§ 19.

Lineare Differentialgleichungen 1. Ordnung

In diesem Paragraphen sei $I \subseteq \mathbb{R}$ ein Intervall und $a, s : I \to \mathbb{R}$ stetig. Weiter sei $J \subseteq I$ ein Teilintervall von I.

Definition

Die Differentialgleichung

$$y' = a(x)y + s(x) \tag{*}$$

heißt lineare Differentialgleichung 1. Ordnung. Sie heißt homogen, falls $s \equiv 0$, anderenfalls heißt sie inhomogen. s heißt Störfunktion.

Wir betrachten zunächst die zu (*) gehörende homogene Gleichung:

$$y' = a(x)y \tag{H}$$

Aus Ana I 23.14 folgt, dass a auf I eine Stammfunktion A besitzt.

Satz 19.1 (Lösung einer homogenen linearen Dgl 1. Ordnung)

Sei $y:J\to\mathbb{R}$ eine Funktion. y ist genau dann eine Lsg von (H), wenn ein $c\in\mathbb{R}$ existiert mit:

$$y(x) = c \cdot e^{A(x)}$$

Beweis

" —" Es existiere ein $c \in \mathbb{R}$, sodass $y(x) = ce^{A(x)}$ für $x \in J$. Dann gilt:

$$\forall x \in J : y'(x) = c \cdot e^{A(x)} \cdot A'(x) = a(x) \cdot c \cdot e^{A(x)} = a(x)y(x)$$

"⇒" Sei $g(x) := \frac{y(x)}{e^{A(x)}}$. Nachrechnen: $\forall x \in J : g'(x) = 0$ Aus Ana I folgt, dass ein $c \in \mathbb{R}$ existiert, sodass für alle $x \in J$ gilt g(x) = c.

Satz 19.2 (Eindeutige Lösung eines Anfangswertproblems)

Sei $x_0 \in I, y_0 \in \mathbb{R}$. Dann hat das AwP

$$\begin{cases} y' = a(x)y\\ y(x_0) = y_0 \end{cases}$$

auf I genau eine Lösung.

Beweis

Sei $c \in \mathbb{R}$, $y(x) = c \cdot e^{A(x)}$ für alle $x \in I$. Dann folgt aus 19.1, dass y eine Lösung von (H) ist. Außerdem gilt:

$$y_0 = y(x_0)$$

$$\iff y_0 = c \cdot e^{A(x_0)}$$

$$\iff c = y_0 \cdot e^{-A(x_0)}$$

Beispiel

Sei das folgende AwP gegeben:

$$\begin{cases} y' = \sin(x)y\\ y(0) = 1 \end{cases}$$

Die allgemeine Lösung der homogenen Gleichung $y' = \sin(x)y$ ist für $c \in \mathbb{R}$:

$$y(x) = c \cdot e^{-\cos(x)}$$

Außerdem gilt:

$$1 = y(0) = c \cdot e^{-\cos(0)} = \frac{c}{e}$$

Also folgt c=e und damit ist die Lösung des Aw
P $y(x)=e^{1-\cos(x)}.$

Nun betrachten wir die inhomogene Gleichung

$$y' = a(x)y + s(x) \tag{IH}$$

Für eine spezielle Lösung y_s von (IH) macht man den Ansatz $y_s(x) = c(x) \cdot e^{A(x)}$ mit einer (unbekannten) db Funktion c. Dies heißt **Variation der Konstanten**. Mit diesem Ansatz gilt:

$$y'_s(x) = c'(x) \cdot e^{A(x)} + c(x) \cdot e^{A(x)} \cdot a(x)$$

$$\stackrel{!}{=} a(x)y_s(x) + s(x)$$

$$= a(x)c(x) \cdot e^{A(x)} + s(x)$$

Dies ist äquivalent dazu, dass gilt:

$$c'(x) \cdot e^{A(x)} = s(x)$$

$$\iff c'(x) = s(x) \cdot e^{-A(x)}$$

$$\iff c(x) = \int s(x) \cdot e^{-A(x)} dx$$

Ist also c eine Stammfunktion von $s \cdot e^{-A}$, so ist $y_s(x) := c(x) \cdot e^{A(x)}$ eine Lösung von (IH). Insbesondere besitzt (IH) auf I Lösungen.

Beispiel

Sei folgende inhomogene Gleichung gegeben:

$$y' = \sin(x)y + \sin(x) \tag{*}$$

Der Ansatz $y_s(x) = c(x) \cdot e^{-\cos(x)}$ für eine spezielle Lösung von (*) liefert wie oben:

$$c(x) = \int \sin(x) \cdot e^{\cos(x)} dx = -e^{\cos(x)}$$

Dann ist $y_s(x) = -e^{\cos(x)} \cdot e^{-\cos(x)} = -1$.

Definition

Definiere die Lösungsmengen:

$$L_H := \{ y : I \to \mathbb{R} : y \text{ ist eine Lösung von (H)} \}$$

 $L_{IH} := \{ y : I \to \mathbb{R} : y \text{ ist eine Lösung von (IH)} \}$

16.1
$$\implies L_H = \{c \cdot e^A : c \in \mathbb{R}\}$$
. Bekannt: $L_{IH} \neq \emptyset$.

Satz 19.3 (Lösungen)

Sei $y_s \in L_{IH}, x_0 \in I, y_0 \in \mathbb{R}$.

- $(1) y \in L_{IH} \iff \exists y_h \in L_H : y = y_h + y_s$
- (2) Das AwP:

$$\begin{cases} y' = a(x)y + s(x) \\ y(x_0) = y_0 \end{cases}$$

hat auf I genau eine Lösung

Beweis

Leichte Übung!

Beispiele:

(1) $(I = \mathbb{R})$ Bestimme die allg. Lösung von

$$y' = 2xy + x \tag{*}$$

1. Bestimme die allg. Lösung der Gleichung y'=2xy: $y(x)=ce^{x^2}(c\in\mathbb{R})$. 2. Bestimme eine spezielle Lösung von (*): $y_s(x)=ce^{x^2}$ mit $c(x)=\int xe^{-x^2}=-\frac{1}{2}e^{-x^2}$ Also: $y_s(x) = -\frac{1}{2}$

3. Die Allgemeine Lösung von (*) lautet:

$$y(x) = ce^{x^2} - \frac{1}{2} \quad (c \in \mathbb{R})$$

(2) Löse das AwP:

$$\begin{cases} y' = 2xy + x \\ y(1) = -1 \end{cases}$$

Allg. Lösung der Dgl: $y(x) = ce^{x^2} - \frac{1}{2}$

$$-1 = y(1) = ce - \frac{1}{2} \implies c = -\frac{1}{2e}$$

Lösung des AwPs: $y(x) = -\frac{1}{2e}e^{x^2} - \frac{1}{2}$.