Model Predictive Control for Linear and Hybrid Systems. Hybrid Systems

Francesco Borrelli

Department of Mechanical Engineering, University of California at Berkeley, USA

fborrelli@berkeley.edu

April 25, 2011

Introduction

Up to this point: Discrete-time linear systems with linear constraints

A step further: Systems consisting of

- continuous dynamics: described by one or more difference (or differential) equations, states belong to a continuum
- **②** discrete events : state variables assume discrete values from a *countable set*, e.g.
 - \triangleright binary digits $\{0,1\}$,
 - ▶ N, Z, Q,...
 - ▶ finite set of symbols

Hybrid systems. Dynamical systems whose state evolution depends on an interaction between continuous dynamics and discrete events .

Introduction

Figure: Hybrid systems. Logic-based discrete dynamics and continuous dynamics interact through events and mode switches

Hybrid Systems: Examples (I)

Mechanical system with backlash

- Continuous dynamics : states $x_1, x_2, \dot{x}_1, \dot{x}_2$.
- Discrete events :
 - a) "contact mode" ⇒ mechanical parts are in contact and the force is transmitted. Condition:

$$[(\Delta x = \delta) \land (\dot{x}_1 > \dot{x}_2)] \quad \bigvee \quad [(\Delta x = \varepsilon) \land (\dot{x}_2 > \dot{x}_1)]$$

b) "backlash mode" ⇒ mechanical parts are not in contact

4 / 59

Hybrid Systems: Examples (II)

DC2DC Converter

- Continuous dynamics: states v_{ℓ} , i_{ℓ} , v_{c} , i_{c} , v_{0} , i_{0}
- Discrete events : S = 0, S = 1

Hybrid Systems: Examples (III)

Temperature Control System

Evolution of the temperature in a room:

$$\dot{T} = f(T, \mathbf{x}, u)$$

- Continuous states: temperature T, other states \mathbf{x}
- Discrete input : heating $u \in \{ON, OFF\}$

Control system with hysteresis:

Piecewise Affine (PWA) Systems

PWA are defined by:

• affine dynamics and output in each region:

$$\begin{cases} x(t+1) &= A_i x(t) + B_i u(t) + f_i \\ y(t) &= C_i x(t) + D_i u(t) + g_i \end{cases} \text{ if } \begin{bmatrix} x(t) \\ u(t) \end{bmatrix} \in \mathcal{X}_{i(t)}$$

• $polyhedral\ partition$ of the (x, u)-space:

$$\{\mathcal{X}_i\}_{i=1}^s := \{ \begin{bmatrix} x \\ u \end{bmatrix} \mid H_i x + J_i u \le K_i \}$$

with: $x \in \mathbb{R}^n$, $u \in \mathbb{R}^m$.

Remark: physical constraints on x(t) and u(t) are defined by polyhedra \mathcal{X}_i .

Piecewise Affine (PWA) Systems

Examples:

- \bullet linearization of a non-linear system at different operating point \Rightarrow useful as an approximation tool
- closed-loop MPC system for linear constrained systems
- When the mode i is an exogenous variable, the partition disappears and we refer to the system as a *Switched Affine System* (SAS)

Definition

Let P be a PWA system and let $\mathcal{X} = \bigcup_{i=1}^{s} \mathcal{X}_i \subseteq \mathbb{R}^{n+m}$ be the polyhedral partition associated with it. System P is called well-posed if for all pairs $(x(t), u(t)) \in \mathcal{X}$ there exists only one index i(t) satisfying the membership condition.

Modeling Discontinuities

Discontinuous systems can be approximated by **disconnecting the domain**. Example:

$$x(t+1) = \begin{cases} \frac{1}{2}x(t) & \text{if } x(t) \le 0\\ 0 & \text{if } x(t) > 0 \end{cases}$$

can be approximated by

$$x(t+1) = \begin{cases} \frac{1}{2}x(t) & \text{if } x(t) \le 0\\ 0 & \text{if } x(t) \ge \epsilon \end{cases}$$

where $\epsilon > 0$ is an arbitrarily small number, for instance the machine precision.

We prefer to assume that in the definition of the PWA dynamics the polyhedral cells $\mathcal{X}_{i(t)}$ are closed sets.

$$\begin{cases} x(t+1) &= 0.8 \begin{bmatrix} \cos \alpha(t) & -\sin \alpha(t) \\ \sin \alpha(t) & \cos \alpha(t) \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t) \\ y(t) &= \begin{bmatrix} 0 & 1 \end{bmatrix} x(t) \\ \alpha(t) &= \begin{cases} \frac{\pi}{3} & \text{if } \begin{bmatrix} 1 & 0 \end{bmatrix} x(t) \ge 0 \\ -\frac{\pi}{3} & \text{if } \begin{bmatrix} 1 & 0 \end{bmatrix} x(t) < 0 \end{cases} \end{cases}$$

can be described in PWA form as

$$\begin{cases} x(t+1) &= \begin{cases} 0.4 \begin{bmatrix} 1 & -\sqrt{3} \\ \sqrt{3} & 1 \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t) \\ & \text{if } \begin{bmatrix} 1 & 0 \end{bmatrix} x(t) \ge 0 \end{cases} \\ 0.4 \begin{bmatrix} 1 & \sqrt{3} \\ -\sqrt{3} & 1 \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t) \\ & \text{if } \begin{bmatrix} 1 & 0 \end{bmatrix} x(t) \le -\epsilon \end{cases} \\ y(t) &= \begin{bmatrix} 0 & 1 \end{bmatrix} x(t) \end{cases}$$

for all $x_1 \in (-\infty, -\epsilon] \cup [0, +\infty), x_2 \in \mathbb{R}, u \in \mathbb{R}, \text{ and } \epsilon > 0.$

Binary States, Inputs, and Outputs

Remark

In the previous example, the PWA system has only continuous states and inputs.

We will formulate PWA systems including binary state and inputs by treating 0-1 binary variables as

- *numbers*, over which arithmetic operations are defined,
- Boolean variables, over which Boolean functions are defined.

In Particular, we will use the notation $x = \begin{bmatrix} x_c \\ x_\ell \end{bmatrix}$, where $n \triangleq n_c + n_\ell$. Similarly, $y \in \mathbb{R}^{p_c} \times \{0,1\}^{p_\ell}, \ p \triangleq p_c + p_\ell, \ u \in \mathbb{R}^{m_c} \times \{0,1\}^{m_\ell}, \ m \triangleq m_c + m_\ell$.

Boolean Algebra. Basic Definitions and Notation

- **Boolean variable**. A variable δ is a Boolean variable if $\delta \in \{0, 1\}$, where " $\delta = 0$ " means "false", " $\delta = 1$ " means "true".
- A Boolean expression is obtained by combining Boolean variables through the logic operators \neg (not), \lor (or), \land (and), \leftarrow (implied by), \rightarrow (implies), and \leftrightarrow (iff).
- A Boolean function $f: \{0,1\}^{n-1} \mapsto \{0,1\}$ is used to define a Boolean variable δ_n as a logic function of other variables $\delta_1, \ldots, \delta_{n-1}$:

$$\delta_n = f(\delta_1, \delta_2, \dots, \delta_{n-1}).$$

Boolean Algebra. Basic Definitions and Notation

• **Boolean formula**. Given n Boolean variables $\delta_1, \ldots, \delta_n$, a Boolean formula F defines a relation

$$F(\delta_1,\ldots,\delta_n)$$

that must hold true.

• Conjunctive Normal Form (CNF). Every Boolean formula $F(\delta_1, \delta_2, \dots, \delta_n)$ can be rewritten in the CNF

(CNF)
$$\bigwedge_{j=1}^{m} \left(\bigvee_{i \in P_j} \delta_i \bigvee_{i \in N_j} \sim \delta_i \right)$$
$$N_j, P_j \subseteq \{1, \dots, n\}, \ \forall j = 1, \dots, m.$$

Consider the system

$$x_c(t+1) = 2x_c(t) + u_c(t) - 3u_\ell(t)$$

 $x_\ell(t+1) = x_\ell(t) \wedge u_\ell(t)$

can be represented in the PWA form

$$\begin{bmatrix} x_c(t+1) \\ x_\ell(t+1) \end{bmatrix} = \begin{cases} \begin{bmatrix} 2x_c(t) + u_c(t) \\ 0 \end{bmatrix} & \text{if} \quad x_\ell \le \frac{1}{2}, u_\ell \le \frac{1}{2} \\ \begin{bmatrix} 2x_c(t) + u_c(t) - 3 \\ 0 \end{bmatrix} & \text{if} \quad x_\ell \le \frac{1}{2}, u_\ell \ge \frac{1}{2} + \epsilon \\ \begin{bmatrix} 2x_c(t) + u_c(t) \\ 0 \end{bmatrix} & \text{if} \quad x_\ell \ge \frac{1}{2} + \epsilon, u_\ell \le \frac{1}{2} \\ \begin{bmatrix} 2x_c(t) + u_c(t) - 3 \\ 1 \end{bmatrix} & \text{if} \quad x_\ell \ge \frac{1}{2} + \epsilon, u_\ell \ge \frac{1}{2} + \epsilon. \end{cases}$$

by associating $x_{\ell} = 0$ with $x_{\ell} \leq \frac{1}{2}$ and $x_{\ell} = 1$ with $x_{\ell} \geq \frac{1}{2} + \epsilon$ for any $0 < \epsilon \leq \frac{1}{2}$.

Consider the spring-mass system

With the following spring nonlinear characteristic

The system dynamics can be described in continuous-time as:

$$M\dot{x}_2 = u_1 - k(x_1) - b(u_2)x_2$$

The spring coefficient is

$$k(x_1) = \begin{cases} k_1 x_1 + d_1 & \text{if } x_1 \le x_m \\ k_2 x_1 + d_2 & \text{if } x_1 > x_m, \end{cases}$$

and the viscous friction coefficient is

$$b(u_2) = \begin{cases} b_1 \text{ if } u_2 = 1\\ b_2 \text{ if } u_2 = 0. \end{cases}$$

Assume the system description is valid for $-5 \le x_1, x_2 \le 5$, and for $-10 < u_2 < 10$.

The system has four modes, depending on the binary input and the region of linearity.

$$x(t+1) = \begin{cases} \begin{bmatrix} 0.90 & 0.02 \\ -0.02 & -0.00 \end{bmatrix} x(t) + \begin{bmatrix} 0.10 \\ 0.02 \end{bmatrix} u_1(t) + \begin{bmatrix} -0.01 \\ -0.02 \end{bmatrix} \\ \text{if } x_1(t) \leq 1, u_2(t) \leq 0.5 \end{cases} \\ \begin{bmatrix} 0.90 & 0.02 \\ -0.06 & -0.00 \end{bmatrix} x(t) + \begin{bmatrix} 0.10 \\ 0.02 \end{bmatrix} u_1(t) + \begin{bmatrix} -0.07 \\ -0.15 \end{bmatrix} \\ \text{if } x_1(t) \geq 1 + \epsilon, u_2(t) \leq 0.5 \end{cases} \\ \begin{bmatrix} 0.90 & 0.38 \\ -0.38 & 0.52 \end{bmatrix} x(t) + \begin{bmatrix} 0.10 \\ 0.38 \end{bmatrix} u_1(t) + \begin{bmatrix} -0.10 \\ -0.38 \end{bmatrix} \\ \text{if } x_1(t) \leq 1, u_2(t) \geq 0.5 \end{cases} \\ \begin{bmatrix} 0.90 & 0.35 \\ -1.04 & 0.35 \end{bmatrix} x(t) + \begin{bmatrix} 0.10 \\ 0.35 \end{bmatrix} u_1(t) + \begin{bmatrix} -0.75 \\ -2.60 \end{bmatrix} \\ \text{if } x(t) \geq 1 + \epsilon, u_2(t) \geq 0.5 \end{cases}$$

for $x_1(t) \in [-5, 1] \cup [1 + \epsilon, 5]$, $x_2(t) \in [-5, 5]$, $u(t) \in [-10, 10]$, and for any arbitrary small $\epsilon > 0$.

Consider the following SISO system:

$$x_1(t+1) = ax_1(t) + bu(t).$$

A logic state $x_2 \in [0, 1]$ stores the information whether the state of system has ever gone below a certain lower bound x_{lb} or not:

$$x_2(t+1) = x_2(t) \bigvee [x_1(t) \le x_{lb}],$$

Assume that the input coefficient is a function of the logic state:

$$b = \begin{cases} b_1 \text{ if } x_2 = 0\\ b_2 \text{ if } x_2 = 1. \end{cases}$$

The system can be described by the PWA model:

$$x(t+1) = \begin{cases} \begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix} x(t) + \begin{bmatrix} b_2 \\ 0 \end{bmatrix} u(t) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \\ & \text{if } \begin{bmatrix} 1 & 0 \end{bmatrix} x(t) \leq x_{lb} \end{cases} \\ \begin{bmatrix} a & 0 \\ 0 & 1 \end{bmatrix} x(t) + \begin{bmatrix} b_1 \\ 0 \end{bmatrix} u(t) \\ & \text{if } \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} x(t) \geq \begin{bmatrix} x_{lb} + \epsilon \\ -0.5 \end{bmatrix} \\ \begin{bmatrix} a & 0 \\ 0 & 1 \end{bmatrix} x(t) + \begin{bmatrix} b_2 \\ 0 \end{bmatrix} u(t) \\ & \text{if } x(t) \geq \begin{bmatrix} x_{lb} + \epsilon \\ 0.5 \end{bmatrix} \end{cases}$$

for $u(t) \in \mathbb{R}$, $x_1(t) \in (-\infty, x_{lb}] \cup [x_{lb} + \epsilon, +\infty)$, $x_2 \in \{0, 1\}$, and for any $\epsilon > 0$.

Discrete Hybrid Automata (DHA)

Interconnection between:

- switched affine system (SAS) \Rightarrow continuous dynamics
- finite state machine (FSM) \Rightarrow discrete events

Interconnection based on:

- Event Generator (EG)
 - logic signals from the constraints on continuous states and time
 - ▶ triggers mode switching of the FSM
- Mode Selector (MS) \Rightarrow selection of an affine subsystem

DHA. Switched Affine System

State update equation:

$$x_c(t+1) = A_{i(t)}x_c(t) + B_{i(t)}u_c(t) + f_{i(t)},$$

$$y_c(t) = C_{i(t)}x_c(t) + D_{i(t)}u_c(t) + g_{i(t)},$$

if $i(k) = j$

- $x_c \in \mathcal{X}_c \subseteq \mathbb{R}^{n_c}, u_c \in \mathcal{U}_c \subseteq \mathbb{R}^{m_c}$
- $i(t) \Rightarrow \text{dynamic mode of SAS}$
- $i(t), j \in \mathcal{I} = \{1, 2, \dots, s\}$

DHA. Mode Selector

The mode i(t) of the SAS is generated by a **Mode Selector** function that depends on

- the FSM state
- 2 Discrete events generated by the continuous variables of the SAS
- Exogenous discrete inputs
- Time events

Boolean function $f_{\mathbf{M}}: \{0,1\}^{n_b} \times \{0,1\}^{m_b} \times \{0,1\}^{n_e} \to \mathcal{I}:$

$$i(t) = f_M(x_b(t), u_b(t), \delta_e(t))$$

- $i(k) \in \mathcal{I} \subset \mathbb{N} \Rightarrow \text{active mode}$
- selection of a dynamic mode of the SAS

DHA. Event Generator

Defined by function $f_{EG}: \mathcal{X}_c \times \mathcal{U}_c \times \mathbb{N}_0 \to \mathcal{D}$:

$$\delta_e(t) = f_{EG}(x_c(t), u_c(t), t)$$

Generates a binary vector $\delta_e(t) \in \{0,1\}^{n_e}$ of event conditions according to the satisfaction of a linear (or affine) condition.

- time events: $\{\delta_e^i = 1\} \Leftrightarrow \{t > t^*\}$
- threshold events: $\{\delta_e^i = 1\} \Leftrightarrow \{a^T x_c(t) + b^T u_c(t) \leq c\}$

DHA. Finite State Machine

Discrete time dynamic process:

$$x_b(k+1) = f_{FSM}(x_b(k), u_b(k), \delta_e(k))$$

- $f_{FSM}: \mathcal{X}_b \times \mathcal{U}_b \times \mathcal{D} \to \mathcal{X}_b$ is deterministic logic function.
- $\delta_e \in \mathcal{D} \subseteq \{0,1\}^{n_e}$ (Boolean event from EG),
- $x_b \in \mathcal{X}_b \subseteq \{0,1\}^{n_b}$ (Boolean state),
- $u_b \in \mathcal{U}_b \subseteq \{0,1\}^{m_b}$ (Boolean input),

Finite State Machine. Example

 $u_{\ell} = [u_{\ell 1} \ u_{\ell 2}]^T$ is the input vector, and $\delta = [\delta_1 \dots \delta_3]^T$ is a vector of signals coming from the event generator.

