UNIVERSITY DEPARTMENT OF MATHEMATICS TMBU, Bhagalpur

Due Date: 05–06-19 Linear Algebra Session: 2018–20

- 1. Problems on invariant subspace
 - (a) For each of the following linear operator T on V and subspace W, determine if the given subspace is invariant or not

i.
$$V = P_3, T(f)(x) = f'(x) \text{ and } W = P_2(x)$$

ii.
$$V = \mathbb{R}^3$$
, $T(a, b, c) = (a + b + c, a + b + c, a + b + c)$ and $W = \{(t, t, t) : t \in \mathbb{R}\}$

iii.
$$V=M_{2\times 2}(\mathbb{R}),\, T(A)=\begin{pmatrix} 0&1\\1&0 \end{pmatrix}A$$
 and $W=\{A\in V:A^T=A\}$

- (b) Let T be any linear transformation from V to V, then show that the following spaces are invariant under T
 - i. $\{0\}$ and V
 - ii. Nullspace of T and Range of T
 - iii. Space generated by any non-empty set of eigenvectors of T
 - iv. Generalized eigenspace E_{λ} , for some eigenvalue λ
- 2. Problem on Jordan Canonical Forms
 - (a) Find the characteristic polynomial, minimal polynomial, and Jordan canonical form of the following matrices

i.
$$\begin{pmatrix} 1 & 1 \\ -1 & 3 \end{pmatrix}$$

ii.
$$\begin{pmatrix} 1 & 2 \\ 3 & 2 \end{pmatrix}$$

iii.
$$\begin{pmatrix} 11 & -4 & -5 \\ 21 & -8 & -11 \\ 3 & -1 & 0 \end{pmatrix}$$

iv.
$$\begin{pmatrix} 4 & 1 & 0 \\ -1 & 2 & 0 \\ 1 & 1 & 3 \end{pmatrix}$$

$$v. \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 2 & 0 & 0 \\ 1 & 0 & 2 & 0 \\ 1 & 1 & 0 & 2 \end{pmatrix}.$$

vi.
$$\begin{pmatrix} 2 & 1 & 0 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 1 & -1 & 3 \end{pmatrix}$$

(b) Let $A = \begin{pmatrix} 5 & -1 \\ 9 & -1 \end{pmatrix}$. Then find the formula for A^n , where n is a positive integer.