

EXERCICES SUPPLEMENTAIRES CORRIGES DE TRAITEMENT DU SIGNAL Sciences du Numérique - Première année

Signaux et spectres

Exercice 1 : Etude d'un signal constant sur la durée T

On considère dans cet exercice le signal suivant (figure 1):

$$x(t) = 1$$
 $t \in [-T/2, T/2]$
= 0 ailleurs

Figure 1 -

Préciser la classe à laquelle appartient le signal x(t) puis déterminer sa fonction d'autocorrélation $R_x(\tau)$ (en distinguant les cas $\tau > 0$ et $\tau < 0$) et sa densité spectrale de puissance ou d'énergie $S_x(f)$.

Le signal est déterministe à énergie finie : $E = \int_{\mathbb{R}} |x(t)|^2 dt = \int_{-T/2}^{T/2} dt = T < \infty$ Sa fonction d'autocorrélation est donc donnée par : $R_x(\tau) = \int_{\mathbb{R}} x(t)x^*(t-\tau)dt$ Pour $\tau > 0$: si $\tau - \frac{T}{2} > \frac{T}{2}$, soit $\tau > T$, on a $R_x(\tau) = 0$ (supports des portes disjoints), si $\tau - \frac{T}{2} \le \frac{T}{2}$, soit $0 < \tau \le T$, on a $R_x(\tau) = \int_{-T/2}^{T/2} dt = T - \tau$. Par symétrie on obtient alors $R_x(\tau) = T \bigwedge_T(\tau)$ (figure 2), où $\bigwedge_T(\tau)$ représente le triangle de 1/2 base T et de hauteur 1.

Figure 2 -

Sa DSE est donnée par : $S_x(f) = TF[R_x(\tau)] = T \times Tsinc^2(\pi fT) = T^2sinc^2(\pi fT)$ Remarque : on retrouve bien $S_x(f) = |X(f)|^2$ (signal à énergie finie), si X(f) représente la transformée de Fourier de x(t)

Exercice 2 : Etude d'un signal périodique

On considère dans cet exercice le signal x(t) présenté dans la figure 3.

FIGURE 3 -

Déterminer la transformée de Fourier du signal X(f), sa fonction d'autocorrélation $R_x(\tau)$ et sa densité spectrale de puissance ou d'énergie $S_x(f)$.

On peut écrire le signal de la manière suivante : $x(t) = \sum_{k \in \mathbb{Z}} \Pi_b \left(t - kT \right) = \Pi_b(t) * \operatorname{III}_T (t)$, où $\operatorname{III}_T (t)$ représente le peigne de Dirac de largeur $T : \operatorname{III}_T (t) = \sum_{k \in \mathbb{Z}} \delta(t - kT)$. On a alors $X(f) = bsinc(\pi fb) \times \frac{1}{T}$. $\operatorname{III}_{\frac{1}{T}} (f) = \frac{b}{T} \sum_{k \in \mathbb{Z}} sinc(\pi b \frac{k}{T}) \delta \left(f - \frac{k}{T} \right)$.

Le signal est déterministe à puissance finie périodique, de période T. Sa fonction d'autocorrélation s'écrit donc : $R_x(\tau) = \frac{1}{T} \int_{-T/2}^{T/2} x(t) x^*(t-\tau) dt$. C'est une fonction paire et périodique de période $T: R_x(\tau+kT) = R_x(\tau)$. On peut donc se limiter au calcul sur une période. Ce calcul a été réalisé dans l'exercice précédent. On obtient donc ici, en périodisant : $R_x(\tau) = \frac{1}{T} \sum_{k \in \mathbb{Z}} b \bigwedge_b (\tau - kT)$.

Sa DSP est donnée par : $S_x(f) = TF\left[R_x(\tau)\right] = TF\left[\frac{b}{T}\sum_{k\in\mathbb{Z}}\bigwedge_b(\tau)*\delta\left(\tau-kT\right)\right] = \frac{b}{T}TF\left[\bigwedge_b(\tau)*\mathrm{III}_T\left(\tau\right)\right] = \frac{b}{T}bsinc^2(\pi bf) \times \frac{1}{T}$. III $\frac{1}{T}(f) = \frac{b^2}{T^2}\sum_{k\in\mathbb{Z}}sinc^2\left(\pi\frac{bk}{T}\right)\delta\left(f-\frac{k}{T}\right)$.

