MARINHA DO BRASIL DIRETORIA DE ENSINO DA MARINHA

(PROCESSO SELETIVO DE ADMISSÃO À ESCOLA NAVAL / PSAEN-2010)

NÃO ESTÁ AUTORIZADA A UTILIZAÇÃO DE MATERIAL EXTRA

MATEMÁTICA E FÍSICA

PROVA DE MATEMÁTICA

1) Sejam
$$f(x) = \ln(\cos x)^2$$
, $0 \le x < \frac{\pi}{2}$ e $F(x) = \int \left[\left(f'(x) \right)^2 + \sin^2 2x \right] dx$.
Se $F(0) = \frac{7\pi}{8} - 5$, então $\lim_{x \to \frac{\pi}{4}} F(x)$ vale

- (A) -2
- (B) -1
- (C) 0
- (D) 1
- (E) 2

2) Considere a equação $x^2+bx+c=0$, onde c representa a quantidade de valores inteiros que satisfazem a inequação $|3x-4| \le 2$. Escolhendo-se o número b, ao acaso, no conjunto $\{-4,-3,-2,-1,0,1,2,3,4,5\}$, qual é a probabilidade da equação acima ter raízes reais?

- (A) 0,50
- (B) 0,70
- (C) 0,75
- (D) 0,80
- (E) 1

- 3) Sejam A e B matrizes quadradas de ordem n, cujos determinantes são diferentes de zero. Nas proposições abaixo, coloque (V) na coluna à esquerda quando a proposição for verdadeira e (F) quando for falsa.
- () $\det(-A) = (-1)^n \det A$, onde -A é a matriz oposta de A.
- () $\det A = -\det A^t$, onde A^t é a matriz transposta de A .
- () $\det A^{-1} = (\det A)^{-1}$, onde A^{-1} é a matriz inversa de A.
- $() \det(3A.B) = 3. \det A. \det B$
- $() \det(A+B) = \det A + \det B.$

Lendo-se a coluna da esquerda, de cima para baixo, encontra-se

- (A) (V) (F) (V) (F) (F)
- (B) (F) (F) (V) (F)
- (C) (F) (V) (F) (V) (V)
- (D) (V) (V) (F) (F)
- (E) (V) (F) (V) (F) (V)

- 4) A inequação $x^2-6x \le -x^2+px+c$ tem como solução o intervalo $\begin{bmatrix} 0 \ ,2 \end{bmatrix}$, onde p, $c \in \Re$. Seja q a maior raiz da equação $4^{[x+1]}=16 \cdot 2^{[x+1]}-64$. A representação trigonométrica do número complexo p + iq é
- (A) $2\sqrt{3}\left(\cos\frac{5\pi}{3} + i \operatorname{sen}\frac{5\pi}{3}\right)$
- (B) $2\sqrt{2}\left(\cos\frac{3\pi}{4} + i \operatorname{sen}\frac{3\pi}{4}\right)$
- (C) $\sqrt{2} \left(\cos \frac{\pi}{6} + i \operatorname{sen} \frac{\pi}{6}\right)$
- (D) $2\sqrt{3} \left(\cos\frac{\pi}{3} + i \operatorname{sen}\frac{\pi}{3}\right)$
- (E) $2\sqrt{2}\left(\cos\frac{7\pi}{4} + i \operatorname{sen}\frac{7\pi}{4}\right)$

5) Considere a matriz ${f A}=egin{pmatrix} 1 & 3i & -1 \ 2i & -2 & i \ 1-2i & i & -i \end{pmatrix}$ com elementos no conjunto

dos números complexos. Sendo $n=\left|\det A\right|^2$, então o valor da expressão

$$\left[tg^2\frac{\pi n}{48} - \cos\left(\frac{2(n+5)\pi}{135}\right) - 1\right]^3 \in$$

- (A) $-\frac{125}{216}$
- (B) $\frac{1}{216}$
- (C) $\frac{125}{216}$
- (D) $\frac{343}{216}$
- (E) $-\frac{1}{216}$

6) Seja L uma lata de forma cilíndrica, sem tampa, de raio da base r e altura h. Se a área da superfície de L mede $54\,\pi\,a^2\,cm^2$, qual deve ser o valor de $\sqrt{r^2+h^2}$, para que L tenha volume máximo?

