Academy of Mathematics and Systems Science Chinese Academy of Sciences

Apr. 6, 2024 Assignment

Name: 李夏洋

Major: 运筹学与控制论 UID: 202328000206057

Personal Page: https://xiayangli2301.github.io

组合最优化第四次作业

Question 1

给出最大流的原始规划中的变量 $\pi(x)$ 和 $\gamma(x,y)$ 的一种合理解释

Solution. 网络 N=(s,t,V,E,b) 的一个 s-t 截是节点集合 V 的一个划分 (W,\overline{W}) 划分. 最大流与最小割问题互为对偶.

这样, $\pi(x) = 0$ 表示 $x \in W$, $\pi(x) = 1$ 表示 $x \in \overline{W}$.

 $\gamma(x,y)=1$ 表示 xy 是割, 也即 $x\in W, y\in \overline{W}$.

Question 2

设 N=(s,t,V,E,b) 是有向图 G=(V,E) 上的一个流网络, $P=\{e_{i_1},e_{i_2},\cdots,e_{i_K}\}$,是节点 v_i 到节点 v_j 一条有向路,记 $b(P)=\min\{b(e_{i_m}): m=1,2,\cdots,K)$,称 b(P) 为有向路 P 的容量。设计一个计算复杂度为 $O(|V|^3)$ 的算法,求出网络 N=(s,t,V,E,b) 中所有节点对之间的最大容量的路。

Solution. 可以使用 Dijkstra 算法的思路, 设计算法如下.

- 1. 依次选择图 G 中的点 s 作为源点. 用二元组储存每个节点 v 的信息. $(\varepsilon(v),b(s,v))$, 其中 $\varepsilon(v)$ 为其上一节点的编号, b(s,v) 表示从源点 s 到 v 的有向路的容量. 设初始化源点 $\varepsilon(s) = \emptyset, b(s,s) = \infty$), 其余节点 $\varepsilon(v) = \emptyset, b(s,v) = -\infty$).
- 2. 取出 b(s,v) 值最大的节点作为当前节点 s'. $V := V \setminus s'$, 考察 s' 的所有邻居节点. 若 $b(s,v) < \min\{b(s,s'),e_{s',v}\}\}$, 则记 $b(s,v) := \min\{b(s,s'),e_{s',v}\}\}$.
- 3. 若 $V \neq \emptyset$, 转上步; 否则, 退出程序. 输出 $b(s,v), v \in V$, 为源点 s 到 v 的最大容量的路的容量.

算法对于某一个源点 s 需要遍历 |V| 个顶点,更新每个顶点至多 |V| 个邻居,因此找到 s 到其余各个顶点的最大容量路需要时间复杂度为 $O(|V|^2)$,遍历 |V| 个顶点需要的时间复杂度为 |V|),于是算法的计算复杂度为 $O(|V|^3)$

Question 3

假设有 n 个男青年和 n 个女青年及 m 个婚姻介绍所. 每一个婚姻介绍所掌握一批男青年和女青年的登记名单,并且它可以按照名单任意安排男女之间的婚配. 假设第 i 个婚姻介绍所能够安排的最大婚配数为 b_i $i=1,2,\cdots,m$. 要求一夫一妻且不允许同性恋. 设计一个算法求出最大婚配.

Solution. 构建一个虚拟的无穷大源点 s, s 向 m 个婚姻介绍所连 m 条边, 每边 (s,i) 容量限制 为 b_i .

每个婚姻事务所向每个男青年之间连边,边容量限制为 1,每个男青年和每个女青年之间连边,边容量限制为 1.每个女青年向一个无穷收点 t 连边,边容量限制为 1.于是调用求解 s 到 t 的最大流问题的算法即可求解该问题.

Question 4

Ford-Fulkerson 标号算法是原始-对偶算法在最大流问题中的应用,但原始-对偶算法在有限步内终止,而 Ford-Fulkerson 标号算法却不能,矛盾吗?为什么?

Solution. 首先, 原始对偶算法我更愿意称它为方法, 脱离具体问题谈一个比较通用的方法是否有限步终止没有任何意义. 题设:'原始-对偶算法在有限步内终止'在表达什么?. Ford-Fulkerson标号算法之所以不能在有限步终止, 是因为它寻找增广路的方法并不充分恰当, 是随机增广的. 只能确保当前步的流值比上一步大, 即, 流值列严格单增. 但构造一个严格递增但极限存在的数列是很容易的. 需要指出的是, 讲义 5.3 节呈现的'Ford-Fulkerson 标号算法'出现了很严重的错误, 那根本不是 Ford-Fulkerson 标号算法, 事实上讲义上的那个版本等价于 EK 算法, 完全可以证明有限终止性.

郭老师的讲义,一定要带着批判思想去看哦.

下面罗列助教的答案, 也有道理.

不矛盾,原始对偶算法利用单纯形算法求解子问题,且采用避免蕴含的方法,有限步可以终止.但 Ford-Fulkerson 算法没有用单纯形方法求解子问题,也没有避免环的方法,因而出现无理数时就可能在有限步不终止.

Question 5

为什么把 Hitchhock 问题变为等式约束时,要依赖于费用的非负性? 考察圈算法, 选加算法和 $\alpha\beta$ 算法对这个假设的依赖性.

Hitchcock 问题的不等式约束是由于供大于需引起的.

其线性规划模型为:

min
$$\sum_{i,j} c_{ij} f_{ij}$$
s.t.
$$\sum_{j=1}^{n} f_{ij} \leqslant a_i, i = 1, 2, \dots, m$$

$$\sum_{i=1}^{m} f_{ij} \geqslant b_j, j = 1, 2, \dots, n$$

$$f_{ij} \geqslant 0$$

这样可构造反例如下.

显然,不增加虚拟节点时,最优解为 $f_{11}=1$, $f_{22}=2$. 增加虚拟节点后 $f_{11}=1$, $f_{13}=1$, $f_{22}=1$, $f_{23}=1$. 于是最优解发生了变化.

(2) 三种算法都不依赖于该假设. 圈算法本质为寻找负费用有向圈, 没有影响. 迭加算法本质为寻找最小费用增广路, 也没有影响. αβ 算法, 默认为等式约束情形, 不依赖.

Question 6

Hitchcock 问题 $\alpha\beta$ 算法的有限步终止吗? 为什么?

Solution. Hitchcock 问题的 $\alpha\beta$ 算法依赖于 Ford-Fulkerson 标号算法. 故如果 Ford-Fulkerson 标号算法可以有限步终止,则 Hitchcock 必然可以有限步终止,因为每一次调用 Ford-Fulkerson 之后,对偶问题值都会上升,这意味着每次允许弧集合是不同的. 由于弧集有限,故原始对偶算法的子问题是有限的,于是其可以有限步终止.