Basics on Linear Programming

Algorithmic Methods for Mathematical Models (AMMM)

Enric Rodríguez-Carbonell

September 16, 2020

Vectors

- We will use vector/matrix notation
- A vector is a (vertically displayed) list of numbers. Examples:

$$c = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} \qquad \qquad x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

To display it horizontally, a vector can be transposed. Example:

$$c^T = \begin{pmatrix} 1 & 0 & 2 \end{pmatrix}$$

The scalar product of two vectors is the sum of products componentwise. Example:

$$c^{T}x = \begin{pmatrix} 1 & 0 & 2 \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{pmatrix} = 1 \cdot x_{1} + 0 \cdot x_{2} + 2 \cdot x_{3} = x_{1} + 2x_{3}$$

Matrices (1)

A matrix is a rectangular array of numbers. Example:

$$A = \left(\begin{array}{ccc} 0 & 1 & 2 \\ 2 & -1 & 0 \end{array}\right)$$

The product of a matrix and a vector is a vector consisting of the scalar products of the rows of the matrix and the vector. Example:

$$Ax = \begin{pmatrix} 0 & 1 & 2 \\ 2 & -1 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \cdot x_1 + 1 \cdot x_2 + 2 \cdot x_3 \\ 2 \cdot x_1 - 1 \cdot x_2 + 0 \cdot x_3 \end{pmatrix} = \begin{pmatrix} x_2 + 2x_3 \\ 2x_1 - x_2 \end{pmatrix}$$

A list of constraints can be written with vectors and matrices. Examples:

$$x_1 \ge 0$$
 $x_2 \ge 0$ is equivalent to $\begin{pmatrix} x_1 \\ x_2 \\ x_3 \ge 0 \end{pmatrix} \ge \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$

$$\begin{array}{ll} x_2+2x_3\leq 3\\ 2x_1-x_2\leq 1 \end{array} \quad \text{is equivalent to} \quad \left(\begin{array}{ccc} 0 & 1 & 2\\ 2 & -1 & 0 \end{array}\right) \left(\begin{array}{c} x_1\\ x_2\\ x_3 \end{array}\right) \leq \left(\begin{array}{c} 3\\ 1 \end{array}\right)_{3\,/\,35}$$

Matrices (2)

Vectors & matrices can be used to write optimization problems compactly. Example:

$$\min x_1 + 2x_3$$

$$x_2 + 2x_3 \le 3$$

$$2x_1 - x_2 \le 1$$

$$x_1, x_2, x_3 \ge 0$$

can be written as

$$\min c^T x$$

$$Ax \le b$$

$$x > 0$$

where

$$c^{T} = \begin{pmatrix} 1 & 0 & 2 \end{pmatrix} \quad x = \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{pmatrix} \quad A = \begin{pmatrix} 0 & 1 & 2 \\ 2 & -1 & 0 \end{pmatrix} \quad b = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$$

■ Note that in $x \ge 0$, the 0 actually represents a vector of zeroes

Linear Programs (1)

- A linear program (LP) is an optimization problem in which:
 - ◆ a linear expression is to be minimized/maximized
 - constraints are linear equalities and inequalities
 - variables may take real numbers
- **■** Example:

$$\min x_1 + 2x_3$$

$$x_2 + 2x_3 \le 3$$

$$2x_1 - x_2 \le 1$$

$$x_1, x_2, x_3 \ge 0$$

Linear Programs (2)

■ More formally, a linear program is an optimization problem of the form

$$\min c^T x$$

$$A_1 x \le b_1$$

$$A_2 x = b_2$$

$$A_3 x \ge b_3$$

- lacksquare is a vector of n variables that may take real values (i.e., $x \in \mathbb{R}^n$)
- b_i are vectors of m_i real numbers for i = 1, 2, 3
- lacksquare A_i are matrices of $m_i imes n$ real numbers for i=1,2,3
- lacktriangle $c^T x$ is the objective function
- lacksquare b_1, b_2, b_3 are the independent terms or right-hand sides
- \blacksquare $A_1x \leq b_1$, $A_2x = b_2$ and $A_3x \geq b_3$ are the constraints

Linear Programs (3)

■ Solving minimization or maximization problems is equivalent:

$$\max\{ f(x) \mid x \in S \} = -\min\{ -f(x) \mid x \in S \}$$

In minimization problems $c^T x$ is also called cost function

Sometimes we are only interested in a solution, there is no objective: satisfiability problems

Satisfiability problems are also covered in this definition: take an arbitrary cost function, e.g., c=0

Equivalent Forms of LP's (1)

- LP's as in the definition are not in a convenient form for algorithms WLOG we can transform such a problem as follows
- 1. Split = constraints into \geq and \leq constraints

$$\min c^T x \\
A_1 x \le b_1 \\
A_2 x = b_2 \\
A_3 x \ge b_3$$

$$\min c^T x \\
A_1 x \le b_1 \\
A_2 x \le b_2 \\
A_2 x \ge b_2 \\
A_3 x \ge b_3$$

Now all constraints are \leq or \geq

$$\min x + y + z$$

$$x + y = 3$$

$$0 \le x \le 2$$

$$0 \le y \le 2$$

$$\min x + y + z$$

$$x + y \le 3$$

$$0 \le x \le 2$$

$$0 \le x \le 2$$

$$0 < y < 2$$

Equivalent Forms of LP's (2)

2. Transform \geq constraints into \leq constraints by multiplying by -1

$$\min c^T x \qquad \qquad \min c^T x
A_1 x \le b_1 \qquad \Longrightarrow \qquad A_1 x \le b_1
A_2 x \ge b_2 \qquad \qquad -A_2 x \le -b_2$$

Now all constraints are ≤

$$\min x + y + z \qquad \qquad \min x + y + z$$

$$x + y \le 3 \qquad \qquad \Rightarrow \qquad x + y \le 3$$

$$x + y \ge 3 \qquad \qquad \Rightarrow \qquad -x - y \le -3$$

$$0 \le x \le 2 \qquad \qquad 0 \le x \le 2$$

$$0 \le y \le 2$$

Equivalent Forms of LP's (3)

3. Replace variables x by y-z, where y, z are vectors of fresh variables, and add constraints $y \ge 0$, $z \ge 0$

$$\min c^T x \\
Ax \le b$$

$$\min c^T y - c^T z \\
Ay - Az \le b \\
y, z \ge 0$$

Now all constraints are \leq and all variables have to be ≥ 0

Actually only needed for variables which are not already non-negative. (in the example, only z)

$$\min x + y + z$$

$$x + y \le 3$$

$$-x - y \le -3$$

$$0 \le x \le 2$$

$$0 \le y \le 2$$

$$\min x + y + u - v$$

$$x + y \le 3$$

$$-x - y \le -3$$

$$0 \le x \le 2$$

$$0 \le y \le 2$$

$$u, v \ge 0$$

Equivalent Forms of LP's (4)

4. Add a slack variable to each \leq constraint to convert it into =

$$\min c^T x \qquad \qquad \min c^T x
Ax \le b \qquad \Longrightarrow \qquad Ax + s = b
x \ge 0 \qquad \qquad x, s \ge 0$$

Now all constraints are = and all variables have to be ≥ 0 Each equality has its own slack variable

Equivalent Forms of LP's (5)

Altogether:

$$\min x + y + z \qquad \qquad \min x + y + u - v$$

$$\min x + y + z \qquad \qquad x + y + s_1 = 3$$

$$0 \le x \le 2 \qquad \qquad -x - y + s_2 = -3$$

$$x + s_3 = 2$$

$$0 \le y \le 2 \qquad \qquad y + s_4 = 2$$

$$x, y, u, v, s_1, s_2, s_3, s_4 \ge 0$$

Equivalent Forms of LP's (6)

In the end we get a problem in canonical form:

$$\min c^T x$$

$$Ax = b$$

$$x \ge 0$$

$$c \in \mathbb{R}^n, b \in \mathbb{R}^m, A \in \mathbb{R}^{m \times n}, n \ge m, \operatorname{rank}(A) = m$$

