Introduction

This page shows how to perform a number of statistical tests using SAS. Each section gives a brief description of the aim of the statistical test, when it is used, an example showing the SAS commands and SAS output (often excerpted to save space) with a brief interpretation of the output. You can see the page Choosing the Correct Statistical Test (https://stats.idre.ucla.edu/other/mult-pkg/whatstat/) for a table that shows an overview of when each test is appropriate to use. In deciding which test is appropriate to use, it is important to consider the type of variables that you have (i.e., whether your variables are categorical, ordinal or interval and whether they are normally distributed), see What is the difference between categorical, ordinal and interval variables? (https://stats.idre.ucla.edu/other/mult-pkg/whatstat/what-is-the-difference-between-categorical-ordinal-and-interval-variables/) for more information on this.

Please note that the information on this page is intended only as a very brief introduction to each analysis. This page may be a useful guide to suggest which statistical techniques you should further investigate as part of the analysis of your data. This page does not include necessary and important information on many topics, such as the assumptions of the statistical techniques, under what conditions the results may be questionable, etc. Such information may be obtained from a statistics text or journal article. Also, the interpretation of the results given on this page is very minimal and should not be used as a guide for writing about the results. Rather, the intent is to orient you to a few key points. For many analyses, the output has been abbreviated to save space, and potentially important information is not presented here.

About the hsb data file

here (https://stats.idre.ucla.edu/wp-content/uploads/2016/02/hsb2.sas7bdat). You can store this file anywhere on your computer, but in the examples we show, we will assume the file is stored in a folder named c:/mydata/sas/notes/hsb2.sas7bdat. If you store the file in a different location, change c:/mydata to the location where you stored the file on your computer.

One sample t-test

```
proc ttest data = "c:/mydata/hsb2" h0 = 50;
 var write;
run;
The TTEST Procedure
                                         Statistics
                                Upper CL Lower CL
                                                          Upper CL
               Lower CL
Variable
                                    Mean Std Dev Std Dev Std Dev Std Err
             Ν
                   Mean
                           Mean
write
                                  54.097 8.6318 9.4786 10.511 0.6702
           200
                 51.453
                        52.775
                T-Tests
Variable
                    t Value
                               Pr > |t|
              DF
write
                       4.14
                                 <.0001
             199
```

The mean of the variable **write** for this particular sample of students is 52.775, which is statistically significantly different from the test value of 50. We would conclude that this group of students has a significantly higher mean on the writing test than 50.

One sample median test

provides the location counts of the data shown at the bottom of the output.

proc univariate data = "c:/mydata/hsb2" loccount mu0 = 50;
 var write;
run;

Mean	52.77	7500	Std De	viation	9.47859
Median	54.00	0000	Varian	се	89.84359
Mode	59.00	0000	Range		36.00000
			Interq	uartile Range	e 14.50000
	Tes	sts	for Locatio	n: Mu0=50	
Test		-S	tatistic-	p Valı	ıe
Student'	s t	t	4.140325	Pr > t	<.0001
Sign		M	27	Pr >= M	0.0002
Signed R	ank	S	3326.5	Pr >= S	<.0001
Location	Count	cs:	Mu0=50.00		
Count			Value		
Num Obs	> Mu0		12		
Num Obs	^= Mu()	198		
Num Obs	< Mu0		72		

You can use either the sign test or the signed rank test. The difference between these two tests is that the signed rank requires that the variable be from a symmetric distribution. The results indicate that the median of the variable write for this group is statistically significantly different from 50.

Binomial test

```
proc freq data = "c:/mydata/hsb2";
  tables female / binomial(p=.5);
  exact binomial;
run;
```

0	91	45.50	91	45.50
1	109	54.50	200	100.00
L				
Binomial Proj	portion ic	or female = 0		
Proportion (P)	0.4550		
ASE		0.0352		
95% Lower Co	nf Limit	0.3860		
95% Upper Co	nf Limit	0.5240		
Exact Conf L	imits			
95% Lower Co	nf Limit	0.3846		
95% Upper Co	nf Limit	0.5267		
most of II	0: Proport	ion - 0 5		
lest of h	o: Proport	.1011 - 0.3		
ASE under HO		0.0354		
Z		-1.2728		
One-sided Pr	< Z	0.1015		
Two-sided Pr	> Z	0.2031		
Exact Test				
One-sided Pr	<= P	0.1146		

this sample does not significantly differ from the hypothesized value of 50%.

See also

• Recent Advances in Categorical Data Analysis (https://stats.idre.ucla.edu/wp-content/uploads/2016/02 /categorical.pdf)

Chi-square goodness of fit

```
testp= option on the tables statement.
proc freq data = "c:/mydata/hsb2";
 tables race / chisq testp=(10 10 10 70);
run;
The FREQ Procedure
                         Test Cumulative Cumulative
   Frequency Percent Percent Frequency Percent
race
   24 12.00 10.00 24 12.00
  1
  2 11 5.50 10.00 35 17.50
     20 10.00 10.00
                               55
                                         27.50
  4 145 72.50 70.00 200 100.00
   Chi-Square Test
for Specified Proportions
```

Chi-Square 5.0286

DF 3

Pr > ChiSq 0.1697

Sample Size = 200

Two independent samples t-test

```
proc ttest data = "c:/mydata/hsb2";
 class female;
 var write;
run;
The TTEST Procedure
                                        Statistics
                            Lower CL
                                         Upper CL Lower CL
                                                                  Upper CL
Variable female
                                         Mean
                                                Std Dev Std Dev Std Dev Std Err
                      Ν
                            Mean
                                   Mean
write
                      91
                            47.975 50.121 52.267 8.9947
                                                         10.305
                                                                   12.066
                                                                           1.0803
         0
write
                            53.447 54.991 56.535 7.1786 8.1337 9.3843 0.7791
                     109
write
         Diff (1-2)
                            -7.442 -4.87 -2.298 8.3622
                                                         9.1846
                                                                   10.188
                                                                           1.3042
                             T-Tests
Variable
           Method
                           Variances
                                      DF
                                               t Value
                                                         Pr > |t|
           Pooled
                                                 -3.73
write
                           Equal
                                        198
                                                           0.0002
                                                           0.0003
write
           Satterthwaite
                           Unequal
                                        170
                                                 -3.66
                  Equality of Variances
Variable
           Method
                      Num DF
                                Den DF
                                         F Value
                                                    Pr > F
write
           Folded F
                                   108
                                            1.61
                                                    0.0187
                          90
```

Jee disu

Annotated Output of Proc TTest (/sas/output/proc-ttest/)

Wilcoxon-Mann-Whitney test

The Wilcoxon-Mann-Whitney test is a non-parametric analog to the independent samples t-test and can be used when you do not assume that the dependent variable is a normally distributed interval variable (you need only assume that the variable is at least ordinal). We will use the same data file (the hsb2.sas7bdat) and the same variables in this example as we did in the independent t-test example (/sas/whatstat/#2ittest) above and will not assume that write, our dependent variable, is normally distributed.

run;	

female	N	Sum of Scores	Expected Under H0	Std Dev Under H0	Mean Score
0	91	7792.0	9145.50	406.559086	85.626374
	109	12308.0	10954.50	406.559086	112.917431

Average scores were used for ties.

Wilcoxon Two-Sample Test

Statistic 7792.0000

Normal Approximation

Z -3.3279 One-Sided Pr < Z 0.0004

Two-Sided Pr > |Z| 0.0009

t Approximation

One-Sided Pr < Z 0.0005 Two-Sided Pr > |Z| 0.0010

Z includes a continuity correction of 0.5.

- FAQ: Why is the Mann-Whitney significant when the medians are equal?
- Exact Methods in the NPAR1WAY Procedure (https://stats.idre.ucla.edu/wp-content/uploads/2016/02/exact.pdf)
- <u>Sample Size Computations and Power Analysis with the SAS System (https://stats.idre.ucla.edu/wp-content/uploads/2016/02/powersamplesize.pdf)</u>

Chi-square test

for each cell is five or higher. This assumption is easily met in the examples below. However, if this assumption is not met in your data, please see the section on Fisher's exact test below.

```
proc freq data = "c:/mydata/hsb2";
  tables schtyp*female / chisq;
run;
```

```
schtyp(type of school)
       female
Frequency|
Percent
Row Pct
Col Pct | 0| 1|
                      Total
 -----+
     1 | 77 | 91 | 168
       | 38.50 | 45.50 | 84.00
       45.83 | 54.17 |
        84.62 | 83.49 |
     ---+----+
     2 | 14 | 18 |
                      32
        7.00 | 9.00 | 16.00
        43.75 | 56.25 |
        15.38 | 16.51 |
Total
     91 109
                        200
        45.50 54.50 100.00
Statistics for Table of schtyp by female
Statistic
                      DF Value Prob
```

```
Phi Coefficient 0.0153
Contingency Coefficient 0.0153
Cramer's V 0.0153
Sample Size = 200
```

These results indicate that there is no statistically significant relationship between the type of school attended and gender (chi-square with one degree of freedom = 0.0470, p = 0.8283).

Let's look at another example, this time looking at the relationship between gender (female) and socio-economic status (ses). The point of this example is that one (or both) variables may have more than two levels, and that the variables do not have to have the same number of levels. In this example, female has two levels (male and female) and ses has three levels (low, medium and high).

```
proc freq data = "c:/mydata/hsb2";
  tables female*ses / chisq;
run;
```

female	ses				
Frequency Percent Row Pct Col Pct	1	2	31	Total	
+	+-	·+-	+		
1	•	23.50 51.65 49.47 	14.50 31.87 50.00 + 29 14.50 26.61	109 54.50	
+	+-	·	·		
Total		95 47.50			
Statistics	for Table	e of femal	le by ses		
Statistic			DF	Value	Prob

Contingency Coefficient	0.1496	
Cramer's V	0.1513	
Sample Size = 200		

Again we find that there is no statistically significant relationship between the variables (chi-square with two degrees of freedom = 4.5765, p = 0.1014).

See also

- Annotated Output of Proc Freq (/sas/output/proc-freq/)
- <u>Sample Size Computations and Power Analysis with the SAS System (https://stats.idre.ucla.edu/wp-content/uploads</u> /2016/02/powersamplesize.pdf)
- SAS Learning Module: An Overview of Statistical Tests in SAS (/sas/modules/an-overview-of-statistical-tests-in-sas/)

Fisher's exact test

could be below five, so we will use Fisher's exact test with the **fisher** option on the **tables** statement.

```
proc freq data = "c:/mydata/hsb2";
  tables schtyp*race / fisher;
run;
```

schtyp(typ	e of schoo	1) ra	ace		
Frequency Percent					
Row Pct Col Pct	1	2	3	4	Total
+	+-		+	+	
1	22	10	18	118	168
	11.00	5.00	9.00	59.00	84.00
	13.10	5.95	10.71	70.24	
	91.67	90.91	90.00	81.38	
+			+	+	
2	2	1	2	27	32
	1.00	0.50	1.00	13.50	16.00
	6.25	3.13	6.25	84.38	
	8.33	9.09	10.00	18.62	
+	+-	+-	+	+	
Total	24	11	20	145	200
	12.00	5.50	10.00	72.50	100.00
Statistics	for Table	of schty	p by rac	ce	
Statistic			DF	Value	Prob

These results suggest that there is not a statistically significant relationship between race and type of school (p = 0.5975). Note that the Fisher's exact test does not have a "test statistic", but computes the p-value directly.

