UNITED STATES PATENT AND TRADEMARK OFFICE CERTIFICATE OF CORRECTION

PATENT NO. : 7,414,416 B2 Page 1 of 10

APPLICATION NO.: 10/506518

DATED: August 19, 2008

INVENTOR(S): Watkins, Jr. et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

The title page, showing an illustrative figure, should be deleted and substitute therefor the attached title page.

Formal drawings (Sheets 1-8), attached, replace informal drawings (Sheets 1-8) as issued.

Signed and Sealed this

Twenty-ninth Day of June, 2010

David J. Kappos Director of the United States Patent and Trademark Office

(12) United States Patent

Watkins, Jr. et al.

(54) ELECTRICAL CONDITION MONITORING METHOD FOR POLYMERS

(75) Inventors: Kenneth S. Watkins, Jr., Dahlonega,
GA (US); Shelby J. Morris, Hampton,
VA (US); Daniel D. Masakowski,
Worcester, MA (US); Ching Ping Wong,
Duluth, GA (US); Shijian Luo, Boise,

ID (US)

(73) Assignee: Polymer Aging Concepts Inc.,

Dahlonega, GA (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 108 days.

(21) Appl. No.: 10/506,518

(22) PCT Filed: Mar. 5, 2003

(86) PCT No.: PCT/US03/06844

§ 371 (c)(1),

(2), (4) Date: May 9, 2005

(87) PCT Pub. No.: WO03/076953

PCT Pub. Date: Sep. 18, 2003

(65) Prior Publication Data

US 2005/0268734 A1 Dec. 8, 2005

Related U.S. Application Data

- (60) Provisional application No. 60/362,157, filed on Mar. 6, 2002.
- (51) Int. Cl.

 G01N 17/00 (2006.01)

 G01N 33/44 (2006.01)

 G01N 27/04 (2006.01)

 G01N 27/20 (2006.01)

 G01R 31/12 (2006.01)

(10) Patent No.:

US 7,414,416 B2

(45) Date of Patent:

Aug. 19, 2008

- (58) Field of Classification Search 73/865.9-866, 73/865.6, 786, 802; 324/543-544, 693, 691, 324/541, 555, 71.1

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

3,603,142 A		9/1971	Saylak et al.
4,520,341 A	*	5/1985	Miyoshi et al 338/35
4,988,875 A	*	1/1991	Ortiz et al 250/330
5,317,252 A	+	5/1994	Kranbuehl 324/71.1
5,432,435 A	*	7/1995	Strong et al 324/71.1
5,789,665 A	*	8/1998	Voelker et al 73/53.05
6,004,817 A	*	12/1999	Chamberlain et al 436/56
6.037.180 A	*	3/2000	Yorkgitis et al 73/866 X

(Continued)

FOREIGN PATENT DOCUMENTS

JP 361044339 A 3/1986

(Continued)

Primary Examiner—Thomas P. Noland (74) Attorney, Agent, or Firm—Kenneth S. Watkins

(57) ABSTRACT

An electrical condition monitoring method utilizes measurement of electrical resistivity of an age sensor made of a conductive matrix or composite disposed in a polymeric structure such as an electrical cable. The conductive matrix comprises a base polymer and conductive filler. The method includes communicating the resistivity to a measuring instrument and correlating resistivity of the conductive matrix of the polymeric structure with resistivity of an accelerated aged conductive composite.

45 Claims, 8 Drawing Sheets

FIG.1A

Elongation at break versus aging time for sample with 25% carbon black

FIG.1B

RECEIVED-USPTO Volume Change versus Aging time and Publication

FIG.1C

Density of sample with 25% carbon black versus aging time at 125C

FIG.1D

Restivitivity versus aging time for sample with 25% carbon black loading (aging temperature: 125C, measured one day after the sample-was taken out)

FIG.2A

203

201

201

