

Sequence Listing

<110> Ashkenazi, Avi J.
Baker, Kevin P.
Botstein, David
Desnoyers, Luc
Eaton, Dan L.
Ferrara, Napoleone
Fong, Sherman
Gerber, Hanspeter
Gerritsen, Mary E.
Goddard, Audrey
Godowski, Paul J.
Grimaldi, J. Christopher
Gurney, Austin L.
Kljavin, Ivar J.
Napier, Mary A.
Pan, James
Paoni, Nicholas F.
Roy, Margaret Ann
Stewart, Timothy A.
Tumas, Daniel
Watanabe, Colin K.
Williams, P. Mickey
Wood, William I.
Zhang, Zemin

<120> Secreted and Transmembrane Polypeptides and Nucleic Acids Encoding the Same

<130> P2730P1C28

<150> 60/049787
<151> 1997-06-16

<150> 60/062250
<151> 1997-10-17

<150> 60/065186
<151> 1997-11-12

<150> 60/065311
<151> 1997-11-13

<150> 60/066770
<151> 1997-11-24

<150> 60/075945
<151> 1998-02-25

<150> 60/078910
<151> 1998-03-20

<150> 60/083322
<151> 1998-04-28

<150> 60/084600
<151> 1998-05-07

<150> 60/087106
<151> 1998-05-28

<150> 60/087607

<151> 1998-06-02

<150> 60/087609
<151> 1998-06-02

<150> 60/087759
<151> 1998-06-02

<150> 60/087827
<151> 1998-06-03

<150> 60/088021
<151> 1998-06-04

<150> 60/088025
<151> 1998-06-04

<150> 60/088026
<151> 1998-06-04

<150> 60/088028
<151> 1998-06-04

<150> 60/088029
<151> 1998-06-04

<150> 60/088030
<151> 1998-06-04

<150> 60/088033
<151> 1998-06-04

<150> 60/088326
<151> 1998-06-04

<150> 60/088167
<151> 1998-06-05

<150> 60/088202
<151> 1998-06-05

<150> 60/088212
<151> 1998-06-05

<150> 60/088217
<151> 1998-06-05

<150> 60/088655
<151> 1998-06-09

<150> 60/088734
<151> 1998-06-10

<150> 60/088738
<151> 1998-06-10

<150> 60/088742
<151> 1998-06-10

<150> 60/088810
<151> 1998-06-10

<150> 60/088824

<151> 1998-06-10

<150> 60/088826
<151> 1998-06-10

<150> 60/088858
<151> 1998-06-11

<150> 60/088861
<151> 1998-06-11

<150> 60/088876
<151> 1998-06-11

<150> 60/089105
<151> 1998-06-12

<150> 60/089440
<151> 1998-06-16

<150> 60/089512
<151> 1998-06-16

<150> 60/089514
<151> 1998-06-16

<150> 60/089532
<151> 1998-06-17

<150> 60/089538
<151> 1998-06-17

<150> 60/089598
<151> 1998-06-17

<150> 60/089599
<151> 1998-06-17

<150> 60/089600
<151> 1998-06-17

<150> 60/089653
<151> 1998-06-17

<150> 60/089801
<151> 1998-06-18

<150> 60/089907
<151> 1998-06-18

<150> 60/089908
<151> 1998-06-18

<150> 60/089947
<151> 1998-06-19

<150> 60/089948
<151> 1998-06-19

<150> 60/089952
<151> 1998-06-19

<150> 60/090246

He was a man of great energy and determination, and he left a lasting legacy in the field of education.

<151> 1998-06-22

<150> 60/090252
<151> 1998-06-22

<150> 60/090254
<151> 1998-06-22

<150> 60/090349
<151> 1998-06-23

<150> 60/090355
<151> 1998-06-23

<150> 60/090429
<151> 1998-06-24

<150> 60/090431
<151> 1998-06-24

<150> 60/090435
<151> 1998-06-24

<150> 60/090444
<151> 1998-06-24

<150> 60/090445
<151> 1998-06-24

<150> 60/090472
<151> 1998-06-24

<150> 60/090535
<151> 1998-06-24

<150> 60/090540
<151> 1998-06-24

<150> 60/090542
<151> 1998-06-24

<150> 00/09057
<151> 1998-06-24

<150> 00/050070
<151> 1998-06-25

<151> 1998-06-25

<151> 1998-06-25

<151> 1998-06-25

<151> 1998-06-25

<151> 1998-06-25

<151> 1998-06-26

<150> 60/090863
<151> 1998-06-26

<150> 60/091360
<151> 1998-07-01

<150> 60/091478
<151> 1998-07-02

<150> 60/091544
<151> 1998-07-01

<150> 60/091519
<151> 1998-07-02

<150> 60/091626
<151> 1998-07-02

<150> 60/091633
<151> 1998-07-02

<150> 60/091978
<151> 1998-07-07

<150> 60/091982
<151> 1998-07-07

<150> 60/092182
<151> 1998-07-09

<150> 60/092472
<151> 1998-07-10

<150> 60/091628
<151> 1998-07-02

<150> 60/091646
<151> 1998-07-02

<150> 60/091673
<151> 1998-07-02

<150> 60/093339
<151> 1998-07-20

<150> 60/094651
<151> 1998-07-30

<150> 60/095282
<151> 1998-08-04

<150> 60/095285
<151> 1998-08-04

<150> 60/095302
<151> 1998-08-04

<150> 60/095318
<151> 1998-08-04

<150> 60/095321

<151> 1998-08-04

<150> 60/095301
<151> 1998-08-04

<150> 60/095325
<151> 1998-08-04

<150> 60/095916
<151> 1998-08-10

<150> 60/095929
<151> 1998-08-10

<150> 60/096012
<151> 1998-08-10

<150> 60/096143
<151> 1998-08-11

<150> 60/096146
<151> 1998-08-11

<150> 60/096329
<151> 1998-08-12

<150> 60/096757
<151> 1998-08-17

<150> 60/096766
<151> 1998-08-17

<150> 60/096768
<151> 1998-08-17

<150> 60/096773
<151> 1998-08-17

<150> 60/096791
<151> 1998-08-17

<150> 60/096867
<151> 1998-08-17

<150> 60/096891
<151> 1998-08-17

<150> 60/096894
<151> 1998-08-17

<150> 60/096895
<151> 1998-08-17

<150> 60/096897
<151> 1998-08-17

<150> 60/096949
<151> 1998-08-18

<150> 60/096950
<151> 1998-08-18

<150> 60/096959

<151> 1998-08-18

<150> 60/096960
<151> 1998-08-18

<150> 60/097022
<151> 1998-08-18

<150> 60/097141
<151> 1998-08-19

<150> 60/097218
<151> 1998-08-20

<150> 60/097661
<151> 1998-08-24

<150> 60/097952
<151> 1998-08-26

<150> 60/097954
<151> 1998-08-26

<150> 60/097955
<151> 1998-08-26

<150> 60/098014
<151> 1998-08-26

<150> 60/097971
<151> 1998-08-26

<150> 60/097974
<151> 1998-08-26

<150> 60/097978
<151> 1998-08-26

<150> 60/097986
<151> 1998-08-26

<150> 60/097979
<151> 1998-08-26

<150> 60/098525
<151> 1998-08-31

<150> 60/100634
<151> 1998-09-16

<150> 60/100858
<151> 1998-09-17

<150> 60/113296
<151> 1998-12-22

<150> 60/123957
<151> 1999-03-12

<150> 60/141037
<151> 1999-06-23

<150> 60/143048

<151> 1999-07-07

<150> 60/144758
<151> 1999-07-20

<150> 60/145698
<151> 1999-07-26

<150> 60/146222
<151> 1999-07-28

<150> 60/149396
<151> 1999-08-17

<150> 60/158663
<151> 1999-10-08

<150> 60/213637
<151> 2000-06-23

<150> 60/230978
<151> 2000-09-07

<150> 08/743698
<151> 1996-11-06

<150> 08/876698
<151> 1997-06-16

<150> 08/965056
<151> 1997-11-05

<150> 09/105413
<151> 1998-06-26

<150> 09/168978
<151> 1998-10-07

<150> 09/187368
<151> 1998-11-06

<150> 09/202054
<151> 1998-12-07

<150> 09/218517
<151> 1998-12-22

<150> 09/254311
<151> 1999-03-03

<150> 09/254460
<151> 1999-03-09

<150> 09/267213
<151> 1999-03-12

<150> 09/284291
<151> 1999-04-12

<150> 09/380137
<151> 1999-08-25

<150> 09/380138

<151> 1998-08-25

<150> 09/380139
<151> 1999-08-25

<150> 09/403296
<151> 1999-10-18

<150> 09/423844
<151> 1999-11-12

<150> 09/664610
<151> 2000-09-18

<150> 09/665350
<151> 2000-09-18

<150> 09/709238
<151> 2000-11-08

<150> 09/808689
<151> 2001-03-14

<150> 09/854816
<151> 2001-05-15

<150> 09/866028
<151> 2001-05-25

<150> 09/866034
<151> 2001-05-25

<150> 09/872035
<151> 2001-06-01

<150> 09/882636
<151> 2001-06-14

<150> 09/941,992
<151> 2001-08-28

<150> PCT/US97/20069
<151> 1997-11-05

<150> PCT/US98/19330
<151> 1998-09-16

<150> PCT/US98/19437
<151> 1998-09-17

<150> PCT/US98/21141
<151> 1998-10-07

<150> PCT/US98/25108
<151> 1998-12-01

<150> PCT/US99/00106
<151> 1999-01-05

<150> PCT/US99/05028
<151> 1999-03-08

<150> PCT/US99/12252

<151> 1999-06-02

<150> PCT/US99/21090
<151> 1999-09-15

<150> PCT/US99/21547
<151> 1999-09-15

<150> PCT/US99/28313
<151> 1999-11-30

<150> PCT/US99/28301
<151> 1999-12-01

<150> PCT/US99/28634
<151> 1999-12-01

<150> PCT/US99/30095
<151> 1999-12-16

<150> PCT/US99/30911
<151> 1999-12-20

<150> PCT/US00/00219
<151> 2000-01-05

<150> PCT/US00/00376
<151> 2000-01-06

<150> PCT/US00/03565
<151> 2000-02-11

<150> PCT/US00/04341
<151> 2000-02-18

<150> PCT/US00/04414
<151> 2000-02-22

<150> PCT/US00/04914
<151> 2000-02-24

<150> PCT/US00/05004
<151> 2000-02-24

<150> PCT/US00/05841
<151> 2000-03-02

<150> PCT/US00/06319
<151> 2000-03-10

<150> PCT/US00/06884
<151> 2000-03-15

<150> PCT/US00/07377
<151> 2000-03-20

<150> PCT/US00/08439
<151> 2000-03-30

<150> PCT/US00/13358
<151> 2000-05-15

<150> PCT/US00/13705

<151> 2000-05-17
<150> PCT/US00/14042
<151> 2000-05-22
<150> PCT/US00/14941
<151> 2000-05-30
<150> PCT/US00/15264
<151> 2000-06-02
<150> PCT/US00/20710
<151> 2000-07-28
<150> PCT/US00/22031
<151> 2000-08-11
<150> PCT/US00/23522
<151> 2000-08-23
<150> PCT/US00/23328
<151> 2000-08-24
<150> PCT/US00/30952
<151> 2000-11-08
<150> PCT/US00/32678
<151> 2000-12-01
<150> PCT/US01/06520
<151> 2001-02-28
<150> PCT/US01/17800
<151> 2001-06-01
<150> PCT/US01/19692
<151> 2001-06-20
<150> PCT/US01/21066
<151> 2001-06-29
<150> PCT/US01/21735
<151> 2001-07-09
<160> 532
<210> 1
<211> 1943
<212> DNA
<213> Homo sapiens
<400> 1
cggacgcgtg ggtgcgaggc gaaggtgacc ggggaccgag catttcagat 50
ctgctcggtt gacctgggtgc accaccacca tggctggctgc aaggctggtg 100
tgtctccggta cactacccttc tagggttttc caccctggtt tcacccaaggc 150
ctccccctgtt gtgaagaatt ccatcacgaa gaatcaatgg ctgttaaacac 200
cttagcaggga atatgccacc aaaacaagaa ttgggatccg gcgtgggaga 250
actggccaag aactcaaaga ggcagcattt gaaccatcga tggaaaaaat 300

attnaaaatt gatcagatgg gaagatggtt tggctgga gggctgctg 350
ttggcttgg agcattgtgc tactatggct tggactgtc taatgagatt 400
ggagctattg aaaaggctgt aatggccct cagtatgtca aggatagaat 450
tcattccacc tatatgtact tagcaggag tattggttt acagcttgc 500
ctgccatagc aatcagcaga acgcctgttc tcatgaactt catgatgaga 550
ggctttggg tgacaattgg tgtgacctt gcagccatgg ttggagctgg 600
aatgctggta cgatcaatac catatgacca gagcccaggc ccaaagcatc 650
ttgcttgggt gctacattct ggtgtgatgg gtgcagtgg ggctcctcg 700
acaatattag ggggtcctct tctcatcaga gctgcatggt acacagctgg 750
cattgtggga ggcctctcca ctgtggccat gtgtgcgccc agtggaaagt 800
ttctgaacat ggggcaccc ctggagtg ggctgggtct cgtctttgtg 850
tcctcattgg gatctatgtt tcttccaccc accaccgtgg ctggtgccac 900
tctttactca gtggcaatgt acggtgatt agttctttc agcatgttcc 950
ttctgtatga tacccagaaa gtaatcaagc gtgcagaagt atcaccaatg 1000
tatggagttc aaaaatatga tccccattaac tcgatgctga gtatctacat 1050
ggatacatta aatatattta tgcgagttgc aactatgctg gcaactggag 1100
gcaacagaaa gaaatgaagt gactcagtt ctggcttc tgctacatca 1150
aatatcttgt ttaatggggc agatatgcat taaatagttt gtacaagcag 1200
cttcgttga agtttagaag ataagaaaca tgtcatcata tttaaatgtt 1250
ccggtaatgt gatgcctcag gtctgcctt tttctggag aataaatgca 1300
gtaatcctct cccaaataag cacacacatt ttcaattctc atgtttgagt 1350
gattttaaaa tgttttggtg aatgtgaaaa ctaaagttt tgcatgaga 1400
atgttaagtct ttttctact taaaattta gtaggttcac tgtagtaacta 1450
aaattttagca aacctgtgtt tgcatatttt tttggagtgc agaatattgt 1500
aattaatgtc ataagtgatt tggagcttgc gtaaaggac cagagagaag 1550
gagtcacctg cagttttg tttttttaaa tacttagaac ttagcacttgc 1600
tgttattgtat tagtgaggag ccagtaagaa acatctgggt atttgaaac 1650
aagtggcat tgttacattc atttgctgaa cttacaaaa ctgttcatcc 1700
tgaaacaggc acaggtgatg cattctcctg ctgttgcttc tcagtgctct 1750
ctttccaata tagatgtggc catgtttgac ttgtacagaa tgttaatcat 1800
acagagaatc cttgtatggaa ttatataatgt gtgtttact tttgaatgtt 1850
acaaaaggaa ataactttaa aactattctc aagagaaaaat attcaaagca 1900

tgaaatatgt tgcttttcc agaatac aaa cagtatactc atg 1943

<210> 2

<211> 345

<212> PRT

<213> Homo sapiens

<400> 2

Met	Leu	Ala	Ala	Arg	Leu	Val	Cys	Leu	Arg	Thr	Leu	Pro	Ser	Arg
1					5			10						15
Val	Phe	His	Pro	Ala	Phe	Thr	Lys	Ala	Ser	Pro	Val	Val	Lys	Asn
	20							25						30
Ser	Ile	Thr	Lys	Asn	Gln	Trp	Leu	Leu	Thr	Pro	Ser	Arg	Glu	Tyr
	35							40						45
Ala	Thr	Lys	Thr	Arg	Ile	Gly	Ile	Arg	Arg	Gly	Arg	Thr	Gly	Gln
	50							55						60
Glu	Leu	Lys	Glu	Ala	Ala	Leu	Glu	Pro	Ser	Met	Glu	Lys	Ile	Phe
	65						70							75
Lys	Ile	Asp	Gln	Met	Gly	Arg	Trp	Phe	Val	Ala	Gly	Gly	Ala	Ala
	80							85						90
Val	Gly	Leu	Gly	Ala	Leu	Cys	Tyr	Tyr	Gly	Leu	Gly	Leu	Ser	Asn
	95							100						105
Glu	Ile	Gly	Ala	Ile	Glu	Lys	Ala	Val	Ile	Trp	Pro	Gln	Tyr	Val
	110							115						120
Lys	Asp	Arg	Ile	His	Ser	Thr	Tyr	Met	Tyr	Leu	Ala	Gly	Ser	Ile
	125							130						135
Gly	Leu	Thr	Ala	Leu	Ser	Ala	Ile	Ala	Ile	Ser	Arg	Thr	Pro	Val
	140							145						150
Leu	Met	Asn	Phe	Met	Met	Arg	Gly	Ser	Trp	Val	Thr	Ile	Gly	Val
	155							160						165
Thr	Phe	Ala	Ala	Met	Val	Gly	Ala	Gly	Met	Leu	Val	Arg	Ser	Ile
	170							175						180
Pro	Tyr	Asp	Gln	Ser	Pro	Gly	Pro	Lys	His	Leu	Ala	Trp	Leu	Leu
	185							190						195
His	Ser	Gly	Val	Met	Gly	Ala	Val	Val	Ala	Pro	Leu	Thr	Ile	Leu
	200							205						210
Gly	Gly	Pro	Leu	Leu	Ile	Arg	Ala	Ala	Trp	Tyr	Thr	Ala	Gly	Ile
	215							220						225
Val	Gly	Gly	Leu	Ser	Thr	Val	Ala	Met	Cys	Ala	Pro	Ser	Glu	Lys
	230							235						240
Phe	Leu	Asn	Met	Gly	Ala	Pro	Leu	Gly	Val	Gly	Leu	Gly	Leu	Val
	245							250						255
Phe	Val	Ser	Ser	Leu	Gly	Ser	Met	Phe	Leu	Pro	Pro	Thr	Thr	Val
	260							265						270
Ala	Gly	Ala	Thr	Leu	Tyr	Ser	Val	Ala	Met	Tyr	Gly	Gly	Leu	Val

275 280 285

Leu Phe Ser Met Phe Leu Leu Tyr Asp Thr Gln Lys Val Ile Lys
290 295 300

Arg Ala Glu Val Ser Pro Met Tyr Gly Val Gln Lys Tyr Asp Pro
305 310 315

Ile Asn Ser Met Leu Ser Ile Tyr Met Asp Thr Leu Asn Ile Phe
320 325 330

Met Arg Val Ala Thr Met Leu Ala Thr Gly Gly Asn Arg Lys Lys
335 340 345

<210> 3
<211> 43
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 3
tgtaaaacga cggccaggtta aatagacctg caattattaa tct 43

<210> 4
<211> 41
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 4
caggaaacag ctatgaccac ctgcacacacct gcaaatccat t 41

<210> 5
<211> 3033
<212> DNA
<213> Homo sapiens

<400> 5
gaaggctgcc tcgctggtcc gaattcggtg ggcacgtc cgccccgtctc 50
cgccctctgc atcgccgctt cggccgcttc cacctagaca cctaacagtc 100
cgccgagccgg ccgcgtcgtg agggggtcgg cacggggagt cggccggctc 150
tgtgcacatctt ggctacactgt gggtcgaaga tgtcggacat cggagactgg 200
ttcaggagca tcccggcgat cacgcgttat tggttcggcc ccaccgtcgc 250
cgtgcccttg gtcggcaaac tcggcctcat cagcccgcc tacctcttcc 300
tctggcccgaa agccttcctt tatcgcttc agatttggag gccaatcact 350
gccacctttt atttccctgt gggccagga actggatttc tttatgggt 400
caatttatat ttcttatatc agtattctac gcgacttgaa acaggagctt 450
ttgatggag gccagcagac tatttattca tgctccttta taactggatt 500
tgcatcgtga ttactggctt agcaatggat atgcagttgc tgatgattcc 550

© 2024 BioEdit Software, Inc.

tctgatcatg tcagtaactt atgtctggc ccagctgaac agagacatga 600
ttgtatcatt ttggggaa acacgattt aggccctgta tttaccctgg 650
gttatccttg gattcaacta tatcatcgga ggctcgtaa tcaatgagct 700
tattggaaat ctggggac atctttat tttccataatg ttcagatacc 750
caatggactt gggaggaaga aattttctat ccacaccta gttttgtac 800
cgctggctgc ccagtaggag aggaggagta tcaggattt gtgtgcccc 850
tgctagcatg aggcgagctg ctgatcagaa tggcgaggc gggagacaca 900
actggggcca gggcttcga cttggagacc agtgaagggg cggcctcggg 950
cagccgctcc tctcaagcca catttcctcc cagtctggg tgcacttaac 1000
aactgcgttc tggctaacac tggcttgcacct gaccacact gaatgttagtc 1050
tttcagtagc agacaaagtt tcttaaatcc cgaagaaaaa tataagtgtt 1100
ccacaagttt cacgattctc attcaagtcc ttactgctgt gaagaacaaa 1150
taccaactgt gcaaattgca aaactgacta catttttgg tgtcttct 1200
tctccccttt ccgtctgaat aatgggtttt agcgggtcct aatctgctgg 1250
cattgagctg gggctgggtc accaaaccct tcccaaaaagg accttatctc 1300
tttcttgac acatgcctct ctcccactt tcccaacccc cacatttgc 1350
actagaaaaa gttgccata aaattgctt gcccttgaca gttctgtt 1400
tttattgact tttgccaagg ctggtcacaa caatcatatt cacgttattt 1450
tccccctttt gtggcagaac tgttaccaat agggggagaa gacagccacg 1500
gatgaagcgt ttctcagctt ttggaaattgc ttgcactgac atccgttgtt 1550
aaccgtttgc cactcttcag atattttta taaaaaaaagt accactgagt 1600
tcatgagggc cacagattgg ttattaatga gatacgaggg ttggtgctgg 1650
gtgtttgtt cctgagctaa gtgatcaaga ctgttagtgg gttcagacta 1700
acatgggtta ggttaaacc atggggatg caccctttg cgtttcatat 1750
gtagccctac tggctttgtg tagctggagt agtgggttg ctttgtgtt 1800
ggaggatcca gatcatgtt gctacaggaa gatgctctt ttgagaggc 1850
ctggcattt attcccttta caatctcatt ctggatatgt gttcatttag 1900
taaaggagga gagaccctca tacgctttaa aaatgtcact ttttgccct 1950
tccccctttt tttggcatg tttcaattaa ttgtgaggaa ggcccgagtc 2000
ctctctgcac gtagatcatt ttttaaagct aatgtaaagca catctaagg 2050
aataacatga tttaagggtt aatggctt agaattcattt gggtttgg 2100
gtgtgttatt ttgagtcattg aatgtacaag ctctgtgaat cagaccagct 2150

taaataccca caccttttt tcgtaggcgg gctttccta tcagagctt 2200
gctcataacc aaataaaagtt ttttgaaggc catggcttt cacacagtt 2250
ttttatTTTA tgacgttac tgaaagcaga ctgttaggag cagtattgag 2300
tggctgtcac actttgaggc aactaaaaag gcttcaaacg ttttgatcat 2350
tttctttca ggaaacattg tgctctaaca gtatgactat tctttcccc 2400
actcttaaac agtgtgatgt gtgttatcct aggaaatgag agttggcaaa 2450
caacttctca ttttgaatag agtttgttg tacttctcca tatttaattt 2500
atatgataaa ataggtgggg agagtctgaa ccttaactgt catgtttgt 2550
tgttcatctg tggccacaat aaagttact tgtaaaattt tagaggccat 2600
tactccaatt atgttgcacg tacactcatt gtacaggcgt ggagactcat 2650
tgtatgtata agaatatttc tgacagttag tgacccggag tctctgggt 2700
accctttac cagtcagctg cctgcgagca gtcattttt cctaaaggtt 2750
tacaagtatt tagaactttt cagttcaggg caaaatgttc atgaagttat 2800
tcctcttaaa catggttagg aagctgatga cgttattgtat tttgtctgga 2850
ttatgtttct ggaataattt taccaaaaca agctatttga gttttgactt 2900
gacaaggcaa aacatgacag tggattctct ttacaaatgg aaaaaaaaaa 2950
tccttatttt gtataaagga ctcccttt tgtaaactaa tccttttat 3000
tggtaaaaat tgtaaattaa aatgtgcaac ttg 3033

<210> 6
<211> 251
<212> PRT
<213> Homo sapiens

<400> 6
Met Ser Asp Ile Gly Asp Trp Phe Arg Ser Ile Pro Ala Ile Thr
1 5 10 15
Arg Tyr Trp Phe Ala Ala Thr Val Ala Val Pro Leu Val Gly Lys
20 25 30
Leu Gly Leu Ile Ser Pro Ala Tyr Leu Phe Leu Trp Pro Glu Ala
35 40 45
Phe Leu Tyr Arg Phe Gln Ile Trp Arg Pro Ile Thr Ala Thr Phe
50 55 60
Tyr Phe Pro Val Gly Pro Gly Thr Gly Phe Leu Tyr Leu Val Asn
65 70 75
Leu Tyr Phe Leu Tyr Gln Tyr Ser Thr Arg Leu Glu Thr Gly Ala
80 85 90
Phe Asp Gly Arg Pro Ala Asp Tyr Leu Phe Met Leu Leu Phe Asn
95 100 105

Trp Ile Cys Ile Val Ile Thr Gly Leu Ala Met Asp Met Gln Leu
 110 115 120
 Leu Met Ile Pro Leu Ile Met Ser Val Leu Tyr Val Trp Ala Gln
 125 130 135
 Leu Asn Arg Asp Met Ile Val Ser Phe Trp Phe Gly Thr Arg Phe
 140 145 150
 Lys Ala Cys Tyr Leu Pro Trp Val Ile Leu Gly Phe Asn Tyr Ile
 155 160 165
 Ile Gly Gly Ser Val Ile Asn Glu Leu Ile Gly Asn Leu Val Gly
 170 175 180
 His Leu Tyr Phe Phe Leu Met Phe Arg Tyr Pro Met Asp Leu Gly
 185 190 195
 Gly Arg Asn Phe Leu Ser Thr Pro Gln Phe Leu Tyr Arg Trp Leu
 200 205 210
 Pro Ser Arg Arg Gly Gly Val Ser Gly Phe Gly Val Pro Pro Ala
 215 220 225
 Ser Met Arg Arg Ala Ala Asp Gln Asn Gly Gly Gly Arg His
 230 235 240
 Asn Trp Gly Gln Gly Phe Arg Leu Gly Asp Gln
 245 250

<210> 7
 <211> 1373
 <212> DNA
 <213> Homo sapiens

<400> 7
 gggccgcgg tctagggcgg ctacgtgtgt tgccatagcg accattttgc 50
 attaactggc ttggtagcttc tatcctgggg gctgagcgac tgcggccag 100
 ctcttccccct actccctctc ggctccttgt ggcccaaagg cctaaccggg 150
 gtccggcggt ctggcctagg gatcttcccc gttgcccctt tggggcgaaa 200
 tggctgcggaa agaagaagac gaggtggagt gggtagtgaa gagcatcgcg 250
 gggttccctgc gaggcccaga ctggtccatc cccatcttgg actttgtgaa 300
 acagaaaatgt gaagttaact gcaaaggagg gcatgtgata actccaggaa 350
 gcccagagcc ggtgattttg gtggcctgtg ttccccttgt tttttagat 400
 gaagaagaaa gcaaatttgc actatacagag attcatcagg aatacaaaaga 450
 actagttgaa aagctgttag aaggttacct caaagaaatt ggaattaatg 500
 aagatcaatt tcaagaagca tgcacttctc ctcttgaaaa gaccatataca 550
 tcacaggcca ttttgcacc tgtgttgca gcagaagatt ttactatctt 600
 taaagcaatg atggccaga aaaacatgtg aatgcagctg caagccattc 650
 gaataattca agagagaaaat ggtgttattac ctgactgctt aaccgatggc 700

tctgatgtgg tcagtgacct tgaacacgaa gagatgaaaa tcctgaggga 750
agttcttaga aaatcaaaag aggaatatga ccaggaagaa gaaaggaaga 800
ggaaaaaaaaca gttatcagag gctaaaacag aagagcccac agtgcattcc 850
agtgaagctg caataatgaa taattccaa gggatggtg aacatTTGc 900
acaccccaccc tcagaagtta aaatgcatt tgctaattcag tcaatagaac 950
ctttgggaag aaaagtggaa aggtctgaaa cttcctccct cccacaaaaa 1000
ggcctgaaga ttccctggctt agagcatgcg agcattgaag gaccaatgc 1050
aaacttatca gtacttgaa cagaagaact tcggcaacga gaacactatc 1100
tcaaggcagaag gagagataag ttgatgtcca tgagaaagga tatgaggact 1150
aacagatac aaaatatgga gcagaaagga aaacccactg gggaggtaga 1200
gaaaatgaca gagaaaccag aaatgacagc agaggagaag caaacattac 1250
taaagaggag attgcttgca gagaaactca aagaagaagt tattaataag 1300
taataattaa gaacaattta acaaaatgga agttcaaatt gtctaaaaa 1350
taaattattt agtccttaca ctg 1373

<210> 8
<211> 367
<212> PRT
<213> Homo sapiens

<400> 8
Met Ala Ala Glu Glu Glu Asp Glu Val Glu Trp Val Val Glu Ser
1 5 10 15
Ile Ala Gly Phe Leu Arg Gly Pro Asp Trp Ser Ile Pro Ile Leu
20 25 30
Asp Phe Val Glu Gln Lys Cys Glu Val Asn Cys Lys Gly Gly His
35 40 45
Val Ile Thr Pro Gly Ser Pro Glu Pro Val Ile Leu Val Ala Cys
50 55 60
Val Pro Leu Val Phe Asp Asp Glu Glu Glu Ser Lys Leu Thr Tyr
65 70 75
Thr Glu Ile His Gln Glu Tyr Lys Glu Leu Val Glu Lys Leu Leu
80 85 90
Glu Gly Tyr Leu Lys Glu Ile Gly Ile Asn Glu Asp Gln Phe Gln
95 100 105
Glu Ala Cys Thr Ser Pro Leu Ala Lys Thr His Thr Ser Gln Ala
110 115 120
Ile Leu Gln Pro Val Leu Ala Ala Glu Asp Phe Thr Ile Phe Lys
125 130 135
Ala Met Met Val Gln Lys Asn Ile Glu Met Gln Leu Gln Ala Ile
140 145 150

Arg	Ile	Ile	Gln	Glu	Arg	Asn	Gly	Val	Leu	Pro	Asp	Cys	Leu	Thr
					155				160				165	
Asp	Gly	Ser	Asp	Val	Val	Ser	Asp	Leu	Glu	His	Glu	Glu	Met	Lys
				170				175					180	
Ile	Leu	Arg	Glu	Val	Leu	Arg	Lys	Ser	Lys	Glu	Glu	Tyr	Asp	Gln
					185				190				195	
Glu	Glu	Glu	Arg	Lys	Arg	Lys	Lys	Gln	Leu	Ser	Glu	Ala	Lys	Thr
				200					205				210	
Glu	Glu	Pro	Thr	Val	His	Ser	Ser	Glu	Ala	Ala	Ile	Met	Asn	Asn
				215				220					225	
Ser	Gln	Gly	Asp	Gly	Glu	His	Phe	Ala	His	Pro	Pro	Ser	Glu	Val
				230				235					240	
Lys	Met	His	Phe	Ala	Asn	Gln	Ser	Ile	Glu	Pro	Leu	Gly	Arg	Lys
					245				250				255	
Val	Glu	Arg	Ser	Glu	Thr	Ser	Ser	Leu	Pro	Gln	Lys	Gly	Leu	Lys
				260				265					270	
Ile	Pro	Gly	Leu	Glu	His	Ala	Ser	Ile	Glu	Gly	Pro	Ile	Ala	Asn
				275				280					285	
Leu	Ser	Val	Leu	Gly	Thr	Glu	Glu	Leu	Arg	Gln	Arg	Glu	His	Tyr
				290				295					300	
Leu	Lys	Gln	Lys	Arg	Asp	Lys	Leu	Met	Ser	Met	Arg	Lys	Asp	Met
				305				310					315	
Arg	Thr	Lys	Gln	Ile	Gln	Asn	Met	Glu	Gln	Lys	Gly	Lys	Prc	Thr
				320				325					330	
Gly	Glu	Val	Glu	Glu	Met	Thr	Glu	Lys	Pro	Glu	Met	Thr	Ala	Glu
				335				340					345	
Glu	Lys	Gln	Thr	Leu	Leu	Lys	Arg	Arg	Leu	Leu	Ala	Glu	Lys	Leu
				350				355					360	
Lys	Glu	Glu	Val	Ile	Asn	Lys								
				365										

<210> 9

<211> 418

<212> DNA

<213> Homo sapiens

<400> 9

gggcacagca catgtgaagt ttttgatgat gaagaagaaa gcaaatttgcac 50

ctatacagag attcatcagg aatacaaaga actagttgaa aagctgttag 100

aaggttacct caaagaaatt ggaattaatg aagatcaatt tcaagaagca 150

tgcacttctc ctcttgcaaa gaccataaca tcacaggcca tttttgcaac 200

ctgtgttggc agcagaagat ttactatct ttaaagcaat gatggccat 250

aaaaacattt aaatgcagct gcaagccatt cgaataattc aagagagaaa 300

tgggttatta cctgactgct taaccgatgg ctctgatgtg gtcagtgacc 350
ttgaacacga agagatgaaa atcctgaggg aagttcttag aaaatcaaaa 400
gaggaatatg accaggaa 418

<210> 10
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 10
ttgacctata cagagattca tc 22

<210> 11
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 11
ctaagaacctt ccctcaggat ttt 23

<210> 12
<211> 40
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 12
atgaagatca atttcaagaa gcatgcactt ctcctttgc 40

<210> 13
<211> 2886
<212> DNA
<213> Homo sapiens

<400> 13
gcgtggttt tgttctgcaa taggcggctt agagggaggg gcttttcgc 50
ctatacctac tgttagcttct ccacgtatgg accctaaagg ctactgctgc 100
tactacgggg ctagacagtt actgtctcg ctctaggatg tgcgttctc 150
cactagaagc tcttctgagg gaggttaatta aaaaacagtg gaatggaaaa 200
acagtgttgt agtcatcccg taatatgctc cttgtcaaca atgtatacat 250
tcctgctagg tgccatattc attgctttaa gctcaagtgc catcttacta 300
gtgaagtatt ctgccaatga agaaaacaag tatgattatc ttccaactac 350
tgtgaatgtg tgctcagaac tggtaagct agttttctgt gtgcttggt 400
cattctgtgt tataaagaaa gatcatcaaa gtagaaattt gaaatatgct 450

tcctggaagg aattctctga tttcatgaag tggccattc ctgccttct 500
ttatccctg gataacttga ttgtcttcta tgtcctgtcc tatcttcaac 550
cagccatggc tgttatctc tcaaattta gcattataac aacagcttt 600
ctattcagga tagtgctgaa gagggcgtcta aactggatcc agtgggcttc 650
cctcctgact ttattttgt ctattgtggc cttgactgcc gggactaaaa 700
ctttacagca caacttggca ggacgtggat ttcatcacga tgccttttc 750
agcccttcca attcctgcct tctttcaga agttagtgc ccagaaaaga 800
caattgtaca gcaaaggaat ggactttcc tgaagctaaa tggAACACCA 850
cagccagagt tttagtgcac atccgtcttgc gcatgggcca tgtagttatt 900
atagtcagg gttttatttc ttcaatggct aatatctata atgaaaagat 950
actgaaggag gggAACCCAGC tcactgaaag catcttcata cagaacagca 1000
aactctattt cttaggcatt ctgttaatg ggctgactct gggccttcag 1050
aggagtaacc gtgatcagat taagaactgt ggatTTTTT atggccacag 1100
tgcattttca gtagccctta ttttgtaac tgcattccag ggccttcag 1150
tggctttcat tctgaagttc ctggataaca tgtagttgt ctgtatggcc 1200
caggttacca ctgtcattat cacaacagtgc tctgtcctgg tctttgactt 1250
caggcccctcc ctggaaatttt tcttggaaagc cccatcagtc cttctctcta 1300
tatTTTATTtta taatGCCAGC aagcctcaag ttccggaaata cgCACCTAGG 1350
caagaaagga tccgagatct aagtggcaat ctggggagc gttccagtgg 1400
ggatggagaa gaactagaaaa gacttaccaa acccaagagt gatgagtccag 1450
atgaagatac tttctaactg gtacccacat agttgcagc tctcttgaac 1500
cttattttca cattttcagt gtttgtataa tttatctttt cactttgata 1550
aaccagaaat gtttctaaat cctaataattc tttgcatata tctagctact 1600
cccttaaatgg ttccatccaa ggcttagagt acccaaaaggc taagaaattc 1650
taaagaactg atacaggagt aacaatatga agaattcatt aatatctcag 1700
tacttgataa atcagaaagt tatatgtca gattatttc ctggcccttc 1750
aagcttccaa aaaacttgcataatacatgt tagctatagc ttgtatatac 1800
acatagagat caatttgcac aatattcaca atcatgttagt tctagttac 1850
atgccaaagt cttccctttt taacattata aaagcttaggt tgtctcttga 1900
atTTTgaggc cctagagata gtcattttgc aagtaaagag caacgggacc 1950
ctttctaaaa acgttggttg aaggacctaa atacctggcc ataccataga 2000
tttgggatga tgttagtctgt gctaaatatt ttgctgaaga agcagttct 2050

cagacacaac atctcagaat ttaattttt agaaattcat gggaaatgg 2100
atttttgtaa taatctttt atgtttaaa cattggttcc ctgtcacca 2150
tagttaccac ttgtatTTT agtcattaa acaagccacg gtggggctt 2200
tttctcctca gtttggagg aaaaatctg atgtcattac tcctgaatta 2250
ttacatTTT gagaataaga gggcattttt ttttattagt tactaattca 2300
agctgtgact attgtatATC tttccaagag ttgaaatgct ggcttcagaa 2350
tcataccaga ttgtcagtga agctgatGCC taggaacttt taaaggatc 2400
ctttcaaaag gatcacttag caaacacatg ttgactttt actgatgtat 2450
gaatattaat actctaaaaa tagaaagacc agtaatatat aagtcacttt 2500
acagtgcTAC ttcacactta aaagtgcATG gtatTTTCA tggTatTTG 2550
catgcagCCA gttaactCTC gtagatAGAG aagtcaGGTG atagatGATA 2600
ttaaaaatTA gcaaacaaaaa gtgacttgct cagggTCatG cagctggGTG 2650
atgatagaag agtggcTTT aactggcagg CCTGtatGTT tacagactac 2700
catactgtAA atatgagCTT tatggTgtCA ttctcagAAA cttatacATT 2750
tctgctCTCC tttcctCAA gtttcatGCA gatGAatATA aggtAatATA 2800
ctattatATA attcatttGT gatATCCACA ataAtATGAC tggcaagaat 2850
tggTggAAAT ttgtAattAA aataattatt aaacct 2886

<210> 14
<211> 424
<212> PRT
<213> Homo sapiens

<400> 14
Met Glu Lys Gln Cys Cys Ser His Pro Val Ile Cys Ser Leu Ser
1 5 10 15
Thr Met Tyr Thr Phe Leu Leu Gly Ala Ile Phe Ile Ala Leu Ser
20 25 30
Ser Ser Arg Ile Leu Leu Val Lys Tyr Ser Ala Asn Glu Glu Asn
35 40 45
Lys Tyr Asp Tyr Leu Pro Thr Thr Val Asn Val Cys Ser Glu Leu
50 55 60
Val Lys Leu Val Phe Cys Val Leu Val Ser Phe Cys Val Ile Lys
65 70 75
Lys Asp His Gln Ser Arg Asn Leu Lys Tyr Ala Ser Trp Lys Glu
80 85 90
Phe Ser Asp Phe Met Lys Trp Ser Ile Pro Ala Phe Leu Tyr Phe
95 100 105
Leu Asp Asn Leu Ile Val Phe Tyr Val Leu Ser Tyr Leu Gln Pro
110 115 120

Ala Met Ala Val Ile Phe Ser Asn Phe Ser Ile Ile Thr Thr Ala
 125 130 135
 Leu Leu Phe Arg Ile Val Leu Lys Arg Arg Leu Asn Trp Ile Gln
 140 145 150
 Trp Ala Ser Leu Leu Thr Leu Phe Leu Ser Ile Val Ala Leu Thr
 155 160 165
 Ala Gly Thr Lys Thr Leu Gln His Asn Leu Ala Gly Arg Gly Phe
 170 175 180
 His His Asp Ala Phe Phe Ser Pro Ser Asn Ser Cys Leu Leu Phe
 185 190 195
 Arg Ser Glu Cys Pro Arg Lys Asp Asn Cys Thr Ala Lys Glu Trp
 200 205 210
 Thr Phe Pro Glu Ala Lys Trp Asn Thr Thr Ala Arg Val Phe Ser
 215 220 225
 His Ile Arg Leu Gly Met Gly His Val Leu Ile Ile Val Gln Cys
 230 235 240
 Phe Ile Ser Ser Met Ala Asn Ile Tyr Asn Glu Lys Ile Leu Lys
 245 250 255
 Glu Gly Asn Gln Leu Thr Glu Ser Ile Phe Ile Gln Asn Ser Lys
 260 265 270
 Leu Tyr Phe Phe Gly Ile Leu Phe Asn Gly Leu Thr Leu Gly Leu
 275 280 285
 Gln Arg Ser Asn Arg Asp Gln Ile Lys Asn Cys Gly Phe Phe Tyr
 290 295 300
 Gly His Ser Ala Phe Ser Val Ala Leu Ile Phe Val Thr Ala Phe
 305 310 315
 Gln Gly Leu Ser Val Ala Phe Ile Leu Lys Phe Leu Asp Asn Met
 320 325 330
 Phe His Val Leu Met Ala Gln Val Thr Thr Val Ile Ile Thr Thr
 335 340 345
 Val Ser Val Leu Val Phe Asp Phe Arg Pro Ser Leu Glu Phe Phe
 350 355 360
 Leu Glu Ala Pro Ser Val Leu Leu Ser Ile Phe Ile Tyr Asn Ala
 365 370 375
 Ser Lys Pro Gln Val Pro Glu Tyr Ala Pro Arg Gln Glu Arg Ile
 380 385 390
 Arg Asp Leu Ser Gly Asn Leu Trp Glu Arg Ser Ser Gly Asp Gly
 395 400 405
 Glu Glu Leu Glu Arg Leu Thr Lys Pro Lys Ser Asp Glu Ser Asp
 410 415 420
 Glu Asp Thr Phe

<210> 15
<211> 755
<212> DNA
<213> Homo sapiens

<400> 15
cgtgcctgcaatgggtgt cgggtccgct ttttccaaat ccggacgtaa 50
tcgtggtttt tgttctgcaa taggcggctt agagggaggg gctttttcgc 100
ctatacctac tgttagcttct ccacgtatgg accctaaagg ctactgctgc 150
tactacgggg ctagacagtt actgtctcag ctctaggatg tgcgttcttc 200
cactagaagc tcttctgagg gaggttaatta aaaaacagtg gaatggaaaa 250
acagtgcgtg agtcatcctg taatatgctc cttgtcaaca atgtatacat 300
tcctgctagg tgccatattc attgctttaa gctcaagtcg catcttacta 350
gtgaagtatt ctgccaatga agaaaacaag tatgattatc ttccaactac 400
tgtgaatgtg tgctcagaac tggtaagct agtttctgt gtgcttggt 450
cattctgtgt tataaagaaa gatcatcaaa gtagaaattt gaaatatgct 500
tcctggaagg aattctctga tttcatgaag tggccattc ctgccttct 550
ttatccctcg gataacttga ttgtcttcta tgtcctgtcc tatcttcaac 600
cagccatggc tgttatcttc tcaaatttta gcattataac aacagcttt 650
ctattcagga tagtgctgaa gaggcgtcta aactggatcc agtgggcttc 700
cctcctgact ttatccctgt ctattgtggc cttgactgcc gggactaaaa 750
cttta 755

<210> 16
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 16
ctatacctac tgttagcttct 20

<210> 17
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 17
tcagagaatt cttccagga 20

<210> 18
<211> 40
<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 18

acagtgttgt agtcatcctg taatatgctc cttgtcaaca 40

<210> 19

<211> 2142

<212> DNA

<213> Homo sapiens

<400> 19

cggacgcgtg ggcggacgacg tggcgccgacg cgtggggccg gcttggctag 50

cgcgcggccg ccgtggctaa ggctgctacg aagcgagctt gggaggagca 100

gcggcctgcg gggcagagga gcatcccgtc taccagggtcc caagcggcgt 150

ggcccgcggg tcatggccaa aggagaaggc gccgagagcg gctccgcggc 200

ggggctgcta cccaccagca tcctccaaag cactgaacgc ccggcccagg 250

tgaagaaaaga accgaaaaag aagaaacaac agttgtctgt ttgcaacaag 300

ctttgctatg cacttggggg agccccctac caggtgacgg gctgtgcct 350

gggtttcttc cttagatct acctattgga tgtggctcag gtgggcctt 400

tctctgcctc catcatcctg tttgtggcc gagcctggga tgccatcaca 450

gaccccctgg tggcctctg catcagcaaa tccccctgga cctgcctggg 500

tcgccttatg ccctggatca tcttctccac gcccctggcc gtcattgcct 550

acttcctcat ctgggtcgta cccgacttcc cacacggcca gacctattgg 600

tacctgcttt tctattgcct cttagaaaca atggtcacgt gttccatgt 650

tccctactcg gctctcacca tggcatcag caaccgagca gactgagcgg 700

gattctgccca ccgcctatcg gatgactgtg gaagtgctgg gcacagtgt 750

gggcacggcg atccagggac aaatcggtgg ccaaggacac acgccttggt 800

tccaggactt caatacgctc acagtagctt cacaaggatgc caaccataca 850

catggcacca ctgcacacag gaaacgcaaa aaggcatacc tgctggcagc 900

gggggtcatt gtctgtatct atataatctg tgctgtcatc ctgatcctgg 950

gcgtgcggga gcagagagaa ccctatgaag cccagcgtc tgagccaatc 1000

gcctacttcc gggcctacg gctggcatg agccacggcc catacatcaa 1050

acttattact ggcttcctct tcacccctt ggcttcatg ctggggagg 1100

ggaactttgt ctgtttgc acctacaccc tggcttccg caatgaattc 1150

cagaatctac tcctggccat catgctctcg gccactttaa ccattccat 1200

ctggcagtggtt ttcttgaccc ggttggcaa gaagacagct gtatatgtt 1250

ggatctcatc agcagtgcac tttctcatct tggggccct catggagagt 1300
aacctcatca ttacatatgc ggttagctgtg gcagctggca tcagtgtggc 1350
agctgccttc ttactaccct ggtccatgtct gcctgtatgtc attgacgact 1400
tccatctgaa gcagccccac ttccatggaa ccgagccat cttcttctcc 1450
ttctatgtct tcttcaccaa gtttgccctt ggagtgtcac tgggcatttc 1500
taccctcagt ctggactttg cagggtacca gaccctgtgc tgctcgac 1550
cggaacgtgt caagtttaca ctgaacatgc tcgtgaccat ggctccata 1600
gttctcatcc tgctggccct gctgctttc aaaatgtacc ccattgatga 1650
ggagaggcgg cgccagaata agaaggccct gcagggactg agggacgagg 1700
ccagcagctc tggctgctca gaaacagact ccacagagct ggctagcatc 1750
ctctagggcc cgccacgttg cccgaagcca ccatgcagaa ggccacagaa 1800
ggatcagga cctgtctgcc ggcttgctga gcagctggac tgcaggtgct 1850
aggaagggaa ctgaagactc aaggaggtgg cccaggacac ttgctgtgct 1900
caactgtgggg ccggctgctc tgtggccctc tgcctccct ctgcctgcct 1950
gtggggccaa gccctggggc tgccactgtg aatatgccaa ggactgatcg 2000
ggcctagccc ggaacactaa tgtagaaacc tttttttac agagccta 2050
taataactta atgactgtgt acatagcaat gtgtgtgtat gtatatgtct 2100
gtgagctatt aatgttatta attttcataa aagctggaaa gc 2142

<210> 20

<211> 458

<212> PRT

<213> Homo sapiens

<400> 20

Met	Trp	Leu	Arg	Trp	Ala	Leu	Ser	Leu	Pro	Pro	Ser	Ser	Cys	Leu
1					5				10				15	
Trp	Ala	Glu	Pro	Gly	Met	Pro	Ser	Gln	Thr	Pro	Trp	Trp	Ala	Ser
		20							25				30	
Ala	Ser	Ala	Asn	Pro	Pro	Gly	Pro	Ala	Trp	Val	Ala	Leu	Cys	Pro
			35						40				45	
Gly	Ser	Ser	Ser	Pro	Arg	Pro	Trp	Pro	Ser	Leu	Pro	Thr	Ser	Ser
			50						55				60	
Ser	Gly	Ser	Cys	Pro	Thr	Ser	His	Thr	Ala	Arg	Pro	Ile	Gly	Thr
			65					70					75	
Cys	Phe	Ser	Ile	Ala	Ser	Leu	Lys	Gln	Trp	Ser	Arg	Val	Ser	Met
			80						85				90	
Phe	Pro	Thr	Arg	Leu	Ser	Pro	Cys	Ser	Ser	Ala	Thr	Glu	Gln	Thr
			95						100				105	

Glu Arg Asp Ser Ala Thr Ala Tyr Arg Met Thr Val Glu Val Leu
 110 115 120
 Gly Thr Val Leu Gly Thr Ala Ile Gln Gly Gln Ile Val Gly Gln
 125 130 135
 Ala Asp Thr Pro Cys Phe Gln Asp Phe Asn Ser Ser Thr Val Ala
 140 145 150
 Ser Gln Ser Ala Asn His Thr His Gly Thr Thr Ser His Arg Glu
 155 160 165
 Thr Gln Lys Ala Tyr Leu Leu Ala Ala Gly Val Ile Val Cys Ile
 170 175 180
 Tyr Ile Ile Cys Ala Val Ile Leu Ile Leu Gly Val Arg Glu Gln
 185 190 195
 Arg Glu Pro Tyr Glu Ala Gln Gln Ser Glu Pro Ile Ala Tyr Phe
 200 205 210
 Arg Gly Leu Arg Leu Val Met Ser His Gly Pro Tyr Ile Lys Leu
 215 220 225
 Ile Thr Gly Phe Leu Phe Thr Ser Leu Ala Phe Met Leu Val Glu
 230 235 240
 Gly Asn Phe Val Leu Phe Cys Thr Tyr Thr Leu Gly Phe Arg Asn
 245 250 255
 Glu Phe Gln Asn Leu Leu Leu Ala Ile Met Leu Ser Ala Thr Leu
 260 265 270
 Thr Ile Pro Ile Trp Gln Trp Phe Leu Thr Arg Phe Gly Lys Lys
 275 280 285
 Thr Ala Val Tyr Val Gly Ile Ser Ser Ala Val Pro Phe Leu Ile
 290 295 300
 Leu Val Ala Leu Met Glu Ser Asn Leu Ile Ile Thr Tyr Ala Val
 305 310 315
 Ala Val Ala Ala Gly Ile Ser Val Ala Ala Ala Phe Leu Leu Pro
 320 325 330
 Trp Ser Met Leu Pro Asp Val Ile Asp Asp Phe His Leu Lys Gln
 335 340 345
 Pro His Phe His Gly Thr Glu Pro Ile Phe Phe Ser Phe Tyr Val
 350 355 360
 Phe Phe Thr Lys Phe Ala Ser Gly Val Ser Leu Gly Ile Ser Thr
 365 370 375
 Leu Ser Leu Asp Phe Ala Gly Tyr Gln Thr Arg Gly Cys Ser Gln
 380 385 390
 Pro Glu Arg Val Lys Phe Thr Leu Asn Met Leu Val Thr Met Ala
 395 400 405
 Pro Ile Val Leu Ile Leu Leu Gly Leu Leu Leu Phe Lys Met Tyr
 410 415 420

Pro Ile Asp Glu Glu Arg Arg Arg Gln Asn Lys Lys Ala Leu Gln
425 430 435
Ala Leu Arg Asp Glu Ala Ser Ser Ser Gly Cys Ser Glu Thr Asp
440 445 450
Ser Thr Glu Leu Ala Ser Ile Leu
455

<210> 21
<211> 571
<212> DNA
<213> Homo sapiens

<400> 21
gggaaacgca aaaggcatac ctgctggcag cgggggtcat tgtctgtatc 50
tatataatct gtgctgtcat cctgatcctg ggcgtgcggg agcagagaga 100
accctatgaa gcccagcagt ctgagccaat cgccctacttc cggggcctac 150
ggctggtcat gagccacggc ccatacatca aacttattac tggcttcctc 200
ttcacctcct tggctttcat gctggtgag gggactttg tcttgtttg 250
cacctacacc ttgggcttcc gcaatgaatt ccagaatcta ctctggcca 300
tcatgctctc ggccacttta accattccca tctggcagtg gttcttgacc 350
cggttggca agaagacagc tgtatatgtt gggatctcat cagcagtgcc 400
atttctcatc ttggtggccc tcatggagag taacctcatc attacatatg 450
cggttagctgt ggcagctggc atcagtgtgg cagctgcctt cttactaccc 500
tggtccatgc tgcctgatgt cattgacgac ttccatctga agcagcccc 550
cttccatgga accgagcccc a 571

<210> 22
<211> 1173
<212> DNA
<213> Homo sapiens

<400> 22
ggggcttcgg cgccagcggc cagcgctagt cggtctggta aggatttaca 50
aaagggtgcag gtatgagcag gtctgaagac taacattttgc tgaagttgt 100
aaacagaaaa cctgttagaa atgtggtggt ttcagcaagg cctcagttc 150
cttccttcag cccttgtaat ttggacatct gctgcttca tattttcata 200
cattactgca gtaacactcc accatataga cccggcttta ccttataatca 250
gtgacactgg tacagtagct ccagaaaaat gcttatttgg ggcaatgcta 300
aatattgcgg cagtttatg cattgctacc atttatgttc gttataagca 350
agttcatgct ctgagtcctg aagagaacgt tatcatcaaa ttaaacaagg 400
ctggccttgt acttggaaaat ctgagttgtt taggactttc tattgtggca 450

aacttccaga aaacaaccct ttttgctgca catgtaagtg gagctgtgct 500
taccttttgt atgggctcat tatatatgtt tgttcagacc atccttcct 550
accaaatgca goccaaaaatc catggcaaac aagtcttctg gatcagactg 600
ttgttggta tctgggtgg agtaagtgca cttagcatgc tgacttgctc 650
atcagtttg cacagtggca attttggac tgatttagaa cagaaactcc 700
atttggAACCC cgaggacaaa ggttatgtgc ttcacatgtat cactactgca 750
gcagaatggt ctatgtcatt ttcccttctt ggtttttcc tgacttacat 800
tcgtgatttt cagaaaattt ctttacgggt ggaagccaat ttacatggat 850
taaccctcta tgacactgca cttggcccta ttaacaatga acgaacacgg 900
ctactttcca gagatatttgc atgaaaggat aaaatatttc tgtaatgatt 950
atgattctca gggattgggg aaagggtcac agaagttgct tattcttctc 1000
tgaaaatttca aaccacttaa tcaaggctga cagtaacact gatgaatgct 1050
gataatcagg aaacatgaaa gaagccattt gatagattat tctaaaggat 1100
atcatcaaga agactattaa aaacacctat gcctatactt ttttatctca 1150
gaaaataaag tcaaaagact atg 1173

<210> 23
<211> 266
<212> PRT
<213> Homo sapiens

<400> 23
Met Trp Trp Phe Gln Gln Gly Leu Ser Phe Leu Pro Ser Ala Leu
1 5 10 15
Val Ile Trp Thr Ser Ala Ala Phe Ile Phe Ser Tyr Ile Thr Ala
20 25 30
Val Thr Leu His His Ile Asp Pro Ala Leu Pro Tyr Ile Ser Asp
35 40 45
Thr Gly Thr Val Ala Pro Glu Lys Cys Leu Phe Gly Ala Met Leu
50 55 60
Asn Ile Ala Ala Val Leu Cys Ile Ala Thr Ile Tyr Val Arg Tyr
65 70 75
Lys Gln Val His Ala Leu Ser Pro Glu Glu Asn Val Ile Ile Lys
80 85 90
Leu Asn Lys Ala Gly Leu Val Leu Gly Ile Leu Ser Cys Leu Gly
95 100 105
Leu Ser Ile Val Ala Asn Phe Gln Lys Thr Thr Leu Phe Ala Ala
110 115 120
His Val Ser Gly Ala Val Leu Thr Phe Gly Met Gly Ser Leu Tyr
125 130 135

Met Phe Val Gln Thr Ile Leu Ser Tyr Gln Met Gln Pro Lys Ile
140 145 150

His Gly Lys Gln Val Phe Trp Ile Arg Leu Leu Leu Val Ile Trp
155 160 165

Cys Gly Val Ser Ala Leu Ser Met Leu Thr Cys Ser Ser Val Leu
170 175 180

His Ser Gly Asn Phe Gly Thr Asp Leu Glu Gln Lys Leu His Trp
185 190 195

Asn Pro Glu Asp Lys Gly Tyr Val Leu His Met Ile Thr Thr Ala
200 205 210

Ala Glu Trp Ser Met Ser Phe Ser Phe Phe Gly Phe Phe Leu Thr
215 220 225

Tyr Ile Arg Asp Phe Gln Lys Ile Ser Leu Arg Val Glu Ala Asn
230 235 240

Leu His Gly Leu Thr Leu Tyr Asp Thr Ala Pro Cys Pro Ile Asn
245 250 255

Asn Glu Arg Thr Arg Leu Leu Ser Arg Asp Ile
260 265

<210> 24
<211> 485
<212> DNA
<213> Homo sapiens

<220>
<221> unsure
<222> 14, 484
<223> unknown base

<400> 24
cggacgcttg ggcnngcgcca gcggccagcg ctagtcggtc tggtaagtgc 50
ctgatgccga gttccgtctc tcgggtcttt tcctggtccc aggcaaagcg 100
gagcggagat cctcaaacgg ccttagtgctt cgcgcttccg gagaaaaatca 150
gcggtctaatt taattcctct ggtttgttga agcagttacc aagaatcttc 200
aaccctttcc cacaaaagct aattgagttac acgttcctgt tgagtacacg 250
ttcctgttga tttacaaaag gtgcaggat gagcaggatct gaagactaac 300
attttgtgaa gttgtaaaac agaaaaacctg ttagaaatgt ggtggttca 350
gcaaggccctc agtttccttc cttagccct tgtaatttgg acatctgctg 400
ctttcatatt ttccatacatt actgcagtaa cactccacca tatagacccg 450
gctttacccctt atatcagtga cactggtaca gtanc 485

<210> 25
<211> 40
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 25
acctgttaga aatgtggtgg tttcagcaag gcctcagtt 40

<210> 26
<211> 46
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 26
ggagatagct gctatgggtt cttcaggcac aacttaacat ggaaag 46

<210> 27
<211> 1399
<212> DNA
<213> Homo sapiens

<400> 27
cccacgcgta cgccccgcgc tgcgccccgg agtgcaagtgcg agcttctcg 50
ctgccccgcg ggccgggggtg cggagccgac atgcgccccgc ttctcgccct 100
ccttctggtc ttgcggcgat gcaccttcgc cttgtacttg ctgtcgacgc 150
gactgccccg cgggcggaga ctgggctcca ccgaggaggc tggaggcagg 200
tcgctgtggc tcccctccga cctggcagag ctgcgggagc tctctgaggt 250
ccttcgagag taccggaagg agcaccaggc ctacgtgttc ctgctttct 300
gcggcgcccta cctctacaaa cagggctttg ccatccccgg ctccagcttc 350
ctgaatgttt tagctggtgc cttgtttggg ccatggctgg ggcttctgct 400
gtgctgtgtg ttgacctcgg tgggtgccac atgctgtac ctgctctcca 450
gtatttttgg caaacagttt gtgggtgtcct actttcctga taaagtggcc 500
ctgctgcaga gaaagggtgga ggagaacaga aacagcttgtt tttttttctt 550
attgtttttg agacttttcc ccatgacacc aaactggttc ttgaacctct 600
cgcccccaat tctgaacatt cccatcgatgc agttcttctt ctcagttctt 650
atcggtttga tcccatataa tttcatctgt gtgcagacag ggtccatcct 700
gtcaacccta acctctctgg atgcttttt ctcctggac actgtcttta 750
agctgttggc cattgccatg gtggcattaa ttcctggAAC cctcattaaa 800
aaattttagtc agaaacatct gcaattgaat gaaacaagta ctgctaatac 850
tatacacagt agaaaagaca catgatctgg attttctgtt tgccacatcc 900
ctggactcag ttgcttattt gtgtatggc tgggtgcctc taaagccccct 950
cattttttt gattgccitc tataqgtqat qtggacactq tqcatcaatg 1000

tgcagtgtct tttcagaaag gacactctgc tcttgaaggt gtattacatc 1050
aggttttcaa accagccctg gtgttagcaga cactgcaaca gatgcctcct 1100
agaaaaatgct gtttggcc gggcgccgtg gctcacgcct gtaatcccag 1150
cactttggga ggccgaggcc ggtgattcac aaggtcagga gttcaagacc 1200
agcctggcca agatggtgaa atcctgtctc taataaaaat acaaaaaatta 1250
gccaggcgtg gtggcaggca cctgtaatcc cagctactcg ggaggctgag 1300
gcaggagaat tgcttgaacc aaggtggcag aggttgcagt aagccaagat 1350
cacaccactg cactccagcc tgggtgatag agtgagacac tgtcttgac 1399

<210> 28

<211> 264

<212> PRT

<213> Homo sapiens

<400> 28

Met	Arg	Pro	Leu	Leu	Gly	Leu	Leu	Leu	Val	Phe	Ala	Gly	Cys	Thr
1									10					15
Phe	Ala	Leu	Tyr	Leu	Leu	Ser	Thr	Arg	Leu	Pro	Arg	Gly	Arg	Arg
									25					30
Leu	Gly	Ser	Thr	Glu	Glu	Ala	Gly	Gly	Arg	Ser	Leu	Trp	Phe	Pro
									40					45
Ser	Asp	Leu	Ala	Glu	Leu	Arg	Glu	Leu	Ser	Glu	Val	Leu	Arg	Glu
									55					60
Tyr	Arg	Lys	Glu	His	Gln	Ala	Tyr	Val	Phe	Leu	Leu	Phe	Cys	Gly
									65					75
Ala	Tyr	Leu	Tyr	Lys	Gln	Gly	Phe	Ala	Ile	Pro	Gly	Ser	Ser	Phe
									80					90
Leu	Asn	Val	Leu	Ala	Gly	Ala	Leu	Phe	Gly	Pro	Trp	Leu	Gly	Leu
									95					105
Leu	Leu	Cys	Cys	Val	Leu	Thr	Ser	Val	Gly	Ala	Thr	Cys	Cys	Tyr
									110					120
Leu	Leu	Ser	Ser	Ile	Phe	Gly	Lys	Gln	Leu	Val	Val	Ser	Tyr	Phe
									125					135
Pro	Asp	Lys	Val	Ala	Leu	Leu	Gln	Arg	Lys	Val	Glu	Glu	Asn	Arg
									140					150
Asn	Ser	Leu	Phe	Phe	Phe	Leu	Leu	Phe	Leu	Arg	Leu	Phe	Pro	Met
									155					165
Thr	Pro	Asn	Trp	Phe	Leu	Asn	Leu	Ser	Ala	Pro	Ile	Leu	Asn	Ile
									170					180
Pro	Ile	Val	Gln	Phe	Phe	Phe	Ser	Val	Leu	Ile	Gly	Leu	Ile	Pro
									185					195
Tyr	Asn	Phe	Ile	Cys	Val	Gln	Thr	Gly	Ser	Ile	Leu	Ser	Thr	Leu
									200					210

Thr Ser Leu Asp Ala Leu Phe Ser Trp Asp Thr Val Phe Lys Leu
215 220 225
Leu Ala Ile Ala Met Val Ala Leu Ile Pro Gly Thr Leu Ile Lys
230 235 240
Lys Phe Ser Gln Lys His Leu Gln Leu Asn Glu Thr Ser Thr Ala
245 250 255
Asn His Ile His Ser Arg Lys Asp Thr
260

<210> 29
<211> 1292
<212> DNA
<213> Homo sapiens

<400> 29
ccgaggcggg aggagcccga gggggcgca gccccgcatt aatcatttta 50
gtcaatcatt ttccagttct cagccgctca gttgtatca agggacacgt 100
ggtttccgaa ctgccagctc agaataggaa aataacttgg gatTTTatat 150
tggaagacat ggatcttgc tccaaacgaga tcagcatttta tgacaaactt 200
tcagagactg ttgatttggt gagacagacc ggccatcatgt gtggcatgtc 250
agagaaggca attaaaaat ttatcagaca gctgctggaa aagaatgaac 300
ctcagagacc ccccccgcag tatcctctcc ttatagttgt gtataagggt 350
ctcgcaacct tgggattaat cttgtctact gcctactttg tgattcaacc 400
tttcagccca ttagcacctg agccagtgt ttctggagct cacacctggc 450
gctcaactcat ccacacatt aggctgtatgt ctttgcatt tgccaagaag 500
tacatgttagaaaataaggaa agttcctctg catgggggtg atgaagacag 550
accctttcca gactttgacc cctggtgac aaacgactgt gagcagaatg 600
agtcagagcc cattcctgccc aactgcactg gctgtccca gaaacacctg 650
aagggtatgc tccttggaaa cggcccaagg aaatttgaga ggctccatcc 700
actggtgatc aagacggaa agccccgtt ggaggaagag attcagcatt 750
ttttgtgcca gtaccctgag ggcacagaag gcttctctga agggtttttc 800
gccaagtgggt ggcgctgctt tccgtggcgg tgggtccat tcccttatcc 850
atggaggaga cctctgaaca gatcacaaat gttacgttag cttttcctg 900
ttttcactca cctgccattt ccaaaagatg cctctttaaa caagtgcctcc 950
tttcttcacc cagaacactgt tgtggggagt aagatgcata agatgcctga 1000
cctatTTTATC attggcagcg gtggggccat gttgcagctc atccctccct 1050
tccagtggccg aagacattgt cagtctgtgg ccatgcaat agagccaggg 1100
gatatcggt atgtcgacac caccactgg aaggcttacg ttatagccag 1150

aggggtccag cctttggta tctgcgatgg aaccgcttc tcagaactgt 1200
aggaaataga actgtgcaca ggaacagctt ccagagccga aaaccagggtt 1250
gaaaggggaa aaataaaaac aaaaacgatg aaactgcaaa aa 1292

<210> 30
<211> 347
<212> PRT
<213> Homo sapiens

<400> 30
Met Asp Leu Ala Ala Asn Glu Ile Ser Ile Tyr Asp Lys Leu Ser
1 5 10 15
Glu Thr Val Asp Leu Val Arg Gln Thr Gly His Gln Cys Gly Met
20 . 25 30
Ser Glu Lys Ala Ile Glu Lys Phe Ile Arg Gln Leu Leu Glu Lys
35 40 45
Asn Glu Pro Gln Arg Pro Pro Pro Gln Tyr Pro Leu Leu Ile Val
50 55 60
Val Tyr Lys Val Leu Ala Thr Leu Gly Leu Ile Leu Leu Thr Ala
65 70 75
Tyr Phe Val Ile Gln Pro Phe Ser Pro Leu Ala Pro Glu Pro Val
80 85 90
Leu Ser Gly Ala His Thr Trp Arg Ser Leu Ile His His Ile Arg
95 100 105
Leu Met Ser Leu Pro Ile Ala Lys Lys Tyr Met Ser Glu Asn Lys
110 115 120
Gly Val Pro Leu His Gly Gly Asp Glu Asp Arg Pro Phe Pro Asp
125 130 135
Phe Asp Pro Trp Trp Thr Asn Asp Cys Glu Gln Asn Glu Ser Glu
140 145 150
Pro Ile Pro Ala Asn Cys Thr Gly Cys Ala Gln Lys His Leu Lys
155 160 165
Val Met Leu Leu Glu Asp Ala Pro Arg Lys Phe Glu Arg Leu His
170 175 180
Pro Leu Val Ile Lys Thr Gly Lys Pro Leu Leu Glu Glu Glu Ile
185 190 195
Gln His Phe Leu Cys Gln Tyr Pro Glu Ala Thr Glu Gly Phe Ser
200 205 210
Glu Gly Phe Phe Ala Lys Trp Trp Arg Cys Phe Pro Glu Arg Trp
215 220 225
Phe Pro Phe Pro Tyr Pro Trp Arg Arg Pro Leu Asn Arg Ser Gln
230 235 240
Met Leu Arg Glu Leu Phe Pro Val Phe Thr His Leu Pro Phe Pro
245 250 255

Lys Asp Ala Ser Leu Asn Lys Cys Ser Phe Leu His Pro Glu Pro
260 265 270
Val Val Gly Ser Lys Met His Lys Met Pro Asp Leu Phe Ile Ile
275 280 285
Gly Ser Gly Glu Ala Met Leu Gln Leu Ile Pro Pro Phe Gln Cys
290 295 300
Arg Arg His Cys Gln Ser Val Ala Met Pro Ile Glu Pro Gly Asp
305 310 315
Ile Gly Tyr Val Asp Thr Thr His Trp Lys Val Tyr Val Ile Ala
320 325 330
Arg Gly Val Gln Pro Leu Val Ile Cys Asp Gly Thr Ala Phe Ser
335 340 345

Glu Leu

<210> 31
<211> 478
<212> DNA
<213> Homo sapiens

<400> 31
ccacgggtgc cgttcttcgc ccggcgccag ctgtccccga ggcgggagga 50
gcccgggggg cgcgagcccc gcatgaatca ttgttagtcaa tcattttcca 100
gttctcagcc gttcagttgt gatcaaggga cacgtggttt ccgaactgcc 150
agctcagaat aggaaaataa cttgggattt tatattggaa gacatggatc 200
ttgctgccaa cgagatcagc atttatgaca aactttcaga gactgttgat 250
ttggtgagac agaccggcca tcagtgtggc atgtcagaga aggcaattga 300
aaaatttatac agacagctgc tggaaaagaa tgaacctcag agacccccc 350
cgcagtatcc tctccttata gtttgtata aggttctcgc aaccttggga 400
ttaatcttgc tcactgccta ctttgtgatt caaccttca gcccattagc 450
acctgagcca gtgcgttgc gagctcac 478

<210> 32
<211> 3531
<212> DNA
<213> Homo sapiens

<400> 32
cccacgcgtc cggccacgcg tccggctgaa cacctttct ttggagtcag 50
ccactgatga ggcagggtcc ccacttgcag ctgcagcagc tgcaagcact 100
gcagagcgt gctcctggct ggtgccactg gtgcgcacgc tgctagaccc 150
tgcctatgag ccgctggggc tgcagtgggg actgccctcc ctgccaccca 200
ccaatggcag ccccaccttc tttgaagact tccaggctt ttgtgccaca 250

cccgaaatggc gccacttcat cgacaaacag gtacagccaa ccatgtccca 300
gttcgaaatg gacacgtatg ctaagagcca cgaccattatg tcaggttct 350
gaaatgcctg ctatgacatg cttatgagca gtgggcagcg gcccagtgg 400
gagcgcgccc agagtcgtcg ggccttccag gagctggtgc tggAACCTGC 450
gcagaggcgg ggcgcctgg agggctacg ctacacggca gtgctgaagc 500
agcaggcaac gcagcactcc atggccctgc tgcactgggg ggcgcgtgtgg 550
cgccagctcg ccagccccatg tggggcctgg ggcgtgaggg acactcccat 600
cccccgctgg aaactgtcca ggcgcgagac atattcacgc atgcgtctga 650
agctggtgcc caaccatcac ttgcaccctc accttggaaagc cagcgctctc 700
cgagacaatc tgggtgaggt tcccctgaca cccacccgagg aggcctca 750
gcctctggca gtgaccaaag aggcacaaagt gagcaccccc cccgagttgc 800
tgcaggagga ccagctcggc gaggacgagc tggctgagct ggagaccccg 850
atggaggcag cagaacttggc tgagcagcgt gagaagctgg tgctgtcggc 900
cgagtgccag ctggtgacgg tagtggccgt ggtcccaggg ctgctggagg 950
tcaccacaca gaatgtatac ttctacgtatgcagactga ggcgtggaa 1000
accgaggagg gcatcggtta tgatttccgg cgcccaactgg cccagctgcg 1050
tgaggtccac ctgcggcggt tcaacctgcg ccgttcagca cttagctct 1100
tctttatoga tcaggccaac tacttcctca acttcccatg caagggtggc 1150
acgaccccaag tctcatctcc tagccagact ccgagacccc agcctggccc 1200
catccccaccc catacccaagg tacggaaacca ggtgtactcg tggctcctgc 1250
gcctacggcc cccotctcaa ggctaccta gcaagccgctc ccccaaggag 1300
atgctgcgtg cctcaggcct tacccagaaa tgggtacagc gtgagatatac 1350
caacttcgag tacttgatgc aactcaacac cattgcgggg cggacctaca 1400
atgacctgtc tcagtagccct gtgttccct gggcctgcgaa ggactacgtg 1450
tcccccaaccc tggacctcag caacccagcc gtcttccggg acctgtctaa 1500
gcccatcggt gtggtaacc ccaagcatgc ccagctcggt agggagaagt 1550
atgaaagctt tgaggaccca gcagggacca ttgacaagtt ccactatggc 1600
acccactact ccaatgcagc aggcgtgatg cactacctca tccgcgtgga 1650
gcccttcacc tccctgcacg tccagctgcgaa aagtggccgc tttgactgct 1700
ccgacccggca gttccactcg gtggcggcag cctggcaggc acgcctggag 1750
agccctgccc atgtgaagga gctcatcccg gaattttctt actttcctga 1800
cttccctggag aaccagaacg gtttgacccct gggcgtgtctc cagctgacca 1850

acgagaaggta aggcgatgtg gtgctacccc cgtgggccag ctctcctgag 1900
gacttcatcc agcagcacccg ccaggctctg gagtcggagt atgtgtctgc 1950
acacctacac gagtgatcg acctcatctt tggctacaag cagccccggc 2000
cagccgccga ggaggccctc aatgtcttctt attactgcac ctatgagggg 2050
gctgttagacc tggaccatgt gacagatgag cgaaaacgga aggctctgga 2100
ggcattatc agcaactttg ggcagactcc ctgtcagctg ctgaaggagc 2150
cacatccaac tcggctctca gctgaggaag cagccatcg cttgcacgc 2200
ctggacacta actcacctag catcttccag cacctggacg aactcaaggc 2250
attcttcgca gaggtgactg tgagtgcag tggctgctg ggcacccaca 2300
gctgggtgcc ctatgaccgc aacataagca actacttcag cttcagcaaa 2350
gaccccacca tggcagcca caagacgcag cgactgctga gtggccctg 2400
gtgccaggc agtgggtgtga gtggacaagc actggcagtg gccccggatg 2450
gaaagctgct attcagcggt gcccactggg atggcagcct gcgggtgact 2500
gcactacccc gtggcaagct gttgagccag ctcagctgcc accttgatgt 2550
agtaacctgc cttgcactgg acacctgtgg catctaccc atctcaggct 2600
cccggacac cacgtgcatg gtgtggccgc tcctgcatca gggtggtctg 2650
tcagtaggcc tggcacaaaa gcctgtgcag gtcctgtatg ggcattggc 2700
tgcagtgagc tgtgtggca tcagcactga acttgacatg gctgtgtctg 2750
gatctgagga tggaaactgtg atcatacaca ctgtacgccc cggacagttt 2800
gtagcggcac tacggcctct ggggccaca ttccctggac ctattttcca 2850
cctggcattt gggcccaag gccagattgt ggtacagagc tcagcgtggg 2900
aacgtcctgg ggcccaggc acctactcct tgcacctgta ttcagtcaat 2950
ggaaaggttgc gggcttcact gcccctggca gagcagccca cagccctgac 3000
ggtgacagag gactttgtgt tgctggcac ccggcaggc gcccctgcaca 3050
tcctccaact aaacacactg ctcccgccg cgcctccctt gcccatgaag 3100
gtggccatcc gcagcgtggc cgtgaccaag gagcgcagcc acgtgcttgt 3150
gggcctggag gatggcaagc tcacgttgtt ggtcgccggg cagccctctg 3200
aggtgcgcag cagccaggcc ggcggaaagc tggcggcgc ctcgcggcgc 3250
atctcccagg tgcctcggg agagacggaa tacaacccta ctgaggcgcg 3300
ctgaacctgg ccagtccggc tgctggggcc ccgcgggggg cagccctggc 3350
ccgggaggcc cggcccaagaa gtcggcggga acacccggg gtggcagcc 3400
caggggtga gcggggccca ccctgcccag ctcaggatt ggcggccgat 3450

gttacccctt caggattgg cggcgaaag tccccccctt cgccggctga 3500

ggggccgccc tgagggccag cactggcgtc t 3531

<210> 33

<211> 1003

<212> PRT

<213> Homo sapiens

<400> 33

Met Ser Gln Phe Glu Met Asp Thr Tyr Ala Lys Ser His Asp Leu
1 5 10 15

Met Ser Gly Phe Trp Asn Ala Cys Tyr Asp Met Leu Met Ser Ser
20 25 30

Gly Gln Arg Arg Gln Trp Glu Arg Ala Gln Ser Arg Arg Ala Phe
35 40 45

Gln Glu Leu Val Leu Glu Pro Ala Gln Arg Arg Ala Arg Leu Glu
50 55 60

Gly Leu Arg Tyr Thr Ala Val Leu Lys Gln Gln Ala Thr Gln His
65 70 75

Ser Met Ala Leu Leu His Trp Gly Ala Leu Trp Arg Gln Leu Ala
80 85 90

Ser Pro Cys Gly Ala Trp Ala Leu Arg Asp Thr Pro Ile Pro Arg
95 100 105

Trp Lys Leu Ser Ser Ala Glu Thr Tyr Ser Arg Met Arg Leu Lys
110 115 120

Leu Val Pro Asn His His Phe Asp Pro His Leu Glu Ala Ser Ala
125 130 135

Leu Arg Asp Asn Leu Gly Glu Val Pro Leu Thr Pro Thr Glu Glu
140 145 150

Ala Ser Leu Pro Leu Ala Val Thr Lys Glu Ala Lys Val Ser Thr
155 160 165

Pro Pro Glu Leu Leu Gln Glu Asp Gln Leu Gly Glu Asp Glu Leu
170 175 180

Ala Glu Leu Glu Thr Pro Met Glu Ala Ala Glu Leu Asp Glu Gln
185 190 195

Arg Glu Lys Leu Val Leu Ser Ala Glu Cys Gln Leu Val Thr Val
200 205 210

Val Ala Val Val Pro Gly Leu Leu Glu Val Thr Thr Gln Asn Val
215 220 225

Tyr Phe Tyr Asp Gly Ser Thr Glu Arg Val Glu Thr Glu Glu Gly
230 235 240

Ile Gly Tyr Asp Phe Arg Arg Pro Leu Ala Gln Leu Arg Glu Val
245 250 255

His Leu Arg Arg Phe Asn Leu Arg Arg Ser Ala Leu Glu Leu Phe
260 265 270

Phe Ile Asp Gln Ala Asn Tyr Phe Leu Asn Phe Pro Cys Lys Val
 275 280 285
 Gly Thr Thr Pro Val Ser Ser Pro Ser Gln Thr Pro Arg Pro Gln
 290 295 300
 Pro Gly Pro Ile Pro Pro His Thr Gln Val Arg Asn Gln Val Tyr
 305 310 315
 Ser Trp Leu Leu Arg Leu Arg Pro Pro Ser Gln Gly Tyr Leu Ser
 320 325 330
 Ser Arg Ser Pro Gln Glu Met Leu Arg Ala Ser Gly Leu Thr Gln
 335 340 345
 Lys Trp Val Gln Arg Glu Ile Ser Asn Phe Glu Tyr Leu Met Gln
 350 355 360
 Leu Asn Thr Ile Ala Gly Arg Thr Tyr Asn Asp Leu Ser Gln Tyr
 365 370 375
 Pro Val Phe Pro Trp Val Leu Gln Asp Tyr Val Ser Pro Thr Leu
 380 385 390
 Asp Leu Ser Asn Pro Ala Val Phe Arg Asp Leu Ser Lys Pro Ile
 395 400 405
 Gly Val Val Asn Pro Lys His Ala Gln Leu Val Arg Glu Lys Tyr
 410 415 420
 Glu Ser Phe Glu Asp Pro Ala Gly Thr Ile Asp Lys Phe His Tyr
 425 430 435
 Gly Thr His Tyr Ser Asn Ala Ala Gly Val Met His Tyr Leu Ile
 440 445 450
 Arg Val Glu Pro Phe Thr Ser Leu His Val Gln Leu Gln Ser Gly
 455 460 465
 Arg Phe Asp Cys Ser Asp Arg Gln Phe His Ser Val Ala Ala Ala
 470 475 480
 Trp Gln Ala Arg Leu Glu Ser Pro Ala Asp Val Lys Glu Leu Ile
 485 490 495
 Pro Glu Phe Phe Tyr Phe Pro Asp Phe Leu Glu Asn Gln Asn Gly
 500 505 510
 Phe Asp Leu Gly Cys Leu Gln Leu Thr Asn Glu Lys Val Gly Asp
 515 520 525
 Val Val Leu Pro Pro Trp Ala Ser Ser Pro Glu Asp Phe Ile Gln
 530 535 540
 Gln His Arg Gln Ala Leu Glu Ser Glu Tyr Val Ser Ala His Leu
 545 550 555
 His Glu Trp Ile Asp Leu Ile Phe Gly Tyr Lys Gln Arg Gly Pro
 560 565 570
 Ala Ala Glu Glu Ala Leu Asn Val Phe Tyr Tyr Cys Thr Tyr Glu
 575 580 585

Gly Ala Val Asp Leu Asp His Val Thr Asp Glu Arg Glu Arg Lys
 590 595 600
 Ala Leu Glu Gly Ile Ile Ser Asn Phe Gly Gln Thr Pro Cys Gln
 605 610 615
 Leu Leu Lys Glu Pro His Pro Thr Arg Leu Ser Ala Glu Glu Ala
 620 625 630
 Ala His Arg Leu Ala Arg Leu Asp Thr Asn Ser Pro Ser Ile Phe
 635 640 645
 Gln His Leu Asp Glu Leu Lys Ala Phe Phe Ala Glu Val Thr Val
 650 655 660
 Ser Ala Ser Gly Leu Leu Gly Thr His Ser Trp Leu Pro Tyr Asp
 665 670 675
 Arg Asn Ile Ser Asn Tyr Phe Ser Phe Ser Lys Asp Pro Thr Met
 680 685 690
 Gly Ser His Lys Thr Gln Arg Leu Leu Ser Gly Pro Trp Val Pro
 695 700 705
 Gly Ser Gly Val Ser Gly Gln Ala Leu Ala Val Ala Pro Asp Gly
 710 715 720
 Lys Leu Leu Phe Ser Gly Gly His Trp Asp Gly Ser Leu Arg Val
 725 730 735
 Thr Ala Leu Pro Arg Gly Lys Leu Leu Ser Gln Leu Ser Cys His
 740 745 750
 Leu Asp Val Val Thr Cys Leu Ala Leu Asp Thr Cys Gly Ile Tyr
 755 760 765
 Leu Ile Ser Gly Ser Arg Asp Thr Thr Cys Met Val Trp Arg Leu
 770 775 780
 Leu His Gln Gly Gly Leu Ser Val Gly Leu Ala Pro Lys Pro Val
 785 790 795
 Gln Val Leu Tyr Gly His Gly Ala Ala Val Ser Cys Val Ala Ile
 800 805 810
 Ser Thr Glu Leu Asp Met Ala Val Ser Gly Ser Glu Asp Gly Thr
 815 820 825
 Val Ile Ile His Thr Val Arg Arg Gly Gln Phe Val Ala Ala Leu
 830 835 840
 Arg Pro Leu Gly Ala Thr Phe Pro Gly Pro Ile Phe His Leu Ala
 845 850 855
 Leu Gly Ser Glu Gly Gln Ile Val Val Gln Ser Ser Ala Trp Glu
 860 865 870
 Arg Pro Gly Ala Gln Val Thr Tyr Ser Leu His Leu Tyr Ser Val
 875 880 885
 Asn Gly Lys Leu Arg Ala Ser Leu Pro Leu Ala Glu Gln Pro Thr
 890 895 900

Ala Leu Thr Val Thr Glu Asp Phe Val Leu Leu Gly Thr Ala Gln
905 910 915

Cys Ala Leu His Ile Leu Gln Leu Asn Thr Leu Leu Pro Ala Ala
920 925 930

Pro Pro Leu Pro Met Lys Val Ala Ile Arg Ser Val Ala Val Thr
935 940 945

Lys Glu Arg Ser His Val Leu Val Gly Leu Glu Asp Gly Lys Leu
950 955 960

Ile Val Val Val Ala Gly Gln Pro Ser Glu Val Arg Ser Ser Gln
965 970 975

Phe Ala Arg Lys Leu Trp Arg Ser Ser Arg Arg Ile Ser Gln Val
980 985 990

Ser Ser Gly Glu Thr Glu Tyr Asn Pro Thr Glu Ala Arg
995 1000

<210> 34
<211> 43
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 34
tgactgcact accccgtggc aagctgttga gccagctcag ctg 43

<210> 35
<211> 1395
<212> DNA
<213> Homo sapiens

<400> 35
cggacgcgtg ggcggacgcg tggggctgt gagaaagtgc caataaatac 50
atcatgcaac cccacggccc acottgtgaa ctcctcggtc ccagggtgt 100
tgtgcgtttt ccagggctac tcattccaaag gcctaattcca acgttctgtc 150
ttcaatctgc aaatctatgg ggtcctgggg ctcttctggta cccttaactg 200
gttactggcc ctggggcaat gcgtcctcg tggagcctt gcctccttct 250
actgggcattt ccacaagccc caggacatcc ctacattcccc cttaatctct 300
gccttcattcc gcacactccg ttaccacact gggtcattgg catttggagc 350
cctcatcctg acccttgc agatagcccc ggttatctt ggttatattt 400
accacaagct cagaggagtg cagaaccctg tagcccgctg catcatgtgc 450
tgtttcaagt gctgcctctg gtgtctggaa aaatttatca agttcctaaa 500
ccgcaatgca tacatcatga tcgccccatcta cggaaagaat ttctgtgtct 550
cagccaaaaa tgcgttcatg ctactcatgc gaaacattgt cagggtggc 600
gtcctggaca aagtccacaga cctgctgctg ttctttggaa agctgctgg 650

gtcggaggc gtgggggtcc tgtccttctt tttttctcc ggtcgcatcc 700
ccccggctggg taaagacttt aagagcccc acctaacta ttactggctg 750
cccatcatga cctccatcct gggggcctat gtcatcgcca gcggcttctt 800
cagcgtttc ggcatgtgtg tggacacgct cttcctctgc ttccctgaaag 850
acctggagcg gaacaacggc tccctggacc ggccctacta catgtccaag 900
agccttctaa agattctggg caagaagaac gaggcgcccc cgacacaacaa 950
gaagaggaag aagtgacagc tccggccctg atccaggact gcacccacc 1000
cccaccgtcc agccatccaa cctcaacttcg ctttacaggt ctccattttg 1050
tggtaaaaaaa aggttttagg ccaggcgccg tggctcacgc ctgtaatcca 1100
acacttttagg aggctgagggc gggcggatca cctgagtcag gagttcgaga 1150
ccagcctggc caacatggtg aaacctccgt ctctattaaa aataaaaaaa 1200
ttagccgaga gtggtggcat gcacctgtca tcccagctac tcgggaggct 1250
gaggcaggag aatcgcttga acccgggagg cagaggttgc agtgagccga 1300
gatcgcgcca ctgcactcca acctgggtga cagactctgt ctccaaaaca 1350
aaacaaacaa acaaaaagat tttattaaag atattttgtt aactc 1395

<210> 36
<211> 321
<212> PRT
<213> Homo sapiens

<400> 36
Arg Thr Arg Gly Arg Thr Arg Gly Gly Cys Glu Lys Val Pro Ile
1 5 10 15
Asn Thr Ser Cys Asn Pro Thr Ala His Leu Val Asn Ser Ser Cys
20 25 30
Pro Gly Leu Met Cys Val Phe Gln Gly Tyr Ser Ser Lys Gly Leu
35 40 45
Ile Gln Arg Ser Val Phe Asn Leu Gln Ile Tyr Gly Val Leu Gly
50 55 60
Leu Phe Trp Thr Leu Asn Trp Val Leu Ala Leu Gly Gln Cys Val
65 70 75
Leu Ala Gly Ala Phe Ala Ser Phe Tyr Trp Ala Phe His Lys Pro
80 85 90
Gln Asp Ile Pro Thr Phe Pro Leu Ile Ser Ala Phe Ile Arg Thr
95 100 105
Leu Arg Tyr His Thr Gly Ser Leu Ala Phe Gly Ala Leu Ile Leu
110 115 120
Thr Leu Val Gln Ile Ala Arg Val Ile Leu Glu Tyr Ile Asp His
125 130 135

Lys Leu Arg Gly Val Gln Asn Pro Val Ala Arg Cys Ile Met Cys
 140 145 150
 Cys Phe Lys Cys Cys Leu Trp Cys Leu Glu Lys Phe Ile Lys Phe
 155 160 165
 Leu Asn Arg Asn Ala Tyr Ile Met Ile Ala Ile Tyr Gly Lys Asn
 170 175 180
 Phe Cys Val Ser Ala Lys Asn Ala Phe Met Leu Leu Met Arg Asn
 185 190 195
 Ile Val Arg Val Val Val Leu Asp Lys Val Thr Asp Leu Leu Leu
 200 205 210
 Phe Phe Gly Lys Leu Leu Val Val Gly Gly Val Gly Val Leu Ser
 215 220 225
 Phe Phe Phe Ser Gly Arg Ile Pro Gly Leu Gly Lys Asp Phe
 230 235 240
 Lys Ser Pro His Leu Asn Tyr Tyr Trp Leu Pro Ile Met Thr Ser
 245 250 255
 Ile Leu Gly Ala Tyr Val Ile Ala Ser Gly Phe Phe Ser Val Phe
 260 265 270
 Gly Met Cys Val Asp Thr Leu Phe Leu Cys Phe Leu Glu Asp Leu
 275 280 285
 Glu Arg Asn Asn Gly Ser Leu Asp Arg Pro Tyr Tyr Met Ser Lys
 290 295 300
 Ser Leu Leu Lys Ile Leu Gly Lys Lys Asn Glu Ala Pro Pro Asp
 305 310 315
 Asn Lys Lys Arg Lys Lys
 320

<210> 37
 <211> 22
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Synthetic oligonucleotide probe

<400> 37
 tcgtgccccag gggctgtatgt gc 22

<210> 38
 <211> 24
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Synthetic oligonucleotide probe

<400> 38
 gtctttaccc agccccggga tgcg 24

<210> 39
 <211> 50

<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 39
ggcctaattcc aacgttctgt cttcaatctg caaatctatg gggtcctggg 50

<210> 40
<211> 1365
<212> DNA
<213> Homo sapiens

<400> 40
gagtcttgc acgcccggg ctcttggtac ctcagcgca gcgccaggcg 50
tccggccggc gtggctatgt tcgtgtccga tttccgcaaa gagttctacg 100
aggtgttcca gagccagagg gtccattctt tcgtggcctc ggacgtggat 150
gctctgttg cgtcaagat cttcaggcc ttgttccagt gtgaccacgt 200
gcaatatacg ctggttccag tttctgggt gcaagaactt gaaactgcat 250
ttcttgagca taaagaacag tttcattttt ttattctcat aaactgtgga 300
gctaatgttag acctatttgg aattcttcaa cctgatgaag acactatatt 350
ctttgtgtgt gactccata ggccagtcaa tgtcgtcaat gtataacaacg 400
atacccagat caaattactc attaaacaag atgatgaccc tgaagttccc 450
gcctatgaag acatcttcag ggatgaagag gaggatgaag agcattcagg 500
aaatgacagt gatgggtcag agcattctga gaagcgcaca cggttagaaag 550
aggagatagt ggagcaaacc atgcggagga ggcagcggcg agagtggag 600
gccccggagaa gagacatcct ctttgactac gagcagatgt aatatcatgg 650
gacatcgtaa gccatggta tggtttagct ggcttggatg ctgtccaagg 700
acctgaatga catgctgtgg tggccatcg ttggactaac agaccagtgg 750
gtgcaagaca agatcactca aatgaaatac gtgactgtatg ttgtgttcct 800
gcagcgccac gttcccgcc acaaccacccg gaacgaggat gaggagaaca 850
cactctccgt ggactgcaca cggatctcct ttgagttatga cttccgcctg 900
tgctctacc agcactggc cttccatgac agoctgtgca acaccagcta 950
taccgcagcc aggttcaagc tgtggtctgt gcatggacag aagcggctcc 1000
aggagttccct tgcagacatg ggtcttcccc tgaagcaggt gaagcagaag 1050
ttccaggcca tggacatctc cttgaaggag aatttgccggg aaatgatgt 1100
agagtctgca aataaaatttggatgaagga catgcgcgtg cagactttca 1150
gcattcattt tgggttcaag cacaagtttc tggccagcga cgtggtcttt 1200

gccaccatgt ctggatgga gagcccccag aaggatggct cagggacaga 1250
tcacttcattc caggctctgg acagcctctc caggagtaac ctggacaaggc 1300
tgtaccatgg cctgaaactc gccaagaaggc agctgcgagc cacccagcag 1350
accattgcca gctgc 1365

<210> 41
<211> 566
<212> PRT
<213> Homo sapiens

<400> 41
Met Phe Val Ser Asp Phe Arg Lys Glu Phe Tyr Glu Val Val Gln
1 5 10 15
Ser Gln Arg Val Leu Leu Phe Val Ala Ser Asp Val Asp Ala Leu
20 25 30
Cys Ala Cys Lys Ile Leu Gln Ala Leu Phe Gln Cys Asp His Val
35 40 45
Gln Tyr Thr Leu Val Pro Val Ser Gly Trp Gln Glu Leu Glu Thr
50 55 60
Ala Phe Leu Glu His Lys Glu Gln Phe His Tyr Phe Ile Leu Ile
65 70 75
Asn Cys Gly Ala Asn Val Asp Leu Leu Asp Ile Leu Gln Pro Asp
80 85 90
Glu Asp Thr Ile Phe Phe Val Cys Asp Ser His Arg Pro Val Asn
95 100 105
Val Val Asn Val Tyr Asn Asp Thr Gln Ile Lys Leu Leu Ile Lys
110 115 120
Gln Asp Asp Asp Leu Glu Val Pro Ala Tyr Glu Asp Ile Phe Arg
125 130 135
Asp Glu Glu Glu Asp Glu Glu His Ser Gly Asn Asp Ser Asp Gly
140 145 150
Ser Glu Pro Ser Glu Lys Arg Thr Arg Leu Glu Glu Glu Ile Val
155 160 165
Glu Gln Thr Met Arg Arg Arg Gln Arg Arg Glu Trp Glu Ala Arg
170 175 180
Arg Arg Asp Ile Leu Phe Asp Tyr Glu Gln Tyr Glu Tyr His Gly
185 190 195
Thr Ser Ser Ala Met Val Met Phe Glu Leu Ala Trp Met Leu Ser
200 205 210
Lys Asp Leu Asn Asp Met Leu Trp Trp Ala Ile Val Gly Leu Thr
215 220 225
Asp Gln Trp Val Gln Asp Lys Ile Thr Gln Met Lys Tyr Val Thr
230 235 240
Asp Val Gly Val Leu Gln Arg His Val Ser Arg His Asn His Arg

245	250	255
Asn Glu Asp Glu Glu Asn Thr Leu Ser Val Asp Cys Thr Arg Ile		
260	265	270
Ser Phe Glu Tyr Asp Leu Arg Leu Val Leu Tyr Gln His Trp Ser		
275	280	285
Leu His Asp Ser Leu Cys Asn Thr Ser Tyr Thr Ala Ala Arg Phe		
290	295	300
Lys Leu Trp Ser Val His Gly Gln Lys Arg Leu Gln Glu Phe Leu		
305	310	315
Ala Asp Met Gly Leu Pro Leu Lys Gln Val Lys Gln Lys Phe Gln		
320	325	330
Ala Met Asp Ile Ser Leu Lys Glu Asn Leu Arg Glu Met Ile Glu		
335	340	345
Glu Ser Ala Asn Lys Phe Gly Met Lys Asp Met Arg Val Gln Thr		
350	355	360
Phe Ser Ile His Phe Gly Phe Lys His Lys Phe Leu Ala Ser Asp		
365	370	375
Val Val Phe Ala Thr Met Ser Leu Met Glu Ser Pro Glu Lys Asp		
380	385	390
Gly Ser Gly Thr Asp His Phe Ile Gln Ala Leu Asp Ser Leu Ser		
395	400	405
Arg Ser Asn Leu Asp Lys Leu Tyr His Gly Leu Glu Leu Ala Lys		
410	415	420
Lys Gln Leu Arg Ala Thr Gln Gln Thr Ile Ala Ser Cys Leu Cys		
425	430	435
Thr Asn Leu Val Ile Ser Gln Gly Pro Phe Leu Tyr Cys Ser Leu		
440	445	450
Met Glu Gly Thr Pro Asp Val Met Leu Phe Ser Arg Pro Ala Ser		
455	460	465
Leu Ser Leu Leu Ser Lys His Leu Leu Lys Ser Phe Val Cys Ser		
470	475	480
Thr Lys Asn Arg Arg Cys Lys Leu Leu Pro Leu Val Met Ala Ala		
485	490	495
Pro Leu Ser Met Glu His Gly Thr Val Thr Val Val Gly Ile Pro		
500	505	510
Pro Glu Thr Asp Ser Ser Asp Arg Lys Asn Phe Phe Gly Arg Ala		
515	520	525
Phe Glu Lys Ala Ala Glu Ser Thr Ser Ser Arg Met Leu His Asn		
530	535	540
His Phe Asp Leu Ser Val Ile Glu Leu Lys Ala Glu Asp Arg Ser		
545	550	555
Lys Phe Leu Asp Ala Leu Ile Ser Leu Leu Ser		

<210> 42
 <211> 380
 <212> DNA
 <213> Homo sapiens

<220>
 <221> unsure
 <222> 44, 118, 172, 183
 <223> unknown base

<400> 42
 gtacacctcagc gcgagcgcca ggcgtccggc cgccgtggct atgntcggt 50
 ccgatttccg caaagagttc tacgagggtgg tccagagcca gagggtcctt 100
 ctcttcgtgg cctcggangt ggatgctctg tgtgcgtgca agatccttca 150
 ggccttggtc cagtgtgacc angtgcaata tangctggtt ccagtttctg 200
 ggtggcaaga acttgaaact gcatttcttg agcataaaga acagtttcat 250
 tattttatttc tcataaaactg tggagcta at gtagacctat tggatattct 300
 tcaaacctgat gaagacacta tattctttgt gtgtgacacc cataggccag 350
 tcaatgttgtt caatgtatac aacgataaccc 380

<210> 43
 <211> 25
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Synthetic oligonucleotide probe

<400> 43
 ttccgcaaag agttctacga ggtgg 25

<210> 44
 <211> 26
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Synthetic oligonucleotide probe

<400> 44
 attgacaaca ttgactggcc tatggg 26

<210> 45
 <211> 50
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Synthetic oligonucleotide probe

<400> 45
 gtggatgctc tgtgtgcgtg caagatcctt caggccttgt tccagtgtga 50

<210> 46

<211> 3089
<212> DNA
<213> Homo sapiens

<400> 46
caggaaccct ctcttgggt ctggattggg accccttcc agtaccattt 50
tttctagtga accacgaagg gacgatacca gaaaacaccc tcaacccaaa 100
gaaatagac tacagccccca attggctgac tttggctata gaaaaaaagaa 150
aggaacgaaa agagacagtt tttttggaa agctaagtct tccctttatc 200
gagtcaagaaccccccctt cttgagctat ttacagctt taacaattga 250
gtaaagtacg ctccggcac catggtgaca gccggccctgg gtcccgctg 300
ggcagcgctc ctgctcttc tcctgatgtg tgagatccgt atggtggagc 350
tcaccttta cagagctgtg gccagcggct gccaacggtg ctgtgactct 400
gaggaccccc tggatcctgc ccatgttatcc tcagcctt cctccggccg 450
cccccacgcc ctgcctgaga tcagacccta cattaatatc accatcctga 500
agggtgacaa agggaccca ggcccaatgg gcctgccagg gtacatggc 550
agggagggtc cccaaaggga gcctggccct cagggcagca agggtgacaa 600
gggggagatg ggcagcccg gcgcggctg ccagaagcgc ttcttcgcct 650
tctcagtggg ccgcaagacg gccctgcaca gcggcgagga cttccagacg 700
ctgctttcg aaagggtctt tgtaacctt gatgggtgct ttgacatggc 750
gaccggccag tttgctgctc ccctgcgtgg catctacttc ttcaagcctca 800
atgtgcacag ctgaaattac aaggagacgt acgtgcacat tatgcataac 850
cagaaagagg ctgtcatctt gtacgcgcag cccagcgagc gcagcatcat 900
gcagagccag agtgtgatgc tggacctggc ctacggggac cgctctggg 950
tgcggcttt caagcgccag cgcgagaacg ccatctacag caacgacttc 1000
gacacctaca tcacccctcg cggccacccctc atcaaggccg aggacgactg 1050
agggcctctg ggccaccctc cggctggag agctcaggtg ctggccctgt 1100
ccccgggga cctggcattc tggggagacc ctgcttctat cttggctgcc 1200
atcatccctc ccagccattt tctgctctc tcttctctt tggacctatt 1250
ttaagaagct tgctaaccta aatattctag aactttccca gcctcgtagc 1300
ccagcacttc tcaaacttgg aaatgcacgc gaatcaccgg gggttcggt 1350
taaatgcaga ttctgactca gcaggtctga gtgggtccag gattctgtgt 1400
ttctcatatg ttccctgggtg atgctgatgg ggtcagtcata tgaaccacac 1450

tggagcaacc aggttctagg actttctcaa tattcttagta ctttctgaac 1500
attctggaat cctccccaca ttctagaatt ctcccaacat tttttttct 1550
tgagacagag tcttgctctg ttgcccaggc tagagtgcag tggtgcaatc 1600
tcagttcaact gcaacacctg cctccgggt tcaagcgtt cttctgcctc 1650
agcctcccta gtggctggga ttacaggcgc ctgctaccat gcctggctaa 1700
tttttgtatt tttagtagag atggggtttc accatattgg ccaggctggt 1750
cttgaactcc tgacttcagg tgacccaccc gcctcggcct ctc当地atgc 1800
tgggattaca ggtgtgagcc accgtgcctg gccaattcca acattcttaa 1850
atctctcat ccctccaggg ctccccgtgc tatgttctct ttaccccttc 1900
cccctttct cttgctcagg cctgcaccac tgcagccacc gttcatttat 1950
tcattcatta aacactgagc actcactctg tgctgggtcc cgaaaagggt 2000
gagggggtca gacacaggcc ctgcccctgc cctcaagtgc tggccagtc 2050
agcccaggcg gggagagatg tgtacatagg tttaaagca gacccagagc 2100
tcatggggc ctgtgttctg ggtgttcagg tgctgctggt cctccattac 2150
ccactgctcc ccaaggctgg tgggacgggg tcccgtggc agggcaggt 2200
atctccttcc cgttcctcat ccacctgccc agtgc当地tgc gttacagcaa 2250
accccagggg gccttggca ggtcaagggt tctgtgagga gaggaccag 2300
gagtgtgggg gcatttgggg ggtgaagtgg cccccaaga atgaaaccca 2350
cacccatagc tctccccaca gctgatacgg catcctgcga gaagacctgc 2400
cctcctcact gggatcccct tcctgcctcc tcccagggt ctgccaggc 2450
cttgctcagt ccattccacc aaagtcatct gaacttccgt ttccccagg 2500
cctccagctg ccctcagaca ctgatgtctg tcccagggt ctctctgccc 2550
ctcatgcccc tctcaccggc ccagtgc当地cc gactctccag gctttatcaa 2600
gttgcttaagg cccgggtggg cagtcctcg tctcagagcc ctcctccggc 2650
ctggtgctgc cttaaaaaac acctgcagga gaagggccac ggaagccca 2700
ggctttagag ccctcagcag gtctggggag ctagagcaaa ggagggaccc 2750
caggccttcc gtttcttctt ccagggtggg gtggcctggt gttcccttag 2800
ccttccaaac ccaggtggcc tgcccttctc cccagaggga ggcggcctcc 2850
gcccattggc gctcatgc当地g actctgggc tgaggtgccc cgggggggtga 2900
tctctggc当地 tcacagccga gggagccgtg gctccatggc cagatgacgg 2950
aaacagggtc tgaccaagtg ccaggaagac ctgtgctata aaccaccctg 3000
cctgatccctg cccctgcctg accccgcccac gcccctgcccgt ccagcatgat 3050

taaagaatgc tgtctcctct tggaaaaaaaaaaaaaaaaaa 3089

<210> 47
<211> 259
<212> PRT
<213> Homo sapiens

<220>
<221> Signal Peptide
<222> 1-20
<223> Signal Peptide

<220>
<221> N-glycosylation Site
<222> 72-75
<223> N-glycosylation Site

<220>
<221> Clq Domain Proteins
<222> 144-178, 78-111, 84-117
<223> Clq Domain Proteins

<400> 47
Met Val Thr Ala Ala Leu Gly Pro Val Trp Ala Ala Leu Leu Leu
1 5 10 15
Phe Leu Leu Met Cys Glu Ile Arg Met Val Glu Leu Thr Phe Asp
20 25 30
Arg Ala Val Ala Ser Gly Cys Gln Arg Cys Cys Asp Ser Glu Asp
35 40 45
Pro Leu Asp Pro Ala His Val Ser Ser Ala Ser Ser Ser Gly Arg
50 55 60
Pro His Ala Leu Pro Glu Ile Arg Pro Tyr Ile Asn Ile Thr Ile
65 70 75
Leu Lys Gly Asp Lys Gly Asp Pro Gly Pro Met Gly Leu Pro Gly
80 85 90
Tyr Met Gly Arg Glu Gly Pro Gln Gly Glu Pro Gly Pro Gln Gly
95 100 105
Ser Lys Gly Asp Lys Gly Glu Met Gly Ser Pro Gly Ala Pro Cys
110 115 120
Gln Lys Arg Phe Phe Ala Phe Ser Val Gly Arg Lys Thr Ala Leu
125 130 135
His Ser Gly Glu Asp Phe Gln Thr Leu Leu Phe Glu Arg Val Phe
140 145 150
Val Asn Leu Asp Gly Cys Phe Asp Met Ala Thr Gly Gln Phe Ala
155 160 165
Ala Pro Leu Arg Gly Ile Tyr Phe Phe Ser Leu Asn Val His Ser
170 175 180
Trp Asn Tyr Lys Glu Thr Tyr Val His Ile Met His Asn Gln Lys
185 190 195
Glu Ala Val Ile Leu Tyr Ala Gln Pro Ser Glu Arg Ser Ile Met

200 205 210
Gln Ser Gln Ser Val Met Leu Asp Leu Ala Tyr Gly Asp Arg Val
215 220 225
Trp Val Arg Leu Phe Lys Arg Gln Arg Glu Asn Ala Ile Tyr Ser
230 235 240
Asn Asp Phe Asp Thr Tyr Ile Thr Phe Ser Gly His Leu Ile Lys
245 250 255
Ala Glu Asp Asp

<210> 48
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 48
ccagacgctg ctcttcgaaa gggtc 25

<210> 49
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 49
gtcccccgta ggccaggtcc agc 23

<210> 50
<211> 50
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 50
ctacttcttc agcctcaatg tgcacagctg gaattacaag gagacgtacg 50

<210> 51
<211> 2768
<212> DNA
<213> Homo sapiens

<400> 51
actcgaacgc agttgcttcg ggaccaggaa ccccctcgaa cccgaccgc 50
caggaaagac tgaggcccg cg gcctgccccg cccggctccc tgcgccgccc 100
ccgcctcccg ggacagaaga tgtgctccag ggtccctctg ctgctgccgc 150
tgctcctgct actggccctg gggcctgggg tgcaggctg cccatccggc 200
tgccagtgca gccagccaca gacagtcttc tgcactgcc cccaggggac 250

cacgggtgccc cgagacgtgc caccggacac ggtggggctg tacgtcttg 300
agaacggcat caccatgctc gacgcaggca gctttgccgg cctgccggc 350
ctgcagctcc tggacctgtc acagaaccag atcggcagcc tgcccagcgg 400
ggtcttccag ccactcgcca acctcagcaa cctggacctg acggccaaca 450
ggctgtcatga aatcaccaat gagaccttcc gtggcctgct gcgcctcgag 500
cgcccttacc tggcaagaa ccgcattccgc cacatccagc ctggtgcctt 550
cgacacgctc gaccgcctcc tggagctcaa gctgcaggac aacgagctgc 600
gggcactgcc cccgctgcgc ctgccccgcc tgctgctgct ggacctcagc 650
cacaacagcc tcctggccct ggagcccgcc atcctggaca ctgccaacgt 700
ggaggcgctg cggctggctg gtctgggct gcagcagctg gacgagggc 750
tcttcagccg cttgcgcaac ctccacgacc tggatgtgtc cgacaaccag 800
ctggagcggag tgccacctgt gatccgaggc ctccggggcc tgacgcgcct 850
gcggctggcc ggcaacaccc gcattgccc gctgcggccc gaggacctgg 900
ccggcctggc tgccctgcag gagctggatg tgagcaacct aagcctgcag 950
gccctgcctg gcgcacctctc gggcctcttc cccgcctgc ggctgctggc 1000
agctgcccgc aacccttca actgcgtgtg cccctgagc tggtttggcc 1050
cctgggtgcg cgagagccac gtcacactgg ccagccctga ggagacgcgc 1100
tgccacttcc cgcccaagaa cgctggccgg ctgctcctgg agcttgacta 1150
cgccgacttt ggctgcccag ccaccaccac cacagccaca gtgcccacca 1200
cgaggcccgt ggtgcgggag cccacagcct tgtcttctag cttggctcct 1250
acctggctta gccccacage gccggccact gagggcccca gcccgcctc 1300
caactggccca ccgactgttag ggcctgtccc ccagcccccag gactgccac 1350
cgtccacctg cctcaatggg ggcacatgcc acctggggac acggcaccac 1400
ctggcgtgct tgtgccccga aggcttcacg ggcctgtact gtgagagcca 1450
gatggggcag gggacacggc ccagccctac accagtacg ccgaggccac 1500
cacgggtccct gaccctgggc atcgagccgg tgagccccac ctccctgcgc 1550
gtggggctgc agcgctaccc ctgggggagc tccgtgcagc tcaggagcc 1600
ccgtctcacc tatcgcaacc tatcgcccc tgataagcgg ctggtgacgc 1650
tgcgactgcc tgcctcgctc gctgagtaca cggtcaccca gctgcggccc 1700
aacgccactt actccgtctg tgtcatgcct ttggggcccg ggccgggtgcc 1750
ggagggcag gaggcctgcg gggaggccca tacacccca gccgtccact 1800
ccaaccacgc cccagtcacc caggcccgcc agggcaacct gccgctcctc 1850

bioRxiv preprint doi: <https://doi.org/10.1101/2023.09.04.553000>; this version posted September 4, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a [CC-BY-ND 4.0 International license](https://creativecommons.org/licenses/by-nd/4.0/).

attgcgccccg ccctggccgc ggtgctcctg gccgcgctgg ctgcgggtggg 1900
ggcagcctac tgtgtgcggc gggggcgggc catggcagca gcggctcagg 1950
acaaaggcga ggtggggcca ggggctgggc ccctggaact ggagggagtg 2000
aaggtcccct tggagccagg cccgaaggca acagagggcg gtggagagggc 2050
cctgcccagc gggtctgagt gtgaggtgcc actcatggc ttcccagggc 2100
ctggcctcca gtcacccctc cacgcaaagc cctacatcta agccagagag 2150
agacagggca gctggggccg ggctctcagc cagttagatg gccagcccc 2200
tcctgctgcc acaccacgta agttctcagt cccaacctcg gggatgtgtg 2250
cagacagggc tgtgtgacca cagctggcc ctgttccctc tggacctcgg 2300
tctcctcatc tgtgagatgc tgtggccag ctgacgagcc ctaacgtccc 2350
cagaaccgag tgcctatgag gacagtgtcc gccctgccc cgcacaacgtg 2400
cagtccctgg gcacggcggg ccctgccatg tgctggtaac gcatgcctgg 2450
gtcctgctgg gctctccac tccaggcgga ccctggggc cagtgaagga 2500
agctcccgga aagagcagag ggagagcggg taggcggctg tgtgactcta 2550
gtcttggccc caggaagcga aggaacaaaa gaaactggaa aggaagatgc 2600
tttaggaaca tgtttgctt tttaaaata tatatatattta taagagatcc 2650
tttcccattt attctggaa gatgttttc aaactcagag acaaggactt 2700
tggtttttgt aagacaaacg atgatatgaa ggcctttgt aagaaaaaat 2750
aaaagatgaa gtgtgaaa 2768

<210> 52
<211> 673
<212> PRT
<213> Homo sapiens

<400> 52
Met Cys Ser Arg Val Pro Leu Leu Leu Pro Leu Leu Leu Leu
1 5 10 15
Ala Leu Gly Pro Gly Val Gln Gly Cys Pro Ser Gly Cys Gln Cys
20 25 30
Ser Gln Pro Gln Thr Val Phe Cys Thr Ala Arg Gln Gly Thr Thr
35 40 45
Val Pro Arg Asp Val Pro Pro Asp Thr Val Gly Leu Tyr Val Phe
50 55 60
Glu Asn Gly Ile Thr Met Leu Asp Ala Gly Ser Phe Ala Gly Leu
65 70 75
Pro Gly Leu Gln Leu Leu Asp Leu Ser Gln Asn Gln Ile Ala Ser
80 85 90
Leu Pro Ser Gly Val Phe Gln Pro Leu Ala Asn Leu Ser Asn Leu

95	100	105
Asp Leu Thr Ala Asn Arg Leu His Glu Ile Thr Asn Glu Thr Phe		
110	115	120
Arg Gly Leu Arg Arg Leu Glu Arg Leu Tyr Leu Gly Lys Asn Arg		
125	130	135
Ile Arg His Ile Gln Pro Gly Ala Phe Asp Thr Leu Asp Arg Leu		
140	145	150
Leu Glu Leu Lys Leu Gln Asp Asn Glu Leu Arg Ala Leu Pro Pro		
155	160	165
Leu Arg Leu Pro Arg Leu Leu Leu Asp Leu Ser His Asn Ser		
170	175	180
Leu Leu Ala Leu Glu Pro Gly Ile Leu Asp Thr Ala Asn Val Glu		
185	190	195
Ala Leu Arg Leu Ala Gly Leu Gly Leu Gln Gln Leu Asp Glu Gly		
200	205	210
Leu Phe Ser Arg Leu Arg Asn Leu His Asp Leu Asp Val Ser Asp		
215	220	225
Asn Gln Leu Glu Arg Val Pro Pro Val Ile Arg Gly Leu Arg Gly		
230	235	240
Leu Thr Arg Leu Arg Leu Ala Gly Asn Thr Arg Ile Ala Gln Leu		
245	250	255
Arg Pro Glu Asp Leu Ala Gly Leu Ala Ala Leu Gln Glu Leu Asp		
260	265	270
Val Ser Asn Leu Ser Leu Gln Ala Leu Pro Gly Asp Leu Ser Gly		
275	280	285
Leu Phe Pro Arg Leu Arg Leu Ala Ala Ala Arg Asn Pro Phe		
290	295	300
Asn Cys Val Cys Pro Leu Ser Trp Phe Gly Pro Trp Val Arg Glu		
305	310	315
Ser His Val Thr Leu Ala Ser Pro Glu Glu Thr Arg Cys His Phe		
320	325	330
Pro Pro Lys Asn Ala Gly Arg Leu Leu Leu Glu Leu Asp Tyr Ala		
335	340	345
Asp Phe Gly Cys Pro Ala Thr Thr Thr Ala Thr Val Pro Thr		
350	355	360
Thr Arg Pro Val Val Arg Glu Pro Thr Ala Leu Ser Ser Ser Leu		
365	370	375
Ala Pro Thr Trp Leu Ser Pro Thr Ala Pro Ala Thr Glu Ala Pro		
380	385	390
Ser Pro Pro Ser Thr Ala Pro Pro Thr Val Gly Pro Val Pro Gln		
395	400	405
Pro Gln Asp Cys Pro Pro Ser Thr Cys Leu Asn Gly Gly Thr Cys		

410	415	420
His Leu Gly Thr Arg His His Leu Ala Cys Leu Cys Pro Glu Gly		
425	430	435
Phe Thr Gly Leu Tyr Cys Glu Ser Gln Met Gly Gln Gly Thr Arg		
440	445	450
Pro Ser Pro Thr Pro Val Thr Pro Arg Pro Pro Arg Ser Leu Thr		
455	460	465
Leu Gly Ile Glu Pro Val Ser Pro Thr Ser Leu Arg Val Gly Leu		
470	475	480
Gln Arg Tyr Leu Gln Gly Ser Ser Val Gln Leu Arg Ser Leu Arg		
485	490	495
Leu Thr Tyr Arg Asn Leu Ser Gly Pro Asp Lys Arg Leu Val Thr		
500	505	510
Leu Arg Leu Pro Ala Ser Leu Ala Glu Tyr Thr Val Thr Gln Leu		
515	520	525
Arg Pro Asn Ala Thr Tyr Ser Val Cys Val Met Pro Leu Gly Pro		
530	535	540
Gly Arg Val Pro Glu Gly Glu Ala Cys Gly Glu Ala His Thr		
545	550	555
Pro Pro Ala Val His Ser Asn His Ala Pro Val Thr Gln Ala Arg		
560	565	570
Glu Gly Asn Leu Pro Leu Leu Ile Ala Pro Ala Leu Ala Ala Val		
575	580	585
Leu Leu Ala Ala Leu Ala Ala Val Gly Ala Ala Tyr Cys Val Arg		
590	595	600
Arg Gly Arg Ala Met Ala Ala Ala Ala Gln Asp Lys Gly Gln Val		
605	610	615
Gly Pro Gly Ala Gly Pro Leu Glu Leu Glu Gly Val Lys Val Pro		
620	625	630
Leu Glu Pro Gly Pro Lys Ala Thr Glu Gly Gly Glu Ala Leu		
635	640	645
Pro Ser Gly Ser Glu Cys Glu Val Pro Leu Met Gly Phe Pro Gly		
650	655	660
Pro Gly Leu Gln Ser Pro Leu His Ala Lys Pro Tyr Ile		
665	670	

<210> 53
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 53
tcttcagccg cttgcgaac ctc 23

<210> 54
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 54
ttgctcacat ccagtcctg cagg 24

<210> 55
<211> 41
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 55
tggatgttgt ccagacaacc agctggagct gtatccgagg c 41

<210> 56
<211> 3462
<212> DNA
<213> Homo sapiens

<400> 56
gaatcatcca cgcacctgca gctctgctga gagagtgc aa gccgtgggg 50
tttgagctc atcttcata ttcataatgaa gaaataagtgt gtaaaatcct 100
tggaaataca atgagactca tcagaaacat ttacatattt tgtagtattt 150
ttatgacagc agagggtgat gctccagagc tgccagaaga aaggaaactg 200
atgaccaact gctccaacat gtctctaaga aaggttcccg cagacttgac 250
cccagccaca acgacactgg atttataccta taacccctt tttcaactcc 300
agagttcaga ttttcatct gtctccaaac tgagagttt gattctatgc 350
cataacagaa ttcaaacagct ggatctcaaa acctttaat tcaacaagga 400
gttaagatat ttagatttgt ctaataacag actgaagagt gtaacttgg 450
atttactggc aggtctcagg tattnatgc tttctttaa tgactttgac 500
accatgccta tctgtgagga agctggcaac atgtcacacc tggaaatcct 550
aggtttgagt gggcaaaaa tacaaaaatc agatttccag aaaattgctc 600
atctgcattt aaatactgtc ttcttagat tcagaactct tcctcattat 650
gaagaaggta gcctgccccat cttaaacaca acaaaactgc acattgtttt 700
accaatggac acaaatttct gggtttttgcgtgtatgaa atcaagactt 750
caaaaatatt agaaatgaca aatatacatg gcaaaagcca atttgtaagt 800
tatgaaatgc aacgaaatct tagtttagaa aatgctaaga catcggttct 850
attgcttaat aaagttgatt tactctggaa cgacccccc cttatcttac 900

aatttgttg gcatacatca gtgaaacact ttcagatccg aaatgtgact 950
tttggtgta aggcttatct tgaccacaat tcatttgact actcaaatac 1000
tgtaatgaga actataaaaat tggagcatgt acatbtcaga gtgtttaca 1050
ttcaacagga taaaatctat ttgccttga cccaaatgga catagaaaac 1100
ctgacaatat caaatgcaca aatgccacac atgccttcc cgaattatcc 1150
tacgaaattc caatattaa atttgccaa taatatctta acagacgagt 1200
tgtttaaaag aactatccaa ctgcctcact tgaaaactct catttgaat 1250
ggcaataaac tggagacact ttcttagta agttgcttgc ctaacaacac 1300
acccttgaa cacttggatc tgagtcaaaa tctattacaa cataaaaatg 1350
atgaaaattg ctcatggcca gaaactgtgg tcaatatgaa tctgtcatac 1400
aataaattgt ctgattctgt cttcaggtgc ttgcggaaaa gtattcaaat 1450
acttgaccta aataataacc aaatccaaac tgtacctaaa gagactattc 1500
atctgatggc cttacgagaa ctaaatattg catttaattt tctaactgat 1550
ctccctggat gcagtcattt cagtagactt tcagttctga acattgaaat 1600
gaacttcatt ctcagccat ctctggattt tgttcagagc tgccaggaag 1650
ttaaaaactct aaatgcggga agaaatccat tccggtgtac ctgtgaatta 1700
aaaaatttca ttcaagcttga aacatattca gaggtcatga tgggtggatg 1750
gtcagattca tacacctgtg aataccctt aaacctaagg ggaacttaggt 1800
taaaaagacgt tcatctccac gaattatctt gcaacacagc tctgttgatt 1850
gtcaccattt tggtttattat gctagttctg ggggtggctg tggccttctg 1900
ctgtctccac tttgatctgc cctggtatct caggatgcta ggtcaatgca 1950
cacaaacatg gcacagggtt aggaaaacaa cccaaagaaca actcaagaga 2000
aatgtccat tccacgcatt tatttcatac agtgaacatg attctctgt 2050
ggtgaagaat gaattgatcc ccaatctaga gaaggaagat ggttctatct 2100
tgatttgcct ttatgaaagc tactttgacc ctggccaaag cattagtgaa 2150
aatattgtaa gcttcattga gaaaagctat aagtccatct ttgtttgtc 2200
tcccaacttt gtccagaatg agtgggtcca ttatgaattc tactttgccc 2250
accacaatct ctccatgaa aattctgatc atataattct tatcttactg 2300
gaacccattc cattctattt cattcccacc aggtatcata aactgaaagc 2350
tctcctggaa aaaaaagcat acttgaaatg gcccaaggat aggcgtaaat 2400
gtgggctttt ctgggcaaac ctgcagctg ctattaatgt taatgttatta 2450
gccaccagag aaatgtatga actgcagaca ttcacagagt taaatgaaga 2500

DRAFT

gtctcgaggt tctacaatct ctctgatgag aacagattgt ctataaaatc 2550
ccacagtcct tgggaagttg gggaccacat acactgttgg gatgtacatt 2600
gataacaacct ttatgatggc aatttgacaa tatttattaa aataaaaaat 2650
gttattccc ttcatatcag tttctagaag gatttctaag aatgtatcct 2700
atagaaacac cttcacaagt ttataagggc ttatggaaaa aggtgttcat 2750
cccaggattg tttataatca tgaaaaatgt ggccaggtgc agtggctcac 2800
tcttgtaatc ccagcactat gggaggccaa ggtgggtgac ccacgaggc 2850
aagagatgga gaccatcctg gccaacatgg tgaaaccctg tctctactaa 2900
aaatacaaaa attagctggg cgtgatggt cacgcctgta gtcccagcta 2950
cttgggaggc tgagggcagga gaatcgcttg aaccgggag gtggcagttg 3000
cagttagctg agatcgagcc actgcactcc agcctggta cagagcgaga 3050
ctccatctca aaaaaaagaa aaaaaaaaaa gaaaaaaatg gaaaacatcc 3100
tcatggccac aaaataaggt ctaattcaat aaattatagt acattaatgt 3150
aatataatat tacatgccac taaaaagaat aagtagctg tatatttcct 3200
gttatggaaa aaacatatta atatgttata aactattagg ttggtgcaaa 3250
actaattgtg gttttgcca ttgaaatggc attgaaataa aagtgtaaag 3300
aaatctatac cagatgttgt aacagtggtt tgggtctggg aggttggatt 3350
acagggagca tttgatttct atgttgtgta tttctataat gtttgaattg 3400
tttagaatga atctgtatTT ctttataag tagaaaaaaa ataaagatag 3450
tttttacagc ct 3462

<210> 57
<211> 811
<212> PRT
<213> Homo sapiens

<400> 57
Met Arg Leu Ile Arg Asn Ile Tyr Ile Phe Cys Ser Ile Val Met
1 5 10 15
Thr Ala Glu Gly Asp Ala Pro Glu Leu Pro Glu Glu Arg Glu Leu
20 25 30
Met Thr Asn Cys Ser Asn Met Ser Leu Arg Lys Val Pro Ala Asp
35 40 45
Leu Thr Pro Ala Thr Thr Leu Asp Leu Ser Tyr Asn Leu Leu
50 55 60
Phe Gln Leu Gln Ser Ser Asp Phe His Ser Val Ser Lys Leu Arg
65 70 75
Val Leu Ile Leu Cys His Asn Arg Ile Gln Gln Leu Asp Leu Lys
80 85 90

Thr Phe Glu Phe Asn Lys Glu Leu Arg Tyr Leu Asp Leu Ser Asn
 95 100 105
 Asn Arg Leu Lys Ser Val Thr Trp Tyr Leu Leu Ala Gly Leu Arg
 110 115 120
 Tyr Leu Asp Leu Ser Phe Asn Asp Phe Asp Thr Met Pro Ile Cys
 125 130 135
 Glu Glu Ala Gly Asn Met Ser His Leu Glu Ile Leu Gly Leu Ser
 140 145 150
 Gly Ala Lys Ile Gln Lys Ser Asp Phe Gln Lys Ile Ala His Leu
 155 160 165
 His Leu Asn Thr Val Phe Leu Gly Phe Arg Thr Leu Pro His Tyr
 170 175 180
 Glu Glu Gly Ser Leu Pro Ile Leu Asn Thr Thr Lys Leu His Ile
 185 190 195
 Val Leu Pro Met Asp Thr Asn Phe Trp Val Leu Leu Arg Asp Gly
 200 205 210
 Ile Lys Thr Ser Lys Ile Leu Glu Met Thr Asn Ile Asp Gly Lys
 215 220 225
 Ser Gln Phe Val Ser Tyr Glu Met Gln Arg Asn Leu Ser Leu Glu
 230 235 240
 Asn Ala Lys Thr Ser Val Leu Leu Leu Asn Lys Val Asp Leu Leu
 245 250 255
 Trp Asp Asp Leu Phe Leu Ile Leu Gln Phe Val Trp His Thr Ser
 260 265 270
 Val Glu His Phe Gln Ile Arg Asn Val Thr Phe Gly Gly Lys Ala
 275 280 285
 Tyr Leu Asp His Asn Ser Phe Asp Tyr Ser Asn Thr Val Met Arg
 290 295 300
 Thr Ile Lys Leu Glu His Val His Phe Arg Val Phe Tyr Ile Gln
 305 310 315
 Gln Asp Lys Ile Tyr Leu Leu Leu Thr Lys Met Asp Ile Glu Asn
 320 325 330
 Leu Thr Ile Ser Asn Ala Gln Met Pro His Met Leu Phe Pro Asn
 335 340 345
 Tyr Pro Thr Lys Phe Gln Tyr Leu Asn Phe Ala Asn Asn Ile Leu
 350 355 360
 Thr Asp Glu Leu Phe Lys Arg Thr Ile Gln Leu Pro His Leu Lys
 365 370 375
 Thr Leu Ile Leu Asn Gly Asn Lys Leu Glu Thr Leu Ser Leu Val
 380 385 390
 Ser Cys Phe Ala Asn Asn Thr Pro Leu Glu His Leu Asp Leu Ser
 395 400 405

Gln Asn Leu Leu Gln His Lys Asn Asp Glu Asn Cys Ser Trp Pro
 410 415 420
 Glu Thr Val Val Asn Met Asn Leu Ser Tyr Asn Lys Leu Ser Asp
 425 430 435
 Ser Val Phe Arg Cys Leu Pro Lys Ser Ile Gln Ile Leu Asp Leu
 440 445 450
 Asn Asn Asn Gln Ile Gln Thr Val Pro Lys Glu Thr Ile His Leu
 455 460 465
 Met Ala Leu Arg Glu Leu Asn Ile Ala Phe Asn Phe Leu Thr Asp
 470 475 480
 Leu Pro Gly Cys Ser His Phe Ser Arg Leu Ser Val Leu Asn Ile
 485 490 495
 Glu Met Asn Phe Ile Leu Ser Pro Ser Leu Asp Phe Val Gln Ser
 500 505 510
 Cys Gln Glu Val Lys Thr Leu Asn Ala Gly Arg Asn Pro Phe Arg
 515 520 525
 Cys Thr Cys Glu Leu Lys Asn Phe Ile Gln Leu Glu Thr Tyr Ser
 530 535 540
 Glu Val Met Met Val Gly Trp Ser Asp Ser Tyr Thr Cys Glu Tyr
 545 550 555
 Pro Leu Asn Leu Arg Gly Thr Arg Leu Lys Asp Val His Leu His
 560 565 570
 Glu Leu Ser Cys Asn Thr Ala Leu Leu Ile Val Thr Ile Val Val
 575 580 585
 Ile Met Leu Val Leu Gly Leu Ala Val Ala Phe Cys Cys Leu His
 590 595 600
 Phe Asp Leu Pro Trp Tyr Leu Arg Met Leu Gly Gln Cys Thr Gln
 605 610 615
 Thr Trp His Arg Val Arg Lys Thr Thr Gln Glu Gln Leu Lys Arg
 620 625 630
 Asn Val Arg Phe His Ala Phe Ile Ser Tyr Ser Glu His Asp Ser
 635 640 645
 Leu Trp Val Lys Asn Glu Leu Ile Pro Asn Leu Glu Lys Glu Asp
 650 655 660
 Gly Ser Ile Leu Ile Cys Leu Tyr Glu Ser Tyr Phe Asp Pro Gly
 665 670 675
 Lys Ser Ile Ser Glu Asn Ile Val Ser Phe Ile Glu Lys Ser Tyr
 680 685 690
 Lys Ser Ile Phe Val Leu Ser Pro Asn Phe Val Gln Asn Glu Trp
 695 700 705
 Cys His Tyr Glu Phe Tyr Phe Ala His His Asn Leu Phe His Glu
 710 715 720

Asn Ser Asp His Ile Ile Leu Ile Leu Leu Glu Pro Ile Pro Phe
725 730 735

Tyr Cys Ile Pro Thr Arg Tyr His Lys Leu Lys Ala Leu Leu Glu
740 745 750

Lys Lys Ala Tyr Leu Glu Trp Pro Lys Asp Arg Arg Lys Cys Gly
755 760 765

Leu Phe Trp Ala Asn Leu Arg Ala Ala Ile Asn Val Asn Val Leu
770 775 780

Ala Thr Arg Glu Met Tyr Glu Leu Gln Thr Phe Thr Glu Leu Asn
785 790 795

Glu Glu Ser Arg Gly Ser Thr Ile Ser Leu Met Arg Thr Asp Cys
800 805 810

Leu

<210> 58

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 58

tccaccaggatataaaac tgaa 24

<210> 59

<211> 27

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 59

ttatagacaa tctgttctca tcagaga 27

<210> 60

<211> 40

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 60

aaaaagcata cttggaatgg cccaggata ggtgtaaatg 40

<210> 61

<211> 3772

<212> DNA

<213> Homo sapiens

<400> 61

gggggcttc ttgggcttgg ctgcttgaa cacctgcctc caaggaccgg 50

cctcgagggg gtcgccggga aaggaggaga agaaggaagg gcggggccgg 100

ccccccctgcg cccggccccgc gcctctgcgc gccctgtcc gccccggccc 150
agccccagccc agccccggcg qccggtcaca cgccgcagcca gccggccgccc 200
tcccgcgccc aagcgcgcgc ctctgctgtg ccctgcgccc ttgccccgcg 250
ccagcttctg cgccccgcgc cccgcggcg ccccccggta ccgtgaccct 300
gccctggcg cggggcgag caggcatgtc ccgcgggggg accgctaccc 350
cagcgctggc cctggtgctc ctggcagtga ccctggccgg ggtcggagcc 400
cagggcgtag ccctcgagga ccctgattat tacgggcagg agatctggag 450
ccgggagccc tactacgcgc gcccggagcc cgagctcgag accttctctc 500
cgccgctgcc tgccccggcc ggggaggagt gggagcggcg cccgcaggag 550
cccaggccgc ccaagagggc caccaagccc aagaaagctc ccaagaggga 600
gaagtcggct ccggagccgc ctccaccagg taaacacagc aacaaaaaaag 650
ttatgagaac caagagctct gagaaggctg ccaacgatga tcacagtgtc 700
cgtgtggccc gtgaagatgt cagagaggt tgcccacctc ttggctcgga 750
aacctaaaa atcacagact tccagctcca tgcctccacg gtgaagcgct 800
atggcctggg ggcacatcga gggagactca acatccaggc gggcattaat 850
gaaaatgatt tttatgacgg agcgtggtgc gcgggaagaa atgacctcca 900
gcagtggatt gaagtggatg ctcggcgct gaccagattc actggtgtca 950
tcactcaagg gaggaactcc ctctggctga gtgactgggt gacatcctat 1000
aaggtcatgg tgagcaatga cagccacacg tgggtcactg ttaagaatgg 1050
atctggagac atgatatttgc agggaaacag tgagaaggag atccctgttc 1100
tcaatgagct acccgcccccc atggggcccc gctacatccg cataaaccct 1150
cagtcctggc ttgataatgg gagcatctgc atgagaatgg agatcctggg 1200
ctgcccactg ccagatccta ataattatta tcaccgcgg aacgagatga 1250
ccaccactga tgacctggat tttaagcacc acaattataa ggaaatgcgc 1300
cagttgatga aagttgtgaa tgaaatgtgt cccaatatca ccagaattta 1350
caacattgga aaaagccacc agggcctgaa gctgtatgct gtggagatct 1400
cagatcaccc tggggagcat gaagtcggtg agcccgagtt ccactacatc 1450
gcggggggccc acggcaatga ggtgctggc cgggagctgc tgctgctgct 1500
ggtgcagttc gtgtgtcagg agtacttggc ccggaaatgcg cgcatcgcc 1550
acctggtgga ggagacgcgg attcacgtcc tccccccct caaccccgat 1600
ggctacgaga aggctacga agggggctcg gagctggag gctggccct 1650
gggacgctgg acccacgatg gaattgacat caacaacaac tttcctgatt 1700

taaacacgct gctctggag gcagaggatc gacagaatgt ccccaggaaa 1750
gttcccaatc actatattgc aatccctgag tggtttctgt cgaaaaatgc 1800
cacggtggtc gccgagacca gagcagtcat agcctggatg gaaaaaatcc 1850
cttttgtgct gggcggaac ctgcaggcg gcgagctggt ggtggcgtat 1900
ccctacgacc tggtgccgtc cccctggaag acgcaggaac acacccccac 1950
ccccgatgac cacgtgttcc gctggctggc ctactcctat gcctccacac 2000
accgcctcat gacagacgcc cggaggaggg tgtgccacac ggaggacttc 2050
cagaaggagg agggcactgt caatggggcc tccctggcaca ccgtcgctgg 2100
aagtctgaac gattcagct accttcatac aaactgcttc gaactgtcca 2150
tctacgtggg ctgtgataaa tacccacatg agagccagct gcccaggag 2200
tgggagaata accggaaatc tctgatcgtg ttcatggagc agttcatcg 2250
tggcattaaa ggcttggta gagattcaca tggaaaagga atcccaaacg 2300
ccattatctc cgtagaaggc attaaccatg acatccgaac agccaacgat 2350
ggggattact ggcgcctcct gaaccctgga gagtatgtgg tcacagcaaa 2400
ggccgaaggt ttcactgcat ccaccaagaa ctgtatggtt ggctatgaca 2450
tgggggcccc aagggtgtac ttcacactta gcaaaaccaa catggccagg 2500
atccgagaga tcatggagaa gtttggaaag cagcccgta gcctgcoagc 2550
caggcggctg aagctgcggg ggcggaagag acgacagcgt gggtgaccct 2600
cctggccct tgagactcgt ctgggaccca tgcaaattaa accaacctgg 2650
tagtagctcc atagtgact cactcactgt tggttcctct gtaattcaag 2700
aagtgcctgg aagagagggt gcatttgag gcaggtccca aaagggaagg 2750
ctggaggctg aggctgttt ctttctttg ttcccattha tccaaataac 2800
ttggacagag cagcagagaa aagctgtatgg gagtgagaga actcagcaag 2850
ccaaacctggg aatcagagag agaaggagaa ggagggagc ctgtccgttc 2900
agagcctctg gctgcataga aaaggattct ggtgcttccc ctgtttgcgt 2950
ggcagcaagg gttccacgtg catttgcatt ttgcacagct aaaattgcag 3000
catttccccca gctgggctgt cccaaatgtt accatttgag atgctccag 3050
gcgtcctaag agaatccacc ctctctggcc ctgggacatt gcaagctgct 3100
acaataataat tctgtgttct tttgacaata gcgtcattgc caagtgcaca 3150
tcagtgagcc tcttgaatct gtttagtctc cttttcaac aaaggagtgt 3200
gttcagaaaa ggagagagag gctgagatca ttcaggagtt tggtggcag 3250
caagcatgga gcttcttgca caaattctgg gtccataaac aacccccaac 3300

gtccctgctg atccagtagc cctggagggtt ccccaggtag ggagagccag 3350
agggccgc cttcctgaag ggccagaaaa tttagcctgg atctcctt 3400
ttacctgcta ggactggaaa gagccagaag tgggtggcc tgaagccctc 3450
tctctgcttg aggtattgcc cctgtgtgga attgagtgct catgggttgg 3500
cctcatatca gcctggagt tattttgtat atgtagaatg ccagatcttc 3550
cagattagc taaatgtaat gaaaacctct taggattatc tgtggagcat 3600
cagtttggga agaattattg aattatcttgc caagaaaaaa gtatgtctca 3650
cttttgtta atgttgctgc ctcattgacc tggaaaaat gaaaaaaaaa 3700
aataaagcaa atggtaagac cctaaaaaaa aaaaaaaaaa aaaaaaaaaa 3750
aaaaaaaaaa aaaaaaaaaa aa 3772

<210> 62
<211> 756
<212> PRT
<213> Homo sapiens

<400> 62
Met Ser Arg Pro Gly Thr Ala Thr Pro Ala Leu Ala Leu Val Leu
1 5 10 15
Leu Ala Val Thr Leu Ala Gly Val Gly Ala Gln Gly Ala Ala Leu
20 25 30
Glu Asp Pro Asp Tyr Tyr Gly Gln Glu Ile Trp Ser Arg Glu Pro
35 40 45
Tyr Tyr Ala Arg Pro Glu Pro Glu Leu Glu Thr Phe Ser Pro Pro
50 55 60
Leu Pro Ala Gly Pro Gly Glu Glu Trp Glu Arg Arg Pro Gln Glu
65 70 75
Pro Arg Pro Pro Lys Arg Ala Thr Lys Pro Lys Lys Ala Pro Lys
80 85 90
Arg Glu Lys Ser Ala Pro Glu Pro Pro Pro Gly Lys His Ser
95 100 105
Asn Lys Lys Val Met Arg Thr Lys Ser Ser Glu Lys Ala Ala Asn
110 115 120
Asp Asp His Ser Val Arg Val Ala Arg Glu Asp Val Arg Glu Ser
125 130 135
Cys Pro Pro Leu Gly Leu Glu Thr Leu Lys Ile Thr Asp Phe Gln
140 145 150
Leu His Ala Ser Thr Val Lys Arg Tyr Gly Leu Gly Ala His Arg
155 160 165
Gly Arg Leu Asn Ile Gln Ala Gly Ile Asn Glu Asn Asp Phe Tyr
170 175 180
Asp Gly Ala Trp Cys Ala Gly Arg Asn Asp Leu Gln Gln Trp Ile

185 190 195

Glu	Val	Asp	Ala	Arg	Arg	Leu	Thr	Arg	Phe	Thr	Gly	Val	Ile	Thr
200									205					210
Gln	Gly	Arg	Asn	Ser	Leu	Trp	Leu	Ser	Asp	Trp	Val	Thr	Ser	Tyr
215									220					225
Lys	Val	Met	Val	Ser	Asn	Asp	Ser	His	Thr	Trp	Val	Thr	Val	Lys
230									235					240
Asn	Gly	Ser	Gly	Asp	Met	Ile	Phe	Glu	Gly	Asn	Ser	Glu	Lys	Glu
245								250						255
Ile	Pro	Val	Leu	Asn	Glu	Leu	Pro	Val	Pro	Met	Val	Ala	Arg	Tyr
260								265						270
Ile	Arg	Ile	Asn	Pro	Gln	Ser	Trp	Phe	Asp	Asn	Gly	Ser	Ile	Cys
275								280						285
Met	Arg	Met	Glu	Ile	Leu	Gly	Cys	Pro	Leu	Pro	Asp	Pro	Asn	Asn
290								295						300
Tyr	Tyr	His	Arg	Arg	Asn	Glu	Met	Thr	Thr	Thr	Asp	Asp	Leu	Asp
305								310						315
Phe	Lys	His	His	Asn	Tyr	Lys	Glu	Met	Arg	Gln	Leu	Met	Lys	Val
320								325						330
Val	Asn	Glu	Met	Cys	Pro	Asn	Ile	Thr	Arg	Ile	Tyr	Asn	Ile	Gly
335								340						345
Lys	Ser	His	Gln	Gly	Leu	Lys	Leu	Tyr	Ala	Val	Glu	Ile	Ser	Asp
350								355						360
His	Pro	Gly	Glu	His	Glu	Val	Gly	Glu	Pro	Glu	Phe	His	Tyr	Ile
365								370						375
Ala	Gly	Ala	His	Gly	Asn	Glu	Val	Leu	Gly	Arg	Glu	Leu	Leu	Leu
380								385						390
Leu	Leu	Val	Gln	Phe	Val	Cys	Gln	Glu	Tyr	Leu	Ala	Arg	Asn	Ala
395								400						405
Arg	Ile	Val	His	Ile	Val	Glu	Glu	Thr	Arg	Ile	His	Val	Leu	Pro
410								415						420
Ser	Leu	Asn	Pro	Asp	Gly	Tyr	Glu	Lys	Ala	Tyr	Glu	Gly	Gly	Ser
425								430						435
Glu	Leu	Gly	Gly	Trp	Ser	Leu	Gly	Arg	Trp	Thr	His	Asp	Gly	Ile
440								445						450
Asp	Ile	Asn	Asn	Asn	Phe	Pro	Asp	Leu	Asn	Thr	Leu	Leu	Trp	Glu
455								460						465
Ala	Glu	Asp	Arg	Gln	Asn	Val	Pro	Arg	Lys	Val	Pro	Asn	His	Tyr
470								475						480
Ile	Ala	Ile	Pro	Glu	Trp	Phe	Leu	Ser	Glu	Asn	Ala	Thr	Val	Ala
485								490						495
Ala	Glu	Thr	Arg	Ala	Val	Ile	Ala	Trp	Met	Glu	Lys	Ile	Pro	Phe

500 505 510

Val	Leu	Gly	Gly	Asn	Leu	Gln	Gly	Gly	Glu	Leu	Val	Val	Ala	Tyr
					515				520				525	
Pro	Tyr	Asp	Leu	Val	Arg	Ser	Pro	Trp	Lys	Thr	Gln	Glu	His	Thr
					530				535				540	
Pro	Thr	Pro	Asp	Asp	His	Val	Phe	Arg	Trp	Leu	Ala	Tyr	Ser	Tyr
					545				550				555	
Ala	Ser	Thr	His	Arg	Leu	Met	Thr	Asp	Ala	Arg	Arg	Arg	Val	Cys
					560				565				570	
His	Thr	Glu	Asp	Phe	Gln	Lys	Glu	Glu	Gly	Thr	Val	Asn	Gly	Ala
					575				580				585	
Ser	Trp	His	Thr	Val	Ala	Gly	Ser	Leu	Asn	Asp	Phe	Ser	Tyr	Leu
					590				595				600	
His	Thr	Asn	Cys	Phe	Glu	Leu	Ser	Ile	Tyr	Val	Gly	Cys	Asp	Lys
					605				610				615	
Tyr	Pro	His	Glu	Ser	Gln	Leu	Pro	Glu	Glu	Trp	Glu	Asn	Asn	Arg
					620				625				630	
Glu	Ser	Leu	Ile	Val	Phe	Met	Glu	Gln	Val	His	Arg	Gly	Ile	Lys
					635				640				645	
Gly	Leu	Val	Arg	Asp	Ser	His	Gly	Lys	Gly	Ile	Pro	Asn	Ala	Ile
					650				655				660	
Ile	Ser	Val	Glu	Gly	Ile	Asn	His	Asp	Ile	Arg	Thr	Ala	Asn	Asp
					665				670				675	
Gly	Asp	Tyr	Trp	Arg	Leu	Leu	Asn	Pro	Gly	Glu	Tyr	Val	Val	Thr
					680				685				690	
Ala	Lys	Ala	Glu	Gly	Phe	Thr	Ala	Ser	Thr	Lys	Asn	Cys	Met	Val
					695				700				705	
Gly	Tyr	Asp	Met	Gly	Ala	Thr	Arg	Cys	Asp	Phe	Thr	Leu	Ser	Lys
					710				715				720	
Thr	Asn	Met	Ala	Arg	Ile	Arg	Glu	Ile	Met	Glu	Lys	Phe	Gly	Lys
					725				730				735	
Gln	Pro	Val	Ser	Leu	Pro	Ala	Arg	Arg	Leu	Lys	Leu	Arg	Gly	Arg
					740				745				750	
Lys	Arg	Arg	Gln	Arg	Gly									
					755									

<210> 63
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 63
gttctcaatg agctaccgt cccc 24

<210> 64
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 64
cgcgatgtag tggaactcg 24

<210> 65
<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 65
atccgcataa accctcagtc ctggtttgat aatgggagca tctgcatt 50

<210> 66
<211> 2854
<212> DNA
<213> Homo sapiens

<400> 66
ctaagaggac aagatgaggc ccggcctctc atttctcccta gcccttctgt 50
tcttccttgg ccaagctgca ggggatttgg gggatgtggg acctccaatt 100
cccagccccg gcttcagctc tttcccaggt gttgactcca gctccagctt 150
cagctccagc tccaggtcg 9 gctccagctc cagccgcagc ttaggcagcg 200
gaggttctgt gtcccaatt tcaccggctc cgtggatgac 250
cgtgggacct gccagtgctc tgcccaatt ccagacacca cctttccctg 300
ggacagagtg gaacgcttgg aattcacagc tcatgttctt tctcagaagt 350
ttgagaaaga actttctaaa gtgaggaaat atgtccaatt aatttagtgt 400
tatgaaaaga aactgttaaa cctaactg 9 tcgatggaca tcatggagaa 450
ggataccatt tcttacactg aactggactt cgagctgatc aaggtagaag 500
tgaaggagat gaaaaactg gtcatacagc tgaaggagag ttttggatg 550
agctcagaaa ttgttgacca gctggaggtg gagataagaa atatgactct 600
cttggtagag aagcttgaga cactagacaa aaacaatg 9 tc 650
gccgagaaat cgtggctctg aagaccaagc tgaaagagtg tgaggcctct 700
aaagatcaa 9 acacccctgt cgtccacccct cctcccaactc cagggagctg 750
tggtcatgg 9 ggtgtggta acatcagcaa accgtctgtg gttcagctca 800
actggagagg gttttcttat ctatatgg 9 tg 850
ccccagcatc caaacaaagg actgtattgg gtggcgccat tgaatacaga 900

tgggagactg ttggagtatt atagactgta caacacactg gatgatttc 950
tattgtatat aaatgctga gagttgcgga tcacctatgg ccaaggtagt 1000
ggtacagcag tttacaacaa caacatgtac gtcaacatgt acaacaccgg 1050
gaatattgcc agagttAACG tgaccaccaa cacgattgct gtgactcaaa 1100
ctctccctaa tgctgcctat aataaccgct tttcatatgc taatgttgct 1150
tggcaagata ttgactttgc tgtggatgag aatggattgt gggttattta 1200
tcaactgaa gccagcactg gtaacatggt gattagtaaa ctcaatgaca 1250
ccacacttca ggtgctaaac acttggtata ccaagcagta taaaccatct 1300
gcttctaacg cttcatggt atgtggggtt ctgtatgcca cccgtactat 1350
gaacaccaga acagaagaga tttttacta ttatgacaca aacacaggga 1400
aagagggcaa actagacatt gtaatgcata agatgcagga aaaagtgcag 1450
agcattaact ataacccttt tgaccagaaa ctttatgtct ataacgatgg 1500
ttacccctg aattatgatc tttctgtctt gcagaagccc cagtaagctg 1550
tttaggagtt agggtaaag agaaaatgtt tgttaaaaaa atagtcttct 1600
ccacttactt agatatctgc aggggtgtct aaaagtgtgt tcattttgca 1650
gcaatgtta ggtgcatagt tctaccacac tagagatcta ggacatttgt 1700
cttgatttgg tgagttctct tggaaatcat ctgcctcttc aggccgattt 1750
tgcaataaag tctgtctagg gtgggattgt cagaggtcta gggcactgt 1800
ggcccttagt aagctactg tgaggaggct tcactagaag ccttaaattta 1850
ggaattaaagg aactaaaac tcagtatggc gtctagggat tctttgtaca 1900
gaaatatttgc cccaatgact agtcctcatc catgtacac cactaattct 1950
tccatgcctg gaagaaacct gggacttag ttaggtatgt taatatctgg 2000
agctcctcgaaat ccacaaactt ttttccccct cactagcacc 2050
tggaaatgtatgt ctgtatgttgc tggcagataag taaatttggc atgcttat 2100
attctacatc tggaaatgtgc tgagttttat ggagagaggc cttttatgc 2150
attaaattgt acatggcaaa taaatccag aaggatctgt agatgaggca 2200
cctgctttt ctttctctc attgtccacc ttactaaaag tcagtagaat 2250
cttctacctc ataacttcct tccaaaggca gctcagaaga ttagaaccag 2300
acttactaac caattccacc cccccaccaac ccccttctac tgcctacttt 2350
aaaaaaattta atagtttct atggaactga tctaaagatta gaaaaattaa 2400
ttttctttaa ttccattatg gacttttatt tacatgactc taagactata 2450
aaaaaatctg atggcagtga caaagtgcata gcatttatttgc ttatctaata 2500

aagaccttgg agcatatgtg caacttatga gtgtatcagt tgttgcatt 2550
aattttgcc tttgttaag cctggaaactt gtaagaaaat gaaaatttaa 2600
ttttttttc taggacgagc tatagaaaaag ctattgagag tatctagtt 2650
atcagtgcag tagttggaaa ccttgctggt gtatgtatg tgcttcgtg 2700
ctttgaatg actttatcat ctagtcttg tctattttc ctttgatgtt 2750
caagtcctag tctataggat tggcagttt aatgcttac tcccccttt 2800
aaaataaatg attaaaatgt gcttgaaaa aaaaaaaaaa aaaaaaaaaa 2850
aaaa 2854

<210> 67
<211> 510
<212> PRT
<213> Homo sapiens

<400> 67
Met Arg Pro Gly Leu Ser Phe Leu Leu Ala Leu Leu Phe Phe Leu
1 5 10 15
Gly Gln Ala Ala Gly Asp Leu Gly Asp Val Gly Pro Pro Ile Pro
20 25 30
Ser Pro Gly Phe Ser Ser Phe Pro Gly Val Asp Ser Ser Ser Ser
35 40 45
Phe Ser Ser Ser Arg Ser Gly Ser Ser Ser Arg Ser Leu
50 55 60
Gly Ser Gly Gly Ser Val Ser Gln Leu Phe Ser Asn Phe Thr Gly
65 70 75
Ser Val Asp Asp Arg Gly Thr Cys Gln Cys Ser Val Ser Leu Pro
80 85 90
Asp Thr Thr Phe Pro Val Asp Arg Val Glu Arg Leu Glu Phe Thr
95 100 105
Ala His Val Leu Ser Gln Lys Phe Glu Lys Glu Leu Ser Lys Val
110 115 120
Arg Glu Tyr Val Gln Leu Ile Ser Val Tyr Glu Lys Lys Leu Leu
125 130 135
Asn Leu Thr Val Arg Ile Asp Ile Met Glu Lys Asp Thr Ile Ser
140 145 150
Tyr Thr Glu Leu Asp Phe Glu Leu Ile Lys Val Glu Val Lys Glu
155 160 165
Met Glu Lys Leu Val Ile Gln Leu Lys Glu Ser Phe Gly Gly Ser
170 175 180
Ser Glu Ile Val Asp Gln Leu Glu Val Glu Ile Arg Asn Met Thr
185 190 195
Leu Leu Val Glu Lys Leu Glu Thr Leu Asp Lys Asn Asn Val Leu
200 205 210

Ala Ile Arg Arg Glu Ile Val Ala Leu Lys Thr Lys Leu Lys Glu
 215 220 225
 Cys Glu Ala Ser Lys Asp Gln Asn Thr Pro Val Val His Pro Pro
 230 235 240
 Pro Thr Pro Gly Ser Cys Gly His Gly Val Val Asn Ile Ser
 245 250 255
 Lys Pro Ser Val Val Gln Leu Asn Trp Arg Gly Phe Ser Tyr Leu
 260 265 270
 Tyr Gly Ala Trp Gly Arg Asp Tyr Ser Pro Gln His Pro Asn Lys
 275 280 285
 Gly Leu Tyr Trp Val Ala Pro Leu Asn Thr Asp Gly Arg Leu Leu
 290 295 300
 Glu Tyr Tyr Arg Leu Tyr Asn Thr Leu Asp Asp Leu Leu Tyr
 305 310 315
 Ile Asn Ala Arg Glu Leu Arg Ile Thr Tyr Gly Gln Gly Ser Gly
 320 325 330
 Thr Ala Val Tyr Asn Asn Asn Met Tyr Val Asn Met Tyr Asn Thr
 335 340 345
 Gly Asn Ile Ala Arg Val Asn Leu Thr Thr Asn Thr Ile Ala Val
 350 355 360
 Thr Gln Thr Leu Pro Asn Ala Ala Tyr Asn Asn Arg Phe Ser Tyr
 365 370 375
 Ala Asn Val Ala Trp Gln Asp Ile Asp Phe Ala Val Asp Glu Asn
 380 385 390
 Gly Leu Trp Val Ile Tyr Ser Thr Glu Ala Ser Thr Gly Asn Met
 395 400 405
 Val Ile Ser Lys Leu Asn Asp Thr Thr Leu Gln Val Leu Asn Thr
 410 415 420
 Trp Tyr Thr Lys Gln Tyr Lys Pro Ser Ala Ser Asn Ala Phe Met
 425 430 435
 Val Cys Gly Val Leu Tyr Ala Thr Arg Thr Met Asn Thr Arg Thr
 440 445 450
 Glu Glu Ile Phe Tyr Tyr Asp Thr Asn Thr Gly Lys Glu Gly
 455 460 465
 Lys Leu Asp Ile Val Met His Lys Met Gln Glu Lys Val Gln Ser
 470 475 480
 Ile Asn Tyr Asn Pro Phe Asp Gln Lys Leu Tyr Val Tyr Asn Asp
 485 490 495
 Gly Tyr Leu Leu Asn Tyr Asp Leu Ser Val Leu Gln Lys Pro Gln
 500 505 510

<210> 68
 <211> 410
 <212> DNA

<213> Homo sapiens

<220>

<221> unsure

<222> 206, 217, 387

<223> unknown base

<400> 68
gctctgaaga ccaagctgaa agagtgtgag gcctctaaag atcaaacacc 50
cctgtcggtcc accctcctcc cactccaggg agctgtggtc atggtgtgt 100
ggtgaacatc agcaaaccgt ctgtggttca gctcaactgg agagggttt 150
cttatctata tggtgcttgg gtagggatt actctccccca gcatccaaac 200
aaaggnatgt attgggnggc gccattgaat acagatggga gactgttgga 250
gtattataga ctgtacaacc cactggatga tttgttattt tatataaatg 300
ctcgagagtt gcggatcacc tatggccaag gtagtggcac agcagttac 350
aacaacaaca tgtacgtcaa catgtacaac accgggnata ttgccagagt 400
taacctgacc 410

<210> 69
<211> 24
<212> DNA
<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 69
agctgtggtc atggtgtgt ggtg 24

<210> 70
<211> 24
<212> DNA
<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 70
ctaccttggc cataggtgat ccgc 24

<210> 71
<211> 42
<212> DNA
<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 71
catcagcaaa ccgtctgtgg ttcagctcaa ctggagaggg tt 42

<210> 72
<211> 3127
<212> DNA
<213> Homo sapiens

<400> 72
tctcgagat agtaaataat ctcggaaagg cgagaaagaa gctgtctcca 50
tcttgctgt atccgctgct cttgtgacgt tgtggagatg gggagcgtcc 100
tggggctgtg ctccatggcg agctggatac catgttgtg tggaaagtgcc 150
ccgtgtttgc tatgccgatg ctgtcctagt ggaaacaact ccactgtaac 200
tagattgatc tatgcacttt tcttgcttgt tggagttatgt gtagcttgt 250
taatgttcat accaggaatg gaagaacaac tgaataagat tcctggattt 300
tgtgagaatg agaaagggtgt tgtcccttgt aacattttgg ttggctataa 350
agctgtataat cgtttgcgt ttgggttggc tatgttctat cttcttcct 400
ctttactaat gatcaaagtg aagagtagca gtgatcttag agctgcagtg 450
cacaatggat tttggttctt taaatttgct gcagcaattg caattattat 500
tggggcattc ttcatccag aaggaacttt tacaactgtg tggttttatg 550
taggcatttgc aggtgccttt tgtttcatcc tcataacaact agtcttactt 600
attgattttg cacattcatg gaatgaatcg tgggttgaaa aaatggaaga 650
agggaaactcg agatgttggt atgcagccctt gttatcagct acagctctga 700
attatctgct gtcttagtt gctatcgatc tgttcttgt ctactacact 750
catccagcca gttgttcaga aaacaaggcg ttcatcagtg tcaacatgct 800
cctctgcgtt ggtgcttctg taatgtctat actgccaaaa atccaagaat 850
cacaaccaag atctggtttgc ttacagttt cagtaattac agtctacaca 900
atgtatttga catggtcagc tatgaccaat gaaccagaaa caaattgcaa 950
cccaagtcta ctaagcataa ttggctacaa tacaacaagc actgtcccaa 1000
aggaaggcgca gtcagtcag tgggtggcatg ctcaaggaat tataggacta 1050
attctcttt tggtgtgtgt attttattcc agcatccgtt cttcaaacaa 1100
tagtcaggtt aataaaactga ctctaaacaag tgatgaatct acattaatag 1150
aagatggtgg agctagaagt gatggatcac tggaggatgg ggacgatgtt 1200
caccgagctg tagataatga aagggtgggt gtcacttaca gttattcctt 1250
ctttcacttc atgcctttcc tggcttcaact ttatcatg atgaccctta 1300
ccaaactggtc caggtatgaa ccctctcgat agatgaaaag tcagtggaca 1350
gctgtctggg tgaaaatctc ttccagttgg attggcatcg tgctgtatgt 1400
ttggacactc gtggcaccac ttgttcttac aaatcgtgat tttgactgag 1450
tgagacttct agcatgaaag tcccactttg attattgctt atttgaaaac 1500
agtattccca acttttgtaa agttgtgtat gttttgctt cccatgtaac 1550

ttctccagtg ttctggcatg aatttagatt tactgcttgt cattttgtta 1600
tttcttacc aagtgcattg atatgtgaag tagaatgaat tgcaaggaa 1650
agtttatga atatggtgat gagtttagtaa aagtggccat tattggcct 1700
attctctgct ctatagttgt gaaatgaaga gtaaaaacaa atttgttga 1750
ctatttaaa attatattag acctaagct gtttagcaa gcattaaagc 1800
aaatgtatgg ctgcctttg aaatattga tgtgtgcct ggcaggatac 1850
tgcaaagaac atggtttatt taaaaattta taaacaagtc acttaaatgc 1900
cagttgtctg aaaaatctta taaggtttta cccttgatac ggaatttaca 1950
caggttaggga gtgttagtg gacaatagtg taggttatgg atggaggtgt 2000
cggtactaaa ttgaataacg agtaaataat cttacttggg tagagatggc 2050
cttgc当地 aaggtgaact gtttggttg tttaaactc atgaagtatg 2100
gttcagtgaaatgtttgg aactctgaag gatttagaca aggtttgaa 2150
aaggataatc atgggttaga aggaagtgtt ttgaaagtca ctttgaaggt 2200
tagtttggg cccagcacgg tagtcaccc ttggtaatcc cagcactttg 2250
ggagcttaag tggtagatt acttgagccc aggaattcag accagcttgg 2300
cacatggtga acctgttcta taaaaataat ctggcttga gcatatgcct 2350
gtggccagc actgagaggc tagtgaagat tgctgagccc agagccaaag 2400
gttgcagtga gcaagtcacg tcactgcact ctagctggca cagagtaacg 2450
aaaaaaaaata tatatatatt gaaatcaagg aggcaaaatt ttgacagggaa 2500
aggaagtaac tgcaaaacca ctaggcttta gtaggtactt atataaaaatc 2550
tagtccagtt ctctcattta aaaaaatgaa gacactgaaa tacagactta 2600
aatacgatc atagctaatt aggaaatttc aagttggcca ataatagcat 2650
tctctctgac attttaaaat aatttctatt caaaatacat gcatattgt 2700
ttacaccta tactgtgata attaatgtga tgtggattgc tgggtccag 2750
catgaccat aaacaggtca gaagaatgtat ggaatgtttt agaataaaact 2800
cctgcttata gtataactaca cagttcaaaa gatgtttaaa atgctttgt 2850
atttactgcc atgtaattga aatatataga ttattgtaac ctttcaacct 2900
gaaaatcaag cagtagtggaa gtttagttat ttgtatgtgt cactagtgtc 2950
taatgaagct tttaaaaatct acaatttctt cttttaaaat atttattaaat 3000
gtgaatggaa tataacaatt cagcttaatt ccccaacctt attctgtgt 3050
tagacattgt attccacaat tttgaatggc tgtgtttac ctctaaataa 3100
atgaattcag agaaaaaaaaaaaaaaa 3127

<210> 73
<211> 453
<212> PRT
<213> Homo sapiens

<400> 73
Met Gly Ser Val Leu Gly Leu Cys Ser Met Ala Ser Trp Ile Pro
1 5 10 15
Cys Leu Cys Gly Ser Ala Pro Cys Leu Leu Cys Arg Cys Cys Pro
20 25 30
Ser Gly Asn Asn Ser Thr Val Thr Arg Leu Ile Tyr Ala Leu Phe
35 40 45
Leu Leu Val Gly Val Cys Val Ala Cys Val Met Leu Ile Pro Gly
50 55 . 60
Met Glu Glu Gln Leu Asn Lys Ile Pro Gly Phe Cys Glu Asn Glu
65 70 75
Lys Gly Val Val Pro Cys Asn Ile Leu Val Gly Tyr Lys Ala Val
80 85 90
Tyr Arg Leu Cys Phe Gly Leu Ala Met Phe Tyr Leu Leu Leu Ser
95 100 105
Leu Leu Met Ile Lys Val Lys Ser Ser Asp Pro Arg Ala Ala
110 115 120
Val His Asn Gly Phe Trp Phe Lys Phe Ala Ala Ala Ile Ala
125 130 135
Ile Ile Ile Gly Ala Phe Phe Ile Pro Glu Gly Thr Phe Thr Thr
140 145 150
Val Trp Phe Tyr Val Gly Met Ala Gly Ala Phe Cys Phe Ile Leu
155 160 165
Ile Gln Leu Val Leu Leu Ile Asp Phe Ala His Ser Trp Asn Glu
170 175 180
Ser Trp Val Glu Lys Met Glu Glu Gly Asn Ser Arg Cys Trp Tyr
185 190 195
Ala Ala Leu Leu Ser Ala Thr Ala Leu Asn Tyr Leu Leu Ser Leu
200 205 210
Val Ala Ile Val Leu Phe Phe Val Tyr Tyr Thr His Pro Ala Ser
215 220 225
Cys Ser Glu Asn Lys Ala Phe Ile Ser Val Asn Met Leu Leu Cys
230 235 240
Val Gly Ala Ser Val Met Ser Ile Leu Pro Lys Ile Gln Glu Ser
245 250 255
Gln Pro Arg Ser Gly Leu Leu Gln Ser Ser Val Ile Thr Val Tyr
260 265 270
Thr Met Tyr Leu Thr Trp Ser Ala Met Thr Asn Glu Pro Glu Thr
275 280 285

Asn Cys Asn Pro Ser Leu Leu Ser Ile Ile Gly Tyr Asn Thr Thr
290 295 300

Ser Thr Val Pro Lys Glu Gly Gln Ser Val Gln Trp Trp His Ala
305 310 315

Gln Gly Ile Ile Gly Leu Ile Leu Phe Leu Leu Cys Val Phe Tyr
320 325 330

Ser Ser Ile Arg Thr Ser Asn Asn Ser Gln Val Asn Lys Leu Thr
335 340 345

Leu Thr Ser Asp Glu Ser Thr Leu Ile Glu Asp Gly Gly Ala Arg
350 355 360

Ser Asp Gly Ser Leu Glu Asp Gly Asp Asp Val His Arg Ala Val
365 370 375

Asp Asn Glu Arg Asp Gly Val Thr Tyr Ser Tyr Ser Phe Phe His
380 385 390

Phe Met Leu Phe Leu Ala Ser Leu Tyr Ile Met Met Thr Leu Thr
395 400 405

Asn Trp Ser Arg Tyr Glu Pro Ser Arg Glu Met Lys Ser Gln Trp
410 415 420

Thr Ala Val Trp Val Lys Ile Ser Ser Ser Trp Ile Gly Ile Val
425 430 435

Leu Tyr Val Trp Thr Leu Val Ala Pro Leu Val Leu Thr Asn Arg
440 445 450

Asp Phe Asp

<210> 74
<211> 480
<212> DNA
<213> Homo sapiens

<220>
<221> unsure
<222> 48, 163
<223> unknown base

<400> 74
gcgagaaaaga agctgtctcc atcttgcgtc tatcccgctg cttcttgnga 50
cggttgtggag atggggagcg tccctggggc tgtgctccat ggcgagctgg 100
ataccatgtt tgtgtggaaag tgccccgtgt ttgctatgcc gatgctgtcc 150
tagtgaaac aantccactg taacttagatt gatctatgca cttttcttgc 200
ttgttgaggat atgtgttagct tgtgtaatgt tgataccagg aatggaagaa 250
caactgaata agattcctgg attttgcgag aatgagaaaag gtgttgccc 300
ttgtaacatt ttgggtggct ataaagctgt atatcgtttg tgctttggtt 350
tggctatgtt ctatcttctt ctctctttac taatgatcaa agtgaagagt 400

DNA sequence analysis

```
<210> 77
<211> 666
<212> DNA
<213> Homo sapiens

<220>
<221> unsure
<222> 21, 111
<223> unknown base

<400> 77
gctgtcctta gtggaaacaa ntccaaacttg taacttggat tgcgttatgc 50
acttttcct tgcttggatgg agtatgtgtat gctttgtgtat atgttgttcc 100
caggattgga ngtacaactg aataagattc ctggattttt gtgagaatga 150
gaaagggtgtt gtccccttgtt aacatttttgg gttggctata aagctgtata 200
tcgtttgtgc tttgggttgg ctatgttcta tcttcttctc tctttactaa 250
tgatcaaagt gaagagtagc agtgatccta gagctgcagt gcacaatgga 300
ttttgggttct tttaaatttgc tgcagcaattt gcaatttattt ttggggcatt 350
cttcattcca gaaggaactt ttacaactgt gtggttttat gtaggcattgg 400
caggtgcctt ttgtttcatc ctcatacaac tagtcttactt tattgattttt 450
gcacattcat ggaatgaatc gtgggttgaa aaaatggaag aaggaaactc 500
gagatgttgg tatgcagcct tggttatcagc tacagctctg aattatctgc 550
tgtcttttagt tgctatcgatc ctgttcttgc tctactacac tcattccagcc 600
agttgttcag aaaacaaggc gttcatcagt gtcaacatgc tcctctgcgt 650
tggtgcttctt gtaatg 666

<210> 78
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 78
atgtttgtgtt ggaagtgcccg 22

<210> 79
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 79
gtcaacatgc tcctctgc 18

<210> 80
<211> 26
```

<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 80
aatccattgt gcactgcagc tctagg 26

<210> 81
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 81
gagcatgcac ccactggact gac 23

<210> 82
<211> 54
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 82
gccgatgctg tccttagtgaa aacaactcca ctgttaactag attgatctat 50
gcac 54

<210> 83
<211> 3906
<212> DNA
<213> Homo sapiens

<400> 83
ctcgccgcgc cacaggcagc tcgggttgcc ctgcgattga gctgcggg 50
gcggccggcg ccggcctctc caatggcaaa tgtgtgtggc tggaggcgag 100
cgcgaggctt tcggcaaagg cagtcgagtg tttcagacc gggcgagtc 150
ctgtgaaagc agataaaaga aaacatttat taacgtgtca ttacgagggg 200
agcgccccgc cgccccgtgc gcactccccg cggAACATT ggctccctcc 250
agctccgaga gaggagaaga agaaagcgga aaagaggcag attcacgtcg 300
tttccagcca agtggacctg atcgatggcc ctctgaatt tatcacgata 350
tttgatttat tagcgatgcc ccctggtttg tgtgttacgc acacacacgt 400
gcacacaagg ctctggctcg cttccctccc tcgtttccag ctccctggcg 450
aatccccat ctgtttcaac tctccgcgaa gggcgagcag gagcggagagt 500
gtgtcgaatc tgcgagtgaa gagggacgag ggaaaagaaa caaagccaca 550
gacgcaacctt gagactccccg catccccaaa gaagcaccag atcagcaaaa 600

aaagaagatg ggccccccga gcctcggtct gtgcggctg tccgcaactg 650
tgttctccct gctgggtgga agctcggtct tcctgtcgca ccaccgcctg 700
aaaggcaggt ttccagaggga ccgcaggaac atccgcggca acatcatcct 750
ggtgctgacg gacgaccagg atgtggagct gggttccatg caggtgtatg 800
acaagacccg ggcgcattatg gaggcaggcg gggcgcactt catcaacgcc 850
ttcgtgacca caccatgtg ctgcccctca cgctcctcca tcctcactgg 900
caagtacgtc cacaaccaca acacctacac caacaatgag aactgctcct 950
cgccctcctg gcaggcacag cacgagagcc gcacctttgc cgtgtaccc 1000
aatagcactg gctaccggac agctttcttc ggaaagtatc ttaatgaata 1050
caacggctcc tacgtgccac ccggctggaa ggagtgggtc ggactccctta 1100
aaaactcccg ctttataac tacacgctgt gtcggAACGG ggtgaaagag 1150
aagcacggct ccgactactc caaggattac ctcacagacc tcacatcacca 1200
tgacagcgtg agcttcttcc gcacgtccaa gaagatgtac ccgcacaggc 1250
cagtcctcat ggtcatcagc catgcagccc cccacggccc tgaggattca 1300
gccccacaat attcacgcct cttcccaaac gcatctcagc acatcacgcc 1350
gagctacaac tacgcggccaa acccggacaa acactggatc atgcgctaca 1400
cgggggccat gaagcccatc cacatggaat tcaccaacat gctccagcgg 1450
aagcgcttgc agaccctcat gtcgggtggac gactccatgg agacgattta 1500
caacatgctg gttgagacgg gcgagctgga caacacgtac atcgtatata 1550
ccgcccacca cggttaccac atcggccagt ttggcctgggt gaaaggaaaa 1600
tccatgccat atgagttga catcagggtc cggttctacg tgaggggccc 1650
caacgtggaa gccggctgtc tgaatccccaa catcgccctc aacattgacc 1700
tggcccccac catcctggac attgcaggcc tggacatacc tgcggatatg 1750
gacgggaaat ccatcctcaa gctgctggac acggagcggc cggtgaatcg 1800
gtttcacttg aaaaagaaga tgagggtctg gcgggactcc ttcttgggtgg 1850
agagaggcaa gctgctacac aagagagaca atgacaagggt ggacgcccag 1900
gaggagaact ttctgccccaa gtaccagcgt gtgaaggacc tgtgtcagcg 1950
tgctgagtagc cagacggcgt gtgagcagct gggacagaag tggcagtgtg 2000
tggaggacgc cacggggaaag ctgaagctgc ataagtgc当地 gggccccatg 2050
cggtggcg gcaagcagac cctctccaaac ctgcgtggccaa agtactacgg 2100
gcagggcagc gagggctgca cctgtgacag cggggactac aagctcagcc 2150
tggccggacg ccggaaaaaa ctcttcaaga agaagtacaa ggccagctat 2200

gtccgcagtc gctccatccg ctcagtggcc atcgagggtgg acggcagggt 2250
gtaccacgt a ggccctgggtg atgccgccccca gccccgaaac ctcaccaaggc 2300
ggcactggcc agggggccctt gaggaccaag atgacaagga tggtgccgac 2350
ttcagtggca ctggaggccct tcccactac tcagccgcca accccattaa 2400
agtgacacat cggtgctaca tccttagagaa cgacacagtc cagtgtgacc 2450
tggacctgta caagtccctg caggcctgga aagaccacaa gctgcacatc 2500
gaccacgaga ttgaaaccct gcagaacaaa attaagaacc tgagggaagt 2550
ccgaggtcac ctgaagaaaa agcggccaga agaatgtgac tgtcacaaaa 2600
tcagctacca caccacgcac aaaggccgcc tcaagcacag aggctccagt 2650
ctgcacccctt tcaggaaggg cctgcaagag aaggacaagg tgtggctgtt 2700
gcgggagcag aagcgcaaga agaaactccg caagctgctc aagcgcctgc 2750
agaacaacga cacgtgcagc atgccaggcc tcacgtgctt cacccacgac 2800
aaccagcact ggcagacggc gccttctgg acactggggc ctttctgtgc 2850
ctgcaccagc gccaacaata acacgtactg gtgcattgagg accatcaatg 2900
agactcacaa tttcctcttc tgtgaattt caactggctt cctagatgtac 2950
tttgcattca acacagaccc ctaccagctg atgaatgcag tgaacacact 3000
ggacagggat gtcctcaacc agctacacgt acagctcatg gagctgagga 3050
gctgcaaggg ttacaaggcag tgtaaccccc ggactcgaaa catggacctg 3100
gatggagggaa gctatgagca atacaggcag tttcagcgctc gaaagtggcc 3150
agaaatgaag agacccctt ccaaattact gggacaactg tgggaaggct 3200
gggaagggtt agaaacaaca gaggtggacc tccaaaaaca tagaggcatc 3250
acctgactgc acaggcaatg aaaaaccatg tgggtgattt ccagcagacc 3300
tgtgctattt gcccctgctt ttgctttggta ttatcacca ccagctgcac 3350
catgacagat tctggaggat aaccagcagg agcagagata acttcaggaa 3400
gtccatccccccctt gcccctgctt ttgctttggta ttatcacca ccagctgcac 3450
aaaaatgcatt ttttcgtatc aaaaagtgcac cactaaccct ccccccagaag 3500
ctcacaaagg aaaacggaga gagcgagcga gagagattt cttggaaattt 3550
tctcccaagg gcgaaagtca ttgaaatttt taaatcatag gggaaaagca 3600
gtcctgttctt aaatccctttt attctttgg tttgtcacaa agaaggaact 3650
aagaaggcagg acagaggcaa cgtggagagg ctgaaaacag tgcagagacg 3700
tttgacaatg agtcagtagc acaaaagaga tgacatttac ctagcactat 3750
aaaccctggta tgcctctgaa gaaaactgcct tcattgtata tatgtgacta 3800

tttacatgta atcaacatgg gaacttttag gggAACCTAA taagaaatcc 3850
caattttcag gagtggtggt gtcaataaac gctctgtggc cagtgtaaaa 3900
aaaaaa 3906

<210> 84
<211> 867
<212> PRT
<213> Homo sapiens

<400> 84
Met Gly Pro Pro Ser Leu Val Leu Cys Leu Leu Ser Ala Thr Val
1 5 10 15
Phe Ser Leu Leu Gly Gly Ser Ser Ala Phe Leu Ser His His Arg
20 25 30
Leu Lys Gly Arg Phe Gln Arg Asp Arg Asn Ile Arg Pro Asn
35 40 45
Ile Ile Leu Val Leu Thr Asp Asp Gln Asp Val Glu Leu Gly Ser
50 55 60
Met Gln Val Met Asn Lys Thr Arg Arg Ile Met Glu Gln Gly Gly
65 70 75
Ala His Phe Ile Asn Ala Phe Val Thr Thr Pro Met Cys Cys Pro
80 85 90
Ser Arg Ser Ser Ile Leu Thr Gly Lys Tyr Val His Asn His Asn
95 100 105
Thr Tyr Thr Asn Asn Glu Asn Cys Ser Ser Pro Ser Trp Gln Ala
110 115 120
Gln His Glu Ser Arg Thr Phe Ala Val Tyr Leu Asn Ser Thr Gly
125 130 135
Tyr Arg Thr Ala Phe Phe Gly Lys Tyr Leu Asn Glu Tyr Asn Gly
140 145 150
Ser Tyr Val Pro Pro Gly Trp Lys Glu Trp Val Gly Leu Leu Lys
155 160 165
Asn Ser Arg Phe Tyr Asn Tyr Thr Leu Cys Arg Asn Gly Val Lys
170 175 180
Glu Lys His Gly Ser Asp Tyr Ser Lys Asp Tyr Leu Thr Asp Leu
185 190 195
Ile Thr Asn Asp Ser Val Ser Phe Phe Arg Thr Ser Lys Lys Met
200 205 210
Tyr Pro His Arg Pro Val Leu Met Val Ile Ser His Ala Ala Pro
215 220 225
His Gly Pro Glu Asp Ser Ala Pro Gln Tyr Ser Arg Leu Phe Pro
230 235 240
Asn Ala Ser Gln His Ile Thr Pro Ser Tyr Asn Tyr Ala Pro Asn
245 250 255

Pro Asp Lys His Trp Ile Met Arg Tyr Thr Gly Pro Met Lys Pro
 260 265 270
 Ile His Met Glu Phe Thr Asn Met Leu Gln Arg Lys Arg Leu Gln
 275 280 285
 Thr Leu Met Ser Val Asp Asp Ser Met Glu Thr Ile Tyr Asn Met
 290 295 300
 Leu Val Glu Thr Gly Glu Leu Asp Asn Thr Tyr Ile Val Tyr Thr
 305 310 315
 Ala Asp His Gly Tyr His Ile Gly Gln Phe Gly Leu Val Lys Gly
 320 325 330
 Lys Ser Met Pro Tyr Glu Phe Asp Ile Arg Val Pro Phe Tyr Val
 335 340 345
 Arg Gly Pro Asn Val Glu Ala Gly Cys Leu Asn Pro His Ile Val
 350 355 360
 Leu Asn Ile Asp Leu Ala Pro Thr Ile Leu Asp Ile Ala Gly Leu
 365 370 375
 Asp Ile Pro Ala Asp Met Asp Gly Lys Ser Ile Leu Lys Leu Leu
 380 385 390
 Asp Thr Glu Arg Pro Val Asn Arg Phe His Leu Lys Lys Lys Met
 395 400 405
 Arg Val Trp Arg Asp Ser Phe Leu Val Glu Arg Gly Lys Leu Leu
 410 415 420
 His Lys Arg Asp Asn Asp Lys Val Asp Ala Gln Glu Glu Asn Phe
 425 430 435
 Leu Pro Lys Tyr Gln Arg Val Lys Asp Leu Cys Gln Arg Ala Glu
 440 445 450
 Tyr Gln Thr Ala Cys Glu Gln Leu Gly Gln Lys Trp Gln Cys Val
 455 460 465
 Glu Asp Ala Thr Gly Lys Leu Lys Leu His Lys Cys Lys Gly Pro
 470 475 480
 Met Arg Leu Gly Gly Ser Arg Ala Leu Ser Asn Leu Val Pro Lys
 485 490 495
 Tyr Tyr Gly Gln Gly Ser Glu Ala Cys Thr Cys Asp Ser Gly Asp
 500 505 510
 Tyr Lys Leu Ser Leu Ala Gly Arg Arg Lys Lys Leu Phe Lys Lys
 515 520 525
 Lys Tyr Lys Ala Ser Tyr Val Arg Ser Arg Ser Ile Arg Ser Val
 530 535 540
 Ala Ile Glu Val Asp Gly Arg Val Tyr His Val Gly Leu Gly Asp
 545 550 555
 Ala Ala Gln Pro Arg Asn Leu Thr Lys Arg His Trp Pro Gly Ala
 560 565 570

Pro Glu Asp Gln Asp Asp Lys Asp Gly Gly Asp Phe Ser Gly Thr
 575 580 585
 Gly Gly Leu Pro Asp Tyr Ser Ala Ala Asn Pro Ile Lys Val Thr
 590 595 600
 His Arg Cys Tyr Ile Leu Glu Asn Asp Thr Val Gln Cys Asp Leu
 605 610 615
 Asp Leu Tyr Lys Ser Leu Gln Ala Trp Lys Asp His Lys Leu His
 620 625 630
 Ile Asp His Glu Ile Glu Thr Leu Gln Asn Lys Ile Lys Asn Leu
 635 640 645
 Arg Glu Val Arg Gly His Leu Lys Lys Lys Arg Pro Glu Glu Cys
 650 655 660
 Asp Cys His Lys Ile Ser Tyr His Thr Gln His Lys Gly Arg Leu
 665 670 675
 Lys His Arg Gly Ser Ser Leu His Pro Phe Arg Lys Gly Leu Gln
 680 685 690
 Glu Lys Asp Lys Val Trp Leu Leu Arg Glu Gln Lys Arg Lys Lys
 695 700 705
 Lys Leu Arg Lys Leu Leu Lys Arg Leu Gln Asn Asn Asp Thr Cys
 710 715 720
 Ser Met Pro Gly Leu Thr Cys Phe Thr His Asp Asn Gln His Trp
 725 730 735
 Gln Thr Ala Pro Phe Trp Thr Leu Gly Pro Phe Cys Ala Cys Thr
 740 745 750
 Ser Ala Asn Asn Asn Thr Tyr Trp Cys Met Arg Thr Ile Asn Glu
 755 760 765
 Thr His Asn Phe Leu Phe Cys Glu Phe Ala Thr Gly Phe Leu Glu
 770 775 780
 Tyr Phe Asp Leu Asn Thr Asp Pro Tyr Gln Leu Met Asn Ala Val
 785 790 795
 Asn Thr Leu Asp Arg Asp Val Leu Asn Gln Leu His Val Gln Leu
 800 805 810
 Met Glu Leu Arg Ser Cys Lys Gly Tyr Lys Gln Cys Asn Pro Arg
 815 820 825
 Thr Arg Asn Met Asp Leu Asp Gly Gly Ser Tyr Glu Gln Tyr Arg
 830 835 840
 Gln Phe Gln Arg Arg Lys Trp Pro Glu Met Lys Arg Pro Ser Ser
 845 850 855
 Lys Ser Leu Gly Gln Leu Trp Glu Gly Trp Glu Gly
 860 865

<210> 85
 <211> 19
 <212> DNA

<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 85
gaagccggct gtctgaatc 19

<210> 86
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe
<400> 86
ggccagctat ctccgcag 18

<210> 87
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe
<400> 87
aagggcctgc aagagaag 18

<210> 88
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe
<400> 88
caactgggacaca actgtggg 18

<210> 89
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe
<400> 89
cagaggcaac gtggagag 18

<210> 90
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe
<400> 90
aagtattgtc atacagtgtt c 21

<210> 91
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 91
tagtacttgg gcacgagggtt ggag 24

<210> 92
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 92
tcataccaac tgctggcat tggc 24

<210> 93
<211> 45
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 93
ctcaagctgc tggacacgga gcggccggtg aatcggttc acttg 45

<210> 94
<211> 971
<212> DNA
<213> Homo sapiens

<400> 94
aacaaagtgc agtgactgag agggctgagc ggaggctgct gaaggggaga 50
aaggagttag gagctgctgg gcagagaggg actgtccggc tcccatatgc 100
tgggcctcct ggggagcaca gccctcgtagt gatggatcac aggtgctgct 150
gtggcggtcc tgctgctgct gctgctgctg gccacctgcc tttccacgg 200
acggcaggac tgtgacgtgg agaggaaccg tacagctgca gggggaaacc 250
gagtccggcggc ggcggcgcct tggcccttcc ggccggccgggg ccacctggga 300
atctttcacc atcaccgtca tcctggccac gtatctcatg tgccgaatgt 350
gggcctccac caccaccacc acccccggca caccctcac cacccaccacc 400
accaccacca ccccccaccgc caccatcccc gccacgctcg ctgaggctgc 450
tgtcgccgggt gcctgtggac agcagctgcc cctggccctcc catctgttcc 500
caggacaagt ggacccatg ttccatgtg gaaggatgca tctctggggt 550
gaacgagggg aacaatagac tggggcttgc tccagctgca ttgcattggc 600

atgccccagt gtactatggc agcagagaat ggaggaacac tgggtctgca 650
gtgctgaagg gtttggggag tggagagcaa gggtgctctt tcggggctgg 700
acagcccgta ttgtgacagt gactcccagt gagccccaga aatgacaagc 750
gtgtcttggc agagccagca cacaagtgg a tgtgaagtgc ccgtcttgac 800
ctcctcatca ggctgctgca ggcctctggc gggcagggca ctgggagagg 850
ccctgagaat gtcctttgg tttggagaag gcagtgtgag gctgcacagt 900
caattcatcg gtgccttagt ccaagaaaat aaaaaccact aagaagctt 950
aaaaaaaaaa aaaaaaaaaa a 971

<210> 95
<211> 115
<212> PRT
<213> Homo sapiens

<400> 95
Met Leu Gly Leu Leu Gly Ser Thr Ala Leu Val Gly Trp Ile Thr
1 5 10 15
Gly Ala Ala Val Ala Val Leu Leu Leu Leu Leu Ala Thr
20 25 30
Cys Leu Phe His Gly Arg Gln Asp Cys Asp Val Glu Arg Asn Arg
35 40 45
Thr Ala Ala Gly Gly Asn Arg Val Arg Arg Ala Gln Pro Trp Pro
50 55 60
Phe Arg Arg Arg Gly His Leu Gly Ile Phe His His His Arg His
65 70 75
Pro Gly His Val Ser His Val Pro Asn Val Gly Leu His His His
80 85 90
His His Pro Arg His Thr Pro His His Leu His His His His His
95 100 105
Pro His Arg His His Pro Arg His Ala Arg
110 115

<210> 96
<211> 1312
<212> DNA
<213> Homo sapiens

<400> 96
ggcggctgct gagctgcctt gaggtgcagt gttggggatc cagagccatg 50
tcggacctgc tactactggg cctgattggg ggcctgactc tcttactgct 100
gctgacgctg ctggccttg ccgggtactc agggtactg gctgggtgg 150
aagtgagtgc tgggtcaccc cccatccgca acgtcactgt ggcctacaag 200
ttccacatgg ggctctatgg tgagactggg cggctttca ctgagagctg 250
cagcatctc cccaagctcc gctccatcg c tgtctactat gacaacccccc 300

acatggtgcc ccctgataag tgccgatgtg ccgtgggcag catcctgagt 350
 gaagggtgagg aatgcgcctc ccctgagctc atcgacacct accagaaaatt 400
 tggcttcaag gtgttctcct tcccggcacc cagccatgtg gtgacagcca 450
 cttcccccta caccaccatt ctgtccatct ggctggctac ccgcccgtgtc 500
 catcctgcct tggacaccta catcaaggag cgaaagctgt gtgcctatcc 550
 tcggctggag atctaccagg aagaccagat ccatttcatg tgcccactgg 600
 cacggcaggg agacttctat gtgcctgaga tgaaggagac agagtggaaa 650
 tggcgggggc ttgtggaggc cattgacacc caggtggatg gcacaggagc 700
 tgacacaatg agtgcacacga gttctgtaag cttggaagtg agccctggca 750
 gccgggagac tttagctgcc acactgtcac ctggggcgag cagccgtggc 800
 tggatgacg gtgacacccg cagcgagcac agctacagcg agtcaggtgc 850
 cagcggctcc tctttgagg agctggactt ggagggcgag gggcccttag 900
 gggagtcacg gctggaccct gggactgagc ccctggggac taccaagtgg 950
 ctctggagc ccactgcccc tgagaaggc aaggagtaac ccatggcctg 1000
 caccctcctg cagtgcagtt gctgaggaac tgagcagact ctccagcaga 1050
 ctctccagcc ctcttcctcc ttccctctgg ggaggagggg ttccctgaggg 1100
 acctgacttc ccctgctcca ggcctcttc taagccttct cctcactgcc 1150
 cttaggctc ccagggccag aggagccagg gactatttc tgcaccagcc 1200
 cccagggctg cgcggctgt tgtgtctttt tttcagactc acagtggagc 1250
 ttccaggacc cagaataaaag ccaatgattt acttgtttca cctggaaaaaa 1300
 aaaaaaaaaa aa 1312

<210> 97
 <211> 313
 <212> PRT
 <213> Homo sapiens

<400> 97
 Met Ser Asp Leu Leu Leu Gly Leu Ile Gly Gly Leu Thr Leu
 1 5 15
 Leu Leu Leu Leu Thr Leu Leu Ala Phe Ala Gly Tyr Ser Gly Leu
 20 25 30
 Leu Ala Gly Val Glu Val Ser Ala Gly Ser Pro Pro Ile Arg Asn
 35 40 45
 Val Thr Val Ala Tyr Lys Phe His Met Gly Leu Tyr Gly Glu Thr
 50 55 60
 Gly Arg Leu Phe Thr Glu Ser Cys Ser Ile Ser Pro Lys Leu Arg
 65 70 75

Ser	Ile	Ala	Val	Tyr	Tyr	Asp	Asn	Pro	His	Met	Val	Pro	Pro	Asp
				80					85					90
Lys	Cys	Arg	Cys	Ala	Val	Gly	Ser	Ile	Leu	Ser	Glu	Gly	Glu	Glu
				95					100					105
Ser	Pro	Ser	Pro	Glu	Leu	Ile	Asp	Leu	Tyr	Gln	Lys	Phe	Gly	Phe
				110					115					120
Lys	Val	Phe	Ser	Phe	Pro	Ala	Pro	Ser	His	Val	Val	Thr	Ala	Thr
				125					130					135
Phe	Pro	Tyr	Thr	Thr	Ile	Leu	Ser	Ile	Trp	Leu	Ala	Thr	Arg	Arg
				140					145					150
Val	His	Pro	Ala	Leu	Asp	Thr	Tyr	Ile	Lys	Glu	Arg	Lys	Leu	Cys
				155					160					165
Ala	Tyr	Pro	Arg	Leu	Glu	Ile	Tyr	Gln	Glu	Asp	Gln	Ile	His	Phe
				170					175					180
Met	Cys	Pro	Leu	Ala	Arg	Gln	Gly	Asp	Phe	Tyr	Val	Pro	Glu	Met
				185					190					195
Lys	Glu	Thr	Glu	Trp	Lys	Trp	Arg	Gly	Leu	Val	Glu	Ala	Ile	Asp
				200					205					210
Thr	Gln	Val	Asp	Gly	Thr	Gly	Ala	Asp	Thr	Met	Ser	Asp	Thr	Ser
				215					220					225
Ser	Val	Ser	Leu	Glu	Val	Ser	Pro	Gly	Ser	Arg	Glu	Thr	Ser	Ala
				230					235					240
Ala	Thr	Leu	Ser	Pro	Gly	Ala	Ser	Ser	Arg	Gly	Trp	Asp	Asp	Gly
				245					250					255
Asp	Thr	Arg	Ser	Glu	His	Ser	Tyr	Ser	Glu	Ser	Gly	Ala	Ser	Gly
				260					265					270
Ser	Ser	Phe	Glu	Glu	Leu	Asp	Leu	Glu	Gly	Glu	Gly	Pro	Leu	Gly
				275					280					285
Glu	Ser	Arg	Leu	Asp	Pro	Gly	Thr	Glu	Pro	Leu	Gly	Thr	Thr	Lys
				290					295					300
Trp	Leu	Trp	Glu	Pro	Thr	Ala	Pro	Glu	Lys	Gly	Lys	Glu		
				305					310					

<210> 98

<211> 725

<212> DNA

<213> Homo sapiens

<400> 98

ccgcggaaac gctgtcctgg ctgccgcccc acggaaacagcc tgcctgggtg 50

ccccggctcc ctgcccccgccc cccagtcatg accctgcgcc cctcactcct 100

cccgctccat ctgctgctgc tgctgctgct cagtgccggcg gtgtgccggg 150

ctgaggctgg gctcgaaacc gaaaatcccc tccggaccct ccaagtggag 200

accctggctgg agccccccaga accatgtgcc gagccccgtc cttttggaga 250

cacgcttcac atacactaca cgggaaacctt ggttagatggc cgtattattt 300
acacccctt gaccagagac cctctggta tagaacttgg ccaaaagcag 350
gtgattccag gtctggagca gagtcttctc gacatgtgtg tgggagagaa 400
gcgaagggcata tcatttcctt ctcaacttggc ctatggaaaa cggggatttc 450
caccatctgt cccagcggat gcagtggtgc agtatgacgt ggagctgatt 500
gcactaatcc gagccaacta ctggctaaag ctggtaagg gcattttgcc 550
tctggtaggg atggccatgg tgccagccct cctgggcctc attgggtatc 600
acctatacag aaaggccaat agacccaaag tctccaaaaaa gaagctcaag 650
gaagagaaaac gaaacaagag caaaaaagaaa taataaataa taaattttaa 700
aaaacttaaa aaaaaaaaaaa aaaaa 725

<210> 99
<211> 201
<212> PRT
<213> *Homo sapiens*

<400> 99

Met	Thr	Leu	Arg	Pro	Ser	Leu	Leu	Pro	Leu	His	Leu	Leu	Leu	Leu
1				5					10					15
Leu	Leu	Leu	Ser	Ala	Ala	Val	Cys	Arg	Ala	Glu	Ala	Gly	Leu	Glu
				20					25					30
Thr	Glu	Ser	Pro	Val	Arg	Thr	Leu	Gln	Val	Glu	Thr	Leu	Val	Glu
				35					40					45
Pro	Pro	Glu	Pro	Cys	Ala	Glu	Pro	Ala	Ala	Phe	Gly	Asp	Thr	Leu
				50					55					60
His	Ile	His	Tyr	Thr	Gly	Ser	Leu	Val	Asp	Gly	Arg	Ile	Ile	Asp
				65					70					.75
Thr	Ser	Leu	Thr	Arg	Asp	Pro	Leu	Val	Ile	Glu	Leu	Gly	Gln	Lys
				80					85					90
Gln	Val	Ile	Pro	Gly	Leu	Glu	Gln	Ser	Leu	Leu	Asp	Met	Cys	Val
				95					100					105
Gly	Glu	Lys	Arg	Arg	Ala	Ile	Ile	Pro	Ser	His	Leu	Ala	Tyr	Gly
				110					115					120
Lys	Arg	Gly	Phe	Pro	Pro	Ser	Val	Pro	Ala	Asp	Ala	Val	Val	Gln
				125					130					135
Tyr	Asp	Val	Glu	Leu	Ile	Ala	Leu	Ile	Arg	Ala	Asn	Tyr	Trp	Leu
				140					145					150
Lys	Leu	Val	Lys	Gly	Ile	Leu	Pro	Leu	Val	Gly	Met	Ala	Met	Val
				155					160					165
Pro	Ala	Leu	Leu	Gly	Leu	Ile	Gly	Tyr	His	Leu	Tyr	Arg	Lys	Ala
				170					175					180
Asn	Arg	Pro	Lys	Val	Ser	Lys	Lys	Lys	Leu	Lys	Glu	Glu	Lys	Arg

185

190

195

Asn Lys Ser Lys Lys Lys
200

<210> 100
<211> 705
<212> DNA
<213> Homo sapiens

<400> 100
cccgaaaaacg tggcttgcgc tgccgcaccc gaacagcctg tcctgggcc 50
ccggctccct gccccggccc cagtcatgac cctgcgc(ccc tcactcctcc 100
cgctccatct gctgctgctg ctgctgctca gtgcggcggt gtgccggct 150
gaggctgggc tcgaaaaccga aagtcccgtc cggaccctcc aagtggagac 200
cctggtgagccccagaac catgtgccga gcccgcgtct tttggagaca 250
cgcttcacat acactacacg ggaagcttgg tagatggacg tattattgac 300
acctccctga ccagagaccc tctggttata gaacttggcc aaaaggcaggt 350
gattccaggt ctggaggcaga gtcttctcga catgtgtgtg ggagagaagc 400
gaaggccaat cattccttct cacttggcct atggaaaacg gggatttcca 450
ccatctgtcc cagcggatgc agtggtgcag tatgacgtgg agctgattgc 500
actaatccga gccaaactact ggctaaagct ggtgaaggc atttgcctc 550
tggtagggat ggccatggtg ccaccctcct gggcctcatt gggtatcacc 600
tatacagaaa ggccaataga cccaaagtct ccaaaaagaa gctcaaggaa 650
gagaaaacgaa acaagagcaa aaagaaataa taaataataa attttaaaaa 700
actta 705

<210> 101
<211> 543
<212> DNA
<213> Homo sapiens

<400> 101
ccgaaaagtcc cgtccggacc ctccaagtgg agaccctggg ggagccccca 50
gaaccatgtg ccgagccccgc tgctttggc gacacgcttc acatacacta 100
cacgggaagc ttggtagatg gacgtattat tgacacctcc ctgaccagag 150
accctcttgt tatagaactt ggccaaaagc aggtgattcc aggtctggag 200
cagagtcttc tcgacatgtg tgtggagag aagcgaaggg caatcattcc 250
ttctcacttg gcctatggaa aacggggatt tccaccatct gtcccagcgg 300
atgcagtgggt gcagtatgac gtggagctga ttgcactaat ccgagccaac 350
tactggctaa agctggtgaa gggcattttg cctctggtag ggatggccat 400

gggccagcc ctcctggcc tcattggta tcacctatac agaaaggcca 450
atagacccaa agtctccaaa aagaagctca aggaagagaa acgaaacaag 500
agcaaaaaga aataataaat aataaatttt aaaaaactta aaa 543

<210> 102
<211> 1316
<212> DNA
<213> Homo sapiens

<400> 102
ctgctgcac cgggtgtctg gaggctgtgg ccgtttgtt ttcttggtca 50
aaatcgcccc agtgaggcgg gccggcgccg cgcgacaccg ggctccggaa 100
ccactgcacg acggggctgg actgaccta aaaaaatgtc tggatttcta 150
gagggcttga gatgctcaga atgcattgac tggggggaaa agcgcaatac 200
tattgcttcc attgctgctg gtgtactatt ttttacaggc tgggtggatta 250
tcatagatgc agctgttatt tatcccacca tgaaagattt caaccactca 300
taccatgcct gtgggttat agcaaccata gccttcctaa tgattaatgc 350
agtatcgaat ggacaagtcc gaggtgatag ttacagtcaa ggttgtctgg 400
gtcaaacagg tgctcgcat tggctttcg ttggtttcat gttggcccttt 450
ggatctctga ttgcatctat gtggatttctt tttggaggtt atgttgctaa 500
agaaaaaagac atagtataacc ctgaaatgc tgtatTTTc cagaatgcct 550
tcatctttt tggagggctg gtttttaagt ttggccgcac tgaagactta 600
tggcagtgaa cacatctgat ttcccacagc acaacagccc tgcatgggtt 650
tgTTTgtttt ttactgctc actcccaacc ttttgaatg ccattttcta 700
aacttatttc tgagtgttagt ctcagctaa agttgtgtaa tactaaaatc 750
acgagaacac ctaaacaaca accaaaaatc tattgtggta tgcacttgat 800
taacttataa aatgttagag gaaaacttca catgaataat ttttgcataaa 850
ttttatcatg gtataatttg taaaaataaa aagaaattac aaaagaaatt 900
atggatttgtt caatgtaaatg atttgtcata tctgagggtcc aaaaccacaa 950
tgaaagtgt ctgaagattt aatgtgttta ttcaaatgtg gtctttctg 1000
tgtcaaatgt taaatgaaat ataaacattt tttgtttttt aaaatattcc 1050
gtggtaaaaa ttcttcctca ctataattgg tatttacttt taccaaaaaat 1100
tctgtgaaca tgtaatgtaa ctggctttg agggctccc aagggggtgag 1150
tggacgtgtt ggaagagaga agcaccatgg tccagccacc aggctccctg 1200
tgtcccttcc atgggaaggt cttccgtgt gcctctcatt ccaagggcag 1250
gaagatgtga ctcagccatg acacgtgggtt ctgggtggat gcacagtcac 1300

tccacatcca ccactg 1316

<210> 103

<211> 157

<212> PRT

<213> Homo sapiens

<400> 103

Met Ser Gly Phe Leu Glu Gly Leu Arg Cys Ser Glu Cys Ile Asp
1 5 10 15

Trp Gly Glu Lys Arg Asn Thr Ile Ala Ser Ile Ala Ala Gly Val
20 25 30

Leu Phe Phe Thr Gly Trp Trp Ile Ile Ile Asp Ala Ala Val Ile
35 40 45

Tyr Pro Thr Met Lys Asp Phe Asn His Ser Tyr His Ala Cys Gly
50 55 60

Val Ile Ala Thr Ile Ala Phe Leu Met Ile Asn Ala Val Ser Asn
65 70 75

Gly Gln Val Arg Gly Asp Ser Tyr Ser Glu Gly Cys Leu Gly Gln
80 85 90

Thr Gly Ala Arg Ile Trp Leu Phe Val Gly Phe Met Leu Ala Phe
95 100 105

Gly Ser Leu Ile Ala Ser Met Trp Ile Leu Phe Gly Gly Tyr Val
110 115 120

Ala Lys Glu Lys Asp Ile Val Tyr Pro Gly Ile Ala Val Phe Phe
125 130 135

Gln Asn Ala Phe Ile Phe Phe Gly Gly Leu Val Phe Lys Phe Gly
140 145 150

Arg Thr Glu Asp Leu Trp Gln
155

<210> 104

<211> 545

<212> DNA

<213> Homo sapiens

<400> 104

ttcttggtta aaatcgaaaa agtgaggcgg gcccgcgcgg cgcgacaccg 50

ggctccggaa ccactgcacg acggggctgg actgacctga aaaaaatgtc 100

tggatttcta gagggcttga gatgctcaga atgcattgac tggggggaaa 150

agcgcaatac tattgcttcc attgctgctg gtgtactatt ttttacaggc 200

tggtggatta tcatacatgc agctgttatt tatccccacca tgaaagattt 250

caaccactca taccatgcct gtggtgttat agcaaccata gccttcctaa 300

tgattaatgc agtatacgaat ggacaagtcc gaggtgatag ttacagtcaa 350

ggttgtctgg gtcaaacagg tgctcgatt tggctttcg ttggtttcat 400

gttggcctt gatatctga ttgcatactat gtggattttt tttggagggtt 450
atgttgcataa agaaaaagac atagtataacc ctggaaattgc tgtatTTTC 500
cagaatgcct tcataCTTTT tggagggctg gtttttaagt ttggc 545

<210> 105
<211> 490
<212> DNA
<213> Homo sapiens

<220>
<221> unsure
<222> 31, 39, 108, 145, 179, 219, 412, 479
<223> unknown base

<400> 105
tggacggacc tgaaaaaaat gtttgattt ntagaggnt tgagatgttc 50
agaatgcatt actggggaa aagcgcaaat actattgctt ccattgctgc 100
tggtgtanta tttttacag gctggtgat tatcatagat gcagntgtta 150
tttatcccac catgaaagat ttcaaccant cataccatgc ctgtgggtt 200
atagcaacca tagccttcnt aatgattaat gcagttatcgat atggacaagt 250
ccgaggtgat agttacagtg aaggttgtt gggtaaaca ggtgctcgca 300
tttggctttt cgttggtttc atgttggct ttggatctt gattgcattt 350
atgtggattt ttttggagg ttatgttgc aaagaaaaag acatagtata 400
ccctggaatt gntgtatTTT tccagaatgc cttcatctt tttggagggc 450
tggttttaa gtttggccgc actgaagant tatggcagtg 490

<210> 106
<211> 466
<212> DNA
<213> Homo sapiens

<220>
<221> unsure
<222> 26, 38, 81, 115, 207, 329, 380, 446, 449
<223> unknown base

<400> 106
ggacaccggg ttccggacca atgcangacg gggtggttg acctgaaaaa 50
aatgtttgga ttttagagg gtttgatgc ntcagaatgc attgactggg 100
ggaaaagcgc aatantattt cttccattt ctgtgggtt actatTTTT 150
acagggtggt ggattatcat agatgcagct gttatTTTC ccaccatgaa 200
agatttnaac cactcatacc atgcctgtgg tggatagca accatagcct 250
tcctaatttgc taatgcagta tcgaatggac aagtccgagg tgatagttac 300
agtgaagggtt gttgggtca aacaggtgnt cgcatTTGGC ttttcgttgg 350
tttcatgttg gccttggat ttctgattgn attctatgcg gattcttctt 400

ggaggttatg ttgctaaaga aaaagacata gtataccctg gaattnctnt 450
attttccag aatgcc 466

<210> 107
<211> 377
<212> DNA
<213> Homo sapiens

<220>
<221> unsure
<222> 52, 67, 70, 78, 105, 144, 150, 209, 266, 268, 282, 310, 331, 356
<223> unknown base

<400> 107
tagaggcctt gagatgctca gaatgcattg actgggggga aaagcgcaat 50
antattgctt ccattgntgn tggtgtanta ttttttaca ggctggtgga 100
ttatnataga tgcaagtgtt atttatccca ccatgaaaga tttnaaccan 150
tcataccatg cctgtggtgt tatagcaacc atagccttcc taatgattaa 200
tgcagtatng aatggacaag tccgaggtga tagttacagt gaaggttgtt 250
tgggtcaaac aggtgntngc atttggctt tngttggttt catgttggcc 300
tttggatctn tgattgcatt tatgtggatt ntttttggag gttatgttgc 350
taaagnaaaa gacatagtagt accctgt 377

<210> 108
<211> 552
<212> DNA
<213> Homo sapiens

<220>
<221> unsure
<222> 12, 25, 65, 130, 437, 537
<223> unknown base

<400> 108
ggaggctgt gnccgttttgc ttttnttggc taaaatcggtt ggagtggagc 50
ggcccgccgc ggcgngacac cgggttccgg gaaccattgc acgacgggtt 100
ggactgacct gaaaaaaaaatg tttggattn tagagggctt gagatgctca 150
aatgcatttgc actgggggga aaagcgcaat actattgctt ccattgctgc 200
tggtgtacta ttttttacag gctggtggtt tatcatagat gcagctgtta 250
tttatcccac catgaaagat ttcaaccact cataccatgc ctgtggtgtt 300
atagcaacca tagccttccct aatgattaat gcagttatcga atggacaagt 350
ccgaggtgat agttacagtgc aagggttgtt gggtaaaca ggtgctcgca 400
tttggctttt cggtggtttgc atgttggcct ttggatntct gattgcatttct 450
atgtggatttgc tttttggagg ttatgttgc aaagaaaaag acatagttata 500
ccctggaaattt gctgtatcccccc tccagaatgc cttcatnttt tttggaggggc 550

tg 552

<210> 109
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 109
gggtggatgg tactgctgca tcc 23

<210> 110
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 110
tggaaatca gatgtg 26

<210> 111
<211> 46
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 111
gtgtctggag gctgtggccg ttttgtttc ttgggctaaa atcggg 46

<210> 112
<211> 3004
<212> DNA
<213> Homo sapiens

<400> 112
cgacgcggc gtgatgtggc ttccgctggc gctgctcctg gctgtgctgc 50
tgctggccgt cctctgcaaa gtttacttgg gactattctc tggcagctcc 100
ccgaatcctt tctccgaaga tgtcaaacgg ccccccagcgc ccctggtaac 150
tgacaaggag gccaggaaga aggttctcaa acaagcttt tcagccaacc 200
aagtgccgga gaagctggat gtgggtttaa ttggcagtgg ctggggggc 250
ctggctgcag ctgcaattct agctaaagct ggcaagcgcgag tcctggtgct 300
ggaacaacat accaaggcag ggggctgctg tcataccttt ggaaagaatg 350
gccttgaatt tgacacagga atccattaca ttggcgttat ggaagagggc 400
agcattggcc gttttatctt ggaccagatc actgaagggc agctggactg 450
ggctccctg tccttcctt ttgacatcat ggtactggaa gggcccaatg 500
gccgaaagga gtacccatg tacagtggag agaaagccta cattcaggc 550

ctcaaggaga agtttccaca ggaggaagct atcattgaca agtatataaa 600
gctggtaag gtggatatcca gtggagcccc tcatgccatc ctgttgaat 650
tcctcccatt gcccgtggtt cagctcctcg acaggtgtgg gctgctgact 700
cgtttctctc cattccttca agcatccacc cagagcctgg ctgaggtcct 750
gcagcagctg ggggcctcct ctgagctcca ggcagtactc agctacatct 800
tccccactta cggtgtcacc cccaaccaca gtgcctttc catgcacgcc 850
ctgctggtca accactacat gaaaggaggc ttttatcccc gaggggggttc 900
cagtgaaatt gccttccaca ccattccctgt gattcagcgg gctggggcgc 950
ctgtcctcac aaaggccact gtgcagagtg tggtgctgga ctcagctggg 1000
aaagcctgtg gtgtcagtgt gaagaagggg catgagctgg tgaacatcta 1050
ttgccccatc gtggtctcca acgcaggact gttcaacacc tatgaacacc 1100
tactgccggg gaacgcccgc tgcctgccag gtgtgaagca gcaactgggg 1150
acgggtgcggc coggcttagg catgacctct gtttcatct gcctgcgagg 1200
caccaaggaa gacctgcac tgcgtccac caactactat gtttactatg 1250
acacggacat ggaccaggcg atggagcgct acgtctccat gcccaggaa 1300
gaggctgcgg aacacatccc tcttcttttc ttgcgtttcc catcagccaa 1350
agatccgacc tgggaggacc gattcccagg ccggtccacc atgatcatgc 1400
tcatacccac tgcctacgag tggtttgagg agtggcaggc ggagctgaag 1450
gaaaagcggg gcagtgacta tgagaccttc aaaaactcct ttgtggaagc 1500
ctctatgtca gtggcctga aactgttccc acagctggag gggaaagggtgg 1550
agagtgtgac tgcaggatcc ccactcacca accagttcta tctggctgct 1600
ccccgaggtg cctgctacgg ggctgaccat gacctggggc gcctgcaccc 1650
ttgtgtatg gcctccttga gggcccagag ccccatcccc aacctctatc 1700
tgacaggcca gatatcttc acctgtggac tggtcggggc cctgcaaggt 1750
gccctgctgt gcagcagcgc catcctgaag cgaaacttgt actcagaccc 1800
taagaatott gattcttagga tccgggcaca gaagaaaaag aattagttcc 1850
atcagggagg agtcagagga atttgccaa tggctggggc atctcccttg 1900
acttacccat aatgtcttcc tgcatttagtt cttgcacgt ataaagcact 1950
ctaatttgggt tctgatgcct gaagagaggc ctatgtttaaa tcacaattcc 2000
gaatctgggg caatggaatc actgcttcca gctggggcag gtgagatctt 2050
tacgcctttt ataacatgcc atccctacta ataggatatt gacttggata 2100
gcttgcgttc tcatgacgag cggcgctcg catccctcac ccatgcctcc 2150

taactcagtg atcaaagcga atattccatc tgtggataga acccctggca 2200
gtgttgcag ctcaacctgg tgggttcagt tctgtcctga ggcttctgct 2250
ctcattcatt tagtgctacg ctgcacagtt ctacactgtc aaggaaaaag 2300
ggagactaat gaggcttaac tcaaaacctg ggcgtggtt tggtgccat 2350
tccataggtt tggagagctc tagatcttt ttgtgctggg ttcagtggct 2400
cttcagggga cagggaaatgc ctgtgtctgg ccagtgtggt tctggagctt 2450
tgggtaaca gcaggatcca tcagttagta gggcatgt cagatgatca 2500
tatccaattc atatgaaatc cccgggtctg tcttccttat catcgggtg 2550
gcagctgggtt ctcaatgtgc cagcagggac tcagttacctg agcctaattc 2600
aagcattatc caccaaaatac acagggaaagg gtgatgcagg gaagggtgac 2650
atcaggagtc agggcatgga ctggtaagat gaatactttg ctgggctgaa 2700
gcaggctgca gggcattcca gccaaggca cagcagggga cagtgcaggg 2750
aggtgtgggg taagggaggg aagtcacatc agaaaaggaa aagccacgga 2800
atgtgtgtga agcccagaaa tggcatttgc agttaatttag cacatgtgag 2850
gttagacag gtaggtgaat gcaagctaa ggtttggaaa aatgactttt 2900
cagttatgtc ttttgtatca gacatacgaa aggtctctt gtagttcgtg 2950
ttaatgtaac attaataaaat ttattgattc cattgctta aaaaaaaaaa 3000
aaaaa 3004

<210> 113

<211> 610

<212> PRT

<213> Homo sapiens

<400> 113

Met	Trp	Leu	Pro	Leu	Val	Leu	Leu	Leu	Ala	Val	Leu	Leu	Leu	Ala
1					5				10					15

Val	Leu	Cys	Lys	Val	Tyr	Leu	Gly	Leu	Phe	Ser	Gly	Ser	Ser	Pro
				20					25					30

Asn	Pro	Phe	Ser	Glu	Asp	Val	Lys	Arg	Pro	Pro	Ala	Pro	Leu	Val
				35				40						45

Thr	Asp	Lys	Glu	Ala	Arg	Lys	Lys	Val	Leu	Lys	Gln	Ala	Phe	Ser
				50					55					60

Ala	Asn	Gln	Val	Pro	Glu	Lys	Leu	Asp	Val	Val	Val	Ile	Gly	Ser
				65					70					75

Gly	Phe	Gly	Gly	Leu	Ala	Ala	Ala	Ile	Leu	Ala	Lys	Ala	Gly	
				80				85						90

Lys	Arg	Val	Leu	Val	Leu	Glu	Gln	His	Thr	Lys	Ala	Gly	Gly	Cys
				95					100					105

Cys	His	Thr	Phe	Gly	Lys	Asn	Gly	Leu	Glu	Phe	Asp	Thr	Gly	Ile
														110
														115
His	Tyr	Ile	Gly	Arg	Met	Glu	Glu	Gly	Ser	Ile	Gly	Arg	Phe	Ile
														125
														130
Leu	Asp	Gln	Ile	Thr	Glu	Gly	Gln	Leu	Asp	Trp	Ala	Pro	Leu	Ser
														140
														145
Ser	Pro	Phe	Asp	Ile	Met	Val	Leu	Glu	Gly	Pro	Asn	Gly	Arg	Lys
														155
														160
Glu	Tyr	Pro	Met	Tyr	Ser	Gly	Glu	Lys	Ala	Tyr	Ile	Gln	Gly	Leu
														170
														175
Lys	Glu	Lys	Phe	Pro	Gln	Glu	Glu	Ala	Ile	Ile	Asp	Lys	Tyr	Ile
														185
														190
Lys	Leu	Val	Lys	Val	Val	Ser	Ser	Gly	Ala	Pro	His	Ala	Ile	Leu
														200
														205
Leu	Lys	Phe	Leu	Pro	Leu	Pro	Val	Val	Gln	Leu	Leu	Asp	Arg	Cys
														215
														220
Gly	Leu	Leu	Thr	Arg	Phe	Ser	Pro	Phe	Leu	Gln	Ala	Ser	Thr	Gln
														230
														235
Ser	Leu	Ala	Glu	Val	Leu	Gln	Gln	Leu	Gly	Ala	Ser	Ser	Glu	Leu
														245
														250
Gln	Ala	Val	Leu	Ser	Tyr	Ile	Phe	Pro	Thr	Tyr	Gly	Val	Thr	Pro
														260
														265
Asn	His	Ser	Ala	Phe	Ser	Met	His	Ala	Leu	Leu	Val	Asn	His	Tyr
														275
														280
Met	Lys	Gly	Gly	Phe	Tyr	Pro	Arg	Gly	Gly	Ser	Ser	Glu	Ile	Ala
														290
														295
Phe	His	Thr	Ile	Pro	Val	Ile	Gln	Arg	Ala	Gly	Gly	Ala	Val	Leu
														305
														310
Thr	Lys	Ala	Thr	Val	Gln	Ser	Val	Leu	Leu	Asp	Ser	Ala	Gly	Lys
														320
														325
Ala	Cys	Gly	Val	Ser	Val	Lys	Lys	Gly	His	Glu	Leu	Val	Asn	Ile
														335
														340
Tyr	Cys	Pro	Ile	Val	Val	Ser	Asn	Ala	Gly	Leu	Phe	Asn	Thr	Tyr
														350
														355
Glu	His	Leu	Leu	Pro	Gly	Asn	Ala	Arg	Cys	Leu	Pro	Gly	Val	Lys
														365
														370
Gln	Gln	Leu	Gly	Thr	Val	Arg	Pro	Gly	Leu	Gly	Met	Thr	Ser	Val
														380
														385
Phe	Ile	Cys	Leu	Arg	Gly	Thr	Lys	Glu	Asp	Leu	His	Leu	Pro	Ser
														395
														400
Thr	Asn	Tyr	Tyr	Val	Tyr	Tyr	Asp	Thr	Asp	Met	Asp	Gln	Ala	Met
														410
														415
														420

Glu Arg Tyr Val Ser Met Pro Arg Glu Glu Ala Ala Glu His Ile
 425 430 435
 Pro Leu Leu Phe Phe Ala Phe Pro Ser Ala Lys Asp Pro Thr Trp
 440 445 450
 Glu Asp Arg Phe Pro Gly Arg Ser Thr Met Ile Met Leu Ile Pro
 455 460 465
 Thr Ala Tyr Glu Trp Phe Glu Glu Trp Gln Ala Glu Leu Lys Gly
 470 475 480
 Lys Arg Gly Ser Asp Tyr Glu Thr Phe Lys Asn Ser Phe Val Glu
 485 490 495
 Ala Ser Met Ser Val Val Leu Lys Leu Phe Pro Gln Leu Glu Gly
 500 505 510
 Lys Val Glu Ser Val Thr Ala Gly Ser Pro Leu Thr Asn Gln Phe
 515 520 525
 Tyr Leu Ala Ala Pro Arg Gly Ala Cys Tyr Gly Ala Asp His Asp
 530 535 540
 Leu Gly Arg Leu His Pro Cys Val Met Ala Ser Leu Arg Ala Gln
 545 550 555
 Ser Pro Ile Pro Asn Leu Tyr Leu Thr Gly Gln Asp Ile Phe Thr
 560 565 570
 Cys Gly Leu Val Gly Ala Leu Gln Gly Ala Leu Leu Cys Ser Ser
 575 580 585
 Ala Ile Leu Lys Arg Asn Leu Tyr Ser Asp Leu Lys Asn Leu Asp
 590 595 600
 Ser Arg Ile Arg Ala Gln Lys Lys Lys Asn
 605 610

<210> 114
 <211> 1701
 <212> DNA
 <213> Homo sapiens

<400> 114
 gcagcggcga ggcggcggtg gtggctgagt ccgtgggtggc agaggcgaag 50
 gcgacagctc taggggttgg caccggcccc gagaggagga tgcgggtccg 100
 gatagggctg acgctgctgc tgtgtcggt gctgctgagc ttggcctcgg 150
 cgtcctcgga tgaagaaggc agccaggatg aatccttaga ttccaagact 200
 actttgacat cagatgagtc agtaaaggac catactactg caggcagagt 250
 agttgctggt caaatatttc ttgattcaga agaatctgaa tttagaatct 300
 ctattcaaga agaggaagac agcctaaga gccaagaggg ggaaagtgtc 350
 acagaagata tcagcttct agagtctcca aatccagaaa acaaggacta 400
 tgaagagcca aagaaaagtac ggaaaccagc tttgaccggcc attgaaggca 450

cagcacatgg ggagccctgc cacttccctt ttctttcct agataaggag 500
tatgtgaat gtacatcaga tgggagggaa gatggcagac tgtggtgtgc 550
tacaacctat gactacaaag cagatgaaaa gtggggctt tgtgaaactg 600
aagaagaggc tgctaagaga cggcagatgc aggaagcaga aatgatgtat 650
caaactggaa tgaaaatcct taatggaagc aataagaaaa gccaaaaaaaaag 700
agaagcatat cggtatctcc aaaaggcagc aagcatgaac cataccaaag 750
ccctggagag agtgtcatat gctctttat ttggtgatta cttgccacag 800
aatatccagg cagcgagaga gatgttgag aagctgactg aggaaggctc 850
tcccaaggga cagactgctc ttggcttct gtatgcctct ggacttggtg 900
ttaattcaag tcaggcaaag gctcttgat attatacatt tggagctctt 950
gggggcaatc taatagccc catggtttg gtaagtagac tttagtggaa 1000
ggctaataat attaacatca gaagaatttg tggttatag cggccacaac 1050
ttttcagct ttcatgatcc agatttgctt gtattaagac caaatattca 1100
gttgaacttc ctcaaattc ttgttaatgg atataacaca tggaaatctac 1150
atgtaaatga aagttggtgg agtccacaat ttttctttaa aatgatttagt 1200
ttggctgatt gcccttaaaa agagagatct gataaatggc tcttttaaa 1250
ttttctctga gttggaatttgc tcagaatcat ttttacatt agattatcat 1300
aattttaaaa atttttctt agttttcaa aattttgtaa atggtggtca 1350
tagaaaaaca acatgaaata ttatacaata ttttgcaca atgccctaag 1400
aattgttaaa attcatggag ttatgtgc agaatgactc cagagagctc 1450
tactttctgt ttttacttt tcatgatgg ctgtcttccc atttattctg 1500
gtcatttatt gctagtgaca ctgtgcctgc ttccagtagt ctcattttcc 1550
ctatggct aattgttac ttttcttg ctaatttggg agattaactc 1600
attttaata aaattatgtc taagattaaa aaaaaaaaaa aaaaaaaaaa 1650
aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 1700

a 1701

<210> 115
<211> 301
<212> PRT
<213> Homo sapiens

<400> 115
Met Arg Val Arg Ile Gly Leu Thr Leu Leu Leu Cys Ala Val Leu
1 5 10 15
Leu Ser Leu Ala Ser Ala Ser Ser Asp Glu Glu Gly Ser Gln Asp
20 25 30

Glu Ser Leu Asp Ser Lys Thr Thr Leu Thr Ser Asp Glu Ser Val
35 40 45

Lys Asp His Thr Thr Ala Gly Arg Val Val Ala Gly Gln Ile Phe
50 55 60

Leu Asp Ser Glu Glu Ser Glu Leu Glu Ser Ser Ile Gln Glu Glu
65 70 75

Glu Asp Ser Leu Lys Ser Gln Glu Gly Glu Ser Val Thr Glu Asp
80 85 90

Ile Ser Phe Leu Glu Ser Pro Asn Pro Glu Asn Lys Asp Tyr Glu
95 100 105

Glu Pro Lys Lys Val Arg Lys Pro Ala Leu Thr Ala Ile Glu Gly
110 115 120

Thr Ala His Gly Glu Pro Cys His Phe Pro Phe Leu Phe Leu Asp
125 130 135

Lys Glu Tyr Asp Glu Cys Thr Ser Asp Gly Arg Glu Asp Gly Arg
140 145 150

Leu Trp Cys Ala Thr Thr Tyr Asp Tyr Lys Ala Asp Glu Lys Trp
155 160 165

Gly Phe Cys Glu Thr Glu Glu Ala Ala Lys Arg Arg Gln Met
170 175 180

Gln Glu Ala Glu Met Met Tyr Gln Thr Gly Met Lys Ile Leu Asn
185 190 195

Gly Ser Asn Lys Lys Ser Gln Lys Arg Glu Ala Tyr Arg Tyr Leu
200 205 210

Gln Lys Ala Ala Ser Met Asn His Thr Lys Ala Leu Glu Arg Val
215 220 225

Ser Tyr Ala Leu Leu Phe Gly Asp Tyr Leu Pro Gln Asn Ile Gln
230 235 240

Ala Ala Arg Glu Met Phe Glu Lys Leu Thr Glu Glu Gly Ser Pro
245 250 255

Lys Gly Gln Thr Ala Leu Gly Phe Leu Tyr Ala Ser Gly Leu Gly
260 265 270

Val Asn Ser Ser Gln Ala Lys Ala Leu Val Tyr Tyr Thr Phe Gly
275 280 285

Ala Leu Gly Gly Asn Leu Ile Ala His Met Val Leu Val Ser Arg
290 295 300

Leu

<210> 116

<211> 584

<212> DNA

<213> Homo sapiens

<400> 116

cttcccagcc ctgtgcccc aagcacctgg agcatatagc cttgcagaac 50
ttctacttgc ctgcctccct gcctctggcc atggcctgcc ggtgcctcag 100
cttccttctg atggggacct tcctgtcagt ttcccagaca gtcctggccc 150
agctggatgc actgctggtc ttcccaggcc aagtggctca actctcctgc 200
acgctcagcc cccagcacgt caccatcagg gactacggtg tgtcctggta 250
ccagcagcgg gcagggcagt cccctcgata tctcctctac taccgctcgg 300
aggaggatca ccaccggcct gctgacatcc ccgatcgatt ctcggcagcc 350
aaggatgagg cccacaatgc ctgtgtcctc accattagtc ccgtgcagcc 400
tgaagacgac gcggattact actgctctgt tggctacggc tttagtcct 450
aggggtgggg tgtgagatgg gtgcctcccc tctgcctccc atttctgccc 500
ctgaccttgg gtcccttta aactttctct gagccttgct tccccttgt 550
aaaatgggtt aataatattc aacatgtcaa caac 584

<210> 117

<211> 123

<212> PRT

<213> Homo sapiens

<400> 117

Met	Ala	Cys	Arg	Cys	Leu	Ser	Phe	Leu	Leu	Met	Gly	Thr	Phe	Leu
1					5				10					15
Ser	Val	Ser	Gln	Thr	Val	Leu	Ala	Gln	Leu	Asp	Ala	Leu	Leu	Val
					20				25					30
Phe	Pro	Gly	Gln	Val	Ala	Gln	Leu	Ser	Cys	Thr	Leu	Ser	Pro	Gln
					35				40					45
His	Val	Thr	Ile	Arg	Asp	Tyr	Gly	Val	Ser	Trp	Tyr	Gln	Gln	Arg
					50				55					60
Ala	Gly	Ser	Ala	Pro	Arg	Tyr	Leu	Leu	Tyr	Tyr	Arg	Ser	Glu	Glu
					65				70					75
Asp	His	His	Arg	Pro	Ala	Asp	Ile	Pro	Asp	Arg	Phe	Ser	Ala	Ala
					80				85					90
Lys	Asp	Glu	Ala	His	Asn	Ala	Cys	Val	Leu	Thr	Ile	Ser	Pro	Val
					95				100					105
Gln	Pro	Glu	Asp	Asp	Ala	Asp	Tyr	Tyr	Cys	Ser	Val	Gly	Tyr	Gly
					110				115					120
Phe	Ser	Pro												

<210> 118

<211> 3402

<212> DNA

<213> Homo sapiens

<400> 118

gcgcggccgc cccgagacgg ggcccggggg cgccggggcg ggatgcgg 50
cgccccggggc ggcatgcacc gcggagcgca cgccgcggc cggccctga 100
ccccgcgcgc cgcccgctga gccccccgcg gaggtccgga caggccgaga 150
tgacgcgcgag cccctgttg ctgctccgtc tgccgcgcgt gctgctgggg 200
gccttcccac cggccgcgc cccccgaggc cccccaaaga tggcggacaa 250
ggtggtccca cggcagggtgg cccggctggg ccgcactgtg cggctgcagt 300
gcccaagtggaa gggggacccg cccggctga ccatgtggac caaggatggc 350
cgccaccatcc acagcggctg gagccgcttc cgcgtgctgc cgcaggggct 400
gaaggtgaag caggtggagc gggaggatgc cggcgtgtac gtgtgcaagg 450
ccaccaacgg cttccgcagc ctgagcgtca actacaccct cgtcgtgctg 500
gatgacatta gcccaggaa ggagagcctg gggcccgaca gctccctctgg 550
gggtcaagag gacccgcga gccagcagtg ggcacgaccg cgcttcacac 600
agccctccaa gatgaggcgc cgggtgatcg cacggccgt gggtagctcc 650
gtgcggctca agtgcgtggc cagcgggcac cctcggcccg acatcacgtg 700
gatgaaggac gaccaggcct tgacgcgccc agaggccgt gagcccagga 750
agaagaagtg gacactgagc ctgaagaacc tgcggccgga ggacagcggc 800
aaatacacct gccgcgtgtc gaaccgcgcg ggcgcctca acgcccaccta 850
caaggtggat gtgatccagc ggaccgcgtc caagccctg ctcacaggca 900
cgcacccgt gaacacgacg gtggacttcg gggggaccac gtccttcag 950
tgcaagggtgc gcagcgcacgt gaagccggtg atccagtggc tgaagcgcgt 1000
ggagtacggc gccgaggggcc gccacaactc caccatcgat gtggcggcc 1050
agaagtttgt ggtgctgccc acgggtgacg tgtggtcgcg gcccgcggc 1100
tcctacctca ataagctgct catcaccctg gcccgcagg acgtgcggg 1150
catgtacatc tgccttggcg ccaacaccat gggctacagc ttccgcagcg 1200
ctttcctcac cgtgctgcca gacccaaaac cgccaggggcc acctgtggcc 1250
tcctcgtcct cggccactag cctgcgcgtgg cccgtggta tcggcatccc 1300
agccggcgct gtcttcattcc tgggcacccct gtcctgtgg ctttgcagg 1350
cccagaagaa gccgtgcacc cccgcgcctg cccctccct gcctggcac 1400
cgccccggggc ggacggcccg cgaccgcac ggagacaagg accttcctc 1450
gttggccgcc ctcagcgcgtg gccctgggt gggctgtgt gaggagcatg 1500
ggtctccggc agccccccag cacttactgg gcccaggccc agttgctggc 1550
cctaagttgt accccaaact ctacacagac atccacacac acacacacac 1600

acactctcac acacactcac acgtggaggg caaggccac cagcacatcc 1650
actatcagt cttagacggca ccgttatctgc agtgggcacg ggggggcgg 1700
ccagacaggc agactggag gatggaggac ggagctgcag acgaaggcag 1750
gggaccatg gcgaggagga atggccagca ccccaggcag tctgtgttg 1800
aggcatagcc cctggacaca cacacacaga cacacacact acctggatgc 1850
atgtatgcac acacatgcgc gcacacgtgc tccctgaagg cacacgtacg 1900
cacacgcaca tgcacagata tgccgcctgg gcacacagat aagctgccc 1950
aatgcacgca cacgcacaga gacatgccag aacatacaag gacatgctgc 2000
ctgaacatac acacgcacac ccatgcgcag atgtgctgcc tggacacaca 2050
cacacacacg gatatgctgt ctggacgcac acacgtgcag atatggtac 2100
cgAACACACA CGTGCACAGA TATGCTGCC GGACACACAG ATAATGCTGC 2150
cttgacacac acatgcacgg atattgcctg gacacacaca cacacacacg 2200
cgtgcacaga tatgctgtct ggacacgcac acacatgcag atatgctgcc 2250
tggacacaca cttccagaca cacgtgcaca ggcgcagata tgctgcctgg 2300
acacacgcag atatgctgtc tagtcacaca cacacgcaga catgctgtcc 2350
ggacacacac acgcatgcac agatatgctg tccggacaca cacacgcacg 2400
cagatatgct gcctggacac acacacagat aatgctgcct caacactcac 2450
acacgtgcag atattgcctg gacacacaca tgtgcacaga tatgctgtct 2500
ggacatgcac acacgtgcag atatgctgtc cggtacacaca cgacacgcaca 2550
catgcagata tgctgcctgg gcacacactt ccggacacac atgcacacac 2600
aggcgcacat atgctgcctg gacacacaca cagataatgc tgcccaaca 2650
ctcacacacg tgcagatatt gcctggacac acacatgtgc acagatatgc 2700
tgtctggaca tgcacacacg tgcagatatt ctgtccggat acacacgcac 2750
gcacacatgc agatatgctg cctgggcaca cacttccgga cacacatgca 2800
cacacaggtg cagatatgct gcctggacac acgcagactg acgtgcttt 2850
gggagggtgt gccgtgaagc ctgcagtacg tgtgccgtga ggctcatagt 2900
tgcatgaggaa ctccctgc tccaccgtca ctcccccaac tctgcccggcc 2950
tctgtccccg cctcagtc cgcctccatc cccgcctctg tccccctggcc 3000
ttggcggcta ttggccac ctgccttggg tgcccaggag tccctactg 3050
ctgtggctg ggggtggggg cacagcagcc ccaaggctga gaggctggag 3100
cccatggcta gtggctcatc cccagtgcat tctccccctg acacagagaa 3150
ggggccttgg tatttatatt taagaaatga agataatatt aataatgatg 3200

gaaggaagac tgggttgcag ggactgtggt ctctcctggg gcccgggacc 3250
cgccctggct ttcagccatg ctgatgacca caccgggtcc aggccagaca 3300
ccacccccc cccccactgtc gtggtgccc cagatctctg taattttatg 3350
tagagtttga gctgaagccc cgtatattta atttattttg ttaaacacaa 3400
aa 3402

<210> 119
<211> 504
<212> PRT
<213> Homo sapiens

<400> 119
Met Thr Pro Ser Pro Leu Leu Leu Leu Leu Pro Pro Leu Leu
1 5 10 15
Leu Gly Ala Phe Pro Pro Ala Ala Ala Arg Gly Pro Pro Lys
20 25 30
Met Ala Asp Lys Val Val Pro Arg Gln Val Ala Arg Leu Gly Arg
35 40 45
Thr Val Arg Leu Gln Cys Pro Val Glu Gly Asp Pro Pro Pro Leu
50 55 60
Thr Met Trp Thr Lys Asp Gly Arg Thr Ile His Ser Gly Trp Ser
65 70 75
Arg Phe Arg Val Leu Pro Gln Gly Leu Lys Val Lys Gln Val Glu
80 85 90
Arg Glu Asp Ala Gly Val Tyr Val Cys Lys Ala Thr Asn Gly Phe
95 100 105
Gly Ser Leu Ser Val Asn Tyr Thr Leu Val Val Leu Asp Asp Ile
110 115 120
Ser Pro Gly Lys Glu Ser Leu Gly Pro Asp Ser Ser Ser Gly Gly
125 130 135
Gln Glu Asp Pro Ala Ser Gln Gln Trp Ala Arg Pro Arg Phe Thr
140 145 150
Gln Pro Ser Lys Met Arg Arg Arg Val Ile Ala Arg Pro Val Gly
155 160 165
Ser Ser Val Arg Leu Lys Cys Val Ala Ser Gly His Pro Arg Pro
170 175 180
Asp Ile Thr Trp Met Lys Asp Asp Gln Ala Leu Thr Arg Pro Glu
185 190 195
Ala Ala Glu Pro Arg Lys Lys Lys Trp Thr Leu Ser Leu Lys Asn
200 205 210
Leu Arg Pro Glu Asp Ser Gly Lys Tyr Thr Cys Arg Val Ser Asn
215 220 225
Arg Ala Gly Ala Ile Asn Ala Thr Tyr Lys Val Asp Val Ile Gln
230 235 240

Arg Thr Arg Ser Lys Pro Val Leu Thr Gly Thr His Pro Val Asn
 245 250 255
 Thr Thr Val Asp Phe Gly Gly Thr Thr Ser Phe Gln Cys Lys Val
 260 265 270
 Arg Ser Asp Val Lys Pro Val Ile Gln Trp Leu Lys Arg Val Glu
 275 280 285
 Tyr Gly Ala Glu Gly Arg His Asn Ser Thr Ile Asp Val Gly Gly
 290 295 300
 Gln Lys Phe Val Val Leu Pro Thr Gly Asp Val Trp Ser Arg Pro
 305 310 315
 Asp Gly Ser Tyr Leu Asn Lys Leu Leu Ile Thr Arg Ala Arg Gln
 320 325 330
 Asp Asp Ala Gly Met Tyr Ile Cys Leu Gly Ala Asn Thr Met Gly
 335 340 345
 Tyr Ser Phe Arg Ser Ala Phe Leu Thr Val Leu Pro Asp Pro Lys
 350 355 360
 Pro Pro Gly Pro Pro Val Ala Ser Ser Ser Ala Thr Ser Leu
 365 370 375
 Pro Trp Pro Val Val Ile Gly Ile Pro Ala Gly Ala Val Phe Ile
 380 385 390
 Leu Gly Thr Leu Leu Leu Trp Leu Cys Gln Ala Gln Lys Lys Pro
 395 400 405
 Cys Thr Pro Ala Pro Ala Pro Pro Leu Pro Gly His Arg Pro Pro
 410 415 420
 Gly Thr Ala Arg Asp Arg Ser Gly Asp Lys Asp Leu Pro Ser Leu
 425 430 435
 Ala Ala Leu Ser Ala Gly Pro Gly Val Gly Leu Cys Glu Glu His
 440 445 450
 Gly Ser Pro Ala Ala Pro Gln His Leu Leu Gly Pro Gly Pro Val
 455 460 465
 Ala Gly Pro Lys Leu Tyr Pro Lys Leu Tyr Thr Asp Ile His Thr
 470 475 480
 His Thr His Thr His Ser His Thr His Ser His Val Glu Gly Lys
 485 490 495
 Val His Gln His Ile His Tyr Gln Cys
 500

<210> 120
 <211> 20
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Synthetic oligonucleotide probe

<400> 120

cgagatgacg ccgagcccc 20

210 <210> 121

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 121

cggttcgaca cgcgccaggt g 21

<210> 122

<211> 45

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 122

tgctgctcct gctgccggccg ctgctgctgg gggccttccc gccgg 45

<210> 123

<211> 4420

<212> DNA

<213> Homo sapiens

<400> 123

cccgagctg

cccagggac cgcatccag agtcagtgcac tctgtgaagc acccacatct 100
acctcttgc acgttccccac gggcttgggg gaaagatggt ggggaccaag 150
gcctgggtgt tctccttcct ggtcctggaa gtcacatctg tgttggggag 200
acagacgatg ctcacccagt cagtaagaag agtccagcct ggaaagaaga 250
accccagcat ct当地ccaag cctgcccaca ccctggagag ccctggtgag 300
tggacaacat ggttcaacat cgactaccca ggccccaaagg gcgactatga 350
gcggctggac gccattcgct tctactatgg ggaccgtgta tgtgcccgtc 400
ccctgcggct agaggctcg accactgact ggacacctgc gggcagcact 450
ggccaggtgg tccatggtag tccccgtgag ggtttctggt gcctcaacag 500
ggagcagcgg cctggccaga actgctctaa ttacaccgta cgcttcctct 550
gcccaccagg atccctgcgc cgagacacag agcgcacatcg gagccatgg 600
tctccctgga gcaagtgc tc agctgcctgt ggtcagactg gggtccagac 650
tcgcacacgc atttgcttgg cagagatggt gtcgctgtgc agtgaggcca 700
gcgaagaggg tcagcactgc atgggccagg actgtacagc ctgtgacctg 750
acctgccc aa tggccaggt gaatgctgac tgtgtatgcct gcatgtgcca 800
ggacttcatg cttcatgggg ctgtctccct tcccgaggt gcccagcct 850

caggggctgc tatctacctc ctgaccaaga cgccgaagct gctgaccagg 900
acagacagtg atgggagatt ccgaatccct ggcttgcct ctgatggcaa 950
aagcatcctg aagatcacaa aggtcaagtt tgccccatt gtactcacaa 1000
tgcccaagac tagcctgaag gcagccacca tcaaggcaga gtttgtgagg 1050
gcagagactc catacatggt gatgaaccct gagacaaaag cacggagac 1100
tgggcagagc gtgtctctgt gctgtaaggc cacaggaaag cccaggccag 1150
acaagtattt ttggtatcat aatgacacat tgctggatcc ttccctctac 1200
aagcatgaga gcaagctggt gctgaggaaa ctgcagcagc accaggctgg 1250
ggagtacttt tgcaaggccc agagtgtatgc tggggctgtg aagtccaagg 1300
ttgcccagct gattgtcaca gcatctgtatg agactccttg caacccagtt 1350
cctgagagct atcttatccg gctgccccat gattgcttc agaatgccac 1400
caactccttc tactatgacg tgggacgctg ccctgttaag acttgtgcag 1450
ggcagcagga taatgggatc aggtgccgtg atgctgtgca gaactgctgt 1500
ggcatctcca agacagagga aaggagatc cagtcagtg gctacacgct 1550
acccaccaag gtggccaagg agtgcagctg ccagcggtgt acggaaactc 1600
ggagcatcgt gcggggccgt gtcagtgtcg ctgacaatgg ggagccatg 1650
cgctttggcc atgtgtacat gggAACAGC cgtgtaaGCA tgactggcta 1700
caagggcact ttcaccctcc atgtccccca ggacactgag aggctggtc 1750
tcacatTTTg ggacaggctg cagaagttt tcaacaccac caaagtgcata 1800
ccttcaaca agaaggggag tgccgtgttc catgaaatca agatgcttcg 1850
tcggaaagag cccatcaattt tggaaagccat ggagaccaac atcatcccc 1900
tgggggaagt ggttgtgaa gacccatgg ctgaactgga gattccatcc 1950
aggagtttct acaggcagaa tggggagccc tacataggaa aagtgaaggc 2000
cagtgtgacc ttcctggatc cccggatat ttccacagcc acagctgccc 2050
agactgacct gaacttcatc aatgacgaag gagacacttt ccccttcgg 2100
acgtatggca tgTTCTCTGT ggacttcaga gatgaggtca cctcagagcc 2150
acttaatgtt ggcaaagtga aggtccaccc tgaactcgacc caggtcaaga 2200
tgccagagca catatccaca gtgaaactct ggtcactcaa tccagacaca 2250
gggctgtggg aggaggaagg tgatttcaaa tttgaaaatc aaaggaggaa 2300
caaaagagaa gacagaacct tcctggtggg caacctggag attcgtgaga 2350
ggaggcttt taacctggat gttcctgaaa gcaggcggtg ctttgttaag 2400
gtgaggggcctt accggagtga gaggttcttg ccttagtgagc agatccaggg 2450

ggttgtgatc tccgtgatta acctggagcc tagaactggc ttcttgatcca 2500
accctagggc ctggggccgc tttgacagtgc tcatacacagg ccccaacggg 2550
gcctgtgtgc ctgccttctg tgatgaccag tcccctgatg cctactctgc 2600
ctatgtcttg gcaagcctgg ctggggagga actgcaagca gtggagtctt 2650
ctcctaaatt caacccaaat gcaattggcg tccctcagcc ctatctcaac 2700
aagctcaact accgtcggac ggaccatgag gatccacggg taaaaaagac 2750
agctttccag attagcatgg ccaagccaaag gcccaactca gctgaggaga 2800
gcaatgggcc catctatgcc tttgagaacc tccgggcatg tgaagaggca 2850
ccacccagtg cagcccaactt ccgggttctac cagattgagg gggatcgata 2900
tgactacaac acagtcccct tcaacgaaga tgaccctatg agctggactg 2950
aagactatct ggcattggc ccaaagccga tggaattcag ggcctgttat 3000
atcaaggtga agattgtggg gccactggaa gtgaatgtgc gatccccaa 3050
catggggggc actcatcggc ggacagtggg gaagctgtat ggaatccgag 3100
atgtgaggag cactcggac agggaccagc ccaatgtctc agtcgcctgt 3150
ctggagttca agtgcagtgg gatgcttat gatcaggacc gtgtggaccg 3200
caccctggtg aaggcatcc cccagggcag ctgcccgtcga gccagtgtga 3250
accccatgct gcatgagttac ctggtaacc acttgccact tgcagtcaac 3300
aacgacacca gtgagttacac catgctggca cccttggacc cactggccca 3350
caactatggc atctacactg tcactgacca ggaccctcgc acggccaagg 3400
agatcgcgct cggccgggtgc tttgatggca catccgatgg ctccctccaga 3450
atcatgaaga gcaatgtggg agtagccctc accttcaact gtgttagagag 3500
gcaagtaggc cgccagagtg cttccagta cctccaaagc accccagccc 3550
agtcccctgc tgcaggcact gtccaaaggaa gagtgcctc gaggaggcag 3600
cagcgagcga gcaggggtgg ccagcgccag ggtggagtgg tggcctctt 3650
gagatttcct agagttgctc aacagccct gatcaactaa gttttgttgt 3700
acttcaccct cttctgcccattttcatgt gacagccatt gtgagactga 3750
tgcacaaaact gtcacttggt taatttaagc acttctgttt tcgtgaattt 3800
gcttgggttgc ttcttcatgc ctttacttac tttgtcccat gctactgatt 3850
ggcacgtggc ccccacaatg gcacaataaa gccccttgc gaaactgttc 3900
tttaaatgaa acacaagaaa ttggccactg gtaaaaactct gcagcttcaa 3950
ctgtacttca tttaatgcca ttaatgaaa tatacttcct ctttttttg 4000
catggtttg cccacccctg caatagtgtat aatctgtgc tgaagatcaa 4050

ataaccaata taaagcatat ttcttggcct tgctccacag gacataggca 4100
agccttgc atagttcata catataaatg gtggtgaaat aaagaaaataa 4150
aacacaatac tttacttga aatgtaaata acttatttat ttctttgcta 4200
aatttggaaat tctagtgcac attcaaagtt aagctattaa atatagggtg 4250
atcatagttc ctctaccaag tctggaaaga acatctcctg gtatccacaa 4300
ttacaccagg ttgctaactg tatttgtaca tttccctttg cattcgctt 4350
tgttcttgct agaaacccag tgtagcccag ggcagatgtc aataaatgca 4400
tactctgtat ttgcaaaaaaaa 4420

<210> 124

<211> 1184

<212> PRT

<213> Homo sapiens

<400> 124

Met	Val	Gly	Thr	Lys	Ala	Trp	Val	Phe	Ser	Phe	Leu	Val	Leu	Glu
1														15
Val	Thr	Ser	Val	Leu	Gly	Arg	Gln	Thr	Met	Leu	Thr	Gln	Ser	Val
									20		25			30
Arg	Arg	Val	Gln	Pro	Gly	Lys	Lys	Asn	Pro	Ser	Ile	Phe	Ala	Lys
									35		40			45
Pro	Ala	Asp	Thr	Leu	Glu	Ser	Pro	Gly	Glu	Trp	Thr	Thr	Trp	Phe
									50		55			60
Asn	Ile	Asp	Tyr	Pro	Gly	Gly	Lys	Gly	Asp	Tyr	Glu	Arg	Leu	Asp
									65		70			75
Ala	Ile	Arg	Phe	Tyr	Tyr	Gly	Asp	Arg	Val	Cys	Ala	Arg	Pro	Leu
									80		85			90
Arg	Leu	Glu	Ala	Arg	Thr	Thr	Asp	Trp	Thr	Pro	Ala	Gly	Ser	Thr
									95		100			105
Gly	Gln	Val	Val	His	Gly	Ser	Pro	Arg	Glu	Gly	Phe	Trp	Cys	Leu
									110		115			120
Asn	Arg	Glu	Gln	Arg	Pro	Gly	Gln	Asn	Cys	Ser	Asn	Tyr	Thr	Val
									125		130			135
Arg	Phe	Leu	Cys	Pro	Pro	Gly	Ser	Leu	Arg	Arg	Asp	Thr	Glu	Arg
									140		145			150
Ile	Trp	Ser	Pro	Trp	Ser	Pro	Trp	Ser	Lys	Cys	Ser	Ala	Ala	Cys
									155		160			165
Gly	Gln	Thr	Gly	Val	Gln	Thr	Arg	Thr	Arg	Ile	Cys	Leu	Ala	Glu
									170		175			180
Met	Val	Ser	Leu	Cys	Ser	Glu	Ala	Ser	Glu	Glu	Gly	Gln	His	Cys
									185		190			195
Met	Gly	Gln	Asp	Cys	Thr	Ala	Cys	Asp	Leu	Thr	Cys	Pro	Met	Gly
									200		205			210

Gln Val Asn Ala Asp Cys Asp Ala Cys Met Cys Gln Asp Phe Met
 215 220 225
 Leu His Gly Ala Val Ser Leu Pro Gly Gly Ala Pro Ala Ser Gly
 230 235 240
 Ala Ala Ile Tyr Leu Leu Thr Lys Thr Pro Lys Leu Leu Thr Gln
 245 250 255
 Thr Asp Ser Asp Gly Arg Phe Arg Ile Pro Gly Leu Cys Pro Asp
 260 265 270
 Gly Lys Ser Ile Leu Lys Ile Thr Lys Val Lys Phe Ala Pro Ile
 275 280 285
 Val Leu Thr Met Pro Lys Thr Ser Leu Lys Ala Ala Thr Ile Lys
 290 295 300
 Ala Glu Phe Val Arg Ala Glu Thr Pro Tyr Met Val Met Asn Pro
 305 310 315
 Glu Thr Lys Ala Arg Arg Ala Gly Gln Ser Val Ser Leu Cys Cys
 320 325 330
 Lys Ala Thr Gly Lys Pro Arg Pro Asp Lys Tyr Phe Trp Tyr His
 335 340 345
 Asn Asp Thr Leu Leu Asp Pro Ser Leu Tyr Lys His Glu Ser Lys
 350 355 360
 Leu Val Leu Arg Lys Leu Gln Gln His Gln Ala Gly Glu Tyr Phe
 365 370 375
 Cys Lys Ala Gln Ser Asp Ala Gly Ala Val Lys Ser Lys Val Ala
 380 385 390
 Gln Leu Ile Val Thr Ala Ser Asp Glu Thr Pro Cys Asn Pro Val
 395 400 405
 Pro Glu Ser Tyr Leu Ile Arg Leu Pro His Asp Cys Phe Gln Asn
 410 415 420
 Ala Thr Asn Ser Phe Tyr Tyr Asp Val Gly Arg Cys Pro Val Lys
 425 430 435
 Thr Cys Ala Gly Gln Gln Asp Asn Gly Ile Arg Cys Arg Asp Ala
 440 445 450
 Val Gln Asn Cys Cys Gly Ile Ser Lys Thr Glu Glu Arg Glu Ile
 455 460 465
 Gln Cys Ser Gly Tyr Thr Leu Pro Thr Lys Val Ala Lys Glu Cys
 470 475 480
 Ser Cys Gln Arg Cys Thr Glu Thr Arg Ser Ile Val Arg Gly Arg
 485 490 495
 Val Ser Ala Ala Asp Asn Gly Glu Pro Met Arg Phe Gly His Val
 500 505 510
 Tyr Met Gly Asn Ser Arg Val Ser Met Thr Gly Tyr Lys Gly Thr
 515 520 525

Phe Thr Leu His Val Pro Gln Asp Thr Glu Arg Leu Val Leu Thr
 530 535 540
 Phe Val Asp Arg Leu Gln Lys Phe Val Asn Thr Thr Lys Val Leu
 545 550 555
 Pro Phe Asn Lys Lys Gly Ser Ala Val Phe His Glu Ile Lys Met
 560 565 570
 Leu Arg Arg Lys Glu Pro Ile Thr Leu Glu Ala Met Glu Thr Asn
 575 580 585
 Ile Ile Pro Leu Gly Glu Val Val Gly Glu Asp Pro Met Ala Glu
 590 595 600
 Leu Glu Ile Pro Ser Arg Ser Phe Tyr Arg Gln Asn Gly Glu Pro
 605 610 615
 Tyr Ile Gly Lys Val Lys Ala Ser Val Thr Phe Leu Asp Pro Arg
 620 625 630
 Asn Ile Ser Thr Ala Thr Ala Ala Gln Thr Asp Leu Asn Phe Ile
 635 640 645
 Asn Asp Glu Gly Asp Thr Phe Pro Leu Arg Thr Tyr Gly Met Phe
 650 655 660
 Ser Val Asp Phe Arg Asp Glu Val Thr Ser Glu Pro Leu Asn Ala
 665 670 675
 Gly Lys Val Lys Val His Leu Asp Ser Thr Gln Val Lys Met Pro
 680 685 690
 Glu His Ile Ser Thr Val Lys Leu Trp Ser Leu Asn Pro Asp Thr
 695 700 705
 Gly Leu Trp Glu Glu Glu Gly Asp Phe Lys Phe Glu Asn Gln Arg
 710 715 720
 Arg Asn Lys Arg Glu Asp Arg Thr Phe Leu Val Gly Asn Leu Glu
 725 730 735
 Ile Arg Glu Arg Arg Leu Phe Asn Leu Asp Val Pro Glu Ser Arg
 740 745 750
 Arg Cys Phe Val Lys Val Arg Ala Tyr Arg Ser Glu Arg Phe Leu
 755 760 765
 Pro Ser Glu Gln Ile Gln Gly Val Val Ile Ser Val Ile Asn Leu
 770 775 780
 Glu Pro Arg Thr Gly Phe Leu Ser Asn Pro Arg Ala Trp Gly Arg
 785 790 795
 Phe Asp Ser Val Ile Thr Gly Pro Asn Gly Ala Cys Val Pro Ala
 800 805 810
 Phe Cys Asp Asp Gln Ser Pro Asp Ala Tyr Ser Ala Tyr Val Leu
 815 820 825
 Ala Ser Leu Ala Gly Glu Glu Leu Gln Ala Val Glu Ser Ser Pro
 830 835 840

Lys Phe Asn Pro Asn Ala Ile Gly Val Pro Gln Pro Tyr Leu Asn
 845 850 855
 Lys Leu Asn Tyr Arg Arg Thr Asp His Glu Asp Pro Arg Val Lys
 860 865 870
 Lys Thr Ala Phe Gln Ile Ser Met Ala Lys Pro Arg Pro Asn Ser
 875 880 885
 Ala Glu Glu Ser Asn Gly Pro Ile Tyr Ala Phe Glu Asn Leu Arg
 890 895 900
 Ala Cys Glu Glu Ala Pro Pro Ser Ala Ala His Phe Arg Phe Tyr
 905 910 915
 Gln Ile Glu Gly Asp Arg Tyr Asp Tyr Asn Thr Val Pro Phe Asn
 920 925 930
 Glu Asp Asp Pro Met Ser Trp Thr Glu Asp Tyr Leu Ala Trp Trp
 935 940 945
 Pro Lys Pro Met Glu Phe Arg Ala Cys Tyr Ile Lys Val Lys Ile
 950 955 960
 Val Gly Pro Leu Glu Val Asn Val Arg Ser Arg Asn Met Gly Gly
 965 970 975
 Thr His Arg Arg Thr Val Gly Lys Leu Tyr Gly Ile Arg Asp Val
 980 985 990
 Arg Ser Thr Arg Asp Arg Asp Gln Pro Asn Val Ser Ala Ala Cys
 995 1000 1005
 Leu Glu Phe Lys Cys Ser Gly Met Leu Tyr Asp Gln Asp Arg Val
 1010 1015 1020
 Asp Arg Thr Leu Val Lys Val Ile Pro Gln Gly Ser Cys Arg Arg
 1025 1030 1035
 Ala Ser Val Asn Pro Met Leu His Glu Tyr Leu Val Asn His Leu
 1040 1045 1050
 Pro Leu Ala Val Asn Asn Asp Thr Ser Glu Tyr Thr Met Leu Ala
 1055 1060 1065
 Pro Leu Asp Pro Leu Gly His Asn Tyr Gly Ile Tyr Thr Val Thr
 1070 1075 1080
 Asp Gln Asp Pro Arg Thr Ala Lys Glu Ile Ala Leu Gly Arg Cys
 1085 1090 1095
 Phe Asp Gly Thr Ser Asp Gly Ser Ser Arg Ile Met Lys Ser Asn
 1100 1105 1110
 Val Gly Val Ala Leu Thr Phe Asn Cys Val Glu Arg Gln Val Gly
 1115 1120 1125
 Arg Gln Ser Ala Phe Gln Tyr Leu Gln Ser Thr Pro Ala Gln Ser
 1130 1135 1140
 Pro Ala Ala Gly Thr Val Gln Gly Arg Val Pro Ser Arg Arg Gln
 1145 1150 1155

Gln Arg Ala Ser Arg Gly Gly Gln Arg Gln Gly Gly Val Val Ala
1160 1165 1170

Ser Leu Arg Phe Pro Arg Val Ala Gln Gln Pro Leu Ile Asn
1175 1180

<210> 125
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 125
ctgggtgcctc aacagggagc ag 22

<210> 126
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 126
ccatttgca ggtcaggta cag 23

<210> 127
<211> 40
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 127
ctggagcaag tgctcagctg cctgtggta gactgggtc 40

<210> 128
<211> 2819
<212> DNA
<213> Homo sapiens

<400> 128
ctgcaagttt ttaacgccta acacacaagt atgttaggct tccaccaaag 50
tcctcaatat acctgaatac gcacaatatac ttaactcttc atatttggtt 100
ttgggatctg ctttgggtc ccatcttcat ttaaaaaaaaa atacagagac 150
ctacctaccc gtacgcatac atacatatgt gtatatatat gtaaaactaga 200
caaagatcgc agatcataaa gcaagctctg ctttagttc caagaagatt 250
acaaagaatt tagagatgta tttgtcaaga tccctgtcga ttcatgccct 300
ttgggttacg gtgtcctcag tgatgcagcc ctaccctttg gtttggggac 350
attatgattt gtgttaagact cagattaca cggaagaagg gaaagtttgg 400
gattacatgg cctgccagcc ggaatccacg gacatgacaa aatatctgaa 450

agtgaaactc gatcctccgg atattacctg tggagaccct cctgagacgt 500
tctgtcaat gggcaatccc tacatgtgca ataatgagtg tgatgcgagt 550
acccctgagc tggcacacccc ccctgagctg atgtttGatt ttgaaggaag 600
acatccctcc acattttggc agtctgccac ttgaaaggag tatcccaagc 650
ctctccaggt taacatcaact ctgtcttgg acaaaaccat tgagctaaca 700
gacaacatag ttattacctt tgaatctggg cgtccagacc aaatgatcct 750
ggagaagtct ctcgattatg gacgaacatg gcagccctat cagtattatg 800
ccacagactg cttagatgct tttcacatgg atcctaaatc cgtgaaggat 850
ttatcacagc atacggtctt agaaatcatt tgacacagaag agtactcaac 900
agggtataca acaaatacgca aaataatcca ctttgaatc aaagacaggt 950
tcgcgccttt tgctggacct cgccctacgca atatggcttc cctctacgga 1000
cagctggata caaccaagaa actcagagat ttctttacag tcacagacct 1050
gaggataagg ctgttaagac cagccgttgg ggaaatattt gtagatgagc 1100
tacacttggc acgctacttt tacgcgatct cagacataaa ggtgcgagga 1150
aggtgcaagt gtaatctcca tgccactgta tgtgtgtatg acaacagcaa 1200
attgacatgc gaatgtgagc acaacactac aggtccagac tgtggaaat 1250
gcaagaagaa ttatcagggc cgaccttggc gtccaggctc ctatctcccc 1300
atccccaaag gcactgcaaa tacctgtatc cccagtattt ccagtattgg 1350
tacgaatgtc tgcgacaacg agctcctgca ctgcccagaac ggagggacgt 1400
gccacaacaa cgtgcgctgc ctgtgcccg ccgcatacac gggcatcctc 1450
tgcgagaagc tgcggtgcga ggaggctggc agctgcggct ccgactctgg 1500
ccagggcgcg ccccccacg gcacccacg gctgctgctg ctgaccacgc 1550
tgctggaaac cggcagcccc ctggtgttct aggtgtcacc tccagccaca 1600
ccggacgggc ctgtgcgtg gggaaagcaga cacaacccaa acatttgcta 1650
ctaacatagg aaacacacac atacagacac cccactcag acagtgtaca 1700
aactaagaag gcctaactga actaagccat atttattcacc cgtggacagc 1750
acatccgagt caagactgtt aatttctgac tccagaggag ttggcagctg 1800
ttgatattat cactgcaaat cacattgcca gctgcagagc atattgtgga 1850
ttggaaaggc tgcgacagcc ccccaaacag gaaagacaaa aaacaaacaa 1900
atcaaccgac ctaaaaacat tggctactct agcgtggtgc gccctagtag 1950
gactccgccc agtgtgtgga ccaaccaa atgattctt gctgtcaggt 2000
gcattgtggg cataaggaaa tctgttacaa gctgccatat tggcctgctt 2050

ccgtccctga atcccttcca acctgtgott tagtgaacgt tgctctgtaa 2100
ccctcggtgg ttgaaagatt tctttgtctg atgttagtga tgcacatgtg 2150
taacagcccc ctctaaaagc gcaagccagt catacccctg tatatcttag 2200
cagcactgag tccagtgcga gcacacaccc actatacaag agtggctata 2250
gaaaaaaaaaaga aagtgtatct atccttttgtt attcaaatga agttattttt 2300
cttgaactac tgtaatatgt agatTTTGT tattattgcc aatttgcgtt 2350
accagacaat ctgttaatgt atctaattcg aatcagcaaa gactgacatt 2400
ttatTTTgtc ctcttcgtt ctgtttgtt tcactgtgca gagatttctc 2450
tgtaaggcga acgaacgtgc tggcatcaaa gaatatcagt ttacatata 2500
aacaagtgt aataagattcc accaaaggac attctaaatg ttttcttgc 2550
gctttaacac tggaagattt aaagaataaa aactcctgca taaacgattt 2600
caggaatttg tattgcaatt tcttaagatg aaaggaacag ccaccaagca 2650
gtttcacact cacttactg atttctgtgt ggactgagta cattcagctg 2700
acgaatttag ttcccaggaa gatggattga tgttcactag cttggacaac 2750
ttctgcaaaa tatgagacta tttccacttg ggaaaaatta caacagcaaa 2800
aaaaaaaaaaa aaaaaaaaaa 2819

<210> 129
<211> 438
<212> PRT
<213> Homo sapiens

<400> 129
Met Tyr Leu Ser Arg Ser Leu Ser Ile His Ala Leu Trp Val Thr
1 5 10 15
Val Ser Ser Val Met Gln Pro Tyr Pro Leu Val Trp Gly His Tyr
20 25 30
Asp Leu Cys Lys Thr Gln Ile Tyr Thr Glu Glu Gly Lys Val Trp.
35 40 45
Asp Tyr Met Ala Cys Gln Pro Glu Ser Thr Asp Met Thr Lys Tyr
50 55 60
Leu Lys Val Lys Leu Asp Pro Pro Asp Ile Thr Cys Gly Asp Pro
65 70 75
Pro Glu Thr Phe Cys Ala Met Gly Asn Pro Tyr Met Cys Asn Asn
80 85 90
Glu Cys Asp Ala Ser Thr Pro Glu Leu Ala His Pro Pro Glu Leu
95 100 105
Met Phe Asp Phe Glu Gly Arg His Pro Ser Thr Phe Trp Gln Ser
110 115 120
Ala Thr Trp Lys Glu Tyr Pro Lys Pro Leu Gln Val Asn Ile Thr

125	130	135
Leu Ser Trp Ser Lys Thr Ile Glu Leu Thr Asp Asn Ile Val Ile		
140	145	150
Thr Phe Glu Ser Gly Arg Pro Asp Gln Met Ile Leu Glu Lys Ser		
155	160	165
Leu Asp Tyr Gly Arg Thr Trp Gln Pro Tyr Gln Tyr Tyr Ala Thr		
170	175	180
Asp Cys Leu Asp Ala Phe His Met Asp Pro Lys Ser Val Lys Asp		
185	190	195
Leu Ser Gln His Thr Val Leu Glu Ile Ile Cys Thr Glu Glu Tyr		
200	205	210
Ser Thr Gly Tyr Thr Thr Asn Ser Lys Ile Ile His Phe Glu Ile		
215	220	225
Lys Asp Arg Phe Ala Leu Phe Ala Gly Pro Arg Leu Arg Asn Met		
230	235	240
Ala Ser Leu Tyr Gly Gln Leu Asp Thr Thr Lys Lys Leu Arg Asp		
245	250	255
Phe Phe Thr Val Thr Asp Leu Arg Ile Arg Leu Leu Arg Pro Ala		
260	265	270
Val Gly Glu Ile Phe Val Asp Glu Leu His Leu Ala Arg Tyr Phe		
275	280	285
Tyr Ala Ile Ser Asp Ile Lys Val Arg Gly Arg Cys Lys Cys Asn		
290	295	300
Leu His Ala Thr Val Cys Val Tyr Asp Asn Ser Lys Leu Thr Cys		
305	310	315
Glu Cys Glu His Asn Thr Thr Gly Pro Asp Cys Gly Lys Cys Lys		
320	325	330
Lys Asn Tyr Gln Gly Arg Pro Trp Ser Pro Gly Ser Tyr Leu Pro		
335	340	345
Ile Pro Lys Gly Thr Ala Asn Thr Cys Ile Pro Ser Ile Ser Ser		
350	355	360
Ile Gly Thr Asn Val Cys Asp Asn Glu Leu Leu His Cys Gln Asn		
365	370	375
Gly Gly Thr Cys His Asn Asn Val Arg Cys Leu Cys Pro Ala Ala		
380	385	390
Tyr Thr Gly Ile Leu Cys Glu Lys Leu Arg Cys Glu Glu Ala Gly		
395	400	405
Ser Cys Gly Ser Asp Ser Gly Gln Gly Ala Pro Pro His Gly Thr		
410	415	420
Pro Ala Leu Leu Leu Leu Thr Thr Leu Leu Gly Thr Ala Ser Pro		
425	430	435
Leu Val Phe		

<210> 130
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 130
tcgattatgg acgaacatgg cagc 24

<210> 131
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 131
ttctgagatc cctcatccctc 20

<210> 132
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 132
aggttcaggg acagcaagtt tggg 24

<210> 133
<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 133
tttgctggac ctcggctacg gaattggctt ccctctacgg acagctggat 50

<210> 134
<211> 1493
<212> DNA
<213> Homo sapiens

<400> 134
cccacgcgtc cgggtgacct gggccgagcc ctcccggtcg gctaagattg 50
ctgaggaggc ggcgggttagc tggcaggcgc cgacttccga aggccgcgt 100
ccgggcgagg tgtcctcatg acttcttgc tggaccatgt ccgtgatctt 150
ttttgcctgc gtggtaacggg taaggatgg actgccccctc tcagcctcta 200
ctgattttta ccacacccaa gatttttgg aatggaggag acggctcaag 250
agttagct tgcgactggc ccagtatcca ggtcgagggtt ctgcagaagg 300

tttgtacttt agtatacatt tttcttcatt cggggacgtg gcctgcattg 350
ctatctgctc ctgccagtgt ccagcagcca tggcctctg cttcctggag 400
accctgtggt gggaaattcac agcttcctat gacactaccc gcattggcct 450
agcctccagg ccatacgctt ttcttgagtt tgacagcatc attcagaaaag 500
tgaagtggca ttttaactat gtaagttcct ctcagatgga gtgcagctt 550
aaaaaaattc aggaggagct caagttgcag cctccagcgg ttctcactct 600
ggaggacaca gatgtggcaa atgggggtat gaatggtcac acaccgatgc 650
acttggagcc tgctcctaatttccgaatgg aaccagtgac agccctgggt 700
atcctctccc tcattctcaa catcatgtgt gctgccctga atctcattcg 750
aggagttcac cttgcagaac attcttaca ggatccaagg agctggttct 800
gctggttgga ccaaacctcg tgagccagcc acccctgacc caaatgagga 850
gagctctgat tctcccatcc gggagcagtg atgtcaaact tctgctgctg 900
gggaaatctc atcagcaggg agcctgtgga aaagggcatg tcagtgaaat 950
ctggaaatgg ctggattcgg aaacatctgc ccatgtgtat tgatggcaga 1000
gctgttgcac acaagcgcct tttattttagg gtaaaattaa caaatccatt 1050
ctattcctct gaccatgct tagtacatat gaccttaac cttacattt 1100
atatgattct ggggttgctt cagaagtgtt atttcatgaa tcattcatat 1150
gatttgcattt cccaggattt tattttgttt aatgggcttt tctactaaaa 1200
gcataaaaata ctgaggctga tttagtcagg gcaaaaccat ttactttaca 1250
tattcgtttt caatacttgc tgttcatgtt acacaagctt cttacggttt 1300
tcttgcataaca ataaatattt tgataaaata atgggtacat tttaacaaac 1350
tcagtagtac aacctaaact tgtataaaaag tgtataaaaaa tgtatagcca 1400
tttatatcct atgtataaaat taaatgaggt ggcttcagaa atggcagaat 1450
aaatctaaag tgtttattaa aaaaaaaaaa aaaaaaaaaa aag 1493

<210> 135
<211> 228
<212> PRT
<213> Homo sapiens

<400> 135
Met Ser Val Ile Phe Phe Ala Cys Val Val Arg Val Arg Asp Gly
1 5 10 15
Leu Pro Leu Ser Ala Ser Thr Asp Phe Tyr His Thr Gln Asp Phe
20 25 30
Leu Glu Trp Arg Arg Arg Leu Lys Ser Leu Ala Leu Arg Leu Ala
35 40 45

Gln Tyr Pro Gly Arg Gly Ser Ala Glu Gly Cys Asp Phe Ser Ile
 50 55 60
 His Phe Ser Ser Phe Gly Asp Val Ala Cys Met Ala Ile Cys Ser
 65 70 75
 Cys Gln Cys Pro Ala Ala Met Ala Phe Cys Phe Leu Glu Thr Leu
 80 85 90
 Trp Trp Glu Phe Thr Ala Ser Tyr Asp Thr Thr Cys Ile Gly Leu
 95 100 105
 Ala Ser Arg Pro Tyr Ala Phe Leu Glu Phe Asp Ser Ile Ile Gln
 110 115 120
 Lys Val Lys Trp His Phe Asn Tyr Val Ser Ser Ser Gln Met Glu
 125 130 135
 Cys Ser Leu Glu Lys Ile Gln Glu Glu Leu Lys Leu Gln Pro Pro
 140 145 150
 Ala Val Leu Thr Leu Glu Asp Thr Asp Val Ala Asn Gly Val Met
 155 160 165
 Asn Gly His Thr Pro Met His Leu Glu Pro Ala Pro Asn Phe Arg
 170 175 180
 Met Glu Pro Val Thr Ala Leu Gly Ile Leu Ser Leu Ile Leu Asn
 185 190 195
 Ile Met Cys Ala Ala Leu Asn Leu Ile Arg Gly Val His Leu Ala
 200 205 210
 Glu His Ser Leu Gln Asp Pro Arg Ser Trp Phe Cys Trp Leu Asp
 215 220 225
 Gln Thr Ser

<210> 136
 <211> 239
 <212> DNA
 <213> Homo sapiens

<220>
 <221> unsure
 <222> 39, 61, 143, 209
 <223> unknown base

<400> 136
 tgcttcctgg agaccctgtg gtggaaattc acagttcnt atgacactac 50
 ctgcattggc ntagcctcca ggcatacgc ttttcttgag tttgacagca 100
 tcattcagaa agtgaagtgg catttaact atgtaagttc ctntcagatg 150
 gagtgcagct tggaaaaaat tcaggaggag ctcaagttgc agcctccagc 200
 gtttctcant atggaggaca cagatgtggc aaatggggt 239

<210> 137
 <211> 2300
 <212> DNA

<213> Homo sapiens

<400> 137

ctcagcggcg cttccctcgta gcgagcctag tggcgggtgt ttgcattgaa 50
acgtgagcgc gacccgacct taaagagtgg ggagcaagg gaggacagag 100
ccctttaaaa cgaggcgggt ggtgcctgcc ccttaaggg cggggcgtcc 150
ggacgactgt atctgagccc cagactgccc cgagttctg tcgcaggctg 200
cgagggaaagg cccctaggct gggtctgggt gcttggcggc ggcggctcc 250
tccccgctcg tcctccccgg gcccagaggc acctcggctt cagtcatgct 300
gagcagagta tggaagcacc tgactacgaa gtgctatccg tgcgagaaca 350
gctattccac gagaggatcc gcgagtgtat tatacaaca cttctgtttg 400
caacactgta catcctctgc cacatcttcc tgacccgctt caagaaggct 450
gctgagttca ccacagtggta tgatgaagat gccaccgtca acaagatgc 500
gctcgagctg tgcacccctta ccctggcaat tgccctgggt gctgtcctgc 550
tcctgccctt ctccatcatc agcaatgagg tgctgctctc cctgcctcgg 600
aactactaca tccagtggct caacggctcc ctcatccatg gcctctggaa 650
ccttgaaaaa ctatccccca acctgtccct catcttcctc atgccctttg 700
catatttctt cactgagtct gagggctttg ctggctccag aaagggtgtc 750
ctggggccggg tctatgagac agtggtgatg ttgatgctcc tcactctgct 800
ggtgcttaggt atggtgtggg tggcatcagc cattgtggac aagaacaagg 850
ccaacagaga gtcactctat gactttggg agtactatct cccctacctc 900
tactcatgca ttccttcct tggggttctg ctgctcctgg tgtgtactcc 950
actgggtctc gcccgcattgt tctccgtcac tggaaagctg ctatgtcaagc 1000
ccoggctgtc ggaagacctg gaggagcagc tgtactgctc agcctttgag 1050
gaggcagccc tgacccgcag gatctgtaat cctacttcct gctggctgcc 1100
tttagacatg gagctgctac acagacaggt cctggctctg cagacacaga 1150
gggtcctgct ggagaagagg cggaaggctt cagcctggca acggaacctg 1200
ggctacccccc tggctatgct gtgcttgctg gtgctgacgg gcctgtctgt 1250
gctcattgtg gccatccaca tcctggagct gctcatcgat gaggctgcca 1300
tgccccgagg catgcagggt acctccttag gccaggcttc cttctccaag 1350
ctgggctcct ttggtgccgt cattcagggt gtactcatct tttacctaatt 1400
ggtgtcctca gttgtggct tctatagctc tccactcttc cggagcctgc 1450
ggcccagatg gcacgacact gccatgacgc agataattgg gaactgtgtc 1500

tgtctcctgg tcctaagctc agcacttcct gtcttctctc gaaccctggg 1550
gctcaactcg tttgacctgc tgggtgactt tggacgcttc aactggctgg 1600
gcaatttcta cattgtgttc ctctacaacg cagccttgc aggccctcacc 1650
acactctgtc tggtaagac cttcaactgca gctgtgcggg cagagctgat 1700
ccgggcctt gggctggaca gactgccgct gcccgctcc ggtttcccc 1750
aggcatctag gaagacccag caccagtgac ctccagctgg gggtgggaag 1800
aaaaaaaactg gacactgcca tctgctgcct aggccctggag ggaagccaa 1850
ggctacttgg acctcaggac ctggaatctg agagggtggg tggcagaggg 1900
gagcagagcc atctgcacta ttgcataatc tgagccagag tttgggacca 1950
ggacctcctg cttttccata cttaactgtg gcctcagcat ggggttagggc 2000
tgggtgactg ggtctagccc ctgatccaa atctgtttac acatcaatct 2050
gcctcaactgc tgttctggc catccccata gccatgttta catgatttga 2100
tgtgcaatag ggtgggtag gggcagggaa aggactggc cagggcagggc 2150
tcgggagata gattgtctcc ctgcctctg gcccagcaga gcctaagcac 2200
tgtgctatcc tggaggggct ttggaccacc tcaaagacca aggggatagg 2250
gaggaggagg cttagccat cagcaataaa gttgatccca gggaaaaaaa 2300

<210> 138

<211> 489

<212> PRT

<213> Homo sapiens

<400> 138

Met Glu Ala Pro Asp Tyr Glu Val Leu Ser Val Arg Glu Gln Leu
1 5 10 15

Phe His Glu Arg Ile Arg Glu Cys Ile Ile Ser Thr Leu Leu Phe
20 25 30

Ala Thr Leu Tyr Ile Leu Cys His Ile Phe Leu Thr Arg Phe Lys
35 40 45

Lys Pro Ala Glu Phe Thr Thr Val Asp Asp Glu Asp Ala Thr Val
50 55 60

Asn Lys Ile Ala Leu Glu Leu Cys Thr Phe Thr Leu Ala Ile Ala
65 70 75

Leu Gly Ala Val Leu Leu Pro Phe Ser Ile Ile Ser Asn Glu
80 85 90

Val Leu Leu Ser Leu Pro Arg Asn Tyr Tyr Ile Gln Trp Leu Asn
95 100 105

Gly Ser Leu Ile His Gly Leu Trp Asn Leu Val Phe Leu Phe Pro
110 115 120

Asn Leu Ser Leu Ile Phe Leu Met Pro Phe Ala Tyr Phe Phe Thr

125	130	135
Glu Ser Glu Gly Phe Ala Gly Ser Arg Lys	Gly Val Leu Gly Arg	
140	145	150
Val Tyr Glu Thr Val Val Met Leu Met	Leu Leu Thr Leu Leu Val	
155	160	165
Leu Gly Met Val Trp Val Ala Ser Ala	Ile Val Asp Lys Asn Lys	
170	175	180
Ala Asn Arg Glu Ser Leu Tyr Asp Phe	Trp Glu Tyr Tyr Leu Pro	
185	190	195
Tyr Leu Tyr Ser Cys Ile Ser Phe Leu	Gly Val Leu Leu Leu	
200	205	210
Val Cys Thr Pro Leu Gly Leu Ala Arg	Met Phe Ser Val Thr Gly	
215	220	225
Lys Leu Leu Val Lys Pro Arg Leu Leu	Glu Asp Leu Glu Glu Gln	
230	235	240
Leu Tyr Cys Ser Ala Phe Glu Glu Ala	Ala Leu Thr Arg Arg Ile	
245	250	255
Cys Asn Pro Thr Ser Cys Trp Leu Pro	Leu Asp Met Glu Leu Leu	
260	265	270
His Arg Gln Val Leu Ala Leu Gln Thr	Gln Arg Val Leu Leu Glu	
275	280	285
Lys Arg Arg Lys Ala Ser Ala Trp Gln	Arg Asn Leu Gly Tyr Pro	
290	295	300
Leu Ala Met Leu Cys Leu Leu Val Leu	Thr Gly Leu Ser Val Leu	
305	310	315
Ile Val Ala Ile His Ile Leu Glu Leu	Leu Ile Asp Glu Ala Ala	
320	325	330
Met Pro Arg Gly Met Gln Gly Thr Ser	Leu Gly Gln Val Ser Phe	
335	340	345
Ser Lys Leu Gly Ser Phe Gly Ala Val	Ile Gln Val Val Leu Ile	
350	355	360
Phe Tyr Leu Met Val Ser Ser Val Val	Gly Phe Tyr Ser Ser Pro	
365	370	375
Leu Phe Arg Ser Leu Arg Pro Arg Trp	His Asp Thr Ala Met Thr	
380	385	390
Gln Ile Ile Gly Asn Cys Val Cys Leu	Leu Val Leu Ser Ser Ala	
395	400	405
Leu Pro Val Phe Ser Arg Thr Leu Gly	Leu Thr Arg Phe Asp Leu	
410	415	420
Leu Gly Asp Phe Gly Arg Phe Asn Trp	Leu Gly Asn Phe Tyr Ile	
425	430	435
Val Phe Leu Tyr Asn Ala Ala Phe Ala	Gly Leu Thr Thr Leu Cys	

440

445

450

Leu Val Lys Thr Phe Thr Ala Ala Val Arg Ala Glu Leu Ile Arg
455 460 465

Ala Phe Gly Leu Asp Arg Leu Pro Leu Pro Val Ser Gly Phe Pro
470 475 480

Gln Ala Ser Arg Lys Thr Gln His Gln
485

<210> 139

<211> 294

<212> DNA

<213> Homo sapiens

<220>

<221> unsure

<222> 53, 57

<223> unknown base

<400> 139

ggctgccgag ggaaggcccc ttgggttggc cttgggttgct tggcgccggc 50

ggnttcntcc ccgcgtcgcc tccccgggcc cagaggcacc tcggcttcag 100

tcatgctgag cagagtatgg aagcacctga ctacgaagtgc ctatccgtgc 150

gagaacagct attccacgag aggatccgcg agtgtattat atcaacactt 200

ctgtttgcaa cactgtacat cctctgccac atcttcctga cccgcttcaa 250

gaagcctgct gagttcacca cagtggatga tgaagatgcc accg 294

<210> 140

<211> 526

<212> DNA

<213> Homo sapiens

<220>

<221> unsure

<222> 197, 349

<223> unknown base

<400> 140

gaccgacctt aaagagtggg agcaaaggaa ggacagagcc ttttaaaacg 50

aggcggtggc gcctgccctt taagggcgcc gcttccggac gactgttatct 100

gagccccaga ctgccccgag tttctgtcg aggctgcgag gaaaggcccc 150

taggctgggt ctggtgcttg gcggcgccgg cttcctcccc gttgtcntcc 200

ccggggcccaag aggcacctcg gcttcagtca tgctgagcag agtatggaaag 250

cacctgacta cgaagtgcata tccgtgcgag aacagctatt ccacgagagg 300

atcccgcgagt gtattatatac aacacttctg tttgcaacac tgtacatcnt 350

ctgccacatc ttcctgaccc gcttcaagaa gcctgctgag ttccaccacag 400

tggatgatga agatgccacc gtcaacaaga ttgcgctcga gctgtgcacc 450

tttaccctgg caattgcctt gggtgctgtc ctgctctgc ccttctccat 500
catcagcaat gaggtgctgc actccc 526

<210> 141
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 141
gactgtatct gagccccaga ctgc 24

<210> 142
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 142
tcagcaatga ggtgctgctc 20

<210> 143
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 143
tgaggaagat gagggacagg ttgg 24

<210> 144
<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 144
tatggaagca cctgactacg aagtgctatc cgtgcgagaa cagctattcc 50

<210> 145
<211> 685
<212> DNA
<213> Homo sapiens

<400> 145
gatgtgctcc ttggagctgg tgtgcagtgt cctgactgt aagatcaagtc 50
caaacctgtt ttggaattga ggaaacttct cttttgatct cagcccttgg 100
tggtccaggt cttcatgctg ctgtgggtga tattactggc cctggctcct 150
gtcagtggac agtttgcaag gacacccagg cccattatcc tcctccagcc 200
tccatggacc acagtcttcc aaggagagag agtgaccctc acttgcaagg 250

gatttcgctt ctactcacca cagaaaacaa aatggtagcca tcggtagacct 300
gggaaagaaa tactaagaga aaccccagac aatatccttg aggttcagga 350
atctggagag tacagatgcc aggcccaggc ctccctctc agtagccctg 400
tgcacttgaa tttttttca gagatggat ttccatgc tgcccaggct 450
aatgttgaac tcctgggctc aagtgtatcg ctcacctagg cctctcaaag 500
cgctgggatt acagcttcgc tgatcctgca agctccactt tctgtgtttg 550
aaggagactc tgtggttctg aggtgccggg caaaggcgga agtaaacactg 600
aataatacta tttacaagaa tgataatgtc ctggcattcc ttaataaaaag 650
aactgacttc caaaaaaaaaaaaaaaa 685

<210> 146
<211> 124
<212> PRT
<213> Homo sapiens

<400> 146

Met	Leu	Leu	Trp	Val	Ile	Leu	Leu	Val	Leu	Ala	Pro	Val	Ser	Gly
1				5				10				15		
Gln	Phe	Ala	Arg	Thr	Pro	Arg	Pro	Ile	Ile	Phe	Leu	Gln	Pro	Pro
				20					25			30		
Trp	Thr	Thr	Val	Phe	Gln	Gly	Glu	Arg	Val	Thr	Leu	Thr	Cys	Lys
			35				40					45		
Gly	Phe	Arg	Phe	Tyr	Ser	Pro	Gln	Lys	Thr	Lys	Trp	Tyr	His	Arg
			50					55				60		
Tyr	Leu	Gly	Lys	Glu	Ile	Leu	Arg	Glu	Thr	Pro	Asp	Asn	Ile	Leu
			65					70				75		
Glu	Val	Gln	Glu	Ser	Gly	Glu	Tyr	Arg	Cys	Gln	Ala	Gln	Gly	Ser
			80					85				90		
Pro	Leu	Ser	Ser	Pro	Val	His	Leu	Asp	Phe	Ser	Ser	Glu	Met	Gly
			95					100				105		
Phe	Pro	His	Ala	Ala	Gln	Ala	Asn	Val	Glu	Leu	Leu	Gly	Ser	Ser
			110					115				120		
Asp	Leu	Leu	Thr											

<210> 147
<211> 1621
<212> DNA
<213> Homo sapiens

<400> 147

cagaagaggg ggcttagctag ctgtctctgc ggaccaggga gaccccccgcg 50
cccccccggt gtgaggcggc ctcacaggc cgggtggct ggcgagccga 100
cgcggcggcg gaggaggctg tgaggagtgt gtggAACAGG acccgggaca 150

DNA sequence

gaggaaccat ggctccgcag aacctgagca cctttgcct gttgctgcta 200
tacctcatcg gggcggtgat tgccggacga gatttctata agatcttggg 250
ggtcgcctcga agtgcctcta taaaggatat taaaaaggcc tataggaaac 300
tagccctgca gcttcatccc gaccggaacc ctgatgatcc acaagcccag 350
gagaattcc aggatctggg tgctgcttat gaggttctgt cagatagtga 400
gaaacggaaa cagtacgata cttatggtga agaaggatta aaagatggtc 450
atcagagctc ccatggagac atttttcac acttcttgg ggatttttgt 500
ttcatgtttg gaggaacccc tcgtcagcaa gacagaaata ttccaagagg 550
aagtgatatt attgttagatc tagaagtac tttggaagaa gtatatgcag 600
gaaattttgt ggaagtagtt agaaacaac ctgtggcaag gcaggctcct 650
ggcaaacgga agtcaattg tcggcaagag atgcggacca cccagctggg 700
ccctgggcgc ttccaaatga cccaggaggt ggtctgcgcac gaatgcccta 750
atgtcaaact agtgaatgaa gaacgaacgc tggaagtaga aatagagcct 800
gggtgagag acggcatgga gtacccttt attggagaag gtgagcctca 850
cgtggatggg gacgcctggag atttacggtt ccgaatcaaa gttgtcaagc 900
acccaatatt tgaaaggaga ggagatgatt tgtacacaaa tgtgacaatc 950
tcatttagtt agtcactggt tggcttgag atggatatta ctcacttgga 1000
tggtcacaag gtacatattt cccggataa gatcaccagg ccaggagcga 1050
agctatggaa gaaaggggaa gggctccccca actttgacaa caacaatatc 1100
aagggtcttt tgataatcac ttttgatgtg gattttccaa aagaacagtt 1150
aacagagggaa gcgagagaag gtatcaaaca gctactgaaa caagggtcag 1200
tgcagaaggt atacaatgga ctgcaaggat attgagagtg aataaaattg 1250
gactttgttt aaaataagtg aataagcgat atttattatc tgcaagggttt 1300
ttttgtgtgt gttttgttt ttatccaa tatgcaagtt aggcttaatt 1350
tttttatcta atgatcatca tgaaatgaat aagagggctt aagaatttgt 1400
ccatttgcat tcggaaaaga atgaccagca aaaggttac taataccct 1450
ccctttgggg atttaatgtc tggtgctgcc gcctgagttt caagaattaa 1500
agctgcaaga ggactccagg agcaaaagaa acacaatata gagggttgga 1550
gttggtagca atttcattca aaatgccaac tggagaagtc tgtttttaaa 1600
tacattttgt tgttatccaa a 1621

<210> 148
<211> 358
<212> PRT

<213> Homo sapiens

<400> 148

Met	Ala	Pro	Gln	Asn	Leu	Ser	Thr	Phe	Cys	Leu	Leu	Leu	Leu	Tyr
1				5					10					15
Leu	Ile	Gly	Ala	Val	Ile	Ala	Gly	Arg	Asp	Phe	Tyr	Lys	Ile	Leu
		20							25					30
Gly	Val	Pro	Arg	Ser	Ala	Ser	Ile	Lys	Asp	Ile	Lys	Lys	Ala	Tyr
				35					40					45
Arg	Lys	Leu	Ala	Leu	Gln	Leu	His	Pro	Asp	Arg	Asn	Pro	Asp	Asp
					50				55					60
Pro	Gln	Ala	Gln	Glu	Lys	Phe	Gln	Asp	Leu	Gly	Ala	Ala	Tyr	Glu
					65				70					75
Val	Leu	Ser	Asp	Ser	Glu	Lys	Arg	Lys	Gln	Tyr	Asp	Thr	Tyr	Gly
					80				85					90
Glu	Glu	Gly	Leu	Lys	Asp	Gly	His	Gln	Ser	Ser	His	Gly	Asp	Ile
					95				100					105
Phe	Ser	His	Phe	Phe	Gly	Asp	Phe	Gly	Phe	Met	Phe	Gly	Gly	Thr
					110				115					120
Pro	Arg	Gln	Gln	Asp	Arg	Asn	Ile	Pro	Arg	Gly	Ser	Asp	Ile	Ile
					125				130					135
Val	Asp	Leu	Glu	Val	Thr	Leu	Glu	Glu	Val	Tyr	Ala	Gly	Asn	Phe
					140				145					150
Val	Glu	Val	Val	Arg	Asn	Lys	Pro	Val	Ala	Arg	Gln	Ala	Pro	Gly
					155				160					165
Lys	Arg	Lys	Cys	Asn	Cys	Arg	Gln	Glu	Met	Arg	Thr	Thr	Gln	Leu
					170				175					180
Gly	Pro	Gly	Arg	Phe	Gln	Met	Thr	Gln	Glu	Val	Val	Cys	Asp	Glu
					185				190					195
Cys	Pro	Asn	Val	Lys	Leu	Val	Asn	Glu	Glu	Arg	Thr	Leu	Glu	Val
					200				205					210
Glu	Ile	Glu	Pro	Gly	Val	Arg	Asp	Gly	Met	Glu	Tyr	Pro	Phe	Ile
					215				220					225
Gly	Glu	Gly	Glu	Pro	His	Val	Asp	Gly	Glu	Pro	Gly	Asp	Leu	Arg
					230				235					240
Phe	Arg	Ile	Lys	Val	Val	Lys	His	Pro	Ile	Phe	Glu	Arg	Arg	Gly
					245				250					255
Asp	Asp	Leu	Tyr	Thr	Asn	Val	Thr	Ile	Ser	Leu	Val	Glu	Ser	Leu
					260				265					270
Val	Gly	Phe	Glu	Met	Asp	Ile	Thr	His	Leu	Asp	Gly	His	Lys	Val
					275				280					285
His	Ile	Ser	Arg	Asp	Lys	Ile	Thr	Arg	Pro	Gly	Ala	Lys	Leu	Trp
					290				295					300

Lys Lys Gly Glu Gly Leu Pro Asn Phe Asp Asn Asn Asn Ile Lys
305 310 315

Gly Ser Leu Ile Ile Thr Phe Asp Val Asp Phe Pro Lys Glu Gln
320 325 330

Leu Thr Glu Glu Ala Arg Glu Gly Ile Lys Gln Leu Leu Lys Gln
335 340 345

Gly Ser Val Gln Lys Val Tyr Asn Gly Leu Gln Gly Tyr
350 355

<210> 149
<211> 509
<212> DNA
<213> Homo sapiens

<220>
<221> unsure
<222> 34, 52, 134, 142, 155, 158, 196, 217, 228, 272, 347, 410, 445,
482
<223> unknown base

<400> 149
tgggaccagg gaaccccgaa ccccccgtg gagngcctaa caggccgtg 50
gntgcgaccc aagcggcgaa cggaggaggt tttgaggatt tttggaacag 100
gaccggaca gaggaaccat gttccgcag aacntgagca cttttgcct 150
gttgnntgta tacttcatcg gggcggtgat tgccggacga gattttata 200
agattttggg gtgcctngaa gtgcctnta taaaaggatataaaaaaggcc 250
tatagggaaac tagccctgca gntttatccc gaccggaaacc ctgatgatcc 300
acaagccccag gagaaattcc aggatttggg tgctgcttat gaggtntgt 350
cagatagtga gaaacggaaa cagtacgata attatggtga agaaggatta 400
aaagatggtn atcagagctc ccatggagac atttttcac acttntttgg 450
ggattttgggt ttcatgtttg gaggaacccc tngtcagcaa gacagaaata 500
ttccaagag 509

<210> 150
<211> 1532
<212> DNA
<213> Homo sapiens

<400> 150
ggcacgaggc ggccgggcag tcgcggatg cgcccgagg ccacagcctg 50
aggccctcag gtctctgcag gtgtcgtgaa ggaaccttagc acctgccatc 100
ctcttccca atttgcact tccagcagct ttagcccatg aggaggatgt 150
gaccggact gagtcaggag ccctctggaa gcatggagac tgtggtgatt 200
gttgcctatag gtgtgctggc caccatctt ctggcttcgt ttgcagcctt 250
ggtgctgggt tgcaggcagc gctactgccc gccgcgagac ctgctgcagc 300

gctatgattc taagccatt gtggaccta ttgggccat ggagaccag 350
tctgagccct ctgagttaga actggacgat gtcgttatca ccaacccca 400
cattgaggcc attctggaga atgaagactg gatcgaagat gcctcgggc 450
tcatgtccca ctgcattgcc atcttgaaga tttgtcacac tctgacagag 500
aagcttgttgc ccatgacaat gggctctggg gccaaagatga agacttcagc 550
cagtgtcagc gacatcatttgg tggggccaa gcggatcagc cccagggtgg 600
atgatgttgttgc aagtcgatg taccctccgt tggaccccaa actcctggac 650
gcacggacga ctgccttgct cctgtctgtc agtcacctgg tgctggac 700
aaggaatgcc tgccatctga cgggaggcct ggactggatt gaccagtctc 750
tgtcggctgc tgaggagcat ttggaagtcc ttcgagaagc agccctagct 800
tctgagccag ataaaggcct cccaggccct gaaggcttcc tgcaggagca 850
gtctgcaatt tagtgcctac aggccagcag ctagccatga agggccctgc 900
cgccatccct gnatggctca gcttagcatttgc ctacttttc ctatagagtt 950
agttgttctc cacggcttggg gagttcagct gtgtgtgcatt agtaaagcag 1000
gagatcccccg tcagtttatg cctcttttc agttgcaaac tgtggctgg 1050
gagtggcagt ctaatactac agttaggggaa gatgccatttgc actctctgca 1100
agaggagtat tgaaaactgg tggactgtca gctttatita gctcacctag 1150
tgaaaaatggcc tctctcgatc ggtcagaatgt tggtggcaatt 1200
taaaattaga atttctggcc tctctcgatc ggtcagaatgt tggtggcaatt 1250
ctgatctgca ttttcagaag aggacaatca attgaaaacta agtaggggaa 1300
tcttcttttgc gcaagacttg tactctctca cctggcctgt ttcattttatt 1350
tgtattatct gcctggccc tgaggcgtct gggctctcc tctccctgc 1400
aggtttgggt ttgaagctga ggaactacaa agttgatgtat ttctttttta 1450
tctttatgcc tgcaatttttgc cctagctacc actaggtggaa tagtaaattt 1500
atacttatgt ttccctcaaa aaaaaaaaaaa aa 1532

<210> 151
<211> 226
<212> PRT
<213> Homo sapiens

<400> 151
Met Glu Thr Val Val Ile Val Ala Ile Gly Val Leu Ala Thr Ile
1 5 10 15
Phe Leu Ala Ser Phe Ala Ala Leu Val Leu Val Cys Arg Gln Arg
20 25 30
Tyr Cys Arg Pro Arg Asp Leu Leu Gln Arg Tyr Asp Ser Lys Pro

35	40	45
Ile Val Asp Leu Ile Gly Ala Met Glu Thr Gln Ser Glu Pro Ser		
50	55	60
Glu Leu Glu Leu Asp Asp Val Val Ile Thr Asn Pro His Ile Glu		
65	70	75
Ala Ile Leu Glu Asn Glu Asp Trp Ile Glu Asp Ala Ser Gly Leu		
80	85	90
Met Ser His Cys Ile Ala Ile Leu Lys Ile Cys His Thr Leu Thr		
95	100	105
Glu Lys Leu Val Ala Met Thr Met Gly Ser Gly Ala Lys Met Lys		
110	115	120
Thr Ser Ala Ser Val Ser Asp Ile Ile Val Val Ala Lys Arg Ile		
125	130	135
Ser Pro Arg Val Asp Asp Val Val Lys Ser Met Tyr Pro Pro Leu		
140	145	150
Asp Pro Lys Leu Leu Asp Ala Arg Thr Thr Ala Leu Leu Leu Ser		
155	160	165
Val Ser His Leu Val Leu Val Thr Arg Asn Ala Cys His Leu Thr		
170	175	180
Gly Gly Leu Asp Trp Ile Asp Gln Ser Leu Ser Ala Ala Glu Glu		
185	190	195
His Leu Glu Val Leu Arg Glu Ala Ala Leu Ala Ser Glu Pro Asp		
200	205	210
Lys Gly Leu Pro Gly Pro Glu Gly Phe Leu Gln Glu Gln Ser Ala		
215	220	225

Ile

<210> 152
<211> 1027
<212> DNA
<213> Homo sapiens

<220>
<221> unsure
<222> 1017, 1020
<223> unknown base

<400> 152
gcttcatttc tcccgactca gcttcccacc ctgggctttc cgaggtgctt 50
tcggccgtgt cccccaccact gcagccatga tctccttaac ggacacgcag 100
aaaattggaa tgggattaac aggatttggaa gtgttttcc tgttcttgg 150
aatgattctc tttttgaca aagcactact ggctatttggaa aatgttttat 200
tttgtagccgg cttggctttt gtaattgggtt tagaaagaac attcagattc 250
ttcttccaaa aacataaaat gaaagctaca ggttttttc tgggtggtgt 300

atttgtagtc cttattgggtt ggcctttgat aggcataatc ttcgaaattt 350
atggattttt tctcttggttcc agggggcttct ttccctgtcggt tggtggcttt 400
attagaagag tgccagtcct tggatccctc ctaaatttac ctgaaatttag 450
atcatttgcata gataaaggaa gagaaagcaa caaatatggta taacaacaag 500
tgaatttgcata gactcatttca aaatattgtt ttatttataa agtcatttgcata 550
agaatattca gcacaaaattt aaattacatg aaatagcttgcata taatgttctt 600
tacaggagtt taaaacgttat agcctacaaa gtaccagcag caaatttagca 650
aagaaggcgt gaaaacaggc ttctactcaa gtgaactaag aagaagttag 700
caagcaaact gagagaggtaa aatccatgt taatgtatgtt taagaaactc 750
ttgaaggcta tttgtgttgtt tttccacaa tgtgcgaaac tcagccatcc 800
tttagagaact gtgggtgcctg tttctttct ttttattttg aaggctcagg 850
agcatccata ggcatttgct ttttagaagt gtccactgca atggcaaaaa 900
tatttccagt tgcactgttat ctctggaaat gatgcattgaa ttgcatttgcatt 950
ttgtgtcatt ttaaagtattt aaaaaccaagg aaaccccaat tttgtatgttat 1000
ggattacttt ttttngcn cagggcc 1027

<210> 153

<211> 138

<212> PRT

<213> Homo sapiens

<220>

<221> N-myristoylation Sites

<222> 11-16, 51-56 and 116-121

<223> N-myristoylation Sites.

<220>

<221> Transmembrane domains

<222> 12-30, 33-52, 69-89 and 93-109

<223> Transmembrane domains

<220>

<221> Aminoacyl-transfer RNA Synthetases.

<222> 49-59

<223> Aminoacyl-transfer RNA synthetases class-II protein.

<400> 153

Met	Ile	Ser	Leu	Thr	Asp	Thr	Gln	Lys	Ile	Gly	Met	Gly	Leu	Thr
1				5					10				15	

Gly	Phe	Gly	Val	Phe	Phe	Leu	Phe	Phe	Gly	Met	Ile	Leu	Phe	Phe
			20						25				30	

Asp	Lys	Ala	Leu	Leu	Ala	Ile	Gly	Asn	Val	Leu	Phe	Val	Ala	Gly
				35				40					45	

Leu	Ala	Phe	Val	Ile	Gly	Leu	Glu	Arg	Thr	Phe	Arg	Phe	Phe	Phe
			50					55					60	

Gln Lys His Lys Met Lys Ala Thr Gly Phe Phe Leu Gly Gly Val
65 70 75

Phe Val Val Leu Ile Gly Trp Pro Leu Ile Gly Met Ile Phe Glu
80 85 90

Ile Tyr Gly Phe Phe Leu Leu Phe Arg Gly Phe Phe Pro Val Val
95 100 105

Val Gly Phe Ile Arg Arg Val Pro Val Leu Gly Ser Leu Leu Asn
110 115 120

Leu Pro Gly Ile Arg Ser Phe Val Asp Lys Val Gly Glu Ser Asn
125 130 135

Asn Met Val

<210> 154
<211> 405
<212> DNA
<213> Homo sapiens

<220>
<221> unsure
<222> 66
<223> unknown base

<400> 154
gaagacgtgg cggctctcgc ctgggctgtt tcccggttc atttctcccg 50
actcagcttc ccaccntggg ctttccgagg tgctttcgcc gctgtccccca 100
ccactgcagc catgatctcc ttaacggaca cgcaaaaaat tggaatggga 150
ttaaccggat ttggagtgtt tttcctgttc tttggaatga ttctcttttt 200
tgacaaagca ctactggcta ttggaaatgt tttatttgta gccggcttgg 250
cttttgtaat tggtttagaa agaacattca gattcttctt ccaaaaacat 300
aaaatgaaag ctacaggttt tttctgggt ggtgtatttg tagtccttat 350
tggttggcct ttgataggca tgatcttcga aatttatgga tttttctct 400
tgttc 405

<210> 155
<211> 1781
<212> DNA
<213> Homo sapiens

<400> 155
ggcacgaggc tgaacccagc cggctccatc tcagcttctg gtttctaagt 50
ccatgtgccca aaggctgccca ggaaggagac gccttcctga gtccctggatc 100
tttcttcctt ctggaaatct ttgactgtgg gtagttattt atttctgaat 150
aagagcgtcc acgcatcatg gacctcgcgg gactgctgaa gtctcagttc 200
ctgtgccacc tggtcttctg ctacgtctt attgcctcag ggctaattcat 250

caacaccatt cagctttca ctctcctcct ctggccatt aacaaggcgc 300
tcttcggaa gatcaactgc agactgtctt attgcacatc aagccagctg 350
gtgatgctgc tggagtggtg gtcgggcacg gaatgcacca tcttcacgga 400
cccgccgcgcc tacctaagt atgggaagga aaatgcacatc gtggttctca 450
accacaagtt tgaaatttgcac ttctgtgtg gctggagcct gtccgaacgc 500
tttgggctgt tagggggctc caaggtcctg gccaaagaaag agctggccta 550
tgtcccaatt atcggcttgcga tgtggtaactt caccgagatg gtcttctgtt 600
cgcgcaagtgg gtagcaggat cgcaagacgg ttgcacccag tttgcagcac 650
ctccggact accccgagaa gtatTTTTC ctgattcaact gtgagggcac 700
acggttcactc gagaagaagc atgagatcag catgcaggtg gcccgggcca 750
aggggctgcc tcgcctcaag catcacctgt tgccacgaac caagggcttc 800
gccatcaccg tgaggagctt gagaaatgta gttcagctg tatatgactg 850
tacactcaat ttccaaaata atgaaaatcc aacactgctg ggagtcccaa 900
acggaaagaa ataccatgca gatttgtatg ttaggaggat cccactggaa 950
gacatccctg aagacgatga cgagtgcctg gcctggctgc acaagctcta 1000
ccaggagaag gatgcctttc aggaggagta ctacaggacg ggcaccccttc 1050
cagagacgcc catggtgcgc cccggcgcc cctggaccct cgtgaactgg 1100
ctgttttggc cctcgctggt gctctaccct ttcttccagt tcctggtcag 1150
catgatcagg agcgggtctt ccctgacgct ggccagcttc atcctcgct 1200
tctttgtggc ctccgtggga gttcgatgga tgattgggtg gacggaaatt 1250
gacaagggtctg ctgcctacgg caactctgac agcaaggcaga aactgaatga 1300
ctgactcagg gaggtgtcac catccgaagg gaaccttggg gaactggtgg 1350
cctctgcata tcctcccttag tgggacacgg tgacaaaggc tgggtgagcc 1400
cctgctggc acggcgaaag tcacgaccc tcacgaccagg gagtctggc 1450
tcaaggccgg atggggagga agatgtttttaatctttt ttccccatgt 1500
gcttttagtgg gctttgggtt tcttttggc cgagtgtgtg tgagaatggc 1550
tgtgtggta gtgtgaactt tggtctgtga tcatagaaag ggtatTTTGA 1600
gctgcagggg agggcagggc tggggaccga aggggacaag ttcccccttc 1650
atcctttggc gctgagttt ctgttaaccct tgggtgccag agataaagtg 1700
aaaagtgcctt taggtgagat gactaaatta tgcctccaag aaaaaaaaaat 1750
taaagtgcctt ttctgggtca aaaaaaaaaa a 1781

<210> 156

<211> 378
<212> PRT
<213> Homo sapiens

<400> 156
Met Asp Leu Ala Gly Leu Leu Lys Ser Gln Phe Leu Cys His Leu
1 5 10 15
Val Phe Cys Tyr Val Phe Ile Ala Ser Gly Leu Ile Ile Asn Thr
20 25 30
Ile Gln Leu Phe Thr Leu Leu Trp Pro Ile Asn Lys Gln Leu
35 40 45
Phe Arg Lys Ile Asn Cys Arg Leu Ser Tyr Cys Ile Ser Ser Gln
50 55 60
Leu Val Met Leu Leu Glu Trp Trp Ser Gly Thr Glu Cys Thr Ile
65 70 75
Phe Thr Asp Pro Arg Ala Tyr Leu Lys Tyr Gly Lys Glu Asn Ala
80 85 90
Ile Val Val Leu Asn His Lys Phe Glu Ile Asp Phe Leu Cys Gly
95 100 105
Trp Ser Leu Ser Glu Arg Phe Gly Leu Leu Gly Gly Ser Lys Val
110 115 120
Leu Ala Lys Lys Glu Leu Ala Tyr Val Pro Ile Ile Gly Trp Met
125 130 135
Trp Tyr Phe Thr Glu Met Val Phe Cys Ser Arg Lys Trp Glu Gln
140 145 150
Asp Arg Lys Thr Val Ala Thr Ser Leu Gln His Leu Arg Asp Tyr
155 160 165
Pro Glu Lys Tyr Phe Phe Leu Ile His Cys Glu Gly Thr Arg Phe
170 175 180
Thr Glu Lys Lys His Glu Ile Ser Met Gln Val Ala Arg Ala Lys
185 190 195
Gly Leu Pro Arg Leu Lys His His Leu Leu Pro Arg Thr Lys Gly
200 205 210
Phe Ala Ile Thr Val Arg Ser Leu Arg Asn Val Val Ser Ala Val
215 220 225
Tyr Asp Cys Thr Leu Asn Phe Arg Asn Asn Glu Asn Pro Thr Leu
230 235 240
Leu Gly Val Leu Asn Gly Lys Lys Tyr His Ala Asp Leu Tyr Val
245 250 255
Arg Arg Ile Pro Leu Glu Asp Ile Pro Glu Asp Asp Asp Glu Cys
260 265 270
Ser Ala Trp Leu His Lys Leu Tyr Gln Glu Lys Asp Ala Phe Gln
275 280 285
Glu Glu Tyr Tyr Arg Thr Gly Thr Phe Pro Glu Thr Pro Met Val

290	295	300
Pro Pro Arg Arg Pro Trp Thr Leu Val Asn Trp Leu Phe Trp Ala		
305	310	315
Ser Leu Val Leu Tyr Pro Phe Phe Gln Phe Leu Val Ser Met Ile		
320	325	330
Arg Ser Gly Ser Ser Leu Thr Leu Ala Ser Phe Ile Leu Val Phe		
335	340	345
Phe Val Ala Ser Val Gly Val Arg Trp Met Ile Gly Val Thr Glu		
350	355	360
Ile Asp Lys Gly Ser Ala Tyr Gly Asn Ser Asp Ser Lys Gln Lys		
365	370	375

Leu Asn Asp

<210> 157
<211> 1849
<212> DNA
<213> Homo sapiens

<400> 157
ctgaggcgcc ggttagcatgg agggggagag tacgtcggcg gtgctctcg 50
gctttgtgct cggcgcaactc gcttccagc acctcaacac ggactcggac 100
acggaagggtt ttcttcttgg ggaagtaaaa ggtgaagcca agaacagcat 150
tactgattcc caaatggatg atgttgaagt tgtttataca attgacattc 200
agaaatatata tccatgctat cagctttta gctttataa ttcttcaggc 250
gaagtaaatg agcaagcaat gaagaaaata ttatcaaatg tcaaaaagaa 300
tgtggtaggt tggtacaaat tccgtcgtca ttcagatcag atcatgacgt 350
ttagagagag gctgcttcac aaaaacttgc aggagcattt ttcaaaaccaa 400
gaccttgttt ttctgctatt aacaccaatg ataataacag aaagctgctc 450
tactcatcga ctggaacatt ccttatataa acctcaaaaa ggacttttc 500
acagggtacc ttttagtggtt gccaatctgg gcatgtctga acaactgggt 550
tataaaaactg tatcaggttc ctgtatgtcc actggttta gccgagcagt 600
acaaacacac agctctaaat ttttgaaga agatggatcc ttaaaggagg 650
tacataagat aaatgaaatg tatgcttcat tacaagagga attaaagagt 700
atatgcaaaa aagtggaaaga cagtgaacaa gcagtagata aactagtaaa 750
ggatgtaaac agataaaac gagaaattga gaaaaggaga ggagcacaga 800
ttcaggcagc aagagagaag aacatccaaa aagaccctca ggagaacatt 850
tttcttgc aggcattacg gacctttttt ccaaattctg aatttcttca 900
ttcatgtgtt atgtcttaa aaaatagaca tgtttctaaa agtagctgta 950

actacaacca ccatctcgat gtagtagaca atctgaccc tt 1000
cacactgaca ttccctgaagc tagtccagct agtacaccac aaatcattaa 1050
gcataaaagcc ttagacttag atgacagatg gcaattcaag agatctcggt 1100
tgtagatac acaagacaaa cgatctaaag caaatactgg tagtagtaac 1150
caagataaag catccaaaat gagcagccca gaaacagatg aagaaattga 1200
aaagatgaag ggttttggtg aatattcacg gtctcctaca ttttgatcct 1250
ttaaacctta caaggagatt tttttattt gctgatgggt aaagccaaac 1300
atttctattt ttttactat gttgagctac ttgcagtaag ttcatttgg 1350
tttactatgt tcacctgttt gcagtaatac acagataact cttagtgcat 1400
ttacttcaca aagtactttt tcaaacatca gatgctttt tttccaaacc 1450
ttttttcac ct当地actaa gttgttgggg ggaaggctta cacagacaca 1500
tc当地tagaa ttggaaaagt gagaccaggc acagtggtc acacctgtaa 1550
tcccagcact taggaagac aagtcaggag gattgattga agcttaggagt 1600
tagagaccag cctggcaac gtattgagac catgtctatt aaaaaataaa 1650
atggaaaagc aagaatagcc ttat当地caa aatatggaaa gaaatttata 1700
tgaaaattt tctgagtc当地 taaaatttctc ct当地agtgtt acttttttag 1750
aagtacatta tggctagagt tgccagataa aatgctggat atcatgcaat 1800
aaatttgcaa aacatcatct aaaatttaaa aaaaaaaaaa aaaaaaaaaa 1849

<210> 158

<211> 409

<212> PRT

<213> Homo sapiens

<400> 158

Met Glu Gly Glu Ser Thr Ser Ala Val Leu Ser Gly Phe Val Leu
1 5 10 15

Gly Ala Leu Ala Phe Gln His Leu Asn Thr Asp Ser Asp Thr Glu
20 25 30

Gly Phe Leu Leu Gly Glu Val Lys Gly Glu Ala Lys Asn Ser Ile
35 40 45

Thr Asp Ser Gln Met Asp Asp Val Glu Val Val Tyr Thr Ile Asp
50 55 60

Ile Gln Lys Tyr Ile Pro Cys Tyr Gln Leu Phe Ser Phe Tyr Asn
65 70 75

Ser Ser Gly Glu Val Asn Glu Gln Ala Leu Lys Lys Ile Leu Ser
80 85 90

Asn Val Lys Lys Asn Val Val Gly Trp Tyr Lys Phe Arg Arg His
95 100 105

Ser Asp Gln Ile Met Thr Phe Arg Glu Arg Leu Leu His Lys Asn
 110 115 120
 Leu Gln Glu His Phe Ser Asn Gln Asp Leu Val Phe Leu Leu Leu
 125 130 135
 Thr Pro Ser Ile Ile Thr Glu Ser Cys Ser Thr His Arg Leu Glu
 140 145 150
 His Ser Leu Tyr Lys Pro Gln Lys Gly Leu Phe His Arg Val Pro
 155 160 165
 Leu Val Val Ala Asn Leu Gly Met Ser Glu Gln Leu Gly Tyr Lys
 170 175 180
 Thr Val Ser Gly Ser Cys Met Ser Thr Gly Phe Ser Arg Ala Val
 185 190 195
 Gln Thr His Ser Ser Lys Phe Phe Glu Glu Asp Gly Ser Leu Lys
 200 205 210
 Glu Val His Lys Ile Asn Glu Met Tyr Ala Ser Leu Gln Glu Glu
 215 220 225
 Leu Lys Ser Ile Cys Lys Lys Val Glu Asp Ser Glu Gln Ala Val
 230 235 240
 Asp Lys Leu Val Lys Asp Val Asn Arg Leu Lys Arg Glu Ile Glu
 245 250 255
 Lys Arg Arg Gly Ala Gln Ile Gln Ala Ala Arg Glu Lys Asn Ile
 260 265 270
 Gln Lys Asp Pro Gln Glu Asn Ile Phe Leu Cys Gln Ala Leu Arg
 275 280 285
 Thr Phe Phe Pro Asn Ser Glu Phe Leu His Ser Cys Val Met Ser
 290 295 300
 Leu Lys Asn Arg His Val Ser Lys Ser Ser Cys Asn Tyr Asn His
 305 310 315
 His Leu Asp Val Val Asp Asn Leu Thr Leu Met Val Glu His Thr
 320 325 330
 Asp Ile Pro Glu Ala Ser Pro Ala Ser Thr Pro Gln Ile Ile Lys
 335 340 345
 His Lys Ala Leu Asp Leu Asp Asp Arg Trp Gln Phe Lys Arg Ser
 350 355 360
 Arg Leu Leu Asp Thr Gln Asp Lys Arg Ser Lys Ala Asn Thr Gly
 365 370 375
 Ser Ser Asn Gln Asp Lys Ala Ser Lys Met Ser Ser Pro Glu Thr
 380 385 390
 Asp Glu Glu Ile Glu Lys Met Lys Gly Phe Gly Glu Tyr Ser Arg
 395 400 405
 Ser Pro Thr Phe

<210> 159
<211> 2651
<212> DNA
<213> Homo sapiens

<400> 159
gacacagccg cgccggcggag ggcagagtca gccgagccga gtccagccgg 50
acgagcggac cagcgccagg cagcccaagc agcgcgcagc gaacgcccgc 100
cgccgccccac accctctgcg gtcccccgcgg cgcctgccac cttccctcc 150
ttccccgcgt ccccgccctcg ccggccagtc agcttgccgg gttcgctgcc 200
ccgcgaaacc ccgaggtcac cagccgcgc ctctgcttcc ctggggccgc 250
cgccgcctcc acgccttcct tctccctgg cccggcgcct ggcaccgggg 300
accgttgccct gacgcgaggc ccagctctac ttttcgcctcc gcgtctctc 350
cgccctgctcg cctcttccac caactccaac tccttctccc tccagctcca 400
ctcgctagtc cccgactccg ccagccctcg gcccgcgtgcc gtagcgccgc 450
ttcccgtccg gtcccaaagg tgggaacgcg tccgccccgg cccgcaccat 500
ggcacggttc ggcttgcccg cgcttctctg caccctggca gtgctcagcg 550
ccgcgctgct ggctgccgag ctcaagtgcg aaagttgctc ggaagtgcga 600
cgtcttacg tgtccaaagg cttcaacaag aacgatgccc ccctccacga 650
gtcaacggt gatcattga agatctgtcc ccagggttct acctgctgct 700
ctcaagagat ggaggagaag tacagcctgc aaagtaaaga tgatttcaaa 750
agtgtggtca gcaaacagtg caatcatttgc caagctgtct ttgcttcacg 800
ttacaagaag tttgatgaat tcttcaaaga actacttgcgaa aatgcagaga 850
aatccctgaa tgatatgttt gtgaagacat atggccattt atacatgcaa 900
aattctgagc tatttaaaga tctcttcgtt gagttgaaac gttactacgt 950
gttggaaat gtgaacctgg aagaaatgtt aaatgacttc tgggctcgcc 1000
tcctggagcg gatgttccgc ctgggtact cccagttacca ctttacagat 1050
gagtatctgg aatgtgtgag caagtatacg gagcagctga agcccttcgg 1100
agatgtccct cgcaaattga agctccaggt tactcgtgt tttgttagcag 1150
cccgtacttt cgctcaaggc ttagcggttg cgggagatgt cgtgagcaag 1200
gtctccgtgg taaacccac agcccagtgt acccatgccc tggtaagat 1250
gatctactgc tcccactgcc ggggtctcgactgtgaag ccatgttaca 1300
actactgctc aaacatcatg agaggctgtt tggccaacca aggggatctc 1350
gattttgaat ggaacaattt catagatgtt atgctgatgg tggcagagag 1400
gctagagggc ctttcaaca ttgaatcggt catggatccc atcgatgtga 1450

agatttctga tgcttattatg aacatgcagg ataatagtgt tcaagtgtct 1500
cagaagggtt tccagggatg tggacccccc aagccccctcc cagctggacg 1550
aatttcttgt tccatctctg aaagtgcctt cagtgcgc ttcagaccac 1600
atcaccccgaa ggaacgccc accacagcag ctggcaactag tttggaccga 1650
ctggttactg atgtcaagga gaaactgaaa cagggcaaga aattctggtc 1700
ctcccttcccg agcaacgttt gcaacgatga gaggatggct gcaggaaacg 1750
gcaatgagga tgactgttgg aatggaaag gcaaaagcag gtacctgttt 1800
gcagtgcacag gaaatggatt agccaaccag ggcaacaacc cagaggtcca 1850
ggttgacacc agcaaaccag acatactgat cttcgtcaa atcatggctc 1900
ttcgagtgtat gaccagcaag atgaagaatg catacaatgg gaacgacgtg 1950
gacttcttgc atatcagtga tgaaagttagt ggagaaggaa gtggaaagtgg 2000
ctgtgagttat cagcagtgcc cttagagtt tgactacaat gccactgacc 2050
atgctggaa gagtgccaat gagaaagccg acagtgtgg tgtccgtcct 2100
ggggcacagg cttacccctt cactgtcttc tgcatcttgc ttctggttat 2150
gcagagagag tggagataat tctcaaactc tgagaaaaag tgttcatcaa 2200
aaagttaaaa ggcaccagtt atcactttt taccatccta gtgactttgc 2250
tttttaatg aatggacaac aatgtacagt ttttactatg tggccactgg 2300
tttaagaagt gctgactttg ttttctcatt cagttttggg aggaaaaaggg 2350
actgtgcatt gagttggcct ctgctccccc aaaccatgtt aaacgtggct 2400
aacagtgttagt gtacagaact atagtttagtt gtgcattgt gattttatca 2450
ctctattatt tgtttgtatg ttttttctc atttcgtttg tgggtttttt 2500
tttccaaactg tgatctcgcc ttgtttctta caagcaaacc agggccctt 2550
cttggcactt aacatgtacg tatttctgaa atattaaata gctgtacaga 2600
agcaggtttt atttatcatg ttatcttatt aaaagaaaaa gccccaaaaag 2650
c 2651

<210> 160
<211> 556
<212> PRT
<213> Homo sapiens

<400> 160
Met Ala Arg Phe Gly Leu Pro Ala Leu Leu Cys Thr Leu Ala Val
1 5 10 15
Leu Ser Ala Ala Leu Leu Ala Ala Glu Leu Lys Ser Lys Ser Cys
20 25 30
Ser Glu Val Arg Arg Leu Tyr Val Ser Lys Gly Phe Asn Lys Asn

35	40	45
Asp Ala Pro Leu His Glu Ile Asn Gly Asp His		
50	55	60
Leu Lys Ile Cys		
Pro Gln Gly Ser Thr Cys Cys Ser Gln Glu Met	Glu	Glu
65	70	75
Lys Tyr		
Ser Leu Gln Ser Lys Asp Asp Phe Lys Ser Val	Val	Val
80	85	90
Ser Gln		
Cys Asn His Leu Gln Ala Val Phe Ala Ser Arg	Tyr	Lys
95	100	Phe
Asp Tyr Lys		
Asp Glu Phe Phe Lys Glu Leu Leu Glu Asn Ala	Glu	Lys
110	115	Ser Leu
120		
Asn Asp Met Phe Val Lys Thr Tyr Gly His Leu	Tyr	Met Gln
125	130	Asn
Asn		
Ser Glu Leu Phe Lys Asp Leu Phe Val Glu Leu	Lys	Arg Tyr
140	145	Tyr
150		
Val Val Gly Asn Val Asn Leu Glu Glu Met Leu	Asn Asp	Phe Trp
155	160	165
Asp Trp		
Ala Arg Leu Leu Glu Arg Met Phe Arg Leu Val	Asn Ser	Gln Tyr
170	175	180
Ala		
His Phe Thr Asp Glu Tyr Leu Glu Cys Val Ser	Lys Tyr	Thr Glu
185	190	195
Thr Glu		
Gln Leu Lys Pro Phe Gly Asp Val Pro Arg Lys	Leu Lys	Leu Gln
200	205	210
Leu		
Val Thr Arg Ala Phe Val Ala Ala Arg Thr Phe	Ala Gln	Gly Leu
215	220	225
Ala		
Ala Val Ala Gly Asp Val Val Ser Lys Val Ser	Val Val Asn	Pro
230	235	240
Pro		
Thr Ala Gln Cys Thr His Ala Leu Leu Lys Met	Ile Tyr	Cys Ser
245	250	255
Ile		
His Cys Arg Gly Leu Val Thr Val Lys Pro Cys	Tyr Asn Tyr	Cys
260	265	270
Cys		
Ser Asn Ile Met Arg Gly Cys Leu Ala Asn Gln	Gly Asp	Leu Asp
275	280	285
Asp		
Phe Glu Trp Asn Asn Phe Ile Asp Ala Met Leu	Met Val	Ala Glu
290	295	300
Ala		
Arg Leu Glu Gly Pro Phe Asn Ile Glu Ser Val	Met Asp	Pro Ile
305	310	315
Asp		
Asp Val Lys Ile Ser Asp Ala Ile Met Asn Met	Gln Asp	Asn Ser
320	325	330
Ser		
Val Gln Val Ser Gln Lys Val Phe Gln Gly Cys	Gly Pro	Pro Lys
335	340	345
Pro		
Pro Leu Pro Ala Gly Arg Ile Ser Arg Ser Ile	Ser Glu	Ser Ala

350	355	360
Phe Ser Ala Arg Phe Arg Pro His His	Pro Glu Glu Arg Pro Thr	
365	370	375
Thr Ala Ala Gly Thr Ser Leu Asp Arg	Leu Val Thr Asp Val Lys	
380	385	390
Glu Lys Leu Lys Gln Ala Lys Lys Phe	Trp Ser Ser Leu Pro Ser	
395	400	405
Asn Val Cys Asn Asp Glu Arg Met Ala	Ala Gly Asn Gly Asn Glu	
410	415	420
Asp Asp Cys Trp Asn Gly Lys Gly	Ser Arg Tyr Leu Phe Ala	
425	430	435
Val Thr Gly Asn Gly Leu Ala Asn Gln	Gly Asn Asn Pro Glu Val	
440	445	450
Gln Val Asp Thr Ser Lys Pro Asp Ile	Ile Leu Ile Leu Arg Gln Ile	
455	460	465
Met Ala Leu Arg Val Met Thr Ser Lys	Met Lys Asn Ala Tyr Asn	
470	475	480
Gly Asn Asp Val Asp Phe Phe Asp Ile	Ser Asp Glu Ser Ser Gly	
485	490	495
Glu Gly Ser Gly Ser Gly Cys Glu Tyr	Gln Gln Cys Pro Ser Glu	
500	505	510
Phe Asp Tyr Asn Ala Thr Asp His Ala	Gly Lys Ser Ala Asn Glu	
515	520	525
Lys Ala Asp Ser Ala Gly Val Arg Pro	Gly Ala Gln Ala Tyr Leu	
530	535	540
Leu Thr Val Phe Cys Ile Leu Phe Leu	Val Met Gln Arg Glu Trp	
545	550	555

Arg

<210> 161
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 161
ctccgtggta aaccccacag ccc 23

<210> 162
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 162
tcacatcgat gggatccatg accg 24

<210> 163
<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 163
ggtctcgtga ctgtgaagcc atgttacaac tactgctcaa acatcatgag 50

<210> 164
<211> 870
<212> DNA
<213> Homo sapiens

<400> 164
ctcgccctca aatgggaacg ctggcctggg actaaagcat agaccaccag 50
gctgagtatc ctgacacctgag tcataccccag ggatcaggag cctccagcag 100
ggaaccttcc attatattct tcaagcaact tacagctgca ccgacagttg 150
cgatgaaagt tctaattctt tccctcctcc tgttgctgcc actaatgctg 200
atgtccatgg tctcttagcag cctgaatcca ggggtcgcca gaggccacag 250
ggaccgaggc caggcttcta ggagatggct ccaggaaggc ggccaagaat 300
gtgagtgc当地 agattggttc ctgagagccc cgagaagaaa attcatgaca 350
gtgtctggc tgccaaagaa gcagtgc当地 tgtgatcatt tcaagggcaa 400
tgtgaagaaa acaagacacc aaaggcacca cagaaagcca aacaagcatt 450
ccagagcctg ccagcaattt ctcaaacaat gtcagctaag aagcttgct 500
ctgcctttgt aggagctctg agcgcccact cttccaatta aacattctca 550
gccaaagaaga cagtgagcac acctaccaga cactcttctt ctcccacctc 600
actctcccac tgtacccacc cctaaatcat tccagtgctc tcaaaaaagca 650
tgtttttcaa gatcattttg tttgttgctc tctctagtgt cttcttctct 700
cgtcagtctt agcctgtgcc ctccccttac ccaggcttag gcttaattac 750
ctgaaagatt ccagggaaact gtagcttcct agctagtgtc atttaacctt 800
aaatgcaatc aggaaaagtag caaacagaag tcaataaaata tttttaaatg 850
tcaaaaaaaaaaaaaaaa 870

<210> 165
<211> 119
<212> PRT
<213> Homo sapiens

<400> 165
Met Lys Val Leu Ile Ser Ser Leu Leu Leu Leu Pro Leu Met

1 5 10 15
Leu Met Ser Met Val Ser Ser Ser Leu Asn Pro Gly Val Ala Arg
20 25 30
Gly His Arg Asp Arg Gly Gln Ala Ser Arg Arg Trp Leu Gln Glu
35 40 45
Gly Gly Gln Glu Cys Glu Cys Lys Asp Trp Phe Leu Arg Ala Pro
50 55 60
Arg Arg Lys Phe Met Thr Val Ser Gly Leu Pro Lys Lys Gln Cys
65 70 75
Pro Cys Asp His Phe Lys Gly Asn Val Lys Lys Thr Arg His Gln
80 85 90
Arg His His Arg Lys Pro Asn Lys His Ser Arg Ala Cys Gln Gln
95 100 105
Phe Leu Lys Gln Cys Gln Leu Arg Ser Phe Ala Leu Pro Leu
110 115

<210> 166
<211> 551
<212> DNA
<213> Homo sapiens

<400> 166
aatggctgtc ttagtacttc gcctgacagt tgtccctggga ctgcttgct 50
tattcctgac ctgctatgca gacgacaac cagacaagcc agacgacaag 100
ccagacgact cgggcaaaga cccaaagcca gacttccccca aattcctaag 150
cctcctggc acagagatca ttgagaatgc agtgcgatcc atcctccgct 200
ccatgtccag gagcacagga tttatggaat ttgatgataa tgaaggaaaa 250
cattcatcaa agtgacatcc tcaggacaca cccatgtggc tcctggacaa 300
tccaagagca gccaaatcct gctttccag tttggctcca caagtcctcc 350
aggacagagc cctcaaagca actcccaacg agttctcagg attcaggctc 400
tggcttcaac caaacagaac tcattttgaa caccctgact gcattttgc 450
tttttagaaaat ttagaataaa tatggcgctt tgggatcaca tagttgatgg 500
agaggaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 550

a 551

<210> 167
<211> 87
<212> PRT
<213> Homo sapiens

<400> 167
Met Ala Val Leu Val Leu Arg Leu Thr Val Val Leu Gly Leu Leu
1 5 10 15
Val Leu Phe Leu Thr Cys Tyr Ala Asp Asp Lys Pro Asp Lys Pro

20	25	30
Asp Asp Lys Pro Asp Asp Ser Gly Lys Asp Pro Lys Pro Asp Phe		
35	40	45
Pro Lys Phe Leu Ser Leu Leu Gly Thr Glu Ile Ile Glu Asn Ala		
50	55	60
Val Glu Phe Ile Leu Arg Ser Met Ser Arg Ser Thr Gly Phe Met		
65	70	75
Glu Phe Asp Asp Asn Glu Gly Lys His Ser Ser Lys		
80	85	

<210> 168
<211> 1371
<212> DNA
<213> Homo sapiens

<400> 168
ggacgcccagc gcctgcagag gctgagcagg gaaaaagcca gtgccccagc 50
ggaagcacag ctcagagctg gtctgccatg gacatccctgg tcccactcct 100
gcagctgctg gtgctgcttc ttaccctgcc cctgcaccctc atggctctgc 150
tgggctgctg gcagccccctg tgcaaaagct acttccccta cctgatggcc 200
gtgctgactc ccaagagcaa ccgcaagatg gagagcaaga aacggggagct 250
cttcagccag ataaaggggc ttacaggagc ctccgggaaa gtggccctac 300
tggagctggg ctgcggacc ggagccaact ttcagttcta cccaccgggc 350
tgcagggtca cctgcctaga cccaaatccc cactttgaga agttcctgac 400
aaagagcatg gctgagaaca ggcaccccca atatgagcg 450
ctcctggaga ggacatgaga cagctggctg atggctccat ggatgtggtg 500
gtctgcactc tgggctgtg ctctgtgcag agcccaagga aggtcctgca 550
ggaggtccgg agagtactga gaccgggagg tgtgctctt ttctgggagc 600
atgtggcaga accatatgga agctggccct tcatgtggca gcaagtttc 650
gagcccacct gaaaacacat tggggatggc tgctgcctca ccagagagac 700
ctggaaggat cttgagaacg cccagttctc cgaaatccaa atggaacgac 750
agccccctcc cttgaagtgg ctacctgttgc ggccccacat catggaaag 800
gctgtcaaac aatcttcccc aagctccaag gcactcattt gtccttccc 850
cagcctccaa ttagaacaag ccacccacca gcctatctat cttccactga 900
gagggaccta gcagaatgag agaagacatt catgtaccac ctactagttcc 950
ctctctcccc aacctctgcc agggcaatct ctaacttcaa tcccgcccttc 1000
gacagtgaaa aagctctact tctacgctga cccagggagg aaacactagg 1050
accctgttgt atcctcaact gcaagttct ggactagttct cccaacgttt 1100

gcctcccaat gtgtccctt tccttcgttc ccatggtaaa gtcctctcg 1150
cttcctcct gaggctacac ccatgcgtct ctaggaactg gtcacaaaag 1200
tcatggtgcc tgcattccctg ccaagcccccc ctgaccctct ctccccacta 1250
ccaccttctt cctgagctgg gggcaccagg gagaatcaga gatgctgggg 1300
atgccagagc aagactcaaa gaggcagagg ttttgttctc aaatattttt 1350
taataaatag acgaaaccac g 1371

<210> 169

<211> 277

<212> PRT

<213> Homo sapiens

<400> 169

Met	Asp	Ile	Leu	Val	Pro	Leu	Leu	Gln	Leu	Leu	Val	Leu	Leu	Leu
1					5					10				15
Thr	Leu	Pro	Leu	His	Leu	Met	Ala	Leu	Leu	Gly	Cys	Trp	Gln	Pro
					20					25				30
Leu	Cys	Lys	Ser	Tyr	Phe	Pro	Tyr	Leu	Met	Ala	Val	Leu	Thr	Pro
					35					40				45
Lys	Ser	Asn	Arg	Lys	Met	Glu	Ser	Lys	Lys	Arg	Glu	Leu	Phe	Ser
					50					55				60
Gln	Ile	Lys	Gly	Leu	Thr	Gly	Ala	Ser	Gly	Lys	Val	Ala	Leu	Leu
					65					70				75
Glu	Leu	Gly	Cys	Gly	Thr	Gly	Ala	Asn	Phe	Gln	Phe	Tyr	Pro	Pro
					80					85				90
Gly	Cys	Arg	Val	Thr	Cys	Leu	Asp	Pro	Asn	Pro	His	Phe	Glu	Lys
					95					100				105
Phe	Leu	Thr	Lys	Ser	Met	Ala	Glu	Asn	Arg	His	Leu	Gln	Tyr	Glu
					110					115				120
Arg	Phe	Val	Val	Ala	Pro	Gly	Glu	Asp	Met	Arg	Gln	Leu	Ala	Asp
					125					130				135
Gly	Ser	Met	Asp	Val	Val	Val	Cys	Thr	Leu	Val	Leu	Cys	Ser	Val
					140					145				150
Gln	Ser	Pro	Arg	Lys	Val	Leu	Gln	Glu	Val	Arg	Arg	Val	Leu	Arg
					155					160				165
Pro	Gly	Gly	Val	Leu	Phe	Phe	Trp	Glu	His	Val	Ala	Glu	Pro	Tyr
					170					175				180
Gly	Ser	Trp	Ala	Phe	Met	Trp	Gln	Gln	Val	Phe	Glu	Pro	Thr	Trp
					185					190				195
Lys	His	Ile	Gly	Asp	Gly	Cys	Cys	Leu	Thr	Arg	Glu	Thr	Trp	Lys
					200					205				210
Asp	Leu	Glu	Asn	Ala	Gln	Phe	Ser	Glu	Ile	Gln	Met	Glu	Arg	Gln
					215					220				225

Pro Pro Pro Leu Lys Trp Leu Pro Val Gly Pro His Ile Met Gly
230 235 240
Lys Ala Val Lys Gln Ser Phe Pro Ser Ser Lys Ala Leu Ile Cys
245 250 255
Ser Phe Pro Ser Leu Gln Leu Glu Gln Ala Thr His Gln Pro Ile
260 265 270
Tyr Leu Pro Leu Arg Gly Thr
275

<210> 170
<211> 1621
<212> DNA
<213> Homo sapiens

<400> 170
gtgggattta tttgagtgc a agatcgttt ctcagtggtg gtggaaagttg 50
cctcatcgca ggcagatgtt ggggctttgt ccgaacagct cccctctgcc 100
agcttctgt a gataagggtt aaaaactaat atttatatga cagaagaaaa 150
agatgtcatt ccgtaaagta a acatcatca tcttggcct ggctgttgct 200
ctcttcttac tggtttgca ccataacttc ctcagcttga gcagttgtt 250
aaggaatgag gttacagatt caggaattgtt agggcctcaa cctatagact 300
ttgtccccaa tgctctccga catgcagtag atgggagaca agaggagatt 350
cctgtggtca tcgctgcattc tgaagacagg cttggggggg ccattgcagc 400
tataaacagc attcagcaca acactcgctc caatgtgatt ttctacattg 450
ttactctcaa caatacagca gaccatctcc ggtcctggct caacagtgtat 500
tccctgaaaa gcatcagata caaaattgtc aattttgacc cttaaactttt 550
ggaaggaaaa gtaaaggagg atcctgacca gggggaaatcc atgaaacacctt 600
taacctttgc aagggttctac ttgccaattc tggttcccag cgcaaagaag 650
gccatataca tggatgtatga t gtaattgtt caaggtgata ttcttgccct 700
ttacaataca gcactgaagc caggacatgc agctgcattt tcagaagatt 750
gtgattcagc ctctactaaa gttgtcatcc gtggagcagg aaaccagttac 800
aattacattt gctatcttga ctataaaaaag gaaagaattc gtaagcttc 850
catgaaagcc agcacttgct catttaatcc tggagttttt gttgcaaacc 900
tgacggaatg gaaacgacag aatataacta accaactgga aaaatggatg 950
aaactcaatg tagaagaggg actgtatagc agaaccctgg ctggtagcat 1000
cacaacacctt cctctgctta tcgtatTTTA tcaacagcac tctaccatcg 1050
atcctatgtt gaaatgtccgc caccttgggtt ccagtgtgg aaaacgatat 1100
tcacctcagt ttgttaaaggc tgccaaagtta ctccattgga atggacattt 1150

gaagccatgg ggaaggactg cttcatatac ttagtgg 1200
atattccaga cccaacaggc aaattcaacc taatccgaag atataccgag 1250
atctcaaaca taaagtaaa cagaatttga actgtaaagca agcatttctc 1300
aggaagtcct ggaagatago atgcatttgg agtaacagtt gctaggctc 1350
aatgcctatc ggtagcaagg catggaaaaa gatgtgtcag cttagttaaag 1400
atgacaaact gccctgtctg gcagtcagct tcccagacag actataagact 1450
ataaaatatgt ctccatctgc cttaccaagt gttttcttac tacaatgctg 1500
aatgactgga aagaagaact gatatggcta gttcagctag ctggcacaga 1550
taattcaaaa ctgctgttgg ttttaatttt gtaacctgtg gcctgatctg 1600
taaataaaac ttacatTTT c 1621

<210> 171

<211> 371

<212> PRT

<213> Homo sapiens

<400> 171

Met Ser Phe Arg Lys Val Asn Ile Ile Ile Leu Val Leu Ala Val
1 5 10 15

Ala Leu Phe Leu Leu Val Leu His His Asn Phe Leu Ser Leu Ser
20 25 30

Ser Leu Leu Arg Asn Glu Val Thr Asp Ser Gly Ile Val Gly Pro
35 40 45

Gln Pro Ile Asp Phe Val Pro Asn Ala Leu Arg His Ala Val Asp
50 55 60

Gly Arg Gln Glu Glu Ile Pro Val Val Ile Ala Ala Ser Glu Asp
65 70 75

Arg Leu Gly Gly Ala Ile Ala Ala Ile Asn Ser Ile Gln His Asn
80 85 90

Thr Arg Ser Asn Val Ile Phe Tyr Ile Val Thr Leu Asn Asn Thr
95 100 105

Ala Asp His Leu Arg Ser Trp Leu Asn Ser Asp Ser Leu Lys Ser
110 115 120

Ile Arg Tyr Lys Ile Val Asn Phe Asp Pro Lys Leu Leu Glu Gly
125 130 135

Lys Val Lys Glu Asp Pro Asp Gln Gly Glu Ser Met Lys Pro Leu
140 145 150

Thr Phe Ala Arg Phe Tyr Leu Pro Ile Leu Val Pro Ser Ala Lys
155 160 165

Lys Ala Ile Tyr Met Asp Asp Asp Val Ile Val Gln Gly Asp Ile
170 175 180

Leu Ala Leu Tyr Asn Thr Ala Leu Lys Pro Gly His Ala Ala Ala

185	190	195
Phe Ser Glu Asp Cys Asp Ser Ala Ser Thr Lys Val Val Ile Arg		
200	205	210
Gly Ala Gly Asn Gln Tyr Asn Tyr Ile Gly Tyr Leu Asp Tyr Lys		
215	220	225
Lys Glu Arg Ile Arg Lys Leu Ser Met Lys Ala Ser Thr Cys Ser		
230	235	240
Phe Asn Pro Gly Val Phe Val Ala Asn Leu Thr Glu Trp Lys Arg		
245	250	255
Gln Asn Ile Thr Asn Gln Leu Glu Lys Trp Met Lys Leu Asn Val		
260	265	270
Glu Glu Gly Leu Tyr Ser Arg Thr Leu Ala Gly Ser Ile Thr Thr		
275	280	285
Pro Pro Leu Leu Ile Val Phe Tyr Gln Gln His Ser Thr Ile Asp		
290	295	300
Pro Met Trp Asn Val Arg His Leu Gly Ser Ser Ala Gly Lys Arg		
305	310	315
Tyr Ser Pro Gln Phe Val Lys Ala Ala Lys Leu Leu His Trp Asn		
320	325	330
Gly His Leu Lys Pro Trp Gly Arg Thr Ala Ser Tyr Thr Asp Val		
335	340	345
Trp Glu Lys Trp Tyr Ile Pro Asp Pro Thr Gly Lys Phe Asn Leu		
350	355	360
Ile Arg Arg Tyr Thr Glu Ile Ser Asn Ile Lys		
365	370	

<210> 172
<211> 585
<212> DNA
<213> Homo sapiens

<220>
<221> unsure
<222> 71, 76, 86, 91, 162, 220, 269, 281
<223> unknown base

<400> 172
tggttttgc cccataaatt ccctcagctt gagcagtttg ttaaggaatg 50
aggttacaga ttcaggaatt nttaggnctc aacctntaga ntttgtccca 100
aatgttctcc gacatgcagt agatgggaga caagaggaga ttccctgtggt 150
catcgctgca tntgaagaca ggcttgggg ggccattgca gctataaaca 200
gcattcagca caacactcgn tccaatgtga ttttctacat tgttactctc 250
aacaatacag cagaccatnt ccggtcctgg ntcaacagtg attccctgaa 300
aagcatcaga tacaaaattg tcaattttga ccctaaactt ttggaaggaa 350

aagtaaagga ggatcctgac caggggaaat ccatgaaacc tttaaccctt 400
gcaaggttct acttgccaat tctggttccc agcgcaaaga aggccatata 450
catggatgtat gatgtatttgc tgcaagggtga tattcttgcc cttaacaata 500
cagcaactgaa gccaggacat gcagctgcat tttcagaaga ttgtgattca 550
gcctctacta aagttgtcat ccgtggagca ggaaa 585

<210> 173

<211> 1866

<212> DNA

<213> Homo sapiens

<400> 173

cgacgctcta gcgggttaccg ctgcgggctg gctgggcgta gtggggctgc 50
gcggctgccca cggagctaga gggcaagtgt gctcgccca gcgtgcaggg 100
aacgcgggcg gccagacaac gggctggct ccggggcctg cggcgcggc 150
gctgagctgg cagggcgggt cggggcgcgg gctgcattccg catctccccc 200
atcgccctgca gtaagggcgg ccgcggcgag ccttgaggg gaacgacttg 250
tcggagccct aaccaggggt gtctctgagc ctggtggat ccccgagcg 300
tcacatcact ttccgatcac ttcaaagtgg ttaaaaacta atatttatat 350
gacagaagaa aaagatgtca ttccgtaaag taaacatcat catcttggtc 400
ctgggctgtt gctctttct tactggtttt gcaccataac ttccctcagct 450
tgaggcagtt tgttaaggaa tgaggttaca gattcaggaa ttgttagggcc 500
tcaacctata ggactttgtc ccaaattgtc tccgacatgc agtagatggg 550
agacaagagg agattcctgt ggtcatcgct gcatctgaag acaggcttgg 600
ggggggccatt gcagctataa acagcattca gcacaacact cgctccaatg 650
tgattttcta cattgttact ctcaacaata cagcagacca tctccggtcc 700
tgggctcaac agtgattccc tggaaaggat cagataaaaa attgtcaatt 750
ttgaccctaa acttttgaa ggaaaaggtaa aggaggatcc tgaccagggg 800
gaatccatga aaccttaac ctgtcaagg ttctacttgc caattctggg 850
ttccccagcgc aaagaaggcc atatacatgg atgatgtat aattgtgca 900
ggtgatatttc ttgccttta caatacagca ctgaagccag gacatgcagc 950
tgcattttca gaagattgtg attcagcctc tactaaagtt gtcattccgt 1000
gagcaggaaa ccagtacaat tacattggct atcttgacta taaaaaggaa 1050
agaattcgtt agctttccat gaaagccagc acttgctcat ttaatcctgg 1100
agttttgtt gcaaacctga cggaatggaa acgacagaat ataactaacc 1150
aactggaaaa atggatgaaa ctcaatgttag aagaggact gtatagcaga 1200

accctggctg gtagcatcac aacacccct ctttatcg tattttatca 1250
acagcactt accatcgatc ctatgtggaa tgtccgccac cttgggttcca 1300
tgtctggaaa acgatattca cctcagtttgc taaaggctgc caagttactc 1350
catttggaaatg gacatttgaa gccatggggaa aggactgctt catatactga 1400
tgtttggggaa aaaatggat attccagacc caacaggcaa attcaaccta 1450
atccgaagat ataccgagat ctcaaacata aagtgaaaca gaatttgaac 1500
tgtaagcaag catttctcag gaagtccctgg aagatagcat gcgtggaaag 1550
taacagttgc taggcttcaa tgcctatcgg tagcaagcca tggaaaaaga 1600
tgtgtcagct aggtaaagat gacaaactgc cctgtctggc agtcagcttc 1650
ccagacagac tatagactat aaatatgtct ccacatgcct taccaagtgt 1700
tttcttacta caatgctgaa tgactggaaa gaagaactga tatggctagt 1750
tcagctagct ggtacagata attcaaaact gctgttggtt ttaattttgt 1800
aacctgtggc ctgatctgta aataaaaactt acattttca ataggtaaaa 1850
aaaaaaaaaaaaaaa aaaaaaa 1866

<210> 174
<211> 823
<212> DNA
<213> Homo sapiens

<400> 174
ctgcaggtag acatctccac tgcccaggaa tcactgagcg tgcagacagc 50
acagcctcct ctgaaggccg gccataccag agtctctgcct cggcatgggc 100
ctcaccattg aggcagctcc actgtctgtg ctggctcgag ggtgctgcct 150
gtcatggggg cagccatctc ccagggggcc ctcatcgcca tcgtctgcaa 200
cggtctcggt ggcttcttgc tgctgctgct ctgggtcatc ctctgctggg 250
cctgccatcc tcgtctgccc acgttgactc tctctctgaa tccagtccca 300
actccagccc tggccccctgt cctgagaagg cccaccacc ccagaagccc 350
agccatgaag gcagctaccc gctgcagccc tgaaggcccc tggcctagcc 400
tggagcccaag gacctaagtc cacctcaccc agagcctgga attaggatcc 450
cagagttcag ccagcctggg gtccagaact caagagtccg cctgcttgg 500
gctggaccacca gcggcccaaga gtctagccag cttggctcca ataggagctc 550
agtggcccta aggagatggg cctgggggtgg gggcttatga gttggtgcta 600
gagccaggcc catctggact atgctccatc ccaaggccca agggtcaggg 650
gccgggtccca ctcttccct aggctgagca cctctaggcc ctcttaggtt 700
ggaaagcaaa ctggaacccca tggcaataat aggagggtgt ccaggctggg 750

ccccctccctt ggtcctccca gtgttgctg gataataaat ggaactatgg 800

ctctaaaaaaaaaaa aaa 823

<210> 175

<211> 87

<212> PRT

<213> Homo sapiens

<400> 175

Met Gly Ala Ala Ile Ser Gln Gly Ala Leu Ile Ala Ile Val Cys
1 5 10 15

Asn Gly Leu Val Gly Phe Leu Leu Leu Leu Trp Val Ile Leu
20 25 30

Cys Trp Ala Cys His Ser Arg Leu Pro Thr Leu Thr Leu Ser Leu
35 40 45

Asn Pro Val Pro Thr Pro Ala Leu Ala Pro Val Leu Arg Arg Pro
50 55 60

His His Pro Arg Ser Pro Ala Met Lys Ala Ala Thr Cys Cys Ser
65 70 75

Pro Glu Gly Pro Trp Pro Ser Leu Glu Pro Arg Thr
80 85

<210> 176

<211> 1660

<212> DNA

<213> Homo sapiens

<400> 176

gtttgaattc cttcaactat acccacagtc caaaaggcaga ctcactgtgt 50

cccaggctac cagttcctcc aagcaagtca tttcccttat ttaaccgatg 100

tgtccctcaa acacctgagt gctactccct atttgcattt gttttgataa 150

atgatgttga caccctccac cgaattctaa gtggaatcat gtcgaaaa 200

gatacaatcc ttggcctgtg tattctcgca ttagccttgtt ctggccat 250

gatgtttacc ttccagattca tcaccaccc tctggttcac attttcattt 300

cattggttat tttgggattt tggtttgtct gcgggtttt atgggtggctg 350

tattatgact ataccaacga cctcagcata gaattggaca cagaaaggga 400

aaatatgaag tgcgtgctgg ggtttgctat cgtatccaca ggcacacgg 450

cagtgctgct cgtcttgatt tttgttctca gaaagagaat aaaattgaca 500

gttgagctt tccaaatcac aaataaagcc atcagcagtg ctcccttcct 550

gctgttccag ccactgtgga catttgccat cctcattttcc ttctgggtcc 600

tctgggtggc tgtgctgctg agcctggaa ctgcaggagc tgcccagggtt 650

atggaaggcg gccaaatggaa atataagccc ctggggca ttggatcat 700

gtggatcgatc catttaatttgc gcttcatctg gactagtgaa ttcatccctt 750

cgtgccagca aatgactata gctggggcag tggttacttg ttatttcaac 800
agaagtaaaa atgatccctcc tgatcatccc atcccttcgt ctctctccat 850
tctcttcttc taccatcaag gaaccgttgt gaaagggtca tttttaatct 900
ctgtggtgag gattccgaga atcattgtca tgtacatgca aaacgcactg 950
aaagaacagc agcatggtgc attgtccagg tacctgtcc gatgctgcta 1000
ctgctgtttc tgggtgtctt acaaataacct gctccatctc aaccagaatg 1050
cataactac aactgctatt aatgggacag atttctgtac atcagcaaaa 1100
gatgcattca aaatcttgc caagaactca agtcaactta catctattaa 1150
ctgctttgga gacttcataa tttttctagg aaaggtgtta gtgggtgttt 1200
tcactgtttt tggaggactc atggctttt actacaatcg ggcattccag 1250
gtgtgggcag tccctctgtt attggtagct tttttgcct acttagtagc 1300
ccatagttt ttatctgtgt ttgaaactgt gctggatgca cttttcctgt 1350
gtttgctgt tgatctggaa acaaatgatg gatcgtcaga aaagccctac 1400
tttatggatc aagaatttct gagttcgtt aaaaaggagca acaaattaaa 1450
caatgcaagg gcacagcagg acaagcactc attaaggaat gaggaggaa 1500
cagaactcca ggccattgtg agatagatac ccatttaggt atctgtacct 1550
gaaaaacatt tccttctaag agccatttac agaatagaag atgagaccac 1600
tagagaaaag ttagtgaatt tttttttaaa agacctaata aaccctattc 1650
ttcctcaaaa 1660

<210> 177
<211> 445
<212> PRT
<213> Homo sapiens

<400> 177

Met	Ser	Gly	Arg	Asp	Thr	Ile	Leu	Gly	Leu	Cys	Ile	Leu	Ala	Leu
1						5			10					15

Ala	Leu	Ser	Leu	Ala	Met	Met	Phe	Thr	Phe	Arg	Phe	Ile	Thr	Thr
					20			25						30

Leu	Leu	Val	His	Ile	Phe	Ile	Ser	Leu	Val	Ile	Leu	Gly	Leu	Leu
						35			40					45

Phe	Val	Cys	Gly	Val	Leu	Trp	Trp	Leu	Tyr	Tyr	Asp	Tyr	Thr	Asn
				50				55						60

Asp	Leu	Ser	Ile	Glu	Leu	Asp	Thr	Glu	Arg	Glu	Asn	Met	Lys	Cys
				65				70						75

Val	Leu	Gly	Phe	Ala	Ile	Val	Ser	Thr	Gly	Ile	Thr	Ala	Val	Leu
					80			85						90

Leu Val Leu Ile Phe Val Leu Arg Lys Arg Ile Lys Leu Thr Val

95	100	105
Glu Leu Phe Gln Ile Thr Asn Lys Ala	Ile Ser Ser Ala Pro Phe	
110	115	120
Leu Leu Phe Gln Pro Leu Trp Thr Phe Ala	Ile Leu Ile Phe Phe	
125	130	135
Trp Val Leu Trp Val Ala Val Leu Leu	Ser Leu Gly Thr Ala Gly	
140	145	150
Ala Ala Gln Val Met Glu Gly Gly Gln	Val Glu Tyr Lys Pro Leu	
155	160	165
Ser Gly Ile Arg Tyr Met Trp Ser Tyr His	Leu Ile Gly Leu Ile	
170	175	180
Trp Thr Ser Glu Phe Ile Leu Ala Cys	Gln Gln Met Thr Ile Ala	
185	190	195
Gly Ala Val Val Thr Cys Tyr Phe Asn Arg	Ser Lys Asn Asp Pro	
200	205	210
Pro Asp His Pro Ile Leu Ser Ser Leu	Ser Ile Leu Phe Phe Tyr	
215	220	225
His Gln Gly Thr Val Val Lys Gly Ser	Phe Leu Ile Ser Val Val	
230	235	240
Arg Ile Pro Arg Ile Ile Val Met Tyr	Met Gln Asn Ala Leu Lys	
245	250	255
Glu Gln Gln His Gly Ala Leu Ser Arg	Tyr Leu Phe Arg Cys Cys	
260	265	270
Tyr Cys Cys Phe Trp Cys Leu Asp Lys	Tyr Leu Leu His Leu Asn	
275	280	285
Gln Asn Ala Tyr Thr Thr Ala Ile Asn	Gly Thr Asp Phe Cys	
290	295	300
Thr Ser Ala Lys Asp Ala Phe Lys Ile	Leu Ser Lys Asn Ser Ser	
305	310	315
His Phe Thr Ser Ile Asn Cys Phe Gly	Asp Phe Ile Ile Phe Leu	
320	325	330
Gly Lys Val Leu Val Val Cys Phe Thr	Val Phe Gly Gly Leu Met	
335	340	345
Ala Phe Asn Tyr Asn Arg Ala Phe Gln	Val Trp Ala Val Pro Leu	
350	355	360
Leu Leu Val Ala Phe Phe Ala Tyr Leu	Val Ala His Ser Phe Leu	
365	370	375
Ser Val Phe Glu Thr Val Leu Asp Ala	Leu Phe Leu Cys Phe Ala	
380	385	390
Val Asp Leu Glu Thr Asn Asp Gly Ser	Ser Glu Lys Pro Tyr Phe	
395	400	405
Met Asp Gln Glu Phe Leu Ser Phe Val Lys	Arg Ser Asn Lys Leu	

410

415

420

Asn Asn Ala Arg Ala Gln Gln Asp Lys His Ser Leu Arg Asn Glu
425 430 435

Glu Gly Thr Glu Leu Gln Ala Ile Val Arg
440 445

<210> 178

<211> 2773

<212> DNA

<213> Homo sapiens

<400> 178

gttcgattag ctcctctgag aagaagagaa aaggttcttg gacctctccc 50
tgtttcttcc ttagaataat ttgtatggga tttgtatgc agggaaaggct 100
aaggaaaaaaa gaatattcat tctgtgttgt gaaaatttt tgaaaaaaaaa 150
attgccttct tcaaacaagg gtgtcattct gatatttatg aggactgtt 200
ttctcaactat gaaggcatct gttattgaaa tgttccttgc tttgctgg 250
actggagtagc attcaaacaa agaaacggca aagaagatta aaaggccaa 300
gttcactgtg ctcagatca actgcgtatgt caaagccgga aagatcatcg 350
atcctgagtt cattgtgaaa tgtccagcac gatgccaga ccccaaatac 400
catgtttatg gcactgacgt gtatgcattcc tactccagtgc tttgtggcgc 450
tgccgtacac agtgggtgtgc ttgataattc aggaggaaaa atacttggc 500
ggaagggtgc tggacagtct ggttacaaag ggagttattc caacgggtgc 550
caatcgatat ccctaccacg atggagagaa tcctttatcg tcttagaaag 600
taaacccaaa aagggtgtaa cctaccatc agctcttaca tactcatcat 650
cgaaaaagtcc agctgccaa gcaggtgaga ccacaaaagc ctatcagagg 700
ccacccatttc caggacaac tgcacagccg gtcactctga tgcagcttct 750
ggctgtcaact gtatgtgtgg ccaccccccac caccttgcca aggccatccc 800
cttctgctgc ttctaccacc agcatccccca gaccacaatc agtggggccac 850
aggagccagg agatggatct ctggtccact gccacactaca caagcagcca 900
aaacaggccc agagctgatc caggtatcca aaggcaagat cttcaggag 950
ctgccttcca gaaacctgtt ggagcggatg tcagcctggg acttggatcc 1000
aaagaagaat tgagcacaca gtctttggag ccagtatccc tggagatcc 1050
aaactgcaaa attgacttgt cgttttaat tggatggagc accagcattg 1100
gcaaacggcg attccgaatc cagaagcagc tcctggctga tggatggccaa 1150
gctcttgaca ttggccctgc cggtccactg atgggtgttg tccagttatgg 1200
agacaaccct gctactcaact ttaacctcaa gacacacacg aattctcgag 1250

On the 1st of April, 1865, the author left New York for Europe.

atctgaagac agccatagag aaaattactc agagaggagg actttctaat 1300
gtaggtcggg ccatctcctt tgtgaccaag aacttcttt ccaaagccaa 1350
tggaaacaga agcggggctc ccaatgtgg tgggtgatg gtggatggct 1400
ggcccacgga caaagtggag gaggctcaa gacttgcgag agagtcagga 1450
atacaacattt tcttcatcac cattgaaggt gctgctgaaa atgagaagca 1500
gtatgtggtg gagcccaact ttgcaaacaa ggccgtgtgc agaacaacg 1550
gcttctactc gctccacgtg cagagctgg tttggcctcca caagaccctg 1600
cagcctctgg tgaagcgggt ctgcgacact gaccgcctgg cctgcagcaa 1650
gacctgctt aactcggctg acattggctt cgtcatcgac ggctccagca 1700
gtgtggggac gggcaacttc cgccaccgtcc tccagttgt gaccaacctc 1750
accaaagagt tttagatttc cgacacggac acgcgcatcg gggccgtgca 1800
gtacacctac gaacagcggc tggagtttg gttcgacaag tacagcagca 1850
agcctgacat cctcaacgccc atcaagaggg tggctactg gagtgggtggc 1900
accagcacgg gggctgccat caacttcgccc ctggagcagc tcttcaagaa 1950
gtccaaagccc aacaagagga agttaatgtat cctcatcacc gacgggaggt 2000
cctacgacga cgtccggatc ccagccatgg ctgccccatct gaagggagtg 2050
atcacctatg cgataggcgt tgcctggct gcccaagagg agctagaagt 2100
cattgccact caccccgcca gagaccactc cttctttgtg gacgagtttg 2150
acaacctcca tcagtatgtc cccaggatca tccagaacat ttgtacagag 2200
ttcaactcactc agcctcggaa ctgaattcag agcaggcaga gcaccagcaa 2250
gtgctgcttt actaactgac gtgttggacc acccccacccgc ttaatggggc 2300
acgcacggtg catcaagtct tgggcaggc atggagaaac aaatgttttg 2350
ttattattct ttgccatcat gcttttcat attccaaaac ttggagttac 2400
aaagatgatc acaaacgtat agaatgagcc aaaaggctac atcatgttg 2450
gggtgctgga gattttacat tttgacaatt gttttcaaaa taaatgtcg 2500
gaatacagtg cagcccttac gacaggctta cgttagagctt ttgtgagatt 2550
tttaagttgt tatttctgat ttgaactctg taaccctcag caagtttcat 2600
ttttgtcatg acaatgttagg aattgctgaa ttaaatgttt agaaggatga 2650
aaaaataaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 2700
aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 2750
aaaaaaaaaa aaaaaaaaaa aag 2773

<210> 179

<211> 678
<212> PRT
<213> Homo sapiens

<400> 179
Met Arg Thr Val Val Leu Thr Met Lys Ala Ser Val Ile Glu Met
1 5 10 15

Phe Leu Val Leu Leu Val Thr Gly Val His Ser Asn Lys Glu Thr
20 25 30

Ala Lys Lys Ile Lys Arg Pro Lys Phe Thr Val Pro Gln Ile Asn
35 40 45

Cys Asp Val Lys Ala Gly Lys Ile Ile Asp Pro Glu Phe Ile Val
50 55 60

Lys Cys Pro Ala Gly Cys Gln Asp Pro Lys Tyr His Val Tyr Gly
65 70 75

Thr Asp Val Tyr Ala Ser Tyr Ser Ser Val Cys Gly Ala Ala Val
80 85 90

His Ser Gly Val Leu Asp Asn Ser Gly Gly Lys Ile Leu Val Arg
95 100 105

Lys Val Ala Gly Gln Ser Gly Tyr Lys Gly Ser Tyr Ser Asn Gly
110 115 120

Val Gln Ser Leu Ser Leu Pro Arg Trp Arg Glu Ser Phe Ile Val
125 130 135

Leu Glu Ser Lys Pro Lys Lys Gly Val Thr Tyr Pro Ser Ala Leu
140 145 150

Thr Tyr Ser Ser Ser Lys Ser Pro Ala Ala Gln Ala Gly Glu Thr
155 160 165

Thr Lys Ala Tyr Gln Arg Pro Pro Ile Pro Gly Thr Thr Ala Gln
170 175 180

Pro Val Thr Leu Met Gln Leu Leu Ala Val Thr Val Ala Val Ala
185 190 195

Thr Pro Thr Thr Leu Pro Arg Pro Ser Pro Ser Ala Ala Ser Thr
200 205 210

Thr Ser Ile Pro Arg Pro Gln Ser Val Gly His Arg Ser Gln Glu
215 220 225

Met Asp Leu Trp Ser Thr Ala Thr Tyr Thr Ser Ser Gln Asn Arg
230 235 240

Pro Arg Ala Asp Pro Gly Ile Gln Arg Gln Asp Pro Ser Gly Ala
245 250 255

Ala Phe Gln Lys Pro Val Gly Ala Asp Val Ser Leu Gly Leu Val
260 265 270

Pro Lys Glu Glu Leu Ser Thr Gln Ser Leu Glu Pro Val Ser Leu
275 280 285

Gly Asp Pro Asn Cys Lys Ile Asp Leu Ser Phe Leu Ile Asp Gly

290

295

300

Ser Thr Ser Ile Gly Lys Arg Arg Phe Arg Ile Gln Lys Gln Leu
 305 310 315

Leu Ala Asp Val Ala Gln Ala Leu Asp Ile Gly Pro Ala Gly Pro
 320 325 330

Leu Met Gly Val Val Gln Tyr Gly Asp Asn Pro Ala Thr His Phe
 335 340 345

Asn Leu Lys Thr His Thr Asn Ser Arg Asp Leu Lys Thr Ala Ile
 350 355 360

Glu Lys Ile Thr Gln Arg Gly Gly Leu Ser Asn Val Gly Arg Ala
 365 370 375

Ile Ser Phe Val Thr Lys Asn Phe Phe Ser Lys Ala Asn Gly Asn
 380 385 390

Arg Ser Gly Ala Pro Asn Val Val Val Met Val Asp Gly Trp
 395 400 405

Pro Thr Asp Lys Val Glu Glu Ala Ser Arg Leu Ala Arg Glu Ser
 410 415 420

Gly Ile Asn Ile Phe Phe Ile Thr Ile Glu Gly Ala Ala Glu Asn
 425 430 435

Glu Lys Gln Tyr Val Val Glu Pro Asn Phe Ala Asn Lys Ala Val
 440 445 450

Cys Arg Thr Asn Gly Phe Tyr Ser Leu His Val Gln Ser Trp Phe
 455 460 465

Gly Leu His Lys Thr Leu Gln Pro Leu Val Lys Arg Val Cys Asp
 470 475 480

Thr Asp Arg Leu Ala Cys Ser Lys Thr Cys Leu Asn Ser Ala Asp
 485 490 495

Ile Gly Phe Val Ile Asp Gly Ser Ser Ser Val Gly Thr Gly Asn
 500 505 510

Phe Arg Thr Val Leu Gln Phe Val Thr Asn Leu Thr Lys Glu Phe
 515 520 525

Glu Ile Ser Asp Thr Asp Thr Arg Ile Gly Ala Val Gln Tyr Thr
 530 535 540

Tyr Glu Gln Arg Leu Glu Phe Gly Phe Asp Lys Tyr Ser Ser Lys
 545 550 555

Pro Asp Ile Leu Asn Ala Ile Lys Arg Val Gly Tyr Trp Ser Gly
 560 565 570

Gly Thr Ser Thr Gly Ala Ala Ile Asn Phe Ala Leu Glu Gln Leu
 575 580 585

Phe Lys Lys Ser Lys Pro Asn Lys Arg Lys Leu Met Ile Leu Ile
 590 595 600

Thr Asp Gly Arg Ser Tyr Asp Asp Val Arg Ile Pro Ala Met Ala

605 610 615
Ala His Leu Lys Gly Val Ile Thr Tyr Ala Ile Gly Val Ala Trp
620 625 630
Ala Ala Gln Glu Glu Leu Glu Val Ile Ala Thr His Pro Ala Arg
635 640 645
Asp His Ser Phe Phe Val Asp Glu Phe Asp Asn Leu His Gln Tyr
650 655 660
Val Pro Arg Ile Ile Gln Asn Ile Cys Thr Glu Phe Asn Ser Gln
665 670 675
Pro Arg Asn

<210> 180
<211> 1759
<212> DNA
<213> Homo sapiens

<400> 180
caggatgaac tggttgcagt ggctgctgct gctgcggggg cgctgagagg 50
acacgagctc tatgccttgc cggctgctca tcccgctcgg cctcctgtgc 100
gcgcgtctgc ctcagcacca tggtgccca ggtcccgacg gctccgcgcc 150
agatcccccc cactacagtt tttctctgac tctaatttgcat gcactggaca 200
ccttgctgat tttggggaat gtctcagaat tccaaagagt ggttgaagtg 250
ctccaggaca gcgtggactt tgatatttgcat gtgaacgcct ctgtgtttga 300
aacaaacatt cgagtggtag gaggactcct gtctgctcat ctgctctcca 350
agaaggctgg ggtgaaagta gaggctggat ggccctgttc cgggcctctc 400
ctgagaatgg ctgaggaggc ggcccgaaaa ctcctcccag cctttcagac 450
ccccactggc atgccatatg gaacagtgaa cttacttcat ggcgtgaacc 500
caggagagac ccctgtcacc tgtacggcag ggattgggac cttcattgtt 550
gaatttgcac ccctgagcag cctcactggc gacccgggtgt tcgaagatgt 600
ggccagagtg gcttgatgc gcctctggc gagccggta gatatcgggc 650
tggtcggcaa ccacatttgcat gtgctcactg gcaagtgggt ggcccaggac 700
gcaggcatcg gggctggcgt ggactcctac tttgagtact tggtgaaagg 750
agccatcctg cttcaggata agaagctcat ggccatgttc ctagagtata 800
acaaagccat ccggaaactac acccgcttcg atgactggta cctgtgggtt 850
cagatgtaca agggactgt gtccatgcca gtcttccagt cttggaggc 900
ctactggcct ggtcttcaga gcctcatgg agacattgac aatgccatga 950
ggaccttcct caactactac actgttatgg agcagtttgg ggggctcccg 1000

gaattctaca acattcctca gggatacaca gtggagaagc gagagggcta 1050
cccaacttcgg ccagaactta ttgaaagcgc aatgtacctc taccgtgcc 1100
cgggggatcc caccctccta gaactcgaa gagatgctgt ggaatccatt 1150
aaaaaaaatca gcaaggtgga gtgcggattt gcaacaatca aagatctgcg 1200
agaccacaag ctggacaacc gcatggagtc gttcttcctg gccgagactg 1250
tgaaataacct ctacccctc 1300
gggtccaccc tcgacgcggt gatcaccccc tatggggagt gcacccctggg 1350
ggctgggggg tacatcttca acacagaagc tcaccccatc gacccgtcc 1400
ccctgcactg ctgcccagg ctgaaggaag agcagtgaa ggtggaggac 1450
ttgatgaggg aattctactc tctcaaaccgg agcaggtcga aatttcagaa 1500
aaacactgtt agttcggggc catggaaacc tccagcaagg ccaggaacac 1550
tcttctcacc agaaaaccat gaccaggcaa gggagaggaa gcctgccaaa 1600
cagaaggtcc cacttctcag ctgccccagt cagcccttca cctccaagtt 1650
ggcattactg ggacaggttt tcctagactc ctcataacca ctggataatt 1700
tttttatattt tattttttg aggctaaact ataataaatt gcttttgct 1750
atcataaaaa 1759

<210> 181

<211> 541

<212> PRT

<213> Homo sapiens

<400> 181

Met	Pro	Phe	Arg	L	e	L	e	I	l	e	P	l	e	G	l	e	C	Y	A	l	a	l	e		
1																									15

L	e	u	P	r	o	G	l	n	H	i	s	H	i	S	G	l	y	A	l	u	P	o	G	l	e		
																									20	25	30

A	s	p	o	A	l	a	H	i	s	T	y	R	S	e	r	L	e	T	h	R	I	l	e	A	s	l	e
																									35	40	45

A	s	p	o	A	l	a	H	i	s	T	y	R	S	e	r	L	e	T	h	R	I	l	e	A	s	l	e
																									50	55	60

V	a	l	G	l	u	V	a	l	u	G	l	u	N	S	e	r	V	a	l	u	G	l	u	A	l	u	u
																									65	70	75

A	l	a	S	e	r	V	a	l	u	G	l	u	T	h	R	A	s	N	I	l	e	A	l	u	u		
																									80	85	90

S	e	r	A	l	u	H	l	u	S	l	u	L	u	S	l	u	L	u	G	l	u	V	l	u	G	l	u	u
																									95	100	105	

G	l	u	T	r	P	o	C	s	S	e	R	G	l	u	P	o	L	u	E	u	A	G	l	u	A	l	u	u
																									110	115	120	

Ala Arg Lys Leu Leu Pro Ala Phe Gln Thr Pro Thr Gly Met Pro

125	130	135
Tyr Gly Thr Val Asn Leu Leu His	Gly Val Asn Pro Gly Glu	Thr
140	145	150
Pro Val Thr Cys Thr Ala Gly Ile	Gly Thr Phe Ile Val Glu Phe	
155	160	165
Ala Thr Leu Ser Ser Leu Thr Gly Asp	Pro Val Phe Glu Asp Val	
170	175	180
Ala Arg Val Ala Leu Met Arg Leu Trp	Glu Ser Arg Ser Asp Ile	
185	190	195
Gly Leu Val Gly Asn His Ile Asp Val	Leu Thr Gly Lys Trp Val	
200	205	210
Ala Gln Asp Ala Gly Ile Gly Ala Gly	Val Asp Ser Tyr Phe Glu	
215	220	225
Tyr Leu Val Lys Gly Ala Ile Leu Leu	Gln Asp Lys Lys Leu Met	
230	235	240
Ala Met Phe Leu Glu Tyr Asn Lys Ala	Ile Arg Asn Tyr Thr Arg	
245	250	255
Phe Asp Asp Trp Tyr Leu Trp Val Gln	Met Tyr Lys Gly Thr Val	
260	265	270
Ser Met Pro Val Phe Gln Ser Leu Glu	Ala Tyr Trp Pro Gly Leu	
275	280	285
Gln Ser Leu Ile Gly Asp Ile Asp Asn	Ala Met Arg Thr Phe Leu	
290	295	300
Asn Tyr Tyr Thr Val Trp Lys Gln Phe	Gly Gly Leu Pro Glu Phe	
305	310	315
Tyr Asn Ile Pro Gln Gly Tyr Thr Val	Glu Lys Arg Glu Gly Tyr	
320	325	330
Pro Leu Arg Pro Glu Leu Ile Glu Ser	Ala Met Tyr Leu Tyr Arg	
335	340	345
Ala Thr Gly Asp Pro Thr Leu Leu Glu	Leu Gly Arg Asp Ala Val	
350	355	360
Glu Ser Ile Glu Lys Ile Ser Lys Val	Glu Cys Gly Phe Ala Thr	
365	370	375
Ile Lys Asp Leu Arg Asp His Lys Leu	Asp Asn Arg Met Glu Ser	
380	385	390
Phe Phe Leu Ala Glu Thr Val Lys Tyr	Leu Tyr Leu Leu Phe Asp	
395	400	405
Pro Thr Asn Phe Ile His Asn Asn Gly	Ser Thr Phe Asp Ala Val	
410	415	420
Ile Thr Pro Tyr Gly Glu Cys Ile Leu	Gly Ala Gly Gly Tyr Ile	
425	430	435
Phe Asn Thr Glu Ala His Pro Ile Asp	Leu Ala Leu His Cys	

440	445	450
Cys Gln Arg Leu Lys Glu Glu Gln Trp Glu Val Glu Asp Leu Met		
455	460	465
Arg Glu Phe Tyr Ser Leu Lys Arg Ser Arg Ser Lys Phe Gln Lys		
470	475	480
Asn Thr Val Ser Ser Gly Pro Trp Glu Pro Pro Ala Arg Pro Gly		
485	490	495
Thr Leu Phe Ser Pro Glu Asn His Asp Gln Ala Arg Glu Arg Lys		
500	505	510
Pro Ala Lys Gln Lys Val Pro Leu Leu Ser Cys Pro Ser Gln Pro		
515	520	525
Phe Thr Ser Lys Leu Ala Leu Leu Gly Gln Val Phe Leu Asp Ser		
530	535	540

Ser

<210> 182
<211> 2056
<212> DNA
<213> Homo sapiens

<400> 182
aaagttacat tttctctgga actctccttag gccactccct gctgatgcaa 50
catctgggtt tgggcagaaa ggagggtgct tcggagcccg ccctttctga 100
gcttcctggg ccggctctag aacaattcag gcttcgctgc gactcagacc 150
tcagctccaa catatgcatt ctgaagaaag atggctgaga tggacagaat 200
gctttatTTT ggaaagaaac aatgttctag gtcaaactga gtctaccaaa 250
tgcagacttt cacaatggtt ctagaagaaa tctggacaag tcttttcatg 300
tggTTTTCT acgcatttgat tccatgtttg ctcacagatg aagtggccat 350
tctgcctgcc cctcagaacc tctctgtact ctcaaccaac atgaagcatac 400
tcttgatgtg gagcccagtg atcgcgcctg gagaaacagt gtactattct 450
gtcgaataacc agggggagta cgagagcctg tacacgagcc acatctggat 500
ccccagcagc tggtgctcac tcactgaagg tcctgagtgt gatgtcactg 550
atgacatcac ggccactgtg ccatacaacc ttcgtgtcag ggccacattg 600
ggctcacaga cctcagcctg gagcatcctg aagcatccct ttaatagaaa 650
ctcaaccatc cttacccgac ctggatgga gatcaccaaa gatggcttcc 700
acctggttat tgagctggag gacctggggc cccagttga gttccttgc 750
gcctactgga ggagggagcc tggtgccgag gaacatgtca aaatggtgag 800
gagtgggggt attccagtgc acctagaaac catggagcca ggggctgcat 850

DRAFT

actgtgtgaa ggcccagaca ttctgtgaagg ccattgggag gtacagcgcc 900
ttcagccaga cagaatgtgt ggaggtgcaa ggagaggcca ttccccttgt 950
actggccctg tttgccttg ttggcttcat gctgatcctt gtggtcgtgc 1000
caactgttctgt ctggaaaatg ggccggctgc tccagtactc ctgttgcccc 1050
gtgggtgtcc tcccagacac cttgaaaata accaattcac cccagaagtt 1100
aatcagctgc agaagggagg aggtggatgc ctgtgccacg gctgtgatgt 1150
ctcctgagga actcctcagg gcctggatct cataggtttg cggaagggcc 1200
caggtgaagc cgagaacctg gtctgcatga catggaaacc atgaggggac 1250
aagttgtttt tctgtttcc gccacggaca agggatgaga gaagtaggaa 1300
gagcctgttg tctacaagtc tagaagcaac catcagaggc agggtggttt 1350
gtctaacaga acactgactg aggcttaggg gatgtgaccc ttagactggg 1400
ggctgccact tgctggctga gcaaccctgg gaaaagtgc ttcatccctt 1450
cggtcctaag ttttctcatc tgtaatgggg gaattaccta cacaccctgct 1500
aaacacacac acacagagtc tctctctata tatacacacg tacacataaa 1550
tacacccagc acttgcaagg ctagaggaa actggtgaca ctctacagtc 1600
tgactgattc agtgtttctg gagagcagga cataaatgta ttagtggaaat 1650
gatcaaggac tctacacact gggtggctt gagaagccac tttcccagaa 1700
taatccttga gagaaaagga atcatggag caatgggtt gagttcactt 1750
caagcccaat gccgggtgcag aggggaatgg cttagcgagc tctacagtag 1800
gtgacctgga ggaaggtcac agccacactg aaaatggat gtgcataac 1850
acggaggatc catgaactac tgtaaagtgt tgacagtgtg tgacacactgc 1900
agacagcagg tgaaatgtat gtgtgcaatg cgacgagaat gcagaagtca 1950
gtaacatgtg catgtttttt gtgtccctt tttctgttgg taaagtacag 2000
aattcagcaa ataaaaaggg ccaccctggc caaaaagcggt aaaaaaaaaa 2050
aaaaaaaa 2056

<210> 183
<211> 311
<212> PRT
<213> Homo sapiens

<220>
<221> Signal peptide
<222> 1-29
<223> Signal peptide

<220>
<221> N-glycosylation sites
<222> 40-43, 134-137

<223> N-glycosylation sites.

<220>

<221> Tissue factor proteins homology

<222> 92-119

<223> Tissue factor proteins homology

<220>

<221> Transmembrane domain

<222> 230-255

<223> Transmembrane domain

<220>

<221> Integrins alpha chain protein homology

<222> 232-262

<223> Integrins alpha chain protein homology

<400> 183

Met	Gln	Thr	Phe	Thr	Met	Val	Leu	Glu	Glu	Ile	Trp	Thr	Ser	Leu	
1					5				10				15		
Phe	Met	Trp	Phe	Phe	Tyr	Ala	Leu	Ile	Pro	Cys	Leu	Leu	Thr	Asp	
					20				25				30		
Glu	Val	Ala	Ile	Leu	Pro	Ala	Pro	Gln	Asn	Leu	Ser	Val	Leu	Ser	
					35				40				45		
Thr	Asn	Met	Lys	His	Leu	Leu	Met	Trp	Ser	Pro	Val	Ile	Ala	Pro	
					50				55				60		
Gly	Glu	Thr	Val	Tyr	Tyr	Ser	Val	Glu	Tyr	Gln	Gly	Glu	Tyr	Glu	
					65				70				75		
Ser	Leu	Tyr	Thr	Ser	His	Ile	Trp	Ile	Pro	Ser	Ser	Trp	Cys	Ser	
					80				85				90		
Leu	Thr	Glu	Gly	Pro	Glu	Cys	Asp	Val	Thr	Asp	Asp	Ile	Thr	Ala	
					95				100				105		
Thr	Val	Pro	Tyr	Asn	Leu	Arg	Val	Arg	Ala	Thr	Leu	Gly	Ser	Gln	
					110				115				120		
Thr	Ser	Ala	Trp	Ser	Ile	Leu	Lys	His	Pro	Phe	Asn	Arg	Asn	Ser	
					125				130				135		
Thr	Ile	Leu	Thr	Arg	Pro	Gly	Met	Glu	Ile	Thr	Lys	Asp	Gly	Phe	
					140				145				150		
His	Leu	Val	Ile	Glu	Leu	Glu	Asp	Leu	Gly	Pro	Gln	Phe	Glu	Phe	
					155				160				165		
Leu	Val	Ala	Tyr	Trp	Arg	Arg	Glu	Pro	Gly	Ala	Glu	Glu	His	Val	
					170				175				180		
Lys	Met	Val	Arg	Ser	Gly	Gly	Ile	Pro	Val	His	Leu	Glu	Thr	Met	
					185				190				195		
Glu	Pro	Gly	Ala	Ala	Tyr	Cys	Val	Lys	Ala	Gln	Thr	Phe	Val	Lys	
					200				205				210		
Ala	Ile	Gly	Arg	Tyr	Ser	Ala	Phe	Ser	Gln	Thr	Glu	Cys	Val	Glu	
					215				220				225		

Val Gln Gly Glu Ala Ile Pro Leu Val Leu Ala Leu Phe Ala Phe
230 235 240
Val Gly Phe Met Leu Ile Leu Val Val Val Pro Leu Phe Val Trp
245 250 255
Lys Met Gly Arg Leu Leu Gln Tyr Ser Cys Cys Pro Val Val Val
260 265 270
Leu Pro Asp Thr Leu Lys Ile Thr Asn Ser Pro Gln Lys Leu Ile
275 280 285
Ser Cys Arg Arg Glu Glu Val Asp Ala Cys Ala Thr Ala Val Met
290 295 300
Ser Pro Glu Glu Leu Leu Arg Ala Trp Ile Ser
305 310

<210> 184
<211> 808
<212> DNA
<213> Homo sapiens

<220>

<221> unsure
<222> 654, 711, 748
<223> unknown base

<400> 184

tcctgctgat gcacatctgg gtttggcaaa aggaggttgc ttcgagccgc 50
cctttctagc ttccctggccg gctctagaac aattcaggct tcgctgcgac 100
tagacctcag ctccaacata tgcattctga agaaagatgg ctgagatgac 150
agaatgctt attttgaaa gaaacaatgt tctaggtcaa actgagttca 200
ccaaatgcag actttcacaa tggttctaga agaaatctgg acaagtcttt 250
tcatgtggtt tttctacgca ttgattccat gtttgcac agatgaagtg 300
gccattctgc ctgcccctca gaacctctct gtactctcaa ccaacatgaa 350
gcatctcttg atgtggagcc cagtgatcgc gcctggagaa acagtgtact 400
attctgtcga ataccagggg gagtacgaga gcctgtacac gagccacatc 450
tggatccccca gcagctggtg ctcactcaact gaaggtcctg agtgtatgt 500
cactgatgac atcacggcca ctgtgccata caacctttgt gtcagggcca 550
cattgggctc acagaccta gcctggagca tcctgaagca tcccttaat 600
agaaaactcaa ccacccctac ccgacctggg atggagatca ccaaagatgg 650
cttncacctg gttattgagc tggaggacct ggggccccag tttgagttcc 700
ttgtggccta ntggaggagg ggcgaacccc ttggggcgca aggggttngc 750
gaaccccttg cggccgctgg ggtatctctc gagaaaagag aggccaata 800
tgacccac 808

<210> 185
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 185
aggcttcgct gcgactagac ctc 23

<210> 186
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 186
ccaggtcggg taaggatggt tgag 24

<210> 187
<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 187
tttctacgca ttgattccat gtttgctcac agatgaagtgc gccattctgc 50

<210> 188
<211> 1227
<212> DNA
<213> Homo sapiens

<400> 188
cggacgcgtg ggccgccacc tccggaacaa gccatggtgg cggcgacggt 50
ggcagcggcg tggctgctcc tgtgggctgc ggcctgcgcg cagcaggagc 100
aggacttcta cgacttcaag gcggtcaaca tccggggcaa actggtgtcg 150
ctggagaagt accgcggatc ggtgtccctg gtggtaatg tggccagcga 200
gtgcggcttc acagaccagc actaccgagc cctgcagcag ctgcagcag 250
acctgggccc ccaccacttt aacgtgctcg ccttcccctg caaccagttt 300
ggccaacagg agcctgacag caacaaggag attgagagct ttgcccggcg 350
cacctacagt gtctcattcc ccatgittag caagattgca gtcaccggta 400
ctggtgccca tcctgccttc aagtacctgg cccagacttc tgggaaggag 450
cccacctgga acttctggaa gtaccttagta gccccagatg gaaaggtgg 500
aggggcttgg gacccaactg tgtcagtggaa ggaggtcaga ccccagatca 550
cagcgctcgt gaggaagctc atcctactga agcgagaaga cttataacca 600

ccgcgtctcc tcctccacca cctcatcccg cccacctgtg tggggctgac 650
caatgcaaac tcaaattggtg cttcaaaggg agagaccac tgactctcct 700
tcctttactc ttatgccatt ggtcccatca ttcttgggg ggaaaaattc 750
tagtattttg attatttcaa tcttacagca acaaataatga actcctggcc 800
aatgagagct cttgaccagt gaatcaccag ccgatacgaa cgtcttgcca 850
acaaaaatgt gtggcaaata gaagtatatc aagcaataat ctcccaccca 900
aggcttctgt aaactggac caatgattac ctcatagggc tgggtgtgagg 950
attaggatga aatacctgtg aaagtgccta ggcagtgcga gccaaatagg 1000
aggcattcaa tgaacatttt ttgcataataa accaaaaat aacttgttat 1050
caataaaaac ttgcatacaa catgaatttc cagccgatga taatccaggc 1100
caaaggtttta gttgttgttta ttccctctgt attattttct tcattacaaa 1150
agaaaatgcaa gttcattgtt acaatccaaa caatacctca cgatataaaa 1200
taaaaaatgaa agtacccctcc tcaaaaaa 1227

<210> 189

<211> 187

<212> PRT

<213> Homo sapiens

<400> 189

Met	Val	Ala	Ala	Thr	Val	Ala	Ala	Ala	Trp	Leu	Leu	Leu	Trp	Ala
1					5					10			15	
Ala	Ala	Cys	Ala	Gln	Gln	Glu	Gln	Asp	Phe	Tyr	Asp	Phe	Lys	Ala
				20					25				30	
Val	Asn	Ile	Arg	Gly	Lys	Leu	Val	Ser	Leu	Glu	Lys	Tyr	Arg	Gly
				35				40				45		
Ser	Val	Ser	Leu	Val	Val	Asn	Val	Ala	Ser	Glu	Cys	Gly	Phe	Thr
				50				55				60		
Asp	Gln	His	Tyr	Arg	Ala	Leu	Gln	Gln	Leu	Gln	Arg	Asp	Leu	Gly
				65				70				75		
Pro	His	His	Phe	Asn	Val	Leu	Ala	Phe	Pro	Cys	Asn	Gln	Phe	Gly
				80				85				90		
Gln	Gln	Glu	Pro	Asp	Ser	Asn	Lys	Glu	Ile	Glu	Ser	Phe	Ala	Arg
				95				100				105		
Arg	Thr	Tyr	Ser	Val	Ser	Phe	Pro	Met	Phe	Ser	Lys	Ile	Ala	Val
				110				115				120		
Thr	Gly	Thr	Gly	Ala	His	Pro	Ala	Phe	Lys	Tyr	Leu	Ala	Gln	Thr
				125				130				135		
Ser	Gly	Lys	Glu	Pro	Thr	Trp	Asn	Phe	Trp	Lys	Tyr	Leu	Val	Ala
				140				145				150		
Pro	Asp	Gly	Lys	Val	Val	Gly	Ala	Trp	Asp	Pro	Thr	Val	Ser	Val

155

160

165

Glu Glu Val Arg Pro Gln Ile Thr Ala Leu Val Arg Lys Leu Ile
170 175 180

Leu Leu Lys Arg Glu Asp Leu
185

<210> 190

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 190

gcaggacttc tacgacttca aggc 24

<210> 191

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 191

agtctgggcc aggtacttga aggc 24

<210> 192

<211> 50

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 192

caacatccgg ggcaaactgg tgcgcgttga gaagtaccgc ggatcggtgt 50

<210> 193

<211> 2187

<212> DNA

<213> Homo sapiens

<400> 193

cggacgcgtg ggcggccgg gacgcagggc aaagcgagcc atggctgtct 50

acgtcggat gctgcgcctg gggaggctgt gcgcgggag ctcgggggtg 100

ctgggggccc gggccgcctt ctctcgagg tggcaggaag ccaggttgca 150

gggtgtccgc ttccctcagtt ccagagaggt ggatcgcatg gtctccacgc 200

ccatcgagg cctcagctac gttcagggtt gcaccaaaaa gcatcttaac 250

agcaagactg tggccagtg cctggagacc acagcacaga gggtcccaga 300

acgagaggcc ttggtcgtcc tccatgaaga cgtcagggtt accttgcggc 350

aactcaagga ggaggtggac aaagctgctt ctggcctctt gaggattggc 400

ctctgcaaag gtgaccggct gggcatgtgg ggacctaact cctatgcatt 450
ggtgctcatg cagttggcca ccgcccaggc gggcatcatt ctggtgtctg 500
tgaaccaggc ctaccaggct atggaactgg agtatgtcct caagaagggtg 550
ggctgcaagg cccttgtgtt ccccaagcaa ttcaagaccc agcaatacta 600
caacgtcctg aagcagatct gtccagaagt ggagaatgcc cagccagggg 650
ccttgaagag tcagaggctc ccagatctga ccacagtcat ctcggatggat 700
gcccctttgc cggggaccct gtcctggat gaagtgggtt cggctggcag 750
cacacggcag catctggacc agctccaata caaccaggcag ttccctgtcct 800
gccatgaccc catcaacatc cagttcacct cggggacaac aggccagcccc 850
aaggggggcca ccctctccca ctacaacattt gtcaacaact ccaacatttt 900
aggagagcgc ctgaaactgc atgagaagac accagagcag ttgcggatga 950
tcctgccccaa cccctgtac cattgcctgg gttccgtggc aggcacaatg 1000
atgtgtctga tgtacgggtc caccctcatc ctggcctctc ccatcttcaa 1050
tggcaagaag gcactggagg ccatcagoag agagagaggc accttcgt 1100
atggtacccc cacgatgttc gtggacattc tgaaccagcc agacttctcc 1150
agttatgaca tctcgaccat gtgtggaggt gtcattgctg ggtccccctgc 1200
acctccagag ttgatccgag ccatcatcaa caagataaat atgaaggacc 1250
tggtggttgc ttatggaacc acagagaaca gtcccggtac attcgccac 1300
ttccctgagg acactgtgg a cagaaggca gaaaggcgtgg gcagaattat 1350
gcctcacacg gaggcccgga tcatgaacat ggaggcaggc acgctggcaa 1400
agctgaacac gccggggag ctgtgcattc gagggtaactg cgtcatgctg 1450
ggctactggg gtgagcctca gaagacagag gaagcagtgg atcaggacaa 1500
gtggtatggg acaggagatg tcgccacaat gaatgagcag ggcttctgca 1550
agatcgtggg ccgcctctaag gatatgatca tccgggggtgg tgagaacatc 1600
taccccgcaag agctcgagga cttctttcac acacacccga aggtgcagga 1650
agtgcaggtg gtgggagtga aggacgatcg gatggggaa gagatttg 1700
cctgcattcg gctgaaggac ggggaggaga ccacgggtgg ggagataaaa 1750
gctttctgca aagggaaat ctctcacttc aagattccga agtacatcgt 1800
gtttgtcaca aactacccca tcaccatttc aggaaagatc cagaaattca 1850
aacttcgaga gcagatggaa cgacatctaa atctgtgaat aaagcagcag 1900
gcctgtcctg gccgggtggc ttgactctc cctgtcagaa tgcaacctgg 1950
ctttatgcac ctagatgtcc ccagcaccca gttctgagcc aggcacatca 2000

aatgtcaagg aattgactga acgaactaag agctcctgga tgggtccggg 2050
 aactcgctg ggcacaaggt gccaaaaggc aggacgcctg cccaggccct 2100
 ccctcctgtc catccccac attcccctgt ctgtccttgc gatggcat 2150
 aaagagctc tgtttcttt gaaaaaaaaaaaaaa 2187

 <210> 194
 <211> 615
 <212> PRT
 <213> Homo sapiens

 <400> 194
 Met Ala Val Tyr Val Gly Met Leu Arg Leu Gly Arg Leu Cys Ala
 1 5 10 15

 Gly Ser Ser Gly Val Leu Gly Ala Arg Ala Ala Leu Ser Arg Ser
 20 25 30

 Trp Gln Glu Ala Arg Leu Gln Gly Val Arg Phe Leu Ser Ser Arg
 35 40 45

 Glu Val Asp Arg Met Val Ser Thr Pro Ile Gly Gly Leu Ser Tyr
 50 55 60

 Val Gln Gly Cys Thr Lys Lys His Leu Asn Ser Lys Thr Val Gly
 65 70 75

 Gln Cys Leu Glu Thr Thr Ala Gln Arg Val Pro Glu Arg Glu Ala
 80 85 90

 Leu Val Val Leu His Glu Asp Val Arg Leu Thr Phe Ala Gln Leu
 95 100 105

 Lys Glu Glu Val Asp Lys Ala Ala Ser Gly Leu Leu Ser Ile Gly
 110 115 120

 Leu Cys Lys Gly Asp Arg Leu Gly Met Trp Gly Pro Asn Ser Tyr
 125 130 135

 Ala Trp Val Leu Met Gln Leu Ala Thr Ala Gln Ala Gly Ile Ile
 140 145 150

 Leu Val Ser Val Asn Pro Ala Tyr Gln Ala Met Glu Leu Glu Tyr
 155 160 165

 Val Leu Lys Lys Val Gly Cys Lys Ala Leu Val Phe Pro Lys Gln
 170 175 180

 Phe Lys Thr Gln Gln Tyr Tyr Asn Val Leu Lys Gln Ile Cys Pro
 185 190 195

 Glu Val Glu Asn Ala Gln Pro Gly Ala Leu Lys Ser Gln Arg Leu
 200 205 210

 Pro Asp Leu Thr Thr Val Ile Ser Val Asp Ala Pro Leu Pro Gly
 215 220 225

 Thr Leu Leu Leu Asp Glu Val Val Ala Ala Gly Ser Thr Arg Gln
 230 235 240

 His Leu Asp Gln Leu Gln Tyr Asn Gln Gln Phe Leu Ser Cys His

245	250	255
Asp Pro Ile Asn Ile Gln Phe Thr Ser Gly Thr Thr Gly Ser Pro		
260	265	270
Lys Gly Ala Thr Leu Ser His Tyr Asn Ile Val Asn Asn Ser Asn		
275	280	285
Ile Leu Gly Glu Arg Leu Lys Leu His Glu Lys Thr Pro Glu Gln		
290	295	300
Leu Arg Met Ile Leu Pro Asn Pro Leu Tyr His Cys Leu Gly Ser		
305	310	315
Val Ala Gly Thr Met Met Cys Leu Met Tyr Gly Ala Thr Leu Ile		
320	325	330
Leu Ala Ser Pro Ile Phe Asn Gly Lys Lys Ala Leu Glu Ala Ile		
335	340	345
Ser Arg Glu Arg Gly Thr Phe Leu Tyr Gly Thr Pro Thr Met Phe		
350	355	360
Val Asp Ile Leu Asn Gln Pro Asp Phe Ser Ser Tyr Asp Ile Ser		
365	370	375
Thr Met Cys Gly Gly Val Ile Ala Gly Ser Pro Ala Pro Pro Glu		
380	385	390
Leu Ile Arg Ala Ile Ile Asn Lys Ile Asn Met Lys Asp Leu Val		
395	400	405
Val Ala Tyr Gly Thr Thr Glu Asn Ser Pro Val Thr Phe Ala His		
410	415	420
Phe Pro Glu Asp Thr Val Glu Gln Lys Ala Glu Ser Val Gly Arg		
425	430	435
Ile Met Pro His Thr Glu Ala Arg Ile Met Asn Met Glu Ala Gly		
440	445	450
Thr Leu Ala Lys Leu Asn Thr Pro Gly Glu Leu Cys Ile Arg Gly		
455	460	465
Tyr Cys Val Met Leu Gly Tyr Trp Gly Glu Pro Gln Lys Thr Glu		
470	475	480
Glu Ala Val Asp Gln Asp Lys Trp Tyr Trp Thr Gly Asp Val Ala		
485	490	495
Thr Met Asn Glu Gln Gly Phe Cys Lys Ile Val Gly Arg Ser Lys		
500	505	510
Asp Met Ile Ile Arg Gly Gly Glu Asn Ile Tyr Pro Ala Glu Leu		
515	520	525
Glu Asp Phe Phe His Thr His Pro Lys Val Gln Glu Val Gln Val		
530	535	540
Val Gly Val Lys Asp Asp Arg Met Gly Glu Glu Ile Cys Ala Cys		
545	550	555
Ile Arg Leu Lys Asp Gly Glu Glu Thr Thr Val Glu Glu Ile Lys		

560 565 570
Ala Phe Cys Lys Gly Lys Ile Ser His Phe Lys Ile Pro Lys Tyr
575 580 585
Ile Val Phe Val Thr Asn Tyr Pro Leu Thr Ile Ser Gly Lys Ile
590 595 600
Gln Lys Phe Lys Leu Arg Glu Gln Met Glu Arg His Leu Asn Leu
605 610 615

<210> 195
<211> 642
<212> DNA
<213> Homo sapiens

<400> 195
caactccaaac attttaggag agcgccctgaa actgcattgag aagacaccag 50
agcagttgcg gatgatcctg cccaaaccccc tgtaccattt cctgggttcc 100
gtggcaggca caatgatgtg tctgatgtac ggtgccaccc tcattcctggc 150
ctctcccatc ttcaatggca agaaggcact ggaggccatc agcagagaga 200
gaggcacctt cctgtatggt accccacga tgttcgttga cattctgaac 250
cagccagact tctccagtta tgacatctcg accatgtgtg gaggtgtcat 300
tgctgggtcc cctgcaccc cagagtttatcc ccgagccatc atcaacaaga 350
taaatatgaa ggacctggtg gttgcttatg gaaccacaga gaacagtccc 400
gtgacattcg cgcacttccc tgaggacact gtggagcaga aggcagaaaag 450
cgtggcaga attatgcctc acacggaggc gcggatcatg aacatggagg 500
cagggacgct ggcaaagctg aacacgcccc gggagctgtg catccgaggg 550
tactgcgtca tgctggctta ctgggttgcg cctcagaaga cagaggaagc 600
agtggatcag gacaagtggt attggacagg agatgtcgcc ac 642

<210> 196
<211> 1575
<212> DNA
<213> Homo sapiens

<400> 196
gagcaggacg gagccatgga ccccgccagg aaagcaggtg cccaggccat 50
gatctggact gcaggctggc tgctgctgt gctgcttcgc ggaggagcgc 100
aggccctgga gtgctacagc tgcgtgcaga aagcagatga cggatgtcc 150
ccgaacaaga tgaagacagt gaagtgcgcg ccgggcgtgg acgtctgcac 200
cgaggccgtg ggggcgggtgg agaccatcca cggacaattc tcgctggcag 250
tgcggggttt cggttcggga ctccccggca agaatgaccg cggcctggat 300
cttcacgggc ttctggcggtt catccagctg cagcaatgcg ctcaggatcg 350

ctgcaacgcc aagctcaacc tcacacctcgcg ggcgctcgac ccggcaggta 400
 atgagagtgc atacccgcccc aacggcggtgg agtgctacag ctgtgtgggc 450
 ctgagccggg aggcgctgcca ggg tacatcg ccgcggctcg tgagctgcta 500
 caacgccagc gatcatgtct acaagggcgtg cttcgacggc aacgtcacct 550
 tgacggcagc taatgtgact gtgtccttgc ctgtccgggg ctgtgtccag 600
 gatgaattct gcactcgaaa tggagtaaca ggcccagggt tcacgctcag 650
 tggctcctgt tgccagggtt cccgctgtaa ctctgacctc cgcaacaaga 700
 cctacttctc ccctcgaatc ccaccccttg tccggctgcc ccctccagag 750
 cccacgactg tggcctcaac cacatctgtc accacttcta cctcgccccc 800
 agtgagaccc acatccacca ccaaaccat gccagcgcca accagtcaga 850
 ctccgagaca gggagtagaa cacgaggcct cccggatga ggagcccagg 900
 ttgactggag gcccgcgtgg ccaccaggac cgcaaggcaatt cagggcagta 950
 tcctgcaaaa gggggcccccc agcagccca taataaaggc tgtgtggctc 1000
 ccacagctgg attggcagcc cttctgttgg ccgtggctgc tgggtgccta 1050
 ctgtgagctt ctccacctgg aaatttccct ctcacactact tctctggccc 1100
 tgggtacccc tcttctcatc acttcctgtt cccaccactg gactggctg 1150
 gcccagccccc tgaaaaatccaa acattccca gtatccccag cttctgctgc 1200
 gctggtttgc ggatggaa aataaaatccaa cgttgtatat attctgcac 1250
 gggtgttcta gcttttgag gacagctcct gtatcctct catccttgtc 1300
 tctccgcgttgc tccctttgttgc atgttaggac agagttagag aagtcagctg 1350
 tcacggggaa ggtgagagag aggtgctaa gcttcctact cactttctcc 1400
 tagccagcct ggactttggaa gctgggggtg ggtggacaa tggctccca 1450
 ctctaaggcac tgcctccctt actccccca tctttggggaa atcggttccc 1500
 catatgtctt ctttactaga ctgtgagctc ctgggggggg ggcccggtac 1550
 ccaattcgcc ctatagtgag tcgta 1575

<210> 197
 <211> 346
 <212> PRT
 <213> Homo sapiens

<400> 197
 Met Asp Pro Ala Arg Lys Ala Gly Ala Gln Ala Met Ile Trp Thr
 5 10 15
 Ala Gly Trp Leu Leu Leu Leu Leu Arg Gly Gly Ala Gln Ala
 20 25 30
 Leu Glu Cys Tyr Ser Cys Val Gln Lys Ala Asp Asp Gly Cys Ser

35	40	45
Pro Asn Lys Met Lys Thr Val Lys Cys Ala Pro Gly Val Asp Val		
50	55	60
Cys Thr Glu Ala Val Gly Ala Val Glu Thr Ile His Gly Gln Phe		
65	70	75
Ser Leu Ala Val Arg Gly Cys Gly Ser Gly Leu Pro Gly Lys Asn		
80	85	90
Asp Arg Gly Leu Asp Leu His Gly Leu Leu Ala Phe Ile Gln Leu		
95	100	105
Gln Gln Cys Ala Gln Asp Arg Cys Asn Ala Lys Leu Asn Leu Thr		
110	115	120
Ser Arg Ala Leu Asp Pro Ala Gly Asn Glu Ser Ala Tyr Pro Pro		
125	130	135
Asn Gly Val Glu Cys Tyr Ser Cys Val Gly Leu Ser Arg Glu Ala		
140	145	150
Cys Gln Gly Thr Ser Pro Pro Val Val Ser Cys Tyr Asn Ala Ser		
155	160	165
Asp His Val Tyr Lys Gly Cys Phe Asp Gly Asn Val Thr Leu Thr		
170	175	180
Ala Ala Asn Val Thr Val Ser Leu Pro Val Arg Gly Cys Val Gln		
185	190	195
Asp Glu Phe Cys Thr Arg Asp Gly Val Thr Gly Pro Gly Phe Thr		
200	205	210
Leu Ser Gly Ser Cys Cys Gln Gly Ser Arg Cys Asn Ser Asp Leu		
215	220	225
Arg Asn Lys Thr Tyr Phe Ser Pro Arg Ile Pro Pro Leu Val Arg		
230	235	240
Leu Pro Pro Pro Glu Pro Thr Thr Val Ala Ser Thr Thr Ser Val		
245	250	255
Thr Thr Ser Thr Ser Ala Pro Val Arg Pro Thr Ser Thr Thr Lys		
260	265	270
Pro Met Pro Ala Pro Thr Ser Gln Thr Pro Arg Gln Gly Val Glu		
275	280	285
His Glu Ala Ser Arg Asp Glu Glu Pro Arg Leu Thr Gly Gly Ala		
290	295	300
Ala Gly His Gln Asp Arg Ser Asn Ser Gly Gln Tyr Pro Ala Lys		
305	310	315
Gly Gly Pro Gln Gln Pro His Asn Lys Gly Cys Val Ala Pro Thr		
320	325	330
Ala Gly Leu Ala Ala Leu Leu Ala Val Ala Ala Gly Val Leu		
335	340	345

Leu

<210> 198
<211> 1657
<212> DNA
<213> Homo sapiens

<400> 198
cgggactcgg cgggtctcc tgggagtctc ggaggggacc ggctgtgcag 50
acgccatgga gttggtgctg gtcttcctct gcagcctgct ggccccatg 100
gtcctggcca gtgcagctga aaaggagaag gaaatggacc cttttcatta 150
tgattaccag accctgagga ttggggact ggtgttcgct gtggtcctct 200
tctcggttgg gatcctcctt atcctaagtc gcaggtgcaa gtgcagttc 250
aatcagaagc cccggggccc aggagatgag gaagcccagg tggagaacct 300
catcaccgcc aatgcaacag agccccagaa gcagagaact gaagtgcagc 350
catcaggtgg aacccctctgg aacctgaggc ggctgcttga acctttggat 400
gcaaatagtcg atgtttaaga aaaccggcca cttcagcaac agccctttcc 450
ccaggagaag ccaagaactt gtgtgtcccc caccctatcc cctctaacac 500
cattcctcca cctgatgatg caactaacac ttgcctcccc actgcagcct 550
gcgggtcctgc ccacccccc tgatgtgtgt gtgtgtgtgt gtgtgtgact 600
gtgtgtgttt gctaactgtg gtcttctgg ctacttgtt gtggatggta 650
ttgtgtttgt tagtgaactg tggactcgct ttcccaggca ggggctgagc 700
cacatggcca tctgctcctc cctgcccccg tggccctcca tcaccttctg 750
ctcctaggag gctgcttgtt gcccggagacc agccccctcc cctgatttag 800
ggatgcgttag ggtaagagca cgggcagtgg tcttcagtcg tcttgggacc 850
tgggaagggt tgcaagcactt tgtcatcatt cttcatggac tcctttact 900
cctttaacaa aaaccttgct tccttatccc acctgatccc agtctgaagg 950
tctcttagca actggagata caaagcaagg agctggtag cccagcggt 1000
acgtcaggca ggctatgccc ttccgtggtt aatttcttcc caggggatcc 1050
cacgaggagt ccccatctgc cccggccctt cacagagcgc cgggggattc 1100
caggcccagg gcttctactc tgccccctggg gaatgtgtcc cctgcataatc 1150
ttctcagcaa taactccatg ggctctggta ccctaccct tccaaccttc 1200
cctgcttctg agacttcaat ctacagccca gctcatccag atgcagacta 1250
cagtccttcgc aattgggtct ctggcaggca atagttgaag gactcctgtt 1300
ccgttgggc cagcacaccg ggtatggatgg agggagagca gaggcctttg 1350
cttctctgcc tacgtccccct tagatggca gcagaggcaa ctcccgatc 1400

cttgctctg cctgtcggtg gtcagagcgg tgaggcaggt gggttggaga 1450
ctcagcaggc tccgtgcagc cttggaaac agttagaggt tgaaggtcat 1500
aacgagagt ggaactcaac ccagatcccg cccctcctgt cctctgtgtt 1550
ccgcggaaa ccaaccaaac cgtgcgtgt gaccattgc tgttcttgt 1600
atcgtatct atcctaaca acaacagaaa aaaggaataa aatatcctt 1650
gtttcct 1657

<210> 199
<211> 120
<212> PRT
<213> Homo sapiens

<400> 199
Met Glu Leu Val Leu Val Phe Leu Cys Ser Leu Leu Ala Pro Met
1 5 10 15
val Leu Ala Ser Ala Ala Glu Lys Glu Lys Glu Met Asp Pro Phe
20 25 30
His Tyr Asp Tyr Gln Thr Leu Arg Ile Gly Gly Leu Val Phe Ala
35 40 45
Val Val Leu Phe Ser Val Gly Ile Leu Leu Ile Leu Ser Arg Arg
50 55 60
Cys Lys Cys Ser Phe Asn Gln Lys Pro Arg Ala Pro Gly Asp Glu
65 70 75
Glu Ala Gln Val Glu Asn Leu Ile Thr Ala Asn Ala Thr Glu Pro
80 85 90
Gln Lys Gln Arg Thr Glu Val Gln Pro Ser Gly Gly Ser Leu Trp
95 100 105
Asn Leu Arg Arg Leu Leu Glu Pro Leu Asp Ala Asn Val Asp Ala
110 115 120

<210> 200
<211> 415
<212> DNA
<213> Homo sapiens

<400> 200
aaacctgacg ccatgaagat cccggccctt cctgccgtgg tgctcctctc 50
cctcctggtg ctccactctg cccagggagc caccctgggt ggtcctgagg 100
aagaaagcac cattgagaat tatgcgtcac gaccggagac ctttaacacc 150
ccgttcctga acatcgacaa attgcgtatc gcgtttaagg ctgtatgagg 200
cctgaactgg cacggccctt ttgagtctat caaaaggaaa cttccttcc 250
tcaactggta tgccttcct aagctgaaag gactgaggag cgcaactcct 300
gatgcccagt gaccatgacc tccactggaa gagggggcta gcgtgagcgc 350
tgattctcaa cctaccataa ctcttcctg cctcaggaac tccaataaaa 400

cattttccat ccaaaa 415

<210> 201

<211> 99

<212> PRT

<213> Homo sapiens

<400> 201

Met Lys Ile Pro Val Leu Pro Ala Val Val Leu Leu Ser Leu Leu
1 5 10 15

Val Leu His Ser Ala Gln Gly Ala Thr Leu Gly Gly Pro Glu Glu
20 25 30

Glu Ser Thr Ile Glu Asn Tyr Ala Ser Arg Pro Glu Ala Phe Asn
35 40 45

Thr Pro Phe Leu Asn Ile Asp Lys Leu Arg Ser Ala Phe Lys Ala
50 55 60

Asp Glu Phe Leu Asn Trp His Ala Leu Phe Glu Ser Ile Lys Arg
65 70 75

Lys Leu Pro Phe Leu Asn Trp Asp Ala Phe Pro Lys Leu Lys Gly
80 85 90

Leu Arg Ser Ala Thr Pro Asp Ala Gln
95

<210> 202

<211> 678

<212> DNA

<213> Homo sapiens

<400> 202

cagttctgaa atcaatggag ttaatttagg gaatacaaac cagccatggg 50

ggtggagatt gccttgccct cagtgattct cacctgcctc tcccttcgg 100

cagcaggagt ctcccaggtt gttcttcctcc agccagttcc aactcaggag 150

acaggtccca aggccatggg agatctctcc tgtggcttg ccggccactc 200

atgagagtgt ttttgttaa agtatttttt agaataactgt tgacttcttc 250

atgatttaat aaccatcctt tgcgaaaggtt tatgaggctt tagggaaatg 300

tcaaccctca aattttgtt atactagatg gcttccattt acccacoact 350

attttaaggt cccttattt ttaggttcaa ggtcatttg acttgagaaa 400

gtgcccttct gcagcttcat tgattttgtt tatcttcaact attaattgtt 450

acgattaaaa aagaataaga gcacgcagac ctctaggaga atattttatc 500

cctgggtgcc cctgacacat ttatgttagtg atcccacaaa tgtgattgtt 550

aattttaatg ttattctaat attagtacat tcagttgtga tgtaatatga 600

ataaccagaa tctatttctt aaaagtttg agtataattt tcaacttagat 650

atttgtatag aaagactgaa tagtgatg 678

<210> 203
<211> 52
<212> PRT
<213> Homo sapiens

<400> 203
Met Gly Val Glu Ile Ala Phe Ala Ser Val Ile Leu Thr Cys Leu
1 5 10 15
Ser Leu Leu Ala Ala Gly Val Ser Gln Val Val Leu Leu Gln Pro
20 25 30
Val Pro Thr Gln Glu Thr Gly Pro Lys Ala Met Gly Asp Leu Ser
35 40 45
Cys Gly Phe Ala Gly His Ser
50

<210> 204
<211> 1917
<212> DNA
<213> Homo sapiens

<400> 204
ggggaatctg cagtaggtct gccggcgatg gagtgggtggg ctagctcgcc 50
gcttcggctc tggctgctgt tggctcctcct gcccctcagcg cagggccgccc 100
agaaggagtc aggttcaaaa tggaaagtat ttattgacca aattaacagg 150
tctttggaga attacgaacc atgttcaagt caaaaactgca gctgctacca 200
tggtgtcata gaagaggatc taactcctt ccgaggaggc atctccagga 250
agatgatggc agaggttagtc agacggaagc tagggaccca ctatcagatc 300
actaagaaca gactgtaccg ggaaaatgac tgcattgttcc cctcaagggtg 350
tagtggtgtt gagcacttta ttttggaaagt gatcggcggt ctccttgaca 400
tggagatggt gatcaatgta cgagattatc ctcaggttcc taaaatggatg 450
gagcctgccca tcccagtctt ctccttcagt aagacatcag agtaccatgaa 500
tatcatgtat cctgcttggc cattttggga agggggaccc gctgtttggc 550
caatttatcc tacaggtctt ggacgggtggg acctcttcag agaagatctg 600
gtaaggtcag cagcacagtg gccatggaaa aagaaaaact ctacagoata 650
tttccgagga tcaaggacaa gtccagaacg agatcctctc attcttotgt 700
ctcggaaaaaa cccaaaactt gttgatgcag aatacaccaa aaaccaggcc 750
tggaaatcta tgaaagatac ctttaggaaag ccagctgcta aggatgtcca 800
tcttggat cactgcaaat acaagtatct gtttaatttt cgaggcgtag 850
ctgcaagttt ccggtttaaa cacctcttcc tgtgtggctc acttggtttc 900
catgttggtg atgagtggtc agaattcttc tatccacagc tgaagccatg 950
ggttcactat atcccaagtca aaacagatct ctccaaatgtc caagagctgt 1000

tacaatttgt aaaagcaa at gatgatgt ag ctcaagag at tgctgaaagg 1050
ggaaggccagt ttatttagaa ccatttgac agtggatgaca tcacctgtta 1100
ctgggagaac ctcttgagtg aatactctaa attcctgtct tataatgtaa 1150
cgagaaggaa aggttatgtat caaatttattc ccaaaatgtt gaaaactgaa 1200
ctata tagtagt catcatagga ccata gtcct ctttggca acagatctca 1250
gatatcctac ggtgagaagc ttaccataag cttggctcct ataccttgaa 1300
tatctgctat caagccaa at acctggttt ctttatcatg ctgcacccag 1350
agcaactctt gagaaagatt taaaatgtgt ctaatacact gatatgaagc 1400
agttcaactt tttggatgaa taaggaccoag aaatcgtag agtggattt 1450
tgaacccaaac tctacccccc attttcttaa gaccaatcac agcttgc 1500
tcagatcatc cacctgtgtg agtccatcac tgtgaaattt actgtgtcca 1550
tgtgatgatg cccttgc cattatttgg agcagaaaaat tcgtcatgg 1600
gaagtagtac aactcattgc tggattgtg aaattattca aggctgtatc 1650
tctgtcactt tattttaatg taggaaaccc tatggggttt atgaaaaata 1700
cttggggatc attctctgaa tggctcaagg aagcggtagc catgccatgc 1750
aatgatgttag gagttctctt ttgtaaaacc ataaaactctg ttactcagga 1800
gttttctata atgccacata gaaagaggcc aattgcatga gtaattattt 1850
caattggatt tcaggttccc ttttgc ttcatgccct acttcttaat 1900
gcctctctaa agccaaa 1917

<210> 205
<211> 392
<212> PRT
<213> Homo sapiens

<400> 205
Met Glu Trp Trp Ala Ser Ser Pro Leu Arg Leu Trp Leu Leu Leu
1 5 10 15
Phe Leu Leu Pro Ser Ala Gln Gly Arg Gln Lys Glu Ser Gly Ser
20 25 30
Lys Trp Lys Val Phe Ile Asp Gln Ile Asn Arg Ser Leu Glu Asn
35 40 45
Tyr Glu Pro Cys Ser Ser Gln Asn Cys Ser Cys Tyr His Gly Val
50 55 60
Ile Glu Glu Asp Leu Thr Pro Phe Arg Gly Gly Ile Ser Arg Lys
65 70 75
Met Met Ala Glu Val Val Arg Arg Lys Leu Gly Thr His Tyr Gln
80 85 90
Ile Thr Lys Asn Arg Leu Tyr Arg Glu Asn Asp Cys Met Phe Pro

95	100	105
Ser Arg Cys Ser Gly Val Glu His Phe Ile Leu Glu Val Ile Gly		
110	115	120
Arg Leu Pro Asp Met Glu Met Val Ile Asn Val Arg Asp Tyr Pro		
125	130	135
Gln Val Pro Lys Trp Met Glu Pro Ala Ile Pro Val Phe Ser Phe		
140	145	150
Ser Lys Thr Ser Glu Tyr His Asp Ile Met Tyr Pro Ala Trp Thr		
155	160	165
Phe Trp Glu Gly Gly Pro Ala Val Trp Pro Ile Tyr Pro Thr Gly		
170	175	180
Leu Gly Arg Trp Asp Leu Phe Arg Glu Asp Leu Val Arg Ser Ala		
185	190	195
Ala Gln Trp Pro Trp Lys Lys Asn Ser Thr Ala Tyr Phe Arg		
200	205	210
Gly Ser Arg Thr Ser Pro Glu Arg Asp Pro Leu Ile Leu Leu Ser		
215	220	225
Arg Lys Asn Pro Lys Leu Val Asp Ala Glu Tyr Thr Lys Asn Gln		
230	235	240
Ala Trp Lys Ser Met Lys Asp Thr Leu Gly Lys Pro Ala Ala Lys		
245	250	255
Asp Val His Leu Val Asp His Cys Lys Tyr Lys Tyr Leu Phe Asn		
260	265	270
Phe Arg Gly Val Ala Ala Ser Phe Arg Phe Lys His Leu Phe Leu		
275	280	285
Cys Gly Ser Leu Val Phe His Val Gly Asp Glu Trp Leu Glu Phe		
290	295	300
Phe Tyr Pro Gln Leu Lys Pro Trp Val His Tyr Ile Pro Val Lys		
305	310	315
Thr Asp Leu Ser Asn Val Gln Glu Leu Leu Gln Phe Val Lys Ala		
320	325	330
Asn Asp Asp Val Ala Gln Glu Ile Ala Glu Arg Gly Ser Gln Phe		
335	340	345
Ile Arg Asn His Leu Gln Met Asp Asp Ile Thr Cys Tyr Trp Glu		
350	355	360
Asn Leu Leu Ser Glu Tyr Ser Lys Phe Leu Ser Tyr Asn Val Thr		
365	370	375
Arg Arg Lys Gly Tyr Asp Gln Ile Ile Pro Lys Met Leu Lys Thr		
380	385	390

Glu Leu

<210> 206

<211> 1425
<212> DNA
<213> Homo sapiens

<400> 206
caccgcctcca tttctcgcca tggccctgc actgctcctg atccctgctg 50
ccctcgccctc tttcatcctg gccttggca ccggagtgga gttcgtgcgc 100
tttacacctcc ttccggccact tcttggaggg atcccgagt ctggtggtcc 150
ggatgcccgc caggatggc tggctgcct gcaggaccgc agcatcctg 200
ccccctggc atggatctg gggctcctgc ttctatttgc tgggcagcac 250
agcctcatgg cagctgaaag agtgaaggca tggacatccc ggtactttgg 300
ggtccttcag aggtcactgt atgtggcctg cactgcctg gccttgcagc 350
tggtgatgctg gtactggag cccataccca aaggccctgt gttgtggag 400
gctcgggctg agccatgggc cacctgggtg ccgcctcctt gctttgtgct 450
ccatgtcatc tcctggctcc tcatcttag catcctctc gtctttgact 500
atgctgagct catggccctc aaacaggtat actaccatgt gctggggctg 550
ggcgagccctc tggccctgaa gtctccccc gctctcagac tcttctccca 600
cctgcgccac ccagtgtgtg tggagctgct gacagtgcgt tgggtggtgc 650
ctaccctggg cacggaccgt ctccctcctg ctccctcctt taccctctac 700
ctgggcctgg ctcacggct tgatcagcaa gacctccgct acctccgggc 750
ccagctacaa agaaaactcc acctgctctc tcggcccccag gatggggagg 800
cagagtgagg agctcactct gtttacaagc cctgttcttc ctctccact 850
gaattctaaa tccttaacat ccaggccctg gctgcttcat gccagaggcc 900
caaatccatg gactgaagga gatgccccctt ctactacttg agactttatt 950
ctctgggtcc agctccatac cctaaattct gagttcagc cactgaactc 1000
caagggtccac ttctcaccag caaggaagag tgggttatgg aagtcatctg 1050
tcccttcaact gtttagagca tgacactctc cccctcaaca gcctcctgag 1100
aaggaaagga tctgccctga ccactccctt ggcactgtta ctgcctctg 1150
cgccctcagggttgc accccaaacctt gtcacatagc tggccctcca ggcccccaacc 1200
ttgcctcacc actcccgccctt ctagtctctg caccccttta ggccctgcct 1250
ctgggctcag accccaaacctt agtcaagggg attctcctgc tcttaactcg 1300
atgacttggg gctccctgct ctcccgagga agatgctctg caggaaaata 1350
aaagtcaagcc tttttctaaa aaaaa 1400

<210> 207
<211> 262
<212> PRT
<213> Homo sapiens

<400> 207
Met Ala Pro Ala Leu Leu Leu Ile Pro Ala Ala Leu Ala Ser Phe
1 5 10 15
Ile Leu Ala Phe Gly Thr Gly Val Glu Phe Val Arg Phe Thr Ser
20 25 30
Leu Arg Pro Leu Leu Gly Gly Ile Pro Glu Ser Gly Gly Pro Asp
35 40 45
Ala Arg Gln Gly Trp Leu Ala Ala Leu Gln Asp Arg Ser Ile Leu
50 55 60
Ala Pro Leu Ala Trp Asp Leu Gly Leu Leu Leu Phe Val Gly
65 70 75
Gln His Ser Leu Met Ala Ala Glu Arg Val Lys Ala Trp Thr Ser
80 85 90
Arg Tyr Phe Gly Val Leu Gln Arg Ser Leu Tyr Val Ala Cys Thr
95 100 105
Ala Leu Ala Leu Gln Leu Val Met Arg Tyr Trp Glu Pro Ile Pro
110 115 120
Lys Gly Pro Val Leu Trp Glu Ala Arg Ala Glu Pro Trp Ala Thr
125 130 135
Trp Val Pro Leu Leu Cys Phe Val Leu His Val Ile Ser Trp Leu
140 145 150
Leu Ile Phe Ser Ile Leu Leu Val Phe Asp Tyr Ala Glu Leu Met
155 160 165
Gly Leu Lys Gln Val Tyr Tyr His Val Leu Gly Leu Gly Glu Pro
170 175 180
Leu Ala Leu Lys Ser Pro Arg Ala Leu Arg Leu Phe Ser His Leu
185 190 195
Arg His Pro Val Cys Val Glu Leu Leu Thr Val Leu Trp Val Val
200 205 210
Pro Thr Leu Gly Thr Asp Arg Leu Leu Leu Ala Phe Leu Leu Thr
215 220 225
Leu Tyr Leu Gly Leu Ala His Gly Leu Asp Gln Gln Asp Leu Arg
230 235 240
Tyr Leu Arg Ala Gln Leu Gln Arg Lys Leu His Leu Leu Ser Arg
245 250 255
Pro Gln Asp Gly Glu Ala Glu
260

<210> 208
<211> 2095
<212> DNA

<213> Homo sapiens

<400> 208

ccgagcacag gagattgcct gcgtttagga ggtggctgct ttgtggaaa 50
agcttatcaag gaagaaattt ccaaaccatg tcttttttc tgtttcaga 100
gtagttcaca acagatctga gtgtttaat taagcatgga atacagaaaa 150
caacaaaaaa cttaagctt aatttcatct ggaattccac agtttctta 200
gctccctgga cccgggtgac ctgttggctc ttcccgctgg ctgctctatc 250
acgtggtgct ctccgactac tcaccccgag tgtaaagaac cttcggctcg 300
cgtgcttcgt agctgctgtg gatggcctcg gctctctgga ctgtccttcc 350
gagtaggatg tcactgagat ccctcaaatg gagcctcctg ctgctgtcac 400
tcctgagtt ctttgtatg tggtacctca gccttccccca ctacaatgtg 450
atagaacgcg tgaactggat gtacttctat gagtatgagc cgatttacag 500
acaagacttt cacttcacac ttcgagagca ttcaaactgc tctcatcaaa 550
atccatttct ggtcattctg gtgacctccc acccttcaga tgtgaaagcc 600
aggcaggcca ttagagttac ttggggtaaa aaaaagtctt ggtgggata 650
tgaggttctt acattttct tattaggcca agaggctgaa aaggaagaca 700
aaatgttggc attgtcctta gaggatgaac accttctta tggtgacata 750
atccgacaag atttttaga cacatataat aacctgaccc tggaaaccat 800
tatggcattc aggtggtaa ctgagtttg ccccaatgcc aagtacgtaa 850
tgaagacaga cactgatgtt ttcatcaata ctggcaattt agtgaagtat 900
cttttaaacc taaaccactc agagaagttt ttcaacaggaa atccctcta 950
tgataattat tcctatagag gattttacca aaaaacccat atttcttacc 1000
aggagtatcc tttcaagggtg ttccctccat actgcagtgg gttgggttat 1050
ataatgtcca gagatttggt gccaggatc tatgaaatga tgggtcacgt 1100
aaaacccatc aagtttgaag atgtttatgt cgggatctgt ttgaatttat 1150
taaaaagtgaa cattcatatt ccagaagaca caaatcttt ctttctatat 1200
agaatccatt tggatgtctg tcaactgaga cgtgtgattt cagccatgg 1250
cttttcttcc aaggagatca tcacttttg gcaggtcatg ctaaggaaca 1300
ccacatgccca ttatataactt cacattctac aaaaagccta gaaggacagg 1350
ataccttgcgt gaaagtgtta aataaaagtag gtactgtgga aaattcattgg 1400
ggaggtcagt gtgctggctt acactgaact gaaactcatg aaaaacccag 1450
actggagact ggagggttac acttgcgttatt tattagtcag gcccattcaaa 1500

gatgatatgt ggaggaatta aatataaagg aattggaggt ttttgctaaa 1550
gaaattaata ggaccaaaca atttggacat gtcattctgt agactagaat 1600
ttcttaaaag ggtgttactg agttataagc tcactaggct gtaaaaacaa 1650
aacaatgtag agtttattt attgaacaat gtatgcactt gaaggtttg 1700
tgtatatctt atgtggatta ccaatttaaa aatatatgta gttctgtgtc 1750
aaaaaaacttc ttcaactgaag ttatactgaa caaaatttta cctgttttg 1800
gtcatttata aagtacttca agatgttgca gtatccaca gttatttata 1850
tttaaaattt cttcaacttt gtgttttaa atgtttgac gatttcaata 1900
caagataaaaa aggatagtga atcattctt acatgcaaac atttccagt 1950
tacttaactg atcagtttat tattgataca tcactccatt aatgtaaagt 2000
cataggtcat tattgcatat cagtaatctc ttggactttg ttaaatattt 2050
tactgtggta atatagagaa gaattaaagc aagaaaatct gaaaa 2095

<210> 209

<211> 331

<212> PRT

<213> Homo sapiens

<400> 209

Met	Ala	Ser	Ala	Leu	Trp	Thr	Val	Leu	Pro	Ser	Arg	Met	Ser	Leu	1	5	10	15
Arg	Ser	Leu	Lys	Trp	Ser	Leu	Leu	Leu	Ser	Leu	Leu	Ser	Phe		20	25		30
Phe	Val	Met	Trp	Tyr	Leu	Ser	Leu	Pro	His	Tyr	Asn	Val	Ile	Glu			40	45
Arg	Val	Asn	Trp	Met	Tyr	Phe	Tyr	Glu	Tyr	Glu	Pro	Ile	Tyr	Arg	50	55		60
Gln	Asp	Phe	His	Phe	Thr	Leu	Arg	Glu	His	Ser	Asn	Cys	Ser	His	65	70		75
Gln	Asn	Pro	Phe	Leu	Val	Ile	Leu	Val	Thr	Ser	His	Pro	Ser	Asp	80	85		90
Val	Lys	Ala	Arg	Gln	Ala	Ile	Arg	Val	Thr	Trp	Gly	Glu	Lys	Lys	95	100		105
Ser	Trp	Trp	Gly	Tyr	Glu	Val	Leu	Thr	Phe	Phe	Leu	Leu	Gly	Gln	110	115		120
Glu	Ala	Glu	Lys	Glu	Asp	Lys	Met	Leu	Ala	Leu	Ser	Leu	Glu	Asp	125	130		135
Glu	His	Leu	Leu	Tyr	Gly	Asp	Ile	Ile	Arg	Gln	Asp	Phe	Leu	Asp	140	145		150
Thr	Tyr	Asn	Asn	Leu	Thr	Leu	Lys	Thr	Ile	Met	Ala	Phe	Arg	Trp	155	160		165

Val Thr Glu Phe Cys Pro Asn Ala Lys Tyr Val Met Lys Thr Asp
 170 175 180
 Thr Asp Val Phe Ile Asn Thr Gly Asn Leu Val Lys Tyr Leu Leu
 185 190 195
 Asn Leu Asn His Ser Glu Lys Phe Phe Thr Gly Tyr Pro Leu Ile
 200 205 210
 Asp Asn Tyr Ser Tyr Arg Gly Phe Tyr Gln Lys Thr His Ile Ser
 215 220 225
 Tyr Gln Glu Tyr Pro Phe Lys Val Phe Pro Pro Tyr Cys Ser Gly
 230 235 240
 Leu Gly Tyr Ile Met Ser Arg Asp Leu Val Pro Arg Ile Tyr Glu
 245 250 255
 Met Met Gly His Val Lys Pro Ile Lys Phe Glu Asp Val Tyr Val
 260 265 270
 Gly Ile Cys Leu Asn Leu Leu Lys Val Asn Ile His Ile Pro Glu
 275 280 285
 Asp Thr Asn Leu Phe Phe Leu Tyr Arg Ile His Leu Asp Val Cys
 290 295 300
 Gln Leu Arg Arg Val Ile Ala Ala His Gly Phe Ser Ser Lys Glu
 305 310 315
 Ile Ile Thr Phe Trp Gln Val Met Leu Arg Asn Thr Thr Cys His
 320 325 330

Tyr

<210> 210
 <211> 745
 <212> DNA
 <213> Homo sapiens

<400> 210
 cctctgtcca ctgctttcgt gaagacaaga tgaagttcac aattgtcttt 50
 gctggacttc ttggagtctt tctagctcct gccctagcta actataatat 100
 caacgtcaat gatgacaaca acaatgctgg aagtggcag cagtcagtga 150
 gtgtcaacaa tgaacacaat gtggccaatg ttgacaataa caacggatgg 200
 gactcctgga attccatctg ggattatgga aatggcttg ctgcaaccag 250
 actcttcaa aagaagacat gcattgtca caaaatgaac aaggaagtca 300
 tgccctccat tcaatccctt gatgcactgg tcaaggaaaa gaagcttcag 350
 ggtaaggggac caggaggacc acctcccaag ggcctgatgt actcagtcaa 400
 cccaaacaaa gtcgatgacc tgagcaagtt cgaaaaaac attgcaaaca 450
 tgtgtcgtagg gattccaaca tacatggctg aggagatgca agaggcaagc 500
 ctgtttttt actcaggaac gtgctacacg accagtgtac tatggattgt 550

ggacatttcc ttctgtggag acacggtgga gaactaaaca atttttaaa 600
gccactatgg atttagtcat ctgaatatgc tgtgcagaaa aaatatggc 650
tccagtggtt tttaccatgt cattctgaaa ttttctcta ctagttatgt 700
ttgatttctt taagttcaa taaaatcatt tagcattgaa aaaaa 745

<210> 211
<211> 185
<212> PRT
<213> Homo sapiens

<400> 211
Met Lys Phe Thr Ile Val Phe Ala Gly Leu Leu Gly Val Phe Leu
1 5 10 15
Ala Pro Ala Leu Ala Asn Tyr Asn Ile Asn Val Asn Asp Asp Asn
20 25 30
Asn Asn Ala Gly Ser Gly Gln Gln Ser Val Ser Val Asn Asn Glu
35 40 45
His Asn Val Ala Asn Val Asp Asn Asn Asn Gly Trp Asp Ser Trp
50 55 60
Asn Ser Ile Trp Asp Tyr Gly Asn Gly Phe Ala Ala Thr Arg Leu
65 70 75
Phe Gln Lys Lys Thr Cys Ile Val His Lys Met Asn Lys Glu Val
80 85 90
Met Pro Ser Ile Gln Ser Leu Asp Ala Leu Val Lys Glu Lys Lys
95 100 105
Leu Gln Gly Lys Gly Pro Gly Gly Pro Pro Lys Gly Leu Met
110 115 120
Tyr Ser Val Asn Pro Asn Lys Val Asp Asp Leu Ser Lys Phe Gly
125 130 135
Lys Asn Ile Ala Asn Met Cys Arg Gly Ile Pro Thr Tyr Met Ala
140 145 150
Glu Glu Met Gln Glu Ala Ser Leu Phe Phe Tyr Ser Gly Thr Cys
155 160 165
Tyr Thr Thr Ser Val Leu Trp Ile Val Asp Ile Ser Phe Cys Gly
170 175 180
Asp Thr Val Glu Asn
185

<210> 212
<211> 1706
<212> DNA
<213> Homo sapiens

<400> 212
catttctgaa actaatcgta tcagaattga ctttgaaaag cattgcttt 50
tacagaagta tattaaacctt ttaggagtaa tttctagttt ggattgtaat 100

atgaaataat ttaaaaaggc ttcgctcata tatagaaaaa tcgcataatgg 150
tcctagtatt aaattcttat tgcttactga ttttttgag ttaagagttg 200
ttatatgcta gaatatgagg atgtaatat aaataagaga agaaaaaaaga 250
ataaaagtaga ttgagtcctcc aatttatgt aagcttcaga agaactggtt 300
tgtttacatg caagcttata gttgaaatat ttttcaggaa ttacatgaat 350
gacagtcttc gaaccaatgt gtttggcga tttcaaccag agactatagc 400
atgtgcttgc atctaccttg cagctagagc acttcagatt ccgttgccaa 450
ctcgccccca ttgggttctt cttttggta ctacagaaga ggaaatccag 500
gaaatctgca tagaaacact taggctttat accagaaaaa agccaaacta 550
tgaattactg gaaaaagaag tagaaaaaaag aaaagtagcc ttacaagaag 600
ccaaattaaa agcaaaggga ttgaatccgg atggaactcc agcccttca 650
accctgggtg gattttctcc agcctccaag ccatcatcac caagagaagt 700
aaaagctgaa gagaaatcac caatctccat taatgtgaag acagtcaaaa 750
aagaacctga ggatagacaa caggcttcca aaagccctta caatggtgta 800
agaaaaagaca gcaagagaag tagaaatagc agaagtgc当地 gtcgatcgag 850
gtcaagaaca cgatcacgtt ctatcaca tactccaaga agacactata 900
ataataggcg gagtcgatct ggaacatatac gctcgagatc aagaagcagg 950
tcccgcagtc acagtgaaag ccctcgaaga catcataatc atgggttctcc 1000
tcacctaag gccaaagcata ccagagatga tttaaaaagt tcaaacagac 1050
atggtcataa aaggaaaaaa tctcggttctc gatctcagag caagtctcg 1100
gatcactcag atgcagccaa gaaacacagg catgaaaggg gacatcatag 1150
ggacaggcgt gaacgatctc gctccttga gaggtcccat aaaagcaagc 1200
accatggtgg cagtcgctca ggacatggca ggcacacaggcg ctgactttct 1250
cttccttga gcctgcata gttctgggtt ttgcctatct acagtgtgat 1300
gtatggactc aatcaaaaac attaaacgca aactgattag gatttgattt 1350
cttgaaaccc tcttaggtctc tagaacactg aggacagttt ctttggaaaa 1400
gaactatgtt aattttttg cacattaaaa tgccttagca gtatctaatt 1450
aaaaaccatg gtcaggttca attgtacttt attatagttg tgtattgttt 1500
attgctataa gaactggagc gtgaattctg taaaaatgta tcttattttt 1550
atacagataa aattgcagac actgttctat ttaagtggtt atttggtaa 1600
atgatggta atactttctt aacactggtt tgtctgcata gtaaagatt 1650
tttacaagga aataaaatac aaatctgtt tttctaaaa aaaaaaaaaa 1700

aaaagt 1706

<210> 213

<211> 299

<212> PRT

<213> Homo sapiens

<400> 213

Met Asn Asp Ser Leu Arg Thr Asn Val Phe Val Arg Phe Gln Pro
1 5 10 15

Glu Thr Ile Ala Cys Ala Cys Ile Tyr Leu Ala Ala Arg Ala Leu
20 25 30

Gln Ile Pro Leu Pro Thr Arg Pro His Trp Phe Leu Leu Phe Gly
35 40 45

Thr Thr Glu Glu Glu Ile Gln Glu Ile Cys Ile Glu Thr Leu Arg
50 55 60

Leu Tyr Thr Arg Lys Lys Pro Asn Tyr Glu Leu Leu Glu Lys Glu
65 70 75

Val Glu Lys Arg Lys Val Ala Leu Gln Glu Ala Lys Leu Lys Ala
80 85 90

Lys Gly Leu Asn Pro Asp Gly Thr Pro Ala Leu Ser Thr Leu Gly
95 100 105

Gly Phe Ser Pro Ala Ser Lys Pro Ser Ser Pro Arg Glu Val Lys
110 115 120

Ala Glu Glu Lys Ser Pro Ile Ser Ile Asn Val Lys Thr Val Lys
125 130 135

Lys Glu Pro Glu Asp Arg Gln Gln Ala Ser Lys Ser Pro Tyr Asn
140 145 150

Gly Val Arg Lys Asp Ser Lys Arg Ser Arg Asn Ser Arg Ser Ala
155 160 165

Ser Arg Ser Arg Ser Arg Thr Arg Ser Arg Ser Arg Ser His Thr
170 175 180

Pro Arg Arg His Tyr Asn Asn Arg Arg Ser Arg Ser Gly Thr Tyr
185 190 195

Ser Ser Arg Ser Arg Ser Arg Ser His Ser Glu Ser Pro
200 205 210

Arg Arg His His Asn His Gly Ser Pro His Leu Lys Ala Lys His
215 220 225

Thr Arg Asp Asp Leu Lys Ser Ser Asn Arg His Gly His Lys Arg
230 235 240

Lys Lys Ser Arg Ser Arg Ser Gln Ser Lys Ser Arg Asp His Ser
245 250 255

Asp Ala Ala Lys Lys His Arg His Glu Arg Gly His His Arg Asp
260 265 270

Arg Arg Glu Arg Ser Arg Ser Phe Glu Arg Ser His Lys Ser Lys

275

280

285

His His Gly Gly Ser Arg Ser Gly His Gly Arg His Arg Arg
290 295

<210> 214

<211> 730

<212> DNA

<213> Homo sapiens

<220>

<221> unsure

<222> 72-73, 85, 91, 127, 226, 268, 454, 484, 513, 566, 663

<223> unknown base

<400> 214

tggggataaa ggaaaaatgg tcaggtatta atggctaaa gattattgga 50

aggggtttat catttttga anntattcgg gtcanaattg ncttgaaaa 100

gcattgcttt ttacagaaat atattanctt ttagagtaa tttctagttt 150

ggattgtaat atgaaattat taaaaggc ttcgctcata tatagggaaaa 200

tcgcatatgg tcctagtatt aaattttat tgcttactga ttttttgag 250

ttaagagttt ttatatgnta gaatatgagg atgtaaat aaataagaga 300

agaaaaaaaga ataaagtata ttgagtctcc aattttatgt aagcttcaga 350

agaactgggtt tgtttacatg caagcttata gttgaaatat ttttcagaa 400

ttacatgaat gacagtcttc gaaccaatgt gtttggcga tttcaaccag 450

agantatagc atgtgcttgc atctacctt cagnagagc acttcagatt 500

cggttgc当地 ctngtccccaa ttgggttctt cttttggta ctacagaaga 550

ggaaatccag gaaatntgca tagaaacact taggctttat accagaaaaa 600

agccaaacta tgaattactg gaaaaagaag tagaaaaaaag aaaagttagcc 650

ttacaagaag ccnaattaaa agcaaaggaa ttgaatccgg atgaaactcc 700

agcccttca accctgggtg gattttctcc 730

<210> 215

<211> 1807

<212> DNA

<213> Homo sapiens

<400> 215

ggcacgaggc ctcgtgc当地 gcttggcactg agggtgcacc gcgttctcgc 50

acgcgtcatg gcggtcctcg gagtacagct ggtggtgacc ctgctcactg 100

ccaccctcat gcacaggctg gcccacact gctccttcgc gcgctggctg 150

ctctgttaacg gcagtttgc当地 ccgatacaag cacccgtctg aggaggagct 200

tcggggccctg gcgggaaagc cgaggcccag aggaggaaa gagcgggtggg 250

ccaatggcct tagtggaggag aagccactgt ctgtcccccg agatcccccg 300

ttccagctgg agacctgccc cctcacgacc gtggatgccc tggcctgcg 350
cttcttcctg gagtaccagt gtttgtga ctttgctgtg tactcggcg 400
gcgtgtacct cttcacagag gcctactact acatgctggg accagccaag 450
gagactaaca ttgctgtgtt ctgggcctg ctcacggta ccttctccat 500
caagatgttc ctgacagtga cacggctgta cttcagcgcc gaggagggg 550
tgagcgctc tgtctgcctc acctttgcct tccttccct gctgctggcc 600
atgctggtgc aagtggtgcg ggaggagacc ctgcagctgg gcctggagcc 650
tggtctggcc agcatgaccc agaacttaga gccacttctg aagaagcagg 700
gctggactg ggcgcttcct gtggccaagc tggctatccg cgtggactg 750
gcagtggtgg gctctgtgct gggtgccttc ctcacccctc caggcctgcg 800
gctggcccaag acccaccggg acgcactgac catgtcggag gacagaccca 850
tgctgcagtt ctcctgcac accagcttcc tgtctccct gttcatcctg 900
tggctctgga caaagccat tgacgggac ttccctgcacc agccggcgtt 950
tggggagacg cgtttctccc tgctgtccga ttctgccttc gactctggc 1000
gcctctgggt gctgggtgg ctgtgcctgc tgcggctggc ggtgaccgg 1050
ccccacctgc aggccctacct gtgcctggcc aaggccggg tggagcagct 1100
gcgaagggag gctggccgca tcgaagcccg taaaatccag cagagggtgg 1150
tccgagtcta ctgctatgtg accgtggta gcttgcagta cctgacggcg 1200
ctcatcctca ccctcaactg cacacttctg ctcaagacgc tgggaggcta 1250
ttccctgggc ctggcccaag ctccctact atccccgac ccattcctcag 1300
ccagcgctgc ccccatcgcc tctggggagg acgaagtcca gcagactgca 1350
gcmcggattg ccggggccct gggtggcctg cttactcccc tcttcctccg 1400
tggcgctctg gcctacctca tctggtgac ggctgcctgc cagctgctcg 1450
ccagccttt cggcctctac ttccaccagg acttggcagg ctcctagctg 1500
cctgcagacc ctcctgggc cctgaggctt gttccctggg cagcggacca 1550
ctagcctgcc ccctctgttt gcgcggccgt gtcccccagct gcaagggtgg 1600
gccggactcc ccggcggtcc cttcaccaca gtgcctgacc cgccggccccc 1650
cttggacgcc gagttctgc ctcagaactg tcttcctgg gcccagcagc 1700
atgagggtcc cgaggccatt gtctccgaag cgtatgtgcc aggtttgagt 1750
ggcgagggtg atgctggctg ctcttctgaa caaataaagg agcatgccga 1800
tttttaa 1807

<210> 216

<211> 479
<212> PRT
<213> Homo sapiens

<400> 216
Met Ala Val Leu Gly Val Gln Leu Val Val Thr Leu Leu Thr Ala
1 5 10 15
Thr Leu Met His Arg Leu Ala Pro His Cys Ser Phe Ala Arg Trp
20 25 30
Leu Leu Cys Asn Gly Ser Leu Phe Arg Tyr Lys His Pro Ser Glu
35 40 45
Glu Glu Leu Arg Ala Leu Ala Gly Lys Pro Arg Pro Arg Gly Arg
50 55 60
Lys Glu Arg Trp Ala Asn Gly Leu Ser Glu Glu Lys Pro Leu Ser
65 70 75
Val Pro Arg Asp Ala Pro Phe Gln Leu Glu Thr Cys Pro Leu Thr
80 85 90
Thr Val Asp Ala Leu Val Leu Arg Phe Phe Leu Glu Tyr Gln Trp
95 100 105
Phe Val Asp Phe Ala Val Tyr Ser Gly Gly Val Tyr Leu Phe Thr
110 115 120
Glu Ala Tyr Tyr Tyr Met Leu Gly Pro Ala Lys Glu Thr Asn Ile
125 130 135
Ala Val Phe Trp Cys Leu Leu Thr Val Thr Phe Ser Ile Lys Met
140 145 150
Phe Leu Thr Val Thr Arg Leu Tyr Phe Ser Ala Glu Glu Gly Gly
155 160 165
Glu Arg Ser Val Cys Leu Thr Phe Ala Phe Leu Phe Leu Leu
170 175 180
Ala Met Leu Val Gln Val Val Arg Glu Glu Thr Leu Glu Leu Gly
185 190 195
Leu Glu Pro Gly Leu Ala Ser Met Thr Gln Asn Leu Glu Pro Leu
200 205 210
Leu Lys Lys Gln Gly Trp Asp Trp Ala Leu Pro Val Ala Lys Leu
215 220 225
Ala Ile Arg Val Gly Leu Ala Val Val Gly Ser Val Leu Gly Ala
230 235 240
Phe Leu Thr Phe Pro Gly Leu Arg Leu Ala Gln Thr His Arg Asp
245 250 255
Ala Leu Thr Met Ser Glu Asp Arg Pro Met Leu Gln Phe Leu Leu
260 265 270
His Thr Ser Phe Leu Ser Pro Leu Phe Ile Leu Trp Leu Trp Thr
275 280 285
Lys Pro Ile Ala Arg Asp Phe Leu His Gln Pro Pro Phe Gly Glu

290

295

300

Thr Arg Phe Ser Leu Leu Ser Asp Ser Ala Phe Asp Ser Gly Arg
305 310 315

Leu Trp Leu Leu Val Val Leu Cys Leu Leu Arg Leu Ala Val Thr
320 325 330

Arg Pro His Leu Gln Ala Tyr Leu Cys Leu Ala Lys Ala Arg Val
335 340 345

Glu Gln Leu Arg Arg Glu Ala Gly Arg Ile Glu Ala Arg Glu Ile
350 355 360

Gln Gln Arg Val Val Arg Val Tyr Cys Tyr Val Thr Val Val Ser
365 370 375

Leu Gln Tyr Leu Thr Pro Leu Ile Leu Thr Leu Asn Cys Thr Leu
380 385 390

Leu Leu Lys Thr Leu Gly Gly Tyr Ser Trp Gly Leu Gly Pro Ala
395 400 405

Pro Leu Leu Ser Pro Asp Pro Ser Ser Ala Ser Ala Ala Pro Ile
410 415 420

Gly Ser Gly Glu Asp Glu Val Gln Gln Thr Ala Ala Arg Ile Ala
425 430 435

Gly Ala Leu Gly Gly Leu Leu Thr Pro Leu Phe Leu Arg Gly Val
440 445 450

Leu Ala Tyr Leu Ile Trp Trp Thr Ala Ala Cys Gln Leu Leu Ala
455 460 465

Ser Leu Phe Gly Leu Tyr Phe His Gln His Leu Ala Gly Ser
470 475

<210> 217

<211> 574

<212> DNA

<213> Homo sapiens

<220>

<221> unsure

<222> 5, 146

<223> unknown base

<400> 217

cgttngcacg cgtcaatggc ggtcctcgga gtacagctgg tggtgaccct 50

gctcaactgcc accctcatgc acaggctggc gccacactgc tccttcgcgc 100

gctggctgct ctgtaacggc agtttgtcc gataacaagca cccgtnttga 150

ggaggagctt cggggcctgg cggggaaagcc gagggccaga ggcaggaaag 200

agcgggtgggc caatggcctt agtgaggaga agccactgtc tgtgccccga 250

gatgccccgt tccagctgga gacctcccc ctcacgaccg tggatgcct 300

ggtcctgcgc ttcttcctgg agtaccagtg gtttgtggac tttgctgtgt 350

actcgggcgg cgtgtacctc ttcacagagg cctactacta catgctggga 400
ccagccaagg agactaacat tgctgtgtc tgggcctgc tcacagtgac 450
cttctccatc aagatgttcc tgacagtgac acggctgtac ttcagcgccg 500
aggagggggg tgagcgctct gtctgcctca cctttgcctt cctttcctg 550
ctgctggcca tgctggtgca agcg 574

<210> 218

<211> 2571

<212> DNA

<213> Homo sapiens

<400> 218

ggttcctaca tcctctcatc tgagaatcag agagcataat cttcttacgg 50
gcccggtgatt tattaacgtg gcttaatctg aaggttctca gtcaaattct 100
ttgtgatcta ctgattgtgg gggcatggca aggttgctt aaaggagctt 150
ggctggtttg ggcccttgta gctgacagaa ggtggccagg gagaatgcag 200
cacactgctc ggagaatgaa ggcgcttotg ttgctggct tgccttgct 250
cagtcctgct aactacattt acaatgtggg caacctgcac ttccctgtatt 300
cagaactctg taaaggtgcc tcccactacg gcctgaccgaa agataggaag 350
aggcgctcac aagatggctg tccagacggc tgtgcgagcc tcacagccac 400
ggctccctcc ccagagggtt ctgcagctgc caccatctcc ttaatgacag 450
acgagcctgg cctagacaac cctgcctacg tgtcctcggc agaggacggg 500
cagccagcaa tcagccccagt ggactctggc cggagcaacc gaactagggc 550
acggccctt gagagatcca ctattagaag cagatcatt aaaaaataa 600
atcgagctt gagtgttctt cgaaggacaa agagcgggag tgcagttgcc 650
aaccatgccc accagggcag ggaaaattct gaaaacacca ctgccccctga 700
agtctttcca aggttgtacc acctgattcc agatggtgaa attaccagca 750
tcaagatcaa tcgagtagat cccagtgaaa gcctctctat taggctggtg 800
ggaggtagcg aaaccccaact ggtccatatac attatccaac acatttatcg 850
tgatgggtg atcgccagag acggccggct actgccagga gacatcattc 900
taaaggtcaa cgggatggac atcagcaatg tccctcacaa ctacgctgtg 950
cgtctcctgc ggcagccctg ccaggtgctg tggctgactg tgatgcgtga 1000
acagaagttc cgcagcagga acaatggaca ggccccggat gcctacagac 1050
cccgagatga cagcttcat gtgattctca acaaaagtag ccccgaggag 1100
cagcttgaa taaaactggt gcgcaagggt gatgagcctg gggtttcat 1150
cttcaatgtg ctggatggcg gtgtggcata tcgacatggc cagcttgagg 1200

agaatgaccg tgtgttagcc atcaatggac atgatctcg atatggcagc 1250
ccagaaagtg cggctcatct gattcaggcc agtcaaagac gtgttcacct 1300
cgtcgtgtcc cgccaggttc ggcagcggag ccctgacatc tttcaggaag 1350
ccggctggaa cagcaatggc agctggtccc cagggccagg ggagaggagc 1400
aacactccca agccctcca tcctacaatt acttgtcatg agaaggtggt 1450
aaatatccaa aaagacccccg gtgaatctct cggcatgacc gtcgcagggg 1500
gagcatcaca tagagaatgg gatggccta tctatgtcat cagtgttgag 1550
cccgaggag tcataagcag agatggaaga ataaaaacag gtgacattt 1600
gttgaatgtg gatgggtcg aactgacaga ggtcagccgg agtgaggcag 1650
tggcattatt gaaaagaaca tcatcctcga tagtactcaa agctttggaa 1700
gtcaaagagt atgagccca ggaagactgc agcagccag cagccctgga 1750
ctccaaccac aacatggccc cacccagtga ctggtccca tcctgggtca 1800
tgtggctgga attaccacgg tgcttgtata actgtaaaga tattgtatta 1850
cgaagaaaca cagctggaag tctggcttc tgcattgtag gaggttatga 1900
agaatacaat ggaaacaaac ctttttcat caaatccatt gttgaaggaa 1950
caccagcata caatgatgga agaatttagat gtggtgatat tcttcttgct 2000
gtcaatggta gaagtacatc aggaatgata catgttgct tggcaagact 2050
gctgaaagaa cttaaaggaa gaattactct aactattgtt tcttggcctg 2100
gcacttttt atagaatcaa tgatggtca gagaaaaaca gaaaaatcac 2150
aaataggcta agaagttgaa acactatatt tatcttgtca gtttttatat 2200
ttaaagaaag aatacattgt aaaaatgtca ggaaaagtat gatcatctaa 2250
tgaaagccag ttacacctca gaaaatatga ttccaaaaaaaa attaaaacta 2300
ctagttttt ttcaagtgtgg aggatttctc attactctac aacattgttt 2350
atatttttc tattcaataa aaagccctaa aacaactaaa atgattgatt 2400
tgtataccccc actgaattca agctgattta aatttaaaat ttggtatatg 2450
ctgaagtctg ccaagggtac attatggcca ttttaattt acagctaaaa 2500
tattttttaa aatgcattgc tgagaaacgt tgcttcatc aaacaagaat 2550
aaatattttt cagaagttaa a 2571

<210> 219
<211> 632
<212> PRT
<213> Homo sapiens

<400> 219
Met Lys Ala Leu Leu Leu Val Leu Pro Trp Leu Ser Pro Ala

1 5 10 15

Asn Tyr Ile Asp Asn Val Gly Asn Leu His Phe Leu Tyr Ser Glu
20 25 30

Leu Cys Lys Gly Ala Ser His Tyr Gly Leu Thr Lys Asp Arg Lys
35 40 45

Arg Arg Ser Gln Asp Gly Cys Pro Asp Gly Cys Ala Ser Leu Thr
50 55 60

Ala Thr Ala Pro Ser Pro Glu Val Ser Ala Ala Ala Thr Ile Ser
65 70 75

Leu Met Thr Asp Glu Pro Gly Leu Asp Asn Pro Ala Tyr Val Ser
80 85 90

Ser Ala Glu Asp Gly Gln Pro Ala Ile Ser Pro Val Asp Ser Gly
95 100 105

Arg Ser Asn Arg Thr Arg Ala Arg Pro Phe Glu Arg Ser Thr Ile
110 115 120

Arg Ser Arg Ser Phe Lys Lys Ile Asn Arg Ala Leu Ser Val Leu
125 130 135

Arg Arg Thr Lys Ser Gly Ser Ala Val Ala Asn His Ala Asp Gln
140 145 150

Gly Arg Glu Asn Ser Glu Asn Thr Thr Ala Pro Glu Val Phe Pro
155 160 165

Arg Leu Tyr His Leu Ile Pro Asp Gly Glu Ile Thr Ser Ile Lys
170 175 180

Ile Asn Arg Val Asp Pro Ser Glu Ser Leu Ser Ile Arg Leu Val
185 190 195

Gly Gly Ser Glu Thr Pro Leu Val His Ile Ile Ile Gln His Ile
200 205 210

Tyr Arg Asp Gly Val Ile Ala Arg Asp Gly Arg Leu Leu Pro Gly
215 220 225

Asp Ile Ile Leu Lys Val Asn Gly Met Asp Ile Ser Asn Val Pro
230 235 240

His Asn Tyr Ala Val Arg Leu Leu Arg Gln Pro Cys Gln Val Leu
245 250 255

Trp Leu Thr Val Met Arg Glu Gln Lys Phe Arg Ser Arg Asn Asn
260 265 270

Gly Gln Ala Pro Asp Ala Tyr Arg Pro Arg Asp Asp Ser Phe His
275 280 285

Val Ile Leu Asn Lys Ser Ser Pro Glu Glu Gln Leu Gly Ile Lys
290 295 300

Leu Val Arg Lys Val Asp Glu Pro Gly Val Phe Ile Phe Asn Val
305 310 315

Leu Asp Gly Gly Val Ala Tyr Arg His Gly Gln Leu Glu Glu Asn

320	325	330
Asp Arg Val Leu Ala Ile Asn Gly His	Asp Leu Arg Tyr Gly Ser	
335	340	345
Pro Glu Ser Ala Ala His Leu Ile Gln Ala	Ser Glu Arg Arg Val	
350	355	360
His Leu Val Val Ser Arg Gln Val Arg	Gln Arg Ser Pro Asp Ile	
365	370	375
Phe Gln Glu Ala Gly Trp Asn Ser Asn	Gly Ser Trp Ser Pro Gly	
380	385	390
Pro Gly Glu Arg Ser Asn Thr Pro Lys	Pro Leu His Pro Thr Ile	
395	400	405
Thr Cys His Glu Lys Val Val Asn Ile	Gln Lys Asp Pro Gly Glu	
410	415	420
Ser Leu Gly Met Thr Val Ala Gly Gly	Ala Ser His Arg Glu Trp	
425	430	435
Asp Leu Pro Ile Tyr Val Ile Ser Val	Glu Pro Gly Gly Val Ile	
440	445	450
Ser Arg Asp Gly Arg Ile Lys Thr Gly	Asp Ile Leu Leu Asn Val	
455	460	465
Asp Gly Val Glu Leu Thr Glu Val Ser	Arg Ser Glu Ala Val Ala	
470	475	480
Leu Leu Lys Arg Thr Ser Ser Ile	Val Leu Lys Ala Leu Glu	
485	490	495
Val Lys Glu Tyr Glu Pro Gln Glu Asp	Cys Ser Ser Pro Ala Ala	
500	505	510
Leu Asp Ser Asn His Asn Met Ala Pro	Pro Ser Asp Trp Ser Pro	
515	520	525
Ser Trp Val Met Trp Leu Glu Leu Pro	Arg Cys Leu Tyr Asn Cys	
530	535	540
Lys Asp Ile Val Leu Arg Arg Asn Thr	Ala Gly Ser Leu Gly Phe	
545	550	555
Cys Ile Val Gly Gly Tyr Glu Glu Tyr	Asn Gly Asn Lys Pro Phe	
560	565	570
Phe Ile Lys Ser Ile Val Glu Gly Thr	Pro Ala Tyr Asn Asp Gly	
575	580	585
Arg Ile Arg Cys Gly Asp Ile Leu Leu	Ala Val Asn Gly Arg Ser	
590	595	600
Thr Ser Gly Met Ile His Ala Cys Leu	Ala Arg Leu Leu Lys Glu	
605	610	615
Leu Lys Gly Arg Ile Thr Leu Thr Ile	Val Ser Trp Pro Gly Thr	
620	625	630
Phe Leu		

<210> 220
<211> 773
<212> DNA
<213> Homo sapiens

<400> 220
ccaaagtat catttggaaaa agagatatacc acatcttcaa gccccatataaa 50
aggatagaag ctgcacaggg cagtttact tactccagca ctttcctctc 100
ccaggcaaat ggtgctgacc atctttggaa tacaatctca tggatacgag 150
gttttaaca tcatacagccc aagcaacaat ggtggcaatg ttcaggagac 200
agtgacaatt gataatgaaa aaaataccgc catcgtaac atccatgcag 250
gatcatgctc ttctaccaca atttttgact ataaacatgg ctacattgca 300
tccagggtgc tctccgaag agcctgctt atcctgaaga tggaccatca 350
gaacatccct cctctgaaca atctccaatg gtacatctat gagaaacagg 400
ctctggacaa catgttctcc aacaaataca cctgggtcaa gtacaacct 450
ctggagtctc tgatcaaaga cgtggattgg ttccctgctt ggtcacccat 500
tgagaaactc tgcaaacata tccctttgtt taagggggaa gtggttgaaa 550
acacacataa tgtcggtgct ggaggctgtg caaaggctgg gctcctggc 600
atcttggaa tttcaatctg tgcagacatt catgtttagg atgattagcc 650
ctcttggaaa atctttcaa agaaatacat cttgggtta cactcaaaag 700
tcaaattaaa ttcttccca atgccccaaac taattttagg attcagtcag 750
aaaatataaa tgctgtatata 773

<210> 221
<211> 184
<212> PRT
<213> Homo sapiens

<400> 221
Met Lys Ile Leu Val Ala Phe Leu Val Val Leu Thr Ile Phe Gly
1 5 10 15
Ile Gln Ser His Gly Tyr Glu Val Phe Asn Ile Ile Ser Pro Ser
20 25 30
Asn Asn Gly Gly Asn Val Gln Glu Thr Val Thr Ile Asp Asn Glu
35 40 45
Lys Asn Thr Ala Ile Val Asn Ile His Ala Gly Ser Cys Ser Ser
50 55 60
Thr Thr Ile Phe Asp Tyr Lys His Gly Tyr Ile Ala Ser Arg Val
65 70 75
Leu Ser Arg Arg Ala Cys Phe Ile Leu Lys Met Asp His Gln Asn
80 85 90

Ile	Pro	Pro	Leu	Asn	Asn	Leu	Gln	Trp	Tyr	Ile	Tyr	Glu	Lys	Gln
95								100						105
Ala	Leu	Asp	Asn	Met	Phe	Ser	Asn	Lys	Tyr	Thr	Trp	Val	Lys	Tyr
110								115						120
Asn	Pro	Leu	Glu	Ser	Leu	Ile	Lys	Asp	Val	Asp	Trp	Phe	Leu	Leu
125								130						135
Gly	Ser	Pro	Ile	Glu	Lys	Leu	Cys	Lys	His	Ile	Pro	Leu	Tyr	Lys
140								145						150
Gly	Glu	Val	Val	Glu	Asn	Thr	His	Asn	Val	Gly	Ala	Gly	Gly	Cys
155								160						165
Ala	Lys	Ala	Gly	Leu	Leu	Gly	Ile	Leu	Gly	Ile	Ser	Ile	Cys	Ala
170								175						180

Asp Ile His Val

<210> 222
<211> 992
<212> DNA
<213> Homo sapiens

<400> 222
ggcacgagcc aggaacttagg aggttctcac tgcccgagca gaggccctac 50
acccaccgag gcatggggct ccctgggctg ttctgcttgg ccgtgctggc 100
tgccagcagc ttctccaagg cacgggagga agaaattacc cctgtggtct 150
ccattgccta caaagtccctg gaagtttcc ccaaaggccg ctgggtgctc 200
ataacctgct gtgcacccca gccaccacccg cccatcacct attccctctg 250
tggAACCAAG aacatcaagg tggccaagaa ggtggtaag acccacgagc 300
cggcctccctt caacctcaac gtcacactca agtccagtcc agacctgctc 350
acctacttct gccgggcgtc ctccacactca ggtgccatg tggacagtgc 400
caggctacag atgcactggg agctgtggc caagccagtg tctgagctgc 450
gggccaacctt cactctgcag gacagagggg caggccccag ggtggagatg 500
atctgccagg cgtccctcggt cagcccaccc atcaccaaca gcctgatcgg 550
gaaggatggg caggtccacc tgcagcagag accatgccac aggccgcctg 600
ccaacttctc cttccctgccc agccagacat cggactggtt ctggtgccag 650
gctgcaaaca acgccaatgt ccagcacagc gccctcacag tggtgcccc 700
aggtggtgac cagaagatgg aggactggca gggtcccctg gagagcccc 750
tccttgcctt gccgctctac aggagcaccc gccgtctgag tgaagaggag 800
tttgggggggt tcaggatagg gaatggggag gtcagaggac gcaaagcagc 850
agccatgtag aatgaaccgt ccagagagcc aagcacggca gaggactgca 900

ggccatcagc gtgcactgtt cgtatttggaa gttcatgcaa aatgagtgtg 950

tttttagctgc tcttgccaca aaaaaaaaaaaa aaaaaaaaaaa aa 992

<210> 223

<211> 265

<212> PRT

<213> Homo sapiens

<400> 223

Met Gly Leu Pro Gly Leu Phe Cys Leu Ala Val Leu Ala Ala Ser
1 5 10 15

Ser Phe Ser Lys Ala Arg Glu Glu Ile Thr Pro Val Val Ser
20 25 30

Ile Ala Tyr Lys Val Leu Glu Val Phe Pro Lys Gly Arg Trp Val
35 40 45

Leu Ile Thr Cys Cys Ala Pro Gln Pro Pro Pro Pro Ile Thr Tyr
50 55 60

Ser Leu Cys Gly Thr Lys Asn Ile Lys Val Ala Lys Lys Val Val
65 70 75

Lys Thr His Glu Pro Ala Ser Phe Asn Leu Asn Val Thr Leu Lys
80 85 90

Ser Ser Pro Asp Leu Leu Thr Tyr Phe Cys Arg Ala Ser Ser Thr
95 100 105

Ser Gly Ala His Val Asp Ser Ala Arg Leu Gln Met His Trp Glu
110 115 120

Leu Trp Ser Lys Pro Val Ser Glu Leu Arg Ala Asn Phe Thr Leu
125 130 135

Gln Asp Arg Gly Ala Gly Pro Arg Val Glu Met Ile Cys Gln Ala
140 145 150

Ser Ser Gly Ser Pro Pro Ile Thr Asn Ser Leu Ile Gly Lys Asp
155 160 165

Gly Gln Val His Leu Gln Gln Arg Pro Cys His Arg Gln Pro Ala
170 175 180

Asn Phe Ser Phe Leu Pro Ser Gln Thr Ser Asp Trp Phe Trp Cys
185 190 195

Gln Ala Ala Asn Asn Ala Asn Val Gln His Ser Ala Leu Thr Val
200 205 210

Val Pro Pro Gly Gly Asp Gln Lys Met Glu Asp Trp Gln Gly Pro
215 220 225

Leu Glu Ser Pro Ile Leu Ala Leu Pro Leu Tyr Arg Ser Thr Arg
230 235 240

Arg Leu Ser Glu Glu Phe Gly Gly Phe Arg Ile Gly Asn Gly
245 250 255

Glu Val Arg Gly Arg Lys Ala Ala Ala Met
260 265

<210> 224
<211> 1297
<212> DNA
<213> Homo sapiens

<400> 224
ggtccttaat ggcagcagcc gccgctacca agatccttct gtgcctcccg 50
cttctgtcc tgctgtccgg ctggcccgg gctgggcgag ccgaccctca 100
ctctctttgc tatgacatca ccgtcatccc taagttcaga cctggaccac 150
ggtgtgtgc ggttcaaggc caggtggatg aaaagacttt tcttcactat 200
gactgtggca acaagacagt cacacctgtc agtccccctgg ggaagaaact 250
aaatgtcaca acggcctgga aagcacagaa cccagttactg agagaggtgg 300
tggacatact tacagagcaa ctgcgtgaca ttcaagctgga gaattacaca 350
cccaaggaac ccctcaccct gcaggcaagg atgtcttgtg agcagaaagc 400
tgaaggacac agcagtggat cttggcagtt cagtttcgat gggcagatct 450
tcctcctctt tgactcagag aagagaatgt ggacaacggc tcattcctgga 500
gccagaaaaga tgaaagaaaa gtgggagaat gacaagggttg tggccatgtc 550
cttccattac ttctcaatgg gagactgtat aggatggcctt gaggacttct 600
tgatggcat ggacagcacc ctggagccaa gtgcaggagc accactcgcc 650
atgtcctcag gcacaaccca actcagggcc acagccacca ccctcatcct 700
ttgctgcctc ctcatcatcc tccccctgctt catcctccct ggcattctgag 750
gagagtcott tagagtgaca ggttaaagct gataccaaa ggctcctgtg 800
agcacggctc tgatcaaact cgcccttctg tctggccagc tgcccacgac 850
ctacggtgta tgtccagtgg cctccagcag atcatgatga catcatggac 900
ccaatagctc attcaactgcc ttgattcctt ttgccaacaa ttttaccagc 950
agttataacct aacatattat gcaattttctt cttggtgcta cctgatggaa 1000
ttcctgcact taaagttctg gctgactaaa caagatataat cattttctt 1050
cttctctttt tgtttggaaa atcaagttact tctttgaatg atgatcttt 1100
tcttgcaaat gatattgtca gtaaaataat cacgttagac ttcagacctc 1150
tggggattct ttccgtgtcc tgaaagagaa ttttaaattt attaataag 1200
aaaaaaattta tattaatgtat tgtttccctt agtaatttat tgttctgtac 1250
tgatatttaa ataaagagtt ctatccca aaaaaaaaaa aaaaaaaaa 1297

<210> 225
<211> 246
<212> PRT
<213> Homo sapiens

<400> 225

Met	Ala	Ala	Ala	Ala	Thr	Lys	Ile	Leu	Leu	Cys	Leu	Pro	Leu	
1				5				10				15		
Leu	Leu	Leu	Leu	Ser	Gly	Trp	Ser	Arg	Ala	Gly	Arg	Ala	Asp	Pro
				20				25				30		
His	Ser	Leu	Cys	Tyr	Asp	Ile	Thr	Val	Ile	Pro	Lys	Phe	Arg	Pro
				35				40				45		
Gly	Pro	Arg	Trp	Cys	Ala	Val	Gln	Gly	Gln	Val	Asp	Glu	Lys	Thr
				50				55				60		
Phe	Leu	His	Tyr	Asp	Cys	Gly	Asn	Lys	Thr	Val	Thr	Pro	Val	Ser
				65				70				75		
Pro	Leu	Gly	Lys	Lys	Leu	Asn	Val	Thr	Thr	Ala	Trp	Lys	Ala	Gln
				80				85				90		
Asn	Pro	Val	Leu	Arg	Glu	Val	Val	Asp	Ile	Leu	Thr	Glu	Gln	Leu
				95				100				105		
Arg	Asp	Ile	Gln	Leu	Glu	Asn	Tyr	Thr	Pro	Lys	Glu	Pro	Leu	Thr
				110				115				120		
Leu	Gln	Ala	Arg	Met	Ser	Cys	Glu	Gln	Lys	Ala	Glu	Gly	His	Ser
				125				130				135		
Ser	Gly	Ser	Trp	Gln	Phe	Ser	Phe	Asp	Gly	Gln	Ile	Phe	Leu	Leu
				140				145				150		
Phe	Asp	Ser	Glu	Lys	Arg	Met	Trp	Thr	Thr	Val	His	Pro	Gly	Ala
				155				160				165		
Arg	Lys	Met	Lys	Glu	Lys	Trp	Glu	Asn	Asp	Lys	Val	Val	Ala	Met
				170				175				180		
Ser	Phe	His	Tyr	Phe	Ser	Met	Gly	Asp	Cys	Ile	Gly	Trp	Leu	Glu
				185				190				195		
Asp	Phe	Leu	Met	Gly	Met	Asp	Ser	Thr	Leu	Glu	Pro	Ser	Ala	Gly
				200				205				210		
Ala	Pro	Leu	Ala	Met	Ser	Ser	Gly	Thr	Thr	Gln	Leu	Arg	Ala	Thr
				215				220				225		
Ala	Thr	Thr	Leu	Ile	Leu	Cys	Cys	Leu	Leu	Ile	Ile	Leu	Pro	Cys
				230				235				240		
Phe	Ile	Leu	Pro	Gly	Ile									
				245										

<210> 226

<211> 735

<212> DNA

<213> Homo sapiens

<400> 226

gggaaagccca tttcgaaaac ccatctatac aaactatata ttttcatttc 50

tgctgcttagc tgccttgggc ctcacaattt tcattctgtt ttctgacttt 100

caagttatat accgtggaat ggagttgatc ccaaccataa catcgtggag 150

ggttttaatt ttgggtggtag ccctcaccca attctggtgt ggcttcctt 200
gcagaggatt ccacacctcaa aatcatgaac tctggctgtt gatcaaaaaga 250
gaatttggat tctactctaa aagtcaatat aggacttggc aaaagaagct 300
agcagaagac tcaacacctggc ctcccataaa caggacagat tattcaggtg 350
atggcaaaaa tggattctac atcaacggag gctatgaaag ccatgaacag 400
attccaaaaaa gaaaactcaa attgggagggc caacccacag aacagcattt 450
ctgggccagg ctgtaatcag aattgtcgct gtacatgctc aacagcattt 500
ctttttccc caaaattaac acattgtgga gaagtgtatga tactctcccc 550
ttacctttcc tctctccatt caagcattca aagtatattt tcaatgaatt 600
aacacctgca gcaagggacc ttagataggc ttattctgac tgtatgctt 650
accaatgaga gaaaaaaaaatg catttcctgt atcatcctt tcaataaaact 700
gtattcattt tgaaaaaaaaaaaaaaaaaaaa 735

<210> 227

<211> 115

<212> PRT

<213> Homo sapiens

<400> 227

Met	Glu	Leu	Ile	Pro	Thr	Ile	Thr	Ser	Trp	Arg	Val	Leu	Ile	Leu
1									10					15
Val	Val	Ala	Leu	Thr	Gln	Phe	Trp	Cys	Gly	Phe	Leu	Cys	Arg	Gly
									25					30
Phe	His	Leu	Gln	Asn	His	Glu	Leu	Trp	Leu	Leu	Ile	Lys	Arg	Glu
									35					45
Phe	Gly	Phe	Tyr	Ser	Lys	Ser	Gln	Tyr	Arg	Thr	Trp	Gln	Lys	Lys
									50					60
Leu	Ala	Glu	Asp	Ser	Thr	Trp	Pro	Pro	Ile	Asn	Arg	Thr	Asp	Tyr
									65					75
Ser	Gly	Asp	Gly	Lys	Asn	Gly	Phe	Tyr	Ile	Asn	Gly	Gly	Tyr	Glu
									80					90
Ser	His	Glu	Gln	Ile	Pro	Lys	Arg	Lys	Leu	Lys	Leu	Gly	Gly	Gln
									95					105
Pro	Thr	Glu	Gln	His	Phe	Trp	Ala	Arg	Leu					
									110					115

<210> 228

<211> 2185

<212> DNA

<213> Homo sapiens

<400> 228

tttctccctt ccgagccaaa atcccaggcg atggtaatt atgaacgtgc 50
cacaccatga agctttgtg gcaggttaact gtgcaccacc acacctggaa 100

tgccatcctg ctcccggtcg tctacacctac ggcgcaagtg tggattctgt 150
gtgcagccat cgctgctgcc gcctcagccg ggccccagaa ctgcccctcc 200
gtttgctcgt gcagtaacca gttcagcaag gtggtgtgca cgcgcgggg 250
cctctccgag gtcccgagg gtattccctc gaacaccgg tacctaacc 300
tcatggagaa caacatccag atgatccagg ccgacacctt cggccaccc 350
caccacctgg aggtcctgca gttggcagg aactccatcc ggcagattga 400
ggtgggggcc ttcaacggcc tggccagcct caacaccctg gagctgttcg 450
acaactggct gacagtcatc cctagcgggg ccttgaata cctgtccaag 500
ctgcgggagc tctggcttcg caacaacccc atcgaaagca tcccctctta 550
cgccctcaac cgggtgcct ccctcatgcg cctggacttg gggagactca 600
agaagctgga gtatatctct gagggagctt ttgagggct gttcaaccc 650
aagtatctga acttggcat gtcaacatt aaagacatgc ccaatctcac 700
ccccctggtg gggctggagg agctggagat gtcagggAAC cacttccctg 750
agatcaggcc tggctccccc catggcctga gctccctcaa gaagctctgg 800
gtcatgaact cacaggtcag cctgatttag cggaatgctt ttgacgggct 850
ggcttcactt gtgaaactca acttggccca caataaccc 1050
ccatgaccc tttaccccg ctgaggtacc tggtgagtt gcatctacac 950
cacaaccctt ggaactgtga ttgtgacatt ctgtggctag cctgggtggct 1000
tcgagagtat atacccacca attccaccc 1100
ccatgcacat gcgaggccgc tacctcggtt aggtggacca ggcctccccc 1150
cagtgtctg ccccttcat catggacca cctcgagacc tcaacatttc 1200
tgagggtcgg atggcagaac ttaagtgtcg gactccccct atgtcctccg 1250
tgaagtgggtt gctggccaat gggacagtgc tcagccacgc ctccggccac 1300
ccaaggatct ctgtcctcaa cgacggcacc ttgaacttt cccacgtgct 1350
gcttcagac actggggtgt acacatgcat ggtgaccaat gttgcaggca 1400
actccaaacgc ctggcctac ctcaatgtga gcacggctga gcttaacacc 1450
tccaactaca gcttcttcac cacagtaaca gtggagacca cggagatctc 1500
gcctgaggac acaacgcgaa agtacaagcc tgttcctacc acgtccactg 1550
gttaccagcc ggcataacc accctctacca cgggtgctcat tcagactacc 1600
cgtgtgccc agcaggtggc agtaccccg acagacacca ctgacaagat 1650
gcagaccaggc ctggatgaag tcatgaagac caccaagatc atcattggct 1700
gctttgtggc agtgaactctg ctagctggccg ccatgttgat tgtcttcata 1750

aaacttcgta agcggcacca gcagcggagt acagtcacag ccgcccggac 1750
tgtttagata atccagggtgg acgaagacat cccagcagca acatccgcag 1800
cagcaacagc agctccgtcc ggtgtatcag gtgagggggc agtagtgctg 1850
cccacaattc atgaccatat taactacaac acctacaaac cagcacatgg 1900
ggcccactgg acagaaaaca gcctgggaa ctctctgcac cccacagtca 1950
ccactatctc tgaaccttat ataattcaga cccataccaa ggacaaggta 2000
cagggaaactc aaatatgact cccctcccc aaaaaactta taaaatgcaa 2050
tagaatgcac acaaagacag caactttgt acagagtggg gagagacttt 2100
ttcttgata tgcttatata ttaagtctat gggctggta aaaaaaacag 2150
attatattaa aatttaaaga caaaaagtca aaaca 2185

<210> 229

<211> 653

<212> PRT

<213> Homo sapiens

<400> 229

Met	Lys	Leu	Leu	Trp	Gln	Val	Thr	Val	His	His	His	Thr	Trp	Asn
1				5				10					15	
Ala	Ile	Leu	Leu	Pro	Phe	Val	Tyr	Leu	Thr	Ala	Gln	Val	Trp	Ile
				20				25					30	
Leu	Cys	Ala	Ala	Ile	Ala	Ala	Ala	Ala	Ser	Ala	Gly	Pro	Gln	Asn
	35							40					45	
Cys	Pro	Ser	Val	Cys	Ser	Cys	Ser	Asn	Gln	Phe	Ser	Lys	Val	Val
	50							55					60	
Cys	Thr	Arg	Arg	Gly	Leu	Ser	Glu	Val	Pro	Gln	Gly	Ile	Pro	Ser
	65							70					75	
Asn	Thr	Arg	Tyr	Leu	Asn	Leu	Met	Glu	Asn	Asn	Ile	Gln	Met	Ile
	80							85					90	
Gln	Ala	Asp	Thr	Phe	Arg	His	Leu	His	His	Leu	Glu	Val	Leu	Gln
	95							100					105	
Leu	Gly	Arg	Asn	Ser	Ile	Arg	Gln	Ile	Glu	Val	Gly	Ala	Phe	Asn
	110							115					120	
Gly	Leu	Ala	Ser	Leu	Asn	Thr	Leu	Glu	Leu	Phe	Asp	Asn	Trp	Leu
	125							130					135	
Thr	Val	Ile	Pro	Ser	Gly	Ala	Phe	Glu	Tyr	Leu	Ser	Lys	Leu	Arg
	140							145					150	
Glu	Leu	Trp	Leu	Arg	Asn	Asn	Pro	Ile	Glu	Ser	Ile	Pro	Ser	Tyr
	155							160					165	
Ala	Phe	Asn	Arg	Val	Pro	Ser	Leu	Met	Arg	Leu	Asp	Leu	Gly	Glu
	170							175					180	
Leu	Lys	Lys	Leu	Glu	Tyr	Ile	Ser	Glu	Gly	Ala	Phe	Glu	Gly	Leu

185 190 195

Phe Asn Leu Lys Tyr Leu Asn Leu Gly Met Cys Asn Ile Lys Asp		
200	205	210
Met Pro Asn Leu Thr Pro Leu Val Gly Leu Glu Glu Leu Glu Met		
215	220	225
Ser Gly Asn His Phe Pro Glu Ile Arg Pro Gly Ser Phe His Gly		
230	235	240
Leu Ser Ser Leu Lys Lys Leu Trp Val Met Asn Ser Gln Val Ser		
245	250	255
Leu Ile Glu Arg Asn Ala Phe Asp Gly Leu Ala Ser Leu Val Glu		
260	265	270
Leu Asn Leu Ala His Asn Asn Leu Ser Ser Leu Pro His Asp Leu		
275	280	285
Phe Thr Pro Leu Arg Tyr Leu Val Glu Leu His Leu His His Asn		
290	295	300
Pro Trp Asn Cys Asp Cys Asp Ile Leu Trp Leu Ala Trp Trp Leu		
305	310	315
Arg Glu Tyr Ile Pro Thr Asn Ser Thr Cys Cys Gly Arg Cys His		
320	325	330
Ala Pro Met His Met Arg Gly Arg Tyr Leu Val Glu Val Asp Gln		
335	340	345
Ala Ser Phe Gln Cys Ser Ala Pro Phe Ile Met Asp Ala Pro Arg		
350	355	360
Asp Leu Asn Ile Ser Glu Gly Arg Met Ala Glu Leu Lys Cys Arg		
365	370	375
Thr Pro Pro Met Ser Ser Val Lys Trp Leu Leu Pro Asn Gly Thr		
380	385	390
Val Leu Ser His Ala Ser Arg His Pro Arg Ile Ser Val Leu Asn		
395	400	405
Asp Gly Thr Leu Asn Phe Ser His Val Leu Leu Ser Asp Thr Gly		
410	415	420
Val Tyr Thr Cys Met Val Thr Asn Val Ala Gly Asn Ser Asn Ala		
425	430	435
Ser Ala Tyr Leu Asn Val Ser Thr Ala Glu Leu Asn Thr Ser Asn		
440	445	450
Tyr Ser Phe Phe Thr Thr Val Thr Val Glu Thr Thr Glu Ile Ser		
455	460	465
Pro Glu Asp Thr Thr Arg Lys Tyr Lys Pro Val Pro Thr Thr Ser		
470	475	480
Thr Gly Tyr Gln Pro Ala Tyr Thr Ser Thr Thr Val Leu Ile		
485	490	495
Gln Thr Thr Arg Val Pro Lys Gln Val Ala Val Pro Ala Thr Asp		

500 505 510

Thr Thr Asp Lys Met Gln Thr Ser Leu Asp Glu Val Met Lys Thr
515 520 525

Thr Lys Ile Ile Ile Gly Cys Phe Val Ala Val Thr Leu Leu Ala
530 535 540

Ala Ala Met Leu Ile Val Phe Tyr Lys Leu Arg Lys Arg His Gln
545 550 555

Gln Arg Ser Thr Val Thr Ala Ala Arg Thr Val Glu Ile Ile Gln
560 565 570

Val Asp Glu Asp Ile Pro Ala Ala Thr Ser Ala Ala Ala Thr Ala
575 580 585

Ala Pro Ser Gly Val Ser Gly Glu Gly Ala Val Val Leu Pro Thr
590 595 600

Ile His Asp His Ile Asn Tyr Asn Thr Tyr Lys Pro Ala His Gly
605 610 615

Ala His Trp Thr Glu Asn Ser Leu Gly Asn Ser Leu His Pro Thr
620 625 630

Val Thr Thr Ile Ser Glu Pro Tyr Ile Ile Gln Thr His Thr Lys
635 640 645

Asp Lys Val Gln Glu Thr Gln Ile
650

<210> 230
<211> 2846
<212> DNA
<213> Homo sapiens

<400> 230
cgctcgggca ccagccgcgg caaggatgga gctgggttgc tggacgcagt 50
tggggctcac ttttcttcag ctccttctca tctcgccctt gccaaaggagag 100
tacacagtca ttaatgaagc ctgccctgga gcagagtggaa atatcatgtg 150
tcgggagtgc tgtgaatatg atcagattga gtgcgtctgc cccggaaaaga 200
ggaaagtgcgt gggttataacc atcccttgcgt gcaggaatga ggagaatgag 250
tgtgactcct gcctgatcca cccaggttgt accatcttg aaaactgcaa 300
gagctgccga aatggctcat ggggggtac cttggatgac ttctatgtga 350
aggggttcta ctgtcagag tgccgagcag gctggatcgg aggagactgc 400
atgcgatgtg gccaggttct gcgagccccaa aagggtcaga ttttgttggaa 450
aagctatccc ctaaatgctc actgtgaatg gaccattcat gctaaacctg 500
ggtttgcgt ccaactaaga tttgtcatgt tgagtctggaa gtttgactac 550
atgtgccagt atgactatgt tgaggttcgt gatggagaca accgcgtatgg 600
ccagatcatc aagcgtgtct gtggcaacga gcggccagct cctatccaga 650

gcataggatc ctcactccac gtcctttcc actccgatgg ctccaagaat 700
tttgcgggtt tccatgccat ttatgaggag atcacagcat gctcctcatc 750
cccttggttc catgacggca cgtgcgtcct tgacaaggct ggatcttaca 800
agtgtgcctg cttggcaggc tatactggc agcgctgtga aaatctcctt 850
gaagaaaagaa actgctcaga ccctggggc ccagtcaatg ggtaccagaa 900
aataaacaggg ggccctgggc ttatcaacgg acgcccattgt aaaattggca 950
ccgtgggtgc tttctttgt aacaactcct atgttcttag tggcaatgag 1000
aaaagaactt gccagcagaa tggagagtgg tcagggaaac agcccatctg 1050
cataaaagcc tgccgagaac caaagattc agacctggtg agaaggagag 1100
ttcttccgat gcaggttcag tcaaggaga caccattaca ccagctatac 1150
tcagcggcct tcagcaagca gaaactgcag agtgcctcta ccaagaagcc 1200
agcccttccc tttggagatc tgcccatggg ataccaacat ctgcataaccc 1250
agctccagta tgagtgcatac tcacccttct accgcgcctt gggcagcagc 1300
aggaggacat gtctgaggac tggaaagtgg agtgggcggg caccatcctg 1350
catccctatac tgccccaaaa ttgagaacat cactgctcca aagacccaag 1400
gtttgcgctg gccgtggcag gcagccatct acaggaggac cagcgggtg 1450
catgacggca gcctacacaa gggagcgtgg ttcctagtct gcagcggtg 1500
cctggtaat gagcgcactg tgggtggc tgccactgt gttactgacc 1550
tggggaaagt caccatgatc aagacagcag acctgaaagt tgttttgggg 1600
aaattctacc gggatgatga ccgggatgag aagaccatcc agagcctaca 1650
gatttctgtc atcattctgc atcccaacta tgacccatc ctgcttgatg 1700
ctgacatcgc catcctgaag ctcctagaca aggcccgtat cagcacccga 1750
gtccagcca tctgcctcgc tgccagtcgg gatctcagca cttccttcca 1800
ggagtcccac atcactgtgg ctggctggaa tgtcctggca gacgtgagga 1850
gccctggctt caagaacgac acactgcgtc ctgggggtgt cagtgtggtg 1900
gactcgctgc tgtgtgagga gcagcatgag gaccatggca tcccagtgag 1950
tgtcaactgat aacatgttct gtgcctgactg ggaacccact gccccttctg 2000
atatctgcac tgcagagaca ggaggcatcg cggctgtgtc cttcccgaaa 2050
cgagcatctc ctgagccacg ctggcatctg atgggactgg tcaagctggag 2100
ctatgataaa acatgcagcc acaggctctc cactgccttc accaagggtgc 2150
tgcctttaa agactggatt gaaagaaata taaaatgaac catgctcatg 2200
cactccttga gaagtgttcc tgcataatccg tctgtacgtg tgtcattgcg 2250

tgaagcagtg tggccctgaa gtgtgatttgc gcctgtgaac ttggctgtgc 2300
caggcttct gacttcaggc acaaaaactca gtgaagggtg agtagacactc 2350
cattgctggt aggctgatgc cgcgtccact actaggacag ccaattggaa 2400
gatgccaggc cttgcaagaa gtaagttct tc当地ataaca 2450
aacctctcca ctccactgac ctgggtgtct tcccccaactt tc当地tataac 2500
aatgccatc agcttgacca gggaaagatct gggcttcattt agggcccctt 2550
tgaggctctc aagttctaga gagctgcctg tgggacagcc cagggcagca 2600
gagctggat gtggtgcatg cctttgtgtt catggccaca gtacagtctg 2650
gtcctttcc ttccccatct cttgtacaca tt当地ataaa ataagggttg 2700
gcttctgaac tacaaaaaaaaaaaaaaa 2750
aaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa 2800
aaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaa 2846

<210> 231

<211> 720

<212> PRT

<213> Homo sapiens

<400> 231

Met	Glu	Leu	Gly	Cys	Trp	Thr	Gln	Leu	Gly	Leu	Thr	Phe	Leu	Gln
1										10				15
Leu	Leu	Leu	Ile	Ser	Ser	Leu	Pro	Arg	Glu	Tyr	Thr	Val	Ile	Asn
				20					25					30
Glu	Ala	Cys	Pro	Gly	Ala	Glu	Trp	Asn	Ile	Met	Cys	Arg	Glu	Cys
				35					40					45
Cys	Glu	Tyr	Asp	Gln	Ile	Glu	Cys	Val	Cys	Pro	Gly	Lys	Arg	Glu
				50					55					60
Val	Val	Gly	Tyr	Thr	Ile	Pro	Cys	Cys	Arg	Asn	Glu	Glu	Asn	Glu
				65					70					75
Cys	Asp	Ser	Cys	Leu	Ile	His	Pro	Gly	Cys	Thr	Ile	Phe	Glu	Asn
				80					85					90
Cys	Lys	Ser	Cys	Arg	Asn	Gly	Ser	Trp	Gly	Gly	Thr	Leu	Asp	Asp
				95					100					105
Phe	Tyr	Val	Lys	Gly	Phe	Tyr	Cys	Ala	Glu	Cys	Arg	Ala	Gly	Trp
				110					115					120
Tyr	Gly	Gly	Asp	Cys	Met	Arg	Cys	Gly	Gln	Val	Leu	Arg	Ala	Pro
				125					130					135
Lys	Gly	Gln	Ile	Leu	Leu	Glu	Ser	Tyr	Pro	Leu	Asn	Ala	His	Cys
				140					145					150
Glu	Trp	Thr	Ile	His	Ala	Lys	Pro	Gly	Phe	Val	Ile	Gln	Leu	Arg
				155					160					165

Phe Val Met Leu Ser Leu Glu Phe Asp Tyr Met Cys Gln Tyr Asp
 170 175 180
 Tyr Val Glu Val Arg Asp Gly Asp Asn Arg Asp Gly Gln Ile Ile
 185 190 195
 Lys Arg Val Cys Gly Asn Glu Arg Pro Ala Pro Ile Gln Ser Ile
 200 205 210
 Gly Ser Ser Leu His Val Leu Phe His Ser Asp Gly Ser Lys Asn
 215 220 225
 Phe Asp Gly Phe His Ala Ile Tyr Glu Glu Ile Thr Ala Cys Ser
 230 235 240
 Ser Ser Pro Cys Phe His Asp Gly Thr Cys Val Leu Asp Lys Ala
 245 250 255
 Gly Ser Tyr Lys Cys Ala Cys Leu Ala Gly Tyr Thr Gly Gln Arg
 260 265 270
 Cys Glu Asn Leu Leu Glu Glu Arg Asn Cys Ser Asp Pro Gly Gly
 275 280 285
 Pro Val Asn Gly Tyr Gln Lys Ile Thr Gly Gly Pro Gly Leu Ile
 290 295 300
 Asn Gly Arg His Ala Lys Ile Gly Thr Val Val Ser Phe Phe Cys
 305 310 315
 Asn Asn Ser Tyr Val Leu Ser Gly Asn Glu Lys Arg Thr Cys Gln
 320 325 330
 Gln Asn Gly Glu Trp Ser Gly Lys Gln Pro Ile Cys Ile Lys Ala
 335 340 345
 Cys Arg Glu Pro Lys Ile Ser Asp Leu Val Arg Arg Arg Val Leu
 350 355 360
 Pro Met Gln Val Gln Ser Arg Glu Thr Pro Leu His Gln Leu Tyr
 365 370 375
 Ser Ala Ala Phe Ser Lys Gln Lys Leu Gln Ser Ala Pro Thr Lys
 380 385 390
 Lys Pro Ala Leu Pro Phe Gly Asp Leu Pro Met Gly Tyr Gln His
 395 400 405
 Leu His Thr Gln Leu Gln Tyr Glu Cys Ile Ser Pro Phe Tyr Arg
 410 415 420
 Arg Leu Gly Ser Ser Arg Arg Thr Cys Leu Arg Thr Gly Lys Trp
 425 430 435
 Ser Gly Arg Ala Pro Ser Cys Ile Pro Ile Cys Gly Lys Ile Glu
 440 445 450
 Asn Ile Thr Ala Pro Lys Thr Gln Gly Leu Arg Trp Pro Trp Gln
 455 460 465
 Ala Ala Ile Tyr Arg Arg Thr Ser Gly Val His Asp Gly Ser Leu
 470 475 480

His Lys Gly Ala Trp Phe Leu Val Cys Ser Gly Ala Leu Val Asn
485 490 495

Glu Arg Thr Val Val Val Ala Ala His Cys Val Thr Asp Leu Gly
500 505 510

Lys Val Thr Met Ile Lys Thr Ala Asp Leu Lys Val Val Leu Gly
515 520 525

Lys Phe Tyr Arg Asp Asp Asp Arg Asp Glu Lys Thr Ile Gln Ser
530 535 540

Leu Gln Ile Ser Ala Ile Ile Leu His Pro Asn Tyr Asp Pro Ile
545 550 555

Leu Leu Asp Ala Asp Ile Ala Ile Leu Lys Leu Leu Asp Lys Ala
560 565 570

Arg Ile Ser Thr Arg Val Gln Pro Ile Cys Leu Ala Ala Ser Arg
575 580 585

Asp Leu Ser Thr Ser Phe Gln Glu Ser His Ile Thr Val Ala Gly
590 595 600

Trp Asn Val Leu Ala Asp Val Arg Ser Pro Gly Phe Lys Asn Asp
605 610 615

Thr Leu Arg Ser Gly Val Val Ser Val Val Asp Ser Leu Leu Cys
620 625 630

Glu Glu Gln His Glu Asp His Gly Ile Pro Val Ser Val Thr Asp
635 640 645

Asn Met Phe Cys Ala Ser Trp Glu Pro Thr Ala Pro Ser Asp Ile
650 655 660

Cys Thr Ala Glu Thr Gly Gly Ile Ala Ala Val Ser Phe Pro Gly
665 670 675

Arg Ala Ser Pro Glu Pro Arg Trp His Leu Met Gly Leu Val Ser
680 685 690

Trp Ser Tyr Asp Lys Thr Cys Ser His Arg Leu Ser Thr Ala Phe
695 700 705

Thr Lys Val Leu Pro Phe Lys Asp Trp Ile Glu Arg Asn Met Lys
710 715 720

<210> 232

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 232

aggttcgtga tggagacaac cgcg 24

<210> 233

<211> 24

<212> DNA

<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 233
tgtcaaggac gcactgccgt catg 24

<210> 234
<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 234
tggccagatc atcaagcgtg tctgtggcaa cgagcggcca gtccttatcc 50

<210> 235
<211> 1964
<212> DNA
<213> Homo sapiens

<400> 235
accaggcatt gtatcttcag ttgtcatcaa gttcgcaatc agattggaaa 50
agctcaactt gaagcttct tcgcctgcagt gaagcagaga gatagatatt 100
attcacgtaa taaaaaacat gggcttcaac ctgactttcc acctttccta 150
caaattccga ttactgttgc tggactttt gtgcctgaca gtggttgggt 200
gggccaccag taactacttc gtgggtgcca ttcaagagat tcctaaagca 250
aaggagttca tggctaattt ccataagacc ctcattttgg ggaagggaaa 300
aactctgact aatgaagcat ccacgaagaa ggtagaactt gacaactgtc 350
cttctgtgtc tccttacctc agaggccaga gcaagctcat tttcaaacca 400
gatctcactt tggaagaggt acaggcagaa aatcccaaag tgtccagagg 450
ccggtatcgc cctcaggaat gtaaagctt acagagggtc gccatcctcg 500
ttccccacccg gaacagagag aaacacctga tgcacctgct ggaacatctg 550
catcccttcc tgcagaggca gcagctggat tatggcatct acgtcatcca 600
ccaggctgaa ggtaaaaagt ttaatcgagc caaactcttg aatgtgggt 650
atctagaagc cctcaaggaa gaaaattggg actgctttat attccacgat 700
gtggacctgg taccggagaa tgactttaac ctttacaagt gtgaggagca 750
tcccaagcat ctggtggttg gcaggaacag cactgggtac aggttagtt 800
acagtggata ttttgggggt gttactgccc taagcagaga gcagtttttc 850
aaggtgaatg gattctctaa caactactgg ggatggggag gcgaagacga 900
tgacctcaga ctcagggttg agctccaaag aatgaaaatt tcccgcccc 950
tgcctgaagt gggtaaatat acaatggtct tccacactag agacaaaggc 1000

aatgaggtga acgcagaacg gatgaagctc ttacaccaag tgcacgagt 1050
ctggagaaca gatgggttga gtagttgtc ttataaatta gtatctgtgg 1100
aacacaatcc tttatatatc aacatcacag tggattctg gtttggtgca 1150
tgaccctgga tcttttgtg atgtttggaa gaactgattc tttgttgca 1200
ataattttgg cctagagact tcaaataatgt aacacacatta agaacctgtt 1250
acagctcatt gttgagctga attttcctt tttgtatTTT cttagcagag 1300
ctcctggta tgttagagtat aaaacagttg taacaagaca gctttcttag 1350
tcattttgtat catgagggtt aaatattgtat atatggatac ttgaaggact 1400
ttatataaaaa ggtgactca aaggataaaa tgaacgctat ttgaggactc 1450
tggttgaagg agatttattt aaatttgaag taatataatggataaaaa 1500
ggccacagga aataagactg ctgaatgtct gagagaacca gagttgtct 1550
cgtccaagggt agaaaggtaC gaagatacaa tactgttatt catttatcct 1600
gtacaatcat ctgtgaagtg gtgggtgtcag gtgagaaggc gtccacaaaa 1650
gaggggagaa aaggcgacga atcaggacac agtgaacttg ggaatgaaga 1700
gttagcagga gggggagtg tcggctgcaaa aggacgttggc agtggactg 1750
gttgcaggtg ctgatagcct tcaggggagg acctgcccag gtatgcctc 1800
cagtgtatgcc caccagagaa tacattctt attagtttt aaagagttt 1850
tgtaaaaatga tttgtacaa gtaggatatg aattagcagt ttacaagttt 1900
acatattaac taataataaa tatgtctatc aaataacctct gtagtaaaat 1950
gtgaaaaagc aaaa 1964

<210> 236
<211> 344
<212> PRT
<213> Homo sapiens

<220>
<221> Signal peptide
<222> 1-27
<223> Signal peptide

<220>
<221> N-glycosylation sites
<222> 4-7, 220-223, 335-338
<223> N-glycosylation sites

<220>
<221> Xylose isomerase proteins
<222> 191-201
<223> Xylose isomerase proteins

<400> 236
Met Gly Phe Asn Leu Thr Phe His Leu Ser Tyr Lys Phe Arg Leu
1 5 10 15

Leu Leu Leu Leu Thr Leu Cys Leu Thr Val Val Gly Trp Ala Thr
 20 25 30
 Ser Asn Tyr Phe Val Gly Ala Ile Gln Glu Ile Pro Lys Ala Lys
 35 40 45
 Glu Phe Met Ala Asn Phe His Lys Thr Leu Ile Leu Gly Lys Gly
 50 55 60
 Lys Thr Leu Thr Asn Glu Ala Ser Thr Lys Lys Val Glu Leu Asp
 65 70 75
 Asn Cys Pro Ser Val Ser Pro Tyr Leu Arg Gly Gln Ser Lys Leu
 80 85 90
 Ile Phe Lys Pro Asp Leu Thr Leu Glu Glu Val Gln Ala Glu Asn
 95 100 105
 Pro Lys Val Ser Arg Gly Arg Tyr Arg Pro Gln Glu Cys Lys Ala
 110 115 120
 Leu Gln Arg Val Ala Ile Leu Val Pro His Arg Asn Arg Glu Lys
 125 130 135
 His Leu Met Tyr Leu Leu Glu His Leu His Pro Phe Leu Gln Arg
 140 145 150
 Gln Gln Leu Asp Tyr Gly Ile Tyr Val Ile His Gln Ala Glu Gly
 155 160 165
 Lys Lys Phe Asn Arg Ala Lys Leu Leu Asn Val Gly Tyr Leu Glu
 170 175 180
 Ala Leu Lys Glu Glu Asn Trp Asp Cys Phe Ile Phe His Asp Val
 185 190 195
 Asp Leu Val Pro Glu Asn Asp Phe Asn Leu Tyr Lys Cys Glu Glu
 200 205 210
 His Pro Lys His Leu Val Val Gly Arg Asn Ser Thr Gly Tyr Arg
 215 220 225
 Leu Arg Tyr Ser Gly Tyr Phe Gly Gly Val Thr Ala Leu Ser Arg
 230 235 240
 Glu Gln Phe Phe Lys Val Asn Gly Phe Ser Asn Asn Tyr Trp Gly
 245 250 255
 Trp Gly Gly Glu Asp Asp Asp Leu Arg Leu Arg Val Glu Leu Gln
 260 265 270
 Arg Met Lys Ile Ser Arg Pro Leu Pro Glu Val Gly Lys Tyr Thr
 275 280 285
 Met Val Phe His Thr Arg Asp Lys Gly Asn Glu Val Asn Ala Glu
 290 295 300
 Arg Met Lys Leu Leu His Gln Val Ser Arg Val Trp Arg Thr Asp
 305 310 315
 Gly Leu Ser Ser Cys Ser Tyr Lys Leu Val Ser Val Glu His Asn
 320 325 330

Pro Leu Tyr Ile Asn Ile Thr Val Asp Phe Trp Phe Gly Ala
335 340

<210> 237

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 237

ccttaccta gaggccagag caagc 25

<210> 238

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 238

gagcttcatc cgttctgcgt tcacc 25

<210> 239

<211> 46

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 239

caggaatgta aagcttaca gagggtcgcc atcctcggt cccacc 46

<210> 240

<211> 2567

<212> DNA

<213> Homo sapiens

<400> 240

cgtggccgg ggtcgccgag cgggctgtgg gcgcgcccgg aggagcgacc 50

gccgcagtcc tcgagactca gctgcattcc ctccgcgtcc gccccacgct 100

tctcccgctc cgggccccgc aatggcccg agcagtgtggt cgccgcctcg 150

ccgcatacctc tggcttgccct gcctcctgcc ctgggccccg gcaggggtgg 200

ccgcaggcct gtatgaactc aatctcacca ccgatagccc tgccaccacg 250

ggagcggtgg tgaccatctc gccagcctg gtggccaagg acaacggcag 300

cctggccctg cccgctgacg cccacctcta ccgcttccac tggatccaca 350

ccccgctggt gcttactggc aagatggaga agggtctcag ctccaccatc 400

cgtgtggtcg gccacgtgcc cggggaaattc ccggctctcg tctgggtcac 450

tgccgcgtac tgctggatgt gccagcctgt ggccaggggc tttgtggtcc 500

tccccatcac agagttcctc gtgggggacc ttgttgtcac ccagaacact 550

tccctaccct ggcccagctc statctcaact aagaccgtcc taaaagtctc 600
cttcctccctc cacgacccga gcaacttctt caagaccgcc ttgtttctct 650
acagctggga cttcggggac gggacccaga tggtgactga agactccgtg 700
gtcttattata actattccat catcgggacc ttcaccgtga agctcaaagt 750
gttggcggag tggaaagagg tggagccgga tgccacgagg gctgtgaagc 800
agaagaccgg ggacttctcc gcctcgctga agctgcagga aacccttcga 850
ggcatccaag tggggggcc caccctaatt cagaccttcc aaaagatgac 900
cgtgaccttg aacttccctgg ggagccctcc tctgactgtg tgctggcgctc 950
tcaaggctga gtgcctcccg ctggaggaag gggagtgcac ccctgtgtcc 1000
gtggccagca cagcgtacaa cctgaccac accttcaggg accctggga 1050
ctactgcttc agcatccggg ccgagaatat catcagcaag acacatcaat 1100
accacaagat ccaggtgtgg ccctccagaa tccagccggc tgtctttgct 1150
ttcccatgtg ctacacttat cactgtgatg ttggccttca tcatgtacat 1200
gaccctgcgg aatgccactc agcaaaagga catggtggag aaccggagc 1250
caccctctgg ggtcaggtgc tgctgccaga tgtgctgtgg gcctttcttg 1300
ctggagactc catctgagta cctggaaatt gttcgtgaga accacgggct 1350
gctccgcac ctctataagt ctgtaaaaac ttacaccgtg tgagcactcc 1400
ccctccccac cccatctcag tgttaactga ctgctgactt ggagtttcca 1450
gcaggggtgt gtgcaccact gaccaggagg gtttcatttg cgtggggctg 1500
ttggcctgga tcatccatcc atctgtacag ttcagccact gccacaagcc 1550
cctccctctc tgtcaccctt gaccccagcc attcacccat ctgtacagtc 1600
cagccactga cataagcccc actcggttac caccccccttg acccccattac 1650
tttgaagagg cttcgtgcag gactttgatg cttgggggtgt tccgtgttga 1700
ctccttaggtg ggcctggctg cccactgccc attcctctca tattggcaca 1750
tctgctgtcc attgggggtt ctcagtttcc tccccccagac agccctaccc 1800
gtgccagaga gctagaaaaga aggtcataaa gggttaaaaaa tccataacta 1850
aagggtgtac acatagatgg gcacactcac agagagaagt gtgcacgtac 1900
acacaccaca cacacacaca cacacacaca cacagaaata taaacacatg 1950
cgtcacatgg gcatttcaga tgatcagctc tgtatctggta taagtcgggt 2000
gctgggatgc accctgcact agagctgaaa ggaaatttga cctccaagca 2050
gccctgacag gttctgggcc cggccctcc ctttgtgctt tgtctctgca 2100
tttcttgccgc ccttataag gccatcctag tccctgctgg ctggcagggg 2150

cctggatggg gggcaggact aatactgagt gattgcagag tgctttataa 2200
atatacacctt attttatcga aacccatctg taaaacttc actgaggaaa 2250
aggccttgca gcggtagaag aggttgagtc aaggccgggc gcggtggtc 2300
acgcctgtaa tcccagcaact ttgggaggcc gaggggggtg gatcaca 2350
tcaggagatc gagaccaccc tggctaacac ggtgaaaccc cgtctctact 2400
aaaaaaatac aaaaagttag ccgggcgtgg tgggggtgc ctgtagtccc 2450
agctactcg gaggctgagg caggagaatg gtgcgaaccc gggaggcgga 2500
gcttgcagtg agccagatg gcgccactgc actccagcct gagtgacaga 2550
gcgagactct gtctcca 2567

<210> 241

<211> 423

<212> PRT

<213> Homo sapiens

<400> 241

Met	Ala	Gln	Ala	Val	Trp	Ser	Arg	Leu	Gly	Arg	Ile	Leu	Trp	Leu
1				5				10					15	
Ala	Cys	Leu	Leu	Pro	Trp	Ala	Pro	Ala	Gly	Val	Ala	Ala	Gly	Leu
		20						25					30	
Tyr	Glu	Leu	Asn	Leu	Thr	Thr	Asp	Ser	Pro	Ala	Thr	Thr	Gly	Ala
			35				40						45	
Val	Val	Thr	Ile	Ser	Ala	Ser	Leu	Val	Ala	Lys	Asp	Asn	Gly	Ser
			50				55						60	
Leu	Ala	Leu	Pro	Ala	Asp	Ala	His	Leu	Tyr	Arg	Phe	His	Trp	Ile
			65				70						75	
His	Thr	Pro	Leu	Val	Leu	Thr	Gly	Lys	Met	Glu	Lys	Gly	Leu	Ser
			80				85						90	
Ser	Thr	Ile	Arg	Val	Val	Gly	His	Val	Pro	Gly	Glu	Phe	Pro	Val
			95				100						105	
Ser	Val	Trp	Val	Thr	Ala	Ala	Asp	Cys	Trp	Met	Cys	Gln	Pro	Val
			110				115						120	
Ala	Arg	Gly	Phe	Val	Val	Leu	Pro	Ile	Thr	Glu	Phe	Leu	Val	Gly
			125				130						135	
Asp	Leu	Val	Val	Thr	Gln	Asn	Thr	Ser	Leu	Pro	Trp	Pro	Ser	Ser
			140				145						150	
Tyr	Leu	Thr	Lys	Thr	Val	Leu	Lys	Val	Ser	Phe	Leu	Leu	His	Asp
			155				160						165	
Pro	Ser	Asn	Phe	Leu	Lys	Thr	Ala	Leu	Phe	Leu	Tyr	Ser	Trp	Asp
			170				175						180	
Phe	Gly	Asp	Gly	Thr	Gln	Met	Val	Thr	Glu	Asp	Ser	Val	Val	Tyr
			185				190						195	

Tyr Asn Tyr Ser Ile Ile Gly Thr Phe Thr Val Lys Leu Lys Val
 200 205 210
 Val Ala Glu Trp Glu Glu Val Glu Pro Asp Ala Thr Arg Ala Val
 215 220 225
 Lys Gln Lys Thr Gly Asp Phe Ser Ala Ser Leu Lys Leu Gln Glu
 230 235 240
 Thr Leu Arg Gly Ile Gln Val Leu Gly Pro Thr Leu Ile Gln Thr
 245 250 255
 Phe Gln Lys Met Thr Val Thr Leu Asn Phe Leu Gly Ser Pro Pro
 260 265 270
 Leu Thr Val Cys Trp Arg Leu Lys Pro Glu Cys Leu Pro Leu Glu
 275 280 285
 Glu Gly Glu Cys His Pro Val Ser Val Ala Ser Thr Ala Tyr Asn
 290 295 300
 Leu Thr His Thr Phe Arg Asp Pro Gly Asp Tyr Cys Phe Ser Ile
 305 310 315
 Arg Ala Glu Asn Ile Ile Ser Lys Thr His Gln Tyr His Lys Ile
 320 325 330
 Gln Val Trp Pro Ser Arg Ile Gln Pro Ala Val Phe Ala Phe Pro
 335 340 345
 Cys Ala Thr Leu Ile Thr Val Met Leu Ala Phe Ile Met Tyr Met
 350 355 360
 Thr Leu Arg Asn Ala Thr Gln Gln Lys Asp Met Val Glu Asn Pro
 365 370 375
 Glu Pro Pro Ser Gly Val Arg Cys Cys Cys Gln Met Cys Cys Gly
 380 385 390
 Pro Phe Leu Leu Glu Thr Pro Ser Glu Tyr Leu Glu Ile Val Arg
 395 400 405
 Glu Asn His Gly Leu Leu Pro Pro Leu Tyr Lys Ser Val Lys Thr
 410 415 420

Tyr Thr Val

<210> 242
 <211> 26
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Synthetic oligonucleotide probe

<400> 242
 catttcctta ccctggaccc agctcc 26

<210> 243
 <211> 25
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Synthetic oligonucleotide probe

 <400> 243
 gaaaggccca cagcacatct ggcag 25

 <210> 244
 <211> 46
 <212> DNA
 <213> Artificial Sequence

 <220>
 <223> Synthetic oligonucleotide probe

 <400> 244
 ccacgaccgg agcaacttcc tcaagaccga cttgtttctc tacagc 46

 <210> 245
 <211> 485
 <212> DNA
 <213> Homo sapiens

 <400> 245
 gctcaagacc cagcagtggg acagccagac agacggcacg atggcactga 50
 gctcccagat ctggccgct tgccctcctgc tcctcctcct cctcgccagc 100
 ctgaccagtg gctctgtttt cccacaacag acgggacaac ttgcagagct 150
 gcaaccccaag gacagagctg gagccagggc cagctggatg cccatgttcc 200
 agaggcgaag gaggcgagac acccacttcc ccacatgtcat tttctgctgc 250
 ggctgctgtc atcgatcaa gtgtggatg tgctgcaaga cgtagaacct 300
 acctgccctg cccccgtccc ctcccttcct tatttattcc tgctgcccc 350
 gaacataggt cttggaataa aatggctggt tctttgttt tccaaaaaaaa 400
 aaaaaaaaaaa aaaaaaaaaaa aaaaaaaaaaa aaaaaaaaaaa aaaaaaaaaaa 450
 aaaaaaaaaaa aaaaaaaaaaa aaaaaaaaaaa aaaaa 485

 <210> 246
 <211> 84
 <212> PRT
 <213> Homo sapiens

 <400> 246
 Met Ala Leu Ser Ser Gln Ile Trp Ala Ala Cys Leu Leu Leu
 1 5 10 15
 Leu Leu Leu Ala Ser Leu Thr Ser Gly Ser Val Phe Pro Gln Gln
 20 25 30
 Thr Gly Gln Leu Ala Glu Leu Gln Pro Gln Asp Arg Ala Gly Ala
 35 40 45
 Arg Ala Ser Trp Met Pro Met Phe Gln Arg Arg Arg Arg Asp
 50 55 60
 Thr His Phe Pro Ile Cys Ile Phe Cys Cys Gly Cys Cys His Arg
 65 70 75

Ser Lys Cys Gly Met Cys Cys Lys Thr
80

<210> 247

<211> 2359

<212> DNA

<213> Homo sapiens

<400> 247

ctgtcaggaa ggaccatctg aaggctgcaa tttgttctta gggaggcagg 50

tgctggcctg gcctggatct tccaccatgt tcctgttgtgc gcctttgat 100

agcctgattg tcaaccttct gggcatctcc ctgactgtcc tcttcacct 150

ccttctcggtt ttcatcatag tgccagccat ttttggagtc tcctttggta 200

tccgcaaact ctacatgaaa agtctgttaa aaatcttgc gtgggctacc 250

ttgagaatgg agcgaggagc caaggagaag aaccaccagc tttacaagcc 300

ctacaccaac ggaatcattt gaaaggatcc cacttcacta gaagaagaga 350

tcaaagagat tcgtcgaagt ggttagtagta aggctctgga caacactcca 400

gagttcgagc tctctgacat tttctacttt tgccggaaag gaatggagac 450

cattatggat gatgaggtga caaagagatt ctcagcagaa gaactggagt 500

cctggAACCT gctgagcaga accaattata acttccagta catcagcctt 550

cggctcacgg tcctgtgggg gtaggagtg ctgattcggt actgctttct 600

gctgccgctc aggatagcac tggctttcac agggattagc cttctgggg 650

tgggcacaac tgtggggta tacttgccaa atgggaggtt taaggaattc 700

atgagtaaac atgttcaattt aatgtgttac cgatctgcg tgcgagcgct 750

gacagccatc atcacctacc atgacagggaa aaacagacca agaaatggtg 800

gcatctgtgt ggccaatcat acctcacccga tcgatgtgat catcttgccc 850

agcgatggct attatgccat ggtgggtcaa gtgcacgggg gactcatggg 900

tgtgattcag agagccatgg tgaaggcctg cccacacgctc tggggatggc 950

gctcgaaatgtt gaaggatcgc cacctgggg ctaagagact gactgaacat 1000

gtgcaagata aaagcaagct gccttatcctc atcttccag aaggaacctg 1050

catcaataat acatcggtga tcatgttcaa aaaggaaatgtt tttgaaattt 1100

gagccacagt ttaccctgtt gctatcaagt atgaccctca atttggcgat 1150

gccttctggaa acagcagcaa atacggatg gtgacgtacc tgctgcgaat 1200

gatgaccagc tggccattt gctgcagcgt gtggtaatcg cctccatga 1250

ctagagaggc agatgaagat gctgtccagt ttgcgaatag ggtgaaatct 1300

gccattgcca ggcaggaggacttgtggac ctgtgtggg atggggcct 1350

gaagagggag aaggtaagg acacgttcaa ggaggagcag cagaagctgt 1400
acagcaagat gatcggtggg aaccacaagg acaggagccg ctccctgagcc 1450
tgccctccagc tggctgggc caccgtgcgg ggtccaaacg ggctcagacg 1500
tggagttgcc gcggccccc ccactgctgt gtccttcca gactccaggg 1550
ctccccgggc tgctctggat cccaggactc cggcttcgc cgagccgcag 1600
cgggatccct gtgcacccgg cgccgcctac cttgggtggt ctaaacggat 1650
gctgctgggt gttgcgaccc aggacgagat gccttgttc tttacaata 1700
agtcgttggaa ggaatgccat taaagtgaac tccccacatt tgcacgctgt 1750
gcgggctgag tggttggga gatgtggcca tggctttgtg ctagagatgg 1800
cggtaacaaga gtctgttatg caagcccggt tgccaggat gtgctgggg 1850
cggccacccg ctctccagga aaggcacagc tgaggcactg tggctggctt 1900
cggcctcaac atcggcccca gccttggagc tctgcagaca tgataggaag 1950
gaaactgtca tctgcagggg ctttcagcaa aatgaagggt tagatttta 2000
tgctgctgtct gatgggtta ctaaaggag ggaaagaggc caggtggcc 2050
gctgactggg ccatggggag aacgtgtt cgtactccag gctaaccctg 2100
aactccccat gtgatgcgcg ctttgtgaa tgtgtgtctc gtttccca 2150
tctgtatat gagtcgggg gaatgggt gattcctacc tcacaggct 2200
gttgtggga ttaaagtgtc gcggtgagt gaaggacaca tcacgttcag 2250
tgtttcaagt acaggcccac aaaacggggc acggcaggcc tgagctcaga 2300
gctgctgcac tggctttgg atttgttctt gtgagtaaat aaaactggct 2350
ggtaatga 2359

<210> 248
<211> 456
<212> PRT
<213> Homo sapiens

<400> 248
Met Phe Leu Leu Leu Pro Phe Asp Ser Leu Ile Val Asn Leu Leu
1 5 10 15
Gly Ile Ser Leu Thr Val Leu Phe Thr Leu Leu Leu Val Phe Ile
20 25 30
Ile Val Pro Ala Ile Phe Gly Val Ser Phe Gly Ile Arg Lys Leu
35 40 45
Tyr Met Lys Ser Leu Leu Lys Ile Phe Ala Trp Ala Thr Leu Arg
50 55 60
Met Glu Arg Gly Ala Lys Glu Lys Asn His Gln Leu Tyr Lys Pro
65 70 75

Tyr Thr Asn Gly Ile Ile Ala Lys Asp Pro Thr Ser Leu Glu Glu
 80 85 90

Glu Ile Lys Glu Ile Arg Arg Ser Gly Ser Ser Lys Ala Leu Asp
 95 100 105

Asn Thr Pro Glu Phe Glu Leu Ser Asp Ile Phe Tyr Phe Cys Arg
 110 115 120

Lys Gly Met Glu Thr Ile Met Asp Asp Glu Val Thr Lys Arg Phe
 125 130 135

Ser Ala Glu Glu Leu Glu Ser Trp Asn Leu Leu Ser Arg Thr Asn
 140 145 150

Tyr Asn Phe Gln Tyr Ile Ser Leu Arg Leu Thr Val Leu Trp Gly
 155 160 165

Leu Gly Val Leu Ile Arg Tyr Cys Phe Leu Leu Pro Leu Arg Ile
 170 175 180

Ala Leu Ala Phe Thr Gly Ile Ser Leu Leu Val Val Gly Thr Thr
 185 190 195

Val Val Gly Tyr Leu Pro Asn Gly Arg Phe Lys Glu Phe Met Ser
 200 205 210

Lys His Val His Leu Met Cys Tyr Arg Ile Cys Val Arg Ala Leu
 215 220 225

Thr Ala Ile Ile Thr Tyr His Asp Arg Glu Asn Arg Pro Arg Asn
 230 235 240

Gly Gly Ile Cys Val Ala Asn His Thr Ser Pro Ile Asp Val Ile
 245 250 255

Ile Leu Ala Ser Asp Gly Tyr Tyr Ala Met Val Gly Gln Val His
 260 265 270

Gly Gly Leu Met Gly Val Ile Gln Arg Ala Met Val Lys Ala Cys
 275 280 285

Pro His Val Trp Phe Glu Arg Ser Glu Val Lys Asp Arg His Leu
 290 295 300

Val Ala Lys Arg Leu Thr Glu His Val Gln Asp Lys Ser Lys Leu
 305 310 315

Pro Ile Leu Ile Phe Pro Glu Gly Thr Cys Ile Asn Asn Thr Ser
 320 325 330

Val Met Met Phe Lys Lys Gly Ser Phe Glu Ile Gly Ala Thr Val
 335 340 345

Tyr Pro Val Ala Ile Lys Tyr Asp Pro Gln Phe Gly Asp Ala Phe
 350 355 360

Trp Asn Ser Ser Lys Tyr Gly Met Val Thr Tyr Leu Leu Arg Met
 365 370 375

Met Thr Ser Trp Ala Ile Val Cys Ser Val Trp Tyr Leu Pro Pro
 380 385 390

Met Thr Arg Glu Ala Asp Glu Asp Ala Val Gln Phe Ala Asn Arg
395 400 405
Val Lys Ser Ala Ile Ala Arg Gln Gly Gly Leu Val Asp Leu Leu
410 415 420
Trp Asp Gly Gly Leu Lys Arg Glu Lys Val Lys Asp Thr Phe Lys
425 430 435
Glu Glu Gln Gln Lys Leu Tyr Ser Lys Met Ile Val Gly Asn His
440 445 450
Lys Asp Arg Ser Arg Ser
455

<210> 249

<211> 1103

<212> DNA

<213> Homo sapiens

<400> 249

gcccctcgaa accaggactc cagcacctct ggtcccgccc tcacccggac 50
ccctggccct cacgtctcct ccagggatgg cgctggcgcc tttgatgatc 100
gcctcggca gcctcggcct ccacacctgg cagggccagg ctgttccac 150
catcctgccc ctgggcctgg ctccagacac ctttgacgat acctatgtgg 200
gttgtgcaga ggagatggag gagaaggcag ccccccgtct aaaggaggaa 250
atggcccacc atgcctgtct gcgggaatcc tgggaggcag cccaggagac 300
ctgggaggac aagcgtcgag ggcttacctt gccccctggc ttcaaagccc 350
agaatggaat agccattatg gtctacacca actcatcgaa caccttgtac 400
tgggagttga atcaggccgt gcggacgggc ggaggctccc gggagctcta 450
catgaggcac ttcccttca aggccctgca ttttacacctg atccgggccc 500
tgcagctgtc gcgaggcagt gggggctgca gcaggggacc tggggaggtg 550
gtgttcggag gtgtggcag ctttcgttt gaacccaaga ggctggggga 600
ctctgtccgc ttggccagt ttgcctccag ctcctggat aaggcagtgg 650
cccacagatt tggggagaag aggcggggct gtgtgtctgc gccagggtg 700
cagcttaggt cacaatctga gggggcctcc tctctgcccc cctggaagac 750
tctgctctg gcccctggag agttccagct ctcaggggtt gggccctgaa 800
agtccaaacat ctgccactta ggagccctgg gaaacgggtga cttcatatg 850
acgaagagggc acctccagca gccttgagaa gcaagaacat gttccggac 900
ccagccctag cagccttctc cccaaccagg atttggcct ggggaggcca 950
cagcagggtc gagggaaactc tgctatgtga tggggacttc ctgggacaag 1000
caaggaaagt actgaggcag ccacttgatt gaacgggtt gcaatgtgga 1050

gacatggagt tttattttaggg tagctacgtg attaaatggc attgcagtg 1100
gga 1103

<210> 250

<211> 240

<212> PRT

<213> Homo sapiens

<400> 250

Met Ala Leu Ala Ala Leu Met Ile Ala Leu Gly Ser Leu Gly Leu
1 5 10 15

His Thr Trp Gln Ala Gln Ala Val Pro Thr Ile Leu Pro Leu Gly
20 25 30

Leu Ala Pro Asp Thr Phe Asp Asp Thr Tyr Val Gly Cys Ala Glu
35 40 45

Glu Met Glu Glu Lys Ala Ala Pro Leu Leu Lys Glu Glu Met Ala
50 55 60

His His Ala Leu Leu Arg Glu Ser Trp Glu Ala Ala Gln Glu Thr
65 70 75

Trp Glu Asp Lys Arg Arg Gly Leu Thr Leu Pro Pro Gly Phe Lys
80 85 90

Ala Gln Asn Gly Ile Ala Ile Met Val Tyr Thr Asn Ser Ser Asn
95 100 105

Thr Leu Tyr Trp Glu Leu Asn Gln Ala Val Arg Thr Gly Gly
110 115 120

Ser Arg Glu Leu Tyr Met Arg His Phe Pro Phe Lys Ala Leu His
125 130 135

Phe Tyr Leu Ile Arg Ala Leu Gln Leu Leu Arg Gly Ser Gly Gly
140 145 150

Cys Ser Arg Gly Pro Gly Glu Val Val Phe Arg Gly Val Gly Ser
155 160 165

Leu Arg Phe Glu Pro Lys Arg Leu Gly Asp Ser Val Arg Leu Gly
170 175 180

Gln Phe Ala Ser Ser Ser Leu Asp Lys Ala Val Ala His Arg Phe
185 190 195

Gly Glu Lys Arg Arg Gly Cys Val Ser Ala Pro Gly Val Gln Leu
200 205 210

Gly Ser Gln Ser Glu Gly Ala Ser Ser Leu Pro Pro Trp Lys Thr
215 220 225

Leu Leu Leu Ala Pro Gly Glu Phe Gln Leu Ser Gly Val Gly Pro
230 235 240

<210> 251

<211> 50

<212> DNA

<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 251
ccaccacactg gaggtcctgc agttggcag gaactccatc cggcagattg 50

<210> 252
<211> 1076
<212> DNA
<213> Homo sapiens

<400> 252
gtggcttcat ttcagtggct gacttccaga gagcaatatg gctggttccc 50
caacatgcct caccctcatc tatatccttt ggcagctcac agggtcagca 100
gcctctggac ccgtgaaaga gctggtcggt tccgttggtg gggccgtgac 150
tttccccctg aagtccaaag taaagcaagt tgactctatt gtctggacct 200
tcaacacaac ccctcttgtc accatacagc cagaaggggg cactatcata 250
gtgacccaaa atcgtaatag ggagagagta gacttcccag atggaggcta 300
ctccctgaag ctcagcaaac tgaagaagaa tgactcaggg atctactatg 350
tggggatata cagctcatca ctccagcagc cctccaccca ggagtacgtg 400
ctgcatgtct acgagcacct gtcaaagcct aaagtccacca tgggtctgca 450
gagcaataag aatggcacct gtgtgaccaa tctgacatgc tgcatggaac 500
atgggaaaga ggatgtgatt tatacctgga aggccctggg gcaagcagcc 550
aatgagtccc ataatgggtc catcctcccc atctcctgga gatggggaga 600
aagtgatatg accttcatct gcgttgcac gaaacctgtc agcagaaact 650
tctcaagccc catccttgcc aggaagctct gtgaaggtgc tgctgatgac 700
ccagattctt ccatggtcct cctgtgtctc ctgttggtgc ccctcctgct 750
cagtctcttt gtactgggc tatttctttt gtttctgaag agagagagac 800
aagaagagta cattgaagag aagaagagag tggacatttgc tcgggaaact 850
cctaacatat gcccccatc tggagagaac acagagtacg acacaatccc 900
tcacactaat agaacaatcc taaaggaaga tccagcaaat acggtttact 950
ccactgtgga aataccgaaa aagatggaaa atccccactc actgctcactg 1000
atgccagaca caccaaggct atttgcctat gagaatgtta tctagacagc 1050
agtgcactcc cctaagtctc tgctca 1076

<210> 253
<211> 335
<212> PRT
<213> Homo sapiens

<400> 253
Met Ala Gly Ser Pro Thr Cys Leu Thr Leu Ile Tyr Ile Leu Trp

1	5	10	15
Gln	Leu	Thr	Gly
Ser	Ala	Ala	Ser
20	25	30	
Gly	Ser	Val	Gly
Gly	Ala	Val	Thr
35	40	45	
Lys	Gln	Val	Asp
Ser	Ile	Val	Trp
50	55	60	
Val	Thr	Ile	Gln
Pro	Glu	Gly	Gly
65	70	75	
Arg	Asn	Arg	Glu
Arg	Val	Asp	Phe
80	85	90	
Lys	Leu	Ser	Lys
Leu	Lys	Lys	Asn
95	100	105	
Gly	Ile	Tyr	Ser
Ser	Ser	Leu	Gln
110	115	120	
Val	Leu	His	Val
Tyr	Glu	His	Leu
125	130	135	
Gly	Leu	Gln	Ser
Asn	Lys	Asn	Gly
140	145	150	
Cys	Cys	Met	Glu
His	Gly	Glu	Asp
155	160	165	
Ala	Leu	Gly	Gln
Ala	Ala	Asn	Glu
170	175	180	
Pro	Ile	Ser	Trp
Arg	Trp	Gly	Glu
185	190	195	
Val	Ala	Arg	Asn
Pro	Val	Ser	Arg
200	205	210	
Ala	Arg	Lys	Leu
Cys	Glu	Gly	Ala
215	220	225	
Met	Val	Leu	Leu
Cys	Leu	Leu	Val
230	235	240	
Phe	Val	Leu	Gly
Leu	Phe	Leu	Trp
245	250	255	
Glu	Glu	Tyr	Ile
Glu	Glu	Lys	Lys
260	265	270	
Thr	Pro	Asn	Ile
Cys	Pro	His	Ser
275	280	285	
Thr	Ile	Pro	His
Thr	Asn	Arg	Thr
Ile	Leu	Lys	Glu
290	295	300	
Asn	Thr	Val	Tyr
Ser	Thr	Val	Glu
305	310	315	
Pro	His	Ser	Leu
Leu	Leu	Thr	Met
Met	Pro	Asp	Thr
Asp	Pro	Arg	Leu
	Phe	Ala	

320

325

330

Tyr Glu Asn Val Ile
335

<210> 254

<211> 1053

<212> DNA

<213> Homo sapiens

<400> 254

ctgggtcccc aacatgcctc accctcatct atatcccttg gcagctcaca 50
gggtcagcag cctctggacc cgtgaaagag ctggtcggtt ccgttggtgg 100
ggccgtgact ttccccctga agtccaaagt aaagcaagtt gactctattg 150
tctggacctt caacacaacc cctcttgtca ccatacagcc agaagggggc 200
actatcatag tgacccaaaa tcgtaatagg gagagagtag acttcccaga 250
tggaggctac tccctgaagc tcagcaaact gaagaagaat gactcaggga 300
tctactatgt gggatatac agctcatcac tccagcagcc ctccacccag 350
gagtacgtgc tgcatgtcta cgagcacctg tcaaaggcta aagtcaccat 400
gggtctgcag agcaataaga atggcacctg tgtgaccaat ctgacatgct 450
gcatggaaca tgggaaagag gatgtgattt atacctggaa ggccctgggg 500
caagcagcca atgagtccca taatgggtcc atcctccca tctcctggag 550
atggggagaa agtgatatga cttcatctg cgttgccagg aaccctgtca 600
gcagaaaactt ctcaagcccc atccttgcca ggaagctctg tgaaggtgct 650
gctgatgacc cagattcctc catggtcctc ctgtgtctcc tttgggtgcc 700
cctcctgctc agtctcttg tactggggct atttctttgg tttctgaaga 750
gagagagaca agaagagtagc attgaagaga agaagagagt ggacatttgt 800
cggaaaactc ctaacatatg ccccccattct ggagagaaca cagagtacga 850
cacaatccct cacactaata gaacaatcct aaaggaagat ccagcaaata 900
cggtttactc cactgtggaa ataccgaaaa agatggaaaa tccccactca 950
ctgctcacga tgccagacac accaaggcta tttgcctatg agaatgttat 1000
ctagacagca gtgcactccc ctaagtctct gctaaaaaaaaaaaaaaaaa 1050
aaa 1053

<210> 255

<211> 860

<212> DNA

<213> Homo sapiens

<400> 255

gaaagacgtg gtcctgacag acagacaatc ctattcccta cccaaatgaa 50

gatgctgctg ctgctgtgtt tggactgac cctagtcgt gtccatgcag 100
aagaagctag ttctacggga aggaactta atgtagaaaa gattaatggg 150
gaatggcata ctattatcct gcctctgac aaaagagaaa agatagaaga 200
acatggcaac tttagacttt ttctggagca aatccatgtc ttggagaatt 250
ccttagttct taaagtccat actgtaagag atgaagagtg ctccgaatta 300
tctatggttg ctgacaaaac agaaaaggct ggtgaatatt ctgtgacgta 350
tgatggattc aatacattta ctatacctaa gacagactat gataacttc 400
ttatggctca ctcattaaac gaaaaggatg gggaaacctt ccagctgatg 450
gggctctatg gccgagaacc agatttgagt tcagacatca aggaaaggtt 500
tgcacaacta tgtgaggagc atggaatcct tagagaaaat atcattgacc 550
tatccaatgc caatcgctgc ctccaggccc gagaatgaag aatggcctga 600
gcctccagtg ttgagtgac acttctcacc aggactccac catcatccct 650
tcctatccat acagcatccc cagtataaat tctgtgatct gcattccatc 700
ctgtctcact gagaagtcca attccagttct atcaacatgt tacctaggat 750
acctcatcaa gaatcaaaga cttctttaaa ttttcttttg atacaccctt 800
gacaattttt catgaaattta ttcctttcc tgttcaataa atgattaccc 850
ttgcacttaa 860

<210> 256

<211> 180

<212> PRT

<213> Homo sapiens

<400> 256

Met	Lys	Met	Leu	Leu	Leu	Cys	Leu	Gly	Leu	Thr	Leu	Val	Cys
1							5		10				15

Val	His	Ala	Glu	Glu	Ala	Ser	Ser	Thr	Gly	Arg	Asn	Phe	Asn	Val
								20		25				30

Glu	Lys	Ile	Asn	Gly	Glu	Trp	His	Thr	Ile	Ile	Leu	Ala	Ser	Asp
									35		40			45

Lys	Arg	Glu	Lys	Ile	Glu	Glu	His	Gly	Asn	Phe	Arg	Leu	Phe	Leu
									50		55			60

Glu	Gln	Ile	His	Val	Leu	Glu	Asn	Ser	Leu	Val	Leu	Lys	Val	His
									65		70			75

Thr	Val	Arg	Asp	Glu	Glu	Cys	Ser	Glu	Leu	Ser	Met	Val	Ala	Asp
									80		85			90

Lys	Thr	Glu	Lys	Ala	Gly	Glu	Tyr	Ser	Val	Thr	Tyr	Asp	Gly	Phe
									95		100			105

Asn	Thr	Phe	Thr	Ile	Pro	Lys	Thr	Asp	Tyr	Asp	Asn	Phe	Leu	Met
									110		115			120

Ala His Leu Ile Asn Glu Lys Asp Gly Glu Thr Phe Gln Leu Met
125 130 135
Gly Leu Tyr Gly Arg Glu Pro Asp Leu Ser Ser Asp Ile Lys Glu
140 145 150
Arg Phe Ala Gln Leu Cys Glu Glu His Gly Ile Leu Arg Glu Asn
155 160 165
Ile Ile Asp Leu Ser Asn Ala Asn Arg Cys Leu Gln Ala Arg Glu
170 175 180

<210> 257
<211> 766
<212> DNA
<213> Homo sapiens

<400> 257
ggctcgagcg tttctgagcc aggggtgacc atgacacctgct gcgaaggatg 50
gacatcctgc aatggattca gcctgctggt tctactgctg ttaggatgg 100
ttctcaatgc gatacctcta attgtcagct tagttgagga agaccaattt 150
tctcaaaaacc ccatcttgc ctttgagtgg tggttcccag gaattatagg 200
agcaggtctg atggccattc cagcaacaac aatgtccttgc acagcaagaa 250
aaagagcgtg ctgcaacaac agaactggaa tgtttcttc atcattttc 300
agtgtgatca cagtcattgg tgctctgtat tgcatgctga tatccatcca 350
ggctctctta aaaggcctc tcatgtgtaa ttctccaagc aacagtaatg 400
ccaattgtga attttcatttgc aaaaacatca gtgacattca tccagaatcc 450
ttcaacttgc agtggaaaaa caatgactct tgtgcaccc 500
caataaaccc accagtaacg acaccatggc gagtggctgg agagcatcta 550
gtttccactt cgattctgaa gaaaacaaac ataggcttat ccacttctca 600
gtatTTTGTAG gtctattgct tgTTGGAATT ctggaggtcc tgTTGGGCT 650
cagtcagata gtcatcggtt tccttggctg tctgtgtgga gtctctaagc 700
gaagaagtca aattgtgttag tttaatggga ataaaaatgta agtatacgta 750
gtttggaaaaa aaaaaaa 766

<210> 258
<211> 229
<212> PRT
<213> Homo sapiens

<400> 258
Met Thr Cys Cys Glu Gly Trp Thr Ser Cys Asn Gly Phe Ser Leu
1 5 10 15
Leu Val Leu Leu Leu Gly Val Val Leu Asn Ala Ile Pro Leu
20 25 30
Ile Val Ser Leu Val Glu Asp Gln Phe Ser Gln Asn Pro Ile

35	40	45
Ser Cys Phe Glu Trp Trp Phe Pro Gly Ile Ile Gly Ala Gly Leu		
50	55	60
Met Ala Ile Pro Ala Thr Thr Met Ser Leu Thr Ala Arg Lys Arg		
65	70	75
Ala Cys Cys Asn Asn Arg Thr Gly Met Phe Leu Ser Ser Phe Phe		
80	85	90
Ser Val Ile Thr Val Ile Gly Ala Leu Tyr Cys Met Leu Ile Ser		
95	100	105
Ile Gln Ala Leu Leu Lys Gly Pro Leu Met Cys Asn Ser Pro Ser		
110	115	120
Asn Ser Asn Ala Asn Cys Glu Phe Ser Leu Lys Asn Ile Ser Asp		
125	130	135
Ile His Pro Glu Ser Phe Asn Leu Gln Trp Phe Phe Asn Asp Ser		
140	145	150
Cys Ala Pro Pro Thr Gly Phe Asn Lys Pro Thr Ser Asn Asp Thr		
155	160	165
Met Ala Ser Gly Trp Arg Ala Ser Ser Phe His Phe Asp Ser Glu		
170	175	180
Glu Asn Lys His Arg Leu Ile His Phe Ser Val Phe Leu Gly Leu		
185	190	195
Leu Leu Val Gly Ile Leu Glu Val Leu Phe Gly Leu Ser Gln Ile		
200	205	210
Val Ile Gly Phe Leu Gly Cys Leu Cys Gly Val Ser Lys Arg Arg		
215	220	225
Ser Gln Ile Val		

<210> 259
<211> 434
<212> DNA
<213> Homo sapiens

<400> 259
gtcgaatcca aatcaactcat tgtgaaagct gagctcacag ccgaataagc 50
caccatgagg ctgtcagtgt gtctcctgat ggtctcgctg gccctttgct 100
gctaccaggc ccatgctctt gtctgccag ctgttgcttc tgagatcaca 150
gtcttcttat tcttaagtga cgctgcggtt aacctccaag ttgccaaact 200
taatccaccc ccagaagctc ttgcagccaa gttggaaagtg aagcactgca 250
ccgatcagat atcttttaag aaacgactct cattgaaaaaa gtcctggtgg 300
aaatagtcaa aaaatgtggt gtgtgacatg taaaaatgct caacctggtt 350
tccaaagtc ttcaacgaca ccctgatctt cactaaaaat tgtaaagggtt 400

tcaacacgtt gctttaataa atcacttgcc ctgc 434

<210> 260

<211> 83

<212> PRT

<213> Homo sapiens

<400> 260

Met Arg Leu Ser Val Cys Leu Leu Met Val Ser Leu Ala Leu Cys
1 5 10 15

Cys Tyr Gln Ala His Ala Leu Val Cys Pro Ala Val Ala Ser Glu
20 25 30

Ile Thr Val Phe Leu Phe Leu Ser Asp Ala Ala Val Asn Leu Gln
35 40 45

Val Ala Lys Leu Asn Pro Pro Pro Glu Ala Leu Ala Ala Lys Leu
50 55 60

Glu Val Lys His Cys Thr Asp Gln Ile Ser Phe Lys Lys Arg Leu
65 70 75

Ser Leu Lys Lys Ser Trp Trp Lys
80

<210> 261

<211> 636

<212> DNA

<213> Homo sapiens

<400> 261

atccgttctc tgcgctgcca gctcaggtaa gccctcgcca aggtgaccc 50

gcaggacact ggtgaaggag cagtggaa cctgcagagt cacacagttg 100

ctgaccaatt gagctgttag cctggagcag atccgtgggc tgcagacccc 150

cgcggcaggtaa cctctcccccc tgcagccctg cccctcgaac tgtgacatgg 200

agagagttagc cctggccctt ctcctactgg caggcctgac tgccttgaa 250

gccaatgacc catttgccaa taaagacat cccttctact atgactggaa 300

aaacctgcag ctgagcggac tgatctgcgg agggtcctg gccattgctg 350

ggatcgccgc agttctgagt ggcaaattgca aatacaagag cagccagaag 400

cagcacatgc ctgtacactga gaaggccatc ccactcatca ctccaggctc 450

tgccactact tgctgagcac aggactggcc tccaggatg gcctgaagcc 500

taacactggc ccccagcacc tcctccctg ggaggccta tcctcaagga 550

aggacttctc tccaaggca ggctgttagg ccccttctg atcaggaggc 600

ttctttatga attaaactcg cccccaccacc ccctca 636

<210> 262

<211> 89

<212> PRT

<213> Homo sapiens

<400> 262
Met Glu Arg Val Thr Leu Ala Leu Leu Leu Ala Gly Leu Thr
1 5 10 15
Ala Leu Glu Ala Asn Asp Pro Phe Ala Asn Lys Asp Asp Pro Phe
20 25 30
Tyr Tyr Asp Trp Lys Asn Leu Gln Leu Ser Gly Leu Ile Cys Gly
35 40 45
Gly Leu Leu Ala Ile Ala Gly Ile Ala Ala Val Leu Ser Gly Lys
50 55 60
Cys Lys Tyr Lys Ser Ser Gln Lys Gln His Ser Pro Val Pro Glu
65 70 75
Lys Ala Ile Pro Leu Ile Thr Pro Gly Ser Ala Thr Thr Cys
80 85

<210> 263
<211> 1676
<212> DNA
<213> Homo sapiens

<400> 263
ggagaagagg ttgtgtggga caagctgctc ccgacagaag gatgtcgctg 50
ctgagcctgc cctggctggg cctcagaccc gtggcaatgt ccccatggct 100
actcctgctg ctgggtgtgg gctcctggct actcgccgc atcctggctt 150
ggacctatgc cttctataac aactgccccc ggctccagtg tttcccacag 200
cccccaaaac ggaactggtt ttggggtcac ctgggcctga tcactcctac 250
agaggagggc ttgaaggact cgacccagat gtccggccacc tattcccagg 300
gctttacggt atggctgggt cccatcatcc cttcatcgat tttatgccac 350
cctgacaccca tccggcttat caccaatgcc tcagctgccca ttgcacccaa 400
ggataatotc ttcatcaggt tcctgaagcc ctggctggga gaaggatac 450
tgctgagtgg cggtgacaag tggagccccc accgtcgat gctgacgccc 500
gccttccatt tcaacatcct gaagtcctat ataacgatct tcaacaagag 550
tgcaaacatc atgcttgaca agtggcagca cttggcctca gagggcagca 600
gtcgtctgga catgtttagt cacatcagcc tcatgacctt ggacagtcta 650
cagaaaatgca tcttcagctt tgacagccat tgtcaggaga ggcccagtga 700
atataattgcc accatcttgg agtcagtgc cttgttagag aaaagaagcc 750
agcatatcct ccagcacatg gactttctgt attacctctc ccatgacggg 800
cgccgccttcc acagggcctg ccgcctggtg catgacttca cagacgttgt 850
catccgggag cgccgtcgca ccctccccac tcagggtatt gatgattttt 900
tcaaagacaa agccaagtcc aagactttgg atttcattga tgtgcttctg 950

ctgagcaagg atgaagatgg gaaggcattg tcagatgagg atataagac 1000
agaggctgac accttcatgt ttggaggcca tgacaccacg gccagtggcc 1050
tctcctgggt cctgtacaac cttgcgaggc acccagaata ccaggagcgc 1100
tgccgacagg aggtgcaaga gcttctgaag gaccgcgatc ctaaagagat 1150
tgaatggac gacctggccc agctgccctt cctgaccatg tgcgtgaagg 1200
agagcctgag gttacatccc ccagctccct tcacatccccg atgctgcacc 1250
caggacattg ttctcccaga tggccgagtc atccccaaag gcattacctg 1300
cctcatcgat attatagggg tccatcacaa cccaaactgtg tggccggatc 1350
ctgaggtcta cgacccttc cgcttgacc cagagaacag caaggggagg 1400
tcacctctgg cttttattcc tttctccgca gggcccagga actgcacatcg 1450
gcaggcggttc gccatggcgg agatgaaaagt ggtcctggcg ttgatgctgc 1500
tgcacttccg gttcctgcca gaccacactg agcccccgcag gaagctggaa 1550
ttgatcatgc gcgccgaggg cgggctttgg ctgcgggtgg agcccccgtaa 1600
tgtaggctt cagtgacttt ctgacccatc cacctgtttt tttgcagatt 1650
gtcatgaata aaacggtgct gtcaaa 1676

<210> 264

<211> 524

<212> PRT

<213> Homo sapiens

<400> 264

Met	Ser	Leu	Leu	Ser	Leu	Pro	Trp	Leu	Gly	Leu	Arg	Pro	Val	Ala
1					5				10				15	

Met	Ser	Pro	Trp	Leu	Leu	Leu	Leu	Val	Val	Gly	Ser	Trp	Leu	
				20				25					30	

Leu	Ala	Arg	Ile	Leu	Ala	Trp	Thr	Tyr	Ala	Phe	Tyr	Asn	Asn	Cys
				35				40					45	

Arg	Arg	Leu	Gln	Cys	Phe	Pro	Gln	Pro	Pro	Lys	Arg	Asn	Trp	Phe
				50				55					60	

Trp	Gly	His	Leu	Gly	Leu	Ile	Thr	Pro	Thr	Glu	Glu	Gly	Leu	Lys
				65				70					75	

Asp	Ser	Thr	Gln	Met	Ser	Ala	Thr	Tyr	Ser	Gln	Gly	Phe	Thr	Val
				80					85				90	

Trp	Leu	Gly	Pro	Ile	Ile	Pro	Phe	Ile	Val	Leu	Cys	His	Pro	Asp
				95				100					105	

Thr	Ile	Arg	Ser	Ile	Thr	Asn	Ala	Ser	Ala	Ala	Ile	Ala	Pro	Lys
				110				115					120	

Asp	Asn	Leu	Phe	Ile	Arg	Phe	Leu	Lys	Pro	Trp	Leu	Gly	Glu	Gly
				125				130					135	

Ile Leu Leu Ser Gly Gly Asp Lys Trp Ser Arg His Arg Arg Met
 140 145 150
 Leu Thr Pro Ala Phe His Phe Asn Ile Leu Lys Ser Tyr Ile Thr
 155 160 165
 Ile Phe Asn Lys Ser Ala Asn Ile Met Leu Asp Lys Trp Gln His
 170 175 180
 Leu Ala Ser Glu Gly Ser Ser Arg Leu Asp Met Phe Glu His Ile
 185 190 195
 Ser Leu Met Thr Leu Asp Ser Leu Gln Lys Cys Ile Phe Ser Phe
 200 205 210
 Asp Ser His Cys Gln Glu Arg Pro Ser Glu Tyr Ile Ala Thr Ile
 215 220 225
 Leu Glu Leu Ser Ala Leu Val Glu Lys Arg Ser Gln His Ile Leu
 230 235 240
 Gln His Met Asp Phe Leu Tyr Tyr Leu Ser His Asp Gly Arg Arg
 245 250 255
 Phe His Arg Ala Cys Arg Leu Val His Asp Phe Thr Asp Ala Val
 260 265 270
 Ile Arg Glu Arg Arg Arg Thr Leu Pro Thr Gln Gly Ile Asp Asp
 275 280 285
 Phe Phe Lys Asp Lys Ala Lys Ser Lys Thr Leu Asp Phe Ile Asp
 290 295 300
 Val Leu Leu Leu Ser Lys Asp Glu Asp Gly Lys Ala Leu Ser Asp
 305 310 315
 Glu Asp Ile Arg Ala Glu Ala Asp Thr Phe Met Phe Gly Gly His
 320 325 330
 Asp Thr Thr Ala Ser Gly Leu Ser Trp Val Leu Tyr Asn Leu Ala
 335 340 345
 Arg His Pro Glu Tyr Gln Glu Arg Cys Arg Gln Glu Val Gln Glu
 350 355 360
 Leu Leu Lys Asp Arg Asp Pro Lys Glu Ile Glu Trp Asp Asp Leu
 365 370 375
 Ala Gln Leu Pro Phe Leu Thr Met Cys Val Lys Glu Ser Leu Arg
 380 385 390
 Leu His Pro Pro Ala Pro Phe Ile Ser Arg Cys Cys Thr Gln Asp
 395 400 405
 Ile Val Leu Pro Asp Gly Arg Val Ile Pro Lys Gly Ile Thr Cys
 410 415 420
 Leu Ile Asp Ile Ile Gly Val His His Asn Pro Thr Val Trp Pro
 425 430 435
 Asp Pro Glu Val Tyr Asp Pro Phe Arg Phe Asp Pro Glu Asn Ser
 440 445 450

Lys Gly Arg Ser Pro Leu Ala Phe Ile Pro Phe Ser Ala Gly Pro

455

460

465

Arg Asn Cys Ile Gly Gln Ala Phe Ala Met Ala Glu Met Lys Val

470

475

480

Val Leu Ala Leu Met Leu Leu His Phe Arg Phe Leu Pro Asp His

485

490

495

Thr Glu Pro Arg Arg Lys Leu Glu Leu Ile Met Arg Ala Glu Gly

500

505

510

Gly Leu Trp Leu Arg Val Glu Pro Leu Asn Val Gly Leu Gln

515

520

<210> 265

<211> 584

<212> DNA

<213> Homo sapiens

<400> 265

caacagaagc caagaaggaa gccgtctatc ttgtggcgat catgtataag 50

ctggcctcct gctgtttgct tttcacagga ttcttaaatc ctctcttatac 100

tcttcctctc cttgactcca gggaaatatac ctttcaactc tcagcaccc 150

atgaagacgc gcgcttaact ccggaggagc tagaaagagc ttcccttcta 200

cagatattgc cagagatgct gggtgcagaa agagggata ttctcaggaa 250

agcagactca agtaccaaca ttttaaccc aagaggaaat ttgagaaagt 300

ttcaggattt ctctggacaa gatcctaaca ttttactgag tcatctttg 350

gccagaatct ggaaaccata caagaaacgt gagactcctg attgcttctg 400

gaaatactgt gtctgaagtg aaataagcat ctgttagtca gctcagaaac 450

accatctta gaatatgaaa aataacacaa tgcttgattt gaaaacagt 500

tggagaaaaa ctaggcaaac tacaccctgt tcattgttac ctggaaaata 550

aatcctctat gtttgcaca aaaaaaaaaa aaaa 584

<210> 266

<211> 124

<212> PRT

<213> Homo sapiens

<400> 266

Met Tyr Lys Leu Ala Ser Cys Cys Leu Leu Phe Thr Gly Phe Leu

1

5

10

15

Asn Pro Leu Leu Ser Leu Pro Leu Leu Asp Ser Arg Glu Ile Ser

20

25

30

Phe Gln Leu Ser Ala Pro His Glu Asp Ala Arg Leu Thr Pro Glu

35

40

45

Glu Leu Glu Arg Ala Ser Leu Leu Gln Ile Leu Pro Glu Met Leu

50

55

60

Gly Ala Glu Arg Gly Asp Ile Leu Arg Lys Ala Asp Ser Ser Thr
 65 70 75
 Asn Ile Phe Asn Pro Arg Gly Asn Leu Arg Lys Phe Gln Asp Phe
 80 85 90
 Ser Gly Gln Asp Pro Asn Ile Leu Leu Ser His Leu Leu Ala Arg
 95 100 105
 Ile Trp Lys Pro Tyr Lys Lys Arg Glu Thr Pro Asp Cys Phe Trp
 110 115 120
 Lys Tyr Cys Val

<210> 267
 <211> 654
 <212> DNA
 <213> Homo sapiens

<400> 267
 gaacattttt agttcccaag gaatgtacat cagccccacg gaagcttaggc 50
 cacctctggg atgggggtgc tggtttaaaa caaacgccag tcatcctata 100
 taaggacctg acagccacca ggcaccacct ccggccaggaa ctgcaggccc 150
 acctgtctgc aaccctcgatg aggccatgcc ctccccaggg accgtctgca 200
 gcctcctgct cctcggcatg ctctggctgg acttggccat ggcaggctcc 250
 agcttcctga gccctgaaca ccagagatgc cagcagagaa aggagtcgaa 300
 gaagccacca gccaagctgc agccccgagc tctagcaggc tggctccgcc 350
 cggaaagatgg aggtcaagca gaaggggcag aggatgaact ggaagtccgg 400
 ttcaacgccc ccttgatgt tggaatcaag ctgtcagggg ttcagtacca 450
 gcagcacagc caggccctgg ggaagtttct tcaggacatc ctctgggaag 500
 aggccaaaga ggccccagcc gacaagtgtat cgccccacaag ccttactcac 550
 ctctctctaa gtttagaagc gctcatctgg ctttcgctt gcttctgcag 600
 caactcccac gactgttgta caagctcagg aggcaataa atgttcaaac 650
 tgta 654

<210> 268
 <211> 117
 <212> PRT
 <213> Homo sapiens

<400> 268
 Met Pro Ser Pro Gly Thr Val Cys Ser Leu Leu Leu Leu Gly Met
 1 5 10 15
 Leu Trp Leu Asp Leu Ala Met Ala Gly Ser Ser Phe Leu Ser Pro
 20 25 30
 Glu His Gln Arg Val Gln Gln Arg Lys Glu Ser Lys Lys Pro Pro
 35 40 45

Ala	Lys	Leu	Gln	Pro	Arg	Ala	Leu	Ala	Gly	Trp	Leu	Arg	Pro	Glu
				50					55				60	
Asp	Gly	Gly	Gln	Ala	Glu	Gly	Ala	Glu	Asp	Glu	Leu	Glu	Val	Arg
				65					70				75	
Phe	Asn	Ala	Pro	Phe	Asp	Val	Gly	Ile	Lys	Leu	Ser	Gly	Val	Gln
				80					85				90	
Tyr	Gln	Gln	His	Ser	Gln	Ala	Leu	Gly	Lys	Phe	Leu	Gln	Asp	Ile
				95					100				105	
Leu	Trp	Glu	Glu	Ala	Lys	Glu	Ala	Pro	Ala	Asp	Lys			
				110					115					

<210> 269
<211> 1332
<212> DNA
<213> Homo sapiens

<400> 269
cggccacagc tggcatgctc tgcctgatcg ccatcctgct gtatgtcctc 50
gtccaggtaacc tcgtgaaccc cggggtgctc cgacacggacc ccagatgtca 100
agaatatgaa cacgtggctg ctgttcctcc ccctgttccc ggtgcagggt 150
cagaccctga tagtcgtgat catcggatg ctcgtgctcc tgctggactt 200
tcttggcttg gtgcacctgg gccagctgct catcttccac atctacacctga 250
gtatgtcccc caccctaagc ccccgatccc cccaaggctg ggtggtcaga 300
gctgctcatc ttacacctct acttgagttat gtccctaacc ctgagccccc 350
cacgcctggg gccagagtct ttgtcccccg tgtgcgcatt tgttcagggt 400
cagcctctcc cagaagttag atcatggaca aaaaggcaa atcacaggaa 450
gaaattaaat ccatgaggac ccagcaggcc cagcaagaag ctgaactcac 500
gccgagacct gcaggaggatgg tgccaggatgc ttgaagtaac aagttaaaa 550
tgttcagaga caatggatg gaatctatta ggcaagaaca ggacattatg 600
aaataaggac aggtggactt ccaaaaacac aagtagaaat tctaacaatg 650
aaatatatta caggcaggatc acccactaac caaacaactg aagcgagagc 700
tgtggtcttg cttggtctca cagtggcac agcgtaggc ggtcagtcatt 750
tttgctgaac gacggagggt aaactccccca gccccaaagaa aacctgtgtt 800
ggaagtaaca acaacacctcc tgctcctggc accagccgtt ttggtcatgg 850
tgggccagct gcaaagcgatc ttccattctc tggcagtgg tggcccccgg 900
gctgtggct ctcagggggt ttctgtggac acgggcagca gagtgtgtcc 950
aggccagccc ccaagaatgc cctgctcctg acagcttggc caaccctgg 1000
tcagggcaga gggagttggg tgggtcaggc tctggcattca cctccatctc 1050

cagagcatcc cctgcctgca gttgtggcaa gaacgcccag ctcagaatga 1100
acacacccca ccaagagcct cttgttcat aaccacaggt taccctacaa 1150
accactgtcc ccacacacaacc ctggggatgt tttaaaacac acacctctaa 1200
cgcatatctt acagtcactg ttgtcttgcc tgagggttga attttttta 1250
atgaaaagtgc aatgaaaatc actggattaa atcctacgga cacagagctg 1300
aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aa 1332

<210> 270
<211> 142
<212> PRT
<213> Homo sapiens

<400> 270
Met Asn Thr Trp Leu Leu Phe Leu Pro Leu Phe Pro Val Gln Val
1 5 10 15
Gln Thr Leu Ile Val Val Ile Ile Gly Met Leu Val Leu Leu Leu
20 25 30
Asp Phe Leu Gly Leu Val His Leu Gly Gln Leu Leu Ile Phe His
35 40 45
Ile Tyr Leu Ser Met Ser Pro Thr Leu Ser Pro Arg Ser Pro Gln
50 55 60
Gly Trp Val Val Arg Ala Ala His Leu Thr Pro Leu Leu Glu Tyr
65 70 75
Val Pro Asn Pro Glu Pro Pro Thr Pro Gly Ala Arg Val Phe Val
80 85 90
Pro Arg Val Arg Met Cys Ser Gly Ser Ala Ser Pro Arg Ser Glu
95 100 105
Ile Met Asp Lys Lys Gly Lys Ser Gln Glu Glu Ile Lys Ser Met
110 115 120
Arg Thr Gln Gln Ala Gln Gln Glu Ala Glu Leu Thr Pro Arg Pro
125 130 135
Ala Gly Val Val Pro Gly Ala
140

<210> 271
<211> 1484
<212> DNA
<213> Homo sapiens

<400> 271
ggagtgcaga tggcatcctt cggttcttcc agacaagctg caagacgctg 50
accatggcca agatggagct ctcgaaggcc ttctctggcc agcggacact 100
cctatctgcc atcctcagca tgctatcact cagcttctcc acaacatccc 150
tgctcagcaa ctactggttt gtgggcacac agaagggtgcc caagccccctg 200
tgcgagaaaag gtctggcagc caagtgcctt gacatgccag tgtccctgga 250

tggagatacc aacacatcca cccaggaggt ggtacaatac aactgggaga 300
ctggggatga ccgggtctcc ttccggagct tccggagtgg catgtggcta 350
tcctgtgagg aaactgtgga agaaccaggg gagaggtgcc gaagtttcat 400
tgaacttaca ccaccagcca agagaggtga gaaaggacta ctggaatttg 450
ccacgttgca aggcccattgt caccccaactc tccgatttg aggaaagcgg 500
ttgatggaga aggctccct cccctccccct cccttggggc tttgtggcaa 550
aaatcctatg gttatccctg ggaacgcaga tcacccatcg cgacttcaa 600
ttcatcagct tcctcctgct actaacagac ttgctactca ctggaaaccc 650
tgccctgtggg ctcaaactga gcgccttgc tgctgtttcc tctgtcctgt 700
caggtctccct ggggatggtg gcccacatga tgtattcaca agtcttccaa 750
gcgactgtca acttgggtcc agaagactgg agaccacatg tttggaatta 800
tggctgggcc ttctacatgg cctggctctc cttcacctgc tgcacggcgt 850
cggtgtcac caccccaac acgtacacca ggatgggtcg ggagttcaag 900
tgcaagcata gtaagagctt caaggaaaac ccgaactgcc taccacatca 950
ccatcagtgt ttccctcgcc ggctgtcaag tgcaaaaaacc accgtgggtc 1000
ctttgaccag ctaccaccag tatcataatc agcccatcca ctctgtctct 1050
gagggagtcg acttctactc cgagctgcgg aacaaggat ttcaaagagg 1100
ggccagccag gagctgaaag aagcagttag gtcacatgtgta gaggaagagc 1150
agtgttagga gttaagcggg tttggggagt aggcttgagc cctacccat 1200
acgtctgtcg attatcaaca tgtgcttaag ccaacatccg tctcttgagc 1250
atggttttta gaggctacga ataaggctat gaataagggt tatcttaag 1300
tcctaaggga ttccctgggtg ccactgctct ctccctct acagctccat 1350
cttggttcac ccacccaca tctcacacat ccagaattcc cttctttact 1400
gatagtttct gtgcaggtt ctgggctaaa ccatggagat aaaaagaaga 1450
gtaaaataca cttcccgacc ttaaggatct gaaa 1484

<210> 272

<211> 285

<212> PRT

<213> Homo sapiens

<400> 272

Met Ala Lys Met Glu Leu Ser Lys Ala Phe Ser Gly Gln Arg Thr
1 5 10 15

Leu Leu Ser Ala Ile Leu Ser Met Leu Ser Leu Ser Phe Ser Thr
20 25 30

Thr Ser Leu Leu Ser Asn Tyr Trp Phe Val Gly Thr Gln Lys Val

35	40	45
Pro Lys Pro Leu Cys Glu Lys Gly Leu Ala Ala Lys Cys Phe Asp		
50	55	60
Met Pro Val Ser Leu Asp Gly Asp Thr Asn Thr Ser Thr Gln Glu		
65	70	75
Val Val Gln Tyr Asn Trp Glu Thr Gly Asp Asp Arg Phe Ser Phe		
80	85	90
Arg Ser Phe Arg Ser Gly Met Trp Leu Ser Cys Glu Glu Thr Val		
95	100	105
Glu Glu Pro Gly Glu Arg Cys Arg Ser Phe Ile Glu Leu Thr Pro		
110	115	120
Pro Ala Lys Arg Gly Glu Lys Gly Leu Leu Glu Phe Ala Thr Leu		
125	130	135
Gln Gly Pro Cys His Pro Thr Leu Arg Phe Gly Gly Lys Arg Leu		
140	145	150
Met Glu Lys Ala Ser Leu Pro Ser Pro Pro Leu Gly Leu Cys Gly		
155	160	165
Lys Asn Pro Met Val Ile Pro Gly Asn Ala Asp His Leu His Arg		
170	175	180
Thr Ser Ile His Gln Leu Pro Pro Ala Thr Asn Arg Leu Ala Thr		
185	190	195
His Trp Glu Pro Cys Leu Trp Ala Gln Thr Glu Arg Leu Cys Cys		
200	205	210
Cys Phe Leu Cys Pro Val Arg Ser Pro Gly Asp Gly Gly Pro His		
215	220	225
Asp Val Phe Thr Ser Leu Pro Ser Asp Cys Gln Leu Gly Ser Arg		
230	235	240
Arg Leu Glu Thr Thr Cys Leu Glu Leu Trp Leu Gly Leu Leu His		
245	250	255
Gly Leu Ala Leu Leu His Leu Leu His Gly Val Gly Cys His His		
260	265	270
Leu Gln His Val His Gln Asp Gly Ala Gly Val Gln Val Gln Ala		
275	280	285

<210> 273
 <211> 1158
 <212> DNA
 <213> Homo sapiens

<400> 273
 aactggaagg aaagaaaagaa aggtcagctt tggcccatat gtggttaccc 50
 cttggcttcc tgtctttatg tctttctcct cttctatcc tgcatactcc 100
 ctcacttaag tctcaggcct gtcagcagct cctgtggaca ttgccatccc 150
 ctctggtagc cttcagagca aacaggacaa cctatgttat ggatgttcc 200

accAACcagg gtagtggcat ggAGCACCgt aaccatctgt gcttctgtga 250
tctctatgac agagccactt ctccacctc gaaatgttcc ctgctctgaa 300
atctggcatg agatggcaca ggtgaccacg cagaAGCCAC cagaatctt 350
cctGCCtat tcctcctccc aagtctgttc tcttattgtc aacctcagca 400
caacaggctg gCGCCAATGG cattacagag aaAGCAATCT gtgtggctag 450
tgggcagatt accatgcaag ccccaggaga aatggaggag cttttagcc 500
acctCCCTGT cagccagtat taacatgtcc cttccccct gccccGCCGT 550
agattcagga cattcgcccc tgtgtGCCAC caaaccagga ctttcccTTT 600
ggcttggcat ccctggctct ctccTggta ccAGCAAGAC gtctgttcca 650
ggcagtgta gcATCTTCA agctccgtta ctatggcgat ggCCATGATG 700
ttacaatccc acTTGCCTGA ataATCAAGT ggAAAGGGGA AGCAGAGGGA 750
aatggggcca tgtGAATGCA gCTGCTGTGT tctccCTacc CTGAGGAAA 800
accaaAGGGA AGCAACAGGA acttctgcaa ctggTTTta tcggAAAGAT 850
catcCTGcCT GcAGATGCTG ttGAAGGGC ACAAGAAATG TAGCTGGAGA 900
agattgatga aagtgcaggt gtgtAAGGAA atagaACAGT ctgctggag 950
tcagacCTGG aattCTGATT ccaaACTCTT tattACTTTG ggaAGTCACT 1000
cagCCTCCCC Gtagccatct ccaggGTGAC ggaACCCAGT gtattACCTG 1050
ctggAACCAA ggAAACTAAC AATGTAGGTT ACTAGTGAAT ACCCCAAATGG 1100
tttCTCCAAT tatGCCATG ccACCAAAAC aataAAACAA aattCTCTAA 1150
cactgaaa 1158

<210> 274

<211> 86

<212> PRT

<213> Homo sapiens

<400> 274

Met	Trp	Leu	Pro	Leu	Gly	Leu	Leu	Ser	Leu	Cys	Leu	Ser	Pro	Leu
1				5				10					15	

Pro	Ile	Leu	Ser	Ser	Pro	Ser	Leu	Lys	Ser	Gln	Ala	Cys	Gln	Gln
				20				25					30	

Leu	Leu	Trp	Thr	Leu	Pro	Ser	Pro	Leu	Val	Ala	Phe	Arg	Ala	Asn
				35					40				45	

Arg	Thr	Thr	Tyr	Val	Met	Asp	Val	Ser	Thr	Asn	Gln	Gly	Ser	Gly
				50				55				60		

Met	Glu	His	Arg	Asn	His	Leu	Cys	Phe	Cys	Asp	Leu	Tyr	Asp	Arg
				65				70				75		

Ala	Thr	Ser	Pro	Pro	Leu	Lys	Cys	Ser	Leu	Leu				
				80				85						

<210> 275
<211> 2694
<212> DNA
<213> Homo sapiens

<400> 275
gtagcgcgtc ttgggtctcc cggctgccgc tgctgcccgc gcccgcctcg 50
gtcgtggagc caggagcgac gtcaccgcca tggcaggcat caaagctttg 100
attagtttgt ccttggagg agcaatcgga ctgatgttt tgatgcttg 150
atgtgccctt ccaatataca acaaatactg gcccctctt gttctatttt 200
tttacatcct ttcacctatt ccatactgca tagcaagaag attagtggat 250
gatacagatg ctagttagtaa cgcttgtaag gaacttgcca tctttcttac 300
aacgggcatt gtcgtgtcag cttttggact ccctattgtt tttgccagag 350
cacatctgat tgagtggga gcttgtgcac ttgttctcac aggaaacaca 400
gtcatcttg caactatact aggcttttc ttggtcttg gaagcaatga 450
cgacttcagc tggcagcagt ggtgaaaaga aattactgaa ctattgtcaa 500
atggacttcc tgtcatttgt tggccattca cgcacacagg agatgggca 550
gttaatgctg aatggtatacg caagcctttt ggggttattt taggtgotcc 600
cttctcactt ttattgttaag catactattt tcacagagac ttgctgaagg 650
attaaaagga ttttctttt tggaaaagct tgactgattt cacacttac 700
tatagtagtc ttttgttgtt gtcctgctga atttaaatat ttatgtgttt 750
ttcctgttag gttgattttt tttggaatca atatgcaatg ttaaacactt 800
tttaatgta atcatttgca ttggtagga attcagaatt ccggccggctc 850
tattacttgtt caagtacatc ttttcttta aaattattta gcctccatta 900
ttacaaaaaa ttataaaaaat aagttttcag tcagtcagga tgacatcact 950
cccaatgtt agcagacata cagacgggtt gcatacgtt tagactgtat 1000
actcagtgc aatatacgatc catttataacc tcagaggggc caagtgtt 1050
tgcccatgcc ctccgttaag ggttgggtt tttactggta gacagatgtt 1100
ttgtggattt aaaattattt tatggaattt ctacagagga gtgttttct 1150
tctcaattgt tagaagaattt tatgttaaac tttaaggtaa gggtgtaaaa 1200
acatttttga gataaggttt ttatattgtt ttattattgt tagagtgtat 1250
tgcaatgtgg gaagaaatga cattgaaattt ccagttttt aatcctgttt 1300
ctatttataa gtgaaattt tgatctccta tcaaccttcc atgttttacc 1350
ctgttaaaaat ggacatacat ggaaccacta ctgatgaggg acagttgtat 1400
gtttgcatca tataatgccag aaaaccttcc tctgcttcct cttttgact 1450

--

35

40

45

Pro Ile Pro Tyr Cys Ile Ala Arg Arg Leu Val Asp Asp Thr Asp		
50	55	60
Ala Met Ser Asn Ala Cys Lys Glu Leu Ala Ile Phe Leu Thr Thr		
65	70	75
Gly Ile Val Val Ser Ala Phe Gly Leu Pro Ile Val Phe Ala Arg		
80	85	90
Ala His Leu Ile Glu Trp Gly Ala Cys Ala Leu Val Leu Thr Gly		
95	100	105
Asn Thr Val Ile Phe Ala Thr Ile Leu Gly Phe Phe Leu Val Phe		
110	115	120
Gly Ser Asn Asp Asp Phe Ser Trp Gln Gln Trp		
125	130	

<210> 277

<211> 4104

<212> DNA

<213> Homo sapiens

<400> 277

cccacgcgtc cgcccacgca tccgcccacg cgtccgcccc cgcgtccgcc 50
 cacgcgtccg cccacgcgtc cgcccacgca tccgggtgcaa gctcgcccg 100
 cacactgcct ggtggaggga aggagcccg ggcgccttcg ccgcgtcccg 150
 cgccgcccgtc cgcacctccc caccgccccgc cgcccgccgc ccgcccggcc 200
 caaagcatga gtgagccgc tctctgcagc tgcccggggc gcgaatggca 250
 ggctgtttcc gcggagtaaa aggtggcgcc ggtcagtggc ctgtttccat 300
 gacggacatt aaccagactg tcagatcctg gggagtcgcg agccccgagt 350
 ttggagtttt ttccccccac aacgtcacag tccgaactgc agagggaaag 400
 gaaggccggca ggaaggcgaa gctcgccgtc cggcacgtag ttgggaaact 450
 tgcgggtcct agaagtcgcc tccccgcctt gccggccgc cttgcagcc 500
 cgagccgagc agcaaagtga gacattgtgc gcctgccaga tccgcccggcc 550
 gcggaccggg gctgcgtcgaa aaacacagag gggttttctc tcgcccgtca 600
 tataatttagc ctgcacacaa agggagcagc tgaatggagg ttgtcactct 650
 ctggaaaagg atttctgacc gagcgcttcc aatggacatt ctccagtc 700
 tctggaaaaga ttctcgctaa tggatttcct gctgctcggt ctctgtctat 750
 actggctgct gaggaggccc tcgggggtgg tcttgtgtct gctgggggcc 800
 tgctttcaga tgctgcccgc cgcccccagc gggtgccgc agctgtgccg 850
 gtgcgagggg cggctgctgt actgcgaggc gctcaacctc accgaggcgc 900
 cccacaacct gtccggcctg ctgggcttgc ccctgcgcta caacagcctc 950

DRAFT

tcggagctgc ggcgcggcca gttcacgggg ttaatgcagc tcacgtggct 1000
ctatctggat cacaatcaca tctgctccgt gcagggggac gcctttcaga 1050
aactgcgccc agttaaggaa ctcacgctga gttccaacca gatcacccaa 1100
ctgccccaca ccaccctccg gcccatgcc aacctgcgca gcgtggacct 1150
ctcgtaaac aagctgcagg cgctcgccgc cgacaccttc cacgggctgc 1200
ggaagctcac cacgctgcat atgcgggcca acgccatcca gtttgtgccc 1250
gtgcgcatct tccaggactg ccgcagcctc aagtttctcg acatcgata 1300
caatcagctc aagagtctgg cgcgcaactc tttcgccggc ttgtttaagc 1350
tcaccgagct gcacccctcgag cacaacgact tggtaaggt gaacttcgccc 1400
cacttccccgc gcctcatctc cctgcactcg ctctgcctgc ggaggaacaa 1450
ggtggccatt gtggtcagct cgctggactg ggttggAAC ctggagaaaa 1500
tggacttgtc gggcaacgag atcgagtaca tggagccccca tgtgttcgag 1550
accgtgccgc acctgcagtc cctgcagctg gactccaacc gcctcaccta 1600
catcgagccc cggttcctca actcttgaa gtccctgaca agcatcaccc 1650
tggccgggaa cctgtggat tgcggcgca acgtgtgtgc cctagcctcg 1700
tggctcagca acttccaggg ggcgtacgat ggcaacttgc agtgcgcccag 1750
cccgaggtagc gcacaggcg aggacgtcct ggacgcccgtg tacgccttcc 1800
acctgtgcga ggtggggcc gagccccacca gcccacccct gctctggcc 1850
gtcaccaacc gcagtgtatct gggggcccccct gccagctcgg ccaccacgct 1900
cgccggacggc ggggaggggc agcacgacgg cacattcgag cctgccaccg 1950
tggctttcc aggccgcgag cacgcccaga acgcccgtca gatccacaag 2000
gtggtcacgg gcaccatggc cctcatcttc tccttcctca tcgtggtoct 2050
ggtgctctac gtgtcctgga agtgtttccc agccagcctc aggcagctca 2100
gacagtgcct tgtcacgcag cgcaggaagc aaaaggcagaa acagaccatg 2150
catcagatgg ctgccccatgtc tgcccaggaa tactacgttg attacaaacc 2200
gaaccacatt gagggagccc tggtgatcat caacgagtat ggctcggtgt 2250
cctgccacca gcagcccccg aggaaatgcg aggtgtgatt gtcccagtgg 2300
ctctcaaccc atgcgttacc aaatacgctt gggcagccgg gacggggccgg 2350
cgggcaccag gctgggggtct ccttgcgtgt gctctgatat gtccttgcac 2400
tgaaaacttta agggatctc tcccagagac ttgacatttt agctttattt 2450
tgtcttaaaa acaaaaagcga attaaaaacac aacaaaaaaac cccaccac 2500
aaccttcagg acagtctatc ttaaatttca tatgagaact cttccccc 2550

tttgaagatc tgtccatatt caggaatctg agagtgtaaa aaagggtggcc 2600
ataagacaga gagagaataa tcgtgcttg ttttatgcta ctcccccac 2650
cctgccccatg attaaacatc atgtatgtag aagatcttaa gtccatacgc 2700
atttcatgaa gaaccattgg aaagaggaat ctgcaatctg ggagcttaag 2750
agcaaatgat gaccatagaa agctatgttc ttactttgtg tgtgtgtctg 2800
tatgtttctg cgttgtgtgt cttagtgc aagcaaacgt tgtctacaca 2850
aacgggaatt tagtcacat catttcatgc ccctgtgcct ctagctctgg 2900
agattggtgg ggggaggtgg ggggaaacgg caggaataag ggaaagtgg 2950
agttttaact aagttttgt aacacttgaa atcttttctt tctcaaatta 3000
attatctta agcttcaaga aacttgctct gaccctctta agcaaactac 3050
taagcattta aaagagaatc taattttaa aggtgttagca cctttttttt 3100
tattcttccc acagagggtg ctaatctcat tatgtgtgc tatctgaaaa 3150
gaacttaagg ccacaattca cgtctcgcc tggcattgt gatggattga 3200
ccctccattt gcagtagctt cccagctgat taaagttcag cagtggatt 3250
gaggttttc gaatattt atagaaaaaa agtctttca catgacaaat 3300
gacactctca caccagtctt agccctagta gttttttagg ttggaccaga 3350
ggaagcaggt taaatgagac ctgtcctctg ctgcactcag aaaaaatagg 3400
cagtccttga tgctcagatc tttagcatttga tattaatagt tgagaccacc 3450
tacccacaat gcagcctata ctcccaagac tacaaagtta ccatcgaaaa 3500
ggaaaggta ttccagtaaa aggaaatagt tttctcaacc atttaaaaat 3550
attcttctga actcatcaaa gtagaagagc ccccaacctt ttctctctgc 3600
cttcaagaag gcagacattt ggtatgattt agcatcaaca acacatttt 3650
gagtatatgt aagtaatcag aggggcaaat gccacttgtt attcctccca 3700
agttttccaa gcaagtacac acagatctct ggttaggatta ggggccactt 3750
gtgtttccgg cttattttag tcgacttgtc agcaagtttgc atgcctagtc 3800
tatctgacat ggcccgat tagtggatca catgagatgg 3850
tagaaggaac atcatcacat acccctctca cagagaaaat tatcaaagaa 3900
ccagaaattta tatctgtttt ggagcaagag tgtcataatg tttcagggtta 3950
gtcaaaataa acataaatta tctcctcttag atgagtggcg atgttggctg 4000
atttgggtct gccattgaca gaatgtcaaa taaaaaggaa ttagctagaa 4050
tatgaccatt aaatgtgctt ctgaaaatata ttttgagata ggtttagaaat 4100
gtca 4104

<210> 278
<211> 522
<212> PRT
<213> Homo sapiens

<400> 278

Met	Asp	Phe	Leu	Leu	Leu	Gly	Leu	Cys	Leu	Tyr	Trp	Leu	Leu	Arg
1									10					15
Arg	Pro	Ser	Gly	Val	Val	Leu	Cys	Leu	Leu	Gly	Ala	Cys	Phe	Gln
				20					25					30
Met	Leu	Pro	Ala	Ala	Pro	Ser	Gly	Pro	Gln	Leu	Cys	Arg	Cys	
								35		40				45
Glu	Gly	Arg	Leu	Leu	Tyr	Cys	Glu	Ala	Leu	Asn	Leu	Thr	Glu	Ala
					50				55					60
Pro	His	Asn	Leu	Ser	Gly	Leu	Leu	Gly	Leu	Ser	Leu	Arg	Tyr	Asn
					65				70					75
Ser	Leu	Ser	Glu	Leu	Arg	Ala	Gly	Gln	Phe	Thr	Gly	Leu	Met	Gln
					80				85					90
Leu	Thr	Trp	Leu	Tyr	Leu	Asp	His	Asn	His	Ile	Cys	Ser	Val	Gln
					95				100					105
Gly	Asp	Ala	Phe	Gln	Lys	Leu	Arg	Arg	Val	Lys	Glu	Leu	Thr	Leu
					110				115					120
Ser	Ser	Asn	Gln	Ile	Thr	Gln	Leu	Pro	Asn	Thr	Thr	Phe	Arg	Pro
					125				130					135
Met	Pro	Asn	Leu	Arg	Ser	Val	Asp	Leu	Ser	Tyr	Asn	Lys	Leu	Gln
					140				145					150
Ala	Leu	Ala	Pro	Asp	Leu	Phe	His	Gly	Leu	Arg	Lys	Leu	Thr	Thr
					155				160					165
Leu	His	Met	Arg	Ala	Asn	Ala	Ile	Gln	Phe	Val	Pro	Val	Arg	Ile
					170				175					180
Phe	Gln	Asp	Cys	Arg	Ser	Leu	Lys	Phe	Leu	Asp	Ile	Gly	Tyr	Asn
					185				190					195
Gln	Leu	Lys	Ser	Leu	Ala	Arg	Asn	Ser	Phe	Ala	Gly	Leu	Phe	Lys
					200				205					210
Leu	Thr	Glu	Leu	His	Leu	Glu	His	Asn	Asp	Leu	Val	Lys	Val	Asn
					215				220					225
Phe	Ala	His	Phe	Pro	Arg	Leu	Ile	Ser	Leu	His	Ser	Leu	Cys	Leu
					230				235					240
Arg	Arg	Asn	Lys	Val	Ala	Ile	Val	Val	Ser	Ser	Leu	Asp	Trp	Val
					245				250					255
Trp	Asn	Leu	Glu	Lys	Met	Asp	Leu	Ser	Gly	Asn	Glu	Ile	Glu	Tyr
					260				265					270
Met	Glu	Pro	His	Val	Phe	Glu	Thr	Val	Pro	His	Leu	Gln	Ser	Leu
					275				280					285

Gln Leu Asp Ser Asn Arg Leu Thr Tyr Ile Glu Pro Arg Ile Leu
 290 295 300
 Asn Ser Trp Lys Ser Leu Thr Ser Ile Thr Leu Ala Gly Asn Leu
 305 310 315
 Trp Asp Cys Gly Arg Asn Val Cys Ala Leu Ala Ser Trp Leu Ser
 320 325 330
 Asn Phe Gln Gly Arg Tyr Asp Gly Asn Leu Gln Cys Ala Ser Pro
 335 340 345
 Glu Tyr Ala Gln Gly Glu Asp Val Leu Asp Ala Val Tyr Ala Phe
 350 355 360
 His Leu Cys Glu Asp Gly Ala Glu Pro Thr Ser Gly His Leu Leu
 365 370 375
 Ser Ala Val Thr Asn Arg Ser Asp Leu Gly Pro Pro Ala Ser Ser
 380 385 390
 Ala Thr Thr Leu Ala Asp Gly Gly Glu Gly Gln His Asp Gly Thr
 395 400 405
 Phe Glu Pro Ala Thr Val Ala Leu Pro Gly Gly Glu His Ala Glu
 410 415 420
 Asn Ala Val Gln Ile His Lys Val Val Thr Gly Thr Met Ala Leu
 425 430 435
 Ile Phe Ser Phe Leu Ile Val Val Leu Val Leu Tyr Val Ser Trp
 440 445 450
 Lys Cys Phe Pro Ala Ser Leu Arg Gln Leu Arg Gln Cys Phe Val
 455 460 465
 Thr Gln Arg Arg Lys Gln Lys Gln Lys Gln Thr Met His Gln Met
 470 475 480
 Ala Ala Met Ser Ala Gln Glu Tyr Tyr Val Asp Tyr Lys Pro Asn
 485 490 495
 His Ile Glu Gly Ala Leu Val Ile Ile Asn Glu Tyr Gly Ser Cys
 500 505 510
 Thr Cys His Gln Gln Pro Ala Arg Glu Cys Glu Val
 515 520

<210> 279

<211> 46

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 279

tccgtgcagg gggacgcctt tcagaaactg cgccgagtta aggaac 46

<210> 280

<211> 709

<212> DNA

<213> Homo sapiens

<400> 280
gtgcaaggag ccgaggcgag atgggcgtcc tggccgggt cctgctgtgg 50
ctgcagctct gcgcactgac ccaggcggtc tccaaactct gggtccccaa 100
cacggacttc gacgtcgag ccaactggag ccagaaccgg accccgtgcg 150
ccggcggcgc cggtgagttc ccggcggaca agatggtgta agtcctggtg 200
caagaaggta acgcccgtctc agacatgctc ctgccgctgg atggggaaact 250
cgtcctggct tcaggagccg gattcggcgt ctcagacgtg ggctcgacc 300
tggactgtgg cgcggcgaa cctgcccgtct tccgcgactc tgaccgcttc 350
ttcttgcgtg accccgcacct gtggcgctct ggggacgagg cacctggcct 400
cttcttcgtg gacgcccggc gcgtgcctg ccgcacgcac gacgtcttct 450
ttccgcctag tgcctcccttc cgcgtggggc tcggccctgg cgctagcccc 500
gtgcgtgtcc gcagcatctc ggctctgggc cggacgttca cgcgcgacga 550
ggacctggct gtttccctgg cgtcccgccgc gggccgccta cgcttccacg 600
ggccggcgccgc gctgagcgtg ggcccgagg actgcgcgga cccgtcgggc 650
tgcgtctgcg gcaacgcgga ggcgcagccg tggatctgcg cggccctgct 700
ccagccccct 709

<210> 281
<211> 229
<212> PRT
<213> Homo sapiens

<400> 281
Met Gly Val Leu Gly Arg Val Leu Leu Trp Leu Gln Leu Cys Ala
1 5 10 15
Leu Thr Gln Ala Val Ser Lys Leu Trp Val Pro Asn Thr Asp Phe
20 25 30
Asp Val Ala Ala Asn Trp Ser Gln Asn Arg Thr Pro Cys Ala Gly
35 40 45
Gly Ala Val Glu Phe Pro Ala Asp Lys Met Val Ser Val Leu Val
50 55 60
Gln Glu Gly His Ala Val Ser Asp Met Leu Leu Pro Leu Asp Gly
65 70 75
Glu Leu Val Leu Ala Ser Gly Ala Gly Phe Gly Val Ser Asp Val
80 85 90
Gly Ser His Leu Asp Cys Gly Ala Gly Glu Pro Ala Val Phe Arg
95 100 105
Asp Ser Asp Arg Phe Ser Trp His Asp Pro His Leu Trp Arg Ser
110 115 120
Gly Asp Glu Ala Pro Gly Leu Phe Phe Val Asp Ala Glu Arg Val
125 130 135

Pro Cys Arg His Asp Asp Val Phe Phe Pro Pro Ser Ala Ser Phe
140 145 150

Arg Val Gly Leu Gly Pro Gly Ala Ser Pro Val Arg Val Arg Ser
155 160 165

Ile Ser Ala Leu Gly Arg Thr Phe Thr Arg Asp Glu Asp Leu Ala
170 175 180

Val Phe Leu Ala Ser Arg Ala Gly Arg Leu Arg Phe His Gly Pro
185 190 195

Gly Ala Leu Ser Val Gly Pro Glu Asp Cys Ala Asp Pro Ser Gly
200 205 210

Cys Val Cys Gly Asn Ala Glu Ala Gln Pro Trp Ile Cys Ala Ala
215 220 225

Leu Leu Gln Pro

<210> 282

<211> 644

<212> DNA

<213> Homo sapiens

<400> 282

atcgcatcaa ttgggagtagtac catcttcctc atgggaccag tgaaaacagct 50

gaagcgaatg tttgagccta ctcgttgat tgcaactatac atggtgctgt 100

tgtgtttgc acttaccctg tggctgcct tttggtggca taacaaggga 150

cttgcaactta tcttctgcat tttgcagtct ttggcattga cgtggcacag 200

cctttcccttc ataccatgg caagggatgc tgtgaagaag tgtttgccg 250

tgtgtcttgc ataattcatg gccagttta tgaagctttg gaaggcacta 300

tggacagaag ctggggaca gttttgttaac tatcttcgaa acctctgtct 350

tacagacatg tgccttttat cttgcagcaa tgtgttgctt gtgattcgaa 400

catttgaggg ttactttgg aagcaacaat acattctcgaa acctgaatgt 450

cagtagcaca ggatgagaag tgggttctgt atcttgtggaa gtggaatctt 500

cctcatgtac ctgtttccctc tctggatgtt gtcccactga attcccatgaa 550

atacaaacctt attcagcaac agcaaaaaaaaaaaaaaaa 600

aaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaa 644

<210> 283

<211> 77

<212> PRT

<213> Homo sapiens

<400> 283

Met Gly Pro Val Lys Gln Leu Lys Arg Met Phe Glu Pro Thr Arg
1 5 10 15

Leu Ile Ala Thr Ile Met Val Leu Leu Cys Phe Ala Leu Thr Leu

20	25	30
Cys Ser Ala Phe Trp Trp His Asn Lys Gly Leu Ala Leu Ile Phe		
35	40	45
Cys Ile Leu Gln Ser Leu Ala Leu Thr Trp Tyr Ser Leu Ser Phe		
50	55	60
Ile Pro Phe Ala Arg Asp Ala Val Lys Lys Cys Phe Ala Val Cys		
65	70	75
Leu Ala		

<210> 284
<211> 2623
<212> DNA
<213> Homo sapiens

<400> 284
ttgagcgcag gtgagctcct gcgcgttccg gggcggttcc tccagtccacc 50
ctccccccgt tacccgcggc gcgcggagg gagtctccctc cagaccctcc 100
ctcccgttgc tccaaactaa tacggactga acggatcgct gcgagggtgg 150
gagagaaaat tagggggaga aaggacagag agagcaacta ccatccatag 200
ccagatagat tatcttacac tgaactgatc aagtactttg aaaatgactt 250
cgaaatttat ctttgtgtcc ttcatacttg ctgcactgag tctttcaacc 300
accttttctc tccaactaga ccagcaaaag gttctactag tttctttga 350
tggattccgt tgggattact tatataaagt tccaacgccc cattttcatt 400
atattatgaa atatgggttt cacgtgaagc aagttactaa tgtttttatt 450
acaaaaaacct accctaacca ttatactttg gtaactggcc tctttgcaga 500
gaatcatggg attgttgcaa atgatatgtt tgatcctatt cggaacaaat 550
ctttctcctt ggatcacatg aatatttatg attccaagtt ttgggaagaa 600
gcgcacaccaa tatggatcac aaaccagagg gcaggacata ctatgggtgc 650
agccatgtgg cccggaacag atgtaaaaat acataagcgc tttcctactc 700
attacatgcc ttacaatgag tcagttcat ttgaagatag agttgcacaa 750
attgttgaat ggttacgtc aaaagagccc ataaatcttg gtcttctcta 800
ttgggaagac cctgatgaca tgggccacca tttggaccc gacagtccgc 850
tcatggggcc tgtcatttca gatattgaca agaagttagg atatctcata 900
caaatgctga aaaaggcaaa gttgtggAAC actctgaacc taatcatcac 950
aagtgtatcat ggaatgacgc agtgctctga ggaaaggta atagaacttg 1000
accagtagct ggataaaagac cactataccc tgattgatca atctccagta 1050
gcagccatct tgccaaaaga aggtaaattt gatgaagtct atgaagcact 1100

aactcacgt catcctaatac ttactgttta caaaaaagaa gacgttccag 1150
aaagggtggca ttacaaaatac aacagtgcgaa ttcaaccaat catagcagtg 1200
gctgatgaag ggtggcacat tttacagaat aagtcagatg actttctgtt 1250
aggcaaccac gggtacgata atgcgttagc agatatgcat ccaatattt 1300
tagccccatgg tcctgccttc agaaagaatt tctcaaaaga agccatgaac 1350
tccacagatt tgtacccact actatgccac ctccctcaata tcactgccat 1400
gccacacaat ggatcattct ggaatgtcca ggatctgctc aattcagcaa 1450
tgccaagggt ggtcccttat acacagagta ctatactcct ccctggtagt 1500
gttaaaccag cagaatatga ccaagagggg tcataccctt atttcatagg 1550
ggtctctttt ggcagcatta tagtgattgt atttttgtt attttcatta 1600
agcatttaat tcacagtcaa atacctgcct tacaagatat gcatgctgaa 1650
atagctcaac cattattaca agcctaattgt tactttgaag tggatttgca 1700
tattgaagtg gagattccat aattatgtca gtgtttaaag gtttcaaatt 1750
ctggaaacc agttccaaac atctgcagaa accattaagc agttacatat 1800
tttaggtatac acacacacac acacacacac atacacacac acggaccaaa 1850
atacttacac ctgcaaagga ataaagatgt gagagtatgt ctccattgtt 1900
cactgttagca tagggataga taagatcctg ctttatttgg acttggcgca 1950
gataatgtat atatttagca actttgcact atgtaaagta ccttatatat 2000
tgcactttaa atttctctcc tgatgggtac ttttaatttga aatgcacttt 2050
atggacagtt atgtcttata acttgattga aaatgacaac ttttgcacc 2100
catgtcacag aatacttgtt acgcattgtt caaactgaag gaaatttcta 2150
ataatcccgaa ataatgaaca tagaaatcta tctccataaa ttgagagaag 2200
aagaagggtga taagtgttga aaattaaatg tgataacctt tgaaccttga 2250
atttggaga tgtattccca acagcagaat gcaactgtgg gcatttcttg 2300
tcttattttt ttccagagaa cgtggtttc atttattttt ccctcaaaag 2350
agagtcaaatac actgacagat tcgttctaaa tatattgttt ctgtcataaa 2400
attattgtga ttccctgtat agtcatatta ctgtgatttt cataataatg 2450
aagacaccat gaatataactt ttcttctata tagttcagca atggcctgaa 2500
tagaagcaac caggcaccat ctcagcaatg tttctcttg tttgttaatta 2550
tttgctcctt tgaaaattaa atcactatta attacattaa aaatcaaatt 2600
ggataaaaaaa aaaaaaaaaaaa aaa 2623

<210> 285

<211> 477
<212> PRT
<213> Homo sapiens

<400> 285

Met Thr Ser Lys Phe Ile Leu Val Ser Phe Ile Leu Ala Ala Leu
1 5 10 15

Ser Leu Ser Thr Thr Phe Ser Leu Gln Leu Asp Gln Gln Lys Val
20 25 30

Leu Leu Val Ser Phe Asp Gly Phe Arg Trp Asp Tyr Leu Tyr Lys
35 40 45

Val Pro Thr Pro His Phe His Tyr Ile Met Lys Tyr Gly Val His
50 55 60

Val Lys Gln Val Thr Asn Val Phe Ile Thr Lys Thr Tyr Pro Asn
65 70 75

His Tyr Thr Leu Val Thr Gly Leu Phe Ala Glu Asn His Gly Ile
80 85 90

.

Val Ala Asn Asp Met Phe Asp Pro Ile Arg Asn Lys Ser Phe Ser
95 100 105

Leu Asp His Met Asn Ile Tyr Asp Ser Lys Phe Trp Glu Glu Ala
110 115 120

Thr Pro Ile Trp Ile Thr Asn Gln Arg Ala Gly His Thr Ser Gly
125 130 135

Ala Ala Met Trp Pro Gly Thr Asp Val Lys Ile His Lys Arg Phe
140 145 150

Pro Thr His Tyr Met Pro Tyr Asn Glu Ser Val Ser Phe Glu Asp
155 160 165

Arg Val Ala Lys Ile Val Glu Trp Phe Thr Ser Lys Glu Pro Ile
170 175 180

Asn Leu Gly Leu Leu Tyr Trp Glu Asp Pro Asp Asp Met Gly His
185 190 195

His Leu Gly Pro Asp Ser Pro Leu Met Gly Pro Val Ile Ser Asp
200 205 210

Ile Asp Lys Lys Leu Gly Tyr Leu Ile Gln Met Leu Lys Lys Ala
215 220 225

Lys Leu Trp Asn Thr Leu Asn Leu Ile Ile Thr Ser Asp His Gly
230 235 240

Met Thr Gln Cys Ser Glu Glu Arg Leu Ile Glu Leu Asp Gln Tyr
245 250 255

Leu Asp Lys Asp His Tyr Thr Leu Ile Asp Gln Ser Pro Val Ala
260 265 270

Ala Ile Leu Pro Lys Glu Gly Lys Phe Asp Glu Val Tyr Glu Ala
275 280 285

Leu Thr His Ala His Pro Asn Leu Thr Val Tyr Lys Glu Asp

290	295	300
Val Pro Glu Arg Trp His Tyr Lys Tyr Asn Ser Arg Ile Gln Pro		
305	310	315
Ile Ile Ala Val Ala Asp Glu Gly Trp His Ile Leu Gln Asn Lys		
320	325	330
Ser Asp Asp Phe Leu Leu Gly Asn His Gly Tyr Asp Asn Ala Leu		
335	340	345
Ala Asp Met His Pro Ile Phe Leu Ala His Gly Pro Ala Phe Arg		
350	355	360
Lys Asn Phe Ser Lys Glu Ala Met Asn Ser Thr Asp Leu Tyr Pro		
365	370	375
Leu Leu Cys His Leu Leu Asn Ile Thr Ala Met Pro His Asn Gly		
380	385	390
Ser Phe Trp Asn Val Gln Asp Leu Leu Asn Ser Ala Met Pro Arg		
395	400	405
Val Val Pro Tyr Thr Gln Ser Thr Ile Leu Leu Pro Gly Ser Val		
410	415	420
Lys Pro Ala Glu Tyr Asp Gln Glu Gly Ser Tyr Pro Tyr Phe Ile		
425	430	435
Gly Val Ser Leu Gly Ser Ile Ile Val Ile Val Phe Phe Val Ile		
440	445	450
Phe Ile Lys His Leu Ile His Ser Gln Ile Pro Ala Leu Gln Asp		
455	460	465
Met His Ala Glu Ile Ala Gln Pro Leu Leu Gln Ala		
470	475	

<210> 286
<211> 1337
<212> DNA
<213> Homo sapiens

<400> 286
ggatttttgt gatccgcgat tcgctccac gggcgccacc tttgttaactg 50
cgggaggccc aggacaggcc caccctgcgg ggccgggaggc agccggggtg 100
agggaggtga agaaaccaag acgcagagag gccaaagcccc ttgccttggg 150
tcacacagcc aaaggaggca gagccagaac tcacaaccag atccagaggc 200
aacagggaca tggcccacctg ggacgaaaag gcagtcaccc gcagggccaa 250
ggtggtctcc gctgagagga tgagcaagtt cttaaggcac ttacggctcg 300
tgggagacga ctaccatgcc tggAACATCA actacaagaa atgggagaat 350
gaagaggagg aggaggagga ggagcagcca ccacccacac cagtctcagg 400
cgaggaaggc agagctgcag cccctgacgt tgccctgcc cctggccccc 450
cccccaggc ccccccttgac ttcaggggca tgttgaggaa actgttcagc 500

tcccacaggt ttcaggtcat catcatctgc ttgggtggttc tggatgcct 550
cctggtgctt gctgagctca tcctggacct gaagatcatc cagccccaca 600
agaataacta tgctgccatg gtattccact acatgagcat caccatctt 650
gtcttttta tcatggagat catcttaaa ttatttgc tccgcctgag 700
ttctttcacc acaagttga gatcctggat gcccgctcg 750
cattcatcct ggacattgtc ctccctgttcc aggagcacca gtttgaggct 800
ctgggcctgc tgattctgct ccggctgtgg cggtggccc ggatcatcaa 850
tgggattatc atctcagtttta agacacgttc agaacggcaa ctcttaaggt 900
taaaacagat gaatgtacaa ttggccgcca agattcaaca ccttgagttc 950
agctgctctg agaagccct ggactgatga gtttgctgta tcaacctgta 1000
aggagaagct ctctccggat ggctatggga atgaaagaat ccgacttcta 1050
ctctcacaca gccaccgtga aagtccctgga gtaaaatgtg ctgtgtacag 1100
aagagagaga aggaagcagg ctggcatgtt cactggctg gtgttacgac 1150
agagaacctg acagtcactg gccagttatc acttcagatt acaaattcaca 1200
cagagcatct gcctgttttc aatcacaaga gaacaaaacc aaaatctata 1250
aagatattct gaaaatatga cagaatttga caaataaaag cataaacgtg 1300
aaaaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 1337

<210> 287

<211> 255

<212> PRT

<213> Homo sapiens

<400> 287

Met Ala Thr Trp Asp Glu Lys Ala Val Thr Arg Arg Ala Lys Val
1 5 10 15

Ala Pro Ala Glu Arg Met Ser Lys Phe Leu Arg His Phe Thr Val
20 25 30

Val Gly Asp Asp Tyr His Ala Trp Asn Ile Asn Tyr Lys Lys Trp
35 40 45

Glu Asn Glu Glu Glu Glu Glu Glu Gln Pro Pro Pro Thr
50 55 60

Pro Val Ser Gly Glu Glu Gly Arg Ala Ala Ala Pro Asp Val Ala
65 70 75

Pro Ala Pro Gly Pro Ala Pro Arg Ala Pro Leu Asp Phe Arg Gly
80 85 90

Met Leu Arg Lys Leu Phe Ser Ser His Arg Phe Gln Val Ile Ile
95 100 105

Ile Cys Leu Val Val Leu Asp Ala Leu Leu Val Leu Ala Glu Leu
110 115 120

Ile Leu Asp Leu Lys Ile Ile Gln Pro Asp Lys Asn Asn Tyr Ala

125

130

135

Ala Met Val Phe His Tyr Met Ser Ile Thr Ile Leu Val Phe Phe
140 145 150

Met Met Glu Ile Ile Phe Lys Leu Phe Val Phe Arg Leu Ser Ser
155 160 165

Phe Thr Thr Ser Leu Arg Ser Trp Met Pro Val Val Val Val
170 175 180

Ser Phe Ile Leu Asp Ile Val Leu Leu Phe Gln Glu His Gln Phe
185 190 195

Glu Ala Leu Gly Leu Leu Ile Leu Leu Arg Leu Trp Arg Val Ala
200 205 210

Arg Ile Ile Asn Gly Ile Ile Ile Ser Val Lys Thr Arg Ser Glu
215 220 225

Arg Gln Leu Leu Arg Leu Lys Gln Met Asn Val Gln Leu Ala Ala
230 235 240

Lys Ile Gln His Leu Glu Phe Ser Cys Ser Glu Lys Pro Leu Asp
245 250 255

<210> 288

<211> 3334

<212> DNA

<213> Homo sapiens

<400> 288

cggctcgagc tcgagccgaa tcggctcgag gggcagtgga gcacccagca 50

ggccgccaac atgctctgtc tgtgcctgta cgtgccggtc atcgggaaag 100

cccagaccga gttccagtac tttgagtcga aggggctccc tgccgagctg 150

aagtccattt tcaagctcag tgtcttcatc ccctcccagg aattctccac 200

ctaccgccag tggaagcaga aaattgtaca agctggagat aaggaccttg 250

atgggcagct agactttgaa gaatttgcattt attatctcca agatcatgag 300

aagaagctga ggctgggttt taagattttg gacaaaaaga atgatggacg 350

cattgacgacg caggagatca tgcagtcct gcgggacttg ggagtcaaga 400

tatctgaaca gcaggcagaa aaaattctca agagcatgga taaaaacggc 450

acgatgacca tcgactggaa cgagtggaga gactaccacc tcctccaccc 500

cgtggaaaac atccccgaga tcatcctcta ctggaaagcat tccacgatct 550

ttgatgtggg tgagaatcta acggccccgg atgagttcac agtggaggag 600

aggcagacgg ggatgtggtg gagacacctg gtggcaggag gtggggcagg 650

ggccgtatcc agaacctgca cggccccccct ggacaggctc aaggtgctca 700

tgcaggtcca tgcctccccgc agcaacaaca tggcgtatcgt tggtggttc 750

actcagatga ttcgagaagg aggggccagg tcactctggc ggggcaatgg 800
catcaacgtc ctcaaaaattt ccccccgaatc agccatcaaa ttcatggcct 850
atgagcagat caagcgcctt gttggtagtg accaggagac tctgaggatt 900
cacgagaggc ttgtggcagg gtccttggca ggggccatcg cccagagcag 950
catctaccca atggagggtcc tgaagacccg gatggcgctg cggaagacag 1000
gccagtactc aggaatgctg gactgcgc当地 ggaggatcct ggccagagag 1050
gggtggccg ctttctacaa aggctatgtc cccaacatgc tgggcatcat 1100
cccctatgcc ggc当地cgacc ttgcagtcta cgagacgctc aagaatgcct 1150
ggctgcagca ctatgcagtg aacagcgc当地 accccggcgt gtttgtgctc 1200
ctggcctgtg gcaccatgtc cagtaacctgt ggccagctgg ccagctaccc 1250
cctggcccta gtcaggaccc ggatgcaggc gcaaggctct attgagggcg 1300
ctccggaggt gaccatgagc agcctttca aacatatcct gcggaccgag 1350
ggggccttcg ggctgtacag ggggctggcc cccaacttca tgaaggctcat 1400
cccagctgtg agcatcagct acgtggtcta cgagaacctg aagatcaccc 1450
tggcgtgca gtcgc当地ga cggggggagg gccgccccgc agtggactcg 1500
ctgatcctgg gccc当地gcct ggggtgtgca gccatctcat tctgtgaatg 1550
tgccaacact aagctgtctc gagccaagct gtgaaaaccc tagacgcacc 1600
cgcaggagg gtggggagag ctggcaggcc cagggcttgc cctgctgacc 1650
ccagcagacc ctccctgttgg ttccagcgaa gaccacaggc attccttagg 1700
gtccagggtc agcaggctcc gggctcacat gtgttaaggac aggacatccc 1750
ctgcagtgcc tgccaatagt gagcttggag cctggaggcc ggcttagttc 1800
ttccatttca cccttgc当地 cagctgttgg ccacggcccc tgccctctgg 1850
tctgccgtgc atctccctgt gccc当地tgc tgc当地gtctg tctgctgagg 1900
taaggtggga ggagggctac agcccacatc ccaccccccgtccatccc 1950
ataatccatg atgaaagggtg aggtcacgtg gcctccagg cctgacttcc 2000
caacctacag cattgacgcc aacttggctg tgaaggaaga ggaaaggatc 2050
tggccttggc gtcactggca tctgagccct gctgatggct gggctctgg 2100
ggcatgcttggc ggaggtgcagg gggctcgggc tgccctggct ggctgc当地 2150
aaggcaagtg ctggggctca tggtgctctg agctggcctg gaccctgtca 2200
ggatggggccc cacctcagaa ccaaactcac tgtccccact gtggcatgag 2250
ggcagtgag caccatgttt gagggcgaag ggcagagcgt ttgtgtgttc 2300
tggggagggaa aggaaaagggt gttggaggcc ttaattatgg actgttggga 2350

aaagggtttt gtccagaagg acaagccgga caaatgagcg acttctgtgc 2400
ttccagagga agacgaggga gcaggagctt ggctgactgc tcagagtctg 2450
ttctgacgcc ctgggggttc ctgtccaacc ccagcagggg cgccagcggga 2500
ccagccccac attccacttg tgtcactgct tggAACCTAT ttatTTGTA 2550
tttatttgaa cagagttatg tcctaactat ttttatAGAT ttgtttaATT 2600
aatAGCTTGT catTTCAAG tTCATTTTT ATTcatATTt ATGTTCATGG 2650
ttgattgtac ctTCCCAGC ccGCCAGTG ggATGGGAGG aggAGGAGAA 2700
ggggggcctt gggccgctgc agtcacatct gtccAGAGAA attcCTTTG 2750
ggactggagg cagAAAAGCG gccAGAAGGC agcAGCCCTG gTCCTTTCC 2800
tttggcaggt tggGAAGGG ctTgCCCCA gcCTTAGGAT ttCAGGGTTT 2850
gactggggc gtggAGAGAG agggAGGAAC ctCAATAACC ttGAAGGTGG 2900
aatCCAGTTA ttTCCCTGCgc tgCGAGGGTT tCTTATTTC ACTCTTTCT 2950
gaatgtcaag gcAGTgAGGT gcCTCTCACT gtGAATTGT ggtGGGCGGG 3000
ggctggagga gagggTgggg ggCTggCTCC gTCCCTCCCA gcCTTCTGCT 3050
gCCCTTGCtt aacaATGCCG gCCAACTGGC gACCTCACGG ttGCACTTCC 3100
attCCACCAg aatgacCTGA tgAGGAAATC ttCAATAGGA tgCAAAGATC 3150
aatgcaaaaa ttgttatata tgaACATATA ACTGGAGTCG tcaaaaaAGCA 3200
aattaAGAAA gaATTggACG ttAGAAGTTG tcATTTAAAG cAGCCTTCTA 3250
ataaaAGTTGT ttcaaAGCTG aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa 3300
aaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaa 3334

<210> 289
<211> 469
<212> PRT
<213> Homo sapiens

Asp Lys Lys Asn Asp Gly Arg Ile Asp Ala Gln Glu Ile Met Gln
 95 100 105
 Ser Leu Arg Asp Leu Gly Val Lys Ile Ser Glu Gln Gln Ala Glu
 110 115 120
 Lys Ile Leu Lys Ser Met Asp Lys Asn Gly Thr Met Thr Ile Asp
 125 130 135
 Trp Asn Glu Trp Arg Asp Tyr His Leu Leu His Pro Val Glu Asn
 140 145 150
 Ile Pro Glu Ile Ile Tyr Trp Lys His Ser Thr Ile Phe Asp
 155 160 165
 Val Gly Glu Asn Leu Thr Val Pro Asp Glu Phe Thr Val Glu Glu
 170 175 180
 Arg Gln Thr Gly Met Trp Trp Arg His Leu Val Ala Gly Gly
 185 190 195
 Ala Gly Ala Val Ser Arg Thr Cys Thr Ala Pro Leu Asp Arg Leu
 200 205 210
 Lys Val Leu Met Gln Val His Ala Ser Arg Ser Asn Asn Met Gly
 215 220 225
 Ile Val Gly Gly Phe Thr Gln Met Ile Arg Glu Gly Ala Arg
 230 235 240
 Ser Leu Trp Arg Gly Asn Gly Ile Asn Val Leu Lys Ile Ala Pro
 245 250 255
 Glu Ser Ala Ile Lys Phe Met Ala Tyr Glu Gln Ile Lys Arg Leu
 260 265 270
 Val Gly Ser Asp Gln Glu Thr Leu Arg Ile His Glu Arg Leu Val
 275 280 285
 Ala Gly Ser Leu Ala Gly Ala Ile Ala Gln Ser Ser Ile Tyr Pro
 290 295 300
 Met Glu Val Leu Lys Thr Arg Met Ala Leu Arg Lys Thr Gly Gln
 305 310 315
 Tyr Ser Gly Met Leu Asp Cys Ala Arg Arg Ile Leu Ala Arg Glu
 320 325 330
 Gly Val Ala Ala Phe Tyr Lys Gly Tyr Val Pro Asn Met Leu Gly
 335 340 345
 Ile Ile Pro Tyr Ala Gly Ile Asp Leu Ala Val Tyr Glu Thr Leu
 350 355 360
 Lys Asn Ala Trp Leu Gln His Tyr Ala Val Asn Ser Ala Asp Pro
 365 370 375
 Gly Val Phe Val Leu Leu Ala Cys Gly Thr Met Ser Ser Thr Cys
 380 385 390
 Gly Gln Leu Ala Ser Tyr Pro Leu Ala Leu Val Arg Thr Arg Met
 395 400 405

Gln Ala Gln Ala Ser Ile Glu Gly Ala Pro Glu Val Thr Met Ser
410 415 420
Ser Leu Phe Lys His Ile Leu Arg Thr Glu Gly Ala Phe Gly Leu
425 430 435
Tyr Arg Gly Leu Ala Pro Asn Phe Met Lys Val Ile Pro Ala Val
440 445 450
Ser Ile Ser Tyr Val Val Tyr Glu Asn Leu Lys Ile Thr Leu Gly
455 460 465
Val Gln Ser Arg

<210> 290
<211> 1658
<212> DNA
<213> Homo sapiens

<400> 290
ggaaggcagc ggcagctcca ctcagccagt acccagatac gctggaaacc 50
ttccccagcc atggcttccc tggggcagat cctcttctgg agcataatta 100
gcatacatcat tattctggct ggagcaattg cactcatcat tggcttttgt 150
atttcaggga gacactccat cacagtcact actgtcgccct cagctggaa 200
cattggggag gatggaatcc tgagctgcac ttttgaacct gacatcaaac 250
tttctgatat cgtgatacaa tggctgaagg aaggtgtttt aggcttggtc 300
catgagttca aagaaggcaa agatgagctg tcggagcagg atgaaatgtt 350
cagaggccgg acagcagtgt ttgctgatca agtataatgtt ggcaatgcct 400
ctttgcggct gaaaaacgtg caactcacag atgctggcac ctacaaatgt 450
tatatacatca cttctaaagg caaggaaat gctaaccctt agtataaaac 500
tggagccttc agcatgccgg aagtgaatgt ggactataat gccagctcag 550
agaccttgcg gtgtgaggct ccccgatggt tccccagcc cacagtggtc 600
tgggcatccc aagttgacca gggagccaaac ttctcgaaag tctccaatac 650
cagctttgag ctgaactctg agaatgtgac catgaaggtt gtgtctgtgc 700
tctacaatgt tacgatcaac aacacatact cctgtatgtat tgaaaatgac 750
attgccaaag caacagggaa tatcaaagtg acagaatcgg agatcaaaag 800
gcggagtacac ctacagctgc taaaactcaaa ggcttctctg tgtgtcttt 850
ctttcttgc catcagctgg gcacttctgc ctctcagccc ttacctgatg 900
ctaaaataat gtgccttggc cacaaaaaaag catgcaaagt cattgttaca 950
acagggatct acagaactat ttcaccacca gatatgaccc agttttatata 1000
ttctggagg aaatgaattc atatctagaa gtctggagtg agcaaacaag 1050

agcaagaaac aaaaagaagc caaaagcaga aggctccaat atgaacaaga 1100
taaatctatac ttcaaagaca tattagaagt tggaaaata attcatgtga 1150
actagacaag tgtgttaaga gtgataagta aaatgcacgt ggagacaaagt 1200
gcatccccag atctcaggga cctccccctg cctgtcacct ggggagttag 1250
aggacaggat agtgcatgtt ctttgtctct gaatttttag ttatatgtgc 1300
tgtaatgttg ctctgaggaa gccccctggaa agtctatccc aacatatcca 1350
catcttatat tcacaaaatt aagctgttagt atgtacccta agacgctgct 1400
aattgactgc cacttcgcaa ctcagggcg gctgcatttt agtaatgggt 1450
caaatgattc actttttatg atgctccaa aggtgccttg gtttctcttc 1500
ccaaactgaca aatgccaaag ttgagaaaaaa tgatcataat ttttagcataa 1550
acagagcagt cggggacacc gatTTATAA ataaactgag cacttcttt 1600
ttAAACAAAAA AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA 1650
aaaaaaaaa 1658

<210> 291

282

<212> PRT

<213> Homo sapiens

<400> 291

```

Met Ala Ser Leu Gly Gln Ile Leu Phe Trp Ser Ile Ile Ser Ile
      1           5           10          15

```

Ile Ile Ile Leu Ala Gly Ala Ile Ala Leu Ile Ile Gly Phe Gly
20 25 30

Ile Ser Gly Arg His Ser Ile Thr Val Thr Thr Val Ala Ser Ala
35 40 45

Gly Asn Ile Gly Glu Asp Gly Ile Leu Ser Cys Thr Phe Glu Pro
50 55 60

Asp Ile Lys Leu Ser Asp Ile Val Ile Gln Trp Leu Lys Glu Gly
65 70 75

Val Leu Gly Leu Val His Glu Phe Lys Glu Gly Lys Asp Glu Leu
80 85 90

Ser Glu Gln Asp Glu Met Phe Arg Gly Arg Thr Ala Val Phe Ala
95 100 105

Asp Gln Val Ile Val Gly Asn Ala Ser Leu Arg Leu Lys Asn Val
110 115 120

Gln Leu Thr Asp Ala Gly Thr Tyr Lys Cys Tyr Ile Ile Thr Ser
 125 130 135

Lys Gly Lys Gly Asn Ala Asn Leu Glu Tyr Lys Thr Gly Ala Phe
140 145 150

Ser Met Pro Glu Val Asn Val Asp Tyr Asn Ala Ser Ser Glu Thr

260

155	160	165
Leu Arg Cys Glu Ala Pro Arg Trp Phe Pro Gln Pro Thr Val Val		
170	175	180
Trp Ala Ser Gln Val Asp Gln Gly Ala Asn Phe Ser Glu Val Ser		
185	190	195
Asn Thr Ser Phe Glu Leu Asn Ser Glu Asn Val Thr Met Lys Val		
200	205	210
Val Ser Val Leu Tyr Asn Val Thr Ile Asn Asn Thr Tyr Ser Cys		
215	220	225
Met Ile Glu Asn Asp Ile Ala Lys Ala Thr Gly Asp Ile Lys Val		
230	235	240
Thr Glu Ser Glu Ile Lys Arg Arg Ser His Leu Gln Leu Leu Asn		
245	250	255
Ser Lys Ala Ser Leu Cys Val Ser Ser Phe Phe Ala Ile Ser Trp		
260	265	270
Ala Leu Leu Pro Leu Ser Pro Tyr Leu Met Leu Lys		
275	280	

<210> 292

<211> 1484

<212> DNA

<213> Homo sapiens

<400> 292

```

gaattttgtag aagacagcgg cgttgccatg gcggcgctc tggggcaggt 50
gttggctctg gtgctggtgg ccgcctgtg gggtggcacg cagccgctgc 100
tgaaggcgggc ctccgccggc ctgcagcggg ttcatgagcc gacctgggcc 150
cagcagttgc tacaggagat gaagaccctc ttcttgaata ctgagtacct 200
gatgccctt ctcccaacc agtgtggatc ccttcttat tacctcacct 250
tggcatcgac agatctgacc ctggctgtgc ccacatgtaa ctctctggct 300
atcatcttca cactgattgt tgggaaggcc cttggagaag atattggtgg 350
aaaacgtaag ttagactact gcgagtgccg gacgcagctc tgtggatctc 400
gacatacctg tgtagttcc ttcccagaac ccacatcccc agagtgggtg 450
aggacacggc ctttcccat cctgccctt cctctgcagc tgttttgctt 500
ccttggcc atcagagttc cttcccttg gacagtctgg agaaagacag 550
aggctgggtt ttgggattga agaccagacc ccacatgtgac cttccctcca 600
gccctgtacc agtcctact ggcattggctg agtcagacc ctccctgattt 650
ctgcctatta tcccaggagc agttgctggc atggtgctca ccgtgatagg 700
aatttcactc tgcatcacaa gctcagttag taagacccag gggcaacagt 750
ctaccctttg agtggccgaa acccacttcc agtcgtctg cttccaggaa 800

```

ccccctggc catgaagtgc tggcagttag cgatggacc tagcaattcc 850
cctctctggc cttagttcc tcctcttta tgggataac agtacacctca 900
tggatcacaa taagagaaca agagtgaaag agtttgtaa cttcaagtg 950
ctgttcagct gcggggattt agcacaggag actctacgct caccctcagc 1000
aaccttctg ccccagcagc tctttcctg ctaacatctc aggctccag 1050
cccagccacc attactgtgg cctgatctgg actatcatgg tggcaggttc 1100
catggactgc agaactccag ctgcatggaa agggccagct gcagacttg 1150
agccagaaat gcaaacggga ggcctctggg actcagtcag agcgcttgg 1200
ctgaatgagg ggtgaaaccg agggaaagaag gtgcgtcgg a tggcagatg 1250
cagggaaatga gctgtctatt agccttcctt gccccaccca tgaggtaggc 1300
agaaatcctc actgccagcc cctcttaaac aggtagagag ctgtgagccc 1350
cagccccacc tgactccagc acacctggcg agtagtagct gtcaataaat 1400
ctatgtaaac agacaaaaaaaaaaaaaaaaaaaaaaa 1450
aaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaa 1484

<210> 293

<211> 180

<212> PRT

<213> Homo sapiens

<400> 293

Met	Ala	Ala	Ser	Leu	Gly	Gln	Val	Leu	Ala	Leu	Val	Leu	Val	Ala
1				5				10				15		
Ala	Leu	Trp	Gly	Gly	Thr	Gln	Pro	Leu	Leu	Lys	Arg	Ala	Ser	Ala
	20					25					30			
Gly	Leu	Gln	Arg	Val	His	Glu	Pro	Thr	Trp	Ala	Gln	Gln	Leu	Leu
	35					40					45			
Gln	Glu	Met	Lys	Thr	Leu	Phe	Leu	Asn	Thr	Glu	Tyr	Leu	Met	Pro
		50						55			60			
Phe	Leu	Leu	Asn	Gln	Cys	Gly	Ser	Leu	Leu	Tyr	Tyr	Leu	Thr	Leu
		65						70			75			
Ala	Ser	Thr	Asp	Leu	Thr	Leu	Ala	Val	Pro	Ile	Cys	Asn	Ser	Leu
		80						85			90			
Ala	Ile	Ile	Phe	Thr	Leu	Ile	Val	Gly	Lys	Ala	Leu	Gly	Glu	Asp
		95						100			105			
Ile	Gly	Gly	Lys	Arg	Lys	Leu	Asp	Tyr	Cys	Glu	Cys	Gly	Thr	Gln
		110						115			120			
Leu	Cys	Gly	Ser	Arg	His	Thr	Cys	Val	Ser	Ser	Phe	Pro	Glu	Pro
		125						130			135			
Ile	Ser	Pro	Glu	Trp	Val	Arg	Thr	Arg	Pro	Phe	Pro	Ile	Leu	Pro
		140						145			150			

Phe Pro Leu Gln Leu Phe Cys Phe Leu Val Ala Ile Arg Val Pro
155 160 165

Phe Pro Trp Thr Val Trp Arg Lys Thr Glu Ala Gly Val Trp Asp
170 175 180

<210> 294

<211> 1164

<212> DNA

<213> Homo sapiens

<400> 294

cttctgttagg acagtcacca ggccagatcc agaaggctct ctaggctcca 50

gctttctctg tggaagatga cagcaattat agcaggaccc tgccaggctg 100

tcgaaaagat tccgcaataa aactttgccca gtggaaagta cctagtgaaa 150

cggcctaaga tgccacttct tctcatgtcc caggcttgag gccctgtgg 200

ccccatcctt gggagaagtc agctccagca ccatgaaggg catcctcggt 250

gctggtatca ctgcagtgtct tgttgcagct gtagaatctc tgagctgcgt 300

gcagtgtaat tcattggaaa aatcctgtgt caacagcatt gcctctgaat 350

gtcccctcaca tgccaaacacc agctgtatca gctcctcagc cagtcctct 400

ctagagacac cagtcagatt ataccagaat atgttctgtct cagcggagaa 450

ctgcagtgtctt gagacacaca ttacagcctt cactgtccac gtgtctgt 500

aagaacactt tcattttgtt agccagtgtctt gccaaggaaa ggaatgcagc 550

aacaccagcg atgccttgga ccctccctg aagaacgtgt ccagcaacgc 600

agagtgcctt gcttggatgt aatctaattgg aacttcctgt cgtggaaagc 650

cctggaaatg ctatgaagaa gaacagtgtt tctttcttagt tgcagaacctt 700

aagaatgaca ttgagtctaa gagtctgtgt ctgaaaggctt gttccaaacgt 750

cagtaacgccc acctgtcagt tcctgtctgg tgaaaacaag actcttggag 800

gagtcatctt tcgaaaagttt gagtgtgcaa atgtaaacag cttAACCCCC 850

acgtctgcac caaccacttc ccacaacgtg ggctccaaag cttccctcta 900

cctcttggcc cttgccagcc tccttcttgc gggactgtgt ccctgaggc 950

ctggggctgc actttgccca gcacccatt tctgtttctc tgaggtccag 1000

agcacccctt gcggtgctga caccctcttt ccctgtctgt ccccgttaa 1050

ctgcccagta agtgggagtc acaggtctcc aggcaatgcc gacagctgcc 1100

ttgttcttca ttattaaagc actggttcat tcactgcca aaaaaaaaaa 1150

aaaaaaaaaaaa aaaa 1164

<210> 295

<211> 237

<212> PRT

<213> Homo sapiens

<400> 295

Met	Lys	Gly	Ile	Leu	Val	Ala	Gly	Ile	Thr	Ala	Val	Leu	Val	Ala
1				5					10					15
Ala	Val	Glu	Ser	Leu	Ser	Cys	Val	Gln	Cys	Asn	Ser	Trp	Glu	Lys
		20							25					30
Ser	Cys	Val	Asn	Ser	Ile	Ala	Ser	Glu	Cys	Pro	Ser	His	Ala	Asn
		35						40						45
Thr	Ser	Cys	Ile	Ser	Ser	Ser	Ala	Ser	Ser	Ser	Leu	Glu	Thr	Pro
		50						55						60
Val	Arg	Leu	Tyr	Gln	Asn	Met	Phe	Cys	Ser	Ala	Glu	Asn	Cys	Ser
		65						70						75
Glu	Glu	Thr	His	Ile	Thr	Ala	Phe	Thr	Val	His	Val	Ser	Ala	Glu
		80						85						90
Glu	His	Phe	His	Phe	Val	Ser	Gln	Cys	Cys	Gln	Gly	Lys	Glu	Cys
		95						100						105
Ser	Asn	Thr	Ser	Asp	Ala	Leu	Asp	Pro	Pro	Leu	Lys	Asn	Val	Ser
		110						115						120
Ser	Asn	Ala	Glu	Cys	Pro	Ala	Cys	Tyr	Glu	Ser	Asn	Gly	Thr	Ser
		125						130						135
Cys	Arg	Gly	Lys	Pro	Trp	Lys	Cys	Tyr	Glu	Glu	Glu	Gln	Cys	Val
		140						145						150
Phe	Leu	Val	Ala	Glu	Leu	Lys	Asn	Asp	Ile	Glu	Ser	Lys	Ser	Leu
		155						160						165
Val	Leu	Lys	Gly	Cys	Ser	Asn	Val	Ser	Asn	Ala	Thr	Cys	Gln	Phe
		170						175						180
Leu	Ser	Gly	Glu	Asn	Lys	Thr	Leu	Gly	Gly	Val	Ile	Phe	Arg	Lys
		185						190						195
Phe	Glu	Cys	Ala	Asn	Val	Asn	Ser	Leu	Thr	Pro	Thr	Ser	Ala	Pro
		200						205						210
Thr	Thr	Ser	His	Asn	Val	Gly	Ser	Lys	Ala	Ser	Leu	Tyr	Leu	Leu
		215						220						225
Ala	Leu	Ala	Ser	Leu	Leu	Leu	Arg	Gly	Leu	Leu	Pro			
		230						235						

<210> 296

<211> 1245

<212> DNA

<213> Homo sapiens

<400> 296

ggcctcggtt caaacgaccc ggtgggtcta cagcggagg gagggagcga 50
aggttaggagg cagggcttgc ctcactggcc accctcccaa ccccaagagc 100
ccagccccat ggtccccgccc gccggcgcc tgctgtgggt cctgctgctg 150

aatctgggtc cccgggcggc gggggcccaa ggcctgaccc agactccgac 200
cgaaatgcag cgggtcagtt tacgcttgg gggccccatg acccqcaagct 250
accggagcac cgcccgact ggtctcccc ggaagacaag gataatccta 300
gaggacgaga atgatgccat ggccgacgcc gaccgcctgg ctggaccagc 350
ggctgccgag ctcttgcccg ccacgggtgc caccggctt agccggtcgt 400
ccgccattaa cgaggaggat gggtcttcag aagagggggt tgtgattaat 450
gccggaaagg atagcaccag cagagagctt cccagtgcga ctcccaatac 500
agcggggagt tccagcacga ggttatagc caatagtcag gagcctgaaa 550
tcaggctgac ttcaagcctg ccgcgtccc ccgggaggtc tactgaggac 600
ctgccaggct cgccaggccac cctgagccag tggtccacac ctgggtctac 650
cccgagccgg tggccgtcac cctcaccac agccatgcca tctcctgagg 700
atctgcggct ggtgctgatg ccctggggcc cgtggcactg ccactgcaag 750
tcgggcacca tgagccggag ccggctctggg aagctgcacg gccttcgg 800
gcgccttcga gttggggcgc tgagccagct ccgcacggag cacaagcctt 850
gcacccatca acaatgtccc tgcaaccgac ttgggaaga gtgccccctg 900
gacacaagtc tctgtactga caccaactgt gcctctcaga gcaccaccag 950
taccaggacc accactaccc cttccacac catccaccc agaagcagtc 1000
ccagcctgcc acccgccagc ccctgcccag ccctggctt ttggaaacgg 1050
gtcaggattg gcctggagga tatggaaat agcctcttt cagtgttcac 1100
agagatgcaa ccaatagaca gaaaccagag gtaatggcca cttcatccac 1150
atgaggagat gtcagtatct caacctctt tgcccttca atcctagcac 1200
ccactagata ttttagtac agaaaaacaa aactggaaaa cacaa 1245

<210> 297

<211> 341

<212> PRT

<213> Homo sapiens

<400> 297

Met	Val	Pro	Ala	Ala	Gly	Ala	Leu	Leu	Trp	Val	Leu	Leu	Leu	Asn
1														15
Leu	Gly	Pro	Arg	Ala	Ala	Gly	Ala	Gln	Gly	Leu	Thr	Gln	Thr	Pro
														30
Thr	Glu	Met	Gln	Arg	Val	Ser	Leu	Arg	Phe	Gly	Gly	Pro	Met	Thr
														45
Arg	Ser	Tyr	Arg	Ser	Thr	Ala	Arg	Thr	Gly	Leu	Pro	Arg	Lys	Thr
														60
Arg	Ile	Ile	Leu	Glu	Asp	Glu	Asn	Asp	Ala	Met	Ala	Asp	Ala	Asp

65

70

75

Arg	Leu	Ala	Gly	Pro	Ala	Ala	Ala	Glu	Leu	Leu	Ala	Ala	Thr	Val
				80					85					90
Ser	Thr	Gly	Phe	Ser	Arg	Ser	Ser	Ala	Ile	Asn	Glu	Glu	Asp	Gly
	95							100						105
Ser	Ser	Glu	Glu	Gly	Val	Val	Ile	Asn	Ala	Gly	Lys	Asp	Ser	Thr
				110				115						120
Ser	Arg	Glu	Leu	Pro	Ser	Ala	Thr	Pro	Asn	Thr	Ala	Gly	Ser	Ser
			125					130						135
Ser	Thr	Arg	Phe	Ile	Ala	Asn	Ser	Gln	Glu	Pro	Glu	Ile	Arg	Leu
				140				145						150
Thr	Ser	Ser	Leu	Pro	Arg	Ser	Pro	Gly	Arg	Ser	Thr	Glu	Asp	Leu
			155					160						165
Pro	Gly	Ser	Gln	Ala	Thr	Leu	Ser	Gln	Trp	Ser	Thr	Pro	Gly	Ser
			170					175						180
Thr	Pro	Ser	Arg	Trp	Pro	Ser	Pro	Ser	Pro	Thr	Ala	Met	Pro	Ser
			185					190						195
Pro	Glu	Asp	Leu	Arg	Leu	Val	Leu	Met	Pro	Trp	Gly	Pro	Trp	His
			200					205						210
Cys	His	Cys	Lys	Ser	Gly	Thr	Met	Ser	Arg	Ser	Gly	Lys		
			215					220						225
Leu	His	Gly	Leu	Ser	Gly	Arg	Leu	Arg	Val	Gly	Ala	Leu	Ser	Gln
			230					235						240
Leu	Arg	Thr	Glu	His	Lys	Pro	Cys	Thr	Tyr	Gln	Gln	Cys	Pro	Cys
			245					250						255
Asn	Arg	Leu	Arg	Glu	Glu	Cys	Pro	Leu	Asp	Thr	Ser	Leu	Cys	Thr
				260				265						270
Asp	Thr	Asn	Cys	Ala	Ser	Gln	Ser	Thr	Thr	Ser	Thr	Arg	Thr	Thr
				275				280						285
Thr	Thr	Pro	Phe	Pro	Thr	Ile	His	Leu	Arg	Ser	Ser	Pro	Ser	Leu
				290				295						300
Pro	Pro	Ala	Ser	Pro	Cys	Pro	Ala	Leu	Ala	Phe	Trp	Lys	Arg	Val
			305					310						315
Arg	Ile	Gly	Leu	Glu	Asp	Ile	Trp	Asn	Ser	Leu	Ser	Ser	Val	Phe
			320					325						330
Thr	Glu	Met	Gln	Pro	Ile	Asp	Arg	Asn	Gln	Arg				
			335					340						

<210> 298

<211> 2692

<212> DNA

<213> Homo sapiens

<400> 298

ccgggtcga cccacgcgtc cggggagaaa ggatggccgg cctggcgccg 50

cggttggtcc tgcttagctgg ggcagcggcg ctggcgagcg gctcccaggg 100
cgaccgtgag ccggtgttacc gcgactgcgt actgcagtgc gaagagcaga 150
actgctctgg gggcgctctg aatcaacttcc gctcccccca gccaaatctac 200
atgagtctag caggctggac ctgtcgggac gactgttaagt atgagtgtat 250
gtgggtcacc gttgggctct acctccagga aggtcacaaa gtgcctcagt 300
tccatggcaa gtggcccttc tcccggttcc tgttctttca agagccggca 350
tcggccgtgg cctcgttct caatggcctg gccagcctgg tcatgccttg 400
ccgctaccgc accttcgtgc cagcctcctc ccccatgtac cacacctgtg 450
tggccttcgc ctgggtgtcc ctcaatgcat gggtctggc cacagtcttc 500
cacaccaggg acactgacct cacagagaaa atggactact tctgtgcctc 550
cactgtcatc ctacactcaa tctacacttg ctgcgtcagg accgtggggc 600
tgcagcaccc agctgtggtc agtgccttcc gggctctcct gctgctcatg 650
ctgaccgtgc acgtctcccta cctgagccctc atccgcttgc actatggcta 700
caaccctggg gccaacgtgg ctattggcct ggtcaacgtg gtgtggtggc 750
tggcctggg cctgtggAAC cagcggccgc tgccctcacgt ggcgaagtgc 800
gtgggtgggg tcttgctgtc gcaggggctg tccctgctcg agctgcttga 850
cttcccaccc ctcttctggg tcctggatgc ccatgccatc tggcacatca 900
gcaccatccc tgtccacgtc ctcttttca gctttctgga agatgacagc 950
ctgtacactgc tgaaggaatc agaggacaag ttcaagctgg actgaagacc 1000
ttggagcgag tctgccccag tggggatcct gccccggccc tgctggcctc 1050
ccttctcccc tcaacccttg agatgatttt ctcttttcaa cttcttgaac 1100
ttggacatga aggatgtggg cccagaatca tgtggccagc ccacccctg 1150
ttggccctca ccagccttgg agtctgttct agggaggccc tcccagcatc 1200
tgggactcga gagtgggcag cccctctacc tcctggagct gaactggggt 1250
ggaactgagt gtgttcttag ctctaccggg aggacagctg cctgtttcct 1300
ccccaccagc ctcctcccc catccccagc tgccctggctg ggtccctgaag 1350
ccctctgtct acctgggaga ccagggacca caggccttag ggatacaggg 1400
ggtcccccttc tgttaccacc ccccaccctc ctccaggaca ccacttaggtg 1450
gtgctggatg cttgttcttt ggccagccaa ggttcacggc gattctcccc 1500
atgggatctt gagggaccaa gctgctggga ttgggaagga gtttcaccct 1550
gaccgttggc ctagccaggt tcccaggagg cctcaccata ctccctttca 1600
ggggcagggc tccagcaagc ccagggcaag gatcctgtgc tgctgtctgg 1650

ttgagagcct gccaccgtgt gtcgggagtg tggccaggc tgagtgcata 1700
ggtacaggg ccgtgagcat gggcctgggt gtgtgtgagc tcaggcctag 1750
gtgcgcagtg tggagacggg tggatcggtt gaagagggtgt ggcttcaaag 1800
tgtgtgtgtg caggggggtgg gtgtgttagc gtgggttagg ggaacgtgtg 1850
tgcgcgtgct ggtgggcatg tgagatgagt gactgccgtt gaatgtgtcc 1900
acagttgaga ggttggagca ggatgaggga atcctgtcac catcaataat 1950
cacttgtgga gcgcaggc tgcacaagac gccacctggg cgacagcca 2000
ggagctctcc atggccaggc tgcctgtgtg catgttccct gtctgggcc 2050
ccttgcccg ctcctgcaa acctcacagg gtccccacac aacagtgcc 2100
tccagaagca gcccctcgga ggcagaggaa ggaaaatggg gatggctggg 2150
gctctctcca tcctcctttt ctccctgcct tcgcattggct ggccttcccc 2200
tccaaaacct ccattccct gctgccagcc ccttgcctt agcctgattt 2250
tggggaggag gaaggggcga tttgagggag aagggggagaa agcttatggc 2300
tgggtcttgtt ttctccctt cccagagggc cttactgttc cagggtggcc 2350
ccagggcagg cagggccac actatgcctg tgcctggta aagggtgaccc 2400
ctgccattta ccagcagccc tggcatgttc ctgcacccaca ggaatagaat 2450
ggagggagct ccagaaactt tccatcccaa aggcaagtctc cgtggttgaa 2500
gcagactgga ttttgctct gcccctgacc ccttgcctt ctttggggaa 2550
ggggagctat gctaggactc caacctcagg gactcgggtg gcctgcgcta 2600
gcttctttt atactgaaaa cttaaggt gggagggtgg caagggatgt 2650
gcttaataaa tcaattccaa gcctcaaaaa aaaaaaaaaaa aa 2692

<210> 299

<211> 320

<212> PRT

<213> Homo sapiens

<400> 299

Met	Ala	Gly	Leu	Ala	Ala	Arg	Leu	Val	Leu	Leu	Ala	Gly	Ala	Ala
1									5					15
Ala	Leu	Ala	Ser	Gly	Ser	Gln	Gly	Asp	Arg	Glu	Pro	Val	Tyr	Arg
									20				25	30
Asp	Cys	Val	Leu	Gln	Cys	Glu	Glu	Gln	Asn	Cys	Ser	Gly	Gly	Ala
									35		40		45	
Leu	Asn	His	Phe	Arg	Ser	Arg	Gln	Pro	Ile	Tyr	Met	Ser	Leu	Ala
									50		55		60	
Gly	Trp	Thr	Cys	Arg	Asp	Asp	Cys	Lys	Tyr	Glu	Cys	Met	Trp	Val
									65		70		75	

Thr Val Gly Leu Tyr Leu Gln Glu Gly His Lys Val Pro Gln Phe
 80 85 90

 His Gly Lys Trp Pro Phe Ser Arg Phe Leu Phe Phe Gln Glu Pro
 95 100 105

 Ala Ser Ala Val Ala Ser Phe Leu Asn Gly Leu Ala Ser Leu Val
 110 115 120

 Met Leu Cys Arg Tyr Arg Thr Phe Val Pro Ala Ser Ser Pro Met
 125 130 135

 Tyr His Thr Cys Val Ala Phe Ala Trp Val Ser Leu Asn Ala Trp
 140 145 150

 Phe Trp Ser Thr Val Phe His Thr Arg Asp Thr Asp Leu Thr Glu
 155 160 165

 Lys Met Asp Tyr Phe Cys Ala Ser Thr Val Ile Leu His Ser Ile
 170 175 180

 Tyr Leu Cys Cys Val Arg Thr Val Gly Leu Gln His Pro Ala Val
 185 190 195

 Val Ser Ala Phe Arg Ala Leu Leu Leu Leu Met Leu Thr Val His
 200 205 210

 Val Ser Tyr Leu Ser Leu Ile Arg Phe Asp Tyr Gly Tyr Asn Leu
 215 220 225

 Val Ala Asn Val Ala Ile Gly Leu Val Asn Val Val Trp Trp Leu
 230 235 240

 Ala Trp Cys Leu Trp Asn Gln Arg Arg Leu Pro His Val Arg Lys
 245 250 255

 Cys Val Val Val Val Leu Leu Leu Gln Gly Leu Ser Leu Leu Glu
 260 265 270

 Leu Leu Asp Phe Pro Pro Leu Phe Trp Val Leu Asp Ala His Ala
 275 280 285

 Ile Trp His Ile Ser Thr Ile Pro Val His Val Leu Phe Phe Ser
 290 295 300

 Phe Leu Glu Asp Asp Ser Leu Tyr Leu Leu Lys Glu Ser Glu Asp
 305 310 315

 Lys Phe Lys Leu Asp
 320

<210> 300
 <211> 1674
 <212> DNA
 <213> Homo sapiens

<400> 300
 ggccgcctgg aattgtggga gtttgtctg ccactcggct gccggaggcc 50
 gaaggtccgt gactatggct cccccagagcc tgccttcatc taggatggct 100
 cctctggcca tgctgcttgg gctgctgatg gccgcctgct tcacccttctg 150

cctcagtcat cagaacctga aggagttgc cctgaccaac ccagagaaga 200
gcagcaccaa agaaacggag agaaaaagaaa ccaaagccga ggaggagctg 250
gatgccgaag tcctggaggt gttccacccg acgcatgagt ggcaggccct 300
tcagccaggc caggctgtcc ctgcaggatc ccacgtacgg ctgaatcttc 350
agactgggaa aagagaggca aaactccaat atgaggacaa gttccgaaat 400
aatttggaaag gcaaaaggct ggatatcaac accaacacct acacatctca 450
ggatctcaag agtgcactgg caaaattcaa ggagggggca gagatggaga 500
gttcaaagga agacaaggca aggcaggctg aggtaaagcg gctttccgc 550
cccattgagg aactgaagaa agactttgat gagctgaatg ttgtcattga 600
gactgacatg cagatcatgg tacggctgat caacaagttc aatagttcca 650
gctccagttt ggaagagaag attgctgcgc tctttgatct tgaatattat 700
gtccatcaga tggacaatgc gcaggacotg ctccctttg gtggcttca 750
agtggtgatc aatgggctga acagcacaga gccctcgta aaggagtatg 800
ctgcgttgtt gctggcgct gcctttcca gcaaccccaa ggtccaggtg 850
gaggccatcg aagggggagc cctgcagaag ctgctggta tcctggcac 900
ggagcagccg ctcactgcaa agaagaaggt cctgtttgca ctgtgctccc 950
tgctgcgcca cttcccttat gcccagcggc agttcctgaa gtcgggggg 1000
ctgcagggtcc tgaggaccct ggtgcaggag aagggcacgg aggtgctcgc 1050
cgtgcgcgtg gtcacactgc tctacgaccc ggtcacggag aagatgttcg 1100
ccgaggagga ggctgagctg acccaggaga tgtccccaga gaagctgcag 1150
cagtatcgcc aggtacaccc cctgccaggc ctgtggaaac agggctggtg 1200
cgagatcacg gcccacctcc tggcgctgcc cgagcatgat gcccgtgaga 1250
aggtgctgca gacactgggc gtcctcctga ccacctgccc ggaccgctac 1300
cgtcaggacc cccagctcg gaggacactg gccagcctgc aggctgagta 1350
ccaggtgctg gccagcctgg agctgcagga tggtgaggac gagggtact 1400
tccaggagct gctggctct gtcaacagct tgctgaagga gctgagatga 1450
ggccccacac caggactgga ctgggatgcc gctagtgagg ctgaggggtg 1500
ccagcgtggg tggcatttc aggcaggagg acatcttggc agtgcgtggct 1550
tggccattaa atggaaacct gaaggccaaa aaaaaaaaaa aaaaaaaaaa 1600
aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 1650
aaaaaaaaaa aaaaaaaaaa aaaa 1674

<210> 301

<211> 461
<212> PRT
<213> Homo sapiens

<400> 301
Met Ala Pro Gln Ser Leu Pro Ser Ser Arg Met Ala Pro Leu Gly
1 5 10 15
Met Leu Leu Gly Leu Leu Met Ala Ala Cys Phe Thr Phe Cys Leu
20 25 30
Ser His Gln Asn Leu Lys Glu Phe Ala Leu Thr Asn Pro Glu Lys
35 40 45
Ser Ser Thr Lys Glu Thr Glu Arg Lys Glu Thr Lys Ala Glu Glu
50 55 60
Glu Leu Asp Ala Glu Val Leu Glu Val Phe His Pro Thr His Glu
65 70 75
Trp Gln Ala Leu Gln Pro Gly Gln Ala Val Pro Ala Gly Ser His
80 85 90
Val Arg Leu Asn Leu Gln Thr Gly Glu Arg Glu Ala Lys Leu Gln
95 100 105
Tyr Glu Asp Lys Phe Arg Asn Asn Leu Lys Gly Lys Arg Leu Asp
110 115 120
Ile Asn Thr Asn Thr Tyr Thr Ser Gln Asp Leu Lys Ser Ala Leu
125 130 135
Ala Lys Phe Lys Glu Gly Ala Glu Met Glu Ser Ser Lys Glu Asp
140 145 150
Lys Ala Arg Gln Ala Glu Val Lys Arg Leu Phe Arg Pro Ile Glu
155 160 165
Glu Leu Lys Lys Asp Phe Asp Glu Leu Asn Val Val Ile Glu Thr
170 175 180
Asp Met Gln Ile Met Val Arg Leu Ile Asn Lys Phe Asn Ser Ser
185 190 195
Ser Ser Ser Leu Glu Glu Lys Ile Ala Ala Leu Phe Asp Leu Glu
200 205 210
Tyr Tyr Val His Gln Met Asp Asn Ala Gln Asp Leu Leu Ser Phe
215 220 225
Gly Gly Leu Gln Val Val Ile Asn Gly Leu Asn Ser Thr Glu Pro
230 235 240
Leu Val Lys Glu Tyr Ala Ala Phe Val Leu Gly Ala Ala Phe Ser
245 250 255
Ser Asn Pro Lys Val Gln Val Glu Ala Ile Glu Gly Gly Ala Leu
260 265 270
Gln Lys Leu Leu Val Ile Leu Ala Thr Glu Gln Pro Leu Thr Ala
275 280 285
Lys Lys Lys Val Leu Phe Ala Leu Cys Ser Leu Leu Arg His Phe

290	295	300
Pro Tyr Ala Gln Arg Gln Phe Leu Lys Leu Gly Gly Leu Gln Val		
305	310	315
Leu Arg Thr Leu Val Gln Glu Lys Gly Thr Glu Val Leu Ala Val		
320	325	330
Arg Val Val Thr Leu Leu Tyr Asp Leu Val Thr Glu Lys Met Phe		
335	340	345
Ala Glu Glu Glu Ala Glu Leu Thr Gln Glu Met Ser Pro Glu Lys		
350	355	360
Leu Gln Gln Tyr Arg Gln Val His Leu Leu Pro Gly Leu Trp Glu		
365	370	375
Gln Gly Trp Cys Glu Ile Thr Ala His Leu Leu Ala Leu Pro Glu		
380	385	390
His Asp Ala Arg Glu Lys Val Leu Gln Thr Leu Gly Val Leu Leu		
395	400	405
Thr Thr Cys Arg Asp Arg Tyr Arg Gln Asp Pro Gln Leu Gly Arg		
410	415	420
Thr Leu Ala Ser Leu Gln Ala Glu Tyr Gln Val Leu Ala Ser Leu		
425	430	435
Glu Leu Gln Asp Gly Glu Asp Glu Gly Tyr Phe Gln Glu Leu Leu		
440	445	450
Gly Ser Val Asn Ser Leu Leu Lys Glu Leu Arg		
455	460	

<210> 302
<211> 2136
<212> DNA
<213> Homo sapiens

<400> 302
ttcggcttcc gtagaggaag tggcgccgac cttcatttgg ggtttcgggt 50
cccccccttc ccctcccccg gggtctgggg gtgacattgc accgcgc(ccc 100
tcgtgggtc gcgttgccac cccacgcgga ctccccagct ggccgc(ccc 150
tcccatttgc ctgtccttgtt caggccccca ccccccattcc cacctgacca 200
gccatgggg ctgcgggttt tttcggctgc actttcgtcg cgttcgcccc 250
ggccttcg(cg) cttttcttga tcactgtggc tggggaccgg cttcgcgtta 300
tcatccttgtt cgca(ggg)ca tttttcttgtt tggctccct gctcctggcc 350
tctgtggctt ggttcatctt ggtccatgtg accgaccggc cagatgc(ccc 400
gctccagtagc ggccttcgtga tttttgggtgc tgctgtctt gtccttctac 450
aggaggtgtt ccgccttgcc tactacaagc tgcttaagaa ggcagatgaa 500
gggttagcat cgctgagtga ggacggaaaga tcacccatct ccatccgc(cca 550

gatggcctat gtttctggtc tctccttcgg tatcatcagt ggtgtcttct 600
ctgttatcaa tattttggct gatgcacttg ggccaggtgt ggttgggatc 650
catggagact caccctatta cttcctgact tcagccttgc tgacagcagc 700
cattatcctg ctccatacct tttggggagt tgtgttctt gatgcctgtg 750
agaggagacg gtactggct ttgggcctgg tggttggag tcacctactg 800
acatcgggac tgacattcct gaaccctgg tatgaggcca gcctgctgcc 850
catctatgca gtcactgttt ccatggggct ctgggccttc atcacagctg 900
gagggtccct ccgaagtatt cagcgcagcc tcttgttaa ggactgacta 950
cctggactga tcgcctgaca gatcccaccc gcctgtccac tgcccatgac 1000
tgagccccagc cccagccccgg gtccattgcc cacattctct gtctccttct 1050
cgtcggtcta ccccaactacc tccagggttt tgctttgtcc ttttgtgacc 1100
gttagtctct aagctttacc aggagcagcc tgggttcagc cagtcagtga 1150
ctgggtgggtt tgaatctgca cttatccccca ccacctgggg acccccctgt 1200
tgtgtccagg actccccctg tgtcagtgtc ctgctctcac cctgccccaaag 1250
actcacctcc cttccctct gcaggccgac ggcaggagga cagtcgggtg 1300
atggtgtatt ctgcctgca catcccaccc gaggactgag ggaacctagg 1350
ggggaccctt gggcctgggg tgccctcctg atgtcctcgc cctgtatttc 1400
tccatctcca gttctggaca gtgcagggtt ccaagaaaag ggacctagtt 1450
tagccattgc cctggagatg aaattaatgg aggctcaagg atagatgagc 1500
tctgagtttc tcagttactcc ctcaagactg gacatcttgg tcttttctc 1550
aggcctgagg gggaccatttttgggtgtga taaataccct aaactgcctt 1600
tttttctttt ttgaggtggg gggaggaggagg aggtatattt gaaactcttct 1650
aacctccttg ggctatatattt tctctcctcg agttgctcct catggctggg 1700
ctcatttcgg tccctttctc cttggcctcca gaccttgggg gaaaggaagg 1750
aagtgcattgt ttgggaactg gcattactgg aactaatggt tttaacctcc 1800
ttaaccacca gcatccctcc tctcccccaag gtgaagtggaa gggtgctgtg 1850
gtgagctggc cactccagag ctgcagtgcc actggaggag tcagactacc 1900
atgacatcgt agggaaaggag gggagatttttttttagttt ttaattgggg 1950
tgtgggaggg gcggggaggt tttctataaa ctgtatcatt ttctgctgag 2000
ggtgagtggt cccatcctttaatcaaggt gattgtgatt ttgactaata 2050
aaaaagaatt tgaaaaaaaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 2100
aaaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaa 2136

<210> 303
<211> 247
<212> PRT
<213> Homo sapiens

<400> 303
Met Gly Ala Ala Val Phe Phe Gly Cys Thr Phe Val Ala Phe Gly
1 5 10 15
Pro Ala Phe Ala Leu Phe Leu Ile Thr Val Ala Gly Asp Pro Leu
20 25 30
Arg Val Ile Ile Leu Val Ala Gly Ala Phe Phe Trp Leu Val Ser
35 40 45
Leu Leu Leu Ala Ser Val Val Trp Phe Ile Leu Val His Val Thr
50 55 60
Asp Arg Ser Asp Ala Arg Leu Gln Tyr Gly Leu Leu Ile Phe Gly
65 70 75
Ala Ala Val Ser Val Leu Leu Gln Glu Val Phe Arg Phe Ala Tyr
80 85 90
Tyr Lys Leu Leu Lys Lys Ala Asp Glu Gly Leu Ala Ser Leu Ser
95 100 105
Glu Asp Gly Arg Ser Pro Ile Ser Ile Arg Gln Met Ala Tyr Val
110 115 120
Ser Gly Leu Ser Phe Gly Ile Ile Ser Gly Val Phe Ser Val Ile
125 130 135
Asn Ile Leu Ala Asp Ala Leu Gly Pro Gly Val Val Gly Ile His
140 145 150
Gly Asp Ser Pro Tyr Tyr Phe Leu Thr Ser Ala Phe Leu Thr Ala
155 160 165
Ala Ile Ile Leu Leu His Thr Phe Trp Gly Val Val Phe Phe Asp
170 175 180
Ala Cys Glu Arg Arg Tyr Trp Ala Leu Gly Leu Val Val Gly
185 190 195
Ser His Leu Leu Thr Ser Gly Leu Thr Phe Leu Asn Pro Trp Tyr
200 205 210
Glu Ala Ser Leu Leu Pro Ile Tyr Ala Val Thr Val Ser Met Gly
215 220 225
Leu Trp Ala Phe Ile Thr Ala Gly Gly Ser Leu Arg Ser Ile Gln
230 235 240
Arg Ser Leu Leu Cys Lys Asp
245

<210> 304
<211> 240
<212> DNA
<213> Homo sapiens

<220>

<221> unsure
<222> 108, 123, 126, 154, 198, 206, 217
<223> unknown base

<400> 304
aagctggttt aaggaagcag aggagggtta gattcggtga gtgaggacgg 50
aagatcaacc catttcattt ccgcagatg gcctatgtt ctggctctc 100
ccttcggnat catcagtggt gtnttntctg ttatcaatat tttggctgat 150
gcanttggc caggtgtggt tggatccat ggagactcac cctattattt 200
cctganttca gccttntga cagcagccat tatcctgctc 240

<210> 305
<211> 378
<212> DNA
<213> Homo sapiens

<220>
<221> unsure
<222> 58, 94, 132, 186, 191, 220, 240, 248, 280, 311, 332
<223> unknown base

<400> 305
gaccgaccgt tcagatgccccc ggttccagta cggcttcctg atttttggtg 50
ctgctgtntc tgtccttcta caggagggtgt tccgcttgc ctantacaag 100
ctgcttaaga aggcatgaa ggggttagca tngctgagtg aggacggaag 150
atcacccatt tccatccgccc agatggccata tgtttntgggt ntcccttcg 200
gtatcatcag tggtgttttn tctgttatca atatttgggn tcatgcantt 250
gggccaggtg tggtgtggat ccatggagan tcaccctatt aattcctgaa 300
ttcagccttt ntgacagcag ccattatcct gntccataacc ttttggggag 350
ttgtgttttt tcatgcctgt gagaggag 378

<210> 306
<211> 655
<212> DNA
<213> Homo sapiens

<220>
<221> unsure
<222> 1, 22, 129, 133, 184
<223> unknown base

<400> 306
ngttggagaa gtggcgccga ctttcatttgg gggtttcgggt ttccccccctt 50
tccctttccc cggggctctgg ggtgacatttgc cacggggcccc tcgtggggtc 100
gctttggccac cccacgcggaa ctccccagnt ggngcgccct tcccatattgc 150
ctgtcctgggtt caggccccca ccccccatttcc cacntgacca gccatgggggg 200
ctgcgggtttt tttcggttcg acatttcgtcg cgttcgccccc ggccttcg 250

cttttcttga tcactgtggc tggggacccg cttcgcgta tcatccttgt 300
cgcaggggca ttttctggc tggtctccct gctctggcc tctgtggct 350
gttcatctt ggtccatgtg accgaccggc cagatgcccg gctccagttac 400
ggcctcctga ttttggtgc tgctgtctc gtccttctac aggagggttt 450
ccgcttgcc tactacaagc tgcttaagaa ggcagatgag gggtagcat 500
cgctgagtga ggacggaaga tcacccatct ccatccgcca gatggcctat 550
gtttctggtc ttccttcgg tatcatcagt ggtgtcttct ctgttatcaa 600
tattttggct gatgcacttg ggccaggtgt ggttgggatc catggagact 650
caccc 655

<210> 307
<211> 650
<212> DNA
<213> Homo sapiens

<220>
<221> unsure
<222> 52, 89, 128
<223> unknown base

<400> 307
gtaaaagaaa gtggccggac cttcattggg gtttcggttc ccccccttcc 50
cnttccccgg ggtctggggg tgacattgca ccgcgcccnc cgtggggtcg 100
cggtgccacc ccacgcggac tccccagntg gcgcgcccct cccatttgc 150
tgtcctggtc aggccccac ccccccttcc acctgaccag ccatgggggc 200
tgcgggttt ttccggctgc actttcgctcg cggtcgggcc cggccttcgc 250
gctttcttg atcactgtgg ctggggaccc gtttcgcgtt atcatcctgg 300
tcgcaggggc attttctgg ctggcttccc tgctcctggc ctctgtggtc 350
tggttcatct tggtccatgt gaccgaccgg tcagatgccg ggctccagta 400
cggccttcgt attttgggtg ctgtgtctc tgtccttcta caggagggtgt 450
tccgctttgc ctactacaag ctgcttaaga aggagatga ggggttagca 500
tcgctgagtgc aggacggaag atcacccatc tccatccgccc agatggccta 550
tgtttctggc ctctccttcg gatatcatcag tggtgtcttc tctgttatca 600
atattttggc tgatgcactt gggccaggtg tggttgggat ccatggagac 650

<210> 308
<211> 1570
<212> DNA
<213> Homo sapiens

<400> 308
gccccagggc gcagtgggtg gttataactc agggccgggtg cccagagccc 50

aggaggagggc agtggccagg aaggcacagg cctgagaagt ctgcggctga 100
gctgggagca aatccccac cccctacctg gggacaggg caagtgagac 150
ctggtgaggg tggctcagca ggcagggaaag gagaggtgtc tgtgcgtcct 200
gcacccacat ctttctctgt cccctccttg ccctgtctgg aggctgctag 250
actcctatct tctgaattct atagtgcctg ggtctcagcg cagtgccat 300
ggtggcccgta ctttgtggtt cctctctacc tggggaaata aggtgcagcg 350
gccatggcta cagcaagacc cccctggatg tgggtgctct gtgctctgat 400
cacagccttg cttctgggg tcacagagca tgttctcgcc aacaatgatg 450
tttcctgtga ccacccctct aacaccgtgc cctctggag caaccaggac 500
ctgggagctg gggccgggaa agacgcccgg tcggatgaca gcagcagccg 550
catcatcaat ggatccgact gcgatatgca caccagccg tggcaggccg 600
cgctgttgct aaggcccaac cagctctact gcggggcggt gttggtgcat 650
ccacagtggc tgctcacggc cgcccactgc aggaagaaaat 700
ccgtctcggc cactactccc tgtcaccagt ttatgaatct gggcagcaga 750
tgttccaggg ggtcaaatcc atccccacc ctggctactc ccaccctggc 800
caactctaactg acctcatgct catcaaactg aacagaagaa ttctcccac 850
taaagatgtc agacccatca acgtctcctc tcattgtccc tctgctggaa 900
caaagtgcctt ggtgtctggc tgggggacaa ccaagagccc ccaagtgcac 950
ttccctaagg tcctccagtg cttgaatatac agcgtgctaa gtcagaaaaag 1000
gtgcgaggat gcttacccga gacagataga tgacaccatg ttctgcggccg 1050
gtgacaaagc aggttagagac tcctgcccagg gtgattctgg ggggcctgtg 1100
gtctgcaatg gctccctgca gggactcggt tcctggggag attacccttg 1150
tgcccgcccc aacagaccgg gtgtctacac gaacctctgc aagttcacca 1200
agtggatcca gaaaaaccatc caggccaact cctgagtcat cccaggactc 1250
agcacaccgg catccccacc tgctgcaggg acagccctga cactccttc 1300
agaccctcat tccttcccag agatgttgag aatgttcatc tctccagccc 1350
ctgaccccat gtctcctgga ctcagggtct gcttcccccac cattgggtcg 1400
accgtgtctc tctagttgaa ccctggaaac aatttccaaa actgtccagg 1450
gcgggggttg cgtctcaatc tccctggggc actttcatcc tcaagctcag 1500
ggcccatccc ttctctgcag ctctgaccca aatttagtcc cagaataaaa 1550
ctgagaagtg gaaaaaaaaa 1570

<210> 309

<211> 293
<212> PRT
<213> Homo sapiens

<400> 309
Met Ala Thr Ala Arg Pro Pro Trp Met Trp Val Leu Cys Ala Leu
1 5 10 15
Ile Thr Ala Leu Leu Leu Gly Val Thr Glu His Val Leu Ala Asn
20 25 30
Asn Asp Val Ser Cys Asp His Pro Ser Asn Thr Val Pro Ser Gly
35 40 45
Ser Asn Gln Asp Leu Gly Ala Gly Ala Glu Asp Ala Arg Ser
50 55 60
Asp Asp Ser Ser Ser Arg Ile Ile Asn Gly Ser Asp Cys Asp Met
65 70 75
His Thr Gln Pro Trp Gln Ala Ala Leu Leu Leu Arg Pro Asn Gln
80 85 90
Leu Tyr Cys Gly Ala Val Leu Val His Pro Gln Trp Leu Leu Thr
95 100 105
Ala Ala His Cys Arg Lys Lys Val Phe Arg Val Arg Leu Gly His
110 115 120
Tyr Ser Leu Ser Pro Val Tyr Glu Ser Gly Gln Gln Met Phe Gln
125 130 135
Gly Val Lys Ser Ile Pro His Pro Gly Tyr Ser His Pro Gly His
140 145 150
Ser Asn Asp Leu Met Leu Ile Lys Leu Asn Arg Arg Ile Arg Pro
155 160 165
Thr Lys Asp Val Arg Pro Ile Asn Val Ser Ser His Cys Pro Ser
170 175 180
Ala Gly Thr Lys Cys Leu Val Ser Gly Trp Gly Thr Thr Lys Ser
185 190 195
Pro Gln Val His Phe Pro Lys Val Leu Gln Cys Leu Asn Ile Ser
200 205 210
Val Leu Ser Gln Lys Arg Cys Glu Asp Ala Tyr Pro Arg Gln Ile
215 220 225
Asp Asp Thr Met Phe Cys Ala Gly Asp Lys Ala Gly Arg Asp Ser
230 235 240
Cys Gln Gly Asp Ser Gly Gly Pro Val Val Cys Asn Gly Ser Leu
245 250 255
Gln Gly Leu Val Ser Trp Gly Asp Tyr Pro Cys Ala Arg Pro Asn
260 265 270
Arg Pro Gly Val Tyr Thr Asn Leu Cys Lys Phe Thr Lys Trp Ile
275 280 285
Gln Glu Thr Ile Gln Ala Asn Ser

<210> 310
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 310
tcctgtgacc acccctctaa cacc 24

<210> 311
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 311
ctggaacatc tgctgccag attc 24

<210> 312
<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 312
gtcgatgac agcagcagcc gcatcatcaa tggatccgac tgcgatatgc 50

<210> 313
<211> 3010
<212> DNA
<213> Homo sapiens

<400> 313
atggtaacg accggtgaa gaccatggc ggcgtgtccc aacttgagga 50
ccggccgcgc gacaagccgc agcgcccgag ctgcggctac gtgtgtgca 100
ccgtgctgct ggccctggct gtgctgctgg ctgttagctgt caccggtgcc 150
gtgctcttcc tgaaccacgc ccacgcgcg ggcacggcgc cccccacctgt 200
cgtcagcact gggctgcca gcgcacacag cgcctggc actgtggaaa 250
ggcgccacag ctgcacccctc agcatcctca ttgacccgcg ctgccccgac 300
ctcacccgaca gcttcgcacg cctggagagc gcccaggccct cggtgctgca 350
ggcgctgaca gagcaccagg cccagccacg gctgggtggc gaccaggagc 400
aggagctgt ggacacgctg gccgaccacg tgccccggct gctggcccg 450
gcctcagacgc tgcagacgga gtgcattggg ctgcggaaagg ggcattggcac 500
gctggccacag ggcctcagcg ccctgcacag tgagcaggcc cgcctcatcc 550

agcttctctc tgagagccag ggccacatgg ctcacctggta gaactccgtc 600
agcgacatcc tggatgcct gcagaggac cggggctgg gcccggcccg 650
caacaaggcc gacttcaga gagcgctgc cggggaaacc cggccccggg 700
gctgtgccac tggctccgg ccccggact gtctggacgt ctcctaagc 750
ggacagcagg acgatggcgt ctactctgtc tttcccaccc actacccggc 800
cggtttccag gtgtactgtg acatgcgac ggacggcggc ggctggacgg 850
tgtttcagcg cggggaggac ggctccgtga acttcttccg gggctggac 900
gcgtaccgag acggctttgg caggctcacc ggggagcaact ggctaggc 950
caagaggatc cacccctga ccacacaggc tgcctacgag ctgcacgtgg 1000
acctggagga ctgtgagaat ggcacggcct atgcccgtta cgggagcttc 1050
ggcgtggcgt tggttccgt ggaccctgag gaagacgggt acccgctcac 1100
cgtggctgac tattccggca ctgcaggcga ctccctcctg aagcacagcg 1150
gcatgaggtt caccaccaag gaccgtgaca gcgaccatc agagaacaac 1200
tgtgcccgcct tctaccgcgg tgcctgggtt accgcaact gccacacgtc 1250
caacctaataat gggcagtacc tgcgcgggtgc gcacgcctcc tatgccgacg 1300
gcgtggagtg gtcctccgtt accggctggc agtactcaact caagttctct 1350
gagatgaaga tccggccggt cggggaggac cgctagactg gtgcaccc 1400
tccttggccc tgctggtccc tgtcgccccca tcccccaccc cacctcactc 1450
ttcgtgaat gttctccacc cacctgtgcc tggoggaccc actctccagt 1500
agggaggggc cgggcatcc ctgacacgaa gctccctgg cgggtgaagt 1550
cacacatcgc cttctcgccg tccccacccc ctcoatttgg cagctcaactg 1600
atctcttgcct tctgctgatg ggggctggca aacttgcga ccccaactcc 1650
tgccctggccc cactgtgact cgggtgctgt ttgcctggccc ctggccagga 1700
tggtggagtgc tgccccaggc accctctgccc ctgccccggcc aaataccgg 1750
cattatgggg acagagagca gggggcagac agcacccctg gagtcctcct 1800
agcagatcgt gggaaatgtc aggtctctt gaggtcaggt ctgaggccag 1850
tatcctccag ccctcccaat gccaacccccc accccgttcc cctgggtggcc 1900
agagaaccca cctctccccc aaggccctca gcctggctgt gggctgggtg 1950
gccccatcct accaggccct gaggtcagga tggggagctg ctgcctttgg 2000
ggaccccacgc tccaaggctg agaccagttc cctggaggcc acccaccctg 2050
tgccccggca ggctgggtt ctgcagtccct cttacctgtt gtgcccaccc 2100
gctctctgtc tcaaatttggg cccaaacccat ccccccacccaa gctcccgcc 2150

gtcctcctac ctggggcagc cggggctgcc atccatttc tcctgcctct 2200
ggaagggtggg tggggccctg caccgtgggg ctggactgctg ctaatggaa 2250
gctcttggtt ttctggctg gggccttaggc agggctggga tgaggcttgt 2300
acaaccccca ccaccaattt cccagggact ccagggctt gaggcctccc 2350
aggagggcct tgggggtgat gacccttcc ctgaggtggc tgtctccatg 2400
aggaggccaa cccttgccat tgaccgtggc cacctggacc caggccaggc 2450
ccggcccgcc gagtggtcaa gggacagggc ccacccatc gggcaaatgg 2500
ggtcgggggg actggggcac cagaccaggc accacctgga cactttcttg 2550
ttgaatccctc ccaacaccca gcacgctgtc atccccactc cttgtgtgca 2600
cacatgcaga ggtgagaccc gcaggctccc aggaccagca gccacaagg 2650
cagggctgga gccgggtcct cagctgtctg ctcagcagcc ctggaccgc 2700
gtgcgttacg tcaggcccag atgcagggcg gctttccaa ggccctctga 2750
tgggggcctc cgaaaggcgt ggagtcagcc ttggggagct gcctagcagc 2800
ctctcctcgg gcaggagggg aggtggcttc ctccaaagga caccgatgg 2850
caggtgccta ggggtgtgg ggttccgttc tccctcccc tcccactgaa 2900
gtttgtgctt aaaaaacaat aaatttgact tggcaccact gggggtttgt 2950
gggagaggcc gtgtgacctg gctctctgtc ccagtgccac caggtcatcc 3000
acatgcgcag 3010

<210> 314

<211> 461

<212> PRT

<213> Homo sapiens

<400> 314

Met	Val	Asn	Asp	Arg	Trp	Lys	Thr	Met	Gly	Gly	Ala	Ala	Gln	Leu
1				5				10					15	

Glu	Asp	Arg	Pro	Arg	Asp	Lys	Pro	Gln	Arg	Pro	Ser	Cys	Gly	Tyr
						20			25				30	

Val	Leu	Cys	Thr	Val	Leu	Leu	Ala	Leu	Ala	Val	Leu	Leu	Ala	Val
							35			40			45	

Ala	Val	Thr	Gly	Ala	Val	Leu	Phe	Leu	Asn	His	Ala	His	Ala	Pro
					50				55			60		

Gly	Thr	Ala	Pro	Pro	Pro	Val	Val	Ser	Thr	Gly	Ala	Ala	Ser	Ala
						65			70			75		

Asn	Ser	Ala	Leu	Val	Thr	Val	Glu	Arg	Ala	Asp	Ser	Ser	His	Leu
						80			85			90		

Ser	Ile	Leu	Ile	Asp	Pro	Arg	Cys	Pro	Asp	Leu	Thr	Asp	Ser	Phe
							95			100		105		

Ala Arg Leu Glu Ser Ala Gln Ala Ser Val Leu Gln Ala Leu Thr
 110 115 120
 Glu His Gln Ala Gln Pro Arg Leu Val Gly Asp Gln Glu Gln Glu
 125 130 135
 Leu Leu Asp Thr Leu Ala Asp Gln Leu Pro Arg Leu Leu Ala Arg
 140 145 150
 Ala Ser Glu Leu Gln Thr Glu Cys Met Gly Leu Arg Lys Gly His
 155 160 165
 Gly Thr Leu Gly Gln Gly Leu Ser Ala Leu Gln Ser Glu Gln Gly
 170 175 180
 Arg Leu Ile Gln Leu Leu Ser Glu Ser Gln Gly His Met Ala His
 185 190 195
 Leu Val Asn Ser Val Ser Asp Ile Leu Asp Ala Leu Gln Arg Asp
 200 205 210
 Arg Gly Leu Gly Arg Pro Arg Asn Lys Ala Asp Leu Gln Arg Ala
 215 220 225
 Pro Ala Arg Gly Thr Arg Pro Arg Gly Cys Ala Thr Gly Ser Arg
 230 235 240
 Pro Arg Asp Cys Leu Asp Val Leu Leu Ser Gly Gln Gln Asp Asp
 245 250 255
 Gly Val Tyr Ser Val Phe Pro Thr His Tyr Pro Ala Gly Phe Gln
 260 265 270
 Val Tyr Cys Asp Met Arg Thr Asp Gly Gly Gly Trp Thr Val Phe
 275 280 285
 Gln Arg Arg Glu Asp Gly Ser Val Asn Phe Phe Arg Gly Trp Asp
 290 295 300
 Ala Tyr Arg Asp Gly Phe Gly Arg Leu Thr Gly Glu His Trp Leu
 305 310 315
 Gly Leu Lys Arg Ile His Ala Leu Thr Thr Gln Ala Ala Tyr Glu
 320 325 330
 Leu His Val Asp Leu Glu Asp Phe Glu Asn Gly Thr Ala Tyr Ala
 335 340 345
 Arg Tyr Gly Ser Phe Gly Val Gly Leu Phe Ser Val Asp Pro Glu
 350 355 360
 Glu Asp Gly Tyr Pro Leu Thr Val Ala Asp Tyr Ser Gly Thr Ala
 365 370 375
 Gly Asp Ser Leu Leu Lys His Ser Gly Met Arg Phe Thr Thr Lys
 380 385 390
 Asp Arg Asp Ser Asp His Ser Glu Asn Asn Cys Ala Ala Phe Tyr
 395 400 405
 Arg Gly Ala Trp Trp Tyr Arg Asn Cys His Thr Ser Asn Leu Asn
 410 415 420

Gly Gln Tyr Leu Arg Gly Ala His Ala Ser Tyr Ala Asp Gly Val
425 430 435

Glu Trp Ser Ser Trp Thr Gly Trp Gln Tyr Ser Leu Lys Phe Ser
440 445 450

Glu Met Lys Ile Arg Pro Val Arg Glu Asp Arg
455 460

<210> 315
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 315
cacacgtcca acctcaatgg gcag 24

<210> 316
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 316
gaccagcagg gccaaggaca agg 23

<210> 317
<211> 44
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 317
gttctctgag atgaagatcc ggccggtccg ggagtaccgc ttag 44

<210> 318
<211> 1841
<212> DNA
<213> Homo sapiens

<400> 318
gcagtcagag acttcccctg cccctcgctg ggaaagaaca ttaggaatgc 50
cttttagtgc cttgcttcct gaactagctc acagtagccc ggcggccag 100
ggcaatccga ccacattca ctctcaccgc tgttaggaatc cagatgcagg 150
ccaagtacag cagcacgagg gacatgctgg atgatgatgg ggacaccacc 200
atgagcctgc attctcaagc ctctgccaca actcggcatc cagagccccg 250
gcmcacagag cacagggctc cctcttcaac gtggcgacca gtggccctga 300
ccctgctgac ttttgcttg gtgctgctga tagggctggc agccctgggg 350
cttttgtttt ttcaagtacta ccagctctcc aatactggtc aagacaccat 400

ttctcaaata
ttcaagtcca
aaactctgtc
ttgtacagaa
aagacagcaa
tctaccatgc
tcagagctac
ctgacagtgg
gaactgttcc
tgtggccatc
agcggtgt
catgtcccc
ctacaaata
acattggaa
aaaatgggtt
gggttatgc
caaccaacct
aacttttagc
atgtcttc
tacattgagg
ttggcagtc
tgtttgttc
catctgcct
aatctcaa
ctctgataat
atccccatct
gagagattaa
agtttcagtt
actgaagatt
<210> 319
<211> 280
<212> PRT
<213> Homo sapiens

gaagaaat
aatataaag
gtgagctgt
caatggaaat
aagttggag
tgaagataaa
tctactctta
caaggcctgg
atattataat
ctcaatggga
tgatcttctc
aaaggactgc
ctgtgagaga
ctgaaacatt
cagagtgagc
atggaacata
ctcggttcc
ctgtgagaga
aggcgaaggt
cagactgacc
tgatgtcacc
aaacaagaa
gacctggaat
ttggacaggg
atggAACCC
gcacccaaag
tgatgtcacc
aaaggactgc
tggtgaagcc
ctgtggatgg
actgttctc
ccctctgcaa
caaagcaagg
gactgattcg
atcaggaaag
actatcttc
tgactagtac
tcaccagcat
gcttagagat
ccctgtttc
tacatgccac
cagtcacaag
aagtcttatt
gcttagagat
ttctgagtt
1050
1100
1150
1200
1250
1300
1350
1400
1450
1500
1550
1600
1650
1700
1750
1800
1841

<400> 319
 Met Gln Ala Lys Tyr Ser Ser Thr Arg Asp Met Leu Asp Asp Asp
 1 5 10 15
 Gly Asp Thr Thr Met Ser Leu His Ser Gln Ala Ser Ala Thr Thr
 20 25 30
 Arg His Pro Glu Pro Arg Arg Thr Glu His Arg Ala Pro Ser Ser
 35 40 45
 Thr Trp Arg Pro Val Ala Leu Thr Leu Leu Thr Leu Cys Leu Val
 50 55 60
 Leu Leu Ile Gly Leu Ala Ala Leu Gly Leu Leu Phe Phe Gln Tyr
 65 70 75
 Tyr Gln Leu Ser Asn Thr Gly Gln Asp Thr Ile Ser Gln Met Glu
 80 85 90
 Glu Arg Leu Gly Asn Thr Ser Gln Glu Leu Gln Ser Leu Gln Val
 95 100 105
 Gln Asn Ile Lys Leu Ala Gly Ser Leu Gln His Val Ala Glu Lys
 110 115 120
 Leu Cys Arg Glu Leu Tyr Asn Lys Ala Gly Ala His Arg Cys Ser
 125 130 135
 Pro Cys Thr Glu Gln Trp Lys Trp His Gly Asp Asn Cys Tyr Gln
 140 145 150
 Phe Tyr Lys Asp Ser Lys Ser Trp Glu Asp Cys Lys Tyr Phe Cys
 155 160 165
 Leu Ser Glu Asn Ser Thr Met Leu Lys Ile Asn Lys Gln Glu Asp
 170 175 180
 Leu Glu Phe Ala Ala Ser Gln Ser Tyr Ser Glu Phe Phe Tyr Ser
 185 190 195
 Tyr Trp Thr Gly Leu Leu Arg Pro Asp Ser Gly Lys Ala Trp Leu
 200 205 210
 Trp Met Asp Gly Thr Pro Phe Thr Ser Glu Leu Phe His Ile Ile
 215 220 225
 Ile Asp Val Thr Ser Pro Arg Ser Arg Asp Cys Val Ala Ile Leu
 230 235 240
 Asn Gly Met Ile Phe Ser Lys Asp Cys Lys Glu Leu Lys Arg Cys
 245 250 255
 Val Cys Glu Arg Arg Ala Gly Met Val Lys Pro Glu Ser Leu His
 260 265 270
 Val Pro Pro Glu Thr Leu Gly Glu Gly Asp
 275 280

<210> 320

<211> 468

<212> DNA

<213> Homo sapiens

<220>
<221> unsure
<222> 59, 95, 149, 331, 364, 438, 446
<223> unknown base

<400> 320
aattttcacc gctgttagaa tccagatgca ggccaagtac agcagcacga 50
gggacatgnt ggatgatgat gggacaccac catgagcctg cattntcaag 100
cttttgcac aattcggcat ccagagcccc ggccgcacaga gcacaggnt 150
ccttttcaa cgtggcgacc agtggccctg accctgctga ctttgtgctt 200
ggtgctgctg atagggctgg cagccctggg gctttgttt tttcagtact 250
accagctctc caatactggt caagacacca tttctcaa at ggaagaaaaga 300
ttaggaaata cgtcccaaga gttgcaattt nttcaagtcc agaatataaa 350
gcttgcagga agtntgcagc atgtggctga aaaactctgt cgtgagctgt 400
ataacaaagc tggaggaact ttgaaggagg gcaaagtntc ctcatntact 450
atacacacac cacttccc 468

<210> 321
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 321
atgcaggcca agtacagcag cac 23

<210> 322
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 322
catgctgacg acttcctgca agc 23

<210> 323
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 323
ccacacagtc tctgcttctt ggg 23

<210> 324
<211> 40
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 324
atgctggatg atgatgggaa caccaccatg agcctgcatt 40

<210> 325
<211> 2988
<212> DNA
<213> Homo sapiens

<400> 325
gccgagcgca agaacccctgc gcagcccaga gcagctgctg gaggggaatc 50
gaggcgccgc tccgggatt cggctcgccgc cgctggctct gctctgcggg 100
gagggagcgg gccccccgc ggggcccggag ccctccggat ccgccccctc 150
cccggtccccg cccccctcgga gactcctctg gctgctctgg gggttcggc 200
gggcccgggaa ccccggtcc gggcgccatg cgggcattcgc tgctgctgtc 250
ggtgctgcgg ccccgaggc ccgtggccgt gggcatctcc ctgggcttca 300
ccctgagcct gctcagcgtc acctgggtgg aggagccgtg cggcccaggc 350
ccgcccccaac ctggagactc tgagctgccg ccgcgcggca acaccaacgc 400
ggcgcgccgg cccaaactcgg tgcaagccgg agcgagcgca gagaagcccg 450
gggcccggcga aggccgcggg gagaattggg agccgcgcgt cttgcctac 500
caccctgcac agcccgcca ggcgcggaaa aaggccgtca ggacccgcta 550
catcagcacg gagctggca tcaggcagag gctgctggtg gcggtgctga 600
cctctcagac cacgctgccc acgctggcgt tgccgtgaa ccgcacgctg 650
gggcaccggc tggagcgtgt ggtgttcctg acggcgcac gggccggccg 700
ggccccaccc ggcattggcag tggtgacgct gggcgaggag cgacccattg 750
gacacctgca cctggcgctg cgccacctgc tggagcagca cggcgacgac 800
tttgacttgt ttcttcgtgt gcctgacacc acctacaccc aggcgcacgg 850
cctggcacgc ctaactggcc acctcagcct ggccctcgcc gcccacctgt 900
acctggcccg gccccaggac ttcatcgccg gagagccac ccccgccgc 950
tactgccacg gaggcttgg ggtgctgctg tcgcgcattgc tgctgcaaca 1000
actgcgc(ccc cacctggaag gctgccgcaa cgacatcgac agtgcgcgc 1050
ctgacgagtg gctgggtcgc tgcattctcg atgccaccgg ggtgggtgc 1100
actggtgacc acgaggggt gcactatacg catctggagc tgagccctgg 1150
ggagccagtg caggaggggg accctcattt ccgaagtgcc ctgacagccc 1200
accctgtcgc tgaccctgtg cacatgtacc agctgcacaa agcttcgcc 1250
cgagctgaac tggAACGcac gtaccaggag atccaggagt tacagtggga 1300

gatccagaat accagccatc tggccgttga tggggaccgg gcagctgct 1350
ggcccgtggg tattccagca ccatcccgcc cggcctcccg ctttgagggt 1400
ctgcgctggg actacttcac ggagcagoac gctttctcct gcgccgatgg 1450
ctcaccccgcc tgcccactgc gtggggctga ccgggctgat gtggccgatg 1500
ttctggggac agctctagag gagctgaacc gccgctacca cccggccttg 1550
cggctccaga agcagcagct ggtgaatggc taccgacgct ttgatccggc 1600
ccggggtatg gaatacacgc tggacttgca gctggaggca ctgacccccc 1650
agggaggccg ccggccccctc actcgccgag tgcagctgct ccggccgctg 1700
agccgcgtgg agatcttgcc tgtgcctat gtcactgagg cctcacgtct 1750
caactgtgctg ctgcctctag ctgcggctga gcgtgacctg gcccctggct 1800
tcttggaggg cttgccact gcagcactgg agcctggta tgctgcggca 1850
gccctgaccc tgctgctact gtatgagccg cgccaggccc agcgcgtggc 1900
ccatgcagat gtcttcgcac ctgtcaaggc ccacgtggca gagctggagc 1950
ggcgttccc cggtgcccggt gtgccatggc tcagtgtgca gacagccgca 2000
ccctcaccac tgcgcctcat ggatctactc tccaagaagc acccgctgga 2050
cacactgttc ctgctggccg ggccagacac ggtgctcacf cctgacttcc 2100
tgaaccgctg ccgcattgcat gccatctccg gctggcaggc cttctttccc 2150
atgcatttcc aagccttcca cccaggtgtg gccccaccac aagggcotgg 2200
gcccccagag ctggccgtg acactggccg ctttgcgc caggcagcca 2250
gcgaggccctg cttctacaac tccgactacg tggcagcccg tggccgcctg 2300
gcccccagcc cagaacaaga agaggagctg ctggagagcc tggatgtgta 2350
cgagctgttc ctccacttct ccagtctgca tgtgctgcgg gcgggtggagc 2400
cggcgctgct gcagcgcctac cggggccaga cgtgcagcgc gaggctcagt 2450
gaggacctgt accaccgctg cttccagagc gtgcttgagg gcctcggctc 2500
ccgaacccag ctggccatgc tactcttga acaggagcag ggcaacagca 2550
cctgacccca ccctgtcccc gtggccgtg gcatggccac accccacccc 2600
acttctcccc caaaaccaga gccacctgcc agcctcgctg ggcaggctg 2650
gccgtagcca gaccccaagc tggcccactg gtcccctctc tggctctgt 2700
ggtccctggg ctctggacaa gcactggggg acgtgcccc agagccaccc 2750
acttctcatc ccaaacccag ttccctgcc ccctgacgct gctgattcgg 2800
gctgtggcct ccacgtattt atgcagtaca gtctgcctga cgccagccct 2850
gcctctgggc cctggggct gggctgtaga agagttgttg gggaggagg 2900

gagctgagga gggggcatct cccaaacttct ccctttgga ccctgccaa 2950

gctccctgcc tttaataaac tggccaagtg tgaaaaaa 2988

<210> 326

<211> 775

<212> PRT

<213> Homo sapiens

<400> 326

Met Arg Ala Ser Leu Leu Leu Ser Val Ieu Arg Pro Ala Gly Pro
1 5 10 15

Val Ala Val Gly Ile Ser Leu Gly Phe Thr Leu Ser Leu Leu Ser
20 25 30

Val Thr Trp Val Glu Glu Pro Cys Gly Pro Gly Pro Pro Gln Pro
35 40 45

Gly Asp Ser Glu Leu Pro Pro Arg Gly Asn Thr Asn Ala Ala Arg
50 55 60

Arg Pro Asn Ser Val Gln Pro Gly Ala Glu Arg Glu Lys Pro Gly
65 70 75

Ala Gly Glu Gly Ala Gly Glu Asn Trp Glu Pro Arg Val Leu Pro
80 85 90

Tyr His Pro Ala Gln Pro Gly Gln Ala Ala Lys Lys Ala Val Arg
95 100 105

Thr Arg Tyr Ile Ser Thr Glu Leu Gly Ile Arg Gln Arg Leu Leu
110 115 120

Val Ala Val Leu Thr Ser Gln Thr Thr Leu Pro Thr Leu Gly Val
125 130 135

Ala Val Asn Arg Thr Leu Gly His Arg Leu Glu Arg Val Val Phe
140 145 150

Leu Thr Gly Ala Arg Gly Arg Arg Ala Pro Pro Gly Met Ala Val
155 160 165

Val Thr Leu Gly Glu Glu Arg Pro Ile Gly His Leu His Leu Ala
170 175 180

Leu Arg His Leu Leu Glu Gln His Gly Asp Asp Phe Asp Trp Phe
185 190 195

Phe Leu Val Pro Asp Thr Thr Tyr Thr Glu Ala His Gly Leu Ala
200 205 210

Arg Leu Thr Gly His Leu Ser Leu Ala Ser Ala Ala His Leu Tyr
215 220 225

Leu Gly Arg Pro Gln Asp Phe Ile Gly Gly Glu Pro Thr Pro Gly
230 235 240

Arg Tyr Cys His Gly Gly Phe Gly Val Leu Leu Ser Arg Met Leu
245 250 255

Leu Gln Gln Leu Arg Pro His Leu Glu Gly Cys Arg Asn Asp Ile
260 265 270

Val Ser Ala Arg Pro Asp Glu Trp Leu Gly Arg Cys Ile Leu Asp
 275 280 285
 Ala Thr Gly Val Gly Cys Thr Gly Asp His Glu Gly Val His Tyr
 290 295 300
 Ser His Leu Glu Leu Ser Pro Gly Glu Pro Val Gln Glu Gly Asp
 305 310 315
 Pro His Phe Arg Ser Ala Leu Thr Ala His Pro Val Arg Asp Pro
 320 325 330
 Val His Met Tyr Gln Leu His Lys Ala Phe Ala Arg Ala Glu Leu
 335 340 345
 Glu Arg Thr Tyr Gln Glu Ile Gln Glu Leu Gln Trp Glu Ile Gln
 350 355 360
 Asn Thr Ser His Leu Ala Val Asp Gly Asp Arg Ala Ala Ala Trp
 365 370 375
 Pro Val Gly Ile Pro Ala Pro Ser Arg Pro Ala Ser Arg Phe Glu
 380 385 390
 Val Leu Arg Trp Asp Tyr Phe Thr Glu Gln His Ala Phe Ser Cys
 395 400 405
 Ala Asp Gly Ser Pro Arg Cys Pro Leu Arg Gly Ala Asp Arg Ala
 410 415 420
 Asp Val Ala Asp Val Leu Gly Thr Ala Leu Glu Glu Leu Asn Arg
 425 430 435
 Arg Tyr His Pro Ala Leu Arg Leu Gln Lys Gln Gln Leu Val Asn
 440 445 450
 Gly Tyr Arg Arg Phe Asp Pro Ala Arg Gly Met Glu Tyr Thr Leu
 455 460 465
 Asp Leu Gln Leu Glu Ala Leu Thr Pro Gln Gly Gly Arg Arg Pro
 470 475 480
 Leu Thr Arg Arg Val Gln Leu Leu Arg Pro Leu Ser Arg Val Glu
 485 490 495
 Ile Leu Pro Val Pro Tyr Val Thr Glu Ala Ser Arg Leu Thr Val
 500 505 510
 Leu Leu Pro Leu Ala Ala Ala Glu Arg Asp Leu Ala Pro Gly Phe
 515 520 525
 Leu Glu Ala Phe Ala Thr Ala Ala Leu Glu Pro Gly Asp Ala Ala
 530 535 540
 Ala Ala Leu Thr Leu Leu Leu Tyr Glu Pro Arg Gln Ala Gln
 545 550 555
 Arg Val Ala His Ala Asp Val Phe Ala Pro Val Lys Ala His Val
 560 565 570
 Ala Glu Leu Glu Arg Arg Phe Pro Gly Ala Arg Val Pro Trp Leu
 575 580 585

Ser Val Gln Thr Ala Ala Pro Ser Pro Leu Arg Leu Met Asp Leu
590 595 600

Leu Ser Lys Lys His Pro Leu Asp Thr Leu Phe Leu Leu Ala Gly
605 610 615

Pro Asp Thr Val Leu Thr Pro Asp Phe Leu Asn Arg Cys Arg Met
620 625 630

His Ala Ile Ser Gly Trp Gln Ala Phe Phe Pro Met His Phe Gln
635 640 645

Ala Phe His Pro Gly Val Ala Pro Pro Gln Gly Pro Gly Pro Pro
650 655 660

Glu Leu Gly Arg Asp Thr Gly Arg Phe Asp Arg Gln Ala Ala Ser
665 670 675

Glu Ala Cys Phe Tyr Asn Ser Asp Tyr Val Ala Ala Arg Gly Arg
680 685 690

Leu Ala Ala Ala Ser Glu Gln Glu Glu Glu Leu Leu Glu Ser Leu
695 700 705

Asp Val Tyr Glu Leu Phe Leu His Phe Ser Ser Leu His Val Leu
710 715 720

Arg Ala Val Glu Pro Ala Leu Leu Gln Arg Tyr Arg Ala Gln Thr
725 730 735

Cys Ser Ala Arg Leu Ser Glu Asp Leu Tyr His Arg Cys Leu Gln
740 745 750

Ser Val Leu Glu Gly Leu Gly Ser Arg Thr Gln Leu Ala Met Leu
755 760 765

Leu Phe Glu Gln Glu Gln Gly Asn Ser Thr
770 775

<210> 327

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 327

tggaaggctg ccgcaacgac aatc 24

<210> 328

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 328

ctgatgtggc cgatgttctg 20

<210> 329

<211> 20

<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 329
atggctcagt gtgcagacag 20

<210> 330
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 330
gcatgctgct ccgtgaagta gtcc 24

<210> 331
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 331
atgcattggaa aagaaggcct gcccc 24

<210> 332
<211> 47
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 332
tgcactggtg accacgaggg ggtgcactat agccatctgg agcttag 47

<210> 333
<211> 1095
<212> DNA
<213> Homo sapiens

<400> 333
gctctggcccg gccccggcga ttggtcacccg cccgcttaggg gacagccctg 50
gcctcctctg attggcaagc gctggccacc tccccacacc cttgcgaac 100
gctcccctag tggagaaaag gagtagctat tagccaattc ggcagggccc 150
gctttttaga agcttgattt cctttgaaga tgaaagacta gcggaaagctc 200
tgcctcttcc cccagtgggc gagggaaactc gggcgattt gctgggaact 250
gtatccaccc aaatgtcacc gatttcttcc tatgcaggaa atgagcagac 300
ccatcaataa gaaatttctc agcctggccg aaaatggttt gccccacgaa 350
gccacgacaa ctggaggcaa agagggttgc tcaacgcccc gcctcatgg 400

aaaacccaaat cagatctggg acctatatag cgtggcggag gcggggcgat 450
gattgtcgcg ctgcgaccca ctgcagctgc gcacagtgcg atttcttcc 500
ccgccccctga gaccctgcag caccatctgt catggcggct gggctgttg 550
gtttgagcgc tcgcccgtctt ttggcggcag cggcgcacgcg agggctcccg 600
gccgcccccg tccgctggga atctagcttc tccaggactg tggtcgcccc 650
gtccgctgtg gcgggaaagc ggcccccaga accgaccaca ccgtggcaag 700
aggacccaga acccgaggac gaaaacttgt atgagaagaa cccagactcc 750
catggttatg acaaggaccc cgtnnngac gtctggaaaca tgctgacttgt 800
cttcttcttt ggcgtctcca tcatcctggt cttggcagc acctttgtgg 850
cctatctgcc tgactacagg atgaaagagt ggtcccgccg cgaagctgag 900
aggcttgtga aataccgaga ggccaatggc cttccatca tggaatccaa 950
ctgcttcgac cccagcaaga tccagctgcc agaggatgag tgaccagg 1000
ctaagtgggg ctcaagaagc accgccttcc ccacccctg cctgccattc 1050
tgacctcttc tcagagcacc taattaaagg ggctgaaaagt ctgaa 1095

<210> 334

<211> 153

<212> PRT

<213> Homo sapiens

<400> 334

Met	Ala	Ala	Gly	Leu	Phe	Gly	Leu	Ser	Ala	Arg	Arg	Leu	Leu	Ala
1				5				10				15		
Ala	Ala	Ala	Thr	Arg	Gly	Leu	Pro	Ala	Ala	Arg	Val	Arg	Trp	Glu
			20			25						30		
Ser	Ser	Phe	Ser	Arg	Thr	Val	Val	Ala	Pro	Ser	Ala	Val	Ala	Gly
			35			40						45		
Lys	Arg	Pro	Pro	Glu	Pro	Thr	Thr	Pro	Trp	Gln	Glu	Asp	Pro	Glu
			50				55					60		
Pro	Glu	Asp	Glu	Asn	Leu	Tyr	Glu	Lys	Asn	Pro	Asp	Ser	His	Gly
			65				70					75		
Tyr	Asp	Lys	Asp	Pro	Val	Leu	Asp	Val	Trp	Asn	Met	Arg	Leu	Val
			80				85					90		
Phe	Phe	Phe	Gly	Val	Ser	Ile	Ile	Leu	Val	Leu	Gly	Ser	Thr	Phe
			95					100				105		
Val	Ala	Tyr	Leu	Pro	Asp	Tyr	Arg	Met	Lys	Glu	Trp	Ser	Arg	Arg
			110					115				120		
Glu	Ala	Glu	Arg	Leu	Val	Lys	Tyr	Arg	Glu	Ala	Asn	Gly	Leu	Pro
			125				130					135		
Ile	Met	Glu	Ser	Asn	Cys	Phe	Asp	Pro	Ser	Lys	Ile	Gln	Leu	Pro
			140				145					150		

Glu Asp Glu

<210> 335
<211> 442
<212> DNA
<213> Homo sapiens

<400> 335
ggcggctggg ctgtttggtt tgagcgctcg ccgtcttttgcg 50
cgacgcgagg gctccggcc gcccgcgtcc gctgggaatc tagttctcc 100
aggactgtgg tcgccccgtc cgctgtggcg ggaaagcggc ccccagaacc 150
gaccacaccc tggcaagagg acccagaacc cgaggacgaa aacttgtatg 200
agaagaaccc agactcccat ggttatgaca aggacccgt tttggacgtc 250
tggAACATGC gacttgtctt cttctttggc gtctccatca tcctggcct 300
tggcagcacc tttgtggcct atctgcctga ctacaggatg aaagagtgg 350
cccggcgca agctgagagg cttgtgaaat accgagaggc caatggcctt 400
cccatcatgg aatccaactg cttcgacccc agcaagatcc ag 442

<210> 336
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 336
ctgagacct gcagcaccaat ctg 23

<210> 337
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 337
ggtgcttcggtt gagccccact tagc 24

<210> 338
<211> 40
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 338
aatcttagctt ctccaggact gtggtcgcccc cgtccgctgt 40

<210> 339
<211> 2162
<212> DNA

<213> Homo sapiens

<400> 339

gcggcggcta tgccgcttc tctgctcgcc ctgttgctcc tggggcccg 50
cggctggtgc cttgcagaac ccccacgoga cagcctgcgg gaggaacttg 100
tcatcacccc gctgccttc ggggacgtag ccgccacatt ccagttccgc 150
acgcgctggg attcggagct tcagcggaa ggagtgtccc attacaggct 200
ctttccccaaa gccctgggc agctgatotc caagtattct ctacgggagc 250
tgcacctgtc attcacacaa ggctttgga ggacccgata ctgggggcca 300
cccttcctgc aggccccatc aggtgcagag ctgtgggtct ggttccaaga 350
cactgtcact gatgtggata aatcttgaa ggagctcagt aatgtcctct 400
cagggatctt ctgcgcctct ctaacttca tcgactccac caacacagtc 450
actcccactg ctccttcaa acccctgggt ctggccaatg acactgacca 500
ctactttctg cgctatgctg tgctgcccgc ggaggtggtc tgcaccgaaa 550
acctcaccctt ctggaagaag ctcttgcct gttagtccaa ggcaggcctc 600
tctgtgtgc tgaaggcaga tcgcttgttc cacaccagct accactccca 650
ggcagtgcatttccctg ttgcagaaaa tgcacgctgt actagcatct 700
cctggagact gaggcagacc ctgtcagttt tatttgcattc cttcatcactg 750
gggcaggaa agaaagactg gtccctttc cggatgttct cccgaaccct 800
cacggagccc tgccccctgg cttagagag ccgagtctat gtggacatca 850
ccacctacaa ccaggacaac gagacattag aggtgcaccc acccccgacc 900
actacatatac aggacgtcat cctaggcact cgaaagaccc atgccatcta 950
tgacttgctt gacaccgcca tgcataacaa ctctcgaaac ctcaacatcc 1000
agctcaagtgc gaaagagaccc ccagagaatg agggccccc agtgccttc 1050
ctgcattgcggc agcgtacgt gatgtggctat gggctgcaga agggggagct 1100
gagcacactg ctgtacaaca cccacccata ccgggccttc ccgggtgtgc 1150
tgctggacac cgtaccctgg tatctgcggc tgcatagtgc caccctcacc 1200
atcacctcca agggcaagga gaacaaacca agttacatcc actaccagcc 1250
tgcccaggac cggctgcaac cccacccctt ggagatgtgc attcagctgc 1300
cggccaaactc agtcaccaag gttccatcc agtttgcgc ggcgtgtgc 1350
aagtggaccc agtacacgccc agatcctaact catggcttct atgtcagccc 1400
atctgtcctc agcgccttc tgcccagcat ggtgcgc aagccagtg 1450
actggaaaga gagtccccctc ttcaacagcc tggccatgtgc 1500

tctaactact ttgtgcggct ctacacggag ccgctgctgg tgaacctgcc 1550
gacaccggac ttcagcatgc cctacaacgt gatctgcctc acgtgcactg 1600
tggtggccgt gtgctacggc tccttctaca atctcctcac ccgaacctc 1650
cacatcgagg agccccgac aggtggcctg gccaagcggc tggccaacct 1700
tatccggcgc gcccggagg tgccgtttct ctctggggag gggagccaa gggctgttcc 1750
cagctgcagc tgccgtttct ctctggggag gggagccaa gggctgttcc 1800
tgccacttgc tctcctcaga gttggctttt gaaccaaagt gccctggacc 1850
aggtcagggc ctacagctgt gttgtccagt acaggagcca cgagccaaat 1900
gtggcatttg aatttgaatt aacttagaaa ttcatttcct cacctgttagt 1950
ggccacctct atattgaggt gctcaataag caaaagtggc cggtggctgc 2000
tgtattggac agcacagaaa aagatttcca tcaccacaga aaggtcggct 2050
ggcagcactg gccaagggtga tgggtgtgc tacacagtgt atgtcactgt 2100
gtagtggatg gagtttactg tttgtggaat aaaaacggct gtttccgtgg 2150
aaaaaaaaaa aa 2162

<210> 340

<211> 574

<212> PRT

<213> Homo sapiens

<400> 340

Met	Pro	Leu	Ala	Leu	Leu	Val	Leu	Leu	Leu	Gly	Pro	Gly	Gly
1						5			10				15

Trp	Cys	Leu	Ala	Glu	Pro	Pro	Arg	Asp	Ser	Leu	Arg	Glu	Glu	Leu
				20					25					30

Val	Ile	Thr	Pro	Leu	Pro	Ser	Gly	Asp	Val	Ala	Ala	Thr	Phe	Gln
						35				40				45

Phe	Arg	Thr	Arg	Trp	Asp	Ser	Glu	Leu	Gln	Arg	Glu	Gly	Val	Ser
				50					55					60

His	Tyr	Arg	Leu	Phe	Pro	Lys	Ala	Leu	Gly	Gln	Leu	Ile	Ser	Lys
						65				70				75

Tyr	Ser	Leu	Arg	Glu	Leu	His	Leu	Ser	Phe	Thr	Gln	Gly	Phe	Trp
					80				85					90

Arg	Thr	Arg	Tyr	Trp	Gly	Pro	Pro	Phe	Leu	Gln	Ala	Pro	Ser	Gly
				95					100					105

Ala	Glu	Leu	Trp	Val	Trp	Phe	Gln	Asp	Thr	Val	Thr	Asp	Val	Asp
							110			115				120

Lys	Ser	Trp	Lys	Glu	Leu	Ser	Asn	Val	Leu	Ser	Gly	Ile	Phe	Cys
							125			130				135

Ala	Ser	Leu	Asn	Phe	Ile	Asp	Ser	Thr	Asn	Thr	Val	Thr	Pro	Thr
						140				145				150

Ala Ser Phe Lys Pro Leu Gly Leu Ala Asn Asp Thr Asp His Tyr
 155 160 165
 Phe Leu Arg Tyr Ala Val Leu Pro Arg Glu Val Val Cys Thr Glu
 170 175 180
 Asn Leu Thr Pro Trp Lys Lys Leu Leu Pro Cys Ser Ser Lys Ala
 185 190 195
 Gly Leu Ser Val Leu Leu Lys Ala Asp Arg Leu Phe His Thr Ser
 200 205 210
 Tyr His Ser Gln Ala Val His Ile Arg Pro Val Cys Arg Asn Ala
 215 220 225
 Arg Cys Thr Ser Ile Ser Trp Glu Leu Arg Gln Thr Leu Ser Val
 230 235 240
 Val Phe Asp Ala Phe Ile Thr Gly Gln Gly Lys Lys Asp Trp Ser
 245 250 255
 Leu Phe Arg Met Phe Ser Arg Thr Leu Thr Glu Pro Cys Pro Leu
 260 265 270
 Ala Ser Glu Ser Arg Val Tyr Val Asp Ile Thr Thr Tyr Asn Gln
 275 280 285
 Asp Asn Glu Thr Leu Glu Val His Pro Pro Pro Thr Thr Thr Tyr
 290 295 300
 Gln Asp Val Ile Leu Gly Thr Arg Lys Thr Tyr Ala Ile Tyr Asp
 305 310 315
 Leu Leu Asp Thr Ala Met Ile Asn Asn Ser Arg Asn Leu Asn Ile
 320 325 330
 Gln Leu Lys Trp Lys Arg Pro Pro Glu Asn Glu Ala Pro Pro Val
 335 340 345
 Pro Phe Leu His Ala Gln Arg Tyr Val Ser Gly Tyr Gly Leu Gln
 350 355 360
 Lys Gly Glu Leu Ser Thr Leu Leu Tyr Asn Thr His Pro Tyr Arg
 365 370 375
 Ala Phe Pro Val Leu Leu Leu Asp Thr Val Pro Trp Tyr Leu Arg
 380 385 390
 Leu Tyr Val His Thr Leu Thr Ile Thr Ser Lys Gly Lys Glu Asn
 395 400 405
 Lys Pro Ser Tyr Ile His Tyr Gln Pro Ala Gln Asp Arg Leu Gln
 410 415 420
 Pro His Leu Leu Glu Met Leu Ile Gln Leu Pro Ala Asn Ser Val
 425 430 435
 Thr Lys Val Ser Ile Gln Phe Glu Arg Ala Leu Leu Lys Trp Thr
 440 445 450
 Glu Tyr Thr Pro Asp Pro Asn His Gly Phe Tyr Val Ser Pro Ser
 455 460 465

Val Leu Ser Ala Leu Val Pro Ser Met Val Ala Ala Lys Pro Val
470 475 480

Asp Trp Glu Glu Ser Pro Leu Phe Asn Ser Leu Phe Pro Val Ser
485 490 495

Asp Gly Ser Asn Tyr Phe Val Arg Leu Tyr Thr Glu Pro Leu Leu
500 505 510

Val Asn Leu Pro Thr Pro Asp Phe Ser Met Pro Tyr Asn Val Ile
515 520 525

Cys Leu Thr Cys Thr Val Val Ala Val Cys Tyr Gly Ser Phe Tyr
530 535 540

Asn Leu Leu Thr Arg Thr Phe His Ile Glu Glu Pro Arg Thr Gly
545 550 555

Gly Leu Ala Lys Arg Leu Ala Asn Leu Ile Arg Arg Ala Arg Gly
560 565 570

Val Pro Pro Leu

<210> 341

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 341

tggacaccgt accctggat ctgc 24

<210> 342

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<221> Artificial Sequence

<222> 1-24

<223> Synthetic oligonucleotide probe

<400> 342

ccaactctga ggagagcaag tggc 24

<210> 343

<211> 44

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 343

tgtatgtaca caccctcacc atcacccca agggcaagga gaac 44

<210> 344

<211> 762

<212> DNA

<213> Homo sapiens

<400> 344
caacatgggg tccagcagct tcttggtcct catggtgtct ctgcgttctg 50
tgaccctgggt ggctgtggaa ggagttaaag agggtataga gaaagcaggg 100
gtttgcccaag ctgacaacgt acgctgcttc aagtccgatc ctccccagtg 150
tcacacagac caggactgtc tgggggaaag gaagtgttgt tacctgcact 200
gtggcttcaa gtgtgtgatt cctgtgaagg aactggaaga aggagggaaac 250
aaggatgaag atgtgtcaag gccataaccct gagccaggat gggaggccaa 300
gtgtccaggc tcctcctcta ccaggtgtcc tcagaaatga tgctgggtcc 350
tttctacctc tgggggtcac tctcaacttg cacctgcccc tgagggtct 400
gagacttsga atatggaaga agcaatacc aaccccacca aagaaaaacct 450
gagcttgaag tcctttccc caaaaagagg gaagagtcac aaaaagtcca 500
gaccccaggg acggtaacttt ccctctctac ctggtgctcc tccctaattgc 550
tcatgaatgg acccctcatg aatgaaacca gtgccttat aagagacccc 600
aaagagctgc cttgccttc tgcaatgtgt gatcacagct agaaggcact 650
gtcagagaag agaaaactggt cctcaccaga tgctgaatct gctgggtcct 700
tgatcttsga cttcccagcc tctagaactg taagaaataa atatttgctg 750
tttataatcc aa 762

<210> 345
<211> 111
<212> PRT
<213> Homo sapiens

<400> 345
Met Gly Ser Ser Ser Phe Leu Val Leu Met Val Ser Leu Val Leu
1 5 10 15
Val Thr Leu Val Ala Val Glu Gly Val Lys Glu Gly Ile Glu Lys
20 25 30
Ala Gly Val Cys Pro Ala Asp Asn Val Arg Cys Phe Lys Ser Asp
35 40 45
Pro Pro Gln Cys His Thr Asp Gln Asp Cys Leu Gly Glu Arg Lys
50 55 60
Cys Cys Tyr Leu His Cys Gly Phe Lys Cys Val Ile Pro Val Lys
65 70 75
Glu Leu Glu Glu Gly Gly Asn Lys Asp Glu Asp Val Ser Arg Pro
80 85 90
Tyr Pro Glu Pro Gly Trp Glu Ala Lys Cys Pro Gly Ser Ser Ser
95 100 105
Thr Arg Cys Pro Gln Lys
110

<210> 346
<211> 2528
<212> DNA
<213> Homo sapiens

<400> 346
aaactcagca cttgccggag tggctcattg ttaagacaaa gggtgtgcac 50
ttcctggcca ggaaacctga gcggtgagac tcccagctgc ctacatcaag 100
gccccaggac atgcagaacc ttccctctaga acccgaccca ccaccatgag 150
gtcctgcctg tggagatgca ggcacctgag ccaaggcgtc cagtggcct 200
tgcttctggc tgtcctggc ttctttctt tcgccttgcc ctctttatt 250
aaggagcctc aaacaaagcc ttccaggcat caacgcacag agaacattaa 300
agaaaggctt ctacagtccc tggcaaagcc taagtcccag gcacccacaa 350
gggcgaggag gacaaccatc tatgcagagc cagcgccaga gaacaatgcc 400
ctcaacacac aaacccagcc caaggcccac accaccggag acagagggaa 450
ggaggccaac caggcaccgc cgaggagca ggacaagggtg ccccacacag 500
cacagagggc agcatggaag agcccagaaa aagagaaaac catggtaac 550
acactgtcac ccagagggc agatgcaggg atggcctctg gcaggacaga 600
ggcacaatca tggaaagagcc aggacacaaa gacgacccaa ggaaatgggg 650
gccagaccag gaagctgacg gcctccagga cggtgtcaga gaagcaccag 700
ggcaaagcgg caaccacagc caagacgctc attccaaaa gtcagcacag 750
aatgctggct cccacaggag cagtgtcaac aaggacgaga cagaaaggag 800
tgaccacagc agtcatccca cctaaggaga agaaacctca ggccacccca 850
ccccctgccc ctttccagag ccccacgacg cagagaaacc aaagactgaa 900
ggccgccaac ttcaaattctg agcctcggtg ggatttttag gaaaaataca 950
gcttcgaaat aggaggcctt cagacgactt gccctgactc tgtgaagatc 1000
aaagcctcca agtcgctgtg gctccagaaa ctcttctgc ccaacctcac 1050
tctcttcctg gactccagac acttcaacca gagtgagtgg gaccgcctgg 1100
aacactttgc accaccctt ggcttcatgg agctcaacta ctccttggtg 1150
cagaaggctcg tgacacgctt ccctccagtg ccccagcagc agctgctcct 1200
ggccagcctc cccgctggga gcctccggtg catcacctgt gccgtggtgg 1250
gcaacggggg catcctgaac aactcccaca tgggccagga gatagacagt 1300
cacgactacg tggcccgatt gagcggagct ctcattaaag gctacgaaca 1350
ggatgtgggg actcggacat cttctacgg ctttaccgcc ttctccctga 1400
cccagtcact ctttatattt ggcaatcggt gtttcaagaa cgtgccttt 1450

ggaaaggacg tccgctactt gcacttcctg gaaggcaccc gggactatga 1500
gtggctggaa gcactgctta tgaatcagac ggtgatgtca aaaaacctt 1550
tctggttcag gcacagaccc caggaagctt ttcggaagc cctgcacatg 1600
gacaggtacc tggtgctgca cccagacttt ctccgataca tgaagaacag 1650
gtttctgagg tctaagaccc tggatggtgc ccactggagg atataccgc 1700
ccaccactgg ggccctcctg ctgctcactg cccttcagct ctgtgaccag 1750
gtgagtgctt atggcttcat cactgagggc catgagcgct tttctgatca 1800
ctactatgat acatcatgga agcggctgat ctttacata aaccatgact 1850
tcaagctgga gagagaagtc tggaaagcggc tacacgatga agggataatc 1900
cggtgttacc agcgtcctgg tcccggaaact gccaaagcca agaactgacc 1950
ggggccaggg ctgccatggt ctccctgcct gctccaaggc acaggataca 2000
gtggaaatct tgagactctt tggccatttc ccatggctca gactaagctc 2050
caagcccttc aggagttcca agggAACACT tgaaccatgg acaagactct 2100
ctcaagatgg caaatggcta attgaggttc tgaagttctt cagtacattg 2150
ctgttaggtcc tgaggccagg gatTTTAAT taaatgggt gatgggtggc 2200
caataccaca attcctgctg aaaaacactc ttccagtcca aaagcttctt 2250
gatacagaaa aaagagcctg gatttacaga aacatataga tctggttga 2300
attccagatc gagtttacag ttgtgaaatc ttgaaggtat tacttaactt 2350
cactacagat tgtctagaag acctttctag gagttatctg attctagaag 2400
ggtctatact tgtccttgc tttaagctat ttgacaactc tacgtgttgt 2450
agaaaaactga taataataca aatgattgtt gtccatggaa aggcaaataa 2500
atTTTCTACA gtgaaaaaaaaaaaaaaa 2528

<210> 347

<211> 600

<212> PRT

<213> Homo sapiens

<400> 347

Met	Arg	Ser	Cys	Ile	Trp	Arg	Cys	Arg	His	Leu	Ser	Gln	Gly	Val
1				5					10					15

Gln	Trp	Ser	Leu	Leu	Ala	Val	Leu	Val	Phe	Phe	Leu	Phe	Ala	
			20				25						30	

Leu	Pro	Ser	Phe	Ile	Lys	Glu	Pro	Gln	Thr	Lys	Pro	Ser	Arg	His
				35				40					45	

Gln	Arg	Thr	Glu	Asn	Ile	Lys	Glu	Arg	Ser	Leu	Gln	Ser	Leu	Ala
				50				55					60	

Lys Pro Lys Ser Gln Ala Pro Thr Arg Ala Arg Arg Thr Thr Ile

65 70 75

Tyr Ala Glu Pro Ala Pro Glu Asn Asn Ala Leu Asn Thr Gln Thr		
80	85	90
Gln Pro Lys Ala His Thr Thr Gly Asp Arg Gly Lys Glu Ala Asn		
95	100	105
Gln Ala Pro Pro Glu Glu Gln Asp Lys Val Pro His Thr Ala Gln		
110	115	120
Arg Ala Ala Trp Lys Ser Pro Glu Lys Glu Lys Thr Met Val Asn		
125	130	135
Thr Leu Ser Pro Arg Gly Gln Asp Ala Gly Met Ala Ser Gly Arg		
140	145	150
Thr Glu Ala Gln Ser Trp Lys Ser Gln Asp Thr Lys Thr Thr Gln		
155	160	165
Gly Asn Gly Gly Gln Thr Arg Lys Leu Thr Ala Ser Arg Thr Val		
170	175	180
Ser Glu Lys His Gln Gly Lys Ala Ala Thr Thr Ala Lys Thr Leu		
185	190	195
Ile Pro Lys Ser Gln His Arg Met Leu Ala Pro Thr Gly Ala Val		
200	205	210
Ser Thr Arg Thr Arg Gln Lys Gly Val Thr Thr Ala Val Ile Pro		
215	220	225
Pro Lys Glu Lys Lys Pro Gln Ala Thr Pro Pro Pro Ala Pro Phe		
230	235	240
Gln Ser Pro Thr Thr Gln Arg Asn Gln Arg Leu Lys Ala Ala Asn		
245	250	255
Phe Lys Ser Glu Pro Arg Trp Asp Phe Glu Glu Lys Tyr Ser Phe		
260	265	270
Glu Ile Gly Gly Leu Gln Thr Thr Cys Pro Asp Ser Val Lys Ile		
275	280	285
Lys Ala Ser Lys Ser Leu Trp Leu Gln Lys Leu Phe Leu Pro Asn		
290	295	300
Leu Thr Leu Phe Leu Asp Ser Arg His Phe Asn Gln Ser Glu Trp		
305	310	315
Asp Arg Leu Glu His Phe Ala Pro Pro Phe Gly Phe Met Glu Leu		
320	325	330
Asn Tyr Ser Leu Val Gln Lys Val Val Thr Arg Phe Pro Pro Val		
335	340	345
Pro Gln Gln Gln Leu Leu Leu Ala Ser Leu Pro Ala Gly Ser Leu		
350	355	360
Arg Cys Ile Thr Cys Ala Val Val Gly Asn Gly Gly Ile Leu Asn		
365	370	375
Asn Ser His Met Gly Gln Glu Ile Asp Ser His Asp Tyr Val Phe		

380	385	390
Arg Leu Ser Gly Ala Leu Ile Lys	Gly Tyr Glu Gln Asp Val Gly	
395	400	405
Thr Arg Thr Ser Phe Tyr Gly Phe Thr Ala Phe Ser Leu Thr Gln		
410	415	420
Ser Leu Leu Ile Leu Gly Asn Arg Gly	Phe Lys Asn Val Pro Leu	
425	430	435
Gly Lys Asp Val Arg Tyr Leu His Phe	Leu Glu Gly Thr Arg Asp	
440	445	450
Tyr Glu Trp Leu Glu Ala Leu Leu Met	Asn Gln Thr Val Met Ser	
455	460	465
Lys Asn Leu Phe Trp Phe Arg His Arg	Pro Gln Glu Ala Phe Arg	
470	475	480
Glu Ala Leu His Met Asp Arg Tyr Leu	Leu Leu His Pro Asp Phe	
485	490	495
Leu Arg Tyr Met Lys Asn Arg Phe Leu	Arg Ser Lys Thr Leu Asp	
500	505	510
Gly Ala His Trp Arg Ile Tyr Arg Pro	Thr Thr Gly Ala Leu Leu	
515	520	525
Leu Leu Thr Ala Leu Gln Leu Cys Asp	Gln Val Ser Ala Tyr Gly	
530	535	540
Phe Ile Thr Glu Gly His Glu Arg Phe	Ser Asp His Tyr Tyr Asp	
545	550	555
Thr Ser Trp Lys Arg Leu Ile Phe Tyr	Ile Asn His Asp Phe Lys	
560	565	570
Leu Glu Arg Glu Val Trp Lys Arg Leu	His Asp Glu Gly Ile Ile	
575	580	585
Arg Leu Tyr Gln Arg Pro Gly Pro Gly	Thr Ala Lys Ala Lys Asn	
590	595	600

<210> 348
 <211> 496
 <212> DNA
 <213> Homo sapiens

<400> 348
 cgatgcgcgg acccgggac cccctcctcc tggggctgct gctggtgctg 50
 gggccttcgc cggagcagcg agtggaaatt gttcctcgag atctgaggat 100
 gaaggacaag tttctaaaac accttacagg ccctctttat tttagtccaa 150
 agtgcagcaa acacttccat agactttatc acaacaccag agactgcacc 200
 attcctgcat actataaaag atgcgccagg ctctttaccc ggctggctgt 250
 cagtccagtg tgcattggagg ataagtgagc agaccgtaca ggagcagcac 300
 accaggagcc atgagaagtg ccttgaaac caacaggaa acagaactat 350

ctttatacac atccctcat ggacaagaga tttatTTTg cagacagact 400
cttccataag tccttgagt ttgtatgtt gttgacagtt tgcaGATA 450
tattcgataa atcagtgtac ttgacagtgt tatctgtcac ttattt 496

<210> 349
<211> 91
<212> PRT
<213> Homo sapiens

<400> 349
Met Arg Gly Pro Gly His Pro Leu Leu Leu Gly Leu Leu Val
1 5 10 15

Leu Gly Pro Ser Pro Glu Gln Arg Val Glu Ile Val Pro Arg Asp
20 25 30

Leu Arg Met Lys Asp Lys Phe Leu Lys His Leu Thr Gly Pro Leu
35 40 45

Tyr Phe Ser Pro Lys Cys Ser Lys His Phe His Arg Leu Tyr His
50 55 60

Asn Thr Arg Asp Cys Thr Ile Pro Ala Tyr Tyr Lys Arg Cys Ala
65 70 75

Arg Leu Leu Thr Arg Leu Ala Val Ser Pro Val Cys Met Glu Asp
80 85 90

Lys

<210> 350
<211> 1141
<212> DNA
<213> Homo sapiens

<400> 350
gggctgggcc ccgcgcgcgc tccagctggc cggcttggtc ctgcggtccc 50
ttctctggga ggcccgaccc cggccgcgc cagccccac catgccaccc 100
gcggggctcc gccggggcgc gccgctcacc gcaatcgctc tgTTGGTgCT 150
gggggctccc ctggtgctgg ccggcgagga ctgcctgtgg tacctggacc 200
ggaatggctc ctggcatccg gggTTtaact gcgagttctt caccttctgc 250
tgccggacct gctaccatcg gtactgctgc agggacctga ccttgcttat 300
caccgagagg cagcagaAGC actgcctggc cttagcccc aagaccatAG 350
caggcatcgc ctcagctgtg atcctctttg ttgctgtgg tgccaccacc 400
atctgctgct tcctctgttc ctgttgctac ctgtaccGCC ggcGCCAGCA 450
gctccagAGC ccattGAAG gccaggAGAT tccaaatgaca ggcataCCAG 500
tgcAGCCAGt ataccatac ccccaggacc ccaaAGCTGG ccctGCACCC 550
ccacAGCCGT gcttcatgtA cccacCTAGt ggtcctGCTC cccaaatATCC 600

actctaccca gctggggccc cagtctacaa ccctgcagct cctcctccct 650
atatgccacc acagccctct taccgggag cctgaggaac cagccatgtc 700
tctgctgccc ctccagtat gccaaccttg ggagatgccc tcatcctgta 750
cctgcattcg gtcctgggg tggcaggagt cctccagcca ccaggcccc 800
gaccaagcca agccctggc cctactgggg acagagcccc agggaaagtgg 850
aacaggagct gaactagaac tatgaggggt tggggggagg gcttggatt 900
atgggctatt ttactgggg gcaaggagg gagatgacag cctgggtcac 950
agtgcctgtt ttcaaatagt ccctctgctc ccaagatccc agccaggaag 1000
gctggggccc tactgttgt cccctctggg ctgggggtggg gggagggagg 1050
aggttccgtc agcagctggc agtagccctc ctctctggct gccccactgg 1100
ccacatctct ggcctgctag attaaagctg taaagacaaa a 1141

<210> 351

<211> 197

<212> PRT

<213> Homo sapiens

<400> 351

Met	Pro	Pro	Ala	Gly	Leu	Arg	Arg	Ala	Ala	Pro	Leu	Thr	Ala	Ile	
1					5				10					15	
Ala	Leu	Leu	Val	Leu	Gly	Ala	Pro	Leu	Val	Leu	Ala	Gly	Glu	Asp	
									20			25		30	
Cys	Leu	Trp	Tyr	Leu	Asp	Arg	Asn	Gly	Ser	Trp	His	Pro	Gly	Phe	
					35				40					45	
Asn	Cys	Glu	Phe	Phe	Thr	Phe	Cys	Cys	Gly	Thr	Cys	Tyr	His	Arg	
					50				55					60	
Tyr	Cys	Cys	Arg	Asp	Leu	Thr	Leu	Leu	Ile	Thr	Glu	Arg	Gln	Gln	
					65				70					75	
Lys	His	Cys	Leu	Ala	Phe	Ser	Pro	Lys	Thr	Ile	Ala	Gly	Ile	Ala	
					80				85					90	
Ser	Ala	Val	Ile	Leu	Phe	Val	Ala	Val	Val	Ala	Thr	Thr	Ile	Cys	
					95				100					105	
Cys	Phe	Leu	Cys	Ser	Cys	Cys	Tyr	Leu	Tyr	Arg	Arg	Arg	Gln	Gln	
					110				115					120	
Leu	Gln	Ser	Pro	Phe	Glu	Gly	Gln	Glu	Ile	Pro	Met	Thr	Gly	Ile	
					125				130					135	
Pro	Val	Gln	Pro	Val	Tyr	Pro	Tyr	Pro	Gln	Asp	Pro	Lys	Ala	Gly	
					140				145					150	
Pro	Ala	Pro	Pro	Gln	Pro	Gly	Phe	Met	Tyr	Pro	Pro	Ser	Gly	Pro	
					155				160					165	
Ala	Pro	Gln	Tyr	Pro	Leu	Tyr	Pro	Ala	Gly	Pro	Pro	Val	Tyr	Asn	
					170				175					180	

Pro Ala Ala Pro Pro Pro Tyr Met Pro Pro Gln Pro Ser Tyr Pro
185 190 195

Gly Ala

<210> 352

<211> 3226

<212> DNA

<213> Homo sapiens

<400> 352

gggggagcta ggccggcggc agtgggtggtgc gcgccggcgc aagggtgagg 50

gcggccccag aaccccaggt agtagagca agaagatggt gtttctgcc 100

ctcaaatttgt cccttgcaac catgtcattt ctactttcct cactgttggc 150

tctcttaact gtgtccactc cttcatggtg tcagagcact gaagcatctc 200

caaaaacgtag ttagggaca ccatttcctt ggaataaaat acgacttcct 250

gagtagtca tcccaatttca ttatgatctc ttgatccatg caaaccttac 300

cacgctgacc ttctgggaa ccacgaaagt agaaatcaca gccagtcagc 350

ccaccagcac catcatcctg catagtcacc acctgcagat atctagggcc 400

accctcagga agggagctgg agagaggcta tcggaagaac ccctgcaggt 450

cctggAACAC ccccttcagg agcaaattgc actgctggct cccgagcccc 500

tccttgcgg gtcctcgat acagttgtca ttcactatgc tggcaatctt 550

tcggagactt tccacggatt ttacaaaagc acctacagaa ccaaggaagg 600

ggaactgagg atactagcat caacacaatt tgaacccact gcagctagaa 650

tggcctttcc ctgccttgat gaacctgcct tcaaagcaag tttctcaatc 700

aaaattagaa gagagccaag gcacctagcc atctccaata tgccattgg 750

gaaatctgtg actgttgctg aaggactcat agaagaccat tttgatgtca 800

ctgtgaagat gagcacctat ctgggtggct tcatttcattc agattttag 850

tctgtcagca agataaccaa gagtgagtc aaggttctg tttatgctgt 900

gccagacaag ataaatcaag cagattatgc actggatgct gcggtgactc 950

ttctagaatt ttatgaggat tatttcagca taccgtatcc cctacccaaa 1000

caagatcttgc tgcatttcc cgactttcag tctggtgcta tggaaaactg 1050

gggactgaca acatatacg aatctgctct gttgtttgat gcagaaaagt 1100

cttctgcattc aagtaagctt ggcattcacag tgactgtggc ccatgaactg 1150

gcccaccagt ggttggaa cctggtact atggatggt ggaatgatct 1200

ttggctaaat gaaggatttg ccaaatttat ggagttgtg tctgtcagtg 1250

tgaccatcc tgaactgaaa gttggagatt atttctttgg caaatgtttt 1300

B
B
B
B
B
B
B
B
B
B

gacgcaatgg aggtagatgc tttaaattcc tcacaccctg tgtctacacc 1350
tgtggaaaat cctgctcaga tccgggagat gtttgatgat gtttctttag 1400
ataagggagc ttgtattctg aatatgctaa gggagtatct tagcgctgac 1450
gcatttaaaa gtggtattgt acagtatctc cagaagcata gctataaaaa 1500
tacaaaaaac gaggacctgt gggatagttt ggcaagtatt tgccctacag 1550
atggtgtaaa agggatggat ggctttgct ctagaagtca acattcatct 1600
tcatcctcac attggcatca ggaaggggtg gatgtgaaaa ccatgtatcaa 1650
cacttggaca ctgcagaggg gtttcccct aataaccatc acagtgaggg 1700
ggaggaatgt acacatgaag caagagcact acatgaaggg ctctgacggc 1750
gccccggaca ctgggtacct gtggcatgtt ccattgacat tcatacaccag 1800
caaatccaac atggccatc gatTTTgct aaaaacaaaa acagatgtgc 1850
tcatcctccc agaagaggtg gaatggatca aatttaatgt gggcatgaat 1900
ggctattaca ttgtgcatta cgaggatgtt ggtggact ctttgactgg 1950
ccttttaaaa ggaacacaca cagcagtcag cagtaatgtt cgggcaagtc 2000
tcattaacaa tgcatttcag ctcgtcagca ttggaaagct gtccattgaa 2050
aaggccttgg atttatccct gtacttgaaa catgaaactg aaattatgcc 2100
cgtgtttcaa ggTTTgaatg agctgattcc tatgtataag ttaatggaga 2150
aaagagatataatgaaatgaaactcaat tcaaggcctt cctcatcagg 2200
ctgctaaggg acctcattga taagcagaca tggacagacg agggctcagt 2250
ctcagagcaa atgctgcgga gtgaactact actcctcgcc tgtgtgcaca 2300
actatcagcc gtgcgtacag agggcagaag gctatttcag aaagtggaaag 2350
gaatccaatg gaaacttgag cctgcctgac gacgtgacct tggcagtgtt 2400
tgctgtgggg gcccagagca cagaaggctg ggattttctt tatagttaaat 2450
atcagtttc tttgtccagt actgagaaaa gccaatttga atttgcctc 2500
tgcagaaccc aaaataagga aaagcttcaa tggctactag atgaaagctt 2550
taagggagat aaaataaaaaa ctcaggagtt tccacaaatt cttacactca 2600
ttggcagggaa cccagtagga tacccactgg cctggcaatt tctgaggaaa 2650
aactggaaaca aacttgtaca aaagttgaa cttggctcat cttccatagc 2700
ccacatggta atgggtacaa caaatcaatt ctccacaaga acacggctt 2750
aagaggtaaa aggattcttc agctcttga aagaaaaatgg ttctcagctc 2800
cggtgtgtcc aacagacaat tgaaaccatt gaagaaaaca tcggttggat 2850
ggataagaat tttgataaaaa tcagagtgtg gctgcaaagt gaaaagctt 2900

aacgtatgta aaaattcctc ccttgcccggttcctgttat ctctaatacac 2950
caacattttgc ttgagtttat tttcaaaacta gagatggctgtttggctcc 3000
aactggagat actttttcc cttcaactca tttttgact atccctgtga 3050
aaagaatagc tgtagtttt tcatgaatgg gcttttcat gaatgggcta 3100
tcgctaccat gtgtttgtt catcacaggt gttgccctgc aacgtaaacc 3150
caagtgttgg gttccctgcc acagaagaat aaagtagctt attcttctca 3200
aaaaaaaaaaa aaaaaaaaaaaa aaaaaaa 3226

<210> 353
<211> 941
<212> PRT
<213> Homo sapiens

<400> 353

Met	Val	Phe	Leu	Pro	Leu	Lys	Trp	Ser	Leu	Ala	Thr	Met	Ser	Phe
1									10					15
Leu	Leu	Ser	Ser	Leu	Leu	Ala	Leu	Leu	Thr	Val	Ser	Thr	Pro	Ser
									25					30
Trp	Cys	Gln	Ser	Thr	Glu	Ala	Ser	Pro	Lys	Arg	Ser	Asp	Gly	Thr
									40					45
Pro	Phe	Pro	Trp	Asn	Lys	Ile	Arg	Leu	Pro	Glu	Tyr	Val	Ile	Pro
									55					60
Val	His	Tyr	Asp	Leu	Leu	Ile	His	Ala	Asn	Leu	Thr	Thr	Leu	Thr
									70					75
Phe	Trp	Gly	Thr	Thr	Lys	Val	Glu	Ile	Thr	Ala	Ser	Gln	Pro	Thr
									85					90
Ser	Thr	Ile	Ile	Leu	His	Ser	His	His	Leu	Gln	Ile	Ser	Arg	Ala
									100					105
Thr	Leu	Arg	Lys	Gly	Ala	Gly	Glu	Arg	Leu	Ser	Glu	Glu	Pro	Leu
									115					120
Gln	Val	Leu	Glu	His	Pro	Pro	Gln	Glu	Gln	Ile	Ala	Leu	Leu	Ala
									130					135
Pro	Glu	Pro	Leu	Leu	Val	Gly	Leu	Pro	Tyr	Thr	Val	Val	Ile	His
									145					150
Tyr	Ala	Gly	Asn	Leu	Ser	Glu	Thr	Phe	His	Gly	Phe	Tyr	Lys	Ser
									155					165
Thr	Tyr	Arg	Thr	Lys	Glu	Gly	Glu	Leu	Arg	Ile	Leu	Ala	Ser	Thr
									170					180
Gln	Phe	Glu	Pro	Thr	Ala	Ala	Arg	Met	Ala	Phe	Pro	Cys	Phe	Asp
									185					195
Glu	Pro	Ala	Phe	Lys	Ala	Ser	Phe	Ser	Ile	Lys	Ile	Arg	Arg	Glu
									200					210
Pro	Arg	His	Leu	Ala	Ile	Ser	Asn	Met	Pro	Leu	Val	Lys	Ser	Val

215 220 225

Thr Val Ala Glu Gly Leu Ile Glu Asp His Phe Asp Val Thr Val
 230 235 240

Lys Met Ser Thr Tyr Leu Val Ala Phe Ile Ile Ser Asp Phe Glu
 245 250 255

Ser Val Ser Lys Ile Thr Lys Ser Gly Val Lys Val Ser Val Tyr
 260 265 270

Ala Val Pro Asp Lys Ile Asn Gln Ala Asp Tyr Ala Leu Asp Ala
 275 280 285

Ala Val Thr Leu Leu Glu Phe Tyr Glu Asp Tyr Phe Ser Ile Pro
 290 295 300

Tyr Pro Leu Pro Lys Gln Asp Leu Ala Ala Ile Pro Asp Phe Gln
 305 310 315

Ser Gly Ala Met Glu Asn Trp Gly Leu Thr Thr Tyr Arg Glu Ser
 320 325 330

Ala Leu Leu Phe Asp Ala Glu Lys Ser Ser Ala Ser Ser Lys Leu
 335 340 345

Gly Ile Thr Val Thr Val Ala His Glu Leu Ala His Gln Trp Phe
 350 355 360

Gly Asn Leu Val Thr Met Glu Trp Trp Asn Asp Leu Trp Leu Asn
 365 370 375

Glu Gly Phe Ala Lys Phe Met Glu Phe Val Ser Val Ser Val Thr
 380 385 390

His Pro Glu Leu Lys Val Gly Asp Tyr Phe Phe Gly Lys Cys Phe
 395 400 405

Asp Ala Met Glu Val Asp Ala Leu Asn Ser Ser His Pro Val Ser
 410 415 420

Thr Pro Val Glu Asn Pro Ala Gln Ile Arg Glu Met Phe Asp Asp
 425 430 435

Val Ser Tyr Asp Lys Gly Ala Cys Ile Leu Asn Met Leu Arg Glu
 440 445 450

Tyr Leu Ser Ala Asp Ala Phe Lys Ser Gly Ile Val Gln Tyr Leu
 455 460 465

Gln Lys His Ser Tyr Lys Asn Thr Lys Asn Glu Asp Leu Trp Asp
 470 475 480

Ser Met Ala Ser Ile Cys Pro Thr Asp Gly Val Lys Gly Met Asp
 485 490 495

Gly Phe Cys Ser Arg Ser Gln His Ser Ser Ser Ser Ser His Trp
 500 505 510

His Gln Glu Gly Val Asp Val Lys Thr Met Met Asn Thr Trp Thr
 515 520 525

Leu Gln Arg Gly Phe Pro Leu Ile Thr Ile Thr Val Arg Gly Arg

530	535	540
Asn Val His Met Lys Gln Glu His Tyr Met Lys Gly Ser Asp Gly		
545	550	555
Ala Pro Asp Thr Gly Tyr Leu Trp His Val Pro Leu Thr Phe Ile		
560	565	570
Thr Ser Lys Ser Asn Met Val His Arg Phe Leu Leu Lys Thr Lys		
575	580	585
Thr Asp Val Leu Ile Leu Pro Glu Glu Val Glu Trp Ile Lys Phe		
590	595	600
Asn Val Gly Met Asn Gly Tyr Tyr Ile Val His Tyr Glu Asp Asp		
605	610	615
Gly Trp Asp Ser Leu Thr Gly Leu Leu Lys Gly Thr His Thr Ala		
620	625	630
Val Ser Ser Asn Asp Arg Ala Ser Leu Ile Asn Asn Ala Phe Gln		
635	640	645
Leu Val Ser Ile Gly Lys Leu Ser Ile Glu Lys Ala Leu Asp Leu		
650	655	660
Ser Leu Tyr Leu Lys His Glu Thr Glu Ile Met Pro Val Phe Gln		
665	670	675
Gly Leu Asn Glu Leu Ile Pro Met Tyr Lys Leu Met Glu Lys Arg		
680	685	690
Asp Met Asn Glu Val Glu Thr Gln Phe Lys Ala Phe Leu Ile Arg		
695	700	705
Leu Leu Arg Asp Leu Ile Asp Lys Gln Thr Trp Thr Asp Glu Gly		
710	715	720
Ser Val Ser Glu Gln Met Leu Arg Ser Glu Leu Leu Leu Leu Ala		
725	730	735
Cys Val His Asn Tyr Gln Pro Cys Val Gln Arg Ala Glu Gly Tyr		
740	745	750
Phe Arg Lys Trp Lys Glu Ser Asn Gly Asn Leu Ser Leu Pro Val		
755	760	765
Asp Val Thr Leu Ala Val Phe Ala Val Gly Ala Gln Ser Thr Glu		
770	775	780
Gly Trp Asp Phe Leu Tyr Ser Lys Tyr Gln Phe Ser Leu Ser Ser		
785	790	795
Thr Glu Lys Ser Gln Ile Glu Phe Ala Leu Cys Arg Thr Gln Asn		
800	805	810
Lys Glu Lys Leu Gln Trp Leu Leu Asp Glu Ser Phe Lys Gly Asp		
815	820	825
Lys Ile Lys Thr Gln Glu Phe Pro Gln Ile Leu Thr Leu Ile Gly		
830	835	840
Arg Asn Pro Val Gly Tyr Pro Leu Ala Trp Gln Phe Leu Arg Lys		

845	850	855
Asn Trp Asn Lys Leu Val Gln Lys Phe Glu Leu Gly Ser Ser Ser		
860	865	870
Ile Ala His Met Val Met Gly Thr Thr Asn Gln Phe Ser Thr Arg		
875	880	885
Thr Arg Leu Glu Glu Val Lys Gly Phe Phe Ser Ser Leu Lys Glu		
890	895	900
Asn Gly Ser Gln Leu Arg Cys Val Gln Gln Thr Ile Glu Thr Ile		
905	910	915
Glu Glu Asn Ile Gly Trp Met Asp Lys Asn Phe Asp Lys Ile Arg		
920	925	930
Val Trp Leu Gln Ser Glu Lys Leu Glu Arg Met		
935	940	

<210> 354
<211> 1587
<212> DNA
<213> Homo sapiens

<400> 354
cagccacaga cgggtcatga gcgcggattt actgctggcc ctccctgggt 50
tcatcctccc actgccagga gtgcaggcg tgctctgcca gtttggaca 100
gttcagcatg tgtgaaaggt gtccgaccta ccccggaat ggaccctaa 150
gaacaccagc tgcgacagcg gcttgggtg ccaggacacg ttgatgctca 200
ttgagagcgg accccaagtg agcctggtgc tctccaaggg ctgcacggag 250
gccaaggacc aggagccccg cgtcaactgag caccggatgg gccccggcct 300
ctccctgatc tcctacacct tcgtgtgccg ccaggaggac ttctgcaaca 350
acctcgttaa ctccctcccc ctttggggcc cacagcccc agcagaccca 400
ggatccttga ggtgcccagt ctgcttgct atggaaggct gtctggaggg 450
gacaacagaa gagatctgcc ccaaggggac cacacactgt tatgatggcc 500
tcctcaggct caggggagga ggcattttct ccaatctgag agtccaggaa 550
tgcattggccc agccaggattt caacctgctc aatggacac agggaaattgg 600
gcccgtgggt atgactgaga actgcaata gaaagattt ctgacctgtc 650
atcggggac caccattatg acacacggaa acttggctca agaaccact 700
gattggacca catcgaatac cgagatgtgc gaggtggggc aggtgtgtca 750
ggagacgctg ctgctcatag atgttaggact cacatcaacc ctgggtggga 800
caaaaggctg cagcaactgtt ggggctcaaa attcccaagaa gaccaccatc 850
cactcagccc ctcctgggt gcttgtggcc tcctataccc acttctgctc 900
ctcgacccctg tgcaatagtg ccagcagcag cagcgttctg ctgaactccc 950

tccctcctca agctgcccgt gtcccaggag accggcagtgc tcctacctgt 1000
gtgcagcccc ttggaacctg ttcaagtggc tccccccgaa tgacctgccc 1050
caggggcgcc actcattgtt atgatggta cattcatctc tcaggaggtg 1100
ggctgtccac caaaatgagc attcagggtc gcgtggccca accttccagc 1150
ttcttgttga accacaccag acaaatcggtt atcttctctg cgctgtgagaa 1200
gcgtgatgtg cagcctcctg cctctcagca tgagggaggt ggggctgagg 1250
gcctggagtc tctcacttgg ggggtggggc tggcactggc cccagcgctg 1300
tggtggggag tggtttgcctt ttcctgctaa ctctattacc cccacgattc 1350
ttcaccgctg ctgaccaccc acactcaacc tccctctgac ctcataacct 1400
aatggccttg gacaccagat tcttcccat tctgtccatg aatcatctc 1450
cccacacaca atcattcata tctactcacc taacagcaac actggggaga 1500
gcctggagca tccgacttg ccctatggga gaggggacgc tggaggagtg 1550
gctgcatgta tctgataata cagaccctgt cctttca 1587

<210> 355

<211> 437

<212> PRT

<213> Homo sapiens

<400> 355

Met Ser Ala Val Leu Leu Leu Ala Leu Leu Gly Phe Ile Leu Pro
1 5 10 15

Leu Pro Gly Val Gln Ala Leu Leu Cys Gln Phe Gly Thr Val Gln
20 25 30

His Val Trp Lys Val Ser Asp Leu Pro Arg Gln Trp Thr Pro Lys
35 40 45

Asn Thr Ser Cys Asp Ser Gly Leu Gly Cys Gln Asp Thr Leu Met
50 55 60

Leu Ile Glu Ser Gly Pro Gln Val Ser Leu Val Leu Ser Lys Gly
65 70 75

Cys Thr Glu Ala Lys Asp Gln Glu Pro Arg Val Thr Glu His Arg
80 85 90

Met Gly Pro Gly Leu Ser Leu Ile Ser Tyr Thr Phe Val Cys Arg
95 100 105

Gln Glu Asp Phe Cys Asn Asn Leu Val Asn Ser Leu Pro Leu Trp
110 115 120

Ala Pro Gln Pro Pro Ala Asp Pro Gly Ser Leu Arg Cys Pro Val
125 130 135

Cys Leu Ser Met Glu Gly Cys Leu Glu Gly Thr Thr Glu Glu Ile
140 145 150

Cys Pro Lys Gly Thr Thr His Cys Tyr Asp Gly Leu Leu Arg Leu

155	160	165
Arg Gly Gly Gly Ile Phe Ser Asn Leu Arg Val Gln Gly Cys Met		
170	175	180
Pro Gln Pro Gly Cys Asn Leu Leu Asn Gly Thr Gln Glu Ile Gly		
185	190	195
Pro Val Gly Met Thr Glu Asn Cys Asn Arg Lys Asp Phe Leu Thr		
200	205	210
Cys His Arg Gly Thr Thr Ile Met Thr His Gly Asn Leu Ala Gln		
215	220	225
Glu Pro Thr Asp Trp Thr Thr Ser Asn Thr Glu Met Cys Glu Val		
230	235	240
Gly Gln Val Cys Gln Glu Thr Leu Leu Ile Asp Val Gly Leu		
245	250	255
Thr Ser Thr Leu Val Gly Thr Lys Gly Cys Ser Thr Val Gly Ala		
260	265	270
Gln Asn Ser Gln Lys Thr Thr Ile His Ser Ala Pro Pro Gly Val		
275	280	285
Leu Val Ala Ser Tyr Thr His Phe Cys Ser Ser Asp Leu Cys Asn		
290	295	300
Ser Ala Ser Ser Ser Val Leu Leu Asn Ser Leu Pro Pro Gln		
305	310	315
Ala Ala Pro Val Pro Gly Asp Arg Gln Cys Pro Thr Cys Val Gln		
320	325	330
Pro Leu Gly Thr Cys Ser Ser Gly Ser Pro Arg Met Thr Cys Pro		
335	340	345
Arg Gly Ala Thr His Cys Tyr Asp Gly Tyr Ile His Leu Ser Gly		
350	355	360
Gly Gly Leu Ser Thr Lys Met Ser Ile Gln Gly Cys Val Ala Gln		
365	370	375
Pro Ser Ser Phe Leu Leu Asn His Thr Arg Gln Ile Gly Ile Phe		
380	385	390
Ser Ala Arg Glu Lys Arg Asp Val Gln Pro Pro Ala Ser Gln His		
395	400	405
Glu Gly Gly Ala Glu Gly Leu Glu Ser Leu Thr Trp Gly Val		
410	415	420
Gly Leu Ala Leu Ala Pro Ala Leu Trp Trp Gly Val Val Cys Pro		
425	430	435

Ser Cys

<210> 356
<211> 1238
<212> DNA
<213> Homo sapiens

<400> 356
 ggcacggca ggacgccccg ttgccttagc gcgtgctcag gagttggtgt 50
 cctgcctcg ctcaggatga gggggaatct ggccctggtg ggcgttctaa 100
 tcagcctggc cttcctgtca ctgctgccat ctggacatcc tcagccggct 150
 ggcgatgacg cctgctctgt gcagatcctc gtccctggcc tcaaaggaga 200
 tgcgggagag aaggagaca aaggcgcccc cgacggcct ggaagagtcg 250
 gccccacggg agaaaaagga gacatggggg acaaaggaca gaaaggcagt 300
 gtgggtcgtc atggaaaaat tggtcccatt ggctctaaag gtgagaaagg 350
 agattccgt gacataggac cccctggtcc taatggagaa ccaggectcc 400
 catgtgagtg cagccagctg cgcaaggcca tcggggagat ggacaaccag 450
 gtctctcagc tgaccagcga gctcaagttc atcaagaatg ctgtcgccgg 500
 tgtgcgcgag acggagagca agatctacct gctggtgaag gaggagaagc 550
 gctacgcgga cgcccgactg tcctgccagg gccgcggggg cacgctgagc 600
 atgcccagg acgaggctgc caatggctg atggccgcat acctggcgca 650
 agccggcctg gcccgtgtct tcattcggcat caacgacctg gagaaggagg 700
 ggcgcctcgt gtactctgac cactcccca tgcggacctt caacaagtgg 750
 cgcagcggtg agcccaacaa tgcctacgac gaggaggact gcgtggagat 800
 ggtggcctcg ggcggctgga acgacgtggc ctggcacacc accatgtact 850
 tcattgtgtga gtttgcacaag gagaacatgt gagcctcagg ctggggctgc 900
 ccattggggg ccccacatgt ccctgcaggg ttggcaggga cagagccag 950
 accatggtgc cagccaggga gctgtccctc tgtgaagggt ggaggctcac 1000
 tgagtagagg gctgttgtct aaactgagaa aatggcctat gcttaagagg 1050
 aaaatgaaag tggcctggg gtgcgtctc tgaagaagca gagtttcatt 1100
 acctgtattt tagccccat gtcattatgt aattattacc cagaattgct 1150
 cttccataaa gcttgcgcct ttgtccaagc tatacaataa aatctttaag 1200
 tagtgcagta gttaagtcca aaaaaaaaaa aaaaaaaaa 1238

<210> 357
<211> 271
<212> PRT
<213> Homo sapiens

<400> 357
 Met Arg Gly Asn Leu Ala Leu Val Gly Val Leu Ile Ser Leu Ala
 1 5 10 15
 Phe Leu Ser Leu Leu Pro Ser Gly His Pro Gln Pro Ala Gly Asp
 20 25 30

Asp Ala Cys Ser Val Gln Ile Leu Val Pro Gly Leu Lys Gly Asp
 35 40 45
 Ala Gly Glu Lys Gly Asp Lys Gly Ala Pro Gly Arg Pro Gly Arg
 50 55 60
 val Gly Pro Thr Gly Glu Lys Gly Asp Met Gly Asp Lys Gly Gln
 65 70 75
 Lys Gly Ser Val Gly Arg His Gly Lys Ile Gly Pro Ile Gly Ser
 80 85 90
 Lys Gly Glu Lys Gly Asp Ser Gly Asp Ile Gly Pro Pro Gly Pro
 95 100 105
 Asn Gly Glu Pro Gly Leu Pro Cys Glu Cys Ser Gln Leu Arg Lys
 110 115 120
 Ala Ile Gly Glu Met Asp Asn Gln Val Ser Gln Leu Thr Ser Glu
 125 130 135
 Leu Lys Phe Ile Lys Asn Ala Val Ala Gly Val Arg Glu Thr Glu
 140 145 150
 Ser Lys Ile Tyr Leu Leu Val Lys Glu Glu Lys Arg Tyr Ala Asp
 155 160 165
 Ala Gln Leu Ser Cys Gln Gly Arg Gly Gly Thr Leu Ser Met Pro
 170 175 180
 Lys Asp Glu Ala Ala Asn Gly Leu Met Ala Ala Tyr Leu Ala Gln
 185 190 195
 Ala Gly Leu Ala Arg Val Phe Ile Gly Ile Asn Asp Leu Glu Lys
 200 205 210
 Glu Gly Ala Phe Val Tyr Ser Asp His Ser Pro Met Arg Thr Phe
 215 220 225
 Asn Lys Trp Arg Ser Gly Glu Pro Asn Asn Ala Tyr Asp Glu Glu
 230 235 240
 Asp Cys Val Glu Met Val Ala Ser Gly Gly Trp Asn Asp Val Ala
 245 250 255
 Cys His Thr Thr Met Tyr Phe Met Cys Glu Phe Asp Lys Glu Asn
 260 265 270

Met

<210> 358
 <211> 972
 <212> DNA
 <213> Homo sapiens

<400> 358
 agtgactgca gccttccttag atccccctcca ctcggtttct ctctttgcag 50
 gagcaccggc agcaccagtg tgtgagggga gcagggcagcg gtccttagcca 100
 gttccttgat cctgccagac cacccagccc ccggcacaga gctgctccac 150

aggcaccatg aggatcatgc tgctattcac agccatcctg gccttcagcc 200
tagctcagag ctttggggct gtctgttaagg agccacagga ggaggtggtt 250
cctggcgaaa gcccagcaa gagggatcca gatctctacc agctgctcca 300
gagactcttc aaaagccact catctctgga gggattgctc aaagccctga 350
gccaggctag cacagatcct aaggaatcaa catctcccga gaaacgtgac 400
atgcatgact tctttgtggg acttatgggc aagaggagcg tccagccaga 450
gggaaagaca ggacctttct taccttcagt gagggttcct cgcccccttc 500
atcccaatca gcttggatcc acaggaaagt ctccctggg aacagaggag 550
cagagacctt tataagactc tcctacggat gtgaatcaag agaacgtccc 600
cagctttggc atcctaagt atccccgag agcagaatag gtactccact 650
tccggactcc tggactgcat taggaagacc tctttccctg tcccaatccc 700
caggtgcgca cgctcctgtt acccttctc ttccctgttc ttgtaacatt 750
cttgtgctt gactccttct ccatctttc tacctgaccc tggtgtggaa 800
actgcatagt gaatatcccc aaccccaatg ggcattgact gtagaataacc 850
ctagagttcc tgttagtgtcc tacattaaaa atataatgtc totctctatt 900
cctcaacaat aaaggatttt tgcatatgaa aaaaaaaaaa aaaaaaaaaa 950
aaaaaaaaaa aaaaaaaaaa aa 972

<210> 359

<211> 135

<212> PRT

<213> Homo sapiens

<400> 359

Met	Arg	Ile	Met	Leu	Leu	Phe	Thr	Ala	Ile	Leu	Ala	Phe	Ser	Leu
1				5					10					15

Ala	Gln	Ser	Phe	Gly	Ala	Val	Cys	Lys	Glu	Pro	Gln	Glu	Glu	Val
				20				25						30

Val	Pro	Gly	Gly	Arg	Ser	Lys	Arg	Asp	Pro	Asp	Leu	Tyr	Gln	
			35				40							45

Leu	Leu	Gln	Arg	Ile	Phe	Lys	Ser	His	Ser	Ser	Leu	Glu	Gly	Leu
	50						55							60

Leu	Lys	Ala	Leu	Ser	Gln	Ala	Ser	Thr	Asp	Pro	Lys	Glu	Ser	Thr
	65							70						75

Ser	Pro	Glu	Lys	Arg	Asp	Met	His	Asp	Phe	Phe	Val	Gly	Leu	Met
			80					85						90

Gly	Lys	Arg	Ser	Val	Gln	Pro	Glu	Gly	Lys	Thr	Gly	Pro	Phe	Leu
	95							100						105

Pro	Ser	Val	Arg	Val	Pro	Arg	Pro	Leu	His	Pro	Asn	Gln	Leu	Gly
			110					115						120

Ser Thr Gly Lys Ser Ser Leu Gly Thr Glu Glu Gln Arg Pro Leu
125 130 135

<210> 360

<211> 1738

<212> DNA

<213> Homo sapiens

<400> 360

ggcggtctcc ggctgctcct attgagctgt ctgctcgctg tgcccgtgt 50

gcctgctgtg cccgcgtgt cgccgcgtct accgcgtctg ctggacgcgg 100

gagacgccag cgagctggtg attggagccc tgcggagagc tcaagcggcc 150

agctctgccccc caggagccca ggctgccccg tgagtccat agttgctgca 200

ggagtggagc catgagctgc gtctgggtg gtgtcatccc cttggggctg 250

ctgttcctgg tctgcggatc ccaaggctac ctcctgcccc acgtcaactct 300

cttagaggag ctgctcagca aataccagca caacgagtct cactcccccgg 350

tccgcagagc catccccagg gaggacaagg aggagatcct catgctgcac 400

aacaagcttc gggggccaggt gcagcctcaag gcctccaaca tggagtacat 450

gttgagcgcc ggctccggcc gcagaggctg gcaccgggggg tggggcctgg 500

gccaccagcc tgctctgttc cccagccagc tctgttcccc agccagtgcg 550

tgtgatggct ggctcagggt ctccctctggc aggggaggat cccggctctg 600

ttctgttttg tttgtttgtt ttgagacagg gtctcaactt gccactgacg 650

ctggagtgca atggcacaat cgtcatgcccc tgaaacctta gactcccccgg 700

gttaaggcgt cctgcttcag cctcccaagt agctggaact acaggcatgc 750

accatgggtgc ccagctagat tttaaatatt ttgtggagat gggggtcttg 800

ctacgttgcc caggctggtc ttgaactcct aggctcaagc aatcctcctg 850

cctcagcctc tcaaagtgtct aggattatacg gcatgagtca ccctgtctgg 900

ctctggctct gttttaaca ttctgccaaa acaacacacg tgggttccct 950

gtgcagagcc tgccctcggtt cttcatgtc actcttggta gctccactgg 1000

gaacacagct ctcagccttt cccacctgga ggcagagtgg ggagggggccc 1050

agggctgggc tttgctgtatg ctgatctcag ctgtgccaca cgctagctgc 1100

accacccctga cttctcccta gcccgtgtga gcctcaactt ccacttggag 1150

agtccttcct cgcgtgggtt ccatgactgt gagataagtc gaggctgtga 1200

agggccccggc acagactgac ctgcctcccc aacccttagg ctttgctaac 1250

cgggaaagga gctaacggtg acagaagaca gccaaaggta accctcccccgg 1300

gtgattgtga tgggtgttcc aggtgtggtt gggcgatgtc gctacttgac 1350

cccaagctcc agtgtggaaa cttccttcct ggctggttt ccagaactac 1400
agaggaatgg accacagtct tccagggtcc ctccctcggtcc accaaccggg 1450
agcctccacc ttggccatcc gtcagctatg aatggcttt taaacaaacc 1500
cacgtcccag cctggtaac atggtaaagc cccgtctcta caaaaaaatac 1550
caagtttagcc gggcatggtg gtgcgcacct gtagtcccag ctgcagtggg 1600
actgaggtgg aggtggaggt ggggggtggg agctgaggaa ggaggatcgc 1650
ttgagcctgg gaagtcgagg ctgcagtgag ctgagattgc accactgcac 1700
tccagcctgg gtgacagagc aagaccctgt ctcaaaaa 1738

<210> 361
<211> 159
<212> PRT
<213> Homo sapiens

<400> 361
Met Ser Cys Val Leu Gly Gly Val Ile Pro Leu Gly Leu Leu Phe
1 5 10 15
Leu Val Cys Gly Ser Gln Gly Tyr Leu Leu Pro Asn Val Thr Leu
20 25 30
Leu Glu Glu Leu Leu Ser Lys Tyr Gln His Asn Glu Ser His Ser
35 40 45
Arg Val Arg Arg Ala Ile Pro Arg Glu Asp Lys Glu Glu Ile Leu
50 55 60
Met Leu His Asn Lys Leu Arg Gly Gln Val Gln Pro Gln Ala Ser
65 70 75
Asn Met Glu Tyr Met Val Ser Ala Gly Ser Gly Arg Arg Gly Trp
80 85 90
His Arg Gly Trp Gly Leu Gly His Gln Pro Ala Leu Phe Pro Ser
95 100 105
Gln Leu Cys Ser Pro Ala Ser Ala Cys Asp Gly Trp Leu Arg Val
110 115 120
Ser Ser Gly Arg Gly Ser Arg Leu Cys Ser Val Leu Phe Val
125 130 135
Cys Phe Glu Thr Gly Ser His Ser Ala Thr Asp Ala Gly Val Gln
140 145 150
Trp His Asn Arg His Ala Leu Lys Pro
155

<210> 362
<211> 422
<212> DNA
<213> Homo sapiens

<400> 362
aaggagaggc caccggact tcagtgtctc ctccatccca ggagcgcagt 50

ggccactatg gggctctggc tgccccttgt cctcccttgc accctccttg 100
gcagctcaca tggAACAGGG CCGGGTATGA CTTCGCAACT GAAGCTGAAG 150
gagtcttttc tgacaaattc ctcctatgag tccagcttcc tggAAATTGCT 200
tgaaaagctc tgcctcctcc tccatctccc ttcaGGGACC AGCGTCACCC 250
tccaccatgc aagatctcaa caccatgttg tctgcaacac atgacagCCA 300
ttgaAGCCTG TGTCCCTCTT GGCCCAGGCT TTTGGGCCGG GGATGCAGGA 350
ggcaggCCCC GACCCTGTCT TTCAGCAGGC CCCACCCCTC CTGAGTGGCA 400
ataaataaaaa ttCGGTATGC TG 422

<210> 363

<211> 78

<212> PRT

<213> Homo sapiens

<400> 363

Met	Gly	Ser	Gly	Leu	Pro	Ieu	Val	Leu	Leu	Leu	Thr	Ieu	Leu	Gly
1				5				10				15		
Ser	Ser	His	Gly	Thr	Gly	Pro	Gly	Met	Thr	Ieu	Gln	Ieu	Lys	Ieu
				20					25			30		
Lys	Glu	Ser	Phe	Leu	Thr	Asn	Ser	Ser	Tyr	Glu	Ser	Ser	Phe	Ieu
	35							40					45	
Glu	Ieu	Ieu	Glu	Lys	Ieu	Cys	Ieu	Ieu	Ieu	His	Ieu	Pro	Ser	Gly
			50					55				60		
Thr	Ser	Val	Thr	Ieu	His	His	Ala	Arg	Ser	Gln	His	His	Val	Val
		65						70				75		

Cys Asn Thr

<210> 364

<211> 826

<212> DNA

<213> Homo sapiens

<400> 364

aattgtatct gtgtaatgtt aaaacaaacg aaataaaaata gaaggaaaaa 50
ctttctgagt ttcaaaaaaca acagactagt actctaaaga actctttaaa 100
acaattaact gttaggattg cagttatgat tggatattat ttaattctgt 150
ttctgatgtg gggttcctcc actgtgttct gtgtgctatt aatatttacc 200
attgcagaag cttcattcag tggaaat gaatgcttag tggatctgtg 250
cctcttacgc atatgttaca aattatctgg agttcctaatt caatgcagag 300
ttccccctccc ctccgattgt tctaaataat tgaaagatgt ctgctgtgga 350
aaaaggcatg tatttaatc tggatgattc tcaaccatct ttagttggga 400
aaggcttgc aaagccatg gaaatacttt tttttttct tggcactaat 450

caagtgagtg ttacctttc acttagtagg atgtgttgtt acgctagtaa 500
aatagaaacc tgtgtttatt ctcaggtatt ttagaaacaa cagccatcat 550
tttattttat gtgtgtgttc ttggctgtat tcataaatta tatattttgg 600
gctatcaaat attacttcat tcaatataaa taacaatagt agaagttgtt 650
tacttagata tgctttctag ttgcattttc tcagcctatg taagactact 700
ttgttgaat agcctttgaa attacagta ctgtctctct actatcttca 750
gattacttga ttcaaataaa ccaattatgt ttgtaattga tattaataaa 800
accagaataa aagttcatat ctaccc 826

<210> 365

<211> 67

<212> PRT

<213> Homo sapiens

<400> 365

Met	Ile	Gly	Tyr	Tyr	Leu	Ile	Leu	Phe	Leu	Met	Trp	Gly	Ser	Ser
1					5				10				15	
Thr	Val	Phe	Cys	Val	Leu	Leu	Ile	Phe	Thr	Ile	Ala	Glu	Ala	Ser
	20							25				30		
Phe	Ser	Val	Glu	Asn	Glu	Cys	Leu	Val	Asp	Leu	Cys	Leu	Leu	Arg
	35							40				45		
Ile	Cys	Tyr	Lys	Leu	Ser	Gly	Val	Pro	Asn	Gln	Cys	Arg	Val	Pro
	50							55				60		
Leu	Pro	Ser	Asp	Cys	Ser	Lys								
	65													

<210> 366

<211> 2475

<212> DNA

<213> Homo sapiens

<400> 366

gaggatttgc cacagcagcg gatagagcag gagagcacca ccggagccct 50
tgagacatcc ttgagaagag ccacagcata agagactgcc ctgcttggtg 100
tttgcagga tggatggcgc cttcgagga gcttctgcat tgctggttct 150
gttccttgcg gctttctgc ccccgccgca gtgtacccag gaccgcgcca 200
tggtgcatca catctaccag cgcttcgag tcttggagca agggctggaa 250
aaatgtaccc aagcaacgag ggcatacatt caagaattcc aagagttctc 300
aaaaaaatata tctgtcatgc tggaaagatg tcagacctac acaagtgagt 350
acaagagtc agtggtaac ttggcactga gagttgaacg tgcccaacgg 400
gagattgact acatacaata cttcgagag gctgacgagt gcatcgtatc 450
agaggacaag acactggcag aaatgttgct ccaagaagct gaagaagaga 500

aaaagatccg gactctgctg aatgcaagct gtgacaacat gctgatggc 550
ataaaagtctt tgaaaatagt gaagaagatg atggacacac atggctttg 600
gatgaaagat gctgtctata actctccaaa ggtgtactta ttaattggat 650
ccagaaacaa cactgttgg gaatttgcaa acatacggc attcatggag 700
gataacacca agccagctcc ccggaagcaa atcctaacad tttcctggca 750
ggaaacaggc caagtgatct acaaaggttt tctattttt cataaccaag 800
caacttctaa tgagataatc aaatataacc tgcagaagag gactgtggaa 850
gatcgaatgc tgctcccagg agggtaggc cgagcattgg tttaccagca 900
ctccccctca acttacattt acctggctgt ggatgagcat gggctctggg 950
ccatccactc tggccaggc acccatagcc atttggttct cacaaagatt 1000
gagccgggca cactggaggt ggagcattca tgggatacc catgcagaag 1050
ccaggatgtc gaaggctcat tcctttgtg tggggttctc tatgtggtct 1100
acagtactgg gggccaggc cctcatcgca tcacactgcat ctatgatcca 1150
ctgggcacta tcagtgagga ggacttgccc aacttggtct tccccaagag 1200
accaagaagt cactccatga tccattacaa cccagagat aagcagctct 1250
atgcctggaa tgaaggaaac cagatcattt acaaactcca gacaaagaga 1300
aagctgcctc tgaagtaatg cattacagct gtgagaaaga gcaactgtggc 1350
tttggcagct gttctacagg acagttaggc tatagccct tcacaatata 1400
gtatccctct aatcacacac aggaagagtg tgtagaagtg gaaatacgta 1450
tgccctcctt cccaaatgtc actgccttag gtatcttcca agagcttaga 1500
tgagagcata tcatcaggaa agttcaaca atgtccatta ctcccccaaa 1550
cctcctggct ctcaaggatg accacattct gatacagcct acttcaagcc 1600
ttttgtttta ctgctccccca gcatttactg taactctgcc atcttcctc 1650
ccacaattag agttgtatgc cagccccaa tattcaccac tggctttct 1700
ctccccctggc ctggctgaa gctcttcctt cttttcaaa tgtctattga 1750
tattctccca ttttcaactgc ccaactaaaa tactattaat atttcttct 1800
tttctttct ttttttgag acaaggcttc actatgtgc ccaggctgg 1850
ctcaaaactcc agagctcaag agatcctcct gcctcagcct cctaagtacc 1900
tgggattaca ggcattgtgcc accacacccg gcttaaaata ctatcttta 1950
ttgaggttta acctcttattt ccccttagccc tgccttcca ctaagctgg 2000
tagatgtaat aataaaagtga aaatattaac atttgaatat cgcttccag 2050
gtgtggagtg tttgcacatc attgaattct cgttcacct ttgtgaaaca 2100

tgcacaagtc tttacagctg tcattctaga gtttaggtga gtaacacaat 2150
tacaaagtga aagatacagc tagaaaatac tacaaatccc atagttttc 2200
cattgcccaa ggaagcatca aatacgtatg tttgttcacc tactcttata 2250
gtcaatgcgt tcatcgttc agcctaaaaa taatagtctg tccctttagc 2300
cagttttcat gtctgcacaa gaccttcaa taggccttcc aaatgataat 2350
tcctccagaa aaccagtcta agggtgagga ccccaactct agcctcctct 2400
tgtcttgctg tcctctgttt ctctctttct gctttaaatt caataaaagt 2450
gacactgagc aaaaaaaaaa aaaaa 2475

<210> 367

<211> 402

<212> PRT

<213> Homo sapiens

<400> 367

Met	Met	Val	Ala	Leu	Arg	Gly	Ala	Ser	Ala	Leu	Leu	Val	Leu	Phe
1									10					15
Leu	Ala	Ala	Phe	Leu	Pro	Pro	Pro	Gln	Cys	Thr	Gln	Asp	Pro	Ala
				20					25					30
Met	Val	His	Tyr	Ile	Tyr	Gln	Arg	Phe	Arg	Val	Leu	Glu	Gln	Gly
				35					40					45
Leu	Glu	Lys	Cys	Thr	Gln	Ala	Thr	Arg	Ala	Tyr	Ile	Gln	Glu	Phe
				50					55					60
Gln	Glu	Phe	Ser	Lys	Asn	Ile	Ser	Val	Met	Leu	Gly	Arg	Cys	Gln
				65					70					75
Thr	Tyr	Thr	Ser	Glu	Tyr	Lys	Ser	Ala	Val	Gly	Asn	Leu	Ala	Leu
				80					85					90
Arg	Val	Glu	Arg	Ala	Gln	Arg	Glu	Ile	Asp	Tyr	Ile	Gln	Tyr	Leu
				95					100					105
Arg	Glu	Ala	Asp	Glu	Cys	Ile	Val	Ser	Glu	Asp	Lys	Thr	Leu	Ala
				110					115					120
Glu	Met	Leu	Leu	Gln	Glu	Ala	Glu	Glu	Glu	Lys	Lys	Ile	Arg	Thr
				125					130					135
Leu	Leu	Asn	Ala	Ser	Cys	Asp	Asn	Met	Leu	Met	Gly	Ile	Lys	Ser
				140					145					150
Leu	Lys	Ile	Val	Lys	Lys	Met	Met	Asp	Thr	His	Gly	Ser	Trp	Met
				155					160					165
Lys	Asp	Ala	Val	Tyr	Asn	Ser	Pro	Lys	Val	Tyr	Leu	Leu	Ile	Gly
				170					175					180
Ser	Arg	Asn	Asn	Thr	Val	Trp	Glu	Phe	Ala	Asn	Ile	Arg	Ala	Phe
				185					190					195
Met	Glu	Asp	Asn	Thr	Lys	Pro	Ala	Pro	Arg	Lys	Gln	Ile	Leu	Thr
				200					205					210

Leu Ser Trp Gln Gly Thr Gly Gln Val Ile Tyr Lys Gly Phe Leu
 215 220 225
 Phe Phe His Asn Gln Ala Thr Ser Asn Glu Ile Ile Lys Tyr Asn
 230 235 240
 Leu Gln Lys Arg Thr Val Glu Asp Arg Met Leu Leu Pro Gly Gly
 245 250 255
 Val Gly Arg Ala Leu Val Tyr Gln His Ser Pro Ser Thr Tyr Ile
 260 265 270
 Asp Leu Ala Val Asp Glu His Gly Leu Trp Ala Ile His Ser Gly
 275 280 285
 Pro Gly Thr His Ser His Leu Val Leu Thr Lys Ile Glu Pro Gly
 290 295 300
 Thr Leu Gly Val Glu His Ser Trp Asp Thr Pro Cys Arg Ser Gln
 305 310 315
 Asp Ala Glu Ala Ser Phe Leu Leu Cys Gly Val Leu Tyr Val Val
 320 325 330
 Tyr Ser Thr Gly Gly Gln Gly Pro His Arg Ile Thr Cys Ile Tyr
 335 340 345
 Asp Pro Leu Gly Thr Ile Ser Glu Glu Asp Leu Pro Asn Leu Phe
 350 355 360
 Phe Pro Lys Arg Pro Arg Ser His Ser Met Ile His Tyr Asn Pro
 365 370 375
 Arg Asp Lys Gln Leu Tyr Ala Trp Asn Glu Gly Asn Gln Ile Ile
 380 385 390
 Tyr Lys Leu Gln Thr Lys Arg Lys Leu Pro Leu Lys
 395 400

<210> 368
 <211> 2281
 <212> DNA
 <213> Homo sapiens

<400> 368
 gggcgcccgc gtactcacta gctgaggtgg cagtggttcc accaacatgg 50
 agctctcgca gatgtcggag ctcatggggc tgtcggtgtt gcttgggtcg 100
 ctggccctga tggcgacggc ggcggtagcg cgggggtggc tgcgcgcggg 150
 ggaggagagg agcggccggc ccgcctgccaa aaaagcaaattt ggatttccac 200
 ctgacaaaatc ttccggatcc aagaaggcaga aacaatatca gcggattcgg 250
 aaggagaagc ctcaacaaca caacttcacc caccgcctcc tggctgcagc 300
 tctgaagagc cacagcggga acatatcttgcatggactttt agcagcaatg 350
 gcaaataacctt ggctcacctgt gcagatgtc gcaccatccg catctggaggc 400
 accaaggact tcctgcagcg agagcaccgc agcatgagag ccaacgtgga 450

gctggaccac gccaccctgg tgcgcttcag ccctgactgc agagccttca 500
tcgtctggct ggccaacggg gacaccctcc gtgtcttcaa gatgaccaag 550
cggggaggatg ggggctacac cttcacagcc accccagagg acttccctaa 600
aaagcacaag gcgcctgtca tcgacattgg cattgctaac acagggaaat 650
ttatcatgac tgcctccagt gacaccactg tcctcatctg gagcctgaag 700
ggtcaagtgc tgtctaccat caacaccaac cagatgaaca acacacacgc 750
tgctgtatct ccctgtggca gatttgttagc ctcgtgtggc ttcacccag 800
atgtgaaggt ttgggaagtc tgctttggaa agaaggggaa gttccaggag 850
gtggtgcgag cttcgaact aaagggccac tccgcggctg tgcactcggt 900
tgctttctcc aacgactcac ggaggatggc ttctgtctcc aaggatggta 950
catggaaact gtggacaca gatgtggaat acaagaagaa gcaggacccc 1000
tacttgctga agacaggccg ctggaaagag gcggcgggtg ccgcgcctg 1050
ccgcctggcc ctctccccca acgcccaggt ctggccttg gccagtggca 1100
gtagtattca tctctacaat acccggcggg gcgagaagga ggagtgcctt 1150
gagcgggtcc atggcgagtg tatcgccaac ttgtccttgc acatcaactgg 1200
ccgctttctg gcctcctgtg gggaccgggc ggtgcggctg tttcacaaca 1250
ctcctggcca ccgagccatg gtggaggaga tgcaggcca cctgaagcgg 1300
gcctccaacg agagcaccgg ccagaggctg cagcagcagc tgacccaggg 1350
ccaagagacc ctgaagagcc tgggtgcctt gaagaagtga ctctggagg 1400
gcccggcgca gaggattgag gaggaggat ctggcctcct catggcactg 1450
ctgccatctt tcctccagg tggaagcctt tcagaaggag tctcctgggt 1500
ttcttactgg tggccctgct tcttcccatt gaaactactc ttgtctactt 1550
aggctctctt ctcttgctg gctgtgactc ctccctgact agtggccaag 1600
gtgctttctt tcctccagg cccagtgggt ggaatctgtc cccacctggc 1650
actgaggaga atggtagaga ggagaggaga gagagagaga atgtgatttt 1700
tggccttggc gcagcacatc ctcacaccca aagaagttt taaaatgttcc 1750
agaacaacct agagaacacc tgagtactaa gcagcagtt tgcaaggatg 1800
ggagactggg atagcttccc atcacagaac tgtgttccat caaaaagaca 1850
ctaaggatt tcctctggg cctcagttct atttgttaaga tggagaataa 1900
tcctctctgt gaactccttg caaagatgtatgaggctaa gagaatatac 1950
agtccccagg tctgaaagaa aagtagaaaa gagtagtact attgtccat 2000
gtcatgaaag tggtaaaagt gggaccagt gtgccttggaa accaaattag 2050

aaacacattc cttgggaagg caaagtttc tgggacttga tcatacattt 2100
 tatatggttg ggacttctct ctccggaga tgatatcttg tttaaggaga 2150
 cctctttca gttcatcaag ttcatcagat atttgagtgc ccactctgtg 2200
 cccaaataaaa tatgagctgg ggattaaaaa aaaaaaaaaa aaaaaaaaaa 2250
 aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa a 2281

<210> 369
 <211> 447
 <212> PRT
 <213> Homo sapiens

<400> 369
 Met Glu Leu Ser Gln Met Ser Glu Leu Met Gly Leu Ser Val Leu
 1 5 10 15
 Leu Gly Leu Leu Ala Leu Met Ala Thr Ala Ala Val Ala Arg Gly
 20 25 30
 Trp Leu Arg Ala Gly Glu Glu Arg Ser Gly Arg Pro Ala Cys Gln
 35 40 45
 Lys Ala Asn Gly Phe Pro Pro Asp Lys Ser Ser Gly Ser Lys Lys
 50 55 60
 Gln Lys Gln Tyr Gln Arg Ile Arg Lys Glu Lys Pro Gln Gln His
 65 70 75
 Asn Phe Thr His Arg Leu Leu Ala Ala Leu Lys Ser His Ser
 80 85 90
 Gly Asn Ile Ser Cys Met Asp Phe Ser Ser Asn Gly Lys Tyr Leu
 95 100 105
 Ala Thr Cys Ala Asp Asp Arg Thr Ile Arg Ile Trp Ser Thr Lys
 110 115 120
 Asp Phe Leu Gln Arg Glu His Arg Ser Met Arg Ala Asn Val Glu
 125 130 135
 Leu Asp His Ala Thr Leu Val Arg Phe Ser Pro Asp Cys Arg Ala
 140 145 150
 Phe Ile Val Trp Leu Ala Asn Gly Asp Thr Leu Arg Val Phe Lys
 155 160 165
 Met Thr Lys Arg Glu Asp Gly Gly Tyr Thr Phe Thr Ala Thr Pro
 170 175 180
 Glu Asp Phe Pro Lys Lys His Lys Ala Pro Val Ile Asp Ile Gly
 185 190 195
 Ile Ala Asn Thr Gly Lys Phe Ile Met Thr Ala Ser Ser Asp Thr
 200 205 210
 Thr Val Leu Ile Trp Ser Leu Lys Gly Gln Val Leu Ser Thr Ile
 215 220 225
 Asn Thr Asn Gln Met Asn Asn Thr His Ala Ala Val Ser Pro Cys
 230 235 240

Gly Arg Phe Val Ala Ser Cys Gly Phe Thr Pro Asp Val Lys Val
245 250 255

Trp Glu Val Cys Phe Gly Lys Lys Gly Glu Phe Gln Glu Val Val
260 265 270

Arg Ala Phe Glu Leu Lys Gly His Ser Ala Ala Val His Ser Phe
275 280 285

Ala Phe Ser Asn Asp Ser Arg Arg Met Ala Ser Val Ser Lys Asp
290 295 300

Gly Thr Trp Lys Leu Trp Asp Thr Asp Val Glu Tyr Lys Lys Lys
305 310 315

Gln Asp Pro Tyr Leu Leu Lys Thr Gly Arg Phe Glu Glu Ala Ala
320 325 330

Gly Ala Ala Pro Cys Arg Leu Ala Leu Ser Pro Asn Ala Gln Val
335 340 345

Leu Ala Leu Ala Ser Gly Ser Ser Ile His Leu Tyr Asn Thr Arg
350 355 360

Arg Gly Glu Lys Glu Glu Cys Phe Glu Arg Val His Gly Glu Cys
365 370 375

Ile Ala Asn Leu Ser Phe Asp Ile Thr Gly Arg Phe Leu Ala Ser
380 385 390

Cys Gly Asp Arg Ala Val Arg Leu Phe His Asn Thr Pro Gly His
395 400 405

Arg Ala Met Val Glu Glu Met Gln Gly His Leu Lys Arg Ala Ser
410 415 420

Asn Glu Ser Thr Arg Gln Arg Leu Gln Gln Leu Thr Gln Ala
425 430 435

Gln Glu Thr Leu Lys Ser Leu Gly Ala Leu Lys Lys
440 445

<210> 370
<211> 1415
<212> DNA
<213> Homo sapiens

<400> 370
tggcctcccc agcttgccag gcacaaggct gagcgggagg aagcgagagg 50
catctaagca ggcagtgttt tgccttcacc ccaagtgacc atgagaggtg 100
ccacgcgagt ctcaatcatg ctccctcttag taactgtgtc tgactgtgct 150
gtgatcacag gggcctgtga gcgggatgtc cagtgtgggg cagggcacctg 200
ctgtgccatc agcctgtggc ttcgagggtc gcggatgtgc accccgctgg 250
ggcgggaagg cgaggagtgc cacccggca gccacaaggt ccccttcitc 300
aggaaacgca agcaccacac ctgtccttgc ttgccaacc tgctgtgctc 350
caggttcccc gacggcaggt accgctgctc catggacttg aagaacatca 400

attttttagc gcttcctgg tctcaggata cccaccatcc ttttcctgag 450
cacagcctgg atttttatTT ctgccatgaa acccagctcc catgactctc 500
ccagtccta cactgactac cctgatctc cttgtctagt acgcacatat 550
gcacacagc agacataacct cccatcatga catggcccc aggctggcct 600
gaggatgtca cagcttgagg ctgtgggtgg aaaggtggcc agcctggttc 650
tcttcctgc tcaggtgcc agagagggtgg taaatggcag aaaggacatt 700
ccccctcccc tccccaggtg acctgcttc tttcctggc cctgcccctc 750
tccccacatg tatccctcg tctgaattag acattcctgg gcacaggctc 800
ttgggtgcat tgctcagagt cccaggtcct ggcctgaccc tcaggccctt 850
cacgtgaggt ctgtgaggac caatttgggtgg gtagttcatc ttccctcgat 900
tggtaactc cttagttca gaccacagac tcaagattgg ctcttccag 950
agggcagcag acagtcaccc caaggcaggt gtagggagcc cagggaggcc 1000
aatcagcccc ctgaagactc tggcccagt cagcctgtgg cttgtggcct 1050
gtgacctgtg accttctgcc agaattgtca tgcctctgag gcccccttt 1100
accacactt accagttaac cactgaagcc cccaattccc acagctttc 1150
cattaaaatg caaatgggtgg tggttcaatc taatctgata ttgacatatt 1200
agaaggcaat taggggttt ccttaaacaa ctccttcca aggatcagcc 1250
ctgagagcag gttggtgact ttgaggaggg cagtcctctg tccagattgg 1300
ggtgggagca agggacaggg agcagggcag gggctgaaag gggcactgat 1350
tcagaccagg gaggcaacta cacaccaaca tgctggcttt agaataaaag 1400
caccaactga aaaaaa 1415

<210> 371
<211> 105
<212> PRT
<213> Homo sapiens

<400> 371
Met Arg Gly Ala Thr Arg Val Ser Ile Met Leu Leu Leu Val Thr
1 5 10 15
Val Ser Asp Cys Ala Val Ile Thr Gly Ala Cys Glu Arg Asp Val
20 25 30
Gln Cys Gly Ala Gly Thr Cys Cys Ala Ile Ser Leu Trp Leu Arg
35 40 45
Gly Leu Arg Met Cys Thr Pro Leu Gly Arg Glu Gly Glu Glu Cys
50 55 60
His Pro Gly Ser His Lys Val Pro Phe Phe Arg Lys Arg Lys His
65 70 75

His Thr Cys Pro Cys Leu Pro Asn Leu Leu Cys Ser Arg Phe Pro
80 85 90

Asp Gly Arg Tyr Arg Cys Ser Met Asp Leu Lys Asn Ile Asn Phe
95 100 105

<210> 372

<211> 1281

<212> DNA

<213> Homo sapiens

<400> 372

agcgccccggg cgtcgccggcg gtaaaaaggcc ggcagaaggg aggcacttga 50
gaaatgtctt tcctccagga cccaagtttc ttcaccatgg ggatgtggtc 100
cattggtgca ggagccctgg gggctgctgc cttggcattg ctgcttgcca 150
acacagacgt gtttctgtcc aagccccaga aagcggccct ggagtacctg 200
gaggatatacg acctgaaaaac actggagaag gaaccaagga ctttcaaagc 250
aaaggagcta tggaaaaaaa atggagctgt gattatggcc gtgcggaggc 300
caggctgttt cctctgtcga gaggaagctg cggatctgtc ctccctgaaa 350
agcatgttgg accagctggg cgtccccctc tatcagtgaa taaaggagca 400
catcaggact gaagtgaagg atttccagcc ttatttcaaa ggagaaatct 450
tcctggatga aaagaaaaag ttctatggtc cacaaaggcg gaagatgtg 500
tttatggat ttatccgtct gggagtggtg tacaacttct tccgagcctg 550
gaacggaggc ttctctggaa acctggaagg agaaggcttc atccttgggg 600
gagtttcgt ggtggatca gaaaaaggcagg gcattttct tgagcacccga 650
gaaaaagaat ttggagacaa agtaaaccta ctttctgttc tggaagctgc 700
taagatgtac aaaccacaga ctttggctc agaaaaaaa tgattgtgtg 750
aaactgcca gctcaggat aaccaggac attcacctgt gttcatggg 800
tgtattgttt ccactcgtgt ccctaaggag tgagaaaccc atttatactc 850
tactctcagt atggatttatt aatgtatttt aatattctgt ttaggcccac 900
taaggcaaaa tagccccaaa acaagactga caaaaatctg aaaaactaat 950
gaggattatt aagctaaaac ctggaaata ggaggcttaa aattgactgc 1000
caggctgggt gcagtggctc acacctgtaa tcccagcact ttgggaggcc 1050
aaggtgagca agtcaacttga ggtcgaggat tcgagaccag cctgagcaac 1100
atggcgaaac cccgtctcta ctaaaaatac aaaaatcacc cgggtgtgg 1150
ggcaggcacc tgttagtccca gctacccggg aggctgaggc aggagaatca 1200
cttgaacctg ggaggtggag gttgcgggtga gctgagatca caccactgt 1250
ttccagccctg ggtgactgag actctaacta a 1281

<210> 373
<211> 229
<212> PRT
<213> Homo sapiens

<400> 373

Met Ser Phe Leu Gln Asp Pro Ser Phe Phe Thr Met Gly Met Trp
1 5 10 15

Ser Ile Gly Ala Gly Ala Leu Gly Ala Ala Ala Leu Ala Leu Leu
20 25 30

Leu Ala Asn Thr Asp Val Phe Leu Ser Lys Pro Gln Lys Ala Ala
35 40 45

Leu Glu Tyr Leu Glu Asp Ile Asp Leu Lys Thr Leu Glu Lys Glu
50 55 60

Pro Arg Thr Phe Lys Ala Lys Glu Leu Trp Glu Lys Asn Gly Ala
65 70 75

Val Ile Met Ala Val Arg Arg Pro Gly Cys Phe Leu Cys Arg Glu
80 85 90

Glu Ala Ala Asp Leu Ser Ser Leu Lys Ser Met Leu Asp Gln Leu
95 100 105

Gly Val Pro Leu Tyr Ala Val Val Lys Glu His Ile Arg Thr Glu
110 115 120

Val Lys Asp Phe Gln Pro Tyr Phe Lys Gly Glu Ile Phe Leu Asp
125 130 135

Glu Lys Lys Lys Phe Tyr Gly Pro Gln Arg Arg Lys Met Met Phe
140 145 150

Met Gly Phe Ile Arg Leu Gly Val Trp Tyr Asn Phe Phe Arg Ala
155 160 165

Trp Asn Gly Gly Phe Ser Gly Asn Leu Glu Gly Glu Gly Phe Ile
170 175 180

Leu Gly Gly Val Phe Val Val Gly Ser Gly Lys Gln Gly Ile Leu
185 190 195

Leu Glu His Arg Glu Lys Glu Phe Gly Asp Lys Val Asn Leu Leu
200 205 210

Ser Val Leu Glu Ala Ala Lys Met Ile Lys Pro Gln Thr Leu Ala
215 220 225

Ser Glu Lys Lys

<210> 374
<211> 744
<212> DNA
<213> Homo sapiens

<400> 374

acggaccgag ggttcgaggg agggacacgg accaggaacc tgagcttaggt 50

caaagacgcc cggcccaagg gccccgtcgc aggtgcccct ggccggagat 100

gcggtaggag gggcgagcgc gagaagcccc ttcctcgccg ctgccaaccc 150
gccacccagc ccatggcgaa cccccgggtg gggctgcttc tggcgctggg 200
cctgcccgttc ctgctggccc gctggggccg agcctggggg caaatacaga 250
ccacttctgc aaatgagaat agcactgttt tgccttcatc caccagctcc 300
agctccgatg gcaacctgcg tccggaagcc atcactgcta tcatcgtgg 350
cttctccctc ttggctgcct tgctcctggc tgtggggctg gcactgttgg 400
tgccgaagct tcgggagaag cgccagacgg agggcaccta ccggcccagt 450
agcgaggagc agttctccca tgcagccgag gcccgccccc ctcaggactc 500
caaggagacg gtgcagggct gcctgcccatt ctaggtcccc tctcctgcat 550
ctgtctccct tcattgctgt gtgaccttgg ggaaaggcag tgccctctct 600
ggcagtcag atccacccag tgcttaatag cagggaaagaa ggtacttcaa 650
agactctgcc octgaggtca agagaggatg gggctattca ctttatata 700
tttatataaaa attagtagtg agatgtaaaa aaaaaaaaaa aaaa 744

<210> 375

<211> 123

<212> PRT

<213> Homo sapiens

<400> 375

Met	Ala	Asn	Pro	Gly	Leu	Gly	Leu	Leu	Ley	Ala	Leu	Gly	Leu	Pro
1				5				10						15

Phe	Leu	Leu	Ala	Arg	Trp	Gly	Arg	Ala	Trp	Gly	Gln	Ile	Gln	Thr
				20					25					30

Thr	Ser	Ala	Asn	Glu	Asn	Ser	Thr	Val	Leu	Pro	Ser	Ser	Thr	Ser
				35					40					45

Ser	Ser	Ser	Asp	Gly	Asn	Leu	Arg	Pro	Glu	Ala	Ile	Thr	Ala	Ile
				50					55					60

Ile	Val	Val	Phe	Ser	Leu	Leu	Ala	Ala	Leu	Leu	Leu	Ala	Val	Gly
			65						70					75

Leu	Ala	Leu	Leu	Val	Arg	Lys	Leu	Arg	Glu	Lys	Arg	Gln	Thr	Glu
				80					85					90

Gly	Thr	Tyr	Arg	Pro	Ser	Ser	Glu	Glu	Gln	Phe	Ser	His	Ala	Ala
				95					100					105

Glu	Ala	Arg	Ala	Pro	Gln	Asp	Ser	Lys	Glu	Thr	Val	Gln	Gly	Cys
				110					115					120

Leu Pro Ile

<210> 376

<211> 713

<212> DNA

<213> Homo sapiens

<400> 376
 aatatatcat ctatttatca ttaatcaata atgtattctt ttattccaat 50
 aacatttggg ttttgggatt ttaatttca aacacagcag aatgacattt 100
 tttctgtcac tattattatt gttggatgt gaagctattt ggagatccaa 150
 ttcaggaagc aacacattgg agaatggcta ctttctatca agaaataaag 200
 agaaccacag tcaacccaca caatcatctt tagaagacag tgtgactcct 250
 accaaagctg tcaaaaaccac aggcaaggc atagttaaag gacggaatct 300
 tgactcaaga gggtaattc ttggtgctga agcctgggc aggggtgtaa 350
 agaaaaaacac ttagattcaa tgattgtaaa tttaaggcaa atacacatata 400
 tagtattacc ttagtgtaat gtatccctgt catatataca ataaggtgaa 450
 attataagta ccctatgcag ttggctggac agttctaaat tggactttat 500
 taatttttaa aatcagtaac tgatttatca ctggctatgt gcttagatct 550
 acaggagatc atataatttg atacaataa aagaaaagtg ttctctcccc 600
 ttacagaatt gacatttaa atgcgataca gttagaatag gaaatatgac 650
 attagaaaagg aagaatgaca gggagaaagg aaagaaggga aaatgttgcc 700
 aaggaaaaaaa aaa 713

<210> 377

<211> 90

<212> PRT

<213> Homo sapiens

<400> 377

Met	Thr	Phe	Phe	Leu	Ser	Leu	Leu	Leu	Leu	Val	Cys	Glu	Ala
1				5				10				15	

Ile	Trp	Arg	Ser	Asn	Ser	Gly	Ser	Asn	Thr	Leu	Glu	Asn	Gly	Tyr
									20					30

Phe	Leu	Ser	Arg	Asn	Lys	Glu	Asn	His	Ser	Gln	Pro	Thr	Gln	Ser
					35				40					45

Ser	Leu	Glu	Asp	Ser	Val	Thr	Pro	Thr	Lys	Ala	Val	Lys	Thr	Thr
					50				55					60

Gly	Lys	Gly	Ile	Val	Lys	Gly	Arg	Asn	Leu	Asp	Ser	Arg	Gly	Leu
					65				70					75

Ile	Leu	Gly	Ala	Glu	Ala	Trp	Gly	Arg	Gly	Val	Lys	Lys	Asn	Thr
					80				85					90

<210> 378

<211> 3265

<212> DNA

<213> Homo sapiens

<400> 378

gccaggaata actagagagg aacaatgggg ttattcagag gttttgttt 50

cctcttagtt ctgtgcctgc tgcaccagtc aaataacttcc ttcattaaggc 100
tgaataataa tggcttgaa gatattgtca ttgttataga tcctagtgtg 150
ccagaagatg aaaaaataat tgaacaaata gaggatatgg tgactacagc 200
ttctacgtac ctgttgaag ccacagaaaa aagattttt ttcaaaaatg 250
tatctatatt aattcctgag aatttggagg aaaatcctca gtacaaaagg 300
ccaaaacatg aaaaccataa acatgctgat gttatagttg caccacctac 350
actcccaggt agagatgaac catacaccaa gcagttcaca gaatgtggag 400
agaaaggcga atacattcac ttcacccctg accttctact tggaaaaaaaa 450
caaaatgaat atggaccacc aggcaaactg tttgtccatg agtgggctca 500
cctccgggtgg ggagtgtttg atgagtacaa tgaagatcag cctttctacc 550
gtgctaagtc aaaaaaaatc gaagcaacaa ggtgtccgc aggtatctct 600
ggtagaaata gagtttataa gtgtcaagga ggcagctgat ttagtagagc 650
atgcagaatt gattctacaa caaaactgta tggaaaagat tgtcaattct 700
ttcctgataa agtacaaaca gaaaaagcat ccataatgtt tatgcaaagt 750
attgattctg ttgttgaatt ttgttaacgaa aaaacccata atcaagaagc 800
tccaaggccta caaaacataa agtgcattt tagaagtaca tgggaggtga 850
ttagcaattc tgaggatttt aaaaacacca taccatggt gacaccacct 900
cctccacctg tcttctcatt gctgaagatc agtcaaagaa ttgtgtgctt 950
agttcttgc aagtctggaa gcatgggggg taaggaccgc ctaaatcgaa 1000
tgaatcaagc agcaaaacat ttcctgctgc agactgttga aaatggatcc 1050
tgggtgggaa tggttcactt tgatagtact gccactattt taaataagct 1100
aatccaaata aaaagcagtg atgaaagaaa cacactcatg gcaggattac 1150
ctacatatcc tctggagga acttccatct gctctggat taaatatgca 1200
tttcaggtga ttggagagct acattccaa ctcgatggat ccgaagtact 1250
gctgctgact gatggggagg ataacactgc aagttcttgtt attgatgaag 1300
tgaaacaaag tggggccatt gttcattttt ttgccttggg aagagctgct 1350
gatgaagcag taatagagat gagcaagata acaggaggaa gtcattttt 1400
tgtttcagat gaagctcaga acaatggcct cattgatgct tttggggctc 1450
ttacatcagg aaatactgat ctctcccaga agtcccttca gctcgaaagt 1500
aagggattaa cactgaatag taatgcctgg atgaacgaca ctgtcataat 1550
tgatagtaca gtggaaagg acacgttctt tctcatcaca tggAACAGTC 1600
tgcctcccaag tatttcttc tggatccca gtggacaat aatggaaaat 1650

ttcacagtgg atgcaacttc caaaatggcc tatctcagta ttccaggaac 1700
tgcaaagggtg ggcacttggg catacaatct tcaagccaaa gcgaaccagg 1750
aaacattaac tattacagta acttctcgag cagcaaattc ttctgtgcct 1800
ccaatcacag tgaatgctaa aatgaataag gacgtaaaca gtttcccagg 1850
cccaatgatt gtttacgcag aaattctaca aggatatgtt cctgttctt 1900
gagccaatgt gactgcttcc attgaatcac agaatggaca tacagaagtt 1950
ttggaacttt tggataatgg tgcaggcgct gattcttca agaatgatgg 2000
agtctactcc aggtatTTTc cagcatatac agaaaatggc agatatagct 2050
taaaagttcg ggctcatgga ggagcaaaca ctgccaggct aaaattacgg 2100
cctccactga atagagccgc gtacatacca ggctggtag tgaacggga 2150
aattgaagca aaccgcCAA gacctgaaat tgatgaggat actcagacca 2200
ccttggagga tttcagccga acagcatccg gaggtgcatt tgtggtatca 2250
caagtcccaa gcctccctt gcctgaccaa taccaccaa gtcaaattcac 2300
agaccttgat gccacagttc atgaggataa gattattctt acatggacag 2350
caccaggaga taatTTTgat gttggaaaag ttcaacgtt tatcataaga 2400
ataagtgcaa gtattcttga tctaagagac agtttgatg atgctcttca 2450
agtaaatact actgatctgt caccaaagga ggccaactcc aaggaaagct 2500
ttgcatttaa accagaaaat atctcagaag aaaatgcaac ccacatattt 2550
attgccatTA aaagtataga taaaagcaat ttgacatcaa aagtatccaa 2600
cattgcacAA gtaactttgt ttatccctca agcaaattcct gatgacattt 2650
atcctacacc tactcctact cctactccta ctcctgataa aagtataat 2700
tctggaggtt atatttctac gctggatttgc tctgtgatttgc ggtctgttgt 2750
aattgttaac ttatTTTaa gtaccaccat ttgaaccttA acgaagaaaa 2800
aaatcttcaa gtagacctag aagagagttt taaaaaacAA aacaatgtAA 2850
gtaaaggata ttctgaatc taaaattca tcccatgtgt gatcataaac 2900
tcataaaaat aattttaaga tgtcgaaaaa ggatactttg attaaataaa 2950
aacactcatg gatatgtAAA aactgtcaag attaaaattt aatagtttca 3000
tttatttggattt attttatttgc taagaaatAG tgatgaacAA agatcctttt 3050
tcatactgat acctgggtgt atatttatttgc atgcaacagt ttctgaaat 3100
gatatttcaa attgcataa gaaattaaaa tcatacttatc gagtagtcaa 3150
aatacaagta aaggagagca aataaacaac atttggaaaa aaaaaaaaaa 3200
aaaaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 3250

aaaaaaaaaaa aaaaa 3265

<210> 379

<211> 919

<212> PRT

<213> Homo sapiens

<400> 379

Met	Gly	Leu	Phe	Arg	Gly	Phe	Val	Phe	Leu	Leu	Val	Leu	Cys	Leu
1					5				10					15
Leu	His	Gln	Ser	Asn	Thr	Ser	Phe	Ile	Lys	Leu	Asn	Asn	Asn	Gly
					20				25					30
Phe	Glu	Asp	Ile	Val	Ile	Val	Ile	Asp	Pro	Ser	Val	Pro	Glu	Asp
					35				40					45
Glu	Lys	Ile	Ile	Glu	Gln	Ile	Glu	Asp	Met	Val	Thr	Thr	Ala	Ser
					50				55					60
Thr	Tyr	Leu	Phe	Glu	Ala	Thr	Glu	Lys	Arg	Phe	Phe	Phe	Lys	Asn
					65				70					75
Val	Ser	Ile	Leu	Ile	Pro	Glu	Asn	Trp	Lys	Glu	Asn	Pro	Gln	Tyr
					80				85					90
Lys	Arg	Pro	Lys	His	Glu	Asn	His	Lys	His	Ala	Asp	Val	Ile	Val
					95				100					105
Ala	Pro	Pro	Thr	Leu	Pro	Gly	Arg	Asp	Glu	Pro	Tyr	Thr	Lys	Gln
					110				115					120
Phe	Thr	Glu	Cys	Gly	Glu	Lys	Gly	Glu	Tyr	Ile	His	Phe	Thr	Pro
					125				130					135
Asp	Leu	Leu	Leu	Gly	Lys	Lys	Gln	Asn	Glu	Tyr	Gly	Pro	Pro	Gly
					140				145					150
Lys	Leu	Phe	Val	His	Glu	Trp	Ala	His	Leu	Arg	Trp	Gly	Val	Phe
					155				160					165
Asp	Glu	Tyr	Asn	Glu	Asp	Gln	Pro	Phe	Tyr	Arg	Ala	Lys	Ser	Lys
					170				175					180
Lys	Ile	Glu	Ala	Thr	Arg	Cys	Ser	Ala	Gly	Ile	Ser	Gly	Arg	Asn
					185				190					195
Arg	Val	Tyr	Lys	Cys	Gln	Gly	Gly	Ser	Cys	Leu	Ser	Arg	Ala	Cys
					200				205					210
Arg	Ile	Asp	Ser	Thr	Thr	Lys	Leu	Tyr	Gly	Lys	Asp	Cys	Gln	Phe
					215				220					225
Phe	Pro	Asp	Lys	Val	Gln	Thr	Glu	Lys	Ala	Ser	Ile	Met	Phe	Met
					230				235					240
Gln	Ser	Ile	Asp	Ser	Val	Val	Glu	Phe	Cys	Asn	Glu	Lys	Thr	His
					245				250					255
Asn	Gln	Glu	Ala	Pro	Ser	Leu	Gln	Asn	Ile	Lys	Cys	Asn	Phe	Arg
					260				265					270
Ser	Thr	Trp	Glu	Val	Ile	Ser	Asn	Ser	Glu	Asp	Phe	Lys	Asn	Thr

275 280 285

Ile Pro Met Val Thr Pro Pro Pro Pro Pro Val Phe Ser Leu Leu		
290	295	300
Lys Ile Ser Gln Arg Ile Val Cys Leu Val Leu Asp Lys Ser Gly		
305	310	315
Ser Met Gly Gly Lys Asp Arg Leu Asn Arg Met Asn Gln Ala Ala		
320	325	330
Lys His Phe Leu Leu Gln Thr Val Glu Asn Gly Ser Trp Val Gly		
335	340	345
Met Val His Phe Asp Ser Thr Ala Thr Ile Val Asn Lys Leu Ile		
350	355	360
Gln Ile Lys Ser Ser Asp Glu Arg Asn Thr Leu Met Ala Gly Leu		
365	370	375
Pro Thr Tyr Pro Leu Gly Gly Thr Ser Ile Cys Ser Gly Ile Lys		
380	385	390
Tyr Ala Phe Gln Val Ile Gly Glu Leu His Ser Gln Leu Asp Gly		
395	400	405
Ser Glu Val Leu Leu Leu Thr Asp Gly Glu Asp Asn Thr Ala Ser		
410	415	420
Ser Cys Ile Asp Glu Val Lys Gln Ser Gly Ala Ile Val His Phe		
425	430	435
Ile Ala Leu Gly Arg Ala Ala Asp Glu Ala Val Ile Glu Met Ser		
440	445	450
Lys Ile Thr Gly Gly Ser His Phe Tyr Val Ser Asp Glu Ala Gln		
455	460	465
Asn Asn Gly Leu Ile Asp Ala Phe Gly Ala Leu Thr Ser Gly Asn		
470	475	480
Thr Asp Leu Ser Gln Lys Ser Leu Gln Leu Glu Ser Lys Gly Leu		
485	490	495
Thr Leu Asn Ser Asn Ala Trp Met Asn Asp Thr Val Ile Ile Asp		
500	505	510
Ser Thr Val Gly Lys Asp Thr Phe Phe Leu Ile Thr Trp Asn Ser		
515	520	525
Leu Pro Pro Ser Ile Ser Leu Trp Asp Pro Ser Gly Thr Ile Met		
530	535	540
Glu Asn Phe Thr Val Asp Ala Thr Ser Lys Met Ala Tyr Leu Ser		
545	550	555
Ile Pro Gly Thr Ala Lys Val Gly Thr Trp Ala Tyr Asn Leu Gln		
560	565	570
Ala Lys Ala Asn Pro Glu Thr Leu Thr Ile Thr Val Thr Ser Arg		
575	580	585
Ala Ala Asn Ser Ser Val Pro Pro Ile Thr Val Asn Ala Lys Met		

590	595	600
Asn Lys Asp Val Asn Ser Phe Pro Ser Pro Met Ile Val Tyr Ala		
605	610	615
Glu Ile Leu Gln Gly Tyr Val Pro Val Leu Gly Ala Asn Val Thr		
620	625	630
Ala Phe Ile Glu Ser Gln Asn Gly His Thr Glu Val Leu Glu Leu		
635	640	645
Leu Asp Asn Gly Ala Gly Ala Asp Ser Phe Lys Asn Asp Gly Val		
650	655	660
Tyr Ser Arg Tyr Phe Thr Ala Tyr Thr Glu Asn Gly Arg Tyr Ser		
665	670	675
Leu Lys Val Arg Ala His Gly Gly Ala Asn Thr Ala Arg Leu Lys		
680	685	690
Leu Arg Pro Pro Leu Asn Arg Ala Ala Tyr Ile Pro Gly Trp Val		
695	700	705
Val Asn Gly Glu Ile Glu Ala Asn Pro Pro Arg Pro Glu Ile Asp		
710	715	720
Glu Asp Thr Gln Thr Thr Leu Glu Asp Phe Ser Arg Thr Ala Ser		
725	730	735
Gly Gly Ala Phe Val Val Ser Gln Val Pro Ser Leu Pro Leu Pro		
740	745	750
Asp Gln Tyr Pro Pro Ser Gln Ile Thr Asp Leu Asp Ala Thr Val		
755	760	765
His Glu Asp Lys Ile Ile Leu Thr Trp Thr Ala Pro Gly Asp Asn		
770	775	780
Phe Asp Val Gly Lys Val Gln Arg Tyr Ile Ile Arg Ile Ser Ala		
785	790	795
Ser Ile Leu Asp Leu Arg Asp Ser Phe Asp Asp Ala Leu Gln Val		
800	805	810
Asn Thr Thr Asp Leu Ser Pro Lys Glu Ala Asn Ser Lys Glu Ser		
815	820	825
Phe Ala Phe Lys Pro Glu Asn Ile Ser Glu Glu Asn Ala Thr His		
830	835	840
Ile Phe Ile Ala Ile Lys Ser Ile Asp Lys Ser Asn Leu Thr Ser		
845	850	855
Lys Val Ser Asn Ile Ala Gln Val Thr Leu Phe Ile Pro Gln Ala		
860	865	870
Asn Pro Asp Asp Ile Asp Pro Thr Pro Thr Pro Thr Pro Thr Pro		
875	880	885
Thr Pro Asp Lys Ser His Asn Ser Gly Val Asn Ile Ser Thr Leu		
890	895	900
Val Leu Ser Val Ile Gly Ser Val Val Ile Val Asn Phe Ile Leu		

905

910

915

Ser Thr Thr Ile

<210> 380
<211> 3877
<212> DNA
<213> Homo sapiens

<400> 380
ctccttaggt ggaaaccctg ggagtagagt actgacagca aagaccggga 50
aagaccatac gtccccgggc aggggtgaca acaggtgtca tcttttgat 100
ctcggtgtg gtcgcattcc tatttcaagg aaagacgcca aggttaatttt 150
gaccaggagg agcaatgatg tagccaccc tcacccctcc cttcttgaac 200
ccccagttat gccaggattt actagagagt gtcaactcaa ccagcaagcg 250
gctccttcgg cttaacttgt gttggagga gagaacctt gtggggctgc 300
gttctcttag cagtgtcag aagtgacttg cctgagggtg gaccagaaga 350
aaggaaaggt cccctcttc tggtggctgc acatcaggaa ggctgtgatg 400
ggaatgaagg tgaaaacttg gagattcac ttcatgtcatt gcttctgcct 450
gcaagatcat ccttaaaag tagagaagct gctctgtgt gtggtaact 500
ccaagaggca gaactcggttc tagaaggaaa tggatgcaag cagctccggg 550
ggccccaaac gcatgcttc tgtggcttag cccaggaaag ccctccgtg 600
ggggccccgg ctttgaggga tgccaccggc tctggacgca tggctgattc 650
ctgaatgatg atgggtcgcc gggggctgct tgcgtggatt tcccgggtgg 700
tggtttgc ggtgtccctc tgctgtgcta tctctgtcct gtacatgtt 750
gcctgcaccc caaaaggtga cgaggagcag ctggcactgc ccagggccaa 800
cagccccacg gggaaaggagg ggtaccaggc cgtccttcag gagtgggagg 850
agcagcaccc caactacgtg agcagcctga agcggcagat cgcacagctc 900
aaggaggagc tgcaggagag gagtgagcag ctcaggaatg ggcagttacca 950
agccagcgt gctgtggcc tgggtctgga caggagcccc ccagagaaaa 1000
cccaggccga cctcctggcc ttccctgcact cgcaggtgga caaggcagag 1050
gtgaatgctg gcgtcaagct ggccacagag tatgcagcag tgccttcga 1100
tagctttact ctacagaagg tgtaccagct ggagactggc cttacccgcc 1150
accccgagga gaaggctgtg aggaaggaca agcgggatga gttggtgaa 1200
gccattgaat cagccttgga gaccctgaac aatcctgcag agaacagccc 1250
caatcaccgt ctttacacgg cctctgattt catagaaggg atctaccgaa 1300

cagaaaggga caaagggaca ttgtatgagc tcaccttcaa aggggaccac 1350
aaacacgaat tcaaacggct catcttattt cgaccattca gccccatcat 1400
gaaagtgaaa aatgaaaagc tcaacatggc caacacgctt atcaatgtta 1450
tcgtgcctct agcaaaaagg gtggacaagt tccggcagtt catgcagaat 1500
ttcagggaga tgtgcattga gcaggatggg agagtccatc tcactgttgt 1550
ttactttggg aaagaagaaa taaatgaagt caaaggaata cttgaaaaca 1600
cttccaaagc tgccaacttc aggaacttta cttcatcca gctgaatgga 1650
gaattttctc gggaaaaggg acttgatgtt ggagcccgct tctggaaggg 1700
aagcaacgtc cttctcttt tctgtatgtt ggacatctac ttcacatctg 1750
aattcctcaa tacgtgttagg ctgaatacac agccaggaa gaaggtattt 1800
tatccagttc tttcagtc gtacaatcct ggcataatat acggccacca 1850
tgatgcagtc ctccttgg aacagcagct ggtcataaag aaggaaactg 1900
gattttggag agactttgga tttggatga cgtgtcagta tcggtcagac 1950
ttcatcaata tagtgggtt tgatctggac atcaaaggct gggcgaggaa 2000
ggatgtgcac ctatcgca agtatcttca cagcaacctc atagtggcac 2050
ggacgcctgt gcgaggactc ttccacctct ggcatacgaa gcgcgtgcatt 2100
gacgagctga ccccgagca gtacaagatg tgcatacgat ccaaggccat 2150
gaacgaggca tcccacggcc agctggcat gctgggttca aggcacgaga 2200
tagaggctca cttcgcaaa cagaaacaga agacaagtag caaaaaaaca 2250
tgaactccca gagaaggatt gtggagaca cttttcttt cttttgcaa 2300
ttactgaaag tggctgcaac agagaaaaga ctccataaa ggacgacaaa 2350
agaattggac tgatgggtca gagatgagaa agcctccgat ttctctctgt 2400
tgggctttt acaacagaaa tcaaaatctc cgcttgcct gcaaaagtaa 2450
cccagttgca ccctgtgaag tgtctgacaa aggcagaatg ctgtgagat 2500
tataagccta atgggtgtga ggttttgcgt gtgttacaa tacactgaga 2550
cctgttgttt tgttgctca ttgaaatatt catgattaa gagcagttt 2600
gtaaaaaaatt cattagcatg aaaggcaagc atatttctcc tcatatgaat 2650
gagcctatca gcagggctct agtttctagg aatgctaaaa tatcagaagg 2700
caggagagga gataggctt ttatgatact agtgagtaca ttaagtaaaa 2750
taaaatggac cagaaaagaa aagaaaccat aaatatcgtg tcataatttc 2800
cccaagatta accaaaaata atctgcttat ctgggtt gtcctttaa 2850
ctgtctccgt tttttcttt tatttaaaaa tgcactttt ttcccttg 2900

agttatagtc tgcttattta attaccactt tgcaaggcctt acaagagagc 2950
acaagttggc ctacatTTT atatTTTta agaagatact ttgagatgca 3000
ttatgagaac tttcagttca aagcatcaa ttgatgccat atccaaggac 3050
atGCCAAATG ctgattctgt cagggactga atgtcaggca ttgagacata 3100
ggaaaggaat ggTTTGTACT aatacagacg tacagatact ttctctgaag 3150
agtatTTTCG aagaggagca actgaacact ggaggaaaag aaaatgacac 3200
tttctgctt acagaaaagg aaactcattc agactggta tATCGTGTG 3250
tacctaaaag tcagaaacca cattttctcc tcagaagtag ggaccgcTTT 3300
cttacctgtt taaataaacc aaagtatacc gtgtgaacca aacaatctct 3350
tttcaaaaca gggTgCTCCT CCTGGCTTCT ggCTTCCATA agaAGAAATG 3400
gagaaaaata tatatatata tatatatatt gtgaaagatc aatccatctg 3450
ccagaatcta gtgggatgga agTTTTGCT acatgttac caccccaggc 3500
caggtggaag taactgaatt atTTTTaaa ttaAGCAGTT ctactcaatc 3550
accaagatgc ttctgaaaat tgcattttt taccattca aactatTTT 3600
taaaaataaa tacagttaac atagagtgtt ttcttcattc atgtgaaaat 3650
tattagccag caccagatgc atgagcta atotctttg agtccttgct 3700
tctgtttgct cacagtaaac tcattgtta aaagcttcaa gaacattcaa 3750
gctgttggtg tgTTAAAAAA tgcattgtat tgattgtac tggttagttta 3800
tgaaatttaa ttAAAACACA ggccatgaat ggaagggtgg attgcacagc 3850
taataaaaata tgattgtgg atatgaa 3877

<210> 381

<211> 532

<212> PRT

<213> Homo sapiens

<400> 381

Met	Met	Met	Val	Arg	Arg	Gly	Leu	Leu	Ala	Trp	Ile	Ser	Arg	Val
1				5					10				15	
Val	Val	Leu	Leu	Val	Leu	Leu	Cys	Cys	Ala	Ile	Ser	Val	Leu	Tyr
				20					25				30	
Met	Leu	Ala	Cys	Thr	Pro	Lys	Gly	Asp	Glu	Glu	Gln	Leu	Ala	Leu
			35					40				45		
Pro	Arg	Ala	Asn	Ser	Pro	Thr	Gly	Lys	Glu	Gly	Tyr	Gln	Ala	Val
				50				55				60		
Leu	Gln	Glu	Trp	Glu	Glu	Gln	His	Arg	Asn	Tyr	Val	Ser	Ser	Leu
			65					70				75		
Lys	Arg	Gln	Ile	Ala	Gln	Leu	Lys	Glu	Glu	Leu	Gln	Glu	Arg	Ser
				80				85				90		

Glu Gln Leu Arg Asn Gly Gln Tyr Gln Ala Ser Asp Ala Ala Gly
 95 100 105
 Leu Gly Leu Asp Arg Ser Pro Pro Glu Lys Thr Gln Ala Asp Leu
 110 115 120
 Leu Ala Phe Leu His Ser Gln Val Asp Lys Ala Glu Val Asn Ala
 125 130 135
 Gly Val Lys Leu Ala Thr Glu Tyr Ala Ala Val Pro Phe Asp Ser
 140 145 150
 Phe Thr Leu Gln Lys Val Tyr Gln Leu Glu Thr Gly Leu Thr Arg
 155 160 165
 His Pro Glu Glu Lys Pro Val Arg Lys Asp Lys Arg Asp Glu Leu
 170 175 180
 Val Glu Ala Ile Glu Ser Ala Leu Glu Thr Leu Asn Asn Pro Ala
 185 190 195
 Glu Asn Ser Pro Asn His Arg Pro Tyr Thr Ala Ser Asp Phe Ile
 200 205 210
 Glu Gly Ile Tyr Arg Thr Glu Arg Asp Lys Gly Thr Leu Tyr Glu
 215 220 225
 Leu Thr Phe Lys Gly Asp His Lys His Glu Phe Lys Arg Leu Ile
 230 235 240
 Leu Phe Arg Pro Phe Ser Pro Ile Met Lys Val Lys Asn Glu Lys
 245 250 255
 Leu Asn Met Ala Asn Thr Leu Ile Asn Val Ile Val Pro Leu Ala
 260 265 270
 Lys Arg Val Asp Lys Phe Arg Gln Phe Met Gln Asn Phe Arg Glu
 275 280 285
 Met Cys Ile Glu Gln Asp Gly Arg Val His Leu Thr Val Val Tyr
 290 295 300
 Phe Gly Lys Glu Glu Ile Asn Glu Val Lys Gly Ile Leu Glu Asn
 305 310 315
 Thr Ser Lys Ala Ala Asn Phe Arg Asn Phe Thr Phe Ile Gln Leu
 320 325 330
 Asn Gly Glu Phe Ser Arg Gly Lys Gly Leu Asp Val Gly Ala Arg
 335 340 345
 Phe Trp Lys Gly Ser Asn Val Leu Leu Phe Phe Cys Asp Val Asp
 350 355 360
 Ile Tyr Phe Thr Ser Glu Phe Leu Asn Thr Cys Arg Leu Asn Thr
 365 370 375
 Gln Pro Gly Lys Lys Val Phe Tyr Pro Val Leu Phe Ser Gln Tyr
 380 385 390
 Asn Pro Gly Ile Ile Tyr Gly His His Asp Ala Val Pro Pro Leu
 395 400 405

<210> 382

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 382

ctcgaaaa gggacttcat gttgg 25

<210> 383

<211> 20
<212> DNU

<212> DNA

<Z13> Artificial sequence

gcgaagg

<211> 19

<212> DN

<213> Art

<223>

1100-384

cagcctac

<210> 385

<211> 48
<212> DNA

<212> DN

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 385

cagtcagtagc aatccctggca taatatacgg ccaccatgtat gcagtcccc 48

<210> 386

<211> 1346

<212> DNA

<213> Homo sapiens

<400> 386

gaaagaatgt tgtggctgct ctttttctg gtgactgccat ttcatgctga 50

actctgtcaa ccaggtgcag aaaatgcttt taaagtgaga cttagtatca 100

gaacagctct gggagataaa gcataatgcct gggataccaa tgaagaatac 150

ctcttcaaag cgatggtagc tttctccatg agaaaagttc ccaacagaga 200

agcaacagaa atttcccatg tcctactttt caatgttaacc cagagggtat 250

cattctggtt tgtggttaca gacccttcaa aaaatcacac ctttcctgct 300

gttgaggtgc aatcagccat aagaatgaac aagaaccgga tcaacaatgc 350

cttctttcta aatgacccaa ctctggaaatt tttaaaaatc cttccacac 400

ttgcaccacc catggaccctc tctgtgccat tctggattat tatatttgg 450

gtgatatttt gcatcatcat agttgcattt gcactactga ttttatcagg 500

gatctggcaa cgtagaagaa agaacaaga accatctgaa gtggatgacg 550

ctgaagataa gtgtgaaaac atgatcacaat ttgaaaatgg catcccctct 600

gatcccctgg acatgaaggg gggcatatta atgatgcctt catgacagag 650

gatgagaggg tcacccctct ctgaaggct gttgttctgc ttccctcaaga 700

aattaaacat ttgtttctgt gtgactgctg agcatcctga aataccaaga 750

gcagatcata tattttgttt caccattctt cttttgtat aaattttgaa 800

tgtgctgaa agtggaaagc aatcaattat acccaccaac accactgaaa 850

tcataagcta ttcacgactc aaaatattct aaaatatttt tctgacagta 900

tagtgtataa atgtggcat gtggattttt tagttatttga tttaaggatt 950

tttagaaata agatcaggca tatgtatata tttcacact tcaaagacct 1000

aaggaaaaat aaattttcca gtggagaata catataatat ggtgtgaaaa 1050

tcattgaaaa tggatccctt ttgacgatca cttatatcac tctgtatatg 1100

actaagtaaa caaaagttag aagtaattat tgtaaatggaa tggataaaaa 1150

tggaaattact catatacagg gtggaaattttt atcctgttat cacaccaaca 1200

gttgattata tattttctga atatcagccc ctaataggac aattctattt 1250

gttgaccatt tctacaattt gtaaaaagtcc aatcttgct aacttaataa 1300
agtaataatc atctttttt aaaaaaaaaa aaaaaaaaaa aaaaaaa 1346

<210> 387
<211> 212
<212> PRT
<213> Homo sapiens

<400> 387
Met Leu Trp Leu Leu Phe Phe Leu Val Thr Ala Ile His Ala Glu
1 5 10 15
Leu Cys Gln Pro Gly Ala Glu Asn Ala Phe Lys Val Arg Leu Ser
20 25 30
Ile Arg Thr Ala Leu Gly Asp Lys Ala Tyr Ala Trp Asp Thr Asn
35 40 45
Glu Glu Tyr Leu Phe Lys Ala Met Val Ala Phe Ser Met Arg Lys
50 55 60
Val Pro Asn Arg Glu Ala Thr Glu Ile Ser His Val Leu Leu Cys
65 70 75
Asn Val Thr Gln Arg Val Ser Phe Trp Phe Val Val Thr Asp Pro
80 85 90
Ser Lys Asn His Thr Leu Pro Ala Val Glu Val Gln Ser Ala Ile
95 100 105
Arg Met Asn Lys Asn Arg Ile Asn Asn Ala Phe Phe Leu Asn Asp
110 115 120
Gln Thr Leu Glu Phe Leu Lys Ile Pro Ser Thr Leu Ala Pro Pro
125 130 135
Met Asp Pro Ser Val Pro Ile Trp Ile Ile Ile Phe Gly Val Ile
140 145 150
Phe Cys Ile Ile Ile Val Ala Ile Ala Leu Leu Ile Leu Ser Gly
155 160 165
Ile Trp Gln Arg Arg Lys Asn Lys Glu Pro Ser Glu Val Asp
170 175 180
Asp Ala Glu Asp Lys Cys Glu Asn Met Ile Thr Ile Glu Asn Gly
185 190 195
Ile Pro Ser Asp Pro Leu Asp Met Lys Gly Gly Ile Leu Met Met
200 205 210
Pro Ser

<210> 388
<211> 1371
<212> DNA
<213> Homo sapiens

<400> 388
aactcaaact cctctctctg ggaaaacgcg gtgcttgctc ctccggagt 50

ggccttggca gggtgttgg a gccctcggtc tgccccgtcc ggtctctggg 100
gccaaggctg gttttccctc atgtatggca agagctctac tcgtgcggtg 150
cttcttctcc ttggcataca gtcacagct ctttggccta tagcagctgt 200
ggaaatttat acctcccggg tgctggaggc tgtaatggg acagatgctc 250
ggttaaaatg cactttctcc agctttgccccc ctgtgggtga tgctctaaca 300
gtgacctgga attttcggtcc tctagacggg ggacctgagc agtttgtatt 350
ctactaccac atagatccct tccaaccat gagtggcggg tttaaggacc 400
gggtgtcttg gcatgggaat cctgagcggt acgatgcctc catccttctc 450
tggaaactgc agttcgacga caatgggaca tacacctgcc aggtgaagaa 500
cccacctgat gttgatgggg tgatagggga gatccggctc agcgtcgtgc 550
acactgtacg cttctctgag atccacttcc tggctctggc cattggctct 600
gcctgtgcac tgatgatcat aatagtaatt gtatggtcc tcttccagca 650
ttaccggaaa aagcgatggg ccgaaagagc tcataaagtg gtggagataa 700
aatcaaaaaga agaggaaagg ctcaaccaag agaaaaaggt ctctgtttat 750
ttagaagaca cagactaaca attttagatg gaagctgaga tgatttccaa 800
gaacaagaac cctagtattt cttgaagtta atggaaactt ttctttggct 850
tttccagtg tgacccgttt tccaaccagt tctgcagcat attagattct 900
agacaagcaa caccctctg gagccagcac agtgcgcctc catatcacca 950
gtcatacaca gcctcattat taaggtctta tttaatttca gagtgttaat 1000
ttttcaagt gctcattagg ttttataaaac aagaagctac atttttggcc 1050
ttaagacact acttacagtg ttatgacttg tatacacata tattggtatac 1100
aaaggggata aaagccaatt tgtctgttac atttccttcc acgtatttct 1150
tttagcagca cttctgctac taaagttaat gtgtttactc tctttccctc 1200
ccacattctc aattaaaagg tgagctaagc ctcctcggtg tttctgatta 1250
acagtaaattc ctaaattcaa actgttaat gacatttttta tttttatgtc 1300
tctccttaac tatgagacac atcttggttt actgaatttc tttcaatatt 1350
ccaggtgata gattttgtc g 1371

<210> 389
<211> 215
<212> PRT
<213> Homo sapiens

<400> 389
Met Tyr Gly Lys Ser Ser Thr Arg Ala Val Leu Leu Leu Leu Gly
1 5 10 15

Ile Gln Leu Thr Ala Leu Trp Pro Ile Ala Ala Val Glu Ile Tyr
 20 25 30
 Thr Ser Arg Val Leu Glu Ala Val Asn Gly Thr Asp Ala Arg Leu
 35 40 45
 Lys Cys Thr Phe Ser Ser Phe Ala Pro Val Gly Asp Ala Leu Thr
 50 55 60
 Val Thr Trp Asn Phe Arg Pro Leu Asp Gly Gly Pro Glu Gln Phe
 65 70 75
 Val Phe Tyr Tyr His Ile Asp Pro Phe Gln Pro Met Ser Gly Arg
 80 85 90
 Phe Lys Asp Arg Val Ser Trp Asp Gly Asn Pro Glu Arg Tyr Asp
 95 100 105
 Ala Ser Ile Leu Leu Trp Lys Leu Gln Phe Asp Asp Asn Gly Thr
 110 115 120
 Tyr Thr Cys Gln Val Lys Asn Pro Pro Asp Val Asp Gly Val Ile
 125 130 135
 Gly Glu Ile Arg Leu Ser Val Val His Thr Val Arg Phe Ser Glu
 140 145 150
 Ile His Phe Leu Ala Leu Ala Ile Gly Ser Ala Cys Ala Leu Met
 155 160 165
 Ile Ile Ile Val Ile Val Val Val Leu Phe Gln His Tyr Arg Lys
 170 175 180
 Lys Arg Trp Ala Glu Arg Ala His Lys Val Val Glu Ile Lys Ser
 185 190 195
 Lys Glu Glu Glu Arg Leu Asn Gln Glu Lys Lys Val Ser Val Tyr
 200 205 210
 Leu Glu Asp Thr Asp
 215

<210> 390

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 390

ccgaggccat ctagaggcca gagc 24

<210> 391

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 391

acaggcagag ccaatggcca gagc 24

DRAFT GENOME SEQUENCES

<210> 392
<211> 45
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 392
gagaggactg cgggagtttg ggaccttgt gcagacgtgc tcatg 45

<210> 393
<211> 471
<212> DNA
<213> Homo sapiens

<400> 393
gcatttttgt ctgtgctccc tgatcttcag gtcaccacca tgaagttctt 50
agcagtccctg gtactcttgg gagttccat ctttctggc tctgccaga 100
atccgacaac agctgctcca gctgacacgt atccagctac tggcctgct 150
gatgatgaag cccctgatgc taaaaccact gctgctgcaa ccactgcgac 200
cactgctgct cctaccactg caaccaccgc tgcttctacc actgctcgta 250
aagacattcc agtttaccc aaatgggtt gggatctccc gaatggtaga 300
gtgtgtccct gagatggaat cagcttgagt cttctgcaat tggtcacaac 350
tattcatgct tcctgtgatt tcatccaact acttaccttgc cctacgatat 400
cccctttatac tctaattcagt ttattttctt tcaaataaaa aataactatg 450
agcaacataa aaaaaaaaaa a 471

<210> 394
<211> 90
<212> PRT
<213> Homo sapiens

<400> 394
Met Lys Phe Leu Ala Val Leu Val Leu Leu Gly Val Ser Ile Phe
1 5 10 15
Leu Val Ser Ala Gln Asn Pro Thr Thr Ala Ala Pro Ala Asp Thr
20 25 30
Tyr Pro Ala Thr Gly Pro Ala Asp Asp Glu Ala Pro Asp Ala Glu
35 40 45
Thr Thr Ala Ala Ala Thr Thr Ala Thr Ala Ala Pro Thr Thr
50 55 60
Ala Thr Thr Ala Ala Ser Thr Thr Ala Arg Lys Asp Ile Pro Val
65 70 75
Leu Pro Lys Trp Val Gly Asp Leu Pro Asn Gly Arg Val Cys Pro
80 85 90

<210> 395
<211> 25

<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 395
gctccctgat cttcatgtca ccacc 25

<210> 396
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 396
cagggacaca ctctaccatt cgggag 26

<210> 397
<211> 42
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 397
ccatctttct ggtctctgcc cagaatccga caacagctgc tc 42

<210> 398
<211> 907
<212> DNA
<213> Homo sapiens

<400> 398
ggactctgaa ggtcccaaggc agctgctgag gccccaagg aagtgggtcc 50
aaccttggac cccttaggggt ctggatttgc tggtaacaa gataacctga 100
ggcaggacc ccatagggga atgctaccc tcgtcccttc acctgcccctg 150
gtgttcacgg tggcttggtc cttcttgcc gagagagtgt cttgggtcag 200
ggacgcagag gacgctcaca gactccagcc ctttggtaacc gagaggacac 250
ttggcaaggt ccagcgatgg tccggagtcc acacacagac tggcggcagg 300
gcaggagggg gacagttctg ttgtgcttgg ttggacagta agagggtctt 350
ggccagtcca ggggggggggg cggcaaactc cataaagaac cagagggtct 400
ggggccccggc cacagagtca tctgcccagg tcctctgctg ctggccagtg 450
ggagtggcac gaggtggggc tttgtgcag taaaaccaca ggctggattt 500
gcctgcgggc catggccct gtctaggcga gcaattctca accttctgc 550
tctcaggacc ccaaagagct ttcattgtat ctattgatt ttaccacatt 600
agcaattaaa actgagaaat gggccggcga cggtggctca cgcctgtaat 650

cccagcactt tgggaggccg aggccccgtgg atcacctgag atcaggagtt 700
caagaccgc ctggccaaca tggtaaaacc ttgtctacta aaaataaaaa 750
aaattagcca ggcacagtgg tgtgcactgg tagtcccagt tactcgggag 800
gctgaggcag gaaaatcgct tgaacccagg aggcggacgt tgcggtgagc 850
cgagatcgcg ccgctgattc cagcctggc gacaagagtg agactccatc 900
tcacaca 907

<210> 399

<211> 120

<212> PRT

<213> Homo sapiens

<400> 399

Met	Leu	Pro	Pro	Ala	Leu	Pro	Pro	Ala	Leu	Val	Phe	Thr	Val	Ala
1					5				10					15
Trp	Ser	Leu	Leu	Ala	Glu	Arg	Val	Ser	Trp	Val	Arg	Asp	Ala	Glu
					20				25					30
Asp	Ala	His	Arg	Leu	Gln	Pro	Phe	Val	Thr	Glu	Arg	Thr	Leu	Gly
				35					40					45
Lys	Val	Gln	Arg	Trp	Ser	Gly	Val	His	Thr	Gln	Thr	Gly	Gly	Arg
				50				55						60
Ala	Gly	Gly	Gly	Gln	Phe	Cys	Cys	Ala	Trp	Leu	Asp	Ser	Lys	Arg
				65				70						75
Val	Leu	Ala	Ser	Pro	Gly	Trp	Gly	Ala	Ala	Asn	Ser	Ile	Lys	Asn
				80				85						90
Gln	Arg	Val	Trp	Ala	Pro	Ala	Thr	Glu	Ser	Ser	Ala	Gln	Leu	Leu
				95				100						105
Cys	Cys	Trp	Pro	Val	Gly	Val	Ala	Arg	Gly	Gly	Ala	Leu	Cys	Gln
				110				115						120

<210> 400

<211> 893

<212> DNA

<213> Homo sapiens

<400> 400

gtcatgccag tgcctgctct gtgcctgctc tggccctgg caatggtgac 50
ccggcctgcc tcagcggccc ccatggcg ggccagaactg gcacagcatg 100
aggagctgac cctgctttc catggaccc tgcagctggg ccaggccctc 150
aacgggtgtt acaggaccac ggagggacgg ctgacaaagg ccaggaacag 200
cctgggtctc tatggccgca caatagaact cctggggcag gaggtcagcc 250
ggggccggga tgcagccag gaacttcggg caagcctgtt ggagactcag 300
atggaggagg atattctgca gctgcaggca gaggccacag ctgaggtgct 350
gggggaggtg gcccaggcac agaagggtgct acgggacacg gtgcagcggc 400

tagaagtcca gctgaggagc gcctggctgg gccctgccta ccgagaattt 450
gaggtcttaa aggctcacgc tgacaaggcag agccacatcc tatgggcct 500
cacaggccac gtgcagcggc agaggcggga gatggtggca cagcagcatc 550
ggctgogaca gatccaggag agactccaca cagcggcgct cccagcctga 600
atctgcctgg atggaactga ggaccaatca tgctgcaagg aacacttcca 650
cgccccgtga ggcccctgtg cagggaggag ctgcctgttc actgggatca 700
gccagggcgc cgggccccac ttctgagcac agagcagaga cagacgcagg 750
cggggacaaa ggcagaggat gtagccccat tggggagggg tggaggaagg 800
acatgtaccc tttcatgcct acacaccct cattaaagca gagtcgtggc 850
atttcaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaa 893

<210> 401

<211> 198

<212> PRT

<213> Homo sapiens

<400> 401

Met	Pro	Val	Pro	Ala	Leu	Cys	Leu	Leu	Trp	Ala	Leu	Ala	Met	Val
1				5					10				15	
Thr	Arg	Pro	Ala	Ser	Ala	Ala	Pro	Met	Gly	Gly	Pro	Glu	Leu	Ala
					20				25				30	
Gln	His	Glu	Glu	Leu	Thr	Leu	Leu	Phe	His	Gly	Thr	Leu	Gln	Leu
				35					40				45	
Gly	Gln	Ala	Leu	Asn	Gly	Val	Tyr	Arg	Thr	Thr	Glu	Gly	Arg	Leu
				50				55					60	
Thr	Lys	Ala	Arg	Asn	Ser	Leu	Gly	Leu	Tyr	Gly	Arg	Thr	Ile	Glu
					65				70				75	
Leu	Leu	Gly	Gln	Glu	Val	Ser	Arg	Gly	Arg	Asp	Ala	Ala	Gln	Glu
				80				85					90	
Leu	Arg	Ala	Ser	Leu	Leu	Glu	Thr	Gln	Met	Glu	Glu	Asp	Ile	Leu
				95					100				105	
Gln	Leu	Gln	Ala	Glu	Ala	Thr	Ala	Glu	Val	Leu	Gly	Glu	Val	Ala
				110				115					120	
Gln	Ala	Gln	Lys	Val	Leu	Arg	Asp	Ser	Val	Gln	Arg	Leu	Glu	Val
				125				130					135	
Gln	Leu	Arg	Ser	Ala	Trp	Leu	Gly	Pro	Ala	Tyr	Arg	Glu	Phe	Glu
				140				145					150	
Val	Leu	Lys	Ala	His	Ala	Asp	Lys	Gln	Ser	His	Ile	Leu	Trp	Ala
				155				160					165	
Leu	Thr	Gly	His	Val	Gln	Arg	Gln	Arg	Arg	Glu	Met	Val	Ala	Gln
				170				175					180	
Gln	His	Arg	Leu	Arg	Gln	Ile	Gln	Glu	Arg	Leu	His	Thr	Ala	Ala

185

190

195

Leu Pro Ala

<210> 402
<211> 1915
<212> DNA
<213> Homo sapiens

<400> 402
ggcaacatgg ctcagcaggc ttgccccaga gccatggcaa agaatggact 50
tgttaattgc atccctggta tcacccttact cctggaccag accaccagcc 100
acacatccag attaaaagcc aggaaggcaca gcaaacgtcg agtgagagac 150
aaggatggag atctgaagac tcaaattgaa aagctctgga cagaagtcaa 200
tgccttgaag gaaattcaag ccctgcagac agtctgtctc cgaggcacta 250
aagttcacaa gaaatgctac cttgcttcag aaggttgaa gcatttccat 300
gaggccaatg aagactgcat ttccaaagga ggaatcctgg ttatcccag 350
gaactccgac gaaatcaacg ccctccaaga ctatggtaaa aggagcctgc 400
caggtgtcaa tgactttgg ctgggcatca atgacatggt cacggaaggc 450
aagtttgttgc acgtcaacgg aatcgctatc tccttcctca actgggaccg 500
tgcacagcct aacggtggca agcgagaaaa ctgtgtcctg ttctcccaat 550
cagctcaggg caagtggagt gatgaggcct gtcgcagcag caagagatac 600
atatgcgagt tcaccatccc taaataggta tttctccat gtgtcctcca 650
agcaagattc atcataactt ataggttcat gatctctaag atcaagtaaa 700
aatcataatt tttacttatt aaaaaattgc aacacaagat caatgtccat 750
agcaatatga tagcatcagc caatttgtt aacacatttc tttgggattt 800
tgcccttcct ggggtatagg ggatcagaaa tattgatcca tgtgcacgca 850
gataaaatgg cttctgctaa acagactaaa atctttctct ctgtcttc 900
tcacttgcacaa aaacccagtt tgtttcaaa aaatcacagt agcaatgcaa 950
ctcatcactc tagaaaaagca agcttaggct acctgaaaga ttttcccttg 1000
gaagtttagc gtatgttgc ctaacaaaaa ttccctacat cagagactct 1050
agggtgctata taatccaaaa actttcagc ctgttgctca ttctgtccca 1100
tgctggcaat aataccttgt cagcccatta cccttatttt gaattgctcc 1150
atctcctggt gggacttgta tcttgcgtgc catatcagaa cacaaacccc 1200
tgaagaggtt ctgatttgat tttttttt tcttcatgcc taccctttt 1250
ttgaaagttt ccagccgcaa tttgaaatga aatgacaagg tgtatatttgc 1300

atcaatttc attcccacca ttgcattaca acctctaact taaatggta 1350
accctaagc atatcaaaga agcagattgc atgataaacg gaaatagaaa 1400
aaaagaacct acatttattt tgcttagca tccttactct cacctttat 1450
gagattgaga gtggacttac attcccttt ttacatttc gtatattat 1500
tttttttagc catcattata tgttaagtc tattatggc aaccaatctt 1550
tggaagctga aaactgaatt taaagaatgc tatcttgaa aattgcatac 1600
gtctgtgcaa ttttttattc tgcctagtgc tattctgctt gtttaactag 1650
attgtacaaa ataacttcat tgcttaatat caaattacaa agtttagact 1700
tggagggaaa tgggctttt agaagcaaac aattttaaat atatttgtt 1750
cttcaaataa atagtgtta aacattgaat gtgtttgtg aacaatatcc 1800
cactttgcaa actttaacta cacatgcttgaat aacaaatcc 1850
tcattgctca ataataaaagc ctgaattctg atcaataaaaa aaaaaaaaaa 1900
aaaaaaaaaaa aaaaaa 1915

<210> 403

<211> 206

<212> PRT

<213> Homo sapiens

<400> 403

Met	Ala	Gln	Gln	Ala	Cys	Pro	Arg	Ala	Met	Ala	Lys	Asn	Gly	Leu
1					5				10					15
Val	Ile	Cys	Ile	Leu	Val	Ile	Thr	Leu	Leu	Leu	Asp	Gln	Thr	Thr
					20				25					30
Ser	His	Thr	Ser	Arg	Leu	Lys	Ala	Arg	Lys	His	Ser	Lys	Arg	Arg
					35				40					45
Val	Arg	Asp	Lys	Asp	Gly	Asp	Leu	Lys	Thr	Gln	Ile	Glu	Lys	Leu
					50				55					60
Trp	Thr	Glu	Val	Asn	Ala	Leu	Lys	Glu	Ile	Gln	Ala	Leu	Gln	Thr
					65				70					75
Val	Cys	Leu	Arg	Gly	Thr	Lys	Val	His	Lys	Lys	Cys	Tyr	Leu	Ala
					80				85					90
Ser	Glu	Gly	Leu	Lys	His	Phe	His	Glu	Ala	Asn	Glu	Asp	Cys	Ile
					95				100					105
Ser	Lys	Gly	Gly	Ile	Leu	Val	Ile	Pro	Arg	Asn	Ser	Asp	Glu	Ile
					110				115					120
Asn	Ala	Leu	Gln	Asp	Tyr	Gly	Lys	Arg	Ser	Leu	Pro	Gly	Val	Asn
					125				130					135
Asp	Phe	Trp	Leu	Gly	Ile	Asn	Asp	Met	Val	Thr	Glu	Gly	Lys	Phe
					140				145					150
Val	Asp	Val	Asn	Gly	Ile	Ala	Ile	Ser	Phe	Leu	Asn	Trp	Asp	Arg

155 160 165

Ala Gln Pro Asn Gly Gly Lys Arg Glu Asn Cys Val Leu Phe Ser
170 175 180

Gln Ser Ala Gln Gly Lys Trp Ser Asp Glu Ala Cys Arg Ser Ser
185 190 195

Lys Arg Tyr Ile Cys Glu Phe Thr Ile Pro Lys
200 205

<210> 404
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 404
cctggttatc cccaggaact ccgac 25

<210> 405
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 405
ctcttgctgc tgcgacaggc ctc 23

<210> 406
<211> 46
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 406
cgccctccaa gactatggta aaaggaggct gccaggtgtc aatgac 46

<210> 407
<211> 570
<212> DNA
<213> Homo sapiens

<400> 407
gcgaggaccg ggtataagaa gcctcggtgc cttgccccgg cagccgcagg 50
ttccccgggc gccccgagcc cccgcgcatt gaagctcgcc gccctcctgg 100
ggctctgggtt ggccctgtcc tgcagctccg ctgtgtcttt ctttgtggc 150
tcggccaagc ctgtggccca gcctgtcgct gcgtggagt cggcggcgg 200
ggccggggcc gggaccctgg ccaacccctt cggcaccctc aaccgcgtga 250
agctcctgtct gagcagcctg ggcattccccg tgaaccacct catagaggc 300
tcccagaagt gtgtggctga gctgggtccc caggccgtgg gggccgtgaa 350

ggccctgaag gccctgctgg gggccctgac agtgttgcc tgagccgaga 400
ctggaggcata tacacctgag gacaagacgc tgcccaccccg cgagggctga 450
aaaccccgcc gcggggagga cctgtccatcc cttcccccg gcccctctca 500
ataaacgtgg ttaagagcaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 550
aaaaaaaaaa aaaaaaaaaa 570

<210> 408

<211> 104

<212> PRT

<213> Homo sapiens

<400> 408

Met	Lys	Leu	Ala	Ala	Leu	Leu	Gly	Leu	Cys	Val	Ala	Leu	Ser	Cys
1					5				10				15	
Ser	Ser	Ala	Ala	Ala	Phe	Leu	Val	Gly	Ser	Ala	Lys	Pro	Val	Ala
					20				25				30	
Gln	Pro	Val	Ala	Ala	Leu	Glu	Ser	Ala	Ala	Glu	Ala	Gly	Ala	Gly
					35				40				45	
Thr	Leu	Ala	Asn	Pro	Leu	Gly	Thr	Leu	Asn	Pro	Leu	Lys	Leu	Leu
					50				55				60	
Leu	Ser	Ser	Leu	Gly	Ile	Pro	Val	Asn	His	Leu	Ile	Glu	Gly	Ser
					65				70				75	
Gln	Lys	Cys	Val	Ala	Glu	Leu	Gly	Pro	Gln	Ala	Val	Gly	Ala	Val
					80				85				90	
Lys	Ala	Leu	Lys	Ala	Leu	Leu	Gly	Ala	Leu	Thr	Val	Phe	Gly	
					95				100					

<210> 409

<211> 2089

<212> DNA

<213> Homo sapiens

<400> 409

tgaaggactt ttccaggacc caaggccaca cactggaagt cttgcagctg 50
aaggaggca ctccttggcc tccgcagccg atcacatgaa ggtgggtgcc 100
agtctcctgc tctccgtcct cctggcacag gtgtggctgg taccggcctt 150
ggcccccagt cctcagtcgc cagagacccc agccctcag aaccagacca 200
gcagggtagt gcaggctccc agggaggaag aggaagatga gcaggaggcc 250
agcggaggaga aggccggta ggaagagaaa gcctggctga tggccagcag 300
gcagcagctt gccaaggaga cttcaaactt cggattcagc ctgctgcgaa 350
agatctccat gaggcacatgg tcttctctcc atttggcatg 400
tccttggcca tgacaggctt gatgctgggg gccacaggcc cgactgaaac 450
ccagatcaag agagggtcc acttgcagcc cctgaagccc accaagcccg 500

ggctcctgcc ttccctctt aaggactca gagagaccct ctcggcaac 550
ctggaaactgg gcctctaca ggggagttt gccttcatcc acaaggattt 600
tgatgtcaaa gagactttct tcaatttatac caagaggtat tttgatacag 650
agtgcgtgcc tatgaatttt cgcaatgcct cacaggccaa aaggctcatg 700
aatcattaca ttaacaaaga gactcgaaaaaaaattccca aactgttga 750
tgagattaat cctgaaacca aattaattct tgtggattac atcttgtca 800
aaggaaatg gttgacccca tttgaccctg tcttcaccga agtcgacact 850
ttccacctgg acaagtacaa gaccattaag gtgcccattga tgtacggtgc 900
aggcaagttt gcctccaccc ttgacaagaa ttttcgttgt catgtcctca 950
aactgccccta ccaaggaaat gccaccatgc tggtggtcct catggagaaa 1000
atgggtgacc acctcgccct tgaagactac ctgaccacag acttggtgga 1050
gacatggctc agaaacatga aaaccagaaa catggaagtt ttcttcgcga 1100
agttcaagct agatcagaag tatgagatgc atgagctgct taggcagatg 1150
ggaatcagaa gaatcttctc accctttgtc gacccatgt aactctcagc 1200
tactggaaga aatctccaag tatccaggtt tttacgaaga acagtgattt 1250
aagttgatga aaggggact gaggcagtgg caggaatctt gtcagaaattt 1300
actgcttattt ccatgcctcc tgtcatcaaa gtggaccggc catttcattt 1350
catgatctat gaagaaacct ctggaatgtc tctgtttctg ggcagggtgg 1400
tgaatccgac tctcctataa ttcaggacat gcataaggcac ttcgtgttgt 1450
agtagatgtc gaatctgagg tatcaaacac acacaggata ccagcaatgg 1500
atggcagggg agagtgttcc ttttgttctt aactagtta ggggtttctc 1550
aaataaatac agtagcccccc acttatctga gggggataca ttcaaagacc 1600
cccagcagat gcctgaaacg gtggacagtgc ctgaacccctt tatatatattt 1650
ttcctacaca tacataccta tgataaagtt taatttataa attaggcaca 1700
gtaagagattt aacaataata acaacattaa gtaaaatgag ttacttgaac 1750
gcaaggactg caataccata acagtcaaac tgattataga gaaggctact 1800
aagtgactca tggcgagga gcatagacag tgtggagaca ttgggcaagg 1850
ggagaattca catcctgggt gggacagagc aggacgatgc aagattccat 1900
cccactactc agaatggcat gctgcttaag acttttagat tggttatcc 1950
tggaaatttt catttaatgt ttttggacca tggttgacca tggtaactg 2000
agactgcaga aagcaaaacc atggataagg gaggactact acaaaaagcat 2050
taaattgata catatTTTTT aaaaaaaaaaaaaaaa 2089

<210> 410
<211> 444
<212> PRT
<213> Homo sapiens

<400> 410
Met Lys Val Val Pro Ser Leu Leu Leu Ser Val Leu Leu Ala Gln
1 5 10 15
Val Trp Leu Val Pro Gly Leu Ala Pro Ser Pro Gln Ser Pro Glu
20 25 30
Thr Pro Ala Pro Gln Asn Gln Thr Ser Arg Val Val Gln Ala Pro
35 40 45
Arg Glu Glu Glu Glu Asp Glu Gln Glu Ala Ser Glu Glu Lys Ala
50 55 60
Gly Glu Glu Glu Lys Ala Trp Leu Met Ala Ser Arg Gln Gln Leu
65 70 75
Ala Lys Glu Thr Ser Asn Phe Gly Phe Ser Leu Leu Arg Lys Ile
80 85 90
Ser Met Arg His Asp Gly Asn Met Val Phe Ser Pro Phe Gly Met
95 100 105
Ser Leu Ala Met Thr Gly Leu Met Leu Gly Ala Thr Gly Pro Thr
110 115 120
Glu Thr Gln Ile Lys Arg Gly Leu His Leu Gln Ala Leu Lys Pro
125 130 135
Thr Lys Pro Gly Leu Leu Pro Ser Leu Phe Lys Gly Leu Arg Glu
140 145 150
Thr Leu Ser Arg Asn Leu Glu Leu Gly Leu Ser Gln Gly Ser Phe
155 160 165
Ala Phe Ile His Lys Asp Phe Asp Val Lys Glu Thr Phe Phe Asn
170 175 180
Leu Ser Lys Arg Tyr Phe Asp Thr Glu Cys Val Pro Met Asn Phe
185 190 195
Arg Asn Ala Ser Gln Ala Lys Arg Leu Met Asn His Tyr Ile Asn
200 205 210
Lys Glu Thr Arg Gly Lys Ile Pro Lys Leu Phe Asp Glu Ile Asn
215 220 225
Pro Glu Thr Lys Leu Ile Leu Val Asp Tyr Ile Leu Phe Lys Gly
230 235 240
Lys Trp Leu Thr Pro Phe Asp Pro Val Phe Thr Glu Val Asp Thr
245 250 255
Phe His Leu Asp Lys Tyr Lys Thr Ile Lys Val Pro Met Met Tyr
260 265 270
Gly Ala Gly Lys Phe Ala Ser Thr Phe Asp Lys Asn Phe Arg Cys
275 280 285

His	Val	Leu	Lys	Leu	Pro	Tyr	Gln	Gly	Asn	Ala	Thr	Met	Leu	Val
				290				295					300	
Val	Leu	Met	Glu	Lys	Met	Gly	Asp	His	Leu	Ala	Leu	Glu	Asp	Tyr
		305						310					315	
Leu	Thr	Thr	Asp	Leu	Val	Glu	Thr	Trp	Leu	Arg	Asn	Met	Lys	Thr
		320						325					330	
Arg	Asn	Met	Glu	Val	Phe	Phe	Pro	Lys	Phe	Lys	Leu	Asp	Gln	Lys
		335						340					345	
Tyr	Glu	Met	His	Glu	Leu	Leu	Arg	Gln	Met	Gly	Ile	Arg	Arg	Ile
		350						355					360	
Phe	Ser	Pro	Phe	Ala	Asp	Leu	Ser	Glu	Leu	Ser	Ala	Thr	Gly	Arg
		365						370					375	
Asn	Leu	Gln	Val	Ser	Arg	Val	Leu	Arg	Arg	Thr	Val	Ile	Glu	Val
		380						385					390	
Asp	Glu	Arg	Gly	Thr	Glu	Ala	Val	Ala	Gly	Ile	Leu	Ser	Glu	Ile
		395						400					405	
Thr	Ala	Tyr	Ser	Met	Pro	Pro	Val	Ile	Lys	Val	Asp	Arg	Pro	Phe
		410						415					420	
His	Phe	Met	Ile	Tyr	Glu	Glu	Thr	Ser	Gly	Met	Leu	Leu	Phe	Leu
		425						430					435	
Gly	Arg	Val	Val	Asn	Pro	Thr	Leu	Leu						
		440												

<210> 411
<211> 636
<212> DNA
<213> Homo sapiens

<400> 411
ctgggatcag ccactgcagc tccctgagca ctctctacag agacgcggac 50
cccagacatg aggaggctcc tcctggtcac cagcctggtg gttgtgctgc 100
tgtgggaggc aggtgcagtc ccagcaccca aggtccctat caagatgcaa 150
gtcaaacact ggcctcaga gcaggaccca gagaaggcct gggcgcccc 200
tgtggtggag cctccggaga aggacgacca gctggtggtg ctgtccctg 250
tccagaagcc gaaactcttg accaccgagg agaagccacg aggtcagggc 300
aggggccccca tccttccagg caccaaggcc tggatggaga ccgaggacac 350
cctggccgt gtcctgagtc ccgagccga ccatgacagc ctgtaccacc 400
ctccgcctga ggaggaccag ggcgaggaga ggccccgggt gtgggtgatg 450
ccaaatcacc aggtgctctt gggaccggag gaagaccaag accacatcta 500
ccaccccccag tagggttcca ggggccatca ctgccccgc cctgtcccaa 550
ggcccgaggct gttgggactg ggaccctccc taccctgccc cagctagaca 600

aataaaccggc agcaggcaaa aaaaaaaaaa aaaaaa 636

<210> 412

<211> 151

<212> PRT

<213> Homo sapiens

<400> 412

Met Arg Arg Leu Leu Leu Val Thr Ser Leu Val Val Val Leu Leu
1 5 10 15

Trp Glu Ala Gly Ala Val Pro Ala Pro Lys Val Pro Ile Lys Met
20 25 30

Gln Val Lys His Trp Pro Ser Glu Gln Asp Pro Glu Lys Ala Trp
35 40 45

Gly Ala Arg Val Val Glu Pro Pro Glu Lys Asp Asp Gln Leu Val
50 55 60

Val Leu Phe Pro Val Gln Lys Pro Lys Leu Leu Thr Thr Glu Glu
65 70 75

Lys Pro Arg Gly Gln Gly Arg Gly Pro Ile Leu Pro Gly Thr Lys
80 85 90

Ala Trp Met Glu Thr Glu Asp Thr Leu Gly Arg Val Leu Ser Pro
95 100 105

Glu Pro Asp His Asp Ser Leu Tyr His Pro Pro Pro Glu Glu Asp
110 115 120

Gln Gly Glu Glu Arg Pro Arg Leu Trp Val Met Pro Asn His Gln
125 130 135

Val Leu Leu Gly Pro Glu Glu Asp Gln Asp His Ile Tyr His Pro
140 145 150

Gln

<210> 413

<211> 1176

<212> DNA

<213> Homo sapiens

<400> 413

agaaaagctgc actctgttga gctccagggc gcagtggagg gagggagtga 50

aggagactctc tgtacccaag gaaagtgcag ctgagactca gacaagatta 100

caatgaacca actcagcttc ctgctgttc tcatacgac caccagagga 150

tggagttacag atgaggctaa tacttacttc aaggaatgga cctgttcttc 200

gtctccatct ctgcccagaa gctgcaagga aatcaaagac gaatgtccta 250

gtgcatttga tggcctgtat tttctccgca ctgagaatgg tgtttatctac 300

cagaccttct gtgacatgac ctctgggggt ggcggctgga ccctgggtggc 350

cagcgtgcat gagaatgaca tgcgtggaa gtgcacggtg ggcgatcgct 400

ggtccagtca gcagggcagc aaagcagact acccagaggg ggacggcaac 450
tggccaact acaacacctt tggatctgca gaggcggca cgagcgatga 500
ctacaagaac cctggctact acgacatcca ggccaaggac ctgggcatact 550
ggcacgtgcc caataagtcc cccatgcagc actggagaaa cagctccctg 600
ctgaggtacc gcacggacac tggtttcctc cagacactgg gacataatct 650
gtttggcatc taccagaaat atccagtcaa atatggagaa ggaaagtgtt 700
ggactgacaa cggcccggtg atccctgtgg tctatgattt tggcgacgcc 750
cagaaaacag catcttatta ctcaccctat ggccagcggg aattcactgc 800
gggatttgtt cagttcaggg tatttaataa cgagagagca gccaacgcct 850
tgtgtgctgg aatgagggtc accggatgta acactgagca tcactgcatt 900
ggtggaggag gatacttcc agaggccagt ccccagcagt gtggagattt 950
ttctggttt gattggagtg gatatggaac tcatgttggt tacagcagca 1000
gccgtgagat aactgaggca gctgtgcttc tattctatcg ttgagagttt 1050
tgtggaggaa aaccragacc tctcctccca accatgagat cccaaggatg 1100
gagaacaact taccagtag ctagaatgtt aatggcagaa gagaaaacaa 1150
taaatcatat tgactcaaga aaaaaa 1176

<210> 414
<211> 313
<212> PRT
<213> Homo sapiens

<400> 414
Met Asn Gln Leu Ser Phe Leu Leu Phe Ile Ala Thr Thr Arg
1 5 10 15
Gly Trp Ser Thr Asp Glu Ala Asn Thr Tyr Phe Lys Glu Trp Thr
20 25 30
Cys Ser Ser Ser Pro Ser Leu Pro Arg Ser Cys Lys Glu Ile Lys
35 40 45
Asp Glu Cys Pro Ser Ala Phe Asp Gly Leu Tyr Phe Leu Arg Thr
50 55 60
Glu Asn Gly Val Ile Tyr Gln Thr Phe Cys Asp Met Thr Ser Gly
65 70 75
Gly Gly Gly Trp Thr Leu Val Ala Ser Val His Glu Asn Asp Met
80 85 90
Arg Gly Lys Cys Thr Val Gly Asp Arg Trp Ser Ser Gln Gln Gly
95 100 105
Ser Lys Ala Asp Tyr Pro Glu Gly Asp Gly Asn Trp Ala Asn Tyr
110 115 120
Asn Thr Phe Gly Ser Ala Glu Ala Ala Thr Ser Asp Asp Tyr Lys

125	130	135
Asn Pro Gly Tyr Tyr Asp Ile Gln Ala Lys Asp Leu Gly Ile Trp 140	145	150
His Val Pro Asn Lys Ser Pro Met Gln His Trp Arg Asn Ser Ser 155	160	165
Leu Leu Arg Tyr Arg Thr Asp Thr Gly Phe Leu Gln Thr Leu Gly 170	175	180
His Asn Leu Phe Gly Ile Tyr Gln Lys Tyr Pro Val Lys Tyr Gly 185	190	195
Glu Gly Lys Cys Trp Thr Asp Asn Gly Pro Val Ile Pro Val Val 200	205	210
Tyr Asp Phe Gly Asp Ala Gln Lys Thr Ala Ser Tyr Tyr Ser Pro 215	220	225
Tyr Gly Gln Arg Glu Phe Thr Ala Gly Phe Val Gln Phe Arg Val 230	235	240
Phe Asn Asn Glu Arg Ala Ala Asn Ala Leu Cys Ala Gly Met Arg 245	250	255
Val Thr Gly Cys Asn Thr Glu His His Cys Ile Gly Gly Gly Gly 260	265	270
Tyr Phe Pro Glu Ala Ser Pro Gln Gln Cys Gly Asp Phe Ser Gly 275	280	285
Phe Asp Trp Ser Gly Tyr Gly Thr His Val Gly Tyr Ser Ser Ser 290	295	300
Arg Glu Ile Thr Glu Ala Ala Val Leu Leu Phe Tyr Arg 305	310	

<210> 415
<211> 1281
<212> DNA
<213> Homo sapiens

<400> 415
gccccggccgg cgcggcgtgc gcagaggagc cgctctcgcc gcccacacct 50
cggctgggag cccacgaggc tgccgcattcc tgcctcgga acaatggac 100
tcggcgccgc aggtgcttgg gccgcgtgc tcctgggac gctgcaggta 150
ctagcgctgc tggggccgc ccatgaaagc gcagccatgg cggcatctgc 200
aaacatagag aattctggc ttccacacaa ctccagtgtc aactcaacag 250
agactctcca acatgtgcct tctgaccata caaatgaaac ttccaacagt 300
actgtgaaac caccacacttc agttgcctca gactccagta atacaacggt 350
caccaccaatg aaacctacag cggcatctaa tacaacaaca ccagggatgg 400
tctcaacaaa tatgacttct accacctaa agtctacacc caaaacaaca 450
agtgtttcac agaacacatc tcagatatac acatccacaa tgaccgtaac 500

ccacaatagt tcagtgacat ctgctgcttc atcagtaaca atcacaacaa 550
 ctatgcattc tgaagcaaag aaaggatcaa aatttgatac tgggagctt 600
 gttggtggtt ttgttattaac gctgggagtt ttatctattc tttacattgg 650
 atgcaaaatg tattactcaa gaagaggcat tcggtatcga accatagatg 700
 aacatgatgc catcattaa ggaaatccat ggaccaagga tggaatacag 750
 attgatgctg ccctatcaat taatttttgtt ttattaatag tttaaaacaa 800
 tattctctt ttgaaaatag tataaacagg ccatgcatat aatgtacagt 850
 gtattacgta aatatgtaaa gattcttcaa ggtaacaagg gtttgggttt 900
 tgaaataaac atctggatct tatagaccgt tcatacaatg gtttagcaa 950
 gttcatagta agacaaacaa gtcctatctt tttttttgg ctgggggtgg 1000
 ggcattggtc acatatgacc agtaattgaa agacgtcatc actgaaagac 1050
 agaatgcccatttggcataaaataagaag tttgtcacag cactcaggat 1100
 tttgggtatc tttttagct cacataaaga acttcagtgc ttttcagagc 1150
 tggatatac ttaattacta atgccacaca gaaattatac aatcaaacta 1200
 gatctgaagc ataatttaag aaaaacatca acatfffftg tgcttaaac 1250
 tgttagtagtt ggtctagaaa caaaatactc c 1281

<210> 416

<211> 208

<212> PRT

<213> Homo sapiens

<400> 416

Met	Gly	Leu	Gly	Ala	Arg	Gly	Ala	Trp	Ala	Ala	Leu	Leu	Leu	Gly
1														15

Thr	Leu	Gln	Val	Leu	Ala	Leu	Leu	Gly	Ala	Ala	His	Glu	Ser	Ala
														30
20														

Ala	Met	Ala	Ala	Ser	Ala	Asn	Ile	Glu	Asn	Ser	Gly	Leu	Pro	His
														45
35														

Asn	Ser	Ser	Ala	Asn	Ser	Thr	Glu	Thr	Leu	Gln	His	Val	Pro	Ser
														60
50														

Asp	His	Thr	Asn	Glu	Thr	Ser	Asn	Ser	Thr	Val	Lys	Pro	Pro	Thr
														75
65														

Ser	Val	Ala	Ser	Asp	Ser	Ser	Asn	Thr	Thr	Val	Thr	Thr	Met	Lys
														90
80														

Pro	Thr	Ala	Ala	Ser	Asn	Thr	Thr	Thr	Pro	Gly	Met	Val	Ser	Thr
														105
95														

Asn	Met	Thr	Ser	Thr	Thr	Leu	Lys	Ser	Thr	Pro	Lys	Thr	Thr	Ser
														120
110														

Val	Ser	Gln	Asn	Thr	Ser	Gln	Ile	Ser	Thr	Ser	Thr	Met	Thr	Val
-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----

125	130	135
Thr His Asn Ser Ser Val Thr Ser Ala Ala Ser Ser Val Thr Ile		
140	145	150
Thr Thr Thr Met His Ser Glu Ala Lys Lys Gly Ser Lys Phe Asp		
155	160	165
Thr Gly Ser Phe Val Gly Gly Ile Val Leu Thr Leu Gly Val Leu		
170	175	180
Ser Ile Leu Tyr Ile Gly Cys Lys Met Tyr Tyr Ser Arg Arg Gly		
185	190	195
Ile Arg Tyr Arg Thr Ile Asp Glu His Asp Ala Ile Ile		
200	205	

<210> 417
<211> 1728
<212> DNA
<213> Homo sapiens

<400> 417
cagccgggtc ccaaggctgt gcctgagocct gaggctgagc ctgagccccga 50
gccgggagcc ggtcgccgggg gctccgggtt gtgggaccgc tggggcccca 100
gcgtatggcga ccctgtgggg aggccttctt cggcttggct ctttgctcag 150
cctgtcgtgc ctggcgcttt ccgtgctgct gctggcgccag ctgtcagacg 200
ccgccaagaa tttcgaggat gtcagatgta aatgtatctg ccctccctat 250
aaagaaaaatt ctggcatat ttataataag aacatatctc agaaagattt 300
tgattgcctt catgttgtgg agccatgcc tgtgcggggg cctgatgttag 350
aagcatactg tctacgctgt gaatgcaaattt atgaagaaag aagctctgtc 400
acaatcaagg ttaccattat aatttatctc tccattttgg gccttctact 450
tctgtacatg gtatatctta ctctgggttga gcccatactg aagaggcgcc 500
tctttggaca tgcacagttt atacagagtgt atgatgatattt tggggatcac 550
cagccttttg caaatgcaca cgatgtgcta gcccgtccc gcagtcgagc 600
caacgtgctg aacaaggtag aatatgcaca gcagcgctgg aagcttcaag 650
tccaagagca gcgaaagtct gtctttgacc ggcattttgtt cctcagctaa 700
ttgggaattt aattcaaggt gactagaaag aaacaggcag acaactggaa 750
agaactgact gggttttgtt gggttttcatt ttaatacctt gttgatttca 800
ccaactgttg ctgaaagatt caaaaacttgg aagaaaaact tgcttggattt 850
tttttcttg ttaacgtaat aatagagaca tttttaaaag cacacagctc 900
aaagtcaagcc aataagtctt ttccttatttgc tgacttttac taataaaaaat 950
aatctgcctt gtaaatttac ttgaagtcct ttacctggaa caagcactct 1000

cttttcacc acatagttt aacttgactt tcaagataat ttccagggtt 1050
tttgggttg ttgtttttg tttgtttgtt ttgggtggag aggggaggg 1100
tgcctggaa gtggtaaca actttttca agtcactta ctaaacaaac 1150
ttttgtaaat agaccttacc ttctatttc gagttcatt tatatttgc 1200
agtgttagcca gcctcatcaa agagctgact tactcatttgc 1250
tgactgtatt atctgggtat ctgctgtgtc tgcaacttcat ggttaacggg 1300
atctaaaatg cctgggtggct tttcacaaaaa agcagattt cttcatgtac 1350
tgtgatgtct gatgaatgc atcctagaac aaactggcca tttgctagtt 1400
tactctaaag actaaacata gtcttgggt gtgtggtctt actcatctc 1450
tagtacctt aaggacaaat cctaaggact tggacacttg caataaagaa 1500
attttatttt aaacccaagc ctccctggat tgataatata tacacatttgc 1550
tcagcatttc cggtcggtggt gagaggcagc tggttagctt ccaatatgtc 1600
cagcttggaa ctagggctgg gggtgtgggt gcctcttctg aaaggctaa 1650
ccattattgg ataactggct ttttcttcc tatgtcctct ttggaatgta 1700
acaataaaaaa taattttga aacatcaa 1728

<210> 418
<211> 198
<212> PRT
<213> Homo sapiens

<400> 418
Met Ala Thr Leu Trp Gly Gly Leu Leu Arg Leu Gly Ser Leu Leu
1 5 10 15
Ser Leu Ser Cys Leu Ala Leu Ser Val Leu Leu Leu Ala Gln Leu
20 25 30
Ser Asp Ala Ala Lys Asn Phe Glu Asp Val Arg Cys Lys Cys Ile
35 40 45
Cys Pro Pro Tyr Lys Glu Asn Ser Gly His Ile Tyr Asn Lys Asn
50 55 60
Ile Ser Gln Lys Asp Cys Asp Cys Leu His Val Val Glu Pro Met
65 70 75
Pro Val Arg Gly Pro Asp Val Glu Ala Tyr Cys Leu Arg Cys Glu
80 85 90
Cys Lys Tyr Glu Glu Arg Ser Ser Val Thr Ile Lys Val Thr Ile
95 100 105
Ile Ile Tyr Leu Ser Ile Leu Gly Leu Leu Leu Tyr Met Val
110 115 120
Tyr Leu Thr Leu Val Glu Pro Ile Leu Lys Arg Arg Leu Phe Gly
125 130 135

His Ala Gln Leu Ile Gln Ser Asp Asp Asp Ile Gly Asp His Gln
140 145 150
Pro Phe Ala Asn Ala His Asp Val Leu Ala Arg Ser Arg Ser Arg
155 160 165
Ala Asn Val Leu Asn Lys Val Glu Tyr Ala Gln Gln Arg Trp Lys
170 175 180
Leu Gln Val Gln Glu Gln Arg Lys Ser Val Phe Asp Arg His Val
185 190 195
Val Leu Ser

<210> 419
<211> 681
<212> DNA
<213> Homo sapiens

<400> 419
gcacctgcga ccaccgtgag cagtcatggc gtactccaca gtgcagagag 50
tcgctctggc ttctgggctt gtcctggctc tgcgtcgct gctgccccaaag 100
gccttcctgt cccgcggaa gcggcaggag ccgcgcgcga cacctgaagg 150
aaaattgggc cgatttccac ctatgatgca tcatacaccag gcaccctcag 200
atggccagac tcctggggct cgtttccaga ggtctcacct tgccgaggca 250
tttgcaaagg ccaaaggatc aggtggaggt gctggaggag gaggttagtgg 300
aagaggtctg atggggcaga ttattccaat ctacggttt gggatttttt 350
tatataatact gtacattcta tttaaggtaa gtagaatcat cctaatcata 400
ttacatcaat gaaaatctaa tatggcgata aaaatcattt tctacattaa 450
aacttcttat agttcataaaa attatttcaa atccatcatc tctttaaatc 500
ctgcctcctc ttcatgaggt acttaggata gccattattt cagtttcaca 550
taagaatgt tactcaatgt ttaagtgtt tgccccaaaa ttccacaacta 600
acaaggcaga actaggactt gaacatggat ctttggttc ttaatccagt 650
gagtgataca attcaatgca ctcccctgcc a 681

<210> 420
<211> 128
<212> PRT
<213> Homo sapiens

<400> 420
Met Ala Tyr Ser Thr Val Gln Arg Val Ala Leu Ala Ser Gly Leu
1 5 10 15
Val Leu Ala Leu Ser Leu Leu Leu Pro Lys Ala Phe Leu Ser Arg
20 25 30
Gly Lys Arg Gln Glu Pro Pro Pro Thr Pro Glu Gly Lys Leu Gly
35 40 45

Arg Phe Pro Pro Met Met His His Gln Ala Pro Ser Asp Gly
50 55 60
Gln Thr Pro Gly Ala Arg Phe Gln Arg Ser His Leu Ala Glu Ala
65 70 75
Phe Ala Lys Ala Lys Gly Ser Gly Gly Ala Gly Gly Gly
80 85 90
Ser Gly Arg Gly Leu Met Gly Gln Ile Ile Pro Ile Tyr Gly Phe
95 100 105
Gly Ile Phe Leu Tyr Ile Leu Tyr Ile Leu Phe Lys Val Ser Arg
110 115 120
Ile Ile Leu Ile Ile Leu His Gln
125

<210> 421
<211> 1630
<212> DNA
<213> Homo sapiens

<400> 421
cggtcgagt gcagctgtgg ggagattca gtgcattgcc tccccctgggt 50
gctttcatc ttggatttga aagttgagag cagcatgtt tgccactga 100
aactcatcct gtcgcaggatg ttactggatt attccttggg cctgaatgac 150
ttgaatgtt cccgcctga gctaacagtc catgtgggtg attcagctct 200
gatggatgtt gttttccaga gcacagaaga caaatgtata ttcaagatag 250
actggactct gtcaccagga gagcacgoca aggacgaata tgtgctatac 300
tattactcca atctcagtgt gcctattggg cgcttccaga accgcgtaca 350
cttgatgggg gacatcttat gcaatgatgg ctctctcctg ctccaagatg 400
tgcaagagggc tgaccaggaa acctatatct gtgaaatccg cctcaaagg 450
gagagccagg tgttcaagaa ggcgggtgtc ctgcattgtgc ttccagagga 500
gcccaaagag ctcatggtcc atgtgggtgg attgatttagt atggatgtg 550
ttttccagag cacagaagtg aaacacgtga ccaaggtaga atggatattt 600
tcaggacggc ggcacaaagga ggagattgtt tttcggtact accacaaact 650
caggatgtct gtggagtact cccagagctg gggccacttc cagaatcg 700
tgaacctggt gggggacatt ttccgcaatg acgggtccat catgcttcaa 750
ggagtggagg agtcagatgg aggaaactac acctgcagta tccacctagg 800
gaacctggtg ttcaagaaaa ccattgtgtc gcatgtcagc ccggaagagc 850
ctcgaacact ggtgaccccg gcagccctga ggcctctggc cttgggtgg 900
aatcagttgg tgatcattgtt gggattgtc tgcacacaa tcctgctgtc 950
ccctgttctg atattgatcg tgaagaagac ctgtggaaat aagagttcag 1000

tgaattctac agtcttggc aagaacaoga agaagactaa tccagagata 1050
aaagaaaaac cctgccattt tgaaagatgt gaaggggaga aacacattta 1100
ctccccata attgtacggg aggtgatcga ggaagaagaa ccaagtgaaa 1150
aatcagaggc cacctacatg accatgcacc cagttggcc ttctctgagg 1200
tcagatcgga acaactcact tgaaaaaaag tcaggtgggg gaatgccaaa 1250
aacacagcaa gccttttag aagaatggag agtcccttca tctcagcagc 1300
ggtggagact ctctcctgtg tgtgtcctgg gccactctac cagtgatttc 1350
agactcccgc tctcccagct gtcctcctgt ctcattgttt ggtcaataca 1400
ctgaagatgg agaatttggc gcctggcaga gagactggac agctctggag 1450
gaacaggcct gctgagggga ggggagcatg gacttggcct ctggagtggg 1500
acactggccc tggaaaccag gctgagctga gtggcctcaa acccccccgtt 1550
ggatcagacc ctccctgtgg cagggttctt agtggatgag ttactggaa 1600
gaatcagaga taaaaaaccaa cccaaatcaa 1630

<210> 422

<211> 394

<212> PRT

<213> Homo sapiens

<400> 422

Met	Phe	Cys	Pro	Leu	Lys	Leu	Ile	Leu	Ile	Pro	Val	Leu	Leu	Asp
1				5				10						15
Tyr	Ser	Leu	Gly	Leu	Asn	Asp	Leu	Asn	Val	Ser	Pro	Pro	Glu	Leu
				20				25						30
Thr	Val	His	Val	Gly	Asp	Ser	Ala	Leu	Met	Gly	Cys	Val	Phe	Gln
				35				40						45
Ser	Thr	Glu	Asp	Lys	Cys	Ile	Phe	Lys	Ile	Asp	Trp	Thr	Leu	Ser
				50				55						60
Pro	Gly	Glu	His	Ala	Lys	Asp	Glu	Tyr	Val	Leu	Tyr	Tyr	Tyr	Ser
	65							70						75
Asn	Leu	Ser	Val	Pro	Ile	Gly	Arg	Phe	Gln	Asn	Arg	Val	His	Leu
				80				85						90
Met	Gly	Asp	Ile	Leu	Cys	Asn	Asp	Gly	Ser	Leu	Leu	Leu	Gln	Asp
				95				100						105
Val	Gln	Glu	Ala	Asp	Gln	Gly	Thr	Tyr	Ile	Cys	Glu	Ile	Arg	Leu
				110				115						120
Lys	Gly	Glu	Ser	Gln	Val	Phe	Lys	Lys	Ala	Val	Val	Leu	His	Val
				125				130						135
Leu	Pro	Glu	Glu	Pro	Lys	Glu	Leu	Met	Val	His	Val	Gly	Gly	Leu
				140				145						150
Ile	Gln	Met	Gly	Cys	Val	Phe	Gln	Ser	Thr	Glu	Val	Lys	His	Val

155	160	165
Thr Lys Val Glu Trp Ile Phe Ser Gly Arg Arg Ala Lys Glu Glu		
170	175	180
Ile Val Phe Arg Tyr Tyr His Lys Leu Arg Met Ser Val Glu Tyr		
185	190	195
Ser Gln Ser Trp Gly His Phe Gln Asn Arg Val Asn Leu Val Gly		
200	205	210
Asp Ile Phe Arg Asn Asp Gly Ser Ile Met Leu Gln Gly Val Arg		
215	220	225
Glu Ser Asp Gly Gly Asn Tyr Thr Cys Ser Ile His Leu Gly Asn		
230	235	240
Leu Val Phe Lys Lys Thr Ile Val Leu His Val Ser Pro Glu Glu		
245	250	255
Pro Arg Thr Leu Val Thr Pro Ala Ala Leu Arg Pro Leu Val Leu		
260	265	270
Gly Gly Asn Gln Leu Val Ile Ile Val Gly Ile Val Cys Ala Thr		
275	280	285
Ile Leu Leu Leu Pro Val Leu Ile Leu Ile Val Lys Lys Thr Cys		
290	295	300
Gly Asn Lys Ser Ser Val Asn Ser Thr Val Leu Val Lys Asn Thr		
305	310	315
Lys Lys Thr Asn Pro Glu Ile Lys Glu Lys Pro Cys His Phe Glu		
320	325	330
Arg Cys Glu Gly Glu Lys His Ile Tyr Ser Pro Ile Ile Val Arg		
335	340	345
Glu Val Ile Glu Glu Glu Glu Pro Ser Glu Lys Ser Glu Ala Thr		
350	355	360
Tyr Met Thr Met His Pro Val Trp Pro Ser Leu Arg Ser Asp Arg		
365	370	375
Asn Asn Ser Leu Glu Lys Lys Ser Gly Gly Met Pro Lys Thr		
380	385	390
Gln Gln Ala Phe		

<210> 423
 <211> 963
 <212> DNA
 <213> Homo sapiens

<400> 423
 ctatgaagaa gcttcctgga aaacaataag caaaggaaaa caaatgtgtc 50
 ccatctcaca tggttctacc ctactaaaga caggaagatc ataaactgac 100
 agatactgaa attgttaagag ttggaaaacta catttgcaa agtcattgaa 150
 ctctgagctc agttgcagta ctcggaaagc catgcaggat gaagatggat 200

acatcacctt aaatattaaa actcgaaac cagctctgt ctccgttggc 250
cctgcacccct cctcctggtg gcgtgtgatg gctttgattc tgctgatccct 300
gtgcgtgggg atgggtgtcg ggctggtggc tctggggatt tggtctgtca 350
tgcagcgcaa ttacctacaa gatgagaatg aaaatcgac aggaactctg 400
caacaattag caaagcgctt ctgtcaatat gtggtaaaac aatcagaact 450
aaaggcact ttcaaaggcataaaatgcag cccctgtgac acaaactgga 500
gatattatgg agatagctgc tatgggttct tcagggacaa cttaacatgg 550
gaagagagta agcagtactg cactgacatg aatgctactc tootgaagat 600
tgacaaccgg aacattgtgg agtacatcaa agccaggact catttaattc 650
gttgggtcgg attatctcgc cagaagtcga atgaggtctg gaagtggag 700
gatggctcgg ttatctcaga aaatatgttt gagttttgg aagatggaaa 750
aggaaatatg aatttgtcattt atttcataa tggaaaaatg caccctacct 800
tctgtgagaa caaacattat ttaatgtgtg agaggaaggc tggcatgacc 850
aaggtggacc aactaccta atgcaaagag gtggacagga taacacagat 900
aagggtttta ttgtacaata aaagatatgt atgaatgcat cagtagctga 950
aaaaaaaaaaa aaa 963

<210> 424

<211> 229

<212> PRT

<213> Homo sapiens

<400> 424

Met	Gln	Asp	Glu	Asp	Gly	Tyr	Ile	Thr	Leu	Asn	Ile	Lys	Thr	Arg
1														15
Lys	Pro	Ala	Leu	Val	Ser	Val	Gly	Pro	Ala	Ser	Ser	Ser	Trp	Trp
				20					25					30
Arg	Val	Met	Ala	Leu	Ile	Leu	Ile	Leu	Cys	Val	Gly	Met	Val	
					35				40					45
Val	Gly	Leu	Val	Ala	Leu	Gly	Ile	Trp	Ser	Val	Met	Gln	Arg	Asn
				50					55					60
Tyr	Leu	Gln	Asp	Glu	Asn	Glu	Asn	Arg	Thr	Gly	Thr	Leu	Gln	Gln
								65	70					75
Leu	Ala	Lys	Arg	Phe	Cys	Gln	Tyr	Val	Val	Lys	Gln	Ser	Glu	Leu
								80	85					90
Lys	Gly	Thr	Phe	Lys	Gly	His	Lys	Cys	Ser	Pro	Cys	Asp	Thr	Asn
				95					100					105
Trp	Arg	Tyr	Tyr	Gly	Asp	Ser	Cys	Tyr	Gly	Phe	Phe	Arg	His	Asn
								110	115					120
Leu	Thr	Trp	Glu	Glu	Ser	Lys	Gln	Tyr	Cys	Thr	Asp	Met	Asn	Ala

125 130 135
Thr Leu Leu Lys Ile Asp Asn Arg Asn Ile Val Glu Tyr Ile Lys
140 145 150
Ala Arg Thr His Leu Ile Arg Trp Val Gly Leu Ser Arg Gln Lys
155 160 165
Ser Asn Glu Val Trp Lys Trp Glu Asp Gly Ser Val Ile Ser Glu
170 175 180
Asn Met Phe Glu Phe Leu Glu Asp Gly Lys Gly Asn Met Asn Cys
185 190 195
Ala Tyr Phe His Asn Gly Lys Met His Pro Thr Phe Cys Glu Asn
200 205 210
Lys His Tyr Leu Met Cys Glu Arg Lys Ala Gly Met Thr Lys Val
215 220 225
Asp Gln Leu Pro

<210> 425

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 425

tgcagccct gtgacacaaa ctgg 24

<210> 426

<211> 26

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 426

ctgagataac cgagccatcc tccccac 26

<210> 427

<211> 49

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 427

gcttcctgac actaaggctg tctgctagtc agaattgcct caaaaaagag 49

<210> 428

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 428
ccaccaatgg cagccccacc t 21

<210> 429
<211> 17
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 429
gactgccctc cctgc当地 17

<210> 430
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 430
caaaaaagcct ggaagtcttc aaag 24

<210> 431
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 431
cagctggact gcagggtgcta 20

<210> 432
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 432
cagtgagcac agcaagtgtc ct 22

<210> 433
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 433
ggccacacctcc ttgagtc当地 28

<210> 434
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 434
caactactgg ctaaagctgg tgaa 24

<210> 435
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 435
cctttctgtt taggtgatac ccaatga 27

<210> 436
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 436
tggccatccc taccagaggc aaaa 24

<210> 437
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 437
ctgaagacga cgcgattac ta 22

<210> 438
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 438
ggcagaaatg ggaggcaga 19

<210> 439
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 439
tgctctgtt gctacggctt tagtccctag 30

<210> 440
<211> 22

<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 440
agcagcagcc atgtagaatg aa 22

<210> 441
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 441
aatacgaaca gtgcacgctg at 22

<210> 442
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 442
tccagagagc caagcacggc aga 23

<210> 443
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 443
tctagccagc ttggctccaa ta 22

<210> 444
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 444
cctggctcta gcaccaactc ata 23

<210> 445
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 445
tcagtggccc taaggagatg ggcct 25

<210> 446
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 446
caggatacag tggaatctt gaga 24

<210> 447
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 447
cctgaagggc ttggagctta gt 22

<210> 448
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 448
tctttggcca tttccatgg ctca 24

<210> 449
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 449
cccatggcga ggaggaat 18

<210> 450
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 450
tgcgtacgtg tgccttcag 19

<210> 451
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 451
cagcacccca ggcagtctgt gtgt 24

<210> 452
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 452
aacgtgctac acgaccagtg tact 24

<210> 453
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 453
cacagcatat tcagatgact aaatcca 27

<210> 454
<211> 31
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 454
ttgttttagtt ctccaccgtg tctccacaga a 31

<210> 455
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 455
tgtcagaatg caacctggct t 21

<210> 456
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 456
tgatgtgcct ggctcagaac 20

<210> 457
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 457
tgcacctaga tgtcccccagc accc 24

<210> 458
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 458
aagatgcgcc aggcttctta 20

<210> 459
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 459
ctcctgtacg gtctgctcac ttat 24

<210> 460
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 460
tggctgtcag tccagtgtgc atgg 24

<210> 461
<211> 29
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 461
gcataggat agataagatc ctgctttat 29

<210> 462
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 462
caaattaaag taccatcg gagagaa 27

<210> 463
<211> 37

<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 463
aagttgctaa atatatacat tatctgcgcc aagtcca 37

<210> 464
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 464
gtgctgccc caattcatga 20

<210> 465
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 465
gtccttggta tgggtctgaa ttatat 26

<210> 466
<211> 31
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 466
actctctgca ccccacagtc accactatct c 31

<210> 467
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 467
ctgaggaacc agccatgtct ct 22

<210> 468
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 468
gaccagatgc aggtacagga tga 23

<210> 469
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 469
ctgccccttc agtgatgccca acctt 25

<210> 470
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 470
gggtggaggc tcactgagta ga 22

<210> 471
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 471
caatacagtt aatgaaaactc tgcttctt 28

<210> 472
<211> 36
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 472
tcctttaag cataggccat tttctcagtt tagaca 36

<210> 473
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 473
ggtgtgtcttg cttggtctca c 21

<210> 474
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 474
ccgtcggtca gcaacatgac 20

<210> 475
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 475
accgcctacc gctgtgccca 20

<210> 476
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 476
cagtaaaacc acaggctgga ttt 23

<210> 477
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 477
cctgagagca agaagggttga gaat 24

<210> 478
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 478
tagacagggga ccatggcccg ca 22

<210> 479
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 479
tgggctgttag aagagttgtt g 21

<210> 480
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 480
tccacacttg gccagtttat 20

<210> 481
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 481
cccaacttct ccctttgga ccct 24

<210> 482
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 482
gtcccttcac tgtttagagc atga 24

<210> 483
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 483
actctcccccc tcaacagcct cctgag 26

<210> 484
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 484
gtggtcaggg cagatcctt 20

<210> 485
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 485
acagatccag gagagactcc aca 23

<210> 486
<211> 21

<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 486
agcggcgctc ccagcctgaa t 21

<210> 487
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 487
catgattggc cctcagttcc atc 23

<210> 488
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 488
atagagggtt cccagaagtg 20

<210> 489
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 489
cagggccttc agggcattca c 21

<210> 490
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 490
gctcagccaa acactgtca 19

<210> 491
<211> 17
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 491
ggggccctga cagtgtt 17

<210> 492
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 492
ctgagccgag actggagcat ctacac 26

<210> 493
<211> 17
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 493
gtgggcagcg tcttgtc 17

<210> 494
<211> 1231
<212> DNA
<213> Homo Sapien

<400> 494
cccacgcgtc cgccgcgtcg cgccgcgtcg cctccgcgt ccagtctcgc 50
ccgcgcatccc ggcccgcccc tgtggcgtcg actccgaccc aggcagccag 100
cagccgcgc gggagccgga ccgcgcgcgg aggagctcgg acggcatgct 150
gagccccctc ctttgcgtaa gcccgagtgc ggagaagccc gggcaaacgc 200
aggctaagga gaccaaagcg gcgaagtcgc gagacagcgg acaaggcagcg 250
gaggagaagg aggaggaggc gaacccagag aggggcagca aaagaagcgg 300
tggtgtggg cgtcgtggcc atggcggcgg ctatcgccag ctcgctcatac 350
cgtcagaaga ggcaagcccg cgagcgcgag aaatccaacg cctgcaagtg 400
tgtcagcagc cccagcaaag gcaagaccag ctgcgcacaa aacaagttaa 450
atgtcttttc ccgggtcaaa ctcttcggct ccaagaagag ggcaccaag 500
agaccagagc ctcagcttaa gggtatagtt accaagctat acagccgaca 550
aggctaccac ttgcagctgc aggcggatgg aaccattgat ggcaccaag 600
atgaggacag cacttacact ctgtttaacc tcatccctgt gggctgcga 650
gtggtgtggcta tccaaaggagt tccaaaccaag ctgtacttgg caatgaacag 700
tgagggatac ttgtacacct cgaaacttt cacacctgag tgcaaattca 750
aagaatcaat gtttgaaaat tattatgtga catattcatc aatgatatac 800
cgtcagcagc agtcaggccg aggggtggat ctgggtctga acaaagaagg 850
agagatcatg aaaggcaacc atgtgaagaa gaacaagcct gcagctcatt 900

ttctgcctaa accactgaaa gtggccatgt acaaggagcc atcactgcac 950
gatctcacgg agttctcccg atctggaagc gggacccaa ccaagagcag 1000
aagtgtctct ggcgtgctga acggaggcaa atccatgagc cacaatgaat 1050
caacgttagcc agtgaggc aaagaaggc tctgtaacag aaccttacct 1100
ccaggtgctg ttgaattctt ctagcagtcc ttcacccaaa agttcaaatt 1150
tgtcagtgac atttacaaa caaacaggca gagttcacta ttctatctgc 1200
cattagacct tcttatcatc catactaaag c 1231

<210> 495
<211> 245
<212> PRT
<213> Homo Sapien

<400> 495
Met Ala Ala Ala Ile Ala Ser Ser Leu Ile Arg Gln Lys Arg Gln
1 5 10 15
Ala Arg Glu Arg Glu Lys Ser Asn Ala Cys Lys Cys Val Ser Ser
20 25 30
Pro Ser Lys Gly Lys Thr Ser Cys Asp Lys Asn Lys Leu Asn Val
35 40 45
Phe Ser Arg Val Lys Leu Phe Gly Ser Lys Lys Arg Arg Arg Arg
50 55 60
Arg Pro Glu Pro Gln Leu Lys Gly Ile Val Thr Lys Leu Tyr Ser
65 70 75
Arg Gln Gly Tyr His Leu Gln Leu Gln Ala Asp Gly Thr Ile Asp
80 85 90
Gly Thr Lys Asp Glu Asp Ser Thr Tyr Thr Leu Phe Asn Leu Ile
95 100 105
Pro Val Gly Leu Arg Val Val Ala Ile Gln Gly Val Gln Thr Lys
110 115 120
Leu Tyr Leu Ala Met Asn Ser Glu Gly Tyr Leu Tyr Thr Ser Glu
125 130 135
Leu Phe Thr Pro Glu Cys Lys Phe Lys Glu Ser Val Phe Glu Asn
140 145 150
Tyr Tyr Val Thr Tyr Ser Ser Met Ile Tyr Arg Gln Gln Gln Ser
155 160 165
Gly Arg Gly Trp Tyr Leu Gly Leu Asn Lys Glu Gly Glu Ile Met
170 175 180
Lys Gly Asn His Val Lys Lys Asn Lys Pro Ala Ala His Phe Leu
185 190 195
Pro Lys Pro Leu Lys Val Ala Met Tyr Lys Glu Pro Ser Leu His
200 205 210
Asp Leu Thr Glu Phe Ser Arg Ser Gly Ser Gly Thr Pro Thr Lys

215

220

225

Ser Arg Ser Val Ser Gly Val Leu Asn Gly Gly Lys Ser Met Ser
230 235 240

His Asn Glu Ser Thr
245

<210> 496

<211> 1471

<212> DNA

<213> Homo Sapien

<400> 496

ccaggatgga gctggggcct gtatagccat attattgttc tatgctacta 50
gacatggggg ggacttggtg aaaaaggtat tatccagcca gagggtctgg 100
gagccctgtc ttactgaacc tggcaacct ggatattctg agacatattt 150
tggggggatt tcagtaaaaa aagtggggga tcccctccat ttagagtgt 200
gcaaaggaaa aaacaccaag gttgggttcc ttcctgacat tggcagtgcc 250
ccagtagggg tggatgagc gaatattccc aaagctaaag tcccacaccc 300
tgttagattac aagagtggat ttggcaggag tgtccccaa aatacagtgg 350
aaaggtgcct gaagatattt aaaccacgtc ttggaaattt agtgggtctt 400
ggctttggga tagtgaagt gaggacagac actggagagg agggaaaggg 450
gacgttttca ataggaggca aaactcgagg gtggatcca ctgaggagta 500
cataggctgc tggatctggt ggagccagca ctgggcccac gggtggtaac 550
tggctgctgt ggaggggggt acgtgagggg ggggtctggg gcttatcctc 600
aggcctgtg ggtggggcag cgagtcgggg cctgagcgtc aagagcatgc 650
cctagtgagc gggctcctct gggggagccc agcgcgcctcc gggcgccctgc 700
cggtttgggg gtgtctcctc ccggggcgct atggcggcgc tggccagtag 750
cctgatccgg cagaagcggg aggtccgcga gccccggggc agccggccgg 800
tgtcggcgca gcggcgctg tgtcccccg gcaccaagtc ctttgccag 850
aagcagctcc tcatcctgtc gtccaaagggt cgactgtgcg gggggcgcc 900
cgcgccggccg gaccgcggcc cggagcctca gctcaaaggc atcgtcacca 950
aactgttctg ccgcacgggt ttctacctcc aggcgaatcc cgacggaaagc 1000
atccaggggca ccccaagagga taccagctcc ttcacccact tcaacctgat 1050
ccctgtgggc ctccgtgtgg tcaccatcca gagcgccaag ctgggtcact 1100
acatggccat gaatgctgag ggactgctct acagttcgcc gcatttcaca 1150
gctgagtgtc gctttaagga gtgtgtcttt gagaattact acgtcctgt 1200
cgccctgtc ctctaccggcc agcgtcgttc tggccggggcc tggtacctcg 1250

gcctggacaa ggagggccag gtcatgaagg gaaaccgagt taagaagacc 1300
aaggcagctg cccacttct gcccaagctc ctggaggtgg ccatgtacca 1350
ggagccttct ctccacagtg tccccgaggc ctccccttcc agtccccctg 1400
ccccctgaaa tgtagtccct ggactggagg ttccctgcac tcccagtgag 1450
ccagccacca ccacaacctg t 1471

<210> 497

<211> 225

<212> PRT

<213> Homo Sapien

<400> 497

Met	Ala	Ala	Leu	Ala	Ser	Ser	Leu	Ile	Arg	Gln	Lys	Arg	Glu	Val
1					5				10				15	
Arg	Glu	Pro	Gly	Gly	Ser	Arg	Pro	Val	Ser	Ala	Gln	Arg	Arg	Val
	20					25							30	
Cys	Pro	Arg	Gly	Thr	Lys	Ser	Leu	Cys	Gln	Lys	Gln	Leu	Leu	Ile
		35				40							45	
Leu	Leu	Ser	Lys	Val	Arg	Leu	Cys	Gly	Gly	Arg	Pro	Ala	Arg	Pro
			50					55					60	
Asp	Arg	Gly	Pro	Glu	Pro	Gln	Leu	Lys	Gly	Ile	Val	Thr	Lys	Leu
			65					70					75	
Phe	Cys	Arg	Gln	Gly	Phe	Tyr	Leu	Gln	Ala	Asn	Pro	Asp	Gly	Ser
			80					85					90	
Ile	Gln	Gly	Thr	Pro	Glu	Asp	Thr	Ser	Ser	Phe	Thr	His	Phe	Asn
			95					100					105	
Leu	Ile	Pro	Val	Gly	Leu	Arg	Val	Val	Thr	Ile	Gln	Ser	Ala	Lys
			110					115					120	
Leu	Gly	His	Tyr	Met	Ala	Met	Asn	Ala	Glu	Gly	Leu	Leu	Tyr	Ser
			125					130					135	
Ser	Pro	His	Phe	Thr	Ala	Glu	Cys	Arg	Phe	Lys	Glu	Cys	Val	Phe
			140					145					150	
Glu	Asn	Tyr	Tyr	Val	Leu	Tyr	Ala	Ser	Ala	Leu	Tyr	Arg	Gln	Arg
			155					160					165	
Arg	Ser	Gly	Arg	Ala	Trp	Tyr	Leu	Gly	Leu	Asp	Lys	Glu	Gly	Gln
			170					175					180	
Val	Met	Lys	Gly	Asn	Arg	Val	Lys	Lys	Thr	Lys	Ala	Ala	Ala	His
			185					190					195	
Phe	Leu	Pro	Lys	Leu	Leu	Glu	Val	Ala	Met	Tyr	Gln	Glu	Pro	Ser
			200					205					210	
Leu	His	Ser	Val	Pro	Glu	Ala	Ser	Pro	Ser	Ser	Pro	Pro	Ala	Pro
			215					220					225	

<210> 498

<211> 744

<212> DNA
<213> Homo Sapien

<400> 498
atggccgcgg ccatcgctag cggcttgate cgccagaagc ggcaggcg 50
ggagcagcac tgggaccggc cgtctgccag caggaggcgg agcagcccc 100
gcaagaaccg cgggctctgc aacggcaacc tggtgatatat cttctccaaa 150
gtgcgcatct tcggcctcaa gaagcgcagg ttgcggcgcc aagatcccc 200
gctcaagggt atagtgacca gtttatattt caggaaggc tactacttc 250
aaatgcaccc cgatggagct ctcgatggaa ccaaggatga cagcactaat 300
tctacactct tcaacctcat accagtggga ctacgtgttgg ttgcctatcca 350
gggagtgaaa acagggttgt atataccat gaatggagaa gtttacctct 400
acccatcaga acttttacc cctgaatgca agttaaaga atctgtttt 450
aaaaattatt atgtaatcta ctcatccatg ttgtacagac aacaggaatc 500
tggtagagcc tggttttgg gattaaataa ggaaggcga gctatgaaag 550
ggaacagagt aaagaaaacc aaaccaggcag ctcattttct acccaaggcca 600
ttggaagttt ccattgtaccg agaaccatct ttgcattgttgg ttggggaaac 650
ggtcccgaag cctgggtga cgccaaatgaa aagcacaatg gctgtctgaa 700
taatgaatgg aggcaaacca gtcaacaaga gtaagacaac atag 744

<210> 499
<211> 247
<212> PRT
<213> Homo Sapien

<400> 499
Met Ala Ala Ala Ile Ala Ser Gly Leu Ile Arg Gln Lys Arg Gln
1 5 10 15
Ala Arg Glu Gln His Trp Asp Arg Pro Ser Ala Ser Arg Arg Arg
20 25 30
Ser Ser Pro Ser Lys Asn Arg Gly Leu Cys Asn Gly Asn Leu Val
35 40 45
Asp Ile Phe Ser Lys Val Arg Ile Phe Gly Leu Lys Lys Arg Arg
50 55 60
Leu Arg Arg Gln Asp Pro Gln Leu Lys Gly Ile Val Thr Arg Leu
65 70 75
Tyr Cys Arg Gln Gly Tyr Tyr Leu Gln Met His Pro Asp Gly Ala
80 85 90
Leu Asp Gly Thr Lys Asp Asp Ser Thr Asn Ser Thr Leu Phe Asn
95 100 105
Leu Ile Pro Val Gly Leu Arg Val Val Ala Ile Gln Gly Val Lys
110 115 120

Thr Gly Leu Tyr Ile Ala Met Asn Gly Glu Gly Tyr Leu Tyr Pro
 125 130 135
 Ser Glu Leu Phe Thr Pro Glu Cys Lys Phe Lys Glu Ser Val Phe
 140 145 150
 Glu Asn Tyr Tyr Val Ile Tyr Ser Ser Met Leu Tyr Arg Gln Gln
 155 160 165
 Glu Ser Gly Arg Ala Trp Phe Leu Gly Leu Asn Lys Glu Gly Gln
 170 175 180
 Ala Met Lys Gly Asn Arg Val Lys Lys Thr Lys Pro Ala Ala His
 185 190 195
 Phe Leu Pro Lys Pro Leu Glu Val Ala Met Tyr Arg Glu Pro Ser
 200 205 210
 Leu His Asp Val Gly Glu Thr Val Pro Lys Pro Gly Val Thr Pro
 215 220 225
 Ser Lys Ser Thr Ser Ala Ser Ala Ile Met Asn Gly Gly Lys Pro
 230 235 240
 Val Asn Lys Ser Lys Thr Thr
 245

<210> 500

<211> 2906

<212> DNA

<213> Homo Sapien

<400> 500

ggggagagga attgaccatg taaaaggaga cttttttttt tggtggttgt 50
 ggctgttggg tgccttgcaa aaatgaagga tgcaggacgc agctttctcc 100
 tggAACCGAA CGCAATGGAT AAACtGATTG TGCAAGAGAG AAGGAAGAAC 150
 gaagctttttt ctgtgagcc ctggatctta acacaaatgt gtatatgtgc 200
 acacAGGGAG CATTCAAGAA TGAATAAAC CAGAGTTAGA CCCGCGGGGG 250
 ttggtgtgtt ctgacataaa taaataatct taaAGCAGCT GTTCCCTCC 300
 ccACCCCCAA AAAAAGGAT GATTGGAAAT GAAGAACCGA GGATTCAACAA 350
 agaaaaaaAGT ATGTTCAATT TTCTCTATAA AGGAGAAAGT GAGCCAAGGA 400
 gatatttttG GAATGAAAAG TTTGGGCTT TTTAGTAAAGT GTAAAGAAACT 450
 ggtgtggtgtt tgTTTCCTT TCTTTTGAA TTTCCCACAA GAGGAGAGGA 500
 aattaataat acatctgcaa agaaattca gagaAGAAAA GTTGACCGCG 550
 gcagattgag gcattgattg ggggagagaa accagcagag cacagttgga 600
 tttgtgccta tgTTGACTAA aattgaCGGA taattgcagt tggatttttc 650
 ttcatcaacc tcctttttt taaatttttA ttcctttgg tatcaagatc 700
 atgcgttttc tcttggctt aaccacotgg attccatct ggatgttgct 750

gtgatcagtc tgaaatacaa ctgttgaat tccagaagga ccaacaccag 800
ataaaattatg aatgttgaac aagatgacct tacatccaca gcagataatg 850
ataggtccta ggttaaacag ggcccttattt gaccctgc ttgtggtgct 900
gctggctctt caacttcttgc ttgtggctgg tctggtgcgg gctcagac 950
gcccttctgt gtgctcctgc agcaaccagt tcagcaaggt gatttgttt 1000
cgaaaaaacc tgcgtgaggt tccggatggc atctccacca acacacggct 1050
gctgaacctc catgagaacc aaatccagat catcaaagt aacagcttca 1100
agcacttgag gcacttgaa atcctacagt tgagtaggaa ccatacaga 1150
accattgaaa ttggggctt caatggctg gcgaacctca acactctgga 1200
actctttgac aatcgcttta ctaccatccc gaatggagct tttgtatact 1250
tgtctaaact gaaggagctc tgggtgcgaa acaacccat taaaaggcatc 1300
ccttcttatg ctttaacag aattccttct ttgcggccgac tagacttagg 1350
gaaattgaaa agactttcat acatctcaga aggtgcctt gaaggtctgt 1400
ccaacttgag gtatitgaac cttgccatgt gcaaccttcg ggaaatccct 1450
aacctcacac cgctcataaa actagatgag ctggatctt ctggaaatca 1500
tttatctgcc atcaggcctg gctcttcca gggtttgatg caccttcaaa 1550
aactgtggat gatacagtcc cagattcaag tgattgaacg gaatgcctt 1600
gacaacccctc agtcaactgt ggagatcaac ctggcacaca ataatctaac 1650
attactgcct catgacctct tcactccctt gcatcatcta gagcggatac 1700
atttacatca caacccttgg aactgtaact gtgacatact gtggctcagc 1750
tggtgataa aagacatggc cccctcgaac acagcttggt gtgcccgg 1800
taacactcct cccaatctaa aggggaggta cattggagag ctcgaccaga 1850
attacttcac atgctatgtc ccggtgattt tggagcccc tgcagac 1900
aatgtcaactg aaggcatggc agctgagctg aaatgtcggg cctccacatc 1950
cctgacatct gtatcttggta ttactccaaa tggAACAGTC atgacacatg 2000
ggcgtacaa agtgcggata gctgtgcctca gtgatggtaac gttaaatttc 2050
acaaatgtaa ctgtgcaaga tacaggcatg tacacatgtt tggtagttaa 2100
ttccgttggg aatactactg cttcagccac cctgaatgtt actgcagcaa 2150
ccactactcc tttcttttac tttcaaccg tcacagttaga gactatggaa 2200
ccgtctcagg atgaggcactg gaccacagat aacaatgtgg gtcccactcc 2250
agtggtcgac tgggagacca ocaatgtgac caccctctc acaccacaga 2300
gcacaaggta gacagagaaa accttcacca tcccaagtgcac tgatataaac 2350

agtggatcc caggaattga tgaggtcatg aagactacca aaatcatcat 2400
tgggtgttt gtggccatca cactcatggc tgcagtgtatg ctggtcattt 2450
tctacaagat gaggaaaggc caccatcgcc aaaaccatca cgccccaaaca 2500
aggactgttggaaattattaa tgtggatgtatg gagattacgg gagacacacc 2550
catggaaaggc cacctgccc tgcctgctat cgagcatgag cacctaaatc 2600
actataactc atacaatct cccttcaacc acacaacaac agttaacaca 2650
ataaaattcaa tacacagttc agtgcataa ccgttattga tccgaatgaa 2700
ctctaaagac aatgtacaag agactcaaat ctaaaacatt tacagagttt 2750
caaaaaacaa acaatcaaaa aaaaagacag tttattaaaa atgacacaaa 2800
tgactggct aaatctactg tttcaaaaaa gtgtctttac aaaaaaacaa 2850
aaaagaaaaag aaatttattt attaaaaattt ctattgtat ctaaagcaga 2900
caaaaa 2906

<210> 501
<211> 640
<212> PRT
<213> Homo Sapien

<400> 501
Met Leu Asn Lys Met Thr Leu His Pro Gln Gln Ile Met Ile Gly
1 5 10 15
Pro Arg Phe Asn Arg Ala Leu Phe Asp Pro Leu Leu Val Val Leu
20 25 30
Leu Ala Leu Gln Leu Leu Val Val Ala Gly Leu Val Arg Ala Gln
35 40 45
Thr Cys Pro Ser Val Cys Ser Cys Ser Asn Gln Phe Ser Lys Val
50 55 60
Ile Cys Val Arg Lys Asn Leu Arg Glu Val Pro Asp Gly Ile Ser
65 70 75
Thr Asn Thr Arg Leu Leu Asn Leu His Glu Asn Gln Ile Gln Ile
80 85 90
Ile Lys Val Asn Ser Phe Lys His Leu Arg His Leu Glu Ile Leu
95 100 105
Gln Leu Ser Arg Asn His Ile Arg Thr Ile Glu Ile Gly Ala Phe
110 115 120
Asn Gly Leu Ala Asn Leu Asn Thr Leu Glu Leu Phe Asp Asn Arg
125 130 135
Leu Thr Thr Ile Pro Asn Gly Ala Phe Val Tyr Leu Ser Lys Leu
140 145 150
Lys Glu Leu Trp Leu Arg Asn Asn Pro Ile Glu Ser Ile Pro Ser
155 160 165

Tyr Ala Phe Asn Arg Ile Pro Ser Leu Arg Arg Leu Asp Leu Gly
 170 175 180
 Glu Leu Lys Arg Leu Ser Tyr Ile Ser Glu Gly Ala Phe Glu Gly
 185 190 195
 Leu Ser Asn Leu Arg Tyr Leu Asn Leu Ala Met Cys Asn Leu Arg
 200 205 210
 Glu Ile Pro Asn Leu Thr Pro Leu Ile Lys Leu Asp Glu Leu Asp
 215 220 225
 Leu Ser Gly Asn His Leu Ser Ala Ile Arg Pro Gly Ser Phe Gln
 230 235 240
 Gly Leu Met His Leu Gln Lys Leu Trp Met Ile Gln Ser Gln Ile
 245 250 255
 Gln Val Ile Glu Arg Asn Ala Phe Asp Asn Leu Gln Ser Leu Val
 260 265 270
 Glu Ile Asn Leu Ala His Asn Asn Leu Thr Leu Leu Pro His Asp
 275 280 285
 Leu Phe Thr Pro Leu His His Leu Glu Arg Ile His Leu His His
 290 295 300
 Asn Pro Trp Asn Cys Asn Cys Asp Ile Leu Trp Leu Ser Trp Trp
 305 310 315
 Ile Lys Asp Met Ala Pro Ser Asn Thr Ala Cys Cys Ala Arg Cys
 320 325 330
 Asn Thr Pro Pro Asn Leu Lys Gly Arg Tyr Ile Gly Glu Leu Asp
 335 340 345
 Gln Asn Tyr Phe Thr Cys Tyr Ala Pro Val Ile Val Glu Pro Pro
 350 355 360
 Ala Asp Leu Asn Val Thr Glu Gly Met Ala Ala Glu Leu Lys Cys
 365 370 375
 Arg Ala Ser Thr Ser Leu Thr Ser Val Ser Trp Ile Thr Pro Asn
 380 385 390
 Gly Thr Val Met Thr His Gly Ala Tyr Lys Val Arg Ile Ala Val
 395 400 405
 Leu Ser Asp Gly Thr Leu Asn Phe Thr Asn Val Thr Val Gln Asp
 410 415 420
 Thr Gly Met Tyr Thr Cys Met Val Ser Asn Ser Val Gly Asn Thr
 425 430 435
 Thr Ala Ser Ala Thr Leu Asn Val Thr Ala Ala Thr Thr Thr Pro
 440 445 450
 Phe Ser Tyr Phe Ser Thr Val Thr Val Glu Thr Met Glu Pro Ser
 455 460 465
 Gln Asp Glu Ala Arg Thr Thr Asp Asn Asn Val Gly Pro Thr Pro
 470 475 480

Val	Val	Asp	Trp	Glu	Thr	Thr	Asn	Val	Thr	Thr	Ser	Leu	Thr	Pro
			485					490					495	
Gln	Ser	Thr	Arg	Ser	Thr	Glu	Lys	Thr	Phe	Thr	Ile	Pro	Val	Thr
			500					505					510	
Asp	Ile	Asn	Ser	Gly	Ile	Pro	Gly	Ile	Asp	Glu	Val	Met	Lys	Thr
			515					520					525	
Thr	Lys	Ile	Ile	Ile	Gly	Cys	Phe	Val	Ala	Ile	Thr	Leu	Met	Ala
			530					535					540	
Ala	Val	Met	Leu	Val	Ile	Phe	Tyr	Lys	Met	Arg	Lys	Gln	His	His
			545					550					555	
Arg	Gln	Asn	His	His	Ala	Pro	Thr	Arg	Thr	Val	Glu	Ile	Ile	Asn
			560					565					570	
Val	Asp	Asp	Glu	Ile	Thr	Gly	Asp	Thr	Pro	Met	Glu	Ser	His	Leu
			575					580					585	
Pro	Met	Pro	Ala	Ile	Glu	His	Glu	His	Leu	Asn	His	Tyr	Asn	Ser
			590					595					600	
Tyr	Lys	Ser	Pro	Phe	Asn	His	Thr	Thr	Thr	Val	Asn	Thr	Ile	Asn
			605					610					615	
Ser	Ile	His	Ser	Ser	Val	His	Glu	Pro	Leu	Leu	Ile	Arg	Met	Asn
			620					625					630	
Ser	Lys	Asp	Asn	Val	Gln	Glu	Thr	Gln	Ile					
			635					640						

<210> 502

<211> 2458

<212> DNA

<213> Homo Sapien

<400> 502

```

gcgccggag cccatctgcc cccagggca cggggcgccg ggccggctcc 50
cgccccggcac atggctgcag ccacacctcg cgacacccga ggcgccgcgc 100
ccagctcgcc cgaggctccgt cgaggcgcc cggccgcccc ggagccaagc 150
agcaactgag cgggaaagcg cccgcgtccg gggatcggga tgtccctcct 200
ccttctccctc ttgcttagttt cctactatgt tggAACCTTG gggactcaca 250
ctgagatcaa gagagtggca gaggaaaagg tcactttgcc ctgccaccat 300
caactggggc ttccagaaaa agacactctg gatattgaat ggctgctcac 350
cgataatgaa gggAACCAAA aagtggtgat cacttactcc agtcgtcatg 400
tctacaataa cttgactgag gaacagaagg gccgagtggc ctttgcttcc 450
aatttcctgg caggagatgc ctccttgcag attgaacctc tgaAGCCAG 500
tcatgagggc cggtacaccc ttaaggtaa gaattcaggg cgctacgtgt 550
ggagccatgt catctaaaaa gtcttagtga gaccatccaa gcccAAGTGT 600

```

gagttggaaag gagagactgac agaaggaagt gacctgactt tgcagtgtga 650
gtcatcctct ggcacagagc ccattgtgta ttactggcag cgaatccgag 700
agaaaagaggg agaggatgaa cgtctgcctc ccaaattctag gattgactac 750
aaccaccctg gacgagttct gctgcagaat cttaccatgt cctactctgg 800
actgttaccag tgcacagcag gcaacgaagc tggaaaggaa agctgtgtgg 850
tgcgagtaac tgtacagtat gtacaaagca tcggcatggt tgcaggagca 900
gtgacaggca tagtggctgg agccctgctg atttcctct tggtgtggct 950
gctaattccga agaaaagaca aagaaaagata tgaggaagaa gagagaccta 1000
atgaaattcg agaagatgct gaagctccaa aagcccgct tttgaaaccc 1050
agctcctctt ctcaggctc tcggagctca cgctctggtt ctccctccac 1100
tcgctccaca gcaaatacgatg ctcacgcag ccagcggaca ctgtcaactg 1150
acgcagcacc ccagccaggg ctggccaccc aggatacag cctagtgggg 1200
ccagaggtga gaggttctga accaaagaaa gtccaccatg ctaatctgac 1250
caaagcagaa accacaccca gcatgatccc cagccagagc agaccccttcc 1300
aaacggctcg aattacaatg gacttgactc ccacgcitcc ctaggagtca 1350
gggtctttgg actcttctcg tcattggagc tcaagtcacc agccacacaa 1400
ccagatgaga ggtcatctaa gtagcagtga gcattgcacg gaacagatcc 1450
agatgagcat tttccttata caataccaaa caagcaaaag gatgtaaact 1500
gattcatctg taaaaaggca tcttattgtg ccttagacc agagtaaggg 1550
aaagcaggag tccaaatcta tttgttgacc aggacctgtg gtgagaaggt 1600
tggggaaagg tgaggtgaat atacctaaaa cttttaatgt gggatatttt 1650
gtatcagtgc tttgattcac aattttcaag agggaaatggg atgctgtttg 1700
taaattttct atgcatttct gcaaacttat tggatttata gttattcaga 1750
cagtcaagca gaacccacag ccttattaca cctgtctaca ccatgtactg 1800
agctaaccac ttctaaagaaa ctccaaaaaaaa ggaaacatgt gtcttctatt 1850
ctgacttaac ttcatttgtc ataaggttt gatattaatt tcaaggggag 1900
ttgaaatagt gggagatgga gaagagtgaa tgagttctc ccactctata 1950
ctaattctcac tattttgtatt gagccaaaa taactatgaa aggagacaaa 2000
aattttgtgac aaaggattgt gaagagctt ccatcttcat gatgttatga 2050
ggattgttga caaacattag aaatatataa tggagcaatt gtggatttcc 2100
cctcaaatac gatgcctcta aggacttcc tgcttagat ttctggaagg 2150
agaaaatac acatgtcatt tatcaacgtc cttagaaaga attcttctag 2200

agaaaaaggg atcttaggaat gctgaaagat taccacaat accattata 2250
tctttttt ctgagaaaat gtgaaaccag aattgcaaga ctgggtggac 2300
tagaaaggga gattagatca gttttcttt aatatgtcaa ggaaggtagc 2350
cgggcatggt gccaggcacc tgttaggaaa tccagcaggt ggagggtgca 2400
gtgagccgag attatgccat tgcactccag cctgggtgac agagcgggac 2450
tccgtctc 2458

<210> 503
<211> 373
<212> PRT
<213> Homo Sapien

<400> 503

Met	Ser	Leu	Leu	Leu	Leu	Leu	Leu	Val	Ser	Tyr	Tyr	Val	Gly	
1								10				15		
Thr	Leu	Gly	Thr	His	Thr	Glu	Ile	Lys	Arg	Val	Ala	Glu	Glu	Lys
							20		25			30		
Val	Thr	Leu	Pro	Cys	His	His	Gln	Leu	Gly	Leu	Pro	Glu	Lys	Asp
							35		40			45		
Thr	Leu	Asp	Ile	Glu	Trp	Leu	Leu	Thr	Asp	Asn	Glu	Gly	Asn	Gln
							50		55			60		
Lys	Val	Val	Ile	Thr	Tyr	Ser	Ser	Arg	His	Val	Tyr	Asn	Asn	Leu
							65		70			75		
Thr	Glu	Glu	Gln	Lys	Gly	Arg	Val	Ala	Phe	Ala	Ser	Asn	Phe	Leu
							80		85			90		
Ala	Gly	Asp	Ala	Ser	Leu	Gln	Ile	Glu	Pro	Leu	Lys	Pro	Ser	Asp
							95		100			105		
Glu	Gly	Arg	Tyr	Thr	Cys	Lys	Val	Lys	Asn	Ser	Gly	Arg	Tyr	Val
							110		115			120		
Trp	Ser	His	Val	Ile	Leu	Lys	Val	Leu	Val	Arg	Pro	Ser	Lys	Pro
							125		130			135		
Lys	Cys	Glu	Leu	Glu	Gly	Glu	Leu	Thr	Glu	Gly	Ser	Asp	Leu	Thr
							140		145			150		
Leu	Gln	Cys	Glu	Ser	Ser	Ser	Gly	Thr	Glu	Pro	Ile	Val	Tyr	Tyr
							155		160			165		
Trp	Gln	Arg	Ile	Arg	Glu	Lys	Glu	Gly	Glu	Asp	Glu	Arg	Leu	Pro
							170		175			180		
Pro	Lys	Ser	Arg	Ile	Asp	Tyr	Asn	His	Pro	Gly	Arg	Val	Leu	Leu
							185		190			195		
Gln	Asn	Leu	Thr	Met	Ser	Tyr	Ser	Gly	Leu	Tyr	Gln	Cys	Thr	Ala
							200		205			210		
Gly	Asn	Glu	Ala	Gly	Lys	Glu	Ser	Cys	Val	Val	Arg	Val	Thr	Val
							215		220			225		

Gln Tyr Val Gln Ser Ile Gly Met Val Ala Gly Ala Val Thr Gly
 230 235 240
 Ile Val Ala Gly Ala Leu Leu Ile Phe Leu Leu Val Trp Leu Leu
 245 250 255
 Ile Arg Arg Lys Asp Lys Glu Arg Tyr Glu Glu Glu Arg Pro
 260 265 270
 Asn Glu Ile Arg Glu Asp Ala Glu Ala Pro Lys Ala Arg Leu Val
 275 280 285
 Lys Pro Ser Ser Ser Ser Gly Ser Arg Ser Ser Arg Ser Gly
 290 295 300
 Ser Ser Ser Thr Arg Ser Thr Ala Asn Ser Ala Ser Arg Ser Gln
 305 310 315
 Arg Thr Leu Ser Thr Asp Ala Ala Pro Gln Pro Gly Leu Ala Thr
 320 325 330
 Gln Ala Tyr Ser Leu Val Gly Pro Glu Val Arg Gly Ser Glu Pro
 335 340 345
 Lys Lys Val His His Ala Asn Leu Thr Lys Ala Glu Thr Thr Pro
 350 355 360
 Ser Met Ile Pro Ser Gln Ser Arg Ala Phe Gln Thr Val
 365 370

<210> 504
 <211> 3060
 <212> DNA
 <213> Homo Sapien

<400> 504
 cgcgaggcgc ggggagccctg ggaccaggag cgagagccgc ctacctgcag 50
 ccgcgcgcoca cggcacggca gccaccatgg cgctcctgct gtgcttctgt 100
 ctcctgtcg c gactgtggta tttcgccaga agtttgatgt tcactactcc 150
 tgaagagatg attgaaaaaa ccaaaggaaa aactgcctat ctgccatgca 200
 aatttacgct tagtcccggaa gaccaggacat cgctggacat cgagtggctg 250
 atatcaccag ctgataatca gaagggtggat caagtgttattttatattc 300
 tggagacaaa atttatgtatg actactatcc agatctgaaa ggccgagttac 350
 attttacgag taatgtatctc aaatctggat atgcataat aaatgttacg 400
 aatttacaac tgtcagatcat tggcacatcat cagtgcaaaag tgaaaaaaagc 450
 tcctgggttt gcaaataaga agattcatct ggttagttctt gttaagcctt 500
 caggtgcgag atgttacgat gatggatctg aagaaattgg aagtgtttttt 550
 aagataaaaat gtgaacccaaa agaaggatca cttccattac agtatgttgc 600
 gcaaaaaatttgc tctgactcac agaaaatgcc cacttcatgg ttagcagaaa 650
 tgacttcatc tgatctatct gtaaaaaatgc cctcttctga gtactctggg 700

acatacagct gtacagtcag aaacagagtg ggctctgatc agtgcctgtt 750
gogtctaaac gttgtccctc cttcaaataa agctggacta attgcaggag 800
ccattatagg aacttgctt gctctagcgc tcattggct tatcatctt 850
tgctgtcgta aaaagcgcag agaagaaaaa tatgaaaagg aagttcatca 900
cgatatacagg gaagatgtgc cacctccaaa gagccgtacg tccactgcca 950
gaagctacat cgccagtaat cattcatccc tgggtccat gtctccttcc 1000
aacatggaag gatattccaa gactcagtat aaccaagtac caagtgaaga 1050
cttgaacgc actcctcaga gtccgactct cccacctgct aagttcaagt 1100
acccttacaa gactgatgga attacagttg tataaatatg gactactgaa 1150
gaatctgaag tattgtatta tttgacttta ttttaggcct ctagtaaaga 1200
cttaaatgtt tttaaaaaaa agcacaaggc acagagatta gagcagctgt 1250
aagaacacat ctactttatg caatggcatt agacatgtaa gtcagatgtc 1300
atgtcaaaat tagtacgagc caaattcttt gttaaaaaac cctatgtata 1350
gtgacactga tagttaaaag atgttttatt atatttcaa taactaccac 1400
taacaaattt ttaacttttc atatgcatat tctgatatgt ggttttttag 1450
gaaaagtatg gttaatagtt gatTTTCAA aggaaatttt aaaattctta 1500
cgTTCTGTT aatTTTTG CTATTTAGTT aaatacattt aaggaaata 1550
cccgttcttt tcccctttt tgcacacaac agaaacacgc gttgtcatgc 1600
ctcaaaactat ttttatttg caactacatg atttcacaca attctcttaa 1650
acaacgacat aaaatagatt tccttgtata taaataactt acatacgctc 1700
cataaaagtaa attctcaaag gtgctagaac aaatcgcca cttctacagt 1750
gttctcgat ccaacagagt tgatgcacaa tatataaata ctcaagtcca 1800
atattaaaaa cttaggcact tgactaactt taataaaatt tctcaaacta 1850
tatcaatatc taaagtgcat atatTTTta agaaagatta ttctcaataa 1900
cttctataaa aataagttt atggTTTGGC ccatctaact tcactactat 1950
tagtaagaac ttttaacttt taatgtgtag taaggTTTat tctaccttt 2000
tctcaacatg acaccaacac aatcaaaaac gaagtttagt aggtgctaac 2050
atgtgaggat taatccagtg attccggtca caatgcattc caggaggagg 2100
tacccatgtc actggaattt ggcgatattgg tttatTTTT cttccctgtat 2150
ttggataacc aaatggaaca ggaggaggat agtgattctg atggccattc 2200
cctcgataaca ttcctggctt ttttctgggc aaagggtgcc acattggaag 2250
aggtggaaat ataagttctg aaatctgttag ggaagagaac acattaagtt 2300

aattcaaagg aaaaaatcat catctatgtt ccagattct cattaaagac 2350
aaagttacc acaacactga gatcacatct aagtgacact cctattgtca 2400
ggtctaaata cattaaaac ctcatgtgta ataggcgtat aatgtataac 2450
aggtgaccaa tgtttctga atgcataaag aaatgaataa actcaaacac 2500
agtacttcct aaacaacttc aaccaaaaaa gaccaaaaca tggAACGAAT 2550
ggaagcttgt aaggacatgc ttgttttagt ccAGTGGTTT CCACAGCTGG 2600
ctaAGCCAGG AGTCACTTGG AGGCTTTAA ATACAAAACA TTGGAGCTGG 2650
aggccattat ccttagcaaa ctaatgcaga aacagaaaat caactaccgc 2700
atgttctcac ttataagtgg gaggtaatga taagaactta tgaacacaaa 2750
gaaggaaaca atagacattg gagtctattt gagaggggag ggtgggagaa 2800
ggaaaaggag cagaaaagat aactattgag tactgccttc acacctgggt 2850
gatgaaataa tatgtacaac aaatccctgt gacacatgtt tacctatgga 2900
acaaaccttc atgtgtatcc ctaaacctaa aataaaagtt aaaaaaaaaa 2950
aaaraaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 3000
aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 3050
aaaaaaaaaa 3060

<210> 505

<211> 352

<212> PRT

<213> Homo Sapien

<400> 505

Met Ala Leu Leu Leu Cys Phe Val Leu Leu Cys Gly Val Val Asp
1 5 10 15

Phe Ala Arg Ser Leu Ser Ile Thr Thr Pro Glu Glu Met Ile Glu
20 25 30

Lys Ala Lys Gly Glu Thr Ala Tyr Leu Pro Cys Lys Phe Thr Leu
35 40 45

Ser Pro Glu Asp Gln Gly Pro Leu Asp Ile Glu Trp Leu Ile Ser
50 55 60

Pro Ala Asp Asn Gln Lys Val Asp Gln Val Ile Ile Leu Tyr Ser
65 70 75

Gly Asp Lys Ile Tyr Asp Asp Tyr Tyr Pro Asp Leu Lys Gly Arg
80 85 90

Val His Phe Thr Ser Asn Asp Leu Lys Ser Gly Asp Ala Ser Ile
95 100 105

Asn Val Thr Asn Leu Gln Leu Ser Asp Ile Gly Thr Tyr Gln Cys
110 115 120

Lys Val Lys Lys Ala Pro Gly Val Ala Asn Lys Lys Ile His Leu

125	130	135
Val Val Leu Val Lys Pro Ser Gly Ala Arg Cys Tyr Val Asp Gly		
140	145	150
Ser Glu Glu Ile Gly Ser Asp Phe Lys Ile Lys Cys Glu Pro Lys		
155	160	165
Glu Gly Ser Leu Pro Leu Gln Tyr Glu Trp Gln Lys Leu Ser Asp		
170	175	180
Ser Gln Lys Met Pro Thr Ser Trp Leu Ala Glu Met Thr Ser Ser		
185	190	195
Val Ile Ser Val Lys Asn Ala Ser Ser Glu Tyr Ser Gly Thr Tyr		
200	205	210
Ser Cys Thr Val Arg Asn Arg Val Gly Ser Asp Gln Cys Leu Leu		
215	220	225
Arg Leu Asn Val Val Pro Pro Ser Asn Lys Ala Gly Leu Ile Ala		
230	235	240
Gly Ala Ile Ile Gly Thr Leu Leu Ala Leu Ala Leu Ile Gly Leu		
245	250	255
Ile Ile Phe Cys Cys Arg Lys Lys Arg Arg Glu Glu Lys Tyr Glu		
260	265	270
Lys Glu Val His His Asp Ile Arg Glu Asp Val Pro Pro Pro Lys		
275	280	285
Ser Arg Thr Ser Thr Ala Arg Ser Tyr Ile Gly Ser Asn His Ser		
290	295	300
Ser Leu Gly Ser Met Ser Pro Ser Asn Met Glu Gly Tyr Ser Lys		
305	310	315
Thr Gln Tyr Asn Gln Val Pro Ser Glu Asp Phe Glu Arg Thr Pro		
320	325	330
Gln Ser Pro Thr Leu Pro Pro Ala Lys Phe Lys Tyr Pro Tyr Lys		
335	340	345
Thr Asp Gly Ile Thr Val Val		
350		

<210> 506
<211> 1705
<212> DNA
<213> Homo Sapien

<400> 506
tgaaatgact tccacggctg ggacgggaac cttccaccca cagctatgcc 50
tctgatttgtt gaatggtgaa ggtgcctgtc taactttct gtaaaaagaaa 100
ccagctgcct ccaggcagcc agccctcaag catcacttac aggaccagag 150
ggacaagaca tgactgttat gagggagctgc tttcgccaat ttaacaccaa 200
gaagaattga ggctgcttgg gaggaaggcc aggaggaaca cgagactgag 250

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

agatgaattt tcaacagagg ctgcaaagcc tgtggacttt agccagaccc 300
ttctgccctc ctttgctggc gacagcctct caaatgcaga tggttgtgct 350
cccttgcctg gttttaccc tgcttctctg gagccaggta tcaggggcc 400
agggccaaga attccacttt gggccctgcc aagtgaaggg ggttgttccc 450
cagaaaactgt ggaaagcatt ctgggctgtg aaagacacta tgcaagctca 500
ggataacatc acgagtgccc ggctgctgca gcaggaggta ctgcagaacg 550
tctcgatgc tgagagctgt taccttgcc acaccctgct ggagttctac 600
ttgaaaactg tttcaaaaaa ccaccacaat agaacagttg aagtcaggac 650
tctgaagtca ttcttotactc tggccaacaa ctttgttctc atcgtgtcac 700
aactgcaacc cagtcagaa aatgagatgt tttccatcag agacagtgca 750
cacaggcggt ttctgctatt ccggagagca ttcaaacagt tggacgtaga 800
agcagctctg accaaagccc ttggggaaagt ggacattctt ctgacctgga 850
tgcagaaatt ctacaagctc tgaatgtcta gaccaggacc tccctcccc 900
tggcactggt ttgttccctg tgcatttca aacagtctcc cttcctatgc 950
tggtcactgg acacttcacg cccttggcca tgggtcccat tcttggccca 1000
ggattattgt caaagaagtc attcttaag cagcgcctg gacagtcagg 1050
gaaggtgcct ctggatgctg tgaagagct acagagaaga ttcttgatt 1100
tattacaact ctatttaatt aatgtcagta tttcaactga agttctat 1150
atttgtaga ctgtaagtta catgaaggca gcagaatatt gtgcggcatg 1200
cttcttacc cctcacaatc cttgccacag tgtggggcag tggatgggtg 1250
cttagtaagt acttaataaa ctgtggctg tttttggcc tgcatttgg 1300
ttgttaaaaa acagagaggg atgcttggat gtaaaactga acttcagagc 1350
atgaaaatca cactgtctc tgatatctgc agggacagag cattgggtg 1400
gggtaaggt gcatctgttt gaaaagtaaa cgataaaatg tggattaaag 1450
tgcccagcac aaagcagatc ctcaataaac atttcatttc ccacccacac 1500
tcgcccagctc accccatcat cccttccct tggtgccctc cttttttttt 1550
tatccttagtc attcttccct aatcttccac ttgagtgtaa agctgacatt 1600
gctgatggtg acattgcacc tggatgtact atccaatctg tcatgacatt 1650
ccctgctaataa aaaagacaac ataactccaa aaaaaaaaaa aaaaaaaaaa 1700
aaaaaa 1705

<210> 507
<211> 206
<212> PRT

<213> Homo Sapien

<400> 507

Met Asn Phe Gln Gln Arg Leu Gln Ser Leu Trp Thr Leu Ala Arg	1	5	10	15
Pro Phe Cys Pro Pro Leu Leu Ala Thr Ala Ser Gln Met Gln Met	20	25		30
Val Val Leu Pro Cys Leu Gly Phe Thr Leu Leu Leu Trp Ser Gln	35	40		45
Val Ser Gly Ala Gln Gly Gln Glu Phe His Phe Gly Pro Cys Gln	50	55		60
Val Lys Gly Val Val Pro Gln Lys Leu Trp Glu Ala Phe Trp Ala	65	70		75
Val Lys Asp Thr Met Gln Ala Gln Asp Asn Ile Thr Ser Ala Arg	80	85		90
Leu Leu Gln Gln Glu Val Leu Gln Asn Val Ser Asp Ala Glu Ser	95	100		105
Cys Tyr Leu Val His Thr Leu Leu Glu Phe Tyr Leu Lys Thr Val	110	115		120
Phe Lys Asn His His Asn Arg Thr Val Glu Val Arg Thr Leu Lys	125	130		135
Ser Phe Ser Thr Leu Ala Asn Asn Phe Val Leu Ile Val Ser Gln	140	145		150
Leu Gln Pro Ser Gln Glu Asn Glu Met Phe Ser Ile Arg Asp Ser	155	160		165
Ala His Arg Arg Phe Leu Leu Phe Arg Arg Ala Phe Lys Gln Leu	170	175		180
Asp Val Glu Ala Ala Leu Thr Lys Ala Leu Gly Glu Val Asp Ile	185	190		195
Leu Leu Thr Trp Met Gln Lys Phe Tyr Lys Leu	200	205		

<210> 508

<211> 924

<212> DNA

<213> Homo Sapien

<400> 508

aaggagcgc ccgcaagcac caagtggagag gcatgaagtt acagtgtgtt 50
tccctttggc tcctgggtac aatactgata ttgtgctcag tagacaacca 100
cggtctcagg agatgtctga tttccacaga catgcaccat atagaagaga 150
gtttccaaga aatcaaaga gccatccaag ctaaggacac cttcccaaatt 200
gtcactatcc tgtccacatt ggagactctg cagatcatta agcccttaga 250
tgtgtgctgc gtgaccaaga acctcctggc gttctacgtg gacagggtgt 300

tcaaggatca tcaggagcca aaccccaaaa tcttgagaaa aatcagcgc 350
attgccaact ctttcctcta catgcagaaa actctgcggc aatgtcagga 400
acagaggcag tgtcactgca ggcaggaagc caccaatgcc accagagtca 450
tccatgacaa ctatgatca gtcggaggtcc acgctgctgc cattaaatcc 500
ctgggagagc tcgacgtctt tctagcctgg attaataaga atcatgaagt 550
aatgttctca gcttgatgac aaggaacctg tatagtgatc cagggatgaa 600
cacccctgt gcgggttact gtgggagaca gcccacctg aaggggaagg 650
agatggggaa ggccccttc agctgaaagt cccactggct ggctcaggc 700
tgtcttattc cgcttgaaaa taggcaaaaa gtctactgtg gtatttgtaa 750
taaactctat ctgctgaaag ggcctgcagg ccatactggg agtaaaggc 800
tgccttccca tctaatttat tgtaaagtca tatagtccat gtctgtgatg 850
tgagccaagt gataccctgt agtacacatt gtactgagtg gttttctga 900
ataaaattcca tattttacct atga 924

<210> 509

<211> 177

<212> PRT

<213> Homo Sapien

<400> 509

Met	Lys	Leu	Gln	Cys	Val	Ser	Leu	Trp	Leu	Leu	Gly	Thr	Ile	Leu	
1					5				10						15
Ile	Leu	Cys	Ser	Val	Asp	Asn	His	Gly	Leu	Arg	Arg	Cys	Leu	Ile	
					20				25						30
Ser	Thr	Asp	Met	His	His	Ile	Glu	Glu	Ser	Phe	Gln	Glu	Ile	Lys	
					35				40						45
Arg	Ala	Ile	Gln	Ala	Lys	Asp	Thr	Phe	Pro	Asn	Val	Thr	Ile	Leu	
					50				55						60
Ser	Thr	Leu	Glu	Thr	Leu	Gln	Ile	Ile	Lys	Pro	Leu	Asp	Val	Cys	
					65				70						75
Cys	Val	Thr	Lys	Asn	Leu	Leu	Ala	Phe	Tyr	Val	Asp	Arg	Val	Phe	
					80				85						90
Lys	Asp	His	Gln	Glu	Pro	Asn	Pro	Lys	Ile	Leu	Arg	Lys	Ile	Ser	
					95				100						105
Ser	Ile	Ala	Asn	Ser	Phe	Leu	Tyr	Met	Gln	Lys	Thr	Leu	Arg	Gln	
					110				115						120
Cys	Gln	Glu	Gln	Arg	Gln	Cys	His	Cys	Arg	Gln	Glu	Ala	Thr	Asn	
					125				130						135
Ala	Thr	Arg	Val	Ile	His	Asp	Asn	Tyr	Asp	Gln	Leu	Glu	Val	His	
					140				145						150
Ala	Ala	Ala	Ile	Lys	Ser	Leu	Gly	Glu	Leu	Asp	Val	Phe	Leu	Ala	

155

160

165

Trp Ile Asn Lys Asn His Glu Val Met Phe Ser Ala
170 175

<210> 510

<211> 996

<212> DNA

<213> Homo Sapien

<400> 510

cccggtccaa gagtgacgta agtaccgcct atagagtcta taggcccact 50
tggcttcgtt agaacgcggc tacaattaat acataacctt atgtatcata 100
cacatacgtt ttaggtgaca ctatagaata acatccactt tgcccttttc 150
tccacaggtg tccactccca ggtccaactg cacctcggtt ctatcgataa 200
tctcagcacc agccactcag agcagggcac gatgttgggg gcccgcctca 250
ggctctgggt ctgtgccttg tgcaagcgctc gcagcatgag cgtcctcaga 300
gccttatccca atgcctcccc actgctcggc tccagctggg gtggcctgat 350
ccacctgtac acagccacag ccaggaacag ctaccacctg cagatccaca 400
agaatggcca tgtggatggc gcaccccatc agaccatcta cagtgccctg 450
atgatcagat cagaggatgc tggctttgtg gtgattacag gtgtgatgag 500
cagaagatac ctctgcatgg atttcagagg caacatttt ggatcacact 550
atttcgaccc ggagaactgc aggttccaa accagacgct ggaaaacggg 600
tacgacgtct accactctcc tcagtatcac ttccctggtca gtctggcccg 650
ggcgaagaga gccttcctgc cagggatgaa cccaccccg tactccagt 700
tcctgtcccg gaggaacgag atccccctaa ttcacttcaa cacccccata 750
ccacggcggc acacccggag cgccgaggac gactcggagc gggacccct 800
gaacgtgctg aagccccggg cccggatgac cccggcccg gcctcctgat 850
cacaggagct cccgagcgcc gaggacaaca gccccatggc cagtgaccca 900
tttaggggtgg tcaggggcgg tcgagtgaac acgcacgctg ggggaacggg 950
cccggaaggc tgccgccccct tcgccaagtt catctagggt cgctgg 996

<210> 511

<211> 251

<212> PRT

<213> Homo Sapien

<400> 511

Met Leu Gly Ala Arg Leu Arg Leu Trp Val Cys Ala Leu Cys Ser
1 5 10 15

Val Cys Ser Met Ser Val Leu Arg Ala Tyr Pro Asn Ala Ser Pro
20 25 30

Leu Leu Gly Ser Ser Trp Gly Gly Leu Ile His Leu Tyr Thr Ala
 35 40 45
 Thr Ala Arg Asn Ser Tyr His Leu Gln Ile His Lys Asn Gly His
 50 55 60
 Val Asp Gly Ala Pro His Gln Thr Ile Tyr Ser Ala Leu Met Ile
 65 70 75
 Arg Ser Glu Asp Ala Gly Phe Val Val Ile Thr Gly Val Met Ser
 80 85 90
 Arg Arg Tyr Leu Cys Met Asp Phe Arg Gly Asn Ile Phe Gly Ser
 95 100 105
 His Tyr Phe Asp Pro Glu Asn Cys Arg Phe Gln His Gln Thr Leu
 110 115 120
 Glu Asn Gly Tyr Asp Val Tyr His Ser Pro Gln Tyr His Phe Leu
 125 130 135
 Val Ser Leu Gly Arg Ala Lys Arg Ala Phe Leu Pro Gly Met Asn
 140 145 150
 Pro Pro Pro Tyr Ser Gln Phe Leu Ser Arg Arg Asn Glu Ile Pro
 155 160 165
 Leu Ile His Phe Asn Thr Pro Ile Pro Arg Arg His Thr Arg Ser
 170 175 180
 Ala Glu Asp Asp Ser Glu Arg Asp Pro Leu Asn Val Leu Lys Pro
 185 190 195
 Arg Ala Arg Met Thr Pro Ala Pro Ala Ser Cys Ser Gln Glu Leu
 200 205 210
 Pro Ser Ala Glu Asp Asn Ser Pro Met Ala Ser Asp Pro Leu Gly
 215 220 225
 Val Val Arg Gly Gly Arg Val Asn Thr His Ala Gly Gly Thr Gly
 230 235 240
 Pro Glu Gly Cys Arg Pro Phe Ala Lys Phe Ile
 245 250

<210> 512
 <211> 2015
 <212> DNA
 <213> Homo Sapien

<400> 512
 gaaaaaggta cccgcgagag acagccagca gttctgtgga gcagcgggtgg 50
 ccggcttagga tgggctgtct ctgggggtctg gctctgcccc ttttcttctt 100
 ctgctggagat gttgggggtct ctgggagctc tgcaggcccc agcacccgca 150
 gagcagacac tgcgatgaca acggacgaca cagaagtgcc cgctatgact 200
 cttagcaccgg gccacgccc tctggaaact caaacgctga gcgctgagac 250
 ctcttcttagg gcctcaaccc cagccggccc cattccagaa gcagagacca 300

ggggagccaa gagaatttcc cctgcaagag agaccaggag tttcacaaaa 350
acatctccca acttcatggt gctgatcgcc acctccgtgg agacatcagc 400
cgccagtggc agccccgagg gagctggaat gaccacagtt cagaccatca 450
caggcagtga tcccaggaa gccatcttg acacccttg caccgatgac 500
agctctgaag aggcaaagac actcacaatg gacatattga cattggctca 550
cacctccaca gaagctaagg gcctgtcctc agagagcagt gccttccg 600
acggccccca tccagtcatc accccgtcac gggcctcaga gagcagcgcc 650
tcttccgacg gccccatcc agtcatcacc ccgtcacggg cctcagagag 700
cagcgcctct tccgacggcc cccatccagt catcaccccg tcatggtccc 750
cgggatctga tgtcactctc ctgcgtgaag ccctggtgac tgtcacaaac 800
atcgaggtta ttaattgcag catcacagaa atagaaacaa caacttccag 850
catccctggg gcctcagaca tagatctcat ccccacggaa ggggtgaagg 900
cctcgatccac ctccgatcca ccagctctgc ctgactccac tgaagcaaaa 950
ccacacatca ctgaggtcac agcctctgcc gagaccctgt ccacagccgg 1000
caccacagag tcagctgcac ctcatgccac gggtggacc ccactcccc 1050
ctaacagcgc cacagaaaga gaagtgacag caccggggc cacgaccctc 1100
agtggagctc tggtcacagt tagcaggaat cccctggaaag aaacctcagc 1150
cctctctgtt gagacaccaa gttacgtcaa agtctcagga gcagctccgg 1200
tctccataga ggctgggtca gcagtgggca aaacaacttc stttgctggg 1250
agctctgctt cctcctacag cccctcgaa gccgcctca agaacttcac 1300
cccttcagag acaccgacca tggacatcgc aaccaagggg ccctccccca 1350
ccagcaggga ccctcttcct tctgtccctc cgactacaac caacagcagc 1400
cgagggacga acagcacctt agccaagatc acaacctcag cgaagaccac 1450
gatgaagccc caacagccac gcccacgact gcccggacga ggccgaccac 1500
agacgtgagt gcaggtgaaa atggagggtt ctcctctgt cggctgagt 1550
tggcttcccc ggaagacctc actgaccctc gagtggcaga aaggctgatg 1600
cagcagctcc accgggaact ccacgcccac gcgcctcaact tccaggtctc 1650
cttactgcgt gtcaggagag gctaacggac atcagctgca gccaggcatg 1700
tcccgtatgc caaaagaggg tgctgcccct agcctgggcc cccaccgaca 1750
gactgcagct gcgttactgt gtgagaggt acccagaagg ttcccatgaa 1800
gggcagcatg tccaagcccc taacccaga tgtggcaaca ggaccctcgc 1850
tcacatccac cggagtgtat gtatggggag gggcttcacc tggcccaaga 1900

ggtgtccttg gactcacctt ggcacatgtt ctgtgttca gtaaagagag 1950
acctgatcac ccatctgtgt gcttccatcc tgcattaaaa ttcaactcgt 2000
gtggcccaaa aaaaa 2015

<210> 513
<211> 482
<212> PRT
<213> Homo Sapien

<400> 513
Met Gly Cys Leu Trp Gly Leu Ala Leu Pro Leu Phe Phe Cys
1 5 10 15
Trp Glu Val Gly Val Ser Gly Ser Ser Ala Gly Pro Ser Thr Arg
20 25 30
Arg Ala Asp Thr Ala Met Thr Thr Asp Asp Thr Glu Val Pro Ala
35 40 45
Met Thr Leu Ala Pro Gly His Ala Ala Leu Glu Thr Gln Thr Leu
50 55 60
Ser Ala Glu Thr Ser Ser Arg Ala Ser Thr Pro Ala Gly Pro Ile
65 70 75
Pro Glu Ala Glu Thr Arg Gly Ala Lys Arg Ile Ser Pro Ala Arg
80 85 90
Glu Thr Arg Ser Phe Thr Lys Thr Ser Pro Asn Phe Met Val Leu
95 100 105
Ile Ala Thr Ser Val Glu Thr Ser Ala Ala Ser Gly Ser Pro Glu
110 115 120
Gly Ala Gly Met Thr Thr Val Gln Thr Ile Thr Gly Ser Asp Pro
125 130 135
Glu Glu Ala Ile Phe Asp Thr Leu Cys Thr Asp Asp Ser Ser Glu
140 145 150
Glu Ala Lys Thr Leu Thr Met Asp Ile Leu Thr Leu Ala His Thr
155 160 165
Ser Thr Glu Ala Lys Gly Leu Ser Ser Glu Ser Ser Ala Ser Ser
170 175 180
Asp Gly Pro His Pro Val Ile Thr Pro Ser Arg Ala Ser Glu Ser
185 190 195
Ser Ala Ser Ser Asp Gly Pro His Pro Val Ile Thr Pro Ser Arg
200 205 210
Ala Ser Glu Ser Ser Ala Ser Ser Asp Gly Pro His Pro Val Ile
215 220 225
Thr Pro Ser Trp Ser Pro Gly Ser Asp Val Thr Leu Leu Ala Glu
230 235 240
Ala Leu Val Thr Val Thr Asn Ile Glu Val Ile Asn Cys Ser Ile
245 250 255

Thr	Glu	Ile	Glu	Thr	Thr	Ser	Ser	Ile	Pro	Gly	Ala	Ser	Asp	
				260				265				270		
Ile	Asp	Leu	Ile	Pro	Thr	Glu	Gly	Val	Lys	Ala	Ser	Ser	Thr	Ser
	275					280			285					
Asp	Pro	Pro	Ala	Leu	Pro	Asp	Ser	Thr	Glu	Ala	Lys	Pro	His	Ile
	290					295						300		
Thr	Glu	Val	Thr	Ala	Ser	Ala	Glu	Thr	Leu	Ser	Thr	Ala	Gly	Thr
	305					310						315		
Thr	Glu	Ser	Ala	Ala	Pro	His	Ala	Thr	Val	Gly	Thr	Pro	Leu	Pro
	320					325						330		
Thr	Asn	Ser	Ala	Thr	Glu	Arg	Glu	Val	Thr	Ala	Pro	Gly	Ala	Thr
	335					340						345		
Thr	Leu	Ser	Gly	Ala	Leu	Val	Thr	Val	Ser	Arg	Asn	Pro	Leu	Glu
	350					355						360		
Glu	Thr	Ser	Ala	Leu	Ser	Val	Glu	Thr	Pro	Ser	Tyr	Val	Lys	Val
	365					370						375		
Ser	Gly	Ala	Ala	Pro	Val	Ser	Ile	Glu	Ala	Gly	Ser	Ala	Val	Gly
	380					385						390		
Lys	Thr	Thr	Ser	Phe	Ala	Gly	Ser	Ser	Ala	Ser	Ser	Tyr	Ser	Pro
	395					400						405		
Ser	Glu	Ala	Ala	Leu	Lys	Asn	Phe	Thr	Pro	Ser	Glu	Thr	Pro	Thr
	410					415						420		
Met	Asp	Ile	Ala	Thr	Lys	Gly	Pro	Phe	Pro	Thr	Ser	Arg	Asp	Pro
	425					430						435		
Leu	Pro	Ser	Val	Pro	Pro	Thr	Thr	Thr	Asn	Ser	Ser	Arg	Gly	Thr
	440					445						450		
Asn	Ser	Thr	Leu	Ala	Lys	Ile	Thr	Thr	Ser	Ala	Lys	Thr	Thr	Met
	455					460						465		
Lys	Pro	Gln	Gln	Pro	Arg	Pro	Arg	Leu	Pro	Gly	Arg	Gly	Arg	Pro
	470					475						480		

Gln Thr

```

<210> 514
<211> 2284
<212> DNA
<213> Homo Sapien

<400> 514
gcggagcatc cgctgcggtc ctcgcccaga ccccccgcgcg gattcgccgg 50
tccttccccgc gggcgcgaca gagctgtcct cgcacctgga tggcagcagg 100
ggcgccgggg tcctctcgac gccagagaga aatctcatca tctgtgcagc 150
cttcttaaag caaactaaga ccagagggag gattatcctt gacctttgaa 200
gaccaaaaact aaactgaaat ttaaaatgtt ctgcggggaa gaagggagct 250

```

tgacttacac tttggtaata atttgcttcc tgacactaag gctgtctgct 300
agtcagaatt gcctcaaaaa gagtctagaa gatgttgtca ttgacatcca 350
gtcatctctt tctaaggaa tcagaggcaa tgagccgta tatacttcaa 400
ctcaagaaga ctgcattaat tcttgctgtt caacaaaaaa catatcaggg 450
gacaaagcat gtaacttgat gatcttcgac actcgaaaaa cagctagaca 500
acccaactgc tacctatttt tctgtcccaa cgaggaagcc tgtccattga 550
aaccagcaaa aggacttatg agttacagga taattacaga ttttccatct 600
ttgaccagaa atttgccaag ccaagagtta ccccaggaag attctcttctt 650
acatggccaa ttttcacaag cagtcactcc cctagcccat catcacacag 700
attattcaaa gcccaccgat atctcatgga gagacacact ttctcagaag 750
tttggatcct cagatcacct ggagaaaacta ttaagatgg atgaagcaag 800
tgcccagctc cttgcttata aggaaaaagg ccattctcag agttcacaat 850
tttcctctga tcaagaaata gctcatctgc tgcctgaaaa tgtgagtgcg 900
ctcccagcta cggtggcagt tgcttctcca cataccacct cggctactcc 950
aaagcccccc accttctac ccaccaatgc ttcagtgaca cttctggga 1000
cttcccagcc acagctggcc accacagctc cacctgtaac cactgtcact 1050
tctcagcctc ccacgaccct catttctaca gtttttacac gggctgcggc 1100
tacactccaa gcaatggcta caacagcagt tctgactacc acctttcagg 1150
cacctacgga ctcgaaaggc agcttagaaa ccataccgtt tacagaaatc 1200
tccaacttaa cttaaacac agggaatgtg tataacccta ctgcactttc 1250
tatgtcaaat gtggagtctt ccactatgaa taaaactgct tcctggaaag 1300
gtagggaggc cagtcaggc agttcctccc agggcagtgt tccagaaaat 1350
cagtagggcc ttccatttga aaaatggctt cttatcgggt ccctgcttctt 1400
tgggtgcctg ttccctggta taggcctcgt cttccctgggt agaatccttt 1450
cggaatcaact ccgcaggaaa cgttactcaa gactggatta tttgatcaat 1500
gggatctatg tggacatcta aggatggAAC tcgggtgtc ttaattcatt 1550
tagtaaccag aagccaaat gcaatgagtt tctgctgact tgcttagtctt 1600
agcaggaggt tgtatTTGA agacaggAAA atgccccctt ctgctttcct 1650
ttttttttt ggagacagag tcttgctctg ttgcccaggc tggagtgcag 1700
tagcacgatc tcggctctca ccgcaacctc cgtctcctgg gttcaagcga 1750
ttctcctgcc tcagcctcct aagtatctgg gattacaggc atgtgccacc 1800
acacctgggt gattttgtt ttttttagtag agacggggtt tcaccatgtt 1850

ggtcaggctg gtctcaaact cctgacccat tgatccaccc tcctcgccct 1900
 cccaaagtgc tgggattaca ggcatgagcc accacagctg gcccccttct 1950
 gtttatgtt tggttttga gaaggaatga agtggaaacc aaatttaggtta 2000
 atttgggta atctgtctct aaaatattag ctaaaaacaa agctctatgt 2050
 aaagtaataa agtataattg ccatataaat ttcaaaattc aactggctt 2100
 tatgcaaaga aacaggttag gacatctagg ttccaattca ttcacattct 2150
 tggttccaga taaaatcaac tggttatatac aatttctaatt ggatttgctt 2200
 ttcttttat atggattcct taaaactta ttccagatgt agttccttcc 2250
 aattaaatat ttgaataaat ctttgttac tcaa 2284

<210> 515
 <211> 431
 <212> PRT
 <213> Homo Sapien

<400> 515
 Met Phe Phe Gly Gly Glu Gly Ser Leu Thr Tyr Thr Leu Val Ile
 1 5 10 15
 Ile Cys Phe Leu Thr Leu Arg Leu Ser Ala Ser Gln Asn Cys Leu
 20 25 30
 Lys Lys Ser Leu Glu Asp Val Val Ile Asp Ile Gln Ser Ser Leu
 35 40 45
 Ser Lys Gly Ile Arg Gly Asn Glu Pro Val Tyr Thr Ser Thr Gln
 50 55 60
 Glu Asp Cys Ile Asn Ser Cys Cys Ser Thr Lys Asn Ile Ser Gly
 65 70 75
 Asp Lys Ala Cys Asn Leu Met Ile Phe Asp Thr Arg Lys Thr Ala
 80 85 90
 Arg Gln Pro Asn Cys Tyr Leu Phe Phe Cys Pro Asn Glu Glu Ala
 95 100 105
 Cys Pro Leu Lys Pro Ala Lys Gly Leu Met Ser Tyr Arg Ile Ile
 110 115 120
 Thr Asp Phe Pro Ser Leu Thr Arg Asn Leu Pro Ser Gln Glu Leu
 125 130 135
 Pro Gln Glu Asp Ser Leu Leu His Gly Gln Phe Ser Gln Ala Val
 140 145 150
 Thr Pro Leu Ala His His His Thr Asp Tyr Ser Lys Pro Thr Asp
 155 160 165
 Ile Ser Trp Arg Asp Thr Leu Ser Gln Lys Phe Gly Ser Ser Asp
 170 175 180
 His Leu Glu Lys Leu Phe Lys Met Asp Glu Ala Ser Ala Gln Leu
 185 190 195

Leu Ala Tyr Lys Glu Lys Gly His Ser Gln Ser Ser Gln Phe Ser
 200 205 210
 Ser Asp Gln Glu Ile Ala His Leu Leu Pro Glu Asn Val Ser Ala
 215 220 225
 Leu Pro Ala Thr Val Ala Val Ala Ser Pro His Thr Thr Ser Ala
 230 235 240
 Thr Pro Lys Pro Ala Thr Leu Leu Pro Thr Asn Ala Ser Val Thr
 245 250 255
 Pro Ser Gly Thr Ser Gln Pro Gln Leu Ala Thr Thr Ala Pro Pro
 260 265 270
 Val Thr Thr Val Thr Ser Gln Pro Pro Thr Thr Leu Ile Ser Thr
 275 280 285
 Val Phe Thr Arg Ala Ala Ala Thr Leu Gln Ala Met Ala Thr Thr
 290 295 300
 Ala Val Leu Thr Thr Phe Gln Ala Pro Thr Asp Ser Lys Gly
 305 310 315
 Ser Leu Glu Thr Ile Pro Phe Thr Glu Ile Ser Asn Leu Thr Leu
 320 325 330
 Asn Thr GIy Asn Val Tyr Asn Pro Thr Ala Leu Ser Met Ser Asn
 335 340 345
 Val Glu Ser Ser Thr Met Asn Lys Thr Ala Ser Trp Glu Gly Arg
 350 355 360
 Glu Ala Ser Pro Gly Ser Ser Ser Gln Gly Ser Val Pro Glu Asn
 365 370 375
 Gln Tyr Gly Leu Pro Phe Glu Lys Trp Leu Leu Ile Gly Ser Leu
 380 385 390
 Leu Phe Gly Val Leu Phe Leu Val Ile Gly Leu Val Leu Leu Gly
 395 400 405
 Arg Ile Leu Ser Glu Ser Leu Arg Arg Lys Arg Tyr Ser Arg Leu
 410 415 420
 Asp Tyr Leu Ile Asn Gly Ile Tyr Val Asp Ile
 425 430

<210> 516
 <211> 2749
 <212> DNA
 <213> Homo Sapien

<220>
 <221> unsure
 <222> 1869, 1887
 <223> unknown base

<400> 516
 ctccccacgggt gtccagcgcc cagaatgcgg cttctggtcc tgctatgggg 50
 ttgcctgctg ctcccagggtt atgaagccct ggagggccca gaggaaatca 100

gcgggttcga agggacact gtgtccctgc agtgcaccta cagggaaagag 150
ctgagggacc accggaagta ctggtgcaagg aagggtggga tcctcttctc 200
tcgctgctct ggcaccatct atgcagaaga agaaggccag gagacaatga 250
agggcagggt gtccatccgt gacagccgcc aggagctctc gtcatttg 300
accctgtgga acctcacccct gcaagacgct ggggagttact ggtgtggggt 350
cgaaaaacgg ggccccgatg agtctttact gatctctctg ttctgttttc 400
caggaccctg ctgtcttccc tcccttctc ccaccccca gcctctggct 450
acaacacgcc tgcagcccaa ggcaaaagct cagcaaaccc agccccagg 500
attgacttct cctggctct accccggcagc caccacagcc aagcagggga 550
agacaggggc tgaggccctt ccattgccag ggacttccca gtacgggcac 600
gaaaggactt ctcagtacac aggaacctct cctcacccag cgacctctcc 650
tcctgcaggg agctcccgcc ccccatgca gctggactcc acctcagcag 700
aggacaccag tccagctctc agcagtggca gctctaagcc cagggtgtcc 750
atcccgatgg tccgcatact ggccccagtc ctggtgctgc tgagccttct 800
gtcagccgca ggcctgatcg cctctgcag ccacccgtc ctgtggagaa 850
aggaagctca acaggccacg gagacacaga ggaacgagaa gttctggctc 900
tcacgcttga ctgcggagga aaaggaagcc cttccaggcccctgaggg 950
ggacgtgatc tcgatgcctc ccctccacac atctgaggag gagctggct 1000
tctcgaagtt tgtctcagcg tagggcagga ggcctcttgc gccaggccag 1050
cagtgaagca gtatggctgg ctggatcagc accgattccc gaaagcttc 1100
cacctcagcc tcagagtcca gctgcccggc ctccagggtc ctccccaccc 1150
tccccaggct ctcccttgc atgttccagc ctgacccatgac agcgtttgc 1200
agccctggag cccagagcgg tggccttgc ctccggctg gagactggga 1250
catccctgat aggttcacat ccctggcagc agtaccaggc tgctgaccct 1300
cagcaggccc agacaaggct cagtggatct ggtctgagtt tcaatctgcc 1350
aggaactcct gggcctcatg cccagtgtcg gaccctgcct tcctcccact 1400
ccagacccca ctttgtcttc cttccctggc gtcctcagac ttagtcccac 1450
ggtctcctgc atcagctggt gatgaagagg agcatgctgg ggtgagactg 1500
ggattctggc ttctcttgc accacccatgca tccagccctt caggaaggct 1550
gtgaaaaacg tgattcctgg ccccaccaag acccaccaaa accatctctg 1600
ggcttggtgc aggactctga attctaacaa tgcccaatgtca ctgtcgact 1650
tgagtttgcgg ggccagtgaaa cctgtatgaac gtcacaccc cttcagctt 1700

gagtctgcat ttgggctgtg acgtctccac ctgccccaat agatctgctc 1750
tgtctgcgac accagatcca cgtggggact cccctgaggc ctgctaagtc 1800
caggccttgg tcaggtcagg tgcacattgc aggataagcc caggaccggc 1850
acagaagtgg ttgccttnc catttgcctt ccctggncca tgccttcttg 1900
cctttggaaa aaatgatgaa gaaaaccttg gtccttcct tgtctggaaa 1950
gggttacttg cctatgggtt ctggtggtca gagagaaaag tagaaaaacca 2000
gagtgcacgt aggtgtctaa cacagaggag agtaggaaca gggcggatac 2050
ctgaaggtga ctccgagtcc agccccctgg agaaggggtc ggggggtggtg 2100
gtaaagtagc acaactacta tttttttct ttttccatta ttattgttt 2150
ttaagacaga atctcggtct gctgccagg ctggagtgcgt gtggcacat 2200
ctgcaaactc cgccctcctgg gttcaagtga ttcttctgcc tcagcctccc 2250
gagtagctgg gattacaggc acgcaccacc acacctggct aattttgtta 2300
cttttagtag agatgggtt tcaccatgtt gcccaggctg gtcttgaact 2350
cctgacctca aatgagcctc ctgcttcagt ctcccaaatt gcccggattta 2400
caggcatgag ccactgtgtc tggccctatt tcctttaaaa agtggaaattta 2450
agagttgttc agtatgcaaa acttggaaag atggaggaga aaaagaaaag 2500
gaagaaaaaa atgtcaccca tagtctcacc agagactatc attatttgcgt 2550
tttgggttac ttccctccac tctttcttc ttcacataat ttgcccgtgt 2600
tctttttaca gagcaattat cttgtatata caactttgtt taatgccttt 2650
tccacccatcgatccatca ctttattcca gcacttctct gtgtttaca 2700
gacctttta taaataaaaat gttcatcagc tgcataaaaaa aaaaaaaaaa 2749

<210> 517
<211> 332
<212> PRT
<213> Homo Sapien

<400> 517
Met Arg Leu Leu Val Leu Leu Trp Gly Cys Leu Leu Leu Pro Gly
1 5 10 15
Tyr Glu Ala Leu Glu Gly Pro Glu Glu Ile Ser Gly Phe Glu Gly
20 25 30
Asp Thr Val Ser Leu Gln Cys Thr Tyr Arg Glu Glu Leu Arg Asp
35 40 45
His Arg Lys Tyr Trp Cys Arg Lys Gly Gly Ile Leu Phe Ser Arg
50 55 60
Cys Ser Gly Thr Ile Tyr Ala Glu Glu Glu Gly Gln Glu Thr Met
65 70 75

Lys Gly Arg Val Ser Ile Arg Asp Ser Arg Gln Glu Leu Ser Leu
 80 85 90
 Ile Val Thr Leu Trp Asn Leu Thr Leu Gln Asp Ala Gly Glu Tyr
 95 100 105
 Trp Cys Gly Val Glu Lys Arg Gly Pro Asp Glu Ser Leu Leu Ile
 110 115 120
 Ser Leu Phe Val Phe Pro Gly Pro Cys Cys Pro Pro Ser Pro Ser
 125 130 135
 Pro Thr Phe Gln Pro Leu Ala Thr Thr Arg Leu Gln Pro Lys Ala
 140 145 150
 Lys Ala Gln Gln Thr Gln Pro Pro Gly Leu Thr Ser Pro Gly Leu
 155 160 165
 Tyr Pro Ala Ala Thr Thr Ala Lys Gln Gly Lys Thr Gly Ala Glu
 170 175 180
 Ala Pro Pro Leu Pro Gly Thr Ser Gln Tyr Gly His Glu Arg Thr
 185 190 195
 Ser Gln Tyr Thr Gly Thr Ser Pro His Pro Ala Thr Ser Pro Pro
 200 205 210
 Ala Gly Ser Ser Arg Pro Pro Met Gln Leu Asp Ser Thr Ser Ala
 215 220 225
 Glu Asp Thr Ser Pro Ala Leu Ser Ser Gly Ser Ser Lys Pro Arg
 230 235 240
 Val Ser Ile Pro Met Val Arg Ile Leu Ala Pro Val Leu Val Leu
 245 250 255
 Leu Ser Leu Leu Ser Ala Ala Gly Leu Ile Ala Phe Cys Ser His
 260 265 270
 Leu Leu Leu Trp Arg Lys Glu Ala Gln Gln Ala Thr Glu Thr Gln
 275 280 285
 Arg Asn Glu Lys Phe Trp Leu Ser Arg Leu Thr Ala Glu Glu Lys
 290 295 300
 Glu Ala Pro Ser Gln Ala Pro Glu Gly Asp Val Ile Ser Met Pro
 305 310 315
 Pro Leu His Thr Ser Glu Glu Leu Gly Phe Ser Lys Phe Val
 320 325 330
 Ser Ala

 <210> 518
 <211> 24
 <212> DNA
 <213> Artificial Sequence

 <220>
 <223> Synthetic oligonucleotide probe

 <400> 518

ccctgcagtg cacctacagg gaag 24
<210> 519
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 519
ctgtcttccc ctgcttgct gtgg 24

<210> 520
<211> 47
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 520
ggtgtcaggaa ggggtgggatc ctcttctctc gctgctctgg ccacatc 47

<210> 521
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 521
ccagtgacaca gcaggcaacg aagc 24

<210> 522
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 522
actaggctgt atgcctgggt gggc 24

<210> 523
<211> 43
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 523
gtatgtacaa agcatcgca tggttgcagg agcagtgaca ggc 43

<210> 524
<211> 26
<212> DNA
<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 524
aatctcagca ccagccactc agagca 26

<210> 525

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 525
gttaaagagg gtgccttcc agcga 25

<210> 526

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 526
tatcccaatg cttccccact gctc 24

<210> 527

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 527
gatgaacttg gcgaaggggc ggca 24

<210> 528

<211> 30

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 528

agggaggatt atccttgacc tttgaagacc 30

<210> 529

<211> 18

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 529

gaagcaagtg cccagctc 18

<210> 530

<211> 18

<212> DNA

<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 530
cgggtccctg ctctttgg 18
<210> 531
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 531
caccgttagct gggagcgcac tcac 24
<210> 532
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 532
agtgttaagtc aagctccc 18