Année 2019-2020

CNN

pour la classification d'images

Plan:

- 1. Introduction
- 2. Les réseaux de neurones et les réseaux de neurones convolutifs a.ANN b.CNN
- 3. Outils utilisés
- 4. Démonstration du travail réalisé
- 5. Test et comparaison
- 6. Conclusion

Introduction

- Intelligence artificielle
- Reconnaissance d'image
- Les réseaux de neurone
- Les réseaux de neurones convolutifs

Les réseaux de neurones et les réseaux de neurones convolutifs

Les réseaux de neurones artificiels: ANN

- Reconnaître les schémas de données
- Faire des prédictions

Limites:

- Taille des images
 volumineuse -> Réseaux de neurones immenses
- Difficulté de détecter des objets indépendamment de leurs positions dans une image

A Multipolar Neuron A Neural Network

Les réseaux de neurones à convolutions: CNN

Extraction des informations de l'image grâce à un enchaînement de filtres (et de simplifications)

Prédiction de la classe de l'image

Les différentes couches du CNN:

Outils utilisés

matpletlib

Démonstration du travail réalisé

Test et comparaison

Résultat de notre modèle

DataSet	Mnist	Fashion Mnist	Cifar 10
Accuracy (%)	77	76	10
Test time (s)	6.83	7.93	29.59
Train time (s)	115.55	112.06	309.38

Résultat de Keras

DataSet	Mnist	Fashion Mnist	Cifar 10
Accuracy (%)	86	77	33
Test time (s)	0.08	0.10	0.09
Train ime (s)	2.82	2.48	2.91

Conclusion

Perspectives

- Ajout d'autres fonctions d'activation
- Optimisations