WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: C12N 15/13, 15/10, 15/62, 15/70, 1/21, C07K 1/04, G01N 33/53

(11) International Publication Number: A1

WO 97/08320

(43) International Publication Date:

6 March 1997 (06.03.97)

(21) International Application Number:

PCT/EP96/03647

(22) International Filing Date:

19 August 1996 (19.08.96)

(81) Designated States: AU, CA, JP, US, European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

(30) Priority Data:

95113021.0

18 August 1995 (18.08.95)

DE et al.

EP

(34) Countries for which the regional or

international application was filed:

(71) Applicant (for all designated States except US): MORPHOSYS GESELLSCHAFT FÜR PROTEINOPTIMIERUNG MBH [DE/DE]; Frankfurter Ring 193a, D-80807 München (DE).

(72) Inventors; and

(75) Inventors/Applicants (for US only): KNAPPIK, Achim [DE/DE]; Killerstrasse 16, D-82166 Gräfelfing (DE). PACK, Peter [DE/DE]; Franz-Wolter-Strasse 4, D-81925 München (DE). ILAG, Vic [PH/DE]; Knorrstrasse 85, D-80807 München (DE). GE, Liming [CN/DE]; Nestroystrasse 17, D-81373 München (DE). MORONEY, Simon [NZ/DE]; Osterwaldstrasse 44, D-80805 München (DE). PLÜCKTHUN, Andreas [DE/CH]; Möhrlistrasse 97, CH-8006 Zürich (CH).

(74) Agent: VOSSIUS & PARTNER; P.O. Box 86 07 67, D-81634 München (DE).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: PROTEIN/(POLY)PEPTIDE LIBRARIES

(57) Abstract

The present invention relates to synthetic DNA sequences which encode one or more collections of homologous proteins/(poly)peptides, and methods for generating and applying libraries of these DNA sequences. In particular, the invention relates to the preparation of a library of humanderived antibody genes by the use of synthetic consensus sequences which cover the structural repertoire of antibodies encoded in the human genome. Furthermore, the invention relates to the use of a single consensus antibody gene as a universal framework for highly diverse antibody libraries.

Database of human Ig gene segments Translation in amino acid sequences Alignment of protein sequences Germline Rearranged sequences sequences Assignment to Computation of families germline counterpart Database of used Assignment to germline families families Analysis of Computation of canonical structures consensus sequences Structural Analysis Design of CDRs Gene Design

> Synthetic combinatorial antibody library

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Armenia	GB	United Kingdom	MW	Malawi
AT	Austria	GE	Georgia	MX	Mexico
ΑU	Australia	GN	Guinea	NE	Niger
BB	Barbados	GR	Greece	NL	Netherlands
BE	Belgium	HU	Hungary	NO	Norway
BF	Burkina Faso	TE.	Ireland	NZ	New Zealand
BG	Bulgaria	IT	Italy	PL	Poland
BJ	Benin	JP	Japan	· PT	Portugal
BR	Brazil	KJE	Kenya	RO	Romania
BY	Belarus	KG	Kyrgystan	RU	Russian Federation
CA	Canada	KP	Democratic People's Republic	SD	Sudan
CF	Central African Republic		of Korea	SE	Sweden
CG	Congo	KR	Republic of Korea	SG	Singapore
CH	Switzerland	KZ	Kazakhstan	SI	Slovenia
CI	Côte d'Ivoire	LI	Liechtenstein	SK	Slovakia
CM	Cameroon	LK	Sri Lanka	SN	Senegal
CN	China	LR	Liberia	SZ	Swaziland
CS	Czechoslovakia	LT	Lithuania	TD	Chad
CZ	Czech Republic	LU	Luxembourg	TG	Togo
DE	Germany	LV	Latvia	TJ	Tajikistan
DK	Denmark	MC	Мопасо	TT	Trinidad and Tobago
EE	Estonia	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	UG	Uganda
FI	Finland	ML	Mali	US	United States of America
FR	France	MN	Mongolia	UZ	Uzbekistan
GA	Gabon	MR	Mauritania	VN	Viet Nam

1, 0

I);

Protein/(Poly)peptide Libraries

Field of the Invention

The present invention relates to synthetic DNA sequences which encode one or more collections of homologous proteins/(poly)peptides, and methods for generating and applying libraries of these DNA sequences. In particular, the invention relates to the preparation of a library of human-derived antibody genes by the use of synthetic consensus sequences which cover the structural repertoire of antibodies encoded in the human genome. Furthermore, the invention relates to the use of a single consensus antibody gene as a universal framework for highly diverse antibody libraries.

Background to the Invention

All current recombinant methods which use libraries of proteins/(poly)peptides, e.g. antibodies, to screen for members with desired properties, e.g. binding a given ligand, do not provide the possibility to improve the desired properties of the members in an easy and rapid manner. Usually a library is created either by inserting a random oligonucleotide sequence into one or more DNA sequences cloned from an organism, or a family of DNA sequences is cloned and used as the library. The library is then screened, e.g. using phage display, for members which show the desired property. The sequences of one or more of these resulting molecules are then determined. There is no general procedure available to improve these molecules further on.

Winter (EP 0 368 684 B1) has provided a method for amplifying (by PCR), cloning, and expressing antibody variable region genes. Starting with these genes he was able to create libraries of functional antibody fragments by randomizing the CDR3 of the heavy and/or the light chain. This process is functionally equivalent to the natural process of VJ and VDJ recombination which occurs during the development of B-cells in the immune system.

However the Winter invention does not provide a method for optimizing the binding affinities of antibody fragments further on, a process which would be functionally equivalent to the naturally occurring phenomenon of "affinity maturation", which is provided by the present invention. Furthermore, the Winter invention does not provide for artificial variable region genes, which represent a whole family of

structurally similar natural genes, and which can be assembled from synthetic DNA oligonucleotides. Additionally, Winter does not enable the combinatorial assembly of portions of antibody variable regions, a feature which is provided by the present invention. Furthermore, this approach has the disadvantage that the genes of all antibodies obtained in the screening procedure have to be completely sequenced, since, except for the PCR priming regions, no additional sequence information about the library members is available. This is time and labor intensive and potentially leads to sequencing errors.

The teaching of Winter as well as other approaches have tried to create large antibody libraries having high diversity in the complementarity determining regions (CDRs) as well as in the frameworks to be able to find antibodies against as many different antigens as possible. It has been suggested that a single universal framework may be useful to build antibody libraries, but no approach has yet been successful.

Another problem lies in the production of reagents derived from antibodies. Small antibody fragments show exciting promise for use as therapeutic agents, diagnostic reagents, and for biochemical research. Thus, they are needed in large amounts, and the expression of antibody fragments, e.g. Fv, single-chain Fv (scFv), or Fab in the periplasm of E. coli (Skerra & Plückthun, 1988; Better et al., 1988) is now used routinely in many laboratories. Expression yields vary widely, however. While some fragments yield up to several mg of functional, soluble protein per liter and OD of culture broth in shake flask culture (Carter et al., 1992, Plückthun et al. 1996), other fragments may almost exclusively lead to insoluble material, often found in so-called inclusion bodies. Functional protein may be obtained from the latter in modest yields by a laborious and time-consuming refolding process. The factors influencing antibody expression levels are still only poorly understood. Folding efficiency and stability of the antibody fragments, protease lability and toxicity of the expressed proteins to the host cells often severely limit actual production levels, and several attempts have been tried to increase expression yields. For example, Knappik & Plückthun (1995) could show that expression yield depends on the antibody sequence. They identified key residues in the antibody framework which influence expression yields dramatically. Similarly, Ullrich et al. (1995) found that point mutations in the CDRs can increase the yields in periplasmic antibody fragment expression. Nevertheless, these strategies are only applicable to a few antibodies. Since the Winter invention uses existing repertoires of antibodies, no influence on expressibility of the genes is possible.

Furthermore, the findings of Knappik & Plückthun and Ullrich demonstrate that the knowledge about antibodies, especially about folding and expression is still increasing. The Winter invention does not allow to incorporate such improvements into the library design.

The expressibility of the genes is important for the library quality as well, since the screening procedure relies in most cases on the display of the gene product on a phage surface, and efficient display relies on at least moderate expression of the gene.

These disadvantages of the existing methodologies are overcome by the present invention, which is applicable for all collections of homologous proteins. It has the following novel and useful features illustrated in the following by antibodies as an example:

Artificial antibodies and fragments thereof can be constructed based on known antibody sequences, which reflect the structural properties of a whole group of homologous antibody genes. Therefore it is possible to reduce the number of different genes without any loss in the structural repertoire. This approach leads to a limited set of artificial genes, which can be synthesized de novo, thereby allowing introduction of cleavage sites and removing unwanted cleavages sites. Furthermore, this approach enables (i), adapting the codon usage of the genes to that of highly expressed genes in any desired host cell and (ii), analyzing all possible pairs of antibody light (L) and heavy (H) chains in terms of interaction preference, antigen preference or recombinant expression titer, which is virtually impossible using the complete collection of antibody genes of an organism and all combinations thereof.

The use of a limited set of completely synthetic genes makes it possible to create cleavage sites at the boundaries of encoded structural sub-elements. Therefore, each gene is built up from modules which represent structural sub-elements on the protein/(poly)peptide level. In the case of antibodies, the modules consist of "framework" and "CDR" modules. By creating separate framework and CDR modules, different combinatorial assembly possibilities are enabled. Moreover, if two or more artificial genes carry identical pairs of cleavage sites at the boundaries of each of the genetic sub-elements, pre-built libraries of sub-elements can be inserted in these genes simultaneously, without any additional information related to any particular gene sequence. This strategy enables rapid optimization of, for example, antibody affinity, since DNA cassettes encoding libraries of genetic sub-elements can be (i), pre-built, stored and reused and (ii), inserted in any of these

.¥.

sequences at the right position without knowing the actual sequence or having to determine the sequence of the individual library member.

Additionally, new information about amino acid residues important for binding, stability, or solubility and expression could be integrated into the library design by replacing existing modules with modules modified according to the new observations.

The limited number of consensus sequences used for creating the library allows to speed up the identification of binding antibodies after screening. After having identified the underlying consensus gene sequence, which could be done by sequencing or by using fingerprint restriction sites, just those part(s) comprising the random sequence(s) have to be determined. This reduces the probability of sequencing errors and of false-positive results.

The above mentioned cleavage sites can be used only if they are unique in the vector system where the artificial genes have been inserted. As a result, the vector has to be modified to contain none of these cleavage sites. The construction of a vector consisting of basic elements like resistance gene and origin of replication, where cleavage sites have been removed, is of general interest for many cloning attempts. Additionally, these vector(s) could be part of a kit comprising the above mentioned artificial genes and pre-built libraries.

The collection of artificial genes can be used for a rapid humanization procedure of non-human antibodies, preferably of rodent antibodies. First, the amino acid sequence of the non-human, preferably rodent antibody is compared with the amino acid sequences encoded by the collection of artificial genes to determine the most homologous light and heavy framework regions. These genes are then used for insertion of the genetic sub-elements encoding the CDRs of the non-human, preferably rodent antibody.

Surprisingly, it has been found that with a combination of only one consensus sequence for each of the light and heavy chains of a scFv fragment an antibody repertoire could be created yielding antibodies against virtually every antigen. Therefore, one aspect of the present invention is the use of a single consensus sequence as a universal framework for the creation of useful (poly)peptide libraries and antibody consensus sequences useful therefor.

Detailed Description of the Invention

The present invention enables the creation of useful libraries of (poly)peptides. In a first embodiment, the invention provides for a method of setting up nucleic acid sequences suitable for the creation of said libraries. In a first step, a collection of at least three homologous proteins is identified and then analyzed. Therefore, a database of the protein sequences is established where the protein sequences are aligned to each other. The database is used to define subgroups of protein sequences which show a high degree of similarity in both the sequence and, if information is available, in the structural arrangement. For each of the subgroups a (poly)peptide sequence comprising at least one consensus sequence is deduced which represents the members of this subgroup; the complete collection of (poly)peptide sequences represent therefore the complete structural repertoire of the collection of homologous proteins. These artificial (poly)peptide sequences are then analyzed, if possible, according to their structural properties to identify unfavorable interactions between amino acids within said (poly)peptide sequences or between said or other (poly)peptide sequences, for example, in multimeric proteins. Such interactions are then removed by changing the consensus sequence accordingly. The (poly)peptide sequences are then analyzed to identify subelements such as domains, loops, helices or CDRs. The amino acid sequence is backtranslated into a corresponding coding nucleic acid sequence which is adapted to the codon usage of the host planned for expressing said nucleic acid sequences. A set of cleavage sites is set up in a way that each of the sub-sequences encoding the sub-elements identified as described above, is flanked by two sites which do not occur a second time within the nucleic acid sequence. This can be achieved by either identifying a cleavage site already flanking a sub-sequence of by changing one or more nucleotides to create the cleavage site, and by removing that site from the remaining part of the gene. The cleavage sites should be common to all corresponding sub-elements or sub-sequences, thus creating a fully modular arrangement of the sub-sequences in the nucleic acid sequence and of the subelements in the corresponding (poly)peptide.

In a further embodiment, the invention provides for a method which sets up two or more sets of (poly)peptides, where for each set the method as described above is performed, and where the cleavage sites are not only unique within each set but also between any two sets. This method can be applied for the creation of (poly)peptide libraries comprising for example two α -helical domains from two different proteins, where said library is screened for novel hetero-association domains.

In yet a further embodiment, at least two of the sets as described above, are derived from the same collection of proteins or at least a part of it. This describes libraries comprising for example, but not limited to, two domains from antibodies such as VH and VL, or two extracellular loops of transmembrane receptors.

In another embodiment, the nucleic acid sequences set up as described above, are synthesized. This can be achieved by any one of several methods well known to the practitioner skilled in the art, for example, by total gene synthesis or by PCR-based approaches.

In one embodiment, the nucleic acid sequences are cloned into a vector. The vector could be a sequencing vector, an expression vector or a display (e.g. phage display) vector, which are well known to those skilled in the art. Any vector could comprise one nucleic acid sequence, or two or more nucleic sequences, either in different or the same operon. In the last case, they could either be cloned separately or as contiguous sequences.

In one embodiment, the removal of unfavorable interactions as described above, leads to enhanced expression of the modified (poly)peptides.

In a preferred embodiment, one or more sub-sequences of the nucleic acid sequences are replaced by different sequences. This can be achieved by excising the sub-sequences using the conditions suitable for cleaving the cleavage sites adjacent to or at the end of the sub-sequence, for example, by using a restriction enzyme at the corresponding restriction site under the conditions well known to those skilled in the art, and replacing the sub-sequence by a different sequence compatible with the cleaved nucleic acid sequence. In a further preferred embodiment, the different sequences replacing the initial sub-sequence(s) are genomic or rearranged genomic sequences, for example in grafting CDRs from nonhuman antibodies onto consensus antibody sequences for rapid humanization of non-human antibodies. In the most preferred embodiment, the different sequences are random sequences, thus replacing the sub-sequence by a collection of sequences to introduce variability and to create a library. The random sequences can be assembled in various ways, for example by using a mixture of mononucleotides or preferably a mixture of trinucleotides (Virnekäs et al., 1994) during automated oligonucleotide synthesis, by error-prone PCR or by other methods well known to the practitioner in the art. The random sequences may be completely randomized or biased towards or against certain codons according to

the amino acid distribution at certain positions in known protein sequences. Additionally, the collection of random sub-sequences may comprise different numbers of codons, giving rise to a collection of sub-elements having different lengths.

In another embodiment, the invention provides for the expression of the nucleic acid sequences from a suitable vector and under suitable conditions well known to those skilled in the art.

In a further preferred embodiment, the (poly)peptides expressed from said nucleic acid sequences are screened and, optionally, optimized. Screening may be performed by using one of the methods well known to the practitioner in the art, such as phage-display, selectively infective phage, polysome technology to screen for binding, assay systems for enzymatic activity or protein stability. (Poly)peptides having the desired property can be identified by sequencing of the corresponding nucleic acid sequence or by amino acid sequencing or mass spectrometry. In the case of subsequent optimization, the nucleic acid sequences encoding the initially selected (poly)peptides can optionally be used without sequencing. Optimization is performed by repeating the replacement of sub-sequences by different sequences, preferably by random sequences, and the screening step one or more times.

The desired property the (poly)peptides are screened for is preferably, but not exclusively, selected from the group of optimized affinity or specificity for a target molecule, optimized enzymatic activity, optimized expression yields, optimized stability and optimized solubility.

In one embodiment, the cleavage sites flanking the sub-sequences are sites recognized and cleaved by restriction enzymes, with recognition and cleavage sequences being either identical or different, the restricted sites either having blunt or sticky ends.

The length of the sub-elements is preferably, but not exclusively ranging between 1 amino acid, such as one residue in the active site of an enzyme or a structure-determining residue, and 150 amino acids, as for whole protein domains. Most preferably, the length ranges between 3 and 25 amino acids, such as most commonly found in CDR loops of antibodies.

The nucleic acid sequences could be RNA or, preferably, DNA.

In one embodiment, the (poly)peptides have an amino acid pattern characteristic of a particular species. This can for example be achieved by deducing the consensus sequences from a collection of homologous proteins of just one species, most preferably from a collection of human proteins. Since the (poly)peptides comprising consensus sequences are artificial, they have to be compared to the protein sequence(s) having the closest similarity to ensure the presence of said characteristic amino acid pattern.

In one embodiment, the invention provides for the creation of libraries of (poly)peptides comprising at least part of members or derivatives of the immunoglobulin superfamily, preferably of member or derivatives of the immunoglobulins. Most preferably, the invention provides for the creation of libraries of human antibodies, wherein said (poly)peptides are or are derived from heavy or light chain variable regions wherein said structural sub-elements are framework regions (FR) 1, 2, 3, or 4 or complementary determining regions (CDR) 1, 2, or 3. In a first step, a database of published antibody sequences of human origin is established where the antibody sequences are aligned to each other. The database is used to define subgroups of antibody sequences which show a high degree of similarity in both the sequence and the canonical fold of CDR loops (as determined by analysis of antibody structures). For each of the subgroups a consensus sequence is deduced which represents the members of this subgroup; the complete collection of consensus sequences represent therefore the complete structural repertoire of human antibodies.

These artificial genes are then constructed e.g. by total gene synthesis or by the use of synthetic genetic subunits. These genetic subunits correspond to structural subelements on the (poly)peptide level. On the DNA level, these genetic subunits are defined by cleavage sites at the start and the end of each of the sub-elements, which are unique in the vector system. All genes which are members of the collection of consensus sequences are constructed such that they contain a similar pattern of corresponding genetic sub-sequences. Most preferably, said (poly)peptides are or are derived from the HuCAL consensus genes: $V\kappa 1$, $V\kappa 2$, $V\kappa 3$, $V\kappa 4$, $V\lambda 1$, $V\lambda 2$, $V\lambda 3$, VH1A, VH1B, VH2, VH3, VH4, VH5, VH6, $C\kappa$, $C\lambda$, CH1 or any combination of said HuCAL consensus genes.

This collection of DNA molecules can then be used to create libraries of antibodies or antibody fragments, preferably Fv, disulphide-linked Fv, single-chain Fv (scFv), or Fab fragments, which may be used as sources of specificities against new target antigens. Moreover, the affinity of the antibodies can be optimized using pre-built library cassettes and a general procedure. The invention provides a method for identifying one or more genes encoding one or more antibody fragments which

binds to a target, comprising the steps of expressing the antibody fragments, and then screening them to isolate one or more antibody fragments which bind to a given target molecule. Preferably, an scFv fragment library comprising the combination of HuCAL VH3 and HuCAL Vλ2 consensus genes and at least a random sub-sequence encoding the heavy chain CDR3 sub-element is screened for binding antibodies. If necessary, the modular design of the genes can then be used to excise from the genes encoding the antibody fragments one or more genetic sub-sequences encoding structural sub-elements, and replacing them by one or more second sub-sequences encoding structural sub-elements. The expression and screening steps can then be repeated until an antibody having the desired affinity is generated.

Particularly preferred is a method in which one or more of the genetic subunits (e.g. the CDRs) are replaced by a random collection of sequences (the library) using the said cleavage sites. Since these cleavage sites are (i) unique in the vector system and (ii) common to all consensus genes, the same (pre-built) library can be inserted into all artificial antibody genes. The resulting library is then screened against any chosen antigen. Binding antibodies are selected, collected and used as starting material for the next library. Here, one or more of the remaining genetic subunits are randomized as described above.

A further embodiment of the present invention relates to fusion proteins by providing for a DNA sequence which encodes both the (poly)peptide, as described above, as well as an additional moiety. Particularly preferred are moieties which have a useful therapeutic function. For example, the additional moiety may be a toxin molecule which is able to kill cells (Vitetta et al., 1993). There are numerous examples of such toxins, well known to the one skilled in the art, such as the bacterial toxins Pseudomonas exotoxin A, and diphtheria toxin, as well as the plant toxins ricin, abrin, modeccin, saporin, and gelonin. By fusing such a toxin for example to an antibody fragment, the toxin can be targeted to, for example, diseased cells, and thereby have a beneficial therapeutic effect. Alternatively, the additional moiety may be a cytokine, such as IL-2 (Rosenberg & Lotze, 1986), which has a particular effect (in this case a T-cell proliferative effect) on a family of cells. In a further embodiment, the additional moiety may confer on its (poly)peptide partner a means of detection and/or purification. For example, the fusion protein could comprise the modified antibody fragment and an enzyme commonly used for detection purposes, such as alkaline phosphatase (Blake et al., 1984). There are numerous other moieties which can be used as detection or purification tags, which are well known to the practitioner skilled in the art. Particularly preferred are peptides comprising at least five histidine residues (Hochuli et al., 1988), which are able to bind to metal ions,

and can therefore be used for the purification of the protein to which they are fused (Lindner et al., 1992). Also provided for by the invention are additional moieties such as the commonly used C-myc and FLAG tags (Hopp et al., 1988; Knappik & Plückthun, 1994).

By engineering one or more fused additional domains, antibody fragments or any other (poly)peptide can be assembled into larger molecules which also fall under the scope of the present invention. For example, mini-antibodies (Pack, 1994) are dimers comprising two antibody fragments, each fused to a self-associating dimerization domain. Dimerization domains which are particularly preferred include those derived from a leucine zipper (Pack & Plückthun, 1992) or helix-turn-helix motif (Pack et al., 1993).

All of the above embodiments of the present invention can be effected using standard techniques of molecular biology known to anyone skilled in the art.

In a further embodiment, the random collection of sub-sequences (the library) is inserted into a singular nucleic acid sequence encoding one (poly)peptide, thus creating a (poly)peptide library based on one universal framework. Preferably a random collection of CDR sub-sequences is inserted into a universal antibody framework, for example into the HuCAL H3k2 single-chain Fv fragment described above.

In further embodiments, the invention provides for nucleic acid sequence(s), vector(s) containing the nucleic acid sequence(s), host cell(s) containing the vector(s), and (poly)peptides, obtainable according to the methods described above.

In a further preferred embodiment, the invention provides for modular vector systems being compatible with the modular nucleic acid sequences encoding the (poly)peptides. The modules of the vectors are flanked by restriction sites unique within the vector system and essentially unique with respect to the restriction sites incorporated into the nucleic acid sequences encoding the (poly)peptides, except for example the restriction sites necessary for cloning the nucleic acid sequences into the vector. The list of vector modules comprises origins of single-stranded replication, origins of double-stranded replication for high- and low copy number plasmids, promotor/operator, repressor or terminator elements, resistance genes, potential recombination sites, gene III for display on filamentous phages, signal sequences, purification and detection tags, and sequences of additional moieties.

The vectors are preferably, but not exclusively, expression vectors or vectors suitable for expression and screening of libraries.

In another embodiment, the invention provides for a kit, comprising one or more of the list of nucleic acid sequence(s), recombinant vector(s), (poly)peptide(s), and vector(s) according to the methods described above, and suitable host cell(s) for producing the (poly)peptide(s).

In a preferred embodiment, the invention provides for the creation of libraries of human antibodies. In a first step, a database of published antibody sequences of human origin is established. The database is used to define subgroups of antibody sequences which show a high degree of similarity in both the sequence and the canonical fold (as determined by analysis of antibody structures). For each of the subgroups a consensus sequence is deduced which represents the members of this subgroup; the complete collection of consensus sequences represent therefore the complete structural repertoire of human antibodies.

These artificial genes are then constructed by the use of synthetic genetic subunits. These genetic subunits correspond to structural sub-elements on the protein level. On the DNA level, these genetic subunits are defined by cleavage sites at the start and the end of each of the subelements, which are unique in the vector system. All genes which are members of the collection of consensus sequences are constructed such that they contain a similar pattern of said genetic subunits.

This collection of DNA molecules can then be used to create libraries of antibodies which may be used as sources of specificities against new target antigens. Moreover, the affinity of the antibodies can be optimised using pre-built library cassettes and a general procedure. The invention provides a method for identifying one or more genes encoding one or more antibody fragments which binds to a target, comprising the steps of expressing the antibody fragments, and then screening them to isolate one or more antibody fragments which bind to a given target molecule. If necessary, the modular design of the genes can then be used to excise from the genes encoding the antibody fragments one or more genetic subsequences encoding structural sub-elements, and replacing them by one or more second sub-sequences encoding structural sub-elements. The expression and screening steps can then be repeated until an antibody having the desired affinity is generated.

Particularly preferred is a method in which one or more of the genetic subunits (e.g. the CDR's) are replaced by a random collection of sequences (the library) using the said cleavage sites. Since these cleavage sites are (i) unique in the vector system and (ii) common to all consensus genes, the same (pre-built) library can be inserted into all artificial antibody genes. The resulting library is then screened against any chosen antigen. Binding antibodies are eluted, collected and used as starting material for the next library. Here, one or more of the remaining genetic subunits are randomised as described above.

Definitions

WO 97/08320

Protein:

The term protein comprises monomeric polypeptide chains as well as homo- or heteromultimeric complexes of two or more polypeptide chains connected either by covalent interactions (such as disulphide bonds) or by non-covalent interactions (such as hydrophobic or electrostatic interactions).

Analysis of homologous proteins:

The amino acid sequences of three or more proteins are aligned to each other (allowing for introduction of gaps) in a way which maximizes the correspondence between identical or similar amino acid residues at all positions. These aligned sequences are termed homologous if the percentage of the sum of identical and/or similar residues exceeds a defined threshold. This threshold is commonly regarded by those skilled in the art as being exceeded when at least 15% of the amino acids in the aligned genes are identical, and at least 30% are similar. Examples for families of homologous proteins are: immunoglobulin superfamily, scavenger receptor superfamily, fibronectin superfamilies (e.g. type II and III), complement control protein superfamily, cytokine receptor superfamily, cystine knot proteins, tyrosine kinases, and numerous other examples well known to one of ordinary skill in the art.

Consensus sequence:

Using a matrix of at least three aligned amino acid sequences, and allowing for gaps in the alignment, it is possible to determine the most frequent amino acid residue at each position. The consensus sequence is that sequence which comprises the amino acids which are most frequently represented at each position. In the event that two or more amino acids are equally represented at a single position, the consensus sequence includes both or all of those amino acids.

Removing unfavorable interactions:

The consensus sequence is per se in most cases artificial and has to be analyzed in order to change amino acid residues which, for example, would prevent the resulting molecule to adapt a functional tertiary structure or which would block the interaction with other (poly)peptide chains in multimeric complexes. This can be done either by (i) building a three-dimensional model of the consensus sequence using known related structures as a template, and identifying amino acid residues within the model which may interact unfavorably with each other, or (ii) analyzing the matrix of aligned amino acid sequences in order to detect combinations of amino

acid residues within the sequences which frequently occur together in one sequence and are therefore likely to interact with each other. These probable interaction-pairs are then tabulated and the consensus is compared with these "interaction maps". Missing or wrong interactions in the consensus are repaired accordingly by introducing appropriate changes in amino acids which minimize unfavorable interactions.

Identification of structural sub-elements:

Structural sub-elements are stretches of amino acid residues within a protein/(poly)peptide which correspond to a defined structural or functional part of the molecule. These can be loops (e.g. CDR loops of an antibody) or any other secondary or functional structure within the protein/(poly)peptide (domains, α -helices, β -sheets, framework regions of antibodies, etc.). A structural sub-element can be identified using known structures of similar or homologous (poly)peptides, or by using the above mentioned matrices of aligned amino acid sequences. Here the variability at each position is the basis for determining stretches of amino acid residues which belong to a structural sub-element (e.g. hypervariable regions of an antibody).

Sub-sequence:

A sub-sequence is defined as a genetic module which is flanked by unique cleavage sites and encodes at least one structural sub-element. It is not necessarily identical to a structural sub-element.

Cleavage site:

A short DNA sequence which is used as a specific target for a reagent which cleaves DNA in a sequence-specific manner (e.g. restriction endonucleases).

Compatible cleavage sites:

Cleavage sites are compatible with each other, if they can be efficiently ligated without modification and, preferably, also without adding an adapter molecule.

Unique cleavage sites:

A cleavage site is defined as unique if it occurs only once in a vector containing at least one of the genes of interest, or if a vector containing at least one of the genes of interest could be treated in a way that only one of the cleavage sites could be used by the cleaving agent.

Corresponding (poly)peptide sequences:

Sequences deduced from the same part of one group of homologous proteins are called corresponding (poly)peptide sequences.

Common cleavage sites:

A cleavage site in at least two corresponding sequences, which occurs at the same functional position (i.e. which flanks a defined sub-sequence), which can be hydrolyzed by the same cleavage tool and which yields identical compatible ends is termed a common cleavage site.

Excising genetic sub-sequences:

A method which uses the unique cleavage sites and the corresponding cleavage reagents to cleave the target DNA at the specified positions in order to isolate, remove or replace the genetic sub-sequence flanked by these unique cleavage sites.

Exchanging genetic sub-sequences:

A method by which an existing sub-sequence is removed using the flanking cleavage sites of this sub-sequence, and a new sub-sequence or a collection of sub-sequences, which contain ends compatible with the cleavage sites thus created, is inserted.

Expression of genes:

The term expression refers to in vivo or in vitro processes, by which the information of a gene is transcribed into mRNA and then translated into a protein/(poly)peptide. Thus, the term expression refers to a process which occurs inside cells, by which the information of a gene is transcribed into mRNA and then into a protein. The term expression also includes all events of post-translational modification and transport, which are necessary for the (poly)peptide to be functional.

Screening of protein/(poly)peptide libraries:

Any method which allows isolation of one or more proteins/(poly)peptides having a desired property from other proteins/(poly)peptides within a library.

Amino acid pattern characteristic for a species:

A (poly)peptide sequence is assumed to exhibit an amino acid pattern characteristic for a species if it is deduced from a collection of homologous proteins from just this species.

Immunoglobulin superfamily (IqSF):

The IgSF is a family of proteins comprising domains being characterized by the immunoglobulin fold. The IgSF comprises for example T-cell receptors and the immunoglobulins (antibodies).

Antibody framework:

A framework of an antibody variable domain is defined by Kabat et al. (1991) as the part of the variable domain which serves as a scaffold for the antigen binding loops of this variable domain.

Antibody CDR:

The CDRs (complementarity determining regions) of an antibody consist of the antigen binding loops, as defined by Kabat et al. (1991). Each of the two variable domains of an antibody Fv fragment contain three CDRs.

HuCAL:

Acronym for <u>Human Combinatorial Antibody Library</u>. Antibody Library based on modular consensus genes according to the invention (see Example 1).

Antibody fragment:

Any portion of an antibody which has a particular function, e.g. binding of antigen. Usually, antibody fragments are smaller than whole antibodies. Examples are Fv, disulphide-linked Fv, single-chain Fv (scFv), or Fab fragments. Additionally, antibody fragments are often engineered to include new functions or properties.

Universal framework:

One single framework which can be used to create the full variability of functions, specificities or properties which is originally sustained by a large collection of different frameworks, is called universal framework.

Binding of an antibody to its target:

The process which leads to a tight and specific association between an antibody and a corresponding molecule or ligand is called binding. A molecule or ligand or any part of a molecule or ligand which is recognized by an antibody is called the target.

Replacing genetic sub-sequences

A method by which an existing sub-sequence is removed using the flanking cleavage sites of this sub-sequence, and a new sub-sequence or collection of sub-

sequences, which contains ends compatible with the cleavage sites thus created, is inserted.

Assembling of genetic sequences:

Any process which is used to combine synthetic or natural genetic sequences in a specific manner in order to get longer genetic sequences which contain at least parts of the used synthetic or natural genetic sequences.

Analysis of homologous genes:

The corresponding amino acid sequences of two or more genes are aligned to each other in a way which maximizes the correspondence between identical or similar amino acid residues at all positions. These aligned sequences are termed homologous if the percentage of the sum of identical and/or similar residues exceeds a defined threshold. This threshold is commonly regarded by those skilled in the art as being exceeded when at least 15 per cent of the amino acids in the aligned genes are identical, and at least 30 per cent are similar.

Legends to Figures and Tables

Fig. 1: Flow chart outlining the process of construction of a synthetic human antibody library based on consensus sequences.

- Fig. 2: Alignment of consensus sequences designed for each subgroup (amino acid residues are shown with their standard one-letter abbreviation). (A) kappa sequences, (B) lambda sequences and (C), heavy chain sequences. The positions are numbered according to Kabat (1991). In order to maximize homology in the alignment, gaps (—) have been introduced in the sequence at certain positions.
- Fig. 3: Gene sequences of the synthetic V kappa consensus genes. The corresponding amino acid sequences (see Fig. 2) as well as the unique cleavage sites are also shown.
- Fig. 4: Gene sequences of the synthetic V lambda consensus genes. The corresponding amino acid sequences (see Fig. 2) as well as the unique cleavage sites are also shown.
- Fig. 5: Gene sequences of the synthetic V heavy chain consensus genes. The corresponding amino acid sequences (see Fig. 2) as well as the unique cleavage sites are also shown.
- Fig. 6: Oligonucleotides used for construction of the consensus genes. The oligos are named according to the corresponding consensus gene, e.g. the gene Vκ1 was constructed using the six oligonucleotides O1K1 to O1K6. The oligonucleotides used for synthesizing the genes encoding the constant domains Cκ (OCLK1 to 8) and CH1 (OCH1 to 8) are also shown.
- Fig. 7 A/B: Sequences of the synthetic genes encoding the constant domains Cκ
 (A) and CH1 (B). The corresponding amino acid sequences as well as unique cleavage sites introduced in these genes are also shown.
- Fig. 7C: Functional map and sequence of module M24 comprising the synthetic $C\lambda$ gene segment (huCL lambda).
- Fig. 7D: Oligonucleotides used for synthesis of module M24.
- Fig. 8: Sequence and restriction map of the synthetic gene encoding the consensus single-chain fragment VH3-Vk2. The signal sequence (amino acids 1 to 21) was derived from the E. coli phoA gene (Skerra &

Plückthun, 1988). Between the phoA signal sequence and the VH3 domain, a short sequence stretch encoding 4 amino acid residues (amino acid 22 to 25) has been inserted in order to allow detection of the single-chain fragment in Western blot or ELISA using the monoclonal antibody M1 (Knappik & Plückthun, 1994). The last 6 basepairs of the sequence were introduced for cloning purposes (EcoRI site).

- Fig. 9: Plasmid map of the vector plG10.3 used for phage display of the H3κ2 scFv fragment. The vector is derived from plG10 and contains the gene for the lac operon repressor, lacl, the artificial operon encoding the H3κ2-gene3ss fusion under control of the lac promoter, the lpp terminator of transcription, the single-strand replication origin of the *E. coli* phage f1 (F1_ORI), a gene encoding β-lactamase (bla) and the ColEI derived origin of replication.
- Fig. 10: Sequencing results of independent clones from the initial library, translated into the corresponding amino acid sequences. (A) Amino acid sequence of the VH3 consensus heavy chain CDR3 (position 93 to 102, Kabat numbering). (B) Amino acid sequences of 12 clones of the 10-mer library. (C) Amino acid sequences of 11 clones of the 15-mer library, *: single base deletion.
- Fig. 11: Expression test of individual library members. (A) Expression of 9 independent clones of the 10-mer library. (B) Expression of 9 independent clones of the 15-mer library. The lane designated with M contains the size marker. Both the gp3-scFv fusion and the scFv monomer are indicated.
- Fig. 12: Enrichment of specific phage antibodies during the panning against FITC-BSA. The initial as well as the subsequent fluorescein-specific sub-libraries were panned against the blocking buffer and the ratio of the phage eluted from the FITC-BSA coated well vs. that from the powder milk coated well from each panning round is presented as the "specificity factor".
- Fig. 13: Phage ELISA of 24 independent clones after the third round of panning tested for binding on FITC-BSA.
- Fig. 14: Competition ELISA of selected FITC-BSA binding clones. The ELISA signals (OD_{405nm}) of scFv binding without inhibition are taken as 100%.
- Fig. 15: Sequencing results of the heavy chain CDR3s of independent clones after 3 rounds of panning against FITC-BSA, translated into the corresponding amino acid sequences (position 93 to 102, Kabat numbering).

Fig. 16: Coomassie-Blue stained SDS-PAGE of the purified anti-fluorescein softy fragments: M: molecular weight marker, A: total soluble cell extract after induction, B: fraction of the flow-through, C, D and E: purified scFv fragments 1HA-3E4, 1HA-3E5 and 1HA-3E10, respectively.

- Fig. 17: Enrichment of specific phage antibodies during the panning against ß-estradiol-BSA, testosterone-BSA, BSA, ESL-1, interleukin-2, lymphotoxin-ß, and LeY-BSA after three rounds of panning.
- Fig. 18: ELISA of selected ESL-1 and ß-estradiol binding clones
- Fig. 19: Selectivity and cross-reactivity of HuCAL antibodies: in the diagonal specific binding of HuCAL antibodies can be seen, off-diagonal signals show non-specific cross-reactivity.
- Fig. 20: Sequencing results of the heavy chain CDR3s of independent clones after 3 rounds of panning against β-estradiol-BSA, translated into the corresponding amino acid sequences (position 93 to 102, Kabat . numbering). One clone is derived from the 10mer library.
- Fig. 21: Sequencing results of the heavy chain CDR3s of independent clones after 3 rounds of panning against testosterone-BSA, translated into the corresponding amino acid sequences (position 93 to 102, Kabat numbering).
- Fig. 22: Sequencing results of the heavy chain CDR3s of independent clones after 3 rounds of panning against lymphotoxin-8, translated into the corresponding amino acid sequences (position 93 to 102, Kabat numbering). One clone comprises a 14mer CDR, presumably introduced by incomplete coupling of the trinucleotide mixture during oligonucleotide synthesis.
- Fig. 23: Sequencing results of the heavy chain CDR3s of independent clones after 3 rounds of panning against ESL-1, translated into the corresponding amino acid sequences (position 93 to 102, Kabat numbering). Two clones are derived from the 10mer library. One clone comprises a 16mer CDR, presumably introduced by chain elongation during oligonucleotide synthesis using trinucleotides.
- Fig. 24: Sequencing results of the heavy chain CDR3s of independent clones after 3 rounds of panning against BSA, translated into the corresponding amino acid sequences (position 93 to 102, Kabat numbering).
- Fig. 25: Schematic representation of the modular pCAL vector system.
- Fig. 25a: List of restriction sites already used in or suitable for the modular HuCAL genes and pCAL vector system.
- Fig. 26: List of the modular vector elements for the pCAL vector series: shown are only those restriction sites which are part of the modular system.

Fig. 27: Functional map and sequence of the multi-cloning site module (MCS)

- Fig. 28: Functional map and sequence of the pMCS cloning vector series.
- Fig. 29: Functional map and sequence of the pCAL module M1 (see Fig. 26).
- Fig. 30: Functional map and sequence of the pCAL module M7-III (see Fig. 26).
- Fig. 31: Functional map and sequence of the pCAL module M9-II (see Fig. 26).
- Fig. 32: Functional map and sequence of the pCAL module M11-II (see Fig. 26).
- Fig. 33: Functional map and sequence of the pCAL module M14-Ext2 (see Fig. 26).
- Fig. 34: Functional map and sequence of the pCAL module M17 (see Fig. 26).
- Fig. 35: Functional map and sequence of the modular vector pCAL4.
- Fig. 35a: Functional maps and sequences of additional pCAL modules (M2, M3, M7I, M7II, M8, M10II, M11II, M12, M13, M19, M20, M21, M41) and of low-copy number plasmid vectors (pCALO1 to pCALO3).
- Fig. 35b:List of oligonucleotides and primers used for synthesis of pCAL vector modules.
- Fig. 36: Functional map and sequence of the B-lactamase cassette for replacement of CDRs for CDR library cloning.
- Fig. 37: Oligo and primer design for Vκ CDR3 libraries
- Fig. 38: Oligo and primer design for Vλ CDR3 libraries
- Fig. 39: Functional map of the pBS13 expression vector series.
- Fig. 40: Expression of all 49 HuCAL scFvs obtained by combining each of the 7 VH genes with each of the 7 VL genes (pBS13, 30°C): Values are given for the percentage of soluble vs. insoluble material, the total and the soluble amount compared to the combination H3κ2, which was set to 100%. In addition, the corresponding values for the McPC603 scFv are given.
- Table 1: Summary of human immunoglobulin germline sequences used for computing the germline membership of rearranged sequences. (A) kappa sequences, (B) lambda sequences and (C), heavy chain sequences. (1) The germline name used in the various calculations, (2) the references number for the corresponding sequence (see appendix for sequence related citations), (3) the family where each sequence belongs to and (4), the various names found in literature for germline genes with identical amino acid sequences.
- Table 2: Rearranged human sequences used for the calculation of consensus sequences. (A) kappa sequences, (B) lambda sequences and (C), heavy chain sequences. The table summarized the name of the sequence (1),

the length of the sequence in amino acids (2), the germline family (3) as well as the computed germline counterpart (4). The number of amino acid exchanges between the rearranged sequence and the germline sequence is tabulated in (5), and the percentage of different amino acids is given in (6). Column (7) gives the references number for the corresponding sequence (see appendix for sequence related citations).

- Table 3: Assignment of rearranged V sequences to their germline counterparts.

 (A) kappa sequences, (B) lambda sequences and (C), heavy chain sequences. The germline genes are tabulated according to their family (1), and the number of rearranged genes found for every germline gene is given in (2).
- Table 4: Computation of the consensus sequence of the rearranged V kappa sequences. (A), V kappa subgroup 1, (B), V kappa subgroup 2, (C), V kappa subgroup 3 and (D), V kappa subgroup 4. The number of each amino acid found at each position is tabulated together with the statistical analysis of the data. (1) Amino acids are given with their standard one-letter abbreviations (and B means D or N, Z means E or Q and X means any amino acid). The statistical analysis summarizes the number of sequences found at each position (2), the number of occurrences of the most common amino acid (3), the amino acid residue which is most common at this position (4), the relative frequency of the occurrence of the most common amino acid (5) and the number of different amino acids found at each position (6).
- Table 5: Computation of the consensus sequence of the rearranged V lambda sequences. (A), V lambda subgroup 1, (B), V lambda subgroup 2, and (C), V lambda subgroup 3. The number of each amino acid found at each position is tabulated together with the statistical analysis of the data. Abbreviations are the same as in Table 4.
- Table 6: Computation of the consensus sequence of the rearranged V heavy chain sequences. (A), V heavy chain subgroup 1A, (B), V heavy chain subgroup 1B, (C), V heavy chain subgroup 2, (D), V heavy chain subgroup 3, (E), V heavy chain subgroup 4, (F), V heavy chain subgroup 5, and (G), V heavy chain subgroup 6. The number of each amino acid found at each position is tabulated together with the statistical analysis of the data. Abbreviations are the same as in Table 4.

Examples

Example 1: Design of a Synthetic Human Combinatorial Antibody Library (HuCAL)

The following example describes the design of a fully synthetic human combinatorial antibody library (HuCAL), based on consensus sequences of the human immunoglobulin repertoire, and the synthesis of the consensus genes. The general procedure is outlined in Fig. 1.

1.1 Sequence database

1.1.1 Collection and alignment of human immunoglobulin sequences

In a first step, sequences of variable domains of human immunoglobulins have been collected and divided into three sub bases: V heavy chain (VH), V kappa (V κ) and V lambda (V λ). For each sequence, the gene sequence was then translated into the corresponding amino acid sequence. Subsequently, all amino acid sequences were aligned according to Kabat et al. (1991). In the case of V λ sequences, the numbering system of Chuchana et al. (1990) was used. Each of the three main databases was then divided into two further sub bases: the first sub base contained all sequences derived from rearranged V genes, where more than 70 positions of the sequence were known. The second sub base contained all germline gene segments (without the D- and J- minigenes; pseudogenes with internal stop codons were also removed). In all cases, where germline sequences with identical amino acid sequence but different names were found, only one sequence was used (see Table 1). The final databases of rearranged sequences contained 386, 149 and 674 entries for V κ , V λ and VH, respectively. The final databases of germline sequences contained 48, 26 and 141 entries for V κ , V λ and VH, respectively.

1.1.2 Assignment of sequences to subgroups

The sequences in the three germline databases where then grouped according to sequence homology (see also Tomlinson et al., 1992, Williams & Winter, 1993, and Cox et al., 1994). In the case of $V\kappa$, 7 families could be established. $V\lambda$ was divided into 8 families and VH into 6 families. The VH germline genes of the VH7 family (Van Dijk et al., 1993) were grouped into the VH1 family, since the genes of the two families are highly homologous. Each family contained different numbers of germline genes, varying from 1 (for example VH6) to 47 (VH3).

1.2 Analysis of sequences

1.2.1 Computation of germline membership

For each of the 1209 amino acid sequences in the databases of rearranged genes, the nearest germline counterpart, i.e. the germline sequence with the smallest number of amino acid differences was then calculated. After the germline counterpart was found, the number of somatic mutations which occurred in the rearranged gene and which led to amino acid exchanges could be tabulated. In 140 cases, the germline counterpart could not be calculated exactly, because more than one germline gene was found with an identical number of amino acid exchanges. These rearranged sequences were removed from the database. In a few cases, the number of amino acid exchanges was found to be unusually large (>20 for VL and >25 for VH), indicating either heavily mutated rearranged genes or derivation from germline genes not present in the database. Since it was not possible to distinguish between these two possibilities, these sequences were also removed from the database. Finally, 12 rearranged sequences were removed from the database because they were found to have very unusual CDR lengths and composition or unusual amino acids at canonical positions (see below). In summary, 1023 rearranged sequences out of 1209 (85%) could be clearly assigned to their germline counterparts (see Table 2).

After this calculation, every rearranged gene could be arranged in one of the families established for the germline genes. Now the usage of each germline gene, i.e. the number of rearranged genes which originate from each germline gene, could be calculated (see Table 2). It was found that the usage was strongly biased towards a subset of germline genes, whereas most of the germline genes were not present as rearranged genes in the database and therefore apparently not used in the immune system (Table 3). This observation had already been reported in the case of $V\kappa$ (Cox, et al., 1994). All germline gene families, where no or only very few rearranged counterparts could be assigned, were removed from the database, leaving 4 $V\kappa$, 3 $V\lambda$, and 6 VH families.

1.2.2 Analysis of CDR conformations

The conformation of the antigen binding loops of antibody molecules, the CDRs, is strongly dependent on both the length of the CDRs and the amino acid residues located at the so-called canonical positions (Chothia & Lesk, 1987). It has been found that only a few canonical structures exist, which determine the structural

repertoire of the immunoglobulin variable domains (Chothia et al., 1989). The canonical amino acid positions can be found in CDR as well as framework regions. The 13 used germline families defined above (7 VL and 6 VH) were now analyzed for their canonical structures in order to define the structural repertoire encoded in these families.

In 3 of the 4 V κ families (V κ 1, 2 and 4), one different type of CDR1 conformation could be defined for every family. The family V κ 3 showed two types of CDR1 conformation: one type which was identical to V κ 1 and one type only found in V κ 3. All V κ CDR2s used the same type of canonical structure. The CDR3 conformation is not encoded in the germline gene segments. Therefore, the 4 V κ families defined by sequence homology and usage corresponded also to 4 types of canonical structures found in V κ germline genes.

The 3 V λ families defined above showed 3 types of CDR1 conformation, each family with one unique type. The V λ 1 family contained 2 different CDR1 lengths (13 and 14 amino acids), but identical canonical residues, and it is thought that both lengths adopt the same canonical conformation (Chothia & Lesk, 1987). In the CDR2 of the used V λ germlines, only one canonical conformation exists, and the CDR3 conformation is not encoded in the germline gene segments. Therefore, the 3 V λ 4 families defined by sequence homology and usage corresponded also to 3 types of canonical structures.

The structural repertoire of the human VH sequences was analyzed in detail by Chothia et al., 1992. In total, 3 conformations of CDR1 (H1-1, H1-2 and H1-3) and 6 conformations of CDR2 (H2-1, H2-2, H2-3, H2-4, H2-5 and H2-x) could be defined. Since the CDR3 is encoded in the D- and J-minigene segments, no particular canonical residues are defined for this CDR.

All the members of the VH1 family defined above contained the CDR1 conformation H1-1, but differed in their CDR2 conformation: the H2-2 conformation was found in 6 germline genes, whereas the conformation H2-3 was found in 8 germline genes. Since the two types of CDR2 conformations are defined by different types of amino acid at the framework position 72, the VH1 family was divided into two subfamilies: VH1A with CDR2 conformation H2-2 and VH1B with the conformation H2-3. The members of the VH2 family all had the conformations H1-3 and H2-1 in CDR1 and CDR2, respectively. The CDR1 conformation of the VH3 members was found in all cases to be H1-1, but 4 different types were found in CDR2 (H2-1, H2-3, H2-4 and H2-x). In these CDR2 conformations, the canonical framework residue 71 is always

defined by an arginine. Therefore, it was not necessary to divide the VH3 family into subfamilies, since the 4 types of CDR2 conformations were defined solely by the CDR2 itself. The same was true for the VH4 family. Here, all 3 types of CDR1 conformations were found, but since the CDR1 conformation was defined by the CDR itself (the canonical framework residue 26 was found to be glycine in all cases), no subdivisions were necessary. The CDR2 conformation of the VH4 members was found to be H2-1 in all cases. All members of the VH5 family were found to have the conformation H1-1 and H2-2, respectively. The single germline gene of the VH6 family had the conformations H1-3 and H2-5 in CDR1 and CDR2, respectively.

In summary, all possible CDR conformations of the $V\kappa$ and $V\lambda$ genes were present in the 7 families defined by sequence comparison. From the 12 different CDR conformations found in the used VH germline genes, 7 could be covered by dividing the family VH1 into two subfamilies, thereby creating 7 VH families. The remaining 5 CDR conformations (3 in the VH3 and 2 in the VH4 family) were defined by the CDRs themselves and could be created during the construction of CDR libraries. Therefore, the structural repertoire of the used human V genes could be covered by 49 (7 x 7) different frameworks.

1.2.3 Computation of consensus sequences

The 14 databases of rearranged sequences (4 V κ , 3 V λ and 7 VH) were used to compute the HuCAL consensus sequences of each subgroup (4 HuCAL- $V\kappa$, 3 HuCAL- Vλ, 7 HuCAL- VH, see Table 4, 5 and 6). This was done by counting the number of amino acid residues used at each position (position variability) and subsequently identifying the amino acid residue most frequently used at each position. By using the rearranged sequences instead of the used germline sequences for the calculation of the consensus, the consensus was weighted according to the frequency of usage. Additionally, frequently mutated and highly conserved positions could be identified. The consensus sequences were crosschecked with the consensus of the germline families to see whether the rearranged sequences were biased at certain positions towards amino acid residues which do not occur in the collected germline sequences, but this was found not to be the case. Subsequently, the number of differences of each of the 14 consensus sequences to each of the germline sequences found in each specific family was calculated. The overall deviation from the most homologous germline sequence was found to be 2.4 amino acid residues (s.d. = 2.7), ensuring that the "artificial" consensus sequences

can still be considered as truly human sequences as far as immunogenicity is concerned.

1.3 Structural analysis

So far, only sequence information was used to design the consensus sequences. Since it was possible that during the calculation certain artificial combinations of amino acid residues have been created, which are located far away in the sequence but have contacts to each other in the three dimensional structure, leading to destabilized or even misfolded frameworks, the 14 consensus sequences were analyzed according to their structural properties.

It was rationalized that all rearranged sequences present in the database correspond to functional and therefore correctly folded antibody molecules. Hence, the most homologous rearranged sequence was calculated for each consensus sequence. The positions where the consensus differed from the rearranged sequence were identified as potential "artificial residues" and inspected.

The inspection itself was done in two directions. First, the local sequence stretch around each potentially "artificial residue" was compared with the corresponding stretch of all the rearranged sequences. If this stretch was found to be truly artificial, i.e. never occurred in any of the rearranged sequences, the critical residue was converted into the second most common amino acid found at this position and analyzed again. Second, the potentially "artificial residues" were analyzed for their long range interactions. This was done by collecting all available structures of human antibody variable domains from the corresponding PDB files and calculating for every structure the number and type of interactions each amino acid residue established to each side-chain. These "interaction maps" were used to analyze the probable side-chain/side-chain interactions of the potentially "artificial residues". As a result of this analysis, the following residues were exchanged (given is the name of the gene, the position according to Kabat's numbering scheme, the amino acid found at this position as the most abundant one and the amino acid which was used instead):

VH2: S₆₅T Vκ1: N₃₄A,

Vκ3: G₉A, D₆₀A, R₇₇S

Vλ3: V₇₈T

1.4 Design of CDR sequences

The process described above provided the complete consensus sequences derived solely from the databases of rearranged sequences. It was rationalized that the CDR1 and CDR2 regions should be taken from the databases of used germline sequences, since the CDRs of rearranged and mutated sequences are biased towards their particular antigens. Moreover, the germline CDR sequences are known to allow binding to a variety of antigens in the primary immune response, where only CDR3 is varied. Therefore, the consensus CDRs obtained from the calculations described above were replaced by germline CDRs in the case of VH and V_K . In the case of V_K , a few amino acid exchanges were introduced in some of the chosen germline CDRs in order to avoid possible protease cleavage sites as well as possible structural constraints.

The CDRs of following germline genes have been chosen:

HuCAL gene	CDR1	CDR2		
HuCAL-VH1A	VH1-12-1	VH1-12-1		
HuCAL-VH1B	VH1-13-16	VH1-13-6,-7,-8,-9		
HuCAL-VH2	VH2-31-10,-11,-12,-13	VH2-31-3,-4		
HuCAL-VH3	VH3-13-8,-9,-10	VH3-13-8,-9,-10		
HuCAL-VH4	VH4-11-7 to -14	VH4-11-8,-9,-11,-12,-14,-16		
		VH4-31-17,-18,-19,-20		
HuCAL-VH5	VH5-12-1,-2	VH5-12-1,-2		
HuCAL-VH6	VH6-35-1	VH6-35-1		
HuCAL-V _K 1	Vĸ1-14,-15	Vκ1-2,-3,-4,-5,-7,-8,-12,-13,-18,-19		
HuCAL-Vκ2	Vĸ2-6	Vκ2-6		
HuCAL-Vk3	Vk3-1,-4	Vκ3-4		
HuCAL-V _K 4	Vĸ4-1	VK4-1		
HuCAL-Vλ1	HUMLV117,DPL5	DPL5		
HuCAL-Vλ2	DPL11,DPL12			
HuCAL-Vλ.3	DPL23	DPL12		
	5, 220	HUMLV318		

In the case of the CDR3s, any sequence could be chosen since these CDRs were planned to be the first to be replaced by oligonucleotide libraries. In order to study the expression and folding behavior of the consensus sequences in *E. coli*, it would be useful to have all sequences with the same CDR3, since the influence of the CDR3s on the folding behavior would then be identical in all cases. The dummy sequences QQHYTTPP and ARWGGDGFYAMDY were selected for the VL chains (kappa and lambda) and for the VH chains, respectively. These sequences are known to be compatible with antibody folding in *E. coli* (Carter et al., 1992).

1.5 Gene design

The final outcome of the process described above was a collection of 14 HuCAL amino acid sequences, which represent the frequently used structural antibody repertoire of the human immune system (see Figure 2). These sequences were back-translated into DNA sequences. In a first step, the back-translation was done using only codons which are known to be frequently used in E. coli. These gene sequences were then used for creating a database of all possible restriction endonuclease sites, which could be introduced without changing the corresponding amino acid sequences. Using this database, cleavage sites were selected which were located at the flanking regions of all sub-elements of the genes (CDRs and framework regions) and which could be introduced in all HuCAL VH, Vκ or Vλ genes simultaneously at the same position. In a few cases it was not possible to find cleavage sites for all genes of a subgroup. When this happened, the amino acid sequence was changed, if this was possible according to the available sequence and structural information. This exchange was then analyzed again as described above. In total, the following 6 amino acid residues were exchanged during this design (given is the name of the gene, the position according to Kabat's numbering scheme, the amino acid found at this position as the most abundant one and the amino acid which was used instead):

VH2: T₂Q

VH6: S₄,G

Vκ3: E,D, I₅₈V

Vκ4: K₂₄R

Vλ3: T,,S

In one case (5'-end of VH framework 3) it was not possible to identify a single cleavage site for all 7 VH genes. Two different type of cleavage sites were used instead: BstEll for HuCAL VH1A, VH1B, VH4 and VH5, and NspV for HuCAL VH2, VH3, VH4 and VH6.

Several restriction endonuclease sites were identified, which were not located at the flanking regions of the sub-elements but which could be introduced in every gene of a given group without changing the amino acid sequence. These cleavage sites were also introduced in order to make the system more flexible for further improvements. Finally, all but one remaining restriction endonuclease sites were removed in every gene sequence. The single cleavage site, which was not removed was different in all genes of a subgroup and could be therefore used as a "fingerprint" site to ease the identification of the different genes by restriction digest. The designed genes, together with the corresponding amino acid sequences and the group-specific restriction endonuclease sites are shown in Figure 3, 4 and 5, respectively.

1.6 Gene synthesis and cloning

The consensus genes were synthesized using the method described by Prodromou & Pearl, 1992, using the oligonucleotides shown in Fig. 6. Gene segments encoding the human constant domains $C\kappa$, $C\lambda$ and CH1 were also synthesized, based on sequence information given by Kabat et al., 1991 (see Fig. 6 and Fig. 7). Since for both the CDR3 and the framework 4 gene segments identical sequences were chosen in all HuCAL $V\kappa$, $V\lambda$ and VH genes, respectively, this part was constructed only once, together with the corresponding gene segments encoding the constant domains. The PCR products were cloned into pCR-Script KS(+) (Stratagene, Inc.) or pZErO-1 (Invitrogen, Inc.) and verified by sequencing.

Example 2: Cloning and Testing of a HuCAL-Based Antibody Library

A combination of two of the synthetic consensus genes was chosen after construction to test whether binding antibody fragments can be isolated from a library based on these two consensus frameworks. The two genes were cloned as a single-chain Fv (scFv) fragment, and a VH-CDR3 library was inserted. In order to test the library for the presence of functional antibody molecules, a selection procedure

was carried out using the small hapten fluorescein bound to BSA (FITC-BSA) as antigen.

2.1 Cloning of the HuCAL VH3-Vk2 scFv fragment

In order to test the design of the consensus genes, one randomly chosen combination of synthetic light and heavy gene (HuCAL-Vk2 and HuCAL-VH3) was used for the construction of a single-chain antibody (scFv) fragment. Briefly, the gene segments encoding the VH3 consensus gene and the CH1 gene segment including the CDR3 - framework 4 region, as well as the Vk2 consensus gene and the Ck gene segment including the CDR3 - framework 4 region were assembled yielding the gene for the VH3-CH1 Fd fragment and the gene encoding the Vκ2-Cκ light chain, respectively. The CH1 gene segment was then replaced by an oligonucleotide cassette encoding a 20-mer peptide linker with the sequence were 5'- TCAGCGGGTGGCGGTTCTGGCGGCGGTGGGAGCGGTGGCGGTGGTTC-TGGCGGTGGTGGTTCCGATATCGGTCCACGTACGG-3' and 5'-AATTCCGTACG-TGGACCGATATCGGAACCACCACCGCCAGAACCACCGCCACCGCTCCCACCGC CGCCAGAACCGCCACCCGC-3', respectively. Finally, the HuCAL-Vk2 gene was inserted via EcoRV and BsiWI into the plasmid encoding the HuCAL-VH3-linker fusion, leading to the final gene HuCAL-VH3-Vk2, which encoded the two consensus sequences in the single-chain format VH-linker-VL. The complete coding sequence is shown in Fig. 8.

2.2 Construction of a monovalent phage-display phagemid vector plG10.3

Phagemid pIG10.3 (Fig. 9) was constructed in order to create a phage-display system (Winter et al., 1994) for the H3κ2 scFv gene. Briefly, the EcoRI/HindIII restriction fragment in the phagemid vector pIG10 (Ge et al., 1995) was replaced by the c-myc followed by an amber codon (which encodes an glutamate in the amber-suppresser strain XL1 Blue and a stop codon in the non-suppresser strain JM83) and a truncated version of the gene III (fusion junction at codon 249, see Lowman et al., 1991) through PCR mutagenesis.

2.3 Construction of H-CDR3 libraries

Heavy chain CDR3 libraries of two lengths (10 and 15 amino acids) were constructed using trinucleotide codon containing oligonucleotides (Virnekäs et al., 1994) as templates and the oligonucleotides complementing the flanking regions as primers. To concentrate only on the CDR3 structures that appear most often in functional antibodies, we kept the salt-bridge of R_{H94} and D_{H101} in the CDR3 loop. For the 15-mer library, both phenylalanine and methionine were introduced at position 100 since these two residues were found to occur quite often in human CDR3s of this length (not shown). For the same reason, valine and tyrosine were introduced at position 102. All other randomized positions contained codons for all amino acids except cystein, which was not used in the trinucleotide mixture.

The CDR3 libraries of lengths 10 and 15 were generated from the PCR fragments using oligonucleotide templates O3HCDR103T (5'- GATACGGCCGTGTATTA-TTGCGCGCGT (TRI), GATTATTGGGGCCAAGGCACCCTG-3') and O3HCDR153T (5'-GATACGGCCGT GTATTATTGCGCGCGT(TRI), (TTT/ATG)GAT(GTT/TAT)TGGG-GCCAAGGCACCCTG-3'), and primers O3HCDR35 (5'-GATACGGCCGTGTATTA-TTGC-3') and O3HCDR33 (5'-CAGGGTGCCTTGGCCCC-3'), where TRI are trinucleotide mixtures representing all amino acids without cystein, (TTT/ATG) and (GTT/TAT) are trinucleotide mixtures encodina amino acids phenylalanine/methionine and valine/tyrosine, respectively. The potential diversity of these libraries was 4.7×10^7 and 3.4×10^{10} for 10-mer and 15-mer library, respectively. The library cassettes were first synthesized from PCR amplification of the oligo templates in the presence of both primers: 25 pmol of the oligo template O3HCDR103T or O3HCDR153T, 50 pmol each of the primers O3HCDR35 and O3HCDR33, 20 nmol of dNTP, 10x buffer and 2.5 units of Pfu DNA polymerase (Stratagene) in a total volume of 100 µl for 30 cycles (1 minute at 92°C, 1 minute at 62°C and 1 minute at 72°C). A hot-start procedure was used. The resulting mixtures were phenol-extracted, ethanol-precipitated and digested overnight with Eagl and Styl. The vector pIG10.3-scH3κ2cat, where the Eagl-Styl fragment in the vector pIG10.3-scH3κ2 encoding the H-CDR3 was replaced by the chloramphenicol acetyltransferase gene (cat) flanked with these two sites, was similarly digested. The digested vector (35 μ g) was gel-purified and ligated with 100 μ g of the library cassette overnight at 16°C. The ligation mixtures were isopropanol precipitated, airdried and the pellets were redissolved in 100 μl of ddH2O. The ligation was mixed with 1 ml of freshly prepared electrocompetent XL1 Blue on ice. 20 rounds of electroporation were performed and the transformants were diluted in SOC medium, shaken at 37°C for 30 minutes and plated out on large LB plates (Amp/Tet/Glucose)

at 37°C for 6-9 hrs. The number of transformants (library size) was 3.2x10⁷ and 2.3x10⁷ for the 10-mer and the 15-mer library, respectively. The colonies were suspended in 2xYT medium (Amp/Tet/Glucose) and stored as glycerol culture. In order to test the quality of the initial library, phagemids from 24 independent colonies (12 from the 10-mer and 12 from the 15-mer library, respectively) were isolated and analyzed by restriction digestion and sequencing. The restriction analysis of the 24 phagemids indicated the presence of intact vector in all cases. Sequence analysis of these clones (see Fig. 10) indicated that 22 out of 24 contained a functional sequence in their heavy chain CDR3 regions. 1 out of 12 clones of the 10-mer library had a CDR3 of length 9 instead of 10, and 2 out of 12

clones of the 15-mer library had no open reading frame, thereby leading to a non-functional scFv; one of these two clones contained two consecutive inserts, but out of frame (data not shown). All codons introduced were presented in an even

Expression levels of individual library members were also measured. Briefly, 9 clones from each library were grown in 2xYT medium containing Amp/Tet/0.5% glucose at 37°C overnight. Next day, the cultures were diluted into fresh medium with Amp/Tet. At an OD_{600nm} of 0.4, the cultures were induced with 1 mM of IPTG and shaken at RT overnight. Then the cell pellets were suspended in 1 ml of PBS buffer + 1 mM of EDTA. The suspensions were sonicated and the supernatants were separated on an SDS-PAGE under reducing conditions, blotted on nylon membrane and detected with anti-FLAG M1 antibody (see Fig. 11). From the nine clones of the 10-mer library, all express the scFv fragments. Moreover, the gene III / scFv fusion proteins were present in all cases. Among the nine clones from the 15-mer library analyzed, 6/9 (67%) led to the expression of both scFv and the gene III/scFv fusion proteins. More importantly, all clones expressing the scFvs and gene III/scFv fusions gave rise to about the same level of expression.

2.4 Biopanning

distribution.

Phages displaying the antibody libraries were prepared using standard protocols. Phages derived from the 10-mer library were mixed with phages from the 15-mer library in a ratio of 20:1 (1x10¹⁰ cfu/well of the 10-mer and $5x10^8$ cfu/well of the 15-mer phages, respectively). Subsequently, the phage solution was used for panning in ELISA plates (Maxisorp, Nunc) coated with FITC-BSA (Sigma) at concentration of $100 \ \mu g/ml$ in PBS at 4°C overnight. The antigen-coated wells were blocked with 3% powder milk in PBS and the phage solutions in 1% powder milk were added to each

well and the plate was shaken at RT for 1 hr. The wells were then washed with PBST and PBS (4 times each with shaking at RT for 5 minutes). The bound phages were eluted with 0.1 M triethylamine (TEA) at RT for 10 minutes. The eluted phage solutions were immediately neutralized with 1/2 the volume of 1 M Tris-Cl, pH 7.6. Eluted phage solutions (ca. 450 μ l) were used to infect 5 ml of XL1 Blue cells at 37°C for 30 min. The infected cultures were then plated out on large LB plates (Amp/Tet/Glucose) and allowed to grow at 37°C until the colonies were visible. The colonies were suspended in 2xYT medium and the glycerol cultures were made as above described. This panning round was repeated twice, and in the third round elution was carried out with addition of fluorescein in a concentration of 100 μ g/ml in PBS. The enrichment of specific phage antibodies was monitored by panning the initial as well as the subsequent fluorescein-specific sub-libraries against the blocking buffer (Fig. 12). Antibodies with specificity against fluorescein were isolated after 3 rounds of panning.

2.5 ELISA measurements

One of the criteria for the successful biopanning is the isolation of individual phage clones that bind to the targeted antigen or hapten. We undertook the isolation of anti-FITC phage antibody clones and characterized them first in a phage ELISA format. After the 3rd round of biopanning (see above), 24 phagemid containing clones were used to inoculate 100 μ l of 2xYT medium (Amp/Tet/Glucose) in an ELISA plate (Nunc), which was subsequently shaken at 37°C for 5 hrs. 100 μ l of 2xYT medium (Amp/Tet/1 mM IPTG) were added and shaking was continued for 30 minutes. A further 100 μ l of 2xYT medium (Amp/Tet) containing the helper phage (1 x 109 cfu/well) was added and shaking was done at RT for 3 hrs. After addition of kanamycin to select for successful helper phage infection, the shaking was continued overnight. The plates were then centrifuged and the supernatants were pipetted directly into ELISA wells coated with 100 µl FITC-BSA (100µg/ml) and blocked with milk powder. Washing was performed similarly as during the panning procedure and the bound phages were detected with anti-M13 antibody-POD conjugate (Pharmacia) using soluble POD substrate (Boehringer-Mannheim). Of the 24 clones screened against FITC-BSA, 22 were active in the ELISA (Fig. 13). The initial libraries of similar titer gave rise to no detectable signal.

Specificity for fluorescein was measured in a competitive ELISA. Periplasmic fractions of five FITC specific scFvs were prepared as described above. Western blotting indicated that all clones expressed about the same amount of scFv fragment

(data not shown). ELISA was performed as described above, but additionally, the periplasmic fractions were incubated 30 min at RT either with buffer (no inhibition), with 10 mg/ml BSA (inhibition with BSA) or with 10 mg/ml fluorescein (inhibition with fluorescein) before adding to the well. Binding scFv fragment was detected using the anti-FLAG antibody M1. The ELISA signal could only be inhibited, when soluble fluorescein was added, indicating binding of the scFvs was specific for fluorescein (Fig. 14).

2.6 Sequence analysis

The heavy chain CDR3 region of 20 clones were sequenced in order to estimate the sequence diversity of fluorescein binding antibodies in the library (Fig. 15). In total, 16 of 20 sequences (80%) were different, showing that the constructed library contained a highly diverse repertoire of fluorescein binders. The CDR3s showed no particular sequence homology, but contained on average 4 arginine residues. This bias towards arginine in fluorescein binding antibodies had already been described by Barbas et al., 1992.

2.7 Production

E. coli JM83 was transformed with phagemid DNA of 3 selected clones and cultured in 0.5 L 2xYT medium. Induction was carried out with 1 mM IPTG at $OD_{600nm} = 0.4$ and growth was continued with vigorous shaking at RT overnight. The cells were harvested and pellets were suspended in PBS buffer and sonicated. The supernatants were separated from the cell debris via centrifugation and purified via the BioLogic system (Bio-Rad) by with a POROS®MC 20 column (IMAC, PerSeptive Biosystems, Inc.) coupled with an ion-exchange chromatography column. The ion-exchange column was one of the POROS®HS, CM or HQ or PI 20 (PerSeptive Biosystems, Inc.) depended on the theoretical pl of the scFv being purified. The pH of all the buffers was adjusted to one unit lower or higher than the pl of the scFv being purified throughout. The sample was loaded onto the first IMAC column, washed with 7 column volumes of 20 mM sodium phosphate, 1 M NaCl and 10 mM imidazole. This washing was followed by 7 column volumes of 20 mM sodium phosphate and 10 mM imidazole. Then 3 column volumes of an imidazole gradient (10 to 250 mM) were applied and the eluent was connected directly to the ion-exchanger. Nine column volumes of isocratic washing with 250 mM imidazole was followed by 15 column volumes of 250 mM to 100 mM and 7 column volumes of an imidazole / NaCl gradient (100 to 10 mM imidazole, 0 to 1 M NaCl). The flow rate was 5 ml/min. The purity of scFv fragments was checked by SDS-PAGE Coomassie

staining (Fig. 16). The concentration of the fragments was determined from the absorbance at 280 nm using the theoretically determined extinction coefficient (Gill & von Hippel, 1989). The scFv fragments could be purified to homogeneity (see Fig. 16). The yield of purified fragments ranged from 5 to 10 mg/L/OD.

Example 3: HuCAL H3x2 Library Against a Collection of Antigens

In order to test the library used in Example 2 further, a new selection procedure was carried out using a variety of antigens comprising ß-estradiol, testosterone, Lewis-Y epitope (LeY), interleukin-2 (IL-2), lymphotoxin-ß (LT-ß), E-selectin ligand-1 (ESL-1), and BSA.

3.1 Biopanning

The library and all procedures were identical to those described in Example 2. The ELISA plates were coated with β -estradiol-BSA (100 μ g/ml), testosterone-BSA (100 μ g/ml), LeY-BSA (20 μ g/ml) IL-2 (20 μ g/ml), ESL-1 (20 μ g/ml) and BSA (100 μ g/ml), LT- β (denatured protein, 20 μ g/ml). In the first two rounds, bound phages were eluted with 0.1 M triethylamine (TEA) at RT for 10 minutes. In the case of BSA, elution after three rounds of panning was carried out with addition of BSA in a concentration of 100 μ g/ml in PBS. In the case of the other antigens, third round elution was done with 0.1 M triethylamine. In all cases except LeY, enrichment of binding phages could be seen (Figure 17). Moreover, a repetition of the biopanning experiment using only the 15-mer library resulted in the enrichment of LeY-binding phages as well (data not shown).

3.2. ELISA measurements

Clones binding to B-estradiol, testosterone, LeY, LT-B, ESL-1 and BSA were further analyzed and characterized as described in Example 2 for FITC. ELISA data for anti-B-estradiol and anti-ESL-1 antibodies are shown in Fig. 18. In one experiment, selectivity and cross-reactivity of binding scFv fragments were tested. For this purpose, an ELISA plate was coated with FITC, testosterone, B-estradiol, BSA, and ESL-1, with 5 wells for each antigen arranged in 5 rows, and 5 antibodies, one against each of the antigens, were screened against each of the antigens. Fig. 19

shows the specific binding of the antibodies to the antigen it was selected for, and the low cross-reactivity with the other four antigens.

3.3 Sequence analysis

The sequencing data of several clones against ß-estradiol (34 clones), testosterone (12 clones), LT-ß (23 clones), ESL-1 (34 clones), and BSA (10 clones) are given in Figures 20 to 24.

Example 4: Vector Construction

To be able to take advantage of the modularity of the consensus gene repertoire, a vector system had to be constructed which could be used in phage display screening of HuCAL libraries and subsequent optimization procedures. Therefore, all necessary vector elements such as origins of single-stranded or double-stranded replication, promotor/operator, repressor or terminator elements, resistance genes, potential recombination sites, gene III for display on filamentous phages, signal sequences, or detection tags had to be made compatible with the restriction site pattern of the modular consensus genes. Figure 25 shows a schematic representation of the pCAL vector system and the arrangement of vector modules and restriction sites therein. Figure 25a shows a list of all restriction sites which are already incorporated into the consensus genes or the vector elements as part of the modular system or which are not yet present in the whole system. The latter could be used in a later stage for the introduction of or within new modules.

4.1 Vector modules

A series of vector modules was constructed where the restriction sites flanking the gene sub-elements of the HuCAL genes were removed, the vector modules themselves being flanked by unique restriction sites. These modules were constructed either by gene synthesis or by mutagenesis of templates. Mutagenesis was done by add-on PCR, by site-directed mutagenesis (Kunkel et al., 1991) or multisite oligonucleotide-mediated mutagenesis (Sutherland et al., 1995; Perlak, 1990) using a PCR-based assembly method.

Figure 26 contains a list of the modules constructed. Instead of the terminator module M9 (HindIII-lpp-PacI), a larger cassette M9II was prepared to introduce Fsel as additional restriction site. M9II can be cloned via HindIII/BsrGI.

All vector modules were characterized by restriction analysis and sequencing. In the case of module M11-II, sequencing of the module revealed a two-base difference in positions 164/65 compared to the sequence database of the template. These two different bases (CA \rightarrow GC) created an additional BanII site. Since the same two-base difference occurs in the f1 origin of other bacteriophages, it can be assumed that the two-base difference was present in the template and not created by mutagenesis during cloning. This BanII site was removed by site-directed mutagenesis, leading to module M11-III. The BssSI site of module M14 could initially not be removed without impact on the function of the CoIE1 origin, therefore M14-Ext2 was used for cloning of the first pCAL vector series. Figures 29 to 34 are showing the functional maps and sequences of the modules used for assembly of the modular vector pCAL4 (see below). The functional maps and sequences of additional modules can be found in Figure 35a. Figure 35b contains a list of oligonucleotides and primers used for the synthesis of the modules.

4.2 Cloning vector pMCS

To be able to assemble the individual vector modules, a cloning vector pMCS containing a specific multi-cloning site (MCS) was constructed. First, an MCS cassette (Fig. 27) was made by gene synthesis. This cassette contains all those restriction sites in the order necessary for the sequential introduction of all vector modules and can be cloned via the 5'-HindIII site and a four base overhang at the 3'-end compatible with an AatII site. The vector pMCS (Figure 28) was constructed by digesting pUC19 with AatII and HindIII, isolating the 2174 base pair fragment containing the bla gene and the CoIE1 origin, and ligating the MCS cassette.

4.3 Cloning of modular vector pCAL4

This was cloned step by step by restriction digest of pMCS and subsequent ligation of the modules M1 (via AatII/XbaI), M7III (via EcoRI/HindIII), and M9II (via HindIII/BsrGI), and M11-II (via BsrGI/NheI). Finally, the bla gene was replaced by the cat gene module M17 (via AatII/BgIII), and the wild type CoIE1 origin by module M14-Ext2 (via BgIII/NheI). Figure 35 is showing the functional map and the sequence of pCAL4.

4.4 Cloning of low-copy number plasmid vectors pCALO

A series of low-copy number plasmid vectors was constructed in a similar way using the p15A module M12 instead of the ColE1 module M14-Ext2. Figure 35a is showing the functional maps and sequences of the vectors pCALO1 to pCALO3.

Example 5: Construction of a HuCAL scFv Library

5.1. Cloning of all 49 HuCAL scFv fragments

All 49 combinations of the 7 HuCAL-VH and 7 HuCAL-VL consensus genes were assembled as described for the HuCAL VH3-Vk2 scFv in Example 2 and inserted into the vector pBS12, a modified version of the pLisc series of antibody expression vectors (Skerra et al., 1991).

5.2 Construction of a CDR cloning cassette

For replacement of CDRs, a universal ß-lactamase cloning cassette was constructed having a multi-cloning site at the 5'-end as well as at the 3'-end. The 5'-multi-cloning site comprises all restriction sites adjacent to the 5'-end of the HuCAL VH and VL CDRs, the 3'-multi-cloning site comprises all restriction sites adjacent to the 3' end of the HuCAL VH and VL CDRs. Both 5'- and 3'-multi-cloning site were prepared as cassettes via add-on PCR using synthetic oligonucleotides as 5'- and 3'-primers using wild type ß-lactamase gene as template. Figure 36 shows the functional map and the sequence of the cassette bla-MCS.

5.3. Preparation of VL-CDR3 library cassettes

The VL-CDR3 libraries comprising 7 random positions were generated from the PCR fragments using oligonucleotide templates $V\kappa1\&V\kappa3$, $V\kappa2$ and $V\kappa4$ and primers O_K3L_5 and O_K3L_3 (Fig. 37) for the $V\kappa$ genes, and $V\lambda$ and primers O_L3L_5 (5'-GCAGAAGGCGAACGTCC-3') and O_L3LA_3 (Fig. 38) for the $V\lambda$ genes. Construction of the cassettes was performed as described in Example 2.3.

5.4 Cloning of HuCAL scFv genes with VL-CDR3 libraries

Each of the 49 single-chains was subcloned into pCAL4 via Xbal/EcoRI and the VL-CDR3 replaced by the ß-lactamase cloning cassette via Bbsl/Mscl, which was then replaced by the corresponding VL-CDR3 library cassette synthesized as described above. This CDR replacement is described in detail in Example 2.3 where the cat gene was used.

5.5 Preparation of VH-CDR3 library cassette

The VH-CDR3 libraries were designed and synthesized as described in Example 2.3.

5.6 Cloning of HuCAL scFv genes with VL- and VH-CDR3 libraries

Each of the 49 single-chain VL-CDR3 libraries was digested with BssHII/Styl to replace VH-CDR3. The "dummy" cassette digested with BssHII/Styl was inserted, and was then replaced by a corresponding VH-CDR3 library cassette synthesized as described above.

Example 6: Expression tests

Expression and toxicity studies were performed using the scFv format VH-linker-VL. All 49 combinations of the 7 HuCAL-VH and 7 HuCAL-VL consensus genes assembled as described in Example 5 were inserted into the vector pBS13, a modified version of the pLisc series of antibody expression vectors (Skerra et al., 1991). A map of this vector is shown in Fig. 39.

E. coli JM83 was transformed 49 times with each of the vectors and stored as glycerol stock. Between 4 and 6 clones were tested simultaneously, always including the clone H3κ2, which was used as internal control throughout. As additional control, the McPC603 scFv fragment (Knappik & Plückthun, 1995) in pBS13 was expressed under identical conditions. Two days before the expression test was performed, the clones were cultivated on LB plates containing 30 μ g/ml chloramphenicol and 60 mM glucose. Using this plates an 3 ml culture (LB medium

containing 90 µg chloramphenicol and 60 mM glucose) was inoculated overnight at 37 °C. Next day the overnight culture was used to inoculate 30 ml LB medium containing chloramphenicol (30 μ g/ml). The starting OD_{soonm} was adjusted to 0.2 and a growth temperature of 30 °C was used. The physiology of the cells was monitored by measuring every 30 minutes for 8 to 9 hours the optical density at 600 nm. After the culture reached an OD soonm of 0.5, antibody expression was induced by adding IPTG to a final concentration of 1 mM. A 5 ml aliquot of the culture was removed after 2 h of induction in order to analyze the antibody expression. The cells were lysed and the soluble and insoluble fractions of the crude extract were separated as described in Knappik & Plückthun, 1995. The fractions were assayed by reducing SDS-PAGE with the samples normalized to identical optical densities. After blotting and immunostaining using the α -FLAG antibody M1 as the first antibody (see Ge et al., 1994) and an Fc-specific anti-mouse antiserum conjugated to alkaline phosphatase as the second antibody, the lanes were scanned and the intensities of the bands of the expected size (appr. 30 kDa) were quantified densitometrically and tabulated relative to the control antibody (see Fig. 40).

Example 7: Optimization of Fluorescein Binders

7.1. Construction of L-CDR3 and H-CDR2 library cassettes

A L-CDR3 library cassette was prepared from the oligonucleotide template CDR3L (5'-TGGAAGCTGAAGACGTGGGCGTGTATTATTGCCAGCAG(TR5)(TRI)₄CCG(TRI)-TTTGGCCAGGGTACGAAAGTT-3') and primer 5'-AACTTTCGTACCCTGGCC-3' for synthesis of the complementary strand, where (TRI) was a trinucleotide mixture representing all amino acids except Cys, (TR5) comprised a trinucleotide mixture representing the 5 codons for Ala, Arg, His, Ser, and Tyr.

A H-CDR2 library cassette was prepared from the oligonucleotide template CDRsH (5'-AGGGTCTCGAGTGGGTGAGC(TRI)ATT(TRI)₂₋₃(6)₂(TRI)ACC(TRI)TATGCGGATA-GCGTGAAAGGCCGTTTTACCATTTCACGTGATAATTCGAAAAACACCA-3'), and primer 5'-TGGTGTTTTTCGAATTATCA-3' for synthesis of the complementary strand, where (TRI) was a trinucleotide mixture representing all amino acids except Cys, (6) comprised the incorporation of (A/G) (A/C/G) T, resulting in the formation of 6 codons for Ala, Asn, Asp, Gly, Ser, and Thr, and the length distribution being obtained by performing one substoichiometric coupling of the (TRI) mixture during synthesis, omitting the capping step normally used in DNA synthesis.

DNA synthesis was performed on a 40 nmole scale, oligos were dissolved in TE buffer, purified via gel filtration using spin columns (S-200), and the DNA concentration determined by OD measurement at 260 nm (OD 1.0 = $40 \mu g/ml$).

10 nmole of the oligonucleotide templates and 12 nmole of the corresponding primers were mixed and annealed at 80°C for 1 min, and slowly cooled down to 37°C within 20 to 30 min. The fill-in reaction was performed for 2 h at 37°C using Klenow polymerase (2.0 μ l) and 250 nmole of each dNTP. The excess of dNTPs was removed by gel filtration using Nick-Spin columns (Pharmacia), and the double-stranded DNA digested with Bbsl/Mscl (L-CDR3), or Xhol/Sful (H-CDR2) over night at 37°C. The cassettes were purified via Nick-Spin columns (Pharmacia), the concentration determined by OD measurement, and the cassettes aliquoted (15 pmole) for being stored at -80°C.

7.2 Library cloning:

DNA was prepared from the collection of FITC binding clones obtained in Example 2 (approx. 10^4 to clones). The collection of scFv fragments was isolated via Xbal/EcoRl digest. The vector pCAL4 (100 fmole, $10~\mu g$) described in Example 4.3 was similarly digested with Xbal/EcoRl, gel-purified and ligated with 300 fmole of the scFv fragment collection over night at 16° C. The ligation mixture was isopropanol precipitated, air-dried, and the pellets were redissolved in $100~\mu l$ of dd H_2 O. The ligation mixture was mixed with 1 ml of freshly prepared electrocompetent SCS 101 cells (for optimization of L-CDR3), or XL1 Blue cells (for optimization of H-CDR2) on ice. One round of electroporation was performed and the transformants were eluted in SOC medium, shaken at 37°C for 30 minutes, and an aliquot plated out on LB plates (Amp/Tet/Glucose) at 37°C for 6-9 hrs. The number of transformants was 5 x 10^4 .

Vector DNA (100 μ g) was isolated and digested (sequence and restriction map of scH3 κ 2 see Figure 8) with Bbsl/Mscl for optimization of L-CDR3, or Xhol/NspV for optimization of H-CDR2. 10 μ g of purified vector fragments (5 pmole) were ligated with 15 pmole of the L-CDR3 or H-CDR2 library cassettes over night at 16°C. The ligation mixtures were isopropanol precipitated, air-dried, and the pellets were redissolved in 100 μ l of dd H₂O. The ligation mixtures were mixed with 1 ml of freshly prepared electrocompetent XL1 Blue cells on ice. Electroporation was performed and the transformants were eluted in SOC medium and shaken at 37°C for 30 minutes. An aliquot was plated out on LB plates (Amp/Tet/Glucose) at 37°C for 6-9

hrs. The number of transformants (library size) was greater than 10⁸ for both libraries. The libraries were stored as glycerol cultures.

7.3. Biopanning

This was performed as described for the initial H3x2 H-CDR3 library in Example 2.1. Optimized scFvs binding to FITC could be characterized and analyzed as described in Example 2.2 and 2.3, and further rounds of optimization could be made if necessary.

References

Barbas III, C.F., Bain, J.D., Hoekstra, D.M. & Lerner, R.A., PNAS <u>89</u>, 4457-4461 (1992).

- Better, M., Chang, P., Robinson, R. & Horwitz, A.H., Science 240, 1041-1043 (1988).
- Blake, M.S., Johnston, K.H., Russel-Jones, G.J. & Gotschlich, E.C., Anal. Biochem. 136, 175-179 (1984).
- Carter, P., Kelly, R.F., Rodrigues, M.L., Snedecor, B., Covrrubias, M., Velligan, M.D., Wong, W.L.T., Rowland, A.M., Kotts, C.E., Carver, M.E., Yang, M., Bourell, J.H., Shepard, H.M. & Henner, D., Bio/Technology 10, 163-167 (1992).
- Chothia, C. & Lesk, A.M., J. Biol. Chem. 196, 910-917 (1987).
- Chothia, C., Lesk, A.M., Gherardi, E., Tomlinson, I.A., Walter, G., Marks, J.D., Llewelyn, M.B. & Winter, G., J. Mol. Biol. 227, 799-817 (1992).
- Chothia, C., Lesk, A.M., Tramontano, A., Levitt, M., Smith-Gill, S.J., Air, G., Sheriff, S., Padlan, E.A., Davies, D., Tulip, W.R., Colman, P.M., Spinelli, S., Alzari, P.M. & Poljak, R.J., Nature 342, 877-883 (1989).
- Chuchana, P., Blancher, A., Brockly, F., Alexandre, D., Lefranc, G & Lefranc, M.-P., Eur. J. Immunol. 20, 1317-1325 (1990).
- Cox, J.P.L., Tomlinson, I.M. & Winter, G., Eur. J. Immunol. 24, 827-836 (1994).
- Ge, L., Knappik, A., Pack, P., Freund, C. & Plückthun, A., In: Antibody Engineering. Borrebaeck, C.A.K. (Ed.). p.229-266 (1995), Oxford University Press, New York, Oxford.)
- Gill, S.C. & von Hippel, P.H., Anal. Biochem. 182, 319.326 (1989).
- Hochuli, E., Bannwarth, W., Döbeli, H., Gentz, R. & Stüber, D., Bio/Technology <u>6</u>, 1321-1325 (1988).
- Hopp, T.P., Prickett, K.S., Price, V.L., Libby, R.T., March, C.J., Cerretti, D.P., Urdal, D.L. & Conlon, P.J. Bio/Technology <u>6</u>, 1204-1210 (1988).
- Kabat, E.A., Wu, T.T., Perry, H.M., Gottesmann, K.S. & Foeller, C., Sequences of proteins of immunological interest, NIH publication 91-3242 (1991).
- Knappik, A. & Plückthun, A., Biotechniques 17, 754-761 (1994).
- Knappik, A. & Plückthun, A., Protein Engineering 8, 81-89 (1995).
- Kunkel, T.A., Bebenek, K. & McClary, J., Methods in Enzymol. 204, 125-39 (1991).
- Lindner, P., Guth, B., Wülfing, C., Krebber, C., Steipe, B., Müller, F. & Plückthun, A., Methods: A Companion to Methods Enzymol. 4, 41-56 (1992).
- Lowman, H.B., Bass, S.H., Simpson, N. and Wells, J.A., Biochemistry 30, 10832-10838 (1991).
- Pack, P. & Plückthun, A., Biochemistry 31, 1579-1584 (1992).

Pack, P., Kujau, M., Schroeckh, V., Knüpfer, U., Wenderoth, R., Riesenberg D. & Plückthun, A., Bio/Technology 11, 1271-1277 (1993).

- Pack, P., Ph.D. thesis, Ludwig-Maximilians-Universität München (1994).
- Perlak, F. J., Nuc. Acids Res. 18, 7457-7458 (1990).
- Plückthun, A., Krebber, A., Krebber, C., Horn, U., Knüpfer, U., Wenderoth, R., Nieba, L., Proba, K. & Riesenberg, D., A practical approach. Antibody Engineering (Ed. J. McCafferty). IRL Press, Oxford, pp. 203-252 (1996).
- Prodromou, C. & Pearl, L.H., Protein Engineering 5, 827-829 (1992).
- Rosenberg, S.A. & Lotze, M.T., Ann. Rev. Immunol. 4, 681-709 (1986).
- Skerra, A. & Plückthun, A., Science <u>240</u>, 1038-1041 (1988).
- Skerra, A., Pfitzinger, I. & Plückthun, A., Bio/Technology 9, 273-278 (1991).
- Sutherland, L., Davidson, J., Glass, L.L., & Jacobs, H.T., BioTechniques 18, 458-464, 1995.
- Tomlinson, I.M., Walter, G., Marks, J.D., Llewelyn, M.B. & Winter, G., J. Mol. Biol. 227, 776-798 (1992).
- Ullrich, H.D., Patten, P.A., Yang, P.L., Romesberg, F.E. & Schultz, P.G., Proc. Natl. Acad. Sci. USA <u>92</u>, 11907-11911 (1995).
- Van Dijk, K.W., Mortari, F., Kirkham, P.M., Schroeder Jr., H.W. & Milner, E.C.B., Eur. J. Immunol. 23, 832-839 (1993).
- Virnekäs, B., Ge, L., Plückthun, A., Schneider, K.C., Wellnhofer, G. & Moroney, S.E., Nucleic Acids Research 22, 5600-5607 (1994).
- Vitetta, E.S., Thorpe, P.E. & Uhr, J., Immunol. Today 14, 253-259 (1993).
- Williams, S.C. & Winter, G., Eur. J. Immunol. 23, 1456-1461 (1993).
- Winter, G., Griffiths, A.D., Hawkins, R.E. & Hoogenboom, H.R., Ann. Rev. Immunol. 12, 433-455 (1994).

