

Optimización

Programación Lineal

Docente: Cristian Guarnizo Lemus

Contenido

- Forma estándar de LPs.
- 2. Transformaciones a forma estándar.
- 3. Método simplex.

Programación lineal

Ejemplo:

- Una refinería tiene dos petróleos crudos disponibles como material.
- Produce gasolina, queroseno y combustóleo.
- Ganancias del procesamiento del crudo #1 es 1 Euro/kg y del crudo #2 es 0.7 Euro/kg.
- Cuales son sus tasas optimas de alimentación diaria?

Producto	Crudo #1 %	Crudo #2 %	Max Permitido (kg/dia)
Gasolina	70	31	6000
Queroseno	6	9	2400
Combustóleo	24	60	12000

Formulación matemática:

$$\min_{x_1, x_2} x_1 + 0.7x_2$$

s.t.
$$0.7x_1 + 0.31x_2 \le 6000$$

 $0.06x_1 + 0.09x_2 \le 2400$
 $0.24x_1 + 0.6x_2 \le 12000$
 $x_1, x_2 \ge 0$

 x_i , $i \in \{1,2\}$ denotan la rata de alimentación del crudo i a la refinería.

Vigilada Mineducaci

Forma estándar de los LPs

NLP, programa no-lineal

$$\min_{\mathbf{x}} f(\mathbf{x})$$
s.t. $c_i(\mathbf{x}) = 0, i \in E$

$$c_i(\mathbf{x}) \le 0, i \in I$$

- ← Función objetivo
- ← Restricciones de Igualdad
- ← Restricciones de desigualdad

NLP, programa no-lineal

$$\min_{\mathbf{x}} \mathbf{d}^{\mathsf{T}} \mathbf{x}$$
s.t. $\mathbf{a}_i^{\mathsf{T}} \mathbf{x} - \mathbf{b} = 0, i \in E$

$$-x_i \le 0, i \in \{1, ..., n\}$$

- ← Función objetivo lineal
- ← Restricciones de igualdad lineal
- ← Limites de las variables

Forma estándar

Contenido

- Forma estándar de LPs.
- Transformaciones a forma estándar.
- 3. Método simplex.

Transformaciones a forma estandar

NLP, programa no-lineal

$$\min_{x} d^{\mathsf{T}}x$$
s.t. $A_0 \overline{x} = b_0$,
$$A_1 \overline{x} \ge b_1$$
,
$$A_2 \overline{x} \le b_2$$
,
$$\overline{x} \ge 0$$

$$\min_{x} d^{\mathsf{T}} x$$
s.t. $Ax = b$

$$x \ge 0$$

Transformación a forma estándar:

 Introducir nuevas variables de holgura para cada restricción de igualdad.

$$A_1\overline{x} \geq b_1 \Rightarrow A_1\overline{x} - v_1 = b_1, v_1 \geq 0$$

 $A_2\overline{x} \leq b_2 \Rightarrow A_2\overline{x} + v_2 = b_2, v_2 \geq 0$

Transformaciones a forma estandar

- Son dados en la forma estándar $\min_{x} d^{\mathsf{T}}x$ s.t. Ax = b $x \ge 0$
- El modelo tiene mas variables que restricciones de igualdad, tenemos mas grados de libertad.
- La matriz $A \in \mathbb{R}^{m \times n}$ tiene rango completo en la filas, rank(A) = m.
- Para ilustraciones graficas típicamente se toma

$$\min_{x_1, x_2} d_1 x_1 + d_2 x_2$$
s.t. $Ax \ge b$

$$x_1 \ge 0$$

$$x_2 \ge 0$$

Geometría de los problemas lineales

Conjunto factible: $\Omega = \{x \in \mathbb{R}^n | x \ge 0, Ax = b\}$

- Ω es un politopo, polígono multidimensional.
- Varios bordes expanden las caras del politopo.
- Una esquina P es la intersección de (al menos dos) restricciones activas.
- LPs son siempre convexos. Entonces cualquier solución local es una solución global.

Geometría de los problemas lineales

Contenido

- Forma estándar de LPs.
- Transformaciones a forma estándar.
- 3. Método simplex.

Método simplex

Consideramos el LP en forma estándar $\min_{x} d^{T}x$ s.t. Ax = b $x \ge 0$

donde $A \in \mathbb{R}^{m \times n}$ tiene rango completo, n > m.

Definición: x es un punto factible básico, sí un conjunto índice |T(x)| = m, $T(x) \subset \{1, ..., n\}$ se puede seleccionar:

- $B := [a_i]_{i \in T(x)}$ es matriz básica regular $(a_i \text{ es la } i\text{-esima columna de } A)$.
- $x_B \coloneqq [x_i]_{i \in T(x)} \ge \mathbf{0} \text{ y } x_N \coloneqq [x_i]_{i \notin T(x)} = \mathbf{0}.$

Visualización de puntos básicos factibles

Original, sistema de ecuaciones no lineales:

$$Ax = b$$

ties no lineales:
$$Ax = b \qquad \begin{bmatrix} a_{11} & \cdots & a_{1m} & a_{1,m+1} & \cdots & a_{1n} \\ \cdots & & \cdots & \cdots & \cdots \\ a_{m1} & \cdots & a_{mm} & a_{m,m+1} & \cdots & a_{mn} \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ \cdots \\ x_m \\ x_{m+1} \\ \cdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ \cdots \\ b_m \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ \dots \\ x_m \\ x_{m+1} \\ \dots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ \dots \\ b_m \end{bmatrix}$$

Selecciones el vector de índices y reorganice columnas:

$$\Leftrightarrow [\mathbf{B} \quad \mathbf{N}] \begin{bmatrix} \mathbf{x}_B \\ \mathbf{x}_N \end{bmatrix} = \mathbf{b}$$

$$\begin{bmatrix} b_{11} & \cdots & b_{1m} \\ \cdots & & & \\ b_{m1} & \cdots & b_{mn} \end{bmatrix}$$

$$\begin{vmatrix} x_{B,m} \\ 0 \\ \dots \\ 0 \end{vmatrix} = \begin{vmatrix} \dots \\ b_m \end{vmatrix}$$

Propiedades de los puntos básicos factibles

Con
$$N := [a_i]_{iT \notin (x)}$$

$$Ax = b \iff Bx_B + Nx_N = b \implies Bx_B = b \implies x_B = B^{-1}b$$

Proposiciones:

- Los puntos factibles básicos son los puntos esquina.
- Si hay un punto factible, entonces existe un punto factible básico.
- Si una solución optima existe, entonces al menos el punto factible es una solución optima.

Método simples para LPs - Resumen

- Buscar optimo entre los puntos factibles básicos (las esquinas del politopo).
- Empezar en una esquina factible.
- Iterar moviéndose a un punto esquina vecino.
- En cada movimiento la función objetivo decrece
- En casos degenerados puede permanecer constante.
- Los puntos equina vecinos del politopo corresponden a puntos básicos factibles con un índice diferentes en T(x).

- Que condiciones se deben sostener en el optimo?
- Como realizar el paso iterativo?
- Como encontrar el punto básico factible inicial?

Simplex - Optimalidad

Las condiciones KKT son suficientes para la solución global (convexo)

$$A^{\mathsf{T}} \lambda_E + \lambda_I = d$$
 $Ax = b$
 $x \ge 0$
 $\lambda_I \ge 0$
 $x_i \lambda_{I,i} = 0, \forall i = \{1, ..., n\}$

Selectionar
$$T(x)$$

$$[\boldsymbol{B} \ \boldsymbol{N}]^{\mathsf{T}} \boldsymbol{\lambda}_{E} + [\boldsymbol{\lambda}_{I,B}^{\mathsf{T}} \ \boldsymbol{\lambda}_{I,N}^{\mathsf{T}}]^{\mathsf{T}} = [\boldsymbol{d}_{B}^{\mathsf{T}} \ \boldsymbol{d}_{N}^{\mathsf{T}}]^{\mathsf{T}}$$

 $\boldsymbol{B} \boldsymbol{x}_{B} + \boldsymbol{N} \boldsymbol{x}_{N} = \boldsymbol{b}$

Selectionar
$$x_N = 0$$
, y $\lambda_{IB} = 0$

Tarea:

Demostrar que estas expresiones se cumplen.

$$\lambda_E = [B^{\mathsf{T}}]^{-1} d_B$$

$$\lambda_{I,N} = d_N - N^{\mathsf{T}} \lambda_E$$

$$x_B = B^{-1} b$$

Las condiciones KKT se satisfacen si: $x_B \ge 0$ y $\lambda_{I,N} \ge 0$.

Simplex – Secuencia de iteración

Initialize with basic feasible point x

Loop:

- 1. If $\lambda_{I,N} \geq 0$ terminate
- 2. Choose an index $q: q \notin T^k(x)$, $\lambda_{I,q} = \min_{i \notin T^k(x)} \lambda_{I,i}$ (note $\lambda_{I,q} < 0$)
- 3. Initialize $x_q^+=0$, fix all other components of x_N^+ to zero.
- 4. Increase x_q^+ , following $Ax^+ = b$ until some x_p^+ with $p \in T(x)$ becomes zero.

$$Ax^+ = Bx_B^+ + a_qx_q^+ = b = Ax = Bx_B$$

$$x_B^+ = x_B - B^{-1} a_q x_q^+ \ge 0 \implies x_p^+ = 0$$

- 5. Replace the index p with q in T(x) and update $x = x^+$
- 6. Go to 1.

Referencias

- Basado en el curso "Applied Numerical Optimization" por el profesor Alexander Mitsos.
- Nocedal J. Wright S. J. Numerical Optimization, 2nd Edition, Springer, 2006.

1 Gracias!

