(b) Find all equilibria (pure and mixed), first analytically and then through plotting the BR functions.

		Player 2		
П		L (q)	R (1-q)	
layer	T (p)	1, 1	0, 0	
PJ,	B (1-p)	1, 0	2, 1	

Highlight the best responses in pure strategies.

Player 2

(b) Find all equilibria (pure and mixed), first analytically and then through plotting the BR functions.

		i layer 2		
Н		L (q)	R (1-q)	
ayer	T (p)	1, 1	0, 0	
<u>`@</u> '	R(1-n)	1 0	2 1	

For which values of q is Player 1 indifferent?

(b) Find all equilibria (pure and mixed), first analytically and then through plotting the BR functions.

Player 2

_		L (q)	R (1-q)
layer	T (p)	1, 1	0, 0
<u> اع</u>	B (1-p)	1 , 0	2, 1

For which values of q is Player 1 indifferent?

Find q such that Player 1 expects to have equal payoffs from playing T and B:

$$E[u_1(T)|q] = E[u_1(B)|q]$$
=

(b) Find all equilibria (pure and mixed), first analytically and then through plotting the BR functions.

		Player 2		
П		L (q)	R (1-q)	
layer	T (p)	1, 1	0, 0	
<u> </u>	B (1-p)	1 , 0	2, 1	

Find q such that Player 1 expects to have equal payoffs from playing T and B:

$$E[u_1(T)|q] = E[u_1(B)|q]$$
$$q = q + 2(1-q) \Leftrightarrow q = 1$$

For which values of p is Player 2 indifferent?

Find p such that Player 2 expect to have equal payoffs from playing L and R:

$$E[u_2(L)|q] = E[u_2(R)|q]$$

(b) Find all equilibria (pure and mixed), first analytically and then through plotting the BR functions.

		Player 2		
Н		L (q)	R (1-q)	
layer	T (p)	1, 1	0, 0	
<u>ام</u>	B (1-p)	1 , 0	2, 1	

Find q such that Player 1 expects to have equal payoffs from playing T and B:

$$E[u_1(T)|q] = E[u_1(B)|q]$$
$$q = q + 2(1-q) \Leftrightarrow q = 1$$

Find p such that Player 2 expect to have equal payoffs from playing L and R:

$$E[u_2(L)|q] = E[u_2(R)|q]$$
$$p = 1 - p \Leftrightarrow p = \frac{1}{2}$$

Write up all NE (pure and mixed).

$$NE = (p^*, q^*) =$$

(b) Find all NE, first analytically:

P	la۰	vе	r	2

П		L (q)	R (1-q)
layer	T (p)	1, 1	0, 0
Р.	B (1-p)	1 , 0	2, 1

Player 1 is indifferent for:

$$E[u_1(T)|q] = E[u_1(B)|q]$$
$$q = q + 2(1-q) \Leftrightarrow q = 1$$

Player 2 is indifferent for:

$$E[u_2(L)|q] = E[u_2(R)|q]$$
$$p = 1 - p \Leftrightarrow p = \frac{1}{2}$$

The pure and mixed strategy NE are:

$$\textit{NE}:\left\{ (0,0);(1,1);\left(p\in\left[\frac{1}{2},1\right),q=1\right)\right\}$$

(b) Find all equilibria (pure and mixed), first analytically and then through plotting the BR functions.

$$BR_1(q) = \{$$

Find q such that Player 1 expects to have equal payoffs from playing ${\cal T}$ and ${\cal B}$:

$$E[u_1(T)|q] = E[u_1(B)|q]$$
$$3q = 4(1-q) \Leftrightarrow q = \frac{4}{7}$$

The players have symmetric payoffs, thus:

$$\textit{NE} = (p^*, q^*) = \left\{ (0, 0); (1, 1); \left(\frac{4}{7}, \frac{4}{7}\right) \right\}$$

Write up Player 1's best-response (BR) function, $p^*(q)$

(b) Find all equilibria (pure and mixed), first analytically and then through plotting the BR functions.

