Triple 2-channel analog multiplexer / demultiplexer BU4053BC / BU4053BCF / BU4053BCFV

The BU4053BCF, and BU4053BCFV are multiplexers / demultiplexers capable of selecting and combining analog signals and digital signals in a 2 ch \times 3 configuration. Inhibit signals and control signals are used to turn on the switch corresponding to each of the channels. In addition, even if the logical amplitude (V_{DD} - V_{SS}) of the control signal is low, signals with a large amplitude (V_{DD} - V_{EE}) can be switched.

Also, as each switch has a low ON resistance, it can be connected to a low impedance circuit.

Block diagram

Logic circuit diagram

Truth table

INH	Α	в с		ON SWITCH
	/ (ON OWITON
L	L	L	L	X ₀ Y ₀ Z ₀
L	Н	L	L	X1 Y0 Z0
L	L	Н	L	X ₀ Y ₁ Z ₀
L	Н	Н	L	X1 Y1 Z0
L	L	L	Н	X ₀ Y ₀ Z ₁
L	Н	L	Н	X1 Y0 Z1
L	L	Н	Н	X ₀ Y ₁ Z ₁
L	Н	Н	Н	X1 Y1 Z1
Н	Х	Х	Х	NONE

X: Irrelevant

●Absolute maximum ratings (Ta = 25°C)

Parameter	Symbol	Limits	Unit
Power supply voltage1	V _{DD}	− 0.5 ~ + 20	V
Power supply voltage2	V _{DD} - V _{EE}	− 0.5 ~ + 20	V
Power dissipation	Pd	1000 (DIP), 500 (SOP), 400 (SSOP)	mW
Operating temperature	Topr	- 40 ~ + 85	°C
Storage temperature	Tstg	– 55 ~ + 150	°C
Input voltage	Vin	- 0.5 ~ Vpb + 0.5	V

•Electrical characteristics

DC characteristics (unless otherwise noted, Ta = 25°C, VEE = Vss = 0V)

Parameter	Symbol	Min.	Тур.	Max.	Unit	V _{DD} (V)	Conditions	Measurement circuit
Input high-level voltage	Vıн	3.5	_	_	V	5	_	
		7.0	_	_		10		Fig.1
		11.0	_	_		15		
		_	_	1.5		5	_	
Input low-level voltage	VIL	_	_	3.0	V	10		Fig.1
		_	_	4.0		15		
Input high-level current	Іін	_	_	0.3	μΑ	15	Vін = 15V	Fig.1
Input low-level current	I⊫	_	_	- 0.3	μΑ	15	VIL = 0V	Fig.1
	Ron	_	_	950	Ω	5	VIN = VDD / 2	Fig.2
Ron resistance		_	_	250		10		
		_	_	160		15		
Ron resistance deflexion	ΔRon	_	10	_	Ω	5	_	Fig.2
		_	6	_		10		
		_	4	_		15		
OFF-channel leakage current	loff	_	_	0.3	μΑ	15	_	Fig.3
		_	_	- 0.3		15		
Static current dissipation	lob	_	_	5	μА	5	VI = VDD or GND	
		_	_	10		10		_
		_		15		15		

Switching characteristics	s (unless otherwise noted,	$Ta = 25^{\circ}C$, $V_{EE} =$	= Vss = 0V, $R_L = 1k\Omega$, $C_L = 50pF$)	
---------------------------	----------------------------	---------------------------------	---	--

Parameter	Symbol	Min.	Тур.	Max.	Unit	V _{DD} (V)	Conditions	Mesurement circuit
Propagation delay time Switch IN→OUT	tрын,tрны	_	15	45	ns	5	_	Fig.4
		_	8	20		10		
		_	6	15		15		
		_	170	550	ns	5	_	Fig.5, 6
Propagation delay time CONT→OUT	tpнz,tplz tpzн,tpzl	_	90	240		10		
		_	70	160		15		
	tpнz,tplz tpzн,tpzl	_	150	380	ns	5	_	Fig.5, 6
Propagation delay time INH→OUT		_	70	200		10		
		_	50	160		15		
Max. propagation frequency	f _{Max} .	_	20	_	MHz	5	VEE = - 5V*1	Fig.7
Feedthrough attenuation	FT	_	0.5	_	MHz	5	VEE = - 5V*2	Fig.7
Sine wave distortion	D	_	0.02	_	%	5	VEE = - 5V*3	Fig.7
Input capacitance (control)	Cc	_	5	_	pF	_	_	_
Input capacitance (switch)	Cs	_	10	_	pF		_	_

^{*1} VIN = 5Vp-p sine wave, frequency that enables 20 log10 $\frac{VOUT}{VIN}$ = - 3dB.

Measurement circuits

Fig. 1 Input voltage, current

Fig. 2 ON resistance

^{*2} VIN = 5Vp-p sine wave, frequency that enables 20 log10 $\frac{VouT}{VIN} = -50$ dB at channel off.

 $^{*3 \}text{ Vin} = 5\text{V}_{p-p} \text{ sine wave.}$

Fig. 3 Channel-OFF leakage current

Fig. 4 Propagation delay time (Switch IN to OUT)

Fig. 5 Propagation delay time (CONT, INH to OUT)

Fig. 6 Propagation delay time (CONT, INH to OUT)

Fig. 7 Maximum propagation frequency, feedthrough, sine wave distortion

•Electrical characteristic curve

Fig. 8 Power dissipation vs. Ta

External dimensions (Units: mm)

This datasheet has been downloaded from:

www. Data sheet Catalog.com

Datasheets for electronic components.