

STP11NB40 STP11NB40FP

N - CHANNEL 400V - 0.48Ω - 10.7A - TO-220/TO-220FP PowerMESHTM MOSFET

TYPE	V _{DSS}	R _{DS(on)}	I _D
STP11NB40	400 V	< 0.55 Ω	10.7 A
STP11NB40FP	400 V	< 0.55 Ω	6.0 A

- TYPICAL $R_{DS(on)} = 0.48 \Omega$
- EXTREMELY HIGH dV/dt CAPABILITY
- 100% AVALANCHE TESTED
- VERY LOW INTRINSIC CAPACITANCES
- GATE CHARGE MINIMIZED

DESCRIPTION

Using the latest high voltage MESH OVERLAYTM process, STMicroelectronics has designed an advanced family of power MOSFETs with outstanding performances. The new patent pending strip layout coupled with the Company's proprietary edge termination structure, gives the lowest RDS(on) per area, exceptional avalanche and dv/dt capabilities and unrivalled gate charge and switching characteristics.

APPLICATIONS

- HIGH CURRENT, HIGH SPEED SWITCHING
- SWITCH MODE POWER SUPPLIES (SMPS)
- DC-AC CONVERTERS FOR WELDING EQUIPMENT AND UNINTERRUPTIBLE POWER SUPPLIES AND MOTOR DRIVE

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Va	Unit	
		STP11NB40	STP11NB40FP	
V _{DS}	Drain-source Voltage (V _{GS} = 0)	4	00	V
V_{DGR}	Drain- gate Voltage ($R_{GS} = 20 \text{ k}\Omega$)	4	00	V
V_{GS}	Gate-source Voltage	±	30	V
I _D	Drain Current (continuous) at T _c = 25 °C	10.7	6.0	Α
I _D	Drain Current (continuous) at T _c = 100 °C	6.7	3.8	Α
I _{DM} (•)	Drain Current (pulsed)	42.8	42.8	Α
P _{tot}	Total Dissipation at T _c = 25 °C	125	40	W
	Derating Factor	1.0	0.32	W/°C
dv/dt(1)	Peak Diode Recovery voltage slope	4.5	4.5	V/ns
V _{ISO}	Insulation Withstand Voltage (DC)			V
T _{stg}	Storage Temperature	-65 to 150		°C
Tj	Max. Operating Junction Temperature	1:	50	°C

^(•) Pulse width limited by safe operating area

(1) $I_{SD} \le 10.7A$, $di/dt \le 200 A/\mu s$, $V_{DD} \le V_{(BR)DSS}$, $Tj \le T_{JMAX}$

September 1998

THERMAL DATA

		·	TO-220	TO-220FP	
R _{thj-case}	Thermal Resistance Junction-case	Max	1.0	3.12	°C/W
R _{thj-amb}	Thermal Resistance Junction-ambient	Max	62	.5	°C/W
R _{thc-sink}	Thermal Resistance Case-sink	Тур	0.	5	°C/W
Tı	Maximum Lead Temperature For Soldering P	urpose	30	00	°C

AVALANCHE CHARACTERISTICS

Symbol	Parameter	Max Value	Unit
I _{AR}	Avalanche Current, Repetitive or Not-Repetitive (pulse width limited by T _j max)	10.7	А
	Single Pulse Avalanche Energy (starting $T_i = 25$ °C, $I_D = I_{AR}$, $V_{DD} = 50$ V)	530	mJ

ELECTRICAL CHARACTERISTICS ($T_{case} = 25$ ^{o}C unless otherwise specified) OFF

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source Breakdown Voltage	$I_D = 250 \ \mu A$ $V_{GS} = 0$	400			V
I _{DSS}	Zero Gate Voltage Drain Current (V _{GS} = 0)	$V_{DS} = Max Rating$ $V_{DS} = Max Rating$ $T_c = 125 ^{\circ}C$			1 50	μA μA
I _{GSS}	Gate-body Leakage Current (V _{DS} = 0)	$V_{GS} = \pm 30 \text{ V}$			± 100	nA

ON (*)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$ $I_D = 250 \mu A$	3	4	5	٧
R _{DS(on)}	Static Drain-source On Resistance	$V_{GS} = 10V I_D = 5.3 \text{ A}$		0.48	0.55	Ω
I _{D(on)}	On State Drain Current	$V_{DS} > I_{D(on)} \times R_{DS(on)max}$ $V_{GS} = 10 \text{ V}$	10.7			А

DYNAMIC

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
gfs (*)	Forward Transconductance	$V_{DS} > I_{D(on)} \times R_{DS(on)max}$ $I_D = 5.3 \text{ A}$	5	6.5		S
C _{iss} C _{oss} C _{rss}	Input Capacitance Output Capacitance Reverse Transfer Capacitance	$V_{DS} = 25 \text{ V}$ f = 1 MHz $V_{GS} = 0$		1250 210 22	1625 284 30	pF pF pF

