-	423/03
	Some additional notes/comments on Skyrme calculations
	, , , , , , , , , , , , , , , , , , ,
	· We introduced the "goin exchange" operator [P= = (1+80)89)]
	. It we build a product make trincition out of a space, spin, and
	isospin part, Nin
	Krasita, Posita 127= 412, Po) X(S, S2) S(t, t2)
	- [1314,193ts1'0/ 1"1,13/1/3])(t,12)]
·····	can have. Four combinations of summetry under exchange of the space
	and spin parts (and Plen the isospin comparent is determined by requiring
	can have four combinations of symmetry under exchange of the space and spin parts (and then the isospin component is determined by requiring the total wave function to contisymmetric) to be consistent with the
	Pauli principle!
	· · · · · · · · · · · · · · · · · · ·
	even singlet + (oun) even triplet - (odd)
	exa triplet - (odd)
	odd singlet - (ad)
	odd triplet + (even)
	· So $P^{\sigma}V(\vec{r}_{3},\vec{r}_{3})\chi(s_{1},s_{2})\chi(s_{1},s_{2})=\chi(\vec{r}_{1},\vec{r}_{3})\chi(s_{2},s_{1})\chi(t_{1},t_{2})$
	20 1 *((4)(3) *((1)(3) * ((1)(3) * ((2)(3)) ((1)(3))
	• The total spin $3 = \frac{1}{2}(344 + 69)$ so
	$P^0 = \frac{1}{2}(1+2(3^2-30)-(50))) = S(SH)-1=2-1$ for Implet
	[cleck: $\frac{1}{2}(1+2S(S+1)-2\cdot\frac{1}{2}\cdot\frac{2}{3}-2\cdot\frac{1}{2}\cdot\frac{2}{3})=S(S+1)-1$
	which makes sense, since the implet state is symmetric, so exchanging
	which makes sense, since the triplet state is symmetric, so exchanging spins laws it unchanged, while the singlet state is untisymmetric, so exchanging spins picks up a minus sign.
	· We similarly define the isospin exchange operator: [Pr= 1/1+70,70)

٠.

_	4/23/03
_	Let's examine. The mysterious term proportional to Wa.
	Let's examine the mysterious term proportional to Wo, which we claim is a spin-orbit force:
_	
	Vis(1,2) = i Wo (30) + 30) - Kx S(P-PO) K
_	
_	with R = \$1 (R-P3) acting to the right and R' acting to the left on wave functions (we've flipped the primed and
_	to the left or now functions (we've flipped the primed and
	inprimed momenta from 313 to be consistent with Re
_	liferative - it's irrelevant which he choose!).
	So stationally with I P. Cit.
_	So start with what we might expect for a finite range spin-orbit force:
	$V_{lo}(1,3) = (\overline{c}_1 + \overline{c}_2) \cdot (\overline{c}_1 - \overline{c}_2) \times (\overline{k}_3 - \overline{k}_2) \overline{V(c_{13})}$
	where $L = \hat{r} \times \hat{p}$ is formed from the relative coordinate and relative momentum. $V(r_{12}) = V(r_{2} - r_{2})$ is a central potential.
	relative morentum. V(ria) = V(r-ral) is a central potential.
	'
	Look at this in momentum space, since we want to do a
	short-distance expansion, which is a laylor exponsion in momentum.
	=
	(Oto). (1-1) Kr (3) (C
	where Ro-Ro are just vectors now, We lating [R=3[K-K3]], [R'=5(K2-K3')]
	· Switch variables to [? = ?- ?] and [? = []:
_	1
	(K, K, V, K, K) = 1/80 e (M) (B-M) 1/80 (B18.1.0 VIO) + XR-1
	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
_	= 841, 518, 7(0, +0,). (1, 5/6) 6, x 38
-	since momentum conservation mans $\vec{k}_1 - \vec{k}_1 = \frac{1}{3} (\vec{k}_2 - \vec{k}_1) + (\vec{k}_3 - \vec{k}_2) = \vec{k} \cdot \vec{k}$

4/23/03 w ned is (with == R'-R): 180 2(941) (1/90) Pollos 640) V(r) plone nost exponerión = 47 0 (ar 12 jolgr) V(r) Ta Jolan = à 30 Jolan = à 30 (singr So we find Plat < 12 18/1/15/18/18/27 = - STITE / BIRGOTOS) - (K/XK rade Violes gr-sings w RxRsol where · Now it Vol is start-ranged, Way has an exponsion in powers of a, starting with a constant Wo. Transforming this back to coordinate space, a constant in a becomes a delta function strated and he have Visitiz) is the short-ranged potential limit of ·So, in Summery an ordinary spin-orbit force.

