## Szeregowanie zadań w modelu deterministycznym



dr hab. inż. Krzysztof Giaro Politechnika Gdańska, Wydział ETI pok. 207

### Plan wykładu

- 1. Wstęp do deterministycznego szeregowania zadań
- 2. Metoda ścieżki krytycznej
- 3. Podstawowe problemy optymalizacji dyskretnej
- 4. Minimalizacja kryterium  $C_{\text{max}}$
- 5. Minimalizacja kryterium  $\Sigma C_i$
- 6. Minimalizacja kryterium  $L_{\text{max}}$
- 7. Minimalizacja liczby spóźnionych zadań
- 8. Szeregowanie zadań na maszynach dedykowanych

Dziedzina ta zajmuje się *szeregowaniem* (układaniem harmonogramów) *zadań* (programów, czynności, prac) na *maszynach* (procesorach, obrabiarkach, stanowiskach obsługi).

Szukamy harmonogramu wykonania dla danego zbioru zadań w określonych warunkach, tak by zminimalizować przyjęte *kryterium oceny* (koszt) uszeregowania.

Model deterministyczny: parametry systemu i zadań są od początku znane.

#### Geneza i motywacje praktyczne:

- harmonogramowanie produkcji przemysłowej,
- planowanie projektów,
- organizacja pracy,
- plany zajęć szkolnych, spotkań i konferencji,
- przetwarzanie procesów w wielozadaniowych systemach operacyjnych,
- organizacja obliczeń rozproszonych.

**Przykład.** Pięć zadań o czasach wykonania  $p_1,...,p_5=6,9,4,1,4$  należy uszeregować na trzech maszynach tak, by zakończyły się one możliwie jak najszybciej.



Reprezentacja graficzna harmonogramu – diagram Gantta

#### Dlaczego ten harmonogram jest poprawny?

Klasyczna zasada poprawności harmonogramu:

- żadne zadanie nie może być jednocześnie wykonywane przez różne maszyny,
- żaden procesor nie pracuje równocześnie nad różnymi zadaniami,
- inne wprowadzimy za chwilę ...

## Wstęp do deterministycznego szeregowania zadań Sposoby obsługi zadań

Procesory <u>równoległe</u> (każdy procesor może obsłużyć każde zadanie):

- procesory identyczne wszystkie są jednakowo szybkie,
- *procesory jednorodne* mają różne szybkości, ale stosunki czasów wykonania zadań są niezależne od maszyn,
- procesory dowolne prędkości zależą od wykonywanych zadań.



Uszeregowanie na maszynach równoległych

## Wstęp do deterministycznego szeregowania zadań Sposoby obsługi zadań

Procesory dedykowane

- zadania są podzielone na operacje (zadanie  $Z_j$  zawiera operacje  $O_{ij}$  do wykonania na maszynach  $M_i$ , o długościach czasowych  $p_{ij}$ ). Zadanie kończy się wraz z wykonaniem swej najpóźniejszej operacji,
- dopuszcza się sytuację, gdy zadanie nie wykorzystuje wszystkich maszyn (*operacje puste*),
- żadne dwie operacje tego samego zadania nie mogą wykonywać się równocześnie,
- żaden procesor nie może równocześnie pracować nad różnymi operacjami.

Trzy główne typy systemów obsługi dla maszyn dedykowanych:

- system przepływowy (flow shop) operacje każdego zadania są wykonywane przez procesory w tej samej kolejności wyznaczonej przez numery maszyn,
- system otwarty (open shop) kolejność wykonania operacji w obrębie zadań jest dowolna,
- system gniazdowy (job shop) dla każdego zadania mamy dane przyporzadkowanie maszyn operaciom oraz wymagana koleiność.

## Wstęp do deterministycznego szeregowania zadań Sposoby obsługi zadań

Procesory <u>dedykowane</u> – system otwarty (kolejność operacji dowolna).

Przykład. Jednodniowy plan zajęć szkolnych.

|       |       | Nauczyciele |       |       | $M_1$ | $Z_2$       |   | 7.    |        | 7              |
|-------|-------|-------------|-------|-------|-------|-------------|---|-------|--------|----------------|
|       |       | $M_1$       | $M_2$ | $M_3$ | 171   | 2           |   | 21    |        | Z <sub>3</sub> |
|       | $Z_1$ | 3           | 2     | 1     | $M_2$ | $Z_1$       |   | $Z_2$ | $Z_3$  |                |
| Klasy | $Z_2$ | 3           | 2     | 2     |       | 1           |   |       | لــــا |                |
|       | $Z_3$ | 1           | 1     | 2     | $M_3$ | $Z_3$ $Z_1$ |   |       | $Z_2$  |                |
|       |       |             |       |       | •     |             | İ |       |        | 7              |

#### Sposoby obsługi zadań

Procesory <u>dedykowane</u> – system przepływowy (kolejność operacji musi być zgodna z numeracją maszyn).

Przykład. Taśma produkcyjna.



Maszyny dedykowane zostawimy na później ...

#### Parametry zadań

Dane są: zbiór n zadań  $Z=\{Z_1,...,Z_n\}$  oraz m maszyn (procesorów)  $M=\{M_1,...,M_m\}$ .

#### Zadanie $Z_i$ :

- *Czas wykonywania*. Dla procesorów identycznych jest on niezależny od maszyny i wynosi  $p_j$ . Procesory jednorodne  $M_i$  charakteryzują się współczynnikami szybkości  $b_i$ , wtedy czas dla  $M_i$  to  $p_j/b_i$ . Dla maszyn dowolnych mamy czasy  $p_{ii}$  zależne od zadań i procesorów.
- *Moment przybycia* (*release time*)  $r_j$ . Czas, od którego zadanie może zostać podjęte. Wartość domyślna zero.
- *Termin zakończenia*  $d_j$ . Opcjonalny parametr. Występuje w dwóch wariantach. Może oznaczać czas, od którego nalicza się spóźnienie (*due date*), lub termin, którego przekroczyć nie wolno (*deadline*).
- *Waga*  $w_j$  opcjonalny parametr, określający ważność zadania przy naliczaniu kosztu harmonogramu. Domyślnie zadania są jednakowej wagi i wtedy  $w_i$ =1.

#### Zadania zależne:

- W zbiorze zadań Z można wprowadzić ograniczenia kolejnościowe w postaci dowolnej relacji częściowego porządku. Wówczas  $Z_i \prec Z_j$  oznacza, że zadanie  $Z_j$  może się zacząć wykonywać dopiero po zakończeniu  $Z_i$  (czemu? np.  $Z_i$  korzysta z wyników pracy  $Z_i$ ).
- Jeśli ograniczenia te nie występują, mówimy o *zadaniach niezależnych* (tak się przyjmuje domyślnie) w przeciwnym razie są one *zależne*.
- Relację zwykle podaje się w postaci acyklicznego digrafu o wierzchołkach z Z (droga z  $Z_i$  do  $Z_j$  oznacza, że  $Z_i \prec Z_j$ ) z łukami przechodnimi, lub bez (tylko relacje nakrywania  $diagram\ Hassego$ ).

**Przykład.** Harmonogram dla zadań zależnych ( $p_i$  podano w kółkach).



**Przykład.** Harmonogram dla zadań zależnych ( $p_i$  podano w kółkach).



**Przykład.** Harmonogram dla zadań zależnych ( $p_i$  podano w kółkach).



#### Zadania mogą być:

- *niepodzielne* przerwy w wykonaniu są niedopuszczalne (domyślnie),
- *podzielne* wykonanie można przerwać i podjąć ponownie, w przypadku maszyn równoległych nawet na innym procesorze.



Uszeregowanie zadań podzielnych na maszynach równoległych

#### Zasady poprawności harmonogramu (już w całości):

- w każdej chwili procesor może wykonywać co najwyżej jedno zadanie,
- w każdej chwili zadanie może być obsługiwane przez co najwyżej jeden procesor,
- zadanie  $Z_i$  wykonuje się w całości w przedziale czasu  $[r_i, \infty)$ ,
- spełnione są ograniczenia kolejnościowe,
- w przypadku zadań niepodzielnych każde zadanie wykonuje się nieprzerwanie w pewnym domknięto—otwartym przedziale czasowym, dla zadań podzielnych czasy wykonania tworzą skończoną sumę rozłącznych przedziałów.

#### Kryteria kosztu harmonogramu

**Położenie** zadania  $Z_i$  w gotowym harmonogramie:

- moment zakończenia  $C_i$  (ang. completion time),
- czas przepływu przez system (flow time)  $\overline{F}_i = C_i r_i$ ,
- opóźnienie (lateness)  $L_i = C_i d_i$ ,
- spóźnienie (tardiness)  $T_i = \max\{C_i d_i, 0\},$
- "znacznik spóźnienia"  $U_i$ =w( $C_i$ > $d_i$ ), a więc odpowiedź (0/1 czyli Nie/Tak) na pytanie "czy zadanie się spóźniło?"

## Wstęp do deterministycznego szeregowania zadań Kryteria kosztu harmonogramu

Najczęściej stosowane:

- długość uszeregowania  $C_{\text{max}} = \max\{C_j : j=1,...,n\},$
- całkowity (łączny) czas zakończenia zadania  $\Sigma C_i = \Sigma_{i=1,...,n} C_i$ ,
- średni czas przepływu  $\overline{F} = (\sum_{i=1,...,n} F_i)/n$ .



Uszeregowanie na trzech maszynach równoległych.  $p_1,...,p_5=6,9,4,1,4$ .

Można wprowadzać wagi (priorytety) zadań:

• całkowity ważony czas zakończenia  $\Sigma w_j C_j = \Sigma_{i=1,\dots,n} w_i C_i$ ,

$$w_1,...,w_5=1,2,3,1,1$$
  $\Sigma w_j C_j = 6+18+12+7+8=51$ 

#### Kryteria kosztu harmonogramu

Oparte na wymaganych terminach zakończenia:

- maksymalne opóźnienie  $L_{\max}=\max\{L_j: j=1,...,n\}$ ,
- maksymalne spóźnienie  $T_{\text{max}} = \max\{T_j: j=1,...,n\},$
- całkowite spóźnienie  $\Sigma T_i = \Sigma_{i=1,...,n} T_i$ ,
- liczba spóźnionych zadań  $\Sigma U_j = \Sigma_{i=1,...,n} \ U_i$ ,
- można wprowadzać wagi zadań, np łączne ważone spóźnienie

Niektóre kryteria są sobie równoważne

$$\Sigma L_i = \Sigma C_i - \Sigma d_i, \ \overline{F} = (\Sigma C_i)/n - (\Sigma r_i)/n.$$

$$\Sigma T_j = 4$$
,  $\Sigma U_j = 2$ 

## Wstęp do deterministycznego szeregowania zadań Jak to opisać? Notacja trójpolowa.



#### α może mieć postać:

- *P* procesory *identyczne*
- *Q* procesory *jednorodne*
- *R* procesory *dowolne*
- *O system otwarty* (*open shop*)
- F  $system\ przepływowy\ (flow\ shop)$
- PF "permutacyjny" flow shop
- J system ogólny (job shop)

#### Ponadto:

- po symbolu można podać liczbę maszyn np. *O*4,
- dla jednej maszyny piszemy cyfrę 1 bez symbolu (wtedy model nie ma znaczenia),
- piszemy przy braku maszyn (czynności bezstanowiskowe).

## Wstęp do deterministycznego szeregowania zadań Jak to opisać? Notacja trójpolowa.

 $\beta$  puste to cechy domyślne: zadania są niepodzielne, niezależne, z  $r_j$ =0, czasy wykonania i ewentualne wymagane terminy zakończenia  $d_i$  dowolne.

#### β Możliwe wartości:

- pmtn zadania podzielne (preemption),
- res wymagane są dodatkowe zasoby (nie omawiamy),
- prec zadania zależne,
- $r_i$  występują różne wartości momentów przybycia,
- $p_i$ =1 lub UET zadania o jednostkowym czasie wykonania,
- $p_{ij} \in \{0,1\}$  lub ZUET operacje w zadaniach są jednostkowe lub puste (procesory dedykowane),
- $C_i \le d_i$  istnieją wymagane i nieprzekraczalne terminy zakończenia zadań,
- no-idle procesory muszą pracować w sposób ciągły, bez okienek,
- *no–wait* okienka między operacjami w zadaniach są zabronione (procesory dedykowane).

## Wstęp do deterministycznego szeregowania zadań Jak to opisać? Notacja trójpolowa.

#### β Możliwe wartości:

• in–tree, out–tree, chains ... – różne szczególne postaci relacji zależności kolejnościowych (prec).





out-tree

Wstęp do deterministycznego szeregowania zadań Jak to opisać? Notacja trójpolowa.

Przykłady.

 $P3|prec|C_{max}$  – szeregowanie niepodzielnych zadań zależnych na trzech identycznych maszynach równoległych w celu zminimalizowania długości harmonogramu.

 $R|pmtn,prec,r_i|\Sigma U_i$  – szeregowanie podzielnych zadań zależnych z różnymi czasami przybycia i terminami zakończenia na równoległych dowolnych maszynach (liczba procesorów jest częścią danych) w celu minimalizacji liczby zadań spóźnionych.

 $1|r_i,C_i \le d_i|$  – pytanie o istnienie (brak kryterium kosztu, więc nic nie optymalizujemy!) uszeregowania zadań niepodzielnych i niezależnych o różnych momentach przybycia na jednej maszynie, tak by żadne zadanie nie było spóźnione.

# Wstęp do deterministycznego szeregowania zadań Redukcje podproblemów do problemów ogólniejszych Przykłady.



#### Złożoność problemów szeregowania

Jeżeli uwzględnimy tylko liczby maszyn 1,2,3,•, to istnieje 4536 problemów, z których:

- 416 wielomianowe,
- 3817 NP–trudne,
- 303 otwarte.

#### Jak sobie radzić z NP-trudnością?

- wielomianowe algorytmy *przybliżone* o gwarantowanej dokładności względnej,
- dokładne algorytmy *pseudowielomianowe*,
- algorytmy dokładne, szybkie tylko w średnim przypadku,
- heurystyki wyszukujące (np. tabu search, algorytmy genetyczne),
- dla małych rozmiarów danych wykładnicze *przeszukiwanie* wyczerpujące (np. branch-bound).

#### Ogólny schemat analizy zagadnienia



## Szeregowanie operacji bezprocesorowych. Metoda ścieżki krytycznej.

Model  $-|prec|C_{max}$  operacji o różnych czasach wykonania, z zależnościami kolejnościowymi, ale nie wymagających procesorów. Celem jest znalezienie najkrótszego możliwego harmonogramu.

Relacja zależności kolejnościowych ≺ to **częściowy porządek** (bez przekątnej) w zbiorze zadań, czyli jest ona:

- przeciwzwrotna:  $\forall_{Zi} \neg Z_i \prec Z_i$
- przechodnia  $\forall_{Z_i,Z_j,Z_k}(Z_i \prec Z_j \land Z_j \prec Z_k) \Rightarrow Z_i \prec Z_k$

## Szeregowanie operacji bezprocesorowych. Metoda ścieżki krytycznej.

Metody reprezentacji relacji zależności kolejnościowych ≺ za pomocą *digrafu acyklicznego*.

#### *Sieć AN* (activity on node):

- wierzchołki odpowiadają operacjom, ich wagi (liczby naturalne) są równe czasom wykonywania,
- $Z_i \prec Z_j \Leftrightarrow$  w sieci istnieje ścieżka skierowana z wierzchołka  $Z_i$  do wierzchołka  $Z_j$ ,
- zwykle usuwa się łuki przechodnie (jak w diagramie Hassego).

#### Sieć AA (activity on arc):

- łuki odpowiadają operacjom, ich długości są równe czasom wykonywania,
- $\bullet$  przez każdy wierzchołek przechodzi droga z Z (źródło) do U (ujście),
- $Z_i \prec Z_j \Leftrightarrow \text{luk } Z_i$  kończy się w początku luku  $Z_j$ , lub też w sieci istnieje ścieżka skierowana z końca luku  $Z_i$  do początku  $Z_i$ ,
- można wprowadzać operacje pozorne łuki o zerowej długości.

## Szeregowanie operacji bezprocesorowych. Metoda ścieżki krytycznej.

Metody reprezentacji relacji ≺ za pomocą *digrafu acyklicznego*.

Przykład. Ta sama relacja porządku dla zbioru 19 operacji.



**Przykład.** Przy translacji AN → AA niekiedy trzeba wprowadzić (zerowe)



## Szeregowanie operacji bezprocesorowych. Metoda ścieżki krytycznej.

Model  $-|prec|C_{max}$  operacji o różnych czasach wykonania, z zależnościami kolejnościowymi, ale nie wymagających procesorów. Celem jest znalezienie najkrótszego możliwego harmonogramu. **Zasada**: dla każdej operacji określamy najwcześniejszy możliwy moment uruchomienia tj. maksymalną "długość" ścieżki doń prowadzącej.

#### Jak to zrobić?

#### *Algorytm* dla *AN*:

- 1. numeruj wierzchołki "topologicznie" (brak łuków "pod prąd"),
- 2. wierzchołkom  $Z_a$  bez poprzedników nadaj etykietę  $l(Z_a)=0$ , a kolejnym wierzchołkom  $Z_i$  przypisuj  $l(Z_i)=\max\{l(Z_i)+p_i$ : istnieje łuk z  $Z_i$  do  $Z_i$ },

Wynik:  $l(Z_i)$  jest najwcześniejszym możliwym terminem rozpoczęcia  $Z_i$ .

#### Algorytm dla AA:

- 1. numeruj wierzchołki "topologicznie",
- 2. źródłu Z nadaj etykietę l(Z)=0, a kolejnym wierzchołkom v przypisuj  $l(v)=\max\{l(u)+p_j: \text{ luk } Z_j \text{ prowadzi z } u \text{ do } v\},$
- **Wynik:** l(v) wierzchołka początkowego  $Z_j$  jest najwcześniejszym możliwym terminem rozpoczęcia tej operacji. l(U) to termin zakończenia harmonogramu.

## Szeregowanie operacji bezprocesorowych. Metoda ścieżki krytycznej.

Model  $-|prec|C_{max}$  operacji o różnych czasach wykonania, z zależnościami kolejnościowymi, ale nie wymagających procesorów. Celem jest znalezienie najkrótszego możliwego harmonogramu.

Przykład. Harmonogram dla sieci AA złożonej z 19 operacji.



Szeregowanie operacji bezprocesorowych. Metoda ścieżki krytycznej.  $Z_4,2$  D  $Z_8,2$  F  $Z_{13},6$  I $Z_{14},$  $Z_{2},8$  $Z_{10},2$ B:  $E Z_{12}, 2 H Z_{17}, 2 J$ E:  $Z_7$  $Z_{16}$  $Z_{15}$  $Z_6$  $Z_5$  $Z_{13}$  $Z_3$  $Z_{10}$  $Z_2$  $Z_{12}$  $Z_{17}$  $Z_{19}$  $Z_{11}$  $Z_9$  $Z_{14}$  $Z_1$  $Z_4$  $Z_8$  $Z_{18}$ 10 15 20

## Szeregowanie operacji bezprocesorowych. Metoda ścieżki krytycznej.

- Algorytmy ścieżki krytycznej minimalizują nie tylko  $C_{\max}$ , ale wszystkie zdefiniowane wcześniej funkcje kryterialne.
- Możemy wprowadzić do modelu różne wartości terminów przybycia  $r_j$  dla zadań  $Z_j$  dodając "sztuczne" zadania (o długości  $r_j$ ):
  - ≥jako wierzchołki poprzednicy w modelu AN,
  - $\triangleright$ jako łuk prowadzący ze źródła Z do początku łuku  $Z_i$  w modelu AA.

