

Ключі

Архітектор Тимофій спроектував нову квест-кімнату. Гра складається з n кімнат пронумерованих від 0 до n-1. На початку кожна кімната містить рівно один ключ. Кожен ключ відноситься до певного типу, що є цілим числом від 0 до n-1 включно. Тип ключа в кімнаті i ($0 \le i \le n-1$) дорівнює r[i]. Зауважте, що кілька кімнат може містити ключ одного типу, тобто величини r[i] не обовязково різні.

В грі також присутні m **двосторонніх** коридорів, пронумерованих від 0 до m-1. Коридор j ($0 \le j \le m-1$) з'єднує пару різних кімнат u[j] та v[j]. Пара кімнат може бути зв'язана кількома коридорами.

В гру грає один гравець, який збирає ключі та рухається між кімнатами, проходячи коридорами. Кажемо, що гравець **проходить** через коридор j, коли він використовує його для руху з кімнати u[j] до кімнати v[j], або навпаки. Гравець може використати коридор j лише в тому випадку, коли він до цього забрав ключ типу c[j].

В будьякий момент гри гравець знаходиться у кімнаті x і може вчинити одну із 2 дій:

- забрати ключ у кімнаті x, тип якого r[x] (якщо він його ще не отримав),
- пройти через коридор j, у якого або u[j]=x, або v[j]=x, за умови що він вже має ключ типу c[j]. Зауважимо, що гравець **ніколи** не втрачає ключ, який вже отримав.

Гравець **розпочинає** гру у кімнаті s без жодного ключа. Кімната t **досяжна** з кімнати s, якщо гравець, розпочинаючи гру у кімнаті s, може здійснити певну послідовність дій, описаних вище, і опинитись у кімнаті t.

Для кожної кімнати i ($0 \le i \le n-1$) позначимо кількість кімнат досяжних із i як p[i]. Тимофій хотів би знайти множину індексів i, що відповідає мінімальному значенню p[i] серед всіх $0 \le i \le n-1$.

Деталі реалізації

Вам потрібно реалізувати наступну процедуру:

```
int[] find_reachable(int[] r, int[] u, int[] v, int[] c)
```

- r: масив довжини n. Для кожного i ($0 \le i \le n-1$), ключ в кімнаті i має тип r[i].
- u,v: два масива довжини m, для яких j ($0 \leq j \leq m-1$), коридор j поєднує кімнати u[j] та v[j].
- c: масив довжини m. Для кожного j ($0 \leq j \leq m-1$) тип ключа необхідного щоб пройти через коридор j є c[j].

• Процедура повинна повернути масив a довжини n. Для кожного $0 \le i \le n-1$, величина a[i] має дорівнювати 1, якщо для всіх j $0 \le j \le n-1$, $p[i] \le p[j]$. В іншому випадку a[i] має дорівнювати 0.

Приклади

Приклад 1

Розглянемо наступний виклик:

```
find_reachable([0, 1, 1, 2],
       [0, 0, 1, 1, 3], [1, 2, 2, 3, 1], [0, 0, 1, 0, 2])
```

Якщо гравець розпочинає гру у кімнаті 0, він може здійснити наступну послідовність дій:

Поточна кімната	дія
0	Забрати ключ типу 0
0	Пройти коридором 0 до кімнати 1
1	Забрати ключ типу 1
1	Пройти коридором 2 до кімнати 2
2	Пройти коридором 2 до кімнати 1
1	Пройти коридором 3 до кімнати 3

Отже, кімната 3 досяжна із кімнати 0. Аналогічно можна побудувати конструкції, які продемонструють, що всі кімнати досяжні із кімнати 0, отже p[0]=4. Табличка нижче показує досяжні кімнати для всіх початкових:

Початкова кімната i	Досяжні кімнати	p[i]
0	[0,1,2,3]	4
1	[1,2]	2
2	[1,2]	2
3	[1,2,3]	3

Найменше значення $\,p[i]\,$ серед всіх кімнат $\,2,$ і воно досягається при $\,i=1\,$ та $\,i=2.$ Отже процедура повинна повернути $\,[0,1,1,0].$

Приклад 2

```
find_reachable([0, 1, 1, 2, 2, 1, 2],
        [0, 0, 1, 1, 2, 3, 3, 4, 4, 5],
        [1, 2, 2, 3, 3, 4, 5, 5, 6, 6],
        [0, 0, 1, 0, 0, 1, 2, 0, 2, 1])
```

Табличка нижче показує досяжні кімнати для всіх початкових:

Початкова кімната i	досяжні кімнати	p[i]
0	[0, 1, 2, 3, 4, 5, 6]	7
1	[1,2]	2
2	[1,2]	2
3	[3, 4, 5, 6]	4
4	[4,6]	2
5	[3,4,5,6]	4
6	[4,6]	2

Найменше значення p[i] сере всіх кімнат 2, і воно досягається при $i\in\{1,2,4,6\}$. Отже процедура повинна повернути [0,1,1,0,1,0,1].

Приклад 3

```
find_reachable([0, 0, 0], [0], [1], [0])
```

Табличка нижче показує досяжні кімнати для всіх початкових:

Початкова кімната i	досяжні кімнати	p[i]
0	[0,1]	2
1	[0,1]	2
2	[2]	1

Найменше значення $\,p[i]\,$ сере всіх кімнат $\,1\,$ і воно досягається при $\,i=2.$ Отже процедура повинна повернути $\,[0,0,1].$

Обмеження

- $2 \le n \le 300000$
- $1 \le m \le 300000$
- $0 \leq r[i] \leq n-1$ для всіх $0 \leq i \leq n-1$
- $0 \leq u[j], v[j] \leq n-1$ and u[j]
 eq v[j] для всіх $0 \leq j \leq m-1$

• $0 \leq c[j] \leq n-1$ для всіх $0 \leq j \leq m-1$

Підзадачі

```
1. (9 балів) \,c[j]=0 для всіх \,0\leq j\leq m-1 і \,n,m\leq 200\,
```

2. (11 балів) $\, n,m \leq 200 \,$

3. (17 балів) $n, m \leq 2000$

4. (30 балів) $c[j] \leq 29$ (для всіх $0 \leq j \leq m-1$) і $r[i] \leq 29$ (для всіх $0 \leq i \leq n-1$)

5. (33 бали) без додаткових обмежень.

Приклад модуля перевірки

Приклад модуль перевірки зчитує дані у наступному форматі:

рядок 1: n m

• рядок 2: r[0] r[1] \dots r[n-1]

ullet рядок 3+j ($0\leq j\leq m-1$): u[j] v[j] c[j]

Приклад модуль перевірки виводить значення, що повернула процедура find_reachable, у наступному форматі:

• рядок 1: a[0] a[1] ... a[n-1]