

Mathématiques 2

MP, MPI

CONCOURS CENTRALE•SUPÉLEC

4 heures

Calculatrice autorisée

Notations

- Dans tout le sujet, n désigne un entier naturel non nul.
- Étant donnés deux entiers naturels a et b, on note [a, b] l'ensemble des entiers naturels k tels que $a \le k \le b$.
- Pour deux suites de nombres réels $(u_m)_{m\in\mathbb{N}}$ et $(v_m)_{m\in\mathbb{N}}$, la notation $u_m=O(v_m)$ signifie qu'il existe une suite bornée $(M_m)_{m\in\mathbb{N}}$ telle que l'on ait

$$\exists m_0 \in \mathbb{N} \quad | \quad \forall m \geqslant m_0, \quad u_m = M_m v_m.$$

— On pourra utiliser sans démonstration la formule suivante, qui précise la formule de Stirling lorsque n tend vers $+\infty$:

$$n! = \left(\frac{n}{e}\right)^n \sqrt{2\pi n} \left(1 + O\left(\frac{1}{n}\right)\right).$$

Toutes les variables aléatoires considérées sont discrètes.

I Résultats préliminaires

I.A - Calcul d'une intégrale classique

Rappelons que n désigne un entier naturel non nul. On note

$$I_n = \int_0^1 \frac{1}{(1+t^2)^n} dt$$
 et $K_n = \int_0^{+\infty} \frac{1}{(1+t^2)^n} dt$.

I.A.1)

Q 1. Montrer que

$$I_n \geqslant \frac{1}{2^n}.$$

- **Q 2.** Justifier l'existence de K_n et donner la valeur exacte de K_1 .
- **Q 3.** Montrer que

$$\int_{1}^{+\infty} \frac{1}{(1+t^2)^n} \, \mathrm{d}t = O\left(\frac{1}{n2^n}\right).$$

On pourra minorer $1+t^2$ par un polynôme de degré 1.

Q 4. En déduire que, lorsque n tend vers $+\infty$,

$$I_n \sim K_n$$
.

- **Q 5.** Établir la relation de récurrence $K_n = K_{n+1} + \frac{1}{2n}K_n$.
- **Q 6.** En déduire un équivalent simple de I_n lorsque n tend vers $+\infty$.

I.A.2)

Q 7. Justifier que

$$\sqrt{n} I_n = \int_{0}^{\sqrt{n}} \frac{1}{(1 + u^2/n)^n} du.$$

Q 8. Montrer que

$$\lim_{n\to\infty} \sqrt{n} \, I_n = \int\limits_0^{+\infty} \mathrm{e}^{-u^2} \, \mathrm{d}u.$$

Q 9. En déduire les valeurs de

$$\int_{0}^{+\infty} e^{-u^{2}} du \quad \text{puis de} \quad \int_{-\infty}^{+\infty} e^{-u^{2}/2} du.$$

Dans toute la suite, on posera pour tout x réel

$$\varphi(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}$$
 et $\Phi(x) = \int_{-\infty}^{x} \varphi(t) dt$.

I.B – Comportement asymptotique de $1-\Phi$

Soit x > 0.

Q 10. En écrivant que $\varphi(t) \leqslant \frac{t}{x}\varphi(t)$ pour tout $t \geqslant x$, montrer que

$$\int_{-\infty}^{+\infty} \varphi(t) \, \mathrm{d}t \leqslant \frac{\varphi(x)}{x}.$$

Q 11. À l'aide de l'étude d'une fonction bien choisie, montrer que

$$\frac{x}{x^2 + 1}\varphi(x) \leqslant \int_{x}^{+\infty} \varphi(t) \, \mathrm{d}t.$$

Q 12. En déduire un équivalent simple de $1 - \Phi(x)$ lorsque x tend vers $+\infty$.

I.C – Une inégalité maximale

Dans cette sous-partie, n est un entier naturel non nul et $Z_1,...,Z_n$ sont des variables aléatoires discrètes indépendantes sur un espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$.

Pour tout $p \in [\![1,n]\!]$, on note $R_p = \sum_{i=1}^p Z_i$.

On va montrer la propriété

$$\forall x>0, \qquad \mathbb{P}(\{\max_{1\leqslant p\leqslant n} |R_p|\geqslant 3x\})\leqslant 3\max_{1\leqslant p\leqslant n} \mathbb{P}(\{|R_p|\geqslant x\}).$$

On admet que les différentes fonctions intervenant dans cette inégalité sont bien des variables aléatoires discrètes.

Pour simplifier, notons A l'événement $\{\max_{1\leqslant p\leqslant n}|R_p|\geqslant 3x\}.$ Ainsi,

$$A = \{ \omega \in \Omega \mid \max_{1 \le p \le n} |R_p(\omega)| \geqslant 3x \}.$$

Dans le cas où $n \ge 2$, définissons de plus les événements

$$A_1=\{|R_1|\geqslant 3x\} \qquad \text{et} \qquad A_p=\{\max_{1\leqslant i\leqslant p-1}|R_i|<3x\}\cap\{|R_p|\geqslant 3x\}$$

pour $p \in [2, n]$.

