RELATÓRIO DE ATIVIDADES DE SISTEMAS DE TEMPO REAL

Atividades realizadas durante o processo de desenvolvimento do trabalho da 3ª Unidade da disciplina de Sistemas de Tempo Real.

Iago Henrique Waldney Andrade Marcos André

INTRODUÇÃO

Como trabalho final da disciplina de Sistemas de Tempo Real, foi proposto ao grupo o desenvolvimento de um projeto no Arduino, para manipulação de botões e leds, a ser trabalhado em sala de aula ou em casa com o auxílio da ferramenta Proteus.

ENUNCIADO

- 1 Todos os LEDs deverão piscar em sequência (um depois do outro), sempre da esquerda para a direita, em intervalos constantes de 200ms e, enquanto for pressionada qualquer uma das chaves, o LED em questão deverá permanecer aceso.
- 2 Quando apertar a chave do LED Vermelho a primeira vez, este vai ficar aceso direto. Quando apertar a segunda vez a chave do vermelho, este deverá ficar piscando em 100ms. Quando apertar a chave do LED Vermelho a terceira vez, este voltará a sequência normal.

PROCEDIMENTO

- 1. Estudo de manuais e códigos
- 2. Programação de código fonte para compilação
- **3.** Simulação no Proteus
- 4. Execução em placa Arduino Uno disponibilizada pelo professor

ATIVIDADES

11/06/2018

Primeiro encontro

- Montagem do circuito com Arduino Uno, com leds, resistores e botões.
- Estudo do exemplo disponibilizado no enunciado sobre controle de LEDS (ARDUINO E CIA, 2013)
- Estudo realizado na documentação com o objetivo de entender os comandos e os parâmetros utilizados no FreeRTOS para a criação e escalonamento das tarefas (Amazon, 2017).
- Estudo realizado no código fonte escrito com o RTOS ArdOS disponibilizado pelo professor Felipe Denis (DENIS, 2018, 1)

- Criação de estrutura de variáveis e funções independentes do RTOS
- Instalação da biblioteca FreeRTOS no Arduino nos computadores dos componentes
- Instalação do sistema PROTEUS nos computadores dos componentes
- Instalação do SIMULINO (EMBARCADOS, 2013)

13/06/2018

Segundo encontro

- Montagem do circuito com Arduino Uno, com leds, resistores e botões.
- Conversão do algoritmo (DENIS, 2018, 1) transcrevendo as chamadas ao RTOS ArdOS para o RTOS FreeRTOS, como base para o projeto.
- Compilação do Algoritmo, em modo verbose, para geração do arquivo .hex
- Simulação no PROTEUS, por meio do carregamento do arquivo .hex e do projeto disponibilizado por Felipe Denis (DENIS, 2018, 2)
- Execução no Arduíno do código
- Construção do Algoritmo proposto com base nos conceitos encontrados em ARDUNIO E CIA, 2013
- Simulação no Proteus
- Execução no Arduíno
- Visto que o trabalho proposto foi concluído, um novo trabalho foi solicitado

18/06/2018

Terceiro encontro

- Montagem do circuito com Arduino Uno, com leds, resistores e botões.
- Estudo do segundo problema proposto pelo professor/orientador
- Construção de tarefa para gerenciar a chave do led vermelho, referente a posição 0 do array.

20/06/2018

Quarto encontro

- Montagem do circuito com Arduino Uno, com leds, resistores e botões.
- O professor orientou a utilizarmos Queue, porém verificamos que é possível construir o proposto com variáveis, pois o STR é Soft, onde atrasos não causam consequências graves.
- Resolvemos o algoritmo de controle das chaves para ter a melhor performance possível no controle da variável de controle do estado do Led dinâmico.
- Criamos uma terceira tarefa, para controle do Led Dinâmico (Vermelho), essa tarefa acende arbitrariamente o Led no estado 1, e pisca o Led em 100 millisegundos no estado 2.

RESULTADOS

Construímos 2 algoritmos de controle de Leds e chaves, o primeiro de baixa complexidade, onde um Led pode ter mantido aceso através de sua respectiva chave, e o segundo onde 1 dos Leds vai ter um comportamento dinâmico dependendo do número de ativações de sua respectiva chave.

1. Montagem

2. Execução do Sistema 1

3. Execução do sistema 2

O funcionamento do projeto final pode ser visto em https://youtu.be/dQ3bmL64nK8.

CONCLUSÃO

Neste trabalho, aprendemos na prática a construir sistemas em tempo real com FreeRTOS, o que nos deu melhor entendimento sobre a teoria de escalonamento, prioridade das tarefas, compartilhamento de recurso. O que foi aprendido nesse trabalho, nos permitirá aprimorar o aprendizado e assim utilizar esses conceitos para construção de projetos reais.

REFERÊNCIAS

acesso em 11/06/2018

- 1. ARDUINO E CIA, Sequencial de Leds Circuito e Codigo. 2013. Disponível em https://www.arduinoecia.com.br/2013/02/sequencial-de-leds-arduino.html>, acesso em 11/06/2018
- AMAZON Web Services. The FreeRTOS Reference Manual, v 10.0.0. 2017.
 Disponivel em
 https://www.freertos.org/Documentation/FreeRTOS Reference Manual V10.0.0.pdf>,

- 3. DENIS, Felipe. testa_leds_ex_2_ardos.ino. 2018. Disponível em: http://novastecnologias.net/str/programas/Arduino/Unidade 3/unidade 3.zip, acesso em 11/06/2018
- 4. EMBARCADOS, Blog. Simulino v4.0 + Biblioteca para Proteus. 2013. Disponível em: https://codeload.github.com/blogembarcadobr/Library/zip/master, acesso em 11/06/2018
- 5. DENIS, Felipe. plataforma_testa_leds_simulacao.pdsprj, 2018. Disponivel em: https://drive.google.com/open?id=1k7zhk1NMwWg1Z3BL8MtNqs3CgmM9UhJJ, acesso em 13/06/2018.