Grup

A) Motivasi Operasi Penjumlahan pada Himpunan $\mathbb Z$ sebagai Grup Perhatikan untuk semua himpunan bilangan bulat $\mathbb Z$ berikut ini.

Faktanya:

- (a) $\mathbb{Z} \neq \emptyset$
- (b) $(\mathbb{Z}, +)$ memenuhi sifat-sifat berikut:
 - i. $(\forall a, b, c \in \mathbb{Z})$ (a+b)+c=a+(b+c) (sifat asosiatif operasi + pada \mathbb{Z})
 - ii. $(\exists 0 \in \mathbb{Z})(\forall a \in \mathbb{Z}) \ 0 + a = a = a + 0$ (adanya suatu elemen yang istimewa di \mathbb{Z} , yaitu 0/eksistensi elemen identitas)
 - iii. $(\forall a \in \mathbb{Z})(\exists -a \in \mathbb{Z})$ a + (-a) = (-a) + a = 0 (setiap elemen di \mathbb{Z} mempunyai pasangan di \mathbb{Z} , yang apabila pasangan tersebut dioperasikan menghasilkan 0/eksistensi elemen invers)

Himpunan $\mathbb{Z} \neq \emptyset$ terhadap operasi biner + yang memenuhi aksioma i sampai iii disebut grup dengan notasi $(\mathbb{Z}, +)$.

B) Proses Abstraksi dan Pendefinisian Grup

Berdasarkan hal tersebut, kita dapat mengatakan bahwa himpunan \mathbb{Z} terhadap operasi penjumlahan + membentuk suatu sistem.

Apakah hanya himpunan \mathbb{Z} terhadap operasi penjumlahan + saja yang memenuhi sifat i sampai iii seperti di atas? Tentuk tidak, sebagai contoh: \mathbb{Q} terhadap operasi +, kerhadap operasi +, himpunan semua matriks 2×2 , yaitu $M_{2\times 2}(\mathbb{R})$ terhadap operasi penjumlahan matriks +, dan lain sebagainya. Dalam matematika, biasanya kita ingin melihat suatu jenis sistem secara luas. Oleh karena itu, untuk melihat dan mempelajari sistem seperti di atas (\mathbb{Z} terhadap operasi penjumlahan +) secara luas, kita lakukan proses abstraksi dari sistem tersebut.

- $\mathbbmss{Z} \xrightarrow{\text{diabstraksikan menjadi}} \text{sebarang himpunan tak kosong } G$
- $+ \xrightarrow{\text{diabstraksikan menjadi}} \text{ sebarang operasi biner } * \text{ pada } G$

Definisi 1. Diberikan himpunan $G \neq \emptyset$ dan operasi biner * dengan notasi (G,*). Himpunan G disebut **grup** terhadap operasi * jika memenuhi beberapa aksioma berikut:

- i. Assosiatif
 Untuk setiap $g_1, g_2, g_3 \in G$ berlaku $(g_1 * g_2) * g_3 = g_1 * (g_2 * g_3)$.
- ii. Eksistensi Elemen Identitas/Netral Terdapat $e_G \in G$ sedemikian hingga untuk setiap $g \in G$ berlaku $g * e_G = e_G * g = g$.
- iii. Eksistensi Elemen Invers Untuk setiap $g \in G$ terdapat $g^{-1} \in G$ sedemikian hingga $g * g^{-1} = g^{-1} * g = e_G$.

Note:

- (a) Urutan pembuktian grup:
 - i. Buktikan himpunannya tidak kosong
 - ii. Buktikan operasinya merupakan operasi biner
 - iii. Buktikan aksioma i sampai dengan iii
- (b) Penyebutan operasi + assosiatif di $\mathbb{Z} \neq \mathbb{Z}$ assosiatif

elemen dari $M_2(\mathbb{Z})$.

Contoh:

- 1. Diberikan himpunan matriks $M_2(\mathbb{Z}) = \left\{ \begin{bmatrix} a_1 & a_2 \\ a_3 & a_4 \end{bmatrix} \middle| a_1, a_2, a_3, a_4 \in \mathbb{Z} \right\}$. Apakah $M_2(\mathbb{Z})$ merupakan grup terhadap operasai perkalian matriks?

 Solusi: Tidak benar, sebab terdapat $A = \begin{bmatrix} 1 & 1 \\ 3 & 5 \end{bmatrix} \in M_2(\mathbb{Z})$ dimana $A^{-1} = \begin{bmatrix} 1 & 1 \\ 3 & 5 \end{bmatrix} \notin M_2(\mathbb{Z})$. Artinya invers dari matriks $A \in M_2(\mathbb{Z})$ bukan merupakan
- 2. Diberikan himpunan matriks $M_2(\mathbb{R}) = \left\{ \begin{bmatrix} a_1 & a_2 \\ a_3 & a_4 \end{bmatrix} \middle| a_1, a_2, a_3, a_4 \in \mathbb{R} \right\}$. Apakah $M_2(\mathbb{R})$ merupakan grup terhadap operasai perkalian matriks? Solusi: Tidak benar, $A = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix} \in M_2(\mathbb{R})$, namun $\det(A) = 0$ sedemikian hingga matriks A tidak mempunyai invers terhadap operasi perkalian (tidak memenuhi aksioma eksistensi elemen invers).
- 3. Diberikan himpunan matriks $M_2(\mathbb{R}) = \left\{ \begin{bmatrix} a_1 & a_2 \\ a_3 & a_4 \end{bmatrix} \middle| a_1, a_2, a_3, a_4 \in \mathbb{R} \text{ dan } a_1a_4 \neq a_2a_3 \right\}$. Apakah $M_2(\mathbb{R})$ merupakan grup terhadap operasi perkalian matriks? Solusi:

Klaim : Himpunan $M_2(\mathbb{R})$ dengan operasi biner perkalian matriks merupakan grup.

Bukti diserahkan kepada pembaca.

4. Diberikan himpunan $2\mathbb{Z} = \{2n \mid n \in \mathbb{Z}\}$ dengan operasi +. Apakah $2\mathbb{Z}$ merupakan grup terhadap operasi +?

Solusi:

Klaim: Himpunan $2\mathbb{Z}$ dengan operasi + merupakan grup.

Bukti diserahkan kepada pembaca.