Q 13. Exprimer l'événement A à l'aide des événements $A_1, A_2, ..., A_n$.

Q 14. Montrer que l'on a

$$\mathbb{P}(A) \leqslant \mathbb{P}(\{|R_n| \geqslant x\}) + \sum_{p=1}^n \mathbb{P}(A_p \cap \{|R_n| < x\}).$$

Q 15. Justifier que pour tout $p \in [1, n]$, on a l'inclusion

$$A_p \cap \{|R_n| < x\} \ \subset \ A_p \cap \{|R_n - R_p| > 2x\}.$$

Q 16. En déduire que

$$\mathbb{P}(A) \leqslant \mathbb{P}(\{|R_n| \geqslant x\}) + \max_{1 \leqslant p \leqslant n} \mathbb{P}(\{|R_n - R_p| > 2x\}).$$

Q 17. Conclure.

II Étude d'une suite de fonctions

Pour tout $n \in \mathbb{N}^*$ et tout $k \in [0, n]$, on pose

$$x_{n,k} = -\sqrt{n} + \frac{2k}{\sqrt{n}}.$$

De plus, on définit la fonction $B_n:\mathbb{R}\to\mathbb{R}$ par les conditions

$$\begin{split} \forall x \in \left] -\infty, -\sqrt{n} - \frac{1}{\sqrt{n}} \right[, & B_n(x) = 0 \\ \forall k \in [\![0,n]\!], \ \forall x \in \left[x_{n,k} - \frac{1}{\sqrt{n}}, x_{n,k} + \frac{1}{\sqrt{n}} \right[, & B_n(x) = \frac{\sqrt{n}}{2} \binom{n}{k} \frac{1}{2^n} \\ \forall x \in \left[\sqrt{n} + \frac{1}{\sqrt{n}}, +\infty \right[, & B_n(x) = 0 \end{split}$$

L'objectif de cette partie est de montrer que la suite de fonctions $(B_n)_{n\in\mathbb{N}^*}$ converge uniformément sur \mathbb{R} vers la fonction φ , définie dans la partie I. Autrement dit, on souhaite montrer

$$\lim_{n \to +\infty} \Delta_n = 0 \qquad \text{avec} \qquad \Delta_n = \sup_{x \in \mathbb{R}} \lvert B_n(x) - \varphi(x) \rvert.$$

L'usage d'une figure pour appréhender la problématique de cette partie sera vivement apprécié.

II.A -

Q 18. Comparer les réels $-x_{n,k}$ et $x_{n,n-k}$.

Q 19. Justifier l'existence du réel Δ_n pour tout $n \in \mathbb{N}^*$.

Q 20. Montrer que, pout tout $n \in \mathbb{N}^*$, on a l'égalité

$$\Delta_n = \sup_{x \geqslant 0} \lvert B_n(x) - \varphi(x) \rvert.$$

Q 21. Pour tout $n \in \mathbb{N}^*$, montrer que B_n est une application décroissante sur \mathbb{R}^+ .

On pourra distinguer selon que n est pair ou impair.

Dans la suite de cette partie, on fixe $\varepsilon > 0$. La limite $\lim_{x \to +\infty} \varphi(x) = 0$ assure de l'existence d'un nombre $\ell \in \mathbb{R}^+$ tel que $\varphi(\ell) \leqslant \frac{\varepsilon}{2}$.

II.B – Dans cette sous-partie, on va montrer

$$\lim_{n\to +\infty} \sup_{x\in [0,\ell]} \lvert B_n(x) - \varphi(x) \rvert = 0.$$

On introduit pour cela l'ensemble

$$I_n = \{k \in [0, n] \mid x_{n,k} \in [0, \ell + 1]\}$$

dont on peut vérifier que c'est un intervalle d'entiers.

Dans la suite de cette sous-partie, on suppose que n et k varient de sorte que $k \in I_n$.

Q 22. Montrer que l'on a

$$k!(n-k)! = 2\pi e^{-n} k^{k+1/2} (n-k)^{n-k+1/2} \left(1 + O\left(\frac{1}{n}\right)\right)$$

pour n tendant vers l'infini.

On pourra utiliser la formule de Stirling rappelée en début d'énoncé.

Q 23. En déduire que, pour n tendant vers $+\infty$, on a

$$B_n(x_{n,k}) = \frac{1}{\sqrt{2\pi}} \frac{1 + O\left(\frac{1}{n}\right)}{\left(\frac{2k}{n}\right)^{k+1/2} \left(2 - \frac{2k}{n}\right)^{n-k+1/2}}.$$

Q 24. En déduire que

$$B_n(x_{n,k}) = \frac{1}{\sqrt{2\pi}} \frac{1 + O\left(\frac{1}{n}\right)}{\left(1 - \frac{x_{n,k}^2}{n}\right)^{\frac{n+1}{2}} \left(1 + \frac{x_{n,k}}{\sqrt{n}}\right)^{\frac{x_{n,k}}{2}\sqrt{n}} \left(1 - \frac{x_{n,k}}{\sqrt{n}}\right)^{-\frac{x_{n,k}}{2}\sqrt{n}}}$$

puis que

$$B_n(x_{n,k}) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x_{n,k}^2}{2}\right) \left(1 + O\left(\frac{1}{\sqrt{n}}\right)\right).$$

Q 25. Montrer qu'il existe un entier naturel n_1 tel que, pour tout entier $n \ge n_1$,

$$\sup_{x \in [0,\ell]} \lvert B_n(x) - \varphi(x) \rvert \leqslant \frac{\varepsilon}{2}.$$

II.C –

Q 26. Pour tout $\ell > 0$, montrer qu'il existe un entier naturel n_2 , tel que, pour tout $n \ge n_2$,

$$B_n(\ell) \leqslant 2\varphi(\ell)$$
.

