Aim:-Write program for Ceaser cipher Mono alphabetic cipher. **Tools / Apparatus:** O.S.: Microsoft Windows (any) / Linux / DOS

Packages: Turbo/Borland/GNU - C/C++

Procedure:

1.Ceaser cipher

```
#include <iostream>
#include <string>
#include <cctype>
using namespace std;
string caesarCipher(const string &message, int shift)
{
  string encryptedMessage = "";
  for (char ch : message) {
    if (isalpha(ch)) {
       char base = (isupper(ch)) ? 'A' : 'a';
       char encryptedChar = (ch - base + shift) \% 26 + base;
       encryptedMessage += encryptedChar;
     } else {
       encryptedMessage += ch;
     }
  }
  return encryptedMessage;
}
```

```
int main() {
    string message;
    int shift;

cout << "Enter the message: ";
    getline(cin, message);

cout << "Enter the shift value: ";
    cin >> shift;

string encryptedMessage = caesarCipher(message, shift);

cout << "Original Message: " << message << endl;
    cout << "Encrypted Message: " << encryptedMessage << endl;
    return 0;</pre>
```

Output:-

}

Enter the message: Information technology
Enter the shift value: 4
Original Message: Information technology
Encrypted Message: Mrjsvqexmsr xiglrspskc

2.Monoalphabetic

```
#include<iostream>
#include<string>
#include<vector>
using namespace std;
int main(){
        string s;
        cout<<"Enter plain text :";</pre>
        getline(cin,s);
        cout<<"Enter key :";</pre>
        string key;
        getline(cin,key);
        vector<int> pt(26,-1);
        vector<int> ky(26,-1);
        cout<<"Encrypted message is : ";</pre>
        int j=0;
        for(int i=0;i<s.length();i++){
                if(s[i]==' '){
                        cout<<s[i];
                        continue;
                if(s[i] > = 'a' \&\& s[i] < = 'z')
                         if(pt[s[i]-'a']!=-1){
                                 cout<<(char)(pt[s[i]-'a']);
                                 continue;
                         while(key[j]==' '){
                                 j++;
                                 if(j==key.length()){
                                         for(int l=0; l<26; l++) ky[1]=-1;
                                 }
                         while(j < \text{key.length}() \&\& \text{ky}[\text{key}[j]-'a']!=-1){
                                 j++;
                                 if(j==key.length()){
                                         j=0;
                                         for(int l=0; l<26; l++) ky[1]=-1;
                                 }
                         ky[key[j]-'a']=1;
                        pt[s[i]-'a']=key[j];
```

E-commerce and E-Security (IT718)

Output:

Enter plain text :tommy was hungry and ate kitty
Enter key :i have done all of the assignments yesterday
Encrypted message is : ihaav edo nlftsv dfg dim yriiv

Aim:-Implementation of Play Fair cipher.

Tools / Apparatus: O.S.: Microsoft Windows (any) / Linux / DOS

Packages: Turbo/Borland/GNU - C/C++

Procedure:

```
#include <bits/stdc++.h>
using namespace std;
int main()
  string pt, key;
  cout << "Enter plain text : ";</pre>
  getline(cin, pt);
  cout << "Enter key : ";</pre>
  getline(cin, key);
  // matrix creation
  vector<int> keyCheck(26, 0);
  vector<pair<int, int>> indexMat(26);
  vector<vector<char>>> mat(5, vector<char>(5));
  int a = 0, b = 0;
  for (int i = 0; i < \text{key.length}(); i++)
     if (key[i] == 'i' || key[i] == 'j')
        if (\text{key}[i] == 'i' \&\& \text{keyCheck}[\text{key}[i] - 'a'] != 1)
           mat[a][b] = key[i];
           indexMat[key[i] - 'a'] = \{a, b\};
           b++;
           if (b == 5)
              b = 0;
              a++;
           keyCheck['i' - 'a'] = 1;
           \text{keyCheck}['j' - 'a'] = 1;
        else if (\text{key}[i] == 'j' \&\& \text{keyCheck}[\text{key}[i] - 'a'] != 1)
           mat[a][b] = 'i';
           indexMat[key[i] - 'a'] = \{a, b\};
           b++;
           if (b == 5)
```

```
b = 0;
          a++;
        keyCheck['i' - 'a'] = 1;
        \text{keyCheck}['j' - 'a'] = 1;
     }
   }
  else
  {
     if (key[i] \ge 'a' \&\& key[i] \le 'z' \&\& keyCheck[key[i] - 'a'] != 1)
     {
        mat[a][b] = key[i];
        indexMat[key[i] - 'a'] = \{a, b\};
        b++;
        if (b == 5)
          b = 0;
          a++;
        keyCheck[key[i] - 'a'] = 1;
     }
   }
}
for (int i = 0; i < 26; i++)
  if (keyCheck[i] != 1)
     if (i == 8)
        mat[a][b] = 'i';
        indexMat[i] = \{a, b\};
        b++;
        if (b == 5)
          b = 0;
          a++;
        keyCheck[i] = 1;
        keyCheck[i + 1] = 1;
     mat[a][b] = (char)(i + 'a');
     indexMat[i] = \{a, b\};
     b++;
     if (b == 5)
```

```
b = 0;
        a++;
     keyCheck[i] = 1;
}
cout << "\nMatrix is : \n"
   << endl;
for (int i = 0; i < 5; i++)
  for (int j = 0; j < 5; j++)
     cout << mat[i][j] << " ";
  cout << endl;
}
// encryption
string ans;
char a1, a2;
for (int i = 0; i < pt.length(); i++)
  a1 = '\$';
  a2 = '\$';
  while (pt[i] == ' ' && i < pt.length())
     i++;
  if (i >= pt.length())
     break;
  a1 = pt[i];
  while (pt[i] == ' ' \&\& i < pt.length())
     i++;
  if (i == pt.length())
     a2 = 'x';
  else if (pt[i] == a1)
```

```
a2 = 'x';
     i--;
   }
  else
     a2 = pt[i];
  auto t1 = indexMat[a1 - 'a'];
  auto t2 = indexMat[a2 - 'a'];
  if (t1.first == t2.first)
     ans.push_back(mat[t1.first][(t1.second + 1) % 5]);
     ans.push_back(mat[t2.first][(t2.second + 1) % 5]);
  else if (t1.second == t2.second)
     ans.push_back(mat[(t1.first + 1) % 5][t1.second]);
     ans.push_back(mat[(t2.first + 1) % 5][t2.second]);
   }
  else
     ans.push_back(mat[t1.first][t2.second]);
     ans.push_back(mat[t2.first][t1.second]);
  }
}
cout << "\nYour encryption is : ";</pre>
cout << ans;
string decans;
cout<< "\nYour decryption is : ";</pre>
for (int i = 0; i < ans.length(); i++)
  a1 = '\$';
  a2 = '\$';
  while (ans[i] == ' ' \&\& i < ans.length())
     i++;
  if (i \ge ans.length())
     break;
  a1 = ans[i];
  i++;
  while (ans[i] == ' ' \&\& i < ans.length())
```

```
i++;
  if (i == ans.length())
    a2 = 'x':
  else if (ans[i] == a1)
    a2 = 'x';
    i--;
  }
  else
    a2 = ans[i];
  auto t1 = indexMat[a1 - 'a'];
  auto t2 = indexMat[a2 - 'a'];
  if (t1.first == t2.first)
    decans.push\_back(mat[t1.first][((t1.second - 1)==-1)?4:(t1.second - 1)]);
    decans.push\_back(mat[t2.first][((t2.second - 1)==-1)?4:(t2.second - 1)]);
  else if (t1.second == t2.second)
    decans.push\_back(mat[((t1.first - 1) == -1)?4:(t1.first - 1)][t1.second]);
    decans.push_back(mat[((t2.first - 1) == -1)?4:(t2.first - 1)][t2.second]);
  }
  else
  {
    decans.push_back(mat[t1.first][t2.second]);
    decans.push_back(mat[t2.first][t1.second]);
  }
}
cout<<decans;
return 0;
Enter plain text : hidethegoldunderthecarpet
Enter key: information
Matrix is :
infor
matbc
deghk
1 pqsu
vwxyz
```

Your encryption is : doegbgghisklieknbgkacnwpgf Your decryption is : hidethegoldunderthecarpetx

Output:

E-commerce and E-Security (IT718)	Roll No.: IT150
DDU (Faculty of Tech. Dept. of IT)	10 Page

Aim:-Write program for Hill cipher.

