Pomiary zostały wykonane dla

- dwóch rodzai instancji
 - c4.xlarge (z kategorii 'compute optimized')
 - m5.xlarge (z kategorii 'general purpose')
- dwóch rozmiarów danych
 - o 65MB
 - 1200MB
- trzech ilości node'ów (każdy z nich posiadał po 4 vCPUs)
 - 0 3
 - o 5
 - o 7

Pomimo oczekiwanego przyspieszenia dla instancji zoptymalizowanej do obliczeń, oba typy posiadały porównywalne czasy wykonania.

Obliczenie metryki COST (Configuration that Outperforms a Single Thread)

- 1 Wraz ze wzrostem liczby node'ów wprostproporcjonalnie zmniejszał się czas wykonania programu równoległego.
 - Pomiary przyspieszeń dla przypadków posiadających mniejszy rozmiar danych (65MB) zaczęły odstawać od tych dla większej ilości danych (1200MB). Widać tu, że algorytmy równoległe lepiej sprawdzają się dla problemów o większym rozmiarze danych lepiej stosuje się na nich zrównoleglenie.
- 2 Do obliczenia metryki COST przyjąłem że przyspieszenie będzie się zwiększało o taki sam współczynnik dla każdego kolejnego dodanego node'a.
- 3 Sposób dokonania obliczeń
 - 3.1 Dla każdego zmierzonego czasu wyliczyłem teoretyczny czas wykonania tego samego algorytmu dla jednego node'a, zgodnie ze wzorem:

theoretical_single_node_time = execution_time * number_of_nodes

3.2 Następnie wziąłem średnią bazując na rodzaju instancji i rozmiaru danych, a następnie podzieliłem ją przez najlepszy czas sekwencyjny dla danej konfiguracji.

Rodzaj instancji, rozmiar danych	Średnia teoretycznego czasu dla 1 node'a	Najlepszy czas sekwencyjny
c4.xlarge, 65MB	667s	4.25s
c4.xlarge, 1200MB	10978s	87.63s
m5.xlarge, 65MB	633s	4.42s
m5.xlarge, 1200MB	10859s	83.87s

- 4 Wyniki są one równoznaczne z oszacowaniem metryki COST dla każdej konfiguracji
 - 4.1 Dla problemu o małej ilości danych (65MB) metryka COST wyniosła około 160 node'ów (640 vCPUs)
 - 4.2 Dla problemu o dużej ilości danych (1200MB) metryka COST wyniosła około 130 node'ów (520 vCPUs)

Rodzaj instancji,rozmiar danych	[Średnia teoretycznego czasu dla 1 node'a]/[Najlepszy czas sekwencyjny]	
c4.xlarge, 65MB	157	
c4.xlarge, 1200MB	125	
m5.xlarge, 65MB	143	
m5.xlarge, 1200MB	129	

5 Dokładniejsze obliczenia znajdują się w dołączonym arkuszu 'aws_logs_int_graphs.ods'