Table des matières

Table des matières										
Liste des figures										
Li	Liste des tableaux									
A	Avant-propos v Remerciements									
R										
In	trod	uction		1						
1	Syn	thèse	Bibliographique	7						
	1.1	Les to	ourbières et le cycle du carbone	8						
		1.1.1	Définitions	8						
		1.1.2	Caractéristiques spécifiques	9						
		1.1.3	Les tourbières et les changements globaux	11						
	1.2	Flux o	de gaz à effet de serre et facteurs contrôlants	11						
		1.2.1	Les flux entre l'atmosphère et les tourbières	11						
		1.2.2	Les facteurs majeurs contrôlant les flux	13						
		1.2.3	Bilans de carbone	17						
2	Sites d'études et méthodologies employées									
	2.1	Préser	ntation des sites d'études	20						
		2.1.1	La Guette	20						
		2.1.2	Frasne	20						
		2.1.3	Landemarais	20						
		2.1.4	Bernadouze	20						
	2.2	Mesur	res de flux	21						
	2.3	Facter	ırs contrôlants et suivi des flux	22						
3	Effe CO:		la températures sur les variations journalière des flux d	e 23						
	3.1		luction	23 24						
	3.1		luction	$\frac{24}{25}$						
			•							
	3.3	synchi	ronisation et profiles (article)	26						

4	Effe	ets de l'hydrologie sur les flux de CO2 et CH4	27				
	4.1	Introduction	28				
	4.2	Manipulation du niveau de l'eau en mésocosmes	28				
		4.2.1 Présentation de l'expérimentation	28				
		4.2.2 Résultats	28				
	4.3	Manipulation du niveau de l'eau (teneur en eau) in-situ	28				
		4.3.1 Présentation de l'expérimentation	28				
		4.3.2 Résultats	29				
5	Effets de la végétation sur les flux						
	5.1	Introduction	32				
	5.2	Mise en place d'un protocole	32				
	5.3	Impact des mesures de CO2 sur la végétation	32				
6	Caractérisation de la variabilité spatio-temporelle des flux sur la tour-						
	bière de La Guette (Bilan de C)						
	6.1	Introduction	34				
	6.2	Présentation du suivi	34				
		6.2.1 Suivi des GES	35				
		6.2.2 Suivi des facteurs contrôlants	35				
		6.2.3 Suivi des flux liquides (DOC, POC)	35				
7	Apport à la modélisation globale						
	7.1	Introduction	38				
	7.2	Le modèle de Walter	38				
C	Conclusions et perspectives						
R	Références bibliographiques						
In	Index						

Liste des figures

Liste des tableaux

1 Synthèse Bibliographique

Dans ce chapitre, nous commenceront par donner une vue de ce que sont les tourbières : Que sont-elles ? Depuis quand sont-elles étudiées ? Pourquoi les a-t-on étudiés ? Nous continuerons en entrant plus en détails sur leur fonctionnement vis à vis des flux de carbone. Enfin nous verrons quels sont les facteurs contrôlant majeurs de ces flux.

1.1 Les tourbières et le cycle du carbone

1.1.1 Définitions

Les tourbières font partie d'un ensemble d'écosystèmes plus large que l'on appelle les zones humides. Les zones humides ne sont ni des écosystèmes terrestres au sens strict, ni des écosystèmes aquatiques. Elles sont à la frontière, un mix des deux. Les zone humides sont caractérisées par un niveau de nappe élevé, proche de la surface du sol, voire au dessus. L'omniprésence de l'eau entraîne une autre caractéristique : la faible aération de ces zones contraint plus ou moins l'accès à l'oxygène. Il résulte des deux points précédents le développement dans ces milieux d'une végétation spécifique qui s'est adaptée aux milieux fortement humides ou inondés. Les zones humides regroupent des écosystèmes très variés parmi lesquels les marais, les mangroves, les plaines d'inondations et les tourbières.

