Formules et notes

Nicolas Bellemare 2019-03-13

Contents

Pı	reface		5
1	1.1 1.2 1.3 1.4 1.5 1.6 1.7	Théorème de la fonction quantile Espérance tronqué Fonction Stop-Loss Fonction quantile Fonction quantile Transformée de Laplace Bénéfice de mutualisation à mutualiser les risques en utilisant la TVaR:	77 77 77 88 88 99 91
2	Stat		11
	2.1	Définitions	11
	2.2	Moyenne échantilonnale:	11
	2.3	Variance échantillonale:	11
	2.4	Loi faible des grands nombres:	11
	2.5	Statistiques d'ordre d'un échantillon:	12
	2.6	Distribution de \bar{X} :	12
	2.7	Somme de normales au carré	12
	2.8	Statistique Student	12
	2.9	Distribution de la Statistique Student	13
		Distribution Student	13
		Statistique F	13
		Distribution F	13
		Comparer variance échantionnale	13
		Lemme de Slutsky	14
		Théorème Central Limite	14
	2.16	Distribution Statistique Student lorsqu'on ne connait pas la variance et X ne provient pas	
		d'une loi Normale	14
		Aproximation de la loi Binomiale avec la loi Normale	14
		Critères pour évaluer la performance d'un estimateur	14
		Efficacité relative	15
		Définition formelle statistique exhaustive	15
		Théoreme de factorisation de Fischer-Neyman	15
		Critère de Lehmann-Scheffé	16
		Théorème de Rao-Blackwell	16
		Estimateur sans biais et de variance minimale(MVUE)	16
		Méthode des moments	17
		Méthode des quantiles	17
		Quantile empirique lissé	$\frac{17}{17}$
	., ., \	Fonction do vraissamblance	-17

4 CONTENTS

3	$\mathbf{G}\mathbf{R}$	F-2	19
	3.1	Chapitre 1	19
	3.2	Chapitre 2	21
4	Pre	uves	25
	4.1	Théorème (1.1) de la fonction quantile	25
	4.2	Fonction Stop-Loss(1.3)	2^{ξ}
	4.3	Tvar	2^{ξ}
	4.4	Biais moyenne échantillonale (voir 2.18.1)	30
	4.5	Biais variance échantillonale (voir 2.18.1)	31
	4.6	Convergence (voir 2.18.3)	3.
	4.7	Téorème de Rao-Blackwell (voir section 2.23)	32

Preface

6 CONTENTS

Chapter 1

Introduction actuariat 2

1.1 Théorème de la fonction quantile

Theorem 1.1.

$$U \sim Unif(0,1)$$

$$Y = F_x^{-1}(u) \Rightarrow Y \sim X$$

$$F_Y(x) = F_{F_X^{-1}(u)}(x) = F_X(x) \ pour \ x \in \mathbb{R}$$

ainsi:

$$X = F_X^{-1}(u)$$

Voir preuve 4.1

1.2 Espérance tronqué

$$\begin{split} E[X\times \mathbf{1}_{\{X\geq x\}}] &= \int_{-\infty}^{\infty} y \times \mathbf{1}_{\{y\geq x\}} f_X(y) \, dy \\ &= \int_{-\infty}^{x} 0 \times f_X(y) dy + \int_{x}^{\infty} y f_X(y) \, dy \\ &= \int_{x}^{\infty} y f_X(y) \, dy \end{split}$$

1.3 Fonction Stop-Loss

$$\Pi_X(d) = E\left[\max(X - d, 0)\right], \quad \text{pour } d \in \mathbb{R}$$

Voir preuve 4.2

1.3.1 Variable continue

$$\Pi_X(d) = \int_0^\infty \max(X - d, 0) f_X(x) dx$$

1.3.2 Variable discrète sur $(0, 1h, 2h, \ldots)$

$$f_X(kh) = P(X = kh), k \in \mathbb{N}, h > 0, d = k_0 h$$

$$\Pi_X(k_0 h) = E[\max(X - k_0 h, 0)]$$

$$= \sum_{k=0}^{\infty} \max(kh - k_0 h, 0) P(X = kh)$$

$$= \sum_{k_0 = k+1}^{\infty} (kh - k_0 h) P(X = kh)$$

1.3.3 Propriété

$$\begin{split} \Pi_X(0) &= \lim_{d \to 0} \Pi_X(d) \\ &= \lim_{d \to 0} E[\max(X-d,0)] \\ &= E[X] \end{split}$$

1.4 Fonction quantile

1.4.1 Première forme

$$\begin{split} \int_{k}^{1} F_{X}^{-1}(u) \, du &= \int_{k}^{1} \left[F_{X}^{-1}(u) - F_{X}^{-1}(k) + F_{X}^{-1}(k) \right] \, du \\ &= \int_{k}^{1} \left(F_{X}^{-1}(u) - F_{X}^{-1}(k) \right) \, du + F_{X}^{-1}(k) \int_{k}^{1} (1) \, du \\ &= \int_{0}^{1} \max \left(F_{X}^{-1}(u) - F_{X}^{-1}(k), \, 0 \right) \, du + F_{X}^{-1}(k) (1 - k) \\ &= E \left[\max(F_{X}^{-1}(u) - F_{X}^{-1}(k), \, 0) \right] + (1 - k) F_{X}^{-1}(k) \\ &= E \left[\max(X - F_{X}^{-1}(k), \, 0) \right] + (1 - k) F_{X}^{-1}(k) \end{split}$$

1.4.2 Deuxième forme

$$\int_{k}^{1} F_{X}^{-1}(u) du = \Pi_{X} \left(F_{X}^{-1}(k) \right) + (1 - k) F_{X}^{-1}(k)$$

En remplaçant $\Pi_X(F_X^{-1}(k))$ par 4.2 on obtient:

$$= E\left[X \times 1_{\{X > F_X^{-1}(k)\}}\right] - F_X^{-1}(k)\bar{F}_X\left(F_X^{-1}(k)\right) + (1-k)F_X^{-1}(k)$$

$$= E\left[X \times 1_{\{X > F_X^{-1}(k)\}}\right] + F_X^{-1}(k)\left(F_X(F_X^{-1}(k)) - k\right)$$

1.5 Fonction quantile et espérance

$$\int_0^1 F_X^{-1}(u) \, du = E\left[F_X^{-1}(x)\right]$$
$$\int_0^1 F_X^{-1}(u)(1) \, du = E[X]$$

1.6. TVAR 9

Généralisation:

$$\int_0^1 \phi(F_X^{-1}(u)) \, du = E[\phi(F_X^{-1}(u))] = E[\phi(X)]$$

1.6 TVaR

$$VaR_k(X) = F_X^{-1}(k)$$

$$\text{TVaR}_k(X) = \frac{1}{1-k} \int_k^1 \text{VaR}_u(X) \, du$$

1.6.1 Expression alternative 1

$$TVaR_k(X) = \frac{1}{1-k}\Pi_X\left(VaR_k(X)\right) + VaR_k(X)$$

Voir preuve 4.3.1

1.6.2 Expression alternative 2

$$TVaR_k(X) = \frac{1}{1-k} \left(E\left[X \times 1_{\{X > VaR_k(X)\}} \right] + VaR_k(X) \times (F_X\left[VaR_k(X) \right] - k) \right)$$

Voir preuve 4.3.2

1.6.3 Expression alternative 3

$$\text{TVaR}_k(X) = \frac{P\left(X \geq \text{VaR}_k(X)\right)}{(1-k)} \times E\left[X|X \geq \text{VaR}_k(X)\right] + \left(1 - \frac{P\left(X \geq \text{VaR}_k(X)\right)}{(1-k)}\right) \times \text{VaR}_k(X), \quad k \in (0,1)$$

Voir preuve 4.3.3

Propriété

Sous-additivité

Soit
$$S = X_1 + X_2$$
,

$$\mathrm{TVaR}_{\kappa}(S) \leq \mathrm{TVaR}_{\kappa}(X_1) + \mathrm{TVaR}_{\kappa}(X_2)$$

Voir section 4.3.3

1.7 Transformée de Laplace

Existe pour toute loi de X.

Lien avec E[X]:

V.A. X positive tel que
$$E[X] < \infty$$

$$(-1)\frac{d}{dt}\mathcal{L}_{X}(t)|_{t=0} = (-1)\frac{d}{dt}E\left[e^{-tX}\right]|_{t=0}$$

$$= (-1)E\left[\frac{d}{dt}e^{-tX}\right]|_{t=0}$$

$$= (-1)E\left[-Xe^{-tX}\right]|_{t=0}$$

$$= (-1)E[-X] = E[X]$$

Lien avec $E[X^m]$:

$$E[X^m] = (-1)^m \frac{d^m}{dt^m} \mathcal{L}_X(t)|_{t=0}$$

1.8 Bénéfice de mutualisation à mutualiser les risques en utilisant la TVaR:

$$\mathrm{BM}_{\kappa}^{\mathrm{TVaR}}(X_1,\ldots,X_n) = \sum_{i=1}^n \mathrm{TVaR}_{\kappa}(X_i) - \mathrm{TVaR}_{\kappa}(S_n) \ge 0 \; \kappa \in (0,1)$$

Soit $S_n = \sum_{i=1}^n (X_i)$, un portefeuille de risques identiquement distribués(indep. ou pas), et $W_n = \frac{1}{n}S_n$, la part des coûts totaux par risque.

Soit ρ , une mesure de risque qui satisfait les propriétés de sous-additivité et d'homogénéité. On déduit que

$$\rho(W_n) = \rho\left(\frac{1}{n}S_n\right)$$
$$= \rho\left(\frac{1}{n}\sum_{i=1}^n (X_i)\right)$$

Par homogénéité:

$$= \frac{1}{n}\rho(S_n)$$

Par sous-additivité:

$$\leq \frac{1}{n} \sum_{i=1}^{n} \rho(X_i)$$

$$= \frac{1}{n} \sum_{i=1}^{n} \rho(X)$$

$$= \frac{n}{n} \rho(X)$$

$$= \rho(X)$$

Chapter 2

Stats

2.1 Définitions

Observation: réalisation d'une variable aléatoire Échantillon aléatoire de F: ensemble de V.A. iid

Statistiques: fonction d'un échantillon aléatoire et de constantes connues

Paramètres: quantité d'intérêt(E[X], Var(x), etc) ou le paramètre θ d'un modèle paramétrique.

Statistique exhaustive: statistique qui contient toute l'information pertinente sur le paramètre visé.

Estimateur: Statistique $S(X_1, ..., X_n)$ qui prend des valeurs qu'on espère proche de θ noté $\hat{\theta}_n$ (Variable aléatoire)

Estimation de θ : données observées x_1, x_2, \ldots de la valeur observée $\hat{\theta}, s(x_1, x_2, \ldots)$ (réalisations)

2.2 Moyenne échantilonnale:

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n x_i$$

2.3 Variance échantillonale:

$$S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X}_n)^2$$

2.4 Loi faible des grands nombres:

Soit $X_1, X_2, ...$, une suite de V.A. iid. On suppose $var(X_i) < \infty$ et $E[X] = \mu$, lorsque $n \to \infty$

$$P(|(\bar{X}_n - \mu)| > \epsilon) \to 0 \quad \forall \epsilon > 0$$

 \bar{X}_n converge en probabilité vers μ

$$\bar{X}_n \stackrel{p}{\to} \mu$$

Preuve par Tchebycheff:

$$P(|\bar{X}_n - \mu| > \epsilon) \le \frac{var(X_i)}{n\epsilon^2}$$

12 CHAPTER 2. STATS

2.5 Statistiques d'ordre d'un échantillon:

$$X_{(1)} = \min(X_1, \dots, X_n)$$

$$F_{X_{(1)}}(x) = 1 - (1 - F_X(x))^n$$

$$X_{(n)} = \max(X_1, \dots, X_n)$$

$$F_{X_{(n)}}(x) = F_X(x)^n$$

$$f_{X_{(k)}}(x) = \frac{n!}{(k-1)!1(n-k)!} F_X(x)^{k-1} (1 - F_X(x))^{n-k} f_X(x)$$

2.6 Distribution de \bar{X} :

Soit X_1, \ldots, X_n , un échantillon de $N(\mu, \frac{\sigma^2}{n})$,

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$

$$Z_n = \frac{\bar{X} - \mu}{\frac{\sigma}{\sqrt{n}}} \sim N(0, 1)$$

Utilisation de la distribution d'échantillonage de \bar{X}_n :

- 1. Vérifier une affirmation
- 2. Trouver un interval plausibe
- 3. Déterminer une taille d'échantillon minimal

2.7 Somme de normales au carré

Soit $Z_1, \ldots, Z_n \sim N(0, 1)$

$$\sum_{i=1}^{n} Z_i^2 \sim \chi_n^2$$

Soit $X_1, \ldots, X_n \sim N(\mu, \sigma^2)$

$$\frac{(n-1)S_n^2}{\sigma^2} = \frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \bar{X}_n)^2 \sim \chi_{(n-1)}^2$$

 $S_n^2 \perp \bar{X}_n$

$$E[S_n^2] = \frac{\sigma^2}{(n-1)} E\left[\frac{(n-1)}{\sigma^2} S_n^2\right] = \frac{\sigma^2}{(n-1)} (n-1) = \sigma^2$$

