Course: CHM202

Energetics and dynamics of chemical reactions

Assignment -IX

Q.1 Set up the rate equations for the reaction mechanism:

$$A \stackrel{k_a, k'_a}{\rightleftharpoons} B \stackrel{k_b, k'_b}{\rightleftharpoons} C$$

Show that the mechanism is equivalent to

$$A \stackrel{k_{\text{eff}}, k'_{\text{eff}}}{=} C$$

under specified circumstances.

- Q.2 Derive an equation for the steady-state rate of the sequence of reactions $A \rightleftharpoons B \rightleftharpoons C \rightleftharpoons D$, with [A] maintained at a fixed value and the product D removed as soon as it is formed.
- **Q.3** On the basis of the following proposed mechanism, account for the experimental fact that the rate law for the decomposition

$$2N_2O_5(g) \rightarrow 4 NO_2(g) + O_2(g)$$
 is $v = k[N_2O_5]$.

- N₂O₅ ⇒ NO₂ + NO₃
- (2) $NO_2 + NO_3 \rightarrow NO_2 + O_2 + NO$ k_2
- (3) NO + N₂O₅ \rightarrow NO₂ + NO₂ + NO₃
- **Q.4** Consider the acid-catalysed reaction
 - (1) $HA + H^+ \rightleftharpoons HAH^+$ k_1k_1' , both fast

(2) $HAH^+ + B \rightarrow BH^+ + AH$ k_2 , slow

Deduce the rate law and show that it can be made independent of the specific term [H⁺].

Q.5 The half-life period of a first-order decomposition of $N_2O_5(g)$ is expressed as

 $t_{1/2} = -30.3 + \frac{12581.78}{T}$ when time is expressed in sec. Find out (i) Frequency factor A, (ii)

Energy of activation and (iii) fraction of the reactant undergoing the reaction in 1 hour at 300 K.

0.6 For the mechanism

$$A + B \xrightarrow{k_1} C ; C \xrightarrow{k_3} D$$

Derive the rate law using the steady state approximation to eliminate the concentration of C.

- **Q.7** The enzyme-catalysed conversion of a substrate at 298 K has a Michaelis constant of 0.042 mol dm⁻³. The rate of the reaction is 2.45×10^{-4} mol dm⁻³ s⁻¹ when the substrate concentration is 0.890 mol dm⁻³. What is the maximum velocity of this enzymolysis?
- Q.8 The enzyme α -chymotrypsin is secreted in the pancreas of mammals and cleaves peptide bonds made between certain amino acids. Several solutions containing the small peptide N-glutaryl-l-phenylalanine-p-nitroanilide at different concentrations were prepared and the same small amount of α -chymotrypsin was added to each one. The following data were obtained on the initial rates of the formation of product:

[S]/(mmol dm ⁻³)	0.334	0.450	0.667	1.00	1.33	1.67
$v/(\text{mmol dm}^{-3} \text{ s}^{-1})$	0.152	0.201	0.269	0.417	0.505	0.667

Determine the maximum velocity and the Michaelis constant for the reaction.