

Robotics 1

Inverse kinematics

Prof. Alessandro De Luca

DIPARTIMENTO DI INGEGNERIA INFORMATICA AUTOMATICA E GESTIONALE ANTONIO RUBERTI

Inverse kinematics what are we looking for?

direct kinematics is always unique; how about inverse kinematics for this 6R robot?

Inverse kinematics problem

- "given a desired end-effector pose (position + orientation), find the values of the joint variables that will realize it"
- a synthesis problem, with input data in the form

■ T =
$$\begin{bmatrix} R & p \\ 000 & 1 \end{bmatrix}$$
 = ${}^{0}A_{n}(q)$ ■ r = $\begin{bmatrix} p \\ \phi \end{bmatrix}$ = $f_{r}(q)$, or for any other task vector

classical formulation:

generalized formulation:

inverse kinematics for a given end-effector pose inverse kinematics for a given value of task variables

- a typical nonlinear problem
 - existence of a solution (workspace definition)
 - uniqueness/multiplicity of solutions ($r \in R^m$, $q \in R^n$)
 - solution methods

Solvability and robot workspace

(for tasks related to a desired end-effector Cartesian pose)

- primary workspace WS₁: set of all positions p that can be reached with at least one orientation (\(\phi \) or R)
 - out of WS₁ there is no solution to the problem
 - when $p \in WS_1$, there is a suitable ϕ (or R) for which a solution exists
- secondary (or dexterous) workspace WS₂: set of positions p that can be reached with any orientation (among those feasible for the robot direct kinematics)
 - when $p \in WS_2$, there exists a solution for any feasible ϕ (or R)
- $WS_2 \subseteq WS_1$

Workspace of Fanuc R-2000i/165F

Workspace of planar 2R arm

- if $I_1 \neq I_2$
 - $WS_1 = \{p \in R^2: |I_1 I_2| \le ||p|| \le |I_1 + I_2\} \subset R^2$
 - $WS_2 = \emptyset$
- if $I_1 = I_2 = \ell$
 - $WS_1 = \{p \in R^2 : \|p\| \le 2\ell\} \subset R^2$
 - $WS_2 = \{p = 0\}$ (infinite number of feasible orientations at the origin)

Wrist position and E-E pose

Inverse kinematic solutions of UR10

6-dof Universal Robot UR10, with non-spherical wrist

video (slow motion)

desired pose

$$p = \begin{pmatrix} -0.2373 \\ -0.0832 \\ 1.3224 \end{pmatrix} [m]$$

$$R = \begin{pmatrix} \sqrt{3}/2 & 0.5 & 0 \\ -0.5 & \sqrt{3}/2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

home configuration at start

$$q = (0 \quad -\pi/2 \quad 0 \quad -\pi/2 \quad 0 \quad 0)^{\mathrm{T}}$$
 [rad]

Robotics 1

The 8 inverse kinematic solutions of UR10

shoulderRight wristDown elbowUp

shoulderRight wristDown elbowDown

$$q = \begin{pmatrix} 1.0472 \\ -1.9941 \\ 0.7376 \\ 2.8273 \\ -1.5708 \\ 3.1416 \end{pmatrix}$$

shoulderRight wristUp elbowUp

$$q = \begin{pmatrix} 1.0472 \\ -1.5894 \\ -0.5236 \\ 0.5422 \\ 1.5708 \\ 0 \end{pmatrix}$$

shoulderRight wristUp elbowDown

$$t = \begin{pmatrix} 1.0472 \\ -2.0944 \\ 0.5236 \\ 0 \\ 1.5708 \\ 0 \end{pmatrix}$$

shoulderLeft wristDown elbowDown

$$q = \begin{pmatrix} 2.7686 \\ -1.0472 \\ -0.5236 \\ 3.1416 \\ -1.5708 \\ 1.4202 \end{pmatrix}$$

shoulderLeft wristDown elbowUp

$$q = \begin{pmatrix} 2.7686 \\ -1.5522 \\ 0.5236 \\ 2.5994 \\ -1.5708 \\ 1.4202 \end{pmatrix}$$

shoulderLeft wristUp elbowDown

$$q = \begin{pmatrix} 2.7686 \\ -1.1475 \\ -0.7376 \\ 0.3143 \\ 1.5708 \\ -1.7214 \end{pmatrix}$$

shoulderLeft wristUp elbowUp

$$q = \begin{pmatrix} 2.7686 \\ -1.8583 \\ 0.7376 \\ -0.4501 \\ 1.5708 \\ -1.7214 \end{pmatrix}$$

