De novo Design

De novo Drug Design: Generating

WorkFlow

Data collection

Data preprocessing

Molecular Generator

Result

QSAR

- ASK1 inhibitor data
- Chembl data
- Collected by PubChem and Thomson-Pharma
- Remove duplicate compounds
- Remove Isomeric from SMILES Structure

RNN

RL

- GAN
- Conditional GAN
- Generative RNN
- Reinforcement Learning
- Variational AutoEncoder

- Canonize SMILES
- Tanimoto Similarity
- T-SNE

· Generating Descriptor & Fingerprint

(ECFP4, MACCS Fingerprint)

- Predict biological Activity
- Random Forest
- CNN

Regression Model

Classification Model

(Active Compound pIC50 >=7)

Molecular Generator

- (Conditional) Generative
 Adversarial Network
- Divide logP into 5 segments to create a new molecule
- Reinforcement learning

Reward

 Generative model: Stack GRU (Generative RNN)

Predictive model

· Prediction model: Random forest

- Variational AutoEncoder
- Encoder: 1D CNN
- Decoder: GRU(RNN)

De novo Drug Design: QSAR

1. Data

1)Target Data (NASH)

- -Finetuning Data
- -Collected by PubChem and Thomson-Pharma
- -ASK1 Inhibitor(624 case)

2)Pretrain Data

- -Enrichment & pretrain Data
- -ChEMBL: RNN, Reinforcement Learning
- -ZINC: Variational Autoencoder

2. Molecular Generator: GAN, RNN

<Generative RNN Structure>

- 1.Generative Recurrent Networks for De Novo Drug Design, Gupta A (2017)
- 2.SegGAN: Sequence Generative Adversarial Nets with Policy Gradient, Lantao Yu (2017)
- 3.Generating Focused Molecule Libraries for Drug Discovery with Recurrent Neural Networks, Marwin H. S. Segler(2018)
- 4. Objective-Reinforced Generative Adversarial Networks (ORGAN) for Sequence Generation Models, Gabriel Lima Guimaraes (2017)

2. Molecular Generator: Conditional GAN

<Conditional GAN Structure>

<ASK1 Inhibitor의 logP의 분포 >

<cGAN으로 생성한 logP의 분포 >

2. Molecular Generator: RL, VAE

<Reinforcement Learning Cycle> Parameter optimization Generative model Oc (cc1cc2) ccc1cc2N Stack GRU G <START> Generated Reward **SMILES** Predictive model Property c1ccccc1

- 1)Deep reinforcement learning for de novo drug design, Mariya Popova (2018)
- 2) Automatic Chemical Design Using a Data-Driven Continuous Representation of Molecules, Rafael Gómez-Bombarelli (2018)
- 3)Molecular generative model based on conditional variational autoencoder for de novo molecular design, **Jaechang Lim**(2018)

3. Result (Tanimoto Similarity, T-SNE)

GAN

- ASK1 데이터를 3분할하여 GAN으로 528개 Compound 생성

(A)Tanimoto Simlarity

(B)T-SNE

cGAN

-ASK1 데이터를 logP 기준으로 5구간을 나누어 각각 생성 -cGAN으로 287개 compound 생성

(A)Tanimoto Simlarity

(B)T-SNE

GAN+RNN

- -Input Data: ASK1 Inhibitor + GAN으로 생성한 데이터
- -RNN으로 7,638개 compound 생성

(A)Tanimoto Simlarity

(B)T-SNE

3. Result (Tanimoto Similarity, T-SNE)

cGAN+RNN

- -Input Data: ASK1 Inhibitor + cGAN으로 생성한 데이터
- -RNN으로 6,934개 compound 생성

(A)Tanimoto Simlarity

(B)T-SNE

Reinforcement Learning

- -Input Data: 1)Generative model: Chembl Database 22
- 2)prediction model: ASK1 inhibitor
- -강화학습으로 18,694개 Compound 생성
- (A)Tanimoto Simlarity

(B)T-SNE

VAE

- -Input Data: Pretrained Data: ZINC Database, Target Data:
- ASK1 inhibitor
- -VAE로 32,464개 compound 생성

(A)Tanimoto Simlarity

(B)T-SNE

4. QSAR Model

<Random Forest QSAR>

<Chemception>

- 1) Chemception: A Deep Neural Network with Minimal Chemistry Knowledge Matches the Performance of Expert-developed QSAR/QSPR Models, **Garrett B. Goh**(2017)
- 2) How Much Chemistry Does a Deep Neural Network Need to Know to Make Accurate Predictions?, Garrett B. Goh,(2017)
- 3) In silico modelling of permeation enhancement potency in Caco-2 monolayers based on molecular descriptors and random forest, Søren H.Welling(2015)

