```
In [2]: %matplotlib widget
  import numpy as np
  import matplotlib.pyplot as plt
  from scipy.constants import pi, Avogadro
```

```
In [14]: def oppg1ae():
             mass = 1 \# 1g NaCL
             density = 2.17 \# g / cm^3
             surface_energy_density = 2e-5 # J / cm^2
             edge_energy_density = 3e-13 # J / cm
             enthalpy_of_fusion = 0.52e3 \# J / g
             vol = mass / density
             biggest_sidelength = vol ** (1 / 3)
             \# sidelength = np.array([biggest_sidelength / (50e4 * n) for n in range(1, 1001)])
             sidelength = np.logspace(-9.5, -8, num=1000) * 1e2
             vol_per_cube = sidelength**3
             num_cubes = vol / vol_per_cube
             total_area = sidelength**2 * 6 * num_cubes
             total_surface_energy = total_area * surface_energy_density
             total_edge_length = sidelength * 12 * num_cubes
             total_edge_energy = total_edge_length * edge_energy_density
             # Conversions to SI units
             sidelength = sidelength * 1e-2
             _, ax = plt.subplots()
             ax.plot(sidelength, total_surface_energy, label="surface energy")
             ax.plot(sidelength, total_edge_energy, label="edge energy")
             ax.plot(
                 sidelength,
                 total_edge_energy + total_surface_energy,
                 label="sum of surface and edge energy",
             )
             ax.plot(
                 sidelength,
                 np.ones_like(sidelength) * enthalpy_of_fusion,
                 label="enthalpy of fusion",
             ax.legend()
             # ax.set_yscale("log")
             ax.set_xscale("log")
             ax.set_ylabel("Energy (J)")
             ax.set_xlabel("Sidelength (m)")
             plt.show()
         oppg1ae()
```


Oppg 1c

About at a = 1.4nm

Oppg 1d

Nanoparticles have a lower melting point than bulk NaCl

Oppg 1e

We have approximated NaCl to form spheres and that the surface and edge energy to be directly proportional to area and edge length even at low sidelengths. I don't think this will hold experimentally

```
In [31]: def oppg1fh():
    mass = 1 # 1g NaCL
    density = 12.0 # g / cm^3
    atomic_radius = 1.37e-8 # cm
    molar_mass = 106.4 # g / mol

vol = mass / density
    biggest_radius = vol ** (1 / 3) / pi
    smallest_radius = atomic_radius
    # radii = np.linspace(smallest_radius, biggest_radius / 100, 1000)
    radii = np.logspace(-9.5, -7, num=1000) * 1e2
# radii = np.array([smallest_radius * n for n in range(1, 1001)])
```

```
volume_of_np = radii**3 * pi
   # Calculate total num
   weight_of_np = volume_of_np * density # g
    amount_of_atoms = weight_of_np / molar_mass # mol
    amount_of_atoms = amount_of_atoms * Avogadro # number
   # one surface atom uses 4 * atomic_radius**2 space on surface
    area_consumed_per_atom = 4 * atomic_radius**2
    surface_of_np = 4 * pi * radii**2
   atoms_on_surface = surface_of_np / area_consumed_per_atom
   # atoms_in_bulk = amount_of_atoms - atoms_on_surface
   fraction_on_surface = atoms_on_surface / amount_of_atoms
   # Make si
    radii *= 1e-2
    diameter = radii * 2
   atomic_radius *=1e-2
   manuals = np.array(
        [(1 * 2 * atomic radius + atomic radius) * 2, 0.92],
            [(2 * 2 * atomic_radius + atomic_radius) * 2, 0.76],
            [(3 * 2 * atomic_radius + atomic_radius) * 2, 0.63],
            [(4 * 2 * atomic_radius + atomic_radius) * 2, 0.52],
            [(5 * 2 * atomic_radius + atomic_radius) * 2, 0.45],
            [(7 * 2 * atomic_radius + atomic_radius) * 2, 0.35],
       ]
    )
   _, ax = plt.subplots()
   ax.plot(
        diameter, fraction_on_surface, label="fraction of atoms on surface per radius"
   ax.scatter(manuals[:, 0], manuals[:, 1], c=np.random.rand(6), cmap="plasma")
   ax.legend()
   # ax.set_yscale("log")
   ax.set_xscale("log")
   ax.set_ylabel("Surface atoms/total atoms")
   ax.set_xlabel("Diameter of np (m)")
   plt.show()
oppg1fh()
```


Oppg 1g

The lower limit of a for which the result in f makes sense is when a is close to the atomic radius

Oppg 2a

The lattice parameter of a metal nanoparticle with a clean surface is affected by nanoparticle size like this: For very small particles, lattice parameter reduces due to dangling bonds. This effect is analogous to the fact that double bonds are shorter than single bonds.

Oppg 2b

For a solid with a *fixed surface area*, the main ways in which the surface energy can be reduced is:

- Binding to similar atoms
- Increase the density of the surface