Machine Learning com Python

Testes de hipóteses com uma amostra ou uma população

São testes de afirmações sobre um parâmetro.

Processo que utiliza estatísticas amostrais para testar uma hipótese (afirmação original) e aceitá-la ou rejeitá-la.

Existem duas hipóteses:

- 1) Hipótese nula (H_o)
- 2) Hipótese alternativa (H_a): oposto da hipótese nula.

$$H_o: \mu = k$$
 $H_o: \mu \le k$ $H_o: \mu \ge k$ $H_a: \mu \ne k$ $H_a: \mu > k$

Há três tipos de testes:

Unicaudal à esquerda

Unicaudal à direita

Tipos de erro

Erro tipo I: hipótese nula rejeitada quando ela for verdadeira.

Erro tipo II: aceita a hipótese nula (não rejeita) sendo ela falsa.

DECISÃO	Ho verdadeira	Ho falsa
NÃO rejeição de Ho	Decisão correta	Erro tipo 2
Rejeição de Ho	Erro tipo 1	Decisão correta

Nível de significância (α)

Probabilidade máxima permitida para cometer o erro tipo I.

Níveis de significância mais utilizados:

$$\alpha = 0,10$$

$$\alpha = 0.05$$

$$\alpha = 0.01$$

Nível de confiança (c): $c = 1 - \alpha$

Teste Z para média amostral

É utilizado quando a distribuição é normal e o desvio padrão seja conhecido. É denominado de estatística do teste padronizado z.

$$z = \frac{\bar{x} - \mu}{\frac{\sigma}{\sqrt{n}}}$$

Quando n > 30, pode utilizar o desvio padrão da amostra (S) no lugar do desvio padrão da população (σ).

Validação pelo valor de P

P ≥ α (aceita Ho)

P < α (rejeita Ho)

Obs.: bicaudal deve dobrar o valor de p.

z	0,09	0,08	0,07	0,06	0,05	0,04	0,03	0,02	0,01	0,00
-3,4	0,0002	0,0003	0,0003	0,0003	0,0003	0,0003	0,0003	0,0003	0,0003	0,000
-3,3	0,0003	0,0004	0,0004	0,0004	0,0004	0,0004	0,0004	0,0005	0,0005	0,000
-3,2	0,0005	0,0005	0,0005	0,0006	0,0006	0,0006	0,0006	0,0006	0,0007	0,000
-3,1	0,0007	0,0007	0,0008	0,0008	0,0008	0,0008	0,0009	0,0009	0,0009	0,001
-3,0	0,0010	0,0010	0,0011	0,0011	0,0011	0,0012	0,0012	0,0013	0,0013	0,001
-2,9	0,0014	0,0014	0,0015	0,0015	0,0016	0,0016	0,0017	0,0018	0,0018	0,0019
-2,8	0,0019	0,0020	0,0021	0,0021	0,0022	0,0023	0,0023	0,0024	0,0025	0,002
-2,7	0,0026	0,0027	0,0028	0,0029	0,0030	0,0031	0,0032	0,0033	0,0034	0,003
-2,6	0,0036	0,0037	0,0038	0,0039	0,0040	0,0041	0,0043	0,0044	0,0045	0,004
-2,5	0,0048	0,0049	0,0051	0,0052	0,0054	0,0055	0,0057	0,0059	0,0060	0,006
-2,4	0,0064	0,0066	0,0068	0,0069	0,0071	0,0073	0,0075	0,0078	0,0080	0,008
-2,3	0,0084	0,0087	0,0089	0,0091	0,0094	0,0096	0,0099	0,0102	0,0104	0,010
-2,2	0,0110	0,0113	0,0116	0,0119	0,0122	0,0125	0,0129	0,0132	0,0136	0,013
-2,1	0,0143	0,0146	0,0150	0,0154	0,0158	0,0162	0,0166	0,0170	0,0174	0,017
-2,0	0,0183	0,0188	0,0192	0,0197	0,0202	0,0207	0,0212	0,0217	0,0222	0,022
-1,9	0,0233	0,0239	0,0244	0,0250	0,0256	0,0262	0,0268	0,0274	0,0281	0,028
-1,8	0,0294	0,0301	0,0307	0,0314	0,0322	0,0329	0,0336	0,0344	0,0351	0,035
-1,7	0,0367	0,0375	0,0384	0,0392	0,0401	0,0409	0,0418	0,0427	0,0436	0,044
-1,6	0,0455	0,0465	0,0475	0,0485	0,0495	0,0505	0,0516	0,0526	0,0537	0,054
-1,5	0,0559	0,0571	0,0582	0,0594	0,0606	0,0618	0,0630	0,0643	0,0655	0,066
-1,4	0,0681	0,0694	0,0708	0,0721	0,0735	0,0749	0,0764	0,0778	0,0793	0,080
-1,3	0,0823	0,0838	0,0853	0,0869	0,0885	0,0901	0,0918	0,0934	0,0951	0,096
-1,2	0,0985	0,1003	0,1020	0,1038	0,1056	0,1075	0,1093	0,1112	0,1131	0,115
-1,1	0,1170	0,1190	0,1210	0,1230	0,1251	0,1271	0,1292	0,1314	0,1335	0,135
-1,0	0,1379	0,1401	0,1423	0,1446	0,1469	0,1492	0,1515	0,1539	0,1562	0,158
-0,9	0,1611	0,1635	0,1660	0,1685	0,1711	0,1736	0,1762	0,1788	0,1814	0,184
-0,8	0,1867	0,1894	0,1922	0,1949	0,1977	0,2005	0,2033	0,2061	0,2090	0,211
-0,7	0,2148	0,2177	0,2206	0,2236	0,2266	0,2296	0,2327	0,2358	0,2389	0,242
-0,6	0,2451	0,2483	0,2514	0,2546	0,2578	0,2611	0,2643	0,2676	0,2709	0,274
-0,5	0,2776	0,2810	0,2843	0,2877	0,2912	0,2946	0,2981	0,3015	0,3050	0,308
-0,4	0,3121	0,3156	0,3192	0,3228	0,3264	0,3300	0,3336	0,3372	0,3409	0,344
-0,3	0,3483	0,3520	0,3557	0,3594	0,3632	0,3669	0,3707	0,3745	0,3783	0,382
-0,2	0,3859	0,3897	0,3936	0,3974	0,4013	0,4052	0,4090	0,4129	0,4168	0,420

