MIT OpenCourseWare http://ocw.mit.edu

Abdul Latif Jameel Poverty Action Lab Executive Training: Evaluating Social Programs Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.



# Planning sample size for randomized evaluations

Abdul Latif Jameel Poverty Action Lab

#### Planning an evaluation

- Today's Question:
  - How large does the sample need to be to credibly detect a given treatment effect?
- What does credibly mean?
  - It means that I can be reasonably sure that the difference between the group that received the program and the group that did not is due to the program
- Randomization removes bias, but it does not remove noise: it works because of the law of large numbers... how large much "large" be?

## Sample size

- Important determinants of sample size
  - How big an effect size are we looking for?
  - How noisy is the outcome measure?
  - Do we have a baseline?
  - Are individual responses correlated with each other?
  - Design of the experiment: stratification, control variables, baseline data, group v. individual level randomization

#### **Outline**

- I. Hypothesis testing
- II. Type I and Type II Errors
- III. Standard errors and significance
- IV. Power
- V. Effect size
- VI. Factors that influence power

## Hypothesis testing: Simple intuition I

- Professional gambler, claims she can get heads most of the time with a fair coin
  - One toss: "H"
    - Any inference?
  - Five tosses: H,H,T,H,H
    - Any inference?
  - Twenty Tosses:
    - T,H,T,H,T,H,H,T,H,T,H,T,H,T,H,H
    - (12 Head, 8 Tails)
  - One hundred tosses
    - 61 Heads, 39 Tails
  - One thousand tosses
    - 609 Heads, 391 Tails

## Very simple intuition II

- Second gambler, 1,000 tosses,
  - Observe 530 Heads, and 470 tails.
- Can we reject claim that he obtains H 70% of the time? (e.g., 20% more than 50%)?
- Can we reject claim that he obtains H 54% of the time (e.g., 4% more than 50%)?

## Basic set up

- At the end of an experiment, we will compare the outcome of interest in the treatment and the comparison groups.
- We are interested in the difference:
  - Mean in treatment Mean in control
  - = Effect size
  - For example: mean of the number of wells in villages with female leaders vs mean of the number of wells in villages with male leaders

#### **Estimation**

- But we do not observe the entire population, just a sample.
  - In each village of the sample, there is a given number of wells. It is more or less close to the mean in the population.
- We estimate the mean by computing the average in the sample
  - If we have very few villages, the averages are imprecise. When we see a difference in sample averages, we do not know whether it comes from the effect of the treatment or from something else

## A tight conclusion



## Less precision



## Can we conclude anything?



## Very simple intuition

- Sample Size Matters:
  - The more tosses we have, the better able we are to understand the true probability of heads
- The hypothesis matters
  - The more fine (or more precise) the effect size we want to detect, the more tosses we need
- Variability of the outcome matters
  - The more "noisy" it is, the harder it is to measure effects

#### Intuition: Confidence intervals

- We measure the length of 100 randomly selected infants, and find an average length of 53 cm?
- How precise is that estimate? Could it be, if we measure all the infants, we would in fact find an average of 54 cm? Or 60 cm?
- Confidence interval: given some data, a sense of how precise our estimate is
- A confidence interval of 50-56 says that with 95% probability, the true average length lies between 50 and 56.
- Approximate interpretation: "We know the point estimate of 53 isn't exactly correct, but its close...how close? Well, it's very likely that the true answer is between 50 and 56.

#### Confidence intervals

- The goal is to figure out the true effect of the program
- From our sample, we get an estimate of the program effect
- What can we learn about the true program effect from the estimate?
- A 95% confidence interval for an estimate tells us that, with 95% probability, the true program effect lies within the confidence interval
- The Standard error (se) of the estimate in the sample captures both the size of the sample and the variability of the outcome (it is larger with either a small sample or with a volatile outcome)
- Rule of thumb: a 95% confidence interval is roughly the effect plus or minus two standard errors.

