Warm Up Activity: Unit 5, Momentum I

Prof. Jordan C. Hanson

October 23, 2024

1 Memory Bank

- $F = -\frac{dU}{dx}$... 1D definition of a conservative force.
- Note: Net work is zero along a closed path for a conservative force.
- $dF_x/dy = dF_y/dx$ for conservative forces.
- $\vec{p} = m\vec{v}$... Definition of momentum.
- $\vec{p}_f = \vec{p}_i$... Momentum conservation: no net forces.

2 Conservative Forces

- 1. Determine if each of the following forces are conservative. *Hint: Draw each of them in a 2D coordinate system*.
 - A: $\vec{F} = F_0 \hat{i}$
 - B: $\vec{F} = F_0 \hat{j}$
 - C: $\vec{F} = Ax\hat{i} + By\hat{j}$
 - D: $\vec{F} = Bx\hat{i} + By\hat{j}$
- 2. Consider the 2D potential $U(x,y) = k(x^2 + y^2)$. (a) What is the associated force? (b) Where is the force zero? (c) What is the potential energy at (2,-2)? (d) If a system is released from (2,2), what will be the kinetic energy at the origin?

Figure 1: A beaker full of gas molecules.

up the **kinetic theory of gases** in Physics 3...stay tuned).

4 Momentum Conservation

1. Two molecules collide and stick together, forming one larger molecule. Each molecule weighs 20×10^{-25} kg. One has a velocity of 350 m/s, and the other has a velocity of -350 m/s. (a) What is the total initial momentum (adding the two momenta)? (b) What is the final speed of the big new molecule?

3 Momentum

- 1. A gas molecule has a mass of 20×10^{-25} kg and an average speed of 350 m/s. What is the momentum in kg m/s?
- 2. Suppose this molecule collides with the side of the glass beaker, turns around, and flies off in exactly the opposite direction at the same speed. What is the *change* in momentum, $\Delta \vec{p} = \vec{p_f} \vec{p_i}$? (This is how we build