3. Синтез комбінаційних схем

3.1. Представлення функції f4 в канонічних формах алгебр Буля, Шеффера, Пірса та Жегалкіна

Алгебра Буля (І, АБО, НЕ)

f4_____ (\overline{X4}\overline{X3}\overline{X2}\X1) v (\overline{X4}\overline{X3}\overline{X2}\X1) v (\overline{X4}\overline{X3}\overline{X2}\X1) v

(X4X3\overline{X}2\overline{X}1) v (X4X3\overline{X}2\overline{X}1) v (X4X3\overline{X}2\overline{X}1) v (X4X3\overline{X}2\overline{X}1)

 $f4_{JKH\phi} = (\overline{X}4\nu\overline{X}3\nu\overline{X}2\nu\overline{X}1) \cdot (\overline{X}4\nu\overline{X}3\nuX2\nu\overline{X}1) \cdot (\overline{X}4\nuX3\nu\overline{X}2\nu\overline{X}1) \cdot (X4\nu\overline{X}3\nu\overline{X}\nu2\overline{X}1) \cdot$

 $-(\overline{X4}vX3v\overline{X2}vX1)-(X4v\overline{X3}vX2vX1)-(\overline{X4}vX3vX2v\overline{X1})-(X4v\overline{X3}vX2v\overline{X1}).$

Алгебра Шеффера (І-НЕ)

f4 = ((X4/X4)/(X3/X3)/(X2/X2)/(X1))/((X4/X4)/(X3/X3)/(X2)/(X1))/ ((X4/X4)/(X3)/(X2)/(X1))/((X4)/(X3/X3)/(X2/X2)/(X1))/((X4)/(X3)/(X2/X2)/ (X1/X1))/((X4)/(X3)/(X2/X2)/(X1))/((X4)/(X3)/(X2)/(X1)/X1))/((X4)/(X3)/(X2)/ (X1)).

Алгебра Пірса {АБО-НЕ}

 $f4 = ((X4 \downarrow X4) \downarrow (X3 \downarrow X3) \downarrow (X2 \downarrow X2) \downarrow (X1 \downarrow X1)) \downarrow ((X4 \downarrow X4) \downarrow (X3 \downarrow X3) \downarrow (X2) \downarrow (X1 \downarrow X1))$ $\downarrow ((X4 \downarrow X4) \downarrow (X3) \downarrow (X2 \downarrow X2) \downarrow (X1 \downarrow X1)) \downarrow ((X4) \downarrow (X3 \downarrow X3)) \downarrow (X2 \downarrow X2) \downarrow (X1 \downarrow X1))$ $\downarrow ((X4 \downarrow X4) \downarrow (X3) \downarrow (X2 \downarrow X2) \downarrow (X1)) \downarrow ((X4) \downarrow (X3 \downarrow X3)) \downarrow (X2) \downarrow (X1)) \downarrow ((X4 \downarrow X4) \downarrow (X3)$ $\downarrow (X2) \downarrow (X1 \downarrow X1)) \downarrow ((X4) \downarrow (X3 \downarrow X3)) \downarrow (X2) \downarrow ((X1 \downarrow X1)).$

Алгебра Жегалкіна {ВИК/1104HE A50, I, const 1}

f4 = (X4 \(\Phi 1)\) (X3 \(\Phi 1)\) (X4 \(\Phi 1)\) (X3 \(\Phi 1)\) (X3 \(\Phi 1)\) (X3 \(\Phi 1)\) (X1)=X4 X3 X1 \(\Phi X3 X1 \(\Phi X3 X1 \(\Phi X4 X3 X1\) (PX4 X3 X1 \(\Phi X4 X3 X1\) (PX4 \(\Phi X4

- 3.2. Визначення належності функції f4 до п'яти передцповних класів
- f(1111) = 1 => финкція зберігає одиницю
- f(0000) = 0 => функція зберігає нуль
- f(0011) = f(1100) = 1 => функція не самодвоїста
- f(0011) > f(0100) => функція не монотонна
- функція нелінійна, оскільки її поліном Жегалкіна нелінійний

3M.	Арк.	№ докум.	Підп.	Дата

3.3. Мінімізація функції f4

Метод Квайна-Мак-<u>Класкі</u>

Виходячи з таблиці 2.2, запишемо стовпчик ДДНФ (КО), розподіливши терми за кількістю одиниць. Проведемо попарне склеювання між сусідніми групами та виконаємо поглинання термів (рисунок 4.4).

KO	K1	<i>K2</i>
0001 (1)	00X1 (1)	11XX (1)
0011 (1)	X001 (1)	11XX (1)
<i>0111 (1</i>)	OX11 (1)	
1001 (1)	X111 (1)	
-1100 (1)	1X01 (1)	
-1101 (1)	110X (1)	•
-1110 (1)	11X0 (1)	
-1111 (1)	-11X1 (1)	
	-111X (1)	

Рисунок 4.4 – Склеювання і поглинання термів

Одержані прості імпліканти запишемо в таблицю покриття (таблиця 4.3).

Таблиця 4.3 – Таблиця покриття

	0001(F1)	0011(F1)	0111(F1)	1001(F1)	1100(F1)	1101(F1)	1110(F1)	1111(F1)
00X1 (1)	+	+						
X001 (1)	+			+				
OX11 (1)		+	+					
X111 (1)			+					+
1X01 (1)				+		+		
11XX (1)					+	+	+	+

В ядро функції входять ті терми, без яких неможливо покрити хоча б одну імпліканту.

Ядро = {X001; 00X1; 11XX}

В МДНФ входять всі терми ядра, а також ті терми, що забезпечують покриття всієї функції з мінімальною ціною.

 $f_{4MH\Pi\Phi} = (\overline{X3}\overline{X2}X1) \ v \ (\overline{X4}X2X1) \ v \ (X4X3)$

Зм.	Арк.	№ докум.	Підп.	Дата

Метод невизначених коефіцієнтів

Ідея цього методу полягає у відкушанні ненульових коефіцієнтів при кожній імпліканті. Метод виконцється у декілька етапів:

- 1. Рівняння для знаходження коефіцієнтів представляється у вигляді таблиці (таблиця 4.4).
- 2. Виконується відкреслення нульових рядків.
- 3. Викреслюються вже знайдені нульові коефіцієнти на залишившихся рядках.
- 4. Імпліканти, що залишилися, поглинають імпліканти справа від них.

Таблиця 4.4 – Метод невизначених коефіцієнтів

<i>X</i> ₄	<i>X</i> ₃	X2	<i>X</i> ₁	X_4X_3	X_4X_2	X_4X_1	X_3X_2	X ₃ X ₁	X ₂ X ₁	$X_4X_3X_2$	$X_4X_3X_1$	X ₄ X ₂ X ₁	X ₃ X ₂ X ₁	X ₄ X ₃ X ₂ X ₁	f_4
Ð	Ð	Ð	Ð	00	00	00	00	00	-00	-000	-000	-000	000	0000	Ð
Ф	Ф	Ф	1	θθ	-00	01	θθ	01	01	-000	001	<i>-001</i>	001	9901	1
Ә	Ф	-1	Ф	<i>00</i>	01	<i>00</i>	01	00	10	<i>-001</i>	000	<i>010</i>	<i>010</i>	0010	Ф
0	0	1	1	θθ	01	01	0 1	0 1	-11	<i>-001</i>	001	011	011	_0011	1
Ә	1	Ф	Ф	01	00	00	10	10	-00	010	<i>010</i>	000	-100	<i>0100</i>	Ф
Ф	1	Ф	1	01	-00	01	10	-1 1	01	<i>-010</i>	011	<i>-001</i>	-101	<i>0101</i>	Ф
Ф	1	1	Ф	0 1	0 1	θθ	-1 1	10	10	011	<i>-010</i>	<i>010</i>	-110	<i>0110</i>	Ә
Ф	1	1	1	01	01	01	-11	-1 1	-11	011	011	011	111	9111	1
1	Ф	Ф	Ф	10	10	10	θθ	<i>00</i>	-00	-100	-100	-100	<i>-000</i>	1000	Đ
1	Ә	Ә	1	10	10	1 1	00	0 1	01	-100	-101	101	001	1001	1
1	Ә	1	Ә	10	-1 1	10	01	00	10	-101	-100	-110	<i>010</i>	1010	Ф
1	Ф	1	1	10	-1 1	-11	01	<i>01</i>	-11	101	101	-111	011	1011	Đ
1	1	Ф	Ф	11	10	10	10	10	-00	_110	_110	-100	-100		1
1	1	Ф	1	11	10	-11	10	-11	01	_110	111	101	101	1101	1
1	1	1	Ф	11	11	10	-11	10	10	111	110	-110	-110		1
4	1	1	1	11	-11	-11	-11	-11	-11	_111	111	-111	111		1

В ядро функції входять ті терми, без яких неможливо покрити хоча б одну імпліканту.

Ядро = {X001; 00X1; 11XX}

В МДНФ входять всі терми ядра, а також ті терми, що забезпечують покриття всієї функції з мінімальною ціною.

 $f_{4MH/II}\phi = (\overline{X3}\overline{X2}X1) \ v \ (\overline{X4}X2X1) \ v \ (X4X3)$

Метод діаграм Вейча

Метод діаграм Вейча— це графічний метод, призначений для ручної мінімізації. Його наочність эберігається за невеликої кількості аргументів. Кожна клітинка відповідає конституанті. Кожний прямокутник, що містить 2^к елементів, відповідає імпліканті. Прямокутник максимального розміру відповідає простій імпліканті (рисунок 4.5).

Зм.	Арк.	№ докум.	Підп.	Дата