Finite State Machine. Example

The Boolean state update function (also called *state transition function*) is:

$$x_\ell(t+1) = \begin{cases} & \mathsf{Red} \ \mathrm{if} \ ((x_\ell(t) = \mathsf{Green}) \wedge \sim \delta_3) \vee \\ & ((x_\ell(t) = \mathsf{Red}) \wedge \sim \delta_1), \\ & \mathsf{Green} \ \mathrm{if} \ ((x_\ell(t) = \mathsf{Red}) \wedge \delta_1 \wedge u_{\ell 2}) \vee \\ & ((x_\ell(t) = \mathsf{Blue}) \wedge \delta_2) \vee \\ & ((x_\ell(t) = \mathsf{Green}) \wedge \sim u_{\ell 1} \wedge \delta_3), \\ & \mathsf{Blue} \ \mathrm{if} \ ((x_\ell(t) = \mathsf{Red}) \wedge \delta_1 \wedge \sim u_{\ell 2}) \vee \\ & ((x_\ell(t) = \mathsf{Green}) \wedge (\delta_3 \wedge u_{\ell 1})) \vee \\ & ((x_\ell(t) = \mathsf{Blue}) \wedge \sim \delta_2)). \end{cases}$$

Code the four states as $Red = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$, $Green = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, and $Blue = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$:

$$x_{\ell 1}(t+1) = (\sim x_{\ell 1} \wedge \sim x_{\ell 2} \wedge \delta_{1} \wedge \sim u_{\ell 2}) \vee (x_{\ell 1} \wedge \sim \delta_{2}) \vee (x_{\ell 2} \wedge \delta_{3} \wedge u_{\ell 1}), x_{\ell 2}(t+1) = (\sim x_{\ell 1} \wedge \sim x_{\ell 2} \wedge \delta_{1} \wedge u_{\ell 2}) \vee (x_{\ell 1} \wedge \delta_{2}) \vee (x_{\ell 2} \wedge \delta_{3} \wedge \sim u_{\ell 1}),$$

Summary

$$\begin{array}{rcl} \delta_e(t) & = & h(x_c(t),u_c(t),t) \\ i(t) & = & \mu(x_\ell(t),u_\ell(t),\delta_e(t)) \\ y_c(t) & = & C_{i(t)}x_c(t) + D_{i(t)}u_c(t) + g_{i(t)} \\ y_\ell(t) & = & g_\ell(x_\ell(t),u_\ell(t),\delta_e(t)) \\ x_c(t+1) & = & A_{i(t)}x_c(t) + B_{i(t)}u_c(t) + f_{i(t)} \\ x_\ell(t+1) & = & f_\ell(x_\ell(t),u_\ell(t),\delta_e(t)) \end{array}$$

Summary

Needed: a mathematical model

- descriptive: captures the behavior of the hybrid system
- simple (enough) for analysis and the prediction of the states

PWA:

mode enumeration explodes

DHA:

- good framework for the description of a hybrid systems
- not convenient for the MPC formulation

Basic problem: How to describe the interaction between continuous dynamics and propositional logic rules?

Mixed Logical Dynamical Systems

Idea: associate to each Boolean variable p_i a binary integer variable δ_i :

$$p_i \Leftrightarrow \{\delta_i = 1\}, \quad \neg p_i \Leftrightarrow \{\delta_i = 0\}$$

and embed them into a set of constraints as linear integer inequalities.

Two main steps:

- Translation of Logic Rules into Linear Integer Inequalities
- Translation DHA components into Linear Mixed-Integer Relations

Final result: a compact model with linear equalities and inequalities involving real and binary variables

Boolean formulas as Linear Integer Inequalities

Aim

Given a Boolean formula $F(p_1, p_2, ..., p_n)$ define a polyhedral set P such that a set of binary values $\{\delta_1, \delta_2, ..., \delta_n\}$ satisfies the Boolean formula F in P. I.e.,

$$F(p_1, p_2, \dots, p_n)$$
 "TRUE" $\Leftrightarrow A\delta \leq B, \quad \delta \in \{0, 1\}^n$

where: $\{\delta_i = 1\} \Leftrightarrow p_i = \text{``TRUE''}.$

Analytic Approach

① Transform $F(p_1, p_2, ..., p_n)$ into a Conjuctive Normal Form (CNF):

$$F(p_1, p_2, \dots, p_n) = \bigwedge_j \left[\bigvee_i p_i\right]$$

Translation of a CNF into algebraic inequalities:

relation	Boolean	linear constraints	
AND	$\delta_1 \wedge \delta_2$	$\delta_1 = 1, \ \delta_2 = 1 \ \mathbf{or} \ \delta_1 + \delta_2 \ge 2$	
OR	$\delta_1 \vee X_2$	$\delta_1 + \delta_2 \ge 1$	
NOT	$\sim \delta_1$	$\delta_1 = 0$	
XOR	$\delta_1 \oplus \delta_2$	$\delta_1 + \delta_2 = 1$	
IMPLY	$\delta_1 o \delta_2$	$\delta_1 - \delta_2 \le 0$	
IFF	$\delta_1 \leftrightarrow \delta_2$	$\delta_1 - \delta_2 = 0$	
ASSIGNMENT		$\delta_1 + (1 - \delta_3) \ge 1$	
$\delta_3 = \delta_1 \wedge \delta_2$	$\delta_3 \leftrightarrow \delta_1 \wedge \delta_2$	$\delta_2 + (1 - \delta_3) \ge 1$	
		$(1 - \delta_1) + (1 - \delta_2) + \delta_3 \ge 1$	

Analytic Approach. Example

Given

$$F(p_1, p_2, p_3, p_4) \triangleq [(p_1 \land p_2) \Rightarrow (p_3 \land p_4)]$$

find the equivalent set of linear integer inequalities.

• remove implication:

$$F(p_1, p_2, p_3, p_4) = \neg (p_1 \land p_2) \lor (p_3 \land p_4)$$

② using *DeMorgan's theorem*, obtain CNF:

$$F(p_1,p_2,p_3,p_4) = (\neg p_1 \lor \neg p_2 \lor p_3) \land (\neg p_1 \lor \neg p_2 \lor p_4)$$

3 introduce $[\delta_i = 1] \Leftrightarrow p_i = \text{``TRUE''}$ and write the inequalities:

$$F(p_1, p_2, p_3, p_4) = \text{"TRUE"} \Leftrightarrow \begin{cases} \delta_1 + \delta_2 - \delta_3 & \leq 1 \\ \delta_1 + \delta_2 - \delta_4 & \leq 1 \\ \delta_{1,2,3,4} \in \{0,1\} \end{cases}$$

Geometric Approach

Key idea

The polytope $\mathcal{P} = \{\delta \in \{0,1\}^n \mid A\delta \leq B\}$ is the convex hull of the rows of the truth table defining a logic proposition $\Omega(p_i)$.

Example. Given $\Omega(p_1, p_2) \triangleq [p_1 \Rightarrow p_2]$. Build the truth table:

δ_1	δ_2	δ_3
0	0	1
0	1	1
1	0	0
1	1	1

$$hull \left\{ \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \right\} = \left\{ \begin{array}{c} \delta_2 - \delta_3 & \leq & 0 \\ \delta_3 & \leq & 1 \\ \delta_1 - \delta_2 + \delta_3 & \leq & 1 \\ -\delta_1 - \delta_2 & < & -1 \\ -\delta_{11} - \delta_{22} & < & -1 \\ April 25, \end{array} \right.$$

Linear Inequality As Logic Condition

Event Generator

Defined by function $f_{EG}: \mathcal{X}_c \times \mathcal{U}_c \times \mathbb{N}_0 \to \mathcal{D}$:

$$\delta_e(t) = f_{EG}(x_c(t), u_c(t), t)$$

Consider the Boolean expression consisting of a Boolean variable p and continuous variable $x \in \mathbb{R}^n$:

$$p \Leftrightarrow a^T x \leq b$$

where $a \in \mathbb{R}^n$, $b \in \mathbb{R}$, $x \in \mathcal{X} \subset \mathbb{R}^n$:

$$\mathcal{X} = \{ x \mid a^T x - b \in [m, M] \}$$

Translated to linear inequalitites:

$$a^T x - b \leq M(1 - \delta)$$

 $a^T x - b > m\delta$

Switched Affine Dynamics

Rewrite the state update functions of the SAS as

$$z_1(t) = \begin{cases} A_1 x_c(t) + B_1 u_c(t) + f_1, & \text{if } (i(t) = 1), \\ 0, & \text{otherwise,} \end{cases}$$

$$\vdots$$

$$z_s(t) = \begin{cases} A_s x_c(t) + B_s u_c(t) + f_s, & \text{if } (i(t) = s), \\ 0, & \text{otherwise,} \end{cases}$$

$$x_c(t+1) = \sum_{i=1}^s z_i(t),$$

In general, use the "IF-THEN-ELSE" relations

IF
$$\delta$$
 THEN $z = a'_1 x + b'_1 u + f_1$ ELSE $z = a'_2 x + b'_2 u + f_2$,

"IF-THEN-ELSE" Relations

IF
$$p$$
 THEN $(m_2 - M_1)\delta + z_t \le a_2^T x_t + b_2$
 $z_t = a_1^T x_t + b_1$ $(m_1 - M_2)\delta - z_t \le -a_2^T x_t - b_2$
ELSE $(m_1 - M_2)(1 - \delta) + z_t \le a_1^T x_t + b_1$
 $z_t = a_2^T x_t + b_2$ $(m_2 - M_1)(1 - \delta) - z_t \le -a_1^T x_t - b_1$

where $x \in \mathcal{X}$, with

$$\sup_{x \in \mathcal{X}} a_i^T x - b_i \le M_i,$$

$$\inf_{x \in \mathcal{X}} a_i^T x - b_i \ge m_i.$$

Hybrid Modelling - An Example

Consider the following system with constraints: $|x| \le 10$, $|u| \le 10$

$$x_{t+1} = \begin{cases} 0.8x_t + u_t & \text{if } x_t \ge 0\\ -0.8x_t + u_t & \text{if } x_t < 0 \end{cases}$$

$$-m\delta_t \leq x_t - m$$

$$-(M+\epsilon)\delta_t \leq -x_t - \epsilon,$$

where: $M = -m = 10, \, \epsilon > 0.$

2 state update equation:

$$x_{t+1} = 1.6\delta_t x_t - 0.8x_t + u_t$$

Hybrid Modelling - An Example

 \bullet introduce disaggregated variable: $z_t = \delta_t x_t$

$$x_{t+1} = 1.6z_t - 0.8x_t + u_t$$

 \bullet constraints on z:

$$\begin{array}{rcl} z_t & \leq & M\delta_t \\ z_t & \geq & m\delta_t \\ z_t & \leq & x_t - m(1 - \delta_t) \\ z_t & \geq & x_t - M(1 - \delta_t) \end{array}$$

MLD Hybrid Model

A DHA can be converted into the following MLD model

$$x_{t+1} = Ax_t + B_1u_t + B_2\delta_t + B_3z_t$$

$$y_t = Cx_t + D_1u_t + D_2\delta_t + D_3z_t$$

$$E_2\delta_t + E_3z_t \leq E_4x_t + E_1u_t + E_5$$

where $x \in \mathbb{R}^{n_c} \times \{0,1\}^{n_b}$, $u \in \mathbb{R}^{m_c} \times \{0,1\}^{m_b}$ $y \in \mathbb{R}^{p_c} \times \{0,1\}^{p_b}$, $\delta \in \{0,1\}^{r_b}$ and $z \in \mathbb{R}^{r_c}$.

