Pavithra S 21BIT0389 Assignment 5

```
import numpy as np
import pandas as pd

df=pd.read_csv('/content/Mall_Customers.csv')
df
```

	CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)	-
0	1	Male	19	15	39	
1	2	Male	21	15	81	
2	3	Female	20	16	6	
3	4	Female	23	16	77	
4	5	Female	31	17	40	
195	196	Female	35	120	79	
196	197	Female	45	126	28	
197	198	Male	32	126	74	
198	199	Male	32	137	18	
199	200	Male	30	137	83	

200 rows × 5 columns

```
df.shape
    (200, 5)
df.info()
    <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 200 entries, 0 to 199
    Data columns (total 5 columns):
     # Column
                              Non-Null Count Dtype
    ---
                              -----
     0 CustomerID
                              200 non-null
                                            int64
                              200 non-null
     1 Gender
                                            object
     2 Age
                              200 non-null
                                            int64
                              200 non-null
     3 Annual Income (k$)
                                             int64
     4 Spending Score (1-100) 200 non-null
                                             int64
    dtypes: int64(4), object(1)
    memory usage: 7.9+ KB
df=df.drop(columns=['CustomerID'],axis=1)
df=df.drop(columns=['Gender'],axis=1)
df=df.drop(columns=['Age'],axis=1)
```

u1.11cau(/

	Gender	Age	Annual Income (k\$)	Spending Score (1-100)
0	Male	19	15	39
1	Male	21	15	81
2	Female	20	16	6
3	Female	23	16	77
4	Female	31	17	40

df.isnull().any()

Annual Income (k\$) False
Spending Score (1-100) False

dtype: bool

df.describe()

	Annual Income (k\$)	Spending Score (1-100)
count	200.000000	200.000000
mean	60.560000	50.200000
std	26.264721	25.823522
min	15.000000	1.000000
25%	41.500000	34.750000
50%	61.500000	50.000000
75%	78.000000	73.000000
max	137.000000	99.000000

import matplotlib.pyplot as plt
import seaborn as sns

plt.figure(figsize=(4,4))
plt.bar(df['Age'],df['Spending Score (1-100)'])

plt.figure(figsize=(4,4))
plt.scatter(df['Annual Income (k\$)'], df['Spending Score (1-100)'])

<matplotlib.collections.PathCollection at 0x7c52e32c8310>

sns.pairplot(df)

```
10/5/23, 8:27 PM
             <seaborn.axisgrid.PairGrid at 0x7c52de9d4130>
                  140 +
     plt.figure(figsize=(4,4))
     sns.heatmap(df.corr(),annot=True)
             <Axes: >
                                                                        - 1.0
              Spending Score (1-100) Annual Income (k$)
                                                                         - 0.8
                                                  0.0099
                                                                        - 0.6
                                                                         - 0.4
                          0.0099
                                                                         - 0.2
                                                    Spending Score (1-100)
                             Annual Income (k$)
```

```
plt.figure(figsize=(4,4))
plt.boxplot(df['Annual Income (k$)'])
plt.show()
```

```
plt.figure(figsize=(4,4))
plt.boxplot(df['Spending Score (1-100)'])
plt.show()
```

```
100 -
80 -
60 -
40 -
20 -
```

```
q1=df['Annual Income (k$)'].quantile(0.25)
q3=df['Annual Income (k$)'].quantile(0.75)
IQR=q3-q1
upper_limit=q3+(1.5*IQR)
lower_limit=q1-(1.5*IQR)

df.median()

Annual Income (k$) 61.5
Spending Score (1-100) 50.0
dtype: float64

df['Annual Income (k$)']=np.where(df['Annual Income (k$)']>upper_limit,61.5,df['Annual Income (k$)'])
plt.figure(figsize=(4,4))
plt.boxplot(df['Annual Income (k$)'])
plt.show()
```

```
120
            100
from sklearn import cluster
error=[]
for i in range(1,11):
   kmeans = cluster.KMeans(n clusters=i,init = 'k-means++',random state=0)
   kmeans.fit(df)
   error.append(kmeans.inertia )
         /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` e>
         /usr/local/lib/python3.10/dist-packages/sklearn/cluster/ kmeans.py:870: FutureWarning: The default value of `n init` will change from 10 to 'auto' in 1.4. Set the value of `n init` e>
            warnings.warn(
         /usr/local/lib/python3.10/dist-packages/sklearn/cluster/ kmeans.py:870: FutureWarning: The default value of `n init` will change from 10 to 'auto' in 1.4. Set the value of `n init` e>
            warnings.warn(
         /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` e>
            warnings.warn(
         /usr/local/lib/python3.10/dist-packages/sklearn/cluster/ kmeans.py:870: FutureWarning: The default value of `n init` will change from 10 to 'auto' in 1.4. Set the value of `n init` expression of the control of the co
            warnings.warn(
         /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` e>
            warnings.warn(
         /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` e>
            warnings.warn(
         /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` e>
            warnings.warn(
         /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` e>
            warnings.warn(
         /usr/local/lib/python3.10/dist-packages/sklearn/cluster/ kmeans.py:870: FutureWarning: The default value of `n init` will change from 10 to 'auto' in 1.4. Set the value of `n init` e>
            warnings.warn(
error
         [258182.895000000005,
          171461.67386954778,
          102283.01391906125,
           69614.42989643844,
           40494.033637799395,
           34728.61250605758,
           29079.527525982565,
           23885.154432307656,
           20710.67806616173,
           18654.24865249818]
plt.plot(range(1,11),error)
plt.title('Elbow method')
plt.xlabel('number of clusters')
plt.ylabel('error')
plt.show()
```



```
/usr/local/lib/python3.10/dist-packages/sklearn/base.py:439: UserWarning: X does not have valid feature names, but KMeans was fitted with feature names warnings.warn(
array([0], dtype=int32)

km_model.predict([[75,75]])

/usr/local/lib/python3.10/dist-packages/sklearn/base.py:439: UserWarning: X does not have valid feature names, but KMeans was fitted with feature names warnings.warn(
array([2], dtype=int32)
```