Gramáticas Regulares

Douglas O. Cardoso douglas.cardoso@cefet-rj.br docardoso.github.io

Douglas O. Cardoso CEFET-RJ Petrópolis

1 Introdução

- 2 GRs e AFs relativos
- 3 Exercícios

1 Introdução

2 GRs e AFs relativos

3 Exercícios

Noções Básicas

■ GRs servem para gerar linguagens regulares.

 \blacksquare AFs \rightarrow reconhecer.

 \blacksquare ERs \rightarrow descrever.

Douglas O. Cardoso

Definição

- Toda gramática (regular ou não) é uma tupla (V, Σ, R, P) , em que:
 - V é um conjunto de variáveis;
 - Σ é um alfabeto;
 - $\blacksquare R \subseteq (V \cup \Sigma)^+ \times (V \cup \Sigma)^*$ é um conjunto de regras;
 - $lacksquare P \in V$ é uma variável de partida.
- Toda regra de GRs tem uma das formas (seja $X,Y \in V$, $w \in \Sigma^*$):
 - $\blacksquare X \to w;$
 - $\blacksquare X \to wY;$
 - $X \to \lambda$.

Exemplo

- $L = \{w \in \{0,1\}^* : 01 \text{ não \'e subpalavra de } w\}.$
- GR $G = (\{A, B\}, \{0, 1\}, R, A), L(G) = L. R$?
- $\blacksquare A \rightarrow 0B|1A|\lambda$
- $\blacksquare B \to 0B|\lambda$

GRs e AFs relativos

$\mathsf{GR} \Rightarrow \mathsf{AF}$

- Seja uma GR $G = (V, \Sigma, R, P)$.
- Um AFN $M = (E, \Sigma, \delta, \{P\}, F)$ é tal que L(M) = L(G). E, δ, F ?
- $E = V \cup \{s\}.$
- Para cada regra, $X \to aY$, $Y \in \delta(X, a)$.
- Para cada regra, $X \to a$, $s \in \delta(X, a)$.
- Para cada regra, $X \to \lambda$, $X \in F$.
- $s \in F$.

Douglas O. Cardoso

$AF \Rightarrow GR$

■ Seja um AFN $M = (E, \Sigma, \delta, \{i\}, F)$.

■ Seja uma GR $G = (E, \Sigma, R, i)$ é tal que L(M) = L(G). R?

 $\blacksquare \ R = \{e \rightarrow ae' : e' \in \delta(e,a)\} \cup \{e \rightarrow \lambda : e \in F\}.$

Douglas O. Cardoso

1 Introducão

- 2 GRs e AFs relativos
- 3 Exercícios

Obtenha GRs para as seguintes linguagens ($\Sigma = \{0, 1\}$):

- Ø:
- \blacksquare { λ };
- O conjunto das palavras com tamanho múltiplo de 3;
- O conjunto das palavras cujo último símbolo é 0.

Construa um AF referente a seguinte GR:

 $P \rightarrow aP|bP|aA$

 $A \rightarrow a|bB$

 $\blacksquare B \rightarrow bA$

Construa um AF referente a seguinte GR:

 $S \rightarrow 011X|11S$

 $X \rightarrow 101Y$

 $Y \rightarrow 111$