Blake Griffith

HW 1: Chapter 2, 1.3, 2.3, 2.4, 3.2,,4.2,4.3,4.4,4.6, 4.10 & Pre-Lecture Problems: Chapter 2, 2.1, 3.1,4.5, 4.7

M373K

Due 09/10, 2013

Exercise (1.3). Let \mathbb{N} denote the set $\{1, 2, 3, \ldots\}$ of natural numbers, and let $s : \mathbb{N} \to \mathbb{N}$ be the shift map, defined by s(n) = n + 1. Prove that s has no right inverse, but it has infinitely many left inverses.

right inverse

Suppose that s has a right inverse r. Then by definition $\forall n \in \mathbb{N}$ we have $s \circ r(n) = n$. However if we take the case n = 1 we see:

$$s \circ r(1) = 1$$
$$s(r(1)) = 1$$
$$r(1) + 1 = 1$$
$$r(1) = 0$$

But this means s(r(1)) = s(0) which is undefined because $s : \mathbb{N} \to \mathbb{N}$ and $0 \notin \mathbb{N}$. So the right inverse cannot exist.

left inverse

Suppose s has a left inverse l. For any $n \in \mathbb{N}$ we must have $l : \mathbb{N} \to \mathbb{N}$ and

$$l \circ s(n) = n$$
$$l(s(n)) = n$$
$$l(n+1) = n$$

But the range of s(n) is $\{2,3,\ldots\}$ so our requirements on $l \circ s(n)$ only require l be a map from $\{2,3,\ldots\} \to \mathbb{N}$ so we are free to define l(1) to be any of the infinite natural numbers. So there are infinite left inverses of s.

Exercise (2.3). Let x, y, z and w be the elements of a group G.

- (a) Solve for y, given that $xyz^{-1}w = 1$.
- (b) Suppose that xyz = 1. Does it follow that yzx = 1? Does it follow that yxz = 1? Proof.

(a)

$$xyz^{-1}w = 1$$

$$x^{-1}xyz^{-1}w = x^{-1}$$

$$yz^{-1}w = x^{-1}$$

$$yz^{-1}ww^{-1} = x^{-1}w^{-1}$$

$$yz^{-1} = x^{-1}w^{-1}$$

$$yz^{-1}z = x^{-1}w^{-1}z$$

$$y = x^{-1}w^{-1}z$$

(b)

For yzx = yxz = 1 we would need xz = zx but x, z communitivity is not implied by the stated conditions. So it does not follow that yxz = 1.

Exercise (2.4). In which of the following cases is H a subgroup of G?

- (a) $G = GL_n(\mathbb{C})$ and $H = GL_n(\mathbb{R})$.
- (b) $G = \mathbb{R}^{\times} \text{ and } H = \{1, -1\}.$

(c) $G = \mathbb{Z}^+$ and H is the set of positive integers.

(d) $G = \mathbb{R}^{\times}$ and H is the set of positive reals.

(e)
$$G = GL_2(\mathbb{R})$$
 and H is the set of matrices $\begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix}$ with $a \neq 0$.

Proof.

(a)

Yes. We have closure since $GL_n(\mathbb{C}) \subset GL_n(\mathbb{R})$ and $GL_n(\mathbb{R})$ is closed under the matrix product. We have the identity element since $I \in GL_n(\mathbb{R})$. And we have inverses since all elements of $GL_n(\mathbb{R})$ are invertible by definition and contained in $GL_n(\mathbb{R})$.

(b)

Yes. H is closed under multiplication. The identity element $1 \in H$. And finally 1 and -1 are each their own inverse element.

(c)

No. The element 644228 is in H but its inverse, -644228, is not in H.

(d)

Yes. H is closed since for any $a, b \in \mathbb{R}_{>0}$ we have ab > 0. Inverses are in H because if we consider some $a \in \mathbb{R}_{>0}$. Then its inverse is 1/a which is also in \mathbb{R} . Finally $R_{>0}$ contains the multiplicative identity element 1.

(e)

Yes. We have closure because.

$$A = \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix}$$
$$AA = \begin{pmatrix} a^2 & 0 \\ 0 & 0 \end{pmatrix}$$
$$AAA = \begin{pmatrix} a^3 & 0 \\ 0 & 0 \end{pmatrix}$$

And so on... So the H is closed under the matrix product. We have the identity element. Which is the case where a=1.

$$\left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right) \left(\begin{array}{cc} a & 0 \\ 0 & 0 \end{array}\right) = \left(\begin{array}{cc} a & 0 \\ 0 & 0 \end{array}\right)$$

And

$$\left(\begin{array}{cc} a & 0 \\ 0 & 0 \end{array}\right) \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right) = \left(\begin{array}{cc} a & 0 \\ 0 & 0 \end{array}\right)$$

And finally H contains the inverses of all its elements which are of the form:

$$AA^{-1} = \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1/a & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$

Exercise (3.2). Prove that if a and b are positive integers whose sum is a prime p, their greatest common divisor is 1.