Les tourbières représentent 50 à 70 % des zones humides (Francez, 2000; Joosten and Clarke, 2002). Les estimations de la surface occupée par les tourbières est d'environ 4 000 000 km² (Lappalainen, 1996). Cette surface correspond à 3 % de l'ensemble des terres émergées du globe. Plus de 85 % d'entre elles sont situés dans l'hémisphère nord, majoritairement dans les zones boréales et sub-boréales (Society, 2008). Les limites floues de ces écosystèmes rend difficile l'estimation de leur surface. Elles rendent également ardue leur classification. Il existe différents types de tourbières, notamment on distingue des tourbières tempérées/boréales des tourbières tropicales dont le fonctionnement diffère. Dans la suite de ce document seule les tourbières tempérées/boréales seront décrites et étudiées. De nombreux critères existent pour classer les tourbières

selon leur mode de formation, leur source d'eau, leur physico-chimie. La terminologie utilisée concernant ces écosystèmes n'a pas toujours été cohérente, de nombreux termes ont été utilisés parfois en contradiction les uns avec les autres (Joosten and Clarke, 2002), il est donc nécessaire de définir les termes utilisés par la suite. Une définition régulièrement utilisée pour caractériser ce qu'est une tourbière est : "Tout écosystème possédant au moins 30 cm de tourbe". Cette définition correspond au peatland anglo-saxon. Une autre définition existe : "écosystème dans lequel un processus de tourbification est actif" qui correspond au mire anglo-saxon qui peut être traduit en français par tourbière active. Les deux concepts se chevauchent mais ne sont pas complètement similaire : une tourbière drainée peut avoir plus de 30 cm de tourbe et n'être plus active. À l'inverse il peut exister des zones ou l'épaisseur de tourbe est inférieure à 30 cm malgré un processus de tourbification actif. Dans les deux cas ces définitions en appellent d'autre : Qu'est ce que la tourbe et la tourbification? La tourbe est le résultat de l'accumulation et de la, faible, dégradation de litières végétales. C'est ce que l'on appelle la tourbification.

1.1.2 Caractéristiques spécifiques

Biodiversité

Les tourbières sont le siège d'une biodiversité importante et spécifique. Ainsi les Sphaignes, qui sont des bryophytes, (des mousses) sont caractéristiques des écosystèmes tourbeux. Ce sont des espèces dites ingénieures, capable de modifier l'environnement dans lequel elles vivent afin de l'adapter à leurs besoins. Les sphaignes sont ainsi capable d'abaisser le pH, de capter des nutriments et de les séquestrer et ce même quand elles n'en ont pas besoin afin d'empêcher d'autres espèces notamment vasculaire d'en profiter. Plus précisément, le fait que les sphaignes captent les nutriments via leur capitulum leur permet de les intercepter avant qu'ils ne soient captés par d'éventuelles racines positionnées plus bas. Les sphaignes, comme de nombreuse mousses ont des

litières relativement récalcitrante ¹.

Puits de carbone

Les tourbières ne comptent que pour 3 % des surfaces terrestres émergées, malgré tout leur importance est plus grande que ce que leur surface peut laissé supposer. En effet la tourbe, accumulation de matières organiques, stocke d'importantes quantités de carbone. Les estimations du stock de carbone présent dans les tourbières tempérées/boréales se situent entre 270 et 455 Gt C (Gorham, 1991; Turunen et al., 2002). La différence entre les estimations s'expliquent notamment par la difficulté à cartographier ces écosystèmes à l'échelle globale, comme expliqué précédemment, mais aussi car il est difficile d'estimer une épaisseur moyenne de tourbe. Néanmoins les tourbières stockent entre 10 et 25 % du carbone présent dans les sols et entre 30 et 60 % du stock de carbone atmosphérique. Ce stock est un héritage datant des 10 derniers milliers d'années, l'holocène, période pendant laquelle se sont formés la majorité des tourbières. Le fonctionnement naturel de ces écosystèmes permet le stockage du C. C'est un des services écologiques que rendent les tourbières et que l'on appelle la fonction puits de carbone. Cette fonction est liée an niveau élevé de la nappe d'eau, qui rend l'accès à l'oxygène est plus difficile diminuant d'autant l'activité aérobie, dont la respiration des micro-organismes et des plantes. Cela ce traduit par une dégradation relativement faible des matières organiques. Elle est également liée à la production de litière récalcitrante par les bryophytes.

En comparaison avec un sol forestier, l'accumulation de matières organiques n'est donc pas lié à une production primaire plus forte, mais bien à une dégradation des matières produites plus faible.

Ces perturbations peuvent induire des modifications de fonctionnement, notamment l'envahissement de ces écosystèmes par une végétation vasculaire, et changer cette fonction puit

^{1.} il est d'usage de parler de litières récalcitrantes sans plus de précision. Il s'agit en fait de litières difficilement dégradables

1.1.3 Les tourbières et les changements globaux

Homme

Ces écosystèmes ont été et sont encore perturbés par différentes activités humaines, notamment l'agriculture, l'utilisation de la tourbe comme combustible, et comme substrat horticole.

Climat

L'impact anthropique direct n'est par la seule perturbation auxquelles sont soumises les tourbières. D'après les modèles de prédictions du GIEC, les tourbières, comme de nombreux autres écosystèmes, vont subir un changement climatique important dans les années à venir. Toujours d'après le GIEC, les changements les plus rapides que ce soit en terme de précipitations ou de température sont à attendre dans les zones boréales dans lesquelles se situe la majorité des tourbières. De ce constat découle un certain nombre de questions concernant ces écosystèmes et notamment le devenir de leur fonction puits de carbone.

Toutes ces perturbations posent notamment la question de la pérennité de la fonction puit de carbone de ces écosystèmes.

1.2 Flux de gaz à effet de serre et facteurs contrôlants

1.2.1 Les flux entre l'atmosphère et les tourbières

Les flux entrants

Le carbone est principalement présent dans l'atmosphère sous forme de dioxide de carbone (CO₂) et de méthane (CH₄). Comparé au CO₂, le CH₄ est un GES qui est bien

moins présent dans l'atmosphère (CHIFFRES!). Cependant son "pouvoir de réchauffement" est bien plus important (effet radiatif CO2 x 100) (CHIFFRES!) (D'abord la vapeur d'eau, ensuite le CO2 et enfin le CH4) Il est usuellement convenu (???? ref) que dans une tourbière le méthane représente environ 5 % du bilan de C. **Devenir du méthane atm** Le transfert du CO₂ atmosphérique vers la biosphère (de l'atmosphère à la tourbe) est principalement (**Réf needed**)liée à la photosynthèse. La photosynthèse est la réaction photochimique permettant l'assimilation du CO₂ par les végétaux chlorophylliens. dans le but de?.

Détails?

Si la photosynthèse est un processus majeur d'assimilation du CO_2 , il existe d'autres vois métaboliques permettant la capture du CO_2 de l'atmosphère. Ainsi les microorganismes chemolithotrophes (**expliciter**) sont capables d'assimiler le CO_2 en utilisant l'énergie issue de l'oxydation de composés inorganiques.

Les voies métaboliques permettant l'assimilation du CO₂ sont plutôt bien connues (farquhar) et le fait que les substrats de départ de varient pas (sur?) a permis une compréhension relativement fine du processus. Cependant une fois assimilé par la végétation le devenir du carbone est moins direct.

Les flux sortants

Dans les tourbières le CO2 est produit par des sources multiples. Ces sources sont la respiration des de la flore qu'elle soit aérienne ou souterraine et la respiration microbienne. Une autre source de CO2 est l'oxydation du CH4 lors de sa migration des zones anoxiques aux zones oxiques de la colonne de tourbe. Enfin dans les zones anaérobie, le CO2 peut être produit par fermentation (respiration anaérobie). La production de CO2 est donc un signal intégré sur l'ensemble de la colonne de tourbe. C'est cette multitude de processus qui rend l'estimation de ce flux difficile, en effet chacune des respirations n'aura pas la même sensibilité vis à vis de facteurs contrôlant. La respiration de l'écosystème (RE) est définie comme l'ensemble des respirations de la colonne de tourbe, en incluant à la fois sa partie aérienne et sa partie souterraine. La respiration du sol (SR)

est elle définie comme l'ensemble des respirations de la colonne de tourbe, en excluant la partie aérienne. La respiration du sol comprend donc principalement les respirations issues de la rhizosphère et des communautés de micro-organisme.

