Faculdade de Ciência e Tecnologia de Montes Claros

Felipe Israel Corrêa

RELATÓRIO DE ESTÁGIO SUPERVISIONADO EM ENGENHARIA DE COMPUTAÇÃO

Felipe Israel Corrêa

RELATÓRIO DE ESTÁGIO SUPERVISIONADO EM ENGENHARIA DE COMPUTAÇÃO

Relatório de Estágio Supervisionado apresentado ao Curso de Engenharia de Computação, da Faculdade de Ciência e Tecnologia de Montes Claros como parte dos requisitos para a obtenção do título de Engenheiro de Computação.

Empresa: Faculdade de Ciências e Tecnologia de Montes Claros.

Supervisor: MAURÍLIO JOSÉ INÁCIO, Coordenador do Curso de Engenharia da Computação. **RESUMO**

Este relatório tem como objetivo apresentar a importância do estágio supervisionado e as

principais atividades desenvolvidas pelo acadêmico no laboratório de Sistemas Computacionais

da Faculdade de Ciência e Tecnologia de Montes Claros (FACIT). No primeiro capítulo será

feita uma breve apresentação da empresa seguido pelos capítulos que abrangem as atividades

desenvolvidas durante o estágio, suas metodologias, resultados e conclusão. Através deste

documento fica exposta a importância da ligação entre os estudos práticos e teóricos, vistos

durante todo o período de graduação, para a formação do engenheiro.

Palavras chaves: Estágio, Sistemas Computacionais, formação.

LISTA DE FIGURAS

Figura 1 – Raspberry Pi 1 Model B	9
Figura 2 – Fluxo de desenvolvimento dos experimentos	10
Figura 3 – Diagrama simplificado do circuito cubo	11
Figura 4 – Diagrama do circuito cubo	12
Figura 5 – Circuito cubo montado na protoboard	12
Figura 6 – Interface gráfica do aplicativo cubo	13
Figura 7 – Diagrama do circuito relé	15
Figura 8 – Circuito relé montado na protoboard	15
Figura 9 – Interface gráfica do aplicativo relé	16
Figura 10 – Diagrama do circuito relé web	17
Figura 11 – Código fonte utilizando protocolo CGI	18
Figura 12 – Interface web projetada	18
Figura 13 – Servidor web em funcionamento	19
Figura 14 – Diagrama do circuito LCD	21
Figura 15 – Tela de escolha exibida para o usuário	22
Figura 16 – Exibição da temperatura	22

SUMÁRIO

INTRODUÇÃO	5
CAPÍTULO 1 APRESENTAÇÃO DA EMPRESA	
CAPÍTULO 2 ATIVIDADES DESENVOLVIDAS	8
2.1 Organização do laboratório e auxílio aos estudantes que iam visitá-lo	8
2.2 Raspberry Pi	
2.3 Experimento 1 - Controle de um cubo de led	
2.4 Experimento 2 - Controle de um módulo de relés via interface gráfica	12
2.5 Experimento 3 - Controle de um módulo de relés via interface web	14
2.6 Experimento 4 - Controle e visualização de sensores via display LCD	16
CAPÍTULO 3 ARTICULAÇÃO ENTRE A PRÁTICA DE ESTÁGIO E A	TEORIA
ACADÊMICA	23
4 CONCLUSÃO	20
REFERÊNCIAS BIBLIOGRÁFICAS	25

INTRODUÇÃO

O estágio supervisionado é de extrema importância para a formação e capacitação do acadêmico, uma vez que o prepara para mercado de trabalho, que hoje, está cada vez mais exigente.

A disciplina de estágio supervisionado faz parte da grade curricular do curso de Engenharia de Computação da Faculdade de Ciência e Tecnologia de Montes Claros – FACIT, e, através dele, o graduando tem a possibilidade de unir os conhecimentos teóricos aos práticos, possibilitando resolução de problemas emergentes durante a atuação laboral, com diversos graus de dificuldades. Tem-se aí um crescimento pessoal e profissional.