2.8 Statistique Student

$$T_n = \sqrt{n} \frac{\bar{X}_n - \mu}{\sqrt{S_n^2}}$$

2.9 Distribution de la Statistique Student

$$T_n = \sqrt{n} \frac{\bar{X}_n - \mu}{\sqrt{S_n^2}} \sim t(n-1)$$

$$T_n = \frac{\bar{X}_n - \mu}{\sqrt{\frac{\sigma^2}{n}}} \times \sqrt{\frac{\sigma^2}{S_n^2}}$$

$$= \underbrace{\frac{\bar{X}_n - \mu}{\sqrt{\frac{\sigma^2}{n}}}}_{\sim N(0,1)} \times \underbrace{\sqrt{\frac{(n-1)}{(n-1)\frac{S_n^2}{\sigma^2}}}_{\sim \chi^2_{(n-1)}}}_{\sim \chi^2_{(n-1)}}$$

Distribution Student 2.10

Soit $Z \sim N(0,1)$ et $W \sim \chi_{(v)}^2 Z \bot W$

$$T = \frac{Z}{\sqrt{\frac{W}{n}}} \sim t(v)$$

Propriété

Si v > 1: E[T] = 0

Si v>2: $Var(T)=\frac{v}{v-2}$ Si $v\to\infty,\ t(v)$ converge vers N(0,1)

Statistique F 2.11

Soit $X_i, \ldots, X_n \sim N(\mu_1, \sigma_1^2)$ et $Y_1, \ldots, Y_n \sim N(\mu_2, \sigma_2^2)$ Pour comparer: σ_1^2 et σ_2^2

$$\frac{S_n^2}{S_m^2} = \frac{\frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X}_n)^2}{\frac{1}{m-1} \sum_{i=1}^m (Y_i - \bar{Y}_m)^2}$$

2.12 Distribution F

Soit
$$W_1 \sim \chi^2_{(v_1)}, \ W_2 \sim \chi^2_{(v_2)}$$

 $W_1 \perp W_2$

$$F = \frac{W_1}{v_1} \div \frac{W_2}{v_2} \quad F \sim F(v_1, v_2)$$

Si
$$X \sim F(v_1, v_2)$$
 et $v_2 > 2$ $E\left[X = \frac{v_2}{v_2 - 2}\right]$

2.13 Comparer variance échantionnale

Soit
$$X_1, ..., X_n \sim N(\mu_1, \sigma_1^2)$$
 et $Y_1, ..., Y_m \sim N(\mu_2, \sigma_2^2)$

$$\frac{S_n^2}{\sigma_1^2} \div \frac{S_m^2}{\sigma_2^2} \sim F(n-1, m-1)$$

14 CHAPTER 2. STATS

Lemme de Slutsky 2.14

Soit X_1, X_2, \ldots et Y_1, Y_2, \ldots Lorsque $n \to \infty$ et $X_n \leadsto X$ et $Y_n \leadsto c$

- 1. $X_n + Y_n \rightsquigarrow X + c$
- 2. $X_n \times Y_n \rightsquigarrow X \times c$ 3. Si c > 0, $\frac{X_n}{Y_n} \rightsquigarrow \frac{X}{c}$

2.15Théorème Central Limite

Theorem 2.1. Soit X_1, \ldots, X_n , un échantillon d'une V.A. quelconque:

$$Z_n = \sqrt{n} \times \frac{\bar{X}_n - \mu}{\sigma}$$

quand $n \to \infty$:

$$P(Z_n \le X) \to \phi(X)$$

Convergence en distribution:

$$Z_n \rightsquigarrow N(0,1)$$

Distribution Statistique Student lorsqu'on ne connait pas la 2.16variance et X ne provient pas d'une loi Normale

 $T \not\sim t(n-1)$

Soit X_1, \ldots, X_n , un échantillon d'une V.A quelconque:

 $E[X^4] < \infty$, lorsque $n \to \infty$:

$$T_n = \sqrt{n} \frac{\bar{X}_n - \mu}{S_n} \leadsto N(0, 1)$$

Aproximation de la loi Binomiale avec la loi Normale 2.17

$$Z = \sqrt{n} \times \frac{\bar{X}_n - p}{\sqrt{p(1-p)}} \approx N(0,1)$$

Correction de la continuité:

$$P(Y \le y) \approx P(Z \le y + 0.5)$$

2.18 Critères pour évaluer la performance d'un estimateur

2.18.1 Critère 1: Biais

$$B(\hat{\theta}_n) = E\left[\hat{\theta}_n - \theta\right] = E\left[\hat{\theta}_n\right] - \theta$$

Estimateur sans biais:

$$B(\hat{\theta}_n) = 0$$

Estimateur asymptotiquement sans biais:

$$\lim_{n \to \infty} B(\hat{\theta}_n) = 0$$

Voir preuve 4.4 et 4.5 pour le développement des biais de \bar{X}_n et S_n^2

2.18.2 Critère 2: Variance

Parmi 2 estimateurs sans biais, on préfère celui avec une plus petite variance.

Pour deux estimateur avec biais, on préfère celui avec la plus petite Erreur quadratique moyenne (EQM):

$$EQM(\hat{\theta}_n) = E[(\hat{\theta}_n - \theta)^2] = Var(\hat{\theta}_n) + [B(\hat{\theta}_n)]^2$$

2.18.3 Critère 3: Convergence

L'estimateur $\hat{\theta}_n$ est un estimateur convergent de θ si, quand $n \to \infty$,

$$\hat{\theta}_n \xrightarrow{P} \theta$$

ce qui signifie que pour tout $\epsilon > 0$,

$$\lim_{n \to \infty} P(|\hat{\theta} - \theta| > \epsilon) = 0$$

Voir 4.6 pour prouver la convergence

2.19 Efficacité relative

Soit $\hat{\theta}_n$ et $\tilde{\theta}_n$, 2 estimateurs sans biais et convergent.

$$\operatorname{eff}(\hat{\theta}_n, \tilde{\theta}_n) = \frac{Var(\tilde{\theta}_n)}{Var(\hat{\theta}_n)}$$

Si $eff(\hat{\theta}_n, \tilde{\theta}_n) > 1$, $\hat{\theta}_n$ est préférable, sinon $\tilde{\theta}_n$ est préférable.

2.20 Définition formelle statistique exhaustive

Une statistique exhaustive est une statistique qui contient toute l'information pertinente sur le paramètre visé.

Soit X_1,\ldots,X_n un échantillon aléatoire d'une distribution avec paramètre θ inconnu. Alors, la statistique

$$T = T(X_1, \ldots, X_n)$$

est exhaustive pour θ ssi la distribution conditionnelle de X_1, \ldots, X_n sachant T ne dépend pas de θ .

