Esame di Algebra e Geometria del 12/2/2020

Si risolvano i seguenti esercizi, <u>motivando tutti i passaggi e scrivendo le definizioni</u> che si ritengono opportune:

- [.../7] 1. Siano $A = \{2, 4, 6, 8, 10, 12\}$ e $B = \{3, 4, 5, 6, 7\}$ e consideriamo la funzione $f : A \to B$ definita nel seguente modo: per ogni numero $n \in A$, f(n) è il numero di lettere che compongono la parola in italiano che corrisponde al numero n. Per esempio se n = 2 allora dato che nella parola "due" ci sono 3 lettere si ha f(2) = 3.
 - (a) Quanti elementi ha $\mathcal{P}(A \times \mathcal{P}(B))$? E quanti elementi ha $\mathcal{P}(A \times (A \cap B))$?
 - (b) Scrivere i valori di f(n) per ogni $n \in A$. La funzione f è iniettiva? E' suriettiva? Perché?
 - (c) Considerare la relazione di divisibilità sull'insieme A, rappresentare il diagramma di Hasse e dire se esistono minimi e massimi, elementi minimali e massimali.
- [.../5] 2. Provare per induzione che, per $n \ge 1$:

$$\sum_{k=1}^{n} (2k-1) = n^2.$$

- [.../4] 3. Scrivere la tabella moltiplicativa di \mathbb{Z}_3 e determinare gli elementi invertibili di \mathbb{Z}_3 . Che struttura algebrica è (\mathbb{Z}_3, \cdot) ? E $(\mathbb{Z}_3 \setminus \{[0]_3\}, \cdot)$?
- [.../5] 4. Utilizzando il metodo di Gauss, dire se il seguente sistema di 2 equazioni in 3 incognite ha soluzioni e quante ne ha, e calcolarle nel caso in cui esistano:

$$\begin{cases} 2x & -2y & +4z & = & 1 \\ -x & +y & -2z & = & -1/2 \end{cases}$$

[.../7] 5. Si consideri l'applicazione lineare $f: \mathbb{R}^3 \to \mathbb{R}^3$ definita da

$$f(x, y, z) = (x + y, -2x + 4y, 2x + z)$$
.

- Trovare la dimensione di Im f e Ker f.
- Trovare gli autovalori di f, e per ogni autovalore calcolare la molteplicità algebrica e geometrica e l'autospazio corrispondente. Scegliere un autospazio tra quelli calcolati e mostrare che è un sottospazio vettoriale di \mathbb{R}^3 .
- Dire se esiste una base di \mathbb{R}^3 formata da autovettori di f.