Table 1A: Human kappa germline gene segments

Used Name'	Reference ²	Family	Germline genes
Vk1-1	9	1	08; 018; DPK1
.Vk1-2	1	1	L14; DPK2
Vk1-3	2	1	L15(1); HK101; HK146; HK189
Vk1-4	9	1	L11/
Vk1-5	2	1	A30
Vk1-6	1	1	LFVK5
Vk1-7	1	1	LFVK431
Vk1-8	1	1	L1; HK137
Vk1-9	1	1	A20; DPK4
Vk 1-10	1	1	L18; Va"
Vk1-11	1 .	1	L4; L18; Va'; V4a
Vk1-12	2	1	L5; L19(1); Vb; Vb4; DPK5; L19(2); Vb"; DPK6
Vk 1-13	2	1	L15(2); HK134; HK166; DPK7
Vk1-14	8	1	L8; Vd; DPK8
Vk 1-15	8	1	L9; Ve
Vk1-16	1	1	L12(1); HK102; V1
Vk 1-17	2	1	L12(2)
Vk1-18	1	1	012a (V3b)
Vk1-19	6	1	02; 012; DPK9
Vk 1-20	2	1	L24; Ve"; V13; DPK10
Vk1-21	1	1	04; 014
Vk 1-22	2	1	L22
Vk1-23	2	1	L23
Vk2-1	1 .	2	A2; DPK12
Vk2-2	6	. 2	01; 011(1); DPK13
Vk2-3	6	2	012(2); V3a
Vk2-4	2	2	L13
Vk2-5	1	2	DPK14
Vk2-6	4	2	A3; A19; DPK15
Vk2-7	4	2	A29; DPK27
Vk2-8	4	2	A13
Vk2-9	1	2	A23

Table 1A: (continued)

Used Name	Reference ²	Family ³	Germline genes
Vk2-10	4	2	A7; DPK17
Vk2-11	4	2	A17; DPK18
Vk2-12	4	2	A1; DPK19
Vk3-1	11	3	A11; humkv305; DPK20
Vk3-2	1	3	L20; Vg"
Vk3-3	2	3	L2; L16; humkv328; humkv328h2; humkv328h5; DPK21
Vk3-4	11	. 3	A27; humkv325; VkRF; DPK22
Vk3-5	2	3	L25; DPK23
Vk3-6	2	3	L10(1)
Vk3-7	7	3	L10(2)
Vk3-7	7	3	L6; Vg
Vk4-1	3	4	B3; VkIV; DPK24
Vk5-1	10	5	B2; EV15
Vk6-1	12	6	A14; DPK25
Vk6-2	12	6	A10; A26; DPK26
Vk7-1	5	7	B1

Table 1B: Human lambda germline gene segments

Used Name ¹	Reference	e² Family	Germline genes
DPL1	1	1	
DPL2	1	1	HUMLV1L1
DPL3	1	1	HUMLV122
DPL4	1	7	VLAMBDA 1.1
HUMLV117	2	1	
DPL5	1	1	HUMLV117D
DPL6	1	1	
DPL7	1	1	IGLV1S2
DPL8	1	1	HUMLV1042
DPL9	1	1	HUMLV101
DPL10	1	2	
VLAMBDA 2.1	3	2	
DPL11	1	2	
DPL12	1	2	
DPL13	1	2	
DPL14	1	2	
DPL16	1	3	Humlv418; IGLV3S1
DPL23	1	3	VI III.1
Humlv318	4	3	
DPL18	1	7	4A: HUMIGLVA
DPL19	. 1	7	
DPL21	1	8	VL8.1
HUMLV801	5	8	
DPL22	1	9	
DPL24	1	unassigned	VLAMBDA N.2
gVLX-4.4	6	10	

ج المجابعة المجابعة

Table 1C: Human heavy chain germline gene segments

Used Name ¹	Reference	Family ³	Germline genes
VH1-12-1	19	1	DP10; DA-2; DA-6
VH1-12-8	22	. 1	RR.VH1:2
VH1-12-2	6	1	hv1263
VH1-12-9	7	1	YAC-7; RR.VH1.1; 1-69
VH1-12-3	19	1	DP3
VH1-12-4	· 19	1	DP21; 4d275a; VH7a
VH1-12-5	18	1	1-4.1b; V1-4.1b
VH1-12-6	21	1	1D37; VH7b; 7-81; YAC-10
VH1-12-7	19	1	DP14; VH1GRR; V1-18
VH1-13-1	10	1	71-5; DP2
VH1-13-2	10	1	E3-10
VH1-13-3	19	1	DP1
VH1-13-4	12	1	V35
VH1-13-5	8	1	V1-2b
VH1-13-6	18	1	I-2; DP75
VH1-13-7	21	1	V1-2
VH1-13-8	19	1	DP8
VH1-13-9	3	1	1-1
VH1-13-10	19	1	DP12
VH1-13-11	15	1	V13C
VH1-13-12	18	1	I-3b; DP25; V1-3b
VH1-13-13	3	1	1-92
VH1-13-14	18	1	I-3; V1-3
VH1-13-15	19	1	DP15; V1-8
VH1-13-16	3	1	21-2; 3-1; DP7; V1-46
VH1-13-17	16	1	HG3
VH1-13-18	19	. 1	DP4; 7-2; V1-45
VH1-13-19	27	1	COS 5
VH1-1X-1	19	1	DP5; 1-24P
VH2-21-1	18	2	II-5b
VH2-31-1	2	2	VH2S12-1
VH2-31-2	2	2	VH2S12-7
VH2-31-3	2	2	VH2S12-9; DP27
VH2-31-4	2	2	VH2S12-10
VH2-31-5	14	2	V2-26; DP26; 2-26
VH2-31-6	15	2	VF2-26

49

l

Table 1C: (continued)

Used Name ¹	Reference ²	Family	Germline genes
VH2-31-7	19	2	DP28; DA-7
VH2-31-14	7	2	YAC-3; 2-70
VH2-31-8	2	2	VH2S12-5
VH2-31-9	2	2	VH2S12-12
VH2-31-10	18	2	II-5; V2-5
VH2-31-11	2	2	VH2S12-2; VH2S12-8
VH2-31-12	2	2	VH2S12-4; VH2S12-6
VH2-31-13	2	2	VH2S12-14
VH3-11-1	13	3	v65-2; DP44
VH3-11-2	19	3	DP45
VH3-11-3	3	3	13-2; DP48
VH3-11-4	19	3	DP52
VH3-11-5	14	3	v3-13
VH3-11-6	19	3	DP42
VH3-11-7	3	3	8-1B; YAC-5; 3-66
VH3-11-8	14	3	V3-53
VH3-13-1	3	3	22-2B; DP35; V3-11
VH3-13-5	19	3	DP59; VH19; V3-35
VH3-13-6	25	3	f1-p1; DP61
VH3-13-7	19	3	DP46; GL-SJ2; COS 8; hv3005; hv3005f3; 3d21b; 56p1
VH3-13-8	24	3	VH26
VH3-13-9	5	3	vh2Ġc
VH3-13-10	19	3	DP47; VH26; 3-23
VH3-13-11	3	3	1-91
VH3-13-12	19	3	DP58
VH3-13-13	3	3	1-9III; DP49; 3-30; 3d28.1
VH3-13-14	24	3	3019B9; DP50; 3-33; 3d277
VH3-13-15	27	3	COS 3
VH3-13-16	19	3	DP51
VH3-13-17	16	3	H11
VH3-13-18	19	3	DP53; COS 6; 3-74; DA-8
VH3-13-19	19	3	DP54; VH3-11; V3-7
VH3-13-20	14	3	V3-64; YAC-6
VH3-13-21	14	3	V3-48
VH3-13-22	14	3	V3-43; DP33
VH3-13-23	14		V3-33

Table 1C: (continued)

Used Name'	Reference	Family ³	Germline genes
VH3-13-24	14	3	V3-21; DP77
VH3-13-25	14	3	V3-20; DP32
VH3-13-26	14	3	V3-9; DP31
VH3-14-1	3	3	12-2; DP29; 3-72; DA-3
VH3-14-4	7	. 3	YAC-9; 3-73; MTGL
VH3-14-2	4	3	VHD26
VH3-14-3	19	3 .	DP30
VH3-1X-1	1	3	LSG8.1; LSG9.1; LSG10.1; HUM12IGVH; HUM13IGVH
VH3-1X-2	1	3	LSG11.1; HUM4IGVH
VH3-1X-3	3	3	9-1; DP38; LSG7.1; RCG1.1; LSG1.1; LSG3.1; LSG5.1; HUM15IGVH; HUM2IGVH; HUM9IGVH
VH3-1X-4	1	3	LSG4.1
VH3-1X-5	1	3	LSG2.1
VH3-1X-6	1	3	LSG6.1; HUM10IGVH
VH3-1X-7	18	. 3	3-15; V3-15
VH3-1X-8	1	3	LSG12.1; HUM5IGVH
VH3-1X-9	14	3	V3-49
VH4-11-1	22	4	Tou-VH4.21
VH4-11-2	17	4	VH4.21; DP63; VH5; 4d76; V4-34
VH4-11-3	23	4	4.44
VH4-11-4	23	4	4.44.3
VH4-11-5	23	4	4.36
VH4-11-6	23	4	4.37
VH4-11-7	18	4	IV-4; 4.35; V4-4
VH4-11-8	17	4	VH4.11; 3d197d; DP71; 58p2
VH4-11-9	20	4	H7
VH4-11-10	20	4	Н8
VH4-11-11	20	4	Н9
VH4-11-12	17	4	VH4.16
VH4-11-13	23	4	4.38
VH4-11-14	17	4	VH4.15
VH4-11-15	11	4	58
VH4-11-16	10	4	71-4; V4-59
VH4-21-1	11	4	11
VH4-21-2	17	4	VH4.17; VH4.23; 4d255; 4.40; DP69
VH4-21-3	17	4	VH4.19; 79; V4-4b

Table 1C: (continued)

Used Name'	Reference ²	Family ¹	Germline genes
VH4-21-4	19	4	DP70; 4d68; 4.41
VH4-21-5	19	4	DP67; VH4-4B
VH4-21-6	17	4	VH4.22; VHSP; VH-JA
VH4-21-7	17	4	VH4.13; 1-9II; 12G-1; 3d28d; 4.42; DP68; 4-28
VH4-21-8	26	4	hv4005; 3d24d
VH4-21-9	17	4	VH4.14
VH4-31-1	23	4	4.34; 3d230d; DP78
VH4-31-2	23	4	4.34.2
VH4-31-3	19	4	DP64; 3d216d
VH4-31-4	19	4	DP65; 4-31; 3d277d
VH4-31-5	23	4	4.33; 3d75d
VH4-31-6	20	4	H10
VH4-31-7	20	4	- H11
VH4-31-8	23	4	4.31
VH4-31-9	23	4	4.32
VH4-31-10	20	4	3d277d
VH4-31-11	20	4	3d216d
VH4-31-12	20	4	3d279d
VH4-31-13	17	4	VH4.18; 4d154; DP79
VH4-31-14	8	4	V4-39
VH4-31-15	11	4	2-1; DP79
VH4-31-16	23	4	4.30
VH4-31-17	17	4	VH4.12
VH4-31-18	10	4	71-2; DP66
VH4-31-19	23	4	4.39
VH4-31-20	8	4	V4-61
VH5-12-1	9	5	VH251; DP73; VHVCW; 51-R1; VHVLB; VHVCH; VHVTT; VHVAU; VHVBLK; VhAU; V5-51
VH5-12-2	17	5	VHVJB
VH5-12-3	3	5	1-v; DP80; 5-78
VH5-12-4	9	5	VH32; VHVRG; VHVMW; 5-2R1
VH6-35-1	4	6	VHVI; VH6; VHVIIS; VHVITE; VHVIJB; VHVICH; VHVICW; VHVIBLK; VHVIMW; DP74; 6-1G1; V6-1

PCT/EP96/03647

WO 97/08320

Table 2A: rearranged human kappa sequences

Name ¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ^s	% diff. to germline ⁶	Reference
III-3R	108	1	08	1	1,1%	70
No.86	109	1	08	3	3,2%	80
AU	108	1	08	6	6,3%	103
ROY	108	1	08	6	6,3%	43
IC4	108	1	08	6	6,3%	70
HIV-B26	106	1	08	3	3,2%	8
GRI	108	1	08	8	8,4%	30
AG	106	1	08	8	8,6%	116
REI	108	1	08	9	9,5%	86
CLL PATIENT 16	88	1	08	2	2,3%	122
CLL PATIENT 14	87	1	08	2	2,3%	122
CLL PATIENT 15	88	1	08	2	2,3%	122
GM4672	108	1	~ 08	11	11,6%	24
HUM. YFC51.1	108	1	08	12	12,6%	110
LAY	108	1	08	12	12,6%	48
HIV-b13	106	1	08	9	9,7%	8
MAL-NaCl	108	1	08	13	13,7%	102
STRAb SA-1A	108	1	02	0	0,0%	120
HuVHCAMP	108	1	08	13	13,7%	100
CRO	108	1	02	10	10,5%	30
Am107	108	1	02	12	12,6%	108
WALKER	107	1	02	4	4,2%	57
III-2R	109	1	A20	0	0,0%	70
FOG1-A4	107	1	A20	4	4,2%	41
HK137	95	1	L1	0	0,0%	10
CEA4-8A	107	1	02	7	7,4%	41
Va'	95	1	L4	0	0,0%	90
TR1.21	108	1	02	4	4,2%	92
HAU	108		02	6	6,3%	123
HK102	95	1	L12(1)	0	0,0%	9
H20C3K	108	1	L12(2)	3	3,2%	125
CHEB	108		02	7	7,4%	5
HK134	95	1	L15(2)	0	0,0%	10
TEL9	108	1	02	9	9,5%	73
			53			

Table 2A: (continued)

Name ¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ^s	% diff. to germline ⁶	Reference
TR1.32	103	1	02	3	3,2%	92
RF-KES1	97	1	A20	4	4,2%	121
WES	108	1	L5	10	10,5%	61
DILp1	95	1	04	1	1,1%	70
SA-4B	107	1	L12(2)	8	8,4%	120
HK101 .	95	1	L15(1)	0	0,0%	9
TR1.23	108	1	02	5	5,3%	92
HF2-1/17	108	1	A30	0	0,0%	4
2E7	108	1	A30	1	1,1%	62
33.C9	107	1	L12(2)	7	7,4%	126
3D6	105	1	L12(2)	2	2,1%	34
l-2a	108	1	L8	8	8,4%	· · · 70
RF-KL1	97	1	L8	4	4,2%	121
TNF-E7	108	1	A30	9	9,5%	41
TR1.22	108	1	02	7	7,4%	92
HIV-B35	106	1	02	2	2,2%	8
HIV-b22	106	1	02	2	2,2%	8
HIV-b27	106	1	02	2	2,2%	8
łIV-B8	107	1	02	10	10,8%	8
1IV-b8	107	1	02	10	10,8%	8
RF-SJ5	95	1 .	A30	5	5,3%	113
SAL(I)	108	1	A30	6	6,3%	64
3.5H5G	108	1	02	6	6,3%	70
IIV-b14	106	1	A20	2	2,2%	8
NF-E1	105	1	L5	8	8,4%	41
VEA	108	1	A30	8	8,4%	37
U .	108	1	L12(2)	5	5,3%	40
OG1-G8	108	1	L8	11	11,6%	41
X7RG1	108	1	Lī	8	8,4%	70
LI	108	1	L8	3	3,2%	72
JE	108	1	L12(2)	11	11,6%	32
JNm01	108	1	L12(2)	10	10,5%	6
IV-b1	106	1	A20		4,3%	8
V-54	103	1	02	2	2,2%	8
			54-		-10	J

PCT/EP96/03647

Table 2A: (continued)

Name¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference ²
CAR	107	1	L12(2)	11	11,7%	79
BR	107	1	L12(2)	11	11,6%	50
CLL PATIENT 10	88	1	02	0	0,0%	122
CLL PATIENT 12	88	. 1	02	0 ·	0,0%	122
KING	108	1 .	L12(2)	12	12,6%	30
V13	95	1	L24	0	0,0%	46
CLL PATIENT 11	87	1	02	0	0,0%	122
CLL PATIENT 13	87	1	02	0	0,0%	122
CLL PATIENT 9	88	1	012	1	1.1%	122
HIV-B2	106	1	A20	9	9,7%	8
HIV-b2	106	1	A20	9	9,7%	8
CLL PATIENT 5	88	1	A20	1	1,1%	122
CLL PATIENT 1	88	. 1	L8	2	2,3%	122
CLL PATIENT 2	88	1	L8	0	0,0%	122
CLL PATIENT 7	88	1	L 5	0	0,0%	122
CLL PATIENT 8	88	1	L5	0	0,0%	122
HIV-b5	105	1	L5	11	12,0%	8
CLL PATIENT 3	87	1	L8	1	1,1%	122
CLL PATIENT 4	88	1	L9	0	0,0%	122
CLL PATIENT 18	85	1	L9	6	7,1%	122
CLL PATIENT 17	86	1	L12(2)	7	8,1%	122
HIV-b20	107	3	A27	11	11,7%	8
2C12	108	1 1	L12(2)	20	21,1%	68
1B11	108	1	L12(2)	20	21,1%	68
1H1	108	1	L12(2)	21	22,1%	68
2A12	108	1	L12(2)	21	22,1%	68
CUR	109	3	A27	0	0,0%	66
GLO	109	3	A27	0	0,0%	16
RF-TS1	96	3	A27	0	0,0%	121
GAR'	109	3	A27	0	0,0%	67
FLO	109	3	A27	0	0.0%	66
PIE	109	3	A27	0	0,0%	91
HAH 14.1	109	3	A27	1	1,0%	51
HAH 14.2	109	3	A27	1	1,0%	51

Table 2A: (continued)

Name ¹	aa²	Computed	Germline	Diff. to	% diff. to	Reference ⁷
		family ³	gene⁴	germline ⁵	germline ⁶	
HAH 16.1	109	3	A27	1	1,0%	51
NOV .	109	3	A27	1	1,0%	52
33.F12	108	3	A27	1	1,0%	126
8E10	110	3	A27	1	1,0%	25
TH3	109	3	A27	1	1,0%	25
HIC (R)	108	3	A27	0	0,0%	51
SON	110	3	A27	1	1,0%	67
PAY	109	3	A27	1	1,0%	66
GOT	109	3	A27	1	1,0%	67
mAbA6H4C5	109	3	A27	1	1,0%	12
BOR'	109	3	A27	2	2,1%	84
RF-SJ3	96	3	A27	2 _	2,1%	121
SIE	109	3	A27	2	2,1%	15
ESC	109	3	A27	2	2,1%	98
HEW'	110	3	A27	2	2,1%	98
YES8c	109	3	A27	3	3,1%	33
П	109	. 3	A27	3	3,1%	114
nAb113	109	3	A27	3	3,1%	71
HEW	107	3	A27	0	0,0%	94
BRO	106	3	A27	0	0,0%	94
ROB	106	3 .	A27	0	0,0%	94
1G9	96	3	A27	4 .	4,2%	11
NEU .	109	3	A27	4	4,2%	66
VOL	109	3	A27	4	4,2%	2
5G6	109	3	A27	4	4.2%	59
F-SJ4	109	3	A11	0	0.0%	88
AS	109	3	A27	4	4,2%	84
RA	106	3	A27	1	1,1%	94
AH	106	3	A27	1	1,1%	94
IC	105	3	A27	0	0,0%	94
5-2	109	3	A27	6	6,3%	9 4 87
ł'	107	3	A27	6	6,3%	38
/1-15	109	3	A27	6.	6,3%	
CA	108	3	A27	6	6,3%	83 CF
			56	U	0,370	65

Table 2A: (continued)

Name¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference ²
mAb112	109	3	A27	6	6,3%	71
SIC	103	3	A27	3	3,3%	94
SA-4A	109	3	A27	6	6,3%	120
SER	108	. 3	A27	6	6,3%	98
GOL'	109	3	A27	7	7,3%	82
B5G10K	105	3	A27	9	9,7%	125
HG2B10K	110	3	A27	-9	9,4%	125
Taykv322	105	3	A27	5	5,4%	52
CLL PATIENT 24	89	3	A27	1	1,1%	122
HIV-b24	107	3	A27	7	7,4%	8
HIV-b6	107	3	A27	7	7,4%	8
Taykv310	99	3	A27	1	1,1%	52
KA3D1	108	3	L6	0	0,0%	85
19.E7	107	3	L6	0	0,0%	126
rsv6L	109	3	A27	12	12,5%	7
Taykv320	98	3	A27	1	1,2%	52
Vh	96	3	L10(2)	0	0,0%	89
LS8	108	3	L6	1	1,1%	109
LS1	108	3	L6	1	1,1%	109
LS2S3-3	107	3	L6	2.	2,1%	99
LS2	· 108	3	L6	1.	1,1%	109
LS7	108	3	L6	1	1,1%	109
LS2S3-4d	107	3	L6	2	2,1%	99
LS2S3-4a	107	3	L6	2	2,1%	99
LS4	108	3	L6	1	1,1%	109
LS6	108	3	L6	1	1,1%	109
LS2S3-10a	107	3	L6	2	2.1%	99
LS2S3-8c	107		L6	2	2,1%	99
LS5	108	3	L6	1	1,1%	109
LS2S3-5	107	3	L6	3	3,2%	99
LUNm03	109		A27	13	13,5%	6
IARC/BL41	108		A27	13	13,7%	55
slkv22	99	3	A27	3	3,5%	13
POP	108	3	L6	4	4,2%	113

5天

Table 2A: (continued)

Name ¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference ⁷
LS2S3-1Qb	107	3	L6	3	3,2%	99
LS2S3-8f	107	· 3	L 6	3	3,2%	99
LS2S3-12	107	3	L6	3	3,2%	99
HIV-B30	107	3	A27	11	11,7%	8
HIV-B20	107	3	A27	11	11,7%	8
HIV-b3	108	3	A27	11	11,7%	8
HIV-s6	104	3	A27	9	9,9%	8
YSE	107	3	L2/L16	1	1,1%	72
POM	109	3	L2/L16	9	9,4%	53
Humkv328	95	3	L2/L16	1	1,1%	19
CLL	109	3	L2/L16	3	3,2%	47
LES	96	3	L2/L16	3.	3,2%	38
HIV-s5	104	3	A27	11	12,1%	8
HIV-s7	104	3	A27	11	12,1%	8
slkv1	99	3	A27	7	8,1%	13
Humka31es	95	3	L2/L16	4	4,2%	18
slkv12	101	3	A27	8	9,2%	13
RF-TS2	95	3	L2/L16	3 .	3,2%	121
II-1	109	3	L2/L16	4	4,2%	70
HIV-s3	105	3	A27	13	14,3%	8
RF-TMC1	96	3 .	L6	10	10,5%	121
GER	109	3	L2/L16	7	7,4%	75
GF4/1.1	109	3	L2/L16	8	8,4%	36
mAb114	109	3	L2/L16	6	6,3%	71
HIV-loop13	109	3	L2/L16	7	7,4%	8
bkv16	86	3	L6	1	1,2%	13
CLL PATIENT 29	86	3	L6	1	1,2%	122
slkv9	98	3	L6	3	3,5%	13
bkv17	99	3	L6	1	1,2%	13
slkv14	99	3	L6	1	1,2%	13
slkv16	101	3	L6	2	2,3%	13
bkv33	101	3	L6	4	4,7%	13
slkv15	99	3	L6	2	2,3%	13
okv6	100	3	L6	3	3,5%	13

Table 2A: (continued)

Name ¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ^s	% diff. to germline ⁶	Reference?
R6B8K	108	3	L2/L16	12	12,6%	125
AL 700	107	3	L2/L16	9	9,5%	117
slkv11	100	3	L2/L16	3	3,5%	13
slkv4	97	3	L6	4	4.8%	13
CLL PATIENT 26	87	3	L2/L16	1	1,1%	122
AL Se124	103	3	L2/L16	9	9,5%	117
slkv13	100	3	L2/L16	6	7,0%	13
bkv7	100	3	L2/L16	5	5,8%	13
bkv22	100	3	L2/L16	. 6	7,0%	13
CLL PATIENT 27	84	3	L2/L16	0	0,0%	122
bkv35	100	3	L6	8	9,3%	13
CLL PATIENT 25	87	3	L2/L16	4	4,6%	122
slkv3	86	3	L2/L16	7	8,1%	13
slkv7	99	1	02	7	8,1%	13
HuFd79	111	3	L2/L16	24	24,2%	21
RAD	99	3	A27	9	10,3%	78
CLL PATIENT 28	83	3	L2/L16	4	4,8%	122
REE	104	3	L2/L16	25	27,2%	95
FR4	99	3	A27	8	9,2%	77
MD3.3	92	3	L6	1	1,3%	54
MD3.1	92	3	ŗe	0	0,0%	54
GA3.6	92	3	L6	2	2,6%	54
M3.5N	92	3	L6	3	3,8%	54
WEI'	82	3	A27	0	0.0%	65
MD3.4	92	3	L2/L16	1	1,3%	54
MD3.2	91	3	L6	3	3,8%	54
VER	97	3	A27	19	22,4%	20
CLL PATIENT 30	78	3	L6	. 3	3,8%	122
M3.1N	92	3	L2/L16	1	1,3%	54
MD3.6	91	3	L2/L16	0	0,0%	54
MD3.8	91	3	L2/L16	0	0,0%	54
GA3.4	92	3	L6	7	9,0%	54
M3.6N	92	3	A27	0	0,0%	54
MD3.10	92	3	A27	0	0,0%	54

59

Table 2A: (continued)

Name ¹	.aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference'
MD3.13	91	3	A27	0	0,0%	54
MD3.7	93	3	A27	. 0	0,0%	54
MD3.9	93	3	A27	0 .	0,0%	54
GA3.1	93	3	A27	6	7,6%	54
bkv32	101	3	A27	5	5,7%	13
GA3.5	93	3	A27	5	6,3%	54
GA3.7	92	3	A27	_7	8,9%	54
MD3.12	92	3	A27	2	2,5%	54
M3.2N	90	3	L6	6	7,8%	54
MD3.5	92	3	A27	1	1,3%	54
M3.4N	91	. 3	L2/L16	8	10,3%	54
M3.8N	91	3	L2/L16	7	9,0%	54
M3.7N	92	3	A27	3	3,8%	54
GA3.2	92	3	A27	9	11,4%	54
GA3.8	93	3	A27	4	5,1%	54
GA3.3	92	3	A27	8	10,1%	54
M3.3N	92	3	A27	5	6,3%	54
B6	83	3	A27	8	11,3%	78
E29.1 KAPPA	78	3	L2/L16	0	0,0%	22
SCW	108	1	08	12	12,6%	31
REI-based CAMPATH-9	107	1	08	14	14,7%	39
RZ	107	1	08	14	14,7%	50
ВІ	108	1	08	14	14,7%	14
AND	107	1	02	13	13,7%	69
2A4	109	1	02	12	12,6%	23
KA	108	. 1	08	19	20,0%	107
MEV	109	1	02	14	14,7%	29
DEE	106	1	02	13	14,0%	76
OU(IOC)	108	1	02	18	18,9%	60
HuRSV19VK	111	1	08	21	21,0%	115
SP2	108	1	02	17	17,9%	93
BJ26	99	1 -	08	21	24,1%	1 .
NI	112	1	08	24	24,2%	106
BMA 0310EUCIV2	106	1	L12(1)	21	22,3%	105

Table 2A: (continued)

Name ¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ^s	% diff. to germline ⁶	Reference'
CLL PATIENT 6	71	1	A20	0	0,0%	122
BJ19	85	1	08	16	21,9%	1
GM 607	113	2	А3	0	0,0%	58
R5A3K	- 114	2	A3	1	1,0%	125
R1C8K	114	2	А3	1	1,0%	125
VK2.R149	113	2	А3	. 2	2,0%	118
TR1.6	109	2	А3	4	4,0%	92
TR1.37	104	2	A3	5	5,0%	92
FS-1	113	2	A3	6	6,0%	87
TR1.8	110	2	A3	6	6.0%	92
NIM	113	2 .	A3	8	8,0%	28
Inc	112	2	A3	11	11,0%	35
TEW	107	2	A3	6	6,4%	96
CUM	114	2	01	7	6,9%	44
HRF1	71	2	A3	4	5,6%	124
CLL PATIENT 19	87	2	A3	0	0,0%	122
CLL PATIENT 20	87	2	A3	0	0,0%	122
MIL	112	2	A3	16	16,2%	26
FR	113	2	A3	20	20,0%	101
MAL-Urine	83	1	02	6	8,6%	102
Taykv306	73	3	A27	1	1,6%	52
Taykv312	75	3	A27	1	1,6%	52 .
HIV-b29	93	3	A27	14	17,5%	8
1-185-37	110	3	A27	. 0	0,0%	119
1-187-29	110	3	A27	0	0,0%	119
Π117	110	3	A27	9	9,4%	63
HIV-loop8	108	3	A27	16	16,8%	8
rsv23L	108	3	A27	16	16,8%	7
HIV-b7	107	3	A27	14	14,9%	8
HIV-b11	107	3	A27	15	16,0%	8
HIV-LC1	107	3	A27	19	20,2%	8
HIV-LC7	107	3	A27	20	21,3%	8
HIV-LC22	107	3	A27	21	22,3%	8
HIV-LC13	107	3	A27	21	22,3%	8
			61			

Table 2A: (continued)

Name¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference'
HIV-LC3	107	3	A27	21	22,3%	8
HIV-LC5	107	3	A27	21	22,3%	8
HIV-LC28	107	3	A27	21	22,3%	. 8
HIV-b4	107	3	A27	22	23,4%	8
CLL PATIENT 31	87	3	A27	15	17,2%	122
HIV-loop2	108	3	L2/L16	17	17,9%	. 8
HIV-loop35	108	3	L2/L16	17	17,9%	8
HIV-LC11	107	3	A27	23	24,5%	8
HIV-LC24	107	3	A27	23	24,5%	8
HIV-b12	107	3	A27	24	25,5%	8
HIV-LC25	107	3	A27	24	25,5%	8
HIV-b21	107	3	A27	24	25,5%	8
HIV-LC26	107	3	A27	26	27,7%	8
G3D10K	108	1	L12(2)	12	12,6%	125
Π125	108	1	L5	8	8,4%	63
HIV-s2	103	3	A27	28	31,1%	8
265-695	108	1	L5	7	7,4%	3
2-115-19	108	1	A30	2	2,1%	119
rsv13L	107	1	02	20	21,1%	7
HIV-b18	106	1	02	14	15,1%	8
RF-KL5	98	3	L6	36	36,7%	97
ZM1-1	113	2	A17	7	7,0%	3
HIV-s8	103	1	08	16	17,8%	8
K- EV15	95	5	B2	0	0,0%	112
RF-TS3	100	2	A23	0	0,0%	121
HF-21/28	111	2	A17	1	1,0%	17
RPMI6410	113	2	A17	1	1,0%	42
JC11	113	2	A17	1	1,0%	49
0-81	114	2	A17	5	5.0%	45
FK-001	113	4	В3	0	0.0%	81
CD5+.28	101	4	В3	1	1,0%	27
LEN	114	4	В3	1	1,0%	104
UC	114	4	В3	1	1.0%	111
CD5+.5	101	4	В3	1	1,0%	27

Table 2A: (continued)

Name ¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference'
CD5+.26	101	4	В3	1	1,0%	27
CD5+.12	101	4	В3	2	2,0%	27
CD5+.23	101	4	В3	2	2,0%	27
CD5+.7	101	4	B3	2	2,0%	27
VJI	113	4	B3	3	3,0%	56
LOC	113	4	B3	3	3,0%	72
MAL	113	4	В3	3	3,0%	72
CD5+.6	101	4	В3	3	3,0%	27
H2F	113	4	В3	3	3,0%	70
PB17IV	114	4	В3	4	4,0%	74
CD5+.27	101	4	В3	4	4,0%	27
CD5+.9	101	4	В3	4	4,0%	27
CD528	101	. 4	В3	5	5,0%	27
CD526	101	4	В3	6	5,9%	27
CD5+.24	101	4	В3	6	5,9%	27
CD5+.10	101	4	В3	6	5,9%	27
CD519	101	4	B3	6	5,9%	27
CD518	101	4	В3	7	6,9%	27
CD516	101	, 4	В3	8	7,9%	27
CD524	101	4	В3	8	7,9%	27
CD517	101	4	В3	10	9,9%	27
MD4.i	92	4	. B3	0	0,0%	54
MD4.4	92	4	В3	0	0.0%	54
MD4.5	92	4	В3	0	0,0%	54
MD4.6	92	4	В3	0	0.0%	54
MD4.7	92	4	В3	0	0,0%	54
MD4.2	92	4	В3	1	1,3%	54
MD4.3	92	4	В3	5	6,3%	54
CLL PATIENT 22	87	2	A17	2	2,3%	122
CLL PATIENT 23	84	2	A17	2	2,4%	122

Table 2B: rearranged human lambda sequences

					h .	
Name ¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference'
WAH	110	1	DPL3	7	7%	68
1B9/F2	112	1	DPL3	7	7%	9
DIA	112	1	DPL2	7	7%	36
mAb67	89	1	DPL3	0	0%	29
HiH2	110	1	DPL3	12	11%	3
NIG-77	. 112	1	DPL2	9	9%	72
OKA	112	1	DPL2	7	7%	84
KOL	112	1	DPL2	12	11%	40
T2:C5	111	1	DPL5	0	0%	6
T2:C14	110	1	DPL5	0	0%	6
PR-TS1	110	1	DPL5	0	0%	55
4G12	111	1	DPL5	1	1%	35
KIM46L	112	1	HUMLV117	0	0%	8
Fog-B	111	1	DPL5	3	3%	31
9F2L	111	1	DPL5	3	3%	79
mAb111	110	1	DPL5	3	3%	48
PHOX15	111	1	DPL5	4	4%	49
BL2	111	1	DPL5	4	4%	74
NIG-64	111	1	DPL5	4	4%	72
RF-SJ2	100	1	DPL5	6	6%	78
AL EZI	112	1	· DPL5	7	7%	41
ZIM	112	. 1	HUMLV117	7	7%	18
RF-SJ1	100	1.	DPL5	9	9%	78
IGLV1.1	98	1	DPL4	0	0%	1
NEW	112	1	HUMLV117	11	10%	42
CB-201	87	1	DPL2	1	1%	62
MEM	109	1	DPL2	6	6%	50
H210	111	. 2	DPL10	4	4%	45
NOV	110	2	DPL10	8	8%	25
NEI	111	2	DPL10	8	8º/o	24
AL MC	110	2	DPL11	6	6%	28
MES	112	2	DPL11	8	8%	84
FOG1-A3	. 111	2	DPL11	9	9%	27
AL NOV	112	2	DPL11 ≪4	7	7%	28

Table 2B: (continued)

Name ¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ^s	% diff. to germline ⁶	Reference ⁷
HMST-1	110	2	DPL11	4	40/0	82
HBW4-1	108	2	DPL12	9	9%	52
WH	110	2	DPL11	11	11%	34
11-50	110	2	DPL11	7	7%	82
НВр2	110	2	DPL12	8	8%	3
NIG-84	113	2	DPL11	12	11%	73
VIL	112	2	DPL11	9	9%	58
TRO	111	2	DPL12	10	10%	61
ES492	108	2	DPL11	15	15%	76
mAb216	89	2	DPL12	1	1%	7
BSA3	109	3	DPL16	0	0%	49
THY-29	110	3	DPL16	0 -	0%	27
PR-TS2	108	3	DPL16	0	0%	55
E29.1 LAMBDA	107	3	DPL16	1	1%	13
mAb63	109	3	DPL16	2	2%	29
TEL14	110	. 3	DPL16	6	6%	49
6H-3C4	108	3	DPL16	7	7%	39
SH	109	3	DPL16	7	7%	70
AL GIL	109	3	DPL16	8	8%	23
H6-3C4	108	3	DPL16	8	8%	83
V-lambda-2.DS	111	2	DPL11	3	3%	15
8.12 ID	110	2	DPL11	3	3%	81
DSC	111	2	DPL11	3	3%	56
PV11	110	2	DPL11	1	1%	56
33.H11	110	2	DPL11	4	4%	81
AS17	111	2	DPL11	7	7%	56
SD6	110	2	DPL11	7	7%	56
KS3	110	2	DPL11	9	9%	56
PV6	110	2	DPL12	5	5%	. 56
NGD9	110	2	DPL11	7	7%	56
MUC1-1	111	2	DPL11	11	10%	27
A30c	111	2	DPL10	6	6%	56
KS6	110	2	DPL12	6	6%	56
TEL13	111	2	DPL11 65	11	10%	49

Table 2B: (continued)

Name¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference ⁷
AS7	110	2	DPL12	6	6%	56
MCG	112	2	DPL12	12	11%	20
U266L	110	2	DPL12	13	12%	77
PR-SJ2	110	2	DPL12	14	13%	55
вон	112	2	DPL12	11	10%	37
TOG ·	111	2	DPL11	19	18%	53
TEL16	111	2	DPL11	19	18%	49
No.13	110	2	DPL10	14	13%	52
во	112	2	DPL12	18	17%	80
WIN	112	2	DPL12	17	16%	11
BUR	104	2	DPL12	15	15%	46
NIG-58	110	2	DPL12	20	19%	69
WEIR	112	2	DPL11	26	25%	21
THY-32	111	1	DPL8	8	8%	27
TNF-H9G1	111	1	DPL8	9	9%	27
mAb61	111	1	DPL3	1	1%	29
LV1L1	98	1	DPL2	0	0%	54
НА	113	1	DPL3	14	13%	63
LA1L1	111	1	DPL2	3	3%	54
RHE	112	1	DPL1	17	16%	22
K1B12L	113	1	DPL8	17	16%	79
LOC	113	1	DPL2	15	14%	84
NIG-51	112	1	DPL2	12	11%	67
NEWM	104	1	DPL8	23	22%	10
MD3-4	106	3	DPL23	14	13%	4
COX	112	1	DPL2	13	12%	84
HiH10	106	3	DPL23	13	12%	3
VOR	112	1	DPL2	16	15%	16
AL POL	113	1	DPL2 ·	16	15%	57
CD4-74	111	1	DPL2	19	18%	27
AMYLOID MOL	102	3	DPL23	15	15%	30
OST577	108	3	Humlv318	10	10%	4
NIG-48	113	1	DPL3	42	40%	66
CARR	108	3	DPL23	18	17%	19

PCT/EP96/03647

WO 97/08320

Table 2B: (continued)

Name ¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference
mAb60	108	3	DPL23	14	13%	29
NIG-68	99	3	DPL23	25	26%	32
KERN	107	3	DPL23	26	25%	59
ANT	106	3	DPL23	17	16%	19
LEE	110	3	DPL23	18	17%	85
CLE ·	94	3	DPL23	17	17%	19
VL8	98	8	DPL21	0	0%	81
MOT	110	3	Humlv318	23	22%	38
GAR	108	3	DPL23	26	25%	33
32.B9	98	8	DPL21	5	5%	81
PUG	108	3	Humlv318	24	23%	19
T1	115	8	HUMLV801	52	50%	6
RF-TS7	96	7	DPL18	4	4%	60
YM-1	116	8	HUMLV801	51	49%	75
K6H6	112	8	HUMLV801	20	19%	44
K5C7	112	8	HUMLV801	20	19%	44
K5B8	112	8	HUMLV801	20	19%	44
K5G5	112	8	HUMLV801	20	19%	44
K4B8	112	8	HUMLV801	19	18%	44
K6F5	112	8	HUMLV801	17	16%	44
HIL	108	3	DPL23	22	21%	47
KIR	109	3	DPL23	20	19%	19
CAP	109	3	DPL23	19	18%	84
1B8	110	3	DPL23	22	21%	43
SHO	108	3	DPL23	19	18%	19
HAN	108	3	DPL23	20	19%	. 19
cML23	96	3	DPL23	3	3%	12
PR-SJ1	96	3	DPL23	7	7%	55
BAU	107	3	DPL23	9	9%	5
TEX	99	3	DPL23	8	8%	19
X(PET)	107	3	DPL23	9	9%	51
DOY	106	3	DPL23	9	9%	19
COT	106	3	DPL23	13	12%	19
Pag-1	111	3	Humlv318	5	5%	31
-			6=			

6 z-

Table 2B: (continued)

Name ¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference ⁷
DIS	107	3	Humiv318	2	2%	19
WIT	108	3	Humlv318	7	7%	19
I.RH	108	3	Humlv318	12	11%	19
S1-1	108	3	Humiv318	12	11%	52
DEL	108	3	Humlv318	14	13%	17
TYR	108	3	Humlv318	11	10%	19
J.RH	109	3	Humlv318	13	12%	19
THO	112	2	DPL13	38	36%	26
LBV	113	1	DPL3	38	36%	2
WLT	112	1	DPL3	33	31%	14
SUT	112	2	DPL12	37	35%	65

Table 2C: rearranged human heavy chain sequences

Name ¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ^s	% diff. to germline ⁶	Reference
21/28	119	1	VH1-13-12	0	0.0%	31
8E10	123	1	VH1-13-12	0	0.0%	31
MUC1-1	118	1	VH1-13-6	4	4,1%	42
gF1	98	1	VH1-13-12	10	10,2%	75
VHGL 1.2	98	1	VH1-13-6	2	2,0%	26
HV1L1	98	1	VH1-13-6	0	0,0%	81
RF-TS7	104	1	VH1-13-6	3	3,1%	96
E55 1.A15	106	1	VH1-13-15	1	1,0%	26
HA1L1	126	1	VH1-13-6	7	7.1%	81
UC	123	1	VH1-13-6	5	5,1%	115
WIL2	123	1	VH1-13-6	6	6,1%	55
R3.5H5G	122	1	VH1-13-6	10	10,2%	70
N89P2	123	1	VH1-13-16	11	11,2%	77
mAb113	126	1	VH1-13-6	10	10,2%	71
LS2S3-3	125	1	VH1-12-7	5	5,1%	98
LS2S3-12a	125	1	VH1-12-7	5	5,1%	98
LS2S3-5	125	1	VH1-12-7	5	5,1%	98
LS2S3-12e	125	1	VH1-12-7	5	5,1%	98
LS2S3-4	125	1	VH1-12-7	5	5.1%	98
LS2S3-10	125	1	VH1-12-7	5	5,1%	98
LS2S3-12d	125	1	VH1-12-7	6	6,1%	98
LS2S3-8	125	1	VH1-12-7	5	5,1%	98
LS2	125	1	VH1-12-7	6	6,1%	113
LS4	105	1	VH1-12-7	6	6,1%	113
LS5	125	1	VH1-12-7	6	6,1%	113
LS1	125	1	VH1-12-7	6	6.1%	113
LS6	125	1	VH1-12-7	6	6,1%	113
LS8	125	1	VH1-12-7	7	7.1%	113
THY-29	122	1	VH1-12-7	0	0,0%	42
1B9/F2	122	1	VH1-12-7	10	10,2%	21
51P1	122	1	VH1-12-1	0	0.0%	105
NEI	127	1	VH1-12-1	0	0,0%	55
AND	127	1	VH1-12-1	0	0,0%	55
L7	127	1	VH1-12-1	0	0,0%	54
L22	124	1	VH1-12-1	0	0,0%	54
L24	127	1	VH1-12-1	0	0.0%	54

Table 2C: (continued)

Name ¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ^s	% diff. to germline ⁶	Reference ⁷
L26	116	1	VH1-12-1	0	0,0%	54
L33	119	1	VH1-12-1	0	0,0%	54
L34	117	1	VH1-12-1	0	0,0%	54
L36	118	1	VH1-12-1	0	0,0%	54
L39	120	1	VH1-12-1	0	0,0%	54
L41	120	1	VH1-12-1	0	0,0%	54
L42	125	1	VH1-12-1	0	0,0%	54
VHGL 1.8	101	1	VH1-12-1	0	0,0%	26
783c	127	1	VH1-12-1	0	0,0%	22
X17115	127	1	VH1-12-1	0	0,0%	37
L25	124	1	VH1-12-1	0	0,0%	54
L17	120	1	VH1-12-1	1	1,0%	54
L30	127	1	VH1-12-1	1	1,0%	54
L37	120	1	VH1-12-1	1	1,0%	54
TNF-E7	116	1 .	VH1-12-1	2	2,0%	42
mAb111	122	1	VH1-12-1	7 -	7,1%	71
III-2R	122	1	VH1-12-9	3	3,1%	70
KAS	121	1	VH1-12-1	7	7,1%	79
YES8c	122	1	VH1-12-1	8	8,2%	34
RF-TS1	123	1	VH1-12-1	8	8,2%	82
BOR'	121	1	VH1-12-8	7	7,1%	79
VHGL 1.9	101	1 .	VH1-12-1	8	8,2%	26
mAb410.30F305	117	1	VH1-12-9	5	5,1%	52
EV1-15	127	1	VH1-12-8	10	10,2%	78
mAb112	122	1	VH1-12-1	11	11,2%	71
EU	117	1	VH1-12-1	11	11,2%	28
H210	127	1	VH1-12-1	12	12,2%	66
TRANSGENE	104	1	VH1-12-1	0	0,0%	111
CLL2-1	93	1	VH1-12-1	0	0,0%	30
CLL10 13-3	97	1	VH1-12-1	0 .	0,0%	29
LS7	99	1	VH1-12-7	4 -	4,1%	113
ALL7-1	87	1 .	VH1-12-7	0	0,0%	30
CLL3-1	91	1	VH1-12-7	1	1,0%	30
ALL56-1	85	1	VH1-13-8	0	0,0%	30
ALL1-1	87	1	VH1-13-6	1	1,0%	30
ALL4-1	94	1	VH1-13-8	0	0,0%	30

WO 97/08320

Table 2C: (continued)

Name¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ^s	% diff. to germline ⁶	Reference ⁷
ALL56 15-4	85	1	VH1-13-8	5	5,1%	29
CLL4-1	88	1	VH1-13-1	1	1,0%	. 30
Au92.1	98	1	VH1-12-5	0	0,0%	49
RF-TS3	120	1	VH1-12-5	1	1,0%	82
Au4.1	98	1	VH1-12-5	1	1,0%	49
HP1	121	1	VH1-13-6	13	13,3%	110
BLI	127	1	VH1-13-15	5	5,1%	72
No.13	127	. 1	VH1-12-2	19	19,4%	76
TR1.23	122	1	VH1-13-2	23	23,5%	88
S1-1	125	1	VH1-12-2	18	18,4%	76
TR1.10	119	1	VH1-13-12	14	14,3%	88
E55 1.A2	102	1 .	VH1-13-15	3	3,1%	26
SP2	119	1	VH1-13-6	. 15	15,3%	89
TNF-H9G1	111	1	VH1-13-18	2	2,0%	42
G3D10H	127	1	VH1-13-16	19	19,4%	127
TR1.9	118	1	VH1-13-12	14	14,3%	88
TR1.8	121	1	VH1-12-1	24	24,5%	88
LUNm01	127	1	VH1-13-6	22	22,4%	9
K1B12H	127	1	VH1-12-7	23	23,5%	127
L3B2	99	1	VH1-13-6	. 2	2,0%	46
ss2	100	1	VH1-13-6	2	2,0%	46
No.86	124	1	VH1-12-1	20	20,4%	76
TR1.6	124	1	VH1-12-1	19	19,4%	88
ss7	99	1	VH1-12-7	3	3.1%	46
s5B7	102	1	VH1-12-1	0	0.0%	46
s6A3	97	1	VH1-12-1	0	0.0%	46
ss6	99	1	VH1-12-1	0	0,0%	46
L2H7	103	1	VH1-13-12	0	0,0%	46
s6BG8	93	1	VH1-13-12	0	0,0%	46
s6C9	107	1	VH1-13-12	0	0,0%	46
HIV-b4	124	1	VH1-13-12	21	21,4%	12
HIV-b12	124		VH1-13-12	21	21,4%	12
L3G5	98	1	VH1-13-6	1	1,0%	46
22	115	1	VH1-13-6	11	11,2%	118
L2A12	99	1	VH1-13-15	3	3,1%	46
PHOX15	124		VH1-12-7	20	20,4%	73
			71			

SUBSTITUTE SHEET (RULE 26)

Table 2C: (continued)

Name ¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference'
LUNm03	127	1	VH1-1X-1	18	18,4%	9
CEA4-8A	129	1	VH1-12-7	1	1,0%	42
M60	121	2 .	VH2-31-3	3	3,0%	103
HiH10	127	2	VH2-31-5	9	9,0%	4
COR	119	2	VH2-31-2	11	11,0%	91
2-115-19	124	2	VH2-31-11	8	8,1%	124
OU	125	2	VH2-31-14	20	25,6%	92
HE	120	2	VH2-31-13	19	19,0%	27
CLL33 40-1	78	2	VH2-31-5	2	2.0%	29
E55 3.9	88	3	VH3-11-5	7	7,2%	26
MTFC3	125	3	VH3-14-4	21	21,0%	131
MTFC11	125	3	VH3-14-4	21	21,0%	131
MTFJ1	114	3	VH3-14-4	21	21,0%	131
MTFJ2	114	3	VH3-14-4	21	21,0%	131
MTFUJ4	100	3	VH3-14-4	21	21,0%	131
MTFUJ5	100	3	VH3-14-4	21	21,0%	131
MTFUJ2	100	3	VH3-14-4	22	22,0%	131
MTFC8	125	3	VH3-14-4	23	23,0%	131
TD e Vq	113	3	VH3-14-4	0	0,0%	16
rMTF	. 114	3	VH3-14-4	5	5,0%	131
MTFUJ6	100	3	VH3-14-4	10	10,0%	131
RF-KES	107	3 .	VH3-14-4	9	9,0%	85
N51P8	126	3	VH3-14-1	9	9,0%	77
TEI	119	3	VH3-13-8	21	21,4%	20
33.H11	115	3	VH3-13-19	10	10,2%	129
SB1/D8	101	3	VH3-1X-8	14	14,0%	2
38P1	119	3	VH3-11-3	0	0,0%	104
BRO'IGM	119	3	VH3-11-3	13	13,4%	19
NIE	119	3	VH3-13-7	15	15,3%	87
3D6	126	3	VH3-13-26	5	5,1%	35
ZM 1-1	112	3	VH3-11-3	8	8,2%	5
E55 3.15	110	3	VH3-13-26	0	0,0%	26
gF9	108	3	VH3-13-8	15	15,3%	75
THY-32	120	3	VH3-13-26	3	3,1%	42
RF-KL5	100.	3	VH3-13-26	5	5,1%	96
OST577	122	3	VH3-13-13	6	6.1%	5
			72			

WO 97/08320

Table 2C: (continued)

Name ¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference ²
во	113	3	VH3-13-19	15	15,3%	10
Π125	121	3	VH3-13-10	15	15,3%	64
2-115-58	127	3	VH3-13-10	11	11,2%	. 124
KOL	126	3	VH3-13-14	16	16,3%	102
mAb60	118	3	VH3-13-17	14	14,3%	45
RF-AN	106	3	VH3-13-26	8	8,2%	85
BUT	115	3	VH3-11-6	13	13,4%	119
KOL-based CAMPATH-						
9	118	3	VH3-13-13	16	16,3%	41
B1	119	3	VH3-13-19	13	13,3%	53
N98P1	127	3	VH3-13-1	13	13,3%	77
П117	107	3	VH3-13-10	12	12,2%	64
WEA	114	3	VH3-13-12	15	15,3%	40
HIL	120	3	VH3-13-14	14	14,3%	23
s5A10	97	3	VH3-13-14	0	0,0%	46
s5D11	98	3	VH3-13-7	0	0,0%	46
s6C8	100	3	VH3-13-7	0	0,0%	46
s6H12	98	3	VH3-13-7	0	0,0%	46
VH10.7	119	3	VH3-13-14	16	16,3%	128
HIV-loop2	126	3	VH3-13-7	16	16,3%	12
HIV-loop35	126	3	VH3-13-7	16	16,3%	12
TRO	122	3	VH3-13-1	13	13,3%	61
SA-4B	123	3	VH3-13-1	15	15,3%	125
L2B5	98	3	VH3-13-13	0	0,0%	46
s6E11	95	3	VH3-13-13	0	0,0%	46
s6H7	100	3	VH3-13-13	0	0,0%	46
ss1	102	3	VH3-13-13	0	0,0%	46
ss8	94	3	VH3-13-13	0	0,0%	46
DOB	120	3	VH3-13-26	21	21,4%	116
THY-33	115	3	VH3-13-15	20	20,4%	42
NOV	118	3	VH3-13-19	14	14,3%	38
rsv13H	120	3	VH3-13-24	20	20,4%	11
L3G11	98	3	VH3-13-20	2	2,0%	46
L2E8	99	3	VH3-13-19	0	0,0%	46
L2D10	101	3	VH3-13-10	1	1,0%	46
L2E7	98	3	VH3-13-10	1	1,0%	46

Table 2C: (continued)

Name ¹	aa²	Compute family ³	d Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference ⁷
L3A10	100	3	VH3-13-24	0	0.0%	46
L2E5	97	3	VH3-13-2	1	1,0%	46
BUR	119	3	VH3-13-7	21	21,4%	46 67
s4D5	107	3	VH3-11-3	1	1,0%	46
19	116	3	VH3-13-16	4	4,1%	118
s5D4	99	3	VH3-13-1	0	0.0%	46
s6A8	100	3	VH3-13-1	0	0,0%	46
HIV-loop13	123	3	VH3-13-12	17	17,3%	
TR1.32	112	3	VH3-11-8	18		12
L2B10	97	3	VH3-11-3	1	18,6%	88
TR1.5	114	3	VH3-11-8	21	1,0%	46
s6H9	101	3	VH3-11-8		21,6%	88
8	112	3	VH3-13-23	0 6	0,0%	46
23	115	3	VH3-13-1	6	6,1%	118
7	115	3	VH3-13-1		6,1%	118
TR1.3	120	3	VH3-13-1 VH3-11-8	4	4,1%	118
18/2	125	3	VH3-13-10	20	20,6%	88
18/9	125	3	VH3-13-10 VH3-13-10	0	0,0%	32
30P1	119	3	VH3-13-10	0	0.0%	31
HF2-1/17	125	3	VH3-13-10 VH3-13-10	0	0,0%	106
A77	109	3	VH3-13-10 VH3-13-10	0	0,0%	8
319.7	108		VH3-13-10	0	0,0%	44
M43	119	3	VH3-13-10	0	0,0%	44
/17	125	3	VH3-13-10	0	0,0%	103
8/17	125	3		0	0.0%	31
54 3.4	109	3	VH3-13-10 VH3-13-10	0	0,0%	31
AMBDA-VH26	98		VH3-13-10	0	0,0%	26
54 3.8	111	_		1	1,0%	95
L16	106		VH3-13-10	1	1,0%	26
G12	125		VH3-13-10	1	1,0%	44
73	106		VH3-13-10	1	1,0%	56
L1.3	111		VH3-13-10	2	2.0%	44
A290	118		VH3-13-10	3	3,1%	117
b18	127		VH3-13-10	2	2,0%	108
54 3.3	105		VH3-13-8	2	2,0%	100
5G6			VH3-13-10	3	3,1%	26
- 	121	3 '	√H3-13-10	3	3,1%	57

タ4 SUBSTITUTE SHEET (RULE 26)

Table 2C: (continued)

Name¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference'
A95	107	3	VH3-13-10	5	5,1%	44
Ab25	128	3	VH3-13-10	5	5.1%	100
N87	126	3	VH3-13-10	4	4,1%	77
ED8.4	99	3	VH3-13-10	6	6,1%	2
RF-KL1	122	3	VH3-13-10	6	6,1%	82
AL1.1	112	3	VH3-13-10	2	2,0%	117
AL3.11	102	3	VH3-13-10	1	1,0%	117
32.B9	127	3	VH3-13-8	6	6,1%	129—
TK1	109	3	VH3-13-10	2	2,0%	117
POP	123	3	VH3-13-10	8	8,2%	115
9F2H	127	3	VH3-13-10	9	9,2%	127
VD	115	3	VH3-13-10	9	9,2%	10
Vh38Cl.10	121	3	VH3-13-10	8	8,2%	74 -
Vh38Cl.9	121	3	VH3-13-10	8	8,2%	74
Vh38Cl.8	121	3	VH3-13-10	8	8.2%	74
63P1	120	3	VH3-11-8	0	0,0%	104
60P2	117	3	VH3-11-8	0	O,O%	104
AL3.5	90	3	VH3-13-10	· 2	2,0%	117
GF4/1.1	123	3	VH3-13-10	10	10,2%	39
Ab21	126	3	VH3-13-10	12	12,2%	100
TD d Vp	118	3	VH3-13-17	2	2,0%	16
Vh38Cl.4	119	3	VH3-13-10	8	8,2%	74
Vh38Cl.5	119	3	VH3-13-10	8	8,2%	74
AL3.4	104	3	VH3-13-10	1	1,0%	117
FOG1-A3	115	3	VH3-13-19	2	2,0%	42.
HA3D1	117	3	VH3-13-21	1	1,0%	81
E54 3.2	112	3	VH3-13-24	0	0,0%	26
mAb52	128	3	VH3-13-12	2	2,0%	51
mAb53	128	3	VH3-13-12	2	2,0%	51
mAb56	128	3	VH3-13-12	2	2,0%	51
mAb57	128	3	VH3-13-12	2	2,0%	51
mAb58	128	3	VH3-13-12	2	2,0%	51
mAb59	128	3	VH3-13-12	2	2,0%	51
mAb105	128	3	VH3-13-12	2	2,0%	51
mAb107	128	3	VH3-13-12	2	2,0%	51
E55 3.14	110	3	VH3-13-19	0	0,0%	26

75

Table 2C: (continued)

Name ¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference ⁷
F13-28	106	3	VH3-13-19	1	1,0%	94
mAb55	127	3	VH3-13-18	4	4,1%	51
YSE	117	3	VH3-13-24	6	6,1%	72
E55 3.23	106	. 3	VH3-13-19	2	2,0%	26
RF-TS5	101	3	VH3-13-1	3	3,1%	85
N42P5	124	3	VH3-13-2	7	7,1%	77
FOG1-H6	110	3	VH3-13-16	7	7,1%	42
O-81	115	3	VH3-13-19	11 -	11,2%	47
HIV-s8	122	3	VH3-13-12	11	11,2%	. 12
mAb114	125	3	VH3-13-19	12	12,2%	71
33.F12	116	3	VH3-13-2	4	4,1%	129
4B4	119	3	VH3-1X-3	0	0,0%	101
M26	123	3	VH3-1X-3	0	0.0%	103
VHGL 3.1	100	3	VH3-1X-3	0	0,0%	26
E55 3.13	113	3	VH3-1X-3	1	1,0%	26
SB5/D6	101	3	VH3-1X-6	3	3,0%	2
RAY4	101	3	VH3-1X-6	3	3,0%	2
82-D V-D	106	3	VH3-1X-3	5	5,0%	112
MAL	129	3	VH3-1X-3	5	5,0%	72
LOC	123	3	VH3-1X-6	5	5,0%	72
LSF2	101	3	VH3-1X-6	11	11,0%	2
HIB RC3	100	3 .	VH3-1X-6	11 .	11,0%	1
56P1	119	3	VH3-13-7	0	0.0%	104
M72	122	3	VH3-13-7	0	0,0%	103
M74	121	3	VH3-13-7	0	0,0%	103
E54 3.5	105	3	VH3-13-7	0	0,0%	26
2E7	123	3	VH3-13-7	0	0,0%	63
2P1	117	3	VH3-13-7	0	0,0%	104
RF-SJ2	127	3	VH3-13-7	1	1,0%	83
PR-TS1	114	3	VH3-13-7	1	1,0%	85
KIM46H	127	3	VH3-13-13	0	0,0%	18
E55 3.6	108	3	VH3-13-7	2	2,0%	26
E55 3.10	107	3	VH3-13-13	1	1,0%	26
3.B6	114		VH3-13-13	1	1,0%	108
E54 3.6	110		VH3-13-13	1	1,0%	26
FL2-2	114	3	VH3-13-13	1	1.0%	80

76

SUBSTITUTE SHEET (RULE 26)

Table 2C: (continued)

Name ¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference
RF-SJ3	112	3	VH3-13-7	2	2,0%	85
E55 3.5	105	3	VH3-13-14	1	1,0%	26
BSA3	121	3	VH3-13-13	1	1,0%	73
HMST-1	119	3	VH3-13-7	3 .	3,1%	130
RF-TS2	126	3	VH3-13-13	4	4,1%	82
E55 3.12	109	3	VH3-13-15	0	0,0%	26
19.E7	126	3	VH3-13-14	3	3,1%	129
11-50	119	3	VH3-13-13	6	6,1%	130
E29.1	120	3	VH3-13-15	2	2,0%	25
E55 3.16	108	3	VH3-13-7	6	6,1%	26
TNF-E1	117	3	VH3-13-7	7	7.1%	42
RF-SJ1	127	3	VH3-13-13	6	6,1%	83
FOG1-A4	116	3	VH3-13-7	8	8,2%	42
TNF-A1	117	3	VH3-13-15	4	4,1%	42
PR-SJ2	107	3	VH3-13-14	8	8,2%	85
HN.14	124	3	VH3-13-13	10	10,2%	33
CAM'	121	3	VH3-13-7	12	12,2%	65
HIV-B8	125	3	VH3-13-7	9	9,2%	12
HIV-b27	125	3	VH3-13-7	9	9,2%	12
HIV-b8	125	3	VH3-13-7	9	9,2%	12
HIV-s4	125	3	VH3-13-7	9	9,2%	12
HIV-B26	125	3	VH3-13-7	9	9,2%	12
HIV-B35	125	3	VH3-13-7	10	10,2%	12
HIV-b18	125	3	VH3-13-7	10	10,2%	12
HIV-b22	125	3	VH3-13-7	11	11,2%	.12
HIV-b13	125	3	VH3-13-7	12	12,2%	12
333	117	3	VH3-14-4	24	24,0%	24
1H1	120	3	VH3-14-4	24	24,0%	24
1B11	120	3	VH3-14-4	23	23,0%	24
CLL30 2-3	86	3	VH3-13-19	1	1,0%	29
GA	110	3	VH3-13-7	19	19,4%	36
JeB	99	3	VH3-13-14	3	3,1%	7
GAL	110		VH3-13-19	10	10,2%	126
K6H6	119		VH3-1X-6	18	18,0%	60
K4B8	119		VH3-1X-6	18	18,0%	60
K5B8	119		VH3-1X-6	18	18,0%	60

77

SUBSTITUTE SHEET (RULE 26)

Table 2C: (continued)

Name ¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference ⁷
K5C7	119	3	VH3-1X-6	19	19,0%	60
K5G5	119	3	VH3-1X-6	19	19,0%	60
K6F5	119	3	VH3-1X-6	19	19,0%	60
AL3.16	98	3	VH3-13-10	1	1,0%	117
N86P2	98	3	VH3-13-10	3	3,1%	77
N54P6	95	3	VH3-13-16	7	7,1%	77
LAMBDA HT112-1	126	4	VH4-11-2	0	0,0%	3
HY18	121	4	VH4-11-2	0	0,0%	43
mAb63	126	4	VH4-11-2	0	0,0%	45
FS-3	105	4	VH4-11-2	0	0,0%	86
FS-5	111	4	VH4-11-2	0	0,0%	86
FS-7	107	4	VH4-11-2	0	0,0%	86
FS-8	110	4	VH4-11-2	0	0,0%	86
PR-TS2	105	4	VH4-11-2	0	0,0%	85
RF-TMC	102	4	VH4-11-2	0	0,0%	85
mAb216	122	4	VH4-11-2	1	1,0%	15
mAb410.7.F91	122	4	VH4-11-2	1	1,0%	52
mAbA6H4C5	124	4	VH4-11-2	1	1,0%	15
Ab44	127	4	VH4-11-2	2	2,1%	100
6H-3C4	124	4	VH4-11-2	3	3,1%	59
FS-6	108	4	VH4-11-2	6	6,2%	86
FS-2	114	4 .	VH4-11-2	6	6,2%	84
HIG1	126	4	VH4-11-2	7	7,2%	62
FS-4	105	4	VH4-11-2	8	8,2%	86
SA-4A	123	4	VH4-11-2	9	9,3%	125
LES-C	119	4	VH4-11-2	10	10,3%	99
DI	78		VH4-11-9	16	16,5%	58
Ab26	126	4	VH4-31-4	8	8,1%	100
rS2	124		/H4-31-12	15	15,2%	110
265-695	115	4	VH4-11-7	16	16,5%	5
VAH	129		/H4-31-13	19	19,2%	93
?68-D	122		VH4-11-8	22	22,7%	93 6
58P2	118		VH4-11-8	0	0,0%	104
nAb67	128		VH4-21-4	1	1,0%	45
.L39	115		VH4-11-8	2	2,1%	108
nF7	111		H4-31-13	3	3,0%	75

7 8°

Table 2C: (continued)

Name ¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference'
33.C9	122	4	VH4-21-5	7	7,1%	129
Pag-1	124	4	VH4-11-16	5	5,2%	50
B3	123	4	VH4-21-3	8	8,2%	53
IC4	120	4	VH4-11-8	6	6,2%	70
C6B2	127	4	VH4-31-12	4	4,0%	48
N78	118	4	VH4-11-9	11	11,3%	77
B2	109	4	VH4-11-8	12	12,4%	53
WRD2	123	4	VH4-11-12	6	6,2%	90
mAb426.4.2F20	126	4	VH4-11-8	2	2,1%	52
E54 4.58	115	4	VH4-11-8	1	1,0%	26
WRD6	123	4	VH4-11-12	10	10,3%	90
mAb426.12.3F1.4	122	4	VH4-11-9	.4	4,1%	52
E54 4.2	108	4	VH4-21-6	2	2,0%	26
WIL	127	4	VH4-31 - 13	0 .	0,0%	90
COF	126	4	VH4-31-13	0	0,0%	90
LAR	122	4	VH4-31-13	2	2,0%	90
WAT	125	4	VH4-31-13	4	4,0%	90
mAb61	123	4	VH4-31-13	5	5,1%	45
WAG	127	4	VH4-31-4	0	0,0%	90
RF-SJ4	108	4	VH4-31-12	2	2,0%	85
E54 4.4	110	4	VH4-11-7	0	0,0%	26
E55 4.A1	108	4	VH4-11-7	0	0,0%	26
PR-SJ1	103	4	VH4-11-7	1	1,0%	85
E54 4.23	111	4	VH4-11-7	1	1,0%	26
CLL7 7-2	97	4	VH4-11-12	0	0,0%	29
37P1	95	4	VH4-11-12	0	0,0%	104
ALL52 30-2	91	4	VH4-31-12	4	4,0%	29
EBV-21	98	5	VH5-12-1	0	0,0%	13
CB-4	98	5	VH5-12-1	0	0,0%	13
CLL-12	98	5	VH5-12-1	0	0,0%	13
L3-4	98	5	VH5-12-1	0	0,0%	13
CLL11	98	5	VH5-12-1	0	0,0%	17
CORD3	98	5	VH5-12-1	0	0.0%	17
CORD4	98	5	VH5-12-1	0	0,0%	17
CORD8	98	5	VH5-12-1	0	0,0%	17
CORD9	98	5	VH5-12-1	0	0,0%	17
			7.0			

Zα

SUBSTITUTE SHEET (RULE 26)

Table 2C: (continued)

Name ¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ^s	% diff. to germline ⁶	Reference ⁷
CD+1	98	5 .	VH5-12-1	0	0.00%	17
CD+3	98	5	VH5-12-1		0,0%	17
CD+4	98	5		0	0,0%	17
CD-1	98	5	VH5-12-1	0	0,0%	17
CD-5	98	5	VH5-12-1	0	0,0%	17
VERG14	98	5 5	VH5-12-1	0	0,0%	17
PBL1	98	5	VH5-12-1	0	0,0%	17
PBL10	98		VH5-12-1	0	0,0%	17
STRAb SA-1A	127	5	VH5-12-1	0	0,0%	17
DOB,		5	VH5-12-1	0	0,0%	125
VERG5	122	5	VH5-12-1	0	0,0%	97
PBL2	98	5	VH5-12-1	0	0.0%	17
	98	5	VH5-12-1	1	1,0%	17
Tu16	119	5	VH5-12-1	1	1,0%	49
PBL12	98	5	VH5-12-1	1	1,0%	17
CD+2	98	5	VH5-12-1	1	1,0%	17
CORD10	98	5	VH5-12-1	1	1,0%	17
PBL9	98	. 5	VH5-12-1	1	1,0%	17
CORD2	98	5	VH5-12-1	2	2,0%	17
BL6	98	5	VH5-12-1	2	2,0%	17
CORD5	98	5	VH5-12-1	2	2,0%	17
CD-2	98	5	VH5-12-1	2	2,0%	17
ORD1	98	5	VH5-12-1	2	2,0%	17
:D-3	98	5	VH5-12-1	3	3,1%	17
ERG4	98	5	VH5-12-1	3	3,1%	1 7 .
BL13	98	.5	VH5-12-1	3	3,1%	17.
BL7	98	5	VH5-12-1	3	3,1%	17
AN	119	5	VH5-12-1	3	3,1%	97
ERG3	98	5	VH5-12-1	3	3,1%	17
BL3	98	5	VH5-12-1	3 ·	3,1%	17
ERG7	98	5	VH5-12-1	3	3,1%	17
BL5	94		VH5-12-1	0	0,0%	17
D-4	98		VH5-12-1	4	4,1%	17
L10	98		VH5-12-1	4	4,1%	17
BL11	98		VH5-12-1	4	4,1%	
ORD6	98		VH5-12-1	.4		17
RG2	98		VH5-12-1	5	4,1%	17

WO 97/08320

Table 2C: (continued)

Name ¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference ⁷
83P2	119	5	VH5-12-1	0	0,0%	103
VERG9	98	5	VH5-12-1	6	6,1%	17
CLL6	98	5	VH5-12-1	6	6,1%	17
PBL8	98	5	VH5-12-1	7	7,1%	17
Ab2022	120	5	VH5-12-1	3	3,1%	100
CAV	127	5	VH5-12-4	0	0.0%	97
HOW'	120	5	VH5-12-4	0	0,0%	97
PET	127	5	VH5-12-4	0	0,0%	97
ANG	121	5	VH5-12-4	0	0,0%	97
KER	121	5	VH5-12-4	0	0,0%	97
5.M13	118	5	VH5-12-4	0	0,0%	107
Au2.1	118	5	VH5-12-4	1	1,0%	49
WS1	126	5	VH5-12-1	9	9,2%	110
TD Vn	98	5	VH5-12-4	1	1,0%	16
TEL13	116	5	VH5-12-1	9	9,2%	73
E55 5.237	112	5	VH5-12-4	2	2,0%	26
VERG1	98	5	VH5-12-1	10	10,2%	17
CD4-74	117	5	VH5-12-1	10	10,2%	42
257-D	125	5	VH5-12-1	11	11,2%	6
CLL4	98	5	VH5-12-1	11	11,2%	17
CLL8	98	5	VH5-12-1	11	11,2%	17
Ab2	124	5	VH5-12-1	12	12,2%	120
Vh383ex	98	5	VH5-12-1	12	12,2%	120
CLL3	98	5	VH5-12-2	11	11,2%	17
Au59.1	122	5	VH5-12-1	12	12,2%	49
TEL16	117	5	VH5-12-1	12	12,2%	73
M61	104	5	VH5-12-1	0	0,0%	103
Tu0	99	5	VH5-12-1	5	5,1%	49
P2-51	122	5	VH5-12-1	13	13,3%	121
P2-54	122	5	VH5-12-1	11	11,2%	121
P1-56	119	5	VH5-12-1	9	9,2%	121
P2-53	122	5	VH5-12-1	10	10,2%	121
P1-51	123	5	VH5-12-1	19	19,4%	121
P1-54	123	5	VH5-12-1	3	3,1%	121
P3-69	127	5	VH5-12-1	4	4,1%	121
P3-9	119	5	VH5-12-1	4	4,1%	121

Table 2C: (continued)

Name ¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference ⁷
1-185-37	125	5	VH5-12-4	0	0,0%	124
1-187-29	. 125	5	VH5-12-4	0	0,0%	124
P1-58	128	5	VH5-12-4	10	10,2%	121
P2-57	118	5	VH5-12-4	3	3,1%	121
P2-55	123	5	VH5-12-1	5	5,1%	121
P2-56	123	5	VH5-12-1	20	20,4%	121
P2-52	122	5	VH5-12-1	11	11,2%	121
P3-60	122	5	VH5-12-1	8	8,2%	121
P1-57	123	5	VH5-12-1	4	4,1%	121
P1-55	122	5	VH5-12-1	14	14,3%	121
MD3-4	128	5	VH5-12-4	12	12,2%	5
P1-52	121	5	VH5-12-1	11	11,2%	121
CLL5	98	5	VH5-12-1	13	13,3%	17
CLL7	98	5	VH5-12-1	14	14,3%	17
L2F10	100	5	VH5-12-1	1	1,0%	46
L3B6	98	5	VH5-12-1	1	1,0%	46
VH6.A12	119	6	VH6-35-1	13	12,9%	122
s5A9	102	6	VH6-35-1	1	1,0%	46
s6G4	99	6	VH6-35-1	1	1,0%	46
ss3	99	6	VH6-35-1	1	1,0%	46
6-1G1	101	6	VH6-35-1	0	0,0%	14
F19L16	107	6 .	VH6-35-1	0	0,0%	68
L16	120	6	VH6-35-1	0	0,0%	69
M71	121	6	VH6-35-1	0	0,0%	103
ML1	120	6	VH6-35-1	0	0,0%	69
F19ML1	107	6	VH6-35-1	0	0.0%	68
15P1	127	6	VH6-35-1	0	0,0%	104
VH6.N1	121	6	VH6-35-1	0 .	0,0%	122
VH6.N11	123	6	VH6-35-1	0	0,0%	122
VH6.N12	123	6	VH6-35-1	0	0,0%	122
VH6.N2	125	6	VH6-35-1	0	0,0%	122
VH6.N5	125	6	VH6-35-1	0	0,0%	122
VH6.N6	127	6	VH6-35-1	0	0,0%	122
VH6.N7	126	6	VH6-35-1	0	0,0%	122
VH6.N8	123	6	VH6-35-1	0	0,0%	122
VH6.N9	123	6	VH6-35-1	0	0,0%	122

Table 2C: (continued)

Name ¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference'
VH6.N10	123	6	VH6-35-1	0	0,0%	122
VH6.A3	123	6	VH6-35-1	0	0,0%	122
VH6.A1	124	6	VH6-35-1	0	0,0%	122
VH6.A4	120	6	VH6-35-1	0	0,0%	122
E55 6.16	116	6	VH6-35-1	0	0,0%	26
E55 6.17	120	6	VH6-35-1	0	0,0%	26
E55 6.6	120	6	VH6-35-1	0	0,0%	26
VHGL 6.3	102	6	VH6-35-1	0	0,0%	26
CB-201	118	6	VH6-35-1	0	0,0%	109
VH6.N4	122	6	VH6-35-1	0	0,0%	122
E54 6.4	109	6	VH6-35-1	1	1,0%	26
VH6.A6	126	6	VH6-35-1	1	1,0%	122
E55 6.14	120	6	VH6-35-1	1	1,0%	26
E54 6.6	107	6	VH6-35-1	1	1,0%	26
E55 6.10	112	6	VH6-35-1	1	1,0%	26
E54 6.1	107	6	VH6-35-1	2	2,0%	26
E55 6.13	120	6	VH6-35-1	2	2,0%	26
E55 6.3	120	6	VH6-35-1	2	2,0%	26
E55 6.7	116	6	VH6-35-1	2	2,0%	26
E55 6.2	120	6	VH6-35-1	2	2,0%	26
E55 6.X	111	6	VH6-35-1	2	2,0%	26
E55 6.11	111	6	VH6-35-1	3	3,0%	26
VH6.A11	118	6	VH6-35-1	3	3,0%	122
A10	107	6	VH6-35-1	3	3,0%	68
E55 6.1	120	6	VH6-35-1	4	4,0%	26
FK-001	124	6	VH6-35-1	4	4,0%	65
VH6.A5	121	6	VH6-35-1	.4	4,0%	122
VH6.A7	123	6	VH6-35-1	4	4,0%	122
HBp2	119	6	VH6-35-1	4	4,0%	4
Au46.2	123	6	VH6-35-1	5	5,0%	49
A431	106	6	VH6-35-1	5	5,0%	68
VH6.A2	120	6	VH6-35-1	5	5,0%	122
VH6.A9	125	6	VH6-35-1	. 8	7,9%	122
VH6.A8	118	6	VH6-35-1	10	9,9%	122
VH6-FF3	118	6	VH6-35-1	2	2,0%	123
VH6.A10	126	6	VH6-35-1	12	11,9%	122

દક

Table 2C: (continued)

Name ¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference ⁷
VH6-EB10	117	6	VH6-35-1	3	3,0%	123
VH6-E6	119	6	VH6-35-1	· 6	5,9%	123
VH6-FE2	121	6	VH6-35-1	6	5,9%	123
VH6-EE6	116	6	VH6-35-1	6	5,9%	123
VH6-FD10	118	6	VH6-35-1	6	5,9%	123
VH6-EX8	113	6	VH6-35-1	6	5,9%	123
VH6-FG9	121	6	VH6-35-1	8	7,9%	123
VH6-E5	116	6	VH6-35-1	9	8,9%	123
VH6-EC8	122	6	VH6-35-1	9	8,9%	123
VH6-E10	120	6	VH6-35-1	10	9,9%	123
VH6-FF11	122	6	VH6-35-1	11	10.9%	123
VH6-FD2	115	6	VH6-35-1	11	10,9%	123
CLL10 17-2	88	6	VH6-35-1	4	4,0%	29
VH6-BB11	94	6	VH6-35-1	4	4,0%	123
VH6-B4I	93	6	VH6-35-1	7	6,9%	123
JU17	102	6	VH6-35-1	3	3,0%	114
VH6-BD9	96	6	VH6-35-1	11	10,9%	123
VH6-BB9	94	6	VH6-35-1	12	11,9%	123

Table 3A: assignment of rearranged V kappa sequences to their germline counterparts

Vk1-1	Family ¹	Name	Rearranged ²	Sum
Vk1-3	1	Vkl-l	28	
1 Vk1-4 0 1 Vk1-5 7 1 Vk1-6 0 1 Vk1-7 0 1 Vk1-8 2 1 Vk1-9 9 1 Vk1-9 9 1 Vk1-10 0 1 Vk1-11 1 1 Vk1-12 7 1 Vk1-13 1 1 Vk1-14 7 1 Vk1-15 2 1 Vk1-16 2 1 Vk1-17 16 1 Vk1-18 1 1 Vk1-19 33 1 Vk1-20 1 1 Vk1-21 1 1 Vk1-22 0 1 Vk1-23 0 119 entries 2 Vk2-1 0 2 Vk2-2 1 2 Vk2-3 0 2 Vk2-4 0 2 Vk2-6 16 2 Vk2-8 0	1	Vk1-2	0	
Vk1-5	i	Vk1-3	i	
Vk1-6	1	Vk1-4	0	
1 Vk1-7 0 1 Vk1-8 2 1 Vk1-9 9 1 Vk1-10 0 1 Vk1-11 1 1 Vk1-12 7 1 Vk1-13 1 1 Vk1-14 7 1 Vk1-15 2 1 Vk1-16 2 1 Vk1-18 1 1 Vk1-19 33 1 Vk1-20 1 1 Vk1-21 1 1 Vk1-22 0 1 Vk1-23 0 119 entries 2 Vk2-1 0 2 Vk2-1 0 119 entries 2 Vk2-1 0 119 entries 2 Vk2-1 0 119 entries 2 Vk2-1 0 12 entries 2 Vk2-4 0 0 2 Vk2-5 0 0 2 Vk2-6 16 0 2 Vk2-1 0	1	Vk1-5	7	•
Vk1-8	1	VkI-6	0	
Vk1-9	1	Vk1-7	0	
Vk1-10	1	Vk1-8	2	
Vk1-11	1	Vk1-9	9	
Vk1-12	1	Vk1-10	0	
Vk1-13	1	Vk1-11	1	
Vk1-14	1	Vk1-12	7	
Vk1-15 2 Vk1-16 2 Vk1-17 16 Vk1-18 1 Vk1-19 33 Vk1-20 1 Vk1-21 1 Vk1-22 0 Vk1-23 0 119 entries 2 Vk2-1 0 2 Vk2-2 1 2 Vk2-3 0 2 Vk2-4 0 2 Vk2-5 0 2 Vk2-6 16 2 Vk2-7 0 2 Vk2-8 0 2 Vk2-9 1 2 Vk2-9 1 2 Vk2-10 0 2 Vk2-11 7 2 Vk2-12 0 25 entries 3 Vk3-1 1	1	Vk1-13	1	
Vk1-16 2 Vk1-17 16 Vk1-18 1 Vk1-19 33 Vk1-20 1 Vk1-21 1 Vk1-22 0 Vk1-23 0 I19 entries 2 Vk2-1 0 2 Vk2-2 1 2 Vk2-3 0 2 Vk2-4 0 2 Vk2-5 0 2 Vk2-6 16 2 Vk2-7 0 2 Vk2-8 0 2 Vk2-9 1 2 Vk2-9 1 2 Vk2-10 0 2 Vk2-11 7 2 Vk2-12 0 25 entries 3 Vk3-1 1	1	Vk I-14	7	
Vk1-17	1	Vk1-15	2	
Vk1-18	1	Vk1-16	2	
1 Vk1-19 33 1 Vk1-20 1 1 Vk1-21 1 1 Vk1-22 0 1 Vk1-23 0 119 entries 2 Vk2-1 0 2 Vk2-2 1 2 Vk2-3 0 2 Vk2-3 0 2 Vk2-4 0 2 Vk2-5 0 2 Vk2-6 16 2 Vk2-7 0 2 Vk2-8 0 2 Vk2-9 1 2 Vk2-10 0 2 Vk2-11 7 2 Vk3-1 1	j	Vk1-17	16	
1 Vk1-20 1 1 Vk1-21 1 1 Vk1-22 0 1 Vk1-23 0 119 entries 2 Vk2-1 0 2 Vk2-2 1 2 Vk2-3 0 2 Vk2-4 0 2 Vk2-5 0 2 Vk2-6 16 2 Vk2-7 0 2 Vk2-8 0 2 Vk2-9 1 2 Vk2-10 0 2 Vk2-11 7 2 Vk3-1 1	1	Vk1-18	1	
1 Vk1-21 1 1 Vk1-22 0 1 Vk1-23 0 119 entries 2 Vk2-1 0 2 Vk2-2 1 2 Vk2-3 0 2 Vk2-4 0 2 Vk2-5 0 2 Vk2-6 16 2 Vk2-7 0 2 Vk2-8 0 2 Vk2-9 1 2 Vk2-10 0 2 Vk2-11 7 2 Vk3-1 1	I	Vk1-19	33	
1 Vk1-22 0 1 Vk1-23 0 2 Vk2-1 0 2 Vk2-2 1 2 Vk2-3 0 2 Vk2-4 0 2 Vk2-5 0 2 Vk2-6 16 2 Vk2-7 0 2 Vk2-8 0 2 Vk2-9 1 2 Vk2-10 0 2 Vk2-11 7 2 Vk2-12 0 25 entries 3 Vk3-1 1	1	Vk1-20	i	
1 Vk1-23 0 119 entries 2 Vk2-1 0 2 Vk2-2 1 2 Vk2-3 0 2 Vk2-4 0 2 Vk2-5 0 2 Vk2-6 16 2 Vk2-7 0 2 Vk2-8 0 2 Vk2-9 1 2 Vk2-10 0 2 Vk2-11 7 2 Vk3-1 1	ı	Vk1-21	1	
2 Vk2-1 0 2 Vk2-2 1 2 Vk2-3 0 2 Vk2-4 0 2 Vk2-5 0 2 Vk2-6 16 2 Vk2-7 0 2 Vk2-8 0 2 Vk2-9 1 2 Vk2-10 0 2 Vk2-11 7 2 Vk2-12 0 25 entries	i	Vk1-22	0	
2 Vk2-2 1 2 Vk2-3 0 2 Vk2-4 0 2 Vk2-5 0 2 Vk2-6 16 2 Vk2-7 0 2 Vk2-8 0 2 Vk2-9 1 2 Vk2-10 0 2 Vk2-11 7 2 Vk2-12 0 25 entrie.	1	Vk1-23	0	119 entries
2 Vk2-3 0 2 Vk2-4 0 2 Vk2-5 0 2 Vk2-6 16 2 Vk2-7 0 2 Vk2-8 0 2 Vk2-9 1 2 Vk2-10 0 2 Vk2-11 7 2 Vk2-12 0 25 entrie.	2	Vk2-1	0	
2 Vk2-4 0 2 Vk2-5 0 2 Vk2-6 16 2 Vk2-7 0 2 Vk2-8 0 2 Vk2-9 1 2 Vk2-10 0 2 Vk2-11 7 2 Vk2-12 0 25 entrie.	2	Vk2-2	1	
2 Vk2-5 0 2 Vk2-6 16 2 Vk2-7 0 2 Vk2-8 0 2 Vk2-9 1 2 Vk2-10 0 2 Vk2-11 7 2 Vk2-12 0 25 entrie.	2	Vk2-3	0	
2 Vk2-6 16 2 Vk2-7 0 2 Vk2-8 0 2 Vk2-9 1 2 Vk2-10 0 2 Vk2-11 7 2 Vk2-12 0 25 entrie.	2	Vk2-4	0	
2 Vk2-7 0 2 Vk2-8 0 2 Vk2-9 1 2 Vk2-10 0 2 Vk2-11 7 2 Vk2-12 0 25 entries	2	Vk2-5	0	
2 Vk2-8 0 2 Vk2-9 1 2 Vk2-10 0 2 Vk2-11 7 2 Vk2-12 0 25 entrie. 3 Vk3-1 1	2	Vk2-6	-16	
2 Vk2-9 1 2 Vk2-10 0 2 Vk2-11 7 2 Vk2-12 0 25 entries 3 Vk3-1 1	2	Vk2-7	0	
2 Vk2-10 0 2 Vk2-11 7 2 Vk2-12 0 25 entrie. 3 Vk3-1 1	2	Vk2-8	0	
2 Vk2-11 7 2 Vk2-12 0 25 entries 3 Vk3-1 1	2	Vk2-9	1	
2 Vk2-12 0 25 entries 3 Vk3-1 1	2	Vk2-10	0	
3 Vk3-1 I	2	Vk2-11	7	
	2	Vk2-12	0	25 entrie
3 Vk3-2 0	3	Vk3-I	1	
	3	Vk3-2	0	

Table 3A:

(continued)

Family 1	Name	Rearranged ²	Sum
3	Vk3-3	35	
3	Vk3-4	115	
3	Vk3-5	0	
. 3	Vk3-6	0	
. 3	Vk3-7	1	
3	Vk3-8	40	192 entries
4	Vk4-1	33	33 entries
5	Vk5-1	l	1 entry
6	Vk6-1	0	
6	Vk6-2	0	0 entries
7	Vk7-1	0	0 entries

Table 3B: assignment of rearranged V lambda sequences to their germline counterparts

Family'	Name	Rearranged ²	Sum
1	DPL1	1	
1	DPL2	14	
1	DPL3	6	
1	DPL4	1	
1	HUMLV117	4	
1	DPL5	13	
1 .	DPL6	0	
1	DPL7	. 0	
1	DPL8	3	
1	DPL9	0	42 entries
2	DPL10	5	
2	VLAMBDA 2.1	0	
2	DPL11	23	
2	DPL12	15	
· 2	DPL13	0	
2	DPL14	0	43 entries
3	DPL16	10	
3	DPL23	19	
3	Humlv318	9	38 entries
7	DPL18	1	
7	DPL19	0	1 entries
8	DPL21	2	
8	HUMLV801	6	8 entries
9	DPL22	0	0 entries
unassigned	DPL24	0	0 entries
10	gVLX-4.4	0	0 entries

Table 3C: assignment of rearranged V heavy chain sequences to their germline counterparts

Family ¹	Name	Rearranged ²	Sum
1	VH1-12-1	38	
1	VH1-12-8	2	
1	VH1-12-2	2	
1	VH1-12-9	2	•
1	VH1-12-3	0	
1	VH1-12-4	0	
1	VH1-12-5	3	
1	VH1-12-6	0	
1	VH1-12-7	23	
1	VH1-13-1	1	
1.	VH1-13-2	1	
1	VH1-13-3	0	
1	VH1-13-4	0	
1	VH1-13-5	0	
1	VH1-13-6	17	
1	VH1-13-7	0	
1	VH1-13-8	3	
1	VH1-13-9	0	
1	VH1-13-10	0	
1	VH1-13-11	0	
1	VH1-13-12	10	
1 .	VH1-13-13	0	
1	VH1-13-14	0	
1	VH1-13-15	4	
1	VH1-13-16	2	•
1	VH1-13-17	0	
1	VH1-13-18	1	
1	VH1-13-19	0	
1	VH1-1X-1	1	110 entries
2	VH2-21-1	0	
2	VH2-31-1	0	
2	VH2-31-2	. 1	
2	VH2-31-3	1	
2	VH2-31-4	0	
2	VH2-31-5	2	
2	VH2-31-6	0	
2	VH2-31-7	0	

Table 3C: (continued)

Family ¹	Name	Rearranged ²	Sum
2	VH2-31-14	1	
2	VH2-31-8	0	
2	VH2-31-9	0	
2	VH2-31-10	0	
2	VH2-31-11	1	
2	VH2-31-12	0	
2	VH2-31-13	1	7 entries
3	VH3-11-1	0	
3	VH3-11-2	0	
3	VH3-11-3	5	
3	VH3-11-4	0	
3	VH3-11-5	1	
3	VH3-11-6	1	
3 -	VH3-11-7	0	
3	VH3-11-8	5	
3	VH3-13-1	9	
3	VH3-13-2	3	
3	VH3-13-3	0	
3	VH3-13-4	0	
3	VH3-13-5	0	
3	VH3-13-6	0	
3	VH3-13-7	32	
3	VH3-13-8	4	
3	VH3-13-9	0	
3	VH3-13-10	46	
3	VH3-13-11	0	
3	VH3-13-12	11	
3	VH3-13-13	17	
3	VH3-13-14	8	
3	VH3-13-15	4	
3	VH3-13-16	3	
3	VH3-13-17	2	
3	VH3-13-18	1	
3	VH3-13-19	13	
3	VH3-13-20	1	
3	VH3-13-21	1	
3	VH3-13-22	0	

Table 3C: (continued)