Echantillonnage - Quantification

Exercice 1: Echantillonnage d'un signal passe-bande

On considère le signal $x(t) = x^+(t) + x^-(t)$, avec $x^+(t) = B \frac{\sin(\pi B t)}{\pi B t} e^{j2\pi f_0 t}$ et $x^-(t) = B \frac{\sin(\pi B t)}{\pi B t} e^{-j2\pi f_0 t}$, $f_0 = 8kHz$ et B = 2kHz.

1. Déterminer la transformée de Fourier du signal x(t) et la représenter graphiquement.

$$X(f) = X^{+}(f) + X^{-}(f) = \prod_{B}(f) * \delta(f - f_0) + \prod_{B}(f) * \delta(f + f_0) = \prod_{B}(f - f_0) + \prod_{B}(f + f_0)$$
 (voir figure 4)

FIGURE 4 – Transformée de Fourier de x(t).

- 2. Comment s'écrit la condition de Shannon pour le signal x(t)? $F_e > 2F_{max}$ avec $F_{max} = f_0 + \frac{B}{2} = 9$ kHz ici.
- 3. On échantillonne le signal x(t) à la fréquence $F_e=6kHz$.
 - (a) Représenter graphiquement la transformée de Fourier du signal échantillonné $x_e(t)$ dans la bande [-9kHz, 9kHz]Voir sur la figure 5

FIGURE 5 – Transformée de Fourier de x(t) avec $F_e = 8$ kHz.

- (b) On désire restituer le signal x(t) à partir de $x_e(t)$ par un filtrage de réponse en fréquence H(f).
 - 1^{ier} cas : $H(f) = \Pi_F(f)$ avec F = 6kHz. Quel sera le signal restitué par ce filtre? Voir la figure 6, on retrouvera $x(t) = B \frac{\sin(\pi Bt)}{\pi Bt} e^{j2\pi f_1 t} + B \frac{\sin(\pi Bt)}{\pi Bt} e^{-j2\pi f_1 t} = 2B \operatorname{sinc}(\pi Bt) \cos(2\pi f_1 t)$, avec $f_1 = -F_e + f_0 = 2$ kHz.

Figure 6 -

— 2^{me} cas : $H(f) = \Pi_B(f+f_0) + \Pi_B(f-f_0)$ avec $f_0 = 8kHz$ et B = 2kHz. Quel sera le signal restitué par ce filtre? Voir la figure 7, on retrouvera $x(t) = B\frac{\sin(\pi Bt)}{\pi Bt}e^{j2\pi f_0t} + B\frac{\sin(\pi Bt)}{\pi Bt}e^{-j2\pi f_0t} = 2Bsinc(\pi Bt)\cos(2\pi f_0t)$, avec $f_0 = 8$ kHz.

Figure 7 -

— Conclusion?

Il est possible d'échantillonner un signal de type passe-bande sans respecter la condition de Shannon tout en assurant une reconstition parfaite (par filtrage passe-bande), à condition que les repliments se fassent dans les trous du spectre de départ.

Exercice 2: Echantillonneur bloqueur

L'échantillonneur bloqueur est un échantillonneur réalisable en pratique qui consiste à acquérir un échantillon du signal, x(t), toutes les T_e secondes (période d'échantillonnage) et à le bloquer pendant τ secondes ($\tau << T_e$).

- 1. Proposer une écriture du signal échantillonné de cette manière, $x_e(t)$, en fonction de l'expression du signal échantillonné de manière idéale : $x_{ei}(t) = \sum_{k \in \mathbb{Z}} x(kT_e)\delta(t kT_e)$. Le signal échantillonné par bloqueur va être constitué d'une somme de fonctions porte espacées de T_e , de largeur τ
 - et de hauteur $x(kT_e)$ si $x(kT_e)$ représente la valeur de l'échantillon prélevé sur le signal x(t) à l'instant kT_e . On peut donc écrire le signal échantillonné, $x_e(t)$, de la manière suivante : $x_e(t) = \sum_{k \in \mathbb{Z}} x(kT_e) \Pi_{\tau} \left(t \frac{\tau}{2} kT_e\right) = \Pi_{\tau} \left(t \frac{\tau}{2}\right) * \sum_{k \in \mathbb{Z}} x(kT_e) \delta(t kT_e) = \Pi_{\tau} \left(t \frac{\tau}{2}\right) * x_{ei}(t)$.
- 2. Calculer la transformée de Fourier du signal échantillonné à l'aide de cette méthode. L'écrire en fonction de la transformée de Fourier, X(f), du signal de départ.