#### Confidence intervals

#### Example 1:

- Sampled women Pradhans have 7.13 years of education
- Sampled male Pradhans have 9.92 years of education
- The difference is 2.59 with a standard error of 0.54
- The 95% confidence interval is [1.53; 3.64]

#### Example 2:

- Control children have an average test score of 2.45
- Treated children have an average test score of 2.50
- The difference is 0.05, with a standard error of 0.26
- The 95% confidence interval is [-0.55;0.46]

## Hypothesis testing

- Often we are interested in testing the hypothesis that the effect size is equal to zero:
- We want to test the null hypothesis (H<sub>0</sub>):

$$H_o$$
: Effect size = 0  
Against the *alternative hypothesis* ( $H_a$ ):

$$H_a$$
: Effect size  $\neq 0$ 

- (other possible alternatives:  $H_a>0$ ,  $H_a<0$ ,  $H_a>2$ ).
- Hypothesis testing asks: when can I reject the null in favor of the alternative?

#### **Outline**

- I. Hypothesis testing
- II. Type I and Type II Errors
- III. Standard errors and significance
- IV. Power
- V. Effect size
- VI. Factors that influence power

## Two types of mistakes

 Type I error: Conclude that there is an effect, when in fact there are no effect.

The significance level or size of a test is the probability that you will falsely conclude that the program has an effect, when in fact it does not.

Example: Female Pradhan's year of education is 7.13, and Male's is 9.92 in our sample. Do female Pradhan have different level of education, or the same?

If I say they are different, how confident am I in the answer?

So with a level of 5%, you can be 95% confident in the validity of your conclusion that the program had an effect

Common level of significance: 0.05, 0.01, 0.1.

## Two types of mistakes

- Type II error: you fail to reject that the program had no effect, when it fact it does have an effect.
- The Power of a test is the probability that I will be able to find a significant effect in my experiment (higher power is better since I am more likely to have an effect to report, if there is one.)
  - Power is a planning tool. It tells me how likely it is that I find a significant effect for a given sample size, if there is one.

Example: If I run 100 experiments, in how many of them will I be able to reject the hypothesis that women and men have the same education at the 5% level, if in fact they are different?

## **Intuition**

|              |           | YOU CONCLUDE           |                          |
|--------------|-----------|------------------------|--------------------------|
|              |           | Effective              | No Effect                |
| THE<br>TRUTH | Effective |                        | Type II Error<br>(power) |
|              | No Effect | Type I Error<br>(size) |                          |

#### **Outline**

- I. Hypothesis testing
- II. Type I and Type II Errors
- III. Standard errors and significance
- IV. Power
- V. Effect size
- VI. Factors that influence power

## Testing equality of means

## We have $\hat{eta}$

(1) our estimate of the program effectiveness.

#### For example

- = Average Treated Test Score Average Control Test Score
- (2) An estimate of the "standard error" of  $\hat{\beta}$  , which measures how precise our estimate is. (The same thing used to compute confidence intervals).
  - (Depends on the variability of  $\hat{\beta}$  and sample size)

#### Standard error intuition





## Testing equality of means

We use 
$$t = \frac{\hat{\beta}}{se(\beta)}$$

- So if t > 1.96, we reject the hypothesis of equality at a 5% level of confidence (5% chance there is in fact no difference)
- It t < 1.96, we fail to reject the hypothesis of equality at a 5% level of confidence
- Example of Pradhan's education:
  - Difference: 2.59
  - Standard error: 0.54
  - We definitely reject equality at 5% level.

