CNN Architectures

COSC 410: Applied Machine Learning

Spring 2022

Prof. Apthorpe

Outline

- LeNet-style CNN Architectures
- Counting CNN Parameters
- Other Popular Architectures

- Deconvolutions & U-Nets
- 1D & 3D CNNs

Computer Vision Tasks

Image classification

Predict labels per image

Object Detection

Predict labels & bounding boxes

Image segmentation

Predict labels per pixel

(a) Image Classification

(b) Object Detection

(c) Semantic Segmentation

(d) Instance Segmentation

LeNet-style CNN Architecture

Convolution & pooling with increasing # of filters → FNN layers

35,330 total parameters

Popular CNN Architectures

- Many CNN architectures have been designed for different tasks
- Trends:
 - Smaller filters (e.g. 3x3)
 - More layers
 - Residual & skip connections
 - Same philosophy as "wide & deep" networks

Residual Connection

VGG-16

VGG stands for "Visual Geometry Group" after the group of researchers at Oxford who designed the network

ResNet-34

ResNet is named after the many residual connections in the network

ResNet-152

Deconvolutions

- Many CNNs for image segmentation include deconvolutional layers
 to produce output that is the same X & Y size as the input with per-pixel labels
 - Deconvolutional layers are up-sampling steps that reverse the down-sampling size reductions performed by pooling layers

Keras Conv2DTranspose layer implements a 2D deconvolution

Deconvolution: Upscaling with trainable filter weights **Unpooling**: simple upscaling, just repeat the pixel value NxN times

- Common architecture for image segmentation
 - Series of convolution & pooling layers → more, smaller feature maps
 - Series of convolution & deconvolution (or unpooling) layers → fewer larger feature maps
- Output is same size as original image

U-Nets

Nikolas Adaloglou

U-Nets

All padding is "same". All strides 1x1 unless specified. Dropout rate 0.2

Silburt, et al.

1D & 3D CNNs

- Convolutional networks are not limited to 2D images
- Convolution works on 1D data with 1D filters
 - E.g. audio recordings, Internet traffic rates, neuron spike trains

1D & 3D CNNs

- Convolutional networks are not limited to 2D images
- Convolution works on 3D data with 3D filters
 - E.g. video, volumetric imaging

 Keras Conv1D and Conv3D layers let you to build 1D and 3D CNNs

Training CNNs in Keras

See today's Jupyter notebook for CNN creation and training examples

- Keras comes with many existing architectures for easy* use
 - https://keras.io/api/applications/

^{*} importing and compiling the architectures is easy...getting high performance on your data often isn't

Questions?