Memory Maps to Understand Models

Dharmesh Tailor

 $Uncertainty \rightarrow$

Bayesian Leverage Score

Bayesian Leverage Score

Bayesian Leverage Score

 $Uncertainty \rightarrow$

Why *memory* maps?

Our visual representation is derived from the **sensitivity** of the model to its training data

Examples with high sensitivity characterize the model's *memory* since the model changes a lot if these examples are removed or perturbed heavily

Nickl, P., Xu, L., Tailor, D., Möllenhoff, T., & Khan, M. E. (2023). The Memory Perturbation Equation: Understanding Model's Sensitivity to Data. NeurIPS, 2023.

Influence in linear regression

R Dennis Cook (& others) in 1970s

$$\boldsymbol{\theta}_*^{\setminus i} - \boldsymbol{\theta}_* = \mathbf{H}_*^{-1} \mathbf{x}_i \frac{\boldsymbol{e}_i}{1 - v_i}$$

$$f_i(\boldsymbol{\theta}_*^{\setminus i}) - f_i(\boldsymbol{\theta}_*) = \underline{\boldsymbol{e}_i} \cdot \frac{v_i}{1 - v_i}$$

Prediction error (residual)

$$\mathbf{e}_i = \mathbf{x}_i^{\top} \boldsymbol{\theta}_* - y_i$$

Prediction variance (leverage)

$$oldsymbol{v}_i = \mathbf{x}_i^ op \mathbf{H}_*^{-1} \mathbf{x}_i$$

Diagnostic tool for models: 2D scatter plot of residual-leverage

Extension to generic models

Bayesian Learning Rule unifies many popular learning algorithms (e.g. SGD, Newton's method, Adam) as specific instances of a natural-gradient descent to solve a generalized Bayesian objective

$$\lambda_t \leftarrow (1 - \rho)\lambda_{t-1} - \rho \sum_{j=0}^{N} \tilde{\mathbf{g}}_j(\lambda_{t-1})$$

BLR as inference in conjugate Bayesian model

$$q_t \propto \underbrace{(q_{t-1})^{1-\rho} (p_0)^{\rho}}_{\text{Prior}} \prod_{j=1}^{N} \underbrace{e^{\langle -\rho \tilde{\mathbf{g}}_j(\boldsymbol{\lambda}_{t-1}), \mathbf{T}(\boldsymbol{\theta}) \rangle}}_{\text{Likelihood}}$$

Specialization of existing sensitivity measures

ResNet-FRN-20 + CIFAR-10

Oo ranking per measure of top-1% examples

- Cook, R. D. and Weisberg, S. Characterizations of an empirical influence function for detecting influential cases in regression. Technometrics. 1980.
- Cook, R. D. Detection of influential observation in linear regression. Technometrics. 1977.
- Katharopoulos, A. and Fleuret, F. Not all samples are created equal: Deep learning with importance sampling. ICML. 2018.
- Feldman, V. and Zhang, C. What neural networks memorize and why: Discovering the long tail via influence estimation. NeurIPS. 2020.

Analyzing training trajectories

Understanding model complexity and diagnosing overfitting

Acknowledgements

Paul Chang (Aalto University)

Siddharth Swaroop (Harvard University)

Eric Nalisnick (University of Amsterdam)

Arno Solin (Aalto University)

Emtiyaz Khan (RIKEN AIP)