Les tourbières sont des écosystèmes dont la production primaire est estimée à environ $500\,\mathrm{gC}~\mathrm{m}^{-2}$ (Francez, 2000).

La strate muscinale pouvant jouer/participer/produire jusqu'à 80 % de la production primaire (Francez, 2000). Cette production primaire n'est pas particulière élevée (Réf needed) et c'est en fait la faible décomposition des matières organiques qui permet aux tourbières de stocker du carbone. L'accumulation moyenne estimée dans les tourbières boréales est de 30 gC m⁻². Le taux d'accumulation varie en fonction des espèces végétales présentes ((Réf needed)), le niveau d'eau ((Réf needed)), ... (??)

storage?

Le carbone assimilé par photosynthèse, utilisé par la plante puis évacué que se soit sous forme d'exudats racinaire ou de matériels morts, de litière, va en partie se dégrader. Continum de dégradation avec des matières organiques de plus en plus récalcitrantes avec la profondeur.

La vitesse de stockage au cours du temps?

L'accumulation de matières organiques et donc de carbone dans les tourbières est donc fonction de la prépondérance relative de ces flux entre l'écosystème et l'atmosphère.

1.2.2 Les facteurs majeurs contrôlant les flux

Ces flux sont contrôlés par différents facteurs. Parmi ceux qui sont le plus souvent cité figure la température, le niveau de la nappe et la végétation.

L'augmentation de la vitesse de réaction de nombreuses réactions biochimiques avec la température est connue depuis longtemps. Elle a été mise en évidence par un chimiste suédois en 1889 : Svante August Arrhenius sur la base de travaux réalisés par un autre chimiste, néerlandais, Jacobus Henricus Van't Hoff. Depuis, de nombreuses mesures

de terrain confirment cette relation (**Réf needed**) La photosynthèse et l'ensemble des respirations sont donc contrôlées, au moins en partie, par la température. L'hydrologie est comme nous l'avons précisé un peu plus haut, un facteur d'une grande importance dans les tourbières. Nous distinguerons ici le niveau de la nappe qui est la hauteur sous la surface du sol permettant d'accéder à la zone saturée? à l'eau "libre"? Et la teneur en eau du sol qui est une estimation de la quantité d'eau présente dans le sol.

L'effet du niveau de la nappe

Le niveau de la nappe est important car il sépare la colonne de tourbe en une zone oxique, ou il y a présence d'oxygène, et une zone anoxique dans laquelle l'oxygène est absent. Ces deux zones vont avoir des comportements différents. La zone anoxique, sous le niveau de la nappe, est une zone dans laquelle la production de CO2 est très faible car sans oxygène seule les processus de respiration anaérobie peuvent avoir lieu. Par contre dans c'est dans cette zone que sera produit le méthane. La zone oxique, proche de la surface, va permettre à la fois aux racines et aux micro-organismes de respirer. Cette zone est donc l'endroit ou est produit la majorité du CO2, l'endroit ou la matière organique est le plus dégradée. Lors de la migration du méthane dans la colonne de tourbe ce dernier aura tendance à être oxydé en CO2 lors de son passage dans cette zone oxique. Certaines plantes permettent cependant au méthane de passer à travers l'aerenchyme et d'éviter ainsi d'être oxydé.

L'effet de l'humidité relative

Résilience de la tourbe

Les propriétés physique de la tourbe jouent bien évidemment un rôle important sur cette capacité de rétention d'eau. Cependant dans le cas d'épisode de sécheresse important, il a été constaté que ces capacités n'était pas immédiatement recouverte en totalité. Les communautés végétales évoluent en parallèle de l'évolution de la tourbière (succession végétale). Les tourbières sont le siège d'une végétation caractéristique : Les sphaignes. Ces bryophytes sont la clef de voûte de ces écosystèmes d'abord parce que leur litière sont moins facilement dégradable que celle des espèces vasculaires. Ensuite parce qu'elle favorisent dans leur environnement local, les conditions favorable à leur

développement. On les appelle d'ailleurs des espèces ingénieures. Ces végétaux sans racines ont également une grande capacité à retenir l'eau (ce sont de véritables éponges) retenant également les nutriments. Ceci favorisant un milieu pauvre en nutriment et donc défavorable aux autres espèces (vasculaires?). Il existe un grand nombre d'espèce de sphaignes (CHIFFRES+REF). Par la suite il ne sera pas fait de distinction entre les différentes espèces présentes sur les différents sites étudiés. Cependant dans de nombreuses tourbières on constate un envahissement par des végétaux vasculaires. Ces plantes, sont souvent des pins, des bouleaux et des molinie? Elles ont un effet sur la production de CO2 principalement en aérant le sol, permettant à l'oxygène de migrer plus loin dans le profil, permettant à l'activité aérobie (plus efficace) d'agir sur une plus grande profondeur. Ces végétaux peuvent également pomper de l'eau en quantité (arbre?)?

D'autres facteurs à évoquer?

Facteurs contrôlant la respiration de l'écosystème

Updegraf2001

Montre, dans une expérimentation à base de mésocosme, que la respiration de l'écosystème est contrôlée presque exclusivement par la température du sol.

Cai2010

Mesures in-situ, sécheresse court terme, plus chaud et plus sec (1an). Sensibilité à la température (Q10) identique l'année humide et l'année sèche. Dans les conditions plus chaude et plus sèche Cai observe une augmentation de la Respiration (plus forte que celle de la photosynthèse)

Stratck2006

Augmentation de la respiration suite à un abaissement du niveau de l'eau (8ans plus tôt).

Ballantyne2014

dans une expérimentation in-situ, montre une respiration de l'écosystème plus importante quand le niveau de la nappe est bas que lorsque le niveau de la nappe est haut. L'expérimentation se fait sur un site dont l'abaissement de la nappe est effectif depuis longtemps (80 ans plus tôt) Même résultat que strack, donc effet présent même sur le long terme.

Facteurs contrôlant la production primaire brute

Si la diversité des réactions est moindre pour la photosynthèse, sa réponse aux variables environmentales à l'échelle de l'écosystème n'en est pas moins difficile à prédire. Comme pour la respiration, l'augmentation de la température augmente la vitesse de réaction (Cai2010). (Réf needed)L'effet d'une variation du niveau de la nappe est cependant moins évidente. La baisse du niveau de la nappe peut à la fois induire une augmentation de la PBB, notamment quand elle favorise la végétation vasculaire (Ballantyne2014). Mais elle peut également la diminuer, lorsqu'elle induit un stress hydrique important (Strack & Zuback 2013, Peichl 2014, Alm1999, Griffis2000, Weltzin2000)

Facteurs contrôlant l'ENE

Une baisse du niveau de la nappe induit souvent une baisse de l'ENE. Cependant certain attribue cette baisse à une augmentation de la Respiration (, Aurela2013, Ballantyne2014, Alm1999, Ise2008, Oechel1993) quand d'autres l'attribue à une diminution de la photosynthèe Sonnentag2010, Peicl2014 Enfin certain voient un effet à la fois de l'augmentation de la respiration et de la diminution de la photosynthèse (StrackZuback2013)

À noter un article intéressant (Lund2012) dans lequel, dans un même site une baisse du niveau de la nappe 2 année différente entrainera une baisse de l'ENE dans les 2 cas, mais dans l'un des cas cette baisse est contrôlée par un augmentation de la respiration et dans l'autre cas cette baisse est contrôlée par une diminution de la photosynthèse.

Également un article de Ballantyne2014 qui lui ne note pas d'effet d'une baisse du niveau de la nappe sur l'ENE car l'augmentation de la respiration est compensée par une augmentation de la photosynthèse.

Facteurs contrôlant les flux de méthane

La prépondérance relative des ces différents flux, contrôlée par les conditions environnementale, va donc impacter le fonctionnement des tourbières. Soit elles stockent du carbone, en accumulant des matières organiques, et donc fonctionnent comme des puits ou soit elle relâchent du carbone et fonctionnent comme des sources.

L'étude individuelle de tel ou tel flux avec tel ou tel facteur contrôlant est nécessaire afin de comprendre ce qu'il se passe au niveau des processus. Il est tout aussi nécessaire d'arriver à intégrer l'ensemble de la complexité naturelle. C'est l'intérêt d'établir des bilans de carbone.

