Statistical aspects of stochastic algorithms for entropic optimal transportation between probability measures

Jérémie Bigot

Institut de Mathématiques de Bordeaux Equipe Image, Optimisation et Probabilités (IOP)

Université de Bordeaux

Joint work with Bernard Bercu (IMB, Bordeaux)

Statistical modeling for shapes and imaging

The Mathematics of Imaging, IHP, March 2019

- 1 Motivations from of a ressource allocation problem
- 2 Wassertein optimal transport
- 3 Regularized optimal transport and stochastic optimisation
- 4 Data-driven choice of the regularization parameter?

Data at hand 1:

- locations of Police stations in Chicago
- spatial locations of reported incidents of crime (with the exception of murders) in Chicago in 2014

Questions (of interest?):

- given the location of a crime, which Police station should intervene?
- how updating the answer in an "online fashion" along the year?

^{1.} Open Data from Chicago: https://data.cityofchicago.org

Locations y_1, \ldots, y_J of Police stations in Chicago

Spatial location X_1 of the **first** reported incident of crime in Chicago in the year 2014

Spatial locations X_1, X_2 of reported incidents of crime in Chicago in **chronological order**

Spatial locations X_1, X_2, X_3 of reported incidents of crime in Chicago in **chronological order**

Spatial locations X_1, \dots, X_4 of reported incidents of crime in Chicago in **chronological order**

Spatial locations X_1, \ldots, X_5 of reported incidents of crime in Chicago in **chronological order**

Spatial locations of reported incidents of crime in Chicago in **chronological order** (first 100)

Spatial locations of reported incidents of crime in Chicago in **chronological order** (first 1000)

Spatial locations X_1, \dots, X_N of reported incidents of crime in Chicago in **chronological order** (total N = 16104)

Heat map (kernel density estimation) of spatial locations of reported incidents of crime in Chicago in 2014

- 1 Motivations from of a ressource allocation problem
- 2 Wassertein optimal transport
- 3 Regularized optimal transport and stochastic optimisation
- 4 Data-driven choice of the regularization parameter?

Statistical approach to ressource allocation

Modeling assumptions:

 spatial locations of reported incidents of crime : a sequence of iid random variables

$$X_1,\ldots,X_n$$

sampled from an **unknown** probability measure μ with support $\mathcal{X} \subset \mathbb{R}^2$

locations of Police station : a known and discrete probability measure

$$\nu = \sum_{j=1}^{J} \nu_j \delta_{y_j}$$

where

- $y_i \in \mathbb{R}^2$ represent the spatial location of the j-th Police station
- ν_j is a positive weight representing the "capacity" of each Police station (we took $\nu_j = 1/J$ that is uniform weights)

Statistical approach to ressource allocation

Point of view in this talk: ressource allocation can be solved by finding an optimal transportation map

$$T: \mathcal{X} \to \{y_1, \ldots, y_J\}$$

which pushes forward μ onto $\nu = \sum_{j=1}^{J} \nu_j \delta_{y_j}$ (notation : $T \# \mu = \nu$), with respect to a given cost function, e.g. a distance on \mathcal{X}

$$c(x,y) = \|x-y\|_{\ell_p} = \left(\sum_{k=1}^d (x_k - y_k)^p\right)^{1/p}, \quad x,y \in \mathbb{R}^d \text{ (here } d=2)$$

Question : how doing on-line estimation of such a map using the observations $X_1, \ldots, X_n \sim_{iid} \mu$?

Optimal transport between probability measures

- Let $T: \mathcal{X} \to \{y_1, \dots, y_J\}$ such that $T \# \mu = \nu$
- Let $\Pi(\mu, \nu)$ be the set of probability measures on $\mathcal{X} \times \mathcal{X}$ with marginals μ and ν

Definition

The optimal transport problem between μ and ν is

$$W_0(\mu, \nu) = \min_{T:T\#\mu=\nu} \int_{\mathcal{X}} c(x, T(x)) d\mu(x)$$
, (Monge's formulation)

or

$$W_0(\mu,
u) = \min_{\pi \in \Pi(\mu,
u)} \int_{\mathcal{X} \times \mathcal{X}} c(x, y) d\pi(x, y)$$
, (Kantorovich's formulation)

where c(x, y) is the cost function of moving mass from x to y.

An example of semi-discrete optimal transport

Optimal transport of an absolutely continuous measure μ onto a discrete measure ν (black dots)

An example of semi-discrete optimal transport

Optimal transport of μ onto the discrete measure ν (black dots) - Optimal map T for the Euclidean cost $c(x,y) = \|x-y\|_{\ell_2}$

Semi-discrete optimal transport

Unicity of an optimal mapping $T: \operatorname{supp}(\mu) \to \{y_1, \dots, y_J\}$ such that $T\#\mu = \nu$ given, for all $1 \le j \le J$, by ¹

$$T^{-1}(y_j) = \left\{ x \in \text{supp}(\mu) \ : \ c(x, y_j) - v_{j,0}^* \le c(x, y_k) - v_{k,0}^* \text{ for all } 1 \le k \le J \right\}$$

where $v_0^* \in \mathbb{R}^J$ is any maximizer of the un-regularized semi-dual problem of the Kantorovich's formulation of OT.

The sets $\{T^{-1}(y_j)\}$ are the so-called Laguerre cells (important concept from computational geometry).

^{1.} Mérigot (2018), Cuturi and Peyré (2017)

- 1 Motivations from of a ressource allocation problem
- 2 Wassertein optimal transport
- 3 Regularized optimal transport and stochastic optimisation
- 4 Data-driven choice of the regularization parameter?

Optimal transport between probability measures

Problem: computational cost of optimal transport for data analysis 1

Case of discrete measures : if

$$\mu = \sum_{i=1}^K \mu_i \delta_{x_i}$$
 and $\nu = \sum_{j=1}^K \nu_j \delta_{y_j}$

then the cost to evaluate $W_0(\mu, \nu)$ (linear program) is generally

$$\mathcal{O}(K^3 \log K)$$

^{1.} See the recent book by Cuturi & Peyré (2018)

Regularized optimal transport

Definition (Cuturi (2013))

Let μ and ν be any probability measures supported on \mathcal{X} . Then, the regularized optimal transport problem between μ and ν is

$$W_{\varepsilon}(\mu,\nu) = \min_{\pi \in \Pi(\mu,\nu)} \int_{\mathcal{X} \times \mathcal{X}} c(x,y) d\pi(x,y) + \varepsilon KL(\pi|\mu \otimes \nu),$$

where $\epsilon > 0$ (regularization parameter) and

$$\mathit{KL}(\pi|\xi) = \int_{\mathcal{X}\times\mathcal{X}} \Big(\log\Big(\frac{d\pi}{d\xi}(x,y)\Big) - 1\Big) d\pi(x,y), \text{ with } \xi = \mu \otimes \nu.$$

Case of discrete measures : for $\epsilon > 0$

- Sinkhorn algorithm (iterative scheme) to compute $W_{\varepsilon}(\mu, \nu)$
- computational cost of $\mathcal{O}(K^2)$ at each iteration

Stochastic optimal transport

Proposition (Genevay, Cuturi, Peyré and Bach (2016))

Let μ be any probability measure and $\nu = \sum_{j=1}^{J} \nu_j \delta_{y_j}$. For $\varepsilon > 0$, solve the smooth concave maximization problem

$$W_{arepsilon}(\mu,
u) = \max_{v \in \mathbb{R}^{J}} H_{arepsilon}(v), \ \ ext{where} \ \ \ \underbrace{H_{arepsilon}(v) := \mathbb{E}[h_{arepsilon}(X, v)]}_{ ext{Stochastic optimization}}$$

where *X* is a random variable with distribution μ , and for $x \in \mathcal{X}$ and $v \in \mathbb{R}^J$,

$$h_{\varepsilon}(x, v) = \sum_{j=1}^{J} v_j \nu_j - \varepsilon \log \left(\sum_{j=1}^{J} \exp \left(\frac{v_j - c(x, y_j)}{\varepsilon} \right) \nu_j \right) - \varepsilon.$$

Stochastic algorithm 1

For fixed $\epsilon > 0$, Robbins-Monro algorithm to compute a minimizer

$$v^* := v_{\varepsilon}^* \in \underset{v \in \mathbb{R}^J}{\arg \min} \mathbb{E}[h_{\varepsilon}(X, v)]$$

Let $X_1, \ldots, X_n \sim_{iid} \mu$, choose $V_0 \in \mathbb{R}^J$ and a sequence γ_{n+1} of steps with $\sum_{n=1}^{\infty} \gamma_n = +\infty$ and $\sum_{n=1}^{\infty} \gamma_n^2 < +\infty$ and do

$$\widehat{V}_{n+1} = \widehat{V}_n + \gamma_{n+1} \nabla_{\nu} h_{\varepsilon}(X_{n+1}, \widehat{V}_n)$$

Easy computation of gradients for $\epsilon > 0$ (smooth optimization)

$$\nabla_{\nu} h_{\varepsilon}(x, \nu) = \nu - \pi(x, \nu)$$

where $\pi(x, v) \in \mathbb{R}^J$ with

$$\pi_j(x, v) = \left(\sum_{k=1}^J \nu_k \exp\left(\frac{v_k - c(x, y_k)}{\varepsilon}\right)\right)^{-1} \nu_j \exp\left(\frac{v_j - c(x, y_j)}{\varepsilon}\right)$$

^{1.} Genevay, Cuturi, Peyré and Bach (2016), Galerne, Leclaire, Rabin (2018)

Main results on the sequence \widehat{V}_n : assume that the step $\gamma_n = \gamma/n$ where $\gamma > 0$ satisfies

$$\gamma>\frac{1}{2\rho^*}$$

where ρ^* denotes the (second) smallest value of the Hessian matrix

$$-\nabla^2 H_{\varepsilon}(v)$$
 at $v = v^*$,

or that $\gamma_n = \gamma/n^c$ where $\gamma > 0$ and 1/2 < c < 1.

Proposition

Then, $\lim_{n\to\infty} \widehat{V}_n = v^*$ almost surely, and one has the asymptotic normality of

$$\sqrt{n^c}(\widehat{V}_n-v^*)$$

as $n \to +\infty$.

1. Bercu, B. & Bigot, J. (2018) ArXiv:1812.09150

Main results on the sequence \widehat{V}_n : assume that the step $\gamma_n = \gamma/n$ where $\gamma > 0$ satisfies

$$\gamma > \frac{1}{2\rho^*}$$

where ρ^* denotes the (second) smallest value of the Hessian matrix

$$-\nabla^2 H_{\varepsilon}(v)$$
 at $v = v^*$,

or that $\gamma_n = \gamma/n^c$ where $\gamma > 0$ and 1/2 < c < 1.

Interestingly, one has that

$$-\nabla^2 H_{\varepsilon}(v^*) = \frac{1}{\varepsilon} \Big(\mathbb{E} \big[\pi(X, v^*) \pi(X, v^*)^T \big] - \operatorname{diag}(v) \Big)$$

which is not far from the covariance matrix of a multinomial distribution, implying that

$$\frac{1}{\varepsilon} \min_{1 \leq j \leq J} \nu_j \leq \rho^* \leq \frac{1}{\varepsilon}, \text{ hence we took } \gamma = \frac{\varepsilon}{2 \min_{1 \leq j \leq J} \nu_j}$$

^{1.} Bercu, B. & Bigot, J. (2018) ArXiv:1812.09150

Main goal : estimation of the Wasserstein functional $W_{\varepsilon}(\mu, \nu)$ based on $X_1, \ldots, X_n \sim_{iid} \mu$ and assuming that ν is known

A simple recursive estimator :

$$\widehat{W}_n = \frac{1}{n} \sum_{k=1}^n h_{\varepsilon}(X_k, \widehat{V}_{k-1}).$$

Main results : a.s. convergence of \widehat{W}_n + asymptotic normality with same conditions for γ_n

$$\sqrt{n}\Big(\widehat{W}_n - W_{\varepsilon}(\mu, \nu)\Big) \xrightarrow{\mathcal{L}} \mathcal{N}\big(0, \sigma_{\varepsilon}^2(\mu, \nu)\big)$$

where the asymptotic variance $\sigma_{\varepsilon}^2(\mu,\nu)$ can also be estimated in a recursive manner

$$\widehat{\sigma}_n^2 = \frac{1}{n} \sum_{k=1}^n h_{\varepsilon}^2(X_k, \widehat{V}_{k-1}) - \widehat{W}_n^2.$$

^{1.} Bercu, B. & Bigot, J. (2018) ArXiv:1812.09150

Main goal : estimation of the Wasserstein functional $W_{\varepsilon}(\mu, \nu)$ based on $X_1, \ldots, X_n \sim_{iid} \mu$ and assuming that ν is known

A simple recursive estimator :

$$\widehat{W}_n = \frac{1}{n} \sum_{k=1}^n h_{\varepsilon}(X_k, \widehat{V}_{k-1}).$$

Rate of convergence of the expected excess risk :

$$\widehat{R}_n = H_{\varepsilon}(v^*) - \mathbb{E}[\widehat{W}_n] = \frac{1}{n} \sum_{k=1}^n \left(H_{\varepsilon}(v^*) - \mathbb{E}[H_{\varepsilon}(\widehat{V}_{k-1})] \right)$$

