Data Analysis for Earth, Marine, and Environmental Sciences

Jonathan & Eitan Lees

2024-12-02

Table of contents

Preface		3
1	Introduction	4
I	Time Series	5
2	Fourier Analysis	7
	2.1 Fourier Basic Idea	7
	2.2 Discrete Sampling	7
	2.3 Cycles, Phase and Frequency	8
	2.4 Time Series: Basics	8
3	Summary	12
Re	References	

Preface

This is a Quarto book.

To learn more about Quarto books visit https://quarto.org/docs/books.

1 Introduction

This is a book created from markdown and executable code.

See Knuth (1984) for additional discussion of literate programming.

Part I Time Series

This section is about time series analysis.

2 Fourier Analysis

This section is an introduction to Fourier Analysis. We will cover a variety of topics including

- Complex Numbers Review
- Series Expansions: exp, cosine, sine Euler's Formulae
- Definition of Fourier Transform (Continuous) Fourier Transform Pairs Amplitude and Phase
- Frequency, Period, Sampling
- Nyquist Frequency
- Convolution vs. Correlation Periodogram
- Leakage and Tapering

2.1 Fourier Basic Idea

How would you describe this signal?:

The signal can be represented as a sum of different sinusoids:

- Signal S1: .2 Hz amplitude 10
- Signal S2: 3 Hz amplitude .4
- Signal S3 = S1 + S2

One could convey all the information with 6 numbers:

- dt, length
- 10, .2
- .4, 3

2.2 Discrete Sampling

- Red: Period of Sine Wave (s)
- Blue: Amplitude of Sine Wave
- δt : sampling rate (s)

Figure 2.1: A single time series

2.3 Cycles, Phase and Frequency

The rotating pen height in Figure 2.4 represents the signal.

$$Y_i = A \sin{(2\pi x_i/X + \phi)}$$

$$\alpha_i = (2\pi x_i/X + \phi)$$

2.4 Time Series: Basics

- Signal Characteristics:
 - period = T/cycle
 - frequency f = 1/T cycles/s
- Sampling
 - sample rate = Δt
 - Sampling Frequency = $\frac{1}{\Delta t} = f_{sampling}$

Units:

if
$$y = \cos(\theta) = \cos(\omega t)$$

Figure 2.2: The same signal can be represented as a sum of sinusoids. $\,$

Figure 2.3: A wave is sampled at discrete points in time.

- θ is in units of radians = $2\pi ft$
- there are 2π radians per cycle
- we define the angular frequency $\omega = 2\pi f$ radians/sec
- time t is defined as $t = i \cdot \Delta t$ where i is the sample
- $T = \sum i \cdot \Delta t$ is the total time

$$y_k = A\cos(\omega t - \phi)$$

where ϕ is the phase and ω is the frequency.

$$\begin{array}{rcl} y_k & = & A\cos(\omega t - \phi) \\ & = & A\cos(\omega t)\cos\phi + A\sin(\omega t)\sin\phi \\ & = & \alpha_k\cos(\omega t) + \beta_k\sin(\omega t) \end{array}$$

i Trig Identities

$$\sin(u \pm v) = \sin u \cos v \pm \cos u \sin v$$

$$\cos(u \pm v) = \cos u \cos v \mp \sin u \sin v$$

To draw one complete wave form, the pen must revolve completely around the disk, moving through 360° or 2π radians. Suppose we start the device operating with the pen initially resting at an arbitrary location on the paper that we will call 0. The angle α between the pen, the center of the disk, and the center line on the paper is some value ϕ . These are shown in Figure 4.51. If we allow the device to operate for a distance x_i down the record and then stop, the pen will be resting

FIGURE 4.51 Progressive changes in phase angle from an initial value ϕ . At successive values of x_i , $Y_i = A \sin(2\pi x_i/X + \phi)$ and $\alpha_i = (2\pi x_i/X + \phi)$.

Figure 2.4

3 Summary

In summary, this book has no content whatsoever.

References

Knuth, Donald E. 1984. "Literate Programming." Comput.~J.~27~(2): 97–111. https://doi.org/10.1093/comjnl/27.2.97.