PHƯƠNG TRÌNH MẶT PHẮNG (PHẦN 3)

<u>VẤN ĐỀ 3: KHOẢNG CÁCH TỪ ĐIỂM ĐẾN MẶT PH</u>ẨNG

• Cho điểm $M(x_0; y_0; z_0)$ và mặt phẳng (P): Ax + By + Cz + D = 0. Khi đó, khoảng cách từ M đến (P) được tính theo công thức:

$$d(M;(P)) = \frac{|Ax_0 + By_0 + Cz_0 + D|}{\sqrt{A^2 + B^2 + C^2}}$$

- Đặc biệt: $+ d(M;(Oxy)) = |z_0|$
 - $+ d(M;(Oyz)) = |x_0|$
 - + $d(M;(Oxz)) = |y_0|$

Câu 1: Trong không gian Oxyz, cho điểm M(2,3,-4). Tính khoảng cách từ M đến mặt (Oxy)

A.2

B.4

C.3

D.5

Câu 2: Trong không gian Oxyz, cho điểm M(-3,2,4). Tính khoảng cách từ M đến Oyz

A.2

D.4

Câu 3: Trong không gian Oxyz, cho điểm A(-1;2;3). Khoảng cách từ A đến mặt phẳng (Oxz) là

A.1

- nâng tầm trị $\mathbb{C}_{\mathbf{v}}\sqrt{10}$ ẫn lối tương la $\mathbf{D}_{\mathbf{v}}$ 3

Câu 4: (ĐỀ MINH HỌA 2017) Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) có phương trình 3x+4y+2z+4=0 và điểm A(1;-2;3). Tính khoảng cách d từ A đến (P)

- **A.** $d = \frac{5}{20}$
- **B.** $d = \frac{5}{9}$
- **C.** $d = \frac{\sqrt{5}}{3}$ **D.** $d = \frac{5}{\sqrt{29}}$

Câu 5: Trong không gian Oxyz, khoảng cách từ gốc tọa độ O đến mặt phẳng x+2y-2z-12=0 bằng

A. 12

B. 4

- C. $\frac{4}{2}$
- **D**. $-\frac{4}{2}$

Câu 6: Trong không gian Oxyz, cho điểm A(1;-2;3) và mặt phẳng (P) có phương trình x+2y-2z+m=0.

Tìm các giá trị của m, biết rằng khoảng cách từ A đến mặt phẳng (P) bằng 1:

A. m = 12;

B. m = 18;

C. m = 18 hoăc m = 0

D. m = 12 hoăc m = 6

Câu 7: Trong không gian Oxyz, cho tứ diện ABCD với A(1;-2;0), B(3;3;2), C(-1;2;2), D(3;3;1). Độ dài đường cao của tứ diện ABCD hạ từ đỉnh D xuống mặt phẳng (ABC) bằng

- A. $\frac{9}{7\sqrt{2}}$.
- **B.** $\frac{9}{7}$.
- $C_{\bullet} \frac{9}{14}$.
- **D.** $\frac{9}{\sqrt{2}}$.

Shared By Fanpage: Tài Li u Khóa h c UniMap

Câu 8: (ĐỀ THAM KHẢO 2019) Trong không gian Oxyz, khoảng cách giữa hai mặt phẳng

(P): x+2y+2z-10=0 và (Q): x+2y+2z-3=0 bằng:

A.
$$\frac{4}{3}$$

B.
$$\frac{8}{3}$$

B.
$$\frac{8}{3}$$
. **C.** $\frac{7}{3}$.

Câu 9: Trong không gian với hệ tọa độ Oxyz, tính khoảng cách giữa hai mặt phẳng song song

$$(\alpha): x-2y-2z+4=0$$
 và $(\beta): -x+2y+2z-7=0$.

Câu 10: Trong không gian Oxyz, cho hai mặt phẳng (P): x+2y-2z+1=0 và (Q): 2x+4y+az+b=0.

Tìm a và b sao cho khoảng cách giữa hai mặt phẳng đó bằng 1:

A.
$$a = -4, b = 8$$

B.
$$a = -4, b = 8$$
 hoặc $b = -4$

C.
$$a = -2, b = 38$$
 hoặc $b = -34$

D.
$$a = -4$$
, $b = 38$ hoặc $b = -34$

Câu 11: Lập phương trình mặt phẳng (P) có vecto pháp tuyến $\overrightarrow{n}_p = (1, 2, -2)$, biết khoảng cách từ A(1, 2, 3)đến (P) bằng 2

A.
$$\begin{bmatrix} x+2y-2z-7=0 \\ x+2y-2z+5=0 \end{bmatrix}$$
 B.
$$x+2y-2z+5=0$$
 C.
$$\begin{bmatrix} x+2y-2z+7=0 \\ x+2y-2z-5=0 \end{bmatrix}$$
 D.
$$x+2y-2z+7=0$$

Câu 12: Lập phương trình mặt phẳng (R) song song với (P): x+2y+2z+3=0. Biết khoảng cách từ M(1;-2;2) đến (R) bằng 6

A.
$$\begin{bmatrix} x + 2y + 2z + 17 = 0 \\ x + 2y + 2z - 19 = 0 \end{bmatrix}$$

C.
$$\begin{cases} x + 2y + 2z - 17 = 0 \\ x + 2y + 2z + 19 = 0 \end{cases}$$

A.
$$\begin{bmatrix}
x + 2y + 2z + 17 = 0 \\
x + 2y + 2z - 19 = 0
\end{bmatrix}$$
B.
$$\begin{bmatrix}
x + 2y + 2z + 17 = 0 \\
x + 2y + 2z + 19 = 0
\end{bmatrix}$$
C.
$$\begin{bmatrix}
x + 2y + 2z - 17 = 0 \\
x + 2y + 2z + 19 = 0
\end{bmatrix}$$
D.
$$\begin{bmatrix}
x + 2y + 2z - 17 = 0 \\
x + 2y + 2z - 19 = 0
\end{bmatrix}$$

NÂNG TẨM TRỊ THÚ
$$\begin{bmatrix} x + 2y + 2z - 17 = 0 \\ x + 2y + 2z - 19 = 0 \end{bmatrix}$$

Câu 13: (Xem HD giải ở cuối) Trong không gian Oxyz, cho các điểm A(0;1;1), B(2;5;-1). Tìm phương trình mặt phẳng (P) song song đường thẳng AB và trục hoành, đồng thời cách điểm M(1;1;-2) một khoảng bằng $\sqrt{5}$

A.
$$y+2z+2=0$$
; $y+2z-8=0$

B.
$$y+2z-2=0$$
; $y+2z+8=0$

C.
$$y-2z-2=0$$
; $y-2z+8=0$

D.
$$-y+2z-2=0$$
; $-y+2z+8=0$

Câu 14: Trong không gian với hệ tọa độ Oxyz cho hai mặt phẳng $(\alpha):3x-2y+2z+7=0$ và (β) : 5x-4y+3z+1=0. Phương trình mặt phẳng cách điểm O một khoảng bằng 1 đồng thời vuông góc với cả (α) và (β) có phương trình là:

A.
$$\begin{bmatrix} 2x + y - 2z + 3 = 0 \\ 2x + y - 2z - 4 = 0 \end{bmatrix}$$
C.
$$\begin{bmatrix} -2x + y - 2z + 3 = 0 \\ -2x + y - 2z - 3 = 0 \end{bmatrix}$$

C.
$$\begin{bmatrix} -2x + y - 2z + 3 = 0 \\ -2x + y - 2z - 3 = 0 \end{bmatrix}$$

B.
$$\begin{bmatrix} 2x + y - 2z + 1 = 0 \\ 2x + y - 2z - 1 = 0 \end{bmatrix}$$

B.
$$\begin{bmatrix} 2x + y - 2z + 1 = 0 \\ 2x + y - 2z - 1 = 0 \end{bmatrix}$$
D.
$$\begin{bmatrix} 2x + y - 2z + 3 = 0 \\ 2x + y - 2z - 3 = 0 \end{bmatrix}$$

