Local Action Diagrams

Super awesome package for local action diagrams.

0.1

29 January 2023

Marcus Chijoff

Marcus Chijoff

Email: marcus.chijoff@uon.edu.au Homepage: https://newcastle.edu.au

Address: No

Contents

1	Intr	roduction	3
2	Creating Local Action Diagrams		4
	2.1	Creating Local Action Diagrams	4
Index			5

Chapter 1

Introduction

A local action diagram $\Delta = (\Gamma, (G(v)), (X_a))$ consists of:

- a directed graph Γ ,
- a closed permutation group G(v) for each $v \in V(\Gamma)$, and
- a set X_a for each $a \in A(\Gamma)$ such that each X_a is disjoint and X_a is an orbit of the action of G(o(a)) on $X_v := \bigsqcup_{a \in o^{-1}(v)} X_a$.

The definition of digraph used is different to that of the Digraphs package. For our purposes, a digraph Γ consists of:

- a vertex set V,
- an arc set A,
- a map $o: A \rightarrow V$ assigning each arc to an *origin* vertex, and
- a bijection $r: A \to A$ (denoted by $a \mapsto \overline{a}$) such that $r^2 = id$.

The bijection r defines a reverse arc for each arc of the graph. This is more specific than the definition in the digraphs package which does not require a reverse mapping.

The local action diagrams package provides a category for local action diagrams. It is built in the *IsDigraph* category from the Digraphs package.

Chapter 2

Creating Local Action Diagrams

2.1 Creating Local Action Diagrams

2.1.1 IsLocalActionDiagram (for IsDigraph)

▷ IsLocalActionDiagram(lad)

(filter)

Returns: true if lad is of the category IsLocalActionDiagram and false otherwise.

Every local action diagram belongs to the IsLocalActionDiagram category. Every local action diagram is immutable.

2.1.2 Constructing From Data

Returns: A local action diagram.

Constructs a local action diagram, checking that the arguments given are a valid local action diagram. The argument D is a digraph and rev must be a compatible involution on the edges of D. The argument v_labels is a list of vertex labels such that v_labels [i] is the group labelling vertex i of D.

The argument e_labels is a list of edge labels. The edges of D are stored in lexicographical order and edge_labels [i] is the set labelling edge i of D (when sorted in lexicographical order).

The NC variant of the operation does not check that the arguments given are a valid local action diagram.

2.1.3 LocalActionDiagramUniversalGroup (for IsPermGroup)

(operation)

Constructs a local action diagram corresponding to the Burger-Moses group U(F).

Index

IsLocalActionDiagram
for IsDigraph, 4

LocalActionDiagramFromData for IsDigraph, IsList, IsList, IsPerm, 4 LocalActionDiagramFromDataNC for IsDigraph, IsList, IsList, IsPerm, 4 LocalActionDiagramUniversalGroup for IsPermGroup, 4