#### **Outline**

- I. Hypothesis testing
- II. Type I and Type II Errors
- III. Standard errors and significance
- IV. Power
- V. Effect size
- VI. Factors that influence power

## Calculating power

- When planning an evaluation, with some preliminary research we can calculate the minimum sample we need to get to:
  - Test a pre-specified null hypothesis (e.g. treatment effect 0)
  - For a pre-specified significance level (e.g. 0.05)
  - Given a pre-specified effect size (e.g. 0.2 standard deviation of the outcomes of interest).
  - To achieve a given power
- A power of 80% tells us that, in 80% of the experiments of this sample size conducted in this population, if H<sub>o</sub> is in fact false (e.g. the treatment effect is not zero), we will be able to reject it.
- The larger the sample, the larger the power.

Common Power used: 80%, 90%

## Ingredients for a power calculation in a simple study

| What we need:                                                    | Where we get it:                                                                                          |  |
|------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|--|
| Significance level                                               | This is conventionally set at 5%                                                                          |  |
|                                                                  | The lower it is, the larger the sample size needed for a given power                                      |  |
| The mean and the variance of the outcome in the comparison group | From a small survey in the same or a similar population                                                   |  |
|                                                                  | The larger the variability is, the larger the sample for a given power                                    |  |
| The effect size that we want to detect                           | What is the smallest effect that should prompt a policy response?                                         |  |
|                                                                  | Rationale: If the effect is any smaller than this, then it is not interesting to distinguish it from zero |  |

#### **Outline**

- I. Hypothesis testing
- II. Type I and Type II Errors
- III. Standard errors and significance
- IV. Power
- V. Effect size
- VI. Factors that influence power

## Picking an effect size

- What is the smallest effect that should justify the program being adopted
  - Cost of this program vs the benefits it brings
  - Cost of this program vs the alternative use of the money
- If the effect is smaller than that, it might as well be zero: we are not interested in proving that a very small effect is different from zero
- In contrast, any effect larger than that effect would justify adopting this program: we want to be able to distinguish it from zero
- **NOT**: "expected" effect size

#### Standardized effect sizes

- How large an effect you can detect with a given sample depends on how variable the outcome is.
  - Example: If all children have very similar learning level without a program, a very small impact will be easy to detect
- The Standardized effect size is the effect size divided by the standard deviation of the outcome
  - $\delta$  = effect size/St.dev.
- Common effect sizes:

 $\delta$ =0.20 (small)  $\delta$  =0.40 (medium)  $\delta$  =0.50 (large)

#### Standardized effect sizes

| An effect size of | Is considered | .It means that                                                                                                                |
|-------------------|---------------|-------------------------------------------------------------------------------------------------------------------------------|
| 0.2               | small-modest  | The average member of the intervention group had a better outcome than <b>58 percent</b> of the members of the control group. |
| 0.5               | modest-large  | The average member of the intervention group had a better outcome than <b>69 percent</b> of the members of the control group. |
| 0.8               | large         | The average member of the intervention group had a better outcome than <b>79 percent</b> of the members of the control group. |

#### **Outline**

- I. Hypothesis testing
- II. Type I and Type II Errors
- III. Standard errors and significance
- IV. Power
- V. Effect size
- VI. Factors that influence power

## Power calculations using the OD software

 Choose "Power vs number of clusters" in the menu "clustered randomized trials"



#### Cluster size

Choose cluster with 1 unit (non-clustered design)



## Choose significance level and treatment effect

- Pick α
  - Normally you pick 0.05
- Pick δ
  - Can experiment with 0.20 (small effect size)
- You obtain the resulting graph showing power as a function of sample size.

#### Power and sample size



#### The design factors that influence power

- 1. The level of randomizaion clustered design
- 2. Availability of a baseline
- 3. Availability of control variables, and stratification.
- 4. The type of hypothesis that is being tested.

