Crowding of International Mutual Funds

Tanja Artiga Gonzalez^{1,2} Teodor Dyakov^{1,2} Justus Inhoffen^{1,3} Evert Wipplinger¹

¹Vrije Universiteit Amsterdam

²Tinbergen Institute

³DIW Berlin

April 19, 2021 HU Finance Brownbag Seminar Introduction Data Crowding measure Results Conclusion Reference:

Crowding of Mutual Funds

- Actively managed fund industry accounts for USD 30 trillion of AuM
- As funds grow larger, strategies likely become correlated resulting in overlapping portfolios ("crowding")
- This should create zero equilibrium net alpha (Berk and Green (2004); Pastor and Stambaugh (2012))

Introduction Data Crowding measure Results Conclusion Reference

Take-away

We study the effect of fund-level crowding on future performance

- Crowding measure based on portfolio holding overlaps
- Crowding and subsequent performance are negatively correlated
- Performance of funds in most crowded space is negative
- Effect of crowding has explanatory power beyond size
- Explanations for deteriorating performance
 - Preference for liquidity
 - Negative externalities through shock propagation
 - Coordination externalities

troduction **Data** Crowding measure Results Conclusion References

Sample of funds

We merge (a) fund holdings (Factset), (b) fund performance and characteristics (Morningstar), (c) stock level data (Datastream and Worldscope)

Fund region	Funds count	TNA mean	Holdings mean	Stock region (%)							
				NAM	EUR	APA	JPN	EM	FM		
NAM	6,487	1,131	170	78.2	10.9	3.2	4.0	2.9	0.9		
EUR	9,843	290	140	32.5	44.3	6.3	9.7	6.2	0.9		
APA	138	152	97	16.8	11.0	29.8	21.0	21.0	0.4		
JPN	84	553	128	20.4	16.4	4.7	52.7	5.3	0.5		
EM	519	155	71	9.4	8.7	4.8	1.4	74.8	8.0		
FM	293	118	123	30.9	27.3	9.2	10.2	8.2	14.3		
All domiciles	17,364	691	153	54.3	27.3	5.0	6.8	5.6	1.0		

Crowding measure: overlapping positions

Construction in two steps

Degree of portfolio overlap for any pair of funds i and j

$$e_{ij} = \sum_{k \in P_i \cap P_i} \min(\omega_i^k, \omega_j^k) \tag{1}$$

Sum of pairwise overlaps with all other funds

$$\operatorname{crowd}_{i} = \sum_{\substack{j \in Q \\ j \neq i}} e_{ij} \tag{2}$$

ntroduction Data **Crowding measure** Results Conclusion References

Fund performance

• Gross and net alpha using traded benchmark funds (Berk and van Binsbergen (2015); Dyakov et al. (2020))

$$\alpha_{i,t} = R_{i,t} - \sum_{j=1}^{n(t)} \beta_f^{\mathsf{b}} R_t^{\mathsf{b}} \tag{3}$$

Dollar Value Added (Berk and van Binsbergen (2015))

$$V_{it} = q_{i,t-1}\alpha_{i,t}^{net} \tag{4}$$

 DGTW using characteristic-based benchmark portfolios (Daniel et al. (1997); Dyakov and Wipplinger (2020))

$$\alpha_{k,t}^{\mathsf{DGTW}} = R_{k,t} - R_{k,t}^{\mathsf{b}} \tag{5}$$

Crowding and future performance

Performance is decreasing in crowding. Funds in the top decile of crowding have negative performance.

	1 (low)	2	3	4	5	6	7	8	9	10 (high)	10 - 1
Net Alpha	0.102*	0.042	0.002	-0.034	-0.030	-0.098***	-0.100***	-0.108***	-0.116***	-0.114***	-0.215***
	(1.66)	(1.21)	(0.07)	(-0.90)	(-0.91)	(-3.43)	(-3.66)	(-4.61)	(-4.57)	(-4.54)	(-3.31)
Dollar Value Added	-0.009	0.611**	0.058	0.228	0.407	-0.921*	-0.037	-0.216	-0.687	-1.855**	-1.846*
	(-0.02)	(2.43)	(0.21)	(0.68)	(1.18)	(-1.76)	(-0.08)	(-0.44)	(-1.20)	(-2.19)	(-1.83)
Gross Alpha	-0.065	-0.063*	-0.071*	-0.109***	-0.096***	-0.115***	-0.141***	-0.160***	-0.161***	-0.156***	-0.092***
	(-1.50)	(-1.72)	(-1.89)	(-2.96)	(-2.87)	(-3.74)	(-4.83)	(-5.45)	(-5.82)	(-5.89)	(-3.08)
Gross DGTW	0.090	0.088	0.089	0.032	0.034	-0.018	-0.020	-0.034	-0.057*	-0.046*	-0.136**
	(1.44)	(1.21)	(1.32)	(0.55)	(0.73)	(-0.38)	(-0.55)	(-1.09)	(-1.94)	(-1.92)	(-2.49)

