Ραφαήλ Κιτρομηλίδης 1095897

- 1. p: Το μαχαίρι είναι στην αποθήκη.
 - q: Είδαμε το μαχαίρι όταν ελέγχαμε την αποθήκη.
 - r: Ο φόνος έγινε στην πυλωτή.
 - s: Ο φόνος έγινε στο διαμέρισμα.
 - t: Το μαχαίρι είναι μέσα στον μπλε κάδο.
 - υ: Ο φόνος έγινε εκτός κτιρίου.
 - ν: Δεν μπορούμε να βρούμε το μαχαίρι.

Προτάσεις:

- (1) p→q
- (2) rvs
- (3) r→t (4) 1q
- (5) $u \rightarrow v$ (6) $s \rightarrow p$
- (7) $\alpha\pi\delta$ (1)+(4), M.T. $(\lg \land (p\rightarrow q)) \rightarrow \lg$ (8) $\alpha\pi\delta$ (7)+(6), M.T. $(\lg \land (s\rightarrow p)) \rightarrow \lg$
- (9) $\alpha \pi \delta$ (2)+(8), $(r \lor s) \land s \equiv r$, $\alpha \rho \alpha r \equiv T$

Επομένως, για να είναι αληθές οι υποθέσεις (3) και (5), πρέπει το t ναι είναι αληθές και το s ψευδές. Έτσι συμπεραίνουμε πως το μαχαίρι είναι μέσα στον μπλε κάδο.

- 2. (a) P(x, y) = (x < y), f(x) = x+1, c=7 στο **N**
 - 1. Av x=1, z=2, y=3 $(x<z)=(1<2)\equiv T$, $(z<y)=(2<3)\equiv T$ (True)
 - 2. Av x=3, y=4, δεν υπάρχει z στο N τέτοιο ώστε 3<z & z<4. (False)
 - 3. Av x=6, y=8, $((6<7)\land(7<8))\rightarrow((6=7)\lor(8=7)) \equiv T\rightarrow F \equiv F$ (False)
 - 4. $(P(x, c) \land P(c, y)) \rightarrow P(x, y) \equiv ((x < c) \land (c < y)) \rightarrow (x < y) \equiv (x < y) \rightarrow (x < y)$ Οι μόνες πιθανές περιπτώσεις είναι: $T \rightarrow T \equiv T$ ή $F \rightarrow F \equiv T$. (True)
 - 5. Av x=6, 6+1=7=c (True)
 - (β) Στο διμελές σύνολο {0, 1}, P(x, y)= x≤y, f(x)= 1-x, c=0
 - 1. Av x=0, z=0, y=0 $(0 \le 0) \land (0 \le 0) \equiv T \land T \equiv T$ (True)
 - 2. Av x=0, z=1, y=0 $(0 \le 1) \land (1 \le 0) \equiv T \land F \equiv F$ (False)
 - 3. $((x \le 0) \land (0 \le y)) \rightarrow ((x = 0) \lor (y = 0)) \equiv ((x \le 0) \land T) \rightarrow ((x = 0) \lor (y = 0)) \equiv (x \le 0) \rightarrow ((x = 0) \lor (y = 0))$. $\Box (x \le 0) \land (x \le$ τις 2 διαφορετικές περιπτώσεις για το x, x=0 & x=1. (0) (0≤0)→((0=0)∨(y=0)) \equiv T→T \equiv T. (1) $(1 \le 0) \rightarrow ((1 = 0) \lor (y = 0)) \equiv F \rightarrow (F \lor (y = 0)) \equiv T.$ (True)
 - 4. Από τις ίδιες απλοποιήσεις που έγιναν στο 2.(α).4., έχουμε (x≤y) →(x≤y). Όταν (x≤y) ≡T, $T \rightarrow T ≡ T$. Όταν (x≤y) ≡ F, $F \rightarrow F ≡ T$. (True)
 - 5. Av x=1, f(1)=1-1=0=c (True)
- (γ) Στο σύνολο {Γιώργος(Γ), Δήμητρα(Γ), Κώστας(Π), Μαρία(Π), Ελένη(Π)}, στο P(x, y) ισχύει $x\neq y$ και χ,γ είναι αδέρφια. Η f(x) αντιστοιχεί στον γονέα του x αν είναι παιδί ή στον σύζυγο αν είναι γονέας. c= Κώστας
 - 1. Av x= $K\omega\sigma\tau\alpha\varsigma$, y= $M\alpha\rho\alpha$, z= $E\lambda\epsilon\nu\eta$, $P(x, z)\wedge P(z, y)\equiv T\wedge T\equiv T$ (True)
 - 2. Av x=Γιώργος, y=Μαρία, z=Ελένη, $P(x, z) \land P(z, y) \equiv F \land T \equiv F$ (False)
 - 3. Av x=E λ ένη, y=Mαρία, (P(x, c) Λ P(c, y)) \rightarrow ((x=c) Λ V(y=c)) \equiv (T Λ T) \rightarrow (F Λ F) \equiv T \rightarrow F \equiv F (False)

