Technische Universität Berlin

Fakultät II – Institut für Mathematik Bärwolff/Garcke/Penn-Karras/Tröltzsch SS 09 05. Oktober 2009

Oktober – Klausur (Rechenteil) Analysis II für Ingenieure

Name:	Vorname:					
MatrNr.:	Studi	engang	:			
Neben einem handbeschriebenen A4 B	latt mi	t Notiz	en			
sind keine Hilfsmittel zugelassen.						
Die Lösungen sind in Reinschrift auf schriebene Klausuren können nicht ge				ben. M	Iit Blei	stift ge-
Dieser Teil der Klausur umfasst die vollständigen Rechenweg an.	Rechei	naufgal	oen. G	eben S	Sie imn	ner den
Die Bearbeitungszeit beträgt eine St u	ınde.					
Die Gesamtklausur ist mit 40 von 80 beiden Teile der Klausur mindestens 12				*		
Korrektur						
	1	2	3	4	5	Σ

1. Aufgabe

8 Punkte

Für welche $x \in \mathbb{R}$ konvergiert die Potenzreihe

$$\sum_{n=0}^{\infty} \frac{2^n}{n+2} x^n ?$$

2. Aufgabe

9 Punkte

Bestimmen Sie alle lokalen und globalen Extremwerte der Funktion

$$f: \mathbb{R}^2 \to \mathbb{R}$$
, $f(x,y) = \cos(x) + y(y+2)$.

3. Aufgabe

7 Punkte

Bestimmen Sie alle Extremwerte der Funktion

$$f: \mathbb{R}^2 \to \mathbb{R}$$
, $f(x,y) = x^2 + y^2$,

auf der Ellipse

$$M = \{(x, y)^T \in \mathbb{R}^2 \mid x^2 + 4y^2 = 4\}.$$

4. Aufgabe

8 Punkte

- (i) Skizzieren Sie die kompakte Menge $M\subset\mathbb{R}^2$, welche durch die Kurven $y=\frac{1}{x},\ y=4x$ und $y=\frac{1}{4}x$ begrenzt wird.
- (ii) Berechnen Sie den Flächeninhalt von M.

5. Aufgabe

8 Punkte

Gegeben seien das Vektorfeld

$$\vec{v}: \mathbb{R}^3 \to \mathbb{R}^3, \quad \vec{v}(x, y, z) = (1, 0, -2xy)^T,$$

und die Fläche $F\subset\mathbb{R}^3$ mit der Parametrisierung

$$\Phi(u,v) = \begin{pmatrix} u \\ v \\ 1 + u + v \end{pmatrix}, \quad 0 \le u \le 2, \ 0 \le v \le 2\pi.$$

Berechnen Sie das Flußintegral

$$\int_{E} \vec{v} \cdot d\vec{O} .$$