- (A) *a cm*
- (B) 3a cm
- (C) 6a cm
- (D) 9a cm
- (E) 12a cm

- 7) Uma progressão geométrica infinita tem o 4° termo igual a 5. O logaritmo na base 5 do produto de seus 10 primeiros termos vale $10-15\log_52$. Se S é a soma desta progressão, então o valor de \log_2S é
- (A) $2 + 3 \log_2 5$
- (B) $2 + \log_2 5$
- (C) $4 + \log_2 5$
- (D) $1 + 2 \log_2 5$
- (E) $4 + 2 \log_2 5$

8) Sejam f e g funções reais de variável real definidas por $f(x)=2-arcsen(x^2+2x)$ com $\frac{-\pi}{18} < x < \frac{\pi}{18}$ e g(x)=f(3x). Seja $\mathbf L$ a reta normal ao gráfico da função g^{-1} no ponto $(2\,,g^{-1}(2))$, onde g^{-1} representa a função inversa da função g. A reta $\mathbf L$ contém o ponto

- (A) (-1, 6)
- (B) (-4, -1)
- (C) (1, 3)
- (D) (1,-6)
- (E) (2, 1)

- 9) Considere um cone circular reto com raio da base $2\sqrt{2}cm$ e geratriz $4\sqrt{2}cm$. Sejam ${f A}$ e ${f B}$ pontos diametralmente opostos situados sobre a circunferência da base deste cone. Pode-se afirmar que o comprimento do menor caminho, traçado sobre a superfície lateral do cone e ligando A e \mathbf{B} , mede, em cm,
- (A) $4\sqrt{2}$
- (B) $2\sqrt{2}\pi$
- (C) 8
- (D) 4
- (E) $3\sqrt{3}\pi$

- 10) Sejam a, b, c as raízes da equação $12x^3 4x^2 3x + 1 = 0$. Qual o valor de $\sqrt{a^3 + b^3 + c^3 + 1}$?
- (A) $\frac{2\sqrt{21}}{9}$
- (B) $\frac{2\sqrt{7}}{3}$
- (C) $\frac{2\sqrt{7}}{9}$
- (D) $\frac{\sqrt{21}}{9}$
- $(E) \quad \frac{\sqrt{21}}{3}$

11) Considere o triângulo isósceles ABC inscrito em um círculo, conforme figura abaixo. Suponha que o raio do círculo cresce a uma taxa de 3cm/s e a altura \overline{AD} do triângulo cresce a uma taxa de 5cm/s. A taxa de crescimento da área do triângulo no instante em que o raio e a altura \overline{AD} medem, respectivamente, 10cm e 16cm, é

- (B) $76 cm^2 / s$
- (C) $64 cm^2 / s$
- (D) $56 cm^2 / s$
- (E) $52 cm^2 / s$

12) Considere o sistema
$$\begin{cases} (1-k)x+y+z=0\\ 2x+(2-k)y+2z=0\\ x+y+(1-k)z=0 \end{cases}, \text{ onde } k\in\Re\text{ . O conjunto de}$$

equações que permitem ao sistema admitir solução não trivial é

(A)
$$x = -y + z$$
 ou $(x + y + 3z = 0 \text{ e } y - z = 0)$

(B)
$$x = y - z$$
 ou $(x - y + 3z = 0 \text{ e } y + 2z = 0)$

(C)
$$x = -y - z$$
 ou $(x + y + 3z = 0 \text{ e } y + z = 0)$

(D)
$$x = -y - z$$
 ou $(x + y - 3z = 0 \text{ e } y - 2z = 0)$

(E)
$$x = -y - z$$
 ou $(x - y - 3z = 0 \text{ e } y - z = 0)$

13) A curva de equação $x^2-14=y^2+2x$ intercepta a reta 4y+1=x nos pontos $A \ e \ B$. Seja C a circunferência com centro no ponto médio do segmento \overline{AB} e cujo raio é a medida do maior eixo da curva de equação $x^2+2y^2=2\sqrt{3}x-8y-2$. A circunferência C tem por equação

(A)
$$x = \frac{35 - x^2 - y^2}{2}$$

(B)
$$x = \frac{20 - x^2 - y^2}{2}$$

(C)
$$x = \frac{x^2 + y^2 - 25}{2}$$

(D)
$$x = \frac{x^2 + y^2 - 35}{2}$$

(E)
$$x = \frac{25 - x^2 - y^2}{2}$$

- 14) Sejam C_1 e C_2 dois cones circulares retos e P uma pirâmide hexagonal regular de aresta da base a. Sabe-se que C_1 é circunscrito à P, C_2 é inscrito em P e C_1 , C_2 e P têm a mesma altura H. A razão da diferença dos volumes de C_1 e C_2 para o volume da pirâmide P é
- (A) $\frac{\pi\sqrt{3}}{6}$
- (B) $\frac{2\pi\sqrt{3}}{3}$
- (C) $\frac{\pi\sqrt{3}}{3}$
- (D) $\frac{\pi\sqrt{3}}{9}$
- (E) $\frac{\pi\sqrt{3}}{18}$

15) Sejam A e B conjuntos de números reais tais que seus elementos constituem, respectivamente, o domínio da função $f(x) = \sqrt{\frac{-1+2senx}{1+2senx}}$ no universo $\left[0\,,2\pi\right]$ e o conjunto solução da inequação $\frac{1}{\cos\sec x} - \frac{1}{\sec x} > 0$ para $0 < x < \pi$, $com \quad x \neq \frac{\pi}{2}$. Pode-se afirmar que B-A é igual a

(A)
$$\left[\frac{\pi}{6}, \frac{\pi}{4}\right] \cup \left[\frac{5\pi}{4}, \frac{11\pi}{6}\right]$$

- (B) $\left]\frac{5\pi}{6}, \frac{7\pi}{6}\right]$
- (C) Ø
- (D) $\left[\frac{\pi}{6}, \frac{\pi}{4}\right] \cup \left[\frac{7\pi}{6}, \frac{11\pi}{6}\right]$
- (E) $\left]\frac{5\pi}{6}, \pi\right[$

16) A figura que melhor representa o gráfico da função $y=e^{rac{x-1}{x+1}}$ é

(A)

(B)

(C)

(D)

(E)

CONCURSO: PSAEN - 2010

17) Considere r e s retas do \Re^3 definidas por

$$r: \begin{cases} x = 2t \\ y = 1 - t \text{, } t \in \Re \text{ e } s: \begin{cases} x + y - z + 1 = 0 \\ 2x - y + z = 0 \end{cases}. \text{ Se } \theta \text{ é o ângulo formado pelas}$$

$$retas \quad r = s \text{, então } \cos cos ec \theta \text{ vale}$$

retas r e s, então ${\rm cossec}\, heta$ vale

- (A) $\sqrt{7}$
- (B) $\sqrt{6}$

18) Considere um octaedro regular D, cuja aresta mede 6cm e um de seus vértices V repousa sobre um plano lpha perpendicular ao eixo que contém V. Prolongando-se, até encontrar o plano lpha, as quatro arestas que partem do outro vértice V' de D (que se encontra na perpendicular a lpha em V), forma-se uma pirâmide regular P de base quadrada, conforme figura abaixo. A soma das áreas de todas as faces de D e P vale, em cm^2 ,

