Problem Statement:

For a given noisy or inconsistent dataset, implement data cleaning and preprocessing using different data mining techniques.

Dataset Used: Titanic Survivor Datasets

Kaggle Link: https://www.kaggle.com/vermaamitesh/titanic-survivor-datasets

Import Libraries

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

Load Dataset

```
url = 'https://raw.githubusercontent.com/prajaktajoshi2390/data-cleaning-and-preprocessing/ma
df1 = pd.read_csv(url)
```

df1.head()

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Far
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.250
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs	female	38.0	1	0	PC 17599	71.283

df1.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	PassengerId	891 non-null	int64
1	Survived	891 non-null	int64
2	Pclass	891 non-null	int64
3	Name	891 non-null	object
4	Sex	891 non-null	object
5	Age	714 non-null	float64

6	SibSp	891	non-null	int64					
7	Parch	891	non-null	int64					
8	Ticket	891	non-null	object					
9	Fare	891	non-null	float64					
10	Cabin	204	non-null	object					
11	Embarked	889	non-null	object					
<pre>dtypes: float64(2), int64(5), object(5)</pre>									

memory usage: 83.7+ KB

df1.describe()

	PassengerId	Survived	Pclass	Age	SibSp	Parch	Fare
count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

--> Handle NA Values

df1.isnull().sum()

PassengerId	0
Survived	0
Pclass	0
Name	0
Sex	0
Age	177
SibSp	0
Parch	0
Ticket	0
Fare	0
Cabin	687
Embarked	2
dtype: int64	

df1.drop(columns='Cabin', inplace=True)
#df1.Cabin = df1.Cabin.fillna("unknown")

df1.isnull().sum()

PassengerId	0
Survived	0
Pclass	0
Name	0
Sex	0
Age	177
SibSp	0
Parch	0
Ticket	0
Fare	0
Embarked	2
dtype: int64	

--> Apply Univariate Imputation

df1['Age'].hist();

--> Categorical Variable Substitution

```
df1['Embarked'].replace(np.nan, 'S', inplace=True)
df1.isnull().sum()
```

```
PassengerId
Survived
                0
Pclass
                0
Name
                0
Sex
                0
Age
                0
                0
SibSp
Parch
                0
Ticket
                0
Fare
                0
Embarked
                0
dtype: int64
```

--> Drop unimportant columns

```
columns_dropped = ['PassengerId','Ticket','Name']
df1.drop(columns=columns dropped, inplace=True)
df1.info()
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 891 entries, 0 to 890
     Data columns (total 8 columns):
      #
          Column
                    Non-Null Count Dtype
     - - -
                    -----
                                    ____
          Survived 891 non-null
                                    int64
      0
          Pclass
                    891 non-null
      1
                                    int64
      2
          Sex
                    891 non-null
                                    object
      3
                    891 non-null
                                    float64
          Age
      4
          SibSp
                    891 non-null
                                    int64
      5
          Parch
                    891 non-null
                                    int64
      6
          Fare
                    891 non-null
                                    float64
      7
          Embarked 891 non-null
                                    object
     dtypes: float64(2), int64(4), object(2)
     memory usage: 55.8+ KB
```

!pip install category encoders

```
Requirement already satisfied: category_encoders in /usr/local/lib/python3.7/dist-package Requirement already satisfied: scikit-learn>=0.20.0 in /usr/local/lib/python3.7/dist-package Requirement already satisfied: statsmodels>=0.9.0 in /usr/local/lib/python3.7/dist-packages Requirement already satisfied: pandas>=0.21.1 in /usr/local/lib/python3.7/dist-packages (Requirement already satisfied: scipy>=1.0.0 in /usr/local/lib/python3.7/dist-packages (Requirement already satisfied: numpy>=1.14.0 in /usr/local/lib/python3.7/dist-packages (Requirement already satisfied: patsy>=0.5.1 in /usr/local/lib/python3.7/dist-packages (Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/python3.7/dist-packages (Requirement already satisfied: six in /usr/local/lib/python3.7/dist-packages (Requirement already satisfied: six in /usr/local/lib/python3.7/dist-packages (From patsy Requirement already satisfied: joblib>=0.11 in /usr/local/lib/python3.7/dist-packages (1)
```

--> Use category encoder with One Hot Encoding for sex and embarked attributes.

import category_encoders as cat_encoder

columns_encoded·=·['Sex',·'Embarked']
one_hot_enc = cat_encoder.OneHotEncoder(cols=columns_encoded)

df1 = one_hot_enc.fit_transform(df1)

/usr/local/lib/python3.7/dist-packages/category_encoders/utils.py:21: FutureWarning: is_elif pd.api.types.is_categorical(cols):

df1.head()

