Tutorial Sheet IV Duality

1. If x^0 is any feasible solution of (P) and w^0 is feasible for (D) such that w^0 (b – Ax^0) = 0 and ($w^0A - c$) x^0 = 0, then show that x^0 is optimal for (P) and w^0 is optimal for (D).

(P) Max
$$z = c x$$
 (D) Min $w = b w$ subject to $Ax \le b$ subject to $Aw \ge c$ $w \ge 0$

- 2. Show that wA = c, $w \ge 0$, is inconsistent iff $Ax \le 0$, cx > 0, is consistent.
- 3. Consider the following problem:

min
$$3x_1 - 5x_2 - x_3 + 2x_4 - 4x_5$$

subject to $x_1 + x_2 + x_3 + 3x_4 + x_5 \le 6$
 $-x_1 - x_2 + 2x_3 + x_4 - x_5 \ge 3$
 $x_1, x_2, x_3, x_4, x_5 \ge 0$

Write the dual. Find the primal optimal solution from the optimal solution of the dual.

4. Use duality to show that the following LP has an optimal solution

min
$$2x_1 - x_2$$

subject to $2x_1 - x_2 - x_3 \ge 3$
 $x_1 - x_2 + x_3 \ge 2$
 $x_1, x_2, x_3 \ge 0$

5. Use complementary slackness theorem to verify that (n, 0, 0, ..., 0) is an optimal solution of LPP

$$\begin{aligned} & \text{minimize} \sum_{j=1}^n & j \ x_j \\ & \text{subject to} \ \sum_{j=1}^i & x_j \ \geq \ i \ , \quad i=1,\dots,n \\ & x_j \geq 0 \ , \ \forall \ j \end{aligned}$$

- 6. Suppose the k^{th} constraint of the primal LPP: Max $z=c^tx$, subject to Ax=b, $x\geq 0$, is multiplied by a scalar $\beta\neq 0$. What would be its impact on the dual solution w?
- 7. Let (D) be the dual of the following primal problem (P) max $c^t x$ subject to $Ax \le b$, $x \ge 0$. Prove that if b > 0 and A > 0 then both (P) and (D) possess optimal solutions.
- 8. Are the following statements true? Give reasons for your answer
 - 1. The primal LP (P) and its dual LP (D), both cannot have unbounded solution.
 - 2. The primal LP (P) and its dual LP (D), both cannot be infeasible.
 - 3. The dual(dual(dual)) of a LPP is the primal LPP.
 - 4. If the primal LP (P) has a unique optimal solution and the dual LP (D) is feasible, then (D) also has a unique optimal solution.
- 9. Solve the following by dual simplex algorithm

$$\begin{array}{ll} \text{min} & 80x_1+60x_2+80x_3\\ \text{subject to} & x_1+2x_2+3\;x_3\!\geq\!4\\ & 2x_1+& 3x_3\!\geq\!3\\ & 2x_1\!+2x_2+x_3\!\geq\!4\\ & 4x_1\!+x_2+x_3\!\geq\!6\\ & x_1,x_2,x_3\!\geq\!0 \end{array}$$