Physical constraints on continuous variables:

$$C = \left\{ \begin{bmatrix} x_c \\ u_c \end{bmatrix} \in \mathbb{R}^{n_c + m_c} \mid Fx_c + Gu_c \le H \right\}$$

MLD Hybrid Model. Well-Posedness

- Well-Posedness: for a given $\begin{bmatrix} x_t^T & u_t^T \end{bmatrix}^T$ $\Rightarrow x_{t+1}$ and y_t uniquely determined
- Complete Well-Posedness: well-posedness + uniquely determined δ_t and $z_t \forall \begin{bmatrix} x_t^T & u_t^T \end{bmatrix}^T$

Well-posedness: sufficient for the computation of the state and output prediction

Complete well-posedness: transformation into equivalent hybrid models

Linear Complementary (LC) Systems

$$x_{t+1} = Ax_t + B_1 u_t + B_2 w_t,$$

$$y_t = Cx_t + D_1 u_t + D_2 w_t,$$

$$v_t = E_1 x_t + E_2 u_t + E_3 w_t + g_4$$

$$0 \le v_t \perp w_t \ge 0$$

where: $v_t, w_t \in \mathbb{R}^s$ and " \perp " denotes elementwise complementarity: $v_i w_i = 0$.

Examples: mechanical systems, electrical circuit with ideal diodes

Max-Min-Plus-Scaling (MMPS) Systems

MMPS expressions defined by the *grammar*:

$$f := x_i \mid \alpha \mid \max(f_k, f_l) \mid \min(f_k, f_l) \mid f_k + f_l \mid \beta f_k$$

where $\alpha, \beta \in \mathbb{R}$, $i = \{1, 2, ..., n\}$ and f_k, f_l are MMPS expressions. Example:

$$f = 7x_1 + 0.5x_2 + \max(\min(3x_1 - 2x_2, x_3))$$

MMPS system:

$$x_{t+1} = \mathcal{M}_x(x_t, u_t, d_t),$$

$$y_t = \mathcal{M}_y(x_t, u_t, d_t),$$

$$\mathcal{M}_c(x_t, u_t, d_t) \leq c$$

where $\mathcal{M}_{x,y,c}(\cdot)$ are MMPS expressions in components of x_t , u_t and d_t .

Equivalence of Hybrid Models

"The big picture":

Modelling & Simulation: DHA Control synthesis: MLD & PWA

HYbrid System DEscription Language

HYSDEL

- based on DHA
- enables description of discrete-time hybrid systems in a compact way:
 - ▶ automata and propositional logic
 - continuous dynamics
 - ► A/D and D/A conversion
 - definition of constraints
- automatically generates MLD models for MATLAB
- freely available from:

http://control.ee.ethz.ch/~hybrid/hysdel/

Mixed Integer Linear Programming

Consider the following MILP

$$\begin{aligned} \inf_{[z_c,z_b]} & c_c'z_c + c_b'z_b + d \\ \text{subj. to} & G_cz_c + G_bz_b \leq W \\ & z_c \in \mathbb{R}^{s_c}, \ z_b \in \{0,1\}^{s_b} \end{aligned}$$

where $z_c \in \mathbb{R}^{s_c}, z_b \in \{0, 1\}^{s_b}$

- MILP are nonconvex, in general.
- For a fixed \bar{z}_b the MILP becomes a linear program:

$$\inf_{[z_c, z_b]} \quad c'_c z_c + (c' b \bar{z}_b + d)$$
 subj. to
$$G_c z_c \leq W - G_b \bar{z}_b$$

$$z_c \in \mathbb{R}^{s_c}$$

• Brute force approach to solution: enumerating the 2^{s_b} integer values of the variable z_b and solve the corresponding LPs. By comparing the 2^{s_b} optimal costs one can find the optimizer and the optimal cost of the MILP.

Mixed Integer Linear Programming

Denote by J^* the optimal value and by Z^* the set of optimizers.

- Case 1. The MILP solution is unbounded, i.e., $J^* = -\infty$.
- Case 2. The MILP solution is bounded, i.e., $J^* > -\infty$ and the optimizer is unique. Z^* is a singleton.
- Case 3. The MILP solution is bounded and there are infinitely many optima corresponding to the same integer value.
- Case 4. The MILP solution is bounded and there are finitely many optima corresponding to different integer values.
- Case 5. The union of Case 3 and Case 4.

Mixed Integer Quadratic Programming

Consider the following MIQP

$$\begin{aligned} \inf_{[z_c,z_b]} & \quad \frac{1}{2}z'Hz + q'z + r \\ \text{subj. to} & \quad G_c z_c + G_b z_b \leq W \\ & \quad z_c \in \mathbb{R}^{s_c}, \ z_b \in \{0,1\}^{s_b} \\ & \quad z = [z_c,z_b], s = s_c + s_d \end{aligned}$$

where $H \succeq 0, z_c \in \mathbb{R}^{s_c}, z_b \in \{0, 1\}^{s_b}$.

- MIQP are nonconvex, in general.
- For a fixed integer value \bar{z}_b of z_b , the MIQP becomes a quadratic program:

$$\begin{array}{ll} \inf_{[z_c]} & \frac{1}{2} z_c' H_c z_c + q_c' z + k \\ \text{subj. to} & G_c z_c \leq W - G_b \bar{z}_b \\ & z_c \in \mathbb{R}^{s_c} \end{array}$$

• Brute force approach to the solution: enumerating all the 2^{s_b} integer values of the variable z_b and solve the corresponding QPs. By comparing the 2^{s_b} optimal costs one can derive the optimizer and the optimal cost of the MIQP.

Mixed Integer Quadratic Programming

Denote by J^* the optimal value and by Z^* the set of optimizers of problem

- Case 1. The MIQP solution is unbounded, i.e., $J^* = -\infty$. This cannot happen if H > 0.
- Case 2. The MIQP solution is bounded, i.e., $J^* > -\infty$ and the optimizer is unique. Z^* is a singleton.
- Case 3. The MIQP solution is bounded and there are infinitely many optima corresponding to the same integer value. subset of \mathbb{R}^s and an integer number z_b^* . This cannot happen if $H \succ 0$.
- Case 4. The MIQP solution is bounded and there are finitely many optima corresponding to different integer values.
- Case 5. The union of Case 3 and Case 4.

MPC for Hybrid Systems. General Formulation

Consider the CFTOC problem:

$$J^{*}(x_{t|t}) = \min_{U} \ell_{N}(x_{t+N|t}) + \sum_{k=0}^{N-1} \ell(x_{t+k|t}, u_{t+k|t}, \delta_{t+k|t}, z_{t+k|t}),$$
s.t.
$$\begin{cases} x_{t+k+1|t} = Ax_{t+k|t} + B_{1}u_{t+k|t} + B_{2}\delta_{t+k|t} + B_{3}z_{t+k|t} \\ E_{2}\delta_{t+k|t} + E_{3}z_{t+k|t} \le E_{4}x_{t+k|t} + E_{1}u_{t+k|t} + E_{5} \\ x_{t+N|t} \in \mathcal{X}_{f} \end{cases}$$

where $x \in \mathbb{R}^{n_c} \times \{0,1\}^{n_b}$, $u \in \mathbb{R}^{m_c} \times \{0,1\}^{m_b}$, $y \in \mathbb{R}^{p_c} \times \{0,1\}^{p_b}$, $\delta \in \{0,1\}^{r_b}$ and $z \in \mathbb{R}^{r_c}$ and $U = \begin{pmatrix} u_{t|t}^T & u_{t+1|t}^T & \dots & u_{t+N-1|t}^T \end{pmatrix}^T$

$$U = \begin{pmatrix} u_{t|t}^T & u_{t+1|t}^T & \dots & u_{t+N-1|t}^T \end{pmatrix}^T$$

MPC for Hybrid Systems. 2-norm Case

• The final and stage costs become

$$\begin{array}{lcl} \ell_N(x) & = & \|Px\|_2 \\ \ell(x,u,\delta,z) & = & \|Q_xx\|_2 + \|Q_uu\|_2 + \|Q_\delta\delta\|_2 + \|Q_zz\|_2 \end{array}$$

• Use the substitution:

$$x_{t+k|t} = A^k x_{t|t} + \sum_{j=0}^{k-1} \left\{ A^j (B_1 u_{t+k-j-1|t} + B_2 \delta_{t+k-j-1|t} + B_3 z_{t+k-j-1|t}) \right\}$$

• Introduce the optimization vector:

$$\xi = [U^T, \delta_{t|t}, \dots, \delta_{t+N-1|t}, z_{t|t}, \dots, z_{t+N-1|t}]^T$$

MPC for Hybrid Systems. 2-norm Case

• Written in a more compact form, the problem becomes:

$$\begin{aligned} & \min_{\xi} & & \|H_1 \xi\|_2 + \xi^T H_2 x_{t|t} + \|H_3 x_{t|t}\|_2 + c_1^T \xi + c_2 x_{t|t}, \\ & \text{s. t.} & & G \xi \leq W + S x_{t|t} \end{aligned}$$

On-line optimization problem:

Mixed-Integer Quadratic Program (MIQP)

MPC for Hybrid Systems. 2 Norm Case

Theorem

The solution to the CFTOC problem based on MLD model and with the cost based on quadratic norm is time-varying PWA feedback law of the form:

$$u_t^*(x_t) = F_t^i x_t + G_t^i \quad \text{if } x_t \in \mathcal{R}_k^i$$

where $\left\{\mathcal{R}_{t}^{i}\right\}_{i=1}^{R_{t}}$ are regions partitioning the set of feasible states \mathcal{X}_{t}^{*} and the closure $\bar{\mathcal{R}}_{k}^{i}$ of the sets \mathcal{R}_{k}^{i} has the following form:

$$\bar{\mathcal{R}}_k^i \triangleq \left\{ x: \ x(k)' L(j)_k^i x(k) + M(j)_k^i x(k) \le N(j)_k^i, \ j = 1, \dots, n_k^i \right\},$$

$$k = 0, \dots, N - 1.$$

MPC for Hybrid Systems. 2 Norm Case

- Denote by $\{v_i\}_{i=1}^{s^N}$ the set of all possible switching sequences over the horizon N
- Fix a certain v_i and constrain the state to switch according to the sequence v_i .
- The problem becomes a *CFTOC for a linear time-varying system*.

 The solution is

$$u^{i}(x(0)) = \tilde{F}^{i,j}x(0) + \tilde{g}^{i,j}, \quad \forall x(0) \in \mathcal{T}^{i,j}, \quad j = 1, \dots, N^{r^{i}}$$

where $\mathcal{D}^{i} = \bigcup_{j=1}^{N^{r^{i}}} \mathcal{T}^{i,j}$

- The set $\mathcal{X}_0 = \bigcup_{i=1}^{s^N} \mathcal{D}^i$ in general is **not convex**.
- The sets \mathcal{D}^i can, in general, overlap. I.e., some initial state is feasible for more switching sequences.

