A		Aldrin	252
Absorbance		Aliphatic alcohols	241
detector in HPLC, schematic of		Aliphatic amines	241
		Alkali flame detector (AFD)	254
detector, UV	á	Alkaline phosphatase	339
	224	Alkyl phosphate metabolites, urinary	252
		Alkylamine-generating pesticides,	
UV and fluorescence	23	detection of	143
	75	Allethrin derivatives	329
	67	1R, 3R, 4'S Allethrin (S-bioallethrin)	323
	33 <i>t</i>	Alumina column	280
	554	cleanup	371
Acylation reactions of ethylene-	J 4	LCEC assay for pesticide-derived	. 74
	44f	oxidation process for	71, 73
thiourea (ETU) 24 N-Acylation of ETU, extractive 245-2		Amides, N-dimethylthiophosphinic	241
Adduct ions	62	Amine(s)	
Adipose tissue, pesticides in	252	aliphatic	241
· · · · · · · · · · · · · · · · · · ·	210	aromatic24	1, 328
	81	electrochemistry	/1-/3
		conjugation of a carboxylic acid	
	209	group to	328
1 817	13	-containing haptens to proteins,	
	254	conjugating	328
Agricultural pesticides	66	heterocyclic	241
Agricultural treatment sites, analysis		to phosphorus-containing com-	0.44
of pesticidal residues near177-2	202	pounds, derivatization of	241
Air		phosphorylation reactions of	242f
chemical reactivity of pesticides in 1	197	residues by LCEC, determination	71 75
determination of paraquat residues		of aromatic	/1-/3
	179	-substituted biphenyl	74
field measurements of pesticide		2-Aminobenzimidazole (2-ABZI)	328
concentrations in 1	189	Aminocresol	143
	195	4-Aminodiphenylamine	71 143
sampler for pesticide vapors, dia-		Aminofenitrothion	
	85f	Amperometric detector, thin-layer5	0, 29]
samples 18	83f	Alkaloids, pre-column derivatization	224
Airborne		for	22f 253
conversions of pesticides, effect of		Analytical standards	233
	200	Analyzer	
pesticidal residues near agricultural		for drugs in biological fluids,	27
treatment sites, analysis of177-2	202	FAST-LC	27
pesticide residues		with mobile phase recycling, 2,4-D	
methods of sampling and analysis		totally automated herbicide	26
	178	Anderson impactors	179
	182	Anilines, determination of urinary	050
	189	chlorinated	256
Albumin, bovine serum (BSA)328, 3	330	Anilines, halogenated	253
Albumin, human serum 3	330	Anion exchanger, Permaphase AAX	10
	241	Anion formation	354
	.42f	Ant, imported fire	235

Antibody(ies)		S-Bioallethrin (1R, 3R, 4'S	
characterization332-	-333	allethrin)323,	
conjugation of enzymes to antigens		RIA for	344
or	338	Biocides	65
formation, methodology of	322	BioGel P-2	10
to ion-exchange resins, binding of		Biological fluids, FAST-LC analyzer	271
a charged	335	for drugs in	27f
production, choice of animal for	331	Biologically incorporated residues,	
solutions	322	recovery of	253
specificity	323	Biphenyl, amine-substituted	74
technology, monoclonal342-	-343	Bipyridylium herbicides	82
titer, specificity of	332	Blood cholinesterase, determination of	251
Antigen	322	Blood, poison in	260
or antibodies, conjugation of		Bovine serum albumin (BSA)328,	330
enzymes to	338	Bromide ions	365
competitive binding in RIA	333	Bromine vapors	137
purification and characterization 330-	-331	Bromophos-ethyl and dimethoate,	
radiolabeled	333	separation of	165
Antiserum	332		
	357f	C	
Argentation chromatography	52	14C	
Aromatic amine(s)241,	, 328		
residues by LCEC, determination		-amino acids, radiochromatogram	124
of7	1–75	of the separation of10	
electrochemistry of7		chromatographic detector, use of	
N-Aryl carbamates	243	-labeled metabolites	
Aqueous systems, scintillation flow		Calcofluors (fluorescence whiteners)	137
cell for	5 <i>f</i>	Captafol	151
API (see Atmospheric pressure		Captan	151
ionization)		Carbamate(s)6	
Apis mellifera L. (honeybees)	120	analyzer	19
Atmospheric pressure ionization		N-aryl	243
(ÅPI)	353	chromatogram, comparison of UV	
mass spectrometry	354	and fluorescent tracings	
negative ion mass spectrometry,		from23	
analyses for 2,3-dibromopro-		esters	66
panol by362, 364	365	insecticides	, 302
Azinphos methyl	243	on TLC plates, detecting	267
Azomethine group, insecticides con-		pesticides	252
taining an activated	82	measuring exposure to	252
8		on-column methylation reactions	
		of	244f
В		solvent systems for TLC separation	0.00
		of	268t
BCl ₃	233	post-column derivatization for	23f
BF ₃ /methanol	232	sulfur-containing	243
δ-BHC, calibration curves for	164 <i>f</i>	thermal instability of	309
Baygon	139	Carbaryl113, 145	
Bayrusil	147	in food products, determination of	107
Beckman LS-200 series LSC	288	Carbetamide	74
Bees, honey (Apis mellifera L.)	120	Carbodiimides, water-soluble	325
extracts of pollen from	121 <i>f</i>	Carbofuran residue in air samples 196f,	
Benzene hexachloride (BHC) isomers,		Carbofuran, rice plants treated with	195
separation of	161	Carbon	
Benzidine 71, 7		dioxide evolution from thiofanox	311
Benzil 355		electrodes, glassy5	
API negative ion mass spectrum for		metabolism studies with radioactive	287
Benzo[a]pyrene	328	paste electrodes	58
p-Benzoquinone	73	Carcinogenic agents	362

