Chapter 5. Magnetostatics

5.1	The Lorentz Force Law	
	5 .1.1	Magnetic Fields
	5.1.2	Magnetic Forces
	5.1.3	Currents
5.2	The Bi	ot-Savart Law
	5.2.1	Steady Currents
	5.2.2	The Magnetic Field of a Steady Current
5.3	The Di	vergence and Curl of B
	5.3.1	Straight-Line Currents
	5.3.2	The Divergence and Curl of B
	5.3.3	Applications of Ampère's Law
	5.3.4	Comparison of Magnetostatics and Electrostatics
5.4	Magnet	ic Vector Potential
		The Vector Potential
		Summary; Magnetostatic Boundary Conditions
	5.4.3	Multipole Expansion of the Vector Potential

5.4 Magnetic Vector Potential

5.1.1 The Vector Potential

In electrostatics, $\nabla \times \mathbf{E} = 0 \rightarrow \mathbf{E} = -\nabla V \rightarrow \text{Scalar potential } (V)$

In magnetostatics, $\nabla \cdot \mathbf{B} = 0 \rightarrow \mathbf{B} = \nabla \times \mathbf{A} \rightarrow \textit{Vector potential (A)}$

(Note) The name is "potential", but A cannot be interpreted as potential energy per unit charge.

So far, for a steady current where $\nabla \cdot \mathbf{J} = 0$ the Magnetic field is defined by the Biot-Savart law:

$$\mathbf{B}(\mathbf{r}) = \frac{\mu_0}{4\pi} \int \frac{\mathbf{J}(\mathbf{r}') \times \hat{\mathbf{z}}}{r^2} d\tau'$$

This Magnetic field given by the Biot-Savart law always satisfies the relations of

 $\nabla \cdot \mathbf{B} = \mathbf{0}$ (always zero, even for not steady current)

 $\nabla \times \mathbf{B} = \mu_0 \mathbf{J}$ (as long as the current is steady, $\nabla \cdot \mathbf{J} = 0$)
(If the current is not steady, $\nabla \cdot \mathbf{J} = -\partial \rho / \partial t \neq 0 \Rightarrow \nabla \times \mathbf{B} = \mu_0 \mathbf{J} + \mu_0 (\partial \mathbf{D} / \partial t)$)

The relations of $\nabla \times \mathbf{B} = \mu_0 \mathbf{J}$, called Ampere's Law, is very useful, just like the Gauss's Law in E.

The relations of $\nabla \cdot \mathbf{B} = 0$ is always satisfied for any current flow, therefore we may put the **B** field, **either**

 $\mathbf{B} = \nabla \times \mathbf{A}$ (for any arbitrary vector \mathbf{A})

Or, $\mathbf{B} = \nabla \times (\mathbf{A} + \nabla \lambda)$ (for any arbitrary vector **A** and any scalar λ , since $\nabla \times \nabla \lambda = 0$)

 $\mathbf{B} = \nabla \times \mathbf{A}$ WHY not? $\mathbf{B} = \nabla \times (\mathbf{A} + \nabla \lambda)$

Actually we want to use the Ampere's Law, $\nabla \times \mathbf{B} = \mu_0 \mathbf{J}$, to find out B field.

(1) Let's use the form of $\mathbf{B} = \nabla \times \mathbf{A}$

$$\rightarrow \nabla \times \mathbf{B} = \nabla \times \nabla \times \mathbf{A} = \nabla (\nabla \cdot \mathbf{A}) - \nabla^2 \mathbf{A} = \mu_0 \mathbf{J}$$

If we choose **A** so as to eliminate the divergence of **A**: $\nabla \cdot \mathbf{A} = 0$

$$\nabla \times \mathbf{B} = \mu_0 \mathbf{J} \longrightarrow \nabla^2 \mathbf{A} = -\mu_0 \mathbf{J} \longrightarrow$$
 This is a Poisson's equation.

We know how to solve it, just like the electrostatic potential problems.

(If the current does not go to zero at infinite, we have to find other ways to get A.)

