Algorithms

December 18, 2022

1 Prologue

(0.1) In each of the following situations, indicate whether $f = \mathcal{O}(g)$, if $f = \Omega(g)$, or if $f = \Theta(g)$.

Solution: add solution here

(0.2) Show that, if c is a positive real number, then $g(n) = 1 + c + c^2 + \cdots + c^n$ is

- (a) $\Theta(1)$ if c < 1
- (b) $\Theta(n)$ if c=1
- (c) $\Theta(c^n)$ if c > 1

Solution: add solution here

(0.3) In this problem we confirm the Fibonacci numbers grow exponentially fast, and obtain bounds on their growth.

- (a) Use induction to prove $F_n \ge 2^{0.5n}$ for $n \ge 6$
- (b) Find a constant c, such that $F_n \geq 2^{0.5n}$ for $n \geq 6$
- (c) What is the largest c you can find, such that $F_n = \Omega(2^{cn})$

Solution:

(0.4) This problem describes a method fib3 for computing the nth fibanacci number using 2×2 matricies. See book for description of the algorithm. We analyze its performance. In the following let

$$X = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$$

- (a) Show two 2×2 matricies cam be multiplied using 4 additions and 8 multiplications.
- (b) Show $\mathcal{O}(\log(n))$ matrix multiplications suffice for computing X^n
- (c) Show that all intermediate results of fib3 are $\mathcal{O}(n)$ bits long
- (d) Let M(n) be the running time of an algorithm for multiplying n-bit numbers, and assume the $M(n) = \mathcal{O}(n^2)$. Prove the running time of fib3 is $\mathcal{O}(M(n)log(n))$
- (e) Can you prove the running time of fib3 is $\mathcal{O}(M(n))$? Assume $M(n) = \Theta(n^a)$ for some $1 \le a \le 2$.

Solution: