Foundations Midterm

Clark Saben Foundations of Mathematics

March 13, 2023

Theorem 1. Assume $a, b \in \mathbb{Z}$. If $a^2(b^2 - 2b)$ is odd, then a and b is odd.

Proof. Let a and b be odd and $a^2(b^2-2b)$ be odd. By definition 2.1 if a and b are even then it can be shown,

$$a^{2}(b^{2} - 2b) = 2k^{2}[(2j)^{2} - 2(2j)^{2}]$$
$$= (4k^{2})[4j^{2} - 4j]$$
$$= 2(2k^{2})(2j^{2} - 2j),$$

which is an even number. This is a false statement. Therefore if $a^2(b^2-2b)$ is odd then a and b must also be odd.

Theorem 2. Given an integer a, if 7|4a then 7|a.

Proof. Let a be an integer and 7|4a. By definition 2.1, since $7 \nmid 4$ then 7 must divide a for 7|4a to be true. Therefore, if 7|4a then 7|a.

Theorem 3. If $n \in \mathbb{Z}$, then $5n^2 + 3n + 7$ is odd.

Proof. Let $n \in \mathbb{Z}$ and $5n^2 + 3n + 7$ is odd. It can then be shown that,

$$5n^2 + 3n + 7 = 2k \text{ for some integer k} \tag{1}$$

$$\frac{5n^2}{2} + \frac{3n}{2} + \frac{7}{2} = k \tag{2}$$

(3)

This is false statement because $\frac{7}{2}$ doesn't allow $\frac{5n^2}{2} + \frac{3n}{2} + \frac{7}{2}$ to be an integer for any n. Therefore, if $n \in \mathbb{Z}$ then $5n^2 + 3n + 7$ is odd.

Theorem 5. Assume $a \in \mathbb{Z}$. Then $a^2 \mid a$ if and only if $a \in \{-1, 0, 1\}$

Proof. Let $a \in \mathbb{Z}$. Using proof by cases we will show that $a^2 \mid a$ if and only if $a \in \{-1, 0, 1\}$.

Firstly, we will show if $a^2 \mid a$ then $a \in \{-1,0,1\}$. Consider the case a is non-zero and greater than 1. Then $a^2 \mid a$ implies $\frac{a}{a^2} \in \mathbb{Z}$ which is false. Similarly, when a is non-zero and less than -1, then $a^2 \mid a$ implies $\frac{a}{a^2} \in \mathbb{Z}$ which is false. Hence, a must be either -1, 0, or 1 for $a^2 \mid a$ to be true.

Secondly, we will show if $a \in \{-1, 0, 1\}$ then $a^2 \mid a$. We can prove this is true for each element directly by using the definition of divisibility for some integer k,

Case 1:
$$a = -1$$

 $-1^2 = 1k$
Case 2: $a = 0$
 $0^2 = 0k$
Case 3: $a = 1$
 $1^2 = 1k$

All three cases are true, therefore $a^2 \mid a$ if and only if $a \in \{-1, 0, 1\}$.

Theorem 6. If A, B, C, D are sets and $C \subseteq A$ and $D \subseteq B$, then $D \setminus A \subseteq B \setminus C$.

Proof. Let A, B, C, D be sets and $C \subseteq A$ and $D \subseteq B$. Let $x \in D \setminus A$. Then $x \in D$ and by definition 3.5, $x \in B$. Furthermore, because $C \subseteq A$ it follows that $x \in B \setminus C$. Therefore $D \setminus A \subseteq B \setminus C$.

Theorem 7. If we define the sets $A = \{12a + 4b : a, b \in \mathbb{Z}\}$ and $B = \{4c : c \in \mathbb{Z}\}$, then $A \subseteq B$.

Proof. Let $A = \{12a+4b : a, b \in \mathbb{Z}\}$ and $B = \{4c : c \in \mathbb{Z}\}$. Let $x \in A$ such that x = 12a+4b. It can be shown that,

$$x = 12a + 4b$$

$$= 4(3a + b)$$

$$= 4k \text{ for some integer k}$$

Hence, $4k \in B$. Therefore, if $A = \{12a + 4b : a, b \in \mathbb{Z}\}$ and $B = \{4c : c \in \mathbb{Z}\}$, then $A \subseteq B$.

Theorem 8. Theorem 8. Given integers a, b, and c, if $a^2 \mid b$ and $b^3 \mid c$, then $a^6 \mid c$.

Proof.:

- 8. Let $a, b, c \in \mathbb{Z}$
- 3. such that $a^2 \mid b$ and $b^3 \mid c$.
- 11. By the definition of divisibility, this implies that there exists integers k and ℓ such that,
- 6. $b = a^2 k$ and $c = b^3 \ell$.
- 10. Now, substituting b^3 , we see that,
- 2.

$$c = b^{3} \ell$$

$$= a^{6} k^{3} \ell$$

$$= a^{6} m,$$

- 5. where $m = k^3 \ell$ is an integer.
- 1. Cubing both sides of $b = a^2k$ we obtain,
- 4. $b^3 = a^6 k^3$.
- 7. Hence $c = a^6 m$,
- 9. and $a^6 \mid c$ by the definition of divisibility.