装 订 线 本试卷适应范围 食工、食安、植保、

南京农业大学试题纸

		园艺等		4-2015	学年第-	一学期	课程类	型:必值	多试	卷类型	: A	
课和	呈畫	基础生物化学	—」 ≥(3 学	<u>分)</u> 班组	 级		学号		姓名_		成	绩
是	夏号	_	=	=	四四	五	六	七	八	九	总分	签名
1	导分								,			
ì	平阅				·							
	—— 核				;							
				<u> </u>	<u> </u>		1	1		·	<u> </u>	<u> </u>
		择题(单										
1.	DN	A 的三级结构	勾指的是	***********			• • • • • • • • • •		* * * * * * * * * * * * * * * * * * * *	********	(D)
	A	B-型双螺	旋	B A-	型双螺旋		C 三链	DNA	D 超	螺旋结构	J	
2.	_	条含有 105~	个氨基酸	發基的多	8肽链,值	设设只存在	左α螺旋,	其长度为	*********		••••••	·· (A)
3.	A To	15.75 nm 列试剂中, 能	4知昭复:					nm L				(()
٥.	A							-				"(()
4.	天	冬氨酸的 pK	=2.09	(a -COOH	$H), pK_2=3$	8.86(R),	pK ₃ =9.8	82 (α-NH3	3),该氨基	Ŀ酸的 pI	值约等于	2 (B)
	A	5. 96		В 2.9	8		C 3.86		D 6.	84		
5.	<u>—</u> ;	核酸分子中,	Ade 占	23%, Gua	占 21%, (Cyt 占 20	%, Thy 上	36%,则词	亥核酸属-	F	(В)
	A	双链 DNA		B 单铂	连 DNA		C 单锭	È RNA	D 双:	链 RNA		
6.	当	酶促反应速/	度达到其	最大反应	☑速度的 6	50%时,Ki	m/[S]应i	亥为:	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		(C)
	A	1/4		B 2/	5		C 3/	5	D	2/3		
7.	下	列关于"酶剂	5性中心	" 结构叙	述中不正	确的说法	是:				•••••	(B)
	A	酶活性中心										. – ,
	В	催化基团和			性中心中							
	С	位于酶分子										
	D	由酶分子一				11 人会甘	**************************************	:40 c l) :				
0	_											
8.		列化合物中,									******	(B)
	A	氰化物		B抗霉素	•			酮				
9.	丙	駧酸在人体 [┢解中,赶	足催化作用	目的是		•••••	•••••••	•••••	*****	(A)
	A	L-乳酸脱氢	氢酶		В	丙酮四	後脱氢酶					
	С	丙酮酸脱	後 酶		D	乙醇原	兇氢酶					
10.	下	面哪一个途	径中,	可生成 N	ADPH+H	+的是…		*******				(D)

	A EMP 途径 B TCA 循环 C 丙酮酸的无氧代谢 D HMP 途径	
11.	下述哪个代谢过程中,与线粒体无关····································	
	A 三羧酸循环 B 糖异生 C 氧化磷酸化 D 糖酵解	
12.	脂肪酸β-氧化需要经历以下哪种反应过程: ······ (B)	
	A 脱氢-氧化-还原-硫解 B 脱氢-加水-脱氢-硫解;	
	C 脱氢-还原-加水-硫解 D 脱氢-加水-氧化-硫解	
13.	大肠杆菌 DNA 生物合成中,前导链的模板是 (B))
	A 5'→3'的那一条链 B 3'→5'的那一条链	
	C 基因编码在上面的那一条链 D 作模板的那条链	
14.	下列哪一项是原核生物 RNA 聚合酶与 DNA 聚合酶共同具有的性质 (C))
	A 3'→5'外切酶性质 B 5'→3' 外切酶性质	
	C 5'→3' 聚合酶性质 D 需要引物的 3'-OH	
15.	下列通用密码子中,不是终止密码子的是······(A))
And And and an	A UGG B UAG C UGA D UAA	
16.	下列化合物中,属于生物体内转运一碳单位载体的是······(A)	
	A 四氢叶酸 B 维生素 B ₁₂ C 生物素 D 硫胺素	
=,	填空 (14分)	
1.	如果一个酶对A、B、C三种底物的米氏常数分别为Kma、Kmb和Kmc,且Kma〉Kmb〉Kmc,则此酶的最适底	÷
	物 <u>是 C </u>	
2.	组成蛋白质的20种常见氨基酸中,含羟基的氨基酸包括 <u>丝氨酸</u> 、 <u>苏氨酸</u> 和 <u>酪氨酸</u> 。	
3.	根据国际系统分类法,所有的酶按所催化的化学反应的性质可分为六类:氧化还原酶类、 转移酶类_、	•
	水解酶类、 <u>裂合酶类</u> 、异构酶类和 <u>连接酶类(合成酶类)</u> 。	
4.	在脂肪降解中,甘油在 <u>甘油激酶</u> 的催化下,被磷酸化生成 <u>3-磷酸甘油</u> ,然后氧化脱氢生成	Î,
	<u>磷酸二羟丙酮</u> 。	
5.	DNA 的切除修复中,切除了错误片段后,将由 DNA 聚合酶 I 填补空缺,最后由 DNA 连接酶	Ē
	补上切口。	
6.	原核生物中,蛋白质合成的起始氨基酸是 甲酰甲硫氨酸 ; 真核生物中,蛋白质合成的起始氨基酸	į
	<u>是 甲硫氨酸</u> 。	