• Zagadnienie *maksymalnego przepływu w sieci*. Dany jest multidigraf bez pętli D(V,E) o łukach obciążonych wagami  $w:E \rightarrow N$  (przepustowość) i dwóch wyróżnionych i różnych wierzchołkach z (źródło) i u (ujście). Znajdź *przepływ*  $p:E \rightarrow N \cup \{0\}$  o maksymalnej możliwej *objętości*.

Co to jest przepływ o objętości *P*?

- $\forall_{e \in E} p(e) \le w(e)$ , (nie wolno przekroczyć przepustowości łuków)
- $\forall_{v \in V \{z,u\}} \sum_{e \text{ wchodzi do } v} p(e) \sum_{e \text{ wychodzi } z \text{ } v} p(e) = 0$ , (do ,,zwykłego" wierzchołka ,,wpływa" tyle ile ,,wypływa")
- $\Sigma_{e \text{ wchodzi do } u} p(e) \Sigma_{e \text{ wychodzi z } u} p(e) = P$ , (przez ujście "wypływa" z sieci P jednostek)
- $\Sigma_{e \text{ wchodzi do } z} p(e) \Sigma_{e \text{ wychodzi z } z} p(e) = -P$ . (wniosek: do źródła "wpływa" P jednostek)

• Zagadnienie *maksymalnego przepływu w sieci*. Dany jest multidigraf bez pętli D(V,E) o łukach obciążonych wagami  $w:E \rightarrow N$  (przepustowość) i dwóch wyróżnionych i różnych wierzchołkach z (źródło) i u (ujście). Znajdź *przepływ*  $p:E \rightarrow N \cup \{0\}$  o maksymalnej możliwej *objętości*.



Sieć, przepustowości łuków.

• Zagadnienie *maksymalnego przepływu w sieci*. Dany jest multidigraf bez pętli D(V,E) o łukach obciążonych wagami  $w:E \rightarrow N$  (przepustowość) i dwóch wyróżnionych i różnych wierzchołkach z (źródło) i u (ujście). Znajdź *przepływ*  $p:E \rightarrow N \cup \{0\}$  o maksymalnej możliwej *objętości*.



... i przepływ. *P*=5

Złożoność  $O(|V||E/\log(|V|^2/|E/)) \le O(|V|^3)$ .

- Różne modele kolorowania grafów.
- Problemy *najdłuższej* (*najkrótszej*) *drogi* w grafie.
- Zagadnienia *programowania liniowego* są rozwiązywalne w czasie wielomianowym.
- Wyszukiwanie *skojarzeń w grafach*. Dany jest graf G(V,E) i funkcja wag zadana na krawędziach  $w:E \rightarrow N \cup \{0\}$ . *Skojarzeniem* nazywamy dowolny podzbiór  $A \subseteq E$  o krawędziach niesąsiadujących.
- Największe skojarzenie: znajdź skojarzenie o maksymalnej możliwej liczbie krawędzi ( $\alpha(L(G))$ ). Złożoność  $O(|E||V|^{1/2})$ .
- Najcięższe (najlżejsze) skojarzenie o danym rozmiarze. Dla danej liczby  $k \le \alpha(L(G))$  znajdź skojarzenie o k krawędziach i maksymalnej (minimalnej) możliwej sumie wag.
- *Najcięższe skojarzenie*. Znajdź skojarzenie o maksymalnej możliwej sumie wag. **Złożoności**  $O(|V|^3)$  dla grafów dwudzielnych i  $O(|V|^4)$  dla dowolnych grafów.

### Podstawowe problemy optymalizacji dyskretnej



Największe skojarzenie nie musi być najcięższym i odwrotnie.

#### Procesory identyczne, zadania niezależne

### Zadania podzielne $P|pmtn|C_{max}$ .

Algorytm McNaughtona Złożoność O(n)

- 1. Wylicz optymalną długość  $G_{\max}$ \*= $\max\{\sum_{j=1,\dots,n} p_j/m, \max_{j=1,\dots,n} p_j\}$ ,
- 2. Szereguj kolejno zadania na maszynie, po osiągnięciu  $C_{\text{max}}^*$  przerwij zadanie i (jeśli się nie zakończyło) kontynuuj je na następnym procesorze począwszy od chwili 0.

**Przykład.** 
$$m=3$$
,  $n=5$ ,  $p_1, \dots, p_5 = 4,5,2,1,2$ .



#### Procesory identyczne, zadania niezależne

#### Zadania niepodzielne $P||C_{\text{max}}$ .

Problem jest NP-trudny już na dwóch maszynach ( $P2||C_{\text{max}}$ ).

**Dowód.** *Problem podziału*: dany jest ciąg  $a_1,...a_n$  liczb naturalnych o  $S=\Sigma_{i=1,...,n}$   $a_i$  parzystej. Czy istnieje jego podciąg o sumie S/2? Redukcja  $PP \Rightarrow P2||C_{\max}$ : bierzemy n zadań o  $p_j=a_j$  (j=1,...,n), dwie maszyny, pytamy o istnienie uszeregowania z  $C_{\max} \leq S/2$ .



Dokładny algorytm dynamiczny o czasie pracy  $O(nC^m)$ , gdzie  $C \ge C_{\text{max}}^*$ .

#### Procesory identyczne, zadania niezależne

Zadania niepodzielne  $P||C_{\text{max}}$ .

Wielomianowe algorytmy przybliżone.

*Szeregowanie listowe* (*List Scheduling* LS) – stosowane w rozmaitych zagadnieniach:

- Ustal kolejność zadań na liście,
- Za każdym razem, gdy zwalnia się jakaś maszyna/maszyny, wybieraj pierwsze (według "listy") *wolne* (w tym momencie) zadania i przypisuj je do zwalniających się procesorów.

Dotyczy problemów z zależnościami kolejnościowymi. Zadanie  $Z_i$  jest wolne od chwili, w której ukończony został jej ostatni poprzednik  $Z_j$  (tj.  $Z_j \prec Z_i$ ).

Zadania niezależne zawsze są wolne.

#### Procesory identyczne, zadania niezależne

### Zadania niepodzielne $P||C_{\max}$ .

Wielomianowe algorytmy przybliżone.

*Szeregowanie listowe* (*List Scheduling* LS) – stosowane w rozmaitych zagadnieniach:

- Ustal kolejność zadań na liście,
- Za każdym razem, gdy zwalnia się jakaś maszyna/maszyny, wybieraj pierwsze (według "listy") *wolne* (w tym momencie) zadania i przypisuj je do zwalniających się procesorów.

**Przykład.** m=3, n=5,  $p_1$ ,..., $p_5=2,2,1,1,3$ .





#### Procesory identyczne, zadania niezależne

#### Zadania niepodzielne $P||C_{\text{max}}$ .

Wielomianowe algorytmy przybliżone.

#### Szeregowanie listowe (List Scheduling LS) w skrócie:

• Z ustalonego ciągu zadań wybieraj pierwsze wolne (według "listy"), przypisując je zawsze do zwalniającego się procesora.

**Dokładność**. LS jest 2-przybliżone:  $C_{\text{max}}(\text{LS}) \leq (2-m^{-1})C_{\text{max}}^*$ .

**Dowód** (obejmuje ogólniejszy model zadań z zależnościami kolejnościowymi  $P|prec|C_{max}$ ). W harmonogramie LS znajdujemy łańcuch zadań  $Z_{\pi(1)},...,Z_{\pi(k)}$ :

 $Z_{\pi(1)}$  – skończone najpóźniej,  $Z_{\pi(2)}$  – jego skończony najpóźniej poprzednik

(tj.  $Z_{\pi(2)} \prec Z_{\pi(1)}$ ) itd. aż do zadania bez poprzednika.

$$C *_{\max}^{(pmtn)} \le C_{\max} * \le$$

$$\le C_{\max}(LS) \le \sum_{i=1,\dots,k} p_{\pi(i)} + \sum_{i \notin \pi} p_i / m =$$

$$= (1-1/m) \sum_{i=1,\dots,k} p_{\pi(i)} + \sum_{i} p_i / m \le$$

$$\le (2-1/m) C *_{\max}^{(pmtn)} \le (2-1/m) C_{\max} *$$



#### Procesory identyczne, zadania niezależne

#### Zadania niepodzielne $P||C_{\text{max}}$ .

Wielomianowe algorytmy przybliżone.

Szeregowanie LPT (Longest Processing Time):

• Szereguj listowo, przy czym zadania na liście są wstępnie posortowane według nierosnących czasów wykonania  $p_i$ .

**Dokładność**. LS jest 4/3-przybliżone:  $C_{\text{max}}(\text{LPT}) \le (4/3 - (3m)^{-1}) C_{\text{max}}^*$ . Znany jest *wielomianowy schemat aproksymacyjny* oparty na

całkowitoliczbowym programowaniu liniowym.

#### Procesory dowolne, zadania niezależne

#### Zadania podzielne R pmtn | C<sub>max</sub>

Istnieje algorytm wielomianowy – wrócimy do tego ...

### Zadania niepodzielne $R||C_{\text{max}}|$

- Oczywiście problem jest NP-trudny (uogólnienie  $P||C_{\text{max}}$ ).
- Podproblem  $Q|p_i=1|C_{max}$  można rozwiązać w czasie wielomianowym.
- W praktyce stosuje się LPT.

