

数字逻辑 11 时序线路设计

时序线路设计概述

杨永全

计算机科学与技术学院

<u>目录</u>

- 1. 课程目标
- 2. 课程内容
- 3. 课堂练习
- 4. 课堂讨论
- 5. 课堂总结
- 6. 作业

1.课程目标

1. 目标

- 1. 掌握时序线路设计方法
- 2. 掌握原始状态表的建立方法

2.课程内容

1. 时序线路设计方法 1.概述

问题 1

组合线路的设计步骤是什么?

问题 2

时序线路分析的步骤是什么?

1. 时序线路设计方法 1.概述

组合线路设计方法

时序线路设计方法

用与非门和 JK 触发器设计一个同步时序线路、检测输入为连续的 110。

一、确定输入、输出,建立原始状态表

X	0	1
а	b	С
b	d	e
С	f	g
d	d	e
е	f	g
f	d	e
g	f	g

一、确定输入、输出,建立原始状态表

问题

还有没有其他的确定原始状态表的思路?

一、确定输入、输出,建立原始状态表

一、确定输入、输出,建立原始状态表

问题

还能不能再优化了?

一、确定输入、输出,建立原始状态表

一、确定输入、输出,建立原始状态表

问题

这两种方法, 各有什么优缺点?

二、化简, 建立最简状态表

S X	0	1
a	q ₁ ,0	q ₂ ,0
q_1	q ₁ ,0	q ₂ ,0
q_2	q ₁ ,0	g,0
g	q ₁ ,1	g,0

二、化简, 建立最简状态表

s x	0	1
s ₁	s ₁ ,0	s ₂ ,0
s_2	s ₁ ,0	s ₃ ,0
S ₃	s ₁ ,1	s ₃ ,0

三、状态编码

三个状态, 需要? 位编码

$$S_1 S_2 S_3$$

 $Y_2 0 1 1$
 $Y_1 0 0 1$

s X	0	1
00	00,0	10,0
10	00,0	11,0
11	00,1	11,0

四、确定输出及控制函数

根据右侧的状态激励表,可以得到状态转移表,最终得到控制及输出函数真值表

х	y ₂	y ₁	y ₂ n4	·1 y ₁ n+1	J ₂ K ₂	J ₁ K ₁	z
0	0	0	0	0	0Ф	0Ф	0
0	1	0	0	0	Ф1	Ф0	0
0	1	1	0	0	Ф1	Φ1	1
1	0	0	1	0	1Ф	Ф0	0
1	1	0	1	1	Ф0	1Ф	0
1	1	1	1	1	Ф0	Ф0	0
0	0	1	Φ	Φ	ФФ	ФФ	Φ
1	0	1	Φ	Φ	ΦФ	ФФ	Φ

Q	Qn+1	J K
0	0	0 Ф
0	1	1 Ф
1	0	Ф 1
1	1	Ф 0

四、确定输出及控制函数

根据控制及输出函数真值表,得到 JK、Z 和输入之间的关系:

$$z = \sum(3) + \sum \Phi(1,5)$$

$$J_1 = \sum(6) + \sum \Phi(1,3,5,7)$$

$$K_1 = \sum(3) + \sum \Phi(0,1,2,4,5,6)$$

$$J_2 = \sum(4) + \sum \Phi(1,2,3,5,6,7)$$

$$K_2 = \sum(2,3) + \sum \Phi(0,1,4,5)$$

四、确定输出及控制函数

$$z = \overline{x} y_1$$

四、确定输出及控制函数

$$J_1 = x y_2$$

四、确定输出及控制函数

$$K_1 = \overline{x}$$

四、确定输出及控制函数

$$J_2 = x$$

四、确定输出及控制函数

$$K_2 = \overline{x}$$

五、画逻辑电路图

1. 时序线路设计方法 3.时序线路设计步骤总结

例 1: 建立逢五进一可逆二进制同步计数器

例 1: 建立逢五进一可逆二进制同步计数器

s X	0	1
a	b,0	e,0
b	c,0	a,1
С	d,0	b,0
d	e,0	c,0
e	a,1	d,0

例 2: 在抗美援朝 战场上,美军占领一处高地,并使用重机枪防守。志愿军没有空中和火炮支援,为了拿到阵地,需要安排士兵匍匐前进,手动将炸弹送入敌人的阵地,摧毁敌人的防守力量。

为了保护志愿军士兵,需要你为其设计一个电路,控制炸弹的引爆。引爆条件是:连续输入四个 1,中间不能输入 0,如果输入 0,则系统重置。

¹抗美援朝,又称抗美援朝运动或抗美援朝战争,是 20 世纪 50 年代初爆发的朝鲜战争的一部分,仅指中国人民志愿军参战的阶段。

S X	0	1
а	a,0	b,0
b	Ф,Ф	c,0
С	Ф,Ф	d,0
d	Ф,Ф	Ф,1

S X	0	1
а	a,0	b,0
b	a,0	c,0
С	a,0	d,0
d	a,0	Ф,1

例 3: 同步二进制串行加法器

例 3: 同步二进制串行加法器

3.课堂练习

1. 问题

试给出串行二进制减法器的原始状态表。

4.课堂讨论

1. 问题

使用时序线路实现的串行二进制加法器,和组合线路实现的二进制加法器,有何不同?他们分别适用于什么场景?

5.课堂总结

1. 课堂总结

□ 笔记

现在可以总结自己的笔记,提炼大纲,回顾课程。

● 总结

还可以将课程的总结、心得记录在总结区。

6.作业

1. 题目

给出"101"序列检测器的原始状态表。

问答环节