See also

- <u>Sample Size Computations and Power Analysis with the SAS System (https://stats.idre.ucla.edu/wp-content/uploads/2016/02/powersamplesize.pdf)</u>
- SAS Learning Module: An Overview of Statistical Tests in SAS (/sas/modules/an-overview-of-statistical-tests-in-sas/)

between the three program types (**prog**). We will also use the means statement to output the mean of write for each level of program type. Note that this will not tell you if there is a statistically significant difference between any two sets of means.

```
proc glm data = "c:/mydata/hsb2";
  class prog;
  model write = prog;
  means prog;
run;
quit;
```

Class	Levels	Values				
prog	3	1 2 3				
Number of c	bservations	200				
Dependent V	variable: wri	te writi	ng score			
			Sum of			
Source		DF	Squares	Mean Square	F Value	Pr > F
Model		2	3175.69786	1587.84893	21.27	<.0001
Error		197	14703.17714	74.63542		
Corrected I	otal	199	17878.87500			
R-Square	Coeff Var	Root	MSE write M	ean		
0.177623	16.36983	8.639	179 52.77	500		
Source		DF	Type I SS	Mean Square	F Value	Pr > F
prog		2	3175.697857	1587.848929	21.27	<.0001
Source		DF	Type III SS	Mean Square	F Value	Pr > F
prog		2	3175.697857	1587.848929	21.27	<.0001
Level of			write			
prog	N	Mean	Std	Dev		

In mean of the dependent variable differs significantly among the levels of program type. However, we do not know if the difference is between only two of the levels or all three of the levels. (The F test for the model is the same as the F test for prog because prog was the only variable entered into the model. If other variables had also been entered, the F test for the Model would have been different from prog.) We can also see that the students in the academic program have the highest mean writing score, while students in the vocational program have the lowest.

See also

- SAS FAQ: How can I do ANOVA contrasts? (/sas/fag/how-can-i-do-anova-contrasts/)
- SAS Textbook Examples: Design and Analysis (/sas/examples/da/design-and-analysis-a-researchers-handbook-by-geoffrey-keppel-download-sas-data-files/)

Kruskal Wallis test

```
variables as in the example above, but we will not assume that write is a normally distributed interval variable.

proc nparlway data = "c:/mydata/hsb2";
  class prog;
  var write;
run;
```

prog	N	Sum of Scores	Expected Under H0	Std Dev Under H0	Mean Score
1	45	4079.0	4522.50	340.927342	90.644444
3	50	3257.0	5025.00	353.525185	65.140000
2	105	12764.0	10552.50	407.705133	121.561905

Average scores were used for ties.

Kruskal-Wallis Test

Chi-Square 34.0452 DF 2 Pr > Chi-Square <.0001

The results indicate that there is a statistically significant difference among the three type of programs (chi-square with two degrees of freedom = 34.0452, p = 0.0001).

See also

• Exact Methods in the NPAR1WAY Procedure (https://stats.idre.ucla.edu/wp-content/uploads/2016/02/exact.pdf)

```
proc ttest data = "c:/mydata/hsb2";
 paired write*read;
run;
The TTEST Procedure
                                  Statistics
                   Lower CL
                                  Upper CL Lower CL Upper CL
Difference
                                      Mean Std Dev Std Dev Std Dev Std Err
              N
                      Mean Mean
write - read
              200
                  -0.694 0.545 1.7841 8.0928 8.8867 9.8546 0.6284
               T-Tests
Difference
                     t Value Pr > |t|
              DF
write - read
               199
                        0.87
                                 0.3868
```

These results indicate that the mean of **read** is not statistically significantly different from the mean of **write** (t = 0.87, p = 0.3868).

See also

• Annotated Output of Proc TTest (/sas/output/proc-ttest/)

scores for each subject. This is necessary because SAS will not calculate the difference for you in **proc univariate**.

```
data hsb2a;
  set 'c:/mydata/hsb2';
  diff = read - write;
run;

proc univariate data = hsb2a;
  var diff;
run;
```

Loca	tion			Variabili	-ty	
Mean	-0.5	54500	Std De	viation	8.88667	,
Median	0.0	00000	Varian	се	78.97284	:
Mode	6.0	00000	Range		45.00000	1
			Interq	uartile Range	13.00000	1
	T∈		for Locatio			
Test			tatistic-	p Valu		
Student'	s t	t	-0.86731	Pr > t	0.3868	
Sign		M	-4.5	Pr >= M	0.5565	
Signed F	lank	S	-658.5	Pr >= S	0.3677	

The results suggest that there is not a statistically significant difference between **read** and **write**.

If you believe the differences between **read** and **write** were not ordinal but could merely be classified as positive and negative, then you may want to consider a sign test in lieu of sign rank test. Note that the SAS output gives you the results for both the Wilcoxon signed rank test and the sign test without having to use any options. Using the sign test, we again conclude that there is no statistically significant difference between **read** and **write** (p=.5565).

answered Q2 correctly and Q1 incorrectly. These counts can be considered in a two-way contingency table. The null hypothesis is that the two questions are answered correctly or incorrectly at the same rate (or that the contingency table is symmetric).

```
data set1;
  input Q1correct Q2correct students;
  datalines;
1 1 172
0 1 6
1 0 7
0 0 15
run;

proc freq data=set1;
  table Q1correct*Q2correct;
  exact mcnem;
  weight students;
run;
```

Q1correct	Q2cor	rect			
Frequency Percent					
Row Pct					
	0			Total	
	++ 15		·+ 	21	
	7.50				
	71.43				
	68.18				
	++				
1		172			
	3.50			89.50	
	3.91	96.09			
	31.82				
mo+ - 1	++			200	
Total	22				
	11.00	89.00		100.00	
Statistics	s for Tabl	e of Qlc	01	crect by	Q2correct
 Mc1	Nemar's Te	st			

Exact P	r >= S	1.0000
Simple K	appa Coe	efficient
Kappa		0.6613
ASE		0.0873
95% Lower Co	nf Limit	0.4901
95% Upper Co	nf Limit	0.8324
Sample Size	= 200	

McNemar's test statistic suggests that there is not a statistically significant difference in the proportions of correct/incorrect answers to these two questions.

See also

One-way repeated measures ANOVA

rb4wide (https://stats.idre.ucla.edu/wp-content/uploads/2016/02/rb4wide.sas7bdat), which is used in Kirk's book Experimental Design. In this data set, y1 y2 y3 and y4 represent the dependent variable measured at the 4 levels of a, the repeated measures independent variable.

```
proc glm data = 'c:/mydata/rb4wide';
  model y1 y2 y3 y4 = ;
  repeated a ;
run;
quit;
```

Dependent Variable	Y1	Y2	Ү3	Y4				
Level of a	1	2	3	4				
Manova Test Criteria and H	= Тур	F Statisti e III SSCP = Error SSC	Matrix f	or a	sis of no	a Effect		
	S=	1 M=0.5	N=1.5					
Statistic		Value	F Value	Num DF	Den DF	Pr > F		
 Wilks' Lambda	0.2	4580793	5.11	3	5	0.0554		
Pillai's Trace	0.7	5419207	5.11	3	5	0.0554		
Hotelling-Lawley Trace	3.0	6821705	5.11	3	5	0.0554		
Roy's Greatest Root				3	5	0.0554		
Repeated Measures Analysis			Culo do cat	Effort a				
Univariate Tests of Hypoth	ieses	TOT MICHILL	subject	ETTECLS			74-	Pr > F
Source	DF	Type III	QQ Ma	an Square	E 7751116	Dr \ E	_	
a	3	49.000000		.33333333				

The results indicate that the model as well as both factors (a and s) are statistically significant. The p-value given in this output for a (0.0001) is the "regular" p-value and is the p-value that you would get if you assumed compound symmetry in the variance-covariance matrix.

See also

- <u>SAS Library: Analysis of Variance in SAS (/sas/library/sas-libraryproc-anova-and-proc-glm-summary-for-analysis-of-variance/)</u>
- SAS Library: Repeated Measures Anova (/sas/library/sas-libraryrepeated-measures-anova-using-sas-proc-glm/)
- SAS Library: Comparing Methods of Analyzing Repeated Measures Data (/sas/library/sas-library-comparing-methods-of-analyzing-repeated-measures-data/)
- SAS Textbook Examples: Design and Analysis, Chapter 16 (/sas/examples/da/design-and-analysis-by-keppelchapter-16/)

Repeated measures logistic regression

contains three pulse measurements from each of 30 people assigned to two different diet regiments and three different exercise regiments. If we define a "high" pulse as being over 100, we can then predict the probability of a high pulse using diet regiment.

```
proc genmod data='c:/mydata/exercise' descending;
  class id diet / descending;
  model highpulse = diet / dist = bin link = logit;
  repeated subject = id / type = exch;
run;
```

```
1
                                27
                                63
            0
PROC GENMOD is modeling the probability that highpulse='1'.
      Parameter Information
Parameter
               Effect
                             diet
Prm1
                Intercept
Prm2
                diet
Prm3
                diet
Algorithm converged.
            GEE Model Information
Correlation Structure
                                Exchangeable
Subject Effect
                             id (30 levels)
Number of Clusters
                                            30
```

The GENMOD Procedure

Minimum Clus	ster Size			3			
	,						
Algorithm co	nvergea.						
Exchangea	able Workin	ıg					
Corr	relation						
Correlation	0.33067	22695					
GEE Fit Cr	riteria						
GEE FIC CI	itterra						
QIC	113.9859						
QICu	111.3405						
	Analysis	of GEE	Parameter	Estimates			
	Empirio	al Stand	ard Error	Estimates			
	S	Standard	95% Con	fidence			
Parameter				its	Z P	r > Z	
Intercept							
diet 2	0./338	0.0031	-0.4283	1.9338	1.25	0.2114	

Factorial ANOVA

you do not need to have the interaction term(s) in your data set. Rather, you can have SAS create it/them temporarily by placing an asterisk between the variables that will make up the interaction term(s).

```
proc glm data = "c:/mydata/hsb2";
  class female ses;
  model write = female ses female*ses;
run;
quit;
```

			Sum of			
Source		DF	Squares	Mean Square	F Value	Pr > F
Model		5	2278.24419	455.64884	5.67	<.0001
Error		194	15600.63081	80.41562		
Corrected T	otal	199	17878.87500			
R-Square	Coeff Var	Root	MSE write Mea	an		
0.127427	16.99190	8.967	7476 52.7750	00		
Source		DF	Type I SS	Mean Square	F Value	Pr > F
female		1	1176.213845	1176.213845	14.63	0.0002
ses		2	1080.599437	540.299718	6.72	0.0015
female*ses		2	21.430904	10.715452	0.13	0.8753
Source		DF	Type III SS	Mean Square	F Value	Pr > F
female		1	1334.493311	1334.493311	16.59	<.0001
ses		2	1063.252697	531.626349	6.61	0.0017
female*ses		2	21.430904	10.715452	0.13	0.8753

These results indicate that the overall model is statistically significant (F = 5.67, p = 0.001). The variables **female** and **ses** are also statistically significant (F = 16.59, p = 0.0001 and F = 6.61, p = 0.0017, respectively). However, that interaction between **female** and **ses** is not statistically significant (F = 0.13, p = 0.8753).

- SAS Textbook Examples: Applied Linear Statistical Models (/examples/alsm/)
- SAS Textbook Examples: Fox, Applied Regression Analysis, Chapter 8 (/sas/examples/ara/applied-regression-analysis-by-john-foxchapter-8-analysis-of-variance/)
- SAS Learning Module: Comparing SAS and Stata Side by Side (/sas/modules/comparing-sas-and-stata-side-by-side/)
- SAS Textbook Examples from Design and Analysis: Chapter 10 (/sas/examples/da/design-and-analysis-by-keppelchapter-10/)

Friedman test

format; we will use **proc transpose** to change our data from the wide format that they are currently in to a long format. We create a variable to code for the type of score, which we will call **rwm** (for read, **w**rite, **m**ath), and **col1** that contains the score on the dependent variable, that is the reading, writing or math score. To obtain the Friedman test, you need to use the **cmh2** option on the **tables** statement in **proc freq**.

```
proc sort data = "c:/mydata/hsb2" out=hsbsort;
  by id;
run;

proc transpose data=hsbsort out=hsblong name=rwm;
  by id;
  var read write math;
run;

proc freq data=hsblong;
  tables id*rwm*col1 / cmh2 scores=rank noprint;
run;
```

Cochran-Mantel-Haenszel Statistics (Based on Rank Scores)

Statistic	Alternative Hypothesis	DF	Value	Prob
1	Nonzero Correlation	1	0.0790	0.7787
2	Row Mean Scores Differ	2	0.6449	0.7244

Total Sample Size = 600

The Row Mean Scores Differ is the same as the Friedman's chi-square, and we see that with a value of 0.6449 and a p-value of 0.7244, it is not statistically significant. Hence, there is no evidence that the distributions of the three types of scores are different.

Ordered logistic regression

use gender (female), reading score (read) and social studies score (socst) as predictor variables in this model. The desc option on the proc logistic statement is used so that SAS models the odds of being in the lower category. The Response Profile table in the output shows the value that SAS used when conducting the analysis (given in the Ordered Value column), the value of the original variable, and the number of cases in each level of the outcome variable. (If you want SAS to use the values that you have assigned the outcome variable, then you would want to use the order = data option on the proc logistic statement.) The note below this table reminds us that the "Probabilities modeled are cumulated over the lower Ordered Values." It is helpful to remember this when interpreting the output. The expb option on the model statement tells SAS to show the exponentiated coefficients (i.e., the proportional odds ratios).

```
data hsb2_ordered;
  set "c:/mydata/hsb2";
  if 30 <= write <=48 then write3 = 1;
  if 49 <= write <=57 then write3 = 2;
  if 58 <= write <=70 then write3 = 3;
run;

proc logistic data = hsb2_ordered desc;
  model write3 = female read socst / expb;
run;</pre>
```

Data Set	WORK.HSB2_ORDERED
Response Variable	write3
Number of Response Levels	3
Model	cumulative logit
Optimization Technique	Fisher's scoring
Number of Observations Read	200
Number of Observations Used	200
Response Profile	
Ordered	Total

IOLAI		Ordered
Frequency	write3	Value
78	3	1
61	2	2
61	1	3

Probabilities modeled are cumulated over the lower Ordered Values.

Model Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

		Intercept
	Intercept	and
Criterion	Only	Covariates
AIC	440.627	322.553
SC	447.224	339.044
-2 Log L	436.627	312.553

Testing Global Null Hypothesis: BETA=0

Test	Chi-Square	DF	Pr > ChiSq
Likelihood Ratio	124.0745	3	<.0001
Score	93.1890	3	<.0001
Wald	76.6752	3	<.0001

Analysis of Maximum Likelihood Estimates

Standard Wald

FEMALE	1	1.2856	0.3225	15.8901	<.0001	3.617	
READ	1	0.1177	0.0215	29.8689	<.0001	1.125	
SOCST	1	0.0802	0.0190	17.7817	<.0001	1.083	
	Odds Ratio	o Estimate:	5				
	Point	959	Wald				
Effect	Estimate	Confide	ence Limits				
FEMALE	3.617	1.922	6.805				
READ	1.125	1.078	1.173				
SOCST	1.083	1.044	1.125				
Associat	cion of Predi	cted Probak	oilities and	Observed Respons	ses		
Percent	Concordant	83.8	Somers' D	0.681			
Percent	Discordant	15.7	Gamma	0.685			
Percent	Tied	0.6	Tau-a	0.453			
Pairs		13237	С	0.840			

The results indicate that the overall model is statistically significant (p < .0001), as are each of the predictor variables (p < .0001). There are two intercepts for this model because there are three levels of the outcome variable. We also see that the test of the proportional odds assumption is non-significant (p = .5477). One of the assumptions underlying ordinal logistic (and ordinal probit) regression is that the relationship between each pair of outcome groups is the same. In other words, ordinal

case, we would need different models (such as a generalized ordered logit model) to describe the relationship between each pair of outcome groups.

