Fonctions logarithmes, exponentielles, puissances

Aperçu

- 1. Rappel sur les fonctions polynomiales
- 2. Logarithmes, exponentielles
- 3. Fonctions puissances
- 4. Fonctions hyperboliques

- 1. Rappel sur les fonctions polynomiales
- 1.1 Vocabulaire
- 1.2 Propriétés
- 1.3 Fonctions puissance n où n est entier
- 1.4 Fonctions rationnelles
- 2. Logarithmes, exponentielles
- 3. Fonctions puissances
- 4. Fonctions hyperboliques

1. Rappel sur les fonctions polynomiales

1.1 Vocabulaire

- 1.2 Propriétés
- 1.3 Fonctions puissance n où n est entier
- 1.4 Fonctions rationnelles
- 2. Logarithmes, exponentielles
- 3. Fonctions puissances
- 4. Fonctions hyperboliques

D

Une fonction p définie sur une partie D de $\mathbb R$ et à valeurs réelles est une fonction polynomiale lorsqu'il existe un entier $n \geq 0$ et des nombres réels a_0, a_1, \ldots, a_n tels que, pour tout $x \in D$, on ait

$$p(x) = a_0 + a_1 x + \dots + a_{n-1} x^{n-1} + a_n x^n.$$

Lorsque $a_n \neq 0$, alors l'entier n est appelé le **degré** de p.

On note souvent $p(x) = \sum_{k=0}^{n} a_k x^k$.

Ε

 $1. \ \ \, \text{L'application} \ \ \, \mathbb{R} \ \ \, \rightarrow \ \, \mathbb{R} \qquad \qquad \text{est polynomiale de degré } 2.$

$$x \mapsto x^2 - 2x + 5$$

2. L'application $\mathbb{R} \to \mathbb{R}$ est polynomiale de degré 3.

$$x \mapsto x^3 + 5x - 3$$

3. L'application $\mathbb{R} \to \mathbb{R}$ est polynomiale de degré 1.

$$x \mapsto x$$

4. Un fonction polynomiale de degré 0 est une fonction constante *non nulle*, c'est-à-dire, il existe $a_0 \neq 0$ tel que

$$\forall x \in D, p(x) = a_0.$$

- 5. Par convention, l'application nulle est aussi polynomiale et on dit que son degré est $-\infty$.
- On dit qu'une fonction polynomiale p admet a pour racine lorsque p(a) = 0.

Retenez pour l'instant qu'une fonction polynomiale de degré n admet au plus n racines. La démonstration viendra plus tard dans l'année.

1. Rappel sur les fonctions polynomiales

- 1.1 Vocabulaire
- 1.2 Propriétés
- 1.3 Fonctions puissance n où n est entier
- 1.4 Fonctions rationnelles
- 2. Logarithmes, exponentielles
- 3. Fonctions puissances
- 4. Fonctions hyperboliques

P Les fonctions polynomiales sont continues et dérivables (une infinité de fois) sur \mathbb{R} .

Remarquez que la dérivée d'une fonction polynomiale est polynomiale.

Principe d'identification

Soit I un intervalle véritable, $a_0,\dots,a_n,b_0,\dots,b_p$ des nombres réels avec $a_n\neq 0$ et $b_p\neq 0$ tels que

$$\forall x \in I, a_0 + a_1 x + \dots + a_n x^n = b_0 + b_1 x + \dots + b_p x^p.$$

Alors n = p et $a_i = b_i$ pour tout $i \in [0, n]$.

Ce théorème justifie a posteriori la définition de degré d'une fonction polynomiale.

- 1. Rappel sur les fonctions polynomiales
- 1.1 Vocabulaire
- 1.2 Propriétés
- 1.3 Fonctions puissance n où n est entier
- 1.4 Fonctions rationnelles
- 2. Logarithmes, exponentielles
- 3. Fonctions puissances
- 4. Fonctions hyperboliques

Ci-dessous sont représentés les courbes de $x\mapsto x^n$ pour n=1,2,3,4,5.