三、名词解释(若为英文,则要先标明中文名称)(15分)

1. Tm

溶解温度,通常将加热变性使 DNA 的双螺旋结构失去一半时的温度称为该 DNA 的熔点或溶解温度 (melting temperature),用 Tm 表示。当达到 Tm 时,DNA 分子内 50%的双链结构被打开,即增色效应达到一半时的温度,它在 S 型曲线上相当于吸光率增加的中点处所对应的横坐标。

2. 酶的别构调节

小分子化合物与酶分子活性中心以外的某一部位特异结合,引起酶蛋白分子构象变化,从而改变酶的活性,这种调节称为酶的变构调节或别构调节。

3. 氧化磷酸化

氧化磷酸化(oxidative phosphorylation)是指细胞内伴随有机物氧化,利用生物氧化过程中释放的自由能,促使 ADP 与无机磷酸结合生成 ATP 的过程。

4. 启动子

被 RNA 聚合酶特异识别、结合和起始转录的一段 DNA 序列,为转录开始的部位,控制基因表达(转录)的起始时间和表达的程度

5. DNA 半不连续复制

随着复制叉的推进,两条新链的合成方向是不同的:一条链延伸的方向与复制叉前进的方向一致,它的合成能连续进行,称为前导链;另一条链延伸的方向与复制叉前进的方向相反,它显然不能被连续合成,需要复制叉推进了一定的长度,有了一段 DNA 单链后,才能以此为模板合成一个片段。因此这条新链的合成是不连续的,而且总晚于先导链,所以称为随后链。这种前导链连续合成,随后链断续合成的方式,称为半不连续复制。

四、用结构式写出酶所催化的化学反应(涉及的辅因子可用符号表示)(16分)

1. 6磷酸葡萄糖酸脱氢酶

2. 丙酮酸激酶

3. 谷丙转氨酶

4. 乙酰 CoA 羧化酶

$$CH_3-C-SCoA$$
 + HCO_3 + H^+

乙酰CoA

丙二酸单酰CoA

五、问答题(21分)

1. 天然蛋白质变性后会发生哪些变化? (7分) 答案要点:

蛋白质变性后结构、理化性质、生物活性都会发生改变。

- (1) 蛋白质变性后主要是空间结构发生改变;
- (2) 蛋白质变性后溶解度下降、光吸收值增加、易被蛋白酶水解等;
- (3) 蛋白质变性后生物活性往往会丧失。

2. 请从催化酶的角度,简述乙醛酸循环和三羧酸循环的区别 (7分) 答案要点:

与三羧酸循环相比,可以将乙醛酸循环看成是三羧酸循环的一个支路,它在异柠檬酸处分支,绕过了三羧酸循环的两步脱羧反应,因而不发生氧化降解。参与乙醛酸循环的酶除了异柠檬酸裂解酶和苹果酸合酶 外,其余的酶都与三羧酸循环的酶相同。异柠檬酸裂解酶和苹果酸合酶是乙醛酸循环的关键酶。

3、论述大肠杆菌 tRNA 的二级结构与蛋白质生物合成的关系(7分)。

答案要点:

- (1) tRNA 的二级结构呈三叶草形,由 4个臂和 4个环组成。4臂分别为接受臂、假尿嘧啶臂、二氢尿嘧啶臂和反密码子臂,4个环分别为二氢尿嘧啶环、反密码子环、可变环以及假尿嘧啶环等;(4分)
- (2)接受臂又叫氨基酸臂,3′-端的三个碱基为-CCA。在蛋白质生物合成过程中,活化后的氨基酸主要连接在-CCA中的A的3′-0H上。(5分)

反密码子环由 7 个核苷酸组成,中间的三个核苷酸组成了反密码子。在蛋白质生物合成过程中,反密码子可通过碱基互补配对识别 mRNA 上的密码子。(4 分)

六、计算题(10分)

- 1. 一分子油酸(结构式, CH₃(CH₂)₇CH=CH(CH₂)₇COOH)完全氧化成CO₂ 和H₂O 可生成多少个ATP? (1分子 FADH₂和1分子NADH, 两者经呼吸链可分别生成1.5分子和2.5分子ATP)答: -2+7x4-1.5+8x10=104.5 ATP
 - (1) 软脂酸在β-氧化作用前的活化作用需消耗能量,即 1 分子 ATP 转变成了 AMP, 消耗了 2 个高能磷酸键, 相当于 2 分子 ATP。
 - (2) 在β-氧化过程中,每进行一轮,使 1 分子 FAD 还原成 FADH₂、1 分子 NAD+还原成 NADH,两者经呼吸链可分别生成 1.5 分子和 2.5 分子 ATP,因此每轮β氧化作用可生成 4 分子 ATP,共进行 7 轮。有一轮,有一个双键,少生成分子 FADH₂
 - (3) β-氧化作用的产物乙酰 CoA 可通过三羧酸循环而彻底氧化成 CO2 和水,同时每分子乙酰 CoA 可生成 10 分子 ATP。

七、实验题(8分)

1. 在测酶活力时应注意哪些反应条件? 为什么?

模拟体内的真实环境。

- (1) 保持最适温度。因为随着温度的升高,酶促反应速率加快,但当温度过高时又会使酶变性失活, 酶促反应速率反而会下降。只有在最适温度时反应速率最大。
- (2) 选择最适 pH。在此 pH 时酶活性最大,过高或过低,酶活力会降低。
- (3) 底物浓度足够大,保证酶可以完全被底物饱和结合。
- (4) 酶量应小于底物浓度,否则反应体系底物不足,发生有的酶分子尚不能发挥作用,酶浓度与酶促 反应速率不成正比关系。
- (5) 添加激活剂。有些酶需要激活剂,有激活剂条件下酶才体现有活力。
- (6) 去除抑制剂。抑制剂会抑制酶活性,使酶活力偏低。

