MATH 316D W08

DD1 Individual Quiz

- 1. Keep.
- 2. Change to, "The following matrix:"
 - $\begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 3 \\ 0 & 1 & 6 \end{bmatrix}$
 - (a) Is row equivalent to the 3×3 identity matrix I_3 .
 - (b) Is inearly independent about it's columns.
 - (c) Is invertible.
 - (d) Has a nonzero determinant.
 - (e) All of the above. \Longrightarrow Correct
 - (f) Only answers a and c.
- 3. Keep.
- 4. **Keep**.
- 5. **Keep**.

DD2 Group Quiz

- 1. **Keep**, but please change the format of one of the answers. The answer that needs to be changed is, "A is row-equivalent to In". Please change to, "A is row-equivalent to I_n ".
- 2. **Keep**.
- 3. **Keep**.
- 4. Delete.
- 5. **Keep** (previously question 5).
- 6. Add, "Given the following column vectors as shown, what is the area of the parallelogram that they create?"

- (a) 11
- (b) $3 \implies \mathbf{Correct}$
- (c) -3
- (d) Not enough information given.
- 7. Add. "Compute the determinant of the following matrix by hand and select the answer that best represents your work."

$$\mathbf{A} = \begin{bmatrix} 1 & -2 & 3 & -4 \\ 0 & 5 & -6 & 7 \\ 0 & 0 & -8 & 9 \\ 0 & 0 & 0 & -10 \end{bmatrix}$$

- (a) 0
- (b) 246
- (c) $400 \implies \mathbf{Correct}$
- (d) -246
- (e) The det(A) is not an allowable operation.

DD3 Weekly Quiz

- 1. **Keep** but please reword to, "If a matrix is a 3×3 and has exactly two pivots, then it is possible for the columns of that matrix to span \mathbb{R}^3 ."
- 2. **Keep**.
- 3. **Keep**.
- 4. Keep.
- 5. Keep and please make sure the correct answer keyed is \implies False
- 6. Keep.
- 7. Change to what was previously question 8.
- 8. **Add**, "Find the determinant of the following matrix by hand using the method of cofactor expansion about a column, then select the answer that best represents your work."

$$\mathbf{A} = \begin{bmatrix} 1 & -2 & 3 & -4 \\ 2 & -5 & -6 & 7 \\ 0 & 4 & -8 & 9 \\ 0 & 0 & 4 & -10 \end{bmatrix}$$

- (a) $-284 \implies \mathbf{Correct}$
- (b) 0
- (c) 400
- (d) -400
- (e) The det(A) is not an allowable operation.
- 9. **Keep** but please fix the wording in **part a.** of the question so that it reads as follows: "Determine if \mathbf{v}_3 is in the span of \mathbf{v}_1 , and \mathbf{v}_2 ." Also please make sure that appropriate answers are along the lines of:
 - (a) \vec{v}_3 is in the span of \vec{v}_1 and \vec{v}_2 because in RREF the equation $\mathbf{A}\vec{v} = \vec{b}$, where $\mathbf{A} = \{\vec{v}_1, \vec{v}_2\}$ and $\vec{b} = \vec{v}_3$, has a solution
 - (b) The vectors in S are not linearly independent, because in RREF vectors \vec{v}_1 and \vec{v}_2 are linear combinations of \vec{v}_3 .
 - (c) Yes, the vectors \vec{v}_1 and \vec{v}_2 span \mathbb{R}^2 because these column vectors are linearly independent.
- 10. **Keep**.