JP08268890

Publication Title:		
No title available		
Abstract:		
Abstract not available for JP08268890 database - Worldwide	Data supplied from	the esp@cenet
·		•
Courtesy of http://v3.espacenet.com		
•		

特開平8-268890

(43)公開日 平成8年(1996)10月15日

(51) Int.Cl. ⁶	識別記号	庁内整理番号	FΙ				技術表示箇所
A 6 1 K 31/365	ACS		A 6 1 K	31/365		ACS	
31/35	ADY			31/35		ADY	
31/44				31/44		•	
// C 0 7 D 311/06			C07D	311/06			
311/22			:	311/22			
		審査請求			OL	(全 34 頁)	最終頁に続く
(21)出願番号	特願平7-75476		(71)出願/	人 000000	217	-	
•				エーザ	イ株式	会社	•
(22)出願日	平成7年(1995)3	月31日		東京都	文京区	小石川4丁目	6番10号
			(71)出願/	人 595047	189		
				ベイジ	ン・メ	ディカル・ユ	ニバーシティー
				中華人	民共和	国100083ペイ	ジンシエン,ハ
				イディ	アンク	シュエイャ	ンルー,38ハオ
		•	(72)発明	者 池田	信		•
•				茨城県	つくば	市梅園 2 - 19	- 8
	•		(72)発明者				
						市松代5-6	- 3
			(74)代理/				
•			1				

(54) 【発明の名称】 C型肝炎の予防・治療剤

(57)【要約】

【目的】 C型肝炎の予防・治療剤の提供。

【構成】 一般式(I)~(IV)で表される化合物群から選択されるベンゾピラノン骨格を有する化合物又はその薬理学的に許容される塩を有効成分とするC型肝炎の予防・治療剤。

【化1】

[化2]

【化3】

最終頁に続く

【化4】

$$R_{z_1} \xrightarrow{B_{z_1}} 0 \qquad K_{z_1} \qquad (1A)$$

 $(R^1 \sim R^{2.6} \text{ idH.} - OCOCH_3 \ , -OQ \ (QはH又は低級アルキル基) \ , -NO_2 \ , -CO_2 H \ , -NH_2 \ , 芳香環基、複素環基等を示す。)$

【特許請求の範囲】

【請求項1】 下記一般式(I)、(II)、(III) 又は(IV)

【化1】

【化2】

【化3】

$$\begin{array}{c|c}
R^{11} & & \\
R^{12} & & \\
R^{13} & & \\
\end{array}$$

$$\begin{array}{c}
R^{7} \\
R^{10} \\
\end{array}$$

$$\begin{array}{c}
R^{10} \\
\end{array}$$

$$R^{10}$$
 R^{10}
 R^{20}
 R^{20}
 R^{10}
 R^{10}
 R^{10}

 $\begin{array}{c|c}
R^{24} & R^{23} & 0 \\
R^{24} & R^{25} & R^{21}
\end{array}$ $\begin{array}{c|c}
R^{24} & R^{25} & R^{21}
\end{array}$

【化5】

(式中、L, Mは同一又は異なって水素原子又は低級アルキル基を示す)で表される基、又は一以上の置換基を有していてもよい芳香環基あるいは複素環基をそれぞれ示す。〕で表される化合物群から選択されるペンゾピラノン骨格を有する化合物又はその薬理学的に許容される塩を有効成分とするC型肝炎の予防・治療剤。

【請求項2】 一般式(1)

【化6】

2

① 〔式中、R¹, R², R³, R⁴, R⁵及びR⁶は、それぞれ同一又は異なって、水素原子、-0COCH₃、-0Q(ここで Qは水素原子又は低級アルキル基を示す)、-NO₂、-CO₂H、-NH₂もしくは式

【化7】

$$-\cos \sqrt{\frac{L}{M}}$$

(式中、L, Mは同一又は異なって水素原子又は低級アルキル基を示す)で表される基、又は一以上の置換基を有していてもよい芳香環基あるいは複素環基をそれぞれ示 す。〕で表されるペンゾピラノン骨格を有する化合物又はその薬理学的に許容される塩を有効成分とするC型肝炎の予防・治療剤。

【請求項3】 一般式(II)

[化8]

30

$$\begin{array}{c|c}
R^{11} & R^{8} \\
R^{12} & R^{10}
\end{array}$$
(11)

〔式中、R⁷, R⁸, R⁹, R¹⁰, R¹¹, R¹², R¹³ 及び R¹⁴は、それぞれ同一又は異なって、水素原子、-0COCH₃、-OQ(ここでQは水素原子又は低級アルキル基を示す)、-NO₂、-CO₂ H、-NH₂もしくは式

【化9】

$$-\cos\sqrt{\frac{L}{M}}$$

(式中、L, Mは同一又は異なって水素原子又は低級アルキル基を示す)で表される基、又は一以上の置換基を有していてもよい芳香環基あるいは複素環基をそれぞれ示す。〕で表されるペンゾピラノン骨格を有する化合物又はその薬理学的に許容される塩を有効成分とするC型肝炎の予防・治療剤。

【請求項4】 一般式(III)

【化10】

 R^{10} R^{10} R^{10} R^{10} R^{10} R^{10} R^{10} R^{10} R^{10} R^{10}

(式中、 R¹⁵, R¹⁶, R¹⁷, R¹⁸, R¹⁹ 及び R²⁰ は、それぞれ同一又は異なって、水素原子、-0COCH₃、-0Q (ここで Q は水素原子又は低級アルキル基を示す)、-NO₂、-CO₂ H 、-NH₂ もしくは式

(化11)

(式中、L, Mは同一又は異なって水素原子又は低級アルキル基を示す)で表される基、又は一以上の置換基を有していてもよい芳香環基あるいは複素環基をそれぞれ示す。〕で表されるベンゾピラノン骨格を有する化合物又はその薬理学的に許容される塩を有効成分とするC型肝炎の予防・治療剤。

【請求項5】 一般式(IV)

【化12】

$$\begin{array}{c|c}
R^{24} & & & \\
R^{25} & & & \\
R^{25} & & & \\
\end{array}$$

$$\begin{array}{c}
R^{21} \\
R^{22}
\end{array}$$

〔式中、R²¹, R²², R²³, R²⁴, R²⁵ 及び R²⁶は、それぞれ同一又は異なって、水素原子、-OCOCH₃、-OQ (ここで Q は水素原子又は低級アルキル基を示す)、-NO₂、-CO₂ H 30、-NH₂もしくは式

【化13】

- CON
$$< \frac{\Gamma}{N}$$

(式中、L, Mは同一又は異なって水素原子又は低級アルキル基を示す)で表される基、又は一以上の置換基を有していてもよい芳香環基あるいは複素環基をそれぞれ示す。〕で表されるペンゾピラノン骨格を有する化合物又はその薬理学的に許容される塩を有効成分とするC型肝炎の予防・治療剤。

【請求項6】 一般式(I)において、R¹,R²,R⁵及びR⁶が水酸基であり、R³及びR⁴が水素原子である請求項1又は2記載のC型肝炎の予防・治療剤。

【請求項7】 一般式 (II) において、R⁷, R⁸, R¹² 及びR ¹³ が水酸基であり、R⁹, R¹⁰, R¹¹ 及び R¹⁴ が水素原子であ

る請求項1又は3記載のC型肝炎の予防・治療剤。

【請求項8】 一般式(III) において、R¹⁹及びR²⁰が水酸基であり、 R¹⁶, R¹⁷ 及び R¹⁸が水素原子であり、 R¹⁵が3, 4-ジヒドロキシフェニル基である請求項1又は4記載のC型肝炎の予防・治療剤。

【請求項9】 一般式(III) において、 R^{19} 及び R^{20} が 水酸基であり、 R^{15} , R^{17} 及び R^{18} が水素原子であり、 R^{16} が3, 4-ジヒドロキシフェニル基である請求項1又 は4記載のC型肝炎の予防・治療剤。

10 【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、抗C型肝炎剤として有用なベンゾピラノン骨格を有する化合物又はその薬理学的に許容される塩を有効成分とするC型肝炎の予防・治療剤に関する。

[0002]

【従来の技術】

〈発明の背景〉1964年のBlumbergのオーストラリア抗原 (後にB型肝炎ウイルス (HBV: Hepatitis B Viru 30 s)の外皮蛋白質であることがわかる)の発見によりH BVの研究が進み、次いで1973年にA型肝炎ウイルス (HAV: Hepatitis A Virus)が発見された。しか し、これらA型、B型の肝炎ウイルスマーカーを使用し ても特定できないウイルス性の肝炎が存在し注目を集め ていた。この非A非B型肝炎は除外診断(現在では他の 肝炎ウイルスマーカーが陰性で、C型肝炎ウイルス抗体 の陽性により判断される)によるのみで、なかなかウイ ルスを特定することができなかった。その原因は血液中 のウイルス量及び抗原量がHBVに比して極めて少な く、ウイルスが感染した際の免疫反応が弱いことなどか ら、正体を解明するまでには長い時間が必要であった。

【0003】1988年にChooらが非A非B型肝炎の血友病 患者の血液を接種し感染させたチンパンジーの血液から C型肝炎ウイルス(HCV: Hepatitis C Virus)の C DNA断片5-1-1をイムノスクリーニングによって 取り出すことに成功した。この断片から遺伝子工学的手法を用いてHCVの核酸の同定が進み、HCV抗体検査、HCV核酸検出が可能となってきた。現在では非A 非B型肝炎とされていたもののほとんどが、C型肝炎であることがわかっており、その他にもD型、E型を含め 5種類の肝炎ウイルスが知られている。A型、B型、C型肝炎の特徴を下記表1にまとめた。

[0004]

【表1】

4

-	ゲノム	樽 造	感染経路など
A型肝炎	約 7.5Kbの線状 1 本緒 R N A	直鎖27mmの正20面体構造。 エンベロープを有さず、5 種の構造蛋白と6種の非構 造蛋白からなる。	肝細胞で増殖後、胆汁、腸管 を経由して使中に排出され、 経口的に感染する。慢性化す ることなく完全に治癒する。
B型肝炎	約 3.2Nbの2本 循環状DNA	直径42nm。エンペロープと それに囲まれた直径27nmの コアを有する二重構造。	血液を介した感染。3歳以下で感染するとキャリア化するが、それ以上では感染後もキャリアになることはなく、免疫機能低下者にのみ持続感染する。
C型肝炎	約 9.5Kbの線状 1 本額RNA	ウイルス粒子は未分離で現在 I ~ I V型に分類される。 類似ウイルスと比較して構造蛋白・非構造蛋白が推定 されている。	血液を介した感染。成人でも 感染するとキャリア化する。 輸血後の急性肝炎の場合、60 ~70%が慢性肝炎へと移行す る。自己抗体の出現も多い。

【0005】HCVは、ウイルスそのものによる細胞障 害性は低く、かつ抗原性も低いため、宿主中で持続感染 し慢性化する場合が多い。実際、中和抗体(抗原特異的 に結合して、ウイルスの生物学的活性を消失又は減退さ せる抗体)の標的となるC型肝炎ウイルスエンペロープ の抗原部分は変異速度が速く、抗体による認識を回避し ている可能性がある。一般にHCV感染が持続すると、 急性肝炎に続き肝障害が生じるが数年で沈静化する。そ の後20~30年の無症候性の持続感染が続くと再び肝炎が 再発する。さらに強い肝障害が持続すると慢性活動性肝 炎から肝硬変へと進行して、最終的には肝細胞癌が生じく ることになる。

【0006】<従来の技術>従って、HCVの感染初期 に原因療法を行い、慢性化を防ぐ必要性がある。理想的 にはまずウイルスの増殖を抑制する選択毒性の優れた治 療薬(抗ウイルス剤)が待望される。現在、その原因療 法薬としてのインターフェロン (IFN) が、C型肝炎 30 治療の第一選択薬として用いられている。IFNは、も ともとウイルス増殖を抑制する物質として発見され、当 初からウイルス病治療への応用が期待されていた。しか し、極微量で抗ウイルス作用を発揮し、しかも多様な生 理作用を示すために、長い間その実体を把握することが 困難であった。また、大量生産系の開発に多くの時間が 費やされたため、実際にウイルス病治療に用いられるま でには予想外に長い期間を必要とした。IFNの作用機 序は、一般的には、IFN分子が細胞表面のレセプター に特異的に結合することにより細胞内に二次的シグナル 40 が生じ、これが細胞内の抗ウイルス作用物質遺伝子群に 働いて遺伝子が発現することによると考えられている。 その他のC型肝炎治療薬には、対症療法薬として肝庇護 剤(肝炎を沈静化させ肝病変の進展を阻止することが期 待できる)である甘草抽出物成分のグリチルリチンが用 いられている。

[0007]

【発明が解決しようとする課題】このように、現在ほと んど唯一の治療薬としてIFNが多用されているが、こ の茎も万能ではなく、全般的にみれば治療効果があるの 50

はおよそ半数程度の患者である。またそのうちの半数 は、病状が改善されたケースでも投与を中止すると半年 以内に再発する。さらにIFNの投与によっても改善さ れない例もかなり多い。この様なIFNが効かないケー スに対する薬物はまだ開発されるに至っていない。

[0008]

20

【課題を解決するための手段】本発明者らは、特にIF Nと作用機序が異なることによりIFN無効例などにも 有用である薬物の創出と、以上の問題点の解決を目指し 抗C型肝炎剤の研究を鋭意重ねた結果、中国産薬用植物 であるキダチキンバイから抽出した下記式で表されるエ ラグ酸が抗C型肝炎活性を有することを発見し、その誘 導体であるペンゾピラノン骨格を有する化合物が新規な 作用メカニズムの下、強力な抗C型肝炎活性を有し、医 薬として有用であることを見出し、本発明を完成した。

[0009]

【化14】

エラグ酸

【0010】すなわち本発明は、下記一般式(I)、 (II)、(III) 又は(IV)

[0011]

【化15】

に関する。

 $\begin{array}{c|c}
R^{4} & R^{2} \\
R^{5} & R^{6} \\
\hline
 \begin{bmatrix} 0 & 0 & 1 & 2 \end{bmatrix}
\end{array}$

