

آزمایشگاه مدارهای منطقی

دانشکده مهندسی کامپیوتر دانشگاه صنعتی شریف

کروه شماره ۱

سعید فراتی کاشانی - ۴۰۱۱۰۷۲۹۹

حین آحلی - داد ۴۰۱۱۰۵۵۲۱

حورا عابدین - ۴۰۱۱۰۷۲۰۹

پیشگزارش آزمایش شماره ۵ **آزمایشگاه مدارهای منطقی - گروه شماره ۱** فهرست عناوين عنوان آزمايش:...... ۲. ۳. شرح آزمایش : ۴. طراحی شمارنده با قابلیت شمارش رو به پایین: 4.1. .4.7 ساخت شمارنده BCD مود ۶۴ (۰ تا ۶۳):..... 4.4. طراحی شمارنده سنکرونی که اعداد ۰ تا ۷ را سه تا سه تا بشمارد: ۴ .4.4

١. عنوان آزمايش:

هدف از این آزمایش ساخت شمارنده ها با استفاده از تراش های ۷۴۷۶ و ۷۴۹۰ میباشد .

۲. هدف از انجام آزمایش:

هدف از انجام این آزمایش پیاده سازی شمارنده دودوئی و BCD می باشد. در این آزمایش یک شمارنده با استفاده از فلیپ فلاپ JK (JKFF) ساخته و سپس مدار را تست می نماییم.

پ.ن: با توجه به این که تعداد قابل توجهی از قطعات استفاده شده در این آزمایش در فریتزینگ موجود نبودند، مدارها صرفا با پروتئوس رسم شده اند.

۳. تراشه و قطعات استفاده شده :

- برد بورد
- تراشه ۷٤٧٦
- تراشه ۲٤۱s۹۰
 - AND گيت
 - گیت OR
 - گیت XOR
 - NOT گیت
- YSEG-BCD ●

٤. شرح آزمايش:

1/٤. طراحي شمارنده با قابليت شمارش رو به پايين:

با استفاده از ۴ فلیپ فلاپ JK مدار را مانند شکل ۲ طراحی میکنیم(کلاک برای لود کردن مقدار جدید و فلیپ فلاپ ها برای ذخیرهی مقادیر استفاده شده اند)

شکل ۲- مدار شمارنده پیشنهادی با قابلیت شمارش رو به بالا و رو به پایین

XOR مدار طراحی شده، قابلیت شمارش رو به بالا و پایین را دارد؛ زیرا ۲ ورودی COUNT DOWN و COUNT UP با یکدیگر COUNT DOWN = 1 شده اند و به طور مثال اگر ورودی COUNT DOWN = 1 باشد، مدار طراحی شده پایین شمارنده است. و بالعکس، اگر ورودی COUNT DOWN = 1 و بالعکس، اگر ورودی COUNT DOWN = 1 باشد، مدار طراحی شده بالا شمارنده است.

اکنون، مدار طراحی شده را در پروتئوس رسم می کنیم:

٤/٢. طراحي شمارنده با قابليت مقداردهي موازي:

برای پیاده سازی این شمارنده، به جای COUNT DOWN و COUNT UP و COUNT LOAD و COUNT به مدار اضافه COUNT برای پیاده سازی این شمارنده، به جای ORN فشده، در حالتی که V = V (COUNT است، حالت AND است، حالت COUNT UP = ۱ می کنیم؛ با توجه به گیتهای DOWN و در حالتی که V = V (COUNT UP = ۱ است، حالت COUNT UP = ۱ الف را داریم.

LOAD = 1 و COUNT = ۱ محینین با اضافه کردن ۴ گیت به عنوان ورودی های موازی، این حالت را کنترل کرده ایم که اگر با COUNT = 1 باشد، مدار بدون تعییر بماند.

اکنون، مدار طراحی شده را در پروتئوس رسم می کنیم:

۴/۳. ساخت شمارنده BCD مود ۶۴ (۰ تا ۶۳):

با توجه به این که تراشه ۷٤۱s۹۰ یک شمارنده BCD با قابلیت شمارش رو به بالا و رو به پایین و مقدار دهی اولیه است، با کنار هم قرار دادن ۲ تراشه ۷٤۱s۹۰ مدار مورد نظر را طراحی می کنیم. (خروجی شمارنده ها را با نمایشگرهای ۷ قطعه ای مشاهده می کنیم.) اکنون، مدار طراحی شده را در پروتئوس رسم می کنیم:

٤/٤. طراحي شمارنده سنكروني كه اعداد ٠ تا ٧ را سه تا سه تا بشمارد:

	117														<u> </u>					
Q٢	Q١	Q·	X = ·			X = 1			J۲		K۲		1/		K١		J٠		К٠	
			Q٢	Q١	Q٠	Q٢	Q١	Q٠	X = •		X = 1		X = •		X = \		X = •		X = 1	
•	•	•	١	•	١	•	١	١	١	×	٠	×	٠	×	١	×	١	×	١	×
•	•	١	١	١	٠	١	٠	٠	١	×	١	×	١	×	٠	×	×	١	×	١
•	١	٠	١	١	١	١	٠	١	١	×	١	×	×	٠	×	١	١	×	١	×
•	١	١	٠	٠	٠	١	١	٠	٠	×	١	×	×	١	×	٠	×	١	×	١
١	•	٠	٠	٠	١	١	١	١	×	١	×	٠	٠	×	١	×	١	×	١	×
١	•	١	٠	١	٠	٠	٠	٠	×	١	×	١	١	×	٠	×	×	١	×	١
١	١	٠	٠	١	١	٠	٠	١	×	١	×	١	×	٠	×	١	١	×	١	×
١	١	١	١	٠	٠	٠	١	٠	×	٠	×	١	×	١	×	٠	×	١	×	١

سپس، با رسم جدول کارنو، هر یک از J و Kها را به دست می آوریم. (جداول کارنو در چرک نویس رسم شده اند و در اینجا صرفا جواب نهایی آمده است.)

پیشگزارش آزمایش شماره ۵

آزمایشگاه مدارهای منطقی - گروه شماره ۱

$$J^{\Upsilon} = '$$

$$J^{\Upsilon} = Q.'X + Q_{\Upsilon}X' + Q_{\Upsilon} \bigoplus X$$

$$J^{*} = Q.'X' + Q_{\Upsilon}X + Q.Q_{\Upsilon}'$$

$$K^{\dagger} = 1$$

$$K^{\dagger} = Q.'X + Q.X' + X \bigoplus Q.$$

$$K \cdot = Q.'X' + Q_{1}X + Q_{2}Q_{1}'$$

اکنون با استفاده از ۳ فلیپ فلاپ و گیت های مورد نیاز، مدار را طراحی می کنیم. اکنون، مدار طراحی شده را در پروتئوس رسم می کنیم:

