MOwNiT – temat 5 Rozwiązywanie równań i układów równań nieliniowych

Gabriel Cyganek

Dane techniczne

Do napisania programu wykonującego zadania wykorzystałem język Python. Aby rozwiązać układ równań w zadaniu drugim użyłem biblioteki *numpy* (funkcja linalg.solve), która przydała się także do różnych operacji na tabelach, do rysowania wykresów użyłem biblioteki *matplotlib*, do obliczania wartości różnych funkcji matematycznych biblioteki *math* oraz biblioteki random do wyznaczania liczb losowych w zadanym zakresie. Wykonywanie programu odbywało się na systemie Windows 10 x64 na komputerze z procesorem Intel® Core™ i5-7300HQ CPU @ 2.50GHz.

Zadanie 1 – polecenie

Stosując metodę Newtona oraz metodę siecznych wyznacz pierwiastki równania f(x)=0 w zadanym przedziale [a,b]. Dla metody Newtona wybierz punkty startowe rozpoczynające się od wartości końców przedziałów, zmniejszając je o 0.1 w kolejnych eksperymentach numerycznych. Odpowiednio dla metody siecznej jeden z końców przedziału stanowić powinna wartość punktu startowego dla metody Newtona, a drugi – początek, a następnie koniec przedziału [a,b].

Porównaj liczbę iteracji dla obu tych metod (dla różnych dokładności ρ), stosując jako kryterium stopu:

- $|x^{i+1}-x^i|<\rho$
- $|f(x^i)| < \rho$

Zadanie 1 – zadana funkcja

Funkcja badana ma następujący wzór: $f(x) = (x-1) * e^{-10x} + x^{15}$ na przedziale [-1, 0.7]

Wykres 1. Wykres zadanej funkcji w okolicach miejsca zerowego

Wykres 2. Wykres zadanej funkcji na danym przedziale

Zadana funkcja ma miejsce zerowe $x_0 = 0.6200801922840920$ obliczone w Wolframie Alpha

Zadanie 1 – algorytm postępowania: metoda Newtona

Do zastosowania metody Newtona użyłem wzoru iteracyjnego:

$$x^{i+1} = x^i - \frac{f(x^i)}{f'(x^i)}$$

Gdzie x^0 to punkt startowy, a x^i to punkt w i-tej iteracji. Punkty startowe były wybierane zgodnie z treścią polecenia jako wartości kolejno $-1, -0.9, -0.8, \dots, 0.5, 0.6, 0.7$

Za dokładność ρ przyjmowano wartości 1E-04, 1E-05, 1E-06, ..., 1E-12

Zastosowano kryteria stopu podane w poleceniu.

Pochodna we wzorze iteracyjnym była obliczana w programie podstawiając zadany punkt x do wzoru: $f'(x) = -10 * e^{-10x} * x + 11 * e^{-10x} + 15 * x^{14}$

Zadanie 1 – rezultaty: metoda Newtona

Dokładność $ ho$	Iteracje	Rezultat
1E-04	15	0.6200802011938318
1E-05	16	0.6200801922840924
1E-06	16	0.6200801922840924
1E-07	16	0.6200801922840924
1E-08	16	0.6200801922840924
1E-09	17	0.6200801922840921
1E-10	17	0.6200801922840921
1E-11	17	0.6200801922840921
1E-12	17	0.6200801922840921

Tabela 1.	Ме	toda	Neu	ıtona	dla	kryteriui	m	sto	วน
$\left x^{i+1}-x^i\right $	<	ρ ora	z pı	ınktu	stai	towego	x	= -	-0.5

Punkt startowy	Iteracje	Rezultat
0.7	7	0.6200801922840921
0.6	5	0.6200801922840921
0.5	6	0.6200801922840921
0.4	7	0.6200801922840921
0.3	8	0.6200801922840921
0.2	9	0.6200801922840921
0.1	11	0.6200801922840921
0	12	0.6200801922840921
-0.1	13	0.6200801922840921
-0.2	14	0.6200801922840921
-0.3	15	0.6200801922840921
-0.4	16	0.6200801922840921
-0.5	17	0.6200801922840921
-0.6	18	0.6200801922840920
-0.7	19	0.6200801922840921
-0.8	20	0.6200801922840921
-0.9	21	0.6200801922840921
-1	22	0.6200801922840921

Tabela 3. Metoda Newtona dla kryterium stopu $\left|x^{i+1}-x^{i}\right|<
ho$ oraz ho= 1E-12

Dokładność $ ho$	Iteracje	Rezultat
1E-04	13	0.6228028319555210
1E-05	14	0.6201210163231631
1E-06	15	0.6200802011938318
1E-07	15	0.6200802011938318
1E-08	15	0.6200802011938318
1E-09	15	0.6200802011938318
1E-10	16	0.6200801922840924
1E-11	16	0.6200801922840924
1E-12	16	0.6200801922840924

Tabela 2. Metoda Newtona dla kryterium stopu $|f(x^i)| < \rho$ oraz punktu startowego x = -0.5

Punkt startowy	Iteracje	Rezultat
0.7	5	0.6200801922920244
0.6	4	0.6200801922840921
0.5	5	0.6200801922840926
0.4	6	0.6200801922840920
0.3	7	0.6200801922840921
0.2	8	0.6200801922842111
0.1	9	0.6200801922970083
0	11	0.6200801922840921
-0.1	12	0.6200801922840921
-0.2	13	0.6200801922840921
-0.3	14	0.6200801922840924
-0.4	15	0.6200801922840926
-0.5	16	0.6200801922840924
-0.6	17	0.6200801922840922
-0.7	18	0.6200801922840921
-0.8	19	0.6200801922840921
-0.9	19	0.6200801922872455
-1	21	0.6200801922840921

Tabela 4. Metoda Newtona dla kryterium stopu $\left|f(x^i)\right| < \rho \text{ oraz } \rho = 1\text{E-}12$

Wykres 3. Liczba iteracji w metodzie Newtona ze względu na zadany punkt startowy wą **Tabeli 3**

Zadanie 1 – wnioski: metoda Newtona

Na podstawie *Tabeli 3.* oraz *Tabeli 4.* można zauważyć, że niezależnie od kryterium stopu, im bliżej lewej strony badanego przedziału znajduje się punkt startowy, tym więcej iteracji potrzeba na znalezienie wystarczająco dokładnego rozwiązania. Wynika to z własności funkcji, która na lewym brzegu jest bardzo stroma w związku z czym kolejne iteracje dają niewiele bliższe rozwiązania i potrzeba ich więcej, niż startując z prawego brzegu, który jest łagodny i na którym znajduje się miejsce zerowe.

Obserwacje te potwierdza również *Wykres 3.* gdzie widać ciągły wzrost liczby iteracji przy wyborze punktu startowego coraz bliższego -1.

Kryterium stopu $|f(x^i)| < \rho$ jest mniej wymagające od $|x^{i+1}-x^i| < \rho$ co można wywnioskować z tabel **1., 2., 3.** oraz **4.**. Otrzymujemy mniejszą dokładność, ale liczba iteracji w porównaniu do drugiego kryterium zmniejsza się zwykle o 1-2. Prawdopodobnie wynika to z faktu, że zadana funkcja jest prawie pozioma w okolicach miejsca zerowego (**Wykres 1.**), przez co łatwo spełnić zadane kryterium. Widać to także w **Tabeli 2.** dla najmniejszej badanej dokładności $\rho = 10\text{E-4}$ otrzymujemy rozwiązanie o największym otrzymanym tą metodą błędzie ≈ 0.03

Zadanie 1 – algorytm postępowania: metoda siecznych

Do zastosowania metody siecznych użyłem wzoru iteracyjnego:

$$x^{i+2} = x^{i+1} - \frac{x^{i+1} - x^i}{f(x^{i+1}) - f(x^i)} * f(x^{i+1})$$

Gdzie x^0 i x^1 to punkty startowe, a x^i to punkt w i-tej iteracji. Punkty startowe były wybierane zgodnie z treścią polecenia jako wartości:

$$x^0 \in \{-1, 0.7\}; x^1 \in \{-0.9, -0.8, -0.7, ..., 0.6\}$$

Za dokładność ρ przyjmowano wartości 1E-04, 1E-05, 1E-06, ..., 1E-12

Zastosowano kryteria stopu podane w poleceniu.

Zadanie 1 – rezultaty: metoda siecznych

Dokładność ρ	Iteracje	Rezultat
1E-04	2	0.6999517822688949
1E-05	9	0.6200801922859840
1E-06	9	0.6200801922859840
1E-07	9	0.6200801922859840
1E-08	10	0.6200801922840920
1E-09	10	0.620080192284092
1E-10	10	0.620080192284092
1E-11	10	0.6200801922840920
1E-12	11	0.6200801922840921

Tabela 5. Me	toda siecznych dla kryterium stopu
$\left x^{i+1} - x^i \right <$	ho dla punktów startowych 0.7 i -0.5

Dokładność ρ	Iteracje	Rezultat
1E-04	6	0.6205635896012410
1E-05	7	0.6200918828176726
1E-06	7	0.6200918828176726
1E-07	8	0.6200802225685014
1E-08	8	0.6200802225685014
1E-09	8	0.6200802225685014
1E-10	9	0.6200801922859840
1E-11	9	0.6200801922859840
1E-12	9	0.6200801922859840

Tabela 6. Metoda siecznych dla kryterium stopu $|f(x^i)| < \rho$ dla punktów startowych 0.7 i -0.5

Dokładność $ ho$	Iteracje	Rezultat
1E-04	22	0.6200801827725378
1E-05	22	0.6200801827725378
1E-06	23	0.6200801922843384
1E-07	23	0.6200801922843384
1E-08	23	0.6200801922843384
1E-09	24	0.6200801922840921
1E-10	24	0.6200801922840921
1E-11	24	0.6200801922840921
1E-12	24	0.6200801922840921

Tabela 7. Metoda siecznych dla kryterium stopu $|x^{i+1} - x^i| < \rho$ dla punktów startowych -1 i -0.5

Dokładność $ ho$	Iteracje	Rezultat
1E-04	19	0.6175714747309692
1E-05	21	0.6200753439605198
1E-06	21	0.6200753439605198
1E-07	22	0.6200801827725378
1E-08	22	0.6200801827725378
1E-09	22	0.6200801827725378
1E-10	23	0.6200801922843384
1E-11	23	0.6200801922843384
1E-12	23	0.6200801922843384

Tabela 8. Metoda siecznych dla kryterium stopu $|f(x^i)| < \rho$ oraz punktów startowych -1 i -0.5

Drugi punkt startowy	Iteracje	Rezultat
0.6	6	0.6200801922840920
0.5	7	0.6200801922840921
0.4	7	0.6200801922840921
0.3	8	0.6200801922840921
0.2	9	0.6200801922840921
0.1	10	0.6200801922840921
0	10	0.6200801922840921
-0.1	10	0.6200801922840921
-0.2	10	0.6200801922840921
-0.3	10	0.6200801922840921
-0.4	10	0.6200801922840920
-0.5	10	0.6200801922840920
-0.6	10	0.6200801922840921
-0.7	10	0.6200801922840921
-0.8	10	0.6200801922840920
-0.9	10	0.6200801922840920
-1	10	0.6200801922840921

Tabela 9. Metoda siecznych dla kryterium stopu $|x^{i+1}-x^i|<
ho=$ 1E-10 i pierwszego pkt startowego 0.7

	1	
Drugi punkt startowy	Iteracje	Rezultat
0.7	9	0.6200801922840921
0.6	7	0.6200801922840921
0.5	8	0.6200801922840920
0.4	9	0.6200801922840920
0.3	12	0.6200801922840921
0.2	13	0.6200801922840921
0.1	15	0.6200801922840921
0	17	0.6200801922840921
-0.1	17	0.6200801922840921
-0.2	20	0.6200801922840921
-0.3	21	0.6200801922840921
-0.4	23	0.6200801922840921
-0.5	24	0.6200801922840921
-0.6	26	0.6200801922840921
-0.7	27	0.6200801922840921
-0.8	29	0.6200801922840921
-0.9	30	0.6200801922840921

Tabela 10. Metoda siecznych dla kryterium stopu $\left|x^{i+1}-x^i\right|<
ho$ = 1E-10 i pierwszego pkt startowego -1

Drugi punkt startowy	Iteracje	Rezultat
0.7	8	0.6200801922860121
0.6	5	0.6200801931529183
0.5	7	0.6200801923019501
0.4	8	0.6200801923306658
0.3	10	0.6200801931036365
0.2	12	0.6200801922857597
0.1	13	0.6200801934345190
0	15	0.6200801923922618
-0.1	16	0.6200801922894963
-0.2	18	0.6200801928586955
-0.3	19	0.6200801908796187
-0.4	21	0.6200801934027748
-0.5	23	0.6200801922843384
-0.6	24	0.6200801935432114
-0.7	25	0.6200801892823448
-0.8	27	0.6200801926401829
-0.9	28	0.6200801937603111

Tabela 11. Metoda siecznych dla kryterium stopu $\left|f(x^i)\right| < \rho$ = 1E-10 i pierwszego punktu startowego równego -1

Wykres 4. Liczba iteracji w metodzie siecznych ze względu na zadany drugi punkt startowy wg **Tabeli 11**

Zadanie 1 – wnioski: metoda siecznych

Porównując tabele **5.** – **6.**, **7.** – **8.** oraz **10.** – **11.** można stwierdzić, że zachodzi podobne zjawisko jak dla metody Newtona, czyli mniejsza dokładność znalezionego rozwiązania oraz minimalnie mniejsza liczba iteracji dla kryterium stopu $|f(x^i)| < \rho$. Podobnie też liczba iteracji zwiększa się przy wybraniu punktu startowego po lewej stronie przedziału. Widać to zwłaszcza gdy oba punkty startowe są na lewym brzegu (**Tabela 11.** oraz **Wykres 4.** w porównaniu do **Tabeli 10.** gdzie jeden punkt startowy jest zawsze na prawym brzegu przedziału).

W *Tabeli 5.* widać, że dokładność 1E-04 dla kryterium przyrostowego i punktów startowych 0.7, -0.5 (funkcja na przedziale rozpiętości tych punktów startowych jest niemalże płaska względem osi OX) okazuje się zbyt mała i otrzymane miejsce zerowe różni się od prawdziwego w przybliżeniu o ≈ 0.7 , co jest sporym błędem w porównaniu do reszty otrzymanych rezultatów.

Zauważalne błędy zdarzyły się także dla tych samych danych dla kryterium $|f(x^i)| < \rho$ (*Tabela 6.* i *8.*) jednak nie były one aż tak znaczące, jak wspomniany powyżej.

Zadanie 1 – porównanie metod

Porównując metodę siecznych oraz Newtona warto zauważyć, że pomimo gorszej zbieżności metody siecznych nie trzeba w niej obliczać pochodnej zadanej funkcji.

Obie te metody są podatne na strome fragmenty funkcji, zatem istnieje ryzyko, że, zwłaszcza dla kryterium przyrostowego i niedostatecznie dużej dokładności, znalezione zostałoby złe rozwiązanie. Kryterium $|f(x^i)| < \rho$ jest za to podatne na błędy ze względu na gładkość zadanej funkcji w okolicach miejsca zerowego.

Zadanie 2 – polecenie

Rozwiąż wskazany układ równań metodą Newtona:

$$\begin{cases} x_1^2 + x_2^2 - x_3^2 = 1 \\ x_1 - 2x_2^3 + 2x_3^2 = -1 \\ 2x_1^2 + x_2 - 2x_3^2 = 1 \end{cases}$$

Przeprowadź eksperymenty dla różnych wektorów początkowych. Sprawdź, ile rozwiązań ma układ. Przy jakich wektorach początkowych metoda nie zbiega do rozwiązania? Jakie wektory początkowe doprowadzają do jakiego rozwiązania?

Należy także zastosować dwa różne kryteria stopu.

Zadanie 2 – algorytm postępowania

Dla powyższego układu równań nieliniowych są dane następujące rozwiązania:

x_1	x_2	x_3
-1	1	-1
-1	1	1
0.5	1	-0.5
0.5	1	0.5

Dla rozwiązania układu przyjęto następujące oznaczenia:

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

$$\mathbf{f}(\mathbf{x}) = \begin{pmatrix} x_1^2 + x_2^2 - x_3^2 - 1 \\ x_1 - 2x_2^3 + 2x_3^2 + 1 \\ 2x_1^2 + x_2 - 2x_3^2 - 1 \end{pmatrix} = \begin{pmatrix} f_1(x_1, x_2, x_3) \\ f_2(x_1, x_2, x_3) \\ f_3(x_1, x_2, x_3) \end{pmatrix}$$

Zatem aby rozwiązać dany układ równań wyznaczano wektor x miejsc zerowych funkcji f_1 , f_2 , f_3 przyrównując $f(x) = \mathbf{0}$

Do rozwiązania tego równania skorzystano ze wzoru iteracyjnego metody Newtona:

$$x^{i+1} = x^i - \frac{f(x^i)}{f'(x^i)}$$

Gdzie $f'(x^i)$ to Jakobian funkcji $f(x^i)$ w i-tej iteracji

Odpowiednie pochodne w Jakobianie były wyliczane podstawiając odpowiednie wartości pod wyliczone ręcznie wzory w napisanym programie.

Aby uprościć wzór iteracyjny oraz obliczenia zastosowano proste przekształcenia:

$$x^{i+1} = x^i - f'^{(-1)}(x^i)f(x^i)$$

$$f'(x^i)(x^{i+1}-x^i) = -f(x^i)$$

Za dokładność ρ przyjmowano wartości 1E-04, 1E-05, 1E-06, ..., 1E-12

Wektor początkowy x^0 wybierano losowo losując wszystkie trzy jego elementy z przedziału [-50,50]

Zastosowano kryteria stopu (realizowane funkcją numpy.linalg.norm() obliczającą pierwiastek z sum kwadratów elementów macierzy/wektorów):

- $\bullet \quad \|x^{i+1} x^i\| < \rho$
- $||f(x^i)|| < \rho$

Zadanie 2 - rezultaty

Wektor początkowy x^0		Iteracje i	Rozwiązanie układu			
x_1	x_2	x_3	znaki x^0	x_1	x_2	x_3
-3.053E+01	-2.497E+01	-3.892E+00	- (-,-,-)	Niepowodzenie		
-4.774E-02	-3.526E+01	-3.228E-02	- (-,-,-)	Niepowodzenie		
-4.212E+01	4.820E+01	4.871E+01	15 (-,+,+)	0.50000000000000 1.0000000000000 -0.50000000000		
-2.561E+01	4.745E+00	2.172E+01	9 (-,+,+)			1.0000000000000013
1.268E+01	-3.985E+01	2.436E+01	- (+,-,+)	Niepowodzenie		
3.449E+01	3.483E+01	-3.899E+01	14 (+,+,-)	-1.0 0.9999999999999999999999999999999999		1.0
2.540E+01	-4.349E+01	-3.291E+01	- (+,-,-)	Niepowodzenie		
6.939E+00	4.025E+01	3.688E+01	17 (+,+,+)	-1.0	0.999999999999999	-0.99999999999999
-3.154E+00	3.817E+00	-4.532E+01	11 (-,+,-)	0.4999999999999994	1.0	-0.5
-4.311E+01	-7.438E+00	3.917E+01	- (-,-,+)	Niepowodzenie		
2.986E+01	-3.812E+01	-7.633E-01	- (+,-,-)	Niepowodzenie		
3.934E+00	8.287E+00	5.678E+00	10 (+,+,+)	-1.00000000000362	1.0	-1.000000000000125
1.713E+01	1.895E+01	-2.438E+01	12 (+,+,-)	-1.0	1.0	1.0
-2.826E+01	2.585E+01	2.385E+01	13 (-,+,+)	0.4999999999999983	0.99999999999999	-0.5000000000000274
-1.645E+01	-2.164E+01	2.405E+01	- (-,-,+)	Niepowodzenie		
-1.315E+01	2.868E+01	-4.573E+01	16 (-,+,-)	0.5000000000000001	1.0	0.500000000005339
-1.909E+01	3.715E+01	-4.362E+01	16 (-,+,-)	0.4999999999999994	1.0	0.5
-4.774E+01	1.167E+00	1.580E+01	10 (-,+,+)	-1.0000000000000133	1.0	1.0000000000000044
4.041E+01	1.542E+01	1.681E+01	13 (+,+,+)	0.500000000000556	1.00000000000000000	0.4999999999982736

