The Global Effects of Carbon Border Adjustment Mechanisms

Kimberly Clausing, UCLA Jonathan Colmer, Virginia Allan Hsiao, Stanford Catherine Wolfram, MIT Sloan

July 21, 2025

Carbon border adjustment mechanism (CBAM)

Three motivations and one concern

- Boost domestic competitiveness
- Curb foreign emissions leakage
- Encourage foreign regulation
- But may disadvantage lower-income trading partners

This paper

- Quantitative analysis of EU/UK CBAM
 - Simple equilibrium framework
 - Microdata on key target sectors
 - Global distributional effects

Results

- Competitiveness: domestic profits ↑ by \$2.4B (13%)
- Leakage: foreign emissions ↓ by 5.8 Mt (43%)
- Incentives: carbon tax revenue of up to \$251B
- Incidence: similar for lower-income trading partners

This paper

- Quantitative analysis of EU/UK CBAM
 - Simple equilibrium framework
 - Microdata on key target sectors
 - Global distributional effects
- Results
 - Competitiveness: domestic profits ↑ by \$2.4B (13%)
 - Leakage: foreign emissions ↓ by 5.8 Mt (43%)
 - Incentives: carbon tax revenue of up to \$251B
 - Incidence: similar for lower-income trading partners

Literature

Environmental impacts of trade policy

Copeland & Taylor 2003, Nordhaus 2015, Böhringer et al. 2016, Kortum & Weisbach 2017, Shapiro 2021, Kortum & Weisbach 2022, Abuin 2024, Bourany 2024, Harstad 2024, Casey et al. 2025, Farrokhi & Lashkaripour 2025, Hsiao 2025

Leakage and CBAM policy

Markusen 1975, Copeland & Taylor 1994, 1995, Hoel 1996, Rauscher 1997, Fowlie 2009, Elliott et al. 2010, Fowlie et al. 2016, Kortum & Weisbach 2017, Clausing & Wolfram 2023, Coster et al. 2024

Policy timeline

- **EU CBAM** proposed in 2021
 - Phase-in starting October 1, 2023 with reporting only
 - Full implementation from January 1, 2026 for target sectors
- UK CBAM announced in 2023, targeting implementation by 2027
- Expansion of Chinese ETS to target sectors
- Discussions in Australia, Brazil, Canada, Taiwan, and elsewhere

Initial target sectors

(%)	Trade Intensity	Global Emissions
Aluminum	41	3
Steel	23	11
Electricity	2	33
Fertilizers	60	1
Cement	2	6
Hydrogen	0.1	2

Global data by plant for 2023

- Aluminum smelters from WoodMac (153 worldwide)
 - Public data and site visits
- Steel mills from Climate TRACE (892 worldwide)
 - Satellite and mill-level sensor data
- Production, capacity, costs, and emissions
 - Subnational carbon taxes and allowances

Production costs and capacity

CBAMs add to costs

Emissions intensity by income

Controlling for differences in production (primary, scale, SOE, foreign; age)

The emissions-income gradient is relatively flat

Tota	l emissio	ons	Electricity emissions vs. income				
	Direct	Indirect		Estimate	SE	N	Mean
Aluminum	23%	77%	Elec. Maps (2024)	-3.207	(10.12)	230	314
Steel	91%	9%	Ember (2024)	-13.58	(14.25)	196	430
			Ang & Su (2016)	-94.59***	(27.91)	54	445
			EEA (2023)	-92.33	(68.18)	28	222

Emissions intensity by country

Aluminum		Steel	
	tCO ₂		tCO ₂
Kazakhstan	15	Kazakhstan	2.6
South Africa	14	Netherlands	2.5
India	14	Slovakia	2.5
Australia	13	Austria	2.5
China	10	Ukraine	2.4
Greece	6.8	South Africa	2.3
UAE	6.6	China	2.2
Rest of world	2.9	Rest of world	1.5

Production by country

Alumin	um		Steel		
	Mt	%		Mt	%
China	49	58	China	860	51
India	5	6	EU + UK	153	9
EU + UK	5	5	Japan	88	5
USA	4	5	USA	86	5
Russia	4	5	India	76	5
Canada	3	4	Russia	60	4
UAE	3	3	South Korea	59	4
Rest of world	12	14	Rest of world	290	17

Environmental regulation with global trade

$$p_i^R = P - au e_i$$
 carbon tax in **regulated** market R
$$p_i^U = P$$
 no tax in **unregulated** market U
$$D(P^*) = S(P^*)$$
 world market clears at price P (no CBAM)

- Competitiveness: R firms pay τ , but U firms do not
- \bullet Leakage: τ raises P, and U firms respond
- Incentives: U government free rides on lower e, higher P
- Incidence: depends on firm data

Environmental regulation with global trade

$$\begin{aligned} p_i^R &= P - \tau e_i \\ p_i^U &= P \end{aligned} \qquad \text{carbon tax in } \mathbf{regulated} \text{ market } R \\ \text{no tax in } \mathbf{unregulated} \text{ market } U \end{aligned}$$

$$D(P^*) = S(P^*) \qquad \text{world market clears at price } P \text{ (no CBAM)}$$

- ullet Competitiveness: R firms pay au, but U firms do not
- ullet Leakage: au raises P, and U firms respond
- Incentives: U government free rides on lower e, higher P
- Incidence: depends on firm data