Here, H_{ε} is not strongly concave, but satisfies a generalized self-concordance property ¹ allowing to have convergence of \widehat{R}_n faster than $1/\sqrt{n}$ for $\gamma_n = \gamma/n^c$ where $\gamma > 0$ and 3/4 < c < 1

^{1.} Bach (2014)

Proposition (Generalized self-concordance)

For any $v \in \mathbb{R}^J$, we have

$$\left\|\nabla H_{\varepsilon}(v) - \nabla^2 H_{\varepsilon}(v^*)(v - v^*)\right\| \le \frac{1}{\varepsilon^2 \sqrt{2}} \|v - v^*\|^2.$$

Moreover, assume that $||v - v^*|| \le A$ for some A > 0. Then,

$$\langle \nabla H_{\varepsilon}(v), v - v^* \rangle \le \begin{cases} -\rho^* g\left(\frac{\sqrt{2}}{\varepsilon}A\right) \|v - v^*\|^2 & \text{if } A \le 1, \\ -\frac{\rho^*}{A} g\left(\frac{\sqrt{2}}{\varepsilon}\right) \|v - v^*\|^2 & \text{if } A \ge 1. \end{cases}$$

where

$$g(\eta) := \frac{1}{\eta} (1 - \exp(-\eta)) \ge \exp(-\eta)$$

^{1.} Bercu, B. & Bigot, J. (2018) ArXiv :1812.09150

Optimal transport of an absolutely continuous measure μ onto a discrete measure ν (black dots)

Samples $X_1,\ldots,X_N\sim_{iid}\mu$ (with N=20000) and discrete measure ν (black dots)

Convergence of the algorithm using the quadratic cost

$$c(x, y) = ||x - y||_{\ell_2}^2$$

Estimated optimal map $\hat{T}_{\varepsilon,N}$ for the quadratic cost $c(x,y) = \|x-y\|_{\ell_2}^2$ after N=20000 iterations and $\varepsilon=0.005$

Numerical experiments - Laguerre cells estimation

Estimation of Laguerre cells after n iterations

$$\widehat{T}_{\varepsilon,n}^{-1}(y_j) = \left\{ x \in \operatorname{supp}(\mu) \ : \ c(x,y_j) - \widehat{V}_{n,j} \leq c(x,y_k) - \widehat{V}_{n,k} \text{ for all } 1 \leq k \leq J \right\}$$

where $\widehat{V}_{n,j}$ denotes the *j*-entry of the vector \widehat{V}_n considered as an estimation of a maximizer of the un-regularized semi-dual problem

$$v_0^* \in \operatorname*{arg\,min}_{v \in \mathbb{R}^J} \mathbb{E}[h_0(X, v)]$$

where $v \mapsto h_0(x, v)$ is not differentiable!

Question (of interest?): how estimating the true Laguerre cells

$$T^{-1}(y_j) = \left\{ x \in \text{supp}(\mu) : c(x, y_j) - v_{j,0}^* \le c(x, y_k) - v_{k,0}^* \text{ for all } 1 \le k \le J \right\}$$

bet letting
$$\varepsilon = \varepsilon_n \to 0$$
 ?

Numerical experiments - Real data

Spatial locations X_1, \dots, X_N of reported incidents of crime in Chicago in **chronological order** (total N = 16104)

Convergence of the algorithm using the Euclidean cost

$$c(x, y) = ||x - y||_{\ell_2}$$

Estimated optimal map $\hat{T}_{\varepsilon,n}$ for the Euclidean cost $c(x,y) = \|x - y\|_{\ell_2}$ after n = 100 iterations and $\varepsilon = 0.005$

Estimated optimal map $\hat{T}_{\varepsilon,n}$ for the Euclidean cost $c(x,y) = \|x-y\|_{\ell_2}$ after n=1000 iterations and $\varepsilon=0.005$

Estimated optimal map $\hat{T}_{\varepsilon,n}$ for the Euclidean cost $c(x,y) = \|x-y\|_{\ell_2}$ after n=2000 iterations and $\varepsilon=0.005$

Estimated optimal map $\hat{T}_{\varepsilon,n}$ for the Euclidean cost $c(x,y) = \|x-y\|_{\ell_2}$ after n=3000 iterations and $\varepsilon=0.005$

Estimated optimal map $\hat{T}_{\varepsilon,N}$ for the Euclidean cost $c(x,y) = \|x-y\|_{\ell_2}$ after N=16104 iterations and $\varepsilon=0.005$

Estimated optimal map $\hat{T}_{\varepsilon,N}$ for the ℓ_1 cost $c(x,y)=\|x-y\|_{\ell_1}$ after N=16104 iterations and $\varepsilon=0.005$

- 1 Motivations from of a ressource allocation problem
- 2 Wassertein optimal transport
- 3 Regularized optimal transport and stochastic optimisation
- 4 Data-driven choice of the regularization parameter?