→ In summary, the definition $\mathbf{B} = \nabla \times \mathbf{A}$ under the condition of $\nabla \cdot \mathbf{A} = 0$ make it possible to transform the Ampere's law into a Poisson's equation on A and J! $\mathbf{B} = \nabla \times \mathbf{A}$

WHY not ? $\mathbf{B} = \nabla \times (\mathbf{A} + \nabla \lambda)$

(2) Now consider the other form, $\mathbf{B} = \nabla \times (\mathbf{A} + \nabla \lambda)$

Suppose that a vector potential $\mathbf{A_0}$ satisfying $\mathbf{B} = \nabla \times \mathbf{A}_0$, but it is not divergenceless, $\nabla \cdot \mathbf{A}_0 \neq 0$.

If we add to $\mathbf{A_0}$ the gradient of any scalar λ , $\mathbf{A} = \mathbf{A_0} + \nabla \lambda$, \mathbf{A} is also satisfied $\mathbf{B} = \nabla \times \mathbf{A}$.

$$(\nabla \times (\mathbf{A}_0 + \nabla \lambda) = \nabla \times \mathbf{A} = \mathbf{B} \text{ since } \nabla \times \nabla \lambda = 0)$$

The divergence of **A** is $\nabla \cdot \mathbf{A} = \nabla \cdot \mathbf{A}_0 + \nabla^2 \lambda$

- \longrightarrow We can accommodate the condition of $\nabla \cdot \mathbf{A} = 0$ as long as a scalar function λ can be found that satisfies, $\nabla^2 \lambda = - \nabla \cdot {\bf A}_n$
- → But this is mathematically identical to Poisson's equation, thus

$$\lambda = \frac{1}{4\pi} \int \frac{\nabla \cdot \mathbf{A}_0}{\hbar} d\tau' \longrightarrow \text{ We can always find } \lambda \text{ to make } \nabla \cdot \mathbf{A} = 0$$

Therefore, let's use the simple form of $\mathbf{B} = \nabla \times \mathbf{A}$ with the divergenceless vector potential, $\nabla \cdot \mathbf{A} = 0$

May we use a scalar potential, $\mathbf{B} = -\nabla U$, just like used in $\mathbf{E} = -\nabla V$?

The introduction of Vector Potential (A) may not be as useful as V,

→ It is still a vector with many components.

It would be nice if we could get away with a scalar potential, for instant, $\mathbf{B} = -\nabla U$

- ⇒ But, this is *incompatible with Ampere's law*, $\nabla \times \mathbf{B} = \mu_0 \mathbf{J}$ since the curl of a gradient is always zero ⇒ $\nabla \times \mathbf{B} = -\nabla \times \nabla U = 0$
- → Such a magnetostatic scalar potential could be used, if you stick scrupulously to simply-connected current-free regions (J = 0).

Prob. 5-29 Suppose that $\mathbf{B} = -\nabla U$.

Show, by applying Ampere's law to a path that starts at **a** and circles the wire returning to **b** that the scalar potential cannot be single-valued, $U(\mathbf{a}) \neq U(\mathbf{b})$, even if they are the same point (a = b).

$$\mu_0 I = \oint \mathbf{B} \cdot d\mathbf{l} = -\int_{\mathbf{a}}^{\mathbf{b}} \nabla U \cdot d\mathbf{l} = -[U(\mathbf{b}) - U(\mathbf{a})] \quad \text{(by the gradient theorem)},$$
 Amperian loop
$$\longrightarrow U(\mathbf{b}) \neq U(\mathbf{a})$$

The Vector Potential $\mathbf{A} = \frac{\mu_0}{4\pi} \int \frac{\mathbf{I}}{\imath} dl' \quad \mathbf{A} = \frac{\mu_0}{4\pi} \int \frac{\mathbf{K}}{\imath} da' \quad \mathbf{A}(\mathbf{r}) = \frac{\mu_0}{4\pi} \int \frac{\mathbf{J}(\mathbf{r}')}{\imath} d\tau'$

Example 5.11 A spherical shell, of radius R, carrying a uniform surface charge σ , is set spinning at angular velocity ω .

Find the vector potential it produces at point *r*.