Q 27. Conclure que la suite $(\Delta_n)_{n\in\mathbb{N}^*}$ converge vers 0.

III Applications

Soit $(\Omega, \mathcal{A}, \mathbb{P})$ un espace probabilisé et X une variable aléatoire discrète sur $(\Omega, \mathcal{A}, \mathbb{P})$ telle que $\mathbb{P}(X = -1) = 1/2$ et $\mathbb{P}(X = 1) = 1/2$. On considère une suite $(X_i)_{i \in \mathbb{N}^*}$ de variables aléatoires discrètes sur $(\Omega, \mathcal{A}, \mathbb{P})$, mutuellement indépendantes et de même loi que X. On définit alors

$$S_0 = 0 \qquad \text{et} \qquad \forall n \in \mathbb{N}^*, \quad S_n = \sum_{i=1}^n X_i.$$

On dit que $(S_n)_{n\in\mathbb{N}}$ est une marche aléatoire symétrique sur \mathbb{Z} . On admettra que pour tout $n\geqslant 1,\ S_n$ est une variable aléatoire discrète sur $(\Omega,\mathcal{A},\mathbb{P})$.

III.A - Théorème central limite

Soit I un intervalle de \mathbb{R} et $(f_n)_{n\in\mathbb{N}^*}$ une suite de fonctions continues par morceaux sur I qui converge uniformément sur I vers une fonction f également continue par morceaux sur I.

Q 28. Si $(u_n)_{n\in\mathbb{N}^*}$ (respectivement $(v_n)_{n\in\mathbb{N}^*}$) est une suite de nombres réels appartenant à I qui converge vers $u\in I$ (respectivement $v\in I$), montrer que

$$\lim_{n\to +\infty} \left(\int\limits_{u_n}^{v_n} f_n(x) \, \mathrm{d}x \right) = \int\limits_{u}^{v} f(x) \, \mathrm{d}x.$$

On pose, pour tout $i\in \mathbb{N}^*,\, Y_i=\frac{X_i+1}{2}$ et $T_n=\sum_{i=1}^n Y_i.$

Q 29. Montrer que, pour tout $j \in [0, n]$,

$$\mathbb{P}(\{T_n=j\}) = \int\limits_{x_{n,j}-1/\sqrt{n}}^{x_{n,j}+1/\sqrt{n}} B_n(x)\,\mathrm{d}x,$$

où $x_{n,j}$ a été défini dans la partie II.

Considérons un couple (u, v) de réels tel que u < v, et notons

$$J_n = \left\{ j \in [\![0,n]\!] \mid \frac{n + u\sqrt{n}}{2} \leqslant j \leqslant \frac{n + v\sqrt{n}}{2} \right\}.$$

Q 30. Justifier que

$$\mathbb{P}\left(\left\{u\leqslant\frac{S_n}{\sqrt{n}}\leqslant v\right\}\right)=\sum_{j\in J_n}\mathbb{P}(\{T_n=j\}).$$

Q 31. En déduire que l'on a

$$\lim_{n\to +\infty} \mathbb{P}\left(\left\{u\leqslant \frac{S_n}{\sqrt{n}}\leqslant v\right\}\right) = \int\limits_u^v \varphi(x)\,\mathrm{d}x$$

puis que

$$\lim_{n\to +\infty}\mathbb{P}\left(\left\{u\leqslant \frac{S_n}{\sqrt{n}}\right\}\right)=1-\Phi(u)$$

où les applications φ et Φ ont été définies dans la partie I.

III.B - Critère de tension

Dans cette dernière sous-partie, on fixe $\varepsilon \in [0, 1[$.

Q 32. Montrer qu'il existe $x_0 \ge 1$ tel que l'on ait

$$\forall x\geqslant x_0, \quad \exists n_x\in\mathbb{N}, \quad \forall n\geqslant n_x, \quad x^2\mathbb{P}(\{|S_n|\geqslant x\sqrt{n}\})\leqslant \varepsilon.$$

Q 33. Pour x_0 et x comme à la question précédente, on fixe $N\geqslant \frac{n_x}{\varepsilon}$ et on choisit $n\geqslant N$. Montrer qu'alors

$$x^2\mathbb{P}(\{\max_{1\leqslant p\leqslant n} \lvert S_p\rvert\geqslant 3x\sqrt{n}\})\leqslant 3\varepsilon.$$

• • • FIN • • •