#### Intuition: Clustered design

 You want to know how close the upcoming national elections will be

- Method 1: Randomly select 50 people from entire Indian population
- Method 2: Randomly select 5 families, and ask ten members of each family their opinion

#### Intuition: Clustered design

- If the response is correlated within a group, you learn less information from measuring multiple people in the group
- It is more informative to measure unrelated people
- Measuring similar people yields less information

#### Clustered design

Cluster randomized trials are experiments in which social units or clusters rather than individuals are randomly allocated to intervention groups

#### Examples:

| PROGRESA              | Village    |
|-----------------------|------------|
| Gender Reservations   | Panchayats |
| Flipcharts, Deworming | School     |
| Iron supplementation  | Family     |

#### Reason for adopting cluster randomization

- Need to minimize or remove contamination
  - Example: In the deworming program, schools was chosen as the unit because worms are contagious
- Basic Feasibility considerations
  - Example: The PROGRESA program would not have been politically feasible if some families were introduced and not others.
- Only natural choice
  - Example: Any education intervention that affects an entire classroom (e.g. textbooks, teacher training).

#### Impact of clustering

- The outcomes for all the individuals within a unit may be correlated
  - All villagers are exposed to the same weather
  - All Panchayats share a common history
  - All students share a schoolmaster
  - The program affect all students at the same time.
  - The member of a village interact with each other
- We call ρ (rho) the correlation between the units within the same cluster

#### Values of $\rho$ (rho)

- Like percentages, p must be between 0 and 1
- When working with clustered designs, a lower ρ is more desirable
- It is sometimes low, 0, .05, .08, but can be high:

| Madagascar Math+language      | 0.5  |
|-------------------------------|------|
| Busia, Kenya Math+language    | 0.22 |
| Udaipur, India Math+language  | 0.23 |
| Mumbai, India Math+language   | 0.29 |
| Vadodara, India Math+language | 0.28 |
| Busia, Kenya Math             | 0.62 |

#### Implications for design and analysis

- Analysis: The standard errors will need to be adjusted to take into account the fact that the observations within a cluster are correlated.
- Adjustment factor (design effect) for given total sample size, clusters of size m, intra-cluster correlation of r, the size of smallest effect we can detect increases by  $\sqrt{1+\rho^*(m-1)}$  compared to a non-clustered design
- Design: We need to take clustering into account when planning sample size

### Example: detectable treatment size vs. rho ( $\rho$ )

| Intraclass      | Randomized Group Size_ |      |      |      |
|-----------------|------------------------|------|------|------|
| Correlation (p) | 10                     | 50   | 100  | 200  |
| 0.00            | 1.00                   | 1.00 | 1.00 | 1.00 |
| 0.02            | 1.09                   | 1.41 | 1.73 | 2.23 |
| 0.05            | 1.20                   | 1.86 | 2.44 | 3.31 |
| 0.10            | 1.38                   | 2.43 | 3.30 | 4.57 |
|                 |                        |      |      |      |

i.e. When clusters have 100 people, detectable treatment size more than triples ...

#### Example: detectable treatment size vs. rho ( $\rho$ )





#### **Implications**

- If experimental design is clustered, we now need to consider \( \rho\) when choosing a sample size (as well as the other effects)
- It is extremely important to randomize an adequate number of groups
- Often the number of individuals within groups matter less than the total number of groups

### Choosing the number of clusters with a known number of units

- Example: Randomization of a treatment at the classroom level with 20 students per class:
  - Choose other options as before
  - Set the number of students per school (e.g. 20)
  - set ρ

# Power Against number of clusters with 20 students per cluster



38 vs. 53 clusters needed for 80% power

## Choosing the number of clusters when we can choose the number of units

- To chose how many Panchayats to survey and how many villages per Panchayats to detect whether water improvement are significantly different for women and men
- Mean drinking water facilities built or repaired in unreserved GPs: 14.7
- Standard deviation: 19
- ρ: 0.07

#### Calculating effect size

- Mean drinking water facilities built or repaired in unreserved GPs: 14.7
- Standard deviation: 19
- We want to detect at least a 30% increase
- 30% of 14.7 is 4.41
- 4.41/19=.23 standard deviations
- delta = 0.23
- We look for a power of 80%

