Amortized Analysis Dynamic Tables

T: table

T: table

Operations: Insert, Delete items of T

Load Factor $\alpha(T) =$

T: table

Load Factor
$$\alpha(T) = \frac{\text{# items currently stored in T}}{\text{size}(T)}$$

T: table

Load Factor
$$\alpha(T) = \frac{\text{# items currently stored in T}}{\text{size}(T)}$$

$$size(T) = 4$$

T: table

Load Factor
$$\alpha(T) = \frac{\text{# items currently stored in T}}{\text{size}(T)}$$

$$size(T) = 4$$

$$\alpha(T) = 3/4$$

T: table

Operations: Insert, Delete items of T

Load Factor
$$\alpha(T) = \frac{\text{# items currently stored in T}}{\text{size}(T)}$$

T a b c In

size(T) = 4

Insert(d)

T: table

Operations: Insert, Delete items of T

Load Factor
$$\alpha(T) = \frac{\text{# items currently stored in T}}{\text{size}(T)}$$

T a b c d

$$size(T) = 4$$

T: table

Operations: Insert, Delete items of T

Load Factor
$$\alpha(T) = \frac{\text{# items currently stored in T}}{\text{size}(T)}$$

$$size(T) = 4$$

Table is full, i.e. $\alpha(T) = 1$

T: table

Operations: Insert, Delete items of T

Load Factor
$$\alpha(T) = \frac{\text{# items currently stored in T}}{\text{size}(T)}$$

T a b c d Insert(e) size(T) = 4

Table is full, i.e. $\alpha(T) = 1$

T: table

Operations: Insert, Delete items of T

Load Factor
$$\alpha(T) = \frac{\text{# items currently stored in T}}{\text{size}(T)}$$

T a b c d

Insert(e)

size(T) = 4

Table is full, i.e. $\alpha(T) = 1$

Problem: Insert element when T is full

(1) Allocate new table T larger than T

(1) Allocate new table T larger than TTypically, size(new T) = 2 size(T)

(1) Allocate new table T larger than TTypically, size(new T) = 2 size(T)

(2) Copy all items of T into the new T

(1) Allocate new table T larger than TTypically, size(new T) = 2 size(T)

(2) Copy all items of T into the new T

(3) Insert the new element into the new T

(1) Allocate new table T larger than TTypically, size(new T) = 2 size(T)

(2) Copy all items of T into the new T

(3) Insert the new element into the new T

With this scheme, $\alpha(T)$ remains $\geq 1/2$ (i.e. no more than half the space of T is wasted)

T a b c d

size(T) = 4

Insert(e)

T a b c d

Insert(e)

size(T) = 4

T a b c d

Insert(e)

size(T) = 4

T a b c d

T a b c d

Insert(e)

size(T) = 4

T a b c d e

T a b c d

Insert(e)

size(T) = 4

T a b c d e

Cost of Insert(e) = 4 + 1

T a b c d

$$size(T) = 4$$

Insert(e)

$$size(T) = 8$$

Amortized Analysis

Starting from empty table T of size 1,
What is the total cost of n successive Inserts into T?

Example: n = 25

Example: n = 25

Cost of inserting elements

Cost of table expansion

Example: n = 25

Cost of inserting elements

Cost of table expansion

```
Example: n = 25
```

```
Cost of inserting elements

Cost of table expansion
```



```
Example: n = 25
```

```
Cost of inserting elements

Cost of table expansion
```

Total cost =
$$25 + 1$$


```
Cost of inserting elements

Total cost = 25 + 1

1

Cost of table expansion

1
```

Example: n = 25

Example: n = 25

```
Cost of
                     Cost of table
            inserting
                     expansion
            elements
                                 Total cost = 25
                        4
                       8
                                                                     16
                     + 16
                                          16
```

Total cost of 25 Inserts = 25 + all powers of 2 smaller than 25

```
Total cost of 25 Inserts = 25 + all powers of 2 smaller than 25
```

Total cost of n Inserts = n + all powers of 2 smaller than n

```
Total cost of 25 Inserts = 25 + all powers of 2 smaller than 25

Total cost of n Inserts = n + all powers of 2 smaller than n

k = \lfloor \log_2 n \rfloor
```

Total cost of n Inserts
$$\leq n + \sum_{k=0}^{k=\lfloor \log_2 n \rfloor} 2^k$$

```
Total cost of 25 Inserts = 25 + \text{all powers of 2 smaller than 25}

Total cost of n Inserts = n + \text{all powers of 2 smaller than n}

k = \lfloor \log_2 n \rfloor
Total cost of n Inserts \leq n + \sum_{k=0}^{k=\lfloor \log_2 n \rfloor} 2^k
```

 \leq n + 2n

```
Total cost of 25 Inserts = 25 + all powers of 2 smaller than 25
Total cost of n Inserts = n + all powers of 2 smaller than n
                                     k = \lfloor \log_2 n \rfloor
Total cost of n Inserts \leq n + \sum 2^k
                         \leq n + 2n
                              3n
```

```
Total cost of 25 Inserts = 25 + all powers of 2 smaller than 25
Total cost of n Inserts = n + all powers of 2 smaller than n
                                    k = \lfloor \log_2 n \rfloor
Total cost of n Inserts \leq n + \sum 2^k
                         \leq n + 2n
                            3n
```

Amortized cost per Insert $\leq 3n/n$

```
Total cost of 25 Inserts = 25 + all powers of 2 smaller than 25
Total cost of n Inserts = n + all powers of 2 smaller than n
                                     k = \lfloor \log_2 n \rfloor
Total cost of n Inserts \leq n + \sum 2^k
                         \leq n + 2n
                              3n
```

Amortized cost per Insert $\leq 3n/n \Rightarrow \text{Amortized cost per Insert is } O(1)$

Recall that if:

c_i: actual cost of ith operation

 \hat{c}_i : cost charged for the ith operation [i.e. amortized cost of ith operation]

Recall that if:

```
c<sub>i</sub>: actual cost of i<sup>th</sup> operation
```

 \hat{c}_i : cost charged for the ith operation [i.e. amortized cost of ith operation]

We require
$$\sum_{i=1}^{n} \hat{c}_{i} \ge \sum_{i=1}^{n} c_{i}$$
 for all sequence of n operations

Recall that if:

c_i: actual cost of ith operation

 \hat{c}_i : cost charged for the ith operation [i.e. amortized cost of ith operation]

We require $\sum_{i=1}^{n} \hat{c}_{i} \ge \sum_{i=1}^{n} c_{i}$ for all sequence of n operations

Equivalently, $\sum_{i=1}^{n} \hat{c_i} - \sum_{i=1}^{n} c_i \ge 0$

Recall that if:

c_i: actual cost of ith operation

 \hat{c}_i : cost charged for the ith operation [i.e. amortized cost of ith operation]

We require
$$\sum_{i=1}^{n} \hat{c}_{i} \ge \sum_{i=1}^{n} c_{i}$$
 for all sequence of n operations

Equivalently,
$$\sum_{i=1}^{n} \hat{c}_{i} - \sum_{i=1}^{n} c_{i} \ge 0$$

Total credit in the data structure

Insert(x)

	0	0	0	0	0	0	0	0
Т	а	b	С	d				

Insert(x)

Insert(x) is charged

Insert(x)

Insert(x) is charged

\$1 for inserting **x** (actual cost)

Insert(x)

Insert(x) is charged

```
$1 for inserting x (actual cost)
+ $1 credit on x (for copying x over)
```

Insert(x)

Insert(x) is charged

```
$1 for inserting x (actual cost)
```

- + \$1 credit on **x** (for copying **x** over)
- + \$1 credit on a (for copying a over)

Insert(x)

Insert(x) is charged \$3

```
$1 for inserting x (actual cost)
```

- + \$1 credit on **x** (for copying **x** over)
- + \$1 credit on a (for copying a over)

Insert(y)

Insert(y) is charged \$3

	\$1	\$1	0	0	\$1	\$1	0	0
Т	а	b	С	d	х	у		

Insert(z)

Insert(z) is charged \$3

	\$1	\$1	\$1	0	\$1	\$1	\$1	0
Т	а	b	С	d	х	у	Z	

Insert(w)

Insert(w) is charged \$3

	\$1	\$1	\$1	\$1	\$1	\$1	\$1	\$1
Т	а	b	С	d	x	У	Z	W

 \$1
 \$1
 \$1
 \$1
 \$1
 \$1

 T
 a
 b
 c
 d
 x
 y
 z
 w

When table full,

Total Credit = # elements in the Table

	\$1	\$1	\$1	\$1	\$1	\$1	\$1	\$1
Т	а	b	С	d	x	У	Z	w

When table full,

Total Credit = # elements in the Table

On next Insert, use credits to move elements into new table

Insert(v)

	\$1	\$1	\$1	\$1	\$1	\$1	\$1	\$1	
Т	а	b	С	d	x	у	z	w	

When table full,

Total Credit = # elements in the Table

On next Insert, use credits to move elements into new table

Insert(v)

	\$1	\$1	\$1	\$1	\$1	\$1	\$1	\$1
Т	а	b	C	d	x	У	Z	w

Insert(v)

Insert(v) is charged \$3

	\$1	\$1	\$1	\$1	\$1	\$1	\$1	\$1
Т	а	b	С	d	х	у	Z	w

\$1 0 0 0 0 0 0 \$1

T a b c d x y z w v

Insert(v)

Insert(v) is charged \$3 and so on...

 \$1
 \$1
 \$1
 \$1
 \$1
 \$1
 \$1

 T
 a
 b
 c
 d
 x
 y
 z
 w

\$1 0 0 0 0 0 0 \$1

T a b c d x y z w v

 σ : Sequence of n Inserts, starting from empty table T of size 1

σ: Sequence of n Inserts, starting from empty table T of size 1

Charging \$3 per Insert in σ ensures total credit is always ≥ 0

σ: Sequence of n Inserts, starting from empty table T of size 1

Charging \$3 per Insert in σ \Rightarrow Amortized cost per Insert is O(1) ensures total credit is always ≥ 0

Problem: After deleting items, $\alpha(T)$ decreases

Problem: After deleting items, $\alpha(T)$ decreases \Rightarrow Memory waste increases

Problem: After deleting items, $\alpha(T)$ decreases \Rightarrow Memory waste increases

If $\alpha(T)$ becomes too small, reduce memory waste by

Problem: After deleting items, $\alpha(T)$ decreases \Rightarrow Memory waste increases

If $\alpha(T)$ becomes too small, reduce memory waste by

- (1) Allocating new smaller table,
- (2) Copying all the items to the new table

Problem: After deleting items, $\alpha(T)$ decreases \Rightarrow Memory waste increases

If $\alpha(T)$ becomes too small, reduce memory waste by

- (1) Allocating new smaller table,
- (2) Copying all the items to the new table

Problem: After deleting items, $\alpha(T)$ decreases \Rightarrow Memory waste increases

How small?

If $\alpha(T)$ becomes too small, reduce memory waste by

How small?

- (1) Allocating new smaller table,
- (2) Copying all the items to the new table

Problem: After deleting items, $\alpha(T)$ decreases \Rightarrow Memory waste increases

How small?

If $\alpha(T)$ becomes too small, reduce memory waste by

How small?

- (1) Allocating new smaller table,
- (2) Copying all the items to the new table

We want:

Problem: After deleting items, $\alpha(T)$ decreases \Rightarrow Memory waste increases

How small?

If $\alpha(T)$ becomes too small, reduce memory waste by

How small?

- (1) Allocating new smaller table,
- (2) Copying all the items to the new table

We want:

(1) $\alpha(T) \ge \text{constant } c$ (to reduce memory waste)

Problem: After deleting items, $\alpha(T)$ decreases \Rightarrow Memory waste increases

How small?

If $\alpha(T)$ becomes too small, reduce memory waste by

How small?

- (1) Allocating new smaller table,
- (2) Copying all the items to the new table

We want:

- (1) $\alpha(T) \ge \text{constant } \mathbf{c}$ (to reduce memory waste)
- (2) Amortized cost per operation (insert/delete) is O(1)

Insert : If $\alpha(T) = 1$, and Insert occurs, size(new T) = 2 size(T)

```
Insert : If \alpha(T) = 1, and Insert occurs, size(new T) = 2 size(T)
```

Delete: If $\alpha(T) = 1/2$, and Delete occurs, size(new T) = 1/2 size(T)

```
Insert : If \alpha(T) = 1, and Insert occurs, size(new T) = 2 size(T)
```

Delete: If $\alpha(T) = 1/2$, and Delete occurs, size(new T) = 1/2 size(T)

Approach ensures $\alpha(T) \ge 1/2$

```
Insert : If \alpha(T) = 1, and Insert occurs, size(new T) = 2 size(T)
```

Delete : If $\alpha(T) = 1/2$, and Delete occurs, size(new T) = 1/2 size(T)

Approach ensures $\alpha(T) \ge 1/2$

 σ : Arbitrary sequence of n Inserts and Deletes, starting from empty table T of size 1

What is the amortized cost per operation in σ ?

 σ : n/2 Inserts,


```
\sigma: n/2 Inserts,
```

Cost: $\geq n/2$

 σ : n/2 Inserts, Insert,

Cost: $\geq n/2$

 σ : n/2 Inserts, Insert,

Cost: $\geq n/2$


```
\sigma: n/2 Inserts, Insert,
```


 σ : n/2 Inserts, Insert, Delete,

 σ : n/2 Inserts, Insert, Delete,

 σ : n/2 Inserts, Insert, Delete, Delete,

 σ : n/2 Inserts, Insert, Delete, Delete,

 σ : n/2 Inserts, Insert, Delete, Delete,

 σ : n/2 Inserts, Insert, Delete, Delete,

Cost: $\geq n/2 \geq n/2 \geq n/2$

 σ : n/2 Inserts, Insert, Delete, Delete, Insert, Insert,

Cost: $\geq n/2 \geq n/2 \geq n/2$

Naïve approach: Bad sequence σ of $n = 2^k$ operations σ : n/2 Inserts, Insert, Delete, Delete, Insert, Insert, Cost: $\geq n/2 \geq n/2 \geq n/2$

 σ : n/2 Inserts, Insert, Delete, Delete, Insert, Insert,

Naïve approach: Bad sequence σ of $n = 2^k$ operations σ : n/2 Inserts, Insert, Delete, Delete, Insert, Insert, Delete, $\geq n/2 \geq n/2 \geq n/2$ $\geq n/2$ Cost: n/2

Naïve approach: Bad sequence σ of $n = 2^k$ operations σ : n/2 Inserts, Insert, Delete, Delete, Insert, Insert, Delete, $\geq n/2 \geq n/2 \geq n/2$ $\geq n/2$ Cost: n/2

 σ : n/2 Inserts, Insert, Delete, Delete, Insert, Insert, Delete, Delete,

 σ : n/2 Inserts, Insert, Delete, Delete, Insert, Insert, Delete, Delete,

 σ : n/2 Inserts, Insert, Delete, Delete, Insert, Insert, Delete, Delete,

 σ : n/2 Inserts, Insert, Delete, Delete, Insert, Insert, Delete, Delete,

Cost: $\geq n/2$ $\geq n/2$ $\geq n/2$ $\geq n/2$ $\geq n/2$

 σ : n/2 Inserts, Insert, Delete, Delete, Insert, Insert, Delete, Delete, ...

Cost: $\geq n/2$ $\geq n/2$ $\geq n/2$ $\geq n/2$ $\geq n/2$

 σ : n/2 Inserts, Insert, Delete, Delete, Insert, Insert, Delete, Delete, ...

Cost: $\geq n/2$ $\geq n/2$ $\geq n/2$ $\geq n/2$ $\geq n/2$

Total cost $\geq (n/4)(n/2)$

 σ : n/2 Inserts, Insert, Delete, Delete, Insert, Insert, Delete, Delete, ...

Cost: $\geq n/2 \geq n/2 \geq n/2 \geq n/2 \geq n/2$

Total cost $\geq (n/4)(n/2)$

Total cost is $\Omega(n^2)$

 σ : n/2 Inserts, Insert, Delete, Delete, Insert, Insert, Delete, Delete, ...

