数字集成电路基础

——时序逻辑电路

张悦

微电子学院

费尔北京研究院 / 自旋电子交叉学科中心

6.3 时序电路设计方法

- 6.3.1 同步时序电路设计
- 6.3.2 异步时序电路设计

3+. 根据触发器类型对

状态方程进行逻辑化简

思考:目的?

自启动

6.3.1 同步时序电路设计方法

- 设计步骤:
 - 逻辑抽象:根据逻辑问题设定<u>状态</u>,导出对应的<u>状态转换图</u>或<u>状态转换</u>
 表;
 - 2. * 状态化简;
 - 3. 状态分配,又称状态编码;
 - 4. 选择触发器的类型;
 根据编码状态转换表和触发器特性方程,导出输出方程和驱动方程;
 - 5. 根据输出方程和驱动方程画出<u>逻辑电路图</u>;
 - 6. 检查电路能否自启动。

逻 逻辑 状态 辑 化简 抽象 最简状态 电路 时序逻辑 状态转换 逻辑 转换图(表) 方程式 电路图 问题 图(表) 选定触发 检查能否

器的类型

6

自启动

检查

例4:设计一个同步13进制加法计数器

解:

1. 设定状态, 画出状态转换图

例4:

- 2. 状态化简:
 - ❖13个状态已经是最简;
 - 3. 状态分配:
 - *列出状态转换表;
 - ❖注意:这种电路状态转换表的形式:(给出下一个时钟信号作用下一系列电路状态转换的顺序。)

状态		进位输出			
顺序	Q_3	Q_2	Q_1	Q_0	C
20	0	0	0	0 —	0
Si	0	0	0	1	0
S2	0	0	1	0	0
23	0	0	1	1	0
S4	0	1	0	0	0
Ss	0	1	0	1	0
S6	0	1	1	0	0
S7	0	1	1	1	0
Z8	1	0	0	0	0
హ	1	0	0	1	0
S10	1	0	1	0	0
Sn	1	0	1	1	0
S12	1	1	0	0	1
S0	0	0	0	0	0

例4:3+.对于原状态和输入,列出次状态和输出的卡诺图

说明:卡诺图 $\leftarrow \rightarrow$ 真值表 $\leftarrow \rightarrow$ 状态转换表

Q_1	Q_0				
Q_3Q_2	00	01	11	10	
00	0	0	0	0	
01	0	0	0	0	
11	1	X	X	X	
10	0	0	0	0	
C					

例 4

3+,4.

卡诺图化简

• 求状态方程和输出方程

。选用JK触发器,求驱动方程

$$Q_2^{n+1} = \overline{Q}_3 Q_2 \overline{Q}_1 + \overline{Q}_3 Q_2 \overline{Q}_0 + \overline{Q}_2 Q_1 Q_0$$

$$Q_1^{n+1} = \overline{Q}_1 Q_0 + Q_1 \overline{Q}_0$$

$$Q_0^{n+1} = \overline{Q}_3 \overline{Q}_0 + \overline{Q}_2 \overline{Q}_0$$

因为 $Q_3Q_2Q_1Q_0$ 是无关项,可以被删除!

$$C = Q_3 Q_2$$

$$Q_3^{n+1} = (Q_2 Q_1 Q_0) \overline{Q}_3 + \overline{Q}_2 Q_3$$

$$Q_2^{n+1} = (Q_1 Q_0) \overline{Q}_2 + (\overline{Q}_3 \cdot \overline{Q_1 Q_0}) Q_2$$

$$Q_1^{n+1} = Q_0 \overline{Q}_1 + \overline{Q}_0 Q_1$$

$$Q_0^{n+1} = (\overline{Q_3}\overline{Q_2})\overline{Q_0} + \overline{1}Q_0$$

$$J_3 = Q_2 Q_1 Q_0 \quad K_3 = Q_2$$

$$J_2 = Q_1 Q_0 \qquad K_2 = \overline{Q}_3 \cdot \overline{Q_1 Q_0}$$

$$J_1 = Q_0 \qquad K_1 = Q_0$$

$$J_0 = \overline{Q_3 Q_2} \qquad K_0 = 1$$

例4:

3+,4.

