import pandas as pd

all_data = pd.read_csv("all_data.csv")

all_data.head()

	Order ID	Product	Quantity Ordered	Price Each	Order Date	Purchase Address
0	176558	USB-C Charging Cable	2	11.95	04/19/19 08:46	917 1st St, Dallas, TX 75001
2	176559	Bose SoundSport Headphones	1	99.99	04/07/19 22:30	682 Chestnut St, Boston, MA 02215
_	470500	O! - Di	A	200	04/12/19	669 Spruce St, Los

Delete NaN Value

nan_data= all_data[all_data.isna().any(axis=1)] nan_data.head()

	Order ID	Product	Quantity Ordered	Price Each	Order Date	Purchase Address
1	NaN	NaN	NaN	NaN	NaN	NaN
356	NaN	NaN	NaN	NaN	NaN	NaN
735	NaN	NaN	NaN	NaN	NaN	NaN
1433	NaN	NaN	NaN	NaN	NaN	NaN
1553	NaN	NaN	NaN	NaN	NaN	NaN

all_data= all_data.dropna()

all_data.head()

	Order ID	Product	Quantity Ordered	Price Each	Order Date	Purchase Address
0	176558	USB-C Charging Cable	2	11.95	04/19/19 08:46	917 1st St, Dallas, TX 75001
					04/07/19 22:30	682 Chestnut St, Boston, MA 02215
3	176560	Google Phone	1	600	04/12/19 14:38	669 Spruce St, Los Angeles, CA 90001

Delete 'Or'

or_df= all_data[all_data['Order Date'].str[0:2] == 'Or'] or_df.head()

	Order ID	Product	Quantity Ordered	Price Each	Order Date	Purchase Address
519	Order ID	Product	Quantity Ordered	Price Each	Order Date	Purchase Address
1149	Order ID		Quantity Ordered		Order Date	
1155	Order ID	Product	Quantity Ordered	Price Each	Order Date	Purchase Address

all_data= all_data[all_data['Order Date'].str[0:2] != 'Or']

Add Month Column

all_data['Month'] = all_data['Order Date'].str[0:2] all_data.head()

1. QUESTION: What was the best month for sales? How much was earned that month?


```
results = all_data.groupby('Month').sum()
import matplotlib.pyplot as plt
months= range(1, 13)
plt.bar(months, results['Sales'])
plt.xticks(months)
plt.ylabel('Sales in $')
plt.xlabel('Month')
plt.xlabel('Month')
```


• 2. Question: What City had the highest number of sales

all_data.tail()

	Order ID	Product	Quantity Ordered	Price Each	Order Date	Purchase Address	Month	Sales	
186845	259353	AAA Batteries (4-pack)	3	2.99	09/17/19 20:56	840 Highland St, Los Angeles, CA 90001	9	8.97	u
						216 Dogwood			

Add City Column

all_data['City']= all_data['Purchase Address'].apply(lambda x: x.split(',')[1])
#.apply(lambda x: x.split(',')[1]) ---- [1] is the index order if we use ',' as divider
#---- x = is the cell content
all_data.head()

	Order ID	Product	Quantity Ordered	Price Each	Order Date	Purchase Address	Month	Sales	City	
0	176558	USB-C Charging Cable	2	11.95	04/19/19 08:46	917 1st St, Dallas, TX 75001	4	23.90	Dallas	
2	176559	Bose SoundSport Headphones	1	99.99	04/07/19 22:30	682 Chestnut St, Boston, MA 02215	4	99.99	Boston	
						669				
4										Þ

3. Question: What time should we display advertisements to maximize likelihood of customer's buying product?

Change Order Date to Date Time Data Type all_data['Order Date'] = pd.to_datetime(all_data['Order Date']) #then we can make a new column for the 'Hour', using .dt.hour all_data['Hour']= all_data['Order Date'].dt.hour all_data.head() Order Purchase Month Sales 917 1st USB-C 2019-St, Dallas **0** 176558 11.95 04-19 4 23.90 Charging Dallas, TX 08:46:00 Cable TX 75001 669 hours = [hour for hour, df in all_data.groupby('Hour')] plt.plot(hours, all_data.groupby(['Hour']).count()) plt.xticks(hours) plt.xlabel('Hour') plt.ylabel('Orders') plt.grid() plt.show() #based on the chart we could consider the peak time around at 11 am or 7 pm

• 5. Question: What products sold the most? Why do you think it sold the most?

all_data.head()

```
product_group = all_data.groupby('Product')
quantity_ordered = product_group.sum()['Quantity Ordered']
products = [product for product, df in product_group]
```

<ipython-input-32-1ec6facaf08a>:2: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a fut quantity_ordered = product_group.sum()['Quantity Ordered']

```
plt.bar(products, quantity_ordered)
#Rotate the label
plt.ylabel('Quantity Ordered')
plt.xlabel('Product')
plt.xticks(products, rotation='vertical', size=8)
plt.show()
```


based on the graph, it shows that the top 5 items with the highest number of order are "AA Batteries, AAA Batteries, Lightning Charging Cable, **USB-C Charging Cable**"

Hypothesis: Because the prices are cheaper than other product in the store

Prove the Hypothesis

```
prices = all_data.groupby('Product').mean()['Price Each']
#make subplot
fig, ax1 = plt.subplots()
ax2 = ax1.twinx()
ax1.bar(products, quantity_ordered)
ax2.plot(products, prices, 'r-')
ax1.set_xlabel('Product Name')
ax1.set_ylabel('Quantity Ordered', color='g')
ax2.set_ylabel('Price $', color='b')
ax1.set_xticklabels(products, rotation='vertical', size=8)
plt.show()
```

1750 30000 1500 25000 1250 Quantity Ordered 20000 1000 Price 9 15000 750 500 10000 250 5000 0 USB-C Charging Cable LG Washing Machine 34in Ultrawide Monitor AA Batteries (4-pack) ose SoundSport Headphones Flatscreen TV Google Phone Lightning Charging Cable Macbook Pro Laptop ThinkPad Laptop Vareebadd Phone Wired Headphones 20in Monitor 27in 4K Gaming Monitor 27in FHD Monitor AAA Batteries (4-pack) Apple Airpods Headphones LG Dryer iPhone