AC297r Fall 2019 Final Presentation

Optimal Real-time Scheduling for Black Hole Imaging

EHT Group: Queena, Shu, Yiming

Advisor: Cecilia

Outline

- Background
- Problem Statement
- Data
- Model Design
- Model Evaluation
- Software Demonstration
- Reflection

Background

The Event Horizon Telescope is an international collaboration capturing images of black holes using a virtual Earth-sized telescope.

Background

Problem Statement

We are going to build a model that can:

- 1. In total, choose 5 days from a 10-day window
- 2. On each day, determine the optimal strategy for future remaining days
- 3. If possible, provide a confidence level on its suggestion
- 4. Also provide the second optimal strategy

Motivations

- 1. Improve the decision making process
- 2. Increase the chance of capturing the black hole

Data Source

GFS provides:

- Atmosphere's condition
- Layer-by-layer
- All over the globe

We pull data every 6 hours specifying:

- Longitude
- Latitude
- Altitude

EDA

- Every 6 hours, we get 16-day atmosphere forecast from GFS.
- First 5-day forecast is pretty accurate.
- Variables: Tau_225(absorption directly above head, the lower the better), PWV, LWP, IWP (amount of water in different forms), O3

Model Design: Baseline

Reward functions:

$$f(i) = -\mathbb{E}_{T_i}[\tau_{225}]$$

$$F(d) = \frac{1}{r_1^2 + \dots + r_n^2} [r_1^2 f(1), \dots, r_n^2 f(n)]^T \times \mathbf{D} \times \mathbf{1}$$

Symbols

- i: a telescope
- T_i: observation window
- r_i: radius of telescope i
- D: baseline length matrix

Baseline Optimization Method

Day1	Day2	Day3	Day4	Day5	Day6	Day7	Day8	Day9	Day10
19.03	13.93	16.24	16.38	18.80	12.99	17.02	19.03	18.81	14.06
	Day2	Day3	Day4	Day5	Day6	Day7	Day8	Day9	Day10
	18.82	11.04	19.07	13.06	14.46	15.90	18.37	16.98	18.30
		Day3	Day4	Day5	Day6	Day7	Day8	Day9	Day10
		10.21	17.67	14.48	11.21	19.31	16.50	11.41	12.22
			Day4	Day5	Day6	Day7	Day8	Day9	Day10
			18.97	17.30	17.83	17.42	14.64	16.43	12.25

Uncertainty I: Method 1

Uncertainty I only depends on how far in the future the GFS is predicting for.

Method 1: discount factor

Day1	Day2	Day3	Day4	Day5	Day6	Day7	Day8	Day9	Day10
-1.90	-1.39	-1.62	-1.64	-1.88	-1.29	-1.70	-1.90	-1.88	-1.41
×	(1 + r)	(1+r) ²	(1+r) ³	(1+r) ⁴	(1+r) ⁵	(1+r) ⁶	(1+r) ⁷	(1+r) ⁸	(1+r) ⁹

Uncertainty I: Method 2

Uncertainty I only depends on how far in the future the GFS is predicting for.

Method 2: forecast penalty

For a single telescope i on day d:

t: how far is day d from the current

Uncertainty II: Method 3

Uncertainty II only depends on the date for which the forecast is being made.

Method 3: prediction difficulty of specific time

For a single telescope i on day d:

$$latest(f_{i,d}) \times e^{penalty_term*RMSE_{i,d}}$$
penalty term

Uncertainty II: Method 4

Uncertainty II only depends on the date for which the forecast is being made.

Method 4: sampling from normal distribution

For a single telescope i on day d:

reward $\sim \mathbb{N}(latest(f_{i,d}), RMSE_{i,d})$

Parameters Tuning and Models Evaluation

Model Evaluation

Choose 5 days From Nov.09 - Nov.18, 2019

Model	Nov 09	Nov 10	Nov 11	Nov 12	Nov 13	Nov 14	Nov 15	Nov 16	Nov 17	Nov 18	Average Reward
Ground-Truth Best											-0.124
Random Pick	-	-	-	-	-	-	-	-	-	-	-0.176
Baseline											-0.137
Discount Factor											-0.124
Forecast Penalty											-0.124
Prediction Difficulty of Specific Time											-0.124
Sampling from Normal											-0.137

Model Evaluation

Metrics

- MSE of average reward compared with best path
- Relative score computed from average reward:
 (model random)/(best random), which ranges from 0 to 1

Results

	MSE	Relative Score (0-1)		
Method 3 (prediction difficulty of specific time) with penalty = 1	0.0000 <mark>15</mark>	0.957		
Method 2 (forecast penalty) with penalty = 0.6	0.000016	0.955		
Method 1 (discount factor) with penalty = 0.03	0.000017	0.952		
Method 4 (sampling from distribution)	0.0000 <mark>28</mark>	0.951		
Baseline Method	0.000028	0.951		
Random Pick	0.003107	0.0		

Software Demonstration

Phase II

Meet the EHT Team for the first time. Slowly gathering data. Fancy models won't work. Redesigning simple models that best solve the issue.

Phase I

No data. Fancy model designs in mind. Had lots of questions about the problem itself.

Phase III

3 Gathered second thoughts from the EHT. Learned to build GUI and functional software. Cannot truly tune hyperparameter due to lack of data.

Thank you!

Any questions?