

Unlocking Game Success: Can We Predict Game Reviews from Key Attributes?

Ananya Achan, Elaine Keung, Mia Kobayashi, Francisco Munoz

Research Question

Can we predict the review tier of a game based on its features such as price, genres, publishers, and other relevant features?

Interest: Guidance for developers to create well received games with respect to metadata (writing descriptions), discount strategy, etc... based on existing "successful" games; exploring consumer habits towards game preference.

```
95 - 100 | 500+ reviews | positive | overwhelming

85 - 100 | 50+ reviews | positive | very

80 - 100 | 1+ reviews | positive

70 - 79 | 1+ reviews | positive | mostly

40 - 69 | 1+ reviews | mixed

20 - 39 | 1+ reviews | negative | mostly

0 - 19 | 50+ reviews | negative | very

0 - 19 | 500+ reviews | negative | overwhelming
```

Data

Date: 19 May 2024

Source: Kaggle. Steam Store: a site dedicated to "playing, discussing, and creating

games"

Rows: 42,496

Columns: 24

Total number of non-null values in column

		Non-Null	Values
	content_descriptor		2,375
	discount_percentage		4,859
	original_price		4,859
	recent_review_%		5,503
	recent_review_count		5,503
	recent_review		5,503
	overall_review		40,020
1	overall_review_count		40,020
2 3	overall_review_%		40,020
3	discounted_price		42,257
	publisher		42,286
	developer		42,307
4	about_description		42,359
4 5 6	genres		42,410
6	release_date		42,440
	categories		42,452
7	awards		42,497
	app_id		42,497
	mac_support		42,497
	win_support		42,497
	dlc_available		42,497
	title		42,497
	linux_support		42,497
	age_rating		42,497

Percentage of null values in column

	Miccina	Values	Parcentage

app_id	0	0.00%
awards	0	0.00%
linux_support	0	0.00%
mac_support	0	0.00%
win_support	0	0.00%
dlc_available	0	0.00%
age_rating	0	0.00%
title	0	0.00%
categories	45	0.11%
release_date	57	0.13%
genres	87	0.20%
about_description	138	0.32%
developer	190	0.45%
publisher	211	0.50%
discounted_price	240	0.56%
overall_review_count	2,477	5.83%
overall_review_%	2,477	5.83%
overall_review	2,477	5.83%
recent_review	36,994	87.05%
recent_review_count	36,994	87.05%
recent_review_%	36,994	87.05%
discount_percentage	37,638	88.57%
original_price	37,638	88.57%
content_descriptor	40,122	94.41%

Summary of Data

	discounted_price	awards	age_of_game	overall_review_%	overall_review_count
mean	355.76	0.33	4.68	77.17	2499.93
std	448.47	1.29	3.30	17.60	49201.71
media n	250	0	4	81	59.00
min	0	0	0	0	10.00
max	8325	41	27	100	8062218

Summary of Review Class

Features of Interest

genres: List of genres the game belongs to (one hot)

release_date (age): Date the game was published

awards: Number of awards the game has received

discounted_price: Price after the discount (as of the time the data was scraped)

about_description: Short description of the game from the publisher (text embedding)

overall_review: The overall review category classification based on the rating score of the game

Converted to binary classification: split games as positive or negative based on the review score percentage in order to account for class imbalance

Features and Binary Review Class

Baseline Prediction Model

- Binary Logistic Classification
- Feature: Price, Output: Binary Review Class
- Final Validation Accuracy: 53.3%

Prediction Algorithms

Decision Trees

Are intuitive and easy to interpret, allowing us to visualize how different features impact the final decision, which facilitates explaining the results to non-technical users.

XGBoost

An optimized version of decision trees, is highly effective in classification due to its ability to handle large datasets and enhance performance through boosting techniques. We will assign a higher penalty to misclassifications of the minority class using scale weights parameter.

Neural networks + hidden layers

Powerful for capturing complex non-linear relationships and patterns in the data. Their ability to model intrinsic complexities is essential in a domain as variable as video game preferences, where feature interactions can be highly sophisticated.

Performance Metrics

Accuracy:

Measures the ratio of correctly predicted instances to the total instances

All Models & Accuracies

Model	Туре	Features	Training Accuracy	Validation Accuracy
Baseline	Binary Logistic	Price	53.5%	53.4%
Model 2	Binary Logistic	Price, Age of Game	57.6%	56.9%
Model 3	Binary Logistic	Price, Genres, Age of game	58.4%	58.0%
Model 4	Binary Logistic	Price, Genres, Age of game, Awards	59.8%	59.4%
Model 5	Binary Logistic	Price, Genres, Age of game, Awards, TF-IDF on Description	60.1%	59.3%
Model 6	Binary Logistic	Price, Genres, Age of game, Awards, Learned Embeddings on Description	66.3%	63.3%
Model 7	Neural Network	Price, Genres, Age of game, Awards, TF-IDF on Description	68.2%	63.2%
Model 8	Neural Network	Price, Genres, Age of game, Awards, Learned Embeddings on Description	64.0%	65.0%
Model 9	XGBoost	Price, Genres, Age of game, Awards, TF-IDF on description	71.0%	63.67%
Model 10	Decision Tree	Price, Genres, Age of game, Awards, TF-IDF on description	67.3%	61.7%

Final Model: Neural Network Architecture

Final Model: Hyperparameter Tuning

Parameter Grid			
Embedding Dimensions	2	4	
Dense Units	32	64	
Dropout Rate	0.3	0.4	
Learning Rate	0.001	0.005	
Batch Size	32	64	
Epochs	5	10	

Best Performing Model			
Embedding Dimensions	2		
Dense Units	32		
Dropout Rate	0.4		
Learning Rate	0.001		
Batch Size	64		
Epochs	10		

Final Model: Generalization Abilities

- Test Accuracy: 65%
- Improvement over baseline: +12%

Conclusions

Q: Can we predict the review tier of a game based on its features such as price, genres, publishers, and other relevant features?

- Binary Logistic Model
 - Best, >10% increase in accuracy from baseline
- More complex models != better performance
- Future work
 - Binary classification: Choosing more robust features
 - Create a multiclass classification model
 - Further investigate clustering
 - Combine neural network with XGBoost

Questions?

Experiments

The combination of both charts provides a clear view of which features are most influential in the model and how these values impact the predictions. High values of **recent_review_count** and **genre_num** are the most determinative for predictions. Other features like **mac**, **linux**, and certain embeddings also play an important role, though to a lesser extent.

Contributions

Project Member	ect Member Contributions	
Ananya		
Elaine		
Mia		
Francisco		

Final Project (I)

- Final presentation. Your slides should include: (12 minutes + 2 minutes total (no Q&A included). You will be timed!)
 - Title, Authors
 - o (15%) Motivation: Introduce your question and why the question is interesting. Explain what has been done before in this space. Describe your overall plan. Provide a summary of your results.
 - o (15%) Data: Describe in detail the data that you are using, including the source(s) of the data and relevant statistics.
 - (15%) Modeling: Describe in detail the models (baseline + improvement over baseline) that you use in your approach.
 - o (30%) Experiments: Provide insight into the effect of different hyperperameter choices. Please include tables, figures, graphs to illustrate your experiments.
 - o (10%) Conclusions: Summarize the key results, what has been learned, and avenues for future work.
 - (15%) Code submission: Provide link to your GitHub repo. The code should be well commented and organized.
 - Contributions: Specify the contributions of each author (e.g., data processing, algorithm implementation, slides etc.).

Final Project (II)

- Final Report
 - You should have a very detailed README file in the repo:
 - The README should cover how would you run or read your repo.
 - Use proper Markdown and links to the codespace
 - Try breaking down your code into different processes instead of a long document
 - If possible, think about how to productionalize the code.
 - Any team that provides a functional pipeline to run the training and testing outside of the notebook will be rewarded with 10% of Extra Credit.
 - Code comments are very valuable code as a Machine Learning Engineer and less like a Data Scientist
 - Data should be hosted outside of Git
 - So the notebook/code should explicitly mention how to get the data if we want to reproduce the results.

question

Originally multiclass classification -> not enough negatives

Review count as a hive mind thing

Maybe regression to get a percentage score but after that should we then take that score and try to put it into one of the original categories

• Steam categories are based on overall % score + number of reviews so it can be directly mapped to a category

- 1. Directly do multiclass classification
- 2. Do classification with custom categories based on the quantiles of the percentages, but bottom quantile is a wide range
- 3. Do regression with the percentage score and then map to categories (as there are general categories)

Presentation notes

Don't mention accuracy

Which metric to prioritize/tune (top 1 metric)

Weighted classes have same issues for accuracy, focus on label

Dividing data into 9 buckets but 2 of them don't have many, probably just do the quartile thing

Award, price, sentiment graph hard to read but maybe unsupervised learning/clustering (k-means about numerical features, 9 clusters/however many)

Embeddings in the text/sentiment analysis on about description

Describe less (pandas)