【化16】

 $\begin{array}{c|c}
R^{24} & R^{23} & 0 \\
R^{24} & R^{21} \\
R^{25} & 0 \\
R^{22} & 0
\end{array}$ (1V)

D 2 8

【0015】 (式中、 R¹, R², R³, R⁴, R⁵, R⁶, R⁷, R⁸, R⁹, R¹⁰, R¹¹, R¹², R¹³, R¹⁴, R¹⁵, R¹⁶, R¹⁷, R¹⁸, R¹⁹, R²⁰, R²¹, R²², R²³, R²⁴, R²⁵ 及び R²⁶は、それぞれ同一又は異なって、水素原子、-OCOCH₃、-OQ (ここで Qは水素原子又は低級アルキル基を示す)、-NO₂、-CO₂H、-NH₂もしくは式

【0016】 【化19】

– CON
$$<$$
 N

【0017】(式中、L, Mは同一又は異なって水素原子 又は低級アルキル基を示す)で表される基、又は一以上 の置換基を有していてもよい芳香環基あるいは複素環基 をそれぞれ示す。〕で表される化合物群から選択される ベンゾピラノン骨格を有する化合物又はその薬理学的に 許容される塩を有効成分とするC型肝炎の予防・治療剤 【0018】本明細書中に使用されている語句について以下詳細に説明する。 R^1 , R^2 , R^3 , R^4 , R^5 , R^6 , R^7 , R^8 , R^9 , R^{10} , R^{11} , R^{12} , R^{13} , R^{14} , R^{15} , R^{16} , R^{17} , R^{18} , R^{19} , R^{20} , R^{21} , R^{22} , R^{23} , R^{24} , R^{25} 及び R^{26} は、それぞれ同一又は異なって、水素原子、 $-0COCH_3$ 、-0Q(ここで Qは水素原子又は低級アルキル基を示す)、 $-NO_2$ 、 $-CO_2$ H、 $-NH_2$ もしくは式

8

[0019]

10 【化20】

【0020】(式中、L、Mは同一又は異なって水素原子 又は低級アルキル基を示す)で表される基、又は一以上 の置換基を有していてもよい芳香環基あるいは複素環基 をそれぞれ示す。ここで、-0COCH3はアセトキシ基を、 -NO2は二トロ基を、-CO2Hはカルボキシル基を、-NH2は アミノ基をそれぞれ示す。また、-OQは、Qが水素原子 の時は水酸基を、Qが低級アルキル基のときは低級アル 20 コキシ基をそれぞれ示す。

【0021】低級アルキル基とは、炭素数1~6の直鎖 もしくは分岐鎖状のアルキル基を示し、具体的には、例 えばメチル基、エチル基、n-プロピル基、i-プロピ ル基、n-プチル基、1-プチル基、 sec-プチル基、 tープチル基、nーペンチル基、iーペンチル基、 sec -ペンチル基、t-ペンチル基、ネオペンチル基、1-メチルプチル基、2-メチルプチル基、1,1-ジメチ ルプロピル基、1,2-ジメチルプロピル基、n-ヘキ シル基、i-ヘキシル基、1-メチルペンチル基、2-30 メチルペンチル基、3-メチルペンチル基、1,1-ジ メチルプチル基、1,2-ジメチルプチル基、2,2-ジメチルプチル基、1,3-ジメチルプチル基、2,3 ージメチルプチル基、3,3-ジメチルプチル基、1-エチルプチル基、2-エチルプチル基、1,1,2-ト リメチルプロピル基、1、2、2-トリメチルプロピル 基、1-エチル-1-メチルプロピル基、1-エチル-2-メチルプロピル基などが挙げられる。

【0022】低級アルコキシ基とは、前記低級アルキル基に対応するものを示し、具体的には、例えばメトキシ 40 基、エトキシ基、n-プロポキシ基、i-プロポキシ基、n-プトキシ基、i-プトキシ基、i-ペンチルオキシ基、i-ペンチルオキシ基、 sec-ペンチルオキシ基、t-ペンチルオキシ基、なオペンチルオキシ基、1-メチルプトキシ基、2-メチルプトキシ基、1,1-ジメチルプロポキシ基、1,2-ジメチルプロポキシ基、n-ヘキシルオキシ基、i-ヘキシルオキシ基、1-メチルペンチルオキシ基、2-メチルペンチルオキシ基、1-スチルペンチルオキシ基、2-メチルペンチルオキシ基、2-メチルペンチルオキシ基、1,1-ジメチルプトキシ基、1,2-ジメチルプトキシ基、1,2-ジメチルプトキシ基、2-ジメチルプトキシ基、50ジメチルプトキシ基、2.2-ジメチルプトキシ基、

1, 3-ジメチルプトキシ基、2, 3-ジメチルプトキシ基、3, 3-ジメチルプトキシ基、1-エチルプトキシ基、2-エチルプトキシ基、1, 1, 2-トリメチルプロポキシ基、1, 2-トリメチルプロポキシ基、1-エチル-2-メチルプロポキシ基などが挙げられる。

【0023】次に、式

[0024]

【化21】

【0025】(式中、L、Mは同一又は異なって水素原子 又は低級アルキル基を示す)で表される基は、無置換力 ルバモイル基、N-低級アルキル置換カルバモイル基又 はN、N-ジ低級アルキル置換カルバモイル基を示し、 具体的に例示すれば、カルバモイル基、メチルカルバモ イル基、ジメチルカルバモイル基、メチルエチルカルバ モイル基、エチルカルバモイル基、ジエチルカルバモイ ル基、n-プロピルカルバモイル基、メチル-n-プロ ピルカルバモイル基、エチルーnープロピルカルバモイ ル基、ジーn-プロピルカルバモイル基、i-プロピル カルパモイル基、メチルーi-プロピルカルパモイル 基、エチルーiープロピルカルバモイル基、ジーiープ ロピルカルバモイル基、n-プロピル-i-プロピルカ ルバモイル基、プチルカルバモイル基、メチルプチルカ ルバモイル基、エチルプチルカルバモイル基、n-プロ ピルプチルカルバモイル基、1-プロピルプチルカルバ モイル基、ジブチルカルバモイル基、ペンチルカルバモ イル基、メチルペンチルカルパモイル基、エチルペンチ ルカルバモイル基、n-プロピルペンチルカルバモイル 30 基、i-プロピルペンチルカルバモイル基、プチルペン チルカルバモイル基、ジペンチルカルバモイル基、ヘキ シルカルバモイル基、メチルヘキシルカルバモイル基、 エチルヘキシルカルパモイル基、n-プロピルヘキシル カルバモイル基、i-プロピルヘキシルカルバモイル 基、プチルヘキシルカルバモイル基、ペンチルヘキシル カルバモイル基、ジヘキシルカルバモイル基などが挙げ られる。

【0026】一以上の置換基を有していてもよい芳香環基あるいは複素環基における置換基としては、具体的に40は、例えば水酸基;チオール基;ニトロ基;モルホリノ基;チオモルホリノ基;フッ素原子、塩素原子、臭素原子、ヨウ素原子などのハロゲン原子;ニトリル基;アジド基;ホルミル基;メチル基、エチル基、プロピル基、イソプロピル基、ブチル基などのアルキニル基、アリル基、プロペニル基などのアルケニル基;エチニル基、ブチニル基、プロパルギル基などのアルキニル基、低級アルキル基に対応するメトキシ基、エトキシ基、プロポキシ基、ブトキシ基などのアルコキシ基;フルオロメチル基、ジフルオロメチル基、トリフルオロメ 50

10 チル基、フルオロエチル基などのハロゲノアルキル基: ヒドロキシメチル基、ヒドロキシエチル基、ヒドロキシ プロピル基などのヒドロキシアルキル基:グアニジノ 基;ホルムイミドイル基;アセトイミドイル基;カルバ モイル基:チオカルバモイル基:カルバモイルメチル 基、カルバモイルエチル基などのカルバモイルアルキル 基;チオカルバモイルメチル基、チオカルバモイルエチ ル基などのチオカルバモイルアルキル基:メチルカルバ モイル基、ジメチルカルバモイル基、メチルエチルカル 10 バモイル基、ジエチルカルバモイル基などのアルキルカ ルパモイル基、メチルチオカルパモイル基、ジメチルチ オカルバモイル基、メチルエチルチオカルバモイル基、 ジエチルチオカルパモイル基などのアルキルチオカルバ モイル基;カルバミド基;アセチル基などのアルカノイ ル基:アミノ基:メチルアミノ基、エチルアミノ基、イ ソプロピルアミノ基などのアルキルアミノ基;ジメチル アミノ基、メチルエチルアミノ基、ジエチルアミノ基な どのジアルキルアミノ基:アミノメチル基、アミノエチ ル基、アミノプロピル基などのアミノアルキル基;カル 20 ボキシ基:メトキシカルボニル基、エトキシカルボニル 基、プロポキシカルボニル基などのアルコキシカルボニ ル基;メトキシカルボニルメチル基、エトキシカルボニ ルメチル基、プロポキシカルボニルメチル基、メトキシ カルポニルエチル基、エトキシカルポニルエチル基、プ ロポキシカルボニルエチル基などのアルコキシカルボニ ルアルキル基:メチルオキシメチル基、メチルオキシエ チル基、エチルオキシメチル基、エチルオキシエチル基 などのアルキルオキシアルキル基;メチルチオメチル 基、メチルチオエチル基、エチルチオメチル基、エチル チオエチル基などのアルキルチオアルキル基;アミノメ チルアミノメチル基、アミノエチルアミノメチル基など のアミノアルキルアミノアルキル基:メチルカルボニル オキシ基、エチルカルボニルオキシ基、イソプロピルカ ルボニルオキシ基などのアルキルカルボニルオキシ基; オキシメチル基、ベンジルオキシエチルオキシエチル基 などのアリールアルコキシアルコキシアルキル基:ヒド ロキシエチルオキシメチル基、ヒドロキシエチルオキシ エチル基などのヒドロキシアルコキシアルキル基;ベン ジルオキシメチル基、ベンジルオキシエチル基、ベンジ ルオキシプロピル基などのアリールアルコキシアルキル 基:トリメチルアンモニオ基、メチルエチルメチルアン モニオ基、トリエチルアンモニオ基などの第四級アンモ ニオ基:シクロプロピル基、シクロブチル基、シクロペ ンチル基、シクロヘキシル基などのシクロアルキル基; シクロプロペニル基、シクロプテニル基、シクロペンテ ニル基、シクロヘキセニル基などのシクロアルケニル 基;フェニル基、ピリジニル基、チエニル基、フリル 基、ピロリル基などのアリール基;メチルチオ基、エチ ルチオ基、プロピルチオ基、ブチルチオ基などのアルキ

ルチオ基:フェニルチオ基、ピリジニルチオ基、チエニ

ルチオ基、フリルチオ基、ピロリルチオ基などのアリー ルチオ基:ベンジル基、トリチル基、ジメトキシトリチ ル基などのアリール低級アルキル基;スルホニル基、メ シル基、p-トルエンスルホニル基などの置換スルホニ ル基;ペンゾイル基などのアリロイル基;フルオロフェ ニル基、プロモフェニル基などのハロゲノアリール基: メチレンジオキシ基などのオキシアルコキシ基等を挙げ ることができる。一以上の置換基を有していてもよいと は、これら基を任意に組み合わせて有していてもよいこ とを意味し、例えば水酸基、チオール基、ニトロ基、モ 10 り、活性本体であるエラグ酸を得ることができる。 ルホリノ基、チオモルホリノ基、ハロゲン原子、ニトリ ル基、アジド基、ホルミル基、アミノ基、アルキルアミ ノ基、ジアルキルアミノ基、カルバモイル基、スルホニ ル基、アセチル基、アルキル基、アルコキシ基などで置 換された芳香環基あるいは複素環基なども本発明中に含 まれる。

【0027】また、芳香環基としては、具体的には、フ ェニル基、ナフチル基など、複素環基としては、具体的 にはピラニル基、ピリジル基、ピリダジル基、ピリミジ ル基、ピラジル基、フリル基、チエニル基、ピロリル 基、オキサゾリル基、イソキサゾリル基、チアゾリル 基、イソチアゾリル基、イミダゾリル基、ピラゾリル 基、フラザニル基、チアジアゾリル基などが挙げられ、 好ましくはフェニル基、ピリジル基が挙げられる。従っ て一以上の置換基を有していてもよい芳香環基あるいは 複素環基としての具体例としては、例えば、フェニル 基、4-ヒドロキシフェニル基、3、4-ヒドロキシフ ェニル基、2-ピリジル基、3-ヒドロキシ-4-メト キシフェニル基、3-メトキシ-4-ヒドロキシフェニ ル基、3,4-ジメトキシフェニル基などが挙げられ る。

【0028】薬理学的に許容できる塩としては、特に種 類は限定されないが、例えば塩酸塩、硫酸塩、炭酸塩、 重炭酸塩、臭化水素酸塩、ヨウ化水素酸塩などの無機酸 の付加塩:酢酸塩、マレイン酸塩、乳酸塩、酒石酸塩、 トリフルオロ酢酸塩などの有機カルボン酸の付加塩:メ タンスルホン酸塩、ヒドロキシメタンスルホン酸塩、ヒ ドロキシエタンスルホン酸塩、ベンゼンスルホン酸塩、 トルエンスルホン酸塩、タウリン塩などの有機スルホン 酸の付加塩:トリメチルアミン塩、トリエチルアミン 塩、ピリジン塩、プロカイン塩、ピコリン塩、ジシクロ ヘキシルアミン塩、N, N'ージベンジルエチレンジア ミン塩、N-メチルグルカミン塩、ジエタノールアミン 塩、トリエタノールアミン塩、トリス(ヒドロキシメチ ルアミノ)メタン塩、フェネチルベンジルアミン塩など のアミンの付加塩:アルギニン塩、リジン塩、セリン 塩、グリシン塩、アスパラギン酸塩、グルタミン酸塩な どのアミノ酸の付加塩などを挙げることができる。全て の互変異生体及び幾何異性体などの異性体も本発明に含 まれる。

【0029】次に本願発明にかかる化合物の製造法につ いて説明する。エラグ酸は、キダチキンバイからの抽出 により得ることができる。具体的には、キダチキンバイ の全草や根、茎、葉などを水、低級脂肪族アルコール 類、含水低級脂肪族アルコール類、芳香族アルコール 類、含ハロゲン溶媒及びこれらの混合溶媒を用いて0℃ 付近より沸点に至る範囲内で減圧、常圧、又は加圧下に 抽出操作を行い、活性物質を含むエキスを得ることがで きる。本エキスを種々の分離精製法を用いることによ

【0030】また、本願発明にかかる化合物は公知化合 物であり、公知の技術により製造が可能であるが、参考 として以下に一般的な製造法を例示する。一般式(I)

[0031]

【化22】

$$\begin{array}{c|c}
R^4 & & \\
R^5 & & \\
R^6 & & \\
\end{array}$$

$$\begin{array}{c}
R^1 \\
R^8 \\
\end{array}$$

$$\begin{array}{c}
(1) \\
\end{array}$$

【0032】 [式中、R1, R2, R3, R4, R5 及びR6 は、前記定 義に同じ基をそれぞれ示す。〕で表されるベンゾピラノ ン骨格を有する化合物又はその薬理学的に許容される塩 は、上記抽出によって得られたエラグ酸を直接官能基変 換、例えばアルキル化剤による水酸基のアルキル化、無 水カルポン酸などによる水酸基のアシル化等、を行うこ とにより得ることができる。このようにエラグ酸に対し て慣用手段による官能基変換を行うことにより、例え ば、

[0033]

【化23】

*【0034】〔式中、Meはメチル基、Acはアセチル基を 示す。〕などの化合物を簡単に得ることが可能である。 また、次の反応式

14

[0035] 【化24】

20

10

 R^{5} $\begin{array}{c}
CO_{2}H & NO_{2} \\
NO_{2} & CO_{2}H
\end{array}$

$$R^{5} \longrightarrow R^{2} \longrightarrow R^{5} \longrightarrow R^{4} \longrightarrow R^{2}$$

(1)

【0036】〔式中、R¹,R²,R³,R⁴,R⁵及びR⁶は、前記定 40 義に同じ基をそれぞれ示す。〕で表される製造法によっ ても、上記一般式(I)で表される化合物を得ることが

できる。例えば、下記反応式 【0037】 【化25】

$$0 \ge N \longrightarrow 0$$

$$0 \ge N \longrightarrow 0$$

$$0 \longrightarrow 0$$

【0038】で表される反応を行うことにより、上記一般式(I)に包含される2つの化合物を得ることができる。この反応はジフェン酸をニトロ化し、次いで縮合によりラクトン環を形成させ、さらにニトロ基をアミノ基*

15

*に還元する工程を含むものである。【0039】更にまた、次の反応式【0040】【化26】

$$\begin{array}{c} CO_2H \\ R^{*} & OMe \end{array} \longrightarrow \begin{array}{c} CO_2H \\ CO_2$$

 R^4 の R^4 R^5 R^6 R^6

【0041】〔式中、 R¹, R², R³, R⁴, R⁵, R⁶及びMeは、前記定義に同じ基をそれぞれ示す。〕で表される製造法によっても、上記一般式 (I) で表される化合物を得ることができる。これは安息香酸誘導体のカルボキシル基を

(1) 4,4-ジメチルオキサゾリン化し、次いでハロゲン化 により化合物(A)を得、同様に化合物(B)を得、こ のようにして得られた化合物(A),(B)を反応さ せ、慣用手段により官能基変換を行い、上記一般式 [0042]

【化27】

18

(I)で表される化合物を得る方法である。具体的な化 * 合物で例示すれば、下記反応式 *

【0043】 (式中、Meは前記定義に同じ基を示す。) で表される反応を行うことにより、上記一般式(I)に包含される化合物を得ることができる。

【0044】一般式(II)

[0045]

【化28】

$$R_{11}$$

$$R_{10}$$

$$R_{10}$$

$$R_{10}$$

$$R_{10}$$

$$R_{10}$$

$$R_{10}$$

$$R_{10}$$

$$R_{10}$$

※【0046】〔式中、R⁷, R⁸, R⁹, R¹⁰, R¹¹, R¹², R¹³ 及び R ¹⁴ は、前記定義に同じ基をそれぞれ示す。〕で表されるベンゾピラノン骨格を有する化合物又はその薬理学的に 20 許容される塩は、以下の反応式で表される方法により合成することができる。

[0047] [化29]

【0048】〔式中、R⁷, R⁸, R⁹, R¹⁰, R¹¹, R¹², R¹³, R¹⁴及びMeは、前記定義に同じ基をそれぞれ示し、Etはエチル基を示す。〕これは、安息香酸誘導体のカルボキシル基をジエチルアミンを用いてアミド化し、次いでハロゲン

化により化合物 (C) を得、一方、メトキシベンゼン誘導体をハロゲン化し、次いでそのハロゲン原子を水酸化ホウ素で置換することにより、化合物 (D) を得る工程である。このようにして得られた化合物 (C). (D)

19

を以下の反応式 【0049】 *【化30】

$$(C) + (D) \longrightarrow R^{11}$$

$$R^{12}$$

$$R^{12}$$

$$R^{13}$$

$$\begin{array}{c}
R^{1} \\
R^{1} \\
R^{1} \\
R^{1}
\end{array}$$

$$\begin{array}{c}
R^{2} \\
R^{1}
\end{array}$$

$$\begin{array}{c}
R^{3} \\
R^{1}
\end{array}$$

$$\begin{array}{c}
R^{1} \\
R^{1}
\end{array}$$

【0050】〔式中、R⁷,R⁸,R⁹,R¹⁰,R¹¹,R¹²,R¹³,R¹⁴,M e 及びEtは、前記定義に同じ基をそれぞれ示す。〕で表 されるように反応させることにより、上記一般式(II) で表される化合物を製造することができる。具体的な化※

(II) ※合物で例示すれば、反応式 【0051】 【化31】

(D')

$$(Me0)_{n} \longrightarrow (Me0)_{n} \longrightarrow (Me0)_{n}$$

$$(C)$$

【0052】 〔式中、Me及びEtは前記定義に同じ基を示 【0053】 し、nは1又は2である。〕で表される反応により得ら 40 【化32】 れる化合物 (C'), (D')を用い、反応式

$$(C') + (D') \longrightarrow \underbrace{Et_a NOC}_{Me0} \longrightarrow (OMe)_a$$

$$\begin{array}{c} \text{Et}_{2}\text{NOC} \\ \\ \text{(HO)}_{n} \end{array}$$

【0054】〔式中、Me, Bt及びnは前記定義に同じ基を示す。〕で表される反応を行うことにより、前記一般式(II)に包含される化合物を製造することができる。また、一般式(II) で表される化合物は以下の反応式で表*

*される方法によっても合成することができる。【0055】【化33】

$$\begin{array}{c|c}
CO_2H & CONEt_2 & CONEt_2 \\
R^{11} & R^{14} & R^{12} & R^{14} & R^{12} \\
R^{13} & R^{14} & R^{12} & R^{14}
\end{array}$$
(E)

【0056】〔式中、 R^7 , R^8 , R^9 , R^{10} , R^{11} , R^{12} , R^{13} , R^{14} , Me 及びEtは、前記定義に同じ基をそれぞれ示す。〕これは、安息香酸誘導体のカルボキシル基をジエチルアミンを用いてアミド化し、次いで三臭化ホウ素を反応させることにより化合物(E)を得、一方、メトキシベンゼン

誘導体をハロゲン化することにより、化合物(F)を得る工程である。このようにして得られた化合物(E),

(F) を以下の反応式

[0057]

【化34】

$$(E) + (F) \longrightarrow R^{11}$$

$$R^{12}$$

$$R^{13}$$

$$R^{14}$$

【0058】 〔式中、R⁷, R⁸, R⁹, R¹⁰, R¹¹, R¹², R¹³, R¹⁴, M e 及びEtは、前記定義に同じ基をそれぞれ示す。〕で表 されるように反応させることにより、上記一般式 (II) で表される化合物を製造することができる。具体的な化

合物で例示すれば、反応式 【0059】 【化35】

$$(Me0)_{n} \xrightarrow{CO_{2}H} \xrightarrow{(Me0)_{n}} \xrightarrow{CONEt_{2}} \xrightarrow{CONEt_{2}} \xrightarrow{(Me0)_{n}} \xrightarrow{CO_{2}H} \xrightarrow{(Me0)_{n}} \xrightarrow{(Me0)_{n$$

$$0Me \longrightarrow Br \longrightarrow 0Mc$$

$$(0Me). \qquad (0Me).$$

$$(E')+(F') \longrightarrow (0Me)_{n} \xrightarrow{CONEt_{2} \atop OMe} \longrightarrow (0Me)_{n}$$

$$(H0)_{n} \xrightarrow{CONEt_{2}} (H0)_{n} \xrightarrow{(0H)_{n}} (H0)_{n}$$

【0060】(式中、Me, Et及びnは前記定義に同じ基を示す。〕で表される反応を行うことにより、前記一般式(II)に包含される化合物を製造することができる。上記のような製造法により、例えば、式

[0061]

[42.36]

0 0 0 0H

【0.067】(式中、 R^{15} , R^{16} , R^{17} , R^{18} , R^{19} , R^{20} 及びEtは、前記定義に同じ基をそれぞれ示す。〕これはフェノール誘導体と β ーケトエステル誘導体を反応させることにより、一般式(III) で表される化合物を製造する工程

*【0062】で表される化合物などを製造することができる。

[0063] 一般式 (III) [0064]

[化37]

$$R^{1} \stackrel{\bullet}{\longrightarrow} R^{1} \stackrel{\bullet}{\longrightarrow}$$

【0065】 〔式中、R¹⁵,R¹⁶,R¹⁷,R¹⁸,R¹⁹及びR²⁰は、 前記定義に同じ基をそれぞれ示す。〕で表されるベンゾ ピラノン骨格を有する化合物又はその薬理学的に許容さ れる塩は、以下の反応式で表される方法により合成する ことができる。

【0066】 【化38】

20

10

(III)

である。具体的には、反応式 【0068】 【化39】

HÓ 【0069】〔式中、Me及びEtは前記定義に同じ基を示す。〕で表される反応により、前記一般式(III) に包含 20 される化合物を製造することができる。例えば、式

[0070]

[化40]

HO OH OH

HO OH O

【0071】で表される化合物などを製造することがで

50 きる。

30

40

【0072】また、一般式(III) に包含される化合物*【0073】は、次の合成法によっても製造される。反応式*【化41】

$$R_{10}$$
 R_{10}
 R_{10}

【0074】〔式中、R¹⁷,R¹⁸,R¹⁹ 及びR²⁰ は前記定義に同じ基を、 Xは N又はCHを、Y¹,Y²,Y³及びY⁴ は水素原子又は前記の一以上の置換基を有していてもよい芳香環基あるいは複素環基における置換基をそれぞれ示す。〕これは2つの化合物を閉環反応させることにより、本願

発明にかかる化合物を製造する工程を含むものである。 20 具体的には、反応式 【0075】

【化42】

【0076】〔式中、Me及び Xは前記定義に同じ基を示す。〕で表される反応により、以下の式

[0077]

【化43】

10 .

【0078】で表される化合物などが製造可能である。 【0079】また、一般式(III) に包含される化合物 は、以下の式

[0080]

【化44】

【0081】で表される市販化合物を、従来技術により 修飾することによっても製造することができる。例え ば、式

[0082]

【化45】

【0083】〔式中、Meは前記定義に同じ基を示す。〕で表される化合物などである。

0 【0084】さらに、一般式(IV)

[0085]

【化46】

$$R^{24}$$

$$R^{25}$$

$$R^{25}$$

$$R^{27}$$

$$R^{21}$$

$$R^{21}$$

【0086】〔式中、R²¹, R²², R²³, R²⁴, R²⁵及びR²⁶は、 30 前記定義に同じ基をそれぞれ示す〕で表されるベンソピラノン骨格を有する化合物又はその薬理学的に許容される塩も、公知技術により製造することが可能である。

【0087】上記の反応には、必要により官能基に有機合成において通常用いられる保護基などを用いて合成し、適当なシリカゲル等によりカラムクロマトグラフィー等によって常法により精製後脱保護反応に付すことも可能である。

【0088】本発明に係る抗C型肝炎剤の投与量は症状の程度、年齢、性別、体重、投与形態、疾患の種類等に 40 より異なるが、通常成人1日当たり1 m~5gであり、 1~数回に分けて投与する。本発明に係る抗C型肝炎剤 の投与形態は特に限定されず、通常用いられる方法により経口又は非経口的に投与することができる。

【0089】これら製剤化には通常用いられる賦形剤、結合剤、滑沢剤、着色剤、矯味矯臭剤等、及び必要により安定化剤、乳化剤、吸収促進剤、界面活性剤等を使用することができ、一般に医薬品製剤の原料として用いられる成分を配合して常法により製剤化される。

【0090】これらの成分としては、例えば、動植物油 (大豆油、牛脂、合成グリセライドなど)、炭化水素

(流動パラフィン、スクワラン、固形パラフィンな ど)、エステル油(ミリスチン酸オクチルドデシル、ミ リスチン酸イソプロピルなど)、高級アルコール(セト ステアリルアルコール、ベヘニルアルコールなど)、シ リコン樹脂、シリコン油、界面活性剤(ポリオキシエチ レン脂肪酸エステル、ソルビタン脂肪酸エステル、グリ セリン脂肪酸エステル、ポリオキシエチレンソルビタン 脂肪酸エステル、ポリオキシエチレン硬化ひまし油、ポ リオキシエチレンポリオキシプロピレンプロックコポリ マーなど)、水溶性高分子(ヒドロキシエチルセルロー ス、ポリアクリル酸、カルボキシビニルポリマー、ポリ エチレングリコール、ポリビニルピロリドン、メチルセ ルロースなど)、アルコール(エタノール、イソプロパ ノールなど)、多価アルコール(グリセリン、プロピレ ングリコール、ジプロピレングリコール、ソルビトール など)、糖(グルコース、ショ糖など)、無機粉体(無 水ケイ酸、ケイ酸アルミニウムマグネシウム、ケイ酸ア ルミニウムなど)、精製水などが挙げられる。pH調整 のためには、無機塩(塩酸、リン酸など)、無機酸のア ルカリ金属塩(リン酸ナトリウムなど)、無機塩基(水 20 酸化ナトリウムなど)、有機酸(低級脂肪酸、クエン 酸、乳酸など)、有機酸のアルカリ金属塩(クエン酸ナ トリウム、乳酸ナトリウムなど)、有機塩基(アルギニ ン、エタノールアミンなど) などを用いることができ る。また、必要に応じて、防腐剤、抗酸化剤などを添加 することができる。

