Derived Categories and Birational Geometry

Pedro Núñez

National Taiwan University

September 22, 2025

Mathematics Seminar at CUNEF University

Outline

- Introduction
 - Birational Geometry
 - Derived Categories

- Relation between Derived Categories and Birational Geometry
 - Relation between them: Kawamata's DK hypothesis
 - Indecomposability conjecture and known results
- 3 Previous and current work on indecomposability
 - Hyperelliptic varieties (joint work with Pieter Belmans and Andreas Demleitner)
 - Threefolds on the Noether Line (joint work in progress with Jungkai Chen)

Introduction • 0 0 0 0 • 0 0 0

Outline

- Introduction
 - Birational Geometry
 - Derived Categories

- Relation between Derived Categories and Birational Geometry
 - Relation between them: Kawamata's DK hypothesis
 - Indecomposability conjecture and known results
- 3 Previous and current work on indecomposability
 - Hyperelliptic varieties

 (joint work with Pieter Belmans and Andreas Demleitner)
 - Threefolds on the Noether Line (joint work in progress with Jungkai Chen)

$$\{(x, y) \in \mathbb{A}^2 \mid y = x^2 - 1\}$$

$$\{[x:y:z] \in \mathbb{P}^2 \mid yz = x^2 - z^2\}$$

$$\{(x, y) \in \mathbb{A}^2 \mid y = x^2 - 1\}$$

$$\{(x, y) \in \mathbb{A}^2 \mid y = x^2 - 1\}$$
 $\{[x : y : z] \in \mathbb{P}^2 \mid yz = x^2 - z^2\}$

Work over C, because we want FTA, Bézout's theorem, etc.

$$\{(x, y) \in \mathbb{A}^2 \mid y = x^2 - 1\}$$

$$\{(x,y)\in\mathbb{A}^2\mid y=x^2-1\}$$
 $\{[x:y:z]\in\mathbb{P}^2\mid yz=x^2-z^2\}$

- Work over C, because we want FTA, Bézout's theorem, etc.
- Zariski topology: closed subsets are zero loci of polynomials.

$$\{(x, y) \in \mathbb{A}^2 \mid y = x^2 - 1\}$$

$$\{[x:y:z] \in \mathbb{P}^2 \mid yz = x^2 - z^2\}$$

- Work over C, because we want FTA, Bézout's theorem, etc.
- Zariski topology: closed subsets are zero loci of polynomials.
- Work with projective varieties, because we want compactness.

$$\{(x, y) \in \mathbb{A}^2 \mid y = x^2 - 1\}$$

$$\{(x,y)\in \mathbb{A}^2\mid y=x^2-1\}$$
 $\{[x:y:z]\in \mathbb{P}^2\mid yz=x^2-z^2\}$

- Work over C, because we want FTA, Bézout's theorem, etc.
- Zariski topology: closed subsets are zero loci of polynomials.
- Work with projective varieties, because we want compactness.
- We assume varieties to be irreducible.

• A morphism of algebraic varieties is a continuous map which locally looks polynomial. So $x \mapsto x^2$ is, but $x \mapsto e^x$ isn't.

- A morphism of algebraic varieties is a continuous map which locally looks polynomial. So $x \mapsto x^2$ is, but $x \mapsto e^x$ isn't.
- An isomorphism of algebraic varieties is a morphism which is invertible (the inverse should be algebraic as well).

- A morphism of algebraic varieties is a continuous map which locally looks polynomial. So $x \mapsto x^2$ is, but $x \mapsto e^x$ isn't.
- An isomorphism of algebraic varieties is a morphism which is invertible (the inverse should be algebraic as well).
- Goal: Classify varieties up to isomorphism. (Too hard!)

Introduction

- A morphism of algebraic varieties is a continuous map which locally looks polynomial. So $x \mapsto x^2$ is, but $x \mapsto e^x$ isn't.
- An isomorphism of algebraic varieties is a morphism which is invertible (the inverse should be algebraic as well).
- **Goal:** Classify varieties up to isomorphism. (Too hard!)
- Two varieties are *birationally equivalent* if they contain isomorphic dense open subsets, i.e., they are the same except possibly over some (lower-dimensional) proper closed subset.