O presente documento fornece informações detalhadas sobre as atividades desenvolvidas, no laboratório de Sistemas Computacionais, por um acadêmico do curso de Engenharia da Computação, visando listar a importância do estágio para sua formação.

CAPÍTULO 1 APRESENTAÇÃO DA EMPRESA

Em 1976 foi criada a Fundação Educacional de Montes Claros (FEMC), pela Associação Comercial e Industrial de Montes Claros. Nascia com o objetivo de fornecer e qualificar profissionais operacionais e técnicos para a implantação do Parque Industrial Norte Mineiro.

É uma entidade de direito privado, sem fins lucrativos, dirigida por empresários representantes das empresas mantenedoras e à sua criação instalou a Escola Técnica, com os cursos de Comercialização e Mercadologia, Eletrônica, Eletromecânica, Edificações e Segurança do Trabalho.

Foi certificada pela OIT e UNESCO após auditoria realizada em 1990, onde por estas empresas passou a ser divulgada mundialmente com relação a qualidade de trabalho em educação profissionalizante e o modo "sui generes" de financiamento da educação de carentes por parte das empresas. Em 2001 foram investidos mais de R\$ 3.500.000,00 na reestruturação e expansão da estrutura física e laboratorial da Escola Técnica, graças ao empenho da diretoria presidida pelo Dr. Ariovaldo de Melo Filho.

Considerada pelo Ministério da Educação e Cultura (MEC) em 2002 como modelo, o projeto pedagógico da Escola Técnica foi encaminhado para ONU como referência nacional em Educação para o Trabalho.

Atualmente a Escola Técnica possui cerca de 800 alunos matriculados.

Em dezembro de 2000 a FEMC, em parceria com o SEBRAE, inaugura uma incubadora para empresas de base tecnológica, chamada INCET e já recebeu, em convênio com o MEC investimentos na ordem de R\$ 108.040,00.

A FEMC também mantém em seu portfólio o Colégio Delta, que atua no ensino médio e consta com cerca de 450 alunos.

Além da Escola Técnica e do Colégio Delta, a FEMC criou em agosto de 2002 a Faculdade de Ciência e Tecnologia (FACIT), inaugurada com os cursos de Engenharia da Computação, Engenharia de Controle e Automação, Engenharia Química e Engenharia de Telecomunicações.

Foi concebida com a missão de contribuir para o desenvolvimento integral do ser humano e da sociedade, visando transformar-se num centro de excelência e referência em educação, pesquisa e prestação de serviço mantendo os valores de amor, ética, cidadania, respeito, responsabilidade, confiança e proatividade.

A FACIT surge pela falta de cursos superiores na área de tecnologia em todo norte de Minas, vale do Jequitinhonha e sul da Bahia. Atualmente, além dos cursos criados da inauguração, conta com os cursos de Engenharia Civil, Engenharia de Produção, Engenharia Elétrica e Engenharia Mecânica, além dos cursos de Pós-graduação em Engenharia de Manutenção e Pós-graduação em Gestão da Qualidade.

Criados dentro dos princípios e filosofia da FEMC, os cursos superiores da FACIT objetivam desenvolver competências, habilidades e atitudes em um cidadão, preparando-o para conquistar sua viabilização econômica, tecnológica com consequente melhoria da qualidade de vida e distribuição de renda para a população das regiões norte e nordeste de Minas.

A FACIT proporciona aos seus alunos uma formação de qualidade para que este possa responder às exigências do mercado de trabalho, através de docentes qualificados e diversos laboratórios com equipamentos e materiais que refletem à realidade do mundo atual.

A instituição ainda possui um projeto na área social, sem fins lucrativos, chamado Projeto Social Juventude Cidadã, objetivando repassar para os jovens que participam, assuntos relacionados com a educação, cultura e tecnologia. Através deste projeto busca-se o crescimento e o desenvolvimento pleno do jovem, principalmente no aspecto social.

