Unit: Applications of vectors (2)

Area of Parallelogram

If \vec{a} and \vec{b} are vectors represented by 2 non-parallel sides of a parallelogram, then area of the parallelogram is:

Area of Triangle

Similarly, area of triangle is given by

Area of
$$\Delta = \frac{1}{2} |\vec{a} \times \vec{b}|$$

Example 1: Area of triangle using vectors

Find the area of the triangle with the given vertices. A(7, 3, 4), B(1, 0, 6) and C(4, 5, -2)

Volume of Parallelepiped

If $\vec{a}, \vec{b}, \&\vec{c}$ are vectors represented by the 3 non-parallel sides of a parallelepiped as shown in the figure, the volume of it is given by: $V = |\vec{a} \cdot (\vec{b} \times \vec{c})|$

The volume of a parallelepiped is the product of the area of its base A and its height h. The base is any of the six faces of the parallelepiped. The height is the perpendicular distance between the base and the opposite face. $V = |\vec{b} \times \vec{c}| h$.

$$\cos \alpha = \frac{h}{|\vec{a}|} \qquad h = |\vec{a}| \cos \alpha \qquad \qquad \therefore V = |\vec{b} \times \vec{c}| |\vec{a}| \cos \alpha = \vec{a} \cdot \vec{b} \times \vec{c} = |\vec{a} \cdot \vec{b} \times \vec{c}| \quad \because V > 0$$

Example 2: Volume of Parallelepiped

Find the volume of the parallelepiped determined by the vectors $\vec{a}=(2,-5,-1), \ \vec{b}=(4,0,1), \ \vec{c}=(3,-1,-1).$

Example. 3 Prove that the vectors $\vec{a} = (-1,2,-7)$, $\vec{b} = (2,0,1)$, and $\vec{c} = (-7,6,0)$ are not coplanar.

Important!

Coplanar Test:

Recall: Coplanar - vectors on the same plane

If
$$\vec{a} \cdot (\vec{b} \times \vec{c}) = 0$$
 (Coplanar)

If
$$\vec{a} \cdot (\vec{b} \times \vec{c}) \neq 0$$
 (Non - coplanar)

Vectors as Forces

What is force?

Force is a vector quantity with magnitude and direction. e.g. A force of 10N moving N30°E.

Resultant and Equilibrant Forces (by Parallelogram Law)

In the figure, sketch $\vec{r} = \vec{f_1} + \vec{f_2}$

$$\vec{e} = -\vec{r}$$
 $|\vec{e}| = |\vec{r}|$

 \vec{e} \vec{f}_2 \vec{r} \vec{f}_1

 \overrightarrow{r} is the resultant vector of $\overrightarrow{f_1}$ and $\overrightarrow{f_2}$.

 \vec{e} is the equilibrant vector which is equal in magnitude to \vec{r} but opposite in direction.

Resultant and Equilibrant Forces (by Triangular Law)

In the figure, sketch $\vec{r} = \vec{f_1} + \vec{f_2}$

$$\vec{r} = \vec{f_1} + \vec{f_2}$$

$$\Rightarrow -\vec{e} = \vec{f_1} + \vec{f_2}$$

$$\Rightarrow \vec{0} = \vec{f_1} + \vec{f_2} + \vec{e}$$

Example 4. Find the resultant of the following system of forces (magnitude and direction).

Example 5. Find an equilibrant for the following system of forces.

Velocity & Speed

Velocity is vector quantity with magnitude and direction. e.g. Velocity of 60 km/h due N60°E. **Speed** is a scalar quantity with magnitude only. e.g. Speed of 60 km/h.

Ground velocity & Resultant velocity

In flying planes, ground velocity ⇔ resultant velocity.

 $\vec{r} = \vec{a} + \vec{b}$ represents sum of two vectors, any 2 of the vectors are given, the third vector can be found.

Example 6. A car is traveling at $\overrightarrow{v_c}$ = 100km/ h[E], a motorcycle is traveling at $\overrightarrow{v_m}$ = 80km/h[W], a truck is traveling at $\overrightarrow{v_t}$ =120km/ h[N] and an SUV is traveling at $\overrightarrow{v_s}$ = 100km/ h[SW]. Find the relative velocity of the car relative to:

- a) motorcycle
- b) truck
- c) SUV

Example 7. Thieves are fleeing in a stolen boat travelling at 30 km/h due west. A police boat is sent to catch them. When the stolen boat is 3 km due north of the police, the police set out at a speed of 40 km/h.

- a. In what direction must the police head in order to intercept the thieves?
- b. When will the interception occur?

Physical Application of the Dot Product - Work

- Work is applied to any form of activity that requires physical exertion or mental effort.
- In physics, **work** is done when a force acting on an object causes a displacement of the object from one position to another.
- In math, **work** is defined as the **<u>product</u>** of the force and the parallel distance moved by it, shown in figure.
- Work is a scalar quantity. The unit of work is a joule (J)

1)
$$W = \left| \overrightarrow{f_h} \right| \left| \overrightarrow{d} \right|$$

2)
$$W = |\vec{f}| |\vec{d}| \cos \theta$$
 (θ is the angle between $\vec{f} \& \vec{d}$)

3)
$$W = \overrightarrow{f} \cdot \overrightarrow{d}$$

$$J = \frac{kg \cdot m^2}{s^2} = N \cdot m = Pa \cdot m^3 = W \cdot s = C \cdot V$$

where kg is the kilogram, m is the metre, s is the second, N is the newton, Pa is the pascal, W is the watt, C is the coulomb, and V is the volt.

$$\overrightarrow{OA} = \overrightarrow{d} \qquad \overrightarrow{ON} = proj_{\overrightarrow{OA}} \overrightarrow{OB} = proj_{\overrightarrow{d}} \overrightarrow{f} = \overrightarrow{f_h}$$

$$1 N = 1 kg(m/s^2)$$
 -- (Mass x Acceleration)

Example 8: Calculating the Work

Calculate the work done by a force \vec{F} that causes a displacement \vec{d} , if the angle between the force and the displacement is θ . $|\vec{F}| = 14 \text{ N}$, $|\vec{d}| = 6 \text{ m}$, i) $\theta = 50^{\circ}$ ii) $\theta = 110^{\circ}$

Physical Application of the Cross Product - Magnitude of Torque - (Moment)

- When a force causes an object to turn; that is, the force causes an angular rather than a linear displacement. This turning effect of a force is called a torque.
 Applied force
- Torque is a vector quantity. It is measured in units of newton metres (N-m)

 $ec{f}$ - applied force $ec{f}$ is in Newtons (N)

 \vec{r} - the vector determined by the lever arm acting from the axis of rotation. $|\vec{r}|$ is in m.

 θ - the angle between the force and the level arm.

 \hat{n} - unit vector perpendicular to both \vec{r} and \vec{f} .

Example 9: Calculating torque

A 50-N force is applied to the end of a 20-cm wrench and makes an angle of 30° with the handle of the wrench.

- a) What is the torque on a bolt at the other end of the wrench?
- b) What is the maximum torque that can be exerted by a 50-N force on the wrench and how can it be achieved?