Logical Operators: NAND and NOR

In this document, we address a series of questions to demonstrate the properties and equivalences of logical operators, including the newly introduced NAND (|), defined as true when at least one of p or q is false, and NOR (\downarrow), defined as true only when both p and q are false. We use truth tables to verify equivalences and construct compound propositions.

Q1: Conjunction, Disjunction, and Conditional using \neg and \lor

To express conjunction $(p \land q)$, disjunction $(p \lor q)$, and conditional $(p \to q)$ using only \neg and \lor , we use the following equivalences:

• Disjunction: $p \lor q$ (already given).

• Conjunction: $p \wedge q \equiv \neg(\neg p \vee \neg q)$

• Conditional: $p \to q \equiv \neg p \lor q$.

The truth table verifies these equivalences:

р	q	$ \neg p $	$\neg q$	$\neg p \lor \neg q$	$\neg(\neg p \lor \neg q)$
Т	Т	F	F	F T	Т
Т	F	F	Т	Т	F
F	Т	T	F	Т	F
F	F	T	Т	Т	F

The column for $\neg(\neg p \lor \neg q)$ matches $p \land q$. For the conditional:

p	q	$\neg p$	$\neg p \lor q$
Т	Т	F	Т
Т	F	F	F
F	Т	Т	Т
F	F	Т	Т

The column for $\neg p \lor q$ matches $p \to q$. Thus, \neg and \lor can express all three.

Q2: Conjunction, Disjunction, and Conditional using \neg and \land

To express conjunction $(p \land q)$, disjunction $(p \lor q)$, and conditional $(p \to q)$ using only \neg and \land , we use:

1

• Conjunction: $p \wedge q$ (already given).

• Disjunction: $p \lor q \equiv \neg(\neg p \land \neg q)$

• Conditional: $p \to q \equiv \neg (p \land \neg q)$.

The truth table verifies these:

р	q	$ \neg p $	$\neg q$	$\neg p \wedge \neg q$	$\neg(\neg p \land \neg q)$	$\neg(p \land \neg q)$
Т	Т	F	F	F	Т	Т
				F	Т	F
F	Т	Т	F	F	Т	Т
F	F	T	Т	Т	F	Т

The column for $\neg(\neg p \land \neg q)$ matches $p \lor q$, and $\neg(p \land \neg q)$ matches $p \to q$. Thus, \neg and \land can express all three.

Q3: Truth Table for NAND (p|q)

The NAND operator (p|q) is true when at least one of p or q is false, and false when both are true:

Q4: Showing $p|q \equiv \neg(p \land q)$

We compare p|q with $\neg(p \land q)$ using a truth table:

p	q	$p \wedge q$	$\neg(p \land q)$	p q
		T	F	F
-	F	_	T	Т
F	Т	F	T	Т
F	F	F	Т	Т

The columns for $\neg(p \land q)$ and p|q are identical, confirming $p|q \equiv \neg(p \land q)$.

Q5: Truth Table for NOR $(p \downarrow q)$

The NOR operator $(p \downarrow q)$ is true only when both p and q are false:

p	q	$p \downarrow q$
Т	Т	F
Т	F	F
F	Т	F
F	F	Т

Q6: Showing $p \downarrow q \equiv \neg(p \lor q)$

We compare $p \downarrow q$ with $\neg (p \lor q)$ using a truth table:

р	q	$p \lor q$	$\neg(p \lor q)$	$p \downarrow q$
Т	Т	T	F	F
Т	F	T	F	F
F	Т	T	F	F
F	F	F	Т	Т

The columns for $\neg(p \lor q)$ and $p \downarrow q$ are identical, confirming $p \downarrow q \equiv \neg(p \lor q)$.

Q7: Showing $\{\downarrow\}$ is Functionally Complete

A set of operators is functionally complete if it can express negation, conjunction, and disjunction (or equivalently, \neg and \lor or \neg and \land). We show this for $\{\downarrow\}$ in two parts.

Q7a: Showing $p \downarrow p \equiv \neg p$

We construct a truth table for $p \downarrow p$:

р	$p \downarrow p$	$\neg p$
Т	F	F
F	Т	Т

Since $p \downarrow p$ matches $\neg p$, we have $p \downarrow p \equiv \neg p$.

Q7b: Showing $(p \downarrow q) \downarrow (p \downarrow q) \equiv p \lor q$

We construct a truth table:

р	q	$p \downarrow q$	$(p\downarrow q)\downarrow (p\downarrow q)$	$p \lor q$
Т	Т	F F	Т	Т
Т	F	F	Т	Т
		F	Т	Т
F	F	T	F	F

The column for $(p \downarrow q) \downarrow (p \downarrow q)$ matches $p \lor q$. Since we can express $\neg p$ (from Q7a) and $p \lor q$, and Q1 shows that $\{\neg, \lor\}$ is functionally complete, $\{\downarrow\}$ is functionally complete.

3

Q8: Expressing $p \rightarrow q$ using only \downarrow

We proved $p \to q \equiv \neg p \lor q$ in class so using this and the work from Q7:

- $\neg p \equiv p \downarrow p$.
- $p \lor q \equiv (p \downarrow q) \downarrow (p \downarrow q)$.

Thus, $p \to q \equiv \neg p \lor q \equiv (p \downarrow p) \lor q \equiv ((p \downarrow p) \downarrow q) \downarrow ((p \downarrow p) \downarrow q)$. The truth table verifies:

р	q	$p \downarrow p$	$(p\downarrow p)\downarrow q$	$((p\downarrow p)\downarrow q)\downarrow ((p\downarrow p)\downarrow q)$	$p \rightarrow q$
Т	Т	F	Т	Т	Т
Т	F	F	T	F	F
F	T	T	F	Т	Τ
F	F	Т	Т	Т	Т

The columns match, so $p \to q \equiv ((p \downarrow p) \downarrow q) \downarrow ((p \downarrow p) \downarrow q)$.

Q9: Showing $p|q \equiv q|p$

We compare p|q and q|p using a truth table:

р	q	pq	q p
Т	Т	F	F
Т	F	Т	Т
F	Τ	Т	Т
F	F	T	Т

The columns for p|q and q|p are identical, confirming $p|q \equiv q|p$.