3 VH3-13-23 0 3 VH3-13-24 4 3 VH3-13-25 1 3 VH3-13-26 6 3 VH3-14-1 1 3 VH3-14-2 0 3 VH3-14-2 0 3 VH3-14-3 0 3 VH3-1X-1 0 3 VH3-1X-1 0 3 VH3-1X-2 0 3 VH3-1X-5 0 3 VH3-1X-6 11 3 VH3-1X-7 0 3 VH3-1X-8 1 3 VH3-1X-9 0 212 entries 4 VH4-11-1 0 4 VH4-11-5 0 4 VH4-11-6 0 4 VH4-11-1 0 5 0 6 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7	Family ¹	Name	Rearranged ²	Sum
3 VH3-13-25 1 3 VH3-13-26 6 3 VH3-14-1 1 3 VH3-14-2 0 3 VH3-14-2 0 3 VH3-14-3 0 3 VH3-1X-1 0 3 VH3-1X-2 0 3 VH3-1X-2 0 3 VH3-1X-5 0 3 VH3-1X-5 0 3 VH3-1X-6 11 3 VH3-1X-7 0 3 VH3-1X-8 1 3 VH3-1X-9 0 212 entries 4 VH4-11-1 0 4 VH4-11-2 20 4 VH4-11-5 0 4 VH4-11-6 0 4 VH4-11-7 5 4 VH4-11-9 3 4 VH4-11-10 0 4 VH4-11-10 0 4 VH4-11-11 0 4 VH4-11-11 0 4 VH4-11-11 0 4 VH4-11-11 0 4 VH4-11-12 4 5 VH4-11-13 0 6 VH4-11-14 0 7 VH4-11-15 0 7 VH4-11-16 1 7 VH4-11-17 0 7 VH4-11-18 7 7 VH4-11-19 0	3	· VH3-13-23	0	
3 VH3-13-26 6 3 VH3-14-1 1 3 VH3-14-4 15 3 VH3-14-2 0 3 VH3-14-3 0 3 VH3-1X-1 0 3 VH3-1X-2 0 3 VH3-1X-2 0 3 VH3-1X-5 0 3 VH3-1X-6 11 3 VH3-1X-7 0 3 VH3-1X-8 1 3 VH3-1X-9 0 212 entries 4 VH4-11-1 0 4 VH4-11-2 20 4 VH4-11-5 0 4 VH4-11-6 0 4 VH4-11-7 5 4 VH4-11-10 0 4 VH4-11-10 0 4 VH4-11-10 0 4 VH4-11-11 0	3	VH3-13-24	4	
3 VH3-14-1 15 3 VH3-14-2 0 3 VH3-14-2 0 3 VH3-14-3 0 3 VH3-1X-1 0 3 VH3-1X-2 0 3 VH3-1X-2 0 3 VH3-1X-5 0 3 VH3-1X-6 11 3 VH3-1X-7 0 3 VH3-1X-8 1 3 VH3-1X-9 0 212 entries 4 VH4-11-1 0 4 VH4-11-5 0 4 VH4-11-6 0 4 VH4-11-7 5 4 VH4-11-9 3 4 VH4-11-10 0 4 VH4-11-10 0 4 VH4-11-10 0 4 VH4-11-10 0 4 VH4-11-11 0 4 VH4-11-10 0	3	VH3-13-25	1	
3	3	VH3-13-26	6	
3 VH3-14-2 0 3 VH3-14-3 0 3 VH3-1X-1 0 3 VH3-1X-2 0 3 VH3-1X-2 0 3 VH3-1X-5 0 3 VH3-1X-5 0 3 VH3-1X-6 11 3 VH3-1X-7 0 3 VH3-1X-8 1 3 VH3-1X-9 0 212 entries 4 VH4-11-1 0 4 VH4-11-2 20 4 VH4-11-5 0 4 VH4-11-6 0 4 VH4-11-7 5 4 VH4-11-9 3 4 VH4-11-10 0 4 VH4-11-10 0 4 VH4-11-10 0 4 VH4-11-11 0 4 VH4-11-11 0 4 VH4-11-12 4 4 VH4-11-13 0 4 VH4-11-14 0 4 VH4-11-15 0 4 VH4-11-15 0 4 VH4-11-16 1 4 VH4-11-15 0 4 VH4-11-16 1 4 VH4-11-16 1 4 VH4-11-16 1 4 VH4-21-1 0 4 VH4-21-1 0 4 VH4-21-2 0 4 VH4-21-3 1	3	VH3-14-1	1	
3 VH3-14-3 0 3 VH3-1X-1 0 3 VH3-1X-2 0 3 VH3-1X-3 6 3 VH3-1X-4 0 3 VH3-1X-5 0 3 VH3-1X-6 11 3 VH3-1X-7 0 3 VH3-1X-8 1 3 VH3-1X-9 0 212 entries 4 VH4-11-1 0 4 VH4-11-2 20 4 VH4-11-3 0 4 VH4-11-5 0 4 VH4-11-6 0 4 VH4-11-7 5 4 VH4-11-9 3 4 VH4-11-10 0 4 VH4-11-10 0 4 VH4-11-11 0 4 VH4-11-12 4 4 VH4-11-12 4 4 VH4-11-13 0 4 VH4-11-14 0 4 VH4-11-15 0 4 VH4-11-15 0 4 VH4-11-16 1 4 VH4-11-15 0 4 VH4-11-16 1 4 VH4-11-16 1 4 VH4-21-1 0 4 VH4-21-2 0 4 VH4-21-3 1	3	VH3-14-4	15	
3 VH3-1X-1 0 3 VH3-1X-2 0 3 VH3-1X-3 6 3 VH3-1X-4 0 3 VH3-1X-5 0 3 VH3-1X-6 11 3 VH3-1X-7 0 3 VH3-1X-8 1 3 VH3-1X-9 0 212 entries 4 VH4-11-1 0 4 VH4-11-2 20 4 VH4-11-3 0 4 VH4-11-5 0 4 VH4-11-6 0 4 VH4-11-7 5 4 VH4-11-9 3 4 VH4-11-10 0 4 VH4-11-10 0 4 VH4-11-11 0 4 VH4-11-11 0 4 VH4-11-12 4 4 VH4-11-13 0 4 VH4-11-14 0 4 VH4-11-15 0 4 VH4-11-15 0 4 VH4-11-16 1 4 VH4-11-15 0 4 VH4-11-16 1 4 VH4-11-16 1 4 VH4-11-16 1 4 VH4-21-1 0 4 VH4-21-2 0 4 VH4-21-3 1	3	VH3-14-2	0	
3 VH3-1X-2 0 3 VH3-1X-3 6 3 VH3-1X-4 0 3 VH3-1X-5 0 3 VH3-1X-6 11 3 VH3-1X-7 0 3 VH3-1X-8 1 3 VH3-1X-9 0 212 entries 4 VH4-11-1 0 4 VH4-11-2 20 4 VH4-11-3 0 4 VH4-11-5 0 4 VH4-11-6 0 4 VH4-11-7 5 4 VH4-11-8 7 4 VH4-11-10 0 4 VH4-11-10 0 4 VH4-11-11 0 4 VH4-11-12 4 4 VH4-11-13 0 4 VH4-11-14 0 4 VH4-11-15 0 4 VH4-11-15 0 4 VH4-11-15 0 4 VH4-11-16 1 4 VH4-11-15 0 4 VH4-11-16 1 4 VH4-11-16 1 4 VH4-21-1 0 4 VH4-21-2 0 4 VH4-21-3 1	3	VH3-14-3	0	
3 VH3-1X-4 0 3 VH3-1X-5 0 3 VH3-1X-6 11 3 VH3-1X-7 0 3 VH3-1X-8 1 3 VH3-1X-9 0 212 entries 4 VH4-11-1 0 4 VH4-11-2 20 4 VH4-11-5 0 4 VH4-11-6 0 4 VH4-11-7 5 4 VH4-11-9 3 4 VH4-11-10 0 4 VH4-11-10 0 4 VH4-11-11 0 4 VH4-11-11 0 4 VH4-11-12 4 4 VH4-11-13 0 4 VH4-11-13 0 4 VH4-11-14 0 4 VH4-11-15 0 4 VH4-11-10 0 4 VH4-11-10 0 4 VH4-11-11 0 4 VH4-11-11 0 4 VH4-11-11 0 4 VH4-11-12 4 4 VH4-11-15 0 4 VH4-11-15 0 4 VH4-11-16 1 4 VH4-21-1 0 4 VH4-21-1 0 4 VH4-21-2 0 4 VH4-21-3 1	3	VH3-1X-1	0	
3 VH3-1X-4 0 3 VH3-1X-5 0 3 VH3-1X-6 11 3 VH3-1X-7 0 3 VH3-1X-8 1 3 VH3-1X-9 0 212 entries 4 VH4-11-1 0 4 VH4-11-2 20 4 VH4-11-3 0 4 VH4-11-5 0 4 VH4-11-6 0 4 VH4-11-7 5 4 VH4-11-9 3 4 VH4-11-10 0 4 VH4-11-10 0 4 VH4-11-11 0 4 VH4-11-12 4 4 VH4-11-13 0 4 VH4-11-14 0 4 VH4-11-15 0 4 VH4-11-16 1 4 VH4-11-16 1 4 VH4-11-16 1 4 VH4-11-16 1 4 VH4-21-1 0 4 VH4-21-2 0 4 VH4-21-3 1	3	VH3-1X-2	0	•
3 VH3-1X-5 0 3 VH3-1X-6 11 3 VH3-1X-7 0 3 VH3-1X-8 1 3 VH3-1X-9 0 212 entries 4 VH4-11-1 0 4 VH4-11-2 20 4 VH4-11-3 0 4 VH4-11-5 0 4 VH4-11-6 0 4 VH4-11-7 5 4 VH4-11-9 3 4 VH4-11-10 0 4 VH4-11-10 0 4 VH4-11-11 0 4 VH4-11-12 4 4 VH4-11-13 0 4 VH4-11-15 0 4 VH4-11-15 0 4 VH4-11-16 1 4 VH4-11-16 1 4 VH4-11-16 1 4 VH4-21-1 0 4 VH4-21-2 0 4 VH4-21-3 1	3	VH3-1X-3	6	
3 VH3-1X-6 11 3 VH3-1X-7 0 3 VH3-1X-8 1 3 VH3-1X-9 0 212 entries 4 VH4-11-1 0 4 VH4-11-2 20 4 VH4-11-3 0 4 VH4-11-5 0 4 VH4-11-6 0 4 VH4-11-7 5 4 VH4-11-9 3 4 VH4-11-10 0 4 VH4-11-10 0 4 VH4-11-11 0 4 VH4-11-12 4 4 VH4-11-13 0 4 VH4-11-14 0 4 VH4-11-15 0 4 VH4-11-16 1 4 VH4-11-16 1 4 VH4-11-16 1 4 VH4-11-16 1 4 VH4-21-1 0 4 VH4-21-2 0 4 VH4-21-3 1	3	VH3-1X-4	0	
3 VH3-1X-7 0 3 VH3-1X-8 1 3 VH3-1X-9 0 212 entries 4 VH4-11-1 0 4 VH4-11-2 20 4 VH4-11-3 0 4 VH4-11-5 0 4 VH4-11-6 0 4 VH4-11-7 5 4 VH4-11-8 7 4 VH4-11-9 3 4 VH4-11-10 0 4 VH4-11-11 0 4 VH4-11-12 4 4 VH4-11-13 0 4 VH4-11-15 0 4 VH4-11-16 1 4 VH4-11-15 0 4 VH4-11-16 1 4 VH4-11-16 1 4 VH4-11-16 1 4 VH4-21-1 0 4 VH4-21-2 0 4 VH4-21-3 1	3	VH3-1X-5	0	
3 VH3-1X-8 1 3 VH3-1X-9 0 212 entries 4 VH4-11-1 0 4 VH4-11-2 20 4 VH4-11-3 0 4 VH4-11-5 0 4 VH4-11-6 0 4 VH4-11-7 5 4 VH4-11-8 7 4 VH4-11-9 3 4 VH4-11-10 0 4 VH4-11-12 4 4 VH4-11-13 0 4 VH4-11-13 0 4 VH4-11-15 0 4 VH4-11-16 1 4 VH4-11-16 1 4 VH4-21-1 0 4 VH4-21-2 0 4 VH4-21-3 1	3	VH3-1X-6	11	
3 VH3-1X-9 0 212 entries 4 VH4-11-1 0 4 VH4-11-2 20 4 VH4-11-3 0 4 VH4-11-5 0 4 VH4-11-6 0 4 VH4-11-7 5 4 VH4-11-8 7 4 VH4-11-9 3 4 VH4-11-10 0 4 VH4-11-12 4 4 VH4-11-13 0 4 VH4-11-14 0 4 VH4-11-15 0 4 VH4-11-15 0 4 VH4-11-16 1 4 VH4-21-1 0 4 VH4-21-1 0 4 VH4-21-2 0 4 VH4-21-3 1	3	VH3-1X-7	0	
4 VH4-11-1 0 4 VH4-11-2 20 4 VH4-11-3 0 4 VH4-11-4 0 4 VH4-11-5 0 4 VH4-11-6 0 4 VH4-11-7 5 4 VH4-11-8 7 4 VH4-11-9 3 4 VH4-11-10 0 4 VH4-11-11 0 4 VH4-11-12 4 4 VH4-11-13 0 4 VH4-11-15 0 4 VH4-11-15 0 4 VH4-11-16 1 4 VH4-21-1 0 4 VH4-21-2 0 4 VH4-21-3 1	3	VH3-1X-8	1	•
4 VH4-11-2 20 4 VH4-11-3 0 4 VH4-11-4 0 4 VH4-11-5 0 4 VH4-11-6 0 4 VH4-11-7 5 4 VH4-11-8 7 4 VH4-11-9 3 4 VH4-11-10 0 4 VH4-11-11 0 4 VH4-11-12 4 4 VH4-11-13 0 4 VH4-11-15 0 4 VH4-11-16 1 4 VH4-11-16 1 4 VH4-21-1 0 4 VH4-21-2 0 4 VH4-21-3 1	3	VH3-1X-9	0	212 entries
4 VH4-11-3 0 4 VH4-11-4 0 4 VH4-11-5 0 4 VH4-11-6 0 4 VH4-11-7 5 4 VH4-11-8 7 4 VH4-11-9 3 4 VH4-11-10 0 4 VH4-11-11 0 4 VH4-11-12 4 4 VH4-11-13 0 4 VH4-11-15 0 4 VH4-11-16 1 4 VH4-21-1 0 4 VH4-21-2 0 4 VH4-21-3 1	4	VH4-11-1	0	
4 VH4-11-4 0 4 VH4-11-5 0 4 VH4-11-6 0 4 VH4-11-7 5 4 VH4-11-8 7 4 VH4-11-9 3 4 VH4-11-10 0 4 VH4-11-11 0 4 VH4-11-12 4 4 VH4-11-13 0 4 VH4-11-15 0 4 VH4-11-16 1 4 VH4-21-1 0 4 VH4-21-2 0 4 VH4-21-3 1	4	VH4-11-2	20	
4 VH4-11-5 0 4 VH4-11-6 0 4 VH4-11-7 5 4 VH4-11-8 7 4 VH4-11-9 3 4 VH4-11-10 0 4 VH4-11-11 0 4 VH4-11-12 4 4 VH4-11-13 0 4 VH4-11-15 0 4 VH4-11-16 1 4 VH4-21-1 0 4 VH4-21-2 0 4 VH4-21-3 1	4	VH4-11-3	0	
4 VH4-11-6 0 4 VH4-11-7 5 4 VH4-11-8 7 4 VH4-11-9 3 4 VH4-11-10 0 4 VH4-11-11 0 4 VH4-11-12 4 4 VH4-11-13 0 4 VH4-11-15 0 4 VH4-11-16 1 4 VH4-21-1 0 4 VH4-21-2 0 4 VH4-21-3 1	4	VH4-11-4	0	
4 VH4-11-7 5 4 VH4-11-8 7 4 VH4-11-9 3 4 VH4-11-10 0 4 VH4-11-11 0 4 VH4-11-12 4 4 VH4-11-13 0 4 VH4-11-14 0 4 VH4-11-15 1 4 VH4-11-16 1 4 VH4-21-1 0 4 VH4-21-2 0 4 VH4-21-3 1	4	VH4-11-5	0	
4 VH4-11-8 , 7 4 VH4-11-9 3 4 VH4-11-10 0 4 VH4-11-11 0 4 VH4-11-12 4 4 VH4-11-13 0 4 VH4-11-14 0 4 VH4-11-15 0 4 VH4-21-1 0 4 VH4-21-1 0 4 VH4-21-2 0 4 VH4-21-3 1	4	VH4-11-6	0	
4 VH4-11-9 3 4 VH4-11-10 0 4 VH4-11-11 0 4 VH4-11-12 4 4 VH4-11-13 0 4 VH4-11-14 0 4 VH4-11-15 1 4 VH4-21-1 0 4 VH4-21-1 0 4 VH4-21-2 0 4 VH4-21-3 1	4	VH4-11-7	5	
4 VH4-11-10 0 4 VH4-11-11 0 4 VH4-11-12 4 4 VH4-11-13 0 4 VH4-11-14 0 4 VH4-11-15 1 4 VH4-21-1 0 4 VH4-21-2 0 4 VH4-21-3 1	4	VH4-11-8	7	
4 VH4-11-11 0 4 VH4-11-12 4 4 VH4-11-13 0 4 VH4-11-14 0 4 VH4-11-15 0 4 VH4-11-16 1 4 VH4-21-1 0 4 VH4-21-2 0 4 VH4-21-3 1	4	VH4-11-9	3	
4 VH4-11-12 4 4 VH4-11-13 0 4 VH4-11-14 0 4 VH4-11-15 0 4 VH4-11-16 1 4 VH4-21-1 0 4 VH4-21-2 0 4 VH4-21-3 1	4	VH4-11-10	0	
4 VH4-11-13 0 4 VH4-11-14 0 4 VH4-11-15 0 4 VH4-11-16 1 4 VH4-21-1 0 4 VH4-21-2 0 4 VH4-21-3 1	4	VH4-11-11	0	
4 VH4-11-14 0 4 VH4-11-15 0 4 VH4-11-16 1 4 VH4-21-1 0 4 VH4-21-2 0 4 VH4-21-3 1	4	VH4-11-12	4	
4 VH4-11-15 0 4 VH4-11-16 1 4 VH4-21-1 0 4 VH4-21-2 0 4 VH4-21-3 1	4	VH4-11-13	0	
4 VH4-11-16 1 4 VH4-21-1 0 4 VH4-21-2 0 4 VH4-21-3 1	4	VH4-11-14	. 0	
4 VH4-21-1 0 4 VH4-21-2 0 4 VH4-21-3 1	4	VH4-11-15	0	•
4 VH4-21-2 0 4 VH4-21-3 1	4 .	VH4-11-16	1	
4 VH4-21-3 1	4	VH4-21-1	0	
4 VH4-21-3 1	4	VH4-21-2	0	
4 VH4-21-4 1	4	VH4-21-3		
	4	VH4-21-4	1	

Table 3C: (continued)

		•	
Family ¹	Name	Rearranged ²	Sum
4	VH4-21-5	1	
4	VH4-21-6	1	
. 4	VH4-21-7	0	
4	VH4-21-8	0	
. 4	VH4-21-9	0	
4	VH4-31-1	0	
4	VH4-31-2	0	
4	VH4-31-3	0	
4	VH4-31-4	2	
4	VH4-31-5	0	
4	VH4-31-6	0	
4	VH4-31-7	0	
4	VH4-31-8	0	
4 .	VH4-31-9	0	
4	VH4-31-10	0	
4	VH4-31-11	0	
4	VH4-31-12	4	
4	VH4-31-13	· 7	
4	VH4-31-14	0	
4	VH4-31-15	0 ·	
4	VH4-31-16	0	
4	VH4-31-17	. 0	
4	VH4-31-18	0	
4	VH4-31-19	0	
4	VH4-31-20	0	57 entries
5	VH5-12-1	82	
5	VH5-12-2	1	
5	VH5-12-3	0	
5	VH5-12-4	14	97 entries
6	VH6-35-1	74	74 entries

WO 97/08320
Table 4A: Analysis of V kappa subgroup 1

•	<u> </u>					-:						Fran	newo	k l		
amino acid'	-	2	က	4	2	9	^	&	6	10	-	12	13	4	15	16
А		1							1				102		1	
В			1			1										
С														1		
D	64										·					
E	8		14												1	
F									1	6				1		
G																10
Н																
.		65													4	
K			1													
L		6		21							96		1			
М	1			66												
N																
P								103		1		2			1	
Q			62			88					1					
R																
S	<u> </u>						89		102	8 0		103		103		
T		1			88					18						
V		1	9								8		2		98	
W							•									
Χ	1															
Y																
	 															
unknown (?)				·····												
not sequenced																
sum of seq ² .		!~~~~~										:		:		10
oomcas,		·····	:							:				103		10
mcaa*	D	1	Q	М	T	Q	S	P	5	S	L	S	Α	S	V	G
rel. oomcaas	96%	%88	71%	26%	100%	99%	100%	100%	98%	76%	91%	98%	97%	98%	93%	100%
pos occupied							1	1		4	3			3		

5² SUBSTITUTE SHEET (RULE 26)

WO 97/08320

Table 4A: Analysis of V kappa subgroup 1

amino acid'	17	18	19	70	21	22	73	24	25	56	27	<	œ	ပ ·	۵
А			1	1		1			103						
В											1				
. C							105								
	101														
E	2							1	1		2				
F					2										
G										1					
Н											1				
ı			6	4	101	1									
K								2			1				
L								1							
М															
N ·										1					
Р															
Q								20			100				
R		94						81							
S		5		1						102					
T		6		99		103			1	1					
V			98		2	**********									
W								····							
Χ	1														••••
Y	1								<u></u>	<u> </u>					
_									ļ <u>-</u>	<u> </u>		105	105	105	10!
unknown (?)				<u></u>		ļ	ļ		ļ			······································			
not sequenced		<u> </u>							<u> </u>	<u> </u>					
sum of seq²	105	105													
oomcaa,	101	94	98	99	·····	1.03	105	81	103	102	100	105	105	105	10
mcaa¹	D	R	٧	Ţ	1	T	С	R	A	S	Q	-	-	-	-
rel. oomcaas	%96	90%	93%	94%	%96	%86	100%	77%	%86	97%	95%	100%	100%	100%	1000%
pos occupied ⁶		1 3		:	:		:	5	3	3 4	5	1	1	1	<u>.</u>

WO 97/08320

Table 4A: Analysis of V kappa subgroup 1

4A. Milalysis of	CDRI														
amino acid¹	ш	ш	28	29	30	31	32	33	34	35	36	37	38	39	40
Α					1	1		1	42						
В												1	1		
. C							1								
D			25		1	5	7					1			
E							1					2			
F				1	1		7				6				
G			25		7	3			4						
Н					1	2	2		1			2			
1				98	1	4			1						
К						7								95	
<u> </u>					2	1		101							
М										-					
N			6		16	42			50						
Р															102
Q												98	103	2	
R					16	3	2							3	1
S			41	2	57	32	3	1	1						1
T			7			4			4					1	
V			1	4	1			1							
W							21			104					
X									1						
Y					1		60				98				
-	105	105													
unknown (?)									····					3	
not sequenced						1	1	1	1	1	1	1	1	1	1
sum of seq?	105	105	105	105	105	104	104	104	104	104	104	104	104	104	104
oomcaa ³	105	105	41	98	57	42	60	101	50	104	98	98	103	95	102
mcaa*	-	-	S	l	S	N	Υ	L	Ν	W	Y	Q	Q	Κ	Р
rel. oomcaa³	100%	100%	39%	93%	54%	40%	58%	97%	48%	100%	94%	94%	%66	910%	98%
pos occupied ⁶	1	1			12	11	9	4	8	1	2	5	2	4	3

WO 97/08320

Table 4A: Analysis of V kappa subgroup 1

	Fran	new	ork	II											OR II		
amino acid¹	41	42	ç	£ :	44	45	46	47	48	49		요 	- 21	25		54	25
Α				94							_	50	95	_			
В																	
. C																	
D												21	1	1	1		
E	1		3			1	1					1		1			33
F	<u>[</u>	<u></u>					1				3			1			
G	100			1								9	2				
Н		ļ									2						1
ļ		<u> </u>	1				1		100	<u> </u>					1		5
K	ļ	9	5			86				<u> </u>		16			2	101	
L	<u>.</u> [ļ	1				89	103	:	ļ						101	
M		<u> </u>	<u></u>		<u> </u>				2	<u> </u>							
N	_					10				<u> </u>		2		1	25		
Р	_	-	_		104					<u> </u>		1					62
Q			1			1		<u> </u>	<u> </u>	-						<u>-</u>	
R						3	3		<u></u>						1		
<u>S</u>						1		<u></u>	<u></u>	-	5	1	1	99	41		
T	_	_	3			1	:		<u> </u>	ļ		1	4	1	31		
V		_	_	9			9	ļ		-			1		1		
W	-	_					<u> </u>	<u> </u>							1		
X	_	_				1	<u> </u>			_		1			1		
Y	-							 	<u> </u>	-	92						
		_					<u> </u>	-		-						ļ	
unknown (?	E	3				ļ				3	3	2	1	1	1	1	
not sequence	ed	1	1			:											 -
sum of seq					•	•	:	:		•		103 50				104 101	
oomcaa			95		104	· · · · · · · · · · · · · · · · · · ·		9 10			92 Y		33 A	S	S	L	(
mcaa*		}	K	Α	Р		L							<u> </u>		1	
rel. oomcaa	a ⁵	%96 %96	91%	%06	100%	A 30%	2000	00-00	2001	2640	%06	49%	91%	:			-
pos occupie	d.	2	6	3	1		8	6	1	2	4	10	E	6	5 9	3	3

WO 97/08320

Table 4A: Analysis of V kappa subgroup 1

	ı														
amino acid¹	<u>_</u> 26	57	58	59	09	61	62	63	64	65	99	29	89	69	70
А	3										2	1	1	1	
В				1											
C															
D	1														67
Е													1		30
F			1				103					3			
G	2	105							105	4	101		102		
Н															3
1	3		4				1	3				-			
K	1					1									1
L								1							
М														1	
N	6														
Р	1			101	2										
Q										1					
R	1					103		1		1	1			2	
S	68			2	103			98		96		100			
T	19			1		1		2		3				101	
V			99				1								1
W															
X	ļ		1								1		1		2
Y												1			1
_															
unknown (?)	<u></u>							•							
not sequenced															
sum of seq²															
oomcaa3	68	105	99	101	103	103									
mcaa*	S	G	V	Р	S	R	F	S	G	<u>.</u> S	G	S	G	T	D
rel. oomcaa ^s	65%	100%	94%	%96	98%	98%	%86	93%	100%	91%	%96	95%	97%	%96	64%
pos occupied	:	:	4	4	2	3	3	5	1	5	4	4	4	4	7

WO 97/08320

Table 4A: Analysis of V kappa subgroup 1

_	Fr	amev	vor	k III													2
amino acid'	71	72	73		4	75	16	77	-	% 	79	8	<u>8</u>	82	83	84	82
Α		3					1		<u> </u>			2				101	1
В						1			<u>.</u>		3		2				
. C									_								
D							1		<u> </u>					101			
E			<u></u>										83			·	
F	102	1	_ 2	21										.,.,	73		
G			<u> </u>					4	!				1			2	
Н			ļ													ļ	
1			ļ			99	. 5	<u> </u>							17	<u></u>	ļ
К																	
L		ļ	1	81					-	103	1				1		
М	. 	ļ	<u>.</u>					<u></u>	-			<u> </u>	<u> </u>	<u></u>	<u></u>	<u> </u>	
N	,	ļ					7		4					<u></u>			
Р								ļ				97	<u> </u>	<u> </u>	<u> </u>	<u> </u>	
Q		<u> </u>	_				ļ	<u> </u>	+		97		<u> </u>	<u> </u>	<u> </u>	<u> </u>	ļ <u>.</u>
R		ļ						-	1		2	· <u>·</u> ·····			ļ		
S			2		1		86		4			4		<u> </u>]		
T		9	8		102)	1			<u> </u>	<u> </u>				9
V	1			2		4			-	1					1	l	
W								<u> </u>	-			<u>!</u>	<u>.</u>	<u> </u>	<u></u>		-
X	ļ	<u> </u>	_		1		<u> </u>					ļ]	1 2	2		
Y	1	<u> </u>	<u> </u>				<u> </u>	 -	_			╬	<u> </u>	┼—	┿-		┿-
-	ļ						-					<u>. </u>	<u> </u>		<u></u>		
unknown (?)	ļ		_		······································						ļ						2
not sequenced			1	1				1	1							 -	⇌
sum of seq²	104	****			:	:										3 10	3 10
oomcaa ³	10	2 9	8	81	102	•			•••••	103				3 10		3 10	••••
mcaa*	F	1		Ĺ	T	1	S		5	L	۵	Р	E	D	F	Α	1
rel. oomcaa ^s	7/080	20%	94%	78%	98%	950%	7000	02%0	%06 000	99%	0.40%	040%	010%	2000	340	200	38%
pos occupied		3	4	3	3		3	7	5	2	2	4	3	5	2	5	2

WO 97/08320

Table 4A: Analysis of V kappa subgroup 1

4A: Analysis of V			- 5.0-							CDR I	11					
amino acid¹	98	87	88	68	90	91	82	93	94	95	⋖	۵	ں	۵	ш	<u>.</u>
Α					1	7	1		5	1						
В				2	3											
. C			102													
D							23	5	1							
E							1	1		1	1					
F		7				3			13							
G						1		1	2	1		1				
Н		1		4	6	7	3	1			,					
							4	1	2	1						
K	1				7		1									
L				7		6	2		18	2						
М																
N						6	31	19	1							
Р									1	82	6					
Q				90	86	1	2									
R						1		2	2	**********						
S	1					27	3	58	5	10						
T						3	1	15	25							
V									5							
W							••••••		1							
X																
Y	101	93				42	32	1	23							
										3	82	88	89	89	89	89
unknown (?)		1														
not sequenced	2	3	3	2	2	1	1	1	1	4	16	16	16	16	16	16
sum of seq²	103	102	102	103	103	104	104	104	104	101	89	89	89	89	89	89
oomcaa³	101	93	102	90	86	42	32	58	25	82	82	88	89	89	89	89
mcaa*	Y	Υ	С	Ω	Q	Υ	Υ	S	Т	Р	-	-		-	-	-
rel. oomcaas	98%	91%	100%	87%	83%	40%	31%	56%	24%	81%	92%	%66	100%	100%	100%	100%
pos occupied ⁶	3	3	1	4	5	11	12	10	14	:	:	•		:	1	1

WO 97/08320

Table 4A: Analysis of V kappa subgroup 1

llysis of v kappa -	300	7	_				Fran								•
amino acid'	96	97	86	66	100	101	102	103	104	105	106	⋖	107	108	sum
Α	1														627
В					1					1					19
·C															209
D	1									15	<u> </u>				459
E					2					65					258
F	6		86								2				451
G				87	29	87								2	894
Н	2	1													40
	5								1		72				606
K	1	1						77	 .				79		480
L	18	1	1						22	4	2				793
M		1									5				77
N	1				<u></u>						1		2		232
P	6				7									1	620
Q	1				48	<u>.</u>				1					865
R	6			<u></u>			<u></u>	6					2	70	413
S	2	2			<u> </u>	<u></u>	<u> </u>								1636
T	2	82		<u> </u>	<u> </u>	<u> </u>	87	3	<u> </u>		ļ		2	ļ	1021
V	2					<u> </u>	<u> </u>	1	63	<u></u>	3				440
W	15		<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u>.</u>	ļ	<u> </u>	<u> </u>	<u></u>			<u> </u>	141
X				<u>.</u>	<u> </u>	<u>.</u>		<u></u>			ļ			<u></u>	14
Y	16	<u> </u>	L			<u> </u>	<u> </u>	<u> </u>	<u> </u>	_	<u> </u>	<u> </u>		<u> </u>	564
_		<u>'</u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u>.</u>	ļ			<u> </u>	85	<u> </u>	1	1250
unknown (?)	<u> </u>							ļ	ļ					_	. 7
not sequenced															
sum of seq?															
oomcaa3	18	3 8	2 8	8	7 48	3 87	7 87	•	:	:	72		•	:	:
mcaa*	L	Ţ	F	G	G	G	T	K	V	E	1	<u> </u>	:		•••
rel. oomcaa ^s	20%	070%	000%	100%	2200	100%	100%	89%	730%	76%	85%	100%	93%	950%	
pos occupied			•	:	•		1	:	•	:	5 6			1 4	4

 $\Im\Im$

Table 4B: Analysis of V kappa subgroup 2

		•								F	ran	iew	ork								
amino acid'	_	7	က	4	2	9	7	8	6	10	=	12		14	5	16	17	18	19	20	21
Α																	-		22		
В																					
. с																					
D	14																				
<u>E</u>	3																15				
F									1	1											
G																22					
Н																					
l		8																			2
K																					
L		3		1					17		18				6						
М				15																	
N																					
Р								18				18			15			22			
Q						18											7				
R																					
S							18			17										22	
Ţ					17									21							
V		6	17	1									18								
W																					
X			<u></u>																		
Υ																					
_																					
unknown (?)					1																
not sequenced	5	5	5	5	4	4	4	4	4	4	4	4	4	1	1						
sum of seq?	17	17	17	17	18	18	18	18	18	18	18	18	18	21	21	22	22	22	22	22	2
oomcaa³	14	8	17	15	17	18	18	18	17	17	18	18	18	21	15	22	15	22	22	22	2
mcaa'	D	١	٧	М	Τ	Q	S	Р	L	S	L	Р	٧	T	Р	G	Ε	Ρ	Α	S	
rel. oomcaas		:	·	· · · · · · · · · · · · · · · · · · ·	:	·····	· · · · · · · · · · · · · · · · · · ·	-	94%	:				100%	71%	100%	38%	100%	100%	100%	200
pos occupied ⁶	:	:	:	:		:		•	:	:					:	:					

100

Table 4B: Analysis of V kappa subgroup 2

		1								(CDR	l									
amino acid'	22	23	24	25	26	27	۷	8	U	۵	ш	u.	28	29	30	31	32	33	34	35	26
Α																					
В																					
. <u>C</u>		22																			
D			••••							1			9		1	1			11		
E																					
<u>F</u>															2						
G											1			22							
Н										16							1		1		
K			1													1					
L						1		22	13									22			
M									1												
N													10		7	12			9		
P																					
Q	1					21															
R			21								2										
S	21			22	22		22				19		1								
T																8					
V									8												
W										1										22	
Χ													1		1				1		
Υ										4			1		11		21				1
-												22									
unknown (?)																					
not sequenced																					_
sum of seq'	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	2
oomcaa'	21	22	21	22	22	21	22	22	13	16	19	22	10	22	11	12	21	22	11	22	1
mcaa'	S	С	R	S	S	Q	S	L	L	Н	S	-	N	G	Υ	N	Υ	L	D	W	١
rel. oomcaas	95%	100%	95%	100%	100%	95%.	100%	100%	29%	73%	96%	100%	45%	100%	20%	55%	95%	100%	20%	100%	ò
pos occupied ⁶		1	•			:							5					1	4	1	

Table 4B: Analysis of V kappa subgroup 2

					Frar	new	ork	11									CDR	11			
amino acid'	37	38	39	40	4	42	43	44	45	46	47	48	49	20	51	52	53	54	52	26	22
А																			14		
В													1			1					
· C											1				<u> </u>	1	-		-		
D										Ī						-			7		
E	ļ								1												
F	ļ			<u> </u>																	
G		<u></u>		<u> </u>	22	<u> </u>		<u> </u>	<u> </u>						12				1		22
Н		<u> </u>	<u></u>		<u>.</u>	<u></u>	<u></u>														
1	.	<u> </u>	<u></u>	<u></u>	<u></u>	<u> </u>				1	<u></u>	22	<u> </u>	<u></u>				<u> </u>			
K	 .	<u> </u>	15		ļ	<u></u>		<u> </u>		<u> </u>	<u></u>	<u></u>	<u></u>	5				<u></u>			
<u>L</u>	16		ļ							14	21		<u></u>	14	1	<u></u>					
M ·	ļ				<u></u>			<u> </u>	<u> </u>							<u> </u>					
N	ļ				<u></u>	<u></u>		<u> </u>	<u></u>							<u> </u>	18				
Р		······		22				21													
Q	6	22				22		ļ	12					1							
R			7						8	7				1				22			
5							21	<u></u>							2	22	2			22	
T																	1				
<u> </u>											1				6						
W																					
X																					
Y						-							21				1				
unknown (?)																					
not sequenced		_		_	_		1	1	1				1	1	1						
:	22	22	22	22	22	22	21	21	21	22	22	22	21	21	21	22	22	22	22	22	22
oomcaa,	16	22	15	22	22	22	21	21	12	14	21	22	21	14	12	22	18	22	14	22	22
mcaa¹	:				G	Q	S	Р	Ω	L	L	ı	Υ	L	G	S	N	R	Α	S	G
rel. oomcaa ^s	73%	100%	68%	100%	100%	100%	100%	100%	57%	64%	95%	100%	100%	9/0/9	57%	100%	82%	100%	64%	100%	100%
pos occupied ⁶	2	1	2	:	:	:	:	:				·		•••••							1

102

Table 4B: Analysis of V kappa subgroup 2

															mev						
amino acid'	28	23	09	19	62	63	64	65	99	29	89	69	20	71	72	73	74	75	9/	77	78
Α																					
В																					
. С																					
D			22				1				1		22								
E																					
F					21									22					-		
G							21		22		21										
Н																					
1																	1	21			
K																	19				
L																21	1				
М																					
N																					
Р		22																			
Q]										<u>.</u>								<u> </u>		
R	ļ			20				1											<u></u>	20	
S	ļ			1		22		21		22									20	1	
T	ļ			1								22			21				1		
V	22				1											·	<u></u>		<u> </u>		2
W																			ļ		<u></u> .
X	<u> </u>	<u></u>	<u></u>											-			<u> </u>	<u>.</u>	<u> </u>		<u>.</u>
Υ	L	<u> </u>																	<u></u>		_
_	ļ	<u> </u>	<u></u>		<u></u>											<u></u>		ļ	<u></u>		<u>.</u>
unknown (?)	ļ		ļ		ļ	ļ					ļ				1	<u> </u>		ļ			
not sequenced	-	_			<u> </u>													1	==	:	=
sum of seq ²		÷	÷		÷•••••	÷•••••		:	:	:	:	:	22		:	:	:	:		:	:
oomcaa3	:	•	• • • • • • • • • • • • • • • • • • • •		*******	·		·····		·····	?		22		•		:	:	:	:	:
mcaa*	٧	Р	D	R	F	S	G	S	G	S	G	T	D	F	T	L	K	1	S	R	<u> </u>
rel. oomcaas	100%	100%	100%	91%	95%	100%	95%	95%	100%	100%	95%	100%	100%	100%	95%	100%	%06	100%	95%	95%	ò
pos occupied ⁶		· · · · · · · ·	-	:	:	:	:	:	:	:	•	:		:	<u> </u>	:	:	:	1	:	

Table 4B: Analysis of V kappa subgroup 2

											\prod							CDF	111		
amino acid'	79	2 2	<u> </u>	5 6	3 6	84	, a	8 8	20 20	3 8	80	8 6	91	92	93	94	95	\ \ \	œ	ں ،	۵
A		20)										14	1			1			T	
В													1		1						
· c										2	1		<u> </u>			<u> </u>		<u> </u>	1		
D				1 2	1									<u> </u>		•	1				
Е	19)	2	0												<u> </u>		<u> </u>	<u> </u>		
F .																<u> </u>					
G			<u>.</u>		<u> </u>	2							6			1		2			
Н	ļ	<u>.</u>	<u>.</u>										1		7						
1	<u> </u>	<u> </u>						l								1					
K	ļ	<u>.</u>	<u>.</u>														<u> </u>	<u> </u>			
<u> </u>			<u>.</u>		<u> </u>		1							12			2		<u></u>		
M	ļ	<u> </u>	<u> </u>	ļ	<u> </u>			<u> </u>			21										
N		<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u></u>														
Р	 	1	ļ	ļ				<u>.</u>	<u>.</u>		<u>.</u>					2	16	1			
0	1		<u> </u>	<u> </u>	<u>.</u>			<u> </u>			<u> </u>	20			13						
R	ļ	<u> </u>	<u> </u>	<u> </u>	<u></u>			<u> </u>	<u> </u>			<u> </u>		1							
S	ļ	ļ	<u> </u>	ļ	<u> </u>		<u> </u>	<u>.</u>		<u>.</u>	<u> </u>					3	2				
T		ļ	ļ	<u> </u>	<u> </u>		<u> </u>	<u></u>						8		7					
V	ļ		ļ	<u> </u>	21	ļ	19	ļ	<u> </u>	<u> </u>											
W	ļ				<u> </u>		<u> </u>	<u></u>		<u> </u>	<u></u>	<u> </u>				6					
X				<u></u>	<u></u>	<u> </u>		<u></u>		<u> </u>											•
ΥΥ								21	21												
-					<u>.</u>			ļ		<u> </u>								14	17	17	17
unknown (?)			•••••																		
not sequenced	1	_1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	2	5	5	5	5
	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	20	17	17	17	17
																		14	17	17	17
															Q			-	-	-	-
rel. oomcaa'	%06	95%	95%	100%	100%	100%	%06	100%	100%	100%	100%	95%	90/9	57%	62%	33%	30%	32%	%00 ₁	100%	%00 l
pos occupied ⁶	3	2	2	1	1	1	3	1	1	1	1	2	3	3	3	7	3	3	1	1	1

Table 4B: Analysis of V kappa subgroup 2

alysis of V kapp									Fra	mev	ork/	IV					
amino acid'	m	u_	96	26	86	66	9	101	102	103	104	105	106	⋖	107	108	sum
Α																	71
В												1					3
С																	43
D																	112
E												13					71
, F			1		17												72
G						17	2	16				1					233
Н																	20
1			3										14				94
К										12					13		6
L			2								11						219
М																	3
N																	5
Р			1														15
Q			1	.,,			14	<u></u>	<u> </u>								15
R		<u> </u>						<u> </u>	<u> </u>	4				<u> </u>		12	H
S			ļ					ļ	<u></u>						ļ	<u></u>	32
T		<u>.</u>	ļ	17				<u> </u>	16	<u> </u>	<u></u>	<u> </u>		<u></u>			14
V		<u> </u>	ļ	<u> </u>		<u></u>		<u></u>		<u> </u>	5	<u> </u>	<u> </u>	<u> </u>			14
W	ļ		2	<u> </u>		<u> </u>		<u></u>	<u> </u>		ļ			<u> </u>	ļ	<u></u>	3
X	.	<u>.</u>	<u> </u>	ļ		<u> </u>		-	<u></u>		<u> </u>		ļ	<u> </u>	ļ. 	<u> </u>	
Y	_	<u> </u>	7			<u> </u>	_	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	-	_	 	12
-	17	17	<u> </u>	<u></u>	<u> </u>	<u> </u>	<u> </u>		<u>.</u>		<u>.</u>	<u> </u>	<u></u>	13		ļ	13
unknown (?)	ļ			ļ	<u></u>	<u> </u>	<u> </u>		<u> </u>		ļ	ļ	-	<u> </u>	<u></u>	ļ	
not sequenced	_		_				:	$\overline{\cdot}$	-	$\overline{\cdot}$:	: -		; 		10	4
sum of seq ²			••••••	· · · · · · · · · · · · · · · · · · ·		•••••	:	:			:	:	:	:	•	:	:
oomcaa,	17	7 17	7			:	:	:		:	:	1	:	:	:	÷	
mcaa'	-		Υ	·	:	• • • • • • • • • • • • • • • • • • • •	······	7	···	:		:	:	:	;	R	
rel. oomcaas	100%	100%	410%	100%	100%	100%	88%	100%	100%	75%	%69	87%	100%	100%	100%	100%	
pos occupied		1 1	1 7	7 1		1 1	1	2	1	1 2	2 2	2 3	3		1	1 1	ď

105
SUBSTITUTE SHEET (RULE 26)

Table 4C: Analysis of V kappa subgroup 3

											Fr	ame	work	1		
amino acid'	_	2	۰ ۳	. 4	ហ	ى ر	۰ ۲	- α	5	, 2	: =	12	13	14	15	16
А			5					2	2	7	Ī					1
В		1														
. <u>C</u>												1	2	-	<u> </u>	<u> </u>
D		2							1	4	<u> </u>			<u> </u>		<u> </u>
E	71	6	2	7							-					-
F .		<u> </u>	1									<u> </u>	<u> </u>	- 	1	
G	<u> </u>	1							8	2	-	Ī	<u> </u>	<u> </u>	··· ‡······	1 152
Н		<u> </u>									1	<u></u>	<u> </u>	- -		
1		7	5									-				<u> </u>
K	3	1											-		<u> </u>	
L			1	1 104	l.			1			150)	129	3		
M	5			13	3						********	<u> </u>		<u> </u>		
N		<u> </u>	<u> </u>							-	Ī		·	5		
Р	<u> </u>	<u> </u>						124	1			·	<u> </u>	†	147	
Q		<u> </u>				123	3						<u> </u>	†	<u> </u>	
R	<u> </u>	<u> </u>	<u> </u>	<u> </u>	1							Ī		<u> </u>	<u> </u>	
S		ļ	<u> </u>	<u>.</u>	<u> </u>		119		3	1		150	1	141		
T		2	<u></u>		117					147				5		
V		1	89	1			1				1		22	Ť	1	
W			<u> </u>	<u> </u>									Ī		<u></u>	
X			<u> </u>													
Y																
-																
unknown (?)										,					•	
not sequenced																
sum of seq'	88	88	117	118	118	123	123	124	126	149	151	152	152	152	152	152
oomcaa,	76									147						
mcaa*	Ε	1	٧	L	Ţ	Q		Р	G	:	L	S	L	S	Р	G
rel. oomcaas	%98	85%	76%	88%	99%	100%	97%	100%	65%	99%	%66	%66	85%	93%	97%	%00 ₁
pos occupied"	6	6	3	3	2	1		1	•	3	2	2	3	4	<u>ද</u> 6	1

108

Table 4C: Analysis of V kappa subgroup 3

C: Analysis of V															<u> </u>	DRI
amino acid'	17	18	19	20	21	22	23	24	52	26	27	۷ ا	6	ں -	٥	ш
Α			178	2					166	1						
В																•••••
С						İ	181			1						
D	6															
E	146	1									1					
F					7	1										
G	1	1							-1	1		1				
н											17		<u> </u>			
1		1	<u> </u>	5	2								<u> </u>			
K	<u></u>	1	<u> </u>					5							<u></u>	
L					173						1	1				•
M															<u></u>	
N												9				
Р																
Q											159					
R		175						176		1	1	10				
S						180			7	175		87				
T		1		174					7	2		1		<u> </u>	<u></u>	
٧		1	4	1					1			1				-
W								1								
X				<u> </u>												•••
Y						1					1					
_		ļ	<u> </u>	ļ			ļ					72	182	182	182	18
unknown (?)		<u> </u>	<u> </u>	<u> </u>	ļ		ļ	<u> </u>			1					
not sequenced		<u> </u>		<u></u>			<u> </u>		<u> </u>							
sum of seq'	*********					-			:	181	:		•			
oomcaa,	146	175	178	174	173	180	181	176	166	175	159	87	182	182	182	18
mcaa*	Ε	R	Α	T	L	S	С	R	Α	S	Q	S	-	-	-	-
rel. oomcaas	95%	97%	98%	%96	95%	%66	100%	97%	91%	97%	9/088	48%	100%	100%	100%	300
pos occupied ⁶		÷	2	· † · · · · · · · · · · · · · · · · · ·		:	:	Ī	÷	:	6	8	1	1	1	<u></u>

107

WO 97/08320 ·

Table 4C: Analysis of V kappa subgroup 3

															Fra	mev
amino acid'	u.,	28	29	30	3	32	33	34		36	37	38	39	9	41	42
A					1	1		18	1							
В																
С													-			<u> </u>
D				1	1 :	2	1		Ī			<u> </u>	1	<u> </u>	Ī	<u> </u>
E							1						-	1	-	<u> </u>
F .	1		ı				7		•		1		- 	<u> </u>	<u> </u>	
G		<u> </u>	2	2 7	7 (3	1		2					1	184	
H		<u>.</u>	1			2	2				1	12	2 1	- 		<u> </u>
		24	4	<u> </u>	1										***************************************	
K	<u> </u>	<u>.</u>	<u>.</u>	1	1					Ī		Ī	153	3		Ī
L]	8	1			1	170	6				3		<u> </u>	<u></u>	2
M	<u> </u>	<u> </u>	<u> </u>											·		
N		<u> </u>	3	12	25	32					-	-	Ī	·	<u> </u>	
Р		<u> </u>	<u> </u>	<u> </u>	1								İ	170		••••••
Q	<u> </u>	<u> </u>	<u></u>	<u> </u>	1	1					183	167	1			181
R	ļ	<u> </u>	10	3	18	16		1			1		27	5		
S		72	86	151	118	4							<u> </u>	5		
Ţ		1	1	3	8	1							1	<u></u>		
V		76	68	<u> </u>	1	<u>.</u>	7					3		2		
W			5						185							•••••
X																••••••
Υ				1	1	115				183						
-	182															
unknown (?)											1					
ot sequenced																•••••
sum of seq ²	182	182	182	181	181	182	183	184	185	185	185	185	184	184	184	184
	182	:						:	:	•				**********	184	
mcaa*		V	S	S	S		L	Α	W	Υ	Q	Q	K	Р	G	Q
rel. oomcaas	100%	42%	47%	83%	65%	63%	%96	%86	%001	99%	966	%06	83%	92%	%00	%86
oos occupied" [1	6	11	10	13	12	2	:		<u></u>	·····	4	<u> </u>	<u>б</u> 6	1	<u>. 67</u>

WO 97/08320

Table 4C: Analysis of V kappa subgroup 3

	rk II									С	DR II					
amino acid¹	43	44	45	46	47	48	49	20	51	52	53	54	52	26	57	28
Α	176							4	147				176	1		
В																
С				<u> </u>		<u></u>			1							
D								43					2		4	
E																
F			<u></u>	1		1	4									
G								125				<u> </u>	2	10	179	
H							9		1							
1						178						<u> </u>		1		16
K			1								7	1				
L		1		179	174	1										
· M						3					1					
N			1					1			53			2		
Р	5	184								2			2	2		
Q							1									
R			182			<u> </u>		1			4	180				
S						ļ	3	6	4	179	74	1		5	•	
T	3					<u> </u>			11	2	44			164		
V				3	9	<u></u>		3	19				3			1
W							1		<u></u>			1				
X						ļ	<u></u>		<u></u>							
Y		<u> </u>				<u> </u>	165								2	_
		. <u>.</u>	ļ			<u> </u>	<u></u>	ļ	ļ					<u></u>	<u></u>	
unknown (?)		ļ	1			<u>.</u>	ļ	ļ						<u> </u>		
not sequence		<u> </u>	<u> </u>			-	<u> </u>									_
sum of seq'	*******				-			•	•	:		•	•	•	•	•
oomcaa,	170	6 184	182	179	÷			:			•	•	:	:	:	:
mcaa'	Α	Р	R	L	L	1	Υ	G	Α	S	S	R	Α	T	G	<u>.</u>
rel. oomcaa	986	999%	0,86	98%	95%	%26	%06	68%	900%	98%	40%	%86	95%	%68	97%	
pos occupied		3 2		3				5		1		i .	٤	5 7	3	3

														Fram	ewo	rk III
amino acid'	59	9	61	6	8	64		8 9	3 2	8	69	8 2				74
A		6	8						3		5	3	1		3	
В													-			
. c									•	<u> </u>					1	
D		11	2				1			<u> </u>		15	2		- 	
E				Ī			-		1		1	3		<u>-</u>		 -
F .		<u> </u>		18	3								18	3	<u> </u>	2
G		<u> </u>	<u> </u>			18	4	3 17	8 ~	17	7					
H			1												<u></u>	
ļ		<u> </u>	<u> </u>	<u> </u>	1	<u> </u>									1	3
K		<u> </u>	1	<u> </u>	<u> </u>	<u>.</u>									Ī	
<u>L</u>		<u>.</u>	<u> </u>		<u> </u>								Ī		18	2
- M		<u>.</u>	<u> </u>	<u> </u>	<u> </u>				1							
N		1		<u> </u>	<u>.</u>								Ī	1		1
Р	177			<u> </u>	<u> </u>									Ī	<u> </u>	T
0	<u> </u>	<u> </u>	<u> </u>	<u> </u>								1				
R		<u> </u>	182	<u> </u>	2		1				2			-	<u> </u>	
S	7	ļ	<u> </u>	ļ	180		179)	185		3			7	<u> </u>	2
T	1	ļ	2		3		2				177			172	<u> </u>	179
V	 	3	ļ				<u>!</u>	1		1						
W	ļ	<u> </u>					<u>.</u>			1			<u> </u>		<u> </u>	
X	ļ						<u> </u>									
Y													1			
-																
unknown (?)								1								
not sequenced																
sum of seq²	185	185	185	185	185	185	185	185	185	185	185	184	184	184	184	184
oomcaa ¹	177	112	182	183	180	184	179	178	185	177	177	152	183	172	182	179
mcaa '	Р		;	F	•		:				T	D	F	:	L	
rel. oomcaas	%96	61%	%86	%66	97%	%66	97%	%96	100%	%96	%96	83%	%66	93%	%66	97%
pos occupied ^e	3	5	3	3			:	5	1	5		•	•	·····	2	

Table	4C:	Analy	/sis	of V	kappa	subgroup	3
-------	-----	-------	------	------	-------	----------	---

														1		•
amino acid'	75	92	22	78	79	80	81	82	83	84	82	98	87	88	83	90
Α							3			174						
В					1											
. C		<u></u>							2				1	182		
D		<u> </u>	1				3	182								
E					149		175									2
F		1			<u> </u>				178		2	1	4			
G			3					1		2						
Н											1				1	7
	178							1	1		9					
K							1						<u> </u>			
L				178		1			1		7		1			1
M				<u></u>						1	5	<u> </u>				
N	1	5										<u> </u>				
Р						149										*******
Q					34									1	181	15
R		1	111							3						·
S		169	65			34			1		<u></u>		2			· · · · · · · · · · · · · · · · · · ·
T		8	4							1						
V	4			6					1	3	159					
W	<u> </u>															
X									<u></u>							
Υ	1											183			1	
-		<u></u>		ļ	<u> </u>	<u> </u>	<u> </u>		ļ	<u></u>						<u>·</u>
unknown (?)					ļ		<u></u>	<u></u>	<u> </u>	<u> </u>						
not sequence		<u> </u>				<u> </u>		<u> </u>	<u> </u>							
sum of seq ²	3	*********	÷	•	÷	·	•	-	7	:	:	:	:	:		
oomcaa3	178	169	111	178	149	149	175	182	178	174	159	183	176	182	181	15
mcaa'	1	S	R	L	Ε	Р	E	D	F	Α	V	Υ	Υ	С	Q	0
rel. oomcaa ⁵	97%	92%	%09	97%	81%	81%	%96	99%	97%	95%	%98	99%	%96	%66	966	ò
pos occupied		-	1	:	:	:	:	:	:	6	:	i	;	•	3	

Table 4C: Analysis of V kappa subgroup 3

	_					CI	OR II			·					T			
amino acid	1 6	<u>.</u> 6	35	93	94	92	A	В		ے ر) <u>"</u>	ט נ	- 90	20) 0	2	66	9
А			1	8	3	3										_	_	1
В								******					_					·
· c		2			1				İ		i	_	<u> </u>	2	-			
D			8	5				******		Ī	····		<u> </u>	_	1	-	<u> </u>	
E			2					******			-			1		-	-	
F .		5		2										7	16	6		
G		1 1()4	15	<u></u>	1	1	2	2	<u> </u>				1	1	··· :	6 4	41
Н		4	1											2	<u></u>			_
1				1			1	******						4				
K				2			1	•••••		Ī				1	<u> </u>		<u> </u>	1
<u>L</u>					2	7	5						4:	2	<u> </u>	<u> </u>		
M		<u>.</u>	1			1	2											
N		2	8 7	1			<u></u>								<u> </u>			
Р					1 1;	39 2	4						7	' 2	2	<u> </u>		9
Q		<u> </u>	<u> </u>	1		3	1						3		<u> </u>	•	11	4
R	34	!	2	3		2	2			<u> </u>			19			<u> </u>		-
S	2	3	3 5	8 10	2 1	5	2			<u>.</u>	<u>.</u>		1	8				
T	ļ		2 1	3	1	1	2			<u> </u>			1	154	Ī			
<u>V</u>	ļ	<u> </u>	.ļ	<u> </u>	<u> </u>	3 ·	1			<u> </u>	<u> </u>		2					
W	ļ	<u></u>	ļ	6	9		<u>.</u>			<u> </u>			24					-
X	ļ		ļ	<u> </u>	<u> </u>											<u> </u>	<u> </u>	
Y	134					<u> </u>							43					
	ļ	<u> </u>			3	7 12	7 16	57	169	169	169	169	8	1	1	1	1	=
unknown (?)			ļ	<u> </u>	-	-	<u> </u>											
not sequenced	-		<u> </u>	<u> </u>	<u> </u>						14							
sum of seq ²	183	183	183	182	18	169	16	9	169	169	169	169	169	166	167	167	167	
oomcaa,	134	104	71	102	139	127	16	7	169	169	169	169	43	154	166	166	114	
mcaa'	Υ	G	N	S	Р	-	-		-	-	[-	Υ	Ţ	F	G	Q	
rel. oomcaas	73%	57%	39%	26%	76%	75%	9000	0,55	100%	100%	100%	100%	25%	93%	99%	99%	68%	
pos occupied ^a	8	11	13	8	11	12	-	<u>-</u>	1	1	1	1	······································	5	2		6	:

WO 97/08320

Table 4C: Analysis of V kappa subgroup 3

5		Fr	amev	vork	IV					
amino acid'	101	102	103	104	105	106	∢	107	108	sum
А										1345
В										2
С							,			375
D					23					564
Ε			3		141					759
F						6				765
G	166								1	1804
Н					1					64
ı						143				803
K			152					157	·	489
L				54		1			2	1596
М						3				36
N		1						3		255
Р		1		1						1147
Q			1		1					1314
R			9			2		4	134	1326
S		2								2629
Ţ		162	1					1		1593
V				111		11				646
W										287
X										
Y			1							1014
-	1	1	1	1	1	1	166	1	1	2151
unknown (?)								.,		4
not sequenced	16	16	15	16	16	16	17	17	45	337
sum of seq'	167	167	168	167	167	167	166	166	138	
oomcaa'	166	162	152	111	141	143	166	157	134	
mcaa*	G	T	Κ	٧	E	1	-	Κ	R	
rel. oomcaa'	%66	97%	%06	%99	84%	%98	100%	95%	97%	
pos occupied ^r	2	5	7		5 1-3	7	1	5	4	

1/3

Table 4D: Analysis of V kappa subgroup 4

											Fra	mev	vork	1				
amino acid'	-	7	က	4	2	9	7	8	6	10	=	12	13	4	15	16	17	18
А											T	24			Ī	Ī	1	
В												-						
C												<u> </u>		<u> </u>		1	·	
D	2	5					<u> </u>		26		<u> </u>	 -	<u>†</u>	<u> </u>		 	<u> </u>	
E							<u> </u>			<u> </u>	*******************	Ì.				<u>.</u>	25	
F												<u></u>						
G												1				24		
Н		<u>.</u>													<u> </u>			
1		26													-			
K		<u>.</u>				1								-		<u> </u>		
L	<u> </u>			1							26				26			
M				24														
N	1	<u> </u>																
Р			<u></u>		<u></u>		<u></u>	26				1						
Q	<u> </u>	<u> </u>	1			25												
R	<u> </u>	<u> </u>	<u></u>	<u> </u>				<u> </u>										26
S	<u> </u>	ļ	<u></u>	<u></u>			26			25				26		1		
, Т		<u> </u>	<u></u>		26													
V	<u> </u>	<u></u>	25	1									26			••••••		
W	 					*********												
X	<u> </u>																	
Y									_									
_																		
unknown (?)															I			
not sequenced	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7
sum of seq ²	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26
oomcaa,	25	26	25	24	26	25	26	26	26	25	26	24	26	26	26	24	25	26
mcaa⁴	D	:	٧		Ţ	:	:	Р	D	S	:	Α	ż	S	L	G	Ε	R
rel. oomcaa ^s	%96	100%	96%	92%	100%	%96	100%	100%	100%	%96	100%	92%	%001	%001	%00 l	92%	%96	%00 1
pos occupied⁵	2	1	2	3	1	2	1	1	1	2	1	3	1	1	1	3	2	1

WO 97/08320

Table 4D: Analysis of V kappa subgroup 4

														CDRI				
amino acid'	19	20	21	22	23	24	25	56	27	4	8	U	۵	w	<u>u</u>	28	29	39
Α	26						1				1							
В																		
С					33	İ												
D											1		1			1		
E																		
F ·																		
G																		
Н	<u></u>																	
1			26								1							
K						33										2		3
L ·											2	_31						
М																		
N				26												30	31	
Р	<u></u>						1								1			
Q									32									
R .		<u> </u>							1								1	
S .		<u></u>					31	33		33				32	32		1	
T		26												1				
V		<u></u>									28	2						
W																		
X			<u></u>															
Y		<u> </u>											32					
-		<u></u>	<u> </u>											<u></u>				
unknown (?)		<u> </u>																
not sequenced	7	7	7	7											<u> </u>			_
sum of seq ²	26	26	26	26	33	33	33	33	33	33	33	33	33	33	33	33	33	3
oomcaa,	26	26	26	26	33	33	31	33	32	33	28	31	32	32	32	30	31	3
mcaa'	Α	T	1	N	С	Κ	S	S	Q	5	٧	L	Υ	S	S	N	N	1
rel. oomcaas	100%	100%	100%	100%	100%	100%	94%	100%	97%	100%	85%	94%	97%	97%	97%	91%	94%	
pos occupied ⁶	1	1	1	1	1	1	<u> </u>		:	:		:		1	:	:	:	

Table 4D: Analysis of V kappa subgroup 4

											Fran	new	ork	11				
amino acid'	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48
A				32						2								
В																		
· C																		
D																		
E											1							
F																		
G		<u></u>									32							
Н	<u></u>		<u>.</u>		<u></u>	2	<u>.</u>	<u> </u>										
	ļ	<u> </u>		<u> </u>											<u></u>			32
K		<u> </u>		<u></u>			<u>.</u>	<u></u>	33						32	<u></u>		
	!		33					<u></u>					<u></u>	<u></u>		29	33	
· M		<u> </u>	<u> </u>	<u> </u>														1
N	33		<u> </u>															
P			<u></u>							31			31	33				
Q	<u> </u>						32	33				3 2						
R	ļ	<u> </u>	<u> </u>				1			*******		1			1			
S	ļ	ļ								••••••			2					
T	ļ			1	**********													
V	.	<u></u>	<u> </u>													4		····
W	ļ				33					•••••								
X					••••													
Y		3 3				31												
·																		
unknown (?)																		••••
not sequenced																		
sum of seq?	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33
oomcaa,	33	33	33	32	33	31	32	33	33	31	32	32	31	33	32	29	33	32
mcaa*	N	Υ	L,	Α	W	Υ	Q	Q	Κ	Р	G	Q	Р	Р	Κ	L	L	1
rel. oomcaa ^s	100%	100%	100%	97%	100%	94%	97%	100%	100%	94%	97%	97%	94%	100%	97%	88%	100%	97%
pos occupied ⁶	1	1	1	2	1	2	2	1	1	2				1	2	:	1	2

Table 4D: Analysis of V kappa subgroup 4

_				C	DR I													
amino acid'	49	20	5	25	23	54	52	26	27	28	23	9	5	62	63	64	65	99
Α			30															
В																		
С																		
D .												33						
E							32											
F ·													<u> </u>	33				
G									33						1	33		3
Н																		
l					1													
K																		
L																		
M																		
N					2													
Р				1							33		1					
Q																		
R						33							32					
S			1	31	1			33							32		33	
Ţ	<u> </u>		2	1	29													
V							1			33								ļ
W		33															<u> </u>	
X		ļ								<u> </u>							<u></u>	
Υ	33									<u> </u>					_		<u> </u>	_
-	ļ	ļ	ļ	<u></u>	<u></u>		<u></u>	<u> </u>	<u></u>	ļ					ļ			<u> </u>
unknown (?)	ļ	<u></u>	ļ				<u> </u>	ļ		ļ							ļ	<u> </u>
not sequenced	<u></u>						<u> </u>			<u> </u>						<u> </u>	<u> </u>	-
sum of seq?			•	*********	·	•••••				33	:	:	:	:	;	:	:	
oomcaa,	33	33	30	31	29	33	32	33	:	33				1	1	•	:	:
mcaa'	Υ	W	Α	S	T	R	E	S	G	٧	Р	D	R	F	S	<u> </u>	S	
rel. oomcaas	100%	100%	910%	94%	9/088	100%	97%	100%	100%	100%	100%	100%	97%	100%	97%	100%	100%	
pos occupied ⁶	1	1	3	3	7	1	2	1	1	1	1	1	2	1	2	1	1	

117

WO 97/08320

Table 4D: Analysis of V kappa subgroup 4

	_				Fr	ame	wor	k 111										• 🔻
amino acid'	129	89	69	20	7.1	72	73	74	7.5	9/	77	78	79	80	81	82	83	84
Α						Ī	Ī		Ī		Ī		Ī	33	3			32
В												-	-					
· c									-					<u> </u>			<u> </u>	
D				32					Ī	<u> </u>		<u> </u>		<u> </u>	<u> </u>	33		<u> </u>
Ε									<u>†</u>				<u> </u>		33		-	
F.					32		-			<u> </u>								
G		33		1			-		Ī			-		<u> </u>				1
Н																<u> </u>		<u> </u>
11									33									
K																		
L			<u>.</u>				33					32						
. М	ļ	<u> </u>										1						
N		<u></u>								2	1							
Р	!													Ī				
Ω	<u> </u>	<u>.</u>		<u>.</u>									32					
R	<u></u>			<u> </u>									1					
S	33	ļ		<u></u>						30	32							
T			33			33		33		1								
V					1			<u></u>									33	
. W																		
X					••••													
Y																		
-																		
unknown (?)																		
not sequenced																		
sum of seq'	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33
oomcaa,	33	33	33	32	32	33	33	33	33	30	32	32	32	33	33	33	33	32
mcaa'	S	G	Ţ	D	F	Ţ	L	Ţ	1	S	5	L	Q	Α	Ε	D	٧	Α
rel. oomcaa ^s	100%	100%	100%	97%	97%	100%	100%	100%	100%	91%	97%	97%	97%	100%	100%	100%	100%	97%
pos occupied ^e	1	1	1	2		1	1 	**********		:	-		2		1	1	1	2

Table 4D: Analysis of V kappa subgroup 4

												CI	OR II	<u> </u>					
amino acid'	82	98	87	88	68	9	3 3	5	95	93	94	95	⋖	<u>&</u>	ں ب	٥	w.	<u>ц</u>	96
Α											1								
В					<u> </u>														••••
С				33															
D				<u></u>	<u>.</u>				1	1									
E				<u> </u>	<u> </u>														
F			1	<u> </u>	<u>.</u>		<u></u>		1										
G			<u></u>		<u>.</u>					2	_								
. Н	<u> </u>	<u></u>	1	<u>.</u>		3													
	.	<u> </u>	<u> </u>	<u>.</u>	<u>.</u>						2								
K		<u></u>	ļ	ļ	<u>.</u>														
L			<u>.</u>				1		2		1	3							
. M			<u> </u>	<u>.</u>															
N		<u> </u>	<u>.</u>		<u>.</u>					4	4	ļ							<u> </u>
Р	Į	<u> </u>	ļ								1	29	1					<u>.</u>	
Q	<u></u>	<u>.</u>	<u> </u>	_	3	0	32			<u> </u>	<u> </u>	1					<u> </u>	-	<u> </u>
R		<u> </u>	<u> </u>	ļ			‡			1	<u>-</u>	ļ	1			<u> </u>	<u> </u>	ļ	<u> </u>
5	. .	ļ						2		23	÷						-	<u> </u>	-
Ţ.		<u> </u>		<u>.</u>						2	22	2	<u> </u>				-	<u> </u>	<u> </u>
<u>V</u>	33	3		<u> </u>						<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>	<u> </u>	-	<u> </u>	-
W		ļ	_							<u> </u>	<u>.</u>				<u> </u>		<u> </u>	ļ	<u> </u>
X			_	_									<u> </u>		<u> </u>	ļ	<u>.</u>	 	-
Υ		3:	3 3	1	<u> </u>	_		31	29)	<u> </u>	<u> </u>	<u> </u>		_	<u> </u>		<u> </u>	_
	<u>.</u>		-							<u></u>	ļ		13	15	15	15	1:	5 15) <u> </u>
unknown (?)	_{	-	-	-							ļ			10	,,		10	3 18	,
not sequenced		-		_	-	+								÷	-				
sum of seq'	3	3 3	3 3	3 3	13	33	33	33	3.	3.	3 3.	3 33	15	15	13) 13	D: 13	0: 13	? -
oomcaa,			•••••		****	•••••		:	:	:	:	2 29	1 13	15) []	1	D 1	D 1	2
mcaa'		<u> </u>	·- - †····		7	Q [Ţ						-	<u>-</u>	<u> </u>
rel. oomcaas	2000	0,00	200	94%	100%	91%	97%	94%	980%	700%	2,0,0	880%	87%	100%	100%	200	100%	100%	
pos occupied	-	1			1	2		:	:	:	:	7	3 3	3	1	1	1	1	1

Table 4D: Analysis of V kappa subgroup 4

•••	aiysis oi v kappa s	uog.		<u> </u>	<u></u>		Fra	ame	work	: IV					
	amino acid'	97	86	66	100	101	102	103	104	105	901	⋖	107	108	sum
	А														183
	В														
	С					********									68
	D														154
	E					••••				14					105
	F		15												82
	G			15	4	15									228
	Н														6
	<u> </u>										14				135
	K							14					13		158
	<u>L</u>								4						258
Ì	M	1													27
	N												1		136
	Р						1								195
	Q				11				1						264
	R							1		1			1	11	116
	S	2									1				499
	<u>T</u> .	12					14								236
	V								9						196
	W							-	1						69
	X														
	Y													_	254
-												15			106
Ì	unknown (?)														
Į		18		:	===									بــــــ	518
	sum of seq ²		15	•••••••••••••••••••••••••••••••••••••••	••••••		15	15	15	15	15	15	15	11	
	oomcaa,	12	15	••••••		15	14	14	9	14	14	15	13	11	
	mcaa'	Ţ	F	G	Q	G	Ţ	K	٧	E	1	-	K	R	
	rel. oomcaaʻ	%08	100%	100%	73%	100%	93%	93%	%09	93%	93%	100%	87%	100%	
	pos occupied ^a	3	1	1	2	••••••	2	2	4	2	2	1	3	1	

/20

WO 97/08320

Table 5A: Analysis of V lambda subgroup 1

	_										Fran	new	ork l						
amino acid'	_	7	က	4	2	9	7	8	ნ	2	=	12	13	4	5	91	17	8	19
Α											19		18	20					
В																			
· C										<u></u>									
D																			
E											<u></u>							1	
F .																			
G													22	 		42			
Н	2						<u></u>												
			1								1			<u></u>					
K																		14	
L			1	41							1								
M																			
N													<u></u>						
Р	ļ						41	41					ļ	1	41				
Q	22		1			41							<u> </u>				42		
R	ļ									ļ		<u></u>	<u> </u>					25	
5	ļ	39							41	ļ		41	<u> </u>		1			1	
T	<u> </u>				41					<u> </u>	<u> </u>		<u> </u>	19				1	
V	ļ	1	38								20		1	1					4
W				,					<u></u>		ļ		<u>.</u>						<u></u>
X									<u></u>		<u></u>	ļ	<u> </u>		<u></u>	ļ		<u></u>	
Y									<u> </u>		ļ		<u>.</u>			<u></u>	<u></u>	<u></u>	<u></u> .
<u>Z</u>	16	<u>!</u>	<u> </u>	<u> </u>						 	_	<u> </u>	┼—	<u> </u>		<u> </u>	_	<u> </u>	_
	<u> </u>	<u> </u>	<u> </u>	<u> </u>				<u> </u>	<u> </u>	41		<u> </u>	 	ļ	<u> </u>	<u></u>	<u> </u>		<u> </u>
unknown (?)		ļ	<u> </u>	<u> </u>					<u>. </u>	 	ļ		ļ		<u> </u>	<u></u>	<u> </u>	<u> </u>	-
not sequence						<u> </u>				1	-			:		-	42	42	
sum of seq ²													41						
oomcaa,		·	·!	41	:		·····	:					22	•		:	:	:	١
mcaa'	Q	S	٧	L	Ţ	Q	Р	Р	S		٧		G			G	·:····		1
rel. oomcaa ^s	55%	980%	93%	100%	100%	100%	100%	100%	100%	100%	490%	000	54%	49%	980%	100%	100%	%09	
pos occupied		:	4		1	Ī		1		1	·:		1 3	3 4	2	2 1	1	!	5

WO 97/08320
Table 5A: Analysis of V lambda subgroup 1

												CD	RI							_
amino acid'	20	21	22	23	24	25	26	27	c	ٔ د	w w	28	29	8	31	⋖	32	33	34	35
A	2							1					2	2			1			
В									Ļ											
C				42					<u> </u>											
D									ļ		3			3	1		3		1	
E									<u>.</u>					1						
F					1			ļ	_	1		<u></u>				1	1			
G						42	3	1	<u> </u>			2	39	4			, 			
Н				<u> </u>	<u> </u>			<u> </u>	-						2		2		2	
	1	41		<u> </u>				<u> </u>	<u> </u>		1	37							1	
<u>K</u>				<u> </u>	<u> </u>		ļ	<u> </u>	ļ		1			1						
L		1		ļ	<u> </u>	ļ		<u> </u>	ļ.,			1								
M				ļ	ļ			-	-			1								
N	ļ			ļ	ļ				2	1	37			13	31	2		1	9	
Р	.		<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	_							1			
0	ļ	ļ		ļ	<u> </u>	<u> </u>	<u> </u>	<u> </u>	-								1			
R		<u> </u>		<u> </u>	ļ	<u> </u>		:	<u> </u>	_				5	<u> </u>					
S	1	<u> </u>	42	<u> </u>	38	<u> </u>		34		·····				13	 -			<u> </u>	19	
T	38	<u> </u>	<u></u>	<u> </u>	3	_	4		3	. 2			1		1	<u> </u>	7		2	
V	 	<u> </u>	<u> </u>	<u> </u>	-	<u> </u>	<u> </u>	-	-	_		1			<u> </u>		2	40		
W	<u> </u>	ļ		<u> </u>		<u> </u>	<u> · </u>	╄-	-				ļ		<u> </u>		<u> </u>		ļ	42
X	<u> </u>	ļ	ļ	-	-	<u> </u>	-						<u> </u>	ļ						<u> </u>
Y	<u> </u>	<u> </u>	<u> </u>	-	-	<u> </u>	<u> </u>	-	-					<u> </u>	4	1	20	1	7	<u> </u>
Z	┡	<u> </u>	<u> </u>	╄	-	<u> </u>		<u> </u>	÷				<u> </u>				_	 -		
-	ļ	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	-	-			<u> </u>	<u> </u>	<u> </u>	<u> </u>	36	-	 	<u> </u>	ऻ
unknown (?)	-	<u> </u>	<u> </u>	<u> </u>	 	<u> </u>	-		4			<u> </u>	<u> </u>	<u>!</u>	 	<u> </u>	<u> </u>	1		<u> </u>
not sequenced		<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	 	<u> </u>			<u> </u>	<u> </u>	<u> </u>		1		1		: -
sum of seq'																				
oomcaa3	38	41	-								•	÷	•	:	:	:	:	40		
mcaa ⁴	I	1	- <u>-</u>	C	S	G	S		-	<u>S</u>	N	1	G	N	N	-	Y	V	S	-[
rel. oomcaas	%06	%86	100%	8001	%Ob	100%	010%	2 6	0/-10	% 06	88%	88%	93%	31%	74%	988%	49%	98%	46%	100%
pos occupied	:		:	;	1				•		ŧ		ŧ		3 7	:	10		7	1

WO 97/08320

Table 5A: Analysis of V lambda subgroup 1

_									wor													
amino acid'	36	37	3	9 (33	40	4	,	7 9	<u>ئ</u>	4	45	7	? !	4	\$ 6	<u> </u>	2 	5	22	23	54
Α									4	40			<u>.</u>		<u></u>					1		
В													<u>.</u>									
C													ļ				_					
D							<u> </u>	1									_	······································	10	8		
E													2					5			1	
F	1				4		<u> </u>										1					
G		<u> </u>					3	9										1				<u></u>
Н	1	ļ	1	6	1		ļ		<u></u>			ļ					1				1	
1		<u> </u>					<u>.</u>					<u> </u>				40		1				
K		ļ					ļ		1			3	5					1	1		18	· · · · · · ·
L		ļ		1	31	ļ	<u>.</u>					<u> </u>		41	40							
M	ļ	ļ					<u>.</u>		1							1	_					· <u></u>
N	<u> </u>	ļ					ļ						1					3	28	30	2	
Р		ļ				42	2	1			42	<u></u>								<u> </u>	1.	<u> </u>
Q		<u> </u>	39	34			. 		<u> </u>			<u> </u>									15	2 4
R	<u> </u>	_	2		1	<u> </u>	<u>.</u>	1				-	4					7				·· ·
5	ļ	<u>.</u>				<u> </u>				1		<u>.</u>			<u></u>		<u>i</u>	9	 -	3	<u> </u>	
T		<u>.</u>	_			<u> </u>			36	1		-						1		<u> </u>	 	
<u>V</u>				1	5		<u>.</u>				<u></u>	-		1	2	1				 -	ļ	-
W					ļ <u>.</u>						ļ	-										
X					ļ						ļ	-								ļ	<u>.</u>	
Υ	40	0			ļ						ļ						40	1		<u> </u>		
Z		<u> </u>	_		<u> </u>	-	\dotplus	-			<u> </u>	-	_					_	⊨	╁	+-	┿
<u></u>		<u>.</u>			<u> </u>							-	. <u></u>		<u> </u>			<u> </u>	-			
unknown (?)		<u>.</u>			-	-			••••		<u> </u>				<u> </u>	<u> </u>		 	-			
not sequence	d_	<u> </u>	_		<u> </u>						<u> </u>	-	43	42	42	42	12	43	Δ.	2 4	2 4	2.
sum of seq	4	2	42	42	4	2 4	2	42	42	42	4	<u> </u>	42	42	42	42	42	11	2 2	מיז	_ Ո 1	R.
oomcaa,	4	0	39	34	3	1 4	2	39	36	4(J 4	Z	35 V	41	40	40	٧	U '	N) . N	<u> </u>	(
mcaa ⁴	1															1			:	•	- 1	
rel. oomcaa	5 6	95%	93%	81%	7407	0/4/	100%	93%	960%	0,020		200	83%	%86	95%	95%	95%	310%			06-	4 3%
pos occupie	4r	3	3		4	5	1	4	4		3	1	4	2	2 2	3	3	3 1	0	5	4	9

123

Table 5A: Analysis of V lambda subgroup 1

	CDI	R II																	
amino acid'	55	99	⋖	8	ပ	۵	w	27	-58	23	09	61	62	83	64	65	99	⋖	ω
Α	1														5				
В									<u> </u>										
. С																			
D											38								
E																<u></u>			
F													38			<u></u>	<u></u>		
G							Ī	41			2				36				
Н											1	į							
									17				3						
K							Ī										38		
		1								1									
M																			
N		••••••											•••••						
P	38									38									
Q																			
R												42					4		
5	2	40								2				42		42			:
T															1				
٧									24				1						
W							·												
Χ																			
Y																			
Z										Ÿ									
-			41	41	41	41	42											42	4
unknown (?)																			
not sequenced	1	1						1	1	1	1								
sum of seq²	41	41	41	41	41	41	42	41	41	41	41	42	42	42	42	42	42	42	4
oomcaa3	38	40	41	41	41	41	42	41	24	38	38	42	38	42	36	42	38	42	4
mcaa*	Р	5	_	_	-	-	-	G	٧	Р	D	R	F	S	G	S	Κ	-	
rel. oomcaas	93%	%86	100%	100%	100%	100%	100%	100%	59%	93%	93%	100%	%06	100%	%98	100%	%06	100%	
pos occupied ⁶	i	:	:	:	:	:	:				i	: :			:	1		1	

124

WO 97/08320

Table 5A: Analysis of V lambda subgroup 1

•				Fra	mev	vork													
amino acid'	29	89	69	70	7.1	72	73	74	75	9/	77	78	79	80	81	82	83	84	82
А		1	3		41			24						2				38	1
В																			
· C																			
D		1													1	41			37
E													1		24		42		1
F .																			
G		40				Ì		17		1	42				15				
Н												<u> </u>	1						2
· 1									41										1
K					·														
L							42					41							
М																			
N																1			
Р													<u></u>	2					
Q													31						
R													8						
S	42		1	42		24				20				20				1	
Т			38			18				21				17				3	
V					1			1	1			1		1					
W										<u></u>			1		2				
X						<u> </u>													
Y				<u></u>		<u> </u>				<u></u>							ļ		ļļ
Z						·	<u> </u>			<u> </u>	<u></u>								
-											<u> </u>					·	<u> </u>	<u> </u>	<u> </u>
unknown (?)											<u> </u>							<u> </u>	
not sequenced						<u> </u>						<u> </u>							
sum of seq ²	******	*********	*********	42		*******	• • • • • • • • • • • •	÷	·. · · · · · · · · · · · · · · · · · ·	**********					:	;	:	·	
oomcaa,	42	40	•{••••••	42	41	24	42	24	41	21	42	41	31	20	24	41	42	38	37
mcaa*	S	G	Ţ	S	Α	S	L	Α	1	Ţ	G	L	Q	5	Ε	D	Ε	Α	D
rel. oomcaa ^s	100%	95%	%06	100%	98%	57%	100%	57%	98%	50%	100%	98%	74%	48%	57%	%86	100%	%06	%88
. pos occupied		:		·		7	:	3	:	:	1	1	:		<u>:</u>		:	7	5

WO 97/08320

Table 5A: Analysis of V lambda subgroup 1

•									-	CDF	R III								
amino acid'	98	87	88	83	90	91	92	93	94	95	⋖	B	ں -	٥	ய	<u></u>	96	-97	86
Α				22	15			1				16					4	1	
В																			
С			42																
D							39	17			7								
E												1					1		
F		2								1									36
G				14				1				-17	1				5	1	
Н		-1											1						
<u> </u>											1							1	
K											1								
L				1						37			1					1	
M																		1	
N							2	2			9	1							
Р										1				<u> </u>			6		
Q				3															
R				<u> </u>					5	1	2			<u> </u>			2		_
S				<u> </u>	4			17	35		18		1				1		
T				ļ	22			1	1		1								<u> </u>
V				1				1	ļ	1		2						34	ļ
W				<u> </u>		38		<u> </u>	ļ								7		
Χ	ļ			<u> </u>					<u> </u>		ļ								
Υ	42	39	<u> </u>	<u> </u>		3		1	<u> </u>		ļ						3		<u> </u>
Z	<u> </u>	<u> </u>		<u> </u>					<u> </u>										<u> </u>
	 	<u> </u>	<u> </u>	<u> </u>				<u> </u>	<u> </u>	<u> </u>	2	4	35	39	38	38	1		<u> </u>
unknown (?)		<u> </u>	<u> </u>		<u> </u>			<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>							<u> </u>
not sequenced	_	<u> </u>	<u> </u>	1							-			_				-	÷
sum of seq ²		·	·		********		,		.,		:	:	:		:		:	:	:
oomcaa,	42	39	42	22	22	38	39	17	7				35	39	38	38		34	·
mcaa'	Υ	Υ	С	Α	T	W	D	D	S	L	S	G	-	-	-	-	٧	٧	
rel. oomcaas	100%	93%	100%	54%	54%	93%	95%	41%	85%	%06	44%	41%	%06	100%	100%	100%	23%	87%	100%
pos occupied	1		· · · · ·	Ţ	•	2			3		8		•	1	1	1	10	6	

Table 5A: Analysis of V lambda subgroup 1

-			F	ram	ewo	rk IV						
amino acid'	66	100	101	102	103	104	105	106	⋖	107	108	sum
А												285
В			<u>†</u>									
C												84
D	<u>†</u>											224
E		1				•						81
F												87
· G	36	31	36							26		559
Н		******										25
1		*******										188
К					30							141
L						25			34			344
М												5
N					1							176
Р											1	296
Q					3	<u> </u>	<u></u> .		1		18	251
R					1	<u> </u>	<u> </u>			2		156
S		1		<u> </u>	<u></u>	<u> </u>	<u> </u>			2		720
T		3		36	1	<u> </u>	36					359
V		<u>.</u>		<u> </u>	<u> </u>	11		36	1			282
W				<u>.</u>			ļ			1		92
X		<u></u>		ļ			ļ	ļ			<u> </u>	
Υ		<u> </u>		<u>.</u>		.ļ	ļ	<u></u>			ļ	202
Z	L	<u> </u>	<u> </u>	<u> </u>	L	<u> </u>	<u> </u>					16
-		<u> </u>		<u> </u>		ļ	<u>.</u>	ļ	<u></u>	<u> </u>	<u> </u>	524
unknown (?)	ļ	<u> </u>	<u>.</u>	<u>.</u>		<u> </u>	ļ		ļ	<u></u>	<u> </u>	▋
not sequenced				_		 -		6	: -	;	22	4
sum of seq'	********		;			- :		36	•	:	:	"
oomcaa3	36	3	1 3	6 3	6 30) 25	•	36	:	:	:	3
mcaa'	G	G	G	T	K	L	T	V	L	G	Q	
rel. oomcaa ^s	100%	2000	100%	8001	9200	9009	100%	100%	94%	84%	95%	
pos occupied		•••••••		1	1		2	1 1	3	3 4	1 :	2

127

WO 97/08320

Table 5B: Analysis of V lambda subgroup 2

											Fran	new	ork l						
amino acid'	-	7	3	4	2	9	7	8	9	10	=	12	13	14	15	16	17	18	19
A			35					30			6		1	1					
В																			<u> </u>
· c																			<u> </u>
D																1			
E																			
F .					********														
G					*******								42			42			
Н	2																1		
			1				·												28
К																			
L				40	*******										3				1
M					••••••	•													
N					•••••														
P					*******		42	6							40				
Q	22		4			41											42		
R								6	1										
S		41							40			42		42				43	
Т					42				1				********						
V		1	2								36								14
W																			
Х																			
Y																			
Z	16																		
_										42									
unknown (?)						1													
not sequenced	3	1	1	3	1	1	1	1	1	1	1	1							
sum of seq'	40	42	42	40	42	42	42	42	42	42	42	42	43	43	43	43	43	43	43
oomcaa ³	22	41	35	40	42	41	42	30	40	42	36	42	42	42	40	42	42	43	28
mcaa*		S		L			••••••	••••••			٧	•••••••				G			l
rel. oomcaas	55%	986	83%	100%	100%	%86	100%	71%	95%	100%	96%	100%	98%	%86	93%	%86	98%	100%	65%
pos occupied ⁶			:	:	1		;			1		1	i	•			2	1	3

120

Table 5B: Analysis of V lambda subgroup 2

												_	CDI								
amino acid¹	20	71	, נ	77	73	24	25	56	27	۵	ш		87	53	္က	<u>~</u>	⋖	32	33	34	35
Α						3		1							1			1			
В		<u> </u>										<u>.</u>									
. С		<u> </u>			42					1						1					
D	<u> </u>	<u> </u>									39	9		1	4		5				
E	<u> </u>	ļ									ļ						1				
F	<u> </u>	<u>.</u>	1								ļ			-	1			4			
G	ļ	ļ					`43		1	•••••	ļ			39	26						•••••
Н	ļ	<u>.</u>							1		· ·	_					1	1		····	
	<u> </u>	4	11			1					<u> </u>		6			<u></u>					
· K		<u> </u>	_								ļ	<u>.</u>					4			. 	
L		_	1							<u> </u>	<u> </u>	<u>‡</u>						4			
M		ļ								ļ	<u> </u>										
N									1	3		4		1	4	3	28				
Р									1		ļ								ļ		
Q										<u></u>	ļ								ļ		
R		ļ								<u> </u>	ļ				2				<u> </u>		
<u>S</u>				42		3			35	Ť	3				5			4	1	42	
<u> </u>	43	3				36		39	3	<u> </u>	<u> </u>			1		1				<u> </u>	<u> </u>
V		_ _				<u> </u>			<u>.</u>	<u> </u>			37					<u> </u>	41	<u> </u>	
W						<u> </u>	<u> </u>		<u> </u>	ļ							<u></u>	<u> </u>	<u> </u>	<u> </u>	4
X		_	_			ļ <u>.</u>	ļ		<u> </u>	<u> </u>							<u> </u>		<u> </u>	<u></u>	_
Y						ļ	<u> </u>		1					1		37	<u> </u>	29			-
Z		╧	_		=	<u> </u>	<u>!</u>			<u> </u>	<u> </u>	4					<u> </u>	<u>!</u>	<u> </u>	!	<u>!</u>
							ļ	ļ	<u> </u>	ļ							÷	<u> </u>	<u> </u>	<u> </u>	-
unknown (?		_				ļ	<u> </u>	<u></u>	<u> </u>	-					<u></u>		1	<u> </u>	╀.	<u> </u>	-
not sequence		╛	_	_1			<u> </u>		<u> </u>	<u> </u>	<u> </u>			<u> </u>			1				_
sum of seq														43							
oomcaa,	4	3	41	42			•					•		39		:	1	:	:	•	1
mcaa'	1		1		С	Ţ	G	· ·····	S			D		G	G	Υ	N				
rel. oomcaa	5 000	9 20 20 20 20 20 20 20 20 20 20 20 20 20	95%	100%	100%	84%	100%	910%	g 10%	2 2	02.00	91%	96%	910%	%09	%98	65%	67%	980%	100%	
pos occupie	46				:	:		:	:	:		- 1	•	:			•	•	÷	2	۱ .

