

Majeure IMI — Partie 3 — 5ETI

Compression et techniques avancées en image

Tatouage d'images

Eric Van Reeth CPE/CREATIS

Bureau B126A eric.van-reeth@cpe.fr

Contexte

Diffusion de l'information numérique

- → Contrôler la diffusion des images (reproduction, altération)
- → Protection des droits liés à ces images (propriété)

Contexte

Principe du tatouage

Ajout d'une information inséparable du contenu de l'image

Objectif du tatouage

Identification du propriétaire, du copyright

Authentification de l'image

Contrôle de la diffusion (collecte de royalties)

Tatouage visible

Identifier clairement l'appartenance

En général superposé au contenu de l'image

Tiré de [1]. En haut : le tatouage inséré. Bas gauche : l'image tatouée avec α = 0.3. Bas droite : différence entre l'image originale et l'image tatouée

Tatouage visible

Principe d'insertion

$$I_T = (1 - \alpha)I + \alpha T$$

avec T le tatouage inséré dans I pour produire l'image tatouée I_T α contrôle la visibilité relative du tatouage (0 < α \leq 1 en général)

Note: sans T ni α , on ne peux pas retrouver I

Tatouage invisible

Pas d'altération visible du contenu de l'image

Deux familles à distinguer

Tatouage fragile : détruit lors de la moindre modification apportée à l'image → utile pour l'authentification

Tatouage **robuste** : persiste malgré des "attaques" visant à re-

tirer le tatouage → utile pour encoder la propriété

Utilisation des bits de poids faibles

- Soit I une image codée sur 8 bits
- Soit T un tatouage codé sur 8 bits
- Hypothèse: les 2 bits de poids faible n'ont pas d'impact sur notre perception de l'image
- On peut donc les utiliser pour encoder le tatouage via la formule suivante :

$$I_T = 4 \begin{vmatrix} 1 \\ 4 \end{vmatrix} + \begin{vmatrix} 1 \\ 64 \end{vmatrix}$$

Détails de l'insertion du tatouage

La division puis la multiplication par 4 de *I* permet de sousquantifier l'image d'un facteur 4

Seuls 6 bits sont nécessaires pour l'encodage

 \rightarrow Mise à 0 des 2 bits de poids les plus faibles :

Détails de l'insertion du tatouage

- La division par 64 de *T* permet de sous-quantifier le tatouage d'un facteur 64
- Seuls 4 niveaux de gris sont disponibles pour quantifier le tatouage
- \rightarrow Utilisation exclusive des 2 bits de poids les plus faibles

Exemple de résultat

Tiré de [1]. Gauche : Image tatouée. Droite : tatouage obtenu en annulant les 6 bits de poids les plus forts de l'image de gauche

Illustration de la fragilité

Tiré de [1]. Gauche : Image tatouée compressée puis décompressée (JPEG). Droite : tatouage obtenu en annulant les 6 bits de poids les plus forts de l'image de gauche

Objectif

Préserver l'intégrité du tatouage après altération de l'image (attaque)

Types d'attaques (volontaires ou non) :

- · Ajout de bruit ou d'un autre tatouage
- · Impression puis scan
- Compression, rotation, recadrage, filtrage, interpolation

Principe d'insertion

- L'insertion d'un tatouage robuste se fait dans le domaine spatial ou dans un autre domaine (Fourier, ondelettes, DCT)
- Prenons l'exemple de l'insertion d'un tatouage sur les coefficients de la DCT

Insertion dans le domaine de la DCT

1. Calcul de la DCT 2D de l'image à tatouer

- 1. Calcul de la DCT 2D de l'image à tatouer
- 2. Tri des K coefficients de plus forte amplitude : c_1, c_2, \ldots, c_K

- 1. Calcul de la DCT 2D de l'image à tatouer
- 2. Tri des K coefficients de plus forte amplitude : c_1, c_2, \ldots, c_K
- 3. Génération du tatouage en créant un vecteur aléatoire de K valeurs : t_1, t_2, \ldots, t_K

- 1. Calcul de la DCT 2D de l'image à tatouer
- 2. Tri des K coefficients de plus forte amplitude : c_1, c_2, \ldots, c_K
- 3. Génération du tatouage en créant un vecteur aléatoire de K valeurs : t_1, t_2, \ldots, t_K
- 4. Insertion du tatouage dans les K coefficients de plus forte amplitude pour créer un nouveau vecteur de coefficients c' tel que : $c'_i = c_i$. $(1 + \alpha t_i)$ avec $\alpha > 0$ et $i = 1, \ldots, K$

- 1. Calcul de la DCT 2D de l'image à tatouer
- 2. Tri des K coefficients de plus forte amplitude: c_1, c_2, \ldots, c_K
- 3. Génération du tatouage en créant un vecteur aléatoire de K valeurs : t_1, t_2, \ldots, t_K
- 4. Insertion du tatouage dans les K coefficients de plus forte amplitude pour créer un nouveau vecteur de coefficients c' tel que : $c'_i = c_i$. $(1 + \alpha t_i)$ avec $\alpha > 0$ et $i = 1, \ldots, K$
- 5. Calcul de la DCT inverse à partir des coefficients c'_i (avec $c'_i = c_i$ pour i > K) pour obtenir l'image tatouée

Exemple

Tiré de [1]. Gauche : Image tatouée. Insertion du tatouage dans les (K = 1000) coefficients de plus forte amplitude de la DCT $(\alpha = 0.1)$. Droite : Différence entre l'image tatouée et l'originale (projetée sur l'intervalle d'intensité [0, 255]).

Bon niveau de sécurité du tatouage inséré

- ✓ la génération du tatouage à partir de valeurs aléatoires permet d'obtenir un tatouage peu structuré
- √ le tatouage se répartit spatialement dans toute l'image
- ✓ le tatouage étant inséré dans les coefficients DCT de plus forte amplitude, une attaque contre le tatouage affectera forcément le contenu principal de l'image (et ne permettra donc pas sa réutilisation).

Extraction et détection du tatouage

Principe

Les pointillés indiquent qu'il n'est pas toujours nécessaire de fournir *I* et/ou *T* pour extraire *T* (système privé vs. public)

Détection du tatouage

Principe de la détection

- Le décodeur doit être capable de détecter la présence de T, à partir d'images pouvant contenir T, un autre tatouage, ou aucun tatouage (I_{\varnothing})
- Le tatouage extrait (T_b) est corrélé à T afin de déterminer leur niveau de ressemblance
- Au delà d'un seuil de similarité fixé, la décision finale permet de conclure quant à la présence ou non de T dans l'image

Détection du tatouage

Calcul de corrélation

La mesure de similarité entre 2 tatouages peut se faire via le calcul du coefficient de corrélation :

$$\gamma = \frac{\sum_{i=1}^{K} (\hat{t}_i - \bar{\hat{t}})(t_i - \bar{t})}{\sqrt{\sum_{i=1}^{K} (\hat{t}_i - \bar{\hat{t}})^2 \cdot \sum_{i=1}^{K} (t_i - \bar{t})^2}} \quad \text{pour } 1 \le i \le K$$

où t désigne le tatouage inséré connu, \hat{t} le tatouage extrait, et \bar{t} et \bar{t} leurs valeurs moyennes respectives

Détection du tatouage

Exemples d'attaque

Tiré de [1]. Coefficients de corrélation calculés sur des images ayant subi différentes attaques. Haut gauche: compression/décompression/JPEG avec perte (facteur 7). Haut centre : compression/décompression JPEG avec perte (facteur 10). Haut droite : lissage spatial. Bas gauche : Ajout de bruit gaussien. Bas centre : égalisation d'histogramme. Bas droite : rotation.

Bibliographie

R. C. Gonzalez and R. E. Woods.

Digital Image Processing.

Pearson/Prentice Hall, NY, 4th edition, 2018.