

Modelo relacional

Gestión de Datos

Maximiliano Arancibia Educación Profesional - Escuela de Ingeniería

Clase diseñada por Matías Toro para GDD, DCDPP 2022

El uso de apuntes de clases estará reservado para finalidades académicas. La reproducción total o parcial de los mismos por cualquier medio, así como su difusión y distribución a terceras personas no está permitida, salvo con autorización del autor.

Hasta Ahora

- •Todo el mundo necesita manejar datos
- Conviene utilizar un DBMS
- •Arquitectura de capas:
 - •Usuarios ven un modelo lógico
 - •Sistema ejecuta las acciones
- •Usuario no necesita saber cómo el sistema ejecuta las acciones

DBMS relacionales Open Source

- PostgreSQL Es la más recomendable, por comunidad y estabilidad.
- MySQL Usada ampliamente en ambientes de producción
- •SQLite Base de datos pequeña, usada generalmente en contextos de apps móviles

DBMS relacionales Comerciales

- •IBM DB2
- Microsoft SQL Server
- Oracle

DMBS (otros)

- Neo4J (Grafos)
- MongoDB (Documentos)
- Cassandra (Key Value Column Store)
- Apache Jena (RDF)
- Redis (In memory Store)
- Base (Column Store)
- Titan DB (Grafos)
- •...

Modelos de datos

Modelo de datos

•Un Modelo es una notación para escribir datos

Modelo de datos

Modelos de Datos: estructura jerárquica

Modelos de Datos: XML

```
<Películas>
 <Año valor="2014">
  <Tipo valor="Biografía">
   <Película nombre="The Imitation Game" calificación="8.1">
   </Película>
   <Película nombre="The Theory of Everything" calificación="7.7">
   </Película>
  </Tipo>
  <Tipo valor="SciFi">
   <Película nombre="Interstellar" calificación="8.6">
   </Película>
  </Tipo>
 </Año>
 <Año valor="2015">
  <Tipo valor="Drama">
   <Película nombre="The Revenant" calificación="8.1">
   </Película>
  </Tipo>
 </Año>
</Películas>
```


Modelos de Datos: key-value (JSON)

```
"2014": {
 "Biografía": [
  {"nombre": "The Imitation Game", "calificación": 8.1 },
  {"nombre": "The Theory of Everything", "calificación": 7.7 }
 "SciFi": [
  {"nombre": "Interstellar", "calificación": 8.6}
"2015": {
 "Drama": [
  {"nombre": "The Revenant", "calificación": 8.1 }
```


Modelos de Datos: datos semiestructurados

- Simple de entender
- Repeticiones
- ¿Qué pasa si no hay una jerarquía natural?

Modelo de datos: Grafos

Modelo de datos: Grafos

- Muy flexible / simple
- Difícil de agregar (resumir) los datos
- No hay un esquema obvio

Modelo de Datos: Modelo Relacional

ID Película	Nombre Película	Año	Categoría	Calificación (IMDB)
1	Interstellar	2014	Fantasía	8.6
2	The Revenant	2015	Drama	8.1
3	The Imitation Game	2014	Biografía	8.1
4	The Theory of Everything	2014	Biografía	7.7

Modelo de Datos: Otros Ejemplos

- Bases de Datos orientados a objetos.
- Bases de Datos columnares.
- Bases de Datos de Grafos.

Tenemos que aprender las diferencias y cuándo usar qué!

Modelo de datos

- •En este curso se verá en detalle el modelo relacional.
- •Modelo relacional es el modelo más usado en ambientes de producción, pero la necesidad de utilizar modelos semiestructurados ha ido aumentando en el tiempo.

Modelos Relacional

Modelo Relacional

Los datos se almacenan como tablas:

ID Película	Nombre Película	Año	Categoría	Calificación (IMDB)
1	Interstellar	2014	Fantasía	8.6
2	The Revenant	2015	Drama	8.1
3	The Imitation Game	2014	Biografía	8.1
4	The Theory of Everything	2014	Biografía	7.7

- •Relaciones: a cada tabla le llamamos relación
- •Atributos: son las columnas de la relación
- •Tuplas: son las filas de la relación

Modelo Relacional

ID Película	Nombre Película	Año	Categoría	Calificación (IMDB)
1	Interstellar	2014	Fantasía	8.6
2	The Revenant	2015	Drama	8.1
3	The Imitation Game	2014	Biografía	8.1
4	The Theory of Everything	2014	Biografía	7.7

- En este caso tenemos la relación Películas
- Los atributos de la relación Películas son ID_Película, Nombre_Película, Año, Categoría y Calificación (IMDB).

Modelo Relacional

Los datos se almacenan como tablas:

ID Película	Nombre Película	Año	Categoría	Calificación (IMDB)
1	Interstellar	2014	Fantasía	8.6
2	The Revenant	2015	Drama	8.1
3	The Imitation Game	2014	Biografía	8.1
4	The Theory of Everything	2014	Biografía	7.7

Para denominar relaciones escribimos su nombre y luego sus atributos entre paréntesis:

Películas (id, nombre, año, categoría, calificación)

Modelo Relacional: Dominio

ID Película	Nombre Película	Año	Categoría	Calificación (IMDB)
1	Interstellar	2014	Fantasía	8.6
2	The Revenant	2015	Drama	8.1
3	The Imitation Game	2014	Biografía	8.1
4	The Theory of Everything	2014	Biografía	7.7

En la práctica, cada atributo tiene un dominio o tipo de dato (float, integer, string, date, ...)

Películas(id: int, nombre: string, año: int,

categoría: string, calificación: float)

Modelo Relacional: Esquema

ID Película	Nombre Película	Año	Categoría	Calificación (IMDB)
1	Interstellar	2014	Fantasía	8.6
2	The Revenant	2015	Drama	8.1
3	The Imitation Game	2014	Biografía	8.1
4	The Theory of Everything	2014	Biografía	7.7

Esquema: La estructura de los datos que va a contener una tabla. Es estático / estable en el tiempo.

Modelo Relacional: Esquema

Esquema: La estructura de los datos que va a contener una tabla. Es estático / estable en el tiempo.

- Un esquema es un conjunto de relaciones con sus atributos. Por ejemplo:
 - Películas (id, nombre, año, categoría, calificación)
 - Actor(id, nombre, edad)
 - Actuó_en(id_actor, id_película)

Instancia: Los datos que contiene un esquema. Son dinámicos (van variando en el tiempo).

Instancia: Los datos que contiene un esquema. Son dinámicos (van variando en el tiempo).

Por ejemplo:

ID Película	Nombre Película	Año	Categoría	Calificación (IMDB)
1	Interstellar	2014	Fantasía	8.6
2	The Revenant	2015	Drama	8.1
3	The Imitation Game	2014	Biografía	8.1
4	The Theory of Everything	2014	Biografía	7.7

Instancia: Los datos que contiene un esquema. Son dinámicos (van variando en el tiempo).

Esto también es una instancia del esquema:

ID Película	Nombre Película	Año	Categoría	Calificación (IMDB)
1	Interstellar	2014	Fantasía	8.6
2	The Revenant	2015	Drama	8.1

• Esto también (el conjunto puede ser vacío):

ID Película	Nombre Película	Año	Categoría	Calificación (IMDB)
-------------	-----------------	-----	-----------	---------------------

Modelo Relacional: Esquema

Un esquema de una base de datos es un conjunto de esquemas de relaciones:

Películas (id, nombre, año, categoría, calificación)

Actor(id, nombre, edad)

Actuó_en(id_actor, id_película)

Películas(id, nombre, año, categoría, calificación)
Actor(id, nombre, edad)
Actuó en(id actor, id película)

Una instancia de un esquema es un conjunto de tuplas para cada relación del esquema.

Películas

ID Película	Nombre Película	Año	Categoría	Calificación (IMDB)
1	Interstellar	2014	Fantasía	8.6
2	The Revenant	2015	Drama	8.1
3	The Imitation Game	2014	Biografía	8.1
4	The Theory of Everything	2014	Biografía	7.7

Actor

id	nombre	edad
1	Leonardo DiCaprio	41
2	Matthew McConaughey	46
3	Daniel Radcliffe	27
4	Jessica Chastain	39

Actuo_en

id_actor	id_pelicula
1	2
2	1

Una instancia de un esquema es un conjunto de tuplas para cada relación del esquema.

¿Cuáles son las consecuencias?

- 1. No hay orden en las filas
- 2. No se pueden tener filas duplicadas

Restricciones de integridad: tipos de datos

Son restricciones que imponemos a un esquema que todas las instancias deben satisfacer

Cada atributo debe tener un tipo de dato:

```
Películas (id: int, nombre: string, año: int,
```

categoría: string, calificación: float)

Actor(id: int, nombre: string, edad: int)

Actuó_en(id_actor: int, id_película: int)

Restricciones de integridad: el dato NULL

- Hay un dato muy especial, que pertenece a todos los tipos de datos llamado NULL.
- Representa la no existencia o no conocimiento de ese dato

ID Película	Nombre Película	Año	Categoría	Calificación (IMDB)
1	Interstellar	2014	NULL	8.6
2	The Revenant	2015	Drama	8.1
3	The Imitation Game	2014	Biografía	8.1
4	Barbie	2023	Comedia	NULL

Restricciones de integridad: llaves

• La restricción más importante son las llaves

Un conjunto de **atributos** forma una **llave** en una relación si no permitimos que existan dos tuplas para esa relación con los mismos valores en todos los **atributos** de la **llave**, y no hay un subconjunto de esos **atributos** que cumpla esa condición.

Restricciones de integridad: llaves - ejemplo

¿Cuál es la llave?

ID Película	Nombre Película	Año	Categoría	Calificación (IMDB)
1	Interstellar	2014	Fantasía	8.6
2	Batman	2005	Acción	8.3
3	The Imitation Game	2014	Biografía	8.1
4	The Theory of Everything	2014	Biografía	7.7
5	Batman	1995	Acción	5.4

Nota:

- Batman Begins (2005)
- Batman Forever (1995)

Restricciones de integridad: llaves - ejemplo

¿Cuál es la llave?

ID Película	Nombre Película	Año	Categoría	Calificación (IMDB)
1	Interstellar	2014	Fantasía	8.6
2	Batman	2005	Acción	8.3
3	The Imitation Game	2014	Biografía	8.1
4	The Theory of Everything	2014	Biografía	7.7
5	Batman	1995	Acción	5.4

¿Es (Nombre) llave?

No.

Restricciones de integridad: llaves - ejemplo

¿Cuál es la llave?

ID Película	Nombre Película	Año	Categoría	Calificación (IMDB)
1	Interstellar	2014	Fantasía	8.6
2	Batman	2005	Acción	8.3
3	The Imitation Game	2014	Biografía	8.1
4	The Theory of Everything	2014	Biografía	7.7
5	Batman	1995	Acción	5.4

- (ID) es llave porque no existen dos películas con el mismo ID.
- (Nombre,Año) quizás también es llave porque no existen dos películas distintas con el mismo nombre y año

Restricciones de integridad: llaves - ejemplo

¿Cuál es la llave?

- (ID) es llave porque no existen dos películas con el mismo ID.
- (Nombre,Año) quizás también es llave porque no existen dos películas distintas con el mismo nombre y año

El diseñador de bases de datos debe identificar una llave como primaria.

Restricciones de integridad: llaves - ejemplo

Cuando escribimos las relacionales subrayamos las llaves primarias

Películas (id, nombre, año, categoría, calificación)

Actor(id, nombre, edad)

Actuó_en(*id_actor*, id_película)

- Super llave (superkey): cualquier conjunto de atributos que determina a todo el resto
- Llave candidata/minimal: cualquier conjunto de atributos que determina a todo el resto, y ninguno de sus subconjuntos es una super llave

 Llave primaria: una llave candidata que queremos destacar (la subrayada en el esquema)

ID Película	Nombre Película	Año	Categoría	Calificación (IMDB)
1	Interstellar	2014	Fantasía	8.6
2	Batman	2005	Acción	8.3
3	3 The Imitation Game		Biografía	8.1
4	The Theory of Everything	2014	Biografía	7.7
5	Batman	1995	Acción	5.4

¿Cuales son posibles super llaves?

(id, año) (id)

(id, nombre, año, categoría)

(id, nombre, año, calificación)

. . .

ID Película	Nombre Película	Año	Categoría	Calificación (IMDB)
1	1 Interstellar		Fantasía	8.6
2	Batman	2005	Acción	8.3
3	3 The Imitation Game		Biografía	8.1
4	The Theory of Everything	2014	Biografía	7.7
5	Batman	1995	Acción	5.4

¿Entonces la siguiente es una super llave? (id, nombre, año, categoría, calificación)

ID Película	Nombre Película	Año	Categoría	Calificación (IMDB)
1	Interstellar	2014	Fantasía	8.6
2	Batman	2005	Acción	8.3
3	3 The Imitation Game		Biografía	8.1
4	The Theory of Everything	2014	Biografía	7.7
5	Batman	1995	Acción	5.4

¿Entonces la siguiente es una super llave? (año, categoría, calificación)

No.

Pueden haber dos películas con el mismo año, categoría y calificación.

ID Película	Nombre Película	Año	Categoría	Calificación (IMDB)
1	Interstellar	2014	Fantasía	8.6
2	Batman	2005	Acción	8.3
3	3 The Imitation Game		Biografía	8.1
4	The Theory of Everything	2014	Biografía	7.7
5	Batman	1995	Acción	5.4

¿Cuales son posibles

llaves candidatas/minimales?

(id)

(nombre, año)

(Suponiendo que no hay dos películas con el mismo nombre y mismo año)

ID Película	Nombre Película	Año	Categoría	Calificación (IMDB)
1	1 Interstellar		Fantasía	8.6
2	Batman	2005	Acción	8.3
3	3 The Imitation Game		Biografía	8.1
4	The Theory of Everything	2014	Biografía	7.7
5	Batman	1995	Acción	5.4

¿Es la siguiente una llave candidata/minimal? (id, año)

No.

Es una **super llave**, pero hay un subconjunto (**id**) que es una **super llave**.

ID Película	Nombre Película	Año	Categoría	Calificación (IMDB)
1	1 Interstellar		Fantasía	8.6
2	Batman	2005	Acción	8.3
3	3 The Imitation Game		Biografía	8.1
4	The Theory of Everything	2014	Biografía	7.7
5	Batman	1995	Acción	5.4

¿Hay más llaves candidatas/minimales?

No.

(año, categoría, calificación) no es llave candidata.

ID Película	Nombre Película	Año	Categoría	Calificación (IMDB)
1 Interstellar 2 Batman		2014	Fantasía	8.6
		2005	Acción	8.3
3	3 The Imitation Game		Biografía	8.1
4 The Theory of Everything		2014	Biografía	7.7
5	Batman	2005	Acción	5.4

¿Es una instancia de los siguientes **esquemas**?

Películas (id, nombre, año, categoría, calificación)

Sí.

Películas (id, <u>nombre</u>, <u>año</u>, categoría, calificación)

Persona(id, rut, nombre, rut_madre, edad)

- Super llave:
 - id
 - rut
 - id,rut
 - id,nombre
 - rut,nombre
 - id,rut,nombre
 - Id,rut,nombre, rut_madre, edad

- Llave candidata/minimal:
 - id
 - rut
 - nombre, rut_madre
 - Llave primaria:
 - id

• • • •

Surrogate Key

Persona(id, rut, nombre, rut_madre, edad)

Surrogate key: una llave genérica qué simplifica cosas.

En nuestro ejemplo id es mas fácil de manejar qué rut

nombre	tipo	año	grados	ciudad_origen
Tarapacá	Carménère	2014	13,5	Maipo
Tarapacá	Merlot	2014	13,5	Maipo
Gato	Merlot	2016	14,0	Maule

¿Cuales son posibles llaves candidatas?

