OS algoritmusok

1. Adott egy *igény szerinti lapozást* használó számítógéprendszer, melyben futás közben egy processz számára a következő laphivatkozással lehet hivatkozni: 6, 5, 4, 3, 5, 6, 2, 8, 5, 6, 5, 4, 7, 8, 4, 5 6, 5, 5, 8

Memóriakeret (igényelt lapok): 3, ill. 4 memóriakeret.

Készítse el a laphivatkozások betöltését külön-külön táblázatba 3, ill. 4 memóriakeret esetén. Mennyi laphiba keletkezik az alábbi algoritmusok esetén: SC, LRU?

Hasonlítsa össze és magyarázza az eredményeket!

2. Adott az alábbi terhelés esetén a rendszer. Határozza meg az indulás, befejezés, várakozás/átlagos várakozás és körülfordulás/átlagos körülfordulás, válasz/átlagos válaszidő és a CPU kihasználtság értékeket az FCFS ütemezési algoritmusok mellett! (cs: 0,1ms; sch: 0,1ms)

	P1	P2	P3	P4
Érkezés	0	8	12	20
CPU idő	15	7	26	10
Indulás				
Befejezés				
Befejezés Várakozás				

Ábrázolja Gantt diagram segítségével az aktív/várakozó processzek futásának menetét.

Magyarázza a kapott eredményeket!

- 3. Adott egy számítógépes rendszer, melyben a következő
 - szabad memória területek: 50k, 30k, 200k, 16k, 30k, melynek
 - foglalási igénye: 20k, 30k, 10k, 100k, 60k.

Határozza meg *változó méretű partíció* esetén a következő algoritmusok felhasználásával: *first fit, worst fit* a foglalási igényeknek megfelelő helyfoglalást – táblázatos formában!

Magyarázza a kapott eredményeket és hogyan lehet az eredményeket javítani!

4. Adott az alábbi terhelés esetén a rendszer. Határozza meg az *indulás, befejezés,* várakozás/átlagos várakozás és körülfordulás/átlagos körülfordulás, válasz/átlagos válaszidő és a *CPU kihasználtság* értékeket az SJF ütemezési algoritmusok mellett! (cs: 0,1ms; sch: 0,1ms)

	P1	P2	P3	P4
Érkezés	0	8	12	20
CPU idő	15	7	26	10
Indulás				
Befejezés Várakozás				
Várakozás				

Ábrázolja Gantt diagram segítségével az aktív/várakozó processzek futásának menetét.

Magyarázza a kapott eredményeket!

5. Adott négy processz (A, B, C, D) a rendszerbe, induláskor a p_cpu értéke A=0, B=0, C=0,

D=0. A rendszerben a P_USER = 60. Az óraütés 1 indul, a befejezés 301-ig.

Induláskor a p usrpri A=60, B=60, C=65 és D=60.

Induláskor a p nice értéke A=0, B=0, C=5 és D=0.

- a.) Határozza meg az ütemezést RR nélkül 301 óraütésig táblázatba!
- **b.**) Minden óraütem esetén határozza meg a processzek sorrendjét óraütés *előtt/után*.
- c.) Igazolja a számítással a tanultak alapján.
- **6.** Adott egy *igény szerinti lapozást* használó számítógéprendszer, melyben futás közben egy processz számára a következő laphivatkozással lehet hivatkozni: 6, 5, 4, 3, 5, 6, 2, 8, 5, 6, 5, 4, 7, 8, 4, 5, 6, 5, 5, 8

Memóriakeret (igényelt lapok): 3, ill. 4 memóriakeret.

Készítse el a laphivatkozások betöltését külön-külön táblázatba 3, ill. 4 memóriakeret esetén.

Mennyi laphiba keletkezik az alábbi algoritmusok esetén: FIFO, OPT?

Hasonlítsa össze és magyarázza az eredményeket!

- 7. Adott egy számítógépes rendszer, melyben a következő
 - szabad memória területek: 50k, 30k, 200k, 16k, 30k, melynek
 - foglalási igénye: 20k, 30k, 10k, 100k, 60k.

Határozza meg *változó méretű partíció* esetén a következő algoritmusok felhasználásával:, *best fit, next fit* a foglalási igényeknek megfelelő helyfoglalást – táblázatos formában! Magyarázza a kapott eredményeket és hogyan lehet az eredményeket javítani!

