Vorlesungszusammenfassung

Schematheorie

erstellt von

Stefan Hackenberg

Maximilian Huber

gelesen im WS 2012/2013 und SS 2013 von

Prof. Dr. Marco Hien

Stand

26. April 2013

Inhaltsverzeichnis

1	Lokal geringte Räume	5
	1.1 Garben	
2	Affine Schemata	11
_	2.1 Spec A als topologischer Raum	
	2.2 Spec A als lokal geringter Raum	
	2.2.1 Beweis von Satz 2.33	
3	Beispiele	21
	3.1 $\operatorname{Spec} \mathbb{Z}$	21
	3.2 Spec k für einen Körper k	
	3.3 Der Affine n -dimensionale Raum über k	
	3.4 Weiteres Beispiel	
	3.5 Spezielles Beispiel $\mathbb{A}^1_{\mathbb{Z}} = \operatorname{Spec} \mathbb{Z}[X]$	
	3.6 Diskrete Bewertungsringe	
	3.6.1 Beispiele	
4	Projektive Schemata	30
	4.1 Eine kurze Einführung in klassische projektive Geometrie	
	4.2 $\mathbb{P}^n(k)$ als Schema	30
	4.2.1 1. Variante	
	4.2.2 2. Variante (Die Proj-Konstruktion)	32
	4.3 Immersionen und projektive A-Schemata	35
	4.3.1 Beispiele	36
5	Eigenschaften von Schemata	38
	5.1 Noethersch	
	5.2 k-Varietäten	
	5.3 Reduzierte Schemata	
	5.4 Garbifizierung	
	5.5 Sequenzen von Garben und der Homomorphiesatz	
	5.6 Reduzierte Schemata II	
	5.7 Integere Schemata	
6	Faserprodukt	42
	6.1 Anwendungen	
	6.1.1 Faser eines Morphismus	
	6.1.2 Basiswechsel	$\dots 42$
7	Glatt, regulär & normal	44
8	k-Varietät	45
9	Der Punktefunktor	46
10	${\mathcal O}_X$ -Moduln	47
τO	\mathcal{O}_X -Moduli $10.1~\mathcal{O}_X$ -Moduln	
	10.1 \mathcal{O}_X -Moduli	
	10.2 Exkurs, vektorbunger in der Topologie	41 48

D	Definitionen !	58
	10.6 Kohärenz	55
	10.5 Der Čech-Komplex	54
	10.4 Quasikohärente Garben auf Spec A	49

Lokal geringte Räume

1

Bei mir steht hier im Skript $s \Big|_{U}$. Offenbar ein Fehler!?

1.1 Garben

Definition 1.1 (Prägarbe). -

Sei X ein topologischer Raum. Eine $Pr\ddot{a}garbe \mathcal{F}$ auf X ist eine Zuordnung

$$\mathcal{F}: U \mapsto \mathcal{F}(U)$$
,

die jedem offenen $U \subset X$ eine abelsche Gruppe $\mathcal{F}(U)$ zuordnet, zusammen mit Homomorphismen

$$\rho_{UV}: \mathcal{F}(U) \to \mathcal{F}(V)$$

für jedes Paar $V \subset U$, so dass

kommutiert.

Wir nennen ρ_{UV} Restriktion, schreiben meist $s\big|_{V} := \rho_{UV}(s)$.

Man nennt $s \in \mathcal{F}(U)$ auch Schnitt über U.

Beispiel 1.2.

$$\mathcal{C}_X^{\circ}: U \mapsto \mathcal{C}_X^{\circ}(U) := \{f: U \to \mathbb{R} \mid f \text{ stetig}\}$$

mit $\rho_{VU}: \mathcal{C}_X^{\circ}(V) \mapsto \mathcal{C}_X^{\circ}(U), f \mapsto f|_{U}$.

Bemerkung 1.3. Ist Ab die Kategorie der abelschen Gruppen und

$$\mathbf{Top}_X := \begin{cases} \mathrm{Obj} : U \subset X \text{ offen} \\ \mathrm{Morph} : \mathrm{Hom}(U,V) = \begin{cases} \emptyset & U \not\subset V, \\ U \to V & U \subset V, \end{cases}$$

dann ist eine Prägarbe gerade ein kontravarianter Funktor

$$\begin{array}{cccc} \mathcal{F}: & \mathbf{Top}_X & \to & \mathbf{Ab} \\ & U & \mapsto & \mathcal{F}(U) \\ & (U \to V) & \mapsto & (\mathcal{F}(V) \to \mathcal{F}(U)). \end{array}$$

Oder anders ausgedrückt: Es ist

$$\begin{array}{cccc} \mathcal{F}: & \mathbf{Top}_X^{\mathrm{op}} & \to & \mathbf{Ab} \\ & U & \mapsto & \mathcal{F}(U) \\ & (V \to U) & \mapsto & (\mathcal{F}(V) \to \mathcal{F}(U)). \end{array}$$

ein kovarianter Funktor.

Definition 1.4 (Morphismus von Prägarben).

Ein Morphismus von Prägarben $\mathcal{F} \xrightarrow{\phi} \mathcal{G}$ auf X ist eine natürliche Transformation der Funktoren \mathcal{F} und \mathcal{G} , d.h. für alle $U \subset X$ offen gibt es einen Morphismus $\mathcal{F}(U) \xrightarrow{\phi_U} \mathcal{G}(U)$, so dass für $U \subset V$

$$\begin{array}{ccc} \mathcal{F}(U) & \stackrel{\phi_U}{----} & \mathcal{G}(U) \\ \uparrow & & \uparrow \\ \mathcal{F}(V) & \stackrel{\phi_V}{-----} & \mathcal{G}(V) \end{array}$$

kommutiert.

Definition 1.5 (Garbe). -

Eine Prägarbe \mathcal{F} auf X heißt Garbe (engl. sheaf), falls gilt: Ist $U \subset X$ offen und $U = \bigcup_{i \in I} U_i$ für offene $U_i \subset X$, so gilt

- 1. Ist $s \in \mathcal{F}(U)$ und $s|_{U_i} = 0$ für alle $i \in I$, so ist $s = 0 \in \mathcal{F}(U)$.
- 2. Sind $s_i \in \mathcal{F}(U_i)$ gegeben, mit

$$s_i\big|_{U_i\cap U_i} = s_j\big|_{U_i\cap U_i} \quad \forall i, j,$$

so existiert ein $s \in \mathcal{F}(U)$ mit

$$s_i = s \big|_{U_i} \qquad \forall i.$$

Bemerkung 1.6. \mathcal{F} ist eine Garbe, genau dann, wenn die folgende Sequenz abelscher Gruppen exakt ist:

Exaktheit an dieser Stelle ist äquivalent zu Eigenschaft 1 und Exaktheit hier zu Eigenschaft 2.

Beispiel 1.7. Sei M eine C^{∞} Mannigfaltigkeit, so ist

$$\mathcal{C}_M^{\infty}: U \mapsto \mathcal{C}_M^{\infty}(U) := \{ f: U \to \mathbb{R} \mid f \in \mathcal{C}^{\infty}(U) \}$$

eine Garbe.

Beispiel 1.8. Sei M eine \mathbb{C} Mannigfaltigkeit, so ist

$$\mathcal{O}_M: U \mapsto \mathcal{O}_M(U) := \{f: U \to \mathbb{C} \mid f \text{ holomorph}\}\$$

eine Garbe. Für $M=\mathbb{C}$ haben wir zusätzlich die Garbe

$$\mathcal{O}_{\mathbb{C}}^{\times}: U \mapsto \mathcal{O}_{\mathbb{C}}^{\times}(U) := \{ f: U \to \mathbb{C}^{\times} \mid f \text{ holomorph} \},$$

(wobei die Gruppenverknüpfung multiplikativ zu lesen ist). Dies liefert uns einen Morphismus von (Prä)garben

$$\mathcal{O} \to \mathcal{O}_C^{\times}, \ f \mapsto \exp(f).$$

Betrachte nun die Prägarbe

$$\mathcal{H} := \operatorname{im}^{\operatorname{naiv}}(\exp) : U \mapsto \operatorname{im}(\exp_U) = \{ \exp \circ f : U \to \mathbb{C} \mid f : U \to \mathbb{C} \text{ holomorph} \}.$$

Warum steht hier naiv??

Dies ist keine Garbe: Betrachte die Scheibe

$$U = \{ z \in \mathbb{C} \mid \frac{1}{2} < |z| < \frac{3}{2} \}$$

zerlegt in die beiden offenen Teilmengen

$$U_1 = \{ z \in U \mid \Re z > -\varepsilon \}$$

$$U_2 = \{ z \in U \mid \Re z < \varepsilon \}$$

mit $U = U_1 \cup U_2$ für ein $\varepsilon > 0$ beliebig. Für i = 1, 2 ist $(z : U_i \to \mathbb{C}, z \mapsto z) \in \mathcal{H}(U_i)$, da sich der komplexe Logarithmus auf beiden U_i problemlos definieren lässt. Ferner ist auch

$$(z:U_1\to\mathbb{C})\big|_{U_1\cap U_2}=(z:U_2\to\mathbb{C})\big|_{U_1\cap U_2},$$

erfüllt, jedoch kommen diese nicht von einem gemeinsamen Schnitt da

$$(z:U\to\mathbb{C})\notin\mathcal{H}(U).$$

Definition 1.9 (Kategorie der (Prä-)garben).

Für einen topologischen Raum X bezeichne

 $\mathbf{PSh}_X := \text{die Kategorie der Prägarben auf } X,$

 $\mathbf{Sh}_X := \mathrm{die} \ \mathrm{Kategorie} \ \mathrm{der} \ \mathrm{Garben} \ \mathrm{auf} \ X, \ \mathrm{wobei} \ \mathrm{Hom}_{\mathbf{Sh}_X}(\mathcal{F}, \mathcal{G}) := \mathrm{Hom}_{\mathbf{PSh}_X}(\mathcal{F}, \mathcal{G})$

Bemerkung 1.10. Man hat den Inklusionsfunktor

$$\iota: \mathbf{Sh}_X \to \mathbf{PSh}_X, \ \mathcal{F} \mapsto \mathcal{F}$$

Definition 1.11 (Halm, Keim). -

Ist \mathcal{F} eine (Prä)Garbe auf X und $x_0 \in X$, so heißt

$$\mathcal{F}_{x_0} := \varinjlim_{x_0 \in U \subset X \text{ offen}} \mathcal{F}(U) = \coprod_{U \subset X \text{ offen}} \mathcal{F}(U) \Big/ \sim$$

 $_{
m mit}$

$$s \sim t : \Leftrightarrow \exists W \subset X \text{ offen}: x_0 \in W \subset U \cap U' \text{ und } s|_W = t|_W$$

für $s \in \mathcal{F}(U)$, $t \in \mathcal{F}(U')$ der Halm von \mathcal{F} bei x_0 .

Die Elemente $[s] \in \mathcal{F}_{x_0}$ heißen Keime von Schnitten bei x_0 .

$$\textbf{Beispiel 1.12.} \ \ (\mathcal{C}_{M}^{\infty})_{x_{0}} = \{[f: U \xrightarrow{C^{\infty}} \mathbb{R}] \mid f \sim g \Leftrightarrow \exists W \subset M \text{ offen}, x_{0} \in W \text{ mit } f\big|_{W} = g\big|_{W}\}$$

Beispiel 1.13.

$$\mathcal{O}_{\mathbb{C},x_0} = \{ [f:U \xrightarrow{\text{hol}} \mathbb{C}] \mid x_0 \in U \}$$

$$= \{ \sum_{n=0}^{\infty} a_n (x - x_0)^n \mid \text{Reihe hat positiven Konvergenzradius} \}$$

$$:= \mathbb{C} \{ x - x_0 \}$$

Übung (Übungsblatt 1 Aufgabe 3).

- 1. Es sei \mathcal{F} eine Garbe auf einen topologischen Raum X. Es sei $U \subset X$ eine offene Teilmenge. Für $r \in \mathcal{F}(U)$, $x_0 \in U$ bezeichne r_{x_0} den Keim [r] von \mathcal{F} bei x_0 . Es seien nun $s,t \in \mathcal{F}(U)$, für die $\forall x_0 \in U : s_{x_0} = t_{x_0}$ gelte. Zeige, dass s = t.
- 2. Gib ein Beispiel einer Prägarbe an, die nicht separiert ist, die also nicht die erste Garbenbedingung erfüllt.

Beweis. 1. Für alle $x_0 \in U$ existieren offene U_{x_0} mit $s\big|_{U_{x_0} \cap U} = t\big|_{U_{x_0} \cap U}$ nach Definition der Keime. Es ist $U = \cap_{x_0 \in U} U_{x_0} \cap U$, also folgt nach erster Garbenbedingung s = t.

2. Wähle $X = \{0,1\}$ mit diskreter Topologie. Definiere die Prägarbe

$$\mathcal{F}(X) := \mathbb{Z}$$
 $\mathcal{F}(\emptyset) = \mathcal{F}(\{1\}) = \mathcal{F}(\{0\}) := 1$

Nun ist

$$2\big|_{\{0\}} = 5\big|_{\{0\}}$$
$$2\big|_{\{1\}} = 5\big|_{\{1\}}$$

aber $2 \neq 5 \in \mathbb{Z}$.

Definition 1.14 (push-forward). -

Ist $f: X \to Y$ stetig und \mathcal{F} eine Garbe auf X, so ist durch

$$f_*\mathcal{F}: V \mapsto \mathcal{F}(f^{-1}(V))$$

für $V \subset Y$ offen eine Garbe definiert, der push-forward von \mathcal{F} .

1.2 Lokal geringte Räume

Betrachte nun

Ring := Kategorie der kommuativen Ringe mit 1

und entsprechend Garben

$$\mathcal{F}: \mathbf{Top}_{X}^{\mathrm{op}} o \mathbf{Ring}.$$

Definition 1.15 (lokaler Ring).

Sei R ein Ring. Dann heißt R lokal, wenn R genau ein maximales Ideal besitzt.

Beispiel 1.16.
$$\mathbb{Z}_{(p)}:=\left\{rac{a}{b}\in\mathbb{Q}\mid p\nmid b
ight\} \ \ \ \ \ \ \ \ \ \mathbb{Q}$$

Bemerkung 1.17. Ist R lokaler Ring und $\mathfrak{m} \triangleleft R$ das maximale Ideal, so ist $R \setminus \mathfrak{m} = R^{\times}$.

Übung (Übungsblatt 1 Aufgabe 1). -

- 1. Es sei R ein kommutativer Ring und R^{\times} seine Einheitengruppe. Zeige, dass R genau dann lokal ist, wenn $R \setminus R^{\times} \triangleleft R$ gilt, d.h. wenn die Nichteinheiten $R \setminus R^{\times}$ ein Ideal in R bilden.
- 2. Es sei R ein kommutativer nullteilerfreier Ring. Den Quotientenkörper zu R bezeichen wir mit Quot(R). Lokalisieren wir R nach \mathfrak{p} , so erhalten wir den Ring $R_{\mathfrak{p}} = \{\frac{a}{b} \in \operatorname{Quot}(R) \mid a \in R, \ b \notin \mathfrak{p}\}$. Zeige, dass $R_{\mathfrak{p}}$ ein lokaler Ring ist.

Beweis. 1. " \Rightarrow ". Ist R lokal, so ist $R \setminus R^{\times} = \mathfrak{m}$ das maximale Ideal von R.

"⇐". Ist $R \setminus R^{\times}$ ein Ideal, so ist dies maximal (klar). Sei $\mathfrak{m} \triangleleft R$ ein maximales Ideal, so gilt offenbar schon $R \setminus R^{\times} = \mathfrak{m}$.

2. Wir zeigen $\mathfrak{p}R_{\mathfrak{p}} = R_{\mathfrak{p}} \setminus R_{\mathfrak{p}}^{\times}$, dann folgt die Behauptung mit 1.

"⊆". Es sei

$$h = p_1 \frac{s_1}{t_1} + \ldots + p_n \frac{s_n}{t_n}.$$

Setze

$$z_1 := p_1 s_1 t_2 \dots t_n + p_2 s_2 t_1 t_3 \dots t_n + p_n s_n t_1 \dots t_{n-1}$$

 $z_0 := t_1 \dots t_n,$

so ist $h = \frac{z_1}{z_0}$. Wäre $h \in R_{\mathfrak{p}}^{\times}$, sagen wir $\frac{s}{t}$ sein Inverses, so müsste gelten $z_1 s = z_0 t$. Die linke Seite jedoch ist in \mathfrak{p} , die rechte nicht. Damit ist $h \in R_{\mathfrak{p}} \setminus R_{\mathfrak{p}}^{\times}$.

$$,\supseteq$$
". Sei $\frac{s}{t} \in R_{\mathfrak{p}} \setminus R_{\mathfrak{p}}^{\times}$, so ist $s^{\frac{1}{t}} \in \mathfrak{p}R_{\mathfrak{p}}$.

Beispiel 1.18. Sei M eine C^{∞} Mannigfaltigkeit und $x_0 \in M$. Dann ist $\mathcal{C}_{M,x_0}^{\infty}$ ein lokaler Ring, denn

$$C_{M,x_0}^{\infty} \setminus (C_{M,x_0}^{\infty})^{\times} = \{ [f: U \xrightarrow{C^{\infty}} \mathbb{R}] \mid x_0 \in U \text{ mit } f(x_0) = 0 \} =: \mathfrak{m},$$

da [f] eine Einheit ist, genau dann, wenn $f(x_0) \neq 0$: Ist $f: U \xrightarrow{C^{\infty}} \mathbb{R}$ mit $f(x_0) \neq 0$, so existiert $W \subset U$ offen, $x_0 \in W$ mit $f(x) \neq 0$ für alle $x \in W$. Damit folgt

$$\left[\frac{1}{f}:W\to\mathbb{R},\ x\mapsto\frac{1}{f(x)}\right]\in\mathcal{C}_{M,x_0}^\infty$$

ist Inverses zu[f]. Zudem ist ${\mathfrak m}$ ein Ideal.

Definition 1.19 (lokal geringter Raum).

Ein lokal geringter Raum ist ein Paar (X, \mathcal{O}_X) bestehend aus:

- \bullet einem topologischen Raum X und
- einer Garbe \mathcal{O}_X auf X von Ringen,

so dass \mathcal{O}_{X,x_0} für alle $x_0 \in X$ ein lokaler Ring ist.

Man nennt \mathcal{O}_X die Strukturgarbe von (X, \mathcal{O}_X) . Ist $x_0 \in X$, so hat man das maximale Ideal $\mathfrak{m}_{x_0} \triangleleft \mathcal{O}_{X,x_0}$.

Der Körper

$$\kappa(x_0) := \mathcal{O}_{X,x_0}/\mathfrak{m}_{x_0}$$

heißt Restklassenkörper von x_0 in (X, \mathcal{O}_X) .

Beispiel 1.20. Sei M eine C^{∞} -Mannigfaltigkeit und $x_0 \in M$, so ist $\kappa(x_0) = \mathbb{R}$.

Übung (Übungsblatt 1 Aufgabe 2). -

- 1. Zeige, dass das Tupel $(\mathbb{R}, C^{\infty}_{\mathbb{R}})$ bestehend aus \mathbb{R} und der Garbe der C^{∞} -Funktionen einen lokal geringten Raum bilden. Zeige also, dass $C^{\infty}_{\mathbb{R},x_0}$ für beliebiges $x_0 \in \mathbb{R}$ ein lokaler Ring ist, indem Du sein maximales Ideal \mathfrak{m}_{x_0} angiebst. Warum ist es das einzige maximale Ideal?
- 2. Zeige, dass $\forall x_0 \in \mathbb{R} : C^{\infty}_{\mathbb{R},x_0}/\mathfrak{m}_{x_0} \cong \mathbb{R}$.
- 3. Zeige nun auf gleiche Weise, dass \mathbb{C} mit der Garbe der holomorphen Funktionen $\mathcal{O}_{\mathbb{C}}$ eine lokal gerinter Raum ist und dass $\mathcal{O}_{\mathbb{C},z_0}/\mathfrak{m}_{z_0} \cong \mathbb{C}$ für alle $z_0 \in \mathbb{C}$ gilt.

Beweis. 1. Es gilt

$$[f:U\to\mathbb{R}]\in (C^\infty_{\mathbb{R},x_0})^\times\quad\Leftrightarrow\quad\exists\text{ offene Umgebung }V\text{ um }x_0\text{ mit}f\big|_{U\cap V}\neq 0\;\forall x\in U\cap V$$

$$\Leftrightarrow\quad f(x_0)\neq 0.$$

Also $[f] \in C^{\infty}_{\mathbb{R},x_0} \setminus (C^{\infty}_{\mathbb{R},x_0})^{\times}$ genau dann, wenn $f(x_0) = 0$. Damit ist $C^{\infty}_{\mathbb{R},x_0} \setminus (C^{\infty}_{\mathbb{R},x_0})^{\times}$ ein Ideal. Es ist klar, dass dies das einzige maximale ist.

