MA557 Homework 7

Carlos Salinas

November 9, 2015

Problem 7.1

Let R be a Noetherian ring and I, J R-ideals. Write $I^{\langle J \rangle} = \bigcup_{n \geq 1} (I:J^n)$, which is called the saturation of I with respect to J. Show:

- (a) If $I = \bigcap_{i=1}^m \mathfrak{q}_i$ with \mathfrak{q}_i p_i-primary, then $I^{\langle J \rangle} = \bigcap_{J \subset \mathfrak{p}_i} \mathfrak{q}_i$.
- (b) $I^{\langle J \rangle}$ is the unique largest R-ideal that coincides with I locally on the open set $\operatorname{Spec}(R) \setminus V(J)$.

Proof. (a) We shall demonstrate double inclusion: Let $\bigcap_{i=1}^m \mathfrak{q}_i$ be a minimal decomposition of I into primary ideals where \mathfrak{q}_i is \mathfrak{p}_i -primary. \Longrightarrow Suppose $x \in I^{\langle J \rangle}$ then $xJ^n \subset I$ for some $n \geq 1$. Given i such that $\mathfrak{p}_i \not\supset J^*$ take $y \in J \setminus \mathfrak{p}_i$. Then $xy^n \in \mathfrak{q}_i$ so $x \in \mathfrak{q}_i$ since \mathfrak{q}_i is primary and $y \notin \mathfrak{p}_i$. Hence, $I^{\langle J \rangle} \subset \bigcap_{J \not\subset \mathfrak{p}_i} \mathfrak{q}_i$. \Longleftarrow Conversely, suppose that $x \in \bigcap_{J \not\subset \mathfrak{p}_i} \mathfrak{q}_i$ then $x \in \mathfrak{q}_i$ for all $\mathfrak{q}_i \not\supset J$. Take any \mathfrak{p}_j containing J. Then $\mathfrak{p}_j = \operatorname{nil}(R/\mathfrak{q}_j)^c$ (this is easily seen from the fact that $\mathfrak{p}_i = \sqrt{\mathfrak{q}_i}$, i.e., \mathfrak{q}_i is \mathfrak{p}_i -primary and the correspondence theorem for ideals) so there exists n_j with $xJ^{n_j} \subset \mathfrak{q}_j$ (since, in the quotient, \bar{J} is nilpotent). Let n be the maximum of all such n_j then $xJ^n\mathfrak{q}_i$ for all i, i.e, $x \in (I:J^n) = \bigcap_i^m (\mathfrak{q}_i:J^n)$. Thus, $x \in I^{\langle J \rangle}$.

(b) We will prove that $I^{\langle J \rangle}$ is precisely the set of all $x \in R$ such that x/1 vanishes in $R_{\mathfrak{p}}$ for all $\mathfrak{p} \not\supset J$. \Longrightarrow Given $x \in I^{\langle J \rangle}$, $xJ^n \subset I$ for some $n \geq 1$. Let \mathfrak{p} be a prime ideal not containing J and let $y \in J \setminus \mathfrak{p}$. Then $xy^n \in I$ and $y^n \notin \mathfrak{p}$ so x/1 = 0 in $R_{\mathfrak{p}}$. \longleftarrow Conversely, suppose that x/1 vanishes in $R_{\mathfrak{p}}$ for some prime ideal $\mathfrak{p} \subset R$. Then xy = 0 for some $y \in R \setminus \mathfrak{p}$. Since $\mathfrak{p} = \sqrt{\mathfrak{q}_i}$ for some $i, y^n \in \mathfrak{q}_i$ for some $n \geq 1$. Let $\bigcap_{i=1}^m \mathfrak{q}_i$ be a minimal decomposition of 0 (one exists since R is Noetherian) where \mathfrak{q}_i is \mathfrak{p}_i -primary. By part (a), it suffices to show that

^{*}Why does such an ideal exist? Well, suppose that $\mathfrak{p}_i \supset J$ for all $1 \leq i \leq m$. Then $J \subset \bigcap_{i=1}^m \mathfrak{p}_i = \bigcap_{i=1}^m \sqrt{\mathfrak{q}_i} = \sqrt{\bigcap_{i=1}^m \mathfrak{q}_i} = \sqrt{I}$. What next?

PROBLEM 7.2

Let R be a Noetherian ring. Show that R is reduced if and only if Quot(R) is a finite direct product of fields.

Proof. \Longrightarrow Suppose that R is reduced. Then $\sqrt{0}=0$. Since R is Noetherian, by 5.13 every ideal has a primary decomposition. Let $\bigcap_{i=1}^n \mathfrak{q}_i$, where \mathfrak{q}_i is \mathfrak{p}_i -primary, be such a decomposition for 0. Then we have that $0=\sqrt{0}=\sqrt{\bigcap_{i=1}^n \mathfrak{q}_i}=\bigcap_{i=1}^n \sqrt{\mathfrak{q}_i}=\bigcap_{i=1}^n \mathfrak{p}_i$ so that $\mathfrak{q}_i=\mathfrak{p}_i$. In particular, \mathfrak{p}_i are minimal over 0 so by 5.15 the decomposition is unique. Thus, by the Chinese remainder theorem we have an exact sequence

$$0 \longrightarrow R \stackrel{\varphi}{\longleftrightarrow} \prod_{i=1}^n R/\mathfrak{p}_i \xrightarrow{\pi} \operatorname{coker} \varphi \longrightarrow 0.$$