Table 5B: Analysis of V lambda subgroup 2

						Fran	iewo	rk II											
amino acid'	36	37	38	33	40	41	42	43	44	45	46	47	48	49	20	51	52	23	54
А					1	4		40											
В				·															
С																			
D				1		2									20	1	2	1	
E								·							20			2	
F .	2													7		1			
G						36									2	2		1	
Н			2	34														1	
							1				1	9	43				1		
K							40			41							1	21	
L			1	1							38	6							
М												26	-				1		
N				2											1		8	12	
Р	·				41				43										
Q		41	39							2									
R		1			·		1										2		43
S					1									2			21	3	
Т							1										7		
V						1		3			4	2				39			
W																			
Х																			
Y	41			5										34				2	
Z							·												
-																			
unknown (?)		1	1	-															
not sequenced																			
sum of seq ⁷	43	43	43	43	43	43	43	43	43	43	43	43	43	43	43	43	43	43	43
oomcaa¹	41	41	39	34	41	36	40	40	43	41	38	26	43	34	20	39	21	21	43
mcaa*	Υ	Q	Q	Н	Р	G	Κ	Α	Р	K	L	М	ı	Υ	D	٧	S	K	R
rel. oomcaas	95%	95%	910%	79%	95%	84%	93%	93%	100%	95%	88%	%09	100%	79%	47%	91%	49%	49%	100%
pos occupied ⁶			3			4	: :		1	2			1						1

Table 5B: Analysis of V lambda subgroup 2

66	96	X C					43	88	29	17	61	42		2 2 41	1	19	Ø.	
							43	1		17		42			1			
							43	1		17		42		41	1			
							43	1		17		42		41	1			
							43	1		17		42		41				
							43	1				42		41				
							43	1				42		41				
							43	1						41		•		
							į	:		:		:				·i		
					i		·········:			2			<u>ļ</u>					
				•				3					<u> </u>					
			•			<u> </u>										42		·•···•
										1		1						
	-	<u>ļ</u>											<u>-</u>					
········ · ··										19								
43									15									
																		
				<u></u>														
	43								28	2			43		42			
										<u></u>								
								39		<u> </u>	<u> </u>					<u> </u>		
										<u> </u>			<u> </u>			ļ	<u> </u>	
									ļ	2					ļ		<u></u>	
		_						_	<u> </u>	<u> </u>						_	42	_
		43	43	43	43	43		<u></u>		ļ							43	
										<u> </u>						 	<u> </u>	<u></u>
											42	42	42	42	42	1	43	
				43	43													
}		·	···········	-	-	······		************	•••••••			Ì	·····	······	<u> </u>		1 _	
100%	100%	100%	100%	100%	100%	100%	100%	910%	65%	440%	100%	98%	100%	95%	980%	980	100%	
	43 43 P %000	43 43 43 43 43 P S %000-	43 43 43 43 43 43 43 43 44 43 P S -	43	43	43	43	43	43	A3	43	43	43	43	43	43	43	A3

131

Table 5B: Analysis of V lambda subgroup 2

•																			
				Fra	amev	work	: 111											,	
amino acid'	67	89	69	70	71	72	73	74	75	9/	11	78	79	80	81	82	83	84	82
Α		3		1	43									36				43	
В	<u> </u>																		
С																			
D		1	2						Ī						3	42			39
E											1				38		43		
F.									····										
G		39				•••••					42				1				
Н											•								2
1									35										
К			1										•						
L						*******	43					43							
M																			
N			38												1	1			1
Р			-											2					**********
Q						********							41						********
R						********			•				2						
S	42			1		43				42									
T			1	41			•••••	43		1				2					
V							•		8			<u>-</u>		3					•••••
W							-					<u>-</u>	******						
Χ						************													*********
Y								•				1							********
Z																			
-														İ					
unknown (?)			1									<u>-</u>							1
not sequenced	1				Ī	•													
sum of seq ⁷	42	43	43	43	43	43	43	43	43	43	43	43	43	43	43	43	43	43	<u>––</u> 43
oomcaa,	42	39	38	41	43	43	43	43	35	42	42	43	41	36	38	42	43	43	39
mcaa*	S		7		Α	S	L			<u>-</u>		·····		Α		•••••••••••••••••••••••••••••••••••••••	Ε	•••••••••••••••••••••••••••••••••••••••	
rel. oomcaa ⁵	%00 l	91%	88%	92%	%00	%00	%00 I	100%	81%	9%8	98%	100%	95%	84%	988%	%86	%00 ₁	100%	91%
pos occupied ⁶	1		······································		1	1			2		:	·····÷	2	:	4	<u>გ</u>			<u>გ</u>

132

WO 97/08320

Table 5B: Analysis of V lambda subgroup 2

												CDR									
amino acid'	98	78	6	99	က်ဆ	06	91	92	93	3	46	95	⋖	മ	ပ	۵	ய	u.	96	97	86
Α					2	1		21			1								1	1	
В									<u> </u>												
· C		ļ		43	11				<u> </u>	<u>.</u>						_					
D		<u></u>								3	1	2		<u>i</u>					1		
E		<u> </u>	_					1	<u> </u>	1							·····				
F .		ļ	3				3		<u> </u>			1		1					5		4.
G		ļ						1	2	1	3	4							1		
Н	ļ	<u> </u>					1		<u> </u>												<u></u>
	ļ	<u></u>		ļ				1	ļ	1		1	2					ļ	1	7	<u></u>
K	ļ	<u> </u>							ļ			3							<u> </u>		
<u> </u>	ļ	<u> </u>						ļ	ļ					1	1			ļ	6		
M	ļ	ļ						ļ	ļ										1		-
N	ļ							<u></u>	ļ		5	7	5						1		
Р		<u>.</u>						ļ	<u>.</u>	1				4						<u></u>	<u> -</u>
Q	<u> </u>						<u></u>		<u> </u>			1	2	ļ					<u> </u>	<u> </u>	-
R							<u> </u>	2	2	_	3			1				<u> </u>	5	<u> </u>	-
S			1		30	41	ļ	<u> </u>		2	23	14	9	ļ <u>.</u>	ļ			ļ	1	<u> </u>	<u> </u>
T	<u> </u>						ļ	16	3	4	4	3	21	<u> </u>			ļ		ļ		-
V	<u>.</u>					ļ	<u> </u>		1	_			<u> </u>	<u> </u>			<u> </u>	-	- 	28	3
W		<u>.</u>				<u> </u>	ļ	ļ	<u>.</u>	_				ऻ	<u> </u>		<u> </u>	-		5	
Χ		_					<u> </u>	ļ					<u> </u>		<u> </u>		-	-		<u>.</u>	_
Υ	4	3	39			ļ	36)	_		1	6	<u> </u>	<u> </u>		ļ		-		1	
Z	_			-		<u> </u>	<u> </u>	<u> </u>	_	_			<u> </u>	<u>!</u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	 	-	<u> </u>
						<u> </u>	ļ		<u>.</u>				3	36	42	43	4	3 4	3	-	-
unknown (?)						<u></u>	ļ				2		<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>			-	
not sequence		_			<u> </u>		<u> </u>	<u> </u>	-	_		<u> </u>		<u> </u> -	╄				<u> </u>	⇌	1
sum of seq	4	3	43	43	43	4.	4	3 4	3	43	43	43	42	43	3 43	43	4	3 4	3 4	3 4	2
oomcaa3		******			····		:	:				1	:	1 36	42	43	3 4	3: 4			
mcaa'	١	_	Υ	С	S	S	Υ		١	G	S	S	Ţ	-		-	<u> </u>	-			<u>' </u>
rel. oomcaa	3	<u>ه</u>	91%	100%	70%	9000	010%	200	45%	49%	53%	33%	200%	840%	%86	100%	1000		2000	0607	0/0/0
pos occupied																	١	1	1 1	3	5

133

WO 97/08320

Table 5B: Analysis of V lambda subgroup 2

					Frar	new	ork l	IV					7
amino	acid'	66	100	101	102	103	104	105	106	٧	107	108	sum
А			1						Ī			T	280
В	*******************************			<u> </u>	<u> </u>			<u> </u>	-	<u> </u>	Ī	1	
С	************		-	<u> </u>	<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	 	99
D	****************		Ī		<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>	†		188
E				-	<u> </u>			1			1	<u> </u>	107
F												1	113
G		42	33	42				_			19	-	567
Н							<u></u>						48
1								1					184
K				<u> </u>		36	<u> </u>			Ī			189
L	*************						28		-	40			264
М	·····												29
N	***************************************					1							146
Р													238
0	<u></u>					1						14	250
R			1			2					4		121
S								1			2		831
T	·		7		41			40					398
V							14		42	1			327
W	*******												48
X													
Y					•••••••	1							285
Z													16
-													555
unknow	n (?)												8
not seque	enced	1	1	1	2	2	1	1	1	2	15	28	80
sum of	seq²	42	42	42	41	41	42	42	42	41	25	14	
oomca	a³	42	33	42	41	36	28	40	42	40	19	14	
mcaa	14	G	G	G	T	K	L	T	٧	L	G	0	
rel. oom	caa ^s	100%	79%	100%	100%	%88	67%	95%	100%	98%	76%	100%	
pos occu	pied [*]	1	4	1			2	·····	1	2	3	1	

134

WO 97/08320

Table 5C: Analysis of V lambda subgroup 3

											Fran	ewo	rk l						
amino acid'	- (7	က	4	2	9_	7	80	6	2	Ξ	12	Ξ Ξ	4	ل ت	9	1	<u>~</u>	13
Α	T				1		1	2	7					20	1			_	27
В																			
· c																			
D			5				10												
E			20										1			1			
F ·	1	1										1			1				
G			1					<u></u>					· .			37			
Н																			•••••
1			Ī					<u></u>											
К																	2		
L			Ī	37							4		1		9				
М															.,				
N																			
Р							26	35	1						27				
Q	4		4			38											36		
R																<u> </u>			
S	13	14			1		1		28		<u></u>	37		18		<u> </u>	<u> </u>		
T					36			1			<u> </u>					<u> </u>	<u> </u>	38	
V			8	1					2		34		36			<u> </u>	<u> </u>		1
W										<u> </u>	<u> </u>	<u></u>				<u> </u>	<u> </u>		
Х											<u> </u>					<u> </u>	<u> </u>	<u> </u>	
Y		23									<u> </u>					<u></u>	<u></u>	ļ	_
Z																<u> </u>	<u> </u>		
_	20		i							38					<u> </u>	<u> </u>	<u> </u>	<u> </u>	
unknown (?)															<u> </u>		<u> </u>	<u> </u>	
not sequenced				1								<u> </u>				<u>!</u>			_
sum of seq ²	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	3
													36						
mcaa ⁴	-	Υ	E	7	T		Р	•	S	-	٧	•	:	Α	:	:	Q		
rel. oomcaas	3%	1%	3%	17%	15%	%00	38%	%Zt	740%	100%	39%	9/0/6	95%	53%	71%	97%	95%	100%	
•	5	- 9	:	5 2	:	3 1		4 :					3	:				2 1	

Table 5C: Analysis of V lambda subgroup 3

			_																
					I							CDR							
amino acid'	20	2 5	22	23	24	25	26	27	, <i>c</i>	, ц	، د	20 20	<u> </u>		5 <	ς ς	3 %	3 3	ָר ב <u>י</u>
Α				1					5	T				1	1	T	2	1	3
В											<u> </u>		<u> </u>	<u> </u>					
- C				38	3	Ī					Ī		<u> </u>	-	1	<u> </u>		<u> </u>	5
D							30		1		_		10	0	<u> </u>		3	<u> </u>	1
E							2	1	2		<u> </u>		†	-	6		<u> </u>	<u> </u>	
F .															1		2	<u> </u>	
G		<u>.</u>			9	38		1				2	3 4	1	-			-	-
Н							1						-		-	1	2		i 9
1		38	3			1		<u> </u>				9	1	<u> </u>	1	1	<u> </u>	-	
K		<u>.i</u>						7		·			2	1;	3	<u> </u>	<u> </u>		
L	<u> </u>	<u> </u>									28	3	<u> </u>		İ	<u> </u>	<u> </u>	İ	<u></u>
M	1	<u> </u>	<u> </u>	<u> </u>	<u> </u>								1	1		··········			Ī
N		ļ	2	<u> </u>	<u> </u>		4	9				1	2			1	-	1	2
Р	ļ	<u>.</u>	1	ļ								3							
<u>Q</u>	ļ	ļ			10									4				-	
R	25	<u> </u>	ļ					2				10	1				1		
<u>S</u>	9	<u> </u>	1		19			10	<u> </u>				11	2		8		14	
T	3	<u> </u>	33					1				1	4				<u> </u>		<u> </u>
V	 	<u> </u>						•••••			<u> </u>		<u> </u>			1	15	-	
W	 	<u> </u>					•				<u> </u>							Ī	38
X							į												<u> </u>
Y							1							8		20	1	4	
Z																			
-									38	38					37				
unknown (?)																			
not sequenced	L					_									1				
sum of seq'	38	38	38	38	38	38	38	38	38	38	38	38	38	37	37	37	38	38	38
oomcaa,	25	38	33	38	19	38	30	10	38	38	28	23	11	13	37	20	21	14	38
mcaa'	R		T	С			•	S	-	-	L		S	:	-		Α	S	
rel. oomcaas	%99	100%	87%	100%	20%	100%	79%	26%	100%	100%	74%	61%	29%	35%	‰001	54%	55%	37%	%00 1
pos occupied [*]	4	1	:	1	3		5	9	1	1	•••••	5	:	9		···	;		

WO 97/08320

Table 5C: Analysis of V lambda subgroup 3

						Fr	ame	wor	k II											
amino acid'	36	77	5	Š	£	ර :	4 (47	£ :	44	45	46	47	****	4 C	<u>ا</u> ک	2	25	<u> </u>	54
Α									23		_				_	_	1		1	
В		<u> </u>						_			_						_			
С												_				_				
D																	22	2		
E				1							_					5	3		3	
F	3								_	_	_				2			1		
G							36									9	2			
Н								1		_					1	3			1	
1	<u></u>										1			28				1		
K	ļ				32			<u> </u>								2	6	1	13	
L		<u> </u>		2							6	33	1							
М				<u> </u>								1		_1						
N.																	1	19	9	
Р						36		1		38						_				
Q			37	35	1			36								9			1	<u></u>
R			1		4		2									1	1		 	3
S		l			1	2			14							_		10	 	<u> </u>
Ţ																	2	4	<u> </u>	<u> </u>
V									1		31	4	37	9				<u> </u>	<u> </u>	<u> </u>
W												<u> </u>							ऻ—	-
X												<u> </u>						-	<u> </u>	-
Y	3	5										<u> </u>			35			-	-	-
Z	_		_									<u> </u>				-		-	<u> </u>	┿
	_	_										<u> </u>	<u> </u>					-	╁	╁
unknown (?)		_				<u> </u>	<u> </u>				<u> </u>	<u> </u>	ऻ—					╁	 -	-
not sequence	d	_				<u> </u>						<u> </u>	<u> </u>					<u> </u>		
sum of seq	3	8	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	3: 3	3 1	,
oomcaa¹													37		35 V		:		9 1: V	3 .
mcaa*		Y	Q	Q	K	Р	G	Q	Α	:	;	<u> </u>	V	1	Υ	ע	D	<u> </u>	1	
rel. oomcaa	5	32%	926	95%	84%	95%	95%	95%	61%	100%	82%	87%	92%	74%	92%	24%	2000	800	340%	2
pos occupie					:	1 2	-	:	•	1		•	:	•	3	7		8	7	9

WO 97/08320

Table 5C: Analysis of V lambda subgroup 3

	_	DR	11					T					-								
amino acid	, <u>u</u>	3 5	م م	(0	۰ ر	ے ر	י כ	J (ò	28	59	SO.	3 5	- 6	70	3 3	64 65	3 5	8 <	<	<u>—</u>
Α			1						T			T	T	T	T	T		_	_	-	
В											*******	<u> </u>	<u> </u>		_	-	-		+	十	••••••
С				-				-				╁	<u> </u>	-						-	
D						<u> </u>	Ī		<u> </u>			İ	9	- 		1	<u> </u>	-	- 	+	
E										_			7	1	-		_		- 	†	
F										7	••••••	<u> </u>		3	8	-		-		-	
G								3	8			 		<u> </u>	1	3	8		<u> </u>		
Н								- i	_		•••••	ļ	+	-	_	-		-		-	
1									1 3	37				<u> </u>		<u> </u>	<u> </u>	-		+-	
K								<u> </u>			*******			1		+	-		-	╁	
L	1									T			<u> </u>	†	<u> </u>	-		·- -		-	
M								<u> </u>						<u> </u>	<u> </u>	1		†	†	-	
N								Ī						1	<u> </u>			21	 -	+	-
Р	37	,	1								36		<u> </u>	1	1	 				+	
Q	ļ	<u> </u>											-		-	 	 	-		1	
R													38			 	<u> </u>		<u> </u>	<u> </u>	
S	1	36	3								1			 	38		38	12	 -	<u> </u>	-
T			<u> </u>								1	*******		<u> </u>		<u> </u>	<u> </u>	5	-	 -	
V	.		<u>.</u>								Ī	*******		<u> </u>	<u> </u>	-	 		<u> </u>	 	-
W	 											•••••		<u> </u>		<u> </u>	<u> </u>			 	
X			<u> </u>								Ī									-	
Y																					
Z																				ļ	
-		••••••	38	38	38	38	38												38	38	=i 3
unknown (?)							•••••					1			*********						
not sequenced											1	1									
sum of seq ⁷	38	38	38	38	38	38	38	38	37	3	7	37	38	38	38	38	38	38	38	38	= }
oomcaa,	37	36	38	38	38	38	38	38	37	3	6	27	38	38	38	38	38	21	38	38	 }
mcaa*	Р	S	-	-	-	-	-	G		Р		Ε	R	F	S	G	1	N	-		4
rel. oomcaas	97%	95%	100%	100%	100%	100%	100%	100%	%00I	70%	2	73%	100%	%00J	%00I	%00I	%00 ₁	55%	%001	%001	*
pos occupied [®]	2	3	1	1	1	1	1	1	1			2	1	1	1		1	3	1	<u>=</u> 1	•

138

Table 5C: Analysis of V lambda subgroup 3

				Fra	mev	vork	111												
amino acid'	29	89	69	20	71	72	73	74	75	92	77	78	79	8	81	82	83	84	-82
А				1	36	1		1				11	1	34				38	
В																			
. С																			
D																38			37
E													10		14		38		1
F																			
G		37									28				10				
H ⁻			1																
						1		1	37	1					1				
K			1									<u>_</u>							
L							38								2	<u> </u>			
М															10				
N			28							1									
Р																			
Q		1											25						
R										1	10		1						
S	37		2			11				23				1					
T	1		6	37		25		36		12		13		2					
V					2				1			14	1	1	1				
W																		•	
X																Ì			
Υ															٠				
Z																			
-																			
unknown (?)				·															
not sequenced																			
sum of seq²	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38
oomcaa³	37	37	28	37	36	25	38	36	37	23	28	14	25	34	14	38	38	38	37
mcaa*	S	G	N	T	Α	T	L	Ţ	١	S	G	٧	Q	Α	Ε	D	Ε	Α	D
rel. oomcaas	97%	97%	74%	97%	95%	%99	%00 I	95%	97%	31%	7 4%	37%	9999	966	37%	100%	%001	100%	97%
pos occupied ^s	: :		: :		: :					5		:	5	:					2

WO 97/08320

Table 5C: Analysis of V lambda subgroup 3

	_				Т																_		
amina aaid	, -	.9	_							_			CDR								_		
amino acid	•	∞ 	ω .	8	.	ŏ		n (6	6	5		⋖	8	ပ	٥	ш	ч	٠ ،	2	97	Ĉ
Α	-	-			<u> </u>	1	3	3	2				1	2							4		
В	_ _				<u> </u>		<u> </u>				<u> </u>												
. C	_ _			38	<u> </u>	<u> </u>	ļ				<u> </u>									Ī	Ī		
D			_	••••••	ļ	ļ			32	1	<u> </u>	1		6									
E	_ .	_	_		1	<u> </u>	_			•••••	<u> </u>				2						2		*****
F .		_	2				<u>.</u>			2	<u>.</u>												3
G										******		3 1	4	3			1				3	1	*****
H						<u> </u>					<u></u>				12	1					<u> </u>		
1	_					<u> </u>														<u> </u>	<u> </u>	4	
K	_					<u> </u>	<u> </u>	<u></u>						1						<u> </u>	<u> </u>		
L L	-	_	_		1	<u> </u>	<u> </u>			1			1		1	1	Ī	·	•••••	4	ı	2	
M	_		_			<u> </u>	<u> </u>				1									1		1	
N	-				10		<u> </u>	ļ	2	1	2		1	0	1				••••	<u> </u>	<u> </u>	İ	
Р							ļ	ļ			1					3		- i		1	1	-	
<u> </u>			_		25								ı	1					******		<u> </u>		
R	-	_	_ _	_			10			1	2		:	:	2			-				-	-
S	<u>.</u>		_		1	14	1		1	28	26	13	}		1				1		<u> </u>	1	•
Ţ	ļ			_ļ			1		<u> </u>	3		7		2							. 	<u> </u>	
V	-	<u> </u>	_ _	ļ_		11			<u> </u>											18	28	}	
W	ļ	<u> </u>	_				23	·	<u>.</u>											1			
X	<u> </u>	<u> </u>					*******													••••		T	***
Υ	38	3	6					1	<u> </u>		1		1		3	1				3			
Z	<u> </u>	<u> </u>	_	_					<u> </u>														
-		ļ	_	<u>.</u>					<u> </u>				10	15	5 3	1 3	6 3	7 3	36		1		٦
unknown (?)	ļ	<u> </u>	<u> </u>	_				••••••													*******		-
not sequenced	_	<u> </u>	<u> </u>					1		1	1	1						1	1	1	1		3
sum of seq ⁷	38	38	3	8 :	38	38	38	37	3	7	37	37	36	37	37	37	3	7 3	7	37	37	3	5
oomcaa,	38	36	3	8 2	25	14	23	32	28	3 :	26	14	10	15	31	36	37	7 3	6	18	28	3	5
mcaa*	Υ	Y	С	(2	S	W	D	S		S	G		-	-	-	-	-		V	V		
rel. oomcaas	100%	95%	100%	2 2	22,40	37%	51%	%98	,6 ₀ %		8	38%	28%	41%	84%	92%	100%	970%		49%	0/09/	 %000	
pos occupied	1		:	:	5	3	5	4	7	-	8	6	:		:··	-	÷	·	2	9	6	=	1

Table 5C: Analysis of V lambda subgroup 3

			F	ran	ne v	wor	k IV						
amino acid'	66	90	101	102	103	3	104	105	106	∢	107	108	sum
Α					Ī								265
В					 								
C		-			T	Ī		Ī			1		82
D	1				1	Ī							225
E	Ť				T	2							145
F					Ī								90
G	35	31	35								24		461
Н					-								32
					-								160
K				<u> </u>	-	30							110
				<u> </u>	Ī		28			33			233
M				<u> </u>						-			17
N													12
P				1						1			24
Q												7	27
R						2	٠						15
S											2		50
Τ		4		3	5			35					34
V		<u> </u>					7		35				30
W												<u> </u>	6
Х								<u> </u>				<u> </u>	
Y												<u></u>	21
Z									<u> </u>	<u> </u>			
•								<u></u>	<u></u>	<u> </u>		ļ	60
unknown (?)						*****		<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	
not sequenced	3	:	3	3	3	4	3	3	3	4	11	28	8
sum of seq?	35	3	5 3	5 3	35	34	35	35	35	34	27	7 7	
oomcaa3	35	3	1 3	5 3	35	30	28	35	35	33	24	1 7	,
mcaa*	G	G	C	;	T	Κ	L	Ţ	٧	L	G	O	-
rel. oomcaa'	100%	%00a	7000	200	100%	88%	80%	100%	100%	97%	89%	100%	
pos occupied				1	1	:	· •		1	:	:		1

141

WO 97/08320

Table 6A: Analysis of V heavy chain subgroup 1A

		Framework I																		
amino acid'		2	3	4	2	9	7	8	6	10	Ξ	12	13	4	15	16	17	18	19	20
А					1	14	ŀ		60)		-			Ī	24	1		Ī	T
В										Ī	<u> </u>			<u> </u>		<u> </u>	T	İ	İ	<u> </u>
· c													<u> </u>			1	<u> </u>	1	<u> </u>	<u> </u>
D										Ī	İ	Ī			<u> </u>	1	 	1	<u> </u>	
Е	1				2	1		2	2	64	l.					1	1	Ī	-	<u> </u>
F									Ī	-	-					İ	 	<u> </u>	İ	<u> </u>
G								58	1	•	1				64	<u> </u>	<u> </u>	 		
Н			2					-	<u> </u>	<u> </u>	·	<u> </u>					<u> </u>	<u> </u>		ļ
l		2		ļ				<u> </u>			<u> </u>	<u> </u>		-			<u> </u>	 -		<u> </u>
K		2	<u> </u>					1	<u> </u>	<u> </u>	<u> </u>	57	64		<u> </u>	<u> </u>	<u> </u>	-	60	
L			2	59	 !		<u> </u>	<u> </u>	<u> </u>		3	÷					 	<u> </u>		<u></u>
М		1							<u> </u>			<u> </u>	-	-		<u> </u>	 -		ļ	
N		<u> </u>								<u> </u>	<u> </u>	6			 -	 	<u> </u>	<u> </u>	ļ	ļ
Р								<u> </u>			<u> </u>			63	1	 				·
Q	53		56	•	2	45			 				-		 	<u> </u>				
R					••••				†			1				 		 !	3	
S						********	60		3	<u> </u>		†— !	ļ	1		40	63			
T							•••••	<u> </u>	 			 							1	
٧	2	55		1	55				<u> </u>		61							64	•••••	64
W																				
Х																				
Y																				
Z	3																			
-			i																	
unknown (?)		Ì						********												
not sequenced	11	10	10	10	10	10	10	10	6	6	- 6	6	6	6	6	6	6	6	6	6
sum of seq ²																				
	53					:														********
mcaa•	Q	٧	Q	L	٧	Q	S	G	Α	Ε	٧		К	Р	G	S	5	٧	K	٧
rel. oomcaas	%06	92%	93%	%86	92%	75%	100%	97%	94%	100%	92%	39%	%001	%86	%00 l	63%	98%	%001	94%	%00 ₁
pos occupied ^a														2	1	2	2			1

WO 97/08320

Table 6A: Analysis of V heavy chain subgroup 1A

														CDI	RI					
amino acid'	21	22	23	24	25	56	27	28	53	9	3	⋖ '	ω ;	32	33	34	32	36	37	38
Α				62				1							41					
В				<u> </u>																
. С		63		<u> </u>									_		_					
D		.,		<u> </u>			1				<u> </u>		_	_						
E			<u> </u>	<u> </u>	<u> </u>								_							
F.									69					3		3				
G				1		69	41		1						23					
Н										1				1			1			
1			<u></u>	<u> </u>	<u> </u>			1						_		61	1		1	
K			63	<u>.</u>	<u>.</u>					1	1			_						
L				<u> </u>	<u> </u>	<u> </u>								_	1	2				
М					<u> </u>	<u> </u>										4				
N.										2	5						4			
Р								<u></u>							1					
Q								<u></u>												
R		1				<u> </u>		<u> </u>		.1	1						ļ			71
S	63				68		1	<u> </u>		40	60			2			60			<u> </u>
T	1			2	2	<u> </u>		68		25	3				3		4		<u> </u>	<u> </u>
V					<u> </u>	<u> </u>		<u> </u>							1		<u> </u>	<u> </u>	69	_
W							<u>.</u>	<u> </u>									<u> </u>	70	<u> </u>	<u> </u>
X															***		<u> </u>	<u> </u>	<u> </u>	<u> </u>
Y							27							64			ļ		<u> </u>	<u> </u>
Z										<u> </u>									<u> </u>	_
-								<u>.</u>		<u> </u>		70	70				<u> </u>	<u> </u>	<u> </u>	<u> </u>
unknown (?)			1						<u> </u>	<u></u>						<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>
not sequence										<u> </u>	<u> </u>					<u> </u>	<u> </u>	<u> </u>	<u> </u>	Ļ
sum of seq ²	64	1 6	4 6	4 6	5 68	3 69	70	70	70	70	70	70	70	70	70	70	70	70	70	7
oomcaa	63	3 6	3 6	3 6	2 6	3 69	4	68	69	40	60	70	70	64	41	61	60			
mcaa*	S	С	K	, A	\ S	G	G	T	F	S	S	-	-	Υ	Α	1	S	W	٧	ا إ
rel. oomcaas	9800	980%	2000	0.500	100%	100%	29%	9/0/6	%66	57%	%98	100%	100%	91%	29%	87%	%98	100%	0/066	
pos occupied	:	i	2	•	3	:	:	:	:	:	:	1				:	•	5 1	:	2

Table 6A: Analysis of V heavy chain subgroup 1A

		_												,							
						ame	wor	k II													
amino ac	id'	39	40	4	42	43	44	45	46	47	48	49	20	51	52	∢	8	ပ	53	54	Ŀ
А			70									1				5					T
В												İ	<u> </u>							<u> </u>	+
· c																‡					-
D					•				1												<u> </u>
E									69		*******										<u> </u>
F														2							-
G				1	68		69			1		69	30							39	
Н				1								-03	33			1					68
1														65	20						
K			Ī		Ī								L	05	30	-			34		
L					1			68		<u>-</u>	1		1							_	******
M		-	Ī	Ī		7					67		<u></u>						2	4	
N							-								2 4	- -		<u> </u>	4	_	·•••••
Р			E	88				1	_				-			14	-		3	22	
Q	(59			(9			-			_					-	-	-	_ -	
R		1			1		1				-		4		_	-	+		1	1	
S						1	_	<u> </u>	<u> </u>	1	1	_		7	2	-	+	- -	1	_	_
T										<u> </u>			÷			4	-		_	1	
V					Ī				<u> </u>		1		+		2 1	·	-		+-	3	
W								1	6	7	<u>-</u>	2	6	-	Z : 1	0	-		1	- -	
Χ								1			- 				-	- -	-	-		-	
Υ									1	 			-		-	- 	 	20	, -	+	
Z	L								·	İ	-				-			20) <u> </u>	-	
										Ť	Ť	<u> </u>	Ť		÷	70	70	<u> </u>	-	+	_
unknown (?)	L							<u> </u>	-						-	1/0	/ / (<u>'</u>	<u> </u>	 -	
ot sequenced	L						<u> </u>	<u> </u>	<u> </u>	<u> </u>	 	<u> </u>	<u> </u>	-		 -	<u> </u>	<u>:</u> .	<u> </u>	-	
sum of seq ¹	70	70	70	70	70	70	70	70	70	70	70	0 70	70	<u>.</u>): 7∩	70	70	70	70	70	-	
oomcaa1	69	70	68	68	69	69	68	69	67	67	69	39	65	7 A	41	70	70	70	70	/ /(J
mcaa*	0	Α	Р	G	Q	G	L	Ε	W	М	G	G	1	1	Р	-	-	34 	39 F	68 G	•••
rel. oomcaas	%66	100%	97%	%26	%66	966	%/(%6t	%9ı	%9	9%6	26%	3%	ļ		100%	000%				
os occupied ^a	:		·	3	2	2	3	2	ა 4	<u>6</u> 4	. <u>ი</u>	4	6 4	<u>ئ</u> 6	ض 5	_ <u></u>	······	10		:	-

Table 6A: Analysis of V heavy chain subgroup 1A

	С	DR																		_
amino acid	26	23	28	23	09	61	62	8	64	65	99	67	89	69	20	11	72	73	74	75
А	1	34			69											43				
В																				
· C																				
D	15		1							2							70			
E									1									33		
F				1				48				3		4						
G	1						3			67										
Н			1																	
	4												1	44				1		
K	1		2	1			47		1		1							8		
L	1	1						22				2		1		3				
M														21						
N	9		59				18													
Р	1	7																		
Q	1	1				70			64											
R	2						2		1		69							1		
S '		1	2		1										5				70	
Ţ	34	26	4						3				66		65	24		27		67
V										1		65	3							3
W																				
X					. ·															
Y	ļ		1	68																
Z																				
<u> </u>	ļ		<u></u>																	
unknown (?)	ļ	<u></u>	<u> </u>				<u> </u>													
not sequenced	~==																			
sum of seq?	·	÷	÷				}			······				**********		:	:		:	
oomcaa,	34	34	÷	********			·	÷	•••••••	·	69					:	:	:		
mcaa*	T	Α	N	Υ	Α	Q	K	F	Q	G	R	V	T		T	Α	D	Ε	S	T
rel. oomcaas	49%	49%	84%	92%	93%	100%	67%	%69	91%	%96	93%	93%	94%	63%	93%	61%	100%	47%	100%	%96
pos occupied ⁶	11	·	:		:	:	:	:		3		•			•	•		:	1	2

Table 6A: Analysis of V heavy chain subgroup 1A

		_					Fr	ame	wor	k III				-											
_	amino acid		92	77	78	2	n (2 3	8	82	⋖	В	ر	, ر	83	84	85	98	87	88	. og	3 8	2 3		92
	Α				6	-		T	1				Ī		Ī	3		_	_	70	_	_	_		
	В			•••••	<u> </u>	Ī							 	- <u>i</u> -	- -					70	<u> </u>		+		
	· C		Ī	******	<u> </u>	Ī	T		7	7				+	-						<u></u>				70
	D				<u> </u>	T	İ		2	T			 	<u> </u>		_	26	70			<u> </u>	-			70
	E					Ī		E	4		_	•		<u> </u>	-		44					1-			
	F									7		*******		<u> </u>	_	7		-				 	1	2	
_	G											1	-		_							<u> </u>		-	
	Н						1				1		<u> </u>	1				_				 	-		
			<u></u>	1						3	1	1		Ť				_			2			_	
	K										Ť			<u> </u>	3	<u> </u>						<u></u>	1		
	<u> </u>					<u> </u>		3	6	3	-		70)					7		2	 	- 		
-	M				•••••	<u> </u>	6	7					******	Ī					1		1	†	<u> </u>	-	
	N	<u> </u>	4								1	16		Ī					-		*******	<u> </u>	<u> </u>		
	Р		1		•••••									Ī						<u>†</u>		<u> </u>	<u> </u>		-
-	Q	. 				1	<u></u>		3											1	••••		·	-	
	R	L	3				<u> </u>			2	3	1		62	2								 	-	
-	S	6	2	ļ_	1		<u> </u>			4	1 4	19			6	7			1	1			<u> </u>	+	
-	Ţ		1 6	9	2		<u> </u>	<u> </u>			3	2		4				6	7	<u>-</u>			<u> </u>	<u> </u>	
-	<u>V</u>	<u> </u>	-ļ		3		<u> </u>		4	<u> </u>				1					1		64	*******		Ť	
-	W	ļ	ļ	<u>.</u>	ļ			<u> </u>	<u> </u>	<u> </u>											Ì	*******		-	
-	X	ļ	<u> </u>		_			<u> </u>		ļ	<u> </u>										1	*******			
<u> </u>	<u>Y</u>		. .	-	_	68			ļ	ļ	ļ			,	<u></u>							69	68		
-	Z	_	<u> </u>	-	4				<u> </u>		<u> </u>						<u> </u>								
-	-1 (2)		ļ	-	_					ļ	<u> </u>		_			<u> </u>									
	nknown (?)		<u> </u>	-							<u> </u>	-	_			<u> </u>		ļ	<u> </u>				•••••		
	t sequenced	_	7/	_		_	_			_	<u> </u>	\dotplus	4	_			<u> </u>		Ļ	╧					
3(um of seq'	//	/() /	0	70	70	70	70	70	7(0 7	70	70	70	70	70	70	7	0 7	0	70	70	70)
	oomcaa,	62 S	65 T) 6	4	68	67	64		41							70	: "	:		÷		****)
	mcaa*			· †		<u> </u> -	М	Ε	L			-	‡.	R	S		D	T	Α	\ \		Υ	Υ	С	
rei	l. oomcaa ^s	89%	%66	010%	0,-	97%	%96	91%	9006	59%	20%	3	<u></u>	89%	%96	63%	100%	%96	%00	10%	2	%6(97%	%00	
pos	occupied ⁶	4	2	1	4	3	2	4	3			:	•	•	2			4		٠	·	2	2		

Table 6A: Analysis of V heavy chain subgroup 1A

										CD	R III									
amino acid'	93	94	95	96	97	98	66	100	4	8	ပ	O	ш	щ	9	I	_	_	×	101
Α	66	2	16		1	1	1	4	1	2	2	1	1		1	1	1	2		1
В																				
. С					1	1	16	2		1	1	7	2	1						
D			16	5	3		3	5	4	3	4			1.	1	14				59
E			9				2			1			1			1				
F.					1	3		2		3	1	2		2	1				28	2
G		2	14	13	20	10	14	5	20	15	16	3	3	4	15	1	1	7		
Н										1	1	1	·	1						
ı				2	5	2	2		2	2	1	1			1					
K		5			2	1			1											
Ĺ		1	4	4	2	5	2	1	1		4	2		1			1		1	
М			1		2		1		1			1	1						10	
N				2	2	1	2	1	2	2	2	2			1	1	4			
P				20	3		1	3	2	2	2	4	2	1	4	1		1		1
Q				1			1		1	1	1									
R		55	1	5	7	8	1	4		2		1		16						
S		1	1	5	5	5	5	21	5	11	8	4	3		2	1		2		1
Ţ	1	3	3	5	4	1	3	4	2	5	2		1			1	1			
V	3		3	2	4	3	3	3	4	2	2	2	1	2	1					
W				1	1	3	1	1			2		3				1	5	1	
Х																				
Y		1		2	3	20	5	4	9	1	2	11	20	10	6	9	10	7	1	
Z																				
_				1	2	2	3	6	11	11	14	23	26	26	31	34	46	39	21	1
unknown (?)													1		1	1		2	3	
not sequenced			2	2	2	4	4	4	4	5	5	5	5	5	5	5	5	5	5	5
sum of seq'	70	70	68	68	68	66	66	66	66	65	65	65	65	65	65	65	65	65	65	65
oomcaa³	66	55	16	20	20	20	16	21	20	15	16	23	26	26	31	34	46	39	28	59
mcaa'	Α	R	Α	Р	G	Υ	С	S	G	-	-	-	-	-	-	-	-]	-	F	D
rel. oomcaa ^s	94%	79%	24%	29%	29%	30%	24%	32%	30%	23%	25%	35%	40%	40%	48%	52%	71%	%09	43%	91%
pos occupied		:						:		······	·····					······				

14 × SUBSTITUTE SHEET (RULE 26)

Table 6A: Analysis of V heavy chain subgroup 1A

		Γ				F	ram	ewo	rk IV	,			-	7
_	amino acid'	102	103	104	105				·		? =	112	113	: Sum
ſ	Α	T	T						T	T				670
	В		-				Ī	<u> </u>	İ	<u> </u>		1		
	С	-					Ť	<u> </u>	İ	<u> </u>	<u> </u>	<u> </u>	+	165
ľ	D		-	1	1		Ī		- 	T	-	<u> </u>	<u> </u>	308
	E		1					<u> </u>	1	<u> </u>		- -		297
	F	1	2	Ī			1	<u> </u>	-	 				226
	G		-	58	3	59)		 1	 	Ť	<u> </u>	-	928
	Н		<u> </u>		·••			-			<u> </u>		<u> </u>	14
	1	3	1	<u> </u>		-	<u> </u>	<u> </u>	<u> </u>	4	 	<u> </u>	<u> </u>	286
	K	1	<u> </u>	<u> </u>	3		1		1		<u> </u>	- 	 	325
	L	3	1	<u> </u>	1	-	1	40) 1		-	<u> </u>		386
	М	1	1	İ		 		3		 	 	<u> </u>	 	189
	N			<u> </u>	1			1	<u> </u>		 		-	176
	Р	5						<u> </u>	<u> </u>	<u> </u>		<u> </u>	1	1
	Q				52				1		-	<u> </u>		494
	R				1			<u> </u>	1		<u> </u>			351
	S							<u> </u>	<u> </u>	<u></u>		53	51	972
	T						54	11	1	51	<u> </u>	1		736
	V	15		1				1	54	;	54	: -	1	699
	W		59		1						<u> </u>			243
	Χ											<u> </u>		
	Y	34		1										542
	Z						•			••••••				3
	-	1									-			578
L	ınknown (?)	·												8
n	ot sequenced	5	9	9	10	11	14	14	14	15	16	16	17	406
	sum of seq'	65	61	61	60	59	56	56	56	55	54	54	53	!
			•	:		:			54				•••••••	
	mcaa'		W		Q	G	T	L	٧	T	٧		S	
r	el. oomcaa ^s	%	%	%	8	%	%	%	<u></u>	%	%	,0	 Q	
		52%	97	95%	87	ĕ	96	716	%96	93%	<u>10</u>	%86	%96	
p	os occupied [*]	9	3	4	7	1	3	5	3	2	1	2	3	

148

WO 97/08320

Table 6B: Analysis of V heavy chain subgroup 1B

														Fr	ame	wor	k I			
amino acid'	-	7	က	4	2	9	7	∞	တ	2	=	12	13	14	15	16	17	18	19	20
А									32					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		34				
В																				
C																				
D																				
E		1			5	1				35										
F																				
G								27							35					
Н			1											1						
K		3	1									34	33						33	
L			3	26	1															
М				1	1															
N																				
Р									1					33			1			
Q	21		20			26														
R	1											1	2							
S							27									1	34			
T									1					1					2	
V	3	21			20						∙35							35		3
W																				
Х							••••													
Y																				
Z																				
-																				
unknown (?)																				
not sequenced	15	15	15	13	13	13	13	13	6	5	5	5	5	5	5	5	5	5	5	
sum of seq ²	25	25	25	27	27	27	27	27	34	35	35	35	35	35	35	35	35	35	35	3
oomcaa3	21	21	20	26	20	26	27	27	32	35	35	34	33	33	35	34	34	35	33	3
mcaa*	Q	٧	Q	L	٧	Q	S	G	Α	Ε	٧	K	K	Р	G	Α	S	٧	K	١
rel. oomcaa ⁵	84%	34%	%08	%9€	74%	%96	0001	000%	34%	0001	100%	97%	34%	34%	100%	92%	%26	100%	94%	70.0
pos occupied"		:	:			•••••														

149
SUBSTITUTE SHEET (RULE 26)

WO 97/08320

Table 6B: Analysis of V heavy chain subgroup 1B

	_														CDR					
amino acid'	2.	,,	22	3 2	4 C	2,00	2,7	, 00	9 6	67	3 5	າ <	(a	3	37	3 6	بر جر	36	37) E
Α				3	0					T		2	Ī	ī	T	6			<u> </u>	T
В						···-		Ī	Ī		_	_			\dagger	1	<u> </u>		- 	i
. C		3	5			···			İ		Ť					-	<u> </u>		_	
D										i		1	Ť			5	1	1	1	
E				3					1			1							1	†
.F								2	3	9					2	2	1	<u> </u>	-	<u> </u>
G					1	4	0				1 1	4				 1		<u> </u>	_	
Ĥ									1.	<u> </u>						1	3,	4	<u> </u>	
ı								T	1		1						9	<u> </u>	<u> </u>	+
К			2	8	<u> </u>			<u> </u>	-			<u> </u>	<u> </u>			 '				<u> </u>
L		Ī	Ī	Ī				Ī		 1	<u> </u>	1	<u> </u>	-	<u> </u>		 5	 	1 7	 ?
M.					Ī				İ	<u> </u>	<u> </u>			<u> </u>		23		<u> </u>	<u> </u>	<u> </u>
N					Ī				Ī	1	1 :	3		<u> </u>		·÷	3	- 	-	
Р									1		<u> </u>	· 	 -	<u> </u>	1				 	
Q			2	2			-		1		Ţ.		<u> </u>	-	1	 	1	 	 	1
R			2	!				2		1	<u> </u>	·	<u> </u>	1		<u> </u>	<u> </u>	 -	<u> </u>	37
S	35				40			5		2	2 15	5		2	1	<u> </u>	 	 	†	-
T				3				32	 	34			<u> </u>	 	1	 	 	 	. <u>-</u>	<u> </u>
V				1			1		<u>†</u>	†	1				2	<u> </u>	 -		38	
W									 	 	<u> </u>		 					40	† -	
. X										 	†	<u>†</u>	<u> </u>						 -	
Υ							36	<u></u>	<u> </u>	<u> </u>	1	†	<u> </u>	32	19		1			
Z										†								·		
-												40	•40							
unknown (?)										 		 -	 -							
not sequenced	5	5	5	5								<u></u>								
sum of seq'	35	35	35	35	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	
																			38	
mcaa'	S	С	K	Α	S	G	Υ	Ţ		- :		-	-	Υ			Н	****	٧	R
rel. oomcaa ^s	100%	100%	%08	86%	100%	100%	%06	%08	%86	85%	38%	%001	0001	30%	%81	28%	85%	100%	92%	93%
pos occupied ^a	•	1			:	:		:	:	6				:				•••••••		4

Table 6B: Analysis of V heavy chain subgroup 1B

				Fra	mev	vork	: 11													
amino acid'	33	40	41	42	43	44	45	46	47	48	49	20	5	52	۷	æ	ں	53	54	55
Α		39				1					1				7			1		
В																				
. С																				
D														1					1	
E				1				39										1	1	
F							2						1					1		
G				39		28					39	1			1			9	1	38
Н																		2		
										3			34							
K					1														1	
L			1				37						1							
M										37		2	4							
N														35				20	12	
Р		1	34				1								31					
Q	39				39			1												
R	1					10						4						3	1	
S			1			1								2				1	20	
T			4											1					3	
٧														1	1					
W									40			33								
X	<u></u>		<u></u>																	
Y			<u> </u>															2		
Z		<u> </u>	<u> </u>	<u> </u>																
	<u></u>	<u> </u>	<u> </u>	<u> </u>										<u>.</u>		40	40			
unknown (?)		<u> </u>	<u> </u>															<u> </u>		<u> </u>
not sequenced	_																			
sum of seq ²	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	4
oomcaa ³		·	34		******	*******	********	********	********	*********	÷	,				•	40	•		•
mcaa*	0	Α	Р	G	Q	G	L	E	W	М	G	W		N	Р	-	-	N	S	G
rel. oomcaas	98%	98%	85%	98%	98%	70%	93%	986	100%	93%	%86	83%	85%	%88	78%	100%	100%	50%	20%	980%
pos occupied																	1	9	8	

Table 6B: Analysis of V heavy chain subgroup 1B

	_	CDR	ij									T								
amino acid'	26	57	28	59	99	61	62	63	64	65	99	29	89	69	20	71	72	73	74	75
А	1	2			27	2	?	T		Ţ-		T	1	T		2	2	i	Ī	12
В																	<u> </u>	<u> </u>	-	
С		<u> </u>								Ī				Ī		<u> </u>	-	 	-	T
D	1	<u> </u>								4	ļ.					-	35		Î	
E	2	<u> </u>	2			1				1						1	<u> </u>			
F .		<u> </u>	<u> </u>	4		ļ		39)					3	}					
G	15		6	<u> </u>	1					34										
Н			1	1													1		-	
		1	1									1	1	13					<u> </u>	22
· K	2	2	8				36		1							1				
L						1		1						1			<u> </u>			
М														23				1		1
N	17		18				1										4			
P	.					••••••													3	
Ω						36			37											
R			2			••••	1	<u> </u>	2		37	<u> </u>				34		1		
S	1			2	11		1	<u> </u>		<u> </u>						1			37	
Т		35	2		1		1						39		40	1		38		5
V	1											38								
W											3									
X																				
Y				33																
Z																				
_																				_
unknown (?)								******											Ī	
not sequenced																				
sum of seq ²	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40
oomcaa,		35											39	23	40	34	35	38	37	22
mcaa*		T												М		·	D	T	S	T
rel. oomcaas	43%	988%	45%	83%	68%	%06	%06	98%	93%	85%	93%	95%	%86	58%	100%	85%	988%	92%	93%	55%
pos occupied ⁶																	3		2	

WO 97/08320

Table 6B: Analysis of V heavy chain subgroup 1B

				F	ram	ewo	rk II	ı				_								
amino acid¹	9/	11	78	79	80	81	82	⋖	ω	ں	83	84	82	98	87	88	83	90	91	92
Α			35									1	2			40				
В							<u></u>													
· C																				37
D	1					4							19	40			1			
E						35							19							
F			1									2							2	
G						1		1	2											
Н																				
1		1															1			
K											1									
L					2		39			39							2			
М					37		1							-			2			
N	7							1	2											
Р												1							1	
Q	ļ																			_
R	4							2	16		37									
5	27			1				35	20		1	36						1	1	
<u> </u>	1	39						1			1				40					
V	ļ		4		1					1							33			
W																				
X	<u></u>																			
Υ				39				••••••										38	35	
Z																				
	<u> </u>	<u> </u>	<u></u>																	
unknown (?)	<u> </u>	<u> </u>	<u> </u>																	
not sequenced	;==																1			
sum of seq ²	·	÷				 -		:									:	:		:
oomcaa ₃		÷	÷	<u>.</u>		·	·····					36					:			÷
mcaa ⁴	S	T	Α	Y	М	Ε	L	5	S	L	R	5	D	D	Ţ		٧		Υ	(
rel. oomcaas	%89	98%	88%	98%	93%	%88	%86	98%	50%	98%	93%	%06 -	48%	100%	100%	100%	85%	9/0/6	%06	7000
pos occupied	:														1	1	•	•	•	

Table 6B: Analysis of V heavy chain subgroup 1B

										CD	R !!!									
amino acid'	93	94	95	96	97	86	66	100	٨	8	ပ	٥	ш	ட	ပ	I	_		×	101
Α	37	1	6		1	1		2	3	1	3		1					5		
В																			-	
. C		1				3		<u> </u>	<u> </u>	2	1									<u> </u>
D			7		5	2	3	1	5	4		1		2	2	1	2			27
E			2		1			1	1		2		1		1			[
F				1	1	3			2	1	1	1	1					2	15	
G		1	7	7	5	5	9	4	7	1	3		2	2	1		1	3		1
Н			1				2			1	1									
ı		1		1	1	3	1	1	1	1	1	1							1	
K		1			1				1	1		1		1			1	<u> </u>		
L			2	4	4	4	3			1	2	1	1	2		1	<u> </u>	Ī	2	
M				2		1	1								1		Ī		4	
N		<u> </u>			1			1		1	1	1			3		1			1
Р				6	4				1	1		3	2				1			
Q		<u></u>			1							1	2	1						
R	1	31		5	1	1	3					1		1				1		
S		1	3	3	1	4	3	6	3	2	2	1		1						
Т		2	1	1	2	2	1	5	1	1	1		1			1		1		
V	1		7	1	1		1	3	1	2		1			1	2	1			1
W			1		1		2	2		1	1					1		4		
X																				
Y				5	5	4	2	3		4	3	3	2	1	2	. 5	6	2		
Z																				
-				1	1	4	6	8	10	11	14	20	23	25	25	25	23	18	11	6
unknown (?)																			3	
not sequenced	1	1	3	3	3	3	3	3	4	4	4	4	4	4	4	4	4	4	·····	4
sum of seq ²	39	39	37	37	37	37	37	37	36	36	36	36	36	36	36	36	36	36	36	36
oomcaa ³		31	•	•	:			:		••••••	14	•					•••••		******	******
mcaa'	Α	R	D	G	D	G	G	-]	-	-	-	-	-	-	-	-	-	-	F	D
rel. oomcaa³	95%	79%	19%	19%	14%	14%	24%	22%	28%	31%	39%	26%	64%	%69	%69	%69	64%	20%	42%	75%
pos occupied ⁶		:		••••••						•••••										

Table 6B: Analysis of V heavy chain subgroup 1B

					Fra	mev	vork	IV.					
amino acid'	102	103	104	105	106	107-	108	109	110	111	112	113	sum
Α													340
В													
С													79
D	2												179
E				1									159
F	1												130
G			27		26					1			450
Н	1												51
1	7								3				113
K				2				<u> </u>					194
L							12			1			204
М							2						144
N	1												138
Р	1			1									128
Q				23									253
R							1						247
S	3								1		18	18	432
T						21	6		16		1		390
V	6							21		18			342
W		29		,									158
X													
Y	11												294
Z	L												
-	3												394
unknown (?)			<u></u>	<u> </u>									3
not sequenced	4	11	13	13	14	19	19	19	20	20	21	22	458
sum of seq²	36	29	27	27	26	21	21	21	20	20	19	18	
oomcaa³		÷	·	23		:		21	16	18			
mcaa'	Υ	W	G	Q	G	T	L	٧	T	٧	S	S	
rel. oomcaas	31%	100%	100%	85%	100%	100%	57%	100%	80%	% 06	95%	100%	
pos occupied ⁶	10	1	1	4	1	1 15	*********	1	3	3	2	1	

Table 6C: Analysis of V heavy chain subgroup 2

														Fr	ame	wo	k I			
amino acid	-	2	3	4	2	9	7	æ	6	10	=	12	13	14	15	16	17	18	19	20
Α										3										
В			<u> </u>						•											
· C			<u> </u>	<u></u>											··············					
D			<u> </u>	<u> </u>																
E	1		<u> </u>			6			*****	•••••			••••••	••••		2				
F																				
G								6												
Н																				
1		1																		
K					3								6		1					
L				6							6							6		6
М														-						•••••
N							1													
Р							1		6					6			1			
Q	2															4				
R					2															
S							4				<u></u>									
T			6		1					2					5		5		6	
V		5								1		6								
W																	·			
X																				
Υ																				
Z	3																			
-																				
unknown (?)																				
not sequenced	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
sum of seq?	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6
oomcaa³	3			6	3	6	4	6	6	3	6	6	6	6	5	4	5	6	6	6
mcaa'	Z	٧	T	L	K	Ε	S	G	Р	Α	L	٧	K	Р	T	Q	T	L	T	L
rel. oomcaas	20%	83%	100%	100%	20%	100%	9/0/9	100%	100%	20%	100%	100%	100%	100%	83%	67%	83%	100%	100%	100%
pos occupied ^a			•••••••••••••••••••••••••••••••••••••••	1						······································	····-		1				•	1	1	1

Table 6C: Analysis of V heavy chain subgroup 2

															CD						
amino acid'	21	22	23	24	75		97	27	28	29	30	3	4	8	32	33	34	35	36	37	38
Α									1				1			1					
В				<u> </u>											_						
· C		7		<u> </u>												2					
D													1		_						
Ε																			••••		_
F					3			6		1											
G							7					_		4		3		3		ļ	<u></u>
Н																				<u></u>	<u>.</u>
.														1				<u></u>		7	<u> </u>
K										<u></u>								ļ		<u> </u>	_
L					2			1		6								<u> </u>		<u> </u>	<u> </u>
М										<u> </u>					5			<u> </u>	ļ <u>.</u>		<u> </u>
N			-									2						<u> </u>		<u> </u>	<u> </u>
Р			1	1						<u> </u>										<u> </u>	
Q			-	-													<u></u>				<u>.</u>
R		<u> </u>	-											2		1			<u> </u>	<u> </u>	Ļ
S		ļ	<u> </u>	1		6			6		6	2	4					4	<u> </u>	ļ <u>.</u>	<u> </u>
Ţ	6		(6							1	3	1					<u> </u>	<u> </u>	<u> </u>	<u> </u>
٧					2							<u> </u>			2		7	<u> </u>		<u>.</u>	<u>.</u>
W		<u> </u>	1	Ī													<u> </u>	<u> </u>	7	·	ļ.,
X		1	Ţ	Ī													<u></u>	<u> </u>	<u>.</u>	<u> </u>	_
Υ	1	Î	-	Ī	Ī	1											<u>.</u>		<u> </u>		-
Z	-			-									<u> </u>						<u> </u>	<u> </u>	╧
													<u></u>					<u> </u>	<u> </u>	<u>.</u>	_
unknown (?)		Ī	i										<u> </u>	<u></u>			<u> </u>	<u> </u>	<u> </u>	<u>.</u>	_
not sequenced	1																<u> </u>	<u> </u>	<u> </u>		1
sum of seq²		3	7	7	7	7	7	7	7	7	7	7	7	7	7	7		7	7	7	7
oomcaa ₃	(3	7	6	3	6	7	(6	6 (6	3	3 4	4	5	3	3	_÷	÷	.	7
mcaa ⁴	T			7	F	S	G	F	S	L	S	T	S	G	М	G	٠V	S	٧	1	
rel. oomcaa ^s	100%	90001	200	8640	43%	%98	100%	96%	860%	86%	86%	430%	57%	57%	71%	43%	100%	5.70%	100%	100%	
pos occupied		··•	1		3			1	;	•	•	:	1	3	:	:	1	1	2	1	1

SUBSTITUTE SHEET (RULE 26)

Table 6C: Analysis of V heavy chain subgroup 2

				Fr	ame	wor	k II													
amino acid'	39	40	41	42	43	44	45	46	47	48	49	20	51	52	∢	В	ပ	53	54	55
Α						6					7									
В																				
. c							*******			Ī							<u> </u>			
D				-			******							2			<u> </u>		3	6
E				-				7									<u> </u>	Ī		
F													•	2		<u> </u>				
G		1		7	·	1									}	······································				
Н		• • • • • • • • • • • • • • • • • • •	<u></u>				********	······································				2	•••••				 :			1
ı													6				 !			
κ			<u> </u>		6		••••••													
L			<u> </u>				7			7		2	1	1	•••••					
М																•				
N																			3	
Р		5	7																	
Q	6																			
R	1				1							2								
S		1																2		
Т																				
V											1		•							
W							***************************************		7			1						4		
Х							********							1				1	1	
Y										·				1	1					
Z															•••••					
-															6	7	7			
unknown (?)																				
not sequenced																				
sum of seq²	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7
oomcaa³	6	5	7	7	6	6	7	7	7	7	7	2	6	2	6	7	7	4	3	6
mcaa¹	Q	Р	Р	G	K	Α	L	Ε	W	L	Α	Н	1	D	-	-	-	W	D	D
rel. oomcaa ^s	%98	71%	100%	100%	%98	%98	100%	100%	100%	100%	100%	29%	%98	29%	%98	100%	100%	57%	43%	96%
pos occúpied	:	3	1	1		2	1	······· <u>·</u>	·····	······· ·	1	•••••		:		-				2

Table 6C: Analysis of V heavy chain subgroup 2

		DR																		
amino acid'	99	23	28	29	09	61	62	63	64	65	99	29	89	69	2	7	72	73	74	75
Α																				
В																				
. C																				
D	5																6	1		
E	1								1											
F		1		1																·
G																				
Н				1																
ı														6						
K	1	6							4							6				6
L								7				7								
Μ.																				
N																	1			
. P						2														
Q																				
R			2			1			2		7					1				1
S			2		6		7			4			1		5				7	
T						4				3			6		2			6		
V														1						
W				1			•													
Х					1															
Y			3	4																
Z																				
-																				
unknown (?)			<u> </u>																	
not sequenced																				
sum of seq ²	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7
oomcaa ³	5	:	3	4	6	4	7	7	4	4	7	7	6	6	5	6	6	6	7	6
mcaa'	D	.	·		S	T	S	L	Κ	S	R	L	Ţ	l	S	K	D	T	S	K
rel. oomcaa ^s	71%	%98	43%	57%	%98	57%	100%	100%	57%	57%	100%	100%	%98	%98	71%	%98	%98	%98	100%	%98
pos occupied	:	:	:	•	2	:	1	;	:	:	:	•	_				i	•	1	2

Table 6C: Analysis of V heavy chain subgroup 2

			·		Fran	iew	ork l	11			-									
amino acid'	92	77	78	79	80	81	82	⋖	8	ပ	83	84	85	98	87	88	83	90	91	92
Α													1			5				
В																				
· C					<u> </u>										<u> </u>	<u> </u>		<u> </u>		7
D											6			7				<u> </u>		
Е															<u> </u>					
F .					1															
G					-							***********				2				
Н														•••••						
i i						2		1												
К														********						
L					6															
M							7			5										
N	5								6.		1									
Р												7								
Q		7															·			
R			<u> </u>																	
S	2																			
T	·		<u> </u>			5		5							7		7			
V			7	7						1			6	•						
W																				
X																				
Y																		7	7	
Z																				
_								1	1	1	İ									
unknown (?)																				
not sequenced																				
sum of seq ²	7	7	7	7	7	7	7	7	7	7	7	- 7	7	7	7	7	7	7	7	7
oomcaa³	5	7		•••••••••••••••••••••••••••••••••••••••	6	5	7	5	6	5	6	7	6	7	7	5	7	7	7	7
mcaa'	N	Q	٧	٧	L	T	М	Ţ	N	М	D	Р	٧	D	T	Α	T	Υ	Υ	С
rel. oomcaas	71%	100%	100%	100%	%98	71%	100%	71%	%98	71%	96%	100%	96%	100%	100%	71%	100%	100%	100%	100%
pos occupied [«]			1	:			·····	3	2	3	2	1	2	1	1		1	1	1	1
								ı	60											

Table 6C: Analysis of V heavy chain subgroup 2

										CDF	RIII									
amino acid	93	94	95	96	97	86	66	100	۷	8	U	۵	ш	ட	g	I	_	_	×	<u>10</u>
Α	5							1	2	1										
В								i	<u></u>											
C																				
D																				6
E								2			1									
F																			3	
G						1	1		1	2	1	1	1	1						
Н		1		1																
			3			2														
K							1													
L								1		1									1	
M.								1											2	
N				1	2												1			
Р				1	1		1		1											
Q			1																	
R		6	1			1			1											
S				1		1	1													
T				1			1		1											
V	2		1	1	1		1	1			1									
W						1									1			1		
Х																				
Υ					2						1	2	1	1	1			2		
Z																				
-										2	2	3	4	4	4	6	5	3	<u> </u>	
unknown (?)																			ļ	
not sequenced			1	1	1	1	1	1	1	1	1	_		1		_	1	1	1	1
sum of seq?	7	7	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6
oomcaa3	5	6	3	1	2	2	1	2	2	2	2	3	4	4	4	6	5	3	÷	
mcaa*	Α	R	1	Н	N	l	G	Ε	Α	-	-	-	-	-	-	-	-	-	F	D
rel. oomcaas	71%	96%	50%	17%	33%	33%	17%	33%	33%	33%	33%	20%	%29	%29	67%	100%	83%	20%	20%	100%
pos occupied ^a	:	;	:			:	:	:	5 16	4						1	2	3	3	1

WO 97/08320

Table 6C: Analysis of V heavy chain subgroup 2

102	103	104		106	107	108	109	110	:	112	113	sum
1		6						1				35
1		6								<u> </u>		
1		6							Ţ	:	· i·····	II .
1		6						:	•			16
1		6			:							43
1		6										21
1		6		<u> </u>								18
1				6								5 5
1		<u>. </u>										6
1												29
1			1			1						42
						3						78
												20
												23
1						1						41
			3									23
			2									41
										6	3	82
					6	1		5				102
3						<u></u>	6		6			68
	6					<u></u>						29
												4
1												35
												3
												56
1	1	1	1	1	1	1	1	1	1	1	4	54
6	6	6	6	6	6	6	6	6	6	6	3	
3	6		3	6	6	3	6	5	6	6	3	
٧	W	G	Q	G	T	L	٧	T	٧	S	S	
50%	100%	100%	20%	100%	100%	20%	100%	83%	100%	100%	100%	
•	1	1	3	1	1	4	:					
	1 1 6 3 V	1 1 6 6 6 3 V %001	6 1 1 1 6 6 G %001 6 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 6 6 6 3 W G Q %001 %055 W %001	6	2	2	2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 6 6 6 6 6	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 6 6 6 6 6 6 6 6 6 6 6 6 6 6 7	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 6 6 6 6 6	1 2 0

SUBSTITUTE SHEET (RULE 26)

Table 6D: Analysis of V heavy chain subgroup 3

ſ														Fr	ame
amino acid'		7	3	4	2	9	7	80	6	10	Ξ	12	13	4	15
А					1		1			12		1		3	1
В			1			1							1		
· C															
D	1					1				16					
E	110		9		15	166			9				8		2
F											4				
G								181	193	174		1			202
Н			5										4		
1			<u></u>									9			
K		5	3										26		·
L		1	5	176	43						140			1	
М		12		1											
N										1					
Р						.,							1	194	
Q	41		138	1	3	12							162		
R			6										4		
S							178			2				8	
T							1								
V	5	147		1	118	: : : : :					62	195			
W															
Χ															
Y								<u>.</u>							
Z	8					<u> </u>	<u> </u>								
_								<u></u>							<u></u> .
unknown (?)								<u></u>							
not sequenced	47	47	45	33	32	32	32	31	10	7	6	6	6	6	
sum of seq'			167												
oomcaa ₃	110	147	138	176	118	166					140		162	194	20
mcaa*	Ε	٧	Q	L	٧	E	S	G	G	G	L	٧	Q	Р	G
rel. oomcaa ^s	9/2/9	968	83%	98%	%99	92%	%66	100%	%96	85%	9689	95%	79%	94%	
pos occupied	:	4	:	;	:		3	:	1 2	5	3	4	7	4	

163

Table 6D: Analysis of V heavy chain subgroup 3

	wor	k i													
amino acid'	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
A								183	3 192	2	1				
В															
- C							209)							1
D															7
E	8							8	3		3		1		
<u> </u>		1	1			1						201		201	
G	134								2	2	207				3
Н	 				<u> </u>	<u></u>		<u></u>							1
<u> </u>	ļ	<u> </u>			<u> </u>	<u> </u>		2				3	17	1	
K				15	<u></u>										4
L			205		201							6		3	
M			1										1		
N													10		10
Р			<u></u>			<u></u>		1					2		
Q			1			<u></u>		<u> </u>							
R	62			191	·	<u> </u>	<u></u>								11
5		206				207	<u> </u>	4	2	209			15		174
Ţ	4	1		2			<u> </u>	4	4			1	163		
V					8			7	9				1	6	
W					*************										
Х															
Y					·····										
Z															
unknown (?)															
not sequenced															
sum of seq ²	208	208	208	208	209	209	209	209	209	209	211	211	210	211	210
oomcaa,			:	:		207	209	183	192	209	207	201	163	201	174
mcaa*	G	S	L	R	L	S	С	Α	Α	S	G	F	T	F	S
rel. oomcaas	64%	%66	%66	92%	%96	%66	100%	98%	92%	100%	%86	95%	78%	95%	83%
pos occupied ⁶	4	3	4	3	2		1	7	•	1	:	4	8	4	7
								6		***********	************	••••••••	······································		··································

WO 97/08320 .

Table 6D: Analysis of V heavy chain subgroup 3

Î				CD	RI									F	rame
amino acid'	31	⋖	8	32	33	34	35	36	37	38	39	40	41	42	43
Α	1			17	80		1			1		187		1	
В															
· C												1		1	
D	26			3	7		2								
E	1				10									1	1
F .				5											
G	13				31		1					2		209	
Н				4			88								
I	1			1		15			12						
К	7										1				202
L	3					3			2	3	1	2	1		
М						193									
N	35			8	3		34								
Р				1			1					4	191		
Q											209		1		1
R	7									207		7			8
S	103			17	8		72					3	14		
T	9				15		10					4	5		
V	2				7	1			197			2			
W					30			212							
Х	1													,	
Υ	1			154	19		3								
Z															
-		210	210												
unknown (?)															
not sequenced	2			2	2				1	1	1				
sum of seq ²	210	210	210	210	210	212	212	212	211	211	211	212	212	212	212
oomcaa,	103	210	210	154	80	193	88	212	197	207	209	187	191	209	*********
mcaa*	S	-	-	Y	Α	М	Н	W	٧	R	Q	Α	Р	G	K
rel. oomcaas	49%	100%	100%	73%	38%	91%	42%	100%	93%	%86	%66	88%	%06	%66	95%
pos occupied	14	1	1	9			9	1 6							

Table 6D: Analysis of V heavy chain subgroup 3

	wor	k II						1							
amino acid'	44	45	46	47	48	49	50	51	53	< <	a	U	53	54	55
Α		1				7	7 4	2		1	2	1	4		7
В				3							1				
· c									***************************************			-		1	<u> </u>
D				1							7		94	1	3
E			19	В						3	2	1	2	2	1
F								7	1	2	1				1 8
G	20	7				3:	3 1	1	- 1	0 4	6		4	16	85
Н							(6			1				
<u> </u>			<u></u>	<u> </u>		3		3 19	1		ı				1
K	<u>.</u>		<u></u>	<u></u>					1 3	7 2	2 30)	3	1	
L		211		<u></u>		5	12	2	1						
M	ļ	<u></u>					1		1				-		
N	.						13			7 9	2		13	11	1
Р	.	1	ļ							1			1		
Q	ļ		7		<u></u>		7			10					
R	1				<u></u>	<u>.</u>	24	1	17	5	1		2		16
S	3	<u> </u>		1	<u> </u>	102	11	g	118	43		1	74	17	82
T	ļ	<u> </u>				<u> </u>	3	5	4	2		13	12	3	3
V	ļ		3		204		49	2		1		6			
W	 	<u> </u>		210			1		8	6				***************************************	
X													4	***************************************	3
Y			<u></u>	1			22		5	58				********	8
Z														*********	
					************					14	178	178	2	1	1
unknown (?)						···········									
not sequenced															
sum of seq ²	212	212	212	212	212	212	212	212	212	212	212	212	212	212	212
oomcaa,	207	211	198	210						: :		178			85
mcaa'	G	L	E	W	٧	S	٧	1	S	Υ	-	-	D	G	G
rel. oomcaa ^s	%86	100%	93%	%66	%96	48%	23%	%06	26%	27%	84%	84%	44%	77%	40%
pos occupied ^a	4	2	5	3	3			9			5	5	12	9	12

Table 6D: Analysis of V heavy chain subgroup 3

amino acid'	61 1 1 2 4	17 2 3 5 4 2	2	4 1 1 1 6 6 5	160 1 5 2 8		8	199	212	8	207	1	208	02
B 1 C	2 33 1 37 61 1 1 2 4	17 2 3 5 4 2	2	1 1 1 6	160 1 5 2 8			199	212	8	1			
C D 11 E 8 F 1 G 5 H 1 I 3 K 1 L 1 M 8 N 51 P 1 Q 3 R 5 S 48 T 42 V W X 4 Y 9	333 11 377 611 11 2 4	17 2 3 5 4 2 1 1 2		1 1 6	1 5 2 8			199	212	8	1	14		
D 11 E 8 F 1 G 5 H 1 I 3 K 1 L 1 M 8 N 51 P 1 Q 3 R 5 S 48 T 42 V W X 4 Y 9	1 377 611 11 2 4	2 3 5 4 2 1 1 2 4		1 1 6	1 5 2 8			199	212	8	1	14		
E 8 F 1 G 5 H 1 I 3 K 1 L 1 M 8 N 51 P 1 Q 3 R 5 S 48 T 42 V W X 4 Y 9	1 377 611 11 2 4	2 3 5 4 2 1 1 2 4		1 1 6	1 5 2 8			199	212	8	1	14		
F 1 G 5 H 1 I 3 K 1 L 1 M 8 N 51 P 1 Q 3 R 5 S 48 T 42 V W X 4 Y 9	1 377 611 11 2 4	3 5 4 2 1 2 4		1 1 6				199	212	8	1	14		
G 5 H 1 I 3 K 1 L 1 M 8 N 51 P 1 Q 3 R 5 S 48 T 42 V W X 4 Y 9	37 61 1	1 2 4		1 1 6	2 8			199 2 1		8	1	14		
H 1 I 3 K 1 L 1 M 8 N 51 P 1 Q 3 R 5 S 48 T 42 V W X 4 Y 9	37 61 1	1 2 4 4		1 1 6	2 8			199 2 1		8		14		
I 3 K 1 L 1 M 8 N 51 P 1 Q 3 R 5 S 48 T 42 V W X 4 Y 9	61 1 1 2 4	1 2 4		6	2			199 2 1				14		
K 1 L 1 M 8 N 51 P 1 Q 3 R 5 S 48 T 42 V W X 4 Y 9	61 1 1 2 4	1 2 4		6	2			199 2 1				14		
L 1 M 8 N 51 P 1 Q 3 R 5 S 48 T 42 V W X 4 Y 9	1 1 2 4	1 2 4		6	2			2					1	
M 8 N 51 P 1 Q 3 R 5 S 48 T 42 V W X 4 Y 9	1 2	4		6	2			1					1	
N 51 P 1 Q 3 R 5 S 48 T 42 V W X 4 Y 9	1 2 4	4		6	2 8			1						
P 1 Q 3 R 5 S 48 T 42 V W X 4 Y 9	1 2 4				8			1						
Q 3 R 5 S 48 T 42 V W X 4 Y 9	2					18								
R 5 S 48 T 42 V W X 4 Y 9	4			5				2		_ :	•	į		
S 48 T 42 V W X 4 Y 9				5						2				
T 42 V W X 4 Y 9		11						6		201				
V W 4 Y 9				4		193					2	7		211
W X 4 Y 9	97	5		7								189		1
X 4 Y 9	2			10	2		204				1		3	
Y 9		2												
Y 9		1			1									
Z		151	210			1					1	1		
_														
unknown (?)														
not sequenced														
sum of seq ² 212	212	212	212	212	212	212	212	212	212	212	212	212	212	212
oomcaa ¹ 51	97	151	210	174	160	193	204	199	212	201	207	189	208	211
mcaa' N	T	Υ	Υ	Α	D	S	٧	K	G	R	F	T	1	S
rel. oomcaa ³ 74%	:	71%	99%	82%	75%	91%	%96	94%	%00	95%	%86	89%	98%	100%
pos occupied 19	46%	7	. 5	; •		: 0	: 6	: 6	: -		·	5	1	

167

Table 6D: Analysis of V heavy chain subgroup 3

	_									F	ramev	vork	111		
amino acid	, ;	· ;	7 (2 5	4 . r	76	7.7	, ,	9 9	£ 6	2 2	5 6	7g	C 60	ں د
Α					57			1	8						1
В												2		_	
. C												_			
D		19	99 :	38		2	2	1		1		_	1	0	
E			6			4						5			
F										13					-
G											_		_	1	4
Н Н	_						1		-	1		2		2	-
1				1				2	2						1
K					18	5 (6		<u> </u>			_		<u>:</u> 3	<u> </u>
L								18	8	20	9	-	· 	1	212
M		1			2	2	10		3		2	20		<u> </u>	212
N			5 17	0	2	188	•••••••		<u> </u>		···	3	181	10	1
Р								1							
Q					7	-					199	 }		<u> </u>	-
R	21	1			1	1	-				-		2	! 8	
5	<u> </u>			15:	3 8	10	56	3		3	-	<u> </u>	~:	186	
Ţ		<u> </u>					142	2	<u> </u>		1		4	<u> </u>	
V				1				11		1		 			
W								<u> </u>				<u> </u>	<u> </u>	<u> </u>	
X		2	2			4						<u></u>	1		
Y	.								194				<u> </u>		
Z								·			<u> </u>				
-															
unknown (?)		<u></u>					*****		 	 		**********			
not sequenced			1	1						 		***************************************			
sum of seq?	212	212	211	211	212	212	212	212	212	212	212	212	212	212	212
oomcaa ³	211	199	170	153	186	188	142	188	194	209	199	205	181	186	212
mcaa*	R	D	N	S	K	Ν	T	L	Υ	L	Q	М	N	S	L
rel. oomcaa ^s	100%	94%	81%	73%	88%	89%	9/0/9	9,68	92%	9,066	94%	97%	85%	88%	%00
pos occupied"	2	4	4	3		7	6	5		- 1	6	4	11	<u>&</u> 7	
							68					·		<u>/</u> .i	!.!

WO 97/08320

Table 6D: Analysis of V heavy chain subgroup 3

-															
amino acid'	83	84	85	98	87	88	88	06	91	92	93	94	95	96	6
Α	1	149	1		1	207					173	2	15	9	11
В									<u></u>						
. с									1	210		5	2		1
D		5	15	209								2	54	7	6
E	1		190										11	2	11
F .							1		15	<u></u>		1		9	6
G	1	1	6			4	1		<u>. </u>		2	8	34	26	35
Н		1							1					3	11
l		8					2						4	15	10
Κ	30											60	4	3	5
L							18					1	6	11	7
М					2		1							6	1
N		1		1								2	20	4	3
Р		9									1	3	4	29	10
Q				1								5	3	9	2
R	177											103	9	30	19
S		1			1							3	9	8	11
Ţ	3	28			207		1				25	15	7	6	20
V		9					187				10	1	7	7	15
W										1			3	4	3
X		<u></u>		1											
Y								211	194				12	9	8
Z		<u></u>	<u> </u>												
_			<u> </u>			<u> </u>	ļ				*****		1	3	
unknown (?)															
not sequenced	~	<u> </u>			1	-				:					
sum of seq?	·	·;····	· į · · · · · · · · · · · · · · · · · ·	·:	,	;	:			211	:	:		•	•
oomcaa,					:	·;·····	·;•••••	· · · · · · · · · · · · · · · · · · ·		210				·····	
mcaa'	R	Α	E	D	T	Α	V	Υ	Υ	С	Α	R	D	R	G
rel. oomcaa ⁵	83%	70%	%06	%66	98%	98%	9068	100%	92%	100%	82%	49%	26%	15%	18%
pos occupied ⁶	;	10	:	7			:	:	4	2	5	14	18	20	2

160

WO 97/08320

PCT/EP96/03647

Table 6D: Analysis of V heavy chain subgroup 3

CDR III			
CDI III			
amino acid, 8 6 0 4 あ 2 ロ ョ ェ ロ エ ー	<u> </u>	×	101
A 7 13 7 9 6 2 3 5 5 9	13		2
В			
· C 13 5 1 2 11 3 2		1	
D 11 7 10 4 2 3 10 3 3 1 3	2		146
E 6 3 1 13 1 1			1
F 3 5 4 5 5 6 3 5 7 2 1	1	65	1
G 34 17 35 17 14 23 10 5 1 5 3 2	32		6
H 3 4 3 2 9 2 1 3 1 2 8	1		
l 6 11 4 4 3 1 3 10 3 3 2	1	2	
K 2 11 3 1			
L 26 13 4 12 8 2 6 3 10 3	*******	2	1
M 1 2 1		32	
N 4 6 4 3 2 2 6 2 5			2
P 6 5 5 6 9 8 2 3 2 1 3		9	
O 4 1 1 1 1 1 1			
R 4 10 9 7 5 5 2 3 1 1	2		4
S 16 28 27 25 24 8 11 9 3 2 3	1	1	1
T 6 12 9 17 17 1 2 5 1 9 3 1			
V 13 7 15 4 3 6 2 12 1 1 1	1		
W 6 5 6 7 2 4 1 6	10		
X 1			1
Y 16 14 17 5 8 18 20 13 20 25 28 32	28		
Z			
(3)	91	71	21
unknown (?) not sequenced 14 24 24 24 25 25	3	2	
			25
sum of seq ² 198 198 198 197 196 192 190 189 188 188 188 186 180 00mcaa ³ 34 28 35 54 73 87 103 110 136 137 138 188	86 18	85 1	86
oomcaa ³ 34 28 35 54 73 87 102 110 126 135 134 120 9	91 7	71 1	46
	- -	- [)
117% 117% 118% 118% 118% 118% 118% 118%	% ;	%	%
DO2 Occupied 20 30 10 30 10 00 00	49%	38%	78%
pos occupied 20 20 19 20 19 20 17 14 14 12 12 13 1	12	8	11

Table 6D: Analysis of V heavy chain subgroup 3

					Fr	amev	vork l	V					
amino acid'	102	103	104	105	106	107	108	109	110	111	112	113	sum
А	1		1			2							1767
В	İ	-	·····	1									13
С	İ					İ							470
D	2												1121
E					1								832
.F	2												807
G			140		130		1						2743
Н	4												179
	15								1	1			651
K				13									933
L	10			1			91					2	1881
М							6						496
N	1					1							844
P	17					1	1						568
Q				111									949
R				8									1413
S	7	1									118	110	3009
T						123	27		122			1	1426
V	34		1			1		125		119			1851
W		158										************	686
Χ													26
Y	82												1598
Z													8
-	9	2	2	2	2	2	2	2	2	2	1	1	2023
unknown (?)													12
not sequenced	27	50	67	75	78	81	83	84	86	89	92	97	1650
sum of seq?		161	144	136	133	130	128	127	125	122	119	114	
oomcaa ₃				111				125					
mcaa¹	Y	W	G	Q	G	T	L	٧	T	٧	S	S	
	c			0	0	.0	.0	.0	.0	٥	۰,0	۰,0	
rel. oomcaa ^s	45%	98%	97%	82%	%86	95%	71%	98%	98%	98%	%66	%96	
pos occupied ⁶				:			6				2	4	

171

Table 6E: Analysis of V heavy chain subgroup 4

														- 1	ram	iewo	ork I			
amino acid'		7	m	4	Ŋ	9	7	. α	0	, ⊆	? =	: 2		14	7.	16	17	8	13	20
Α									1	9					1	T		1		1
В																		İ		
· c										<u> </u>						1			 	<u> </u>
D																		 	T	<u> </u>
E		<u> </u>				32	2									44	Į	<u> </u>		
F		<u>.</u>	<u>.</u>															Ī		
G	<u> </u>	ļ	<u> </u>	<u></u>	<u>.</u>			5	4	1 5	3	_				2	2			
Н		<u> </u>	4	<u> </u>	2			<u> </u>												
1	<u> </u>	<u> </u>	<u> </u>	<u></u>		<u></u>	<u></u>	<u> </u>		<u> </u>										
K	<u> </u>	<u> </u>	<u> </u>	<u> </u>				<u> </u>				1	54						1	<u> </u>
LL	<u> </u>	7	<u> </u>	54				<u> </u>		<u> </u>	53	19)	1				53		50
<u>M</u>	 	<u> </u>	<u> </u>			<u></u>			<u> </u>	<u> </u>										
N	_	ļ	<u> </u>		<u> </u>			<u> </u>	<u> </u>											-
Р	ļ							<u>.</u>	33					51	1					2
Q	52	<u></u>	50		51	20	ļ			<u> </u>	<u> </u>					7				
R	1	ļ					<u> </u>	ļ	<u> </u>	<u> </u>		<u> </u>	<u></u>				<u> </u>	<u> </u>	<u> </u>	
S	 		ļ	••••••			33		<u> </u>	<u> </u>	<u> </u>	<u> </u>	ļ		52				52	
T									1	<u> </u>	<u> </u>		<u> </u>				52			
V		47				1		<u> </u>	<u> </u>	ļ	<u> </u>	34	ļ							1
W							20	<u> </u>	<u></u>			<u> </u>								
X	ļ									<u> </u>	ļ	ļ								
<u>Y</u>						•••••	•••••		ļ		<u> </u>	ļ								
Z	1				_	-			<u> </u>											
							••••••		<u> </u>		<u> </u>									
unknown (?)																				
not sequenced			===	_		4				4		3						:		
sum of seq ²																				
	52 0	47 V	50 0														÷	53		50
mcaa'		-		<u>-</u>		E	S			G		V	K	Р	S	Е	Τ	L	S	L
rel. oomcaas	%96	87%	93%	100%	%96	%09	62%	100%	61%	100%	100%	63%	100%	%96	98%	83%	%86	100%	%96	94%
pos occupied ^a				1						1		3	:	3	2	:	2	1		3

WO 97/08320

Table 6E: Analysis of V heavy chain subgroup 4

•														CD	RI					
amino acid'	21	22	23	24	25	56	27	28	29	30	31	⋖	<u></u>	32	33	34	35	36	37	38
Α			22											1						
В																				
. С		53													1					
D			1								4	1	1	1			1			
E														_						
F					1				22					1	1				1	
G						53	53				21	3	4				8			
Н							1							2						
ŀ			1					1	32										51	
K																				
L																			1	
М																				
N										1	1		2	2			1			
Р								3												
Q											1									
R						1				3	2		1							57
S			2		35			51	1	52	25	5	9	1			44		1	<u> </u>
T	53		29								2	1					3			
٧				55		1			1										3	<u> </u>
W												1			2	56		57		<u> </u>
X		1																		
Υ	1	1			19		1							48	52					
Z			<u> </u>															<u> </u>	<u> </u>	<u>!</u>
_	Г											45	39						<u></u>	<u>.</u>
unknown (?)																		<u> </u>	<u> </u>	<u></u>
not sequenced	4	4	2	2	2	2	2	2	1	1	1			1	1	1		<u></u>	<u> </u>	
sum of seq?		53	55	55	55	55	55	55	56	56	56	56	56	56	56	56	57	57	57	57
oomcaa³			· -		·	····	*******	÷	÷	÷	25	-			:	:	:	:	:	•
mcaa'	T	С	T	٧		G	G	**********	1	5	S	-	-	Υ	Υ	W	:	W	1	R
rel. oomcaas	%00	100%	53%	100%	34%	96%	%9t	33%	57%	33%	45%	30%	20%	96%	93%	100%	77%	100%	89%	100%
pos occupied		1 1	ī	Ť	<u> </u>					:	7		1		1			1		5 1

Table 6E: Analysis of V heavy chain subgroup 4

				F	ram	ewo	rk 11						Т							
amino acid'	39	40	41			4		46	47	48	49	50	7.	52	. ✓	В	U	53	54	55
А			1	3	1	Ī				Ī		1	T		Ī			T		T
В										Ť	<u> </u>	<u> </u>		<u> </u>			<u> </u>			<u> </u>
· c										<u> </u>	İ	<u> </u>	-	1		1	<u> </u>			
D					Ī					<u> </u>	-	<u> </u>	<u> </u>		† 	 	İ	 	1	<u> </u>
Е		Ţ.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		1				56	3		-	22	2		1	 	<u> </u>	<u> </u>	<u> </u>	
F .									1		1			1		<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u>†</u>
G				55	5	55			-	-	56	5 1			-			1		57
Н		2							<u> </u>	1								24	. <u>. </u>	
l									Ĭ	54		1	54			<u> </u>		<u></u>	†	
K					54		Ī	-	<u> </u>	 	 		 					 -		
L		1		<u> </u>			55		1	2	<u> </u>	<u> </u>	 		<u> </u>	 		<u> </u>	<u> </u>	
M			Ī					Ī		<u> </u>	<u> </u>	<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u></u>	<u> </u>	
N							<u> </u>					<u> </u>		21			 			
Р		50	49				2	-	7							 				
Q	56							1	<u> </u>	<u></u>		1								
R					3	2			<u></u>	*		9	ļ	1					<u></u>	
S		3						<u></u>			<u> </u>	7	 	1					52	
T	1	1																8		
V										1			3	 -				******		
W							********		56									••••••		
X							*********													
Υ									1			15		32				23		
Z																				
-															57	57	57			_
unknown (?)																			·i	
not sequenced									*******											
sum of seq²	57	57	57	57	57	57	57	57	57	57	57	57	57	57	57	57	57	57	57	57
	56																			
mcaa*	Q	Р	Р	G	Κ	G	L	Ε		ı	G				-	-	-	Н		
rel. oomcaa⁵	%86	%88	%98	%96	95%	%96	%96	%86	%86	95%	98%	39%	95%	%95	100%	100%	100%	42%	91%	100%
pos occupied ^a												8	2	6	1	1				1

74

Table 6E: Analysis of V heavy chain subgroup 4

		DR			<u></u>															_
amino acid'	99	23	28	23	8	61	62	63	64	65	99	29	89	69	02	71	72	73	74	75
Α		1									1		1			1				
В																				
. С																				
D			2									1					55			
E																	1			
F .				3														1		
G	1									1										
Н			2																	••••
	1	1									<u> </u>	1	1	48		3				
K					1				53									1		5
L						1		55				1				3				
M														7				2		
N	2		40		53								2							
P						54		1												
Q																	1			
R	2								3		56									
S	49		1		2		56			56			1		56			1	57	
T	1	54	1			1			1				51		1			52		
V	1	1										53		2		50				
W							•													
X																				
· Y		†•	11	54																
Z		•	<u> </u>																	
_																				
unknown (?)			<u> </u>	<u> </u>																
not sequenced					1	1	1	1			.,	1	1							
sum of seq²	?	57	57	57	56	56	56	56	57	57	57	56	56	57	57	57	57	57	57	5
oomcaa ³	·····	÷	÷	······	······	:·····		:			56						:			:
mcaa*	5	T	N	Υ	N	Р	S	L	K	S	R	٧	T	ł	S	٧	D	T	S	۱
rel. oomcaa'	96%	95%	20%	95%	95%	%96	100%	%86	93%	%86	%86	95%	91%	84%	98%	88%	%96	91%	100%	ò
pos occupied		÷	6	:	i	3	ţ	i	3	:	:	i					<u> </u>		:	

Table 6E: Analysis of V heavy chain subgroup 4

					Fran	new	ork l	111												
amino acid'	9/	77	78	79	80	81	82	۷	8	ပ	83	84	85	98	87	88	83	90	91	92
Α												55	57	·		57	,			
В									Ī			-								
. C																Ī				57
D					1									57						
E	ļ	ļ	<u> </u>	<u> </u>		1														
F .	<u> </u>	ļ	54	<u> </u>					1											
G		<u> </u>	<u> </u>		<u>[</u>			1		<u> </u>										
Н		<u> </u>	<u> </u>	<u> </u>	<u> </u>			<u> </u>		<u> </u>		<u></u>	<u></u>	<u></u>						-
l	<u> </u>		1					1	<u> </u>	<u> </u>	3			<u></u>			<u></u>	<u> </u>		
K	3	ļ	<u> </u>		<u> </u>	46		2								<u> </u>	<u> </u>	<u>!</u>	<u> </u>	
LL	ļ	3	1		55		53			2							1	<u> </u>		
M						1	1			1						<u></u>	1			
N	54					3		3	1								ļ	<u> </u>		
Р																<u></u>				
Q	ļ	54			1	1										<u></u>	<u> </u>	<u> </u>		
R	ļ					2		2				1								
S			1	57		2	1	44	55		1				2	<u></u>	<u> </u>		1	
T						1		4			53				55	<u> </u>				
V							2			54		1					55			
W				••••••				******												
X																				
Y .																		57	56	
Z ·																				
-																				
unknown (?)																				
not sequenced		_						_		_	_	_								
sum of seq'		:	:	:	:		:	:			·····							*******		
:			54			*******			*****		•••••							·····		57
mcaa'	N	0	F	S	L	K	L	S	S	٧	Ţ	Α	Α	D	T	Α	٧	Υ	Υ	С
rel. oomcaa³	95%	95%	95%	100%	%96	81%	93%	77%	%96	95%	93%	%96	100%	100%	%96	100%	%96	100%	%86	100%
pos occupied ⁶	2	2	4	1	3	8	4	7		3	•••••••	3	1	1	2	1	3	1		1

Table 6E: Analysis of V heavy chain subgroup 4

·										CDR	R III								<u></u>	
amino acid'	93	94	95	96	97	86	66	9	4	8	ပ	۵	ш	u.	G	I	_	_	×	101
Α	56		3	3	3	2	5	4	2	2	4		2	1		1	1	12		
В										ļ										
- С					1				1											
D			6		5	5	5	4	3	2	4	3	1		1	2	1			41
E			6	1	1	2	1			1	3	1	2	1						
F				4	1	1		2	3	2	2		1	1					31	
G			25	9	10	8	10	11	4	7	7	6	1	1	1	2	1	9		
Н			1				1						1			1				
1				1		2	4	1	3	2	3		1						1	
K			2	1						2	2			1						
L			2	6	7	3	5	3	2	4	1	5	3	3		1				
М				1	4		3	1		2	1								9	
N				3					2	1	1	5	1	1			2			ļ
Р				4	5	3	1	1	2	1	1	1	2	3	1	2	1			ļ
Q					1	1		1			1	1			3					ļ
R		54	4	12	2	5	5	3	2	3	1	2			2	1				
S		1	1	4	8	8	1	2	5	7	4	2	1	1	1					
T		1	1	2	1	3	4	4	3	3			1	1	1			<u> </u>		<u></u>
٧	1	1	4	2	2	5	4	4	7	3	1	2	1					<u> </u>	<u> </u>	<u> </u>
W			1	2	1	2	2	4	5	1	1	2		2	1		3	2		
Χ																				<u> </u>
Y				1	4	5	3	6	4	2	3	4	8	4	8	3	5	8		ļ
Z								<u> </u>										<u> </u>		<u> </u>
_						1	2	4	6	9	11	16	23	27	29	34	31	14	4	
unknown (?)											<u> </u>			1			1	1	1	<u> </u>
not sequenced	1		1	1	1	1	1	2	3	_3	6	7	8	9	9	10	11	11	11	1
sum of seq ²	57	57	56	56	56	56	56	55	54	54	51	50	49	48	48	47	46	46	46	4
oomcaa		·-···		*******				•	:	:	:	16		•	•	•		•	31	•
mcaa*	Α	R	G	R	G	G	G	G	٧	-	-	-	-	-	-	-	-	-	F]
rel. oomcaas	0/086	95%	45%	21%	18%	14%	18%	20%	13%	17%	22%	32%	47%	26%	%09	72%	67%	30%	67%	
pos occupied				•••••	:	:	:	;	;	1	<u>:</u>	•	:	:	:	:	:	1	:	. i

WO 97/08320

Table 6E: Analysis of V heavy chain subgroup 4

		Г				Fr	ame	wor	k IV	,				1
	amino acid¹	102	103	104	105	106	107	108	109	110	11	112	113	sum
	Α										1			332
	В		Ī					<u> </u>	<u> </u>	<u> </u>		Ť		1
	С		 	1				1	<u>†</u>	-	<u> </u>	<u> </u>	-	113
	D		Ī	<u> </u>			Ī	1	 	<u> </u>	Ť	- 		210
	E		Ī						1	İ				176
	F							1		<u> </u>		<u> </u>		135
	G			41		40	1		-			-		674
	Н	1						<u> </u>	<u> </u>	1		<u> </u>		45
]	9			-		1	<u> </u>	<u> </u>	<u> </u>	<u> </u>			282
	K		<u> </u>		3	<u> </u>		İ	<u> </u>		<u> </u>			278
	L	4						19	<u> </u>		-			540
	М		İ					9		<u> </u>		 -		43
	N						1	<u> </u>	-					204
	Р	3			2			1					2	281
	Q				29		}		İ		ļ			334
	R	1			4			1						250
	S	1		<u> </u>	1	<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>	36	33	986
	Ţ				1		33	8	<u> </u>	34				532
	V	12							36		36			488
	W		46											267
	X													
	Y	16												455
	Z								•••••					1
	-													466
	unknown (?)													4
ľ	not sequenced	10	11	16	17	17	20	20	21	21	21	21	22	426
	sum of seq ²	47	46	41	40	40	37	37	36	36	36	36	35	
	oomcaa¹	16	46	41	29	40	33	19	36	34	36	36	33	
	mcaa*	Υ	W	G	Q	G	T	L	٧	T	٧	S	S	
	rel. oomcaa ^s	34%	100%	100%	73%	100%	9%68	51%	100%	94%	100%	100%	94%	
ł	oos occupied"	;	1	1	6	1	5	<u>-</u>	1	:	1	1	2	

17.6

WO 97/08320

Table 6F: Analysis of V heavy chain subgroup 5

														Fra	me	wor	k I			
amino acid'	-	7	က	4	သ	9	7	8	6	01	=	12	13	4	15	16	17	8	19	20
Α					1			1	89		1			1						
В																				
· C							1		<u> </u>											
D										2										
E	88	1			2				4	93						92				
F																	1			
G	1							92			<u></u>				94					
Н								<u></u>												
l																				96
К									<u></u>			94	94						77	
L		1		91		2												95		
М											3								1	
N																				
Р				1					1					94		.,				
Q	. 3		92		1	90										3			1	
R						1						1	1		1				17	
S							92										94			
T																				
V		90			89				1		91									
W							٠													
Χ																				
Y																				ļ
Z																				
-																				<u></u>
unknown (?)																<u> </u>				<u> </u>
not sequenced	5	5	5	5	4	4	4	4	2	2	2	2	2	2	2	2	2	2	1	<u> </u>
sum of seq'	92	92	92	92	93	93	93	93	95	95	95	95	95	95	95	95	95	95	96	9
oomcaa³	88	90	92	91	89	90	92	92	89	93	91	94	94	94	94	92	94	•	:	:
mcaa'	E	٧	Q	L	٧	Q	S	G	Α	Е	٧	K	K	Р	G	E	S	L	K	١
rel. oomcaa ^s	%96	%86	100%	%6€	%9 6	37%	%66	%66	94%	%86	%96	%66	%66	93%	93%	97%	%66	100%	80%	1000%
pos occupied ⁶	3	:	†	<u> </u>	:	1	•	•	•	•	i	2	:	:	2	[1	i	

Table 6F: Analysis of V heavy chain subgroup 5

					-						Т				DRI	!	.		Τ	
amino acid	21	22	23	24	25	26	27	28	29	3 6		5 ⊲		2	33	34	35	36	33,	38
Α					3 :	2			Ī	Ī	4			Ī	Ī		1	3	T	1
В														-	-	<u> </u>			-	1
· C		9(6						1	İ	<u> </u>	1	<u> </u>		1	<u>-</u>			1	<u>†</u>
D				Ī					2	Ī		2				1	1			<u>† </u>
E						2	2					1						1	1	1
F .	<u>.</u>	<u>.</u>			3	}	(3	9	7					2		1	1	1	
G	.[<u>.</u>		92		93	1					1					72	2	-	
Н		<u>.</u>	<u> </u>	<u> </u>	<u>.</u>						1	ı		4	1					1
1	ļ	<u>.</u>	<u> </u>	<u> </u>	<u> </u>					4	Į.					93	3			
Κ.			89	<u> </u>	<u>.</u>			1												
L	ļ		<u> </u>	<u> </u>		<u> </u>	<u> </u>								1			1	2	
M		<u> </u>	1		<u> </u>	<u> </u>							-			1	<u> </u>		1	
N	ļ	<u>.</u>	1	<u></u>	<u> </u>			2		4	14			2						
P		<u> </u>	<u> </u>		1															1
Q			4		<u> </u>	<u></u>	ļ													
R	ļ	<u> </u>	1			1	<u> </u>	2							1					95
S	94	<u> </u>	<u> </u>	1	90	<u> </u>		84	<u> </u>	10	61			2	2		15			
<u>T</u>	2	<u> </u>						5	<u> </u>	75	16					2	1			
V	ļ	<u> </u>							<u> </u>	<u> </u>	<u> </u>					1			93	
W									<u> </u>						93			97		
X									<u> </u>									·		
ΥΥ							90			ļ				87						
<u>Z</u>																				
_												97	97							
unknown (?)																				
not sequenced	_			_==	_	1														
sum of seq ²																				
•			89					,		75		97	97	87	93	93	72	97	93	95
mcaa*	S	С	K	G	S	G	Υ	S	F	T	S	-	-	Υ	W		G	W	٧	R
rel. oomcaaʻ	98%	100%	93%	%96	94%	92%	94%	87%	100%	77%	63%	100%	100%	%06	%96	%96	74%	100%	96%	98%
pos occupied ⁶	2	1	:	3			2	•	•		8			5	:		5	1		3

WO 97/08320

Table 6F: Analysis of V heavy chain subgroup 5

				Fra	mev	vork	: 11													
amino acid'	39	40	41	42	43	44	45	46	47	48	49	20	51	25	∢	ω	ပ —	53	54	52
Α			1			1									1			2	1	
В																				
. С														1				1		
D														14				8	93	
E					3			97											2	
F												1		2						
G				97		96					95							69	1	
Н														3	1					
1										1		75	92							
K		1			94															
L							94			2		2	1							
М		92								89			1							
N																				
Р			96				2							1	93					
Q	97						1													ļ
R		1									1	14						1		_
S												1			1			16		9
T		1	<u></u>		<u></u>			<u> </u>				3	1		1				<u>.</u>	<u></u>
V		2	<u> </u>		<u> </u>			<u> </u>		5	1	1	2							<u> </u>
W				<u></u>	<u> </u>	<u> </u>	<i>.</i>	<u> </u>	94			<u> </u>							<u></u>	ļ
X	 _	<u> </u>		<u> </u>								ļ	ļ						<u> </u>	<u>_</u>
Y		<u></u>	<u> </u>	<u></u>	<u> </u>			ļ	3			<u>.</u>	<u></u>	76						
Z						<u> </u>		<u>!</u>									<u> </u>	<u> </u>	<u> </u>	<u> </u>
-		<u> </u>	<u> </u>	<u> </u>				<u> </u>	ļ	<u> </u>	<u> </u>	<u> </u>	<u> </u>			97	97	<u> </u>	ļ	<u>.</u>
unknown (?)	<u></u>	ļ	<u> </u>	<u>.</u>	<u></u>	<u></u>	<u> </u>	<u></u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	ļ	<u> </u>	<u> </u>	<u> </u>	<u> </u>	ļ	ļ	ļ
not sequenced	_		<u> </u>			_						<u> </u>	<u> </u>	<u> </u>			<u> </u>		<u> </u>	<u> </u>
sum of seq?																				
oomcaa,		-				• •••••••	****		÷	÷	÷		92	•	:	:	:			
mcaa*	Q	.	. 	· <u>‡</u>	·	·		·	ļ	-	. 	· <u>†</u> ·····		·	Р	-	 		D	<u>.</u>
rel. oomcaa ^s	100%	95%	%66	100%	9/0/6	%66	9/0/6	100%	97%	92%	%86	77%	95%	78%	%96	100%	100%	71%	%96	
pos occupied	1	•	•=		:	:	:	• • • • • • • • • • • • • • • • • • • •		:	:			:	:	E	•	:	:	1