8. Adott egy rendszerbe az összes *osztály-erőforrások száma*: R (**R1: 8; R2: 9; R3: 13**) A rendszerbe 4 processz van: P1, P2, P3, P4.

Teljesíthető-e P2 (1, 2, 2) kérése?

Biztonságos-e vagy nem biztonságos holtpontmentesség szempontjából a rendszer - a következő *kiinduló állapot* alapján?

- a) Határozza meg a processzek *által igényelt erőforrások mátrixát* **P2 processz** kérésének figyelembe vételével?
- **b)** Határozza meg pillanatnyilag szabad erőforrások számát?
- c) Igazolja az egyes processzek végrehajtásának lehetséges sorrendjét számolással?

Kiinduló állapot

	Max. igény				Fo	glal	
	R1	R2	R3		R1	R2	R3
P1	4	2	5	P1	2	2	3
P2	7	7	7	P2	0	1	1
Р3	1	4	3	Р3	1	2	2
P4	3	7	4	P4	2	1	2

9. Adott az alábbi terhelés esetén a rendszer. Határozza meg az *indulás, befejezés,* várakozás/átl várakozás és körülfordulás/átlagos körülfordulás, válasz/átl. válaszidő és a *CPU kihasználtság* értékeket az RR:5 ms ütemezési algoritmusok mellett! (cs: 0,1ms; sch: 0,1ms)

	P1	P2	Р3	P4
Érkezés	0	8	12	20
CPU idő	15	7	26	10
Indulás				
Befejezés				
Befejezés Várakozás				

Ábrázolja Gantt diagram segítségével az aktív/várakozó processzek futásának menetét.

Magyarázza a kapott eredményeket!

10. Adott négy processz (A, B, C, D) a rendszerbe, induláskor a p_cpu értéke A=0, B=6,C=0, D=0. A rendszerben a P_USER = 60

Induláskor a p usrpri A=60, B=65, C=60 és D=60.

Ha egy processz megkapja a CPU-t a quantum-ában végig használja (azaz 1 quantum-ban), a p_cpu növekmény értéke 70. Mind a négy processznél a p_nice érték 0.

Határozza meg öt quantum-ban hogyan változnak a prioritások és a p_cpu, melyik processz, milyen sorrendben kap CPU-t.

Igazolja az ütemező algoritmus leírásával, képlettel és számítással az eredményeket.

11. Adott egy rendszerbe az összes osztály-erőforrások száma: R (R1: 240; R2: 36; R3: 8) A rendszerbe 4 processz van: P1, P2, P3, P4.

Biztonságos-e vagy nem biztonságos holtpontmentesség szempontjából a rendszer - a következő *kiinduló állapot* alapján?

- a) Határozza meg a folyamatok által igényelt erőforrások mátrixát?
- **b)** Határozza meg pillanatnyilag szabad erőforrások számát?
- c) Igazolja, magyarázza a processzek végrehajtásának lehetséges sorrendjét számolással?

	MAX. IGÉNY				FOGLAL		
	R1 R2 R3			R1	R2	R3	
P1	P1 67 15 5				14	4	

P2	13	5	3	0 46 127	5	1
Р3	107	27	5	46	17	0
P4	132	25	4	127	0	0

12. Adott egy *igény szerinti lapozást* használó számítógéprendszer, melyben futás közben egy processz számára a következő laphivatkozással lehet hivatkozni: 6, 8, 3, 8, 6, 0, 3, 6, 3, 5, 3, 6 Memóriakeret (igényelt lapok): 3, ill. 4 memóriakeret.

Készítse el a laphivatkozások betöltését külön-külön táblázatba 3, ill. 4 memóriakeret esetén. Mennyi laphiba keletkezik az alábbi algoritmusok esetén: FIFO, SC?

Hasonlítsa össze és magyarázza az eredményeket!

13. Adott négy processz (A, B, C, D) a rendszerbe, induláskor a p_cpu értéke A=0, B=0, C=0, D=0. A rendszerben a P_USER = 60. Az óraütés 1 indul, a befejezés 301-ig. Induláskor a p_usrpri A=60, B=65, C=60 és D=60. Induláskor a p_nice értéke A=0, B=5, C=0 és D=0.

