Wir betrachten die folgende Matrix mit einem Parameter $a \in \mathbb{R}$,

$$A := \begin{pmatrix} \sqrt{8} & 4 - a & 0 \\ a & \sqrt{8} & -a \\ 0 & a - 4 & \sqrt{8} \end{pmatrix} \in \mathbb{R}^{3 \times 3},$$

und die durch A beschriebene lineare Abbildung $f: \mathbb{R}^3 \to \mathbb{R}^3$; $x \mapsto Ax$.

- a) Zeigen Sie, dass $v = t \begin{pmatrix} 1 & 0 & 1 \end{pmatrix}$ unabhängig vom Parameter a stets ein Eigenvektor von f ist und geben Sie den dazugehörigen Eigenwert an.
- b) Beweisen Sie, dass im Fall a=2 eine Orthonormalbasis des \mathbb{R}^3 bestehend aus Eigenvektoren von f existiert. (*Hinweis:* Es ist nicht verlangt, eine solche Basis explizit anzugeben!)
- c) Wir betrachten den Fall a=4. Zeigen Sie, dass f in diesem Fall nicht diagonalisierbar ist und geben Sie eine Jordan-Normalform von f an.
- d) Zeigen Sie, dass das charakteristische Polynom $\chi_f(\lambda)$ genau dann über \mathbb{R} in Linearfaktoren zerfällt, wenn gilt: $0 \le a \le 4$. Geben Sie in diesem Fall die Eigenwerte von f an.
- e) Wir betrachten den Fall 0 < a < 4. Zeigen Sie, dass f in diesem Fall diagonalisierbar ist.

Lösung zu Aufgabe 1:

- a) Es gilt $Av = \sqrt{8} \cdot v$ und damit ist v ein Eigenvektor zum Eigenwert $\sqrt{8}$ von f.
- b) Für a=2 ist die Matrix A symmetrisch, daraus folgt die Behauptung.
- c) Im Fall a=4 ist $\chi_f(\lambda)=(\sqrt{8}-\lambda)^3$, es gibt also nur den einen Eigenwert $\lambda=\sqrt{8}$ mit algebraischer Vielfachheit $a_f(\sqrt{8})=3$. Wegen

Rang
$$(A - \sqrt{8} \cdot \mathbb{1}_3)$$
 = Rang $\begin{pmatrix} 0 & 0 & 0 \\ 4 & 0 & -4 \\ 0 & 0 & 0 \end{pmatrix}$ = 1

ist die geometrische Vielfachheit $g_f(\sqrt{8}) = 2$. Damit ist f nicht diagonalisierbar und die JNF J besteht aus 2 Jordan-Blöcken, zum Beispiel

$$\begin{pmatrix} \sqrt{8} & 0 & 0 \\ 0 & \sqrt{8} & 1 \\ 0 & 0 & \sqrt{8} \end{pmatrix}.$$

d)

$$\chi_f(\lambda) = \det \begin{pmatrix} \sqrt{8} - \lambda & 4 - a & 0 \\ a & \sqrt{8} - \lambda & -a \\ 0 & a - 4 & \sqrt{8} - \lambda \end{pmatrix} = (\sqrt{8} - \lambda)^3 + 2(\sqrt{8} - \lambda)a(a - 4)$$
$$= (\sqrt{8} - \lambda)((\sqrt{8} - \lambda)^2 + 2a(a - 4)) = (\sqrt{8} - \lambda)(\lambda^2 - 2\sqrt{8}\lambda + 8 + 2a(a - 4))$$

Die Nullstellen liegen also bei $\lambda = \sqrt{8}$ und

$$\lambda_{\pm} = \sqrt{8} \pm \sqrt{8 - 8 - 2a(a - 4)} = \sqrt{8} \pm \sqrt{2a(4 - a)}$$

und das charakteristische Polynom zerfällt genau dann in Linearfaktoren, wenn gilt $a(4-a) \geq 0$.