WO 97/08320 PCT/EP96/03647

Table 6F: Analysis of V heavy chain subgroup 5

		CDR	II II						 .			Τ								
amino acid'	26	22	58	59	09	61	62	63	64	65	99	67	89	69	70	71	72	73	74	75
Α		6					1									88				
В																	<u></u>			
· c					1				<u> </u>	1							<u> </u>			
D	77									2							97	<u> </u>		
E	3								2									2		
F .		<u></u>		2				91				1		3						
G	1			<u> </u>						94										
Н		<u>.</u>		<u></u>	<u></u>						15									
1		4	1		<u> </u>	<u> </u>	<u> </u>	1		<u> </u>		3		88						91
K	<u> </u>		2	<u> </u>		<u></u>		<u> </u>	<u> </u>	<u> </u>		<u> </u>						93		
<u> </u>	<u> </u>					1	<u>.</u>	4		<u> </u>	<u> </u>	<u> </u>			2					
M	<u></u>								<u></u>				<u> </u>	3						1
N	2		14	2		<u> </u>			<u> </u>											
P	ļ					95	1	ļ	1			<u> </u>							1	
Q	ļ							ļ	91		81							1		
R	.		78						3		1			1				1		
S	2	2			95	1	95	1					1		95				96	1
T		85	2		1								96							4
V				1								93		2		9				
W																				
X													•••••							
Y	12			92																
Z					_															
-																				
unknown (?)	 																			
not sequenced			_				_			_	_				_	_			_	_
	;	97	:	:	:	:			:											
		85			*******				••••••		*******	•••••••••••••••••••••••••••••••••••••••		88	•••••••••••••••••••••••••••••••••••••••				•	91
mcaa'	D	T	R	Υ	S	Р	S	F	Q	G	Q	٧	T		S	Α	D	K	S	1
rel. oomcaa³	79%	988%	%08	95%	%86	%86	%86	94%	94%	97%	84%	%96	%66	91%	%86	91%	100%	%96	%66	94%
pos occupied	6	4	5	4	3	3	3	4	4	3	3	•	;	:	2	2	•	- 1	2	4

182

Table 6F: Analysis of V heavy chain subgroup 5

				F	ram	ewo	rk II	1												
amino acid'	92	77	78	6/	80	8	87	⋖	&	U	83.	84	82	98	87	88	83	90	91	92
Α		1	91								1	96				93				
В																				
. С							1													9!
D				1										96						
E						1					1									
F .				1														2	6	
G								3	1							4				
Н						3														
l															2		9			
K											91						1			
L					96					97							2	.		
M																	84			
N	7							2	2						2					
P			1																	
Q					•	93														
R	1						1	1	3		3									_
S	87	2	1	1				90	91				96		5			<u> </u>		<u> </u>
T	2	94	2					1			1	1	1		88		1	<u> </u>	<u> </u>	ļ
V			2		1									1			<u> </u>	<u></u>	<u></u>	<u> </u>
W							95										<u> </u>	<u> </u>	<u> </u>	<u> </u>
Χ																	<u> </u>	<u></u>	<u></u>	<u> </u>
Υ				94												, <u>.</u>	<u></u>	94	89	
Z																		<u> </u>		
-																	<u> </u>	<u></u>	<u> </u>	<u>.</u>
unknown (?)																ļ	<u> </u>	<u> </u>	<u> </u>	_
not sequence	1																<u> </u>	1	2	_
sum of seq ²	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	96	95	٤
oomcaa³	87	94	91	94	96	93	95	90	91	97	91	96		96	•	•	•	•		
mcaa*	S	T	Α	Υ	L	Q	W	S	S	L	K	Α	S	. D	T	Α	М	Υ	Υ	-
rel. oomcaas	%06	37%	94%	37%	%66	%96	%86	93%	94%	100%	94%	%66	%66	99%	91%	%96	87%	986	94%	
pos occupied		•	:	:	:	:	:	•	•	1	:	:	:	2	:	:	•	:	2 2)

Table 6F: Analysis of V heavy chain subgroup 5

										CD	R III									
amino acid'	93	94	95	96	97	98	66	100	⋖	В	ပ	٥	ш	ц.	9	Ξ	_	_	×	101
Α	92		1	1	2		3	4	3	2		1			1			4	<u> </u>	2
В																	-	<u> </u>	1	
. с					<u> </u>	1	1	1		ĺ	2		1	<u> </u>		 	-	 		
D				3	3	3	3	1	2	1	1	2		2	1	1	2			37
Е			1	1	1	2			1	1				1			1			
F .					1		3			3	2		1						26	
G			1	9	11	12	12	5	2	4	3	10	2	1				5		
Н			10	1		2			1	1	<u> </u>	1						İ		
				3		2	2	1	1	4	1	1		1	1			<u> </u>	<u> </u>	
K		1	1	1		1	3	1								2	<u> </u>	<u> </u>	<u> </u>	
L			11	2	3	1	1	2	5		1		1		1			 		
М					2	1	1		1	1	1	1				 	<u> </u>	 -	10	
N				1		2		1	1	2			1			ļ	 	2		
P ·			5	1	4	3	1	2				1	1	1	1		İ			
Q		1	3	2		1	1	4	2	1	2				**********					3
R		92	7	9	2	2		2	1		2	*******				·				
5		1	1	3	2	6	4	4	5	3	5	3	2	2			1		1	
Т	1		1	3	2	1	2	6	3	3	6	1		1	*******					
V	2		2	4	4		1		1	2		•••••	1		****					
W			1		2	1				••••••	1		2		1	********	1	1		
Х										•••••					•••••					
Y				1	6	3	6	9	8	7	2	1	2	6	8	9	9	10	•••••	1
Z																				
-						1	1	2	8	10	16	23	30	30	31	32	30	22	7	2
unknown (?)				·									1			1				
not sequenced	2	2	52	52	52	52	52	52	52	52	52	52	52	52	52	52	52	52	53	52
sum of seq ²	:						_								==					
:	:		11	:	:	:			·	-						*********	*******			
mcaa'			L							-	-	-	-	-	-	-	-	-	F	••••••
rel. oomcaa ^s	97%	97%	24%	20%	24%	27%	27%	20%	18%	22%	36%	51%	67%	%29	%69	71%	57%	49%	29%	32%
pos occupied ⁶																				5

Table 6F: Analysis of V heavy chain subgroup 5

,					Fra	mev	vork	IV					
amino acid'	102	103	104	105	106	107	108	109	110	111	112	113	sum
А												1	611
В					i								
С					·····								205
D	1				Ī								458
E				1									404
F	2												256
G			41		41								1065
Н													44
ı	9								2				588
К				3									650
L	2						25	1		į			549
М							8						303
N													64
Р	2					1					1		414
Q				34									612
R				3									351
S	2										40	39	1545
Т	1					40	8		39				604
V	11							40		41			594
W		43											432
X													
Y	13												738
Z													
-	2												635
unknown (?)	<u> </u>												4
not sequenced	52	54	56	56	56	56	56	56	56	56	56	57	1678
sum of seq ²	45	43	41	41	41	41	41	41	41	41	41	40	
oomcaa,	13	43	41	34	41	40	25	40				:···	
mcaa*	Υ	W	G	Q	G	T	L	٧	Ţ	٧	S	S	
rel. oomcaa'	29%	100%	100%	83%	100%	%86	61%	%86	95%	100%	%86	%86	
pos occupied	10	1	1	4	1	2	3	2	2	1	2	2	j
					18	25							

Table 6G: Analysis of V heavy chain subgroup 6

÷														F	ram	ewo	rk I			
amino acid'	-	2	က	4	2	9	7	8	6	0	=	12	13	14	15	16	17	18	19	20
Α						Ī						1		Ī						
В																			-	
· c																				
D											-						<u> </u>		<u> </u>	<u> </u>
E										-								<u> </u>		
F																				
G								52		67										
Н																				
ļ		<u> </u>	<u> </u>																	
K													68				<u> </u>			
L				52							68	1						67	1	68
М																				
N																				
Р									68					67					1	
Q	52		52		51	52										68				
R					1					1										
S							52							1	68				66	
T																	68			
V		52										66						1		
W																				******
X																				
Υ																				
Z																				
unknown (?)																				
not sequenced	22	22	22	22	22	22	22	22	6	6	6	6	6	6	6	6	6	6	6	6
sum of seq²	52	52	52	52	52	52	52	52	68	68	68	68	68	68	68	68	68	68	68	68
oomcaa³	52	52	52	52	51	52	52	52	68	67	68	66	68	67	68	68	68	67	66	68
mcaa'	Q	٧	Q	L	Q	Q	S	G	Р	G	L	٧	K	Р	S	Q	T	L	S	L
rel. oomcaa⁵	100%	100%	100%	100%	98%	100%	100%	100%	100%	%66	100%	97%	100%	%66	100%	100%	100%	93%	92%	100%
pos occupied ⁶	1	1	1	1	2	1	1	1	1	2	1	3	1	2	1	1	1	2	3	1

WO 97/08320

Table 6G: Analysis of V heavy chain subgroup 6

•														CD	RI					
amino acid'	21	22	23	24	25	26	27	28	53	30	3	⋖	<u> </u>	32	33	34	35	36	37	38
Α	1		67											66	67	<u></u>				
В		İ																		
С		68																<u> </u>		
D							68				1						1			
E																				
F .										2				1	1				1	
G			1			69							3	1	2					·
Н																	1			
l				64								2					1		70	
K												3								
L																				
M																				
N							1				2	66					70			
P																				
Q																				
R			<u> </u>								2	1								7
5	1			1	69			69		68	66		67		3		1			<u></u>
T	67										2	1	4		1		ļ	ļ		<u> </u>
V			1	4					70					6			<u></u>	<u> </u>	2	<u>.</u>
W		1					٠									74	<u> </u>	74		<u> </u>
Χ																	<u> </u>	<u> </u>		
Y			Ī	-								1					<u> </u>	<u> </u>	1	
Z		•															<u> </u>	<u> </u>		
		i i																<u> </u>	<u> </u>	<u> </u>
unknown (?)	-	Ī	Ì								1						<u> </u>	<u> </u>	<u> </u>	<u> </u>
not sequenced	5	5	5	5	5	5	5	5	4	4										<u> </u>
sum of seq ²				69	69	69	69	69	70	70	74	74	74	74	74	74	74	74	74	7
oomcaa,												66								
mcaa'		С	÷	1	S	G	D	••••••••	٧		·		S	Α		W		W	1	
rel. oomcaas	170%	9061	17%	33%	%00 I	%00 I	39%	%001	100%	37%	39%	%68	910%	%68	91%	100%	95%	100%	95%	
pos occupied		-	:	•	•	1.	1	1	:	: _	:	:	i	:	:		·	Ţ	<u> </u>	7

Table 6G: Analysis of V heavy chain subgroup 6

				F	ram	ewo	rk II				-		T							
amino acid'	39	40	5 1	42	1 6	44	45	46	74	48	49	50.		5	, A	. œ	، د	, 5	54	55
Α					1		Ī	T		T	T			1	<u> </u>		T	_	1	Ī
В		Ī			Ī								<u> </u>		<u> </u>	<u> </u>		İ	<u> </u>	-
· с		Ī		"	Ī				1	<u> </u>	<u> </u>		<u> </u>		<u> </u>	 	<u> </u>	-	-i	†
D		Ī		Ī	Ī		Ī		1	İ	<u> </u>		<u> </u>	<u> </u>		<u> </u>		<u> </u>	-	<u> </u>
E								7.	4	<u> </u>	Ť	<u> </u>	<u> </u>			1		<u> </u>	-	<u> </u>
F.											-				2	 	1	Ť.		<u> </u>
G						74	l				74	1				<u> </u>	<u> </u>		·	
Н		į								•	<u> </u>		<u> </u>		1	 	<u> </u>			
l							<u> </u>			<u> </u>	<u> </u>	<u> </u>				<u> </u>	<u> </u>	-		
K	1			-	1				<u> </u>	<u> </u>						1		<u> </u>	66	
L	1						74	١	1	74		<u> </u>	<u> </u>			 -	<u> </u>	<u> </u>		<u> </u>
М									<u> </u>		<u> </u>					<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>
N									1	-	-		<u> </u>			<u> </u>	 		1	
Р			73						1							1			-	
Q	72																			
R					73					<u></u>		73			·	72		·	1	1
S		74	1	73						<u> </u>	<u> </u>	 -				1	;	72	<u> </u>	
T									Ī	Ī	<u></u>	<u> </u>	73			 -	 	<u> </u>	5	
V									1	<u></u>	<u></u>	<u></u>				<u> </u>		! -	<u> </u>	
W			<u> </u>						74											73
X			<u> </u>																	
Υ		··	<u> </u>											72	72					
Z																				•••
***************************************																	74		_	
unknown (?)							••••													
not sequenced																	******			
sum of seq'	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74
oomcaa,	72	74	73						74				;	***************************************		*****	*******			********
mcaa'	Q			S	_ :	_ ;	L		W			R	T	••••••	•••••••••••••••••••••••••••••••••••••••	R	-	S	••••••	W
rel. oomcaa ⁵	92%	100%	%66	%66	%66	100%	100%	100%	100%	100%	100%	%66	%66	%26	9/0/6	92%	100%	92%	9%68	%66
pos occupied				:			•	1	:		:	2	:	:	3	•		······	5	2

PCT/EP96/03647

WO 97/08320

Table 6G: Analysis of V heavy chain subgroup 6

•	С	DR I	ll _																	
amino acid'	26	23	28	23	99	19	62	63	64	65	99	29	89	69	70	7	72	73	74	75
Α					73	1							2			6		1		
В									<u></u>											
· C				1																
D			68			1									2		73			
E	1		3			7			1											2
F .	7																			
G			1				1			8										
Н	1																1			
						1						65	2	71				1		
K		1							67						1					70
L	1					5		2				4						1		
M									٠			1								
N	2	65	1						1						69					
Р					1	1										66				
Q ·									2		1									
R		1	<u> </u>						3		73									
S	2	2	1	1			73			66			1		2	1			73	
T		4	<u> </u>	<u> </u>									69	1				71	1	2
. V			<u> </u>	<u> </u>	<u> </u>	58		72				4		2		1				
W			<u> </u>	<u> </u>	ļ						<u>:</u>									
X			<u> </u>	<u> </u>																
Υ	60	1	<u> </u>	72							<u> </u>									
Z																				
			<u> </u>		ļ	<u></u>	<u></u>	<u> </u>	<u>.</u>	<u></u>	ļ									
unknown (?)	ļ	<u> </u>	<u> </u>	<u>.</u>	<u></u>			<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>								
not sequenced		_	<u> </u>		<u> </u>						<u> </u>									
sum of seq ²		÷	÷	·÷				:		:	:	:	: :	:	:	:	:		<u> </u>	:
oomcaa ¹		á	· 	·		• • • • • • • • • • • • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·	******	÷	÷	÷	·	69		:	:	:	:	·	:
mcaa*	Υ	N	D	Y	Α	V	S	V	K	S	R	1	T	1	N	Р	D	T	5	K
rel. oomcaas	81%	88%	92%	97%	966	78%	%66	97%	910%	%68	%66	88%	93%	%96	93%	968	%66	%96	%66	95%
pos occupied ⁶	:	:		1	•	;	:	:	1	:	:	:	:		•	:	•	4	•	3

Table 6G: Analysis of V heavy chain subgroup 6

	-				Frar	new	ork	111				_								
amino acid'	9/	77	78						8	U	83	84	85	98	87	88	89	90	91	92
Α	Γ			Ī	T		Ī	Ī	-			<u> </u>	1			74	L.	<u> </u>	Ī	<u> </u>
В					<u> </u>				· · · · · · · · · · · · · · · · · · ·	<u> </u>		<u> </u>		 -	 	<u> </u>	<u> </u>	Ť	<u> </u>	<u> </u>
· c		Ī		<u> </u>	<u> </u>							<u> </u>	<u> </u>	<u> </u>	 		<u> </u>		<u> </u>	73
D	I		-	<u> </u>				3	1	 			<u> </u>	73	 	1	<u> </u>	<u> </u>	† -	
Е			-				Ī		<u> </u>	1	İ	<u> </u>	73			1			<u> </u>	
F			71					-	1	-							<u> </u>		3	
G														1		-	•	<u> </u>		
Н						2		1										:		
1	!	<u> </u>	1											<u></u>			2			
.K	<u> </u>	<u> </u>	<u> </u>					4			Ī					<u></u>	<u></u>	<u> </u>		
<u>L</u>		1	<u> </u>		74		72									Ī				
M							1			1							2	<u> </u>		
N	74		ļ					63											1	
Р					ļ							70								
0		72		<u> </u>	<u></u>	71														
R	<u></u>	1		<u> </u>	<u> </u>	1		1												1
S			<u> </u>	74	<u> </u>			1	73		1	3								
T					<u> </u>			1			73				74			1		•
V			2				1			73							70			
W															********			•		
X															•••••		********			
Y									·									73	70	
Z																				
-																_				
unknown (?)																				
not sequenced												1								
sum of seq ²	74	74	74	74	74	74	74	74	74	74	74	73	74	74	74	74	74	74	74	74
oomcaa³					74	71	72	63	73	73	73	70	73	73	74	74	70	73	70	73
mcaa'			F						S		T	Р	Е	D	T	Α	٧	Υ	Υ	С
rel. oomcaas	100%	92%	%96	100%	100%	%96	92%	85%	%66	%66	%66	%96	%66	99%	100%	100%	92%	%66	95%	%66
pos occupied ⁶	1	3	3	1	1	3	3	7		2	2				1	1	3	2		2

WO 97/08320

Table 6G: Analysis of V heavy chain subgroup 6

	CDR III																			
amino acid'	93	94	95	96	97	86	99	001	∢	8	ပ	۵	ш	u_	ပ	I	_	_	×	101
Α	69		11	1	3	12	4	3	2	5		8						10	1	
В									<u> </u>						<u></u>					
· C					1		1			1		1	1							
D			19	4	3	7	4	3	1	6	1	1	1							62
E			10	4	2	1	2	2	1	2							1			
F .	1		1	1	1		1	2	3		2			1					38	4
G	1		16	4	15	15	11	8	6	2	5	1	8	6	1			17		
Н				1		1			1	1	1	1				1	1	1		
				1	2		2		5	1										
K		1	1	1	1	1	1	1				1								
L			1	8	4	2	3	2	1					1	5				8	
М				1				1			5								11	
N			1	3	1	2	1	1	1	3		2		1		1	3			
Р				10	4		5	3		5	1		1							
Q			1	1	1	1					1									1
R		69	1	7	8	1	8	8	3		1	1	5							1
5		3	5	5	5	7	6	7	3	4	2					1	1			
T			1	1	4	3	4	4	6	3	1			1						
V	3	1	4	5	1	9			4		9	5	1	1					2	
W			1	6	8		3	2	4								4	4		
Х																				
Y				6	4	2	2	2	6	6	2	4	2	1	8	8	12	12		
Z																				
-				2	3	7	14	23	25	33	41	47	53	54	57	56	50	28	12	4
unknown (?)														6	1	5				<u> </u>
not sequenced				1	2	2	1	1	1	1	1	1	1	1	1	1	1	1	1	1
sum of seq²	74	74	73	72	71	71	72	72	72	72	72	72	72	72	72	72	72	72	72	72
oomcaa,	69	69	19	10	15	15	14	23	25	33	41	47	53	54	57	56	50	28		·····
mcaa'	Α	R	D	Р	G	G	-	-	-	-	-	-	-	-	-	-	-	-	F	D
rel. oomcaa ^s	93%	93%	26%	14%	21%	21%	19%	32%	35%	46%	57%	65%	74%	75%	29%	78%	%69	39%	53%	%98
pos occupied ⁶	:	:	:		•	:		:	:			:						:	•	•

19

SUBSTITUTE SHEET (RULE 26)

Table 6G: Analysis of V heavy chain subgroup 6

		Г	Framework IV												
		L	Framework IV												
	amino acid'	3	2 5	3 5	2 5	50.	2 5	<u> </u>	8 2 	109	0::	= :	112	113	sum
	Α								2			T			494
	В											Ť			
	С											<u> </u>			147
	D									1					403
	E												7	••••••	186
	F		2										2		150
	G			4	9	5	0				<u> </u>				571
	Н		2									}		*******	18
			9					3		1		Ī	1	*******	304
	K			<u> </u>		1			1					•	293
	L		5		<u> </u>			2	6						632
	М	ļ			<u> </u>				8						31
	N			<u> </u>											436
	Р	4			(3							7	1	387
	Q				40)									539
	R				2	2									495
	S	4		1			1					4.	3 4	46	1271
	Ţ		<u> </u>	<u> </u>			45	,	4	4	5	Ī	Ť		640
	V	21						1	2 4	6	48		1		647
	W		65						5			<u> </u>		-	398
	X											-	1	-	
	Y	19										-		7	518
	Z					<u> </u>									
	· _	2			_								T	٦	585
L	unknown (?)											<u></u> -	Ť		13
L	not sequenced	5	8	23	24	23	24	25	25	28	25	28	2	6	580
	sum of seq ²														
	oowcaa,	21	65	49	40	50	45	26	46	45	48	43	4	6	
	mcaa*	٧	W	G	Q	G	Ţ	L	٧	T	; -	S	S		
	rel. oomcaas	31%	100%	98%	82%	100%	92%	54%	%96	100%	0,001	%9 6	980%	2	
į	pos occupied"	•		:	:	:	3				1	<u></u>	3		
						10	\2_								

32

SUBSTITUTE SHEET (RULE 26)

PCT/EP96/03647

Appendix to Tables 1A-C

A. References of rearranged sequences

References of rearranged human kappa sequences used for alignment

- 1 . Alescio-Zonta, L. & Baglioni, C. (1970) Eur.J.Biochem., 15, 450-463.
- 2 Andrews, D.W. & Capra, J.D. (1981) Biochemistry, 20, 5816-5822.
- 3 Andris, J.S., Ehrlich, P.H., Ostberg, L. & Capra, J.D. (1992) J.Immunol., 149, 4053-4059.
- 4 Atkinson, P.M., Lampman, G.W., Furie, B.C., Naparstek, Y., Schwartz, R.S., Stollar, B.D. & Furie, B. (1985) J.Clin.Invest., 75, 1138–1143.
- Aucouturier, P., Bauwens, M., Khamlichi, A.A., Denoroy, L, Spinelli, S., Touchard, G., Preud'homme, J.-L. & Cogne, M. (1993) J.Immunol., 150, 3561-3568.
- 6 Avila, M.A., Vazques, J., Danielsson, L., Fernandez De Cossio, M.E. & Borrebaeck, C.A.K. (1993) Gene, 127, 273-274.
- Barbas lii, C.F., Crowe, Jr., J.E., Cababa, D., Jones, T.M., Zebedee, S.L., Murphy, B.R., Chanock, R.M. & Burton, D.R. (1992) Proc.Natl.Acad.Sci.Usa, 89, 10164-10168.
- 8 Barbas, C.F., lii, et al. (1993) J-Mol-Biol., 230, 812-23.
- 9 Bentley, D.L. & Rabbitts, T.H. (1980) Nature, 288, 730-733.
- 10 Bentley, D.L. & Rabbitts, T.H. (1983) Cell, 32, 181-189.
- 11 Bentley, D.L. (1984) Nature, 307, 77-80.
- 12 Bhat, N.M., Bieber, M.M., Chapman, C.J., Stevenson, F.K. & Teng, N.N.H. (1993) J.Immunol., 151, 5011-5021.
- 13 Blaison, G., Kuntz, J.-L. & Pasquali, J.-L. (1991) Eur.J.Immunol., 21, 1221-1227.
- Braun, H., Leibold, W., Barnikol, H.U. & Hilschmann, N. (1971) Z.Physiol.Chem., 352, 647-651; (1972) Z.Physiol.Chem., 353, 1284-1306.
- 15 Capra, J.D. & Kehoe, J.M. (1975) Adv.Immunology, 20, 1-40.; Andrews, D.W. & Capra, J.D. (1981) Proc.Nat.Acad.Sci.Usa, 78, 3799-3803.
- Capra, J.D. & Kehoe, J.M. (1975) Adv.Immunology, 20, 1-40.; Ledford, D.K., Goni, F., Pizzolato, M., Franklin, E.C., Solomon, A. & Frangione, B. (1983) J.Immunol., 131, 1322-1325.
- 17 Chastagner, P., Theze, J. & Zouali, M. (1991) Gene, 101, 305-306.

18 Chen, P.P., Robbins, D.L., Jirik, F.R., Kipps, T.J. & Carson, D.A. (1987) J.Exp.Med, 166, 1900-1905.

- 19 Chen, P.P., Robbins, D.L., Jirik, F.R., Kipps, T.J. & Carson, D.A. (1987) J.Exp.Med, 166, 1900-1905; Liu, M.-F., Robbins, D.L., Crowley, J.J., Sinha, S., Kozin, F., Kipps, T.J., Carson, D.A. & Chen.P.P. (1989) J.Immunol., 142, 688-694.
- 20 Chersi, A. & Natali, P.G. (1978) Immunochemistry, 15, 585-589.
- 21 Co, M.S., Deschamps, M., Whitley, R.J. & Queen, C. (1991) Proc.Natl.Acad.Sci.Usa, 88, 2869–2873.
- 22 Cuisinier, A.-M., Fumoux, F., Fougereau, M. & Tonnelle, C. (1992) Mol.Immunol., 29, 1363-1373.
- Davidson, A., Manheimer-Lory, A., Aranow, C., Peterson, R., Hannigan, N. & Diamond, B. (1990) J.Clin.Invest., 85, 1401–1409.
- Denomme, G.A., Mahmoudi, M., Edwards, J.Y., Massicotte, H., Cairns, E. & Bell, D.A. (1993) Hum.Antibod.Hybridomas, 4, 98-103.
- Dersimonian, H., Mcadam, K.P.W.J., Mackworth-Young, C. & Stollar, B.D. (1989)
 J.Immunol., 142, 4027-4033.
- Dreyer, W.J., Gray, W.R. & Hood, L. (1967) Cold Spring Harbor Symp. Quantitative Biol., 32, 353–367.
- 27 Ebeling, S.B., Schutte, M.E.M. & Logtenberg, T. (1993) Eur.J.Immunol., 23, 1405-1408.
- 28 Eulitz, M. & Kley, H.-P. (1977) Immunochem., 14, 289-297.
- 29 Eulitz, M. & Linke, R.P. (1982) Z.Physiol.Chem., 363, 1347-1358.
- Eulitz, M., Breuer, M., Eblen, A., Weiss, D.T. & Solomon, A. (1990) In Amyloid And Amyloidosis, Eds. J.B.Natvig, O.Forre, G.Husby, A.Husebekk, B.Skogen, K.Sletten & P.Westermark, Kluwer Academic
- 31 Eulitz, M., Gotze, D. & Hilschmann, N. (1972) Z.Physiol.Chem., 353, 487-491; Eulitz, M. & Hilschmann, N. (1974) Z.Physiol.Chem., 355, 842-866.
- 32 Eulitz, M., Kley, H.P. & Zeitler, H.J. (1979) Z.Physiol.Chem., 360, 725-734.
- Ezaki, I., Kanda, H., Sakai, K., Fukui, N., Shingu, M., Nobunaga, M. & Watanabe, T. (1991)

 Arthritis And Rheumatism, 34, 343-350.
- Felgenhauer, M., Kohl, J. & Ruker, F. (1990) Nucl. Acids Res., 18, 4927.
- Ferri, G., Stoppini, M., Iadarola, P., Bellotti, V. & Merlini, G. (1989) Biochim.Biophys.Acta, 995, 103-108.

36 Gillies, S.D., Dorai, H., Wesolowski, J., Majeau, G., Young, D., Boyd, J., Gardner, J. & James, K. (1989) Bio/Tech., 7, 799–804.

- 37 Goni, F. & Frangione, B. (1983) Proc.Nat.Acad.Sci.Usa, 80, 4837-4841.
- Goni, F.R., Chen, P.P., Mcginnis, D., Arjonilla, M.L., Fernandez, J., Carson, D., Solomon, A., Mendez, E. & Frangione, B. (1989) J.Immunol., 142, 3158-3163.
- 39 Gorman, S.D., Clark, M.R., Routledge, E.G., Cobbold, S.P. & Waldmann, H. (1991) Proc.Natl.Acad.Sci.Usa, 88, 4181-4185.
- Gottlieb, P.D., Cunningham, B.A., Rutishauser, U. & Edelman, G.M. (1970) Biochemistry, 9, 3155-3161.
- Griffiths, A.D., Malmqvist, M., Marks, J.D., Bye, J.M., Embleton, M.J., Mccafferty, J., Baier, M., Holliger, K.P., Gorick, B.D., Hughes-Jones, N.C., Hoogenboom, H.R. & Winter, G. (1993) Embo J., 12, 725-734.
- 42 Hieter, P.A., Max, E.E., Seidman, J.G., Maizel, J.V., Jr. & Leder, P. (1980) Cell, 22, 197-207; Klobeck, H.G, Meindl, A., Combriato, G., Solomon, A. & Zachau, H.G. (1985) Nucl. Acids Res., 13, 6499-6513; Weir, L. & Leder, P. (1986)
- 43 Hilschmann, N. & Craig, L.C. (1965) Proc.Nat.Acad.Sci.Usa, 53, 1403-1409; Hilschmann, N. (1967) Z.Physiol.Chem., 348, 1077-1080.
- 44 Hilschmann, N. & Craig, L.C. (1965) Proc.Nat.Acad.Sci.Usa, 53, 1403-1409; Hilschmann, N. (1967) Z.Physiol.Chem., 348, 1718-1722; Hilschmann, N. (1969) Naturwissenschaften, 56, 195-205.
- 45 Hirabayashi, Y., Munakata, Y., Sasaki, T. & Sano, H. (1992) Nucl. Acids Res., 20, 2601.
- Jaenichen, H.-R., Pech, M., Lindenmaier, W., Wildgruber, N. & Zachau, H.G. (1984) Nuc. Acids Res., 12, 5249-5263.
- Jirik, F.R., Sorge, J., Fong, S., Heitzmann, J.G., Curd, J.G., Chen, P.P., Goldfien, R. & Carson, D.A. (1986) Proc.Nat.Acad.Sci.Usa, 83, 2195-2199.
- 48 Kaplan, A.P. & Metzger, H. (1969) Biochemistry, 8, 3944-3951.; Klapper, D.G. & Capra, J.D. (1976) Ann.Immunol.(Inst.Pasteur), 127c, 261-271.
- 49 Kennedy, M.A. (1991) J.Exp.Med., 173, 1033-1036.
- 50 Kim, H.S. & Deutsch, H.F. (1988) Immunol., 64, 573-579.
- 51 Kipps, T.J., Tomhave, E., Chen, P.P. & Carson, D.A. (1988) J.Exp.Med., 167, 840-852.
- 52 Kipps, T.J., Tomhave, E., Chen, P.P. & Fox, R.I. (1989) J.Immunol., 142, 4261-4268.
- 53 Klapper, D.G. & Capra, J.D. (1976) Ann.Immunol.(Inst.Pasteur), 127c, 261-271.

- 54 Klein, U., Kuppers, R. & Rajewsky, K. (1993) Eur.J.lmmunol., 23, 3272-3277.
- Klobeck, H.G, Meindl, A., Combriato, G., Solomon, A. & Zachau, H.G. (1985) Nucl. Acids Res., 13, 6499–6513.
- Klobeck, H.G., Bornkammm, G.W., Combriato, G., Mocikat, R., Pohlenz, H.D. & Zachau, H.G. (1985) Nucl. Acids Res., 13, 6515-6529.
- 57 Klobeck, H.G., Combriato, G. & Zachau, H.G. (1984) Nuc. Acids Res., 12, 6995-7006.
- 58 Klobeck, H.G., Solomon, A. & Zachau, H.G. (1984) Nature, 309, 73-76.
- 59 Knight, G.B., Agnello, V., Bonagura, V., Barnes, J.L., Panka, D.J. & Zhang, Q.-X. (1993) J.Exp.Med., 178, 1903-1911.
- Kohler, H., Shimizu, A., Paul, C. & Putnam, F.W. (1970) Science, 169, 56-59. (Kaplan, A.P. & Metzger, H. (1969) Biochemistry, 8, 3944-3951.)
- 61 Kratzin, H., Yang, C.Y., Krusche, J.U. & Hilschmann, N. (1980) Z.Physiol.Chem., 361, 1591-1598.
- 62 Kunicki, T.J., Annis, D.S., Gorski, J. & Nugent, D.J. (1991) J.Autoimmunity, 4, 433–446.
- 63 Larrick, J.W., Wallace, E.F., Coloma, M.J., Bruderer, U., Lang, A.B. & Fry, K.E. (1992) Immunological Reviews, 130, 69-85.
- 64 Laure, C.J., Watanabe, S. & Hilschmann, N. (1973) Z.Physiol.Chem., 354, 1503-1504.
- 65 Ledford, D.K., Goni, F., Pizzolato, M., Franklin, E.C., Solomon, A. & Frangione, B. (1983) J.Immunol., 131, 1322–1325.
- 66 Ledford, D.K., Goni, F., Pizzolato, M., Franklin, E.C., Solomon, A. & Frangione, B. (1983)
 J.Immunol., 131, 1322–1325.
- 67 Ledford, D.K., Goni, F., Pizzolato, M., Franklin, E.C., Solomon, A. & Frangione, B. (1983)
 J.Immunol., 131, 1322–1325. Pons-Estel, B., Goni, F., Solomon, A. & Frangione, B. (1984)
 J.Exp.Med., 160, 893.
- 68 Levy, S., Mendel, E., Kon, S., Avnur, Z. & Levy, R. (1988) J.Exp.Med., 168, 475-489.
- 69 Liepnieks, J.J., Dwulet, F.E. & Benson, M.D. (1990) Mol.Immunol., 27, 481-485.
- Manheimer-Lory, A., Katz, J.B., Pillinger, M., Ghossein, C., Smith, A. & Diamond, B. (1991) J.Exp.Med., 174, 1639-1652.
- 71 Mantovani, L., Wilder, R.L. & Casali, P. (1993) J.Immunol., 151, 473-488.
- 72 Mariette, X., Tsapis, A. & Brouet, J.-C. (1993) Eur.J.Immunol., 23, 846-851.
- Marks, J.D., Hoogenboom, H.R., Bonnert, T.P., Mccafferty, J., Griffiths, A.D. & Winter, G. (1991) J.Mol.Biol., 222, 581-597.

- 74 Marsh, P., Mills, F. & Gould, H. (1985) Nuc. Acids Res., 13, 6531-6544.
- 75 Middaugh, C.R. & Litman, G.W. (1987) J.Biol.Chem., 262, 3671-3673.
- 76 Milstein, C. & Deverson, E.V. (1971) BiochemJ., 123, 945-958.
- 77 Milstein, C. (1969) Febs Letters, 2, 301-304.
- 78. Milstein, C. (1969) Febs Letters, 2, 301-304.
- 79 Milstein, C.P. & Deverson, E.V. (1974) Eur J. Biochem., 49, 377-391.
- 80 Moran, M.J., Andris, J.S., Matsumato, Y.-I., Capra, J.D. & Hersh, E.M. (1993) Mol.Immunol., 30, 1543-1551.
- Nakatani, T., Nomura, N., Horigome, K., Ohtsuka, H. & Noguchi, H. (1989) Bio/Tech., 7, 805-810.
- 82 Newkirk, M., Chen, P.P., Carson, D., Posnett, D. & Capra, J.D. (1986) Mol.Immunol., 23, 239-244.
- 83 Newkirk, M.M., Gram, H., Heinrich, G.F., Ostberg, L., Capra, J.D. & Wasserman, R.L. (1988) J.Clin.Invest., 81, 1511-1518.
- 84 Newkirk, M.M., Mageed, R.A., Jefferis, R., Chen, P.P. & Capra, J.D. (1987) J.Exp.Med., 166, 550-564.
- 85 Olee, B.T., Lu, E.W., Huang, D.-F., Soto-Gil, R.W., Deftos, M., Kozin, F., Carson, D.A. & Chen, P.P. (1992) J.Exp.Med., 175, 831-842.
- Palm, W. & Hilschmann, N. (1973) Z.Physiol.Chem., 354, 1651-1654; (1975)
 Z.Physiol.Chem., 356, 167-191.
- Pascual, V., Victor, K., Lelsz, D., Spellerberg, M.B., Hamblin, T.J., Thompson, K.M., Randen, I., Natvig, J., Capra, J.D. & Stevenson, F.K. (1991) J.Immunol., 146, 4385-4391.
- Pascual, V., Victor, K., Randen, I., Thompson, K., Steinitz, M., Forre, O., Fu, S.-M., Natvig, J.B. & Capra, J.D. (1992) Scand.J.Immunol., 36, 349–362.
- 89 Pech, M. & Zachau, H.G. (1984) Nuc. Acids Res., 12, 9229-9236.
- 90 Pech, M., Jaenichen, H.-R., Pohlenz, H.-D., Neumaier, P.S., Klobeck, H.-G. & Zachau, H.G. (1984) J.Mol.Biol., 176, 189-204.
- 91 Pons-Estel, B., Goni, F., Solomon, A. & Frangione, B. (1984) J.Exp.Med., 160, 893-904.
- 92 Portolano, S., Mclachlan, S.M. & Rapoport, B. (1993) J.Immunol., 151, 2839-2851.
- Portolano, S., Seto, P., Chazenbalk, G.D., Nagayama, Y., Mclachlan, S.M. & Rapoport, B. (1991) Biochem.Biophys.Res.Commun., 179, 372-377.

94 Pratt, L.F., Rassenti, L., Larrick, J., Robbins, B., Banks, P.M. & Kipps, T.J. (1989) J.Immunol., 143, 699-705.

- 95 Prelli, F., Tummolo, D., Solomon, A. & Frangione, B. (1986) J.Immunol., 136, 4169-4173.
- 96 Putnam, F.W., Whitley, E.J., Jr., Paul, C.& Davidson, J.N. (1973) Biochemistry, 12, 3763-3780.
- 97 Randen, I., Pascual, V., Victor, K., Thompson, K.M., Forre, O., Capra, J.D. & Natvig, J.B. (1993) Eur.J.Immunol., 23, 1220–1225.
- 98 Rassenti, L.Z., Pratt, L.F., Chen, P.P., Carson, D.A. & Kipps, T.J. (1991) J.Immunol., 147, 1060-1066.
- 99 Reidl, L.S., Friedman, D.F., Goldman, J., Hardy, R.R., Jefferies, L.C. & Silberstein, L.E. (1991) J.Immunol., 147, 3623-3631.
- 100 Riechmann, L., Clark, M., Waldmann, H. & Winter, G. (1988) Nature, 332, 323-327.
- Riesen, W., Rudikoff, S., Oriol, R. & Potter, M. (1975) Biochemistry, 14, 1052-1057; Riesen,
 W.F., Braun, D.G. & Jaton, J.C. (1976) Proc.Nat.Acad.Sci.Usa, 73, 2096-2100; Riesen, W.F.
 & Jaton, J.C. (1976) Biochemistry, 15, 3829.
- 102 Rodilla Sala, E., Kratzin, D.H., Pick, A.I. & Hilschmann, N. (1990) In Amyloid And Amyloidosis, Eds. J.B.Natvig, O.Forre, G.Husby, A.Husebekk, B.Skogen, K.Sletten & P.Westermark, Kluwer Academic
- Schiechl, H. & Hilschmann, N. (1971) Z.Physiol.Chem., 352, 111-115; (1972)
 Z.Physiol.Chem., 353, 345-370.
- 104 Schneider, M. & Hilschmann, N. (1974) Z.Physiol.Chem., 355, 1164-1168.
- 105 Shearman, C.W., Pollock, D., White, G., Hehir, K., Moore, G.P., Kanzy, E.J. & Kurrle, R. (1991) J.Immunol., 147, 4366-4373.
- 106 Shinoda, T. (1973) J.Biochem., 73, 433-446.
- 107 Shinoda, T. (1975) J.Biochem., 77, 1277-1296.
- Shinoda, T., Takenawa, T., Hoshi, A. & Isobe, T. (1990) In Amyloid And Amyloidosis, Eds. J.B.Natvig, O.Forre, G.Husby, A.Husebekk, B.Skogen, K.Sletten & P.Westermark, Kluwer Academic Publishers, Dordrecht/Boston/London, Pp.157-
- 109 Silberstein, L.E., Litwin, S. & Carmack, C.E. (1989) J.Exp.Med., 169, 1631-1643.
- Sims, M.J., Hassal, D.G., Brett, S., Rowan, W., Lockyer, M.J., Angel, A., Lewis, A.P., Hale, G., Waldmann, H. & Crowe, J.S. (1993) J.Immunol., 151, 2296-2308.

111 Spatz, L.A., Wong, K.K., Williams, M., Desai, R., Golier, J., Berman, J.E., Alt, F.W. & Latov, N. (1990) J.Immunol., 144, 2821–2828.

- Stavnezer, J., Kekish, O., Batter, D., Grenier, J., Balazs, I., Henderson, E. & Zegers, B.J.M. (1985) Nucl. Acids Res., 13, 3495-3514.
- 113 Straubinger, B., Thiebe, R., Pech, M. & Zachau, H.G. (1988) Gene, 69, 209-214.
- 114 Suter, L., Barnikol, H.U., Watanabe, S. & Hilschmann, N. (1969) Z.Physiol.Chem., 350, 275-278; (1972) Z.Physiol.Chem., 353, 189-208.
- Tempest, P.R., Bremner, P., Lambert, M., Taylor, G., Furze, J.M., Carr, F.J. & Harris, W.J. (1991) Bio/Tech., 9, 266-271.
- 116 Titani, K., Shinoda, T. & Putnam, F.W. (1969) J.Biol.Chem., 244, 3550-3560.
- Toft, K.G., Olstad, O.K., Sletten, K. & Westermark, P. (1990) In Amyloid And Amyloidosis, Eds. J.B.Natvig, O.Forre, G.Husby, A.Husebekk, B.Skogen, K.Sletten & P.Westermark, Kluwer Academic
- 118 Van Es, J.H., Aanstoot, H., Gmelig-Meyling, F.H.J., Derksen, R.H.W.M. & Logtenberg, T. [1992] J.Immunol., 149, 2234-2240.
- 119 Victor, K.D., Pascual, V., Lefvert, A.K. & Capra, J.D. (1992) Mol.Immunol., 29, 1501-1506.
- 120 Victor, K.D., Pascual, V., Williams, C.L., Lennon, V.A. & Capra, J.D. (1992) Eur.J.Immunol., 22, 2231–2236.
- 121 Victor, K.D., Randen, I., Thompson, K., Forre, O., Natvig, J.B., Fu, S.M. & Capra, J.D. (1991)
 J.Clin.Invest., 87, 1603–1613.
- 122 Wagner, S.D. & Luzzatto, L. (1993) Eur.J.Immunol., 23, 391-397.
- . 123 Watanabe, S. & Hilschmann, N. (1970) Z.Physiol.Chem., 351, 1291-1295.
- Weisbart, R.H., Wong, A.L., Noritake, D., Kacena, A., Chan, G., Ruland, C., Chin, E., Chen, I.S.Y. & Rosenblatt, J.D. (1991) J.Immunol., 147, 2795-2801.
- 125 Weng, N.-P., Yu-Lee, L.-Y., Sanz, I., Patten, B.M. & Marcus, D.M. (1992) J.Immunol., 149, 2518-2529.
- 126 Winkler, T.H., Fehr, H. & Kalden, J.R. (1992) Eur.J.Immunol., 22, 1719-1728.

References of rearranged human lambda sequences used for alignment

Alexandre, D., Chuchana, P., Brockly, F., Blancher, A., Lefranc, G. & Lefranc, M.-P. (1989) Nuc.Acids Res., 17, 3975.

2 Anderson, M.L.M., Brown, L., Mckenzie, E., Kellow, J.E. & Young, B.D. (1985) Nuc. Acids Res., 13, 2931-2941.

- 3 Andris, J.S., Brodeur, B.R. & Capra, J.D. (1993) Mol.Immunol., 30, 1601-1616.
- 4 Andris, J.S., Ehrlich, P.H., Ostberg, L. & Capra, J.D. (1992) J.Immunol., 149, 4053-4059.
- Baczko, K., Braun, D.G., Hess, M. & Hilschmann, N. (1970) Z.Physiol.Chem., 351, 763-767;
 Baczko, K., Braun, D.G. & Hilschmann, N. (1974) Z.Physiol.Chem., 355, 131-154.
- 6 Berinstein, N., Levy, S. & Levy, R. (1989) Science, 244, 337-339.
- 7 Bhat, N.M., Bieber, M.M., Chapman, C.J., Stevenson, F.K. & Teng, N.N.H. (1993) J.Immunol., 151, 5011-5021.
- 8 Cairns, E., Kwong, P.C., Misener, V., Ip, P., Bell, D.A. & Siminovitch, K.A. (1989) J.Immunol., 143, 685-691.
- 9 Carroll, W.L., Yu, M., Link, M.P. & Korsmeyer, S.J. (1989) J.Immunol., 143, 692-698.
- 10 Chen, B.L. & Poljak, R.J. (1974) Biochemistry, 13, 1295-1302.
- 11 Chen, B.L., Chiu, Y.Y.H., Humphrey, R.L. & Poljak, R.J. (1978) Biochim.Biophys.Acta, 537, 9-21.
- 12 Combriato, G. & Klobeck, H.G. (1991) Eur.J.lmmunol., 21, 1513-1522.
- 13 Cuisinier, A.-M., Fumoux, F., Fougereau, M. & Tonnelle, C. (1992) Mol.Immunol., 29, 1363–1373.
- 14 Dwulet, F.E., Strako, K. & Benson, M.D. (1985) Scand.J.Immunol., 22, 653-660.
- 15 Elahna, P., Livneh, A., Manheimer-Lory, A.J. & Diamond, B. (1991) J.Immunol., 147, 2771-2776.
- Engelhard, M., Hess, M. & Hilschmann, N. (1974) Z.Physiol.Chem., 355, 85-88; Engelhard,
 M. & Hilschmann, N. (1975) Z.Physiol.Chem., 356, 1413-1444.
- 17 Eulitz, M. (1974) Eur.J.Biochem., 50, 49-69.
- 18 Eulitz, M., Breuer, M. & Linke, R.P. (1987) Biol.Che.Hoppe-Seyler, 368, 863-870.
- 19 Eulitz, M., Murphy, C., Weiss, D.T. & Solomon, A. (1991) J.Immunol., 146, 3091-3096.
- 20 Fett, J.W. & Deutsch, H.F. (1974) Biochemistry, 13, 4102-4114.
- 21 Fett, J.W. & Deutsch, H.F. (1976) Immunochem., 13, 149-155.; Jabusch, J.R. & Deutsch, H.F. (1982) Mol.Immunol., 19, 901-906.
- 22 Furey, W. Jr., Wang, B.C., Yoo, C.S. & Sax, M. (1983) J.Mol.Biol., 167, 661-692.
- 23 Fykse, E.-M., Sletten, K., Husby, G. & Cornwell, G.G., Iii (1988) Biochem.J., 256, 973-980.

24 Garver, F.A. & Hilschmann, N. (1971) Febs Letters, 16, 128-132; (1972) Eur.J.Biochem., 26, 10-32.

- 25 Gawinowicz, M.A., Merlini, G., Birken, S., Osserman, E.F. & Kabat, E.A. (1991) J.Immunol., 147, 915-920.
- 26 Ghiso, J., Solomon, A. & Frangione, B. (1986) J.Immunol., 136, 716-719.
- 27 Griffiths, A.D., Malmqvist, M., Marks, J.D., Bye, J.M., Embleton, M.J., Mccafferty, J., Baier, M., Holliger, K.P., Gorick, B.D., Hughes-Jones, N.C., Hoogenboom, H.R. & Winter, G. (1993) Embo J., 12, 725-734.
- Gullasken, N., Idso, H., Nilsen, R., Sletten, K., Husby, G. & Cornwell, G.G. (1990) In Amyloid And Amyloidosis, Eds. J.B.Natvig, O.Forre, G.Husby, A.Husebekk, B.Skogen, K.Sletten & P.Westermark, Kluwer Academic
- Harindranath, N., Goldfarb, I.S., Ikematsu, H., Burastero, S.E., Wilder, R.L., Notkins, A.L. & Casali, P. (1991) Int.Immunol., 3, 865-875.
- 30 Holm, E., Sletten, K. & Husby, G. (1986) Biochem.J., 239, 545-551.
- 31 Hughes-Jones, N.C., Bye, J.M., Beale, D. & Coadwell, J. (1990) Biochem J., 268, 135-140.
- 32 Kametani, F., Yoshimura, K., Tonoike, H., Hoshi, A., Shinoda, T. & Isobe, T. (1985) Biochem.Biophys.Res.Commun., 126, 848-852.
- 33 Kiefer, C.R., Mcguire, B.S., Jr., Osserman, E.F. & Garver, F.A. (1983) J.Immunol., 131, 1871-1875.
- 34 Kiefer, C.R., Patton, H.M., Jr., Mcquire, B.S., Jr. & Garver, F.A. (1980) J.Immunol., 124, 301-306.
- Kishimoto, T., Okajima, H., Okumoto, T. & Taniguchi, M. (1989) Nucl.Acids Res., 17, 4385.
- Klafki, H.-W., Kratzin, H.D., Pick, A.I., Eckart, K. & Hilschmann, N. (1990) In Amyloid And Amyloidosis, Eds. J.B.Natvig, O.Forre, G.Husby, A.Husebekk, B.Skogen, K.Sletten & P.Westermark, Kluwer Academic
- 37 Kohler, H., Rudofsky, S. & Kluskens, L. (1975) J.Immunology, 114, 415-421.
- 38 Kojima, M., Odani, S. & Ikenaka, T. (1980) Mol.Immunol., 17, 1407-1414.
- 39 Komori, S., Yamasaki, N., Shigeta, M., Isojima, S. & Watanabe, T. (1988) Clin.Exp.Immunol., 71, 508-516.
- Kratzin, H.D., Palm, W., Stangel, M., Schmidt, W.E., Friedrich, J. & Hilschmann, N. (1989) Biol.Chem.Hoppe-Seyler, 370, 263-272.

Kratzin, H.D., Pick, A.I., Stangel, M. & Hilschmann, N. (1990) In Amyloid And Amyloidosis, Eds. J.B.Natvig, O.Forre, G.Husby, A.Husebekk, B.Skogen, K.Sletten & P.Westermark, Kluwer Academic Publishers, Dordrecht/Boston/London, Pp.181-

- 42 Langer, B., Steinmetz-Kayne, M. & Hilschmann, N. (1968) Z.Physiol.Chem., 349, 945-951.
- 43 Larrick, J.W., Danielsson, L., Brenner, C.A., Wallace, E.F., Abrahamson, M., Fry, K.E. & Borrebaeck, C.A.K. (1989) Bio/Tech., 7, 934-938.
- 44 Levy, S., Mendel, E., Kon, S., Avnur, Z. & Levy, R. (1988) J.Exp.Med., 168, 475-489.
- 45 Lewis, A.P., Lemon, S.M., Barber, K.A., Murphy, P., Parry, N.R., Peakman, T.C., Sims, M.J., Worden, J. & Crowe, J.S. (1993) J.Immunol., 151, 2829–2838.
- 46 Liu, V.Y.S., Low, T.L.K., Infante, A. & Putnam, F.W. (1976) Science, 193, 1017-1020; Infante, A. & Putnam, F.W. (1979) J.Biol.Chem., 254, 9006-9016.
- 47 Lopez De Castro, J.A., Chiu, Y.Y.H. & Poljak, R.J. (1978) Biochemistry, 17, 1718-1723.
- 48 Mantovani, L., Wilder, R.L. & Casali, P. (1993) J.Immunol., 151, 473-488.
- 49 Marks, J.D., Hoogenboom, H.R., Bonnert, T.P., Mccafferty, J., Griffiths, A.D. & Winter, G. (1991) J.Mol.Biol., 222, 581-597.
- 50 Mihaesco, E., Roy, J.-P., Congy, N., Peran-Rivat, L. & Mihaesco, C. (1985) Eur.J.Biochem., 150, 349-357.
- 51 Milstein, C., Clegg, J.B. & Jarvis, J.M. (1968) Biochem.J., 110, 631-652.
- 52 Moran, M.J., Andris, J.S., Matsumato, Y.-I., Capra, J.D. & Hersh, E.M. (1993) Mol.Immunol., 30, 1543-1551.
- 53 Nabeshima, Y. & Ikenaka, T. (1979) Mol.Immunol., 16, 439-444.
- Olee, B.T., Lu, E.W., Huang, D.-F., Soto-Gil, R.W., Deftos, M., Kozin, F., Carson, D.A. & Chen, P.P. (1992) J.Exp.Med., 175, 831-842.
- Pascual, V., Victor, K., Randen, I., Thompson, K., Steinitz, M., Forre, O., Fu, S.-M., Natvig, J.B. & Capra, J.D. (1992) Scand.J.Immunol., 36, 349-362.
- 56 Paul, E., Iliev, A.A., Livneh, A. & Diamond, B. (1992) J.Immunol., 149, 3588-3595.
- 57 Pick, A.I., Kratzin, H.D., Barnikol-Watanabe, S. & Hilschmann, N. (1990) In Amyloid And Amyloidosis, Eds. J.B.Natvig, O.Forre, G.Husby, A.Husebekk, B.Skogen, K.Sletten & P.Westermark, Kluwer Academic
- Ponstingl, H. & Hilschmann, N. (1969) Z.Physiol.Chem., 350, 1148-1152; (1971)
 Z.Physiol.Chem., 352, 859-877.

Ponstingl, H., Hess, M. & Hilschmann, N. (1968) Z.Physiol.Chem., 349, 867-871; (1971)
 Z.Physiol.Chem., 352, 247-266.

- 60 Randen, I., Pascual, V., Victor, K., Thompson, K.M., Forre, O., Capra, J.D. & Natvig, J.B. (1993) Eur.J.Immunol., 23, 1220–1225.
- 61 Scholz, R. & Hilschmann, N. (1975) Z.Physiol.Chem., 356, 1333-1335.
- 62 Settmacher, U., Jahn, S., Siegel, P., Von Baehr, R. & Hansen, A. (1993) Mol.Immunol., 30, 953–954.
- 63 Shinoda, T., Titani, K. & Putnam, F.W. (1970) J.Biol.Chem., 245, 4475-4487.
- 64 Sletten, K., Husby, G. & Natvig, J.B. (1974) Scand.J.Immunol., 3, 833–836.; Sletten, K., Natvig, J.B., Husby, G. & Juul, J. (1981) Biochem.J., 195, 561–572.
- Solomon, A., Frangione, B. & Franklin, E.C. (1982) J.Clin.Invest., 70, 453-460.; Frangione,
 B., Moloshok, T. & Solomon, A. (1983) J.Immunol., 131, 2490-2493.
- 66 Takahashi, N., Takayasu, T., Isobe, T., Shinoda, T., Okuyama, T. & Shimizu, A. (1979)

 J.Biochem., 86, 1523-1535.
- 67 Takahashi, N., Takayasu, T., Shinoda, T., Ito, S., Okuyama, T. & Shimizu, A. (1980) Biomed.Res., 1, 321–333.
- Takahashi, Y., Takahashi, N., Tetaert, D. & Putnam, F.W. (1983) Proc.Nat.Acad.Sci.Usa, 80, 3686–3690.
- Takayasu, T., Takahashi, N., Shinoda, T., Okuyama, T. & Tomioka, H. (1980) J.Biochem., 89, 421-436.
- 70 Titani, K., Wikler, M., Shinoda, T. & Putnam, F.W. (1970) J.Biol.Chem., 245, 2171-2176.
- 71 Toft, K.G., Sletten, K. & Husby, G. (1985) Biol.Chem.Hoppe-Seyler, 366, 617-625.
- Tonoike, H., Kametani, F., Hoshi, A., Shinoda, T. & Isobe, T. (1985) Biochem.Biophys.Res.Commun., 126, 1228-1234.
- 73 Tonoike, H., Kametani, F., Hoshi, A., Shinoda, T. & Isobe, T. (1985) Febs Letters, 185, 139-141.
- 74 Tsujimoto, Y. & Croce, C.M. (1984) Nucl. Acids Res., 12, 8407-8414.
- 75 Tsunetsugu-Yokota, Y., Minekawa, T., Shigemoto, K., Shirasawa, T. & Takemori, T. (1992) Mol.Immunol., 29, 723-728.
- 76 Tveteraas, T., Sletten, K. & Westermark, P. (1985) Biochem. J., 232, 183-190.
- 77 Vasicek, T.J. & Leder, P. (1990) J.Exp.Med., 172, 609-620.

203

Victor, K.D., Randen, I., Thompson, K., Forre, O., Natvig, J.B., Fu, S.M. & Capra, J.D. (1991) J.Clin.Invest., 87, 1603–1613.

- 79 Weng, N.-P., Yu-Lee, L.-Y., Sanz, I., Patten, B.M. & Marcus, D.M. (1992) J.Immunol., 149, 2518-2529.
- 80 Wikler, M. & Putnam, F.W. (1970) J.Biol.Chem., 245, 4488-4507.
- 81 Winkler, T.H., Fehr, H. & Kalden, J.R. (1992) Eur.J.Immunol., 22, 1719-1728.
- Yago, K., Zenita, K., Ohwaki, I., Harada, Y., Nozawa, S., Tsukazaki, K., Iwamori, M., Endo, N., Yasuda, N., Okuma, M. & Kannagi, R. (1993) Mol.Immunol., 30, 1481–1489.
- 83 Yamasaki, N., Komori, S. & Watanabe, T. (1987) Mol.Immunol., 24, 981-985.
- 84 Zhu, D., Kim, H.S. & Deutsch, H.F. (1983) Mol.Immunol., 20, 1107-1116.
- 85 Zhu, D., Zhang, H., Zhu, N. & Luo, X. (1986) Scientia Sinica, 29, 746-755.

References of rearranged human heavy chain sequences used for alignment

- Adderson, E.E., Azmi, F.H., Wilson, P.M., Shackelford, P.G. & Carroll, W.L. (1993) J.Immunol., 151, 800-809.
- Adderson, E.E., Shackelford, P.G., Quinn, A. & Carroll, W.L. (1991) J.Immunol., 147, 1667-1674.
- 3 Akahori, Y., Kurosawa, Y., Kamachi, Y., Torii, S. & Matsuoka, H. (1990) J.Clin.Invest., 85, 1722-1727.
- 4 Andris, J.S., Brodeur, B.R. & Capra, J.D. (1993) Mol.Immunol., 30, 1601–1616.
- 5 Andris, J.S., Ehrlich, P.H., Ostberg, L. & Capra, J.D. (1992) J.Immunol., 149, 4053-4059.
- 6 Andris, J.S., Johnson, S., Zolla-Pazner, S. & Capra, J.D. (1991) Proc.Natl.Acad.Sci.Usa, 88, 7783-7787.
- 7 Anker, R., Conley, M.E. & Pollok, B.A. (1989) J.Exp.Med., 169, 2109-2119.
- Atkinson, P.M., Lampman, G.W., Furie, B.C., Naparstek, Y., Schwartz, R.S., Stollar, B.D. & Furie, B. (1985) J.Clin.Invest., 75, 1138-1143.;Lampman, G.W., Furie, B., Schwartz, R.S., Stollar, B.D. & Furie, B.C. (1989)
- 9 Avila, M.A., Vazques, J., Danielsson, L., Fernandez De Cossio, M.E. & Borrebaeck, C.A.K. (1993) Gene, 127, 273-274.
- 10 Bakkus, M.H.C., Heirman, C., Van Riet, I., Van Camp, B. & Thielemans, K. (1992) Blood, 80, 2326-2335.

Barbas Iii, C.F., Crowe, Jr., J.E., Cababa, D., Jones, T.M., Zebedee, S.L., Murphy, B.R., Chanock, R.M. & Burton, D.R. (1992) Proc.Natl.Acad.Sci.Usa, 89, 10164-10168.

- Barbas, C.F., Iii, Collet, T.A., Amberg, W., Roben, P., Binley, J.M., Hoekstra, D., Cababa, D., Jones, T.M., Williamson, R.A., Pilkington, G.R., Haigwood, N.L., Cabezas, E., Satterthwait, A.C., Sanz, I. & Burton, D.R. (1993) J.Mol.Biol., 230, 812–823.
- 13 Berman, J.E., Humphries, C.G., Barth, J., Alt, F.W. & Tucker, P.W. (1991) J.Exp.Med., 173, 1529–1535.
- Berman, J.E., Mellis, S.J., Pollock, R., Smith, C.L., Suh, H., Heinke, B., Kowal, C., Surti, U., Chess, L., Cantor, C.R & Alt, F.W. (1988) Embo J., 7, 727–738.
- 15 Bhat, N.M., Bieber, M.M., Chapman, C.J., Stevenson, F.K. & Teng, N.N.H. (1993) J.Immunol., 151, 5011-5021.
- 16 Bird, J., Galili, N., Link, M., Stites, D. & Sklar, J. (1988) J.Exp.Med., 168, 229-245.
- 17 Cai, J., Humphries, C., Richardson, A. & Tucker, P.W. (1992) J.Exp.Med., 176, 1073-1081.
- 18 Cairns, E., Kwong, P.C., Misener, V., Ip, P., Bell, D.A. & Siminovitch, K.A. (1989) J.Immunol., 143, 685-691.
- 19 Capra, J.D. & Hopper, J.E. (1976) Immunochemistry, 13, 995-999; Hopper, J.E., Noyes, C., Heinrikson, R. & Kessel, J.W. (1976) J.Immunol., 116, 743-746.
- 20 Capra, J.D. & Kehoe, J.M. (1974) Proc.Nat.Acad.Sci.Usa, 71, 845-848.
- 21 Carroll, W.L., Yu, M., Link, M.P. & Korsmeyer, S.J. (1989) J.Immunol., 143, 692-698.
- Chen, P.P., Liu, M.-F., Glass, C.A., Sinha, S., Kipps, T.J. & Carson, D.A. (1989) Arthritis & Rheumatism, 32, 72–76; Kipps, T.J., Tomhave, E., Pratt, L.F., Duffy, S., Chen, P.P. & Carson, D.A. (1989) Proc.Natl.Acad.Sci.Usa, 86, 5913–5917.
- 23 Chiu, Y.Y.H., Lopez De Castro, J.A. & Poljak, R.J. (1979) Biochemistry, 18, 553-560.
- 24 Cleary, M.L., Meeker, T.C., Levy, S., Lee, E., Trela, M., Sklar, J. & Levy, R. (1986) Cell, 44, 97-106.
- 25 Cuisinier, A.-M., Fumoux, F., Fougereau, M. & Tonnelle, C. (1992) Mol.Immunol., 29, 1363-1373.
- Cuisinier, A.-M., Gauthier, L., Boubli, L., Fougereau, M. & Tonnelle, C. (1993) Eur.J.Immunol., 23, 110-118.
- Cunningham, B.A., Gottlieb.P.D., Pflumm, M.N. & Edelman, G.M. (1971) Progress In Immunology (B.Amos, Ed.), Academic Press, N.Y., Pp.3-24.

Cunningham, B.A., Rutishauser, U., Gall, W.E., Gottlieb, P.D., Waxdal, M.J. & Edelman, G.M. (1970) Biochemistry, 9, 3161–3170.

- 29 Deane, M. & Norton, J.D. (1990) Eur.J.Immunol., 20, 2209-2217.
- 30 Deane, M. & Norton, J.D. (1991) Leukemia, 5, 646-650.
- 31 Dersimonian, H., Schwartz, R.S., Barrett, K.J. & Stollar, B.D. (1987) J.Immunol., 139, 2496-2501.
- 32 Dersimonian, H., Schwartz, R.S., Barrett, K.J. & Stollar, B.D. (1987) J.Immunol., 139, 2496-2501; Chen, P.P., Liu, M.-F., Sinha, S. & Carson, D.A. (1988) Arth.Rheum., 31, 1429-1431.
- Desai, R., Spatz, L., Matsuda, T., Ilyas, A.A., Berman, J.E., Alt, F.W., Kabat, E.A. & Latov, N. (1990) J.Neuroimmunol., 26, 35-41.
- Ezaki, I., Kanda, H., Sakai, K., Fukui, N., Shingu, M., Nobunaga, M. & Watanabe, T. (1991)
 Arthritis And Rheumatism, 34, 343–350.
- 35 Felgenhauer, M., Kohl, J. & Ruker, F. (1990) Nucl. Acids Res., 18, 4927.
- 36 Florent, G., Lehman, D. & Putnam, F.W. (1974) Biochemistry, 13, 2482-2498.
- 37 Friedlander, R.M., Nussenzweig, M.C. & Leder, P. (1990) Nucl. Acids Res., 18, 4278.
- 38 Gawinowicz, M.A., Merlini, G., Birken, S., Osserman, E.F. & Kabat, E.A. (1991) J.Immunol., 147, 915-920.
- 39 Gillies, S.D., Dorai, H., Wesolowski, J., Majeau, G., Young, D., Boyd, J., Gardner, J. & James, K. (1989) Bio/Tech., 7, 799-804.
- 40 Goni, F. & Frangione, B. (1983) Proc.Nat.Acad.Sci.Usa, 80, 4837-4841.
- 41 Gorman, S.D., Clark, M.R., Routledge, E.G., Cobbold, S.P. & Waldmann, H. (1991) Proc.Natl.Acad.Sci.Usa, 88, 4181-4185.
- 42 Griffiths, A.D., Malmqvist, M., Marks, J.D., Bye, J.M., Embleton, M.J., Mccafferty, J., Baier, M., Holliger, K.P., Gorick, B.D., Hughes-Jones, N.C., Hoogenboom, H.R. & Winter, G. (1993) Embo J., 12, 725-734.
- 43 Grillot-Courvalin, C., Brouet, J.-C., Piller, F., Rassenti, L.Z., Labaume, S., Silverman, G.J., Silberstein, L. & Kipps, T.J. (1992) Eur.J.Immunol., 22, 1781-1788.
- Guillaume, T., Rubinstein, D.B., Young, F., Tucker, L., Logtenberg, T., Schwartz, R.S. & Barrett, K.L. (1990) J.Immunol., 145, 1934-1945; Young, F., Tucker, L., Rubinstein, D., Guillaume, T., Andre-Schwartz, J., Barrett, K.J., Schwartz, R.S. & Logtenberg, T. (1990)
- 45 Harindranath, N., Goldfarb, I.S., Ikematsu, H., Burastero, S.E., Wilder, R.L., Notkins, A.L. & Casali, P. (1991) Int.Immunol., 3, 865-875.

46 Hillson, J.L., Oppliger, I.R., Sasso, E.H., Milner, E.C.B. & Wener, M.H. (1992) J.Immunol., 149, 3741–3752.

- 47 Hirabayashi, Y., Munakata, Y., Sasaki, T. & Sano, H. (1992) Nucl. Acids Res., 20, 2601.
- 48 Hoch, S. & Schwaber, J. (1987) J.Immunol., 139, 1689-1693.
- 49 Huang, C., Stewart, A.K., Schwartz, R.S. & Stollar, B.D. (1992) J.Clin.Invest., 89, 1331-1343.
- 50 Hughes-Jones, N.C., Bye, J.M., Beale, D. & Coadwell, J. (1990) Biochem J., 268, 135-140.
- 51 Ikematsu, H., Harindranath, N., Ueki, Y., Notkins, A.L. & Casali, P. (1993) J.Immunol., 150, 1325-1337.
- 52 Ikematsu, H., Kasaian, M.T., Schettino, E.W. & Casali, P. (1993) J.Immunol., 151, 3604-3616.
- 53 Kelly, P.J., Pascual, V., Capra, J.D. & Lipsky, P.E. (1992) J.Immunol., 148, 1294-1301.
- 54 Kipps, T.J. & Duffy, S.F. (1991) J.Clin.Invest., 87, 2087-2096.
- Kipps, T.J., Tomhave, E., Pratt, L.F., Duffy, S., Chen, P.P. & Carson, D.A. (1989) Proc.Natl.Acad.Sci.Usa, 86, 5913-5917.
- 56 Kishimoto, T., Okajima, H., Okumoto, T. & Taniguchi, M. (1989) Nucl. Acids Res., 17, 4385.
- 57 Knight, G.B., Agnello, V., Bonagura, V., Barnes, J.L., Panka, D.J. & Zhang, Q.-X. (1993)
 J.Exp.Med., 178, 1903-1911.
- 58 Kohler, H., Shimizu, A., Paul, C., Moore, V. & Putnam, F.W. (1970) Nature, 227, 1318-1320; Florent, G., Lehman, D. & Putnam, F.W. (1974) Biochemistry, 13, 2482-2498
- Komori, S., Yamasaki, N., Shigeta, M., Isojima, S. & Watanabe, T. (1988) Clin. Exp. Immunol., 71, 508-516.
- 60 Kon, S., Levy, S. & Levy, R. (1987) Proc.Natl.Acad.Sci.Usa, 84, 5053-5057.
- Kratzin, H., Altevogt, P., Ruban, E., Kortt, A., Staroscik, K. & Hilschmann, N. (1975)
 Z.Physiol.Chem., 356, 1337-1342; Kratzin, H., Altevogt, P., Kortt, A., Ruban, E. & Hilschmann, N. (1978) Z.Physiol.Chem., 359, 1717-1745.
- 62 Kudo, A., Ishihara, T., Nishimura, Y. & Watanabe, T. (1985) Gene, 33, 181-189.
- 63 Kunicki, T.J., Annis, D.S., Gorski, J. & Nugent, D.J. (1991) J.Autoimmunity, 4, 433-446.
- Larrick, J.W., Wallace, E.F., Coloma, M.J., Bruderer, U., Lang, A.B. & Fry, K.E. (1992) Immunological Reviews, 130, 69–85.
- 65 Lehman, D.W. & Putnam, F.W. (1980) Proc.Nat.Acad.Sci.Usa, 77, 3239-3243.

66 Lewis, A.P., Lemon, S.M., Barber, K.A., Murphy, P., Parry, N.R., Peakman, T.C., Sims, M.J., Worden, J. & Crowe, J.S. (1993) J.Immunol., 151, 2829–2838.

- 67 Liu, V.Y.S., Low, T.L.K., Infante, A. & Putnam, F.W. (1976) Science, 193, 1017-1020.
- 68 Logtenberg, T., Young, F.M., Van Es, J., Gmelig-Meyling, F.H.J., Berman, J.E. & Alt, F.W. (1989) J.Autoimmunity, 2, 203-213.
- 69 Logtenberg, T., Young, F.M., Van Es, J.H., Gmelig-Meyling, F.H.J. & Alt, F.W. (1989) J.Exp.Med., 170, 1347-1355.
- Manheimer-Lory, A., Katz, J.B., Pillinger, M., Ghossein, C., Smith, A. & Diamond, B. (1991) J.Exp.Med., 174, 1639-1652.
- 71 Mantovani, L., Wilder, R.L. & Casali, P. (1993) J.Immunol., 151, 473-488.
- 72 Mariette, X., Tsapis, A. & Brouet, J.-C. (1993) Eur.J.Immunol., 23, 846-851.
- 73 Marks, J.D., Hoogenboom, H.R., Bonnert, T.P., Mccafferty, J., Griffiths, A.D. & Winter, G. (1991) J.Mol.Biol., 222, 581-597.
- 74 Meeker, T.C., Grimaldi, J., O'rourke, R., Loeb, JJuliusson, G. & Einhorn, S. (1988) J.Immol., 141, 3994-3998.
- 75 Milili, M., Fougereau, M., Guglielmi, P. & Schiff, C. (1991) Mol.Immunol., 28, 753-761.
- 76 Moran, M.J., Andris, J.S., Matsumato, Y.-I., Capra, J.D. & Hersh, E.M. (1993) Mol.Immunol., 30, 1543-1551.
- 77 Mortari, F., Wang, J.-Y. & Schroeder, Jr., H.W. (1993) J.Immunol., 150, 1348-1357.
- Newkirk, M.M., Gram, H., Heinrich, G.F., Ostberg, L., Capra, J.D. & Wasserman, R.L (1988) J.Clin.Invest., 81, 1511–1518.
- 79 Newkirk, M.M., Mageed, R.A., Jefferis, R., Chen, P.P. & Capra, J.D. (1987) J.Exp.Med., 166, 550–564.
- 80 Nickerson, K.G., Berman, J., Glickman, E., Chess, L. & Alt, F.W. (1989) J.Exp.Med., 169, 1391-1403.
- 81 Olee, B.T., Lu, E.W., Huang, D.-F., Soto-Gil, R.W., Deftos, M., Kozin, F., Carson, D.A. & Chen, P.P. (1992) J.Exp.Med., 175, 831-842.
- Pascual, V., Randen, I., Thompson, K., Sioud, M.Forre, O., Natvig, J. & Capra, J.D. (1990) J.Clin.Invest., 86, 1320-1328.
- Pascual, V., Randen, I., Thompson, K., Sioud, M.Forre, O., Natvig, J. & Capra, J.D. (1990) J.Clin.Invest., 86, 1320-1328; Randen, I., Brown, D., Thompson, K.M., Hughes-Jones, N., Pascual, V., Victor, K., Capra, J.D., Forre, O. & Natvig, J.B. (1992)

Pascual, V., Victor, K., Lelsz, D., Spellerberg, M.B., Hamblin, T.J., Thompson, K.M., Randen, I., Natvig, J., Capra, J.D. & Stevenson, F.K. (1991) J.Immunol., 146, 4385–4391.

- Pascual, V., Victor, K., Randen, I., Thompson, K., Steinitz, M., Forre, O., Fu, S.-M., Natvig, J.B. & Capra, J.D. (1992) Scand J.Immunol., 36, 349-362.
- 86 Pascual, V., Victor, K., Spellerberg, M., Hamblin, T.J., Stevenson, F.K. & Capra, J.D. (1992) J.Immunol., 149, 2337-2344.
- Ponstingl, H., Schwarz, J., Reichel, W. & Hilschmann, N. (1970) Z.Physiol.Chem., 351,
 1591–1594.; Ponstingl, H. & Hilschmann, N. (1976) Z.Physiol.Chem., 357, 1571–1604.
- 88 Portolano, S., McIachlan, S.M. & Rapoport, B. (1993) J.Immunol., 151, 2839-2851.
- Portolano, S., Seto, P., Chazenbalk, G.D., Nagayama, Y., Mclachlan, S.M. & Rapoport, B. (1991) Biochem.Biophys.Res.Commun., 179, 372-377.
- 90 Pratt, L.F., Szubin, R., Carson, D.A. & Kipps, T.J. (1991) J.Immunol., 147, 2041-2046.
- 91 Press, E.M. & Hogg, N.M. (1970) Biochem J., 117, 641-660.
- 92 Putnam, F.W., Shimizu, A., Paul., C., Shinoda, T. & Kohler, H. (1971) Ann.N.Y.Acad.Sci., 190, 83-103.
- 93 Putnam, F.W., Takahashi, N., Tetaert, D., Debuire, B. & Lin, L.C. (1981)
 Proc.Nat.Acad.Sci.Usa, 78, 6168-6172.;Takahashi, N., Tetaert, D., Debuire, B., Lin, L. & Putnam, F.W. (1982) Proc.Nat.Acad.Sci.Usa, 79, 2850-2854.
- 94 Raaphorst, F.M., Timmers, E., Kenter, M.J.H., Van Tol, M.J.D., Vossen, J.M. & Schuurman, R.K.B. (1992) Eur.J.Immunol., 22, 247-251.
- Rabbitts, T.H., Bentley, D.L., Dunnick, W., Forster, A., Matthyssens, G. & Milstein, C. (1980) Cold Spring Harb.Symp.Quanti.Biol., 45, 867–878; Matthyssens, G. & Rabbitts, T.H. (1980) Proc.Nat.Acad.Sci.Usa, 77, 6561–6565.
- 96 Randen, I., Pascual, V., Victor, K., Thompson, K.M., Forre, O., Capra, J.D. & Natvig, J.B. (1993) Eur.J.Immunol., 23, 1220–1225.
- 97 Rassenti, L.Z. & Kipps, T.J. (1993) J.Exp.Med., 177, 1039-1046.
- 98 Reidl, L.S., Friedman, D.F., Goldman, J., Hardy, R.R., Jefferies, L.C. & Silberstein, L.E. (1991)
 J.Immunol., 147, 3623-3631.
- 99 Roudier, J., Silverman, G.J., Chen, P.P., Carson, D.A. & Kipps, T.J. (1990) J.Immunol., 144, 1526–1530.
- 100 Sanz, I., Casali, P., Thomas, J.W., Notkins, A.L. & Capra, J.D. (1989) J.Immunol., 142, 4054-4061.

101 Sanz, I., Dang, H., Takei, M., Talal, N. & Capra, J.D. (1989) J.Immunol., 142, 883-887.

- 102 Schmidt, W.E., Jung, H-.D., Palm, W. & Hilschmann, N. (1983) Z.Physiol.Chem., 364, 713-747.
- 103 Schroeder, H.W., Jr. & Wang, J.Y. (1990) Proc.Natl.Acad.Sci.Usa, 87, 6146-6150.
- 104. Schroeder, H.W., Jr., Hillson, J.L. & Perlmutter, R.M. (1987) Science, 238, 791-793.
- 105 Schroeder, H.W., Jr., Hillson, J.L. & Perlmutter, R.M. (1987) Science, 238, 791-793; Chen, P.P., Liu, M.-F., Glass, C.A., Sinha, S., Kipps, T.J. & Carson, D.A. (1989) Arthritis & Rheumatism, 32, 72-76.
- 106 Schroeder, H.W., Jr., Hillson, J.L. & Perlmutter, R.M. (1987) Science, 238, 791-793; Chen, P.P., Liu, M.-F., Sinha, S. & Carson, D.A. (1988) Arth.Rheum., 31, 1429-1431.
- 107 Schutte, M.E., Ebeling, S.B., Akkermans, K.E., Gmelig-Meyling, F.H. & Logtenberg, T. (1991) Eur.J.Immunol., 21, 1115-1121.
- Schutte, M.E., Ebeling, S.B., Akkermans, K.E., Gmelig-Meyling, F.H.J. & Logtenberg, T. (1991) Eur.J.Immunol., 21, 1115-1121.
- 109 Settmacher, U., Jahn, S., Siegel, P., Von Baehr, R. & Hansen, A. (1993) Mol.Immunol., 30, 953-954.
- 110 Shen, A., Humphries, C., Tucker, P. & Blattner, F. (1987) Proc.Natl.Acad.Sci.Usa, 84, 8563-8567.
- 111 Shimizu, A., Nussenzweig, M.C., Mizuta, T.-R., Leder, P. & Honjo, T. (1989) Proc.Natl.Acad.Sci.Usa, 86, 8020-8023.
- 112 Shin, E.K., Matsuda, F., Fujikura, J., Akamizu, T., Sugawa, H., Mori, T. & Honjo, T. (1993) Eur.J.Immunol., 23, 2365–2367.
- 113 Silberstein, L.E., Litwin, S. & Carmack, C.E. (1989) J.Exp.Med., 169, 1631-1643.
- 114 Singal, D.P., Frame, B., Joseph, S., Blajchman, M.A. & Leber, B.F. (1993) Immunogenet., 38, 242.
- 115 Spatz, L.A., Wong, K.K., Williams, M., Desai, R., Golier, J., Berman, J.E., Alt, F.W. & Latov, N. (1990) J.Immunol., 144, 2821-2828.
- 116. Steiner, L.A., Garcia-Pardo, A. & Margolies, M.N. (1979) Biochemistry, 18, 4068-4080.
- 117 Stewart, A.K., Huang, C., Stollar, B.D. & Schwartz, R.S. (1993) J.Exp.Med., 177, 409-418.
- 118 Thomas, J.W. (1993) J.Immunol., 150, 1375-1382.
- 119 Torano, A. & Putnam, F.W. (1978) Proc.Nat.Acad.Sci.Usa, 75, 966-969.

120 Van Der Heijden, R.W.J., Bunschoten, H., Pascual, V., Uytdehaag, F.G.C.M., Osterhaus, A.D.M.E. & Capra, J.D. (1990) J.Immunol., 144, 2835-2839.

- 121 Van Der Stoep, N., Van Der Linden, J. & Logtenberg, T. (1993) J.Exp.Med., 177, 99-107.
- 122 Van Es, J.H., Gmelig-Meyling, F.H.J. & Logtenberg, T. (1992) Eur.J.Immunol., 22, 2761-2764.
- 123 Varade, W.S., Marin, E., Kittelberger, A.M. & Insel, R.A. (1993) J.Immunol., 150, 4985-4995.
- 124 Victor, K.D., Pascual, V., Lefvert, A.K. & Capra, J.D. (1992) Mol.Immunol., 29, 1501–1506.
- 125 Victor, K.D., Pascual, V., Williams, C.L., Lennon, V.A. & Capra, J.D. (1992) Eur.J.Immunol., 22, 2231-2236.
- Watanabe, S., Barnikol, H.U., Horn, J., Bertram, J. & Hilschmann, N. (1973)
 Z.Physiol.Chem., 354, 1505–1509.
- 127 Weng, N.-P., Yu-Lee, L.-Y., Sanz, I., Patten, B.M. & Marcus, D.M. (1992) J.Immunol., 149, 2518-2529.
- 128 White, M.B., Word, C.J., Humphries, C.G., Blattner, F.R. & Tucker, P.W. (1990) Mol.Cell.Biol., 10, 3690-3699.
- 129 Winkler, T.H., Fehr, H. & Kalden, J.R. (1992) Eur.J.Immunol., 22, 1719-1728.
- 130 Yago, K., Zenita, K., Ohwaki, I., Harada, Y., Nozawa, S., Tsukazaki, K., Iwamori, M., Endo, N., Yasuda, N., Okuma, M. & Kannagi, R. (1993) Mol.Immunol., 30, 1481–1489.
- 131 Zelenetz, A.D., Chen, T.T. & Levy, R. (1992) J.Exp.Med., 176, 1137-1148.
- B. References of germline sequences

References of human germline kappa sequences

- 1 Cox, J.P.L., Tomlinson, I.M. & Winter, G. (1994) Eur.J.Immunol., 24, 827-836.
- 2 Huber, C., Et Al. (1993) Eur.J.Immunol., 23, 2868.
- 3 Klobeck, H.G., Bornkammm, G.W., Combriato, G., Mocikat, R., Pohlenz, H.D. & Zachau, H.G. (1985) Nucl.Acids Res., 13, 6515-6529.
- 4 Lautner-Rieske, A., Huber, C., Meindl, A., Pargent, W., Schäble, K.F., Thiebe, R., Zocher, I. & Zachau, H.G. (1992) Eur.J.Immunol. 22, 1023.
- Lorenz, W., Schäble, K.F., Thiebe, R., Stavnezer, J. & Zachau, H.G. (1988) Mol.Immunol., 25, 479.

6 Pargent, W., Meindl, A., Thiebe, R., Mitzel, S. & Zachau, H.G. (1991) Eur.J.Immunol., 21, 1821-1827.

- 7 Pech, M. & Zachau, H.G. (1984) Nuc. Acids Res., 12, 9229–9236.
- 8 Pech, M., Jaenichen, H.-R., Pohlenz, H.-D., Neumaier, P.S., Klobeck, H.-G. & Zachau, H.G. (1984) J.Mol.Biol., 176, 189-204.
- 9 Scott, M.G., Crimmins, D.L., Mccourt, D.W., Chung, G., Schable, K.F., Thiebe, R., Quenzel, E.-M., Zachau, H.G. & Nahm, M.H. (1991) J.Immunol., 147, 4007-4013.
- Stavnezer, J., Kekish, O., Batter, D., Grenier, J., Balazs, I., Henderson, E. & Zegers, B.J.M. (1985) Nucl. Acids Res., 13, 3495-3514.
- Straubinger, B., Huber, E., Lorenz, W., Osterholzer, E., Pargent, W., Pech, M., Pohlenz, H. D., Zimmer, F.-J. & Zachau, H.G. (1988) J.Mol.Biol., 199, 23-34.
- 12 Straubinger, B., Thiebe, R., Huber, C., Osterholzer, E. & Zachau, H.G. (1988) Biol.Chem.Hoppe-Seyer, 369, 601-607.

References of human germline lambda sequences

- 1 Williams, S.C. & Winter, G. (1993) Eur.J.Immunol., 23, 1456-1461.
- Siminovitch, K.A., Misener, V., Kwong, P.C., Song, Q.-L. & Chen, P.P. (1989) J.Clin.Invest., 84, 1675-1678.
- Brockly, F., Alexandre, D., Chuchana, P., Huck, S., Lefranc, G. & Lefranc, M.-P. (1989) Nuc. Acids. Res., 17, 3976.
- 4 Daley, M.D., Peng, H.-Q., Misener, V., Liu, X.-Y., Chen, P.P. & Siminovitch, K.A. (1992) Mol.Immunol., 29, 1515-1518.
- 5 Deftos, M., Soto-Gil, R., Quan, M., Olee, T. & Chen, P.P. (1994) Scand. J. Immunol., 39, 95.
- 6 Stiernholm, N.B.J., Kuzniar, B. & Berinstein, N.L. (1994) J. Immunol., 152, 4969-4975.
- 7 Combriato, G. & Klobeck, H.G. (1991) Eur.J.Immunol., 21, 1513-1522.
- 8 Anderson, M.L.M., Szajnert, M.F., Kaplan, J.C., Mccoll, L. & Young, B.D. (1984) Nuc. Acids Res., 12, 6647-6661.

References of human germline heavy chain sequences

- Adderson, E.E., Azmi, F.H., Wilson, P.M., Shackelford, P.G. & Carroll, W.L. (1993) J.Immunol., 151, 800-809.
- 2 Andris, J.S., Brodeur, B.R. & Capra, J.D. (1993) Mol.Immunol., 30, 1601–1616.

Berman, J.E., Mellis, S.J., Pollock, R., Smith, C.L., Suh, H., Heinke, B., Kowal, C., Surti, U., Chess, L., Cantor, C.R & Alt, F.W. (1988) Embo J., 7, 727-738.

- Buluwela, L. & Rabbitts, T.H. (1988) Eur.J.Immunol., 18, 1843–1845.; Buluwela, L., Albertson, D.G., Sherrington, P., Rabbitts, P.H., Spurr, N. & Rabbitts, T.H. (1988) Embo J., 7, 2003–2010.
- 5 Chen, P.P., Liu, M.-F., Sinha, S. & Carson, D.A. (1988) Arth.Rheum., 31, 1429-1431.
- 6 Chen, P.P., Liu, M.-F., Glass, C.A., Sinha, S., Kipps, T.J. & Carson, D.A. (1989) Arthritis & Rheumatism, 32, 72-76.
- 7 Cook, G.P. et al. (1994) Nature Genetics 7, 162-168.
- 8 Haino, M. et al., (1994). J. Biol. Chem. 269, 2619-2626
- 9 Humphries, C.G., Shen, A., Kuziel, W.A., Capra, J.D., Blattner, F.R. & Tucker, P.W. (1988) Nature, 331, 446-449.
- 10 Kodaira, M., Kinashi, T., Umemura, I., Matsuda, F., Noma, T., Ono, Y. & Honjo, T. (1986)
 J.Mol.Biol., 190, 529-541.
- 11 Lee, K.H., Matsuda, F., Kinashi, T., Kodaira, M. & Honjo, T. (1987) J.Mol.Biol., 195, 761-768.
- 12 Matsuda, F., Lee, K.H., Nakai, S., Sato, T., Kodaira, M., Zong, S.Q., Ohno, H., Fukuhara, S. & Honjo, T. (1988) Embo J., 7, 1047–1051.
- 13 Matsuda, F., Shin, E.K., Hirabayashi, Y., Nagaoka, H., Yoshida, M.C., Zong, S.Q. & Honjo, T. (1990) Embo J., 9, 2501–2506.
- 14 Matsuda, F., Shin, E.K., Nagaoka, H., Matsumura, R., Haino, M., Fukita, Y., Taka-Ishi, S., Imai, T., Riley, J.H., Anand, R. Et, Al. (1993) Nature Genet. 3, 88-94
- Nagaoka, H., Ozawa, K., Matsuda, F., Hayashida, H., Matsumura, R., Haino, M., Shin, E.K., Fukita, Y., Imai, T., Anand, R., Yokoyama, K., Eki, T., Soeda, E. & Honjo, T. (1993). (Temporal)
- 16 Rechavi, G., Bienz, B., Ram, D., Ben-Neriah, Y., Cohen, J.B., Zakut, R. & Givol, D. (1982) Proc.Nat.Acad.Sci.Usa, 79, 4405-4409.
- 17 Sanz, I., Kelly, P., Williams, C., Scholl, S., Tucker, P. & Capra, J.D. (1989) Embo J., 8, 3741-3748.
- 18 Shin, E.K., Matsuda, F., Fujikura, J., Akamizu, T., Sugawa, H., Mori, T. & Honjo, T. (1993) Eur.J.Immunol., 23, 2365-2367.
- 19 Tomlinson, Im., Walter, G., Marks, Jd., Llewelyn, Mb. & Winter. G. (1992) J.Mol.Biol. 227, 776-798.

20 Van Der Maarel, S., Van Dijk, K.W., Alexander, C.M., Sasso, E.H., Bull, A. & Milner, E.C.B. (1993) J.Immunol., 150, 2858-2868.

- Van Dijk, K.W., Mortari, F., Kirkham, P.M., Schroeder, Jr., H.W. & Milner, E.C.B. (1993) Eur-J.Immunol., 23, 832-839.
- Van Es, J.H., Aanstoot, H., Gmelig-Meyling, F.H.J., Derksen, R.H.W.M. & Logtenberg, T. (1992) J.Immunol., 149, 2234-2240.
- 23 Weng, N.-P., Snyder, J.G., Yu-Lee, L-Y. & Marcus, D.M. (1992) Eur.J.Immunol., 22, 1075-1082.
- 24 Winkler, T.H., Fehr, H. & Kalden, J.R. (1992) Eur.J.Immunol., 22, 1719-1728.
- Olee, T., Yang, P.M., Siminovitch, K.A., Olsen, N.J., Hillson, J.L., Wu, J., Kozin, F., Carson, D.A.&Chen, P.P. (1991) J. Clin. Invest. 88, 193-203.
- 26 Chen, P.P.& Yang, P.M. (1990) Scand. J. Immunol. 31, 593-599.
- 27 Tomlinson, M., Walter, G., Cook&Winter, G. (Unpublished)

Claims

1. A method of setting up one or more nucleic acid sequences encoding one or more (poly)peptide sequences suitable for the creation of libraries of (poly)peptides said (poly)peptide sequences comprising amino acid consensus sequences, said method comprising the following steps:

- (a) deducing from a collection of at least three homologous proteins one or more (poly)peptide sequences comprising at least one amino acid consensus sequence;
- (b) optionally, identifying amino acids in said (poly)peptide sequences to be modified so as to remove unfavorable interactions between amino acids within or between said or other (poly)peptide sequences;
- (c) identifying at least one structural sub-element within each of said (poly)peptide sequences;
- (d) backtranslating each of said (poly)peptide sequences into a corresponding coding nucleic acid sequence;
- (e) setting up cleavage sites in regions adjacent to or between the ends of sub-sequences encoding said sub-elements, each of said cleavage sites:
 - (ea) being unique within each of said coding nucleic acid sequences;
 - (eb) being common to the corresponding sub-sequences of any said coding nucleic acids.
- A method of setting up two or more sets of one or more nucleic acid sequences comprising executing the steps described in claim 1 for each of said sets with the additional provision that said cleavage sites are unique between said sets.
- 3. The method of claim 2 in which at least two of said sets are deduced from the same collection of at least three homologous proteins.
- 4. The method according to any one of claims 1 to 3, wherein said setting up further comprises the synthesis of said nucleic acid coding sequences.
- 5. The method according to any one of claims 1 to 4, further comprising the cloning of said nucleic acid coding sequences into a vector.

6. The method according to any one of claims 1 to 5, wherein said removal of unfavorable interactions results in enhanced expression of said (poly)peptides.

