

Differential Expression using RNA-Seq

Vivek Iyer Based extensively on slides from Victoria Offord Wellcome Sanger Institute 7 June 2024

Learning outcomes

By the end of this module and tutorial you can expect to be able to:

- Appreciate the important aspects of RNASeq experiment design
- Understand the various technical steps in RNASeq pipelines
- Align RNA-Seq reads to a reference genome and a transcriptome
- Visualise transcription data using standard tools
- Quantify the expression values of your transcripts using standard tools
- Perform QC of NGS transcriptomic data
- Interpret differential gene expression data

This module in context

A change of modality - sequence mRNA! (indirectly)

- QC basic thresholds and PCA
- See some actual stats -
 - Experiments are looking for associations between
 - gene expression (quantitative readout)
 - experimental conditions
 - Some sort of modelling needed
 - We'll see p-values and q-values flying around.
- Once you see these techniques, CRISPR screens make sense too

About me

Background

- PhD Theoretical physics 1996
- Software engineering (consultancy) 1996-2002
- Sanger 2002 now
 - Java developer (Apollo genome browser)
 - Ensembl gene builder
 - High-throughput Mouse ESCell KO's (EuCOMM/KOMP)
 - Cancer bioinformatics / analysis (WGS, WES, CNV, CRISPR)
 - Human genetics programme informatics team (services to humgen)

Scale + engineering

- WES/WGS variant calling and QC
- RNA and scRNA calling and QC
- TRE / "Data safe havens"
- Software and disk space management

Lecture outline

- RNA-seq background
- Pipelines
 - Mapping to the genome (HISAT2 and IGV)
 - Mapping to the transcriptome and counting reads (Kallisto)
 - Read count normalisation
 - Differential expression and QC (Sleuth)
- What to do with a gene list
- The exercise

Lecture outline

- RNA-seq background
- Pipelines
 - Mapping to the genome (HISAT2 and IGV)
 - Mapping to the transcriptome and counting reads (Kallisto)
 - Read count normalisation
 - Differential expression and QC (Sleuth)
- What to do with a gene list
- The exercise

What is the transcriptome?

"The complete set of transcripts in a cell and their quantity

for a specific developmental stage or condition"

What is the transcriptome?

"The complete set of transcripts in a cell and their quantity

for a specific developmental stage or condition"

It's a snapshot

- Fixed point in time
- Fixed set of conditions

RNASeq - uses NGS technology to measure this

Wang et al. (2009) Nature Reviews Genetics (PubMed: 19015660)

Plasmodium berghei

vvi 19254170 20 Oct 19:31 PccAS_v3_genome.fa
vvi 10554131 20 Oct 19:31 PccAS v3 transcripts.fa

Transcriptome (10M) \sim 50% of genome (20M) Exons are big cf introns / intergenic

Homo Sapiens

3.0 G GRCh38_15/Homo_sapiens.GRCh38_15.fa

434 M Homo_sapiens.GRCh38.cdna.all.fa

Transcriptome ~ 10% of genome Exons are *small* compared to introns / intergenic

Central dogma

Central dogma

Central dogma

RNA Sequencing

- Convert to cDNA
- Fragmented
- Adapters
- sequenced
- Direct sequencing of mRNA via long-read

Wang *et al.* (2009) Nature Reviews Genetics (PubMed: 19015660)

Experimental design

- Successful RNA-Seq studies start with a good study design
- Considerations for generating data to answer your biological question include:
 - library prep and type
 - sequencing depth
 - number of replicates

Experimental design - library preparation

- Total RNA = mRNA + **rRNA** + tRNA + regulatory RNAs...
- Ribosomal RNA can represent > 90% total RNA
- We need to enrich for the 1-2% mRNA *OR* deplete rRNA
 - o enrichment typically needs good RIN and high RNA proportion
 - o some samples (e.g. tissue biopsies) may not be suitable
 - bacterial mRNA not polyadenylated -> ribosomal depletion
- Be aware of protocol being used (e.g. some will remove small RNAs)

Experimental design - library type

Stranded vs unstranded

 strand-specific protocols better for detangling antisense or overlapping transcripts

Single or paired end

- paired end better for *de novo* transcript discovery or isoform expression analysis
- < 55% reads will span 2 or more exons</p>