2.21 Théoreme de factorisation de Fischer-Neyman

Soit X_1, \ldots, X_n un échantillon aléatoire d'une distribution avec densité $f(\cdot; \theta)$ et paramètre θ inconnu. Alors, la statistique

$$T = T(X_1, \ldots, X_n)$$

est exhaustive pour θ ssi, $\forall x_1, \ldots, x_n \in \mathbb{R}$,

$$f(x_1; \theta) \times \cdots \times f(x_n; \theta) = g(t; \theta) \times h(x_1, \dots, x_n)$$

οù

- $g(t;\theta)$ ne dépend de x_1,\ldots,x_n qu'à travers t.
- $h(x_1, \ldots, x_n)$ ne dépend pas de θ .

16 CHAPTER 2. STATS

Avec plus d'un paramètre:

Soit X_1, \ldots, X_n un échantillon aléatoire d'une distribution avec densité $f(\cdot; \theta)$ et paramètres $\theta = \theta_1, \ldots, \theta_n$ inconnus. Alors, les statistiques

$$T_1 = T_1(X_1, \dots, X_n), \dots, T_k = T_k(X_1, \dots, X_n)$$

sont conjointements exhaustives pour θ ssi, $\forall x_1, \dots, x_n \in \mathbb{R}$,

$$f(x_1;\theta) \times \cdots \times f(x_n;\theta) = g(t_1,\ldots,t_k;\theta) \times h(x_1,\ldots,x_n)$$

οù

- $g(t_1, \ldots, t_n; \theta)$ ne dépend de x_1, \ldots, x_n qu'à travers t_1, \ldots, t_k .
- $h(x_1,\ldots,x_n)$ ne dépend pas de θ .

2.22 Critère de Lehmann-Scheffé

Soit X_1, \ldots, X_n un échantillon aléatoire d'une distribution avec densité $f(\cdot; \theta)$ et paramètre θ inconnu. Alors, la statistique

$$T = T(X_1, \dots, X_n)$$

est exhaustive minimale pour θ ssi, $\forall x_1, \ldots, x_n, y_1, \ldots, y_n \in \mathbb{R}$,

$$\frac{f(x_1;\theta) \times \cdots \times f(x_n;\theta)}{f(y_1;\theta) \times \cdots \times f(y_n;\theta)}$$

ne dépend pas de θ ssi

$$T(X_1,\ldots,X_n)=T(Y_1,\ldots,Y_n)$$

2.23 Théorème de Rao-Blackwell

 $\hat{\theta}_n$ un estimateur sans biais tel que $var(\hat{\theta}_n) < \infty$. Si T est exhaustive pour θ , la statistique:

$$\theta_n^* = E[\hat{\theta}_n | T]$$

est un estimateur sans biais et

$$var(\theta_n^*) \le var(\hat{\theta}_n)$$

Voir section 4.7.

2.24 Estimateur sans biais et de variance minimale(MVUE)

Un estimateur $\hat{\theta}_n$ est sans biais et de variance minimale si:

- 1. $\hat{\theta}_n$ est sans biais.
- 2. $\hat{\theta}_n = g(T)$, où T est une statistique exhaustive (minimale) obtenue avec le théorème Fischer-Neymann.

2.24.1 Construire un MVUE

- 1. Trouver une statistique exhaustive (minimale) T avec le théorème Fischer-Neymann.
- 2. Trouver une fonction g tel que: $E[g(T)] = \theta$
- 3. Poser $\hat{\theta}_n = g(T)$.

2.25 Méthode des moments

Si t paramètres sont inconnus, on résout le système à t équations:

$$m_k = E\left[X^k\right], \quad k = 1, \dots, t$$

Les estimateurs obtenus sont appelés les estimateurs des moments.

2.26 Méthode des quantiles

Pour certaine loi, les moments n'existent pas. Pour estimer t paramètres inconnus, on pourrait résoudre le système à t équations:

$$\hat{\pi}_{\kappa i} = VaR_{\kappa i}(X) \quad j = 1, \dots, t$$

2.27 Quantile empirique lissé

Pour un échantillon aléatoire X_1, \ldots, X_n le quantile empirique de niveau $\kappa \in (0,1)$ est:

$$\hat{\pi}_{\kappa,n} = (1-h)X_{(j)} + hX_{(j+1)}$$
 $j = \lfloor (n+1)\kappa \rfloor$ et $h = (n+1)\kappa - j$

2.28 Fonction de vraissemblance

Soit X_1, \ldots, X_n un échantillon aléatoire d'une distribution avec fmp ou fdd:

$$f(x;\theta), \quad \theta \in \Theta$$

où Θ est l'ensemble des valeurs possibles du paramètre. Si x_1, \ldots, x_n sont des valeurs observées de l'échantillon, la vraissemblance de θ basée sur x_1, \ldots, x_n est définie comme:

$$L(\theta) = f(x_1; \theta) \times \cdots \times f(x_n; \theta)$$

2.28.1 Observation

- X est discrète: vraisemblance de θ basée sur x_1, \ldots, x_n est exactement la probabilité d'observer x_1, \ldots, x_n .
- X est continue: vraisemblance de θ basée sur x_1, \ldots, x_n est la densité et est proportionelle à la probabilité d'observer x_1, \ldots, x_n .
- la vraisemblance est vue comme une fonction réelle déterministe de θ
- La vraisemblance est l'objet dans le théorème de factorisation de Fischer-Neymann
- la vraisemblance $L(\theta)$ devrait être plus grande pour des valeurs de θ proche de celle du mécanisme générateur de données.
- on estime donc θ par la valeur $\hat{\theta}_n$ qui maximise $L(\theta)$:

$$\hat{\theta}_n = \underset{\theta \in \Theta}{arg \, max} L(\theta)$$

18 CHAPTER 2. STATS

Chapter 3

GRF-2

3.1 Chapitre 1

Produit dérivé

Contrat entre 2 partis qui fixe les flux monétaires futurs fondés sur ceux de l'actif sous-jacent(SJ).

Étapes d'une transaction

- 1. Acheteur et vendeur se trouve. Facilité par la bourse.
- 2. Obligations pour les deux partis définis (prix, produits, conditions). Si transaction à la bourse: intermédiaire, et donc, dépôts de garantie possibles.
- 3. Transaction
- 4. Mise à jour du registre de propriété.

Mesure d'évaluation taille(activité) de la bourse(marché)

- Volume de transaction: nombre de titres transigés parpériodes
- Valeur marchande: Valeur d'une action/cie/indice boursier
- Positions ouvertes: quantité de contrats qui ne sont pas arrivés à échéance

Rôle des marchés financiers

- Partage du risque: compagnie partage le risque et les profits avec les actionnaires
- Diversification du risque: risque diversifiable → théoriquement possible de diluer le risque pour qu'il devienne nul. Risque non-diversifiable → possible de transférer le risque via des produits dérivés.