Carriers for pesticide haptens330–331 Chromatographic (continued) Cascade impactors 179 separation Chromatography Cation-exchange resin, polymeric 70 Cellulose argentation 52 column absorption 209 HPTLC pre-coated plates167–168 layers, spectra of fisetin on 140f gas (GC) 367 and silica gel 60, comparison of -low resolution mass spectrom-168 etry 280 HPTLC pre-coated plate 138 high-performance liquid thin-layer chromatograms (HPLC)1–13, 107 Chelate spray reagent, fluorometric 137 Chemical derivatization high-performance thin-layer advantages gained by (HPTLC), developments in 159–175 232t reaction criteria of ion-exchange techniques in pesticide analysis .231-247 ion pair techniques for pesticides, publicaliquid (LC) 1–13 with electrochemical detection tions dealing with 2341 (LCEC)57-83 Chemical ionization (CI) 353 353 fully automated sample treatment low pressure, (LPCI) 254 -mass spectrometric detection for (FAST-LC)15-29 Chemistry, mobile phase 45 partition Cholinesterase, determination of blood 251 pre-HPLC column 107 Chlordecone (kepone) 235 reversed-phase improving mobile-phase selec-Chlorinated 256 tivity in45-54 anilines, determination of urinary. reversed-phase high-performance hydrocarbon pesticides, detection of 254 non-polar liquid (RPLC) 45 organic pesticides, solvent systems 113 silica gel adsorption for TLC separation of 268t thin-layer (TLC) 127 of pesticides by fluorometry ...127-153 phenols, problems of multi-residue procedure for255-256 Chromosorb 101 resin 182 74 p-Chloroaniline Chromosorb 102 resin 277 Chlorodioxins Cleanup 233 2-Chloroethanol column 16 235 2-Chloroethyl ester alumina 371 360 Chlorophenolate ions florisil 370 micro- 210-213 Chlorophenoxy acid residues in pre- continuous-flow 213-215 natural waters 233 Chlorophenoxy acids, esterification of 232 procedures, pesticide residue209-228 Chlorophenoxyalkyl acids, derivatives CMC (1-cyclohexyl-3-(2-morpholinylof 233t4-ethyl) carbodiimide methyl Chlorpyrifos 252 325 p-toluene sulfonate Cholinesterase 19 CN-bonded polar phase, pesticides separated on _____ Chronoamperogram 60 110 CI (see Chemical ionization) Coextractives 113 Chromascan Colorimetric methods 265 264 Chromatogram Column Analyser, Farrand VIS-UV129, 130f adsorption chromatography 209 cellulose thin-layer 138 280 alumina chromatography, pre-HPLC fluorometric detection of phosphate 107 137 esters on paper 16 cleanup instruments for measuring fluores-371 alumina cence on thin-layer129-133 florisil 370 19 Chromatographic pre- 22f columns, performance evaluation derivatization for alkaloids, pre- of liquid31–43 derivatization, post- 19 detector(s) 2 use of ¹⁴C 6, 10 23f for carbamates 26f for nitrosamides

391

Column (continued)	Coroxon
efficiency	Coumaphos145–146
function of pre-HPLC 113	degradation of147, 148f
GLC, open-tubular (capillary) 192	Counters, liquid scintillation
GLC, packed 192	Coupling techniques
goodness 31–32	Cucumber extracts 119f
HPLC	Cyclic voltammetry (CV)
micro-particulate 9	1-Cyclohexyl-3-(2-morpholinyl-4-
packings, bonded-phase39, 42	ethyl) carbodiimide methyl
packings for LC	p-toluene sulfonate (CMC) 325
peak	Cyclone separators
asymmetry, method for hand-	Cyolane
calculating	Cytrolane75, 82
symmetry34, 37	
tailing 34	D
performance	1,4-D (2,4-dichlorophenoxyacetic
criteria 31–43	acid)
evaluation of liquid chromato-	analyzer with mobil-phase recycling 27f
graphic31–43	esterification of
parameters, reduced	extractive pentafluorobenzylation of 245
testing 43	fully automated HPLC analysis of 25
permeability	residues of
plate count 32	DC polarography 75
reactions, pre-	DCAA (dichloroacetic anhydride) 244f
reproducibilities 39–42	DCACl (dichloroacetyl chloride) 244f
resolution, HPLC 32	DDA, urinary metabolite
retentivity (capacity factor K^1) 39	DDD (dichlorodiphenyldichloro-
selectivity factor alpha	ethane) 189
stability	DDE (dichlorodiphenyldichloro-
theoretical plates, equation for	ethylene) 252
calculating the number of 35f	DDQ (1,2-dichloro-4,5-dicyano-
theoretical plates as a performance criterion, number of	benzoquinone)
	DDT (dichlorodiphenyltrichloro-
treatment, post- 21t treatment, pre- 19, 21t	ethane)
Computer	exposure to
	synthesis of haptens for
hardware 288 Hewlett-Packard 9825A desk-top 288	DEF (S,S,S-tributyl phosphorotri-
network, desk-top	thioate) 200
interfacing of LSC with a	DEMTP (Diethylmethylthiophos-
Hewlett–Packard 9800	phate) 243
series	DFDNB (p,p' -difluoro- m,m' -dinitro-
reduction of radioactive meta-	benzene) 328
bolic data using287–296	DPP (differential pulse polarographic) 75
output, hard copy 291	Dansyl chloride 141
software 290	Dansyl labeling of N-methylcarbamate
Confirmation analyses 255	insecticide, reaction scheme for 142
Conjugate, hapten-carrier protein 330	Dansylation of pesticides 141
Conjugation Conjugation	N-Dealkyl metabolites of triazine
of amine-containing haptens to	herbicides
proteins	Defoliant, organophosphorus 200
of a carboxylic acid group to an	Dehydro-oxydemeton methyl, GC
amine 328	characteristics of cis and trans 242
of enzymes to antigens or antibodies 338	Densitometer, photoelectric
methods of	Densitometry, estimation of pesticides
Continuous-flow cleanup 213–215	on TLC plates using
	Densitometry, TLC
Connects 118f	Derivatization, chemical
Conne's advantage in FTIR 299	advantages gained by 232

Desiration to a land to a discord		2.2 Dimeshal 1 mashalthia 2 hata	
Derivatization, chemical (continued)	2224	3,3-Dimethyl-1-methylthio-2-buta-	
	232t	none O-[(methylamino) carbonyl]	_320
techniques in pesticide analyses231-	-241	-oxime302 (β,β-Dimethylphenylethyl)distannox-	-320
techniques for pesticides, publica- tions dealing with	234f	ane, hexakis	367
Detection, electron capture	234)	N-Dimethylthiophosphinic amides	241
(EC)254,	354	Dimilin	74
Detector(s)	354	Dinitroaniline herbicides	82
alkali flame (AFD)	254	Dispersive spectroscopy, advantage	-
cell, LCEC reductive	78	of FTIR over	302
chromatographic	2	Dithiocarbamates, electrochemistry of	83
use of ¹⁴ C	5, 10	4-Dodecyldiethylenetriamine	54
electrochemical	254	Drugs in biological fluids, FAST-LC	
flame photometric (FPD)239,	254	analyzer for	27f
LC	254	•	
Pye traveling wire	213		
	3, 4 <i>f</i>	E	
thin-layer amperometric	, 59f	EC (cleater continue) detection	254
thin-layer electrochemical	59f	EC (electron capture) detection	234
UV	10	EDC (1-ethyl-3-(3-dimethyl-amino-	325
absorbance	2	propyl) carbodiimide HCl)	323
Dialysis	330	EDM (Evaporation to Dryness Module) for HPLC	18
equilibrium	333		10
Diazomethane	232	Eggs and milk, recovery of maretin	153 <i>t</i>
2,3-Dibromopropanol by API negative		FI (electron impact ionization)	353
ion mass spectrometry, analyses		Electroanalytical chemists, convention	333
for362, 364 <i>f</i> ,	365	of American	63
2,3-Dibromopropanol, urinary	0.00	Electrochemical	05
	363f	detection, liquid chromatography	
tris(2,3-Dibromopropyl) phosphate	362	with (LCEC)5	57_83
Dicamba 4.5 di constitución	233	detection, selectivity of	63
1,2-Dichloro-4,5-dicyanobenzoqui-	120	detector	254
none (DDQ)	139	thin-layer	591
• • • • • • • • • • • • • • • • • • • •	244f 244f	information, Kissinger charts for	66
	2441	instrumentation, three-electrode	58
Dichlorodiphenyldichloroethane	189	oxidation of phenols	70
(DDD) Dichlorodiphenyldichloroethylene	10)	reactivity	60
(DDE)	252	reduction of mono- and polynitro-	
Dichlorodiphenyltrichloroethane	232	aromatics	79
(see DDT)		Electrochemistry of aromatic amines 7	/1–73
Dichlorovos	260	hydrodynamic	57
Dieldrin 190,		of N-nitrosamines	82
	191 <i>t</i>	of thiocarbamates	83
Diethylamine	237	Electrode(s)	~
Diethylmethylthiophosphate		carbon paste	58
(DEMTP)	243	coated with mercury, platinum wire	75 50 65
Differential pulse polarographic		glassy carbon	58, 63 58
(DPP)	75	materials	78
Diffuse reflectance measurements by		mercury amalgamated gold	75
FTIR	320	mercury poolsolid	75
Diflubenzuron	329	Electron	15
p,p'-Difluoro-m,m'-dinitrobenzene	0 _ 2 /		355
(DFDNB)	328	attachmentcapture (EC)	333
3,5-Diiodo-4-hydroxy-benzonitrile	0	detection	254
(ioxynil)	167	detector	354
Dimethoate, separation of bromo-		gas chromatograms of an oyster	50
phos-ethyl and	165	extract	236
r			

Electron (continued)			262
impact ionization (EI)	353		253
transfer kinetics	60	Extractive N-acylation of ETU 245-	247
Electrophore	60	Extractive pentafluorobenzylation	
Electroreducible residues	75	of 2,4-D	245
ELISA (see Enzyme-linked immuno-		procedure for carboxylic acids	245
sorbent assay)		procedure for phenols	245
Elution system, gradient	213	1	
Elution techniques	264	F	
EMIT (homogeneous enzyme immu-		F	
noassay)341	-342	Farrand spectrofluorometer, optical	
Endosulfans	220		134f
Environmental Protection Agency		Farrand VIS-UV Chromatogram	,
(EPA) Manual for Environ-		Analyser129, 1	132f
mental Analysis	209	FAST-LC (see Fully automated	,
Enzyme(s)		sample treatment for liquid	
to antigens or antibodies, conjuga-		chromatography)	
tion of	338	FDA (Food and Drug Administration)	
immunoassay, homogeneous	330	Pesticide Analytical Methods	
(EMIT)341	_342		209
-linked immunosorbent assay	-J+2		299 299
(ELISA) 338	_3/1		143
procedure for parathion			143
schematic representation of		and derivatives	
Familibria in RPIC primary	5 51	Fenoprop	233
Equilibria in RPLC, primary	1 54	Filter module for HPLC, continuous	18
Ester(s)	1-54		179
carbamate	66		235
2-chloroethyl	235		138
of MCPA, methyl	232		140
of MCPB, methyl	232		254
Esterase inhibition technique	265	Flame photometric detector (FPD) 239,	
Esterification	203	phosphorus-selective	239
of chlorophenoxy acids	232	S- and P-channels of	241
of 2,4-D	233	Flavones 138–	
of MCPA	233	Florisil column cleanup	370
reaction with pentafluorobenzyl		Flow cell(s)	
bromide (PFBBr)	235	for aqueous systems, scintillation	5f
1-Ethyl-3-(3-dimethyl-aminopropyl)		for organic solvents, scintillation	5f
carbodiimide HCl (EDC)	325	for radiochromatographs	
Ethylchlorocarbonate	328	Fluorescamine 141,	143
Ethylene thiourea (ETU)	245	Fluorescence	
acylation reactions of	244f	in dilute solutions	123
derivative, chromatographic charac-	•	enhancement 138-	139
teristics of246	. 247	factors affecting	128
extractive N-acylation of245			123
Evaporation to Dryness Module		monitor	
(EDM) for HPLC	18	with an absorbance detector in	
Excitation sources in a fluorescence			06f
monitor	110		11Ó
Exposure		in HPLC103-	125
to carbamate pesticides, measuring	252	of pesticides	
to DDT	252	alternatives to	
to organophosphate pesticides,		direct	
measuring	251	effect of type of thin-layer on	
to pesticides, analytical method-		factors affecting	110
ology for assessment of		indirect 136-	145
human 251	-256	spectral data of treated organo-	
to pesticides, indicators of		phosphorus 1	49 <i>t</i>

Fluorescence (continued)	FTIR (see Fourier transform infrared
quenching groups 145	spectroscopy)
signal with polarity of the mobile	Fully automated pesticide analyzer,
phase, variation of 120	first 20
signal by unresolved coextractables 120	Fully automated sample treatment for
spectrometry103–125	liquid chromatography (FAST-
spectrophotometer, Perkin-Elmer	LĈ)15–29
MPF-2A 105	analyzer for drugs in biological
theory of	fluids
on thin-layer chromatograms,	for automated pesticide analysis15-29
instruments for measuring 129-133	Fungicides243–247, 367
whiteners (calcofluors) 137	•
Fluorescent pesticides, naturally 135	G
Fluorescent reagents, inorganic 149-150	Gamma emitter 337
Fluorogenic labeling of pesticides 141–145	Gas
Fluorogenic reagents	chromatograms of an oyster extract,
Fluorometer, Turner Model III129, 130f	electron-capture
Fluorometers, simple 129	chromatography (GC)
Fluorometric	characteristics of cis- and trans-
chelate spray reagent 137	dehydro-oxydemeton
detection of phosphate esters on	
paper chromatograms 137	
detection of organothiophosphorus	-low resolution mass spec- trometry
pesticides on silica-gel layers 137	
methods	/MS, analysis of organotin pesticide residues by367–383
response of pesticides 149t	evolution studies with FTIR309–311
spray reagents, pH-sensitive139-141	
Fluorometry, TLC	-phase acids 354 Gel filtration 330
of pesticides by	medium 10
Flurenol (9-hydroxyfluorenecarboxylic	Gels, application of macroporous
acid)	silica
calibration curves for170f, 174f	Gelatin capsule root zone technique 195
Folex	GLC
Foliage residue dissipation data 195	on-column transesterification of OP
Foliage spray 195	insecticides
Food and Drug Administration (FDA)	open-tubular (capillary) column 192
Pesticide Analytical Methods	packed column
Manual 209	Glycol impingers 187
Food products, determination of	Gold electrodes, mercury amal-
carbaryl in 107	gamated
Forensic toxicologist	Gravimetric methods 264
Fortification studies 220–228	Greenburg-Smith impingers, glycol-
Fourier transform infrared spectros-	filled
copy (FTIR)299–320	Guthion 138
advantages	130
Conne's	н
over dispersive spectroscopy 302	
Fellgett's	Halide ion
Jacquinot's	Halogenated organophosphates 252
analysis of microsamples	Hammett's substituent constants 65
gas evolution studies with309-311	Hapten(s)
impurity detection using 315	-carrier protein conjugate
to pesticide analysis, applications	carriers for pesticides330–331
of	synthesis 322–325
subtraction capabilities of	for DDT
FPD (see Flame photometric detector)	for malathion
Fractosil 215	for coupling
evaluation studies of	to protein(s)
Freund's complete adjuvant	conjugating amine-containing 328

Hapten(s) (continued)		High (continued)
to protein(s) (continued)		-performance liquid chromatography
coupling, methods of		(HPLC) (continued)
site of conjugation of	323	schematic of fluorescence
Hardware, computer	288	monitor with an absorbance
HCB (see Hexachlorobenzene)		detector in 106f
Hemagglutination test	342	SOLIDprep sampler for 18
Hemocyanin	331	system, basic automated 17f
Heptachlor 190	, 252	system with on-line extraction,
concentrations in air	191 <i>t</i>	automated`17f
epoxide	252	versatility 7
Heptachlorobiphenyls	237	-performance thin-layer chroma-
Herbicide(s)	-235	tography (HTPLC)
analyzer, totally automated	26f	developments in159-175
bipyridylium	8 2	to pesticide analysis, application
N-dealkyl metabolites of triazine	253	of159–175
derivatives of acidic	233t	pre-coated plate(s) 159
dinitroaniline	82	cellulose167–168
fully automated HPLC analysis	02	and silica gel 60, compari-
of a water-soluble	25	son of 168
substituted urea	253	reversed phase163–167
	277	silica gel 60
2,4,5-T	241	comparison of TLC and 161
Heterocyclic amines Hewlett-Packard	241	
	200	with concentrating
9825A desk-top computer	288	zone
1084B HPLC	291	with and without concen-
9800 series desk-top computer net-		trating zone, compari-
work, interfacing of LSC	200	son of
with	-296	-pressure liquid chromatography
Hexachlorobenzene (HCB)239	, 252	(see High-performance liquid
reactions for		chromatography)
Hexachlorocyclohexane	252	Homicides by pesticide poisoning 261
Hexakis $(\beta,\beta$ -dimethylphenylethyl)-		Homogeneous enzyme immunoassay
distannoxane	367	(EMIT)341–342
High		Honeybees (Apis mellifera L.) 120
-performance liquid chromatog-		HPLC (see High-performance liquid
raphy (HPLC)1-29		chromatography)
automation of1		Human
chromatography by	107	exposure to pesticides, analytical
column(s)	31	methodology for assessment
chromatography, pre-	107	of251–256
function of pre-	113	milk
resolution	32	detection limits of TCDD in 282
continuous filter module for	18	determination of 2,3,7,8-tetra-
evaporation to Dryness Module		chlorodibenzo-p-dioxin
(EDM) for	18	in277–284
fluorescence, instrumental		sample preparation scheme for
parameters in	123	the determination of
fluorescence as a monitor in 103	-125	2,3,7,8-TCDD in 281 <i>f</i>
fully automated		organs, distribution of pesticides
analysis of 2,4-D	25	in259–273
analysis of a water-soluble		serum albumin
herbicide	25	serum, fully automated HPLC
determination of theophylline		determination of theophylline
in human serum	25	in 25
Hewlett-Packard 1084B	291	HTPLC (see High-performance thin-
in pesticide metabolism studies		layer chromatography)
reverse-phase (RPLC)		Hydrazines 82
20.0100 p.1000 (20.20)	, ===	,

Hydrocarbon pesticides, detection of		Insecticide(s) (continued)	
nonpolar chlorinated	254	N-methylcarbamate 1	141
Hydrodynamic		reaction scheme for the dansyl	
chronoamperogram	60	labeling of N-methylcar-	
electrochemistry	57	bamate 1	42f
voltammetry, normalized	63	organochlorine235–2	239
Hydroquinone, oxidation of	60	organophosphorus (OP)239-2	243
Hydrophobic effect in RPLC	45	on TLC plates, detecting265, 2	267
9-Hydroxyfluorenecarboxylic acid		in the stomach	270
(flurenol)	167	on TLC plates, detecting organo-	
Hydroxylamines	79		267
N-Hydroxynaphthalimide diethyl	• • •	Instrumental parameters in HPLC	
phosphate (maretin)	136		123
phosphate (maretin)	150	Instrumentation, three-electrode	
₹		electrochemical	58
I		Instruments for measuring fluores-	50
IgG, rabbit	338	cence on thin-layer chromato-	
Immunization procedures331-	-332		122
Immunoassay(s)		grams 129–1	299
applicability of	346		4 77
attributes and limitations of343-	-347	Interferometer, diagram of	004
cost effectiveness of	346	Michelson	υυj
homogeneous enzyme (EMIT)341-		Ion(s)	
methods			362
problems with	347		365
sensitivity 343			360
specificity 344		-exchange chromatography	10
speed of analysis of	345	-exchange resins, binding of a	
Immunochemical methods to pesticide	373		335
analysis, possible contributions			362
	210	formation of negative353-3	354
of	-340	halide	354
Immunochemical technology for pesti-	240	monitoring method, SIM negative	371
cide analysis, potential of321		pair chromatography	52
Immunodiffusion	325	pair agent-solute interactions in	
radial	342	RPLC	52
Immunoelectrophoresis	342	phenolate354, 3	360
Immunogen	322	mass spectrometry, analyses for	
Immunosorbent assay, enzyme-linked		2,3-dibromopropanol by API	
(ELISA)338		negative362, 364f, 3	365
Impaction devices	179	mass spectrometry, positive	362
Impactors, Anderson	179	Ionization	
Impactors, cascade	179	atmospheric pressure (API)	353
Impingers, glycol	187	chemical (CI)	353
-filled Greenburg-Smith	181	low-pressure (LPCI)	353
Impurity detection using FTIR	315		254
Infrared spectroscopy, fourier		electron impact (EI)	353
transform (FTIR)299	-320	Ioxynil (3,5-diiodo-4-hydroxy-	
Insecticide(s)			167
from body tissue, isolation of		calibration curves for	
organochloro	263	IR system, on-the-fly LC-	320
from body tissues, isolation of			237
organophosphorus	262		328
carbamate139, 239-243	, 302		531
on TLC plates, detecting	267	isomer separation, optical	55)
containing an activated azomethin			
group	82	J	
GLC on-column transesterification		•	
of OP	243	Jacquinot's advantage in FTIR	299

K	Low-pressure chemical ionization
Kepone (chlordecone) 235	(LPCI) 353
reactions of	LSC (see Liquid scintillation counter)
Kinetics, electron transfer60	W
Kissinger charts for electrochemical	M
information	Macroreticular resins182–188
	Malathion poisoning
L	Malathion, synthesis of haptens for 328 Manual for Environmental Analysis,
LC (see Liquid chromatography) 1-13	Environmental Protection
LCEC (see Liquid chromatography	Agency (EPA) 209
with electrochemical detection)	Maretin (N-hydroxynaphthalimide
Leaf surfaces, toxaphene loss from 192	diethyl phosphate)120, 136, 152
Lima beans, extracts of 119f	from eggs and milk, recovery of 153a
Liquid	Mass spectrometry (MS)
chromatographic columns, perform-	API
ance evaluation of	detection, chemical ionization— 254
chromatography (LC) 1–13	gas chromatography-low resolution 280
columns, packing for	ion
detectors	analyses for 2,3-dibromopro- panol by API nega-
for (FAST-)15–29	tive
analyzer for drugs in biological	negative353–365
fluids	positive
for automated pesticide	multiple scan averaging, high
analysis15-29	resolution
-IR systems, on-the-fly 320	MCPA (see 2-Methyl-4-chloro-
with electrochemical detection	phenoxyacetic acid)
(LCEC)57–83	MCPB, methyl esters of
assay for pesticide-derived	Membranes, nitrocellulose
aniline	Mercury amalgamated gold electrodes 78
amine residues by71-75	amalgamated gold electrodes 78 platinum wire electrodes coated
determination of phenolic	with
residues by65–71	pool electrodes
reductive	Metabolic conversion of pesticides 260
detector cell 78	Metabolic data using a desk-top com-
pesticides suitable for79, 80t	puter network, reduction of
residue analysis, application of 65	radioactive 287–296
to toxic compounds, applica-	Metabolism studies, HPLC in
tions of	pesticide 1–13
to trace phenols, applications of reverse-phase	Metabolism studies with radioactive carbon
of reverse-phase	Metabolites, ¹⁴ C-labeled 1–13
reversed-phase high-performance	Metal ion-solute interactions in RPLC 52
(RPLC)	chelated 54
-liquid partitioning 209	Methidaoxon 241
scintillation counter (LSC)3, 287, 337	Methidathion (Supracide) 241
Beckman LS-200 series 288	characteristics of 240
data collection	Methyl
data collection, on-line	esters of MCPA 232
with a Hewlett-Packard 9800	esters of MCPB
series desk-top computer	isocyanate
network, interfacing of287–296 Tracor Mark III	parathion
Radiochromatography System	for 359
Model 4526, Nuclear-Chicago 3	viologen 82

2-Methyl-4-chlorophenoxyacetic		Negative ion(s)
acid (MCPA)167	, 245	detection for
calibration curves for170f,	174f	formation of
esterification of	233	mass spectrometry, analyses for
methyl esters of	232	2,3-dibromopropanol by
Methylation, on-column		API362, 364 <i>f</i> , 365
pyrolytic	243	Nitrocellulose membranes
reactions of organophosphorus		Nitrocresol 143
pesticides	244f	Nitrogen-containing compounds,
techniques, application of241	-243	detection of
Methylation reactions of carbamate		<i>p</i> -Nitrophenol
pesticides	244f	hydrodynamic voltammograms of 79, 81f
N-Methylcarbamate insecticide(s)	141	in urine
reaction scheme for the dansyl		Nitrosamides, post-column derivatiza-
labeling of	142f	tion for
4,4'-Methylenebis-(2-chloroaniline)		N-Nitrosamines, electrochemistry of 82
(MOCA)	74	Nuclear-Chicago Liquid Radiochro-
Methylmagnesium chloride	368	matography System Model 4526 3
Methylvendex derivative	383	
mass spectrum of	386f	
reaction scheme for the conversion	•	0
of vendex to	385f	
Michelson's interferometer, diagram	•	OP (see Organophosphorus)
of299,	300f	Orange extracts 118f
Microcolumn cleanup 210		Orange rind, determination of
Milk		2-phenylphenol in 70
in human		Organs, distribution of pesticides in
detection limits of TCDD	282,	human259–273
determination of 2,3,7,8-tetra-		Organic
chlorodibenzo-p-dioxin277	-284	compounds, trace determination of
sample preparation scheme for	20.	easily oxidizable and
the determination of		reducible57–83
2,3,7,8-TCDD	281f	modifiers
pesticides in	261	pesticides, solvent systems for TLC
recovery of maretin from eggs and	153t	separation of chlorinated 268t
Mirex 235,		solvents 3
reactions of	74	scintillation flow cell for
MOCA (4,4'-Methylenebis-(2-chloro-	, ,	Organochlorine insecticides235–239
aniline))	74	from body tissues, isolation of 263
Mobil phase chemistry	45	on TLC plates, detecting
Mobile phase, variation of fluores-	73	Organochloro pesticides by TLC,
cence signal with polarity of	120	determination of
	74	Organophosphate(s) 212
Monoclonal antibody technology 342		compounds, detection of
8-Monohydromirex (photomirex)	237	halogenated 252
Mononitroaromatics, electrochemical	231	pesticides, measuring exposure to 251
	79	Organophosphorus (OP)
reduction of	74	defoliant 200
Monuron MS (aga Mass spectrometry)	/4	insecticides 239-243
MS (see Mass spectrometry)	262	from body tissues, isolation of 262
Mucabacteria	362	GLC on-column transesterifica-
Mycobacteria	331	tion of 243
		by TLC, determination of 265, 267
N		pesticide(s)
44		fluorescence spectral data of
α-Naphthol	145	treated
Naphthostyril	152	on-column methylation reactions
	143	of 244 <i>f</i>
NBD-chloride	173	O1

