

Lab Seminar: 2022, 08, 02,

Very Deep Convolutional Networks For Large-Scale Image Recognition

(Simonyan et al., 15' ICLR)

JongHyeon Kim

School of Computer Science/Department of AI Convergence Engineering Gyeongsang National University (GNU)

- Introduction
- Related Work
- Main Ideas
- Architecture
- Framework
- Training Details
- Experiments
- Result
- Conclusion & Discussions

Introduction

우승 알고리즘의 분류 에러율(%)

- Increased network depth
 - Adding more convolutional layers with 3x3 conv. Filters
- Simple pipeline -> SOTA on ILSVRC 2014 (localization)
- Released two best-performing models
 - For further research

- OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks (Sermanet et al., ICLR 2014)
 - FC Layer -> Conv. Layer (for multi-scale input)

 OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks (Sermanet et al., ICLR 2014)

Architecture

- OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks (Sermanet et al., ICLR 2014)
 - Multi-Scale Classification

Figure 3: 1D illustration (to scale) of output map computation for classification, using y-dimension from scale 2 as an example (see Table 5). (a): 20 pixel unpooled layer 5 feature map. (b): max pooling over non-overlapping 3 pixel groups, using offsets of $\Delta = \{0,1,2\}$ pixels (red, green, blue respectively). (c): The resulting 6 pixel pooled maps, for different Δ . (d): 5 pixel classifier (layers 6,7) is applied in sliding window fashion to pooled maps, yielding 2 pixel by C maps for each Δ . (e): reshaped into 6 pixel by C output maps.

- OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks (Sermanet et al., ICLR 2014)
 - Multi-Scale Classification

	Input	Layer 5	Layer 5	Classifier	Classifier
Scale	size	pre-pool	post-pool	map (pre-reshape)	map size
1	245x245	17x17	(5x5)x(3x3)	(1x1)x(3x3)xC	3x3xC
2	281x317	20x23	(6x7)x(3x3)	(2x3)x(3x3)xC	6x9x <i>C</i>
3	317x389	23x29	(7x9)x(3x3)	(3x5)x(3x3)xC	9x15x <i>C</i>
4	389x461	29x35	(9x11)x(3x3)	(5x7)x(3x3)xC	15x21x <i>C</i>
5	425x497	32x35	(10x11)x(3x3)	(6x7)x(3x3)xC	18x24x <i>C</i>
6	461x569	35x44	(11x14)x(3x3)	(7x10)x(3x3)xC	21x30x <i>C</i>

- OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks (Sermanet et al., ICLR 2014)
 - Multi-Scale Classification (6th layer)

- OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks (Sermanet et al., ICLR 2014)
 - Multi-Scale Classification (7th layer)

 Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition (Kaiming et al., CoRR 2014; SPPNet)

- Spatial Pyramid Pooling (SPP)
 - Spatial bins
 - -50 bin = [6x6, 3x3, 2x2, 1x1]
 - -30 bin = [4x4, 3x3, 2x2, 1x1]
 - -21 bin = [4x4, 2x2, 1x1]
- Output dimension (For FC)
 - k*M (k: conv5 num of filters, M: bins)
 - e.g.) 21 bin: 256 feature map * 21

Main Ideas

- 3 x 3 convolution
 - Stack 3 x 3 convolutional layers -> more non-linearities (ReLUs)
 - Parameter reduction

Main Ideas

- 1 x 1 convolution
 - From Network in Network (Lin et al.; 2014)
 - Not for parameter decrease (GoogLeNet, NiN); for non-linearity
 - projection onto same space (same dimension)

Architecture

- Preprocessing: Mean subtraction (AlexNet, GoogLeNet)
- Small Filters (3 x 3, 1 x 1)
 - 3 x 3: smallest size to capture feature of left/right, up/down, center
 - 1 x 1: non-linearity (Network in Network)
- Spatial Pooling
 - Performed max-pooling some of the conv. Layers (F: 2, S: 2)
- ReLU -> after all of the conv. layers: For non-linearity