(A)
$$12(15\sqrt{3}+12)$$

(B)
$$144(\sqrt{3}+1)$$

(C)
$$72(3\sqrt{3}+2)$$

(D)
$$18(9\sqrt{3}+8)$$

(E)
$$36(2\sqrt{3}+4)$$

CONCURSO: PSAEN - 2010

- 19) Três cilindros circulares retos e iguais têm raio da base R, são tangentes entre si dois a dois e estão apoiados verticalmente sobre um plano. Se os cilindros têm altura H, então o volume do sólido compreendido entre os cilindros vale
- (A) $\frac{R^2H(4\sqrt{3}-\pi)}{4}$
- (B) $\frac{3\pi\sqrt{3}R^2H}{2}$
- (C) $\frac{R^2H(4\sqrt{3}-\pi)}{2}$
- (D) $\frac{R^2H(3\sqrt{3}-\pi)}{2}$
- (E) $\frac{R^2H(2\sqrt{3}-\pi)}{2}$

20) Considere f uma função definida no conjunto dos números naturais tal que f(n+2)=3+f(n), $\forall n\in N$, f(0)=10 e f(1)=5. Qual o valor de $\sqrt{f(81)-f(70)}$?

- (A) $2\sqrt{2}$
- (B) $\sqrt{10}$
- (C) $2\sqrt{3}$
- (D) $\sqrt{15}$
- (E) $3\sqrt{2}$

PROVA DE FÍSICA

21) Uma partícula, de massa m = 40,0 gramas e carga elétrica q = 8,0 mC, encontra-se inicialmente fixa na origem do sistema coordenado **XOY** (veja figura abaixo). Na região, existe um campo elétrico uniforme $\vec{E} = 100.\hat{i} \, (\text{N/C})$. A partícula é solta e passa a se mover na presença dos campos elétrico e gravitacional $[\vec{g} = 10, 0.\hat{j} \, (\text{m/s}^2)]$. No instante em que a coordenada x = 40,0 cm, a energia cinética da partícula, em joule, é

- (B) $35.0.10^{-2}$
- (C) $40,0.10^{-2}$
- (D) $45,0.10^{-2}$
- $(E) 47.0.10^{-2}$

22) Uma haste de comprimento inicial $\mathbf{L_0}=59,0$ cm tem uma extremidade fixa na parede e a outra extremidade presa a uma placa retangular (1) isolante de área da face \mathbf{A} , que pode deslizar com atrito desprezível na superfície horizontal. Outra placa retangular (2) isolante, de mesma área da face, está fixa na superfície horizontal a uma distância $\mathbf{d}=17,7$ cm da placa (1). As placas possuem revestimento metálico nas faces (área \mathbf{A}) que se defrontam, formando assim um capacitor plano de placas paralelas a vácuo. A haste, que possui massa $\mathbf{m}=30,0$ gramas, calor específico médio $\mathbf{c}=0,40$ cal/g.°C e coeficiente de dilatação linear $\mathbf{c}=5,0.10^{-4}$ /°C, é uniformemente aquecida até atingir uma temperatura tal que a nova capacitância do capacitor torna-se 20% maior. O calor fornecido, em kcal, por um aquecedor (não indicado na figura) à haste é

- (A) 1,0
- (B) 1,2
- (C) 1,4
- (D) 1,6
- (E) 2.0

23) Um detector de ondas sonoras ${\bf D}$ passa pelo ponto ${\bf A}$, localizado no eixo x, em direção ao ponto ${\bf B}$, localizado no eixo y, com velocidade $\vec{{\bf v}}$ constante, como indicado na figura abaixo. O vetor velocidade faz um ângulo α acima da horizontal. Uma fonte sonora ${\bf F}$, em repouso, localizada na origem do sistema de eixos, emite ondas sonoras que se propagam no ar parado com velocidade constante $\vec{{\bf v}}_{\rm S}$. Sabendo que as frequências captadas pelo detector ao passar por ${\bf A}$ e ${\bf B}$ são, respectivamente, ${\bf f}_{\rm A}$ e ${\bf f}_{\rm B}$, a razão entre a diferença de frequências, ${\bf f}_{\rm A}$ - ${\bf f}_{\rm B}$, e a frequência da onda emitida pela fonte é