Tabela 12. Rozwiązania zadanego układu równań dla dokładności 1e-10, kryterium stopu $\|x^{i+1}-x^i\|<\rho$ i różnych wektorów początkowych o różnych znakach. Zapisano w tabeli przypadki, które odzwierciedlały różne rozwiązania dla różnych znaków współrzędnych wektora początkowego

Dokładność ρ	Iteracje	Rozwiązanie układu			
		x_1	x_2	x_3	
1E-04	13	0.5000000000000003	0.99999999999999	-0.499999999999998	
1E-05	13	0.5000000000000003	0.99999999999999	-0.49999999999998	
1E-06	13	0.5000000000000003	0.99999999999999	-0.499999999999998	
1E-07	13	0.5000000000000003	0.99999999999999	-0.49999999999998	
1E-08	14	0.5000000000000001	1.0	-0.5000000000000001	
1E-09	14	0.5000000000000001	1.0	-0.5000000000000001	
1E-10	14	0.5000000000000001	1.0	-0.50000000000000001	
1E-11	14	0.5000000000000001	1.0	-0.5000000000000001	
1E-12	14	0.5000000000000001	1.0	-0.5000000000000001	

Tabela 13. Rozwiązania zadanego układu równań dla różnych dokładności, kryterium stopu $||x^{i+1}-x^i||<\rho$ i stałego wektora początkowego [-20, 25, 24]

Dokładność $ ho$	Iteracje	Rozwiązanie układu			
		x_1	x_2	x_3	
1E-04	12	0.5000000258570757	1.0	-0.4999999908426875	
1E-05	12	0.5000000258570757	1.0	-0.4999999908426875	
1E-06	12	0.5000000258570757	1.0	-0.4999999908426875	
1E-07	12	0.5000000258570757	1.0	-0.4999999908426875	
1E-08	13	0.5000000000000003	0.999999999999999	-0.499999999999998	
1E-09	13	0.5000000000000003	0.999999999999999	-0.499999999999998	
1E-10	13	0.5000000000000003	0.999999999999999	-0.499999999999998	
1E-11	13	0.5000000000000003	0.999999999999999	-0.499999999999998	
1E-12	13	0.50000000000000003	0.999999999999999	-0.499999999999998	

Tabela 14. Rozwiązania zadanego układu równań dla różnych dokładności, kryterium stopu $\|f(x^i)\| < \rho$ i stałego wektora początkowego [-20, 25, 24]

Zadanie 2 – wnioski

Analizując **Tabelę 12.** można zauważyć, że metoda Newtona nie znajduje rozwiązania, gdy wektor początkowy ma współrzędne o znakach (-,-,-), (-,-,+), (+,-,+), (+,-,-). Dla pozostałych kombinacji znaków tych współrzędnych wszystkie zbadane przypadki zbiegały do rozwiązań, choć nie były one zawsze takie same dla takiej samej kombinacji znaków.

Z *Tabeli 13.* i *Tabeli 14.* wynika, że zwiększanie dokładności powoduje zwiększanie liczby iteracji, choć jest ona nieznaczna biorąc pod uwagę zmiany dokładności (przykładowo jedna iteracja więcej przy zwiększeniu dokładności z 1E-04 do 1E-08 wg *Tabeli 14.*).

Kryterium stopu $||f(x^i)|| < \rho$ daje minimalnie mniejszą liczbę iteracji jak i dokładność rozwiązania względem kryterium przyrostowego.

Bibliografia

- 1. Metody obliczeniowe w nauce i technice wykłady AGH 2020/21
- 2. <u>Wikipedia Newton's Method: Nonlinear system of equations</u>