Żupnik vstane in reče: "Merímo".

Integrali:

Def. integrala stopničaste funkcije. Za $f = \sum_{i=1}^{n} c_i \chi_{A_i}$ je $\int f d\mu = \sum_{i=1}^{n} c_i \mu(A_i)$. Def. integrala nenegativne funkcije: $f \geq 0$ merljiva: $\int_X f d\mu = \sup\{\int_X s d\mu \; ; \; 0 \leq s \leq f, s \text{ merljiva, stopničasta}\}$

Integral in vsoto nenegativnih merljivih funkcij lahko vedno zamenjamo. Enako tudi za L^1 funkcije.

Velja: $g \ge 0$: $\int g d\mu = 0 \iff g = 0$ s.p.

Za $f \in L^1$ velja: $|\int f d\mu| \le \int |f| d\mu$ Dirac: $\int_X f d\delta_{x_0} = f(x_0)$

Triki: nova spremenljivka, per partes, Taylorjev razvoj, nek izraz zapišeš kot določen integral neke funkcije, . . .

 $(\mathbb{N}, \mathcal{P}(\mathbb{N}), \mu \text{ šteje točke}): \int_{\mathbb{N}} f d\mu = \sum_{n=1}^{\infty} f(n)$

LMK: (X, \mathcal{A}, μ) , $\{f_n\}_n$ merljive nenegativne, naraščajoče zaporedje (lahko le s.p., a potem mora biti f merljiva) k f (limita po točkah). Potem $\int_X f d\mu = \lim \int_X f_n d\mu$.

LMK za padajoče: isti pogoji kot prej, le da f_n padajoče in zahtevamo $\int_X f_m d\mu < \infty$ za nek m. Ni potrebno, da so f_n nenegativne! Dokaz preko $g_n = f_1 - f_n$.

Seveda je ok, tudi če je zaporedje padajoče/naraščajoče od nekega fiksnega n-ja (neodvisnega od x) naprej. Lahko preverjaš z odvodom po t oz n.

 $\lim_{n\to\infty} a_n^{b_n} = \exp(\lim(a_n - 1)b_n)$ $L^1(X, \mathcal{A}, \mu) = \{ f : X \to \mathbb{C} : \int_X |f| d\mu < \infty \}$

To je poln prostor (lahko uporabljamo Cauchyjev pogoj).

LDK: $\{f_n\}_n, f_n \to f$ po točkah; obstaja $g \in L^1(\mu) : |f_n| \le g \forall n$. Potem: $\int_X f d\mu = \lim \int_X f_n d\mu$ in $||f_n - f||_1 \to 0$.

Zaporedje nenegativnih merljivih funkcij $f_n \to 0$ po točkah. Obstaja M > 0: $\int_X \max\{f_1, \dots, f_n\} d\mu \leq M \forall n$. Potem je $\lim \int_{X} f_n d\mu = 0.$

Zaporedje nenegativnih merljivih funkcij $f_n \to 0$ po točkah. $\lim \int_X f_n f \mu = 0$. Potem je f = 0 s.p.

Pozor: zavedaj se, da menjaš Lebegove in Riemannove integrale!!

Fatoujeva lema: f_n nenegativne, merljive. $\int_X \liminf f_n d\mu \leq \liminf \int_X f_n d\mu$.

Če obstaja $g \ge 0, g \in L^1, |f_n| \le g$: $\limsup \int_X f_n d\mu \le \int_X \limsup f_n d\mu$.

Če $f_n \to f$ v L^1 , potem obstaja podzaporedje, ki konvergira proti f s.p.

Produktna mera: $(X, \mathcal{A}, \mu), (Y, \mathcal{B}, \nu)$ oba σ -končna merljiva prostora. $(X \times Y, \mathcal{A} \otimes \mathcal{B}, \mu \times \nu), \sigma$ -algebra je generirana z merljivimi pravokotniki, mero pa dobimo iz polmere $(\mu \times \nu)(A \times B) = \mu(A)\nu(B)$.

Velja: $E_x \in \mathcal{B}, E^y \in \mathcal{A}, f_x \mathcal{B}$ -merljiva, $f^y \mathcal{A}$ -merljiva.

Tonellijev izrek: $f \ge 0$ merljiva. Potem lahko menjamo integrale.

Fubinijev izrek: $f \in L^1$ (kar ponavadi preverimo s pomočjo Tonellija na |f|). Potem lahko menjamo integrale.

Kompleksne mere:

Def: Kompleksna mera μ je preslikava $\nu: \mathcal{A} \to \mathbb{C}$, za katero velja: $\nu(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} \nu(A_i)$, za disjunktne $A_i \in \mathcal{A}$. Opomba: totalno variacijo lahko računamo tudi le po končnih razbitjih.

Totalna variacija mere: $|\nu|(A) = \sup\{\sum_{i=1}^{\infty} |\nu(A_i)|; \bigcup A_i = A, A_i \in \mathcal{A} \text{ disjunktne}\}.$ Velja: $|\nu|(A) \ge |\nu(A)|$, ki je nenegativna in končna mera. Za končno pozitivno mero μ je $|\mu| = \mu$. Trikotniška neenakost: $||\nu_1| - |\nu_2|| \le |\nu_1 + \nu_2| \le |\nu_1| + |\nu_2|$. **Absolutna zveznost:** Kompleksna mera ν je absolutno zvezna glede na pozitivno mero μ , če velja za vsak $N \in \mathcal{A}$: $\mu(N) = 0 \implies \nu(N) = 0$. Velja: $\nu \ll \mu \iff |\nu| \ll \mu$.

Vzajemna singularnost: Meri μ in ν sta vzajemno singularni ($\mu \perp \nu$), če sta skoncentrirani na disjunktnih množicah. Velja: $\mu \perp \nu \iff |\mu| \perp \nu$.

Pozitvnost množic: Množica P je pozitivna/negativna/ničelna množica za realno mero μ , če je $\mu(A) \geq 0 / \mu(A) \leq 0$ $\mu(A) = 0$ za vsako merljivo $A \subseteq P$. Lastnosti so zaprte za podmnožice in števne unije.

Velia:

- ν realna mera. Za vsako $A \in \mathcal{A}$ obstaja ν -pozitivna podmnožica $P \subset A, P \in \mathcal{A}$: $\nu(P) \geq \nu(A)$.
- $-\forall \varepsilon > 0, \forall A \in \mathcal{A} \exists P_{\varepsilon} \subset A: \ \nu(P_{\varepsilon}) \geq \nu(A) \text{ in } \nu(B) \geq -\varepsilon \text{ za vse } B \subseteq P_{\varepsilon}, B \in \mathcal{A}.$
- ν kompleksna (končna!) in μ pozitivna mera. Velja: $\nu \ll \mu \iff (\forall \varepsilon > 0 \exists \delta > 0 : A \in \mathcal{A}, \mu(A) < \delta \implies |\nu(A)| < \varepsilon)$.

Hahnov razcep mere: Naj bo ν realna mera. Potem obstajata taki $P, N \in \mathcal{A}$, da je $P \cap N = \emptyset$, $P \cup N = X$, P je ν -pozitivna, N je ν -negativna. Razcep je enoličen v smislu, če sta E in F še eni taki množici, potem je sta simetrični razliki $E\Delta P$ in $F\Delta N$ ν -ničelni.

Jordanov razcep realne mere: Vsako realno mero ν lahko enolično razcepimo na $\nu = \nu^+ - \nu^-$, kjer sta ti meri pozitivni in skoncentrirani na disjunktnih podmnožicah $(\nu^+ \perp \nu^-)$. Pri tem je $\nu^+(E) = \nu(P \cap E), \nu^-(E) = -\nu(N \cap E),$ kjer P, NHahnov razcep mere ν .

LRN izrek: Če je μ σ -končna pozitivna mera, ν kompleksna mera, potem se da ν enolično izraziti kot $\nu = \nu_a + \nu_s$, pri čemer je $\nu_a \ll \mu$, $\nu_s \perp \mu$ in obstaja natanko ena funkcija $f \in L^1(\mu)$, da je $\nu_a(A) = \int_A f d\mu$. Funkcija f se imenuje Radon-Nikodymov odvod $f = \frac{d\nu_a}{d\mu}$.

Norma mere: $||\mu|| = |\mu|(X)$.

 $\lambda = \lambda^+ - \lambda^-$ (Jordanov razcep mere), potem je $|\lambda| = \lambda^+ + \lambda^-$.

Če je λ realna/kompleksna mera in $\lambda(X) = |\lambda|(X) \Longrightarrow \lambda$ pozitivna.

Triki: uporabljaj def. supremuma (oceni le en člen, glej $-\varepsilon$, ...), hkrati ocenjuj meri E in E^c .

 (X, \mathcal{A}, μ) merljiv prostor s pozitivno mero. $f \geq 0$ merljiva. Potem je $\nu(E) = \int_E f d\mu$ pozitivna mera. Za vsako g nenegativno merljivo ali L^1 velja: $\int g d\nu = \int f g d\mu$. Velja tudi obrat: če μ, ν pozitivni, je $f \geq 0$.

Izrek o povprečjih: (X, \mathcal{A}, μ) s končno pozitivno mero, $f \in L^1(\mu), S \subset \mathbb{C}$ zaprta podmnožica. Sledi: za poljubno $E \in \mathcal{A}$, za katero je $\mu(E) > 0$, $\frac{1}{\mu(E)} \int_E f d\mu \in S \implies f(x) \in S$ za skoraj vsek $x \in X$.

V posebnem to pomeni: $\int_E f d\mu \ge 0 \forall E \implies f \ge 0$.

Uporabno za: dokaži, da f s.p. slika v neko zaprto množico.

 $(X, \mathcal{A}), \mu$ kompleksna mera. Tedaj obstaja $h \in L^1(\mu),$ da je $\mu(E) = \int_E h d|\mu|$ in |h| = 1 povsod. (μ in $|\mu|$ se razlikujeta za

Posledica: $f \in L^1$, μ pozitivna mera, $\lambda(E) = \int_E f d\mu$ kompleksna mera. Potem je $|\lambda|(E) = \int_E |f| d\mu$.

L^p prostori

Def:
$$L^p(\mu) = \{f : X \to \mathbb{C}; \int |f|^p d\mu < \infty, f \text{ merljiva}\}, L^\infty(\mu) = \{f : X \to \mathbb{C} \text{ merljiiva}, \|f\|_\infty < \infty\}$$
 $\|f\|_p = (\int |f|^p d\mu)^{1/p}, \|f\|_\infty = \inf\{c \in \mathbb{R}^+; \mu(\{x \in X; |f(x)| > c\}) = 0\}$

Konjugirani eksponenti: p in $q \in [1, \infty]$ konjugirana, če velja: 1/p + 1/q = 1.

Youngova neenakost: $a, b \in [0, \infty, p \in (0, \infty)]$. Potem je $ab \leq \frac{a^p}{n} + \frac{b^q}{a}$.

Hölderjeva neenakost: $\int |fg|d\mu \le ||f||_p ||g||_q$

Neenakost Minowskega: $||f + g|| \le ||f||_p + ||g||_p$.

Neenakost Chebysheva: $A_{n,\varepsilon} = \{x \in X : |f_n(x) - f(x)| \ge \varepsilon\}$ potem je $\mu(A_{n,\varepsilon}) \le \frac{\|f_n - f\|_p^p}{\varepsilon^p}$. Jensenova neenakost: μ verjetnostna mera, $f \in L^1(\mu)$, φ konveksna na $(a,b) \supset \mathcal{Z}_f$: $\varphi(\int_X) f d\mu \le \int_X (\varphi \circ f) d\mu$

 L^p prostori so normirani in polni. L^2 ima skalarni produkt. Stopničaste funkcije so goste.

Če je μ σ -končna, sta L^p in L^q dualna prostora.

 $X = \mathbb{N}, \mathcal{A} = \mathcal{P}(X), \mu$ šteje točke: dobimo prostore l^p

 (X, \mathcal{A}, μ) merljiv s končno mero, $1 \leq p < q < \infty$. Potem je $L^q \subseteq L^p$ in $||f||_p \leq \mu(X)^{\frac{q-p}{pq}} ||f||_q$

 $1 \le p < q < \infty$ velja $l^p \subseteq l^q$ in $||x||_q \le ||x||p$

Če $1 \le p < \infty$ in $f_n \to f$ v L^p prostoru, potem $f_n \to f$ po meri.

Triki: najprej dokaži za ||x|| = 1, če imaš produkt načaraj ustrezne funkcije za Holderja, če imaš vsote pa za Minkowskega.

Random: Gamma: $\Gamma(t) = \int_0^\infty x^{t-1} e^{-x} dx$, $\Gamma(1/2) = \sqrt{\pi}$ Včasih so koristne množice oblike: $E_t = \{x \in X \; ; \; f(x) \ge t\}$. Taylor: $\log(1-x) = -\sum_{n=1}^\infty \frac{x^n}{n}$, $\log(1+x) = \sum_{n=1}^\infty (-1)^{n+1} \frac{x^n}{n}$, $\frac{1}{(1-x)^{d+1}} = \sum \binom{n+d}{d} x^n$, arctan $x = \sum \frac{(-1)^n}{2n+1} x^{2n+1}$, $(1+x)^\alpha = \sum \frac{(-1)^n}{2n+1$ $\sum_{n=0}^{\infty} \binom{\alpha}{n} x^n.$

Integrali in formule

Integrali in formule
$$\int \ln x = x \ln x - x$$

$$\int \frac{1}{\sin(x)} = \ln \tan(x/2)$$

$$1 + \tan^2 x = \frac{1}{\cos^2 x}$$

$$\int x^m \log(x) = x^{m+1} \left(\frac{\log x}{m+1} - \frac{1}{(m+1)^2}\right)$$

$$\int \frac{1}{\cos(x)} = -\log(\cot(x/2))$$

$$1 + \cot^2 x = \frac{1}{\sin^2 x}$$

$$\int p(x)e^{kx} = q(x)e^{kx}, \text{ st}(q) = \text{st}(p)$$

$$\int \frac{1}{\tan(x)} = \log(\sin(x))$$

$$\sin x = \frac{e^{ix} - e^{-ix}}{2i}$$

$$\int e^{ax} \sin(bx) = \frac{e^{ax}}{a^2 + b^2} (a \sin(bx) - b \cos(bx))$$

$$\int \tan(x) = -\log(\cos(x))$$

$$\cos x = \frac{e^{ix} + e^{-ix}}{2}$$

$$\int e^{ax} \cos(bx) = \frac{e^{ax}}{a^2 + b^2} (a \cos(bx) + b \sin(bx))$$

$$\int x/(1+x) = x - \log(x+1)$$

$$\sinh x = \frac{e^x - e^{-x}}{2}$$

$$\int \frac{1}{\sqrt{a^2 + x^2}} = \arcsin \frac{x}{a}$$

$$\int x/(1+x) = x - \log(x+1)$$

$$\cosh x = \frac{e^x + e^{-x}}{2}$$

$$\int \sin^2(x) = \frac{1}{2}(x - \sin x \cos x)$$

$$\cosh x = \frac{e^x + e^{-x}}{2}$$

$$\int \sin^2(x) = \frac{1}{2}(x + \sin x \cos x)$$

$$\cosh^2 x - \sinh^2 x = 1$$

$$\sin^2(x/2) = (1 - \cos(x))/2$$

$$\cos^2(x/2) = (1 + \cos(x))/2$$

$$\int \frac{1}{b + ax} = \frac{\log(ax + b)}{a}$$

$$\int \frac{1}{ax^2 + bx} = \begin{cases} \frac{1}{\sqrt{a}} \log|2ax + b + 2\sqrt{a}\sqrt{ax^2 + bx}|, & a > 0\\ \frac{-1}{\sqrt{-a}} \arcsin((2ax + b)/\sqrt{D}), & a < 0 \end{cases}$$

$$\int \frac{p(x)}{(x-a)^n (x^2 + bx)^m} = A \log|x - a| + B \log|x^2 + bx| \arctan(\frac{2x+b}{\sqrt{-D}}) + \frac{\text{polinom st. ena manj kot spodaj}}{(x-a)^{n-1} (x^2 + bx)^{m-1}}$$

$$\frac{d}{dx} \int_{a(x)}^{b(x)} f(t) dt = f(b(x))b'(x) - f(a(x))a'(x)$$

Substitucija: $t = \tan x, \sin^2 x = t^2/(1+t^2), \cos^2 x = 1/(1+t^2), = 1/(1+t^2)$ Substitucija: $u = \tan(x/2), \sin x = 2u/(1+u^2), \cos x = (1-u^2)/(1+u^2), = 2du/(1+u^2)$