 $X_e(f) = \tau sinc(\pi f \tau) e^{-j\pi f \tau} * X_{ei}(f) = \tau sinc(\pi f \tau) e^{-j\pi f \tau} * F_e \sum_{k \in \mathbb{Z}} X(f - kF_e)$, où $F_e = \frac{1}{T_e}$ représente la fréquence d'échantillonnage du signal.

3. Est-il possible de dimensionner τ pour que l'échantillonnage par bloqueur se rapproche d'un échantillonnage idéal. Si le critère de Shannon est vérifié, on pourra récupérer X(f) à condition que $\frac{1}{\tau} >> F_{max}$, en appelant F_{max} la fréquence maximale du signal x(t). On aura alors, en effet, $sinc(\pi f \tau) \simeq 1$ sur la bande du signal.

Exercice 3: Signal à spectre non borné - Recherche de F_e

Soit le signal x(t) défini par :

$$x(t) = \begin{cases} e^{-at} & \text{si } t \ge 0, a > 0\\ 0 & \text{si } t < 0. \end{cases}$$
 (1)

- 1. Déterminer la transformée de Fourier X(f) du signal x(t). Tracer |X(f)|. $X(f) = \int_0^{+\infty} e^{-(a+j2\pi f)t} dt = \frac{1}{a+j2\pi f}, |X(f)| = \frac{1}{\sqrt{a^2+4\pi^2f^2}}.$
- 2. En théorie le signal x(t) est-il échantillonnable sans perte d'information? Expliquez votre réponse. Non car le spectre non borné \Rightarrow forcément du repliement quand on va échantillonner \Rightarrow signal distordu.
- 3. En considérant la transformée de Fourier comme négligeable pour une atténuation minimale de 40 dB par rapport à sa valeur maximum, dimensionner la fréquence d'échantillonnage, F_e , à utiliser.

 On a le maximum du spectre pour f = 0. On souhaite donc trouver F_{max} telle que :

$$10\log_{10} |X(F_{max})|^2 \le 10\log_{10} |X(0)|^2 - 10\log_{10} (10^4) = 10\log_{10} \frac{|X(0)|^2}{10^4}$$

D'où $\frac{1}{\sqrt{a^2+4\pi^2F_{max}^2}} \le \frac{1}{10^4a^2}$ et donc $F_{max}^2 \ge \frac{\left(10^4-1\right)a^2}{4\pi^2}$. Soit, en négligeant 1 devant $10^4: F_{max} \ge \frac{100a}{2\pi}$ et donc $F_e \ge \frac{100a}{\pi}$.

4. Une fois F_e déterminée, quel traitement doit-on appliquer au signal avant de l'échantillonner? Un filtre anti repliement afin de tronquer le spectre du signal à F_{max} .

Exercice 4: Quantification d'une sinusoïde

Soit un signal sinusoïdal $x(t) = A_0 \sin{(2\pi f_0 t + \phi)}$, avec $f_0 = 50Hz$, $A_0 = 220\sqrt{2}V$ et ϕ une phase aléatoire uniformément répartie entre 0 et 2π . On suppose que la quantification de cette sinusoïde est effectuée dans de bonnes conditions : pas d'écrétage du signal, pas de quantification $q = \frac{D}{2^{nb}}$ suffisament fin (D représentant la dynamique du signal et nb le nombre de bits de quantification). Elle est donc équivalente à l'ajout d'un bruit, $n_Q(t)$, sur le signal non quantifié de départ, bruit aléatoire, centré qui suit une loi uniforme sur $\left[-\frac{q}{2}, \frac{q}{2}\right]$. Déterminer le rapport signal à bruit de quantification en fonction de nb.