【0091】本願発明の作用効果に関して述べれば、本願発明にかかる化合物は、IFNと異なる新規な作用メカニズムに基づき、抗C型肝炎作用を奏する。本発明者等はHCV遺伝子の翻訳段階を阻害することによりHCVの発現を抑制することに成功したものである。

【0092】真核細胞の90%以上のmRNAでは、40 Sリボソームが5'末端のキャップ構造に結合後、1番近 いAUGまで移動して翻訳を開始するキャップ依存性蛋 白質合成を行っている。しかし、ポリオウイルスを始め とするピコナウイルス属のウイルスゲノムはプラス1本 鎖RNAで、5' 末端にキャップ構造を欠き、長い5' 側非 翻訳領域(5'UTR)を持っている(ポリオウイルスで は約 750塩基)。さらに5' UTRの中には複数のAUG が存在しており、HCV-RNAの5'UTRも約 340塩 40 基と長く、その中には2~3個のAUGが存在してい る。これらのウイルスにおける翻訳は、5'UTRの構造 が原核生物(prokaryote)のShine-Dargano 配列のように リボソームの認識に関与する機構で、すなわちリボソー ムが5'UTRの内部を認識して開始するinternal initi ation というキャップ非依存性の新たなメカニズムによ り行われることがわかっている。HCV-RNA5'UT Rの構造上の特徴は、キャップ依存性蛋白質合成よりも internal initiation を行うmRNAのものに近いと考 えられている。

【0093】ところで、中国産の薬用植物、水仙桃(Ju ssiaea suffruticosa., 毛草竜、キダチキンパイ) は、 感冒や口腔炎などに対して中国で用いられている。本発 明者等は新規なメカニズムに基づく抗C型肝炎剤を検討 する中で、このキダチキンバイの抽出物中に抗C型肝炎 活性を有する化合物が含まれることを見出し、その活性 本体の単離に成功した。この化合物がエラグ酸であり、 エラグ酸は様々な生理活性を有することが知られてい る。例えば、Human immunodeficiency virus (H I V) 10 の逆転写酵素とDNAポリメラーゼの活性の抑制、マウ スの癌の増殖の抑制、その他抗菌作用、抗カビ作用、抗 酸化作用などの活性が報告されている。本願発明にかか るエラグ酸及びその誘導体は、ウイルスの増殖過程にお いて、リボソームがRNAを認識する部位(internal r ibosome entry site; IRES) を阻害することによ り、抗C型肝炎活性を発揮する。

【0094】以下に本発明にかかる化合物の薬理実験例を示し、本発明にかかる化合物の有用性を明らかにする。

② 薬理実験例

下記方法によりエラグ酸及びその誘導体のIRES依存 翻訳阻害活性による抗C型肝炎活性を測定した。結果を 表2に示す。

【0095】 <インビトロ・トランスレーションによる エラグ酸及びその誘導体のキャップ依存的翻訳及びIR ES依存的翻訳に対する阻害活性の測定法>

1) バックグランドの反応性(Capped-globin mRNAあるいはIRES-HCVmRNAが入っていない試験管) を見る試験

マスターカクテル(無細胞翻訳系に必要な因子のうち、細胞内の宿主蛋白、mRNAや塩以外に必要な成分をあらかじめ混ぜてストックしたもので、ATP、GTP、ジチオスレイトール、クレアチンリン酸、クレアチンキナーゼ、スペルミン四塩酸が含まれる)、Mg(CH3COO)2、CH3COOK、35Sメチオニンなどを混入させた反応液に蛋白質の翻訳鋳型を加えることなく、宿主因子のRRL(ウサギ網状赤血球溶血液、ウサギにフェニルヒドラジンを数回皮下注射後、全採血して調製する)を加えて30℃、50分インキュペーションする。ここでは、本来mRNAが存在しないので、蛋白の翻訳は全く起こらないが、バックグラウンドの反応として、僅かに翻訳産物が現れることがある。ここでの値を"A"とする。

【0096】2) positiveコントロールとしての(Capp ed-globin mRNAあるいはIRES-HCV mRN Aを加えた)反応性を見る試験

マスターカクテル、Mg(CH3 COO)2、CH3 COOK、35 Sメチオニンと、capped-globin mRNA又はIRES-HCVmRNAを混入させた反応液について、上記1)と同様に反応性を測定した。ここではmRNAが存在しており、薬物は一切入れていないので反応が100%進行して

いるものとみなす。今ここで現れた蛋白質合成反応値を "B"とした場合、ここでの真の翻訳反応値"C"はB からAを差し引いた値となる。すなわち、C=B-A 3) 被検薬の阻害活性を見る試験

マスターカクテル、Mg(CH₃ COO)₂、CH₃ COOK 、³⁵ Sメチオニンと、capped-globin mRNA又はIRES-HC V mRNAと、被検薬を混入させた反応液について、*

*上記1)と同様に反応性を測定した。

【0097】ここで得られた蛋白質合成反応値を"D" とした場合、真の翻訳反応値"E"はDからAを差し引 いた値となる。

すなわち、E=D-A

よって被検薬の阻害活性は次の式を用いて求められる。

阻害活性 (% of inhibition) = $(1-E/C) \times 100$

なお、mRNAとしてcapped-globin を用いた場合、gl ※【0098】 obinに対する阻害となり、IRES-HCVを用いた場 10 【表2】

合はHCVに対する阻害活性となる。

×

·	抗IRES活性と避択性			
	Globin阻害率(%)	IRES-HCV阻害率(%)		
エラグ酸	22	45		
化合物1	-10	30		
化合物2	-33	. 47		
化合物3	-21	70		

【0099】表中、「Globin阻害率」はグロビンのキャ 20ップ依存的な翻訳の阻害率を示し、「IRES-HCV阻害率」はC型肝炎ウイルスのIRES依存的な翻訳の阻害率を示す。また、化合物 $1\sim3$ は以下の構造式で表されるものである。

[0100]

【化47】

化合物 1

30

化合物 2

40 化合物 3

【0101】従って、本願発明にかかる化合物は、IR ES依存的な翻訳を強力に阻害し、しかもキャップ依存 50 的な翻訳は阻害しないという選択性を有することがわか

る。このように、本願発明にかかる化合物は優れた抗C型肝炎活性を有し、C型肝炎の予防及び治療に有用である。

[0102]

【実施例】以下に本発明を更に詳しく説明するために、本願発明にかかる化合物のいくつかの実施例を示すが、本発明はこれらのものに限定されるものではない。実施例中「H-NMRスペクトラムはVarian社FT NMR (400MHz)で測定した。また、本願発明にかかる化合物の合成に用いられる原料化合物の製造例も併せて示す。尚、以下の例中において、Meはメチル基、Etはエチル基、Acはアセチル基、Bnはベンジル基を示す。

【0103】製造例1

N, N-ジエチル-3-メトキシベンズアミド

[0104]

【化48】

【0105】3-メトキシ安息香酸 5.0gをトルエン 1 00mlに懸濁させ、塩化チオニル 4.4mlとジメチルホルム アミドを数滴滴下した。60℃で3.25時間攪拌後、室温まで冷却した。この溶液にテトラヒドロフラン 100mlとジエチルアミン 6.8mlを加え、室温にて45分間攪拌した後、さらにジエチルアミン 5.7mlを加え、一晩室温にて攪拌した。反応混合物を水に加え、酢酸エチルにて抽出し、有機層を水、飽和食塩水にて順次洗浄し、無水硫酸マグネシウムにで乾燥した。溶媒を減圧留去し、残留物 30をシリカゲルカラムクロマトグラフィー(ヘキサン一酢酸エチル系)により精製し、標題化合物 4.0g(収率58%)を油状物として得た。

【0 1 0 6】・¹ H - NMR (CDCl₃) δ ppm; 1.08~1.2 3(6H, m), 3.19~3.28(2H, m), 3.42~3.58(2H, m), 3.78 (3H, s), 6.83~6.94(3H, m), 7.26(1H, dd, J=7.7Hz, 7.7Hz) 製造例 2

N, N-ジエチル-2-プロモ-5-メトキシベンズア ミド

[0107]

【化49】

【0108】N, N-ジエチル-3-メトキシベンズアミド 2.0gを酢酸20mlに溶解し、氷冷下、臭素0.55mlを加え、室温まで昇温し、4時間攪拌した。反応混合物を水に加え、酢酸エチルにて抽出し、有機層を飽和食塩水

にて洗浄し、無水硫酸マグネシウムにて乾燥した。溶媒 を減圧留去し、残留物をシリカゲルカラムクロマトグラ フィー(ヘキサン-酢酸エチル系)により精製し、標題 化合物2.60g(収率94%)を油状物として得た。

38

[0 1 0 9] · ¹ H – NMR (CDCl₃) δ ppm; 1.07(3H, t, J=7.1Hz), 1.25(3H, t, J=6.2Hz), 3.05 \sim 3.10(2H, m), 3.22 \sim 3.37(1H, m), 3.78(3H, s), 3.78 \sim 3.83(1H, m), 6.74 \sim 6.79(2H, m), 7.40 \sim 7.44(1H, m)

製造例3

10 2, 4-ジメトキシフェニルホウ酸

[0110]

【化50】

【0111】2,4-ジメトキシプロモベンゼン1.0g2 を無水テトラヒドロフラン5.0mlに溶解し、窒素気流下、-78℃に冷却した。この溶液にn-ブチルリチウムの1.6Mヘキサン溶液3.17mlを滴下した。-78℃にて40分間攪拌した後、トリメトキシボラン1.57mlを加え、ゆっくりと室温まで昇温させ、一晩攪拌した。氷冷下、1N塩酸を溶液が澄むまで加え、ジクロロメタンにて抽出した。有機層を飽和食塩水にて洗浄し、無水硫酸マグネシウムにて乾燥後、減圧濃縮し、標題化合物0.94gを無色結晶として得た。このものは精製することなく、次の反応に用いた。

0 【0112】製造例4

2-ジエチルカルバモイル-2', 4, 4'-トリメトキシ ピフェニル

[0113]

【化51】

40

【0114】窒素雰囲気下、パラジウムテトラキストリフェニルホスフィン 145mgをジメトキシエタン40mlに溶解し、その中へN, Nージエチルー2ープロモー5ーメトキシベンズアミド 685mgのジメトキシエタン溶液を加え、室温にて1時間攪拌した。その後、この溶液に2,4ージメトキシフェニルホウ酸 940mgのエタノール(6ml)溶液と、4.2mlの2M炭酸水素ナトリウム水溶液を加え、22時間加熱還流した。反応混合物に水を加え、酢酸エチルにて抽出した。有機層を飽和食塩水にて洗浄し、無水硫酸マグネシウムにて乾燥後、減圧滯縮した。

残留物をシリカゲルカラムクロマトグラフィー(ヘキサ ン-酢酸エチル系)により精製し、ヘキサン-酢酸エチ ルにより結晶化して、標題化合物 320mg(収率39%)を 結晶として得た。

【0115】・融点;98~98.5℃

• 1 H - N M R (CDCl₃) δ ppm; 0.82(3H, t, J=7.2Hz), 0.83(3H, t, J=6.8Hz), 2.64 \sim 2.79(1H, m), 2.86 \sim 3.00(1 H, m), $3.08 \sim 3.22(1H, m)$, $3.66 \sim 3.78(1H, m)$, 3.72(3H, m)s), 3, 80 (3H, s), 3, 83 (3H, s), 6, 46 (1H, dd, J=8, 4Hz, 2, 5H z), 6. 48(1H, d, J=2. 4Hz), 6. 90(1H, dd, J=8. 8Hz, 2. 4Hz), 6. 92(1H, d, J=2. 5Hz), 7. 20(1H, d, J=8. 8Hz), 7. 26(1H, d, J =8.4Hz)

実施例1

3, 8 - ジヒドロキシー 6 H - ジベンゾ〔b, d〕ピラ ンー6ーオン

[0116]

【化52】

【0117】窒素雰囲気下、2-ジエチルカルパモイル - 2', 4, 4'-トリメトキシピフェニル 320gを無水ジ クロロメタン10mlに懸濁させ、-78℃に冷却した。この 懸濁液に三臭化ホウ素の1Mジクロロメタン溶液 4.2ml を加え、ゆっくり室温に昇温し、一晩攪拌した。-78℃ に冷却し、メタノール2mlを加えた後、室温に昇温し、 1 N塩酸を加え、pHを1にした。生じた不溶物を濾過 し、標題化合物78mg(収率37%)を結晶として得た。

【0118】・融点;>300℃

• 1 H - N M R (DMS0-d₆) δ ppm; 6.70(1H, d, J=2.4Hz), 6. 79 (1H, dd, J=8. 6Hz, 2. 4Hz), 7. 30 (1H, dd, J=8. 8Hz, 2. 7H z), 7.49(1H, d, J=2.7Hz), 8.00(1H, d, J=8.6Hz), 8.10(1H, d, J=8.8Hz

• M S (FAB); 229(MH+)

製造例 5

N, N-ジエチル-2-メトキシベンズアミド

[0119]

【化53】

【0120】2-メトキシ安息香酸 5.0gをトルエン70 mlに懸濁させ、塩化チオニル 4.4mlとジメチルホルムア ミドを数滴滴下した。60℃で2時間機枠後、室温まで冷 50 フェニルホスフィン 286嘘をジメトキシエタン40mlに溶

却した。この溶液にテトラヒドロフラン 100mlとジエチ ルアミン12.5mlを加え、一晩室温にて攪拌した。反応混 合物を水に加え、酢酸エチルにて抽出し、有機層を水、 飽和食塩水にて順次洗浄し、無水硫酸マグネシウムにて 乾燥した。溶媒を減圧留去し、残留物をシリカゲルカラ ムクロマトグラフィー(ヘキサン-酢酸エチル系)によ

