

Agenda

- Background Information and Data Exploration
- Summary of Models
- Recommendation

06 Sep 2020 15:46Z NESDIS/STAR GOES-West GEOCOLOR

Seasonality

Seasonality

Classification Models

Classification Models

Accuracy:

Natural - 44% Accidental - 66% Malicious - 0% Other - 47%

Accuracy:

Natural - 81% Accidental - 62% Malicious - 31% Other - 42%

Accuracy:

Natural - 0% Accidental - 0% Malicious - 0% Other - 100%

Next Steps

Incorporate weather data

Incorporate newer fires

Forest conditions

Try a neural network

More Information for a Technical Audience

Modeling

13 Classes

- n

- 06

- 0.5

- 0.4

- 0.3

- 0.2

- 0 1

- 0.1

-00

4 Classes

- 0.8

- 0.7

- 0.6

- 0.5

- 0.4

- 0.3

- 0.2

- 0.1

Comparing All Three Models

Model	Baseline Score	Accuracy Score - Train	Accuracy Score - Test	CrossValScore - Train	CrossValScore - Test
Logistic Regression - 13 Classes	0.274	0.340	0.342	0.340	0.344
Logistic Regression - 4 Classes	0.413	0.500	0.500	0.500	0.495
KNN - 13 Classes	0.274	0.600	0.420	0.340	0.344
KNN - 4 Classes	0.413	0.683	0.546	0.497	0.495
Random Forest - 13 Classes	0.274	0.999	0.489	0.483	0.457
Random Forest - 4 Classes	0.413	0.999	0.614	0.607	0.582

Unsupervised Learning Experiments

Clustering with K Means

Methodology

My methodology includes the following steps:

- Standardize the data
- Consolidate the features using principal component analysis
- Determine the optimal number of K clusters using the elbow method
- Instantiate a K Means model
- Observe the results with a scatter plot
- Evaluate the result with a cluster report

Model Summary

Clustering Model Version	# of PCA Features	Variance Explained by PCA	# of K CLusters	Silhoutee Score
Α	2	60%	6	0.358
В	0	n/a	6	0.232
С	3	80%	4	0.366

Model C - Principal Component Analysis

Model C - Principal Component Analysis

component vs cumulative variance explained

Summary of Clusters

Cluster Summary:

- Cluster 0: These are fires before 2003 and discovered in the second half of their year. They are primarily located in the north and west parts of the state.
- Cluster 1: These fires are all located in southern California. Location is its only attribute.
- Cluster 2: This is a very small cluster of only 40 fires that did not fit with the other clusters. They represent the largest fires.
- Cluster 3: These are primarily fires located in northern California that were discovered earlier in the year.

Pairplot Analysis

Location and Day of Discovery

Cluster 2 has Bigger Fires

Average Fire Size of Each Cluster

Interactive Maps and Articles

Why Does California Have So Many Wildfires?

https://archive.is/sOF86#selection-1023.1-1035.239

California Fire Map & Tracker

https://www.sfchronicle.com/projects/california-fire-map/2020-august-complex-fire

California wildfires map

https://www.latimes.com/wildfires-map/?fire=mm-49