- lacktriangle We say Ax=b is the system of equations and $x\geq 0$ the sign constraints
- Condition rank(A) = m essentially ensures equalities are not redundant. (in mathematical terms: it means rows of A are linearly independent) For example, this linear program is not in canonical form:

$$min x + 2z$$

$$y + 3z = 3$$

$$2x - y = 1$$

$$2x + 3z = 4$$

$$x, y, z, \ge 0$$

To get canonical form, just remove the redundancy: e.g., remove 2x + 3z = 4

Equivalent Forms of LP's (7)

- The transformations guarantee that $n \ge m, \operatorname{rank}(A) = m$ since a slack variable is introduced for each inequality to convert it into equality
- The canonical form is actually not strictly necessary (the transformations increase the number of constraints and variables!), but is convenient in a first formulation of the algorithms

Equivalent Forms of LP's (8)

Often variables are identified with columns of the matrix, and constraints are identified with rows

$$\min x + 2z$$

$$y + 3z = 3$$

$$2x - y = 1$$

$$x, y, z, \ge 0$$

$$A = \begin{pmatrix} 0 & 1 & 3 \\ 2 & -1 & 0 \end{pmatrix}$$

- $lack x \leadsto \left(\begin{array}{c} 0 \\ 2 \end{array} \right)$
- $lack z \leadsto \left(\begin{array}{c} 3 \\ 0 \end{array} \right)$

Methods for Solving LP's

- Simplex algorithms
- Interior-point algorithms

Methods for Solving LP's

- Simplex algorithms
- Interior-point algorithms

Basic Definitions (1)

■ Let us consider an LP (in canonical form):

$$\min c^T x$$
$$Ax = b$$
$$x \ge 0$$

- lacktriangle Any x such that Ax = b is called a solution
- lacktriangle A solution x satisfying $x \geq 0$ is called a feasible solution
- An LP with feasible solutions is called feasible, otherwise infeasible

$$\max x + 2y$$

$$x + y + s_1 = 3$$

$$x + s_2 = 2$$

$$y + s_3 = 2$$

$$x, y, s_1, s_2, s_3 \ge 0$$

- $(x, y, s_1, s_2, s_3) = (-1, -1, 5, 3, 3)$ is a solution but not feasible
- $(x, y, s_1, s_2, s_3) = (1, 1, 1, 1, 1)$ is a feasible solution
- ◆ This is an example of feasible LP

Basic Definitions (2)

 We can represent geometrically the set of feasible solutions (here, actually the projection onto the plane)

Basic Definitions (3)

Let us consider an LP (in canonical form):

$$\min c^T x$$
$$Ax = b$$
$$x \ge 0$$

- lacktriangle Any x such that Ax = b is called a solution
- lacktriangle A solution x satisfying $x \geq 0$ is called a feasible solution
- An LP with feasible solutions is called feasible, otherwise infeasible

$$\max x + 2y$$

$$x + y + s_1 = -1$$

$$x + s_2 = 2$$

$$y + s_3 = 2$$

$$x, y, s_1, s_2, s_3 \ge 0$$

◆ This is an example of infeasible LP

Basic Definitions (4)

- A feasible solution x^* is called optimal if $c^T x^* \le c^T x$ for all feasible solution x
- The next LP has a single optimal solution $(x, y, s_1, s_2, s_3) = (1, 2, 0, 1, 0)$:

Basic Definitions (5)

 $x, y \ge 0$

The next LP has more than one optimal solution:

$$\{(1,2,0,1,0),(2,1,0,0,1),(\frac{3}{2},\frac{3}{2},0,\frac{1}{2},\frac{1}{2})\},\ldots$$

Basic Definitions (6)

- A feasible LP with no optimal solution is unbounded
- Example:

Basic Definitions (7)

