SMAPSS Ontology Evaluation

What is an Ontology?

Ontologies are a widely used method for representing knowledge. Therefore, knowledge is expressed in semantic statements and stored digitally. An ontology consists of classes (objects), attributes, and relationships representing a domain's knowledge. Besides humans, machines can also understand the concepts defined within the ontology and process the content and interpret new knowledge. Moreover, it can be used to infer, querying the specific knowledge about a domain across heterogeneous systems. For example: 'Human' can be considered as a subclass of 'Animals', and 'Animals' is the subclass of 'Living Organism'.

These concepts can be further provided with a relationship. These relationships are called *Object Property*. For example: 'Humans' 'eats' 'Apple' where 'eats' is an Object Property.

The property of a concept is called *Data Property*. For example, an 'Apple' is a concept that is a subclass of 'Fruit', then the Data Property of Apple can be considered as 'Nutritional Content', which is 'Vitamin A' or the size, shape etc.

What is the benefit of an Ontology?

Apart from having a shared conceptualization of the concepts and their relationship, using ontologies, we can have a mechanism where we can get new information out of the already existing concepts and their relationship. For example, 'Humans' eat 'Apple' and 'Apple' 'Nutritional Content' is 'Vitamin C'. Therefore, using the chain connection between Humans and the nutritional content of the apple. We can infer that a human who eats an apple gets Vitamin C.

Use of an Ontology in a production environment:

Using ontologies in a production environment is a relatively new research field. As described above, the goal is to store knowledge about an organization and its processes and enable workers to share and extract new knowledge.

Use of an Ontology in the project DAMOKLEZ:

In the research project DAMOKLEZ, an ontology has been developed to store knowledge about deviations between a simulation model and its real production system. The goal is to fasten and support the process of knowledge extraction from a knowledge worker who works on the shop floor of the production system to the simulation expert, who needs to adjust the parameters of the simulation model according to the current deviation.

Your background

In which in	dustry is your company mainly active?
	Automotive/ motor vehicle manufacturers
	Mechanical and plant engineering
	Supply industry
	Consulting
	Research
	Other: Klicken oder tippen Sie hier, um Text einzugeben.

What is your experience with the tools/activities mentioned below?

	Not at all	No	Some what	Yes	Defin itely yes	No state ment
Are you involved in engineering tasks?			\boxtimes			
Do you have experiences in production systems?				\boxtimes		
Do you work with data from production systems?		\boxtimes				
Do you work with simulation models?		\boxtimes				
Have you heard about ontologies before?	\boxtimes					
Have you worked with ontologies in the past?	\boxtimes					
Have you used a Knowledge Management System before?			\boxtimes			

Figure 1 represents the first-level concepts of the ontology. As mentioned in the figure, each class related to a process, product, deviation, or organization is colored respectively. Various concepts are not mainly related to a specific concept but can represent different knowledge for different concepts.

Please look at the Simulation Model and Automated Production System Synchronisation (SMAPSS) ontology. The picture presents the first level of the ontology concept, which presents the general structure of an organization with a strong focus on the described task. Please answer the questions with 'strongly disagree', disagree', 'neutral', 'agree', 'strongly agree'.

Fig 1: Ontology first level concepts

1.	Do you think the co	ncepts def	ined in ont	tology cont	radict each other?
	strongly disagree	disagree	neutral	agree	strongly agree
	Comment:	Klicken oder	tippen Sie hier	, um Text einzu	igeben.
2.	Do you think conce	pts defined	l in the ont	tology cove	er all the real-world
	information about	assembly li	ne manufa	cturing pla	nts?
	strongly disagree	disagree	 neutral	⊠ agree	strongly agree
	Comment:	Klicken oder	tippen Sie hier	, um Text einzu	igeben.
3.	Do you think some	of the cond	epts are u	seless?	
	strongly disagree	disagree	neutral	agree	strongly agree
	Comment:	Usefull only v	when it is used	continoiusly to	create new value
4.	Do you think there	is clarity w	ith the nan	ning of the	concepts?
	strongly disagree	disagree	neutral	⊠ agree	strongly agree
	Comment:	System e.g. is	misunderstand	lable	
	Do you think these companies?	concepts ca	an be used	for other i	manufacturing
	strongly disagree	disagree	neutral	agree	strongly agree
	Comment:	Klicken oder	tippen Sie hier	, um Text einzu	igeben.

The above figure 1 represents the main class or the concepts used to store information and knowledge about different aspects of the industry with an automated production system. On the other hand, this section presents the subclasses for the main classes described above.

The class *DeviationReasons* is used to classify the different reasons for deviation of a production system and its simulation model. It consists of the so-called *5 M's* described in a paper by GALASKE ET AL. (2015) [1]. The 5 M's consist of Material, Method, Mileu, Manpower, Machine [1]. Moreover, we have added one more class named *UnknownDeviation* to the deviations that do not have any factual information about the origin.

