Animal Health

动物微生态制剂在畜牧业中的应用研究

曹爱青

摘 要:当前,饲料微生态制剂以其无毒害、无残留、不产生抗药性等优点,作为理想的抗生素替代品,在畜牧生产中的应用日益广泛。本文分析了微生态制剂研究的热点及存在的问题,探讨了微生态制剂的发展前景,旨在为动物微生态制剂在畜牧业中的应用研究提供参考。

关键词:动物;微生态制剂;畜牧业

一直以来,为了动物的健康和促生长,使用 大量的抗生素作为饲料添加剂,但其副作用已经 对人类的肉食卫生安全及动物和人类的健康造 成了威胁。首先,抗生素能破坏动物肠道正常微 生物群的生态平衡,影响动物的健康,特别是在 使用不当时,会引起内源性感染或二重感染。其 次,使用抗生素可能会引起细菌对抗生素的耐药 性,并能通过耐药性质粒遗传,使耐药菌株增加; 这种耐药菌也可能通过多种渠道转移给人类,威 胁人类的健康。再次,抗生素化学残留会污染肉、 奶、蛋等产品,降低畜禽水产品的质量。基于此, 从 2006 年起、欧盟全面禁止在饲料中使用抗生 素。为此,能替代抗生素和抗菌药物而又无副作 用、无残留的新一代药物——微生态制剂应运而 生。饲用微生态制剂,能维持调整动物体内微生 态平衡,或直接对病原菌起干扰、排除、拮抗作 用.从而提高动物抗病能力和生产水平。近年来. 随着健康无公害养殖的普及和推广,饲料微生态 制剂以其无毒害、无残留等优点,越来越受养殖 生产者的青睐,在畜牧生产中的应用日益广泛。

1 动物微生态制剂

1.1 概念

动物微生态制剂是根据微生态学原理,应用微生态工程技术,利用动物体内正常微生物菌群(各种益生菌群)经分离、鉴定、筛选后确定的菌种为主体,再经发酵、培养、浓缩、干燥与微囊化

曹爱青:大北农农牧科技有限公司(漳州)。

包被一系列工艺而制成的,可调整动物机体微生态平衡的活菌制剂,又称为微生态调节剂、益生素等。

1.2 分类

动物微生态饲料添加剂是根据微生态学理 论研制的含有对动物有益的微生物及其代谢产 物的活菌制剂,按照组成分类,微生态制剂可分 为益生菌 (又称益生素)、益生元和合生元 3 大 类。它们通过维持动物肠道内微生态平衡而发挥 作用,具有促进动物生长发育,提高动物机体免 疫力等多种功能,且无污染、无残留、不产生耐药 性和对环境无害等,是一类新型绿色环保饲料添 加剂。活菌制剂始于上世纪初,有人用酸牛奶来 调整幼畜腹泻出现的肠道微生物菌群失调。后 来,在研究中人们发现用活菌制剂可防止畜禽的 腹泻和肠炎,继之又发现活菌制剂还可改善动物 对饲料的利用,并有利于促进畜禽的生长发育和 健康,从而扩大了活菌制剂在畜牧生产中的作用 和应用前景。活菌微生态制剂的分类有多种.根 据制剂的用途及作用机制可分为微生态生长促 进剂和微生态治疗剂。微生物的种类有芽孢杆菌 制剂、乳酸菌制剂、酵母类菌制剂、光合细菌等。

(1)乳酸菌类微生态制剂。乳酸杆菌制剂的应用历史最早,制剂种类最多,相对效果最好。乳酸菌是一种可以分解糖类产生乳酸的革兰氏阳性菌,厌氧或者兼性厌氧生长。乳酸杆菌是健康动物肠道中极为重要的生理菌群之一,组织和肠道中极为重要的生理菌群之一,组织和肠道中极为重要的生理菌群之一,组织和肠道中的厌氧菌群有扶植作用,而对需氧菌群的生长则起限制作用,有助于宿主调整肠道正常菌群的生长则起限制作用,有助于宿主调整肠道正常菌群的生物此之间的相互关系,维持微生态环境平衡。主要包括:嗜乳酸杆菌、保加利亚杆菌、莱氏乳杆菌、植物乳杆菌、干酪乳杆菌、纤维二糖乳杆菌、德氏乳杆菌、高加索乳杆菌、纤维二糖乳杆菌

Animal Health

及酸乳酪乳杆菌等。乳酸杆菌和其代谢产物中含有较高的超氧化物歧化酶(SOD),能消除氧自由基的不利作用,增强体液免疫和细胞免疫。研究发现,乳酸菌在鱼体肠道定植,可以抵抗革兰氏阴性致病菌,增强抗感染能力,增加肠黏膜的免疫调节活性,促进生长。乳酸菌可用于哺乳和断乳期动物的饲料中。

