Pseudo-spectral methods

Galactic dynamics

Boltzmann equation

$$rac{\partial f}{\partial t} + rac{\mathbf{p}}{m} \cdot
abla f + \mathbf{F} \cdot rac{\partial f}{\partial \mathbf{p}} = \left(rac{\partial f}{\partial t}
ight)_{\mathrm{coll}}$$

F Force field

f probability density function

p momentum

m particle mass

describes statistical behaviour of a thermodynamic system in non-equilibrium state

Schrödinger equation

$$i\hbarrac{\partial}{\partial t}\Psi({f r},t)=\left[rac{-\hbar^2}{2\mu}
abla^2+V({f r},t)
ight]\Psi({f r},t)$$

ħ Planck constant

 Ψ wave function

 $oldsymbol{V}$ potential energy

 μ "reduced" particle mass

describes quantum state of a quantum system with time (single non-relativistic particle)

Fluid dynamics

Navier-Stokes equation

$$rac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot
abla) \mathbf{u} = -rac{1}{
ho}
abla P +
u
abla^2 \mathbf{u}$$

 \boldsymbol{P} pressure field

u flow velocity vector

 $oldsymbol{
u}$ viscosity

 ρ density

describes force balance within a fluid

Wave propagation

1D wave equation

2nd-order partial differential equation:

$$\rho(x)\partial_t^2 u(x,t) = \partial_x [\kappa(x)\partial_x u(x,t)], \quad (x \in [0,L], t \in [0,+\infty))$$

velocity-stress formulation

1st-order partial differential equations

$$\rho(x)\partial_t v(x,t) = \partial_x T(x,t) \qquad v(x,t) = \partial_t u(x,t)$$

$$\partial_t T(x,t) = \kappa(x)\partial_x v(x,t) \qquad T(x,t) = \kappa(x)\partial_x u(x,t)$$

Pseudo-spectral method

Discretization

$$u_i^n = u(x_i, t_n)$$

continuous form:

$$\rho(x)\partial_t v(x,t) = \partial_x T(x,t)$$
$$\partial_t T(x,t) = \kappa(x)\partial_x v(x,t)$$

discretized form:

$$\rho(x_i)\partial_t v(x_i, t_n) = \partial_x T(x_i, t_n)$$
$$\partial_t T(x_i, t_n) = \kappa(x_i)\partial_x v(x_i, t_n)$$

Pseudo-spectral method

Derivatives

$$\begin{split} \tilde{F}(k) &= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f(x) e^{-ikx} \mathrm{d}x \\ f(x) &= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \tilde{F}(k) e^{ikx} \mathrm{d}k \end{split}$$

$$\int_{-\infty}^{+\infty} |f(x)| \mathrm{d}x < \infty$$

temporal derivative: central differences

$$\begin{aligned} v_i^{n+1} &= v_i^{n-1} + \frac{2\Delta t}{\rho_i} \times (\frac{\partial T}{\partial x})_i^n \\ T_i^{n+1} &= T_i^{n-1} + 2\Delta t \times \kappa_i \times (\frac{\partial v}{\partial x})_i^n \end{aligned}$$

spatial derivative: Fourier transforms

$$\frac{\mathrm{d}}{\mathrm{d}x}f(x) = \frac{\mathrm{d}}{\mathrm{d}x}\left[\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{+\infty}\tilde{F}(k)e^{ikx}\mathrm{d}k\right]$$
$$= \frac{1}{\sqrt{2\pi}}\int_{-\infty}^{+\infty}ik\tilde{F}(k)e^{ikx}\mathrm{d}k$$

Pseudo-spectral method

Recipe

$$\begin{split} \frac{\mathrm{d}}{\mathrm{d}x}f(x) &= \frac{\mathrm{d}}{\mathrm{d}x}\left[\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{+\infty}\tilde{F}(k)e^{ikx}\mathrm{d}k\right] \\ &= \frac{1}{\sqrt{2\pi}}\int_{-\infty}^{+\infty}ik\tilde{F}(k)e^{ikx}\mathrm{d}k \end{split}$$

- First, Fourier Transform whatever field f(x) we need to differentiate.
- Second, multiply each Fourier coefficient $\tilde{F}(k)$ by ik.
- Finally, carry out inverse Fourier Transform to get desired derivatives.