Tools / Apparatus: O.S.: Microsoft Windows (any) / Linux / DOS

Packages: Turbo/Borland/GNU - C/C++

Procedure:

```
#include <bits/stdc++.h>
using namespace std;
int determinantOfMatrix(int mat[2][2], int n)
  int num1, num2, det = 1, index, total = 1; // Initialize result
  // temporary array for storing row
  int temp[n + 1];
  // loop for traversing the diagonal elements
  for (int i = 0; i < n; i++)
     index = i; // initialize the index
     // finding the index which has non zero value
     while (index < n \&\& mat[index][i] == 0)
       index++;
     if (index == n) // if there is non zero element
       // the determinant of matrix as zero
       continue;
     if (index !=i)
       // loop for swapping the diagonal element row and
       // index row
       for (int j = 0; j < n; j++)
          swap(mat[index][j], mat[i][j]);
       // determinant sign changes when we shift rows
       // go through determinant properties
       det = det * pow(-1, index - i);
```

}

} }

}

int main()

for (int i = 0; i < pt.length(); i++)

if (pt[i] >= 'a' && pt[i] <= 'z')

}

}

t = t1 - (t2 * q);

a = b;

```
b = r;
  t1 = t2;
  t2 = t;
\} while (r != 0);
// cout << t1 << endl;
s = ct;
string pta;
for (int i = 0; i < s.length(); i += 2)
  if (s[i] >= 'a' && s[i] <= 'z' && s[i+1] >= 'a' && s[i+1] <= 'z')
     int ans = ((s[i] - 'a') * (key[3] - 'a')) + ((s[i+1] - 'a') * (-1) * (key[2] - 'a'));
     ans *= t1;
     ans = ans \% 26;
     if (ans < 0)
        ans = 26 + ans;
     // cout << ans << " ";
     pta.push_back((char)(ans + 'a'));
     ans = ((s[i] - 'a') * (-1) * (key[1] - 'a')) + ((s[i + 1] - 'a') * (key[0] - 'a'));
     ans *= t1;
     ans = ans \% 26;
     if (ans < 0)
        ans = 26 + ans;
     // cout << ans << " ";
     pta.push_back((char)(ans + 'a'));
   }
cout << "\nYour plain text : " << pta << "\n"
```

Output:-

<< endl;

return 0;

Enter plain text : information

Enter key text(4 character) : ddit

Your Encryption is : ylxvrtwxgepi

Your plain text : informationx

E-commerce and E-Security (IT718)	Roll No.: IT150
DDU (Faculty of Tech. Dept. of IT)	16 P a g e

Aim:- S-DES algorithm for data encryption along with key generation of S-DES.

Tools / Apparatus: O.S.: Microsoft Windows (any) / Linux / DOS

Packages: Turbo/Borland/GNU - C/C++

Procedure:

```
#include <bits/stdc++.h>
using namespace std;
int findRowColS1(int s1[4][4], string a)
  int i, j;
  if (a[1] == '0' && a[2] == '0')
     i = 0;
  else if (a[1] == '1' && a[2] == '0')
     i = 2;
  else if (a[1] == '0' \&\& a[2] == '1')
     i = 1;
  else
     i = 3;
  if (a[0] == '0' && a[3] == '0')
     j = 0;
  else if (a[0] == '1' && a[3] == '0')
     j = 2;
  else if (a[0] == '0' \&\& a[3] == '1')
     j = 1;
  else
     j = 3;
```

```
}
  return s1[j][i];
int findRowColS0(int s0[4][4], string a)
  int i, j;
  if (a[1] == '0' \&\& a[2] == '0')
     i = 0;
  else if (a[1] == '1' & a[2] == '0')
     i = 2;
  else if (a[1] == '0' && a[2] == '1')
     i = 1;
   }
  else
     i = 3;
  if (a[0] == '0' && a[3] == '0')
     j = 0;
  else if (a[0] == '1' \&\& a[3] == '0')
     j = 2;
  else if (a[0] == '0' \&\& a[3] == '1')
     j = 1;
   }
  else
     j = 3;
  return s0[j][i];
string xorString(string a, string b, int n)
```

```
string ans;
  for (int i = 0; i < n; i++)
     if ((a[i] == '0' \&\& b[i] == '0') || (a[i] == '1' \&\& b[i] == '1'))
     {
        ans.push_back('0');
     else
        ans.push_back('1');
  return ans;
int main()
  // 00001011
  string pt, keyTemp;
  cout << "Enter plain text : ";</pre>
  cin >> pt;
  cout << "Enter key : ";</pre>
  cin >> keyTemp;
  string key;
  vector<int> p10(10);
  cout << "Enter p10 (in 10 number): ";</pre>
  for (int i = 0; i < 10; i++)
     int x;
     cin >> x;
     p10[i] = x;
     key.push_back(keyTemp[x - 1]);
   }
  // 10 bit key partition
  string fbit = key.substr(0, 5);
  string sbit = key.substr(5, 5);
  // 1 shifting
  string lcs1fbit, lcs1sbit;
  for (int i = 0; i < 5; i++)
     lcs1fbit.push\_back(fbit[(i + 1) \% 5]);
     lcs1sbit.push\_back(sbit[(i + 1) \% 5]);
```

