Diseños factoriales 3^K

Diseño de Experimentos - Licenciatura en Estadística Profesores:

> Dr. José Alberto Pagura Lic. Julia I. Fernández

Diseños con factores a 3 niveles

- Diseños con K factores estudiando 3 niveles de cada uno
- Se hará referencia a los niveles de los factores como "bajo", "intermedio", "alto" o se codificarán como 0, 1 y 2 o también como 1,2 y 3.
- Para factores cuantitativos y aplicación de modelos de regresión, se utiliza la codificación -1, 0, 1. El modelo que relaciona la respuesta con los factores será:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_{12} x_1 x_2 + \beta_{11} x_1^2 + \beta_{22} x_2^2 + \varepsilon$$

Diseños con factores a tres niveles

- Uno de los motivos por los que se puede considerar, es para estudiar la curvatura en la función de respuesta en caso de factores cuantitativos. Sin embargo,
 - No es la forma más eficiente de modelar una relación cuadrática
 - El agregado de puntos centrales a un diseño 2^K resulta útil para evaluar la existencia de curvatura y pueden agregarse puntos axiales

Diseño 3²

- El diseño más simple de esta serie
- Consta de 9 tratamientos
- Si se realizan n réplicas habrá n3² ensayos
- Las sumas de cuadrados de los efectos principales tienen 2 grados de libertad cada una
- La suma de cuadrados de la interacción doble tiene 4 grados de libertad
- La suma de cuadrados del error tiene 3² (n-1) grados de libertad

Diseño 3²

- Si alguno de los factores es cuantitativo y los niveles que se han ensayado son equiespaciados:
- las sumas de cuadrados de los efectos principales se podrán descomponer en sumas de cuadrados de efecto lineal y cuadrático.
- La suma de cuadrados de la interacción se podrá descomponer en cuatro componentes: lineal*lineal, lineal*cuadrática, cuadrática*lineal, cuadrática*cuadrática
- Se presenta también una descomposición válida para cualquier clase de factores y niveles, basada en cuadrados latinos y útil para la construcción de fracciones factoriales

Ejemplo 5-5 Diseño y Análisis de Experimentos, D.C. Montgomery

Factores:

Angulo de la herramienta

Velocidad de corte

Respuesta: duración de la herramienta

	velocidad	
ángulo	de corte	duración
15	125	-2
15	125	-1
15	150	-3
15	150	0
15	175	2
15	175	3
20	125	0
20	125	2
20	150	1
20	150	3
20	175	4
20	175	6
25	125	-1
25	125	0
25	150	5
25	150	6
25	175	0
25	175	-1

Ejemplo 5-5 ANOVA

•	Fuente de variación	GL	SC	CM	F	P
•	Angulo de la herramienta	2	24,333	12,1667	8,42	0,009
•	Velocidad de corte	2	25,333	12,6667	8,77	0,008
•	Interacción	4	61,333	15,3333	10,62	0,002
•	Error	9	13,000	1,4444		
•	Total	17	124,000			

Ejemplo 7-6 Gráficos de efectos principales

Ejemplo 7-6 Gráfico de interacciones

Descomposición en componentes lineal y cuadrática (factores cuantitativos)

- •Cada uno de los efectos principales de los factores cuantitativos puede descomponerse en efectos lineal y cuadrático
- •Si los dos factores son cuantitativos, la interacción doble puede descomponerse en efectos: LxL, LxC, CxL, CxC

- Cuando los factores son cualitativos se plantea la descomposición de la $SC_{interacción}$ en dos componentes de dos grados de libertad cada una.
- Esta descomposición planteada por Yates, se basa en la consideración de dos cuadrados latinos ortogonales.
- En estos cuadrados latinos se asocia un factor a las filas y otro a las columnas, y cada celda al tratamiento definido por los niveles de los factores.
- Para el cálculo de las componentes, se coloca en cada celda el total de la respuesta para el tratamiento correspondiente

			FACTOR B		
		0	1	2	
⋖	0	-3 Q	-3 R	5 S	(a
NS NS	1	R 2	S 4	10 Q	
FACT	2	S -1	Q 4 11	-1 R	

			FACTOR B	
		0	1	2
	0	-3	-3	5
٩		Q	R	S
œ	1	2	4	10
Ö		S	Q	R
Δ Δ	2	-1	11	-1
2	2	R	S	Q

(b)

