Compacité

Valeurs d'adhérences d'une suite

Exercice 1 [02946] [Correction]

Soit a une suite de réels telle que $a_{n+1} - a_n$ tend vers 0. Montrer que l'ensemble des valeurs d'adhérence de a est un intervalle.

Exercice 2 [01162] [Correction]

Soit K une partie compacte d'un espace vectoriel normé E. Montrer que si une suite (u_n) d'éléments de K n'a qu'une seule valeur d'adhérence alors cette suite converge vers celle-ci.

Exercice 3 [01163] [Correction]

Soit (u_n) une suite réelle bornée telle que $u_n + \frac{1}{2}u_{2n} \to 0$. Montrer que si a est une valeur d'adhérence de (u_n) alors -2a l'est aussi. En déduire que (u_n) converge.

Exercice 4 [02947] [Correction]

Déterminer les suites réelles bornées telle que $\left(u_n + \frac{u_{2n}}{2}\right)_{n \geq 0}$ converge.

Partie compacte

Exercice 5 [01160] [Correction]

Montrer que toute partie fermée d'une partie compacte est elle-même compacte.

Exercice 6 [01164] [Correction]

Soient K et L deux compacts d'un espace vectoriel normé E. Établir que $K+L=\{x+y\mid x\in K,y\in L\}$ est un compact de E.

Exercice 7 [01171] [Correction]

Soient E et F deux espaces normés, A une partie fermée de E et B une partie compacte de F.

Soit $f: A \to B$ une application vérifiant :

- $f^{-1}(\{y\})$ est compact pour tout $y \in B$;
- l'image de tout fermé de A est un fermé de B.

Montrer que A est compact.

Exercice 8 [02778] [Correction]

Soient $(E, \|\cdot\|)$ un espace vectoriel normé et F un sous-espace vectoriel de dimension finie de E.

(a) Montrer

$$\forall x \in E, \exists y \in F, d(x, F) = ||x - y||.$$

- (b) Montrer, si $F \neq E$, qu'il existe $u \in E$ tel que d(u, F) = ||u|| = 1.
- (c) Montrer que E est de dimension finie si, et seulement si, la boule unité fermée $B = \{x \in E \mid ||x|| \le 1\}$ est une partie compacte.

Exercice 9 [04165] [Correction]

Soit $n \in \mathbb{N}$ et $A \in \mathcal{M}_n(\mathbb{R})$ une matrice à coefficients strictement positifs. Pour $x = (x_1, \dots, x_n)$ et $y = (y_1, \dots, y_n)$ choisis dans \mathbb{R}^n , on écrit $x \leq y$ si $x_i \leq y_i$ pour tout indice i.

- (a) Écrire un programme **Python** qui renvoie la valeur propre de module maximal d'une matrice passée en argument.
- (b) Tester ce programme pour dix matrices carrées à coefficients pris aléatoirement dans [1;2[.

Soit

$$S = \{ \lambda \in \mathbb{R}_+ \mid \exists x \in \mathbb{R}^n \setminus \{0\}, 0 \le x \text{ et } \lambda x \le Ax \}.$$

(c) Soit $\lambda \in S$. Montrer qu'il existe $x \in \mathbb{R}^n$ tel que

$$0 \le x$$
, $\sum_{i=1}^{n} x_i = 1$ et $\lambda x \le Ax$.

- (d) Soit λ une valeur propre complexe. Montrer que $|\lambda| \in S$.
- (e) Montrer que la partie S est majorée et expliciter un majorant.
- (f) Montrer que S est une partie compacte.
- (g) Soit $\alpha = \max S$. Montrer que α est une valeur propre de A strictement positive associée à un vecteur propre strictement positif.

Exercice 10 [04950] [Correction]

Soit K une partie compacte d'un espace normé E et $(\Omega_i)_{i\in I}$ une famille d'ouverts de E recouvrant le compact K, c'est-à-dire vérifiant

$$K \subset \bigcup_{i \in I} \Omega_i$$
.

- (a) Montrer qu'il existe un réel $\alpha > 0$ tel que, pour tout $x \in K$, il existe au moins un indice $i \in I$ tel que la boule $B(x, \alpha)$ soit incluse dans Ω_i .
- (b) Établir qu'il existe une famille finie (x_1, \ldots, x_n) constituée d'éléments de K telle que

$$K \subset \bigcup_{i=1}^{n} B(x_i, \alpha).$$

(c) Conclure que l'on peut extraire de la famille $(\Omega_i)_{i\in I}$ une sous-famille finie recouvrant K.

Compacité et continuité

Exercice 11 [01175] [Correction]

Soit E un espace vectoriel normé de dimension finie.

- (a) Soit A une partie non vide de E. Montrer que l'application $x \mapsto d(x, A)$ est continue sur E.
- (b) Soit K un compact non vide inclus dans un ouvert U. Montrer qu'il existe $\alpha>0$ tel que

$$\forall x \in K, B(x, \alpha) \subset U.$$

Exercice 12 [04089] [Correction]

Soient K un compact non vide d'un espace normé E et $f\colon K\to K$ telle que

$$\forall (x,y) \in K^2, \ x \neq y \implies ||f(x) - f(y)|| < ||x - y||.$$

- (a) Montrer que f possède au plus un point fixe.
- (b) Justifier qu'il existe $c \in K$ tel que

$$\forall x \in K, ||f(x) - x|| \ge ||f(c) - c||.$$

(c) En déduire que f admet un point fixe.

Exercice 13 [01176] [Correction]

Soit K un compact non vide d'un espace vectoriel normé E de dimension finie. On considère une application $f\colon K\to K$ vérifiant

$$\forall x, y \in K, x \neq y \implies d(f(x), f(y)) < d(x, y).$$

Montrer que f admet un unique point fixe.

Exercice 14 [03410] [Correction]

Soient f une application continue de $\mathbb R$ dans $\mathbb R$ et I un segment inclus dans l'image de f.

Montrer qu'il existe un segment J tel que

$$f(J) = I$$
.

Exercice 15 [03857] [Correction]

Soit K une partie compacte non vide d'un espace vectoriel normé E de dimension finie.

On considère $f: K \to K$ une application ρ -lipschitzienne i.e. vérifiant

$$\forall x, y \in K, ||f(y) - f(x)|| \le \rho ||y - x||.$$

- (a) On suppose $\rho < 1$. Montrer que f admet un point fixe.
- (b) On suppose $\rho=1$ et K convexe. Montrer à nouveau que f admet un point fixe. On pourra introduire, pour $a\in K$ et $n\in\mathbb{N}^*$, les fonctions

$$f_n \colon x \mapsto \frac{a}{n} + \frac{n-1}{n} f(x).$$

Exercice 16 [01173] [Correction]

Soient E et F deux espaces vectoriels normés de dimensions finies. Soient K un compact de E et $f: K \to F$ une application continue injective.

- (a) On pose L = f(K). Montrer que L est compact.
- (b) Montrer que $f^{-1}: L \to K$ est continue.

