Algorytmy optymalizacji dyskretnej 2025/26

LABORATORIUM 2

Programowanie liniowe i całkowitoliczbowe

Termin realizacji: ostatnie zajęcia przed 20.11.2025 r.

Warunek zaliczenia listy: realizacja co najmniej czterech spośród zadań 1–6 (wraz ze sprawozdaniem).

W każdym z zadań 1–6 zapisz model programowania liniowego w wybranym języku i rozwiąż go za pomocą solvera GLPK (lub np. Cbc, HiGHS, ...). Rozwiązania należy uogólnić, tj. oddzielić model od danych tak, aby można było zadawać dane w pliku, na podstawie których solver będzie generował egzemplarz problemu i go rozwiązywał. Należy także maksymalnie sparametryzować zapis modelu.

Zadanie 0.

Przeczytaj opis języka GNU MathProg (lub innego wybranego narzędzia do modelowania problemów LP/MIP, jak np. pakietu JuMP z języka Julia) i zapoznaj się z jego możliwościami.

Zadanie 1. [0,5 pkt]

Przedsiębiorstwo lotnicze musi podjąć decyzję o zakupie paliwa do samolotów odrzutowych, mając do wyboru trzech dostawców. Samoloty tankują paliwo regularnie na czterech lotniskach, które obsługują.

Firmy paliwowe poinformowały, że mogą dostarczyć następujące ilości paliwa w nadchodzącym miesiącu: Firma $1-275\,000$ galonów, Firma $2-550\,000$ galonów i Firma $3-660\,000$ galonów. Niezbędne ilości paliwa na poszczególnych lotniskach są odpowiednio równe: na lotnisku $1-110\,000$ galonów, na lotnisku $2-220\,000$ galonów, na lotnisku $3-330\,000$ galonów i na lotnisku $4-440\,000$ galonów.

Koszt jednego galonu paliwa w \$ (z uwzględnieniem kosztów transportu) dostarczonego przez poszczególnych dostawców na każde z lotnisk przedstawia poniższa tabela.

	Firma 1	Firma 2	Firma 2
Lotnisko 1	10	7	8
Lotnisko 2	10	11	14
Lotnisko 3	9	12	4
Lotnisko 4	11	13	9

Wyznacz plan zakupu i dostaw paliwa na lotniska, który minimalizuje koszty. Następnie na jego podstawie odpowiedz na poniższe pytania.

- (a) Jaki jest minimalny łączny koszt dostaw wymaganych ilości paliwa na wszystkie lotniska?
- (b) Czy wszystkie firmy dostarczają paliwo?
- (c) Czy możliwości dostaw paliwa przez firmy są wyczerpane?

Zadanie 2. [1 pkt]

Zakład może produkować cztery różne wyroby P_i , $i \in \{1,2,3,4\}$, w różnych kombinacjach. Każdy z wyrobów wymaga pewnego czasu obróbki na każdej z trzech maszyn. Czasy te są podane w poniższej tabeli (w minutach na kilogram wyrobu). Każda z maszyn jest dostępna przez 60 godzin w tygodniu. Produkty P_1 , P_2 , P_3 i P_4 mogą być sprzedane po cenie, odpowiednio, 9, 7, 6 i 5 \$ za kilogram. Koszty zmienne (koszty pracy maszyn) wynoszą, odpowiednio, 2 \$ za godzinę dla maszyn M_1 i M_2 oraz 3 \$ za godzinę dla maszyny M_3 . Koszty materiałowe wynoszą 4 \$ na każdy kilogram wyrobu P_1 i 1 \$ na każdy kilogram wyrobu P_2 , P_3 i P_4 . W tabeli podany jest także maksymalny tygodniowy popyt na każdy z wyrobów (w kilogramach).

Produkt	Maszyna			Maksymalny popyt	
	$\overline{M_1}$	M_2	M_3	tygodniowy	
$\overline{P_1}$	5	10	6	400	
P_2	3	6	4	100	
P_3	4	5	3	150	
P_4	4	2	1	500	

Wyznacz optymalny tygodniowy plan produkcji poszczególnych wyrobów i oblicz zysk z ich sprzedaży.

Zadanie 3. [1 pkt]

W trybie normalnej produkcji pewna firma wytwarza maksymalnie 100 jednostek towaru w każdym z K następujących po sobie okresów, gdzie koszt produkcji jednej jednostki towaru w okresie $j \in \{1,\ldots,K\}$ wynosi c_j \$. Firma może również uruchomić produkcję ponadwymiarową w wielkości do a_j dodatkowych jednostek towaru w okresie j przy koszcie jednostkowym o_j \$. Zapotrzebowanie na towar w okresie j wynosi d_j jednostek. Dane dla K=4 kolejnych okresów przedstawia poniższa tabela.

\overline{j}	c_j	a_j	o_j	d_j
1	6 000	60	8 000	130
2	4000	65	6000	80
3	8 000	70	10000	125
4	9 000	60	11000	195

Ponadto firma może przechować w magazynie do 70 jednostek towaru z jednego okresu na kolejny po koszcie $1\,500\,\$$ za każdą magazynowaną jednostkę przez jeden okres. Początkowo w magazynie znajduje się 15 jednostek towaru.

Wyznacz plan produkcji i magazynowania wytwarzanego towaru, który spełnia zapotrzebowania w każdym okresie i minimalizuje łączny koszt. Następnie na jego podstawie odpowiedz na poniższe pytania.

