Gerações de Sequenciamento

SCC02713 - Introdução à Bioinformática —

Evolução das Técnicas de Sequenciamento

Histórico

Frederick Sanger

- Método mais utilizado por várias décadas:
 - Baseado na incorporação seletiva de dideoxinucleotídeos que terminam a extensão da molécula durante o processo

Projeto Genoma Humano

- Síntese de DNA por uma polimerase
 - Utiliza nucleotídeo "defeituoso"

- Síntese de DNA ddNTP
 - Utiliza nucleotídeo "defeituoso"

Síntese de DNA – dNTP e ddNTP

- Geração de fragmentos de todos os tamanhos. Em cada tubo:
 - o DNA alvo, que queremos sequenciar
 - DNA polimerase: replicação
 - Primer: inicia a síntese
 - o dNTP
 - Um tipo de ddNTP

Muito custoso! Isso era feito antigamente!

- Marcação dos ddNTPs com fluoróforos
 - Usa apenas um tubo

Geração de fragmentos de todos os tamanhos.

• Usa-se um capilar ao invés de gel e um computador

SeqStudio Thermo Fisher Spectrum Promega

Evolução das Técnicas de Sequenciamento

Histórico

- Sequenciamento Sanger
 - o Alta precisão e acurácia, porém baixa capacidade de produção e alto custo
- Sequenciamento de Nova Geração (NGS)
 - Produção em larga escala e diminuição de custo
 - o Amplificação em massa de fragmentos de DNA e sequenciamento em paralelo
- Possível sequenciar genomas inteiros em questão de dias
 - Custo muito menor
 - Identificação de variantes genéticas
 - Identificação de mutações
 - 0 ...

Biblioteca

Geração de fragmentos de tamanhos compatíveis com a tecnologia. Adição de adaptadores e marcadores.

Amplificação

Geração de cópias de cada fragmento a ser sequenciado.

Sequenciamento

Processo de leitura da sequência

Análise dos dados

Alinhamento, montagem, quantificação, chamada de bases, chamada de variantes.

- Construção da biblioteca
 - Gerar fragmentos
 - Adicionar adaptadores às extremidades dos fragmentos
 - Adicionar marcadores de amostra

- Construção da biblioteca
 - Gerar fragmentos
 - Adicionar adaptadores às extremidades dos fragmentos
 - Adicionar marcadores de amostra
 - Adicionar adaptadores às extremidades dos fragmentos
 - DNA conhecido

- Construção da biblioteca
 - Gerar fragmentos
 - Adicionar adaptadores às extremidades dos fragmentos
 - Adicionar marcadores de amostra
 - Adicionar marcadores de amostra

- Amplificação
 - PCR para geração de fluorescência

- Amplificação Illumina
 - Primers complementares aos adaptadores

Plataforma Illumina

https://bioinfo.com.br/sequenciamento-ngs-status-e-perspectivas/

- Amplificação Illumina
 - Primers complementares aos adaptadores
 - Fluorescência

Sequenciamento - Illumina

Sequenciamento - Illumina

Sequenciamento - Illumina

Plataforma Illumina

- Várias aplicações
 - Genotipagem
 - Identificação humana
 - Metagenoma
 - Detecção de mutação
 - Análise de expressão gênica
 - Detecção de aneuploidias
 - Sequenciamento de novo
 - Sequenciamento de exoma

Evolução das Técnicas de Sequenciamento

Histórico

- Sequenciamento em tempo real
 - Leitura direta da sequencia de nucleotídeos do DNA
 - Não há necessidade de amplificar sequencias e sintetizar cópias
- Diferentes abordagens
 - Detecção de mudanças na condutividade elétrica
 - o Detecção de incorporação de nucleotídeos fluorescentes durante a síntese de DNA
- Leitura de sequencias muito mais longas
 - Útil para montagem de genomas complexos
 - Identificação de variantes genéticas em regiões de difícil sequenciamento

- Sequenciamento por nanoporos
 - Não há necessidade de grandes sequenciadores
 - Capacidade de sequenciar fragmentos de milhões de pares de bases
 - Sem amplificação prévia
 - Processo de geração de dados diferente. Não é síntese.

 O esboço inicial do professor David Deamer para sequenciar o DNA usando um nanoporo

Sequenciamento por nanoporos - MinION

Sequenciamento por nanoporos - MinION

Sequenciamento por nanoporos - MinION

biologia molecular

Sequenciamento por nanoporos - MinION

- Várias aplicações
 - o Montagem de genomas de qualidade superior
 - Identificação de modificações epigenéticas em larga escala
 - Sequenciamento de regiões altamente repetitivas no genoma

Sequenciamento de Quarta Geração

- Ainda em desenvolvimento.
 - Nada disponível comercialmente
 - Novas gerações de tecnologias por nanoporos
 - Técnicas baseadas em microscopia

https://www.bbc.com/future/article/20230210-the-man-whose-genome-you-can-read-end-to-end