Exercice 17 [04074] [Correction]

Soit f une fonction numérique continue sur $[0; +\infty[$ telle que f ait une limite finie ℓ en $+\infty$.

Démontrer que f est uniformément continue sur $[0; +\infty[$

Exercice 18 [04103] [Correction]

E désigne un espace vectoriel euclidien et f un endomorphisme de E.

- (a) Soit $x \in E$ et r > 0. Justifier que la boule $B_f(x,r)$ est compacte. Que dire de $f(B_f(x,r))$?
- (b) Soit $x \in E$ et un réel r tel que 0 < r < ||x||. On note $K = B_f(x, r)$ et on suppose $f(K) \subset K$.

On fixe $a \in K$ et on pose, pour tout $n \in \mathbb{N}^*$

$$y_n = \frac{1}{n} \sum_{k=0}^{n-1} f^k(a).$$

Justifier que $(y_n)_{n\geq 1}$ est une suite d'éléments de K et que $f(y_n)-y_n$ tend vers 0_E . En déduire qu'il existe un vecteur $w\in K$ tel que f(w)=w.

- (c) On reprend les notations précédentes et on suppose toujours $f(K) \subset K$. Montrer que $1 \in \operatorname{Sp} f$ et $\operatorname{Sp} f \subset [-1;1]$.
- (d) À l'aide d'un exemple choisi en dimension 3, montrer que f n'est pas nécessairement diagonalisable.
- (e) Dans cette dernière question, on choisit dim E=3, $\mathcal{B}=(e_1,e_2,e_3)$ base orthonormée de E et

$$K = \left\{ x.e_1 + y.e_2 + z.e_3 \mid \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} \le 1 \right\} \text{ avec } a, b, c > 0.$$

On suppose f(K) = K. Montrer que 1 ou -1 est valeur propre de f.

Exercice 19 [04993] [Correction]

Soit $A \in \mathcal{M}_n(\mathbb{R})$ (avec $n \geq 2$). On souhaite établir qu'il existe une matrice $P \in \mathcal{O}_n(\mathbb{R})$ telle que les coefficients diagonaux de $P^{-1}AP$ soient tous égaux.

- (a) Établir la propriété quand n=2.
- (b) Pour $M = (m_{i,j}) \in \mathcal{M}_n(\mathbb{R})$, on pose

$$\delta(M) = \sum_{i=1}^{n-1} |m_{i+1,i+1} - m_{i,i}|.$$

Montrer que la fonction $\varphi \colon P \in \mathcal{O}_n(\mathbb{R}) \mapsto \delta(P^{-1}AP)$ présente un minimum.

(c) Conclure.

Raisonnement de compacité

Exercice 20 [01166] [Correction]

Soit K un compact d'un espace vectoriel normé E tel que $0 \notin K$.

On forme $F = \{\lambda . x \mid \lambda \in \mathbb{R}_+, x \in K\}$. Montrer que F est une partie fermée.

Exercice 21 [01167] [Correction]

Soient K et L deux compacts disjoints d'un \mathbb{K} -espace vectoriel. Montrer que d(K, L) > 0.

Exercice 22 [01174] [Correction]

Soient K et L deux compacts non vides et disjoints. Montrer

$$d(K, L) = \inf_{x \in K, y \in L} ||y - x|| > 0.$$

Exercice 23 [01168] [Correction]

Soit F une partie fermée non vide d'un espace vectoriel normé de dimension finie F.

- (a) Montrer que, pour tout $x \in E$, la distance de x à F est atteinte en un certain élément $y_0 \in F$.
- (b) Y a-t-il unicité de cet élément y_0 ?

Exercice 24 [02772] [Correction]

Soient f une fonction de \mathbb{R} dans \mathbb{R} et

$$\Gamma_f = \{(x, f(x)) \mid x \in \mathbb{R}\}$$

son graphe.

- (a) On suppose f continue. Montrer que Γ_f est fermé.
- (b) On suppose f bornée et Γ_f est fermé dans \mathbb{R}^2 . Montrer que f est continue.
- (c) Le résultat précédent subsiste-t-il si l'on ne suppose plus f bornée?

Exercice 25 [03274] [Correction]

Soit A une partie bornée non vide d'un \mathbb{R} -espace vectoriel de dimension finie E.

(a) Montrer qu'il existe une boule fermée de rayon minimal contenant A.

(b) On suppose l'espace E euclidien, montrer l'unicité de la boule précédente.

Exercice 26 [03305] [Correction]

- (a) Soit F une partie fermée d'un \mathbb{K} -espace vectoriel E de dimension finie. L'ensemble $F' = \bigcup_{x \in F} \overline{B(x,1)}$ est-il fermé?
- (b) Qu'en est-il si on ne suppose plus l'espace E de dimension finie?

Exercice 27 [02776] [Correction]

Soient E_1 et E_2 deux espaces vectoriels normés réels, f une application de E_1 dans E_2 telle que pour tout compact K de E_2 , $f^{-1}(K)$ soit un compact de E_1 . Montrer, si F est un fermé de E_1 , que f(F) est un fermé de E_2 .

Exercice 28 [01179] [Correction]

Soit F un sous-espace vectoriel d'un espace vectoriel normé E.

- (a) On suppose E de dimension finie. Montrer que $\overline{F} = F$.
- (b) On ne suppose plus E de dimension finie, montrer qu'il est possible que $\overline{F} \neq F.$

Corrections

Exercice 1 : [énoncé]

Soit A l'ensemble des valeurs d'adhérence de la suite a. Nous allons établir que A est un intervalle en observant que

$$\forall \alpha < \beta \in A, [\alpha \, ; \beta] \subset A$$

(caractérisation usuelle des intervalles)

Soit $\alpha < \beta \in A$ et $\gamma \in [\alpha; \beta]$. Si $\gamma = \alpha$ ou $\gamma = \beta$ alors évidemment $\gamma \in A$. Supposons maintenant $\gamma \in [\alpha; \beta]$.

Soient $N \in \mathbb{N}$ et $\varepsilon > 0$. Puisque $a_{n+1} - a_n \to 0$, il existe un rang N' tel que

$$\forall n \ge N', |a_{n+1} - a_n| \le \varepsilon.$$

Comme α est valeur d'adhérence de a et que $\alpha < \gamma$ il existe $p \ge \max(N, N')$ tel que $a_p < \gamma$. Aussi, il existe $q \ge \max(N, N')$ tel que $a_q > \gamma$. Si p < q, on introduit

$$E = \{ n \in [p; q], a_n < \gamma \}.$$

Cet ensemble E est une partie de \mathbb{N} , non vide (car $p \in E$) et majoré (parq). Cet ensemble admet donc un plus grand élément r. Nécessairement r < q car $a_q \ge \gamma$. Puisque $r \in E$ et $r+1 \notin E$, $a_r < \gamma \le a_{r+1}$ et donc $|\gamma - a_r| \le |a_{r+1} - a_r| \le \varepsilon$. Si p > q, un raisonnement semblable conduit à la même conclusion. Finalement

$$\forall N \in \mathbb{N}, \forall \varepsilon > 0, \exists r \geq N, |\gamma - a_r| \leq \varepsilon.$$

On peut donc affirmer que γ est valeur d'adhérence de a et conclure.