- 7. The method according to any one of claims 1 to 6, further comprising the steps of:
 - (f) cleaving at least two of said cleavage sites located in regions adjacent to or between the ends of said sub-sequences; and
 - (g) exchanging said sub-sequences by different sequences; and
 - (h) optionally, repeating steps (f) and (g) one or more times.
- 8. The method according to claim 7, wherein said different sequences are selected from the group of different sub-sequences encoding the same or different sub-elements derived from the same or different (poly)peptides.
- 9. The method according to claims 7 or 8, wherein said different sequences are selected from the group of:
 - (i) genomic sequences or sequences derived from genomic sequences;
 - (ii) rearranged genomic sequences or sequences derived from rearranged genomic sequences; and
 - (iii) random sequences.
- 10. The method according to any one of claims 1 to 9 further comprising the expression of said nucleic acid coding sequences.
- 11. The method according to any one of claims 1 to 10 further comprising the steps of:
 - (i) screening, after expression, the resultant (poly)peptides for a desired property;
 - (k) optionally, repeating steps (f) to (i) one or more times with nucleic acid sequences encoding one or more (poly)peptides obtained in step (i).
- 12. The method according to claim 11, wherein said desired property is selected from the group of optimized affinity or specificity for a target molecule, optimized enzymatic activity, optimized expression yields, optimized stability and optimized solubility.

13. The method according to any one of claims 1 to 12, wherein said cleavage sites are sites cleaved by restriction enzymes.

- 14. The method according to any one of claims 1 to 13, wherein said structural sub-elements comprise between 1 and 150 amino acids.
- 15. The method according to claim 14, wherein said structural sub-elements comprise between 3 and 25 amino acids.
- 16. The method according to any one of claims 1 to 15, wherein said nucleic acid is DNA.
- 17. The method according to any one of claims 1 to 16, wherein said (poly)peptides have an amino acid pattern characteristic of a particular species.
- 18. The method according to claim 17, wherein said species is human.
- 19. The method according to any one of claims 1 to 18, wherein said (poly)peptides are at least part of members or derivatives of the immunoglobulin superfamily.
- 20. The method according to claim 19, wherein said members or derivatives of the immunoglobulin superfamily are members or derivatives of the immunoglobulin family.
- 21. The method according to claim 19 or 20, wherein said (poly)peptides are or are derived from heavy or light chain variable regions wherein said structural sub-elements are framework regions (FR) 1, 2, 3, or 4 or complementary determining regions (CDR) 1, 2, or 3.
- 22. The method according to claim 20 or 21, wherein said (poly)peptides are or are derived from the HuCAL consensus genes:
 Vκ1, Vκ2, Vκ3, Vκ4, Vλ1, Vλ2, Vλ3, VH1A, VH1B, VH2, VH3, VH4, VH5, VH6, Cκ, Cλ, CH1 or any combination of said HuCAL consensus genes.
- 23. The method according to any one of claims 20 to 22, wherein said derivative of said immunoglobulin family or said combination is an Fv, disulphide-linked Fv, single-chain Fv (scFv), or Fab fragment.

24. The method according to claims 22 to 23, wherein said derivative is an scFv fragment comprising the combination of HuCAL VH3 and HuCAL Vλ2 consensus genes that comprises a random sub-sequence encoding the heavy chain CDR3 sub-element.

- 25. The method according to any one of claims 1 to 24, wherein at least part of said (poly)peptide sequences or (poly)peptides is connected to a sequence encoding at least one additional moiety or to at least one additional moiety, respectively.
- 26. The method according to claim 25, wherein said connection is formed via a contiguous nucleic acid sequence or amino acid sequence, respectively.
- 27. The method according to claims 25 to 26, wherein said additional moiety is a toxin, a cytokine, a reporter enzyme, a moiety being capable of binding a metal ion, a peptide, a tag suitable for detection and/or purification, or a homo- or hetero-association domain.
- 28. The method according to any one of claims 10 to 27, wherein the expression of said nucleic acid sequences results in the generation of a repertoire of biological activities and/or specificities, preferably in the generation of a repertoire based on a universal framework.
- 29. A nucleic acid sequence obtainable by the method according to any of claims 1 to 28.
- A collection of nucleic acid sequences obtainable by the method according to any of claims 1 to 28.
- 31. A recombinant vector obtainable by the method according to any of claims 5 to 28.
- 32. A collection of recombinant vectors obtainable by the method according to any of claims 5 to 30.
- 33. A host cell transformed with the recombinant vector according to claim 31.

34. A collection of host cells transformed with the collection of recombinant vectors according to claim 32.

- 35. A method of producing a (poly)peptide or a collection of (poly)peptides as defined in any of claims 1 to 28 comprising culturing the host cell according to claim 33 or the collection of host cells according to claim 34 under suitable conditions and isolating said (poly)peptide or said collection of (poly)peptides.
- 36. A (poly)peptide devisable by the method according to any one of claims 1 to 3, encoded by the nucleic acid sequence according to claim 29 or obtainable by the method according to any one of claims 4 to 28 or 35.
- 37. A collection of (poly)peptides devisable by the method according to any one of claims 1 to 3, encoded by the collection of nucleic acid sequences according to claim 30 or obtainable by the method according to any one of claims 4 to 28 or 35.
- 38. A vector suitable for use in the method according to any of claims 5 to 28 and 35 characterized in that said vector is essentially devoid of any cleavage site as defined in claim 1(e) and 2.
- **39**. The vector according to claim 38 which is an expression vector.
- 40. A kit comprising at least one of:
 - (a) a nucleic acid sequence according to claim 29;
 - (b) a collection of nucleic acid sequences according to claim 30;
 - (c) a recombinant vector according to claim 31;
 - (d) a collection of recombinant vectors according to claim 32;
 - (e) a (poly)peptide according to claim 36;
 - (f) a collection of (poly)peptides according to claim 37;
 - (g) a vector according to claim 38 or 39; and optionally,
 - (h) a suitable host cell for carrying out the method according to claim 35.
- **41**. A method of designing two or more genes encoding a collection of two or more proteins, comprising the steps of:

- (a) either
 - (aa) identifying two or more homologous gene sequences, or
 - (ab) analyzing at least three homologous genes, and deducing two or more consensus gene sequences therefrom,
- (b) optionally, modifying codons in said consensus gene sequences to remove unfavourable interactions between amino acids in the resulting proteins,
- (c) identifying sub-sequences which encode structural subelements in said consensus gene sequences
- (d) modifying one or more bases in regions adjacent to or between the ends of said sub-sequences to define one or more cleavage sites, each of which:
 - (da) are unique within each consensus gene sequence,
 - (db) do not form compatible sites with respect to any single sub-sequence,
 - (dc) are common to all homologous sub-sequences.
- **42**. A method of preparing two or more genes encoding a collection of two or more proteins, comprising the steps of :
 - (a) designing said genes according to claim 41, and
 - (b) synthesizing said genes.
- 43. A collection of genes prepared according to the method of claim 42.
- 44. A collection of two or more genes derived from gene sequences which:
 - (a) are either homologous, or represent consensus gene sequences derived from at least three homologous genes, and

- (b) carry cleavage sites, each of which:
 - (ba) lie at or adjacent to the ends of genetic sub-sequences which encode structural sub-elements,
 - (bb) are unique within each gene sequence,
 - (bc) do not form compatible sites with respect to any single subsequence, and
 - (bd) are common to all homologous sub-sequences.
- 45. The collection of genes according to either of claims 43 or 44 in which each of said gene sequences has a nucleotide composition characteristic of a particular species.
- 46. The collection of genes according to claim 45 in which said species is human.
- 47. The collection of genes according to any of claims 43 to 46 in which one or more of said gene sequences encodes at least part of a member of the immunoglobulin superfamily, preferably of the immunoglobulin family.
- 48. The collection of genes according to claim 47 in which said structural subelements correspond to any combination of framework regions 1, 2, 3, and 4, and/or CDR regions 1, 2, and 3 of antibody heavy chains.
- 49. The collection of genes according to claim 47 in which said structural subelements correspond to any combination of framework regions 1, 2, 3, and 4, and/or CDR regions 1, 2, and 3 of antibody light chains.
- **50**. A collection of vectors comprising a collection of gene sequences according to any of claims 43 to 49.

- 51. The collection of vectors according to claim 50 comprising the additional feature that the vector does not comprise any cleavage site that is contained in the collection of genes according to any of claims 43 to 49.
- 52. A method for identifying one or more genes encoding one or more proteins having a desirable property, comprising the steps of:
 - (a) expressing from the collection of vectors according to either of claims 50 or 51 a collection of proteins.
 - screening said collection to isolate one or more proteins having a desired property,
 - (c) identifying the genes encoding the proteins isolated in step (b),
 - (d) optionally, excising from the genes encoding the proteins isolated in step (b) one or more genetic sub-sequences encoding structural subelements, and replacing said sub-sequence(s) by one or more second sub-sequences encoding structural sub-elements, to generate new vectors according to either of claims 50 or 51,
 - (e) optionally, repeating steps (a) to (c).
- 53. A method for identifying one or more genes encoding one or more antibody fragments which binds to a target, comprising the steps of:
 - (a) expressing from the collection of vectors according to either of claims50 or 51 a collection of proteins,
 - screening said collection to isolate one or more antibody fragments which bind to said target,
 - (c) identifying the genes encoding the proteins isolated in step (b).
 - (d) optionally, excising from the genes encoding the antibody fragments isolated in step (b) one or more genetic sub-sequences encoding structural sub-elements, and replacing said sub-sequence(s) by one or

more second sub-sequences encoding structural sub-generate new vectors according to either of claims 50 or 51,

- (e) optionally, repeating steps (a) to (c).
- 54. A kit comprising two or more genes derived from gene sequences which:
 - (a) are either homologous, or represent consensus gene sequences derived from at least three homologous genes, and
 - (b) carry cleavage sites, each of which:
 - (ba) lie at or adjacent to the ends of genetic sub-sequences which encode structural sub-elements,
 - (bb) are unique within each gene sequence,
 - (bc) do not form compatible sites with respect to any single subsequence, and
 - (bd) are common to all homologous sub-sequences.
- 55. A kit comprising two or more genetic sub-sequences which encode structural sub-elements, which can be assembled to form genes, and which carry cleavage sites, each of which:
 - (a) lie at or adjacent to the ends of said genetic sub-sequences,
 - (b) do not form compatible sites with respect to any single sub-sequence,
 and
 - (d) are common to all homologous sub-sequences.

Figure 1: construction of a synthetic human antibody library based on consensus sequences

Figure 2A: VL kappa consensus sequences

Sequences
consensus
'L kappa
Figure 2A: VL

	CDRII	framework 3
	29 49 59 69 69 69 69 69 69 69 69 69 69 69 69 69	15 06 62 15 06 16 17 17 17 17 17 17 17 17 17 17 17 17 17
V _K 1	PSRFSGS	TLTISSIOPEDE
VK2	VK2 A S G V P D R F S G S C	B V F A F D V
VK3	VK3 A T G V P A R F S G S C	SLEPFDF
Vĸ4	VK4 ESGVPDRFSGS	LOAFDV
f.	framework 3 CDRIII	framework 4
	96 96 66 66 68 88 48 98 98	001 66 86 26
/K	VK1 TYYCQQHYTTPP	T F G O G T K V F I K R
Vk2	VK2 V Y Y C Q Q H Y T T P P	TFGOGTKVELK
Vk3	VK3 V Y Y C Q Q H Y T T P P	TFGQGTKVEIK
VK4	VK4 V Y Y C Q Q H Y T T P P	TFGOGTKVFIK

Figure 2B: VL lambda consensus sequences

		1								
		82	-	>			Z S	9	G	G
		3	Z		ŧ		99	S	S	S
	=	D	S	S	ı		99	۵	ط	٩
	CDRI	77	S	S	V	=	75	8	\propto	\propto
		97	S	├		CDR	23	Q	Z	Ω.
		52	9	G	G	ပ	25	Z	S	S
		74	S	—	S		١S	z	>	O
		23	ပ	၁	<u>ں</u>		20		۵	
		77	S	S	S		67	>	>	>
		12	-	-	_		· 84	_		_
		50	⊢	-	\propto		L t		Σ	>
		61	>	_	V		97	1	_	_
		81	<u>ح</u>	S	-		94	\prec	\checkmark	>
		11	O	Q	O	(2)	77	ط	۵	م
		91	ပ	G	G	framework 2	43	A	A	∢
		Sl	م	۵	۵.	e N	77	-	\checkmark	a
•	-	Þι	A	S	A	l E	17	G	9	9
	framework	13	ග	G	>	. 4	07	۵	ط	ا ۵
	eW	15	S	S	S		38		エ	\times
	am	11	>	>	>	.	38	O	O	0
-	fr	01	1	ı	1		32	O	O	a
		6	S	S	S		98	>	>	>
		8	ا مــ	A	Ф		35	≥	≥	≥
•		L	ط	Д	Д	·	34	S	S	S
		9	O	O	O		33	>	>	X
		5	⊢	—		 	32	>	>	>
		, 7			_	CDRI	A	1	Z	1
		3	>	X	ш		131	Z	>	\prec
		7	S	S	>	. ~	33 30 30 31 32 33	S	9	
		l	0	0	S		52	9	9	9
			MIQSVLTQ	W2 0 S A L T Q	M3 SYELTO			W1 G S N - Y V	W2 6 G Y N Y V	M3 G D K - Y A

Figure 28: VL lambda consensus sequences

framework 3	8 5 6 6 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7	CDRIII	88 90 92 95 95 96 96 96 97 96 96 97 96 97 97 97 97 98 98 98 99 98 98 98 98 98 98 98 98 98	COOHYTTPPVFGGGTKLTVI	COOHYTTPPVFGGGTKLTVI	COOHYTTPPVFGGGTKLTVL
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			3	W2	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Figure 2C: V heavy chain consensus sequences

										· ·	49	1	_	$\overline{\nabla}$	—		\vdash	\overline{z}
											99				S			
	30	<u>ι</u> Δ	<u> </u>	10	10	S	—	10	1		99		9		9			_
					ш		止					Ì			9			
	50							-		=	75			_] 9	S
	28	Ţ				Š		_		CDR	53	Ī.	Z	_			_	1
	77	9	•			G	•			Image: section of the content of the	5			1			1	ω.
	97	j				6					B		1		1		١	
	52	l	•			S		0,			V	٦	<u>~</u>	1.	G	,		>
	77	l				>		_			25			<u>.</u>	S	_	> -	
	23	ł				⊢					15		_	_	_	_		-
	22	j				C					09	i			Α.			<u>ح</u>
	21		S			—	S				67	1 G			S		_	·
	50	>	>		_		_	_			84	Σ	Σ		>	_	Σ	7 /
	61	~	$\boldsymbol{\prec}$	<u></u>	\propto	S	\prec	S			74	i	-	_	≥			
-	81	>	>							mework 2	97	ш	ш	ш	ш	ш	ш	ш
논	11	S	S	—	S	· 	S	Ι.			97	-		_	_			
framework	91	S	A	O	9	ш	ш	O			44	9			9			
me	SL	9	9	\vdash	9	S	9	S			43	O			\checkmark			1
frai	tl	م	Ь	٩	۵	٥	٩	ط		frar	74	ł						1
	13	\mathbf{x}	\checkmark	\prec	O	\prec	\prec	Y		·	17	l			Δ_			
	71	\prec	\checkmark	>	>	>	\checkmark	>.			017	A			A			
	11	>	>	_	_		>	_		;	38	O	Q	O	Q.	O	O	Q
	01	ш	ш	A	9	G	ш	9			38	\propto	\propto	\propto	\propto	\propto	\propto	\propto
	6	⋖	A	ط	9	٥	A	ط			37	>	>	_	>		>	
	8	9	9	9	9	G	9	9			36	≥	≥	≥	≥	≥	≥	≥
	7	2	S	S	S	S	S	S			35	S	エ	G	S	S	9	Z
	9	O	0	ш	ш	ш	O	O			34	-	\geq	>	≥	≥		≥
	9	>	>	¥	>	0	>	O		CDRI	33	⋖	>	G	A	>	≥	\forall
	Þ				_		_			כנ	32	>	>	>	>	>-	>-	\triangleleft
	3	0	O	0	O	O	0	0			8	ı	1	G	1	ı	ı	2
İ	7	>	>	>	>	>	>	>			A	1	ı	S	ı	1	. 1	Z
	l	0	O	O	ш	O	ш	O			18	S	S	—	S	S	S	S
	-	VH1A	VH1B	VH2	'H3	VH4	/H5	9H/				/H1A	/H1B	VH2	/H3	/H4	VH5	9H/
•		>	>	>	>	>		BSTI1	UTE 6	SHE / 20	ET (P:L 4	JLE 2		<i>></i>	<i>></i>	<i>></i>	<i>_</i>	_

sednences
n consensus
heavy chair
Figure 2C: V

		· ·
CDRII framework 3	58.56 66 66 66 66 67 77 77 77 77 77 77 77 77	4 511 > > > > > > > > > > > > > > > > > >
	•	7 204

G S BamHI

ഗ

G

ഗ

Į٦١

 α

ഗ

Д

Ċ

ഗ

Ø

니

ഗ

ഗ

ø

CGTTTTAGCG GCTCTGGATC

Ω			Æ E	: -			G	U				Ø	₽	
			TG	Ä	口		TG	;AC	K			SS	\CG	
ტ			CTGAGCGCGA GCGTGGGTGA	CGCACCCACT	54		ATC	CCCGTAATCG TCGATAGACC	\succ			TAT	GCTTTGATAA TTAAATACGT	
>			GT	Ž.	>		CT	GA,	н		?	TT	AA	
ဟ			9)	ഗ		AG	Ţ		H	~~~~~	AA	$_{ m LI}$	
L S A S			GA	ر ا	ഗ		CGC	Ö G	K L L	AseI	?	TT	'AA	
Ø			7,000	ף כי	щ		ΓŢΑ	\AT	ᆈ		₹	CTA	BAT	
ഗ			AGG) 1			CA.	GT?	X			AA(TT(
ц			CTGAGCGCGA	7#C	O		366	\mathcal{O}				GCAGAAACCA GGTAAAGCAC CGAAACTATT AATTTATGCA CGTCTTTGGT CCATTTCGTG GCTTTGATAA TTAAAATA	CT	
					O.		A		Д			ט	U U	
ß			AG		Ø		CC.	, GG	K A P			CA	,GT	
ഗ			ICI KO	ב ב ב	R A S	ر	GÀG	CLC	×			AAG	TTC	
Д		<pre></pre>	CCCGTCTAGC	ز 9			AGC.	ည် (ရှိ	, n			TA	AT	
	BanlI		S_{ij}	5		?	ATTACCTGCA GAGCGAGCCA GGGCATTAGC AGCTATCTGG	TAATGGACGT CTCGCTCGGT	O	AI	~ ~	9	ပ	
W	Ва	?	AG TTC)	C PstI	?	SCA	GT	Д	SexAI	~~~~~~~	CA	GT	
ence		•	TGACCCAGAG CCCGTCTAGC) -)	T C R PstI	~ ~ ~ ~ ~ ~ ~	CTC	GAC	K P G	נט	₹.	AAC	CGTCTTTGGT CCATTTCGTG	
sedn T				Ď	₽		AC	Ď.I.	a			GA	$^{\prime}$ CT.	
) gene			TGA		H		ATT	ΙΆ	O.			GCA	CGI	
I (Vk.1) gene sequence $M = T = Q$					r.				Ø		,			
•			GATATCCAGA	י פר			TCGTGTGACC	AGCACACI'GG	7	nI	~ ~ ~ ~ ~	CGTGGTACCA	GCACCATGGT	
4: < k)RV	?	TC	9	R V		GT)CA	γ Υ	KpnI	?	GT	CA	
Figure 3A: V kappa . D I Q	EcoRV	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	ATA TAT	<u> </u>	α		CGT		A W		(GTG	CAC	
Fig.	-	?	ט ל)			[- 4	₹	Ø			Ö	Ŋ	
						רו זי	OT!**! !	TC 0111						

CGGTCGTCGA ACGTTTCGCC CCAGGGCAGG GCAAAATCGC CGAGACCTAG Figure 3A: V kappa 1 (Vk1) gene sequence (continued)

DAIOORDRON OON THE THE	Ĺτι				,	GAAGACTTTG	CTTCTGAAAC			
Í	Ω	₹	-	Z Z	?	GAC	CTG			
5	P E Eco57I	~~~~~	ロント	מ	?	GAA(CTT(
)	P Eco	?								
1	Ø					CAA	FTT(
	D F T L T I S S L Q P E D F Eco571					CCTGCAACCT	GGACGTTGGA			
	ഗ									
	Ω				AGC					
	Н	н				CCATTAGCAG GGTAATCGTC				
	₽				(A FI				
	H				Ę	CTG, GAC'				
	H				CGGCACTGAT TTTACCCTGA GCCGTGACTA AAATGGGACT					
	<u>F</u>					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	HAH			
	Ω				ر د	1	£ 7)			
	Ħ	-	4		T L	ין ט ע ה				
	Ŋ	Damut 7	חשם	?	いしていていじい	יט כיט טיט כיט	9			

? ? ? ?	CONTRACTOR AND AND CONTRACT CONTRACT CONTRACTOR CONTRAC	SCIEGAIMAI MACGGICGIC GTAATAIGGI GGGGCGGCIG GAAACCGGIC
	CCCCGCCGAC	GGGCGGCTG
	CATTATACCA	GTAATATGGT
てんじんごごじむ	1 1 GCCAGCAG	AACGGI'CGI'C
ССАССТАТТА	TE SOLIO TE SE SE SE SE SE SE SE SE SE SE SE SE SE	

Ø

ᄺ

E

Д

Д

⊣

H

 \succ

耳

Ø

Ø

Ö

E

Ø

G MscI

R	BsiWI	2 2 2 2 2 2 2
×		
Н		
ഥ		
>		
×		
H		
Ŋ		

GGTACGAAAG TTGAAATTAA ACGTACG CCATGCTTTC AACTTTAATT TGCATGC

Figure 3B: V kappa 2 (Vk2) gene sequence

ы			Ϋ́	Ę	
ტ			GCG	CGC	Z
0.			Seg	300	ß
			CTCCGGGCG	GAGGCCCGCT	Ħ
H					
>			TG	CAC	H
Д			CAC	GT(Ц
M T Q S P L S L P V T P G E			CTGCCAGTGA	GACGGTCACT	I S C R S S Q S L L H S N
ഗ			CC	CG	Ø
د			IGA	ACT	ഗ
С		}	CCCACTGAGC	GGGTGACTCG	ഗ
	anlı	1 1	\mathcal{C}	S	~
Ŋ	Baı	1111	;AG	TC	<i>-</i>
Q		(CAG	GTC	. 0
H			TGACCCAGA	ACTGGGTCT	Ŋ
_			TG1	AC	H
≥i			GA	CI	Ŋ
>	_	,	GT	CA	
Н	EcoRV	\ \ \	ATC	TAC	БВ
Д	Б	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	GATATCGTG	CTATAGCAC	Д

CATAGCAACG GTATCGTTGC Ø Д S AAGCCTGCTG TTCGGACGAC Ø Ö SexAI Д 又 GAAGCAGCCA CTTCGTCGGT Ø 口 × KpnI ATTAGCTGCA TAATCGACGT 3 Д Ц GCCTGCGAGC CGGACGCTCG × Z \succ G

PstI

AACCAGGTCA AAGCCCGCAG TTCGGGCGTC TTGGTCCAGT TCTGGATTGG TACCTTCAAA ATGGAAGTTT AGACCTAACC GCTATAACTA CGATATTGAT

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

ī 召 Д Д SanDI > O Ø Ø K Z Ø Q 口 22222 AseI 니 Ц

GCCTAGCAAA CGGATCGTTT AGTGGGGTCC TCACCCCAGG CAACCGTGCC GTTGGCACGG ATCTGGGCAG TAGACCCGTC CTATTAATTT GATAATTAAA

(continued)
gene sequence
2 (VK2)
, карра
38: \
igure

S R V	AGCCGTGTGG TCGGCACACC	ТТ		TACCACCCCG ATGGTGGGGC	Н	_ و و و
L K I	CCTGAAAATT GGACTTTTAA	у н у		AGCAGCATTA TCGTCGTAAT	I K R T Bsiwi	ATTAAACGTA CG TAATTTGCAT GC
T T T	CCGATTTTAC GGCTAAAATG	д К К С О О Н У		TATTATTGCC ATAATAACGG	K <	GAAAGTTGAA CTTTCAACTT
S G S G S G T BamHI	TAGCGGCTCT GGATCCGGCA ATCGCCGAGA CCTAGGCCGT	E A E D V G V Eco57I	BbsI	AAGCTGAAGA CGTGGGCGTG TTCGACTTCT GCACCCGCAC	PTFGQGT MscI	GGGTAC

F			GA		C E	'AG		> -		'AT'		o Hr	?	GG.
ტ			CTCCGGGCGA GAGGCCCGCT	\	しまなけいごないごな	TCGTCGATAG		н		ATTAATTTAT TAATTAAATA	۲	ə BamHI		GCGGCTCTGG
വ			200 300	S	ی ۵٪	STC		L AseI	~ ~ ~ ~ ~	raa Att	C	פ		GGC
			CT(ß	סטע	TC		Ä	?	AT		n		Ü
Ø			GT	S	ر	999		H		CT				TA
Н			CCT	>	4 C. U	ACT		K		SGT		ч		${ m LLL}$
ഗ			AGC		ر ر			Ф		CACCGCGTCT GTGGCGCAGA	t	4		3CG
·	-		CTGAGCCTGT GACTCGGACA	W	してならようしさなら	CTCGCACTCG				CACCGCGTCT GTGGCGCAGA	۲	C		GCGCGTTTTA
H		:*.		Q				Ø		AG	ב	ч		CG
			CCCGGCGACC	ഗ	יין ניין	CTCGCTCGGT		Q	,	CCAGGTCAAG GGTCCAGTTC		DI	~ ~ ~ ~ ~ ~ ~	TGGGGTCCCG
A			999	A	ر الالال			GAI	~~~~~~	1997 1007	. (Sar	?	3GG
Д	H	?			رن ان ام	CIC	,	P G SexAI	?	CCA	. ()	(TGC
ഗ	BanII	* * * * * * * *		K H	4009490949 409H0949H0	E E		\bowtie	?		E	-1		AC
) O	111	?	TGACCCAGAG ACTGGGTCTC	C PstI	`~ ~ .	GACTCGACGT				CCAGCAGAAA GGTCGTCTTT	K	Ç	•	3CA
e seque			000	· 0	, ל קלי	TCO		o o		GC7	ρ	4		GT(
) gen			rga act	H	ر 1	GAC		O	?	CCA	2114			CCC
				٠.	ر			Y	~ ~ ~ ~		O)		CA
карра `V			GTC	H	ָרָ בָּיַרָּ מַיִּבְי	CT(¥ Kb	\$	1GG	٥)		3AG
3C: V T	ECORV	₹	ATC TAG	Ø	J L	ACG		A		CG1	۴	Ç		255
Figure 3C: V kappa 3 $$ $$ $$ $$ $$ $$ $$ $$ $$ $$	크 C	~~~~	GATATCGTGC CTATAGCACG	X.	ごなごごごまごごべ	TGCACGCTGG		L A W		TGGCGTGGTA ACCGCACCAT	Ċ	פ		GGCGCGAGCA GCCGTGCAAC
		-												

Figure 3C: V kappa 3 (Vk3) gene sequence (continued)

CCGCGCTCGT	CGGCA	CGTTG	ACCCC	AGGGC	CGCGC	AAAAT	CCGCGCTCGT CGGCACGTTG ACCCCAGGGC CGCGCAAAAT CGCCGAGACC
S G	Ū	H	I.	Н	ß	ы П	P E D Eco57I
BamHI		,					BbsI
ATCCGGCACG TAGGCCGTGC	GATTT CTAAA	GATTTTACCC CTAAAATGGG	TGACC ACTGG	ATTAG TAATC	TGACCATTAG CAGCCTGGAA ACTGGTAATC GTCGGACCTT	TGGAA ACCTT	CCTGAAGACT GGACTTCTGA
F A V Y	, , ,	Ø υ	Ж О	> -	T	Ъ	T F G MscI
TTGCGGTGTA TTATTGCCAG AACGCCACAT AATAACGGTC	ТТАТТ ААТАА	TTATTGCCAG AATAACGGTC	CAGCA GTCGT	CAGCATTATA GTCGTAATAT	CCACC	CCACCCGCC GGTGGGGGCGG	GACCTTTGGC CTGGAAACCG
Q G T F MscI	X >	н	×	R T BsiWI			
cagggtacga gtcccatgct		AAGTTGAAAT TTCAACTTTA		TAAACGTACG ATTTGCATGC		·	

AGTCGGCGGC

TCAGCCGCCG

AGAAACCAGG TCTTTGGTCC

TGGTACCAGC

ACCATGGTCG

CTATCTGGCG GATAGACCGC

ACAACAAAA

TGTTGTTTT

民

Ω

Д

Ö

Ŋ

团

 α

ᆫ

S

Ø

3

AseI

Ц

X

V SanDI

Figure 3D: V kappa 4 (Vx4) gene sequence

闰	GA	70	SCA	വ
Ф	000	01	CAC	Д
M T Q S P D S L A V S L G Banii	CTGGCGGTGA GCCTGGGCGA GACCGCCACT CGGACCCGCT	INCRSQSVLYSS Psti	TATAGCAGCA ATATCGTCGT	о В
W				ַט אָ זַ
>	FTG.	ij	SCT	P G SexAI
Æ	CTGGCGGTGA GACCGCCACT	>	GAGCGTGCTG CTCGCACGAC	
,	rgg ACC	W	AGC ICG	×
H			3 5	Q
Ø	CCCGGATAGC GGGCCTATCG	Ol	~ GAAGCAGCCA CTTCGTCGGT	W Y Q Q K P G KpnI SexAI
Д	ATZ TA	W	AG TC	H
ر م	0 0 0 0 0	W.	AGC	V Y KpnI ~~~~~~
S P BanII	S S S S	~	ÇA CT	S ≀
S BanII	AGTC	C F PstI	CTGCA G	
O ²	STC	D B	~~~ CTG GAC	ت
E	222	Z	'AA(TT(
	rga act	Н	ATTAACTGCA TAATTGACGT	Y I
Ξ	A L		ပ္ပုဗ္မ	Z
>	STG	H	GAC	×
I oRV	TC(4	rgc Acg	7 .
D I EcoRV	GATATCGTGA TGACCCAGAG CCCGGATAGC CTATAGCACT ACTGGGTCTC GGGCCTATCG	ద	ACGTGCGACC ATTAACTGCA GAAGCAGCCA GAGCGTGCTG TGCACGCTGG TAATTGACGT CTTCGTCGGT CTCGCACGAC	z z
	` ຜັບ		A T	Z

GAAAGCGGGG TCCCGGATCG CTTTCGCCCC AGGGCCTAGC ATCCACCCGT TAGGTGGCCA AAACTATTAA TTTATTGGGC AAATAACCCG TTTGATAATT

Figure 3D: V kappa 4 (Vk4) gene sequence (continued)

	<u></u>	_				
Ŋ	טטטן) } }		ACC		
N S	ה הקטן מטטע	E		ACC	Н	ט ט
Н	ATTTCGTCCC	YTT		TTATACCACC AATATGGTGG	I K R T BsiWI	GAAATTAAAC GTACG CTTTAATTTG CATGC
E	1CC	Ħ		CA	K.	AC TG
T L T	TACCCTGACC ATGGGACTGG	н о о		GCCAGCAGCA	X	TAA ATT
H	ACCC PGGC	Ø		CAG		AAT TTA
r-	TZ '				团	GA
T D F	GCACTGATTT	A Y Y		GТGТАТТАТТ САСАТААТАА	>	STT
F.	TGA	⊱		ATT	×	AAA(ITT(
Ţ	CAC GTG	\triangleright		TGT	T K V	TACGAAAGTT ATGCTTTCAA
Ŋ						
G S G	Damhl ~~~~~~ TCTGGATCCG AGACCTAGGC	D V A		AGACGTGGCG TCTGCACCGC	G Q G MscI	TTGGCCAGGG AACCGGTCCC
ტ (Ba ~~~ GGA' CCTJ	>		CGTC	G Q MscI ~~~~~	SCCA GGI
Ŋ	TCT(AGA(≥ H	SA AGAC CT TCTG	Ŭ ¥ ~	TGG
Ö		A E Eco57I	BbsI	3A 7	Ţ	
ഗ	300 200 200	A EC	<u>}</u>	GAC	E	ACC TGG
ഥ	Damhi TTTTAGCGGC TCTGGATCCG AAAATCGCCG AGACCTAGGC	Q		TGCAAGCTGA AGACGTGGCG ACGTTCGACT TCTGCACCGC	Д	CCGCCGACCT GGCGGCTGGA
	TT	N T		TG(AC(Д	322

					•		
G Q R AI	c caggrcagcg g grccagrcgc	N N	AGCAACTATG TCGTTGATAC	L I Y	GCTGATTTAT CGACTAAATA	G S K Bamhi	? ? ?
P S V S G A P SexAI	GCCTTCAGTG AGTGGCGCAC CAGGAAGTCAC TCACCGCGTG G'Eco57I	S S N N G	GCAGCAGCAG CAACATTGGC A CGTCGTCGTC GTTGTAACCG I	[-1	CCCGGGACGG CGCCGAAACT C	G V P D R F S	}
gure 4A: V lambda 1 (VX.1) gene sequence Q $ m S V L T Q P$	CAGAGCGTGC TGACCCAGCC GC GTCTCGCACG ACTGGGTCGG CG	V T I S C S G BssSI	TGTGACCATC TCGTGTAGCG GC ACACTGGTAG AGCACATCGC CC	V S W Y Q Q L I	TGAGCTGGTA CCAGCAGTTG COACTCGACCAT GGTCGTCAAC GOACCAT GGTCGTCAAC GOACCAT GGTCGTCAAC GOACCAT GGTCGTCAAC GOACCAT GGTCGTCAAC GOACCAT GGTCGTCAAC GOACCAT GGTCGTCAAC GOACCAT GGTCGTCAAC GOACCAT GGTCAAC GOACCAT GGTCGTCAAC GOACCAT GGTCGTCAAC GOACCAT GGTCGTCAAC GOACCAT GGTCGTCAAC GOACCAT GGTCGTCAAC GOACCAT GGTCGTCAAC GOACCAT GAACCAT GGTCGTCAAC GAACCAT GAACCA	D N N Q R P S Bsu36I	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

Figure 4A: V lambda 1 (VA.1) gene sequence (continued)

GCGGATCCAA CGCCTAGGTT	S E D BbsI	AGCGAAGACG TCGCTTCTGC	V F G TGTGTTTGGC ACACAAACCG		
AGGCGTGCCG GATCGTTTTA GCGGATCCAA TCCGCACGGC CTAGCAAAAT CGCCTAGGTT	C I C	GGGCCTGCAA CCCGGACGTT	Q H Y T T P P P AGCATTATA CCACCCCGCC		
	SASLAIT	TTGCGATTAC AACGCTAATG	Q H Y T T P P V F G CAGCATTATA CCACCCGGCC TGTGTTTGGC GTCGTAATAT GGTGGGGCGG ACACAAACCG	L G MscI	TCTTGGC AGAACCG
GATAACAACC AGCGTCCCTC CTATTGTTGG TCGCAGGGAG	S A S	AGCGCGAGCC	Y C Q TTATTGCCAG AATAACGGTC	K L T V HpaI	CGT
GATAACAACC CTATTGTTGG	S D	AAGCGGCACC AGCGCGAGCC TTCGCCGTGG TCGCGCTCGG	E A D Y AAGCGGATTA TTCGCCTAAT	G G T	GGCGGCACGA

Н

 Σ

Figure 4B: V lambda 2 (Vλ2) gene sequence

S Q Ö SexAI Д ß G S \gt ß K Д Ø Ц Ø Ŋ Ø

CAGGTCAGAG GTCCAGTCTC AGCGGCTCAC TCGCCGAGTG AGCTTCAGTG TCGAAGTCAC Eco57I ~~~~~ ACTGGGTCGG TGACCCAGCC GTCTCGCGTG CAGAGCGCAC

Z G U > Д S Ŋ Ę C H C BSSSI Ŋ \mathbf{H} E H

CCGATATTGA GGCTATAACT CGATGTGGGC GCTACACCCG GTACTAGCAG CATGATCGTC TCGTGTACGG AGCACATGCC GTAATGGTAG CATTACCATC

Н × Д BbeI Ø 又 Q XmaI Д 工 Q Ø KpnI × 3 ? S > ⋝

AGGCGCCGAA ACTGATGATT TGACTACTAA TCCGCGGCTT CATCCCGGGA GTAGGGCCCT ~~~~~ CATGGTCGTC GTACCAGCAG TACACTCGAC ATGTGAGCTG

S BamHI O S ഥ 召 Z S > Ç P S Bsu36I 召 Z S > Ω \succ

AATCGCCTAG TTAGCGGATC AGCAACCGTT TCGTTGGCAA CTCAGGCGTG GAGTCCGCAC GCAACCGTCC CGTTGGCAGG TATGATGTGA ATACTACACT

Figure 4B: V lambda 2 (VA2) gene sequence (continued)

SH	~~ AG TC	Ĺ	TT AA		
E BbsI	SGAAG	Р V	GT'		
· 4	000		TG1 AC2		
Q	CAAGCGGAAG GTTCGCCTTC	Д	GCCTGTGTTT CGGACACAAA		
1	CTG	ф	000 000 000		
O	2002	T	ACC		
S G	GCCTGACCAT TAGCGGCCTG CGGACTGGTA ATCGCCGGAC	Ę	ATACCACCCC TATGGTGGGG		
	TA AT	5 4	AT		
H H	GCCTGACCAT CGGACTGGTA	д н о о	CAGCAGCATT GTCGTCGTAA	G MscI	TGGC ACCG
H	ACC	j.Lq	CAGCAGCATT GTCGTCGTAA	V L G Msc:	CGTTCTTGGC GCAAGAACCG
H	CTG	Ol .	3CA 3GT	7	'TC \AG
	900	Q	CAC		CGJ GCZ
Οĵ	GA	()		E H	~ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Ø) (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1		TT(L Hpal	~~~~~ GTTAAC CAATTG
N T A S	ACC TGG	Э	TTA	K L T Hpal	AGT TCA
Z	AACACCGCGA TTGTGGCGCT	D Y Y C	rta Aat		CGA SCT
ריז	ប្តី ប្ត	Q	A.T.	H	A F
0	000 000	Æ	000 000	Ö	999
S	AAG ITC	ыH	AAG I'TC	Ŋ	300
K BamHI	caaaagcggc aacaccgcga gttttcgccg ttgtggcgct	Ŋ	~~ ACGAAGCGGA TTATTATTGC TGCTTCGCCT AATAATAACG	O	GGCGGCGCA CGAAGTTAAC CCGCCGCCGT GCTTCAATTG
Щ	າ ບ ບ	μщ	' A H		00

Figure 4C: V lambda 3 (Vλ3) gene sequence

E	AC		SCT	D TA
Q	~~~~~ CAGGTCAGAC GTCCAGTCTG	Ñ	TACGCGAGCT ATGCGCTCGA	Y D D TTATGATGAT
	ĭ CA CCA	X A	7 9 9 9 9	Z ATG
P SexAI	CAC GTC	⊱	TAC	ر 1777
S V A P G SexAI	₹	×	λΆ ĽŢ	H Ex
K	, GG GG GG GG GG GG GG GG GG GG GG GG GG	Д	TAZ	V TG
>	GAA	Д	CGA	J 0
W	AGCGTTGCAC TCGCAACGTG	Q	GGGCGATAAA CCCGCTATTT	L V I TTCTGGTGAT
		د.		>
>	GTC CAC	D A L	1007 1007	A P V BbeI ~~~~~~
W	CTTCAG GAAGTC Eco57I	Ø	ngc Acg	A P BbeI ~~~~~~
S d	GCCTTCAGTG CGGAAGTCAC Eco57I	Ω	GCGATGCGCT CGCTACGCGA	Q A P D BbeI BbeI ~~~~~~CAGGCGCCAG
	99	ڻ ت		
Д) (0 (0 (0		9 0 0 0 0	ρ Η Π Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο
T O P	TGACCCAGCC ACTGGGTCGG	Ŋ	TCGTGTAGCG	K P G XmaI ~~~~~~~
	100 100	S C BssSI	3TG	X AAC
, Д ,	TGA ACJ	S S	TCC	GAZ
. ┛ .	DA DI DI	⊢		O AF
回	GAZ	M M	TA	
≯	rat ata	K K	0 0 0 0	Y n I ~~~
ĊΩ	AGCTATGAAC TCGATACTTG	K	CGCGCGTATC	W Y Q Q KpnI ~~~~~~ GGTACCAGCA
	4 L			> (00

Figure 4C: V lambda 3 (VA.3) gene sequence (continued)

Ŋ		900	a.	Q	SCC	ဗ ဗ္ဗ ဗ္ဗ ဗ္ဗ ဗ္ဗ
PSGIPERFSGSNSG Bsu361		TTTAGCGGAT CCAACAGCGG AAATCGCCTA GGTTGTCGCC	A T L T I S G T Q A E D E A Bbsi	TCAGGCGGAA GACGAAGCGG	CTGCTTCGCC	G G G TGGCGGCGGC ACCGCCGCCG
Z		AAC.	臼	GA	CT	0 0 0 0 0 0
Н	}	CCA	Ωн	GAC	CTC	TGG
S	2 2 2 2 2	\T PA	3 3 5 8	~~~~~~~ 3AA GAC		
က <u>က</u>	?	GG7	щн	~. GG7	ÇÇ	V TG
Ø		4GC PCG	Æ	360	AGTCCGCCTT	P CTG GAC
Įц		TT'	Q	CAC	GT(, 30 0 30 0 30 0 30 0
			F		() ()	Q Q H Y T T P P V F CCAGCAGCAT TATACCACCC CGCCTGTGTT GGTCGTCGTA ATATGGTGGG GCGGACACAA
K K		500		CA(GT(₽ 0 0 0 0 0 0 0
田		GAA	O	CGG	CC	7 CC2 GG1
Ъ		CCCGGAACGC	Q	TTAGCGGCAC	AATCGCCGTG	r ATA FAT
			H			
Η		CCTCAGGCAT GGAGTCCGTA	F	CG ACCCTGACCA	TGGGACTGGT	H CAT GTA
D H	1	000		'GA(CTO	Q YAG YTC
36	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	rca AGT	H	CCI	GGA	Q AGC TCC
BS	1 1	, C C C	Е⊣	AC	ТG	ည ဗဗ
		TC	Ø	S D	SG	C AC
X.		202	H	CCG	CCC	Y TAT ATA
D		TCTGACCGTC AGACTGGCAG	L	CAACACCG	GTTGTGGC	D Y Y C Q Q H ATTATTAG CCAGCAGCAT TAATAATAAC GGTCGTCGTA
ഗ		TCT	4	CAP	GTJ	D ATI TAZ
		·				

T K L T V L G
HpaI
ACGAAGTTAA CCGTTCTTGG C
TGCTTCAATT GGCAAGAACC G

Ö

Ç

Figure 5A: V heavy chain 1A (VH1A) gene sequence

Ŋ Ø G Д 又 又 > 团 ď G Ø Ø Q L MfeI > Ø

CGGCCAGCAG GCCCGTCGTC CACTTTTTG GTGAAAAAC TGGCGCGGAA ACCGCGCCTT TGGTTCAGTC ACCAAGTCAG CAGGTGCAAT GTCCACGTTA

K \succ S S ᄺ H G BSPEI G ഗ K × O S \gt 又

>

TCGATACGCT AGCTATGCGA GTGAAAATCG CACTTTTAGC GGAGGCCTCC CCTCCGGAGG TCGACGTTTC AGCTGCAAAG GCACTTTCAC CGTGAAAGTG

 Σ 3 ~ ~ ~ ~ ~ ~ ~ ~ ~ L E XhoI Ö Ø Ö Д BstXI Ø O K > ⋈

CTACCCGCCG GATGGGCGGC GTCTCGAGTG CAGAGCTCAC GGACCCGTCC GCGCCAAGCC CCTGGGCAGG CGCGGTTCGG TTAGCTGGGT AATCGACCCA

又 GCGCAGAAGT TTCAGGGCCG CGCGTCTTCA AAGTCCCGGC O Q L A. Q. K GGCGAACTAC CCGCTTGATG Ż Ø TTTTTGGCAC AAAAACCGTG H Ö ഥ TAATAAGGCT ATTATTCCGA Д

ᆸ 口 \mathbf{z} \succ K Н S E Ø 闰 Д Ø 드 Н V T BstEII

SUBSTITUTE SHEET (RULE 26)

S

Н

GA	٠ ₀	90 CG	H	AC	
CACCGCGTAT ATGGAACTGA GTGGCGCATA TACCTTGACT	M	ATTATTGCGC GCGTTGGGGC TAATAACGCG CGCAACCCCG	>	CCCTGGTGAC GGGACCACTG	
GAZ		TT(ŭ	TG	
ATG TAC	Ж Н ≥	000 000		000 000	
AT.	C A BssHII	ပ္ ဗ	E		
GT? CA1	C A BssH	300	ro H ≥	000	
505 308	≯	ATT IAA	G Q G StyI	GGCCAAGGCA CCGGTTCCGT	
AC(γ.	TTZ	დ ````) (0 (0	
	×				
AAAGCACCAG TTTCGTGGTC	>	ACGGCCGTGT TGCCGGCACA	M X Q	GGATTATTGG CCTAATAACC	
CAC	r A Eagi	000	×	TAT ATA	٠
AAG I'TC	T A EagI	0 0 0 0 0	Ω	SAT	
	ָר, י				
ACCGCGGATG TGGCGCCTAC	Д	SAT	Σ	TTTATGCGAT AAATACGCTA	
3007	闰	AA(TT(A) CG(
000 000	Ø	999	×	TAT ATA	•
		TA	Ĺц	TT AA	ຸ ບ ບ
TT AA	民	0 0 0 0		CT GA	S S BlpI ~~~~~~ GCAGT
CCA	ц	CTG	Ŋ	rgg Acc	S S Blp ~~~~ AGCTC
GGTGACCATT CCACTGGTAA	W	GCAGCCTGCG TAGCGAAGAT CGTCGGACGC ATCGCTTCTA	Ω	GGCGATGGCT CCGCTACCGA	V S S BlpI BlpI ~~~~~~~GGTTAGCTCA G
GGT	Ω.	GCA	Ö	990 300	Z GGT GCA
				_ _	

Figure 58: V heavy chain 18 (VH18) gene sequence

Ω	CGGGCGCGAG GCCCGCGCTC	~	AGCTATTATA TCGATAATAT	M	GATGGGCTGG CTACCCGACC	A Q K F Q G R GCGCAGAAGT TTCAGGGCCG CGCGTCTTCA AAGTCCCGGC
V K K P G A	000	X	TT2 AA:	Ŋ	GC.	ဗ ဗွိ ပိ
Ŋ	D D D D	X	TA	⊠ U	16G	Q SAG
	900	ß	\G 	2	SAT	PTC
Ф			•	3		
×	GTGAAAAAAC CACTTTTTTG	H	TACCTTTACC ATGGAAATGG		GTCTCGAGTG	A Q K GCGCAGAAGT
	AA	ĬΉ	TT	L E XhoI	TCGAG) K AGAA(PCTT(
×	SAA	Ft Ft	3GP	ч×	CTC	GCA CGT
>	GT(CA(ζ,	TA(AT(GT(CA(& 000 000 000
		≯		Ŋ		
妇	GA		AT	Q	AG	Y STA
G A E	CGGCGCGGAA GCCGCGCCTT	S G BSPEI	CCTCCGGATA GGAGGCCTAT	P G Q G	CCTGGGCAGG	T N Y CACGAACTAC GTGCTTGATG
(b	200	လည္ကို	TCO		A C C	T GC
	Ö Ü Ü	4	0 0	д Н	200	CA GT
	S C	S N N	ညီ ပြွ	A BstXI	CCAAGCC CCTGG GGTTCGG GGACC	ဗ ဗ္ဗ ဗ
S O A	TGGTTCAGAG ACCAAGTCTC	×	AGCTGCAAAG TCGACGTTTC	R Q A Bst	CCGCCAAGCC	ATAGCGGCGG
O.	TC.	ບ	G G G	O ₄	CA	, C C C
	GT	70	SCT	PK	1 G C C	S FAG ATC
H H	TG		AC			N A T
O J Mfe.	AT TA	>	TG	>	GT	GA
Q Mfe ~~~~	CA	V	AAG	3	7GG	3 C P
>	CAGGTGCAAT GTCCACGTTA	X V	CGTGAAAGTG GCACTTTCAC	H	TGCACTGGGT ACGTGACCCA	I N P N S G G ATTAACCCGA ATAGCGGCGG TAATTGGGCT TATCGCCGCC
Q	AGC	>	GT(CA(S S S	I TT
•	บ์ บิ		ပ ပ	Σ	HK	A H
•						

								×	
	ᆸ		ATGGAACTGA TACCTTGACT	ტ	GCGTTGGGGC CGCAACCCCG	F F	CCCTGGTGAC GGGACCACTG		
	闰		SAA	M	rtg(\AC(16G.		
	Σ		ATG(TAC(H H	GCGTTGGGGC GCCAACCCCG	ř.	CCCI		
	×	•	rat ATA	C A BssHI		H	CA		
	Ø		3CG1	် ည ရှိ	TGC	Q G Styl	CCAAGGGGGTTCC		
	E		CACCGCGTAT GTGGCGCATA	×	ATTATTGCGC TAATAACGCG	G St	GGCCAAGGCA CCGGTTCCGT		
	S		AG	≯ 1	GH	A	99		
	н		АТТ ТАА	> H	ACGGCCGTGT TGCCGGCACA	M X	GGATTATTGG CCTAATAACC		
ed)	മ		CCAGCATTAG GGTCGTAATC	A Eagi	299229 922992	Ω	ATT		
contino	E			EH			900		
) aouar	Ω.		ATA TAT	Д	GAT	Σ	GAT		
ne sequ	R.	·	GTG	阳	GAA	Ø	IGC. ACG		
1B (VH1B) gene sequence (continued)	E		ACCCGTGATA TGGGCACTAT	တ	TAGCGAAGAT ATCGCTTCTA	≯	TTTATGCGAT AAATACGCTA		
18 (~	•	ſτι		⊢ }	Ø U
vy chair	Z	ł	CAT	H	TGC	Ŋ	, 2000 2000	BlpI	CTC
V heav	EIT	1 1	GAC	ω	0 0 0 0	Ω	GAT(CTA(ິດີ່≀	rag(ATC(
Figure 5B: V heavy chain	V T BstEII	1 1 1	GGTGACCATG CCACTGGTAC	တ	GCAGCCTGCG	Ŋ	GGCGATGGCT	>	GGTTAGCTCA CCAATCGAGT

	L	
	Ø	
	E	
	Ы	
	×	
	>	
	口	
	A	
	Ы	
	် ပ	
nce	ഗ	
gene sequence	ы	
2	×	÷
chain 2 (VH)	니	feI
× ×	Ø	Μŧ
C: V he	>	
Figure 5C: V hea	Ø	

GCTGGGTTTG CGACCCAAAC GACCACTTTG CTGGTGAAAC 9900999009 2295222952 TGAAAGAAAG ACTITCTITC CAGGTGCAAT GTCCACGTTA

C ഗ Н Ø Ц ഗ ഥ S G BspEI FI C Е ᆸ H 口

ACGTCTGGCG TGCAGACCGC ATCGGACAGG TAGCCTGTCC TGGACATGGA AAAGGCCTAA TTTCCGGATT ~~~~~ ACCTGTACCT CCTGACCCTG GGACTGGGAC

口 3 띡 XhoI П Ø × ~~~~~~~~~~~~ G Д BstXI Д O ĸ 3 G > G

TIGGCGIGGG CIGGATICGC CAGCCGCCIG GGAAAGCCCT CGAGIGGCIG CCTTTCGGGA GCTCACCGAC GTCGGCGGAC GACCTAAGCG AACCGCACCC

MluI × 口 ഗ E ഗ \succ × Ω 3 ᆸ Ø

GCCTGAAAAC CGGACTTTTG TATAGCACCA ATATCGTGGT ACTATTCATA TGATAAGTAT ATTGGGATGA TAACCCTACT GCTCTGATTG CGAGACTAAC

SUBSTITUTE SHEET (RULE 26)

>

	E		GTGCTGACTA CACGACTGAT	M	CGCGCGTTGG	r a	~ GCACCCTGGT CGTGGGACCA		
	Н		CTG	`Н Ж	252	E	000 000		
	>		GTG	C A BSSHII	00000 0 00000 0		GCA		
	>		STG	် ည ရှိ		Q G StyI	CCAAG GGGTTC C		
	Q		CAG	×	TTA: AAT?	o St	 3CC2 5GG3		
	z		AAATCAGGTG TTTAGTCCAC	×	CCTATTATTG GGATAATAAC	M	TGGGGCCAAG ACCCCGGTTC		
	× ′	}		Ħ			•		
	S NspV	11111	ATACTTCGAA TATGAAGCTT	Æ	GATACGGCCA CTATGCCGGT	D Y	GATGGATTAT CTACCTAATA		
ued)	E	į	ACT	H	TAC(ATG($\mathbf{\Xi}$	TGG2 ACC1		
(contin	Ω			Ω					
adneuce	×		ATTAGCAAAG TAATCGTTTC	> .	GGACCCGGTG CCTGGGCCAC	Y A	GCTTTTATGC CGAAAATACG		
gene se	Ω		AGCZ	А) 9999	Er.	TTT? AAA:		ניז ני)
2 (VH2)	н		ATT TAA	Ω.	GGA		GCT	S S BlpI	TCAG AGTC
vy chain	EH		ACC FGG	Σ	CAT	D G	ATG	S B1	
∵ V hea	H		CTG/	Z	CAA(GTT(r D	GCG7	>	GTTZ
Figure 5C: V heavy chain 2 (VH2) gene sequence (continued)	R MluI	1111	GCGTCTGACC	H	TGACCAACAT ACTGGTTGTA	U	GGCGGCGATG CCGCCGCTAC	H	GACGGTTAGC
_	Σ	t	90	Σ	HÆ		G O		ט ט

Figure 5D: V heavy chain 3 (VH3) gene sequence

ഗ	AG	
Ŋ	CGGGCGGCA(GCCCGCCGT	S. Y.
<u></u>	, d C C C C C	≯ 1
_	S S S S S S S S	W
Р	ပ္ ပ်	70
Q	GGTGCAAC	CO
>	STG	ĮΉ
LVESGGGLVQPGGSei	CTGGTGCAA	T T S
ტ	၁၁၁	
ריז	300 300	G SPEI
<u>ი</u>	၁၅၁၁၅၁၁၅	S Bs]
	99	_
ß	ည်	F4
臼	AAZ	A
>	~ GGTGGAAA(CCACCTTT	S C A A
	TGG ACC	ഗ
e L	1	
M M F	AA TT:	긔
>	TGC	ద
Ы	GAAGTGCAAT CTTCACGTTA	ы

AGCTATGCGA TCGATACGCT K S TACCTTTAGC ATGGAAATCG 3 回 XhoI Н C GGAGGCCTAA CCTCCGGATT × G Д BstXI AGCTGCGCGG TCGACGCCC ď Ø K CCTGCGTCTG GGACGCAGAC > 3 വ \mathbf{z}

GGTGAGCGCG CCACTCGCGC ტ > GTCTCGAGTG CAGAGCTCAC ഗ Ω ď GGACCCTTCC CCTGGGAAGG × H CGCGGTTCGG GCGCCAAGCC GCGCCGCAG ഗ ACTCGACCCA TGAGCTGGGT Ŋ ß

TGAAAGGCCG CGCCTATCGC ACTTTCCGGC GCGGATAGCG CACCTATTAT GTGGATAATA CGCCGCCGTC ATTAGCGGTA TAATCGCCAT

GGTTAGCTCA CCAATCGAGT

Figure 5D: V heavy chain 3 (VH3) gene sequence (continued)

S R D N S K N T L Y L Q M Pmli Nspv	TCACGTGATA ATTCGAAAAA CACCCTGTAT CTGCAAATGA AGTGCACTAT TAAGCTTTTT GTGGGACATA GACGTTTACT	A E D T A V Y Y C A R W G EagI BSSHII	TGCGGAAGAT ACGGCCGTGT ATTATTGCGC GCGTTGGGGC ACGCCTTCTA TGCCGGCACA TAATAACGCG CGCAACCCCG	F Y A M D Y W G Q G T L V T Styl	TTTATGCGAT GGATTATTGG GGCCAAGGCA CCCTGGTGAC AAATACGCTA CCTAATAACC CCGGTTCCGT GGGACCACTG
S F	TCA	Æ			TTT? AAAI
H H	TTTTACCATT AAAATGGTAA	N S L R	ACAGCCTGCG TGTCGGACGC	G G F	GGCGATGGCT I CCGCTACCGA A
			•		

Figure 5E: V heavy chain 4 (VH4) gene sequence

H
臼
w
Д
×
>
H
r G
ρı
ტ
w
团
Q
re I
Q Mfe
>
Q

CGAGCGAAAC GCTCGCTTTG CTGGTGAAAC GACCACTTTG TGGTCCGGGC ACCAGGCCCG TGCAAGAAAG ACGTTCTTTC GTCCACGTTA CAGGTGCAAT

S S Н ß Ö BSPEI U S Н C H 口 S Н

AGCTATTATT TCGATAATAA CAGCATTAGC GTCGTAATCG TTTCCGGAGG AAAGGCCTCC ACCTGCACCG TGGACGTGGC CCTGAGCCTG GGACTCGGAC

3 L E XhoI C X Ö д BstXI Д O K Н ≊ വ

GATTGGCTAT CTAACCGATA GTCTCGAGTG CAGAGCTCAC CCTGGGAAGG GGACCCTTCC TCGCCAGCCG AGCGGTCGGC GGAGCTGGAT CCTCGACCTA

BStEII K ß × Н S Д Z × Z Н S C ഗ × \succ Н

AAAGCCGGGT TTTCGGCCCA CCGAGCCTGA GGCTCGGACT CAACTATAAT GTTGATATTA GCGGCAGCAC CGCCGTCGTG ATTTATTATA TAAATAATAT

SUBSTITUTE SHEET (RULE 26)

3

Figure 5E: V heavy chain 4 (VH4) gene sequence (continued)

SUBSTITUTE SHEET (RULE 26)

S S BlpI ~~~~~ TAGCTCAG ATCGAGTC

ഗ 되 U Д 区 \times > 团 Ø G Figure 5F: V heavy chain 5 (VH5) gene sequence ഗ Ø ᆸ MfeI Ø >

CGGGCGAAAG GCCCCCTTTC CACTTTTTG GTGAAAAAAC CGGCGCGGAA GCCGCGCCTT GAAGTGCAAT TGGTTCAGAG CTTCACGTTA ACCAAGTCTC

3 × S ₽ Ĺτι S \succ BSPEI G ഗ G 又 \mathcal{O} **W** . Н 又 ᆸ

AGCTATTGGA TCGATAACCT AAGGAAATGC TTCCTTTACG CAAGGCCTAT GTTCCGGATA TCGACGTTTC AGCTGCAAAG GGACTTTTAA CCTGAAAATT

G Σ 3 XhoI 团 Ц G 区 G Д BstXI Σ Ø K > 3 G

CTACCCGTAA GATGGGCATT CAGAGCTCAC GTCTCGAGTG GGACCCTTCC GCGCCAGATG CCTGGGAAGG CGCGGTCTAC AACCGACCCA TTGGCTGGGT

~ ~ ~ ~ ~ ~

TCTCCGAGCT TTCAGGGCCA AGAGGCTCGA AAGTCCCGGT ტ O ᄺ ഗ Д ഗ TACCCGTTAT ATGGGCAATA 凶 E-GCGATAGCGA CGCTATCGCT Ω ഗ Ω G TAAATAGGCC ATTTATCCGG ш

GGTTAGCTCA G CCAATCGAGT C

BlpI

Figure 5F: V heavy chain 5 (VH5) gene sequence (continued) $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	TT AGCGCGGATA AAAGCATTAG CACCGCGTAT CTTCAATGGA	A S D T A M Y Y C A	GCAGCCTGAA AGCGAGCGAT ACGGCCATGT ATTATTGCGC GCGTTGGGGC	F Y A M D Y W G Q G T L V T	GGCGATGGCT TTTATGCGAT GGATTATTGG GGCCAAGGCA CCCTGGTGAC
	AA TCGCGCCTAT TTTCGTAATC GTGGCGCATA GAAGTTACCT	BsshI	CGTCGGACTT TCGCTCGCTA TGCCGGTACA TAATAACGCG CGCAACCCCG	Styl	CCGCTACCGA AAATACGCTA CCTAATAACC CCGGTTCCGT GGGACCACTG
Figure 5F: V heavy chain $V T I$ $BstEII$	GGTGACCATT CCACTGGTAA	S S L	GCAGCCTGAA CGTCGGACTT	G D G	GGCGATGGCT TTTATGCGAT CCGCTACCGA AAATACGCTA

Figure 5G: V heavy chain 6 (VH6) gene sequence

H O S Д 又 > Ц G Д G ഗ Ø Ø MfeI Ó > Ø

CGAGCCAAAC GCTCGGTTTG CTGGTGAAAC GACCACTTTG TGGTCCGGGC ACCAGGCCCG CAGGTGCAAT TGCAACAGTC GICCACGITA ACGIIGICAG

ഗ Z ഗ ഗ > ഗ Ω BSPEI G ഗ Н K O ٠ 🗀 口 ഗ Ы

AGCAACAGCG TCGTTGTCGC TAGCGTGAGC ATCGCACTCG AAAGGCCTCT TTTCCGGAGA ACCTGTGCGA TGGACACGCT CCTGAGCCTG GGACTCGGAC

3 띠 XhoI ᠐ α C Ч BstXI ഗ Ø α 3 Z 3 Ø

GGCGTGGCCT CGAGTGGCTG GCTCACCGAC CCGCACCGGA GTCAGAGGAC CAGTCTCCTG GACCTAAGCG CTGGATTCGC GCCGCACCTT CGGCGTGGAA

GCCACTCGCA CGGTGAGCGT ഗ > Ø TTGCTAATAC AACGATTATG × Ω Z CAAATGGTAT GTTTACCATA 3 X CCGGCATGGA TAATAGCATC ATTATCGTAG ഗ ĸ \succ GGCCGTACCT Е ĸ ග

Þ

iquence (continued) I N P D T S K N Q F S NSDV	ACCCGGATAC T TGGGCCTATG A	T P E D T A V Y Y C A	Eagl C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C	F Y A M D Y W G Q G T	TTATGCGATG GATTATTGGG GC AATACGCTAC CTAATAACCC CG		.≈~ AG STC
Figure 5G: V heavy chain 6 (VH6) gene sequence (continued) KSRITNP BSABI	GAAAAGCCGG ATTACCATCA CTTTTCGGCC TAATGGTAGT	L Q L N S V	TGCAACTGAA CAGCGTGACC ACGTTGACTT GTCGCACTGG	R W G G D G BSSHII	CGTTGGGGCG GCGATGGCTT GCAACCCCGC CGCTACCGAA	LVTVSS BlpI	CCTGGTGACG GTTAGCTCAG GGACCACTGC CAATCGAGTC
			CHOOTELES				

Figure 6: oligonucleotides for gene synthesis

- **O1K1** 5'- GAATGCATACGCTGATATCCAGATGACCCAGAG-CCCGTCTAGCCTGAGC -3'
 - **O1K2** 5'- CGCTCTGCAGGTAATGGTCACACGATCACCCAC-GCTCGCGCTCAGGCTAGACGGGC -3'
- **O1K3** 5'- GACCATTACCTGCAGAGCGAGCCAGGGCATTAG-CAGCTATCTGGCGTGGTACCAGCAG -3'
- **O1K4** 5'- CTTTGCAAGCTGCTGGCTGCATAAATTAATAGT-TTCGGTGCTTTACCTGGTTTCTGCTGGTACCACGCCAG -3'
- **O1K5** 5'- CAGCCAGCAGCTTGCAAAGCGGGGTCCCGTCCC-GTTTTAGCGGCTCTGGATCCGGCACTGATTTTAC -3'
- **O1K6** 5'- GATAATAGGTCGCAAAGTCTTCAGGTTGCAGGC-TGCTAATGGTCAGGGTAAAATCAGTGCCGGATCC -3'
- **O2K1** 5'- CGATATCGTGATGACCCAGAGCCCACTGAGCCT-GCCAGTGACTCCGGGCGAGCC -3'
- **O2K2** 5'- GCCGTTGCTATGCAGCAGGCTTTGGCTGCTTCT-GCAGCTAATGCTCGCAGGCTCGCCGGAGTCAC -3'
- **O2K3** 5'- CTGCTGCATAGCAACGGCTATAACTATCTGGAT-TGGTACCTTCAAAAACCAGGTCAAAGCCC -3'
- **O2K4** 5'- CGATCCGGGACCCCACTGGCACGGTTGCTGCCC-AGATAAATTAATAGCTGCGGGCTTTTGACCTGGTTTTTG -3'
- **O2K5** 5'- AGTGGGGTCCCGGATCGTTTTAGCGGCTCTGGA-TCCGGCACCGATTTTACCCTGAAAATTAGCCGTGTG -3'
- **O2K6** 5'- CCATGCAATAATACACGCCCACGTCTTCAGCTT-CCACACGGCTAATTTTCAGGG -3'
- O3K1 5'- GAATGCATACGCTGATATCGTGCTGACCCAGAG-CCCGG -3'
- **O3K2** 5'- CGCTCTGCAGCTCAGGGTCGCACGTTCGCCCGG-AGACAGGCTCAGGGTCGCCGGGCTCTGGGTCAGC -3'
- **O3K3** 5'- CCCTGAGCTGCAGAGCGAGCCAGAGCGTGAGCA-GCAGCTATCTGGCGTGGTACCAG -3'

Figure 6: (continued)

- O3K4 5'- GCACGGCTGCTCGCGCCATAAATTAATAGACGC-GGTGCTTGACCTGGTTTCTGCTGGTACCACGCCAGATAG -3'
- O3K5 5'- GCGCGAGCAGCCGTGCAACTGGGGTCCCGGCGC-GTTTTAGCGGCTCTGGATCCGGCACGGATTTTAC -3'
- O3K6 5'- GATAATACACCGCAAAGTCTTCAGGTTCCAGGC-TGCTAATGGTCAGGGTAAAATCCGTGCCGGATC -3'
- **O4K1** 5'- GAATGCATACGCTGATATCGTGATGACCCAGAG-CCCGGATAGCCTGGCG -3'
- **O4K2** 5'- GCTTCTGCAGTTAATGGTCGCACGTTCGCCCAG-GCTCACCGCCAGGCTATCCGGGC -3'
- **O4K3** 5'- CGACCATTAACTGCAGAAGCAGCCAGAGCGTGC-TGTATAGCAGCAACAACAAAAACTATCTGGCGTGGTACCAG 3'
- **O4K4** 5'- GATGCCCAATAAATTAATAGTTTCGGCGGCTGA-CCTGGTTCTGCTGGTACCACGCCAGATAG -3'
- **O4K5** 5'- AAACTATTAATTTATTGGGCATCCACCCGTGAA-AGCGGGGTCCCGGATCGTTTTAGCGGCTCTGGATCCGGCAC-3'
- **O4K6** 5'- GATAATACACCGCCACGTCTTCAGCTTGCAGGG-ACGAAATGGTCAGGGTAAAATCAGTGCCGGATCCAGAGCC -3'
- O1L1 5'- GAATGCATACGCTCAGAGCGTGCTGACCCAGCC-GCCTTCAGTGAGTGG -3'
- O1L2 5'- CAATGTTGCTGCTGCTGCCGCTACACGAGATGG-TCACACGCTGACCTGGTGCGCCACTCACTGAAGGCGGC -3'
- **O1L3** 5'- GGCAGCAGCAGCAACATTGGCAGCAACTATGTG-AGCTGGTACCAGCAGTTGCCCGGGAC -3'
- O1L4 5'- CCGGCACGCCTGAGGGACGCTGGTTGTTATCAT-AAATCAGCAGTTTCGGCGCCCGTCCCGGGCAACTGC -3'
- O1L5 5'- CCCTCAGGCGTGCCGGATCGTTTTAGCGGATCC-AAAAGCGGCACCAGCGCGAGCCTTGCG -3'

Figure 6: (continued)

- **O1L6** 5'- CCGCTTCGTCTTCGCTTTGCAGGCCCGTAATCG-CAAGGCTCGCGCTGG -3'
- **02L1** 5'- GAATGCATACGCTCAGAGCGCACTGACCCAGCC-AGCTTCAGTGAGCGGC -3'
- **O2L2** 5'- CGCTGCTAGTACCCGTACACGAGATGGTAATGC-TCTGACCTGGTGAGCCGCTCACTGAAGCTGG -3'
- **O2L3** 5'- GTACGGGTACTAGCAGCGATGTGGGCGGCTATA-ACTATGTGAGCTGGTACCAGCAGCATCCCGG -3'
- **O2L4** 5'- CGCCTGAGGGACGGTTGCTCACATCATAAATCA-TCAGTTTCGGCGCCTTCCCGGGATGCTGCTGGTAC -3'
- **O2L5** 5'- CAACCGTCCCTCAGGCGTGAGCAACCGTTTTAG-CGGATCCAAAAGCGGCAACACCGCGAGCC -3'
- **O2L6** 5'- CCGCTTCGTCTTCCGCTTGCAGGCCGCTAATGG-TCAGGCTCGCGGTGTTGCCG -3'
- **O3L1** /5'- GAATGCATACGCTAGCTATGAACTGACCCAGCC-GCCTTCAGTGAGCG -3'
- **O3L2** 5'- CGCCCAGCGCATCGCCGCTACACGAGATACGCG-CGGTCTGACCTGGTGCAACGCTCACTGAAGGCGGC -3'
- **O3L3** 5'- GGCGATGCGCTGGGCGATAAATACGCGAGCTGG-TACCAGCAGAAACCCGGGCAGGCGC -3'
- **O3L4** 5'- GCGTTCCGGGATGCCTGAGGGACGGTCAGAATC-ATCATAAATCACCAGAACTGGCGCCTGCCCGGGTTTC -3'
- **O3L5** 5'- CAGGCATCCCGGAACGCTTTAGCGGATCCAACA-GCGCGAACACCGCGACCCTGACCATTAGCGG -3'
- O3L6 5'- CCGCTTCGTCTTCCGCCTGAGTGCCGCTAATGG-TCAGGGTC -3'
- O1246H1 5'- GCTCTTCACCCCTGTTACCAAAGCCCAG-GTGCAATTG -3'
- **O1AH2** 5 ' GGCTTTGCAGCTCACTTTCACGCTGCTGCCCGG-TTTTTTCACTTCCGCGCCAGACTGAACCAATTGCACCTGGGC-TTTG -3 '

Figure 6: (continued)

- Olah3 5'- Gaaagtgagctgcaaagcctccggaggcactt-TAGCAGCTATGCGATTAGCTGGGTGCGCCAAGCCCCTGGGCAG GGTC -3'
- O1AH45'- GCCCTGAAACTTCTGCGCGTAGTTCGCCGTGCC-AAAAATCGGAATAATGCCGCCCATCCACTCGAGACCCTGCCC-AGGGGC -3'
- **O1AH5**5'- GCGCAGAAGTTTCAGGGCCGGGTGACCATTACC-GCGGATGAAAGCACCAGCACCGCGTATATGGAACTGAGCAGCCTGCG -3'
- Olabh6 5'- GCGCGCAATAATACACGGCCGTATCTTCGCT-ACGCAGGCTGCTCAGTTCC -3'
- O1BH25'- GGCTTTGCAGCTCACTTTCACGCTCGCGCCCGG-TTTTTTCACTTCCGCGCCCGCTCTGAACCAATTGCACCTGGGC-TTTG -3'
- O1BH4 5 '- GCCCTGAAACTTCTGCGCGTAGTTCGTGCCGCC-GCTATTCGGGGTTAATCCAGCCCATCCACTCGAGACCCTGCCCAGGGGC -3 '
- O1BH55'- GCGCAGAAGTTTCAGGGCCGGGTGACCATGACC-CGTGATACCAGCATTAGCACCGCGTATATGGAACTGAGCAGCCTGCG -3'
- O2H3 5'- CTGACCCTGACCTGTACCTTTTCCGGATTTAGC-CTGTCCACGTCTGGCGTTGGCGTGGGCTGGATTCGCCAGCCGCCTGGGAAAG -3'
- O2H4 5'- GCGTTTTCAGGCTGGTGCTATAATACTTATCAT-CATCCCAATCAATCAGAGCCAGCCACTCGAGGGCTTTCCCAGGCGCTGG -3'

Figure 6: (continued)

- **O2H5** 5'- GCACCAGCCTGAAAACGCGTCTGACCATTAGCA-AAGATACTTCGAAAAATCAGGTGGTGCTGACTATGACCAACAT GG -3'
- **O2H6** 5'- GCGCGCAATAATAGGTGGCCGTATCCACCGGGT-CCATGTTGGTCATAGTCAGC -3'
- **O3H1** 5'- CGAAGTGCAATTGGTGGAAAGCGGCGGCCT-GGTGCAACCGGCGGCAG -3'
- **O3H2** 5'- CATAGCTGCTAAAGGTAAATCCGGAGGCCGCC-AGCTCAGACGCAGGCTGCCCCCGGTTGCAC -3'
- **O3H3** 5'- GATTTACCTTTAGCAGCTATGCGATGAGCTGGG-TGCGCCAAGCCCCTGGGAAGGGTCTCGAGTGGGTGAG-3'
- **O3H4** 5'- GGCCTTTCACGCTATCCGCATAATAGGTGCTGC-CGCCGCTACCGCTAATCGCGCTCACCCACTCGAGACCC -3'
- **O3H5** 5'- CGGATAGCGTGAAAGGCCGTTTTACCATTTCAC-GTGATAATTCGAAAAACACCCTGTATCTGCAAATGAACACAC
- **O3H6** 5'- CACGCGCGCAATAATACACGGCCGTATCTTCCG-CACGCAGGCTGTTCATTTGCAGATACAGG -3'
- **O4H2** 5'- GGTCAGGCTCAGGGTTTCGCTCGGTTTCACCAG-GCCCGGACCACTTTCTTGCAATTGCACCTGGGCTTTG -3'
- **O4H3** 5'- GAAACCCTGAGCCTGACCTGCACCGTTTCCGGA-GGCAGCATTAGCAGCTATTATTGGAGCTGGATTCGCCAGCCGC-3'
- O4H4 5'- GATTATAGTTGGTGCTGCCGCTATAATAAATAT-AGCCAATCCACTCGAGACCCTTCCCAGGCGGCTGGCGAATCCA G -3'
- **O4H5** 5'- CGGCAGCACCAACTATAATCCGAGCCTGAAAAG-CCGGGTGACCATTAGCGTTGATACTTCGAAAAACCAGTTTAGCCTG -3'
- **O4H6** 5'- GCGCGCAATAATACACGGCCGTATCCGCCGCCG-TCACGCTGCTCAGGTTTCAGGCTAAACTGGTTTTTCG -3'

Figure 6: (continued)

- **O5H1** 5'- GCTCTTCACCCCTGTTACCAAAGCCGAAGTGCA-ATTG -3'
- **O5H2** 5'- CCTTTGCAGCTAATTTTCAGGCTTTCGCCCGGT-TTTTTCACTTCCGCGCCGCTCTGAACCAATTGCACTTCGGCTTTGG -3'
- **O5H4** 5'- CGGAGAATAACGGGTATCGCTATCGCCCGGATA-AATAATGCCCATCCACTCGAGACCCTTCCCAGGCATCTGGCGCAC -3'
- **O5H5** 5'- CGATACCCGTTATTCTCCGAGCTTTCAGGGCCA-GGTGACCATTAGCGCGGGATAAAAGCATTAGCACCGCGTATCTT C -3'
- **O5H6** 5'- GCGCGCAATAATACATGGCCGTATCGCTCGCTT-TCAGGCTGCTCCATTGAAGATACGCGGTGCTAATG -3'
- **O6H2** 5'- GAAATCGCACAGGTCAGGCTCAGGGTTTGGCTC-GGTTTCACCAGGCCCGGACCAGACTGTTGCAATTGCACCTGG-GCTTTG -3'
- O6H3 5'- GCCTGACCTGTGCGATTTCCGGAGATAGCGTGA-GCAGCAACAGCGCGGCGTGGAACTGGATTCGCCAGTCTCCTGGGCG-3'
- **O6H4** 5'- CACCGCATAATCGTTATACCATTTGCTACGATA-ATAGGTACGGCCCAGCCACTCGAGGCCACGCCCAGGAGACTG-GCG -3'
- **O6H5** 5'- GGTATAACGATTATGCGGTGAGCGTGAAAAGCC-GGATTACCATCAACCCGGATACTTCGAAAAACCAGTTTAGCCTGC -3'
- **O6H6** 5'- GCGCGCAATAATACACGGCCGTATCTTCCGGGG-TCACGCTGTTCAGTTGCAGGCTAAACTGGTTTTTC -3'
- OCLK1 5 ' GGCTGAAGACGTGGGCGTGTATTATTGCCAGCA-GCATTATACCACCCCGCCGACCTTTGGCCAGGGTAC 3 '
 SUBSTITUTE SHEET (RULE 26)

Figure 6: (continued)

- OCLK2 5'- GCGGAAAAATAAACACGCTCGGAGCAGCCACCG-TACGTTTAATTTCAACTTTCGTACCCTGGCCAAAGGTC -3'
- OCLK3 5'- GAGCGTGTTTATTTTTCCGCCGAGCGATGAACA-ACTGAAAAGCGGCACGGCGAGCGTGGTGTGCCTGCTG -3'
- OCLK4 5'- CAGCGCGTTGTCTACTTTCCACTGAACTTTCGC-TTCACGCGGATAAAAGTTGTTCAGCAGGCACACCACGC -3'
- OCLK5 5'- GAAAGTAGACAACGCGCTGCAAAGCGGCAACAG-CCAGGAAAGCGTGACCGAACAGGATAGCAAAGATAG -3'
- OCLK6 5 ' GTTTTTCATAATCCGCTTTGCTCAGGGTCAGGG-TGCTGCTCAGAGAATAGGTGCTATCTTTGCTATCCTGTTCG 3 '
- OCLK7 5'- GCAAAGCGGATTATGAAAAACATAAAGTGTATG-CGTGCGAAGTGACCCATCAAGGTCTGAGCAGCCCGGTG -3'
- OCLK85'- GGCATGCTTATCAGGCCTCGCCACGATTAAAAG-ATTTAGTCACCGGGCTGCTCAGAC -3'
- OCH1 5'- GGCGTCTAGAGGCCAAGGCACCCTGGTGACGGT-TAGCTCAGCGTCGAC -3'
- OCH2 5'- GTGCTTTTGCTGCTCGGAGCCAGCGGAAACACG-CTTGGACCTTTGGTCGACGCTGAGCTAACC -3'
- OCH3 5'- CTCCGAGCAGCAAAAGCACCAGCGGCGCGCACGG-CTGCCCTGGGCTGCCTGGTTAAAGATTATTTCC -3'
- OCH4 5'- CTGGTCAGCGCCCCGCTGTTCCAGCTCACGGTG-ACTGGTTCCGGGAAATAATCTTTAACCAGGCA -3'
- OCH5 5'- AGCGGGGCGCTGACCAGCGGCGTGCATACCTTT-CCGGCGGTGCTGCAAAGCAGCGGCCTG -3'
- OCH6 5'- GTGCCTAAGCTGCTCGGCACGGTCACAACG-CTGCTCAGGCTATACAGGCCGCTGCTTTGCAG -3'
- OCH7 5'- GAGCAGCAGCTTAGGCACTCAGACCTATATTTG-CAACGTGAACCATAAACCGAGCAACACC -3'
- OCH8 5'- GCGCGAATTCGCTTTTCGGTTCCACTTTTTAT-CCACTTTGGTGTTGCTCGGTTTATGG -3'

Figure 7A: sequence of the synthetic Ck gene segment

		•			
Ø	CA	JC AG	ე ე ე	အ ည ရွ	Ŋ
О Е. О	GCGATGAACA CGCTACTTGT	N F Y AACTTTTATC TTGAAAATAG	0 0 0	GCACCTATTC	K H K AAACATAAAG
Ω	ATC FAC	F PTT \AA	S VAG	CT	H AT2
	250	N AC1 TG2	Q GCAA CGTT	TAC STG	14 C
Ø	υ υ σ υ			8 00 00	X A
A A P S V F I F P P S	TTTCCGCCGA	L L N CCTGCTGAAC GGACGACTTG	W K V D N A L TGGAAAGTAG ACAACGCGCT ACCTTTCATC TGTTGCGCGA	D ATA TAT	A A A
4	3000	L GA(N A	K CAAAG GTTTC	Y Y FATG
Ŀц	TTC	L CTGC SACG	N CAA STT	CA	D D TTT 6
٠	ΤĀ		D AC	S A A G I	95
Η	CGTGTTTATT GCACAAATAA	G T A S V V C GGCACGGCGA GCGTGGTG CCGTGCCGCT CGCACAC	K V D	D SAT	T L T L S K A ACCCTGACC TGAGCAAAGC
Į.	TT	V V TGGTGT	AG.	E Q D CGAACAGGAT GCTTGTCCTA	K AAA PTT
>	TG1 AC2	STG CAC	W K GGAA CCTT	E AAC TTG	0 0 0 0 0 0
	ပ္ပင္ပ	ို့တို့	TG(AC(CG2	TGA ACT
ß	AG	S GA CT	Q AG TC		CC T GG A
ല	CTGCTCCGAG GACGAGGCTC	4 0 0 0	K V Q GAAAGTTCAG CTTTCAAGTC	N S Q E S V T AACAGCCAGG AAAGCGTGAC TTGTCGGTCC TTTCGCACTG	ACC TGG
A	CT(GA(ACC TGC	AGI ICA	5 GCG CGC	L
	TG	ပည် (၁)	K GAAAG CTTTC	AA(TT(TCCC
A	<u>დ</u>			E C C	
>	CGTACGGTG GCATGCCAC	L K S ACTGAAAAGC TGACTTTTCG	P R E A CGCGTGAAGC GCGCACTTCG	Q AG(TC(S AGC TCG
MI	~~~~~~ CGTACGGTG GCATGCCAC	L K TGAAA! ACTTT!	rga ACT	0 CC	S GC
BsiWI	CGTACG	I G	R CGT GCA	S S S T S T C	L TGA ACT
Щ	0 0 0 0	AC TG	C C P	N AA(TT(L S S TCTGAGCAGC AGACTCGTCG

Figure 7A: sequence of the synthetic Ck gene segment (continued)

GGTGACTAAA CCACTGATTT H Q G L S P CATCAAGGTC TGAGCAGCCC ACTCGTCGGG GTAGTTCCAG GCTTCACTGG E V T CGAAGTGACC V Y A C TGTATGCGTG ACATACGCAC

F N R G E A * StuI

ഗ

SphI

TCTTTTAATC GTGGCGAGGC CTGATAAGCA TGC AGAAAATTAG CACCGCTCCG GACTATTCGT ACG

Figure 7B: sequence of the synthetic CH1 gene segment

ഗ ഗ Д C 口 Д ഗ Д · O 又 E Sal ഗ Ø BlpI TCCGAGCAGC AGGCTCGTCG GGTTCGCACA AAGGCGACCG CCAAGCGTGT TTCCGCTGGC CGAGTCGCAG CTGGTTTCCA GCTCAGCGTC GACCAAAGGT

GGCTGCCTGG TTAAAGATTA CCGACGGACC AATTTCTAAT Ω 区 > C ഗ CCGACGGGAC GGCTGCCCTG K Ø CGCCGCCGTG AAAAGCACCA GCGGCGGCAC H ີ ບ ഗ TTTTCGTGGT ഗ ×

CTGACCAGCG GACTGGTCGC ⊱ CAGCGGGGCG GICCCCCCC G ഗ Z TGAGCTGGAA ACTCGACCTT Z ഗ > GGTCAGTGGC CCAGTCACCG H > Д TTTCCCGGAA AAAGGGCCTT 띱 വ ſщ

GTATAGCCTG CATATCGGAC ഗ **>** CGTCGCCGGA GCAGCGGCCT ტ ഗ ഗ GTGCTGCAAA CACGACGTTT Ø Н CTTTCCGGCG GAAAGGCCGC Сι GCGTGCATAC CGCACGTATG ⊱ 田 > G

TTAGGCACTC AGACCTATAT AATCCGTGAG TCTGGATATA Ø G GAGCAGCAGC CTCGTCGTCG ഗ ഗ က AGCAGCGTTG TGACCGTGCC TCGTCGCAAC ACTGGCACGG > > > ഗ

Figure 7B; sequence of the synthetic CH1 gene segment (continued)

N H K P S N T K V D AACCATAAAC CGAGCAACAC CAAAGTGGAT TTGGTATTTG GCTCGTTGTG GTTTCACCTA
P CGA GCT
7 1 7 7
C N V N TTGCAACGTG AACC AACGTTGCAC TTGG

E P K S E F * EcoRI HindIII

AACCGAAAAG CGAATTCTGA TAAGCTT TTGGCTTTTC GCTTAAGACT ATTCGAA

Figure 7C: functional map and sequence of module 24 comprising the synthetic Cλ gene segment (huCL lambda)

Figure 7C: functional map and sequence of module 24 comprising the synthetic CI gene segment (huCL lambda) (continued)

CCCCGCCTGT	DraIII AAAGCCGCAC TTTCGGCGTG	GGCGAACAAA	CCGTGACAGT GGCACTGTCA	GAGACCACCA
CATTATACCA GTAATATGGT	MscI ~~~~~~ TGGCCAGCCG ACCGGTCGGC	AAGAATTGCA TTCTTAACGT	TATCCGGGAG	GCCCCGTCAA GGCGGGAGTG CGGGGCAGTT CCGCCCTCAC
TTGCCAGCAG	HpaI ~~~~~~ GGCACGAAGT TAACCGTTCT CCGTGCTTCA ATTGGCAAGA	Draiii ~~~~~ CGAGTGTGAC GCTGTTTCCG CCGAGCAGCG AAGAATTGCA GCTCACACTG CGACAAAGGC GGCTCGTCGC TTCTTAACGT	TAGCGACTTT ATCGCTGAAA	GCCCCGTCAA CGGGGCAGTT
BbsI ~~~~~ GAAGACGAAG CGGATTATTA CTTCTGCTTC GCCTAATAAT		GCTGTTTCCG	TGTGCCTGAT ACACGGACTA	GCAGATAGCA CGTCTATCGT
BbsI ~~~~~ GAAGACGAAG CTTCTGCTTC	GTTTGGCGGC	DrallI ~~~~~~ CGAGTGTGAC GCTCACACTG	GCGACCCTGG CGCTGGGACC	GGCCTGGAAG CCGGACCTTC
1	51	101	151	201

Figure 7C: functional map and sequence of module 24 comprising the synthetic CI gene segment (huCL lambda) (continued)

