

Analyse exploratoire de données

Fabrice Rossi

Télécom ParisTech

Exploration Modélisation Modèle des données

Analyses univariées

Variables numériques Histogramme Boxplot et statistiques Variables nominales

Analyses multivariées

Diagramme de dispersion Matrice de corrélation Diagramme mosaique Coordonnées parallèles Interaction

Exploration Modélisation Modèle des données

Analyses univariées

Variables numériques
Histogramme
Boxplot et statistiques
Variables nominales

Analyses multivariées

Diagramme de dispersion Matrice de corrélation Diagramme mosaique Coordonnées parallèles Interaction

- Que faire d'un paquet de données ?
- Comment exploiter le contenu d'un entrepôt de données ?

- Que faire d'un paquet de données ?
- Comment exploiter le contenu d'un entrepôt de données ?
- recensement
- 32561 personnes
- 15 attributs par personne

- Que faire d'un paquet de données ?
- Comment exploiter le contenu d'un entrepôt de données ?
- recensement
- 32561 personnes
- 15 attributs par personne

- Volume classique : milliers à millions de lignes, dizaine à centaines de colonnes
- Exploration systématique impossible (même pour de petits paquets de données)

- Support informatique et mathématique :
 - outils d'exploitation des données
 - but : diminuer la charge cognitive pour l'analyste
- Deux grandes classes d'outils :
 - 1. exploration

modélisation

- Support informatique et mathématique :
 - outils d'exploitation des données
 - but : diminuer la charge cognitive pour l'analyste
- Deux grandes classes d'outils :
 - 1. exploration
 - pas d'idée a priori sur les données
 - recherche de régularité (dépendances, groupes homogènes, etc.)
 - modélisation

- Support informatique et mathématique :
 - outils d'exploitation des données
 - but: diminuer la charge cognitive pour l'analyste
- Deux grandes classes d'outils :
 - exploration
 - pas d'idée a priori sur les données
 - recherche de régularité (dépendances, groupes homogènes, etc.)
 - modélisation
 - idée précise sur les données
 - construction de modèles prédictifs

- Support informatique et mathématique :
 - outils d'exploitation des données
 - but : diminuer la charge cognitive pour l'analyste
- Deux grandes classes d'outils :
 - exploration
 - pas d'idée a priori sur les données
 - recherche de régularité (dépendances, groupes homogènes, etc.)
 - modélisation
 - idée précise sur les données
 - construction de modèles prédictifs
- outil utilisé: R (http://R-project.org/)

- Objectifs:
 - obtenir une vision globale d'un jeu de données
 - · découvrir des formes de régularité
- Moyens:
 - représentations visuelles (et interactives) des données
 - recherche automatique de régularités :
 - corrélation et dépendance entre variables
 - groupes homogènes (classification)
 - schémas fréquents

Objectifs:

- obtenir une vision globale d'un jeu de données
- · découvrir des formes de régularité

Moyens:

- représentations visuelles (et interactives) des données
- recherche automatique de régularités :
 - corrélation et dépendance entre variables
 - groupes homogènes (classification)
 - schémas fréquents

Introduction

- Objectifs:
 - inférer des informations inconnues
 - prédire l'évolution des données
- Moyens:
 - données d'apprentissage :
 - connaître l'évolution d'une grandeur dans le passé pour prédire son évolution future (données historiques)
 - connaître une propriété de certains objets (par exemple le salaire de certains clients) pour inférer sa valeur pour les autres objets
 - méthodes d'apprentissage : construire un modèle à partir des données d'apprentissage

- Objectifs:
 - inférer des informations inconnues
 - prédire l'évolution des données
- Moyens:
 - · données d'apprentissage :
 - connaître l'évolution d'une grandeur dans le passé pour prédire son évolution future (données historiques)
 - connaître une propriété de certains objets (par exemple le salaire de certains clients) pour inférer sa valeur pour les autres objets
 - méthodes d'apprentissage : construire un modèle à partir des données d'apprentissage
- Stratégie :
 - analyse exploratoire
 - formulation d'hypothèses
 - construction de modèles pour valider les hypothèses