Multiplicity of solutions

STORYM SE

- some examples
- E-E positioning (m=2) of a planar 2R robot arm
 - 2 regular solutions in int(WS₁)
 - 1 solution on ∂WS₁
 - for $I_1 = I_2$: ∞ solutions in WS₂

singular solutions

- E-E positioning of an articulated elbow-type 3R robot arm
 - 4 regular solutions in WS₁ (with singular cases yet to be investigated ...)
- spatial 6R robot arms
 - ≤ 16 distinct solutions, out of singularities: this "upper bound" of solutions was shown to be attained by a particular instance of "orthogonal" robot, i.e., with twist angles $\alpha_i = 0$ or $\pm \pi/2$ ($\forall i$)
 - analysis based on algebraic transformations of robot kinematics
 - transcendental equations are transformed into a single polynomial equation of one variable
 - seek for an equivalent polynomial equation of the least possible degree

A planar 3R arm

workspace and number/type of inverse solutions

$$I_1 = I_2 = I_3 = \ell$$
, $n=3$, $m=2$

$$WS_1 = \{p \in R^2: ||p|| \le 3\ell\} \subset R^2$$

$$WS_2 = \{p \in R^2: ||p|| \le \ell\} \subset R^2$$

any planar orientation is feasible in WS₂

1. in WS₁: ∞^1 regular solutions (except for 2. and 3.), at which the E-E can take a *continuum* of ∞ orientations (but *not all* orientations in the plane!)

2. if $\|p\| = 3\ell$: only 1 solution, singular

3. if $\|p\| = \ell : \infty^1$ solutions, 3 of which singular

4. if $\|p\| < \ell : \infty^1$ regular solutions (never singular)

Workspace of a planar 3R arm

$$l_{max} = \max \{l_i, i = 1, 2, 3\}$$

$$l_{min} = \min \{l_i, i = 1, 2, 3\}$$

$$R_{out} = l_{min} + l_{med} + l_{max} = l_1 + l_2 + l_3$$

$$R_{in} = \max\{0, l_{max} - (l_{med} + l_{min})\}$$

a)
$$l_1 = 1$$
, $l_2 = 0.4$, $l_3 = 0.3$ [m] $\Rightarrow l_{max} = l_1 = 1$, $l_{med} = l_2 = 0.4$, $l_{min} = l_3 = 0.3$

b)
$$l_1 = 0.5, l_2 = 0.7, l_3 = 0.5 \text{ [m]} \Rightarrow l_{max} = l_2 = 0.7, l_{med} = l_{min} = l_1 \text{(or } l_3) = 0.5$$

$$R_{in} = 0, \ R_{out} = 1.7$$

Multiplicity of solutions summary of the general cases

- if m = n
 - ∄ solutions
 - a finite number of solutions (regular/generic case)
 - "degenerate" solutions: infinite or finite set, but anyway different in number from the generic case (singularity)
- if m < n (robot is redundant for the kinematic task)
 - ∄ solutions
 - ∞^{n-m} solutions (regular/generic case)
 - a finite or infinite number of singular solutions
- use of the term singularity will become clearer when dealing with differential kinematics
 - instantaneous velocity mapping from joint to task velocity
 - lack of full rank of the associated m × n Jacobian matrix J(q)

Dexter robot (8R arm)

- $\mathbf{m} = \mathbf{6}$ (position and orientation of E-E)
- n = 8 (all revolute joints)
- ∞^2 inverse kinematic solutions (redundancy degree = n-m = 2)

video

exploring inverse kinematic solutions by a self-motion

Robotics 1 15

Solution methods

ANALYTICAL solution (in closed form)

NUMERICAL solution (in iterative form)

- preferred, if it can be found*
- use ad-hoc geometric inspection
- algebraic methods (solution of polynomial equations)
- systematic ways for generating a reduced set of equations to be solved
- * sufficient conditions for 6-dof arms
- 3 consecutive rotational joint axes are incident (e.g., spherical wrist), or
- 3 consecutive rotational joint axes are parallel

- certainly needed if n>m (redundant case), or at/close to singularities
- slower, but easier to be set up
- in its basic form, it uses the (analytical) Jacobian matrix of the direct kinematics map

$$J_{r}(q) = \frac{\partial f_{r}(q)}{\partial q}$$

 Newton method, Gradient method, and so on...

Inverse kinematics of planar 2R arm

direct kinematics

$$p_x = I_1 c_1 + I_2 c_{12}$$

$$p_y = I_1 s_1 + I_2 s_{12}$$

data q_1 , q_2 unknowns

in analytical form

"squaring and summing" the equations of the direct kinematics

$$p_x^2 + p_y^2 - (l_1^2 + l_2^2) = 2 l_1 l_2 (c_1 c_{12} + s_1 s_{12}) = 2 l_1 l_2 c_2$$

and from this

$$c_2 = (p_x^2 + p_y^2 - l_1^2 - l_2^2)/2 l_1 l_2, s_2 = \pm \sqrt{1 - c_2^2} \implies q_2 = ATAN2 \{s_2, c_2\}$$

must be in [-1,1] (else, point p is outside robot workspace!)

2 solutions

Inverse kinematics of 2R arm (cont'd)

by geometric inspection

$$q_1 = \alpha - \beta$$

2 solutions (one for each value of s_2)

 $q_1 = ATAN2 \{p_y, p_x\} - ATAN2 \{l_2 s_2, l_1 + l_2 c_2\}$

note: difference of ATAN2 needs to be re-expressed in $(-\pi, \pi]!$

$\{q_1,q_2\}_{DOWN/RIGHT}$

q2' e q2" have same absolute value, but opposite signs

Robotics 1 18

Algebraic solution for q₁

$$p_x = I_1 c_1 + I_2 c_{12} = I_1 c_1 + I_2 (c_1 c_2 - s_1 s_2)$$

$$p_{x} = I_{1} c_{1} + I_{2} c_{12} = I_{1} c_{1} + I_{2} (c_{1} c_{2} - s_{1} s_{2})$$

$$p_{y} = I_{1} s_{1} + I_{2} s_{12} = I_{1} s_{1} + I_{2} (s_{1} c_{2} + c_{1} s_{2})$$

$$\begin{bmatrix} I_1 + I_2 c_2 & -I_2 s_2 \\ I_2 s_2 & I_1 + I_2 c_2 \end{bmatrix} \begin{bmatrix} c_1 \\ s_1 \end{bmatrix} = \begin{bmatrix} p_x \\ p_y \end{bmatrix}$$

$$\det = (I_1^2 + I_2^2 + 2 I_1 I_2 c_2) > 0$$

except for $I_1=I_2$ and $C_2=-1$ being then q₁ undefined (singular case: ∞^1 solutions)

$$q_1 = ATAN2 \{s_1, c_1\} = ATAN2 \{(p_y(l_1+l_2c_2)-p_xl_2s_2)/det, (p_x(l_1+l_2c_2)+p_yl_2s_2)/det\}$$

notes: a) this method provides directly the result in $(-\pi, \pi]$

b) when evaluating ATAN2, det > 0 can be eliminated from the expressions of s_1 and c_1

Inverse kinematics of polar (RRP) arm

$$p_{x} = q_{3} c_{2} c_{1}$$

$$p_y = q_3 c_2 s_1$$

$$p_z = d_1 + q_3 s_2$$

$$p_x^2 + p_y^2 + (p_z - d_1)^2 = q_3^2$$

$$q_3 = + \sqrt{p_x^2 + p_y^2 + (p_z - d_1)^2}$$

our choice: take here only the positive value...

if $q_3 = 0$, then q_1 and q_2 remain both undefined (stop); else

$$q_2 = ATAN2\{(p_z - d_1)/q_3, \pm \sqrt{(p_x^2 + p_y^2)/q_3^2}\}$$

if $p_x^2 + p_y^2 = 0$, then q_1 remains undefined (stop); else

(if it stops, a singular case: ∞^2 or ∞^1 solutions)

$$q_1 = ATAN2\{p_y/c_2, p_x/c_2\}$$
 (2 regular solutions $\{q_1, q_2, q_3\}$)

direct kinematics

$$p_x = c_1 (L_2 c_2 + L_3 c_{23})$$

$$p_y = s_1 (L_2 c_2 + L_3 c_{23})$$

$$p_z = d_1 + L_2 s_2 + L_3 s_{23}$$

 WS_1 ={spherical shell centered at (0,0,d₁), with outer radius R_{out} = L_2 + L_3 and inner radius R_{in} =| L_2 - L_3 |}