 $SNR_{dB}=10\log_{10}\left(\frac{P_x}{P_n}\right)$ si P_x représente la puissance du signal x(t) et P_n la puissance du bruit de quantification, $n_Q(t)$, qui vient s'ajouter au signal de départ. $P_x=\frac{A_0^2}{2}$ (résultat classique pour la puissance d'un sinus ou d'un cosinus, calculé en TD dans le cas d'un cosinus) et $P_n=E\left[n_Q^2(t)\right]=\int_{-\frac{q}{2}}^{\frac{q}{2}}\frac{1}{q}n_Q^2(t)dn_Q=\frac{1}{q}\left[\frac{n_Q^3(t)}{3}\right]_{-\frac{q}{2}}^{\frac{q}{2}}=\frac{q^2}{12}$, d'où $SNR_{dB}=10\log_{10}\left(\frac{3}{2}2^{2nb}\right)\simeq 1.76+6nb$

Filtrage linéaire

Exercice 1 : Filtre intégrateur

Soit x(t) un signal aléatoire stationnaire de moyenne nulle et de densité spectrale de puissance $S_x(f)$. Soit :

$$y(t) = \int_{1}^{a+t} x(u)du, \ avec \ a > 0$$

- 1. Montrer que y(t) est la sortie d'un filtre linéaire dont l'entrée est x(t) et déterminer sa réponse impulsionnelle. Il existe plusieurs manières de répondre à cette question
 - (a) si $x(t) = e^{j2\pi ft}$ alors $y(t) = \int_t^{a+t} e^{j2\pi fu} du = \frac{1}{j2\pi f} \left(e^{j2\pi fa} 1 \right) e^{j2\pi ft} = H_a(f)x(t)$. On a bien une opération de filtrage linéaire entre le signal x(t) et le signal y(t) avec un filtre de réponse en fréquence $H_a(f) = \frac{1}{j2\pi f} \left(e^{j2\pi fa} 1 \right)$.

- (b) $y(t) = \int_t^{a+t} x(u) du = \int_{\mathbb{R}} x(u) \Pi_a \left(u \left(t + \frac{a}{2} \right) \right) du = \int_{\mathbb{R}} x(u) \Pi_a \left(\left(t + \frac{a}{2} \right) u \right) du = x(t) * h(t) \text{ avec } h(t) = \Pi_a \left(t + \frac{a}{2} \right)$
- (c) si $x(t) = \delta(t)$ alors $y(t) = h(t) = \int_t^{a+t} \delta(u) du = 1$ si -a < t < 0, = 0 sinon. D'où $h(t) = \prod_a \left(t + \frac{a}{2}\right)$. Il faut alors montrer que nous avons bien un filtre, c'est-à-dire que l'on a bien $y(t) = h(t) * x(t) : h(t) * x(t) = \Pi_a (t + \frac{a}{2}) * x(t) = \frac{a}{2} (t + \frac{a}{2}) *$ $\int_{\mathbb{R}} x(u) \Pi_a \left(t + \frac{a}{2} - u \right) du = \int_t^{t+a} x(u) du : OK.$
- (d) on peut également dériver : $y'(t) = \{x(t+a) x(t)\}$, d'où par transformée de Fourier $j2\pi fY(f) = \{e^{j2\pi fa}X(f) X(f)\}$ et donc $H(f) = \frac{Y(f)}{X(f)} = \frac{e^{j2\pi fa} 1}{j2\pi f} = ae^{j\pi fa}sinc(\pi fa)$. Ce qui donne par transformée de Fourier mée de Fourier inverse : $h(t) = \Pi_a \left(t + \frac{a}{2}\right)$.
- 2. Ce filtre est-il réalisable?

Un filtre est réalisable si sa réponse impulsionnelle h(t) est réelle (OK ici), qu'elle vérifie la condition de stabilité $\int_{\mathbb{R}} |h(t)| dt < \infty$ (OK ici: $\int_{\mathbb{R}} |h(t)| dt = a$) et qu'elle est causale (non OK ici: pour t < 0 on a $h(t) \neq 0$). Ce filtre n'est pas réalisable.

3. Calculer la moyenne de y(t).

$$E[y(t)] = E\left[\int_t^{a+t} x(u)du\right] = \int_t^{a+t} E[x(u)] du = 0$$

4. Donner la densité spectrale de puissance de y(t), $S_y(f)$, en fonction de $S_x(f)$. $S_y(f) = |H_a(f)|^2 S_x(f) = a^2 sinc^2(\pi f a) S_x(f)$ (voir relations de Wiener Lee)

Exercice 2 : Canal de propagation multitrajets

1. Soit le signal déterministe défini par :

$$x(t) = Ae^{-\lambda t} \quad t \ge 0 \quad \lambda > 0$$
$$= 0 \quad t < 0$$

(a) Calculer la fonction d'autocorrélation de x(t) (en distinguant les cas $\tau \geq 0$ et $\tau \leq 0$).

