Algoritmos de Búsqueda y Ordenamiento

Trabajo Integrador - Programación I

¿Qué son los Algoritmos?

- Fundamentales en la programación.
- Permiten la gestión eficiente de la información.

Objetivo del trabajo:

- Explorar algoritmos de búsqueda y ordenamiento.
- Aplicación en un caso práctico con Python.

Algoritmos de Ordenamiento

Definición: Reorganizan una colección de elementos según un criterio.

Criterios comunes:

- De mayor a menor.
- Alfabéticamente.

Algoritmos Estudiados:

- Bubble Sort (Burbuja).
- Selection Sort (Selección).
- Insertion Sort (Inserción).

Bubble Sort (Ordenamiento de Burbuja)

Concepto: Compara pares de elementos adyacentes.

Mecánica: Intercambia los elementos si están en el orden incorrecto.

Característica: El proceso se repite hasta ordenar la lista.

Complejidad: O(n2) (Ineficiente para listas grandes).

Selection Sort (Ordenamiento por Selección)

Concepto: Busca el elemento más pequeño del arreglo.

Mecánica: Lo coloca en su posición final correcta.

Característica: Proceso repetitivo para el resto de la lista.

Complejidad: O(n2) (También ineficiente, pero con menos intercambios).

Algoritmos de Búsqueda

Objetivo: Encontrar un valor específico dentro de una colección de datos.

Tipos principales:

- Búsqueda Lineal.
- Búsqueda Binaria.

Búsqueda Lineal

Concepto: Recorre secuencialmente todos los elementos.

Mecánica: Compara uno por uno hasta encontrar el valor deseado.

Ventaja: No requiere que la lista esté ordenada.

Desventaja: Lenta en el peor de los casos.

Complejidad: O(n).

Búsqueda Binaria

¡REQUISITO CLAVE!: La lista debe estar ordenada.

Concepto: Divide el espacio de búsqueda en mitades sucesivas.

Mecánica:

- 1. Compara con el elemento central.
- 2. Si es igual, lo encuentra.
- 3. Si es menor, busca en la mitad izquierda.
- 4. Si es mayor, busca en la mitad derecha.

Ventaja: Extremadamente eficiente.

Complejidad: O(logn).

Conclusión Teórica

La elección del algoritmo depende del contexto.

Eficiencia vs. Simplicidad: Un balance clave en el desarrollo.

Importancia de las estructuras de datos ordenadas para algoritmos como la Búsqueda Binaria.

Estos algoritmos son pilares esenciales de la informática.