Tiempo medio de un acceso

$$t_{am} = t_h + t_p$$

 t_h : Comprobar etiquetas (hit/miss) y servir la referencia

t_p: Penalización debida al acceso a memoria principal

t_{am}: Tiempo medio de acceso a memoria

tp	Inmediata	Inmediata	Retardada
	con asignación	sin asignación	con asignación
Lectura - Acierto	0	0	0
Lectura - Fallo	$t_{bloque} + t_h$	$t_{bloque} + t_h$	Bloque modificado: $2 * t_{bloque} + t_h$
			Bloque no modificado: $t_{bloque} + t_h$
Escritura - Acierto	0	0	0
Escritura - Fallo	$t_{bloque} + t_h$	0	Bloque modificado: $2 * t_{bloque} + t_h$
			Bloque no modificado: $t_{bloque} + t_h$

Tiempo medio de un programa

Escritura inmediata con asignación

$$t_{am} = t_h + m \times (t_{bloque} + t_h)$$

m: tasa de fallos

• Escritura inmediata sin asignación

$$t_{am} = t_h + m \times I \times (t_{bloque} + t_h)$$

m: tasa de fallos

l: tasa de lecturas

• Escritura retardada con asignación

$$t_{am} = t_h + m \times (bnm \times (t_{bloque} + t_h) + bm \times (2 \times t_{bloque} + t_h))$$

bnm: tasa de reemplazos a bloques no modificados

bm: tasa de reemplazos a bloques modificados

CPI y tiempo de ejecución

$$n_{ciclos} = n_{ins} \cdot CPI$$

 $CPI_{ideal} = n_{ciclos_ideal}/n_{ins}$

 $CPI_{real} = CPI_{ideal} + (n_{fallos} \cdot t_p)/n_{ins}$

 $t_{eje} = t_c \cdot n_{ins} \cdot CPI_{real}$

$$t_{eje} = t_c \cdot (n_{ins} \cdot \mathit{CPI}_{ideal} + n_{fallos} \cdot t_p)$$

Considerem un computador amb un processador MIPS funcionant a una freqüència de 500Mhz, i que dissipa una potència de 20 W. Suposem que la cache d'instruccions és ideal (sempre encerta), i que la cache de dades té un temps de servei en cas d'encert t_h = 1 cicle. El temps necessari per copiar un bloc de memòria principal a cache és t_{block} = 59 cicles. Els CPI dels diversos tipus d'instruccions (en absència de fallades) és:

	Salts	Loads	Resta d'instruccions
CPI	8	3	1

A través de simulacions amb un programa de test hem mesurat una taxa de fallades de cache de m = 2,5%. Totes les referències a memòria són lectures. El nombre d'instruccions executades és:

	Salts	Loads	Resta d'instruccions
n. instr.	3.109	6·10 ⁹	20-109

a) (0,5 pts) Calcula el temps d'accés mitjà a memòria dels loads per a aquest programa, en cicles

b) (0,5 pts) Calcula el temps d'execució del programa (incloent-hi fallades de cache), en segons

c) (0,1 pts) Calcula l'energia total consumida durant l'execució del programa, en Joules

a)
$$t_{am} = t_h + m^*(t_{bloque} + t_h)$$

b)
$$t_{exe} = \frac{\sum (CPI*ninstr) + penalizazión}{f}$$

c)
$$E = P^*t_{exe}$$

Espacio lógico del programa

0 A
1 B
2 C
3 D

Espacio físico (Memoria)

Tabla de páginas del programa

Direcciones