Proof. Let a + b = c where c is prime and define gcd(a, b) = d where d is the biggest number that divides a and b. Now since d divides a and b, it must divide c. Because we could Rewrite a + b = c as

$$\underbrace{(d+\cdots+d)}_{a} + \underbrace{(d+\cdots+d)}_{b} = \underbrace{(d+\cdots+d)}_{c}$$

However since c is prime its only divisors are c and 1. So d is either c or 1. But we can rule out d = c since $d \le a$ and $d \le b$ and a + b = c. Therefore d = 1.

Exercise (4.2). An nth root of unity is a complex number z such that $z^n = 1$.

- (a) Prove that nth roots if unity form a cyclic subgroup of \mathbb{C}^{\times} of order n.
- (b) Determine the product of all the nth roots of unity.

Proof. (a)

If z is an nth root of unity. Such that $z^n = 1$. Then we can generate then cyclic group $\langle z \rangle$ with powers of it up to n-1

$$\langle z \rangle = \{z^0, z^1, z^2, \dots z^{n-1}\}$$

This is closed because any product in $\langle z \rangle$ can be written $z^i z^j = z^{qn+r}$ where q is some integer, and 0 < r < n. By the division algorithm. So we can write $z^{i+j} = z^{qn+r} = z^{qn}z^r = z^r$ and z^r is in $\langle z \rangle$.

The identity element 1 is contained in $\langle z \rangle$.

And each elements inverse can be taken as $(z^i)^{-1} = z^{n-i}$.

(b)

First lets consider the form of the *n*th root of unity. We rewrite z as $z = |z|^n \exp(in\theta)$. But $|z|^n$ must be one for $z^n = 1$. Now we rewrite $\exp(in\theta)$ using Euler's formula as $z^n = \exp(in\theta) = 1 = \cos(n\theta) + i\sin(n\theta)$. This requires that $\theta = 2\pi/n$. So we get the *n*th root of unity in the form $z = \exp i2\pi/n$.

If we take the product of all roots of unity up to n we see:

$$\prod_{j=1}^{n} \exp(i2\pi/j) = \exp(i2\pi(\sum_{j=1}^{n} 1/j))$$

But the sum here is a divergent harmonic series... So I don't know what to do.

Exercise (4.3). Let a and b be elements of a group G. Prove that ab and ba have the same order.

Proof. Let ab be order n, or $(ab)^n = 1$. Then we can rewrite this as:

$$(ab)^n = (ab)_1(ab)_2 \dots (ab)_n = 1$$

We can show this is equivalent to $(ba)^n = 1$ as follows.

$$(ab)_{1}(ab)_{2} \dots (ab)_{n} = 1$$

$$a^{-1}(ab)_{1}(ab)_{2} \dots (ab)_{n} = a^{-1}$$

$$(b)_{1}(ab)_{2} \dots (ab)_{n} = a^{-1}$$

$$(b)_{1}(ab)_{2} \dots (ab)_{n} a = a^{-1}a$$

$$(b)_{1}(ab)_{2} \dots (ab)_{n} a = 1$$

Now shifting the indices.

$$(ba)_1(ba)_2 \dots (ba)_n = 1$$
$$(ba)^n = 1$$

Therefore ba is order n.

Exercise (4.4). Describe all groups G that contain no proper subgroup.

Proof. For a group to contain no proper subgroup. It either needs to a trivial group itself. Or every element in the group can generate the entire group. Therefore these groups lacking subgroups must be cyclic, because by our definition, a cyclic group can be generated by one element $\langle x \rangle$.

So we seek a cyclic group G which has no subgroups. First we consider a cyclic G with infinite order. This has infinite subgroups because we can take any element x^i and use it to generate a subgroup $< x^i >$ that will not contain x^{i-1} therefore $< x^i >$ is proper subgroup, so groups with infinite order are ruled out.

For groups with finite order, consider G with order p, and some $x^i \in G$. Then $(i\dot{n} \mod p)$ cannot be zero for some 0 < n < p. Because otherwise, if $(i\dot{n} \mod p) = 0$ then x^i would generate the subgroup $\{(x^i)^0, (x^i)^1, \dots, (x^i)^n\}$ and since n < p this would be a proper subgroup since it contains fewer elements than the parent group.

This requires that p be prime. Otherwise it would have a divisor d and choosing the dth element would yield a subgroup as above.

So the only groups G, without subgroups are cyclic groups with prime orders.

Exercise (4.6). (a) Let G be a cyclic group of order 6. How many of its elements generate G? Answer the same question for cyclic groups of orders 5 and 8.

(b) Describe the number of elements that generate a cyclic group of arbitrary order n.

Proof. (a)

A group is generated by its elements if the power of the element is coprime with the order of the group.

To see this consider a group G of order n and an element $x^i \in G$ where i is not coprime with n. Then for some a < n we have ai = n so we would only generate the subgroup $\{(x^i)^0, (x^i)^1, \dots (x^i)^a\}$.

So for a group of order 6, there are 2 coprimes: 1 and 5. For order 5 we have 4 coprimes: 1, 2, 3, 4. For order 8 we have 4 coprimes: 1, 3, 5, 7.

(b)

The number of elements which generate a cyclic group of order n is equal to the number of integers coprime with n and less than n.

Exercise (4.10). Show by an example that the product of elements of finite order in a group need not have finite order. What if the group is abelian? HINT: Think about 2×2 matrices.

Proof. Consider two matrices which are inverses of themselves:

$$A = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}, A^2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
$$B = \begin{pmatrix} 1 & 0 \\ 1 & -1 \end{pmatrix}, B^2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

So < A > and < B > are finite order. But the product < AB > is not.

$$AB = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 1 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ -2 & 1 \end{pmatrix}$$
$$(AB)^2 = \begin{pmatrix} 1 & 0 \\ -4 & 1 \end{pmatrix}$$
$$(AB)^3 = \begin{pmatrix} 1 & 0 \\ -8 & 1 \end{pmatrix}$$

And so on.. So the order of $\langle AB \rangle$ is infinite.

If we consider two elements of finite order in an Abellian group, it must be true that

$$(ab)^l = \underbrace{(ab)(ab)\dots(ab)}_{l \text{ times}} = \underbrace{(a\dots a)}_{l \text{ times}} \underbrace{(b\dots b)}_{l \text{ times}} = a^l b^l$$

So if a is order n and b is order m, ab is at most order mn.

Pre-Lecture Problems

Exercise (2.1). Make a multiplication table for the symmetric group S_3 .

Using the same notation as on page 42 of the textbook. with rows o columns:

	1	x	x^2	y	xy	x^2y
1	1	\boldsymbol{x}	x^2	y	xy	x^2y
x	x	x^2	1	xy	x^2y	y
x^2	x^2	1	\boldsymbol{x}	x^2y	y	xy
y	y	x^2y	xy	x	x^2	x
xy	xy	y	x^2y	x^2	1	x^2
x^2y	x^2y	xy	y	1	\boldsymbol{x}	1

Exercise (3.1). Let a = 123 and b = 321. Compute d = gcd(a, b) and express d as an integer combination ra + sb.

Applying the Euclidean Algorithm

$$321 = 2 \cdot 123 + 75$$

$$123 = 1 \cdot 75 + 48$$

$$75 = 1 \cdot 48 + 27$$

$$48 = 1 \cdot 27 + 21$$

$$27 = 1 \cdot 21 + 6$$

$$21 = 4 \cdot 6 + 3$$

$$6 = 2 \cdot \boxed{3}$$

Now we work backwards to find the desired r and s.

$$3 = 21 - 3 \cdot 6$$

$$3 = 21 - 3(27 - 21) = 4 \cdot 21 - 3 \cdot 27$$

$$3 = -3 \cdot 27 + 4(48 - 27) = 4 \cdot 48 - 7 \cdot 27$$

$$3 = 4 \cdot 48 - 7(75 - 48) = -7 \cdot 75 + 11 \cdot 48$$

$$3 = -7 \cdot 75 + 11(123 - 75) = 11 \cdot 123 - 18 \cdot 75$$

$$3 = 11 \cdot 123 - 18(321 - 2 \cdot 123)$$

$$3 = \boxed{47} \cdot 123 - \boxed{18} \cdot 321$$

Exercise (4.5). Prove that every subgroup of a cyclic group is cyclic. Do this by working with exponents and use the description of the subgroups of \mathbb{Z}^+ .

Proof. Suppose G is a cyclic group and H is a subgroup of G. If H is the identity element or equal to G we are done since these are cyclic. If H is a proper subgroup

of G, then each element of H must be of the form x^i since every element in G has this form.

So we can choose the element with lowest positive power, m. So $x^m \in H$. and we choose some other arbitrary element $a = x^n$ of H.

But by the division algorithm we can write n = qm + r for some integer q and $0 \le r < m$. Since $m \le n$.

So we can write $x^n = x^{qm+r} = (x^m)^q x^r$. But we required that $0 \le r < m$ and m be the smallest positive power in H. So r = 0 and $x^r = 0$. So now we have $x^n = (x^m)^q$ and x^m to any power is in H since it must be closed. So any arbitrary element of H can be written as a power of x. So < x >= H.

Exercise (4.7). Let x and y be elements of a group G. Assume that each of the elements x, y and xy has order 2. Prove that the set $H = \{1, x, y, xy\}$ is a subgroup of G and that it has order 4.

Proof. For H to be a subgroup of G it must be closed, contain the identity element, and contain each element's inverse. The latter two requirements are easily demonstrated:

- identity: The set contains 1. So we have the identity element.
- inverses: We are given that each element is order 2. Therefore $1^2 = x^2 = y^2 = (xy)^2 = 1$. So each element is its own inverse.

The requirement of closure can be demonstrated by showing that the Cayley table only contains elements which are inside the set. Note that $yx = 1 \cdot yx = (xy)(xy)(yx) = xyx(yy)x = xy(xx) = xy$.

	1	x	y	xy
1	1	\boldsymbol{x}	y	xy
x	x	1	xy	y
y	y	xy	y	x
xy	xy	y	x	1

We have shown H is a subgroup. Now we can say it is order 4 because it only has 4 elements.