GCCGGTCGTC GATAGACTCG CTATCTGAGC CGGCCAGCAG AACAAGTACG TTGTTCATGC CACCCTCCAA ACAAAGCAAC TGTTTCGTTG GTGGGAGGTT 251

RleAI

301

GCCAGGTCAC CGGTCCAGTG TCGATGTCGA GTCCCACAGA AGCTACAGCT CAGGGTGTCT CTGACGCCTG AGCAGTGGAA TCGTCACCTT GACTGCGGAC

StuI

~~~~~

GAGGCCTGAT CTCCGGACTA ACGCGGCTGA TGCGCCGACT GCATGAGGG AGCACCGTGG AAAAAACCGT TTTTTGGCA TCGTGGCACC CGTACTCCCC 351

SphI

AAGCATGC TTCGTACG 401

Figure 7D: oligonucleotides used for synthesis of module M24 containing CA gene segment

## M24: assembly PCR

M24-A: GAAGACAAGCGGATTATTATTGCCAGCAGTATATACCACCCCGCCTGTGTTTGGCGGCG-GCACGAAGTTAACCGTTC

M24-B: CAATTCTTCGCTCGCTGCTCGGCGAAACAGCGTCACACTCGGTGCGGCTTTCGGCTGGCCAA-

GAACGGTTAACTTCGTGCCGC

M24-C: CGCCGAGCAGCGAAGAATTGCAGGCGAACAAAGCGACCCTGGTGTGCCTGATTAGCGACT-**ITTATCCGGGAGCCGTGACA** 

M24-D: TGTTTGGAGGGTGTGGTCTCCACTCCCGCCTTGACGGGGCTGCTATCTGCCTTCCAG-

GCCACTGTCACGGCTCCCGG

M24-E: CCACACCCTCCAAACAAAGCAACAACAAGTACGCGGCCAGCAGCTATCTGAGCCTGACGC

CTGAGCAGTGGAAGTCCCACAGAAGCTACAGCTG

M24-F: GCATGCTTATCAGGCCTCAGTCGGCGCAACGGTTTTTTCCACGGTGCTCCCCTCATGCGT-

GACCTGGCAGCTGTAGCTTC

| .2<br>T                                                                                                                                                   | TCTTCACCCC               | ტ             | GAAAGCGGCG<br>CTTTCGCCGC | A S<br>Bspei | CCTCC                    | X I G            | CCTGG      |                       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|---------------|--------------------------|--------------|--------------------------|------------------|------------|-----------------------|
| ragment VH3-VK<br>L F<br>SapI                                                                                                                             | TCTTC                    | ក<br>ល        | GAAAG<br>CTTTC           | Æ            | CGCGGCCTCC               |                  | AAGCCCCTGG | TTCGGGGACC            |
| nsensus single-chain fragr<br>L P L I<br>S e                                                                                                              | TTACCGTTGC<br>AATGGCAACG | Q L V<br>MfeI | GCAATTGGTG<br>CGTTAACCAC | S C          | GTCTGAGCTG<br>CAGACTCGAC | W V R Q          | TGGGTGCGCC | ACCCACGCGG            |
| etic gene encoding the co ${f L}$ ${f A}$ ${f L}$                                                                                                         | ACTGGCACTC<br>TGACCGTGAG | D<br>E        | AAGATGAAGT<br>TTCTACTTCA | G S L R      | GGCAGCCTGC<br>CCGTCGGACG | A<br>M<br>S      | TGCGATGAGC | ACGCTACTCG            |
| striction map of the synth<br>3 T I A                                                                                                                     | GCACTATTGC<br>CGTGATAACG | A D Y K       | GCCGACTACA<br>CGGCTGATGT | ъ<br>д<br>О  | GCAACCGGGC               | S<br>S           | TTAGCAGCTA | AATCGTCGAT            |
| Figure 8: sequence and restriction map of the synthetic gene encoding the consensus single-chain fragment VH3-VK2 M K Q S T I A L A L L D L L F SAPI SAPI | ATGAAACAAA<br>TACTTTGTTT | V T K         | TGTTACCAAA<br>ACAATGGTTT | G G L V      | GCGGCCTGGT<br>CGCCGGACCA | G F T F<br>BSPEI | GGATTTACCT | CCTAAATGGA AATCGTCGAT |

Figure 8: sequence and restriction map of the synthetic gene encoding the consensus single-chain fragment VH3-Vk2 (continued) ß G C ഗ C S  $\mathbf{H}$ K ഗ > 3 团 Ö K

XhoI

CCGTCGTGGA GGCAGCACCT CGGTAGCGGC GCCATCGCCG GCGCGATTAG CGCGCTAATC GAGTGGGTGA CTCACCCACT GAAGGGTCTC CTTCCCAGAG

NspV വ Z Ω PmlI K ഗ Н Н Į۲η K C × > വ K × ×

TGATAATTCG ACTATTAAGC CCATTTCACG GGTAAAGTGC GGCCGTTTTA CCGGCAAAAT TAGCGTGAAA ATCGCACTTT ATTATGCGGA TAATACGCCT

A EagI Н 囝 K 召 Н ഗ Z Σ Ø Н Н Н Z NspV ×

TTCTATGCCG AAGATACGGC CTGCGTGCGG GACGCACGCC AATGAACAGC TTACTTGTCG TGTATCTGCA ACATAGACGT AAAAACACCC TTTTTGTGGG

Ω  $\mathbf{\Sigma}$ K  $\rightarrow$ Ľ G Ω G G 3 ፈ K  $\succ$ EagI

BSSHII

>

GCGATGGATT TGGCTTTTAT GGGGCGGCGA TGCGCGCGTT CGTGTATTAT

| Figure B: sequence and restriction of CACATAATA AC Y W G Q Sty I  ATTGGGGCCA AG TAACCCCGGT TC  G G G G G  CCGCCGCCAC CC  CCGCCCCCCCCCC | Figure B: sequence and restriction map of the synthetic gene encoding the consensus single-chain fragment VH3-VK2 (continued) GCACATAATA ACGCGCGCAA CCCCGCCGCT ACCGAAATA CGCTACCTAA Y W G Q G T L V T V S S A G G G S Styl | AGGCACCCTG GTGACGGTTA GCTCAGCGGG TGGCGGTTCT<br>TCCGTGGGAC CACTGCCAAT CGAGTCGCCC ACCGCCAAGA | S G G G G G G G S D I ECORV | GGAGCGGTGG CGGTGGTTCT GGCGGTGGTG GTTCCGATAT CCTCGCCACC GCCACCAAGA CCGCCACCAC CAAGGCTATA | QSPLSLPVTPGEP<br>Banii | CAGAGCCCAC TGAGCCTGCC AGTGACTCCG GGCGAGCCTG<br>GTCTCGGGTG ACTCGGACGG TCACTGAGGC CCGCTCGGAC | C R S S Q S L L H S N G Y<br>Psti | CTGCAGAAGC AGCCAAAGCC TGCTGCATAG CAACGGCTAT<br>GACGTCTTCG TCGGTTTCGG ACGACGTATC GTTGCCGATA |
|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-----------------------------|-----------------------------------------------------------------------------------------|------------------------|--------------------------------------------------------------------------------------------|-----------------------------------|--------------------------------------------------------------------------------------------|
|                                                                                                                                        | Figure B: sequence and rest GCACATAATA Y W G Q Sty                                                                                                                                                                         | A H                                                                                        | <u>ი</u>                    | ပ ပ                                                                                     | Σ                      | ပ ဖ                                                                                        | S<br>H                            |                                                                                            |

Figure 8: sequence and restriction map of the synthetic gene encoding the consensus single-chain fragment VH3-Vk2 (continued) AseI CGCAGCTATT GCGTCGATAA ᆸ Ø ρ CCAGTTTCGG GGTCAAAGCC S Ø G SexAI TCAAAAACCA AGTTTTTGGT × Ø TAACCATGGA ATTGGTACCT Н KpnI Z Ω AACTATCTGG TTGATAGACC Н Z

S K Ω Д Eco01091 U S Ø K Z S G Н  $\succ$ AseI CGTTTTAGCG GCAAAATCGC GIGCCAGIGG GGICCCGGAI CCAGGGCCTA CACGGTCACC GGCAGCAACC CCGTCGTTGG TTAAATAGAC AATTTATCTG

团 >  $\alpha$ വ Н × Н H ſΞι Ω Н Ö BamHI ß C

K

ACACCTTCGA TGTGGAAGCT TTTAATCGGC AAATTAGCCG TTTACCCTGA AAATGGGACT GCCGTGGCTA CGGCACCGAT GCTCTGGATC CGAGACCTAG

д H Н  $\succ$ H Q Ó C  $\Rightarrow$ > C Ω BbsI 团

H

Д

GGGCGGCTG CCCGCCGAC GTAATATGGT CATTATACCA TTGCCAGCAG AACGGTCGTC GCGTGTATTA CGCACATAAT GAAGACGTGG CTTCTGCACC

SUBSTITUTE SHEET (RULE 26)

വ

G

| d restriction map of the synthetic gene encoding the consensus single-chain fragment VH3-Vk2 (continued) $G \ T \ K \ V \ E \ I \ K \ T \ E \ F$ | ********** | ACGTACGGAA TTC<br>TGCATGCCTT AAG |
|--------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------------------------|
| itriction map of the synthetic gene encoding the con ${\sf G}$ ${\sf T}$ ${\sf K}$ ${\sf V}$ ${\sf E}$ ${\sf I}$ ${\sf K}$                       |            | NG GGTACGAAAG TTGAAATTAA         |
| Figure 8: sequence and res<br>FGQ<br>MSCI                                                                                                        |            | CTTTGGCCAG                       |



SUBSTITUTE SHEET (RULE 26) 56 / 204



Figure 10: Sequence analysis of initial libraries

| <u>&gt;</u> | <u>&gt;</u> | <u>&gt;</u>  | <u> </u> | <u>&gt;</u> | <u> </u> | <u>&gt;</u> | <u>&gt;</u>  | <u>&gt;</u>  | <u> </u>     |          |
|-------------|-------------|--------------|----------|-------------|----------|-------------|--------------|--------------|--------------|----------|
| >           | >           | >            | >        | >           | >        | >           | >            | >            | >            | >        |
| Ω           | Ω           | Ω            | Ω        | Ω           | Ω        |             | Ω            | Ω            | Ω            |          |
| Σ           | Σ           | ட            | Σ        | Σ           | ய        | ய           | Σ            | Σ            | Σ            | Σ        |
| >           |             | $\times$     | >        | م           | _        | エ           | <b> </b>     | >            |              | م        |
| Σ           | >           | $\propto$    | $\leq$   | Σ           | S        |             | 9            | ۵            | ட            | 9        |
| $\vdash$    | $\leq$      | ⋖            | 0        | ய           | ≥        | <u>-</u>    |              | $\vdash$     | z            | 0        |
| >-          | G           | エ            | 0        | ட           | エ        | z           | ~            | ш            | م            | $\leq$   |
|             | S           | ш            | ш        | Ż           | ш        | >           | Z            |              | $\checkmark$ | ட        |
| بنا         | ⋖           | >            | ≥        | S           | S        | z           |              | щ            |              | <b>—</b> |
| エ           | 2           | Σ            | ட        | $\propto$   | 9        | ≥           | Σ            | ш            | Z            | <b>—</b> |
| >           | _           | 0            | S        | >           | S        | م           | ص            | S            | $\vdash$     | G        |
| LL.         | ⋖           | Z            | 0        | م           | 5        | z           | $\checkmark$ | G            | ≥            | ⋖        |
| >           | Σ           | $\mathbf{x}$ | <u>—</u> | >           | *        | $\propto$   | Σ            | $\checkmark$ | S            | >-       |
| $\propto$   | $\simeq$    | ∝            | 8        | ∝           | $\alpha$ | $\propto$   | $\propto$    | $\simeq$     | 2            | $\simeq$ |
| ⋖           | ⋖           | ⋖            | ⋖        | 4           | `∢       | ⋖           | ⋖            | 4            | ⋖            | 4        |
| ပ           | ပ           | ပ            | ပ        | ပ           | ပ        | ပ           | C            | ပ            | ပ            | ပ        |

Figure 11: Expression analysis of initial library





Figure 12: Increase of specificity during the panning rounds







Figure 14: Competition ELISA



- No Inhibition
- Inhibition with BSA
- ☐ Inhibition with Fluorescein

101 0000000000000000 9001 KKKKSO>×>KKK-OKK 2001 LKIKZOA>YOZUXXXAN 8001 K  $\Sigma$  K  $\times$  K  $\times$  F  $\times$  F  $\times$  E  $\times$  K K  $\times$  F  $\times$ 4001 ♂×1−≥××××××××××× 66 Q⊼¤⊼∑I™¤¤≥¤××⊢¤Q  $86 \ge Q \times \pi ->$   $\ge$   $1 \ge$   $0 \times \times$   $1 - \times \times$ 76 Z X Q Z X M G L L X G X > I L J 

WO 97/08320 PCT/EP96/03647

Figure 16: Purification of fluorescein binding scFv fragments



Figure 17: Enrichment factors after three rounds of panning



Figure 18: ELISA of anti-ESL-1 and anti-β-estradiol antibodies



Figure 19: Selectivity and cross-reactivity of HuCAL antibodies



Frequency 103 333333333 105 101  $\mathsf{T} \mathrel{\geq} \mathsf{T} \mathsf{T} \mathsf{T} \mathrel{\leq} \mathsf{S} \mathrel{\leq} \mathsf{I} \mathrel{\leq} \mathsf{S} \mathrel{\leq} \mathsf{T}$ 100E 1000  $0 \times \mathbb{R} \times \mathbb{Z}$  $\mathsf{L} \mathsf{R} \mathsf{D} \mathsf{L} \mathsf{H} \mathsf{L} \mathsf{R} \mathsf{D} \mathsf{Z}$ J001  $\times \times \times \times \times \times \times$  $I \times \succ \times \times \times$ 1008 R R D H N R  $\rightarrow$  >  $\times$   $\cup$   $\times$ A001  $\square \ge \square$ . . . O . . . ∑ **AXPJHKP** ≥ SXK SK 001 66 Q L Z K D C C I Z Z Z Z Z Z  $\mathbb{Z}$   $\mathbb{Z}$   $\mathbb{Z}$   $\mathbb{Z}$   $\mathbb{Z}$   $\mathbb{Z}$   $\mathbb{Z}$   $\mathbb{Z}$   $\mathbb{Z}$   $\mathbb{Z}$   $\mathbb{Z}$   $\mathbb{Z}$   $\mathbb{Z}$   $\mathbb{Z}$   $\mathbb{Z}$ 86  $\Gamma \geqslant \geqslant \neg \geqslant \neg \times \vdash \Box Q \neg \kappa$ **Z6**  $x Q x x T Q \sum x x x \sum \sum$ 96  $\vdash Z \times \succ > Z - \cong S Z Z Z$ 96 63 76

| Frequency  | 462                                                   | • |
|------------|-------------------------------------------------------|---|
| 103        | 333333                                                |   |
| 105        | <b>&gt;&gt;&gt;&gt;&gt;</b>                           | _ |
| 101        |                                                       |   |
| 100E       | <u> шишиш</u>                                         |   |
| 0001       | $A Q Q Z \ge Q$                                       |   |
| J001       | ¬ ≥ ≥ ⊢ × ≥                                           |   |
| 1008       | $x \times x \times \Sigma$ Q                          |   |
| A001.      | $\alpha$ $0$ $z$ $\geq$ $-\alpha$                     |   |
| 001        | $\times$ $\leq$ $\alpha$ $\leq$ $\alpha$ $\sim$       |   |
| 66         | <b>44444</b>                                          |   |
| . 86       | O ± ≻ O − a                                           |   |
| <b>∠6</b>  | $\times$ $\times$ $\times$ $\times$ $\times$ $\times$ |   |
| 96         | $-z>$ $\times$ $\times$                               |   |
| . 96       | >>>><                                                 |   |
| <b>7</b> 6 | ~ ~ ~ ~ ~ ~ ~ ~ ~                                     |   |
| 63         | < < < < < <                                           |   |
| 76         | 000000                                                |   |

| Frequency  | 16           | <del></del> |            | <b>-</b>     | ·<br>•       | <b>-</b> | <del></del>  | .—        |
|------------|--------------|-------------|------------|--------------|--------------|----------|--------------|-----------|
| 103        | ≥            | ≥           | <u>.</u> ≥ | ≥            | ≥            | ≥        | ≥            | ≥         |
| 105        | >            | >           | >-         | >            | >-           | >        | >-           | >-        |
| 101        | ٥            | Ω           | 0          | ۵            | ٩            | 0        |              | $\Box$    |
| 100E       | ட            | Σ           | ய          | Σ            | ≥            | ட        | ≥            | ட         |
| 100D       | エ            | ۵           | O          | ≥            | >            | S        | ≥            | ≥.        |
| J001       | 9            | ٥           | >          | 工            | 江            | a        | ய            | >         |
| 1008       | $\checkmark$ | >           | ≥          | 工            | 0            | <b>—</b> | Z            | ≥         |
| A001       | _            | S           | >          | م            | œ            | ட        | ш            | ய         |
| 100        | $\checkmark$ | Z           | Z          | $\checkmark$ | Ø            | Ö        | <del> </del> |           |
| 66         | S            | تب          | 0          | <u></u> i    | O            | S        | O            | _         |
| 86         | ~            | ۵           | _          | >            | Ш            | Z        | ட்           | <b>—</b>  |
| <b>Z</b> 6 | >            | æ           | ٥          | ⋖            |              | I        | 工            | مـ        |
| 96         | ~            | ≥           | Ø          | O            | . ب          | ≥        | Ω            | ≥         |
| <i>9</i> 6 | O            | ı           | Σ          | _            | <u>~</u>     | S        | >            |           |
| <b>7</b> 6 | ~            | æ           | 8          | œ            | <b>&amp;</b> | 8        | œ            | $\propto$ |
| £6         | A            | V           | A          | ⋖            | V            | ⋖        | ×            | V         |
| 76         | ر            | ပ           | ပ          | ن            | ပ            | ပ        | ပ            | ں         |

```
103
   3333333333
   >>>>>>>>>
 105
 101
   . T Z Z Z Z T T Z T
100E
000 L
   , ко-ооххкг
100Ca
     110011111
J001
   · K K K K L L K K Z K
1008
    > S-F->mOxim
A001
   · T X A S S S P I R V · Q
001
   ESSGSDRKVKFK
 66
   TOSYAVTSYTET
 86
  46
 96
  ゖゖしはHS≻ ff KS > ┢ f
 96
  00-m2m00xx00
  4444444444
```

Figure 24: Sequence analysis of BSA binders

```
ස
 Frequency
             333333
              105
   101
              \Sigma \sqcap \Sigma \Sigma \Sigma \sqcap
100E
              > K K Q > L
100D
2001 > 4 > 5 ≥ ±
             \Box >>  \geq Z \vdash
1008
A001
  100
              A \rightarrow Z \rightarrow A A
     66
              86
     46
              日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日
     96
     96
              M M M M K K
     t6
              44444
     63
             00000
```



WO 97/08320 PCT/EP96/03647

Figure 25a: List of unique restriction sites used in or suitable for HuCAL genes or pCAL vectors

|                         | la sala sa sa                     |
|-------------------------|-----------------------------------|
| unique restriction site | Isoschizomers                     |
| Aatll                   |                                   |
| Afili                   | Bfrl, BspTl, Bst98l               |
| Ascl                    |                                   |
| Asel                    | Vspl, Asnl, PshBl                 |
| BamHI                   | Bstl                              |
| Bbel                    | Ehel, Kasl, Narl                  |
| Bbsl                    | BpuAl, Bpil                       |
| Bglll                   |                                   |
| Blpl                    | Bpu1102l,Celll, Blpl              |
| BsaBl                   | Maml, Bsh1365l, BsrBRl            |
| BsiWl                   | Pfl23II, SpII, SunI               |
| BspEl                   | AccIII, BseAI, BsiMI, Kpn2I, Mrol |
| BsrGl                   | Bsp1407l, SspBl                   |
| BssHII                  | Paul                              |
| BstEll                  | BstPl, Eco91l, EcoO651            |
| BstXI                   | 1                                 |
| Bsu36l                  | Aocl, Cvnl, Eco811                |
| Dralll                  | 1                                 |
| DsmAl                   |                                   |
| Eagl                    | BstZI, EciXI, Eco52I, XmallI      |
| Eco57l                  |                                   |
| Eco01091                | Drall                             |
| EcoRI                   |                                   |
| EcoRV                   | Eco32l                            |
| Fsel                    |                                   |
| HindIII                 |                                   |
| Hpal                    |                                   |
| Kpnl                    | Acc65l, Asp718l                   |
| Mlul                    |                                   |
| Mscl                    | Ball, MluNl                       |
|                         |                                   |

WO 97/08320 PCT/EP96/03647

Figure 25a: List of unique restriction sites used in or suitable for HuCAL genes or pCAL vectors

| unique restriction site | Isoschizomers                      |
|-------------------------|------------------------------------|
| Muni                    | Mfel                               |
| Nhel                    | /                                  |
| Nsil                    | Ppu10l, EcoT22l, Mph1103l          |
| NspV                    | Bsp119l, BstBl, Csp45l, Lspl, Sful |
| Pacl                    |                                    |
| Pmel                    | <i>'</i>                           |
| PmII                    | BbrPl, Eco72l, PmaCl               |
| Psp5II                  | PpuMI                              |
| Pstl                    | . /                                |
| RsrII                   | (Rsril), Cpol, Cspl                |
| SanDI                   |                                    |
| Sapl                    |                                    |
| SexAl                   |                                    |
| Spel                    |                                    |
| Sfil                    |                                    |
| Sphi                    | Bbul, Pael, Nspl                   |
| Stul                    | Aatl, Eco147l                      |
| Styl                    | Eco130l, EcoT14l                   |
| Xbal                    | BspLU11II                          |
| Xhol                    | PaeR71                             |
| Xmal                    | Aval, Smal, Cfr9l, PspAl           |

Figure 26: list of pCAL vector modules

| WO 97/08320                        |                                                      |                                                        |                                | PCT/EP96/0364                                                                                                                       |
|------------------------------------|------------------------------------------------------|--------------------------------------------------------|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| reference                          | Skerra et al. (1991)<br>Bio/Technology 9,<br>273-278 | Hoess et al. (1986)<br>Nucleic Acids Res.<br>2287-2300 | see M2                         | Ge et al., (1994) Expressing antibodies in E. coli. In: Antibody engineering: A practical approach. IRL Press, New York, pp 229-266 |
| template                           | vector<br>pASK30                                     | (synthetic)                                            | (synthetic)                    | vector<br>plG10                                                                                                                     |
| sites to be<br>inserted            | Aatli                                                | lox, BgIII                                             | lox', Sphl                     | none                                                                                                                                |
| sites to be<br>removed             | 2x Vspl<br>(Asel)                                    | 2x Vspl<br>(Asel)                                      | none                           | Sphl,<br>BamHl                                                                                                                      |
| functional element                 | lac<br>promotor/operator                             | Cre/lox<br>recombination site                          | Cre/lox'<br>recombination site | glilp of filamentous<br>phage with N-<br>terminal<br>myctail/amber<br>codon                                                         |
| module/flan-king restriction sites | Aatli-lacp/o-<br>Xbal                                | BgIII-lox-<br>Aatil                                    | Xbal-lox'-<br>Sphl             | EcoRI-<br>gIIIlong-<br>HindIII                                                                                                      |
| oN<br>ON                           | M<br>E                                               | M2                                                     | M3                             | M7-1                                                                                                                                |

Figure 26: list of pCAL vector modules

|                                                                               | · · · · · · · · · · · · · · · · · · ·                                    |                               |                      |                              |                                           |                                           |
|-------------------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------|----------------------|------------------------------|-------------------------------------------|-------------------------------------------|
| see M7-I                                                                      | see M7-1                                                                 | see M3                        | see M1               | see M1                       | see M1                                    | see M1                                    |
| vector<br>plG10                                                               | vector<br>plG10                                                          | (synthetic)                   | (synthetic)          | pASK30                       | pASK30                                    | pASK30                                    |
|                                                                               | ·                                                                        | xol                           | Pacl, Fsel           | Pacl, Fsel,<br>BsrGl         | BsrGl, Nhel                               | BsrGl, Nhel                               |
| Sphl                                                                          | Sphl, Bbsl                                                               | none                          | none                 | Vspl,<br>Eco571,<br>BssSl    | Dralll<br>(Banll not<br>removed)          | DrallI,<br>BanlI                          |
| truncated gillp of<br>filamentous phage<br>with N-terminal Gly-<br>Ser linker | truncated gillp of filamentous phage with N-terminal myctail/amber codon | Cre/lox<br>recombination site | lpp-terminator       | beta-lactamase/bla<br>(ampR) | origin of single-<br>stranded replication | origin of single-<br>stranded replication |
| M7-II EcoRI-gIIIss-<br>HindIII                                                | M7-III EcoRI-gIIIss-<br>HindIII                                          | Sphl-lox-<br>HindIII          | HindIII-Ipp-<br>Pacl | Pacl/Fsel-bla-<br>BsrGl      | BsrGI-f1 ori-<br>Nhel                     | BsrGl-f1 ori-<br>Nhel                     |
| M7-11                                                                         | M7-111                                                                   | M8                            | M9-II                | M10-                         | M11-                                      | M11-                                      |

Figure 26: list of pCAL vector modules

| WO 97/0832                                         | 20                            |                                                |                                                                        |                                  | PCT/EP9                                                                 |
|----------------------------------------------------|-------------------------------|------------------------------------------------|------------------------------------------------------------------------|----------------------------------|-------------------------------------------------------------------------|
| Rose, R.E. (1988)<br>Nucleic Acids Res.<br>16, 355 | see M3                        | Yanisch-Peron, C.<br>(1985) Gene<br>33,103-119 | Cardoso, M. & Schwarz, S. (1992)<br>J. Appl.<br>Bacteriol. 72, 289-293 | see M1                           | Knappik, A &<br>Plückthun, A.<br>(1994)<br>BioTechniques 17,<br>754-761 |
| pACYC184                                           | (synthetic)                   | pUC19                                          | pACYC184                                                               | (synthetic)                      | (synthetic)                                                             |
| Nhel, Bglll pACYC184                               | BgIII, lox,<br>Xmnl           | BgIII, Nhel                                    |                                                                        | -                                | ·                                                                       |
| BssSI, VspI,<br>NspV                               | none                          | Eco57l<br>(BssSl not<br>removed)               | BspEl, Mscl,<br>Styl/Ncol                                              | (synthetic)                      | (synthetic)                                                             |
| origin of double-<br>stranded replication          | Cre/lox<br>recombination site | origin of double-<br>stranded replication      | chloramphenicol-<br>acetyltransferase/<br>cat (camR)                   | signal sequence of phosphatase A | signal sequence of<br>phosphatase A +<br>FLAG detection tag             |
| Nhel-p15A-<br>BgIII                                | BgIII-lox-<br>BgIII           | BgIII-ColEl-<br>Nhel                           | Aatll-cat-<br>BgIII                                                    | Xbal-phoA-<br>EcoRI              | Xbal-phoA-<br>FLAG-EcoRI                                                |
| M12                                                | M13                           | M14-<br>Ext2                                   | M17                                                                    | M19                              | M20                                                                     |

| modules    |
|------------|
| vector     |
| f pCAL     |
| : list of  |
| Figure 26: |

| WO 97/0832                                                   | 20                                                               |                                                                                         |
|--------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| Lee et al. (1983)<br>Infect. Immunol.<br>264-268             | see M1                                                           | Lindner et al.,<br>(1992) Methods: a<br>companion to<br>methods in<br>enzymology 4, 41- |
| (synthetic)                                                  | pASK30                                                           | (synthetic)                                                                             |
|                                                              |                                                                  |                                                                                         |
| (synthetic)                                                  | BstXI,<br>MluI,BbsI,<br>BanII,<br>BstEII,<br>HpaI, BbeI,<br>VspI | (synthetic)                                                                             |
| heat-stable<br>enterotoxin II signal (synthetic)<br>sequence | lac-repressor                                                    | poly-histidine tail                                                                     |
| Xbal-stll-<br>Sapl                                           | AfIII-laci-<br>Nhei                                              | EcoRI-Histail-<br>HindIII                                                               |
| M21                                                          | M41                                                              | M42                                                                                     |

SUBSTITUTE SHEET (RULE 25) 79 / 204





SUBSTITUTE SHEET (RULE 25) 80 / 204

Figure 27: functional map and sequence of MCS module (continued)

|     | HINGILI                                 | 111                                          | PacI                                    | BsrGI                                                                                  |  |
|-----|-----------------------------------------|----------------------------------------------|-----------------------------------------|----------------------------------------------------------------------------------------|--|
|     | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \   | 1 1                                          | ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~                                                |  |
| ~-1 | ACATGTAAGC<br>TGTACATTCG                | TTCCCCCCC CCTTAATTAA<br>AAGGGGGGG GGAATTAATT | CCTTAATTAA<br>GGAATTAATT                | CCCCCCCCC TGTACACCCC<br>GGGGGGGG ACATGTGGGG                                            |  |
|     | NheI                                    |                                              | BglII                                   | Aatii xbai                                                                             |  |
|     | ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? | · · · · · · · · · · · · · · · · · · ·        | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ | ~~~~~~                                                                                 |  |
| 51  | CCCCCCGCTA                              | 999999999<br>22222222                        | CCAGATCTCC<br>GGTCTAGAGG                | GCCCCCCCC CCAGATCTCC CCCCCCCGA CGTCCCCCT<br>CGGGGGGGG GGTCTAGAGG GGGGGGGGCT GCAGGGGGGA |  |
|     | XbaI                                    | Sphi                                         |                                         | EcoRI AatII                                                                            |  |
|     | <b>? ? ? ? ?</b>                        | 2 2 2 2 2 2                                  |                                         | ********                                                                               |  |
| .01 | CTAGACCCCC                              | CCCCCCCATG                                   | CCCCCGCATG CCCCCCCCC                    | $\ddot{\upsilon}$                                                                      |  |
|     | GATCTGGGGG                              | GGGGCGTAC                                    | 9999999999                              | GGGGGCGTAC GGGGGGGGG GCTTAAGCTG CAG                                                    |  |

WO 97/08320 PCT/EP96/03647

Figure 28: functional map and sequence of pMCS cloning vector



BSSSI

| _ | Figure 28: fun | Figure 28: functional map and sequence of pMCS cloning vector (continued) | of pMCS cloning vector ( | continued)               |                                              |                                   |
|---|----------------|---------------------------------------------------------------------------|--------------------------|--------------------------|----------------------------------------------|-----------------------------------|
|   | Н              | CAGGTGGCAC                                                                | TTTTCGGGGA<br>AAAAGCCCCT | AATGTGCGCG<br>TTACACGCGC | GAACCCCTAT<br>CTTGGGGATA                     | TTGTTTATTT<br>AACAAATAAA          |
| • | 51             | TTCTAAATAC<br>AAGATTTATG                                                  | ATTCAAATAT<br>TAAGTTTATA | GTATCCGCTC<br>CATAGGCGAG | ATGAGACAAT<br>TACTCTGTTA                     | AACCCTGATA<br>TTGGGACTAT          |
|   | 101            | AATGCTTCAA<br>TTACGAAGTT                                                  | TAATATTGAA<br>ATTATAACTT | AAAGGAAGAG<br>TTTCCTTCTC | TATGAGTATT<br>ATACTCATAA                     | CAACATTTCC<br>GTTGTAAAGG          |
|   | 151            | GTGTCGCCCT<br>CACAGCGGGA                                                  | TATTCCCTTT<br>ATAAGGGAAA | TTTGCGGCAT               | TTTGCCTTCC<br>AAACGGAAGG                     | TGTTTTTGCT<br>ACAAAAACGA          |
|   | 201            | CACCCAGAAA<br>GTGGGTCTTT                                                  | CGCTGGTGAA<br>GCGACCACTT | AGTAAAAGAT<br>TCATTTTCTA | Eco57I<br>~~~~~~<br>GCTGAAGATC<br>CGACTTCTAG | AGTTGGGTGC<br>TCAACCCACG<br>BSSSI |
|   | 251            | ACGAGTGGGT<br>TGCTCACCCA<br>Beest                                         | TACATCGAAC<br>ATGTAGCTTG | TGGATCTCAA<br>ACCTAGAGTT | CAGCGGTAAG<br>GTCGCCATTC                     | ATCCTTGAGA<br>TAGGAACTCT          |

Figure 28: functional map and sequence of pMCS cloning vector (continued)

|    | 1 |
|----|---|
| _  | 4 |
| ۷. | ė |
| ;  | J |
| ၽ  | • |
| _  | 3 |
| ×  | 3 |
|    |   |

| CGTTGCGCAA               | ATGGCAACAA               | GCCTGTAGCA               | ACACCACGAT               | GACGAGCGTG | 651 |
|--------------------------|--------------------------|--------------------------|--------------------------|------------|-----|
| CATACCAAAC<br>GTATGGTTTG | TGAATGAAGC<br>ACTTACTTCG | GAACCGGAGC<br>CTTGGCCTCG | TGATCGTTGG<br>ACTAGCAACC | TAACTCGCCT | 601 |
| GGGGATCATG               | GCACAACATG               | CCGCTTTTTT               | AAGGAGCTAA               | CGGAGGACCG | 551 |
| CCCCTAGTAC               | CGTGTTGTAC               | GGCGAAAAAA               | TTCCTCGATT               | GCCTCCTGGC |     |
| TGACAACGAT               | AACTTACTTC               | CACTGCGGCC               | TGAGTGATAA               | GCCATAACCA | 501 |
| ACTGTTGCTA               | TTGAATGAAG               | GTGACGCCGG               | ACTCACTATT               | CGGTATTGGT |     |
| ATGCAGTGCT               | TAAGAGAATT               | GGCATGACAG               | TCTTACGGAT               | CAGAAAAGCA | 451 |
| TACGTCACGA               | ATTCTCTTAA               | CCGTACTGTC               | AGAATGCCTA               | GTCTTTTCGT |     |
| TCACCAGTCA<br>AGTGGTCAGT | GGTTGAGTAC<br>CCAACTCATG | AGAATGACTT<br>TCTTACTGAA | CACTATTCTC<br>GTGATAAGAG | TCGCCGCATA | 401 |
| AGCAACTCGG<br>TCGTTGAGCC | GCCGGGCAAG<br>CGGCCCGTTC | CCGTATTGAC<br>GGCATAACTG | CGGTATTATC<br>GCCATAATAG | CTATGTGGCG | 351 |
| TAAAGTTCTG               | TGAGCACTTT               | TTTCCAATGA               | CGAAGAACGT               | GTTTTCGCCC | 301 |
| ATTTCAAGAC               | ACTCGTGAAA               | AAAGGTTACT               | GCTTCTTGCA               | CAAAAGCGGG |     |

Figure 28: functional map and sequence of pMCS cloning vector (continued)

| 701751 | CTGCTCGCAC<br>ACTATTAACT<br>TGATAATTGA<br>ACTGGATGGA<br>TGACCTACCT | TGTGGT<br>GGCGAA(<br>CCGCTT            | GCTA CGGACATCGT CTAC TTACTCTAGC SATG AATGAGATCG TAAA GTTGCAGGAC ATTT CAACGTCCTG | TACCGGCCAA<br>AAGGGCCGTT<br>CACTTCTGCG<br>GTGAAGACGC | GCAACGCGTT ASEI ~~~~~~ CAATTAATAG GTTAATTATC CTCGGCCCTT |
|--------|--------------------------------------------------------------------|----------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------|
| 8 2 5  | GGCCGACCGA<br>TCGCGGTATC<br>AGCGCCATAG                             | CCAAATAACG<br>ATTGCAGCAC<br>TAACGTCGTG | TGATAAATCT<br>ACTATTTAGA<br>TGGGGCCAGA<br>ACCCCGGTCT                            | GGAGCCGGTG<br>CCTCGGCCAC<br>TGGTAAGCCC               | AGCGTGGGTC<br>TCGCACCCAG<br>TCCCGTATCG<br>AGGGCATAGC    |
| 901    | TAGTTATCTA                                                         | CACGACGGGG                             | AGTCAGGCAA                                                                      | CTATGGATGA                                           | ACGAAATAGA                                              |
|        | ATCAATAGAT                                                         | GTGCTGCCCC                             | TCAGTCCGTT                                                                      | GATACCTACT                                           | TGCTTTATCT                                              |
| 951    | CAGATCGCTG                                                         | AGATAGGTGC                             | CTCACTGATT                                                                      | AAGCATTGGT                                           | AACTGTCAGA                                              |
|        | GTCTAGCGAC                                                         | TCTATCCACG                             | GAGTGACTAA                                                                      | TTCGTAACCA                                           | TTGACAGTCT                                              |
| 1001   | CCAAGTTTAC                                                         | TCATATATAC                             | TTTAGATTGA                                                                      | TTTAAAACTT                                           | САТТТТТААТ                                              |
|        | GGTTCAAATG                                                         | AGTATATATG                             | AAATCTAACT                                                                      | AAATTTTGAA                                           | GТАААААТТА                                              |

Figure 28: functional map and sequence of pMCS cloning vector (continued)

Figure 28: functional map and sequence of pMCS cloning vector (continued)

Figure 28: functional map and sequence of pMCS cloning vector (continued)

| ACGACCGGAA                                  | BsrGI<br>CCCCCTGTA<br>GGGGGACAT                     | Aatii<br>CCCCGACGTC<br>GGGGCTGCAG                  | RI<br>~~~~<br>TTCACGT<br>AAGTGCA                |
|---------------------------------------------|-----------------------------------------------------|----------------------------------------------------|-------------------------------------------------|
| TTGCGCCGGA AAAATGCCAA GGACCGGAAA ACGACCGGAA | PacI<br>~~~~~~~<br>TT AATTAACCCC<br>AA TTAATTGGGG   | Bglii<br>CCCCCCAG ATCTCCCCC<br>GGGGGGTC TAGAGGGGGG | ECORI<br>CCCCCCGAA TTCACGT<br>GGGGGGCTT AAGTGCA |
| AAAATGCCAA                                  | PacI<br>CCCCCCCTT AATTAACCCC<br>GGGGGGAA TTAATTGGGG | Bg<br>CCCCCCCAG<br>GGGGGGGTC                       | Sphi<br>~~~~~<br>CGCATGCCCC<br>GCGTACGGGG       |
| TTGCGCCGGA                                  | HindIII<br>~~~~~~<br>GTAAGCTTCC<br>CATTCGAAGG       | NheI<br>~~~~~~<br>CCGCTAGCCC<br>GGCGATCGGG         | ACCCCCCCC<br>TGGGGGGGGG                         |
| TTTGCGGTCG                                  | TTGCTCACAT                                          | BsrGI<br>~~<br>CACCCCCCC<br>GTGGGGGGGG             | Xbal<br>CCCCCTCTAG<br>GGGGAGATC                 |
|                                             | 1801                                                | 1851                                               | 1901                                            |
|                                             |                                                     | SUBSTITU                                           | TE SHEET (RULE 26)                              |





WO 97/08320 PCT/EP96/03647

Figure 29: functional map and sequence of pCAL module M1

AatII

GGCTTTACAC CCGAAATGTG TCCGTGGGGT AGGCACCCCA GAGTGAGTAA CTCACTCATT ACACTCAATC TGTGAGTTAG CTGCAGAATT GACGTCTTAA

GATAACAATT CTATTGTTAA ATTGTGAGCG TAACACTCGC GTTGTGTGGA CAACACACCT CGGCTCGTAT GCCGAGCATA AAATACGAAG TTTATGCTTC 51

XbaI

GA CGAATTTCTA GCTTAAAGAT ACCATGATTA TGGTACTAAT TTGTCGATAC AACAGCTATG AGTGTGTCCT TCACACAGGA

SUBSTITUTE SHEET (RULE 26)

101





Figure 30: functional map and sequence of pCAL module M7-II (continued)

| Н    |
|------|
| ECOR |
|      |

| GTGGTGGCTC                       | AATAAGGGGG                                             |
|----------------------------------|--------------------------------------------------------|
| CACCACCGÁG                       | TTATTCCCCC                                             |
| GATCTGTAGG                       | TGGTTCCGGT GATTTTGATT ATGAAAGAT GGCAAACGCT AATAAGGGGG  |
| CTAGACATCC                       | ACCAAGGCCA CTAAAACTAA TACTTTTCTA CCGTTTGCGA TTATTCCCCC |
| CTCTGAGGAG                       | ATGAAAAGAT                                             |
| GAGACTCCTC                       | TACTTTTCTA                                             |
| GAATTCGAGC AGAAGCTGAT CTCTGAGGAG | GATTTTGATT                                             |
| CTTAAGCTCG TCTTCGACTA GAGACTCCTC | CTAAAACTAA                                             |
| GAATTCGAGC                       | TGGTTCCGGT                                             |
| CTTAAGCTCG                       | ACCAAGGCCA                                             |
| -                                | 51                                                     |

| ပ်ပွဲ<br>ပြွပွဲ | 上して 上ででし                                       |
|-----------------|------------------------------------------------|
| ပ္ပ်<br>(၁)     | トでさ                                            |
| ပ္ပ်<br>(၁)     | タナナタじた                                         |
| ပ္ပ်<br>(၁)     | FACEFEUUFA UUFAEUUFUU FUUUAFFAUF VAEUUUFUFU FF |
| TATG            |                                                |
|                 | ٦,                                             |

| GGTGATTTTG<br>CCACTAAAAC | CTAATGGTAA TGGTGCTACT GGTGATTTTG            | CTAATGGTAA<br>GATTACCATT | TT TCCGGCCTTG CTAATGGTAA | TGGTGACGTT<br>ACCACTGCAA | 201 |
|--------------------------|---------------------------------------------|--------------------------|--------------------------|--------------------------|-----|
| TACCAAAGTA               | ACTAATGCCA CGACGATAGC                       | ACTAATGCCA               | AA GACAGCGATG            | TTTGAACTAA               |     |
| ATGGTTTCAT               | AAACTTGATT CTGTCGCTAC TGATTACGGT GCTGCTATCG | TGATTACGGT               | CTGTCGCTAC               | AAACTTGATT               | 151 |

| TAATTCACCT                   | ATTAAGTGGA                        |
|------------------------------|-----------------------------------|
| ATG GCTCAAGTCG GTGACGGTGA TA | AGGGTTTAC CGAGTTCAGC CACTGCCACT / |
| GCTCAAGTCG                   | CGAGTTCAGC CA                     |
| TTCCCAA                      | AAGGGTTTAC                        |
| CTGGCTCTAA                   | GACCGAGATT AA                     |
| 251                          |                                   |

## XmnI

## AATCGGTTGA TTAGCCAACT ATATTTACCT TCCCTCCTC AGGGAGGGAG TATAAATGGA ATTTCCGTCA AATTACTTAT TAAAGGCAGT TTAATGAATA 301

Figure 30: functional map and sequence of pCAL module M7-11 (continued)

|                            |                                                | • .                               | HindIII                                                                                                            |                          |     |
|----------------------------|------------------------------------------------|-----------------------------------|--------------------------------------------------------------------------------------------------------------------|--------------------------|-----|
| TACTGCGTAA<br>ATGACGCATT   | TTTGCTAACA<br>AAACGATTGT                       | ATTTTCTACG<br>TAAAAGATGC          | GTTGCCACCT TTATGTATGT ATTTTCTACG TTTGCTAACA TACTGCGTAA<br>CAACGGTGGA AATACATACA TAAAAGATGC AAACGATTGT ATGACGCATT   | GTTGCCACCT               | 451 |
| TCTTTTATAT<br>AGAAAATATA   | TCTTTGCGTT TCTTTTATAT<br>AGAAACGCAA AGAAAATATA | TTCCGTGGTG<br>AAGGCACCAC          | ATTGTGACAA AATAAACTTA TTCCGTGGTG<br>TAACACTGTT TTATTTGAAT AAGGCACCAC                                               | ATTGTGACAA<br>TAACACTGTT | 401 |
| TTTTTCTAITTG<br>AAAAGATAAC | ACCATATGAA<br>TGGTATACTT                       | GCGCTGGTAA ACCATATGAA TTTTTCTATTG | ATGTCGCCCT TTTGTCTTTG GCGCTGGTAA ACCATATGAA TTTTTCTATTGT<br>TACAGCGGGA AAACAGAAAC CGCGACCATT TGGTATACTT AAAAGATAAC | ATGTCGCCCT<br>TACAGCGGGA | 351 |

SUBSTITUTE SHEET (RULE 28) 93 / 204

501

TAAGGAGTCT TGATAAGCTT ATTCCTCAGA ACTATTCGAA





Figure 31: functional map and sequence of pCAL module M9-II (continued)

HindIII

AAAATGGCGC TGTGAAGTGA AAGCTTGACC ~ ~ ~ ~ ~ ~ ~ 9999999999 CCCCCCCCC

AGATTGTGCG TCTAACACGC FseI TTTTACCGCG ACACTTCACT PacI TTCGAACTGG

9999999999 22222222 TTAATTAAAG TGTCTGCCGT ACATTTTTT 51

GCCGGCCTGG CGGCCGGACC

AATTAATTTC TGTAAAAAA ACAGACGGCA

GGG ACAGGGGGG GGGGGGGTGT CCCCCCACA 101

BsrGI

CCC

TGTCCCCCC





SUBSTITUTE SHEET (RULE 26) 96 / 204

TATCTCGGTC ATAGAGCCAG

CACTCAACCC GTGAGTTGGG

ACTGGAACAA

CTTGTTCCAA GAACAAGGTT

ATAGTGGACT TATCACCTGA

301

TGACCTTGTT

ATTTCGGCCT ATTGGTTAAA

GATTTTGCCG

TATTCTTTTG ATTTATAAGG

351

Figure 32: functional map and sequence of pCAL module M11-III (continued)

NheI

SUBSTITUTE SHEET (RULE 28) 97 / 204 Figure 32: functional map and sequence of pCAL module M11-III (continued)

AAAATATTAA TAACCAATTT TAAAGCCGGA GAATTTTAAC TAAATATTCC CTAAAACGGC AATTTAACGC ATTTAACAAA ATAAGAAAAC AAATGAGCTG 401

TTTATATT

CTTAAAATTG

TTAAATTGCG

TAAATTGTTT

TTTACTCGAC

BsrGI

TTCATGTACA CGTTTACAAT 451

AAGTACATGT GCAAATGTTA





Figure 33: functional map and sequence of pCAL module M14-Ext2 (continued)

| ۲ | 4 |
|---|---|
| ۲ | 4 |
| _ | 4 |
| t | 7 |
| ρ | 1 |
|   |   |

| H . | AGATCTGACC<br>TCTAGACTGG | AAAATCCCTT<br>TTTTAGGGAA | AACGTGAGTT<br>TTGCACTCAA | TTCGTTCCAC                       | TGAGCGTCAG<br>ACTCGCAGTC |
|-----|--------------------------|--------------------------|--------------------------|----------------------------------|--------------------------|
| 51  | ACCCCGTAGA               | AAAGATCAAA<br>TTTCTAGTTT | GGATCTTCTT<br>CCTAGAAGAA | GAGATCCTTT<br>CTCTAGGAAA         | TTTTCTGCGC<br>AAAAGACGCG |
| 101 | GTAATCTGCT<br>CATTAGACGA | GCTTGCAAAC<br>CGAACGTTTG | AAAAAAACCA<br>TTTTTTGGT  | CCGCTACCAG<br>GGCGATGGTC         | CGGTGGTTTG<br>GCCACCAAAC |
| 151 | TTTGCCGGAT<br>AAACGGCCTA | CAAGAGCTAC<br>GTTCTCGATG | CAACTCTTTT<br>GTTGAGAAAA | TCCGAAGGTA<br>AGGCTTCCAT         | ACTGGCTACA<br>TGACCGATGT |
| 201 | GCAGAGCGCA<br>CGTCTCGCGT | GATACCAAAT<br>CTATGGTTTA | ACTGTTCTTC<br>TGACAAGAAG | TAGTGTAGCC                       | GTAGTTAGGC<br>CATCAATCCG |
| 251 | CACCACTTCA<br>GTGGTGAAGT | AGAACTCTGT<br>TCTTGAGACA | AGCACCGCCT               | ACATACCTCG<br>TGTATGGAGC         | CTCTGCTAAT<br>GAGACGATTA |
| 301 | CCTGTTACCA<br>GGACAATGGT | GTGGCTGCTG<br>CACCGACGAC | CCAGTGGCGA<br>GGTCACCGCT | TAAGTCGTGT<br>ATTCAGCACA         | CTTACCGGGT               |
| 351 | TGGACTCAAG               | ACGATAGTTA               | CCGGATAAGG               | CCGGATAAGG CGCAGCGGTC GGGCTGAACG | GGGCTGAACG               |

SUBSTITUTE SHEET (RULE 26)

| Figure 33: fi | Figure 33: functional map and sequence of pCAL module M14-Ext2 (continued) | ce of pCAL module M14-E  | xt2 (continued)          |                          |                                   |
|---------------|----------------------------------------------------------------------------|--------------------------|--------------------------|--------------------------|-----------------------------------|
|               | ACCTGAGTTC                                                                 | TGCTATCAAT               | TGCTATCAAT GGCCTATTCC    | GCGTCGCCAG               | CCCGACTTGC                        |
| 401           | GGGGGTTCGT                                                                 | GCACACAGCC<br>CGTGTGTCGG | CAGCTTGGAG<br>GTCGAACCTC | CGAACGACCT<br>GCTTGCTGGA | ACACCGAACT<br>TGTGGCTTGA          |
| 451           | GAGATACCTA<br>CTCTATGGAT                                                   | CAGCGTGAGC<br>GTCGCACTCG | TATGAGAAAG<br>ATACTCTTTC | CGCCACGCTT<br>GCGGTGCGAA | CCCGAAGGGA<br>GGGCTTCCCT          |
| <br>501       | GAAAGGCGGA<br>CTTTCCGCCT                                                   | CAGGTATCCG<br>GTCCATAGGC | GTAAGCGGCA<br>CATTCGCCGT | GGGTCGGAAC<br>CCCAGCCTTG | AGGAGAGCGC<br>TCCTCTCGCG<br>BssSI |
| 551           | ACGAGGGAGC<br>TGCTCCCTCG<br>BssSI                                          | TTCCAGGGGG               | AAACGCCTGG<br>TTTGCGGACC | ТАТСТТТАТА<br>АТАGАААТАТ | GTCCTGTCGG<br>CAGGACAGCC          |
| 601           | GTTTCGCCAC                                                                 | CTCTGACTTG<br>GAGACTGAAC | AGCGTCGATT<br>TCGCAGCTAA | TTTGTGATGC<br>AAACACTACG | TCGTCAGGGG<br>AGCAGTCCCC          |
| 651           | GGCGGAGCCT<br>CCGCCTCGGA                                                   | ATGGAAAAAC<br>TACCTTTTTG | GCCAGCAACG<br>CGGTCGTTGC | CGGCCTTTTT<br>GCCGGAAAAA | ACGGTTCCTG<br>TGCCAAGGAC          |

SUBSTITUTE SHEET (RULE 26)
101 / 204

Figure 33: functional map and sequence of pCAL module M14-Ext2 (continued)

NheI

AGC TCG GGCCTTTTGC TCACATGGCT CCGGAAAACG AGTGTACCGA GCCTTTTGCT CGGAAAACGA

701

SUBSTITUTE SHEET (RULE 26) 102 / 204





SUBSTITUTE SHEET (RULE 26)
103 / 204

Figure 34: functional map and sequence of pCAL module M17 (continued)

### AatII

|     | ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? |                          |                          |                          |                          |
|-----|-----------------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| ᆏ   | GGGACGTCGG                              | GTGAGGTTCC               | AACTTTCACC               | АТААТGАААТ               | AAGATCACTA               |
|     | CCCTGCAGCC                              | CACTCCAAGG               | TTGAAAGTGG               | ТАТТАСТТТА               | TTCTAGTGAT               |
| 51  | CCGGGCGTAT                              | TTTTTGAGTT<br>AAAAACTCAA | ATCGAGATTT<br>TAGCTCTAAA | TCAGGAGCTA<br>AGTCCTCGAT | AGGAAGCTAA<br>TCCTTCGATT |
| 101 | AATGGAGAAA                              | AAAATCACTG               | GATATACCAC               | CGTTGATATA               | TCCCAATGGC               |
|     | TTACCTCTTT                              | TTTTAGTGAC               | CTATATGGTG               | GCAACTATAT               | AGGGTTACCG               |
| 151 | ATCGTAAAGA                              | ACATTTTGAG               | GCATTTCAGT               | CAGTTGCTCA               | ATGTACCTAT               |
|     | TAGCATTTCT                              | TGTAAAACTC               | CGTAAAGTCA               | GTCAACGAGT               | TACATGGATA               |
| 201 | AACCAGACCG                              | TTCAGCTGGA               | TATTACGGCC               | TTTTTAAAGA               | CCGTAAAGAA               |
|     | TTGGTCTGGC                              | AAGTCGACCT               | ATAATGCCGG               | AAAAATTTCT               | GGCATTTCTT               |
| 251 | AAATAAGCAC                              | AAGTTTTATC               | CGGCCTTTAT               | TCACATTCTT               | GCCCGCCTGA               |
|     | TTTATTCGTG                              | TTCAAAATAG               | GCCGGAAATA               | AGTGTAAGAA               | CGGGCGGACT               |
| 301 | TGAATGCTCA                              | CCCGGAGTTC               | CGTATGGCAA               | TGAAAGACGG               | TGAGCTGGTG               |
|     | ACTTACGAGT                              | GGGCCTCAAG               | GCATACCGTT               | ACTTTCTGCC               | ACTCGACCAC               |
| 351 | ATATGGGATA                              | GTGTTCACCC               | TTGTTACACC               | GTTTTCCATG               | AGCAAACTGA               |

Figure 34: functional map and sequence of pCAL module M17 (continued)

| TCGTTTGACT | CGGCAGTTTC<br>GCCGTCAAAG | CCTGGCCTAT<br>GGACCGGATA | CCAATCCCTG<br>GGTTAGGGAC | GACAACTTCT<br>CTGTTGAAGA | CGACAAGGTG<br>GCTGTTCCAC | ATGGCTTCCA<br>TACCGAAGGT | GAGTGGCAGG               | AAACGCCTGG   |  |
|------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------|--|
| CAAAAGGTAC | CGACGATTTC               | ACGGTGAAAA<br>TGCCACTTTT | TTCGTCTCAG               | AGCCAATATG<br>TCGGTTATAC | ATACGCAAGG<br>TATGCGTTCC | GCCGTTTGTG CGCCAAACAC    |                          | •            |  |
| AACAATGTGG | GTGAATACCA<br>CACTTATGGT | GTGGCGTGTT<br>CACCGCACAA | GAATATGTTT<br>CTTATACAAA | ATTTAAACGT<br>TAAATTTGCA | GGCAAATATT<br>CCGTTTATAA | GGTTCATCAT<br>CCAAGTAGTA | AATTACAACA<br>TTAATGTTGT | GGCAGTTATT ( |  |
| CACAAGTGGG | TCGCTCTGGA<br>AGCGAGACCT | TTCGCAAGAT<br>AAGCGTTCTA | GGTTTATTGA<br>CCAAATAACT | ACCAGTTTTG<br>TGGTCAAAAC | TTTCACTATG<br>AAAGTGATAC | TGGCGATTCA<br>ACCGCTAAGT | ATGCTTAATG<br>TACGAATTAC | ATTTTTTAA    |  |
| TATACCCTAT | AACGTTTTCA<br>TTGCAAAAGT | TACACATATA<br>ATGTGTATAT | TTCCCTAAAG<br>AAGGGATTTC | GGTGAGTTTC<br>CCACTCAAAG | TCGCCCCCGT               | CTGATGCCGC<br>GACTACGGCG | TGTCGGCAGA               | GCGGGGCGTA   |  |
|            | 401                      | 451                      | 501                      | 551                      | 601                      | 651                      | 701                      | 751          |  |

SUBSTITUTE SHEET (RULE 26) 105 / 204 Figure 34: functional map and sequence of pCAL module M17 (continued)

CGCCCCGCAT TAAAAAAATT CCGTCAATAA CCCACGGGAA TTTGCGGACC

BglII

TGCTAGATCT

801

TCC ACGATCTAGA

> SUBSTITUTE SHEET (AULE 26) 106 / 204

functional ssori Bsr61 (612) Hind III (515) Fsel (599) glll supershort Pac! (579) Gen11-Nick Kmn1 (310) Ban [1 (919) Nhel (1876) replication start **Ecori** (1) 2755 bp pCAL4 Sph1 (2749) Figure 35: functional map and sequence of modular vector pCAL4 BssS1 (1254) Colel Ext2 origin **Kbal** (2739) Hatil (2608) lac p/o Bg111 (1803) cat

SUBSTITUTE SHEET (NULE 28)

Figure 35: functional map and sequence of modular vector pCAL4 (continued)

ECORI

|          |             | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 |                          |                                                                                                                  |                          |                          |
|----------|-------------|-----------------------------------------|--------------------------|------------------------------------------------------------------------------------------------------------------|--------------------------|--------------------------|
|          | <del></del> | AATTCGAGCA<br>TTAAGCTCGT                | GAAGCTGATC<br>CTTCGACTAG | AATTCGAGCA GAAGCTGATC TCTGAGGAGG ATCTGTAGGG TGGTGGCTCT<br>TTAAGCTCGT CTTCGACTAG AGACTCCTCC TAGACATCCC ACCACCGAGA | ATCTGTAGGG<br>TAGACATCCC | TGGTGGCTCT<br>ACCACCGAGA |
| <b>.</b> | 51.         | GGTTCCGGTG                              | ATTTGATTA                | TG ATTTTGATTA TGAAAGATG GCAAACGCTA ATAAGGGGGC                                                                    | GCAAACGCTA               | ATAAGGGGGC               |

|   | AA AATGCCGATG AAAACGCGCT ACAGTCTGAC GCTAAAGGCA | CTT TTACGGCTAC TTTTGCGCGA TGTCAGACTG CGATTTCCGT |   |
|---|------------------------------------------------|-------------------------------------------------|---|
|   | ACAGTCTGAC                                     | TGTCAGACTG                                      |   |
|   | AAAACGCGCT                                     | TTTTGCGCGA                                      |   |
|   | AATGCCGATG                                     | TTACGGCTAC                                      |   |
| ٠ | TATGACCGAA                                     | ATACTGGCTT                                      |   |
|   | 101                                            |                                                 |   |
|   | ;                                              | SUB                                             | S |

CCAAGGCCAC TAAAACTAAT ACTTTTCTAC CGTTTGCGAT TATTCCCCCG

|   | IIC IGICGCIACI GAITACGGIG CIGCIAICGA IGGIIITCATT | AAG ACAGCGATGA CTAATGCCAC GACGATAGCT ACCAAAGTAA |  |
|---|--------------------------------------------------|-------------------------------------------------|--|
|   | CIGCIAICGA                                       | GACGATAGCT                                      |  |
|   | GATTACGGTG                                       | CTAATGCCAC                                      |  |
|   | IGICGCIACI                                       | ACAGCGATGA                                      |  |
| ~ | 104.                                             | TTGAACTAAG                                      |  |
| 7 | 4                                                | : eus                                           |  |

|   | TIT CCGGCCTIGC TAATGGTAAT GGTGCTACTG GTGATTTTGC | AAA GGCCGGAACG ATTACCATTA CCACGATGAC CACTAAAACG |
|---|-------------------------------------------------|-------------------------------------------------|
|   | GGTGCTACTG                                      | CCACGATGAC                                      |
| • | TAATGGTAAT                                      | ATTACCATTA                                      |
| ř | CCGGCCTTGC                                      | GGCCGGAACG                                      |
|   | GGTGACGTTT                                      | CCACTGCAAA                                      |
|   | 201                                             |                                                 |

#### XmnI

TAGCCAACTT ATCGGTTGAA CCCTCCCTCA GGGAGGGAGT TATTTACCTT ATAAATGGAA TTTCCGTCAA AAAGGCAGTT TAATGAATAA ATTACTTATT 301

Figure 35: functional map and sequence of modular vector pCAL4 (continued)

| 351 | TGTCGCCCTT               | TTGTCTTTGG<br>AACAGAAACC                     | CGCTGGTAAA<br>GCGACCATTT                    | CCATATGAAT<br>GGTAŤACTTA | TTTCTATTGA<br>AAAGATAACT |
|-----|--------------------------|----------------------------------------------|---------------------------------------------|--------------------------|--------------------------|
| 401 | TTGTGAGAAA<br>AACACTGTTT | ATAAACTTAT<br>TATTTGAATA                     | TCCGTGGTGT                                  | CTTTGCGTTT<br>GAAACGCAAA | CTTTTATATG<br>GAAAATATAC |
| 451 | TTGCCACCTT<br>AACGGTGGAA | TATGTATGTA<br>ATACATACAT                     | TTTTCTACGT<br>AAAAGATGCA                    | TTGCTAACAT<br>AACGATTGTA | ACTGCGTAAT<br>TGACGCATTA |
| 501 | AAGGAGTCTT<br>TTCCTCAGAA | HindIII<br>~~~~~<br>GATAAGCTTG<br>CTATTCGAAC | ACCTGTGAAG<br>TGGACACTTC                    | TGAAAAATGG<br>ACTTTTTACC | CGCAGATTGT<br>GCGTCTAACA |
| 551 | GCGACATTTT<br>CGCTGTAAAA | TTTTGTCTGC<br>AAAACAGACG                     | PacI<br>~~~~~~~<br>CGTTTAATTA<br>GCAAATTAAT | AAGGGGGGG<br>TTCCCCCCCC  | FseI                     |
| 601 | TGGGGGGGGG               | BsrGI<br>~~~~~~<br>TGTACATGAA<br>ACATGTACTT  | ATTGTAAACG<br>TAACATTTGC                    | ТТААТАТТТТ<br>ААТТАТАВ   | GTTAAAATTC               |

Figure 35: functional map and sequence of modular vector pCAL4 (continued)

| AGGCCGAAAT<br>TCCGGCTTTA | GGGTTGAGTG<br>CCCAACTCAC  | GGACTCCAAC<br>CCTGAGGTTG | TACGAGAACC<br>ATGCTCTTGG | GCACTAAATC<br>СGTGATTTAG | AAAGCCGGCG | TTTCGGCCGC | GCGCTAGGGC<br>CGCGATCCCG |
|--------------------------|---------------------------|--------------------------|--------------------------|--------------------------|------------|------------|--------------------------|
| TTTAACCAAT<br>AAATTGGTTA | GACCGAGATA<br>CTGGCTCTAT  | TAAAGAACGT<br>ATTTCTTGCA | GATGGCCCAC               | GTGCCGTAAA               | CTTGACGGGG | GAACTGCCCC | AAAGGAGCGG               |
| CAGCTCATTT<br>GTCGAGTAAA | CAAAAGAATA<br>GTTTTCTTAT  | AGTCCACTAT<br>TCAGGTGATA | CTATCAGGGC<br>GATAGTCCCG | TGGGGTCGAG               | CGATTTAGAG | GCTAAATCTC | GAAGAAAGCG<br>CTTCTTTCGC |
| TTTGTTAAAT<br>AAACAATTTA | ССТТАТАААТ<br>GGAATATTTA  | TTGGAACAAG               | GAAAAACCGT<br>CTTTTTGGCA | TCAAGTTTTT<br>AGTTCAAAAA | BanII      | TCCCTCGGGG | GAAAGGAAGG<br>CTTTCCTTCC |
| GCGTTAAATT<br>CGCAATTTAA | CGGCAAAATC<br>GCCGTTTTTAG | TTGTTCCAGT               | GTCAAAGGGC<br>CAGTTTCCCG | ATCACCCTAA<br>TAGTGGGATT | GGAACCCTAA | CCTTGGGATT | AACGTGGCGA<br>TTGCACCGCT |
| 651                      | 701                       | 751                      | 801                      | 851                      | 901        |            | 951                      |

SUBSTITUTE SHEET (RULE 26)

Figure 35: functional map and sequence of modular vector pCAL4 (continued)

CACGCTGTAG

TCTCATAGCT AGAGTATCGA

CGTGGCGCTT

CTTCGGGAAG GAAGCCCTTC

GCCTTTCTCC CGGAAAGAGG

1301

| 1001 | GCTGGCAAGT               | GTAGCGGTCA<br>CATCGCCAGT | CGCTGCGCGT<br>GCGACGCGCA | AACCACCACA<br>TTGGTGGTGT | ອວອວອອວອອອ               |
|------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
|      |                          |                          | NheI                     |                          |                          |
| 1051 | TTAATGCGCC               | GCTACAGGGC<br>CGATGTCCCG | GCGTGCTAGC               | CATGTGAGCA<br>GTACACTCGT | AAAGGCCAGC<br>TTTCCGGTCG |
| 1101 | AAAAGGCCAG<br>TTTTCCGGTC | GAACCGTAAA<br>CTŢGGCATTT | AAGGCCGCGT<br>TTCCGGCGCA | TGCTGGCGTT<br>ACGACCGCAA | TTTCCATAGG<br>AAAGGTATCC |
| 1151 | CTCCGCCCCC               | CTGACGAGCA<br>GACTGCTCGT | TCACAAAAT<br>AGTGTTTTTA  | CGACGCTCAA<br>GCTGCGAGTT | GTCAGAGGTG<br>CAGTCTCCAC |
| 1201 | GCGAAACCCG               | ACAGGACTAT<br>TGTCCTGATA | AAAGATACCA<br>TTTCTATGGT | GGCGTTTCCC<br>CCGCAAAGGG | CCTGGAAGCT<br>GGACCTTCGA |
| 1251 | BSSSI                    | CTCTCCTGTT               | CCGACCCTGC               | CGCTTACCGG               | ATACCTGTCC               |
|      | GGGAGCACGC               | GAGAGGACAA               | GGCTGGGACG               | GCGAATGGCC               | TATGGACAGG               |

SUBSTITUTE SHEET (RULE 26)
111 / 204

Figure 35: functional map and sequence of modular vector pCAL4 (continued)

| 1351 | GTATCTCAGT | TCGGTGTAGG               | TCGTTCGCTC               | CAAGCTGGGC               | TGTGTGCACG               |
|------|------------|--------------------------|--------------------------|--------------------------|--------------------------|
|      | CATAGAGTCA | AGCCACATCC               | AGCAAGCGAG               | GTTCGACCCG               | ACACACGTGC               |
| 1401 | AACCCCCGT  | TCAGCCCGAC               | CGCTGCGCCT<br>GCGACGCGGA | TATCCGGTAA<br>ATAGGCCATT | CTATCGTCTT<br>GATAGCAGAA |
| 1451 | GAGTCCAACC | CGGTAAGACA<br>GCCATTCTGT | CGACTTATCG<br>GCTGAATAGC | CCACTGGCAG<br>GGTGACCGTC | CAGCCACTGG<br>GTCGGTGACC |
| 1501 | TAACAGGATT | AGCAGAGCGA               | GGTATGTAGG               | CGGTGCTACA               | GAGTTCTTGA               |
|      | ATTGTCCTAA | TCGTCTCGCT               | CCATACATCC               | GCCACGATGT               | CTCAAGAACT               |
| 1551 | AGTGGTGGCC | TAACTACGGC               | TACACTAGAA               | GAACAGTATT               | TGGTATCTGC               |
|      | TCACCACCGG | ATTGATGCCG               | ATGTGATCTT               | CTTGTCATAA               | ACCATAGACG               |
| 1601 | GCTCTGCTGT | AGCCAGTTAC               | CTTCGGAAAA               | AGAGTTGGTA               | GCTCTTGATC               |
|      | CGAGACGACA | TCGGTCAATG               | GAAGCCTTTT               | TCTCAACCAT               | CGAGAACTAG               |
| 1651 | CGGCAAACAA | ACCACCGCTG<br>TGGTGGCGAC | GTAGCGGTGG               | TTTTTTTGTT<br>AAAAAAACAA | TGCAAGCAGC               |
| 1701 | AGATTACGCG | CAGAAAAAA                | GGATCTCAAG               | AAGATCCTTT               | GATCTTTTCT               |
|      | TCTAATGCGC | GTCTTTTTTT               | CCTAGAGTTC               | TTCTAGGAAA               | CTAGAAAGA                |

SUBSTITUTE SHEET (RULE 26)

Figure 35: functional map and sequence of modular vector pCAL4 (continued)

| GGATTTTGGT | TTAAAAAAAT                                 | CATTAAGCAT                | TGAATCGCCA  | CATAGTGAAA               | CAAAACTGGT               | TCAATAAACC               |
|------------|--------------------------------------------|---------------------------|-------------|--------------------------|--------------------------|--------------------------|
| CCTAAAACCA | AATTTTTTA                                  | GTAATTCGTA                | ACTTAGCGGT  | GTATCACTTT               | GTTTTGACCA               | AGTTATTTGG               |
| TCACGTTAAG | AATAACTGCC                                 | TGTTGTAATT                | ATGATGAACC  | AATATTTGCC               | ACGTTTAAAT               | AAACATATTC               |
| AGTGCAATTC | TTATTGACGG                                 | ACAACATTAA                | TACTACTTGG  | TTATAAACGG               | TGCAAATTTA               | TTTGTATAAG               |
| GAACGAAAAC | TAAGGGCACC                                 | ATCGCAGTAC                | CACAAACGGC  | CCTTGCGTAT               | CATATTGGCT               | CTGAGACGAA               |
| CTTGCTTTTG |                                            | TAGCGTCATG                | GTGTTTGCCG  | GGAACGCATA               | GTATAACCGA               | GACTCTGCTT               |
| ACGCTCAGTG | ACCAGGCGTT                                 | CCTGCCACTC                | TGGAAGCCAT  | CACCTTGTCG               | AGAAGTTGTC               | CAGGGATTGG               |
| TGCGAGTCAC | TGGTCCGCAA                                 | GGACGGTGAG                | ACCTTCGGTA  | GTGGAACAGC               | TCTTCAACAG               | GTCCCTAACC               |
| ACGGGGTCTG | BglII<br>~~~~~<br>CAGATCTAGC<br>GTCTAGATCG | TACGCCCCGC<br>ATGCGGGGGCG | TCTGCCGACA  | GCGGCATCAG<br>CGCCGTAGTC | ACGGGGGCGA<br>TGCCCCCGCT | GAAACTCACC<br>CTTTGAGTGG |
| 1751       | 1801                                       | 1851                      | 1901        | 1951                     | 2001                     | 2051                     |
|            |                                            | SUBSTITU                  | ITE SHEET ( | RULE 26)                 |                          | •                        |

|                                                                                                                                           |                          |                          | SUBSTITI                 | ITE SHEET (              | BULE 26)                 |                            |                          |
|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|----------------------------|--------------------------|
| Figure 35: f<br>2 1 0 1                                                                                                                   | 2151                     | 2201                     | 2251                     | 2301                     | 2351                     | 2401                       | 2451                     |
| Figure 35: functional map and sequence of modular vector pCAL4 (continued) 2101 CTTTAGGGAA ATAGGCCAGG TTTTC? GAAATCCCTT TATCCGGTCC AAAAGT | TATATGTGTA<br>ATATACACAT | TGAAAACGTT<br>ACTTTTGCAA | TATCCCATAT<br>ATAGGGTATA | TGAGCATTCA<br>ACTCGTAAGT | GTGCTTATTT<br>CACGAATAAA | CGGTCTGGTT<br>GCCAGACCAA   | TCTTTACGAT               |
| ce of modular vector pCAL<br>ATAGGCCAGG<br>TATCCGGTCC                                                                                     | GAAACTGCCG<br>CTTTGACGGC | TCAGTTTGCT<br>AGTCAAACGA | CACCAGCTCA<br>GTGGTCGAGT | TCAGGCGGGC               | TTCTTTACGG               | ATAGGTACAT<br>A TATCCATGTA | GCCATTGGGA               |
| .4 (continued)<br>TTTTCACCGT<br>AAAAGTGGCA                                                                                                | GAAATCGTCG<br>CTTTAGCAGC | CATGGAAAAC<br>GTACCTTTTG | CCGTCTTTCA               | AAGAATGTGA<br>TTCTTACACT | TCTTTAAAAA<br>AGAAATTTTT | TGAGCAACTG<br>ACTCGTTGAC   | TATATCAACG               |
| AACACGCCAC<br>TTGTGCGGTG                                                                                                                  | TGGTATTCAC<br>ACCATAAGTG | GGTGTAACAA<br>CCACATTGTT | TTGCCATACG<br>AACGGTATGC | ATAAAGGCCG<br>TATTTCCGGC | GGCCGTAATA               | ACTGAAATGC<br>TGACTTTACG   | GTGGTATATC<br>CACCATATAG |
| ATCTTGCGAA<br>TAGAACGCTT                                                                                                                  | TCCAGAGCGA               | GGGTGAACAC<br>CCCACTTGTG | GAACTCCGGG<br>CTTGAGGCCC | GATAAAACTT<br>CTATTTTGAA | TCCAGCTGAA<br>AGGTCGACTT | CTCAAAATGT<br>GAGTTTTACA   | CAGTGATTTT<br>GTCACTAAAA |

SUBSTITUTE SHEET (RULE 26)
114 / 204

22222 55555

| ٠                                                                          | AAA<br>ITT               | CAC                      |       | ACA<br>IGT               | AAT<br>FTA               |                                                           |  |
|----------------------------------------------------------------------------|--------------------------|--------------------------|-------|--------------------------|--------------------------|-----------------------------------------------------------|--|
|                                                                            | AACTCAAAAA<br>TTGAGTTTTT | GGAACCTCAC<br>CCTTGGAGTG |       | AGGCTTTACA<br>TCCGAAATGT | GGATAACAAT<br>CCTATTGTTA | Xbal Sphi<br>~~~~~~~~~~<br>CT AGAGCATGCG<br>GA TCTCGTACGC |  |
|                                                                            | AA(<br>TT(               | GG2                      |       | AGC                      | GG7                      | AI<br>AGA<br>TCT                                          |  |
|                                                                            | AAATCTCGAT<br>TTTAGAGCTA | GGTGAAAGTT<br>CCACTTTCAA |       | TAGGCACCCC               | AATTGTGAGC<br>TTAACACTCG | XbaI<br>~~~~~<br>ACGAATTTCT A<br>TGCTTAAAGA T             |  |
| L4 (continued)                                                             | TAGCTCCTGA               | ATTTCATTAT<br>TAAAGTAATA |       | GCTCACTCAT<br>CGAGTGAGTA | TGTTGTGTGG               | GACCATGATT<br>CTGGTACTAA                                  |  |
| ce of modular vector pCA                                                   | TTAGCTTCCT<br>AATCGAAGGA | TAGTGATCTT<br>ATCACTAGAA |       | ATGTGAGTTA<br>TACACTCAAȚ | CCGGCTCGTA<br>GGCCGAGCAT | AAACAGCTAT<br>TTTGTCGATA                                  |  |
| Figure 35: functional map and sequence of modular vector pCAL4 (continued) | TTTCTCCATT<br>AAAGAGGTAA | ATACGCCCGG<br>TATGCGGGCC | AatII | CCGACGTCTA               | CTTTATGCTT<br>GAAATACGAA | TTCACACAGG<br>AAGTGTGTCC<br>ECORI                         |  |
| Figure 35: f                                                               | 2501                     | 2551                     |       | 2601                     | 2651                     | 2701                                                      |  |
|                                                                            |                          |                          |       | SUBS                     | TITUTE SHEE              | ET (RULE 26)                                              |  |

SUBSTITUTE SHEET (RULE 26) 115 / 204



SUBSTITUTE SHEET (RULE 26) 116 / 204





SUBSTITUTE SHEET (RULE 26)
118 / 204

AatII 11111

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

n Σ BglII

TGACGTC ACTGCAG ATGCTTCAAT TACGAAGTTA TACATACGAT ATGTATGCTA TGAAGCATAT ACTTCGTATA AGATCTCATA TCTAGAGTAT

> SUBSTITUTE SHEET (RULE 26) 119 / 204





SUBSTITUTE SHEET (RULE 26)

CTCTCGACGG

TATATCAACC ATATAGTTGG

GGGCTATACT

CACCTATTCC GTGGATAAGG

TACGGTGATA

301

GAGAGCTGCC

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

# M 7-I (long):

ECORI

| r-I  | GAATTCGGTG | GTGGTGGATC<br>CAC¢ACCTAG | TGCGTGCGCT<br>ACGCACGCGA | GAAACGGTTG<br>CTTTGCCAAC | AAAGTTGTTT<br>TTTCAACAAA |
|------|------------|--------------------------|--------------------------|--------------------------|--------------------------|
| . 21 | AGCAAAATCC | CATACAGAAA               | ATTCATTTAC               | TAACGTCTGG               | AAAGACGACA               |
|      | TCGTTTTAGG | GTATGTCTTT               | TAAGTAAATG               | ATTGCAGACC               | TTTCTGCTGT               |
| 101  | AAACTTTAGA | TCGTTACGCT               | AACTATGAGG               | GCTGTCTGTG               | GAATGCTACA               |
|      | TTTGAAATCT | AGCAATGCGA               | TTGATACTCC               | CGACAGACAC               | CTTACGATGT               |
| 151  | GGCGTTGTAG | TTTGTACTGG<br>AAACATGACC | TGACGAAACT<br>ACTGCTTTGA | CAGTGTTACG<br>GTCACAATGC | GTACATGGGT<br>CATGTACCCA |
| 201  | TCCTATTGGG | CTTGCTATCC               | CTGAAAATGA               | GGGTGGTGGC               | TCTGAGGGTG               |
|      | AGGATAACCC | GAACGATAGG               | GACTTTTACT               | CCCACCACCG               | AGACTCCCAC               |
| 251  | GCGGTTCTGA | GGGTGGCGGT               | TCTGAGGGTG<br>AGACTCCCAC | GCGGTACTAA<br>CGCCATGATT | ACCTCCTGAG<br>TGGAGGACTC |

SUBSTITUTE SHEET (RULE 26)

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

|   | 351 | CACTTATCCG<br>GTGAATAGGC | CCTGGTACTG<br>GGACCATGAC | AGCAAAACCC<br>TCGTTTTGGG | CGCTAATCCT<br>GCGATTAGGA | AATCCTTCTC<br>TTAGGAAGAG |
|---|-----|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
|   | 401 | TTGAGGAGTC               | TCAGCCTCTT<br>AGTCGGAGAA | AATACTTTCA<br>TTATGAAAGT | TGTTTCAGAA<br>ACAAAGTCTT | TAATAGGTTC<br>ATTATCCAAG |
| _ | 451 | CGAAATAGGC<br>GCTTTATCCG | AGGGGGCATT<br>TCCCCCGTAA | AACTGTTTAT<br>TTGACAAATA | ACGGGCACTG<br>TGCCCGTGAC | TTACTCAAGG<br>AATGAGTTCC |
|   | 501 | CACTGACCCC<br>GTGACTGGGG | GTTAAAACTT<br>CAATTTTGAA | ATTACCAGTA<br>TAATGGTCAT | CACTCCTGTA<br>GTGAGGACAT | TCATCAAAAG<br>AGTAGTTTTC |
| • | 551 | CCATGTATGA<br>GGTACATACT | CGCTTACTGG<br>GCGAATGACC | AACGGTAAAT<br>TTGCCATTTA | TCAGAGACTG<br>AGTCTCTGAC | CGCTTTCCAT<br>GCGAAAGGTA |
|   | 601 | TCTGGCTTTA<br>AGACCGAAAT | ATGAGGATTT<br>TACTCCTAAA | ATTTGTTTGT<br>TAAACAAACA | GAATATCAAG               | GCCAATCGTC<br>CGGTTAGCAG |
|   | 651 | TGACCTGCCT<br>ACTGGACGGA | CAACCTCCTG<br>GTTGGAGGAC | TCAATGCTGG<br>AGTTACGACC | CGGCGGCTCT<br>GCCGCCGAGA | GGTGGTGGTT<br>CCACCACCAA |
|   | 701 | CTGGTGGCGG<br>GACCACCGCC | CTCTGAGGGT<br>GAGACTCCCA | GGTGGCTCTG<br>CCACCGAGAC | AGGGTGGCGG               | TTCTGAGGGT               |

SUBSTITUTE SHEET (RULE 26)

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

| 751  | GGCGGCTCTG               | AGGGAGGCGG               | TTCCGGTGGT               | GGCTCTGGTT               | CCGGTGATTT                                  |
|------|--------------------------|--------------------------|--------------------------|--------------------------|---------------------------------------------|
|      | CCGCCGAGAC               | TCCCTCCGCC               | AAGGCCACCA               | CCGAGACCAA               | GGCCACTAAA                                  |
| 801  | TGATTATGAA               | AAGATGGCAA               | АСССТААТАА               | GGGGGCTATG               | ACCGAAAATG                                  |
|      | ACTAATACTT               | TTCTACCGTT               | ТСССАТТАТТ               | CCCCCGATAC               | TGGCTTTTAC                                  |
| 851  | CCGATGAAAA               | CGCGCTACAG               | TCTGACGCTA               | AAGGCAAACT               | TGATTCTGTC                                  |
|      | GGCTACTTTT               | GCGCGATGTC               | AGACTGCGAT               | TTCCGTTTGA               | ACTAAGACAG                                  |
| 901  | GCTACTGATT               | ACGGTGCTGC               | TATCGATGGT               | TTCATTGGTG               | ACGTTTCCGG                                  |
|      | CGATGACTAA               | TGCCACGACG               | ATAGCTACCA               | AAGTAACCAC               | TGCAAAGGCC                                  |
| 951  | CCTTGCTAAT<br>GGAACGATTA | GGTAATGGTG<br>CCATTACCAC | CTACTGGTGA               | TTTTGCTGGC<br>AAAACGACCG | TCTAATTCCC<br>AGATTAAGGG                    |
| 1001 | AAATGGCTCA<br>TTTACCGAGT | AGTCGGTGAA<br>TCAGCCACTT | GGTGATAATT<br>CCACTATTAA | CACCTTTAAT<br>GTGGAAATTA | XmnI<br>~~~~~~~<br>GAATAATTTC<br>CTTATTAAAG |
| 1051 | CGTCAATATT<br>GCAGTTATAA | TACCTTCCAT<br>ATGGAAGGTA | CCCTCAATCG<br>GGGAGTTAGC | GTTGAATGTC               | GCCCTTTTGT                                  |

SUBSTITUTE SHEET (RULE 26) 123 / 204

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

ж 2: AatII

GGCTTTACAC CCGAAATGTG AGGCACCCCA TCCGTGGGGT CTCACTCATT GAGTGAGTAA TGTGAGTTAG ACACTCAATC GACGTCTTAA CTGCAGAATT

GATAACAATT CTATTGTTAA ATTGTGAGCG TAACACTCGC GTTGTGTGGA CAACACACCT GCCGAGCATA CGGCTCGTAT TTTATGCTTC AAATACGAAG

51

XmnI

XbaI

GTATAATGTA CATATTACAT GAATAACTTC CTTATTGAAG ACCATGTCTA TGGTACAGAT AACAGCTATG TTGTCGATAC TCACACAGGA AGTGTGTCCT

SphI

CGCTATACGA AGTTATCGCA TGC GCGATATGCT TCAATAGCGT ACG

151

SUBSTITUTE SHEET (RULE 26)

101

| ਓ                                  |
|------------------------------------|
| ä                                  |
| .≣                                 |
| ヹ                                  |
| ខ                                  |
| ي<br>د                             |
| 5                                  |
|                                    |
| Š                                  |
|                                    |
| స్ట                                |
| _                                  |
| lules and                          |
| .a                                 |
| <u>تة</u>                          |
| 굮                                  |
| ĕ                                  |
| Ε                                  |
| 5                                  |
| בָּ                                |
| >                                  |
| AL ve                              |
| pCAL vec                           |
| _                                  |
| <u> </u>                           |
| f additio                          |
| ≒                                  |
| ğ                                  |
| <u></u>                            |
| 0                                  |
| nces o                             |
| Ĕ                                  |
| 3                                  |
| 5                                  |
| 2                                  |
| Ĕ                                  |
| 53                                 |
| g                                  |
| Ë                                  |
| ial maps and sequences of addition |
| onal                               |
| Ξ.                                 |
| 2                                  |
| 3                                  |
| ::                                 |
| 359                                |
| L,                                 |
| 5                                  |
| Ē                                  |
| ц.                                 |

| GACAAAATAA<br>CTGTTTTATT | CACCTTTATG<br>GTGGAAATAC | HindIII | AGTCTTGATA<br>TCAGAACTAT |         |                |          |
|--------------------------|--------------------------|---------|--------------------------|---------|----------------|----------|
| TATTGATTGT<br>ATAACTAACA | TATATGTTGC<br>ATATACAACG |         | CGTAATAAGG<br>GCATTATTCC |         |                |          |
| ATGAATTTTC<br>TACTTAAAAG | GCGTTTCTTT<br>CGCAAAGAAA | ·.      | TAACATACTG               |         |                | ·        |
| GGTAAACCCT<br>CCATTTGGGA | TGGTGTCTTT<br>ACCACAGAAA |         | CTACGTTTGC<br>GATGCAAACG |         |                | ·        |
| CTTTGGCGCT<br>GAAACCGCGA | ACTTATTCCG<br>TGAATAAGGC |         | TATGTATTTT               | HindI   | AGCTT<br>TCGAA |          |
| 1101                     | 1151                     |         | 1201                     |         | 1251           | ·        |
|                          |                          |         | SUE                      | STITUTE | SHEET (P       | NULE 26) |
|                          |                          |         |                          | 124     | / 204          |          |





SUBSTITUTE SHEET (RULE 25) 125 / 204

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

## (ss-TAG) Z

ECORI

CACTAAAACT GTGATTTGA TCTGGTTCCG AGACCAAGGC GCCACCACCG CGGTGGTGGC CTCCGCCAAG GAGGCGGTTC GCCCTTAAGC CGGGAATTCG

GAAAATGCCG CTTTTACGGC CCGATACTGG GGCTATGACC CTAATAAGGG GATTATTCCC ATGGCAAACG TACCGTTTGC TTATGAAAAG AATACTTTTC 51

GCAAACTTGA CGTTTGAACT GACGCTAAAG CTGCGATTTC CGATGTCAGA GCTACAGTCT

ATGAAAACGC

101

TTCTGTCGCT AAGACAGCGA TTTCCGGCCT

AAAGGCCGGA

TAACCACTGC

GCTACCAAAG

CACGACGATA

**IGACTAATGC** 

ATTGGTGACG CGATGGTTTC GTGCTGCTAT ACTGATTACG TACTTTTGCG

TGCTGGCTCT CTGGTGATTT AATGGTGCTA TGCTAATGGT

AATTCCCAAA TTAAGGGTTT ACGACCGAGA GACCACTAAA TTACCACGAT ACGATTACCA 201

TAATTTCCGT 22222 CTTTAATGAA GATAATTCAC CGGTGACGGT

XmnI

ATTAAAGGCA GAAATTACTT CTATTAAGTG GCCACTGCCA TGGCTCAAGT ACCGAGTTCA 251

SUBSTITUTE SHEET (RULE 26) 126 / 204

151

| _           |  |
|-------------|--|
| O           |  |
| ײַ          |  |
| 2           |  |
| -=          |  |
| Ξ           |  |
| ō           |  |
| ت           |  |
|             |  |
| Ē           |  |
| ctor        |  |
| Ü           |  |
| é           |  |
| ٠.          |  |
| 7           |  |
| $\tilde{c}$ |  |
| ă           |  |
| _           |  |
| $\succeq$   |  |
| ā           |  |
| S           |  |
| نة          |  |
| 3           |  |
| dules and   |  |
| 0           |  |
| Ε           |  |
| _           |  |
| vecto       |  |
| ᇙ           |  |
| ĕ           |  |
| >           |  |
| Ļ           |  |
| ⋖           |  |
| ă           |  |
| -           |  |
| -B          |  |
| Ë           |  |
| 0           |  |
| :=          |  |
| ᇹ           |  |
| Ď           |  |
| G           |  |
| <b>~</b>    |  |
| 0           |  |
| Sè          |  |
| ຬ           |  |
| _           |  |
| 2           |  |
| 긁           |  |
| ฮ           |  |
| S           |  |
| ō           |  |
| 2           |  |
|             |  |
| ă           |  |
| æ           |  |
| ٦           |  |
| _           |  |
| æ           |  |
| Ξ           |  |
| .2          |  |
| ฮ           |  |
| Ē           |  |
| ⊃           |  |
| -           |  |
|             |  |
| ŭ           |  |
| e 35a       |  |
| ب           |  |
| Ξ           |  |
| 9           |  |
| Œ.          |  |
| <u> </u>    |  |
|             |  |

|                                       |                                             |                                                |                          |                          | TT                       | 501 |
|---------------------------------------|---------------------------------------------|------------------------------------------------|--------------------------|--------------------------|--------------------------|-----|
|                                       |                                             |                                                |                          |                          | Hi<br>~                  |     |
| HindIII<br>~~~~<br>GATAAGC<br>CTATTCG | HindIII<br>~~~~<br>CTTGATAAGC<br>GAACTATTCG | AATAAGGAGT<br>TTATTCCTCA                       | CATACTGCGT<br>GTATGACGCA | CGTTTGCTAA<br>GCAAACGATT | GTATTTTCTA<br>CATAAAAGAT | 451 |
| GTAT                                  | CTTTATGTAT<br>GAAATACATA                    | ATGTTGCCAC<br>TACAACGGTG                       | TTTCTTTTAT<br>AAAGAAAATA | TGTCTTTGCG<br>ACAGAAACGC | TATTCCGTGG<br>ATAAGGCACC | 401 |
| AAACT                                 | AAAATAAACT<br>TTTTATTTGA                    | TGATTGTGAC AAAATAAACT<br>ACTAACACTG TTTTATTTGA | AATTTTCTAT<br>TTAAAAGATA | AAACCATATG<br>TTTGGTATAC | TGGCGCTGGT               | 351 |
| STCTT                                 | CTTTTGTCTT<br>GAAAACAGAA                    | GAATGTCGCC<br>CTTACAGCGG                       | TCAATCGGTT<br>AGTTAGCCAA | CTTCCCTCCC<br>GAAGGGAGGG | CAATATTTAC<br>GTTATAAATG | 301 |

SUBSTITUTE SHEET (RULE 26) 127 / 204





SUBSTITUTE SHEET (RULE 26)

HindII

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

.. დ Σ SphI

TAAGCTT ATTCGAA TACGAAGTTA ATGCTTCAAT ATGTACGCTA TACATGCGAT ACTTCGTATA TGAAGCATAT CGTACGGTAT GCATGCCATA

SUBSTITUTE SHEET (RULE 26)



SUBSTITUTE SKEET (RULE 26) 130 / 204

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

## M 10-II:

BsrGI

| AACCCTGATA<br>TTGGGACTAT |
|--------------------------|
| ATGAGACAAT<br>TACTCTGTTA |
| GTATCCGCTC CATAGGCGAG    |
| ATTCAAATAT<br>TAAGTTTATA |
| GGGGGTGTAC               |
| r-I                      |

|              | I CAACATTTCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | GTTGTAAAGG   |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| E            | THI CHCIAI.I.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ATACTCATAA   |
| טעטע מטטעעע  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TICLLCLC     |
| TAATATTGAA A | THE VENT OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PA | ווי איני דיי |
| a:           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4            |
| 51           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |

| CAT TTTGCCTTCC TGTTTTTGCT<br>STA AAACGGAAGG ACAAAAACGA |  |
|--------------------------------------------------------|--|
| TT TTTGCGGCAT TTTGCCTTCC TG                            |  |
| TTTGCGG<br>AAACGCC                                     |  |
| TATTCCCTTT                                             |  |
| GTGTCGCCCT<br>CACAGCGGGA                               |  |
| 101                                                    |  |

| GAT GCTGAGGATC AGTTGGGTGC<br>CTA CGACTCCTAG TCAACCCACG |  |
|--------------------------------------------------------|--|
| GCTGAGGAT(<br>CGACTCCTA(                               |  |
| GTAAAA                                                 |  |
| CGCTGGTGAA<br>GCGACCACTT                               |  |
| CACCCAGAAA<br>GTGGGTCTTT                               |  |
| 151                                                    |  |

| 201 GCGAGTGGGT TACATCGAAC TGGATCTCAA CACGESS S | ATCCTTGAGA          |            |
|------------------------------------------------|---------------------|------------|
| ָּהָ<br>הַלְּיָלְ<br>הַלְּיִלְ                 | CAGCGGTAAG          | GICGCCATTC |
| スペクサンサなりが上                                     | ACOLULIA DE LE COME | ACCTAGAGTT |
| TACATCGAAC                                     |                     | STIDE      |
| GCGAGTGGGT                                     | CGCTCACTCA          | 11)))));   |
| 201                                            |                     |            |

XmnI

|                                         | PCGCCC CGAAGAACGT TTTCCAATGA TGAGCACTTT TAAAGTTCTG<br>AGCGGG GCTTCTTGCA AAAGGTTACT ACTCGTGAAA ATTTCAAGAC |
|-----------------------------------------|----------------------------------------------------------------------------------------------------------|
|                                         | TGAGCACTTT<br>ACTCGTGAAA                                                                                 |
| 1111                                    | TTTCCAATGA<br>AAAGGTTACT                                                                                 |
| 111111111111111111111111111111111111111 | CGAAGAACGT<br>GCTTCTTGCA                                                                                 |
|                                         | GTTTTCGCCC<br>CAAAAGCGGG                                                                                 |
| 1                                       | 251                                                                                                      |

SUBSTITUTE SHEET (RULE 26)

| _                  |
|--------------------|
| ď                  |
| يو                 |
| ⊇ .                |
| .=                 |
| =                  |
| ັດ                 |
| ຽ                  |
| _                  |
| 5                  |
| ō                  |
| 7                  |
| ະ                  |
| ž                  |
|                    |
| ă                  |
| Ũ                  |
| Q.                 |
| 73                 |
| ĕ                  |
| <u></u>            |
| dules and          |
| نة                 |
| =                  |
| Ð                  |
| ō                  |
| Ē                  |
| _                  |
| ≒                  |
| vector             |
| ũ                  |
| 8                  |
| ٦.                 |
| 7                  |
| $\circ$            |
| ă                  |
|                    |
| B                  |
| Ξ                  |
| .9                 |
| <b>∷</b>           |
| P                  |
| <u> </u>           |
| G                  |
| s of additior      |
| 0                  |
| Ϋ́                 |
| ຽ                  |
|                    |
| seguences          |
| 콛                  |
| 9                  |
| ×                  |
| 73                 |
| I maps and sequent |
| Ō                  |
| S                  |
| ◒                  |
| 2                  |
| ⊏                  |
| =                  |
| 8                  |
| 7                  |
| ·≍                 |
| บ                  |
| Ē                  |
| ਼⊃                 |
| ш.                 |
|                    |
| ž                  |
| m                  |
|                    |
| e.                 |
| Ę                  |
| Jure               |
| Figure 35a:        |

| AGCAACTCGG<br>TCGTTGAGCC | : TCACCAGTCA             | ATGCAGTGCT               | TGACAACGAT               | GGGGATCATG               | CATACCAAAC               | CGTTGCGCAA<br>GCAACGCGTT |   |
|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|---|
| GCCGGGCAAG               | GGTTGAGTAC               | TAAGAGAATT               | AACTTACTTC               | GCACAACATG               | TGAATGAAGC               | ATGGCAACAA               |   |
| CCGTATTGAC<br>GGCATAACTG | AGAATGACTT<br>TCTTACTGAA | GGCATGACAG<br>CCGTACTGTC | CACTGCGGCC<br>GTGACGCCGG | CCGCTTTTTT<br>GGCGAAAAAA | GAACCGGAGC               | GCCTGTAGCA               |   |
| CGGTATTATC<br>GCCATAATAG | CACTATTCTC<br>GTGATAAGAG | TCTTACGGAT<br>AGAATGCCTA | TGAGTGATAA<br>ACTCACTATT | AAGGAGCTAA<br>TTCCTCGATT | TGATCGTTGG<br>ACTAGCAACC | ACACCACGAT<br>TGTGGTGCTA |   |
| CTATGTGGCG<br>GATACACCGC | TCGCCGCATA<br>AGCGGCGTAT | CAGAAAAGCA<br>GTCTTTTCGT | GCCATAACCA<br>CGGTATTGGT | CGGAGGACCG<br>GCCTCCTGGC | TAACTCGCCT<br>ATTGAGCGGA | GACGAGCGTG<br>CTGCTCGCAC |   |
| 301                      | 351                      | 401                      | 451                      | 501                      | 551                      | 601                      | L |

SUBSTITUTE SHEET (PULE 25)

| =                                  |
|------------------------------------|
| ٥                                  |
| odules and pCAL vectors frontinged |
| =                                  |
| Ş                                  |
| ٤                                  |
| ۲                                  |
| Ę                                  |
| ě                                  |
|                                    |
| ્ઇ                                 |
| 7                                  |
| ď                                  |
| ā                                  |
| <u>S</u>                           |
| ⋽                                  |
| 8                                  |
| Ξ                                  |
| ö                                  |
| ರ                                  |
| vector m                           |
| 7                                  |
| Š                                  |
| _                                  |
| B                                  |
| .9                                 |
| ₹                                  |
| g                                  |
| <del>_</del>                       |
| S                                  |
| ೪                                  |
| ย                                  |
| ᇎ                                  |
| ž                                  |
| О                                  |
| ä                                  |
| S aı                               |
| ĕ                                  |
| Ε                                  |
| ē                                  |
| ŏ                                  |
| ::                                 |
| Ē                                  |
| ユ                                  |
| ä.                                 |
| 35                                 |
| ñ                                  |
| ž                                  |
| Ē                                  |
|                                    |

|                          |                          |                          |                          |                          |                          | •                        |                          |  |
|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--|
| CTCGGCCCTT               | AGCGTGGGTC<br>TCGCACCCAG | TCCCGTATCG<br>AGGGCATAGC | ACGAAATAGA<br>TGCTTTATCT | TAACTGTCAG<br>ATTGACAGTC | TCATTTTAA<br>AGTAAAAATT  | TGACCAAAAT<br>ACTGGTTTTA | GTAGAAAAGA<br>CATCTTTTCT |  |
| CACTTCTGCG               | GGAGCCGGTG               | TGGTAAGCCC               | CTATGGATGA<br>GATACCTACT | AAGCATTGGG<br>TTCGTAACCC | АТТТААААСТ<br>ТАААТТТТGA | GATAATCTCA<br>CTATTAGAGT | GTCAGACCCC               |  |
| GTTGCAGGAC               | TGATAAATCT<br>ACTATTTAGA | TGGGGCCAGA<br>ACCCCGGTCT | AGTCAGGCAA<br>TCAGTCCGTT | CTCACTGATT<br>GAGTGACTAA | CTTTAGATTG<br>GAAATCTAAC | GATCCTTTTT<br>CTAGGAAAAA | TCCACTGAGC<br>AGGTGACTCG |  |
| GGCGGATAAA<br>CCGCCTATTT | GGTTTATTGC<br>CCAAATAACG | ATTGCAGCAC<br>TAACGTCGTG | CACGACGGGG               | AGATAGGTGC<br>TCTATCCACG | СТСАТАТАТА<br>САСТАТАТАТ | TCTAGGTGAA<br>AGATCCACTT | GAGTTTTCGT<br>CTCAAAAGCA |  |
| ACTGGATGGA<br>TGACCTACCT | CCGGCTGGCT               | TCGCGGTATC<br>AGCGCCATAG | TAGTTATCTA<br>ATCAATAGAT | CAGATCGCTG<br>GTCTAGCGAC | ACCAAGTTTA<br>TGGTTCAAAT | TTTAAAAGGA<br>AAATTTTCCT | CCCTTAACGT<br>GGGAATTGCA |  |
| 701                      | 751                      | 801                      | 851                      | 901                      | 951                      | 1001                     | 1051                     |  |
|                          |                          |                          | SUBSTI                   | THE SHEET                | F/DULE OO                |                          | /                        |  |

SUBSTITUTE SHEET (RULE 26) 133 / 204 Paci

FseI

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

|      |            |            |                                              | 11111111   | 1         |
|------|------------|------------|----------------------------------------------|------------|-----------|
| 1101 | TCAAAGGATC | TTCTTGAGAT | TC TICTIGAGAT CCTITITGAT AATGGCCGGC CCCCCCTI | AATGGCCGGC | CCCCCCCTT |
|      | AGTTTCCTAG | AAGAACTCTA | AG AAGAACTCTA GGAAAACTA TTACCGGCCG GGGGGGGAA | TTACCGGCCG | GGGGGGGAA |

AGTTTCCTAG AAGAACTCTA GO
PacI
TTAATTCCCC CCC

SUBSTITUTE SHEET (RULE 26) 134 / 204





SUBSTITUTE SHEET (RULE 26) 135 / 204

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

## M111-II:

NheI

| Н   | GCTAGCACGC<br>CGATCGTGCG | GCCCTGTAGC               | GGCGCATTAA<br>CCGCGTAATT              | 2229229292<br>99929929292 | TGTGGTGGTT<br>ACACCACCAA |
|-----|--------------------------|--------------------------|---------------------------------------|---------------------------|--------------------------|
| 51  | ACGCGCAGCG<br>TGCGCGTCGC | TGACCGCTAC<br>ACTGGCGATG | ACTTGCCAGC<br>TGAACGGTCG              | GCCCTAGCGC<br>CGGGATCGCG  | CCGCTCCTTT<br>GGCGAGGAAA |
| 101 | CGCTTTCTTC<br>GCGAAAGAAG | CCTTCCTTTC<br>GGAAGGAAAG | TCGCCACGTT<br>AGCGGTGCAA              | CGCCGGCTTT<br>GCGGCCGAAA  | CCCCGTCAAG<br>GGGGCAGTTC |
|     |                          | BanII                    | · · · · · · · · · · · · · · · · · · · |                           |                          |
| 151 | CTCTAAATCG<br>GAGATTTAGC | GGGGCTCCCT               | TTAGGGTTCC<br>AATCCCAAGG              | GATTTAGTGC<br>CTAAATCACG  | TTTACGGCAC<br>AAATGCCGTG |
| 201 | CTCGACCCCA               | AAAAACTTGA<br>TTTTTGAACT | TTAGGGTGAT                            | GGTTCTCGTA<br>CCAAGAGCAT  | GTGGGCCATC<br>CACCCGGTAG |
| 251 | GCCCTGATAG<br>CGGGACTATC | ACGGTTTTTC<br>TGCCAAAAAG | GCCCTTTGAC<br>CGGGAAACTG              | GTTGGAGTCC<br>CAACCTCAGG  | ACGTTCTTTA<br>TGCAAGAAAT |

SUBSTITUTE SHEET (RULE 26)

| G        |
|----------|
| Ž        |
| Ξ        |
| ည        |
| 7        |
| cto      |
| Š        |
| Ŗ        |
| ٩        |
| Pu       |
| S        |
| Ĭ        |
| ĕ        |
| . =      |
| ž        |
| ×        |
| S        |
| ā        |
| лa       |
| ≝        |
| add      |
| jo       |
| S        |
| euc      |
| nb;      |
| nd St    |
| an       |
| pps      |
| maps     |
| na_      |
| Ę        |
| our.     |
| <u>ٿ</u> |
| 35a      |
| ۾        |
| Figu     |
| Œ.       |

| TATCTCGGTC                       | ATTGGTTAAA                                     | AAAATATTAA                       |
|----------------------------------|------------------------------------------------|----------------------------------|
| ATAGAGCCAG                       | TAACCAATTT                                     | TTTTATAATT                       |
| A CACTCAACCC                     | ATTTCGGCCT ATTGGTTAAA<br>TAAAGCCGGA TAACCAATTT | GAATTTTAAC<br>CTTAAAATTG         |
| CTTGTTCCAA ACTGGAACAA CACTCAACCC | GATTTTGCCG                                     | ATTTAACAAA AATTTAACGC GAATTTTAAC |
| GAACAAGGTT TGACCTTGTT GTGAGTTGGG | CTAAAACGGC                                     | TAAATTGTTT TTAAATTGCG CTTAAAATTG |
| CTTGTTCCAA                       | ATTTATAAGG                                     | ATTTAACAAA                       |
| GAACAAGGTT                       | TAAATATTCC                                     | TAAATTGTTT                       |
| ATAGTGGACT                       | TATTCTTTTG                                     | AAATGAGCTG                       |
| TATCACCTGA                       | ATAAGAAAAC                                     | TTTACTCGAC                       |
| 301                              | 351                                            | 401                              |

SUBSTITUTE SHEET (RULE 26)





SUBSTITUTE SHEET (RULE 26)

| 10 00 00 4H H4 4H                             | ional maps and sequences of additional positions in the position of a positional position in the positional position in the position of a positional position in the position in the position in the position in the position in the position in the position in the position in the position in the position in the position in the position in the position in the position in the position in the position in the position in the position in the position in the position in the position in the position in the position in the position in the position in the position in the position in the position in the position in the position in the position in the position in the position in the position in the position in the position in the position in the position in the position in the position in the position in the position in the position in the position in the position in the position in the position in the position in the position in the position in the position in the position in the position in the position in the position in the position in the position in the position in the position in the position in the position in the position in the position in the position in the position in the position in the position in the position in the position in the position in the position in the position in the position in the position in the position in the position in the position in the position in the position in the position in the position in the position in the position in the position in the position in the position in the position in the position in the position in the position in the position in the position in the position in the position in the position in the position in the position in the position in the position in the position in the position in the position in the position in the position in the position in the position in the position in the position in the position in the position in the position in the position in the position in the position in the position in the position in the position in the position in the position | CTT<br>SAA<br>SAA<br>AAA<br>FTT<br>AAA<br>FTT<br>AAA<br>FCA<br>AGT<br>AGT         | or modules and pCAL ver  CTTGAGATCG  GAACTCTAGC  TGGCGGAACG  TGGCGGAACG  CTTGGCTTGC  TGACCAAACG  TAATGGTCACG  TAATGGTCACG  TGAGTTTAGCC  GTCAAATCGG  TAATGGTCAC  GCTCAAGACG  TGAGTTCTGC  TGAGTTCTGC                                                                                                                                                                                                                                                                                 | TTTTGGTCTG AAAACCAGAC AGGGCGGTTT TCCCGCCAAA AACTGGCTTG TTAACCGGCG AATTGGCCGC AATTGGCCGC TTAACCGGCG TTAACCGGCG AATTGGCCGC TTAACCGGCG AATTGGCCGC                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 101<br>101<br>151<br>151<br>251<br>251<br>301 | 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12: BglII AGATCTAATA AGATGATCTCTAGATTAT TCTACTACTACTCTAGATTAT TCTACTTCTAAAAAAAAAA | 12: BglII  AGATCTAATA AGATGATCTT  TCTAGATTAT TCTACTAGAA  CTTGCTCTGA AAACGAAAAA  CTTGCTCGAGCT TTTGCTTTTT  CTCTGAGCTA GGTTGAGAAA  CTCTGAGATTTT  CTCTGAGAAA  CTCTGAGAAA  CTCTGAGAAA  GAGACTTTT  GAACAGAAA  TCTGATTTT  GAACAGGAAA  AGACTAACTC  TGCATGTCTT  TCCGGGTTGG  AGGCCCAACC  TGCATGTCTT  TCCGGGTTGG  AGCCCCAACC  TGCATGTCTT  TCCGGGTTGG  AGCCCCAACC  AGCCGCCCCAACC  TCCACTAACTC  TCCGGGTTGG  AGCCCCAACC  AGCCCCACCC  AGCCGTCGC  AGCCCCACCC  AGCCGTCCCC  AGCCCCCCCC  AGCCCCCCCCCC | BglII  AGATCTAATA AGATGATCTT CTTGAGATCG TCTAGATTAT TCTACTAGAA GAACTCTAGC GAACGAGACT TTTGCTTTTT TGGCGCAACG GACTCGAACTTTTT TGGCGCAACG CTCTGAGCTA GATGATCTT CTTGAGATCG CTCTGAGCTA GAACGAAAA ACCGCCTTGC GAACGAGACT TTTGCTTTTT TGGCGCAACG CTCTGAGCTA GGTTGAGAAA CTTGGCTCCA GACCTAAAA CTTGTCCTTT GAACCGAGGT GAGACTAAACG CTCTAAATCA GTCAAATCGG AGACTAACTC CTCTAAATCA ATTACCAGTG TCTGATTGAG GAGATTTAGT TAATGGTCAC TGCATGTCTT TCCGGGTTGG ACTCAAGACG ACGTACGAA  TGCATGTCTT TCCGGGTTGG ACTCAAGACG ACGTACGAA TCCCAGCCCAACCCCCAACC TGCATCGTCGA ACGTACGCACCCCAACCC CCAAGCCCCAACCCCCCCAACCC TGCCACCTCCCAACCCCCCCCCC | Functional maps and sequences of additional pCAL vector modules and pCAL vectors  BglII  AGATCTAATA AGATGATCTT CTTGAGATCG TCTAGATTAT TCTACTAGAA GAACTCTAGC GAACGAGACT TTTGCTTTTT TGCGCGCAACG GAACGAGACT TTTGCTTTTT TGCGCGCAACG CTCTGAGATTTT GAACCGAAGG  CTCTGAGTTTT GAACGGAAA GTCAAATCG AGACTAAAA CTTGTCCTTTT CAGTTTAGCC CAGTGATTTT GAACAGGAA GTCAAATCGG AGACTAACTC CTCTAAATCA TTACCAGTG TCTGATTTTG GAGCTTGGG AGACTTAACTC CTCTAAATCA TAATGGTCAC TGCATGTCTT TCCGGGTTGG ACTCCAAGACG AGGCGTCGGA TGCGTCGGA CTGAACGGGG AGGCCCAACCCCAACCC TGCATGTCTT TCCGGGTTGG ACGTACAGAC TGCCAGCCT GACTTGCCC CCAAGCCACGCA TCGCCAGCCT GACTTGCCC CCAACCTCCCACCC CCAACCTCCCACCC CCAACCTCCCCCCCC |

| Figure 35a | Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued) | rences of additional pCAL | vector modules and pCAL                         | vectors (continued) |     |
|------------|----------------------------------------------------------------------------------------------------------|---------------------------|-------------------------------------------------|---------------------|-----|
| 351        | 351 ACTGCCTACC CGGAACTGAG TGTCAGGCGT GGAATGAGAC AAA                                                      | CGGAACTGAG                | TGTCAGGCGT                                      | GGAATGAGAC          | AAA |
|            | TGACGGATGG                                                                                               | GCCTTGACTC                | TGACGGATGG GCCTTGACTC ACAGTCCGCA CCTTACTCTG TTT | CCTTACTCTG          | TTT |

| AAACGCGGCC<br>TTTGCGCCGG |      | AGGAGAGCGC<br>TCCTCTCGCG | GTCCTGTCGG<br>CAGGACAGCC | TTGTCAGGGG               | ACTTCCCTGT<br>TGAAGGGACA | TTCGTAAGCC<br>AAGCATTCGG | CAGTGAGCGA<br>GTCACTCGCT |
|--------------------------|------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| GGAATGAGAC<br>CCTTACTCTG |      | AGGCAGGAAC<br>TCCGTCCTTG | TATCTTTATA<br>ATAGAAATAT | TTCGTGATGC<br>AAGCACTACG | CGGCCCTCTC<br>GCCGGGAGAG | CTCCGCCCCG               | CGTAGCGAGT<br>GCATCGCTCA |
| TGTCAGGCGT<br>ACAGTCCGCA |      | GTAAACCGAA<br>CATTTGGCTT | AAACGCCTGG<br>TTTGCGGACC | AGCGTCAGAT<br>TCGCAGTCTA | GGCTTTGCCG<br>CCGAAACGGC | TCCAGGAAAT<br>AGGTCCTTTA | AACGACCGAG<br>TTGCTGGCTC |
| CGGAACTGAG<br>GCCTTGACTC | AgeI | AATGACACCG<br>TTACTGTGGC | CGCCAGGGGG               | CACTGATTTG<br>GTGACTAAAC | ATGGAAAAAC<br>TACCTTTTTG | CCTGGCATCT<br>GGACCGTAGA | GCCGCAGTCG<br>CGGCGTCAGC |
| ACTGCCTACC<br>TGACGGATGG |      | ATAACAGCGG<br>TATTGTCGCC | AGGAGGGAGC<br>TCCTCCTCG  | GTTTCGCCAC               | GGCGGAGCCT               | TAAGTATCTT<br>ATTCATAGAA | ATTTCCGCTC<br>TAAAGGCGAG |
| 351                      |      | 401                      | 451                      | 501                      | 551                      | 601                      | 651                      |

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

| GCAG                                    | CGTC                  | GTGC                                        | CACG                  |      |                                                      |
|-----------------------------------------|-----------------------|---------------------------------------------|-----------------------|------|------------------------------------------------------|
| AgeI<br>~~~~~~<br>ACCGGT                | TGGCCACGTC            | TCATCA                                      | AGTAGTCACG            |      |                                                      |
| AgeI<br>~~~~~~<br>CTGCTGACGC ACCGGTGCAG | TAGTGTATAA GACGACTGCG | ACTGACACCC                                  | TGACTGTGGG            | ?    | 90<br>08                                             |
| TATATCCTGT ATCACATATT                   | TAGTGTATAA            | CCTGCCACAT GAAGCACTTC ACTGACACCC TCATCAGTGC | GGACGGTGTA CTTCGTGAAG | NheI | AGCCAGTATA CACTCCGCTA GC<br>TCGGTCATAT GTGAGGCGAT CG |
| TATATCCTGT                              | ATATAGGACA            | CCTGCCACAT                                  | GGACGGTGTA            |      | AGCCAGTATA<br>TCGGTCATAT                             |
| GGAAGCGGAA                              | CCTTCGCCTT            | CCTTTTTCT                                   | GGAAAAAGA             |      | CAACATAGTA<br>GTTGTATCAT                             |
| 701                                     |                       | 751                                         |                       |      | 801                                                  |
|                                         |                       | 1                                           | C! IDOTE              |      |                                                      |



BgllI

XmnI

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

13: Σ Bglii

11111

AAGTCTAGA TTCAGATCT ATGCTTCAAT TACGAAGTTA ATGTATGCTA TACATACGAT ACTTCGTATA TGAAGCATAT AGATCTCÁTA TCTAGAGTAT





Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

Σ

SphI XbaI

