MODELAÇÃO E SIMULAÇÃO 2019/2020

TRABALHO DE LABORATÓRIO Nº1

1. SIMULAÇÃO DO HOVIMENTO LIVRE DE UMA VIATURA

1.1) Hostre que $v = \frac{dy}{dt}$ é madilada pela equação diferencial mêvit) = -Bvit),
para vio) = vo.

A viatura dusloca-se em regime livre, não me é aplicada nenhuma força motora, logo, o somatório das forças é constituído apenas pela força cu atritoque é definida por Fa = - BUIT).

Daqui, uma vez que Fr = m.a, Fr = Fu + Fq (=) Fr = Fa.

Sabe-se que
$$\sigma = \frac{dy}{\partial t}$$
, logo, $a = \frac{\partial^2 y}{\partial t^2} = \frac{\partial \sigma}{\partial t}$

Mostra-se, eutas,

1.2)

2= DERIVADA:
$$m\frac{d^2}{\partial t^2} \sigma(t) = -\beta \frac{\partial}{\partial t} \sigma(t) = 0$$
 $\ddot{\sigma} = -\frac{\beta}{\beta} \dot{\sigma}$

CONDIÇÕES:

1.3)

$$\frac{d}{\partial t} \sigma(t) = -\frac{\beta}{m} \sigma(t) = \frac{1}{m} d\sigma(t) = -\frac{\beta}{m} d\tau$$

$$\Rightarrow \int \frac{1}{\sigma} d\sigma = -\frac{\beta}{m} \int d\tau = -\frac{\beta}{m} \sigma(\tau) = -\frac{\beta}{m} \sigma(\tau$$

Da alíma auterior, JII) = Joe m, logo, d yII) = Joe m

$$=) \int_{\gamma(0)}^{\gamma(\tau)} \int_{0}^{\tau} \sqrt{g} e^{m} d\tau = \int_{0}^{\tau} \sqrt{g} e^{-\frac{B}{B}\tau}$$

2. MODELO PREDADOR - PRESA

o modelo é dado por:

$$\begin{cases} \frac{d}{d\tau} N_1(\tau) = S_1 N_1(\tau) - \alpha_1 N_1(\tau) N_2(\tau) \\ \\ \frac{d}{d\tau} N_2(\tau) = S_2 N_2(\tau) + \alpha_2 N_1(\tau) N_2(\tau) \end{cases}$$

2.1) Suponas qui α_1 , $\alpha_2 > 0$, observa-se, pelas expressões do modelo, que $\frac{d}{dt}$ $\rho_1(t)$ vai animir e $\frac{d}{dt}$ $\rho_2(t)$ vai animir tar, o qui significa que ρ_1 diminir com o animento di ρ_2^{dt} .

Daqui, coucui-se qui v₁ consisponde à presa enquanto v₂ corresponde ao

-) PONTOS DE EQUILIBRIO

$$\begin{cases} \frac{d}{d\tau} N_1(\tau) = 0 & (=) & \delta_1 N_1(\tau) = \alpha_1 N_1(\tau) N_2(\tau) & =) & N_2(\tau) = \frac{\delta_1}{\alpha_1} \end{cases}$$

$$\frac{d}{d\tau} N_2(\tau) = 0 \Rightarrow S_2 N_2(\tau) = -\alpha_2 N_1(\tau) N_2(\tau) \Rightarrow N_1(\tau) = -\frac{\delta_2}{\alpha_2}$$

(Andamento qualitativo das soluções em função do tempo)

Quando o número de presas é elevado (abundância de presas), o un presas.

como consequência da diminmição de presas, há um amuento da mortalidade dos predadores o que redut a abundância da população, resultando num novo amuento do número de presas.

Este cido repete-se ao longo do tempo, com espondendo a uma solução oscilatória.

os sinais, algébricos de S_1 e S_2 influenciam o tipo ou solução do modelo, sendo que se $S_1>0$ e $S_2<0$ este responde com a solução oscilatória ou sorita anterior mente.

Ao avaisar as expressões materiations qui aiscreven o modifo, conclui-se qui quando $S_1 < 0$ e $S_2 > 0$, $\frac{d}{d\tau} p_1 | \tau$) vai ter sempre valores negativos e $\frac{d}{d\tau} N_2 | \tau$) vai ser sempre positivo, logo, eventualmente as presas vaio-se extinguir e a população de predadores vai cres ar indufinidamente. O un sur se verifica quando $S_1 > 0$ e $S_2 > 0$.

Ouando δ_{1} (o e δ_{2} (o, $\frac{d}{d\tau}$ μ_{1} (t) e' sempre negativo, logo, a população de presas vai diminuir e extinguir-se, enquanto que $\frac{d}{d\tau}$ N_{2} (t) demonstra qui a população de predadores vai, também, aiminuir mas mais lentamente, acabando por extinguir, eventualmente.

3. SISTEMA CAÓTICO

3.3) considera-se o ponto (x,y) tal que $\sqrt{x^2+y^2}$ (2°). Observe-se o signivite esquiva com duas configurações de articulação do pêndulo (azul e preto).

$$\begin{cases} x = \ell \left(seu \Theta_1 + seu \Theta_2 \right) \\ y = \ell \left(cos \Theta_2 + cos \Theta_1 \right) \end{cases}$$

tal esumo ilustrado a ei ma, na macionia dos easos existem duas soluções para o mesmo problema (eoufiguração simétrica da articulação do pêndulo), mo entanto, optou-se pela solução que apresenta maior energia potencial gravitica.

As observar o esque una aei una e considerando $d = \sqrt{x^2 + y^2}$, tem - se: $\cos(\alpha_1) = \frac{d}{d}$ (=) $\alpha_1 = \arccos\left(\frac{\sqrt{x^2 + y^2}}{2\ell}\right)$

Logo,

$$\theta_1 = \alpha_1 + \arccos\left(\frac{y}{a}\right) = \theta_1 = \arccos\left(\frac{\sqrt{x^2 + y^2}}{2\ell}\right) + \arccos\left(\frac{y}{a}\right)$$

Da mesma forma,

$$\ell \cos \theta_2 = -y - \ell \cos \theta_1 = \cos \theta_2 = -y - \cos \theta_1$$

$$(=) \theta_2 = \operatorname{arccos} \left(-y - \cos \theta_1 \right)$$

GRUPO 16

ALICE ROSA, Nº 90007

BEATRIL PEREIRA, Nº 90029