

Robust Prompt Optimization for Large Language Models Against Distribution Shifts

Moxin Li, Wenjie Wang, Fuli Feng, Yixin Cao, Jizhi Zhang, Tat-Seng Chua

Nowadays, many powerful Large Language Models(LLM) are in the form of black-box API.

Nowadays, many powerful Large Language Models(LLM) are in the form of black-box API.

Writing the best prompt for downstream task is important but difficult and laborious.

Nowadays, many powerful Large Language Models(LLM) are in the form of black-box API.

Writing the best prompt for downstream task is important but difficult and laborious.

To automatically obtain good prompts for certain tasks on black-box API LLMs?

Existing solution: gradient-free prompt optimization

An example pipeline of gradient-free prompt optimization for black-box API LLM. Representative approaches: APE (Zhou et al., 2023), APO (Pryzant et al., 2023).

An example pipeline of gradient-free prompt optimization for black-box API LLM.

An example pipeline of gradient-free prompt optimization for black-box API LLM.

An example pipeline of gradient-free prompt optimization for black-box API LLM.

An example pipeline of gradient-free prompt optimization for black-box API LLM.

An example pipeline of gradient-free prompt optimization for black-box API LLM.

Current gradient-free prompt optimization methods ignore distribution shifts.

Prompt Optimization

Deployment

11

Current gradient-free prompt optimization methods ignore distribution shifts.

The data LLM serves may differ from the labeled data for prompt optimization.

Prompt Optimization

Deployment

12

Current gradient-free prompt optimization methods ignore distribution shifts.

The data LLM serves may differ from the labeled data for prompt optimization.

Current gradient-free prompt optimization methods ignore distribution shifts.

The data LLM serves may differ from the labeled data for prompt optimization.

Current gradient-free prompt optimization methods ignore distribution shifts.

The data LLM serves may differ from the labeled data for prompt optimization.

Current gradient-free prompt optimization methods ignore distribution shifts.

The data LLM serves may differ from the labeled data for prompt optimization.

Current gradient-free prompt optimization methods ignore distribution shifts.

The data LLM serves may differ from the labeled data for prompt optimization.

Current gradient-free prompt optimization methods ignore distribution shifts.

The data LLM serves may differ from the labeled data for prompt optimization.

Current gradient-free prompt optimization methods ignore distribution shifts.

The data LLM serves may differ from the labeled data for prompt optimization.

Contribution 1: We reveal the robustness issue of prompt optimization against distribution shifts.

Real world NLP applications often encounter distribution shifts between collected and served data.

e.g., new user groups with distinct linguistic habits in customer review analysis.

Real world NLP applications often encounter distribution shifts between collected and served data.

e.g., new user groups with distinct linguistic habits in customer review analysis.

Prompt optimization in consideration of distribution shifts,

A: Keep labeling new data and obtaining new prompts for different groups?

B: A robust task-specific prompt (this work).

Real world NLP applications often encounter distribution shifts between collected and served data.

e.g., new user groups with distinct linguistic habits in customer review analysis.

Prompt optimization in consideration of distribution shifts,

A: Keep labeling new data and obtaining new prompts for different groups?

B: A robust task-specific prompt (this work).

Contribution 2: We propose a new robust prompt optimization problem, and a generalized prompt optimization framework to solve the problem.

In the zero-shot setting,

In the zero-shot setting,

Given a dataset $\{(x, y)\}$ following distribution P, the goal of prompt optimization is to obtain

In the zero-shot setting,

Given a dataset $\{(x, y)\}$ following distribution P, the goal of prompt optimization is to obtain

$$p^o = argmax_{p \in \mathcal{Z}} \mathbb{E}_{(x,y) \sim P}[r(LLM(p,x),y)]$$

 \mathcal{Z} : prompt optimization space; r: evaluation metric

Source group $\{(\boldsymbol{x}_S, \boldsymbol{y}_S)\} \sim P_S$

Target group
$$\{(x_t, y_t)\} \sim P_t \neq P_s$$

Target group
$$\{(\boldsymbol{x}_t, \boldsymbol{y}_t)\} \sim P_t \neq P_S$$

- 16 datasets from 6 NLP tasks
- Different datasets of the same task as source and target groups.
- APE (Zhou et al. 2023)
 as prompt optimization method
- *gpt-3.5-turbo-0301*
- Zero-shot
- Average with five runs

Dataset	Task	Label Example	Distribution shifts	Evaluation Metric
Yelp	Sentiment Analysis	Positive, Neutral, Negative	Different topics	Acc
Flipkart				
IMDB				
Amazon				
MNLI	NLI	entailment, neutral,	Adversarial dataset	
ANLI		contradiction		
RTE	Textual Entailment	entailment,	OOD dataset	
HANS		non-entailment		
SocialIQA	Commonsense QA	A, B, C, D	Different topics	
PIQA				
OpenbookQA				
DSTC7	Multi-turn dialog	A, B, C, D	Different topics	
Ubunt	response selection			
MuTual				
DROP Spans	Numerical QA	e.g., 78.9	Different answer	F1
DROP number		e.g., 3 March 1992	types	

- 16 datasets from 6 NLP tasks
- Different datasets of the same task as source and target groups.
- APE (Zhou et al. 2023)
 as prompt optimization method
- *gpt-3.5-turbo-0301*
- Zero-shot
- Average with five runs

Dataset	Task	Label Example	Distribution shifts	Evaluation Metric
Yelp	Sentiment Analysis	Positive, Neutral,	Different topics	Acc
Flipkart		Negative		
IMDB				
Amazon				
MNLI	NLI	entailment, neutral,	Adversarial dataset	
ANLI		contradiction		
RTE	Textual Entailment	entailment,	OOD dataset	
HANS		non-entailment		
SocialIQA	Commonsense QA	A, B, C, D	<u>Different topics</u>	
PIQA				
OpenbookQA				
DSTC7	Multi-turn dialog	A, B, C, D	<u>Different topics</u>	
Ubunt	response selection			
MuTual				
DROP Spans	Numerical QA	e.g., 78.9	<u>Different answer</u>	F1
DROP number		e.g., 3 March 1992	<u>types</u>	

Significant generalization performance gaps between some data groups.

Target Source	Yelp	Flipkart	IMDB	Amazon
Yelp	$\textbf{79.7} \pm \textbf{0.7}$	78.4 ± 1.9	87.1 ± 1.9	88.4 ± 1.9
Flipkart	69.1 ± 8.7	85.1 ± 2.9	85.2 ± 9.4	85.9 ± 12.5
IMDB	71.1 ± 8.2	76.9 ± 13.4	91.9 ± 0.9	90.4 ± 5.2
Amazon	75.5 ± 1.5	85.6 ± 2.1	91.5 ± 0.8	93.5 ± 1.4

(a) Sentiment analysis

Target Source	SocialIQA	PIQA	OpenbookQA
SocialIQA	75.6 ± 1.4	82.0 ± 6.0	71.2 ± 5.2
PIQA	68.9 ± 6.9	83.6 ± 2.9	69.2 ± 5.1
OpenbookQA	$\textbf{79.9} \pm \textbf{1.0}$	84.5 ± 1.6	$\textbf{80.1} \pm \textbf{2.4}$

(b) Commonsense QA

Source	Number	Spans
Number Spans	51.9 ± 2.8 57.7 ± 2.9	20.1 ± 1.3 63.1 ± 2.2

(c) DROP

Significant generalization performance gaps between some data groups.

Compare each column

Target Source	Yelp	Flipkart	IMDB	Amazon
Yelp	79.7 ± 0.7	78.4 ± 1.9	87.1 ± 1.9	88.4 ± 1.9
Flipkart	69.1 ± 8.7	85.1 ± 2.9	85.2 ± 9.4	85.9 ± 12.5
IMDB	71.1 ± 8.2	76.9 ± 13.4	91.9 ± 0.9	90.4 ± 5.2
Amazon	75.5 ± 1.5	$\textbf{85.6} \pm \textbf{2.1}$	91.5 ± 0.8	93.5 ± 1.4

(a) Sentiment analysis

Target Source	SocialIQA	PIQA	OpenbookQA
SocialIQA	75.6 ± 1.4	82.0 ± 6.0	71.2 ± 5.2
PIQA	68.9 ± 6.9	83.6 ± 2.9	69.2 ± 5.1
OpenbookQA	$\textbf{79.9} \pm \textbf{1.0}$	$\textbf{84.5} \pm \textbf{1.6}$	$\textbf{80.1} \pm \textbf{2.4}$

(b) Commonsense QA

Source	Number	Spans
Number Spans	51.9 ± 2.8 57.7 ± 2.9	20.1 ± 1.3 63.1 ± 2.2

(c) DROP

Significant generalization performance gaps between some data groups.

Are prompts optimized by existing gradient-free methods robust to distribution shifts?

Compare each column

Target Source	Yelp	Flipkart	IMDB	Amazon
Yelp Flipkart IMDB Amazon	$ \begin{array}{c} 79.7 \pm 0.7 \\ 69.1 \pm 8.7 \\ 71.1 \pm 8.2 \\ 75.5 \pm 1.5 \end{array} $	78.4 ± 1.9 85.1 ± 2.9 76.9 ± 13.4 85.6 ± 2.1	87.1 ± 1.9 85.2 ± 9.4 91.9 ± 0.9 91.5 ± 0.8	88.4 ± 1.9 85.9 ± 12.5 90.4 ± 5.2 93.5 ± 1.4

(a) Sentiment analysis

Target Source	SocialIQA	PIQA	OpenbookQA
SocialIQA	75.6 ± 1.4	82.0 ± 6.0	71.2 ± 5.2
PIQA	68.9 ± 6.9	83.6 ± 2.9	69.2 ± 5.1
OpenbookQA	$\textbf{79.9} \pm \textbf{1.0}$	$\textbf{84.5} \pm \textbf{1.6}$	$\textbf{80.1} \pm \textbf{2.4}$

(b) Commonsense QA

Source	Number	Spans
Number Spans	51.9 ± 2.8 57.7 ± 2.9	20.1 ± 1.3 63.1 ± 2.2

(c) DROP

Significant generalization performance gaps between some data groups.

Are prompts optimized by existing gradient-free methods robust to distribution shifts?

Under some distribution shifts, No.