But: Crowding likely to partly reflect size

Portfolio characteristics

Persistence

$$r_{it} = a_i + \beta_1 \log \operatorname{crowd}_{i,t-1} + \beta_2 \log q_{i,t-1} + \epsilon_{it}$$
 (6)

- Problem: $q_{i,t-t}$ and ϵ_{it} are positively correlated
- Solution: forward-demeaned variables and instrument $q_{i,t-1}$ (following Pastor et al. (2015))
- Instruments: backward-demeaned $q_{i,t-1}$ and $q_{i,t-1}$ (Zhu (2018); Dyakov et al. (2020))

ntroduction Data Crowding measure **Results** Conclusion References

Crowding and size: IV regression

	Model 1	Model 2	Model 3	Model 4	Model 5
Ln(crowd)	-0.0023*** (-3.31)			-0.0020*** (-2.68)	
Ln(PeerSize)	, ,	-0.0024*** (-2.60)		, ,	-0.0021** (-2.43)
Ln(FundSize)		(')	-0.0010 (-1.35)	-0.0011 (-1.43)	-0.0009 (-1.17)
Number of Observations	450,387	450,387	450,387	450,387	450,387

$$\mathsf{PeerSize}_{i,t-1} = \sum_{\substack{j \in Q \\ i \neq i}} e_{ij,t-1} q_{j,t-1}$$

Crowding and size: double sort

Large funds in less crowded space outperform small funds in a crowded space

Portfolio size Crowding	1 (low)	2	3	4	5	6	7	8	9	10 (high)	10 – 1
High	-0.194***	-0.150***	-0.147***	-0.133***	-0.131***	-0.102***	-0.100***	-0.107***	-0.073***	-0.074***	0.119***
	(-6.03)	(-6.04)	(-5.18)	(-5.07)	(-4.83)	(-4.02)	(-4.04)	(-3.93)	(-3.39)	(-3.51)	(4.72)
Medium	-0.145***	-0.062**	-0.087**	-0.074**	-0.079**	-0.062**	-0.070**	-0.062**	-0.021	-0.020	0.125***
	(-4.31)	(-2.00)	(-2.42)	(-2.21)	(-2.17)	(-2.04)	(-2.03)	(-2.19)	(-0.71)	(-0.86)	(4.41)
Low	-0.068*	0.000	0.049	0.031	0.020	0.033	0.066*	0.074*	0.063**	0.104***	0.171***
	(-1.71)	(0.00)	(1.18)	(0.70)	(0.44)	(0.68)	(1.68)	(1.89)	(2.05)	(3.72)	(4.06)
High - Low	-0.126**	-0.150***	-0.196***	-0.165***	-0.151***	-0.135**	-0.165***	-0.181***	-0.136***	-0.178***	
	(-2.56)	(-3.50)	(-4.56)	(-3.40)	(-3.04)	(-2.59)	(-3.73)	(-3.72)	(-4.06)	(-5.35)	

troduction Data Crowding measure **Results** Conclusion References

Crowding and performance: explanations

- Crowding
 - negatively affects performance
 - is distinct from size
- Possible explanations
 - Preference for liquid stocks (Pastor et al. (2015))
 - 2 Externalities from peers' fund flows (Coval and Stafford (2007))
 - Coordination externalities (Stein (2009))

Preference for liquid stocks: stock demand

- Crowded funds have a higher demand for liquidity
 - ▶ Offset trading costs (Pastor et al. (2020))
 - Allocation of excess capital
- This should lead to relatively lower expected returns
- Estimate effect of stock characteristics on standardized stock demand (Sias (2004))

$$BR_{kt} = \frac{\# \text{ funds buying stock } k}{\# \text{ funds buying stock } k + \# \text{ funds selling stock } k}$$