系主任 沈文飚 出卷人 张炜 杨志敏 张阿英 张益民 夏妍 芮琪 谢彦杰 王卉 谭小云 陈熙 崔为体 刘峰 李信

装订线

本试卷适应范围 食工、食安、植保、 农学、园艺等

南京农业大学试题纸

2014-2015 学年第一学期

课程类型:必修

试卷类型: B

课程	基础	出生物化学	学 (3 学	<u>分)</u>	班级			学号		姓名		成	绩	
题	号		=	- =	Ξ μ	Ч	五	六	七	八	九	总分	签	名
得	分													
	 ² 阅													
	核				1 1									
				<u> </u>				<u> </u>						
一、		泽题(每							·		•			
1.	属于	· DNA 分子	中的共化) 键是			• • • • • • • • •	••••••	•••••••		*******	(D)
	A P	票呤与脱氧	貳核糖 ℃	-1' Z	之间的β-	糖苷银	≢ ⊢ F	3 磷酸与	脱氧核糖	2' -OH 2	之间的酯银	ŧ		
	C A	磷酸与碱基	甚之间的	P-N 1	建		D	碱基与磷	基之间的	りN−N 键				
2.	双螺	旋模型提	出的重要	更实验	依据有…	*****	• • • • • • • • • •	•••••		• • • • • • • • • • • • • • • • • • • •	******	(В)
	A I	NA 的 X-9	付线衍射	В	肺炎双环	水菌实	验	C 分子杂	交	(D) 噬菌	体转染实验	並		
3.	密码	子是哪一	水平的棉	死念…					•••••	••••••	******	(D)
	A D	NA		В	rRNA			C tRNA		D	mRNA			
4.	蛋白	质 a-螺旋	的稳定	主要依	支靠的化	学键是	:						(В)
	A	二硫键		В	链内氢	键		C 肽键		D 旬	连间氢键			
5.	下列	变化中哪	一种变化	上不是	蛋白质变	を性引	起的	•••••		• • • • • • • • • • • • • • • • • • • •	************	(С)
	A 2	氢键断裂		В	疏水作用]破坏		C 亚基角	解聚	D 4	上物学活性	丧失		
6.	天冬	·氨酸的 pl	$X_1 = 2.09$	(α-	COOH), pl	$X_2 = 3$.	86 (R),	$pK_3 = 9.8$	82 (α-NH	3), 该氨	基酸的 pI	值约等于	- (I	3)
	A	5. 96		В	2. 98			C 3.86		D 6	. 84			
7.	下列	特征中属	于真核生	三物 m	RNA 的末	端结构	特征的	是			••••••	(В)
	A 3	'端有多	聚鸟苷酮	Ź		В	3′端	有多聚腙	守酸					
	C 5	'端有多	聚腺苷酸	ĝ		D	5'端	有氨基酸	接受臂					
8.	下列	理论中,	能解释酶	专一	·性的是··	• • • • • • •					••••••	******	((C)
	A =	共价催化				В	化学渗	透学说						
	Сì	秀导契合等	学说			D	化学偶	联学说						
9.	以下	几种方法	中,不足	5合用	来测定样	作品中	的蛋白质	质含量的;	是		• • • • • • • • • • • • • • • • • • • •	(D)
	A F	olin-酚b	七色法			В	考马其	折亮蓝比1	色法					
		肌氏定氮剂							水杨酸比	色法				
10.				そ対硫	酸铵沉流						•••••	(В)
		疑胶过滤										`		,