Please consider the below (Simulation Model and Automated Production System Synchronisation) SMAPSS ontology second-level concept for a deviation reason and answer whether you 'strongly disagree', 'disagree', 'neutral', 'agree', or 'strongly agree' with the defined concepts.

Fig 2. Sub concepts for DeviationReason class

1.	Do you think the co	ncepts def	ined in ont	tology cont	radict each other?
	strongly disagree	disagree	neutral	agree	strongly agree
	Comment:	Klicken oder	tippen Sie hier	, um Text einzu	igeben.
2.	Do you think conce	pts defined	in the ont	tology cove	er all the real-world
	information about	assembly li	ne manufa	cturing pla	ints?
	strongly disagree	disagree	 neutral	agree	strongly agree
	Comment:	Klicken oder	tippen Sie hier	, um Text einzu	igeben.
3.	Do you think some	of the cond	cepts are u	seless?	
	strongly disagree	disagree	 neutral	agree	strongly agree
	Comment:	Klicken oder	tippen Sie hier	, um Text einzu	igeben.
4.	Do you think there	is clarity w	ith the nan	ning of the	concepts?
	strongly disagree	disagree	 neutral	agree	strongly agree
	Comment:	Klicken oder	tippen Sie hier	, um Text einzu	igeben.
	Do you think these companies?	concepts ca	an be used	for other r	manufacturing
	strongly disagree	disagree	neutral	agree	strongly agree
	Comment:	Klicken oder	tippen Sie hier	, um Text einzu	igeben.

The ontology class *Process* describes the different types of processes in an automated production system. The subclasses of *Process* have been defined using the classification of manufacturing processes defined in the paper by SORENSEN ET AL. (2018) [2]. The actual classification consists of more concepts, but for the Project DAMOKLEZ we have used the main concepts that are relevant to our purpose.

Please consider the SMAPSS ontology below for the second-level concepts of *Process* and answer the questions whether you 'strongly disagree', 'disagree', 'neutral', 'agree', or 'strongly agree' with the defined concepts.

Fig 3. Subconcepts for Process class

1. Do you think the concepts defined in ontology contradict each other?

strongly disagree	disagree	neutral	agree	strongly agree
Comment:	Klicken oder	tippen Sie hier	um Text einzu	igeben.

2. Do you think concepts defined in the ontology cover all the real-world information about assembly line manufacturing plants?

strongly disagree	disagree	neutral	⊠ agree	strongly agree
Comment:	Klicken oder	tippen Sie hier	, um Text einzu	igeben.

3.	Do you think some	of the cond	cepts are u	seless?	
	strongly disagree	disagree	neutral	agree	strongly agree
	Comment:	Klicken oder	tippen Sie hier,	, um Text einzu	igeben.
4.	Do you think there	is clarity w	ith the nan	ning of the	concepts?
	strongly disagree	disagree	Neutral	agree	strongly agree
	Comment:	Klicken oder	tippen Sie hier,	, um Text einzu	igeben.
	Do you think these companies?	concepts ca	an be used	for other r	manufacturing
	strongly disagree	disagree	 neutral	agree	∑ strongly agree
	Comment:	Klicken oder	tippen Sie hier,	, um Text einzu	igeben.

Product_Type describes the type of product which goes into a process or leaves a process. Our generic ontology has three sub-categories that are *Final_Product*, *Raw_Material*, and *Intermediate_Goods*.

Please consider the SMAPSS ontology below for the second-level concepts of *Product_Type* and answer the questions whether you 'strongly disagree', 'disagree', 'neutral', 'agree', or 'strongly agree' with the defined concepts.

Fig 4. Subconcepts for Product_Type Class

1.	Do you think the co	ncepts def	ined in ont	tology cont	radict each other?
	strongly disagree	disagree	neutral	agree	strongly agree
	Comment:	Klicken oder	tippen Sie hier	, um Text einzu	igeben.
2.	Do you think conce	pts defined	l in the ont	tology cove	er all the real-world
	information about	assembly li	ne manufa	cturing pla	ints?
	strongly disagree	disagree	neutral	agree	strongly agree
	Comment:	Klicken oder	tippen Sie hier	, um Text einzu	igeben.
3.	Do you think some	of the cond	epts are u	seless?	
	strongly disagree	disagree	neutral	agree	strongly agree
	Comment:	Klicken oder	tippen Sie hier	, um Text einzu	igeben.

strongly disagree	disagree	 neutral	 agree	strongly agree
Comment:	Klicken oder	tippen Sie hier,	um Text einzu	igeben.
Do you think these companies?	concepts c	an be used	for other i	manufacturing
			\square	
strongly disagree Comment:	disagree	neutral tippen Sie hier,	agree	strongly agree

Device concepts have been defined to represent all the devices used, or that can be used within an automated production system. To define Device's subclasses, we have used the paper by CHENG ET AL. (2016) [3]. The sub-classes are again project-specific and can differ between different kinds of projects. Please refer to Figure 5. In the SMAPSS Ontology.pptx document for the representation of the subclasses of Device concept.