Utilité des produits dérivés

- Gestion des risques
- Spéculation
- Réduction des frais de transaction
- arbitrage réglementaire

3 types d'acteurs

- Uilisateurs(acheteur/vendeurs)
- Teneur de marché(intermédiaire)
- Observateur(analyste/autorité)

20 CHAPTER 3. GRF-2

Définitions

- Ordre au cours du marché: quantité de l'actif visé à acheter(vendre) au prix du marché, au moment où l'ordre est passée.
- Ordre à cours limité: quantité d'actions à acheter/vendre dans une tranche spécifique de prix.
- Ordre de vente «stop»: prix en dessous duquel on vend automatiquement.
- Position longue: qui profitera de l'augmentation de la valeur du SJ.
- Position courte: qui profitera de la diminution de la valeur du SJ.
- Vente à découvert: vente d'un actif qu'on ne possède pas. L'actif est livré à une date ultérieur, mais paiement à t=0 au prix de l'actif à t=0.
 - Utilité:
 - * Spéculation
 - * Financement
 - * Couverture contre la baisse de valeur
 - Risque:
 - * de défaut
 - * de rareté

3.1.1 CAPM(Capital asset pricing management)

3 postulats:

- 1. Transactions efficaces et sans friction: pas de frais de transaction, emprunt au taux sans risque.
- 2. Rationnalité des investisseurs: maximise leur ratio de Sharpe

$$ightarrow \; rac{E[R_p - r_f]}{\sigma_p}$$

3. Attentes et espérances homogènes

L'équation du CAPM pour un actif i:

$$R_i = r_f + a_i + \beta_i (R_{mkt} - r_f) + \epsilon$$

Cela implique:

$$\frac{dR_i}{dR_{mkt}} = \beta_i = \frac{Cov(R_i, R_{mkt})}{Var(R_{mkt})}$$

Pour un portefeuille p:

$$\frac{dR_p}{dR_{mkt}} = \beta_p = \frac{Cov(\sum x_i R_i, R_{mkt})}{Var(R_{mkt})} = \sum x_i \frac{Cov(R_i, R_{mkt})}{Var(R_{mkt})} = \sum x_i \beta_i$$

Incohérences du modèle

- Investisseurs non rationnels et pas informés sur leur portefeuille
- Certains ne veulent pas nécessairement maximiser leur ratio de Sharpe, ont d'autres objectifs
- Il y a des investisseurs qui ne diversifient pas leur portefeuille de manière optimale
- Il y en a qui sont ultra-actif, malgré le fait que le CAPM suppose une gestion passive

Comportements avec effet plus systémique:

- Peur du regret: garder un titre qui est en train de baisser ou vendre un titre avant qu'il remonte
- Les investisseurs sont influençables; ils achèteront les titres médiatisés, etc.
- Effet de trouppeau: on fait comme ceux qu'on connait

3.2. CHAPITRE 2 21

3.1.2 Modèle multifactoriel et l'APT(arbitrage pricing theory)

Trois types d'actifs avec des alphas strictement positifs qui contredisent le CAPM:

- Petites capitalisations: on observe des rendements supérieurs à ce que le CAPM prédit
- Book to market ratio: titres "value" avec une valeur au livre supérieur à la valeur marchande verront la valeur marchande rejoindre la valeur au livre avec le temps
- Momemtum: les compagnies qui ont connues un bon rendement dernièrement auront tendance à avoir un rendement supérieur à la moyenne

3.1.2.1 APT

$$E[R_s] - r_f = \sum_{i=1}^{N} \beta_s^{Fi} (E[R_{Fi}] - r_f)$$

Les "F" sont des facteurs. Il est possible de créer des modèles avec n'importe quels facteurs comme des indices boursiers.

3.2 Chapitre 2

3.2.1 Contrat Foward

Achat d'un actif prédeterminé à une valeur initiale S_0 , à une date de livraison T et à un prix $F_{0,T}$. Le coût initial est nul. $F_{0,T}$ est le prix anticipé de l'acftif sous-jacent rendu à la date T. $S_0(1+r_f)^T=F_{0,T}$

- Valeur à l'échéance:
 - Pour l'acheteur(position longue): $F_{0,T} S_T$
 - Pour le vendeur(position courte): $S_t F_{0,T}$

Contrat Foward

22 CHAPTER 3. GRF-2

3.2.2 Foward prépayé

Dans certain cas, l'acheteur voudra payé à t=0. Le coût initial sera $F_{0,T}^P$. On achète immédiatemment sans avoir l'actif à la date de transaction. La position de l'acheteur est capitalisée. Dans un achat ferme, la position de l'acheteur est pleinement capitalisée. Le contrat foward, lui, implique une position non capitalisée.

Temps	Acheteur	Vendeur
t = 0 $t = T$	$-F_{0,T}^{P}$ S_{T}	$F_{0,T}^{P}$ $-S_{T}$

Foward vs Achat ferme

Pour recréer les cashflows d'un contrat foward avec un achat ferme, on finance l'achat ferme avec un emprunt au taux sans risque.

Temps	Achat ferme	+ Emprunt	= Foward
t = 0	$-S_0$	S_0	Ø
t = T	S_T	$F_{0,T}$	$S_T - F_{0,T}$

On peut aussi recréer les cashflows d'un achat ferme avec un foward et en investissant la valeur actualisée de $F_{0,T}$. $F_{0,T}(1+r_f)^{-T} = S_0(1+r_f)^T(1+r_f)^{-T} = S_0$.

Temps	Dépot	+ Foward	= Achat ferme
t = 0	$-S_0$	Ø	$-S_0$
t = T	$F_{0,T}$	$S_T - F_{0,T}$	S_T

3.2. CHAPITRE 2 23

3.2.3 Option d'achat(call)

Contrat qui permet au détenteur (position longue) d'acheter un actif sous-jacent à un prix prédéterminé, strike price = K, à une date d'échéance ou d'içi cette date, s'il le désire.