CAPÍTULO 2 ATIVIDADES DESENVOLVIDAS

Em todo o período de estágio várias atividades foram desenvolvidas pelo acadêmico, a fim de proporcionar o aperfeiçoamento dos conhecimentos e colocar em prática toda a teoria vista em períodos anteriores. O estágio realizado teve como base o desenvolvimento de experimentos utilizando a placa embarcada Raspberry Pi.

Todos os diagramas apresentados neste relatório foram feitos utilizando o software gratuito para modelagem de circuitos Fritzing.

Neste capitulo serão descritos, detalhadamente, os experimentos desenvolvidos, a metodologia empregada e os elementos utilizados para a realização dos mesmos. Foram desenvolvidos no decorrer do estágio quatro experimentos:

- Experimento 1 Controle de um cubo de led;
- Experimento 2 Controle de um módulo de relés via interface gráfica;
- Experimento 3 Controle de um módulo de relés via interface web;
- Experimento 4 Controle e visualização de sensores via display LCD;

2.1 Organização do laboratório e auxílio aos estudantes que iam visitá-lo

No período de estágio o acadêmico ficou responsável por manter o laboratório organizado, além de auxiliar os estudantes que iam ao laboratório desenvolver práticas, o que proporcionou um maior contato com os equipamentos e componentes de eletrônica, tais como led's, resistores, capacitores, transistores, etc.

Foi possível também uma interação e aperfeiçoamento no conhecimento das placas de sistemas embarcados, tais como Arduino, Raspberry Pi, MSP430, com os seus cabos e shields para aplicações específicas.

2.2 Raspberry Pi

Tendo em vista que a base do estágio foi o desenvolvimento de aplicações em Raspberry Pi, neste capítulo iremos detalhar seu histórico e funcionamento.

A Raspberry Pi é um computador do tamanho de um cartão de crédito, que pode ser plugado a qualquer monitor e é capaz de executar tarefas que um computador desktop faz.

A ideia da Raspberry Pi surgiu pelas mentes de Eben Upton, Rob Mullins, Jack Lang e Alan Mycroft em 2006 na Universidade de Cambridge, com o intuito de criar um computador pequeno e barato para crianças.

Em 2008 é fundada a Raspberry Pi Foundation com o objetivo de desenvolver a placa, o que foi facilitado pela diminuição dos custos e aumento da capacidade de processadores para dispositivos móveis.

Os primeiros modelos foram desenvolvidos com o processador Atmel ATMega644, mas o alto custo dos demais componentes e a baixa eficiência, acabaram por ir contra os princípios da Raspberry Pi Foundation.

Após anos de pesquisa em 2011 é lançado o protótipo com processadores ARM, que são utilizados desde então.

Nos experimentos foi utilizada a placa Raspberry Pi 1 Model B, lançada em 2012 com os seguintes componentes:

- Processador ARM1176JZF-S;
- 700MHz de clock;
- Tecnologia de 32 bits;
- 512 MB de memória RAM;
- Duas portas USB 2.0;
- Porta Ethernet;
- Conector de vídeo HDMI;
- Slot para cartão SD;

Figura 1: Raspberry Pi 1 Model B

Fonte: Adafruit (https://www.adafruit.com/product/998)

O fluxo de desenvolvimento dos experimentos seguiu a lógica apresentada na figura 2:

Figura 2: Fluxo de desenvolvimento dos experimentos

Os softwares foram desenvolvidos em linguagem Python 3.5, na IDE disponível no sistema operacional da Raspberry Pi, chamado Raspbian, e através da sua execução os pinos de I/O são configurados para inferir no circuito eletrônico.

2.3 Experimento 1 - Controle de um cubo de led

O objetivo deste experimento consistiu em controlar um cubo de led 3x3x3, possibilitando que as sequências fossem alteradas de acordo com o desejo do usuário.

