bmatrix}}_{\mathbf{d}} \cdot u$$

2.2 Steuerbarkeit und Beobachtbarkeit

2.2.1 Steuerbarkeit

Das System heisst steuerbar, wenn sein Zustandspunkt \underline{x} durch geeignete Wahl des Steuervektors u in endlicher Zeit aus einem beliebigen

Anfangszustand x_0 in den Endzustnad 0 bewegt werden kann (Steuerbar wenn die Vektoren linear unabhängig sind; $Rang(Q_s) = n$ oder $det(Q_s) \neq 0$)

$$Q_s = \begin{bmatrix} b & A \cdot b & \dots & A^{n-1} \cdot b \end{bmatrix} = [n \cdot n]$$

2.2.2 Beobachtbarkeit

Das System heisst beobachtbar, wenn dem bekannten u(t) aus der Messung y(t) über eine endliche Zeitspanne der Anfangszustand x(t) eindeutig ermittelt werden kann, ganz gleich wo dieser liegt.

Das System ist beobachtbar, wenn die Beobachtungsmatrix Q_B regulär ist (nxn Matrix) $(det(Q_B) \neq 0)$.

$$Q_B = \begin{bmatrix} c^T \\ c^T \cdot A \\ \dots \\ c^T \cdot A^{n-1} \end{bmatrix}$$

2.3 Transformation

2.3.1 Transformation in Regelungsnormalform (Steuernormalform)

Eine Übertragungssystem $\dot{x} = A \cdot x + b \cdot u$ wird mit der Transformation $z = T_R \cdot x$ in die Regelungsnormalform $\dot{x_R} = A_R \cdot x_R + b_R \cdot u$ überführt.

 $q_{s_n}^T$ ist die letzte Zeile von der inversen Steuerbarkeitsmatrix $Q_s^{-1}.$

$$A_R = T_R \cdot A \cdot T_R^{-1} \qquad b_R = T_R \cdot b \qquad c_R^T = c^T \cdot T_R^{-1} \qquad d_R = d$$

$$\begin{bmatrix} q_{s_n}^T \\ T_n & d \end{bmatrix} \qquad \begin{bmatrix} \dots & \dots & \dots & \dots \end{bmatrix}$$

2.3.2 Transformation auf Beobachtungsnormalform

Eine Übertragungssystem $\dot{x} = A \cdot x + b \cdot u$ wird mit der Transformation $z = T_B \cdot x$ in die Beobachtungsnormalform $\dot{x_B} = A_R \cdot x_B + b_B \cdot u$ überführt.

 q_{B_n} ist die letzte Spalte von der inversen Beobachtungsmatrix Q_B^{-1} .

$$A_B = T_B \cdot A \cdot T_B^{-1}$$
 $b_B = T_B \cdot b$ $c_B^T = c^T \cdot T_B^{-1}$ $d_B = d$

$$T_B = \begin{bmatrix} q_{B_n} & A \cdot q_{B_n} & \dots & A^{n-1} \cdot q_{B_n} & \end{bmatrix} \quad Q_B^{-1} = \begin{bmatrix} \dots & \dots & x \\ \dots & \dots & x \\ \dots & \dots & x \end{bmatrix}$$

2.4 Reglersynthese im Zustandsraum

$$A_{CL} = A - b \cdot r^{T}$$

$$A_{R} = T_{R} \cdot A \cdot T_{R}^{-1}$$

$$A_{R,CL} = A_{R} - b_{R} \cdot r_{R}^{T}$$

$$r_{R}^{T} = \begin{bmatrix} r_{1,R} & r_{2,R} & r_{3,R} & r_{n,R} \end{bmatrix}$$

Daraus folgt:

$$A_{Cl,R} = \begin{bmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 1 \\ -\frac{a_0}{a_n} - r_{1,R} & -\frac{a_1}{a_n} - r_{2,R} & -\frac{a_2}{a_n} - r_{3,R} & \dots & -\frac{a_{n-1}}{a_n} - r_{n,R} \end{bmatrix}$$

Diese Matrix kann gerade in das Istpolynom überführt werden. Istpolynom:

$$p_{Cl,r}(s) = s^n + \underbrace{(a_{n-1} + r_{n,R})}_{c^{n-1}} \cdot s^{n-1} + \dots + (a_1 + r_{2,R})a_1 \cdot s + (a_0 + r_{1,r})$$