See also

SAS Annotated Output: Ordered logistic regression (/sas/output/ordered-logistic-regression/)

Factorial logistic regression

type (**schtyp**) as our predictor variables. Because neither **prog** nor **schtyp** are continuous variables, we need to include them on the **class** statement. The **desc** option on the **proc logistic** statement is necessary so that SAS models the odds of being female (i.e., female = 1). The **expb** option on the model statement tells SAS to show the exponentiated coefficients (i.e., the odds ratios).

```
proc logistic data = "c:/mydata/hsb2" desc;
  class prog schtyp;
  model female = prog schtyp prog*schtyp / expb;
run;
```

		Intercept		
	Intercept	and		
Criterion	Only	Covariates		
AIC	277.637	284.490		
SC	280.935	304.280		
-2 Log L	275.637	272.490		

Testing Global Null Hypothesis: BETA=0

Test	Chi-Square	DF	Pr > ChiSq
Likelihood Ratio	3.1467	5	0.6774
Score	2.9231	5	0.7118
Wald	2.6036	5	0.7608

Type III Analysis of Effects

		Wald	
Effect	DF	Chi-Square	Pr > ChiSq
prog	2	1.1232	0.5703
schtyp	1	0.4132	0.5203
prog*schtyp	2	2.4740	0.2903

Analysis of Maximum Likelihood Estimates

prog	2	1	-0.1964	0.3438	0.3264	0.5678	0.822	
schtyp	1	1	-0.2034	0.3164	0.4132	0.5203	0.816	
prog*schty	p 1 1	1	-0.6269	0.4568	1.8838	0.1699	0.534	
prog*schty	p 2 1	1	0.3400	0.3438	0.9783	0.3226	1.405	

The results indicate that the overall model is not statistically significant (LR chi2 = 3.1467, p = 0.6774). Furthermore, none of the coefficients are statistically significant either. In addition, there is no statistically significant effect of program (p = 0.5703), school type (p = 0.5203) or of the interaction (p = 0.2903).

Correlation

```
proc corr data = "c:/mydata/hsb2";
  var read write;
run;
The CORR Procedure
   2 Variables:
                    read
                              write
Pearson Correlation Coefficients, N = 200
        Prob > |r| under H0: Rho=0
                                     write
                        read
                                   0.59678
read
                    1.00000
                                    <.0001
reading score
write
                    0.59678
                                   1.00000
writing score
                     <.0001
```

In the second example below, we will run a correlation between a dichotomous variable, **female**, and a continuous variable, **write**. Although it is assumed that the variables are interval and normally distributed, we can include dummy variables when performing correlations.

```
The CORR Procedure
     Variables:
                    female
                              write
Pearson Correlation Coefficients, N = 200
        Prob > |r| under H0: Rho=0
                      female
                                     write
                    1.00000
female
                                   0.25649
                                    0.0002
                    0.25649
                                   1.00000
write
writing score
                      0.0002
```

In the first example above, we see that the correlation between **read** and **write** is 0.59678. By squaring the correlation and then multiplying by 100, you can determine what percentage of the variability is shared. Let's round 0.59678 to be 0.6, which when squared would be .36, multiplied by 100 would be 36%. Hence **read** shares about 36% of its variability with **write**. In the output for the second example, we can see the correlation between **write** and **female** is 0.25649. Squaring this number yields .0657871201, meaning that **female** shares approximately 6.5% of its variability with **write**.

See also

Annotated SAS Output: Correlation (/sas/output/proc-corr/)

Simple linear regression

```
proc reg data = "c:/mydata/hsb2";
  model write = read / stb;
run;
quit;
```

			An	alysis of Vari	ance			
				Sum of	Mean			
Source		D.	F	Squares	Square	F Value	Pr > F	
Model		:	1	6367.42127	6367.42127	109.52	<.0001	
Error		198	8	11511	58.13866			
Corrected	Total	19	9	17879				
Root MSE		7.62	487	R-Square	0.3561			
Dependent	Mean	52.77	500	Adj R-Sq	0.3529			
Coeff Var		14.44	788					
				Paramete	er Estimates			
				Parameter	Standard			Standardized
Variable	Label		DF	Estimate	Error	t Value	Pr > t	Estimate
Intercept	Intercep	ot	1	23.95944	2.80574	8.54	<.0001	0
read	reading	score	1	0.55171	0.05272	10.47	<.0001	0.59678

We see that the relationship between **write** and **read** is positive (.55171) and based on the t-value (10.47) and p-value (0.000), we conclude this relationship is statistically significant. Hence, there is a statistically significant positive linear relationship between reading and writing.

- SAS Library: Overview of SAS PROC REG (/sas/library/sas-libraryoverview-of-sas-proc-reg/)
- SAS Textbook Examples: Applied Linear Statistical Models (/examples/alsm/)
- SAS Textbook Examples: Regression Analysis by Example, Chapter 2 (/sas/examples/chp/regression-analysis-by-example-by-chatterjee-hadi-and-pricechapter-2-simple-linear-regression/)

Non-parametric correlation

```
correlation.
proc corr data = "c:/mydata/hsb2" spearman;
  var read write;
run;
The CORR Procedure
   2 Variables: read write
Spearman Correlation Coefficients, N = 200
        Prob > |r| under H0: Rho=0
                                    write
                       read
                    1.00000
                                  0.61675
read
                                   <.0001
reading score
write
                    0.61675
                                  1.00000
writing score
                     <.0001
```

The results suggest that the relationship between read and write (rho = 0.61675, p = 0.000) is statistically significant.

