SCMA104 Systems of Ordinary Differential Equations and Applications in Medical Science

Pairote Satiracoo

2024-08-21

Contents

1	หลักการและความสำคัญของแคลคูลัสและระบบสมการเชิงอนุพันธ์สามัญ					
2	ลิมิต (Limits) 2.1 ความต่อเนื่อง (Continuity)	17 42				
3	อนุพันธ์ (Derivatives) 3.1 อนุพันธ์ (Derivatives) 3.2 การคำนวณหาอนุพันธ์ 3.3 สูตรสำหรับหาอนุพันธ์ 3.4 อนุพันธ์อันดับสูง (High Order Derivatives)	55 55 64 69				

	3.5	การตีความอนุพันธ์ (Interpretation of Derivatives)	71	
	3.6	กฎลูกโซ่ (The Chain Rule)	81	
	3.7	อนุพันธ์ของฟังก์ชันอินเวอร์ส (Derivatives of Inverse Functions)	91	
	3.8	Differentials, Implicit Differentiation and Related Rates	97	
	3.9	อนุพันธ์ของฟังก์ชันตรีโกณมิติและอินเวอร์สของฟังก์ชันตรีโกณมิติ	126	
4	การปร	ระยุกต์ของอนุพันธ์ (Applications of Differentiation)	143	
4	การปร 4.1	ระยุกต์ของอนุพันธ์ (Applications of Differentiation) Applications of derivatives related to students discipline	143 144	
4		· ·		
4	4.1	Applications of derivatives related to students discipline	144	
4	4.1 4.2	Applications of derivatives related to students discipline	144 151	

Chapter 1

หลักการและความสำคัญของแคลคูลัส และระบบสมการเชิงอนุพันธ์สามัญ

แคลคูลัสมีส่วนประกอบหลักที่สำคัญอยู่ 2 องค์ประกอบ คือ

- 1. การหาอนุพันธ์ (differentiation) และ
- 2. การหาปริพันธ์ (Integration)

การ ประยุกต์ เรื่อง การ หา อนุพันธ์ ใน การ แก้ ปัญหา เบื้อง ต้น ที่ สำคัญ ใน ทาง ชีววิทยา หรือ ทางการ แพทย์ ประกอบด้วย การหาอัตราการเปลี่ยนแปลงของปริมาณของตัวแปรที่เราสนใจ และการใช้แคลคูลัสในการแก้ ปัญหาการหาค่าสูงสุดและค่าต่ำสุดของปัญหาหรือฟังก์ชันที่แสดงความสัมพันธ์ของตัวแปรที่เราสนใจ

ตัวอย่างการเปลี่ยนแปลงของปริมาณที่สนใจ เช่น ขนาดของประชากร จำนวนของผู้ติดเชื้อจากโรคทางเดิน หายใจ ระดับน้ำตาลในกระแสเลือด ปริมาณของยาที่มีอยู่ในกระแสเลือกหรือส่วนหนึ่งของร่างกาย โดยที่การ เปลี่ยนแปลงดังกล่าวสามารถเปรียบเทียบได้กับเวลา ดังต่อไปนี้

- ประชากรในประเทศไทยปี พ.ศ. 2566 มีจำนวน 66.05 ล้านคน (ข้อมูลอ้างอิงจาก สำนักงานคณะ กรรมการส่งเสริมการลงทุน)
- ข้อมูลจำนวนผู้รักษาตัวในโรงพยาบาลจากศูนย์ข้อมูล COVID-19 ระหว่างวันที่ 28 กรกฎาคม ถึงวันที่ 3 สิงหาคม พ.ศ. 2567 (ข้อมูลอ้างอิงจาก ศูนย์ข้อมูล Covid-19)
- การ เปลี่ยนแปลงของระดับ น้ำ ตาล ใน เลือด ระหว่าง มือ อาหาร สาม มือ ใน หนึ่ง วัน (รูปภาพ อ้างอิง จาก Wikipedia: Blood Sugar Level)
- การเปลี่ยนแปลงของปริมาณยาในกระแสเลือดที่เวลาต่างๆ สำหรับการให้ยาโดยวิธีต่างๆ (รูปภาพอ้างอิง จาก บทความทางวิชาการในฐานข้อมูล MDPI)

