Large-Deviation-Based Portfolio Optimization

Ryan Dai

Department of Quantitative Finance, National Tsing Hua University dairyan930128@gmail.com

June 7, 2025

Abstract

This paper proposes a portfolio optimization method that maximizes the probability of long-run average log-return exceeding a target c, using large deviation theory under a stochastic price model (multivariate GBM). Empirical results show that the resulting large-deviation portfolio can achieves similar returns while significantly reducing volatility and maximum drawdown compared to mean-variance and equal-weight benchmarks.

1 Introduction

Long-term investors often care about achieving returns above a fixed growth target, not just maximizing expected return or minimizing variance. Yet classical portfolio optimization methods—such as the mean-variance (MV) framework—focus on average outcomes or risk-adjusted trade-offs, without directly addressing the likelihood of reaching a specific return goal.

This paper proposes that directly maximizing the probability that the average log-return of a portfolio exceeds a target c. We formulate this as a large-deviation problem, using rate function minimization to identify weights that make underperformance exponentially unlikely.

Assuming asset prices follow a multivariate geometric Brownian motion, we derive a closed-form solution for the optimal weights. This solution is then projected onto a realistic constraint set $(0 \le w_i \le 10\%, \sum_i w_i = 1)$ for implementation.

Empirical tests on 45 U.S. stocks (2000–2024) show that the resulting large-deviation portfolio achieves returns similar to MV and equal-weight benchmarks, while significantly reducing realized volatility and maximum drawdown.

2 Market Assumption and Portfolio Setup

Consider a universe of $n \geq 2$ risky assets over a fixed investment horizon of T trading days.

Definition 2.1 (Asset Prices and Returns). Let $S_t = (S_{1,t}, \ldots, S_{n,t})$ denote the vector of asset prices at day $t \in \{0, 1, \ldots, T\}$. The one-day *simple return* vector is

$$r_t = (r_{1,t}, \dots, r_{n,t}), \qquad r_{i,t} := \frac{S_{i,t+1}}{S_{i,t}} - 1.$$

We focus on log-returns, which are additive over time and better suited for long-horizon analysis.

Definition 2.2 (Portfolio Weights and Log-Returns). A static allocation is represented by a weight vector

$$\boldsymbol{w} = (w_1, \dots, w_n) \in \mathcal{W} \subseteq \mathbb{R}^n, \qquad \mathcal{W} := \left\{ \boldsymbol{w} \mid \sum_i w_i = 1, \ 0 \le w_i \le 0.1 \right\}.$$

The portfolio value at time t, given weights \boldsymbol{w} , is

$$P_t(\boldsymbol{w}) := \boldsymbol{w}^{\top} \boldsymbol{S}_t,$$

and the one-day log-return of the portfolio is

$$L_t(\boldsymbol{w}) := \log \left(\frac{P_{t+1}(\boldsymbol{w})}{P_t(\boldsymbol{w})} \right) = \log \left(1 + \boldsymbol{w}^{\top} \boldsymbol{r}_t \right).$$

Definition 2.3 (Cumulative and Average Log-Return). Over the full horizon [0, T], the portfolio's cumulative and average log-returns under weight \boldsymbol{w} are

$$\log \left(\frac{P_T(\boldsymbol{w})}{P_0(\boldsymbol{w})} \right) = \sum_{t=0}^{T-1} L_t(\boldsymbol{w}) \qquad \text{(cumulative log-return)},$$

$$\overline{L}_T(\boldsymbol{w}) := \frac{1}{T} \sum_{t=0}^{T-1} L_t(\boldsymbol{w})$$
 (average log-return).

Theorem 2.1 (Log-return distribution under multivariate GBM). Assume the asset price vector $\mathbf{S}(t) = (S_1(t), \dots, S_n(t))^{\top}$ follows a multivariate geometric Brownian motion

$$d\mathbf{S}(t) = \operatorname{diag}(\mathbf{S}(t)) \boldsymbol{\mu} dt + \operatorname{diag}(\mathbf{S}(t)) \boldsymbol{\sigma} d\mathbf{W}(t),$$

where $\boldsymbol{\mu} \in \mathbb{R}^n$ is the drift vector, $\boldsymbol{\sigma} \in \mathbb{R}^{n \times n}$ is the volatility matrix, and $\boldsymbol{W}(t)$ is an n-dimensional standard Brownian motion.

