Lecture 1: Introduction and Preliminaries

Reference: Ben Green's notes.

Tentative Plan: (1) Advanced Fourier analysis = especially for students in the 3+X Program.

(2) Additive number theory in the (covering Goldbach Conjecture).

(3) Additive Combinatorics.

31 Highlights of the Course

A Item (Lagrange) Every positive integer can be written as the sum of 4 squares of integers: $n = n_1^2 + n_2^2 + n_3^2 + n_4^2$.

(B) Ihm (Waring's Problem: Hilbert & Hardy-Littlewood).

For every k>2, BS 3.t. $\forall n \in \mathbb{Z}$, $\exists n_1, ..., n_s \in \mathbb{Z}_{>0}$, $n = \sum_{i=1}^{s} n_i^k$ (5 kth powers of nonnegative ints).

(Thm (Roth) Let A = N have positive upper density,
i.e. linsup \frac{|An[1,NJ|]}{N} > 0.

Then A contains infinitely many nontrivial 3-term arithmetic progression.

(that is $|A+A| \le |K|A|$ for some $|K| \ge 1$.)

D Itm (Freiman) Let $A \le \mathbb{Z}$ be a set of <u>small doubling</u>

Then A is contained in a generalized arithmetic progression Psuch that $\dim |P| \ge \dim |P|/|A|$ are both bounded in terms of |K|.

32 Landau and Vinegrador Notation

The following notation will be used extensively.

· A = O(B) if = const (20) s.t. |A| = C|B|.

· Usually, A = A(x), B = B(x). (And we're interested in $x \to \infty$.)

E.g. P(x) = O(Q(x)) whenever day P < day Q, sin x = O(1) $(x \to \infty)$. Note: We also denote A = O(B) by $A \ll B$ or $B \gg A$.

E.g. $x^{1-\epsilon} (x) \frac{x}{\log x} \ll x \ll \frac{x}{\log x} - \log x \ll x^2 (x \to \infty)$. $C = C(\epsilon)$ We denote A = o(B) if $B(x)/A(x) \to 0$ or $x \to \infty$. this differs from the note in Calculus.

 $f(x) = \frac{1}{\log x} = o(1), \quad \log x = x^{o(1)} \quad (x \to \infty)$

33 Preliminaries: Fourier Transform

We will need the Fourier transform on 3 groups (2/92, Z.R). Bosic knowledge of what there are and how they work is essential (but we don't need their finer properties).

A Fourier transforms

(1) If f: Z/qZ → C. Lefine

$$f(r) := \frac{1}{x \in \mathbb{Z}/4\mathbb{Z}} f(x) e(-\frac{rx}{|\mathcal{T}|}), \quad e(x) := e^{2\pi i x}.$$

(2) If $f: \mathbb{Z} \to \mathbb{C}$ is "rice", define

$$\widehat{f}(0) := \sum_{n \in \mathbb{Z}} \widehat{f}_{(n)} e(-n0).$$

(3) If $f: \mathbb{R} \to \mathbb{C}$ is "rice". define $f(\S) := \int_{\mathbb{R}} f(x) e(-\S x) dx$.

B Parseval's formula

(This is perhaps the most important property for us).

(1) If
$$f: \mathbb{Z}/q\mathbb{Z} \to \mathbb{C}$$
, we have
$$\sum_{r \in \mathbb{Z}/q\mathbb{Z}} |\widehat{f}(r)|^2 = \frac{1}{q} \sum_{x \in \mathbb{Z}/q\mathbb{Z}} |\widehat{f}(n)|^2.$$
(2) If $f: \mathbb{Z} \to \mathbb{C}$ is "rice", we have
$$\int_0^1 |\widehat{f}(0)|^2 d0 = \sum_{n \in \mathbb{Z}} |\widehat{f}(n)|^2.$$
(3) If $f: \mathbb{R} \to \mathbb{C}$ is "rice", we have
$$\int_{\mathbb{R}} |\widehat{f}(3)|^2 d3 = \int_{\mathbb{R}} |f(x)|^2 dx.$$