M2 - Análisis de Datos 3: descriptivo e inferencial

Dora Suárez, Juan F. Pérez

Departamento MACC Matemáticas Aplicadas y Ciencias de la Computación Universidad del Rosario

juanferna.perez@urosario.edu.co

Primer Semestre de 2019

Contenidos

Estimadores puntuales

Estimadores de intervalo

Inferencia a partir de una muestra aleatoria

Población: X

- Valor esperado $\mu = E[X]$
- Varianza $\sigma^2 = V[X]$
- Desviación estándar $\sigma = \sqrt{V[X]}$

Inferencia a partir de una muestra aleatoria

Muestra aleatoria $\{X_1, \ldots, X_n\}$:

Media muestral:

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

Inferencia a partir de una muestra aleatoria

Muestra aleatoria $\{X_1, \ldots, X_n\}$:

■ Media muestral:

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

Varianza muestral:

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}$$

Media muestral como estimador de la media poblacional:

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

Media muestral como estimador de la media poblacional:

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

Varianza muestral como estimador de la varianza muestral:

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}$$

Media muestral como estimador de la media poblacional:

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

Varianza muestral como estimador de la varianza muestral:

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}$$

• Obtengo un número que uso para estimar el valor del parámetro

ullet $ar{X}$ estimador puntual de μ

- ullet $ar{X}$ estimador puntual de μ
- Intervalo: [*a*, *b*]

- ullet $ar{X}$ estimador puntual de μ
- Intervalo: [a, b]
- lacksquare Alta probabilidad de que μ esté en el intervalo

$$P(\mu \in [a,b]) = 0.95$$

- ullet $ar{X}$ estimador puntual de μ
- Intervalo: [a, b]
- lacksquare Alta probabilidad de que μ esté en el intervalo

$$P(\mu \in [a, b]) = 0.95$$

■ Aprovechando \bar{X} :

$$[\bar{X}-c,\bar{X}+c]$$

• ¿Cómo se comporta \bar{X} ?

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

• ¿Cómo se comporta \bar{X} ?

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

■ Depende del comportamiento de X_i, es decir, de X

Variable aleatoria continua

Normal: https://www.geogebra.org/m/QEayZCpM

- Variable aleatoria continua
- Función de densidad de probabilidad (no de masa)

- Normal: https://www.geogebra.org/m/QEayZCpM
- Normal estándar ($\mu = 0$, $\sigma^2 = 1$): https://www.geogebra.org/m/Xhp5vB98

- Variable aleatoria continua
- Función de densidad de probabilidad (no de masa)
- Probabilidad: área bajo la curva

- Normal: https://www.geogebra.org/m/QEayZCpM
- Normal estándar ($\mu = 0$, $\sigma^2 = 1$): https://www.geogebra.org/m/Xhp5vB98

- Variable aleatoria continua
- Función de densidad de probabilidad (no de masa)
- Probabilidad: área bajo la curva
- Parámetros: media μ y varianza σ^2

- Normal: https://www.geogebra.org/m/QEayZCpM
- Normal estándar ($\mu = 0$, $\sigma^2 = 1$): https://www.geogebra.org/m/Xhp5vB98

• X sigue una distribución normal (μ, σ^2)

- X sigue una distribución normal (μ, σ^2)
- Cada muestra X_i sigue la misma distribución normal

- X sigue una distribución normal (μ, σ^2)
- Cada muestra X_i sigue la misma distribución normal
- La media muestral

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

sigue una distribución normal $\left(\mu, \frac{\sigma^2}{n}\right)$

Estimador de intervalo para la media μ :

$$\left[\bar{X}-z_{\alpha/2}\frac{\sigma}{\sqrt{n}},\bar{X}+z_{\alpha/2}\frac{\sigma}{\sqrt{n}}\right]$$

■ Estimador de intervalo para la media μ :

$$\left[\bar{X}-z_{\alpha/2}\frac{\sigma}{\sqrt{n}},\bar{X}+z_{\alpha/2}\frac{\sigma}{\sqrt{n}}\right]$$

■ Punto medio: \bar{X}

■ Estimador de intervalo para la media μ :

$$\left[\bar{X}-z_{\alpha/2}\frac{\sigma}{\sqrt{n}},\bar{X}+z_{\alpha/2}\frac{\sigma}{\sqrt{n}}\right]$$

- Punto medio: \bar{X}
- $\frac{\sigma}{\sqrt{n}}$: error estándar (variabilidad de \bar{X})

■ Estimador de intervalo para la media μ :

$$\left[\bar{X}-z_{\alpha/2}\frac{\sigma}{\sqrt{n}},\bar{X}+z_{\alpha/2}\frac{\sigma}{\sqrt{n}}\right]$$

- Punto medio: \bar{X}
- ullet $\frac{\sigma}{\sqrt{n}}$: error estándar (variabilidad de \bar{X})
- $z_{\alpha/2}$: factor que depende de la distribución normal

• Problema: intervalo depende de σ (desconocido)

- Problema: intervalo depende de σ (desconocido)
- Solución: reemplazar σ por su estimador puntual S (desviación estándar muestral)

- Problema: intervalo depende de σ (desconocido)
- Solución: reemplazar σ por su estimador puntual S (desviación estándar muestral)
- Resultado:

$$\left[\bar{X}-t_{\alpha/2,n-1}\frac{S}{\sqrt{n}},\bar{X}+t_{\alpha/2,n-1}\frac{S}{\sqrt{n}}\right]$$

- Problema: intervalo depende de σ (desconocido)
- Solución: reemplazar σ por su estimador puntual S (desviación estándar muestral)
- Resultado:

$$\left[\bar{X}-t_{\alpha/2,n-1}\frac{S}{\sqrt{n}},\bar{X}+t_{\alpha/2,n-1}\frac{S}{\sqrt{n}}\right]$$

■ Punto medio: \bar{X}

- Problema: intervalo depende de σ (desconocido)
- Solución: reemplazar σ por su estimador puntual S (desviación estándar muestral)
- Resultado:

$$\left[\bar{X}-t_{\alpha/2,n-1}\frac{S}{\sqrt{n}},\bar{X}+t_{\alpha/2,n-1}\frac{S}{\sqrt{n}}\right]$$

- Punto medio: \bar{X}
- $\frac{S}{\sqrt{n}}$: error estándar (variabilidad estimada de \bar{X})

- Problema: intervalo depende de σ (desconocido)
- Solución: reemplazar σ por su estimador puntual S (desviación estándar muestral)
- Resultado:

$$\left[\bar{X}-t_{\alpha/2,n-1}\frac{S}{\sqrt{n}},\bar{X}+t_{\alpha/2,n-1}\frac{S}{\sqrt{n}}\right]$$

- Punto medio: \bar{X}
- $\frac{S}{\sqrt{n}}$: error estándar (variabilidad estimada de \bar{X})
- $t_{\alpha/2,n-1}$: factor que depende de la **distribución T** y el tamaño de la muestra

- Problema: intervalo depende de σ (desconocido)
- Solución: reemplazar σ por su estimador puntual S (desviación estándar muestral)
- Resultado:

$$\left[\bar{X}-t_{\alpha/2,n-1}\frac{S}{\sqrt{n}},\bar{X}+t_{\alpha/2,n-1}\frac{S}{\sqrt{n}}\right]$$

- Punto medio: \bar{X}
- $\frac{S}{\sqrt{n}}$: error estándar (variabilidad estimada de \bar{X})
- $t_{\alpha/2,n-1}$: factor que depende de la **distribución T** y el tamaño de la muestra
- https://www.geogebra.org/m/RPGjU7Vz

Distribución T

- Distribución T
- https://www.geogebra.org/m/RPGjU7Vz

- Distribución T
- https://www.geogebra.org/m/RPGjU7Vz
- Parámetro adicional (grados de libertad):
 - Cercano a uno: más variable/dispersa que la normal estándar

- Distribución T
- https://www.geogebra.org/m/RPGjU7Vz
- Parámetro adicional (grados de libertad):
 - Cercano a uno: más variable/dispersa que la normal estándar
 - Al llegar a 40: similar a la normal estándar

- Distribución T
- https://www.geogebra.org/m/RPGjU7Vz
- Parámetro adicional (grados de libertad):
 - Cercano a uno: más variable/dispersa que la normal estándar
 - Al llegar a 40: similar a la normal estándar
- Grados de libertad: asociados al número de observaciones

- Distribución T
- https://www.geogebra.org/m/RPGjU7Vz
- Parámetro adicional (grados de libertad):
 - Cercano a uno: más variable/dispersa que la normal estándar
 - Al llegar a 40: similar a la normal estándar
- Grados de libertad: asociados al número de observaciones
 - Pocas observaciones: más incertidumbre sobre el valor del parámetro

- Distribución T
- https://www.geogebra.org/m/RPGjU7Vz
- Parámetro adicional (grados de libertad):
 - Cercano a uno: más variable/dispersa que la normal estándar
 - Al llegar a 40: similar a la normal estándar
- Grados de libertad: asociados al número de observaciones
 - Pocas observaciones: más incertidumbre sobre el valor del parámetro
 - Muchas observaciones: más certeza sobre el valor del parámetro

$$\left[\bar{X} - t_{\alpha/2, n-1} \frac{\sigma}{\sqrt{n}}, \bar{X} + t_{\alpha/2, n-1} \frac{\sigma}{\sqrt{n}}\right]$$

■ Intervalo de **confianza** para la media μ :

$$\left[\bar{X} - t_{\alpha/2, n-1} \frac{\sigma}{\sqrt{n}}, \bar{X} + t_{\alpha/2, n-1} \frac{\sigma}{\sqrt{n}}\right]$$

■ Garantiza que μ está en el intervalo con probabilidad $1-\alpha$ (nivel de confianza)

$$\left[\bar{X} - t_{\alpha/2, n-1} \frac{\sigma}{\sqrt{n}}, \bar{X} + t_{\alpha/2, n-1} \frac{\sigma}{\sqrt{n}}\right]$$

- Garantiza que μ está en el intervalo con probabilidad $1-\alpha$ (nivel de confianza)
- ullet Probabilidad de que esté por fuera del intervalo: lpha

$$\left[\bar{X} - t_{\alpha/2, n-1} \frac{\sigma}{\sqrt{n}}, \bar{X} + t_{\alpha/2, n-1} \frac{\sigma}{\sqrt{n}}\right]$$

- Garantiza que μ está en el intervalo con probabilidad $1-\alpha$ (nivel de confianza)
- lacktriangle Probabilidad de que esté por fuera del intervalo: lpha
- A mayor confianza 1α , más grande el intervalo

$$\left[\bar{X} - t_{\alpha/2, n-1} \frac{\sigma}{\sqrt{n}}, \bar{X} + t_{\alpha/2, n-1} \frac{\sigma}{\sqrt{n}}\right]$$

- Garantiza que μ está en el intervalo con probabilidad $1-\alpha$ (nivel de confianza)
- ullet Probabilidad de que esté por fuera del intervalo: lpha
- A mayor confianza 1α , más grande el intervalo
- https://www.geogebra.org/m/Xhp5vB98