#### Minimum number of GP's, fix villages per GP

- We search for the minimum number of GP we need if we survey 1 village per GP:
  - Answer: 553

#### Number of clusters for 80% power



#### Minimum number of GP's, fix villages per GP

- We search for the minimum number of GP we need if we survey 1 village per GP:
  - Answer: 553
- We search for the minimum number of GP if we survey 2, 3, 4, etc... village per GP

# Power against number of clusters with 5 villages per panchayat



#### Minimum number of GP's, fix villages per GP

- We search for the minimum number of GP we need if we survey 1 village per GP:
  - Answer: 553
- We search for the minimum number of GP if we survey 2, 3, 4, etc... village per GP
- For each combination, we calculate the number of villages we will need to survey, and the budget.

### What sample do we need?

| Exercise A   |           |            |            |  |  |  |  |
|--------------|-----------|------------|------------|--|--|--|--|
| Power: 80%   |           |            |            |  |  |  |  |
| # of village |           | total # of | Total Cost |  |  |  |  |
| per GP       | # of GP's | villages   | (man days) |  |  |  |  |
| 1            | 553       | 553        | 3041.5     |  |  |  |  |
| 2            | 297       | 594        | 2673.0     |  |  |  |  |
| 3            | 209       | 62         | 2612.5     |  |  |  |  |
| 4            | 162       | 648        | 2592.0     |  |  |  |  |
| 5            | 141       | 70:        | 2749.5     |  |  |  |  |
| 6            | 121       | 720        | 2783.0     |  |  |  |  |
| 7            | 107       | 749        | 2835.5     |  |  |  |  |
| 8            | 101       | 808        | 3030.0     |  |  |  |  |

#### The design factors that influence power

- 1. Clustered design
- 2. Availability of a Baseline
- Availability of Control Variables, and Stratification.
- 4. The type of hypothesis that is being tested.

#### Availability of a baseline

- A baseline has two main uses:
  - Allows you to check whether control and treatment group were the same or different before the treatment
  - Reduces the sample size needed, but requires that you do a survey before starting the intervention: typically the evaluation cost go up and the intervention cost go down
- To compute power with a baseline:
  - You need to know the correlation between two subsequent measurements of the outcome (for example: correlation between pre and post test score in school).
  - The stronger the correlation, the bigger the gain.
  - Very big gains for very persistent outcomes such as tests scores
- Using OD
  - Pre-test score will be used as a covariate, r2 is it correlation over time.

#### The design factors that influence power

- 1. Clustered design
- 2. Availability of a Baseline
- 3. Availability of Control Variables, and Stratification.
- 4. The type of hypothesis that is being tested.

#### Stratified samples

- Stratification will reduce the sample size needed to achieve a given power (you saw this in real time in the Balsakhi exercise).
- The reason is that it will reduce the variance of the outcome of interest in each strata (and hence increase the standardized effect size for any given effect size)
- Example: if you randomize within school and grade which class is treated and which class is control:
  - The variance of test score goes down because age is controlled for
- Common stratification variables:
  - Baseline values of the outcomes when possible
  - We expect the treatment to vary in different subgroups

#### The design factors that influence power

- 1. Clustered design
- 2. Availability of a Baseline
- Availability of Control Variables, and Stratification.
- 4. The type of hypothesis that is being tested.

#### The hypothesis that is being tested

- Are you interested in the difference between two treatments as well as the difference between treatment and control?
- Are you interested in the interaction between the treatments?
- Are you interested in testing whether the effect is different in different subpopulations?
- Does your design involve only partial compliance? (e.g. encouragement design?)

#### **Conclusions**

- Power calculations involve some guess work.
- They also involve some pilot testing before the proper experiment begins
- They can tell you:
  - How many treatments to have
  - How to trade off more clusters vs. more observations per cluster
  - Whether it's feasible or not
- It's critical to do as best you can; a study with low power likely wastes time and money