Snake Species Identification Challenge

Deep Learning for Vision Seminar

Baseline

• **DenseNet-121** pertained on ImageNet fine-tuned for snake species identification.

Model	Acc@1	Acc@5
DenseNet-121	82.858	92.290
DenseNet-161	82.736	93.798
DenseNet-169	82.693	93.150
DenseNet-201	82.566	93.660
Inception-v1	81.320	89.600
Inception-v2	81.304	91.800
Inception-v3	80.400	93.900
Inception-v4	80.200	95.200
Inception-v4	80.170	94.930
Inception-ResNet-v2	80.060	95.300
Inception-ResNet-v2	78.888	95.234

Top scoring networks on the ImageNet challenge

https://github.com/Lextal/SotA-CV/blob/master/content/image_classification.md

Baseline

- DenseNet jointly created by Cornwell University, Tsinghua University and Facebook Al Research. Received the 2017 CVPR Best Paper Award.
- INTUITION: Each layer obtains additional inputs from all preceding layers and passes its own feature maps to all subsequent layers using concatenation.

Huang, Liu, van der Maaten, Weinberger <u>Densely Connected Convolutional Networks</u> CVPR 2017

Baseline

- Best Validation Accuracy: 65.18%
- Best Validation F-Score: 50.58%

17.5

Original Image

Random 224x224 crops

Random 224x224 crops

HORIZONTALLY FLIPPED Random 224x224 crops

Class Imbalance

Weighted Cross-Entropy Loss with Regularisation

L2 Regularisation (Weight Decay)
Controls the capacity of the network

$$L = -\sum_{i=1}^{n} \alpha_i \mathbf{y}_i log(S(f_{\theta}(\mathbf{x}_i))) \left(+\frac{\lambda}{2} W^2 \right)$$
 Class Weight Inverse to class frequency

Dropout

- Randomly pick some nodes in a layer to be dropped/ignored during training.
- It forces the learning algorithm to spread the out the weights and not focus on some specific features.

Enhanced

- Best Validation Accuracy: 65.72 %
- Best Validation F-Score: 51 %

Comparison

	Baseline	Enhanced	
Data Augmentation			
Loss	Cross-Entropy Loss	Weighted Cross-Entropy Loss	
Regularization			
Dropout			

Summary

	Chance	AlCrowd Baseline	Baseline	Enhanced
Accuracy	2.22 %	64 %	65.18 %	65.72 %
F-Score	2.22 %	-	50.58 %	51 %

Thanks for your attention!

Questions?

https://github.com/marinalpo/SnakeSpeciesIdentification