Calcul trigonométrique

1BSF 1 et 2 Pr. Latrach Abdelkbir

Activité @:

Le plan(P)est rapporté à un repère orthonormé direct $(0; \vec{i}; \vec{j})$ et (C) le cercle trigonométrique qui lui est

Soient a et b deux réels. \vec{u} et \vec{v} sont deux vecteurs non nuls tels que $\|\vec{u}\| = \|\vec{v}\| = 1$ et $(\overline{i}; \overline{i}) \equiv b[2\pi]$ et $(\vec{\imath}; \vec{v}) \equiv a[2\pi].$

- 1. Déterminer la mesure de l'angle orientée $(\vec{u}; \vec{v})$ en fonction de a et b.
- **2.** Calculer par deux méthodes le produit scalaire $\vec{u} \cdot \vec{v}$.
- 3. En déduire que cos(a - b) = cos a cos b + sin a sin b.
- 4. Montrer que cos(a+b) = cos a cos b - sin a sin b.

En remarquant que $cos\left(\frac{\pi}{2} - x\right) = sin(x)$. Montrer que sin(a - b) = sin a cos b - cos a sin b et sin(a + b) = sin a cos b + cos a sin b.

∠ Application ②:

- **1.** Sachant que $\frac{5\pi}{12} = \frac{\pi}{4} + \frac{\pi}{6}$ et $\frac{\pi}{12} = \frac{\pi}{3} \frac{\pi}{4}$, calculer $\cos \frac{5\pi}{12}$, $\sin\frac{5\pi}{12}$, $\cos\frac{\pi}{12}$ et $\sin\frac{\pi}{12}$
- **2.** Soit *x* un réel. Montrer que:

 - $\sin x = \sin(x + \frac{\pi}{3}) \sin(\frac{\pi}{3} x).$ $\cos x = \cos(x + \frac{\pi}{3}) + \cos(\frac{\pi}{3} x).$

Soient a et b deux réels tels que $0 < a < \frac{\pi}{2}$, $0 < b < \frac{\pi}{2}$ et $sin(a) = cos(b) = \frac{1}{3}$. Déterminer a + b.

Activité @:

Soient a et b deux réels tels que $a \neq \frac{\pi}{2} + k\pi$ et $b \neq$ $\frac{\pi}{2} + k\pi$ pour tout $k \in \mathbb{Z}$.

- **1.** Montrer que si : $a b \neq \frac{\pi}{2} + k\pi$, alors $tan(a b) = \frac{tan a tan b}{1 + tan a tan b}$.
- **2.** Montrer que si : $a + b \neq \frac{\pi}{2} + k\pi$, alors $tan(a + b) = \frac{tan a + tan b}{1 - tan a tan b}.$ Application @:

Soit x un réel tel que $x \neq \frac{\pi}{2} + k\pi$ et $x \neq \frac{\pi}{4} + k\pi$ et $x \neq$ $\frac{\pi}{4} + k\pi$ pour tout $k \in \mathbb{Z}$.

Simplifier l'expression $tan\left(\frac{\pi}{4} - x\right) \times tan\left(\frac{\pi}{4} + x\right)$.

- Application 3: 1. Sachant que $\frac{\pi}{4} = 2 \times \frac{\pi}{8}$, calculer $\cos \frac{\pi}{8}$, $\sin \frac{\pi}{8}$ et
- 2. Soit x un réel. Montrer que :

$$1 + \cos x + 2\sin^2\left(\frac{x}{2}\right) = 2.$$

3. Soit x un réel tel que $x \neq k\pi$ pour tout $k \in \mathbb{Z}$. Montrer que $\frac{1-\cos(x)}{\sin(x)} = \tan\left(\frac{x}{2}\right)$.

Soient a et b deux réels.

Simplifier les expressions suivantes :

- a. sin(a+b) + sin(a-b).
- b. sin(a + b) sin(a b).
- cos(a+b) + cos(a-b).
- d. cos(a+b) cos(a-b).

- **1.** Calculer $\cos\left(\frac{\pi}{12}\right)\cos\left(\frac{5\pi}{12}\right)$ et $\cos\left(\frac{\pi}{12}\right)\sin\left(\frac{5\pi}{12}\right)$.
- **2.** Soit x un réel. Montrer que $sin\left(x+\frac{\pi}{6}\right)sin\left(x-\frac{\pi}{6}\right)$ $\left(\frac{\pi}{6}\right) = -\frac{1}{2}\cos(2x) + \frac{1}{4}$

- 1. Montrer que $sin\left(\frac{\pi}{12}\right) + sin\left(\frac{5\pi}{12}\right) = \frac{\sqrt{6}}{2}$.
- 2. Soit x un réel. Montrer que $\cos 6x - \cos 2x = -4\sin^2 2x \cos 2x.$

∞ Application **©**:

Ecrire sous la forme $r \cos(x - \alpha)$ les expressions suivantes:

$$A(x) = \cos x + \sin x \; ; \; B(x) = \sqrt{3}\cos x - \sin x \; ;$$

$$C(x) = \sqrt{3}\cos\left(2x - \frac{\pi}{3}\right) - \sin(2x - \frac{\pi}{3}).$$

$$Exercise ②:$$

On pose
$$A = \frac{\cos{\frac{\pi}{12}} + \sin{\frac{\pi}{12}}}{\cos{\frac{\pi}{12}} - \sin{\frac{\pi}{12}}}$$
.

- On pose $A = \frac{\cos\frac{\pi}{12} + \sin\frac{\pi}{12}}{\cos\frac{\pi}{12} \sin\frac{\pi}{12}}$. 1. Montrer que $\cos\frac{\pi}{12} + \sin\frac{\pi}{12} = \sqrt{2}\sin\frac{\pi}{3}$. 2. Montrer que $\cos\frac{\pi}{12} \sin\frac{\pi}{12} = \sqrt{2}\sin\frac{\pi}{6}$.
- **3.** En déduire la valeur du nombre A.
- **4.** Déterminer la valeur du nombre $tan \frac{\pi}{12}$.

∠ Application ∅:

- 1. Résoudre dans I les équations suivantes :
- a. $2\cos x \sqrt{3} = 0$; $I = [-\pi, 2\pi]$.
- b. $\sqrt{2}\sin x + 1 = 0$; $I = [0,2\pi]$.
- c. $tanx = \sqrt{3}$; $I = [-\pi, \pi]$.
- d. $\sqrt{3}\cos x \sin x = \sqrt{2}$; $I = [-\pi, \pi]$.
- **2.** Résoudre dans $\left[-\pi, \frac{\pi}{2}\right]$ l'équation $\sqrt{3}\cos x - \sin x > \sqrt{2}$.

O Exercice 3:

Soit *x* un réel. On pose :

$$A(x) = 2\sqrt{3}\sin^2 x - \sin 2x - \sqrt{3}\sin x + \cos x.$$

- **1.** Calculer $A\left(\frac{\pi}{6}\right)$ et $A\left(\frac{\pi}{3}\right)$.
- **2.** Montrer que :

$$(\forall x \in \mathbb{R}): A(x) = 2\cos\left(x + \frac{\pi}{3}\right)(1 - 2\sin x).$$

3. a. Résoudre dans \mathbb{R} l'équation A(x) = 0.

b. En déduire les solutions de l'équation A(x) = 0 sur $]0,2\pi]$ puis représenter les solutions sur un cercle trigonométrique.

4. Résoudre dans $[0,2\pi]$ l'équation A(x) > 0.