- On a *N* observations, les $z_i \in \mathcal{Z}$
- Modèle statistique/probabiliste
 - il existe une distribution P_Z sur Z inconnue
 - les z_i sont des réalisations de variables aléatoires avec cette distribution
 - les variables aléatoires sont indépendantes (en général)

- \blacksquare On a *N* observations, les $z_i \in \mathcal{Z}$
- Modèle statistique/probabiliste
 - il existe une distribution P_Z sur Z inconnue
 - les zi sont des réalisations de variables aléatoires avec cette distribution
 - les variables aléatoires sont indépendantes (en général)
- En général
 - $\mathcal{Z} = \prod_{n=1}^{P} \mathcal{Z}_{p}$: P variables pour décrire chaque objet
 - quand $\mathcal{Z}_p \subset \mathbb{R}$: variable numérique (ou ordonnée)
 - quand $\mathcal{Z}_p = \{a, b, \ldots\}$: variable nominale (un nombre fini de valeurs possibles non ordonnées)

F. Rossi

Exploration Modélisation Modèle des données

Analyses univariées

Variables numériques
Histogramme
Boxplot et statistiques
Variables nominales

Analyses multivariées

Diagramme de dispersion Matrice de corrélation Diagramme mosaique Coordonnées parallèles Interaction

Malyses élémentaires

- Première étape d'une analyse exploratoire
 - travailler variable par variable
 - numériquement et graphiquement
- Variable numérique
 - à valeurs dans ℝ
 - statistiques classiques : moyenne, variance, médiane, etc.
 - représentations associées : histogramme, boxplot

- Première étape d'une analyse exploratoire
 - travailler variable par variable
 - · numériquement et graphiquement
- Variable numérique
 - à valeurs dans ℝ
 - statistiques classiques : moyenne, variance, médiane, etc.
 - représentations associées : histogramme, boxplot

Variable âge : numérique

- Première étape d'une analyse exploratoire
 - travailler variable par variable
 - numériquement et graphiquement
- Variable numérique
 - à valeurs dans ℝ
 - statistiques classiques : moyenne, variance, médiane, etc.
 - représentations associées : histogramme, boxplot

Variable âge : numérique

- Un histogramme représente une estimation de la distribution d'une variable
- Principe de construction :
 - division de l'intervalle [min, max] en K sous-intervalles (diverses règles pour K, par exemple ~ log N)
 - dénombrement des objets pour lesquels la valeur de la variable tombe dans chacun des intervalles
 - représentation par des barres de surfaces proportionnelles aux décomptes

- Un histogramme représente une estimation de la distribution d'une variable
- Principe de construction :
 - division de l'intervalle [min, max] en K sous-intervalles (diverses règles pour K, par exemple ~ log N)
 - dénombrement des objets pour lesquels la valeur de la variable tombe dans chacun des intervalles
 - représentation par des barres de surfaces proportionnelles aux décomptes
- Attention aux intervalles de longueurs différentes

Histogramme

- Un histogramme représente une estimation de la distribution d'une variable
- Principe de construction :
 - division de l'intervalle [min, max] en K sous-intervalles (diverses règles pour K, par exemple ~ log N)
 - dénombrement des objets pour lesquels la valeur de la variable tombe dans chacun des intervalles
 - représentation par des barres de surfaces proportionnelles aux décomptes
- Attention aux intervalles de longueurs différentes

Histogramme des plus values

Plus values

Temps de travail

Histogramme des plus values

Plus values

Temps de travail

Idée générale de la distribution

Histogramme des plus values

Plus values

Temps de travail

- Idée générale de la distribution
- "irrégularités"

Âge Histogramme des plus values

Plus values

Temps de travail

- Idée générale de la distribution
- "irrégularités"
- distribution complètement atypique

