Statistical Analysis in Python

1. Distributions in Pandas

1.1 Binomial Distribution

```
In [1]:
```

```
import pandas as pd
import numpy as np
```

Generate a random number following binomial(1, 0.5).

```
In [3]:
```

```
np.random.binomial(1,0.5) # n=1, p=0.5
Out[3]:
```

0

Generate a list of random numbers following binomial distribution.

```
In [5]:
```

```
tornado_events = np.random.binomial(1, 0.3, 20)
tornado_events
```

```
Out[5]:
```

```
array([1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1])
```

1.2 Normal Distribution

```
In [11]:
```

```
Out[11]:
```

```
array([ 0.65732337, 0.72235445, -1.30568457, -0.07198881, 0.54469687, -1.03769059, -0.54410273, -0.14434303, 1.14569897, 1.40586168])
```

1.3 Chi-square Distribution

```
In [20]:
```

1.4 Kurtosis

Kurtosis is a measure of whether the data are <u>heavy-tailed</u> or <u>light-tailed</u> relative to a normal distribution.

```
In [17]:
```

```
import scipy.stats as stats
distribution = np.random.normal(0.75, size = 1000)
stats.kurtosis(distribution)
```

Out[17]:

0.626741258328881

1.5 Skewness

```
In [18]:
```

```
stats.skew(distribution)
```

Out[18]:

-0.10232040210883142

In [21]:

```
stats.skew(chi_squared_df2)
```

Out[21]:

1.951149051921271

2. Hypothesis Testing

Loading dataset.

In [24]:

```
%cd D:\Data Science\GitHub\Python Learning\Python-for-Data-Science\Data Files\Python Le
arning
df = pd.read_csv('grades.csv')
df.head()
```

D:\Data Science\GitHub\Python Learning\Python-for-Data-Science\Data Files
\Python Learning

Out[24]:

	student_id	assignment1_grade	assignment1_submission	assignment2_grade	assignm
0	B73F2C11- 70F0-E37D- 8B10- 1D20AFED50B1	92.733946	2015-11-02 06:55:34.282000000	83.030552	02
1	98A0FAE0- A19A-13D2- 4BB5- CFBFD94031D1	86.790821	2015-11-29 14:57:44.429000000	86.290821	17
2	D0F62040- CEB0-904C- F563- 2F8620916C4E	85.512541	2016-01-09 05:36:02.389000000	85.512541	0€
3	FFDF2B2C- F514-EF7F- 6538- A6A53518E9DC	86.030665	2016-04-30 06:50:39.801000000	68.824532	17
4	5ECBEEB6- F1CE-80AE- 3164- E45E99473FB4	64.813800	2015-12-13 17:06:10.750000000	51.491040	12

←

Split the data into two parts: 'early' & 'late'

In [25]:

```
early = df[df['assignment1_submission'] <= '2015-12-31']
late = df[df['assignment1_submission'] > '2015-12-31']
```

In [26]:

```
early.mean()
```

Out[26]:

```
assignment1_grade 74.972741
assignment2_grade 67.252190
assignment3_grade 61.129050
assignment4_grade 54.157620
assignment5_grade 48.634643
assignment6_grade 43.838980
dtype: float64
```

```
In [27]:
```

```
late.mean()
Out[27]:
assignment1_grade
                     74.017429
assignment2_grade
                     66.370822
assignment3_grade
                     60.023244
assignment4_grade
                     54.058138
assignment5_grade
                     48.599402
assignment6_grade
                     43.844384
dtype: float64
Test whether there is a difference between early & late courses.
In [30]:
from scipy import stats
stats.ttest_ind(early['assignment1_grade'], late['assignment1_grade'])
Out[30]:
Ttest_indResult(statistic=1.400549944897566, pvalue=0.16148283016060577)
In [29]:
stats.ttest_ind(early['assignment2_grade'], late['assignment2_grade'])
Out[29]:
Ttest_indResult(statistic=1.3239868220912567, pvalue=0.18563824610067967)
In [31]:
stats.ttest_ind(early['assignment3_grade'], late['assignment3_grade'])
```

Out[31]:

Ttest_indResult(statistic=1.7116160037010733, pvalue=0.08710151634155668)