Step-1

If A is an m by n matrix, using row operations, we can reduce A to r non zero rows and m $\hat{a}\mathcal{E}^{"}$ r zero rows. Then

- 1. C(A) = Column space of A; dimension r
- 2. N(A) = null space of A; dimension $n \hat{a} \in {}^{m} r$
- 3. $C(A^{r})$ = row space of A; dimension r
- 4. $N(A^{r})$ = left null space of A; dimension $m \ \hat{a} \in r$

Step-2

(a)
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 6 \end{bmatrix}^{R_2 - 3R_1} \begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix}$$
, column 1 is independent

Basis for
$$C(A) = \left\{ \begin{bmatrix} 1 \\ 3 \end{bmatrix} \right\}$$
 $\hat{a} \in \hat{a} \in A \cap A$

To find null space $Ax = 0 \Rightarrow x_1 + 2x_2 = 0$

$$\Rightarrow x_1 = -2x_2$$

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -2x_2 \\ x_2 \end{bmatrix}$$
$$= x_2 \begin{bmatrix} -2 \\ 1 \end{bmatrix}$$

$$N(A) = \left\{ \begin{bmatrix} -2\\1 \end{bmatrix} \right\} \hat{\mathbf{a}} \in \hat{\mathbf{a}} \in \hat{\mathbf{a}} \in (2)$$
The basis for

Step-3

$$A^{T} = \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix}^{R_{2}-2R_{1}} \begin{bmatrix} 1 & 3 \\ 0 & 0 \end{bmatrix}, \text{ column 1 is independent}$$

Basis for
$$C(A^T) = \left\{ \begin{bmatrix} 1 \\ 2 \end{bmatrix} \right\}$$
 $\hat{a} \in \hat{a} \in A^T = A^T$

To find null space A^T , $A^TY = 0$

$$\Rightarrow \begin{bmatrix} 1 & 3 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\Rightarrow y_1 + 3y_2 = 0$$

$$\Rightarrow y_1 = -3y_2$$

$$\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} -3y_2 \\ y_2 \end{bmatrix} = y_2 \begin{bmatrix} -3 \\ 1 \end{bmatrix}$$

 $A^{T} = \left\{ \begin{bmatrix} -3\\1 \end{bmatrix} \right\} \quad \hat{\mathbf{a}} \in \hat{\mathbf{a}} \in [4] \cdot (4)$ Basis for null space of

Step-4

$$C(B) = \left\{ \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}$$

(b) Basis for

$$x_1 + 2x_2 = 0$$

$$\Rightarrow x_1 = -2x_2$$

$$N(B) = \left\{ \begin{bmatrix} -2x_2 \\ x_2 \end{bmatrix} / x_2 \in \mathbf{R} \right\}$$

$$N(B) = \left\{ \begin{pmatrix} -2\\1 \end{pmatrix} \right\}$$
 Basis for

$$B^{T} = \begin{bmatrix} 0 & 1 \\ 0 & 2 \end{bmatrix}, \text{ column 2 is independent}$$

$$C(B^{T}) = \left\{ \begin{pmatrix} 1 \\ 2 \end{pmatrix} \right\}$$
row space of B

Step-5

To find
$$N(B^T)$$
, we use $B^T y = 0$

$$\Rightarrow y_2 = 0, 2y_2 = 0$$

$$\Rightarrow \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} y_1 \\ 0 \end{bmatrix} = y_1 \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$N\left(B^{T}\right) = \left\{ \begin{pmatrix} 1\\0 \end{pmatrix} \right\}$$
 A basis for

Step-6

$$C = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$

1,2 Columns are independent

Hence a basis for $C(C) = \{(1,0),(1,1)\}$

To find null space Cx = 0

$$\Rightarrow x_1 + x_2 = 0$$

$$x_2 + x_4 = 0$$

$$\Rightarrow x_1 = -x_2$$

Step-7

$$x_4=-x_2$$

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} -x_2 \\ x_2 \\ x_3 \\ -x_2 \end{bmatrix} = x_2 \begin{bmatrix} -1 \\ 1 \\ 0 \\ -1 \end{bmatrix} + x_3 \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$

$$N(C) = \left\{ \begin{bmatrix} -1\\1\\0\\-1 \end{bmatrix}, \begin{bmatrix} 0\\0\\1\\0 \end{bmatrix} \right\}$$

Basis for null space of

$$C^{T} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 0 \\ 0 & 1 \end{bmatrix}_{R_{2}-R_{1}} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 & 1 \end{bmatrix}$$

Columns 1, 3 are independent

$$C\left(C^{T}\right) = \left\{ \begin{bmatrix} 1\\1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0\\1 \end{bmatrix} \right\}$$

A basis of

$$\dim N(C(T)) = 0$$

$$N(C(T)) = \{(0,0)\}_{\text{, basis is empty for }} N(C(T))$$