AR Marker and Voxel Carving

Course "3D Scanning and Motion Capture"

Group 2
Ali Canberk Anar, Ruiyun Xie, Richard Nai, Thea Kramer

June 05, 2019

Outline

- Related Work & Motivation
- Dataset
- Implementation
 - Camera Calibration
 - AR Marker Detection
 - Pose Estimation
 - Background Segmentation
 - Voxel Carving
 - Rendering
- Result

Team

Richard Nai richard.nai@tum.de

Ruiyun Xie ruiyun.xie@tum.de

Anar canberk.anar@tum.de

Ali Canberk

Thea Kramer thea.kramer@tum.de

Related Work

- Kiriakos N. Kutulakos and Steven M. Seitz. A theory of shape by space carving. International Journal of Computer Vision, 3(38):199–218, 2000.
- Andreas Hartl, Lukas Gruber, Clemens Arth, Stefan Hauswiesner, and Dieter Schmalstieg. Rapid reconstruction of small objects on mobile phones. Proceedings of CVPR 2011, pages 20–27, 2006.

computer graphics & visualization

Group 2: AR Marker & Voxel Carving 29/07/2020

Motivation

Dataset

- Two different datasets created with a smartphone.
- Both datasets had the object sitting on a predefined marker background

Example from First Dataset

Final Dataset

- Marker background paper instead of a tablet
- Camera enhancement with "pro mode":
 - fixed focus
 - fixed exposure
 - fixed white balancing
 - → Little improvement on the result
- 8 images (fast computation and reasonable reconstruction quality)

Final Dataset

Example from Second Dataset

Camera Calibration

- Camera pose estimation done by using camera intrinsics matrix of the capturing device.
- Camera calibration with the OpenCV Library and the chessboard model as the calibrating object.

```
camera_matrix
[444.7308589304573, 0, 319.5;
0, 444.7308589304573, 239.5;
0, 0, 1]
```

Our Camera Intrinsics Matrix

AR Marker Detection

- ArUco markers were placed on an RGB image
- Top left corner of top left marker is (0,0,0)
- Each corner is then defined to be 10 apart from the previous one

Pose Estimation

- Pose Estimation determines the translation and rotation matrices (transformation camera to world frame)
- OpenCV's PNP algorithm:
 - Marker corners were matched from the image to a predefined world reference grid
 - Translation from camera to world origin Tc was computed
 - Inverse was taken to determine translation from world to camera

$$T_c = \begin{bmatrix} & & T_x \\ R_{3\times3} & T_y \\ & & T_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Pose Estimation

computer graphics & visualization

Background Segmentation

- Background subtraction with OpenCV's Mixture of Gaussians 2 (MOG2 algorithm)
- Comparison of the background with and without the object
- Transform into silhouette:
 - foreground (object) to white pixels
 - background to black pixels

Group 2: AR Marker & Voxel Carving 29/07/2020

Voxel Carving

- 300x300x300 voxel grid starting at (0,0,0)
- Calculation of signed distance values of silhouette (dist)
- Mapping of each voxel to image pixel (→ pose estimation matrix)
 - Corresponding pixel white (object) → set voxel to dist
 - Corresponding pixel black (background) → set voxel to 0
 - Corresponding pixel not within image coordinates → set voxel to
 -1
- Voxel grid array input for rendering

Rendering

- VTK library
- Structured points with signed distance values
- Surface representation using Marching Cubes Algorithm
- Mesh topology recreation
- Interactive render window for visualization

Result

Group 2: AR Marker & Voxel Carving 29/07/2020

