Санкт-Петербургский политехнический университет Петра Великого Институт машиностроения, материалов и транспорта Высшая школа автоматизации и робототехники

Отчёт

по лабораторной работе №3

Дисциплина: Техническое зрение

Тема: Фильтрация изображений в частотной области

Студент гр. 3331506/70401

Преподаватель

Самарин А.С. Варлашин В.В.

« »____2020 г.

Санкт-Петербург 2020

Задание

- Реализовать прямое и обратное ДПФ, с возможностью вывода спектра.
- Реализовать фильтр высоких и низких частот в соответствии с заданием.
- Произвести свертку изображения с ядром фильтров: Собеля, усредняющего, Лапласа.
- Провести корреляцию (сравнение) изображений автомобильных номеров по очереди с 3-мя символами.

Прямое ДПФ

Прямое ДПФ для двумерного массива осуществляется следующим образом:

$$F(u,v) = \sum_{x=0}^{M-1} \sum_{v=0}^{N-1} f(x,y) e^{-i2\pi(ux/M + vy/N)}$$

Для реализации создана функция forwardTransform(Mat inputImage, Mat rezult). Данная функция принимает на вход входное одноканальное изображение в формате CV_32FC1 и записывает результат в двухканальное изображение в формате CV_32FC2. В нулевом канале выходного изображения хранится вещественная часть результата, в первом – мнимая.

Для оценки работы функции было найдено время работы и среднеквадратичная погрешность для вещественной и мнимой частей:

размер изображения	время выполнения, сек		отклоенние	
	библиотечная	ROM	Re	lm
150x100	0,001	10.511	0,0449	0,0654
240x340	0,001	402,213	0,0791	0,11

Для уменьшения ожидания везде вызывается библиотечная функция.

Вывод спектра

Для нахождения спектра необходимо выполнить следующую операцию:

$$|F(u,v)| = [R^2(u,v) + I^2(u,v)]^{1/2}$$

Для вывода спектра используется функция $spectrum(Mat\ reAndIm,\ Mat\ spec)$. Данная функция принимает на вход результат прямого ДПФ и записывает результат в одноканальное изображение CV_32FC1.

Для отображения спектра необходимо результат привести в логарифмический масштаб и преобразовать в CV_8UC1. Для удобного анализа спектра необходимо поменять местами квадранты 1-3 и 2-4.

Обратное ДПФ

Обратное ДПФ для двумерного массива осуществляется следующим образом:

$$f(x,y) = \frac{1}{MN} \sum_{u=0}^{M-1} \sum_{v=0}^{N-1} F(u,v) e^{i2\pi(ux/M+vy/N)}$$

Для реализации создана функция *inverseTransform*(*Mat reAndIn*, *Mat rezult*). Данная функция принимает на вход результат прямого преобразования и записывает результат в одноканальное изображение в формате CV_32FC1.

Для оценки работы функции было найдено время работы и среднеквадратичная погрешность:

					H
-	размер изображения	время выпол	отклонение		
		библиотечная	ком	отклонение	:
	150x100	0,001	7,8	0	
	240x340	0,001	271	0	

Режекторный фильтр Гаусса

Функция фильтра имеет вид:

$$H(u,v) = 1 - e^{-\left[\frac{D^2 - D_0^2}{DW}\right]^2}$$

Для применения фильтра используется функция $notchFilter(Mat\ ReAndIm, Mat\ newReAndIm, float\ D0, float\ W)$. $Mat\ ReAndIm$ — образ входного изображения, $Mat\ newReAndIm$ — переменная для записи образа выходного изображения, , $float\ D0$ — частота среза, $float\ W$ — ширина полосы.

Сперва в функции происходит заполнение фильтра:

Далее вызывается функция *spectrum* и ее результат перемножается с фильтром.

Входное изображение, спектр, фильтр, спектр после применения фильтра, выходное изображение:

Свертка с фильтрами

Для произведения свертки изображения с фильтром написаны следующие функции: laplas(Mat ReAndIm); box(Mat ReAndIm); sobel(Mat ReAndIm, int flag);

Алгоритм функций:

- Создание Mat соответствующего размерам входного изображения и его заполнение коэффициентами фильтра;
- Нахождение образа фильтра;
- Вывод спектра фильтра;
- Свертка входного образа с образом фильтра;
- Вывод спектра результата свертки;
- Обратное преобразование и вывод результата.

 $sobel(Mat\ ReAndIm,\ int\ flag)$ на вход принимает результат прямого преобразования и флаг. Если flag = 0, то применяется фильтр Собеля по горизонтали, если 1, то по вертикали.

Спектр фильтра Собеля по горизонтали, спектр результата свертки, результат:

Спектр фильтра Собеля по вертикали, спектр результата свертки, резуль-

тат:

Спектр фильтра Лапласа, спектр результата свертки, результат:

Спектр прямоугольного фильтра, спектр результата свертки, результат:

Определение символов на номерах

Для поиска символов на номерах реализована функция num(Mat num, Masymbol). На вход функция принимаем изображение номера и символа. Символ необходимо расширить до размеров номера.

Алгоритм функции:

- Нахождение образа номера и символа;
- Вывод спектра номера до корреляции;
- Корреляция образа номера и символа;
- Вывод спектра результата корреляции;
- Обратное преобразование;
- Нормализация и нахождение порогового значения;
- Пороговая фильтрация;
- Вывод итогового изображения.

