Max Sum Increasing subseq In C++ #include <iostream> #include <climits> using namespace std; int MaxSumIncreasingSubseq(int arr[], int size) { int omax = INT_MIN; int* dp = new int[size]; //int dp[size]; for (int i = 0; i < size; i++) { int maxSum = arr[i]; for (int j = 0; j < i; j++) { if (arr[j] <= arr[i]) { $\max Sum = \max(\max Sum, dp[j] +$ arr[i]); dp[i] = maxSum;omax = max(omax, dp[i]);delete dp; // Don't forget to free the allocated memory return omax; } int main() { int arr[] = $\{10, 22, 9, 33, 21, 50, 41, 60, 80, 3\}$; int size = sizeof(arr) / sizeof(arr[0]); int maxSum = MaxSumIncreasingSubseq(arr, size); cout << maxSum << endl; return 0;

arr = {10, 22, 9, 33, 21, 50, 41, 60, 80, 3}

Step-by-Step Dry Run (Table Format)

Index (i)	arr[i]	Initial dp[i]	Comparisons (j < i, arr[j] ≤ arr[i])	Updated dp[i]
0	10	10	-	10
1	22	22	$j=0 (10 \le 22) \rightarrow dp[1] = max(22, 10+22)$	32
2	9	9	-	9
3	33	33	$j=0 (10 \le 33) \rightarrow dp[3] = max(33, 10+33) j=1 (22 \le 33) \rightarrow dp[3] = max(43, 32+33)$	65
4	21	21	$j=0 (10 \le 21) \rightarrow dp[4] = max(21, 10+21)$	31
5	50	50	$j=0 (10 \le 50) \rightarrow$ $dp[5] = max(50, 10+50) j=1 (22 \le 50) \rightarrow dp[5] =$ $max(60, 32+50)$ $j=3 (33 \le 50) \rightarrow$ $dp[5] =$ $max(100, 65+50)$	100
6	41	41	$j=0 (10 \le 41) \rightarrow dp[6] = max(41, 10+41) j=1 (22 \le 41) \rightarrow dp[6] = max(51, 32+41) j=3 (33 \le 41) \rightarrow dp[6] = max(91, 65+41)$	91
7	60	60	$j=0$ (10 \leq 60) \rightarrow $dp[7] = max(60, 10+60)$ $j=1$ (22 \leq 60) \rightarrow $dp[7] = max(70, 32+60)$ $j=3$ (33 \leq 60) \rightarrow $dp[7] = max(110, 65+60)$ $j=5$ (50 \leq 60) \rightarrow $dp[7] = max(150, 100+60)$	150

9	3	3	-	3
8	80	80	$j=0,1,3,5,6,7$ (comparing all increasing values) \rightarrow dp[8 = max(10+80, 32+80, 65+80, 100+80, 91+80, 150+80)	

Final DP Table

Index (i)	arr[i]	dp[i] (Max Sum IS Ending at i)
0	10	10
1	22	32
2	9	9
3	33	65
4	21	31
5	50	100
6	41	91
7	60	150
8	80	255
9	3	3

Final Answer

Output: 255

Summary:

• The largest increasing subsequence contributing to 255 is:

$$10 \rightarrow 22 \rightarrow 33 \rightarrow 50 \rightarrow 60 \rightarrow 80$$

$$Sum = 10 + 22 + 33 + 50 + 60 + 80 = 255$$

Output:-

255

 $\{10, 22, 33, 50, 60, 80\} \rightarrow \text{sum} = 10 + 22 + 33 + 50 + 60 + 80 = 255$