DẠNG TOÁN 19: CÁC PHÉP TOÁN VỀ SỐ PHÚC

I. KIÉN THỨC CẦN NHỚ:

1. Các phép toán về số phức.

O Định nghĩa:

Khái niệm số phức

Số phức (dạng đại số): z = a + bi. Trong đó $a, b \in \mathbb{R}$; a là phần thực, b là phần ảo.

Hai số phức bằng nhau

Cho hai số phức $z_1=a+bi$ $\left(a;\ b\in\mathbb{R}\right)$ và $z_2=c+di$ $\left(c;\ d\in\mathbb{R}\right)$. Khi đó $z_1=z_2\Leftrightarrow \begin{cases} a=c\\b=d \end{cases}$.

Phép cộng số phức

Cho hai số phức $z_1 = a + bi$ $(a; b \in \mathbb{R})$ và $z_2 = c + di$ $(c; d \in \mathbb{R})$.

Khi đó
$$z_1 + z_2 = (a+c) + (b+d)i$$
; $z_1 - z_2 = (a-c) + (b-d)i$

Số phức liên hợp

Số phức liên hợp của z = a + bi $(a; b \in \mathbb{R})$ là $\overline{z} = a - bi$.

Mô đun của số phức

Với
$$z = a + bi (a, b \in \mathbb{R})$$
ta có $|z| = \sqrt{a^2 + b^2}$

BÀI TẬP MẪU

Cho hai số phức z = 3 + i và w = 2 + 3i. Số phức z - w bằng Câu 1:

A.
$$1 + 4i$$

B.
$$1-2i$$

C.
$$5 + 4i$$

D.
$$5-2i$$

Phân tích hướng dẫn giải

1. DẠNG TOÁN: Đây là dạng toán tìm hiệu của hai số phức

2. HƯỚNG GIÁI:

B1: z = 3 + i

B2: w = 2 + 3i

B3: Tính tổng phần thực và phần ảo.

Từ đó, ta có thể giải bài toán cụ thể như sau:

Lời giải

Chon B

Ta có: z = 3 + i và w = 2 + 3i. Do đó z - w = (3 + i) - (2 + 3i) = 1 - 2i

Bài tập tương tự và phát triển:

Mức đô 1

Cho hai số phức $z_1 = 2 - 4i$ và $z_2 = 1 - 3i$. Phần ảo của số phức $z_1 + i\overline{z_2}$ bằng

A.5.

 \mathbf{B} . 3i.

 $\mathbb{C}.-5i$.

 $D_{1}-3$.

Lời giải

Cho hai số phức $z_1 = 1 - 8i$ và $z_2 = 5 + 6i$. Phần ảo của số phức liên hợp $z = z_2 - i\overline{z_1}$ bằng *Câu 2:*

A. 5

 $\mathbf{B.5}i$

 $\mathbf{D} \cdot -5i$.

Lời giải

Câu 3: Cho hai số phức $z_1 = 2 + 3i$ và $z_2 = 6i$. Phần ảo của số phức $z = iz_1 - \overline{z_2}$ bằng

 $\mathbf{A}.-4i$.

B. -4.

C.8i.

D.8.

Lời giải

Câu 4: Cho hai số phức $z_1 = 1 + 2i$ và $z_2 = 2 - 3i$. Phần ảo của số phức liên hợp $z = 3z_1 - 2z_2$.

A.12.

B. −12.

C.1.

 $D_{i} - 1$.

Lời giải

Câu 5: Cho hai số phức $z_1 = 5 - 2i$ và $z_2 = 3 - 4i$. Số phức liên hợpcủa số phức $w = \overline{z_1} + z_2 + 2z_1\overline{z_2}$ là

A.54 + 26i.

B. 54 - 30i.

C.-54-26i.

D. 54 - 26i.

Lời giải

Câu 6: Cho số phức z = 5 - 3i. Phần thực của số phức $w = 1 + \overline{z} + (\overline{z})^2$ bằng

A. 22.

B. -22.

C.33.

D. –33.

Lời giải

Câu 7: Cho hai số phức $z_1 = 4 - 3i + (1 - i)^3$ và $z_2 = 7 + i$. Phần thực của số phức $w = 2\overline{z_1}\overline{z_2}$ bằng

A. 9

B. 2.

C.18.