- Warning! In mathematics, "unbounded" can mean different things
 - When applied to an LP: there is no optimal solution
 - When applied to a set of points: there is no bounding box including it
- If an LP is unbounded, then the set of feasible solutions is unbounded

y

 $x \ge 0$

The converse does not hold:

$$\max x + 2y$$

$$x + y \le 3$$

$$0 \le x \le 2$$

$$y \le 2$$

Set of feasible solutions is unbounded, but LP has optimal solutions

Bases (1)

- Recall that the matrix A has m rows and n columns, and $n \ge m$, $\operatorname{rank}(A) = m$.
- Let us denote by a_1 , ..., a_n the columns of A
- Example:

$$a_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \quad a_2 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \quad a_3 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \quad a_4 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \quad a_5 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

Bases (2)

- lacktriangle If we choose m columns of A, we can join them and form a new matrix B
- Example: by choosing columns a_3 , a_4 , a_5 (i.e., variables s_1 , s_2 , s_3) we get

$$A = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \end{pmatrix} \quad B = (a_3 \ a_4 \ a_5) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

- \blacksquare Note that B is a square matrix
- \blacksquare Such a matrix B is called a basis if it is invertible
- In that case, the variables associated to the columns of B are called basic
- Example:

$$B=(a_3\ a_4\ a_5)=\left(egin{array}{ccc} 1&0&0\0&1&0\0&0&1 \end{array}
ight)$$
 is a basis and variables s_1,s_2,s_3 are basic

Bases (3)

- Equivalently, B is a basis if we can isolate the variables associated to B from the system Ax = b
- Example:

$$\max x + 2y
 x + y + s_1 = 3
 x + s_2 = 2
 y + s_3 = 2
 x, y, s_1, s_2, s_3 \ge 0$$

$$\Rightarrow \begin{cases}
 s_1 = 3 - x - y \\
 s_2 = 2 - x \\
 s_3 = 2 - y
\end{cases}$$

■ Bases exist if and only if condition rank(A) = m holds

Bases (4)

- The matrix obtained by joining the columns not in B is denoted by R (standing for the Rest of the variables)
- lacktriangle We denote by $x_{\mathcal{B}}$ the basic variables and by $x_{\mathcal{R}}$ the non-basic ones
- Example:

 (s_1,s_2,s_3) form a basis, and $x_{\mathcal{B}}=(s_1,s_2,s_3)$, $x_{\mathcal{R}}=(x,y)$

$$B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad R = \begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Bases (4)

- The matrix obtained by joining the columns not in B is denoted by R (standing for the Rest of the variables)
- lacktriangle We denote by $x_{\mathcal{B}}$ the basic variables and by $x_{\mathcal{R}}$ the non-basic ones
- Example:

 (x, s_1, s_2) do not form a basis:

$$\begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$
 is not invertible

Bases (5)

 \blacksquare If B is a basis, then the following holds

$$Bx_{\mathcal{B}} + Rx_{\mathcal{R}} = b$$

Hence:

$$x_{\mathcal{B}} = B^{-1}b - B^{-1}Rx_{\mathcal{R}}$$

We can isolate basic variables and express them in terms of non-basic ones

Example: take $x_{\mathcal{B}} = (s_1 \ s_2 \ s_3)^T$ and $x_{\mathcal{R}} = (x \ y)^T$ and then

$$\max x + 2y$$

$$x + y + s_1 = 3$$

$$x + s_2 = 2$$

$$y + s_3 = 2$$

$$x, y, s_1, s_2, s_3 \ge 0$$

$$\implies \begin{cases} s_1 = 3 - x - y \\ s_2 = 2 - x \\ s_3 = 2 - y \end{cases}$$

$$B = B^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \quad B^{-1}b = b = \begin{pmatrix} 3 \\ 2 \\ 2 \end{pmatrix} \quad B^{-1}R = R = \begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Bases (6)

$$x_{\mathcal{B}} = B^{-1}b - B^{-1}Rx_{\mathcal{R}}$$

if non-basic variables are set to 0, then we get the solution

$$x_{\mathcal{R}} = 0, x_{\mathcal{B}} = B^{-1}b$$

This solution is called the basic solution of basis B

If the basic solution satisfies $x_{\mathcal{B}} \geq 0$ then it is called a basic feasible solution, and the basis is said to be feasible