Корреляция:

```
for (int x = 0; x < num.rows; x++)
{
    for (int y = 0; y < num.cols; y++)
    {
        float a1 = numForward.at<Vec2f>(x, y)[0];
        float b1 = numForward.at<Vec2f>(x, y)[1];
        float a2 = symbolForward.at<Vec2f>(x, y)[0];
        float b2 = -symbolForward.at<Vec2f>(x, y)[1];
        result.at<Vec2f>(x, y)[0] = a1 * a2 - b1 * b2;
        result.at<Vec2f>(x, y)[1] = a1 * b2 + a2 * b1;
}
```

Поиск символа «А».

Номер, символ и их спектры до корреляции:

Спектр после корреляции и результат обратного преобразования без фильтрации:

Отклик на символ:

Поиск символа «0».

Символ и его спектр до корреляции:

Спектр после корреляции и результат обратного преобразования без фильтрации:

Отклик на символ:

Поиск символа «9».

Символ и его спектр до корреляции:

Спектр после корреляции и результат обратного преобразования без фильтрации:

Отклик на символ:

Защита лабораторной работы

Для нахождения объекта на изображении использовалась операция корреляции. На вход функции подавались образы входных изображений и производилась корреляция:

```
for (int x = 0; x < num.rows; x++)
{
    for (int y = 0; y < num.cols; y++)
    {
        float a1 = numForward.at<Vec2f>(x, y)[0];
        float b1 = numForward.at<Vec2f>(x, y)[1];
        float a2 = symbolForward.at<Vec2f>(x, y)[0];
        float b2 = -symbolForward.at<Vec2f>(x, y)[1];

        result.at<Vec2f>(x, y)[0] = a1 * a2 - b1 * b2;
        result.at<Vec2f>(x, y)[1] = a1 * b2 + a2 * b1;
    }
}
```

Но при таком подходе результат был неточным и отклик мог быть в местах, где его быть не должно. Например:

Входные изображения:

Результат свертки:

После пороговой фильтрации:

Вывод: проводя корреляцию отклик может получиться совершенно не там, где это нужно.

Для решения этой проблемы можно использовать нормированную **кросскорреляцию**.

среднее изображение средний фильтр
$$\sum_{k,l} (g[k,l] - \overline{g})(f[m-k,n-l] - \overline{f}_{m,n})$$

$$h[m,n] = \frac{\sum_{k,l} (g[k,l] - \overline{g})^2 \sum_{k,l} (f[m-k,n-l] - \overline{f}_{m,n})^2}{\left(\sum_{k,l} (g[k,l] - \overline{g})^2 \sum_{k,l} (f[m-k,n-l] - \overline{f}_{m,n})^2\right)^{0.5}}$$

Для уменьшения влияния перепадов интенсивности пикселей выполняется вычитание среднего значения. Таким образом меняется диапазон значений. Далее проходит деление на вновь вычисленный диапазон.

Для ускорения работы кросскорреляция проводится в частотной области.

Сперва необходимо найти \bar{g} — среднеарифметическое значение интенсивности в изображении. А далее отнять от каждого пикселя входного изображения эту величину.

Так как исходное изображение находится в формате CV8UC1, то имеет диапазон значений от 0 до 255. И при вычитании \bar{g} может случиться переполнение. Поэтому входные изображения сперва приводятся к типу CV32FC1.

Чтобы найти среднее значение можно воспользоваться функцией void meanStdDev(InputArray src, OutputArray mean, OutputArray stddev, InputArray mask = noArray()).

```
Получение g-\bar{g} и f-\bar{f}: //перевод в float inputImage1.convertTo(inputImage1, CV_32FC1); inputImage2.convertTo(inputImage2, CV_32FC1); //поиск среднего значения Scalar Mean1; Mat Std1; meanStdDev(inputImage1, Mean1, Std1); Scalar Mean2; Mat Std2; meanStdDev(inputImage2, Mean2, Std2); inputImage1 = inputImage1 - Mean1; inputImage2 = inputImage2 - Mean2;
```

Далее необходимо расширить фильтр до размеров изображения.

Так как для ускорения работы все происходит в частотной области, то корреляция осуществляется перемножением образа входного изображения на комплексно-сопряженный образ фильтра.

```
//поиск образов
Mat FurForward(inputImage1.size(), CV_32FC2, Scalar(0));
Mat GlazaForward(inputImage1.size(), CV_32FC2, Scalar(0));
cv::dft(inputImage1, FurForward, DFT_COMPLEX_OUTPUT);
cv::dft(Glaza, GlazaForward, DFT_COMPLEX_OUTPUT);
//корреляция
Mat GF;
mulSpectrums(FurForward, GlazaForward, GF, 0, 1);
```

Далее выполняется обратное преобразование и нормализация результата:

```
Mat rezultInverse(GF.size(), CV_32FC1, Scalar(0));
cv::dft(GF, rezultInverse, DFT_INVERSE | DFT_REAL_OUTPUT);
cv::normalize(rezultInverse, rezultInverse, 0, 1, NormTypes::NORM_MINMAX);
```

Так как после прямого преобразования выполняется нормализация результата, то деление результата корреляции можно не проводить.

Результат нормированной кросскорреляции:

Вывод: изменение диапазона корреляции позволяет добиться верного результата, в отличии от простой корреляции. При этом количество операций почти не увеличилось.