1. Rappel sur les fonctions polynomiales

- 1.1 Vocabulaire
- 1.2 Propriétés
- 1.3 Fonctions puissance n où n est entier
- 1.4 Fonctions rationnelles
- 2. Logarithmes, exponentielles
- 3. Fonctions puissances
- 4. Fonctions hyperboliques

1. $\mathbb{R} \to \mathbb{R}$ est une fonctions rationnelle.

$$x \mapsto \frac{2x^9 - x^2}{3 + x^8}$$

2. Toute fonction polynomiale est a fortiori une fonction rationnelle.

- 1. Soit p et q deux fonctions polynomiales sur \mathbb{R} . La fonction rationnelle $f=\frac{p}{q}$ est définie sur \mathbb{R} privé de l'ensemble des racines de q.
- 2. Les fonctions rationnelles sont continues et infiniment dérivables sur leur ensemble de définition.
- 3. La dérivée d'une fonction rationnelle est une fonction rationnelle.

La fonction rationnelle définie par

$$f(x) = \frac{6x^3 - x}{x^2 - 1}$$

est définie et infiniment dérivable sur $\mathbb{R} \setminus \{-1, 1\}$.

- 1. Rappel sur les fonctions polynomiales
- 2. Logarithmes, exponentielles
- 2.1 Logarithme népérien
- 2.2 Exponentielle népérienne
- 2.3 Exponentielle de base a
- 2.4 Logarithme de base a
- 3. Fonctions puissances
- 4. Fonctions hyperboliques

Résolution de l'équation fonctionnelle

$$\forall (x, y) \in \left]0, +\infty\right[^{2}, f(x \times y) = f(x) + f(y).$$

où $f:]0, +\infty[\to \mathbb{R}$ est une fonction dérivable.

1. Rappel sur les fonctions polynomiales

- 2. Logarithmes, exponentielles
- 2.1 Logarithme népérien
- 2.2 Exponentielle népérienne
- 2.3 Exponentielle de base a
- 2.4 Logarithme de base a
- 3. Fonctions puissances
- 4. Fonctions hyperboliques

$$\ln : \mathbb{R}_+^{\star} \to \mathbb{R} \\
x \mapsto \int_1^x \frac{\mathrm{d}t}{t} .$$

- 1. Le logarithme est une fonction de classe \mathscr{C}^{∞} .
- 2. La fonction $x \mapsto \ln|x|$ est une primitive de $x \mapsto x^{-1}$ sur \mathbb{R}^* .

$$\lim_{x \to 1} \frac{\ln(x)}{x - 1} = 1 \quad ou \ encore \quad \lim_{x \to 0} \frac{\ln(1 + x)}{x} = 1.$$

On a pour tout $(x, y) \in (\mathbb{R}_+^*)^2$,

- 1. ln(1) = 0.
- $2. \ln(xy) = \ln x + \ln y.$

- $3. \ln(x/y) = \ln x \ln y.$
- 4. $\ln(1/x) = -\ln x$.

Démonstration. Voici une démonstration alternative de la seconde propriété. Celle-ci requiert de savoir faire un changement de variable dans une intégrale (ici u = xt).

Pour tout
$$x \in \mathbb{R}_+^*$$
 et tout $n \in \mathbb{Z}$, on a

 $\ln\left(x^n\right) = n\ln(x).$

P La fonction \ln est strictement croissante sur \mathbb{R}_{+}^{\star} et

$$\lim_{x \to 0+} \ln x = -\infty \qquad \qquad \lim_{x \to +\infty} \ln x = +\infty$$

La fonction \ln étant continue, elle réalise donc une bijection de \mathbb{R}_+^{\star} sur \mathbb{R} .

L'axe des ordonnées est donc asymptote à la courbe représentative de In.

L'injectivité du logarithme nous permet d'écrire

$$\forall (x, y) \in \mathbb{R}_+^*, \ln(x) = \ln(y) \iff x = y.$$

P Pour tout
$$x \in]-1, +\infty[$$
,

$$\ln\left(1+x\right) \le x.$$

La courbe représentative de \ln présente une branche parabolique horizontale au voisinage $de +\infty$:

$$\lim_{x \to +\infty} \frac{\ln x}{x} = 0.$$

Plus généralement, on a pour tout $\alpha > 0$

$$\lim_{x \to +\infty} \frac{\ln x}{x^{\alpha}} = 0.$$

On dit que le logarithme est négligeable par rapport aux puissances au voisinage de $+\infty$.