Bases (7)

lacktriangle Example: Consider basic variables (s_1, s_2, s_3) for the LP

$$\max x + 2y$$

$$x + y + s_1 = 3$$

$$x + s_2 = 2$$

$$y + s_3 = 2$$

$$x, y, s_1, s_2, s_3 \ge 0$$

Then equations $x_{\mathcal{B}}=B^{-1}b-B^{-1}Rx_{\mathcal{R}}$ are $\begin{cases} s_1=3-x-y\\ s_2=2-x\\ s_3=2-y \end{cases}$

and then the basic solution is

$$\begin{pmatrix} s_1 \\ s_2 \\ s_3 \end{pmatrix} = \begin{pmatrix} 3 \\ 2 \\ 2 \end{pmatrix}, \quad \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

So basis (s_1, s_2, s_3) is feasible

Bases (8)

Example: Consider basic variables (x, y, s_1) for the LP

$$\max x + 2y$$

$$x + y + s_1 = 3$$

$$x + s_2 = 2$$

$$y + s_3 = 2$$

$$x, y, s_1, s_2, s_3 \ge 0$$

Then equations $x_{\mathcal{B}}=B^{-1}b-B^{-1}Rx_{\mathcal{R}}$ are $\begin{cases} x=2-s_2\\ y=2-s_3\\ s_1=-1+s_2+s_3 \end{cases}$

$$\begin{cases} x = 2 - s_2 \\ y = 2 - s_3 \\ s_1 = -1 + s_2 + s_3 \end{cases}$$

and then the basic solution is

$$\begin{pmatrix} x \\ y \\ s_1 \end{pmatrix} = \begin{pmatrix} 2 \\ 2 \\ -1 \end{pmatrix}, \quad \begin{pmatrix} s_2 \\ s_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

So basis (x, y, s_1) is not feasible

Bases (9)

- A basis is called degenerate when at least one basic variable is assigned 0 in the basic solution
- **Example:** Consider basic variables (x, y, s_2) for the LP

$$\max x + 2y$$

$$x + y + s_1 = 4$$

$$x + s_2 = 2$$

$$y + s_3 = 2$$

$$x, y, s_1, s_2, s_3 \ge 0$$

Then equations $x_{\mathcal{B}}=B^{-1}b-B^{-1}Rx_{\mathcal{R}}$ are $\begin{cases} x=2+s_3-s_1\\y=2-s_3\\s_2=s_1-s_3 \end{cases}$

and then the basic solution is

$$\begin{pmatrix} x \\ y \\ s_2 \end{pmatrix} = \begin{pmatrix} 2 \\ 2 \\ 0 \end{pmatrix}, \quad \begin{pmatrix} s_1 \\ s_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

So basis (x, y, s_1) is degenerate

Geometry of LP's (1)

- The set of feasible solutions of an LP is a convex polyhedron
- The basic feasible solutions are the vertices of the convex polyhedron

Geometry of LP's (2)

$$\max x + 2y$$

$$x + y + s_1 = 3$$

$$x + s_2 = 2$$

$$y + s_3 = 2$$

 $x, y, s_1, s_2, s_3 \ge 0$

$$\mathbf{x}_{\mathcal{B}_1} = (y, s_1, s_2)$$

$$x_{\mathcal{B}_2} = (x, y, s_2)$$

$$\mathbf{x}_{\mathcal{B}_3} = (x, y, s_3)$$

$$\mathbf{x}_{\mathcal{B}_4} = (x, s_1, s_3)$$

$$\mathbf{x}_{\mathcal{B}_5} = (s_1, s_2, s_3)$$

Possible Outcomes of an LP (1)

■ Theorem (Fundamental Theorem of Linear Programming)

Let P be an LP.

Then exactly one of the following holds:

- 1. *P* is infeasible
- 2. *P* is unbounded
- 3. P has an optimal basic feasible solution

It is sufficient to investigate basic feasible solutions!