11.	下列关于酶之所以能加速催化反应速度机理的说法中,不正确的是	(()
	A 使反应(底)物集中于酶分子活性中心附近		
	B 使反应物的键适当定向		
	C 利用肽键的能量使反应活化能下降		
	D 提供酸碱侧链作为质子供体和受体		
12.	下列化合物中不是呼吸链组分的是	(D)
	A NAD+ B FMN C FAD D NADP+		
13.	下列那种试剂不能被用来保护酶分子的巯基	(B)
	A 抗坏血酸 B CO ₂ C 谷胱甘肽 D 巯基乙醇		
14.	下列反应中是在线粒体内膜上发生的反应是	(D)
	A 葡萄糖在己糖激酶的作用下生成 6-磷酸葡萄糖的反应		
	B 丙酮酸氧化脱羧生成乙酰 CoA 的反应		
	C 三羧酸循环中苹果酸生成草酰乙酸的反应		
	D 三羧酸循环中琥珀酸生成延胡索酸的反应		
15.	下列数值中,最接近天然 RNA 等电点的是	(В)
	A 4.5 B 2.5 C 2.0 D 7.0		
16.	下列酶中在糖酵解和糖异生中都起作用的酶是	••• (В)
	A 丙酮酸激酶 B 磷酸甘油酸激酶 C 几糖激酶 D 磷酸果糖粉	教酶	
17.	A 丙酮酸激酶 B 磷酸甘油酸激酶 C 几糖激酶 D 磷酸果糖汤脂肪酸从头合成需要下列哪物质参与 (
17.			
17.	脂肪酸从头合成需要下列哪物质参与		
	脂肪酸从头合成需要下列哪物质参与 C ACP D TPP	(C)	
	脂肪酸从头合成需要下列哪物质参与 A FAD B NADH C ACP D TPP 、填空(15分) 通常可用紫外分光光度法测定蛋白质的含量,这是因为蛋白质分子中的 <u>酪氨酸</u> 、	(C)	和
=,	脂肪酸从头合成需要下列哪物质参与 C ACP D TPP	(C)	和
=,	脂肪酸从头合成需要下列哪物质参与 A FAD B NADH C ACP D TPP 、填空(15分) 通常可用紫外分光光度法测定蛋白质的含量,这是因为蛋白质分子中的 <u>酪氨酸</u> 、	(C)	
	脂肪酸从头合成需要下列哪物质参与 A FAD B NADH C ACP D TPP 、填空(15分) 通常可用紫外分光光度法测定蛋白质的含量,这是因为蛋白质分子中的 <u>酪氨酸</u> 、 <u>苯丙氨酸</u> 含有的共轭双键有具有紫外吸收能力。	(C)	
	脂肪酸从头合成需要下列哪物质参与 A FAD B NADH C ACP D TPP 、填空(15 分) 通常可用紫外分光光度法测定蛋白质的含量,这是因为蛋白质分子中的 <u>酪氨酸</u> 、 <u>苯丙氨酸</u> 含有的共轭双键有具有紫外吸收能力。 酶的活性中心包括两个功能部位,其中 <u>结合</u> 部位直接与底物结合,决定酶的专一	(C) 色氨酸 -性,	
	脂肪酸从头合成需要下列哪物质参与 A FAD B NADH C ACP D TPP 、填空(15 分) 通常可用紫外分光光度法测定蛋白质的含量,这是因为蛋白质分子中的 <u>酪氨酸</u> 、 <u>** 本丙氨酸</u> 含有的共轭双键有具有紫外吸收能力。 酶的活性中心包括两个功能部位,其中 <u>结合</u> 部位直接与底物结合,决定酶的专一部位是发生化学变化的部位,决定催化反应的性质。	(C) 色氨酸 -性,	
1. 2.	脂肪酸从头合成需要下列哪物质参与 A FAD B NADH C ACP D TPP 、填空(15分) 通常可用紫外分光光度法测定蛋白质的含量,这是因为蛋白质分子中的 <u>酪氨酸</u> 、 <u>苯丙氨酸</u> 含有的共轭双键有具有紫外吸收能力。 酶的活性中心包括两个功能部位,其中 <u>结合</u> 部位直接与底物结合,决定酶的专一部位是发生化学变化的部位,决定催化反应的性质。 催化的化学反应相同而其分子结构、理化性质不完全相同的一组酶叫 <u>同功酶</u>	(C) 色氨酸 -性,	
1. 2. 3. 4.	脂肪酸从头合成需要下列哪物质参与 A FAD B NADH C ACP D TPP 、填空(15 分) 通常可用紫外分光光度法测定蛋白质的含量,这是因为蛋白质分子中的 <u>酪氨酸</u> 、 <u>苯丙氨酸</u> 含有的共轭双键有具有紫外吸收能力。 酶的活性中心包括两个功能部位,其中 <u>结合</u> 部位直接与底物结合,决定酶的专一部位是发生化学变化的部位,决定催化反应的性质。 催化的化学反应相同而其分子结构、理化性质不完全相同的一组酶叫 <u>同功酶</u> 维持 DNA 双螺旋结构稳定因素最主要的是 <u>碱基堆积力</u> 和 <u>氢键</u> 。	(C) 色氨酸 -性,。	
1. 2. 3. 4. 5.	脂肪酸从头合成需要下列哪物质参与 A FAD B NADH C ACP D TPP 、填空(15 分) 通常可用紫外分光光度法测定蛋白质的含量,这是因为蛋白质分子中的 <u>酪氨酸</u> 、 <u>苯丙氨酸</u> 含有的共轭双键有具有紫外吸收能力。 酶的活性中心包括两个功能部位,其中 <u>结合</u> 部位直接与底物结合,决定酶的专一部位是发生化学变化的部位,决定催化反应的性质。 催化的化学反应相同而其分子结构、理化性质不完全相同的一组酶叫 <u>同功酶</u> 维持 DNA 双螺旋结构稳定因素最主要的是 <u>碱基堆积力</u> 和 <u>氢键</u> 。 常用二苯胺法测定 <u>DNA</u> 含量;用苔黑酚法测定 <u>RNA</u> 含量。	(C) 色氨酸 -性,。	
1. 2. 3. 4. 5. 6.	脂肪酸从头合成需要下列哪物质参与 A FAD B NADH C ACP D TPP 、填空(15 分) 通常可用紫外分光光度法测定蛋白质的含量,这是因为蛋白质分子中的 <u>酪氨酸</u> 、 基丙氨酸 含有的共轭双键有具有紫外吸收能力。 酶的活性中心包括两个功能部位,其中 <u>结合</u> 部位直接与底物结合,决定酶的专一部位是发生化学变化的部位,决定催化反应的性质。 催化的化学反应相同而其分子结构、理化性质不完全相同的一组酶叫 <u>同功酶</u> 维持 DNA 双螺旋结构稳定因素最主要的是 <u>碱基堆积力</u> 和 <u>氢键</u> 。 常用二苯胺法测定 DNA 含量;用苔黑酚法测定 RNA 含量。 一个转录单位一般应包括 启动子 序列、 编码区 序列和 终止子 F	(C) 色氨酸 -性,。	· .