Ce résultat reste valable, même avec $\alpha \in]0, +\infty[$.

$$\lim_{x \to 0} x \ln(x) = 0.$$

Figure: Logarithme népérien

1. Rappel sur les fonctions polynomiales

- 2. Logarithmes, exponentielles
- 2.1 Logarithme népérien
- 2.2 Exponentielle népérienne
- 2.3 Exponentielle de base a
- 2.4 Logarithme de base a
- 3. Fonctions puissances
- 4. Fonctions hyperboliques

D

et proposition

Le logarithme réalise une bijection de \mathbb{R}_+^\star sur \mathbb{R}_+ . Sa bijection réciproque est appelée exponentielle et notée

$$\exp: \mathbb{R} \to \mathbb{R}_+^*$$

Ainsi

- 1. $\forall x \in \mathbb{R}, \ln(\exp(x)) = x$,
- 2. $\forall x \in \mathbb{R}_+^*, \exp(\ln x) = x$,
- 3. $\forall (x, y) \in \mathbb{R}^2, \exp(x) = \exp(y) \iff x = y$.

Т

Résoudre l'équation $\exp(5 - 3x) = 10$.

Pour tout $(x, y) \in \mathbb{R}^2$, on a

1.
$$\exp(0) = 1$$
.

$$2. \exp(x + y) = (\exp x)(\exp y).$$

3.
$$\exp(x - y) = \frac{\exp x}{\exp y}$$

3.
$$\exp(x - y) = \frac{\exp x}{\exp y}$$
.
4. $\exp(-x) = \frac{1}{\exp(x)}$.

P

L'exponentielle est strictement croissante et dérivable sur $\mathbb R$ (et même de classe $\mathscr C^\infty$) et

$$\forall x \in \mathbb{R}, \exp'(x) = \exp(x).$$

De plus,

$$\lim_{x \to -\infty} \exp x = 0, \qquad \qquad \lim_{x \to +\infty} \exp x = +\infty.$$

L'axe des abscisse est donc asymptote à la courbe représentative de exp au voisinage $de -\infty$:

Pour tout
$$x \in \mathbb{R}$$
,

$$\exp(x) \ge 1 + x$$
.

La courbe représentative de exp présente une branche parabolique verticale au voisinage $de +\infty$:

$$\lim_{x \to +\infty} \frac{\exp x}{x} = +\infty.$$

Plus généralement, on a pour tout $\alpha > 0$

$$\lim_{x \to +\infty} \frac{\exp x}{x^{\alpha}} = +\infty.$$

On dit que les puissances sont négligeables par rapport à l'exponentielle au voisinage $de + \infty$.

Ce résultat reste valable, même avec $\alpha \in]0, +\infty[$.

Figure: Exponentielle népériene

Donner l'ensemble de définition de la fonction $g: x \mapsto \frac{1}{2} \exp(-x) - 1$. Tracer sa courbe et expliciter son image Im(g).

ı

1.
$$\lim_{x \to +\infty} \frac{e^x}{(\ln x)^{2305}} =$$

- 2. $\lim_{x \to 0^+} x^x =$
- 3. $\lim_{x \to +\infty} (\ln x)^3 x^7 e^{-10x} =$

- 1. Rappel sur les fonctions polynomiales
- 2. Logarithmes, exponentielles
- 2.1 Logarithme népérien
- 2.2 Exponentielle népérienne
- 2.3 Exponentielle de base a
- 2.4 Logarithme de base a
- 3. Fonctions puissances
- 4. Fonctions hyperboliques

D

Exponentielle de base a

Pour $a \in \mathbb{R}_+^*$ et $x \in \mathbb{R}$, on pose

$$\begin{array}{cccc} \exp_a: & \mathbb{R} & \to & \mathbb{R} \\ & x & \mapsto & \exp(x \ln a) \end{array}$$

. À ne pas retenir

Pour tout $(a,b) \in (\mathbb{R}_+^*)^2$ et tout $(x,y) \in \mathbb{R}^2$, on a

- 1. $\exp_a(0) = 1$.
- $2. \ln(\exp_a(x)) = x \ln a.$
- 3. $\exp_a(x+y) = \exp_a(x) \exp_a(y)$.
- 4. $\exp_a(xy) = \exp_{\exp_a(x)}(y)$.

5.
$$\exp_a(-x) = \frac{1}{\exp_a(x)} = \exp_{1/a}(x)$$
.

6. $\exp_{ab}(x) = \exp_a(x) \exp_b(x)$.

7.
$$\exp_{a/b}(x) = \frac{\exp_a(x)}{\exp_b(x)}$$
.

L A ne pas retenir

Si $a \in \mathbb{R}_+^*$ et $n \in \mathbb{Z}$, on a $\exp_a(n) = a^n$.

Ce lemme légitime la notation sous forme de puissance.

D Extension de la notation puissance

Pour $a \in \mathbb{R}_+^*$ et $x \in \mathbb{R}$, on note

$$a^x = \exp_a(x) = \exp(x \ln a).$$

Le réel a^x se lit «a puissance x».

Pour tout $(a,b) \in (\mathbb{R}^{\star}_{+})^{2}$ et tout $(x,y) \in \mathbb{R}^{2}$, on a

- $1 \quad a^0 = 1$
- 2. $\ln(a^x) = x \ln a$.
- 3. $a^{x+y} = a^x a^y$.
- 4. $(a^x)^y = a^{xy}$.

- 5. $a^{-x} = \frac{1}{a^x} = \left(\frac{1}{a}\right)^x$. 6. $(ab)^x = a^x b^x$.
- 7. $\left(\frac{a}{b}\right)^x = \frac{a^x}{b^x}$.

Résoudre l'équation

$$2^x + 6 \times 2^{-x} = 5. (1)$$

Pour tout $a \in \mathbb{R}_{+}^{*}$, la fonction $\exp_a : x \mapsto a^x$ est dérivable et on a

$$\exp_a'(x) = \frac{\mathrm{d}a^x}{\mathrm{d}x} = (\ln a)a^x$$

De plus $x \mapsto a^x$ est strictement croissante si a > 1 et strictement décroissante si 0 < a < 1 et on a

$$\lim_{x \to -\infty} a^x = \begin{cases} 0 & a > 1 \\ +\infty & 0 < a < 1 \end{cases} \qquad \lim_{x \to +\infty} a^x = \begin{cases} +\infty & a > 1 \\ 0 & 0 < a < 1 \end{cases}$$

Figure: Fonctions exponentielles de base a > 1: $x \mapsto a^x$

x	-∞		0		+∞
$\exp'_a(x)$		+	ln a	+	
$\exp_a(x)$	0		_1_		+∞

Figure: Fonctions exponentielles de base a < 1: $x \mapsto a^x$

x	-∞	0	+∞
$\exp'_a(x)$		- ln a	_
$\exp_a(x)$	+∞	1_	0

D

La constante de Néper est le réel défini par $e=\exp(1)$ ou de manière équivalente par $\ln e=1$. On dit encore que e est la base du logarithme népérien. Avec cette définition, on a donc $\exp_e=\exp$ et on peut donc écrire

$$\exp x = e^x$$
.

- 1. Rappel sur les fonctions polynomiales
- 2. Logarithmes, exponentielles
- 2.1 Logarithme népérien
- 2.2 Exponentielle népérienne
- 2.3 Exponentielle de base a
- 2.4 Logarithme de base a
- 3. Fonctions puissances
- 4. Fonctions hyperboliques

D Soit $a \in \mathbb{R}_+^* \setminus \{1\}$. Pour tout x > 0, on note

$$\log_a(x) = \frac{\ln x}{\ln a}.$$

L'application \log_a est le **logarithme de base** a.

1. En particulier $\log_e = \ln$.

Ε

- 2. On utilise \log_{10} , appelé logarithme décimal et noté simplement \log , en physique et en chimie.
- 3. La fonction \log_2 (logarithme en base 2) est très utilisée en informatique.

D Soit
$$a \in \mathbb{R}_+^* \setminus \{1\}$$
. Pour tout $x > 0$, on note

$$\log_a(x) = \frac{\ln x}{\ln a}.$$

L'application \log_a est le **logarithme de base** a.

Soit
$$a \in \mathbb{R}_+^{\star} \setminus \{ \ 1 \ \}$$
. Alors \log_a est la bijection réciproque de \exp_a .

On a donc pour tout x > 0 et tout $y \in \mathbb{R}$,

Р

$$a^y = x \iff y \ln a = \ln x \iff y = \frac{\ln x}{\ln a} \iff y = \log_a(x).$$

Soit $a \in \mathbb{R}_+^* \setminus \{1\}$. Pour tout x > 0, on note

$$\log_a(x) = \frac{\ln x}{\ln a}.$$

L'application \log_a est le **logarithme de base** a.

T Combien de chiffres comporte l'écriture décimale de 4444⁴⁴⁴⁴ ?

- 1. Rappel sur les fonctions polynomiales
- 2. Logarithmes, exponentielles
- 3. Fonctions puissances
- 4. Fonctions hyperboliques

Soit $\alpha \in \mathbb{R}$. On appelle fonction puissance d'exposant α l'application

$$\varphi_{\alpha}:]0, +\infty[\rightarrow \mathbb{R}$$
 $x \mapsto x^{\alpha} = e^{\alpha \ln(x)}$.