Exercice 2 : [énoncé]

Soit (u_n) une suite d'éléments de K qui n'ait qu'une seule valeur d'adhérence ℓ . Par l'absurde supposons que (u_n) ne converge par vers ℓ . On peut écrire

$$\exists \varepsilon > 0, \forall N \in \mathbb{N}, \exists n \geq N, |u_n - \ell| > \varepsilon.$$

Par conséquent il existe une infinité de termes de cette suite tels que $|u_n - \ell| > \varepsilon$. À partir de ces termes on peut construire une suite extraite de (u_n) qui étant une suite d'éléments du compact K possèdera une valeur d'adhérence qui ne peut être que ℓ compte tenu de l'hypothèse.

C'est absurde, car tous ces termes vérifient $|u_n - \ell| > \varepsilon$.

Exercice 3: [énoncé]

Posons

$$\varepsilon_n = u_n + \frac{1}{2}u_{2n} \to 0.$$

Si $u_{\varphi(n)} \to a$ alors $u_{2\varphi(n)} = 2\varepsilon_{\varphi(n)} - 2u_{\varphi(n)} \to -2a$. Ainsi

$$a \in Adh(u) \implies -2a \in Adh(u).$$

Si (u_n) possède une valeur d'adhérence a autre que 0 alors, pour tout $k \in \mathbb{N}$, $(-2)^k a$ est aussi valeur d'adhérence. Or ceci est impossible car (u_n) est bornée. Puisque (u_n) est bornée et que 0 est sa seule valeur d'adhérence possible, $u_n \to 0$.

Exercice 4: [énoncé]

Posons $\ell = \lim_{n \to +\infty} \left(u_n + \frac{u_{2n}}{2} \right)$ et $v_n = u_n - \frac{2}{3}\ell$ de sorte que $\varepsilon_n = v_n + \frac{v_{2n}}{2} \to 0$.

Soit a une valeur d'adhérence de la suite (v_n) .

Il existe $\varphi \colon \mathbb{N} \to \mathbb{N}$ strictement croissante telle que $v_{\varphi(n)} \to a$.

$$v_{2\varphi(n)} = 2\varepsilon_{\varphi(n)} - 2v_{\varphi(n)} \xrightarrow[n \to +\infty]{} -2a$$

donc -2a est aussi valeur d'adhérence de (v_n) .

En reprenant ce processus, pour tout $p \in \mathbb{N}$, $(-2)^p a$ est valeur d'adhérence de (v_n) . Or la suite (u_n) est bornée, la suite (v_n) l'est donc aussi et ses valeurs d'adhérence le sont encore. On peut donc affirmer a = 0.

La suite (v_n) est bornée et 0 est sa seule valeur d'adhérence donc elle converge vers 0 (car si tel n'était pas le cas, il existerait une infinité de termes de la suite (v_n) en dehors d'un intervalle $[-\varepsilon;\varepsilon],\varepsilon>0$, et de ces termes bornés on pourrait extraire une suite convergente d'où l'existence d'une valeur d'adhérence non nulle).

Exercice 5: [énoncé]

Soit F une partie fermée d'un compact K. Si (x_n) est une suite d'éléments de F, alors c'est aussi une suite d'éléments de K et on peut donc en extraire une suite $(x_{\varphi(n)})$ convergeant dans K. Cette suite extraite est aussi une suite convergente d'éléments du fermé F, sa limite appartient donc à F. Au final, il existe une suite extraire de (x_n) convergeant dans F.

Exercice 6: [énoncé]

Soit (u_n) une suite d'éléments de K+L. Pour tout $n \in \mathbb{N}$, on peut écrire $u_n = a_n + b_n$ avec $a_n \in K$ et $b_n \in L$. On peut extraire de la suite (a_n) d'éléments

du compact K, une suite $(a_{\varphi(n)})$ convergeant vers un élément de K. On peut aussi extraire de la suite $(b_{\varphi(n)})$ d'éléments du compact L, une suite $(b_{\varphi(\psi(n))})$ convergeant vers un élément de L. Pour l'extractrice $\theta = \varphi \circ \psi$, $(a_{\theta(n)})$ et $(b_{\theta(n)})$ convergent vers des éléments de K et L donc $(u_{\theta(n)})$ converge vers un élément de K + L.

Autre démonstration K+L est l'image du compact $K\times L$ de E^2 par l'application continue $(x,y)\mapsto x+y$.

Exercice 7: [énoncé]

Soit (u_n) une suite d'éléments de A. On va établir que cette suite possède une valeur d'adhérence dans A.

On pose $F_n = \overline{\{u_p \mid p \geq n\}}$. La suite (F_n) est une suite décroissante de fermés non vides. Posons $G_n = f(F_n)$. La suite (G_n) est une suite décroissante de fermés non vides. On peut considérer $y_n \in G_n$. La suite (y_n) possède une valeur d'adhérence y car B est compact. Pour tout $p \geq n$, on a $y_p \in G_p \subset G_n$ donc $y \in G_n$. Par suite, il existe $t_n \in F_n$ tel que $y = f(t_n)$. La suite (t_n) est une suite du compact $f^{-1}\{y\}$, elle possède donc une valeur d'adhérence t. Pour tout $p \geq n$, $t_p \in F_p \subset F_n$ donc $t \in F_n$.

Ainsi, t est une valeur d'adhérence de (u_n) .

Exercice 8 : [énoncé]

(a) Par définition

$$d(x, F) = \inf\{\|x - y\| \mid y \in F\}.$$

Soit $n \in \mathbb{N}$. Le réel d(x, F) + 1/(n + 1) ne minore par l'ensemble $\{||x - y|| \mid y \in F\}$ et donc il existe $y_n \in F$ tel que

$$d(x,F) \le ||x - y_n|| < d(x,F) + \frac{1}{n+1}.$$

En faisant varier n, cela détermine une suite (y_n) d'éléments de F vérifiant

$$||x - y_n|| \to d(x, F).$$

Cette suite est bornée et évolue dans l'espace vectoriel normé F qui est de dimension finie, elle admet donc une valeur d'adhérence y dans F pour laquelle on obtient

$$d(x, F) = ||x - y||.$$

(b) Puisque $F \neq E$, il existe un vecteur x de E n'appartenant pas à F. On vérifie aisément

$$d(\lambda x, F) = |\lambda| d(x, F)$$

car pour $\lambda \neq 0$

$$\{\|\lambda x - y\| \mid y \in F\} = \{\|\lambda(x - y')\| \mid y' \in F\}.$$

Il est donc possible de choisir x vérifiant d(x, F) = 1. Pour tout vecteur $y \in F$, on a aussi d(x - y, F) = 1 car

$$\{||x - z|| \mid z \in F\} = \{||x - y - z'|| \mid z' \in F\}.$$

Il ne reste plus qu'à trouver $y \in F$ tel que ||x - y|| = 1. Le vecteur $y \in F$ vérifiant d(x, F) = ||x - y|| convient. Le vecteur u = x - y est alors solution.

(c) Si E est de dimension finie, la boule B est compacte car fermée et bornée en dimension finie.

Inversement, supposons par l'absurde que B est compacte et E de dimension infinie. Par récurrence, on construit une suite (u_n) de vecteurs de E en posant u_0 un vecteur unitaire quelconque, puis une fois u_0, \ldots, u_n déterminés, on définit u_{n+1} de sorte que

$$d(u_{n+1}, \text{Vect}(u_0, \dots, u_n)) = ||u_{n+1}|| = 1.$$

Cette construction est possible par l'étude qui précède car E est supposé de dimension infinie.

La suite (u_n) ainsi définie est une suite d'éléments du compact B, on peut donc en extraire une suite convergente $(u_{\varphi(n)})$. Puisque cette suite converge

$$||u_{\varphi(n+1)} - u_{\varphi(n)}|| \to 0$$

or

$$||u_{\varphi(n+1)} - u_{\varphi(n)}|| \ge d(u_{\varphi(n+1)}, \text{Vect}(u_0, \dots, u_{\varphi(n+1)-1})) \ge 1.$$

C'est absurde.

Exercice 9 : [énoncé]

(a) import numpy as np import numpy.linalg

maxi = eig[0]
for e in eig:
 if abs(e) > abs(maxi): maxi = e
return maxi

(b) import random as rnd

for t in range(10):
 print(eigmax(generematrice(3)))

- (c) Soit $\lambda \in S$. Il existe x non nul à coefficients positifs tel que $\lambda x \leq Ax$. En divisant x par la somme de ses coefficients (qui est un réel strictement positif), on détermine un nouveau vecteur comme voulu.
- (d) Soit λ une valeur propre complexe et $z=(z_1,\ldots,z_n)$ le vecteur propre associé. Pour tout $i\in [1;n]$,

$$\lambda z_i = \sum_{j=1}^n a_{i,j} z_j$$

et donc

$$|\lambda||z_i| \le \sum_{j=1}^n \underbrace{a_{i,j}}_{\ge 0} |z_j|.$$

Le vecteur $x = (|z_1|, \dots, |z_n|)$, est un vecteur réel non nul vérifiant $0 \le x$ et $|\lambda| x \le Ax$. On en déduit $|\lambda| \in S$.

(e) Soit $\lambda \in S$ et $x \in \mathbb{R}^n$ non nul tel que $0 \le x$ et $\lambda x \le Ax$. Considérons i l'indice tel que x_i soit maximal parmi x_1, \ldots, x_n . On a

$$\lambda x_i \le \sum_{j=1}^n a_{i,j} x_j \le \sum_{j=1}^n a_{i,j} x_i.$$

En simplifiant par x_i (qui est strictement positif car $0 \le x$ et x non nul), il vient

$$\lambda \le \sum_{j=1}^{n} a_{i,j}.$$

On en déduit que la partie S est majorée par le réel

$$M = \max_{1 \le i \le n} \sum_{j=1}^{n} a_{i,j}.$$

(f) La partie S est bornée dans un espace de dimension finie, il suffit d'établir qu'elle est fermée pour pouvoir affirmer qu'elle est compacte. Soit (λ_p) une suite d'éléments de S de limite λ_{∞} . Pour tout $p \in \mathbb{N}$, on peut introduire $x_p \in \mathbb{R}^n$ à coefficients positifs de somme égale à 1 et vérifiant $\lambda_p x_p \leq A x_p$. La suite (x_p) évolue dans le compact

$$K = \{ x \in \mathbb{R}^n \mid 0 \le x \text{ et } \sum_{i=1}^n x_i = 1 \}.$$

Il existe une suite extraite $(x_{\varphi(q)})$ de limite $x_{\infty} \in K$. Pour tout $q \in \mathbb{N}$, $\lambda_{\varphi(q)}x_{\varphi(q)} \leq Ax_{\varphi(q)}$ ce qui donne à la limite $\lambda_{\infty}x_{\infty} \leq Ax_{\infty}$. On peut donc affirmer que λ_{∞} est élément de S. La partie S contient les limites de ses suites convergentes, elle est donc fermée et finalement compacte.

(g) La compacité de S permet d'introduire son élément maximal α . Soit aussi $x \in K$ tel que $\alpha x \leq Ax$. Si $\alpha x \neq Ax$, le vecteur $y = Ax - \alpha x$ est à coefficients positifs et n'est pas nul. La matrice A étant à coefficients strictement positifs, Ay est à coefficients strictement positifs. Considérons ensuite z = Ax. Le vecteur z est à coefficients strictement positifs car les coefficients de A sont strictement positifs et les coefficients de x sont positifs et non tous nuls. Quitte à considérer $\varepsilon > 0$ assez petit, on peut écrire $\varepsilon z \leq Ay$. Cette comparaison se réorganise pour permettre d'écrire

$$(\alpha + \varepsilon)z = Az$$

ce qui contredit la définition de α . On en déduit $\alpha x = Ax$ et, comme souligné au-dessus, z = Ax est un vecteur à coefficients strictement positifs ce qui entraine $\alpha > 0$ et x à coefficients strictement positifs.

Exercice 10: [énoncé]

(a) Par l'absurde supposons qu'un tel $\alpha > 0$ n'existe pas. Pour tout $n \in \mathbb{N}$, en considérant $\alpha_n = 1/(n+1) > 0$, il existe un élément $x_n \in K$ tel que

$$B(x_n, \alpha_n) \not\subset \Omega_i$$
 pour tout $i \in I$. (1)

En faisant varier n, ceci détermine une suite $(x_n)_{n\in\mathbb{N}}$ d'éléments du compact K. On peut extraire de cette suite une sous-suite $(x_{\varphi(n)})$ convergeant vers un

élément x de K. La famille $(\Omega_i)_{i\in I}$ recouvrant K, il existe au moins un indice $i\in I$ tel que x est élément de Ω_i . Or Ω_i est une partie ouverte, on peut donc introduire $\alpha>0$ tel que $B(x,\alpha)\subset\Omega_i$. Cependant, pour n assez grand, on a à la fois

$$||x_{\varphi(n)} - x|| \le \frac{\alpha}{2}$$
 et $\alpha_{\varphi(n)} \le \frac{\alpha}{2}$

de sorte que

$$B(x_{\varphi(n)}, \alpha_{\varphi(n)}) \subset B(x, \alpha) \subset \Omega_i$$
.

C'est absurde puisque cela contredit (??).

(b) Par l'absurde supposons qu'une telle famille finie n'existe pas et construisons par récurrence une suite (x_n) d'éléments de K en choisissant arbitrairement x_0 dans K puis, pour tout $n \in \mathbb{N}$, en choisissant x_{n+1} dans K privé de la réunion des $B(x_i, \alpha)$ pour i allant de 0 à n (l'hypothèse absurde assure que ce choix est possible).

Par compacité de K, on peut extraire de la suite (x_n) une suite convergente. En notant x sa limite, on peut déterminer dans (x_n) des termes arbitrairement proches de x. En particulier, on peut trouver x_n et x_{n+p} avec $n \in \mathbb{N}$ et $p \in \mathbb{N}^*$ vérifiant

$$||x_n - x|| < \frac{\alpha}{2}$$
 et $||x_{n+p} - x|| < \frac{\alpha}{2}$.

Ceci entraîne $||x_{n+p} - x_n|| < \alpha$ et donc x_{n+p} est élément de la boule de centre x_n et de rayon α . Ceci est absurde car contredit le protocole suivi pour choisir x_{n+p} .

(c) Partant de la suite finie (x_1, \ldots, x_n) qu'on peut introduire grâce à la question précédente, on introduit des indices $i_1, \ldots, i_n \in I$ déterminés de sorte que

$$B(x_j, \alpha) \subset \Omega_{i_j}$$
 pour tout $j \in [1; n]$

On a alors

$$K \subset \bigcup_{j=1}^{n} B(x_j, \alpha) \subset \bigcup_{j=1}^{n} \Omega_{i_j}$$

et ainsi on peut conclure que le compact K peut être recouvert par une sous-famille finie de la famille d'ouverts $(\Omega_i)_{i \in I}$.

Exercice 11 : [énoncé]

(a) Soient $x, x' \in E$.

$$\forall y \in A, ||x - y|| \le ||x - x'|| + ||x' - y||$$

donc $d(x,A) \leq ||x-x'|| + ||x'-y||$ puis $d(x,A) - ||x-x'|| \leq ||x'-y||$ et $d(x,A) - ||x-x'|| \leq d(x',A)$. Ainsi $d(x,A) - d(x',A) \leq ||x-x'||$ et par symétrie $|d(x,A) - d(x',A)| \leq ||x-x'||$. Finalement $x \mapsto d(x,A)$ est 1 lipschitzienne donc continue.

(b) Considérons l'application $x \mapsto d(x, \mathcal{C}_E U)$ définie sur le compact K. Cette application est bornée et atteint ses bornes. Posons $\alpha = \min_{x \in K} d(x, \mathcal{C}_E U)$ atteint en $x_0 \in K$. Si $\alpha = 0$ alors $x_0 \in \overline{\mathcal{C}_E U}$ or $\mathcal{C}_E U$ est fermé et donc $x_0 \notin U$ or $x_0 \in K$. Nécessairement $\alpha > 0$ et alors

$$\forall x \in K, B(x, \alpha) \subset U.$$

Exercice 12: [énoncé]

(a) Supposons que f possède deux points fixes $x \neq y$. L'hypothèse de travail donne

$$||f(x) - f(y)|| < ||x - y||$$

ce qui est absurde si f(x) = x et f(y) = y.

(b) On introduit la fonction $\delta \colon x \mapsto \|f(x) - x\|$ définie sur K. La fonction δ est continue sur le compact K, elle admet donc un minimum en un $c \in K$ et alors

$$\forall x \in K, \delta(x) \ge \delta(c).$$

(c) Par l'absurde, si $f(c) \neq c$ alors

$$\delta(f(c)) = ||f(f(c)) - f(c)|| < ||f(c) - c|| = \delta(c)$$

ce qui contredit la minimalité de c. Il reste f(c)=c ce qui fournit un point fixe.

Exercice 13 : [énoncé]

Unicité : Si $x \neq y$ sont deux points fixes distincts on a

$$d(x,y) = d(f(x), f(y) < d(x,y).$$

C'est exclu et il y a donc unicité du point fixe.

Existence: Considérons la fonction réelle $g: x \mapsto d(x, f(x))$ définie sur K. Par composition g est continue et puisque K est une partie compacte non vide, g atteint son minimum en un certain $x_0 \in K$.

Si $f(x_0) \neq x_0$ on a alors

$$g(f(x_0)) = d(f(f(x_0)), f(x_0)) < d(f(x_0), x_0) = g(x_0)$$

ce qui contredit la définition de x_0 . Nécessairement $f(x_0) = x_0$ ce qui résout le problème.

Exercice 14: [énoncé]

Notons α, β les extrémités de I.

Soient $a,b\in\mathbb{R}$ des antécédents de α,β respectivement. Malheureusement, on ne peut pas déjà affirmer $f([a\,;b])=[\alpha\,;\beta]$ car les variations de f sur $[a\,;b]$ sont inconnues.

Posons

$$A = \{ x \in [a; b] \mid f(x) = \alpha \} \text{ et } B = \{ x \in [a; b] \mid f(x) = \beta \}.$$

Considérons ensuite

$$\Delta = \{ |y - x| \mid x \in A, y \in B \}$$

 Δ est une partie de \mathbb{R} non vide et minorée. On peut donc introduire sa borne inférieure m. Par la caractérisation séquentielle des bornes inférieures, il existe deux suites $(x_n) \in A^{\mathbb{N}}$ et $(y_n) \in B^{\mathbb{N}}$ vérifiant

$$|y_n - x_n| \to m$$
.

La partie A étant fermée et bornée, on peut extraire de la suite (x_n) une suite $(x_{\varphi(n)})$ convergeant dans A. De la suite $(y_{\varphi(n)})$, on peut aussi extraire une suite convergeant dans B et en notant x_{∞} et y_{∞} les limites de ces deux suites, on obtient deux éléments vérifiant

$$x_{\infty} \in A, y_{\infty} \in B \text{ et } |y_{\infty} - x_{\infty}| = \min \Delta.$$

Autrement dit, on a définit des antécédents des extrémités de I dans [a;b] les plus proches possibles.

Pour fixer les idées, supposons $x_{\infty} \leq y_{\infty}$ et considérons $J = [x_{\infty}; y_{\infty}]$. On a $\alpha, \beta \in f(J)$ et f(J) intervalle (car image continue d'un intervalle) donc

$$I \subset f(J)$$
.

Soit $\gamma \in f(J)$. Il existe $c \in J$ tel que $f(c) = \gamma$.

Si $\gamma < \alpha$ alors en appliquant le théorème de valeurs intermédiaires sur $[z; y_{\infty}]$, on peut déterminer un élément de A plus proche de y_{∞} que ne l'est x_{∞} . Ceci contredit la définition de ces deux éléments.

De même $\gamma > \beta$ est impossible et donc $f(J) \subset I$ puis l'égalité.

Exercice 15: [énoncé]

(a) La fonction f est continue car lipschitzienne. Considérons $g\colon x\in K\mapsto \|f(x)-x\|$. La fonction g est réelle, continue et définie sur un compact non vide, elle admet donc un minimum en un certain $x_0\in K$. Puisque

$$g(x_0) \le g(f(x_0)) = ||f(f(x_0)) - f(x_0)|| \le \rho ||f(x_0) - x_0|| = \rho g(x_0) \text{ avec } \rho < 1.$$

On a nécessairement $g(x_0) = 0$ et donc $f(x_0) = x_0$ ce qui fournit un point fixe pour f.

(b) Par la convexité de K, on peut affirmer que f_n est une application de K vers K.

De plus

$$||f_n(y) - f_n(x)|| = \frac{n-1}{n} ||f(y) - f(x)|| \le \rho_n ||y - x||$$

avec $\rho_n < 1$.

Par l'étude ci-dessus, la fonction f_n admet un point fixe x_n . La suite (x_n) est une suite du compact K, il existe donc une suite extraite $(x_{\varphi(n)})$ convergeant vers un élément $x_\infty \in K$. La relation

$$f_{\varphi(n)}(x_{\varphi(n)}) = x_{\varphi(n)}$$

donne

$$\frac{a}{\varphi(n)} + \frac{\varphi(n) - 1}{\varphi(n)} f(x_{\varphi(n)}) = x_{\varphi(n)}$$

et donc à la limite

$$f(x_{\infty}) = x_{\infty}.$$

Exercice 16: [énoncé]

- (a) L est l'image d'un compact par une application continue donc L est compact.
- (b) Supposons f^{-1} non continue : $\exists y \in L, \exists \varepsilon > 0, \forall \alpha > 0, \exists y' \in L$ tel que $|y'-y| \leq \alpha$ et $|f^{-1}(y') f^{-1}(y)| > \varepsilon$. Posons $x = f^{-1}(y)$ et en prenant $\alpha = \frac{1}{n}$ définissons $y_n \in L$ puis $x_n = f^{-1}(y_n)$ tels que $|y_n y| \leq \frac{1}{n}$ et $|x_n x| > \varepsilon$. (x_n) est une suite d'éléments du compact K donc elle possède une sous-suite convergente : $(x_{\varphi(n)})$. Posons $a = \lim x_{\varphi(n)}$. Comme f est continue, $y_{\varphi(n)} = f(x_{\varphi(n)}) \to f(a)$ or $y_n \to y$ donc par unicité de la limite y = f(a) puis $a = f^{-1}(y) = x$. Ceci est absurde puisque $|x_{\varphi(n)} x| > \varepsilon$.

Exercice 17: [énoncé]

Soit $\varepsilon > 0$. Il existe $A \in \mathbb{R}_+$ tel que

$$\forall x \ge A, |f(x) - \ell| \le \varepsilon/2$$

et alors

$$\forall x, y \in [A; +\infty[, |f(y) - f(x)| \le \varepsilon$$
 (*).

De plus, f est continue sur $[0\,;A]$ donc uniformément continue et il existe $\alpha>0$ tel que

$$\forall x, y \in [0; A], |y - x| \le \alpha \implies |f(y) - f(x)| \le \varepsilon(**).$$

Soit $x, y \in \mathbb{R}_+$ avec $|y - x| \le \alpha$. On peut supposer $x \le y$.

Si $x, y \in [0; A]$, on a $|f(y) - f(x)| \le \varepsilon$ en vertu de (**)

Si $x, y \in [A; +\infty[$, on a à nouveau $|f(y) - f(x)| \le \varepsilon$ cette fois-ci en vertu de (*). Si $x \in [0; A]$ et $y \in [A; +\infty[$, on a nécessairement $|x - A| < \alpha$. (*) et (**) donnent

alors

$$|f(x) - f(y)| \le |f(x) - f(A)| + |f(A) - f(y)| \le 2\varepsilon.$$

Quitte à adapter le ε de départ, on obtient ce que l'on veut.

Autre méthode : on introduit $g=f\circ \tan$ définie sur $[0\,;\pi/2[$ que l'on prolonge par continuité en $\pi/2$. Ce prolongement est continue sur un segment donc uniformément continue. Puisque $f=g\circ \arctan$ avec arctan lipschitzienne, on obtient f uniformément continue!

Exercice 18: [énoncé]

- (a) $B_f(x,r)$ est une partie fermée et bornée en dimension finie donc compacte. L'application linéaire f étant continue (car au départ d'un espace de dimension finie), l'image $f(B_f(x,r))$ est aussi compacte.
- (b) La partie K est convexe et donc f(K) aussi car f est linéaire. Les vecteurs $f^k(a)$ étant tous éléments de K, la combinaison convexe définissant y_n détermine un élément de K.

 Après simplification

$$f(y_n) - y_n = \frac{1}{n} (f^n(a) - a).$$

La partie K étant bornée, la suite $(f^n(a) - a)_{n \ge 1}$ l'est aussi et donc $f(y_n) - y_n \xrightarrow[n \to +\infty]{} 0_E$.

Enfin, la suite $(y_n)_{n\geq 1}$ évolue dans le compact K, elle admet donc une valeur d'adhérence $w\in K$:

$$y_{\varphi(k)} \xrightarrow[k \to +\infty]{} w$$

et la propriété

$$f(y_{\varphi(k)}) - y_{\varphi(k)} \xrightarrow[k \to +\infty]{} 0_E$$

donne à la limite f(w) = w.

- (c) $0_E \notin K$ et donc $w \neq 0_E$. L'égalité f(w) = w assure que 1 est valeur propre de f. Soit λ une valeur propre de f et v un vecteur propre associé avec ||v|| < r. Le vecteur x + v est élément de K et donc ses itérés $f^n(x + v) = f^n(x) + \lambda^n v$ le sont encore. Puisque le compact K est borné, les suites $(f^n(x + v))$ et $(f^n(x))$ le sont aussi et donc $(\lambda^n v)$ l'est encore. On en déduit $|\lambda| \leq 1$.
- (d) Choisissons l'endomorphisme f de \mathbb{R}^3 canoniquement représenté par

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}.$$

L'endomorphisme f n'est pas diagonalisable et cependant, en choisissant x = (1,0,0) et r = 1/2, la condition $f(K) \subset K$ est remplie.

(e) Puisque f(K) = K, les vecteurs e_1/a , e_2/b et e_3/c sont des valeurs prises par f. On en déduit que l'endomorphisme f est nécessairement bijectif. Soit λ une valeur propre de f et v un vecteur propre associé. Quitte à réduire la norme de v, on peut supposer $v \in K$. On a alors $f^n(v) = \lambda^n . v \in K$ pour tout $n \in \mathbb{N}$ ce qui oblige $|\lambda| \leq 1$.

 $|\lambda|=1$. Enfin, en dimension impaire, un endomorphisme réel admet nécessairement une valeur propre!

Sachant $f^{-1}(K) = K$, un raisonnement symétrique donne $|\lambda| > 1$ et donc

Exercice 19: [énoncé]

(a) Introduisons les coefficients de la matrice A

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

et recherchons $P \in \mathcal{O}_2(\mathbb{R})$ sous la forme d'une matrice de rotation

$$P = \begin{pmatrix} \cos(t) & -\sin(t) \\ \sin(t) & \cos(t) \end{pmatrix} \quad \text{avec} \quad t \in \mathbb{R} \text{ à choisir.}$$

Après calculs,

$$P^{-1}AP = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \quad \text{avec} \quad \begin{cases} \alpha = a\cos^2(t) + d\sin^2(t) + (b+c)\sin(t)\cos(t) \\ \beta = b\cos^2(t) - c\sin^2(t) + (d-a)\sin(t)\cos(t) \\ \gamma = c\cos^2(t) - b\sin^2(t) + (d-a)\sin(t)\cos(t) \\ \delta = d\cos^2(t) + a\sin^2(t) - (b+c)\sin(t)\cos(t). \end{cases}$$

Les coefficients diagonaux de $P^{-1}AP$ sont égaux si, et seulement si,

$$\underbrace{(a-d)(\cos^2(t) - \sin^2(t)) + 2(b+c)\sin(t)\cos(t)}_{=f(t)} = 0.$$

La fonction continue f ainsi définie prend la valeur a-d en t=0 et la valeur opposée en $t=\pi/2$, par le théorème des valeurs intermédiaires, on peut affirmer que cette fonction s'annule ce qui détermine un réel t pour lequel les coefficients diagonaux de $P^{-1}AP$ sont égaux.

- (b) La fonction δ est continue sur $\mathcal{M}_n(\mathbb{R})$ et, par composition, la fonction réelle φ est continue sur $O_n(\mathbb{R})$. Or $O_n(\mathbb{R})$ est une partie compacte non vide et donc φ est bornée et atteint ses bornes. En particulier, elle présente un minimum.
- (c) Notons P la matrice de $O_n(\mathbb{R})$ réalisant le minimum de φ . Montrons que $\varphi(P) = 0$ ce qui entraı̂ne immédiatement que les coefficients de $P^{-1}AP$ sont tous égaux.

Par l'absurde, supposons $\varphi(P) > 0$. Il existe $k \in [1; n-1]$ tel que les coefficients diagonaux d'indices k et k+1 de $M=P^{-1}AP$ soient différents. Considérons alors la sous-matrice de taille 2 correspondant à ces indices

$$B = \begin{pmatrix} m_{k,k} & m_{k,k+1} \\ m_{k+1,k} & m_{k+1,k+1} \end{pmatrix}.$$

Par l'étude initiale, il existe $Q \in \mathcal{O}_2(\mathbb{R})$ telle que les coefficients diagonaux de $Q^{-1}BQ$ sont égaux. Considérons la matrice diagonale par blocs

$$R = \begin{pmatrix} \mathbf{I}_{k-1} & (0) \\ (0) & \mathbf{I}_{n-k-1} \end{pmatrix}.$$

La matrice R est orthogonale et les coefficients diagonaux de $R^{-1}MR$ sont ceux de M sauf pour les indices k et k+1 où ces coefficients sont égaux. On a donc $\delta(R^{-1}MR) < \delta(M)$ soit encore $\varphi(PR) < \varphi(P)$ avec $PR \in O_n(\mathbb{R})$. C'est absurde.

Exercice 20 : [énoncé]

Soit (u_n) une suite convergente d'éléments de F et posons u sa limite. On peut écrire $u_n = \lambda_n.x_n$ avec $x_n \in K$ et $\lambda_n \geq 0$. $0 \notin K$ donc

$$\exists \alpha > 0, B(0, \alpha) \subset C_E K$$

 $||u_n|| \to ||u||$ et $\alpha \le ||x_n|| \le M$ donc (λ_n) est bornée.

Par double extraction $(x_{\varphi(n)})$ et $(\lambda_{\varphi(n)})$ convergent vers $x \in \mathbb{R}$ et $\lambda \in \mathbb{R}_+$. On a alors $u = \lambda x$.

Exercice 21 : [énoncé]

Soient $(x_n) \in K^{\mathbb{N}}$ et $(y_n) \in L^{\mathbb{N}}$ telles que

$$d(K, L) = \inf_{(x,y) \in K \times L} d(x,y) = \lim_{n \to \infty} d(x_n, y_n).$$

On peut extraire de (x_n) une suite convergente $(x_{\varphi(n)})$ et on peut extraire de $(y_{\varphi(n)})$ une suite convergente $(y_{\varphi(\psi(n))})$.

Pour $x = \lim x_{\varphi(n)} \in K$ et $y = \lim y_{\varphi(\psi(n))} \in L$ on a

$$d(K, L) = d(x, y) > 0$$

 $\operatorname{car} K \cap L = \emptyset.$

Exercice 22 : [énoncé]

L'application $x \mapsto d(x, L) = \inf_{y \in L} ||y - x||$ est une fonction réelle continue sur le compact K donc admet un minimum en un certain $a \in K$. Or $y \mapsto ||y - a||$ est une fonction réelle continue sur le compact L donc admet un minimum en un certain $b \in L$. Ainsi

$$d(K, L) = \inf_{x \in K} \inf_{y \in L} ||y - x|| = \inf_{y \in L} ||y - a|| = ||b - a|| > 0$$

car $a \neq b$ puisque $K \cap L = \emptyset$.

Exercice 23: [énoncé]

(a) Posons d = d(x, F).

$$\forall n \in \mathbb{N}^*, \exists x_n \in F, ||x - x_n|| \le d + \frac{1}{n}.$$

Cela permet de définir une (x_n) bornée, elle admet donc une sous-suite convergente $(x_{\varphi(n)})$ dont on note \overline{x} la limite. On a $\overline{x} \in F$ car F est une partie fermée et puisque $||x - x_n|| \to d$ on obtient $||x - \overline{x}|| = d$.

(b) Non, prendre x = 0 et F l'hypersphère unité.

Exercice 24: [énoncé]

- (a) Soit $((x_n, y_n))_{n\geq 0}$ une suite d'éléments de Γ_f . On suppose que la suite $((x_n, y_n))_{n\geq 0}$ converge vers (x_∞, y_∞) . Puisque $y_n = f(x_n)$, on obtient à la limite $y_\infty = f(x_\infty)$ car f est continue. La partie Γ_f est alors fermée en vertu de la caractérisation séquentielle des parties fermées.
- (b) Soit $(x_n) \in \mathbb{R}^{\mathbb{N}}$ une suite de limite $a \in \mathbb{R}$ et $(y_n) = (f(x_n))$ son image. Soit b une valeur d'adhérence de (y_n) . Il existe $\varphi \colon \mathbb{N} \to \mathbb{N}$ strictement croissante telle que

$$y_{\varphi(n)} \to b$$
.

On a alors

$$(x_{\varphi(n)}, y_{\varphi(n)}) \to (a, b)$$

Or il s'agit d'une suite d'éléments du graphe Γ_f qui est supposé fermé. On en déduit $(a,b)\in\Gamma_f$ et donc b=f(a).

Ainsi, la suite (y_n) ne possède qu'une seule valeur d'adhérence. Or elle évolue dans un compact car bornée en dimension finie et donc, si elle ne possède qu'une valeur d'adhérence, elle converge vers celle-ci.

Par la caractérisation séquentielle, on peut conclure que f est continue en a.

(c) Non, on obtient un contre-exemple avec la fonction donnée par

$$f(x) = \begin{cases} 1/x & \text{si } x \neq 0 \\ 0 & \text{si } x = 0. \end{cases}$$

Le graphe de cette fonction est fermée car réunion de deux fermés

$$\{(x,y) \mid xy = 1\} \cup \{(0,0)\}$$

mais cette fonction n'est pas continue.

Exercice 25 : [énoncé]

(a) Soit $a \in E$. Puisque la partie A est bornée et non vide, l'ensemble $\{\|x-a\| \mid x \in A\}$ est une partie non vide et majorée de \mathbb{R} ce qui permet d'introduire

$$R_a = \sup_{x \in A} \{ ||x - a|| \mid x \in A \}.$$

Il est immédiat que $A \subset \overline{B}(a, R_a)$ et que R_a est le rayon minimal d'une boule fermée de centre a contenant la partie A.

L'ensemble $\{R_a \mid a \in E\}$ est une partie non vide et minorée de \mathbb{R} , on peut donc introduire

$$R = \inf\{R_a \mid a \in E\}.$$

Par la caractérisation séquentielle des bornes inférieures, il existe une suite (a_n) d'éléments de E telle que

$$R_{a_n} \to R$$
.

Soit $x_0 \in A$. Puisque $A \subset \overline{B}(a_n, R_{a_n})$, on a

$$||x_0 - a_n|| \le R_{a_n}$$

et donc

$$||a_n|| \le ||x_0|| + ||x_0 - a_n|| \le ||x_0|| + R_n \to ||x_0|| + R$$

ce qui permet d'affirmer que la suite (a_n) est bornée. Puisque dim $E < +\infty$, on peut extraire de (a_n) une suite convergente $(a_{\varphi(n)})$ dont on notera a la limite.

Soit $x \in A$. Puisque

$$||x - a_n|| \le R_{a_n}$$

on obtient à la limite

$$||x - a|| \le R$$

et donc $A \subset \overline{B}(a, R)$.

Enfin, par construction, $\overline{B}(a,R)$ est une boule de rayon minimal contenant la partie A (en s'autorisant de parler de boule fermée de rayon nul dans le cas où R=0).

(b) On suppose ici l'espace E euclidien.

Supposons $\overline{B}(a,R)$ et $\overline{B}(a',R)$ solutions et montrons a=a'.

Posons

$$b = \frac{1}{2}(a+a').$$

En vertu de l'identité du parallélogramme

$$\|\alpha\|^2 + \|\beta\|^2 = \frac{1}{2} (\|\alpha + \beta\|^2 + \|\alpha - \beta\|^2)$$

appliquée à

$$\alpha = x - b$$
 et $\beta = \frac{a - a'}{2}$

on obtient pour tout $x \in A$

$$||x - b||^2 + ||\beta||^2 = \frac{1}{2} (||x - a||^2 + ||x - a'||^2) \le R^2$$

et donc

$$||x - b|| \le \sqrt{R^2 - ||\beta||^2}$$
.

Ainsi

$$R_b \le \sqrt{R^2 - \|\beta\|^2}.$$

Or par définition de R, on a aussi $R_b \ge R$ et donc on peut affirmer $\|\beta\| = 0$ i.e. a = a'.

Exercice 26: [énoncé]

(a) Soit (u_n) une suite convergente d'élément de F' de limite u_{∞} . Pour chaque $n \in \mathbb{N}$, il existe $x_n \in F$ tel que

$$||u_n - x_n|| \le 1.$$

Puisque la suite (u_n) converge, elle est bornée et donc la suite (x_n) l'est aussi. Puisque l'espace E est de dimension finie, on peut extraire une suite convergente de la suite (x_n) . Notons-la $(x_{\varphi(n)})$. La limite x_∞ de cette suite extraite appartient à F car F est une partie fermée.

Pour tout $n \in \mathbb{N}$, on a

$$||u_{\varphi(n)} - x_{\varphi(n)}|| \le 1$$

donc à la limite

$$||u_{\infty} - x_{\infty}|| \le 1$$

et donc $u_{\infty} \in F'$.

Ainsi la partie F' est fermée.

(b) Supposons $E = \mathbb{K}[X]$ muni de la norme

$$||P||_1 = \sum_{k=0}^{+\infty} |a_k| \text{ avec } P = \sum_{k=0}^{+\infty} a_k X^k.$$

Posons

$$F = \left\{ \frac{n+1}{n} X^n \mid n \in \mathbb{N}^* \right\}.$$

Pour tout $n \in \mathbb{N}$

$$P_n = \frac{1}{n}X^n = \frac{n+1}{n}X^n - X^n \in F'$$

 $_{
m et}$

$$P_n \xrightarrow{\|\cdot\|_1} 0 \notin F'$$

donc la partie F' n'est pas fermée.

Exercice 27: [énoncé]

Soit (y_n) une suite convergente d'éléments de f(F) de limite y_∞ . On veut établir que $y_\infty \in f(F)$. Si y_∞ est l'un des éléments de la suite (y_n) l'affaire est entendue. Sans perte de généralités, on peut supposer que pour tout $n \in \mathbb{N}$, $y_n \neq y_\infty$. Pour tout $n \in \mathbb{N}$, il existe $x_n \in F$ tel que $y_n = f(x_n)$. L'ensemble $K = \{y_n \mid n \in \mathbb{N}\} \cup \{y_\infty\}$ est un compact de E_2 donc $f^{-1}(K)$ est un compact de E_1 . La suite (x_n) apparaît comme étant une suite d'éléments du compacte $f^{-1}(K)$, on peut donc en extraire une suite convergeant dans la partie $x_{\varphi(n)} \to x_\infty \in f^{-1}(K)$. De plus $(x_{\varphi(n)})$ étant une suite d'éléments du fermé F, on peut affirmer $x_\infty \in F$. On va maintenant établir $y_\infty = f(x_\infty)$ ce qui permettra de conclure. Pour tout $N \in \mathbb{N}$, posons $K_N = \{y_n \mid n \geq N\} \cup \{y_\infty\}$. K_N est un compact, $f^{-1}(K_N)$ est donc fermé et par suite $x_\infty \in f^{-1}(K_N)$. Ainsi,

$$x_{\infty} \in \bigcap_{N \in \mathbb{N}} f^{-1}(K_N) = f^{-1}\left(\bigcap_{N \in \mathbb{N}} K_N\right)$$
. Or $\bigcap_{N \in \mathbb{N}} K_N = \{y_{\infty}\}$ donc $f(x_{\infty}) = y_{\infty}$.

Exercice 28: [énoncé]

- (a) Si E est de dimension finie alors F est fermé car tout sous-espace vectoriel de dimension finie est fermé. On en déduit $F = \overline{F}$.
- (b) Il suffit de considérer un sous-espace vectoriel dense comme par exemple l'espace des fonctions polynômes de [a;b] vers \mathbb{K} dense dans celui des fonctions continues de [a;b] vers \mathbb{K} normé par $\|\cdot\|_{\infty}$.