北京大学数学学院期末考试试题

2018 - 2019 学年 第一学期

考试科目	数学分析 (1)	考试时间。	19 年	01月	17 B
姓名		学号。			
本试题共	八 道大顕満分 』」70	分			

- 1. (10') 设 $x = t \cos t$, $y = t \sin t$. (1) 求 $t = \frac{\pi}{4}$ 时对应于曲线上的点处的切线 方程; (2) 对该参数方程确定的函数 y = f(x) 求 岩.
- 2. (20') 求极限
 - (1) $\lim_{x\to+\infty} x^2[(x+\frac{1}{2})\ln(1+\frac{1}{x})-1];$
 - (2) lim = 1 x = 1.
- 3. (10') 求 $f(x) = (x+2)e^{\frac{1}{x}}$ 在 $(0,+\infty)$ 上的极值, 拐点以及渐近线.
- 4. (20') 计算不定积分
 - (1) \ \int \frac{\sin x \cos x dx}{1 \sin^4 x};
 - $(2) \int \ln(x + \sqrt{1 + x^2}) dx$.
- 5. (10') 求 $f(x) = x \sin(x^2 2x)$ 在 x = 1 处带 Peano 余项的 Taylor 公式并 求 $f^{(2019)}(1)$.
- 6. (10') 设 f(x) 在 $(-\infty, +\infty)$ 可微且满足 f(x) > 0: f'(0) = 0 并且对于 $\forall x, y \in (-\infty, +\infty)$ 成立 $f(x+y) = f(x)f(y)e^{2xy}$. 求 f(x).
- 7. (10) 设 f(x) 在 $(-\infty, +\infty)$ 可导并且对于 $\forall x \in (-\infty, +\infty)$ 有 $1 \le |f'(x)| \le 2$. 再设 g(x) 是一个具有基本周期 T > 0 的周期函数并且在 $(-\infty, +\infty)$ 具有连续的导函数. 试问 f(x)g(x) 可否在 $(-\infty, +\infty)$ 一致连续? (说明理由)
- 8. (10) 设 $f(x) \in C^{\infty}(-\infty, +\infty)$ 并且对于 $\forall x \in (-\infty, +\infty)$ 以及任意的正整数 n 成立 $|f^{(n)}(x)| \leq n$. 再设 f(x) 在区间 (-1, 1) 有无穷多个零点. 证明 $f(x) \equiv 0, x \in (-\infty, +\infty)$.

@赛艇先生收集