3 types de levées: 1. Européenne (à la date T) 2. Américaine (d'içi la date T) 3. Bermudienne (à certains moments d'içi T)

	Profit	
Actif SJ	Acheteur	Vendeur
$S_T > K$ $S_T < K$	$S_T - K - C(K,T)(1+r_f)^T - C(K,T)(1+r_f)^T$	$K - S_T + C(K, T)(1 + r_f)^T C(K, T)(1 + r_f)^T$

Option d'achat(long)

Option d'achat (courte)

	Valeur à l'échéance
Acheteur	$max(0; S_T - K)$
Vendeur	$-max(0; S_T - K)$

3.2.4 Option de vente(put)

Contrat qui permet au détenteur (position courte) de vendre un actif sous-jacent à un prix prédéterminé, strike price =K, à une date d'échéance ou d'içi cette date, s'il le désire. Le vendeur (position longue) de l'option devra acheter le SJ à ce prix si le détenteur (acheteur) le désire. 24 CHAPTER 3. GRF-2

Option de vente			
Position	Profit	Valeur à l'échéance	
Acheteur	$max(0; K - S_T) - P(K, T)(1 + r_f)^T$	$max(0; K - S_T)$	
Vendeur	$P(1+r_f)^T - max(0; K - S_T)$	$-max(0; K - S_T)$	

Option de vente (courte)

Option de vente (long)

Chapter 4

Preuves

4.1 Théorème (1.1) de la fonction quantile

Proof.

$$F_{F_X^{-1}(u)}(x) = P(F_X^{-1} \le x)$$

= $P(U \le F_X(x))$
= $F_X(x)$

4.2 Fonction Stop-Loss(1.3)

Proof.

$$\begin{split} \Pi_X(d) &= E[\max(X - d, 0)] \\ &= E\left[X \times 1_{\{X > d\}} - d \times 1_{\{X > d\}}\right] \\ &= E\left[X \times 1_{\{X > d\}}\right] - d\bar{F}(d) \end{split}$$

4.3 Tvar

4.3.1 Expresion alternative 1(1.6.1)

Proof. On applique 1.4.1, ainsi:

$$\begin{aligned} \text{TVaR}_k(X) &= \frac{1}{(1-k)} \int_k^1 \text{VaR}_k(u) \, du \\ &= \frac{1}{1-k} \left(\Pi_X(\text{VaR}_k(X)) \right) + \text{VaR}_k(X) \end{aligned}$$

4.3.2 Expression alternative 2(1.6.2)

Proof. On remplace $\Pi_X(VaR_k(X))$ dans 4.3.2 par sa définition 1.3

$$\begin{aligned} \operatorname{TVaR}_k(X) &= \operatorname{VaR}_k(X) + \frac{1}{(1-k)} \left(E[X \times 1_{\{X > \operatorname{VaR}_k(X)\}}] - \operatorname{VaR}_k(X) \bar{F}_X(\operatorname{VaR}_k(X)) \right) \\ &= \frac{1}{(1-k)} \left[E\left[X \times 1_{\{X > \operatorname{VaR}_k(X)\}}\right] - \operatorname{Var}_k(X) \left(\bar{F}_X(\operatorname{VaR}_k(X)) - (1-k) \right) \right] \\ &= \frac{1}{(1-k)} \left[E\left[X \times 1_{\{X > \operatorname{VaR}_k(X)\}}\right] - \operatorname{Var}_k(X) \left(F_X(\operatorname{VaR}_k(X)) - k \right) \right] \end{aligned}$$

Pour une V.A. continue $VaR_k(X) (F_X(VaR_k(X)) - k) = 0$ donc,

$$TVaR_k(X) = \frac{E\left[X \times 1_{\{X > VaR_k(X)\}}\right]}{P(X > VaR_k(X))} = E\left[X|X > VaR_k(X)\right]$$

4.3.3 Expression alternative 3(1.6.3)

On fait la preuve à partir de l'expression alternative 2:

Proof.

$$\begin{aligned} \text{TVaR}_{k}(X) &= \frac{1}{(1-k)} \left[E[X \times 1_{\{X > \text{VaR}_{k}(X)\}}] - \text{VaR}_{k}(X) (F_{X}(\text{VaR}_{k}(X)) - k) \right] \\ &= \frac{1}{(1-k)} \left[E[X \times 1_{\{X > \text{VaR}_{k}(X)\}} + X \times 1_{\{X = \text{VaR}_{k}(X)\}} - X \times 1_{\{X = \text{VaR}_{k}(X)\}} \right] \\ &- \text{VaR}_{k}(X) \left(1 - \bar{F}_{X}(\text{VaR}_{k}(X)) - (1 - (1 - k)) \right) \\ &= \frac{1}{(1-k)} \left\{ E[X \times 1_{\{X \ge \text{VaR}_{k}(X)\}}] - E[X \times 1_{\{X = \text{VaR}_{k}(X)\}}] + \text{VaR}_{k}(X) \left[(1-k) - P(X > \text{VaR}_{k}(X)) \right] \right\} \\ &= \frac{1}{(1-k)} \left\{ E[X \times 1_{\{X \ge \text{VaR}_{k}(X)\}}] - (E[X \times 1_{\{X = \text{VaR}_{k}(X)\}}] + P(X > \text{VaR}_{k}(X)) \times \text{VaR}_{k}(X) \right) \right\} \end{aligned}$$

Deux cas possibles:

- 1. V.A. discrète $P(X = VaR_k(X)) > 0$
- 2. V.A. continue $P(X = VaR_k(X)) = 0$

 $\text{Donc la portion } (E[X \times 1_{\{X = \operatorname{VaR}_k(X)\}}] + P(X > \operatorname{VaR}_k(X)) \times \operatorname{VaR}_k(X)) = \operatorname{VaR}_k(X)[1 - \frac{P(X \geq \operatorname{VaR}_k(X))}{(1-k)}] \quad \Box$

Propriété

Sous-additivité

3 preuves. La première est basée sur les statistiques d'ordre, la deuxième est basée sur la représentation de la TVaR par la stop-loss.

1ere preuve:

Proof. 1er lemme: Soit une V.A. X quelconque, dont $E[X] < \infty$. Soit m réalisations indépendantes de $X: X^{(1)}, \ldots, X^{(m)}$.

$$\text{TVaR}_{\kappa}(X) = \frac{\lim_{m \to \infty} \left(\sum_{j = \lfloor m\kappa \rfloor + 1}^{n} X^{[j]} \right)}{\lfloor m(1 - \kappa) \rfloor}, \text{ pour } \lfloor m\kappa \rfloor < m$$

4.3. TVAR 27

Où,

$$\lfloor x \rfloor = \text{partie entière de } x$$

$$X^{[1]} \le X^{[2]} \le \cdots \le X^{[m]} = \text{réalisations triées de} X$$

2e lemme:

Soit les réalisations : $X^{(1)}, \dots, X^{(m)}$ On définit $X^{[1]} \leq X^{[2]} \leq \dots \leq X^{[m]}$ comme les réalisations triées de X.