2. Wir definieren den surjektiven Gruppenhomomorphismus

$$\varphi: \begin{array}{ccc} C^{\infty}_{\mathbb{R}, x_0} & \to & \mathbb{R} \\ & [f] & \mapsto & f(x_0), \end{array}$$

so folgt die Aussage aus dem Homomorphiesatz

3. Analog zu den vorherigen beiden.

Definition 1.21 (lokale Ringhomomorphismen). –

Sind R, S lokale Ringe mit den maximalen Idealen $\mathfrak{m}_R \triangleleft R, \mathfrak{m}_S \triangleleft S$, so heißt der Ringhomomorphismus $\varphi: R \to S \ lokal$, falls

$$\varphi^{-1}(\mathfrak{m}_S)=\mathfrak{m}_R.$$

Äquivalent lässt sich fordern, dass

$$\varphi(\mathfrak{m}_R) \subset \mathfrak{m}_S.$$

Definition 1.22 (Morphismus lokal geringter Räume). -

Ein Morphismus $f:(X,\mathcal{O}_X)\to (Y,\mathcal{O}_Y)$ lokal geringter Räume ist ein Paar $(f,f^\#)$ bestehend aus

$$f: X \to Y$$
 stetig

 $f^{\#}: \mathcal{O}_{Y} \to f_{*}\mathcal{O}_{X}$ Morphismus von Garben auf Y,

so dass der von $f^{\#}$ induzierte Ringhomomorphismus für $x_0 \in X, y_0 := f(x_0) \in Y$

$$\begin{array}{cccc} f_{x_0}^{\#}: & \mathcal{O}_{Y,y_0} & \rightarrow & \mathcal{O}_{X,x_0} \\ & [s] & \mapsto & [f_U^{\#}(s)] \end{array}$$

für $s \in \mathcal{O}_Y(U)$ und $y_0 \in U$ ein lokaler Ringhomomorphismus ist.

Bemerkung 1.23. In Definition 1.22 ist $f_{x_0}^{\#}$ wohldefiniert:

Sei $[s] = [t] \in \mathcal{O}_{Y,y_0}$, d.h. es existiert $W \subset Y$ offen mit $y_0 \in W$ und $s\big|_W = t\big|_W \in \mathcal{O}_Y(W)$. Betrachte nun $f_U^\#(s) \in \mathcal{O}_X(f^{-1}(U))$ für $s \in \mathcal{O}_Y(U)$, $U \subset Y$, $y_0 \in U$ und analog $f_V^\#(t) \in \mathcal{O}_X(f^{-1}(V))$ für $t \in \mathcal{O}_Y(V)$, $V \subset Y$, $y_0 \in V$. Da $f^\#$ ein Garbenmorphismus ist, kommutiert damit folgendes Diagramm:

2.1 Spec A als topologischer Raum

Sei im Folgenden A ein kommuativer Ring mit 1 und Spec $A := \{ \mathfrak{p} \triangleleft A \mid \mathfrak{p} \text{ Primideal} \}.$

Definition 2.1 (Zariski Topologie). -

Ist $\mathfrak{a} \triangleleft A$, ein Ideal, setze

$$V(\mathfrak{a}) := \{ \mathfrak{p} \in \operatorname{Spec} A \mid \mathfrak{a} \subseteq \mathfrak{p} \} \subseteq \operatorname{Spec} A.$$

Dann ist durch

$$\mathcal{T} := \{ U \subseteq \operatorname{Spec} A \mid \exists \ \mathfrak{a} \triangleleft A : \ U = \operatorname{Spec} A \setminus V(\mathfrak{a}) \}$$

eine Topologie auf Spec A definiert. Sie heißt Zariski-Topologie.

Beweis (der Topologie-Eigenschaften). 1. Zeige: \emptyset , Spec A offen \iff Spec A, \emptyset abgeschlossen. Dazu: $V(A) = \emptyset$, $V((0)) = \operatorname{Spec} A$

- 2. Zeige: U_1, U_2 offen $\Rightarrow U_1 \cap U_2$ offen $\iff M_1, M_2$ abgeschlossen $\Rightarrow M_1 \cup M_2$ abgeschlossen. Dazu: $V(\mathfrak{a}) \cup V(\mathfrak{b}) = V(\mathfrak{a} \cap \mathfrak{b})$
- 3. $(U_i)_{i\in I}$ offen $\Rightarrow \bigcup_{i\in I} U_i$ offen $\iff (M_i)_{i\in I}$ abgeschlossen $\Rightarrow \cap_{i\in I} M_i$ abgeschlossen. Dazu: $\cap_{i\in I} V(\mathfrak{a}_i) = V(\sum_{i\in I} \mathfrak{a}_i)$

Bemerkung 2.2. Die abgeschlossenen Teilmengen $M \subset \operatorname{Spec} A$ sind genau die $M = V(\mathfrak{a})$ für ein $\mathfrak{a} \triangleleft A$.

Beispiel 2.3 (Spec \mathbb{Z}). Für $\mathfrak{a} \lhd \mathbb{Z}$ ist $\mathfrak{a} = (a)$. Falls $a \neq 0, 1, -1$ sei $a = \pm p_1^{\nu_1} \cdots \nu_r^{\nu_r}$ die Primfaktorzerlegung. Für p Primzahl ist

$$(p) \in V((a)) \Leftrightarrow (a) \subseteq (p) \Leftrightarrow p \mid a \Leftrightarrow p \in \{p_1, \dots, p_r\}$$

Das bedeutet, die abgeschlossenen Mengen in Spec $\mathbb Z$ sind genau die Mengen \emptyset , Spec $\mathbb Z$ und $\{(p_1),\ldots,(p_r)\}$ für eine endliche Anzahl an Primzahlen.

Insbesondere gilt

- Spec \mathbb{Z} ist nicht hausdorffsch.
- $(0) =: \eta \in \operatorname{Spec} \mathbb{Z}$ liegt in jeder nichtleeren offenen Teilmenge.

Lemma 2.4. Sei $x \in \operatorname{Spec} A$, so ist der Abschluss $\{x\}$ der Menge $\{x\}$ in $\operatorname{Spec} A$ gleich

$$\overline{\{x\}} = V(x).$$

Beweis.

$$\overline{\{x\}} = \bigcap_{\substack{B \subseteq \text{Spec } A \text{ abg.} \\ x \in B}} B = \bigcap_{\substack{\mathfrak{a} \triangleleft A \\ \mathfrak{a} \subseteq x}} = V(x)$$

Bemerkung 2.5. Beachte, dass

$$\mathfrak{a} \subseteq \mathfrak{b} \quad \Rightarrow \quad V(\mathfrak{b}) \subseteq V(\mathfrak{a})$$

Abbildung 1: Spec $\mathbb{C}[X,Y]$

Definition 2.6 (abgeschlossener Punkt, generischer Punkt).

Sei X ein topologischer Raum. Ein $x \in X$ heißt abgeschlossener Punkt, wenn $\overline{\{x\}} = \{x\}$.

Er heißt generischer Punkt, wenn $\overline{\{x\}} = X$ gilt.

Die Menge der abgeschlossenen Punkte bezeichnen wir mit |X|.

Beispiel 2.7. Sei $A = \mathbb{C}[X, Y]$.

- $x = (0) \in \operatorname{Spec} A$ ist generisch.
- $x = (X \alpha, Y \beta) \triangleleft A$ ist abgeschlossen, da aus $x \triangleleft A$ maximal $V(x) = \{x\}$ und somit x abgeschlossen folgt.
- $x = (X) \triangleleft A$ ist weder abgeschlossen noch generisch.
- $x = (XY 1) \triangleleft A$ ist ebenfalls weder abgeschlossen noch generisch.

Wir können die bisherigen Ergebnisse in 1 zusammenfassen.

Definition 2.8 (basisoffene Menge).

Für $f \in A$ nennt man

$$D(f) := \operatorname{Spec} A \setminus V((f)) = \{ \mathfrak{p} \in \operatorname{Spec} A \mid f \notin \mathfrak{p} \}$$

die zu f gehörige basisoffene Menge.

Lemma 2.9. Die Menge $\mathfrak{B} := \{D(f) \mid f \in A\}$ ist eine Basis der Topologie, d.h. jedes offene $U \subseteq \operatorname{Spec} A$ ist eine Vereinigung von $D(f) \in \mathfrak{B}$ und \mathfrak{B} ist unter endlichen Schnitten abgeschlossen.

Beweis. Sei $U = \operatorname{Spec} A \setminus V(\mathfrak{a})$ offen und $\mathfrak{p} \in U$, so ist $\mathfrak{p} \notin V(\mathfrak{a})$, also $\mathfrak{a} \not\subseteq \mathfrak{p}$. Damit existiert $f \in \mathfrak{a} \setminus \mathfrak{p}$ mit $f \notin \mathfrak{p}$, also $\mathfrak{p} \in D(f)$ und $f \in \mathfrak{a}$. Also $(f) \subseteq \mathfrak{a}$ und $V(\mathfrak{a}) \subseteq V((f))$. Damit folgt $D(f) \subseteq U$.

Zusammenfassend gilt für $U \subseteq \operatorname{Spec} A$ offen: $\forall \mathfrak{p} \in U \ \exists f \mathfrak{p} \in A : \mathfrak{p} \in D(f \mathfrak{p}) \subseteq U$. Also

$$U = \bigcup_{\mathfrak{p} \in U} D(f\mathfrak{p})$$

Ferner folgt mit Lemma 2.10 $D(f) \cap D(g) = D(fg)$.

Lemma 2.10. $F\ddot{u}r \mathfrak{a}, \mathfrak{b} \triangleleft A \ gilt$

$$V(\mathfrak{a}) \cup V(\mathfrak{b}) = V(\mathfrak{a} \cap \mathfrak{b}) = V(\mathfrak{a} \cdot \mathfrak{b}).$$

Beweis. Es ist $\mathfrak{ab} \subseteq \mathfrak{a} \cap \mathfrak{b} \subseteq \mathfrak{a}, \mathfrak{b}$. Also

$$V(\mathfrak{a}) \cup V(\mathfrak{b}) \subseteq V(\mathfrak{a} \cap \mathfrak{b}) \subseteq V(\mathfrak{ab}).$$

Angenommen $V(\mathfrak{a}) \cup V(\mathfrak{b}) \subsetneq V(\mathfrak{ab})$, d.h. $\exists \mathfrak{p} \in V(\mathfrak{ab}) \setminus (V(\mathfrak{a}) \cup V(\mathfrak{b}))$, also $\mathfrak{ab} \subseteq \mathfrak{p}$ aber nicht $\mathfrak{a}, \mathfrak{b} \not\subseteq \mathfrak{p}$. Also existiert $s \in \mathfrak{a} \setminus \mathfrak{p}$ und $t \in \mathfrak{b} \setminus \mathfrak{p}$. Damit ist $st \in \mathfrak{ab} \setminus \mathfrak{p}$. Dies ist ein Widerspruch, da \mathfrak{p} ein Primideal ist. Folglich herrscht Gleichheit in obiger Inklusionskette.

Definition 2.11 (Radikal). -

Für $\mathfrak{a} \triangleleft A$ heißt

$$\sqrt{\mathfrak{a}}:=\{f\in A\mid \exists n\in\mathbb{N}:\ f^n\in\mathfrak{a}\}$$

Radikal von \mathfrak{a} .

Lemma 2.12. $\sqrt{a} \triangleleft A$.

Beweis. $\bullet \ 0 \in \sqrt{\mathfrak{a}} \checkmark$

- Sei $f \in \sqrt{\mathfrak{a}}$, $r \in A$. Dann $f^n \in \mathfrak{a}$, $r \in A$. Also $(rf)^n \in \mathfrak{a}$ und damit $rf \in \sqrt{\mathfrak{a}}$.
- $f, g \in \sqrt{\mathfrak{a}} \text{ mit } f^n \in \mathfrak{a}, g^m \in \mathfrak{a}.$

$$(f+g)^{n+m-1} = \sum_{i=0}^{n-1} \binom{n+m-1}{i} f^i g^{n+m-1-i} + \sum_{i=n}^{n+m-1} \binom{n+m-1}{i} f^i g^{n+m-1-i}$$

$$= \left(\sum_{i=0}^{n-1} \binom{n+m-1}{i} f^i g^{n-1-i}\right) g^m + \left(\sum_{i=n}^{n+m-1} \binom{n+m-1}{i} f^i g^{m-1-i}\right) f^n$$

Da g^m und f^n jeweils in \mathfrak{a} liegen, ist auch die Summe dort.

Definition 2.13 (Radikalideal (radiziell)). -

Ein Ideal $\mathfrak{b} \triangleleft A$ heißt Radikalideal (radiziell), falls

$$\sqrt{\mathfrak{b}} = \mathfrak{b}$$
.

Bemerkung 2.14. Es gilt $\sqrt{\sqrt{\mathfrak{a}}} = \sqrt{\mathfrak{a}}$.

Lemma 2.15. $F\ddot{u}r \mathfrak{a} \triangleleft A \ gilt$

$$\sqrt{\mathfrak{a}} = \bigcap_{\mathfrak{p} \in V(\mathfrak{a})} \mathfrak{p}$$

Beweis. "⊆" Sei $f \in \sqrt{\mathfrak{a}}$, $f^n \in \mathfrak{a}$. Ist $\mathfrak{p} \in V(\mathfrak{a})$, d.h. $\mathfrak{a} \subseteq \mathfrak{p}$. Also $f^n \in \mathfrak{p}$ und da \mathfrak{p} prim, folgt $f \in \mathfrak{p}$. "⊇" Ist $f \notin \sqrt{\mathfrak{a}}$, so zu zeigen, dass $f \notin \bigcap_{\mathfrak{p} \in V(\mathfrak{a})} \mathfrak{p}$. Sei also $f^n \notin \mathfrak{a}$ für alle $n \in \mathbb{N}$.

Betrachte

$$M := \{ \mathfrak{b} \triangleleft A \mid a \subseteq \mathfrak{b}, f^n \notin \mathfrak{b} \forall n \in \mathbb{N} \},$$

so gilt

- $-\mathfrak{a}\in M$,
- -M ist angeordnet durch " \subseteq ",
- ist $(\mathfrak{b}_i)_{i\in I}$ eine total geordnete Teilmenge, so ist $\mathfrak{b} := \cup_{i\in I}\mathfrak{b}_i \triangleleft A$ mit $\mathfrak{b} \in M$.

Damit hat M mit dem Lemma von Zorn ein maximales Element $\mathfrak{b}_{\max} \in M$.

Nun sei behauptet, dass $\mathfrak{b}_{\max} \triangleleft A$ ein Primideal ist. Dazu sei $xy \in \mathfrak{b}_{\max}$, wobei wir annehmen, dass $x,y \notin \mathfrak{b}_{\max}$. Betrachte $\mathfrak{b}_{\max} \subsetneq (x) + \mathfrak{b}_{\max}$, was ein Ideal in A ist, aber nicht in M liegt. Analog künnen wir dies von $(y) + \mathfrak{b}_{\max}$ sagen. Damit existieren $n, m \in \mathbb{N}$ mit

$$f^n \in (x) + \mathfrak{b}_{\max}$$
 $f^m \in (y) + \mathfrak{b}_{\max}$.

Ergo ist

$$f^{n+m} \in (x)\mathfrak{b}_{\max} + (y)\mathfrak{b}_{\max} + \mathfrak{b}_{\max}\mathfrak{b}_{\max} + (xy),$$

wobei jeder Summand Teilmenge von \mathfrak{b}_{\max} ist und wir folgern $f^{n+m} \in \mathfrak{b}_{\max} \in M$, wodurch man den Widerspruch erhült.

Damit ist $\mathfrak{b}_{\max} \in V(\mathfrak{a})$ und $f \notin \mathfrak{b}_{\max}$.

Satz 2.16. -

 $F\ddot{u}r \ \mathfrak{a}, \mathfrak{b} \lhd A \ gilt$

$$V(\mathfrak{a}) \subseteq V(\mathfrak{b}) \quad \Leftrightarrow \quad \mathfrak{b} \subseteq \sqrt{\mathfrak{a}}.$$

 $Insbesondere\ gilt\ sogar$

$$V(\mathfrak{a}) = V(\mathfrak{b}) \quad \Leftrightarrow \quad \mathfrak{b} = \sqrt{\mathfrak{a}}.$$

Beweis. \ll Aus $V(\mathfrak{a}) \subseteq V(\mathfrak{b})$ folgt

$$\bigcap_{\mathfrak{p}\in V(\mathfrak{a})}\mathfrak{p}\supseteq\bigcap_{\mathfrak{p}\in V(\mathfrak{b})}\mathfrak{p}$$

und mit Lemma 2.15 folgt $\sqrt{\mathfrak{a}} \supseteq \sqrt{\mathfrak{b}} \supseteq \mathfrak{b}$.

 \Rightarrow "Aus $\mathfrak{b} \subseteq \sqrt{\mathfrak{a}}$, d.h. $\mathfrak{b} \subseteq \cap_{\mathfrak{p} \in V(\mathfrak{a})} \mathfrak{p}$, folgt $\mathfrak{b} \subseteq \mathfrak{p}$ für alle $\mathfrak{p} \in V(\mathfrak{a})$. Also $\mathfrak{p} \in V(\mathfrak{a})$.

Definition 2.17 (irreduzibel).

Ein topologischer Raum X heißt irreduzibel, wenn gilt: Ist $X = A_1 \cup A_2$ mit $A_{1,2} \subseteq X$ abgeschlossen, so ist $X = A_1$ oder $X = A_2$.

Eine Teilmenge $Z \subseteq X$ heißt *irreduzibel*, wenn Z mit der Teilraumtopologie irreduzibel ist.

Beispiel 2.18. Spec \mathbb{Z} ist irreduzibel. Ist nämlich $A_1 \subsetneq \operatorname{Spec} \mathbb{Z}$ abgeschlossen, so ist $A_1 = \{(p_1), \dots, (p_r)\}$ für irgendwelche Primzahlen p_i .

Lemma 2.19. In Spec A gilt:

$$V(\mathfrak{a})$$
 irreduzibel \Leftrightarrow $\sqrt{\mathfrak{a}}$ Primideal.

Beweis. \Rightarrow Sei $xy \in \sqrt{\mathfrak{a}}$, so ist $(xy) \subseteq \sqrt{\mathfrak{a}}$ und mit Satz 2.16 $V(\mathfrak{a}) \subseteq V((xy))$.

Für $\mathfrak{p} \in V(\mathfrak{a}) \subseteq V((xy))$, gilt: Ist $xy \in \mathfrak{p}$, so folgt $x \in \mathfrak{p}$ oder $y \in \mathfrak{p}$. Damit

$$V(\mathfrak{a}) \subseteq V((x)) \cup V((y)) \ \Rightarrow \ V(\mathfrak{a}) = \big(V(\mathfrak{a}) \cap V((x))\big) \cup \big(V(\mathfrak{a}) \cap V((y))\big).$$

Da $V(\mathfrak{a})$ irreduzibel nach Voraussetzung, folgt oBdA $V(\mathfrak{a}) = V(\mathfrak{a}) \cap V((x))$, also $V(\mathfrak{a}) \subseteq V((x))$. Wieder mit Satz 2.16 folgt $(x) \subseteq \sqrt{\mathfrak{a}}$ und damit $x \in \sqrt{\mathfrak{a}}$.

"←" Schreibe $V(\mathfrak{a}) = V(\mathfrak{b}) \cup V(\mathfrak{c}) = V(\mathfrak{b} \cap \mathfrak{c})$. Dann folgt wiederum mit Satz 2.16 $\sqrt{\mathfrak{a}} = \sqrt{\mathfrak{b} \cap \mathfrak{c}}$.

Ist $V(\mathfrak{a}) \neq V(\mathfrak{b})$, also $V(\mathfrak{b}) \subsetneq V(\mathfrak{a})$, also $\sqrt{\mathfrak{a}} \subsetneq \sqrt{\mathfrak{b}}$, so existient $x \in \sqrt{\mathfrak{b}} \setminus \sqrt{\mathfrak{a}}$. Für $y \in \mathfrak{c}$, ist

$$xy \in \sqrt{\mathfrak{bc}} \subseteq \sqrt{\mathfrak{b} \cap \mathfrak{c}} = \sqrt{\mathfrak{a}}.$$

Nach Voraussetzung ist $\sqrt{\mathfrak{a}}$ Primideal, also nach Wahl von x ist $y \in \sqrt{\mathfrak{a}}$. Insgesamt ist $\mathfrak{c} \subseteq \sqrt{\mathfrak{a}}$, also $V(\mathfrak{a}) \subseteq V(\mathfrak{c})$ und damit $V(\mathfrak{a}) = V(\mathfrak{c})$.