• Puede verse que la asignación de las letras a las celdas se se obtiene a partir de:

```
Cuadrado (a) Cuadrado (b)

Q: x_1 + x_2 = 0 \pmod{3} Q: x_1 + x_2 = 0 \pmod{3}

R: x_1 + x_2 = 1 \pmod{3} S: x_1 + x_2 = 1 \pmod{3}

S: x_1 + x_2 = 2 \pmod{3} R: x_1 + x_2 = 2 \pmod{3}
```

- La suma de cuadrados en (a) se llama componente de interacción AB.
- La suma de cuadrados calculada en (b) se llama AB²
- Cada una de estas componentes tiene dos grados de libertad.
- Yates llamó a estas componentes de la interacción, I(AB)=AB² y J(AB)=AB
- Estas componentes:
 - no tienen un significado real,
 - por lo general no se incluyen en el análisis de la variancia y
 - no pueden vincularse con las componentes de la descomposición estudiada (lineal*lineal, etc.)
- Sin embargo, resultan de utilidad para la construcción de diseños más complejos.

Cálculo de las componentes I y J

- Para cada cuadrado:
- Se obtienen los totales de cada letra,
- Se los eleva al cuadrado, se los suma y divide por n * p,
- A ese valor se le resta el total al cuadrado dividido n * p * p

Diseño 3³

- Se definen 27 tratamientos
- Tres efectos principales, sus sumas de cuadrados con 2 grados de libertad cada una
- Tres interacciones dobles, sus sumas de cuadrados con 4 grados de libertad cada una
- Una interacción triple, su suma de cuadrados tiene 8 grados de libertad.

Diseño 3³

- Cada una de las tres interacciones dobles puede descomponerse en componentes I y J con dos grados de libertad.
- La interacción triple se puede descomponer en componentes:

$$W(ABC)=AB^2C^2$$

$$X(ABC)=AB^2C$$

$$Y(ABC)=ABC^2$$

$$Z(ABC)=ABC$$

Diseños 3^K en tres bloques

- Se elige un efecto para confundir con el efecto bloque, por ejemplo el AB²C², en un diseño 3³.
- Se define el contraste, en general,
- $L=\alpha_1 x_1 + ... + \alpha_k x_k$ pero en este caso particular,
- $L=x_1+2x_2+2x_3$, y se encuentran los restos de dividir esa cantidad por 3, para cada tratamiento
- Se asignan a cada bloque los tratamientos para los cuales el valor encontrado es el mismo

"Orthogonal Array" de Taguchi

- Genichi Taguchi elaboró un conjunto de tablas y gráficos con la intención de facilitar el uso del Diseño de Experimentos, por personal no especializado, como una herramienta de trabajo
- Sus tablas, conocidas como "Orthogonal Array Li" contienen planes factoriales altamente fraccionados, siendo i el número de pruebas
- El nombre es porque con ellos (como con toda fracción factorial), los efectos simples de los factores son ortogonales.

Más sobre los diseños Li

- En particular, los arreglos L8 y L16, que corresponden a diseños con 8 y 16 pruebas para factores a 2 niveles, son las fracciones factoriales 2⁷⁻⁴ y 2¹⁵⁻¹¹
- Las tablas están dispuestas de modo que los factores asignados a las primeras columnas tengan que cambiarse de nivel pocas veces en el experimento (por supuesto debería seguirse el orden indicado)
- Se utilizan símbolos 1 y 2 en lugar de y +

Asignación de factores en un Li

- El número de factores a ensayar con un Li puede ser igual a la cantidad de columnas del Plan o menor
- Si hay menos factores que columnas, se pueden aprovechar grados de libertad para estudiar algunas interacciones dobles de interés, evitando que estén confundidas entre sí o con factores simples
- Para ello se buscan las columnas a las que asignar los factores, de modo que dichas interacciones resulten asociadas a columnas que quedan libres
- Para facilitar, se acompañan de tablas que especifican con qué columna se confunde c/interacción doble

