EE 2005: Tín hiệu và hệ thống

Lecture 7

Chương 4. Đáp ứng tần số của hệ thống LTI & thiết kế bộ lọc tương tự

Signals and Systems

--HK191-

© Tran Quang Viet – FEEE – HCMUT

Chương 4. Đ/ứng TS của HT LTI & TK bộ lọc tương tự

4.1. Đáp ứng tần số của hệ thống LTI

Signals and Systems

--HK191--

Nhận xét: HT LTI có đáp ứng khác nhau (biên độ, pha) với các tín hiệu ngõ vào có tần số khác nhau → Đáp ứng tần số

Signals and Systems

--HK191--

© Tran Quang Viet - FEEE - HCMUT

4.1.2. Xác định đáp ứng tần số của hệ thống LTI

 \mathbf{X} ét hệ thống LTI nhân quả có đáp ứng xung h(t) và hàm truyền $\mathbf{H}(\mathbf{s})$ ta có:

$$e^{st} \longrightarrow h(t) \longrightarrow H(s)e^{st}$$
 hay $T\{e^{st}\}=H(s)e^{st}$

Nếu hệ thống <u>ổn định</u> (ROC chứa trục ảo) \rightarrow ta có thể chọn $s=j\omega$, khi đó:

$$e^{j\omega t} \longrightarrow h(t) \longrightarrow H(j\omega)e^{j\omega t}$$
 hay $T\{e^{j\omega t}\} = H(j\omega)e^{j\omega t}$

$$\mathbf{V}$$
ới: $\mathbf{H}(\mathbf{j}\omega) = \mathbf{H}(\mathbf{s})|_{\mathbf{s}=\mathbf{i}\omega}$

 \mathbf{H} ệ thống thực có $\mathbf{h}(t) \in \Re$ nên: $\mathbf{H}(j\omega) = \mathbf{H}^*(-j\omega)$

Signals and Systems

--HK191--

4.1.2. Xác định đáp ứng tần số của hệ thống LTI

Xét ngõ vào:
$$A_i cos(\omega t + \varphi_i) = (\frac{A_i}{2} e^{j\varphi_i}) e^{j\omega t} + (\frac{A_i}{2} e^{-j\varphi_i}) e^{-j\omega t}$$

$$\begin{split} &(\frac{A_{i}}{2}e^{j\phi_{i}})e^{j\omega t} \longrightarrow H(j\omega) \longrightarrow &(\frac{A_{i}}{2}e^{j\phi_{i}})H(j\omega)e^{j\omega t} \\ &(\frac{A_{i}}{2}e^{-j\phi_{i}})e^{-j\omega t} \longrightarrow H(j\omega) \longrightarrow &(\frac{A_{i}}{2}e^{-j\phi_{i}})H(-j\omega)e^{-j\omega t} \end{split}$$

$$\mathbf{V}$$
ậy: $H(j\omega) = H(s)|_{s=j\omega}$: Đáp ứng tần số

$$\begin{cases} |H(j\omega)| = A_o/A_i &: \text{Dáp ứng biên độ} \\ \angle H(j\omega) = \phi_o - \phi_i &: \text{Dáp ứng pha} \end{cases}$$

Signals and Systems

--HK191-

© Tran Quang Viet - FEEE - HCMUT

4.1.2. Xác định đáp ứng tần số của hệ thống LTI

$$\mathbf{V}$$
í dụ: $H(s) = \frac{10}{s+10} \Rightarrow H(j\omega) = H(s)|_{s=j\omega} = \frac{10}{j\omega+10}$

Signals and Systems

--HK191--

4.1.3. Đáp ứng với ngõ vào là tổng các hàm điều hòa

 \mathbf{V} ới tổng các tín hiệu điều hòa thực:

$$T \{ \sum_{k=1}^{n} A_{k} \cos(\omega_{k} t + \phi_{k}) \} = \sum_{k=1}^{n} A_{k} |H(j\omega_{k})| \cos(\omega_{k} t + \phi_{k} + \angle H(j\omega_{k}))$$

 \mathbf{V} ới tổng các tín hiệu điều hòa phức:

$$T \{ \sum_{k=1}^{n} A_{k} e^{j(\omega_{k}t + \phi_{k})} \} = \sum_{k=1}^{n} A_{k} |H(j\omega_{k})| e^{j(\omega_{k}t + \phi_{k} + \angle H(j\omega_{k}))}$$

Signals and Systems

--HK191--

Chương 4. Đ/ứng TS của HT LTI & TK bộ lọc tương tự

4.2. Vẽ đáp ứng tần số (vẽ biểu đồ Bode)

- 4.2.1. Tần số logarit và biên độ logarit
- 4.2.2. Biểu đồ Bode của các thành phần cơ bản
- 4.2.3. Nguyên tắc vẽ biểu đồ Bode
- 4.2.4. Biểu đồ Bode của cực/zero bậc 2
- 4.2.5. Ví dụ áp dụng biểu đồ Bode

