Algebra - Lista 11

Zadanie 1 Czy zbiór $\{Id, (1,2)(3,4), (1,3)(2,4), (1,4)(2,3)\}$ z działaniem składania permutacji jest podgrupą grupy S_4 ? Czy jeśli dodamy do tego zbioru wszystkie cykle trzyelementowe to czy otrzymamy podgrupą S_4 ?

Zadanie 2 Pokaż, że grupa S_n jest generowana przez dowolną transpozycję elementów sąsiednich oraz cykl $(1,2,3,\ldots,n)$. Jest też generowana przez zbiór $\{(1,2),(2,3,\ldots,n)\}$

Zadanie 3

- Wyznacz permutacje odwrotne do permutacji $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 1 & 4 & 5 & 2 \end{pmatrix}$ oraz $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 5 & 2 & 1 & 3 \end{pmatrix}$.
 Przedstaw permutację $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\ 3 & 7 & 8 & 10 & 11 & 2 & 6 & 5 & 4 & 9 & 1 & 12 \end{pmatrix}$ jako złożenie cykli rozłącznych.
 Przedstaw permutacje $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 1 & 2 & 3 & 4 \end{pmatrix}$ oraz $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 3 & 2 & 5 & 4 & 1 \end{pmatrix}$ jako złożenia transpozycji.
 Jakie sa rzedy permutacji z powyżewach podawalate.
- Jakie są rzędy permutacji z powyższych podpuni

Zadanie 4 (Grupa alternująca) Udowodnij, że jeśli G jest podgrupą grupy permutacji S_n to

- zbiór G_p permutacji parzystych z G jest podgrupą G;
- $|G_p| = |G|$ lub $|G_p| = \frac{|G|}{2}$.

W przypadku, gdy $G = S_n$ to ta podgrupa G_p to grupa alternująca A_n .

Zadanie 5 Dla macierzy $(a_{i,j})_{i,j=1,2,...,n}$ rozpatrzmy funkcję:

$$f((a_{i,j})_{i,j=1,2,\dots,n}) = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \prod_{i=1}^n a_{i,\sigma(i)}.$$

Pokaż, że:

- $f(\mathrm{Id}_n)=1$
- funkcja ta jest liniowa względem każdej kolumny macierzy
- zamiana kolumn macierzy zmienia jej znak

Wywnioskuj z tego, że jest to wyznacznik.

Wskazówka: Tylko trzeci punkt jest nietrywialny. Rozpatrz, jak zmienia się znak konkretnego iloczynu po zamianie kolumn.

Zadanie 6 Pokaż, że każda permutacja a A_n jest złożeniem cykli trzyelementowych.

Wskazówka: Pokaż najpierw, że iloczyn dwóch transpozycji da się przedstawić jako złożenie najwyżej dwóch takich cykli.

Zadanie 7 (Inwolucja) Inwolucją nazywamy dowolną funkcję $f:A\mapsto A$ taką, że $f\circ f$ jest identycznością. Zauważ, że inwolucje zbioru $\{1, 2, \ldots, n\}$ są permutacjami z S_n .

- Jak wygląda rozkład inwolucji na cykle?
- Przedstaw permutację cykliczną (a_1, a_2, \ldots, a_k) jako złożenie dwóch inwolucji.
- \bullet Udowodnij, że każda permutacja z S_n jest złożeniem dwóch inwolucji.

Zadanie 8 Dla podanych poniżej permutacji σ

$$\begin{split} \sigma &= \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 7 & 4 & 1 & 2 & 9 & 8 & 3 & 5 & 10 & 6 \end{pmatrix} \;, \\ \sigma &= \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 \\ 12 & 5 & 7 & 14 & 6 & 2 & 1 & 10 & 4 & 9 & 13 & 3 & 11 & 8 \end{pmatrix} \;, \\ \sigma &= \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 \\ 7 & 3 & 10 & 1 & 13 & 14 & 9 & 6 & 4 & 12 & 5 & 2 & 11 & 8 \end{pmatrix} \;. \end{split}$$

podaj permutację odwrotną σ^{-1} ; rozłóż σ oraz σ^{-1} na cykle. które z permutacji σ , σ^{-1} są parzyste?

Zadanie 9 Dla podanych podzbiorów grupy permutacji S_4 określ, czy są one podgrupami S_4 (permutacje podane są jako rozkłady na cykle; Id oznacza permutację identycznościową). Jeśli podany zbiór jest podgrupą, wystarczy odpowiedź "TAK". Jeśli nie jest, to odpowiedź "NIE" uzasadnij.

{(1234); (1432); (13)(24); Id};
{(12)(34); (13)(24); Id};
{(12)(34); Id};
{(13); (24); (14)(23); (12)(34); (1234); (13)(24); (1432); Id};
{(12)(34); (13)(24); (14)(23); Id};
{(1234); (12)(34); Id};

Zadanie 10 (Sprzężenie) Rozważmy grupę G i zdefiniujmy jej $\mathit{sprzężenie}$:

$$\varphi_q(x) = gxg^{-1}.$$

Pokaż, że

- $\varphi_{ab} = \varphi_a \varphi_b$;
- φ_a jest izomorfizmem z $G \le G$.