Preference for liquid stocks: stock demand

				De	pendent Vari	able: Deman	d_{t+1}			
					Cro	wding				
	1 (low)	2	3	4	5	6	7	8	9	10 (high)
Demand _t	0.500***	0.466***	0.439***	0.391***	0.421***	0.417***	0.361***	0.381***	0.381***	0.394***
	(18.72)	(18.05)	(21.59)	(15.79)	(21.73)	(20.98)	(11.63)	(12.19)	(11.86)	(11.87)
Sizet	0.007*	0.011	0.027***	0.029***	0.009	0.015*	0.031***	0.001	0.012	0.033***
	(1.95)	(1.61)	(4.04)	(4.89)	(1.51)	(1.94)	(4.43)	(0.09)	(1.10)	(4.24)
Btm_t	0.014***	0.010***	0.018***	0.007***	0.009***	0.010***	0.001	0.008**	0.009***	0.000
	(3.36)	(3.29)	(5.47)	(3.46)	(3.44)	(3.66)	(0.61)	(2.43)	(2.87)	(-0.11)
Momentum _t	-0.006	0.044***	0.045***	0.056***	0.043***	0.069***	0.099***	0.088***	0.098***	0.120***
	(-1.26)	(6.38)	(3.68)	(6.35)	(3.52)	(4.57)	(8.98)	(7.34)	(8.60)	(8.54)
Amihud Illiquidity _t	-0.207	-0.732*	-0.421	-3.789**	-2.743**	-9.628***	-9.084***	-4.671***	-8.916***	-20.666
	(-1.36)	(-1.85)	(-0.55)	(-2.32)	(-2.58)	(-2.73)	(-3.51)	(-2.72)	(-2.69)	(-3.63)
Volatility _t	-0.064***	-0.098***	-0.093***	-0.113***	-0.204***	-0.152***	-0.112**	-0.124***	-0.088**	-0.038
	(-3.52)	(-3.14)	(-3.40)	(-3.04)	(-5.46)	(-4.72)	(-2.60)	(-3.32)	(-2.11)	(-1.07)
Analysts _t	-0.003***	-0.002***	-0.002***	-0.002***	-0.002***	-0.001***	-0.001**	-0.001***	-0.001**	-0.002**
	(-4.53)	(-3.61)	(-6.14)	(-4.22)	(-3.82)	(-5.87)	(-2.41)	(-5.03)	(-2.06)	(-4.79)
Dividend Yield _t	0.003***	-0.002**	0.002*	0.002	0.003***	0.000	-0.002*	-0.007***	-0.012***	-0.007**
	(2.69)	(-2.31)	(1.68)	(1.01)	(2.68)	(-0.14)	(-1.69)	(-3.44)	(-5.16)	(-3.93)
MSCI _t	-0.077***	-0.040***	-0.055***	-0.028**	-0.007	0.008	-0.002	0.009	0.008	0.027*
	(-5.99)	(-3.08)	(-4.68)	(-2.15)	(-0.64)	(0.79)	(-0.12)	(0.77)	(0.48)	(1.85)
Observations	408,398	352,701	319,817	276,809	253,365	219,969	203,281	230,517	246,310	234,167
R2	0.28	0.25	0.22	0.19	0.22	0.21	0.18	0.20	0.22	0.23

Preference for liquid stocks: liquidity factor loadings

- Add liquidity factor to Fama French 3 factor model (Pastor and Stambaugh (2003))
 - Liquidity factor loadings decrease with crowdedness
 - 25% smaller spread in alpha

						Crowdi	ing				
	1 (low)	2	3	4	5	6	7	8	9	10 (high)	10 - 1
Alpha	0.098	-0.003	0.009	0.001	-0.004	-0.074	-0.062	-0.098	-0.129**	-0.116***	-0.214***
	(1.01)	(-0.05)	(80.0)	(0.01)	(-0.03)	(-0.88)	(-0.81)	(-1.51)	(-2.50)	(-3.51)	(-2.79)
Panel B: Fam	a French 3 fa	actor + Liq	uidity								
						Crowdi	ing				
	1 (1)	2	3	4	5	6	7	8	9	10 (high)	10 - 1
	1 (low)	2	3	7	-	•	'	-	-	10 (6)	
Alpha	0.040	-0.048	-0.057	-0.076	-0.086	-0.118	-0.101	-0.126**	-0.139***	-0.126***	-0.166**
Alpha	. ,						-0.101 (-1.40)				
Alpha Liquidity beta	0.040	-0.048	-0.057	-0.076	-0.086	-0.118		-0.126**	-0.139***	-0.126***	-0.166**

Results

Externalities from peers' flows

Funds are forced to trade in response to flows induced by peers' performance (Coval and Stafford (2007))

- A has outflow due to poor performance
- A sells stocks to meet redemptions
- B having highly overlapping positions with A has lower performance
- B has outflow, sells stocks
- Propagation to B's peers, including A

15 / 34

Results

Externalities from peers' flows

Fund flows of peers that have very similar positions receive larger weights

$$PeerFlow_{i,t} = \sum_{j \neq i} e_{i,j} Flow_{j,t}$$
 (7)

- Predictive regressions of returns on PeerFlow
- Contemporaneous regressions of returns on PeerFlow
 - Returns and PeerFlow are endogenous
 - Solution: use lagged PeerFlow as instrument (Blocher (2016))

Externalities from peers' flows

Panel A: Predictive relation	nship					
	NetAl	pha_{t+1}	GrossA	$lpha_{t+1}$	DG	TW_{t+1}
PeerFlow _t	17.2139 (0.39)	10.3426 (0.23)	-11.8694 (-0.31)	-19.0413 (-0.47)	-6.8134 (-0.12)	-22.9517 (-0.39)
$PeerFlow_t imes TopCrowd_t$		45.9080 (1.63)		47.7870** (2.26)		106.4876*** (3.32)
$TopCrowd_t$		0.0014 (1.65)		0.0014* (1.94)		0.0020* (1.97)
Controls	Yes	Yes	Yes	Yes	Yes	Yes
Fund FE	Yes	Yes	Yes	Yes	Yes	Yes
Time FE	Yes	Yes	Yes	Yes	Yes	Yes
Observations	94,056	94,056	94,587	94,587	104,911	104,911
R2	0.11	0.11	0.12	0.12	0.16	0.16
Method	OLS	OLS	OLS	OLS	OLS	OLS

Externalities from peers' flows

Panel B: Contemporaneous	relationship)				
	NetA	lpha _t	Gros	$sAlpha_t$	D	GTW _t
$PeerFlow_{t+1}$	67.8172 (0.79)	60.7656 (0.70)	7.9489 (0.11)	-1.0499 (-0.01)	45.9536 (0.42)	27.3012 (0.24)
$PeerFlow_{t+1} imes TopCrowd_t$		65.9361 (1.22)		84.1325* (1.86)		175.96 1 3** (2.49)
TopCrowd _t		0.0019* (1.85)		0.0024*** (2.78)		0.0043*** (3.49)
Controls Fund FE Time FE	Yes Yes Yes	Yes Yes Yes	Yes Yes Yes	Yes Yes Yes	Yes Yes Yes	Yes Yes Yes
Observations R2 Method	97,611 0.11 IV	97,611 0.11 IV	97,908 0.12 IV	97,908 0.12 IV	108,193 0.16 IV	108,193 0.17 IV

ntroduction Data Crowding measure **Results** Conclusion References

Coordination externalities

- Stein (2009)
 - Investors' demand not based on a fundamental anchor, but driven by prices
 - Investors unaware of the amount of capital chasing the same investment
 - Unexpected large number of competing investors adopting the same strategy leads to price overreaction
- Use Momentum to test prediction

Coordination externalities

				De	pendent Vari	able: Deman	d_{t+1}			
					Cro	wding				
	1 (low)	2	3	4	5	6	7	8	9	10 (high)
Demand _t	0.500***	0.466***	0.439***	0.391***	0.421***	0.417***	0.361***	0.381***	0.381***	0.394***
	(18.72)	(18.05)	(21.59)	(15.79)	(21.73)	(20.98)	(11.63)	(12.19)	(11.86)	(11.87)
Size _t	0.007*	0.011	0.027***	0.029***	0.009	0.015*	0.031***	0.001	0.012	0.033***
	(1.95)	(1.61)	(4.04)	(4.89)	(1.51)	(1.94)	(4.43)	(0.09)	(1.10)	(4.24)
Btm _t	0.014***	0.010***	0.018***	0.007***	0.009***	0.010***	0.001	0.008**	0.009***	0.000
	(3.36)	(3.29)	(5.47)	(3.46)	(3.44)	(3.66)	(0.61)	(2.43)	(2.87)	(-0.11)
Momentum _t	-0.006	0.044***	0.045***	0.056***	0.043***	0.069***	0.099***	0.088***	0.098***	0.120***
	(-1.26)	(6.38)	(3.68)	(6.35)	(3.52)	(4.57)	(8.98)	(7.34)	(8.60)	(8.54)
Amihud Illiquidity _t	-0.207	-0.732*	-0.421	-3.789**	-2.743**	-9.628***	-9.084***	-4.671***	-8.916***	-20.666**
	(-1.36)	(-1.85)	(-0.55)	(-2.32)	(-2.58)	(-2.73)	(-3.51)	(-2.72)	(-2.69)	(-3.63)
Volatility _t	-0.064***	-0.098***	-0.093***	-0.113***	-0.204***	-0.152***	-0.112**	-0.124***	-0.088**	-0.038
	(-3.52)	(-3.14)	(-3.40)	(-3.04)	(-5.46)	(-4.72)	(-2.60)	(-3.32)	(-2.11)	(-1.07)
Analysts _t	-0.003***	-0.002***	-0.002***	-0.002***	-0.002***	-0.001***	-0.001**	-0.001***	-0.001**	-0.002***
	(-4.53)	(-3.61)	(-6.14)	(-4.22)	(-3.82)	(-5.87)	(-2.41)	(-5.03)	(-2.06)	(-4.79)
Dividend Yield _t	0.003***	-0.002**	0.002*	0.002	0.003***	0.000	-0.002*	-0.007***	-0.012***	-0.007***
	(2.69)	(-2.31)	(1.68)	(1.01)	(2.68)	(-0.14)	(-1.69)	(-3.44)	(-5.16)	(-3.93)
MSCI _t	-0.077***	-0.040***	-0.055***	-0.028**	-0.007	0.008	-0.002	0.009	0.008	0.027*
	(-5.99)	(-3.08)	(-4.68)	(-2.15)	(-0.64)	(0.79)	(-0.12)	(0.77)	(0.48)	(1.85)
Observations	408,398	352,701	319,817	276,809	253,365	219,969	203,281	230,517	246,310	234,167
R2	0.28	0.25	0.22	0.19	0.22	0.21	0.18	0.20	0.22	0.23

stroduction Data Crowding measure Results Conclusion References

Coordination externalities

Panel A: 3-months alpha	1									
Demand for Momentum						Crowding				
	1 (low)	2	3	4	5	6	7	8	9	10 (high)
1 (low)	0.474***	-0.119	0.035	-0.113	0.091	-0.167	-0.209	-0.250***	-0.151*	-0.291**
	(3.27)	(-0.72)	(0.21)	(-1.33)	(0.98)	(-1.73)	(-1.73)	(-3.10)	(-1.90)	(-3.00)
2	0.259	0.373	0.379***	0.289*	-0.089	-0.228	-0.228**	-0.249**	-0.309***	-0.386***
	(0.90)	(1.24)	(3.05)	(1.93)	(-0.60)	(-1.54)	(-2.38)	(-2.46)	(-5.95)	(-10.39)
3 (high)	0.438*	0.405***	-0.163	-0.163	0.059	-0.247***	-0.181	-0.299***	-0.418**	-0.247*
	(1.91)	(3.10)	(-1.54)	(-0.80)	(0.64)	(-3.35)	(-1.59)	(-3.46)	(-2.84)	(-1.83)
Panel B: 12-months alph	na									
Demand for Momentum						Crowding				
	1 (low)	2	3	4	5	6	7	8	9	10 (high)
1 (low)	2.072***	0.279	0.594**	-0.085	-0.374	-0.692	-1.186***	-1.182***	-1.471***	-1.335**
	(6.62)	(0.80)	(2.33)	(-0.16)	(-1.10)	(-1.37)	(-5.44)	(-7.37)	(-13.07)	(-5.83)
2	0.680	0.510	0.762**	0.872*	-0.597	-0.904**	-0.786***	-0.857***	-1.184***	-1.226***
	(0.90)	(1.27)	(2.30)	(1.96)	(-1.74)	(-2.39)	(-4.24)	(-9.43)	(-8.80)	(-5.07)
3 (high)	1.944	0.671**	-0.272	-0.930**	0.267	-0.773***	-0.695***	-0.800***	-1.068**	-1.046***
	(1.68)	(2.50)	(-1.01)	(-2.20)	(0.66)	(-4.07)	(-3.38)	(-5.18)	(-2.83)	(-3.55)

stroduction Data Crowding measure **Results** Conclusion References

- Does crowding simply capture deviations from the market?
 - ▶ No, as revealed by double sorts on active share and crowding double sort
- Crowded funds overinvest in the U.S. market (Portfolio characteristics)
- Informational disadvantage of foreign funds?
 - ► No, pattern is robust to sample restriction to US domiciled funds

 Fama-MacBeth regression
- Does crowding capture competition effects?
 - Crowding is distinct from competition measure of Hoberg et al. (2017)
 Fama-MacBeth regression
- Results are robust to Fama-MacBeth regressions, value-weighting of funds, and factor regressions (single sort and factor model)

stroduction Data Crowding measure **Results** Conclusion References

Additional tests: indirect fund connections

Crowding could propagate from funds that are not directly connected

- Fund A: value stocks
- Fund B: value stocks, small stocks
- Fund C: small stocks

Fund C increases competitive pressure on fund B and fund B on fund A

Results

Additional tests: indirect fund connections

Alternative measure of crowding: eigenvector centrality of funds

$$\operatorname{crowd}_{i}^{e} = \frac{1}{\lambda} \sum_{i=1}^{n} A_{j,i} \operatorname{crowd}_{j}^{e}$$
(8)

where $A_{i,i}$ is the edge from j to i ($A_{i,i} = 0$) and λ the largest eigenvalue.

Results are qualitatively similar single sort

troduction Data Crowding measure Results **Conclusion** Reference

Conclusion

Too much active capital translates to losses to investors

- Crowding can drive performance negative
- Crowding is associated with diseconomies that are different from the ones related to fund size
- Preference for liquid stocks and sensitivity to fund flows of connected funds contribute to the effect of crowding on performance

troduction Data Crowding measure Results Conclus

References I

- Jonathan Berk and Robert Green. Mutual Fund Flows and Performance in Rational Markets. Journal of Political Economy, 112(6):1269–1295, 2004.
- Jonathan Berk and Jules van Binsbergen. Measuring skill in the mutual fund industry. *Journal of Financial Economics*, 118(1):1–20, 2015.
- Jesse Blocher. Network externalities in mutual funds. *Journal of Financial Markets*, 30:1–26, 2016.
- Joshua Coval and Erik Stafford. Asset fire sales (and purchases) in equity markets. Journal of Financial Economics, 86(2):479–512, 2007.
- Kent Daniel, Mark Grinblatt, Sheridan Titman, and Russ Wermers. Measuring mutual fund performance with characteristic-based benchmarks. The Journal of Finance, 52(3): 1035–1058, 1997.
- Teodor Dyakov and Evert Wipplinger. Institutional ownership and future stock returns: an international perspective. *International Review of Finance*, 20(1):235–245, 2020.
- Teodor Dyakov, Hao Jiang, and Marno Verbeek. Trade less and exit overcrowded markets: Lessons from international mutual funds. *Review of Finance*, 24(3):677–731, 2020.
- Gerard Hoberg, Nitin Kumar, and Nagpurnanand Prabhala. Mutual fund competition, managerial skill, and alpha persistence. *The Review of Financial Studies*, 31(5):1896–1929, 2017.

References

rtroduction Data Crowding measure Results Conclusion **References**

References II

- Lubos Pastor and Robert Stambaugh. On the Size of the Active Management Industry. *Journal of Political Economy*, 120(4):740–781, 2012.
- Lubos Pastor and Robert F Stambaugh. Liquidity risk and expected stock returns. *Journal of Political economy*, 111(3):642–685, 2003.
- Lubos Pastor, Robert Stambaugh, and Lucian Taylor. Scale and Skill in Active Management. Journal of Financial Economics, 116(1):23–45, 2015.
- Lubos Pastor, Robert Stambaugh, and Lucian Taylor. Fund tradeoffs. *Journal of Financial Economics*, 2020.
- Richard Sias. Institutional herding. The Review of Financial Studies, 17(1):165–206, 2004.
- Jeremy Stein. Presidential Address: Sophisticated Investors and Market Efficiency. *The Journal of Finance*, 64(4):1517–1548, 2009.
- Min Zhu. Informative fund size, managerial skill, and investor rationality. *Journal of Financial Economics*, 130(1):114–134, 2018.

Portfolio characteristics

Panel A: Fund characteristics												
Crowding decile	1 (low)	2	3	4	5	6	7	8	9	10 (high)	10-1	
Centrality	28.59	65.52	110.17	164.08	238.13	316.47	389.95	460.75	534.89	649.18	620.59***	(0.000)
TNA	302	481	531	572	620	702	822	1,024	994	859	557.06***	(0.000)
# Firms	107	168	125	115	118	109	118	148	194	322	214.88***	(0.000)
# Countries	6	8	8	9	10	11	11	11	12	13	6.21***	(0.000)
# Industries	8	9	9	9	9	9	9	10	10	10	1.49***	(0.000)
# Supersector	15	15	15	16	15	15	16	17	17	18	3.41***	(0.000)
Inverse normalized HFI (industries)	14.86	21.69	22.12	16.61	58.61	35.36	24.62	26.29	27.47	31.00	16.15***	(0.000)
Panel B: Weights for stock region												
Crowding decile	1 (low)	2	3	4	5	6	7	8	9	10 (high)	10-1	
NAM	51.9	61.0	50.3	43.6	44.4	48.7	55.1	59.1	60.6	68.1	16.19***	(0.002)
EUR	22.6	15.1	11.5	17.1	35.2	42.0	36.9	33.4	32.7	26.3	3.71	(0.355)
APA	3.8	7.7	11.7	9.9	6.4	2.6	2.3	2.0	1.8	1.5	-2.33***	(0.000)
JPN	6.1	4.6	13.0	16.7	7.3	4.9	4.2	4.1	3.8	3.5	-2.63***	(0.000)
EM	13.0	9.3	11.9	11.4	5.9	1.3	1.1	0.9	0.7	0.5	-12.46***	(0.000)
FM	2.7	2.3	1.6	1.4	0.8	0.5	0.4	0.3	0.3	0.2	-2.48***	(0.000)

Performance and crowding

Stocks characteristics

Panel A: all stocks												
Centrality decile	1 (low)	2	3	4	5	6	7	8	9	10 (high)	10 - 1	
Size	3.22	6.67	14.93	25.98	39.43	49.23	55.89	65.04	75.72	85.28	82.06***	(0.001
BTM (industry-adjusted)	0.08	-0.07	-0.18	-0.19	-0.19	-0.22	-0.24	-0.26	-0.26	-0.26	-0.34***	(0.001
Momentum	0.24	0.25	0.22	0.20	0.15	0.15	0.15	0.14	0.13	0.12	-0.12***	(0.001)
# Analysts	10.08	12.79	16.68	19.38	23.44	25.73	26.47	26.80	27.81	28.58	18.50***	(0.001
Dividend Yield	1.54	1.47	1.68	1.86	2.15	2.05	2.16	2.16	2.15	2.16	0.62***	(0.001
Amihud Illiquitidy	0.51	0.10	0.37	0.13	0.03	0.03	0.03	0.02	0.02	0.02	-0.49**	(0.012
Volatility	0.39	0.37	0.34	0.32	0.30	0.30	0.28	0.28	0.27	0.26	-0.12***	(0.001)
Turnover	0.16	0.18	0.17	0.15	0.13	0.14	0.14	0.14	0.14	0.13	-0.03***	(0.006
Price	47.74	64.65	102.32	163.33	303.58	436.14	269.09	293.19	297.58	190.84	0.14***	(0.001
ADR	0.02	0.03	0.04	0.05	0.05	0.04	0.03	0.03	0.02	0.02	0.00	(0.696
MSCI	0.10	0.22	0.44	0.54	0.68	0.78	0.83	0.85	0.88	0.91	0.81***	(0.001
English Legal Origin	0.79	0.82	0.76	0.73	0.74	0.76	0.79	0.82	0.83	0.86	0.07***	(0.001
Anti-Director Index	3.41	3.31	3.44	3.55	3.53	3.42	3.32	3.27	3.22	3.19	-0.22***	(0.000
Foreign Ownership	0.40	0.48	0.57	0.61	0.61	0.63	0.59	0.59	0.64	0.68	0.28***	(0.001
Panel B: foreign stocks												
Centrality decile	1 (low)	2	3	4	5	6	7	8	9	10 (high)	10 - 1	
Cultural Proximity	0.34	0.33	0.32	0.30	0.32	0.33	0.34	0.34	0.31	0.27	-0.06***	(0.002
Geographic Proximity	3.85	4.41	5.39	5.35	4.51	4.03	4.01	4.11	4.08	4.13	0.28**	(0.045
Economic Proximity	9.26	8.31	9.33	10.67	11.74	11.79	10.60	10.03	9.84	8.50	-0.76	(0.262

Performance and crowding

Crowding persistence

Crowding and deviations from the market

Crowding	Active Share										
-	1 (low)	2	3	4	5	6	7	8	9	10 (high)	10 – 1
High	-0.102***	-0.157***	-0.177***	-0.165***	-0.178***	-0.078*	0.027	-0.018	0.018	0.074	0.176***
	(-4.01)	(-5.48)	(-5.36)	(-3.83)	(-3.95)	(-1.85)	(0.57)	(-0.26)	(0.23)	(1.54)	(3.07)
Medium	-0.087***	-0.112***	-0.128***	-0.134***	-0.116***	-0.054*	-0.065**	-0.009	0.089**	0.003	0.090*
	(-3.54)	(-5.26)	(-4.76)	(-4.36)	(-3.41)	(-1.76)	(-2.19)	(-0.26)	(2.02)	(0.07)	(1.90)
Low	-0.021	-0.036	-0.059**	-0.088***	-0.070***	-0.075**	-0.055	0.056	0.119*	0.181*	0.202*
	(-0.62)	(-1.46)	(-2.50)	(-3.76)	(-2.76)	(-2.13)	(-1.56)	(1.10)	(1.69)	(1.69)	(1.89)
High - Low	-0.081***	-0.121***	-0.118***	-0.077*	-0.108**	-0.003	0.083*	-0.074	-0.101	-0.107	` ′
_	(-3.01)	(-4.52)	(-4.40)	(-1.92)	(-2.53)	(-0.08)	(1.78)	(-0.91)	(-0.93)	(-0.97)	

Fama-MacBeth regression for US domiciled funds

	Model 1	Model 2	Model 3	Model 4	Model 5	Model 6	Model 7	Model 8
Constant	0.303*	0.256**	0.237***	0.204***	0.228***	0.201**	0.228***	0.201**
	(0.05)	(0.03)	(0.00)	(0.00)	(0.00)	(0.01)	(0.00)	(0.01)
crowd _t	-0.001***		-0.001***		-0.001***		-0.001***	
	(0.00)		(0.00)		(0.00)		(0.00)	
crowd ^e _t		-0.005***		-0.005***		-0.005***		-0.005***
		(0.00)		(0.00)		(0.00)		(0.00)
log(fund TNA) _t			0.006	0.005	0.007	0.006	0.007	0.006
			(0.22)	(0.36)	(0.25)	(0.32)	(0.25)	(0.33)
QuarterlyFlow _t			0.001	0.001	0.001	0.001	0.001	0.001
			(0.29)	(0.28)	(0.27)	(0.27)	(0.27)	(0.28)
$QuarterlyReturn_{t-1}$			0.019	0.019	0.019	0.019	0.019	0.019
			(0.35)	(0.35)	(0.38)	(0.37)	(0.35)	(0.36)
NPeers					0.000	-0.000		
					(0.93)	(0.79)		
TSIM							-0.000	-0.000
							(0.98)	(0.72)
Number of observations	119,750	119,750	112,288	112,288	112,288	112,288	112,288	112,288

Eigenvector centrality

	1 (low)	2	3	4	5	6	7	8	9	10 (high)
Net Alpha	-0.162***	-0.156***	-0.194***	-0.162***	-0.150***	-0.150***	-0.188***	-0.193***	-0.14]***	-0.176**
	(-3.13)	(-3.71)	(-4.37)	(-3.23)	(-2.88)	(-2.83)	(-4.05)	(-3.88)	(-3.92)	(-5.64)
Dollar Value Added	-0.036**	-0.052**	-0.114***	-0.137**	-0.200**	-0.259*	-0.568***	-1.074***	-1.224**	_7.448**
	(-2.40)	(-2.56)	(-3.33)	(-2.24)	(-2.08)	(-1.82)	(-2.98)	(-3.00)	(-3.00)	(-2.04)
Gross Alpha	-0.064	-0.089***	-0.099***	-0.096***	-0.064**	-0.086***	-0.111***	-0.112***	-0.104***	-0.155***
	(-1.51)	(-3.36)	(-3.67)	(-3.34)	(-2.05)	(-3.11)	(-3.41)	(-3.41)	(-3.59)	(-4.44)
Gross DGTW	-0.061	-0.149***	-0.127**	-0.155***	-0.137**	-0.127***	-0.168***	-0.164***	-0.139***	-0.197***
	(-1.30)	(-3.06)	(-2.49)	(-3.09)	(-2.57)	(-2.62)	(-3.44)	(-3.17)	(-2.71)	(-3.61)

Value-weighted returns and factor models

Panel A: Value-weighted portfolio returns												
	Crowding											
	1 (low)	2	3	4	5	6	7	8	9	10 (high)	10 - 1	
Net Alpha	0.049	0.070**	0.001	0.024	0.034	-0.043	-0.007	-0.016	-0.054**	-0.087**	-0.136*	
	(0.82)	(2.21)	(0.01)	(0.68)	(1.08)	(-1.25)	(-0.30)	(-0.64)	(-1.99)	(-2.41)	(-1.83)	
Gross Alpha	-0.032	-0.040	-0.075*	-0.039	-0.032	-0.116***	-0.078**	-0.119***	-0.132***	-0.154***	-0.123***	
	(-0.59)	(-1.13)	(-1.73)	(-0.93)	(-0.99)	(-3.02)	(-2.08)	(-3.60)	(-3.96)	(-4.41)	(-2.61)	
Panel B: Factor model alphas												
	Crowding											
	1	2	3	4	5	6	7	8	9	10	10 - 1	
CAPM	0.139	0.038	-0.000	-0.157	-0.171**	-0.203***	-0.173***	-0.200***	-0.240***	-0.233***	-0.372**	
	(1.16)	(0.37)	(-0.00)	(-1.58)	(-2.57)	(-3.56)	(-3.79)	(-4.04)	(-3.88)	(-3.80)	(-2.46)	
FF 3-Factor	-0.004	-0.020	-0.017	-0.150	-0.115*	-0.125***	-0.128***	-0.155***	-0.182***	-0.160***	-0.156**	
	(-0.05)	(-0.22)	(-0.16)	(-1.56)	(-1.69)	(-2.94)	(-3.27)	(-4.10)	(-3.96)	(-4.01)	(-1.99)	
Carhart 4-Factor	0.011	-0.013	-0.040	-0.165	-0.103	-0.113***	-0.130***	-0.163***	-0.193***	-0.161***	-0.173**	
	(0.14)	(-0.14)	(-0.34)	(-1.63)	(-1.60)	(-2.75)	(-3.14)	(-4.21)	(-4.09)	(-3.92)	(-2.13)	
FF 5-Factor	0.002	0.057	0.006	-0.169*	-0.092	-0.066	-0.107**	-0.152***	-0.184***	-0.143***	-0.145^*	
	(0.03)	(0.66)	(0.05)	(-1.68)	(-1.38)	(-1.49)	(-2.46)	(-3.63)	(-3.53)	(-3.08)	(-1.69)	