$$\sum_{j=m-1}^{m} X^{[j]} = \sup\{X^{(j_1)} + X^{(j_2)}, \ 1 \le j_1 \le j_2 \le m\}$$

$$\sum_{j=m-2}^{m} X^{[j]} = \sup\{X^{(j_1)} + X^{(j_2)} + X^{(j_3)}, \ 1 \le j_1 \le j_2 \le j_3 \le m\}$$

$$\sum_{j=k_0+1}^{m} X^{[j]} = \sup\{X^{(j_1)} + X^{(j_2)} + \dots + X^{(j_{m-k_0})}, \ 1 \le j_1 \le j_2 \le \dots \le j_{m-k_0} \le m\}$$

Soit les V.A. X_1, X_2 avec $E[X_i] < \infty, i = 1, 2$. $S = X_1 + X_2$

Avec le 1er lemme:

$$\text{TVaR}_{\kappa}(S) = \frac{\lim_{m \to \infty} \left(\sum_{j=\lfloor m\kappa \rfloor + 1}^{n} S^{[j]} \right)}{\lfloor m(1 - \kappa) \rfloor}$$

On développe $\sum_{j=\lfloor m\kappa\rfloor+1}^m S^{[j]}$ en utilisant le 2e lemme et on pose $\kappa_0=\lfloor m\kappa\rfloor$

$$\sum_{j=\lfloor m\kappa \rfloor+1}^{m} S^{[j]} = \sup\{S^{(j_1)} + \dots + S^{(j_{m-\lfloor m\kappa \rfloor})}, 1 \leq j_1 \leq \dots \leq j_{m-\lfloor m\kappa \rfloor} \leq m\}$$

$$= \sup\{\left(X_1^{(j_1)} + X_2^{(j_1)}\right) + \left(X_1^{(j_2)} + X_2^{(j_2)}\right) + \dots + \left(X_1^{(j_{m-\kappa_0})} + X_2^{(j_{m-\kappa_0})}\right)$$

$$, 1 \leq j_1 \leq \dots \leq j_{m-\kappa_0} \leq m\}$$

$$= \sup\{\left(X_1^{(j_1)} + X_1^{(j_2)} + \dots + X_1^{(j_{m-\kappa_0})}\right) + \left(X_2^{(j_1)} + X_2^{(j_2)} + \dots + X_2^{(j_{m-\kappa_0})}\right)$$

$$, 1 \leq j_1 \leq \dots \leq j_{m-\kappa_0} \leq m\}$$

$$\leq \sup\{\left(X_1^{(j_1)} + X_1^{(j_2)} + \dots + X_1^{(j_{m-\kappa_0})}\right), 1 \leq j_1 \leq \dots \leq j_{m-\kappa_0} \leq m\}$$

$$+ \sup\{\left(X_2^{(j_1)} + X_2^{(j_2)} + \dots + X_2^{(j_{m-\kappa_0})}\right), 1 \leq j_1 \leq \dots \leq j_{m-\kappa_0} \leq m\}$$

$$= \sum_{j=\kappa_0+1}^{m} X_1^{[j]} + \sum_{j=\kappa_0+1}^{m} X_2^{[j]}$$

On applique le 1er lemme de chaque coté de l'inégalité

$$\sum_{j=\kappa_0+1}^m S^{[j]} \leq \sum_{j=\kappa_0+1}^m X_1^{[j]} + \sum_{j=\kappa_0+1}^m X_2^{[j]}$$

28 CHAPTER 4. PREUVES

$$\begin{aligned} \text{TVaR}_{\kappa}(S) &= \lim_{m \to \infty} \frac{1}{\lfloor m(1 - \kappa) \rfloor} \sum_{j = \kappa_0 + 1}^{m} S^{[j]} \\ &\leq \lim_{m \to \infty} \frac{1}{\lfloor m(1 - \kappa) \rfloor} \sum_{j = \kappa_0 + 1}^{m} X_1^{[j]} + \lim_{m \to \infty} \frac{1}{\lfloor m(1 - \kappa) \rfloor} \sum_{j = \kappa_0 + 1}^{m} X_2^{[j]} \\ &= \text{TVaR}_{\kappa}(X_1) + \text{TVaR}_{\kappa}(X_2) \end{aligned}$$

2e preuve:

$$\begin{aligned} \operatorname{TVaR}_{\kappa}(X) &= \operatorname{VaR}_{\kappa} + \frac{1}{1-\kappa} \Pi_X(VaR_{\kappa}(X)) \\ &= \phi(VaR_{\kappa}(X)) \\ \operatorname{où} \phi(X) &= x + \frac{1}{1-\kappa} \Pi_X(x) \\ \operatorname{et} \Pi_X(x) &= E\left[\max(X-x;0)\right] \end{aligned}$$

Donc,

 $\text{TVaR}_{\kappa}(X) = \inf \phi(X)$, où $\phi(X)$ est une fonction convexele minimum est atteint à $\text{VaR}_{\kappa}(X)$

Exemple: X~Exp(1) et kappa=0.9

Vérification que $\phi(X)$ ext convexe en x: Supposons que Xest continue: 4.3. TVAR 29

$$\phi(X) = x + \frac{1}{1-\kappa} \int_x^\infty \bar{F}_X(y) dy, \ x \ge 0$$

Dérivée première de $\phi(X)$

$$\frac{d\phi(X)}{dx} = 1 + \frac{1}{1-\kappa}(-\bar{F}_X(x))$$

Dérivée seconde de $\phi(X)$

$$\frac{d^2\phi(x)}{d^2x} = \frac{1}{1-\kappa} f_X(x) \ge 0, \quad x \ge 0$$

Valeur qui minimise $\phi(X)$:

$$\frac{d\phi(X)}{dx} = 1 + \frac{1}{1 - \kappa}(-\bar{F}_X(x)) = 0$$
$$\bar{F}_X(x) = 1 - \kappa$$
$$F_X(x) = \kappa$$

Alors,

$$\text{TVaR}_{\kappa}(X) = \phi_X(\text{VaR}_{\kappa}(X))$$
 $\leq \phi_X(x), \quad x \in \mathbb{R}$

Soit X_1 et X_2 tel que $E[X_i] \leq \infty$, pour i=1,2 $S=X_1+X_2, \ \kappa \in (0,1)$. On développe $\mathrm{TVaR}_\kappa((1-\alpha)X_1+\alpha X_2)$, où $\alpha \in (0,1)$

$$\begin{aligned} \text{TVaR}_{\kappa}((1-\alpha)X_{1} + \alpha X_{2}) &= \phi_{(}(1-\alpha)X_{1} + \alpha X_{2})(x) \\ &\leq x \frac{1}{1-\kappa} \Pi_{((1-\alpha)X_{1} + \alpha X_{2})}(x), \quad x \in \mathbf{R} \\ &= x + \frac{1}{1-\kappa} E\left[\max\left((1-\alpha)X_{1} + \alpha X_{2}; 0 \right) \right], \quad x \in \mathbf{R} \end{aligned}$$