Para o projeto foram utilizados os seguintes componentes:

- 27 led's de 5mm verdes: criam os efeitos definidos pelo usuário;
- 9 resistores de 180 Ω : limitam o fluxo de corrente em cada ânodo do led;
- 3 resistores de $10K\Omega$: limitam o fluxo de corrente nas bases dos transistores;
- 3 transistores BC548 NPN: responsáveis por acionar ou desligar determinada coluna ou linha do cubo, criando o efeito determinado pelo usuário;

2.3.1 Funcionamento

Este cubo de led foi desenvolvido para possuir três níveis com 9 led's. Em cada coluna os cátodos dos led's são conectados de três em três e ligados diretamente a um dos pinos de I/O da Raspberry.

Já os ânodos pertencentes a uma mesma linha são conectados comumente ao emissor de um dos transistores, conforme visto de forma simplificada na figura 3:

Figura 3: Diagrama simplificado do circuito cubo

O acendimento de um determinado led ou conjunto de led's vai depender da coluna e linha energizada.

O transistor neste circuito trabalha como um a chave liga/desliga. Ao aplicar um nível alto em sua base, o valor da corrente que está no coletor, que neste caso está conectado ao GND da Raspberry, irá fluir para o emissor, fazendo com que os ânodos recebam nível baixo. Possibilitando assim, ocorrer o acionamento do led ou conjunto de led's que estiverem setados em nível alto.

Figura 4: Diagrama do circuito cubo

Figura 5: Circuito cubo montado na protoboard

Fonte: O Autor

A interface gráfica foi desenvolvida através do framework para desenvolvimento em desktop PyQT, que usa a linguagem Python para programação. Para que a interface gráfica atendesse aos objetivos do experimento, foi necessária a criação de três arquivos, que são:

- interface.py: possui os comandos e métodos para geração da interface gráfica;
- led_cube.py: possui os métodos para configuração dos pinos de I/O da Raspberry e os métodos de animação do cubo;

 main.py: arquivo principal que possibilita a conexão entre os métodos de geração da interface gráfica e seus componentes com os métodos de animação do cubo;

A figura 6 apresenta a interface do programa criado:

Figura 6: Interface gráfica do aplicativo cubo

Fonte: O Autor

Através deste experimento foi possível aplicar os conhecimentos de eletrônica pois foi necessária a montagem do circuito, bem como os conhecimentos de programação para criação da interface gráfica.

A prática possibilitou também aprofundar um pouco mais o conhecimento sobre a placa Raspberry Pi 1.

2.4 Experimento 2 - Controle de um módulo de relés via interface gráfica

Este experimento teve como objetivo controlar um módulo relé de quatro canais para acender e apagar lâmpadas.

Para o desenvolvimento da prática foram utilizados os seguintes componentes:

- 4 led's azuis: foram utilizados para simular o funcionamento de lâmpadas;
- 4 resistores 330 Ω : para controlar o fluxo de corrente nos ânodos de cada led;
- 1 módulo relé com 4 canais: responsável por gerar os sinais de ligar ou desligar a lâmpada;

2.4.1 Funcionamento

O módulo relé utilizado neste experimento possui 8 entradas. As entradas VCC e GND são utilizadas para alimentar o módulo com a tensão fornecida pela placa de desenvolvimento. Caso seja necessário o uso de uma fonte externa de alimentação utiliza-se as entradas JD-VCC e VCC.

Neste projeto a fonte de tensão foi a própria Raspberry, portanto utilizou-se as entradas VCC e GND e as entradas JD-VCC e VCC foram curto-circuitadas, conforme determina o fabricante.

O módulo possui ainda as entradas IN1, IN2, IN3 e IN4 referentes a cada relé e ao serem setadas, tanto em nível alto como baixo, efetuam a comutação dos relés. Cada uma das entradas IN foi conectada a um pino I/O da Raspberry.

