Épreuve écrite: Corrigé

Examen de fin d'études secondaires 2013

Section: D

Branche: Statistique et probabilités

CORRIGÉ

Partie 1: Éléments de statistique descriptive [15 p.]

Le montant mensuel de l'argent de poche de 180 élèves de 18 à 20 ans est distribué selon le tableau suivant:

Argent de poche (en €/mois)	Nombre d'élèves
[0;20[8
[20;40[17
[40;50[25
[50;60[55
[60;100[32
[100;150[32
[150;250[11

Travail à faire:

a. Calculez la moyenne arithmétique par changement d'origine et d'échelle.

[3 p.]

Argent de poche (en €)	Effectif n _i	Effectifs cumulés croissants $\sum n_i \uparrow$	Centre de classe x _i	$z_i = \frac{x_i - x_0}{a}$	$n_i \cdot z_i$	$n_i \cdot z_i^2$
[0;20[8	8	10	-4,50	-36,00	162,00
[20;40[17	25	30	-2,50	-42,50	106,25
[40;50[25	50	45	-1,00	-25,00	25,00
[50;60[55	105	55	0,00	0,00	0,00
[60;100[32	137	80	2,50	80,00	200,00
[100;150[32	169	125	7,00	224,00	1568,00
[150;250[11	180	200	14,50	159,50	2312,75
	180				360,00	4.374,00

a.
$$\overline{X} = x_0 + a \cdot \overline{z}$$

avec
$$x_0 = 55$$

avec $a = 10$

avec
$$\bar{z} = \frac{1}{N} \cdot \sum_{i=1}^{n} n_i \cdot z_i = 360 \div 180 = 2$$

$$\overline{X} = 55 + 10 \cdot 2$$

$$\overline{X} = 55 + 20$$

b. Quel est l'intervalle interquartile? Calculez et interprétez brièvement votre résultat. [5 p.]

$$Q_1$$
 ou valeur de rang $\frac{N}{4} = \frac{180}{4} = 45$

$$\frac{50 - 40}{50 - 25} = \frac{Q_1 - 40}{45 - 25}$$

$$\frac{10}{25} = \frac{Q_1 - 40}{20}$$

$$20 \cdot 10 = 25 \cdot (Q_1 - 40)$$

 $200 = 25 \cdot Q_1 - 1.000$

$$25 \cdot Q_1 = 200 + 1.000$$

$$Q_1 = \frac{1.200}{25} = 48 \text{ euros}$$

$$Q_3$$
 ou valeur de rang $\frac{N \cdot 3}{4} = \frac{180 \cdot 3}{4} = 135$

$$\frac{100 - 60}{137 - 105} = \frac{Q_3 - 60}{135 - 105}$$

$$\frac{40}{32} = \frac{Q_3 - 60}{30}$$

$$40 \cdot 30 = 32 \cdot (Q_3 - 60)$$

$$1.200 = 32 \cdot Q_3 - 1.920$$

$$32 \cdot Q_3 = 1.200 + 1.920$$

$$Q_3 = \frac{3.120}{32} = 97,50 \text{ euros}$$

L'intervalle interquartile est de $[Q_1; Q_3] = [48,00; 97,50]$

L'intervalle interquartile est un paramètre de dispersion absolue qui correspond à l'étendue de la distribution une fois que l'on a retiré les 25 % des valeurs les plus faibles et les 25 % des valeurs les plus fortes. 50 % des observations sont donc concentrées entre Q_1 et Q_3 . Il s'ensuit que dans notre cas, 25 % des élèves ont moins que 48,00 \in d'argent de poche par mois et 25 % des élèves ont plus que 97,50 \in d'argent de poche par mois. 50 % des élèves ont entre 48,00 \in et 97,50 \in d'argent de poche par mois à leur disposition.

c. Calculez l'écart-type par changement d'origine et d'échelle.