first variable listed on the model statement is the outcome (or dependent) variable, and all of the rest of the variables are listed after the equals sign and are predictor (or independent) variables. You can use the **expb** option on the **model** statement if you want to see the odds ratios. In our example, **female** will be the outcome variable, and **read** will be the predictor variable. As with OLS regression, the predictor variables must be either dichotomous or continuous; they cannot be categorical.

```
proc logistic data = "c:/mydata/hsb2" desc;
  model female = read / expb;
run;
```

			Standard	Wald						
Paramete	r DF	Estimate	Error	Chi-Square	Pr > ChiSq	Exp(Est)				
Intercep	t 1	0.7261	0.7420	0.9577	0.3278	2.067				
read	1	-0.0104	0.0139	0.5623	0.4533	0.990				
	Odds Ratio Estimates									
	Poir	nt 95	5% Wald							
Effect	Estimat	ce Confid	dence Limits							
read	0.99	0.963	1.017	7						
Association of Predicted Probabilities and Observed Responses										
Percent	Concordar	nt 50.3	Somers' D	0.069						
Percent	Discordar	nt 43.4	Gamma	0.073						
Percent	Tied	6.3	Tau-a	0.034						
Pairs		9919	С	0.534						

The results indicate that reading score (**read**) is not a statistically significant predictor of gender (i.e., being female), Wald chi-square = 0.5623, p = 0.4533.

See also

• SAS Textbook Examples: Applied Logistic Regression, Chapter 1 (/sas/examples/alr2/applied-logistic-regression-

with-a-labeled-outcome-variable/)

• Some Issues Using PROC LOGISTIC for Binary Logistic Regression (https://stats.idre.ucla.edu/wp-content/uploads/2016/02/ts274.pdf)

Multiple regression

```
output).

proc reg data = "c:/mydata/hsb2";
  model write = female read math science socst / stb;
run;
quit;
```

		Analysi	s of Var	iance				
		;	Sum of	Me	an			
Source	D	F S	quares	Squa	re F	Value	Pr > F	
Model		5	10757	2151.384	88	58.60	<.0001	
Error	19	4 7121	.95060	36.711	09			
Corrected	Total 19	9	17879					
Root MSE	6.05	897 R-S	quare	0.6017				
Dependent	Mean 52.77	500 Adj	R-Sq	0.5914				
Coeff Var	11.48	075						
			Paramet	er Estimate	S			
			Param	eter St	andard			Standardized
Variable	Label	DF	Esti	mate	Error	t Value	Pr > t	Estimate
Intercept	Intercept	1	6.1	3876 2	.80842	2.19	0.0300	0
female		1	5.4	9250 0	.87542	6.27	<.0001	0.28928
read	reading score	1	0.1	2541 0	.06496	1.93	0.0550	0.13566
math	math score	1	0.2	3807 0	.06713	3.55	0.0005	0.23531
science	science score	1	0.2	4194 0	.06070	3.99	<.0001	0.25272
socst	social studies	score 1	0.2	2926 0	.05284	4.34	<.0001	0.25967

- Annotated Output of PROC REG (https://stats.idre.ucla.edu/sas/output/regression-analysis/)
- Regression with SAS: Chapter 1 Simple and Multiple Regression (/sas/webbooks/reg/chapter1/regressionwith-saschapter-1-simple-and-multiple-regression/)
- Example 3d Graphs from Multiple Regression: Testing and Interpreting Interactions (/sas/examples/aw/example-3d-graphs-from-multiple-regression-testing-and-interpreting-interactionsby-leona-aiken-and-stephen-west/)
- SAS Textbook Examples: Applied Linear Statistical Models (/examples/alsm/)
- SAS Frequently Asked Questions (/sas/fag/)

Analysis of covariance

```
proc glm data = "c:/mydata/hsb2";
  class prog;
  model write = prog read;
run;
quit;
```

			Sum of			
Source		DF	Squares	Mean Square	F Value	Pr > F
Model		3	7017.68123	2339.22708	42.21	<.0001
Error		196	10861.19377	55.41425		
Corrected T	otal	199	17878.87500			
R-Square	Coeff Var	Root	MSE write Mea	an		
0.392512	14.10531	7.444	52.7750	00		
Source		DF	Type I SS	Mean Square	F Value	Pr > F
prog		2	3175.697857	1587.848929	28.65	<.0001
read		1	3841.983376	3841.983376	69.33	<.0001
Source		DF	Type III SS	Mean Square	F Value	Pr > F
prog		2	650.259965	325.129983	5.87	0.0034
read		1	3841.983376	3841.983376	69.33	<.0001

The results indicate that even after adjusting for reading score (**read**), writing scores still significantly differ by program type (**prog**) F = 5.87, p = 0.0034.

See also

• SAS Textbook Examples Design and Analysis, Chapter 14 (/sas/examples/da/design-and-analysis-by-

• SAS Code for Some Advanced Experimental Designs (/sas/library/sas-librarysas-code-for-some-advanced-experimental-designs/)

Multiple logistic regression

we can use **female** as the outcome variable to illustrate how the code for this command is structured and how to interpret the output. In our example, **female** will be the outcome variable, and **read** and **write** will be the predictor variables. The **desc** option on the **proc logistic** statement is necessary so that SAS models the probability of being female (i.e., female = 1). The **expb** option on the **model** statement tells SAS to display the exponentiated coefficients (i.e., the odds ratios).

```
proc logistic data = "c:/mydata/hsb2" desc;
  model female = read write / expb;
run;
```

Data Set WORK.HSB2

Response Variable female

Number of Response Levels 2
Number of Observations 200

Model binary logit

Optimization Technique Fisher's scoring

Response Profile

Total		Ordered
Frequency	female	Value
109	1	1
91	0	2

Probability modeled is female=1.