CBAM pushes sales to U, such that $P^R > P^U$

$$p_i^R = \max\{P^R, P^U\} - \tau e_i$$

$$p_i^U = \max\{P^R - \tau e_i, P^U\}$$

$$D^{R}(P^{R*}) = S^{R}(P^{R*}, P^{U*})$$

$$D^{U}(P^{U*}) = S^{U}(P^{R*}, P^{U*})$$

R firms choose destination market U firms choose subject to **CBAM**

market R clears at price P^R market U clears at price P^U

- Competitiveness: τ raises P^R more, helping R firms
- ullet Leakage: au raises P^U less, hurting U firms
- Incentives: U government can raise au^U with same p_i^U
- Incidence: depends on firm data

CBAM pushes sales to U, such that $P^R > P^U$

$$\begin{array}{ll} p_i^R = \max\{P^R,\,P^U\} - \tau e_i & R \text{ firms choose destination market} \\ p_i^U = \max\{P^R - \tau e_i,\,P^U\} & U \text{ firms choose subject to ${\bf CBAM}$} \\ D^R(P^{R*}) = S^R(P^{R*},P^{U*}) & \text{market R clears at price P^R} \\ D^U(P^{U*}) = S^U(P^{R*},P^{U*}) & \text{market U clears at price P^U} \end{array}$$

- Competitiveness: τ raises P^R more, helping R firms
- ullet Leakage: au raises P^U less, hurting U firms
- ullet Incentives: U government can raise au^U with same p_i^U
- Incidence: depends on firm data

Empirics

- Demand $D^m(P^m)$ by market m
 - Calibrated elasticity of 0.25 (Söderholm & Ekvall 2020)
- Supply $s_i^m(p_i^m)$ by plant i
 - Using global, plant-level microdata
- Compute welfare: CS^m , PS_i , G^m , E_i

Supply by plant *i*

$$u_{i\ell}^m = \overbrace{\beta(p_i^m - c_i) + \epsilon_i}^{v_i^m} + \epsilon_{i\ell} \qquad \text{choice to operate lines } \ell$$

$$o_i^m = \exp(v_i^m)/[1 + \exp(v_i^m)] \qquad \text{capacity utilization}$$

$$s_i^m = \bar{s}_i o_i^m \qquad \text{production}$$

- Price p_i^m , cost c_i , logit shocks $\epsilon_{i\ell}$, capacity \bar{s}_i
- Constant marginal costs: heterogeneity across plants, not across lines (CRS)
- No market power: unconcentrated with many plants (and firms)

Logit estimation with metals j, countries k

$$\log\left(\frac{o_{ijk}}{1 - o_{ijk}}\right) = \beta(P_j - \bar{\tau}_k \bar{e}_{ijk} - c_{ijk}) + \mu_j + \mu_k + \epsilon_{ijk}$$

Policy simulations

- EU/UK carbon tax at \$100 per ton of CO₂
 - With vs. without a CBAM in place
- Evaluate welfare relative to zero regulation
 - R: EU + UK
 - *U*: all other countries
 - *UL*: low and lower-middle income (World Bank classification)
 - UH: upper-middle and high income (World Bank classification)
- In the paper, $au^R \in [0,100]$ and coalition with China

Equilibrium price effects

EU/UK: $\tau^R = 100$					
ΔP (%)	Market				
21 (70)	R	U			
Without CBAM	0.64	0.64			
With CBAM	2.52	0.46			

- Without CBAM, regulation effect alone $(P \uparrow)$
- \bullet With CBAM, regulation + reallocation effects ($P^R > P^U)$
- Modest magnitudes because EU/UK is small

Aggregate welfare effects

EU/UK:	$\tau^R =$	100
--------	------------	-----

ΔW (1B USD)	$SCC^R = 100$			SCC	R = 0
	World	R	U	R	U
Without CBAM	8.96	7.93	1.03	-0.03	1.03
With CBAM	9.27	8.39	0.88	0.04	0.88

- ullet Without CBAM, R gains less and U gains more
- With CBAM, world gains \$307M more (3%) at cost to U
- R gains even if $SCC^R = 0$, as CBAM improves terms of trade

CBAMs boost competitiveness

EU/UK:	$\tau^R =$	100
--------	------------	-----

ΔPS (1B USD)		Market					
213 (12 332)	R	U	UL	UН			
Without CBAM With CBAM		12.0 9.04	0.00				

- Without CBAM, R firms lose and U firms gain
- \bullet With CBAM, R loses \$2.4B less (13%) at cost to U
- Incidence: *UL* gains 26% less, *UH* 25% less

CBAMs curb leakage

EU/UK: $\tau^R = 100$

ΔE (Mt CO ₂)		N	/larket		
12 (mt 332)	World	R	U	UL	UН
Without CBAM	-79.6	-93.2	13.6	1.12	12.5
With CBAM	-83.5	-91.3	7.79	0.80	6.99

- Without CBAM, R emissions fall and U emissions rise
- With CBAM, U rises by 5.8 Mt less (43%) but R falls less too
- Incidence: *UL* rises 29% less, *UH* 44% less
- If China joins R, world emits 0.8 Gt less (10x impact) vs. 3.9 Gt observed

CBAMs encourage regulation

EU/UK:	$\tau^R =$	100
--------	------------	-----

ΔW (1B USD)		Market	
2,, (15 005)	U	UL	UН
Without CBAM	1.03	0.06	0.97
With CBAM	0.88	0.04	0.84
Global tax	-4.20	-0.79	-3.41

- Without CBAM, *U* prefers not to regulate
- ullet With CBAM, U still prefers not to regulate but by \$153M less (3%)
- ullet Incidence: UL prefers non-regulation 3% less, UH 3% less
- ullet For U, less gain from free-riding + revenue incentive

Summary

- Quantitative equilibrium analysis of EU/UK CBAM
 - Boosts competitiveness, curbs leakage, and encourages regulation
 - Without disproportionate impacts on lower-income countries
- Domestic advantages may help
 - To establish carbon regulation in the first place
 - To sustain international coordination