1

- A morphism of algebraic varieties is a continuous map which locally looks polynomial. So $x \mapsto x^2$ is, but $x \mapsto e^x$ isn't.
- An isomorphism of algebraic varieties is a morphism which is invertible (the inverse should be algebraic as well).
- Goal: Classify varieties up to isomorphism. (Too hard!)
- Two varieties are birationally equivalent if they contain isomorphic dense open subsets, i.e., they are the same except possibly over some (lower-dimensional) proper closed subset.
- Isomorphic varieties are birationally equivalent, but not vice-versa. (Example: blow-up.)

- A morphism of algebraic varieties is a continuous map which locally looks polynomial. So $x \mapsto x^2$ is, but $x \mapsto e^x$ isn't.
- An isomorphism of algebraic varieties is a morphism which is invertible (the inverse should be algebraic as well).
- Goal: Classify varieties up to isomorphism. (Too hard!)
- Two varieties are birationally equivalent if they contain isomorphic dense open subsets, i.e., they are the same except possibly over some (lower-dimensional) proper closed subset.
- Isomorphic varieties are birationally equivalent, but not vice-versa. (Example: blow-up.)
- **Intermediate goal:** Classify up to birational equivalence.

 If X is an n-dimensional smooth variety, its canonical line bundle is

 $\omega_X := \bigwedge^n \Omega_X$, where Ω_X is its (holomorphic) cotangent bundle.

 If X is an n-dimensional smooth variety, its canonical line bundle is

$$\omega_X := \bigwedge^n \Omega_X$$
, where Ω_X is its (holomorphic) cotangent bundle.

• A divisor is a \mathbb{Z} -linear combination of codimension 1 subvarieties. E.g., on a curve, \mathbb{Z} -linear combination of points.

 If X is an n-dimensional smooth variety, its canonical line bundle is

 $\omega_X := \bigwedge^n \Omega_X$, where Ω_X is its (holomorphic) cotangent bundle.

- A divisor is a \mathbb{Z} -linear combination of codimension 1 subvarieties. E.g., on a curve, \mathbb{Z} -linear combination of points.
- The *canonical divisor* K_X is the divisor of zeros and poles of any non-zero rational section of ω_X .

 If X is an n-dimensional smooth variety, its canonical line bundle is

 $\omega_X := \bigwedge^n \Omega_X$, where Ω_X is its (holomorphic) cotangent bundle.

- A divisor is a Z-linear combination of codimension 1 subvarieties. E.g., on a curve, Z-linear combination of points.
- The *canonical divisor* K_X is the divisor of zeros and poles of any non-zero rational section of ω_X .

Example: On $\mathbb{P}^1 = \{ [x_0 : x_1] \mid (x_0, x_1) \neq (0, 0) \}$ we have coordinates $x := x_1/x_0$ when $x_0 \neq 0$ and $y := x_0/x_1$ when $x_1 \neq 0$. The rational differential form $dx = d(y^{-1}) = -y^{-2}dy$ has a pole of order 2 at the point $H := \{x_0 = 0\} = \{y = 0\}$, hence $K_{\mathbb{P}^1} = -2H$.

• To classify up to birational equivalence, we want to pick a single representative *X'* in the birational equivalence class [*X*].

- To classify up to birational equivalence, we want to pick a single representative X' in the birational equivalence class [X].
- If $\pi \colon \tilde{X} \to X$ is a blow-up, $\tilde{X} \sim_{\text{bir}} X$. Among them, X is simpler.

- To classify up to birational equivalence, we want to pick a single representative X' in the birational equivalence class [X].
- If $\pi \colon \tilde{X} \to X$ is a blow-up, $\tilde{X} \sim_{\text{bir}} X$. Among them, X is simpler.
- We have the relation $K_{\tilde{S}} = \pi^* K_S + E$, and $K_{\tilde{S}} \cdot E = -1$.

- To classify up to birational equivalence, we want to pick a single representative X' in the birational equivalence class [X].
- If $\pi \colon \tilde{X} \to X$ is a blow-up, $\tilde{X} \sim_{\text{bir}} X$. Among them, X is simpler.
- We have the relation $K_{\tilde{S}} = \pi^* K_S + E$, and $K_{\tilde{S}} \cdot E = -1$.
- **MMP's idea:** Look for curves C such that $K_X \cdot C < 0$. If you find one, you can contract it (Castelnuovo/Mori). Then repeat.