Compare each column

Target Source	Yelp	Flipkart	IMDB	Amazon
Yelp Flipkart IMDB Amazon	79.7 ± 0.7 69.1 ± 8.7 71.1 ± 8.2 75.5 ± 1.5	78.4 ± 1.9 85.1 ± 2.9 76.9 ± 13.4 85.6 ± 2.1	87.1 ± 1.9 85.2 ± 9.4 91.9 ± 0.9 91.5 ± 0.8	88.4 ± 1.9 85.9 ± 12.5 90.4 ± 5.2 93.5 ± 1.4

(a) Sentiment analysis

Target Source	SocialIQA	PIQA	OpenbookQA
SocialIQA	75.6 ± 1.4	82.0 ± 6.0	71.2 ± 5.2
PIQA	68.9 ± 6.9	83.6 ± 2.9	69.2 ± 5.1
OpenbookQA	$\textbf{79.9} \pm \textbf{1.0}$	$\textbf{84.5} \pm \textbf{1.6}$	$\textbf{80.1} \pm \textbf{2.4}$

(b) Commonsense QA

Target Source	Number	Spans
Number Spans	51.9 ± 2.8 57.7 ± 2.9	20.1 ± 1.3 63.1 ± 2.2

(c) DROP

Significant generalization performance gaps between some data groups.

Are prompts optimized by existing gradient-free methods robust to distribution shifts?

Under some distribution shifts, No.

Goal: achieving robust prompt optimization against distribution shifts.

Compare each column

Target Source	Yelp	Flipkart	IMDB	Amazon
Yelp Flipkart IMDB Amazon		78.4 ± 1.9 85.1 ± 2.9 76.9 ± 13.4 85.6 ± 2.1	87.1 ± 1.9 85.2 ± 9.4 91.9 ± 0.9 91.5 ± 0.8	88.4 ± 1.9 85.9 ± 12.5 90.4 ± 5.2 93.5 ± 1.4

(a) Sentiment analysis

Target Source	SocialIQA	PIQA	OpenbookQA
SocialIQA	75.6 ± 1.4	82.0 ± 6.0	71.2 ± 5.2
PIQA	68.9 ± 6.9	83.6 ± 2.9	69.2 ± 5.1
OpenbookQA	$\textbf{79.9} \pm \textbf{1.0}$	$\textbf{84.5} \pm \textbf{1.6}$	$\textbf{80.1} \pm \textbf{2.4}$

(b) Commonsense QA

Source	Number	Spans
Number Spans	51.9 ± 2.8 57.7 ± 2.9	20.1 ± 1.3 63.1 ± 2.2

(c) DROP

Generalization gap may not exist for some OOD and adversarial groups.

More analysis in the paper.

Source	MNLI	ANLI
MNLI	73.4 ± 1.0	45.4 ± 1.9
ANLI	73.3 ± 1.3	46.0 ± 1.5

(a) Natural language inference

Target Source	RTE	HANS
RTE	78.3 ± 0.8	67.2 ± 1.1
HANS	79.0 ± 0.8	68.4 ± 1.8

(b) Textual entailment

Target Source	DSTC7	Ubuntu Dialog	MuTual
DSTC7	58.4 ± 0.8	78.9 ± 0.3	74.2 ± 2.2
Ubuntu Dialog	56.9 ± 1.3	78.7 ± 0.5	74.4 ± 2.1
MuTual	52.2 ± 4.4	74.7 ± 6.0	76.7 ± 3.4

(c) Dialog

Given Goal

Given Goal

The source group $G_S = \{(\boldsymbol{x}_S, \boldsymbol{y}_S)\}$ following a distribution P_S .

Given Goal

The source group $G_S = \{(x_S, y_S)\}$ following a distribution P_S .

 $\{x_t\}$ in an **unlabeled** target group $G_t = \{(x_t, y_t)\} \sim P_t \ (P_t \neq P_s),$ where y_t is **unseen** during prompt optimization,

Given

The source group $G_S = \{(x_S, y_S)\}$ following a distribution P_S .

 $\{x_t\}$ in an **unlabeled** target group $G_t = \{(x_t, y_t)\} \sim P_t \ (P_t \neq P_s),$ where y_t is **unseen** during prompt optimization,

Goal

use $\{(x_s, y_s)\}$ and $\{x_t\}$ to optimize a task-specific prompt robust to the samples from either P_s or P_t .

Given

The source group $G_S = \{(x_S, y_S)\}$ following a distribution P_S .

 $\{x_t\}$ in an **unlabeled** target group $G_t = \{(x_t, y_t)\} \sim P_t \ (P_t \neq P_s),$ where y_t is **unseen** during prompt optimization,

 \approx Collecting served inputs.

Goal

use $\{(x_s, y_s)\}$ and $\{x_t\}$ to optimize a task-specific prompt robust to the samples from either P_s or P_t .

Given

The source group $G_S = \{(x_S, y_S)\}$ following a distribution P_S .

 $\{x_t\}$ in an **unlabeled** target group $G_t = \{(x_t, y_t)\} \sim P_t \ (P_t \neq P_s),$ where y_t is **unseen** during prompt optimization,

 \approx Collecting served inputs.

Goal

use $\{(x_s, y_s)\}$ and $\{x_t\}$ to optimize a task-specific prompt robust to the samples from either P_s or P_t .

Our solution

Utilizing LLM for labeling $\{x_t\}$ to perform joint prompt optimization with G_s

Given

The source group $G_S = \{(\boldsymbol{x}_S, \boldsymbol{y}_S)\}$ following a distribution P_S .

 $\{x_t\}$ in an **unlabeled** target group $G_t = \{(x_t, y_t)\} \sim P_t \ (P_t \neq P_s),$ where y_t is **unseen** during prompt optimization,

≈ Collecting served inputs.

Goal

use $\{(x_s, y_s)\}$ and $\{x_t\}$ to optimize a task-specific prompt robust to the samples from either P_s or P_t .

Our solution

Utilizing LLM for labeling $\{x_t\}$ to perform joint prompt optimization with G_s

Gradient-free prompt optimization needs labels.

Step 1: Prompt Generation via Meta Prompt. Deriving prompts from G_S .

Step 1: Prompt Generation via Meta Prompt. Deriving prompts from G_S .

Source group data G_s

Step 1: Prompt Generation via Meta Prompt. Deriving prompts from G_S .

Step 1: Prompt Generation via Meta Prompt. Deriving prompts from G_s .

Step 1: Prompt Generation via Meta Prompt. Deriving prompts from G_s .

Step 2: Prompt Ensemble Labeling Strategy. Labeling $\{x_t\}$ with ensembled prompts.

Step 1: Prompt Generation via Meta Prompt. Deriving prompts from G_S .

Step 2: Prompt Ensemble Labeling Strategy. Labeling $\{x_t\}$ with ensembled prompts.

LLM

Unlabeled target group data $\{x_t\}$

Step 1: Prompt Generation via Meta Prompt. Deriving prompts from G_S .

Step 2: Prompt Ensemble Labeling Strategy. Labeling $\{x_t\}$ with ensembled prompts.

Step 1: Prompt Generation via Meta Prompt. Deriving prompts from G_s .

Step 2: Prompt Ensemble Labeling Strategy. Labeling $\{x_t\}$ with ensembled prompts.

Step 3: Joint Prompt Optimization. Mix G_s and G_t^* for prompt optimization.

Step 1: Prompt Generation via Meta Prompt. Deriving prompts from G_s .

Step 2: Prompt Ensemble Labeling Strategy. Labeling $\{x_t\}$ with ensembled prompts.

Step 3: Joint Prompt Optimization. Mix G_s and G_t^* for prompt optimization.

Experimental Setup

Experiment with 3 tasks, 6 groups with generalization gaps.

Experimental Setup

Experiment with 3 tasks, 6 groups with generalization gaps.

Compared methods:

- APE (Zhou et al. 2023)
- APO (Pryzant et al. 2023)
- APE + ut, a naïve approach to incorporate unlabeled target group data.
- Upper Bound: APE on the target group data with ground-truth labels.

Experimental Setup

Experiment with 3 tasks, 6 groups with generalization gaps.

Compared methods:

- APE (Zhou et al. 2023)
- APO (Pryzant et al. 2023)
- APE + ut, a naïve approach to incorporate unlabeled target group data.
- Upper Bound: APE on the target group data with ground-truth labels.

Testing Strategies:

- Top 1: using the single optimized prompt with top 1 validation performance.
- Ensemble: majority voting by K generated prompts.

Main Results

- GPO achieves superior performance on all target groups for both testing strategies
- But is still lower than Upper Bound.

	Yelp (Source)		Flipkart (Target)	
	Top 1	Ensemble	Top 1	Ensemble
APE	79.7 ± 0.7	$\textbf{79.7} \pm \textbf{1.0}$	78.4 ± 1.9	81.3 ± 1.4
APO	$\textbf{78.9} \pm \textbf{0.5}$	$\textbf{79.7} \pm \textbf{0.8}$	74.7 ± 3.0	76.4 ± 1.4
APE+ut	78.9 ± 1.4	78.8 ± 1.4	80.3 ± 2.0	80.7 ± 2.1
GPO	79.1 ± 0.7	$\textbf{78.7} \pm \textbf{0.9}$	$\textbf{80.5} \pm \textbf{2.1}$	$\textbf{84.5} \pm \textbf{2.0}$
Upper Bound	-	-	85.1 ± 2.9	87.2 ± 0.5

(a) Sentiment analysis.

	SocialIQA (Source)		OpenbookQA (Target)	
	Top 1	Ensemble	Top 1	Ensemble
APE	75.6 ± 1.4	69.6 ± 5.3	71.2 ± 5.2	74.8 ± 3.2
APO	76.1 ± 2.7	72.3 ± 2.6	$\textbf{72.4} \pm \textbf{2.5}$	66.1 ± 7.2
APE+ut	$\textbf{77.9} \pm \textbf{1.3}$	$\textbf{78.9} \pm \textbf{0.8}$	77.5 ± 3.0	79.2 ± 1.2
GPO	76.7 ± 2.0	$\textbf{78.9} \pm \textbf{1.2}$	78.7 ± 3.3	79.7 ± 0.8
Upper Bound	-	-	80.1 ± 2.4	80.8 ± 1.1

(b) Commonsense QA.

