TRABALHO AVALIATIVO PARCIAL 1 – AVALIAÇÃO DE DESEMPENHO CIÊNCIAS DA COMPUTAÇÃO - CENTRO DE TECNOLOGIA - UECE

Data de Entrega: 18/09/2023

Nome/Matrícula: Francisco Matheus Fernandes Freitas / 1607881

OBS:

Professor, eu fiz os cálculos usando a linguagem de programação python, e todos os meus códigos estão no meu repositório do github: https://github.com/Fer-Matheus/ADS

Questão 01

A Tabela abaixo mostra os tempos de execução medidos em MIPS para vários programas de benchmark diferentes quando executados nos diferentes sistemas. Calcule as seguintes métricas:

Programa	Sistema 1	Sistema 2	Sistema 3
1	434	503	512
2	401	361	315
3	478	587	662
4	447	497	471
5	451	459	650

a) As métricas: média aritmética, média geométrica, média harmónica, mediana, variância e desvio padrão de execução para os diferentes sistemas e programas; (Score: 0,5)

Fórmulas usadas:

- Média Aritmética(MA):
$$\frac{\sum\limits_{i=0}^{n}xi}{n}$$
,
- Média geométrica(MG): $\sqrt[n]{\prod\limits_{i=0}^{n}xi}$

- Média geométrica(MG):
$$\sqrt[n]{\prod_{i=0}^{n} x_i}$$

- Média harmónica(MH):
$$\frac{n}{\sum_{i=0}^{n} \frac{1}{n}}$$

- Mediana(MED): se n for par: $\frac{n+1}{2}$, se for impar será o elemento centra do conjunto

- Variância(V):
$$\frac{\displaystyle\sum_{i=0}^{n} \left(xi - m\acute{e}diaAritm\acute{e}tica\right)^{2}}{n-1} \text{ e desvio padrão(v): } \sqrt{variância}$$

Programa	MA	MG	MH	MED	V	v
1	483	481.7	480.36	503	1821	42.67
2	359	357.26	355.52	361	1852	43.03
3	575.67	570.57	565.38	587	8560	92.52
4	471.67	417.22	470.78	471	625	25
5	520	512.43	505.53	459	12691	112.65

Sistema						
1	442.2	441.48	440.75	447	787	28.05
2	481.4	475.53	469.38	497	6715	81.95
3	522	504.52	484.44	512	20384	142.77

b) Qual o sistema e programa apresenta média mais representativa em relação a frequência de tempos de execução? Comente sua conclusão considerando as médias aritmética e média geométrica. (Score: 0,5) Resposta:

Levando em relação apenas as médias aritmética e geométrica, o programa 3 e o sistema 3 apresentam maior MIPS, o que sugere que esses valores têm um peso significativo na média geral e são representativos da distribuição de tempos de execução.

Questão 02 A tabela abaixo é uma tabela em intervalos de classes e apresenta o número de mensagens por tamanho enviadas por duas redes:

Tamanho das mensagens	Ponto médio (xi)	Rede A	Rede B
		(fi)	(fi)
$0 < x \le 5$	2,5	11	39
$5 < x \le 10$	7,5	27	25
$10 < x \le 15$	12,5	41	18
$15 < x \le 20$	17,5	32	5
$20 < x \le 25$	22,5	21	19
$25 < x \le 30$	27,5	12	42
$30 < x \le 35$	32,5	4	0

Fórmulas Utilizadas:

Formulas Utilizadas:

- Média Aritmética (MA):
$$\frac{\sum_{i=0}^{n} xi*fi}{\sum_{i=0}^{n} fi}$$
- Média Geométrica (MG):
$$\sqrt[n]{\prod_{i=0}^{n} xi^{fi}}$$
- Média Harmónica (MH):
$$\frac{\sum_{i=0}^{n} fi}{\sum_{i=0}^{n} \frac{1}{xi}*fi}$$
- Mediana (MED):
$$Linf+c(\frac{End-Fac_{anterior}}{f_{med}})$$
- Variância (V):
$$\frac{\sum_{i=0}^{n} (xi-médiaAritmética)^{2}*fi}{n-1}$$
- Desvio padrão (v):
$$\sqrt{variância}$$

a) Calcule para ambas as redes as medidas de tendência central: média aritmética, média geométrica e mediana para distribuições em intervalos de classes; (Score: 0,5)

Respostas:

Rede	MA	MG	MH	MED
A	15.1	12.92	10.14	12.30
В	14.73	10.24	6.43	10.20

b) Calcule para ambas as redes as medidas de dispersão: variância e desvio padrão para distribuições em intervalos de classes; (Score: 0,5)

Rede	V	v
A	54	7.35
В	103	10.15

c) Faça uma simulação discreta de Monte Carlo para as redes A e B, gerando 50 números aleatórios para cada rede, com os número gerados refaça a tabela em intervalos de classes para ambas as redes e em seguida refaça os itens a) e b) para os dados simulados, em seguida refaça o que se pede no item a) com os dados simulados e conclua comentando se os dados simulados correspondem com as métricas dos dados originais. (Score: 1,0)

Resposta:

Dados simulados:

Intervalo	Xi	REDE A (fi)	REDE B (fi)
$0 < x \le 5$	2,5	8	12
$5 < x \le 10$	7,5	5	2
$10 < x \le 15$	12,5	8	10
$15 < x \le 20$	17,5	8	5
$20 < x \le 25$	22,5	7	6
$25 < x \le 30$	27,5	8	7
$30 < x \le 35$	32,5	6	8

Métricas:

REDE	MA	MG	МН	MED	V	V
1	17.4	13.38	8.69	15.7	96	9.8
2	16.9	12.02	7.23	15.3	116	10.77

Conclusão:

Avaliando os dois resultados, sendo eles os dados originais e os simulados, notamos uma similaridade nas médias e uma pequena diferença na variância e desvio, muito pelo fato de terem ocorrido poucos dados em comparação aos dados originais.

Ainda sim, notamos similaridade nos dados observados originalmente e nos simulados usando a discreta de Monte Carlo.

Boa Sorte e um Excelente desempenho neste trabalho avaliativo