Definition 2.20 (Nilradikal). -

$$Nil(A) := \sqrt{(0)}$$

heißt Nilradikal von A.

Korollar 2.21. Es gilt

 $\operatorname{Spec} A \ irreduzibel \Leftrightarrow \operatorname{Nil}(A) \ Primideal.$

Beweis. Lemma 2.19 mit $\mathfrak{a} = (0)$.

Definition 2.22 (noethersch). -

Ein topologischer Raum heißt noethersch, wenn gilt: Ist

$$A_1 \supseteq A_2 \supseteq A_3 \supseteq \dots$$

eine Folge abgeschlosser Teilmengen, so existiert $n_0 \in \mathbb{N}$ mit $A_i = A_{i+1}$ für alle $i \geq n_0$.

Lemma 2.23. Ist A noethersch, so ist auch Spec A noethersch.

Beweis. Sei

$$A_1 \supseteq A_2 \supseteq \dots$$

eine Folge abgeschlossener Teilmengen, also

$$V(\mathfrak{a}_1) \supseteq V(\mathfrak{a}_2) \supseteq \dots$$

mit $A_i = V(\mathfrak{a}_i)$ für geeignete $\mathfrak{a}_i \in \operatorname{Spec} A$, so ist

$$\sqrt{\mathfrak{a}_1} \subseteq \sqrt{\mathfrak{a}_2} \subseteq \dots$$

eine aufsteigende Idealkette in A.

Satz 2.24. -

Ist X noetherschscher topologischer Raum und $\emptyset \neq A \subseteq X$ abgeschlossen, so zerlegt sich

$$A = A_1 \cup \ldots \cup A_r$$

in abgeschlosse irreduzible Teilmengen $A_i \subseteq A$. Nimmt man $A_i \not\subseteq A_j$ für $i \neq j$, so ist die Zerlegung bis auf Reihenfolge eindeutig.

 $Die A_i hei \beta en (irreduzible) Komponenten von A.$

Beweis. Existenz. Sei

 $\mathcal{V} := \{ A \subseteq X \mid \emptyset \neq A \text{ abgeschlossen}, A \text{ hat keine solche Zerlegung} \}.$

Angenommen $\mathcal{V} \neq \emptyset$, so hütte man ein inklusionsminimales $A \in \mathcal{V}$, denn falls nicht gübe es

$$A_1 \supseteq A_2 \supseteq \dots$$

mit $A_i \in \mathcal{V}$. Da X noethersch, müsste diese Folge stationür werden, wodurch man einen Widerspruch erhült.

Dieses $A \in \mathcal{V}$ hat keine solche Zerlegung, ist also insbesondere nicht irreduzibel. Damit gibt es

$$A = A_1 \cup A_2$$
 $A_i \subseteq X$ abgeschlossen, $A_i \neq A$

Da $A \in \mathcal{V}$ minimal sind $A_1, A_2 \notin \mathcal{V}$. Aber damit ist $A = A_1 \cup A_2 \notin \mathcal{V}$. Ein Widerspruch, der wie gewünscht $\mathcal{V} = \emptyset$ liefert.

Eindeutigkeit. Sind

$$A = A_1 \cup \ldots \cup A_r = A'_1 \cup \ldots \cup A'_s$$

zwei solcher Zerlegungen, so ist $A_1 \subseteq A_1' \cup \ldots \cup A_s'$, also $A_1 = (A_1' \cap A_1) \cup \ldots \cup (A_s' \cap A_1)$. Da A_1 irreduzibel künnen wir oBdA $A_1 = A_1 \cap A_1'$ annehmen. Also ist $A_1 \subseteq A_1'$.

Analog ist $A'_1 \subseteq A_k$ für ein k = 1, ..., r. Zusammenfassend gilt

$$A_1 \subseteq A_1' \subseteq A_k$$

was nach Voraussetzung k = 1 impliziert. Also $A_1 = A'_1$.

Nun sukzessive weiter.

Beispiel 2.25. In Spec k[X, Y] zerfüllt

$$V((XY)) = V((X)) \cup V((Y)).$$

Quelle suchen!

Beispiel 2.26. Sei k algebraisch abgeschlossen. Betrachte Spec k[X,Y]. Die maximalen Ideale sind gerade $\mathfrak{m}=(X-\alpha,Y-\beta)$ für $\alpha,\beta\in k$. Ein abgeschlosser Punkt $\mathfrak{m}\in \operatorname{Spec} k[X,Y]$ wird eindeutig durch $(\alpha,\beta)\in k^2$ gegeben.

 $\mathbb{A}^2_k := \operatorname{Spec} k[X,Y]$ wird der 2 dimensionale affine Raum über k genannt. Man hat die Bijektion

$$|\mathbb{A}_k^2| \xrightarrow{\phi} k^2.$$

Eine abgeschlossene Teilmenge $A = V(\mathfrak{a}) \subseteq \mathbb{A}^2_k$ liefert

$$A \cap |\mathbb{A}_k^2| \cong_{\phi} \{(\alpha, \beta) \in k^2 \mid f(\alpha, \beta) = 0 \ \forall f \in \mathfrak{a}\},\$$

denn

$$\begin{split} A \cap |\mathbb{A}_k^2| &= V(\mathfrak{a}) \cap |\mathbb{A}_k^2| = |V(\mathfrak{a})| \\ &= \{\mathfrak{m} \in \operatorname{Spec} k[X,Y] \mid \mathfrak{a} \subseteq \mathfrak{m}, \ \mathfrak{m} \ \operatorname{maximal}\} = \{(X - \alpha, Y - \beta) \lhd k[X,Y] \mid \mathfrak{a} \subseteq (X - \alpha, Y - \beta)\} \\ &= \{(X - \alpha, Y - \beta) \mid f(X,Y) \in \alpha \ \Rightarrow \ f(X,Y) \in (X - \alpha, Y - \beta)\} \\ &= \{(X - \alpha, Y - \beta) \mid f(X,Y) \in \alpha \ \Rightarrow \ f(X,Y) = (X - \alpha)g(X,Y) + (Y - \beta)h(X,Y)\} \\ &= \{(X - \alpha, Y - \beta) \mid f(\alpha,\beta) = 0 \ \forall f \in \mathfrak{a}\} \\ &\stackrel{\phi}{\to} \{(\alpha,\beta) \in k^2 \mid f(\alpha,\beta) = 0 \ \forall f \in \mathfrak{a}\}. \end{split}$$

" \Rightarrow " ist klar. Also zu " \Leftarrow ". Es ist $f(\alpha,\beta)=0$, also $f(X,Y)=(X-\beta)h(X,Y)$ für gewisses h. Es ist $f(X,Y)-f(\alpha,Y)=(X-\alpha)g(X,Y)$, da diel linke Seite $X=\alpha$ als Nullstelle hat.

Abbildung 2: Spec k[X, Y]

In \mathbb{A}^2_k hat man aber noch mehr Punkte: Sei $\mathfrak{p} \triangleleft k[X,Y]$ Primideal, aber nicht maximal, so ist $\mathfrak{p} \in \mathbb{A}^2_k$ kein abgeschlossener Punkt. Ist beispielsweise $\mathfrak{p} = (f(X,Y))$ für $f \in k[X,Y]$ irreduzibel, so liegen alle $(\alpha,\beta) \in k^2$ mit $f(\alpha,\beta) = 0$ auf der entsprechenden Menge in k^2 , d.h.

$$\mathfrak{p} = (f(X,Y)) \subseteq \mathfrak{m}_{\alpha,\beta} := (X - \alpha, Y - \beta) \quad \Rightarrow \quad \mathfrak{m}_{\alpha,\beta} \in \overline{\{\mathfrak{p}\}}.$$

2 verdeutlicht dies.

Lemma 2.27. Ist A ein Ring, $\mathfrak{a} \in \operatorname{Spec} A$ und $\pi : A \to A/\mathfrak{a}$ die Projektion, so ist

$$\varphi := \pi^{-1}: \ \operatorname{Spec} A \big/ \mathfrak{a} \ \to \ \operatorname{Spec} A \\ \overline{\mathfrak{p}} \ \mapsto \ \pi^{-1}(\overline{\mathfrak{p}})$$

ein Homöomorphismus auf sein Bild

$$\operatorname{Spec} A / \mathfrak{a} \xrightarrow[\approx]{\pi^{-1}} V(\mathfrak{a}) \subseteq \operatorname{Spec} A.$$

Beweis.

Definition 2.28 ((quasi)-kompakt). -

Ein topologischer Raum X heißt quasi-kompakt, wenn gilt: Ist $X = \bigcap_{i \in I} U_i$ mit U_i offen, so existiert eine endliche Teilmenge $F \subset I$ mit $X = \bigcap_{i \in F} U_i$.

X heißt kompakt, wenn X hausdorffsch und quasi-kompakt ist.

Satz 2.29. -

Ist A ein Ring, so ist Spec A quasi-kompakt.

Beweis. Wir zeigen: Ist $\emptyset = \bigcap_{i \in I} Z_i$ für abgeschlossene Z_i , so existiert $F \subset I$ endlich mit $\emptyset = \bigcap_{i \in F} Z_i$. Sei also $Z_i = V(\mathfrak{a}_i)$, $\mathfrak{a}_i \triangleleft A$ und

$$V(A) = \emptyset = \bigcap_{i \in I} V(\mathfrak{a}_i) = V\left(\sum_{i \in I} \mathfrak{a}_i\right)$$

Nach Satz 2.16 ist damit

$$A = \sqrt{\sum_{i \in I} \mathfrak{a}_i},$$

also insbesondere $1 \in \sqrt{\sum_{i \in I} \mathfrak{a}_i}$ und $1 \in \sum_{i \in I} \mathfrak{a}_i$. Ergo

$$1 = a_{i_1} + \ldots + a_{i_r},$$

für $F:=\{i_1,\dots,i_r\}\subset I.$ Nun ist $1\in\mathfrak{a}_{i_1}+\dots+\mathfrak{a}_{i_r},$ also

$$(1) = A \subseteq \mathfrak{a}_{i_1} + \ldots + \mathfrak{a}_{i_r}.$$

Wiederum mit Satz 2.16 ist

$$\emptyset = V(A) \supseteq \bigcap_{k=1}^r V(\mathfrak{a}_{i_k}).$$

2.2 $\operatorname{Spec} A$ als lokal geringter Raum

Wir wollen $\mathcal{O}_{\operatorname{Spec} A}$ als die "guten Funktionen" auf Spec A auffassen, aber dazu müssen wir es besser verstehen.

Definition 2.30 (multiplikative Teilmenge, Lokalisierung).

Sei A ein Ring, dann heißt $S \subseteq A$ multiplikative Teilmenge, wenn $1 \in S$ ist und aus $a, b \in S$ auch $ab \in S$ folgt.

Die Lokalisierung A_S oder $A[S^{-1}]$ von A bezüglich S ist der Ring

$$A_S := (A \times S) / \sim$$

mit

$$(a,s) \sim (b,t) \quad \Leftrightarrow \quad \exists u \in S : \ u(at-bs) = 0.$$

Schreibe $\frac{a}{s} := [(a, s)]$ und definiere eine Ringstruktur auf A_S durch Bruchrechnen.

Lemma 2.31 (Universelle Eigenschaft der Lokalisierung). Wir haben die folgende universelle Eigenschaft: Ist $S \subseteq A$ wie in Definition 2.30, $\varphi : A \to R$ ein Ringhomomorphismus, so dass $\varphi(S) \subseteq R^{\times}$, so existiert ein eindeutiger Ringhomomorphismus, der das Diagramm

kommutativ macht, wobei $\iota: A \to A_S, \ a \mapsto \frac{a}{1}$.

Beweis. Klar, weil dieses $\psi: A_S \to R$ durch

$$\psi\left(\frac{a}{s}\right) = \psi\left(\frac{a}{1}\right)\psi\left(\frac{1}{s}\right) = \varphi(a)\varphi(s)^{-1}$$

eindeutig festgelegt ist.

 $\textbf{Beispiel 2.32.} \qquad \bullet \ S = \{f^n \mid n \in \mathbb{N}_0\}, \ f \in A \ \text{fest}.$

$$A_S =: A_f := \left\{ \frac{a}{f^n} \mid n \in \mathbb{N}_0 \right\}$$

• $S = A \setminus \mathfrak{p}, \, \mathfrak{p} \in \operatorname{Spec} A$.

$$A_{\mathfrak{p}}:=\left\{\frac{a}{b}\mid a\in A,\ b\notin \mathfrak{p}\right\}$$

ist ein lokaler Ring mit dem maximalen Ideal $\mathfrak{p}A_{\mathfrak{p}}$.

Satz 2.33. -

 $Sei \ X = \operatorname{Spec} A. \ Dann \ existiert \ auf \ X \ eine \ bis \ auf \ Isomorphie \ eindeutige \ Ringgarbe \ \mathcal{O}_X \ mit:$

- i) Es existiert ein Ringhomomorphismus $\varphi: A \xrightarrow{\cong} \mathcal{O}_X(X)$.
- ii) $F\ddot{u}r$ $f \in A$ betrachte

$$\mathcal{O}_X(X) \rightarrow \mathcal{O}_X(D(f))$$

 $\varphi(f) \mapsto \varphi(f)|_{D(f)}.$

Dann ist $\varphi(f)|_{D(f)} \in \mathcal{O}_X(D(f))^{\times}$ eine Einheit und der eindeutig durch

gegebene Ringhomomorphismus φ_f ist ein Isomorphismus.

iii) $F\ddot{u}r \mathfrak{p} \in \operatorname{Spec} A$ hat man das koanonische Diagramm

$$\begin{array}{ccc} A & \xrightarrow{\varphi} & \mathcal{O}_X(X) \\ \downarrow^{\iota} & & \downarrow \\ A_{\mathfrak{p}} & \xrightarrow{\varphi_{\mathfrak{p}}} & \mathcal{O}_{X,\mathfrak{p}} \end{array}$$

und $\varphi_{\mathfrak{p}}: A_{\mathfrak{p}} \to \mathcal{O}_{X,\mathfrak{p}}$ ist ein Isomorphismus.

2.2.1 Beweis von Satz 2.33

Für den Beweis benötigen wir noch eine Definition.

Definition 2.34 (9-(Prä)Garbe). -

 $\mathcal{F}: D(f) \mapsto A_f$ heißt $\mathfrak{B}\text{-}Pr\ddot{u}garbe$ auf $X = \operatorname{Spec} A$, wenn \mathcal{F} eine Prägarbe auf

$$\mathfrak{B}:=\{D(f)\subset X\mid f\in A\}$$

ist.

 \mathcal{F} heißt \mathfrak{B} -Garbe, wenn \mathcal{F} eine \mathfrak{B} -Prägarbe ist und die Garbenbedingungen für die D(f) erfüllt sind.

Hilfslemma 2.35. Es gilt:

- 1. $\mathcal{O}_X : D(f) \mapsto A_f$ ist eine \mathfrak{B} -Garbe.
- 2. Ist \mathcal{F} eine \mathfrak{B} -Garbe, so existiert eine bis auf Isomorphie eindeutige Garbe $\bar{\mathcal{F}}$ auf X mit $\bar{\mathcal{F}}(D(f)) = \mathcal{F}(D(f))$ für alle $D(f) \in \mathfrak{B}$.

Beweis. 1.

TODO

Definition 2.36 ((affines) Schema). -

Ein affines Schema ist ein lokal geringter Raum (X, \mathcal{O}_X) , der zu einem $(\operatorname{Spec} A, \mathcal{O}_{\operatorname{Spec} A})$ als lokal geringter Raum isomorph ist.

Ein Schema ist ein lokal geringter Raum (X, \mathcal{O}_X) , der eine offene Überdeckung durch affine Schemata besitzt, d.h. $X = \bigcup_{i \in I} U_i$ mit $U_i \subseteq X$ offen und $(U_i, \mathcal{O}_X|_{U_i})$ ist ein affines Schema.

Bemerkung 2.37. Beachte dabei: Ist X ein topologischer Raum, \mathcal{F} eine Garbe auf X, $U \subseteq X$ offen, so ist durch

$$\mathcal{F}|_{U}: V \mapsto \mathcal{F}|_{U}(V) := \mathcal{F}(V)$$

eine Garbe $\mathcal{F}|_{U}$ auf U definiert.

Definition 2.38 (Morphismus von Schemata). -

Ein Morphismus von Schemata ist ein Morphismus von lokal geringten Räumen

$$(f, f^{\#}): (X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y).$$

mit $f: X \to Y$ stetig und $f^{\#}: \mathcal{O}_Y \to f_*\mathcal{O}_X$ Garbenmorphismus auf Y so dass $\mathcal{O}_{Y,f(x)} \to \mathcal{O}_{X,x}$ lokaler Ringhomomorphismus

Bemerkung 2.39. Man hat einen kontravarianten Funktor

$$\begin{array}{ccc} \mathbf{Ring} & \to & \mathbf{Sch^{aff}} \\ & A & \mapsto & (\operatorname{Spec} A, \mathcal{O}_{\operatorname{Spec} A}) \\ A \xrightarrow{\varphi} B & \mapsto & (f, f^{\#}) : (\operatorname{Spec} B, \mathcal{O}_{\operatorname{Spec} B}) \to (\operatorname{Spec} A, \mathcal{O}_{\operatorname{Spec} A}) \end{array}$$

durch

$$f: \operatorname{Spec} B \to \operatorname{Spec} A ,$$

$$\mathfrak{q} \mapsto \varphi^{-1}(\mathfrak{q}) ,$$

wobei die Stetigkeit hier klar ist, und

$$f^{\#}: \mathcal{O}_{\operatorname{Spec} A} \to f_* \mathcal{O}_{\operatorname{Spec} B}.$$

Letzterer ist für $g \in A$ gegeben durch

$$f_{D(g)}^{\#}: \mathcal{O}_{\operatorname{Spec} A}(D(g)) = A_g \to (f_* \mathcal{O}_{\operatorname{Spec} B})(D(g)) = B_{\varphi(g)}$$

$$\frac{a}{g^n} \mapsto \frac{\varphi(a)}{\varphi(g)^n}$$

wobei wir • durch

$$f^{-1}(D(g)) = \{\mathfrak{q} \in \operatorname{Spec} B \mid f(\mathfrak{q}) \in D(g)\} = \{\mathfrak{q} \in \operatorname{Spec} B \mid \varphi^{-1}(\mathfrak{q}) \not\ni g\} = \{\mathfrak{q} \in \operatorname{Spec} B \mid \mathfrak{q} \not\ni \varphi(g)\}$$

erhalten. Diese Abbildung ist funktoriell und lokal, da für $\mathfrak{p} \in \operatorname{Spec} A$

$$\begin{array}{cccc} f_{\mathfrak{p}}^{\#}: & A_{\mathfrak{p}} & \to & \mathcal{O}_{\operatorname{Spec} B, \mathfrak{q}} \\ & \frac{a}{\gamma} & \mapsto & \frac{\varphi(a)}{\varphi(\gamma)} \end{array}$$

für $\mathfrak{p}=\varphi^{-1}(\mathfrak{q}),\,\gamma\notin\mathfrak{p}$ (also $\varphi(\gamma)\notin\mathfrak{q}$) ein lokaler Ringhomomorphismus ist.

Beispiele 3

3.1 Spec \mathbb{Z}

Jeder Ring A hat einen eindeutigen Homomorphismus

 \mathbb{Z} ist daher ein *initiales Objekt* in der Kategorie **Ring**.

Wir haben daher einen eindeutigen Morphismus Spec $A \to \operatorname{Spec} \mathbb{Z}$ von affinen Schemata. Spec \mathbb{Z} ist somit ein finales Objekt in der Kategorie $\operatorname{\mathbf{Sch}}^{\operatorname{\mathbf{aff}}}$.

Ferner können wir zusammenfassen

$$\textbf{Offene Mengen} \quad \emptyset \neq U \subseteq \operatorname{Spec} \mathbb{Z} \text{ offen} \Leftrightarrow U = \begin{cases} \operatorname{Spec} \mathbb{Z} \setminus \{(p_1), \dots, (p_r)\} &, r \in \mathbb{N}_0 \\ \emptyset & \end{cases}$$

 $\textbf{Basisoffene Mengen} \quad D(f) = \{\mathfrak{p} \in \operatorname{Spec} \mathbb{Z} \mid f \notin \mathfrak{p}\} = \operatorname{Spec} \mathbb{Z} \backslash \{(p_1), \dots, (p_r)\} \text{ für } f = p_1^{\nu_1} \dots p_r^{\nu_r}.$

Strukturgarbe

$$\mathcal{O}_{\operatorname{Spec}\mathbb{Z}}(D(f)) = \mathbb{Z}_f = \left\{ \frac{a}{f^n} \mid n \in \mathbb{N}_0, a \in \mathbb{Z} \right\}$$
$$\mathcal{O}_{\operatorname{Spec}\mathbb{Z},(p)} = \mathbb{Z}_{(p)} = \left\{ \frac{a}{b} \mid p \nmid b, a \in \mathbb{Z} \right\}$$

3.2 $\operatorname{Spec} k$ für einen Körper k

Als topologischer Raum Spec $k = \{(0)\}.$

Strukturgarbe $\mathcal{O}_{\operatorname{Spec} k}(\{(0)\}) = k.$

Bemerkung 3.1. Sei A ein Ring. Angenommen wir haben Spec $A \xrightarrow{(f,f^{\#})}$ Spec k für einen Körper k, so haben wir

 $f_{\operatorname{Spec} k}^{\#}: k = \mathcal{O}_{\operatorname{Spec} k} \to f_* \mathcal{O}_{\operatorname{Spec} A}(\operatorname{Spec} k) = A,$

wobei aus $\mathcal{O}_{\operatorname{Spec} A}(f^{-1}(\{(0)\})) = \mathcal{O}_{\operatorname{Spec} A}(\operatorname{Spec} A)$ resultiert. Insgesamt ist A also eine k-Algebra (d.h. ein Ring zusammen mit $k \to A$).

Bemerke hierbei "Grothendiecks Gesamtphilosophie":

Alles relativ lesen!

Definition 3.2 (S-Schema).

Sei S ein Schema. Dann ist ein S-Schema ein Schema X zusammen mit einem Strukturmorphismus $X \xrightarrow{\varphi} S$. Dies ergibt die Kategorie \mathbf{Sch}_S , wenn man

$$\operatorname{Hom}(X \xrightarrow{\varphi} S, Y \xrightarrow{\varphi} S) := \left\{ \begin{array}{c} X \xrightarrow{f} Y \\ \swarrow \\ S \end{array} \right\}$$

setzt.

Beispiel 3.3. $\mathbf{Sch}_k := \mathbf{Sch}_{\operatorname{Spec} k}$ sind die sog. k-Schemata. Ein Beispiel hierfür ist $\operatorname{Spec} k[X_1, \dots, X_n] \to \operatorname{Spec} k$ via $k \hookrightarrow k[X_1, \dots, X_n]$.

Bemerkung 3.4. Sei X ein Schema und $x \in X$ und weiter $\mathfrak{m}_x \triangleleft \mathcal{O}_{X,x}$ das maximale Ideal. Dann ist

$$\kappa(x) := k(x) := \mathcal{O}_{X,x}/\mathfrak{m}_x$$

der Restklassenkörper von x.

Betrachte nun $(f, f^{\#})$: Spec $k \to X$ mit

$$f: \operatorname{Spec} k(x) \to X$$

 $\eta_x \mapsto x,$

wobei topologisch gesehen $\eta_x \in \operatorname{Spec} k(x)$ der einzige Punkt dieses Schemas ist. Für $U \subseteq X$ offen haben wir:

$$f_U^{\#}: \mathcal{O}_X \to f_*\mathcal{O}_{\operatorname{Spec} k(x)}(U) = \begin{cases} 0 & x \notin U \\ k(x) & x \in U. \end{cases}$$

Im Fall $x \in U$ geht dies via

$$\mathcal{O}_X(U) \to \mathcal{O}_{X,x} = \varinjlim_{x \in V} \mathcal{O}_X(V) \overset{\pi}{\twoheadrightarrow} \mathcal{O}_{X,x} / \mathfrak{m}_x = k(x).$$

Ist umgekehrt $(f, f^{\#})$: Spec $k \to X$ ein Schemamorphismus, so setze $x := f((0)) \in X$ und $f^{\#} : \mathcal{O}_X \to f_*\mathcal{O}_{\operatorname{Spec} k}$ liefert einen Ringhomomorphismus der Halme:

$$f_x^\#: \mathcal{O}_{X,x} \to \mathcal{O}_{\operatorname{Spec} k,(0)} = k.$$

Dieser ist lokal (also $f_x^{\#}(\mathfrak{m}_x) = (0)$). Damit ist

$$k(x) = \mathcal{O}_{X,x}/\mathfrak{m}_x \xrightarrow{f_x^\# \mod \mathfrak{m}_x} f_x^\# \mod \mathfrak{m}_x k$$

wohldefiniert und somit ist $k \mid k(x)$ eine Körpererweiterung.

Zusammengefasst haben wir:

Einen Punkt $x \in X$ wählen mit Restklassenkörper k(x) und eine Körpererweiterung $k \mid k(x)$.

Einen Schemamorphismus Spec $k \to X$ wählen für eine Körpererweiterung $k \mid k(x)$.

3.3 Der Affine n-dimensionale Raum über k

Sei k wieder ein Körper. Der affine n-dimensionale Raum über k ist $\mathbb{A}^n_k := \operatorname{Spec} k[X_1, \dots, X_n]$.

Wir erinnern an den Hilbertschen Nullstellensatz:

Satz 3.5 (Hilbertscher Nullstellensatz). -

Sei k algebraisch abgeschlossen. Dann ist jedes maximale Ideal in $k[X_1, \ldots, X_n]$ von der Form $(X_1 - a_1, \ldots, X_n - a_n)$.

Beweis. ohne Beweis.

Wir haben bereits gezeigt:

$$|\mathbb{A}_k^n| = k^n$$
, via $(X_1 - a_1, \dots, X_n - a_n) \mapsto (a_1, \dots, a_n)$.

Sei $\mathfrak{p}=(f_1,\ldots,f_r)$ ein nicht maximales Ideal in $k[X_1,\ldots,X_n]$ (die Darstellung ist nach Satz 3.5) möglich, so gilt

$$\mathfrak{p} \subseteq (X_1 - a_1, \dots, X_n - a_n) \quad \Leftrightarrow \quad f_1(a_1, \dots, a_n) = 0, \dots, f_r(a_1, \dots, a_n) = 0$$

Wir können dies in Abbildung 3 "sehen".

3.4 Weiteres Beispiel

Betrachte $k[\![X_1,\ldots,X_n]\!] = k[\![X_1,\ldots,X_{n-1}]\!][\![X_n]\!]$ mit $R[\![X]\!] = \{\sum_{i=0}^{\infty} a_i X^i \mid a_i \in R\}.$

Bemerkung 3.6. $g \in k[X_1, \ldots, X_n] \setminus (X_1, \ldots, X_n)$ ist eine Einheit.

Beweis. Idee: Ansatz für eine Variable: $g(X) = a_0 + a_1 X + a_2 X^2 + \dots$ Dann

$$1 = g(X)h(X) = \underbrace{a_0b_0}_{} = 1 + \underbrace{(a_0b_1 + a_1b_0)}_{} = 0)X + \dots$$

Funktor Spec Wir haben den Funktor Spec: Die Ringhomomorphismen

induzieren

$$\operatorname{Spec} k \longrightarrow k[\![X_1,\ldots,X_n]\!] \longrightarrow k[X_1,\ldots,X_n]_{(X_1,\ldots,X_n)} \longrightarrow \operatorname{Spec} k[X_1,\ldots,X_n]$$
 topologisch:
$$(0) \longmapsto (X_1,\ldots,X_n) \longmapsto (X_1,\ldots,X_n) \longmapsto (X_1,\ldots,X_n).$$
 entspricht dem abgeschlossener abgeschlossener abgeschlossener Punkt Punkt
$$(0,\ldots,0) \in k^n$$

Dies ist ein Homöomorphismus auf $\{\mathfrak{p} \in \mathbb{A}^n_k \mid \mathfrak{p} \subseteq (X_1, \dots, X_n)\} = V(\mathfrak{p}) = \overline{\{\mathfrak{p}\}} \subseteq \mathbb{A}^n_k$.

Was passiert aber auf Schemaniveau?

Betrachte dazu

$$\operatorname{Spec} k \longrightarrow k[\![X_1,\ldots,X_n]\!]/\mathfrak{p} \longrightarrow k[X_1,\ldots,X_N]_{(X_1,\ldots,X_n)}/\mathfrak{p} \longrightarrow \operatorname{Spec} k[X_1,\ldots,X_n]/\mathfrak{p} \approx V(\mathfrak{p})$$

Nehmen wir das explizite Beispiel $\mathfrak{p}=(Y^2-X^2(X+1))$. Es ist \mathfrak{p} ein Primideal und $V(\mathfrak{p})$ irreduzibel.

Beachte: $1 + X \in k[X]$ hat eine Wurzel, wie man durch folgenden Ansatz mit $h(X) = a_0 + a_1X + \dots$ sieht:

$$1 + X = (h(X))^2 = a_0^2 + 2a_0a_1X + \dots$$

Setze $a_0 := 1$ oder -1 und löse sukzessizve auf. Demnach ist $Y^2 - X^2(X+1) = (Y - Xh(X))(Y + Xh(X))$ nicht mehr prim, also $V(\mathfrak{p}) \subseteq k[\![X,Y]\!]$ nicht mehr irreduziebel!

Betrachte genauer

$$k\llbracket u,v \rrbracket/(uv) \stackrel{\cong}{\longrightarrow} k\llbracket z,w \rrbracket/(z^2-w^2) \stackrel{\cong}{\longrightarrow} k\llbracket X,Y \rrbracket/(Y^2-X^2(h(X))^2)$$

$$u \longmapsto z+w \qquad z \longmapsto Y$$

$$v \longmapsto z-w \qquad w \longmapsto Xh(X)$$

In Bildern:

Spec
$$k[u, v]/(uv) \longrightarrow \text{Spec } k[X, Y]/(Y^2 - X^2(X+1))$$

Abbildung 4: Veranschaulichung von $\mathbb{A}^1_{\mathbb{Z}} \to \operatorname{Spec} \mathbb{Z}$

3.5 Spezielles Beispiel $\mathbb{A}^1_{\mathbb{Z}} = \operatorname{Spec} \mathbb{Z}[X]$

Wir haben $\pi: \mathbb{A}^1_{\mathbb{Z}} \to \operatorname{Spec} \mathbb{Z}$. Topologisch ist

$$\mathbb{A}^1_{\mathbb{Z}} = \bigcup_{p \text{ prim}} \pi^{-1}((p)) \cup \pi^{-1}((0)).$$

Abbildung 4 verdeutlicht dies.

Zu $\pi^{-1}((0))$ Betrachte nun $\mathfrak{p} \in \operatorname{Spec} \mathbb{Z}[X]$, so gilt $\mathfrak{p} \in \pi^{-1}((0)) \Leftrightarrow \mathfrak{p} \cap \mathbb{Z} = (0)$.

Betrachte $S := \mathbb{Z} \setminus \{0\} \subseteq \mathbb{Z}[X]$ und die Lokalisierung $g : \mathbb{Z}[X] \hookrightarrow \mathbb{Z}[X]_S$. Es ist klar: $\mathbb{Z}[X]_S = \mathbb{Q}[X]$

Ferner gilt $\operatorname{Spec}\mathbb{Q}[X]\to\operatorname{Spec}\mathbb{Z}[X]$ ist ein Homö
omorphismus auf sein Bild:

$$\{\mathfrak{p}\in\operatorname{Spec}\mathbb{Z}[X]\mid \mathfrak{p}\cap S=\emptyset\}=\{\mathfrak{p}\in\mathbb{A}^1_\mathbb{Z}\mid \mathfrak{p}\cap\mathbb{Z}=(0)\}=\pi^{-1}(0),$$

Zu $\pi^{-1}((p))$ Es ist $\mathfrak{p} \in \pi^{-1}((p)) \Leftrightarrow p \in \mathfrak{p}$. Dann betrachte $\rho : \mathbb{Z}[X] \twoheadrightarrow \mathbb{F}_p[X]$ und $\rho^* : \operatorname{Spec} \mathbb{F}_p[X] \to \mathbb{A}^1_{\mathbb{Z}}$. Wegen $\mathbb{F}_p[X] \cong \mathbb{Z}[X] / \ker \rho$ ist ρ^* ein Homöomorphismus auf

$$V(\ker \rho) = \{ \mathfrak{p} \in \operatorname{Spec} \mathbb{Z}[X] \mid \ker \rho \subseteq \mathfrak{p} \} = \pi^{-1}((p)) \subseteq \mathbb{A}^{1}_{\mathbb{Z}}.$$

Zusammengefasst ist:

$$\pi^{-1}((0)) = \mathbb{A}^1_{\mathbb{Q}}$$

 $\pi^{-1}((p)) = \mathbb{A}^1_{\mathbb{F}_p},$

wobei die Gleichheiten topologisch zu lesen sind.

Betrachte $\mathfrak{p} \in \operatorname{Spec} \mathbb{Z}[X]$

1. Fall.
$$\mathfrak{p} \in \pi^{-1}((0)) \Leftrightarrow \mathfrak{p} \cap \mathbb{Z} = (0)$$
, also

$$\mathfrak{p}=(\mu(X))$$

mit $\mu(X) \in \mathbb{Z}[X]$ einem primitiven, irreduziblen Polynom.

2. Fall. $\mathfrak{p} \in \pi^{-1}((p))$, so ist $\mathfrak{p} = \rho^{-1}(\mathfrak{q})$ für ein $\mathfrak{q} \in \operatorname{Spec} \mathbb{F}_p[X]$, also $\mathfrak{p} = \rho^{-1}((q(X)))$ für ein irreduzibles $q(X) \in \mathbb{F}_p[X]$ oder (0). Dann ist

$$\mathfrak{p}=(r(X),p)$$

mit $r(X) \in \mathbb{Z}[X]$ und $r(X) \equiv q(X) \mod p$.

Es stellt sich die Frage, wie für $f\in\mathbb{Z}[X]$ die $D(f)\subseteq\mathbb{A}^1_{\mathbb{Z}}$ aussehen. Dazu

1. Fall $\mathfrak{p} \in \pi^{-1}((0))$. Sei $f(X) \in \mathbb{Q}[X]$. Dann $f(X) = \xi q_1(X)^{\nu_1} \dots q_r(X)^{\nu_r}$ und es gilt

$$f \notin \mathfrak{p} \iff \mathfrak{p} = (q(X))$$

mit $q \neq q_1, \ldots, q_r$.

2. Fall $\mathfrak{p} \in \pi^{-1}((p))$. $f(X) \notin (r(X), p)$ mit $r(X) \mod p \in \mathbb{F}_p[X]$ irreduzibel. Für eine Primzahl p, betrachte $\bar{f}(X) \in \mathbb{F}_p[X]$. Ist $\bar{f}(X) = 0$, so ist $f(X) \in (r(X), p)$ für alle r(X). Für $\bar{f}(X) = \bar{q}_1(X)^{\nu_1} \dots \bar{q}_s(X)^{\nu_s}$, ist $f(X) \in (q_i(X), p)$ für diese i.

Dargestellt ist dies wieder in Abbildung 5.

3.6 Diskrete Bewertungsringe

Definition 3.7 (Diskrete Bewertung). -

Eine diskrete Bewertung auf einem Körper k ist eine Abbildung

$$v: k \to \mathbb{Z} \cup \{\infty\},$$

so dass

- 1. $v(0) = \infty, v(x) \in \mathbb{Z}$ für $x \neq 0$,
- 2. v(xy) = v(x) + v(y) für alle x, y und
- 3. $v(x+y) \ge \min\{v(x), v(y)\}\$ für alle x, y.

Bemerkung 3.8. Wählt man q > 1 (in \mathbb{R}), so ist

$$|\cdot|: k \to \mathbb{R}, \ x \mapsto |x| := q^{-v(x)}$$

eine Betragsfunktion mit

- 1. $|x| = 0 \Leftrightarrow x = 0$,
- 2. |xy| = |x||y|.
- 3. $|x+y| \le \max\{|x|,|y|\} \le |x|+|y|$. Die erste Ungleichung wird auch nicht-archimedische Dreiecksungleichung genannt.

Definition 3.9 (Bewertungsring). -

Ist (k, v) ein diskret bewerteter Körper, so ist

$$\mathcal{O} := \{x \in k \mid v(x) > 0\} = \{x \in k \mid |x| < 1\}$$

ein lokaler Ring mit maximalem Ideal

$$\mathfrak{m} := \{ x \in k \mid v(x) > 0 \} = \{ x \in k \mid |x| < 1 \} \triangleleft \mathcal{O},$$

der Bewertungsring zu k.

Ein diskreter Bewertungsring (dvr) ist ein Integritätsbereich R, zusammen mit diskreter Bewertung $v: K = \text{Quot}(R) \to \mathbb{Z} \cup \{\infty\}$, so dass $R = \mathcal{O}$ gilt.

Ferner gilt \mathcal{O} ist ein Hauptidealbereich (PID), $k = \text{Quot}(\mathcal{O})$.

Ist $\pi \in \mathcal{O}$ mit $v(\pi) = 1$, so ist $\mathfrak{m} = (\pi)$ und \mathcal{O} hat genau die Ideale (π^k) für $k \in \mathbb{N}_0$.

Bemerkung 3.10. Der Wertebereich $v(k \setminus \{0\}) \subseteq \mathbb{Z}$ ist eine Untergruppe, also $v(k \setminus \{0\}) = d\mathbb{Z}$ für ein d. Wir können meistens oBdA d = 1 annehmen.

Bemerkung 3.11. Beachte: Für $x \in \mathcal{O}$ gilt

$$v(x) = n \iff x \in \mathfrak{m}^n \setminus \mathfrak{m}^{n+1}.$$

Für $\xi = \frac{x}{y} \in K = \text{Quot}(\mathcal{O})$ ist $v(\xi) = v(x) - v(y)$.

Beweis (von Definition 3.9). TODO.

Bemerkung 3.12.

$$\operatorname{Spec} \mathcal{O} = \{(0), (\pi) = \mathfrak{m}\},\$$

da in Hauptidealbereichen jedes Primideal \neq (0) auch maximal ist.

Definition 3.13 (Restklassenkörper eines dvr).

Ist \mathcal{O} ein diskreter Bewertungsring, so heißt

$$\mathcal{O}/\mathfrak{m} =: k$$

der $Restklassenk\"{o}rper$ von \mathcal{O} .

 \mathcal{O} heißt

- von verschiedener Charakteristik, wenn für $K = \text{Quot}(\mathcal{O})$, char K = 0 und char $k \neq 0$ ist und
- von gleicher Charakteristik, wenn char $K = \operatorname{char} k$.

3.6.1 Beispiele

1. Sei k ein Körper,

$$K := k((t)) := \text{Quot } k[t] = \left\{ f(t) = \sum_{l=-N}^{\infty} a_t t^l \mid a_l \in k \right\}$$

und

$$v: k[\![t]\!] \to \mathbb{N}_0 \cup \{\infty\} \\ f(t) = \sum_{l=0}^{k} a_l t^l \mapsto \max\{k \in \mathbb{N}_0 \mid t^{-k} f(t) \in k[\![t]\!]\} = \min\{l \in \mathbb{N}_0 \mid a_l \neq 0\}.$$

Auf k(t) Dies ist eine diskrete Bewertung mit $\mathcal{O} = k[t]$:

$$v:$$
 $k((t)) \rightarrow \mathbb{Z}_0 \cup \{\infty\}$
 $f(t) = \sum a_l t^l \mapsto = \min\{l \in \mathbb{Z}_0 \mid a_l \neq 0\}.$

k((t)) trägt damit $|\cdot| := q^{-v(\cdot)}$, also ist k((t)) ein metrischer Raum mit d(x,y) := |x-y|, dieser ist vollständig.

Für den Restklassenkörper gilt

$$\mathcal{O}/\mathfrak{m} = k[t]/tk((t)) \cong k,$$

da $\mathfrak{m} = tk[\![t]\!] = (t)$. t heißt dabei Uniformierende.

2. Betrachte

$$\nu_p: \ \mathbb{Q} \to \ \mathbb{Z} \cup \{\infty\}$$
$$\frac{a}{b} \mapsto v(a) - v(b)$$

mit $v(a) = \max\{k : p^k \mid a\}$ für eine Primzahl p.

 ν_p ist eine diskrete Bewertung, die p-adische Bewertung. Ferner ist

$$\mathcal{O} = \left\{\frac{a}{b} \in \mathbb{Q} \mid \nu_p\left(\frac{a}{b}\right) > 0\right\} = \left\{\frac{a}{b} \in \mathbb{Q} \text{ in gekürzter Form } \mid p \nmid b\right\} = \mathbb{Z}_{(p)}$$

und $\mathfrak{m} = p\mathbb{Z}_{(p)}$ und

$$\mathcal{O}/\mathfrak{m} = \mathbb{Z}_{(p)}/p\mathbb{Z}_{(p)} \cong \mathbb{Z}/p\mathbb{Z} = \mathfrak{F}_p.$$

 $|\cdot|_p:=p^{-\nu_p(\cdot)}:\mathbb{Q}\to\mathbb{R}_{\geq 0}$ heißt *p-adischer Betrag.* $(\mathbb{Q},|\cdot|_p)$ ist jedoch nicht vollständig, da z.B. $\sum_{n=0}^{\infty}p^n$ ein Cauchyfolge bildet.

Man erhält die Vervollständigungen

$$(\mathbb{Q}, |\cdot|) \rightsquigarrow \mathbb{R}$$
$$(\mathbb{Q}, |\cdot|_p) \rightsquigarrow \mathbb{Q}_p.$$

Zurück zu Schemata Sei \mathcal{O} ein dvr, so ist Spec $\mathcal{O} = \{(0), (\pi)\}$. Dabei ist (0) der generische Punkt mit $\overline{\{(0)\}} = V((0)) = \operatorname{Spec} \mathcal{O} \text{ und } (\pi) \text{ ein abgeschlossener Punkt, genannt der } spezielle Punkt in Spec <math>\mathcal{O}$.

Beispiel 3.14. Sei k ein Körper mit char $k \neq 2, 3$ und k algebraisch abgeschlossen. Wir betrachten

$$E := \operatorname{Spec} A \quad \operatorname{mit} A := k[X, Y]/(Y^2 - (X^3 + aX + b)).$$

Dies ist der affine Teil einer *elliptischen Kurve*, wenn $4a^3 + 27b^2 \neq 0 \in k$.

Wir haben

$$|E| \cong \{(x_0, y_0) \in k^2 \mid y_0^2 - (x_0^3 + ax_0 + b) = 0\}.$$

Sei $(x_0, y_0) \in |E|$, oder besser $\mathfrak{p} := (X - x_0, Y - y_0) \in E$. Es ist $\mathcal{O}_{E,\mathfrak{p}}$ ein dvr.

Dazu:

1. Fall $y_0 \neq 0$, so ist $\mathcal{O}_{E,y} = A_{\mathfrak{p}}$. Betrachten wir $\frac{\bar{f}(X,Y)}{\bar{g}(X,Y)} \in A_{\mathfrak{p}}$, also $\bar{f}, \bar{g} \in A$ und $\bar{g} \notin (X - x_0, Y - y_0)$, d.h. $\bar{g}(x_0, y_0) \neq 0$. Ferner ist

$$Y^{2} - (X^{3} + aX + b) = (Y + y_{0})(Y - y_{0}) + (X^{2}x_{0}X + (x + x_{0}^{2}))(X - x_{0})$$

und wenn $y_0 \neq 0$, so ist $(Y + y_0) \notin (X - x_0, Y - y_0)$. Demnach ist $Y + y_0 \in A_{\mathfrak{p}}^{\times}$, also gilt in $A_{\mathfrak{p}}$:

$$Y - y_0 = \frac{X^2 + x_0 X + (a + x_0^2)}{Y + y_0} (X - x_0)$$

und $(X - x_0, Y - y_0)A_{\mathfrak{p}} = \mathfrak{p}A_{\mathfrak{p}} = (X - x_0)A_{\mathfrak{p}}$ ist ein Hauptideal.

Also ist

$$v: A_{\mathfrak{p}} \to \mathbb{N}_0 \cup \{\infty\}$$

 $a \mapsto \max\{k \in \mathbb{N}_0 \mid a \in (X - x_0)^k\}$

eine diskrete Bewertung!

2. Fall $y_0 = 0$. Dies geht analog und man sieht, dass

$$X^{2} + x_{0}X + (a + x_{0}^{2}) \notin (X - x_{0}, Y),$$

da nach Voraussetzung $4a^2 + 27b^2 \neq 0$. Also ist $\mathfrak{p}A_{\mathfrak{p}} = (Y - y_0)A_{\mathfrak{p}}$.

Bemerkung 3.15. Sei $K(E) := \mathcal{O}_{E,(0)} = \operatorname{Quot}(A) = A_{(0)}$ der Funktionenkörper von E. Für $\mathfrak{p} \in E$ hat man die Null-/Polstellenordnung

$$v_{\mathfrak{p}}: K(E) \to \operatorname{Quot}(A_{\mathfrak{p}}) = \operatorname{Quot}(\mathcal{O}_{E,\mathfrak{p}}) \xrightarrow{v} \mathbb{Z} \cup \{\infty\}.$$

4

Projektive Schemata

4.1 Eine kurze Einführung in klassische projektive Geometrie

Sei k ein Körper. So ist

$$\mathbb{P}^n(k) := \mathbb{P}(k^{n+1}) := \{ L \subset k^{n+1} \text{UVR} \mid \dim_k L = 1 \}$$

der n-dimensionale projektive Raum.

Homogene Koordinaten $[x_0:\cdots:x_n]\in\mathbb{P}^n(k)$ mit $0\neq(x_0,\ldots,x_n)\in k^{n+1}$ definiert als

$$[x_0:\cdots:x_n]:=\operatorname{span}_k \begin{pmatrix} x_0 \\ \vdots \\ x_n \end{pmatrix}$$

mit $[x_0:\dots:x_n]=[y_0,\dots,y_n] \Leftrightarrow \exists \lambda \in k^{\times}$ mit $x_i=\lambda y_i \forall i$. Damit gilt dann, dass $\mathbb{P}^n(k)=k^{n+1}/\sim$, wobei \sim die gerade eben definierte Äquivalenzrelation bezeichnet.

Überdeckung $\mathbb{P}^n(k) = \bigcup_{i=0}^n U_i$ mit

$$U_{i} = \{ [x_{0}:\dots:x_{n}] \in \mathbb{P}^{n}(k) \mid x_{i} \neq 0 \} \ni [x_{0}:\dots:x_{0}]$$

$$\downarrow b_{ij}$$

$$\downarrow k^{n}$$

$$\ni \left(\frac{x_{0}}{x_{i}},\dots,\frac{x_{i-1}}{x_{i}},\frac{x_{i+1}}{x_{i}},\dots,\frac{x_{n}}{x_{i}}\right)$$

als "Karten".

$$\textbf{Beachte} \qquad \mathbb{P}^n(k) \backslash U_i = \{[x_0: \dots: 0: \dots: x_n] \mid (x_0, \dots, \not l, \dots, x_n) \neq 0\} \xrightarrow{1-1} \mathbb{P}^{n-1}(k)$$

Bemerkung 4.1. • $\mathbb{RP}^n := \mathbb{P}^n(\mathbb{R})$

- $\mathbb{CP}^n := \mathbb{P}^n(\mathbb{C})$
- $\bullet \ \mathbb{CP}^1 \approx S^2$

4.2 $\mathbb{P}^n(k)$ als Schema

Statt einem Körper k können wir einen Ring A betrachten.

4.2.1 1. Variante

Betrachte $U_i := \operatorname{Spec} A[x_0, \dots, \not 1, \dots, x_n] = \mathbb{A}_A^n$.

In \mathbb{RP}^n würden wir diese mit dem Kartenwechsel verkleben:

Betrachte also

$$U_{ij} := \operatorname{Spec} A[x_0, \dots, \not i, \dots, x_n][x_j^{-1}] \hookrightarrow \operatorname{Spec} A[x_0, \dots, \not i, \dots, x_n] = U_i$$

$$U_{ji} := \operatorname{Spec} A[x_0, \dots, \not j, \dots, x_n][x_i^{-1}] \hookrightarrow \operatorname{Spec} A[x_0, \dots, \not j, \dots, x_n] = U_j$$

und wähle einen Isomorphismus

$$\begin{array}{cccc} \phi_{ij}: & U_{ij} & \to & U_{ji} \\ & x_k & \mapsto & \frac{x_k}{x_j} & \text{für } k \neq i \\ & x_i & \mapsto & \frac{1}{x_j}. \end{array}$$

Es gilt nun $\phi_{ij}(U_{ij} \cap U_{ik}) = U_{ji} \cap U_{jk}$, denn

$$U_{ij} \cap U_{ik} = D(x_j x_k) \subseteq U_i$$

$$U_{ji} \cap U_{jk} = D(x_i x_k) \subseteq U_j$$

sowie

$$\phi_{ik}\big|_{U_{ij}\cap U_{ik}} = \phi_{jk} \circ \phi_{ij}\big|_{U_{ij}\cap U_{ik}}$$

Wir haben also eine Familie $(U_i)_{i=0,...,n}$ von (affinen) Schemata. Für jedes Paar (i,j) eine offene Imersion $U_{ij} \hookrightarrow U_i$ mit (affinen) Schemata und Isomorphismen $\phi_{ij}: U_{ij} \stackrel{\cong}{\to} U_{ji}$, so dass $\phi_{ik}|_{U_{ij} \cap U_{ik}} = \phi_{jk} \circ \phi_{ij}|_{U_{ij} \cap U_{ik}}$.

Bleibt zur Übung lediglich zu zeigen, dass ein (bist auf Isomorphie) eindeutiges Schema \mathbb{P}_A^n mit Überdeckung $\mathbb{P}_A^n = \bigcup_{i=0}^n V_i$ für $V_i \subseteq \mathbb{P}_A^n$ offen und Isomorphismen $V_i \xrightarrow{\cong} U_i$ von (affinen) Schemata existiert.

4.2.2 2. Variante (Die Proj-Konstruktion)

Definition 4.2 (graduierte A-Algebra).

Sei A ein Ring, dann heißt

$$S := \bigoplus_{n \in \mathbb{N}_0} S_n$$

eine graduierte A-Algebra, wenn

- S ein Ring,
- $S_n \subset S$ ein \mathbb{Z} -Untermodul,
- $S_n S_m \subseteq S_{n+m}$ ist,
- \bullet wir einen Ringhomomorphismus $A \xrightarrow{\varphi} S$ haben und
- die S_n A-Untermoduln sind.

Ein $s \in S_n$ heißt homogen vom Grad n.

Definition 4.3 (homogenes Ideal). -

Ein Ideal $\mathfrak{a} \triangleleft S$ heißt homogen, wenn

$$\mathfrak{a} = \bigoplus_{n \in \mathbb{N}_0} \mathfrak{a} \cap S_n.$$

Lemma 4.4. Es ist äquivalent

- a homogen,
- a wird von homogenen Elementen erzeugt
- Aus $a \in \mathfrak{a}$ mit $a = \sum_{n \in \mathbb{N}_0} a_n$ für $a_n \in S_n$ folgt $a_n \in \mathfrak{a}$.

Beweis. leicht.

Beispiel 4.5. $S = A[x_0, \ldots, x_n] = \bigoplus_{m \geq 0} S_m$ mit

$$S_m = \{ f(x_0, \dots, x_n) \mid f \text{ homogen von Grad } m \},$$

d.h.

$$f \in S_m \quad \Leftrightarrow \quad f = \sum_{\nu \in \mathbb{N}_0^{n+1}} \alpha_{\nu} X_0^{\nu_0} \dots X_n^{\nu_n} \quad \text{mit } \nu_0 + \dots + \nu_n = m.$$

Definition 4.6 (Proj(S)). -

Setze $S_+ := \bigoplus_{n>1} S_n$, dann ist das projektive Spektrum Proj S von S definiert als

$$\operatorname{Proj}(S) := \{ \mathfrak{p} \in \operatorname{Spec} S \text{ homogen } | S_+ \subsetneq \mathfrak{p} \}.$$

Definition 4.7 (Zariski Topologie auf Proj(S)).

Für ein homogenes Ideal $\mathfrak{a} \lhd S$ setze

$$V_{+}(\mathfrak{a}) := \{ \mathfrak{p} \in \operatorname{Proj}(S) \mid \mathfrak{a} \subseteq \mathfrak{p} \} \subseteq \operatorname{Proj}(S).$$

Dann bilden diese $V_{+}(\mathfrak{a})$ die abgeschlossenen Mengen einer Topologie, der Zariski-Topologie auf Proj(S).

Beweis. Wie im inhomogenen Fall.

Bemerkung 4.8. Ein homogenes $\mathfrak{a} \triangleleft S$, $\mathfrak{a} \neq S$, ist prim genau dann, wenn gilt:

$$xy \in \mathfrak{a} \implies x \in \mathfrak{a} \text{ oder } y \in \mathfrak{a}$$

für alle homogenen x, y.

Definition 4.9 (basisoffenen Mengen auf Proj(S)). –

Analog zu Spec A bilden für $f \in S$ die basisoffenen Mengen in Proj(S)

$$D_+(f) := \{ \mathfrak{p} \in \operatorname{Proj}(S) \mid f \notin \mathfrak{p} \} \subseteq \operatorname{Proj}(S)$$

eine Basis der Topologie auf Proj(S).

Definition 4.10 (homogene Lokalisierung).

• Für $\mathfrak{p} \in \text{Proj}(S)$ heißt

$$S_{(\mathfrak{p})}:=\left\{\frac{s}{t}\mid s,t\in S,\ t\notin \mathfrak{p},\ s,t \text{ homogen von gleichem Grad}\right\}$$

homogene Lokalisierung von p.

• Für $f \in S$ homogen von Grad m heißt

$$S_{(f)} := \left\{ \frac{s}{f^k} \mid s \in S, \ k \in \mathbb{N}_0, \ s \text{ homogen von Grad } k \deg f \right\}$$

homogene Lokalisierung bezüglich f.

Lemma 4.11. Es gilt: $S_{(\mathfrak{p})}$ ist ein lokaler Ring mit maximalem Ideal

$$\mathfrak{p}_{(\mathfrak{p})}:=\left\{\frac{s}{t}\mid s\in\mathfrak{p}\right\}.$$

Beweis. Leider noch nicht fertig :-(

Satz 4.12. -

Auf $\operatorname{Proj}(S)$ gibt es eine (bis auf Isomorphie) eindeutige Ringgarbe $\mathcal{O}_{\operatorname{Proj}(S)}$ mit:

1. Für alle homogenen $f \in S_+$ hat man den Isomorphismus

$$(\varphi,\varphi^{\#}): \left(D_{+}(f),\mathcal{O}_{\operatorname{Proj}(S)}\big|_{D_{+}(f)}\right) \to \operatorname{Spec}(S_{(f)},\mathcal{O}_{S_{(f)}})$$

2. Diese induzieren Isomorphismen

$$\mathcal{O}_{\operatorname{Proj}(S),\mathfrak{p}} \xrightarrow{\cong} S_{(\mathfrak{p})}.$$

Damit wird $(Proj(S), \mathcal{O}_{Proj(S)})$ zu einem Schema.

Beweis. "analog" zum Beweis für Spec mit nachfolgendem Lemma.

Lemma 4.13. *Ist* $f \in S_+$ *homogen, so ist*

$$\phi: D_+(f) \to \operatorname{Spec}(S_{(f)})$$

 $\mathfrak{p} \mapsto \mathfrak{p}S_f \cap S_{(f)}$

ein Homöomorphismus.

Beweis. Sei $S \xrightarrow{\lambda} S_f \xleftarrow{\iota} S_{(f)}$, so haben wir

Die Stetigkeit im linken Diagramm folgt aus der Tatsache, dass $V_{+}(\mathfrak{a}) = V(\mathfrak{a}) \cap \operatorname{Proj}(S)$ und $\operatorname{Proj}(S)$ trägt die Teilraumtopologie von Spec S. Damit ist ϕ stetig.

Wir wollen die Umkehrabbildung von ϕ angeben:

$$\begin{array}{ccc} D_+(f) & \stackrel{\phi}{\to} & \operatorname{Spec}(S_{(f)}) \\ \lambda^{-1}(\sqrt{\mathfrak{q}S_f}) & \longleftrightarrow & \mathfrak{q}. \end{array}$$

Den Rest zeigen nachstehende Hilfslemmata.

Hilfslemma 4.14. $\mathfrak{p} := \lambda^{-1}(\sqrt{\mathfrak{q}S_f})$ ist homogenes Primideal in S.

Beweis.

$$\mathfrak{q}S_f = \left\{ \frac{b}{f^l} \frac{c}{f^n} \in S_f \,\middle|\, \begin{array}{l} b \text{ homogen, } \deg b = l \deg f \\ \frac{b}{f^n} \in \mathfrak{q}, \ c \in S, n \in \mathbb{N}_0 \end{array} \right\}$$

Bemerke, dass \mathfrak{p} ein homogenes Ideal ist, weil $\mathfrak{q}S_f$ es ist. Genauer: $S_f = \bigoplus_{n \geq 0} S_{f,n}$ mit

$$S_{f,n} := \left\{ \frac{c}{f^m} \mid c \text{ homogen, } \deg c - m \deg f = n \right\}.$$

Es bleibt also zu zeigen: Sind $a, a' \in S$ homogen und $aa' \in \mathfrak{p}$, so folgt $a \in \mathfrak{p}$ oder $a' \in \mathfrak{p}$.

Sei dazu $r = \deg a$, $s = \deg a'$. Aus $aa' \in \mathfrak{p}$ folgt $\lambda(aa') = \frac{aa'}{1} \in \sqrt{\mathfrak{q}S_f}$. Also existiert ein $k \in \mathbb{N}$ mit $\left(\frac{aa'}{1}\right)^k \in \mathfrak{q}S_f$, also $\left(\frac{aa'}{1}\right)^k = \frac{b}{f^l}\frac{c}{f^n}$ wie oben. Potenzieren mit $\deg f$ ergibt

$$\frac{a^{k \operatorname{deg} f} a'^{k \operatorname{deg} f}}{f^{kr} f^{ks}} = \frac{b^{\operatorname{deg} g}}{f^{l \operatorname{deg} f}} \frac{c^{\operatorname{deg} f}}{f^{n \operatorname{deg} f}} \frac{1}{f^{kr} f^{ks}} \in S_f.$$

Leider noch nicht fertig :-(

wir definieren $\mathbb{P}_A^n := \operatorname{Proj}(A[X_0, \dots, X_n])$ als Schema. Dabei stellen sich aber die Fragen, was dabei $D_+(X_i)$ sein soll und ob die beiden Varianten übereinstimmen.

Lemma 4.15. Die beiden Varianten der Definition von \mathbb{P}^n_A stimmen überein und es gilt

$$D_+(X_i) \cong \operatorname{Spec} S_{(X_i)} \cong \mathbb{A}_A^n$$
.

Beweis. Leider noch nicht fertig :-(

4.3 Immersionen und projektive A-Schemata

Definition 4.16 (offene und abgeschlossene Immersion). -

Ein Morphismus $f:Y\to X$ von Schemata heißt

1. offene Immersion, wenn es $U \subseteq^{\circ} X$ gibt, so dass

$$f: (Y, \mathcal{O}_Y) \xrightarrow{\cong} (U, \mathcal{O}_X|_U) \xrightarrow{(\iota, \iota^\#)} (X, \mathcal{O}_X)$$

- 2. abgeschlossene Immerson, wenn gilt:
 - f ist topologisch ein Homö
omorphismus auf im $f:=Z\subset X$ abgeschlossen,
 - $f^{\#}: \mathcal{O}_X \to f_*\mathcal{O}_Y$ ist ein surjektiver Garbenmorphismus, d.h. für alle $y \in Y$ ist

$$f_{(f(y))}^{\#}: \mathcal{O}_{X,f(y)} \to \mathcal{O}_{Y,y}$$

surjektiv.

Wir schreiben dann auch $Y \hookrightarrow X \to Y$.

Beispiel 4.17. Ist A ein Ring, $a \triangleleft A$, so induziert

$$A \xrightarrow{\pi} A/\mathfrak{a}$$

eine abgeschlossene Immersion

$$f: \operatorname{Spec} A/\mathfrak{a} \to \operatorname{Spec} A$$

Beweis. Leider noch nicht fertig :-(

Bemerkung 4.18. Es ist $V(\mathfrak{a}) = V(\sqrt{\mathfrak{a}}) = V(\mathfrak{b})$ genau dann, wenn $\sqrt{a} = \sqrt{b}$. Aber es folgt nicht notwendigerweise $A/\mathfrak{a} \stackrel{?}{\cong} A/\mathfrak{b}!$

Dazu betrachte einen Ring A mit nilpotenten Elementen, d.h. Nil $A := \sqrt{(0)} \neq (0)$ und

$$f: \operatorname{Spec} A / \operatorname{Nil}(A) \hookrightarrow \operatorname{Spec} A$$

ist eine abgeschlossene Immersion mit

$$\operatorname{im} f = V(\operatorname{Nil}(A)) = \{ \mathfrak{p} \in \operatorname{Spec} A \mid \operatorname{Nil}(A) \subseteq \mathfrak{p} \} = \operatorname{Spec} A.$$

Jedoch ist dies kein Isomorphismus.

Definition 4.19 (abgeschlossenes Unterschema). –

Ist $f: Y \to X$ eine abgeschlossene Immersion, so nennen wir Y ein (bzgl. f) abgeschlossenes Unterschema von X.

Definition 4.20 (projektives Schema über A).

Sei A ein Ring. Ein projektives Schema über A ist ein A-Schema X mit einer abgeschlossenen Immersion, so dass

für ein $n \in \mathbb{N}_0$ kommutiert.

