

Predicting dementia types using machine learning approach on aggregate images

Yuting Gu

MSc HDAML Research Project

Supervisor: Dr. Yu Ye (Ye Lab)

Protein Aggregates Associated with Different Types of Dementia

Dementia

Alzheimer's Disease

Dementia with Lewy bodies

Frontotemporal Dementia

Parkinson's Disease

Progressive accumulation

Misfolded protein aggregates

Challenge

Hard to distinguish different disease associated with same protein aggregates

Morphological Difference of Aggregates

Super-resolved SMLM images

down to ~25 nmBeyond the diffraction limit of a typical optical microscope

Previous work from the lab

Super-resolved imaging technique

Some shape more prevalent to one disease than another

Use images capturing aggregate morphology to classify different types of dementia

Research Rationale

Hypothesis

Each type of dementia has a subset of morphological disease-specific aggregates

Aims

- Aggregate Morphology Analysis Use machine learning/deep learning approaches to analyse aggregate images to understand the differences in aggregate morphology between different diseases.
- **Prediction Pipeline** Develop a prediction pipeline for patient-level dementia classification based on aggregate populations from patient samples.

Data Acquisition and Preprocessing

<= 4 pixels
• Padded all to 128 x 128

Exclude larger than 128 pixels Exclude aggregate with sizes

- Single aggregate images (preprocessed)
- Randomly assign subset of patients to Training/Validation/Testing Set

Characterise aggregates

specific to distinct disease

Overview of Method Pipeline

Compare two pipelines

using different feature

extraction approaches

Evaluate

classifiers

Convolutional Autoencoder(CAE)

Convolutional Autoencoder(CAE)

Use Mean Squared Error (MSE) to select best dimensionality of reduction

Example of CAE performance at Best dim=256

Shape Measurements

56 shape measurement features collected for each image

5 commonly used shape measurement features

Feature Name	Definition
Area	the total number of white pixels of an aggregate
Solidity	the ratio of the area to the area of a convex hall (i.e. the smallest polygon that aggregates region) of an aggregate, representing the density of this shape
Eccentricity	the ratio of the distance between the foci of the best-fit ellipse to its major axis length, measuring how much the shape deviates from being a perfect circle
Number of branches	the number of pixels in the skeletonised aggregate that are surrounded by three or four other pixels
Skeleton size	the number of pixels of the skeleton of an aggregate

51 computed using IMEA package

macro descriptors

geometric features

perimeter, area, diameter and etc.

meso descriptors

intermediate details

like erosions

micro descriptors

finer details

roughness of particle contours, specific diameter measurements like Feret and etc.

statistical lengths

distribution and variation in lengths

various chord lengths

Prediction Stage: UMAP and K-Means

256 CAE image features

56 IMEA image features

Reduce dimensionalities to 20 features to enable the feasibility of clustering tools

K-Means

20 CAE-UMAP features

20 IMEA-UMAP features

Cluster Percentage

$$P_i = \frac{C_i}{\sum_{j=1}^K C_j}$$

 C_i is the number of aggregates affiliated to cluster i, and K is the total number of clusters

Clustering aggregate morphologies

using K-Means

Explore best choice of K

Repeating the clustering for different 6 splits and K ranging from 10 to 150.

Evaluate clustering performance by average silhouette score.

Higher score is better.

$$S(i) = rac{b(i) - a(i))}{max(a(i),b(i))}$$

Solve best K of a fitted quadratic line

Identifying significant clusters using Dirichlet regression

- Different grouped clusters present very distinct characteristics by their polygon shape
- Both feature extraction
 approaches (CAE and IMEA)
 result in almost the same grouped
 clusters, except the IMEA pipeline
 separated one more grouped
 cluster (f) than the CAE pipeline
- Some grouped clusters were consistently identified and selected as significant clusters for specific dementia types.

IMPERIAL

Patient-level Prediction

Tree based method, RF and XGBoost, tended to show superior results

Strengths, Limitations and Future Work

Strengths	 Identified clusters of disease-specific aggregates Observed resemblance in characteristics of these aggregate subsets in both pipelines, indicating stability of this aggregate identification method Developed end-to-end prediction pipeline unsupervised feature extraction method (CAE) fine-tune the models practically more efficient Evaluation of different feature extraction approaches and classifiers
Limitations	 Limited sample size (41 donors) Binary (black-and-white) images, limit the data's richness. One split of dataset, need more evaluation of generalisation
Future Work	 Collect more donors' sample Non-binary images with pixel intensity or coloured images Optimise models and replicate pipeline

Conclusion

Aim1: Aggregates morphology

Identified and characterised the morphological differences of disease-specific aggregates

Aim2: Prediction pipeline

Novel development of the comprehensive end-to-end machine learning pipeline for dementia prediction using aggregate images

weighted average AUC

CAE-Pipeline: 0.64

• IMEA-Pipeline: 0.68

Important foundational framework for developing a scalable, high-throughput diagnostic tool using aggregate morphology

Thank you for your attention!

Acknowledgement

Dr. Yu Ye
Main Supervisor
Principal Investigator
Senior Lecturer in Molecular Neuroscience
at Imperial College London

Hailey Gu HDA alumni Research Technician in Computational Biology

Dr. Michael MortenSecondary Supervisor
Research Associate in Biophysics