Regularized Wasserstein barycenters ¹

Observations of n discrete measures $\tilde{\nu}_{p_i} = \frac{1}{p_i} \sum_{j=1}^{p_i} \delta_{\mathbf{X}_{i,j}}$ for $1 \leq i \leq n$ supported on $\mathcal{X} \subset \mathbb{R}^d$.

Use of entropically regularized Wasserstein cost

$$\hat{\boldsymbol{\mu}}_{n,p}^{\varepsilon} = \underset{\boldsymbol{\mu} \in \mathbb{P}_{2}(\mathcal{X})}{\operatorname{argmin}} \ \frac{1}{n} \sum_{i=1}^{n} W_{2,\varepsilon}^{2} \left(\boldsymbol{\mu}, \tilde{\boldsymbol{\nu}}_{p_{i}}\right) \ \text{(Sinkhorn barycenter)},$$

where

$$W_{2,\varepsilon}^2(\mu,\nu) = \inf_{\pi} \int_{\mathcal{X}} \int_{\mathcal{X}} |x-y|^2 \pi(x,y) dx dy - \varepsilon \mathbf{H}(\pi),$$

where $H(\pi)$ is the entropy of the transport plan π

^{1.} Bigot, J., Cazelles, E. & Papadakis, N. (2018) ArXiv :1804.08962

Regularization using the Sinkhorn barycenter

A subset of 8 histograms (out of n=15) from random variables sampled from one-dimensional Gaussian mixtures distributions ν_i (with random means and variances) and binning of the data $(\mathbf{X}_{i,j})_{1 \le i \le n}$; $1 \le p$ on a grid of size $N=2^8$ with $p_1 = \ldots = p_n = 50$.

Regularization using the Sinkhorn barycenter¹

- Three Sinkhorn barycenters $\hat{\mu}_{n,p}^{\varepsilon}$ associated to the parameters $\varepsilon = 0.18, 1.94, 9.5.$ Bias
- The trade-off function $\varepsilon \mapsto B(\varepsilon) + b V(\varepsilon)$ which attains its optimum at $\hat{\varepsilon} = 1.94$ using the Goldenshluger-Lepski's principle (L-curve criterion)

Variance

Bigot, J., Cazelles, E. & Papadakis, N. (2018) ArXiv: 1804.08962

The Goldenshluger-Lepski's principle 1

Consider a finite collection of estimators $(\hat{\mu}_{n,p}^{\varepsilon})_{\varepsilon}$ for $\varepsilon \in \Lambda$.

The GL method consists in choosing a value $\hat{\varepsilon}$ which minimizes the bias-variance trade-off function :

$$\hat{\varepsilon} = \underset{\varepsilon \in \Lambda}{\arg \min} \ B(\varepsilon) + bV(\varepsilon)$$

with "bias term" as

$$B(\varepsilon) = \sup_{\tilde{\varepsilon} \leq \varepsilon} \left[|\hat{\boldsymbol{\mu}}_{n,p}^{\varepsilon} - \hat{\boldsymbol{\mu}}_{n,p}^{\tilde{\varepsilon}}|^2 - bV(\tilde{\varepsilon}) \right]_{+}$$

and a "variance term" $V(\varepsilon)$ chosen proportional to an upper bound on the variance of the Sinkhorn barycenter $\hat{\mu}_{n,p}^{\varepsilon}$ (with b>0 another tuning constant!)

^{1.} e.g. for density estimation see Lacour and Massart (2016)

Flow cytometry data 1

- Measurements from n = 15 patients restricted to a bivariate projection : FSC versus SSC cell markers.
- Main issue : data alignement and density estimation for cells clustering
- 1. Bigot, J., Cazelles, E. & Papadakis, N. (2018) ArXiv :1804.08962

Flow cytometry data 1

- The trade-off function $\varepsilon \mapsto B(\varepsilon) + bV(\varepsilon)$
- Sinkhorn barycenter associated to the parameter $\hat{\varepsilon} = 3.1$
- 1. Bigot, J., Cazelles, E. & Papadakis, N. (2018) ArXiv :1804.08962

Data-driven smoothing of Laguerre cells?

Estimated optimal map $\hat{T}_{\varepsilon,N}$ for various values of ε

