REALIZATION OF A NETWORK STACK THAT SUPPORTS TAKS+WIDS ON WSN WITH MOTE RUNNER

DISIM - Università degli Studi dell'Aquila

Students:

Andrea Salini - 231413 Lorenzo Di Giuseppe - 227515 Matteo Gentile - 230997 Professors:

Fortunato Santucci Luigi Pomante

April 15, 2015

INTRODUCTION

.

INDEX

- · Introduction to Mote Runner
- · Testing Mote Runner

INTRODUCTION TO MOTE RUNNER

- An OS and a runtime and development environment for WSN
- · Key features:
 - · Support for RT constraints & energy awareness
 - · Portability thanks to a VM that abstracts the HW
 - · Event oriented programming paradigm
 - · High level coding (Java C#)
 - · Debugging & simulation environments
- · It's still in beta and is evolving towards IoT

MOTE RUNNER - V.11, V.13 BETA

- · They support IEEE 802.15.4
 - exposing a low radio level API that can be used to implement custom MAC layer
 - dropping messages with header structure not 802.15.4 compliant in the radio stack
- · Offer Hopi
 - · A multi-hop data gathering protocol
 - Used to collect data from motes setting automatically a tree network

MOTE RUNNER - V.17.1.8C (LATEST)

- · Supports only two platforms: IMST & Blipper
- · It's based on a different radio layer: LoRa™
- · It offers a build-in MAC layer: LRSC Low Range Signaling & Control
 - · It supports only a network topology: the LRSC one
 - The offered API is poor since the radio is hidden in the firmware (not compatible with previous versions)

LRSC - ARCHITECTURE

- Gateways (GW) are connected to server on IP
- Motes comunicate with server in tunneling TCP/UDP over IP
- Motes comunicate with GW with LoRa single-hop

LORA[™]

- LoRa™Alliance
 - Target: IoT, machine-to-machine (M2M), smart city, and industrial applications
 - Intiated to standardize Low Power Wide Area Networks (LPWAN)

LORATM

LoRa™Technology

- LoRaWAN pledeges to extend the radio range by 10x while using only one third of the power used by competing solutions
- · Star (of stars?) topology
- Gateways relay messages between end-devices and a central network server
- Communication between end-devices and gateways is spread out on different frequency channels and data rates.
- · Data rates: 0.3 50 kbps

LORATM

- · ...and more
 - · adaptive data rate (ADR)
 - secure communication (on network and application layers and end-point device key)
 - · three classes of end-point devices.
 - · More info on http://lora-alliance.org/

MOTE RUNNER - CONCLUSION

- · For the purpose of this work (TAKS & WIDS):
 - MR allows dynamic reprogramming of motes with a control server using WLIP
 - · v.17.1.8c is not suitable
 - LoRa is available only for a limited number of platforms (until now!)
 - · LRSC doesn't permit to customize the MAC behaviour
 - · The radio is not exposed
 - · v.11, v.13 are better choices:
 - radio interface could be used to implement an 802.15.4 MAC with TAKS support
 - · this MAC could be used to build upper layer with WIDS
- This does not exclude a future integration with LoRa-LRSC

TESTING MOTE RUNNER

PROBLEMS

- · MR v.17.1.3c gave many problem with network operation
- Many experiments've been done trying to make motes communicate without success
- · MR v.13 seems to offer what's necessary to complete the task
 - · Is it true?

.

•

1

•

.

•

.