振动和波复习题

一、选择题

1, 3002

两个质点各自作简谐振动,它们的振幅相同、周期相同.第一个质点的振动方程为 $x_1 = A\cos(\omega t + \alpha)$. 当第一个质点从相对于其平衡位置的正位移处回到平衡位置时,第二个质点正在最大正位移处.则第二个质点的振动方程为

(A)
$$x_2 = A\cos(\omega t + \alpha + \frac{1}{2}\pi)$$
. (B) $x_2 = A\cos(\omega t + \alpha - \frac{1}{2}\pi)$.

(C)
$$x_2 = A\cos(\omega t + \alpha - \frac{3}{2}\pi)$$
. (D) $x_2 = A\cos(\omega t + \alpha + \pi)$.

2, 3003

轻弹簧上端固定,下系一质量为 m_1 的物体,稳定后在 m_1 下边又系一质量为 m_2 的物体,于是弹簧又伸长了 Δx . 若将 m_2 移去,并令其振动,则振动周期为

(A)
$$T=2\pi\sqrt{\frac{m_2\Delta x}{m_1g}}$$
 . (B) $T=2\pi\sqrt{\frac{m_1\Delta x}{m_2g}}$.

(C)
$$T = \frac{1}{2\pi} \sqrt{\frac{m_1 \Delta x}{m_2 g}}$$
. (D) $T = 2\pi \sqrt{\frac{m_2 \Delta x}{(m_1 + m_2)g}}$.

3、3396

一质点作简谐振动. 其运动速度与时间的曲线如图所示. 若质点的振动规律用余弦函数描述,则其初相应为

- (A) $\pi/6$. (B) $5\pi/6$.
 - (B) $5\pi/6$. (C) $-5\pi/6$.
- (D) $-\pi/6$. (E) $-2\pi/3$.

4, 5501

一物体作简谐振动,振动方程为 $x=A\cos(\omega t+\frac{1}{4}\pi)$. 在 t=T/4(T 为周期)时刻,物体的加速度为

(A)
$$-\frac{1}{2}\sqrt{2}A\omega^{2}$$
. (B) $\frac{1}{2}\sqrt{2}A\omega^{2}$. (C) $-\frac{1}{2}\sqrt{3}A\omega^{2}$. (D) $\frac{1}{2}\sqrt{3}A\omega^{2}$.

5, 3254

一质点作简谐振动,周期为 T. 质点由平衡位置向 x 轴正方向运动时,由平衡位置到二分之一最大位移这段路程所需要的时间为

- (A) T/4.
- (B) T/6
- (C) T/8
- (D) T/12

Γ]

٦

]

6, 3031

已知一质点沿 y 轴作简谐振动. 其振动方程为 $y = A\cos(\omega t + 3\pi/4)$. 与之对应的振动

当质点以频率 ν 作简谐振动时,它的动能的变化频率为

- (A) 4 v.
- (B) 2 v . (C) v.
- (D) $\frac{1}{2}v$.
- ٦

8, 3560

弹簧振子在光滑水平面上作简谐振动时,弹性力在半个周期内所作的功为

- (A) kA^2 .
- (B) $\frac{1}{2}kA^2$.
- (C) $(1/4)kA^2$.
- (D) 0.

]

Γ

9, 5182

一弹簧振子作简谐振动,当位移为振幅的一半时,其动能为总能量的

- (A) 1/4.
- (B) 1/2.
- (C) $1/\sqrt{2}$.

- (D) 3/4.
- (E) $\sqrt{3}/2$.

٦

10、3562

图中所画的是两个简谐振动的振动曲线. 若这两个简谐 振动可叠加,则合成的余弦振动的初相为

- (A) $\frac{3}{2}\pi$.
- (B) π .

- (C) $\frac{1}{2}\pi$.
- $(D) \quad 0.$

]

11, 3147

一平面简谐波沿 Ox 正方向传播,波动表达式为 $y = 0.10\cos[2\pi(\frac{t}{2} - \frac{x}{4}) + \frac{\pi}{2}]$ (SI), 该波在 t = 0.5 s 时刻的波形图是

12, 3058

在下面几种说法中,正确的说法是:

- (A) 波源不动时,波源的振动周期与波动的周期在数值上是不同的.
- (B) 波源振动的速度与波速相同.
- (C) 在波传播方向上的任一质点振动相位总是比波源的相位滞后(按差值不大于π计).
- (D) 在波传播方向上的任一质点的振动相位总是比波源的相位超前. (按差值不大于π

计)

٦

13, 3066

机械波的表达式为 $y = 0.03\cos6\pi(t + 0.01x)$ (SI),则

- (A) 其振幅为3 m.
- (B) 其周期为 $\frac{1}{2}$ s.
- (C) 其波速为 10 m/s.
- (D) 波沿 *x* 轴正向传播.

Γ

在简谐波传播过程中,沿传播方向相距为 $\frac{1}{2}\lambda$ (λ 为波长)的两点的振动速度必定

- (A) 大小相同,而方向相反.
- (B) 大小和方向均相同.
- (C) 大小不同,方向相同. (D) 大小不同,而方向相反. [

15, 5513

频率为 100 Hz, 传播速度为 300 m/s 的平面简谐波,波线上距离小于波长的两点振动 的相位差为 $\frac{1}{2}\pi$,则此两点相距

(A) 2.86 m.

(B) 2.19 m.

(C) 0.5 m.

(D) 0.25 m.

]

16, 3407

横波以波速u沿x轴负方向传播.t时刻波形曲线如图.则该时刻

- (A) A 点振动速度大于零. (B) B 点静止不动.
- (C) C 点向下运动. (D) D 点振动速度小于零. [

17, 3603

一平面简谐波的表达式为 $y = A\cos 2\pi (vt - x/\lambda)$. 在 t = 1/v 时刻, $x_1 = 3\lambda/4$ 与 $x_2 =$ λ/4 二点处质元速度之比是

- (B) $\frac{1}{3}$. (C) 1. (D) 3
-]

18, 3149

一平面简谐波沿x轴正方向传播,t=0 时刻的波形图如图所示,则P处质点的振动在 t = 0 时刻的旋转矢量图是

19、3069

- 一沿x轴负方向传播的平面简谐波在t
- =2s 时的波形曲线如图所示,则原点 O 的振动方程为

(C)
$$y = 0.50 \cos \left(\frac{1}{2}\pi t + \frac{1}{2}\pi\right)$$
, (SI).

(D)
$$y = 0.50 \cos \left(\frac{1}{4}\pi t + \frac{1}{2}\pi\right)$$
, (SI).

٦

20、3087

一平面简谐波在弹性媒质中传播,在某一瞬时,媒质中某质元正处于平衡位置,此时它 的能量是

- (A) 动能为零,势能最大. (B) 动能为零,势能为零.

- (C) 动能最大,势能最大. (D) 动能最大,势能为零. [

一平面简谐波在弹性媒质中传播,在媒质质元从平衡位置运动到最大位移处的过程中:

- (A) 它的动能转换成势能.
- (B) 它的势能转换成动能.
- (C) 它从相邻的一段质元获得能量其能量逐渐增大.
- (D) 它把自己的能量传给相邻的一段质元,其能量逐渐减小. Γ

22, 3289

图示一平面简谐机械波在t时刻的波形曲线. 若此时A点处媒 质质元的振动动能在增大,则

- (B) 波沿 x 轴负方向传播.
- (C) B 点处质元的振动动能在减小.
- (D) 各点的波的能量密度都不随时间变化.

1

23, 3308

在波长为λ 的驻波中,两个相邻波腹之间的距离为

- (A) $\lambda/4$.
- (B) $\lambda/2$.
- (C) $3\lambda/4$.
- (D) λ .

7

Γ

٦

Γ

24、3598

电磁波在自由空间传播时,电场强度 $ar{E}$ 和磁场强度 $ar{H}$

- (A) 在垂直于传播方向的同一条直线上.
- (B) 朝互相垂直的两个方向传播.
- (C) 互相垂直,且都垂直于传播方向.

(D) 有相位差 $\frac{1}{2}\pi$.

Γ 1

25, 3458

在真空中沿着 x 轴正方向传播的平面电磁波, 其电场强度波的表达式是 $E_z = E_0 \cos 2\pi (vt - x/\lambda)$, 则磁场强度波的表达式是:

(A)
$$H_v = \sqrt{\varepsilon_0 / \mu_0} E_0 \cos 2\pi (vt - x / \lambda)$$
.

(B)
$$H_z = \sqrt{\varepsilon_0 / \mu_0} E_0 \cos 2\pi (vt - x / \lambda)$$
.

(C)
$$H_y = -\sqrt{\varepsilon_0 / \mu_0} E_0 \cos 2\pi (vt - x / \lambda)$$
.

(D)
$$H_y = -\sqrt{\varepsilon_0 / \mu_0} E_0 \cos 2\pi (vt + x/\lambda)$$
.

二、填空题

26, 3820

将质量为 0.2 kg 的物体,系于劲度系数 k = 19 N/m 的竖直悬挂的弹簧的下端。假定在 弹簧不变形的位置将物体由静止释放,然后物体作简谐振动,则振动频率为,振,振 幅为_____.

27, 5187

一竖直悬挂的弹簧振子,自然平衡时弹簧的伸长量为 x_0 ,此振子自由振动的周期T=

28, 3038 一水平弹簧简谐振子的振动曲线如图所示. 当振子处在位移 为零、速度为 $-\omega A$ 、加速度为零和弹性力为零的状态时,应对应 于曲线上的 点. 当振子处在位移的绝对值为 A、速度为 零、加速度为 $-\omega^2 A$ 和弹性力为-kA 的状态时,应对应于曲线上的 29, 3567 图中用旋转矢量法表示了一个简谐振动. 旋转矢量的长度为0.04 m, 旋转角速度 $\omega = 4\pi$ rad/s. 此简谐振动以余弦函数表示的振动方程为 x(SI). (t = 0)30、3033 x (cm) 一简谐振动用余弦函数表示, 其振动曲线如图所示, 则此 简谐振动的三个特征量为 A =_____; ω = $\phi =$ 31, 3046 一简谐振动的旋转矢量图如图所示,振幅矢量长 2 cm,则该简 谐振动的初相为______. 振动方程为_____ 32, 3268 一系统作简谐振动,周期为 T,以余弦函数表达振动时,初相为零. 在 $0 \le t \le \frac{1}{2}T$ 范围 内,系统在 t= 时刻动能和势能相等. 一弹簧振子系统具有 1.0 J 的振动能量, 0.10 m 的振幅和 1.0 m/s 的最大速率, 则弹簧 的劲度系数为_____, 振子的振动频率为_____. 34, 3269 一作简谐振动的振动系统, 振子质量为 2 kg, 系统振动频率为 1000 Hz, 振幅为 0.5 cm, 则其振动能量为 . 35、3839 两个同方向的简谐振动,周期相同,振幅分别为 $A_1 = 0.05 \text{ m}$ 和 $A_2 = 0.07 \text{ m}$,它们合成 为一个振幅为 A=0.09 m 的简谐振动.则这两个分振动的相位差为 rad. 36, 5314 一质点同时参与了两个同方向的简谐振动,它们的振动方程分别为 $x_1 = 0.05\cos(\omega t + \frac{1}{4}\pi)$ (SI), $x_2 = 0.05\cos(\omega t + \frac{9}{12}\pi)$ (SI), 其合成运动的运动方程 为 *x* = 37, 5515 A, B 是简谐波波线上的两点. 已知, B 点振动的相位比 A 点落后 $\frac{1}{2}\pi$, A、B 两点相距 $0.5 \,\mathrm{m}$,波的频率为 $100 \,\mathrm{Hz}$,则该波的波长 $\lambda = \mathrm{m}$,波速 $\underline{u} = \mathrm{m/s}$.

40, 3342

一平面简谐波(机械波)沿x轴正方向传播,波动表达式为 $y = 0.2\cos(\pi t - \frac{1}{2}\pi x)$ (SI),

则 x = -3 m 处媒质质点的振动加速度 a 的表达式为_______.

41, 3418

频率为 $100 \, \mathrm{Hz}$ 的波,其波速为 $250 \, \mathrm{m/s}$. 在同一条波线上,相距为 $0.5 \, \mathrm{m}$ 的两点的相位差为

42, 3133

43, 3132

一平面简谐波沿 Ox 轴正向传播,波动表达式为 $y = A\cos[\omega(t-x/u) + \pi/4]$,则 x_1

 $x_1 = L_1$ 处质点的振动的相位差为 $\phi_2 - \phi_1 =$ _____.

44、3135

(该波的振幅 A、波速 u 与波长 λ 为已知量)

45、3856

已知某平面简谐波的波源的振动方程为 $y = 0.06 \sin \frac{1}{2} \pi t$ (SI),波速为 2 m/s. 则在波传播前方离波源 5 m 处质点的振动方程为______46、3343

图示一简谐波在 t=0 时刻与 t=T/4 时刻(T 为周期)的波形图,则 x_1 处质点的振动方程为 .

47、3610

一简谐波沿 x 轴正方向传播, x_1 与 x_2 两点处的振动曲线分别如图(a)和(b)所示,已知 $x_2 > x_1$ 且 $x_2 - x_1 < \lambda$ (λ 为波长),则这两点的距离为______(用波长 λ 表示).

两相干波源 S_1 和 S_2 的振动方程分别是 $y_1 = A\cos(\omega t + \phi)$ 和 $y_2 = A\cos(\omega t + \phi)$. S_1 距 P 点 3 个波长, S_2 距 P 点 4.5 个波长.设波传播过程中振幅不变,则两波同时传到 P 点时的合振幅是

49, 3126

在 真 空 中 沿 着 z 轴 的 正 方 向 传 播 的 平 面 电 磁 波 , O 点 处 电 场 强 度 为 $E_x = 900\cos(2\pi \nu t + \pi/6)$,则 O 点处磁场强度为______.

(真空介电常量 $\varepsilon_0 = 8.85 \times 10^{-12} \, \text{F/m}$, 真空磁导率 $\mu_0 = 4\pi \times 10^{-7} \, \text{H/m}$)

50, 3460

广播电台的发射频率为 ν = 640 kHz. 已知电磁波在真空中传播的速率为 c = 3×10⁸ m/s,则这种电磁波的波长为

三计算题

51, 3828

- 一质量 m = 0.25 kg 的物体,在弹簧的力作用下沿 x 轴运动,平衡位置在原点. 弹簧的劲度系数 k = 25 N·m⁻¹.
 - (1) 求振动的周期 T 和角频率 ω .
- (2) 如果振幅 A = 15 cm, t = 0 时物体位于 x = 7.5 cm 处,且物体沿 x 轴反向运动,求初速 v_0 及初相 ϕ .
 - (3) 写出振动的数值表达式.

52, 3824

有一轻弹簧,当下端挂一个质量 $m_1 = 10$ g 的物体而平衡时,伸长量为 4.9 cm. 用这个弹簧和质量 $m_2 = 16$ g 的物体组成一弹簧振子. 取平衡位置为原点,向上为 x 轴的正方向. 将 m_2 从平衡位置向下拉 2 cm 后,给予向上的初速度 $v_0 = 5$ cm/s 并开始计时,试求 m_2 的振动周期和振动的数值表达式.

53, 3555

一质点按如下规律沿x轴作简谐振动: $x = 0.1\cos(8\pi t + \frac{2}{3}\pi)$ (SI). 求此振动的周

期、振幅、初相、速度最大值和加速度最大值.

54, 5191

- 一物体作简谐振动,其速度最大值 $\nu_m = 3 \times 10^{-2}$ m/s,其振幅 $A = 2 \times 10^{-2}$ m. 若 t = 0 时,物体位于平衡位置且向 x 轴的负方向运动. 求:
 - (1) 振动周期 T;
 - (2) 加速度的最大值 a_m ;
 - (3) 振动方程的数值式.

55, 3558

一质量为 0.20 kg 的质点作简谐振动, 其振动方程为

$$x = 0.6\cos(5t - \frac{1}{2}\pi)$$
 (SI).

求: (1) 质点的初速度;

(2) 质点在正向最大位移一半处所受的力.

56、3410

- 一横波沿绳子传播,其波的表达式为 $y = 0.05\cos(100\pi t 2\pi x)$ (SI)
- (1) 求此波的振幅、波速、频率和波长.
- (2) 求绳子上各质点的最大振动速度和最大振动加速度.

(3) 求 $x_1 = 0.2$ m 处和 $x_2 = 0.7$ m 处二质点振动的相位差.

57、3864

一简谐波沿 x 轴负方向传播,波速为 1 m/s,在 x 轴上某质点的振动频率为 1 Hz、振幅为 0.01 m. t=0 时该质点恰好在正向最大位移处. 若以该质点的平衡位置为 x 轴的原点. 求此一维简谐波的表达式.

58, 3141

图示一平面简谐波在 t=0 时刻的波形图,求

- (1) 该波的波动表达式;
- (2) P处质点的振动方程.

57, 5206

沿x轴负方向传播的平面简谐波在t=2s时刻的波形曲线如图所示,设波速u=0.5 m/s. 求:原点O的振动方程.

58、3084

一平面简谐波沿x轴正向传播,其振幅和角频率分别为A和 ω ,波速为u,设t=0时的波形曲线如图所示.

- (1) 写出此波的表达式.
- (2) 求距 O 点分别为 $\lambda/8$ 和 $3\lambda/8$ 两处质点的振动方程.
- (3) 求距 O 点分别为 $\lambda/8$ 和 $3\lambda/8$ 两处质点在 t=0 时的振动速度.

59、3333

一简谐波沿 Ox 轴正方向传播,波长 $\lambda = 4 \text{ m}$, 周期 T

- = 4 s,已知 x = 0 处质点的振动曲线如图所示. (1) 写出 x = 0 处质点的振动方程;
 - (2) 写出波的表达式;
 - (3) 画出 t=1 s 时刻的波形曲线.

60, 5516

平面简谐波沿 x 轴正方向传播,振幅为 2 cm,频率为 50 Hz,波速为 200 m/s. 在 t=0 时,x=0 处的质点正在平衡位置向 y 轴正方向运动,求 x=4 m 处媒质质点振动的表达式及该点在 t=2 s 时的振动速度.

61、3476

平面简谐波沿 Ox 轴正方向传播,波的表达式为 $y = A\cos 2\pi(vt - x/\lambda)$,而另一平面简谐波沿 Ox 轴负方向传播,波的表达式为 $y = 2A\cos 2\pi(vt + x/\lambda)$

- 求: (1) $x = \lambda/4$ 处介质质点的合振动方程;
 - (2) $x = \lambda/4$ 处介质质点的速度表达式.

62, 3060

一个沿x轴正向传播的平面简谐波(用余弦函数表示)在t=0时的波形曲线如图所示.

- (1) 在 x = 0, 和 x = 2, x = 3 各点的振动初相各是多少?
- (2) 画出 t = T/4 时的波形曲线.

一定滑轮的半径为 R,转动惯量为 J,其上挂一轻绳,绳的一端系一质量为 m 的物体,另一端与一固定的轻弹簧相连,如图所示. 设弹簧的劲度系数为 k,绳与滑轮间无滑动,且忽略轴的摩擦力及空气阻力. 现将物体 m 从平衡位置拉下一微小距离后放手,证明物体作简谐振动,并求出其角频率.

64, 3428

- 一平面简谐波,频率为 300 Hz, 波速为 340 m/s, 在截面面积为 3.00×10^{-2} m² 的管内空气中传播,若在 10 s 内通过截面的能量为 2.70×10^{-2} J, 求
 - (1) 通过截面的平均能流;
 - (2) 波的平均能流密度;
 - (3) 波的平均能量密度.

65、3436

图中 A、B 是两个相干的点波源,它们的振动相位差为 π (反相)。A、B 相距 30 cm,观察点 P 和 B 点相距 40 cm,且 $\overline{PB} \bot \overline{AB}$. 若发自 A、B 的两波在 P 点处最大限度地互相削弱,求波长最长能是多少。

答案

一、选择题

1、B 2、B 3、C 4、B 5、D 6、B 7、B 8、D 9、D 10、B 11、B 12、C 13、B 14、A 15、C 16、D 17、A 18、A

19, C 20, C 21, D 22, B 23, B 24, C 25, C

二、填空题

26, 3820

1.55 Hz ; 0.103 m

27、5187

$$2\pi\sqrt{x_0/g}$$

28, 3038

b, f;

a, b

29、3567

 $0.04\cos(4\pi t - \frac{1}{2}\pi)$

30、3033

10 cm ; $(\pi/6) \text{ rad/s}$; $\pi/3$

31、3046

 $\pi/4$; $x = 2 \times 10^{-2} \cos(\pi t + \pi/4)$ (SI)

32, 3268

T/8, 3T/8

33、3821

```
2\times10^2 N/m ; 1.6 Hz
```

34、3269
$$9.90 \times 10^2 \text{ J}$$

$$0.05\cos(\omega t + \frac{23}{12}\pi)$$
 (SI) [或 $0.05\cos(\omega t - \frac{1}{12}\pi)$ (SI)]

$$a = -0.2\pi^2 \cos(\pi t + \frac{3}{2}\pi x)$$
 (SI)

$$2\pi/5$$

$$y_2 = A\cos[2\pi(vt - \frac{L_1 + L_2}{\lambda}) + \phi]$$
 $x = -L_1 + k\lambda$ $(k = \pm 1, \pm 2, \cdots)$

$$y_1 = A\cos[\omega(t - L_1/u) + \pi/4];$$
; $\frac{\omega(L_1 + L_2)}{u}$

44, 3135

$$y = A\cos[2\pi \frac{u}{\lambda}(t-2+\frac{x}{u})-\frac{\pi}{2}]$$
; $y_P = A\cos[2\pi \frac{u}{\lambda}(t-2)+\frac{\pi}{2}]$

45、3856

$$y = 0.06\sin(\frac{1}{2}\pi t - \frac{5}{4}\pi)$$

46, 3343

47, 3610

 $3\lambda/4$

48、3588

0

49、3126

$$H_{v} = 2.39\cos(2\pi vt + \pi/6)$$
 A/m

50, 3460

$$4.69 \times 10^{2} \,\mathrm{m}$$

三、计算题

解: (1)
$$\omega = \sqrt{k/m} = 10 \text{ s}^{-1}$$

$$T = 2\pi/\omega = 0.63 \text{ s}$$
(2) $A = 15 \text{ cm}$,在 $t = 0$ 时, $x_0 = 7.5 \text{ cm}$, $v_0 < 0$ 由
$$A = \sqrt{x_0^2 + (v_0/\omega)^2}$$
得
$$v_0 = -\omega\sqrt{A^2 - x_0^2} = -1.3 \text{ m/s}$$

$$\phi = \text{tg}^{-1}(-v_0/\omega x_0) = \frac{1}{3}\pi \text{ if } 4\pi/3$$

$$\therefore x_0 > 0 \text{ , } \therefore \qquad \phi = \frac{1}{3}\pi$$
(3)
$$x = 15 \times 10^{-2} \cos(10t + \frac{1}{3}\pi) \text{ (SI)}$$

解:设弹簧的原长为
$$l$$
,悬挂 m_1 后伸长 Δl ,则 $k\Delta l = m_1 g$,

取下
$$m_1$$
 挂上 m_2 后,
$$\omega = \sqrt{k/m_2} = 11.2 \text{ rad/s}$$

$$T = 2\pi/\omega = 0.56 \text{ s}$$

$$t = 0$$
 时,
$$x_0 = -2 \times 10^{-2} \text{ m} = A \cos \phi$$

$$v_0 = 5 \times 10^{-2} \text{ m/s} = -A \omega \sin \phi$$

$$A = \sqrt{x_0^2 + (v_0 / \omega)^2} \text{ m} = 2.05 \times 10^{-2} \text{ m}$$

$$\phi = \text{tg}^{-1}(-v_0 / \omega x_0) = 180^{\circ} + 12.6^{\circ} = 3.36 \text{ rad}$$

也可取
$$\phi = -2.92 \text{ rad}$$
 振动表达式为 $x = 2.05 \times 10^{-2} \cos(11.2t - 2.92)$ (SI) 或 $x = 2.05 \times 10^{-2} \cos(11.2t + 3.36)$ (SI)