Architecture

ConvNet Configuration									
A	A-LRN	В	C	D	Е				
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight				
layers	layers	layers	layers	layers	layers				
	input (224×224 RGB image)								
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64				
	LRN	conv3-64	conv3-64	conv3-64	conv3-64				
			pool						
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128				
		conv3-128	conv3-128	conv3-128	conv3-128				
			pool						
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256				
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256				
			conv1-256	conv3-256	conv3-256				
					conv3-256				
			pool						
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512				
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512				
			conv1-512	conv3-512	conv3-512				
					conv3-512				
			pool						
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512				
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512				
			conv1-512	conv3-512	conv3-512				
					conv3-512				
maxpool									
FC-4096									
	FC-4096								
	FC-1000								
soft-max									

Table 2: Number of parameters (in millions).

Network	A,A-LRN	В	С	D	Е
Number of parameters	133	133	134	138	144

Architecture

VGG-16 (D)

Framework (Train)

- Image Rescaling
 - Scale Jittering (Isotropically-rescaled)
 - Rescale to S (shorter side of origin image)
 - RandomCrop(224x224) after scale jittering

Scaling

- Single-scale training
 - Fix S to 256 or 384
- Multi-scale training
 - Random $S: [256; 512] \rightarrow \text{various scale image}$

Training Details

- Optimizer: SGD (momentum 0.9, weight decay: 5e-4; AlexNet)
- First two fc layer(4960 dim): dropout 0.5
- Lr: initial 1e-2, divided by 10 when validation acc stop
- Trained for 370K iters (74 epochs)
- RGB mean subtraction = Normalization (AlexNet, GoogLeNet)

Training Details

- Regularization
 - Implicit: 3x3 conv(parameter reduction)
 - Explicit: dropout
- Initialization
 - First 4 Conv. Layers, Last 3 FC Layers (VGG-A; 11 Layers)
 - Gaussian Distribution (mean: 0, std: 1e-2) -> weight, bias = 0
 - Xavier Initialization (Glorot & Bengio, 2010): does not need to pretrain
 - After paper submission

Experiments

Single Scale Evaluation

• Test image size: 0.5* (S_{min} , S_{max}) -> 0.5 * (256 + 512) = 384

Table 3: ConvNet performance at a single test scale.

	radio 5. Convi (ce per for mance at a single cest searce						
ConvNet config. (Table 1)		smallest image side		top-1 val. error (%)	top-5 val. error (%)		
		train(S)	test(Q)				
Α		256	256	29.6	10.4		
A-LI	RN	256	256	29.7	10.5		
В		256	256	28.7	9.9		
	1x1 conv.	256	256	28.1	9.4		
C		384	384	28.1	9.3		
	16 layers	[256;512]	384	27.3	8.8		
	3x3 conv.	256	256	27.0	8.8		
D		384	384	26.8	8.7		
	16 layers	[256;512]	384	25.6	8.1		
		256	256	27.3	9.0		
E		384	384	26.9	8.7		
		[256;512]	384	25.5	8.0		

Experiments

- Multi-Scale (Dense) Evaluation
 - Test image size
 - $Q = {S 32, S, S + 32} \rightarrow fixed S$
 - Q = $\{S_{min}, 0.5(S_{min} + S_{max}), S_{max}\} \rightarrow \text{random S (}[S_{min}; S_{max}])$
 - Averaging the result class posteriors (due to different Q)

Table 4: ConvNet performance at multiple test scales.

14016 4. Convitct perior mance at multiple test scales.					
ConvNet config. (Table 1)	smallest image side		top-1 val. error (%)	top-5 val. error (%)	
	train(S)	test(Q)			
В	256	224,256,288	28.2	9.6	
	256	224,256,288	27.7	9.2	
C	384	352,384,416	27.8	9.2	
	[256; 512]	256,384,512	26.3	8.2	
	256	224,256,288	26.6	8.6	
D	384	352,384,416	26.5	8.6	
	[256; 512]	256,384,512	24.8	7.5	
	256	224,256,288	26.9	8.7	
E	384	352,384,416	26.7	8.6	
	[256; 512]	256,384,512	24.8	7.5	

Experiments

Multi Crop Evaluation (AlexNet, GoogLeNet)

- Test image size
 - $Q = \{256, 384, 512\} -> S = [256; 512]$
 - Q = $\{S_{min}$, $0.5(S_{min} + S_{max})$, $S_{max}\} \rightarrow \text{random S}([S_{min}; S_{max}])$
- Averaging dense evaluation + multi crop evaluation (softmax prob.)

Table 5: ConvNet evaluation techniques comparison. In all experiments the training scale S was sampled from [256; 512], and three test scales Q were considered: $\{256, 384, 512\}$.

ConvNet config. (Table 1)	Evaluation method	top-1 val. error (%)	top-5 val. error (%)
	dense	24.8	7.5
D	multi-crop	24.6	7.5
	multi-crop & dense	24.4	7.2
	dense	24.8	7.5
E	multi-crop	24.6	7.4
	multi-crop & dense	24.4	7.1

Results

Ensemble (Multiple ConvNet fusion)

Table 6: Multiple ConvNet fusion results.

T						
Combined ConvNet models		Error				
Combined Convinct models	top-1 val	top-5 val	top-5 test			
ILSVRC submission (7 models)						
(D/256/224,256,288), (D/384/352,384,416), (D/[256;512]/256,384,512)						
(C/256/224,256,288), (C/384/352,384,416)	24.7	7.5	7.3			
(E/256/224,256,288), (E/384/352,384,416)						
post-submission (2 models)						
(D/[256;512]/256,384,512), (E/[256;512]/256,384,512), dense eval.	24.0	7.1	7.0			
(D/[256;512]/256,384,512), (E/[256;512]/256,384,512), multi-crop	23.9	7.2	-			
(D/[256;512]/256,384,512), (E/[256;512]/256,384,512), multi-crop & dense eval.	23.7	6.8	6.8			

Results

Comparison with the SOTA in ILSVRC classification

Table 7: Comparison with the state of the art in ILSVRC classification. Our method is denoted as "VGG". Only the results obtained without outside training data are reported.

Method	top-1 val. error (%)	top-5 val. error (%)	top-5 test error (%)
VGG (2 nets, multi-crop & dense eval.)	23.7	6.8	6.8
VGG (1 net, multi-crop & dense eval.)	24.4	7.1	7.0
VGG (ILSVRC submission, 7 nets, dense eval.)	24.7	7.5	7.3
GoogLeNet (Szegedy et al., 2014) (1 net)	-	7.	.9
GoogLeNet (Szegedy et al., 2014) (7 nets)	-	6.	.7
MSRA (He et al., 2014) (11 nets)	-	-	8.1
MSRA (He et al., 2014) (1 net)	27.9	9.1	9.1
Clarifai (Russakovsky et al., 2014) (multiple nets)	-	-	11.7
Clarifai (Russakovsky et al., 2014) (1 net)	-	-	12.5
Zeiler & Fergus (Zeiler & Fergus, 2013) (6 nets)	36.0	14.7	14.8
Zeiler & Fergus (Zeiler & Fergus, 2013) (1 net)	37.5	16.0	16.1
OverFeat (Sermanet et al., 2014) (7 nets)	34.0	13.2	13.6
OverFeat (Sermanet et al., 2014) (1 net)	35.7	14.2	-
Krizhevsky et al. (Krizhevsky et al., 2012) (5 nets)	38.1	16.4	16.4
Krizhevsky et al. (Krizhevsky et al., 2012) (1 net)	40.7	18.2	-

Conclusions & Discussions

- Conclusions
 - Deep conv. Networks -> up to 19 layers
 - Representation depth -> beneficial for the classification acc.
- Discussions
 - Large computation (parms; VGG-19: 144M, GoogLeNet: 11M)
 - Gradient Vanishing -> Deep conv. networks

Gyeongsang National University

Improving lives through learning

IDEALAB