КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА И ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА ТВЕРДЫХ РАСТВОРОВ ВаFe_{1-x}Gd_xO_{3-δ}

Гайфутдинова П.М., Волкова Н.Е., Гаврилова Л.Я. Уральский федеральный университет 620002, г. Екатеринбург, ул. Мира, д. 19

Сложные оксиды со структурами перовскита и его производных, образующиеся в системах ${}^{1}\!\!/_2 Ln_2 O_3$ -ВаO- ${}^{1}\!\!/_2 Fe_2 O_3$, вызывают интерес благодаря высоким значениям смешанной электронной и кислород-ионной проводимости, умеренным значениям коэффициента термического расширения и стабильности в окислительной атмосфере. Такой набор свойств позволяет использовать эти материалы в качестве катодов высокотемпературных твердооксидных топливных элементов, кислородопроницаемых мембран, химических сенсоров и катализаторов и др. Многие важнейшие физико-химические свойства оксидов зависят не только от природы и соотношения катионов, образующих данный оксид, но и от содержания кислорода, которое может существенно изменяться при варьировании температуры и давления кислорода. Настоящая работа посвящена изучению кристаллической структуры, кислородной нестехиометрии и физико-химических свойств твердых растворов Ва $Fe_{1-x}Gd_xO_{3-\delta}$.

Синтез образцов для исследования общего состава $BaFe_{1-x}Gd_xO_{3-\delta}$ проводили по глицерин-нитратному методу. В качестве исходных компонентов для синтеза использовали Gd_2O_3 , $BaCO_3$, $FeC_2O_4\cdot 2H_2O$. Полученный порошок, отжигали при $1100^{\circ}C$ с промежуточными перетираниями в среде этилового спирта; общее время синтеза составило 120 часов. Фазовый состав синтезированных образцов контролировали методом рентгенофазового анализа с помощью дифрактометра Equinox-3000.

Согласно данным рентгенофазового анализа установлено, что твёрдые растворы $BaFe_{1-x}Gd_xO_{3-\delta}$ образуются однофазными в интервале составов $0 \le x \le 0.15$. Кристаллическая структура однофазных образцов была описана в рамках кубической элементарной ячейки (пр. гр. Pm3m). Показано, что замещение ионов железа на ионы гадолиния приводит к увеличению параметров и объема элементарной ячейки твёрдого раствора, что связано с большим радиусом Gd^{3+} по сравнению с Fe^{3+} .

Кислородная нестехиометрия всех однофазных образцов была изучена методами высокотемпературной термогравиметрии. Показано, что образцы $BaFe_{1-x}Gd_xO_{3-\delta}$ начинают обмениваться кислородом с атмосферой при температуре выше 350 °C. Абсолютное значение содержания кислорода было определено методом полного восстановления образцов в токе водорода.

Термическое расширение, общая электропроводность и коэффициент термо-ЭДС всех образцов были изучено на воздухе в зависимости от температуры.