Bemerkung 4.21. Leider noch nicht fertig :-(

4.3.1 Beispiele

Zunächst ein etwas abstrakteres Beispiel.

Satz 4.22.

Sei $S := A[X_0, ..., X_n]$. Ist $\mathfrak{b} \triangleleft S$ ein homogenes Ideal, so ist $B := S/\mathfrak{b}$ in natürlicher Weise eine graduierte A-Algebra und Proj(B) ein projektives A-Schema.

Beweis. Leider noch nicht fertig :-(

Und nun einige konkrete!

1. $\mathbb{P}^n_{\mathsf{klass}}(k)$ und \mathbb{P}^n_k . Sei k ein Körper. Wir haben $\mathbb{P}^n_{\mathsf{klass}}(k) := k^{n+1} \setminus \{0\} / \sim$ und dagegen $\mathbb{P}^n_k := \operatorname{Proj} k[T_0, \dots, T_n]$. Eine algebraische Menge in $\mathbb{P}^n_{\mathsf{klass}}(k)$ ist per definitionem

$$Z := \{ [x_0 : \ldots : x_n] \in \mathbb{P}^n_{klass}(k) \mid f_i(x_0, \ldots, x_n) = 0 \}$$

für $f_1(T_0, ..., T_n), ..., f_r(T_0, ..., T_n) \in k[T_0, ..., T_n]$ homogen.

Satz 4.23. -

Die Abbildung

$$\rho: \quad \mathbb{P}^n_{klass}(k) \quad \to \quad \mathbb{P}^n_k$$
$$[x_0:\ldots:x_n] \quad \mapsto \quad \langle x_iT_j - x_jT_i \mid i,j \rangle$$

ist eine Bijektion auf

$$\mathbb{P}^n_k(k) = \{ \mathfrak{p} \in \mathbb{P}^n_k \mid \mathfrak{p} \text{ ist } k\text{-rational} \} = \operatorname{Hom}_{\mathbf{Sch}_k}(\operatorname{Spec} k, \mathbb{P}^n_k).$$

Beweis. Leider noch nicht fertig :-(

Bemerkung 4.24. Wir haben dies auch schon affin gesehen:

$$k^n = \mathbb{A}_{\mathrm{klass}}^n(k) \rightarrow \mathbb{A}_k^n = \operatorname{Spec} k[X_1, \dots, X_n] .$$

 $(\alpha_1, \dots, \alpha_n) \mapsto (X_1 - \alpha_1, \dots, X_n - \alpha_n)$

Bemerkung 4.25. Sei X ein Schema. Wir erinnern daran, dass

$$X(K) := \operatorname{Hom}_{\mathbf{Sch}}(\operatorname{Spec} k, X) = \{(\varphi, \varphi^{\#}) : \operatorname{Spec} k \to X\}$$

 $_{
m mit}$

$$\varphi_{\eta}: \mathcal{O}_{X,x} \to \mathcal{O}_{\operatorname{Spec} k,\eta} = k$$

mit $x=\varphi(\eta)$, wobei topologisch Spec $k=\{\eta\}.$ Damit haben wir

$$\overline{\varphi_n^n}: \mathcal{O}_{X,x}/\mathfrak{m}_x = k(x) \hookrightarrow k$$

(Körperhomomorphismen sind immer injektiv) und wir erhalten folgende 1-1 Beziehung:

$$X(k)\stackrel{\mbox{\scriptsize 1-1}}{=} \{x\in X \mbox{ zusammen mit Inklusionen } \iota: k(x)\hookrightarrow k\}.$$

Beachte dabei:

$$X \in \text{Obj}(\mathbf{Sch}) \longrightarrow X(k) := \text{Hom}_{\mathbf{Sch}}(\text{Spec } k, X)$$

$$Y \in \operatorname{Obj}(\mathbf{Sch}\big|_k) \quad \leadsto \quad Y(k) := \operatorname{Hom}_{\mathbf{Sch}\big|_k}(\operatorname{Spec} k, X) = \left\{ \begin{array}{c} \varphi : \operatorname{Spec} k \xrightarrow{\quad \text{id} \quad \quad } Y \\ \operatorname{Spec} k \end{array} \right.$$

In diesem Sinne ist \mathbb{P}^n_k als k-Schema zu lesen mit $\mathbb{P}^n_k \to \operatorname{Spec} k$.

Wir folgern eine Seite später dass $k(x) \cong k$ kanonisch. Das ist mir nicht klar :-(

2. Projektiver Abschluss Sei $\mathfrak{a} \lhd k[Y_1,\ldots,Y_n]$, so hat man die abgeschlossene Immersion

$$\operatorname{Spec} k[Y_1, \dots, Y_n]/\mathfrak{a} \hookrightarrow \mathbb{A}^n_k$$

mit Bild $V(\mathfrak{a})$.

Betrachte die Homogenisierung von \mathfrak{a} in $k[T_0,\ldots,T_n]$: Sei $\mathfrak{a}=(f_1,\ldots,f_1)$. Definiere

$$f_i^{\text{homo}}(T_0, \dots, T_n) := T_0^{\deg f_i} f_i(\frac{T_1}{T_0}, \dots, \frac{T_n}{T_0}) \in k[T_0, \dots, T_n].$$

Damit können wir nun folgenden Satz formulieren.

Satz 4.26. -

Ist $\iota: X \hookrightarrow \mathbb{A}^n_k$ eine abgeschlossene Immersion, $X = \operatorname{Spec} k[Y_1, \ldots, Y_n]/\mathfrak{a}$ und $\mathfrak{a} = (f_1, \ldots, f_r)$, so nennen wir

$$\bar{X} := \operatorname{Proj} k[T_0, \dots, T_n] / \mathfrak{a}^{homo} \hookrightarrow \mathbb{P}^n_k$$

 $mit \ \mathfrak{a}^{homo} := (f_1^{homo}, \dots, f_r^{homo}) \ den \ projektiven \ Abschluss \ von \ X \ in \ \mathbb{P}^n_k. \ Es \ gilt$

wobei die Isomorphie an dieser Stelle durch die Definition der homogenen Polynome herrührt.

Bei mir steht "offe ne Inklusion", soll wohl aber offene Immersion gemeint sein!?

Beweis. klar.

Beispiel 4.27. Sei $E = \operatorname{Spec} k[X,Y]/(Y^2 - X^3 - aX - b) \subseteq \mathbb{A}^2_k$, so ist

$$\bar{E} = \operatorname{Proj} k[X,Y,Z] \big/ (Y^2Z - X^3 - aXZ^2 - bZ^3) \subseteq \mathbb{P}^2_k.$$

Als Übung überlege man sich was $\bar{E} \cap (\mathbb{P}^2_k \setminus D_+(T_0))$ ist.

5.1 Noethersch

Definition 5.1 ((lokal) noethersch). -

X heißt noethersch, wenn es eine endliche affine offene Überdeckung gibt, d.h.

$$X = \bigcup_{i=1}^r \operatorname{Spec} A_i$$

mit noetherschen Ringen A_i .

X heißt lokal noethersch, wenn jeder Punkt $x \in X$ eine affine offene Umgebung Spec $A \subseteq X$ hat mit A noethersch.

Bemerkung 5.2. Aus X lokal noethersch folgt $\mathcal{O}_{X,x}$ noethersch (Übungsaufgabe). Die Umkehrung gilt i.A. jedoch nicht.

5.2 k-Varietäten

Definition 5.3 (algebraische/projektive k-Varietät). –

Sei k ein Körper. Eine algebraische k-Varietät ist ein k-Schema X, das eine endliche offene Überdeckung

$$X = \bigcup_{i=1}^{r} \operatorname{Spec} A_i$$

mit endlich erzeugten k-Algebren A_i besitzt.

Eine $projektive\ k$ -Varietät ist ein projektives k-Schema.

Bemerkung 5.4. \bullet Eine projektive k-Varietät ist eine algebraische k-Varietät, da wir die abgeschlossene Immersion

$$X \hookrightarrow \mathbb{P}^n_k = \bigcup_{i=0}^n D_+(T_i) \cong \operatorname{Spec} k[Y_0, \dots, i, \dots, Y_n]$$

haben.

 \bullet Eine k-Alegbra A ist endlich erzeugt, wenn es $n \in \mathbb{N}$ gibt und surjektive k-Algebrenhomomorphismen

$$\begin{array}{ccc} k[Y_1,\ldots,Y_n] & \twoheadrightarrow & A \\ Y_i & \mapsto & a_i. \end{array}$$

Die a_i sind dabei die Erzeuger von A.

5.3 Reduzierte Schemata

Definition 5.5 (reduzierte Ringe). -

Ein Ring A heißt reduziert, wenn

$$\sqrt{(0)} =: Nil(A) = (0),$$

also wenn A keine nilpotenten Elemente hat.

Definition 5.6 (reduzierte lokal geringte Räume). -

X heißt reduziert, wenn $\mathcal{O}_{X,x}$ für jedes $x \in X$ reduziert ist.

Satz 5.7. -

Es ist äquivalent:

- 1. X ist reduziert.
- 2. Zu jedem $x \in X$ existiert eine affin offene Umgebung $U = \operatorname{Spec} A$ um x mit A reduziert.
- 3. $O_X(U)$ ist reduziert für alle offenen $U \subseteq^{\circ} X$.

Beweis. Leider noch nicht fertig :-(

5.4 Garbifizierung

Definition 5.8 (Garbifizierung). —

Sei X ein topologischer Raum und $\mathcal P$ eine Prägarbe auf X. Dann ist die Garbifizierung von $\mathcal P$

$$\mathcal{P}^{\dagger} := \left(U \mapsto \mathcal{P}^{\dagger}(U) := \left\{ f : U \to \coprod_{x \in U} \mathcal{P}_{x} \middle| \begin{array}{l} f(x) \in \mathcal{P}_{x} \ \forall x \in U \\ \forall x \in U \exists V \ \text{mit} \ x \in V \subseteq {}^{\circ} U \\ \text{und} \ \exists s \in \mathcal{P}(V) \ \text{mit} \ \forall z \in V : \ f(z) = s_{z} := [s] \in \mathcal{P}_{z}. \end{array} \right\} \right)$$

Satz 5.9. —

- 1. \mathcal{P}^{\dagger} ist eine Garbe und man hat einen kanonischen Prägarbenmorphismus $\mathcal{P} \to \mathcal{P}^{\dagger}$.
- 2. Ist \mathcal{F} eine Garbe, so ist $\mathcal{F}^{\dagger} \cong \mathcal{F}$ kanonisch via 1.
- 3. Für alle $x \in X$ ist $(\mathcal{P}^{\dagger})_x \cong \mathcal{P}_x$ kanonisch via 1.
- 4. \mathcal{P}^{\dagger} erfüllt die offenbare universelle Eigenschaft.

Beweis. Leider noch nicht fertig :-(

Bemerkung 5.10. Für einen Ring A und $\mathfrak{a} \triangleleft A$ ist

$$\operatorname{Spec} A/\mathfrak{a} \to \operatorname{Spec} A$$

ein Homö
omorphismus auf $V(\mathfrak{a}) = V(\sqrt{\mathfrak{a}}) \subseteq \operatorname{Spec} A$.

Satz 5.11. -

Sei X ein Schema. Dann existiert eine eindeutig bestimmte abgeschlossene Immersion eines reduzierten Schemas $X^{\rm red}$

 $mit \ \mathrm{topRaum}(X^{red}) = \mathrm{topRaum}(X).$

Definition 5.12 (Kern- und Bildgarbe). —

Sei $\alpha: \mathcal{F} \to \mathcal{G}$ ein Garbenmorphismus. Dann heißen

$$\ker \alpha : (U \mapsto \ker(\alpha(U)))$$

$$\operatorname{im} \alpha : (U \mapsto \operatorname{im}(\alpha(U)))^{\dagger}$$

Kern- und Bildgarbe von α .

Bemerkung 5.13. In der Tat ist $\ker \alpha$ bereits eine Garbe.

5.5 Sequenzen von Garben und der Homomorphiesatz

Definition 5.14 (Exakte Sequenz von Garben). -

Eine Sequenz von Garben

$$0 \to \mathcal{F} \xrightarrow{\alpha} \mathcal{G} \xrightarrow{\beta} \mathcal{H} \to 0$$

heißt exakt, falls

- $\operatorname{im} \alpha = \ker \beta$
- $\ker \alpha = 0$
- $\operatorname{im} \beta = \mathcal{H}$

im Sinne von Definition 5.12 gilt.

Satz 5.15. -

Eine Sequenz von Garben

$$0 \to \mathcal{F} \xrightarrow{\alpha} \mathcal{G} \xrightarrow{\beta} \mathcal{H} \to 0$$

ist exakt genau dann, wenn sie halmweise exakt ist, d.h.

$$0 \to \mathcal{F}_x \xrightarrow{\alpha_x} \mathcal{G}_x \xrightarrow{\beta_x} \to 0$$

 $f\ddot{u}r\ jedes\ x\in X\ exakt\ ist.$

Beweis. Zur Übung.

Satz 5.16. -

Ist $\alpha: \mathcal{F} \to \mathcal{G}$ ein Garbenmorphismus. Es ist äquivalent:

1. α ist ein Garbenisomorphismus ist, d.h. für alle $U \subseteq {}^{\circ} X$ ist $\alpha(U)$ ein Isomorphismus (von Ringen),

2. $\alpha_x : \mathcal{F}_x \to \mathcal{G}_x$ ist ein Isomorphismus.

Beweis. klar.

Satz 5.17 (Homomorphiesatz für Garben).

Ist

$$0 \to \mathcal{N} \to \mathcal{F} \xrightarrow{\alpha} \mathcal{G} \to 0$$

eine kurze exakte Sequenz von Garben, so induziert α einen Isomorphismus

$$\bar{\alpha}: \mathcal{F}/\ker \alpha \xrightarrow{\cong} \mathcal{G}.$$

Beweis. Leider noch nicht fertig :-(

5.6 Reduzierte Schemata II

Satz 5.18. -

Sei X ein Schema, $Z \subseteq X$ eine abgeschlossene Teilmenge. Dann kann man auf Z eine Schemastruktur definieren, so dass $(Z, \mathcal{O}_Z) \hookrightarrow (X, \mathcal{O}_X)$ eine abgeschlossene Immersion ist und (Z, \mathcal{O}_Z) reduziert ist. Diese ist eindeutig und heißt reduzierte Unterschema-Strukur.

Beweis. Leider noch nicht fertig :-(

5.7 Integere Schemata

Definition 5.19 (integeres Schema). -

Ein Schema X heißt integer, wenn für jedes $U \subseteq X$ offen der Ring $\mathcal{O}_X(U)$ nullteilerfrei ist.

Bemerkung 5.20. $X = \operatorname{Spec} A$ ist integer genau dann, wenn A nullteilerfrei.

Lemma 5.21. Ist A nullteilerfrei, so ist für jedes $U \subseteq^{\circ} X = \operatorname{Spec} A$ der kanonische Morphismus

$$\mathcal{O}_X(U) \to \mathcal{O}_{X,n} = \operatorname{Quot}(A)$$

für $\eta = (0)$ injektiv. Ferner ist für $V \subseteq^{\circ} U$ die Restriktion $\mathcal{O}_X(U) \to \mathcal{O}_X(V)$ injektiv.

Beweis. Leider noch nicht fertig :- (

Satz 5.22. -

Ein Schema X ist genau dann integer, wenn X reduziert und irreduzibel ist.

Beweis. Leider noch nicht fertig :-(

6

Faserprodukt

Definition 6.1 (Faserprodukt). -

Seien $f:X\to Y$ und $g:Z\to Y$ Schemamorphismen. Dann ist das Faserprodukt $X\times_Y Z$ ein Schema zusammen mit Morphismen $X\times_Y Z\xrightarrow{\alpha} X$ und $X\times_Y Z\xrightarrow{\beta} Z$, so dass

$$\begin{array}{ccc} X \times_Y Z \stackrel{\alpha}{\longrightarrow} X \\ \downarrow^{\beta} & \downarrow^{f} \\ Z \stackrel{g}{\longrightarrow} Y \end{array}$$

kommutiert und $(X \times_Y Z, \alpha, \beta)$ damit universell ist, d.h.

6.1 Anwendungen

6.1.1 Faser eines Morphismus

Definition 6.2 (Faser eines Morphismus). -

Ist $f: X \to Y$, Spec $k \varnothing Y$ ein k-rationaler Punkt in Y (beispielsweise $k := k(y) := \mathcal{O}_{Y,y}/\mathfrak{m}_y$), so heißt

$$X \times_Y \operatorname{Spec} k =: X_u$$

die Faser von f über $y \in Y$.

6.1.2 Basiswechsel

Definition 6.3. -

Sei X ein S-Schema. Ist T ein weiteres S-Schema, so heißt

$$X \times_S T =: X_T$$

der Basiswechsel vom S-Schema X zum T-Schema X_T .

Bemerkung 6.4. In der Tat ist $X \times_S T$ in natürlicher Weise ein T-Schema. Seien nämlich $f: X \to S$ und $g: T \to S$ die Strukturmorphismen, so haben wir

$$\begin{array}{ccc}
X \times_S T & \xrightarrow{\alpha} X \\
\downarrow^{\beta} & \downarrow^{f} \\
T & \xrightarrow{g} S.
\end{array}$$

Bemerkung 6.5. Man kann die Definition des Basiswechsels auch kategoriell lesen: Zu $g: T \to S$ hat man einen Funktor

$$\begin{array}{ccc} \mathbf{Sch}_S & \to & \mathbf{Sch}_T \\ (X \xrightarrow{f} S) & \mapsto & (X \times_S T \xrightarrow{\beta} T). \end{array}$$

Definition 6.6 (pull-back von Schemata). —

In obiger Situation heißt ein A mit

$$\begin{array}{ccc}
A & \longrightarrow X \\
\downarrow & \Gamma & \downarrow \\
Z & \longrightarrow Y
\end{array}$$

pull-back, falls $A = X \times_Y Z$.

Satz 6.7.

In Sch existiert zu jedem $X \xrightarrow{f} Y$, $Z \xrightarrow{g} Y$ ein Faserprodukt $X \times_Y Z$. Es ist eindeutig bis auf eindeutige Isomorphie.

 $F\ddot{u}r X = \operatorname{Spec} A, Y = \operatorname{Spec} B, Z = \operatorname{Spec} R \ gilt \ sogar$

$$X \times_Y Z = \operatorname{Spec} A \otimes_R B.$$

Beweis. Leider noch nicht fertig :-(

Bemerkung 6.8. Es gilt:

- $\bullet \ X \times_S S = X.$
- $X \times_S Y = Y \times_S X$.
- $(X \times_S Y) \times_S Z = X \times_S (Y \times_S Z)$.
- $\bullet \;\; \text{Für} \; X \to S \; \text{und} \; Z \to Y \to S \; \text{gilt}$

$$(X \times_S Y) \times_Y Z = X \times_S Z.$$

Lemma 6.9. Sei $f: X \to Y$. $y \in Y$ mit Restklassenkörper $k(Y) = \mathcal{O}_{Y,y}/\mathfrak{m}_y$. In

$$X \times_Y \operatorname{Spec} k(y) =: X_y \xrightarrow{p} X$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\operatorname{Spec} k(y) \xrightarrow{} Y$$

ist p ein Homöomorphismus auf $f^{-1}(y) \subseteq X$.

Beweis. Leider noch nicht fertig :-(

Glatt, regulär & normal

7

k-Varietät

Der Punktefunktor

9

\mathcal{O}_X -Moduln

10

10.1 \mathcal{O}_X -Moduln

Definition 10.1 (\mathcal{O}_X -Modul). -

Ein \mathcal{O}_X -Modul (oder eine \mathcal{O}_X -Modulgarbe) ist eine Garbe \mathcal{M} zusammen mit einer $\mathcal{O}_X(U)$ -Modulstruktur auf $\mathcal{M}(U)$ für jedes offene $U \subseteq^{\circ} X$, so dass für $V \subseteq^{\circ} U \subseteq^{\circ} X$ folgendes Diagramm kommutiert:

$$\mathcal{O}_X(U) \times \mathcal{M}(U) \longrightarrow \mathcal{M}(U)$$

$$\downarrow \cdot |_{_V} \times \cdot |_{_V} \qquad \qquad \downarrow \cdot |_{_V}$$

$$\mathcal{O}_X(V) \times \mathcal{M}(V) \longrightarrow \mathcal{M}(V)$$

Ein *Morphismus* $\mathcal{M} \to \mathcal{M}'$ von solchen ist ein Garbenmorphismus $\alpha : \mathcal{M} \to \mathcal{M}'$, so dass für jedes $U \subseteq {}^{\circ} X \ \alpha(U) : \mathcal{M}(U) \to \mathcal{M}'(U) \ \mathcal{O}_X(U)$ -linear ist.

Bemerkung 10.2. Man hat einige Konstruktionen aus der kommutativen Algebra auch für \mathcal{O}_X -Moduln, wie z.B.

- $\mathcal{M} \otimes_{\mathcal{O}_X} \mathcal{M}' : U \mapsto \mathcal{M}(U) \otimes_{\mathcal{O}_X(U)} \mathcal{M}'(U)$.
- $\bigoplus_{i \in I} \mathcal{M}_i$ von \mathcal{O}_X -Moduln \mathcal{M}_i .
- Für $\alpha: \mathcal{M} \to \mathcal{M}'$ \mathcal{O}_X -Modul-Morphismus haben wir ker α und im α , wobei Kern und Bild in \mathbf{Sh}_X zu lesen sind.

Definition 10.3 (frei, lokal frei).

Ein \mathcal{O}_X -Modul \mathcal{M} heißt

• frei, wenn es eine Menge I und einen \mathcal{O}_X -Modul-Isomorphismus

$$\mathcal{O}_X^{(I)} := \bigoplus_{i \in I} \mathcal{O}_X \xrightarrow{\cong} \mathcal{M}$$

gibt,

• lokal frei oder Vektorbündel von Rang r, wenn es zu jedem $x \in X$ ein $x \in U \subseteq^{\circ} X$ und einen \mathcal{O}_U -Modul-Isomorphismus

$$\mathcal{O}^r_U \xrightarrow{\cong} \mathcal{M}\big|_U$$

gibt.

10.2 Exkurs: Vektorbündel in der Topologie

Sei X ein topologischer Raum. Dann ist ein \mathbb{R} -Vektorbündel vom Rang r eine stetige Abbildung $\pi: E \to X$ mit einer \mathbb{R} -Vektorraumstruktur auf $E_x := \pi^{-1}(\{x\})$ zusammen mit einem sog Bündelatlas, bestehend aus Karten

$$\psi_U : E|_U := \pi^{-1}(U) \to U \times \mathbb{R}^r$$

mit $\operatorname{pr}_U \circ \psi_U = \pi \big|_{\pi^{-1}(U)}$, d.h.

$$E|_{U} = \pi^{-1}(U) \xrightarrow{\approx} U \times \mathbb{R}$$

kommutiert und die Karten sind

- Homöomorphismen und so, dass
- $\psi_x : E_x \to \{x\} \times \mathbb{R}^r$ ein linearer Isomorphismus ist.

Wie verstehen wir das als Garbe von Moduln? Setze $\mathcal{O}_X := U \mapsto \mathcal{O}_X(U) := \{f : U \to \mathbb{R} \mid f \text{ stetig}\}$, also die Garbe der stetigen Funktionen. Dann ist (X, \mathcal{O}_X) ein lokal geringter Raum. Weiter haben wir $E \xrightarrow{\pi} X$ stetig. Setze

$$\mathcal{E}: U \mapsto \mathcal{E}(U) := \{ \sigma: U \to \pi^{-1}(U) \subseteq E \mid \sigma \text{ stetig}, \ \pi \circ \sigma = \mathrm{id}_U \}.$$

Dies ist eine Garbe. $\mathcal E$ ist sogar eine $\mathcal O_X$ –Modulgarbe: Für $U\subseteq^\circ X$ gilt

$$\mathcal{O}_X(U) \times \mathcal{E}(U) \to \mathcal{E}(U), \ (f, \sigma) \mapsto f \cdot \sigma.$$

wobei

$$\begin{array}{cccc} f \cdot \sigma : & U & \to & \pi^{-1}(U) \\ & x & \mapsto & \underbrace{f(x)}_{\in \mathbb{R}} \underbrace{\sigma(x)}_{\in E_x} \end{array}$$

und E_x ein \mathbb{R} -Vektorraum ist.

Bleibt nur noch zu klären, wie die Bündelkarten $\psi_U: E\big|_U = \pi^{-1}(U) \xrightarrow{\cong} U \times \mathbb{R}^r$ eingehen:

 $\alpha: U \to \mathbb{R}^r$ ist eine stetige Abbildung, also $\alpha \in \mathcal{O}_X(U)^r$. Weiter liefert ψ_U einen $\mathcal{O}_X(U)$ -Modul-Isomorphismus

$$\mathcal{E}(U) \stackrel{\cong}{\longrightarrow} \mathcal{O}_X(U)^r \\
\sigma \mapsto \operatorname{pr}_{\mathbb{R}^r} \circ \psi_U \circ \sigma \\
\psi_U^{-1} \circ (\operatorname{id}_U \times \alpha) \longleftrightarrow \alpha.$$

Schränkt man auf $V\subseteq^{\circ} U$ ein, ist dies verträglich. Also

$$\mathcal{E}|_{U} \cong \mathcal{O}_{X}(U)$$

als $\mathcal{O}_X|_U$ -Modulgarben.

10.3 Quasi-Kohärenz

Definition 10.4 (quasi-kohärent). -

Eine \mathcal{O}_X -Modulgarbe \mathcal{M} heißt *quasi-kohärent*, wenn es zu jedem $x \in X$ ein $x \in U \subseteq^{\circ} X$ und Mengen I, J und eine exakte Sequenz von \mathcal{O}_U -Modulgarben

$$\mathcal{O}_X|_U^{(J)} \longrightarrow \mathcal{O}_X|_U^{(J)} \longrightarrow \mathcal{M}|_U \longrightarrow 0$$

gibt.

Definition 10.5 (von seinen globalen Schnitten erzeugt).

Ein \mathcal{O}_X -Modul \mathcal{M} wird von seinen globalen Schnitten erzeugt, wenn für jedes $x \in X$ der Morphismus von $\mathcal{O}_{X,x}$ -Moduln

$$\mathcal{M}(X) \otimes_{\mathcal{O}_X(X)} \mathcal{O}_{X,x} \to \mathcal{M}_x$$

surjektiv ist.

Mit anderen Worten: Jeder Keim $m_x \in \mathcal{M}_x$ lässt sich schreiben als

$$m_x = \sum_{\text{endl. viele } i} \lambda_i [\sigma_i]_x$$

für $\lambda_i \in \mathcal{O}_{X,x}$ und $\sigma_i \in \mathcal{M}(X)$.

Dies gilt nicht für \mathcal{O}_X selbst; betrachte beispielsweise $X = \mathbb{CP}^1$ und \mathcal{O}_X die Garbe der holomorphen Funktionen.

Bemerkung 10.6. Es existiert ein surjektives $\mathcal{O}_X|_U^{(I)} \twoheadrightarrow \mathcal{M}|_U$ genau dann, wenn $\mathcal{M}|_U$ durch seine auf U globalen Schnitte erzeugt wird.

 \mathcal{M} ist quasi-kohärent genau dann, wenn $\mathcal{M}|_U$ durch seine globalen Schnitte erzeugt wird und die Relationen (also $\ker(\mathcal{O}_X|_U^{(I)}) \to \mathcal{M}$)) auch.

10.4 Quasikohärente Garben auf Spec A

Beachte folgende Konstruktion Ist M ein A-Modul, so betrachte

- für $f \in A$: $M_f = M \otimes_A A_f$ als $A_f = \mathcal{O}_{\operatorname{Spec} A}(D(f))$ -Modul.
- für $\mathfrak{p} \in \operatorname{Spec} A$: $M_{\mathfrak{p}} = M \otimes_A A_{\mathfrak{p}}$ als $A_{\mathfrak{p}} = \mathcal{O}_{\operatorname{Spec} A, \mathfrak{p}}$ -Modul.

Dies ist eine \mathfrak{B} -Garbe für $\mathfrak{B} = \{D(f) \mid f \in A\}$ der Basis der Topologie auf Spec A. Dann folgt analog zu Satz 2.33 folgender Satz.

Satz 10.7. -

Zu gegebenem A-Modul M existiert (bis auf Isomorphie) genau eine $\mathcal{O}_{\operatorname{Spec} A}$ -Modulgarbe M^{\sim} auf $X = \operatorname{Spec} A$ mit

$$M^{\sim}(D(f)) \cong M_f$$

 $(M^{\sim})_{\mathfrak{p}} \cong M_{\mathfrak{p}}$

Insbesondere ist $M^{\sim}(\operatorname{Spec} A) = M$.

Satz 10.8.

Der Funktor

$$\stackrel{\sim}{\cdot} : \quad A\text{-}\mathbf{Mod} \quad \xrightarrow{} \quad \mathcal{O}_{\operatorname{Spec} A}\text{-}\mathbf{Mod}$$

$$M \quad \mapsto \quad M^{\sim}$$

$$(M \xrightarrow{\varphi} N) \quad \mapsto \quad (M^{\sim} \xrightarrow{\varphi^{\sim}} N^{\sim})$$

ist exakt.

Beweis. Es ist zu zeigen: Ist

$$M' \xrightarrow{\alpha} M \xrightarrow{\beta} M''$$

eine exakte Sequenz in A-Mod, so ist

$$(M')^{\sim} \xrightarrow{\alpha^{\sim}} M^{\sim} \xrightarrow{\beta^{\sim}} (M'')^{\sim}$$

eine exakte Sequenz in $\mathcal{O}_{\operatorname{Spec} A}$ -Mod. Letzteres ist aber äquivalent dazu, dass

$$(M')_{\mathfrak{p}}^{\sim} \xrightarrow{\alpha_{\mathfrak{p}}^{\sim}} M_{\mathfrak{p}}^{\sim} \xrightarrow{\beta_{\mathfrak{p}}^{\sim}} (M'')_{\mathfrak{p}}^{\sim}$$

eine exakte Halmsequenz für alle $\mathfrak{p} \in \operatorname{Spec} A$ ist. Dies ist aber klar, weil $\mathbb{A}_{\mathfrak{p}}$ flach über A ist ([2, Example 9.1.1] oder [1, Abschnitt 7 Satz 8]) und $M_{\mathfrak{p}}^{\sim} = M_{\mathfrak{p}} \cong M \otimes_A A_{\mathfrak{p}}$.

Korollar 10.9. Für einen A-Modul M ist M^{\sim} quasi-kohärent.

Beweis. Für M hat man

$$A^{(J)} \to A^{(I)} \xrightarrow{\varphi} M \to 0.$$

Nun wähle beispielsweise I:=M und $J:=\ker \varphi.$ Ferner ist

$$(A^{(J)})^{\sim} = (\bigoplus_{j \in J} A)^{\sim} = \bigoplus_{j \in J} A^{\sim} = \bigoplus_{j \in J} \mathcal{O}_X = \mathcal{O}_X^{(J)}$$

und da $^{\sim}$ exakt ist, folgt die Exaktheit von

$$\mathcal{O}_X^{(J)} \to \mathcal{O}_X^{(I)} \to M^{\sim} \to 0.$$

Bemerkung 10.10. Sind M und N A-Moduln, so ist

$$(M \otimes_A N)^{\sim} = M^{\sim} \otimes_{\mathcal{O}_{\text{Spec }A}} N^{\sim}.$$

Satz 10.11.

Sei (X, \mathcal{O}_X) ein Schema. Dann ist eine \mathcal{O}_X -Modulgarbe \mathcal{M} genau dann quasi-kohärent, wenn für jede affin offene Teilmenge U ein Isomorphismus

$$\mathcal{M}|_{U} \cong (\mathcal{M}(U))^{\sim}$$

existiert.

Beweis. "←". Folgt aus Korollar 10.9.

"⇒". Aus nachstehenden Hilfslemmas haben wir die Behauptung, da $\mathcal{M}(U)^{\sim}$ durch die Eigenschaft auf den D(f)s festgelegt ist.

Hilfslemma 10.12. In der Situation von Satz 10.11 gilt: Für jedes $x \in X$ existiert ein affin offenes $x \in U \subseteq^{\circ} X$ mit $\mathcal{M}|_{U} \cong (\mathcal{M}(U))^{\sim}$.

Beweis. Man hat den kanonischen Garbenmorphismus

$$(\mathcal{M}(U))^{\sim} \to \mathcal{M}|_{U}.$$

Dieser rührt her von

$$(\mathcal{M}(U))^{\sim}(D(f)) = \mathcal{M}(U)_f \xrightarrow{\varrho} \mathcal{M}(D(f)),$$

welcher induziert wird von den beiden Restriktionen $\operatorname{res}^{\mathcal{M}}: \mathcal{M}(U) \to \mathcal{M}(D(f))$ und $\operatorname{res}^{\mathcal{O}}: \mathcal{O}_X(U) \to \mathcal{O}_X(D(f))$, da wird $\mathcal{M}(U)$ als einen $\mathcal{O}_X(U)$ -Modul und $\mathcal{M}(D(f))$ als einen $\mathcal{O}_X(D(f))$ -Modul auffassen wollen. Demnach haben wir für $\lambda \in \mathcal{O}_X(U)$ und $m \in \mathcal{M}(U)$

$$\operatorname{res}^{\mathcal{M}}(\lambda m) = \operatorname{res}^{\mathcal{O}}(\lambda) \operatorname{res}(m).$$

Weiter ist $f \in A_f^{\times} = (\mathcal{O}_U(D(f)))^{\times}$, also dort invertierbar und wir können setzen

$$\rho(\frac{m}{f^n}) := \operatorname{res}(m) f^{-n}.$$

Da \mathcal{M} quasi-kohärent existiert für alle $x \in X$ ein affin offenes $x \in U \subseteq^{\circ} X$, so dass

$$\mathcal{O}_X\big|_U^{(J)} \xrightarrow{\beta} \mathcal{O}_X\big|_U^{(I)} \xrightarrow{\alpha} \mathcal{M}\big|_U \to 0$$

exakt ist. Insbesondere haben wir

$$\mathcal{O}_X(U)^{(J)} \to \mathcal{O}_X(U)^{(I)} \to \mathcal{M}(U).$$

Setze nun $N := \operatorname{im}(\alpha(U)) \subseteq \mathcal{M}(U)$. N ist ein $\mathcal{O}_X(U)$ -Untermodul. Damit ist

$$\mathcal{O}_X(U)^{(J)} \to \mathcal{O}_X(U)^{(I)} \to N \to 0$$

eine exakte Sequenz von $\mathcal{O}_X(U)$ -Moduln. Wir wenden $^{\sim}$ an und da $^{\sim}$ exakt (Satz 10.8) erhalten wir

$$\mathcal{O}_X\big|_U^{(J)} \to \mathcal{O}_X\big|_U^{(I)} \to N^\sim \to 0.$$

Mit dem Homomorphiesatz folgt dann $\mathcal{M}|_{U} \cong N^{\sim}$.

Hilfslemma 10.13. In der Situation von Satz 10.11 gilt: Für beliebiges $U = \operatorname{Spec} A \subseteq^{\circ} X$ und $f \in A = \mathcal{O}_X(U)$ gilt

$$\mathcal{M}(U)_f \cong \mathcal{M}(D(f)).$$

Beweis. Wir überdecken $U = \bigcup_{i=1}^r U_i$ durch endlich viele affin offene U_i (es reichen endlich viele, da Spec A quasi-kompakt!). Die U_i wählen wir dabei so, dass sie die Eigenschaften im ersten Hilfslemma genügen und setzen $V_i = U_i \cap D(f) = D(f|_{U_i})$. Dann haben wir

$$0 \longrightarrow \mathcal{M}(U)_{f} \longrightarrow \bigoplus_{i} \mathcal{M}(U_{i})_{f} \longrightarrow \bigoplus_{(i,j)} \mathcal{M}(U_{i} \cap U_{j})_{f}$$

$$\downarrow^{\alpha} \qquad \qquad \beta = \qquad \qquad \gamma \subseteq$$

$$0 \longrightarrow \mathcal{M}(D(f)) \longrightarrow \bigoplus_{i} \mathcal{M}(V_{i}) \longrightarrow \bigoplus_{(i,j)} \mathcal{M}(V_{i} \cap V_{j}),$$

wobei die Zeilen jeweils exakt sind und die Isomorphismen sich aus dem ersten Hilfslemma ergeben. Man erjagt sich aus β ein Isomorphismus, dass α injektiv ist und zusammen mit γ einem Isomorphismus, kann man erneut auf Jagd gehen und die Surjektivität von α erlegen.

Satz 10.14. -

 $Ist X = \operatorname{Spec} A \ affin \ und$

$$0 \longrightarrow \mathcal{M}' \stackrel{\alpha}{\longrightarrow} \mathcal{M} \stackrel{\beta}{\longrightarrow} \mathcal{M}'' \longrightarrow 0$$

eine kurze exakte Sequenz von \mathcal{O}_X -Modulgarben und ist \mathcal{M}' quasikohärent, so ist

$$0 \longrightarrow \mathcal{M}'(X) \xrightarrow{\alpha(X)} \mathcal{M}(X) \xrightarrow{\beta(X)} \mathcal{M}''(X) \longrightarrow 0$$

eine kurze exakte Sequenz von A-Moduln.

П

Bevor wir den Beweis des Satzes angeben, wollen wir in folgendem Lemma und anschließendem Beispiel sehen, dass die Bedingung der Quasikohärenz wirklich notwendig ist, um Rechtsexaktheit zu garantieren.

Lemma 10.15. Für jeden topologischen Raum X ist

$$\Gamma(X, \underline{\hspace{0.1cm}}) : \mathbf{Sh}_X \to \mathbf{Ab}, \ \mathcal{F} \mapsto \mathcal{F}(X) =: \Gamma(X, \mathcal{F})$$

linksexakt, d.h. ist

$$0 \longrightarrow \mathcal{F} \stackrel{\alpha}{\longrightarrow} \mathcal{G} \stackrel{\beta}{\longrightarrow} \mathcal{H} \longrightarrow 0$$

eine kurze exakte Sequenz in \mathbf{Sh}_X , so ist

$$0 \longrightarrow \mathcal{F}(X) \xrightarrow{\alpha(X)} \mathcal{G}(X) \xrightarrow{\beta(X)} \mathcal{H}(X)$$

eine exakte Sequenz in Ab.

Beweis. Zeigen wir zunächst die Injektivität von $\alpha(X)$: Sei $\sigma \in \mathcal{F}(X)$ mit $\alpha(X)\sigma = 0 \in \mathcal{G}(X)$, so ist $[\alpha(X)\sigma]_x = 0 \in \mathcal{G}_x$ für alle $x \in X$, also ist $\alpha_x([\sigma]_x) = 0$ mit $[\sigma]_x \in \mathcal{F}_x$ und da α_x injektiv nach Voraussetzung, folgt $[\sigma]_x = 0$, ergo $\sigma = 0$.

Als zweites folgern wir $\ker \beta(X) = \operatorname{im} \alpha(X)$: Da $\beta \circ \alpha = 0$, folgt $\beta(X) \circ \alpha(X) = 0$, also $\operatorname{im} \alpha(X) \subseteq \ker \beta(X)$. Sei nun $\sigma \in \ker \beta(X)$. Insbesondere gilt für jedes $U \subseteq X$, dass $\beta(U)\sigma\big|_U = 0 \in \mathcal{H}(U)$. Da $\ker \beta = \operatorname{im} \alpha$ nach Voraussetzung, existiert eine offene Überdeckung $X = \bigcup_{i \in I} U_i$ mit $\ker \beta(U_i) = \operatorname{im} \alpha(U_i)$. Also finden wir zu jedem $i \in I$ ein $\tau_i \in \mathcal{F}(U_i)$ mit $\alpha(U_i)\tau_i = \sigma\big|_{U_i}$. Wir müssen nur noch sehen, dass diese geeignet verkleben: Es gilt

$$\alpha(U_i \cap U_j)\tau_i\big|_{U_i \cap U_j} = \sigma\big|_{U_i \cap U_i} = \alpha(U_i \cap U_j)\tau_j\big|_{U_i \cap U_i}$$

und mit der Injektivität von $\alpha(U_i \cap U_j)$ folgt

$$\tau_i\big|_{U_i\cap U_j} = \tau_j\big|_{U_i\cap U_j}.$$

Also verkleben die $(\tau_i)_{i\in I}$ zu $\tau\in\mathcal{F}(X)$ mit $\alpha(X)\tau=\sigma$.

Beispiel 10.16. In Lemma 10.15 ist die Rechtsexaktheit im Allgemeinen nicht gegeben, wie man am Beispiel $X = \mathbb{C} \setminus \{0\}$ sieht: Setze $\mathcal{G} := \mathcal{O}_{\mathbb{C}^{\times}}$ die Garbe der holomorphen Funktionen und $\mathcal{H} := \mathcal{O}_{\mathbb{C}^{\times}}^{\times}$ die Garbe der nirgends verschwindenden holomorphen Funktionen, so ist

$$0 \longrightarrow 2\pi i \mathbb{Z} \longrightarrow \mathcal{G} \xrightarrow{\exp} \mathcal{H} \longrightarrow 0$$

eine kurze exakte Sequenz, aber

$$0 \longrightarrow 2\pi i \mathbb{Z} \longrightarrow \mathcal{G}(X) = \mathcal{O}_{\mathbb{C}^{\times}}(\mathbb{C} \setminus \{0\}) \xrightarrow{\exp} \mathcal{H}(X) = \mathcal{O}_{\mathbb{C}^{\times}}^{\times}(\mathbb{C} \setminus \{0\})$$

ist alles, da die letzte Abbildung nicht surjektiv ist (es gibt keinen komplexen Logarithmus auf $\mathbb{C} \setminus \{0\}$).