2/9

ELECTRICAL CHARACTERISTICS (continued)

SWITCHING ON

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on Time Rise Time	$V_{DD} = 200 \text{ V}$ $I_D = 5.3 \text{ A}$ $R_G = 4.7 \Omega$ $V_{GS} = 10 \text{ V}$		17 10	25 15	ns ns
		(see test circuit, figure 3)				
$egin{array}{c} Q_g \ Q_{gs} \ Q_{gd} \end{array}$	Total Gate Charge Gate-Source Charge Gate-Drain Charge	$V_{DD} = 320 \text{ V } I_D = 10.7 \text{ A } V_{GS} = 10 \text{ V}$		29 10.6 11.8	41	nC nC nC

SWITCHING OFF

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{r(Voff)}	Off-voltage Rise Time	$V_{DD} = 320 \text{ V}$ $I_{D} = 10.7 \text{ A}$		10	14	ns
t _f	Fall Time	$R_{G} = 4.7 \Omega V_{GS} = 10 V$		10	14	ns
tc	Cross-over Time	(see test circuit, figure 5)		17	25	ns

SOURCE DRAIN DIODE

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
I _{SD} I _{SDM} (•)	Source-drain Current Source-drain Current (pulsed)				10.7 42.8	A A
V _{SD} (*)	Forward On Voltage	$I_{SD} = 10.7 \text{ A} V_{GS} = 0$			1.6	V
t _{rr}	Reverse Recovery Time	$I_{SD} = 10.7 \text{ A}$ $di/dt = 100 \text{ A/}\mu\text{s}$ $V_{DD} = 100 \text{ V}$ $T_i = 150 ^{\circ}\text{C}$		400		ns
Q _{rr}	Reverse Recovery	(see test circuit, figure 5)		3.4		μС
I _{RRM}	Charge Reverse Recovery Current			17		A

^(*) Pulsed: Pulse duration = 300 μs, duty cycle 1.5 %

Safe Operating Area for TO-220

Safe Operating Area for TO-220FP

4

^(•) Pulse width limited by safe operating area

Thermal Impedance for TO-220

Output Characteristics

Transconductance

4/9

Thermal Impedance for TO-220FP

Transfer Characteristics

Static Drain-source On Resistance

√y

Gate Charge vs Gate-source Voltage

Normalized Gate Threshold Voltage vs Temperature

Source-drain Diode Forward Characteristics

Capacitance Variations

Normalized On Resistance vs Temperature

47/

Fig. 1: Unclamped Inductive Load Test Circuit

Fig. 3: Switching Times Test Circuits For Resistive Load

Fig. 5: Test Circuit For Inductive Load Switching And Diode Recovery Times

Fig. 2: Unclamped Inductive Waveform

Fig. 4: Gate Charge test Circuit

6/9

TO-220 MECHANICAL DATA

DIM.		mm			inch	
DIIVI.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
Α	4.40		4.60	0.173		0.181
С	1.23		1.32	0.048		0.051
D	2.40		2.72	0.094		0.107
D1		1.27			0.050	
Е	0.49		0.70	0.019		0.027
F	0.61		0.88	0.024		0.034
F1	1.14		1.70	0.044		0.067
F2	1.14		1.70	0.044		0.067
G	4.95		5.15	0.194		0.203
G1	2.4		2.7	0.094		0.106
H2	10.0		10.40	0.393		0.409
L2		16.4			0.645	
L4	13.0		14.0	0.511		0.551
L5	2.65		2.95	0.104		0.116
L6	15.25		15.75	0.600		0.620
L7	6.2		6.6	0.244		0.260
L9	3.5		3.93	0.137		0.154
DIA.	3.75		3.85	0.147		0.151

57

TO-220FP MECHANICAL DATA

DIM.		mm			inch	
DIIVI.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А	4.4		4.6	0.173		0.181
В	2.5		2.7	0.098		0.106
D	2.5		2.75	0.098		0.108
E	0.45		0.7	0.017		0.027
F	0.75		1	0.030		0.039
F1	1.15		1.7	0.045		0.067
F2	1.15		1.7	0.045		0.067
G	4.95		5.2	0.195		0.204
G1	2.4		2.7	0.094		0.106
Н	10		10.4	0.393		0.409
L2		16			0.630	
L3	28.6		30.6	1.126		1.204
L4	9.8		10.6	0.385		0.417
L6	15.9		16.4	0.626		0.645
L7	9		9.3	0.354		0.366
Ø	3		3.2	0.118		0.126

577

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

© 1998 STMicroelectronics – Printed in Italy – All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Mexico - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