No módulo ainda existem quatro led's que indicam o status de cada relé, ficando acesos caso ele esteja com sua entrada setada em nível alto e apagado caso contrário.

Os relés possuem três contatos NO (normalmente aberto), NC (normalmente fechado) e COM (comum ou central).

O contato NO são os que estão abertos enquanto a bobina não está energizada e se fecham quando a mesma recebe corrente. O contato NC funciona de forma contrária ao contato NO. Já o contato COM estabelece a condução de corrente com o contato que estiver fechado.

Através deste entendimento o circuito foi montado da seguinte maneira:

- O contato COM de cada relé foi ligado a alimentação de 3,3V da Raspberry;
- Os resistores de 330ohms foram ligados em série com os ânodos de cada led no contato NO;
- Os cátodos dos led's foram conectados ao pino de GND da Raspberry, conforme mostrar a figura 7:

Figura 7: Diagrama do circuito relé

Figura 8: Circuito relé montado na protoboard

Fonte: O Autor

A interface gráfica, também foi desenvolvida em PyQT e foi projetada para que o usuário pudesse escolher entre acionar cada lâmpada individualmente ou em conjunto. Para atender a estes objetivos foi necessária a criação de três arquivos contendo o código de programação, que são:

• interface.py: possui os comandos e métodos para geração da interface gráfica;

- rele.py: os métodos para configuração dos pinos de I/O da Raspberry e para acionamento dos relés;
- main.py: arquivo principal que possibilita a conexão entre os métodos de geração da interface gráfica e seus componentes com os métodos de acionamento dos relés;

Figura 9: Interface gráfica do aplicativo relé

Com esta prática além do aprofundamento em eletrônica e programação, foi observado e consolidado o conhecimento sobre o processo que a placa Raspberry Pi 1 faz em tratar os sinais individual ou coletivamente.

2.5 Experimento 3 - Controle de um módulo de relés via interface web

Este experimento objetivou controlar um módulo relé com quatro canais via interface web. Para tal, a placa Raspberry Pi atuou como um servidor de aplicação web.

Para este experimento foi necessário somente o uso de um módulo relé de quatro canais e seu funcionamento foi explicado no experimento 2.

Na figura 10, pode-se ver como o circuito foi projetado:

Figura 10: Diagrama do circuito relé web

2.5.1 Funcionamento

A interface gráfica foi desenvolvida através do protocolo chamado Common Gateway Interface (CGI), que fornece integração entre os servidores HTTP e as aplicações Web.

Este protocolo possibilita que o servidor web informe uma série de parâmetros para o programa que deve entregar uma resposta para este mesmo servidor, não importando a linguagem utilizada. Portanto todo o código pôde ser escrito em linguagem Python, informando os parâmetros como linguagem HTML, conforme visto na figura 11:

```
import cgi
    import cgitb
    cgitb.enable()
    form = cgi.FieldStorage()
    print("Content-type:text/html")
    print()
    print("<html>")
11
    print("<head>")
12
    print("<title>Acionamento Reles</title>")
13
    print("<center><h1>Controle de reles</h1></center><br>")
    print("<style> h1{color:blue; size:px;}</style>")
    print("</head>")
    print("<body>")
17
    print("<center>")
    print("<h2>Controle</2>")
    print("</center>")
    print("</body>")
21
    print("</html>")
```

Figura 11: Código fonte utilizando protocolo CGI

Esta interface gráfica foi projetada para que o usuário pudesse acionar individualmente os relés. Foi necessária a criação de dois arquivos contendo o código de programação, que são:

- rele.py: contém os métodos para configuração dos pinos de I/O da Raspberry e acionamento dos relés;
- server.py: contém os comandos e métodos para geração do protocolo CGI, da página em HTML e faz a integração com os métodos de acionamento dos relés;

Figura 12: Interface web projetada

Fonte: O Autor

Figura 13: Servidor web em funcionamento

Através desta prática pôde-se observar e entender os processos que fazem a placa Raspberry Pi atuar como um servidor web, além de aprofundar os conhecimentos adquiridos nas matérias relacionadas com rede de computadores.