	Survived	Pclass	Sex_1	Sex_2	Age	SibSp	Parch	Fare	Embarked_1	Embarked_2	E
0	0	3	1	0	22.0	1	0	7.2500	1	0	
1	1	1	0	1	38.0	1	0	71.2833	0	1	
2	1	3	0	1	26.0	0	0	7.9250	1	0	
3	1	1	0	1	35.0	1	0	53.1000	1	0	
4	0	3	1	0	35.0	0	0	8.0500	1	0	

df1.drop(columns=['Sex_2','Embarked_3'], inplace=True)

df1.head()

	Survived	Pclass	Sex_1	Age	SibSp	Parch	Fare	Embarked_1	Embarked_2
0	0	3	1	22.0	1	0	7.2500	1	0
1	1	1	0	38.0	1	0	71.2833	0	1
2	1	3	0	26.0	0	0	7.9250	1	0
3	1	1	0	35.0	1	0	53.1000	1	0
4	0	3	1	35.0	0	0	8.0500	1	0

--> Feature Enginnering: Creation of new variable to replace multiple existing related variables

```
df1['members_per_family'] = df1['SibSp'] + df1['Parch'] + 1
df1.drop(columns=['SibSp','Parch'], inplace=True)
```

df1.head()

	Survived	Pclass	Sex_1	Age	Fare	Embarked_1	Embarked_2	members_per_family
0	0	3	1	22.0	7.2500	1	0	2
1	1	1	0	38.0	71.2833	0	1	2
2	1	3	0	26.0	7.9250	1	0	1
3	1	1	0	35.0	53.1000	1	0	2
4	0	3	1	35.0	8.0500	1	0	1

```
target = df1['Survived']
metricList = ['Pclass', 'Sex_1', 'Age', 'Fare', 'Embarked_1', 'Embarked_2', 'members_per_fami
inputs = df1[metricList]
```

--> Implement Scaling and Normalization

```
from sklearn.preprocessing import MinMaxScaler

# Create a scaler object
scaler = MinMaxScaler()

# Fit the inputs (calculate the mean and standard deviation feature wise)
scaler.fit(inputs)

# Scale the features and store them in a new variable (the actual scaling procedure)
inputs_scaled = scaler.transform(inputs)
```

Build the model

```
# Import module for splitting data
from sklearn.model_selection import train_test_split

# split dataset into 75% training and 25% test  #x  #y  #sa
x_train, x_test, y_train, y_test = train_test_split(inputs_scaled, target, test_size=0.25, ra
```

Test the model with different regression techniques

```
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.neighbors import KNeighborsRegressor
from sklearn.ensemble import RandomForestRegressor, AdaBoostRegressor
from xgboost import XGBRegressor
from sklearn.metrics import r2 score, mean absolute error, mean squared error
```

```
regressors = []
regressors.append(('Linear Regression', LinearRegression()))
regressors.append(('KNN Regression', KNeighborsRegressor(n neighbors=2, weights='uniform')))
regressors.append(('Random Forest Regression', RandomForestRegressor(n_estimators=500, random
regressors.append(('AdaBoost Regression', AdaBoostRegressor(n_estimators=50, random_state=Non
regressors.append(('XGBoost Regression', XGBRegressor(verbosity=0, n estimators=500)))
x train, x test, y train, y test = train test split(inputs scaled, target, test size=0.25, r
from sklearn.metrics import r2 score, mean squared error
from sklearn import metrics
results = []
predictions = []
for name, regressor in regressors:
 regressor.fit(x train, y train)
 y_pred = regressor.predict(x_train)
 r2 = metrics.r2 score(y train, y pred)
 mse = mean squared error(y train, y pred)
 mae = mean_absolute_error(y_train, y_pred)
 acc = (regressor.score(x train, y train)) * 100
 results.append([name, r2, mse, mae, acc])
 predictions.append([name, y_pred])
df_regressions = pd.DataFrame(results, columns=['Name', 'R2 Score', 'MSE', 'MAE', 'Accuracy']
df predictions = pd.DataFrame(predictions, columns = ['Name', 'Predictions'])
```

Find out the model prediction accuracy

df regressions

	Name	R2 Score	MSE	MAE	Accuracy
0	Linear Regression	0.391824	0.144172	0.295163	39.182390
1	KNN Regression	0.747400	0.059880	0.116766	74.740026
2	Random Forest Regression	0.881746	0.028033	0.101039	88.174622
3	AdaBoost Regression	0.423835	0.136583	0.318412	42.383454
4	XGBoost Regression	0.802083	0.046917	0.143090	80.208256

✓ 0s completed at 10:09 PM

×