Si $\alpha \in \mathbb{Q}$, on retrouve les fonctions puissances déjà connues.

D

T Soit $\alpha \in \mathbb{R}$.

1. La fonction $x \mapsto x^{\alpha}$ est définie et dérivable (donc continue) sur \mathbb{R}_{+}^{\star} . Sa dérivée est la fonction

$$\varphi'_{\alpha}: x \mapsto \alpha x^{\alpha-1}.$$

2. Limites en 0 et $+\infty$:

$$\lim_{x \to 0+} x^{\alpha} = \begin{cases} 0 & \alpha > 0 \\ 1 & \alpha = 0 \\ +\infty & \alpha < 0 \end{cases} \qquad \lim_{x \to +\infty} x^{\alpha} = \begin{cases} +\infty & \alpha > 0 \\ 1 & \alpha = 0 \\ 0 & \alpha < 0 \end{cases}$$

- 3. Si $\alpha \neq 0$, la fonction $x \mapsto x^{\alpha}$ réalise une bijection de \mathbb{R}_{+}^{*} sur \mathbb{R}_{+}^{*} . Sa bijection réciproque est la fonction $x \mapsto x^{\frac{1}{\alpha}}$.
- 4. Positions relatives. Soient $\alpha, \beta \in \mathbb{R}$ tels que $\alpha \leq \beta$, alors

$$\forall x \in]0,1], x^{\beta} \le x^{\alpha};$$

$$\forall x \in [1,+\infty[,x^{\alpha} \le x^{\beta}.$$

Figure: Fonctions puissances et positions relatives

- 1. Rappel sur les fonctions polynomiales
- 2. Logarithmes, exponentielles
- 3. Fonctions puissances
- 4. Fonctions hyperboliques
- 4.1 Les fonctions ch et sh
- 4.2 La fonction tanh

- 1. Rappel sur les fonctions polynomiales
- 2. Logarithmes, exponentielles
- 3. Fonctions puissances
- 4. Fonctions hyperboliques
- 4.1 Les fonctions ch et sh
- 4.2 La fonction tanh

sh:
$$\mathbb{R} \to \mathbb{R}$$
 et ch: $\mathbb{R} \to \mathbb{R}$
$$x \mapsto \frac{e^x - e^{-x}}{2}$$

$$x \mapsto \frac{e^x + e^{-x}}{2}$$

- 1. $\forall x \in \mathbb{R}, \operatorname{ch} x \geq 1$.
- 2. $\forall x \in \mathbb{R}$, $\operatorname{ch} x + \operatorname{sh} x = e^x$ et $\operatorname{ch} x \operatorname{sh} x = e^{-x}$.
- 3. $\forall x \in \mathbb{R}, \operatorname{sh} x < \frac{e^x}{2} < \operatorname{ch} x$.
- 4. $\forall x \in \mathbb{R}$, $\operatorname{ch}^2 x \operatorname{sh}^2 x = 1$.

- 1. La fonction sh est impaire et la fonction ch est paire.
- 2. Les fonctions ch et sh sont dérivables (donc continues) sur $\mathbb R$ et

$$sh' = ch$$
 et $ch' = sh$

3.

$$\lim_{-\infty} sh = -\infty \qquad et \qquad \lim_{+\infty} sh = +\infty$$
$$\lim_{-\infty} ch = \lim_{+\infty} ch = +\infty$$

Figure: Sinus hyperbolique et cosinus hyperbolique

- 1. Rappel sur les fonctions polynomiales
- 2. Logarithmes, exponentielles
- 3. Fonctions puissances
- 4. Fonctions hyperboliques
- 4.1 Les fonctions ch et sh
- 4.2 La fonction tanh

On définit la fonction tangente hyperbolique par

tanh:
$$\mathbb{R} \rightarrow]-1,1[$$

 $x \mapsto \frac{\sinh x}{\cosh x} = \frac{e^x - e^{-x}}{e^x + e^{-x}}$

- 1. La fonction tanh est impaire.
- 2. La fonction tanh est dérivable (donc continue) sur R, strictement croissante et on а

$$\tanh' = \frac{1}{\cosh^2} = 1 - \tanh^2.$$

3. $\lim \tanh = -1$ et $\lim \tanh = +1$.

