(!) Пусть x, y
С A^n , где A = {0, ... , q - 1}. Тогда расстоянием Хемминга на A^n будем называть величину

$$d(x, y) = \sum_{k=1}^{n} |x_k - y_k|.$$

(!) d - метрика.

Доказательство:

$$d(x, y) = \sum_{k=1}^{n} |x_k - y_k| \ge 0$$
, так как $|x_k - y_k| \ge 0$

$$d(x, y) = \sum_{k=1}^{n} |x_k - y_k| = \sum_{k=1}^{n} |y_k - x_k|$$

Доказательство:
1. Неотрицательность. $d(x,y) = \sum_{k=1}^n |x_k - y_k| \ge 0, \text{ так как } |x_k - y_k| \ge 0$
2. Симметричность $d(x,y) = \sum_{k=1}^n |x_k - y_k| = \sum_{k=1}^n |y_k - x_k|$
3. Правило треугольника
Пусть $\mathbf{x}, \mathbf{y}, \mathbf{z} \subset A^n$. Докажем, что $d(x,z) \le d(x,y) + d(y,z)$. $d(x,y) + d(y,z) = \sum_{k=1}^n |x_k - y_k| + \sum_{k=1}^n |y_k - z_k| = \sum_{k=1}^n (|x_k - y_k| + |y_k - z_k|).$ При этом $|x_k - z_k| \le |x_k - y_k| + |y_k - z_k|$ верно по свойствам модуля.
ч.ит.д.