Cost: $\geq n/2$ $\geq n/2$ $\geq n/2$ $\geq n/2$ $\geq n/2$

Total cost $\geq (n/4)(n/2)$

Total cost is $\Omega(n^2)$

Amortized cost per operation is $\Omega(n)$

Insert and Delete: Good Approach

Insert : If $\alpha(T) = 1$, and Insert occurs, size(new T) = 2 size(T)

```
Insert : If \alpha(T) = 1, and Insert occurs, size(new T) = 2 size(T)
```

Delete : If $\alpha(T) = 1/4$, and Delete occurs, size(new T) = 1/2 size(T)

```
Insert : If \alpha(T) = 1, and Insert occurs, size(new T) = 2 size(T)
```

Delete : If $\alpha(T) = \frac{1/4}{4}$, and Delete occurs, size(new T) = 1/2 size(T)

Approach ensures $\alpha(T) \ge 1/4$

```
Insert : If \alpha(T) = 1, and Insert occurs, size(new T) = 2 size(T)

Delete : If \alpha(T) = 1/4, and Delete occurs, size(new T) = 1/2 size(T)
```

Approach ensures $\alpha(T) \ge 1/4$

 σ : Arbitrary sequence of n Inserts and Deletes, starting from empty table T of size 1 What is the amortized cost per operation in σ ?

A sequence of Inserts, Deletes applied to T may cause:

A sequence of Inserts, Deletes applied to T may cause:

a) Expansion.

A sequence of Inserts, Deletes applied to T may cause:

- a) Expansion. In this case:
 - The seq contains $\geq n/2$ Inserts.

A sequence of Inserts, Deletes applied to T may cause:

- a) Expansion. In this case:
 - The seq contains $\geq n/2$ Inserts.
 - Cost of copying items into new T: n

A sequence of Inserts, Deletes applied to T may cause:

- a) Expansion. In this case:
 - The seq contains $\geq n/2$ Inserts.
 - Cost of copying items into new T : n

Charging Scheme:

Charge each Insert \$3

\$1 actual cost + \$2 credit for future expansion

A sequence of Inserts, Deletes applied to T may cause:

- a) Expansion. In this case:
 - The seq contains $\geq n/2$ Inserts.
 - Cost of copying items into new T: n

Charging Scheme:

A sequence of Inserts, Deletes applied to T may cause:

- a) Expansion. In this case:
 - The seq contains $\geq n/2$ Inserts.
 - Cost of copying items into new T: n
- a) Contraction.

Charging Scheme:

A sequence of Inserts, Deletes applied to T may cause:

- a) Expansion. In this case:
 - The seq contains $\geq n/2$ Inserts.
 - Cost of copying items into new T: n
- a) Contraction. In this case:
 - The seq contains $\geq n/4$ Deletes.

Charging Scheme:

A sequence of Inserts, Deletes applied to T may cause:

- a) Expansion. In this case:
 - The seq contains $\geq n/2$ Inserts.
 - Cost of copying items into new T: n
- a) Contraction. In this case:
 - The seq contains $\geq n/4$ Deletes.
 - Cost of copying items into new T : n/4

Charging Scheme:

A sequence of Inserts, Deletes applied to T may cause:

- a) Expansion. In this case:
 - The seq contains $\geq n/2$ Inserts.
 - Cost of copying items into new T: n
- a) Contraction. In this case:
 - The seq contains $\geq n/4$ Deletes.
 - Cost of copying items into new T : n/4

Charging Scheme:

Charge each Insert \$3 \$1 actual cost + \$2 credit for future expansion n/2 Inserts \Rightarrow (n/2) (\$2) = \$n credit, which covers cost of table expansion

Charge each Delete \$2

\$1 actual cost + \$1 credit for future contraction

A sequence of Inserts, Deletes applied to T may cause:

- a) Expansion. In this case:
 - The seq contains $\geq n/2$ Inserts.
 - Cost of copying items into new T: n
- a) Contraction. In this case:
 - The seq contains $\geq n/4$ Deletes.
 - Cost of copying items into new T : n/4

Charging Scheme:

Charge each Insert \$3 \$1 actual cost + \$2 credit for future expansion n/2 Inserts \Rightarrow (n/2) (\$2) = \$n credit, which covers cost of table expansion

Charge each Delete \$2

\$1 actual cost + \$1 credit for future contraction n/4 Deletes \Rightarrow (n/4) (\$1) = \$n/4 credit, which covers cost of table contraction