Asymptotics of Bernoulli Line Ensembles

Xiang Fang, Lukas Fesser, Christian Serio, Carson Teitler, and Angela Wang Advisor: Evgeni Dimitrov Graduate Student Assistant: Weitao Zhu

Columbia University REU

July 26, 2020

The Gaussian universality class

Let $\{X_i\}$ be a sequence of i.i.d. random variables, s.t. $\mathbb{E}[X_1] = \mu$, $Var(X_1^2) = \sigma^2$. Let $S_n = \sum_{i=1}^n X_i$:

- \bullet Law of Large Numbers: $\frac{\mathcal{S}_n}{n} \to \mu$ as $n \to \infty$ almost surely
- Central Limit Theorem: $\frac{S_n-n\mu}{\sqrt{n}} \to N(0,\sigma^2)$ as $n\to\infty$
- **Donsker's Theorem:** Let $S(x) = S_k$ if x = k and linearly interpolate for $x \in [0, n]$ Let $\mu = 0$ and $\sigma = 1$. Then $\frac{S(n \cdot)}{\sqrt{n}} \in C([0, 1])$ and $\frac{S(n \cdot)}{\sqrt{n}} \to B(\cdot)$, where B denotes a standard Brownian Motion.

Figure: An example of a Bernoulli random walk and a Brownian Motion

Multiple Random Walks

Consider again Bernoulli random walks and Brownian Motion. We now increase the number of (non-intersecting) walkers:

Figure: Multiple Avoiding Bernoulli Random Walks

When dealing with a family of avoiding Brownian Motions, we speak of Dyson Brownian Motion:

Figure: Dyson Brownian Motion

Airy Line Ensemble

As $N \to \infty$, the rescaled walks converge in distribution, uniformly over compact sets of $\mathbb{N} \times \mathbb{R}$, to the Airy line ensemble, \mathcal{A} , and the top curve converges to Airy process, \mathcal{A}_1 .

Figure: Multiple Dyson Brownian walks

Increasing the number of paths pushes us outside of the Gaussian universality class and into Kardar-Parisi-Zhang (KPZ) universality class.

Open Question

Show that any random walks with generic initial conditions convergence to the Airy line ensemble.

Convergence to the Airy Line Ensemble

Two sufficient conditions:

- Finite dimensional distribution convergence
- Tightness, or the existence of weak subsequential limits.

We focused on tightness, which requires a maximum, minimum, and conditions on the Modulus of Continuity

Figure: The Modulus of Continuity

Our Result

Theorem

With L_1^N being the top curve in a Bernoulli Line Ensemble $p \in (0,1)$, and $\lambda, \alpha > 0$, if for all $n \in \mathbb{Z}$,

$$\lim_{N\to\infty} P(L_1^N(nN^{\alpha}) - nN^{\alpha}p + \lambda n^2N^{\alpha/2} \le N^{\alpha/2}x) \to F_{TW}(x)$$

then the Line Ensemble is tight.

If the one-point marginal probabilities at integer times weakly converge to the Tracy Widom distribution then the Line Ensemble is tight.

Improvements

[Duavergne, Nica, & Virag, 2019] - tightness assuming finite dimensional convergence to the Airy Line Ensemble.

We achieve the same result with much less restrictive assumptions

[Unsure of Image Choice]

History of the line ensembles

Arguments in this paper are inspired by

- Brownian Gibbs property for Airy line ensembles and KPZ line ensemble[Corwin-Hammond '11, '13], which address the issues of continuous line ensembles
- Transversal fluctuations of the ASEP, stochastic six vertex model, and Hall-Littlewood line ensembles [Corwin-Dimitrov '17], which consider similar questions in a discrete setting

Problem Description

Recall that to show tightness, we want to control

- min
- @ max
- Modulus of continuity of the line ensembles

We claim that for the **top** curve of our line ensemble to have a **parabolic shift**, the **bottom** curve cannot dip too low, i.e. for any $r, \epsilon > 0$, there exist R, M > 0 such that for N large enough,

$$P(\max_{[r,R]} L_k(sN^{\alpha}) - psN^{\alpha} \le -MN^{\alpha}) < \epsilon$$

(perhaps insert a picture)

Proof (mention monotone coupling lemmas somewhere) - say MC with picture 2min

Proof (mention strong coupling somewhere) - say SC with picture L = Bernoulli bridge B is a Brownian bridge with variance. There is a probability space such that $P(\sup |L-B| \ge k(\log N)^2) < \epsilon$. This is a comparison that allows for example to compare the modulus of continuity of the two. [Dimitrov-Wu '19] 2 min

Controlling the minimum: pinning the bottom curve

Lemma (——)

For any $r, \epsilon > 0$, there exists R > r and a constant M > 0 so that for large N,

$$\mathbb{P}\Big(\max_{x\in[r,R]}\big(L_k^N(xN^{2/3})-pxN^{2/3}\big)\leq -MN^{1/3}\Big)<\epsilon.$$

The same is true of the maximum on [-R, -r].

• Couple with a Brownian bridge: if "pinned" at two points > r and -r, it cannot be low on scale $N^{1/3}$ on [-r, r].

Proving the pinning lemma

Recall our assumption:

$$\mathbb{P}\Big(L_1^N(nN^{2/3})-pnN^{2/3}+\lambda n^2N^{1/3}\leq xN^{1/3}\Big)\underset{N\to\infty}{\longrightarrow} F_{TW}(x).$$

The top curve looks like a parabola with an affine shift on large scales.

• Two curves: if L_2^N is low on [r, R], L_1^N looks like a free Brownian bridge.

$$\lambda \left(\frac{R^2+r^2}{2}\right) - \lambda \left(\frac{R+r}{2}\right)^2 = \lambda \frac{R^2+r^2}{4} - \frac{\lambda rR}{2} = O(R^2).$$

• For large R, the top curve would be far from the parabola at the midpoint!