STAT 401A - Statistical Methods for Research Workers Simple linear regression

Jarad Niemi (Dr. J)

Iowa State University

last updated: October 13, 2014

Simple Linear Regression

Recall the one-way ANOVA model:

$$Y_{ij} \stackrel{ind}{\sim} N(\mu_j, \sigma^2)$$

where Y_{ij} is the observation for individual i in group j.

The simple linear regression model is

$$Y_i \stackrel{ind}{\sim} N(\beta_0 + \beta_1 X_i, \sigma^2)$$

where Y_i and X_i are the response and explanatory variable, respectively, for individual i.

Terminology (all of these are equivalent):

response	
outcome	
dependent	
endogenous	

explanatory covariate independent exogenous

Interpretation

$$E[Y_i|X_i=x] = \beta_0 + \beta_1 x \qquad V[Y_i|X_i=x] = \sigma^2$$

- If $X_i = 0$, then $E[Y_i|X_i = 0] = \beta_0$. β_0 is the expected response when the explanatory variable is zero.
- If X_i increases from x to x + 1, then

$$E[Y_i|X_i = x + 1] = \beta_0 + \beta_1 x + \beta_1$$

$$-E[Y_i|X_i = x] = \beta_0 + \beta_1 x$$

$$= \beta_1$$

 β_1 is the expected increase in the response for each unit increase in the explanatory variable.

 \bullet σ is the standard deviation of the response for a fixed value of the explanatory variable.

Remove the mean:

$$Y_i = \beta_0 + \beta_1 X_i + e_i$$
 $e_i \stackrel{iid}{\sim} N(0, \sigma^2)$

So the error is

$$e_i = Y_i - (\beta_0 + \beta_1 X_i)$$

which we approximate by the residual

$$r_i = \hat{\mathbf{e}}_i = Y_i - (\hat{\beta}_0 + \hat{\beta}_1 X_i)$$

The least squares, maximum likelihood, and Bayesian estimators are

$$\hat{\beta}_{1} = \frac{SXY}{SXX}$$

$$\hat{\beta}_{0} = \overline{Y} - \hat{\beta}_{1}\overline{X}$$

$$\hat{\sigma}^{2} = \frac{SSE}{(n-2)} \quad \text{df} = n-2$$

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_{i}$$

$$\overline{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_{i}$$

$$SXY = \sum_{i=1}^{n} (X_{i} - \overline{X})(Y_{i} - \overline{Y})$$

$$SXX = \sum_{i=1}^{n} (X_{i} - \overline{X})(X_{i} - \overline{X}) = \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}$$

$$SSE = \sum_{i=1}^{n} r_{i}^{2}$$

How certain are we about $\hat{\beta}_0$ and $\hat{\beta}_1$ being equal to β_0 and β_1 ?

We quantify this uncertainty using their standard errors:

$$\begin{array}{ll} SE(\beta_0) &= \hat{\sigma} \sqrt{\frac{1}{n} + \frac{\overline{X}^2}{(n-1)s_X^2}} & df = n-2 \\ SE(\beta_1) &= \hat{\sigma} \sqrt{\frac{1}{(n-1)s_X^2}} & df = n-2 \\ \\ s_X^2 &= SXX/(n-1) \\ s_Y^2 &= SYY/(n-1) \\ SYY &= \sum_{i=1}^n (Y_i - \overline{Y})^2 \\ \\ r_{XY} &= \frac{SXY/(n-1)}{s_X s_Y} \\ R^2 &= r_{XY}^2 \\ SST &= SYY = \sum_{i=1}^n (Y_i - \overline{Y})^2 \end{array} \qquad \begin{array}{ll} \text{correlation coefficient} \\ &= \frac{SST - SSE}{SST} \\ \text{coefficient of determination} \end{array}$$

The coefficient of determination (R^2) is the percentage of the total response variation explained by the explanatory variable(s).

Telomere length vs years post diagnosis

Pvalues and confidence interval

We can compute two-sided pvalues via

$$2P\left(t_{n-2} > \left| \frac{\hat{\beta_0}}{SE(\beta_0)} \right| \right) \qquad \text{and} \qquad 2P\left(t_{n-2} > \left| \frac{\hat{\beta_1}}{SE(\beta_1)} \right| \right)$$

These test the null hypothesis that the corresponding parameter is zero.

We can construct $100(1-\alpha)\%$ two-sided confidence intervals via

$$\hat{eta}_0 \pm t_{n-2}(1-lpha/2)SE(eta_0)$$
 and $\hat{eta}_1 \pm t_{n-2}(1-lpha/2)SE(eta_1)$

These provide ranges of the parameters consistent with the data.

```
DATA t:
```

INFILE 'telomeres.csv' DSD FIRSTOBS=2; INPUT years length;

PROC REG DATA=t;

MODEL length = years;

RUN:

The REG Procedure Model: MODEL1 Dependent Variable: length

Number of Observations Read 39 Number of Observations Used 39

Analysis of Variance

			Sum of	Mean		
Source		DF	Squares	Square	F Value	Pr > F
Model		1	0.22777	0.22777	8.42	0.0062
Error		37	1.00033	0.02704		
Correct	ed Total	38	1.22810			
	Root MSE		0.16443	R-Square	0.1855	
Dependent Mean		1.22026	Adj R-Sq	0.1634		
	Coeff	Var	13.47473			

Parameter Estimates Standard

Variable	DF	Estimate	Error	t Value	Pr > t	95% Confiden	ce Limits
Intercept	1	1.36768	0.05721	23.91	<.0001	1.25176	1.48360
years	1	-0.02637	0.00909	-2.90	0.0062	-0.04479	-0.00796

Daramotor

Regression in R

Regression in R

```
m = lm(telomere.length~years, Telomeres)
summary(m)
Call:
lm(formula = telomere.length ~ vears, data = Telomeres)
Residuals:
   Min 10 Median 30 Max
-0.4222 -0.0854 0.0206 0.1074 0.2887
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.36768 0.05721 23.9 <2e-16 ***
years -0.02637 0.00909 -2.9 0.0062 **
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.164 on 37 degrees of freedom
Multiple R-squared: 0.185, Adjusted R-squared: 0.163
F-statistic: 8.42 on 1 and 37 DF, p-value: 0.0062
confint(m)
              2.5 % 97.5 %
(Intercept) 1.25176 1.483603
           -0.04479 -0.007963
years
```

Summary

• The simple linear regression model is

$$Y_i \stackrel{ind}{\sim} N(\beta_0 + \beta_1 X_i, \sigma^2)$$

where Y_i and X_i are the response and explanatory variable, respectively, for individual i.

- Know how to use SAS/R to obtain $\hat{\beta}_0$, $\hat{\beta}_1$, $\hat{\sigma}^2$, R^2 , pvalues, CIs, etc.
- Interpret SAS output
 - At a value of zero for the explanatory variable $(X_i = 0)$, β_0 is the expected value for the response (Y_i) .
 - For each unit increase in the explanatory variable value, β_1 is the expected increase in the response.
 - At a constant value of the explanatory variable, σ^2 is the variance of the responses.
 - The coefficient of determination (R^2) is the percentage of the total response variation explained by the explanatory variable(s).