- To classify up to birational equivalence, we want to pick a single representative *X'* in the birational equivalence class [*X*].
- If $\pi \colon \tilde{X} \to X$ is a blow-up, $\tilde{X} \sim_{\text{bir}} X$. Among them, X is simpler.
- We have the relation $K_{\tilde{S}} = \pi^* K_S + E$, and $K_{\tilde{S}} \cdot E = -1$.
- **MMP's idea:** Look for curves C such that $K_X \cdot C < 0$. If you find one, you can contract it (Castelnuovo/Mori). Then repeat.
- Conjecturally, this process terminates. The variety we are left with at the end is our chosen representaive.

- To classify up to birational equivalence, we want to pick a single representative X' in the birational equivalence class [X].
- If $\pi: \tilde{X} \to X$ is a blow-up, $\tilde{X} \sim_{\text{bir}} X$. Among them, X is simpler.
- We have the relation $K_{\tilde{S}} = \pi^* K_S + E$, and $K_{\tilde{S}} \cdot E = -1$.
- **MMP's idea:** Look for curves C such that $K_X \cdot C < 0$. If you find one, you can contract it (Castelnuovo/Mori). Then repeat.
- Conjecturally, this process terminates. The variety we are left with at the end is our chosen representative.

Definition: A projective variety X is called *minimal* when K_X has non-negative intersection with every irreducible curve in X.

Outline

- Introduction
 - Birational Geometry
 - Derived Categories

- Relation between Derived Categories and Birational Geometry
 - Relation between them: Kawamata's DK hypothesis
 - Indecomposability conjecture and known results
- 3 Previous and current work on indecomposability
 - Hyperelliptic varieties

 (joint work with Pieter Belmans and Andreas Demleitner)
 - Threefolds on the Noether Line (joint work in progress with Jungkai Chen)

From singular cohomology to sheaf cohomology

From sheaf cohomology to derived categories

Semiorthogonal decompositions (SOD)

- The category $D^b(X)$ has a natural *triangulated structure*.
- An orthogonal decomposition of $D^b(X)$ would consist of
 - triangulated subcategories $\mathcal{A}, \mathcal{B} \subseteq \mathrm{D^b}(X);$
 - such that $\operatorname{Hom}(\mathcal{A}, \mathcal{B}) = \operatorname{Hom}(\mathcal{B}, \mathcal{A}) = 0$, i.e., $\operatorname{Hom}(a, b) = \operatorname{Hom}(b, a) = 0$ for all $a \in \mathcal{A}$ and all $b \in \mathcal{B}$;
 - and such that the smallest triangulated subcategory of $D^b(X)$ containing both of them is $D^b(X)$ itself.
- Fact: If X is connected, then $D^b(X)$ does not admit any orthogonal decomposition. (Bridgeland '99.)
- A semiorthogonal decomposition is the same thing, but without requiring $\operatorname{Hom}(\mathcal{A},\mathcal{B})=0$, only requiring $\operatorname{Hom}(\mathcal{B},\mathcal{A})=0$. It is denoted

$$D^{b}(X) = \langle \mathcal{A}, \mathcal{B} \rangle.$$

Outline

- Introduction
 - Birational Geometry
 - Derived Categories

- Relation between Derived Categories and Birational Geometry
 - Relation between them: Kawamata's DK hypothesis
 - Indecomposability conjecture and known results
- 3 Previous and current work on indecomposability
 - Hyperelliptic varieties

 (joint work with Pieter Belmans and Andreas Demleitner)
 - Threefolds on the Noether Line (joint work in progress with Jungkai Chen)

uction

Kawamata's DK hypothesis

Birational Geometry		Derived Categories
classify varieties	∻^ →	compute invariants
MMP operations	↔ >	SODs of derived categories
1	DK-hypothesis	1
inequalities of canonical divisors	←∧ →	embeddings of derived categories

Introduction

Example: blow-up

$$E \xrightarrow{i} \tilde{S}$$

$$\downarrow q$$

$$\{p\} \xrightarrow{j} S$$

Outline

- Introduction
 - Birational Geometry
 - Derived Categories

- Relation between Derived Categories and Birational Geometry
 - Relation between them: Kawamata's DK hypothesis
 - Indecomposability conjecture and known results
- 3 Previous and current work on indecomposability
 - Hyperelliptic varieties

 (joint work with Pieter Belmans and Andreas Demleitner)
 - Threefolds on the Noether Line (joint work in progress with Jungkai Chen)

Indecomposability conjecture

The previous discussion suggests that

minimal varieties ↔ indecomposable derived categories.