// 2 shifting

{

{

}

string lcs2fbit, lcs2sbit; for (int i = 0; i < 5; i++)

// calculating k1,k2

for (int i = 0; i < 8; i++)

string k1, k2; vector<int> p8(8);

> int x; cin >> x; p8[i] = x;

// Encryption

string ptip;

int x; cin >> x; ip[i] = x;

}

vector<int>ip(8);

for (int i = 0; i < 8; i++)

for (int i = 0; i < 8; i++)

vector<int> exp(8); string rightExp;

cout << "Enter expanded permutation (in 8 number) : ";</pre>

```
int x;
  cin >> x;
  exp[i] = x;
  rightExp.push\_back(ptip[x - 1 + 4]);
}
// rightExp XOR k1
string afterf1 = xorString(rightExp, k1, 8);
int s0[4][4] = \{\{1, 0, 3, 2\}, \{3, 2, 1, 0\}, \{0, 2, 1, 3\}, \{3, 1, 3, 2\}\};
int s1[4][4] = \{\{0, 1, 2, 3\}, \{2, 0, 1, 3\}, \{3, 0, 1, 0\}, \{2, 1, 0, 3\}\};
int a, b;
a = findRowColS0(s0, afterf1.substr(0, 4));
b = findRowColS1(s1, afterf1.substr(4, 4));
cout << "a b : " << a << " " << b << endl;
string afterS0S1;
if (a == 0)
  afterS0S1.push_back('0');
  afterS0S1.push_back('0');
else if (a == 1)
  afterS0S1.push_back('0');
  afterS0S1.push_back('1');
}
else if (a == 2)
  afterS0S1.push_back('1');
  afterS0S1.push_back('0');
}
else
  afterS0S1.push_back('1');
  afterS0S1.push_back('1');
}
if (b == 0)
  afterS0S1.push_back('0');
  afterS0S1.push_back('0');
```

else if (b == 1)

```
afterS0S1.push_back('0');
  afterS0S1.push_back('1');
else if (b == 2)
  afterS0S1.push_back('1');
  afterS0S1.push_back('0');
}
else
  afterS0S1.push_back('1');
  afterS0S1.push_back('1');
cout << "afterS0S1 : " << afterS0S1 << endl;
cout << "Enter p4 (in 4 number) : ";</pre>
vector<int> p4(4);
string rightWithoutXor;
for (int i = 0; i < 4; i++)
  int x;
  cin >> x;
  p4[i] = x;
  rightWithoutXor.push_back(afterS0S1[x - 1]);
}
string finalRight = xorString(rightWithoutXor, ptip.substr(0, 4), 4);
cout << "finalRight : " << finalRight << endl;</pre>
// swap done
string afterFun1 = ptip.substr(4, 4) + finalRight;
cout << "afterFun1 : " << afterFun1 << endl;</pre>
// now ptip is afterFun1
ptip = afterFun1;
string rightExp2;
for (int i = 0; i < 8; i++)
  rightExp2.push\_back(ptip[exp[i] - 1 + 4]);
}
cout << "rightExp2 : " << rightExp2 << endl;</pre>
string afterf2 = xorString(rightExp2, k2, 8);
```