1.2.3 Bilans de carbone

Les flux gazeux entrants et sortant des écosystèmes tourbeux ont été précisé précédemment. Il s'agit bien sur des respirations (CO₂ et CH₄) et de la photosynthèse. Cependant d'autres flux de C peuvent jouer sur le bilan de carbone : Les flux dissous, le carbone organique dissous et de carbone inorganique dissous. Les flux de carbone particulaire, et plus anecdotiquement les flux liées au composés organo-volatils (COV), au monoxyde de carbone.

Les bilans les plus complets réalisées sur les tourbières comprennent la partie gazeuse, dissoute...

passé

présent

Bibliographie

- Beer, C., Reichstein, M., Tomelleri, E., Ciais, P., Jung, M., Carvalhais, N., Rödenbeck, C., Arain, M. A., Baldocchi, D., Bonan, G. B., Bondeau, A., Cescatti, A., Lasslop, G., Lindroth, A., Lomas, M., Luyssaert, S., Margolis, H., Oleson, K. W., Roupsard, O., Veenendaal, E., Viovy, N., Williams, C., Woodward, F. I., and Papale, D. (2010). Terrestrial gross carbon dioxide uptake: Global distribution and covariation with climate. *Science*, 329(5993):834–838.
- Bond-Lamberty, B. and Thomson, A. (2010). Temperature-associated increases in the global soil respiration record. *Nature*, 464(7288):579–582.
- Ciais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V., Canadell, J., Chhabra, A., De-Fries, R., Galloway, J., Heimann, M., and others, u. (2014). Carbon and other biogeochemical cycles. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, pages 465–570. Cambridge University Press.
- Eswaran, H., Van Den Berg, E., and Reich, P. (1993). Organic carbon in soils of the world. Soil Sci. Soc. Am. J., 57(1):192–194.
- Francez, A.-J. (2000). La dynamique du carbone dans les tourbières à sphagnum, de la sphaine à l'effet de serre. L'Année Biologique, 39 :205–270.
- Gorham, E. (1991). Northern peatlands: Role in the carbon cycle and probable responses to climatic warming. *Ecol. Appl.*, 1(2):182–195.
- Harris, D. C. (2010). Charles david keeling and the story of atmospheric CO2 measurements[†]. *Anal. Chem.*, 82(19):7865–7870.

- Joosten, H. and Clarke, D. (2002). Wise use of mires and peatlands. International mire conservation group.
- Lappalainen, E. (1996). Global peat resources, volume 4. International Peat Society Jyskä.
- Post, W. M., Emanuel, W. R., Zinke, P. J., and Stangenberger, A. G. (1982). Soil carbon pools and world life zones.
- Robert, M. and Saugier, B. (2003). Contribution des écosystèmes continentaux à la séquestration du carbone. *Comptes Rendus Geoscience*, 335(6–7):577–595.
- Siegenthaler, U. and Oeschger, H. (1987). Biospheric CO₂ emissions during the past 200 years reconstructed by deconvolution of ice core data. *Tellus B*, 39B(1-2):140–154.
- Society, I. P. (2008). Peatlands and climate change. IPS, International Peat Society.
- Turunen, J., Tomppo, E., Tolonen, K., and Reinikainen, A. (2002). Estimating carbon accumulation rates of undrained mires in finland–application to boreal and subarctic regions. *The Holocene*, 12(1):69–80.

Index

\mathbf{S}	
services écologiques	3

Todo list

force? comparaison? explication effet de serre?	2
Combien? cf fact sheet IPCC	2
schéma?	2
Chiffres (surfaces)	3
Pas d'entrée "journal" pour Post1982	3
volet t'as pas mieux? Branche?"	4
Lister les amélioration à faire ou non	22
combien? qu'est ce qu'une haute fréquence?	24
liste des sites?	24
Proportion des tourbières qui ont été exploités ? qui sont encore à l'état naturel ? à	
mettre en regard avec la représentativité d'une tourbière comme La Guette.	
Est-elle représentative? La majorité des tourbières sont perturbées Sont-	
elles envahies par des végétaux vasculaires?	24
Expliquer ici ou ailleurs que les flux de CH4 ne représente a priori que 5 % du	
bilan de C sur une tourbière	34