SJSU SAN JOSÉ STATE UNIVERSITY

Lesson 12 – Other Attacks on Software

Yan Chen CS166 Fall 2024

... Previously

Salami Attack

Linearization Attack

Time Bomb

Next Lesson ...

Appendix

Software Reverse Engineering (SRE)

- > Try to understand a software or modify ("patch") it
- Attacker only has exe (no source code, no bytecode)
- Tools needed
 - Disassembler: converts exe to assembly (as best it can)
 - Debugger: dynamically check assembly code (often bundled with a disassembler)
 - Hex editor: to view/modify bits of exe ("patch")
 - > (Optional) Process monitor: check file system activities
 - For course usages, online tools are enough

... Previously

Appendix

Salami Attack
Linearization Attack
Time Bomb
Next Lesson ...

- Can exploit buffer overflow to get serial number...
 - > Disassemble .exe first to find return address of correct result
 - Need some trials & errors to find the length of input that can override return address
- Or disassemble .exe, check if can find the serial number
 - May be near "enter serial number" or "serial number is correct"
- Or patch .exe so it will accept all numbers...
 - Find the address of "serial number is correct"
 - Exam the assembly code, find a way to jump to this address for all inputs (e.g., use a hex editor to change "test" to "or")

... Previously

Salami Attack

Linearization Attack

Time Bomb

Next Lesson ...

- Impossible to prevent SRE on open system
 - Can only make such attacks more difficult...
- Anti-disassembly: to confuse static view of code
 - Encrypted object code, or false disassembly, etc.
- Anti-debugging: to confuse dynamic view of code
 - Check IsDebuggerPresent(), or use multi-threading, etc.
- Tamper-resistance: check if the code is being changed
 - Make patching more difficult
- Code obfuscation: make code hard to understand
 - Waste attackers' time on analyzing dead code, etc.

... Previously

Salami Attack

Linearization Attack

Time Bomb

Next Lesson ...

- Salami attack: "slices off" small amounts of money
 - Each slices is too small for for victim to detect...
 - But will eventually get a lot of money if got many slices
 - Possible for "insiders"
- Example: salami attack by the programmer of a bank
 - Programmer "slices off" any fraction of a cent from an account and puts it in his own account
 - No customer notices missing partial cent
 - Bank may not notice any problem
 - Over time, programmer makes lots of money!

... Previously

Salami Attack

Linearization Attack

Time Bomb

Next Lesson ...

- Salami attacks actually occur in real-world....
 - Programmer added a few cents to every employee payroll tax withholding, but credited the extra money to his own tax
 - Rent-a-car franchise in Florida inflated gas tank capacity to overcharge customers
 - ➤ Employee reprogrammed Taco Bell cash register: \$2.99 item registered as \$0.01 (large "slice" of salami \$2.98!)
 - ➤ In LA, four men installed computer chip that overstated amount of gas pumped (except for 5 or 10 gallons since inspector usually asked for 5 or 10 gallons)

... Previously

Salami Attack

Linearization Attack

Time Bomb

Next Lesson ...

Appendix

- Linearization attack: make the problem "linear"
 - Not only on software can apply to many other things
- Example: get serial number of a paid program

```
#include <stdio.h>
int main (int argc, const char *argv[]) {
    int i;
    char serial[9] = "S123N456\n";
    for (i = 0; i < 8; i++) {
        if (argv[1][i] != serial[i]) break;
    if (i == 8) {
        printf("\nSerial number is correct\n\n");
```

Can recover one character at a time based on "timing"

Salami Attack

Linearization Attack

Time Bomb

Next Lesson ...

Appendix

Example

Work Factor

- Example (continued)
 - Since it breaks once found the first wrong character...
 - Correct number takes longer than incorrect
 - Trudy tries all 1st characters
 - The correct 1st character is the one takes longest
 - > Then she keeps the correct 1st and guesses all 2nd characters
 - And so on...
 - Same principle as used in lock picking

... Previously
Salami Attack

Linearization Attack

Time Bomb
Next Lesson ...
Appendix

- Let's analyze the work factor...
- Suppose serial number is 8 characters and each has
 128 possible values
 - Then $128^8 = 2^{56}$ possible serial numbers

 Regular exhaustive key search requires 2^{56} tries in worst case

 And need $2^{56} / 2 = 2^{55}$ tries on average
 - Using the linearization attack, 128 tries for each character...

 So, need 8 * 128 = 2^{10} tries in total (worst case)

 Which means, need 2^{10} / 2 = 2^9 tries on average
 - That's way fewer than a regular exhaustive key search!

... Previously
Salami Attack
Linearization Attack

Time Bomb

Next Lesson ...

- Time bomb: "exploded" after certain time
- Let's see a real-life example...
 - ➤ In 1986, Donald Gene Burleson told employer to stop withholding taxes from his paycheck
 - > His company refused, so he planned to sue his company
 - > He used company time to prepare legal docs
 - Company found out and fired him
 - > As a revenge, Burleson had been working on malware...
 - After being fired, his software "time bomb" deleted important company data

... Previously
Salami Attack
Linearization Attack

Time Bomb

Next Lesson ...

- Company was reluctant to pursue the case
- So Burleson sued company for back pay!
 - Then company finally sued Burleson
- Resulted in a slap on the wrist for attacker
 - In 1988 Burleson fined \$11,800
 - Case took years to prosecute...
 - Cost company thousands of dollars...
- One of the first computer crime cases
- Many cases since follow a similar pattern
 - Companies reluctant to prosecute

Other Attacks on Software

... Previously

Salami Attack

Linearization Attack

Time Bomb

Next Lesson ...

- Midterm 1 Review
 - Crypto basics
 - Symmetric key crypto
 - Public key crypto
 - Hash function
 - Software insecurity
 - ➤ Midterm guide time, format, etc.

Other Attacks on Software

... Previously

Salami Attack

Linearization Attack

Time Bomb

Next Lesson ...

Appendix

Concepts

Exercises

- Salami attack
- Linearization attack
- Time bomb

Other Attacks on Software

... Previously
Salami Attack

Linearization Attack

Time Bomb

Next Lesson ...

Appendix

Concepts Exercises

Consider the following code.

```
int main (int argc, const char *argv[])
{
   char serial[9] = "S123N456";
   if (strcmp(argv[1], serial) == 0)
   {
     printf("\nSerial number is correct!\n\n");
   }
}
```

- Will a linearization attack succeed?
- Why or why not? Hint: how does strcmp compare 2 strings?
- Implement a way to check the serial number that "immunes" to a linearization attack

Other Attacks on Software

... Previously

Salami Attack

Linearization Attack

Time Bomb

Next Lesson ...

Appendix

References

Stamp, Mark, "Information Security, Principles and Practice, 2nd ed.," Wiley,
 New Jersey, USA, 2011