Organophosphorus (OP) (continued) pesticide(s) (continued) poisoning	261	Permaphase AAX anion exchanger 10 Peroxidase, horse-radish
solvent systems for TLC separation of	268t	treatment sites, analysis of airborne177–202
Organothiophosphates	212	Pesticide(s)
Organothiophosphorus pesticides on		absorbance of
silica-gel layers, fluorometric	127	in adipose tissue
detection of	137	agricultural
Organotin pesticide residues by GC/	383	in the air, chemical reactivity of 197
MS, analysis of	-363 243	analysis
Oxidation process for aniline	71	application of HPTLC to159–175
Oxidation of substituted anilines	73	applications of FTIR to299–320
Oxons	241	chemical derivatization tech- niques in231–247
Oxydemeton methyl with trifluoro-		possible contributions of immu-
acetic anhydride (TFAA),		nochemical methods to347–348
reaction of	242f	potential of immunochemical
	•	technology for321–348
P		state of current instrumentation
DCD (1 11 's (11' 1 - 1)	007	for automation of15-29
PCB (polychlorinated biphenyl)	237	analytical methodology for
PCP (see Pentachlorophenol)		assessment of human
PFBBr (pentafluorobenzyl bromide), esterification reaction with	235	exposure to251-256
Packings	233	Analytical Methods Manual, Food
with bonded hydrocarbon coatings	45	and Drug Administration
bonded-phase column	39	(FDA)
for LC columns	9	analysis, FAST-LC for automated 15-29
Paraoxon	197	analyzer 25
parathion conversion to197, 199		first automated
Paraquat residues in air, determina-	•	fully 20j
tion of179,	180f	applications, source and fate of
Parathion 243	, 260	airborne residues related to 180
analysis of	339	atmospheric entry, behavior, and fate177–202
API negative ion mass spectrum		in autopsied tissues, distribution
for methyl	359f	of269–273
conversion to paraoxon197, 199	, 200	carbamate
ELISA procedure for	344	solvent systems for TLC separa-
methyl	3381	tion of 268a
poisoning by		measuring exposure to
residues of airborne transformations, in air, half-lives	197	on-column methylation reactions
and rate constants for	201 <i>t</i>	of 244j
-treated plum orchard	197	chemical designations of
Particulates in the air, measurement	171	concentrations in air, field measure-
of	179	ments of 189
Partition chromatography	7	dansylation of
Partitioning, liquid-liquid	209	-derived analine, LCEC assay for 74
Peas, extracts of	119f	detection
Pentachlorophenol (PCP) 65, 66, 239	, 243	of alkylamine-generating 143
analytical procedures for	256	nonpolar chlorinated hydro-
residues analysis of	245	carbon 254
Pentafluorobenzyl bromide (PFBBr),	_	of sulfur-containing
esterification reaction with	235	direct fluorescence of
Pentafluorobenzylation, extractive		drift losses during spraying and
of 2,4-D	245	volatilization
procedure for carboxylic acids	245	effect of sunlight on airborne
procedure for phenols	245	conversions of

Pesticide(s) (continued)	Pesticide(s) (continued)
field dissipation, role of vapori-	by TLC
zation in 190	determination of
fluorescence of	organochloro 265
alternatives to	by fluorometry127–153
effect of type of thin-layer	plates using densitometry,
on	estimation of
factors affecting 110	TLC for toxicological analysis
indirect	of263–273
spectral data of treated organo-	UV absorbance of
phosphorus 149t	vapor(s)
fluorogenic labeling of	arrangement for sampling 186f
	diagram of portable air sampler
fluorometric response of	
haptens, carriers for	for
in human organs, distribution	
of	
hydroxylated 329	sampling efficiencies of poly-
indicators of exposure to	urethane foam 184t, 187
losses from soil and plant surfaces	sampling efficiencies of XAD-4
following treatment	resin
measuring exposure to organo-	vertical flux
phosphate	Phenolate ions 354, 360
metabolic conversion of	Phenolic residues by LCEC, deter-
metabolism studies, HPLC in 1-13	mination of65–71
in milk	Phenols
with native fluorescence	applications of reverse-phase
naturally fluorescent	LCEC to trace 70
on-column methylation reaction of	connection between pesticides and 65
organophosphorus 244f	cyclic voltammetric data for 67f
and phenols, connection	electrochemical oxidation of
between	extractive pentafluorobenzylation
poisoning(s)	procedure for245
accidental 261	metabolites, urinary alkyl251, 252
determining circumstances	oxidation potentials
of270–273	to phosphorus-containing com-
homicides by	pounds derivatization of 241
organophosphorus	problems of multi-residue pro-
suicides by	cedure for chlorinated255–256
publications dealing with chemical	urinary
derivatization techniques for	Phenoxy cation 70
pesticides	Phenoxy radical 70
	p-Phenylenediamine, oxidation of 73
residue(s)	o-Phenylphenol 120
cleanup procedures	2-Phenylphenol in orange rind, deter-
by GC/MS, analysis of	
organotin	
methods of sampling and analysis	Phorate 220
of airborne 178	Phosphamidon poisoning270–273
sources of airborne	Phosphatase, alkaline
in tissues	Phosphate(s)
separated on a CN-bonded polar	or phenol metabolites in urine,
phase 110	alkyl 251
on silica-gel layers, fluorometric	esters on paper chromatograms,
detection of organothiophos-	fluorometric detection of 137
phorus 137	trialkyl 243
solvent systems for TLC separation	Phosphorescence 128
of chlorinated organic 268t	Phosphorus
suitable for reductive LCEC79, 80t	-containing compounds, derivatiza-
from tissues, extraction of	tion of amines to
mon distues, extraction of 202	tion of animes to

Phosphorus (continued)		Pre-column (continued)	
-containing compounds, derivatiza-		reactions	19
tion of phenols to	241	treatment19,	
-selective FPD	239	Propham	74
Phosphorylation		Pre-HPLC column chromatography	107
reactions of alcohols		Protein	
reactions of amines	242f	carrier	323
techniques, application of241		conjugate, hapten-carrier	330
Photodecomposition, vapor-phase	200	conjugating amine-containing	220
Photolysis, UV	237	haptens to	328
Photometric detector, flame (FPD) 239		site of conjugation of a hapten to	323
Photomirex (8-monohydromirex)	237	thiolated	329
Photomultiplier tubes	3, 6	Pye traveling wire detector	213
Picric acid, hydrodynamic voltammo-	01/	Pyrazophos	120 323
grams of	9, 817	Pyrethrin I	329
Plant surfaces following treatment,	202	Pyrelytic methylation on column	243
pesticide losses from soil and 189	-202	Pyrolytic methylation, on-column	243
Platinum wire electrodes coated with	75		
Plictran	367	Q	
Poison in the blood	260	Quinonediimine	73
Poisoning(s)	200	Quinoneimine	73
malathion	261		
parathion 260		R	
by pesticides	259	K	
accidental	261	Rabbit IgG	338
determining circumstances of 270		Radial immunodiffusion	342
homicides by	261	Radioactive carbon, metabolism	
organophosphorus	261	studies with	287
suicides by	261	Radioactive metabolic data using a	
Polarographic, differential pulse		desk-top computer network,	
(ĎPP)	75	reduction of	-296
Polarography, AC	75	Radioactivity detector	3, 41
Polarography, AC Polarography, DC	75	Radioactivity, measurement of	287
Pollen	120	Radiochromatogram of the separation	12
from honeybees, extracts of	121 <i>f</i>	of ¹⁴ C amino acids10,	, 13) 2–7
Polychlorinated biphenyl (PCB)	237	Radiochromatograph(s)	2-1 41
Polychloro compounds	360	diagram of	
Polynitroaromatics, electrochemical		operational problems of	5), 0 61
reduction of	79	Radiochromatography System Model	O,
Polyphenols	65	4526, Nuclear-Chicago Liquid	3
Polystyrene-based macroreticular	100	Radioimmunoassay (RIA)	321
resins	182	antigen competitive binding	333
Polyurethane foam	182	for S-bioallethrin	344
pesticide vapor sampling efficiencies	107	bound/free separations in333,	335
of184 <i>t</i>		choice of radioligand336-	-338
porous	362	development of	3221
Positive ion mass spectrometry Post-column derivatization	19	Radiolabeled antigen	333
for carbamates		Radioligand in RIA, choice of336-	-338
for nitrosamides	23f 26f	Reflectance measurements by FTIR,	
		diffuse	320
Post-column treatments	21 <i>t</i>	Residue	
Potasan Potata avtracta	147	analysis	1
Potato extracts	117f	near agricultural treatment sites,	
Potentials, phenol oxidation	65	analysis of airborne	200
Pre-column	10	pesticidal	
cleanups	19	in air, determination of paraquat	179
derivatization for alkaloids	22f	of airborne parathion	197

RIA (see Radioimmunoassay) Residue (continued) 321 analysis, application of LCEC in ... 65 Ronnel 252 analysis of PCP 245 Root zone technique, gelatin capsule ... 195 analytical methods151-152 RPLC (see Reversed-phase high-perof 2,4-D formance liquid chromatography) dissipation data, soil 195 dissipation data, foliage electroreducible by LCEC, determination of Salicyl aldehyde quinolyl hydrazone aromatic amine71-75 137 (SAQH) by LCEC, determination of Sampling and analysis of airborne 178 pesticide residues, methods of in natural waters, chlorophenoxy Sampling media for airborne pesticide 233 acid 182 residues of paraquat, determination of air-Saponification 277 borne 180f SAQH (salicyl aldehyde quinolyl pesticide hydrazone) 137 airborne Scintillation methods of sampling and counters, liquid (LSC)3, 287, 337 analysis of 178 counters, solid 337 sampling media for 182 flow cell for aqueous systems 5f sources of 189 5t flow cell for organic solvents cleanup procedures 209-228 Spectrometer Model 3021, Tri-Carb by GS/MS, analysis of Scintillators Selective ion monitoring (SIM) 252 in tissues method 371 recovery of biologically Separation, chromatographic incorporated 253 efficiency 163 related to pesticide applications, 53f Separation, optical isomer source and fate of airborne 180 Serum sulfhydryl 329 albumin, bovine (BSA)328, 330 Resins albumin, human 330 binding of a charged antibody to fully automated HPLC determinaion-exchange 335 25 tion of theophylline in human Chromosorb 101 182 Silanol groups 42 Chromosorb 102 182 Silica gel(s) adsorption chromatography 113 polymeric cation-exchange 70 application of macroporous 215 polystyrene-based macroreticular ... 182 layers, fluorometric detection of XAD-2 organothiophosphorus pestipesticide vapor sampling cides on 137 XAD-4 comparison of HPTLC pre-Retention force in RPLC 45 coated plate cellulose and 168 Reversed-phase chromatography HPTLC pre-coated plate(s)160-163 improving mobile-phase selectivity comparison of TLC and 161 in45–54 with concentrating zone 168. high-performance liquid (RPLC) ..45, 280 171-175 hydrophobic effect in advantages of172, 175 interactions in secondary with and without concentrating selectivity51–54 zone, comparison of ...171-175 pre-coated layers, TLC 160 modifier effect in 371 SIM (selective ion monitoring) method primary equilibria in45-51 290 Software, computer retention force in Soil and plant surfaces following treatsecondary equilibria in51-54 ment, pesticide losses from189-202 195 Soil residue dissipation data Solid scintillation counters 337