Validação pela região de Rejeição

Teste unicaudal à esquerda Teste unicaudal à direita

 $H_o: \mu \leq k$

 H_a : $\mu > k$

Teste bicaudal

 H_o : $\mu = k$

 H_a : $\mu \neq k$

Alfa	Cauda	z		
0,10	Esquerda Direita Bicaudal	-1,28 1,28 ±1,645		
0,05	Esquerda Direita Bicaudal	-1,645 1,645 ±1,96		
0,01	Esquerda Direita Bicaudal	-2,33 2,33 ±2,575		

Exemplo 1: Uma drogaria informa que a média do tempo de entrega de um medicamento é menor que 38 minutos. Foi realizada uma amostragem de 36 entregas de medicamentos para verificar o tempo de entrega e foi obtido uma média de 36,5 minutos com desvio padrão de 3,5 minutos, considerando nível de significância de 0,01, há evidência suficiente para apoiar a afirmação da drogaria?

 H_0 : $\mu \geq 38 \text{ minutos}$ H_a : $\mu < 38 \text{ minutos}$

Pela tabela:

P = 0.0051

$$z = \frac{x - \mu}{\frac{\sigma}{\sqrt{n}}}$$

$$z = \frac{36,5 - 38}{\frac{3,5}{\sqrt{36}}} = -2,57$$

Como P < 0,01, então: Rejeita Ho.

Teste de hipótese para proporção

Usado para proporção populacional com o teste z.

Pode ser usado sob a condição de que a distribuição binomial pode ser aproximada pela normal.

$$z = \frac{\hat{p} - p}{\sqrt{\frac{p \cdot q}{n}}}$$

Alfa	Cauda	z		
0,10	Esquerda Direita Bicaudal	-1,28 1,28 ±1,645		
0,05	Esquerda Direita Bicaudal	-1,645 1,645 ±1,96		
0,01	Esquerda Direita Bicaudal	-2,33 2,33 ±2,575		

Exemplo 2: Em uma pesquisa de produtos foi relatado que mais de 55% das pessoas compram um produto A regularmente. Outra pesquisa testa essa afirmação e entrevista 500 pessoas sobre a compra desse produto A, obtendo a resposta de compra do produto A por 300 pessoas. Considerando o nível de significância de 0,05, determine se há evidências para apoiar a afirmação da primeira pesquisa.

$$H_0: p \le 0.55 \qquad H_a: p > 0.55$$

$$Z = \frac{\hat{p} - p}{\sqrt{\frac{p \cdot q}{n}}}$$

$$z = \frac{\left(\frac{300}{500}\right) - 0,55}{\sqrt{\frac{0,55.0,45}{500}}} = 2,25$$

Conclusão: Com nível de significância de 0,05, pode-se afirmar que mais do que 55% das pessoas compram o produto A.