- a.) Határozza meg az ütemezést RR 301 óraütésig táblázatba!
- **b.**) Minden óraütem esetén határozza meg a processzek sorrendjét óraütés *előtt/után*.
- c.) Igazolja a számítással a tanultak alapján.
- **14.** Adott az alábbi terhelés esetén a rendszer. Határozza meg az *indulás*, *befejezés*, *várakozás/átlagos várakozás és körülfordulás/átlagos körülfordulás, válasz/átlagos válaszidő* és a *CPU kihasználtság* értékeket az SJF ütemezési algoritmusok mellett! (cs: 0,1ms; sch: 0,1ms)

	P1	P2	P3	P4	P5
Érkezés	1	4	4	7	8
CPU idő	4	11	4	7	4
Indulás					
Befejezés					
Várakozás					

Ábrázolja Gantt diagram segítségével az aktív/várakozó processzek futásának menetét.

Magyarázza a kapott eredményeket!

15. Adott egy *igény szerinti lapozást* használó számítógéprendszer, melyben futás közben egy processz számára a következő laphivatkozással lehet hivatkozni: 6, 5, 4, 3, 5, 6, 2, 8, 5, 6, 5, 4, 7, 8, 4, 5, 6, 5, 5, 8

Memóriakeret (igényelt lapok): 3, ill. 4 memóriakeret.

Készítse el a laphivatkozások betöltését külön-külön táblázatba 3, ill. 4 memóriakeret esetén. Mennyi laphiba keletkezik az alábbi algoritmusok esetén: LRU, FIFO? Hasonlítsa össze és magyarázza az eredményeket!

16. Adott az alábbi terhelés esetén a rendszer. Határozza meg az *indulás, befejezés,* várakozás/átlagos várakozás és körülfordulás/átlagos körülfordulás, válasz/átlagos válaszidő és a *CPU kihasználtság* értékeket az RR: 4 ms ütemezési algoritmusok mellett! (cs: 0,1ms; sch: 0,1ms)

	P1	P2	Р3	P4	P5
Érkezés	0	1	3	9	12
CPU idő	3	5	2	5	5
Indulás					
Befejezés					
Várakozás					

Ábrázolja Gantt diagram segítségével az *aktív/várakozó processzek* futásának menetét. Magyarázza a kapott eredményeket!

17. Adott egy rendszerbe az összes osztály-erőforrások száma: R (R1: 10; R2: 9; R3: 12) A rendszerbe 4 processz van: P1, P2, P3, P4.

Biztonságos-e vagy nem biztonságos holtpontmentesség szempontjából a rendszer - a következő *kiinduló állapot* alapján?

- a) Határozza meg a folyamatok által igényelt erőforrások mátrixát?
- b) Határozza meg pillanatnyilag szabad erőforrások számát?
- c) Igazolja az egyes processzek végrehajtásának lehetséges sorrendjét számolással?

	Max. igény				Foglal		
	R1	R2	R3		R1	R2	R3
P1	4	4	5	P1	2	2	3
P2	1	4	3	P2	1	2	2
Р3	6	7	7	Р3	0	1	3
P4	3	7	10	P4	2	1	2

18. Adott egy *igény szerinti lapozást* használó számítógéprendszer, melyben futás közben egy processz számára a következő laphivatkozással lehet hivatkozni: 1, 2, 3, 4, 0, 2, 5, 1, 2, 3, 4, 5, 1, 2

Memóriakeret (igényelt lapok): 3, ill. 4 memóriakeret.

Készítse el a laphivatkozások betöltését külön-külön táblázatba 3, ill. 4 memóriakeret esetén. Mennyi laphiba keletkezik az alábbi algoritmusok esetén: LRU, OPT?

Hasonlítsa össze és magyarázza az eredményeket!

- 19. Adott egy számítógépes rendszer, melyben a
 - szabad memória területek: 23KB, 64KB, 10KB, 80KB, 12Kb, 50KB és 40KB, melynek
 - foglalási igénye: 65kB, 21kB, 48KB, 13kB, 62kB.

