Analyzing functional data using R Geno ontology analysis

Pablo A.S. Fonseca 05/02/2021

Gene Ontology

Gene Ontology (GO) is a collection of controlled vocabularies describing the biology of a gene product in any organism

The terms are organized in a tree structure

Terms get more detailed as you move down the tree

Gene Ontology

There are ~25.000 terms divided in three groups: Biological Process (BP), Molecular Function (MF) and Cellular Component (CC)

A gene can be assigned to any of the ontologies (BP, MF and CC) and assigned to several GO terms.

cytokinesis after meiosis

Gene Ontology

This structure is extremely useful to organize and to allows a easy identification of the biological processes related with a gene.

Consequently, helping to understand the real function of a gene.

Gene Ontology enrichment

The enrichment analysis is performed to identify if a GO term is related with the candidate genes in list more than expected by chance.

	Our list	Genes in the Genome	
In GO term	N ₁₁	N ₁₂	N. ₁
not in GO term	N ₂₁	N_{22}	N. ₂
	N ₁ .	N ₂ .	N

 H_0 : The percentage of "In GO term" genes associated with a GO category is proportional to the number on the genes in the genome associated with the same category

percentage on the genome: $N_1./N_..$

expected: $N_{\cdot 1}N_{\cdot 1}/N_{\cdot \cdot}$

observed: N_{11}

test $(O-E)^2/E$ (Chi-squared test)

Important:

Several kinds of statistical tests can be performed. This was only a simple example.