Now, consider $\operatorname{Quot}(R) = S^{-1}R$ where $S = R \setminus \bigcup_{i=1}^n \mathfrak{p}_i$. By 4.6, since $S^{-1}R$ is a flat R-module, we have an exact sequence

$$0 \longrightarrow S^{-1}R \stackrel{\varphi}{\longleftrightarrow} S^{-1}\Biggl(\prod_{i=1}^n R/\mathfrak{p}_i\Biggr) \cong \prod_{i=1}^n S^{-1}R/S^{-1}\mathfrak{p}_i \stackrel{\pi}{\longrightarrow} S^{-1}\operatorname{coker}\varphi \longrightarrow 0.$$

In fact, φ is an R-linear isomorphism since coker φ is annihilated by an element of S.[†] It follows that $\operatorname{Quot}(R) \cong \prod_{i=1}^n k_i$ where $k_i = \operatorname{Quot}(R_{\mathfrak{p}_i})$.

 \leftarrow Conversely, suppose that $\operatorname{Quot}(R) \cong \prod_{i=1}^n k_i$ where k_i is a field.

[†]Why? We need to show that the set ann_R(coker φ) is nonempty.

Problem 7.3

Let R be a Noetherian ring and $x \in R$ an R-regular element. Show that $\mathrm{Ass}_R(R/(x^n)) = \mathrm{Ass}_R(R/(x))$ for every $n \ge 1$.

Proof. Suppose that x is an R-regular element then $x \notin \operatorname{nil}(R)$, i.e., x is not a nilpotent element. Recall that the associated of (x^n) are precisely $\operatorname{Ass}_R(R/(x^n))$. We will show double inclusion: One direction is easy namely $\Longrightarrow \operatorname{suppose}$ that $\mathfrak{p} \in \operatorname{Ass}_R(R/(x^n))$. Then $\mathfrak{p} = \operatorname{ann}(\bar{y}) = ((x^n) : y)$ for some $y \in R$. Then $\sqrt{\mathfrak{p}} = \sqrt{((x^n) : y)} = (\sqrt{(x^n) : y}) = ((x) : y)$ so $\mathfrak{p} \in \operatorname{Ass}_R(R/(x))$.

 \Leftarrow Conversely, and this idea we owe to Matsumura, since $(x)/(x^n) \cong R/(x^{n-1})$ (just take the map $\varphi \colon y \mapsto xy/(x^n)$ from R into $(x)/(x^n)$; it is clear that $(x^{n-1}) \subset \ker \varphi$; now take an element $z \in \ker \varphi$, $\phi(z) = xz = \bar{0}$ so $xz = x^ny$ for some y, but since x is regular $z = x^{n-1}y$ hence, $z \in (x^n)$) we have the short exact sequence of R-modules

$$0 \longrightarrow R/(x^{n-1}) \longrightarrow R/(x^n) \longrightarrow R/(x) \longrightarrow 0,$$

i.e., $R/(x^n)$ splits. Then $\operatorname{Ass}(x^n) = \operatorname{Ass}(x^{n-1}) \cup \operatorname{Ass}(x)$. In particular, by induction on n, we have $\operatorname{Ass}(x^n) = \bigcup_{i=1}^n \operatorname{Ass}(x) = \operatorname{Ass}(x)$.

PROBLEM 7.4

Let $\varphi \colon R \to T$ be a homomorphism of rings where T is Noetherian, let ${}^a\varphi$ be the induced map on the spectra, and let N be a T-module. Show:

- (a) $\operatorname{Ass}_R(N) = {}^a \varphi(\operatorname{Ass}_T(N)).$
- (b) If N is finitely generated as a T-module then $\mathrm{Ass}_R(N)$ is finite.

Proof. (a)

(b)

Problem 7.5

Let K be a field that is a finitely generated **Z**-algebra. Show that K is a finite field.

Proof. Write $K := \mathbf{Z}[X_1, ..., X_n]$. It suffices to show that the characteristic of K is finite. It is clear that the characteristic of K is not zero, for otherwise we may embed \mathbf{Q} into K, but \mathbf{Q} is infinitely generated as a \mathbf{Z} -algebra.

Problem 7.6

Let k be a Noetherian ring, R a finitely generated k-algebra, and $\operatorname{Aut}_k(R)$ the group of k-algebra automorphisms of R. For a subgroup G of $\operatorname{Aut}_k(R)$ write $R^G = \{ x \in R \mid \sigma(x) = x \text{ for every } \sigma \in G \}$, which is called the ring of $\operatorname{invariants}$ of G. Show that if G is finite then R^G is a finitely generated k-algebra (and hence a Noetherian ring).

Proof. First, we note that R is integral over R^G since, given $x \in R$, x is the root of a monic polynomial $p(X) = \prod_{\sigma \in G} (X - \sigma(x))$. Then $p(X) \in R^G[X]$ since the elements of G act trivially on R^G , hence the coefficients of p(X) must be in R^G . It follows that $R = R^G[X_1, ..., X_n]$ is a finitely generated R^G -module hence $R^$