Problem 3: Finding Roll, Pitch, and Yaw Angles (15 points)

A rotation matrix R can be described as a product of successive rotations about the principal coordinate axes of the **fixed frame**. If we define the convention to be first a yaw about x_0 through an angle ψ , then pitch about the y_0 by an angle θ , and finally roll about the z_0 by an angle ϕ , we obtain the following transformation matrix, where s_{ϕ} signifies $\sin(\phi)$, c_{ϕ} signifies $\cos(\phi)$, etc.:

$$R = R_{z,\phi}R_{y,\theta}R_{x,\psi} = \begin{bmatrix} c_{\phi}c_{\theta} & -s_{\phi}c_{\psi} + c_{\phi}s_{\theta}s_{\psi} & s_{\phi}s_{\psi} + c_{\phi}s_{\theta}c_{\psi} \\ s_{\phi}c_{\theta} & c_{\phi}c_{\psi} + s_{\phi}s_{\theta}s_{\psi} & -c_{\phi}s_{\psi} + s_{\phi}s_{\theta}c_{\psi} \\ -s_{\theta} & c_{\theta}s_{\psi} & c_{\theta}c_{\psi} \end{bmatrix}$$

Imagine you have a numerical rotation matrix \mathcal{R} that has no zero entries. We will represent it with the following 3×3 array of r_{ij} scalar values.

$$\mathcal{R} = \left[egin{array}{ccc} r_{11} & r_{12} & r_{13} \ r_{21} & r_{22} & r_{23} \ r_{31} & r_{32} & r_{33} \end{array}
ight]$$

Find closed-form expressions that would enable you to solve for all possible sets of ψ , θ , and ϕ that would produce a given numerical matrix \mathcal{R} using the above formula for R. (15 points)