CS & IT

ENGINERING

Database Management System

DBMS

Lecture No. 1

Topics to be Covered

Topic

Integrity Constraints & ER Model (2 Marks)

Topic

Normalization (2-4 Marks)

Topic

Queries (Relational Algebra, SQL, Tuple Relational Calculus) (4 Marks)

Topic

File Organization & Indexing(2-4 Marks)

Topic

Transactions & Concurrency Control (2- 4 Marks)

Ravindra Babu Ravula

RBR anna

III Blech - 86 AIR

IV Blech - 13 AIR

Mich - 11Sc Bangalhe

'S' glader

17 + years

Topic: Introduction to DBMS

Database:

- ➤ Collection of related data
- Ex: Student information

DBMS:

> Software used to manage and access data in more efficient way.

Topic: Introduction to DBMS

- For small DB, flat file system can be used
- For huge DB, flat file system fails

Flat file system

Topic: Introduction to DBMS

	Limitation of Flat File System	Advantages of DBMS File System	
1.	Too Complex to Manage application programs to access data • User directly should manage DB files using programs	 DBMS supports data independency User can access data independently using SQL Interface without knowing storage info of DB files Easy to develop application 	
2.	More Input Output Cost to access data from DB files	Because of indexing to DB files, it is less costlier than to access data	
3.	Degree of Concurrency is very less Ex: No. of users that can access a file parallelly	3. More Degree of Concurrency Ex: Many users can access the file concurrently because of data control over each row	
4.	Too Complex to maintain different levels of access controls	4. Because of VIEWS (Virtual Table), easy to manage access control	
5.	Too Complex to maintain Non-redundant data	5. Because of Normalization of data	

Introduction:

- The idea of following certain rules to maintain a correct database are called Constraints.
- There are different Data Models like Object Oriented Model, Network Data Model, etc. to store data.
- The widely used data model is RDBMS i.e. Relational DBMS.

Relational DBMS: (Also known as Codd's Data Model)

- Widely used Data Model proposed by Codd
- Codd proposed 12 rules for design of DBMS software
- Software which follows all these guidelines is called as Complete relational database management system.

Inspiring Stories: Laxman Nayak

Background: Born 1899 in southern Odisha. Bhumia tribal community.

Struggles: Officials tortured tribals and took their land.

Achievements: Organized people to stand up to oppressors and fought for tribal rights.

Impact: Became a folk hero for courage and fairness.

CODD Rule (RDBMS Guideline): ~

- Data in Database file must be in tabular format i.e. it is a collection of
 - **Rows & Columns**
- No two rows of Datafile must be same

Example: Data of students

In flat file the table is saved as S1, A,1990#S2,A1 1992 # S1

- Name of the Column is called "Attribute"
- Each Row of the file is called "Record" or "Tuple"
- Collection of all rows of the table is called "Relational Instance" or "Snapshot" or

"record set"
STUDENTS

/			
Sid	Sname	DOB	Attribute
S1	A	1990	7
S2	A	1992	Record
S3	В	1989	-> Recold ser
S4	С	1990	

In flat file the table is saved as S1, A,1990#S2,A1 1992 # S1

Relational schema: Definition/structure of the DB Table

- Arity: Number of fields of the Database Table or Attributes = 3
- Cardinality: Number of records of the table

STUDENTS

	(2)	(3)	
Sid	Sname	DOB	Attribute
S1	A	1990	
S2	A	1992	Record
S3	В	1989	-> Cardinality - T
S4	С	1990	

In flat file the table is saved as S1, A,1990#S2,A1 1992 # S1

CANDIDATE KEY:

"Minimal set of Attribute" that can differentiate the records uniquely

Example-1: STUDENT (SID, Sname, DOB)

CANDIDATE KEY:

- "Minimal set of Attribute" that can differentiate the records uniquely Example-1: STUDENT (SID, Sname, DOB)
 - Candidate Key: SID Minimal
 - SID, Sname → Not Minimal, so not a Candidate Key

Example-2: ENROLL (SID, CID, Fee)

Same Student can enroll many courses

ENROLL

Same Course can be enrolled by many students

Table

SID	CID.	Fee -
S1	.C1	9000
S1	C2	8500
S2 \	· C2	8500

Example-2: ENROLL (SID, CID, Fee)

- Same Student can enroll many courses
- Same Course can be enrolled by many students

Table

SID	CID	Fee
S1	C1	9000
S1	C2	8500
S2	C2	8500

- SID or CID solely cannot identify a row uniquely. In that case, combination of SID & CID becomes the Candidate Key
- SID, CID → Candidate Key (Minimal (✓))

Inspiring Stories: Birsa Munda

Background: Born 1875 in Jharkhand.

Struggles: Tribal forest rights were being wiped out.

Achievements: Led a tribal rebellion and announced "Munda Raj" — tribal rule instead of foreign rule

Impact: His fight inspired future generations and tribal identity.

Example: for the following Relation R. What are Candidate Keys?

Α	В	С
(5.)	4 .	./8
5	4	9
5	6	. 8
5	6	9
8	4	8

Example: for the following Relation R. What are Candidate Keys?

A	В	С
5	4	8
5	4	9
5	6	8
5	6	9
8	4	8

- A, B, AB, BC, AC are not unable to differentiate the records uniquely.
- In that case, combination of all attributes forms the Candidate Key

ABC → Candidate Key

Example-4:

EMPLOYEE (eid, ename, DOB, passportno, bankname, accNo, IFSC Code, pan)

CAN SOOF CAND HOPC OOF HOH'S LCAN

Example-4:

EMPLOYEE (eid, ename, DOB, passportno, bankname, accNo, IFSC Code, pan)

- > eid, passportno, PAN no. can differentiate the records uniquely
- Also (accNo, IFSC Code) can also be CK, and this is also minimal.