cout << "afterf2 : " << afterf2 << endl;</pre>

```
a = findRowColS0(s0, afterf2.substr(0, 4));
b = findRowColS1(s1, afterf2.substr(4, 4));
string afterS0S12nd;
if (a == 0)
  afterS0S12nd.push_back('0');
  afterS0S12nd.push_back('0');
else if (a == 1)
  afterS0S12nd.push back('0');
  afterS0S12nd.push_back('1');
else if (a == 2)
  afterS0S12nd.push_back('1');
  afterS0S12nd.push_back('0');
}
else
  afterS0S12nd.push_back('1');
  afterS0S12nd.push_back('1');
}
if (b == 0)
  afterS0S12nd.push_back('0');
  afterS0S12nd.push_back('0');
}
else if (b == 1)
  afterS0S12nd.push_back('0');
  afterS0S12nd.push_back('1');
else if (b == 2)
  afterS0S12nd.push_back('1');
  afterS0S12nd.push_back('0');
}
else
  afterS0S12nd.push_back('1');
  afterS0S12nd.push_back('1');
```

```
cout << "afterS0S12nd : " << afterS0S12nd << endl;
          string rightWithoutXor2nd;
          for (int i = 0; i < 4; i++)
          {
            rightWithoutXor2nd.push_back(afterS0S12nd[p4[i] - 1]);
          cout << "rightWithoutXor2nd : " << rightWithoutXor2nd << endl;</pre>
          string finalRight2nd = xorString(rightWithoutXor2nd, ptip.substr(0, 4), 4);
          cout << "finalRight2nd : " << finalRight2nd << endl;</pre>
          string afterFun2 = finalRight2nd + ptip.substr(4, 4);
          cout << "afterFun2 : " << afterFun2 << endl;</pre>
          string ans;
          cout << "Enter IP^(-1): ";
          vector<int>ip1(8);
          for (int i = 0; i < 8; i++)
            int x;
            cin >> x;
            ip1[i] = x;
            ans.push_back(afterFun2[x - 1]);
          cout << "Final Encryption is : " << ans << endl;</pre>
          return 0;
Output:-
         Enter plain text : 10111101
         Enter key : 1010000010
         Enter p10 (in 10 number): 3 5 2 7 4 10 1 9 8 6
         Enter P8 (in 8 number): 6 3 7 4 8 5 10 9
         k1 : 10100100
         k2: 01000011
         Enter IP (in 8 number) : 2 6 3 1 4 8 5 7
         Enter expanded permutation (in 8 number) : 4 1 2 3 2 3 4 1
         a b : 3 2
         afterS0S1 : 1110
         Enter p4 (in 4 number) : 2 4 3 1
         finalRight: 1100
         afterFun1 : 11101100
         rightExp2 : 01101001
         afterf2 : 00101010
         afterS0S12nd : 0000
         rightWithoutXor2nd: 0000
         finalRight2nd: 1110
         afterFun2 : 11101100
         Enter IP^(-1) : 4 1 3 5 7 2 8 6
```

Final Encryption is: 01110101

Aim:- Write a program to generate and exchange public keys using client server mechanism **Tools / Apparatus:** O.S.: Microsoft Windows (any) / Linux / DOS
Packages: Turbo/Borland/GNU - C/C++

Server.java

```
import java.io.*;
import java.net.*;
import java.util.Scanner;
public class Server {
public static boolean isPrime(int n) {
     if (n <= 1) {
        return false;
     }
     if (n <= 3) {
        return true;
     }
     if (n \% 2 == 0 || n \% 3 == 0) {
        return false;
     for (int i = 5; i * i <= n; i += 6) {
        if (n \% i == 0 || n \% (i + 2) == 0) {
          return false;
     }
     return true;
  public static void main(String[] args) {
     try {
```

25 | Page

```
ServerSocket serverSocket = new ServerSocket(12345);
  System.out.println("Waiting for client...");
  Socket clientSocket = serverSocket.accept();
  System.out.println("Client connected!");
  Scanner scanner = new Scanner(System.in);
  System.out.print("Enter prime number p: ");
  int p = scanner.nextInt();
  System.out.print("Enter prime number q: ");
  int q = scanner.nextInt();
  System.out.print("Enter prime number e: ");
  int e=scanner.nextInt();
  if(isPrime(p) && isPrime(q)){
  int n = p * q;
  int phi_n = (p - 1) * (q - 1);
  int d = calculateModInverse(e, phi_n);
    System.out.println("Value of d is:"+d);
  DataOutputStream out = new DataOutputStream(clientSocket.getOutputStream());
  out.writeInt(n);
  out.writeInt(e);
  out.writeInt(d);
  clientSocket.close();
  serverSocket.close();
}else{
    System.out.println("Check whether p and q are ");
```

} }

```
Roll No.: IT150
```

```
catch (Exception e) {
    e.printStackTrace();
}

private static int calculateModInverse(int a, int m) {
    a = a % m;
    for (int x = 1; x < m; x++) {
        if ((a * x) % m == 1) {
            return x;
        }
    }
    return 1;
}</pre>
```

Client.cpp:

```
import java.io.*;
import java.net.*;
import java.math.BigInteger;
import java.util.Scanner;

public class Client {
    public static void main(String[] args) {
        try {
            Socket socket = new Socket("127.0.0.1", 12345);
        }
}
```

```
DataInputStream in = new DataInputStream(socket.getInputStream());
    int n = in.readInt();
    int e = in.readInt();
    int d=in.readInt();
    System.out.println("Public Key\{e,n\}: {" + e + ", " + n + "}");
    System.out.println("Public Key\{d,n\}: \{"+d+", "+n+"\}");
    // Use the received public key for encryption
    Scanner scanner = new Scanner(System.in);
    System.out.print("Enter message to encrypt: ");
    double message = scanner.nextDouble();
    double encryptedMessage = encrypt(message, e, n);
    System.out.println("Encrypted Message: " + encryptedMessage);
    double decryptedMessage=decrypt(encryptedMessage,d,n);
    System.out.println("Decrypted Message: " + decryptedMessage);
    socket.close();
  } catch (Exception e) {
    e.printStackTrace();
private static double encrypt(double message, int e, int n) {
 double encrypted=modPow(message,e,n);
  return encrypted;
public static double modPow(double base, double exponent, double modulus) {
  double result = 1.0;
  base = base % modulus;
```

}

}

```
while (exponent > 0) {
    if (exponent % 2 == 1) {
        result = (result * base) % modulus;
    }
    exponent = Math.floor(exponent / 2); // Use Math.floor to ensure integer division
    base = (base * base) % modulus;
}

return result;
}

private static double decrypt(double message, int d, int n) {
    double decrypted=modPow(message,d,n);
    return decrypted;
}
```

Output:

Server:

Client:

```
Output ×

Deces_Exp5 (run) × ECES_Exp5 (run) #2 ×

run:

Public Key{e,n}: {13, 55}

Public Key{d,n}: {37, 55}

Enter message to encrypt: 20

Encrypted Message: 25.0

Decrypted Message: 20.0

BUILD SUCCESSFUL (total time: 11 seconds)
```

Aim:- Perform Encryption, Authentication and both using RSA. (Use public key shared in above practical).

Tools / Apparatus: O.S.: Microsoft Windows (any) / Linux / DOS Packages: Turbo/Borland/GNU - C/C++

Procedure:

```
/* Encrypt pain text "HI" using rsa algoritham for the given data p=53,q=59 */
#include <bits/stdc++.h>
using namespace std;
int power(int x, int y, int p)
  int res = 1; // Initialize result
  x = x \% p; // Update x if it is more than or equal to p
  if (x == 0)
     return 0; // In case x is divisible by p;
  while (y > 0)
     // If y is odd, multiply x with result
     if (y & 1)
       res = (res * x) % p;
     // y must be even now
     y = y >> 1; // y = y/2
     x = (x * x) \% p;
  return res;
}
int main()
  int m = 0;
  string pt;
  cout << "Enter plain text : ";</pre>
  cin >> pt;
  string ptm;
  for (int i = 0; i < pt.length(); i++)
```

 $ptm += to_string((int)(pt[i] - 'a'));$

```
}
m = stoi(ptm);
cout << "your plain text in number is:" << m << endl;\\
int p, q, d;
cout << "Enter value of p : ";</pre>
cin >> p;
cout << "Enter value of q : ";</pre>
cin >> q;
int n, fn, e = 2;
n = p * q;
fn = (p - 1) * (q - 1);
// \gcd(fn,e)=17
while (true)
  if (\underline{\underline{gcd}(fn, e)} == 1)
   {
     break;
  e++;
}
cout << "e is : " << e << endl;
// e^*d = 1 \mod fn
// find using inverse module function
int t1 = 0;
int t2 = 1;
int a = fn;
int b = e;
int r, qo, t;
do
  qo = a / b;
  r = a \% b;
  t = t1 - (t2 * qo);
  a = b;
   b = r;
```

```
t1 = t2;
  t2 = t;
\} while (r != 0);
d = t1;
if (d < 0)
  d = fn + d;
cout << "d is : " << d << endl;
cout << "Public key : { " << e << ", " << n << " }" << endl;
cout << "Private key : { " << d << " , " << n << " }" << endl;
// Encryption
// c=m^e mod n
int c = power(m, e, n);
string cstr;
string cipher;
cstr = to_string(c);
if (cstr.length() == 2)
{
  cipher.push_back((char)(cstr[0] - '0' + 'a'));
  cipher.push\_back((char)(cstr[1] - '0' + 'a'));
  cout << "Cipher text is : " << cipher << endl;</pre>
  cout << "Cipher text is: " << c << endl;
}
else if (cstr.length() == 3)
  cout << "Can't convert into text." << endl;</pre>
  cout << "Cipher text is: " << c << endl;
}
else
  int x, y;
  x = ((int)(cstr[0] - '0') * 10) + (int)(cstr[1] - '0');
  y = ((int)(cstr[2] - '0') * 10) + (int)(cstr[3] - '0');
  x = x \% 26;
  y = y \% 26;
  cipher.push\_back((char)(x + 'a'));
  cipher.push_back((char)(y + 'a'));
  cout << "Cipher text is : " << cipher << endl;</pre>
  cout << "Cipher text is : " << c << endl;</pre>
```

```
// Decryption
          // m=c^d \mod n
          int m1 = power(c, d, n);
          string plain;
          cstr = to_string(m1);
          if (cstr.length() == 2)
            plain.push_back((char)(cstr[0] - '0' + 'a'));
            plain.push_back((char)(cstr[1] - '0' + 'a'));
            cout << "Plain text is : " << plain << endl;</pre>
            cout << "Plain text is: " << m1 << endl;
          else if (cstr.length() == 3)
            cout << "Can't convert into text." << endl;</pre>
            cout << "Plain text is: " << m1 << endl;
          }
          else
            int x, y;
            x = ((int)(cstr[0] - '0') * 10) + (int)(cstr[1] - '0');
            y = ((int)(cstr[2] - '0') * 10) + (int)(cstr[3] - '0');
            x = x \% 26;
            y = y \% 26;
            plain.push_back((char)(x + 'a'));
            plain.push_back((char)(y + 'a'));
            cout << "Plain text is: " << plain << endl;
            cout << "Plain text is: " << m1 << endl;
          }
          return 0;
Output:-
          Enter plain text : hi
           your plain text in number is : 78
           Enter value of p: 53
           Enter value of q: 59
           e is : 3
          d is : 2011
          Public key : { 3 , 3127 }
           Private key : { 2011 , 3127 }
           Cipher text is : xx
           Cipher text is : 2375
          Plain text is : hi
```

Plain text is: 78

Aim:- Write a program to implement Diffie-Hellman Key exchange algorithm and perform encryption and decryption.

Tools / Apparatus: O.S.: Microsoft Windows (any) / Linux / DOS Packages: Turbo/Borland/GNU - C/C++

Program:

```
#include <bits/stdc++.h>
using namespace std;
int power(int x, int y, int p)
  int res = 1;
  x = x \% p;
  if (x == 0)
     return 0;
  while (y > 0)
     if (y & 1)
        res = (res * x) % p;
     y = y >> 1;
     x = (x * x) \% p;
  }
  return res;
}
int main()
  int alpha, p, xa, xb, ya, yb, ka, kb;
  cout << "Enter p : ";</pre>
```

```
cin >> p;
cout << "Enter alpha : ";</pre>
cin >> alpha;
cout << "Enter private key of user A : ";</pre>
cin >> xa;
cout << "Enter private key of user B : ";</pre>
cin >> xb;
ya = power(alpha, xa, p);
yb = power(alpha, xb, p);
ka = power(yb, xa, p);
kb = power(ya, xb, p);
cout << "YA : " << ya << endl;
cout << "YB: " << yb << endl;
cout << "KA: " << ka << endl;
cout << "KB : " << kb << endl;
return 0;
```

Output:

}

```
Enter p: 23
Enter alpha: 7
Enter private key of user A: 4
Enter private key of user B: 3
YA: 9
YB: 21
KA: 16
KB: 16
```

EXPERIMENT-8

Aim:- Write a program to authenticate a user with system using MD5 or SHA-1 Hashing Technique.

Tools / Apparatus: O.S.: Microsoft Windows (any) / Linux / DOS Packages: Turbo/Borland/GNU - C/C++

```
Procedure:
```

```
import java.math.BigInteger;
import java.security.MessageDigest;
import java.security.NoSuchAlgorithmException;
import java.util.*;
public class Md5 {
  public static String generateMd5(String s) {
    try {
       MessageDigest md = MessageDigest.getInstance("MD5");
       byte[] bit = md.digest(s.getBytes());
       BigInteger bi = new BigInteger(1, bit);
       String hashValue = bi.toString(16);
       while (hashValue.length() < 32) {
         hashValue = "0" + hashValue;
       return hashValue;
     } catch (NoSuchAlgorithmException e) {
       throw new RuntimeException(e);
    }
  }
  public static void main(String args[]) throws
NoSuchAlgorithmException {
    Scanner sc = new Scanner(System.in);
    System.out.print("Enter Message : ");
    String str = sc.nextLine();
    System.out.println("Your HashCode Generated by MD5 is: " +
generateMd5(str));
    sc.close();
  }
Output:
```

Your HashCode Generated by MD5 is: a82be0f551b8708bc08eb33cd9ded0cf

Enter Message : Information

E-commerce and E-Security (IT718)	Roll No.: IT150
DDU (Faculty of Tech. Dept. of IT)	38 Page

EXPERIMENT-9

Aim:- Configure VPN using Packet Tracer and demonstrate the importance of IPSec.

