

EIE3280 Project

Course Content Search Engine

Zeng Zhuoru 119010417 Chen Xuanwen 120090582 Zhuang Yan 120090303 Peng Yiwei 119010245

Contents

Introduction

- Motivation: To help students review the courses better.
- ◆ Background: There is an classial educational search engine designed by Kamal EL GUEMMAT, which can translate the key words into SPARQL queries. And use SPARQL to rank data.
- ◆ Challange: This project is a new scene of the educational search engine.
- ◆ Contribute: Build the database of EIE3280, from chapter 1 to chapter 8;

The application of the importance score, relevance score;

Build website applications.

Components of the system

Example Video

Website App Implementation

Database

Data Source

- Text data
- From EIE3280 Chapter 1-8
 Course Slides

Database Structure

- Pages
- Sections
- Tags

Graph of Tags

Graph Built by Tags

- Each tag is a node
- Relationship between tags are links
- Undirected graph

Graph Abstraction

 Links between tags indicate relationships between pages / sections

Decisive Tags as a Medium

Find Decisive Tags

How to Rank Related Section?

Decisive tag: Tag 1

Section A Tag 1 Tag 2 Tag 3

Section B Tag 1 Tag 4 Tag 5

Distance Based Relevance Score (RS)

Decisive tag:
Auction

Section A

Section B

Distance Based Relevance Score (RS)

For a single decisive tag — Dijkstra algorithm:

$$RS(x,y) = \frac{\alpha}{D(x,y) + \beta}$$

For a section containing N decisive tags:

$$SRS(s,d) = \frac{1}{N} \sum_{i \in T} RS(i,d)$$

Importance Score (IS)

Does the number of neighbor tags matter?

Basic theorem?

Example/exercise?

Inverse Page Frequency (IPF)

Two similar search phrases:

Second price auction

What is second price auction

More frequent occurrence

Less important to count

$$ipf_i = log\left(\frac{P}{C_i}\right)$$

User Feedback Adjustment

$$FS(s) = \begin{cases} \frac{\min\{p-q,\sigma\}}{\delta} & \text{if } p-q > 0\\ \frac{\max\{p-q,-\sigma\}}{\delta} & \text{if } p-q < 0 \end{cases}$$

P: positive feedback

 σ , δ : constant – important but not dominant feedback

Q: negative feedback

Experiment Result & Discussion

"

vote,
neighborhood
borda count
root mean square error
page rank
movie rating

"

-Select the best target section ID:

-Select testing searching string:

603, 604 402 603 401, 503 302, 303, 304 401, 402

·Use different algorithms to get results:

1.IS 2.RS 3.IS + RS 4.IS + RS + IPF(Inverse Page Frequency)

MRR testing algorithm

We use a modified Mean Reciprocal Rank (MRR) as our evaluation criteria. The equation is as follows:

Q : number of query test cases we have in our test set.

ni: the number of correct answers we have

Ranki: rank of a specific correct answer in our actual experiment output result.

$$\operatorname{MRR} = \frac{1}{Q} \sum_{i=1}^{Q} \frac{1}{\operatorname{rank}_i}$$

$$\frac{1}{Q} \sum_{i=1}^{Q} \left(\frac{1}{n_i} \sum_{j=1}^{n_i} \frac{1}{\operatorname{rank}_i} \right)$$

Experiment Results

page rank/302, 303, 304				
IS	RS	IS+RS	IS+RS+IPF	
501	306	501	306	
301	301	301	301	
201	501	306	303	
504	303	201	305	
305	502	303	803	
503	304	504	501	
303	302	502	304	
306	504	503	302	
502	201	305	504	
302	305	304	502	
304	503	302		

Apply modified MRR method...

Algorithm Evaluation

MRR	score
IS	0. 4518
RS	0. 4963
IS+RS	0.6119
IS+RS+IPF	0. 5889

IS: importance score

RS: relevance score

IPF: inverence page frequency

Limitation

·Tags Graph

-Test case

Section

Reference

- [1] Dijkstra, E.W. A note on two problems in connexion with graphs. Numer. Math. 1, 269–271 (1959). https://doi.org/10.1007/BF01386390
- [2] L. Page, S. Brin, R. Motwani, and T. Winograd, "The PageRank Citation Ranking: Bringing Order to the Web," 1999.
- [3] Rajaraman, A.; Ullman, J.D. (2011). " Data Mining" (PDF). Mining of Massive Datasets. pp. 1–17. doi:10.1017/CBO9781139058452.002.ISBN 978-1-139-05845-2.
- [4] Amardeilh, F. (2007). Web Sémantique et Informatique Linguistique : propositions méthodologiques et réalisation d'une plateforme logicielle (Doctoral dissertation, Université de Nanterre-Paris X).
- [5] Kamal EL GUEMMAT, Sara OUAHABI. "Understandings of Exploratory Pedagogy for Educationnal search engine". The Turkish Online Journal of Distance Education, 20 (2), 2019a. ISSN 1302-6488.
- [6] Buckley C and Voorhees E (2000) Evaluating evaluation measure stability. In: Proceedings of SIGIR'00, New York, 2000, pp. 33–40. ACM Press.

Contribution

Task	Contributor
System Design	Chen Xuanwen Peng Yiwei Zeng Zhuoru Zhuang Yan
Ranking Algorithm Design	Chen Xuanwen Peng Yiwei Zeng Zhuoru Zhuang Yan
Database Building	Chen Xuanwen Peng Yiwei Zeng Zhuoru Zhuang Yan
Coding	Chen Xuanwen Peng Yiwei Zeng Zhuoru Zhuang Yan

Contributor	Contribution (%)	
Chen Xuanwen	22%	
Peng Yiwei	22%	
Zeng Zhuoru	34%	
Zhuang Yan	22%	

Q&A