D.-74.

Lời giải

Câu 8: Cho số phức z thỏa mãn $(1+2i)z = 5(1+i)^2$. Tổng bình phương phần thực và phần ảo của số phức $w = \overline{z} + iz$ bằng:

A. 2.

B. 4.

C.6.

D.8.

Cho số phức z thỏa mãn $(2+i)z + \frac{2(1+2i)}{1+i} = 7+8i$. Kí hiệu a, b lần lượt là phần thực và phần Câu 9: ảo của số phức w = z + 1 + i. Tính $P = a^2 + b^2$. **B.**5. **D.**7. **A.**13. C. 25.

Lời giải

Cho số phức z thỏa mãn $z + 2.\overline{z} = 6 - 3i$. Tìm phần ảo b của số phức z.

A. b = 3.

B. b = -3.

C.b = 3i.

D. b = 2.

Lời giải

§ Mức đô 2

Cho số phức z = a + bi $(a; b \in \mathbb{R})$ thỏa mãn $iz = 2(\overline{z} - 1 - i)$. Tính S = ab.

B. S = 4.

C. S = 2.

D. S = -2.

Lời giải

Có bao nhiều số phức z thỏa mãn $z.\overline{z} = 10(z + \overline{z})$ và z có phần ảo bằng ba lần phần thực? Câu 2:

A. 0.

B.1.

C.2.

D.3.

Lời giải

Cho số phức z = a + bi $(a; b \in \mathbb{R})$ thỏa $(1+i)z + 2\overline{z} = 3 + 2i$. Tính P = a + b.

A. $P = \frac{1}{2}$.

B. P = 1. **C.** P = -1. **D.** $P = -\frac{1}{2}$.

- Cho số phức z thỏa mãn $5\overline{z} + 3 i = (-2 + 5i)z$. Tính $P = \left|3i(z-1)^2\right|$.
 - **A.** P = 144.
- **B.** $P = 3\sqrt{2}$.
- $\mathbf{C.} P = 12.$
- **D.** P = 0.

Lòigiải

- Cho số phức z = a + bi $(a,b \in \mathbb{R})$ thỏa mãn z + 2 + i |z|(1+i) = 0 và |z| > 1. Tính P = a + b. Câu 5:
 - **A.** P = -1.
- **B.** P = -5.
- C. P = 3.
- **D.** P = 7.

Lời giải

- Tìm môđun của số phức z biết z-4=(1+i)|z|-(4+3z)i. Câu 6:
 - **A.** $|z| = \frac{1}{2}$.
- **B.** |z| = 2.
- **C.** |z| = 4. **D.** |z| = 1.

Lời giải

- Có bao nhiều số phức z thỏa mãn điều kiện $z^2 = |z|^2 + \overline{z}$? *Câu 7:*

- **B.**4.
- **C.**2.

D.3.

Số phức z = a + bi (với a, b là số nguyên) thỏa mãn (1-3i)z là số thực và |z-2+5i|=1. Khi đó *Câu 8:* a+b là

A.9.

B.8.

C.6.

D. 7.

Lời giải

Cho số phức z = a + bi (a, b là các số thực) thỏa mãn z|z| + 2z + i = 0. Tính giá trị của biểu thức Câu 9: $T = a + b^2.$

A. $T = 4\sqrt{3} - 2$.

B. $T = 3 + 2\sqrt{2}$.

 $C.T = 3 - 2\sqrt{2}$

D. $T = 4 + 2\sqrt{3}$.

Lời giải

Có bao nhiều số phức z thỏa mãn $|z+1-3i|=3\sqrt{2}$ và $(z+2i)^2$ là số thuần ảo? *Câu 10:*

B. 2.

C.3.

D. 4.

Lời giải

§ Mức độ 3

Câu 1. Tính giá trị của biểu thức $A = (1+i)^{2020}$.

