Automi a stati finiti deterministici

L'automa a stati finiti è l'automa più semplice:

SCHEMA

Un automa è detto deterministico se, posizionato in uno stato e letto un simbolo, l'automa può spostarsi in un solo stato. Le operazioni eseguibili dalla macchina sono:

- Lettura (o consumo) del simbolo;
- Svolge un'azione dentro il controllo;
- Passaggio al simbolo successivo.

Un automa è una quintupla $< Q, \Sigma, \delta, q_0, F >$, dove:

- Q indica il numero di stati della macchina ($|Q| < \omega$, con $|\omega| = N$);
- Σ indica l'alfabeto ($|\Sigma| < \omega$);
- $\delta: Q \times \Sigma \to \Sigma$ indica la funzione di transizione;
- $q_0 \in Q$ indica lo stato iniziale;
- $F \subseteq Q$ indica l'insiemi degli stati finali -> è quindi possibile avere più stati finali, o anche nessuno;

Esempio:

 q_1 è lo stato finale (lo stato finale si indica con un cerchio interno a quello dello stato).

Linguaggio accettato da un automa M

Definiamo in modo induttivo, a partire dalla funzione δ , la seguente funzione:

$$\hat{\delta}:Q\ge 2\ge Q=\begin{cases} \hat{\delta}(q,\varepsilon)=q & \text{se la stringa è vuota, resto nello stato}\\ \hat{\delta}(q,wa)=\delta(\hat{\delta}(q,w),a) \end{cases}$$

Allora un linguaggio accettato da un automa M è:

$$\mathfrak{L}(M) = \{ \sigma \in \Sigma^* \mid \hat{\delta}(q_0, \sigma) \in F \}$$

I linguaggi $\mathfrak{L} \in \Sigma^*$ accettati da un automa a stati finiti sono detti **regolari**.

Attenzione: per ogni linguaggio regolare esistono infiniti grafi a stati finiti.

Esempio 1:

Il seguente automa accetta solo stringhe che:

- Hanno numero pari di a (se è presente questo simbolo nella stringa);
- Hanno numero pari di b (se è presente questo simbolo nella stringa);

Infatti la stringa ababb non è accettata.

Come costruire un grafo: Per capire di quanti stati necessita un grafo, bisogna tenere a mente/definire il significato di ogni stato.

Dall'esempio sopra:

- q_1 -> a pari, b dispari;
- q_2 -> a dispari, b pari;
- q_3 -> a dispari, b dispari;

Esempio 2:

L'unico linguaggio accettato dal seguente automa è rappresentato dall'insieme vuoto.

Esempio 3:

Il seguente automa accetta tutte le stringhe -> $\{a,b\}^*$.

Esercizio

Dato il seguente linguaggio, con relatico alfabeto, determinare la macchina a stati finiti deterministica associata e dimostrare è corretta:

$$\Sigma = \{0,1\} \hspace{1cm} \mathfrak{L} = \{x \in \Sigma^* \mid \text{in x occorre almeno uno 0}\}$$

Possibilità 1

Possibilità 2

Osservazioni:

- q_0 rappresenta lo stato in la stringa non appartiene al linguaggio;
- q_1 rappresenta lo stato in la stringa appartiene al linguaggio;
- La stringa vuota non appartiene al linguaggio (non contiene 0);

Dimostrazione della correttezza della possibilità 1:

Problema decisionale

Finita la lettura di tutta la stringa, la macchina ritorna un si se l'automa si trova in uno degli stati finali, altrimenti no.