Határozza meg változó méretű partíció esetén a következő algoritmusok felhasználásával: next fit, worst fit a foglalási igényeknek megfelelő helyfoglalást – táblázatos formában!

Magyarázza a kapott eredményeket és hogyan lehet az eredményeket javítani!

20. Adott az alábbi terhelés esetén a rendszer. Határozza meg az indulás, befejezés, várakozás/átlagos várakozás és körülfordulás/átlagos körülfordulás, válasz/átlagos válaszidő szidő és a CPU kihasználtság értékeket az RR: 6 ms ütemezési algoritmusok mellett! (cs: 0,1ms; sch: 0,1ms)

	P1	P2	P3	P4	P5
Érkezés	1	4	4	7	8
CPU idő	4	11	4	7	4
Indulás					
Befejezés					
Várakozás					

Ábrázolja Gantt diagram segítségével az aktív/várakozó processzek futásának menetét.

Magyarázza a kapott eredményeket!

21. Adott egy *igény szerinti lapozást* használó számítógéprendszer, melyben futás közben egy processz számára a következő laphivatkozással lehet hivatkozni: 6, 8, 3, 8, 6, 0, 3, 6, 3, 5, 3, 6 Memóriakeret (igényelt lapok): 3, ill. 4 memóriakeret.

Készítse el a laphivatkozások betöltését külön-külön táblázatba 3, ill. 4 memóriakeret esetén. Mennyi laphiba keletkezik az alábbi algoritmusok esetén: FIFO, LRU? Hasonlítsa össze és magyarázza az eredményeket!

22. Adott négy processz (A, B, C, D) a rendszerbe, induláskor a p_cpu értéke A=0, B=0, C=0, D=0. A rendszerben a P_USER = 60. Az óraütés 1 indul, a befejezés 301-ig. Induláskor a p usrpri A=60, B=60, C=65 és D=60. Induláskor a p nice értéke A=0, B=0, C=5 és D=0.

a.) Határozza meg az ütemezést RR 301 óraütésig - táblázatba!

- **b.**) Minden óraütem esetén határozza meg a processzek sorrendjét óraütés *előtt/után*.
- **c.**) Igazolja a számítással a tanultak alapján.

23. Adott az alábbi terhelés esetén a rendszer. Határozza meg az *indulás, befejezés,* várakozás/átlagos várakozás és körülfordulás/átlagos körülfordulás, válasz/átlagos válaszidő és a *CPU kihasználtság* értékeket az FCFS ütemezési algoritmusok mellett! (cs: 0,1ms; sch: 0,1ms)

	P1	P2	Р3	P4	P5
Érkezés	0	1	3	9	12
CPU idő	3	5	2	5	5
Indulás					
Befejezés					
Várakozás					

Ábrázolja Gantt diagram segítségével az *aktív/várakozó processzek* futásának menetét. Magyarázza a kapott eredményeket!

- 24. Adott egy számítógépes rendszer, melyben a
 - szabad memória területek: 23KB, 64KB, 10KB, 80KB, 12Kb, 50KB és 40KB, melynek
 - foglalási igénye: 65kB, 21kB, 48KB, 13kB, 62kB.

Határozza meg *változó méretű partíció* esetén a következő algoritmusok felhasználásával: first fit, best fit a foglalási igényeknek megfelelő helyfoglalást – táblázatos formában! Magyarázza a kapott eredményeket és hogyan lehet az eredményeket javítani!

25. Adott egy *igény szerinti lapozást* használó számítógéprendszer, melyben futás közben egy processz számára a következő laphivatkozással lehet hivatkozni: 6, 5, 4, 3, 5, 6, 2, 8, 4, 5, 6 Memóriakeret (igényelt lapok): 3, ill. 4 memóriakeret.

Készítse el a laphivatkozások betöltését külön-külön táblázatba 3, ill. 4 memóriakeret esetén. Mennyi laphiba keletkezik az alábbi algoritmusok esetén: SC? Magyarázza az eredményeket!