SRR 3'UTR overlaps TSR1 3'UTR + coding

SRR 3'UTR overlaps TSR1 3'UTR + coding

Experimental design - replicates

Biological replicates

- biologically distinct samples
- same type of organism treated or grown in the same condition
- understand biological variation (e.g. variation between individuals)
- relevant biological replicates are required

Technical replicates

- repeated measurements of the same sample
- understand the variation in equipment or protocols
- technical replicates are not generally required, but try to arrange samples on plates to minimise potential problems (*some packages adjust based on these "svike-ins"*)

Experimental design - sequencing depth

Sequencing depth: encodeproject.org

- 100bp Paired End, Human transcriptome: 30 million reads
- Novel transcripts, rare isoforms: 50-100 million reads

Next: this is how I think sequencing depth ...

Experimental design - sequencing depth

This is how I think about it

- $30 \text{ million} \times 100 \text{bp PE} \sim 3 \times 10^7 \times 100 \sim 3 \times 10^9 \text{ bases}$
- Transcriptome ~ 150 Mbp ~ $1.5 \times 10^8 \text{ bases} => "Coverage" ~ <math>20x = 30/1.5$)

Experimental design - sequencing depth

This is how I think about it

- $30 \text{ million} \times 100 \text{bp PE} \sim 3 \times 10^7 \times 100 \sim 3 \times 10^9 \text{ bases}$
- Transcriptome ~ 150 Mbp ~ $1.5 \times 10^8 \text{ bases} \Rightarrow$ "Coverage" ~ 20x = 30/1.5)
- This means you can "reasonably" tell apart : full / half / quarter

Experimental design - replicates

This is how I think about it

- 30 million x 100bp PE $\sim 3x10^7 x 100 \sim 3 x 10^9$ bases
- Transcriptome ~ 150 Mbp ~ 1.5 x 10^8 bases => Coverage ~ 20x
- This means you can "reasonably" tell apart: full / half / quarter

- Increasing sequencing depth can increase the ability to detect low expression transcripts (i.e. increases ability to detect DE genes)
 - Returns diminish beyond a certain sequencing depth
- Increasing biological replicates increases the accuracy of logFC and absolute expression levels (particularly in low expression transcripts)

BIOINFORMATICS DISCOVERY NOTE

Vol. 30 no. 3 2014, pages 301-304 doi:10.1093/bioinformatics/btt688

Gene expression

Advance Access publication December 6, 2013

RNA-seq differential expression studies: more sequence or more replication?

Yuwen Liu^{1,2}, Jie Zhou^{1,3} and Kevin P. White^{1,2,3,*}

³Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA

Associate Editor: Janet Kelso

¹Institute of Genomics and Systems Biology, ²Committee on Development, Regeneration, and Stem Cell Biology and

Use a power calculator to estimate sample size!

https://cqs-vumc.shinyapps.io/rnaseqsamplesizeweb/

Plug in

- Sample Size
- FDR level
- Total number of genes
- Expected variable genes
- Minimum FC between groups
- Average read counts
- Dispersion for prognostic genes

Plug in

- Sample Size
- FDR level
- Total number of genes
- Expected variable genes
- Minimum FC between groups
- Average read counts
- Dispersion for prognostic genes

Lecture outline

RNA-seq background

Pipelines

- Mapping to the genome (HISAT2 and IGV)
- Mapping to the transcriptome and counting reads (Kallisto)
- Read count normalisation
- Differential expression and QC (Sleuth)
- What to do with a gene list
- The exercise

Key steps in any pipeline

- 1. Which genes/transcripts do our reads belong to? mapping / assembly
- 2. How many reads align to a specific gene/transcript? quantification
- Do different sample groups express genes/transcripts differently? DGE analysis

No universal pipeline to cover every analysis!!!