#### Procesory identyczne, zadania zależne

#### Zadania podzielne $P|pmtn,prec|C_{max}$ .

- W ogólności jest to problem NP-trudny.
- Istnieje algorytm  $O(n^2)$  dla  $P2|pmtn,prec|C_{\max}$  i  $P|pmtn,forest|C_{\max}$ .
- Pomiędzy optymalnym harmonogramem z przerwami i bez zachodzi:

$$C*_{\max} \le C(LS) \le (2-m^{-1})C*_{\max}^{(pmtn)}$$

Dowód. Analogiczny jak w przypadku szeregowania listowego.

#### Procesory identyczne, zadania zależne

#### Zadania niepodzielne $P|prec|C_{\text{max}}$ .

- Oczywiście problem jest NP-trudny.
- Najbardziej znane przypadki wielomianowe dotyczą zadań jednostkowych:

```
P|p_i=1,in-forest|C_{\max} i P|p_i=1,out-forest|C_{\max} (Algorytm Hu, złożoność O(n)),
```

- $P2|p_i=1,prec|C_{max}$  (Algorytm Coffmana–Grahama, złożoność  $O(n^2)$ ),
- Już  $P|p_i=1$ , opositing-forest  $|C_{\text{max}}|$  i  $P2|p_i\in\{1,2\}$ ,  $prec|C_{\text{max}}$  są NP-trudne.

#### **Algorytm Hu:**

- Redukcja *out–forest* → *in–forest*: odwrócenie relacji *prec*, a po uzyskaniu harmonogramu odwrócenie go,
- *in–forest in–tree*: dodanie "dodatkowego korzenia" dla wszystkich drzew, a po uzyskaniu harmonogramu usunięcie go.
- Procedura Hu w skrócie: szeregowanie listowe z ograniczeniami kolejnościowymi + lista utworzona wg. nierosnącej odległości od korzenia drzewa.

### Procesory identyczne, zadania zależne

#### Zadania niepodzielne

#### Algorytm Hu ( $P|p_i=1,in-tree|C_{max}$ ):

Policz poziomy zadań;

t := t+1;

- Poziom zadania liczba węzłów na drodze do korzenia.
- Zadanie jest *wolne w chwili t* jeżeli wcześniej wykonane zostały wszystkie zadania poprzedzające je.

```
t:=1; 

repeat 

Wyznacz listę L_t zadań wolnych w chwili t; 

Uporządkuj L_t według nierosnącego poziomu; 

Przypisz m (lub mniej) zadań z początku L_t do maszyn;
```

until uszeregowano wszystkie zadania;

Usuń przypisane zadania z grafu;

#### Procesory identyczne, zadania zależne

#### Zadania niepodzielne



#### Procesory identyczne, zadania zależne

#### Zadania niepodzielne



### Procesory identyczne, zadania zależne

#### Zadania niepodzielne



#### Procesory identyczne, zadania zależne

#### Zadania niepodzielne



### Procesory identyczne, zadania zależne

#### Zadania niepodzielne



#### Procesory identyczne, zadania zależne

#### Zadania niepodzielne



#### Procesory identyczne, zadania zależne

#### Zadania niepodzielne

#### Algorytm Hu $(P|p_i=1,in(out)-forest|C_{max})$

Dowód. Porządek in-forest, indukcja ze względu na liczbę zadań (krok 2):

- W kolejnych krokach algorytmu liczba wolnych zadań nie wzrasta.
- Wniosek: w kolejnych chwilach liczba zajętych procesorów nie rośnie.
- Jeśli  $k \in \{0,1\}$  lub l=0, to harmonogram jest optymalny.
- Niech  $Z'\subset Z$  oznacza podzbiór zadań z poziomów  $\geq k$ . W chwili l+1 wykonano  $P_m$  ostatnie zadanie z Z'. Wykreślając l vozostałe zadania otrzymamy harmonogram Hu (czyli optymalny) dla Z'.
- Zatem w każdym harmonogramie dla Z jest zadanie z Z' wykonywane najwcześniej w chwili l+1, a po nim występuje jeszcze łańcuch k-1 zadań.
- Wniosek: nasz harmonogram jest optymalny.

### Procesory identyczne, zadania zależne

#### Zadania niepodzielne

### Algorytm Coffmana–Grahama ( $P2|p_i=1,prec|C_{max}$ ):

- 1. numeruj zadania przypisując im etykiety l od 1 do n,
- 2. szereguj listowo, przy czym kolejność na liście odpowiada malejącym etykietom zadań.

```
Faza 1 – numerowanie zadań;
```

Początkowo zadania nie mają list ani etykiet *l*;

#### for i := 1 to n do begin

A:=zbiór zadań bez etykiet *l*, których wszystkie bezpośrednie następniki już mają etykiety;

**for each**  $Z \in A$  **do** przypisz do list(Z) malejący ciąg etykiet l jego bezpośrednich następników;

wybierz  $Z \in A$  o leksykograficznie najmniejszym list(Z); l(Z):=i;

end;

### Procesory identyczne, zadania zależne

#### Zadania niepodzielne

**Przykład.** Algorytm Coffmana–Grahama, *n*=17.



### Procesory identyczne, zadania zależne

#### Zadania niepodzielne

**Przykład.** Algorytm Coffmana–Grahama, *n*=17.



#### Procesory identyczne, zadania zależne

#### Zadania niepodzielne

Dla  $P|prec|C_{\text{max}}$  można stosować heurystykę LS. W ogólności jest ona 2–przybliżona:  $C_{\text{max}}(LS) \le (2-m^{-1})C_{\text{max}}^*$ .

Dowód. Już był ...

Kolejność zadań na liście (priorytety) ustala się różnymi metodami. Mogą się pojawiać anomalie polegające na wydłużaniu się harmonogramu przy:

- wzroście liczby maszyn,
- zmniejszaniu czasu wykonania zadań,
- zmniejszaniu relacji prec,
- zmianie kolejności na liście.

#### Procesory identyczne, zadania niezależne

**Własność:** zadanie  $Z_j$  na maszynie  $M_i$  umieszczone na k—tej pozycji od końca dodaje do kryterium  $\Sigma C_i$  wartość  $kp_i$  (lub  $kp_{ij}$  dla maszyn R|).



#### Wnioski.

- długość pierwszego zadania jest mnożona przez największy współczynnik, dla kolejnych zadań współczynniki maleją,
- minimalizując  $\Sigma C_j$  powinniśmy umieszczać krótkie zadania na początku (są mnożone przez największe współczynniki),
- optymalne uszeregowanie jest zgodne z regułą *SPT* (*Shortest Processing Times*) zadania na maszynach są podejmowane w kolejności niemalejących czasów wykonania,
- ale jak znaleźć optymalne przypisanie zadań do procesorów?

## Procesory identyczne, zadania niezależne

### Zadania podzielnie i niepodzielne

Przypadki  $P||\Sigma C_i$  i podzielnych  $P|pmtn||\Sigma C_i$  można rozpatrywać razem (optymalny harmonogram podzielny nie musi dzielić zadań).

#### Algorytm optymalny $O(n \log n)$ :

- 1. Przyjmij, że liczba zadań dzieli się przez m (ew. wprowadź zadania puste),
- 2. Uporządkuj je według *SPT*,
- 3. Przypisuj kolejne m–tki zadań w sposób dowolny do różnych maszyn.



### Procesory identyczne, zadania niezależne

#### Zadania podzielnie i niepodzielne

Przypadki  $P||\Sigma C_i$  i podzielnych  $P|pmtn||\Sigma C_i$  można rozpatrywać razem (optymalny harmonogram podzielny nie musi dzielić zadań).

#### Algorytm optymalny $O(n \log n)$ :

- 1. Przyjmij, że liczba zadań dzieli się przez m (ew. wprowadź zadania puste),
- 2. Uporządkuj je według *SPT*,
- 3. Przypisuj kolejne m–tki zadań w sposób dowolny do różnych maszyn.

#### Dowód (przypadek niepodzielny).

**Lemat**. Dane są dwa ciągi liczb  $a_1,...,a_n$  i  $b_1,...,b_n$ . W jaki sposób należy je popermutować, by iloczyn skalarny  $a_{\pi(1)}b_{\tau(1)}+a_{\pi(2)}b_{\tau(2)}+...+a_{\pi(n-1)}b_{\tau(n-1)}+a_{\pi(n)}b_{\tau(n)}$  był możliwie:

- największy? oba posortować niemalejąco,
- najmniejszy? jeden posortować niemalejąco, a drugi nierosnąco.

```
Przykład. Mamy ciągi (3,2,4,6,1) i (5,7,8,1,2). (1,2,3,4,6) i (1,2,5,7,8) \rightarrow 1+4+15+28+48=96 (1,2,3,4,6) i (8,7,5,2,1) \rightarrow 8+14+15+8+6=51
```

#### Procesory identyczne, zadania niezależne

### Zadania podzielnie i niepodzielne

Przypadki  $P||\Sigma C_i$  i podzielnych  $P|pmtn||\Sigma C_i$  można rozpatrywać razem (optymalny harmonogram podzielny nie musi dzielić zadań).

#### Algorytm optymalny $O(n \log n)$ :

- 1. Przyjmij, że liczba zadań dzieli się przez m (ew. wprowadź zadania puste),
- 2. Uporządkuj je według *SPT*,
- 3. Przypisuj kolejne m–tki zadań w sposób dowolny do różnych maszyn.

**Dowód** (przypadek niepodzielny). Rozważamy uszeregowanie optymalne. Można przyjąć, że na każdej maszynie jest *k* zadań (ew. zadania puste).

#### Procesory identyczne, zadania niezależne

### Zadania niepodzielne

Już wersja ważona  $P2||\Sigma w_j C_j|$  (a także równoważna  $P2|pmtn||\Sigma w_j C_j|$ ) jest NP–trudna.

**Dowód.** Jak w  $P2||C_{\max}$ . Redukcja  $PP \Rightarrow P2||\Sigma w_i C_i$ : bierzemy n zadań o  $p_j = w_j = a_j \ (j=1,...,n)$ , dwie maszyny. Wyznacz liczbę  $C(a_1,...,a_n)$  taką, że istnieje uszeregowanie o  $\Sigma w_i C_i \leq C(a_1,...,a_n) \Leftrightarrow C_{\max}^* = \Sigma_{i=1,...,n} \ a_i/2$  (ćwiczenie).

Wariant ważony jednomaszynowy  $(1||\Sigma w_j C_j)$  można rozwiązać w czasie  $O(n\log n)$  szeregując według *reguły Smitha* (uogólnione SPT):

• ustaw zadania w kolejności niemalejącego  $p_i/w_i$ .

**Dowód.** Rozważamy przyrost kryterium po zamianie dwóch kolejnych zadań.

$$w_j p_j + w_i (p_i + p_j) - w_i p_i - w_j (p_i + p_j) =$$
 $= w_i p_j - w_j p_i \ge 0 \Leftrightarrow p_j / w_j \ge p_i / w_i$ 
Naruszenie reguły Smitha sprawi, że wartość  $\sum w_i C_i$  zmaleje po zamianie.

### Procesory identyczne, zadania niezależne

#### Zadania niepodzielne

Próbą pogodzenia kryteriów  $C_{\text{max}}$  i  $\Sigma C_i$  jest *algorytm RPT*:

- 1. Zastosuj szeregowanie LPT.
- 2. Na każdej maszynie posortuj zadania według SPT.

Dokładność:  $1 \le \sum C_i^{(RPT)} / \sum C_i^* \le m$  (zwykle jest lepsza)

#### Procesory identyczne, zadania zależne

- Już  $1|prec|\Sigma C_i$ ,  $P|prec,p_j=1|\Sigma C_i$ ,  $P2|prec,p_j\in\{1,2\}|\Sigma C_i$ ,  $P2|chains|\Sigma C_i$  i  $P2|chains,pmtn|\Sigma C_i$  są NP—trudne.
- Znane są wielomianowe algorytmy dla  $P2|prec_ip_j=1|\Sigma C_i$  (Coffman-Graham) i  $P|out-tree_ip_j=1|\Sigma C_i$  (adaptacja algorytmu Hu).
- W wersji ważonej nawet przypadek jednomaszynowy z zadaniami jednostkowymi  $1|prec_{i}p_{i}=1|\Sigma w_{i}C_{i}$  jest NP–trudny.

Minimalizacja średniego czasu przepływu na maszynach

Procesory dowolne, zadania niezależne

Algorytm  $O(n^3)$  dla  $R||\Sigma C_i$  bazuje na problemie skojarzeń w grafach. Graf dwudzielny z krawędziami obciążonymi wagami:

- W partycji  $V_1$  zadania  $Z_1,...,Z_n$ .
- W partycji  $V_2$  każdy procesor n razy:  ${}_kM_i$ , i=1...m, k=1...n.
- Krawędź z  $Z_j$  do  $_kM_i$  ma wagę  $kp_{ij}$  oznacza ona zadanie  $Z_j$  na maszynie  $M_i$ , pozycja k—ta od końca.

Szukamy najlżejszego skojarzenia o n krawędziach. Przedstawia ono szukany harmonogram.



#### Własności:

- Aby opóźnienie  $L_i=C_i-d_i$  zadania  $Z_i$  w harmonogramie było określone, zadania muszą być wyposażone w oczekiwane terminy zakończenia  $d_i$ .
- Spóźnienie zadania  $T_i=\max\{L_i,0\}$  nie bierze pod uwagę wykonania się zadań przed terminem.
- Wniosek:  $T_{\max}=\max\{L_{\max},0\}$ . Dlatego kryterium  $T_{\max}$  nie rozważamy osobno harmonogram  $L_{\max}$ -optymalny jest też  $T_{\max}$ -optymalny.
- $L_{\text{max}}^*$  to najmniejsza liczba x, taka że przedłużenie terminów  $d_i'=d_i+x$  pozwala nie spóźnić się z żadnym zadaniem (spełnione są nowe deadline-y  $C_i \le d_i'$  zadań  $Z_i$ ).
- Wniosek: minimalizacja  $L_{\max}$  i szukanie (jeśli istnieje) harmonogramu respektującego nieprzekraczalne deadline-y (tj. pytania ...|...| $L_{\max}$  i ...|..., $C_i \le d_i$ |—) to problemy "jednakowo trudne".

#### Własności:

 $\bullet$ kryterium  $L_{\rm max}$  jest uogólnieniem  $C_{\rm max}$ , zagadnienia NP–trudne dla  $C_{\rm max}$  pozostaną takie w przypadku  $L_{\rm max}$ ,



- mając do wykonania wiele prac z różnymi oczekiwanymi terminami zakończenia spóźnimy się "najmniej" zaczynając zawsze od "najpilniejszej" pracy,
- to samo innymi słowy: w różnych wariantach stosujemy regułę EDD (Earliest Due Date) wybieraj zadania  $Z_j$  w kolejności niemalejących oczekiwanych terminów zakończenia  $d_i$ ,
- problem zadań niepodzielnych na jednej maszynie  $(1||L_{\text{max}})$  rozwiązuje właśnie szeregowanie według EDD.

#### Procesory identyczne, zadania niezależne

#### Zadania podzielne

Wniosek:  $L_{\text{max}}(S_{\text{Liu}}) \leq L_{\text{max}}(S)$ .

Jedna maszyna: Algorytm Liu  $O(n^2)$ , oparty na regule EDD, działający nawet przy  $1|r_i$ , pmtn $|L_{\max}$ :

- 1. Spośród dostępnych zadań przydziel maszynę temu, które ma najmniejszy wymagany termin zakończenia,
- 2. Jeśli zadanie zostało zakończone, lub przybyło nowe wróć do 1 (w drugim przypadku przerywamy zadanie).

**Dowód.**  $S_{\text{Liu}}$  – harmonogram uzyskany algorytmem Liu. S – inny harmonogram. Zadania  $Z_i$  respektują deadline-y  $d_i$ '= $d_i$ + $L_{\text{max}}(S)$ .

Zaczynając od t=0 przekształcimy  $S \le S_{\text{Liu}}$  nie naruszając  $d_i$ .

• W  $S_{\text{Liu}}$  w chwili t uruchomiono  $Z_i$   $Z_j$  ...  $Z_j$  ...  $Z_j$  ...  $Z_j$  ...  $Z_j$  ...  $Z_j$  ...

#### Procesory identyczne, zadania niezależne

#### Zadania podzielne

Jedna maszyna: Algorytm Liu  $O(n^2)$ , oparty na regule EDD, działający nawet przy  $1|r_i$ , pmtn $|L_{\max}$ :

- 1. Spośród dostępnych zadań przydziel maszynę temu, które ma najmniejszy wymagany termin zakończenia,
- 2. Jeśli zadanie zostało zakończone, lub przybyło nowe wróć do 1 (w drugim przypadku przerywamy zadanie).

Więcej maszyn ( $P|r_i,pmtn|L_{max}$ ). Również algorytm wielomianowy: korzystamy z podprocedury rozwiązującej wersję z "twardymi" terminami zakończenia  $P|r_i,C_i\leq d_i,pmtn|$ —, szukamy optymalnego  $L_{max}$  metodą połowienia.

 $P|r_i,C_i \le d_i,pmtn|$  – sprowadzamy do problemu przepływu. Ustawiamy wszystkie  $r_i$  i  $d_i$  w ciąg  $e_0 < e_1 < ... < e_k$ .

## Tworzymy sieć: • Ze źródła wychodzi *k* łuków o

- przepustowości  $m(e_i-e_{i-1})$  do wierzchołków  $w_i$ , i=1,...,k.
- Do ujścia wchodzą łuki o przepustowości p<sub>i</sub> z
- wierzchołków  $Z_i$ , i=1,...,n.
   Między  $w_i$  a  $Z_j$  biegnie łuk o przepustowości  $e_i$ – $e_{i-1}$ , jeżeli

odcinkach czasu, tak by wykonać wszystkie).

zachodzi  $[e_{i-1},e_i]\subseteq [r_j,d_j]$ .

Uszeregowanie istnieje  $\Leftrightarrow$  istnieje przepływ o objętości  $\Sigma_{i=1,\dots,n}$   $p_i$  (można rozdysponować moce obliczeniowe procesorów do zadań w odpowiednich



### Zadania niezależne Zadania niepodzielne

Niektóre przypadki NP-trudne:  $P2||L_{\text{max}}, 1|r_j|L_{\text{max}}$ .

#### Przypadki wielomianowe:

- dla zadań jednostkowych  $P|p_j=1,r_j|L_{\text{max}}$ .
- podobnie dla maszyn jednorodnych  $Q|p_j=1|L_{\max}$  (redukcja do programowania liniowego),
- dla jednej maszyny rozwiązanie optymalne  $1||L_{\max}|$  uzyskamy szeregując według EDD (to już było ...).

### Zadania zależne Zadania podzielne

Dla jednej maszyny  $1|pmtn,prec,r_j|L_{\max}$  zmodyfikowany algorytm Liu  $O(n^2)$ :

1. określ zmodyfikowane terminy zakończenia zadań:

$$d_j$$
\*=min{ $d_j$ , min<sub>i</sub>{ $d_i$ : $Z_j \prec Z_i$ }}

- 2. szereguj według EDD dla nowych  $d_j^*$  z *wywłaszczaniem* zadania, gdy pojawia się nowe, wolne, z mniejszym zmodyfikowanym terminem zakończenia,
- 3. powtarzaj 2 aż do uszeregowania wszystkich zadań.
- Inne przypadki wielomianowe:  $P|pmtn,in-tree|L_{max}, Q2|pmtn,prec,r_i|L_{max}$ .
- Stosuje się też algorytmy pseudowielomianowe.