- (2)双歧杆菌类微生态制剂。双歧杆菌是当今国内外最受关注的益生菌制剂,先进国家几乎都有生产,并有多种剂型。其不仅能够治疗多种疾病,而且具有保健和延年益寿的作用。该菌为厌氧菌,共有 28 个种,30 多个亚种或型。常用的双歧杆菌、共有 28 个种,30 多个亚种或型。常用的双歧杆菌、短双歧杆菌、长双歧杆菌、短双歧杆菌、青春双歧杆菌和猪双歧杆菌等。
- (3) 芽孢杆菌类微生态制剂。芽孢杆菌是好氧菌,在一定条件下产生芽孢,由于芽孢的特殊结构使芽孢杆菌耐酸碱、耐高温和耐挤压,在肠道酸性环境中具有高度的稳定性,能分泌较强活性的蛋白酶及淀粉酶,促进饲料营养物质的消化。芽孢杆菌在动物肠道微生物群落中数量较少,但优点很多。目前生产中应用的芽孢杆菌主要有:枯草芽孢杆菌、地衣芽孢杆菌、腊样芽孢杆菌、东洋芽孢杆菌、环状芽孢杆菌和短小芽孢杆菌等。
- (4)酵母类微生态制剂。酵母细胞富含蛋白质、核酸、维生素和多种酶,具有增强动物免疫力,增加料适口性,促进动物对饲料的消化吸收能力等功能,并可提高动物对磷的利用率。用于饲料中的酵母菌主要是假丝酵母、红色酵母、酿造酵母和啤酒酵母。
- (5)光合细菌。光合细菌能在厌氧光照条件下利用 CO₂,有些光合细菌还有固氮作用。经分析,光合细菌菌体蛋白中多种必需氨基酸的含量高于酵母菌。光合细菌不仅为生物体宿主提供丰富的蛋白质、维生素、矿物质、核酸等营养物质,而且可以产生辅酶 Q 等生物活性物质,提高宿主的免疫力。光合细菌在改善水体环境,促进水产动物生长增重,改善色泽等方面有良好的作用。

2 活菌微生态制剂的作用机理

研究表明,动物自身及许多致病菌都会产生 各种有毒物质,如胶、氨、细菌毒素、氧自由基等 代谢产物。有些有益菌可以阻止毒性胺和氨的合 成或把它们分解中和细菌毒素,从而避免这些有 害物质对动物机体组织细胞的损害作用。一些好氧菌则通过产生超氧化物歧化酶可以帮助消除氧自由基,减少或消除氧自由基对细胞及细胞器膜质结构的损害。乳酸菌能够产生有机酸和抗菌物质,降低肠道内 pH 值,减少氧化。

2.1 提高机体免疫力

动物微生态制剂中的有益菌均是良好的免疫激活剂,刺激肠道黏膜固有层中淋巴细胞的转化,使之产生体液免疫和细胞免疫,增强机体免疫力,及时杀死侵入体内的致病菌,消除体内"病变"细胞,从而防止疾病发生和恶化。

2.2 补充动物肠道正常菌群

动物微生态制剂中的有益菌是畜禽肠道内的"原籍菌",是肠道内正常的生理细菌,这些"原籍菌"均为专性厌氧或兼性厌氧菌。畜禽服用动物微生态制剂后,肠道内的正常菌群便得到补充,"原籍菌"在数量上便占绝对优势,通过生存竞争排斥,生长代谢造成厌氧环境,抑制了那些需氧性病菌的生长繁殖,其发酵结果是产生大量乳酸、乙酸,降低肠道内 pH 值,使致病菌难以生存,有效防止菌群失调症的发生。

2.3 补充机体营养成分

动物微生态制剂中的有益菌在肠道年内代谢所产生的多种氨基酸、维生素以及其他一些代谢产物,可作为营养物质被畜禽机体吸收和利用,促进畜禽的生长发育和增重。

2.4 协助机体清除毒素及代谢产物

动物微生态制剂中的有益菌群在肠道内生长能形成致密性膜菌群,形成生物屏障阻止毒素和废物的吸收。如双歧杆菌能分泌过氧化氢等物质直接降解细菌毒素及代谢物,如乳酸杆菌在肠道内繁殖可产生大量乳酸和乙酸,刺激胃肠蠕动,也有利于毒素和废物的排泄,从而减轻肝脏负担防止肝脏疾病的发生和发展。

3 动物微生态制剂在畜牧生产中的应用

我国微生态制剂的研究始于 20 世纪 70 年代,但直到 80 年代后期,才开始重视其研究与开发,并多以乳酸杆菌、粪链球菌、芽孢杆菌和酵母菌等为主,研制单一或复合型制剂。全国现有几十家企业生产、销售微生物饲料添加剂,目前微生态制剂产品在畜牧生产、饲料生产、动物胃肠道疾病预防、幼龄动物助消化等方面得到了较广泛的应用。

