Progetto d'esame

Elaborazione delle Immagini

2023-2024

Modalità

- Svolgimento del progetto
 - Gruppi di 2, 3 o 4 persone (obbligatorio)
 - Matlab / C / C++ / Java / Python, ...
 - Presentazione PPT e discussione del progetto
 - Voto dato complessivamente al gruppo

UNO! (1)

 Si vuole realizzare una applicazione che, data una immagine, localizzi e riconosca tutte le carte standard presenti nel gioco UNO.

UNO! (2)

- Nello sviluppo dell'applicazione dovete tenere conto che:
 - Le carte possono essere in numero, posizione e orientamento qualunque
 - Vogliamo riconoscere le carte: carte numerate, pesca 2 o 4 carte, cambia colore, cambio giro e salta turno.
 - Anche le carte capovolte vanno riconosciute come tali.
 - Assumete che le carte siano, di norma, posizionate in modo tale da non sovrapporsi.
 - [Opzionale] Gestire i casi di carte parzialmente sovrapposte.
 - Possono esistere elementi estranei che vanno classificati come "unknown"
 - Ci può essere una illuminazione variabile nelle immagini.

Requisiti (1)

Trovate un set di immagini a questo link (solo utenti Bicocca):

https://drive.google.com/drive/folders/1t3Uap-O4BtuG82CpzKTl9H3j7ClSefUK?usp=sharing

- Dovete crearvi la partizione di dati di training e di test da usare nell'applicazione. Il numero e tipologia di immagini di training e di test da usare è a vostra scelta e va riportata nella presentazione.
- Nel farlo, dovete tenere conto e gestire diverse situazioni e condizioni:
 - Ci possono essere delle ombre
 - Ci possono essere dei cambiamenti di illuminazione
 - Ci può essere del rumore dovuto al processo di acquisizione o al formato delle immagini

Requisiti (2)

- L'applicazione deve essere valutata almeno in termini di:
 - Accuratezza (matrice di confusione) nella identificazione delle carte e degli «unknown». Sarà quindi necessario definire una ground truth sul dataset di immagini usate per gli esperimenti.
- Definite e riportate nella presentazione le misure che usate per le valutazioni della classificazione (es. Matrice di confusion, accuracy, precision, recall...) e di una eventuale segmentazione o localizzazione delle carte
- Riportate e commentate nella presentazione anche i casi di fallimento, errori e problematiche

Requisiti (3)

- Parte integrante del lavoro è l'analisi del dataset e la definizione delle assunzioni operative che hanno portato alla progettazione della pipeline di elaborazione.
- Le decisioni che prendete sono parte integrante della presentazione. Dovete descrivere tutte le specifiche che caratterizzano la vostra soluzione nelle assunzioni.
- Riportate anche eventuali confronti con le diverse soluzioni provate

Implementazione

- Potete (dovete) documentarvi in qualunque modo su come si può risolvere il problema
 - Evitando di plagiare soluzioni complete...
- Potete sviluppare il codice da zero oppure potete appoggiarvi a codice già esistente
 - In entrambi i casi DOVETE SAPERE ESATTAMENTE come funziona il codice utilizzato e perchè
 - Evitando di plagiare soluzioni complete...

Consegna (1)

- Dovete consegnare un file zip (con nome dei membri del gruppo) contenente:
 - Il codice sviluppato
 - Una presentazione che illustra la logica dell'approccio usato
 - Il dataset con le relative groundtruth, che avete eventualmente acquisito da voi
- Appoggiatevi a siti di condivisione file (es. Dropbox, Drive,...) per mandarci via mail il link da dove scaricare il file del progetto
- La consegna del materiale deve avvenire prima della discussione del Progetto (idealmente 2/3 giorni prima)

Consegna (2)

- La presentazione (<u>per una discussione di 15 minuti max</u>) deve contenere
 - Nomi dei membri del gruppo
 - Descrizione dell'approccio seguito
 - Risultati
 - Analisi dei risultati
 - Una slide con dettagliato il contributo di ciascun membro del gruppo (e relativa percentuale sull'intero progetto)
- Dalla presentazione si deve evincere:
 - Come sono fatte le pipeline di elaborazione (usate diagrammi di flusso e mettete le immagini esplicative dei risultati intermedi)
 - Le tecniche usate e i perchè delle tecniche usate
 - Come sono state trovate le varie soglie e/o I parametri degli algoritmi
 - Analisi critica dei risultati

Presentazione (1)

- La durata massima della presentazione è di 15+5 minuti
- Tutti i component del gruppo devono parlare
- Tutti i componenti del gruppo devono saper rispondere alle domande su tutte le fasi del progetto
- Le slides devono descrivere schematicamente il funzionamento dell'applicazione sviluppata
 - Mediante diagrammi di flusso
 - Descrizione di alto livello (macro-moduli)
 - Descrizione dei singoli moduli

Presentazione (2)

Esempio di descrizione di alto livello

Presentazione (3)

Esempio di descrizione di un modulo (con descrizione parametri)

Presentazione (4)

 Esempio di descrizione di un modulo (con input/output delle immagini)

Presentazione (5)

- Struttura tipica della presentazione
 - Introduzione al problema
 - Descrizione e analisi dei dati
 - Assunzioni
 - Descrizione dei metodi (pipeline di elaborazione)
 - Presentazione e analisi dei risultati
 - Conclusioni

Valutazione

- Dopo la presentazioni ci potranno essere domande ai singoli membri del gruppo sulle scelte effettuate.
 - 5-10 minuti di domande (eventuali).
 - Le domande servono per verificare l'effettivo coinvolgimento nel progetto (tutti devono poter rispondere su tutto) e il ragionamento che ha guidato le scelte.
 - Quindi cose del tipo, perché avete scelto il metodo 'a' e non 'b'.
 In cosa differiscono i metodi....
- Al progetto viene dato un voto complessivo che sarà vostra scelta come dividere fra i componenti. Il voto di un componente potrebbe essere abbassato in caso di risposte non corretta alle eventuali domande.