Beweis (von Satz 10.14). Nach Lemma 10.15 bleibt noch zu zeigen, dass $\mathcal{M}(X) \to \mathcal{M}''(X)$ surjektiv ist. Wir wählen eine Überdeckung $X = \cup_i U_i$, von offenen $\mathcal{U} = (U_i)_i$, so dass auf den U_i die Sequenz exakt ist. Nun können wir oBdA annehmen, dass

- 1. U_i basisoffen sind, also $U_i = D(f_i)$ für geeignete $f_i \in A$
- 2. und $\#I < \infty$, da $X = \operatorname{Spec} A$ quasikompakt ist.

Mir ist noch nicht ganz klar, warum das geht. Sei $\sigma \in M''(X)$ beliebige. Zu jedem $i \in I$ wähle $\tau_i \in \mathcal{M}(U_i)$, so dass $\beta(U_i)(\tau_i) = \sigma\big|_{U_i}$. Wir führen die Schreibweise $U_{ij} := U_i \cap U_j$ ein und damit ist $\beta(U_{ij})(\tau_i\big|_{U_{ij}}) = \sigma\big|_{U_{ij}} = \beta(U_{ij})(\tau_j\big|_{U_{ij}})$, also

$$\tau_i \big|_{U_{ij}} - \tau_j \big|_{U_{ij}} \in \ker \beta(U_{ij}) = \operatorname{im} \alpha(U_{ij}),$$

wobei wir die letzte Gleichheit aus der Linksexaktheit haben. Damit können wir oBdA $\mathcal{M}' \subseteq \mathcal{M}$ als untergarbe ansehen, also $\mathcal{M}'(U) \subseteq \mathcal{M}(U)$ als Untermodul. Setze nun $\eta_{ij} := \tau_i \big|_{U_{ij}} - \tau_j \big|_{U_{ij}} \in \mathcal{M}'(U_{ij})$ für jedes Paar (i, j).

Diese $(\eta_{ij})_{i,j}$ sind also das "Hindernis", dass die $(\tau_i)_i$ verkleben zu einem $\tau \in \mathcal{M}(X)!$ Es ist

$$0 = d(\eta_{ij})_{i,j} = \left(\eta_{ij}\big|_{U_{ijk}} - \eta_{ik}\big|_{U_{ijk}} + \eta_{jk}\big|_{U_{ijk}}\right)_{i,j,k}.$$

Das d werden wir später erklären! Nach Wahl der $U_i = D(f_i), U_{ij} = D(f_i f_j)$ ist

$$\eta_{ij} = \frac{a_{ij}}{(f_i f_j)^r} \in \mathcal{M}'(D(f_i f_j)) = M'(X)^{\sim}(D(f_i f_j)) = \mathcal{M}'(X)_{f_i f_j}$$

mit $a_{ij} \in \mathcal{M}'(X)$, wobei die Gleichheit hier durch die Quasikohärenz von \mathcal{M}' mit Satz 10.11 gegeben ist. Ferner ist zu bemerken, dass r nicht von i, j abhängt. Dies können wir oBdA erreichen, da $\#I < \infty$. Damit haben wir:

 $0 = \frac{a_{ij}}{(f_i f_i)^r} \Big|_{U_{ijk}} - \frac{a_{ik}}{(f_i f_k)^r} \Big|_{U_{ijk}} + \frac{a_{jk}}{(f_i f_k)^r} \Big|_{U_{ijk}} \in \mathcal{M}'(X)_{f_i f_j f_k}.$

Die Restriktionen sind aber gerade gegeben durch

$$\mathcal{M}'(D(f_if_j)) \xrightarrow{-\big|_{U_{ijk}}} M'(D(f_if_jf_k))$$

$$\parallel \qquad \qquad \parallel$$

$$M'(X)_{f_if_j} \longrightarrow \mathcal{M}'(X)_{f_if_jf_k}$$

$$\frac{a}{(f_if_j)^r} \longmapsto \frac{af_k^r}{(f_if_jf_k)^r},$$

also haben wir

$$0 = \frac{a_{ij}f_k^r}{(f_if_if_k)^r} - \frac{a_{ik}f_j^r}{(f_if_if_k)^r} + \frac{a_{jk}f_i^r}{(f_if_jf_k)^r} \in \mathcal{M}'(X)_{f_if_jf_k}.$$

Da aber die Lokalisierung an $f_i f_j f_k$ gerade die Lokalisierung an f_k von der Lokalisierung an $f_i f_j$ ist, existiert $l \in \mathbb{N}$, so dass

$$0 = f_k^{l+r} \frac{a_{ij}}{(f_i f_j)^r} - f_k^l f_j^r \frac{a_{ik}}{(f_i f_k)^r} + f_K^l f_i^r \frac{a_{jk}}{(f_j f_k)^r} \in \mathcal{M}'(X)_{f_i f_j}$$
(1)

Da es nur endlich viele Indizes gibt, haben wir diese Gleichheit für alle $k \in I$ und für alle $(i, j) \in I^2$.

Nun ist $D(f_k) = D(f_k^{r+l})$ und Spec $A = \bigcup_{k \in I} D(f_k^{r+l})$, also

$$\bigcap_{k \in I} V((f_k^{r+l})) = V\left(\sum_{k \in I} f_k^{r+l}\right) = \emptyset = V(A) \quad \Leftrightarrow \quad 1 \in \sum_{k \in I} (f_k^{r+l}).$$

Damit ist $1 = \sum_{k \in I} h_k f_k^{r+l}$ für geeignete $h_k \in A$. Setzen wir nun

$$g_i := \sum_{k \in I} h_k f_k^l \frac{a_{ik}}{f_i^r} \in M'(X)_{f_i} = (M'(X))^{\sim} (D(f_i)) = \mathcal{M}'(U_i),$$

wobei sich letzte Gleichheit wieder aus der Quasikohärenz ergibt, so haben wir

$$g_i|_{U_{ij}} - g_j|_{U_{ij}} = \sum_{k \in I} h_k f_k^l \left(f_j^r \frac{a_{ik}}{(f_i f_j)^r} - f_i^r \frac{a_{jk}}{(f_i f_j)^r} \right) = \underbrace{\sum_{k \in I} h_k f_k^{r+l}}_{} = 1 \frac{a_{ij}}{(f_i f_j)^r} = \eta_{ij} \in \mathcal{M}'(U_{ij}),$$

wobei wir diesen Schritt durch Umformung von ?? erhalten haben. Definieren wir nun $\mu_i := \tau_i - g_i \in \mathcal{M}(U_i)$, so haben wir für alle $i, j \in I$

$$\mu_i \big|_{U_{ij}} - \mu_j \big|_{U_{ij}} = \eta_{ij} - \eta_{ij} = 0$$

Also existiert ein eindeutiger globaler Schnitt $\mu \in \mathcal{M}(X)$ mit $\mu|_{U_{i,i}} = \mu_i$ für alle $i \in I$.

Benutzen wir nun alles bisherige, so erhalten wir für alle $i \in I$

$$\beta(X)(\mu)|_{U_i} = \beta(U_i)(\mu|_{U_i}) = \beta(U_i)(\mu_i) = \beta(U_i)(\tau_i) = \sigma|_{U_i}.$$

Damit stimmen $\beta(X)(\mu)$ und $\sigma \in \mathcal{M}''(X)$ auf U_i überein. Daher sind sie gleich und wir haben die Surjektivität von β gezeigt.

10.5 Der Čech-Komplex

Wir gehen hier genauer auf die Verwendung des d in vorherigem Beweis ein. Der Beweis liefert nämlich gerade, dass $\check{\mathbf{H}}^1(\mathcal{U}, \mathcal{M}'') = 0$, wie wir mit nachstehender Definition sehen.

Definition 10.17 (Čech-Komplex, Čech-Kohomologie).

Sie X ein topologischer Raum. $\mathcal{U} = (U_i)_{i \in I}$ eine offene Überdeckung, $\mathcal{F} \in \mathbf{Sh}_X$. Betrachte den folgenden Kettenkomplex

$$\overset{\circ}{\mathbf{C}}^{0} \longrightarrow \overset{\circ}{\mathbf{C}}^{1} \longrightarrow \cdots$$

$$\downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad$$

$$(\eta_i)_i \longmapsto (\eta_i \big|_{U_{ij}} - \eta_j \big|_{U_{ij}})_{i,j}$$

$$(y_{ij})_{i,j} \longmapsto (y_{ij}\big|_{U_{ijk}} - y_{ik}\big|_{U_{ijk}} + y_{jk}\big|_{U_{ijk}})_{i,j,k},$$

so heißt

$$\check{\operatorname{H}}^k(\mathcal{U},\mathcal{F}) := \operatorname{H}^k(\check{\operatorname{Cech-Komplex}}) := \ker(d : \check{\operatorname{C}}^k \to \check{\operatorname{C}}^{k+1}) \big/ \operatorname{im}(d : \check{\operatorname{C}}^{k-1} \to \check{\operatorname{C}}^k)$$

die k-te Čech-Kohomologie von \mathcal{F} bzgl. \mathcal{U} .

Bemerkung 10.18. Da \mathcal{F} eine Garbe ist, haben wir $\check{\mathrm{H}}^0(\mathcal{U},\mathcal{F})=\mathcal{F}(X)!$ Ferner gilt $d\circ d=0$ und für $[(y_{ij})_{i,j}]\in\check{\mathrm{H}}^1$ haben wir $d(y_{ij})_{i,j}=0$, d.h.

$$(y_{ij}|_{U_{ijk}} - y_{ik}|_{U_{ijk}} + y_{jk}|_{U_{ijk}})_{i,j,k}$$

Diese Bedingung nennen wir Ko-Zykel-Bedingnung. Ferner ist $[(y_{ij})_{i,j}] \in \check{H}^1$ per definitionem, falls ein $(\eta_i)_i \in \check{C}^0$ existiert, so dass $(y_{ij})_{i,j} = d(\eta_i)_i$, also

$$y_{ij} = \eta_i \big|_{U_{ij}} - \eta_j \big|_{U_{ij}}.$$

Daher nennen wir in dieser Situation $(y_{ij})_{i,j}$ einen Ko-Rand.

10.6 Kohärenz

Definition 10.19 (endlich erzeugt, kohärent).

• Eine \mathcal{O}_X -Modulgarbe \mathcal{M} heißt endlich erzeugt, falls es zu jedem $x \in X$ ein offenes $x \in U \subseteq^{\circ} X$ gibt und eine exakte Sequenz

$$\mathcal{O}_X\big|_U^n \to \mathcal{M}\big|_U \to 0$$

für ein $n \in \mathbb{N}$ gibt.

• \mathcal{M} heißt kohärent, falls \mathcal{M} endlich erzeugt ist und wenn für jedes α in

$$\mathcal{O}_X\big|_U^n \xrightarrow{\alpha} \mathcal{M}\big|_U \to 0$$

der ker α als \mathcal{O}_U -Modulgarbe endlich erzeugt ist.

Bemerkung 10.20. Sei A ein Ring, so ist ein endlich erzeugter A-Modul M nicht anderes, als dass analog zu oben eine exakte Sequenz $A^n \xrightarrow{\alpha} M \to 0$ für ein $n \in \mathbb{N}$ gibt. M ist kohärent (oder endlich präsentierter), falls M endlich erzeugt ist und ker α endlich erzeugt ist. Letzteres ist bei immer der Fall, falls A noethersch ist.

Der Unterschied zu Ringmoduln wird in nachstehendem Satz deutlich, wo wir die Quasikohärenz fordern müssen, um garantieren zu können, dass $\mathcal{M}(U)$ überhaupt erzeugbar ist.

Satz 10.21. -

Sei (X, \mathcal{O}_X) ein lokal noethersches Schema und \mathcal{F} eine quasikohärente \mathcal{O}_X -Modulgarbe. Dann ist äquivalent:

- (i) F ist kohärent.
- (ii) \mathcal{F} ist endlich erzeugt.
- (iii) $\forall U \subseteq^{\circ} X$ affin und offen ist $\mathcal{F}(U)$ ein endlich erzeugter $\mathcal{O}_X(U)$ -Modul.

Beweis. "(ii) \Rightarrow (iii)". Da \mathcal{F} endlich erzeugt ist, existiert eine offene Überdeckung $U = \bigcup_{i \in I} U_i$ für oBdA $U_i = D(f_i)$ mit $f_i \in \mathcal{O}_U(U)$, so dass

$$0 \longrightarrow \ker \alpha \longrightarrow \mathcal{O}_U \big|_{U_i}^n \xrightarrow{\alpha} \mathcal{F} \big|_{U_i} \longrightarrow 0$$

eine kurze exakte Sequenz ist. Aus nachstehendem Hilfslemma wissen wir, dass ker α ebenfalls quasi-kohärent ist und diese bleibt mit Satz 10.14 beim Einsetzen von U_i exakt, also

$$\mathcal{O}_X(U_i)^{n_i} \xrightarrow{\alpha(U_i)} \mathcal{F}(U_i) \longrightarrow 0.$$

Damit ist $\mathcal{F}(U_i)$ ein endlich erzeugter $\mathcal{O}_X(U_i)$ -Modul.

Ferner gilt

$$\mathcal{F}(U_i) = \mathcal{F}(U) \otimes_{\mathcal{O}_X(U)} \mathcal{O}_X(U)_{f_i} = \mathcal{F}(U) \otimes_{\mathcal{O}_X(U)} \mathcal{O}_X(U_i)$$

und andererseits aufgrund der Quasikohärenz

$$\mathcal{F}(U_i) = \mathcal{F}(U)^{\sim}(U_i) = \mathcal{F}(U)^{\sim}(D(f_i)) = \mathcal{F}(U)_{f_i}.$$

Also existiert ein endlich erzeugter $\mathcal{O}_X(U)$ -Untermodul $M_i \subseteq \mathcal{F}(U)$ mit

$$\mathcal{F}(U_i) = M_i \otimes_{\mathcal{O}_X(U)} \mathcal{O}_X(U_i),$$

denn: Seien $\alpha_1, \ldots, \alpha_r \in \mathcal{F}(U) \otimes_{\mathcal{O}_X(U)} \mathcal{O}_X(U_i)$ ein Erzeugendensystem über $\mathcal{O}_X(U_i)$ mit

$$\alpha_k = \sum_{\substack{k \text{ endlich}}} m_{kj} \otimes \lambda_j$$

mit $m_{kj} \in \mathcal{F}(U)$ und $\lambda_j \in \mathcal{O}_X(U_i)$. Damit erzeugen $\{m_{kj}\}_{k,j}$ ein solches M_i .

Da die anfangs gewählte Überdeckung oBdA endlich ist (U affin, also quasikompakt), existiert en endlich erzeugtes $\mathcal{O}_X(U)$ -Modul M mit

$$M \otimes_{\mathcal{O}_X(U)} \mathcal{O}_X(U_i) \to \mathcal{F}(U_i) \to 0$$

exakt als Sequenz von $\mathcal{O}_X(U_i)$ -Moduln. Betrachte nun Dies ist aber gerade $M^{\sim}(U_i) \to \mathcal{F}(U)^{\sim}(U_i) \to 0$, was die Exaktheit von $M^{\sim} \to \mathcal{F}(U)^{\sim} \to 0$ als Sequenz von \mathcal{O}_U -Modulgarben zur Folge hat. Wir setzen wieder U ein und erhalten mit Satz 10.14 $M(U) \to \mathcal{F}(U) \to 0$ exakt. Damit ist $\mathcal{F}(U)$ endlich erzeugt.

"(iii) \Rightarrow (i)". Für jedes offene affine U ist $\mathcal{F}(U)$ endlich erzeugt, es existiert also eine exakte Sequenz der Form $\mathcal{O}_X(U)^n \to \mathcal{F}(U) \to 0$. Da \mathcal{F} quasikohärent, ist $\mathcal{F}|_U = \mathcal{F}(U)^\sim$, wobei $^\sim$ auf $U = \operatorname{Spec} A$ zu lesen ist. Ergo ist auch $\mathcal{F}|_U$ endlich erzeugt als \mathcal{O}_U -Modul. Zu zeigen bleibt: Ist $\mathcal{O}_X|_U^n \xrightarrow{\alpha} \mathcal{F}|_U \to 0$ exakt, so ist ker α endlich erzeugt. Dazu sei oBdA $U = \operatorname{Spec} A$ affin und A noethersch. Dann ist

$$0 \to \ker \alpha \to \mathcal{O}_X \big|_U^n \to \mathcal{F} \big|_U \to 0$$

exakt. Mit der Linksexaktheit von $\Gamma(U, \underline{\hspace{0.2cm}})$ ist

$$0 \to \ker \alpha(U) \to \mathcal{O}_X(U)^n \to \mathcal{F}(U)$$

und wieder mit dex Exaktheit von $^{\sim}$ erhalten wir

$$0 \to (\ker \alpha(U))^{\sim} \to \mathcal{O}_X\big|_U^n \to \mathcal{F}\big|_U.$$

Also ist $\ker \alpha = (\ker \alpha(U))^{\sim}$. Weiter ist $\ker(\alpha(U)) \subseteq \mathcal{O}_X(U)^n$ ein endlich erzeugter $\mathcal{O}_X(U)$ -Modul, da nach Voraussetzung $\mathcal{O}_X(U)$ noethersch ist. Folglich ist $(\ker \alpha(U))^{\sim}$ eine endlich erzeugte $\mathcal{O}_X|_{U^-}$ Modulgarbe.

Hilfslemma 10.22. Ist

$$0 \to \mathcal{K} \to \mathcal{N} \xrightarrow{\alpha} \mathcal{M} \to 0$$

eine kurze exakte Sequenz \mathcal{O}_X -Moduln und sind \mathcal{M} und \mathcal{N} quasikohärent, so ist \mathcal{K} quasikohärent.

Beweis.

Literatur

- [1] S. Bosch. Algebra. Springer-Lehrbuch. Springer, 2009. ISBN: 9783540928126. URL: http://books.google.de/books?id=dI1p9fh%5C_fVOC.
- [2] R. Hartshorne. Algebraic Geometry. Graduate Texts in Mathematics. Springer, 1977. ISBN: 9780387902449. URL: http://books.google.de/books?id=3rtX9t-nnvwC.

Definitionen

ℜ-(Prä-)Garbe, 19	Ring
Čech-Kohomologie, 54	lokal, 8
Čech-Komplex, 54	lokaler Ringhomomorphismus,
Cool Hompion, or	10
Abgeschlossener Punkt, 12	Lokalisierung, 18
affines Schema, 20	Multiplikative Teilmenge,
D	18
Basisoffene Menge, 12	Nilradikal, 15
auf Proj, 33	Radikal, 13
Bewertungsring, 27	radiziell, 13
diskreter, 27	reduziert, 39
Restklassenkörper, 27	reduziore, ov
Diskrete Bewertung, 26	Schema, 20
O,	S-Schema, 22
Garbe, 6	abgeschlossenes Unterschema,
exakte Sequenz, 40	35
Garbenmorphismus	Basiswechsel, 42
Bildgarbe, 40	Faserprodukt, 42
Kerngarbe, 40	Faser eines Morphismus,
Halm, 7	42
Keim, 7	integer, 41
push-forward, 8	Morphismus von Schemata,
Garbifizierung, 39	20
Generischer Punkt, 12	noethersch, 38
Graduierte Algebra, 32	lokal noethersch, 38
homogenes Ideal, 32	projektives Schema über A ,
-	35
Kategorie der Garben, 7	pull-back, 43
Kategorie der Prägarben,	Schemamorphismus
7	abgeschlossene Immersion,
111 : 4 D 0	35
lokal geringter Raum, 9	offene Immersion,
Morphismus lokal geringter Räume,	35
10	Unterschema
reduziert, 39	reduzierte Unterschema-Struktur,
Lokalisierung	41
homogene, 33	
\mathcal{O}_X –Modul	topologischer Raum
endlich erzeugt, 55	irreduzibel, 14
frei, 47	noethersch, 15
kohärent, 55	topoloischer Raum
lokal frei, 47	quasi-kompakt, 17
quasi-kohärent, 48	• ,
von seinen globalen Schnitten erzeugt,	Varietät
49	algebraische, 38
	projektive, 38
Prägarbe, 5	
Morphismus von Prägarben,	Zariski Topologie, 11
6	auf Proj, 32