4123/03 The Hortree-Fock equations follow in the Green's function formalism from the Dyson's quantion for GHF: Try Heating it This is an integral equation for GHF (using four-vector notation: x=(x,t)): GM (x,x') = G(x,x') + /d/x, d/x, C(x,x,) Ex(x,x') GHF(x',x') with the proper self-eromy 5 given by: Zho(x,x') = -i8(t-t') 8(x,-x') / 02, 6th (x,t) x to) V(x,-x) (note the tot and tot) & assume Ho=-8m+U(x) and HoY(x)= E) V(x) Recall Plat 60 has the form (with Yik) a complete set of states, such as place waves) $iG^{\circ}(\hat{x}t,\hat{x}'t') = \sum_{k} (\hat{x}) (\hat{x})^{k} e^{-i\epsilon_{k}^{\circ}(t+t')} e^{(t+t')} e^{(t$ Since Exp is independent of frequency when transformed (since & S(t-t)) we expect GHF to have the same form as G, introducing [4], 1211: 16"(\$t, \$\frac{1}{2}t) = \frac{1}{2}(\frac{1}{2})(\frac{1}{2}t) \frac{1}{2}(\frac{1}{2}t) \frac(Substituting into Re ZHE expression, in get (will ZHE(x, x')= ZH(2, x') SIE+4) $\sum_{HC}(\widehat{x}_{i}\widehat{x}_{i}') = \{\widehat{S}(\widehat{x}_{i}-\widehat{x}_{i}')\}\widehat{S}_{i}\widehat{x}_{i}, V\widehat{x}_{i}-\widehat{x}_{i}\}\widehat{S}_{i}\widehat{y}(\widehat{x}_{i})\widehat{y}(\widehat{x}_{i})$ $= \frac{1}{3}(x^2x^2) \Gamma_{H}(x^2) + \Gamma_{ex}(x^2, x^2)$

42363 A fow comments on GIFD and BID... The evaluation of Eo is straightforward because he have delta function interactions, but sum of the terms are a bit redious, with the restriction to N=Z, time-reversal invariant nuclei, we don't get a contribution from tox. Po S(P-Po). Do you see why? · Do you see why we get 3 to g?? (Remember flor will be a direct and an exchange piece, What is g?) · For spherical symmetry, we expect the spin-orbit term to be proportional to at, because it is the only direction Plat can be crossed into the pudeon's momentum to get on orgular momentur, · The spin-orbit ferm is surface peopled, because in the uniform part of Ple nucleus, The is only one direction singled out (by Re michans velocity). The paper "Towards a Hortree-Fock mass formula" gives results of a fit to 1719 nuclei!) of "10 parameter Stayrine Force + 4 parameter of function pairing force. · note the motivation from stellar nucleosynthesis · The Styrme force has 4 extra parameters: X, Xg, and X3. Plat come with Po terms, and I which is a Ractional power of the dirisity that replaces to three body bern (which yields g^3 in the energy dinsity; so the new functional has g^{2+8}). 8=1/3 here.

· note how Coulomb is included (equation (3b)). and even and odd numbers of nucleons. Note the nationale after Eq. (10).

Density Functional Thony (DFT)

when all is said and done, he Styrme Hartnee-Fock approach is less about parametrizing an interaction between nucleus han parametrizing he energy functional.

· The idea of having of arbitals that satisfy local Schrödinger

equations and which give the density in the form glx)= \(\green \text{leq.tx}) \rightarrow

mould seem to be restricted to Hartier-Fock.

"For example, including a Re beach built diagram, even with

The simple Hartree Fock propagator GHF would be a randocal,

time for rather energy) beginned to coss.

who claim, however, that we can consider the Styrme approach to be a reasonable approximation to Kohn-Sham density functional theory, which can (in principle!) reproduce the exact ground state energy and density with the same simple orbitals and territion procedure.

· We'll first do as overview of DFT based on the very nice American Journal of Physics article by Argaman and Makov. · You have a copy to read on your own. · We'll cover some important sections but not everything.

· Then we'll see how to carry out DFT in the effective cution formalism for an effective Reld Many => OFT/EFT!

· Figure 1 in Argamon and Makov (A+m) illustrates the growth of OFT applications (calibrated by refurnce to Hurtree-Fock in INSPEC detabase of journal articles)

· Hos leveled off at about 2000/year (comparable to total

number of nuclear Heavy papers per year!)

4/23/03 To what problems is DFT applied?
-99.9% application is to inhomogeneous electron ans
· Coulomb interaction between fermions (electrons) · A static external potential VIZ) · Coulomb potential from nuclei fixed in space => Born-Oppenheimer approximation (time scale for nuclear movement >> electron time scale. -So, basically, the problem is to find the energy and a distribution of the electron cloud around a collection of fixed charges. applied to doms, molecules, crystals, surfaces · Usual approach (historical) to DFT is not transporent => AtS use Permolynamics analogy Where we're heading: Hohanberg-Kohn Rearems say
Rece exists (existence, not how to find it!) an energy functional E_[n] = FHE[n] + (0x /x) n(x) · all dependence on external VX) is in simple and term · FHE En] is vinnersal => same function if you are calculating an H2 molecule or DNA! (!)
- Even) is minimized for the exact ground stake density nR) · Contains everything (beachballs, rings, ladders ...) - Kohn and Sham said we can find the density n(x) by solving the problem of single-particle independent orbitals self-consistently:

[[-\frac{1}{2m} + \frac{1}{24(x)}]^{\frac{1}{2}(x)} = \frac{1}{2}(\frac{1}{2}x^2)] where \(\frac{1}{x}\) = \(\frac{1}{x}\) \(\fra

4/23/03 It turns out that one can make a very simple approximation to FHK [07], The local density approximation, that works amazingly well.
. much effort has gone into going beyond LDA. Some quotes from the Interature: -A Chemist's Guide to DET (Koch 9) Holthausen, 2000) "To many, the success of DFT opposited somewhat miracularis, and maybe even unjust and unjustified.

Unjust in view of the easy achievement of accuracy that
was so hard to come by in the wave function bused methods. And unjustified it appeared to those who doubted the soundness of the theoretical foundations. There has been misunderstanding concerning the status of he are-determinantal approach of Kohn and Sham, which superficially appeared to preclude the incorporation of correlation effects. · Density Functional Meany (ASP, Argaman + Makov, 2000)

This important to stress that all practical applications & DFT rest on essentially uncontrolled approximations, such · "Mota-Generalized Gradient Approximation" (Perdew et al., 1999) "Some say that there is no systematic way to construct density functional approximations. But there are more or less systematic ways, and the approach taken... here is are of the former." · The goal of the DFT/EFT program is to provide the systematic construction (and justification) of Kohn-Shum Functionals for

nuclear (and perhaps Comlomb) systems

	4123/03
	· This is analogous to the every functional.
	· This is analogous to the energy functional. · u plays the role of the external potential V(?)
	·) in (N) is like Evin
	· F(N) -> Fyx[n] is universal (no appearance
	of u in the fraction).
	- All of the 4 dependence in Dy from the - 4N from Svix inix d'x term
	= Svzinix d3x term
	· Only when the Function Du (functional Exens) is minimized do we build in their NENIU [MX)= D([V),X)]
	/(x,cv)) (w/M=1/2 Land on ob bassining
	,
	In fact, he can generalize μ to simply depend on position \Rightarrow all the potential $\gamma(\vec{x})$ to \hat{H}
	all the potential v(x) to H
	- 0 (Bx(f(x)+(vx)-u) (R)(1)
	$= \left[\frac{2(\mu, \tau, [\sqrt{x}])}{2(\mu, \tau, [\sqrt{x}])} = -\frac{1}{5} \ln \left[\frac{1}{5} e^{\frac{1}{5} \left(\frac{\pi}{4} + (\sqrt{x}) + (\sqrt$
	where we've used the density operator [nix] = 7tx 7tix] in a somewhat schematic notation,
	a somehat schematic notation,
	· We could introduce a potential VIX) = VX - M or else
	just measure energies with 4, so that 4=0.
	· We see that vix) is prot like a source term we had to a
	path integral (what we usually call Jis), so we know
	that <61217 follows from a functional derivative:
	Coll
	$n(\vec{x}) = \langle \hat{n}(\vec{x}) \rangle = \frac{3\Omega}{842} [cl. N = -\frac{3\Omega}{842}]$
	SVX)
	So we can Legendre transform D[vix]:
,	
	$ \nabla_{\mathbf{x}} \mathbf{x} \cdot \mathbf{x} = \nabla_{\mathbf{x}} \mathbf{x} \cdot \mathbf{x} - \nabla_{\mathbf{x}} \mathbf{x} + \nabla_{\mathbf{x}} \mathbf{x}$
	which should look familiar (effective action!).

	4/23/03
1	The density fractional we've looking for is the agreentisation
	The density functional we're looking for is the generalization of the Dy function; now with now on vix) independent:
	$\int \mathcal{D}_{\nu}[n\vec{x}] = F_{Hk}[n\vec{x}] + \left(d^{3}x \ n\vec{x} \right) V(\vec{x})$
	which yields universal > no dependence on Vix)
╛	\1
	$\left \frac{SF_{HK}}{SNZ}\right = -V(Z)$
_	
1	when minimized unto NIX) at fixed VIX) (which is the
1	physical problem of interest).
4	. And when this holds, we get the desired grand potential (from which he get the energy at zoo temperature).
+	(from which he get the energy at zoo temperative).
+	
+	So we have as an almost immediate consequence of Lecendre transformations and termodynamic conjunity a demonstration that we can find a density finitional
+	Lecendre Transformations and Recommodynamic conjusty
+	a demonstration that we can time a density trictional
+	Fy[n(x)]
╁	· How do me containate it?
\dagger	For an inhomogeneous electron gas, usually decompose Fix:
ſ	The an innomoderates exertion day asmally occumber the.
1	Fyr(nR)] = Fni[nix] + Enc[nix] + Enc[nix]
_	
1	where
Ť	Fri[nz]] = FHE[nz]] voca= "non-interacting"
	3 14634.)=0
	E Constation destastation
_	[Ees[nx] = 2) or or 12 71 (Hartree) energy
\perp	
1	[Exc[nR] = everything else.]
_	

	14/23/63
	· One approach is to construct FAX as an explicit functional
·	on n(2). Thomas and Fermi did This first:
	
	$F_{n_1}[n_{\overline{X}})] \doteq \left(\beta_{\chi} \stackrel{?}{\leq} \frac{1}{2} m \left[3\Pi^2 N_{\overline{X}}\right)\right]^{\frac{1}{2}} n_{\overline{X}}\right)$
· · · · ·	which uses $n = \frac{k^2}{3\pi^2}$ for $g = 2$ in a uniform system and $\varepsilon_0 = \frac{2}{3}(\frac{k^2}{3}\frac{2}{3}\frac{2}{3})$ in such a system \Rightarrow assume each
	and E=== 15 (Framh in such a system > assume each
	$1 \leq n \leq $
	This approximation to Fo; works at sufficiently
	. This approximation to to; works at sufficiently
	high density, but not very well for moderales > LDA is not a good approximation to the kinotic energy.
	=> LDA is not a good approximation to the kinotic energy.
	etale 1 Share on 1 Ci 1 11 13 1 on 1 At 11
	-Kohn and Sham say: Find Viggle?) such Plat solving
	(-\$mg2+Ver(3))4:18) = E:4:18)
	for N states yelds (n/2) = 2 14/2) ten
	FnilnR)]= 241/1/14;)= 26; - (30 no) Ver (8)
	What is very? Take some of the Fix decomposition:
	Ne Stur
	10 SFHR = - V(Z) = - Veg(Z) - e(Z) + Vx(Z)
	1
	where he used Shi = - Voge (2) and defined
	$ \vec{y}(\vec{x}) = - \vec{\partial}\vec{x} \frac{1}{ \vec{x} } \vec{x} \vec{x} \vec{x} = \frac{\vec{\partial}\vec{x}}{ \vec{x} } \vec{x} $
<u> </u>	1000
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
	Hartree potential exchange-correlation potential

	4123/03
	Rearranging to solve for Voge.
	Ver 2) = V(2) - e(12) + V_(2)
	·VK] is known
	· PIII is a simple functional of pill = = [HiR]
	an approximation to ExcEntry wilds vicil and
4	on approximation to Excludily yields vicilly one we can solve the Kohn-Sham problem feratively
-	uptil self-consistent!
\dashv	Veg(Z) -> (+13- n/Z) -> Vag(Z) and so on.
	· It turns out that on LDA for Exc is a good starting
	point lunlike for Foi):
	$F_{\infty}[n\vec{x}] = \int_{0}^{\infty} \sum_{n=n\vec{x}} n\vec{x}$
-	1 (1 - 7
-	where Exclo) is the energy density in a wonform election gas of density n.
	gus a coursily in
	=> Find Exc(n) numerically (Green's Function Monte Carlo)
	and parametrice, eg.
_	(() = - () 408/2 () () () () ()
-	Exc(n) = -0,498/rs - 0,0666 G(1) hartres,
	where Parks and G(X) = 1/2 ((1+x3) log (1+x)-x3+3-1/3)
	· See Figure 3 for the plot. Then (xxxx) = d(nexxxx))
	and
_	
-	
	Creck out Figure 4.