National Tsing Hua University Department of Physics

PHYS3090

Applied Electronics I

108 Spring

Final Exam

注意:每個答案皆要有嚴謹的推導過程或詳細的推論理由。考題總分為121分。

- 1. (15 points) In Figure 1, $R_1 = 240 \text{k}\Omega$, $R_2 = 160 \text{k}\Omega$, $R_C = 3.2 \text{k}\Omega$, $R_{E1} = 100 \Omega$, $R_{E2} = 1.5 \text{k}\Omega$, and $V_{CC} = 20 \text{V}$. The transistor in the active region has $\beta_{DC} = \beta_{ac} = 100$, $V_{BE} \approx 1.0 \text{V}$, and negligible r_e' . When $V_S = 0$, what are V_B (the voltage at the base), I_C (current flowing into the collector) and V_{CE} (the collector-emitter voltage)?
- 2. (20 points) Follow problem 1. (a) Please find the input and output impedances of the circuit (excluding V_s and R_L). (b) When $V_s = 20 \sin(\omega t)$ mV and $R_L = 320 \text{k}\Omega$, what is V_L (voltage across R_L)? (c) When $V_S = 10 \sin(\omega t)$ mV and $R_L = 3.2 \text{k}\Omega$, what is V_L ?
- 3. (20 points) In Figure 2, $R_1 = 12 \text{k}\Omega$, $R_2 = 8 \text{k}\Omega$, $R_E = 200\Omega$, and $V_{CC} = 20 \text{V}$. The two transistors are the same and, in the active region, they have $\beta_{DC} = \beta_{ac} = 30$, $V_{BE} \approx 1.0 \text{V}$, and negligible r_e' . (a) When $V_{in} = 0$, what are V_{B1} (the voltage at the base of Q_1), I_E (current flowing through R_E), and V_{CE2} (the collector-emitter voltage of Q_2)? (b) When $V_{in} = 5 \sin(\omega t)$ V, what is I_{b1} (ac current flowing into the base of Q_1)?
- (4) (20 points) In Figure 3, $R_1 = 2k\Omega$, $R_2 = 2k\Omega$, $R_L = 8\Omega$, and $\pm V_{CC} = \pm 15V$. The two transistors Q_1 and Q_2 all have $\beta_{DC} = \beta_{ac} = 40$, $V_{BE} \approx 1.0V$, and $V_{e'} = 2\Omega$. The input signal is $V_{s} = 12\sin(\omega t) V$. What are the average power consumptions of Q_1 , Q_2 , the entire amplifier (including Q_2 and excluding Q_2)? What is the average power provided by V_{s} ?
- (10 points) An audio amplifier has input and output impedances of $10k\Omega$ and 50Ω , and a voltage gain of 1,500. The amplifier's input connects to a detector and its output connects to a recorder. The detector has an output impedance of $5k\Omega$, and produces a voltage signal of $1.2\sin(\omega t)$ mV without any load (i.e., without connecting to the amplifier). The recorder has an input impedance of 50Ω . What is the signal received by the recorder?
- (10 points) The drain-source voltage V_{DS} and drain current I_D of JFETs has the following typical relationship: $I_D = I_{D(\text{sat})} \left(1 e^{-V_{DS}/V_0}\right)$, where $I_{D(\text{sat})} = I_{DSS} \left[1 \left(V_{GS}/V_{GS(\text{off})}\right)\right]^2$. A given JFET, which is used as a voltage-controlled variable resistor shown in Figure 4, has $V_0 = 5V$, $I_{DSS} = 100 \text{mA}$, and $V_{GS(\text{off})} = -5V$. Define the resistance of the variable resistor as R_V . Under the condition of $V_{DS} \ll 5V$, what are the values of R_V at $V_{GS} = -4V$ and $V_{GS} = 0$?
 - 7. (10 points) Refer to Figure 5. Which mode (depletion, enhancement, or neither) is each D-MOSFET biased? In each circuit, what are the sign (positive or negative) of V_{GS} and the direction (flowing into or out of the drain) of I_D ?
 - 8. (Total 16 points) [a] (8 points) 請以元件的構造圖與電荷分佈,說明 p-channel JFET 的如何以電壓控制電流的原理,要標示電壓的正或負極性及電荷是電子或電洞。[b] (8 points) 請以元件的構

造圖與電荷分佈,說明 p-channel E-MOSFET 如何以電壓控制電流的原理,要標示電壓的正或負極性及電荷是電子或電洞。