Indecomposability conjecture

The previous discussion suggests that

minimal varieties ↔ indecomposable derived categories.

This is not strictly true, but the following is a folklore conjecture:

Conjecture

Let *X* be a minimal smooth projective variety with $p_g > 0$. Then $D^b(X)$ is indecomposable.

Main known results on indecomposability

 Bridgeland '99: Calaby–Yau varieties have indecomposable derived categories.

Main known results on indecomposability

- Bridgeland '99: Calaby–Yau varieties have indecomposable derived categories.
- Kawatani-Okawa '18: the base locus of the canonical linear system controls indecomposability.

Main known results on indecomposability

- Bridgeland '99: Calaby–Yau varieties have indecomposable derived categories.
- Kawatani-Okawa '18: the base locus of the canonical linear system controls indecomposability.
- Pirozhkov '23: stronger notion of indecomposability (NSSI); examples are finite covers of abelian varieties and varieties fibered in NSSI varieties over NSSI bases.

Main known results on indecomposability

- Bridgeland '99: Calaby–Yau varieties have indecomposable derived categories.
- Kawatani-Okawa '18: the base locus of the canonical linear system controls indecomposability.
- Pirozhkov '23: stronger notion of indecomposability (NSSI); examples are finite covers of abelian varieties and varieties fibered in NSSI varieties over NSSI bases.

Theorem (Kawatani-Okawa '18, Okawa '23, Pirozhkov '25, ...)

A minimal smooth projective surface has indecomposable derived category if and only if $(p_g, q) \neq (0, 0)$.

Outline

- Introduction
 - Birational Geometry
 - Derived Categories

- Relation between Derived Categories and Birational Geometry
 - Relation between them: Kawamata's DK hypothesis
 - Indecomposability conjecture and known results
- 3 Previous and current work on indecomposability
 - Hyperelliptic varieties

(joint work with Pieter Belmans and Andreas Demleitner)

• Threefolds on the Noether Line (joint work in progress with Jungkai Chen)

Hyperelliptic varieties: definition

• A hyperelliptic variety X = A/G is the quotient of an abelian variety A by a finite group of automorphisms $G \subseteq \operatorname{Aut}(A)$ acting freely and without translations on A.

Hyperelliptic varieties: definition

- A hyperelliptic variety X = A/G is the quotient of an abelian variety A by a finite group of automorphisms $G \subseteq \operatorname{Aut}(A)$ acting freely and without translations on A.
- It follows that they are smooth projective minimal varieties with torsion canonical divisor, i.e., $mK_X \sim 0$ for some $m \in \mathbb{Z}_{>0}$.

Hyperelliptic varieties: definition

- A hyperelliptic variety X = A/G is the quotient of an abelian variety A by a finite group of automorphisms $G \subseteq Aut(A)$ acting freely and without translations on A.
- It follows that they are smooth projective minimal varieties with torsion canonical divisor, i.e., $mK_X \sim 0$ for some $m \in \mathbb{Z}_{>0}$.
- Equivalently, they are smooth projective varieties which are not abelian but admit an abelian variety as a finite étale cover.

Hyperelliptic varieties: definition

- A hyperelliptic variety X = A/G is the quotient of an abelian variety A by a finite group of automorphisms $G \subseteq \operatorname{Aut}(A)$ acting freely and without translations on A.
- It follows that they are smooth projective minimal varieties with torsion canonical divisor, i.e., $mK_X \sim 0$ for some $m \in \mathbb{Z}_{>0}$.
- Equivalently, they are smooth projective varieties which are not abelian but admit an abelian variety as a finite étale cover.
- 1-dimensional hyperelliptic varieties do not exist, and
 2-dimensional hyperelliptic varieties are bielliptic surfaces.

Hyperelliptic varieties: conjecture and main result

Conjecture

Let X be a hyperelliptic variety. Then $D^b(X)$ is indecomposable.

Hyperelliptic varieties: conjecture and main result

Conjecture

Let X be a hyperelliptic variety. Then $D^b(X)$ is indecomposable.

The *irregularity* of *X* is $q_X := h^1(X, \mathcal{O}_X)$ ($< \dim X$ if *X* hyperelliptic).

Theorem

The conjecture holds in the following cases:

- 1. X is cyclic, i.e., X = A/G with G cyclic.
- 2. *X* has irregularity $q_X = \dim X 2$ or $\dim X 1$.
- 3. The fiber(s) of the Albanese morphism of *X* have trivial canonical bundle.