	Number (Source)		Spans (Target)	
	Top 1	Ensemble	Top 1	Ensemble
APE	51.9 ± 2.8	51.0 ± 3.2	20.1 ± 1.3	18.2 ± 0.2
APO	$\textbf{55.7} \pm \textbf{0.8}$	$\textbf{54.5} \pm \textbf{2.1}$	20.2 ± 2.4	20.0 ± 2.2
APE+ut	52.0 ± 1.8	53.1 ± 1.2	16.1 ± 3.5	17.7 ± 2.8
GPO	52.2 ± 6.0	53.6 ± 3.0	$\textbf{27.7} \pm \textbf{12.0}$	$\textbf{26.7} \pm \textbf{4.9}$
Upper Bound	-	-	63.1 ± 2.2	63.7 ± 0.8

(c) DROP.

61

Main Results

- GPO achieves superior performance on all target groups for both testing strategies.
- But is still lower than Upper Bound.
- GPO achieves comparable source group performance.
- Improvement on target group does not largely hinder source group.

	Yelp (Source)		Flipkart (Target)	
	Top 1	Ensemble	Top 1	Ensemble
APE	$\textbf{79.7} \pm \textbf{0.7}$	$\textbf{79.7} \pm \textbf{1.0}$	78.4 ± 1.9	81.3 ± 1.4
APO	$\textbf{78.9} \pm \textbf{0.5}$	$\textbf{79.7} \pm \textbf{0.8}$	74.7 ± 3.0	76.4 ± 1.4
APE+ut	78.9 ± 1.4	78.8 ± 1.4	80.3 ± 2.0	80.7 ± 2.1
GPO	79.1 ± 0.7	78.7 ± 0.9	$\textbf{80.5} \pm \textbf{2.1}$	$\textbf{84.5} \pm \textbf{2.0}$
Upper Bound	-	-	$\textbf{85.1} \pm \textbf{2.9}$	87.2 ± 0.5

(a) Sentiment analysis.

	SocialIQA (Source)		OpenbookQA (Target)	
	Top 1	Ensemble	Top 1	Ensemble
APE	75.6 ± 1.4	69.6 ± 5.3	71.2 ± 5.2	74.8 ± 3.2
APO	76.1 ± 2.7	72.3 ± 2.6	$\textbf{72.4} \pm \textbf{2.5}$	66.1 ± 7.2
APE+ut	77.9 ± 1.3	$\textbf{78.9} \pm \textbf{0.8}$	77.5 ± 3.0	79.2 ± 1.2
GPO	76.7 ± 2.0	$\textbf{78.9} \pm \textbf{1.2}$	$\textbf{78.7} \pm \textbf{3.3}$	$\textbf{79.7} \pm \textbf{0.8}$
Upper Bound	-	-	80.1 ± 2.4	80.8 ± 1.1

(b) Commonsense QA.

	Number (Source)		Spans (Target)	
	Top 1	Ensemble	Top 1	Ensemble
APE	51.9 ± 2.8	51.0 ± 3.2	20.1 ± 1.3	18.2 ± 0.2
APO	$\textbf{55.7} \pm \textbf{0.8}$	$\textbf{54.5} \pm \textbf{2.1}$	20.2 ± 2.4	20.0 ± 2.2
APE+ut	52.0 ± 1.8	53.1 ± 1.2	16.1 ± 3.5	17.7 ± 2.8
GPO	52.2 ± 6.0	53.6 ± 3.0	$\textbf{27.7} \pm \textbf{12.0}$	$\textbf{26.7} \pm \textbf{4.9}$
Upper Bound	-	-	63.1 ± 2.2	63.7 ± 0.8

(c) DROP.

Main Results

- GPO achieves superior performance on all target groups for both testing strategies.
- But is still lower than Upper Bound.
- GPO achieves comparable source group performance.
- Improvement on target group does not largely hinder source group.
- APE-ut: Incorporating unlabeled target input is beneficial for some tasks.
- But labeling is still important especially when labeling is challenging (Number, Spans).

	Yelp (Source)		Flipkart (Target)	
	Top 1	Ensemble	Top 1	Ensemble
APE	$\textbf{79.7} \pm \textbf{0.7}$	$\textbf{79.7} \pm \textbf{1.0}$	78.4 ± 1.9	81.3 ± 1.4
APO	$\textbf{78.9} \pm \textbf{0.5}$	$\textbf{79.7} \pm \textbf{0.8}$	74.7 ± 3.0	76.4 ± 1.4
APE+ut	78.9 ± 1.4	78.8 ± 1.4	80.3 ± 2.0	80.7 ± 2.1
GPO	79.1 ± 0.7	$\textbf{78.7} \pm \textbf{0.9}$	80.5 ± 2.1	84.5 ± 2.0
Upper Bound	-	-	$\textbf{85.1} \pm \textbf{2.9}$	87.2 ± 0.5

(a) Sentiment analysis.

	SocialIQA (Source)		OpenbookQA (Target)	
	Top 1	Ensemble	Top 1	Ensemble
APE	75.6 ± 1.4	69.6 ± 5.3	71.2 ± 5.2	74.8 ± 3.2
APO	76.1 ± 2.7	72.3 ± 2.6	72.4 ± 2.5	66.1 ± 7.2
APE+ut	$\textbf{77.9} \pm \textbf{1.3}$	$\textbf{78.9} \pm \textbf{0.8}$	77.5 ± 3.0	79.2 ± 1.2
GPO	$\textbf{76.7} \pm \textbf{2.0}$	$\textbf{78.9} \pm \textbf{1.2}$	$\textbf{78.7} \pm \textbf{3.3}$	$\textbf{79.7} \pm \textbf{0.8}$
Upper Bound	-	-	80.1 ± 2.4	80.8 ± 1.1

(b) Commonsense QA.