C. $A = 2^{1010}i$.

D. $A = -2^{1010}i$.

Lời giải

Câu 2. Trong mặt phẳng Oxy, gọi A, B, C lần lượt là các điểm biểu diễn các số phức $z_1 = -3i$, $z_2 = 2 - 2i$, $z_3 = -5 - i$. Gọi G là trọng tâm của tam giác ABC . Hỏi G là điểm biểu diễn số phức nào trong các số phức sau:

A. z = -1 - 2i.

B. z = 2 - i.

C. z = -1 - i.

Lời giải

Câu 3. Cho các số phức z_1 , z_2 thoả mãn $|z_1 + z_2| = \sqrt{3}$, $|z_1| = |z_2| = 1$. Tính $z_1 \overline{z_2} + \overline{z_1} z_2$.

A. $z_1 \overline{z_2} + \overline{z_1} z_2 = 0$.

B. $z_1\overline{z_2} + \overline{z_1}z_2 = 1$. **D.** $z_1\overline{z_2} + \overline{z_1}z_2 = -1$. **Lòi giải**

C. $z_1 \overline{z_2} + \overline{z_1} z_2 = 2$.

Câu 4. Kí hiệu z_0 là nghiệm phức có phần thực âm và phần ảo dương của phương trình $z^2 + 2z + 10 = 0$. Trên mặt phẳng tọa độ, điểm nào dưới đây là điểm biểu diễn số phức $w = i^{2020}z_0$?

A. M(3;-1). **B.** M(3;1).

C. M(-3;1). **D.** M(-3;-1).

Lời giải

Câu 5. Trong tập các số phức, cho phương trình $z^2 - 6z + m = 0, m \in R$ (1). Gọi m_0 là một giá trị của mđể phương trình (1) có hai nghiệm phân biệt z_1, z_2 thỏa mãn $z_1\overline{z_1} = z_2\overline{z_2}$. Hỏi trong khoảng (0,20) có bao nhiều giá trị $m_0 \in \mathbb{N}$?

A. 20 .

B. 11.

C.12.

D. 10.

Trong mặt phẳng Oxy cho điểm A là điểm biểu diễn của số phức z = 1 + 2i, B là điểm thuộc đường thẳng y = 2 sao cho tam giác OAB cân tại O. Tìm số z biểu diễn B.

A.
$$z = 1 + 2i$$
.

B.
$$z = -1 + 2i$$
.

C.
$$z = 3 + 2i$$
, $z = -3 + 2i$.

D.
$$z = -1 + 2i$$
, $z = 1 + 2i$.

Lời giải

Xét các số phức z thỏa mãn (z+2i)(z+2) là số thuần ảo. Biết rằng tập hợp tất cả các điểm biểu diễn của z là một đường tròn, tâm của đường tròn đó có tọa độ là

A.
$$(1;-1)$$
.

$$C. (-1;1).$$

D.
$$(-1;-1)$$
.

Lời giải

Gọi M, N lần lượt là các điểm biểu diễn của số phức z = 1 + i; z' = 2 + 3i. Tìm số phức ω có điểm Câu 8. biểu diễn là Q sao cho $\overrightarrow{MN} + 3\overrightarrow{MQ} = \overrightarrow{0}$.

A.
$$\omega = -\frac{1}{3}i$$

B.
$$\omega = \frac{4}{3} + \frac{5}{3}i$$
.

A.
$$\omega = -\frac{1}{3}i$$
. **B.** $\omega = \frac{4}{3} + \frac{5}{3}i$. **C.** $\omega = -\frac{2}{3} - \frac{1}{3}i$. **D.** $\omega = \frac{2}{3} + \frac{1}{3}i$.

D.
$$\omega = \frac{2}{3} + \frac{1}{3}i$$
.

Lời giải

Cho số phức z = a + bi, $(a, b \in \mathbb{R})$ thỏa mãn $\left| \frac{z - 1}{z - i} \right| = 1$ và $\left| \frac{z - 3i}{z + i} \right| = 1$. Tính P = a + b. Câu 9.

A.
$$P = 7$$
.

B.
$$P = -1$$
.

C.
$$P = 1$$
.

D.
$$P = 2$$
.

- Cho số phức z thỏa mãn hệ thức: $(2-i)(1+i)+\overline{z}=4-2i$. Tính môđun của z? Câu 10.
 - **A.** $|z| = \sqrt{1^2 3^2}$.