For any fixed weight vector \boldsymbol{w} , let the portfolio value be $P(t) := \boldsymbol{w}^{\top} \boldsymbol{S}(t)$. The one-day log-return

$$L_t(\boldsymbol{w}) := \log \left(\frac{P_{t+1}(\boldsymbol{w})}{P_t(\boldsymbol{w})} \right)$$

is i.i.d. with

$$L_t(\boldsymbol{w}) \sim \mathcal{N}(\mu_L, \sigma_L^2), \qquad \mu_L := \boldsymbol{w}^{\mathsf{T}} \boldsymbol{\mu} - \frac{1}{2} \boldsymbol{w}^{\mathsf{T}} \boldsymbol{\Sigma} \boldsymbol{w}, \ \sigma_L^2 := \boldsymbol{w}^{\mathsf{T}} \boldsymbol{\Sigma} \boldsymbol{w},$$

where $\Sigma := \sigma \sigma^{\top}$ is the log-return covariance matrix.

3 Cramér's Theorem and the Large-Deviation Objective

Theorem 3.1 (Cramér's Theorem). Let $\{X_t\}_{t\geq 0}$ be i.i.d. real-valued random variables with logarithmic moment-generating function

$$\Lambda(\lambda) := \log \mathbb{E}[e^{\lambda X_0}] < \infty \quad \text{for all } \lambda \in \mathbb{R}.$$

Then for any $c > \mathbb{E}[X_0]$, the large-deviation upper bound holds:

$$\lim_{T \to \infty} \frac{1}{T} \log \Pr\left(\frac{1}{T} \sum_{t=1}^{T} X_t \ge c\right) = -I(c),$$

where the rate function I(c) is given by the Legendre transform

$$I(c) = \sup_{\lambda \in \mathbb{R}} \left\{ \lambda c - \Lambda(\lambda) \right\}.$$

Remark 3.1 (Cramér-type Probability Estimate). In practice, we apply Cramér's theorem to approximate rare-event probabilities of the form $\Pr(\overline{L}_T(\boldsymbol{w}) \geq c)$, where $\{L_t(\boldsymbol{w})\}$ are portfolio log-returns. Assuming the returns are i.i.d. and have a well-defined log-moment generating function, the approximation is

$$\Pr(\overline{L}_T(\boldsymbol{w}) \ge c) \approx \exp(-T I(c; \boldsymbol{w})), \quad T \gg 1,$$

with the rate function defined as

$$I(c; \boldsymbol{w}) := \sup_{\lambda \in \mathbb{P}} \left\{ \lambda c - \log \mathbb{E} \left[e^{\lambda L_1(\boldsymbol{w})} \right] \right\}.$$

Lemma 3.1 (MGF of a Normal Random Variable). Let $X \sim \mathcal{N}(\mu, \sigma^2)$. Then its moment-generating function is

$$M_X(\lambda) = \mathbb{E}[e^{\lambda X}] = \exp\left(\lambda \mu + \frac{1}{2}\lambda^2 \sigma^2\right), \qquad \lambda \in \mathbb{R}.$$

Under the Gaussian log-return assumption $L_1(\mathbf{w}) \sim \mathcal{N}(\mu_L, \sigma_L^2)$, Lemma 3.1 implies that

$$I(c; \boldsymbol{w}) = \sup_{\lambda \in \mathbb{R}} \left\{ \lambda c - \lambda \mu_L - \frac{1}{2} \lambda^2 \sigma_L^2 \right\} = \frac{(c - \mu_L)^2}{2\sigma_L^2}.$$

Substituting

$$\mu_L = \boldsymbol{w}^{ op} \boldsymbol{\mu} - \frac{1}{2} \boldsymbol{w}^{ op} \boldsymbol{\Sigma} \boldsymbol{w}, \qquad \sigma_L^2 = \boldsymbol{w}^{ op} \boldsymbol{\Sigma} \boldsymbol{w},$$

the large-deviation objective becomes

$$f(\boldsymbol{w}) := \frac{\left(c - \boldsymbol{w}^{\top} \boldsymbol{\mu} + \frac{1}{2} \boldsymbol{w}^{\top} \boldsymbol{\Sigma} \boldsymbol{w}\right)^{2}}{2 \boldsymbol{w}^{\top} \boldsymbol{\Sigma} \boldsymbol{w}}, \qquad \boldsymbol{w} \in \mathcal{W}.$$

To obtain a closed-form solution to the large-deviation optimization problem, we seek to minimize the objective

$$f(\boldsymbol{w}) = \frac{\left(c - \boldsymbol{w}^{\top} \boldsymbol{\mu} + \frac{1}{2} \boldsymbol{w}^{\top} \boldsymbol{\Sigma} \boldsymbol{w}\right)^{2}}{2 \, \boldsymbol{w}^{\top} \boldsymbol{\Sigma} \boldsymbol{w}}.$$

This expression arises from the Gaussian rate function and depends quadratically on w. The minimizer can be derived explicitly by computing the first-order condition and solving for the optimal scale. We proceed in two steps.