三、名词解释(若为英文,则要先标明中文名称)(15分)

1. 增色效应

增色效应是指 DNA 在紫外 260NM 处吸光值增加的现象,增色效应与 DNA 解链程度有一定的比例关系,是观察 DNA 是否发生变性的一个重要指标。DNA 分子之所以具有紫外吸收是因为 DNA 分子中存在共轭双键,而变性会使更多的共轭双键暴露,因此其吸光值更高。

2. pI

等电点。在某一 pH 溶液中,蛋白质解离程正负离子的趋势相等,成为两性离子,这时蛋白质所带的正电荷和负电荷相等,净电荷为零,此时溶液的 pH 值称为该蛋白质的等电点。

3. 糖异生作用

葡萄糖异生作用(gluconeogenesis)是指以非糖有机物作为前体合成为葡萄糖的过程。这是植物、动物体内一种重要的单糖合成途径。非糖物质包括乳酸、丙酮酸、甘油、草酰乙酸、乙酰 CoA 以及生糖氨基酸(如丙氨酸)等。

4. DNA 半不连续复制

随着复制叉的推进,两条新链的合成方向是不同的:一条链延伸的方向与复制叉前进的方向一致,它的合成能连续进行,称为前导链;另一条链延伸的方向与复制叉前进的方向相反,它显然不能被连续合成,需要复制叉推进了一定的长度,有了一段 DNA 单链后,才能以此为模板合成一个片段。因此这条新链的合成是不连续的,而且总晚于先导链,所以称为随后链。这种前导链连续合成,随后链断续合成的方式,称为半不连续复制。

5. 光合磷酸化,

是指光合生物细胞利用光能驱动光合链的电子传递,引起质子形成跨膜的浓度梯度和电位差,膜上的 ATP 合酶利用质子返回的势能,使 ADP 磷酸化合成 ATP 的过程。

四、用结构式写出酶所催化的化学反应(涉及的辅因子可用符号表示)(16分)

三磷酸甘油醛脱氢酶

phosphate

1,3-Bisphosphoglycerate

延胡索酸酶

Fumarate

Malate

3. PEP 羧化酶

Oxaloacetate

脂酰辅酶 A 脱氢酶

$$R-CH_2-CH_2-C-SCoA$$
 FAD FADH, H O R-CH_2-CH_2-C-SCoA 脂酰CoA脱氢酶 R-C=C-C-SCoA

脂酰CoA

反式−△゚−烯脂酰CoA

五、问答题(27分)

1. 举例说明蛋白质一级结构和功能之间的关系。(7分)

蛋白质特定的构象和功能是由其一级结构所决定的。多肽链中各氨基酸残基的数量、种类以及他们在肽链中的顺序主要从两方面影响蛋白质的功能活性:一部分氨基酸残基直接参与构成蛋白质的功能活性区,他们的特殊侧链基团即蛋白质的功能基团,这种氨基酸如被置换会直接影响蛋白质的功能;另一部分氨基酸残基虽然不直接作为功能基团,但是他们在蛋白质构象中处于关键位置,这种残基一旦被置换会影响蛋白质的构象,从而影响蛋白质的活性。因此一级结构不同的各种蛋白质,他们的结构和功能不同;反之,一级结构大体相似的蛋白质,他们的构象和功能也可能相似。例如,来源不同动物种属的胰岛素,他们一级结构不完全一样,但其组成的氨基酸总数或排列顺序却很相似,从而使其基本结构和功能相同。

2. 简述饱和脂肪酸有氧去饱和途径。(6分)

