SALES PREDICTION USING PYTHON

This Jupyter Notebook was created by <u>Dajah Vincent (https://www.linkedin.com/in/dajahvincent/)</u>

Importing Data Manipulation and Visualization Libraries

```
In [1]: import seaborn as sns
   import matplotlib.pyplot as plt
   import pandas as pd
   import numpy as np

In [2]: #Reading the dataset from the CSV format
   sales = pd.read_csv("Advertising.csv")
```

In [3]: #Viewing the first 5 rows and last 5 rows from the dataset
sales

Out[3]:

	Unnamed: 0	TV	Radio	Newspaper	Sales
0	1	230.1	37.8	69.2	22.1
1	2	44.5	39.3	45.1	10.4
2	3	17.2	45.9	69.3	9.3
3	4	151.5	41.3	58.5	18.5
4	5	180.8	10.8	58.4	12.9
195	196	38.2	3.7	13.8	7.6
196	197	94.2	4.9	8.1	9.7
197	198	177.0	9.3	6.4	12.8
198	199	283.6	42.0	66.2	25.5
199	200	232.1	8.6	8.7	13.4

200 rows × 5 columns

In [4]: sales.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 200 entries, 0 to 199
Data columns (total 5 columns):
Column Non-Null Count Dtype

Column Non-Null Count Dtype

0 Unnamed: 0 200 non-null int64

1 TV 200 non-null float64

2 Radio 200 non-null float64

3 Newspaper 200 non-null float64

4 Sales 200 non-null float64

dtypes: float64(4), int64(1)

memory usage: 7.9 KB

Exploratory Data Analysis - EDA

In [5]: #Viewing the datasets columns with numerical values along with its basic statistical attributes
sales.describe().round(2)

Out[5]:

	Unnamed: U	IV	Radio	newspaper	Sales
count	200.00	200.00	200.00	200.00	200.00
mean	100.50	147.04	23.26	30.55	14.02
std	57.88	85.85	14.85	21.78	5.22
min	1.00	0.70	0.00	0.30	1.60
25%	50.75	74.38	9.98	12.75	10.38
50%	100.50	149.75	22.90	25.75	12.90
75%	150.25	218.82	36.52	45.10	17.40
max	200.00	296.40	49.60	114.00	27.00

In [6]: # The datasets columns
sales.columns

Out[6]: Index(['Unnamed: 0', 'TV', 'Radio', 'Newspaper', 'Sales'], dtype='object')

In [7]: #Checking if there are columns that contain null or empty values
 sales.isna().sum()

Out[7]: Unnamed: 0 0
TV 0
Radio 0
Newspaper 0
Sales 0

dtype: int64

```
In [8]: import matplotlib.pyplot as plt
import numpy as np

# Assuming you have a pandas DataFrame called 'sales' with a 'Sales' column
plt.figure(figsize=(8, 6)) # Set the figure size (optional)

# Create the histogram
counts, bins, patches = plt.hist(sales['Sales'], bins=10, color='skyblue', edgecolor='black')

# Calculate bin centers
bin_centers = 0.5 * np.diff(bins) + bins[:-1]

# Add count Labels to the bars
for count, bin_center in zip(counts, bin_centers):
    plt.annotate(str(int(count)), xy=(bin_center, count), xytext=(0, 5), textcoords='offset points', ha='center', va='bottom

plt.xlabel('Sales')
plt.ylabel('Frequency')
plt.title('Distribution of Sales')

plt.show() # Display the plot
```



```
In [9]: # Create a 1x3 grid of subplots
        fig, axes = plt.subplots(1, 3, figsize=(18, 6))
        # Scatter plot for TV data (subplot 1)
        sns.scatterplot(data=sales, x='TV', y='Sales', color='green', edgecolor='black', alpha=0.7, ax=axes[0])
        axes[0].set title('TV Advertising vs. Sales')
        # Scatter plot for Radio data (subplot 2)
        sns.scatterplot(data=sales, x='Radio', y='Sales', color='blue', edgecolor='black', alpha=0.7, ax=axes[1])
        axes[1].set title('Radio Advertising vs. Sales')
        # Scatter plot for Newspaper data (subplot 3)
        sns.scatterplot(data=sales, x='Newspaper', y='Sales', color='orange', edgecolor='black', alpha=0.7, ax=axes[2])
        axes[2].set title('Newspaper Advertising vs. Sales')
        # Set common labels for all subplots
        for ax in axes:
            ax.set_xlabel('Advertising Budget')
            ax.set ylabel('Sales')
        plt.tight layout() # Adjust subplot spacing
        plt.show() # Display the subplots
```



```
In [10]: # Create the heatmap
sns.heatmap(sales.corr(), annot=True, cmap='YlGnBu')

# Customize the plot (optional)
plt.xticks(rotation=15)
plt.title("Heatmap of Sales")

# Display the plot
plt.show()
```



```
In [11]: # Create a pairplot
         sns.pairplot(sales)
         # Show the plot
         plt.show()
```

C:\Users\DajahV01\AppData\Local\anaconda3\Lib\site-packages\seaborn\axisgrid.py:118: UserWarning: The figure layout has cha nged to tight

self._figure.tight_layout(*args, **kwargs)

Feature Engineering

Out[12]:

	Unnamed: 0	TV	Radio	Newspaper	Sales	Total Advert
0	1	230.1	37.8	69.2	22.1	337.1
1	2	44.5	39.3	45.1	10.4	128.9
2	3	17.2	45.9	69.3	9.3	132.4
3	4	151.5	41.3	58.5	18.5	251.3
4	5	180.8	10.8	58.4	12.9	250.0
195	196	38.2	3.7	13.8	7.6	55.7
196	197	94.2	4.9	8.1	9.7	107.2
197	198	177.0	9.3	6.4	12.8	192.7
198	199	283.6	42.0	66.2	25.5	391.8
199	200	232.1	8.6	8.7	13.4	249.4

200 rows × 6 columns

Machine Learning Model Training & Evaluation

```
In [13]: # Importing the libraries needed for machine learning models
         from sklearn.model selection import train test split
         from sklearn.linear model import LinearRegression, Ridge, Lasso
         from sklearn.svm import SVR
         from sklearn.ensemble import GradientBoostingRegressor
         from sklearn.metrics import mean squared error, r2 score, mean absolute error
         from math import sqrt
         from tabulate import tabulate
In [14]: # Assigning the features and prediction columns to the X and y columns
         X = sales.drop(columns='Sales')
         v = sales['Sales']
In [15]: # Splitting the the sales dataset into training and testing sets
         X train, X test, y train, y test = train test split(X, y, test size = 0.2, random state = 42)
         # Defining the models needed for the predictions
         models = {
             'Linear Regression': LinearRegression(),
             'SVR': SVR(),
             'Gradient Boosting': GradientBoostingRegressor(),
             'Lasso': Lasso(alpha=1.0),
             'Ridge': Ridge(alpha=1.0)
         # Models training and evaluation metrics
         def train_and_evaluate(models, X_train, X_test, y_train, y_test):
             results = []
             for name, model in models.items():
                 model.fit(X train, y train)
                 y pred = model.predict(X test)
                 mse = mean squared error(y test, y pred)
                 rmse = sqrt(mse)
                 mae = mean absolute error(y test, y pred)
                 r2 = r2 score(y test, y pred)
                 results.append([name, mse, rmse, mae, r2])
             return results
```

Different Models Performance

```
In [20]: # Train and evaluate each model
    results = train_and_evaluate(models, X_train, X_test, y_train, y_test)

# Create a tabular representation of results
    table = tabulate(results, headers=['The Models', 'MSE', 'RMSE', 'MAE', 'R2'], tablefmt='grid')
    print(table)
```

+	L	L	L	L L
The Models	MSE	RMSE	MAE	R2
Linear Regression	3.21097	1.79192	1.46495	0.89827
	5.16663	2.27302	1.74559	0.83631
Gradient Boosting	0.9682	0.983972	0.776019	0.969325
Lasso	3.25628	1.80452	1.48934	0.896834
Ridge	3.19902	1.78858	1.46507	0.898649
+	3.25628 + 3.19902	1.80452 1.78858	1.48934 + 1.46507	0.896834 0.898649

From the table above, It can be seen that the Gradient Boosting model did a better prediction with a much lower Mean Squared Error and Mean Absolute Error, However it also has a higher percentage of R-squared at about 97.0% which indicate the variability observed in the target variable is explained by the model and also indicates a better fit model as vmore of the data's variance are accounted for by the model

```
In [21]: #Importing random library
import random

random.seed(42)
random_samples = sales[['TV','Radio','Newspaper']].sample(10)

random_samples
```

Out[21]:

	TV	Radio	Newspaper
32	97.2	1.5	30.0
93	250.9	36.5	72.3
76	27.5	1.6	20.7
61	261.3	42.7	54.7
153	171.3	39.7	37.7
115	75.1	35.0	52.7
140	73.4	17.0	12.9
94	107.4	14.0	10.9
42	293.6	27.7	1.8
123	123.1	34.6	12.4

```
In [22]: random_samples['Total Advert'] = random_samples['TV'] + random_samples['Radio'] + random_samples['Newspaper']
random_samples
```

Out[22]:

	TV	Radio	Newspaper	Total Advert
32	97.2	1.5	30.0	128.7
93	250.9	36.5	72.3	359.7
76	27.5	1.6	20.7	49.8
61	261.3	42.7	54.7	358.7
153	171.3	39.7	37.7	248.7
115	75.1	35.0	52.7	162.8
140	73.4	17.0	12.9	103.3
94	107.4	14.0	10.9	132.3
42	293.6	27.7	1.8	323.1
123	123.1	34.6	12.4	170.1

Evaluating Predicted Sales Against Actual Sales - Different Models Performance

```
In [30]:
         # Select 10 random samples from the dataset
         random_samples = sales.sample(n=10, random_state=np.random.RandomState())
         # Prepare the data for prediction (excluding the 'Sales' column)
         X random samples = random samples.drop(columns='Sales')
         # Actual sales values
         actual sales = random samples['Sales'].values
         # Make predictions with each model and store them in a list
         predictions_table = []
         for name, model in models.items():
             predicted_sales = model.predict(X_random_samples)
             for i in range(len(predicted sales)):
                 variance = actual_sales[i] - predicted_sales[i]
                 predictions table.append([name, i+1, actual sales[i], predicted sales[i], variance])
         # Create a tabular representation of model, sample number, actual vs predicted values, and variance
         headers = ['Model', 'Sample No.', 'Actual Sales', 'Predicted Sales', 'Variance']
         table = tabulate(predictions table, headers=headers, tablefmt='grid')
         # Display the table
         print("Table of the Models Used and their Performance:")
         print(table)
```

Table of the Models Used and their Performance:

+	+		·	++
Model	Sample No.	Actual Sales	Predicted Sales	Variance
Linear Regression	1	6.7	6.25448	0.445516
Linear Regression	2	14.5	14.4779	0.0221217
Linear Regression	3	12.2	13.9004	-1.70044
Linear Regression	4	17	17.1824	-0.182408
Linear Regression	5	8.8	10.475	-1.67501
Linear Regression	6	9.5	9.03843	0.461573
Linear Regression	7	10.4	12.4931	-2.09306
Linear Regression	8	14.7	15.7799	-1.07991
Linear Regression	9	7.2	6.29077	0.909232
Linear Regression	10	9.6	7.65784	1.94216
SVR	1	6.7	7.89283	-1.19283
SVR	2	14.5	15.0218	-0.521838
SVR	3	12.2	14.7807	-2.5807
SVR	4	17	16.8549	0.145105
SVR	5	8.8	8.55771	0.242288
SVR	6	9.5	8.20474	1.29526
SVR	7	10.4	10.6449	-0.2449
SVR	8	14.7	13.1217	1.57833
SVR	9	7.2	7.57459	 -0.374586
SVR	10	9.6	10.5751	+ -0.975139
Gradient Boosting	1	6.7	6.78632	++ -0.0863159
Gradient Boosting	2	14.5	14.8166	 -0.316593
+	+			++

Gradient Boosting	3	12.2	12.3519	-0.151924
Gradient Boosting	4	17	16.9582	0.0418414
Gradient Boosting	5	8.8	8.88596	-0.0859593
Gradient Boosting	6	9.5	8.31065	1.18935
Gradient Boosting	7	10.4	10.5965	-0.196451
Gradient Boosting	8	14.7	14.5895	0.110548
Gradient Boosting	9	7.2	7.26327	-0.0632747
Gradient Boosting	 10	9.6	9.44433	0.155672
Lasso	1	6.7	6.26676	0.433236
Lasso	2	14.5	14.5442	-0.0441551
Lasso	3	12.2	13.9872	-1.78722
Lasso	4	17	17.1107	-0.110708
Lasso	5	8.8	10.3585	-1.55846
Lasso	6	9.5	8.91	0.589997
Lasso	7	10.4	12.4514	-2.05139
Lasso	8	14.7	15.6624	-0.962369
Lasso		7.2	6.3551	0.844904
Lasso	10	9.6	7.81319	1.78681
Ridge	1	6.7	6.22629	0.473713
Ridge	2	14.5	14.4732	0.026836
Ridge	3	12.2	13.9001	-1.70012
Ridge	+	17	17.1931	 -0.193127
Ridge		8.8	10.456	-1.65595
+	+	9.5	+ 9.02048	 0.479522

	Ridge	7	10.4	12.4727	-2.07266
	Ridge	8	14.7	15.7595	-1.05954
	Ridge	9	7.2	6.26562	0.934376
	Ridge	10	9.6	7.64974	1.95026
_		F		-	++

Summation of Variances to Determine Best Performing Model

```
In [31]: # Make predictions with each model and calculate the variance
model_variances = {}
for name, model in models.items():
    predicted_sales = model.predict(X_random_samples)
    variance = actual_sales - predicted_sales
    model_variances[name] = np.sum(variance)

# Create a tabular representation of model and sum of variances
variance_table = [[name, np.sum(var)] for name, var in model_variances.items()]
headers = ['Models', 'Sum of Variance']
table = tabulate(variance_table, headers=headers, tablefmt='grid')

# Display the table
print("Table of Sum of Variance per Model:")
print(table)
```

Table of Sum of Variance per Model:

+	
Models	Sum of Variance
Linear Regression	
SVR	-2.62902
Gradient Boosting	0.596899
Lasso	-2.85935
Ridge	-2.8167
•	·

Consistently, Gradient Boosting model has the least sum of variances which makes it the best performing model in this project.