り精製し、標記化合物 4.3g (収率63%) を油状物とし

40

[0 1 2 1] \cdot H - NMR (CDCl₃) δ ppm; 1.02(3H, 10 t, J=7. 1Hz), 1.23(3H, t, J=7. 1Hz), 3.13(2H, q, J=7. 1H z), 3. $48 \sim 3.64$ (2H, m), 3. 81 (3H, s), 6. 89 (1H, d, J=8. 4H z), 6. 96 (1H, ddd, J=7.5Hz, 7. 5Hz, 0. 9Hz), 7. 23 (1H, dd, J=7. 5Hz, 2. OHz), 7. 30 (1H, ddd, J=8. 4Hz, 7. 5Hz, 2. OHz)

製造例 6

て得た。

2-ジエチルカルパモイル-3-メトキシフェニルホウ

[0122]

【化54】

20

【0123】窒素雰囲気下、テトラメチルエチレンジア ミン 4.3mlを無水テトラヒドロフラン 130mlに溶解し、 -60℃に冷却した。S-ブチルリチウムの 1.3Mシクロ ヘキサン溶液22.2mlをゆっくり滴下した後、-60℃にて 10分間攪拌した。この溶液にN, N-ジエチル-2-メ トキシベンズアミド 5.0gのテトラヒドロフラン (13m 1) 溶液を滴下した後、-65℃にて1時間攪拌した。こ の中へトリメトキシボラン 7.5mlを加え、ゆっくりと室 温まで昇温させ、一晩攪拌した。氷冷下、1 N塩酸を 1 00ml加え、反応混合物を減圧濃縮後、ジクロロメタンに て抽出した。有機層を飽和食塩水にて洗浄し、無水硫酸 マグネシウムにて乾燥後、減圧濃縮した。得られた残留 物をシリカゲルカラムクロマトグラフィー(ヘキサン-酢酸エチルとメタノール系)により精製し、標記化合物 5.2g (収率85%) を油状物として得た。

【0124】製造例7

40 2-ジエチルカルバモイル-2',3,4'-トリメトキ シピフェニル

[0125]

【化55】

【0126】窒素雰囲気下、パラジウムテトラキストリ

解し、その中へ2,4-ジメトキシブロモベンゼン896 嘘を加え、室温にて40分間攪拌した。その後、この溶液 に前反応により得られた2-ジエチルカルバモイル-3 ーメトキシフェニルホウ酸1140嘘のエタノール(6 ml) 溶液と、2.3mlの2M炭酸水素ナトリウム水溶液を加 え、9時間加熱還流した。9時間後、パラジウムテトラ キストリフェニルホスフィン100嘘を加え、さらに20時 間加熱還流した。反応混合物を水に加え、酢酸エチルに て抽出した。有機層を飽和食塩水にて洗浄し、無水硫酸 マグネシウムにて乾燥後、減圧濃縮した。残留物をシリ カゲルカラムクロマトグラフィー(ヘキサン-酢酸エチ ル系)により精製し、標記化合物500嘘(収率32%)を 油状物として得た。

[0 1 2 7] \cdot 1 H - NMR (CDCl₃) δ ppm; 0.73(3H, t, J=7.1Hz), 0.89(3H, t, J=7.1Hz), 2.66~2.82(1H, m), 2.86~2.92(1H, m), 3.13~3.24(1H, m), 3.72(3H, s), 3.76~3.88(1H, m), 3.81(3H, s), 3.84(3H, s), 6.46~6.50 (2H, m), 6.88(1H, d, J=8.2Hz), 6.93(1H, dd, J=7.7Hz, 0.9Hz), 7.24~7.34(2H, m)

実施例2

3, 7-ジヒドロキシー6H-ジベンゾ (b, d) ピラ ンー6-オン

[0128]

【化56】

【0129】窒素雰囲気下、2-ジエチルカルバモイル 30-2',3,4'-トリメトキシビフェニル 500mgを無水ジクロロメタン15mlに懸濁させ、-78℃に冷却した。この懸濁液に三臭化ホウ素の1 Mジクロロメタン溶液 6.6mlを加え、ゆっくり室温に昇温し、一晩攪拌した。-78℃に冷却し、メタノールを加えた後、室温に昇温し、1N塩酸を加え、pHを1にした。水層をジクロロメタンにて抽出し、有機層を飽和食塩水にて洗浄し、無水硫酸マグネシウムにて乾燥後、減圧濃縮した。得られた粗結晶をヘキサンにて洗浄し、標記化合物48mg(収率14%)を結晶として得た。 40

【0130】・融点;229.5~230.0℃

• ¹ H - N M R (DMSO-d₆) δ ppm; 6.77(1H, d, J=2.4Hz), 6.85(1H, dd, J=8.8Hz, 2.4Hz), 6.96(1H, d, J=8.4Hz), 7.68(1H, d, J=8.0Hz), 7.75(1H, dd, J=8.4Hz, 8.0Hz), 8.11(1 H, d, J=8.4Hz) • M S (FAB); 229(MH^+)

製造例8

2-プロモー6-メトキシフェノール

[0131]

【化57】

42

【0132】tープチルアミン34mlをトルエン1200mlに溶解し、-30℃に冷却し、30分間かけて臭素 8.8mlを滴下した。反応混合物を-60℃に冷却し、グアイアコール20gのジクロロメタン(100ml)溶液を10分間かけて滴下した。その後、ゆっくり室温まで昇温させ、5時間攪拌した。反応混合物にエーテル500mlを加え、1N塩酸、水にて順次洗浄し、無水硫酸マグネシウムにて乾燥後、減圧濃縮すると、標記化合物16.5g(収率50%)を固体として得た。

[0 1 3 3] · ¹ H - N M R (CDCl₃) δ ppm; 3.90(3H, s), 6.75(1H, dd, J=8.2Hz, 8.0Hz), 6.81(1H, dd, J=8.2Hz, 1.4Hz), 7.09(1H, dd, J=8.0Hz, 1.4Hz)

製造例9

2, 3-ジメトキシブロモベンゼンの合成

20 [0134]

【化58】

【0135】2-プロモー6-メトキシフェノール5.0 gをメタノール50mlに溶解し、硫酸ジメチル4.1mlと水酸化カリウム1.7gを加え、5時間加熱還流した。反応混合物を室温まで冷却し、水を加え、エーテルで抽出した。有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムにて乾燥後、減圧濃縮した。得られた粗生成物をシリカゲルカラムクロマトグラフィー(ヘキサンー酢酸エチル系)により精製し、標記化合物3.3g(収率62%)を油状物として得た。

[O 1 3 6] · ¹ H - N M R (CDCl₃) δ ppm; 3.85(3H, s), 3.86(3H, s), 6.85(1H, dd, J=8.4Hz, 1.2Hz), 6.92(1H, dd, J=8.4Hz, 8.0Hz), 7.12(1H, dd, J=8.0Hz, 1.2Hz)

製造例10

40 N, N-ジエチル-4-メトキシベンズアミド

[0137]

【化59】

【0138】4-メトキシ安息香酸10gをトルエン 140 50 mlに懸濁させ、塩化チオニル 8.9mlとジメチルホルムア ミドを数滴滴下した。60℃で2時間攪拌後、室温まで冷却した。この溶液にテトラヒドロフラン 200mlとジエチルアミン25mlを加え、一晩室温にて攪拌した。反応混合物を水に加え、酢酸エチルにて抽出し、有機層を水、飽和食塩水にて順次洗浄し、無水硫酸マグネシウムにて乾燥した。溶媒を減圧留去し、残留物をシリカゲルカラムクロマトグラフィー(ヘキサンー酢酸エチル系)により精製し、標記化合物14.1g(収率:定量的)を油状物として得た。

[0 1 3 9] \cdot H - N M R (CDCl₃) δ ppm; 1.00~1.6 0(6H, m), 3.20~3.65(4H, m), 3.81(3H, s), 6.88(2H, d, J=8.8Hz), 7.33(2H, d, J=8.8Hz)

製造例11

<u>2-ジエチルカルバモイル-5-メトキシフェニルホウ</u>酸

[0140]

【化60】

【0141】窒素雰囲気下、テトラメチルエチレンジアミン4.18mlを無水テトラヒドロフラン 150mlに溶解し、-60℃に冷却した。Sープチルリチウム 1.3Mシクロヘキサン溶液27.6mlを10分間かけて滴下した後、-60℃にて10分間攪拌した。この溶液にN、Nージエチルー4ーメトキシベンズアミド 6.0gのテトラヒドロフラン(15ml)溶液を15分間かけて滴下した後、-65℃にて45分間 30攪拌した。この中へトリメトキシボラン8.63mlを加え、ゆっくりと室温まて昇温させ、一晩攪拌した。氷冷下、1 N塩酸を加え、pH5にした後、反応混合物を減圧濃縮後、ジクロロメタンにて抽出した。有機層を飽和食塩水にて洗浄し、無水硫酸マグネシウムにて乾燥後、減圧濃縮し、標記化合物を油状物として得た。このものは精製することなく次の反応に用いた。

【0142】製造例12

2 - ジェチルカルバモイル - 2', 3', 5 - トリメトキシピフェニル

[0143]

【化61】

【0144】窒素雰囲気下、パラジウムテトラキストリフェニルホスフィン 532㎏をジメトキシエタン 270mlに溶解し、その中へ2、3ージメトキシブロモベンゼン3.33gを加え、室温にて30分間攪拌した。その後、この溶液に前反応により得られた2ージエチルカルバモイルー5ーメトキシフェニルホウ酸のエタノール(16ml)溶液と、15.3mlの2M炭酸水素ナトリウム水溶液を加え、21時間加熱還流した。反応混合物を水に加え、酢酸エチルにて抽出し、有機層を飽和食塩水にて洗浄し、無水硫酸マグネシウムにて乾燥後、減圧濃縮した。残留物をシリカゲルカラムクロマトグラフィー(ヘキサンー酢酸エチル系)により精製し、標記化合物2.81g(二段階収率30

[0 1 4 5] \cdot 1 H - NMR (CDCl₃) δ ppm; 0.83(3H, t, J=7.1Hz), 0.95(3H, t, J=7.0Hz), 3.20~3.80(4H, m), 3.74(3H, s), 3.84(3H, s), 3.89(3H, s), 6.86~6.94(4H, m), 7.01(1H, dd, J=8.0Hz, 7.6Hz), 7.29(1H, dd, J=8.4Hz, 0.4Hz)

製造例13

%)を油状物として得た。

20 <u>2 - ジエチルカルバモイル - 2', 3', 5 - トリヒドロキ</u> シビフェニル

[0146]

【化62】

【0147】窒素努囲気下、2-ジエチルカルバモイル-2',3',5-トリメトキシピフェニル 565 mgを無水ジクロロメタン12mlに懸濁させ、-60℃に冷却した。この懸濁液に三臭化ホウ素の1Mジクロロメタン溶液7.96mlを加え、ゆっくり室温に昇温し、一晩攪拌した。-60℃に冷却し、メタノール5mlを加えた後、室温に昇温し、1N塩酸を加え、pHを1にした。水層をジクロロメタンにて抽出し、有機層を飽和食塩水にて洗浄し、無水硫酸マグネシウムにて乾燥後、減圧濃縮すると、標記化合物493 mg(収率:定量的)を固体として得た。このものは精製することなく次の反応に用いた。

[0 1 4 8] \cdot ¹ H - N M R (CDCl₃) δ ppm; 0.90~0.9 9 (6H, m), 3.01~3.07 (2H, m), 3.20~3.50 (2H, m), 6.60 (1 H, dd, J=8.2Hz, 1.6Hz), 6.72 (1H, d, J=2.4Hz), 6.78~6.9 0 (2H, m), 6.93 (1H, dd, J=7.6Hz, 1.6Hz), 7.10 (1H, d, J=8.2 Hz)

実施例3

4, 9-ジヒドロキシー6H-ジベンゾ (b, d) ピラ ンー6-オン

[0149]

【化63】

【0150】2-ジエチルカルバモイル-2',3',5-10トリヒドロキシビフェニル 493mgを酢酸25mlに溶解し、一晩加熱還流した。生じた不溶物を濾別したところ、標記化合物 150mgを得た。また、濾液を減圧濃縮し、残留物をシリカゲルカラムクロマトグラフィー(ジクロロメタン-メタノール系)により精製し、標記化合物 115mgを結晶として得た(合計収率71%)。

【0151】・融点;110~112℃

• 1 H - N M R (DMSO-d₆) δ ppm; 7.02(1H, dd, J=8.0Hz, 1.2Hz), 7.06(1H, dd, J=8.8Hz, 2.2Hz), 7.15(1H, dd, J=8.0Hz, 8.0Hz), 7.54(1H, d, J=2.2Hz), 7.56(1H, dd, J=8.0Hz, 1.2Hz), 8.10(1H, d, J=8.8Hz)

製造例14

4-ヒドロキシー3-メトキシ安息香酸エチルエステル

[0152]

【化64】

【0153】4ーヒドロキシー3ーメトキシ安息香酸5.0gをエタノール50mlに溶解し、硫酸1gを加え、22時間加熱還流した。反応混合物を室温まで放冷し、約半量まで濃縮し、5倍量の水を加え、固体の炭酸水素ナトリウムを加え、中和した。反応混合物を酢酸エチルにて抽出し、有機層を飽和食塩水にて洗浄し、無水硫酸マグネシウムにて乾燥後、減圧濃縮した。残留物をシリカゲルカラムクロマトグラフィー(ヘキサン-酢酸エチル系)により精製し、標記化合物4.9g(収率85%)を油状物として得た。

[O 1 5 4] \cdot ¹ H - NMR (CDCl₃) δ ppm; 1.37(3H, t, J=7.0Hz), 3.94(3H, s), 4.34(2H, q, J=7.0Hz), 6.07(1 H, br-s), 6.93(1H, d, J=8.2Hz), 7.54(1H, d, J=2.0Hz), 7.64(1H, dd, J=8.2Hz, 2.0Hz)

製造例15

<u>4 - ペンジルオキシー 3 - メトキシ安息香酸エチルエス</u> テル

[0155]

【化65】

【0156】4-ヒドロキシー3-メトキシ安息香酸エチルエステル4.9gをアセトン80mlに溶解し、ベンジルブロミド3.60mlと炭酸カリウム10.8gを加え、3時間加熱還流した。反応混合物をセライト濾過し、減圧濃縮した。1 N塩酸を加え、エーテルにて抽出し、有機層を飽和食塩水にて洗浄し、無水硫酸マグネシウムにて乾燥後、減圧濃縮した。得られた粗結晶をヘキサン-石油エーテルにて洗浄し、標記化合物5.02g(収率73%)を結晶として得た。

【0157】・融点;78.0~79.5℃

· 1 H - N M R (CDCl₃) δ ppm; 1.37(3H, t, J=7.0Hz), 3.94(3H, s), 4.34(2H, q, J=7.0Hz), 5.22(2H, s), 6.89(1 H, d, J=8.4Hz), 7.28~7.43(5H, m), 7.56(1H, d, J=1.6H 20 z), 7.61(1H, dd, J=8.4Hz, 1.6Hz)

製造例16

4-ベンジルオキシ-3-メトキシ安息香酸

[0158]

【化66】

30

【0159】4-ベンジルオキシ-3-メトキシ安息香酸エチルエステル5.02gをジメチルスルホキシド90mlに溶解し、水18mlと水酸化ナトリウム 4.0gを加え、 100℃にて16時間攪拌した。反応混合物を氷冷下、1N塩酸を加えpHを1とし、酢酸エチルにて抽出し、有機層を飽和食塩水にて洗浄し、無水硫酸マグネシウムにて乾燥後、減圧濃縮すると、標記化合物(収率:定量的)が結晶として得られた。このものは精製することなく、次の反応に用いた。

40 【0160】・融点;173.0~173.5℃

• 1 H - N M R (CDCl₃) δ ppm; 3.95(3H, s), 5.24(2H, s), 6.93(1H, d, J=8.4Hz), 7.28 \sim 7.46(5H, m), 7.61(1H, d, J=2.0Hz), 7.70(1H, dd, J=8.4Hz, 2.0Hz)

製造例17

<u>ビス-〔4-(ペンジルオキシ)-3-メトキシ安息香</u>酸〕無水物

[0161]

【化67】

50

【0162】4-ベンジルオキシー3-メトキシ安息香酸700gを1,2-ジクロロエタン10㎡に懸濁させ、塩化チオニル0.23㎡を加え、60℃にて3.5時間攪拌した。この中へさらに塩化チオニル0.30㎡を加え、60℃にて1時間攪拌した。反応混合物を減圧濃縮した。一方、4-ベンジルオキシー3-メトキシ安息香酸700gをテトラヒドロフラン12㎡に溶解し、トリエチルアミン0.40㎡を加え、続いて調製した4-ベンジルオキシー5-メトキシベンゾイルクロリドを加え、室温にて1時間攪拌した。反応混合物を減過した後、濾液を減圧濃縮すると、標記化合物1456g(定量的)が固体として得られた。得られた固体は精製することなく、次の反応に用いた。

【0 1 6 3】·¹H-NMR(CDCl₃) δ ppm; 3.95(6H, s), 5.25(4H, s), 6.93(2H, d, J=8.4Hz), 7.30~7.46(10 H, m), 7.63(1H, d, J=2.0Hz), 7.69(1H, dd, J=8.4Hz, 2.0Hz) 製造例 1 8

2', 6' -ジヒドロキシ-2, 4' -ジメトキシアセト フェノン

[0164]

【化68】

【0165】5-メトキシレゾルシナール1000mgをジクロロメタン 150mlに溶解し、-5℃に冷却した。この溶液にチタニウムクロリド(IV)の1Mジクロロメタン溶液7.85mlを加えた後、-15℃にて5.5時間攪拌した。一晩-20℃に放置した後、反応混合物に氷と1N塩酸を加え、ジクロロメタンにて抽出した。有機層を水、飽和食塩水にて洗浄し、無水硫酸マグネシウムにて乾燥した。溶媒を減圧留去し、残留物をメタノールに溶解し、シリカゲルに吸着させ、シリカゲルカラムクロマトグラフィー(ヘキサン-酢酸エチル系)により精製し、標記化合物772mg(収率51%)を油状物として得た。

[0 1 6 6] \cdot ¹ H - N M R (CDCl₃) δ ppm; 3.40(3H, s), 3.75(3H, s), 4.62(2H, s), 5.92(2H, s)

実施例4

4'- (ベンジルオキシ) -5-ヒドロキシ-3, 3', 7-トリメトキシフラボン

[0167]

【化69】

【0168】2',6'ージヒドロキシー2,4'ージメ 10 トキシアセトフェノン 202mg、ピスー〔(4-ベンジル オキシ)-3-メトキシ安息香酸〕無水物1005mg、及び 4- (ベンジルオキシ) -3-メトキシ安息香酸ナトリ ウム塩 301mgの混合物を減圧下、 180~185 ℃にて 3 時 間加熱した。反応混合物を水に加え、酢酸エチルにて抽 出し、有機層を飽和食塩水にて洗浄し、無水硫酸マグネ シウムにて乾燥した。溶媒を減圧留去し、得られた残留 物をメタノールに溶解し、ジアゾメタン処理した後、溶 媒を減圧留去し、残留物をシリカゲルカラムクロマトグ ラフィー(ヘキサン-酢酸エチル系)により精製し、目 20 的物を含むフラクションを減圧留去した。得られた残留 物をエタノール 3.0mlに溶解し、水酸化カリウムの10% エタノール溶液を加え、窒素雰囲気下、30分間加熱還流 した。放冷後、1N塩酸を2ml加え、クロロホルムにて 抽出した。有機層を飽和食塩水にて洗浄し、無水硫酸マ グネシウムにて乾燥後、減圧濃縮し、残留物をシリカゲ ルカラムクロマトグラフィー(ジクロロメタンーメタノ ール系)により精製し、標記化合物38mg(収率 9.2%) を固体として得た。

[0169] · ¹H-NMR(CDCl₃) δ ppm; 3.86(3H, 30 s), 3.88(3H, s), 3.98(3H, s), 5.22(2H, s), 6.36(2H, d, J=1Hz), 6.44(2H, d, J=1Hz), 7.00(1H, d, J=4Hz), 7.30~7.48(5H, m), 7.66(1H, dd, J=4Hz, 1Hz), 7.72(1H, d, J=1Hz) 実施例 5

4',5-ジヒドロキシ-3,3',7-トリメトキシフラ ポン

[0170]

【化70】

【0171】4'-(ベンジルオキシ)-5-ヒドロキシ-3,3',7-トリメトキシフラボン38gをエタノール10gに懸濁させ、5%パラジウム担持活性炭10gの存在下、常圧にて室温で一晩水素添加した。反応混合物をセライト濾過し、エタノール洗浄し、濾液を減圧濃縮

し、残留物をシリカゲルカラムクロマトグラフィー(ジ クロロメタン-メタノール系)により精製し、標記化合物 5.5mg(収率18%)を結晶として得た。

【0172】・融点:169~171℃

• 1 H - N M R (CDCl₃) δ ppm; 3.86(3H, s), 3.88(3H, s), 4.00(3H, s), 6.04(1H, br-s), 6.36(1H, d, J=2.4Hz), 6.50(1H, d, J=2.4Hz), 7.05(1H, d, J=8.4Hz), 7.67(1H, dd, J=8.4Hz, 2.0Hz), 7.70(1H, d, J=2.0Hz)

• M S (FAB); 345(MH+)

製造例19

N, N-ジエチル-3, 4-ジメトキシベンズアミド (ベラトルム酸ジエチルアミド)

[0173]

【化71】

【0174】ベラトルム酸22.5gをジクロロメタン 200 mlに溶解し、そこに塩化チオニル90mlを室温でゆっくりと加えて4時間加熱還流した。減圧下溶媒留去した後、残渣をテトラヒドロフラン 100mlに溶解し、0℃に冷却した。そこにジエチルアミン46gのテトラヒドロフラン 200ml溶液を加え、室温に昇温して 2.5時間攪拌した。その後反応液を氷水中に流し込み有機層を抽出し、水洗した後、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した。次いで減圧下溶媒留去し、シリカゲルカラムクロマトグラフィー(ジクロロメタン/メタノール=100/1)で精製し、標記化合物22.023g(収率75%)を油状物として得た。

[0 1 7 5] \cdot ¹ H - NMR (CDCl₃) δ ppm; 6.96(1H, d, J=8.8Hz, 2.0Hz), 6.96(1H, d, J=2.0Hz), 6.86(1H, d, J=8.8Hz), 3.90(3H, s), 3.90(3H, s), 3.60~3.30(4H, br), 1.28~1.15(6H, br)

製造例20

<u>N, N-ジエチル-2-プロモ-4, 5-ジメトキシベ</u>ンズアミド

[0176]

【化72】

【0177】ベラトルム酸ジエチルアミド 997嘘を酢酸 10mlに溶解し、臭素0.25mlを加えて室温で2時間、次いで50℃で17時間攪拌した。そこにさらに臭素0.23mlを加え、50℃で7時間攪拌した後、減圧下溶媒留去した。得られた残渣を酢酸エチルで溶解し、水洗、次いでチオ硫酸ナトリウム水溶液で洗浄し、さらに水、飽和食塩水で洗浄した。無水硫酸マグネシウムで乾燥後、減圧下溶媒 50

50

留去し、シリカゲルカラムクロマトグラフィー(ジクロロメタン/メタノール= 100/1)で精製して、標記化合物 1,223g(収率92%)をろう状固体として得た。

[0 1 7 8] \cdot ¹ H - NMR (CDCl₃) δ ppm; 7.00(1H, s), 6.75(1H, s), 3.89(3H, s), 3.86(3H, s), 3.37~3.16 (4H, br), 1.27(3H, t, J=7.0Hz), 1.08(3H, t, J=7.0Hz)

製造例21

2, 3, 4-トリメトキシブロモベンゼン

[0179]

10 【化73】

【0180】1,2,3-トリメトキシベンゼン10gをクロロホルム100mlに溶解し、47%臭化水素酸水溶液を触媒量加えた。そこに臭素3mlを加え、室温で35分間攪拌した後、反応液を水中にあけ、炭酸水素ナトリウムで中和した。有機層を分離し、水洗、次いで飽和食塩水で洗浄した。無水硫酸マグネシウムで乾燥後、減圧下溶媒留去し、シリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=20/1)で精製して、標記化合物12.908g(収率88%)を油状物として得た。

[0181] · 'H-NMR(CDCl₃) δ ppm; 7.21(1H, d, J=9.2Hz), 6.59(1H, d, J=9.2Hz), 3.91(3H, s), 3.89(3H, s), 3.85(3H, s) 製造例 2.2

2, 3, 4-トリメトキシフェニルホウ酸

[0.182]

【化74】

30

【0183】窒素気流下、2,3,4-トリメトキシブロモベンゼン5.05gをテトラヒドロフラン50mlに溶解し、n-ブチルリチウム(1.66Nへキサン溶液)14mlを-78℃でゆっくり加えた。同温で15分間攪拌した後、トリメトキシボラン10mlをゆっくり加え、室温に昇温して終夜攪拌した。1 N塩酸を加え、反応を停止した後、酢酸エチルで抽出し、水洗、次いで飽和食塩水で洗浄した。無水硫酸マグネシウムで乾燥後、減圧下溶媒留去して、標記化合物3.15gを油状物として得た。これは精製せずに次の反応に用いた。

【0184】製造例23

N, N-ジエチル-2', 3', 4', 4, 5-ペンタメトキシ-2-ピフェニルカルボキシアミド

[0185]

【化75】

【0186】N, N-ジエチル-2-ブロモ-4, 5-ジメトキシベンズアミド2.94gを1,2-ジメトキシエ タン30mlに溶解し、テトラキストリフェニルホスフィン パラジウム 538gを加え、室温で10分間攪拌した。そこ に2、3、4-トリメトキシフェニルホウ酸3.15g、次 いで炭酸ナトリウムの2規定水溶液10mlを加え加熱還流 した。 還流開始後 2.5時間及び 4.5時間後に 2, 3, 4 - トリメトキシフェニルホウ酸をそれぞれ 1.5g、 280 gずつ加え、27時間後に還流を停止した。反応液をフロ リジルパッドで濾過し、溶媒留去した後、残渣を酢酸エ チルで溶解し、水洗、次いで飽和食塩水で洗浄した。無 水硫酸マグネシウムで乾燥後、減圧下溶媒留去し、シリ カゲルカラムクロマトグラフィー(ヘキサン/酢酸エチ ル=1/2)で精製して、標記化合物 1.601gをろう状 20 固体として得た。

[0 1 8 7] • 1 H – NMR (CDCl₃) δ ppm; 7.01(1H, d, J=8, 8Hz), 6, 89(1H, s), 6, 87(1H, s), 6, 64(1H, d, J=8). 8Hz), 3, 92(3H, s), 3, 90(3H, s), 3, 88(3H, s), 3, 86(3H, s), 3.81(3H, s), $3.38\sim2.71(4H, br)$, $0.98\sim0.84$ (6H, m)

実施例6

3, 4, 8, 9-テトラヒドロキシー6H-ジベンゾ 〔b, d〕ピラン-6-オン

[0188]

【化76】

【0189】N, Nージエチルー2', 3',4',4,5 -ペンタメトキシー2ービフェニルカルボキシアミド 1.6gをジクロロメタン15mlに溶解し、-78℃に冷却し た。そこに三臭化ホウ素(1.0Mジクロロメタン溶液)30 mlを加え、室温に昇温して3時間攪拌した。再び-78℃ に冷却し、メタノール10ml、次いで水10mlを加えた後、 減圧下溶媒留去した。得られた残渣を酢酸20mlに溶解 し、終夜加熱還流した。次いで減圧下溶媒留去し、シリ カゲルカラムクロマトグラフィーで精製して、標記化合 物 730gを針状結晶として得た。

【0190】・融点;>290℃

• ${}^{1}H - NMR (DMSO-d_{6}) \delta DDm : 10.58 \sim 8.82 (4H. br).$

7. 48(1H, s), 7. 39(1H, s), 7. 29(1H, d, J=8.8Hz), 6. 77(1H. d. J=8. 8Hz)

