Решения на задачите по теория на числата

Този материал е изготвен със съдействието на школа Sicademy

NT1. Нека a и b са естествени числа. Да се докаже, че за всяко естествено число n числото $(a^2+b^2)^n$ може да се представи като сума от n+1 естествени числа, всяко от които е точен квадрат или удвоен точен квадрат.

Решение. Да разгледаме тъждеството

$$\frac{(a^2+b^2)^n-b^{2n}}{a^2}=(a^2+b^2)^{n-1}+(a^2+b^2)^{n-2}b^2+\ldots+(b^2)^{n-1}.$$

Преобразуваме дясната страна така: ако n-i е четно, съответното събираемо е точен квадрат и не го променяме; ако n-i=2k+1 е нечетно, записваме

$$(a^2 + b^2)^{2k+1} = a^2(a^2 + b^2)^{2k} + b^2(a^2 + b^2)^{2k}$$

и лесно се вижда, че групирането на равните събираеми води до искания резултат. Накрая изразяваме $(a^2 + b^2)^n$.

NT2. Да се намерят всички естествени числа $n \ge 2$, за които числото $(n^2)! - n^2$ може да се представи като произведение на две естествени числа a и b, за които |a-b| < n.

Peшение. Да допуснем, че $(n^2)! - n^2 = a(a+x)$, където x < n е естествено число, и да представим това равенство във вида

$$(n^2)! - (n^2 - x^2) = a^2 + ax + x^2.$$

Нека $n \ge 3$. Тогава измежду множителите в $(n^2)!$ има кратен на 3, който е различен от $n^2 - x^2$ и нашето равенство може да се запише във вида

$$(n^2 - x^2)(3k - 1) = a^2 + ax + x^2,$$

където k е естествено число. Тогава лявата страна има прост делител p от вида 3s-1, докато за дясната страна това е възможно само при p|a и p|x (защото $a^2+ax+x^2\equiv 0\pmod p$) дава $a^3\equiv x^3\pmod p$, откъдето при (a,p)=(x,p)=1 следва, че показателят на ax^{-1} по модул p дели (3,p-1)=1, т.е $a\equiv x\pmod p$ и значи $p|3a^2$, противоречие).

Може да изберем простото число p от по-горе така, че степента му в каноничното разлагане на 3k-1 да е нечетна. Сега е ясно, че степента на p в каноничното разлагане отдясно е четна, а отляво е нечетна в 3k-1 и значи е нечетна и в n^2-x^2 . Последното обаче е възможно само когато въпросната степен е по-голяма от тази в x, което води до противоречие (степента на p отдясно е по-малка).

Следователно n=2 и равенството $(4!)^2-2^2=20=4\cdot 5$ показва, че това е решение.

NT3. Да се докаже, че за всяко естествено число k съществуват безбройно много естествени числа n, за които $n|2^{n+k}-1$.

Peшение. Да отбележим, че за всяко k съществува n, за което $n|2^{n+k}-1$ и $k+n\geq 7$. Наистина, при $k\geq 6$ работа върши тривиалното n=1, а при $k\leq 5$ ще посочим двойките

$$(k, n) = (1, 15), (2, 7), (3, 5), (4, 31), (5, 3).$$

Нека k е фиксирано и $n \in \mathbb{N}$ е такова, че $n+k \geq 7$ и $n|2^{n+k}-1$. Ще конструираме $n_1 > n$, което дели $2^{n_1+k}-1$.

От теоремата на Жигмонди следва, че съществува просто число p, което дели $2^{n+k}-1$, но не дели никое от числата 2^i-1 за i< n+k. Това означава, че показателят на 2 по модул p е равен на n+k, откъдето n+k|p-1. Тогава

$$pn + k = (p-1)n + n + k$$

се дели на n+k и имаме $2^{n+k}-1|2^{pn+k}-1$. Оттук p и n делят $2^{n+k}-1$ и са взаимнопрости, защото p>n+k>n. Следователно $pn|2^{pn+k}-1$, т.е. $n_1=pn>n$ има исканото свойство.