状态方程

- *输出方程
- ❖选择触发器类型, 求驱动方程

关键处理环节

- ▶ 强调: 如果是J-K触发器,处理的关键环节是——
 - ✓ 将 Q_i^{n+1} 的状态方程展开,使"与或"组合逻辑表达式中的每个与项中都含有 Q_i 的现态的原变量 Q_i 或反变量 Q_i ;
 - ✓ 考察每个与项,如果完完全全是无关项,则可被删除。

例4: 同步13进制加法计数器

5. 画出电路原理图

例4: 同步13进制加法计数器

- 6. 检查是否能够自启动
 - *自启动(绘出完全的状态转换图)

例5: ({111}序列滤波器)设计一个串行数据检测器,连续输入3个或3个以上的"1",则输出"1",否则输出为0。

"步骤0". 实际问题抽象

步骤1. 逻辑抽象→设定状态

1) 把题目"形象地"再现一下 找到一个"Case"作示范:

Y 0000 00<mark>11</mark> 0

步骤1. 设定状态,画出状态转换图

- 2) 找到状态
 - ——状态与问题本身有自然的对应关系吗?有最好。 如没有,就要参照"Case"列出)。就本例而言:

- 刚来的是一个0 (初态) **S**(
- 来一个1
- 来两个1
- 来三个1
- 来三个以上的1

例5:

步骤2: 状态化简

- ❖等价状态(定义)——若两个电路状态在相同的输入下有相同的输出,并且转换到相同的次态上去,则称这两个状态为等价状态;
- ❖等价状态是重复的,可以合并为一个;
- ❖将等价状态合并,以求得最简单的状态转换图。

S ⁿ	S_0	S_1	S_2	S_3
0	$S_0/0$	$S_0/0$	$S_0/0$	$S_0/0$
1	$S_1/0$	$S_{2}/0$	$S_3/1$	$S_3/1$

 S^{n+1}/Y

- 状态化简的目标——剔除冗余状态
- 状态化简的方法——合并等价状态

例5:

步骤2:状态化简 画出化简后的 状态转换图

例5:

步骤3: 状态分配 (状态

编码)

- ❖ 将编码赋给状态
- ❖ 列状态真值表
- ❖列状态真值表(卡诺图)

S0 → 00
S1 → 01
S2→10

	$Q_1^{n+1}Q_0^{n+1}/Y$			
$Q_1^nQ_0^n$ X	0	1		
0 0	0 0/0	0 1/0		
0 1	0 0/0	1 0/0		
1 0	0 0/0	1 0/1		
1 1	X X/X	x x/x		

0

0

X

0

0

0

X

•卡诺图 也是真值表——直接 列 卡诺图

X	$Q_1^{n+1}Q_0^{n+1}/Y$			
$Q_2^nQ_1^n$	0	1		
0 0	0 0/0	0 1/0		
0 1	0 0/0	1 0/0		
1 0	0 0/0	1 0/1		
1 1	X X/X	X X/X		

$ackslash \mathbf{X} \ \mathbf{Q_1^{n+1}}$				\mathbf{Q}_0	n+1
$Q_1^nQ_0^n$	0	1	-		T
00	0	0		0	1
01	0	1		0	0
11	X	X	Ī	X	X
10	0	1		0	0

注意:卡诺图(真值表)的排步次序

例5:

步骤4:选择触发器类型, 根据触发器特性方程和 状态表导出驱动方程和 输出方程

0	1
0	0
X	X

0

 $\mathbf{Q_0}^{n+1}$

$$Q_1^{n+1} = XQ_1 + XQ_0$$

$$= XQ_1 + XQ_0(Q_1 + \overline{Q_1})$$

$$= (XQ_0)\overline{Q_1} + XQ_1$$

$$Q_0^{n+1} = X\overline{Q}_1\overline{Q}_0 = X\overline{Q}_1\overline{Q}_0 + \overline{1}Q_0$$

$$J_1 = XQ_0 K_1 = \overline{X}$$

$$J_0 = X\overline{Q}_1 K_0 = 1$$

$$Y = XQ_1$$

例5:

步骤5: 电路实现

例5:

步骤4,5: 如果选择D触发器, 电路图

例5:

步骤6: 检查是否可以自启动

对于D触发器,将无关状态代入状态方程

$$Q_1^{n+1} = XQ_1 + XQ_0$$

$$Q_0^{n+1} = X\overline{Q}_1\overline{Q}_0$$

例5:

步骤6: 检查是否可以自启动

对于J-K触发器,将无关状态代入状态方程

$$Q_1^{n+1} = XQ_1 + X\overline{Q_1}Q_0$$
$$Q_0^{n+1} = X \cdot \overline{Q_1} \cdot \overline{Q_0}$$

当
$$Q_1$$
=1, Q_0 =1时

$$\begin{cases} Q_1^{n+1} = X \\ Q_0^{n+1} = 0 \end{cases}$$

自启动设计

▶自启动可以在电路设计过程中保证

例6. 设计一个可自启动的7进制计数器

例6.