$$\sigma_X^2 = \, a^2 \, \bullet \left[\left(\frac{1}{N} \, \bullet \, \sum_{i=1}^n (n_i \, \bullet \, z_i^2) \right) - \overline{z}^2 \, \right]$$

$$\sigma_X^2 = 10^2 \cdot \left[\left(\frac{1}{180} \cdot 4.374 \right) - \left(2 \right)^2 \right]$$

$$= 100 \cdot (24,30 - 4)$$
$$= 100 \cdot 20,30$$

$$= 100 \cdot 20,3$$

 $= 2.030,00$

$$\sigma_{X} = \sqrt{\sigma_{X}^{2}}$$
$$= \sqrt{2.030}$$

d. Calculez le pourcentage de l'effectif compris dans l'intervalle [24; 154].

[3 p.]

Nombre théorique des valeurs comprises entre 24 et 154:

$$\frac{17 \cdot 16}{20} + 25 + 55 + 32 + 32 + \frac{11 \cdot 4}{100} = 13,6 + 144 + 0,44 = 158,04$$

Pourcentage du nombre total d'observations comprises entre 24 et 154:

$$\frac{158,04}{180} = 0,878 = 87,8 \%$$

Partie 2: Régression et corrélation [15 p.]

Le tableau suivant renseigne sur l'âge et le traitement annuel brut de 9 cadres choisis au hasard parmi un vaste ensemble de cadres d'une entreprise multinationale.

Cadre	Âge en années (x _i)	Traitement annuel brut en milliers d'euros (y _i)		
1	25	40		
2	30	48		
3	35	58		
4	40	74		
5	45	76		
6	50	86		
7	55	95		
8	60	100		
9	65	98		

Travail à faire:

a. Représentez ces valeurs graphiquement.

[3 p.]

b. Calculez la droite de régression par la méthode des moindres carrés.

[9 p.]

c. Représentez cette droite dans le même graphique.

[3 p.]

ad. b. Calculez la droite de régression par la méthode des moindres carrés.

$$\alpha = \frac{\sum_{i=1}^{n} x_{i} \cdot y_{i} - (n \cdot \overline{x} \cdot \overline{y})}{\sum_{i=1}^{n} x_{i}^{2} - (n \cdot \overline{x}^{2})} \text{ et } \beta = \overline{y} - \alpha \cdot \overline{x} \Rightarrow \text{Droite ajust\'ee: } y = \alpha \cdot x + \beta$$

Cadre	X _i	yi	$x_i \cdot y_i$	x _i ²
1	25	40	1.000	625
2	30	48	1.440	900
3	35	58	2.030	1.225
4	40	74	2.960	1.600
5	45	76	3.420	2.025
6	50	86	4.300	2.500
7	55	95	5.225	3.025
8	60	100	6.000	3.600
9	65	98	6.370	4.225
	$\overline{x} = 45$	$\overline{y} = 75$	32.745	19.725

$$\alpha = \frac{32.745 - (9 \cdot 45 \cdot 75)}{19.725 - (9 \cdot 45^2)} = \frac{2.370}{1.500} = 1,58$$

$$\beta = 75 - 1,58 \cdot 45 = 3,9$$

Nous savons que $y = \alpha \cdot x + \beta$ donc $y = 1,58 \cdot x + 3,9$

οι

Cadre	Xi	y _i	$x_i - \overline{x}$	$y_i - \overline{y}$	$(x_i - \overline{x}) \cdot (y_i - \overline{y})$	$(x_i - \overline{x})^2$	
1	25	40	-20	-35	700	400	
2	30	48	-15	-27	405	225	
3	35	58	-10	-17	170	100	
4	40	74	-5	-1	<u> </u>	25	
5	45	76	0	1	0	0	
6	50	86	5	11	55	25	
7	55	95	10	20	200	100	
8	60	100	15	25	375	225	
9	65	98	20	23	460	400	
	$\overline{x} = 45$	$\overline{y} = 75$			2.370	1.500	

$$\alpha = \frac{\sum_{i=1}^{n} \left[\left(x_{i} - \overline{x} \right) \cdot \left(y_{i} - \overline{y} \right) \right]}{\sum_{i=1}^{n} \left(x_{i} - \overline{x} \right)^{2}} = \frac{2.370}{1.500} = 1,58$$

$$\beta = 75 - 1,58 \cdot 45 = 3,9$$

Nous savons que $y = \alpha \cdot x + \beta$ donc $y = 1,58 \cdot x + 3,9$

ad. a. et c. Représentez ces valeurs graphiquement et représentez la droite de régression dans le même graphique.

Partie 3: Éléments du calcul des probabilités et variables aléatoires [30 p.]

Exercice 3.1. [10 p.]

Une urne contient 10 boules, dont 3 de couleur verte, 5 de couleur bleue et 2 de couleur rouge. On tire simultanément 3 boules de cette urne.

Calculez la probabilité d'obtenir

[2 p.]

$$\frac{C_3^1 \cdot C_5^2 \cdot C_2^0}{C_{10}^3} = \frac{3 \cdot 10 \cdot 1}{120} = \frac{1}{4} = 0,25$$

[2 p.]

$$\frac{C_3^1 \cdot C_5^1 \cdot C_2^1}{C_{10}^3} = \frac{3 \cdot 5 \cdot 2}{120} = \frac{30}{120} = \frac{1}{4} = 0,25$$

c. au moins une boule bleue;

[3 p.]

$$1 - \frac{C_3^0 \cdot C_5^3}{C_{10}^3} = 1 - \frac{1 \cdot 10}{120} = 1 - \frac{1}{12} = \frac{11}{12} = 0,91666667 \approx 0,9167$$

d. deux boules d'une même couleur.

[3 p.]

$$\frac{C_3^2 \cdot C_7^1}{C_{10}^3} + \frac{C_5^2 \cdot C_5^1}{C_{10}^3} + \frac{C_2^2 \cdot C_8^1}{C_{10}^3} = \frac{3 \cdot 7}{120} + \frac{10 \cdot 5}{120} + \frac{1 \cdot 8}{120} = \frac{21 + 50 + 8}{120} = \frac{79}{120} = 0,65833333 \approx 0,6583$$

Exercice 3.2. [9 p.]

Un groupe de 60 coureurs, portant des dossards numérotés de 1 à 60, participe à une course cycliste qui comprend 8 étapes et au cours de laquelle aucun abandon n'est constaté.

À la fin de chaque étape, un groupe de 6 coureurs est choisi au hasard pour subir un contrôle antidopage.

Ces désignations de 6 coureurs à l'issue de chacune des étapes sont indépendantes.

Un même coureur peut donc être contrôlé à l'issue de plusieurs étapes.

On choisit au hasard un coureur à l'arrivée de la course. Calculez la probabilité qu'

- a. il a été contrôlé trois fois exactement:
- b. il n'a pas été contrôlé:
- c. il a été contrôlé au moins deux fois.

$$P(X = k) = B(k/n,p) = C_n^k \cdot p^k \cdot q^{n-k}$$

où
$$p = probabilité d'être contrôlé à la fin de l'étape: $\frac{nombre de cas favorables}{nombre de cas possibles} = \frac{6}{60} = \frac{1}{10} = 0,1$$$

- \blacksquare q = probabilité de ne pas être contrôlé à la fin de l'étape: 1 p = 1 0,1 = 0,9
- n =8 étapes

[3 p.]

$$P(X=3) = C_8^3 \times \left(\frac{1}{10}\right)^3 \times \left(\frac{9}{10}\right)^5 = 56 \times \frac{1}{1.000} \times \frac{59.049}{100.000} = \frac{3.306.744}{100.000.000} = 0,033067440 \approx 0,0331$$

[3 p.]