	Number (Source)		Spans (Target)	
	Top 1	Ensemble	Top 1	Ensemble
APE	51.9 ± 2.8	51.0 ± 3.2	20.1 ± 1.3	18.2 ± 0.2
APO	$\textbf{55.7} \pm \textbf{0.8}$	$\textbf{54.5} \pm \textbf{2.1}$	20.2 ± 2.4	20.0 ± 2.2
APE+ut	52.0 ± 1.8	53.1 ± 1.2	16.1 ± 3.5	17.7 ± 2.8
GPO	52.2 ± 6.0	53.6 ± 3.0	$\textbf{27.7} \pm \textbf{12.0}$	$\textbf{26.7} \pm \textbf{4.9}$
Upper Bound	-	-	63.1 ± 2.2	63.7 ± 0.8

w/o cons setting the consistency threshold as 0 w/o cons + t-train removing the target group training data during the final prompt generation

	Yelp		Flipkart	
	Top 1	Ensemble	Top 1	Ensemble
GPO	79.1 ± 0.7	78.7 ± 0.9	80.5 ± 2.1	84.5 ± 2.0
w/o cons	78.8 ± 1.2	78.7 ± 0.4	81.5 ± 1.4	84.0 ± 0.9
w/o cons+t-train	$\textbf{79.9} \pm \textbf{0.8}$	$\overline{79.7\pm1.0}$	80.3 ± 3.2	81.3 ± 1.4
	(a) Sent	iment analy	sis.	
	SocialIQA		OpenbookQ	A
	Top 1	Ensemble	Top 1	Ensemble
GPO	76.7 ± 2.0	$\textbf{78.9} \pm \textbf{1.2}$	$\textbf{78.7} \pm \textbf{3.3}$	$\textbf{79.7} \pm \textbf{0.8}$
w/o cons	76.0 ± 2.8	78.1 ± 1.4	77.6 ± 3.8	78.8 ± 2.2
w/o cons+t-train	$\textbf{77.9} \pm \textbf{1.6}$	69.6 ± 5.3	78.2 ± 2.2	74.8 ± 3.2
	(b) Com	monsense (QA.	
	Number		Spans	
	Top 1	Ensemble	Top 1	Ensemble
GPO	$\textbf{52.2} \pm \textbf{6.0}$	$\textbf{53.6} \pm \textbf{3.0}$	$\textbf{27.7} \pm \textbf{12.0}$	$\textbf{26.7} \pm \textbf{4.9}$
w/o cons	49.3 ± 2.8	51.0 ± 2.1	20.6 ± 2.1	22.2 ± 3.2
w/o cons+t-train	51.3 ± 3.6	50.9 ± 1.6	20.4 ± 1.9	18.7 ± 2.2

(c) DROP.

w/o cons setting the consistency threshold as 0 w/o cons + t-train removing the target group training data during the final prompt generation

 In nearly all cases, GPO performs better than w/o cons on target groups.

	Yelp		Flipkart	
	Top 1	Ensemble	Top 1	Ensemble
GPO	79.1 ± 0.7	78.7 ± 0.9	80.5 ± 2.1	84.5 ± 2.0
w/o cons	78.8 ± 1.2	78.7 ± 0.4	81.5 ± 1.4	84.0 ± 0.9
w/o cons+t-train	$\textbf{79.9} \pm \textbf{0.8}$	$\textbf{79.7} \pm \textbf{1.0}$	80.3 ± 3.2	81.3 ± 1.4
	(a) Sent	iment analy	sis.	
	SocialIQA		OpenbookQ	A
	Top 1	Ensemble	Top 1	Ensemble
GPO	76.7 ± 2.0	$\textbf{78.9} \pm \textbf{1.2}$	78.7 ± 3.3	$\textbf{79.7} \pm \textbf{0.8}$
w/o cons	76.0 ± 2.8	78.1 ± 1.4	77.6 ± 3.8	78.8 ± 2.2
w/o cons+t-train	$\textbf{77.9} \pm \textbf{1.6}$	69.6 ± 5.3	78.2 ± 2.2	74.8 ± 3.2
	(b) Com	monsense (QA.	
	Number		Spans	
	Top 1	Ensemble	Top 1	Ensemble
GPO	$\textbf{52.2} \pm \textbf{6.0}$	$\textbf{53.6} \pm \textbf{3.0}$	27.7 ± 12.0	26.7 ± 4.9
w/o cons	49.3 ± 2.8	51.0 ± 2.1	20.6 ± 2.1	22.2 ± 3.2
w/o cons+t-train	51.3 ± 3.6	50.9 ± 1.6	20.4 ± 1.9	18.7 ± 2.2

- w/o cons setting the consistency threshold as 0 w/o cons + t-train removing the target group training data during the final prompt generation
- In nearly all cases, GPO performs better than w/o cons on target groups.
- Removing t-train harms target group ensemble results, while has less effect on Top 1 results.

	Yelp		Flipkart	
	Top 1	Ensemble	Top 1	Ensemble
GPO	79.1 ± 0.7	78.7 ± 0.9	80.5 ± 2.1	84.5 ± 2.0
w/o cons	78.8 ± 1.2	78.7 ± 0.4	81.5 ± 1.4	84.0 ± 0.9
w/o cons+t-train	$\textbf{79.9} \pm \textbf{0.8}$	79.7 ± 1.0	80.3 ± 3.2	81.3 ± 1.4
	(a) Sent	iment analy	sis.	
	SocialIQA		OpenbookQ)A
	Top 1	Ensemble	Top 1	Ensemble
GPO	76.7 ± 2.0	$\textbf{78.9} \pm \textbf{1.2}$	$\textbf{78.7} \pm \textbf{3.3}$	$\textbf{79.7} \pm \textbf{0.8}$
w/o cons	76.0 ± 2.8	78.1 ± 1.4	77.6 ± 3.8	78.8 ± 2.2
w/o cons+t-train	$\textbf{77.9} \pm \textbf{1.6}$	69.6 ± 5.3	78.2 ± 2.2	74.8 ± 3.2
	(b) Com	monsense (QA.	
	Number		Spans	
	Top 1	Ensemble	Top 1	Ensemble
GPO	52.2 ± 6.0	53.6 ± 3.0	$\textbf{27.7} \pm \textbf{12.0}$	26.7 ± 4.9
w/o cons	49.3 ± 2.8	51.0 ± 2.1	20.6 ± 2.1	22.2 ± 3.2
w/o cons+t-train	$\underline{51.3 \pm 3.6}$	50.9 ± 1.6	20.4 ± 1.9	18.7 ± 2.2

	Flipkart	OpenbookQA	Spans
w/o cons	81.9	69.8	3.6
GPO	94.2	84.3	3.7

Consistency Threshold improves labeling accuracy.

	Yelp		Flipkart		
	Top 1	Ensemble	Top 1	Ensemble	
GPO	79.1 ± 0.7	78.7 ± 0.9	80.5 ± 2.1	$\textbf{84.5} \pm \textbf{2.0}$	
w/o cons	78.8 ± 1.2	78.7 ± 0.4	81.5 ± 1.4	84.0 ± 0.9	
w/o cons+t-train	$\textbf{79.9} \pm \textbf{0.8}$	$\textbf{79.7} \pm \textbf{1.0}$	80.3 ± 3.2	81.3 ± 1.4	
	(a) Sent	iment analy	sis.		
	SocialIQA		OpenbookQA		
	Top 1	Ensemble	Top 1	Ensemble	
GPO	76.7 ± 2.0	$\textbf{78.9} \pm \textbf{1.2}$	$\textbf{78.7} \pm \textbf{3.3}$	$\textbf{79.7} \pm \textbf{0.8}$	
w/o cons	76.0 ± 2.8	78.1 ± 1.4	77.6 ± 3.8	78.8 ± 2.2	
w/o cons+t-train	$\textbf{77.9} \pm \textbf{1.6}$	69.6 ± 5.3	78.2 ± 2.2	74.8 ± 3.2	
	(b) Com	monsense (QA.		
	Number		Spans		
	Top 1	Ensemble	Top 1	Ensemble	
GPO	52.2 ± 6.0	$\textbf{53.6} \pm \textbf{3.0}$	27.7 ± 12.0	26.7 ± 4.9	
w/o cons	49.3 ± 2.8	51.0 ± 2.1	20.6 ± 2.1	22.2 ± 3.2	
w/o cons+t-train	51.3 ± 3.6	50.9 ± 1.6	20.4 ± 1.9	18.7 ± 2.2	

(c) DROP.

	Flipkart	OpenbookQA	Spans
w/o cons		69.8	3.6
GPO	94.2	84.3	3.7

Consistency Threshold improves labeling accuracy.

• With high labeling acc, cons is unlikely to largely improve generalization .

	Yelp		Flipkart		
	Top 1	Ensemble	Top 1	Ensemble	
GPO	79.1 ± 0.7	78.7 ± 0.9	80.5 ± 2.1	$\textbf{84.5} \pm \textbf{2.0}$	
w/o cons	78.8 ± 1.2	78.7 ± 0.4	81.5 ± 1.4	84.0 ± 0.9	
w/o cons+t-train	$\textbf{79.9} \pm \textbf{0.8}$	$\overline{79.7\pm1.0}$	80.3 ± 3.2	81.3 ± 1.4	
	(a) Sent	iment analy	sis.		
	SocialIQA		OpenbookQA		
	Top 1	Ensemble	Top 1	Ensemble	
GPO	76.7 ± 2.0 78.9 ± 1 .	$\textbf{78.9} \pm \textbf{1.2}$	78.7 ± 3.3	$\textbf{79.7} \pm \textbf{0.8}$	
w/o cons	76.0 ± 2.8	78.1 ± 1.4	77.6 ± 3.8	78.8 ± 2.2	
w/o cons+t-train	$\textbf{77.9} \pm \textbf{1.6}$	69.6 ± 5.3	78.2 ± 2.2	74.8 ± 3.2	
	(b) Com	monsense (QA.		
	Number		Spans		
	Top 1	Ensemble	Top 1	Ensemble	
GPO	52.2 ± 6.0	53.6 ± 3.0	27.7 ± 12.0	26.7 ± 4.9	
w/o cons	49.3 ± 2.8	51.0 ± 2.1	20.6 ± 2.1	22.2 ± 3.2	
w/o cons+t-train	$\underline{51.3 \pm 3.6}$	50.9 ± 1.6	20.4 ± 1.9	18.7 ± 2.2	

(c) DROP.