Câu 15: Trong không gian Oxyz cho A(2;0;0), B(0;4;0), C(0;0;6), D(2;4;6). Gọi (P) là mặt phẳng song song với mặt phẳng (ABC), (P) cách đều D và mặt phẳng (ABC). Phương trình của (P) là

A.
$$6x + 3y + 2z - 24 = 0$$

B.
$$6x+3y+2z-12=0$$

C.
$$6x + 3y + 2z = 0$$

D.
$$6x+3y+2z-36=0$$

Shared By Fanpage: Tài Li u Khóa h c UniMap

Câu 16: Trong không gian Oxyz, cho 3 điểm A(1;0;0), B(0;-2;3), C(1;1;1). Gọi (P) là mặt phẳng chứa A, B sao cho khoảng cách từ C tới mặt phẳng (P) bằng $\frac{2}{\sqrt{3}}$. Phương trình mặt phẳng (P) là

A.
$$\begin{cases} 2x + 3y + z - 1 = 0 \\ 3x + y + 7z + 6 = 0 \end{cases}$$

A.
$$\begin{bmatrix} 2x+3y+z-1=0\\ 3x+y+7z+6=0 \end{bmatrix}$$
C.
$$\begin{bmatrix} x+y+2z-1=0\\ -2x+3y+7z+23=0 \end{bmatrix}$$

B.
$$\begin{bmatrix} x+2y+z-1=0\\ -2x+3y+6z+13=0 \end{bmatrix}$$

D.
$$\begin{bmatrix} x+y+z-1=0\\ -23x+37y+17z+23=0 \end{bmatrix}$$

BẢNG ĐÁP ÁN

1.B	2.B	3.B	4. D	5.B	6.D	7.A	8.C	9.D	10.B
11.C	12.A	13.B	14.D	15.A	16.D				

Shared By Fanpage: Tài Li u Khóa h c UniMap

Câu 13: Trong không gian Oxyz, cho các điểm A(0;1;1), B(2;5;-1). Tìm phương trình mặt phẳng (P) song song đường thẳng AB và trục hoành, đồng thời cách điểm M(1;1;-2) một khoảng bằng $\sqrt{5}$

A.
$$y+2z+2=0$$
; $y+2z-8=0$

B.
$$y+2z-2=0$$
; $y+2z+8=0$

C.
$$y-2z-2=0$$
; $y-2z+8=0$

D.
$$-y+2z-2=0$$
; $-y+2z+8=0$

Lời giải:

• Ta có
$$\begin{cases} A(0;1;1) \\ B(2;5;-1) \end{cases} \Rightarrow \overrightarrow{AB} = (2;4;-2) \text{ và trục hoành } Ox \text{ có vecto đơn vị } \overrightarrow{i} = (1;0;0)$$

- Vì mặt phẳng (P) song song với đường thẳng AB và trục hoành nên mặt phẳng (P) nhận vector ABvà vecto \vec{i} làm vecto chỉ phương

$$\Rightarrow \overrightarrow{n_P} = \left[\overrightarrow{AB}; \overrightarrow{i}\right] = (0; -2; -4)$$

- Khi đó phương trình mặt phẳng (P) có dạng: -2y-4z+D=0
- Khoảng cách từ điểm M(1;1;-2) đến mặt phẳng (P) được tính theo công thức:

$$d(M;(P)) = \frac{|0.1 + (-2).1 + (-4).(-2) + D|}{\sqrt{(-2)^2 + (-4)^2}} = \frac{|D+6|}{2\sqrt{5}}$$

- Mà đề bài cho
$$d(M; (P)) = \sqrt{5} \Leftrightarrow \frac{|D+6|}{2\sqrt{5}} = \sqrt{5} \Leftrightarrow |D+6| = 10 \Leftrightarrow \begin{bmatrix} D+6=-10 \\ D+6=10 \end{bmatrix} \Leftrightarrow \begin{bmatrix} D=-16 \\ D=4 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} (P): -2y - 4z - 16 = 0 \\ (P): -2y - 4z + 4 = 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} (P): y + 2z + 8 = 0 \\ (P): y + 2z - 2 = 0 \end{bmatrix}$$
Chon B.

Chon B.