Министерство образования и науки Российской Федерации

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

САНКТ-ПЕТЕРБУРГСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ

Кафедра Систем Управления и Информатики Группа <u>Р3340</u>

Лабораторная работа №10 "Исследование математической модели электромеханического объекта управления" Вариант - 2

Выполнил	Алякин С.П	<u>Алякин С.П.</u> (фамилия, и.о.)			
		(подпись)			
Проверил		(фамилия, и.о.)	(подпись)		
nn	_ 20 <u>_17</u> _г.	Санкт-Петербург,	20 <u>17</u> г.		
Работа выполнена	с оценкой				
Дата защиты "	_" 20	0 <u>17</u> г.			

Цель работы

Изучение математических моделей и исследование характеристик электромеханического объекта управления, построенного на основе электродвигателя постоянного тока независимого возбуждения.

Исходные данные

Таблица 1 – Исходные данные

U_{H} ,	n_0 ,	$I_{\mathrm{H}},$	M_{H} ,	R,	T_{H} ,	$J_{ m II},$	$T_{\rm y}$,		$J_{ m M},$
В	об/мин	A	Н∙м	Ом	мс	кг•м2	мс	$ $ $i_{ m P}$	кг•м²
48	1000	12	5,5	0,75	5	$1,6 \cdot 10^{-3}$	6	16	2,75

1 Расчёт параметров математической модели двигателя

Переведём заданное значение частоты в систему СИ

$$n_0=1000$$
 об/мин $=104,72$ рад/с $=\omega_0$

Рассчитаем необходимые для создания модели параметры:

$$K_{\rm Y} = \frac{U_{\rm H}}{U_m} = \frac{48}{10} \tag{2}$$

$$K_{\text{A}} = \frac{1}{R} = \frac{1}{0.75}$$
 = 1,33 (3)

$$K_{\rm M} = \frac{M_{\rm H}}{I_{\rm H}} = \frac{5,5}{12}$$
 = 0,4583

$$K_E = \frac{U_{\rm H}}{\omega_0} = \frac{48}{104,72}$$
 = 0,4583 (5)

$$J_{\rm P} = 0, 2J_{\rm II} = 0, 2 \cdot 1, 6 \cdot 10^{-3}$$
 = 3, 2 \cdot 10^{-4} (6)

$$J_{\Sigma} = J_{\mathcal{I}} + J_{\mathcal{P}} + \frac{J_{\mathcal{M}}}{i_{\mathcal{P}}^2} = 1,6 \cdot 10^{-3} + 3,2 \cdot 10^{-4} + \frac{2,75}{16^2}$$
 = 0,01266kr·м² (7)

2 Математическое моделирование электромеханического объекта

Составим математическую модель ЭМО на основе структурной схемы, представленной на рисунке 1.

Рисунок 1 – Структурная схема ЭМО

Коэффициенты передачи измерительных устройств $K_U, K_I, K_\omega, K_\alpha$ выбираются таким образом, чтобы обеспечить соответствие максимального значения измеряемого сигнала уровню 10 В на выходе измерительного устройства. Из этого условия имеем:

$$K_U = 0,4175$$
 (8)

$$K_I = 0,419 \tag{9}$$

$$K_{\omega} = 0.19125$$
 (10)

$$K_{\alpha} = 12 \tag{11}$$

Схема модели представлена на рисунке 2.

Рисунок 2 – Схема моделирования ЭМО

Построим график переходного процесса:

Рисунок 3 – График переходного процесса при нулевом моменте сопротивления

3 Исследование влияние момента сопротивления на вид переходных процессов

Рисунок 4 – Графики переходных процессов при различных значениях момента сопротивления

Как видно на рисунке 4 при увеличении момента сопротивления, время переходного процесса остаётся неизменным и равным 0.13 сек, установившееся значение скорости уменьшается, а тока — увеличивается.

4 Исследование влияния момента инерции нагрузки на вид переходных процессов

Рисунок 5 – Графики переходных процессов при различных значениях момента инерции нагрузки

Как мы можем наблюдать на графиках переходных процессов, представленных на рисунке 5, время переходного процесса изменяется пропорционально с моментом инерции нагрузки J_M , в то время как установившиеся значения тока якоря и угловой скорости остаются неизменными.

5 Исследование влияния передаточного момента редуктора на вид переходных процессов

Проведём исследования при величине момента сопротивления $M_{CM}=0$. Их результаты приведены на рисунке 6.

Рисунок 6 – Графики переходных процессов при нулевом моменте сопротивления и при различных значениях передаточного момента редуктора

Как можно заметить по результатам математического моделирования при увеличении передаточного момента редуктора уменьшаются время переходного процесса и максимальное значение тока. Установившиеся значения тока и угловой скорости при этом остаются неизменными.

Так же проведём исследования при величине момента сопротивления $M_{CM}=44,$ что

является равным половине максимального значения, рассчитанного для передаточного момента редуктора $i_p=16$. Результаты моделирования приведены на рисунке 7.

Рисунок 7 — Графики переходных процессов при ненулевом моменте сопротивления и при различных значениях передаточного момента редуктора

На представленных результатах моделирования видно, что при наличии момента нагрузки и малом показателе передаточного момента редуктора система может не справиться с нагрузкой и никогда не прийти в устойчивое состояние. В нашем случае при значении $i_p=3$ момента вращения двигателя не хватает, чтобы преодолеть момент сопротивления нагрузки. Так же можно наблюдать, что при увеличении i_p не только уменьшаются значения времени переходного процесса и максимального тока, но и установившиеся значения угловой скорости и тока приближаются к значениям без нагрузки.

6 Исследование влияния значений постоянных времени на вид переходных процессов

Для проведения данного исследования уменьшим заданные значения постоянных времени на порядок и получим

$$T_{y} = 0,5 \text{MC} = 0,0005c$$
 (12)

$$T_{\rm g} = 0,6 \text{MC} = 0,0006c$$
 (13)

Рисунок 8 – График переходного процесса при уменьшенных значениях постоянных времени

При уменьшении значений постоянных времени на порядок возросло максимальное значение тока. Время переходного процесса и установившиеся значения тока и скорости остались неизменны.

7 Математическое моделирование приближённой модели электромеханического объекта

Составим упрощённую модель ЭМО на основе структурной схемы, представленной на рисунке 9.

Рисунок 9 – Структурная схема упрощённой модели ЭМО

Рассчитаем параметры упрощённой ЭМО:

$$K = \frac{K_{y}}{K_{E} \cdot i_{p}} = \frac{4.8}{0.4583 \cdot 16}$$
 = 0.6546 (14)

$$K_f = \frac{R}{K_M \cdot K_E \cdot i_p^2} = \frac{0.75}{0.4583 \cdot 0.4583 \cdot 16^2} = 0.01395$$
 (15)

$$T_M = \frac{R \cdot J_{\Sigma}}{K_M \cdot K_E} = \frac{0,75 \cdot 0,01266}{0,4583 \cdot 0,4583} = 0,0452$$
 (16)

На основе полученных параметров построим математическую модель упрощённой ЭМО. Схема модели приведена на рисунке 10.

Рисунок 10 – Схема моделирования упрощённой ЭМО

Полученный в результате математического моделирования график переходного процесса приведён на рисунке 11.

Рисунок 11 – График переходного процесса упрощённой модели ЭМО

Исходя из результатов исследования упрощённой модели можно заметить, что значение времени переходного процесса остаётся неизменным, так же как и характер переходного процесса по скорости и углу поворота, но изменяется установившееся значение скорости. Так же на упрощённой модели нет возможности исследования переходных процессов для тока и напряжения.

Вывод

В ходе работы было показано, как различные параметры, такие как момент сопротивления нагрузки, передаточный момент редуктора и постоянные времени влияют на показатели переходных процессов системы и её работоспособность в целом.

Так же была исследована упрощённая модель электромеханического объекта и в ходе математического моделирования было показано, что её можно использовать для определения времени и характера переходного процесса по скорости.