Das Sollpolynom ist durch die Nullstellen vorgegeben:

$$p(s) = s^n + p_{n-1} \cdot s^{n-1} + \dots + p_1 \cdot s + p_0$$

Koeffizientenvergleich ergibt nun:

$$r_{1,R} = p_0 - a_0$$

$$r_{2.R} = p_1 - a_1$$

$$r_{n,R} = p_{n-1} - a_{n-1}$$

Durch die Transformation in RNF der letzten Zeile von Q_s^{-1} (T) lässt sich die Matrix umwandeln.

$$r^T = r_R^T \cdot T$$

2.4.1 Vorfilter / Vorverstärker

Der Vorfilter/Vorverstärker gewährleistet, dass im stationärem Zustand y mit dem gewünschtem, konstantem Vektor w übereinstimmt.

$$v = [c^{T}(b \cdot r^{T} - A)^{-1} \cdot b]^{-1}$$

2.4.2 Beobachter

Beobachter ist ein Nachbau des System für den Rechner. Er beinhaltet alle Punkte des realen System. Dafür werden keine Sensoren benötigt. Die Variablen werden geschätzt.

Das h muss derart bestimmt werden, dass $eigW(A-h_c^T)<0$ sind.

Falls das System in BNF vorliegt, gilt:

$$A_B = T_B^{-1} \cdot A \cdot T_b \qquad c_B^T = c^T \cdot T_B = [0 \ 0 \ .. \ 1] \qquad b_B = T_B^{-1} \cdot b$$

$$A_B = \begin{bmatrix} 0 & 0 & 0 & .. & -\frac{a_0}{a_n} \\ 1 & 0 & 0 & .. & -\frac{a_1}{a_n} \\ 0 & 1 & 0 & .. & -\frac{a_2}{a_n} \\ .. & .. & .. & .. & .. \\ 0 & 0 & 1 & -\frac{a_{n-1}}{a_{n-1}} \end{bmatrix}$$

Folgende Gleichung wird für die Bestimmung des Istpolynoms benötigt. Da $a_n = 1$, kann folgende Vereinfachung gemacht werden:

$$\dot{e}_{x,B} = (A_B - h_B \cdot c_B^T) \cdot e_{x,B} = \begin{bmatrix} 0 & 0 & 0 & \dots & -a_0 - h_{B,1} \\ 1 & 0 & 0 & \dots & -a_1 - h_{B,2} \\ 0 & 1 & 0 & \dots & -a_2 - h_{B,3} \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 1 & -a_{n-1} - h_{B,n} \end{bmatrix}$$

Istpolynom:

$$u(s) = s^{n} + (a_{n-1} + h_{B,n})s^{n-1} + ... + (a_{1} + h_{B,2})s + (a_{0} + h_{B,1})$$

Sollpolynom:

$$p(s) = s^n + p_{n-1}s^{n-1} + \dots + p_1s + p_0$$

Aus diesen beiden Gleichungen kann via Koeffizientenvergleich die Matrix h_B bestimmt werden.

$$h_{B,1} = p_0 - a_0$$
 $h_{B,2} = p_1 - a_1$ etc.
 $h_B = p - a$

Digitale Regelung

3.1 Schematische Darstellung

$$G(s) = \frac{Y(s)}{U(s)}$$
 \rightarrow $H(z) = \frac{Y(z)}{U(z)}$

3.2 Direkter/Indirekter Regler

3.3 Digitaler PID

Wir haben:

$$u(t) = u_{k,a}(e(t)) + u_{i,a}(e(t)) + u_{d,a}(e(t))$$

Wir wollen:

$$u(k) = u_{k,a}(e(k)) + u_{i,a}(e(k)) + u_{d,a}(e(k))$$

3.3.1 I Anteil

Implementierbare Differenzgleichungen für I-Anteil: Rückwärts-Rechteckregel:

$$u_{i,d,r}(e(k))) = u_{i,d,r}(e(k-1)) + \frac{K_a}{T_{i,a}}e(k) \cdot T$$

Trapezregel:

$$u_{i,d,r}(e(k))) = u_{i,d,r}(e(k-1)) + \frac{K_a}{T_{i,a}} \cdot \frac{e(k) + e(k-1)}{2} \cdot T$$

