Sistema Gerenciador de Banco de Dados

Banco de Dados

Aumento na quantidade de informações

Dados e Informação

Dado

- Registro
 - Nome, Idade, Peso, Número de acessos a tal site, ...
- Material bruto que precisa ser manipulado e colocado em um contexto compreensivo antes de se tornar útil

Dados e Informação

Informação

- Dado depois de processado e contextualizado
 - Dados -> Nome: "Rafael", Idade: "24"
 - Informação -> Rafael tem 24 anos
- Por meio da informação, as pessoas adquirem conhecimento, que subsidia a tomada de decisões

Informação

A obtenção de informações depende de como os dados são:

- armazenados
- organizados
- acessados

Quando gerenciados adequadamente, os dados se tornam as informações em que as decisões se baseiam.

Banco de dados

O que é um **Banco de Dados**?

- Coleção organizada de dados normalmente armazenados eletronicamente em um sistema de computador
- Conjunto de dados relacionados

SGBD - Sistema Gerenciador de Banco de Dados

O que é um SGBD?

- Database Management System (DBMS)
- Banco de dados associado a um conjunto de programas para gerenciar esse banco de dados
- Software projetado para armazenar e manipular de forma eficiente grandes quantidades de dados
- Camada existente entre os dados e os usuários Isola os usuários dos detalhes de hardware

Sistema de Banco de Dados

SGBD Banco de Dados Base de Dados

Usuário

Aplicação

Sistema de Banco de Dados Às vezes abreviado para Banco de Dados

SGBD

Objetivos de um SGDB

As funções principais de um SGBD são apresentadas a seguir:

- Gerenciar grandes blocos de informação
- Definir estruturas para o armazenamento
- Fornecer mecanismos para a manipulação de informações
- Garantir a segurança das informações

Composição de um SGBD

Um Sistema Gerenciador de Banco de Dados é formado por 4 partes:

- Base de dados
- Sistema gerenciador
- Linguagem de exploração
- Programas adicionais

Vantagens e desvantagens de SGBDs

	Vantagens		Desvantagens
1.	Eliminação de redundâncias	1.	Elevado custo com os softwares
2.	Compartilhamento de dados	2.	Equipe altamente capacitada
3.	Controle de acesso	3.	Elevado overhead. (Depende)
4.	Controle de transações		
5.	Restrições de integridade		
6.	Backup e recuperação de dados		
7.	Independência de Dados		
8.	Padronização dos dados		
9.	Eliminação de inconsistências		

Afinal, há razões para não usar SGBDs?

Sim!

- Desempenho inadequado para aplicações em tempo real
- Manipular dados em um formato não suportado por uma linguagem de consulta

Tipos de Banco de Dados

Existem vários tipos de BD:

- Relacional
- Orientado a Objetos
- Multimídia
- Geográfico
- Entre outros...

Tipos de Banco de Dados

Existem vários tipos de BD:

- Relacional ← Vamos estudar este
- Orientado a Objetos
- Multimídia
- Geográfico
- Entre outros...

Principais SGBDs

Principais SGBDs

BD Relacional

Dados armazenados em tabelas (relações ou entidades) devidamente relacionadas e identificadas

Tabelas Relas des Entidades Estrutura de um BD relacional **Banco de Dados Atributos Tuplas**

Conceitos importantes

Instância

 Coleção de informações armazenadas no BD em um determinado momento

Esquema

 Descrição do BD (projeto), incluindo as entidades e os relacionamentos entre estas

Modelo Relacional

Exercício 1

Usando o modelo relacional, construa uma representação da universidade:

Consultas em um SGBD

SGBDs relacionais permitem a realização de diferentes questionamentos/pedidos sobre os dados:

Quantos estudantes estão matriculados em Banco de dados

Essas questões são chamadas Queries

Para executar queries usamos uma linguagem de consulta:

Standard Query Language (SQL)

Standard Query Language - SQL

Linguagem de consulta padrão para BDs relacionais:

DML - Linguagem de Manipulação de Dados

DDL - Linguagem de Definição de Dados

DCL - Linguagem de Controle de Dados

DTL - Linguagem de Transação de Dados

DQL - Linguagem de Consulta de Dados

Álgebra Relacional

A Álgebra Relacional é um linguagem de consulta formal

- Forma de cálculo sobre conjuntos ou relações
- Mais alto nível que linguagens de programação
- SQL é inspirado na Álgebra Relacional

Podemos planejar uma consulta com a álgebra e executar com uma linguagem de programação sobre um BD

Álgebra Relacional

Quadro Resumo de Operações/Operadores em Álgebra Relacional:

OPERAÇÃO	SÍMBOLO	SINTAXE
Projeção	π ("pi")	π clista de campos> (Tabela)
Seleção/ Restrição	("sigma")	σ <condição de="" seleção=""> (Tabela)</condição>
União	U	(Tabela 1) ∪ (Tabela 2)
Interseção	\cap	(Tabela 1) ∩ (Tabela 2)
Diferença		(Tabela 1) – (Tabela 2)
Produto Cartesiano	X	(Tabela 1) X (Tabela 2)
Junção	X	(Tabela 1) X <condição de="" junção=""> (Tabela 2)</condição>
Divisão	÷	(Tabela 1) ÷ (Tabela 2)
Renomeação	P ("rho")	ρ Nome(Tabela)
Atribuição	←	Variável ← Tabela

Álgebra Relacional - Projeção π

Operação unária que especifica o conjunto de atributos (colunas) a ser selecionado

Ex. $\pi_{Idade, Senha}$ (Usuarios)

Nome	Idade	Senha
Pedro	12	1234
Laura	31	GG54k
Marcia	17	12senha34

Álgebra Relacional - Projeção π

Operação unária que especifica o conjunto de atributos (colunas) a ser selecionado

Ex. $\pi_{Idade, Senha}$ (Usuarios)

Idade	Senha
12	1234
31	GG54k
17	12senha34

Nome	Idade	Senha
Pedro	12	1234
Laura	31	GG54k
Marcia	17	12senha34

Álgebra Relacional - Seleção σ (Sigma)

Operação unária que seleciona todas as tuplas presentes na tabela argumento, que satisfazem a condição estabelecida

Ex. $\sigma_{\text{Idade} > 17}$ (Usuarios)

Nome	Idade	Senha
Pedro	12	1234
Laura	31	GG54k
Marcia	17	12senha34

Álgebra Relacional - Seleção σ (Sigma)

Operação unária que seleciona todas as tuplas presentes na tabela argumento, que satisfazem a condição estabelecida

Ex. $\sigma_{\text{Idade} > 17}$ (Usuarios)

Nome	Idade	Senha
Laura	31	GG54k

Nome	Idade	Senha
Pedro	12	1234
Laura	31	GG54k
Marcia	17	12senha34

Álgebra Relacional - Interseção ∩

A intersecção de duas tabelas A e B é o conjunto de todas as tuplas pertencentes a tabela A que também pertencem à tabela B

Ex. Hackeados ∩ Usuarios

Tabela: "Hackeados"

Nome	Senha
Pedro	1234
Marcia	12senha34
Marcos	2564

Nome	Senha
Pedro	1234
Laura	GG54k
Marcia	12senha34

Álgebra Relacional - Interseção ∩

A intersecção de duas tabelas A e B é o conjunto de todas as tuplas pertencentes a tabela A que também pertencem à tabela B

Ex. Hackeados ∩ Usuarios

Nome	Senha
Pedro	1234
Marcia	12senha34

Tabela: "Hackeados"

Nome	Senha
Pedro	1234
Marcia	12senha34
Marcos	2564

Tabela: "Usuarios"

Nome	Senha
Pedro	1234
Laura	GG54k
Marcia	12senha34

Álgebra Relacional - Operações Consecutivas

Podemos aplicar operações consecutivas a uma tabela:

Ex. $\pi_{Idade, Senha}$ ($\sigma_{Idade > 17}$ (Usuarios))

Idade	Senha
31	GG54k

Nome	Idade	Senha
Pedro	12	1234
Laura	31	GG54k
Marcia	17	12senha34

Álgebra Relacional - Exercício

Utilizando álgebra relacional, gere uma tabela contendo o nome de todos os usuários Hackeados com idade menor que 25 anos

Tabela: "Hackeados"

Nome	Senha	Data
Pedro	1234	27/04/2015
Marcia	NovaSenha	06/08/2000
Marcos	2564	01/01/1942

Tabela: "Usuarios"

Nome	Idade	Senha
Pedro	12	1234
Laura	31	GG54k
Marcia	17	12senha34

Lembrando: $\pi_{Idade, Senha}$ (Usuarios) | $\sigma_{Idade > 17}$ (Usuarios) | Hackeados \cap Usuarios

Álgebra Relacional - Resposta

Utilizando álgebra relacional, gere uma tabela contendo o nome de todos os usuários Hackeados com idade menor que 25 anos

Tabela: "Hackeados"

Nome	Senha	Data
Pedro	1234	27/04/2015
Marcia	NovaSenha	06/08/2000
Marcos	2564	01/01/1942

Tabela: "Usuarios"

Nome	Idade	Senha
Pedro	12	1234
Laura	31	GG54k
Marcia	17	12senha34

Resposta: $\pi_{Nome}(\pi_{Nome,Senha}(Hackeados) \cap \pi_{Nome,Senha}(\sigma_{Idade < 25}(Usuarios)))$

Instalação do MySQL

Em Linux (Ubuntu 20):

https://www.digitalocean.com/community/tutorials/how-to-install-mysql-on-ubuntu-20-04-pt

Para arrumar conexão:

https://askubuntu.com/questions/1242026/cannot-connect-mysql-workbenchto-mysql-server

Instalação do MySQL

Em Windows: