Name(Pinyin): Yuehao Wang

Email(Prefix): wangyh3

Computer Architecture Homework 6

2019 Spring Apr. 22

Instructions:

Homework 6 is due in May. 6, covers the content of caches and float-points, please refer to the lecture slides. You can print it out and write on it, and <u>scan</u> it into a pdf, or you can take photos or write Latex if you want, just remember: you must create a <u>PDF</u> and upload to the <u>Gradescope</u>, please assign the questions properly on Gradescope, otherwise you will lose 25% of points.

Tell us your feeling after finish it. Thank you!

Question Set 1. Direct Mapped Cache

[30 points] In a 16-bit byte-addresses machine, the clock frequency is 3GHz. We have a cache with properties as follows:

- 1. Cache size is 64 Bytes;
- 2. Block size is 4 Bytes;
- 3. Cache hit time is 2 cycles;
- 4. Cache miss penalty is 100 cycles;

1-A. What the width of each field of following address bit assignment:

TAG:	Set index: 4	Block offset: 2
------	--------------	-----------------

Please show the procedure that your solutions derive from.

Answer 6pt + Analysis 4pt

The number of cache lines =
$$64/4 = 16$$

Set index = $\log_2 16 = 4$
Block offset = $\log_2 4 = 2$
TAG Size = $16-4-2 = 10$

1-B. We will access the data of addresses as follows. Fill in the blanks. It is about the index, tag (in decimal) and whether there is a hit or miss. If there is a miss, then give what type is the miss (either compulsory or replace). (Here we define replace as either conflict or capacity that causes a miss.)

Addresses (serially access)	Tag/Index	Hit, Compulsory or Replace
0x0000	D/D	Compulsory
0x0004	6/1	Compulsory
0x0008	0/2	Compulsory
0x000c	p / 3	Compressory
0x1000	64/0	replace
0x1004	64 /)	replace
0x1008	64 / 2	replace
0x100c	64/3	replace
0x0000	0/0	replace
0×0004	0/1	replace

1-C. Calculations. (Step-by-step, worth 50% pts)

1-C-i: Miss rate: (4 pt.)

1-C-ii: AMAT (ns): (3 pt.)

1-C-iii: AMAT if we don't have this cache (ns): (3 pt.)

Question Set 2. Two-Way Set Associative Cache

From QS 1. We change the block size to 8 Bytes and implemented a two-way set associative cache. The parameters are shown as follows:

- 1. Cache size is 64 Bytes;
- 2. 16-bit byte-addresses machine;
- 3. Block size is 2 words;
- 2-A. What is the width of each field of following address bit assignment?:

TAG:	Set index: 2	Block offset: 3

Please show the procedure that your solutions derive from.

Answer 6pt + Analysis 4pt

Cache lines =
$$64/8=8$$
 Block offset = $\log_2 8=3$
Set index = $\log_2 (8/2)=2$ TAG = $(6-2-3=1)$

2-B. We will access the data of the addresses as follows. Fill in the blanks. It is about the index, tag (in decimal) and whether there is a hit or miss. If there is a miss, then give what type is the miss (either compulsory or replace). (Here we define replace as either conflict or capacity that causes a miss.)

Addresses (serially access)	Tag/Index	Hit, Compulsory or Replace
0x0000	0/ D	Compulsory
0x0004	0/0	hit
0x0008	0/1	compulsory
0x000c	0/1	hit
0x1000	128/0	Compulsory hit
0x1004	128/0	hit'
0x0000	0/0	hit
0x0100	8/0	replace
0x0000	0/0	replace replace
0x1004	(28/0	replace

2-C. Calculations.

2-C-i. Miss rate: (5 pt.)

2-C-ii. Assume the new cache miss time is 200 cycles and hit time is 3 cycles. Calculate the AMAT in ns. Round to the nearest tenth. (5 pt.)

$$AMAT = (200.60% + 3).\frac{1}{3}ns = 41ns$$

Question Set 3. Floating Point Numbers

We consider the IEEE 32-bit floating point representation except with a 7-bit exponent (bias of 63) and a denorm implicit exponent of -62.

3-A. Convert -95.2 to that form. In hexadecimal.

$$-95.2 = -1.4875 \times 26$$
exponent: $63+6=69=1000101_2$
 $6.4875=0.01111100110011001100...$
 $>0\times C57CCCCC$

3-B. Convert 0x4a23a000 into a floating point number, specify infinities as +inf and -inf, and not a number as NaN.

$$2'' \times (1 + (2^{-3} + 2^{-7} + 2^{-8} + 2^{-9} + 2^{-11})) = 2333$$

3-C. What is the smallest non-infinite positive integer it CANNOT represent? (an integer is XX.0000). Please explain why.

With the increasement of exponent, only

[, 11...] $\times 2^{24} = 11...$] even integer can be represented = 25 bits = 25 th

3-D. What's the smallest positive value it can represent that is not a denorm? Leave your answer as a power of 2. Please explain why.

Without denorm, the Smallest Positive Value is 1x(1+0,00...) x 2 1-bias = 2-62

3-E. What's the smallest positive value it can represent? Leave your answer as a power of 2. Please explain why.

With denorm, the smallest positive value is

which is $1 \times (D + 2 \times 10^{-24}) \times 2^{-62} = 2^{-86}$