Find q such that Player 1 expects to have equal payoffs from playing T and B:

$$E[u_1(T)|q] = E[u_1(B)|q]$$
$$3q = 4(1-q) \Leftrightarrow q = \frac{4}{7}$$

The players have symmetric payoffs, thus: $NE = (p^*, q^*) = \left\{ (0, 0); (1, 1); \left(\frac{4}{7}, \frac{4}{7}\right) \right\}$

Plot Player 1's best-response (BR) function,
$$p^*(q)$$

$$BR_1(q) = \begin{cases} p = 0 & \text{if} \quad q < 4/7 \\ p \in [0, 1] & \text{if} \quad q = 4/7 \\ p = 1 & \text{if} \quad q > 4/7 \end{cases}$$

(b) Find all equilibria (pure and mixed), first analytically and then through plotting the BR functions.

Find q such that Player 1 expects to have equal payoffs from playing T and B:

$$E[u_1(T)|q] = E[u_1(B)|q]$$
$$3q = 4(1-q) \Leftrightarrow q = \frac{4}{7}$$

The players have symmetric payoffs, thus:

$$NE = (p^*, q^*) = \left\{ (0, 0); (1, 1); \left(\frac{4}{7}, \frac{4}{7}\right) \right\}$$

Write up Player 2's BR function, $q^*(p)$

$$BR_{1}(q) = \begin{cases} p = 0 & \text{if} \quad q < 4/7 \\ p \in [0, 1] & \text{if} \quad q = 4/7 \\ p = 1 & \text{if} \quad q > 4/7 \end{cases}$$

$$BR_{2}(p) = \{$$

(b) Find all equilibria (pure and mixed), first analytically and then through plotting the BR functions.

Find q such that Player 1 expects to have equal payoffs from playing T and B:

$$E[u_1(T)|q] = E[u_1(B)|q]$$
$$3q = 4(1-q) \Leftrightarrow q = \frac{4}{7}$$

The players have symmetric payoffs, thus:

$$\textit{NE} = (\rho^*, q^*) = \left\{ (0, 0); (1, 1); \left(\frac{4}{7}, \frac{4}{7}\right) \right\}$$

Plot Player 2's BR function, $q^*(p)$

$$BR_1(q) = \begin{cases} p = 0 & \text{if} \quad q < 4/7 \\ p \in [0, 1] & \text{if} \quad q = 4/7 \\ p = 1 & \text{if} \quad q > 4/7 \end{cases}$$

$$BR_2(p) = \begin{cases} q = 0 & \text{if} \quad p < 4/7 \\ q \in [0, 1] & \text{if} \quad p = 4/7 \\ q = 1 & \text{if} \quad p > 4/7 \end{cases}$$

(b) Find all equilibria (pure and mixed), first analytically and then through plotting the BR functions.

Find q such that Player 1 expects to have equal payoffs from playing T and B:

$$E[u_1(T)|q] = E[u_1(B)|q]$$
$$3q = 4(1-q) \Leftrightarrow q = \frac{4}{7}$$

The players have symmetric payoffs, thus:

$$\textit{NE} = (\rho^*, q^*) = \left\{ (0, 0); (1, 1); \left(\frac{4}{7}, \frac{4}{7}\right) \right\}$$

$$BR_1(q) = \begin{cases} p = 0 & \text{if} \quad q < 4/7 \\ p \in [0, 1] & \text{if} \quad q = 4/7 \\ p = 1 & \text{if} \quad q > 4/7 \end{cases}$$

$$BR_2(p) = \left\{ egin{array}{ll} q = 0 & \mbox{if} & p < 4/7 \\ q \in [0,1] & \mbox{if} & p = 4/7 \\ q = 1 & \mbox{if} & p > 4/7 \end{array} \right.$$

