Relatório – Solução de Sistemas Lineares Aplicados a Grafos de Manhattan

Vinícius Girão de Castro — 15491730 Natália Carvalho — 15497232 Larissa — Fábio Araujo — 16311045

Objetivo

Este trabalho tem como objetivo resolver um sistema linear oriundo de um grafo de ruas da ilha de Manhattan, utilizando diferentes métodos numéricos: LU, Cholesky, Jacobi, Gauss-Seidel e Gradientes Conjugados; e comparar o desempenho de cada um.

Descrição do problema

Utilizando os arquivos manh.el (arestas) e manh.xy (coordenadas dos vértices), foi construído um grafo representando o sistema de ruas de Manhattan. As etapas seguidas foram:

- Seleção da maior componente conexa do grafo;
- escolha de k vértices aleatórios $v_{i1}, v_{i2}, \ldots, v_{ik}$ e atribuição de valores $c_{i1}, c_{i2}, \ldots, c_{ik} \in (0, 10];$
- construção da matriz Laplaciana L do grafo;
- Construção da matriz de penalidades $P = (P_{ij})$, onde

$$P_{ij} = \begin{cases} \alpha = 1.0e7, \text{ se } j \text{ \'e um \'indice de um v\'ertice escolhido} \\ 0, \text{ caso contr\'ario;} \end{cases}$$

• construção do vetor $b = (b_i)$, onde

$$b_j = \begin{cases} c_{i_s}, \text{ se } j = i_s \\ 0, \text{ caso contrário;} \end{cases}$$

• resolução do sistema (L+P) x = Pb.

Métodos utilizados

Decomposição LU

- A matriz A = L + P foi decomposta em A = LU;
- Resolvido em duas etapas:
 - a) Ly = Pb
 - b) Ux = y;
- vantagem: aplicável à qualquer matriz não singular;
- desvantagem: alto custo para matrizes esparsas.

Decomposição de Cholesky

O método iterativo estrutura-se com a decomposição $A = HH^T$, sendo H triangular inferior. Então é calculada a solução em duas etapas:

- a) Hy = Pb
- b) $H^T x = y$.

Para que possamos determinar H, é necessário que a matriz A seja simétrica definida positiva.

Sabe-se que toda matriz Laplaciana de um grafo conexo é necessariamente simétrica semidefinida positiva, mas ao adicionar a matriz de penalidades, com valores grandes e positivos na diagonal, algumas posições da solução são fortemente forçadas a assumir os valores desejados definidos em b. Esses grandes valores diagonais empurram todos os autovalores da matriz para cima, garantindo que todos sejam estritamente positivos.

Em conclusão, a matriz A torna-se simétrica definida positiva (SPD), o que justifica o uso seguro da Decomposição de Cholesky. Tal método tem como vantagem ser mais eficiente que LU, apesar de requerer que a matriz seja SPD. Para o teste com 400 valores, o método levou 306.722567 segundos, ou seja, pouco mais de 5 minutos.

Método de Jacobi

- Iterativo, baseado em A = D + R;
- iteração: $x^{k+1} = D^{-1} (Pb Rx^k)$;
- vantagem: simples e paralelizável;
- desvantagem: convergência lenta.

Gauss-Seidel

- Iterativo usa atualizações imediatas;
- iteração: $(x_i)^{k+1} = (1/A_{ii}) (Pb_i \text{somas envolvendo } x^{k+1} e x^k);$
- vantagem: converge mais rápido que Jacobi;
- desvantagem: menos paralelizável.

Gradientes conjugados (CG)

- Iterativo para matrizes SPD;
- minimiza $f(x) = 0.5x^T Ax x^T Pb$;
- atualiza x em direções ortogonais;
- vantagem: eficiente para matrizes grandes esparsas;
- desvantagem: depende do condicionamento.

Comparativo dos métodos

Tabela 1: Comparação dos métodos

Método	LU	Cholesky	Jacobi	Gauss- Seidel	CG
Tipo	Direto	Direto	Iterativo	Iterativo	Iterativo
Requisitos	Matriz não singu- lar	Matriz SPD	Preferível diagonal dominante	Igual ao Jacobi	Matriz SPD
Observações	Alto custo de memória	Mais efi- ciente que LU	Convergênci lenta	aConvergênci mais rápida	aMelhor desempe- nho geral

Conclusão

Todos os métodos foram capazes de resolver o sistema. Os métodos diretos (LU e Cholesky) forneceram soluções exatas rapidamente, com destaque para o Cholesky, que foi mais eficiente devido à estrutura da matriz.

Entre os iterativos, os Gradientes Conjugados apresentaram o melhor desempenho para o caso estudado, sendo uma excelente opção para problemas de grande escala com matrizes esparsas e SPD.