Tools / Apparatus: O.S.: Microsoft Windows (any) / Linux / DOS

Packages: Turbo/Borland/GNU - C/C++

Procedure:

Topology for the configuration

Connection between 2 endpoints

Part 1: Enable security features

- 1. Issue the show version command in the user EXEC or privileged EXEC mode to verifythat the security technology package license is activated.
- 2. If not, activate the securityk9 module for the next boot of the router, accept the license, save the configuration, and reboot R1(config)# license boot module c2900technology-package securityk9 R1(config)# end R1# copy running-config startup- config R1# reload
- 3. After the reloading is completed, issue the show version again to verify the security technology package license activation. Do in Router R3.

Security is disabled in Router0

Enabling Security

Security enabled

Security is disabled in Router0

Security enabled

Part 2: Configure IPSec Parameters on R1 and R3

- 1. Test connectivity
- 2. Identify interesting traffic on R1. R1(config)# access-list 110 permit ip 192.168.1.0 0.0.0.255 192.168.3.00.0.0.255
- 3. Configure the ISAKMP Phase 1 properties on R1. R1(config)# crypto isakmp policy 10 R1(config-isakmp)# encryption aes R1(config-isakmp)# authentication preshare R1(config-isakmp)# group 2 R1(config-isakmp)# exitR1(config)# crypto isakmp key cisco address 10.2.2.2
- 4. Configure the ISAKMP Phase 2 properties on R1. R1(config)# crypto ipsec transform-set VPN-SET esp-3des esp-sha-hmac R1(config)# crypto map VPN-MAP 10 ipsec-isakmp R1(config-crypto-map)# description VPN connection to R3 R1(config-crypto-map)# set peer 10.2.2.2 R1(config-crypto-map)# set transform-set VPN-SET R1(config-crypto-map)# match address 110 R1(config-crypto-map)# exit

- 5. Configure the crypto map on the outgoing interface R1(config)# interfaceS0/0/0 R1(config-if)# crypto map VPN-MAP
- 6. Configure IPSec Parameters on R3 same as R1

Generating interesting traffic

Executing part 2 in Router0

Executing part 2 in Router2

Part 3: Verify the IPSec VPN

- 1. Verify the tunnel prior to interesting traffic
- 2. R1# show crypto ipsec sa

Executing part 3 in Router0

Executing part 3 in Router2

E-commerce and E-Security (IT718)	Roll No.: IT150
DDU (Faculty of Tech. Dept. of IT)	50 P a g e

EXPERIMENT-10

Aim:- Create Self Signed Certificate and configure it for website.

Tools / Apparatus: O.S.: Microsoft Windows (any) / Linux / DOS

Packages: Turbo/Borland/GNU - C/C++

Procedure:

To install a self-signed certificate in the Trusted Root Certification Authorities

- 1. Open the certificate snap-in.
- 2. View certificates in the MMC snap-in
- 3. Select Run from the Start menu, and then enter mmc. The MMC appears.
- 4. From the File menu, select Add/Remove Snap In.
- 5. The Add or Remove Snap-ins window appears.
- 6. From the Available snap-ins list, choose Certificates, then select Add.
- 7. In the Certificates snap-in window, select Computer account, and then select Next.
 - 8. Optionally, you can select My user account for the current user or Service account for a particular service.
- 9. In the Select Computer window, leave Local computer selected, and then select Finish.
- 10. In the Add or Remove Snap-in window, select OK.
- 11. Open the folder to store the certificate, either the Local Computer or the Current User.
- 12. Open the Trusted Root Certification Authorities folder.
- 13. Right-click the Certificates folder and click All Tasks, then click Import.
- 14. Follow the on-screen wizard instructions to import the RootCA.pfx into the store.

Step 1:-

Step 2:-

Step 3:-

Step 4:-

Step 5:-

Roll No.: IT150

Step 6:-

Step 7:-

Step 8:-

Step 9:-

Roll No.: IT150

Step 10:-

Next

Cancel

Step 11:-

Output:-