For surface current
$$\Rightarrow$$
 $\mathbf{A}(\mathbf{r}) = \frac{\mu_0}{4\pi} \int \frac{\mathbf{K}(\mathbf{r}')}{\hbar} da'$ where $\mathbf{K} = \sigma \mathbf{v}$

In fact the integration is easier if we let r lie on the z axis, so that ω is tilted at an angle ψ , and orient the x axis so that ω lies in the xz plane.

$$a = \sqrt{R^2 + r^2 - 2Rr\cos\theta'}$$
 $da' = R^2\sin\theta'd\theta'd\phi'$

The velocity of a point r' in a rotating rigid body is

$$\mathbf{v} = \boldsymbol{\omega} \times \mathbf{r}' = \begin{vmatrix} \hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\ \omega \sin \psi & 0 & \omega \cos \psi \\ R \sin \theta' \cos \phi' & R \sin \theta' \sin \phi' & R \cos \theta' \end{vmatrix}$$

 $= R\omega[-(\cos\psi\sin\theta'\sin\phi')\,\hat{\mathbf{x}} + (\cos\psi\sin\theta'\cos\phi' - \sin\psi\cos\theta')\,\hat{\mathbf{y}} + (\sin\psi\sin\theta'\sin\phi')\,\hat{\mathbf{z}}]$

Since
$$\int_0^{2\pi} \sin\phi' \, d\phi' = \int_0^{2\pi} \cos\phi' \, d\phi' = 0 \quad \longrightarrow \quad \mathbf{A}(\mathbf{r}) = -\frac{\mu_0 R^3 \sigma \omega \sin\psi}{2} \left(\int_0^{\pi} \frac{\cos\theta' \sin\theta'}{\sqrt{R^2 + r^2 - 2Rr\cos\theta'}} \, d\theta' \right) \hat{\mathbf{y}}$$

Letting
$$u \equiv \cos \theta'$$
, $\longrightarrow \int_{-1}^{+1} \frac{u}{\sqrt{R^2 + r^2 - 2Rru}} du = -\frac{1}{3R^2r^2} \left[(R^2 + r^2 + Rr)|R - r| - (R^2 + r^2 - Rr)(R + r) \right] = (2r/3R^2) \quad R > r$

$$(-u_0 R\sigma) = \frac{(-u_0 R\sigma)}{2R/3r^2} \quad R < r$$

Noting that
$$(\boldsymbol{\omega} \times \mathbf{r}) = -\omega r \sin \psi \, \hat{\mathbf{y}},$$
 \longrightarrow $\mathbf{A}(\mathbf{r}) = \begin{cases} \frac{\mu_0 R \sigma}{3} (\boldsymbol{\omega} \times \mathbf{r}), & R > r \\ \frac{\mu_0 R^4 \sigma}{3r^3} (\boldsymbol{\omega} \times \mathbf{r}), & R < r \end{cases}$

Go back to the original coordinates, in which ω coincides with the z axis and the position r is at (r, θ, ϕ) :

$$\mathbf{A}(r,\theta,\phi) = \begin{cases} \frac{\mu_0 R \omega \sigma}{3} r \sin \theta \, \hat{\boldsymbol{\phi}}, & (r \leq R), \\ \frac{\mu_0 R^4 \omega \sigma}{3} \frac{\sin \theta}{r^2} \, \hat{\boldsymbol{\phi}}, & (r \geq R). \end{cases} \quad \mathbf{B} = \mathbf{\nabla} \times \mathbf{A} = \frac{2\mu_0 R \omega \sigma}{3} (\cos \theta \, \hat{\mathbf{r}} - \sin \theta \, \hat{\boldsymbol{\theta}}) = \frac{2}{3} \mu_0 \sigma R \omega \, \hat{\mathbf{z}} = \frac{2}{3} \mu_0 \sigma R \omega$$

$$\Rightarrow \text{Curiously, the field inside this spherical shell is } uniform!$$

The Vector Potential $\mathbf{A} = \frac{\mu_0}{4\pi} \int \frac{\mathbf{I}}{a} dl' \quad \mathbf{A} = \frac{\mu_0}{4\pi} \int \frac{\mathbf{K}}{a} da' \quad \mathbf{A}(\mathbf{r}) = \frac{\mu_0}{4\pi} \int \frac{\mathbf{J}(\mathbf{r}')}{a} d\tau'$

$$\mathbf{A} = \frac{\mu_0}{4\pi} \int \frac{\mathbf{I}}{\imath} \, dl$$

$$\mathbf{A} = \frac{\mu_0}{4\pi} \int \frac{\mathbf{K}}{r} \, da$$

$$\mathbf{A}(\mathbf{r}) = \frac{\mu_0}{4\pi} \int \frac{\mathbf{J}(\mathbf{r}')}{\imath} \, d\tau$$

Example 5.12

Find the vector potential of an infinite solenoid with *n* turns per unit length, radius *R*, and current *I*.

Since the current itself extends to infinity \rightarrow we cannot use such a form of $A = \frac{\mu_0}{4\pi} \int \frac{1}{s} dl'$

We need to use other methods. Here's a cute method that does the job:

Note that
$$\oint \mathbf{A} \cdot d\mathbf{I} = \int (\nabla \times \mathbf{A}) \cdot d\mathbf{a} = \int \mathbf{B} \cdot d\mathbf{a}$$
 \rightarrow This means the flux of B through the loop.

To find B, we can use the Ampere's law in integral form,

$$\oint \mathbf{B} \cdot d\mathbf{I} = \mu_0 I_{\text{enc}} = \mu_0 n I \rightarrow \text{Uniform longitudinal magnetic field inside the solenoid and no field outside)}$$

Using a circular "amperian loop" at radius s inside the solenoid,

$$\oint \mathbf{A} \cdot d\mathbf{l} = A(2\pi s) = \int \mathbf{B} \cdot d\mathbf{a} = \mu_0 n I(\pi s^2) \quad \longrightarrow \quad \mathbf{A} = \frac{\mu_0 n I}{2} s \, \hat{\boldsymbol{\phi}}, \quad \text{for } s < R.$$

For an amperian loop *outside* the solenoid, since no field out to R,

$$\oint \mathbf{A} \cdot d\mathbf{l} = A(2\pi s) = \int \mathbf{B} \cdot d\mathbf{a} = \mu_0 n I(\pi R^2) \longrightarrow \mathbf{A} = \frac{\mu_0 n I}{2} \frac{R^2}{s} \hat{\boldsymbol{\phi}}, \quad \text{for } s > R$$

Does $\nabla \cdot \mathbf{A} = 0$? \longrightarrow If so, we're done.

5.4.2 Summary; Relations of B – J – A

From just two experimental observations:

- (1) the principle of superposition a broad general rule
- (2) Biot-Savert's law the fundamental law of magnetorostatics.

$E-\rho-V \longleftrightarrow B-J-A$

From just two experimental observations:

- (1) the principle of superposition a broad general rule
 (2) Coulomb's law the fundamental law of electrostatics.

$$\mathbf{E}(\mathbf{r}) = \frac{1}{4\pi\epsilon_0} \int \frac{\rho(\mathbf{r}')}{\imath^2} \hat{\boldsymbol{\lambda}} d\tau'$$

$$\nabla \times \mathbf{E} = 0$$

Gauss Law

From just two experimental observations:

- (1) the principle of superposition a broad general rule
- (2) Biot-Savert's law the fundamental law of magnetorostatics.

5.4.2 Summary; Magnetostatic Boundary Conditions

(Normal components)

$$\nabla \cdot \mathbf{B} = 0$$
. $\Rightarrow \oint \mathbf{B} \cdot d\mathbf{a} = 0$ $\Rightarrow B_{\text{above}}^{\perp} = B_{\text{below}}^{\perp}$

(Tangential components)

$$\oint \mathbf{B} \cdot d\mathbf{l} = \mu_0 I_{\text{enc}}$$

For an amperian loop running perpendicular to the current,

$$\oint \mathbf{B} \cdot d\mathbf{l} = (B_{\text{above}}^{\parallel} - B_{\text{below}}^{\parallel})l = \mu_0 I_{\text{enc}} = \mu_0 K l \longrightarrow B_{\text{above}}^{\parallel} - B_{\text{below}}^{\parallel} = \mu_0 K l$$

For an amperian loop running parallel to the current,

$$\oint \mathbf{B} \cdot d\mathbf{l} = (B_{\text{above}}^{\parallel} - B_{\text{below}}^{\parallel})l = \mu_0 I_{\text{enc}} = 0 \longrightarrow B_{\text{above}}^{\parallel} = B_{\text{below}}^{\parallel}$$

Finally, we can summarize in a single formula: \implies $\mathbf{B}_{above} - \mathbf{B}_{below} = \mu_0(\mathbf{K} \times \hat{\mathbf{n}})$

The vector potential is continuous across any boundary: \longrightarrow $A_{above} = A_{below}$

(Because, $\nabla \cdot \mathbf{A} = 0$ guarantees the normal continuity; $\nabla \times \mathbf{A} = \mathbf{B}$ the tangential one.) $\nabla \times \mathbf{A} = \mathbf{B} \longrightarrow \oint \mathbf{A} \cdot d\mathbf{l} = \int \mathbf{B} \cdot d\mathbf{a} = \Phi = 0$ (the flux through an amperian loop of vanishing thickness is zero)

Summary of Boundary conditions: $E \leftarrow \rightarrow B$

$$E_{above}^{\parallel} - E_{below}^{\parallel} = 0$$

$$E_{above}^{\perp} - E_{below}^{\perp} = \frac{1}{\epsilon_0} \sigma$$

$$V_{above} = V_{below}$$

$$B_{above}^{\perp} - B_{below}^{\parallel} = \mu_0 K$$

$$B_{above}^{\perp} - B_{below}^{\perp} = B_{below}^{\perp}$$

$$A_{above} = A_{below}$$

$$B_{above} - B_{below} = \mu_0 (K \times \hat{\mathbf{n}})$$

Note that the derivative of vector potential A inherits the discontinuity of $\mathbf{B} \Rightarrow \frac{\partial \mathbf{A}_{above}}{\partial \mathbf{n}} - \frac{\partial \mathbf{A}_{below}}{\partial \mathbf{n}} = -\mu_0 \mathbf{K}$

Problem 5.32 (Prove it) Let's take the Cartesian coordinates with z perpendicular to the surface and x parallel to the current.

Because $\mathbf{A}_{above} = \mathbf{A}_{below}$ at every point on the surface, it follows that $\frac{\partial \mathbf{A}}{\partial x}$ and $\frac{\partial \mathbf{A}}{\partial y}$ are the same above and below.

Any discontinuity is confined to the normal derivative.

$$\mathbf{B}_{\text{above}} - \mathbf{B}_{\text{below}} = \left(-\frac{\partial A_{y_{\text{above}}}}{\partial z} + \frac{\partial A_{y_{\text{below}}}}{\partial z} \right) \hat{\mathbf{x}} + \left(\frac{\partial A_{x_{\text{above}}}}{\partial z} - \frac{\partial A_{x_{\text{below}}}}{\partial z} \right) \hat{\mathbf{y}}.$$

$$\mathbf{B}_{\mathrm{above}} - \mathbf{B}_{\mathrm{below}} = \mu_0(\mathbf{K} \times \hat{\mathbf{n}}) \xrightarrow{\mathbf{K} = K \ \hat{x}} \mathbf{B}_{\mathrm{above}} - \mathbf{B}_{\mathrm{below}} = \mu_0 K(-\hat{\mathbf{y}})$$

$$\frac{\partial A_{y_{above}}}{\partial z} = \frac{\partial A_{y_{below}}}{\partial z} \qquad \frac{\partial A_{x_{above}}}{\partial z} - \frac{\partial A_{x_{below}}}{\partial z} = -\mu_0 K \qquad \qquad \frac{\partial A_{above}}{\partial n} - \frac{\partial A_{below}}{\partial n} = -\mu_0 K$$

5.4.3 Multipole Expansion of the Vector Potential

If we want an approximate formula for the vector potential of a localized current distribution, valid at distant points, a multipole expansion is required.

$$\mathbf{A} = \frac{\mu_0}{4\pi} \int \frac{\mathbf{I}}{\imath} \, dl'$$

Multipole expansion means

 \rightarrow to write the potential in the form of a power series in 1/r, if r is sufficiently large.

$$\frac{1}{r} = \frac{1}{\sqrt{r^2 + (r')^2 - 2rr'\cos\theta'}} = \frac{1}{r} \sum_{n=0}^{\infty} \left(\frac{r'}{r}\right)^n P_n(\cos\theta') \quad \text{(Eq. 3.94)}$$

$$\mathbf{A}(\mathbf{r}) = \frac{\mu_0 I}{4\pi} \oint \frac{1}{r} d\mathbf{l}' = \frac{\mu_0 I}{4\pi} \sum_{n=0}^{\infty} \frac{1}{r^{n+1}} \oint (r')^n P_n(\cos \theta') d\mathbf{l}'$$

$$\mathbf{A}(\mathbf{r}) = \frac{\mu_0 I}{4\pi} \left[\frac{1}{r} \oint d\mathbf{l}' + \frac{1}{r^2} \oint r' \cos \theta' d\mathbf{l}' + \frac{1}{r^3} \oint (r')^2 \left(\frac{3}{2} \cos^2 \theta' - \frac{1}{2} \right) d\mathbf{l}' + \cdots \right]$$

monopole

dipole

quadrupole

Just for comparison:

$$V(\mathbf{r}) = \frac{1}{4\pi\epsilon_0} \left[\frac{1}{r} \int \rho(\mathbf{r}') d\tau' + \frac{1}{r^2} \int r' \cos\theta' \rho(\mathbf{r}') d\tau' + \frac{1}{r^3} \int (r')^2 \left(\frac{3}{2} \cos^2\theta' - \frac{1}{2} \right) \rho(\mathbf{r}') d\tau' + \ldots \right]$$
monopole
dipole
quadrupole