Ce signal est déterministe à énergie finie :
$$E = \int_{\mathbb{R}} |x(t)|^2 dt = \frac{A^2}{2\lambda}$$
 D'où :
$$R_x(\tau) = \int_{\mathbb{R}} x(t) \, x^*(t-\tau) \, dt = \begin{cases} \int_0^{+\infty} x(t) \, x^*(t-\tau) \, dt = \frac{A^2}{2\lambda} e^{\lambda \tau} & \tau < 0 \\ \int_{\tau}^{+\infty} x(t) \, x^*(t-\tau) \, dt = \frac{A^2}{2\lambda} e^{-\lambda \tau} & \tau \geq 0 \end{cases} = \frac{A^2}{2\lambda} e^{-\lambda |\tau|} \forall \tau$$

(b) Calculer la transformée de Fourier de x(t), puis sa densité spectrale de puissance et retrouver enfin l'expression de sa fonction d'autocorrélation déterminée précédemment.

Dans ce cas $S_x(f) = |X(f)|^2$ avec $X(f) = \int_0^{+\infty} Ae^{-\lambda t}e^{-j2\pi ft}dt = \frac{A}{\lambda + j2\pi f}$, d'où $S_x(f) = \frac{A^2}{\lambda^2 + 4\pi^2 f^2}$ et donc $R_X(\tau) = \frac{A}{\lambda^2 + 4\pi^2 f^2}$ $TF^{-1}[S_X(f)] = \frac{A^2}{2\lambda}e^{-\lambda|\tau|}$ (tables de TF). On retrouve bien le résultat précédent.

2. Considérons un système multitrajet d'entrée x(t) et de sortie y(t) défini par :

$$y(t) = \sum_{k=1}^{M} a_k x(t - \tau_k)$$

(a) Montrer que y(t) est la sortie d'un filtre linéaire d'entrée x(t). Exprimer la réponse impulsionnelle et la réponse en

$$y(t) = \sum_{k=1}^{M} a_k \delta(t - \tau_k) * x(t) : \text{nous avons bien une relation de filtrage linéaire entre } x(t) \text{ et } y(t), \text{ avec } h(t) = \sum_{k=1}^{M} a_k \delta(t - \tau_k)$$
 et $H(f) = \sum_{k=1}^{M} a_k e^{-j2\pi f \tau_k}$.

Remarque : on peut également le montrer en plaçant $x(t)=e^{-j2\pi ft}$ à l'entrée du filtre et en montrant qu'on obtient alors y(t) = x(t)H(f).

(b) Exprimer la fonction d'intercorrélation entre y(t) et x(t) notée $R_{yx}(\tau)$ en fonction de $R_x(\tau)$.

$$R_{yx}(\tau) = R_x(\tau) * h(\tau) = \sum_{k=1}^{M} a_k R_x(\tau - \tau_k)$$
 (utilisation d'une des relations de Wiener Lee)

(c) Si le signal déterministe de la question 1 est mis à l'entrée du système multitrajet, à quelle(s) condition(s) sur λ et les τ_{k} peut-on alors identifier les paramètres du systèmes $\left\{a_{k},\tau_{k}\right\}_{k=1,M}$ à partir de la fonction d'intercorrélation $R_{yx}\left(\tau\right)$? La détection de la position et de la hauteur des pics qui apparaissent dans $R_{ux}(\tau)$ permet de retrouver les a_k et τ_k qui caractérisent le canal multitrajet et pourrait donc permettre de corriger les distorsions introduites.

5

Exercice 3 : Calcul de la puissance d'un bruit filtré

Soit un signal aléatoire stationnaire X(t), de densité spectrale de puissance $S_X(f)$ représentée en vert sur la figure 8. Ce signal est bruité par un bruit blanc, B(t), de densité spectrale de puissance $S_B(f) = \alpha \ \forall f, \alpha$ étant une constante. Le signal bruité, X(t) + B(t), passe dans un filtre linéaire de type passe-bas idéal, de fréquence de coupure f_c : voir figure 8, où H(f) représente la réponse en fréquence du filtre passe-bas.

FIGURE 8 -

1. Calculer le rapport signal sur bruit en sortie du filtre.

Le signal n'est pas abimé par le filtre. La puissance du signal en sortie du filtre est donc identique à celle en entrée et est donnée par $\int_{\mathbb{R}} S_X(f) df = f_c$. La densité spectrale de puissance du bruit en sortie du filtre est donnée par $|H(f)|^2 S_B(f)$ (voir relations de Wiener Lee), d'où sa puissance : $\int_{\mathbb{R}} |H(f)|^2 S_B(f) df = 2\alpha f_c$. Le rapport signal sur bruit est donc donné par $RSB = \frac{f_c}{2\alpha f_c} = \frac{1}{2\alpha}$.

- 2. Evaluer le rapport signal sur bruit en sortie du filtre en décibels pour $\alpha = 1V^2/Hz$. $RSB_{dB} = 10 \log_1 0SNR = 10 \log_{10} \frac{1}{2} = -3dB$.
- 3. Que signifie un rapport signal sur bruit négatif en décibels? Qu'il y a plus de bruit que de signal. La puissance du bruit est deux fois plus grande que celle du signal pour un rapport signal sur bruit de -3 dB

Exercice 4 : Annulateur de bruit

Soit X(t) un bruit blanc stationnaire, réel, de densité spectrale de puissance $S_X(f) = \frac{N_0}{2} \ \forall f \ (N_0 \text{ est une constante})$, attaquant le système décrit par la figure 9, où $H_1(f)$ est un filtre passe-bande défini par :

$$H_1(f) = 1$$
 pour $|f| \in \left[f_0 - \frac{\Delta f}{2}, f_0 + \frac{\Delta f}{2} \right]$
= 0 ailleurs

et $H_2(f)$ une ligne à retard T réglable définie par :

$$H_2(f) = e^{-i2\pi Tf}$$

FIGURE 9 - Annulateur de bruit

1. Calculer la puissance du signal de sortie, Y(t), en fonction de la puissance et de l'autocorrélation du signal $X_1(t)$, respectivement notées P_{X_1} et $R_{X_1}(\tau)$.

$$P_Y = E\left[Y^2(t)\right] = E\left[(X_1(t) + X_2(t))^2\right] = E\left[X_1^2(t)\right] + E\left[X_2^2(t)\right] + 2E\left[X_1(t)X_2(t)\right] = P_{X_1} + P_{X_2} + 2R_{X_1X_2}(0)$$
 Ecrivons $X_2(t)$ en fonction de $X_1(t)$:

$$H_2(f) = e^{j2\pi fT}$$
, d'où $h_2(t) = \delta(t-T)$ et donc $X_2(t) = X_1(t) * h_2(t) = X_1(t-T)$ (on a bien une ligne à retard)

On a donc: $R_{X_1X_2}(0) = E[X_1(t)X_2(t)] = E[X_1(t)X_1(t-T)] = R_{X_1}(T)$ et $P_{X_1} = P_{X_2}$ car $S_{X_2}(f) = |H_2(f)|^2 S_{X_1}(f) = S_{X_1}(f)$, d'où : $P_Y = 2(P_{X_1} + R_{X_1}(T))$

2. Calculer P_{X_1} en fonction de N_0 et de Δf .

$$P_{X_1} = \int_{\mathbb{R}} S_{X_1}(f) df = \int_{\mathbb{R}} \frac{N_0}{2} |H_1(f)|^2 df = \frac{N_0}{2} \times 2\Delta f = N_0 \Delta f$$

3. Calculer $R_{X_1}(\tau)$ en fonction de N_0 et de Δf .

$$\textstyle R_{X_1}(\tau) = TF^{-1}\left[S_{X_1}(f)\right] = TF^{-1}\left[\frac{N_0}{2}\left(\prod_{\Delta f}(f-f_0) + \prod_{\Delta f}(f+f_0)\right)\right] = N_0\Delta f sinc(\pi\Delta f\tau)\cos(2\pi f_0\tau)$$