(B)
$$(v/v_s).(\cos\alpha - \sin\alpha)$$

(C)
$$(v/v_s)$$
.2.sen α

(D)
$$2.(v/v_s)$$

(E)
$$(v/v_s)$$
.2. cos α

24) Dois pêndulos constituídos por fios de massas desprezíveis e de comprimento ${\bf L}$ = 2,0 m estão pendurados em um teto em dois pontos próximos de tal modo que as esferas ${\bf A}$ e ${\bf B}$, de raios desprezíveis, estejam muito próximas, sem se tocarem. As massas das esferas valem m_A = 0,10 kg e m_B = 0,15 kg. Abandona-se a esfera ${\bf A}$ quando o fio forma um ângulo de 60° com a vertical, estando a esfera ${\bf B}$ do outro pêndulo na posição de equilíbrio. Sabendo que, após a colisão frontal, a altura máxima alcançada pelo centro de massa do sistema, em relação à posição de equilíbrio, é de 0,40 m, o coeficiente de restituição da colisão é

Dado: $|\vec{g}| = 10.0 \text{ m/s}^2$

- (A) zero
- (B) 0,25
- (C) 0,50
- (D) 0,75
- (E) 1,00

25) Uma pequena esfera rígida de massa \mathbf{m} é liberada do repouso da posição 1, localizada a uma distância vertical \mathbf{H} acima da borda de uma cavidade hemisférica de raio \mathbf{R} (ver figura). A esfera cai e toca, tangenciando, a superfície rugosa desta cavidade (posição 2) com o dobro da velocidade com a qual deixa a mesma (posição 3), parando momentaneamente na altura \mathbf{h} acima do plano da borda (posição 4). Despreze a resistência do ar. A razão $\mathbf{H/h}$ é igual a

- (A) 4/3
- (B) 3/2
- (C) 2
- (D) 3
- (E) 4

CONCURSO: PSAEN - 2010

26) A densidade absoluta (ou massa específica) ρ_o do cilindro sólido de altura \mathbf{H} e área das bases \mathbf{A} é tal que, quando em equilíbrio no fluido de densidade absoluta ρ , flutua mantendo a base superior a uma altura \mathbf{h} acima da superfície livre do líquido, como mostra a figura abaixo. Sabendo que, para ficar submerso, a densidade absoluta do cilindro deve ser 25% maior que ρ_o , podemos afirmar que a razão \mathbf{h}/\mathbf{H} é igual a

- (A) 4/5
- (B) 1/4
- (C) 1/5
- (D) 1/8
- (E) 1/10

27) Um pequeno bloco de massa m=2.0 kg é lançado da posição $\bf A$ com velocidade de módulo igual a 4,0 m/s. O trecho $\bf ABC$ do percurso, no plano vertical, possui atrito desprezível e o trecho $\bf CD$, de comprimento igual a 1,0 m, possui atrito cujo coeficiente cinético é 0,20. $\sqrt{3}$. Despreze a resistência do ar e considere a energia potencial gravitacional zero no nível $\bf BC$. Após passar pela posição $\bf D$, a máxima energia potencial gravitacional (em joules) atingida pelo bloco é

Dado: $|\vec{g}| = 10.0 \text{ m/s}^2$

www.concursosmilitares.com.br

28) A figura abaixo mostra uma superfície horizontal lisa (plano **XY**) onde existe um campo elétrico uniforme $\vec{E}=30.\hat{i}\,(\text{N/C})$ seguido de outro campo magnético uniforme $\vec{B}=1,5.\hat{k}$ (teslas). Uma partícula (1), de massa $m_1=m$ e carga elétrica $q_1=+4,0~\mu\text{C}$, é lançada com velocidade $\vec{V}_1=3,0.\hat{i}\,(\text{m/s})$, da posição $\mathbf{X}=\mathbf{0}$ e $\mathbf{Y}=1,5~m$, na direção de outra partícula (2), de massa $m_2=m$ e eletricamente neutra, inicialmente em repouso na posição indicada, num choque frontal. Sabe-se que: o coeficiente de restituição do choque é 0,80 e a massa m=3,0~mg (miligramas). Despreze a indução eletrostática e qualquer perda de carga da partícula (1). O módulo da aceleração, em m/s^2 , da partícula (1) no interior do campo magnético uniforme é

- (B) 2,6
- (C) 2,9
- (D) 3,1
- (E) 3.4

29) Um forno elétrico, que opera na voltagem de 120 V e corrente elétrica de 15A, possui rendimento de 80%. No seu interior foram colocados 2,5 litros de água na temperatura inicial de 39,1°C. Após 20 minutos, verifica-se que certa quantidade de água se vaporizou. Sabendo que a temperatura de vaporização é de 100°C, a variação de entropia, em kJ/K, da água durante a vaporização é

- (A) 1,0
- (B) 1,5
- (C) 2,0
- (D) 2,5
- (E) 3,0

	1 cal = 4,0 J		
	$c_{ m água}$ = 1,0 cal/g $^{ m o}$ C $L_{ m vaporiz.}$ = 540 cal/g $\mu_{ m água}$ = 1,0 g/cm $^{ m 3}$		
Dados: <	$L_{\text{vaporiz}} = 540 \text{ cal/g}$		
	$\mu_{\text{água}} = 1.0 \text{ g/cm}^3$		
;	100°C ≡ 373 K		

www.concursosmilitares.com.br

30) Um satélite artificial percorre uma órbita circular ao redor da Terra na altitude de 9,63.103 km. Para atingir a velocidade de escape, nesta altitude, o satélite deve ter, através de um sistema de propulsão, o módulo da sua velocidade linear multiplicado por

Dados: $G.M = 4,00.10^{14}\,N.m^2/kg$ e $R_T = 6,37.10^3~km$ (G é a constante de gravitação universal; M é a massa da Terra; $R_{\mathtt{T}}$ é o raio da Terra).

- (A) $\sqrt{2}/2$
- (B) $\sqrt{2}$
- (C) 2
- (D) $\sqrt{5}$
- (E) 5

31) Um bloco é solto de certa altura sobre uma mola ideal vertical que possui constante elástica ${\bf K}$, como mostra a figura 1. O bloco passa a ficar preso à mola (despreze as perdas nesta colisão) comprimindo-a até parar momentaneamente. A figura 2 mostra o gráfico da Energia Cinética ($E_{\rm C}$) do sistema mola-bloco em função da deformação da mola (Y). Sabe-se que $E_{\rm C}$ é medida em joules e Y em metros. Analisando o gráfico, conclui-se que o valor da constante elástica ${\bf K}$, em N/m, é

- (B) 300
- (C) 400
- (D) 450
- (E) 500

32) A figura 1 mostra o gráfico da velocidade em função do tempo de uma partícula de massa ${\bf m}$ e carga elétrica $-{\bf q}$ que se move entre as placas de um capacitor plano de placas paralelas (figura 2). Na região entre as placas, existe um campo elétrico uniforme e o meio é vácuo. Se, no instante t = 0, a partícula possui velocidade $\vec{v}_{\rm o} = (2,00.10^5).\hat{i} \, ({\rm m/s})$ no sentido positivo de X, o módulo da sua aceleração, em ${\rm m/s}^2$, é aproximadamente igual a

Dados: $\sqrt{39} = 6,245$; $\sqrt{40} = 6,324$; $\sqrt{41} = 6,403$; $\sqrt{42} = 6,481$

