Language: MATLAB

Source Code: problem_Lb.m

Here, the used equation to describe the Hopf model is $\dot{\mathbf{r}} = \mathbf{a}\mathbf{r} - \mathbf{r}^3$

In the name code, I have used a=1, $\alpha=0$ and $\alpha=-1$ and captured the respective responses.

On the other Rand, I have used the time intervals [0,20], [0,200], and [0,2000] and captured the respective responses.

All the following responses are captured with initial value r(0) = 70 = 0.001

0=1

time interval [0,20]

time interval [0,200]

time interval [0,2008] a=0

0=-1

For a=-1, if we take the initial value $Y(0)=\pi_0=0.0001$, we see a granular curve for the time interval [0,250]

If we want to abnorve a response that captures the step-up of the Hopf model, we can choose

a=1, time interval = [0,200] and $r_0=0.0000000000$ and then we find the following response -

 $ar-r^3=0$, when r=0, r=0