

Teoria de Circuitos e Fundamentos de Eletrónica

Departamento de Engenharia Eletrotécnica e de Computadores, Técnico, Universidade de Lisboa

T3 - Relatório da Atividade Laboratorial

5 de Maio, 2021

195755 - Miguel Mendes — 196528 - Francisco Assunção — 196532 - Gonçalo Cardoso

Contents

1	Introdução	2
2	Análise Teórica 2.1 Estudo do Envelope Detector	
3	Simulação do Circuito	5
4	Cálculo da Figura de Mérito	10
5	Conclusão	10

1 Introdução

O objetivo desta atividade laboratorial consiste na concepção de um circuito que transforme corrente alterna (AC - *alternating current*) com amplitude de tensão 230 V, em corrente contínua (DC - *direct current*) de tensão 12 V - *AC-DC Converter*.

O circuito desenvolvido é composto por um *Envelope Detector* e um *Voltage Regulator* e encontra-se representado na figura (1). O funcionamento do mesmo é analisado através de modelos teóricos na secção (2), procurando-se estudar tanto o comportamento do *envelope detector* como o do *voltage regulator*, onde para este efeito realizaram-se: gráficos relativos à voltagem de *output* de cada um dos subcircuitos, um gráfico relativo ao desvio da voltagem do circuito face aos 12 V esperados e tendo-se ainda calculado o *voltage ripple* e a voltagem média aos terminais de saída do circuito.

Na secção 3 procurou-se simular o *AC-DC converter* efetuando-se os mesmos gráficos e cálculos feitos na análise teórica. Nesta secção compararam-se ainda os resultados obtidos através da simulação com os obtidos via métodos teóricos lado a lado. Por outro lado realizou-se ainda o cálculo do mérito do circuito de acordo com os critérios definidos para este trabalho - secção (4).

Por fim, na conclusão, secção (5), resumem-se os resultados principais deste trabalho laboratorial e recapitulam-se as diferenças entre os modelos teóricos e a simulação encontradas.

Figure 1: Esquema do circuito utilizado.

2 Análise Teórica

2.1 Estudo do Envelope Detector

Começámos por estudar o *Envelope Detector* utilizado. Este é constituído por um *Full-Wave Bridge Rectifier* em paralelo com um condensador, com capacidade $C_1=3.1~\mu F$ e por uma resistência $R_1=4.9k\Omega$ e tem como função aproximar a corrente alterna a corrente contínua. Como visto nas aulas teóricas, sabemos que a tensão de output de um *Full-Wave Bridge Rectifier* corresponde ao módulo da tensão da fonte alternada, que neste caso corresponde à tensão imposta no transformador, ou seja, $v_R=|1/10v_{AC}|=|Acos(\omega t)|$: V, em que A=23V, $\omega=2\pi f$ e f=50~Hz, onde supomos que a tensão imposta pelo transformador é superior a

 V_{ON} , ou seja, à tensão a partir da qual circula corrente através dos díodos - consideramos um modelo teórico dos díodos onde supomos que só circula corrente para $V > V_{ON}$.

Assim, a tensão no output para $0 < t < \pi/2\omega$ é dada por $v_E = Acos(\omega t) \, V$, onde supomos novamente que os díodos estão ligados. De seguida, apresentam-se um conjunto de expressões úteis para o estudo do *Envelope Detector*, onde i_d é a corrente que passa pelos díodos, i_R a corrente na resistência e i_C a corrente no condensador e onde se considerou o intervalo $0 < t < \pi/2\omega$ (cosseno positivo):

$$i_d = i_R + i_C \tag{1}$$

$$i_C = C_1 \frac{dv_E}{dt} = -C_1 A\omega sin(\omega t)$$
 (2)

$$i_R = \frac{v_E}{R_1} \tag{3}$$

De forma semelhante ao estudo realizado em aula, procuramos descobrir o instante t_{OFF} em que a corrente que passa pelo díodo é nula (díodo desligado). Utilizando as expressões anteriores e impondo a condição $i_d=0$ obtém-se:

$$t_{OFF} = \frac{1}{\omega} atan(\frac{1}{\omega R_1 C_1}) \tag{4}$$

Para $t > t_{OFF}$ o condensador descarrega sobre R_1 já que não passa corrente pelos díodos, pelo que a voltagem de output do *Envelope Detector* é dada pela expressão:

$$v_E(t) = A\cos(\omega t_{OFF})e^{-\frac{t - t_{OFF}}{R_1 C_1}} \tag{5}$$

O díodo volta a ligar-se quando a função dada pela expressão anterior interseta a voltagem normal do *Full-Wave*. Por fim, através das expressões anteriores e replicando o comportamento do circuito para 10 períodos, efetuou-se um *plot* da voltagem de output do *Envelope Detector* que se encontra na figura (2).

Figure 2: Voltagem no Envelope Detector e no Full-Wave Bridge Rectifier - Análise Teórica

Como é vísivel no gráfico da figura (2), o *Envelope Detector* transforma a corrente alternada em corrente aproximadamente continua, verificando-se no entanto que existe ainda uma

oscilação significativa da tensão - *rippling*. Este efeito será minimizado pelo *Voltage Regulator* que estudamos de seguida.

2.2 Estudo do Voltage Regulator

O *Voltage Regulator* utilizado neste trabalho é constítuido por 18 díodos ligados em série - cujos modelos correspondem ao *default* do *Ngspice*, ver secção (3) - e por uma resistência $R_1 = 4.9 \ k\Omega$, tendo como objetivo atenuar o *rippling* referido anteriormente.

Analisou-se o *Voltage Regulator* por análise incremental (*Incremental Analysis*), dividindo o estudo da voltagem de output, v_O , nas suas componentes DC, V_O , e AC, $v_o(t)$, de acordo com a expressão (6). É de notar que idealmente teríamos $V_O=12\ V$ e $v_o(t)=0\ V$.

$$v_O = V_O + v_o(t) \tag{6}$$

De forma a realizar este tipo de análise, foi necessário determinar a resistência incremental dos díodos utilizados, r_d , bem como a voltagem V_{ON} , cujos valores se encontram na tabela (2). Estes valores foram obtidos através de um *script* de *Ngspice* e serão, portanto, discutidos na secção 3.

A componente DC foi obtida através de *Operating Point Analysis*. Neste caso, os díodos correspondem a fontes de tensão independentes em série com voltagem V_{ON} , pelo que consideramos que a componente DC de output do circuito corresponderá a $V_O = nV_{ON}$.

Na análise da componente AC, o problema reduz-se a um divisor de tensões:

$$v_o(t) = \frac{nr_d}{nr_d + R} v_e(t) \tag{7}$$

Onde $v_e(t)$ corresponde à componente AC do *Envelope Detector*, ou seja, à voltagem de output do *Envelope Detector* subtraida pela sua média (componente DC). Assim, é de esperar que o output do conversor AC-DC desenvolvido seja dado por:

$$v_O = nV_{ON} + \frac{nr_d}{nr_d + R}(v_E - V_E)$$
(8)

Os valores obtidos para a componente DC, V_O , e do ripple, $Ripple(v_O)$, da voltagem de output do *Voltage Regulator* estão apresentados na seguinte tabela (1):

V_O (V)	12.000712
$Ripple(v_O)$ (V)	0.483543

Table 1: Valores obtidos através da análise teórica;

O plot da voltagem de output do circuito, v_O , durante 10 períodos, corresponde à figura (3).

Figure 3: Voltagem no Voltage Regulator - Voltagem Output do Circuito - Análise Teórica

Podemos verificar uma diminuição de fenómenos de *voltage rippling*, o que resulta do facto de $R >> r_d$ (ver equação (8)), pelo que a função do *voltage regulator* é assim cumprida. Por último, fez-se ainda um *plot* do desvio da voltagem de output face aos $12\,V$ esperados que se apresenta na figura (4). Podemos verificar que a voltagem de output é bastante próxima de corrente DC com flutuações pequenas face aos $12\,V$.

Figure 4: Desvio da voltagem de Output face aos 12 V - Simulação

3 Simulação do Circuito

Nesta secção, simulámos o circuito que criámos, ilustrado na figura (1), usando o *Ngspice*. É de notar que a resistência entitulada de *Load* não está efetivamente incluida no circuito simulado e corresponde apenas à resistência de um aparelho genérico ligado à corrente DC. Para

além disso, não se simulou o transformador, colocando apenas uma fonte de tensão alternada, v_{in} , com a amplitude pretendida, A=23~V, considerando-se o número de espiras n=10. A simulação realizada correspondeu a uma análise transiente do circuito durante 10 períodos, ou 200~ms, com um passo temporal de $\Delta t=0.2ms$, de modo a recolher 1000 pontos. Esta permitiu obter a voltagem média de *output* e a *voltage ripple*, onde este último valor corresponde à diferença entre os valores máximos e mínimos da voltagem no *output*. As grandezas em causa encontram-se apresentadas na tabela (2).

Quantidade	Valor (V, Ω)
mean(v(4,3))	1.200071e+01
maximum(v(4,3)) - minimum(v(4,3))	2.245060e-01
mean(v(4,5))	6.667062e-01
(maximum(v(4,5)) - minimum(v(4,5))) / (maximum(i(vaux)) - minimum(i(vaux)))	1.672289e+01

Table 2: Valores obtidos através da simulação de Ngspice; Por ordem: V_O , $ripple(v_O)$, V_{ON} e r_d

Também se obtiveram os valores para V_{ON} e r_d que foram utilizados na secção (2. O primeiro foi considerado a média da voltagem medida nos terminais de um diodo, neste caso D_5 . O segundo foi calculado como sendo a razão das amplitudes de oscilação da voltagem medida nos terminais de um diodo e da corrente que passa num diodo, neste caso D_5 . Por comparação dos valores das tabelas (1) e (2), nota-se que os valores da voltagem de output $(V_O$ ou mean(v(4,3))) são idênticos, o que confirma que a voltagem de output oscila em torno desse valor, tal como previsto no método de *incremental analysis*, utilizado na na secção 2. No entanto, apesar dos valores do ripple $(Ripple(v_O)$ ou (maximum(v(4,5)) - minimum(v(4,5))) / (maximum(i(Vaux)) - minimum(i(Vaux)))) serem consistentes já que apresentam a mesma ordem de grandeza, têm um desvio percentual de $\epsilon_{Ripple(v_O)} = 53\%$, o que poderá em parte decorrer de uma medição pouco rigorosa da resistência incremental, r_d , mas deverse-à também à utilização de um modelo linear na análise teórica que não reflete na totalidade o comportamento do díodo.

Da simulação também se obtiveram os gráficos (5) e (6) correspondentes às voltagens de output no Envelope Detector e no Voltage Regulator.

Figure 5: Voltagem no Envelope Detector - Simulação

Figure 6: Voltagem no Voltage Regulator - Voltagem Output do Circuito - Simulação

Por fim, realizou-se ainda um *plot* do desvio da voltagem de *output* do circuito aos 12 V, ou seja, de v_O-12 de forma a verificar o quão próximo é a tensão à saída de uma tensão DC ideal. O gráfico em causa corresponde à figura (7).

Figure 7: Desvio da voltagem de Output face aos 12 V - Simulação

Por observação dos gráficos obtidos e por comparação com os gráficos da secção da análise teórica, secção (2), nota-se que estes são semelhantes, nomeadamente que oscilam em torno de valores próximos, $V_E\approx 20~V$, no caso dos gráficos da voltagem no Envelope~Detector, e que são idênticos, $V_O\approx 12~V$, no caso dos gráficos da voltagem no Voltage~Regulator. Refere-se novamente que as diferenças entre o modelo teórico e a simulação, neste caso o facto das amplitudes de oscilação serem diferentes, que deverá ser consequência em grande parte de na análise teórica ter-se considerado o modelo do díodo ideal, sem resistência interna com corrente nula para $V_D < V_{ON}$ e tensão constante $V_D = V_{ON}$ quando ligado, pelo que assim não é tido em conta grande parte do comportamento não linear do díodo que é relevante no modelo mais complexo e mais realista utilizado na simulação pelo Ngspice.

Pode-se constatar, portanto, que os resultados obtidos na análise teórica e na simulação são compatíveis, apresentando apenas algumas pequenas diferenças no efeito de *rippling* devidas provavelmente à simplicidade do modelo do díodo utilizado na análise teórica e ainda devido à aproximação linear resultante do método da análise incremental.

4 Cálculo da Figura de Mérito

A fórmula utilizada para o cálculo do mérito neste trabalho é dada pela expressão (9).

$$M = \frac{1}{\cos t * (\text{ripple}(v_O) + \text{average}(v_O - 12) + 10^{-6})}$$
 (9)

No circuito desenvolvido neste trabalho utilizaram-se: 22 díodos, 1 condensador ($C=3.1~\mu F$) e 1 resistência ($R=4.9k\Omega$). Assim o custo associado a este circuito (nas unidades monetárias adotadas) é de:

$$cost = 22 \times 0.1 + 3.1 \times 1 + 4.9 \times 1 = 10.2MU$$
 (10)

Considerando o valor do custo, e o valor médio de v_O , $average(v_O)=12.00071V$, e da *ripple*, $ripple=2.245060\times 10^{-1}~V$, retirados da tabela (2) podemos calcular o mérito deste trabalho obtendo-se:

$$M = 0.4353100 \tag{11}$$

5 Conclusão

Neste trabalho desenvolvemos um conversor AC-DC utilizando um *Envelope Detector* e um *Voltage Regulator* que, como verificámos nas secções de análise teórica (2) e através da simulação (3), produz resultados satisfatórios.

O estudo do circuito resultou no cálculo de várias grandezas (voltagem média de *output* ou *voltage ripple*) e *plot*'s de gráficos que foram obtidos através da simulação e da análise teórica. Estes resultados foram apresentados e discutidos nas respetivas secções e comparados na secção da simulação (3) tendo-se verificado pequenas diferenças entre o modelo teórico e a simulação do *Ngspice*, principalmente no fenómeno de *voltage rippling*. Estas diferenças deverão ser consequência da lineariedade dos modelos utilizados na secção teórica (modelo ideal do díodo e análise incremental) que, apesar de apresentarem resultados muito satisfatórios (próximos dos da simulação), não são capazes de descrever a vertente não linear do circuito com a mesma precisão que o modelo mais complexo utilizado pelo *Ngpsice*.

O mérito do trabalho foi calculado na secção (4), através da determinação do custo dos componentes utilizados no circuito e com os valores médios da voltagem de *output* e do *voltage rippling* determinados através da simulação.

Concluindo, consideramos que os objetivos do trabalho foram atingidos tendo sido possível desenvolver e estudar um conversor AC-DC tanto através de métodos teóricos como através de simulações numéricas.