

Mathematics for Machine Learning

Lecture 11 (04.07.2024)

Multi-layer Perceptron

Mahammad Namazov

Table of contents

- Introduction
- Working Principle
- Conclusion

Introduction

DNN UAT Architecture

Deep Neural Networks

- Deep Neural Networks can be seen as cascade combination of neural network blocks, where one's output is the input for following. In such representation:
 - Each block has a predefined structure, and is defined based on **unknown parameters**;
 - We train the model to find these **unknown parameters**;
 - Training's purpose is to minimize the loss;
 - Minimization is done by backpropagation
- Model architecture can be written as composition of functions as below:

$$\hat{\mathbf{y}} \leftarrow (\sigma \circ f) \circ (\sigma \circ f) \circ (\sigma \circ f) \circ \cdots \circ (\sigma \circ f) \circ (\sigma \circ f) \mathbf{x}$$

- σ brings non-linearity to the table, and $\sigma \circ f$ is considered as a block;
- Note: σ here is not necessarily a sigmoid function, but represents activation functions;
- Once we include unknown parameters to the equation:

$$\widehat{\mathbf{y}}_{\boldsymbol{\theta}} \leftarrow (\sigma \circ f_{\boldsymbol{\theta}_n}) \circ (\sigma \circ f_{\boldsymbol{\theta}_{n-1}}) \circ \cdots \circ (\sigma \circ f_{\boldsymbol{\theta}_2}) \circ (\sigma \circ f_{\boldsymbol{\theta}_1}) \mathbf{x}$$

Architecture

Universal Approximation Theorem

- Theorem says:
- For any compact set $\Omega \subset \mathbb{R}^p$, the space spanned by the functions $\phi(\mathbf{x}) = \sigma(\mathbf{W}\mathbf{x} + \mathbf{b})$ is dense in $\mathcal{C}(\Omega)$ for the uniform convergence. Thus, for any continuous function f and any $\epsilon > 0$, there exists $q \in \mathbb{N}$ and weights stating that:

$$|f(\mathbf{x}) - \sum_{k=0}^{q} u_k \phi(\mathbf{x})| \le \epsilon$$
, for all $\mathbf{x} \in \Omega$

- If the given function is continuous, we will find such weights for a network that will approximate the given function;
- Increasing number of layer can decrease the error;

Working Principle

Feedforward

Loss Computation

Backpropagation

Feed forward

- You have 3-dimensional input vector, and you want to classify your data with respect to 3 labels;
- For simplicity (?) we will have one hidden layer with sigmoid function as activation function:

Let's set notation:

- Input layer will be noted as h_0 ;
- Output layer will be noted as h_{n+1} ;
- W^k : weight matrix to connect $(k-1)^{th}$ layer to k^{th} layer;
- $w_{i,j}^{(k)}$: weight connects i^{th} unit of $(k-1)^{th}$ layer to j^{th} unit of k^{th} layer

Feed forward

- You have 3-dimensional input vector, and you want to classify your data with respect to 3 labels;
- For simplicity (?) we will have one hidden layer with sigmoid function as activation function:

Computation

```
\mathbf{z}^{(1)} = (\mathbf{W}^{(1)})^{\mathrm{T}} \mathbf{x} + \mathbf{b}^{(1)};
\mathbf{h}^{(1)} = \sigma(\mathbf{z}^{(1)});
\mathbf{z}^{(2)} = (\mathbf{W}^{(2)})^{\mathrm{T}} \mathbf{h}^{(1)} + \mathbf{b}^{(2)};
\mathbf{y} = softmax(\mathbf{z}^{(2)})
```

Activation Functions

- ReLU, Sigmoid, Softmax, Leaky ReLU and etc.;
- We focus on 2 of them:

Sigmoid

- Given input vector produces values between 0 and 1;
- For $\mathbf{x} \in \mathbb{R}^n$:

$$sigmoid(x) = \frac{1}{1 + exp(-x)}$$

Softmax

- Given input vector, generates probability distribution;
 - For $\mathbf{x} \in \mathbb{R}^n$:

$$\mathbf{softmax}(\mathbf{x})_i = \frac{exp(x_i)}{\sum_{k}^{n} exp(x_k)}$$

Loss Computation

- When we have classification tasks, we usually use Categorical Cross Entropy Loss as an objective function to minimize;
- Once you have k labels and you want to classify your data according to them:

Loss will be computed for chosen data

$$L_{CE} = -\sum_{i}^{K} t_{i} \log(y_{i})$$

• If chosen data belongs to the class which index is $j \in [1, k]$:

$$\mathbf{t} = \begin{bmatrix} 0 & 0 & \cdots & 1 & \cdots & 0 \end{bmatrix}$$

Backward computation

• Once we computed the loss function, we need to minimize it, since we need to find such parameters that make our model fit to the data;


```
• How does w_{2,1}^{(1)} impact our loss?
\frac{\partial L}{\partial w_{2,1}^{(1)}} = \frac{\partial L}{\partial \mathbf{y}} \frac{\partial \mathbf{y}}{\partial \mathbf{z}^{(2)}} \frac{\partial \mathbf{z}^{(2)}}{\partial \mathbf{h}^{(1)}} \frac{\partial \mathbf{h}^{(1)}}{\partial \mathbf{z}^{(1)}} \frac{\partial \mathbf{z}^{(1)}}{\partial w_{2,1}}
```

Summary

- Universal Approximation Theorem says that NN can approximate any continuous function;
- Co-domain of the NN is defined by the last block of the neural network;
- The more the number of layers is the deeper the network;
- Increasing model complexity can decrease the error, but also might cause the overfitting;
- Feedforward is used to compute the output for the given input data (prediction);
- Backpropagation can be called as the reverse mode of the automatic differentiation which is applied to deep neural networks;

Takeaways

- Jacobians will be used decrease computational expenses;
- UAT is not only theorem for approximation by DNNs;
- Experiments show that more neurons in a layer and using SGD as optimizer, approximation gets more accurate;
- There are vast amount of possibility depending on:
 - Your choice of learning rate;
 - Your choice of optimizer;
 - Your choice of loss function;
 - Your choice of regularization technique (?);
 - Choice of model complexity (is less more?).

The End

Thanks for your attention!

Mahammad Namazou