Microeconomics 2, 18.12 2017/Kultti

Answer at most three (3) of the following problems.

- 1. Construct a two-player extensive form game with and infinite number of subgame perfect equilibria, such that there is also at least one Nash-equilibrium that is not subgame perfect. Specify the requested equilibria.
- 2. There is a risk neutral principal with a project which s/he has no time to take care of. Thus, s/he wants to employ an agent for the job. The agent's utility is given by $u(w,e) = \sqrt{w} e^2$ where w is wage and $e \in \{e_l, e_h\}$ is the effort level. The agent's outside option is worth $\underline{u} = 2$. There are two monetary outcomes x_1 and x_2 , $x_2 > x_1$. The probability that x_2 is realised is given by $p_L = \frac{1}{4}$ if the agent chooses $e_l = 1$, and by $p_H = \frac{1}{2}$ if the agent chooses $e_h = 2$.
- i) Assuming that the principal wants the agent to choose low effort determine the optimal contract that the principal offers the agent.
- ii) Determine the maximum that the agent is willing to pay to buy the project from the principal when $x_l = 0$, $x_h = 64$.
 - 3. Two players play an infinitely repeated version of prisoners dilemma

$$\begin{array}{ccc} & c & d \\ c & 5, 5 & 0, 11 \\ d & 7, 2 & 4, 3 \end{array}$$

Each player discounts future with factor $0 < \delta < 1$. Determine equilibrium strategies such that the players play (c, c) in each period. What is required of the discount factor?

4. Consider a signalling model where workers can acquire education. There are two types of workers: High-productivity workers are worth θ_h to the firms, and low-productivity workers worth θ_l . The cost of education, e, is given by

$$c_i(e) = \frac{2e}{2 + \theta_i}$$

where $i \in \{l,h\}$. The proportion of high-productivity and low-productivity workers are equal in the population. The workers are paid their expected productivity. Determine a separating equilibrium when $\theta_h = 5.5$, $\theta_l = 2$, and the reservation utilities of the workers are $\underline{u}_h = 3$ and $\underline{u}_l = 0$.

1