#### Zadania zależne

#### Zadania niepodzielne

- Już  $P|p_i=1$ , out-tree  $|L_{\text{max}}|$  jest NP-trudny.
- istnieje wielomianowy algorytm dla  $P2|prec_{*}p_{j}=1|L_{\max}$ .
- $P|p_i=1$ ,  $in-tree|L_{max}$  rozwiązuje algorytm Bruckera  $O(n\log n)$ :

next(j) = bezpośredni następnik zadania  $Z_i$ .

1. wylicz *zmodyfikowane terminy zakończenia* zadań: dla korzenia  $d_{\text{root}} = 1 - d_{\text{root}}$  i dla pozostałych  $d_k = \max\{1 + d_{\text{next}(k)} + 1 - d_k\}$ ,

2. szereguj zadania dostępne podobnie jak w algorytmie Hu, ale remisy rozstrzygaj wybierając zadania według nierosnących zmodyfikowanych terminów zakończenia, a nie według poziomów w drzewie.

Czyli znowu szeregowanie listowe z inną metodą wyznaczania kolejności na liście.

#### Zadania zależne

#### Zadania niepodzielne



#### Zadania zależne

#### Zadania niepodzielne



#### Zadania zależne

### Zadania niepodzielne



#### Zadania zależne

### Zadania niepodzielne



#### Zadania zależne

#### Zadania niepodzielne

**Przykład.** Algorytm Bruckera, n=12, m=3, terminy zakończenia w kółkach.

#### **Opóźnienia:**



### Zadania niezależne i niepodzielne

Oczywiście nawet  $P2||\Sigma U_i|$  i  $P2||\Sigma T_i|$  są NP-trudne.

**Dowód.** Analogiczny jak dla  $P2||C_{\text{max}}|$ .

Dalej skoncentrujemy się na przypadku jednoprocesorowym.

Minimalizacja liczby spóźnionych zadań  $1||\Sigma U_i|$  jest wielomianowa *Algorytm Hodgsona O*( $n\log n$ ):

Uporządkuj zadania według EDD:  $Z_{\pi(1)}$ ,  $Z_{\pi(2)}$ ,..., $Z_{\pi(n)}$ ;

 $A:=\emptyset$ ;

for i=1 to n do begin

$$A:=A\cup\{Z_{\pi(i)}\};$$

if  $\Sigma_{Z_j \in A} p_j > d_{\pi(i)}$  then usuń z A najdłuższe zadanie;

end;

 ${\cal A}$  to najliczniejszy podzbior zbioru  ${\cal Z}=\{Z_{\pi(1)},...,Z_{\pi(i)}\}$  możliwy do uszeregowania bez spóźnień (jak? - EDD).

### Zadania niezależne i niepodzielne

Oczywiście nawet  $P2||\Sigma U_i|$  i  $P2||\Sigma T_i|$  są NP-trudne.

**Dowód.** Analogiczny jak dla  $P2||C_{\text{max}}|$ .

Dalej skoncentrujemy się na przypadku jednoprocesorowym.

Minimalizacja liczby spóźnionych zadań  $1||\Sigma U_i|$  jest wielomianowa *Algorytm Hodgsona O*( $n\log n$ ):

Uporządkuj zadania według EDD:  $Z_{\pi(1)}$ ,  $Z_{\pi(2)}$ , ..., $Z_{\pi(n)}$ ;  $A:=\emptyset$ :

for i=1 to n do begin

$$A:=A\cup\{Z_{\pi(i)}\};$$

if  $\sum_{Z_j \in A} p_j > d_{\pi(i)}$  then usuń z A najdłuższe zadanie;

end;

Dla *k*=0,...,|*A*| najkrótszym (w sensie sumy długości zadań) *k*–elementowym podzbiorem zbioru *Z*, możliwym do uszeregowania bez spóźnień jest *A* po skreśleniu jego |*A*|–*k* najdłuższych zadań.

### Zadania niezależne i niepodzielne

Oczywiście nawet  $P2||\Sigma U_i|$  i  $P2||\Sigma T_i|$  są NP-trudne.

**Dowód.** Analogiczny jak dla  $P2||C_{\text{max}}|$ .

Dalej skoncentrujemy się na przypadku jednoprocesorowym.

Minimalizacja liczby spóźnionych zadań  $1||\Sigma U_i|$  jest wielomianowa

### Algorytm Hodgsona $O(n \log n)$ :

Uporządkuj zadania według EDD:  $Z_{\pi(1)}$ ,  $Z_{\pi(2)}$ ,..., $Z_{\pi(n)}$ ;  $A:=\emptyset$ ;

for i=1 to n do begin

 $A:=A\cup\{Z_{\pi(i)}\};$ 

if  $\Sigma_{Z_i \in A} p_i > d_{\pi(i)}$  then usuń z A najdłuższe zadanie;

end;

A – najliczniejszy możliwy podzbiór zadań, które można wykonać bez spóźnienia.

Szereguj najpierw A według EDD, po nich pozostałe zadania w dowolnym porządku;

Minimalizacja całkowitego spóźnienia  $1||\Sigma T_i|$  jest pseudowielomianowa.

### Zadania niezależne i niepodzielne

- Wersja z wagami  $1||\Sigma w_i U_i|$  jest NP-trudna jako uogólnienie problemu plecakowego i podobnie jak dla problemu plecakowego znany jest algorytm pseudowielomianowy.
- Podobny  $1||\Sigma w_i T_i|$  jest też NP-trudny.
- Zagadnienia optymalizacyjne upraszczają się dla zadań jednostkowych:  $P|p_j=1|\Sigma w_iU_i$  i  $P|p_j=1|\Sigma w_iT_i$  są wielomianowe np. prosta redukcja do najtańszego skojarzenia w grafie dwudzielnym.

### Zadania zależne i niepodzielne

NP-trudność pojawia się nawet dla zadań jednostkowych, w zagadnieniach  $1|p_i=1,prec|\Sigma U_i$  i  $1|p_i=1,prec|\Sigma T_i$ .

**Dowód.** *Problem kliki*: dany jest graf G(V,E) i liczba k. Czy w G istnieje pełny podgraf k—wierzchołkowy?



#### Zadania zależne i niepodzielne

NP-trudność pojawia się nawet dla zadań jednostkowych, w zagadnieniach  $1|p_i=1,prec|\Sigma U_i$  i  $1|p_i=1,prec|\Sigma T_i$ .

**Dowód.** *Problem kliki*: dany jest graf G(V,E) i liczba k. Czy w G istnieje pełny podgraf k—wierzchołkowy?

Redukcja  $PK 1|p_j=1,prec|\Sigma U_i$ : bierzemy zadania jednostkowe  $Z_v$  z  $d_i=|V\cup E|$  dla wierzchołków  $v\in V$  oraz  $Z_e$  z  $d_i=k+k(k-1)/2$  dla krawędzi  $e\in E$ . Zależności kolejnościowe:  $Z_v \prec Z_e \Leftrightarrow v$  sąsiaduje z e. Limit L=|E|-k(k-1)/2.



W uszeregowaniu optymalnym wszystkie zadania kończą się do chwili  $|V \cup E|$ . Jeżeli  $\Sigma U_i \le L$ , czyli co najmniej k(k-1)/2 zadań  $Z_e$  wykona się przed k+k(k-1)/2, ich krawędzie muszą sąsiadować z co najmniej k wierzchołkami (których zadania  $Z_v$  poprzedzają te  $Z_e$ ). Jest to możliwe jedynie, gdy k wierzchołków tworzy klikę.

Podobnie przebiega redukcja  $PK \rightarrow 1|p_i=1,prec|\Sigma T_i$ .

### Procesory równoległe, minimalizacja $C_{\max}$ ... znowu

Znamy wielomianową redukcję  $PK \rightarrow 1|p_j=1,prec|\Sigma U_i$ . A jak dowieść NP–trudności  $P|p_j=1,prec|C_{\max}$ ? Bardzo podobnie.

**Dowód.** *Problem kliki*: dany jest graf G(V,E) bez wierzchołków izolowanych i liczba k. Czy w G istnieje pełny podgraf k—wierzchołkowy?

Redukcja  $PK P|p_j=1$ , $prec|C_{max}$ : zadania jednostkowe  $Z_v$  dla wierzchołków  $v \in V$  oraz  $Z_e$  dla krawędzi  $e \in E$ . Zależności kolejnościowe:  $Z_v \prec Z_e \Leftrightarrow$ 

v sąsiaduje z e. Limit L=3. Ponadto 3 "piętra" zadań jednostkowych  $Z_{A1}, Z_{A2}, \ldots \prec Z_{B1}, Z_{B2}, \ldots \prec Z_{C1}, Z_{C2}, \ldots$  i liczba maszyn m taka, by harmonogram z  $C_{\max}=3$ : Jeśli rzeczywiście  $C_{\max}*=3$ , to:

- wszystkie szare pola są wypełnione przez  $Z_v$  i  $Z_e$ ,
- w chwili 1 są tylko  $Z_v$ , a w 3 tylko  $Z_e$ ,
- w chwili 2 działa k(k-1)/2 zadań  $Z_e$ , a ich krawędzie sąsiadują z k wierzchołkami (których zadania  $Z_v$  działają w chwili 1) tworzącymi klikę.



### Szeregowanie na procesorach dedykowanych **Przypomnienie**

- zadania są podzielone na operacje (zadanie  $Z_j$  ma operację  $O_{ij}$  do wykonania na maszynie  $M_i$ , o długości czasowej  $p_{ij}$ ). Zadanie kończy się wraz z wykonaniem swej najpóźniejszej operacji,
- dopuszcza się sytuację, gdy zadanie nie wykorzystuje wszystkich maszyn (*operacje puste*),
- żadne dwie operacje tego samego zadania nie mogą wykonywać się równocześnie,
- żaden procesor nie może jednocześnie pracować nad różnymi operacjami.

