

OLIMPIADA DE INFORMATICĂ ÎN ECHIPE

februarie 2019

Nest

On the vertices of a regular polygon N , birds have made their nests. The N vertices of the polygon have numbers from 0 to $^{N-1}$ counterclockwise. Each bird sits on one nest. At a certain moment, the birds change their nests. In this way, we obtain a permutation $^{(c_0,c_1,c_2,...c_{N-1})}$ where c_i represents the nest which will be later occupied by the bird that initially lived in the nest i . Because we want all the birds to make the same effort, the nests will be chosen in such a way that the distance between the initial nest i and the final one c_i should be the same for all the N birds.

We consider all the permutations $(c_0, c_1, c_2, ... c_{N-1})$ obtained after the birds move and we order them lexicographically.

Task

Write a program that reads two natural numbers N and K and which displays the permutation situated on the position K, in lexicographic order, after arranging the permutations obtained as a result of the birds' movements. **ATENTION:** the number K will be given in base 2.

Input data

From the standard input, we will read, on the first line, the number N and on the second line a string of values 0 or 1 non-separated by spaces, representing the digits of the number K written in base 2.

Output data

At the standard output, there will be N distinct whole numbers, separated by a space, with values between 0 and $^{N-1}$, representing the permutation situated on the position K , in lexicographic order, among all the possible permutations obtained after the birds move.

Constraints

- $1 \le N \le 1000000$
- Make sure that for a given N, there are at least K possibilities for the movement of the birds.

Examples

input	Output	Explanation
4	3 0 1 2	We have N=4 birds in 4 nests situated in the vertices of a square. They can move, respecting the conditions in
101		the statement in 6 ways which, in lexicographic order, can be represented through the following permutations:
		0123
		1032
		1230
		2301
		3012
		3210
		The number K has the representation 101 in base 2, so it has the value K=5 in base 10.
		We need the 5-th permutation in lexicographic order. This is 3 0 1 2

OLIMPIADA DE INFORMATICĂ ÎN ECHIPE

februarie 2019

		Notice that: For the first permutation, the birds remain on the same spot, so all of them cover the distance 0. For the 4-th permutation, the birds situated in opposite vertices change their places between themselves and, in this way, all of them cover a distance which is equal to the diagonal of the square. For the other 4 permutations, each bird covers a distance equal to the side of the square.
5 11	2 3 4 0 1	We have 5 nests on the vertices of a regular pentagon. There are 5 possibilities for the birds to move. In lexicographic order, they are described by the following permutations: 01234 12340 23401 34012 40123 The value of K in base 2 is 11 so K = 3. Notice that: For the first permutation, the birds stay in place, so they cover the distance 0. For the 2-nd and the 5-th, each bird covers a distance which is equal to the side of the pentagon. For the 3-rd and the 4-th, each bird covers a distance which is equal to the diagonal of the pentagon.

Maximum execution time/test: 0.1 seconds Total available memory 1 MB, out of which 1 MB for the stack.