ShcheniayevDA 11012025-105345

Если в каком-либо задании среди предлагаемых вариантов ответа нет правильного, нужно внести 0 в соответствующую строчку файла .txt.

Задан двухполюсник на рисунке 1, причём R1 = 246.91 Ом.

Рисунок 1 – Двухполюсник

Найти полуокружность (см. рисунок 2), описываемую коэффициентом отражения от этого двухполюсника в среде с волновым сопротивлением 50 Ом при изменении частоты от 0 до ∞ .

Рисунок2 — Полуокружности Γ_i на s-плоскости

В качестве ОТВЕТА указать индекс выбранной полуокружности.

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
4.7	0.497	166.6	5.965	53.9	0.066	50.2	0.232	-108.5
4.8	0.499	165.6	5.831	52.8	0.067	49.9	0.229	-109.7
4.9	0.501	164.5	5.698	51.7	0.068	49.6	0.227	-110.9
5.0	0.503	163.5	5.568	50.6	0.070	49.4	0.224	-112.1
5.1	0.501	162.6	5.457	49.8	0.071	49.2	0.223	-112.6
5.2	0.500	161.8	5.348	48.9	0.073	49.1	0.221	-113.1
5.3	0.499	160.9	5.240	48.0	0.074	49.0	0.219	-113.6
5.4	0.497	160.1	5.133	47.1	0.076	48.8	0.217	-114.1
5.5	0.496	159.2	5.028	46.1	0.077	48.7	0.216	-114.6
5.6	0.497	158.1	4.949	45.2	0.079	48.1	0.213	-115.9
5.7	0.499	156.9	4.870	44.2	0.080	47.5	0.211	-117.2

и частоты $f_{\scriptscriptstyle \rm H}=4.9$ ГГц, $f_{\scriptscriptstyle \rm B}=5.6$ ГГц.

Найти неравномерность усиления в полосе $f_{\text{н}}...f_{\text{в}}$, используя рисунок 3.

Рисунок 3 - Частотная характеристика усиления

- 1) 0.4 дБ
- 2) 1.2 дБ
- 3) 1.8 дБ
- 4) 0.6 дБ

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.0	0.343	-157.7	12.929	92.5	0.039	67.3	0.326	-63.5
1.5	0.360	-174.0	8.599	81.4	0.054	66.4	0.236	-75.3
2.0	0.372	176.3	6.319	74.0	0.069	64.8	0.186	-88.5
3.0	0.387	162.0	4.150	62.3	0.100	60.3	0.155	-110.9
5.5	0.415	137.5	2.272	37.5	0.174	44.9	0.120	-148.4
8.0	0.497	113.8	1.563	13.8	0.238	27.1	0.125	128.5

Найти точку (см. рисунок 4), соответствующую s_{11} на частоте 2 $\Gamma\Gamma$ ц.

Рисунок 4 – Кривые s_{11} и s_{22}

- 1) A
- 2) B
- 3) C
- 4) D

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.1	0.511	-116.9	23.653	107.3	0.027	51.4	0.500	-59.5
1.8	0.482	-145.8	15.324	90.0	0.034	50.5	0.348	-74.4
2.5	0.478	-163.2	11.146	78.6	0.042	51.3	0.282	-87.5
3.2	0.483	-175.4	8.691	69.9	0.049	51.6	0.256	-98.9
3.9	0.489	175.0	7.117	62.1	0.058	51.4	0.242	-106.2
4.6	0.502	166.8	6.010	54.5	0.067	49.7	0.227	-114.5
5.3	0.505	160.2	5.161	47.7	0.076	48.3	0.211	-121.1
6.0	0.510	152.9	4.575	40.7	0.086	45.0	0.198	-129.3
6.8	0.526	143.2	4.011	32.5	0.096	41.3	0.173	-143.0

и частоты $f_{\scriptscriptstyle \rm H}=1.1$ ГГц, $f_{\scriptscriptstyle \rm B}=6.8$ ГГц.

Найти обратные потери по выходу на $f_{\scriptscriptstyle \rm B}.$

- 1) 7.6 дБ
- 2) 3 дБ
- 3) 15.2 дБ
- 4) 6 дБ

Найти точку (см. рисунок 5), соответствующую коэффициенту отражения от нормированного импеданса $z=0.78\text{-}0.24\mathrm{i}$.

Рисунок 5 – Точки s_i на s-плоскости

В качестве ОТВЕТА указать индекс выбранной точки.

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
3.2	0.667	105.7	1.819	23.9	0.132	40.9	0.213	-89.1
3.3	0.674	103.8	1.757	21.9	0.135	40.0	0.212	-92.2
3.4	0.682	101.9	1.698	19.7	0.138	39.1	0.212	-95.3
3.5	0.691	100.0	1.641	17.4	0.141	38.3	0.212	-98.4
3.6	0.696	98.3	1.592	15.8	0.144	37.3	0.211	-101.7
3.7	0.702	96.7	1.544	14.1	0.147	36.3	0.211	-105.1
3.8	0.709	95.1	1.497	12.2	0.150	35.3	0.212	-108.4
3.9	0.716	93.5	1.452	10.3	0.153	34.4	0.213	-111.7
4.0	0.723	92.0	1.409	8.2	0.156	33.5	0.215	-115.0
4.1	0.728	90.5	1.369	6.6	0.159	32.5	0.215	-118.4
4.2	0.732	89.0	1.330	4.9	0.161	31.6	0.217	-121.7

и частоты $f_{\text{H}}=3.5~\Gamma\Gamma$ ц, $f_{\text{B}}=4.1~\Gamma\Gamma$ ц. **Найти** модуль s_{22} в дB на частоте f_{H} .

- 1) -13.5 дБ
- 2) -17 дБ
- 3) -3.2 дБ
- 4) 4.3 дБ