Multipole Expansion of the Vector Potential

$$\mathbf{A}(\mathbf{r}) = \frac{\mu_0 I}{4\pi} \left[\frac{1}{r} \oint d\mathbf{l}' + \frac{1}{r^2} \oint r' \cos \theta' d\mathbf{l}' + \frac{1}{r^3} \oint (r')^2 \left(\frac{3}{2} \cos^2 \theta' - \frac{1}{2} \right) d\mathbf{l}' + \cdots \right]$$
monopole dipole quadrupole

(Magnetic Monopole Term) → Always zero!

- \rightarrow For the integral is just the total displacement around a closed path, $\oint d\mathbf{l}' = 0$
- → This reflects the fact that there are (apparently) no magnetic monopoles in nature.

(Magnetic Dipole Term) → It is dominant!

$$\mathbf{A}_{\text{dip}}(\mathbf{r}) = \frac{\mu_0 I}{4\pi r^2} \oint r' \cos \theta' d\mathbf{l}' = \frac{\mu_0 I}{4\pi r^2} \oint (\hat{\mathbf{r}} \cdot \mathbf{r}') d\mathbf{l}'.$$

$$\oint (\hat{\mathbf{r}} \cdot \mathbf{r}') d\mathbf{l}' = -\hat{\mathbf{r}} \times \int d\mathbf{a}'$$

$$\mathbf{m} \equiv I \int d\mathbf{a} = I\mathbf{a}$$
 \rightarrow Magnetic dipole moment

$$\mathbf{A}_{\text{dip}}(\mathbf{r}) = \frac{\mu_0}{4\pi} \frac{\mathbf{m} \times \mathbf{i}}{r^2}$$

$$\mathbf{r}_{\mathbf{r}}(\mathbf{r}) = \frac{1}{\mathbf{p} \cdot \hat{\mathbf{r}}}$$

 $\mathbf{r}'\rho(\mathbf{r}')d\tau$

Magnetic Dipole field $A_{dip}(\mathbf{r}) = \frac{\mu_0}{4\pi} \frac{\mathbf{m} \times \hat{\mathbf{r}}}{\mathbf{r}^2}$ $\mathbf{m} \equiv I \int d\mathbf{a} = I\mathbf{a}$

$$\mathbf{A}_{\rm dip}(\mathbf{r}) = \frac{\mu_0}{4\pi} \frac{\mathbf{m} \times \hat{\mathbf{r}}}{r^2}$$

$$\mathbf{m} \equiv I \int d\mathbf{a} = I \mathbf{a}$$

Magnetic dipole moment is independent of the choice of origin. $\mathbf{m} \equiv I \int d\mathbf{a} = I\mathbf{a}$

(Electric dipole moment was independent of the choice of origin, only when the total charge Q = 0) $\mathbf{p} \equiv \int \mathbf{r}' \rho(\mathbf{r}') \, d\tau'$

→ The Independence of origin for magnetic dipole moment is therefore corresponding to no magnetic monopole.

Magnetic field of a (pure) dipole moment placed at the origin.

$$\mathbf{A}_{\text{dip}}(\mathbf{r}) = \frac{\mu_0}{4\pi} \frac{\mathbf{m} \times \hat{\mathbf{r}}}{r^2} \longrightarrow \mathbf{A}_{\text{dip}}(\mathbf{r}) = \frac{\mu_0}{4\pi} \frac{m \sin \theta}{r^2} \,\hat{\boldsymbol{\phi}}$$

$$\mathbf{B}_{\mathrm{dip}}(\mathbf{r}) = \mathbf{\nabla} \times \mathbf{A} = \frac{\mu_0 m}{4\pi r^3} (2\cos\theta \,\hat{\mathbf{r}} + \sin\theta \,\hat{\boldsymbol{\theta}})$$

Field B of a "physical" dipole