Lecture outline

RNA-seq background

Pipelines

- Mapping to the genome (HISAT2 and IGV)
- Mapping to the transcriptome and counting reads (Kallisto)
- Read count normalisation
- Differential expression and QC (Sleuth)
- What to do with a gene list
- The exercise

Mapping RNA-seq reads to the genome (HISAT2)

- Mapping to the genome is great for determining whether your RNA-seq data is of high quality and exploring the structure of genes of interest
- Eukaryotic genes have introns, which are not present in mature mRNA so special mapping algorithms are required (splice-aware)

Mapping RNA-seq reads to the genome (HISAT2)

- Mapping to the genome is great for determining whether your RNA-seq data is of high quality and exploring the structure of genes of interest
- Eukaryotic genes have introns, which are not present in mature mRNA so special mapping algorithms are required (splice-aware)
- **HISAT2** is only one such algorithm, but is accurate, fast and easy to use. (others include STAR, and bowtie2 (v old))

Splice aware alignment

Mapping RNA-seq reads to the genome (HISAT2)

- Mapping to the genome is great for determining whether your RNA-seq data is of high quality and exploring the structure of genes of interest
- Eukaryotic genes have introns, which are not present in mature mRNA so special mapping algorithms are required (splice-aware)
- **HISAT2** is only one such algorithm, but is accurate, fast and easy to use. (others include STAR, and bowtie2 (v old)
- HISAT2: memory footprint smaller, novel splice discovery faster

Visualisation: Integrative Genomics Viewer (IGV)

Visualisation: Integrative Genomics Viewer (IGV)

Lecture outline

RNA-seq background

Pipelines

- Mapping to the genome (HISAT2 and IGV)
- Mapping to the transcriptome and counting reads (Kallisto)
- Read count normalisation
- Differential expression and QC (Sleuth)
- What to do with a gene list
- The exercise

Kallisto has two steps:

- 1. Building an index from the spliced transcript sequences
- 2. Quantify reads against the index

WHAT IS THE DISADVANTAGE ??

Kallisto has two steps:

- 1. Building an index from the spliced transcript sequences
- 2. Quantify reads against the index

Kallisto cannot be used to identify novel transcripts

- It is faster because there is less target sequence
- *pseudoalignment* make this even faster
 - o doesn't care where in each transcript reads map to, just which of the transcripts they map to
- Counting comes for free
- Multiple splice forms per gene introduce ambiguity into the mapping
 - Mapping to the spliced transcript sequences allows this ambiguity to be taken into account and allows transcript-specific read counts

Bray *et al.* (2016) Nature Biotechnology (PubMed: 27043002)

Lecture outline

- RNA-seq background
- Pipelines

- Good quality control method
- Novel splice junctions discovery
- Have to quantify afterwards
- If you have the compute, do it

- Mapping to the genome (HISAT2 and IGV)
- Mapping to the transcriptome and counting reads (Kallisto)
- Read count normalisation
- Differential expression and QC (Sleuth)
- What to do with a gene list
- The exercise

- Very very fast
- Quantification comes for free
- Must have transcriptome defined
- Cant discover novel transcripts

Lecture outline

RNA-seq background

Pipelines

- Mapping to the genome (HISAT2 and IGV)
- Mapping to the transcriptome and counting reads (Kallisto)
- Read count normalisation
- Differential expression and QC (Sleuth)
- What to do with a gene list
- The exercise

Gene	Replicate 1 Counts	Replicate 2 Counts	Replicate 3 Counts
A (2,000 bases)	10	12	30
B (4,000 bases)	20	25	60
C (1,000 bases)	5	8	15
D (10,000 bases)	0	0	1

Gene	Replicate 1 Counts		Replicate 2 Counts		Replicate 3 Counts		unts	
A (2,000 bases)	10			12 30				
B (4,000 bases)		20			25		60	
C (1,000 bases)	5			8	15			
D (10,000 bases)		0		0		1		

Can you directly compare these two gene counts? Why? / Why not?

Gene	Replicate 1 Counts		Replicate	2 Counts	Replicate 3 Counts		unts
A (2,000 bases)	10			12	30		
B (4,000 bases)	20			25	60		
C (1,000 bases)	5			8	15		
D (10,000 bases)	0			0	1		

Can you directly compare these two gene counts? Why? / Why not?

Overall sequencing depths differ

Gene	Replicate 1 Counts	Replicate 2 Counts	Replicate 3 Counts
A (2,000 bases)	10	12	30
B (4,000 bases)	20	25	60
C (1,000 bases)	5	8	15
D (10,000 bases)	0	0	1

Can you directly compare these two gene counts? Why? / Why not?

Gene	Replicate 1 Counts	Replicate 2 Counts	Replicate 3 Counts
A (2,000 bases)	10	12	30
B (4,000 bases)	20	25	60
C (1,000 bases)	5	8	15
D (10,000 bases)	0	0	1

Can you directly compare these two gene counts? Why? / Why not?

