

64-040 Modul InfB-RS: Rechnerstrukturen

https://tams.informatik.uni-hamburg.de/ lectures/2016ws/vorlesung/rs

- Kapitel 4 -

Andreas Mäder

Universität Hamburg Fakultät für Mathematik, Informatik und Naturwissenschaften Fachbereich Informatik

Technische Aspekte Multimodaler Systeme

Wintersemester 2016/2017

4 Information 64-040 Rechnerstrukturen

Information

Definitionen und Begriffe Informationsübertragung Zeichen Literatur

- **Information** \sim abstrakter Gehalt einer Aussage
- ▶ Die Aussage selbst, mit der die Information dargestellt bzw. übertragen wird, ist eine **Repräsentation** der Information
- im Kontext der Informationsverarbeitung / -übertragung: Nachricht
- ▶ Das Ermitteln der Information aus einer Repräsentation heißt Interpretation
- ▶ Das Verbinden einer Information mit ihrer Bedeutung in der realen Welt heißt Verstehen

4.1 Information - Definitionen und Begriffe

64-040 Rechnerstrukturen

Beispiel: Mit der Information "25" sei die abstrakte Zahl gemeint, die sich aber nur durch eine Repräsentation angeben lässt:

► Text deutsch: fünfundzwanzig

► Text englisch: twentyfive

. . .

► Zahl römisch: XXV

► Zahl dezimal: 25

► Zahl binär: 11001

► Zahl Dreiersystem: 221

. .

► Wo auch immer Repräsentationen auftreten, meinen wir eigentlich die Information, z.B.:

$$5 \cdot (2+3) = 25$$

- ▶ Die Information selbst kann man überhaupt nicht notieren (!)
- Es muss immer Absprachen geben über die verwendete Repräsentation. Im obigen Beispiel ist implizit die Dezimaldarstellung gemeint, man muss also die Dezimalziffern und das Stellenwertsystem kennen.
- Repräsentation ist häufig mehrstufig, z.B.

Zahl: Dezimalzahl 347

Ziffer: 4-bit binär 0011 0100 0111 (BCD)
Bit: elektrische Spannung 0,1V 0,1V 3,3V 3,3V ...

In jeder (Abstraktions-) Ebene gibt es beliebig viele Alternativen der Repräsentation

- Auswahl der jeweils effizientesten Repräsentation
- unterschiedliche Repräsentationen je nach Ebene
- ▶ Beispiel: Repräsentation der Zahl $\pi = 3,1415...$ im
 - x86 Prozessor
 - Hauptspeicher
 - Festplatte
 - CD-ROM
 - Papier
 - **.** . . .

80-bit Binärdaten, Spannungen

64-bit Binärdaten, Spannungen

codierte Zahl, magnetische Bereiche

codierte Zahl, Land/Pits-Bereiche

Text, "3,14159265..."

Repräsentation: digitale und analoge Welt

64-040 Rechnerstrukturen

Beispiel: Binärwerte in 5 V CMOS-Technologie

K. von der Heide [Hei05] Interaktives Skript T1, demobitrep

- ► Spannungsverlauf des Signals ist kontinuierlich
- ► Abtastung zu bestimmten Zeitpunkten
- Quantisierung über abgegrenzte Wertebereiche:
 - $0,0V \le a(t) \le 1,2V$: Interpretation als 0
 - \blacktriangleright 3, 3 $V \le a(t) \le 5$, 0 V: Interpretation als 1
 - ▶ außerhalb und innerhalb: ungültige Werte

- Aussagen
 - N1 Er besucht General Motors
 - N2 Unwetter am Alpenostrand
 - N3 Sie nimmt ihren Hut
- ► Alle Aussagen sind aber doppel/mehrdeutig:
 - N1 Firma? Militär?
 - N2 Alpen-Ostrand? Alpeno-Strand?
 - N3 tatsächlich oder im übertragenen Sinn?
- ⇒ Interpretation: Es handelt sich um drei Nachrichten, die jeweils zwei verschiedene Informationen enthalten

- ► Information: Wissen um oder Kenntnis über Sachverhalte und Vorgänge – als Begriff nicht informationstheoretisch abgestützt, sondern an umgangssprachlicher Bedeutung orientiert
- ► Nachricht: Zeichen oder Funktionen, die Informationen zum Zweck der Weitergabe aufgrund bekannter oder unterstellter Abmachungen darstellen (DIN 44 300)
- Beispiel für eine Nachricht:
 Temperaturangabe in Grad Celsius oder Fahrenheit
- ▶ Die Nachricht ist also eine Darstellung von Informationen und nicht der Übermittlungsvorgang

64-040 Rechnerstrukturen

4.2 Information - Informationsübertragung

Beschreibung der Informationsübermittlung:

- lacktriangle Abbildung lpha erzeugt Nachricht N_1 aus Information I_1
- ▶ Übertragung der Nachricht an den Zielort
- lacktriangle Umkehrabbildung $lpha^{-1}$ aus der Nachricht \emph{N}_2 liefert die Information \emph{I}_2

Modell der Informationsübertragung (cont.)

4.2 Information - Informationsübertragung

64-040 Rechnerstrukturen

Nachrichtentechnisches Modell: Störungen bei der Übertragung

Beispiele

- ► Bitfehler beim Speichern
- ► Störungen beim Funkverkehr
- Schmutz oder Kratzer auf einer CD/DVD

LISW.

Verarbeitung von Information

4.2 Information - Informationsübertragung

64-040 Rechnerstrukturen

Repräsentation natürlicher Zahlen durch Stellenwertsysteme

K. von der Heide [Hei05] Interaktives Skript T1, inforepres

Ergibt α gefolgt von σ dasselbe wie ν gefolgt von α' , dann heißt ν informationstreu $\sigma(\alpha(r)) = \alpha'(\nu(r))$

ightharpoonup lpha' ist die Interpretation des Resultats der Operation u häufig sind lpha und lpha' gleich, aber nicht immer

- ▶ ist σ injektiv, so nennen wir ν eine **Umschlüsselung** durch die Verarbeitung σ geht keine Information verloren
- ightharpoonup ist ν injektiv, so nennen wir ν eine **Umcodierung**
- wenn σ innere Verknüpfung der Menge $\mathcal J$ und ν innere Verknüpfung der Menge $\mathcal R$, dann ist α ein **Homomorphismus** der algebraischen Strukturen $(\mathcal J,\sigma)$ und $(\mathcal R,\nu)$
- \blacktriangleright ist σ bijektiv, liegt ein **Isomorphismus** vor

Welche mathematischen Eigenschaften gelten bei der Informationsverarbeitung, in der gewählten Repräsentation?

Beispiele

- ▶ Gilt $x^2 > 0$?
 - ▶ float: ja
 - ► signed integer: nein

• Gilt
$$(x + y) + z = x + (y + z)$$
?

► integer: ja

▶ float: nein

$$1.0E20 + (-1.0E20 + 3.14) = 0$$

► Details folgen später

Beschreibung von Information durch Zeichen

4.3 Information - Zeicher

64-040 Rechnerstrukturen

- ► Zeichen: engl. character
 Element z aus einer zur Darstellung von Information
 vereinbarten, einer Abmachung unterliegenden, endlichen
 Menge Z von Elementen
- ▶ Die Menge Z heißt Zeichensatz oder Zeichenvorrat engl. character set
- Beispiele
 - $\mathcal{Z}_1 = \{0, 1\}$
 - $\triangleright \mathcal{Z}_2 = \{0, 1, 2, \dots, 9, A, B, C, D, E, F\}$
 - $\blacktriangleright \ \mathcal{Z}_3 = \{\alpha, \beta, \gamma, \ldots, \omega\}$
 - $ightharpoonup \mathcal{Z}_4 = \{\mathsf{CR}, \mathsf{LF}\}$

Beschreibung von Information durch Zeichen (cont.)

4.3 Information - Zeicher

64-040 Rechnerstrukturen

- ► Numerischer Zeichensatz: Zeichenvorrat aus Ziffern und/oder Sonderzeichen zur Darstellung von Zahlen
- ► Alphanumerischer Zeichensatz: Zeichensatz aus (mindestens) den Dezimalziffern und den Buchstaben des gewöhnlichen Alphabets, meistens auch mit Sonderzeichen (Leerzeichen, Punkt, Komma usw.)

4.3 Information - Zeichen

- ► Binärzeichen: engl. binary element, binary digit, bit Jedes der Zeichen aus einem Vorrat / aus einer Menge von zwei Symbolen
- ▶ Beispiele

$$ightharpoonup Z_1 = \{0, 1\}$$

$$\triangleright \mathcal{Z}_2 = \{ \text{high, low} \}$$

$$\blacktriangleright \ \mathcal{Z}_3 = \{ rot, \, gr\ddot{u}n \}$$

$$\mathcal{Z}_4 = \{+, -\}$$

- ▶ **Alphabet**: engl. alphabet Ein in vereinbarter Reihenfolge geordneter Zeichenvorrat $\mathcal{A} = \mathcal{Z}$
- Beispiele
 - \rightarrow $A_1 = \{0,1,2,\ldots, 9\}$
 - $ightharpoonup \mathcal{A}_2 = \{ So, Mo, Di, Mi, Do, Fr, Sa \}$
 - $A_3 = \{ 'A', 'B', ..., 'Z' \}$

64-040 Rechnerstrukturen

4.3 Information - Zeicher

► **Zeichenkette**: engl. *string*Eine Folge von Zeichen

► Wort: engl. word
Eine Folge von Zeichen, die in einem gegebenen
Zusammenhang als Einheit bezeichnet wird

- ▶ Worte mit 8 bit werden als **Byte** bezeichnet
- ▶ Stelle: engl. position Die Lage/Position eines Zeichens innerhalb einer Zeichenkette
- Beispiel
 - \triangleright s = H e l l o , w o r l d !

64-040 Rechnerstrukturen

Natürliche Zahlen Festkommazahlen Gleitkommazahlen engl. integer numbers
engl. fixed point numbers
engl. floating point numbers

6. Arithmetik

4.3 Information - Zeicher

- Aspekte der Textcodierung Ad-hoc Codierungen ASCII und ISO-8859-1 Unicode
- ▶ Pointer (Referenzen, Maschinenadressen)

[Hei05] K. von der Heide: Vorlesung: Technische Informatik 1 interaktives Skript. Universität Hamburg, FB Informatik, 2005 tams.informatik.uni-hamburg.de/lectures/2004ws/ vorlesung/t1