Figure 1.1: ข้อมูลจำนวนผู้รักษาตัวในโรงพยาบาลจากศูนย์ข้อมูล COVID-19

Figure 1.2: ความผันผวนของระดับน้ำตาลในเลือดี (สีแดง) และฮอร์โมนอินซูลิน (สีน้ำเงิน) ในมนุษย์ ระหว่างมื้ออาหารสามมื้อ

Figure 1.3: ความเข็มข้นของยาในกระแสเลือดที่เวลาต่างๆ

ในการทำความเข้าใจการเปลี่ยนแปลงของปริมาณข้างต้นเทียบกับเวลา เราสามารถประยุกต์ใช้การสร้างแบบ จำลองทางคณิตศาสตร์เพื่อมาใช้อธิบายการเปลี่ยนแปลงของปริมาณต่างๆ ที่เกี่ยวข้อง

การสร้างแบบจำลองทางคณิตศาสตร์ เป็นกระบวนการอธิบายปัญหาหรือ ปรากฏการต่างๆ ที่เกิด ขึ้นในธรรมชาติ โดยปกติแล้วจะอยู่ในรูปของสมการทางคณิตศาสตร์ ซึ่งแบบจำลองทางคณิตศาสตร์ นี้จะช่วยให้อธิบายสิ่งต่างๆ ที่เกิดขึ้นในปัญหาหรือปรากฏที่สนใจ

ตัวอย่างต่อไปนี้จะแสดงถึงแนวคิดในการประยุกต์ของแคลคูลัสที่เกี่ยวข้องกับอัตราการเปลี่ยนแปลงของ

Table 1.1: จำนวนของแบคทีเรียที่เวลา t ใดๆ

เวลา (10 นาที)	0	1	2	3	4	5	6
จำนวนแบคทีเรีย	1	2	4	8	16	32	64

ตัวอย่าง 1.1. ในการทดลองหนึ่ง นักวิจัยต้องการศึกษาการขยายพันธ์ของแบคทีเรียที่มีการการแบ่งตัวที่ เรียกว่า binary fission (การแบ่งตัวแบบทวิภาค) ซึ่งแบคทีเรียจะมีการแบ่งจากหนึ่งเป็นสองเซลเท่าๆ กัน และได้ผลการทำลองดังต่อไปนี้

(รูปอ้างอิงจาก BYJU's Learning Website)

ตาราง 1.1 และ รูปที่ 1.5 แสดงการ เปลี่ยนแปลงของจำนวน แบคทีเรียที่ เวลาใดๆ ในตัวอย่างนี้การ เปลี่ยนแปลงของจำนวนของแบคทีเรียที่ เวลา t สามารถเขียนในรูปฟังก์ชัน N(t) ถ้าให้ N_0 แทนจำนวน ของแบคทีเรียตอนเริ่มการทดลอง แล้วแบบจำลองทางคณิตศาสตร์สำหรับการเพิ่มของจำนวนแบคทีเรียจะ สามารถเขียนในรูปของสมการ

$$N(t) = N_0 \cdot 2^t, \quad t = 0, 1, 2, \dots$$
 (1.1)

BINARY FISSION

Figure 1.4: กระบวนการแบ่งตัวแบบทวิภาคของแบคทีเรีย

ในแบบจำลองทางคณิตศาสตร์นี้การเปลี่ยนแปลงของจำนวนแบคทีเรียที่เวลา t ใดๆ เพิ่มขึ้นในลักษณะที่ เรียกว่า เอกซ์โพเนนเชียล (Exponential Population Growth)

Figure 1.5: Population Size Over Time

ตัวอย่าง 1.2. ในการสร้างแบบจำลองทางคณิตศาสตร์ ในตัวอย่างของการขยายพันธ์แบคทีเรีย หรือใน ปัญหาอื่นๆ แทนที่เราจะพยายามหาความสัมพันธ์ หรือฟังก์ชัน N(t) ในรูปของเวลา t โดยตรง ถ้าเรา ทราบกระบวนการที่เกี่ยวข้องกับการอัตราการเปลี่ยนแปลงของตัวแปร N(t) นั้น เราสามารถนำมาใช้ใน การสร้างแบบจำลองทางคณิตศาสตร์ ได้ดังต่อนี้ กระบวนการที่เกี่ยวข้องกับการเปลี่ยนแปลงของจำนวน แบคทีเรีย (การเพิ่มหรือลดลงของแบคทีเรีย) ที่เกิดขึ้นในระหว่างเวลา t และเวลา t+h เกิดจากจำนวน แบคทีเรียที่เพิ่มขึ้น (เกิดขึ้นมาใหม่) ในช่วงเวลาดังกล่าว และลดลงจากจำนวนแบคทีเรียที่ลดลง (ตายไป) ใน ช่วงเวลาดังกล่าวเช่นกัน ซึ่งเราสามารถเขียนในรูปของสมการได้ดังต่อไปนี้

$$N(t+h) = N(t)$$
 $+$ จำนวนแบคทีเรียที่เกิดขึ้นใหม่ระหว่าง t และ $t+h$ (1.2) $-$ จำนวนแบคทีเรียที่ตายไประหว่าง t และ $t+h$

ในที่นี้ "**การเกิด**" เราหมายถึงการเพิ่มจำนวนของแบคทีเรียจากหนึ่งเป็นสอง และเราจะกำหนดให้ h เป็น ช่วงเวลาสั้นๆ (ซึ่งเราสามารถใช้ความรู้แคลคูลัสในการสร้างแบบจำลองทางคณิตศาสตร์ในรูปของสมการเชิง อนุพันธ์ (differential equation)) ในสมการ (1.2) ถ้าเราสมมติว่า การเพิ่มของแบคทีเรียเป็นสัดส่วนกับ จำนวนแบคทีเรียที่มีอยู่ในขณะนั้น หรือเขียนในรูปของสมการได้ดังนี้

จำนวนแบคทีเรียที่เกิดใหม่ระหว่าง t และ $t+h pprox b \cdot N \cdot h$

จำนวนแบคทีเรียที่ตายไประหว่าง t และ $t+hpprox m\cdot N\cdot h$

โดยที่ค่าคงตัว b และ m ในสมการข้างต้น คือ อัตราการเกิด (birth rate) และอัตราการตาย (mortality rate)

เมื่อแทนจำนวนแบคทีเรียที่เกิดใหม่ และตายไประหว่างช่วงเวลาที่กำหนดลงในสมการ (1.2) จะได้สมการ

$$N(t+h) - N(t) = b \cdot N(t) \cdot h - m \cdot N(t) \cdot h \tag{1.3}$$

เราสามารถจัดรูปสมการ (1.3) ได้ไหมในรูปของ**อัตราการเปลี่ยนแปลงเฉลี่ย**ของจำนวนแบคทีเรียในช่วง เวลาดังกล่าว ดังนี้

$$\frac{N(t+h) - N(t)}{h} = b \cdot N(t) - m \cdot N(t) \tag{1.4}$$

(1.5)

ดังนั้น ถ้าเราให้ h เข้าใกล้ 0 ผ่านการหาค่าลิมิต เราจะได้อัตราการเปลี่ยนแปลงขณะหนึ่ง (instantaneous rate of change) และเขียนได้ในรูปของสมการเชิงอนุพันธ์ ดังนี้

$$\frac{dN}{dt} = \lim_{h \to 0} \frac{N(t+h) - N(t)}{h} = b \cdot N(t) - m \cdot N(t)$$
(1.6)

ทั้งนี้ในการแก้สมการเชิงอนุพันธ์ (1.7) เพื่อให้ได้คำตอบที่แสดงจำนวนแบคทีเรีย N(t) ในรูปของฟังก์ชัน ของ t เราจะต้องกำหนดเงื่อนไขเพิ่มเติมที่เกี่ยวข้องกับจำนวนแบคทีเรีย N(t) ที่เวลา t หนึ่ง โดยทั่วไปเรา จะกำหนดค่าเริ่มต้นของจำนวนแบคทีเรียที่ t=0 ดังนั้น ถ้าเรากำหนดเงื่อนไขเริ่มต้น (initial condition)

$$N(0) = N_0 (1.8)$$

เราสามารถหาคำตอบของสมการเชิงอนุพันธ์ที่มีเงื่อนไขเริ่มต้นโดยวิธีการหาปริพันธ์ (Integration) ได้คำ ตอบของสมการดังนี้

$$N(t) = N_0 e^{(b-m)t} (1.9)$$

ตัวอย่าง 1.3. ในการทดลองเลี้ยงยีสต์ในขวดทดลองที่มีอาหารเลี้ยงยีสต์ในปริมาณที่เหมาะสม ผู้ทำการ ทดลองสนใจที่จะประมาณค่าของยีสต์โดยอาศัยแบบจำลองการเปลี่ยนแปลงของประชากรที่อธิบายด้วย สมการ (1.9) กำหนดให้

- ภายใต้สภาวะของการทดลองที่เหมาะสม ยีสต์จะแบ่งตัวทุกๆ 90 นาที
- ยีสต์มีครึ่งชีวิตเท่ากับ 1 สัปดาห์

จากข้อมูลดังกล่าว จงแสดงวิธีทำเพื่อหาคำตอบจากคำถามต่อไปนี้

- 1. จงประมาณค่าของอัตราการเกิด b (1/ชั่วโมง) และอัตราการตาย m (1/ชั่วโมง)
- 2. เขียนแบบจำลองทางคณิตศาสตร์โดยใช้ค่า b และ m ที่ประมาณค่าได้ (สมการ (1.9))
- 3. ใช้เครื่องมือที่นักศึกษามีอยู่ในการวาดกราฟแสดงความสัมพันธ์ของจำนวนยีสต์ที่เวลาต่างๆ
- 4. เปรียบเทียบผลลัพธ์ที่ได้กับรูปภาพแสดงการเปลี่ยนแปลงของยีสต์จากการทดลองในห้องปฏิการ ตามรูป ที่ 1.6 (รูปภาพอ้างอิงจาก https://homework.study.com/)

Figure 1.6: กราฟการเจริญเติบโตของเซลล์ยีสต์

ตัวอย่าง 1.4. จงใช้ อินเทอร์เน็ต เพื่อ ค้นหา ตัวอย่าง แบบ จำลอง ทาง คณิตศาสตร์ ที่ อธิบาย โดย สมการ เชิง อนุพันธ์ หรือระบบสมการเชิงอนุพันธ์ ข้อมูลที่ต้องการประกอบด้วย

- 1. ค้นหาหน้าเว็บที่ให้ข้อมูลเกี่ยวกับแบบจำลองทางคณิตศาสตร์ในปัญหาที่นักศึกษาสนใจ
- 2. จดบันทึก URL ของหน้าเว็บ
- 3. เขียนสรุปสั้นๆ ว่าโมเดลนี้ใช้เพื่ออะไร

โดยสรุป แคลคูลัสและสมการเชิงอนุพันธ์เป็นเครื่องมือสำคัญในการทำความเข้าใจว่าสิ่งต่างๆ เปลี่ยนแปลง ไปอย่างไรและ แคลคูลัสช่วยให้เราวิเคราะห์อัตราการเปลี่ยนแปลงและพื้นที่ใต้เส้นโค้ง ในขณะที่สมการเชิง อนุพันธ์ช่วยให้เราสร้างแบบจำลองระบบที่ซับซ้อนในสาขาต่างๆ เช่น ฟิสิกส์ วิศวกรรม เศรษฐศาสตร์ และ ชีววิทยา แนวคิดทางคณิตศาสตร์เหล่านี้มีความสำคัญต่อการแก้ปัญหาในโลกแห่งความเป็นจริง เมื่อโลกของ เราก้าวหน้ามากขึ้น ความสำคัญของแคลคูลัสและสมการเชิงอนุพันธ์ก็จะเพิ่มขึ้นอย่างต่อเนื่อง ซึ่งสนับสนุน ความก้าวหน้าทางวิทยาศาสตร์และเทคโนโลยี