53、3555

解得

解: 周期
$$T=2\pi/\omega=0.25~{
m s},$$
 振幅 $A=0.1~{
m m},$ 初相 $\phi=2\pi/3,$ $v_{
m max}=\omega\,A=0.8\pi~{
m m/s}\,(=2.5~{
m m/s}\,),$ $a_{
m max}=\omega^2A=6.4\pi^2~{
m m/s}^2\,(=63~{
m m/s}^2\,).$

54, 5191

55, 3558

解: (1)
$$v = \frac{dx}{dt} = -3.0\sin(5t - \frac{\pi}{2})$$
 (SI)
$$t_0 = 0, \qquad v_0 = 3.0 \text{ m/s}.$$
 (2)
$$F = ma = -m\omega^2 x$$

$$x = \frac{1}{2}A$$
 F, $F = -1.5$ N.

解: (1) 已知波的表达式为 $y=0.05\cos(100\pi t-2\pi x)$ 与标准形式 $y=A\cos(2\pi v t-2\pi x/\lambda)$

比较得

$$A = 0.05 \text{ m}, \quad v = 50 \text{ Hz}, \quad \lambda = 1.0 \text{ m}$$
 $u = \lambda v = 50 \text{ m/s}$
(2) $v_{\text{max}} = (\partial y / \partial t)_{\text{max}} = 2\pi v A = 15.7 \text{ m/s}$
 $a_{\text{max}} = (\partial^2 y / \partial t^2)_{\text{max}} = 4\pi^2 v^2 A = 4.93 \times 10^3 \text{ m/s}^2$
(3) $\Delta \phi = 2\pi (x_2 - x_1) / \lambda = \pi$,二振动反相

57, 5206

解: 由图, $\lambda = 2 \text{ m}$, 又:u = 0.5 m/s, ∴ v = 1 / 4 Hz,

$$T = 4 \text{ s.}$$
 题图中 $t = 2 \text{ s} = \frac{1}{2} T$. $t = 0$ 时,波形比题图中

的波形倒退 $\frac{1}{2}\lambda$,见图.

此时 O 点位移 $y_0 = 0$ (过平衡位置) 且朝 y 轴负方向运动,

$$\phi = \frac{1}{2}\pi$$

:
$$y = 0.5\cos(\frac{1}{2}\pi t + \frac{1}{2}\pi)$$
 (SI)

58, 3084

解: (1) 以 O 点为坐标原点. 由图可知,该点振动初始条件为

$$y_0 = A\cos\phi = 0$$
, $v_0 = -A\omega\sin\phi < 0$

所以

$$\phi = \frac{1}{2}\pi$$

波的表达式为 $y = A\cos[\omega t - (\omega x/u) + \frac{1}{2}\pi]$

(2) $x = \lambda/8$ 处振动方程为

$$y = A\cos[\omega t - (2\pi\lambda/8\lambda) + \frac{1}{2}\pi] = A\cos(\omega t + \pi/4)$$

 $x = 3\lambda/8$ 的振动方程为

$$y = A\cos[\omega t - 2\pi \frac{3\lambda/8}{\lambda} + \frac{1}{2}\pi] = A\cos(\omega t - \pi/4)$$

(3)
$$dy/dt = -\omega A \sin(\omega t - 2\pi x/\lambda + \frac{1}{2}\pi)$$

t=0, $x=\lambda/8$ 处质点振动速度

$$dy/dt = -\omega A \sin[(-2\pi\lambda/8\lambda) + \frac{1}{2}\pi] = -\sqrt{2}A\omega/2$$

t=0, $x=3\lambda/8$ 处质点振动速度

$$dy/dt = -\omega A \sin[(-2\pi \times 3\lambda/8\lambda) + \frac{1}{2}\pi] = \sqrt{2}A\omega/2$$

59、3333

解: (1) $y_0 = \sqrt{2} \times 10^{-2} \cos(\frac{1}{2}\pi t + \frac{1}{2}\pi)$ (SI)

(2)
$$y = \sqrt{2} \times 10^{-2} \cos[2\pi(\frac{1}{4}t - \frac{1}{4}x) + \frac{1}{3}\pi]$$
 (SI)

(3) t = 1 s 时,波形表达式:

$$y = \sqrt{2} \times 10^{-2} \cos(\frac{1}{2}\pi x - \frac{5}{6}\pi)$$
 (SI)

故有如图的曲线.

解:设x = 0处质点振动的表达式为 $y_0 = A\cos(\omega t + \phi)$,

已知
$$t=0$$
 时, $y_0=0$, 且 $v_0>0$ $\therefore \phi=-\frac{1}{2}\pi$

$$y_0 = A\cos(2\pi vt + \phi) = 2 \times 10^{-2}\cos(100\pi t - \frac{1}{2}\pi) \quad (SI)$$

由波的传播概念,可得该平面简谐波的表达式为

$$y_0 = A\cos(2\pi vt + \phi - 2\pi vx/u) = 2 \times 10^{-2}\cos(100\pi t - \frac{1}{2}\pi - \frac{1}{2}\pi x)$$
 (SI)

x = 4 m 处的质点在 t 时刻的位移

$$y = 2 \times 10^{-2} \cos(100\pi t - \frac{1}{2}\pi)$$
 (SI)

 $v = -2 \times 10^{-2} \times 100\pi \sin(200\pi - \frac{1}{2}\pi)$ 该质点在 t=2 s 时的振动速度为 = 6.28 m/s

61, 3476

解: (1) $x = \lambda/4$ 处

$$y_1 = A\cos(2\pi vt - \frac{1}{2}\pi)$$
, $y_2 = 2A\cos(2\pi vt + \frac{1}{2}\pi)$

 $\because y_1, y_2$ 反相 \therefore 合振动振幅 $A_s = 2A - A = A$,且合振动的初相 ϕ 和 y_2 的初相 一样为 $\frac{1}{2}\pi$.

合振动方程

$$y = A\cos(2\pi vt + \frac{1}{2}\pi)$$

(2)
$$x = \lambda/4$$
 处质点的速度 $v = dy/dt = -2\pi vA \sin(2\pi vt + \frac{1}{2}\pi)$

$$= 2\pi vA\cos(2\pi vt + \pi)$$

62, 3060

解: (1)
$$x = 0$$
 点 $\phi_0 = \frac{1}{2}\pi$; $x = 2$ 点 $\phi_2 = -\frac{1}{2}\pi$; $x = 3$ 点 $\phi_3 = \pi$;

(2) 如图所示.

63, 0321

解:取如图x坐标,平衡位置为原点O,向下为正,m在平衡位置时弹簧已伸长 x_0

$$mg = kx_0$$
 ①

设m在x位置,分析受力,这时弹簧伸长 $x+x_0$

$$T_2 = k(x + x_0)$$

由牛顿第二定律和转动定律列方程:

$$mg - T_1 = ma$$

$$T_1R - T_2R = J\beta$$

$$a = R\beta$$

联立解得

$$a = \frac{-kx}{(J/R^2) + m}$$

由于 x 系数为一负常数, 故物体做简谐振动, 其角频率为

$$\omega = \sqrt{\frac{k}{(J/R^2) + m}} = \sqrt{\frac{kR^2}{J + mR^2}}$$

64, 3428

解: (1)
$$P = W/t = 2.70 \times 10^{-3} \text{ J/s}$$

(2)
$$I = P/S = 9.00 \times 10^{-2} \text{ J/(s} \cdot \text{m}^2)$$

$$(3) I = \vec{w} \cdot u$$

$$\vec{w} = I/u = 2.65 \times 10^{-4} \text{ J/m}^3$$

65, 3436

解:在 P 最大限度地减弱,即二振动反相.现二波源是反相的相干波源,故要求因传播路 径不同而引起的相位差等于 $\pm 2k\pi$ (k=1, 2, …).

$$\overline{AP} = 50 \text{ cm}.$$

$$\overline{AP} = 50 \text{ cm}.$$
 $\therefore 2\pi (50-40)/\lambda = 2k\pi,$

$$\lambda = 10/k$$
 cm, 当 $k = 1$ 时, $\lambda_{\text{max}} = 10$ cm