On fixe $x = (1 - \alpha) \text{VaR}_{\kappa}(X_1) + \alpha \text{VaR}_{\kappa}(X_2)$

$$\begin{split} \operatorname{TVaR}_{\kappa}((1-\alpha)X_{1} + \alpha X_{2}) &\leq (1-\alpha)\operatorname{VaR}_{\kappa}(X_{1}) + \alpha \operatorname{VaR}_{\kappa}(X_{2}) \\ &+ \frac{1}{1-\kappa}E\left[\max((1-\alpha)X_{1} + \alpha X_{2} - (1-\alpha)\operatorname{VaR}_{\kappa}(X_{1}) - \alpha\operatorname{VaR}_{\kappa}(X_{2});0)\right], \\ \operatorname{vrai} \operatorname{pour} \alpha &\in (0,1) \\ &= (1-\alpha)\operatorname{VaR}_{\kappa}(X_{1}) + \alpha\operatorname{VaR}_{\kappa}(X_{2}) \\ &+ \frac{1}{1-\kappa}E\left[\max((1-\alpha)(X_{1} - \operatorname{VaR}_{\kappa}(X_{1}))\alpha(X_{2} - \operatorname{VaR}_{\kappa}(X_{2}));0)\right] \\ &\leq (1-\alpha)\operatorname{VaR}_{\kappa}(X_{1}) + \alpha\operatorname{VaR}_{\kappa}(X_{2}) \\ &+ \frac{1}{1-\kappa}E\left[\max((1-\alpha)(X_{1} - \operatorname{VaR}_{\kappa}(X_{1}));0)\right] \\ &+ \frac{1}{1-\kappa}E\left[\max((\alpha)(X_{2} - \operatorname{VaR}_{\kappa}(X_{2}));0)\right] \\ &= \operatorname{VaR}_{\kappa}((1-\alpha)X_{1}) + \operatorname{VaR}_{\kappa}(\alpha X_{2}) \\ &+ \frac{1}{1-\kappa}E\left[\max((1-\alpha)X_{1} - \operatorname{VaR}_{\kappa}((1-\alpha)X_{1}))\right] \\ &+ \frac{1}{1-\kappa}E\left[\max((1-\alpha)X_{1} - \operatorname{VaR}_{\kappa}(\alpha X_{2})\right] \\ &= \operatorname{TVaR}_{\kappa}((1-\alpha)X_{1}) + \operatorname{TVaR}_{\kappa}(\alpha X_{2}), \quad \alpha \in (0,1) \\ \text{On fixe } \alpha &= \frac{1}{2} \\ \operatorname{TVaR}_{\kappa}(\frac{1}{2}X_{1} + \frac{1}{2}X_{2}) &= \operatorname{TVaR}_{\kappa}(\frac{1}{2}(X_{1} + X_{2})) \\ &= \frac{1}{2}(T\operatorname{VaR})_{\kappa}(X_{1} + X_{2}) \\ &\leq \frac{1}{2}(T\operatorname{VaR})_{\kappa}(X_{1}) + \frac{1}{2}(T\operatorname{VaR})_{\kappa}(X_{2}) \end{split}$$

On multiplie par 2 et on déduit :

$$(TVaR)_{\kappa}(X_1 + X_2) \le (TVaR)_{\kappa}(X_1) + (TVaR)_{\kappa}(X_2)$$

4.4 Biais moyenne échantillonale (voir 2.18.1)

Proof.

$$B(\hat{\theta}_n) = E[\bar{X}_n] - E[X]$$
$$= E[X] - E[X] = 0$$

4.5 Biais variance échantillonale (voir 2.18.1)

Proof.

$$S_n^2 = \frac{1}{n-1} \left(\sum_{i=1}^n (X_i - \bar{X}_n)^2 \right)$$

$$= \frac{1}{n-1} \left(\sum_{i=1}^n (X_i^2 - 2X_i \bar{X}_n + \bar{X}_n^2) \right)$$

$$= \frac{1}{n-1} \left[\left(\sum_{i=1}^n X_i^2 \right) - \frac{2}{n-1} \left(\bar{X}_n \sum_{i=1}^n X_i \right) + \frac{n}{(n-1)} \bar{X}_n^2 \right]$$

$$= \frac{1}{n-1} \left(\sum_{i=1}^n X_i^2 \right) - \frac{n}{(n-1)} \bar{X}_n^2$$

$$E\left[S_{n}^{2}\right] = E\left[\frac{1}{n-1}\left(\sum_{i=1}^{n}X_{i}^{2}\right)\right] - E\left[\frac{n}{(n-1)}(\bar{X}_{n})\right]$$

$$= \frac{n}{n-1}((Var(X) + E^{2}[X])) - \frac{1}{(n-1)}(Var(X)) - \frac{n}{n-1}(E[X^{2}])$$

$$= Var(X)$$

$$B(S_n^2) = Var(X) - \sigma^2 = 0$$

4.6 Convergence (voir 2.18.3)

Proof. On prouve avec Tchebycheff Un estimateur sans biais est convergent si:

$$\lim_{n \to \infty} Var(\hat{\theta}_n) = 0$$

On fixe
$$\epsilon > 0$$
,

$$P(|\hat{\theta}_n - \theta| > \epsilon) = P(|\hat{\theta}_n - E[\hat{\theta}_n]| > \epsilon)$$

$$= P(|\hat{\theta}_n - E[\hat{\theta}_n]| > \frac{\epsilon \times \sqrt{Var(\hat{\theta}_n)}}{\sqrt{Var(\hat{\theta}_n)}})$$

$$\leq \frac{Var(\hat{\theta}_n)}{\epsilon^2}$$

Donc si $Var(\hat{\theta}_n) \to 0$ quand $n \to \infty$, $\hat{\theta}_n$ est convergent

4.7 Téorème de Rao-Blackwell (voir section 2.23)

Puisque T est exhaustive pour θ , la distribution conditionnelle de (X_1, \ldots, X_n) sachant T ne dépend pas de θ . Alors,

$$\theta_n^* = E[\hat{\theta}_n | T]$$

ne dépend pas de $\theta.$ Donc, θ_n^* est une statistique. Par l'espérance totale,

$$E[\theta_n^*] = E[E[\hat{\theta}_n|T]] = E[\hat{\theta}_n] = \theta,$$

 θ_n^* est donc sans biais. Par la variance totale,

$$\begin{aligned} var(\hat{\theta}_n) &= var(E[\hat{\theta}_n|T]) + E[var(\hat{\theta}_n|T)] \\ &= var(\theta_n^*) + E[var(\hat{\theta}_n|T)] \end{aligned}$$

Sachant que

$$E[var(\hat{\theta}_n|T)] \ge 0$$

$$var(\theta_n^*) \le var(\hat{\theta}_n)$$