Theorem

For any $h \in \mathbb{R}$, $\delta \in (0,1)$, and $\epsilon > 0$, if $\beta_t = 2\log(|D|\pi^2t^2/(6\delta))$, LSE terminates after at most T iterations, where T is the smallest positive integer satisfying

$$\frac{T}{\beta_T \gamma_T} \ge \frac{C_1}{4\epsilon^2},$$

where $C_1 = 8/\log(1 + \sigma^{-2})$.

Furthermore, with probability at least $1-\delta$, the algorithm returns an ϵ -accurate solution, that is

$$\Pr\left\{\max_{\boldsymbol{x}\in D}\ell_h(\boldsymbol{x})\leq\epsilon\right\}\geq 1-\delta.$$