#### Systemy obsługi:

- system przepływowy (flow shop) operacje każdego zadania są wykonywane przez procesory w tej samej kolejności wyznaczonej przez numery maszyn,
- system otwarty (open shop) kolejność wykonania operacji w obrębie zadań jest dowolna,
- inne, ogólniejsze ...

Już przypadek trzech maszyn ( $F3||C_{\text{max}}$ ) jest NP–trudny.

**Dowód.** *Problem podziału*: dany jest ciąg  $a_1,...a_n$  liczb naturalnych o  $S=\Sigma_{i=1,...,n}$   $a_i$  parzystej. Czy istnieje jego podciąg o sumie S/2? Redukcja  $PP \rightarrow F3||C_{\max}$ : bierzemy n zadań o czasach  $(0,a_i,0)$  i=1,...,n oraz jedno z czasami (S/2,1,S/2). Pytamy o istnienie uszeregowania z  $C_{\max} \leq S+1$ .



**Permutacyjny system przepływowy** (**PF**): system przepływowy + kolejność podejmowania operacji z poszczególnych zadań musi być jednakowa na każdej maszynie (permutacja numerów zadań).

W zwykłym systemie przepływowym operacje w zadaniach wykonują się w tej samej kolejności (numeracja procesorów) ale kolejność podejmowania zadań może się zmieniać pomiędzy maszynami. Jest to możliwe nawet w harmonogramie optymalnym.

**Przykład.** m=4, n=2. Czasy wykonania (1,4,4,1) dla  $Z_1$  i (4,1,1,4) dla  $Z_2$ .



Jeżeli  $p_{ij}>0$ , to istnieje optymalne uszeregowanie flow shopu, w którym kolejność podejmowania zadań jest jednakowa na pierwszych dwóch maszynach, oraz jednakowa na ostatnich dwóch.

Wniosek. Harmonogram optymalny dla  $PFm||C_{\max}$  jest wtedy  $(p_{ij}>0)$  optymalny dla  $Fm||C_{\max}$  przy  $m\leq 3$  (sprawdzamy więc tylko harmonogramy permutacyjne, mniej do przeszukania!).

**Dowód.** Na  $M_1$  można "poprawić" kolejność operacji, by była zgodna z  $M_2$ .



Przypadek dwóch maszyn  $F2||C_{\max}$  (jak również z operacjami podzielnymi  $F2|pmtn|C_{\max}$ ), algorytm Johnsona  $O(n \log n)$ :

- 1. Podziel zadania na zbiory  $N_1 = \{Z_j: p_{1j} < p_{2j}\}, N_2 = \{Z_j: p_{1j} \ge p_{2j}\},$
- 2. Porządkuj  $N_1$  w kolejności niemalejącej  $p_{1j}$  a  $N_2$  według nierosnącego  $p_{2j}$ ,
- 3. Utwórz harmonogram permutacyjny (maksymalnie "przesunięty w lewo") na podstawie kolejności  $N_1,N_2$ .

**Przykład.** Algorytm Johnsona, m=2, n=5.



Przypadek dwóch maszyn  $F2||C_{\max}$  (jak również z operacjami podzielnymi  $F2|pmtn|C_{\max}$ ), algorytm Johnsona  $O(n \log n)$ :

- 1. Podziel zadania na zbiory  $N_1 = \{Z_j: p_{1j} < p_{2j}\}, N_2 = \{Z_j: p_{1j} \ge p_{2j}\},$
- 2. Porządkuj  $N_1$  w kolejności niemalejącej  $p_{1j}$  a  $N_2$  według nierosnącego  $p_{2j}$ ,
- 3. Utwórz harmonogram permutacyjny (maksymalnie "przesunięty w lewo") na podstawie kolejności  $N_1,N_2$ .

**Dowód. Lemat Jonsona.** Jeśli w "zachłannym" harmonogramie permutacyjnym dla każdych kolejnych  $Z_j$ ,  $Z_{j+1}$  zachodzi  $\min\{p_{1j},p_{2,j+1}\} \le \min\{p_{2j},p_{1,j+1}\}$ , to ich zamiana nie zmniejszy  $C_{\max}$ .

**Dowód.** Dla pewnego s zachodzi:

$$C_{\max} = \sum_{i=1}^{s} p_{1i} + \sum_{i=s}^{n} p_{2i} = \left(\sum_{i=1}^{s} p_{1i} - \sum_{i=1}^{s-1} p_{2i}\right) + \sum_{i=1}^{n} p_{2i} = \sum_{i=1}^{n} p_{2i} + \Delta_{s} \frac{\Delta_{s}}{\max \sum_{i=1}^{s} p_{2i}} = \sum_{i=1}^{n} p_{2i} + \sum_{i=1}^{n} p_{2i$$

Oznaczmy składniki tej postaci (z k w miejscu s) przez  $\Delta_k$ .

Po zmianie kolejności  $Z_j$  i  $Z_{j+1}$   $C_{\max}$  nie ulegnie zmniejszeniu jeśli  $\max\{\Delta_i, \Delta_{j+1}\} \le \max\{\Delta_i', \Delta_{j+1}'\}$ 

Przypadek dwóch maszyn  $F2||C_{\max}$  (jak również z operacjami podzielnymi  $F2|pmtn|C_{\max}$ ), algorytm Johnsona  $O(n \log n)$ :

- 1. Podziel zadania na zbiory  $N_1 = \{Z_j: p_{1j} < p_{2j}\}, N_2 = \{Z_j: p_{1j} \ge p_{2j}\},$
- 2. Porządkuj  $N_1$  w kolejności niemalejącej  $p_{1j}$  a  $N_2$  według nierosnącego  $p_{2j}$ ,
- 3. Utwórz harmonogram permutacyjny (maksymalnie "przesunięty w lewo") na podstawie kolejności  $N_1,N_2$ .

**Dowód. Lemat Jonsona.** Jeśli w "zachłannym" harmonogramie permutacyjnym dla każdych kolejnych  $Z_j$ ,  $Z_{j+1}$  zachodzi  $\min\{p_{1j},p_{2,j+1}\}\le \min\{p_{2j},p_{1,j+1}\}$ , to ich zamiana nie zmniejszy  $C_{\max}$ .

 $\begin{aligned} &\textbf{Dowód.} \text{ Po zmianie kolejności } Z_j \text{ i } Z_{j+1} \ C_{\max} \text{ nie zmaleje jeśli} \\ &\max\{\Delta_j, \Delta_{j+1}\} \leq \max\{\Delta_j', \Delta_{j+1}'\} \\ &\Leftrightarrow \max\{p_{1j}, p_{1j} - p_{2j} + p_{1,j+1}\} \leq \max\{p_{1,j+1}, p_{1,j+1} - p_{2,j+1} + p_{1j}\} \\ &\Leftrightarrow (p_{1j} \leq p_{1,j+1} \wedge p_{1j} - p_{2j} + p_{1,j+1} \leq p_{1,j+1}) \vee \\ &(p_{1j} \leq p_{1,j+1} - p_{2,j+1} + p_{1j} \wedge p_{1j} - p_{2j} + p_{1,j+1} \leq p_{1,j+1} - p_{2,j+1} + p_{1j}) \\ &\Leftrightarrow p_{1j} \leq \min\{p_{2j}, p_{1,j+1}\} \vee p_{2,j+1} \leq \min\{p_{2j}, p_{1,j+1}\} \end{aligned}$ 

Przypadek dwóch maszyn  $F2||C_{\max}$  (jak również z operacjami podzielnymi  $F2|pmtn|C_{\max}$ ), algorytm Johnsona  $O(n \log n)$ :

- 1. Podziel zadania na zbiory  $N_1 = \{Z_j: p_{1j} < p_{2j}\}, N_2 = \{Z_j: p_{1j} \ge p_{2j}\},$
- 2. Porządkuj  $N_1$  w kolejności niemalejącej  $p_{1j}$  a  $N_2$  według nierosnącego  $p_{2j}$ ,
- 3. Utwórz harmonogram permutacyjny (maksymalnie "przesunięty w lewo") na podstawie kolejności  $N_1,N_2$ .

**Dowód. Lemat Jonsona.** Jeśli w "zachłannym" harmonogramie permutacyjnym dla każdych kolejnych  $Z_j$ ,  $Z_{j+1}$  zachodzi  $\min\{p_{1j},p_{2,j+1}\}\le \min\{p_{2j},p_{1,j+1}\}$ , to ich zamiana nie zmniejszy  $C_{\max}$ .

Ale dla dowolnej pary zadań  $Z_i$ ,  $Z_i$  (i < j) w algorytmie Johnsona:

- oba z  $N_1$ :  $p_{1i} = \min\{p_{1i}, p_{2i}\} \le \min\{p_{2i}, p_{1i}\},$
- oba z  $N_2$ :  $p_{2i} = \min\{p_{1i}, p_{2i}\} \le \min\{p_{2i}, p_{1i}\}$ ,
- $Z_i$  jest z  $N_1$ , a  $Z_j$  z  $N_2$ :  $p_{1i} \le p_{2i}$  i  $p_{2j} \le p_{1j}$ , wiec min $\{p_{1i}, p_{2j}\} \le \min\{p_{2i}, p_{1j}\}$ .

Wniosek: sortując bąbelkowo "zachłanny" harmonogram permutacyjny wg kolejności Johnsona przy każdej zamianie nie zwiększamy  $C_{\rm max}$ . Przypadek operacji podzielnych: można je scalić na obu procesorach nie zwiększając  $C_{\rm max}$ . Zatem uszeregowanie optymalne nie musi dzielić zadań.

- problem  $F2||\Sigma C_i|$  jest NP-trudny,
- dla  $F3 \parallel C_{\max}$ , w którym  $M_2$  jest **zdominowana** przez  $M_1$  ( $\forall_{i,j} \ p_{1i} \geq p_{2j}$ ) lub przez  $M_3$  ( $\forall_{i,j} \ p_{3i} \geq p_{2j}$ ) można użyć Johnsona stosując zmodyfikowane czasy wykonania ( $p_{1i} + p_{2i}, \ p_{2i} + p_{3i}$ ), i=1,...,n.

