Blatt 18: Funktionenfogen und -reihen

1 Funktionenfolgen und punktweise Konvergenz.

Betrachte die folgenden Funktionenfolgen auf den angegeben Definitionsbereichen. Fertige eine Skizze an (Computerunterstützung explizit erwünscht!) und bestimme den punktweisen Limes.

(a)
$$f_n(x) = \frac{\sin(nx)}{n}$$
 $(x \in \mathbb{R})$

(b)
$$f_n(x) = nxe^{-nx} \quad (x \in [0, \infty))$$

(c)
$$f_n(x) = nxe^{-nx}$$
 $(x \in (-\infty, 0])$ (d) $f_n(x) = \sqrt[n]{x}$ $(x \in [0, \infty))$

(d)
$$f_n(x) = \sqrt[n]{x} \quad (x \in [0, \infty))$$

| 2 | Punktweise Konvergenz vs. gleichmäßige Konvergenz, 1.

Gegeben sind die beiden Funktionenfolgen auf \mathbb{R}

$$f_n(x) = \frac{nx}{1 + n|x|}, \qquad g_n(x) = \arctan(nx).$$

Bearbeite die folgenden Punkte für f_n und g_n .

- (a) Skizziere die Funktionenfolgen und bestimme ihren punktweisen Limes.
- (b) Zeige, dass die Konvergenz nicht gleichmäßig ist. Tipp: Vo. 5, 1.12(ii).
- | 3 | Fehlende gleichmäßige Konvergenz explizit.

Die in 2 (b) avisierte Argumentation, das Fehlen der gleichmäßigen Konvergenz zu zeigen, haben wir auch schon in Vo. |5| 1.12(i) für x^n auf [0,1] verwendet. Jetzt wollen wir uns mit Situationen befassen, wo diese Argumentation nicht greift, weil der punktweise Limes stetig ist. Dazu betrachten wir

$$f_n(x) = x^n \quad (x \in [0, 1)), \qquad g_n(x) = \max(n - n^2 | x - \frac{1}{n} |, 0)^1 \quad (x \in \mathbb{R}).$$

Bearbeite folgende Punkte für (f_n) und (g_n) .

- (a) Skizziere die Funktionenfolge, gib die Grenzfunktion an und überzeuge dich davon, dass sie stetig ist.
- (b) Zeichne in der Skizze einen passenden " ε -Streifen" der Grenzfunktion ein und argumentiere anhand der Skizze, warum die Konvergenz nicht gleichmäßig sein kann.
- (c) Beweise, dass die Konvergenz nicht gleichmäßig ist².
- |4| Punktweise Konvergenz vs. gleichmäßige Konvergenz, 2. Gegeben sind die beiden Funktionenfolgen auf \mathbb{R}

$$h_n(x) = \max(n^2 - n^3|x - 1/n|, 0), \qquad k_n(x) = \cos^{2n}(x).$$

¹Keine Panik: das ist nur eine komprimierte Schreibweise für die Funktionenfolge aus Vo. | 5 | 1.4(ii)! ²Für (q_n) haben wir in Vo. [5], Bsp. 1.8 bereits einen Beweis geführt. Versuche dich hier stärker an

⁽b) zu orientieren, um ein etwas kürzeres Argument zu finden.

Bearbeite die folgenden Punkte für h_n und k_n .

- (a) Skizziere die Funktionenfolgen und bestimme ihren punktweisen Limes.
- (b) Zeige, dass die Konvergenz nicht gleichmäßig ist.
- 5 Cauchy Kriterium für die gleichmäßige Konvergenz.

Beweise, dass für eine Funktionenfolge (f_n) auf $A \subseteq \mathbb{R}$ gilt:

- (f_n) konvergiert gleichmäßig $\Leftrightarrow \forall \varepsilon > 0 \ \exists N \in \mathbb{N} \ \forall m, n \geq N : \|f_n f_m\|_{\infty} < \varepsilon$ Tipp: Was drückt die Bedingung auf der rechten Seite aus?
- [6] Funktionenreihen, differenzieren und integrieren.

Betrachte $f_n(x) = \frac{1}{n^2} e^{-nx}$ auf $[0, \infty)$.

- (a) Zeige, dass $\sum_{n=1}^{\infty} f_n$ auf $[0, \infty)$ punktweise und gleichmäßig konvergiert. Tipp: Satz v. Weierstraß, [5], 1.17.
- (b) Berechne $\int_0^1 \sum_{n=1}^\infty f_n(x) dx$. Tipp: 5 Prop. 1.20
- (c) Für welche x konvergiert $\sum_{n=1}^{\infty} f'_n(x)$? Tipp: Quotiententest.
- 7 Normeigenschaften von $\| \|_{\infty}$ und $\| \|_{1}$.
 - (a) Zeige für $f, g \in \mathcal{C}([a, b]), \lambda \in \mathbb{R}$:

 $(N1) \|f\|_{\infty} = 0 \iff f \equiv 0$

(positiv definit)

 $(N2) \|\lambda f\|_{\infty} = |\lambda| \|f\|_{\infty}$

(homogen)

(N3) $||f + g||_{\infty} \le ||f||_{\infty} + ||g||_{\infty}$

(Dreiecksungleichung)

- (b) Welche der Eigenschaften (N1)–(N3) gilt auch für $||f||_1 := \int_a^b |f(x)| \, dx$ (vgl. Vo. $\boxed{5}$ 1.13(iii)) und $f,g:[a,b] \to \mathbb{R}$ Riemann-integrierbar?
- 8 Gleichmäßiger Limes und Integrieren.

Betrachte die Funktionenfolge $(n \ge 1)$

$$f_n: [0,\infty) \to \mathbb{R}, \qquad f_n(x) = \frac{x}{n^2} e^{-x/n}.$$

- (a) Skizziere die Funktionenfolge und bestimme ihren punktweisen Limes.
- (b) Zeige, dass $f_n \to 0$ gleichmäßig. Tipp: Zeige, dass f_n auf [0, n] monoton wächst und auf $[n, \infty)$ monoton fällt. Berechne daraus das globale Maximum von f_n und damit $||f_n||_{\infty}$.
- (c) Zeige, dass für alle n gilt, dass $\int_0^\infty f_n(x)dx = 1$.
- (d) Insgesamt gilt also

$$\lim_{n \to \infty} \int_{0}^{\infty} f_n(x) dx = 1 \neq 0 = \int_{0}^{\infty} \lim_{n \to \infty} f_n(x) dx, \text{ oder?}$$

Steht das nicht im Widerspruch zu 5, Prop. 1.20? Versuche die Situation aufzuklären.

Tipp: Es sind zwei Grenzpozesse involviert. Beachte die Reihenfolge!