Figura 2

- (A) 3,00.10¹⁰
- (B) 4,00.10¹⁰
- (C) 3,00.10¹¹
- (D) 3,50.10¹¹
- (E) $4,00.10^{11}$

33) Duas pequenas esferas, de raios desprezíveis, estão carregadas com cargas elétricas de mesmo valor absoluto e sinais contrários, sendo mantidas afastadas, uma da outra, por meio de uma mola ideal não condutora de constante elástica igual a 25,0 N/m. Sabe-se que a distância $\mathbf{L}=36,0$ cm. As duas cargas elétricas formam um sistema, no vácuo, que possui energia potencial eletrostática de valor absoluto igual a 0,90 J. O comprimento \mathbf{L}_{o} , em centímetros, da mola não deformada é

Dado: $K_{vácuo} = 9.0.10^9 \, \text{N.m}^2 / \text{C}^2$

- (A) 41,0
- (B) 46,0
- (C) 51,0
- (D) 56,0
- (E) 61,0

CONCURSO: PSAEN - 2010

34) Na figura abaixo, uma corda inextensível **ABC** (densidade linear igual a 20,0 g/m) tem uma extremidade presa na parede e, depois de passar por uma polia ideal, é tracionada por uma pequena esfera metálica (1), que possui massa $m_1 = \frac{0,700}{\sqrt{3}}$ kg e carga elétrica $q_1 = +2,50~\mu\text{C}$. Outra pequena esfera metálica (2), de mesmo raio, está presa na base do plano inclinado, possuindo massa $m_2 = 0,500~\text{kg}$ e carga elétrica $q_2 = -2,00~\mu\text{C}$. Sabe-se que: a distância entre os centros das esferas é de 10,0 cm, o meio entre as esferas possui constante eletrostática $K = 9,0.10^9~\text{N}.\text{m}^2/\text{C}^2$ e o trecho **AB** da corda, de comprimento igual a 50,0 cm, vibra num padrão de onda estacionária de frequência igual a 100 Hz. O harmônico correspondente é o

Dado: $|\vec{g}| = 10.0 \text{ m/s}^2$

- (A) primeiro.
- (B) segundo.
- (C) terceiro.
- (D) quinto.
- (E) sexto.

CONCURSO: PSAEN - 2010

35) No circuito elétrico abaixo, temos inicialmente a chave K aberta e os capacitores completamente carregados. Fechando-se a chave, após um longo intervalo de tempo, o capacitor $\mathbf{C_2}$ estará sob nova diferença de potencial. O valor absoluto da variação da diferença de potencial, em volts, no capacitor $\mathbf{C_2}$ entre a situação inicial e final é

- 36) Analise as afirmativas abaixo no que se refere às ondas sonoras.
- I A intensidade do som está relacionada à frequência das vibrações das moléculas do meio e é a qualidade pela qual um som forte se distingue de um som fraco.
- II A potência de uma fonte, que emite ondas sonoras isotropicamente, não depende do meio que o som se propaga e nem da distância do observador à fonte.
- III Para sons de mesma frequência, a percepção auditiva humana cresce linearmente com o aumento da intensidade do som.
- IV Se em certa distância de uma fonte sonora o nível sonoro aumenta de 15dB, então a intensidade sonora aumentou de um fator igual a $10\sqrt{10}$.
- V Uma onda sonora consiste numa compressão seguida de uma rarefação do meio em que se propaga. A distância entre uma compressão e uma rarefação sucessivas é o comprimento de onda da onda sonora.

Assinale a opção que contém apenas as afirmativas corretas:

- (A) I, II \in IV.
- (B) II, III e IV.
- (C) II e IV.
- (D) I, III e V.
- (E) II e V.