- 4. Όταν x & y αντιστοιχούν σε παιδιά, έχουμε (TΛT) \rightarrow T ≡ T \rightarrow T ≡ T. Όταν αντιστοιχεί ένα από τα δύο ή και τα δύο σε γονέα έχουμε (FΛF) \rightarrow F ≡ F \rightarrow F ≡ T. **(True)**
- 5. Δεν μπορεί να ισχύσει το f(x)=c, διότι η f(x) έχει πάντα ως αποτέλεσμα γονέα και το c αντιστοιχεί στον Κώστα, ο οποίος είναι παιδί. **(False)**
- 3. (α) Έστω ότι ο $6^{1/2}$ είναι ρητός. Ο α και α^2 είναι άρτιοι (από εκφώνηση), άρα α = 2κ και α^2 = 4κ². $6^{1/2}$ = α/β (α και β ακέραιοι και το κλάσμα βρίσκεται στην απλούστερη του μορφή).
 - \Rightarrow 6 = α^2/β^2
 - \Rightarrow 6 $\beta^2 = \alpha^2$
 - \Rightarrow 6 $\beta^2 = 4\kappa^2$
 - \Rightarrow 3 $\beta^2 = 2\kappa^2$

Έτσι βλέπουμε πως ο $β^2$ είναι άρτιος, συνεπώς και ο β είναι άρτιος, γεγονός το οποίο έρχεται σε αντιπαράθεση με την αρχική υπόθεση, εφόσον το κλάσμα α/β δεν μπορεί να βρίσκεται στην απλούστερη του μορφή αν α και β είναι και οι 2 άρτιοι. Από αντίφαση, το $6^{1/2}$ είναι άρρητος

(β) (α) Έστω ότι a + b < c

Υψώνω κα τα 2 μέρη της ανίσωσης στο τετράγωνο.

- \Rightarrow (a + b)² < c²
- \Rightarrow a² + 2ab + b² < a² + b² // (από εκφώνηση a² + b² = c²)
- ⇒ 2ab < 0

Δεν ισχύει, γιατί a & b είναι μη αρνητικοί αριθμοί. Άρα η υπόθεση ακυρώνεται.

- (β) a + b ≥ c
- \Rightarrow $(a + b)^2 \ge c^2$
- \Rightarrow $a^2 + 2ab + b^2 \ge a^2 + b^2$
- ⇒ 2ab ≥ 0

Ισχύει, γιατί a & b είναι μη αρνητικοί αριθμοί. Άρα επιβεβαιώνεται.

- **(γ)** 1) n-5 περιττός
- ⇒ n–5 = 2k+1
- $\Rightarrow n = 2k+6$ $\Rightarrow n = 2(k+3)$
- □ = ∠(κ+,
 □ h άρτιος
- 2) 3n+2 άρτιος
- ⇒ 3n+2 = 2k
- ⇒ 3n = 2k+2

```
 ⇒ 3n = 2(k+1)
 ⇒ n άρτιος
 3) n² - 1 περιττός
 ⇒ n²-1= 2k+1
 ⇒ n² = 2k+2
 ⇒ n² = 2(k+1)
 ⇒ n² άρτιος
 ⇒ n άρτιος
 1), 2), 3) ισοδύναμα.
```

$$\begin{aligned} &\gamma i\alpha \ n=k, \ (1+x)^k \geq 1+kx \\ &\gamma i\alpha \ n=k+1, \ (1+x)^{k+1} \geq 1+(k+1)x \\ &(1+x)^{k+1}=(1+x)^k(1+x) \end{aligned}$$

- ⇒ $(1+x)^{k+1} \ge (1+kx)(1+x)$ // $\alpha \pi \acute{o} \ \text{to} \ \text{n} = k$, $(1+x)^k \ge 1+kx$
- \Rightarrow $(1+x)^{k+1} \ge 1+kx+x+kx^2$ //(αφόυ το kx^2 είναι πάντα θετικό ή μηδενικό (χ \ge -1) μπορώ να το φύγω και να ισχύει ακόμη η ανισώτητα)
- \Rightarrow $(1+x)^{k+1} \ge 1+(k+1)x$

Άρα η ανισώτητα ισχύει για όλους τους φυσικούς αριθμούς n.