Für
$$a < 0$$
 ist $(4 - a) > 0$ und somit $a(4 - a) < 0$.

Für
$$a > 4$$
 ist $(4 - a) < 0$ und somit $a(4 - a) < 0$.

Für $0 \le a \le 4$ sind beide Terme nicht negativ und somit $a(4-a) \ge 0$.

e) In diesem Fall hat f drei paarweise verschiedene Eigenwerte $\lambda_- < \lambda < \lambda_+$ und ist somit diagonalisierbar.

Es sei $X \in \mathbb{C}^{n \times n}$ eine fest gewählte Matrix. Wir betrachten den \mathbb{C} -Vektorraum $V = \mathbb{C}^{n \times n}$ aller $(n \times n)$ Matrizen über \mathbb{C} und die Abbildung

$$f: V \to V ; A \mapsto AX - XA.$$

- a) Zeigen Sie, dass f linear ist.
- b) Beweisen Sie: $\operatorname{Lin}\{\mathbb{1}_n, X\} \subset \operatorname{Kern}(f)$.
- c) Ist f injektiv? Ist f surjektiv? Begründen Sie Ihre Antworten!
- d) Wir betrachten nun den speziellen Fall n=2 und $X=\begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$. Bestimmen Sie die darstellende Matrix $_B[f]_B$ von f bezüglich der Basis $B=(b_1,b_2,b_3,b_4)$ von V mit

$$b_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
 , $b_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $b_3 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, $b_4 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$.

e) Berechnen Sie für n=2 und $X=\begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$ die Spur und die Determinante von f.

Lösung zu Aufgabe 2:

a)
$$f(\lambda A + B) = (\lambda A + B)X - X(\lambda A + B) = \lambda AX + BX - \lambda XA - XB = \lambda f(A) + f(B)$$
.

b)
$$f(\mathbb{1}_n) = \mathbb{1}_n X - X \mathbb{1}_n = X - X = 0 \text{ und } f(X) = XX - XX = 0.$$

c) Wegen b) ist $\operatorname{Kern}(f) \neq \{0\}$ und damit f nicht injektiv. Da $f: V \to V$ ein Endomorphismus ist kann f damit auch nicht surjektiv sein.

d) Für
$$A = \begin{pmatrix} a_1 & a_2 \\ a_3 & a_4 \end{pmatrix} = a_1b_1 + a_2b_2 + a_3b_3 + a_4b_4$$
 gilt

$$f(A) = AX - XA = \begin{pmatrix} ia_2 & ia_1 \\ ia_4 & ia_3 \end{pmatrix} - \begin{pmatrix} ia_3 & ia_4 \\ ia_1 & ia_2 \end{pmatrix} = \begin{pmatrix} i(a_2 - a_3) & i(a_1 - a_4) \\ i(a_4 - a_1) & i(a_3 - a_2) \end{pmatrix}$$

und somit

$${}_{B}[f]_{B} = \begin{pmatrix} 0 & i & -i & 0 \\ i & 0 & 0 & -i \\ -i & 0 & 0 & i \\ 0 & -i & i & 0 \end{pmatrix}.$$

3

e) Aus der darstellenden Matrix oben ergibt sich $\mathrm{Spur}(f)=0$ und $\det(f)=0$.

Wir betrachten den Euklidischen Vektorraum \mathbb{R}^4 mit dem Standardskalarprodukt $\langle x|y\rangle={}^tx\cdot y$ und die Vektoren

$$v_1 = \begin{pmatrix} -1\\1\\1\\-1 \end{pmatrix}$$
 , $v_2 = \begin{pmatrix} 1\\-1\\1\\-1 \end{pmatrix}$, $v_3 = \begin{pmatrix} 1\\1\\-1\\-1 \end{pmatrix}$,

welche einen Untervektorraum $U = \text{Lin}\{v_1, v_2, v_3\}$ aufspannen.