CONCURSO: PSAEN - 2010

37) Um corpo de massa m passa pela origem do sistema coordenado xoy, no instante t=0, com velocidade 5,0. \hat{i} (m/s) e aceleração 4,0. \hat{i} +2,0. \hat{j} (m/s²). Três forças constantes atuam sobre o corpo: o peso, a força vertical para cima \vec{F}_V e a força horizontal \vec{F}_H . Verifica-se que entre t=0 e t=4,0 s houve variação da energia mecânica de 9,6.10 3 J. O valor da massa m, em kg, é

Dado: $|\vec{g}| = 10.0 \text{ m/s}^2$

- (A) 50
- (B) 40
- (C) 32
- (D) 24
- (E) 15

www.concursosmilitares.com.br

38) Uma espira retangular (com uma volta de fio) de lados $\mathbf{a}=0.50\,\mathrm{m}$ e $\mathbf{b}=2.0\,\mathrm{m}$ está, no instante inicial $\mathbf{t}=0$, disposta no plano da folha e imersa numa região na qual existe um campo magnético uniforme para direita de módulo igual a 1,0 tesla. A corrente $\mathbf{i}=0.20\,\mathrm{A}$ circula na espira no sentido horário. Em virtude do torque magnético, a espira gira de 30° no intervalo de tempo de $2.0\,\mathrm{s}$. O módulo do torque magnético inicial, em N.m, atuando sobre a mesma, e o valor absoluto da força eletromotriz média induzida pelo giro, em volt, respectivamente, são:

- (A) zero e 0,15
- (B) 0,10 e 0,15
- (C) 0,10 e 0,20
- (D) 0,20 e 0,25
- (E) 0,20 e $0,25\sqrt{3}$

39) Fixada ao bloco ${\bf 1}$, a mola ideal de constante elástica ${\bf K}$ exerce sobre este uma força $\vec F_x$ responsável por acelerá-lo do repouso (x = - A) até o choque perfeitamente elástico com o bloco ${\bf 2}$, em repouso. O choque ocorre em x=0, coordenada na qual $\vec F_x$ se anula. Imediatamente após a colisão, os blocos se afastam com velocidades iguais em módulo e o sistema molabloco ${\bf 1}$ inicia um movimento harmônico simples com amplitude de oscilação igual a A/2. Despreze os atritos. A razão entre as massas m_1/m_2 dos blocos vale

- (A) 1/3
- (B) 2/3
- (C) 1
- (D) 3/2
- (E) 3

CONCURSO: PSAEN - 2010

40) A figura abaixo mostra uma barra uniforme e homogênea de peso P e comprimento L, em repouso sobre uma superfície horizontal. A barra está apoiada, sem atrito, ao topo de uma coluna vertical de altura h, fazendo um ângulo de 30° com a vertical. Um bloco de peso P/2 está pendurado a uma distância L/3 da extremidade inferior da barra. Se a barra está na iminência de deslizar, a expressão do módulo da força de atrito entre a sua extremidade inferior e a superfície horizontal é

(B)
$$\frac{\sqrt{3}}{6}$$
. $\frac{P.L}{h}$

(C)
$$\frac{1}{2} \cdot \frac{P.L}{h}$$

(D)
$$\frac{\sqrt{3}}{2} \cdot \frac{P.L}{h}$$

(E)
$$\frac{\sqrt{3}}{4} \cdot \frac{P.L}{h}$$

DIRETORIA DE ENSINO DA MARINHA

Processo Seletivo de Admissão à Escola Naval (PSAEN/2010).

MATEMÁTICA E FÍSICA			
AMARELA		VERDE	
01	В	01	D
02	A	02	В
03	A	03	В
04	В	04	D
05	E	05	A
06	C	06	В
07	C	07	D
80	D	08	С
09	С	09	E
10	A	10	D
11	В	11	E
12	D	12	A
13	D	13	E
14	E	14	A
15	E	15	С
16	A	16	С
17	D	17	E
18	C	18	A
19	E	19	В
20	В	20	C
21	С	21	D
22	В	22	С
23	A	23	D
24	E	24	A
25	E	25	A
26	С	26	D
27	A	27	С
28	В	28	В
29	E	29	E
	B e D	30	E
31	С	31	A
32	E	32	С
33	В	33	A
34	D	34	В
35	D	35	E
36	С	36	В
37	D	37	С
38	D	38	B e D
39	A	39	E
40	А	40	D