403

SOLIDprep sampler for HPLC	18	TCTH (see Tricyclohexyltin
Solute(s)	.9	hydroxide)
interactions, water-	47	TCTM (tricyclohexylmethyltin) 377
Solvent(s)		mass spectrum of377, 380
organic	3	reaction scheme for the conversion
scintillation flow cell for	5 <u>f</u>	of TCTH to
quenching effects	7	2,3,7,8-Tetrachlorodibenzo-p-dioxin
systems, ternary	48	(2,3,7,8-TCDD)277–284
systems for TLC separation		extraction of278–280
of carbamate pesticides	268t	in human milk, determination of 277–284
of chlorinated organic perticides	268t	sample preparation scheme for 281
of organophosphorus pesticides	268t	sample preparation methodology for
Sorbents, reversed-phase	159	the determination of278, 280–282
Sorbents, TLC	159	Tetrachlorohydroquinone (TCHQ) 66
Spectral subtraction technique	309	Tetradifon
Spectrofluorometer, optical scheme of		positive and negative ion mass
the Farrand	134f	spectra for
Spectrofluorometer, single-beam	110	TFAA (trifluoroacetic anhydride),
Spectrometer model 3021, Tri-Carb	•	reaction of oxydemeton methyl
Scintillation	3	with 242j
Spectrometric detection, chemical	054	Theophylline in human serum, fully
ionization–mass	254	automated HPLC determination
Spectrometry, fluorescence		of
Spectrometry, mass (MS)	267	Thin-layer
analyses for 2,3-dibromopropanol	. 265	amperometric detector58, 59
by API negative ion362, 364		chromatograms, cellulose
API	354	chromatograms, instruments for
gas chromatography—low resolution	280	measuring fluorescence on 129-133
multiple scan averaging, high	270	chromatography (TLC)127, 315
resolution	278	densitometry
negative ion	362	determination of organochloro
positive ion Spectrophotometer, Perkin-Elmer	302	pesticides by
MPF-2A fluorescence	105	determination of organophos-
Spectroscopy, fourier transform infra-	105	phorus insecticides by 265
red (FTIR)299	320	high-performance (HTPLC),
advantage of, over dispersive	302	developments in159–175
Spray-drift technique	200	and HPTLC pre-coated plates
Spraying and volatilization, pesticide	200	silica gel 60, comparison of 161
drift losses during189	_292	of pesticides by fluorometry127-153
Standards, analytical	253	quantitative 210
Stomach, insecticides in	270	electrochemical detector 59
Suicides by pesticide poisoning	261	on fluorescence of pesticides, effect
Sulfhydryl residue	329	of type of 151
Sulfoxides	241	fluorometry 265
Sulfur-containing		plates
carbamates	243	using densitometry, estimation
compounds, detection of	254	of pesticides on 269
pesticides, detection of	139	detecting insecticides on
Sumithion	273	carbamate 267
Supracide (methidathion)	241	organochloro 267
		organophosphorus 267
T		measurement of spot area on . 264
		preparation of
2,4,5-T (2,4,5-trichlorophenoxyacetic		separation, solvent systems for
acid)	277	of carbamate pesticides 2681
2,3,6-TBA	233	of chlorinated organic
TCHQ (tetrachlorohydroquinone)	66	pesticides 268a
TCTE, mass spectrum of	384 <i>f</i>	of organophosphorus pesticides 268t

Thin-layer (continued) Triazine herbicides, N-dealkyl metabolites of 253 on fluorescence of pesticides, effect of type of (continued) Tributyltin oxide 367 silica gel 60 pre-coated layers 160 2,4,5-Trichlorophenoxyacetic acid (2,4,5-T) sorbents 277 159 for toxicological analysis of Tricyclohexyltin hydroxide (TCTH) (IV) 367 pesticides263-273 377 Thiocarbamates, electrochemistry of ... methyl derivative of 377 Thiofanox (3,3-dimethyl-1-methylthioto TCTM, reaction scheme for the 2-butanone O-[methylamino)conversion of 380f carbonyl]oxime)302–320 Trifluoroacetic anhydride (TFAA), carbon dioxide evolution from 311 reaction of oxydemeton methyl 242f degradation pathway for315, 318f with Trifluoroacetylation 241 formulated on a clay carrier, analysis of302-309 Trifluoroethanol 233 82 formulation, spectra of 305f Trifluralin 200 IR assay of 309 conversion transformation in air, half-lives IR spectrum of 3031 metabolite studies of 311 and rate constants for 201t Trimethyl dithiophosphate (TMDTP) 243 Thiol demeton 220 Thiolated proteins 329 Triphenylethyltin (TPTE) 372 Thioureas, electrochemistry of 83 mass spectrum of 374f Triphenylmethyltin (TPTM) 368 Tin isotopes 372tconversion of TPTCl to 370 Tissue(s) conversion of TPTH to 377 body 260 fragmentation pattern of 372 mass spectrum(a) of 372, 377 isolation of organochloro insecticides from 263 isolation of organophosphorus 262 reaction scheme for the conversion insecticides from distribution of pesticides in autopsied269-273 Triphenyltin acetate (TPTOAC) 262 367 extraction of pesticides from chloride (TPTCl) 252 367 pesticides in adipose conversion of TPTH 370 pesticide residues in 252 to TPTM, conversion of 370 TLC (see Thin-layer chromatography) TMDTP (trimethyl dithiophosphate) ... 243 hydroxide (TPTH) 367 in soybeans, analysis of 377 Toxaphene 192 loss from leaf surfaces 192 from soybeans and soybean foliage, recovery of 378t Toxic compounds, applications of to TPTCl, conversion of 370 LCEC to 74 to TPTM, conversion of 377 Toxicological analysis of pesticides, TLC for263-273 reaction scheme for ...368, 369f, 379 Toxicologist, forensic 259 Turner Model III fluorometer129, 130f TPTCl (see Triphenyltin chloride) TPTE (see Triphenylethyltin) U TPTH (see Triphenyltin hydroxide) TPTM (see Triphenylmethyltin) 367 TPTOAC (triphenyltin acetate) 74 Tracor Mark III LSC 288 herbicides, substituted 253 Transesterification of OP insecticides, Urinary GLC on-column 243 alkyl phosphate metabolites 252 Trevespan 167 analyses for 2,3-dibromopropanol ... 363f 6038, separation of 168 chlorinated anilines, determination Tri-Carb Scintillation Spectrometer 256 Model 3021 3 metabolite DDA 252 Trialkyl phosphates 243 252 phenols Trialkyltin compounds 367 Urine, alkyl phosphate or phenol Triaryltin compounds metabolites in 251 367

405

UV	Vendex (continued)
absorbance of pesticides103–125	
detector 10 absorbance 2	reaction scheme for the conversion of
photolysis 237	Volatilization, pesticide drift losses
•	during spraying and189-202
	Voltammetry, cyclic (CV)
v	Voltammetry, normalized hydro- dynamic 63
	dynamic 63 Voltammogram 60
Vapor(s), pesticide	Voltaminogram
arrangement for sampling 186f	W
diagram of portable air sampler	**
for	Water(s)
entry into air	chlorophenoxy acid residues in
measurement of	natural 233
sampling efficiencies of polyure-	molecules 47
thane foam184t, 187	-solute interactions 47
sampling efficiencies of XAD-4	Waters' Sep-Pak 16
resin	•
vertical flux 190	X
Vapor-phase photodecomposition 200	
Vaporization in pesticide field dissi-	XAD-2 resin
pation, role of	XAD-4 resin
Vendex	pesticide vapor sampling efficiencies
methyl derivative of	of184 <i>t</i> , 187