Needs more jpeg, Argenti edition

Dasara Shullani Ph.D

May 30, 2022

Contents

1	Signal processing appliced to Image Forensics	1
2	Ok, comincia	2
3	${f Jpeg}$	2
	3.1 Encoder	2
	3.2 Trasformata DCT	3
	3.3 Quantizzatore	3
	3.3.1 I would like to interject for a moment	3
	3.4 Entropy coding	3
	3.4.1 Primo passo, quantizzazione	3
4	Image forensics	4
	4.1 Verfica autenticità	4
	4.2 Demosaicatura	4
	4.3 Identificazione sorgente	4
1	Signal processing appliced to Image Forensics	
	• Image forensics usata per capire se immagine è stata modificata.	
	• Voilà, funziona la penna	
	• Ci stanno mettendo un po' a iniziare, scusate il disturbo	
	• Openboard permette di importare pdf, questa è un'ottima notizia	
	• Il professore di automatica lo usa per le slide	

2 Ok, comincia

distinzione di segnali 1D, 2D, 3D abbiamo visto i segnali 1D, ad esempio un segnale audio

- 1D, tipo audio
- 2D, tipo foto
- 3D, tipo video

Analisi seganli 2D per capire se un'immagine è stata modificata Questa è una rappresentazione di un soggetto reale, la luce colpisce un oggetto, la luce viene ricevuta da un sensore, questo segnale luminoso viene discretizzato

Componente principale il sensore, casi principali

- CCD, light to photodiode
- CMOS, light to photodiode ampilfier pair

Come si usa CFA per dare colore a immagine (CFA coso verde verde rosso blu, chiedi a Captain Disillusion) più verde perchè la banda del verde ricevuta meglio dai nostri occhi

campioni il rosso nei punti in cui la pattern è rossa, il resto del rosso viene interpolato

Il passaggio successivo è un processo di compressione, viene trasformato in bit (encoder) che usi per rivederla (decoder)

Algoritmi

- Lossy: immagine ricorstuita non identica (es. jpeg)
- Lossless: decodifica rende immagine/ segnale identica (pensa a un file .zip)

3 Jpeg

3.1 Encoder

- Trasformata DCT
- Quantizzatore
- Roba che mi sono perso

3.2 Transformata DCT

Discrete Cosine Transform, decompone un segnale attraverso le sue armoniche coseno, somma delle armoniche pesate a dovere danno il segnale originale.

In ambito immagine come si fa? Dividiamo in blocchi 8x8 non sovrapposti, e fai la dft per tutti i blocchi (chunk di un mondo minecraft, ±)

- Basse frequenze, descrivono caratteristiche grossolane dell'immagine
- Medie frequenze, un po' più fine
- Alte frequenze, molto fini

Voglio un'immagine fedele alla realtà, ma che occupi il meno spazio possibile

3.3 Quantizzatore

La quantizzazione rimuove dettagli imprecettibili lo stato di quantizzazine associa a ogni blocco 8x8 una matrice di luminanza e crominanza (luminanza = intensità, crominanza = colore), questo è il passo sostanziale di rimozione di dettagli

3.3.1 I would like to interject for a moment

quelli sono uguali ai passi di quantizzazine, hai un passo δ più fine per i dettagli, in alte frequenze i passi sono più alti, in bassa frequenza i passi sono minore, usare passi diversi permette di avere più valori nulli, ce n'è uno per ogni valore della matrice

(se non si capisce, non ho capito un cazzo)

3.4 Entropy coding

Claude shannon approva

Rappresentare nella maniera più efficiente possbilie, dire 10 0 e 1, andiamo a fare codifica differenziale, poi boh, poi bah

3.4.1 Primo passo, quantizzazione

Quella cosa con l'albero per comprimere, robe comuni vanno a meno bit, robe rare hanno più bit.

Huffman lookup table, quella cosa con l'albero

Stiamo comprimendo il comprimibile, per quanto possbile.

4 Image forensics

Quest'immagine è stata manipolata?

le due macroaree sono

- St'immagine è stata modificata?
- Da dove cazzo è venuta st'immagine? Da quale dispositivo?

4.1 Verfica autenticità

- es. Jpeg non si allinea nella grigla 8x8, we call this a misalignment ci sono due casi
 - Doppio jpeg non allineato
 - Doppio jpeg allineato

4.2 Demosaicatura

molto visibile in un'immagine se non si nota demosaicatura allora l'immagine potrebbe essere stata modificata

4.3 Identificazione sorgente

Identificazione del dispositivo che ha prodotto l'immagine

si studia l'impronta dell'immagine

un'immagine molto scura presenta rumore nelle parti scure dell'immagine ad esempio, pensa a tutte le tue foto scacie di tramonti.

vi sono rumori

- Shot noise
- Pattern noise

Photo responsive Non uniformity noise come, in fase di produzoine, si presentano artefatti di produzione.

Rumore estremamente presente in immagine naturale, e sopravvive molto bene al processing.

Come si può usare questo rumore per identificare il sensore che ha prodotto quest'immagine.

Il rumore è estremamente dipendente dall'immagine, viene ottenuto facendo un denoising dell'immagine, e trovando la differenza tra denoised e noised. abbiamo bisogno di parecchie immagini prima di avere una idea completa del rumore del sensore, meno immagini se hai tanti muri bianchi.

si testano i rumori in senso di correlazione col rumore nella foto per vedere di capire da chi cazzo è arrivato sto rumore