In particular, the conjecture holds if dim $X \leq 3$.

• The Albanese morphism is a universal morphism into an abelian variety $alb_X : X \rightarrow Alb(X)$.

- The Albanese morphism is a universal morphism into an abelian variety $alb_X : X \rightarrow Alb(X)$.
- By [Kawamata '85], if *X* is hyperellitpic, then the Albanese morphism is an étale fiber bundle with smooth connected fibers.

- The Albanese morphism is a universal morphism into an abelian variety $alb_X : X \rightarrow Alb(X)$.
- By [Kawamata '85], if *X* is hyperellitpic, then the Albanese morphism is an étale fiber bundle with smooth connected fibers.
- In our paper we show that the fibers are either abelian varieties or hyperelliptic varieties again.

- The Albanese morphism is a universal morphism into an abelian variety $alb_X : X \rightarrow Alb(X)$.
- By [Kawamata '85], if *X* is hyperellitpic, then the Albanese morphism is an étale fiber bundle with smooth connected fibers.
- In our paper we show that the fibers are either abelian varieties or hyperelliptic varieties again.
- Combining this with [Pirozhkov '23] and induction on the dimension, we can deduce indecomposability in the first two cases of the theorem.

Outline

- Introduction
 - Birational Geometry
 - Derived Categories

- Relation between Derived Categories and Birational Geometry
 - Relation between them: Kawamata's DK hypothesis
 - Indecomposability conjecture and known results
- 3 Previous and current work on indecomposability
 - Hyperelliptic varieties (joint work with Pieter Belmans and Andreas Demleitner
 - Threefolds on the Noether Line (joint work in progress with Jungkai Chen)

Threefolds on the Noether Line: definition

Two key birational invariants of a projective variety X are its geometric genus $p_g(X) := h^0(X, \omega_X)$ and its canonical volume

$$\operatorname{vol}(X) := \lim_{m \to \infty} \frac{h^0(X, \omega_X^{\otimes m})}{m^n/n!}, \text{ where } n := \dim(X).$$

Threefolds on the Noether Line: definition

Two key birational invariants of a projective variety X are its geometric genus $p_g(X) := h^0(X, \omega_X)$ and its canonical volume

$$\operatorname{vol}(X) := \lim_{m \to \infty} \frac{h^0(X, \omega_X^{\otimes m})}{m^n/n!}, \text{ where } n := \dim(X).$$

By work of Jungkai Chen, Meng Chen and Chen Jiang ('20), and others, we know that projective threefolds of general type satisfy

$$\operatorname{vol}(X) \ge \frac{4}{3}p_g(X) - \frac{10}{3}$$
 (Noether Inequality).

Threefolds on the Noether Line: definition

Two key birational invariants of a projective variety X are its geometric genus $p_g(X) := h^0(X, \omega_X)$ and its canonical volume

$$\operatorname{vol}(X) := \lim_{m \to \infty} \frac{h^0(X, \omega_X^{\otimes m})}{m^n/n!}, \text{ where } n := \dim(X).$$

By work of Jungkai Chen, Meng Chen and Chen Jiang ('20), and others, we know that projective threefolds of general type satisfy

$$\operatorname{vol}(X) \ge \frac{4}{3}p_g(X) - \frac{10}{3}$$
 (Noether Inequality).

Definition: A projective threefold of general type is said to be *on the Noether line* if equality holds above.

Kobayashi's construction ('92)

Threefolds on the Noether Line: current result

Theorem

Let X be a *general** minimal smooth projective threefold on the first** Noether Line. Then $D^b(X)$ is indecomposable.

Threefolds on the Noether Line: current result

Theorem

Let X be a *general** minimal smooth projective threefold on the first** Noether Line. Then $D^b(X)$ is indecomposable.

- * The moduli space of such threefolds has several irreducible components, and this statement applies to one of the top-dimensional irreducible components.
- ** There are three Noether Lines, and threefolds on the second and third Noether Lines are necessarily singular.

Main tool: generalization of a criterion in [KO18]

Theorem

Let X be a minimal smooth projective variety such that $\Gamma := \operatorname{Bs} |\omega_X|$ is a smooth (necessarily rational) curve. If its conormal bundle is big and nef, then $\operatorname{D}^{\mathrm{b}}(X)$ is indecomposable.

Current work in progress: singular cases

Thanks for your attention!