

All materials on this site are licensed under the $\underline{\textbf{Creative Commons license}}$, unless stated otherwise.

<u>Home</u>

Maths

Polynomials 2

Polynomials 2

Part A Partial Fractions

Express

$$\frac{(x-7)(x-2)}{(x+2)(x-1)^2}$$

in partial fractions.

The following symbols may be useful: \boldsymbol{x}

Part B Polynomial Division

Find the quotient and remainder when $6x^4+12x^3-3x^2-11x-2$ is divided by $2x^2+4x+1$.

What is the quotient?

The following symbols may be useful: \boldsymbol{x}

What is the remainder?

The following symbols may be useful: x

Part C Integration

Hence, find

$$\int_0^3 \frac{6x^4 + 12x^3 - 3x^2 - 11x - 2}{2x^2 + 4x + 1} \mathrm{d}x.$$

Write your answer in the form $A+B \ln C$ where A,B and C are constants to be found.

Part D Approximation of $\frac{x}{(1-x)^3}$

Show that $rac{x}{(1-x)^3}pprox x+3x^2+6x^3$ for small values of x.

Easier question?

Part E Decimal estimate of $\frac{100}{729}$

Use the result from the above part, and x=0.1, to obtain a decimal estimate of the value of $\frac{100}{729}$ to three significant figures.

Part F First three terms of the binomial expansion

Show that

$$\frac{x}{(1-x)^3} = -\frac{1}{x^2} \left(1 - \frac{1}{x}\right)^{-3}.$$

Hence find the first three terms of the binomial expansion of $\frac{x}{(1-x)^3}$ in powers of $\frac{1}{x}$.

The following symbols may be useful: \boldsymbol{x}

Part G Suitability of x in expansion

Comment on the suitability of substituting the value of x from Part E into the expansion in Part F, to estimate the value of $\frac{100}{729}$.

Easier question?

Used with permission from UCLES A-level Maths papers, 2003-2017.

All materials on this site are licensed under the **Creative Commons license**, unless stated otherwise.

All materials on this site are licensed under the $\underline{\textbf{Creative Commons license}}$, unless stated otherwise.

<u>Home</u>

Maths

Series

Series

A sequence $u_1,u_2,u_3,...$ is defined by

$$u_1 = 2 \ \ ext{and} \ \ u_{n+1} = rac{1}{1-u_n} \, ext{for} \, n \geqslant 1.$$

Part A u

Write down the value of u_2 .

The following symbols may be useful: u_2

Part B u_3

Write down the value of u_3 .

The following symbols may be useful: u_3

Part C u_{a}

 u_4

Write down the value of u_4 .

The following symbols may be useful: u_4

Part D u_5

Write down the value of u_5 .

The following symbols may be useful: u_5

Deduce the value of u_{200} .

The following symbols may be useful: u_200

Part F $\sum_{n=1}^{200} u_n$

Find
$$\sum_{n=1}^{200} u_n$$
.

Part G Amount of Chemical

Sarah is carrying out a series of experiments which involve using increasing amounts of a chemical. In the first experiment she uses $6\,\mathrm{g}$ of a chemical and in the second experiment she uses $7.8\,\mathrm{g}$ of the chemical.

Given that the amounts of chemical used form an arithmetic progression, find the total amount of chemical used in the first 30 experiments.

Part H Number of experiments possible

Instead, it is given that the amounts of chemical used form a geometric progression. Sarah has a total of $1800\,\mathrm{g}$ of the chemical available. As N, the greatest number of experiments possible, satisfies the inequality

$$1.3^N \leqslant 91$$

Use logarithms to find the greatest value for N.

The following symbols may be useful: $\ensuremath{\mathsf{N}}$

Used with permission from UCLES A-level Maths papers, 2003-2017.

All materials on this site are licensed under the **Creative Commons license**, unless stated otherwise.