Redes neurais convolucionais

Jones Granatyr

Redes neurais convolucionais (CNN)

- Usado para visão computacional
- Carros autônomos, detecção de pedestres (umas das razões por deep learning funcionar bem)
- Em geral, melhor do que SVM (support vector machines)

Pixels

Laranja camisa Azul calção Azul sapato

Marrom boca Azul calca Cinza sapato

0,1,1,1,0,0,1,0,1,0,0,1,1,1,0,0,0,0,1,0,0,1,1,1,0,9

Redes neurais densas x convolucionais

- Não usa todas as entradas (pixels)
- Usa uma rede neural tradicional, mas no começo transforma os dados na camada de entrada
- Quais são as características mais importantes?

Redes neurais convolucionais (CNN)

- Quais características utilizar?
- Para faces
 - Localização do nariz
 - Distância entre os olhos
 - Localização da boca
- Como diferenciar uma face humana de um animal?
- CNN descobre as características

Redes neurais convolucionais (CNN)

- Etapa 1 Operador de convolução
- Etapa 2 Pooling
- Etapa 3 Flattening
- Etapa 4 Rede neural densa

- Convolução é o processo de adicionar cada elemento da imagem para seus vizinhos, ponderado por um kernel
- A imagem é uma matriz e o kernel é outra matriz

$$(fst g)[n] = \sum_{m=-\infty}^{\infty} f[m]g[n-m]
onumber \ = \sum_{m=-\infty}^{\infty} f[n-m]g[m].$$

Fonte: https://en.wikipedia.org/wiki/Convolution

- Explicações sobre os kernels
 - https://en.wikipedia.org/wiki/Kernel (image processing)
- Exemplo on-line
 - http://setosa.io/ev/image-kernels/

0	0	0	0	0	0	0
0	1	0	0	0	1	0
0	0	0	0	0	0	0
0	0	0	1	0	1	1
0	1	0	1	1	0	0
0	1	0	1	1	0	1
0	1	0	0	0	1	1

Imagem

$$0 * 1 + 0 * 0 + 0 * 0 + 0 * 1 + 1 * 0 + 0 * 1 + 0 * 0 + 0 * 1 + 0 * 1 = 0$$

0	0	0	0	0	0	0
0	1	0	0	0	1	0
0	0	0	0	0	0	0
0	0	0	1	0	1	1
0	1	0	1	1	0	0
0	1	0	1	1	0	1
0	1	0	0	0	1	1

Imagem

		1	0	0		
Χ		1	0	1		=
		0	1	1		
	Dete	ector (de car	acterís	sticas	
		(feat	ure de	tector	·)	

$$0*1+0*0+0*0+1*1+0*0+0*1+0*0+0*1+0*1=1$$

0	0	0	0	0	0	0
0	1	0	0	0	1	0
0	0	0	0	0	0	0
0	0	0	1	0	1	1
0	1	0	1	1	0	0
0	1	0	1	1	0	1
0	1	0	0	0	1	1

Imagem

		1	0	0		
Χ		1	0	1		=
		0	1	1		
	Dete	ector (de car	acterís	sticas	
		(feati	ure de	tector	-)	

$$0 * 1 + 0 * 0 + 0 * 0 + 0 * 1 + 0 * 0 + 0 * 1 + 0 * 0 + 0 * 1 + 0 * 1 = 0$$

0	0	0	0	0	0	0
0	1	0	0	0	1	0
0	0	0	0	0	0	0
0	0	0	1	0	1	1
0	1	0	1	1	0	0
0	1	0	1	1	0	1
0	1	0	0	0	1	1

Imagem

		1	0	0		
Χ		1	0	1		=
		0	1	1		
	Dete	ector (de car	acterís	sticas	
		(feat	ure de	tector	·)	

$$0*1+0*0+0*0+0*1+0*0+1*1+0*0+0*1+0*1=1$$

0	0	0	0	0	0	0
0	1	0	0	0	1	0
0	0	0	0	0	0	0
0	0	0	1	0	1	1
0	1	0	1	1	0	0
0	1	0	1	1	0	1
0	1	0	0	0	1	1

Imagem

		1	0	0	
Χ		1	0	1	
		0	1	1	
	D-+.		da aa		:

Detector de características (feature detector)

0	1	0	1	0
0	2	1	1	2
1	2	2	თ	1
1	თ	З	თ	2
1	3	1	3	5

- Com o mapa de características (filter map) a imagem fica menor para facilitar o processamento
- Alguma informação sobre a imagem pode ser perdida, porém o propósito é detectar as partes principais (quanto maior os números melhor)
- O mapa de características preserva as características principais da imagem (olho, boca, nariz, por exemplo)

0	0	0	0	0	0	0
0	1	0	0	0	1	0
0	0	0	0	0	0	0
0	0	0	1	0	1	1
0	1	0	1	1	0	0
0	1	0	1	1	0	1
0	1	0	0	0	1	1
		lı	mager	n		

Χ

				i	(
	1	0	0		(
	1	0	1	=	
	0	1	1		-
ete	ector (de car	acterís	sticas	

De (feature detector)

0	1	0	1	0
0	2	1	1	2
1	2	2	თ	1
1	3	3	3	2
1	3	1	3	5

Camada de convolução

0	1	0	1	0
0	2	1	1	2
1	2	2	3	1
1	3	3	3	2
1	3	1	3	5

0	1	0	1	0
0	2	1	1	2
1	2	2	3	1
1	3	3	3	2
1	3	1	3	5

0	1	0	1	0
0	2	1	1	2
1	2	2	3	1
1	3	3	З	2
1	3	1	3	5

(feature map)

0	1	0	1	0
0	2	1	1	2
1	2	2	3	1
1	3	3	З	2
1	3	1	3	5

2	1	2
3		

Mapa de características (feature map)

0	1	0	1	0
0	2	1	1	2
1	2	2	თ	1
1	3	3	3	2
1	3	1	3	5

2	1	2
3	3	

Mapa de características (feature map)

0	1	0	1	0
0	2	1	1	2
1	2	2	3	1
1	3	3	3	2
1	3	1	3	5

2	1	2
3	3	2

0	1	0	1	0
0	2	1	1	2
1	2	2	3	1
1	3	3	3	2
1	3	1	3	5

2	1	2
3	З	2
3		

Mapa de características (feature map)

0	1	0	1	0
0	2	1	1	2
1	2	2	3	1
1	3	3	3	2
1	3	1	3	5

2	1	2
3	3	2
3	3	

Mapa de características (feature map)

0	1	0	1	0
0	2	1	1	2
1	2	2	3	1
1	3	3	З	2
1	3	1	3	5
Mapa de características				

(feature map)

2	1	2
3	З	2
3	თ	5

- Seleciona as características mais relevantes (reduz overfitting e ruídos desnecessários)
- Max polling (mínimo, média): max foca nas características mais relevantes

Rede neural convolucional (polling)

Rede neural convolucional

Treinamento com a descida do gradiente

Além do ajuste dos pesos, é feito também a mudança do detector de características

Conclusão