52

• 13 C - NMR (DMS0-d₆) δ ppm; 160.650, 153.815, 147. 132, 146. 585, 140. 934, 133. 136, 130. 086, 114. 62 6, 112.692, 112.662, 111.220, 111.053, 107.526

·MS; 261 (MH+)

実施例7

7,8-ジメトキシクマリン及び7(8)-メトキシー 8(7)ヒドロキシクマリン

10 [0191]

【化77]

[0192]【化78】

[0193] 【化79】

30

【0194】水素化ナトリウム (60%鉱油分散)176mg のジメチルホルムアミド 3.5ml溶液に、7,8-ジヒド ロキシクマリン(Aust. J. Chem., vol. 27, pp. 2697に従 い合成) 356mg を加え、室温で5分間攪拌した。ここ に、ヨウ化メチル 156mlを加え、1時間氷冷下で攪拌し た。水にて希釈、酢酸 300μ1を加えて中和し、酢酸エ チルにて抽出し、有機層を2回水洗、飽和食塩水にて1 回洗った後、硫酸マグネシウムにて乾燥、溶媒を減圧留 40 去した。シリカゲルカラムクロマトグラフィー(ヘキサ ン:酢酸エチル=2:1にて溶出)にて生成物を分離 し、7、8-ジメトキシクマリン及び7(8)-ヒドロ キシ-8 (7) メトキシクマリン(可能な位置異性体の 一方 (a)) を含む低極性分画(205mg) 及び7(8)-ヒドロキシ-8(7)メトキシクマリン(可能な位置異 性体のもう一方(b))からなる髙極性分画(79mg)を それぞれ得た。低極性分画はシリカゲルカラムクロマト グラフィー(ジクロロメタン:酢酸エチル=9:1にて 溶出)にてさらに分離し、7,8-ジメトキシクマリン (72mg) 及び7(8)-ヒドロキシ-8(7)-メトキ

シクマリン(位置異性体(a))(58mg)をそれぞれ得た。

【0195】<u>7,8-ジメトキシクマリン</u>

[0196]

【化80】

【0197】·性状;結晶

・融点;118.7~119.6℃

• 1 H - N M R (CDCl₃) δ ppm; 3.95(3H, s), 4.00(3H, s), 6.26(1H, d, J=9.6Hz), 6.87(1H, d, J=8.8Hz), 7.17(1 H, d, J=8.8Hz), 7.62(1H, d, J=9.6Hz)

<u>7 (8) -ヒドロキシ-8 (7) メトキシクマリン(b)</u>

[0198]

【化81】

【0199】・性状;結晶

・融点;160.4~160.9℃

• 1 H - NMR (CDCl₃) δ ppm; 4.00(3H, s), 5.83(1H, b r-s), 6.27(1H, d, J=9.4Hz), 6.87(1H, d, J=8.4Hz), 7.02 (1H, d, J=8.4Hz), 7.64(1H, d, J=9.4Hz)

 $\frac{7}{(8)} - \frac{1}{(2)} = \frac{8}{(7)} + \frac{1}{(2)} = \frac{30}{(2)}$

[0200]

【化82】

【0201】·性状;結晶

・融点;158.3~159.1℃

 \cdot 1 H - NMR (CDCl₃) δ ppm; 4. 1 3 (3 H, s), 6. 2 4 (1 H, d, J = 9. 6 H z), 6. 2 4 (1 H, s), 6. 9 0 (1 H, d, J =

8. 6 H z), 7. 1 1 (1 H, d, J = 8. 6 H z), 7. 6 3 (1 H, d, J = 9. 6 H z)

実施例8

<u>4-フェニル-7,8-ジヒドロキシクマリン</u>

[0202]

【化83】

HO 0 0

10 【0203】ピロガロール2.52g、ベンゾイル酢酸 エチル3.46mlをトリフルオロ酢酸5mlに溶解し、2時間 加熱環流した。室温に冷却後、水50mlを加え、生じた沈 殿を濾取し、水、次いでヘキサンで洗った。減圧乾燥した後、ジクロロメタン 100mlに分散し、沈殿を濾取して、標記化合物2.04gを結晶として得た。

【0204】・融点;116.4~118.8℃

• 1 H - N M R (CDCl₃) δ ppm; 6.22(1H, s), 6.86(1H, d, J=8.8Hz), 7.00(1H, d, J=8.8Hz), 7.43 \sim 7.47(2H, m), 7.50 \sim 7.54(3H, m)

20 実施例 9

<u>4-(3, 4-ジメトキシフェニル) -7, 8-ジヒド</u> <u>ロキシクマリン</u>

[0205]

【化84】

【0206】3,4-ジメトキシベンゾイル酢酸エチル4.33gとピロガロール2.16gをトリフルオロ酢酸45mlに加え、8時間加熱還流した。氷水150ml中にあけ、生じた沈殿を濾取し、水、ジイソプロピルエーテル、水にて順次洗った。室温にて減圧乾燥し、粗成績体1.7gを得40た。メタノールより再結晶して、純粋な標記化合物350mgを結晶として得た。

【0207】・融点;274.1~274.4℃(分解)

• 1 H - N M R (DMSO-d₆) δ ppm; 3.79(3H, s), 3.81(3 H, s), 6.12(1H, s), 6.77(1H, d, J=8.8Hz), 6.90(1H, d, J=8.8Hz), 7.04(1H, dd, J=1.8Hz, 8.4Hz), 7.07(1H, d, J=1.8 Hz), 7.09(1H, d, J=8.4Hz), 9.36(1H, br-s), 10.14(1H, br-s)

実施例10

4-(3, 4-ジヒドロキシフェニル) -7, 8-ジヒ

50 ドロキシクマリン

55

[0208] [化85]

【0209】4-(3,4-ジメトキシフェニル)-7,8-ジヒドロキシクマリン157mg(0.5mmol)をジクロロメタン3mlに懸濁し、窒素気流下、三臭化ホウ素ジクロロメタン溶液(1.0M)1.5mlを滴下した。室温にて1.25時間攪拌後、三臭化ホウ素ジクロロメタン溶液(1.0M)1.0mlをさらに滴下した。室温にて15分間攪拌後、水を加えて析出した固体を濾取し、水洗して、標記化合物137mgを結晶として得た。

【0210】·融点;288℃(分解)

• 'H - NMR (DMS0-d₆) δ ppm; 5.98(1H, s), 6.75~ 6.80(2H, m), 6.84~6.86(2H, m), 6.91(1H, d, J=8.8Hz), 8.30(1H, dd, J=10.8Hz), 9.25(1H, s), 9.33(1H, s), 9.39 (1H, s), 10.09(1H, s)

実施例11

 $\frac{3-(3, 4-ジメトキシフェニル)-7, 8-ジメト$ キシクマリン

[0211]

【化86】

【0212】3,4-ジメトキシ-2-ヒドロキシベンズアルデヒド394mgのジクロロメタン11ml溶液に炭酸カリウム20%水溶液30mlと硫酸水素テトラブチルアンモニ40ウム220mg、次いで3,4-ジメトキシフェニルアセチルクロライド511mgのジクロロメタン11ml溶液を加え、室温で3時間激しく攪拌した。有機層を分取し、水槽はジクロロメタンにてさらに1回抽出した。有機層を合わせて水洗、飽和食塩水洗いし、硫酸マグネシウムにて乾燥し、溶媒を減圧留去した。シリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=2:1→1:1→酢酸エチルにて溶出)にて精製し、標記化合物220mgを固体として得た。

[0 2 1 3] • ${}^{1}H - NMR$ (CDCl₃) δ DDm : 3.93(3H.

56

s), 3.95(3H, s), 3.97(3H, s), 4.04(3H, s), 6.90(1H, d, J=8.8Hz), 6.93(1H, d, J=8.4Hz), 7.23(1H, d, J=8.8Hz), 7.26(1H, dd, J=8.4Hz, 2.0Hz), 7.29(1H, d, J=2.0Hz), 7.71(1H, s)

実施例12

3-(3, 4-ジヒドロキシフェニル) -7, 8-ジヒ ドロキシクマリン

[0214]

【化87】

HO OH OH

【0215】3-(3,4-ジメトキシフェニル)-7,8-ジメトキシクマリン220mgのジクロロメタン4.4ml溶液に、三臭化ホウ素ジクロロメタン溶液(1.0 M)3.86mlを滴下し、室温にて1時間攪拌した。水と酢酸エチルを加え、不溶物を濾去、有機層を水洗、飽和食塩水洗いし、硫酸マグネシウムにて乾燥、溶媒を減圧留去した。残渣にジクロロメタンを加えて析出した結晶を濾取し、標記化合物140mgを結晶として得た。

【0216】・融点;297℃(分解)

• ¹ H - N M R (DMSO-d₆) δ ppm; 7.05(1H, d, J=8.4Hz), 7.16(1H, d, J=2.4Hz), 7.93(1H, s), 6.75(1H, d, J=8.4Hz), 6.79(1H, d, J=8.4Hz), 6.97(1H, dd, J=2.4Hz, 8.4Hz), 9.00(1H, br-s), 9.10(1H, br-s), 9.33(1H, br-s), 10.02 30 (1H, br-s)

実施例13

<u>4-(4-メトキシフェニル)-7-ヒドロキシクマリン</u>

[0217]

【化88】

【0218】レゾルシノール2.22g及び(4-メトキシフェニル)アセト酢酸エチル1.21gをトリフルオロ酢酸11mlに溶解し、2時間加熱還流した。反応液を冷却後、 50 水及びジイソプロピルエーテルを加え、析出した固体を

減取し、ジエチルエーテルにて洗浄して、標記化合物1. 00gを結晶として得た。

【0219】・融点;268.2~268.7℃

• 1 H - N M R (DMS0-d₆) δ ppm; 3.82(3H, s), 6.08(1 H, s), 6.76(2H, d, J=9.2Hz), 6.77(1H, s), 7.09(2H, dd, J=6.5Hz, 2.2Hz), 7.33(1H, d, J=9.2Hz), 7.46(2H, dd, J=2.2Hz, 6.5Hz), 10.60(1H, br-s)

実施例14

<u>4-(4-ヒドロキシフェニル)-7-ヒドロキシクマ</u>リン

[0220]

[化89]

【0221】4-(4-メトキシフェニル)-7-ヒドロキシクマリン 536mgを窒素雰囲気下ジクロロメタン10.7mlに懸濁し、三臭化ホウ素ジクロロメタン溶液(1.0 M)7.2mlを室温にて滴下した。30分間室温にて攪拌後、三臭化ホウ素ジクロロメタン溶液(1.0 M)2.0mlを滴下し、1時間室温にて攪拌した。水を加えて反応を停止し、生じた結晶を濾取、水とジエチルエーテルで順次洗浄し、乾燥して、標記化合物363mg を結晶として得た。

【0222】・融点;248.6~249.1℃

• 1 H - N M R (DMSO-d₆) δ ppm; 6.05(1H, s), 6.74 \sim 6.78(2H, m), 6.90(2H, dd, J=6.8Hz, 2.0Hz), 7.34(2H, dd, J=6.8Hz, 2.0Hz); 7.37(1H, d, J=9.2Hz), 9.93(1H, s), 10.5 9(1H, br-s)

実施例15

3-(4-ヒドロキシフェニル)-7-ヒドロキシクマリン

[0223]

【化90】

【0224】3-(4-メトキシフェニル)-7-メトキシクマリン1.00g(3.55mmol)をジクロロメタン10mlに 懸濁し、三臭化ホウ素ジクロロメタン溶液(1.0M) 14.2 mlを滴下して、室温にて1時間攪拌した。さらにジクロロメタン10mlと三臭化ホウ素ジクロロメタン溶液(1.0 50 58

M)4.0mlを加え、1時間室温にて攪拌した。水を滴下して反応を終結させ、析出した固体を濾取し、乾燥、さらにメタノールより再結晶して、標記化合物 538mgを結晶として得た。

【0225】・融点:>300℃

• 1 H - N M R (DMSO-d₆) δ ppm; 6.71(1H, d, J=2.4Hz), 6.78~6.80(3H, m), 7.51(2H, m), 7.54(1H, d, J=8.4Hz), 8.00(1H, s), 9.64(1H, br-s), 10.50(1H, br-s)

実施例16

10 3-(4-メトキシフェニル)-8-メトキシクマリン

[0226]

【化91】

【0227】2-ヒドロキシ-3-メトキシベンズアルデヒド 1.754gのジクロロメタン20ml溶液に20%炭酸カリウム水溶液150mlと硫酸水素テトラブチルアンモニウム1.0gを加え、4-メトキシフェニルアセチルクロライド 2.694gのジクロロメタン20ml溶液を滴下して、室温にて一夜攪拌した。ジクロロメタンにて2回抽出し、有機層を水洗、飽和食塩水洗い、硫酸マグネシウム乾燥し、溶媒を減圧留去した。メタノールにて再結晶し、標記化合物 1.235gを結晶として得た。

【0228】・融点;145.2~146.1℃

30 • 1 H - N M R (CDCl₃) δ ppm; 3.86(3H, s), 3.99(3H, s), 6.97(2H, m), 7.06(1H, dd, J=1.2Hz, 8.0Hz), 7.10(1H, dd, J=1.2Hz, 8.0Hz), 7.21(1H, t, J=8.0Hz), 7.60(2H, m), 7.74(1H, s)

実施例17

3-(2-ピリジル)-7-メトキシクマリン

[0229]

【化92】

【0230】2-ヒドロキシ-4-メトキシベンズアルデヒド1.00g、(2-ピリジル)-酢酸エチル0.66g、ピペリジン 0.1mlをイソプロパノール20mlに溶解し、100℃にて19時間加熱した。室温まで冷却し、析出した結晶を濾取、イソプロパノールにて洗浄し、標記化合物980mgを結晶として得た。

【0231】・融点;149.3~149.7℃

• 1 H - NMR (CDCl₃) δ DDm : 3.90(3H.s). 6.87(1H.

