Part 2:

Q1. Use superposition principle in the circuit in the figure below to find the power consumed by that 2Ω resistor which has current i1 flowing through it (as labeled in the circuit).

Only Current Source Active

Node Voltage Analysis @ V.

$$\frac{\sqrt{1-0}}{2} + \frac{\sqrt{1-0}}{2} + \frac{\sqrt{1-\sqrt{2}}}{1} + 6 = 0$$

Node Voltage Analysis @ Vz

$$\frac{V_2 - V_1}{1} - 6 + \frac{V_2 - 0}{3} - \frac{1}{3}i, = 0$$

$$V_1 = -\frac{1}{3} = \frac{10}{3}$$

$$i_1 = \frac{v_1}{2}$$

$$i_1 = \frac{-4}{6} \quad i_1 = -0.67A$$

2) Only voltage Source Active

V1-3 + V1 + V1-12=0

NVAQV.

$$0 \frac{V_{1}-3}{2} + \frac{V_{1}-0}{2} + \frac{V_{1}-V_{2}}{1} = 0$$

NVAEVZ

$$\frac{\sqrt{2}-\sqrt{1}}{1} + \frac{\sqrt{2}-0}{3} - \frac{1}{3}i_1 = 0$$

$$\frac{V_2 - V_1}{1} + \frac{V_2}{3} = \frac{1}{3} \gamma, \qquad (i_1 = \frac{V_1}{2}) [Olim's Law]$$

$$V_2 - V_1 + \frac{V_2}{3} = \frac{1}{3} (\frac{V_1}{2})$$

$$(1+\frac{1}{3}) V_2 + (-1-\frac{1}{6}) V_1 = 0$$

$$V_1 = \frac{4}{3} V_2 = \frac{7}{6}$$

$$I_1 = 0.67A$$

$$I_1 = 0A? P_2\Omega = 0W?$$

Part 2:

Q2. Consider the circuit in the figure below. A resistor R is connected between terminals A and

of the circuit. Find power dissipated in the resistor R when:

 $R=10\Omega$

R=20Ω

[Hint: Use Norton's theorem to solve this problem.]

Use KVL on middle loop to save for I

$$1 - V_1 - 20 (I + 0.2V_1) = 0$$

 $1 - V_1 - 20I - 4V_1 = 0$
 $V_1 = 10I$
 $1 - 10I - 20I - 40I = 0$

$$-70I = 1$$

 $I = \frac{1}{70}A$ $V_1 = \frac{1}{7}V = V_{AB}$

Short Circuit

$$R_T = \frac{V_T}{1} = \frac{\frac{1}{70}}{\frac{1}{70}} = 10 \Omega$$

Norton Equivalent

J'40 Use circuit
divider equation R=10 sz

$$P = I^2 R$$

$$P = (40)^2 \times 10 = 0.00625W \quad P = 0.00625W$$

R=2052

$$P = I^2 R$$

$$P = \left(\frac{1}{60}\right)^2 \times 20 = 0.0055W$$

$$R = 20.72$$

$$P = 0.0055W$$

 $P_R = 0.00625W, 0.0055W$

Part 2:

Q3. Problem 2.90 from the book.

Find the maximum power that can be delivered to a resistive load by the cricuit shown below. For not value of load resistance is the power maximum?

· Find RT

$$24 + 6 = 30.5L$$

 $30116 = \frac{50.56}{50 + 6} = \frac{180}{36} = 5.5L$
 $R_7 = 5.5L$

· Find VT

Source Transformation

RL-RT

· Maximum Power

$$P_R = \frac{(-12)^2}{4.5} = \frac{144}{20} = 7.2W$$

The maximum power delivered is 7.2W.

For Maximum power transfer, RL=R7=50.

Part 2:

Q4. Find the Thévenin equivalent at terminals a and b for the network shown below.

$$\begin{cases} V_{2} = NV_{1} & i_{2} = -\frac{1}{N}i_{1} \\ \frac{V_{1}}{V_{2}} = \frac{N_{1}}{N_{2}} & -\frac{12}{11} = \frac{N_{1}}{N_{2}} \end{cases}$$

(3)
$$I_E = I_X + I_1 (kCL)$$

(3) $I_X = \frac{V_{ab}}{20} (0hm's Law)$
(3) $V_Z = 20I_X + 60(I_Z) (kVL)$

$$4 V_{ab} = 20 I_{x} - 60 I_{z}$$
 $4 V_{ab} = 20 I_{x} - 60 (-\frac{1}{4})$
 $4 V_{ab} = 20 I_{x} + 15 I_{z}$
 $4 V_{ab} = 20 I_{x} + 15 I_{z}$
 $4 V_{ab} = 20 (\frac{V_{ab}}{20}) (15 I_{z})$
 $4 V_{ab} = V_{ab} (15 I_{z})$
 $4 V_{ab} = V_{ab} (15 I_{z})$
 $3 V_{ab} = 15 I_{z}$
 $V_{ab} = 5 I_{z}$
 $V_{ab} = 5 I_{z}$
 $V_{ab} = \frac{V_{ab}}{5}$
 $V_{ab} = \frac{V_{ab}}{5}$
 $V_{ab} = \frac{V_{ab}}{5}$
 $V_{ab} = \frac{V_{ab}}{5}$
 $V_{ab} = \frac{V_{ab}}{5}$

$$R_{7} = \frac{V_{ab}}{IE}$$

$$R_{7} = \frac{5I_{1}}{\frac{1}{4}(5I_{1})}$$

$$\sqrt{R_{1} = 4\Omega}$$

Thévenin: $R_7 = 4\Omega$