

THE UNIVERSITY OF TEXAS AT AUSTIN

EE381V LARGE SCALE OPTIMIZATION

Problem Set 7

Edited by \LaTeX

Department of Computer Science

STUDENT

Jimmy Lin

xl5224

COURSE COORDINATOR

Sujay Sanghavi

UNIQUE NUMBER

 $\overline{17350}$

RELEASE DATE

Nov 13, 2014

DUE DATE

Nov 20, 2014

TIME SPENT

15 hours

November 21, 2014

Table of Contents

	I Matlab and Computational Assignment	2
1	MaxCut 1.1 Petersen Graph	2 2 2 2
	II Written Assignment	3
1	Network Congestion Control1.1 Problem Formulation	3 3
2	Problem 7.12	5
3	Problem 7.13	6
A	Codes Printout A.1 SDP-relaxation for MaxCut	7
	List of Figures	
	1 Petersen Graph	

Part I

Matlab and Computational Assignment

1 MaxCut

1.1 Petersen Graph

Figure 1: Petersen Graph

1.2 Planar Graph I

Figure 2: Planar Graph I

1.3 Planar Graph II

Figure 3: Planar Graph II

Part II

Written Assignment

1 Network Congestion Control

1.1 Problem Formulation

The overall system problem – to maximize utility minus cost – can be formulated as a convex optimization problem:

maximize
$$\sum_{s \in S} U_s(x_s) - \sum_{j \in J} C_j(f_j)$$
 subject to
$$Hy = x, Ay \le f$$
 over
$$x, y \ge 0$$
 (1)

1.2 Problem Decoupling

Lagrangian:

$$L(x, y; \lambda, \mu) = \sum_{s \in S} U_s(x_s) - \sum_{j \in J} C_j(f_j) - \lambda^T(x - Hy) + \mu^T(f - Ay - z)$$
(2)

$$= \sum_{s \in S} (U_s(x_s) - \lambda_s x_s) - \sum_{r \in R} y_r (\lambda_{s(r)} - \sum_{j \in I} \mu_j) + \sum_{j \in J} \mu_j (f_j - z_j) - \sum_{j \in J} C_j (f_j)$$
 (3)

where λ and μ are lagrange multipliers.

According to optimality conditions

$$\frac{\partial L}{\partial x_s} = U_s'(x_s) - \lambda_s \tag{4}$$

$$\frac{\partial L}{\partial y_r} = \lambda_{s(r)} - \sum_{j \in r} \mu_j \tag{5}$$

$$\frac{\partial L}{\partial z_j} = -\mu_j \tag{6}$$

$$\lambda \ge U_s'(x_s), Hy = x, (\lambda - U'(x))^x = 0 \tag{7}$$

$$\mu \ge 0, Ax \le C, \mu^T (C - Ax) = 0$$
 (8)

$$\lambda^T H \le \mu^T A, y \ge 0, (\mu^T A - \lambda^T H)y = 0 \tag{9}$$

 $USER_s(U_s; \lambda_s)$

maximize
$$\sum_{s \in S} U_s(x_s) - \lambda_s x_s$$
 (10) subject to $x_s \ge 0$

 $NETWORK(H, F; \lambda)$

maximize
$$\sum_{s \in S} \lambda_s x_s - \sum_{j \in J} C_j(f_j)$$
 subject to
$$Hy = x, Ay \le f$$
 over
$$x, y \ge 0$$
 (11)

Theorem 1. There exists a price vector $\lambda = (\lambda_s, s \in S)$ such that the vector $x = (x_s, s \in S)$, formed from the unique solution x_s to $USER_s(U_s; \lambda_s)$ for each $s \in S$, solves $NETWORK(H, A, C; \lambda)$. The vector x then also solves SYSTEM(U, H, A, f).

Proof. First note that $USER_s(U_s; \lambda_s)$ has unique solution for each s. Then we observe that the lagrangian form for $NETWORK(H, F; \lambda)$ is

$$L(x, y; \lambda, \mu) = \sum_{s \in S} U_s(x_s) - \sum_{j \in J} C_j(f_j) - p^T(x - Hy) + q^T(f - Ay - z)$$
(12)

$$= \sum_{s \in S} \left(U_s(x_s) - p_s x_s \right) - \sum_{r \in R} y_r \left(p_{s(r)} - \sum_{j \in I} q_j \right) + \sum_{j \in J} q_j (f_j - z_j) - \sum_{j \in J} C_j (f_j)$$
 (13)

Hence, any quadruple (λ, μ, x, y) , which satisfies optimality of ??-?? (solution of SYSTEM) identifies $p = \lambda$ and $q = \mu$, which establish that (x, y) solves $NETWORK(H, F; \lambda)$.

Conversely, for any solution x to $NETWORK(H, F; \lambda)$, then exists a p and q, where $x_s \geq 0$ then $p_s = \lambda_s$ and if $x_s = 0$, then $p_s \geq \lambda_s$. Thus if x_s solves $USER_s(U_s; \lambda_s)$, then it also solves $USER_s(U_s; p_s)$. Based on p and q, we can then construct a quadruple that satisfies optimality of ??-??. This quadruple gives x that solves SYSTEM(U, H, A, f).

2 Problem 7.12

3 Problem 7.13

A Codes Printout

A.1 SDP-relaxation for MaxCut