H1	Zesilovač	3D2
21. 5. 2018	Zesiiovac	Meinlschmidt

ZADÁNÍ:

- 1. Uveďte rozdělení zesilovačů:
 - a) Podle druhu a kmitočtu vstupního signálu
 - b) Podle šířky kmitočtového pásma
 - c) Podle pracovního režimu (polohy pracovního bodu)
- 2. U předloženého zesilovače změřte:
 - a) Vstupní impedanci
 - b) Výstupní impedanci
 - c) Výstupní výkon
 - d) Přenosovou charakteristiku
- 3. Zakreslete přenosovou charakteristiku (pro frekvenci použijte logaritmické měřítko)

ODPOVĚDI NA OTÁZKY:

Rozdělení zesilovačů podle druhu a kmitočtu vstupního signálu:

Zesilovače podle druhu a kmitočtu vstupního signálu v základu dělíme na **nízkofrekvenční** (20 Hz – 20 kHz) a **vysokofrekvenční** (více než 20 kHz). Nízkofrekvenční zesilovače slouží zpravidla k zesilování zvukových signálů, zatímco vysokofrekvenční k bezdrátovému přenosu informací.

Dále rozeznáváme zesilovače – mikrovlnné (řádově GHz), stejnosměrné, impulzové a operační zesilovače.

Rozdělení zesilovačů podle šířky kmitočtového pásma:

Zesilovače dělíme na širokopásmové a úzkopásmové.

Rozdělení zesilovačů podle pracovního režimu (polohy pracovního bodu):

Podle pracovního režimu rozdělujeme do tříd A, B, AB, C, D, G a H.

TEORIE:

Měření parametrů zesilovače provádějte při frekvenci 1 kHz.

Měření vstupní impedance:

1. Rezistor nastavte na nulu $\mathbf{R}_i = \mathbf{0} \Omega$.

 $\frac{U_1}{Z_1} = \frac{U'_1 - U_1}{R_i}$

- 2. Napětí U_1 nastavte na celou hodnotu (~100 mV).
- 3. Pomocí regulace hlasitosti na zesilovači se nastavte hodnotu U_2 na celou hodnotu (řádově volty) a tuto hodnotu si $U_1 = \frac{U_1}{U'_1 U_1} * R_i$ pamatujte.
- 4. Odpor R_i zvyšujte tak, aby výstupní napětí U_2 viditelně pokleslo.
- 5. Napětí na generátoru zvyšte tak, aby výstupní napětí U_2 . dosáhlo původní hodnoty a na voltmetru odečtěte napětí U_1 .

Měření výstupní impedance:

- 1. Na výstup zesilovače připojte rezistor R_2 s odporem odpovídajícím impedanci vhodných reproduktorů. $\frac{U_{20}-U_2}{Z_2}=\frac{U_2}{R_2}$
- 2. Na vstup zesilovače se přiveď te signál (~100 mV).
- 3. Hlasitost na zesilovači nastavte přibližně na 80 %. 4. Na voltmetru odečtěte hodnotu napětí při zatížení U_2 . $Z_2 = \frac{U_{20} - U_2}{U_2} * R_2$
- 5. Odpojte zatěžovací rezistor R_2 a odečtěte napětí naprázdno U_{20} .

Měření výstupního výkonu:

Zesilovač je zatížen rezistorem R₂ s nominálním odporem.
Zvyšováním regulace hlasitosti a velikostí vstupního signálu zvyšujte výstupní napětí U_{2max}, až do hodnoty, kdy začne docházet k deformaci výstupní signálu zobrazovaného připojeným osciloskopem.

Měření přenosové charakteristiky:

- 1. Nastavte hodnoty korekce hloubek a výšek.
- 2. Na generátoru nastavujte frekvenci v rozsahu 10 Hz až 20 kHz, vstupní U_1 napětí udržujte na konstantní hodnotě. $a_U = 20 * log \frac{U_2}{U_1} [dB]$

-2-

- 3. Z výstupního napětí U_2 vypočtěte zesílení.
- 4. Sestrojte přenosovou charakteristiku $a_u = f(f)$.

SCHÉMA ZAPOJENÍ

POUŽITÉ PŘÍSTROJE A POMŮCKY:

Název	Typové označení	Inventární číslo
Generátor	UTG 9002C	947/19
Voltmetr 1	UT 803	947/16
Voltmetr 2	UT 803	947/12
Osciloskop	UTD 052 CEL	947/26
Zesilovač	SC 1800S	95/2
Odporová dekáda	726	4491/01
Přípravky pro měření zesilovače	Z-01 Z-02	

POPIS PRÁCE:

Před samotným měřením jsme si připravili potřebné pomůcky a součástky – například generátor, osciloskop atd. Jejich typové značky, evidenční čísla a jiné nutné údaje jsme řádně zapsali do záznamu o měření.

Pro každé měření v teorii jsme provedli dané zapojení. Nastavení hloubek a výšek je nutno provést vyučujícím. Naměřené hodnoty jsme zapsali do záznamového archu.

Je nutno dbát na to, že decibel není jednotka SI a že na rozdíl od ostatních jednotek, je decibel jednotka logaritmická. Tudíž útlum o 3 dB se rovná $\frac{1}{\sqrt{2}} = 0,707 = 70,7\%$.

TABULKY

Vstupní impedance		
U_1 [V]	0,103	
U_2 [V]	5,020	
$R_i [\Omega]$	100,00k	
$U_1'[V]$	0,138	
$Z_1[\Omega]$	294,28k	

Výstupní impedance		
$R_2[\Omega]$	4,000	
U_2 [V]	3,956	
U_{20} [V]	4,667	
$Z_2 [\Omega]$	0,699	

Výstupní výkon		
U_{2MAX} [V]	7,30	
$R_2 [\Omega]$	4,00	
P_{2MAX} [W]	13,32	

Přenosová charakteristika		
U_1 [V]	0,100	
Hloubky [%]	20,00	
Výšky [%]	-20,00	

f [Hz]	<i>U</i> ₂ [V]	f [kHz]	<i>U</i> ₂ [V]
10	0,646	1	1,968
12	0,922	1,2	1,963
15	1,416	1,5	1,916
18	1,823	1,8	1,881
22	2,262	2,2	1,837
27	2,782	2,7	1,801
33	2,902	3,3	1,799
39	2,991	3,9	1,778
47	3,256	4,7	1,753
56	3,432	5,6	1,740
68	3,773	6,8	1,712
82	3,414	8,2	1,687
100	3,311	10	1,657
120	3,211	12	1,621
150	3,106	15	1,510
180	2,918	18	1,417
220	2,688	22	1,194
270	2,615		
330	2,420		
390	2,278		
470	2,161		
560	2,144		
680	2,060		
820	2,034		

GRAFY

SPOLUPRACOVALI:

Kropáček Tomáš, Vomáčka Pavel

ZÁVĚR:

Všechny úkoly se zadání byly splněny, během měření jsem si nevšiml žádných chyb nebo logických nesrovnalostí. Na přenosové charakteristice je vidět útlum vyšších frekvencí, zatímco nižší frekvence (basy) jsou zesíleny.