答:该途径由去饱和酶系催化,需要 02 和 NADPH 的共同参与。去饱和酶系由去饱和酶及一系列的电子传递体组成。在该途径中,一分子氧接受来自去饱和酶的两对电子而生成两分子水,其中一对电子是通过电子传递体从 NADPH 获得,另一对则是从脂酰基获得,结果 NADPH 被氧化成 NADP+,脂酰基的特定部位被氧化形成双键(见图)。

3. 参与原核生物蛋白质生物合成的主要因子有哪些,它们各自有什么作用? (6分) 答:主要因子有:起始因子(IF):有 IF1、IF2、IF3,参与起始复合物的形成; 延长因子(EF):有 EF-Tu, EF-Ts, EF-G,协助氨酰-tRNA 进入核糖体,并帮助 EF-Tu 周转; 终止因子(RF):有 RF1, RF2, RF3,释放合成完成的完整多肽链。

- 4. 在测酶活力时应注意哪些反应条件?为什么?(8分)
 - (1) 保持最适温度。因为随着温度的升高,酶促反应速率加快;但当温度过高时又会使酶变性失活, 酶促反应速率反而会下降。只有在最适温度时反应速率最大。
 - (2) 选择最适 pH。在此 pH 时酶活性最大,过高或过低,酶活力会降低。
 - (3) 底物浓度足够大,保证酶可以完全被底物饱和结合。
 - (4) 酶量应小于底物浓度, 否则反应体系底物不足, 发生有的酶分子尚不能发挥作用, 酶浓度与酶促反应速率不成正比关系。
 - (5)添加激活剂。有些酶需要激活剂,有激活剂条件下酶才体现有活力。
 - (6) 去除抑制剂。抑制剂会抑制酶活性,使酶活力偏低。

六、计算题(10分)

1. 答葡萄糖在体外燃烧时,释放的能量为 2867kj/mol,以此为基础,计算葡萄糖在生物体内彻底氧化的能量 转化率(ATP 一个高能磷酸键可释放 30.5kj/mol 能量)。

原核:32ATP

32x30, 5/2867x100%=34, 04%

真核:30ATP

30x30. 5/2867x100&=31. 91%

系主任 沈文彪 出卷人 张炜 杨志敏 张阿英 张益民 夏妍 芮琪 谢彦杰 王卉 谭小云 陈熙 崔为体 刘峰 李信

本试卷适应范围 食工、食安、植保、 农学、园艺等

南京农业大学试题纸

2013-2014 学年第一学期 课程类型: 必修 试卷类型: A

	基础生物	THE T	<u> </u>		字写		<u>X</u>	<u> </u>		坝	
题号			=:	四	五.	六	七	八	九	总分	签名
得分											
评阅				í					•		
核分											
							<u></u>			•	
,	泽题(25										
1. 存在于	下球状蛋白	1质分子中	中的相对犯	虫立的、	紧密的球	伏三维实 [。]	体称为…	••••••	•••••••	()	
A 5	}子构象				B 结	构域					
	二级结构				DΞ						
2. 下列数	数值中,	接近天然	な RNA 等	电点的是	<u>!</u>		••••••		()	
A	2.5		B 4.5		C	7.0]	D 9.0		_	
3. 下列化	化合物中 ,	哪个不是	是丙酮酸胆	说氢酶复合	合体的辅[因子?		••••••	······ (()	
A N	AD^+		В ТРР		C	FAD		D NA	DP^+		
4. 下列明	那一项不是	是蛋白质更	典型α-螺	旋结构的	特点? …		••••••		(()	
A Э	、然蛋白 质	5多为右手	三螺旋								
В	太链平面充	5分伸展									
C 包	事隔 3.6 个	氨基酸螺	累旋上升-	一圈	•						
D 每	个氨基酸	残基上升	高度为 0.	15 nm							
5. 下列物	勿质中, 自	 と保护巯基	基酶不被 氧	貳化的是·	••••••	•••••		•••••	()	
A	SDS	I	B DNF	В	С	GSH		D 尿素			
6. 下列3	里论中,自	 と解释酶も	一性的是	₹	•••••	•••••		•••••	()	
A 该	§ 导契合学	总说			В	中间产物	学说				
C A	上学渗透 学	è说			D	化学偶联	学说				
7. 哪种值	多复方式名	孚易导致 基	甚因突变?	•••••			••••••	•••••	()		
الا A	比修复		B 切除	修复	C I	重组修复	D	SOS 修	复		
8. 在大服	扬杆菌肽 链	连合成的延	延伸阶段,	核糖体和	多位需要 ⁻	下列哪一	种蛋白因	子参与····		()	:
А П	7 3	B EF-G	i	C EF-T	`u	D RF1	l				
9. 糖酵魚	军中,直 担	美催化生 质	以 NADH	的酶是····	••••••		•••••	••••••	······ ()	

