PORTFOLIO THEORY NOTES

Contents

1.	Risk Measures	1
1.1.	Value at Risk	1
1.2.	Estimating the Value at Risk	1
1.3.	Average Value at Risk	1
1.4.	Estimating the Average Value at Risk	3
References		4

Note 0.1. In these notes we will mostly consider random variables X that model returns. As such we may assume that $X \in L^1(\mathbb{P})$ and $F_X : \mathbb{R} \to (0,1)$ is bijective and continuous. We will call such random variables "nice".

1. Risk Measures

1.1. Value at Risk.

Definition 1.1. Let X be a nice random variable and $\epsilon \in (0,1)$. We define the **value at** risk of X at confidence level ϵ , denoted by $VaR_{\epsilon}(X)$, to be

$$VaR_{\epsilon}(X) = F_{-X}^{-1}(\epsilon)$$

Note 1.2. If X represents the return of a portfolio, then $Var_{\epsilon}(X)$ is just a bound such that with probability ϵ , the loss of the portfolio is not less than the bound.

1.2. Estimating the Value at Risk.

1.3. Average Value at Risk.

Definition 1.3. Let X be a nice random variable and $\epsilon \in (0,1)$. We define the **average** value at risk of X with tail probability ϵ , denoted by $AVaR_{\epsilon}(X)$, to be

$$AVaR_{\epsilon}(X) = \frac{1}{1-\epsilon} \int_{[\epsilon,\infty)} VaR_p(X) dm(p)$$

Note 1.4. If X represents the return on a portfolio, then $AVaR_{\epsilon}(X)$ is just the average of the $VaR_p(X)$ over all $p < \epsilon$.

Exercise 1.5. Let X be a nice random variable and $\epsilon \in (0,1)$. Then $AVaR_{\epsilon}(X) = \mathbb{E}[-X|-X \geq VaR_{\epsilon}(X)]$.

Proof. Recall that for measurable spaces (X, \mathcal{A}) and (Y, \mathcal{B}) , a measurable function $f: X \to Y$ and a measure $\mu: \mathcal{A} \to [0, \infty]$, we may form the push-foreward measure of μ by $f, f_*\mu: \mathcal{B} \to [0, \infty]$ with the following property: for each $g: Y \to \mathbb{C}, g \in L^1(f_*\mu)$ iff $g \circ f \in L^1(\mu)$ and for each $B \in \mathcal{B}$,

$$\int_{f^{-1}(B)}g\circ fd\mu=\int_Bgdf_*\mu$$

Put L = -X. Note that

$$\begin{split} \mathbb{E}[L|L \geq F_L^{-1}(\epsilon)] &= \mathbb{E}[L|L \geq F_L^{-1}(\epsilon)] \\ &= \frac{1}{1 - \epsilon} \mathbb{E}[L\mathbf{1}_{\{L \geq F_L^{-1}(\epsilon)\}}] \\ &= \frac{1}{1 - \epsilon} \int_{\{L \geq F_L^{-1}(\epsilon)\}} LdP \\ &= \frac{1}{1 - \epsilon} \int_{[F_L^{-1}(\epsilon),\infty)} xdF_L(x) \end{split}$$

Let μ be the Lebesgue-Stieltjes measure obtained from F_L (i.e. $d\mu = dF_L$). Consider F_L : $\mathbb{R} \to (0,1)$ as in the theorem recalled above. Then for each $(a,b] \subset [0,1]$ with $a' = F_L^{-1}(a)$ (could be $-\infty$) and $b' = F_L^{-1}(b)$, we have that

$$F_{L*}\mu((a,b]) = \mu(F_L^{-1}((a,b]))$$

$$= \mu((a',b'])$$

$$= F_L(b') - F_L(a')$$

$$= b - a$$

So $F_{L*}\mu = m$. Hence

$$\int_{[F_L^{-1}(\epsilon),\infty)} x dF_L(x) = \int_{[F_L^{-1}(\epsilon),\infty)} (F_L^{-1} \circ F_L)(x) dF_L(x)$$
$$= \int_{[\epsilon,\infty)} F_L^{-1}(x) dm(x)$$
$$= \int_{[\epsilon,\infty)} V aR_{\epsilon}(X) dm(x)$$

Note 1.6. If X represents the return of a portfolio. We may define the **loss of** X, denoted by L_X , to be $L_X = -X$. Then $AVaR_{\epsilon}(X) = \mathbb{E}[L_X|L_X > VaR_{\epsilon}(X)]$.

Theorem 1.7. Let X be a nice random variable and $\epsilon \in (0,1)$. Then

$$AVaR_{\epsilon}(X) = \min_{\theta \in \mathbb{R}} \left(\theta + \frac{1}{1 - \epsilon} \mathbb{E}[(-X - \theta)^{+}] \right)$$

Proof. For $\omega \in \Omega$, $\theta \in \mathbb{R}$, put $g_{\omega}(\theta) = (-X(\omega) - \theta)^+$ and for $\theta \in \mathbb{R}$, $\epsilon \in (0,1)$, put $f_{\epsilon}(\theta) = \theta + \frac{1}{1-\epsilon}\mathbb{E}[g(\theta)]$. Then for each $\omega \in \Omega$, g_{ω} is convex. This implies that for each $\epsilon \in (0,1)$, f_{ϵ} is convex and therefore continuous.