3.3.2 D Anteil

$$u_{d,d}(e(k)) = K_a T_{d,a} \cdot \frac{e(k) - e(k-1)}{T}$$

3.3.3 Antireset-Windup

$$\begin{split} u_{nosat}(k) &= u_p(k) + u_i(k-1) + u(d) \\ if(u_{nosat}(k) > u_{sat,max}) & u(k) = u_{sat,max} \\ elseif(u_{nosat}(k) < u_{sat,min}) \\ u(k) &= u_{sat,min} \\ u_i(k) &= u_i(k-1) + K_a \frac{T}{Ti} \cdot \frac{e(k) + e(k-1)}{2} + \frac{T}{T_r} (u(k) - u(k)_{nosat}) \end{split}$$

3.4 z-Transformation

3.4.1 Antworten

Impulsantwort:

$$Z\{I_i(k)\} = z^{-l}$$

$$\begin{cases} 1 & 1 \text{ if k } 0 \text{ 1} \\ 2 & 0 \text{ if k } \neq 1 \end{cases}$$

Sprungantwort:

$$Z\{I_i(k)\} = \sum_{i=1}^{\infty} z^{-i} = u^{-l} \frac{z}{z-1} \qquad \begin{cases} 1 & 1 \text{ if } k \ge l \\ 2 & 0 \text{ if } k < l \end{cases}$$

Umformungstabelle

	X(s)	x(t)	x(kT) or $x(k)$	X(z)
1.	-	-	Kronecker delta $\delta_0(k)$ 1 $k = 0$ 0 $k \neq 0$	1
2.	1	=	$ \begin{array}{ccc} \delta_0(n-k) \\ 1 & n=k \\ 0 & n \neq k \end{array} $	z ^{-k}
3.	$\frac{1}{s}$	1(<i>t</i>)	1(k)	$\frac{1}{1-z^{-1}}$
4.	$\frac{1}{s+a}$	e ^{-at}	e^{-akT}	$\frac{1}{1 - e^{-aT} z^{-1}}$
5.	$\frac{1}{s^2}$	t	kT	$\frac{Tz^{-1}}{\left(1-z^{-1}\right)^2}$
6.	$\frac{2}{s^3}$	t^2	$(kT)^2$	$\frac{T^2 z^{-1} (1 + z^{-1})}{(1 - z^{-1})^3}$
7.	$\frac{6}{s^4}$	t^3	$(kT)^3$	$\frac{T^{3}z^{-1}(1+4z^{-1}+z^{-2})}{(1-z^{-1})^{4}}$
8.	$\frac{a}{s(s+a)}$	$1 - e^{-at}$	$1 - e^{-akT}$	$\frac{\left(1 - e^{-aT}\right)z^{-1}}{\left(1 - z^{-1}\right)\left(1 - e^{-aT}z^{-1}\right)}$
9.	$\frac{b-a}{(s+a)(s+b)}$	$e^{-at}-e^{-bt}$	$e^{-akT}-e^{-bkT}$	$\frac{\left(e^{-aT} - e^{-bT}\right)z^{-1}}{\left(1 - e^{-aT}z^{-1}\right)\left(1 - e^{-bT}z^{-1}\right)}$
10.	$\frac{1}{(s+a)^2}$	te ^{-at}	kTe ^{-akT}	$\frac{Te^{-aT}z^{-1}}{\left(1 - e^{-aT}z^{-1}\right)^2}$
11.	$\frac{s}{(s+a)^2}$	$(1-at)e^{-at}$	$(1 - akT)e^{-akT}$	$\frac{1 - (1 + aT)e^{-aT}z^{-1}}{\left(1 - e^{-aT}z^{-1}\right)^2}$
12.	$\frac{2}{(s+a)^3}$	t^2e^{-at}	$(kT)^2 e^{-akT}$	$\frac{T^2 e^{-aT} \left(1 + e^{-aT} z^{-1} \right) z^{-1}}{\left(1 - e^{-aT} z^{-1} \right)^3}$
13.	$\frac{a^2}{s^2(s+a)}$	$at-1+e^{-at}$	$akT - 1 + e^{-akT}$	$\frac{\left[\left(aT - 1 + e^{-aT}\right) + \left(1 - e^{-aT} - aTe^{-aT}\right)z^{-1}\right]z^{-1}}{\left(1 - z^{-1}\right)^{2}\left(1 - e^{-aT}z^{-1}\right)}$
14.	$\frac{\omega}{s^2 + \omega^2}$	sin <i>ost</i>	sin <i>wkT</i>	$\frac{z^{-1}\sin\omega T}{1-2z^{-1}\cos\omega T+z^{-2}}$
15.	$\frac{s}{s^2 + \omega^2}$	cos wt	cos ωkT	$\frac{1 - z^{-1} \cos \omega T}{1 - 2z^{-1} \cos \omega T + z^{-2}}$
16.	$\frac{\omega}{(s+a)^2+\omega^2}$	e ^{-at} sin <i>cot</i>	e ^{-akT} sin <i>ωkT</i>	$\frac{e^{-aT}z^{-1}\sin\omega T}{1-2e^{-aT}z^{-1}\cos\omega T+e^{-2aT}z^{-2}}$
17.	$\frac{s+a}{\left(s+a\right)^2+\omega^2}$	e ^{-at} cos <i>wt</i>	e ^{-akT} cos akT	$\frac{1 - e^{-aT} z^{-1} \cos \omega T}{1 - 2e^{-aT} z^{-1} \cos \omega T + e^{-2aT} z^{-2}}$
18.	-	=	a^k	$\frac{1}{1-az^{-1}}$
19.	-	-	$k=1,2,3,\dots$	$\frac{z^{-1}}{1-az^{-1}}$
20.	-	-	ka ^{k-1}	$\frac{z^{-1}}{(1-az^{-1})^2}$
21.	-	-	k^2a^{k-1}	$\frac{z^{-1}(1+az^{-1})}{(1-az^{-1})^3}$
22.	=	=	k^3a^{k-1}	$\frac{z^{-1}(1+4az^{-1}+a^2z^{-2})}{(1-az^{-1})^4}$
23.	-	_	$k^4a^{k\cdot 1}$	$\frac{z^{-1}\left(1+11az^{-1}+11a^2z^{-2}+a^3z^{-3}\right)}{\left(1-az^{-1}\right)^5}$
24.	-	-	$a^k \cos k\pi$	$\frac{1}{1+az^{-1}}$

x(t) = 0 for t < 0 x(kT) = x(k) = 0 for k < 0Unless otherwise noted, k = 0, 1, 2, 3, ...

$$\mathcal{R}\lbrace x(k)\rbrace = X(z) = \sum_{k=0}^{\infty} x(k)z^{-k}$$

Important properties and theorems of the Z-transform

	x(t) or $x(k)$	$Z{x(t)}$ or $Z{x(k)}$
1.	ax(t)	aX(z)
2.	$ax_1(t)+bx_2(t)$	$aX_1(z) + bX_2(z)$
3.	x(t+T) or $x(k+1)$	zX(z)-zx(0)
4.	x(t+2T)	$z^2X(z)-z^2x(0)-zx(T)$
5.	x(k+2)	$z^2X(z) - z^2x(0) - zx(1)$
6.	x(t+kT)	$z^{k}X(z) - z^{k}x(0) - z^{k-1}x(T) - \dots - zx(kT - T)$
7.	x(t-kT)	$z^{-k}X(z)$
8.	x(n+k)	$z^{k}X(z)-z^{k}x(0)-z^{k-1}x(1)-\ldots-zx(k1-1)$
9.	x(n-k)	$z^{-k}X(z)$
10.	tx(t)	$-Tz\frac{d}{dz}X(z)$
11.	kx(k)	$-z\frac{d}{dz}X(z)$
12.	$e^{-at}x(t)$	$X(ze^{aT})$
13.	$e^{-ak}x(k)$	$X(ze^a)$
14.	$a^k x(k)$	$X\left(\frac{z}{a}\right)$
15.	$ka^{k}x(k)$	$-z\frac{d}{dz}X\left(\frac{z}{a}\right)$
16.	x(0)	$\lim_{z\to\infty} X(z) \text{if the limit exists}$
17.	x(∞)	$\lim_{z\to 1} \left[(1-z^{-1}) X(z) \right] \text{ if } \left(1-z^{-1} \right) X(z) \text{ is analytic on and outside the unit circle}$
18.	$\nabla x(k) = x(k) - x(k-1)$	$(1-z^{-1})X(z)$
19.	$\Delta x(k) = x(k+1) - x(k)$	(z-1)X(z)-zx(0)
20.	$\sum_{k=0}^{n} x(k)$	$\frac{1}{1-z^{-1}}X(z)$
21.	$\frac{\partial}{\partial a}x(t,a)$	$\frac{\partial}{\partial a}X(z,a)$
22.	$k^m x(k)$	$\left(-z\frac{d}{dz}\right)^m X(z)$
23.	$\sum_{k=0}^{n} x(kT) y(nT - kT)$	X(z)Y(z)
24.	$\sum_{k=0}^{\infty} x(k)$	<i>X</i> (1)