MPC for Hybrid Systems. 2 Norm Case

• If $\mathcal{T}^{i,j} \cap \mathcal{T}^{l,m} = \emptyset$ for all $l \neq i, l = 1, ..., s^N, m = 1, ..., N^{rl}$, then v_i is the only feasible sequence and

$$u^*(x(0)) = \tilde{F}^{i,j}x(0) + \tilde{g}^{i,j}, \ \forall x \in \mathcal{T}^{i,j}.$$

- If $\mathcal{T}^{i,j}$ intersects one or more polyhedra $\mathcal{T}^{l_1,m_1},\mathcal{T}^{l_2,m_2}$ the states therein are feasible also for the sequences v_i, v_{l_1}, v_{l_2} .
- \bullet Compare the value functions $J_{v_i}^*(x(0)),\,J_{v_{l_1}}^*(x(0)),J_{v_{l_2}}^*(x(0)).$

$$u^*(x(0)) = \begin{cases} \tilde{F}^{i,j}x(0) + \tilde{g}^{i,j}, \\ \forall x(0) \in \mathcal{T}^{(i,j),(l,m)} : J_{v_i}^*(x(0)) < J_{v_l}^*(x(0)) \\ \\ \tilde{F}^{l,m}x(0) + \tilde{g}^{l,m}, \\ \forall x(0) \in \mathcal{T}^{(i,j),(l,m)} : J_{v_i}^*(x(0)) > J_{v_l}^*(x(0)) \\ \\ \begin{cases} \tilde{F}^{i,j}x(0) + \tilde{g}^{i,j} \text{ or} \\ \tilde{F}^{l,m}x(0) + \tilde{g}^{l,m} \\ \forall x(0) \in \mathcal{T}^{(i,j),(l,m)} : J_{v_i}^*(x(0)) = J_{v_l}^*(x(0)) \end{cases}$$

MPC for Hybrid Systems. 1, ∞ -norm Case

• The final and stage costs become

$$\begin{array}{lcl} \ell_N(x) & = & \|Px\|_{1,\infty} \\ \ell(x,u,\delta,z) & = & \|Q_xx\|_{1,\infty} + \|Q_uu\|_{1,\infty} + \|Q_\delta\delta\|_{1,\infty} + \|Q_zz\|_{1,\infty} \end{array}$$

• Introduce decision variables to model ∞ -norm:

$$\begin{aligned} -\mathbf{1}_n \varepsilon_{t+k|t}^x & \leq & \pm Q_x x_{t+k|t} \\ -\mathbf{1}_m \varepsilon_{t+k|t}^u & \leq & \pm Q_u u_{t+k|t} \\ -\mathbf{1}_{r_b} \varepsilon_{t+k|t}^\delta & \leq & \pm Q_\delta \delta_{t+k|t} \\ -\mathbf{1}_{r_c} \varepsilon_{t+k|t}^z & \leq & \pm Q_z z_{t+k|t} \\ -\mathbf{1}_n \varepsilon_{t+N|t}^x & \leq & \pm P x_{t+N|t}, \end{aligned}$$

where $k = 0, ..., N - 1, n = n_c + n_b, m = m_c + m_b$.

• Introduce the optimization vector:

$$\boldsymbol{\xi} = \begin{bmatrix} U^T, \varepsilon^x_{t|t}, \dots, \varepsilon^x_{t+N|t}, \varepsilon^u_{t|t}, \dots, \varepsilon^u_{t+N-1|t}, \\ \\ \varepsilon^{\delta}_{t|t}, \dots, \varepsilon^{\delta}_{t+N-1|t}, \varepsilon^z_{t|t}, \dots, \varepsilon^z_{t+N-1|t} \end{bmatrix}^T$$

MPC for Hybrid Systems. 1, ∞ -norm Case

• Written in a more compact form, the problem becomes:

$$\min_{\xi} \quad \varepsilon_{t+N|t}^{x} + \sum_{k=0}^{N-1} (\varepsilon_{t+N|t}^{x} + \varepsilon_{t+N|t}^{\delta} + \varepsilon_{t+k|t}^{z} + \varepsilon_{t+k|t}^{u})$$
s. t. $G\xi \leq W + Sx_{t|t}$

• On-line optimization problem:

Mixed-Integer Linear Program (MILP)

Receding Horizon Policy

- given $x_{t|t}$ solve MILP/MIQP and obtain the optimizer vector $\xi^* \Rightarrow$ extract $u_{t|t}^*$ and apply it to the plant
- stability \Rightarrow general stability theory for MPC with receding horizon
 - terminal state constraint $x_{N|t} = 0$
 - \triangleright $x_{N|t}$ inside an invariant set around the origin

MPC for Hybrid Systems. 1, ∞ -norm Case

Theorem

The solution to the CFTOC problem based on MLD model and with the cost based on norms $\{1,\infty\}$ is time-varying PPWA feedback law of the form:

$$u_t^*(x_t) = F_t^i x_t + G_t^i \quad \text{if } x_t \in \mathcal{R}_k^i$$

where $\left\{\mathcal{R}_{t}^{i}\right\}_{i=1}^{R_{t}}$ are polyhedral regions partitioning the set of feasible states \mathcal{X}_{t}^{*} .

MPC for Hybrid Systems - Complexity

- the complexity strongly depends on the problem structure and the initial setup
- in general:

Mixed-Integer programming is HARD

- \bullet efficient general purpose solvers for MILP/MIQP: CPLEX, XPRESS-MP \Rightarrow based on Branch-And-Bound , Branch-And-Cut methods + a lot of heuristics
- on-line optimization is good for applications allowing large sampling intervals (tipically minutes), requires expensive hardware and (even more) expensive software
- \bullet for problems requiring fast sampling rate \Rightarrow explicit solution of the MPC

MPC for Hybrid Systems - Example

$$\begin{cases} x_{t+1} &= 0.8 \begin{bmatrix} \cos \alpha_t & -\sin \alpha_t \\ \sin \alpha_t & \cos \alpha_t \end{bmatrix} x_t + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(k) \\ \alpha_t &= \begin{cases} \pi/3 & if \begin{bmatrix} 1 & 0 \end{bmatrix} x_t \ge 0, \\ -\pi/3 & if \begin{bmatrix} 1 & 0 \end{bmatrix} x_t < 0 \\ x_t & \in [-10, 10] \times [-10, 10], \end{cases} \\ u_t &\in [-1, 1] \end{cases}$$

$$N = 12 P_N = O_T = I_T O_T = 1_T \infty = \text{porm}$$

$$N = 12, P_N = Q_x = I, Q_u = 1, \infty - \text{norm}$$

Francesco Borrelli (UC Berkeley)

April 25, 2011