8.1.2(b) If a has order 2k modulo the odd prime p, then $a^k \equiv -1 \pmod{p}$.

Suppose that a has order 2k modulo the odd prime p. Then $a^{2k} \equiv 1 \pmod{p}$. Then $a^{2k} - 1 \equiv 0 \pmod{p}$. So $(a^k - 1)(a^k + 1) \equiv 0 \pmod{p}$, i.e. $p \mid (a^k - 1)(a^k + 1)$. Since p is prime, p must divide one of $a^k - 1$ and $a^k + 1$. If $p \mid (a^k - 1)$, then $a^k \equiv 1 \pmod{p}$, contradicting our assumption. Thus $p \mid (a^k + 1)$, i.e. $a^k \equiv -1 \pmod{p}$.

8.1.8(a) Prove that if p and q are odd primes and $q \mid a^p - 1$, then either $q \mid a - 1$ or else q = 2kp + 1 for some integer k. [Hint: Because $a^p \equiv 1 \pmod{q}$, the order of a modulo q is either 1 or p; in the latter case, $p \mid \phi(q)$.]

Notice that $\gcd(a,q)=1$. To show this, assume for the sake of contradiction that $\gcd(a,q)=d$ with d>1. Then $d\mid q$ and $q\mid a^p-1$ give that $d\mid a^p-1$. Since $d\mid a$, we have $d\mid 1$, a contradiction. Hence $\gcd(a,q)=1$. Since $q\mid a^p-1$, we know $a^p\equiv 1\pmod q$. Pick t to be the order of a modulo q. Then $t\mid p$. Since p is prime, we know that t=1 or t=p. Suppose that t=1. Then $a\equiv 1\pmod q$ or $q\mid (a-1)$. Now suppose that t=p. With $a^{\phi(q)}\equiv 1\pmod q$ since $\gcd(a,q)=1$, we know $p\mid \phi(q)$. Notice that $\phi(q)=q-1$ which implies that $p\mid q-1$. So there exists a $r\in \mathbb{Z}$ such that pr=q-1. Since q is odd, q is even. Since q is odd, q is even.

$$pr = p(2k) = q - 1$$

gives

$$q = 2kp + 1$$
,

as desired.

8.1.10 Let r be a primitive root of the integer n. Prove that r^k is a primitive root of n if and only if $\gcd(k,\phi(n))=1$.

Let r be a primitive root of the integer n. Then r has order $\phi(n)$ modulo n. Theorem 8.3 gives that r^k has order $\phi(n)/\gcd(k,\phi(n))$. Suppose that r^k is a primitive root of n. Then r^k has order $\phi(n)$. Theorem 8.3 gives that

$$\phi(n) = \phi(n)/\gcd(k,\phi(n))$$

which implies that $gcd(k, \phi(n)) = 1$.

Suppose that $gcd(k, \phi(n)) = 1$. Then r^k has order $\phi(n)$ by theorem 8.3. So r^k is a primitive root of n.