Chimica

Paolo Bettelini

Contents

1	\mathbf{Chi}	mica																				
	1.1	Notaz	zione	scier	ntific	a .																
	1.2	Sistem	na In	terna	azior	nale																
		1.2.1	Gr	ande	zze f	onda	ame	nta	li													
		1.2.2	Gr	ande	zze c	leriv	ate															
		1.2.3	Mis	sure																		
2	Isot	opi de	ell'id	roge	eno																	
		Deute																				
	2.2	Trizio	٠.																•			
3	Acc	qua cor	n de	uter	io e	triz	zio															
	3.1	_ Densit	tà .																			

1 Chimica

Sistema \subseteq Ambiente \subseteq Universo.

Un sistema può essere:

- Aperto: se scambia materia/energia con l'ambiente.
- Chiuso: se scambia solo energia con l'ambiente.
- Isolato: se non scambia nè energia nè material con l'ambiente.

Studiare un sistema significa descrivere le sue proprietà

- Qualitative: possono essere definite senza avvalersi di misure.
- Quantitative: richiedono delle misure.

Le priorità misurabili sono delle $\mathit{grandezze}.$

1.1 Notazione scientifica

La notazione scientifica viene espressa come

$$a \cdot 10^k, \quad a \in [1, 10)$$

1.2 Sistema Internazionale

1.2.1 Grandezze fondamentali

Grandezza fisica	Simbolo della grandezza fisica	Nome dell'unità di misura	Simbolo dell'unità di misura			
Lunghezza	1	metro	m			
Massa	m	kilogrammo	kg			
Tempo	t	secondo	S			
Corrente elettrica	1	ampere	Α			
Temperatura	T	kelvin	K			
Quantità di sostanza	n	mole	mol			
Intensità luminosa	i _v	candela	cd			

1.2.2 Grandezze derivate

Grandezza fisica	Simbolo della grandezza fisica	Nome dell'unità di misura	Simbolo dell'unità di misura				
Lunghezza	1	metro	m				
Massa	m	kilogrammo	kg				
Tempo	t	secondo	S				
Corrente elettrica	1	ampere	Α				
Temperatura	T	kelvin	K				
Quantità di sostanza	n	mole	mol				
Intensità luminosa	i _v	candela	cd				

1.2.3 Misure

Sottomultiplo	Prefisso	Simbolo	Multiplo	Prefisso	Simbolo
10 ⁻¹	deci-	d-	10	deca-	da-
10-2	centi-	C-	10 ²	etto-	h-
10-3	milli-	m-	10 ³	kilo-	k-
10 ⁻⁶	micro-	μ-	10 ⁶	mega-	M-
10 ⁻⁹	nano-	n-	10 ⁹	giga-	G-
10 ⁻¹²	pico-	p-	10 ¹²	tera-	T-

2 Isotopi dell'idrogeno

2.1 Deuterio

Il primo isotopo dell'idrogeno è il deuterio, indicato con D o 2H . A differenza dell'idrogeno comune, il deuterio possiede un neutrone nel nucleo oltre al protone. A causa di questa caratteristica, il deuterio ha una massa atomica leggermente superiore rispetto all'idrogeno normale. Il deuterio è utilizzato in varie applicazioni, come nei reattori nucleari per la produzione di energia e come tracciatore in studi scientifici e biologici.

2.2 Trizio

Il secondo isotopo dell'idrogeno è è il trizio, indicato con T o 3H . A differenza dell'idrogeno comune, il deuterio possiede due neutroni nel nucleo oltre al protone. A causa di questa composizione nucleare, il trizio ha una massa atomica maggiore rispetto agli altri isotopi dell'idrogeno. Il trizio è radioattivo e decade nel tempo con una emivita di circa 12,3 anni, emettendo particelle beta.

3 Acqua con deuterio e trizio

È possibile ottenere dell'acqua, H_2O , utilizzando gli isotopi D e T al posto di H.

Queste sostanze sono chiamate acqua pesante (D_2O) e acqua superpesante (T_2O) .

3.1 Densità

	Acqua	Acqua pesante	Acqua Superpesante
Liquido (g/cm ³)	0.997	1.11	1.20
Solido (g/cm ³)	0.9168	1.105	?

Normalmente, le molecole dell'acqua che ghiaccia si organizzano, e creano molti spazi (caso unico). Questo implica che il ghiaccio abbia una densità minore dell'acqua, per cui esso galleggia se immerso nell'acqua.

Possiamo quindi notare dalla tabella come la versione solida dell'acqua pesante galleggi nell'acqua normale [1].

References

[1] 1.1 The Density of Deuterated Water. Purdue University Chemistry Education. URL: https://chemed.chem.purdue.edu/demos/main_pages/1.1.html.