- (a) Jaki jest minimalny łączny koszt produkcji i magazynowania towaru?
- (b) W których okresach firma musi zaplanować produkcję ponadwymiarową?
- (c) W których okresach możliwości magazynowania towaru są wyczerpane?

Zadanie 4. [1 pkt]

Dana jest sieć połączeń między miastami reprezentowana za pomocą skierowanego grafu G=(N,A), gdzie N jest zbiorem miast (wierzchołków), a A jest zbiorem połączeń między miastami (łuków). Dla każdego połączenia z miasta i do miasta j, $(i,j) \in A$, dane są koszt przejazdu c_{ij} oraz czas przejazdu t_{ij} . Dane są również dwa miasta i0, i0 i1.

Celem jest znalezienie połączenia (ścieżki) od miasta i° do miasta j° , którego całkowity koszt jest najmniejszy i całkowity czas przejazdu nie przekracza z góry zadanego czasu T.

- (a) Rozwiąż poniższy egzemplarz problemu (wygenerowany we współpracy z Microsoft Copilot :)). Rysunek grafu znajduje się w pliku rcsp_graph_ex4.pdf (czerwone koszty, niebieskie czasy). $N = \{1, \dots, 10\}, i^{\circ} = 1, j^{\circ} = 10, T = 15. \text{ Kolejne krawędzie podane są w postaci } (i, j, c_{ij}, t_{ij}): \\ (1, 2, 3, 4), (1, 3, 4, 9), (1, 4, 7, 10), (1, 5, 8, 12), (2, 3, 2, 3), (3, 4, 4, 6), (3, 5, 2, 2), (3, 10, 6, 11), \\ (4, 5, 1, 1), (4, 7, 3, 5), (5, 6, 5, 6), (5, 7, 3, 3), (5, 10, 5, 8), (6, 1, 5, 8), (6, 7, 2, 2), (6, 10, 7, 11), \\ (7, 3, 4, 6), (7, 8, 3, 5), (7, 9, 1, 1), (8, 9, 1, 2), (9, 10, 2, 2).$
- (b) Zaproponuj własny egzemplarz problemu i rozwiąż go. Graf ma mieć co najmniej $n \geqslant 10$ wierzchołków, najtańsza ścieżka spełniająca ograniczenia na czas przejazdu ma mieć $\geqslant 3$ krawędzie i mieć większy koszt niż najtańsza ścieżka w wersji bez ograniczeń (ta ma mieć $\geqslant 2$ krawędzie).

- (c) Czy ograniczenie na całkowitoliczbowość zmiennych decyzyjnych jest potrzebne? Jeśli nie, to uzasadnij dlaczego. Jeśli tak, to zaproponuj kontrprzykład, w którym po usunięciu ograniczeń na całkowitoliczbowość (tj. mamy przypadek, w którym model jest modelem programowania liniowego) zmienne decyzyjne w rozwiązaniu optymalnym nie mają wartości całkowitych.
- (d) Czy po usunięciu ograniczenia na czasy przejazdu w modelu bez ograniczeń na całkowitoliczbowość zmiennych decyzyjnych i rozwiązaniu problemu otrzymane połączenie zawsze jest akceptowalnym rozwiązaniem? Uzasadnij odpowiedź.

Zadanie 5. [0,5 pkt]

Rozwiąż problem z zadania 5. z Listy 2 na ćwiczenia dla podanych tam danych. W opisie rozwiązania przedstaw optymalny przydział radiowozów dla każdej zmiany i dzielnicy oraz podaj całkowitą liczbę wykorzystywanych radiowozów.

Zadanie 6. [1 pkt]

Firma przeładunkowa składuje na swoim terenie kontenery z cennym ładunkiem. Teren podzielony jest na $m \times n$ kwadratów. Kontenery składowane są w wybranych kwadratach. Jeden kwadrat może być zajmowany przez co najwyżej jeden kontener. Firma musi rozmieścić kamery, żeby monitorować kontenery. Każda kamera może obserwować k kwadratów na lewo, k kwadratów na prawo, k kwadratów w górę i k kwadratów w dół. Kamera nie może być umieszczona w kwadracie zajmowanym przez kontener.

Zaplanuj rozmieszczenie kamer w kwadratach tak, aby każdy kontener był monitorowany przez co najmniej jedną kamerę oraz liczba użytych kamer była jak najmniejsza.

Rozwiąż własny egzemplarz powyższego problemu z parametrami $m,n\geqslant 5$. Podaj rozwiązania dla co najmniej dwóch różnych wartości parametru k.

Rozwiązania problemów z zadań 1–6 przedstaw w **zwięzłym** sprawozdaniu (plik pdf), które powinno zawierać:

1. opis modeli

- (a) definicje zmiennych decyzyjnych (opis, jednostki),
- (b) ograniczenia (nie umieszczaj źródeł modelu),
- (c) funkcja celu,
- 2. krótki opis rozwiązywanych egzemplarzy, uzyskane wyniki oraz ich interpretację.

W sprawozdaniu do opisu modeli (zmienne, ograniczenia, funkcja celu) należy zastosować zapis matematyczny (a nie zapis w wybranym języku modelowania)!

Do sprawozdania należy dołączyć pliki z modelami programowania liniowego / liniowego całkowitoliczbowego. Pliki powinny być skomentowane – powinny zawierać imię i nazwisko autora, komentarze zmiennych, zaetykietowane ograniczenia oraz komentarze ograniczeń.