Diseños factoriales a 3 niveles

- En variadas situaciones es necesario estudiar algunos factores a más de dos niveles, en particular, cuando alguno de ellos es cuantitativo y se desea precisar la naturaleza de la función de respuesta
- En estos casos, si se necesita investigar la existencia de posibles curvaturas que permitan obtener los niveles óptimos de los factores es imprescindible experimentar al menos en tres niveles

				2^(7-4)			
Prueba	1	2	3	4	5	6	7
1	1	1	1	.1	1	1	1
2	1	1	1	2	2	2	2
3	1	2	2	1	1	2	2
4	1	2	2	2	2	1	1
- 5	2	1	2	1	2	1	2
6	2	1	2	2	1	2	1
7	2	2	1	1	2	2	٠ 1
8	2	2	1	2	1	1	2

Tabla de interacciones en el L8

	2	3	4	5	6	7	
(1)	3	2'	5	4	7	6	
	(2)	1	6	. 7	4	5	
		(3)	7	6	5	4	
			(4)	1	2	3	
				(5)	3	2	
					(6)	1	

L₁₆ (2¹⁵⁻¹¹)

Prueba	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	1	1	1	. 1	1	1	1	1	1	1	1	1	1		1
2	1	1	1	1	1	1	1	2	2	2	2	2	2	1 2	2
3 4	1	1	1	2	2	2	2	1	1	1	1	2	2	2	2
4	1	1	1	2	2	2	2	. 2	2	1 2	1	2	1	1	1
5	1	2	2	1	1	2	2	1	1	2	2	1	1	2	2
5 6	1	2	2	1	1	2	2	2	2	1	1	1 2	2	1	1
7 8	1	2	2	2	2	1	1	1	1	2	2	2	2	1	1
	1	2	2	2	2	1	1	2	2	1	1	2	1	2	2
9	2	1	2	1	2	1	2 2	1	2	1	2	1	2	1	2
10	2	1	2	1	2	1	2	2	1	2	1	2	1	2	1
11	2	1	2	2	1	2	1	1	2	1	2	2	1	2	1
12	2	1	2	2	1	2	1	2	1	1	1	1	2	1	2
13	2	2	1	1	2	2	1	1	2	2	1	1	2	2	1
14	2	2	1	1	2	2	1	2	1	1	2	2	1	1	2
15	2	2	1	2	1	1	2	1	2	2	1	2	1	1	2
16	2	2	1	2	1	1	2	2	1	. 1	2	1	2	2	1

Tabla de Interacciones del L₁₆

	2	3	4	5	6	7	8	9	10	11	12	13	14	15
(1)	3	2	5	4	7	6	9	8	11	10	13	12	15	14
	(2)	1	6	7	4	5	10	11	8	9	14	15	12	13
	(-)	(3)	7	6	5	4	11	10	9	8	15	14	13	12
		(0)	(4)	1	2	3	12	13	14	15	8	9	10	11
			(4)	(5)	3	2	13	12	15	14	9	8	11	10
				(5)	(6)	1	14	15	12	13	10	11	8	9
					(0)	(7)	15	14	.13	12	11	10	9	8
						1.7	(8)	1	2	3	4	5	6	7
							(0)	(9)	3	2	5	4	7	6
				53				3-1	(10)	1	6	7	4	5
										(11)	7	6	5	4
											(12)	1	2	3
												(13)	3	2
			40										(14)	1

Fracciones factoriales a 3 niveles

- Los planes factoriales completos con factores a tres niveles exigen muchas pruebas, por ejemplo:
- C/ 4 factores ⇒ 81 pruebas (sólo 16 a 2 niveles)
- C/ 5 factores ⇒ 243 pruebas (sólo 32 a 2 niveles)
- C/ 6 factores ⇒ 729 pruebas (sólo 64 a 2 niveles)
- En estos casos, es muy útil utilizar fracciones factoriales. Fueron propuestas hace muchos años, pero Taguchi, las popularizó impulsando su uso en Ingeniería de Calidad y Diseño robusto
- Tres de ellos, muy usados son L9, L18 y L27

Fracción factorial L9

- Corresponde a un cuadrado grecolatino 3x3 del diseño clásico.
- Es completamente saturado ya que los 8 grados de libertad son para 4 factores con 2 grados de libertad cada uno
- Si en lugar de 4. Hay 3 factores cuantitativos, conviene asignarlos a las columnas 2,3 y 4 porque así los efectos de primer orden (lineal) no están confundidos con los efectos de segundo orden (cuadráticos o interacciones lineal x lineal) ⇒ diseño de Resolución IV generalizado

Diseño L9

Prueba Nº		Columnas									
	1	2	3	4							
1	1	1	1	1							
2	1	2	2	2							
3	1	3	3	3							
4	2	1	2	3							
5	2	2	3	1							
6	2	3	1	2							
7	3	1	3	2							
8	3	2	1	3							
9	3	3	2	1							

Gráfico lineal:

3,4

1_____

Estudios posibles con el L18

- En las 18 pruebas, se pueden ensayar un factor a 2 niveles y hasta 7 factores a 3 niveles (un plan equilibrado exigiría 3^{7*}2 = 4374 pruebas)
- Es posible adaptarlo a otras situaciones (por ejemplo si hubiera dos factores a dos niveles) sin perder la ortogonalidad del diseño

Diseño L18

Prueba	1	2	3	4	5	6	7	8
1	1	1	1	1	1	1	1	1
2	1	1	2	2	2	2	2	2
3	1	1	3	3	3	3	3	3
4	1	2	1	1	2	2	3	3
5	1	2	2	2	3	3	1	1
6	1	2	3	3	1	1	2	2
7	1	3	1	2	1	3	2	3
8	1	3	2	3	2	1	3	1
9	1	3	3	1	3	2	1	2
10	2	1	1	3	3	2	2	1
11	2	1	2	1	1	3	3	2
12	2	1	3	2	2	1	1	3
13	2	2	1	2	3	1	3	2
14	2	2	2	3	1	2	1	3
15	2	2	3	1	2	3	2	1
16	2	3	1	3	2	3	1	2
17	2	3	2	1	3	1	2	3
18	2	3	3	2	1	2	3	1

Fracción factorial L27

- El L27 fue ideado por Fisher en 1942
- Pueden probarse 13 factores a 3 niveles en 27 pruebas (un plan equilibrado exigiría 3¹³= 1594323)
- Para 13 factores es un diseño completamente saturado
- Es posible estudiar alguna interacción sacrificando ciertas columnas. Su elección está facilitada por la Tabla de interacciones y los Grafos lineales que acompañan al diseño.

Estudios posibles con el L27

- Si se estudian 9 factores a 3 niveles las 27 pruebas constituyen un diseño de Resolución IV. Para ello habría que elegir las columnas 5 6 7 8 9 10 11 12 y 13
- Hay varios subconjuntos de 4 columnas, entre estas 9, con la propiedad de que los efectos cuadráticos están también incorrelacionados con las componentes lineal x lineal de las interacciones dobles. Uno posible es el 5 6 11 12

L27

Número de prueba	1	2	3	4	5	6	7	8	9	10	11	12	13
1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	1	1	1	1	2	2	2	2	2	2	2	2	2
3	1	1	1	1	3	3	3	3	3	3	3	3	3
4	1	2	2	2	1	1	1	2	2	2	3	3	3
5	1	2	2	2	2	2	2	3	3	3	1	1	1
6	1	2	2	2	3	3	3	1	1	1	2	2	2
7	1	3	3	3	1	1	1	3	3	3	2	2	2
8	1	3	3	3	2	2	2	1	1	1	3	3	3
9	1	3	3	3	3	3	3	2	2	2	1	1	1
10	2	1	2	3	1	2	3	1	2	3	1	2	3
11	2	1	2	3	2	3	1	2	3	1	2	3	1
12	2	1	2	3	3	1	2	3	1	2	3	1	2
13	2	2	3	1	1	2	3	2	3	1	3	1	2
14	2	2	3	1	2	3	1	3	1	2	1	2	3
15	2	2	3	1	3	1	2	1	2	3	2	3	1
16	2	3	1	2	1	2	3	3	1	2	2	3	1
17	2	3	1	2	2	3	1	1	2	3	3	1	2
18	2	3	1	2	3	1	2	2	3	1	1	2	3
19	3	1	3	2	П	3	2	1	3	2	1	3	2
20	3	1	3	2	2	1	3	2	1	3	2	1	3
21	3	1	3	2	3	2	1	3	2	1	3	2	1
22	3	2	1	3	1	3	2	2	1	3	3	2	1
23	3	2	1	3	2	1	3	3	2	1	1	3	2
24	3	2	1	3	3	2	1	1	3	2	2	1	3
25	3	3	2	1	1	3	2	3	2	1	2	1	3
26	3	3	2	1	2	1	3	1	3	2	3	2	1
27	3	3	2	1	3	2	1	2	1	3	1	3	2

Manejo de los Orthogonal Arrays

- Hay situaciones prácticas que no se adaptan exactamente a un OA, pero se pueden "acomodar" manteniendo la ortogonalidad de los efectos estudiados
- En una columna para un factor a 3 niveles, se puede acomodar uno a 2 niveles, haciendo equivalentes 2 de los 3 primitivos
- En cualquier diseño con factores a 2 niveles, es posible acomodar uno con 4, usando 2 columnas cualquiera y la de su interacción
- En un diseño con factores a 2 niveles es posible acomodar uno con 3, haciendo el juego anterior y luego haciendo equivalentes 2 de los 4 resultantes

Método del nivel ficticio

- Con este método es posible asignar un factor a alguna columna que fue prevista para más niveles
- Se convierten en equivalentes los dos o más niveles "sobrantes" del factor previsto por el OA
- Por ejemplo, partimos de un L9 originalmente previsto para 4 factores a tres niveles, y queremos acomodar en esas 9 pruebas un factor a 2 niveles y tres factores a 3 niveles
- En la columna 1 (por ej) se asigna el factor a dos niveles haciendo el doble de pruebas a nivel 2

Ortogonalidad lograda con el Método del nivel ficticio

- El método enunciado garantiza que no se pierda la otogonalidad de los efectos de cada factor
- Esto significa que al estimar el efecto del factor con el nivel ficticio, los niveles de los otros factores estarán repartidos equilibradamente y por lo tanto en el cálculo de las medias influirán por igual y se anulará su efecto
- Análogamente, este factor con nivel ficticio aparece equilibradamente en cada nivel de los otros factores por lo cual no incide en la estimación de sus efectos

Método de fusión de columnas

- Si al contrario de la situación anterior, se debe experimentar con un factor a más niveles de aquellos para los que están previstos los OA, se pueden usar dos columnas y la de su interacción, fusionadas en una sola
- Por ejemplo ubiquemos en un L8 un factor a 4 niveles. Se fusionan las columnas 1, 2 y la 3 (interacción), asignando un nivel a cada combinación de los niveles originales
- El nuevo diseño es también ortogonal

Otros ejemplos de fusión de columnas

- En un L27 se podría asignar un factor a 9 niveles construyendo una nueva columna a partir de las 1,2,3 y 4
- En un L18 se podría asignar un factor a 6 niveles utilizando las columnas 1 y 2 (en este caso la interacción entre ambas no está confundida con las otras columnas)

Ejercicio 1

• Se desea construir un diseño de un experimento para analizar los efectos de 5 factores F1, F2, F3, F4 y F5 en 8 ensayos. Se plantea utilizar un 2⁽⁵⁻²⁾ haciendo las cuarta y quinta columna del plan: D=AB y E=AC. Además, se sabe que F3 no interactua con ninguno de los 4 factores restantes, indique en que columna ubicaría F3 para lograr la menor cantidad de efectos principales confundidos con interacciones dobles.

Ejercicio 2

• A partir del O.A. L8 y de su tabla de interacciones diseñar un experimento de 8 pruebas que permita estudiar los efectos principales de A, B, C y D y las interacciones AB y AC sin que ninguno de estos efectos se confundan entre si.

Ejercicio 3

- Se desea diseñar un experimento para estudiar el efecto de 7 factores A, B, C, D, E, F y G a tres niveles. Dado que A, B, y C son potencialmente muy importantes se sospecha que pueden existir interacciones dobles entre los mismos.
- ¿Cuántos grados de libertad exigiría como mínimo un diseño en el que puedan estudiarse ortogonalmente los 7 efectos principales y las tres interacciones dobles?
- Con la ayuda de la tabla de interacciones construir a partir del L27 un diseño que satisfaga los requisitos exigidos.