Please consider the SMAPSS ontology below for the second-level concepts of *Device* and answer the questions whether you 'strongly disagree', 'disagree', 'neutral', 'agree', or 'strongly agree' with the defined concepts.

Fig 5. Subconcepts for Device Concept

1.	Do you think the co	ncepts def	ined in ont	tology cont	radict each other?
	strongly disagree	disagree	neutral	agree	strongly agree
	Comment:	Klicken oder	tippen Sie hier	, um Text einzu	igeben.
2.	Do you think conce	pts defined	in the ont	tology cove	er all the real-world
	information about	assembly li	ne manufa	cturing pla	ints?
	strongly disagree	disagree	neutral	agree	strongly agree
	Comment:	Klicken oder	tippen Sie hier	, um Text einzu	igeben.
3.	Do you think some	of the cond	cepts are u	seless?	
	strongly disagree	disagree	 neutral	agree	strongly agree
	Comment:	Klicken oder	tippen Sie hier	, um Text einzu	igeben.
4.	Do you think there	is clarity w	ith the nan	ning of the	concepts?
	strongly disagree	disagree	neutral	agree	strongly agree
	Comment:	Klicken oder	tippen Sie hier	, um Text einzu	igeben.
	Do you think these companies?	concepts ca	an be used	for other i	manufacturing
	strongly disagree	disagree	neutral	agree	strongly agree
	Comment:	Klicken oder	tippen Sie hier	, um Text einzu	igeben.

As mentioned earlier, the relationship between the classes can be described using object properties. Therefore, in figure 6 of the SMAPSS Ontology.pptx file, we have represented the relationships between the classes. The arrow from where it starts is the domain concept; the arrow pointed toward a class is the range concept.

Furthermore, the relationship or the object property between the concepts is represented using '-relationship'. For example, a deviation named 'DeviationID XXX' which occurred in a process named 'Process1' can be stored in our knowledge base, which satisfies the rules mentioned in Fig 6. Therefore, the stored knowledge will be in the form of 'Process1' 'hasDeviation' 'DeviationID XXX'. Similarly, for different use-cases, we can use the defined object property.

Figure 6. Ontology with their relationships and properties

Please consider the SMAPSS ontology for the relationships and properties and answer the questions with 'strongly disagree', 'disagree', 'neutral', 'agree', 'strongly agree'.

each other?	cionsilips ai	id the propi	or they define	ed in ontology contrad
strongly disagree	⊠ disagree	 neutral	agree	strongly agree
Comment:	Klicken oder	tippen Sie hier	, um Text einzu	ngeben.
Do you think the re	lationships	and the p	roperties d	efined in the ontolo
cover all the real-wo plants?	orld inform	nation abou	ut assembly	/ line manufacturing
strongly disagree	disagree	neutral	⊠ agree	strongly agree
Comment:	Klicken oder	tippen Sie hier	, um Text einzu	igeben.
Do you think some	of the rela	tionships a	nd the pro	perties are useless?
strongly disagree	disagree	neutral	agree	strongly agree
Comment:	IZ1: -11			
Comment.	Kiicken oder	tippen Sie hier.	um Text einzu	igeben.
Do you think there properties?	is clarity w	ith the nan	ning of the	relationships and th
Do you think there	is clarity w		ning of the	relationships and th
Do you think there properties? strongly disagree Comment:	disagree Klicken oder	neutral tippen Sie hier	ning of the	strongly agree
Do you think there properties? strongly disagree Comment: Do you think these	disagree Klicken oder	neutral tippen Sie hier	ning of the	strongly agree

References

- [1] Galaske, Nadia & Strang, Daniel & Anderl, Reiner. (2015). Process Deviations in Cyber-Physical Production Systems.

 https://www.researchgate.net/publication/283499328 Process Deviations in Cyber-Physical Production Systems
- [2] Sorensen, Daniel & Brunoe, Thomas & Nielsen, Kjeld. (2018). A classification scheme for production system processes. Procedia CIRP. 72. 609-614. 10.1016/j.procir.2018.03.021. https://www.researchgate.net/publication/326039294 A classification scheme fo r production system processes
- [3] Cheng, Haibo & Zeng, Peng & Xue, Lingling & Shi, Zhao & Wang, Peng & Yu, Haibin. (2016). Manufacturing Ontology Development Based on Industry 4.0 Demonstration Production Line. 42-47. 10.1109/TSA.2016.17. https://www.researchgate.net/publication/311610072 Manufacturing Ontology Development Based on Industry 40 Demonstration Production Line