$$P(X = 0) = C_8^0 \times \left(\frac{1}{10}\right)^0 \times \left(\frac{9}{10}\right)^8 = 1 \times 1 \times \frac{43.046.721}{100.000.000} = 0,430467210 \approx 0,4305$$

[3 p.]

$$P(X \ge 2) = 1 - P(X = 0) - P(X = 1) = 1 - \frac{43.046.721}{100.000.000} - C_8^1 \times \left(\frac{1}{10}\right)^1 \times \left(\frac{9}{10}\right)^7$$

$$= 1 - \frac{43.046.721}{100.000.000} - (8 \times \frac{1}{10} \times \frac{4.782.969}{10.000.000}) = 1 - \frac{43.046.721}{100.000.000} - \frac{38.263.752}{100.000.000} = \frac{18.689.527}{100.000.000}$$

$$= 0.186895270 \approx 0.1869$$

Exercice 3.3. [11 p.]

Un candidat se présente à un jeu à la radio. Sans connaître les réponses, il répond au hasard par vrai ou faux à une série de 3 questions de difficulté croissante. Les questions sont indépendantes et numérotées de 1 à 3. Chaque question comporte quatre affirmations dont une seule est vraie.

- ▶ Le candidat gagne
 - 10 euros s'il répond correctement à la 1ère question;
 - 20 euros s'il répond correctement à la 2ième question;
 - et 40 euros s'il répond correctement à la 3ième question.
- ▶ Le candidat perd 20 euros pour toute mauvaise réponse.

Soit la variable aléatoire X le gain total (positif, négatif ou nul) après avoir répondu aux 3 questions.

a. Établissez la loi de probabilité.

[8	p.]
	-

Réponses (vraies ou fausses)	Probabilités	Gain
VVV	$\frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{4} \qquad = \frac{1}{64}$	10 + 20 + 40 = +70 €
VVF	$\frac{1}{4} \cdot \frac{1}{4} \cdot \frac{3}{4} \qquad = \frac{3}{64}$	10 + 20 - 20 = +10 €
VFV	$\frac{1}{4} \cdot \frac{3}{4} \cdot \frac{1}{4} \qquad = \frac{3}{64}$	10 - 20 + 40 = +30 €
VFF	$\frac{1}{4} \cdot \frac{3}{4} \cdot \frac{3}{4} \qquad = \frac{9}{64}$	10 - 20 - 20 = -30 €
FVV	$\frac{3}{4} \cdot \frac{1}{4} \cdot \frac{1}{4} \qquad = \frac{3}{64}$	-20 + 20 + 40 = +40 €
FVF	$\frac{3}{4} \cdot \frac{1}{4} \cdot \frac{3}{4} \qquad = \frac{9}{64}$	-20 + 20 - 20 = -20 €
FFV	$\frac{3}{4} \cdot \frac{3}{4} \cdot \frac{1}{4} \qquad = \frac{9}{64}$	-20 - 20 + 40 = 0 €
FFF	$\frac{3}{4} \cdot \frac{3}{4} \cdot \frac{3}{4} = \frac{27}{64}$	-20 - 20 - 20 = -60 €

Loi de probabilité

Xi	-60	-30	-20	0	+10	+30	+40	+70	
									$\Sigma p_i = 1$

b. Calculez l'espérance mathématique de gain.
$$E(X) = \frac{(-60 \cdot 27) + (-30 \cdot 9) + (-20 \cdot 9) + (0 \cdot 9) + (10 \cdot 3) + (30 \cdot 3) + (40 \cdot 3) + (70 \cdot 1)}{64} = \frac{-1.760}{64} = -27,5 \in \mathbb{R}$$

c. Quelle est la probabilité pour qu'à l'issue du jeu le candidat ait gagné quelque chose (gain positif)? [1 p.]

$$P(f) = P(VVV) + P(VVF) + P(VFV) + P(FVV) = \frac{1}{64} + \frac{3}{64} + \frac{3}{64} + \frac{3}{64} = \frac{10}{64} = \frac{5}{32} = 0,15625$$