Lógica Digital y Circuitos Combinacionales

Explicación Práctica

Programación I - 2021

Facultad de Informática y Facultad de Ingeniería - UNLP

Operación lógica AND (Y)

El resultado es 1, cuando los dos términos valen 1

В	F			
0	0			
1	0			
0	0			
1	1			
† Tabla de verdad				
	0 1 0 1			

Operación lógica OR (O)

El resultado es 1, cuando los cualquiera de los dos términos valen 1

A	В	F		
0	0	0		
0	1	1		
1	0	1		
1	1	1		
† Tabla de verdad				

Operación lógica NOT (NO)

El resultado es el término invertido

Operación lógica XOR (O exclusivo)

El resultado es 1, cuando sólo 1 de los términos vale 1

A	В	F		
0	0	0		
0	1	1		
1	0	1		
1	1	0		
† Tabla de verdad				

• Cuando se aplica una operación lógica entre 2 secuencias de bits, el resultado se obtiene aplicando la operación bit a bit

	00010001		00010001		00010001
AND	01011100	OR	01011100	XOR	01011100
	00010000		01011101		01001101

Se denomina **máscara** a una secuencia de bits que se aplica a otra secuencia de bits **desconocida** con una **operación lógica**

La **máscara** se elige para establecer valores específicos en los bits de "interés" y dejar los restantes sin cambio

- AND pone bits en cero
- OR pone bits en uno
- XOR invierte los bits

- máscara con bit en 0 → bit es 0
- máscara con bit en 1 → bit sin cambio

- máscara con bit en 0 → bit sin cambio
- máscara con bit en 1 → bit es 1

- máscara con bit en 0 → bit sin cambio
- máscara con bit en 1 → bit invertido

Un circuito combinacional es un conjunto de puertas lógicas interconectadas, cuya salida, en un momento dado, es función solamente de los valores de las entradas en ese instante.

Ejercicio:

- Especifique la ecuación que describe las relaciones entre entradas y salidas.
- Construya la tabla de verdad para el circuito anterior.

• Expresión en Algebra de Boole:

$$F = \overline{A \oplus B} \cdot C$$

• Expresión electrónica:

$$F = (A XNOR B) AND C$$

•
$$F = \overline{A \oplus B} \cdot C$$

• $F = \overline{A \oplus B} \cdot C$ • F = (A XNOR B) AND C

 2^n = filas de tabla n = cantidad de entradas del circuito

A	В	C	A XNOR B	F= (A XOR B) AND C
О	O	О	1	0
1	O	О	0	0
0	1	О	0	0
1	1	О	1	0
O	O	1	1	1
1	О	1	0	0
0	1	1	0	0
1	1	1	1	1

Esta columna la agregamos para facilitar el cálculo