CV Pre-trained Model - Visual Transformer

Fig 2. ViT vs ResNet on transfer learning and 5-shot

Contribution: Prove transformer model structure will better than CNN in huge data situation

- 1. Resize input image to 224x224x3
- 2. Split into 196 patches with size 16x16x3
- 3. Flatten image to sequence length 196 with hidden size 768
- Add position encoding
- 5. Concat [cls] token in front of the input sequence

Fig 3. ViT, ResNet, Hybrid performance comparison

CV Pre-trained Model - Visual Trans:

Contribution: Prove transformer model structure will better than CNN in huge data situation

- 1. Resize input image to 224x224x3
- 2. Split into 196 patches with size 16x16x3
- 3. Flatten image to sequence length 196 with hidden size 768
- 4. Add position encoding
- 5. Concat [cls] token in front of the input sequence

CV Pre-trained Model - BEIT

Contribution: Apply MIM(Masked Image Model) task for self-supervised learning

- 1. Train d-VAE and restore the image (task1)
- 2. Apply d-VAE to get visual tokens
- 3. Patch and mask then follow ViT
- 4. Let BEIT predict the visual token (task2)

Models	Model	Labeled	ImageNet	
	Size	Data Size	384^{2}	512^2
Supervised Pre-Ti	raining on	ImageNet-22	2K (using l	abeled data)
ViT-B [DBK+20]	86M	14M	84.0	-
ViT-L [DBK+20]	307M	14M	85.2	85.30
ViT-H [DBK ⁺ 20]	632M	14M	85.1	-
Supervised Pre-Ti	raining on	Google JFT-	300M (usi	ng labeled data)
ViT-B [DBK+20]	86M	300M	84.2	- 1
ViT-L [DBK+20]	307M	300M	87.1	87.76
ViT-H [DBK ⁺ 20]	632M	300M	88.0	88.55
Supervised Pre-Ti	raining on	Google JFT-	3B (using	labeled data)
ViT-B [ZKHB21]	86M	3000M	86.6	-
ViT-L [ZKHB21]	307M	3000M	88.5	-
Self-Supervised P	re-Trainin	g, and Intern	nediate Fin	e-Tuning on ImageNet-22K
BEIT-B+ (ours)	86M	14M	86.8	
BEIT-L ⁺ (ours)	307M	14M	88.4	88.6
Self-Supervised P	re-Trainin	g, and Intern	nediate Fin	e-Tuning on In-House-70M
BEIT-L+ (ours)	307M	70M	89.3	89.5

Fig 2. ViT vs ResNet on transfer learning and 5-shot

Fig 1. Model Structure

CV Pre-trained Model - MAE

Fig 2. Mask about 75% image having the best performance

ig 1. Asymmetric model structure (Encodel > Decodel)

VL Model - CLIP

Contribution: Mapping text and image embedding to the same space

- 1. Collect many image-text pair from the Net
- 2. Separately encode the text and image
- 3. Image and text in the same pair as positive samples
- 4. Do contrastive learning

Fig 3. Bimodal Deep Autoencoder

Fig 2. Performance of CLIP

Fig 1. Training and inference of CLIP

VL Pre-trained Model - UNITER

Contribution: VL pre-trained model by 4

different tasks

1. Separately extract image(Faster R-CNN) and text(BERT) feature

 Concat image and text feature as input for Transformer

- 3. Do following tasks
 - 1) Masked Language Model, MLM
 - 2) Mask Region Model, MRM
 - 3) Image Text Matching, ITM
 - 4) Word Region Alignment, WRA

Fig 1. Training and inference of CLIP

VL Pre-trained Model - ViLT

Contribution: 1. Simplify the pre-training tasks 2. promote the training and inference speed 3. bypass region feature extractor

- 1. Embed the input text
- 2. Linear project the image patches
- 3. Concat [Class] token in text and image input
- 4. Add position encoding and modal-type encoding
- 5. Do ITM, MLM(wwm), WPA

Fig 3. Different visual embedding schema

Running Time

(Performances: NLVR2 test-P Acc. / F30K TR R@1 / F30K IR R@1)

Fig 2. Performance comparison

Fig 1. Input format and model structure

VL Pre-trained Model - CoCa

Contribution: Combine contrastive learning with as pre-training tasks to enhance zero-shot

- 1. PrefixLM as text embedder
- 2. ViT/ResNet as image encoder
- 3. Do contrastive learning
- 4. Do captioning task

Fig 2. SimVLM model structure - 632M

Fig 3. Performance on image classification

Fig 1. CoCa model structure - 2.1B