B. $|z| = \sqrt{1^2 + 3^2}$.

C. $|z| = \sqrt{1^2 + 3i^2}$.

D. $|z| = \sqrt{1^2 - 3i^2}$.

Lời giải

§ Mức độ 4

- Xét các số phức z thỏa mãn $|z|=\sqrt{2}$. Trên mặt phẳng tọa độ Oxy , tập hợp điểm biểu diễn của các Câu 1. số phức $w = \frac{4+iz}{1+z}$ là một đường tròn có bán kính bằng
- **B.** 26.

Lời giải

- Cho số phức z thỏa mãn |z+3|=5 và |z-2i|=|z-2-2i|. Tính |z|. **A.** |z|=5. **B.** $|z|=\sqrt{5}$. **C.** |z|=2. **D.** $|z|=\sqrt{10}$. Câu 2.

Lời giải

- Cho số phức z có phần ảo gấp hai phần thực và $|z+1|=\frac{2\sqrt{5}}{5}$. Khi đó mô đun của z là: Câu 3.
 - **A.** 4.
- **B.** 6.
- C. $\frac{\sqrt{5}}{5}$.
- **D.** $2\sqrt{5}$.

- Cho số phức z có phần ảo khác 0 thỏa mãn $\left|z-(2+i)\right|=\sqrt{10}$ và $z.\overline{z}=25$. Tìm mô đun của số Câu 4. phức w = 1 + i - z
 - **A.** $|w| = \sqrt{13}$.
- **B.** |w| = 5.
- **C.** $|w| = \sqrt{29}$. **D.** $|w| = \sqrt{17}$.

Lời giải

- Tìm tất cả các số thực m biết $z = \frac{i m}{1 m(m 2i)}$ và $z = \frac{2 m}{2}$ trong đó i là đơn vị ảo. Câu 5.
 - **A.** m = 0; m = 1.
- **B.** m = -1.
- C. m = 0; m = -1.
- **D.** $\forall m$.

Lời giải

- Cho số phức z thỏa điều kiện $\left|z^2+4\right|=\left|z(z+2i)\right|$. Giá trị nhỏ nhất của $\left|\overline{z}+i\right|$ bằng Câu 6.
- **B.** 0.
- **C.** 1.

D. 3.

- Cho số phức z thỏa mãn hệ thức $|2z+i|=|\overline{2z-3i+1}|$. Tìm các điểm M biểu diễn số phức z để Câu 7. MA ngắn nhất, với $A\left[1; \frac{3}{4}\right]$.

- **A.** $M\left(-1; \frac{-5}{4}\right)$ **B.** $M\left(0; \frac{-9}{8}\right)$ **C.** $M\left(\frac{-9}{4}; 0\right)$ **D.** $M\left(\frac{1}{20}; -\frac{23}{20}\right)$.

Lời giải

Phần ảo của số phức $w = 1 + (1+i) + (1+i)^2 + (1+i)^3 + ... + (1+i)^{2020}$ Câu 8.

A.
$$1-2^{1010}$$
.

$$B_{\bullet} - 2^{1010}$$

Lời giải

Cho số phức z thỏa mãn |z+2|+|z-2|=8. Trong mặt phẳng phức, tập hợp những điểm M biểu Câu 9. diễn cho số phức z thỏa mãn:

A.
$$(E): \frac{x^2}{16} + \frac{y^2}{12} = 1$$
.

B.
$$(E): \frac{x^2}{12} + \frac{y^2}{16} = 1$$
.

C.
$$(C):(x+2)^2+(y-2)^2=64$$
.

D.
$$(C):(x+2)^2+(y-2)^2=8$$

Câu 10 Cho các số phức z_1 , z_2 , z_3 thỏa mãn 2 điều kiện $|z_1| = |z_2| = |z_3| = 2017$ và $z_1 + z_2 + z_3 \neq 0$. Tính

$$P = \left| \frac{z_1 z_2 + z_2 z_3 + z_3 z_1}{z_1 + z_2 + z_3} \right|.$$

A. P = 2017.

B. P = 1008, 5.

C. $P = 2017^2$. **D.** P = 6051.