PRIMARY KEY (Integrity Constraints)

- > Any one Candidate key whose field values cannot be NUL L
- Atmost one Primary key allowed

E.g. If eid is Primary key then it shouldn't have NULL

ALTERNATIVE KEYS:

- All Candidate keys of Relational Schema except Primary key
- NULL values allowed

E.g. Except eid all other keys may have NULL values

Defining schema of a Table:

```
CREATE TABLE EMPLOYEE
  eid varchar(10) PRIMARY KEY,
  ename varchar(30),
  DOB date,
  PassportNo varchar(15) UNIQUE,
  AccountNo integer(10),
  IFSC·varchar(6),
  PAN varchar(8) UNIQUE NOT NULL,
  UNIQUE (AccNo, Ifsc)
```


SIMPLE CANDIDATE KEY:

- Candidate key with only single attribute is called Simple Candidate Key.
- Example 1: STUDENTS (Sid, Sname, DOB)

Sid - Simple Key

• Example 2: EMP (eid, passportNo., AccNo, IFSC PAN)

eid – Simple Key

COMPOUND CANDIDATE KEY:

- Keys with more than 1 attributes
- Example: SID, CID in ENROLL (SID, CID, fee)

PRIME ATTRIBUTE:

- Attribute that belongs to a Candidate Key.
- Example: For Relation EMP (eid, passportNo, AccNo, IFSC/PAN)

eid, passportNo, PAN are Candidate Keys

So, {eid, passportNo, PAN} are Prime Attributes

SUPER KEY: (Used for RDBMS design)

- Set of attributes which can differentiate records uniquely.
- Example: STUDENT (Sid, Sname, DOB)

Candidate key: SID

Superkeys: (SID) > minimal superkey

{SID, SNAME} ✓

{SID, DOB}

{SID, Sname, DOB}

Inspiring Stories: Komaram Bheem

Background: Born 1900 in Gond tribe, Telangana.

Struggles: Nizam's rule over Gond lands hurt tribal lives.

Achievements: Gave the slogan "Jal Jangal Zameen" ("Water, Forest, Land")—a rallying cry for tribal rights.

Impact: Still chanted today and a symbol of tribal pride and rights.

IMP. How many Super keys are possible with a Relation R(A, B, C, D) and a Candidate key {A}?

IMP. How many Super keys are possible with a Relation R(A, B, C, D) and a Candidate key $\{A\}$?

Sol. Super key: Candidate key along with any subset of other keys.

8 Superkeys are Possible

Q. How many Super keys are possible if Relation $R(A_1, A_2, ..., A_n)$ with Candidate key $\{A_1\}$?

Q. How many Super keys are possible if Relation $R(A_1, A_2, ..., A_n)$ with Candidate

key $\{A_1\}$?

Sol. Number of Super keys = 2^{n-1}

#Q. How many Super keys are possible if R(A, B, C, D, E) is given and the candidate keys are A & BC?

- #Q. How many Super keys are possible if $R(A, \overline{B, C, D, E})$ is given and the candidate keys are A & BC?
- Sol. We will use set theory to calculate the number.

$$n(X \cup Y) = n(X) + n(Y) - n(X \cap Y)$$

$$= 2^{4} + 2^{3} - 2^{2}$$

$$= 16 + 8 - 4 = 20 \text{ Superkeys}$$

#Q. How many Super keys are possible for the Relation $R(A_1, A_2, ..., A_n)$ with $\{A_0, A_1\}, \{A_2, A_3\}$ Candidate keys?

#Q. How many Super keys are possible for the Relation $R(A_1, A_2, ..., A_n)$ with $\{A_0, A_1\}, \{A_2, A_3\}$ Candidate keys?

Sol.
$$n(A_1 A_2 \cup A_2 A_3) = n(A_1 A_2) + n(A_2 A_3) - n(A_1 A_2 \cap A_2 A_3)$$

 $= 2^{n-2} + 2^{n-2} - 2^{n-3}$
 $= 2^{n-3} (2 + 2 - 1)$
 $= 3 \times 2^{n-3}$

Inspiring Stories: Thalakkal Chanthu

Background: From the Kurichiyar tribe in Kerala.

Struggles: British tried to control local tribal land.

Achievements: Fought with Pazhassi Raja (a ruler from the Kottayam royal family in northern Kerala) against British.

Impact: A tribal warrior remembered as part of larger resistance..

#Q. How many possible SK's in R(ABCDEF) with Candidate keys {A, BC, CD}?

#Q. How many possible SK's in R(ABCDEF) with Candidate keys {A, BC, CD}?

Sol.
$$n(X \cup Y \cup Z) = n(X) + n(Y) + n(Z) - n(X \cap Y) - n(Y \cap Z) - n(Z \cap X) + n(X \cap Y \cap Z)$$

 $= 2^5 + 2^4 + 2^4 - 2^3 - 2^3 - 2^3 + 2^2$
 $= 32 + 16 + 16 - 8 - 8 - 8 + 4$
 $= 44 \text{ Super keys}$

mac

#Q. How many Super Keys are possible for a Relation $R(A_1, A_2, ..., A_n)$?

max

#Q. How many Super Keys are possible for a Relation $R(A_1, A_2, ..., A_n)$?

Sol. Except a superkey with zero attributes, all possible combinations form Superkeys.

Therefore possible no. of SK's = powerset - 1 amumc, Q

$$=2^n-1$$

1 assume, every attribute 2 -1 (2) p is a CK.

THANK - YOU