4. En déduire l'expression de la puissance de Y(t) en fonction de N_0 , Δf et T.

$$P_Y = 2N_0 \Delta f \left(1 + sinc(\pi \Delta f T)\cos(2\pi f_0 T)\right)$$

- 5. Que se passe-t-il lorsque:
 - $T \approx \frac{1}{2f_0}$? $\cos(2\pi f_0 T) \simeq -1$ et $sinc(\pi \Delta f T) \simeq 1$, d'où $P_Y \simeq 0$: grâce au filtre de réponse en fréquence $H_2(f)$ on a donc annulé le bruit X(t)
 - $T\gg \frac{1}{\Delta f}$? $sinc(\pi\Delta fT)\simeq 0, \text{ d'où } P_Y\simeq 2N_0\Delta f=P_{X_1}+P_{X_2}: X_1(t) \text{ et } X_2(t) \text{ sont décorrélés}.$

Filtrage non linéaire

Exercice 1: Filtre quadrateur

On considère le filtre non linéaire sans mémoire d'entrée X(t) et de sortie Y(t) défini par :

$$Y(t) = X^2(t)$$

On suppose que X(t) est un processus aléatoire, réel, Gaussien, stationnaire de moyenne nulle et de fonction d'autocorrélation $R_X(\tau)$.

- 1. En utilisant le théorème de Price, donner une équation différentielle liant la fonction d'autocorrélation de Y(t), notée $R_Y(\tau)$, et $R_X(\tau)$. En déduire une expression de $R_Y(\tau)$ en fonction de $R_X(\tau)$ à une constante additive près. On prend $X_1(t) = X(t)$, $Y_1(t) = X^2(t) = Y(t)$ et $X_2(t) = X(t-\tau)$, $Y_2(t) = X^2(t-\tau) = Y(t-\tau)$ En utilisant le théorème de Price on arrive alors à $\frac{\partial R_Y(\tau)}{\partial R_X(\tau)} = 4R_X(\tau)$ et donc $R_Y(\tau) = 2R_X^2(\tau) + K$, où K est une constante.
- 2. On rappelle le résultat suivant, valable pour une variable aléatoire Z gaussienne de moyenne nulle et de variance σ^2 :

$$E\left[Z^{2n}\right] = (2n)!!\sigma^{2n} \ avec \ (2n)!! = (2n-1)\times(2n-3)\times...\times3\times1$$

En déduire le constante additive intervenant dans la relation entre $R_Y(\tau)$ et $R_X(\tau)$.

$$R_Y(0) = 2R_X^2(0) + K = 2(\sigma^2)^2 + K = E[Y^2(t)] = E[X^4(t)] = (4)!!\sigma^4 = 3\sigma^4$$
, d'où $K = \sigma^4$ et donc $R_Y(\tau) = 2R_X^2(\tau) + \sigma^4$.

Exercice 2 : Filtre non linéaire de type cubique

On considère le filtre non linéaire sans mémoire d'entrée X(t) et de sortie Y(t) défini par :

$$Y(t) = X^3(t)$$

On suppose que X(t) est un processus aléatoire, réel, Gaussien, stationnaire de moyenne nulle et de fonction d'autocorrélation $R_X(\tau)$.

- 1. En utilisant le théorème de Price, donner une équation différentielle liant la fonction d'autocorrélation de Y(t), notée $R_Y(\tau)$, et $R_X(\tau)$. En déduire une expression de $R_Y(\tau)$ en fonction de $R_X(\tau)$ à une constante additive près. on prend $X_1(t) = X(t)$, $Y_1(t) = X^3(t) = Y(t)$ et $X_2(t) = X(t-\tau)$, $Y_2(t) = X^3(t-\tau) = Y(t-\tau)$ En utilisant le théorème de Price on arrive alors à $\frac{\partial R_Y(\tau)}{\partial R_X(\tau)} = 9R_{X^2}(\tau) = 9\left(2R_X^2 + R_X^2(0)\right)$ (voir filtre quadrateur) et donc $R_Y(\tau) = 6R_X^3(\tau) + 9R_X^2(0)R_X(\tau) + K$, où K est une constante.
- 2. On rappelle le résultat suivant, valable pour une variable aléatoire Z gaussienne de moyenne nulle et de variance σ^2 :

8

$$E\left[Z^{2n}\right] = (2n)!!\sigma^{2n}\ avec\ (2n)!! = (2n-1)\times(2n-3)\times\ldots\times3\times1$$

En déduire le constante additive intervenant dans la relation entre $R_Y(\tau)$ et $R_X(\tau)$.

$$R_Y(0) = 15R_X^3(0) + K = 15\left(\sigma^2\right)^3 + K = E\left[Y^2(t)\right] = E\left[X^6(t)\right] = (6)!!\sigma^6 = 15\sigma^6$$
, d'où $K = 0$ et donc $R_Y(\tau) = 6R_X^3(\tau) + 9R_X^2(0)R_X(\tau)$.