	Flipkart	OpenbookQA	Spans
w/o cons	81.9	69.8	3.6
GPO	94.2	84.3	3.7

Consistency Threshold improves labeling accuracy.

- With high labeling acc, cons is unlikely to largely improve generalization .
- With low labeling acc, a tiny improvement by cons can largely improve generalization.

	Yelp		Flipkart		
	Top 1	Ensemble	Top 1	Ensemble	
GPO	79.1 ± 0.7	78.7 ± 0.9	80.5 ± 2.1	$\textbf{84.5} \pm \textbf{2.0}$	
w/o cons	78.8 ± 1.2	78.7 ± 0.4	81.5 ± 1.4	84.0 ± 0.9	
w/o cons+t-train	$\textbf{79.9} \pm \textbf{0.8}$	79.7 ± 1.0	80.3 ± 3.2	81.3 ± 1.4	
	(a) Sent	iment analy	sis.		
	SocialIQA		OpenbookQA		
	Top 1	Ensemble	Top 1	Ensemble	
GPO	76.7 ± 2.0	$\textbf{78.9} \pm \textbf{1.2}$	$\textbf{78.7} \pm \textbf{3.3}$	$\textbf{79.7} \pm \textbf{0.8}$	
w/o cons	76.0 ± 2.8	78.1 ± 1.4	77.6 ± 3.8	78.8 ± 2.2	
w/o cons+t-train	$\textbf{77.9} \pm \textbf{1.6}$	69.6 ± 5.3	78.2 ± 2.2	74.8 ± 3.2	
	(b) Com	monsense (QA.		
	Number		Spans		
	Top 1	Ensemble	Top 1	Ensemble	
GPO	$\textbf{52.2} \pm \textbf{6.0}$	$\textbf{53.6} \pm \textbf{3.0}$	27.7 ± 12.0	26.7 ± 4.9	
w/o cons	49.3 ± 2.8	51.0 ± 2.1	20.6 ± 2.1	22.2 ± 3.2	
w/o cons+t-train	51.3 ± 3.6	50.9 ± 1.6	20.4 ± 1.9	18.7 ± 2.2	

Different Backbone LLMs

	Top 1		Ensemble		
	APE	GPO	APE	GPO	
Vicuna-7B	38.4 ± 25.3	63.5 ± 15.6	43.9 ± 21.3	71.9 ± 13.1	
Vicuna-13B	66.8 ± 18.4	68.3 ± 13.7	60.7 ± 9.5	70.7 ± 10.8	
GPT-3.5	$\textbf{78.4} \pm \textbf{1.9}$	80.5 ± 2.1	81.3 ± 1.4	84.5 ± 2.0	
GPT-4	77.5 ± 13.7	$\textbf{85.3} \pm \textbf{2.7}$	$\textbf{83.3} \pm \textbf{0.0}$	$\textbf{85.4} \pm \textbf{2.4}$	

Generalization performance on Flipkart.

- Spaces for improving generalization across different LLMs.
- GPO achieves improvement in all cases.
- GPT-4 achieves the best performance on GPO.

Case Study

Prompts contains groupspecific information.

More general prompts.

Yelp	Provide feedback on various experiences, such as dining, shopping, and service. The output format is a sentiment analysis, where the input is analyzed to determine whether the experience was positive, negative, or neutral. The output is a single word indicating the sentiment of the experience.
Flipkart	Provide a sentiment analysis of customer reviews . The input consists of a customer review of a product, and the output is a binary classification of the sentiment as either positive or negative.
GPO	provide a sentiment analysis of a given text. The output format is a single word indicating whether the sentiment is positive, negative, or neutral.
Number	Answer a specific question based on a given context. The output format is a numerical value that directly answers the question asked.
Spans	Answer a specific question based on a given context. The output format is a single word or phrase that directly answers the question asked.
GPO	Answer questions based on given context information. The output format is a numerical value or a single word answer.

Contribution

- Revealed the robustness issue of prompt optimization against distribution shifts and propose a new robust prompt optimization problem.
- Proposed the Generalized Prompt Optimization framework.
- Conducted extensive experiments on three NLP tasks, validating the rationality and effectiveness of our proposed framework.

Thank You for Listening!

Code: https://github.com/li-moxin/GPO

Arxiv: https://arxiv.org/abs/2305.13954

Contact: limoxin@u.nus.edu

Analysis on the Consistency Threshold

Generalization performance under different percentage of wrongly labeled target group data.

Higher labeling accuracy -> Better generalization performance.

Compare to Human-Written Prompts

	Yelp (Source)	Flipkart (Target)	SocialIQA (Source)	OpenbookQA (Target)	Number (Source)	Spans (Target)
Human	78.7	80.0	71.3	60.0	54.9	37.1
PromptPerfect	77.3	83.3	74.7	64.0	54.0	26.9
GPO best	78.7	84.5	78.9	79.7	52.2	27.7

Human: a prompt written by computer science college student.

PromptPerfect: https://promptperfect.jina.ai.

GPO best: best testing strategy of GPO.

- GPO achieves best performance on the left two tasks.
- But worse performance on DROP due to inaccurate labels.