Step 1: First-order condition (FOC). Set the gradient to zero:

$$abla_{m{w}} f(m{w}) = m{0} \implies \left[c - m{w}^{ op} m{\mu} + \frac{1}{2} m{w}^{ op} m{\Sigma} m{w} \right] \left(\frac{1}{2} m{\Sigma} m{w} - m{\mu} \right) = m{0}.$$

Because the square-bracket term is generally non-zero at the optimum, we require

$$rac{1}{2} oldsymbol{\Sigma} oldsymbol{w} - oldsymbol{\mu} = oldsymbol{0} \quad \Longrightarrow \quad \boxed{oldsymbol{w} \propto oldsymbol{\Sigma}^{-1} oldsymbol{\mu}}$$

Step 2: Solve for the scale. Write $w = \lambda \Sigma^{-1} \mu$, $\lambda > 0$ and substitute into f(w). Let

$$d := \boldsymbol{\mu}^{\top} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu} > 0.$$

Then

$$f(\lambda) = \frac{\left[c + d(-\lambda + \frac{1}{2}\lambda^2)\right]^2}{2\lambda^2 d}, \qquad \lambda > 0.$$

Differentiating and setting $f'(\lambda) = 0$ gives the unique minimiser

$$\lambda^* = \sqrt{\frac{2c}{d}}.$$

Closed-form optimal weights. Substituting λ^* yields the closed-form solution

$$\boxed{\boldsymbol{w}^* = \sqrt{\frac{2c}{\boldsymbol{\mu}^\top \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}}} \; \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}}.$$

4 Empirical Result

We conclude with a numerical study that contrasts the proposed large-deviation portfolio with two standard benchmarks: Mean Variance (MV) and Equal Weight (EQ).

4.1 Dataset

Our empirical analysis uses daily adjusted close prices (2000 – 2024) for a universe of 45 long–listed, large-capitalisation U.S. equities. Table 1 groups the constituents by their Global Industry Classification Standard (GICS) sectors.

4.2 Portfolio construction

The admissible set is $W = \{ \boldsymbol{w} \mid \sum_{i} w_i = 1, \ 0 \le w_i \le 0.10 \}.$

Table 1: Industry classification of the stock universe

GICS Sector	Tickers
Communication Services	DIS
Consumer Discretionary	MCD, F, TGT
Consumer Staples	KO, PG, WMT, PEP, MO, SYY, CL
Energy	XOM, CVX
Financials	TRV, AXP, BK, USB, WFC, AIG, BAC, C, MMC
Health Care	JNJ, MRK, PFE
Industrials	GE, MMM, BA, CAT, HON, DE, EMR, GD, LMT, UNP
Information Technology	IBM, TXN, HPQ, XRX, AVT
Materials	DD, ECL, AA
Utilities	XEL, ED

(i) Large-deviation portfolio w^* . Using the closed-form solution (1) with the empirical $(\hat{\mu}, \hat{\Sigma})$ and daily performance target $c = \log(1.5)/252$,

$$\widetilde{\boldsymbol{w}} = \sqrt{\frac{2c}{\hat{\boldsymbol{\mu}}^{\top} \hat{\boldsymbol{\Sigma}}^{-1} \hat{\boldsymbol{\mu}}}} \, \hat{\boldsymbol{\Sigma}}^{-1} \hat{\boldsymbol{\mu}}.$$

Because $\widetilde{\boldsymbol{w}} \notin \mathcal{W}$, we project it onto \mathcal{W} by solving $\min_{\boldsymbol{w} \in \mathcal{W}} \|\boldsymbol{w} - \widetilde{\boldsymbol{w}}\|_2^2$, yielding the implementable $\boldsymbol{w}_{\text{LDP}}$.

(ii) Mean-variance (MV) portfolio. We solve the classical Markowitz problem

$$\max_{\boldsymbol{w} \in \mathcal{W}} (\hat{\boldsymbol{\mu}}^{\top} \boldsymbol{w} - \frac{1}{2} \boldsymbol{w}^{\top} \hat{\boldsymbol{\Sigma}} \boldsymbol{w}),$$

to obtain $\boldsymbol{w}_{\mathrm{MV}}$.

(iii) Equal-weight portfolio. The naïve benchmark is $\mathbf{w}_{EQ} = (1/n, \dots, 1/n)^{\top}$.

4.3 Out-of-sample performance

Experimental setup. We evaluate three portfolios—*LDP*, *MV*, and an *Equal-weighted* (EQ)—on daily U.S. equity data from 2000-01-01 onward. Key assumptions are:

- Annual compounding. All reported returns are annually compounded
- Risk-free rate $r_f = 0$. Sharpe ratios therefore equal μ/σ .
- **Rebalancing.** Portfolios are re-scaled to their new targets at each calendar year-end (December 31). Between rebalances, weights drift with asset returns.
- Turnover. Defined as the ℓ_1 distance between end-of-year drifted weights and next-year target weights, averaged across rebalance dates.
- Training windows. We roll a $\{10, \dots, 20\}$ -year historical window to estimate (μ, Σ) and compute weights. EQ remains fixed.