~~~~~~~~~~

CTATTGCACT GATAACGTGA TTTGTTTCGT AAACAAAGCA AAATAAATG TTTATTAC GCGTAGGAGA CGCATCCTCT TCTAGAGCAT AGATCTCGTA

----111111 GGCACTCTTA

Sapi

ECORI

GAATTC CTTAAG TACCAAAGCC ATGGTTTCGG AGTGGGGACA TCACCCCTGT CCGTTGCTCT GGCAACGAGA CCGTGAGAAT 51

SUBSTITUTE SHEET (RULE 26)

CTATTGCACT GATAACGTGA

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

M 20:

XbaI SphI

AAACAAAGCA TTTGTTTCGT AAATAAATG TTTATTTAC GCGTAGGAGA CGCATCCTCT ~~~~~~~~ TCTAGAGCAT AGATCTCGTA

GACTACAAAG CTGATGTTTC TACCAAAGCC ATGGTTTCGG TCACCCCTGT AGTGGGGACA CCGTTGCTCT GGCAACGAGA CCGTGAGAAT GGCACTCTTA 51

Sapi

TAACCTTAAG

TACTTCACGT

SUBSTITUTE SHEET (RULE 26) 148 / 204

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

21 Σ XbaI

111111

TTCTTCTTGC AAGAAGAACG TTATAGCGTA AATATCGCAT ATACTTTTC TATGAAAAAG CTCCACTAAA GAGGTGATTT TCTAGAGGTT AGATCTCCAA

NsiI

222222

ECORI

2222

GAATTC CTTAAG

ACGTATGCGA TGCATACGCT

TTGCTACAAA AACGATGTTT GTTTTTTCTA CAAAAAAGAT ATCTATGTTC TAGATACAAG

51

SUBSTITUTE SHEET (RULE 26)

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

M 41:

NheI

Н	GCTAGCATCG	AATGGCGCAA	AACCTTTCGC	GGTATGGCAT	GATAGCGCCC
	CGATCGTAGC	TTACCGCGTT	TTGGAAAGCG	CCATACCGTA	CTATCGCGGG
51	GGAAGAGAGT	CAATTCAGGG	TGGTGAATGT	GAAACCAGTA	ACGTTATACG
	CCTTCTCTCA	GTTAAGTCCC	ACCACTTACA	CTTTGGTCAT	TGCAATATGC
101	ATGTCGCAGA	GTATGCCGGT	GTCTCTTATC	AGACCGTTTC	CCGCGTGGTG
	TACAGCGTCT	CATACGGCCA	CAGAGAATAG	TCTGGCAAAG	GGCGCACCAC
151	AACCAGGCCA	GCCACGTTTC	TGCGAAAACG	CGGGAAAAAG	TGGAAGCGGC
	TTGGTCCGGT	CGGTGCAAAG	ACGCTTTTGC	GCCCTTTTTC	ACCTTCGCCG
201	GATGGCGGAG	CTGAATTACA	TTCCTAACCG	CGTGGCACAA	CAACTGGCGG
	CTACCGCCTC	GACTTAATGT	AAGGATTGGC	GCACCGTGTT	GTTGACCGCC
251	GCAAACAGTC	GTTGCTGATT	GGCGTTGCCA	CCTCCAGTCT	GGCCCTGCAC
	CGTTTGTCAG	CAACGACTAA	CCGCAACGGT	GGAGGTCAGA	CCGGGACGTG
301	GCGCCGTCGC	AAATTGTCGC	GGCGATTAAA	TCTCGCGCCG	ATCAACTGGG
	CGCGGCAGCG	TTTAACAGCG	CCGCTAATTT	AGAGCGCGGC	TAGTTGACCC

SUBSTITUTE SHEET (RULE 26)

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

GTCGTGTCGA TGGTAGAACG AAGCGGCGTC GAAGCCTGTA	GCACAATCTT CTCGCGCAAC GTGTCAGTGG GCTGATTATT	TGGATGACCA GGATGCTATT GCTGTGGAAG CTGCCTGCAC	GCGTTATTTC TTGATGTCTC TGACCAGACA CCCATCAACA	CTCCCATGAG GACGGTACGC GACTGGGCGT GGAGCATCTG	GCCACCAGCA AATCGCGCTG TTAGCTGGCC CATTAAGTTC	CGTCTGCGTC TGGCTGGCTG GCATAAATAT CTCACTCGCA	GCCGATAGCG GAACGGGAAG GCGACTGGAG TGCCATGTCC
CAGCACAGCT ACCATCTTGC TTCGCCGCAG CTTCGGACAT	CGTGTTAGAA GAGCGCGTTG CACAGTCACC CGACTAATAA	ACCTACTGGT CCTACGATAA CGACACCTTC GACGGACGTG	CGCAATAAAG AACTACAGAG ACTGGTCTGT GGGTAGTTGT	GAGGGTACTC CTGCCATGCG CTGACCCGCA CCTCGTAGAC	CGGTGGTCGT TTAGCGCGAC AATCGACCGG GTAATTCAAG	GCAGACGCAG ACCGACCGAC CGTATTTATA GAGTGAGCGT	
GTCGTGTCGA	GCACAATCTT CGTGTTAGAA	TGGATGACCA ACCTACTGGT	GCGTTATTTC CGCAATAAAG	CTCCCATGAG GAGGGTACTC	GCCACCAGCA	CGTCTGCGTC GCAGACGCAG	GCCGATAGCG
TGCCAGCGTG GT	AAGCGGCGGT GC	AACTATCCGC TG	TAATGTTCCG GC	GTATTATTTT CT	GTCGCATTGG GC	TGTCTCGGCG CG	ATCAAATTCA GC
ACGGTCGCAC CA	TTCGCCGCCA CG	TTGATAGGCG AC	ATTACAAGGC CG	CATAATAAAA GA	CAGCGTAACC CG	ACAGAGCCGC GC	
351 TC	401 AZ	451 AZ	501 TZ	551 G	601 G	651 T(701 A'

___ SUBSTITUTE SHEET (FULE 26)

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

TTCCCACTGC	CGTGCCATTA	GGGATACGAC	CCATCAAACA	CTGCAACTCT	CTCACTGGTG	CTCCCGCGC	CGACTGGAAA
AAGGGTGACG	GCACGGTAAT	CCCTATGCTG	GGTAGTTTGT	GACGTTGAGA	GAGTGACCAC		GCTGACCTTT
GAGGGCATCG 1	GGGCGCAATG C	TCTCGGTAGT C	CCGCTGACCA C	GGACCGCTTG C	TGTTGCCCGT CACAACGGGCA G	CAAACCGCCT C GTTTGGCGGA G	ACAGGTTTCC C TGTCCAAAGG G
AATGCTGAAT TTACGACTTA	AGATGGCGCT	GGTGCGGACA	TTATATCCCG AATATAGGGC	AAACCAGCGT TTTGGTCGCA	GGCAATCAGC	TCCCAATACG	AGCTGGCACG
AAACCATGCA	GCCAACGATC	GCTGCGCGTT	ACAGCTCATG	CTGCTGGGGC	GGCGGTGAAG	CCACCCTGGC	TCACTGATGC
TTTGGTACGT	CGGTTGCTAG	CGACGCGCAA	TGTCGAGTAC		CCGCCACTTC	GGTGGGACCG	AGTGACTACG
GGTTTTCAAC	GATGCTGGTT	CCGAGTCCGG	GATACCGAGG	GGATTTTCGC	CTCAGGGCCA	AAAAGAAAAA	GTTGGCCGAT
CCAAAAGTTG	CTACGACCAA	GGCTCAGGCC	CTATGGCTCC	CCTAAAAGCG		TTTTCTTTTT	CAACCGGCTA
751	801	851	SUESTITUT 0 0	E SHEET (RI	1001	1,051	1101

SUBSTITUTE SHEET (RULE 26 153 / 204 Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

CCTCCGGCAA GGAGGCCGTT CTTCCTGACA TATTTCGCC ATAAAAGCGG AGGCTACCCG TCCGATGGGC GCGGCCAGTG CGCCCGTCAC 1151

Aflii

1201 TIGITITGCA GCCCACTIAA G

AACAAAACGT CGGGTGAATT C

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

PCT/EP96/03647

AATAAACCCT

ACATATTCTC

GAGACGAAAA

GGGATTGGCT

AACTCACCCA

251

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

CAL0-1:	Bglii
\mathcal{C}	

•	\ \ \ \				
Н	GATCTAGCAC	AC CAGGCGTTTA AGGGCACCAA TAACTGCCTT AAAAAATTA	AGGCCACCAA	TAACTGCCTT	AAAAAAATTA
	CTAGATCGTG	STG GTCCGCAAAT TCCCGTGGTT ATTGACGGAA TTTTTTTAAT	TCCCGTGGTT	ATTGACGGAA	TTTTTTAAT

GCGGGGCGGG ACGGTGAGTA GCGTCATGAC AACATTAAGT AATTCGTAAG	7 T		TGCCACTCAT	TGCCACTCAT CGCAGTACTG TTGTAATTCA	TTGTAATTCA	TTAAGCATTC
		ceeeeceec	ACGGTGAGTA	GCGTCATGAC	AACATTAAGT	AATTCGTAAG

TGCCGACATG GAAGCCATCA CAAACGGCAT GATGAACCTG AATCGCCAGC ACGCTGTAC CTTCGGTAGT GTTTGCCGTA CTACTTGGAC TTAGCGGTCG GGCATCAGCA CCTTGTCGCC TTGCGTATAA TATTGCCCA TAGTGAAAAC CCGTAGTCGT GGAACAGCG AACGCATATT ATAAACGGGT ATCACTTTTG GGGGCGAAG AAGTTGTCCA TATTGGCTAC GTTTAAATCA AAACTGGTGA CCCCCCCCTTC TTCAACAGGT ATAACCGATG CAAATTTAGT TTTGACCACT	AATCGCCAGC TTAGCGGTCG	TAGTGAAAAC ATCACTTTTG	AAACTGGTGA TTTGACCACT
	GATGAACCTG CTACTTGGAC	TATTTGCCCA ATAAACGGGT	GTTTAAATCA CAAATTTAGT
	CAAACGGCAT GTTTGCCGTA		TATTGGCTAC ATAACCGATG
	GAAGCCATCA CTTCGGTAGT		AAGTTGTCCA TTCAACAGGT
			GGGGGCGAAG
101	101	151	201

GAAAT AGGCCAGGTT TTCACCGTAA CACGCCACAT CTTGCGAATA	CTITTA TCCGGTCCAA AAGTGGCATT GTGCGGTGTA GAACGCTTA
TTAGGGAAAT AG	AATCCCTTTA TO
301	
	301 TTAGGGAAAT AGGCCAGGTT TTCACCGTAA CACGCCACAT CTTGCGAATA

Ŧ
ä
먎
Ö
ت
S
픙
۶
Aľ
ঠু
9
au
S
큠
ě
용
vector
7
Š
=
ű
≝
b
fa
20
မ်
uen
큥
S
2
Sa
ap
Ε
na_
<u>.</u>
บ
: Funct
.e.
35a:
Figure
ιĒ

GTATTCACTC CAGAGCGATG	TGTAACAAGG GTGAACACTA	GCCATACGGA ACTCCGGGTG	AAAGGCCGGA TAAAACTTGT	CCGTAATATC CAGCTGAACG	TGAAATGCCT CAAAATGTTC	GGTATATCCA GTGATTTTTT	ATCTCGATAA CTCAAAAAAT
CATAAGTGAG GTCTCGCTAC	ACATTGTTCC CACTTGTGAT	CGGTATGCCT TGAGGCCCAC	TTTCCGGCCT ATTTTGAACA	GGCATTATAG GTCGACTTGC	ACTTTACGGA GTTTTACAAG	CCATATAGGT CACTAAAAAA	
	<u> </u>		-		- ,		
AATCGTCGTG	TGGAAAACGG	GTCTTTCATT	GAATGTGAAT	TTTAAAAAGG	AGCAACTGAC	TATCAACGGT	GCTCCTGAAA
TTAGCAGCAC	ACCTTTTGCC	CAGAAAGTAA	CTTACACTTA	AAATTTTTCC	TCGTTGACTG	ATAGTTGCCA	
AACTGCCGGA	AGTTTGCTCA	CCAGCTCACC	AGGCGGGCAA	CTTTACGGTC	AGGTACATTG	CATTGGGATA	AGCTTCCTTA
TTGACGGCCT	TCAAACGAGT	GGTCGAGTGG	TCCGCCCGTT	GAAATGCCAG	TCCATGTAAC	GTAACCCTAT	TCGAAGGAAT
TATGTGTAGA	AAAACGTTTC	TCCCATATCA	AGCATTCATC	GCTTATTTTT	GTCTGGTTAT	TTTACGATGC	TCTCCATTTT
ATACACATCT	TTTTGCAAAG	AGGGTATAGT	TCGTAAGTAG	CGAATAAAAA	CAGACCAATA	AAATGCTACG	AGAGGTAAAA
351	401	451	501	551	601	651	701

(continued)
vectors
nd pCAL
nodules a
vector n
nal pCAL
f additior
uences of a
s and seq
onal map
5a: Functio
Figure 35a
Ţ

	751	ACGCCCGGTA	GTGATCTTAT CACTAGAATA	TTCATTATGG AAGTAATACC	TGAAAGTTGG ACTTTCAACC	AACCTCACCC TTGGAGTGGG
	801	Aatii ~~~~~~ GACGTCTAAT CTGCAGATTA	GTGAGTTAGC CACTCAATCG	тсастсатта астсабатаат	GGCACCCCAG	CAG
eupe.	851	TTATGCTTCC AATACGAAGG	GGCTCGTATG CCGAGCATAC	TTGTGTGGAA AACACACCTT	TTGTGAGCGG	GG CC
TITI 175 (•		XbaI	Б П
OHEST /BI!!	901	CACACAGGAA GTGTGTCCTT	ACAGCTATGA TGTCGATACT	CCATGATTAC GGTACTAATG	GAATTTCTAG CTTAAAGATC	AG IC
E 03)		Sphi				
	951	CGCATGCCAT GCGTACGGTA	AACTTCGTAT TTGAAGCATA	AATGTACGCT TTACATGCGA	ATACGAAGTT TATGCTTCAA	ĽŢ Ą
	1001	CCTGTGAAGT GGACACTTCA	GAAAAATGGC CTTTTTACCG	GCAGATTGTG CGTCTAACAC	CGACATTTTT GCTGTAAAAA	L'T

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

PacI

FseI

		SUBST	TITUTE SHE	T (NULE 26)	·)	
1051	1101	1151	1201	1251	1301	1351
GTTTAATTAA CAAATTAATT	TTGTAAACGT AACATTTGCA	AGCTCATTTT TCGAGTAAAA	AAAAGAATAG TTTTCTTATC	GTCCACTATT CAGGTGATAA	TATCAGGGCG ATAGTCCCGC	GGGGTCGAGG
AGGGGGGGGG	TAATATTTTG ATTATAAAAC	TTAACCAATA AATTGGTTAT	ACCGAGATAG TGGCTCTATC	AAAGAACGTG TTTCTTGCAC	ATGGCCCACT TACCGGGTGA	TGCCGTAAAG ACGGCATTTC
GGGCCGGCCT	TTAAAATTCG AATTTTAAGC	GGCCGAAATC	GGTTGAGTGT CCAACTCACA	GACTCCAACG CTGAGGTTGC	ACGAGAACCA TGCTCTTGGT	CACTAAATCG GTGATTTAGC
GGGGGGGGGT	CGTTAAATTT GCAATTTAAA	GGCAAAATCC CCGTTTTAGG	TGTTCCAGTT ACAAGGTCAA	TCAAAGGGCG AGTTTCCCGC	TCACCCTAAT AGTGGGATTA	GAACCCTAAA CTTGGGATTT
~~~~~~ GTACATGAAA CATGTACTTT	TTGTTAAATC AACAATTTAG	CTTATAAATC GAATATTTAG	TGGAACAAGA ACCTTGTTCT	AAAAACCGTC TTTTTGGCAG	CAAGTTTTTT GTTCAAAAAA	BanII ~~~~~~ GGGAGCCCCC

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

AGGG	TCAC	25226	GGTG		SCGTC	ACTCG	ָּטָרָטָרָ רַטְּיָלָרָ
AAAGGAAGGG TTTCCTTCCC	TAGCGGTCAC	CTACAGGGCG GATGTCCCGC	GATGAGGGTG	AgeI	CCGGTGCGTC	CACTGACTCG GTGACTGAGC	S S S S S S S S S S S S S S S S S S S
ACGTGGCGAG	CTGGCAAGTG GACCGTTCAC	TAATGCGCCG	TGTTGGCACT		AAAGGCTGCA TTTCCGACGT	CTTCCTCGCT GAAGGAGCGA	GAAATGGCTT
AAGCCGGCGA TTCGGCCGCT	CGCTAGGGCG	CCGCCGCGCT	TGGCTTACTA		GCAGGAGAAA	ATATATTCCG TATATAAGGC	GCGGCGAGCG
TTGACGGGGA	AAGGAGCGGG TTCCTCGCCC	ACCACCACAC TGGTGGTGTG	GAGTGTATAC CTCACATATG	H	GCTTCATGTG	GTGATACAGG CACTATGTCC	TCGTTCGACT
GATTTAGAGC CTAAATCTCG	AAGAAAGCGA TTCTTTCGCT	GCTGCGCGTA CGACGCGCAT	Nhel ~~~~~ CGTGCTAGCG GCACGATCGC	IcmX	TCAGTGAAGT AGTCACTTCA	AGCAGAATAT TCGTCTTATA	CTACGCTCGG
1401	1451	1501	1551		1601	1651	1701
		9	BUBSTITUTE SHEET	(RULE :	26)	٠	

ectors (continued)	
vector modules and pCAL v	
dditional pCAL	
seduences of a	
I maps and	
: Functional	
Figure 35a	

jure 3	5a: Functional	Jure 35a: Functional maps and sequences of additional pual vector modules and pual vectors (continued)  GATGCGAGCC AGCAAGCTGA CGCCGCTCGC TTT	AGCAAGCTGA	CGCCGCTCGC	CTTTACCGAA	TGCTTGCCCC
	1751	CGGAGATTTC GCCTCTAAAG	CTGGAAGATG GACCTTCTAC	CCAGGAAGAT GGTCCTTCTA	ACTTAACAGG TGAATTGTCC	GAAGTGAGAG CTTCACTCTC
	1801	GGCCGCGGCA	AAGCCGTTTT TTCGGCAAAA	TCCATAGGCT AGGTATCCGA	CCGCCCCCCT	GACAAGCATC CTGTTCGTAG
SUB	1851	ACGAAATCTG TGCTTTAGAC	ACGCTCAAAT TGCGAGTTTA	CAGTGGTGGC GTCACCACCG	GAAACCCGAC CTTTGGGCTG	AGGACTATAA TCCTGATATT
STITUTE SH	1901	AGATACCAGG TCTATGGTCC	CGTTTCCCCC GCAAAGGGGG	TGGCGGCTCC ACCGCCGAGG	CTCCTGCGCT GAGGACGCGA	CTCCTGTTCC GAGGACAAGG
EET (RU			AgeI		÷.	
E 26)	1951	TGCCTTTCGG ACGGAAAGCC	TTTACCGGTG	TCATTCCGCT AGTAAGGCGA	GTTATGGCCG CAATACCGGC	CGTTTGTCTC GCAAACAGAG
	2001	ATTCCACGCC TAAGGTGCGG	TGACACTCAG ACTGTGAGTC	TTCCGGGTAG AAGGCCCATC	GCAGTTCGCT CGTCAAGCGA	CCAAGCTGGA GGTTCGACCT
	2051	CTGTATGCAC GACATACGTG	GAACCCCCCG	TTCAGTCCGA AAGTCAGGCT	CCGCTGCGCC GGCGACGCGG	TTATCCGGTA AATAGGCCAT

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

ACCACTGGCA TGGTGACCGT	TCATGCGCCG AGTACGCGGC	TCCTCCAAGC AGGAGGTTCG	ACGAAAAACC TGCTTTTTGG	ACGCGCAGAC TGCGCGTCTG		. ••
ATGCAAAAGC TACGTTTTCG	AGTCTTGAAG TCAGAACTTC	GTGACTGCGC CACTGACGCG	CAGAGAACCT GTCTCTTGGA	GCAAGAGATT CGTTCTCTAA		
CCGGAAAGAC GGCCTTTCTG	TAGAGGAGTT	ACAAGTTTTA TGTTCAAAAT	GTTGGTAGCT CAACCATCGA	CGTTTTCAGA GCAAAAGTCT	BglII	CATCTTATTA GTAGAATAAT
TGAGTCCAAC ACTCAGGTTG	GTAATTGATT CATTAACTAA	AACTGAAAGG TTGACTTTCC	GGTTCAAAGA CCAAGTTTCT	GCGGTTTTTT CGCCAAAAAA		TCAAGAAGAT AGTTCTTCTA
ACTATCGTCT TGATAGCAGA	GCAGCCACTG CGTCGGTGAC	GTTAAGGCTA CAATTCCGAT	CAGTTACCTC GTCAATGGAG	GCCCTGCAAG CGGGACGTTC		CAAAACGATC GTTTTGCTAG
2101	2151	2201	2251	2301		2351
•		S	UBSTITUTE	SHEET (FUL	E 25)	

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)



SUBSTITUTE SHEET (RULE 26) 163 / 204

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

pCALO-2:

BsrGI

GCAATTTAAA CGTTAAATTT AATTTTAAGC TTAAAATTCG ATTATAAAAC TAATATTTTG AACATTTGCA TTGTAAACGT CATGTACTTT GTACATGAAA

GGCAAAATCC CCGTTTTAGG CCGGCTTTAG GGCCGAAATC TTAACCAATA AATTGGTTAT TCGAGTAAAA AGCTCATTTT AACAATTTAG TTGTTAAATC 51

ACAAGGTCAA TGTTCCAGTT CCAACTCACA GGTTGAGTGT ACCGAGATAG TGGCTCTATC TTTTCTTATC AAAAGAATAG GAATATTTAG CTTATAAATC 101 151

TTTCTTGCAC AAAGAACGTG GTCCACTATT ACCTTGTTCT TGGAACAAGA

TCAAAGGGCG AGTTTCCCGC

CTGAGGTTGC

GACTCCAACG

TCACCCTAAT AGTGGGATTA

TGCTCTTGGT

ACGAGAACCA

ATGGCCCACT TACCGGGTGA ATAGTCCCGC TATCAGGGCG TTTTGGCAG AAAAACCGTC

201

CTTGGGATTT GAACCCTAAA CACTAAATCG GTGATTTAGC TGCCGTAAAG ACGGCATTTC GGGGTCGAGG CCCCAGCTCC CAAGTTTTTT GTTCAAAAA 251

BanII ~~~~~~ GATTTAGAGC TTGACGGGGA AAGCCGGCGA ACGTGGCGAG GGGAGCCCCC 301

SUBSTITUTE SHEET (RULE 26) 165 / 204	Functional 351 351 401 451 501 551	Figure 35a: Functional maps and sequences of ac CCCTCGGGGG GGGGGGGGGGGGGGGGGGGGGGGGGGG	of additional pCAL vector modules and pCAL vectors (continued)  GG CTAAATCTCG AACTGCCCCT TTC  GG AAGAAAGCGA AAGGAGCGGG CGC  CC TTCTTTCGCT TTCCTCGCCC GCG  AC GCTGCGCGTA ACCACCACAC CCG  CG CGCGCAT TGGTGTGTG GGC  NheI  XmnI  XmnI  CAGTGTAAGT GCTTCATGTG GCA  AC AGTCACTTCA GCTTCATGTG GCA  CG TCAGTGAAGT GCTTCATGTG GCA  AC AGTCACTTCA CGAAGTACAC CGT  AC AGTCACTTCA CGAAGTACAC CGT  AC AGTCATTATA CACTATGTC TATA  CAGCAGAATAT GTGATACAGG ATA  AG TCGTCTTATA CACTATGTC TATA	ules and pCAL vectors (co AACTGCCCCT AAGGAGCGGG TTCCTCGCCC TGGTGTATAC GAGTGTATAC CTCACATATG CTCACATGTG GGAAGTACAC	TTCGGCCGCT CGCTAGGGCG GCGATCCCGC CCGCCGCGCA TGGCTTACTA ACCGAATGAT ACCGAGAAA CGTCCTCTTT GCTCTTTT TATATATTCCG TATATATTCCG	TGCACCGCTC CTGGCAAGTG GACCGTTCAC TAATGCGCGGC ATTACGCGGC ATTACGCGGC ATTACGCACT ACAACGCTGAA TTTCCGACGT CTTCCTCGCT GAAGGCTGCA
•	601	CACTGACTCG	CTACGCTCGG	TCGTTCGACT	GCGGCGAGCG	GAAATGGCTT

(continued)	
vectors	
쥧	
and	
modules	
vector	
pcAL	
additional	
sequences of	
aps and s	
unctional n	
Figure 35a: Fi	

ניט	ם. ו סוורגוטוופו	GTGACTGAGGC	GATGCGAGCC AGCAAGCTGA CGC	AGCAAGCTGA	CGCCGCTCGC	CTTTACCGAA
	651	ACGAACGGGG TGCTTGCCCC	CGGAGATTTC GCCTCTAAAG	CTGGAAGATG	CCAGGAAGAT GGTCCTTCTA	ACTTAACAGG TGAATTGTCC
	701	GAAGTGAGAG CTTCACTCTC	GGCCGCGGCA	AAGCCGTTTT TTCGGCAAAA	TCCATAGGCT AGGTATCCGA	CCGCCCCCCT
SURS	751	GACAAGCATC	ACGAAATCTG TGCTTTAGAC	ACGCTCAAAT TGCGAGTTTA	CAGTGGTGGC GTCACCACCG	GAAACCCGAC CTTTGGGCTG
TITUTE SHE	801	AGGACTATAA TCCTGATATT	AGATACCAGG TCTATGGTCC	CGTTTCCCCC	TGGCGGCTCC	CTCCTGCGCT GAGGACGCGA
ET (BULE 26)	851	CTCCTGTTCC	TGCCTTTCGG	Agel ~~~~~~ TTTACCGGTG	TCATTCCGCT	GTTATGGCCG
•	901	GAGGACAAGG CGTTTGTCTC GCAAACAGAG	ACGGAAAGCC ATTCCACGCC TAAGGTGCGG	AAATGGCCAC TGACACTCAG ACTGTGAGTC	AGTAAGGCGA TTCCGGGTAG AAGGCCCATC	CAATACCGGC GCAGTTCGCT CGTCAAGCGA
	951	CCAAGCTGGA	CTGTATGCAC GACATACGTG	GAACCCCCCG	TTCAGTCCGA	CCGCTGCGCC

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

ATGCAAAAGC TACGTTTTCG	AGTCTTGAAG TCAGAACTTC	GTGACTGCGC	CAGAGAACCT GTCTCTTGGA	GCAAGAGATT CGTTCTCTAA	BglII	GATCTAGCAC CTAGATCGTG	၁၁၁၅၁၁၁၁၁၁
CCGGAAAGAC GGCCTTTCTG	TAGAGGAGTT ATCTCCTCAA	ACAAGTTTTA TGTTCAAAAT	GTTGGTAGCT CAACCATCGA	CGTTTTCAGA GCAAAAGTCT		CATCTTATTA GTAGAATAAT	AAAAAAATTA TTTTTTTAAT
TGAGTCCAAC ACTCAGGTTG	GTAATTGATT CATTAACTAA	AACTGAAAGG TTGACTTTCC	GGTTCAAAGA CCAAGTTTCT	GCGGTTTTTT CGCCAAAAAA		TCAAGAAGAT AGTTCTTCTA	TAACTGCCTT ATTGACGGAA
ACTATCGTCT TGATAGCAGA	GCAGCCACTG	GTTAAGGCTA CAATTCCGAT	CAGTTACCTC GTCAATGGAG	GCCCTGCAAG CGGGACGTTC		CAAAACGATC GTTTTGCTAG	AGGGCACCAA TCCCGTGGTT
TTATCCGGTA	ACCACTGGCA TGGTGACCGT	TCATGCGCCG	TCCTCCAAGC AGGAGGTTCG	ACGAAAAACC TGCTTTTTGG		ACGCGCAGAC TGCGCGTCTG	CAGGCGTTTA GTCCGCAAAT
1001	1051	1101	1151	1201		1251	1301
		St	BSTITUTE S	SHEET (RULE	26)		

AL vectors (continued)
ರ್ಷ
Ð
핆
S
큵
ĕ
<u> </u>
윤
Š
4
ပွ
<del>=</del>
ë
dditio
ᄝ
Ę
ces of addition
nces
골
sedne
maps and sequence
æ
S
na
=
ä
풀
Š
٠.
jure 35a:
Ę
Figu
üΞ

	1351	1351 TGCCACTCAT ACGGTGAGTA	CGCAGTACTG	CGCAGTACTG TTGTAATTCA TTA	TTAAGCATTC AATTCGTAAG	TGCCGACATG ACGGCTGTAC
	1401	GAAGCCATCA CTTCGGTAGT	CAAACGGCAT GTTTGCCGTA	GATGAACCTG CTACTTGGAC	AATCGCCAGC TTAGCGGTCG	GGCATCAGCA CCGTAGTCGT
	1451	CCTTGTCGCC	TTGCGTATAA AACGCATATT	TATTTGCCCA ATAAACGGGT	TAGTGAAAAC ATCACTTTTG	GGGGCGAAG
SUBSTIT	1501	AAGTTGTCCA TTCAACAGGT	TATTGGCTAC ATAACCGATG	GTTTAAATCA CAAATTTAGT	AAACTGGTGA TTTGACCACT	AACTCACCCA TTGAGTGGGT
UTE SHEET	1551	GGGATTGGCT CCCTAACCGA	GAGACGAAAA CTCTGCTTTT	ACATATTCTC TGTATAAGAG	AATAAACCCT TTATTTGGGA	TTAGGGAAAT AATCCCTTTA
(RULE 26)	1601	AGGCCAGGTT	TTCACCGTAA AAGTGGCATT	CACGCCACAT	CTTGCGAATA GAACGCTTAT	TATGTGTAGA ATACACATCT
	1651	AACTGCCGGA TTGACGGCCT	AATCGTCGTG TTAGCAGCAC	GTATTCACTC	CAGAGCGATG GTCTCGCTAC	AAAACGTTTC TTTTGCAAAG
	1701	AGTTTGCTCA TCAAACGAGT	TGGAAAACGG ACCTTTTGCC	TGTAACAAGG ACATTGTTCC	GTGAACACTA CACTTGTGAT	TCCCATATCA AGGGTATAGT

GTGAGTTAGC TCACTCATTA GGCACCCCAG GCTTTACACT TTATGCTTCC

2101

continued)
tors (c
IL vec
20
s anc
odule
tor m
ıL vect
کو <u>-</u>
additiona
s of
sednence
and
maps
ctional
Fun
35a.
Figure

(g)	
ontinue	
ors (cc	
AL vect	
od br	
lules aı	
or moc	
L vect	
al pC	
s of addition	
es of a	
ps and sequence	
and se	
l maps	
ctiona	
Figure 35a: Functio	
gure 3	
Ë,	

AATACGAAGG	CACACAGGAA GTGTGTCCTT	
CGAAATGTGA	ATAACAATTT TATTGTTAAA	
CCGTGGGGTC CGAAATGTGA AATACGAAGG	rg ttgtgtggaa ttgtgagcgg ataacaattt cacacaggaa ac aacacctt aacactcgcc tattgttaaa gtgtgtcctt	
G AGTGAGTAAT	TTGTGTGGAA AACACACCTT	
CACTCAATCG	GGCTCGTATG CCGAGCATAC	
	2151	

Sphi	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	CGCATGCCAT	GCGTACGGTA
	}	CCATGATTAC GAATTTCTAG ACCCCCCCC CGCATGCCAT	TGGGGGGGG
XbaI	22222	GAATTTCTAG	CTTAAAGATC TGGGGGGGG
		CCATGATTAC	GGTACTAATG
		ACAGCTATGA	TGTCGATACT
		2201	

	CCTGTGAAGT	
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?	AATGTACGCT ATACGAAGTT ATAAGCTTGA CCTGTGAAGT	KUBBUKUKUU BUKKUUBBKB KKUBBUUBKB KUUUBKUKBB
	ATACGAAGTT	で かいり りじゅうしゅう
	AATGTACGCT	K C C C C C C C C C C C C C C C C C C C
	AACTTCGTAT	不 中 木 ご 八 木 入 日 日
	2251	

HindIII

SHEET (I	7251	AACT"ICGTAT	AACTTTCGTAT AATGTTGCGA TATGCTTCAA TATTCGAACT GGACACTTCA TTGAAGCATA TTACATGCGA TATGCTTCAA TATTCGAACT GGACACTTCA	ATACGAAGTT TATGCTTCAA	ATAAGCTTGA TATTCGAACT	CCTGTGAAGT GGACACTTCA
RULE 2						Pacl
26)						? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
	2301	GAAAAATGGC	GCAGATTGTG	GCAGATTGTG CGACATTTTT TTTGTCTGCC	TTTGTCTGCC	GTTTAATTAA
		CTTTTTACCG	G CGTCTAACAC	GCTGTAAAAA	GCTGTAAAA AAACAGACGG CAAATTAATT	CAAATTAATT

AGGAAACTAG TCCTTTGATC CTCAAGAAGA GAGTTCTTCT CAAAAAGGAT GTTTTTCCTA CGGCCATTAT GCCGGTAATA SCCCCCCC 2351

FseI

SUBSTITUTE SHEE

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

			IRSTITITE C				
2401	2451	2501	2551	2601	2651	2701	2751
TTTTCTACGG	TTTGGTCATG	AAAAATGAAG	GACAGTTACC	TATTTCGTTC	ATACGGGAGG	CCCACGCTCA	GGGCCGAGCG
	AAACCAGTAC	TTTTTACTTC	CTGTCAATGG	ATAAAGCAAG	TATGCCCTCC	GGGTGCGAGT	CCCGGCTCGC
GGTCTGACGC	AGATTATCAA	TTTTAAATCA	CAATGCTTAA	ATCCATAGTT	GCTTACCATC	CCGGCTCCAG	CAGAAGTGGT
CCAGACTGCG	TCTAATAGTT	AAAATTTAGT	GTTACGAATT	TAGGTATCAA	CGAATGGTAG	GGCCGAGGTC	GTCTTCACCA
TCAGTGGAAC	AAAGGATCTT	ATCTAAAGTA	TCAGTGAGGC	GCCTGACTCC	TGGCCCCAGT	ATTTATCAGC	CCTGCAACTT
AGTCACCTTG	TTTCCTAGAA	TAGATTTCAT	AGTCACTCCG	CGGACTGAGG	ACCGGGGGTCA	TAAATAGTCG	GGACGTTGAA
GAAAACTCAC	CACCTAGATC	TATATGAGTA	ACCTATCTCA	CCGTCGTGTA	GCTGCAATGA	AATAAACCAG	TATCCGCCTC
CTTTTGAGTG	GTGGATCTAG	ATATACTCAT	TGGATAGAGT	GGCAGCACAT	CGACGTTACT	TTATTTGGTC	ATAGGCGGAG
GTTAAGGGAT	CTTTTAAATT	AACTTGGTCT	GCGATCTGTC	GATAACTACG	TACCGCGAGA	CCAGCCGGAA	CATCCAGTCT
CAATTCCCTA	GAAAATTTAA	TTGAACCAGA	CGCTAGACAG	CTATTGATGC	ATGGCGCTCT	GGTCGGCCTT	GTAGGTCAGA

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

AGTTCGCCAG	CGTGGTGTCA	AACGATCAAG	AGCTCCTTCG	ATCACTCATG	CCGTAAGATG	GAATAGTGTA	TAATACCGCG
TCAAGCGGTC		TTGCTAGTTC	TCGAGGAAGC	TAGTGAGTAC	GGCATTCTAC	CTTATCACAT	ATTATGGCGC
		-		-		_	_
TAGAGTAAGT	CTACAGGCAT	TCCGGTTCCC	AAAAGCGGTT	CCGCAGTGTT	GTCATGCCAT	GTCATTCTGA	CAATACGGGA
ATCTCATTCA	GATGTCCGTA	AGGCCAAGGG	TTTTCGCCAA	GGCGTCACAA	CAGTACGGTA	CAGTAAGACT	GTTATGCCCT
GCCGGGAAGC	GTTGCCATTG	TTCATTCAGC	TGTTGTGCAA	AGTAAGTTGG	TTCTCTTACT	ACTCAACCAA	TGCCCGGCGT
CGGCCCTTCG	CAACGGTAAC	AAGTAAGTCG	ACAACACGTT	TCATTCAACC	AAGAGAATGA	TGAGTTGGTT	ACGGGCCGCA
ATTAACTGTT	GCGCAACGTT	TTGGTATGGC	TGATCCCCCA	CGTTGTCAGA	CACTGCATAA	ACTGGTGAGT	GAGTTGCTCT
TAATTGACAA	CGCGTTGCAA		ACTAGGGGGT	GCAACAGTCT	GTGACGTATT	TGACCACTCA	CTCAACGAGA
2801	2851	2901	2951	3001	3051	3101	3151
		S	UBSTITUTE	SHEET (RUL	E 20)		

SUBSTITUTE SHEET (RULE 20 172 / 204

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

XmnI

CGCTTTTGAG GGTGAGCGCG TCTGGGTGAG AGACCCACTC GGCGACACGG CCGCTGTGCC CTTCGTAAAT GCGAAAACTC CCACTCGCGC GAAGCATTTA GTGGTCGCAA CAAGAAGCCC AGCTACATTG CACCAGCGTT AGGGAATAAG TCCCTTATTC CAATATTATT GTTCTTCGGG GTTATAATAA TCGATGTAAC ATTTGAAT BsrGI CTCTAGGTCA ATTGGAAAAC TAACCTTTTG CTTTTACTTT GAGATCCAGT GCCGCAAAAA GAAAATGAAA CGGCGTTTTT CTTCCTTTTT GAAGGAAAAA GCGGATACAT CGCCTATGTA TCACGAGTAG TCCTCAGCAT TACCGCTGTT ATGGCGACAA AGGAGTCGTA AAGGCAAAAT TTCCGTTTTA TACTCATACT ATGAGTATGA AGTGCTCATC TGTCTCATGA ACAGAGTACT TCAAGGATCT AGTCCCAATA CTTGAAATTT AGTTCCTAGA ACCCAACTGA TGGGTTGACT CAAAAACAGG GTTTTTGTCC AAATGTTGAA TTTACAACTT TCAGGGTTAT GAACTTTAAA 3451 3201 3301 3351 3401 3251 SUBSTITUTE SHEET 173 / 204

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)



SUBSTITUTE SHEET (RULE 25) 174 / 204

PacI

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

	7 T T 6q				Aatii
<b>H</b>	GATCTCATAA CTAGAGTATT	CTTCGTATAA GAAGCATATT	TGTATGCTAT ACATACGATA	ACGAAGTTAT TGCTTCAATA	~~~~~~ GACGTCTAAT CTGCAGATTA
51	GTGAGTTAGC CACTCAATCG	TCACTCATTA AGTGAGTAAT	GGCACCCCAG	GCTTTACACT CGAAATGTGA	TTATGCTTCC AATACGAAGG
101	GGCTCGTATG CCGAGCATAC	TTGTGTGGAA AACACACCTT	TTGTGAGCGG	АТААСААТТТ ТАТТGTTAAA	CACACAGGAA GTGTGTCCTT
151	ACAGCTATGA TGTCGATACT	CCATGATTAC GGTACTAATG	XbaI ~~~~~~ GAATTTCTAG A CTTAAAGATC T	ACCCCCCCCC TGGGGGGGG	Sphi ~~~~~~ CGCATGCCAT GCGTACGGTA
201	AACTTCGTAT TTGAAGCATA	AATGTACGCT TTACATGCGA	ATACGAAGTT TATGCTTCAA	HindIII ~~~~~~ ATAAGCTTGA TATTCGAACT	CCTGTGAAGT GGACACTTCA

SUBSTITUTE SHEET (RULE 26)

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

					*		
GTTTAATTAA CAAATTAATT		TCCTTTGATC AGGAAACTAG	GTTAAGGGAT CAATTCCCTA	СТТТТАААТТ GAAAATTTAA	AACTTGGTCT TTGAACCAGA	GCGATCTGTC CGCTAGACAG	GATAACTACG CTATTGATGC
TTTGTCTGCC		CTCAAGAAGA GAGTTCTTCT	GAAAACTCAC CTTTTGAGTG	CACCTAGATC GTGGATCTAG	TATATGAGTA ATATACTCAT	ACCTATCTCA TGGATAGAGT	CCGTCGTGTA GGCAGCACAT
CGACATTTTT GCTGTAAAAA		CAAAAAGGAT GTTTTTCCTA	TCAGTGGAAC AGTCACCTTG	AAAGGATCTT TTTCCTAGAA	ATCTAAAGTA TAGATTTCAT	TCAGTGAGGC	GCCTGACTCC CGGACTGAGG
GCAGATTGTG CGTCTAACAC	seI	CGGCCATTAT GCCGGTAATA	GGTCTGACGC CCAGACTGCG	AGATTATCAA TCTAATAGTT	TTTTAAATCA AAAATTTAGT	CAATGCTTAA GTTACGAATT	ATCCATAGTT TAGGTATCAA
GAAAAATGGC CTTTTTACCG	γ Έ		TTTTCTACGG	TTTGGTCATG AAACCAGTAC	AAAAATGAAG TTTTTACTTC	GACAGTTACC	TATTTCGTTC ATAAAGCAAG
251		301	351	401	451	501	551
			SUBSTITE	UTE SHEET (	(RULE 25)		

(continued)	
vectors	
징 I	
and	
or modules	
vect	
PSAL SAL	
f additional	
nd sequences o	
maps a	
: Functional	
35a	
Figure	

601	ATACGGGAGG TATGCCCTCC	GCTTACCATC CGAATGGTAG	TGGCCCCAGT	GCTGCAATGA CGACGTTACT	TACCGCGAGA ATGGCGCTCT
651	CCCACGCTCA	CCGGCTCCAG GGCCGAGGTC	ATTTATCAGC TAAATAGTCG	AATAAACCAG TTATTTGGTC	CCAGCCGGAA GGTCGGCCTT
701	GGGCCGAGCG CCCGGCTCGC	CAGAAGTGGT GTCTTCACCA	CCTGCAACTT GGACGTTGAA	TATCCGCCTC	CATCCAGTCT GTAGGTCAGA
751	ATTAACTGTT TAATTGACAA	GCCGGGAAGC CGGCCCTTCG	TAGAGTAAGT ATCTCATTCA	AGTTCGCCAG TCAAGCGGTC	TTAATAGTTT AATTATCAAA
801	GCGCAACGTT CGCGTTGCAA	GTTGCCATTG	CTACAGGCAT GATGTCCGTA	CGTGGTGTCA GCACCACAGT	CGCTCGTCGT GCGAGCAGCA
851	TTGGTATGGC AACCATACCG	TTCATTCAGC AAGTAAGTCG	TCCGGTTCCC AGGCCAAGGG	AACGATCAAG TTGCTAGTTC	GCGAGTTACA CGCTCAATGT
901	TGATCCCCCA	TGTTGTGCAA ACAACACGTT	AAAAGCGGTT TTTTCGCCAA	AGCTCCTTCG TCGAGGAAGC	GTCCTCCGAT
951	CGTTGTCAGA GCAACAGTCT	AGTAAGTTGG TCATTCAACC	CCGCAGTGTT GGCGTCACAA	ATCACTCATG TAGTGAGTAC	GTTATGGCAG CAATACCGTC

SUBSTITUTE SHEET (RULE 26)

=
2
~
=
·≡
=
ō
ະ
ت
S
≒
$\simeq$
บ
ب
>
ď
O
~
0
=
G
S
ب
3
ē
ŏ
=
=
_
0
77
ĕ
5
7
$\sim$
$\simeq$
<u> </u>
=
ĕ
5
Jitio
≔
9
of ad
<u>-</u>
0
S
به
$\simeq$
-
¥
=
Y,
$\sim$
al maps and sequenc
$\succeq$
æ
×
~
ä
=
_
G
Ξ
.≘
==
$\stackrel{\circ}{\simeq}$
Ξ
.=
4
∺
.5
35
(4)
Figure
=
<u>6</u>
.જે
LL.

g amb	1001	guie 354. Tuin tuona maps and september of administration of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of t	TTCTCTTACT AAGAGAATGA	GTCATGCCAT CAGTACGGTA	CCGTAAGATG GGCATTCTAC	CTTTTCTGTG GAAAAGACAC
	1051	ACTGGTGAGT TGACCACTCA	ACTCAACCAA TGAGTTGGTT	GTCATTCTGA CAGTAAGACT	GAATAGTGTA CTTATCACAT	TGCGGCGACC ACGCCGCTGG
	11.01	GAGTTGCTCT CTCAACGAGA	TGCCCGGCGT ACGGGCCGCA	CAATACGGGA GTTATGCCCT	TAATACCGCG	CCACATAGCA GGTGTATCGT
SUB				IcumX		
STITUTE SH	1151	GAACTTTAAA CTTGAAATTT	AGTGCTCATC TCACGAGTAG	ATTGGAAAAC TAACCTTTTG	GTTCTTCGGG	GCGAAAACTC CGCTTTTGAG
SET (NULE 2	1201	TCAAGGATCT	TACCGCTGTT ATGGCGACAA	GAGATCCAGT CTCTAGGTCA	TCGATGTAAC AGCTACATTG	CCACTCGCGC GGTGAGCGCG
26)	1251	ACCCAACTGA TGGGTTGACT	TCCTCAGCAT	CTTTTACTTT GAAAATGAAA	CACCAGCGTT GTGGTCGCAA	TCTGGGTGAG AGACCCACTC
	1301	CAAAAACAGG GTTTTTGTCC	AAGGCAAAAT TTCCGTTTTA	GCCGCAAAAA CGGCGTTTTT	AGGGAATAAG TCCCTTATTC	GGCGACACGG CCGCTGTGCC
	1351	AAATGTTGAA	TACTCATACT	CTTCCTTTTT	CAATATTATT	GAAGCATTTA

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

TITACAACIT AIGAGIAIGA GAAGGAAAAA GITAIAAIAA CITCGIAAAI

BsrGI

		S	URSTITUTE	QUEET (D
	1401	1451	1501	1551
	TCAGGGTTAT AGTCCCAATA	GTAAACGTTA CATTTGCAAT	CTCATTTTTT GAGTAAAAAA	AAGAATAGAC TTCTTATCTG
,	TCAGGGTTAT TGTCTCATGA AGTCCCAATA ACAGAGTACT	GTAAACGTTA ATATTTTGTT CATTTGCAAT TATAAAACAA	AACCAATAGG TTGGTTATCC	C CGAGATAGGG
	GCGGATACAT CGCCTATGTA		CCGAAATCGG GGCTTTAGCC	TTGAGTGTTG AACTCACAAC
~~~~~	GCGGATACAT ATTTGAATGT ACATGAAATT CGCCTATGTA TAAACTTACA TGTACTTTAA	AAAATTCGCG TTAAATTTTT GTTAAATCAG TTTTAAGCGC AATTTAAAAA CAATTTAGTC	CAAAATCCCT GTTTTAGGGA	TTCCAGTTTG AAGGTCAAAC
	ACATGAAATT TGTACTTTAA	GTTAAATCAG CAATTTAGTC	TATAAATCAA ATATTTAGTT	GAACAAGAGT CTTGTTCTCA
	ĿΚ	ធំ ភ	4 F	E e

BanII

AAACCGTCTA TTTGGCAGAT

AAAGGGCGAA

CTCCAACGTC GAGGTTGCAG

AGAACGTGGA TCTTGCACCT

CCACTATTAA GGTGATAATT

1601

TTTCCCGCTT

AGTTTTTGG TCAAAAAACC

ACCCTAATCA

GAGAACCATC

GGCCCACTAC

TCAGGGCGAT AGTCCCGCTA

1651

CTCTTGGTAG

TGGGATTAGT

SUBSTITUTE SHEET (RULE 26) 179 / 204

CTGACTCGCT

ATATTCCGCT TCCTCGCTCA TATAAGGCGA AGGAGCGAGT

CAGAATATGT GATACAGGAT

2001

CTATGTCCTA

GTCTTATACA

GGA	GAA	505 300	252 525	GTC	CAG	
GAGCCCCCGA CTCGGGGGGCT	AGGAAGGGAA TCCTTCCCTT	GCGGTCACGC CGCCAGTGCG	ACAGGGCGCG TGTCCCGCGC	TGAGGGTGTC	I ~~~ GGTGCGTCAG CCACGCAGTC	
					(1) }	
ntinued) ACCCTAAAGG TGGGATTTCC	GTGGCGAGAA CACCGCTCTT	GGCAAGTGTA CCGTTCACAT	ATGCGCCGCT	TTGGCACTGA	Age AGGCTGCACC TCCGACGTGG	
ontinue AC(TG(GTC	ט ט			•	
iles and pCAL vectors (cc CTAAATCGGA GATTTAGCCT	GCCGGCGAAC	CTAGGGCGCT GATCCCGCGA	GCCGCGCTTA	GCTTACTATG CGAATGATAC	AGGAGAAAAA TCCTCTTTTT	
additional pCAL vector modules and pCAL vectors (continued) CCGTAAAGCA CTAAATCGGA ACC	GACGGGGAAA	GGAGCGGGCG	CACCACACCC GTGGTGTGGG	GTGTATACTG CACATATGAC	TTCATGTGGC AAGTACACCG	•
Figure 35a: Functional maps and sequences of add 1701 GGTCGAGGTG CCAGCTCCAC	TTTAGAGCTT AAATCTCGAA	GAAAGCGAAA CTTTCGCTTT	TGCGCGTAAC ACGCGCATTG	NheI ~~~~~~ TGCTAGCGGA ACGATCGCCT	XmnI ~~~~~~~ AGTGAAGTGC TCACTTCACG	
sa: Functional 1701	1751	1801	1851	1901	1951	
Figure 3!				TE SHEET (RULE 26 180 / 204)	

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

				SHEET (RUL)		
2051	2101	2151	2201	2251	2301	2351
ACGCTCGGTC TGCGAGCCAG	GAGATTTCCT CTCTAAAGGA	CCGCGGCAAA	GAAATCTGAC CTTTAGACTG	ATACCAGGCG TATGGTCCGC	CCTTTCGGTT GGAAAGCCAA	TCCACGCCTG AGGTGCGGAC
GTTCGACTGC CAAGCTGACG	GGAAGATGCC CCTTCTACGG	GCCGTTTTTC CGGCAAAAAG	GCTCAAATCA CGAGTTTAGT	TTTCCCCCTG AAAGGGGGGAC	AgeI ~~~~~~ TACCGGTGTC ATGGCCACAG	ACACTCAGTT TGTGAGTCAA
GGCGAGCGGA	AGGAAGATAC TCCTTCTATG	CATAGGCTCC GTATCCGAGG	GTGGTGGCGA	GCGGCTCCCT CGCCGAGGGA	ATTCCGCTGT TAAGGCGACA	CCGGGTAGGC GGCCCATCCG
AATGGCTTAC TTACCGAATG	TTAACAGGGA AATTGTCCCT	GCCCCCCTGA	AACCCGACAG TTGGGCTGTC	CCTGCGCTCT GGACGCGAGA	TATGGCCGCG	AGTTCGCTCC TCAAGCGAGG
GAACGGGGCG	AGTGAGAGGG TCACTCTCCC	CAAGCATCAC GTTCGTAGTG	GACTATAAAG CTGATATTTC	CCTGTTCCTG GGACAAGGAC	TTTGTCTCAT AAACAGAGTA	AAGCTGGACT TTCGACCTGA

SUBSTITUTE SHEET (RULE 26) 181 / 204

ned)
Œ
Ë
<u></u>
·s
ŏ
Ť
ě
رَ
⋖.
절
Ъ
s an
S
<u>ء</u>
콗
ō
Ξ
ŏ
Ħ
vector
_
₹
8
=
Ë
.0
፷
ਰੂ
<u></u>
0
S
\bar{z}
٦
킃
ĕ
6
≧
S
ğ
Ĕ
=
Ë
.0
ctio
unctio
Functio
a: Functio
35a: Functio
2
2
Figure 35a: Functio

2401	GTATGCACGA	ACCCCCCGTT	CAGTCCGACC	GCTGCGCCTT ATCCGGTAAC	ATCCGGTAAC
	CATACGTGCT	TGGGGGGCAA	GTCAGGCTGG	CGACGCGGAA TAGGCCATTG	TAGGCCATTG
2451	TATCGTCTTG	AGTCCAACCC TCAGGTTGGG	GGAAAGACAT CCTTTCTGTA	GCAAAAGCAC CACTGGCAGC CGTTTTCGTG GTGACCGTCG	CACTGGCAGC
2501	AGCCACTGGT	AATTGATTTA	GAGGAGTTAG	TCTTGAAGTC ATGCGCCGGT	ATGCGCCGGT
	TCGGTGACCA	TTAACTAAAT	CTCCTCAATC	AGAACTTCAG TACGCGGCCA	TACGCGGCCA

[· · · · ·	2551 1	PAAGGCTAAA CTGAAAGGAC AAGTTTTAGT GACTGCGCTC CTCCAAGCCA	ATTCCGATTT GACTTTCCTG TTCAAATCA CTGACGCGAG GAGGTTCGGT	
	Ŋ	AGGCT	TCCGA	

CTTTTTGGCG GAAAAACCGC

BglII

TCTTATTA AGAATAAT AAGAAGATCA TTTGCTAGAG 'TTCTTCTAGT AAACGATCTC 2701

E SHEET (AULE 26) 182 / 204

2601

Figure 35b: List of oligonucleotides used for synthesis of modules

M1: PCR using template

NoVspAatII: TAGACGTC

M2: synthesis

BloxA-A: TATGAGATCTCATAACTTCGTATAATGTACGCTATACG-

AAGTTAT

BloxA-B: TAATAACTTCGTATAGCATACATTATACGAAGTTATG-

AGATCTCA

M3: PCR, NoVspAatll as second oligo

XloxS-muta: CATTTTTTGCCCTCGTTATCTACGCATGCGATAACTTCGTA-TAGCGTACATTATACGAAGTTATTCTAGACATGGTCATAGCTGTTTCCTG

M7-I: PCR

glIINEW-fow: GGGGGGAATTCGGTGGTGGTGGATCTGCGTGCGCTG-

AAACGGTTGAAAGTTG

gliinew-rev: CCCCCCAAGCTTATCAAGACTCCTTATTACG

M7-II: PCR

glllss-fow: GGGGGGGAATTCGGAGGCGGTTCCGGTGGTGGC

M7-III: PCR

gllsupernew-fow: GGGGGGGGAATTCGAGCAGAAGCTGATCTCT-GAGGAGGATCTGTAGGGTGGTGGCTCTGGTTCCGGTGATTTTG
SUBSTITUTE SHEET (RULE 25)

Figure 35b: List of oligonucleotides used for synthesis of modules (continued)

M8: synthesis

lox514-A: CCATAACTTCGTATAATGTACGCTATACGAAGTTATA

lox514-B: AGCTTATAACTTCGTATAGCGTACATTATACGAAGT-

TATGGCATG

M9II: synthesis

M9II-fow: AGCTTGACCTGTGAAGTGAAAAATGGCGCAGATT-

GTGCGACATTTTTTTGTCTGCCGTTTAATTAAAGGGGGGGT

M9II-rev: GTACACCCCCCCCAGGCCGGCCCCCCCCCCTTTAA-

TTAAACGGCAGACAAAAAAAAATGTCGCACAATCTGCG

M10II: assembly PCR with template

bla-fow: GGGGGGGTGTACATTCAAATATGTATCCGCTCATG

bla-seq4: GGGTTACATCGAACTGGATCTC

bla1-muta: CCAGTTCGATGTAACCCACTCGCGCACCCAACTGATC-

CTCAGCATCTTTTACTTTCACC

blall-muta: ACTCTAGCTTCCCGGCAACAGTTAATAGACTGGATG-

GAGGCGG

bla-NEW: CTGTTGCCGGGAAGCTAGAGTAAG

bla-rev: CCCCCCTTAATTAAGGGGGGGGGCCGGCCATTATCAAA-

AAGGATCTCAAGAAGATCC

M11II/III: PCR, site-directed mutagenesis

SUBSTITUTE SHEET (RULE 26) 184 / 204

Figure 35b: List of oligonucleotides used for synthesis of modules (continued)

f1-fow: GGGGGGGCTAGCACGCCCCTGTAGCGGCGCATTAA

f1-rev: CCCCCCTGTACATGAAATTGTAAACGTTAATATTTTG

f1-t133.muta: GGGCGATGGCCCACTACGAGAACCATCACCCTAATC

M12: assembly PCR using template

p15-fow: GGGGGGAGATCTAATAAGATGATCTTCTTGAG

p15-NEWI: GAGTTGGTAGCTCAGAGAACCTACGAAAAACCGCCCTG-

CAAGGCG

p15-NEWII: GTAGGTTCTCTGAGCTACCAACTC

p15-NEWIII: GTTTCCCCCTGGCGCTCCCTCCTGCGCTCTCCTGTTCCT-

GCC

p15-NEWIV: AGGAGGGAGCCGCCAGGGGGAAAC

p15-rev: GACATCAGCGCTAGCGGAGTGTATAC

M13: synthesis

BloxXB-A: GATCTCATAACTTCGTATAATGTATGCTATACGAAGTTA-

TTCA

BloxXB-B: GATCTGAATAACTTCGTATAGCATACATTATACGAAGTTA-

TGAGA

M14-Ext2: PCR, site-directed mutagenesis

ColEXT2-fow: GGGGGGGAGATCTGACCAAAATCCCTTAACGTGAG

Col-mutal: GGTATCTGCGCTCTGCTGTAGCCAGTTACCTTCGG

SUBSTITUTE SHEET (RULE 26)

Figure 35b: List of oligonucleotides used for synthesis of modules (continued)

Col-rev: CCCCCCGCTAGCCATGTGAGCAAAAGGCCAGCAA

M17: assembly PCR using template

CAT-1: GGGACGTCGGGTGAGGTTCCAAC

CAT-2: CCATACGGAACTCCGGGTGAGCATTCATC

CAT-3: CCGGAGTTCCGTATGG

CAT-4: ACGTTTAAATCAAAACTGG

CAT-5: CCAGTTTTGATTTAAACGTAGCCAATATGGACAACTTCTTC-

GCCCCGTTTTCACTATGGGCAAATATT

CAT-6: GGAAGATCTAGCACCAGGCGTTTAAG

M41: assembly PCR using template

LAC1: GAGGCCGGCCATCGAATGGCGCAAAAC

LAC2: CGCGTACCGTCCTCATGGGAGAAAATAATAC

LAC3: CCATGAGGACGGTACGCGACTGGGCGTGGAGCATCTGGTCGCA-

TTGGGTCACCAGCAAATCCGCTGTTAGCTGGCCCATTAAG

LAC4: GTCAGCGGCGGGATATAACATGAGCTGTCCTCGGTATCGTCG

LAC5: GTTATATCCCGCCGCTGACCACCATCAAAC

LAC6: CATCAGTGAATCGGCCAACGCGCGGGGAGAGGCGGTTTGCGT4TTG-

GGAGCCAGGGTGGTTTTTC

LAC7: GGTTAATTAACCTCACTGCCCGCTTTCCAGTCGGGAAACCTGTCGTGCC-

AGCTGCATCAGTGAATCGGCCAAC

M41-MCS-fow: CTAGACTAGTGTTAAACCGGACCGGGGGGGGGCTT-

AAGGGGGGGGGGG

SUBSTITUTE SKEET (RULE 26)

Figure 35b: List of oligonucleotides used for synthesis of modules (continued)

M41-MCS-rev: CTAGCCCCCCCCCCCCTTAAGCCCCCCCCCGGTCCGGT-

TTAAACACTAGT

M41-fow: CTAGACTAGTGTTTAAACCGGACCGGGGGGGGGGCTTAA-

GGGGGGGGGG

M41-rev: CCCCCCTTAAGTGGGCTGCAAAACAAACGGCCTCC-

TGTCAGGAAGCCGCTTTTATCGGGTAGCCTCACTGCCCGCTTTCC

M41-A2: GTTGTTGTGCCACGCGGTTAGGAATGTAATTCAGCTCCGC

M41-B1: AACCGCGTGGCACAACAAC

M41-B2: CTTCGTTCTACCATCGACACGACCACGCTGGCACCCAGTTG

M41-C1: GTGTCGATGGTAGAACGAAG

M41-CII: CCACAGCAATAGCATCCTGGTCATCCAGCGGATAGTT-

AATAATCAGCCCACTGACACGTTGCGCGAG

M41-DI: GACCAGGATGCTATTGCTGTGG

M41-DII: CAGCGCGATTTGCTGGTGGCCCAATGCGACCAGATGC

M41-EI: CACCAGCAAATCGCGCTG

M41-EII: CCCGGACTCGGTAATGGCACGCATTGCGCCCAGCGCC

M41-FI: GCCATTACCGAGTCCGGG

M42: synthesis

Eco-H5-Hind-fow: AATTCCACCATCACCATTGACGTCTA

Eco-H5-Hind-rev: AGCTTAGACGTCAATGGTGATGATGGTGG

Figure 36: functional map and sequence of ß-lactamase-MCS module

Bbe I (1361) Ase I (1364) Eco 57I (1366) Xho I (1371) Bss Hil (1376) Bbs I (1386) Bsp EI (1397) Bsr GI (1403)	
Bam H I (192)	
Pml I (189) Bsa BI (182) Nsp V (173) Bsi WI (166) Eco O109I (161) Psp 5II (161) Sty I (157) Msc I (156) Bst XI (152) Bst XI (152) Bst EII (140) Bst EII (140) Bst EII (140) Amu I (126)	
SUBSTITUTE SPEET (DIVI E OS)	

SUBSTITUTE SHEET (RULE 26)

Figure 36: functional map and sequence of B-lactamase-MCS module (continued)

				\mathtt{StyI}	
				? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?	
	·			Psp5II	
			BstXI	Eco01091	
	HpaI	BStEII	MscI	·	BsiWI NspV
126	CGCGTTAACC	TCAGGTGACC	AAGCCCCTGG CCA TTCGGGGACC GGT	AGGTCC	c GTACGTTCGA G CATGCAAGCT
		PmlI ~~~~~~			
	NspVBsaBI		KpnI	FseI	
176	AGATTACCAT TCTAATGGTA	AGATTACCAT CACGTGGATC TCTAATGGTA GTGCACCTAG	CGGTACCA GCCATGGT	GG CCGGCCATTA	TCAAAAAGGA AGTTTTTCCT
226	TCTCAAGAAG AGAGTTCTTC	ATCCTTTGAT TAGGAAACTA	CTTTTCTACG GAAAGATGC	GGGTCTGACG CCCAGACTGC	CTCAGTGGAA GAGTCACCTT
276	CGAAAACTCA GCTTTTGAGT	CGAAAACTCA CGTTAAGGGA GCTTTTGAGT GCAATTCCCT	TTTTGGTCAT AAAACCAGTA	GAGATTATCA CTCTAATAGT	AAAAGGATCT TTTTCCTAGA

SUBSTITUTE SHEET (RULE 26) 189 / 204

Figure 36: functional map and sequence of θ -lactamase-MCS module (continued)

326	TCACCTAGAT AGTGGATCTA	CCTTTTAAAT GGAAAATTTA	TAAAAATGAA ATTTTTACTT	GTTTTAAATC CAAAATTTAG	AATCTAAAGT TTAGATTTCA
376	ATATATGAGT TATATACTCA	AAACTTGGTC	TGACAGTTAC ACTGTCAATG	CAATGCTTAA	TCAGTGAGGC AGTCACTCCG
426	ACCTATCTCA TGGATAGAGT	GCGATCTGTC CGCTAGACAG	TATTTCGTTC ATAAAGCAAG	ATCCATAGTT TAGGTATCAA	GCCTGACTCC CGGACTGAGG
476	CCGTCGTGTA GGCAGCACAT	GATAACTACG CTATTGATGC	ATACGGGAGG TATGCCCTCC	GCTTACCATC CGAATGGTAG	TGGCCCCAGT
526	GCTGCAATGA CGACGTTACT	TACCGCGAGA	CCCACGCTCA GGGTGCGAGT	CCGGCTCCAG GGCCGAGGTC	ATTTATCAGC TAAATAGTCG
576	AATAAACCAG TTATTTGGTC	CCAGCCGGAA GGTCGGCCTT	GGGCCGAGCG CCCGGCTCGC	CAGAAGTGGT GTCTTCACCA	CCTGCAACTT GGACGTTGAA
626	TATCCGCCTC	CATCCAGTCT GTAGGTCAGA	ATTAACTGTT TAATTGACAA	GCCGGGAAGC CGGCCCTTCG	TAGAGTAAGT ATCTCATTCA
919	AGTTCGCCAG TCAAGCGGTC	TTAATAGTTT AATTATCAAA	GCGCAACGTT CGCGTTGCAA	GTTGCCATTG	CTACAGGCAT GATGTCCGTA

SUBSTITUTE SHEET (RULE 26)

Figure 36: functional map and sequence of B-lactamase-MCS module (continued)

SUBSTITUTE SHEET (RULE 26)

Figure 36: functional map and sequence of θ -lactamase-MCS module (continued)

CTTTTACTTT GAAAATGAAA	GCCGCAAAAA CGGCGTTTTT	CTTCCTTTTT GAAGGAAAAA	GCGGATACAT CGCCTATGTA	XhoI		ATGGCTCGAG TACCGAGCTC	
TCTTCAGCAT CAGAAGTCGTA GECO57I	AAGGCAAAAT C TTCCGTTTTA C	TACTCATACT CATGA CATGAGTATGA	TGTCTCATGA (į	BbeI	GGCGCCATTA AT	H
ACCCAACTGA TGGGTTGACT	CAAAAACAGG GTTTTTGTCC	AAATGTTGAA TTTACAACTT	TCAGGGTTAT AGTCCCAATA	PstI	BssSI	ACGAGCTGCA	BspEI BsrGI
CCACTCGTGC GGTGAGCACG BSSSI	TCTGGGTGAG AGACCCACTC	GGCGACACGG CCGCTGTGCC	GAAGCATTTA CTTCGTAAAT			ACTCGGCCGC	
TCGATGTAAC AGCTACATTG	CACCAGCGTT GTGGTCGCAA	AGGGAATAAG TCCCTTATTC	CAATATTATT GTTATAATAA			ATTTGAATGT TAAACTTACA	BssHII
1126	1176	1226	1276			1326	٠,
		SUBSTITU	ITE SHEET (RULE 26)		

CATGAAATT GTACTTTAA TCCGGATGTA Figure 36: functional map and sequence of B-lactamase-MCS module (continued) BbsI CGCTTTGTCT GCGAAACAGA CGCGCTTCAG GCGCGAAGTC Eco57I 1376

> SUBSTITUTE SHEET (RULE 26) 193 / 204

Figure 37: Oligo and primer design for Vk CDR3 libraries

Vk4

O_K3L_5 5'- G C C C T G C A A G C G G A A G A C

Bbsl

E D

Vk1 & Vk3 5'- G C C C T G C A A G C G G A A G A C

Vk2 5'- G C C C T G C A A G C G G A A G A C

E D

E D

E D

E D

5'- G C C C T G C A A G C G G A A G A C

Figure 37: Oligo and primer design for $V\kappa$ CDR3 libraries

30 40 20 -3' Q CATGCGACTTATTATTGC G Y CATGGGCGTGTA CAG GGCGGTGTA P CAG R

> SUBSTITUTE SHEET (RULE 26) 195 / 204

80% Q

Figure 37: Oligo and primer design for $\mbox{V}\kappa$ CDR3 libraries

G A C C T
G A C C T
A C C T
A C C T

GC	T		•••••					G	C	T				G	C	T
											,					
G A	Τ	G	Α	T	G	Α	T	G	Α	T				G	Α	T
GA	G		*********					G	Α	G				G	Α	G
TT	T							T	T	T				T	T	T
GG	T	G	G	T	G	G	T	G	G	T				G	G	T
CA	T							С	Α	Τ				С	Α	T
AT	T							Α	T	T			,	Α	T	T
AA	G		** *****					Α	Α	G				Α	Α	G
CT	T		*********				·	С	T	Τ				С	T	
AT									T					Α	T	G
AA	T	Α	A	T	Α	Α	T	Α	A	T				Α		T
	.,							C	C	T	C	C		С		
CA	G								Α					С		G
CG									G		•				G	T
TC	T	Τ	C	T	T	C	T	T	C	T	T	С	T			Τ
A C	T							Α	C	T				Α	С	T
GT	Ţ							G	T	Τ		4		G	T	T
TG	G			*******				i	G		<u> </u>			Τ	G	G
TA	T	Τ	Α	T				T	Α	T	_			Τ	Α	Ţ
50%	Y	 	,					*********			80)%	P			

SUBSTITUTE SHEET (RULE 26) 196 / 204

Figure 37: Oligo and primer design for $V\kappa$ CDR3 libraries

Figure 38: Oligo and primer design for VA CDR3 libraries

SUBSTITUTE SHEET (RULE 26) 198 / 204

Figure 38: Oligo and primer design for VA CDR3 libraries

SUBSTITUTE SHEET (RULE 28) 199 / 204

Figure 38: Oligo and primer design for V λ CDR3 libraries

		09				70			•				80	ŕ
				G		3		G		T		K	_ [· ^
		1		GG	C G (j C	G	G (. A	((JΑ	AG	1 1	А
0.07		gap	ООТ			-								
- GCT	661	けしし	GCI											
GAT	GAT	G A T	GAT											
		GAG		<u> </u>					-	,				
		TTT	_	•										
1		GGT		l										
•	•	CAT		•										
ATT	ATT	ATT	ATT											
AAG	AAG	A A G	A A G											
СТТ	CTT	CTT	C T:T							•				
ATG	ATG	ATG	$A^{c}TG$		•	*			-					•
AAT	AAT	AAT	AAT		٠								•	
CCT	CCT	CCT	CCT											•
		CAG		•										
	i	CGT		•	٠.	-								
		TCT		1		-								
		ACT		•								•		
GII	GII	GTT				•				-				•
T A T	. _T , T	т , т	TGG	1	oriobi	li t s (
	IAI	TAT	1 A I		ariabi .32E+	-								
18	10		19		.32E+ .98E+								-	
18 10	18 19	18	19		.30L+ +380.								•	
18	- 18	10	13		.UULT	50				•				

SUBSTITUTE SHEET (RULE 26)

Figure 38: Oligo and primer design for VA CDR3 libraries

SUBSTITUTE SHEET (RULE 26)
201 / 204

Figure 40: Expression data for HuCAL scFvs (pBS13, 30°C)

% soluble	7	KZ	æ	К4	λ1	77	73
H1A	61%	58%	52%	42%	%06	61%	%09
H1B	39%	48%	%99	48%	47%	39%	36%
H2	47%	27%	46%	49%	37%	36%	45%
H3	85%	%29	3 0%	61%	80%	71%	83%
H4	%69	52%	51%	44%	45%	33%	42%
H5	49%	49%	46%	9/0/	54%	46%	47%
H6	%06	58%	54%	47%	45%	20%	51%

Total amount compared to H3K2	K1	23	ĸ3	к 4	λ1	λ2	λ3
H1A	289%	94%	166%	272%	!	150%	1
H1B	219%	122%	89%	139%	-	158%	101%
H2	186%	223%	208%	182%	-	%09	
H3	20%	•	71%	54%	29%	130%	
H4	37%	55%	%09	77%		107%	
H5	%86	201%	167%	83%		128%	
H6	65%	117%	89%	109%		215%	

Figure 40: Expression data for HuCAL scFvs (pBS13, 30°C)

Soluble amount	· ·	,	;	5	,	ć	- (
compared to H3K2	<u>.</u>	Ž	Ž	Х 4	₹	ž	₹
H1A	191%	88%	121%	122%	26%	211%	76%
H1B	124%	95%	83%	107%	79%	142%	29%
H2	126%	204%	139%	130%	%99	20%	002
H3	63%	1	81%	49%	%69	143%	61%
H4	40%	47%	49%	54%	95%	.55%	125%
H2	%69	158%	116%	%08	72%	84%	84%
H6	85%	122%	87%	77%	162%	162%	212%
	McPC						
soluble	38%						
%H3k2 total	117%						
%H3k2 soluble	%69				٠		

SUBSTITUTE SHEET (RULE 26) 204 / 204

INTERNATIONAL SEARCH REPORT

Inv onal Application No PCT/EP 96/03647

							
A. CLASSI IPC 6	FICATION OF SUBJECT MATTER C12N15/13 C12N15/10 C12N15/6 C07K1/04 G01N33/53	52 C12N15/70	C12N1/21				
According to	o International Patent Classification (IPC) or to both national classi	fication and IPC					
B. FIELDS	SEARCHED						
Minimum di IPC 6	ocumentation searched (classification system followed by classificat C12N C07K G01N	ion symbols)					
Documentat	on searched other than minimum documentation to the extent that	such documents are included in t	he fields searched				
Electronic d	ata base consulted during the international search (name of data bas	se and, where practical, search te	rms used)				
C DOCUM	IENTS CONSIDERED TO BE RELEVANT						
Category *	Citation of document, with indication, where appropriate, of the n	elevant passages	Relevant to claim No.				
,	7,						
A.	EP 0 368 684 A (MEDICAL RES COUNC May 1990 cited in the application see the whole document	CIL) 16	1-55				
A .	EUROPEAN J. IMMUNOLOGY, vol. 23, July 1993, VCH VERLAGSGESELLSCHAFT MBH, WEINHEIN pages 1456-1461, XP000616572 S.C. WILLIAMS AND G. WINTER: "Cl sequencing of human immunoglobuli V-lambda gene segments" cited in the application see the whole document	loning and	1-55				
		-/					
		<i>:</i> •					
Y Furt	ther documents are listed in the continuation of box C.	X Patent family members	are listed in annex.				
		<u></u>					
"A" docum consid "E" earlier filing "L" docum which citatio "O" docum other "P" docum later t	*Special categories of cited documents: To later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention filing date. To document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) To document referring to an oral disclosure, use, exhibition or other means To document referring to an oral disclosure, use, exhibition or other means To document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is taken alone which is cited to establish the published prior to the international filing date but later than the priority date claimed To document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such document is combined with one or more other such document is combination being obvious to a person skilled in the art. To document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such document is combined with one or more other such document is combined with one or more other such document is combined with one or more other such document is combined with one or more other such document is combined with one or more other such document is combined with one or more other such document is combined with one or more other such document is combined with one or more other such document is combined with one or more other such document is combined with one or more other such document is combined with one or more other such document is combined with one or more other such document is combined with one or more other such document is combined with one or more other such document is combined with one or more other such document is combined						
	actual completion of the international search January 1997	Date of mailing of the inter					
Name and	mailing address of the ISA European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+ 31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+ 31-70) 340-3016	Authorized officer Hornig, H					

	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	Relevant to claim No.	
ategory *	Citation of document, with indication, where appropriate, of the relevant passages	Referant to etain No.	
A	PROC. NATL.ACAD SCI., vol. 89, May 1992, NATL. ACAD SCI.,WASHINGTON,DC,US;,	1-55	
	pages 4457-4461, XP002024223 C. F. BARBAS III ET AL.: "Semisynthetic combinatorial antibody libraries: a chemical solution to the diversity problem"		
	cited in the application see the whole document		
A	PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA, vol. 89, no. 21, 1 November 1992, pages 10026-10030, XP000322464 COLLET T A ET AL: "A BINARY PLASMID SYSTEM FOR SHUFFLING COMBINATORIAL ANTIBODY LIBRARIES" see the whole document	1-55	
A	PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA, vol. 89, no. 8, 15 April 1992, pages 3576-3580, XP000384398	1-55	
	GRAM H ET AL: "IN VITRO SELECTION AND AFFINITY MATURATION OF ANTIBODIES FROM A NAIVE COMBINATORIAL IMMUNOGLOBULIN LIBRARY" see the whole document	·	
A	PROTEIN ENGINEERING, vol. 8, no. 1, 1 January 1995, pages 81-89, XP000500393 KNAPPIK A ET AL: "ENGINEERED TURNS OF RECOMBINANT ANTIBODY IMPROVE ITS IN VIVO FOLDING" cited in the application see the whole document	1-55	
A	ANNUAL REVIEW OF IMMUNOLOGY, vol. 12, 1 January 1994, pages 433-455, XP000564245 WINTER G ET AL: "MAKING ANTIBODIES BY PHAGE DISPLAY TECHNOLOGY" cited in the application see the whole document	1-55	
A	JOURNAL OF MOLECULAR BIOLOGY, vol. 224, no. 2, 1 January 1992, pages 487-499, XP000564649 FOOTE J ET AL: "ANTIBODY FRAMEWORK RESIDUES AFFECTING THE CONFORMATION OF THE HYPERCARIABLE LOOPS" cited in the application see the whole document	1-55	
	-/		

1

INTERNATIONAL SEARCH REPORT

Int sonal Application No PCT/EP 96/03647

	TO DE DEL CUANT	PC1/EP 96/0304/		
C.(Continua Category *	tion) DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.		
A	NUCLEIC ACIDS RESEARCH, vol. 21, no. 9, 11 May 1993, page 2265/2266 XP000575849 WATERHOUSE P ET AL: "COMBINATORIAL INFECTION AND IN VIVO RECOMBINATION: A STRATEGY FOR MAKING LARGE PHAGE ANTIBODY REPERTOIRES" see the whole document		1-55	
A	WO 95 11998 A (UNITED BIOMEDICAL INC) 4 May 1995 see the whole document	·	1-55	
A	ANNALES DE BIOLOGIE CLINIQUE, vol. 49, no. 4, April 1991, PARIS, FR, pages 231-242, XP000407361 R.H. MELOEN ET AL.: "The use of peptides to reconstruct conformational determinants" see page 231, right-hand column, paragraph 2 - page 233, right-hand column, line 4		1-55	
A	CHEMICAL ABSTRACTS, vol. 122, no. 3, 16 January 1995 Columbus, Ohio, US; abstract no. 24865z, COX, JONATHAN P. L. ET AL: "A directory of human germ-line V.kappa. segments reveals a strong bias in their usage" page 227; column 1; XP002024224 cited in the application see abstract & EUR. J. IMMUNOL. (1994), 24(4), 827-36 CODEN: EJIMAF; ISSN: 0014-2980,		1-55	
	1994,		,	
		÷		
		•		

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

information on patent family members

Int onal Application No
-PCT/EP 96/03647

Patent document cited in search report	Publication date	Patent family member(s)		Publication date	
EP-A-0368684	16-05-90	AU-B-	634186	18-02-93	
		AU-A-	4520189	28-05-90	
		CA-A-	2002868	11-05-90	
		DE-D-	68913658	14-04-94	
		DE-T-	68913658	08-09-94	
		ES-T-	2052027	01-07-94	
*•		WO-A-	9005144	17-05-90	
		JP-T-	3502801	27-06-91	
W0-A-9511998	04-05-95	AU-A-	8091694	22-05-95	
· · · · · · ·		EP-A-	0725838	14-08-96	

THIS PAGE BLANK (USPTO)