Algorytm wielomianowy (graficzny) dla  $F||C_{max}|$  z n=2 zadaniami i dowolną liczbą maszyn. Szkic:

- 1. Na osi OX odkładamy kolejne odcinki o długości  $p_{11}$ ,  $p_{21}$ , ...,  $p_{m1}$  (czasy pracy maszyn nad  $Z_1$ ). Na osi OY odkładamy odcinki o długości  $p_{12}$ ,  $p_{22}$ , ...,  $p_{m2}$  (czasy pracy maszyn nad  $Z_2$ ).
- 2. Zaznaczamy obszary zakazane wnętrza prostokątów będących iloczynami kartezjańskimi odpowiednich odcinków (ta sama maszyna nie pracuje równocześnie nad dwoma zadaniami).
- 3. Szukamy najkrótszej łamanej o odcinkach równoległych do osi (praca jednej maszyny) lub biegnących pod kątem  $\pi/4$  (równoczesna praca obu maszyn), łączącej (0,0) z  $(\Sigma_i p_{i1}, \Sigma_i p_{i2})$  używamy metryki  $d((x_1,x_2),(y_1,y_2))=\max\{|x_1-x_2|,|y_1-y_2|\}$ . Jej długość to długość harmonogramu.

**Przykład.** Algorytm graficzny. m=4, n=2 i czasy wykonania to (1,4,4,1) dla



Znów przypadek trzech maszyn ( $O3||C_{\text{max}}$ ) jest NP–trudny.

**Dowód.** Redukcja  $PP oulderightarrow O3||C_{\max}$ : bierzemy n zadań o czasach  $(0,a_i,0)$  i=1,...,n oraz oraz trzy zadania z czasami (S/2,1,S/2), (S/2+1,0,0), (0,0,S/2+1). Pytamy o istnienie uszeregowania z  $C_{\max} \leq S+1$ .



Problem  $O2||\Sigma C_i|$  jest NP-trudny.

Przypadek dwóch maszyn  $O2||C_{\text{max}}|$  (jak również  $O2|pmtn|C_{\text{max}}$ ), algorytm Gonzalez-Sahni O(n):

- 1. Podziel zadania na zbiory  $N_1 = \{Z_j: p_{1j} < p_{2j}\}, N_2 = \{Z_j: p_{1j} \ge p_{2j}\},$
- 2. Wybierz 2 zadania  $Z_r$ ,  $Z_l$ , że:  $p_{1r} \ge \max_{Z_l \in N2} p_{2j}$ ;  $p_{2l} \ge \max_{Z_l \in N1} p_{1j}$ ;
- 3.  $p_1 := \sum_{i} p_{1i}$ ;  $p_2 := \sum_{i} p_{2i}$ ;  $N_1$ ':= $N_1 \setminus \{Z_r, Z_l\}$ ;  $N_2$ ':= $N_2 \setminus \{Z_r, Z_l\}$ ; Dla  $N_1$ ' $\cup \{Z_l\}$  i
- $N_2$ ' $\cup \{Z_r\}$  utwórz harmonogramy (permutacyjne i no-idle) z zadaniem z  $\{Z_r,Z_l\}$  umieszczonym "z brzegu":





4. Sklej oba harmonogramy. **if**  $p_1$ – $p_{1l}$  $\geq p_2$ – $p_{2r}$  ( $p_1$ – $p_{1l}$ < $p_2$ – $p_{2r}$ ) **then** "dosuń" operacje z  $N_1$ ' $\cup \{Z_l\}$  na  $M_2$  w prawo **else** "dosuń" operacje z  $N_2$ ' $\cup \{Z_r\}$  na  $M_1$  w lewo;

| $M_1$ | $Z_l$ | $N_1$ | $N_2$ |       | $Z_r$ |       |
|-------|-------|-------|-------|-------|-------|-------|
| $M_2$ |       | $Z_l$ | $N_1$ | $N_2$ |       | $Z_r$ |

Przypadek dwóch maszyn  $O2||C_{\text{max}}|$  (jak również  $O2|pmtn|C_{\text{max}}$ ),

algorytm Gonzalez-Sahni O(n):



4. Sklej oba harmonogramy. **if**  $p_1$ – $p_{1l}$  $\geq p_2$ – $p_{2r}$  ( $p_1$ – $p_{1l}$ < $p_2$ – $p_{2r}$ ) **then** "dosuń" operacje z  $N_1$ ' $\cup \{Z_l\}$  na  $M_2$  w prawo **else** "dosuń" operacje z  $N_2$ ' $\cup \{Z_r\}$  na  $M_1$  w lewo; [\*]

| $M_1$ | $Z_l$ | $N_1$ | $N_2$ | $Z_r$ |       |
|-------|-------|-------|-------|-------|-------|
| $M_2$ |       | $Z_l$ | $N_1$ | $N_2$ | $Z_r$ |

5. Operację z  $Z_r$  na  $M_2$  ([\*]  $Z_l$  na  $M_1$ ) przenieś na początek ([\*] koniec) i maksymalnie w prawo ([\*] w lewo).





**Przykład.** Algorytm Gonzalez–Sahni, m=2, n=5.



<u>Operacje zero–jedynkowe</u> (O|ZUET|C<sub>max</sub>): <u>algorytm wielomianowy</u> oparty na kolorowaniu krawędziowym grafów dwudzielnych.

- 1. Graf dwudzielny *G*:
  - a) wierzchołki jednej partycji to zadania, a drugiej to procesory,
  - b) każdej niepustej operacji  $O_{ij}$  odpowiada krawędź  $\{Z_i,M_i\}$ .



- 2. Kolorujemy krawędziowo  $\Delta(G)$  kolorami, interpretując barwy jako jednostki czasu przydzielone operacjom,
- (własność: poprawny harmonogram ⇔ poprawne pokolorowanie).
- 3. Wtedy  $C_{\max}^* = \Delta(G) = \max\{\max_i \sum_{j=1,...,n} p_{ij}, \max_j \sum_{i=1,...,m} p_{ij}\}$ . Oczywiście krótszy harmonogram nie istnieje.

<u>Operacje podzielne</u> ( $O|pmtn|C_{max}$ ): <u>algorytm pseudowielomianowy</u> podobny do przypadku  $O|ZUET|C_{max}$ . Różnica: G jest multigrafem dwudzielnym, niepustą operację  $O_{ij}$  dzielimy na  $p_{ij}$  "operacji" jednostkowych, odpowiadają im krawędzie równoległe.

Nadal  $C_{\text{max}}^* = \max\{\max_i \sum_{j=1,...,n} p_{ij}, \max_j \sum_{i=1,...,m} p_{ij}\}.$ 

Czemu "pseudo"? Możemy uzyskać niewielomianową liczbę krawędzi  $(=\Sigma_{i=1,...,m;\ j=1,...,n}\ p_{ij})$ , a w uszeregowaniu niewielomianową liczbę przerwań.

**Przykład. Podzielny system otwarty.** m=3, n=5,  $p_1=(2,3,0)$ ,  $p_2=(1,1,1)$ ,  $p_3=(2,2,2)$ ,  $p_4=(0,1,3)$ ,  $p_5=(1,0,1)$ .



<u>Operacje podzielne</u> ( $O|pmtn|C_{max}$ ): <u>algorytm pseudowielomianowy</u> podobny do przypadku  $O|ZUET|C_{max}$ . Różnica: G jest multigrafem dwudzielnym, niepustą operację  $O_{ij}$  dzielimy na  $p_{ij}$  "operacji" jednostkowych, odpowiadają im krawędzie równoległe.

Nadal  $C_{\text{max}}$ \* = max{max<sub>i</sub> $\Sigma_{j=1,...,n}p_{ij}$ , max<sub>j</sub> $\Sigma_{i=1,...,m}p_{ij}$ }

Czemu "pseudo"? Możemy uzyskać niewielomianową liczbę krawędzi  $(=\Sigma_{i=1,...,m;\,j=1,...,n}\,p_{ij})$ , a w uszeregowaniu niewielomianową liczbę przerwań.

**Przykład. Podzielny system otwarty.** m=3, n=5,  $p_1=(2,3,0)$ ,  $p_2=(1,1,1)$ ,  $p_3=(2,2,2)$ ,  $p_4=(0,1,3)$ ,  $p_5=(1,0,1)$ .



# Szeregowanie na procesorach dedykowanych System otwarty $Operacje\ podzielne\ (O|pmtn|C_{max})$ :

• istnieje *algorytm wielomianowy* oparty na tzw. *kolorowaniu cząstkowym* krawędzi grafu z wagami (w grafie G operacji  $O_{ij}$  odpowiada jedna krawędź  $\{Z_i,M_i\}$  z wagą  $p_{ij}$ ),

### Procesory równoległe, minimalizacja $C_{\max}$ ... znowu

Algorytm wielomianowy dla maszyn dowolnych  $R|pmtn|C_{max}$ . Redukcja  $R|pmtn|C_{max}$   $\rightarrow O|pmtn|C_{max}$ . Niech  $x_{ij}$  to część zadania  $Z_j$  wykonana na  $M_i$  (więc w czasie  $t_{ij} = p_{ij}x_{ij}$ ). Znając optymalne wartości  $x_{ij}$ , moglibyśmy zastosować powyższy algorytm traktując fragmenty zadań jak podzielne operacje przypisane do maszyn systemu otwartego (te same warunki poprawności!).

**Skąd je wziąć?** Wyznaczamy minimalny *stopień ważony* grafu G, czyli  $C=C_{\max}^*$  oraz  $x_{ii}$  z programowania liniowego:

minimalizuj C przy warunkach: