chapter 14: the chi-square test

- parametric and non-parametric tests
- chi-square test of independence is non-parametric
- used for data from two categorical variables (= nominally scaled)
- tests whether observed frequencies are significantly different from the frequencies we would expect if the two variables were independent
 - null hypothesis H₀: row variable and column variable are independent
- example using table 14.1 (gender and academic major)
- make a contingency table (= observed frequencies)
- find marginal probabilities
 - find row and column totals, and overall total (table 14.2)
 - divide row and column totals by overall total
- multiply marginal probabilities
 - if independent, P(A and B) = P(A)P(B)
 - probabilities times total count = expected frequencies (table 14.3)
 - "expected" under H₀
- calculate chi-square statistic: $chi^2 = sum_i (O_i E_i)^2 / E_i (table 14.6)$
 - O_i = observed value, E_i = expected value
 - similar to a squared t value
 - a measure of how different the observed values are, from what we would expect according to the null hypothesis
- degrees of freedom: df = (R-1)(C-1), where R = # rows, C = # columns
- use appendix E to find critical value of chi-square statistic
 - shows probability of getting certain chi-square values, or larger, by chance if the null hypothesis is true

- worked example: gender and academic major

		academic n psych	najor eng	bio	total	marginal prob.
gender	girl Po E	35 0.1625 32.5	50 0.1875 37.5	15 0.1500 30	100	0.5000
	boy p ₀ E	30 0.1625 32.5	25 0.1875 37.5	45 0.1500 30	100	0.5000
	total	65	75	60	200	
marginal	prob.	0.3250	0.3750	0.3000		

- or, shortcut version

		academic major psych	eng	bio	total
gender	girl E	35 32.5 =100*65/200	50 37.5 =100*75/200	15 30 =100*60/2	100
	boy E	30 32.5 =100*65/200	25 37.5 =100*75/200	45 30 =100*60/2	100
	total	65	75	60	200

⁻ $chi^2 = (32 - 32.5)^2 / 32.5 + (50 - 37.5)^2 / 37.5 + ... = 23.72$

⁻ df = (R-1)*(C-1) = (2-1)*(3-1) = 2

⁻ with alpha = 0.05, $t_c = 5.99$

⁻ statistically significant

⁻ reject null hypothesis that gender and academic major are independent

⁻ i.e., it seems that in this population, the probability of having each academic major is different for the two genders

- another worked example: generational status and grade level

		generationa 3+	al group 2	1	total	marginal prob.
gender	girl po E	156 0.1672 152.65	215 0.2523 230.35	125 0.1238 113.03	496	0.5433
	boy p ₀ E	125 0.1406 128.37	209 0.2121 193.65	83 0.1040 94.95	417	0.4567
	total	281	424	208	913	
marginal	prob.	0.3078	0.4644	0.2278		

- or, shortcut version

- chi^2 = (156 152.65)² / 152.65 + (215 230.35)² / 230.25 + ... = 5.19
- df = (R-1)*(C-1) = (2-1)*(3-1) = 2
- with alpha = 0.05, $t_c = 5.99$
- not statistically significant
- do not reject null hypothesis that gender and generational group are independent
 - i.e., it seems that in this population, the probability of being in different generational groups is the same for both genders
 - or, other way around, probability of being male or female is the same across generational groups