(nombre, tipo)

¿Algún problema?

nombre	tipo	año	grados	ciudad_origen
Tarapacá	Carménère	2014	13,5	Maipo
Tarapacá	Merlot	2014	13,5	Maipo
Gato	Merlot	2016	14,0	Maule
Tarapacá	Merlot	2016	14,0	Maule

¿Cuales son posibles llaves candidatas? (nombre, tipo, año)

Pero... una llave es una **restricción** definida sobre las **instancias**. No una descripción de los datos actuales

Vino(nombre, tipo, año, grados, ciudad_origen)

nombre	tipo	año	grados	ciudad_origen
Tarapacá	Carménère	2014	13,5	Maipo
Tarapacá	Merlot	2014	13,5	Maipo
Gato	Merlot	2016	14,0	Maule

¿Es una instancia del esquema?

No.

Restricciones de integridad: llaves foráneas

 Otra restricción muy común son las llaves foráneas.

Un conjunto de **atributos** forma una llave foránea si esos **atributos** hacen referencia a la llave primaria de otra relación.

El nombre de los **atributos** que se hace referencia pueden ser distintos, pero deben coincidir en la cantidad de columnas y los tipos de datos.

Llaves foráneas: ejemplo

Persona(<u>id</u>, nombre, fecha_nacimiento, Pais.id)
País(<u>id</u>, nombre)

Persona País

id	Nombre	fecha_nacimiento	pais_id nombre
			Chile
1	Pedro Díaz	2014	1 2 Argentina
2	María Jiménez	2015	3 Perú
3	Diego Sánchez	2014	1 ***
			4 Bolivia
4	Juana García	2014	2

Llaves foráneas: ejemplo

Películas (id, nombre, año, categoría, calificación)

Actor(id, nombre, edad)

Actuó_en(Películas.id, Actor.id)

Películas

ID Película	Nombre Película	Año	Categoría	Calificación (IMDB)
1	Interstellar	2014	Fantasía	8.6
2 The Revenant		2015	Drama	8.1
3	The Imitation Game	2014	Biografía	8.1
4	The Theory of Everything	2014	Biografía	7.7

Actor

id	nombre	edad
1,	Leonardo DiCaprio	41
2	Matthew McConaughey	46
3	Daniel Radcliffe	27
4	Jessica Chastain	39
<i>/</i>	<i>j</i>	

Actuo_en

id_pelicula	id_actor
1	2
2	1*

Ejemplo #1

- Se desea guardar la información de cervezas, vinos y su stock en una tienda.
- Una cerveza tiene un nombre, un tipo, los grados, y la ciudad de origen.

Cerveza(nombre, tipo, grados, ciudad_origen)

Nombre	tipo	grados	ciudad_origen
Austral Lager	Lager	4,6	Punta Arenas
Austral Yagan	Ale	5,0	Punta Arenas
Austral Pale Ale	Ale	5,0	Punta Arenas
Kunstmann Torobayo	Ale	5,0	Valdivia
Kross 5	Ale	7,2	Curacaví
Kross Golden	Ale	5,3	Curacaví
Kross Pilsner	Pilsner	4,9	Curacaví

- Se desea guardar la información de cervezas, vinos y su stock en una tienda.
- Una cerveza tiene un nombre, un tipo, los grados, y la ciudad de origen.

Cerveza(nombre, tipo, grados, ciudad_origen)

Nombre	tipo	grados	ciudad_origen
Austral Lager	Lager	4,6	Punta Arenas
Austral Yagan	Ale	5,0	Punta Arenas
Austral Pale Ale	Ale	5,0	Punta Arenas
Kunstmann Torobayo	Ale	5,0	Valdivia
Kross 5	Ale	7,2	Curacaví
Kross Golden	Ale	5,3	Curacaví
Kross Pilsner	Pilsner	4,9	Curacaví

Cerveza(nombre, tipo, grados, ciudad_origen)

 Una vino tiene un nombre, un tipo, un año, los grados, y la ciudad de origen.

Vino(nombre, tipo, año, grados, ciudad_origen)

nombre	tipo	año	grados	ciudad_origen
Tarapacá	Carménère	2014	13,5	Maipo
Tarapacá	Merlot	2014	13,5	Maipo
Gato	Merlot	2016	14,0	Maule
Tarapacá	Merlot	2016	14,0	Maule

Cerveza(nombre, tipo, grados, ciudad_origen)

 Una vino tiene un nombre, un tipo, un año, los grados, y la ciudad de origen.

Vino(nombre, tipo, año, grados, ciudad_origen)

nombre	tipo	año	grados	ciudad_origen
Tarapacá	Carménère	2014	13,5	Maipo
Tarapacá	Merlot	2014	13,5	Maipo
Gato	Merlot	2016	14,0	Maule
Tarapacá	Merlot	2016	14,0	Maule

Cerveza(nombre, tipo, grados, ciudad_origen)
Vino nombre, tipo, año, grados, ciudad_origen)

 El stock de cervezas y vinos debe guardar la cantidad y el precio unitario.

Stock nombre, cantidad, precio_unitario)

nombre cantidad precio_unitario

¿Cuál es la llave principal?

¿Cómo podemos solucionar este problema?

Solución 1: un nombre más específico para el vino

Cerveza(<u>nombre</u>, tipo, grados, ciudad_origen)
Vino(<u>nombre</u>, <u>tipo</u>, <u>año</u>, grados, ciudad_origen)
Stock(<u>nombre</u>, cantidad, precio_unitario)

Cerveza

Nombre	tipo	grados	ciudad_origen
Austral Lager	Lager	4,6	Punta Arenas
Austral Yagan	Ale	5,0	Punta Arenas

Stock

nombre	cantidad	precio_unitario
Tarapacá Carménère 2014	200	6000

Vino

nombre	tipo	año	grados	ciudad_origen
Tarapacá Carménère 2014	Carménère	2014	13,5	Maipo
Tarapacá Merlot 2014	Merlot	2014	13,5	Maipo
Gato Merlot 2014	Merlot	2016	14,0	Maule

¿Cuál es el problema?

Solución 2: usar surrogate keys

Cerveza(<u>id</u>, nombre, tipo, grados, ciudad_origen)
Vino(<u>id</u>, nombre, tipo, año, grados, ciudad_origen)
Stock(<u>id</u>, cantidad, precio_unitario)

Cerveza

id	Nombre	tipo	grados	ciudad_origen
CAuL00	Austral Lager	Lager	4,6	Punta Arenas
CAuY00	Austral Yagan	Ale	5,0	Punta Arenas

Stock

id	cantidad	precio_unitario
CAuL00	600	2000
VTTC14	200	6000

Vino

id	nombre	tipo	año	grados	ciudad_origen
VTTC14	Tarapacá	Carménère	2014	13,5	Maipo
VTTM14	Tarapacá	Merlot	2014	13,5	Maipo
VTGM16	Gato	Merlot	2016	14,0	Maule

¿Cuál es el problema?

Solución 3: una tabla Stock para vinos y cerveza

Cerveza(nombre, tipo, grados, ciudad_origen)
Vino(nombre, tipo, año, grados, ciudad_origen)
StockCerveza(nombre, cantidad, precio_unitario)
StockVino(nombre, tipo, año cantidad, precio_unitario)

Cerveza

Nombre	tipo	grados	ciudad_origen
Austral Lager	Lager	4,6	Punta Arenas
Austral Yagan	Ale	5,0	Punta Arenas

StockCerveza

nombre	cantidad	precio_unitario
Austral Lager	600	2000

StockVino

nombre	tipo	Año	cantidad	precio_unitario
Tarapacá	Carménère	2014	200	6000

Vino

nombre	tipo	año	grados	ciudad_origen
Tarapacá Carménère 2014	Carménère	2014	13,5	Maipo
Tarapacá Merlot 2014	Merlot	2014	13,5	Maipo
Gato Merlot 2014	Merlot	2016	14,0	Maule

¿Cuál es el problema?

Solución 4: combinar tablas

Cerveza(nombre, tipo, grados, ciudad_origen, cantidad, precio_unitario)

Vino(nombre, tipo, año, grados, ciudad_origen, cantidad, precio_unitario)

Cerveza

Nombre	tipo	grados	ciudad_origen	cantidad	precio_unitario
Austral Lager	Lager	4,6	Punta Arenas	600	2000
Austral Yagan	Ale	5,0	Punta Arenas	0	?

Vino

nombre	tipo	año	grados	ciudad_origen	Cantidad	precio_unitario
Tarapacá Carménère 2014	Carménère	2014	13,5	Maipo	200	6000
Tarapacá Merlot 2014	Merlot	2014	13,5	Maipo	0	?
Gato Merlot 2014	Merlot	2016	14,0	Maule	0	3000

Cerveza(nombre, tipo, grados, ciudad_origen)
Vino(nombre, tipo, año, grados, ciudad_origen)
Stock(nombre, cantidad, precio_unitario)

¿Cómo evitamos este tipo de problema?

Ejemplo #2

- Modelaremos países, ciudades y personas.
- Un país tiene un nombre, una población, y un PIB (solo el valor más actual); el nombre identifica un país.

País(nombre, población, PIB)

País (nombre, población, PIB)

 Un país puede tener cero o más idiomas como idiomas oficiales del país; un idioma puede ser oficial en cero o más países. Cada idioma se identifica por un nombre, como "coreano".

Idioma(nombre) PaísIdioma(País.nombre, Idioma.nombre)

País(nombre, población, PIB, Idioma.nombre)


```
País(<u>nombre</u>, población, PIB)

Idioma(<u>nombre</u>)

PaísIdioma(País.nombre, Idioma.nombre)
```

 Para cada idioma oficial de un país, hay una población que habla ese idioma con fluidez en ese país. También, cada idioma tiene una población global que lo habla con fluidez.

Idioma(<u>nombre</u>, pob_global)
PaísIdioma(<u>País.nombre</u>, <u>Idioma.nombre</u>, pob_país)

País(<u>nombre</u>, población, PIB)
Idioma(<u>nombre</u>, pob_global)
PaísIdioma(<u>País.nombre</u>, <u>Idioma.nombre</u>, pob_país)

Un país puede tener cero o más países vecinos.

País(nombre, población, PIB, País.nombre)

Un país solo podría tener un vecino.


```
País(<u>nombre</u>, población, PIB)
Idioma(<u>nombre</u>, pob_global)
PaísIdioma(<u>País.nombre</u>, <u>Idioma.nombre</u>, pob_país)
```

Un país puede tener cero o más países vecinos.

Vecino(País1.nombre, País2.nombre)

País(<u>nombre</u>, población, PIB)
Idioma(<u>nombre</u>, pob_global)
PaísIdioma(<u>País.nombre</u>, <u>Idioma.nombre</u>, pob_país)
Vecino(País.nombre1, País.nombre2)

 Un país tiene una o más ciudades. Una ciudad tiene un nombre y una población actual. El nombre de la ciudad y su país identifica la ciudad (por ejemplo, Santiago, Chile es distinta a la ciudad de Santiago, Cuba). Un país tiene una ciudad que es la capital.

Ciudad(nombre, País.nombre, capital, población)

País(<u>nombre</u>, población, PIB)
Idioma(<u>nombre</u>, pob_global)
PaísIdioma(<u>País.nombre</u>, <u>Idioma.nombre</u>, pob_país)
Vecino(<u>País.nombre1</u>, <u>País.nombre2</u>)
Ciudad(<u>nombre</u>, <u>País.nombre</u>, capital, población)

 Una persona tiene un rut, un nombre, y una fecha y país de nacimiento. Además una persona reside en una única ciudad, y puede tener 0 o más correos electrónicos.

Persona(<u>rut</u>, nombre, fecha_nac, País.nombre, Ciudad.nombre, Ciudad.País.nombre)

Email(<u>rut</u>, email)

País(nombre, población, PIB)

Idioma(<u>nombre</u>, pob_global)
PaísIdioma(<u>País.nombre</u>, <u>Idioma.nombre</u>, pob_país)

Vecino(País.nombre1, País.nombre2)

Ciudad(nombre, País.nombre, capital, población)

Persona(<u>rut</u>, nombre, fecha_nac, País.nombre, Ciudad.nombre, Ciudad.País.nombre)

Email(rut, email)

