MATH 3012, Quiz 3

June 28, 2013

Name:	GTII	D:

Problem 1 (5 points).

Let C_n denote the number of different ways a convex polygon with n+2 sides can be cut into triangles by connecting vertices with straight lines. For example, the following picture shows that $C_4 = 14$.

We can define $C_0 = 1$. In general, we have

$$C_{n+1} = \sum_{i=0}^{n} C_i C_{n-i}$$
 for $n \ge 0$.

1. Let c(x) be the generating function of C_n . Show that

$$c(x) = 1 + x \cdot c(x)^2.$$

- 2. Solve for c(x).
- 3. Use the following Taylor expansion to expand c(x) and find C_n .

$$\sqrt{1+y} = 1 - 2\sum_{n=1}^{\infty} {2n-2 \choose n-1} \left(-\frac{1}{4}\right)^n \frac{y^n}{n}.$$

blank page 1

blank page 2