Avnet Embedded.
With you every step of the way!



# **DATASHEET**



G121X1-L04

Date: October 2010

www.avnet-embedded.eu



If you require a touch panel solution.

For information ontouch sensors, sensor driving and touch panel bonding solutions, scan the  ${\tt QR}$  code or click the  ${\tt URL}$ 

www.avnet-embedded.eu/products/displays/.html



Doc. Number:

Tentative Specification Preliminary Specification Approval Specification

MODEL NO.: G121X1 SUFFIX: L04

| Customer:                                          |                            |
|----------------------------------------------------|----------------------------|
| APPROVED BY                                        | SIGNATURE                  |
| Name / Title<br>Note                               |                            |
| Please return 1 copy for y signature and comments. | our confirmation with your |

| 核准時間                   | 工作            | 審核  | 角色       | 投票     |
|------------------------|---------------|-----|----------|--------|
| 2010-10-27<br>14:18:32 | APPL<br>產品管理處 | 張喻翔 | Director | Accept |

Version 2.1 22 October 2010 1 / 27



# - CONTENTS -

| REVISION HISTORY                                                                                                                          | <br>3  |
|-------------------------------------------------------------------------------------------------------------------------------------------|--------|
| 1. GENERAL DESCRIPTION 1.1 OVERVIEW 1.2 FEATURES 1.3 APPLICATION 1.4 GENERAL SPECIFICATIONS 1.5 MECHANICAL SPECIFICATIONS                 | <br>4  |
| 2. ABSOLUTE MAXIMUM RATINGS 2.1 ABSOLUTE RATINGS OF ENVIRONMENT 2.2 ELECTRICAL ABSOLUTE RATINGS 2.2.1 TFT LCD MODULE 2.2.2 BACKLIGHT UNIT | <br>6  |
| 3. ELECTRICAL CHARACTERISTICS 3.1 TFT LCD MODULE 3.2 BACKLIGHT UNIT                                                                       | <br>8  |
| 4. BLOCK DIAGRAM<br>4.1 TFT LCD MODULE                                                                                                    | <br>10 |
| 5. INPUT TERMINAL PIN ASSIGNMENT<br>5.1 TFT LCD MODULE<br>5.2 BACKLIGHT UNIT<br>5.3 COLOR DATA INPUT ASSIGNMENT                           | <br>11 |
| 6. INTERFACE TIMING 6.1 INPUT SIGNAL TIMING SPECIFICATIONS 6.2 POWER ON/OFF SEQUENCE 6.3 THE INPUT DATA FORMAT 6.4 SCANNING DIRECTION     | <br>14 |
| 7. OPTICAL CHARACTERISTICS 7.1 TEST CONDITIONS 7.2 OPTICAL SPECIFICATIONS                                                                 | <br>18 |
| 8. RELIABILITY TEST CRITERIA                                                                                                              | <br>22 |
| 9. PACKAGING<br>9.1 PACKING SPECIFICATIONS<br>9.2 PACKING METHOD                                                                          | <br>23 |
| 10. DEFINITION OF LABELS                                                                                                                  | <br>25 |
| 11. PRECAUTIONS<br>11.1 ASSEMBLY AND HANDLING PRECAUTIONS<br>11.2 SAFETY PRECAUTIONS                                                      | <br>26 |
| 12. MECHANICAL CHARACTERISTICS                                                                                                            | <br>27 |



# **REVISION HISTORY**

| Version | Date         | Section | Description                                                                   |
|---------|--------------|---------|-------------------------------------------------------------------------------|
| 2.0     | Feb 23, 2010 | All     | G121X1-L04 Approval Spec. was first issued.                                   |
| 2.1     | Oct 22, 2010 | 3.2     | Add cautionary statement to Note(2) about life time vs. operating conditions. |
|         |              |         |                                                                               |
|         |              |         |                                                                               |
|         |              |         |                                                                               |
|         |              |         |                                                                               |
|         |              |         |                                                                               |
|         |              |         |                                                                               |
|         |              |         |                                                                               |
|         |              |         |                                                                               |
|         |              |         |                                                                               |
|         |              |         |                                                                               |
|         |              |         |                                                                               |
|         |              |         |                                                                               |
|         |              |         |                                                                               |
|         |              |         |                                                                               |
|         |              |         |                                                                               |
|         |              |         |                                                                               |
|         |              |         |                                                                               |
|         |              |         |                                                                               |
|         |              |         |                                                                               |
|         |              |         |                                                                               |
|         |              |         |                                                                               |

Version 2.1 22 October 2010 3 / 27



# 1. GENERAL DESCRIPTION

#### 1.1 OVERVIEW

The G121X1-L04 model is a 12.1" TFT-LCD module with a white LED Backlight Unit and a 20-pin 1ch-LVDS interface. This module supports 1024 x 768 XGA mode and displays 262k/16.2M colors. The converter for the Backlight Unit is built in.

### 1.2 FEATURES

- Wide viewing angle
- High contrast ratio
- Fast response time
- XGA (1024 x 768 pixels) resolution
- Wide operating temperature
- DE (Data Enable) mode
- LVDS (Low Voltage Differential Signaling) interface
- Reversible scan direction
- RoHS Compliance

#### 1.3 APPLICATION

- TFT LCD Monitor
- Industrial Application
- Amusement
- Vehicle

# 1.4 GENERAL SPECIFICATIONS

| Item                     | Specification          | Unit  | Note |
|--------------------------|------------------------|-------|------|
| Diagonal Size            | 12.1                   | inch  |      |
| Active Area              | 245.76(H) x 184.32(V)  | mm    | (1)  |
| Bezel Opening Area       | 249.0 x 187.5          | mm    |      |
| Driver Element           | a-si TFT active matrix | -     | -    |
| Pixel Number             | 1024 x R.G.B. x 768    | pixel | -    |
| Pixel Pitch              | 0.240(H) x 0.240(V)    | mm    | -    |
| Pixel Arrangement        | RGB vertical stripe    | -     | -    |
| Display Colors           | 262k/16.2M             | color | -    |
| Transmissive Mode        | Normally white         | -     | -    |
| Surface Treatment        | Hard coating (3H), AG  | -     | -    |
| Module Power Consumption | 6.6 (Black pattern)    | W     | Тур. |



# 1.5 MECHANICAL SPECIFICATIONS

| Item                                                        |                | Min.            | Тур.  | Max.  | Unit | Note |
|-------------------------------------------------------------|----------------|-----------------|-------|-------|------|------|
|                                                             | Horizontal (H) | 260.2           | 260.5 | 260.8 | mm   |      |
| Module Size                                                 | Vertical (V)   | 239.7           | 204   | 204.3 | mm   | (1)  |
|                                                             | Depth (D)      | 6.7             | 7.2   | 7.7   | mm   |      |
| Weight                                                      |                |                 | 435   | 465   | g    | ı    |
| I/F connector mounting                                      |                | The mounting ir |       | (2)   |      |      |
| position the screen center within ±0.5mm as the horizontal. |                |                 | -     | (2)   |      |      |

Note (1) Please refer to the attached drawings for more information of front and back outline dimensions.

# (2) Connector mounting position



Version 2.1 22 October 2010 5 / 27

# 2. ABSOLUTE MAXIMUM RATINGS

### 2.1 ABSOLUTE RATINGS OF ENVIRONMENT

| Itom                          | Svmbol          | Va   | lue  | Unit  | Note |
|-------------------------------|-----------------|------|------|-------|------|
| Item                          | Symbol          | Min. | Max. | Ullit | Note |
| Operating Ambient Temperature | T <sub>OP</sub> | -30  | +70  | ٥C    |      |
| Storage Temperature           | T <sub>ST</sub> | -40  | +80  | ٥C    |      |

Note (1) Temperature and relative humidity range is shown in the figure below.

- (2) 90 %RH Max. (Ta 40 °C).
- (3) Wet-bulb temperature should be 39 °C Max. (Ta > 40 °C).
- (4) No condensation.

# **Relative Humidity (%RH)**





### 2.2 ELECTRICAL ABSOLUTE RATINGS

#### 2.2.1 TFT LCD MODULE

| Itom                 | Symbol | Val  | Value Unit |       | Note |  |
|----------------------|--------|------|------------|-------|------|--|
| Item                 | Symbol | Min. | Max.       | Offic | Note |  |
| Power Supply Voltage | VCC    | -0.3 | 7          | V     | (1)  |  |

### 2.2.2 BACKLIGHT UNIT

| Itom              | Symbol | Va   | lue  | Unit  | Note     |
|-------------------|--------|------|------|-------|----------|
| Item              | Symbol | Min. | Max. | Ullit | Note     |
| Converter Voltage | Vi     | -0.3 | 18   | V     | (1), (2) |
| Enable Voltage    | EN     |      | 5.5  | V     |          |
| Backlight Adjust  | ADJ    |      | 5.5  | V     |          |

Note (1) Permanent damage to the device may occur if maximum values are exceeded. Function operation should be restricted to the conditions described under Normal Operating Conditions.

Note (2) Specified values are for lamp (Refer to 3.2 for further information).

Version 2.1 22 October 2010 7 / 27

# 3. ELECTRICAL CHARACTERISTICS

### 3.1 TFT LCD MODULE

Ta = 25 ± 2 °C

| Parameter                       |        | Symbol            | Value |      |      | Unit | Note              |  |
|---------------------------------|--------|-------------------|-------|------|------|------|-------------------|--|
| Parameter                       |        | Symbol            | Min.  | Тур. | Max. | Unit | Note              |  |
| Power Supply Voltage            |        | V <sub>CC</sub>   | 3.0   | 3.3  | 3.6  | V    | (1) at Vcc=3.3V   |  |
| Power Supply Voltage            |        | V CC              | 4.75  | 5.0  | 5.25 | V    | (1) at Vcc=5.0V   |  |
| Rush Current                    |        | I <sub>RUSH</sub> | ı     | -    | 4    | Α    | (2)               |  |
|                                 | White  |                   | 1     | 410  | 490  | mΑ   | (3)a, at Vcc=3.3V |  |
| Power Supply Current            | vviile | _                 | 1     | 320  | 395  | mΑ   | (3)a, at Vcc=5.0V |  |
| Fower Supply Current            | Black  | _                 | 1     | 540  | 650  | mΑ   | (3)b, at Vcc=3.3V |  |
|                                 |        |                   | 1     | 400  | 480  | mΑ   | (3)b, at Vcc=5.0V |  |
| Power Consumption               |        | $P_L$             | 1     | 2.0  | -    | W    |                   |  |
| LVDS differential input voltage |        | VID               | 100   | -    | 600  | mV   | -                 |  |
| LVDS common input volt          | age    | VICM              | 0.7   | -    | 1.6  | V    | -                 |  |

Note (1) The assembly should be always operated within above ranges.

# Note (2) Measurement Conditions:



# Vcc rising time is 470μs



Version 2.1 22 October 2010 8 / 27



Note (3) The specified power supply current is under the conditions at Vcc = 3.3V or 5V, Ta =  $25 \pm 2$  °C,  $f_v = 60$  Hz, whereas a power dissipation check pattern below is displayed.





Active Area

b. Black Pattern



Active Area

#### 3.2 BACKLIGHT UNIT

 $Ta = 25 \pm 2 \, ^{\circ}C$ 

| Doromotor              | Parameter      |                  |        | Value |      | Unit                      | Note                      |
|------------------------|----------------|------------------|--------|-------|------|---------------------------|---------------------------|
| Farameter              |                | Symbol           | Min.   | Тур.  | Max. | Unit                      | Note                      |
| Converter Power Supply | Voltage        | Vi               | 7      | 12.0  | 17   | V                         |                           |
| Converter Power Supply | l <sub>i</sub> | -                | 0.4    | 0.5   | Α    | @ Vi = 12V<br>(Duty 100%) |                           |
| LED Power Consumption  |                | P <sub>LED</sub> | -      | 4.8   | 6    | W                         | @ Vi = 12V<br>(Duty 100%) |
| EN Control Level       | Backlight on   | _                | 2.0    | 3.3   | 5.0  | V                         |                           |
| EN Control Level       | Backlight off  | -                | 0      |       | 0.8  | V                         |                           |
| PWM Control Level      | PWM High Level |                  | 2.0    | 3.3   | 5.0  | V                         |                           |
| F VVIVI COITIOI Level  | PWM Low Level  | -                | 0      | ı     | 0.15 | V                         |                           |
| PWM Control Duty Ratio |                | -                | 10     | -     | 100  | %                         |                           |
| PWM Control Frequency  | $f_{PWM}$      | 190              | 200    | 210   | Hz   |                           |                           |
| LED Life Time          |                | L <sub>L</sub>   | 30,000 | -     | -    | Hrs                       | (2)                       |

Note (1) LED current is measured by utilizing a high frequency current meter as shown below:

Note (2) The lifetime of LED is defined as the time when it continues to operate under the conditions at  $Ta = 25 \pm 2$  and Duty 100% until the brightness becomes 50% of its original value. Operating LED at high temperature condition will reduce life time and lead to color shift.



Version 2.1 22 October 2010 9 / 27



### 4. BLOCK DIAGRAM

#### 4.1 TFT LCD MODULE



Version 2.1 22 October 2010 10 / 27



### 5. INPUT TERMINAL PIN ASSIGNMENT

#### 5.1 TFT LCD MODULE

| Pin | Name  | Description                                | Remark   |
|-----|-------|--------------------------------------------|----------|
| 1   | RX3+  | Differential Data Input, CH3 ( Positive )  |          |
| 2   | RX3-  | Differential Data Input, CH3 (Negative)    |          |
| 3   | NC    | NC                                         |          |
|     |       | LVDS 6/8 bit select function control,      | Note (3) |
| 4   | SEL68 | Low or NC → 6 bit Input Mode               |          |
|     |       | High → 8bit Input Mode                     |          |
| 5   | GND   | Ground                                     |          |
| 6   | RXC+  | Differential Clock Input ( Positive )      |          |
| 7   | RXC-  | Differential Clock Input (Negative)        |          |
| 8   | GND   | Ground                                     |          |
| 9   | RX2+  | Differential Data Input , CH2 ( Positive ) |          |
| 10  | RX2-  | Differential Data Input, CH2 (Negative)    |          |
| 11  | GND   | Ground                                     |          |
| 12  | RX1+  | Differential Data Input, CH1 (Positive)    |          |
| 13  | RX1-  | Differential Data Input, CH1 (Negative)    |          |
| 14  | GND   | Ground                                     |          |
| 15  | RX0+  | Differential Data Input, CH0 ( Positive )  |          |
| 16  | RX0-  | Differential Data Input, CH0 (Negative)    |          |
|     |       | Horizontal Reverse Scan Control,           | Note (3) |
| 17  | reLR  | Low or NC → Normal Mode.                   |          |
|     |       | High → Horizontal Reverse Scan             |          |
|     |       | Vertical Reverse Scan Control,             | Note (3) |
| 18  | reUD  | Low or NC → Normal Mode,                   |          |
|     |       | High → Vertical Reverse Scan               |          |
| 19  | VCC   | Power supply                               |          |
| 20  | VCC   | Power supply                               |          |

Note (1) Connector Part No.: STARCONN 076B20-0048RA-G4 or JAE FI-SEB20P-HFE or equivalent.

Note (2) User's connector Part No.: JAE FI-SE20ME or equivalent.

Note (3) "Low" stands for 0V. "High" stands for 3.3V. "NC" stands for "No Connected".

# 5.2 BACKLIGHT UNIT(Converter connector pin)

|     | •         | • • • • • • • • • • • • • • • • • • • |                                      |
|-----|-----------|---------------------------------------|--------------------------------------|
| Pin | Symbol    | Description                           | Remark                               |
| 1   | $V_{i}$   | Converter input voltage               | 12V                                  |
| 2   | $V_{i}$   | Converter input voltage               | 12V                                  |
| 3   | $V_{i}$   | Converter input voltage               | 12V                                  |
| 4   | Vi        | Converter input voltage               | 12V                                  |
| 5   | $V_{GND}$ | Converter ground                      | Ground                               |
| 6   | $V_{GND}$ | Converter ground                      | Ground                               |
| 7   | $V_{GND}$ | Converter ground                      | Ground                               |
| 8   | $V_{GND}$ | Converter ground                      | Ground                               |
| 9   | EN        | Enable pin                            | 3.3V                                 |
|     |           |                                       | PWM Dimming                          |
| 10  | ADJ       | Backlight Adjust                      | (190-210Hz, Hi: 3.3V <sub>DC</sub> , |
|     |           |                                       | Lo: 0V <sub>DC</sub> )               |

Note (1) Connector Part No.: 91208-01001-H01 (ACES) or equivalent.

Note (2) User's connector Part No.: 91209-01011 (ACES) or equivalent



### 5.3 COLOR DATA INPUT ASSIGNMENT

The brightness of each primary color (red, green and blue) is based on the 6-bit gray scale data input for the color. The higher the binary input, the brighter the color. The table below provides the assignment of color versus data input.

|        |               | Data Signal |    |    |    |    |    |    |    |     |    |    |    |      |    |    |    |    |    |
|--------|---------------|-------------|----|----|----|----|----|----|----|-----|----|----|----|------|----|----|----|----|----|
|        | Color         |             |    | Re |    |    |    |    |    | Gre |    |    |    | Blue |    |    |    |    |    |
|        |               | R5          | R4 | R3 | R2 | R1 | R0 | G5 | G4 | G3  | G2 | G1 | G0 | B5   | B4 | B3 | B2 | B1 | B0 |
|        | Black         | 0           | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0  | 0  | 0  | 0    | 0  | 0  | 0  | 0  | 0  |
|        | Red           | 1           | 1  | 1  | 1  | 1  | 1  | 0  | 0  | 0   | 0  | 0  | 0  | 0    | 0  | 0  | 0  | 0  | 0  |
|        | Green         | 0           | 0  | 0  | 0  | 0  | 0  | 1  | 1  | 1   | 1  | 1  | 1  | 0    | 0  | 0  | 0  | 0  | 0  |
| Basic  | Blue          | 0           | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0  | 0  | 0  | 1    | 1  | 1  | 1  | 1  | 1  |
| Colors | Cyan          | 0           | 0  | 0  | 0  | 0  | 0  | 1  | 1  | 1   | 1  | 1  | 1  | 1    | 1  | 1  | 1  | 1  | 1  |
|        | Magenta       | 1           | 1  | 1  | 1  | 1  | 1  | 0  | 0  | 0   | 0  | 0  | 0  | 1    | 1  | 1  | 1  | 1  | 1  |
|        | Yellow        | 1           | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1   | 1  | 1  | 1  | 0    | 0  | 0  | 0  | 0  | 0  |
|        | White         | 1           | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1   | 1  | 1  | 1  | 1    | 1  | 1  | 1  | 1  | 1  |
|        | Red(0)/Dark   | 0           | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0  | 0  | 0  | 0    | 0  | 0  | 0  | 0  | 0  |
|        | Red(1)        | 0           | 0  | 0  | 0  | 0  | 1  | 0  | 0  | 0   | 0  | 0  | 0  | 0    | 0  | 0  | 0  | 0  | 0  |
| Gray   | Red(2)        | 0           | 0  | 0  | 0  | 1  | 0  | 0  | 0  | 0   | 0  | 0  | 0  | 0    | 0  | 0  | 0  | 0  | 0  |
| Scale  | :             | :           | :  | :  | :  | :  | :  | :  | :  | :   | :  | :  | :  | :    | :  | :  | :  | :  | :  |
| Of     | :             | :           | :  | :  | :  | :  | :  | :  | :  | :   | :  | :  | :  | :    | :  | :  | :  | :  | :  |
| Red    | Red(61)       | 1           | 1  | 1  | 1  | 0  | 1  | 0  | 0  | 0   | 0  | 0  | 0  | 0    | 0  | 0  | 0  | 0  | 0  |
|        | Red(62)       | 1           | 1  | 1  | 1  | 1  | 0  | 0  | 0  | 0   | 0  | 0  | 0  | 0    | 0  | 0  | 0  | 0  | 0  |
|        | Red(63)       | 1           | 1  | 1  | 1  | 1  | 1  | 0  | 0  | 0   | 0  | 0  | 0  | 0    | 0  | 0  | 0  | 0  | 0  |
|        | Green(0)/Dark | 0           | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0  | 0  | 0  | 0    | 0  | 0  | 0  | 0  | 0  |
|        | Green(1)      | 0           | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0  | 0  | 1  | 0    | 0  | 0  | 0  | 0  | 0  |
| Gray   | Green(2)      | 0           | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0  | 1  | 0  | 0    | 0  | 0  | 0  | 0  | 0  |
| Scale  | :             | :           | :  | :  | :  | :  | :  | :  | :  | :   | :  | :  | :  | :    | :  | :  | :  | :  | :  |
| Of     | :             | :           | :  | :  | :  | :  | :  | :  | :  | :   | :  | :  | :  | :    | :  | :  | :  | :  | :  |
| Green  | Green(61)     | 0           | 0  | 0  | 0  | 0  | 0  | 1  | 1  | 1   | 1  | 0  | 1  | 0    | 0  | 0  | 0  | 0  | 0  |
|        | Green(62)     | 0           | 0  | 0  | 0  | 0  | 0  | 1  | 1  | 1   | 1  | 1  | 0  | 0    | 0  | 0  | 0  | 0  | 0  |
|        | Green(63)     | 0           | 0  | 0  | 0  | 0  | 0  | 1  | 1  | 1   | 1  | 1  | 1  | 0    | 0  | 0  | 0  | 0  | 0  |
|        | Blue(0)/Dark  | 0           | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0  | 0  | 0  | 0    | 0  | 0  | 0  | 0  | 0  |
|        | Blue(1)       | 0           | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0  | 0  | 0  | 0    | 0  | 0  | 0  | 0  | 1  |
| Gray   | Blue(2)       | 0           | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0  | 0  | 0  | 0    | 0  | 0  | 0  | 1  | 0  |
| Scale  |               | :           | :  | :  | :  | :  | :  | :  | :  | :   | :  | :  | :  | :    | :  | :  | :  | :  | :  |
| Of     | :             | :           | :  | :  | :  | :  | :  | :  | :  | :   | :  | :  | :  | :    | :  | :  | :  | :  | :  |
| Blue   | Blue(61)      | 0           | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0  | 0  | 0  | 1    | 1  | 1  | 1  | 0  | 1  |
|        | Blue(62)      | 0           | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0  | 0  | 0  | 1    | 1  | 1  | 1  | 1  | 0  |
|        | Blue(63)      | 0           | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0  | 0  | 0  | 1    | 1  | 1  | 1  | 1  | 1  |

Note (1) 0: Low Level Voltage, 1: High Level Voltage



The brightness of each primary color (red, green and blue) is based on the 8-bit gray scale data input for the color. The higher the binary input, the brighter the color. The table below provides the assignment of color versus data input.

|                              |                                                                                            |                                 | Data Signal                          |                                 |             |             |                                 |                                 |                                |                 |                 |                   |                                 |                 |                   |                                 |                                      |                                      |                                      |                                 |                                 |                                 |                                 |                                 |                                      |
|------------------------------|--------------------------------------------------------------------------------------------|---------------------------------|--------------------------------------|---------------------------------|-------------|-------------|---------------------------------|---------------------------------|--------------------------------|-----------------|-----------------|-------------------|---------------------------------|-----------------|-------------------|---------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|--------------------------------------|
|                              | Color                                                                                      |                                 |                                      |                                 |             | ed          |                                 |                                 |                                |                 |                 |                   |                                 | reen            |                   |                                 |                                      |                                      | I                                    | I                               |                                 | ue                              |                                 | I                               |                                      |
|                              | T                                                                                          | R7                              | R6                                   | R5                              | R4          | R3          | R2                              | R1                              | R0                             | G7              | G6              | G5                | G4                              | G3              | G2                | G1                              | G0                                   | В7                                   | B6                                   | B5                              | B4                              | В3                              | B2                              | B1                              | B0                                   |
| Basic<br>Colors              | Black<br>Red<br>Green<br>Blue<br>Cyan<br>Magenta<br>Yellow<br>White                        | 0<br>1<br>0<br>0<br>1<br>1<br>1 | 0<br>1<br>0<br>0<br>0<br>1<br>1<br>1 | 0<br>1<br>0<br>0<br>0<br>1<br>1 | 01000111    | 01000111    | 0<br>1<br>0<br>0<br>0<br>1<br>1 | 0<br>1<br>0<br>0<br>0<br>1<br>1 | 01000111                       | 0010101         | 0010101         | 0 0 1 0 1 1       | 0<br>0<br>1<br>0<br>1<br>0<br>1 | 0 0 1 0 1 0 1 1 | 0 0 1 0 1 0 1 1   | 0<br>0<br>1<br>0<br>1<br>0<br>1 | 0<br>0<br>1<br>0<br>1<br>0<br>1      | 0 0 0 1 1 1 0 1                      | 0<br>0<br>1<br>1<br>1<br>0<br>1      | 0<br>0<br>1<br>1<br>1<br>0      | 0<br>0<br>1<br>1<br>1<br>0<br>1 | 0<br>0<br>1<br>1<br>1<br>0      | 0<br>0<br>0<br>1<br>1<br>1<br>0 | 0<br>0<br>1<br>1<br>1<br>0<br>1 | 0<br>0<br>1<br>1<br>1<br>0<br>1      |
| Gray<br>Scale<br>Of<br>Red   | Red(0) / Dark<br>Red(1)<br>Red(2)<br>:<br>:<br>Red(253)<br>Red(254)<br>Red(255)            | 0 0 0 : : 1 1 1                 | 0<br>0<br>0<br>: : 1<br>1<br>1       | 0 0 0 : : 1 1 1                 | 0 0 0 1 1 1 | 0 0 0 1 1 1 | 0<br>0<br>0<br>:<br>:<br>1<br>1 | 0<br>0<br>1<br>:<br>0<br>1<br>1 | 0<br>1<br>0<br>: : 1<br>0<br>1 | 000000          | 000000          | 000000            | 000000                          | 000000          | 000000            | 0 0 0 : 0 0 0                   | 0 0 0 0 0 0                          | 000:::000                            | 0 0 0 : : 0 0 0                      | 0 0 0 : : 0 0 0                 | 0 0 0 : : 0 0 0                 | 0 0 0 : : 0 0 0                 | 0 0 0 0 0                       | 0 0 0 : : : 0 0 0               | 0 0 0 : : : 0 0 0                    |
| Gray<br>Scale<br>Of<br>Green | Green(0)/ Dark<br>Green(1)<br>Green(2)<br>:<br>:<br>Green(253)<br>Green(254)<br>Green(255) | 0 0 0 : 0 0 0                   | 0 0 0 : : 0 0 0                      | 0 0 0 : 0 0 0                   | 0 0 0 0 0 0 | 0 0 0 0 0 0 | 0 0 0 : : 0 0 0                 | 0<br>0<br>0<br>:<br>:<br>0<br>0 | 0 0 0 : : 0 0 0                | 0 0 0 : : 1 1 1 | 0 0 0 : : 1 1 1 | 0 0 0 : : 1 1 1   | 0<br>0<br>0<br>:<br>:<br>1<br>1 | 0 0 0 : : 1 1 1 | 0 0 0 : : 1 1 1   | 0<br>0<br>1<br>:<br>0<br>1      | 0<br>1<br>0<br>:<br>:<br>1<br>0<br>1 | 0 0 0 : : 0 0 0                      | 0<br>0<br>0<br>:<br>:<br>0<br>0      | 0<br>0<br>0<br>:<br>:<br>0<br>0 | 0<br>0<br>0<br>:<br>:<br>0<br>0 | 0<br>0<br>0<br>:<br>:<br>0<br>0 | 0<br>0<br>0<br>:<br>:<br>0<br>0 | 0<br>0<br>0<br>:<br>:<br>0<br>0 | 0<br>0<br>0<br>::<br>0<br>0          |
| Gray<br>Scale<br>Of<br>Blue  | Blue(0) / Dark<br>Blue(1)<br>Blue(2)<br>:<br>:<br>Blue(253)<br>Blue(254)<br>Blue(255)      | 0 0 0 : : : 0 0 0               | 0 0 0 : : : 0 0 0                    | 0 0 0 0 0 0                     | 0 0 0 0 0 0 | 0 0 0 0 0 0 | 0 0 0 : : 0 0 0                 | 0<br>0<br>0<br>:<br>:<br>0<br>0 | 0 0 0 : : : 0 0 0              | 0 0 0 0 0 0     | 0 0 0 0 0 0     | 0 0 0 : : : 0 0 0 | 0 0 0 : : 0 0 0                 | 0 0 0 0 0 0     | 0 0 0 : : : 0 0 0 | 0 0 0 : : 0 0 0                 | 0 0 0 : : 0 0 0                      | 0<br>0<br>0<br>:<br>:<br>1<br>1<br>1 | 0<br>0<br>0<br>:<br>:<br>1<br>1<br>1 | 0<br>0<br>0<br>:<br>:<br>1<br>1 | 0<br>0<br>0<br>:<br>:<br>1<br>1 | 0<br>0<br>0<br>:<br>:<br>1<br>1 | 0<br>0<br>0<br>:<br>:<br>1<br>1 | 0<br>0<br>1<br>:<br>0<br>1<br>1 | 0<br>1<br>0<br>:<br>:<br>1<br>0<br>1 |

Note (1) 0: Low Level Voltage, 1: High Level Voltage



# 6. INTERFACE TIMING

### 6.1 INPUT SIGNAL TIMING SPECIFICATIONS

The input signal timing specifications are shown as the following table and timing diagram.

| Signal                         | Item      | Symbol | Min. | Тур. | Max. | Unit | Note       |
|--------------------------------|-----------|--------|------|------|------|------|------------|
| DCLK                           | Frequency | Fc     | 57.5 | 64.9 | 74.4 | MHz  |            |
|                                | Total     | Tv     | 774  | 806  | 848  | Th   | Tv=Tvd+Tvb |
| Vertical Active Display Term   | Display   | Tvd    | -    | 768  | -    | Th   | -          |
|                                | Blank     | Tvb    | 6    | 38   | 80   | Th   | -          |
|                                | Total     | Th     | 1240 | 1344 | 1464 | Тс   | Th=Thd+Thb |
| Horizontal Active Display Term | Display   | Thd    | -    | 1024 | Ī    | Tc   | ı          |
|                                | Blank     | Thb    | 216  | 320  | 440  | Тс   | -          |

Note (1) Since this assembly is operated in DE only mode, Hsync and Vsync input signals should be set to low logic level. Otherwise, this assembly would operate abnormally.

(2) Frame rate is 60Hz

# **INPUT SIGNAL TIMING DIAGRAM**





Version 2.1 22 October 2010 14 / 27

#### 6.2 POWER ON/OFF SEQUENCE

To prevent a latch-up or DC operation of LCD assembly, the power on/off sequence should be as the diagram below.



# Power ON/OFF sequence

- Note (1) Please avoid floating state of interface signal at invalid period.
- Note (2) When the interface signal is invalid, be sure to pull down the power supply of LCD VCC to 0 V.
- Note (3) The Backlight converter power must be turned on after the power supply for the logic and the interface signal is valid. The Backlight converter power must be turned off before the power supply for the logic and the interface signal is invalid.

| Parameter |     | Units |     |        |  |  |
|-----------|-----|-------|-----|--------|--|--|
| Farameter | Min | Тур   | Max | Offics |  |  |
| T1        | 0.5 | 1     | 10  | ms     |  |  |
| T2        | 0   | -     | 50  | ms     |  |  |
| T3        | 0   | 1     | 50  | ms     |  |  |
| T4        | 500 | -     | -   | ms     |  |  |
| T5        | 200 | 1     | -   | ms     |  |  |
| T6        | 200 | 1     | -   | ms     |  |  |
| T7        | 5   | -     | 300 | ms     |  |  |

Version 2.1 22 October 2010 15 / 27



# 6.3 The Input Data Format





Note (1) R/G/B data 7: MSB, R/G/B data 0: LSB

Note (2) Please follow PSWG

| Signal Name | Description        | Remark                                               |
|-------------|--------------------|------------------------------------------------------|
| R7          | Red Data 7 (MSB)   | Red-pixel Data                                       |
| R6          | Red Data 6         | Each red pixel's brightness data consists of these   |
| R5          | Red Data 5         | 8 bits pixel data.                                   |
| R4          | Red Data 4         |                                                      |
| R3          | Red Data 3         |                                                      |
| R2          | Red Data 2         |                                                      |
| R1          | Red Data 1         |                                                      |
| R0          | Red Data 0 (LSB)   |                                                      |
| G7          | Green Data 7 (MSB) | Green-pixel Data                                     |
| G6          | GreenData 6        | Each green pixel's brightness data consists of these |
| G5          | GreenData 5        | 8 bits pixel data.                                   |
| G4          | GreenData 4        |                                                      |
| G3          | GreenData 3        |                                                      |
| G2          | GreenData 2        |                                                      |
| G1          | GreenData 1        |                                                      |
| G0          | GreenData 0 (LSB)  |                                                      |
| B7          | Blue Data 7 (MSB)  | Blue-pixel Data                                      |
| B6          | Blue Data 6        | Each blue pixel's brightness data consists of these  |
| B5          | Blue Data 5        | 8 bits pixel data.                                   |
| B4          | Blue Data 4        |                                                      |
| B3          | Blue Data 3        |                                                      |
| B2          | Blue Data 2        |                                                      |
| B1          | Blue Data 1        |                                                      |
| B0          | Blue Data 0 (LSB)  |                                                      |
| RXCLKIN+    | LVDS Clock Input   |                                                      |
| RXCLKIN-    |                    |                                                      |
| DE          | Display Enable     |                                                      |
| VS          | Vertical Sync      |                                                      |
| HS          | Horizontal Sync    |                                                      |

Note (3) Output signals from any system shall be low or Hi-Z state when VCC is off.

Version 2.1 22 October 2010 16 / 27



### 6.4 Scanning Direction

The following figures show the image see from the front view. The arrow indicates the direction of scan.

Fig.1 Normal Scan



Fig.2 Reverse Scan



Fig.3 Reverse Scan



Fig.4 Reverse Scan



- Fig. 1 Normal scan (pin 17, reLR = Low or NC, pin 18, reUD = Low or NC)
- Fig. 2 Reverse scan (pin 17, reLR = High, pin 18, reUD = Low or NC)
- Fig. 3 Reverse scan (pin 17, reLR = Low or NC, pin 18, reUD = High)
- Fig. 4 Reverse scan (pin 17, reLR = High, pin 18, reUD = High)



# 7. OPTICAL CHARACTERISTICS

# 7.1 TEST CONDITIONS

| Item                | Symbol                 | Value                                                        | Unit |  |  |  |
|---------------------|------------------------|--------------------------------------------------------------|------|--|--|--|
| Ambient Temperature | Ta                     | 25±2                                                         | °C   |  |  |  |
| Ambient Humidity    | На                     | 50±10                                                        | %RH  |  |  |  |
| Supply Voltage      | V <sub>CC</sub>        | 3.3                                                          | V    |  |  |  |
| Input Signal        | According to typical v | According to typical value in "3. ELECTRICAL CHARACTERISTICS |      |  |  |  |
| Converter Voltage   | $V_{in}$               | 12                                                           | V    |  |  |  |
| Converter Duty      |                        | 100%                                                         |      |  |  |  |

### 7.2 OPTICAL SPECIFICATIONS

The relative measurement methods of optical characteristics are shown in 7.2. The following items should be measured under the test conditions described in 7.1 and stable environment shown in Note (5).

| Item            |             | Symbol         | Condition                               | Min.  | Тур.  | Max.  | Unit | Note     |  |
|-----------------|-------------|----------------|-----------------------------------------|-------|-------|-------|------|----------|--|
|                 | Red         | Rx             |                                         |       | 0.625 |       | -    |          |  |
|                 | Reu         | Ry             |                                         |       | 0.358 |       | ı    |          |  |
|                 | Green       | Gx             |                                         |       | 0.324 |       | ı    |          |  |
| Color           | Green       | Gy             |                                         | Тур - | 0.604 | Typ + | ı    | (1) (5)  |  |
| Chromaticity    | Blue        | Bx             | $\theta_x=0^\circ$ , $\theta_Y=0^\circ$ | 0.05  | 0.144 | 0.05  | -    | (1), (5) |  |
|                 | blue        | Ву             | CS-1000                                 |       | 0.088 |       | -    |          |  |
|                 | White       | Wx             |                                         |       | 0.313 |       | -    |          |  |
|                 |             | Wy             |                                         |       | 0.329 |       | ı    |          |  |
| Center Luminan  | ce of White | L <sub>C</sub> |                                         | 400   | 500   | ı     | ı    | (4), (5) |  |
| Contrast Ratio  |             | CR             |                                         | 500   | 700   | -     | -    | (2), (5) |  |
| Response Time   |             | $T_R$          | $\theta_x=0^\circ$ , $\theta_Y=0^\circ$ | -     | 5     | 10    | ms   | (3)      |  |
| response fille  |             | $T_F$          | υ <sub>χ</sub> =υ , υγ =υ               | -     | 11    | 16    | ms   | (3)      |  |
| White Variation |             | δW             | $\theta_x=0^\circ$ , $\theta_Y=0^\circ$ | -     | 1.25  | 1.4   | -    | (5), (6) |  |
|                 | Horizontal  | $\theta_x$ +   |                                         | 70    | 80    | -     |      |          |  |
| Viewing Angle   | HOHZOHIAI   | $\theta_{x}$ - | CD>10                                   | 70    | 80    | ı     | Dog  | (4) (5)  |  |
|                 | Vartical    | $\theta_{Y}$ + | CR≥10                                   | 60    | 70    | ı     | Deg. | (1), (5) |  |
|                 | Vertical    | $\theta_{Y}$ - |                                         | 60    | 70    | -     |      |          |  |

Version 2.1 22 October 2010 18 / 27



### Note (1) Definition of Viewing Angle ( $\theta x$ , $\theta y$ ):



# Note (2) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression.

Contrast Ratio (CR) = L63 / L0

L63: Luminance of gray level 63

L 0: Luminance of gray level 0

CR = CR (5)

CR (X) is corresponding to the Contrast Ratio of the point X at Figure in Note (6).

# Note (3) Definition of Response Time $(T_R, T_F)$ and measurement method:



Version 2.1 22 October 2010 19 / 27



### Note (4) Definition of Luminance of White (L<sub>C</sub>):

Measure the luminance of gray level 63 at center point

$$L_{C} = L (5)$$

L (x) is corresponding to the luminance of the point X at Figure in Note (6).

### Note (5) Measurement Setup:

The LCD module should be stabilized at given temperature for 20 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 20 minutes in a windless room.



Version 2.1 22 October 2010 20 / 27



Note (6) Definition of White Variation ( $\delta W$ ):

Measure the luminance of gray level 63 at 5 points

$$\delta W = \frac{\text{Maximum [L (1), L (2), L (3), L (4), L (5)]}}{\text{Minimum [L (1), L (2), L (3), L (4), L (5)]}}$$





# 8. RELIABILITY TEST CRITERIA

| Test Item                                       | Test Condition                                        | Note   |
|-------------------------------------------------|-------------------------------------------------------|--------|
| High Temperature Storage Test                   | 80°C, 240 hours                                       |        |
| Low Temperature Storage Test                    | -40°C, 240 hours                                      | ]      |
| Thermal Shock Storage Test                      | -30°C, 0.5hour 70°C, 0.5hour; 1hour/cycle,100cycles   |        |
| High Temperature Operation Test                 | 70°C, 240 hours                                       | (1)(2) |
| Low Temperature Operation Test                  | -30°C, 240 hours                                      |        |
| High Temperature & High Humidity Operation Test | 60°C, 90%RH, 240hours                                 |        |
| Shock (Non-Operating)                           | 200G, 2ms, half sine wave, 1 time for ± X, ± Y, ± Z.  | (3)    |
| Vibration (Non-Operating)                       | 1.5G, 10 ~ 300 Hz, 10min/cycle, 3 cycles each X, Y, Z | (3)    |

- Note (1) There should be no condensation on the surface of panel during test.
- Note (2) Temperature of panel display surface area should be 80 °C Max.
- Note (3) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture.
- Note (4) In the standard conditions, there is no function failure issue occurred. All the cosmetic specifications are judged before reliability test.

Version 2.1 22 October 2010 22 / 27



# 9. PACKAGING

#### 9.1 PACKING SPECIFICATIONS

(1) 16pcs LCD modules / 1 Box

(2) Box dimensions: 465 (L) X 362 (W) X 314 (H) mm

(3) Weight: approximately 15Kg (16 modules per box)

### 9.2 PACKING METHOD

(1) Carton Packing should have no failure in the following reliability test items.

| Test Item     | Test Conditions                             | Note          |
|---------------|---------------------------------------------|---------------|
|               | ISTA STANDARD                               |               |
|               | Random, Frequency Range: 2 – 200 Hz         |               |
| Vibration     | Top & Bottom: 30 minutes (+Z), 10 min (-Z), | Non Operation |
|               | Right & Left: 10 minutes (X)                |               |
|               | Back & Forth 10 minutes (Y)                 |               |
| Dropping Test | 1 Angle, 3 Edge, 6 Face, 61 cm              | Non Operation |



- (1) 16pcs Modules/1 box
- (2) Carton dimensions :  $465(L)\times362(W)\times314(H)$ mm
- (3) Weight : approximately 15kg(16 Module per box).



Figure. 9-1 Packing method

Version 2.1 22 October 2010 23 / 27



# Sea / Land Transportation (40ft Container)



#### Air Transportation



Figure. 9-2 Packing method

Version 2.1 22 October 2010 24 / 27



### 10. DEFINITION OF LABELS

#### 10.1 CMO MODULE LABEL

The barcode nameplate is pasted on each module as illustration, and its definitions are as following explanation.



- (a) Model Name: G121X1 -L04
- (b) Revision: Rev. XX, for example: A1, ...C1, C2 ...etc.



Serial ID includes the information as below:

(a) Manufactured Date: Year: 1~9, for 2001~2009

Month: 1~9, A~C, for Jan. ~ Dec.

Day: 1~9, A~Y, for 1st to 31st, exclude I, O and U

(b) Revision Code: cover all the change

(c) Serial No.: Manufacturing sequence of product

www.avnet-embedded.eu



#### 11. PRECAUTIONS

#### 11.1 ASSEMBLY AND HANDLING PRECAUTIONS

- (1) Do not apply rough force such as bending or twisting to the module during assembly.
- (2) To assemble or install module into user's system can be only in clean working areas. The dust and oil may cause electrical short or worsen the polarizer.
- (3) It's not permitted to have pressure or impulse on the module because the LCD panel and Backlight will be damaged.
- (4) Always follow the correct power sequence when LCD module is connecting and operating. This can prevent damage to the CMOS LSI chips during latch-up.
- (5) Do not pull the I/F connector in or out while the module is operating.
- (6) Do not disassemble the module.
- (7) Use a soft dry cloth without chemicals for cleaning, because the surface of polarizer is very soft and easily scratched.
- (8) It is dangerous that moisture come into or contacted the LCD module, because moisture may damage LCD module when it is operating.
- (9) High temperature or humidity may reduce the performance of module. Please store LCD module within the specified storage conditions.
- (10) When ambient temperature is lower than 10°C may reduce the display quality. For example, the response time will become slowly.
- (11) Do not keep same pattern in a long period of time. It may cause image sticking on LCD.

#### 11.2 SAFETY PRECAUTIONS

- (1) Do not disassemble the module or insert anything into the Backlight unit.
- (2) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, skin or clothes, it has to be washed away thoroughly with soap.
- (3) After the module's end of life, it is not harmful in case of normal operation and storage.





# **AVNET EMBEDDED OFFICES**

#### **DENMARK**

Avnet Embedded Avnet Nortec A/S Ellekær 9 2730 Herlev Phone: +45 3678 6250 Fax: +45 3678 6255 denmark@avnet-embedded.eu

#### **FINLAND**

Avnet Embedded Avnet Nortec Oy Pihatörmä 1 B 02240 Espoo Phone: +358 20 749 9 260 Fax: +358 20 749 9 280 finland@avnet-embedded.eu

#### **FRANCE**

Avnet Embedded Avnet EMG France SA Parc Club du Moulin à Vent, Bât 10 33, rue du Dr Georges Lévy 69693 Vénissieux Cedex Phone: +33 4 78 77 13 92 Fax: +33 4 78 77 13 97 bron@avnet-embedded.eu

Avnet Embedded Avnet EMG France SA 14 avenue Carnot 91349 Massy Cedex Phone: +33 1 64 47 29 29 Fax: +33 1 64 47 99 99 paris@avnet-embedded.eu

Avnet Embedded Avnet EMG France SA Les Peupliers II 35 avenue des Peupliers 35510 Cesson-Sévigné Phone: + 33 2 99 77 37 02 Fax: + 33 2 99 77 37 01 rennes@avnet-embedded.eu

#### GERMANY (AUSTRIA, CZECH REPUBLIC, HUNGARY, POLAND, SWITZERLAND)

Avnet Embedded Avnet EMG GmbH Gruber Straße 60c 85586 Poing Phone: +49 8121 775 500 Fax: +49 8121 775 550 poing@avnet-embedded.eu

Avnet Embedded Avnet EMG GmbH Lötscher Weg 66 41334 Nettetal Phone: +49 8121 775 500 Fax: +49 8121 775 550 nettetal@avnet-embedded.eu

#### **ITALY (PORTUGAL, SPAIN)**

Avnet Embedded Avnet EMG Italy SRL Via Manzoni, 44 20095 Cusano Milanino Phone: +39 02 660 92 1 Fax: +39 02 660 92 498 milano@avnet-embedded.eu

#### **NETHERLANDS (BELGIUM, LUXEMBOURG)**

Avnet Embedded Avnet B.V. Takkebijsters 2 4817 BL Breda Phone: +31 76 5722400 Fax: +31 76 5722404 benelux@avnet-embedded.eu

#### **SWEDEN (NORWAY)**

Avnet Embedded Avnet Nortec AB Esplanaden 3 D 172 67 Sundbyberg Phone: +46 8 564 725 50 Fax: +46 8 760 01 10 sweden@avnet-embedded.eu

#### **UNITED KINGDOM (IRELAND)**

Avnet Embedded 5a Waltham Park White Waltham Maidenhead Berkshire, SL6 3TN Phone: +44 1628 518900 Fax: +44 1628 518901 uk@avnet-embedded.eu

All trademarks and logos are the property of their respective owners. No guarentee as to the accuracy, completeness or reliability of any information.

Subject to modifications and amendments.