• 最简状态方程

$$Q_1^{n+1} = Q_2 \oplus Q_3$$

$$Q_2^{n+1} = Q_1$$
 $Q_2^{n+1} = Q_1 + \overline{Q}_2 \overline{Q}_3$

$$Q_3^{n+1} = Q_2$$

(b) Q_2^{n+1}

(c) Q_3^{n+1}

6.3.2 异步时序电路设计方法

例7. 用JK触发器设计异步五进制计数器

步骤1. 逻辑抽象。

步骤2. 状态化简。

步骤3. 从最简的状态转换图出发, 状态编码。

本例:状态变化时必有,状态不变时...(可有,可无)

步骤4. 通过时序图对状态转换进行观察;

准则:在保证状态变化的时候必有触发脉冲的<mark>前提条件下,选</mark> **择在状态不变的时候触发脉冲最少的**,使得JK的输入条件简化。

例7.

步骤4. 选定各触发器的触发信号源; 列写状态转移表。

❖注意:触发信号的选择必须满足"准则"!

Q_2	Q_1	Q_0	Q_2^{n+1}	Q_1^{n+1}	Q_0^{n+1}	cp_2	cp_1	cp_0	Z =	Q
0	0	0	0	$0^{\mathbf{X}}$	1	—		↓		
0	0	\bigcirc	0	1_	0	\	 	↓		
0	1	0	0	1 X	1	↓		↓		
0	1	\bigcirc	1	0	0	\	 	↓		
1	0	0	0	$0^{\mathbf{X}}$	0	↓		↓		
1	0	1	X	X	X					
1	1	0	X	X	X					
1	1	1	X	X	X			1		

态无 ,时 信号为 关持 项状

例7.

步骤5. 由卡诺图形式的状态转换表,逻辑化简得到状态方程; 根据JK特性方程和状态方程, 经过适当处理后得到驱动方程。

▶ 提示: 为了使化简简便易行, 只合并 "1"格;

状态方程:
$$Q_2^{n+1} = Q_1 Q_0 \cdot \overline{Q_2}$$

$$Q_2^{n+1} = Q_1 Q_0 \cdot \overline{Q_2}$$

驱动方程:
$$\begin{cases} J_2 = Q_1 Q_0 \\ K_2 = 1 \end{cases}$$

$$Q_1^{n+1} = \overline{Q_1}$$

$$\begin{cases} J_1 = 1 \\ K_1 = 1 \end{cases}$$

$$Q_0^{n+1} = \overline{Q_2} \cdot \overline{Q_0}$$

$$\begin{cases} J_0 = \overline{Q_2} \\ K_0 = 1 \end{cases}$$

例7.

步骤6. 根据驱动方程和输出方程, 绘出电路逻辑图。

思考: 异步时序逻辑电路的自启动检查...

■自启动检查

▶ 注意: 异步时钟——没有时钟脉冲的状态保持。

101→010, 110→010, 111→000, 可以自启动。

- 归纳: 异步时序逻辑电路设计步骤
 - 1. 逻辑抽象。
 - 2. 状态化简。
 - 3. 从最简的状态转换图出发,状态编码。
 - 4. 通过时序图对状态转换进行观察,依照"准则",选定 各触发器的触发信号源。
 - 5. 由卡诺图形式的状态转换表,逻辑化简得到状态方程; 根据触发器(JK或D)特性方程和状态方程,经过适当处 理后得到驱动方程。
 - 6. 根据驱动方程和输出方程,绘出电路逻辑图。

第六版

- 6.5; 6.7
- 6.35
- 6.10; 6.12;
- 6.19; 6.22; 6.29

第五版

- 6.5; 6.7
- 6.35
- 6.10; 6.12;
- 6.19; 6.22; 6.29

第四版

- 5.3; 5.5
- 5.29
- 5.7; 5.9;
- 5.15; 5.18; 5.24

