# Network structure from rich but noisy data OxWaSP Module 1: Computational Statistics and Statistical Computing

Maud Lemercier and Natalia Garcia Martin

19 October 2018

# Overview

- 1 Motivation
- 2 Network models
- 3 Challenges
- 4 Algorithms
- 5 Experiments and results
- 6 Future work and conclusion

## Motivation

Motivation

- Study of social networks
- Noisy data : measured interactions ≠ actual interactions
- $P(\theta|\text{data}) \propto \sum_{A} P(\text{data}|A, \theta_{Y}) P(A|\theta_{A}) P(\theta)$
- Introduce  $\alpha = \mathsf{TP}$  rate and  $\beta = \mathsf{FP}$  rate



FIGURE - Graphical model of noisy data.

## Network models

## Bernoulli (Erdös Rényi) random network

- ho = 
  ho probability of edge formation
- $\forall i, j \in [n], i < j, a_{ij} \stackrel{iid}{\sim} \mathrm{Bern}(\rho)$
- $\blacksquare \ell(A|p) = \prod_{i < j} \rho^{a_{ij}} (1 \rho)^{1 a_{ij}}$
- $\blacksquare$   $d_V \sim \text{Binom}(n-1, \rho)$

#### Exponential random graph models (ERGM)

- $P(A|\theta) = \frac{1}{Z(\theta)} \exp\left(\sum_{i=1}^{m} \theta_i T_i(a)\right) = \frac{1}{Z(\theta)} \exp\left[\theta^t T(a)\right]$
- Bernoulli graph : 1-dimensional case with  $\theta = \frac{\rho}{1-a}$  and  $T(a) = \sum_{i < j} a_{ij}$



FIGURE – (Left) A graph generated with the Erdös Rény model (Right) A business network among 16 Florentine families.



FIGURE - Example of edge, 2-star, 3-star and triangle.

# Challenges

Motivation

- Noisy data :
  - Inference with latent variables
  - Complicates MAP and ML computations
- ERGM models :
  - Intractable normalising constant Z(θ) due to large number of possible networks

#### Approaches :

- The EM algorithm
- Aggregate data from repeated observations
- Approaches :
  - Introducing a well-chosen auxiliary variable in Metropolis-Hastings algorithms

Motivation

#### Algorithm 1 Expectation Maximization algorithm

Given  $(\alpha, \beta, \rho)$  from the previous iteration

1. Expectation step

$$Q_{i,j} \leftarrow \frac{\rho \alpha^{\mathsf{E}_{i,j}} (1-\alpha)^{k-\mathsf{E}_{i,j}}}{\rho \alpha^{\mathsf{E}_{i,j}} (1-\alpha)^{k-\mathsf{E}_{i,j}} + (1-\rho)\beta^{\mathsf{E}_{i,j}} (1-\beta)^{k-\mathsf{E}_{i,j}}}$$

2. Maximization step

$$\alpha \leftarrow \frac{\sum_{i < j} E_{i,j} Q_{i,j}}{k \sum_{i < j} Q_{i,j}}$$
$$\beta \leftarrow \frac{\sum_{i < j} E_{i,j} (1 - Q_{i,j})}{k \sum_{i < j} (1 - Q_{i,j})}$$
$$\rho \leftarrow \frac{1}{\binom{2}{3}} \sum_{i < j} Q_{i,j}$$

## **Algorithms**

Motivation

#### Algorithm 2 Exchange algorithm

Given  $\theta_n \in \Theta$  at the  $n^{th}$  iteration

- 1. Propose  $\theta' \sim q(\cdot|\theta_n)$
- 2. Generate the auxiliary variable  $u \sim \frac{h(\cdot|\theta')}{Z(\theta')}$
- 3. Accept  $\theta_{n+1}$  with probability

$$\alpha = \min\left\{1, \frac{p(\theta')h(x|\theta')h(u|\theta_n)q(\theta_n|\theta')}{p(\theta_n)h(x|\theta_n)h(u|\theta')q(\theta'|\theta_n)}\right\}$$

Reject otherwise

#### Algorithm 3 Double Metropolis-Hastings algorithm

Given  $\theta_n \in \Theta$  at the  $n^{th}$  iteration

- 1. Propose  $\theta' \sim q(\cdot|\theta_n)$
- 2. Generate the auxiliary variable using m MH-updates  $u \sim T_{a'}^m(.|x)$
- 3. Accept  $\theta_{n+1}$  with probability

$$\alpha = \min \left\{ 1, \frac{p(\theta')T_{\theta'}^m(x|u)h(u|\theta_n)q(\theta_n|\theta')}{p(\theta_n)h(x|\theta_n)T_{\theta'}^m(u|x)q(\theta'|\theta_n)} \right\}$$

Reject otherwise



FIGURE — Augmented model.



FIGURE - Example of 4 Gibbs updates.

# Experiments and results



FIGURE - (Left) Ground truth underlying network (Right) Inferred network using the EM algorithm-



FIGURE – (Left) Performance metrics versus the number of repeated observations (Right) Performance versus network size.

# Experiments and results

#### Dataset

- A Florentine Business Network (ergm R package)
- Graph with 16 nodes
- Sufficient statistics  $S(x) = \{S_1(x), S_2(x), S_3(x), S_4(x)\}$  representing edges, 2-stars, 3-stars and triangles

#### Double Metropolis-Hastings algorithm

- 30000 iterations
- 10 cycles of Gibbs updates
- Random initialisation
- Uniform priors  $\mathcal{U}(-5,5)$
- Random walk scale  $\sigma = 0.05$



FIGURE — Parameter trace plots for the coefficients of the FRGM model

# Experiments and results









FIGURE – Histograms for the coefficients of the ERGM model.

## Results

| Parameter  | Mean  | SD   |
|------------|-------|------|
| $\theta_1$ | -4.80 | 0.07 |
| $\theta_2$ | 1.48  | 0.04 |
| $\theta_3$ | -0.98 | 0.02 |
| $\theta_4$ | 1.16  | 0.03 |

TABLE - Post. means and standard deviations

#### Gold standard

| Parameter    | Mean  | SD    |
|--------------|-------|-------|
| $\theta_1$   | -4.39 | 0.007 |
| $\theta_2$   | 1.25  | 0.004 |
| $\theta_3$   | -0.84 | 0.002 |
| $\theta_{A}$ | 1.22  | 0.004 |

TABLE - Post. means and standard deviations

ation Network models Challenges Algorithms Experiments and results **Future work and conclusion** 

## Future work and conclusion

- Quantify the scalability of the algorithms with the number of nodes
- Generalise bayesian inference methods to ERGM models with noisy data