26. Adott az alábbi terhelés esetén a rendszer. Határozza meg az *indulás, befejezés,* várakozás/átlagos várakozás és körülfordulás/átlagos körülfordulás, válasz/átlagos válaszidő és a *CPU kihasználtság* értékeket az SJF ütemezési algoritmusok mellett! (cs: 0,1ms; sch: 0,1ms)

	P1	P2	Р3	P4	P5
Érkezés	1	5	0	13	4
CPU idő	5	3	7	2	1
Indulás					
Befejezés					
Várakozás					

Ábrázolja Gantt diagram segítségével az *aktív/várakozó processzek* futásának menetét. Magyarázza a kapott eredményeket!

27. Adott az alábbi terhelés esetén a rendszer. Határozza meg az *indulás, befejezés,* várakozás/átlagos várakozás és körülfordulás/átlagos körülfordulás, válasz/átlagos válaszidő és a *CPU kihasználtság* értékeket az FCFS ütemezési algoritmusok mellett! (cs: 0,1ms; sch: 0,1ms)

	P1	P2	P3	P4	P5
Érkezés	1	5	0	13	4
CPU idő	5	3	7	2	1
Indulás					
Befejezés					
Várakozás					

Ábrázolja Gantt diagram segítségével az *aktív/várakozó processzek* futásának menetét Magyarázza a kapott eredményeket!

28. Adott egy *igény szerinti lapozást* használó számítógéprendszer, melyben futás közben egy processz számára a következő laphivatkozással lehet hivatkozni: 6, 5, 4, 3, 5, 6, 2, 8, 5, 6, 5, 4, 7, 8, 4, 5, 6, 5, 5, 8

Memóriakeret (igényelt lapok): 3, ill. 4 memóriakeret.

Készítse el a laphivatkozások betöltését külön-külön táblázatba 3, ill. 4 memóriakeret esetén. Mennyi laphiba keletkezik az alábbi algoritmusok esetén: LRU, OPT?

Hasonlítsa össze és magyarázza az eredményeket!

29. Adott négy processz (A, B, C, D) a rendszerbe, induláskor a p_cpu értéke A=0, B=0, C=0, D=0. A rendszerben a P_USER = 60. Az óraütés 1 indul, a befejezés 301-ig. Induláskor a p_usrpri A=65, B=60, C=60 és D=60.

Induláskor a p nice értéke A=5, B=0, C=0 és D=0.

- a.) Határozza meg az ütemezést RR 301 óraütésig táblázatba!
- **b.**) Minden óraütem esetén határozza meg a processzek sorrendjét óraütés *előtt/után*.
- **c.**) Igazolja a számítással a tanultak alapján.
- **30.** Adott egy számítógépes rendszer, melyben a
 - szabad memória területek: 23KB, 64KB, 10KB, 80KB, 12KB, 50KB és 40KB, melynek
 - foglalási igény: 65KB, 21KB, 48KB, 13KB, 62KB

Határozza meg *változó méretű partíció* esetén a következő algoritmusok felhasználásával: *best fit, next fit* a foglalási igényeknek megfelelő helyfoglalást – táblázatos formában! Magyarázza a kapott eredményeket és hogyan lehet az eredményeket javítani!

31. Adott egy *igény szerinti lapozást* használó számítógéprendszer, melyben futás közben egy processz számára a következő laphivatkozással lehet hivatkozni: 1, 2, 3, 4, 0, 2, 5, 1, 2, 3, 4, 5, 1, 2

Memóriakeret (igényelt lapok): 3, ill. 4 memóriakeret.

Készítse el a laphivatkozások betöltését külön-külön táblázatba 3, ill. 4 memóriakeret esetén. Mennyi laphiba keletkezik az alábbi algoritmusok esetén: SC, LRU?

Hasonlítsa össze és magyarázza az eredményeket!

32. Adott az alábbi terhelés esetén a rendszer. Határozza meg az *indulás, befejezés,* várakozás/átlagos várakozás és körülfordulás/átlagos körülfordulás, válasz/átlagos válaszidő és a *CPU kihasználtság* értékeket az RR: 4 ms ütemezési algoritmusok mellett! (cs: 0,1ms; sch: 0,1ms)

	P1	P2	Р3	P4	P5
Érkezés	1	5	0	13	4
CPU idő	5	3	7	2	1
Indulás					
Befejezés					
Várakozás					

Ábrázolja Gantt diagram segítségével az aktív/várakozó processzek futásának menetét.

Magyarázza a kapott eredményeket!