Signals and Systems

--HK191-

© Tran Quang Viet - FEEE - HCMUT

4.2.1. Tần số logarit và biên độ logarit

Tần số logarit: lg ω

 ${f B}$ iên độ logarit: 20 ${f lg}\,|\,{f H}({f j}\omega)|\,\,({f dB})$

Signals and Systems

--HK191--

4.2. Vẽ đáp ứng tần số (Biểu đồ Bode)

4.2.2. Biểu đồ Bode của các thành phần cơ bản

- a. Biểu đồ Bode của bộ khuếch đại
- b. Biểu đồ Bode của điểm cực tại gốc (bộ tích phân)
- c. Biểu đồ Bode của điểm không tại gốc (bộ vi phân)
- d. Biểu đồ Bode của đểm cực bậc 1
- e. Biểu đồ Bode của đểm không bậc $1\,$

Signals and Systems

--HK191-

4.2.3. Nguyên tắc vẽ biểu đồ Bode

1) Biểu diễn H(s) thành dạng thừa số: $H(s)=H_1(s).H_2(s)...H_n(s)$

$$\Rightarrow$$
 H(j ω)=H₁(j ω).H₂(j ω)....H_n(j ω)

Đáp ứng biên độ:

 $20\log |H(j\omega)| = 20\log |H_1(j\omega)| + 20\log |H_2(j\omega)| + ... + 20\log |H_n(j\omega)|$ Đáp ứng pha:

$$\angle H(j\omega) = \angle H_1(j\omega) + \angle H_2(j\omega) + ... + \angle H_n(j\omega)$$

- 2) Vẽ đường tiệm cận của từng thành phần $H_k(j\omega)$ và sau đó cộng đường tiệm cận để có đường tiệm cận của $H(j\omega)$
- 3) Xấp sĩ đường chính xác của H(jω) bằng cách ước lượng giá trị tại các vị trí đặc biệt

4.2.3. Nguyên tắc vẽ biểu đồ Bode

Ví dụ: Vẽ biểu đồ Bode của các hệ thống có hàm truyền sau:

a) H(s)=
$$\frac{s+10}{s}$$

a)
$$H(s) = \frac{s+10}{s}$$
 b) $H(s) = \frac{s}{s+100}$

c) H(s)=
$$\frac{3.10^{10}}{(s+10^2)(s+10^3)(s+10^4)}$$

4.2.4. Biểu đồ Bode của cực/zero bậc 2
$$\frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}; 0 < \zeta < 1$$
Anh hưởng cực bậc 2:
$$\frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}; 0 < \zeta < 1$$

$$\frac{20}{10}$$

$$\frac{20}{10}$$

$$\frac{20}{10}$$

$$\frac{20}{10}$$

$$\frac{20}{20}$$

4.2.4. Biểu đồ Bode của cực/zero bậc 2

Ảnh hưởng zero bậc 2:
$$\frac{s^2+2\zeta\omega_n s+\omega_n^2}{\omega_n^2}; 0<\zeta<1$$

(Ngược lại so với cực bậc 2)

Signals and Systems

--HK191-

4.2.5. Ví dụ áp dụng biểu đồ Bode

6.6 Electrical Characteristics for TL08xM and TL084x

V_{CC±} = ±15 V (unless otherwise noted)

	_		(1)	_	TL081M, TL082M			TL084Q, TL084M			
PARAMETER		ARAMEIER	TEST CONDITIONS ⁽¹⁾	TA	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
V _{IO}		Input offset voltage	V _O = 0, R _S = 50 Ω	25°C		3	6		3	9	mV
	, "			Full range			9			15	
ανι	0 0	Temperature coefficient of input offset voltage	V _O = 0, R _S = 50 Ω	Full range		18			18		μV/°C
		Input offset current ⁽²⁾	V _O = 0	25°C		5	100		5	100	pA
I _{IO}	"	nput offset current		125°C			20			20	nA
I _{IB}		Input bias current ⁽²⁾	V _O = 0	25°C		30	200		30	200	pA
	"			125°C			50			50	nA
V _{IC}		Common-mode nput voltage range		25°C	±11	-12 to 15		±11	-12 to 15		٧
		Maximum peak output voltage swing	R _L = 10 kΩ	25°C	±12	±13.5		±12	±13.5		v
VON			R _L ≥ 10 kΩ	Full range	±12			±12			
			R _L ≥ 2 kΩ		±10	±12		±10	±12		
	L	Large-signal differential voltage amplification	$V_0 = \pm 10 \text{ V}, R_L \ge 2 \text{ k}\Omega$	25°C	25	200		25	200		V/mV
A _{VE}	D V			Full range	15			15			
B ₁	ι	Jnity-gain bandwidth		25°C		3			3		MHz
rį	li	nput resistance		25°C		10 ¹²			10 ¹²		Ω
CM		Common-mode rejection ratio	$V_{IC} = V_{ICR}min,$ $V_{O} = 0, R_{S} = 50 \Omega$	25°C	80	86		80	86		dB

(www.ti.com/lit/ds/symlink/tl084.pdf)

Signals and Systems

--HK191--