A 己糊	港激酶	B 3-磷酸甘油醛脱氢酶
C 磷酶		D 3-磷酸甘油酸脱氢酶
10. 下列哪	『种情况下呼吸链中电子传递速度加快…	······ ()
A ATI	P/ADP 下降 B ATP/ADP 升高	高 C 氧供应充足 D 缺氧
11. 下列酶	事中哪个是三羧酸循环和乙醛酸循环所共	共有的酶······()
A 柠檬	蒙酸合酶 B	异柠檬酸脱氢酶
C 异相	宁檬酸裂解酶 D	D 苹果酸合酶
12. 下列描	i述正确的是······	························ ()
A 模	技板链就是编码链	
в 只	l有编码链才能指导合成 DNA	
C 对	于一个 DNA 分子上的不同基因而言,	模板链并不固定在某一条 DNA 单链上
D 转	· 宗过程与复制一样,都是对称进行的	
13. 下列关	于化学渗透学说,哪种叙述不正确?····	()
A H	H+返回膜内可以推动 ATP 酶合成 ATP	
В Ң	电子传递过程中有质子的泵出	
C 组	线粒体内膜外侧 H+可以自由返回膜内	
D #	呼吸链各组分按特定的位置排列在线粒位	体内膜上
二、填空	题(18分)	
1. 维持 DN	NA 双螺旋的稳定因素最主要的是	和。
2. 生物体内	内磷酸化生产 ATP 的三种方式为	\
3. 某酸性氨	氨基酸的 pK ₁ (α-COOH)=2.19, pK ₂ (α-N	NH3 ⁺)=9.6, pK _R (R基)=4.25, 则该氨基酸的等电点为
4. 当酶促尿	反应速度达到其最大反应速度的 40%时,	,Km/[S]应该为。
5. 蛋白质分	分子中含有、、	和三种氨基酸残基的共轭双键有紫外吸收
力,因此選	通常可用紫外分光光度法测定蛋白质含量	里。
6. 异柠檬酉	酸经 TCA 循环氧化分解为琥珀酸,其磷	雄氧比是;加入 2.4-二硝基苯酚以后,其磷氧比是
7. EMP 途行	径中,最重要的调节酶是	,脂肪酸从头合成的限速酶是。
8. 根据催4	化反应的类型,酶可以分为6大类,分别	别为、、
	、 、	· · 均酶米和连锌酶米

1. DNA 变性		
2		
2. 同工酶		
3. 蛋白质 pI		•
4. 氧化磷酸化		
5. 半保留复制		
·		
 四、用结构式写出酶所催化	的化学反应(16 分)	

1.	己糖激酶		
			•
	早 拉達輸 附 复 酶		
2.	异柠檬酸脱氢酶		
3.	. 转酮酶		
		,	
١,	北田政人		
4	苹果酸合酶		
		•	
			•
_			
4	丘、问答题(20 分)		

1. 请分别写出直接催化产生乙酰 CoA 和利用乙酰 CoA 的各 3 个酶的中文名称。(6 分)
2. 简述脂肪酸β-氧化和脂肪酸从头合成的差异。(8分)
3. 简述大肠杆菌 DNA 复制时需要的酶及其作用。(6分)
五、计算题(10 分)

1	nl 溶液测得含蛋白氮 0.2 mg, 另取 0.1 ml 溶液测酶活力, 结果一
	假定一个酶活力单位定义为每分钟产生 1 μg 酪氨酸的酶量,请
计算:	
(1) 酶溶液的蛋白浓度及比活力。	
(2) 每克纯酶制剂的总蛋白含量及总活力。	
六、实验题(8分)	
1. 请简述两种区分 DNA 和 RNA 的方法及	原理。
·	
1	
	58-id.

系主任 沈文飚 出卷人 卢亚萍 张炜 杨志敏 张益民 夏妍 芮琪 谢彦杰 谭小云 陈熙 崔为体 李信