Let L = -X be the loss of X. One can show that

$$\frac{\partial f_{\epsilon}}{\partial \theta}(\theta) = \frac{F_L(\theta) - \epsilon}{1 - \epsilon}$$

The details can be found in [?], but will be omitted here. Thus

$$\lim_{\theta \to \infty} \frac{\partial f_{\epsilon}}{\partial \theta}(\theta) = 1$$

and

$$\lim_{\theta \to -\infty} \frac{\partial f_{\epsilon}}{\partial \theta}(\theta) = -\frac{\epsilon}{1 - \epsilon} < 0$$

This implies that there exists $\theta^* \in \mathbb{R}$ such that $f_{\epsilon}(\theta^*) = \inf_{\theta \in \mathbb{D}} f_{\epsilon}(\theta)$

Thus

$$\frac{\partial f_{\epsilon}}{\partial \theta}(\theta^*) = 0$$

which implies that

$$F_L(\theta^*) = \epsilon$$

This implies that $\theta^* = VaR_{\epsilon}(X)$ Finally, evaluating f_{ϵ} at θ^* shows us that

$$f_{\epsilon}(\theta^{*}) = \theta^{*} + \frac{1}{1 - \epsilon} \mathbb{E}[(L - \theta^{*})^{+}]$$

$$= \theta^{*} + \frac{1}{\mathbb{P}(L > \theta^{*})} \mathbb{E}[(L - \theta^{*}) \mathbf{1}_{\{L > \theta^{*}\}}]$$

$$= \theta^{*} + \frac{1}{\mathbb{P}(L > \theta^{*})} \mathbb{E}[L \mathbf{1}_{\{L > \theta^{*}\}}] - \frac{1}{\mathbb{P}(L > \theta^{*})} \mathbb{E}[\theta^{*} \mathbf{1}_{\{L > \theta^{*}\}}]$$

$$= \theta^{*} + \frac{1}{\mathbb{P}(L > \theta^{*})} \mathbb{E}[L \mathbf{1}_{\{L > \theta^{*}\}}] - \theta^{*}$$

$$= \mathbb{E}[L | L > \theta^{*}]$$

$$= \mathbb{E}[L | L > VaR_{\epsilon}(X)]$$

$$= AVaR_{\epsilon}(X)$$

1.4. Estimating the Average Value at Risk.

Definition 1.8. Let X be a random nice random variable, $X_1, \dots, X_n \stackrel{iid}{\sim} X$ and $\epsilon \in (0,1)$. We define the **sample average value at risk of** X **with tail probability** ϵ , denoted by $\widehat{AVar_{\epsilon}(X)}$, to be

$$\widehat{AVaR_{\epsilon}(X)} = \min_{\theta \in \mathbb{R}} \left(\theta + \frac{1}{n(1-\epsilon)} \sum_{i=1}^{n} \max(-X_i - \theta, 0) \right)$$

Lemma 1.9. Let X be a random nice random variable, $X_1, \dots, X_n \stackrel{iid}{\sim} X$ and $\epsilon \in (0,1)$. Then $\widehat{AVar}_{\epsilon}(X)$ is an unbiased estimator for $AVar_{\epsilon}(X)$.

Proof. For each $\epsilon \in (0,1), \omega \in \Omega$ and $\theta \in \mathbb{R}$, define

$$f_{\epsilon}(\omega)(\theta) = \theta + \frac{1}{n(1-\epsilon)} \sum_{i=1}^{n} \max(-X_i(\omega) - \theta, 0)$$

Note that for each $\epsilon \in (0,1)$ and $\omega \in \Omega$, $f_{\epsilon}(\omega)$ is convex and continuous. In this case with no expectation, it is easy to show that

$$\lim_{\theta \to \infty} \frac{\partial f_{\epsilon}(\omega)}{\partial \theta}(\theta) = 1$$

and

$$\lim_{\theta \to -\infty} \frac{\partial f_{\epsilon}(\omega)}{\partial \theta}(\theta) = -\frac{\epsilon}{1 - \epsilon} < 0$$

So for each $\epsilon \in (0,1)$ and $\omega \in \Omega$, $f_{\epsilon}(\omega)$ achieves its minimum at . Then $\{\theta \in \mathbb{R} : f_{\epsilon}(\omega)(\theta) \leq m+1\}$ is bounded

Since f_{ϵ} is continuous, we have that

$$\inf_{\theta \in \mathbb{R}} f_{\epsilon}(\theta) = \inf_{\theta \in \mathbb{Q}} f_{\epsilon}(\theta)$$

which is measurable.

References