Animal Health

3.1 在畜牧养殖业上的应用

李春丽等(2005)用含 0.1%微生态制剂的自来水饲喂母猪及其所产哺乳仔猪, 试验时间为 40d。结果表明, 试验组的仔猪发病率可降低 30.31%,平均日增重提高 8.33%,试验组母猪的免疫球蛋白浓度一直维持不变,而对照组浓度下降了 4.2%。有研究者指出,长期给动物饲喂微生态制剂可明显减轻猪舍内由于粪便引起的恶臭,添加剂中的有益菌群依然能够存活并发挥除臭功能,从而使养殖场的环境卫生大大改善(谢文 地,2009)。另外,多数研究者指出,在反刍动物牛、羊饲料中添加益生素能改善其生产性能,对促进牛、羊增重和饲料利用率有积极作用;另外有学者研究证实,在犊牛日粮中使用益生素可使牛日增重、饲料利用率均有所提高,而腹泻发病率和死亡率都有所下降。

3.2 在禽类中的研究应用

在雏鸡日粮中添加微生态制剂能够提高雏鸡成活率、日增重及饲料报酬,降低腹泻等肠道疾病发生率。对肉鸡的促生长效果可达 5%~12%,蛋鸡产蛋率可提高 4%~8%,大大降低死亡率。史兆国等(2000)在雏鸡饲料中添加微生态制剂,结果表明,试验组雏鸡饲料报酬较对照组提高 11.21%,死淘率下降 5.79%,且可大幅降低死亡率。用微生态制剂饲喂 817 肉仔鸡,发现微生态制剂可提高其免疫器官指数,且可增强鸡群的特异性和非特异性免疫力(司振书,2007)。

3.3 在水产养殖上的应用

据报道,在鱼虾饲料中添加微生态制剂,可使鱼虾增重提高 10%~20%。国外学者研究指出,益生素能够平衡动物肠道菌群平衡,提高机体免疫机能(Karimi,2003)。现已证实益生素能够产生对机体有益物质,对动物的健康有益,已有许多微生态制剂被普遍认可为完全安全的。Leuschner等(2003)研究发现,适当剂量菌种的益生素,可提高动物机体整体状态及生产性能。

4 动物微生态制剂存在问题及发展前景

4.1 微生态制剂在应用中存在的问题

微生态制剂虽然已在畜牧业中蓬勃兴起,但 其存在问题仍不可忽视。养殖业者对动物微生态 制剂的认识和使用上存在问题。首先,我国对微 生态制剂的研究起步较晚,对于其作用机理的认 识还不完善,有待进一步加强,其次,在微生态制

剂的使用过程中,打破动物的种属差异性和个体 差异性,是否有可能寻找适合于动物普遍适用的 活菌制剂将成为一个艰难而长期的课题:再次, 如何解决当前微生态制剂使用过程中活菌变异 导致耐药菌株的出现,此菌株可将耐药性通过菌 株基因而转移,从而使抗生素失效,同时,抗生素 的大规模使用,又使得微生态制剂本身活菌受到 抑制和杀灭,从而使其丧失原有生物学活性;而 微生态制剂应用缺少针对性、较少考虑作用对 象、使用目的与使用环境,如反刍动物一般选用 真菌类益生素;促进仔猪生长发育、提高饲料报 酬应选用双歧杆菌等菌株:用于改善养殖环境的 主要是光合细菌和消化细菌;芽孢杆菌微生态制 剂在防病促生长方面体现一定效果。另外,选用 菌种时,如何选择安全、无毒副作用的菌株,并且 应该保证这些菌株在长期使用后亦不会发生突 变成为对动物、环境有害的菌株,这一点尤为关 键。而动物种类,不同的生长阶段和生理状况,饲 料的加工过程、存储、运输等都会影响活菌微生 态制剂的使用效果,也是行业深入研究的重点。

4.2 微生态制剂的发展前景

为了保证食品卫生安全,发展绿色畜禽水产 品,就必需开发无毒副作用、无残留、无耐药性、 不污染环境的抗生素添加剂替代用品,由于动物 微生态制剂全面具备这些性能,且愈来愈受到专 家学者和生产经营者的重视。随着人们对环境保 护及食品安全的日益关注及畜牧业的快速发展, 微生态制剂逐渐替代抗生素 广泛应用于动物养 殖,促进畜禽的生长发育,提高机体免疫力,减少 畜禽疾病,提高饲料利用率,降低对环境的污染, 同时为人们提供品质好、无公害的畜产品。我们 相信通过微生态领域与药学领域、基础医学领域 的互相渗透,相互协作,提高制备工艺,一定能够 研制出更多更好的微生态制剂。动物微生态制剂 中的有益菌在肠道内代谢所产生的多种氨基酸, 维生素以及其他一些代谢产物,可作为营养物质 被畜禽机体吸收和利用,促进畜禽的生长发育和 增重。微生态制剂作为饲料添加剂的使用是80 年代后期迅速发展起来的,随着抗生素的逐渐禁 用,作为无毒、无污染、无副作用的绿色环保产 品,微生态制剂将在畜牧业中发挥重要作用。发 展微生态制剂品不仅是生产无公害畜产品的需 要,也是促进饲料工业和畜牧养殖业可持续发展 的必要条件之一,其应用前景十分广阔。■