59

d, J=2.4Hz), 6.89(1H, dd, J=2.4Hz, 8.4Hz), 7.27(1H, ddd, J=1.0Hz, 4.2Hz, 8.8Hz), 7.55(1H, d, J=8.4Hz), 7.77(1H, dt, J=2.0Hz, 4.2Hz), 8.40(1H, td, J=1.0Hz, 8.4Hz), 8.67(1H, qd, J=1.0Hz, 4.2Hz), 8.73(1H, s)

実施例18

3-(2-ピリジル)-7-ヒドロキシクマリン

[0232]

【化93】

【0233】3-(2-ピリジル)-7-メトキシクマリン 510 mgとピリジン塩酸塩 2.0gを混合し、 210℃にて30分間加熱した。反応混合物を室温まで冷却後、水を加え、析出した固体を濾取、水洗、乾燥して、標記化合物 479 mgを結晶として得た。

【0234】・融点;>300℃

・1 H — N M R (DMSO-d₆) δ ppm; 6.81(1H, d, J=2.0Hz), 6.88(1H, dd, J=2.0Hz, 8.4Hz), 7.55(1H, dd, J=5.6Hz, 6.8Hz), 7.74(1H, d, J=8.4Hz), 8.08(1H, dd, J=6.8Hz, 8.4Hz), 8.30(1H, d, J=8.4Hz), 8.73(1H, d, J=5.6Hz), 8.82(1H, s) 実施例 1 9

3-(4-ヒドロキシフェニル)-8-ヒドロキシクマ リン

[0235]

【化94】

【0236】3-(4-メトキシフェニル)-8-メトキシクマリン 1.128gをジクロロメタン22mlに懸濁し、窒素気流下、三臭化ホウ素ジクロロメタン溶液(1.0M)を滴下した。室温にて5時間攪拌した後、水を滴下して反応を停止させ、析出した固体を濾取、水洗して、標記 40化合物 804mgを結晶として得た。

【0237】・融点;257.7℃(分解)

• ¹ H - N M R (DMSO-d₆) δ ppm; 6.82(2H, d, J=8.6Hz), 7.04(1H, dd, J=3.2Hz, 6.4Hz), 7.10 \sim 7.15(2H, m), 7.57 (1H, d, J=8.6Hz), 8.06(1H, s), 9.70(1H, br-s), 10.16(1 H, br-s)

製造例 2 4

<u>2 - (3, 4 - ジメトキシフェニル) - 4, 4 - ジメチルオキサゾリン</u>

[0238]

【化95】

60

【0239】3,4-ジメトキシ安息香酸9.11gのジクロロメタン90ml溶液にチオニルクロリド4.35ml(60mmol)を加え、50℃にて1時間加熱した。減圧留去した後、残渣をジクロロメタン20mlに溶解し、氷冷下、2,2-ジメチルアミノエタノール11.4mlのジクロロメタン20ml溶液を滴下し、氷冷下1時間攪拌した。不溶物を減去し、減液を減圧乾固した。残渣をジクロロメタン40mlに溶解し、チオニルクロリド8.7mlを氷冷下滴下し、5分間攪拌後、減圧留去した。残渣を水に溶解し、炭酸水素ナトカウムにてpH=8に調整した。酢酸エチルにて2回抽出し、有機層を飽和食塩水にて洗浄、硫酸マグネシウムにて乾燥し、粗成績体11.7gを得た。残渣をジクロロメタンーへキサンより再結晶し、標記化合物 9.5gを結晶として得た。

【0240】・融点;63.0~63.5℃

• 1 H - N M R (CDCl₃) δ ppm; 1.38(6H, s), 3.92(3H, s), 3.94(3H, s), 4.09(2H, s), 6.87(1H, d, J=8.4Hz), 7.46(1H, d, J=2.0Hz), 7.53(1H, dd, J=2.0Hz, 8.4Hz)

製造例25

30 <u>2-(3,4-ジメトキシ-2-ヨードフェニル)-</u> 4,4-ジメチルオキサゾリン

[0241]

【化96】

【0242】2-(3,4-ジメトキシフェニル)-4,4-ジメチルオキサゾリン3.00gをテトラヒドロフラン 100mlに溶解し、窒素気流下、寒剤にて冷却しながら、ノルマルプチルリチウムヘキサン溶液(1.6M)8.8mlを内温-15℃から-11℃にて滴下した。 1.5時間攪拌し、ヨウ素3.78gのテトラヒドロフラン60ml溶液を滴下し、室温に昇温させて 1.5時間攪拌した。冷却下、水50ml、次いでチオ硫酸ナトリウム水溶液(5.4g/30ml)を

加え、酢酸エチルにて抽出した。有機層を水洗、飽和食塩水洗い、硫酸マグネシウム乾燥し、溶媒を減圧留去した。シリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=3:1→3:2にて溶出)にて精製し、標記化合物 2.585gを油状物として得た。

[0 2 4 3] \cdot 1 H - N M R (CDCl₃) δ ppm; 1.41(6H, s), 3.82(3H, s), 3.88(3H, s), 4.12(2H, s), 6.88(1H, d, J=8.5Hz), 7.31(1H, d, J=8.5Hz)

製造例26

【化97】

2, 2'-ビス(2-(4, 4-ジメチルオキサゾリニ 10 ル))-3, 3',4,4'-テトラメトキシビフェニル 【0244】

【0245】2-(3,4-ジメトキシ-2-ヨードフェニル)-4,4-ジメチルオキサゾリン1.04gをジメチルホルムアミド 1.5mlに溶解し、銅粉1.01gを加えて110℃にて2.5時間、140℃にて1.5時間攪拌した。ジクロロメタン20mlを加えて不溶物を濾去し、残渣は180mlのジクロロメタンで洗った。洗液と濾液をあわせてアンモニア水(100ml×3)で洗い、水洗、硫酸マグネシウムで乾燥し、溶媒を減圧留去した。シリカゲルカラムク30ロマトグラフィー(ジクロロメタン:メタノール=100:1→50:1→10:1にて溶出)にて精製し、標記化合物364mgを結晶として得た。

【0246】・融点;90.6~92.4℃

• H - N M R (CDCl_s) δ ppm; 1.14(6H, s), 1.26(6H, s), 3.57(2H, d, J=8.2Hz), 3.65(6H, s), 3.74(1H, d, J=8.2Hz), 3.93(6H, s), 6.92(2H, d, J=8.8Hz), 7.62(2H, d, J=8.8Hz)

実施例20

5, 10-ジヒドロキシ-1, 6-ジオキサ-2, 7- 40 ジオキソ-1, 2, 6, 7-テトラヒドロピロン

[0247]

【化98】

【0248】2,2 1ービス(2-(4,4-ジメチルオキサゾリニル))-3,3',4,4'-テトラメトキシビフェニル120gとピリジン塩酸塩490gを混合し、200℃にて20分間加熱した。室温まで冷却後、水5mlを加え、析出した固体を遠心分離(2500rps,5min)にて分離した。エチルエーテル、水にて洗った後、乾燥し、標記化合物50gを結晶として得た。

【0249】・融点;>300℃

• 1 H - N M R (DMSO-d₆) δ ppm; 7. 31(2H, d, J=8. 6Hz), 7. 96(2H, d, J=8. 6Hz), 11. 4~12. 0(2H, br-s)

· ¹³ C - N M R (DMSO-d₆) δ ppm; 110.3, 119.6, 127. 20 0, 137.0, 150.9, 159.3

実施例21

エラグ酸テトラアセテート

[0250]

【化99】

【0251】エラグ酸2水和物 5.0gをピリジン 125ml に懸濁させ、無水酢酸50mlを加え3時間加熱還流した。 析出している生成物を熱時濾過し、ジエチルエーテルで洗浄し、乾燥すると、標記化合物4.47gが淡黄色結晶として得られた。さらに、冷却した母液より析出した結晶を濾過し、0.58gの標記化合物を得た。

【0252】・融点;>300℃

• 1 H - N M R (CDCl₃) δ ppm; 2.39(6H, s), 2.47(6H, s), 8.07(2H, s)

• MS; 471(M+H)+

実施例22

エラグ酸4,4'-ジアセテート

[0253]

【化100】

【0254】エラグ酸テトラアセテート 2.0gをピリジン10mlに懸濁させ加熱した。還流を始めると同時に水5mlを加え、その後4分間加熱還流した。この間一旦溶解後析出した結晶を冷後濾過し、水、メタノール、アセトンで洗浄し、乾燥した。ジメチルホルムアミドより再結晶すると、標記化合物 800mgが無色の結晶として得られた。

【0255】・融点;>300℃

• 1 H - N M R (DMSO-d₆) δ ppm; 2.89(6H, s), 7.95(2 H, s)

• MS; 387(M+H)+

製造例27

<u>4, 4', 6, 6' - テトラニトロ - 2, 2' - ピフェニ</u> 20 ルジカルボン酸

[0256]

【化101】

【0257】 濃硫酸 165mlに氷冷下発煙硝酸 220mlを加えると、内温が35℃まで上昇した。これに2,2'-ビ 30フェニルジカルボン酸 22.22gを少しずつ加え、内温が85℃になるまで加熱した。同温度にて7時間攪拌後、反応液を冷却し、氷水2リットル中に加え、酢酸エチル500mlで2回抽出した。抽出液を飽和食塩水500mlで2回洗浄し、硫酸マグネシウムで乾燥後溶媒を留去すると、標記化合物33.43gが黄色不定形固体として得られた。

[0 2 5 8] \cdot ¹ H - N M R (DMSO-d₆) δ ppm; 9.11(2 H, d, J=2.5Hz), 8.94(2H, d, J=2.5Hz)

実施例23

 4, 4'-ジニトロー6, 6'-ジヒドロキシジフェニル酸 2, 6, 2', 6'-ジラクトン

[0259]

【化102】

64

【0260】4,4',6,6'-テトラニトロ-2,2'-ビフェニルジカルボン酸29.8gをジメチルホルムアミド50mlに溶解させ、130℃にて9時間攪拌した。冷後、反応液より溶媒を留去し、メタノール 100mlを加え、析出した結晶を濾過した。エタノール、続いてn-ヘキサンで洗浄し、乾燥すると、標記化合物 14.74gが 褐色の粉末として得られた。

【0261】・融点;>300℃

• 1 H - N M R (DMSO-d₆) δ ppm; 8.84(2H, d, J=2.0Hz), 8.76(2H, d, J=2.0Hz)

· MS (EI) ; 328(M+)

実施例24

3, 3' - ジ - O - メチルエラグ酸(R=R'=H)及び3, 3', 4 - トリーO - メチルエラグ酸(R=H, R'=Me)

[0262]

【化103】

【0263】エラグ酸、2.0gをジメチルホルムアミド30mlに懸濁し、炭酸カリウム2.0gを加え、室温にて30分間攪拌した。これにヨウ化メチル3.5gを加え、60℃にて5時間攪拌した。冷後、反応溶液に1N塩酸を加えて酸性とし、酢酸エチル300mlと氷水300mlの混液中に加え、有機層を分取した。硫酸マグネシウムにて乾燥後、溶媒を留去し、得られた残渣をカラムクロマトグラフィー(クロロホルム:メタノール=98:2)にて精製すると、ジメチル体が黄色粉末として35mg、トリメチル体が黄色粉末として58mg得られた。

・【0264】3,3'-ジ-O-メチルエラグ酸

• 1 H - N M R (DMS0-d₆) δ ppm; 7.51(2H, s), 4.02(6 H, s)

・融点;>320℃

• MS; 331(M+H)+

3, 3',4-トリー〇-メチルエラグ酸

• 1 H - N M R (DMS0-d₆) δ ppm; 7.55(1H, s), 7.50(1 H, s), 4.02(3H, s), 4.01(3H, s), 4.00(3H, s)

・融点:>320℃

 \cdot MS; 345 (M+H) +

実施例25

 4,4'-ジアミノー6,6'-ジヒドロキシジフェニル酸 2,6,2',6'-ジラクトン

[0265]

【化104】

50

$$\begin{array}{c|c} 0 & & \\ & & \\ & & \\ 0 & & \\ \end{array}$$

【0266】パラジウム-炭素(10%)330mgをテトラヒ ドロフラン10ml、水5ml、酢酸5mlの混液に懸濁させ、 これに 4, 4'ージニトロー 6, 6'ージヒドロキシジ 10 6.91(2H, d, J=2.0Hz), 6.02(4H, s) フェニル酸 2, 6, 2', 6' -ジラクトン1.42gのテ

66

トラヒドロフラン 100ml 懸濁液を加え、水素気流下、常 温常圧にて接触還元を一夜行った。溶媒の3分の2を注 意して留去し、これにジメチルホルムアミド 200mlを加 え、加熱して析出した生成物を溶解した。熱時濾過して パラジウムー炭素を濾去し、母液を濃縮した。得られた 残渣にメタノール20mlを加え、不溶の固体を濾取する と、標記化合物 400mgが赤褐色の粉末として得られた。

【0267】・融点:>300℃

• 1 H - N M R (DMS0-d₆) δ ppm; 7.18(2H, d, J=2.0Hz),

• MS (EI) : 268 (M+)

フロントページの続き

(51) Int. Cl. 6

識別記号 庁内整理番号

FΙ

C 0 7 D 311/80

技術表示箇所

C 0 7 D 311/80 493/06

(72)発明者 ツァイ・スァオチィン

中華人民共和国100083ペイジンシエン、ハ イディアンク,シュエイャンルー,38ハ オ、ベイジン・メディカル・ユニバーシテ ィー内

(72)発明者 ヴァオ・イユイン

中華人民共和国100083ペイジンシエン、ハ イディアンク,シュエイャンルー,38ハ オ、ベイジン・メディカル・ユニパーシテ ィー内

(72)発明者 リャン・ホン

中華人民共和国100083ペイジンシエン、ハ イディアンク、シュエイャンルー、38ハ オ、ペイジン・メディカル・ユニバーシテ ィー内

493/06

(72)発明者 イャン・シュウウェイ

中華人民共和国100083ペイジンシエン、ハ イディアンク、シュエイャンルー、38ハ オ、ベイジン・メディカル・ユニバーシテ ィー内

(72)発明者 甲斐 康信

茨城県新治郡新治村大字田土部2084-2

(72)発明者 加来 由美子

茨城県つくば市春日4-10-20 セジュー

ル春日302

(72)発明者 塚田 格

茨城県つくば市稲荷前9-7 つくばね第

(72) 発明者 柳澤 学

茨城県つくば市天久保2-23-5 メゾン

学園302

(72)発明者 谷口 博之

茨城県つくば市吾妻4-14-5-502