Association Rule Mining

DSA 6000: Data Science and Analytics, Fall 2019

Wayne State University

Association Rule Mining

- Discover interesting relations among variables in large datasets
- Typically applied to point-of-sale (POS) transaction data sets (usually huge). Also called Market Basket Analysis
- What items are frequently bought together?
- John watched movie X and Y, what other movie might John be interested in?

Association

- Measures co-occurrence, not causality
- Common metrics of association: Support, Confidence, Lift
- **Support (S)**: how popular an itemset S is, measured by the proportion of transactions in which an itemset appears.
 - The proportion of transactions in the dataset which contains the itemset S.

Transaction 1	9 9 %
Transaction 2	9 🕨 😏
Transaction 3	(3)
Transaction 4	O
Transaction 5	Ø 🕦 😑 💊
Transaction 6	∅ 🕦 ⊝
Transaction 7	∅
Transaction 8	Ø 0

Support
$$\{ \bigcirc \} = \frac{4}{8}$$

Support{Apple, Beer} = 3/8 Support{Chicken, Rice, Beer} = ?

The higher the support, the more frequently the itemset appears in customers' baskets

Confidence

- Confidence (X->Y): how likely item Y is purchased when item X is purchased, measured by the proportion of transactions with item X, in which item Y also appears.
- The proportion of the transactions that contains X which also contains Y.

Transaction 1	◎ № ○ %
Transaction 2	9 🕨 😏
Transaction 3	(3)
Transaction 4	()
Transaction 5	Ø 🕦 🖯 💊
Transaction 6	∅ 🕦 ⊝
Transaction 7	∅
Transaction 8	Ø 🐚

The higher the confidence, the stronger X is as an indicator of Y

Confidence
$$\{ \bigcirc \rightarrow \bigcirc \} = \frac{\text{Support } \{ \bigcirc, \bigcirc \}}{\text{Support } \{ \bigcirc \}} = \frac{3/8}{4/8} = 0.75$$

Lift

- Lift (X->Y): how likely item Y is purchased when item X is purchased, while controlling for how popular item Y is.
- A lift value greater than 1 means that item Y is likely to be bought if item X is bought, while a value less than 1 means that item Y is unlikely to be bought if item X is bought.

Transaction 1	◎ № ○ %
Transaction 2	9 🕨 😏
Transaction 3	(3)
Transaction 4	(4)
Transaction 5	Ø № ⊖ %
Transaction 6	∅ 🕑 ⊝
Transaction 7	∅
Transaction 8	Ø 🖔

Lift
$$\{ \bigcirc \rightarrow \square \} = \frac{\text{Support } \{ \bigcirc, \square \}}{\text{Support } \{ \bigcirc \} \times \text{Support } \{ \square \}} = 1$$

Relation graph of items

Relation Graph of Top-selling MRCs

Algorithms

- Apriori and Eclat Algorithms
 - C program, very fast
 - http://www.borgelt.net/software.html
- "arules" package in R contains these algorithms
 - https://cran.r-project.org/web/packages/arules/index.html
- Examples
 - https://www.kaggle.com/msp48731/frequent-itemsets-and-association-rules