2.6 Experimento 4 - Controle e visualização de sensores via display LCD

O objetivo deste experimento consistiu em poder selecionar a informação desejada, possibilitando que esta fosse exibida via display de LCD.

A seleção da informação foi controlada por dois botões (push-button).

Os materiais necessários para este projeto foram:

- 2 sensores infravermelho: utilizados para detecção de presença;
- 1 sensor DHT11: para temperatura e umidade;
- 2 push-button: para controle das opções;
- 1 resistor de 4,7KΩ: utilizado entre os pinos VCC e DATA do sensor DHT11 para controlar o fluxo de corrente;
- 1 display LCD 16x2: responsável por exibir as informações;
- 1 potenciômetro de $10K\Omega$: utilizado para ajustar o contraste do display;

2.6.1 Funcionamento

O sensor DHT11 utilizado neste experimento possui quatro pinos, sendo o pino 1 de alimentação VCC, o pino 2 de dados (sinal) e o pino 4 o GND. O pino 3 não é funcional.

Possui internamente dois tipos de sensores, um tipo termistor NTC para temperatura e um tipo HR202 para umidade. Permite medir temperaturas de 0 a 50 graus Célsius com erro de 2 graus e umidade relativa na faixa de 20 a 90% com erro de até 5%.

As leituras são enviadas pelo mesmo barramento através do formato dos dados: 8 bits inteiro Umidade + 8 bits decimal Umidade + 8 bits inteiro Temperatura + 8 bits decimal Temperatura + 8 bits check sum (verificação de soma) = 40 bits. Caso o valor do check sum seja diferente do total dos valores de umidade e temperatura o sensor reconhece a leitura como um erro. No código usa-se uma biblioteca específica para tratamento destes dados.

Os sensores de presença utilizados são do tipo infravermelho ou piroelétricos contendo 3 pinos, sendo o pino 1 alimentação VCC, pino 2 de dados (sinal) e o pino 3 GND.

Possuem em seu interior um material cristalino que gera uma corrente elétrica em sua superfície quando expostos ao calor sob a forma de radiação infravermelha. Esta situação faz com que um transistor FET interno seja acionado e emita um sinal de nível alto no pino de dados. Caso não haja detecção de movimento o sinal enviado será de nível baixo.

É possível ainda ajustar a duração do tempo de espera da estabilização, ou seja, após acionado ele permanecerá assim um determinado período de tempo mesmo sem detectar outro movimento e ajustar sua sensibilidade. Estes ajustes são feitos nos potenciômetros disponíveis no corpo do sensor.

O display LCD que foi utilizado é do tipo 16x2, portanto 16 linhas e 2 colunas. Sua comunicação com a placa é feita através dos pinos DB4 a DB7 que recebem 1 byte dividido em 2 remessas de 4 bits com a configuração ou caractere a ser escrito.

Os demais pinos que são conectados a placa são:

- 1 Vss (GND);
- 2 Vdd (5V);
- 4 RS (Register select), definir: 1 Dado ou 0 Instrução;
- 5 R/W, definir: 1 Leitura ou 0 Escrita;
- 6 E, definir: 1 Habilitado ou 0 Desabilitado;
- 15 e 16 ânodo e cátodo para contraste, respectivamente;

Figura 14: Diagrama do circuito LCD

Ao usuário era possível verificar as informações sobre a temperatura, umidade e os estados dos sensores de presença, se ativos, caso tivessem detectado alguma presença ou se desativados, ou seja, sem detectar presença. A figura 15 exemplifica a possibilidade do usuário em escolher entre o sensor ATMOSFÉRICO (temperatura e umidade) ou de PRESENÇA.