33. Adott egy *igény szerinti lapozást* használó számítógéprendszer, melyben futás közben egy processz számára a következő laphivatkozással lehet hivatkozni: 1, 2, 3, 4, 0, 2, 5, 1, 2, 3, 4, 5, 1, 2

Memóriakeret (igényelt lapok): 3, ill. 4 memóriakeret.

Készítse el a laphivatkozások betöltését külön-külön táblázatba 3, ill. 4 memóriakeret esetén. Mennyi laphiba keletkezik az alábbi algoritmusok esetén: SC, OPT?

Hasonlítsa össze és magyarázza az eredményeket!

- 34. Adott egy számítógépes rendszer, melyben a
 - szabad memória területek: 23KB, 64KB, 10KB, 80KB, 12KB, 50KB és 40KB, melynek

• foglalási igény: 65KB, 21KB, 48KB, 13KB, 62KB

Határozza meg *változó méretű partíció* esetén a következő algoritmusok felhasználásával: *first fit, worst fit* a foglalási igényeknek megfelelő helyfoglalást – táblázatos formában!

Magyarázza a kapott eredményeket és hogyan lehet az eredményeket javítani!

35. Adott az alábbi terhelés esetén a rendszer. Határozza meg az *indulás*, *befejezés*, *várakozás/átlagos várakozás és körülfordulás/átlagos körülfordulás, válasz/átlagos válaszidő* és a *CPU kihasználtság* értékeket az FCFS ütemezési algoritmusok mellett! (cs: 0,1ms; sch: 0,1ms)

	P1	P2	P3	P4	P5
Érkezés	1	4	4	7	8
CPU idő	4	11	4	7	4
Indulás					
Befejezés					
Várakozás					

Ábrázolja Gantt diagram segítségével az aktív/várakozó processzek futásának menetét

Magyarázza a kapott eredményeket!

36. Adott egy *igény szerinti lapozást* használó számítógéprendszer, melyben futás közben egy processz számára a következő laphivatkozással lehet hivatkozni: 1, 2, 3, 4, 0, 2, 5, 1, 2, 3, 4, 5, 1, 2

Memóriakeret (igényelt lapok): 3, ill. 4 memóriakeret.

Készítse el a laphivatkozások betöltését külön-külön táblázatba 3, ill. 4 memóriakeret esetén. Mennyi laphiba keletkezik az alábbi algoritmusok esetén: FIFO, SC?

Hasonlítsa össze és magyarázza az eredményeket!

37. Adott az alábbi terhelés esetén a rendszer. Határozza meg az *indulás, befejezés,* várakozás/átlagos várakozás és körülfordulás/átlagos körülfordulás, válasz/átlagos válaszidő és a *CPU kihasználtság* értékeket az SJF ütemezési algoritmusok mellett! (cs: 0,1ms; sch: 0,1ms)

	P1	P2	Р3	P4	P5
Érkezés	0	1	3	9	12
CPU idő	3	5	2	5	5
Indulás					
Befejezés					
Várakozás					

Ábrázolja Gantt diagram segítségével az aktív/várakozó processzek futásának menetét.

Magyarázza a kapott eredményeket!

38. Adott egy rendszerbe az összes *osztály-erőforrások száma*: R (R1: 15; R2: 16; R3: 12; R4: 15)

A rendszerbe 4 processz van: P0, P1, P2, P4, P5

Biztonságos-e vagy nem biztonságos holtpontmentesség szempontjából a rendszer - a következő *kiinduló állapot* alapján?

- a) Határozza meg a processzek *által igényelt erőforrások mátrixát* **P2 processz** kérésének figyelembe vételével?
- **b)** Határozza meg pillanatnyilag szabad erőforrások számát?
- **c**) Igazolja, magyarázza az egyes *processzek* végrehajtásának *lehetséges sorrendjét számolással*?

Kiinduló állapot

MAX. IGÉNY					FOGLAL			
	R1	R2	R3	R4	R1	R2	R3	R4
P0	7	7	10	9	5	5	8	8
P1	12	12	8	9	8	6	7	7
P2	10	11	2	9	7	7	5	7
Р3	9	6	7	8	7	6	7	7
P4	11	6	3	6	6	8	5	5