- a) Zeigen Sie: $\dim(U) = 3$.
- b) Folgern Sie dim $(U^{\perp}) = 1$ und geben Sie eine Basis $\{v_4\}$ von U^{\perp} an.
- c) Stellen Sie den Vektor $w={}^t\left(2\quad 0\quad 6\quad 0\right)$ als $w=w_U^\parallel+w_U^\perp$ mit $w_U^\parallel\in U$ und $w_U^\perp\in U^\perp$ dar.
- d) Geben Sie ein lineares Gleichungssystem der Form Ax=b an, dessen Lösungsraum der affine Teilraum $X=w+U\subset\mathbb{R}^4$ ist.

Lösung zu Aufgabe 3:

- a) Die drei Vektoren stehen paarweise orthogonal und sind damit linear unabhängig.
- b) Wegen $\mathbb{R}^4 = U \oplus U^{\perp}$ folgt dim(U) = 1. Ferner ist $v_4 := t \begin{pmatrix} 1 & 1 & 1 \end{pmatrix}$ orthogonal zu v_1, v_2, v_3 und somit $\{v_4\}$ eine Basis von U^{\perp}
- c) Es ist $w_U^{\perp} = w_{\text{Lin}\{v_4\}}^{\parallel} = \frac{\langle v_4 | w \rangle}{||v_4||^2} \cdot v_4 = 2v_4$ und damit

$$w_U^{\perp} = \begin{pmatrix} 2\\2\\2\\2\\2 \end{pmatrix} \quad \text{und} \quad w_U^{\parallel} = w - w_U^{\perp} = \begin{pmatrix} 0\\-2\\4\\-2 \end{pmatrix}.$$

4

d) Nach Konstruktion ist $A = {}^tv_4 = \begin{pmatrix} 1 & 1 & 1 & 1 \end{pmatrix}$ und wegen $w \in X$ gilt b = Aw = 8.

Kreuzen Sie an, ob die folgenden Aussagen wahr oder falsch sind. Begründungen sind in dieser Aufgabe nicht verlangt!

Aussage	wahr	falsch
$\{(x,y)\in\mathbb{Z}\times\mathbb{Z}\mid x\cdot y>0\}\subset\mathbb{Z}\times\mathbb{Z} \text{ ist eine Äquivalenz relation.}$		Х
Für $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} \in S_4$ gilt $\operatorname{sgn}(\sigma) = 1$.	X	
$\det \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & 9 \end{pmatrix} = 1.$		х
Für alle $A, B \in GL(n, \mathbb{R})$ gilt: ${}^t((AB)^{-1}) = ({}^tA)^{-1} \cdot ({}^tB)^{-1}$	x	
$\{x \in \mathbb{R}^4 \mid {}^t x \cdot x = 1\} \subset \mathbb{R}^4 \text{ ist ein Untervektorraum.}$		х
Sind U und V Untervektorräume im \mathbb{R}^4 mit $\dim(U) \geq 1$ und $\dim(V) \geq 2$, so gilt: $\dim(U \cap V) \geq 1$		х
Sind U und V Untervektorräume im \mathbb{R}^4 mit $\dim(U) \leq 1$ und $\dim(V) \leq 2$, so gilt: $\dim(U+V) \leq 3$	х	
Die Abbildung $\phi: \mathbb{R} \times \mathbb{R} \to \mathbb{R} \; ; \; \phi(x,y) := x+y$ ist bilinear.		Х
Die Bilinearform		X
$\psi: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R} \; ; \; \psi(x,y) = {}^t x \cdot \begin{pmatrix} 4 & 2 \\ 2 & 1 \end{pmatrix} \cdot y$		
ist indefinit.		
Es sei V ein \mathbb{R} -Vektorraum, $\varphi: V \times V \to \mathbb{R}$ eine Bilinearform und B und C seien Basen von V . Dann gilt: Ist die Grammatrix $G_B(\varphi)$ invertierbar, so ist auch die Matrix $G_C(\varphi)$ invertierbar.	X	