A programação do projeto foi feita em linguagem Python, através de um único arquivo, chamado lcd.py, que contém todos os métodos e comandos para configuração dos pinos da Raspberry, botões e exibição das informações, além das bibliotecas necessárias para o funcionamento do display LCD e do sensor DHT11.

Figura 15: Tela de escolha exibida para o usuário Fonte: O Autor

Figura 16: Exibição da temperatura

Nesta prática além do aprofundamento em eletrônica, foi possível observar e entender os processos utilizados pela placa Raspberry Pi para receber e tratar os sinais de entrada enviados pelos sensores.

CAPÍTULO 3 ARTICULAÇÃO ENTRE A PRÁTICA DE ESTÁGIO E A TEORIA ACADÊMICA

As atividades executadas pelo acadêmico foram baseadas nas disciplinas vistas durante o período de graduação, ajudando a reforçar ainda mais o conteúdo destes assuntos. Como foco o estágio teve disciplinas como Eletrônica, Sistemas Digitais e Microprocessados além das matérias relacionadas à programação de computadores, ou seja, Algoritmo.

A disciplina de eletrônica fornece ao acadêmico as bases para leis e ferramentas relacionadas aos circuitos compostos por elementos, tais como resistores, capacitores, fontes de tensão, etc.

Já as disciplinas de sistemas digitais e microprocessados tratam de assuntos relacionados a funções lógicas, álgebra booleana, tecnologias, funcionamento e projeto de processadores, funcionamento de sistemas microcontrolados, dentre outros.

Em relação as matérias de algoritmo, ao acadêmico são apresentados temas relacionados à lógica de programação, estrutura de dados e arquivos, programação orientada a objetos, etc.

Todo este conhecimento adquirido nas aulas teóricas foi de grande importância para a realização do estágio e desenvolvimento das práticas descritas.

4 CONCLUSÃO

O estágio possibilita ao participante aplicar, na prática, todo conteúdo teórico visto durante todo o período de graduação, portanto, esta etapa é de suma importância para o acadêmico.

Durante todo este período de estágio, o acadêmico teve contato com inúmeros equipamentos e procedimentos que farão parte do seu cotidiano profissional, aumentando sua capacidade de crítica e fixando seu conhecimento nos assuntos tratados.

O estágio propiciou assim um maior conhecimento prático e teórico nos assuntos relacionados a eletrônica, programação de computadores, pesquisa e elaboração de projetos.

REFERÊNCIAS BIBLIOGRÁFICAS

FACIT. **Estágio – Manual para normalização da redação v2017**. Disponível em: < http://www.femc.edu.br/uploads/arquivos/Estágio - Manual para normalização da redação v2017.pdf>. Acesso em 10 de junho 2017.

FEMC. **Histórico**. Disponível em: historico. Acesso em 13 de junho de 2017.

Adafruit. **Raspberry Pi Model B**. Disponível em: < https://www.adafruit.com/product/998>. Acesso em 14 de junho de 2017.

Makersify. **The History of the Raspberry Pi**. Disponível em: < https://makersify.com/blogs/makersify-blog/the-history-of-the-raspberry-pi>. Acesso em 14 de junho de 2017.

Elinux. **RPi General History**. Disponível em: < http://elinux.org/RPi_General_History>. Acesso em 14 de junho de 2017.

Embarcados. **Módulo de display LCD**. Disponível em: https://www.embarcados.com.br/modulo-de-display-lcd/ . Acesso em 25 de junho de 2017.

Infoescola. **Relê**. Disponível em: http://www.infoescola.com/eletronica/rele/>. Acesso em 25 de junho de 2017.

Micropik. **DHT11 Humidity & Temperature Sensor**. Disponível em: < http://www.micropik.com/PDF/dht11.pdf>. Acesso em 26 de junho de 2017.

Nova Eletrônica. **Sensor Infravermelho Passivo**. Disponível em: http://blog.novaeletronica.com.br/sensor-pir-sensor-infravermelho-passivo/>. Acesso em 26 de junho de 2017.