Analyse

Séries Numériques

Question 1/17

Critère d'Abel

Réponse 1/17

Si (a_n) est une suite réelle positive décroissante de limite nulle, et la somme partielle de $\sum b_n$ est bornée, alors $\sum a_n b_n$ converge Les suites $e^{in\alpha}$, $\cos(n\alpha)$ et $\sin(n\alpha)$ vérifient les conditions pour (b_n) lorsque $\alpha \not\equiv 0$ $[2\pi]$

Question 2/17

$$\sum u_n$$
 diverge grossièrement

Réponse 2/17

 (u_n) ne tend pas vers 0

Question 3/17

Série de Riemann

Réponse 3/17

$$\sum_{n=1}^{+\infty} \left(\frac{1}{n^{\alpha}} \right)$$

Une série de Riemann converge si et seulement si $\alpha>1$

Question 4/17

Théorème spécial de convergence des séries alternées

Réponse 4/17

Une série alternée est convergente Les sommes partielles sont du signe du premier terme

Les restes sont du signe de leur premier terme et de valeur absolue plus petite que celle de ce dernier

Question 5/17

Sommabilité

Réponse 5/17

$$(a_i)$$
 est sommable si $\sum_{i \in I} (|a_i|) < +\infty$

Question 6/17

$$\sum_{i\in I}(a_i)$$

Réponse 6/17

$$\sup \left\{ \left\{ \sum_{i \in I} (a_i), \ J \in \mathcal{P}_f(I) \right\} \right\}$$

Question 7/17

Théorème de comparaison des séries à termes positifs

Réponse 7/17

$$\exists N \in \mathbb{N}, \ \forall n \geqslant N, \ 0 \leqslant u_n \leqslant v_n$$

Si $\sum v_n$ converge alors $\sum u_n$ converge
Si $\sum u_n$ diverge alors $\sum v_n$ diverge

Question 8/17

Série alternée

Réponse 8/17

$$\sum u_n$$
 est alternée s'il existe une suite (a_n) positive décroissante de limite nulle telle que $u_n = (-1)^n a_n$

Question 9/17

Produit de Cauchy

Réponse 9/17

Si $\sum a_n$ et $\sum b_n$ sont absolument convergentes

et
$$c_n = \sum_{k=0}^{\infty} (a_k b_{n-k})$$
, alors $\sum c_n$ est absolument

convergente
$$\left(\sum_{n=0}^{+\infty} (a_n)\right) \left(\sum_{n=0}^{+\infty} (b_n)\right) = \sum_{n=0}^{+\infty} \left(\sum_{k=0}^{n} (a_k b_{n-k})\right)$$

Question 10/17

Semi-convergence

Réponse 10/17

Convergence sans convergence absolue

Question 11/17

Convergence absolue

Réponse 11/17

$$\sum u_n$$
 converge absolument si $\sum |u_n|$ converge
Si $\sum |u_n|$ converge alors $\sum u_n$ converge

Question 12/17

Formule du binôme négatif

Réponse 12/17

$$\sum_{n=n}^{+\infty} \left(\frac{n!}{(n-p)!} z^{n-p} \right) = \frac{p!}{(1-z)^{p+1}}$$

$$+\infty$$

$$+\infty$$

 $\frac{1}{(1-z)^{p+1}} = \sum_{n=0}^{+\infty} \left(\binom{n+p}{p} z^n \right)$

Question 13/17

Règle de Riemann

Réponse 13/17

S'il existe $\alpha > 1$ tel que $(n^{\alpha}u_n)$ est bornée, alors $\sum u_n$ converge Si (nu_n) est minorée par m > 0 à partir de

 $n \in \mathbb{N}$, alors $\sum u_n$ diverge

Question 14/17

Encadrement des sommes par les intégrales f est continue et décroissante sur $[n_0, +\infty[$ avec $n_0 \in \mathbb{Z}$

Réponse 14/17

$$\int_{n_0+1}^{n+1} (f(t)) dt$$

$$\leq \sum_{k=n_0+1}^{n} (f(k)) \leq \sum_{k=n_0+1}^{n} (f(t)) dt$$

Question 15/17

Comparaison par dominance

Réponse 15/17

$$u_n = O(v_n)$$

Si $\sum v_n$ converge alors $\sum u_n$ converge
Si $\sum u_n$ ou $\sum |u_n|$ diverge alors $\sum v_n$ diverge

Question 16/17

Série de Bertrand

Réponse 16/17

$$\sum_{n=2}^{+\infty} \left(\frac{1}{n^{\alpha} \ln^{\beta}(n)} \right)$$

Une série de Bertrand converge si et seulement si $(\alpha, \beta) > (1, 1)$ pour l'ordre lexicographique

Question 17/17

Règle de d'Alembert

Réponse 17/17

Si
$$\left| \frac{u_{n+1}}{u_n} \right| \to \ell$$
 où $0 \le \ell < 1$, alors $\sum u_n$ converge absolument

Si $\left| \frac{u_{n+1}}{u_n} \right| \to \ell$ où $\ell > 1$, alors $\sum u_n$ diverge grossièrement