# Lecture 03: [Rabiner] Chapter 7. Frequency-Domain Representations

DEEE725 음성신호처리실습

Speech Signal Processing Lab

Instructor: 장길진

Original slides from Lawrence Rabiner

### **Frequency Domain Processing**

- Restoration/Enhancement/Modification:
  - noise and reverberation removal
  - High-pass / Low-pass / Bandpass filering
- Feature extraction:
  - Filterbank energies / Cepstral coefficients



### **Short-Time Fourier Transform**

- Speech is not pure stationary, i.e., its properties change with time (time-varying)
  - changes occur at syllabic rates (~10 times/sec)
  - over fixed time intervals of 10-30 milliseconds,
     properties of speech signals are relatively constant
- Thus a single representation based on all the samples of a speech utterance, for the most part, has no meaning
- Instead, we define a time-dependent Fourier transform (TDFT or STFT) of speech

### **Definition of STFT**

$$X_{\hat{n}}(e^{j\hat{\omega}}) = \sum_{m=-\infty}^{\infty} x(m)w(\hat{n}-m)e^{-j\hat{\omega}m}$$

both  $\hat{n}$  and  $\hat{\omega}$  are variables

•  $w(\hat{n}-m)$  is a real window which determines the portion of  $x(\hat{n})$  that is used in the computation of  $X_{\hat{n}}(e^{j\hat{\omega}})$ 



### **STFT Interpretation**

• STFT is a function of two variables, the discrete time index n; continuous variable  $\omega$ 

$$X_{\hat{n}}(\hat{\omega}) = \sum_{m=-\infty}^{\infty} x(m) w(\hat{n}-m) e^{-j\hat{\omega}m} = DTFT(x(m)w(\hat{n}-m))$$

Alternative form of STFT – origin from windows

$$egin{aligned} X_{\hat{n}}(\hat{\omega}) &= \sum_{m=-\infty}^{\infty} x(m) \, w(\hat{n}-m) e^{-j\hat{\omega}m} \ &= e^{-j\hat{\omega}\hat{n}} \sum_{m=-\infty}^{\infty} x(\hat{n}-m) w(m) e^{j\hat{\omega}m} \end{aligned}$$

### **Time Origin for STFT**



- By using different windows
  - Which one is the best?
  - Causal filter only depends on past, but has delay
  - Matter of where to put the reference point

### **Alternative Forms of STFT**

- Real and imaginary parts
  - when x(m) and w(n-m)are both real (usually the case),  $a_n(\omega)$  is symmetric in  $\omega$ , and  $b_n(\omega)$  is antisymmetric in  $\omega$
- magnitude and phase representation

$$\begin{split} X_{\hat{n}}(\hat{\omega}) &= \operatorname{Re}[X_{\hat{n}}(\hat{\omega})] + j \operatorname{Im}[X_{\hat{n}}(\hat{\omega})] \\ &= a_{\hat{n}}(\hat{\omega}) - j b_{\hat{n}}(\hat{\omega}) \\ a_{\hat{n}}(\hat{\omega}) &= \operatorname{Re}[X_{\hat{n}}(\hat{\omega})] \\ b_{\hat{n}}(\hat{\omega}) &= -\operatorname{Im}[X_{\hat{n}}(\hat{\omega})] \end{split}$$

$$egin{aligned} X_{\hat{n}}(\hat{\omega}) &= ig|X_{\hat{n}}(\hat{\omega})ig| \cdot e^{j heta_{\hat{n}}(\hat{\omega})} \ heta_{\hat{n}}(\hat{\omega}) &= -j\lograc{X_{\hat{n}}(\hat{\omega})}{ig|X_{\hat{n}}(\hat{\omega})} \ &= an^{-1}rac{-b_{\hat{n}}(\hat{\omega})}{a_{\hat{n}}(\hat{\omega})} \end{aligned}$$

### **Real Fourier Transform**

- when x(m) and w(n-m) are both real
  - $-a_n(\omega)$  is symmetric in  $\omega$  with respect to  $\pi$

 $-b_n(\omega)$  is anti-symmetric in  $\omega$  with respect to  $\pi$ 





#### **Role of Window in STFT**

- The window w(n-m) does the following:
  - 1) chooses portion of x(m) to be analyzed
  - 2) window shape determines the nature of  $X_n(\omega)$

- $X_n(\omega)$  is the convolution of  $X(\omega)$  true spectrum with the Fourier transform of the shifted window sequence  $W(-\omega)$  e<sup>-j $\omega n$ </sup>
  - $-X_n(\omega)$  is the smoothed version of the short-time spectral properties of x(n)

### Windows in STFT

- Rectangular Window: flat window of length L samples; first zero in frequency response occurs at F<sub>S</sub>/L, with sidelobe levels of -14 dB or lower
- Hamming Window:
   raised cosine window of
   length L samples; first
   zero in frequency
   response occurs at 2F<sub>s</sub>/L,
   with sidelobe levels of -40
   dB or lower

#### Frequency responses



### **Rectangular and Hamming Windows**



#### **Discrete STFT**

- Terminology
  - Frame (window): the analysis unit
  - Frame size (window size): the size of a single frame; either in time or number of samples (Nf)
  - Shift length: how much to slide, 1/Fs second (1 sample) to frame size (Ns)
  - FT size: number of FT sampling in frequency (*Nft* ≥ *Nf*)
  - Frequency index: discretized frequency number(k)

### **Discrete STFT**

#### Define STDFT

- Reduce to  $N_f$  points
- Sample  $\omega$  by  $N_{ft}$  times in  $[0 \ 2\pi)$
- Substitute  $\omega$  with  $\omega(k)$
- Consider the frame not from a long signal but just a fixed length sequence
- Slide the frame by the shift size

$$X_{\hat{n}}(\hat{\omega}) = \sum_{m=0}^{N_f - 1} x(n - m)w(m)e^{-j\hat{\omega}(\hat{n} - m)}$$

$$\hat{\omega}(k) = \frac{2\pi}{N_{ft}}(k - 1), \quad k = 1, ..., N_{ft}$$

$$X_{\hat{n}}(k) = \sum_{m=0}^{N_f - 1} x(\hat{n} - m)w(m)e^{-j\frac{2\pi}{N_{ft}}(k - 1)(\hat{n} - m)}$$

$$\hat{n} \leftarrow 0, \quad m \leftarrow -m$$

$$X(k) = \sum_{n=0}^{N_f - 1} x(m)w(-m)e^{j\frac{2\pi}{N_{ft}}(k - 1)(m)}$$

### Illustration of STDFT



8 kHz example

Frame size Nf = 20 ms = 160 samplesShift length Ns = 10 ms = 80 samplesFT size Nft = 256 (power of 2 for FFT\*) •FFT is a variant of DFT whose complexity is O(Nf

- logNf) instead of O( $Nf^2$ ), but it requires Nf to be power of 2.
- •The Nft-Nf points are zero-padded

## **Spectrogram Display**

#### Every salt breeze comes from the sea



### **Digital Speech Spectrograms**

- Speech Parameters ("This is a test"):
  - sampling rate: 16 kHz
  - speech duration: 1.406 seconds
  - speaker: male
- Wideband Spectrogram Parameters:
  - analysis window: Hamming window
  - analysis window duration: 6 ms (96 samples)
  - analysis window shift: 0.625 ms (10 samples)
  - FFT size: 512
- Narrowband Spectrogram Parameters:
  - analysis window: Hamming window
  - analysis window duration: 60 ms (960 samples)
  - analysis window shift: 6 ms (96 samples)
  - FFT size: 1024

### **Digital Speech Spectrograms**



## **Color Display**



#### **MATLAB Exercises**

### % file drawSpectrogram.m



ELEC747 Speech Signal Processing Gil-Jin Jang

## END OF CHAPTER 7. FREQUENCY-DOMAIN REPRESENTATIONS