

Nonlinear physics, dynamical systems and chaos theory

jean-christophe. loiseau@ensam. eu DynFluid, Arts et Métiers ParisTech, France

Today's menu

The different routes to chaos

- So far, we have seen at least two sequences of bifurcations that cause a system to exhibit chaotic dynamics.
 - → Logistic map: Sequence of period doubling bifurcations.
 - \rightarrow Lorenz system: For $0 < \rho < 25$, a supercritical pitchfork and a subcritical Hopf bifurcations occur before the creation of a stange attractor.
- These are two different routes to chaos. They are not the only ones though...

The routes to chaos

Subharmonic cascade

Logistic map

Let us consider once again the logistic map given by

$$x_{k+1} = \mu x_k (1 - x_k),$$

where μ is our control parameters.

▶ We have studied this discrete-time system during Lecture 5.

Cobweb and phase plane for $\mu=1$

Cobweb and phase plane for $\mu=1.32$

Cobweb and phase plane for $\mu=1.64$

Cobweb and phase plane for $\mu=1.96$

Cobweb and phase plane for $\mu=2.28\,$

Cobweb and phase plane for $\mu=2.61\,$

Cobweb and phase plane for $\mu=2.93\,$

Cobweb and phase plane for $\mu=3.25\,$

Cobweb and phase plane for $\mu=3.57\,$

Cobweb and phase plane for $\mu=3.9$

Bifurcation diagram

Bifurcation diagram

- ▶ Let us verify "experimentally" that the sequence of bifurcations taking place indeed corresponds to a subharmonic cascade.
- For that purpose, we will analyze time-series of x_k for different values of μ using the discrete Fourier transform

- ▶ At each bifurcation point, the period of the limit cycle doubles.
 - $\hookrightarrow \mu_1 = ?? \rightarrow \text{period } 1.$
 - $\rightarrow \mu_2 = ?? \rightarrow \text{period } 2.$
 - \hookrightarrow $\mu_3 = ?? \rightarrow \text{period 4}.$
 - \hookrightarrow $\mu_4 = ??? \rightarrow \text{period } 8.$
 - **⇔** ...
- ► This scenario is not limited to discrete-time dynamical systems, but can also occurs in continuous-time systems.

A "simplified" Lorenz model

▶ In 1976, Otto Rössler introduced this "simplified" version of Lorenz model

$$\begin{aligned} \dot{x} &= -y - z \\ \dot{y} &= x + ay \\ \dot{z} &= b + z(x - c). \end{aligned}$$

where we will assume a=b=0.2, while c will be our control parameter.

▶ Although its original goal was purely theoretical, this model has since then proven able to describe a certain class of chemical reactions.

Bifurcation diagram

Subharmonic cascade

▶ As before, the period of the limit cycle doubles at each bifurcation point.

```
\hookrightarrow c_1 = ??? \rightarrow \text{period } 1.
```

$$\hookrightarrow$$
 $c_2 = ??? \rightarrow \text{period 2}.$

$$\hookrightarrow$$
 $c_3 = ?? \rightarrow \text{period 4}.$

$$\hookrightarrow$$
 $c_4 = ??? \rightarrow \mathsf{period} \ 8.$

 \hookrightarrow ...

▶ Deep down, the transition to chaos for the Rössler system obeys the same law as the transition to chaos for the logistic map.

Low-order model for thermal convection

▶ Let us once more consider the Lorenz system

$$\begin{split} \dot{x} &= \sigma(y-x) \\ \dot{y} &= x(\rho-z) - y \\ \dot{z} &= xy - \beta z, \end{split}$$

where we set $\sigma = 10$ and $\beta = 8/3$.

- The transition to chaos when ρ varies from 0 to 28 has been studied in Lecture 6.
- For the moment, we will now draw our attention when ρ varies from 313 down to 215.

Bifurcation diagram

- ▶ Once more, the period of the limit cycle doubles at each bifurcation point.
 - $\rightarrow \rho_1 = ?? \rightarrow \text{period } 1.$
 - $\rightarrow \rho_2 = ?? \rightarrow \text{period } 2.$
 - $\rightarrow \rho_3 = ?? \rightarrow \text{period 4}.$
 - $\hookrightarrow \rho_4 = ?? \rightarrow \text{period } 8.$
 - $\hookrightarrow \dots$
- ▶ Again, the transition to chaos for $215 \le \rho \le 313$ is very similar to that of the logistic map and of the Rössler system.

Subharmonic cascade

Question

How similar are these different systems?

	$\mu_3 - \mu_2 / \mu_2 - \mu_1$	$\mu_4 - \mu_3 / \mu_3 - \mu_2$	$\mu_5 - \mu_4 / \mu_4 - \mu_3$	$\mu_6 - \mu_5 / \mu_5 - \mu_4$	$\mu_7 - \mu_6 / \mu_6 - \mu_5$
Logistic map	??	??	??	??	??
Rössler	??	??	??	??	??
Lorenz	5.019923	4.710117	4.671428	4.669227	4.669203

Subharmonic cascade

► In all cases, the sequence

$$\delta_i = \frac{\mu_i - \mu_{i-1}}{\mu_{i-1} - \mu_{i-2}}$$

converges to ??.

▶ This number is known as ?? and is the signature of the subharmonic cascade.

The routes to chaos

77

