Fondement de Mathematiques Informatique

Matthew Coyle

January 10, 2018

1 Calculs ensemblistes, fonctions

1.1 ensemble, elements, inclusion:

Soit E un ensemble, et e un element, $e \in E$ signifie que e est un element qui est dans E, et se lit e appartient a E. La negation de cette relation, e n'appartiens pas a E se note $e \notin E$.

ø est l'ensemble qui ne contiens auccun element.

A et B, deux ensemble. On dit que A est un sous-sensemble de B ou une partie de B, ou encore que A est inclus dans B et on note $A\subseteq B$ sois $\forall x\in A=>x\in B$

 ${\bf A}={\bf B}$ ssi $A\subseteq B$ et $B\subseteq A$, A et B on les memes elements. La negation de $A\subseteq B$ s'ecrit $A\not\subseteq B$

On note $\mathcal{P}(E),$ l'ensemble des Parties de E (l'ensemble des sous-ensembles de E, note 2^E)

car $card(\mathcal{P}(E)) = 2^{card(E)}$ $E = \{1, 3, 8, 12\} \ card(\mathcal{P}(E)) = 2^4$ $\mathcal{P}(E) = \{\emptyset, \{1\}, \{3\}, \{8\}, \{12\}, \{1, 3\}, \{1, 8\}, ..., \{1, 3, 8, 12\}\}$

 $A \subseteq E \text{ ssi } A \in \mathcal{P}(E)$ Remarque: $\emptyset \in \mathcal{P}(E), E \in \mathcal{P}(E) \forall E$

Produit Cartesien de 2 ensembles E et F. C'est l'ensemble des couples formes d'un element de E et d'un element de F.

 $E * F = \{(x, y) \mid x \in E \text{ et } y \in F\}$

Generalisation:

On generalise le produit cartesien a une famille finie d'ensembles:

$$E_1*E_2*...*E_n=\{(x_1,x_2,...,x_n),x1\in E_1,x_2\in E_2,...,x_n\in E_n\}$$

$$E^n=E*E*E.... \text{ n fois }n\geq 1$$

 \mathbb{E}^n peut etre defini recusivement par

$$E^1 = E$$

$$E^n = E * E^{n-1}$$

Remarque:

D'un point de vue strictement formel, le produit des ensembles n'est pas associatif.

$$(E*F)*G \neq E*(F*G)$$

$$((x,y),z) \in (E*F)*G \text{ et } (x,(y,z)) \in E*(F*G)$$

mais on peut etablir une bijection entre les 2. D'une facon generale on n'as pas $E^n * E^m = E^{n+m}$

1.2 Reunion, Intersection, difference complementaire, partition

Referentiel E

Soient A et B deux parties de E, on definit l'intersection de A et B: $A \cap B = \{e \in E \mid e \in A \text{ et } e \in B\}$

l'union de A et B: $A \cup B = \{e \in E \mid e \in A \text{ ou } e \in B\}$

la differance de A et B: $A - B = \{e \in E \mid e \in A \text{ et } e \notin B\}$

le complementaire de A dans E: \overrightarrow{A} ou $A^c = E \mid \overline{A} = \{e \in E \mid e \notin \overline{A}\}$

la difference symetique de A et B $A \triangle B = (A \setminus B) \cup (B \setminus A)$

On dit que A et B sont disjoints ssi $A \cap B = \emptyset$