

# **ENGINEERING MATHEMATICS - I Ordinary Differential Equations**

Dr. Karthiyayini

Department of Science and Humanities



**Unit 3: Ordinary Differential Equations** 

Session: 1

**Sub Topic: Introduction** 

Dr. Karthiyayini

Department of Science & Humanities

### **Unit 3 : Contents**



- ❖ Bernoulli's Linear Differential Equation
- Exact Differential Equations
- \* Reducible to Exact Differential Equations
- Orthogonal Trajectories
- Solution of first order Non-Linear Differential Equations (Equations solvable for p, y and x)
- Application problems on Differential Equations.

# **Differential Equations - Introduction**



- 1. What is a Differential Equation?
- 2. Why Engineers need Differential Equations?

# What is a Equation?



Equation :  $x^2 - 4x = 4$ 

Solution of a Equation:

- $\diamond$  Single value of x
- $\diamond$  Several values of 'x'
- $\Leftrightarrow$  Interval of 'x'

Note: In this case x = 2 is the solution.

## What is a Differential Equation?



### Recall:

An equation that represents the relation between the

- Independent variables
- Dependent variable
- Derivative of the dependent variable w.r.t the independent variables

is called as a *Differential Equation*.

# **Examples:**



For example : 
$$\frac{dy}{dx} = y$$
  
Solution :  $y = e^x$ 

Suppose we consider, 
$$\frac{dy}{dx} = e^x$$
  
Solution:  $y = e^x$   
or  $y = e^x + 4$   
or  $y = e^x + 6$ 

In general 
$$y = e^x + C$$

# **Another Example:**



Consider,

$$\frac{d^2y}{dx^2} - 5\frac{dy}{dx} - 6y = 0$$

Solution :  $y = e^{6x}$ 

Now, 
$$y' = 6e^{6x}$$
 and  $y'' = 36e^{6x}$ 

Substituting these in the above example

$$36e^{6x} - 30e^{6x} - 6e^{6x} = 0$$
$$\Rightarrow y = e^{6x}$$

Similarly, it can be checked that  $y = e^{-x}$  is also a solution.

# Why Differential Equations?



# Example from Physics:

- Consider an object that is falling from some height.
- What is the velocity and time taken by the object to hit the ground?



# **Example from Physics:**





- Force due to air resistance -bv
- $\bullet$  Net Force = mg bv
- Arr By the Newton's second law of motion, F = ma

- This is the Mathematical representation of the considered problem.



### **Forensic Mathematics:**





### **Forensic Mathematics:**

- A police personnel discovers the body of a dead person presumably murdered
- The problem is to estimate the time of murder.





### **Forensic Mathematics:**



- Differential Equation
- Newton's law of cooling

The time of death can be estimated by solving the resulting Differential Equations.



# Why Differential Equations?

# In Physics:

- Classical Mechanics
- Quantum Mechanics
- Electro Dynamics
- General Relativity
- Radioactive decay
- To describe motion of waves or pendulums or any chaotic processes.

# In Chemistry :

Chemical Kinetics (Rate equation for a chemical reaction)



# Why Differential Equations?

# ❖ In Biology:

- Predator Prey equations
- Population, growth and decay equation
- Molecular Biology

### ❖ In Medicine :

- Modelling cancer growth
- Modelling the diabetes and glucose metabolism
- Drug distribution in human body
- To predict rate of Spread of disease or pandemic like COVID - 19



# Why Differential Equations?

- In Econonics & Finance
  - To estimate Optimum Investment strategies
  - To solve a simple Gross Domestic Product (GDP) model
  - To predict the changes in Bond Price
  - Consumer's preferences
- Forensic Mathematics
- In Archaeology & Paleontology:
  - Carbon Dating



# Why Differential Equations?



# In Engineering:

- Electronics & Communication Engineering :
  - Controls & systems
  - State space models
  - Kalman Filters
  - Generative models in signal processing
  - Electrical circuits
  - Stabilizing drone flight

# Why Differential Equations?

- **Computer Science Engineering:** 
  - Digital Image Processing
  - Advanced Machine Learning
  - Robotics
  - Sports Analytics
  - Scientific Computing
  - Collision detection in game programming



# Why Differential Equations?

# PES UNIVERSITY ONLINE

# Mechanical Engineering:

- Rigid body dynamic analysis
- Design of containers and funnels
- Design of heat spreaders in micro electronics
- Design of heating and cooling chambers
- To predict the dynamic response of mechanical systems (Fo eg: Missiles)

# Why Differential Equations?



- Civil Engineering:
  - Axial deformation on bar
  - Elastic beams
  - Torsion of elastic bars
  - Seepage flow in 2D
  - Irrotational fluid flow



# **THANK YOU**

Dr. Karthiyayini

Department of Science & Humanities

karthiyayini.roy@pes.edu

+91 80 6618 6651