Results. Table 2 reports five performance metrics across varying training-window lengths (10 to 20 years). Several key patterns emerge:

- (1) **Strongest performance at 16–18 years.** LDP outperforms MV and EQ in return, Sharpe ratio, volatility, and drawdown over these windows.
- (2) Consistent risk advantage. LDP maintains the lowest volatility and drawdown across all window lengths.

Table 2: Performance vs. Training Window (LDP, MV, EQ portfolios)

$\mathbf{Metric} \setminus \mathbf{Window}$	10	11	12	13	14	15	16	17	18	19	20
Annualised Return											
LDP	0.0977	0.0966	0.0905	0.0943	0.1027	0.1015	0.1047	0.1083	0.1056	0.1007	0.1006
MV	0.0756	0.0840	0.0918	0.0869	0.0940	0.0873	0.0894	0.0889	0.0799	0.0656	0.0685
EQ	0.1026	0.1026	0.1026	0.1026	0.1026	0.1026	0.1026	0.1026	0.1026	0.1026	0.1026
Annualised Volatility											
LDP	0.1821	0.1814	0.1804	0.1811	0.1794	0.1790	0.1807	0.1766	0.1780	0.1779	0.1802
MV	0.2101	0.2065	0.2041	0.2055	0.2058	0.2040	0.2118	0.2101	0.2096	0.2073	0.2074
EQ	0.1952	0.1952	0.1952	0.1952	0.1952	0.1952	0.1952	0.1952	0.1952	0.1952	0.1952
Sharpe Ratio											
LDP	0.5368	0.5327	0.5016	0.5210	0.5727	0.5670	0.5795	0.6134	0.5931	0.5661	0.5579
MV	0.3600	0.4069	0.4496	0.4227	0.4567	0.4281	0.4219	0.4233	0.3813	0.3164	0.3301
EQ	0.5254	0.5254	0.5254	0.5254	0.5254	0.5254	0.5254	0.5254	0.5254	0.5254	0.5254
$Max\ Drawdown$											
LDP	-0.4544	-0.4368	-0.4657	-0.4670	-0.4757	-0.4890	-0.5107	-0.5079	-0.4708	-0.4568	-0.4685
MV	-0.5738	-0.4782	-0.5518	-0.5581	-0.5666	-0.5866	-0.6265	-0.6312	-0.6168	-0.5838	-0.5681
EQ	-0.5692	-0.5692	-0.5692	-0.5692	-0.5692	-0.5692	-0.5692	-0.5692	-0.5692	-0.5692	-0.5692
Average Turnover											
$\overline{\text{LDP}}$	0.6327	0.6104	0.5995	0.6067	0.5896	0.5603	0.5760	0.5484	0.5145	0.4934	0.4562
MV	0.6470	0.6662	0.6346	0.6383	0.5564	0.5542	0.5360	0.5080	0.5036	0.5391	0.4882
EQ	0.1544	0.1544	0.1544	0.1544	0.1544	0.1544	0.1544	0.1544	0.1544	0.1544	0.1544

5 Conclusion

We recast portfolio selection as a large-deviation problem and derive a closed-form solution that maximizes the probability of exceeding a log-return target. Applied to 45 U.S. large-cap stocks (2000–2024), the resulting LDP portfolio achieves consistently lower volatility and drawdowns than mean–variance and equal-weighted benchmarks.

Future research directions.

- (i) Extend beyond Gaussian returns, e.g., heavy tails or regime shifts.
- (ii) Incorporate transaction costs into the objective or constraints.
- (iii) Develop adaptive rules for calibrating the return target c.

These extensions would further enhance the practicality of large-deviation portfolio design.

References

- [1] Boyd, S., Johansson, K., Kahn, R., Schiele, P., & Schmelzer, T. (2024). Markowitz portfolio construction at seventy. *Journal of Portfolio Management*, 50(8), 117–160.
- [2] Dembo, A., & Zeitouni, O. (1998). Large Deviations Techniques and Applications (2nd ed.). Springer.
- [3] Pham, H. (2003). A large deviations approach to optimal long term investment. Finance and Stochastics, 7(2), 169–195.
- [4] Stutzer, M. (2003). Portfolio choice with endogenous utility: a large deviations approach. *Journal of Econometrics*, 116(1–2), 365–386.
- [5] Boyle, P., Feng, S., & Tian, W. (2007). Large-deviation techniques and financial applications. In J. R. Birge & V. Linetsky (Eds.), Handbooks in Operations Research and Management Science: Financial Engineering (Vol. 15, pp. 971–1000). Elsevier.