symmetric structure without offsets e.g., first 3 joints of Mitsubishi PA10 robot

four regular inverse kinematics solutions in WS₁

Note: more details (e.g., full handling of singular cases) can be found in the solution of the Robotics 1 written exam of 11.04.2017

$$p_x = c_1 (L_2c_2 + L_3c_{23})$$

 $p_y = s_1 (L_2c_2 + L_3c_{23})$ direct
 $p_z = d_1 + L_2s_2 + L_3s_{23}$ kinematics

$$p_x^2 + p_y^2 + (p_z - d_1)^2 = c_1^2 (L_2 c_2 + L_3 c_{23})^2 + s_1^2 (L_2 c_2 + L_3 c_{23})^2 + (L_2 s_2 + L_3 s_{23})^2$$

$$= \dots = L_2^2 + L_3^2 + 2L_2 L_3 (c_2 c_{23} + s_2 s_{23}) = L_2^2 + L_3^2 + 2L_2 L_3 c_3$$

$$c_3 = (p_x^2 + p_y^2 + (p_z - d_1)^2 - L_2^2 - L_3^2) / 2L_2L_3 \in [-1,1]$$
 (else, p is out of workspace!)

$$\pm s_3 = \pm \sqrt{1 - c_3^2}$$

$$\pm s_{3} = \pm \sqrt{1 - c_{3}^{2}}$$

$$\pm s_{3} = \pm \sqrt{1 - c_{3}^{2}}$$
two solutions
$$\begin{cases}
q_{3}^{\{+\}} = \text{ATAN2}\{s_{3}, c_{3}\} \\
q_{3}^{\{-\}} = \text{ATAN2}\{-s_{3}, c_{3}\} = -q_{3}^{\{+\}}
\end{cases}$$

$$p_x = c_1 (L_2c_2 + L_3c_{23})$$

 $p_y = s_1 (L_2c_2 + L_3c_{23})$ direct
 $p_z = d_1 + L_2s_2 + L_3s_{23}$ kinematics

only when $p_x^2 + p_y^2 > 0$ (else q_1 is undefined —infinite solutions!)

$$\begin{cases} c_1 = p_x / \pm \sqrt{p_x^2 + p_y^2} \\ s_1 = p_y / \pm \sqrt{p_x^2 + p_y^2} \end{cases}$$

(being $p_x^2 + p_y^2 = (L_2c_2 + L_3c_{23})^2 > 0$)

again, two solutions
$$= \begin{cases} q_1^{\{+\}} = ATAN2\{p_y, p_x\} \\ q_1^{\{-\}} = ATAN2\{-p_y, -p_x\} \end{cases}$$

combine the first two direct kinematics equations and rearrange the last one

$$\begin{cases}
c_1 p_x + s_1 p_y = L_2 c_2 + L_3 c_{23} \\
= (L_2 + L_3 c_3) c_2 - L_3 s_3 s_2 \\
p_z - d_1 = L_2 s_2 + L_3 s_{23} \\
= L_3 s_3 c_2 + (L_2 + L_3 c_3) s_2
\end{cases}$$

define and solve a linear system Ax = bin the algebraic unknowns $x = (c_2, s_2)$

$$\begin{pmatrix} L_2 + L_3 c_3 & -L_3 s_3^{\{+,-\}} \\ L_3 s_3^{\{+,-\}} & L_2 + L_3 c_3 \end{pmatrix} \begin{pmatrix} c_2 \\ s_2 \end{pmatrix} = \begin{pmatrix} c_1^{\{+,-\}} p_x + s_1^{\{+,-\}} p_y \\ p_z - d_1 \end{pmatrix}$$
 depending on combinations of $\{+,-\}$ from q_1 and q_2

coefficient matrix A

known vector b

provided det A =
$$p_x^2 + p_y^2 + (p_z - d_1)^2 > 0$$

(else q_2 is undefined —infinite solutions!)

$$q_{2}^{\{\{f,b\},\{u,d\}\}} = ATAN2\{s_{2}^{\{\{f,b\},\{u,d\}\}}, c_{2}^{\{\{f,b\},\{u,d\}\}}\}$$

Inverse kinematics for robots with spherical wrist

y₀

find $q_1, ..., q_6$ from the input data:

- p (origin O₆)
- R = [n s a] (orientation of RF_6)

1. W = p -
$$d_6 a \rightarrow q_1, q_2, q_3$$
 (inverse "position" kinematics for main axes)

2.
$$R = {}^{0}R_{3}(q_{1}, q_{2}, q_{3}) {}^{3}R_{6}(q_{4}, q_{5}, q_{6}) \rightarrow {}^{3}R_{6}(q_{4}, q_{5}, q_{6}) = {}^{0}R_{3}{}^{T}R \rightarrow q_{4}, q_{5}, q_{6}$$
 (inverse "orientation" known, after step 1 rotation matrix

6R example: Unimation PUMA 600

Joint -	α°	θ°	d	а	Range
1	90°	θ_1	0	0	θ ₁ :+/-160°
2	0	θ2	0	a_2	θ_2 : +45 \rightarrow -225°
3	90°	θ_3	d,	a,	θ ₃ :225° →45°
4	~- 90°	θ_{A}	ď.	Õ	$\theta_4: + / - 170^\circ$
5	90°	θ,	0	0	θ_{s} : + / - 135°
6	0	ø,	(0)	0	6:+/-170°
$t_2 = 17.000$	$a_3 = 0.75$	•			
$t_3 = 4.937$	$d_4 = 17.000$		T		
	h	ere	de	= 0,	

so that 0_6 =W directly

$$n_{x} = C_{1}[C_{23}(C_{4}C_{5}C_{6} - S_{4}S_{6}) - S_{23}S_{5}C_{6}]$$

$$-S_{1}[S_{4}C_{5}C_{6} + C_{4}S_{6}]$$

$$n_{y} = S_{1}[C_{23}(C_{1}C_{5}C_{6} - S_{4}S_{6}) - S_{23}S_{5}C_{6}]$$

$$+C_{1}[S_{4}C_{5}C_{6} + C_{4}S_{6}]$$

$$n_{z} = -S_{23}(C_{4}C_{5}C_{6} - S_{4}S_{6}) - C_{23}S_{5}C_{6}$$

$$o_{x} = C_{1}[-C_{23}(C_{4}C_{5}S_{6} + S_{4}C_{6}) + S_{23}S_{5}S_{6}]$$

$$-S_{1}[-S_{4}C_{5}S_{6} + C_{4}C_{6}]$$

$$o_{y} = S_{1}[-C_{23}(C_{4}C_{5}S_{6} + S_{4}C_{6}) + S_{23}S_{5}S_{6}]$$

$$+C_{1}[-S_{4}C_{5}S_{6} + C_{4}C_{6}]$$

$$o_{z} = S_{23}(C_{4}C_{5}S_{6} + S_{4}C_{6}) + C_{23}S_{5}S_{6}$$

$$a_{x} = C_{1}(C_{23}C_{4}S_{5} + S_{23}C_{5}) - S_{1}S_{4}S_{5}$$

$$a_{y} = S_{1}(C_{23}C_{4}S_{5} + S_{23}C_{5}) + C_{1}S_{4}S_{5}$$

$$a_{z} = -S_{23}C_{4}S_{5} + C_{23}C_{5}$$

$$p_{x} = C_{1}(d_{4}S_{23} + a_{3}C_{23} + a_{2}C_{2}) - S_{1}d_{3}$$

$$p_{y} = S_{1}(d_{4}S_{23} + a_{3}C_{23} + a_{2}C_{2}) + C_{1}d_{3}$$

$$p_{z} = -(-d_{4}C_{23} + a_{3}S_{23} + a_{2}S_{2}).$$

$$p_{z} = -(-d_{4}C_{23} + a_{3}S_{23} + a_{2}S_{2}).$$

$$p_{z} = -(-d_{4}C_{23} + a_{3}S_{23} + a_{2}S_{2}).$$

8 different inverse solutions

that can be found in closed form (see Paul, Shimano, Mayer; 1981)

Numerical solution of inverse kinematics problems

- use when a closed-form solution q to r_d = f_r(q) does not exist or is "too hard" to be found
- $J_r(q) = \frac{\partial f_r}{\partial q}$ (analytical Jacobian)
- Newton method (here for m=n)

- convergence if q^0 (initial guess) is close enough to some q^* : $f_r(q^*) = r_d$
- problems near singularities of the Jacobian matrix J_r(q)
- in case of robot redundancy (m<n), use the pseudo-inverse $J_r^{\#}(q)$
- has quadratic convergence rate when near to solution (fast!)

Operation of Newton method

- in the scalar case, also known as "method of the tangent"
- for a differentiable function f(x), find a root of $f(x^*)=0$ by iterating as

$$X_{k+1} = X_k - \frac{f(X_k)}{f'(X_k)}$$

an approximating sequence

$$\{x_1, x_2, x_3, x_4, x_5, ...\} \rightarrow x^*$$

animation from http://en.wikipedia.org/wiki/File:NewtonIteration_Ani.gif

Robotics 1 28

Numerical solution of inverse kinematics problems (cont'd)

- Gradient method (max descent)
 - minimize the error function

$$\begin{split} H(q) &= \frac{1}{2} \| r_d - f_r(q) \|^2 = \frac{1}{2} [r_d - f_r(q)]^T [r_d - f_r(q)] \\ q^{k+1} &= q^k - \alpha \nabla_q H(q^k) \\ \text{from } \nabla_q H(q) &= -J_r^T(q) [r_d - f_r(q)], \text{ we get} \\ q^{k+1} &= q^k + \alpha J_r^T(q^k) [r_d - f_r(q^k)] \end{split}$$

- the scalar step size $\alpha > 0$ should be chosen so as to guarantee a decrease of the error function at each iteration (too large values for α may lead the method to "miss" the minimum)
- lacktriangle when the step size lpha is too small, convergence is extremely slow

Revisited as a "feedback" scheme

$$e=r_d$$
 - $f_r(q)\to 0 \iff$ closed-loop equilibrium e=0 is asymptotically stable
$$V=1/\!\!\!/_2\ e^T\!\!\!/e \geq 0 \quad \text{Lyapunov candidate function}$$

$$\dot{V} = e^T \dot{e} = e^T \frac{d}{dt} (r_d - f_r(q)) = -e^T J_r \dot{q} = -e^T J_r J_r^T e \le 0$$
 $\dot{V} = 0 \iff e \in \text{Ker}(J_r^T) \text{ in particular } e = 0$

asymptotic stability

Properties of Gradient method

- computationally simpler: Jacobian transpose, rather than its (pseudo)-inverse
- direct use also for robots that are redundant for the task
- may not converge to a solution, but it never diverges
- the discrete-time evolution of the continuous scheme

$$q^{k+1} = q^k + \Delta T J_r^T(q^k) [r_d - f(q^k)] \qquad (\alpha = \Delta T)$$

is equivalent to an iteration of the Gradient method

scheme can be accelerated by using a gain matrix K>0

$$\dot{q} = J_r^T(q) K e$$

note: K can be used also to "escape" from being stuck in a stationary point, by rotating the error e out of the kernel of J_r^T (if a singularity is encountered)

Robotics 1 31

A case study

SZ ZODYM W

analytic expressions of Newton and gradient iterations

- 2R robot with $I_1 = I_2 = 1$, desired end-effector position $r_d = p_d = (1,1)$
- direct kinematic function and error

$$f_r(q) = \begin{pmatrix} c_1 + c_{12} \\ s_1 + s_{12} \end{pmatrix}$$
 $e = p_d - f_r(q) = \begin{pmatrix} 1 \\ 1 \end{pmatrix} - f_r(q)$

Jacobian matrix

$$J_{r}(q) = \frac{\partial f_{r}(q)}{\partial q} = \begin{pmatrix} -(s_{1} + s_{12}) & -s_{12} \\ c_{1} + c_{12} & c_{12} \end{pmatrix}$$

Newton versus Gradient iteration

$$det J_{r}(q)$$

$$q^{k+1} = q^{k} + \begin{cases} \frac{1}{s_{2}} \begin{pmatrix} c_{12} & s_{12} \\ -(c_{1} + c_{12}) & -(s_{1} + s_{12}) \end{pmatrix}_{q=q^{k}} \\ \alpha \begin{pmatrix} -(s_{1} + s_{12}) & c_{1} + c_{12} \\ -s_{12} & c_{12} \end{pmatrix}_{q=q^{k}} \end{cases} - \bullet \begin{pmatrix} 1 - (c_{1} + c_{12}) \\ 1 - (s_{1} + s_{12}) \end{pmatrix}_{q=q^{k}}$$

Error function

• 2R robot with $I_1=I_2=1$, desired end-effector position $p_d=(1,1)$

plot of $\|e\|^2$ as a function of $q = (q_1, q_2)$

two local minima (inverse kinematic solutions)

Error reduction by Gradient method

- flow of iterations along the negative (or anti-) gradient
- two possible cases: convergence or stuck (at zero gradient)

Convergence analysis

- lack of convergence occurs when
 - the Jacobian matrix $J_r(q)$ is singular (the robot is in a "singular configuration")
 - **AND** the error is in the "null space" of $J_r^T(q)$

- initial guess q⁰
 - only one inverse solution is generated for each guess
 - multiple initializations for obtaining other solutions
- optimal step size α in Gradient method
 - a constant step may work good initially, but not close to the solution (or vice versa)
 - an adaptive one-dimensional line search (e.g., Armijo's rule) could be used to choose the best α at each iteration
- stopping criteria

Cartesian error (possibly, separate for position and orientation)
$$\| r_d - f(q^k) \| \le \varepsilon$$
 algorithm increment $\| q^{k+1} - q^k \| \le \varepsilon_q$

understanding closeness to singularities

$$\sigma_{\min}\{J(q^k)\} \geq \sigma_0 \qquad \text{of Jacobian matrix (SVD)}$$
 (or a simpler test on its determinant, for m=n)

Numerical tests on RRP robot

- RRP/polar robot: desired E-E position $r_d = p_d = (1, 1, 1)$ —see slide 20, with d_1 =0.5
- the two (known) analytical solutions, with $q_3 \ge 0$, are:

$$q^* = (0.7854, 0.3398, 1.5)$$

$$q^{**} = (q_1^* - \pi, \pi - q_2^*, q_3^*) = (-2.3562, 2.8018, 1.5)$$

- norms $\varepsilon = 10^{-5}$ (max Cartesian error), $\varepsilon_{\rm q} = 10^{-6}$ (min joint increment)
- $k_{max}=15$ (max # iterations), $|det(J_r)| \le 10^{-4}$ (closeness to singularity)
- numerical performance of Gradient (with different steps α) vs. Newton
- test 1: $q^0 = (0, 0, 1)$ as initial guess
- test 2: $q^0 = (-\pi/4, \pi/2, 1)$ —"singular" start, since $c_2 = 0$ (see slide 20)
- test 3: $q^0 = (0, \pi/2, 0)$ —"double singular" start, since also $q_3 = 0$
- solution and plots with Matlab code

Numerical test - 1

• test 1: $q^0 = (0, 0, 1)$ as initial guess; evolution of error norm

Numerical test - 1

• test 1: $q^0 = (0, 0, 1)$ as initial guess; evolution of joint variables

both to the same solution $q^* = (0.7854, 0.3398, 1.5)$

Robotics 1 39

Numerical test - 2

STORYM YES

Numerical test - 3

• test 3: $q^0 = (0, \pi/2, 0)$: "double" singular start

Gradient (with $\alpha = 0.7$)

- starts toward solution
- ② exits the double singularity
- 3 slowly converges in 19 iterations to the solution $q^*=(0.7854, 0.3398, 1.5)$

Newton
is either
blocked at start
or (w/o check)
explodes!

→ "NaN" in Matlab

iterations

Robotics 1

41

Final remarks

- an efficient iterative scheme can be devised by combining
 - initial iterations using Gradient ("sure but slow", linear convergence rate)
 - switch then to Newton method (quadratic terminal convergence rate)
- joint range limits are considered only at the end
 - check if the solution found is feasible, as for analytical methods
- in alternative, an optimization criterion can be included in the search
 - driving iterations toward an inverse kinematic solution with nicer properties
- if the problem has to be solved on-line
 - execute iterations and associate an actual robot motion: repeat steps at times t_0 , $t_1=t_0+T$, ..., $t_k=t_{k-1}+T$ (e.g., every T=40 ms)
 - the "good" choice for the initial guess q^0 at t_k is the solution of the previous problem at t_{k-1} (provides continuity, needs only 1-2 Newton iterations)
 - crossing of singularities/handling of joint range limits need special care
- Jacobian-based inversion schemes are used also for kinematic control, along a continuous task trajectory r_d(t)

Robotics 1 42