Gene lengths differ

Normalisation

- Runs with more depth will have more reads mapping to each gene (sequencing depth bias)
- Longer genes will have more reads mapping to them (gene length bias)
- Most methods will normalise for **sequencing depth** *AND* **gene length**

Normalisation methods

- **RPKM** reads per kilobase per million
- **FPKM** fragments per kilobase per million
- **TPM** transcripts per million

RPKM - adjust for sequencing depth, then gene size

			2	
Gene	Replicate 1 Counts		Replicate 2 Counts	Replicate 3 Counts
A (2,000 bases)	10		12	30
B (4,000 bases)	20	1	25	60
C (1,000 bases)	5		8	15
D (10,000 bases)	0		0	1

TPM - adjust for gene size, then sequencing depth

B (4,000 bases) 20 2 25 60				1	
B (4,000 bases) 20 2 25 60	Gene	Replicate 1 Counts		Replicate 2 Counts	Replicate 3 Counts
	A (2,000 bases)	10		12	30
C (1,000 bases) 5 8 15	B (4,000 bases)	20	2	25	60
	C (1,000 bases)	5		8	15
D (10,000 bases) 0 1	D (10,000 bases)	0		0	1

Normalisation methods

- **RPKM** reads per kilobase per million : **GENE LENGTH FIRST**
- **FPKM** fragments per kilobase per million : **GENE LENGTH FIRST**
- TPM transcripts per million : TOTAL READ COUNT FIRST

Normalisation methods

- **RPKM** reads per kilobase per million : GENE LENGTH FIRST
- **FPKM** fragments per kilobase per million : GENE LENGTH FIRST
- **TPM** transcripts per million : TOTAL READ COUNT FIRST

Some of these methods have problems with highly expressed genes, so it's better to use more complicated normalisation procedures (DESeq2 rlog, Sleuth)

RPKM

BEFORE

Gene	Replicate 1 Counts	Replicate 2 Counts	Replicate 3 Counts
A (2,000 bases)	10	12	30
B (4,000 bases)	20	25	60
C (1,000 bases)	5	8	15
D (10,000 bases)	0	0	1

A F T E R

Gene (bases)	Replicate 1 RPKM	Replicate 2 RPKM	Replicate 3 RPKM
A (2,000 bases)	1.43	1.33	1.42
B (4,000 bases)	1.43	1.39	1.42
C (1,000 bases)	1.43	1.78	1.42
D (10,000 bases)	0	0	0.009

FPKM (fragments per kilobase million)

- RPKM for paired reads
- takes into account that two reads can map to one fragment (and so it doesn't count this fragment twice)

RPKM vs TPM

RPKM

Gene	R1	R2	R3
A	1.43	1.33	1.42
В	1.43	1.39	1.42
С	1.43	1.78	1.42
D	0	0	0.009
Total	4.29	4.5	4.25

TPM

Gene	R1	R2	R3
A	3.33	2.96	3.326
В	3.33	3.09	3.326
С	3.33	3.95	3.326
D	0	0	0.02
Total	10	10	10

Easier to see the proportion of each gene within a sample as sum of TPMs same across samples

Lecture outline

• RNA-seq background

Pipelines

- Mapping to the genome (HISAT2 and IGV)
- Mapping to the transcriptome and counting reads (Kallisto)
- Read count normalisation
- Sample QC and Differential expression (Sleuth)
- What to do with a gene list
- The exercise

- We gather samples and sequence
- We are trying to: detect associations between
 - o genetics/expression/assay readout and
 - o "condition"
- But things can go wrong
 - Samples can be tainted, e.g.
 - Mis-handled during collection (DNA or RNA degrades)
 - Sequencing of a lane can have problems (too little, too much, problem reagents)
 - Specific genomic loci can be problematic e.g. sequencing "hotspots", local capture problems
- Result
 - Association is muddied false positive, false negative

	S1	S2	S3	S4	S5	
L1						
L2						
L3						
L4						
L5						
L						

	S1	S2	S3	S4	S5	
L1						
L2						
L3						
L4						
L5						
L						

	S1	S2	S3	S4	S5	
L1						
L2						
L3						
L4						
L5						
L						

	S1		S2	S3	S4	S5	
L1							
L2							
L3		Sam	ple QC				
L4			Measures				
L5		samples , e.g. ○ Alignment rate					
			Number of het sitesValue of PC1 etc				
L		•	valueGoal				
		 Remove "outlying" samples 					

