1 Testing the model predictions

2 Definitions

Table 1: Number of core jobs by type and time in core threshold

	Years as core				
Core type	17	16	15	14	13
Below GCSE C	2	4	4	5	6
GCSE C to A lev.	10	13	15	16	18
Bachelor +	71	72	74	77	77
Below GCSE C - GCSE C to A lev.	17	24	30	34	36
Below GCSE C - Bach+	0	0	0	0	0
GCSE C to A lev Bach+	0	2	2	4	4
Total	100	115	125	136	141

Note: I force the intersection of the core and 4-2-3 transition definition to be empty. Table generated on 12 Jun 2020 at 12:36:13. Table generated with do file 4_{sample} also 4_{sample} and 4_{sample} are 4_{sample} are 4_{sample} and 4_{sample} are 4_{sample} are 4_{sample} and 4_{sample} are 4_{sample} and 4_{sample} are 4_{sample} are 4_{sample} are 4_{sample} and 4_{sample} are 4_{sample} and 4_{sample} are 4_{sample}

Table 2: Effect of relaxing number of switches constraint

	Definition					
	3-3-3	2-4-3	4-2-3	5-5-7	4-6-7	6-4-7
Transition type	(1)	(2)	(3)	(4)	(5)	(6)
Low to Low-Mid	17	18	20	22	22	22
Mid to Low-Mid	1	1	1	1	1	2
Mid to Mid-High	0	0	1	1	1	1
Low-Mid to Mid	1	1	1	1	1	1
Mid-High to High	3	4	4	4	4	4
Total	22	24	27	29	29	30

Note: each column shows the breakdown by transition type when my definition of a transitioning job is the union all the current and previous columns. Table generated on 10 Jun 2020 at 17:59:46.

3 Effect of transitioning

The basic specification is given by:

$$y_{iot} = \lambda_o + \beta_1 e_i + \beta_2 1_{\{t > transition_time\}} + \beta_3 e_i \times 1_{\{t > transition_time\}}$$
 (1)

where λ_o denotes occupation fixed-effects, e_i is an education-level dummy. xpectation: $\beta_1 \neq 0$, $\beta_2 = \beta_3 = 0$. I try four different definitions of the transition year:

- First out: first year out of the initial category.
- Last out: last year in initial category + 1.
- First in: first year in final category.
- Last in: latest year of transition into final category +1.

Figure 1: Number of transitioned occupations by transition type

Graphs by restrictedType

Note: Transitions are defined as the union of 3-3-3, 4-2-3 and 2-4-3. Vertical lines indicate years for which I have SES data. Figure generated on 12 Jun 2020 at 15:09:22. Figure generated using the dofile 4_lfsAnalysis/transition_time_graphs.do.

Table 3: Dependent variable: analytical skill

Regressor	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
$Low\ to\ Low ext{-}Mid$ Mid	0.032	0.020	0.039*	0.026	0.032	0.020	0.039*	0.026
First out	(0.019) 0.038 (0.021)	(0.019) 0.002 (0.034)	(0.018)	(0.017)	(0.019)	(0.019)	(0.018)	(0.017)
$\operatorname{Mid} \times \operatorname{First}$ out	-0.003 (0.028)	0.015 (0.028)						
Last out			0.021 (0.023)	0.077 (0.047)				
Mid × Last out			-0.016 (0.031)	0.002 (0.030)	0.020	0.000		
First in $Mid \times First$ in					0.038 (0.021) -0.003	0.002 (0.034) 0.015		
Last in					(0.028)	(0.028)	0.021	0.077
$\mathrm{Mid} \times \mathrm{Last}$ in							(0.023) -0.016	(0.047) 0.002
Occupation FE Year FE	✓	✓ ✓	✓	✓ ✓	✓	√ √	(0.031) ✓	(0.030) ✓
Number of jobs Observations	17 852	17 852	17 852	17 852	17 852	17 852	17 852	17 852
Mid-High to High High	0.052**	0.049**	0.052**	0.050**	0.052**	0.049**	0.052**	0.050**
First out	(0.018) -0.024 (0.020)	(0.018) $-0.061*$ (0.029)	(0.017)	(0.017)	(0.018)	(0.018)	(0.017)	(0.017)
$\operatorname{High} \times \operatorname{First}$ out	-0.004 (0.024)	-0.002 (0.024)						
Last out			-0.023 (0.020)	-0.052* (0.026)				
$High \times Last out$ $First in$			-0.006 (0.023)	-0.003 (0.023)	-0.024	-0.061*		
High × First in					(0.020) -0.004	(0.029) -0.002		
Last in					(0.024)	(0.024)	-0.023 (0.020)	-0.052* (0.026)
$High \times Last in$							-0.006 (0.023)	-0.003 (0.023)
Occupation FE Year FE	✓	✓ ✓	√ 4	✓ ✓	\checkmark	√ √	√ ′	✓ ✓ ✓ ✓ ✓
Number of jobs Observations	4 621	4 621	$\begin{array}{c} 4 \\ 621 \end{array}$	4 621	4 621	4 621	4 621	4 621

Note: robust standard errors in parenthesis. The dependent variable ranges from 0 to 1. Columns differ in the fixed effect included and the definition of the transition year. Regressions pool observations from all years, but use observations from transitioning occupations only. I restrict observations to the education levels indicated in the panel subtitle. Table generated on 12 Jun 2020 at 17:15:22. Table generated with do file 3_sesAnalysis/create_did_regressions.do

Table 4: Dependent variable: manual skill

Regressor	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
$Low\ to\ Low ext{-}Mid$								
Mid	0.011	0.009	0.004	0.001	0.011	0.009	0.004	0.001
	(0.019)	(0.019)	(0.017)	(0.017)	(0.019)	(0.019)	(0.017)	(0.017)
First out	0.045*	0.033						
$Mid \times First out$	(0.021) -0.016	(0.034) -0.016						
Mid × Flist out	(0.028)	(0.028)						
Last out	(0.020)	(0.020)	0.031	0.032				
2000 000			(0.022)	(0.050)				
$Mid \times Last out$			0.002	0.002				
			(0.029)	(0.030)				
First in			,	,	0.045*	0.033		
					(0.021)	(0.034)		
$Mid \times First in$					-0.016	-0.016		
					(0.028)	(0.028)		
Last in							0.031	0.032
M: 1 I t :							(0.022)	(0.050)
$Mid \times Last in$							0.002 (0.029)	0.002 (0.030)
Occupation FE	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	(0.029)	(0.030)
Year FE	V	∨ ✓	•	∨ ✓	V	∨ ✓	V	∨ ✓
Number of jobs	17	17	17	17	17	17	17	17
Observations	852	852	852	852	852	852	852	852
Mid-High to High								
High	-0.091**		-0.087**					-0.086**
	(0.028)	(0.028)	(0.026)	(0.026)	(0.028)	(0.028)	(0.026)	(0.026)
First out	0.044	0.040						
II: 1 D: 4	(0.033)	(0.045)						
$High \times First out$	-0.047	-0.050						
Last out	(0.038)	(0.038)	0.055	0.058				
Last out			(0.033)	(0.042)				
$High \times Last out$			-0.060	-0.063				
111811 / 11000 000			(0.038)	(0.038)				
First in			(0.000)	(0.000)	0.044	0.040		
					(0.033)	(0.045)		
$High \times First in$					-0.047	-0.050		
					(0.038)	(0.038)		
Last in							0.055	0.058
							(0.033)	(0.042)
$High \times Last in$							-0.060	-0.063
O4: DE	,	,	,	,	,	,	(0.038)	(0.038)
Occupation FE	\checkmark	√	\checkmark	√	\checkmark	√	\checkmark	√
Year FE		-	. 6	√		√		√
Number of jobs	4	4	4	4	4	4	4	4
Observations	621	621	621	621	621	621	621	621

Note: robust standard errors in parenthesis. The dependent variable ranges from 0 to 1. Columns differ in the fixed effect included and the definition of the transition year. Regressions pool observations from all years, but use observations from transitioning occupations only. I restrict observations to the education levels indicated in the panel subtitle. Table generated on 12 Jun 2020 at 17:15:22. Table generated with do file 3_sesAnalysis/create_did_regressions.do

Table 5: Dependent variable: routine skill

Regressor	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Low to Low-Mid								
Mid	0.085 (0.045)	0.056 (0.044)	0.089* (0.040)	0.055 (0.040)	0.085 (0.045)	0.056 (0.044)	0.089* (0.040)	0.055 (0.040)
First out	0.241** (0.046)		(0.010)	(0.010)	(0.010)	(0.011)	(0.010)	(0.010)
$\mathrm{Mid} \times \mathrm{First}$ out	-0.089 (0.064)	-0.052 (0.064)						
Last out	(0.004)	(0.004)		* -0.042				
$\mathrm{Mid} \times \mathrm{Last}$ out			(0.049) -0.105 (0.068)	(0.114) -0.064 (0.068)				
First in			(0.000)	(0.000)	0.241** (0.046)	* 0.019 (0.079)		
$\mathrm{Mid} \times \mathrm{First}$ in					-0.089 (0.064)	-0.052		
Last in					(0.004)	(0.064)		* -0.042
$Mid \times Last in$							(0.049) -0.105 (0.068)	(0.114) -0.064 (0.068)
Occupation FE Year FE	✓	√ √	\checkmark	√ √	✓	✓ ✓	(0.008)	(0.008) ✓
Number of jobs	17	17	17	17	17	17	17	17
Observations	852	852	852	852	852	852	852	852
Mid-High to High High	-0.012	-0.006	-0.042	-0.034	-0.012	-0.006	-0.042	-0.034
First out	(0.059) 0.010 (0.063)	(0.059) 0.088 (0.092)	(0.056)	(0.056)	(0.059)	(0.059)	(0.056)	(0.056)
$\operatorname{High} \times \operatorname{First} \operatorname{out} $	-0.162* (0.078)	-0.166* (0.078)						
Last out	(0.010)	(0.010)	-0.002 (0.063)	0.095 (0.086)				
$\operatorname{High} \times \operatorname{Last} \operatorname{out} $			-0.118 (0.078)	-0.125 (0.078)				
First in			(0.010)	(0.070)	0.010	0.088		
$\operatorname{High} \times \operatorname{First}$ in					(0.063) $-0.162*$ (0.078)	(0.092) $-0.166*$ (0.078)		
Last in					(0.010)	(0.010)	-0.002 (0.063)	0.095 (0.086)
$High \times Last in$							-0.118	-0.125
Occupation FE Year FE	\checkmark	√ √	√	✓ ✓	✓	√ √	(0.078) ✓	(0.078) ✓
Number of jobs Observations	4 621	4 621	$\frac{4}{621}$	4 621	4 621	4 621	4 621	4 621

Note: robust standard errors in parenthesis. The dependent variable ranges from 0 to 1. Columns differ in the fixed effect included and the definition of the transition year. Regressions pool observations from all years, but use observations from transitioning occupations only. I restrict observations to the education levels indicated in the panel subtitle. Table generated on 12 Jun 2020 at 17:15:22. Table generated with do file 3_sesAnalysis/create_did_regressions.do

4 Regressions of skill use at border jobs

Table 6: Relative skill use in border jobs across education groups (index with standardized variables)

	Analytical (1)	Manual (2)	Routine (3)
Below GCSE C / GCSE C-A lev. border			
GCSE C-A levels	0.042***	-0.008	0.066***
	(0.007)	(0.008)	(0.018)
Effect size	0.374	-0.040	0.387
Overall R^2	0.17	0.29	0.10
Observations	3,100.00	3,100.00	3,100.00
GCSE C to A lev. / Bachelor+ border			
Bachelor+	0.050***	-0.065**	* -0.021
	(0.009)	(0.016)	(0.031)
Effect size	0.443	-0.327	-0.122
Overall R^2	0.10	0.22	0.06
Observations	961.00	961.00	961.00

Note: all skill indexes range between 0 and 1. Regressions use individual-level data. Robust standard errors in parenthesis. Coefficients represent the difference relative the lower education level. I use dummy of basic to moderate PC use complexity as measure of routineness. I pool data from all years. Regressions include occupation fixed-effects. Effect sizes are computed as the regression coefficient divided by the standard deviation in the occupation-level skill indexes. Table generated on 12 Jun 2020 at 15:55:03. Table generated with do file 3_sesAnalysis/createSESSkillRegressions.do

5 Pooled regressions

Table 7: Relative skill use in border jobs across education groups (simple average indexes)

Base level: Below GCSE C	Analytical (1)	Manual (2)	Routine (3)
Below GCSE C / GCSE C-A lev. border			
GCSE C-A levels	0.042***	-0.005	0.066***
	(0.007)	(0.008)	(0.018)
Bachelor+	0.063***	-0.054***	0.027
	(0.010)	(0.012)	(0.025)
Overall \mathbb{R}^2	0.19	0.29	0.09
Observations	3,669	3,669	3,669
GCSE C to A lev. / Bachelor+ border			
GCSE C-A levels	0.050**	-0.096***	-0.096*
	(0.017)	(0.026)	(0.048)
Bachelor+	0.103***	-0.162***	-0.120*
	(0.017)	(0.025)	(0.048)
Overall \mathbb{R}^2	0.11	0.26	0.05
Observations	1,076	1,076	1,076
Below GCSE C jobs			
GCSE C-A levels	0.022	0.011	0.081**
	(0.014)	(0.013)	(0.030)
Bachelor+	0.078**	-0.023	0.120
	(0.029)	(0.028)	(0.064)
Overall \mathbb{R}^2	0.17	0.17	0.19
Observations	1,108	1,108	1,108
GCSE C-A lev. jobs			
GCSE C-A levels	0.020*	-0.050***	-0.007
	(0.009)	(0.012)	(0.022)
Bachelor+	0.054***	-0.099***	-0.108***
	(0.010)	(0.013)	(0.025)
Overall R^2	0.11	0.40	0.06
Observations	3,695	3,695	3,695
Bachelor+ jobs			
GCSE C-A levels	0.026*	-0.049*	-0.078*
	(0.012)	(0.020)	(0.033)
Bachelor+	0.067***	-0.122***	-0.167***
	(0.011)	(0.019)	(0.032)
Overall R^2	0.15	0.32	0.22
Observations	5,043	5,043	5,043

Note: all skill indexes range between 0 and 1. Regressions use individual-level data. Robust standard errors in parenthesis. I use dummy of basic to moderate $P\Phi$ use complexity as measure of routineness. I pool data from all years. Regressions include occupation fixed-effects. Effect sizes are computed as the regression coefficient divided by the standard deviation in the occupation-level skill indexes. Table generated on 12 Jun 2020 at 17:15:26. Table generated with do file 3_sesAnalysis/createSESSkillRegressionsFull.do

Table 8: Relative skill use in border jobs across education groups (index with standardized variables)

Base level: Below GCSE C	Analytical (1)	Manual (2)	Routine (3)
Below GCSE C / GCSE C-A lev. border			
GCSE C-A levels	0.041***	-0.006	0.066***
	(0.007)	(0.008)	(0.018)
Bachelor+	0.061***	-0.055***	0.027
	(0.009)	(0.012)	(0.025)
Overall R^2	0.19	0.28	0.09
Observations	3,669	3,669	3,669
GCSE C to A lev. / Bachelor+ border			
GCSE C-A levels	0.049**	-0.096***	-0.096*
	(0.016)	(0.026)	(0.048)
Bachelor+	0.099***	-0.162***	-0.120*
	(0.016)	(0.025)	(0.048)
Overall R^2	0.11	0.26	0.05
Observations	1,076	1,076	1,076
Below GCSE C jobs			
GCSE C-A levels	0.022	0.011	0.081**
	(0.014)	(0.013)	(0.030)
Bachelor+	0.077**	-0.023	0.120
	(0.028)	(0.028)	(0.064)
Overall R^2	0.16	0.17	0.19
Observations	1,108	1,108	1,108
GCSE C-A lev. jobs			
GCSE C-A levels	0.019*	-0.051***	-0.007
	(0.009)	(0.012)	(0.022)
Bachelor+	0.051***	-0.099***	-0.108***
	(0.010)	(0.013)	(0.025)
Overall R^2	0.11	0.40	0.06
Observations	$3,\!695$	3,695	3,695
Bachelor+ jobs			
GCSE C-A levels	0.025*	-0.050*	-0.078*
	(0.011)	(0.020)	(0.033)
Bachelor+	0.064***	-0.123***	-0.167***
	(0.011)	(0.019)	(0.032)
Overall R^2	0.15	0.32	0.22
Observations	5,043	5,043	5,043

Note: all skill indexes range between 0 and 1. Regressions use individual-level data. Robust standard errors in parenthesis. I use dummy of basic to moderate PC use complexity as measure of routineness. I pool data from all years. Regressions include occupation fixed-effects. Effect sizes are computed as the regression coefficient divided by the standard deviation in the occupation-level skill indexes. Table generated on 12 Jun 2020 at 17:15:26. Table generated with do file 2 sesAnalysis/createSESSkillRegressionsFull.do

Table 9: Relative skill use across education groups (simple average indexes)

	Analytical (1)	Manual (2)	Routine (3)
GCSE C-A levels	0.034*** (0.005)	-0.018** (0.006)	0.043*** (0.011)
Effect size	0.293	-0.090	0.254
Bachelor+	0.072*** (0.005)	-0.081*** (0.007)	-0.039** (0.013)
Effect size	0.618	-0.409	-0.227
Overall R^2 Observations	0.35 $14,592$	$0.44 \\ 14,592$	0.13 $14,592$

Note: all skill indexes range between 0 and 1. Regressions use individual-level data. Robust standard errors in parenthesis. Coefficents represent the difference relative the lower education level. I use dummy of basic to moderate PC use complexity as measure of routineness. I pool data from all years. Regressions include occupation fixed-effects. Effect sizes are computed as the regression coefficient divided by the standard deviation in the occupation-level skill indexes. Table generated on 12 Jun 2020 at 17:15:28. Table generated with do file 3_sesAnalysis/createSESSkillRegressionsPooled.do

6 Triangle graphs

Figure 2: Exploring weighting schemes (density plots)

(a) Observations in SES education-occupation-job type cell

(b) $\sqrt{d_1d_2} \times observations_{LFS}$

(c) $\sqrt{d_1d_2 \times observations_{LFS} \times observations_{SES}}$

(d) $\sqrt{d_1d_2} \times observations_{SES}$

Note: figure based on occupation-level averages. Figure generated on 15 Jun 2020 at 16:04:16. Figure generated using the dofile 3_sesAnalysis/skillUseTriangles.do.

Figure 3: Exploring weighting schemes (scatterplots)

(a) Observations in SES education-occupation-job type cell

(b) $\sqrt{d_1d_2} \times observations_{LFS}$

(c) $\sqrt{d_1d_2 \times observations_{LFS} \times observations_{SES}}$

(d) $\sqrt{d_1d_2} \times observations_{SES}$

Note: figure based on occupation-level averages. Figure generated on 15 Jun 2020 at 16:04:16. Figure generated using the dofile 3_sesAnalysis/skillUseTriangles.do.

Figure 4: Comparing core vs border jobs

Note: graphs show occupation level averages. Observations weighted using $\sqrt{d_1d_2 \times observations_{LFS} \times observations_{SES}}$ Figure generated on 15 Jun 2020 at 16:04:17. Figure generated using the dofile 3_sesAnalysis/skillUseTriangles.do.

Figure 5: Comparing core vs transitioning jobs

Note: graphs show occupation level averages. Observations weighted using $\sqrt{d_1d_2 \times observations_{LFS} \times observations_{SES}}$ Figure generated on 15 Jun 2020 at 16:04:17. Figure generated using the dofile 3_sesAnalysis/skillUseTriangles.do.

job_type_r Mid High Mid-High to High

job_type_r Mid High Mid-High to High

7 Average use tables

Table 10: Average skill use in core vs border jobs

Job type	Analytical	Manual	Routine
Low-education individuals			
Low jobs	0.361	0.635	0.353
	(0.017)	(0.016)	(0.032)
Low-mid jobs	0.496	0.664	0.617
•	(0.009)	(0.010)	(0.021)
Mid jobs	0.592	0.488	0.740
	(0.011)	(0.016)	(0.027)
${\it Mid-education\ individuals}$, ,
Low jobs	0.384	0.657	0.481
	(0.019)	(0.017)	(0.040)
Low-mid jobs	0.555	0.647	0.709
	(0.006)	(0.008)	(0.014)
Mid jobs	0.618	0.439	0.757
-	(0.005)	(0.007)	(0.011)

Note: the table shows average skill use by job type. Means are **unweighted**. Table generated on 30 Jun 2020 at 14:19:38. Table generated with do file 3_sesAnalysis/create_average_use_table.do

Table 11: Average skill use in core vs border jobs

Job type	Analytical	Manual	Routine
Low-education individuals			
Low jobs	0.382	0.638	0.380
	(0.020)	(0.016)	(0.043)
Low-mid jobs	0.506	0.673	0.629
, and the second	(0.011)	(0.013)	(0.026)
Mid jobs	$0.593^{'}$	0.493	$0.717^{'}$
*	(0.014)	(0.022)	(0.033)
${\it Mid-education\ individuals}$,	, ,	, ,
Low jobs	0.374	0.660	0.478
	(0.023)	(0.019)	(0.049)
Low-mid jobs	$0.550^{'}$	$0.635^{'}$	$0.725^{'}$
v	(0.008)	(0.010)	(0.017)
Mid jobs	0.614	$0.431^{'}$	$0.749^{'}$
	(0.005)	(0.009)	(0.014)

Note: the table shows average skill use by job type. Means weighted by SES sampling weights. Table generated on 30 Jun 2020 at 14:19:40. Table generated with do file 3_sesAnalysis/create_average_use_table.do

Table 12: Average skill use in core vs transitioning jobs

Job type	Analytical	Manual	Routine
Low-education individuals			
Low jobs	0.361	0.635	0.353
	(0.017)	(0.016)	(0.032)
Low to Low-Mid jobs	0.431	0.672	0.562
	(0.010)	(0.012)	(0.024)
Low-Mid jobs	0.496	0.664	0.617
	(0.009)	(0.010)	(0.021)
${\it Mid-education\ individuals}$			
Low jobs	0.384	0.657	0.481
•	(0.019)	(0.017)	(0.040)
Low to Low-Mid jobs	0.465	0.675	0.630
Ţ	(0.010)	(0.011)	(0.023)
Low-Mid jobs	$\stackrel{\cdot}{0.555}$	$0.647^{'}$	$0.709^{'}$
•	(0.006)	(0.008)	(0.014)

Note: the table shows average skill use by job type. Means are **unweighted**. Table generated on 30 Jun 2020 at 14:19:39. Table generated with do file 3_sesAnalysis/create_average_use_table.do

Table 13: Average skill use in core vs transitioning jobs

Job type	Analytical	Manual	Routine
Low-education individuals			
Low jobs	0.382	0.638	0.380
	(0.020)	(0.016)	(0.043)
Low to Low-Mid jobs	0.431	0.667	0.579
	(0.012)	(0.013)	(0.029)
Low-Mid jobs	0.506	0.673	0.629
	(0.011)	(0.013)	(0.026)
${\it Mid-education\ individuals}$			
Low jobs	0.374	0.660	0.478
	(0.023)	(0.019)	(0.049)
Low to Low-Mid jobs	0.452	0.677	0.646
	(0.011)	(0.013)	(0.029)
Low-Mid jobs	0.550	0.635	0.725
	(0.008)	(0.010)	(0.017)

Note: the table shows average skill use by job type. Means weighted by SES sampling weights. Table generated on 30 Jun 2020 at 14:19:40. Table generated with do file 3_sesAnalysis/create_average_use_table.do

8 Masons

Entry requirements

Figure 5: Mid to Low-Mid transitions

Note: created with data from 2001-2017 UK LFS. Figure generated on 30 Jun 2020 at 13:45:26. Figure generated using the dofile 4_lfsAnalysis/occ_employment_shares_graphs.do.

Figure 6: Aggregated graphs

(a) Low to Low-Mid

3561 public service associates, personnel and industrial relations offic

(b) Mid-High to High

3561 public service associates, personnel and industrial relations offic

Note: created with data from 2001-2017 UK LFS. Figure generated on 30 Jun 2020 at 13:45:28. Figure generated using the dofile 4_lfsAnalysis/occ_employment_shares_graphs.do.

Figure 7: Low to Low-Mid transitions

Note: created with data from 2001-2017 UK LFS. Figure generated on 30 Jun 2020 at 13:45:26. Figure generated using the dofile 4_lfsAnalysis/occ_employment_shares_graphs.do.

Figure 7: Low to Low-Mid transitions

Note: created with data from 2001-2017 UK LFS. Figure generated on 30 Jun 2020 at 13:45:26. Figure generated using the dofile 4_lfsAnalysis/occ_employment_shares_graphs.do.

Figure 8: Mid-High to High transitions

Figure 9: Various stats for brick layers

9 Other graphs

Figure 10: PC use complexitity across different occupation groups

Note: basic use involves routine procedures such as printing and invoicing. Moderate use involves use of email and word processing and/or spreadsheets. Complex use involves use for statistical analysis. Figure generated on 12 Jun 2020 at 15:13:02. Figure generated using the dofile 3_sesAnalysis/occRoutinePCUse.do.

Basic-module
 Moderate only

Basic-moderate

Basic only

Continuous