Sidechain Dynamic Range Compression

Quinn Kast

Processing Steps

- Level detection
 - a. Square sidechain channels
 - b. Leaky integrator finds mean level
 - c. Root of the mean
- 2. Convert level to dB
- 3. Calculate linear gain
 - a. If level below threshold, gain is 1
 - b. If above threshold, $C_{dB} = (1/R 1) * (X_{dB} T_{dB})$
 - c. Convert to linear
- 4. Find gain dynamics coefficient
- 5. Leaky integrator smooths gain
- 6. Apply gain to main channels

RMS Level Detector

Figure 4.10 RMS measurement (envelope detector/follower) for a dynamic range controller [McN84, Zöl05].

```
// Level detector
squareL = sidechainInputLeft[samp] * sidechainInputLeft[samp];
squareR = sidechainInputRight[samp] * sidechainInputRight[samp];
mixedSquares = 0.5 * (squareL + squareR);
mEnvOut += mEnvB0 * (mixedSquares - mEnvOut);
root = sqrt(mEnvOut);
```

Gain Computation


```
// Convert to dB
levelDB = 20 * log10(root);

// Calculate gain
if (levelDB < mThresholdDB) {
    compressionGainLin = 1.0;
}
else {
    compressionGainDB = (mSlope - 1) * (levelDB - mThresholdDB);
    compressionGainLin = powf(10.0, compressionGainDB / 20.0);
}</pre>
```

Gain Dynamics

```
void QuinnKPFinalCompressionAudioProcessor::calcAlgorithmParams()
{
    mSlope = 1 / mRatioParam->get();
    mThresholdDB = mThresholdParam->get();
    float tauAttack = mAttackTimeParam->get() / 1000;
    float tauRelease = mReleaseTimeParam->get() / 1000;
    mAttackCoeff = 1.0 - exp(-1.0 / (tauAttack * mFs));
    mReleaseCoeff = 1.0 - exp(-1.0 / (tauRelease * mFs));
}
```

```
// Find coefficient for dynamics
if (compressionGainLin < mFinalGainLin) {
    dynamicsCoeff = mAttackCoeff;
}
else {
    dynamicsCoeff = mReleaseCoeff;
}

// Smoothe gain using coefficient
mFinalGainLin += dynamicsCoeff * (compressionGainLin - mFinalGainLin);</pre>
```

Single-track testing

Release 248 msec

Attack 20.5 msec Release 248 msec

Lowering the threshold

Sidechaining

Demo Project Setup

Attack 10 msec

Release 100 msec

Attack 10 msec

Release 100 msec

Attack 10 msec

Release 100 msec

Compressed and mixed