Automatique - Résumé

October 19, 2023

THEVENET Louis

Table des matières

1.	Définitions	1
2.	Systèmes dynamiques et stabilité	1
	2.1. Equations différentielles linéaires autonomes	
	2.2. Equations différentielles linéaires avec second membre	
	2.3. Stabilité des équilibres	
	Stabilisation des systèmes dynamiques contrôlés	
	3.1. Contrôlabilité	
	3.2. Stabilisation par retour d'état	3
	3.2.1. Cas linéaire	
	3.2.2. Cas non linéaire	

1. Définitions

Définition 1.1: On appelle x_e,u_e point de fonctionnement si $f(x_e,u_e)=0$. On dit que x_e est un point d'équilibre pour le contrôle u_e

2. Systèmes dynamiques et stabilité

2.1. Equations différentielles linéaires autonomes

Théorème 2.1.1: L'unique solution globale du problème $\begin{cases} \dot{x}(t) = Ax(t) \\ x(t_0) = x_0 \end{cases}$ s'écrit :

$$x(t)=e^{(t-t_0)A}x_0$$

2.2. Equations différentielles linéaires avec second membre

Théorème 2.2.1: L'unique solution globale du problème $\begin{cases} \dot{x}(t) = Ax(t) + b(t) \\ x(t_0) = x_0 \end{cases}$ s'écrit :

$$x(t) = e^{(t-t_0)A}x_0 + \int_{t_0}^t e^{(t-s)A}b(s)\mathrm{d}s$$

2.3. Stabilité des équilibres

Théorème 2.3.1: Pour le problème $\dot{x}(t) = Ax(t)$:

- Si $\mathrm{Sp}_{\mathbb{R}}(A)\subset\mathbb{R}_{-}^{*}$, alors l'origine est un équilibre asymptotiquement stable
- Si $\operatorname{Sp}_{\mathbb{R}}(A) \subset \mathbb{R}_{-}$, et que pour toute vp $\lambda \in \mathbb{R}_{-}$, les multiplicités algrébriques et géométriques coïncident, alors l'origine est un **équilibre stable**
- Si $\operatorname{Sp}_{\mathbb{R}}(A) \cap \mathbb{R}_+^* \neq \emptyset$, alors l'origine n'est pas un **équilibre stable**

Avec $\operatorname{Sp}_{\mathbb{R}}(A) = \{ \operatorname{Re}(\lambda) \mid \lambda \in \operatorname{SP}(A) \}$

Théorème 2.3.2: Pour x_e point d'équilibre de $\dot{x}(t) = f(x(t))$

- Si $\mathrm{Sp}_{\mathbb{R}}(f'(x_e))\cap \mathbb{R}_-^*,$ alors x_e est asymptotiquement stable
- Si $\operatorname{Sp}_{\mathbb{R}}(f'(x_e)) \cap \mathbb{R}_+^* \neq \emptyset$, alors x_e n'est pas un **équilibre stable**

Avec $\operatorname{Sp}_{\mathbb{R}}(f'(x_e)) = \{\operatorname{Re}(\lambda) \mid \lambda \in \operatorname{SP}(f'(x_e))\}$

Attention, ce n'est pas parce que toutes les valeurs propres sont à partie réelle négative ou nulle que l'équilibre est stable.

3. Stabilisation des systèmes dynamiques contrôlés

Définition 3.1: On s'intéresse aux systèmes de la forme :

$$\begin{cases} \dot{x}(t) = f(x(t), u(t)) \\ x(0) = x_0 \end{cases}$$

Ici, x(t) est l'état du système au temps t et u(t) est le contrôle qui agit sur le système.

Le contrôle par retour d'état auquel on s'intéressera est de la forme :

$$u(t) = u_e + K(x(t) - x_e), K \in \mathcal{M}_{n,m}(\mathbb{R})$$

au voisinage d'un point de contionnement (x_e, u_e)

Théorème 3.1: Pour le système contrôlé linéaire

$$\left(\Sigma_{u,L}\right) \begin{cases} \dot{x}(t) = Ax(t) + Bu(t) \\ A \in \mathcal{M}_n(\mathbb{R}) \\ B \in \mathcal{M}_{n,m}(\mathbb{R}) \end{cases}$$

La solution maximale est globale est vaut :

$$x_u(t,x_0)=e^{tA}x_0+\int_0^t e^{(t-s)A}Bu(s)\mathrm{d}s$$

3.1. Contrôlabilité

Définition 3.1.1:

L'ensemble accessible $\mathcal{A}(t,x_0)$ en temps $t\geq 0$ depuis $x_0\in\Omega$ pour (Σ_u) est : $\mathcal{A}(t,x_0):=\{x_u(t,x_0)\mid u\in\mathcal{C}^0([0,t],\Pi)\}$

i.e. l'ensemble des solutions au temps t pour tout contrôle u admissible.

Définition 3.1.2:

Pour t > 0, (Σ_u) est :

- contrôlable depuis $x_0\in\Omega$ en t si $\mathcal{A}(t,x_0)=\Omega$
- complètement contrôlable en t si $\mathcal{A}(t,x_0)=\Omega, \forall x_0\in\Omega$
- localement contrôlable en $x_0\in\Omega$ en t autour de $x_1\in\Omega$ si $x_1\in \mathrm{Int}(\mathcal{A}(t,x_0))$

Théorème 3.1.1: Dans le cas linéaire, $\left(\Sigma_{u,L}\right)$ est complètement contrôlable $\forall t>0 \Leftrightarrow$

$$\operatorname{rg}(B AB \dots A^{n-1}B) = n$$

On appelle la matrice $(B \ AB \ ... \ A^{n-1}B)$ matrice de contrôlabilité.

3.2. Stabilisation par retour d'état

3.2.1. Cas linéaire

Définition 3.2.1.1: $\Sigma_{u,L}$ est dit asymptotiquement stabilisable si $\exists K \in \mathcal{M}_{m,n}$ telle que

$$u(t) = Kx(t)$$

stabilise asymptotiquement à l'origine le système bouclé

$$\dot{x}(t) = Ax(t) + Bu(t) = (A + BK)x(t)$$

Théorème 3.2.1.1: Si A et B satisfont le critère de contrôlabilité de Kalman, alors le système associé $(\Sigma_{u,L})$ est asympotiquement stabilisable.

3.2.2. Cas non linéaire

Ici on considère un système contrôlé non linéaire autonome $\dot{x}(t)=f(x(t),u(t))$ et on s'intéresse à la stabilisation autour de x_e,u_e par le **retour d'état linéaire** :

$$u(t) = u_e + K(x(t) - x_e)$$

le système bouclé est donc :

$$\dot{x}(t) = f(x(t), u_e + K(x(t) - x_e)) = f(x(t), \overline{u}(x(t))) \eqqcolon g(x(t))$$

avec
$$\overline{u}(x) = u_e + K(x - x_e)$$

Ainsi, x_e est un point d'équilibre de g, i.e. la stabilité de x_e est liée aux vp de $g'(x_e)$ Or,

$$g'(x) = \frac{\partial f}{\partial x}(x, \overline{u}(x)) + \frac{\partial f}{\partial u}(x, \overline{u}(x))K$$

Par suite,
$$g'(x_e) = \frac{\partial f}{\partial x}(x_e, u_e)) + \frac{\partial f}{\partial u}(x_e, u_e)K = A + BK$$

Il nous faut trouver $K\in\mathcal{M}_{n,m}(\mathbb{R})$ telle que les vp de $g'(x_e)=A+BK$ soient à parties réelle strictement négative.