	S1	S2	S3	S4	S5	
L1						
L2						
L3						
L4						
L5						
L2000						

	S1	S2	S3
L1			
L2			
L3			
L4			
L5			
L2000			

Locus QC

- DNASeq:
 - Measures properties of single locus (all samples) , e.g.
 - Allele Depth
 - Strand bias
 - 0 ...
 - Train model on known false and true loci
 - Goal
 - Remove problematic loci
- RNASeq: remove low-expressed / low-variability genes

		S1	S2	S3	S4	S5	
L1							
L2					1		
L3		now, for F	•				
L4		s on Samp Number of					
L5		Alignment					
		PCA: Dime cross-trans	-				
L		expression					
	Kesu	It - find out	ilying sam				

Flagging outlying samples based on read count / align rate

Sample	Number of reads	Alignment Rate	QC Pass?
S1	60M	85%	
S2	10M	80%	
S3	50M	85%	
S4	65M	50%	
S5	55M	55%	
S6	70M	75%	

Flagging outlying samples based on read count / align rate

Sample	Number of reads	Alignment Rate	QC Pass?
S1	60M	85%	
S2	10M	80%	?
S3	50M	85%	
S4	65M	50%	?
S5	55M	55%	?
S6	70M	75%	

Flagging outlying samples based on PCA

- Start with N samples in D-dimensional space (RNASeq D~60k)
- Transform (rotate) into a new D-dim space (PC space)
- Dimensional reduction: Focus on first 2-4 PCs

Flagging outlying samples based on PCA

- Start with N samples in D-dimensional space (RNASeq D~60k)
- Transform (rotate) into a new D-dim space (PC space)
- Dimensional reduction: Focus on first 2-4 PCs

Visualise N samples in new dimensions

- Order new dimensions in order of sample variability
- The variability in each dimension is maximally independent (no covariance between dimensions)

Principal component analysis (PCA)

• Use to look at variation and strong patterns within data

In practice, PCA picks up batch effects
Plot N samples in PC1 and PC2
You don't want samples clustering by
an experimental artefact (eg
processing batch)

Lecture outline

RNA-seq background

Pipelines

- Mapping to the genome (HISAT2 and IGV)
- Mapping to the transcriptome and counting reads (Kallisto)
- Read count normalisation
- Sample QC and Differential expression (Sleuth)
- What to do with a gene list
- The exercise

Determining differential expression (Sleuth)

- Many packages to do Differential Gene Expression
 - o DESeq2, EdgeR, Limma/Voom
 - Sleuth companion to Kallisto
- Why you can't (really) use a gene by gene t-test
 - "Size factors" we can do better than the basic method in FPKM or TPM
 - We don't normally have enough replicates to do traditional tests of significance for RNA-seq data (methods do gene-variance modelling in some way)
 - You may want to account for many different input conditions (e.g. experimental + genetic)
 - Methods compare two linear models with and without experimental condition
 - Need to account for multiple-testing effect (q-value vs p-value)

QC with Sleuth

What to do next with your gene list

When you have a list of differentially expressed genes, things start to get difficult.

What to do:

- 1. Have a hypothesis already? Test it.
- 2. GO term/pathway/gene-set enrichment analysis (GSEA, TopGO, InnateDB, Ingenuity Pathway Analysis etc.)
- 3. Work through list, Google, read papers
- 4. Stare at a volcano plot of effect size x p-value, draw cutoffs in effect size and cherry pick genes ;-)

Then make a hypothesis about what genes are interesting and why. Can you test/explore this further bioinformatically? Design the next wet lab experiment

The exercise

- Plasmodium chabaudi
- rodent malaria parasite
 - exhibits many characteristics associated with the pathogenesis of human infection
- serial blood passage (SBP)
 - direct injection from mouse to mouse
 - results in severe disease
- infection with parasites via mosquitoes (MT)
 - develop lower parasitaemia (presence of parasites in the blood)
 - o mild, chronic disease

IS THE TRANSCRIPTOME OF

- MOSQUITO TRANSMITTED PARASITE (MT)
 DIFFERENT FROM
- ONE WHICH HAS NOT PASSED THROUGH A MOSQUITO (SBP)?