Histogramme des plus values

- presque aucune information :
 - presque toutes les valeurs sont négatives
 - quelques valeurs très grandes

- presque aucune information :
 - presque toutes les valeurs sont négatives
 - quelques valeurs très grandes
- comparaisons difficiles (cf la suite)

- a.k.a. boîte à moustaches ou boîte à pattes
- Représentation compacte d'une distribution
 - ligne centrale : médiane
 - ligne basse : premier quartile
 - ligne haute : troisième quartile
 - moustaches :
 - le max du min et de la médiane 1.5 l'intervalle interquartile
 - le min du max et de la médiane + 1.5 l'intervalle interquartile
 - points atypiques (outliers): au delà des moustaches

plus dépouillé

■ inférence moins précise

- plus dépouillé
- quelques informations très précises

- Indicateurs classiques :
 - tendance : moyenne et médiane
 - dispersion : écart-type, intervalle interquartile

- Indicateurs classiques :
 - tendance : moyenne et médiane
 - dispersion: écart-type, intervalle interquartile
- Interprétation parfois délicate :
 - moyenne = 990
 - médiane = 0
 - écart-type = 7410
 - intervalle interquartile = 0

- Indicateurs classiques :
 - tendance : moyenne et médiane
 - dispersion : écart-type, intervalle interquartile
- Interprétation parfois délicate :
 - moyenne = 990
 - médiane = 0
 - écart-type = 7410
 - intervalle interquartile = 0
 - meilleurs choix ici :
 - 87 % des personnes ont une plus value nulle, 8.3 % positive et 4.7 % négative
 - puis statistiques sur les deux groupes (par ex., perte médiane 1887)

- La pertinence de la statistique dépend de la distribution
- Exemple :
 - blogs politiques
 - graphe des liens entre les blogs (blogroll)
 - distribution des degrés des noeuds

$$\mu = 27.36, \sigma = 38.42$$

$$m = 13, \delta = 33$$

- La pertinence de la statistique dépend de la distribution
- Exemple:
 - blogs politiques
 - graphe des liens entre les blogs (blogroll)
 - distribution des degrés des noeuds

- $\mu = 27.36, \sigma = 38.42$
- $m = 13, \delta = 33$
- loi puissance : $P(x) \simeq x^{-\alpha}$

- La pertinence de la statistique dépend de la distribution
- Exemple:
 - blogs politiques
 - graphe des liens entre les blogs (blogroll)
 - distribution des degrés des noeuds

- $\mu = 27.36, \sigma = 38.42$
- $m = 13, \delta = 33$
- loi puissance : $P(x) \simeq x^{-\alpha}$
- sans échelle : la moyenne informe peu

- La pertinence de la statistique dépend de la distribution
- Exemple:
 - blogs politiques
 - graphe des liens entre les blogs (blogroll)
 - distribution des degrés des noeuds

- $\mu = 27.36, \sigma = 38.42$
- $m = 13, \delta = 33$
- loi puissance : $P(x) \simeq x^{-\alpha}$
- sans échelle : la moyenne informe peu
- ici $\alpha \simeq 1.27$

- La pertinence de la statistique dépend de la distribution
- Exemple :
 - blogs politiques
 - graphe des liens entre les blogs (blogroll)
 - distribution des degrés des noeuds

- $\mu = 27.36, \sigma = 38.42$
- $m = 13, \delta = 33$
- loi puissance : $P(x) \simeq x^{-\alpha}$
 - sans échelle : la moyenne informe peu
 - ici $\alpha \simeq 1.27$

Adapter les statistiques aux données

- Moyenne: 40.44, Écart-type: 12.35
- Médiane: 40, Interquartile: 5

Médiane: 40, Interquartile: 5

Compléments:

- 47 % = 40 heures
- 29 % > 40 heures
- 24 % < 40 heures

図版 Variables nominales

- variable nominale (ou qualitative) : variable à valeurs dans un ensemble fini quelconque (les modalités)
- quand les modalités sont ordonnées : variable ordinale

Variables nominales

- variable nominale (ou qualitative) : variable à valeurs dans un ensemble fini quelconque (les modalités)
- quand les modalités sont ordonnées : variable ordinale
- représentation par un diagramme à bâtons :
 - un bâton par modalité
 - hauteur proportionnelle à la fréquence de la modalité
 - ordre arbitraire sauf dans la cas ordinal

- variable nominale (ou qualitative) : variable à valeurs dans un ensemble fini quelconque (les modalités)
- quand les modalités sont ordonnées : variable ordinale
- représentation par un diagramme à bâtons :
 - un bâton par modalité
 - hauteur proportionnelle à la fréquence de la modalité
 - ordre arbitraire sauf dans la cas ordinal

F. Rossi

Déséquilibre

Déséquilibre

Grand nombre de modalités

- représentation très classique
- versions "créatives" (3D...)
- mauvaise solution : lecture des surfaces et des angles difficiles

- représentation très classique
- versions "créatives" (3D...)
- mauvaise solution : lecture des surfaces et des angles difficiles

Introduction

Exploration Modélisation Modèle des données

Analyses univariées

Variables numériques
Histogramme
Boxplot et statistiques
Variables nominales

Analyses multivariées

Diagramme de dispersion Matrice de corrélation Diagramme mosaique Coordonnées parallèles Interaction

- Relativement peu d'information dans chaque variable
- Analyse croisée nécessaire
- Difficultés :
 - vision humaine limitée (2D ou 3D, formes et couleurs)
 - beaucoup de combinaisons possibles
 - variables incompatibles
- Solutions:

F. Rossi

- outils de la visualisation de l'information (interaction)
- outils de l'apprentissage automatique (automatisation)

Baramme de dispersion

- Deux variables numériques : l'une en fonction de l'autre
- scatter plot

Superposition : alpha blending

- Compléments du diagramme :
 - couleur en fonction d'une autre variable
 - symbole en fonction d'une autre variable

Assez limité

- matrice de diagrammes de dispersion
- tous les couples de variables numériques
- limités à quelques variables (croissance quadratique)
- décorations possibles
- ici : 7 types de verre décrits par 9 variables

- Recherche de corrélations
- Représentation graphique de la matrice de corrélation :
 - rouge : forte corrélation positive
 - bleu: forte corrélation négative

Corrélations

- Recherche de corrélations
- Représentation graphique de la matrice de corrélation :
 - rouge : forte corrélation positive
 - bleu : forte corrélation négative

Ici :

- RI corrélé avec Ca
- Mg anti-corrélé avec Al
- RI anti-corrélé avec Si
- Aucun lien entre Al et Si

Corrélation = 0.811

Corrélation = -0.539

Corrélation = -0.0162

Corrélation = -0.48

Histogramme de Mg

Vision globale

Vision globale

- découpage récursif
- surface proportionnelle à la fréquence

- découpage récursif
- surface proportionnelle à la fréquence
- significativité

- découpage récursif
- surface proportionnelle à la fréquence
- significativité
- plus de 2 variables

- découpage récursif
- surface proportionnelle à la fréquence
- significativité
- plus de 2 variables

Barril Coordonnées parallèles

Méthode proposée en 1985 par A. Inselberg

- un axe vertical par variable
- un objet devient une ligne brisée
- (x_1, \ldots, x_p) est représenté par la ligne brisée passant par $(1, x_1), (2, x_2), \ldots, (p, x_p)$

Anderson's/Fisher's Iris

4+1 variables, 150 objets

Attention à l'ordre

Les variables Petal sont elles corrélées?

Les variables Petal sont elles corrélées?

- problèmes :
 - surcharge de l'écran
 - surcharge cognitive
- solution par interaction :
 - zoom
 - vues multiples
 - sélection et lien :
 - sélection d'une zone (brushing)
 - affichage des résultats sur toutes les vues (linking)
- en R
 - iplots
 - ggobi et rggobi