4. Embedded RNN QSAR

< Embedded RNN QSAR >

QSAR Model	Descriptor 사용	Fingerprint 사용	Regression model R2 Score
Embedded RNN	X	X	0.852
Random Forest	0	0	0.848
Chemception(CNN)	X	X	0.840

4. Result

<Random Forest>

Model	The number of Generating	Active(pIC50>=7)	Ratio of Active
GAN	405	46	11.36%
CGAN	218	14	6.42%
GAN+RNN	6769	347	5.13%
CGAN+RNN	6011	282	4.69%

<Chemception>

Model	The number of Generating	Active(plC50>=7)	Ratio of Active
GAN	405	93	22.96%
CGAN	218	26	11.93%
GAN+RNN	6769	905	13.37%
CGAN+RNN	6011	710	11.81%

< Embedded RNN >

Model	The number of Generating	Active(pIC50>=7)	Ratio of Active
GAN	405	70	17.28%
CGAN	218	23	10.55%
GAN+RNN	6769	532	7.86%
CGAN+RNN	6011	428	7.12%

뒷부분 참조

3-1. Result

GAN

- ASK1 데이터를 3분할하여 GAN으로 543개 Compound 생성

1) Valid SMILES: 543 → 543

2)Canonical SMILES로 변환 후 중복 제거 : 543 → 528개

3)ASk1_inhibitor와 생성한 Compound의 Tanimoto Similitity 0.85

이하 비율 : 0.76

GAN+RNN

- -Input Data: ASk1 Inhibitor + GAN으로 생성한 데이터
- -RNN으로 10만개의 compound 생성
- 1) Valid SMILES: 100,000 → 65,629개
- 2)Canonize SMILES 변환 후 중복 SMILES 제거: 65,629 → 7,638개
- 3)ASk1 inhibitor와 생성한 Compound의 Tanimoto Similarity 0.85

이하 비율: 0.88

cGAN

- ASK1 데이터를 logP 기준으로 5구간을 나누어 각각 생성
- 294개 compound 생성
- 1) Valid SMILES: 294(43,57,67,58,69) → 294개
- 2)Canonize SMILES 변환 후 중복 SMILES 제거: 294→ 287개
- 3)각 생성한 Compound들의 logP 평균: 2.66, 4.18, 4.46, 5.16, 5.85
- 4)ASk1_inhibitor와 생성한 Compound의 Tanimoto Similarity 0.85

이하 비율: 0.75

cGAN+RNN

- -Input Data: ASk1 Inhibitor + cGAN으로 생성한 데이터
- -RNN으로 10만개의 compound 생성
- 1) Valid SMILES: 100,000 → 67,687개
- 2)Canonize SMILES 변환 후 중복 SMILES 제거: 65,629 → 6,934개
- 3)ASk1 inhibitor와 생성한 Compound의 Tanimoto Similarity 0.85

이하 비율: 0.86

3-1. Result

Reinforcement Learning

- -Input Data: Generative model: Chembl Database 22, prediction model: ASK1 inhibitor
- -강화학습으로 50,000개의 Compound 생성
- 1)Active Probability가 0.8 이상인 Molecular 50,000개 생성
- 2) Valid SMILES: 50,000 → 18,691
- 3)Canonize SMILES 변환 후 중복 SMILES 제거: 18,691 → 18,691
- 4)ASk1 inhibitor와 생성한 Compound의 Tanimoto Similarity 0.85

이하 비율: 1.00

VAE

- -Input Data: Pretrained Data: ZINC Database, Target Data: ASK1 inhibitor
- -ASK1 Inhibitor 1개당 100,000개씩 생성
- 1) Valid SMILES: 36,046 → 32,464
- 2)Canonize SMILES 변환 후 중복 SMILES 제거: 32,464 → 32,464
- 3)ASk1_inhibitor와 생성한 Compound의 tanimoto Similarity 0.85

이하 비율: 0.90

4. QSAR

<Random Forest QSAR>

<Chemception>

- 1) Chemception: A Deep Neural Network with Minimal Chemistry Knowledge Matches the Performance of Expert-developed QSAR/QSPR Models, **Garrett B. Goh**(2017)
- 2) How Much Chemistry Does a Deep Neural Network Need to Know to Make Accurate Predictions?, Garrett B. Goh,(2017)
- 3) In silico modelling of permeation enhancement potency in Caco-2 monolayers based on molecular descriptors and random forest, **Søren H.Welling**(2015)