Rappels

Propriétés générales $\parallel \mathbf{T}.\mathbf{F}. \parallel$

	I.F.	
ax(t) + by(t)	\rightleftharpoons	aX(f) + bY(f)
$x(t-t_0)$	\rightleftharpoons	$X(f)e^{-i2\pi ft_0}$
$x(t)e^{+i2\pi f_0t}$	\rightleftharpoons	$X(f-f_0)$
$x^*(t)$	\rightleftharpoons	$X^*(-f)$
$x(t) \cdot y(t)$	\rightleftharpoons	X(f) * Y(f)
x(t) * y(t)	\rightleftharpoons	$X(f) \cdot Y(f)$
x(at+b)	\rightleftharpoons	$\frac{1}{ a }X\left(\frac{f}{a}\right)e^{i2\pi\frac{b}{a}f}$
$\frac{dx^{(n)}(t)}{dt^n}$	\rightleftharpoons	$(i2\pi f)^n X(f)$
$\left(-i2\pi t\right)^n x(t)$	\rightleftharpoons	$\frac{dX^{(n)}(f)}{df^n}$

Formule de Parseval	Série de Fourier
$\int_{\mathbb{R}} x(t)y^*(t)dt = \int_{\mathbb{R}} X(f)Y^*(f)df$	$\sum_{n \in \mathbb{Z}} c_n e^{+i2\pi n f_0 t} \rightleftharpoons \sum_{n \in \mathbb{Z}} c_n \delta\left(f - n f_0\right)$
$\int_{\mathbb{R}} x(t) ^2 dt = \int_{\mathbb{R}} X(f) ^2 df$	

Table de Transformées de Fourier

	T.F.	
1	\Rightarrow	$\delta\left(f ight)$
$\delta\left(t\right)$	\rightleftharpoons	1
$e^{+i2\pi f_0 t}$	\rightleftharpoons	$\delta\left(f-f_0 ight)$
$\delta\left(t-t_{0} ight)$	\rightleftharpoons	$e^{-i2\pi f t_0}$
$\coprod_{T} (t) = \sum_{k \in \mathbb{Z}} \delta(t - kT)$	\rightleftharpoons	$\frac{1}{T}\coprod_{1/T}(f)$
$\cos\left(2\pi f_0 t\right)$	\rightleftharpoons	$\frac{1}{2}\left[\delta\left(f-f_{0}\right)+\delta\left(f+f_{0}\right)\right]$
$\sin\left(2\pi f_0 t\right)$	\rightleftharpoons	$\frac{1}{2i} \left[\delta \left(f - f_0 \right) - \delta \left(f + f_0 \right) \right]$
$e^{-a t }$	\rightleftharpoons	$ \frac{\frac{2a}{a^2+4\pi^2f^2}}{e^{-\pi f^2}} $
$e^{-\pi t^2}$	\rightleftharpoons	$e^{-\pi f^2}$
$\Pi_{T}\left(t ight)$	\rightleftharpoons	$T\frac{\sin(\pi Tf)}{\pi Tf} = T\sin c \left(\pi Tf\right)$
$\Lambda_{T}\left(t ight)$	\rightleftharpoons	$T\sin c^2\left(\pi Tf\right)$
$B\sin c\left(\pi Bt\right)$	\rightleftharpoons	$\Pi_{B}\left(f ight)$
$B\sin c^2\left(\pi Bt\right)$	\rightleftharpoons	$\Lambda_{B}\left(f ight)$

!!!!!! Attention!!!!!

 $\Pi_{T}(t)$ note une fenêtre rectangulaire de support égal à T.

 $\Lambda_T(t)$ note une fenêtre triangulaire de support égal à 2T (de demi-base égale à T).

$$\Pi_{T}(t) * \Pi_{T}(t) = T \Lambda_{T}(t)$$