Model Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

Intercept

Intercept and

Testing Global Null Hypothesis: BETA=0			
Test	Chi-Square	DF	Pr > ChiSq
Likelihood Ratio	27.8186	2	<.0001
Score	26.3588	2	<.0001
Wald	23.4135	2	<.0001

Intercep	ot 1	-1.7061	0.9234	3.4137	0.0647	0.182	
read	1	-0.0710	0.0196	13.1251	0.0003	0.931	
write	1	0.1064	0.0221	23.0748	<.0001	1.112	
	Odds Rat	io Estimate	S				
	Point	95	% Wald				
Effect	Estimate	Confid	ence Limits				
read	0.931	0.896	0.968				
write	1.112	1.065	1.162				
Associat	cion of Pred	icted Proba	bilities and	Observed Respo	onses		
Percent	Concordant	69.3	Somers' D	0.396			
Percent	Discordant	29.7	Gamma	0.400			
Percent	Tied	1.0	Tau-a	0.198			
Pairs		9919	С	0.698			

These results show that both read (Wald chi-square = 13.1251, p = 0.0003) and write (Wald chi-square = 23.0748, p = 0.0001) are significant predictors of female.

See also

• SAS Textbook Examples: Applied Logistic Regression, Chapter 2 (/sas/examples/alr2/applied-logistic-regression-

Discriminant analysis

```
predict the type of program (prog) to which a student belongs.

proc discrim data = "c:/mydata/hsb2" can;
  class prog;
  var read write math;
run;
```

Variables	3	DF Within Classes	197
Classes	3	DF Between Classes	2

Class Level Information

	Variable				Prior
prog	Name	Frequency	Weight	Proportion	Probability
1	_1	45	45.0000	0.225000	0.333333
2	_2	105	105.0000	0.525000	0.333333
3	_3	50	50.0000	0.250000	0.333333

Pooled Covariance Matrix Information

Natural Log of the
Covariance Determinant of the
Matrix Rank Covariance Matrix

3 12.18440

Pairwise Generalized Squared Distances Between Groups

prog	1	L	2	3						
1	(0.738	310	0.31771						
2	0.73810)	0	1.90746						
3	0.31771	1.907	746	0						
Canonica	l Discrimina	ant Analysis								
		Adjus	sted App	proximate	Squared					
	Canonical	L Canoni	lcal	Standard	Canonical					
	Correlation	n Correlat	cion	Error	Correlation					
1	0.512534	0.502	2546	0.052266	0.262691					
2	0.067247	7 0.031	181	0.070568	0.004522					
					Test of HO:	The canoni	cal co	rrelati	ons	in
					the	e current r	ow and	all		
	E	Eigenvalues c	of Inv(E)*E	H	t	that follow	are ze	ero		
		= CanRsq/(1	-CanRsq)							
					Likelihood Ap	pproximate				
	Eigenvalue	Difference P	Proportion	Cumulative	Ratio	F Value	Num DF	Den DF	Pr	> F
1	0.3563	0.3517	0.9874	0.9874	0.73397507	10.87	6	390	<.	0001
2	0.0045		0.0126	1.0000	0.99547788	0.45	2	196	0.	6414

Total Canonical Structure

	Between Canor	nical Structure	
Variable	Label	Can1	Can2
read	reading score	0.999644	-0.026693
write	writing score	0.995813	0.091410
math	math score	0.999433	-0.033682
	Pooled Within Ca	anonical Structure	
Variable	Label	Can1	Can2
read	reading score	0.778465	-0.184093
write	writing score	0.775344	0.630310
math	math score	0.912889	-0.272463
Total	-Sample Standardize	ed Canonical Coeff	icients
Variable	Label	Can1	Can2
read	reading score	0.299373057	-0.449624188
write	writing score	0.363246854	1.298397979
math	math score	0.659035164	-0.743012325
Pooled W	ithin-Class Standaı	cdized Canonical C	oefficients

_	~ ' 7	~ ~ ~ '	
Raw	Canonical	$(`\cap \triangle + + 1)$	CIENTS
I CC VV	Cancina	\sim	

Variable	Label	Can1	Can2
read	reading score	0.0291987615	0438532096
write	writing score	0.0383228947	0.1369822435
math	math score	0.0703462492	0793100780

Class Means on Canonical Variables

prog	Can1	Can2
1	3120021323	0.1190423066
2	0.5358514591	0196809384
3	8444861449	0658081053

Linear Discriminant Function

Linear Discriminant Function for prog

Variable Label 1 2 3

Generalized Squared Distance Function

Posterior Probability of Membership in Each prog

$$Pr(j|X) = exp(-.5 D (X)) / SUM exp(-.5 D (X))$$
 j
 k

Number of Observations and Percent Classified into prog

From prog	1	2	3	Total
1	11	17	17	45
	24.44	37.78	37.78	100.00
2	18	68	19	105
	17.14	64.76	18.10	100.00

	21.50	46.00	32.50	100.00
Priors	0.33333	0.33333	0.33333	
	Error Co	ount Estimate	s for prog	
		1	2 3	3 Total
Rate	0.755	0.352	4 0.4200	0.5093
Priors	0.333	33 0.333	3 0.3333	_

Clearly, the SAS output for this procedure is quite lengthy, and it is beyond the scope of this page to explain all of it. However, the main point is that two canonical variables are identified by the analysis, the first of which seems to be more related to program type than the second.

See also

- New Features in SAS/INSIGHT in Version 7 (https://stats.idre.ucla.edu/wp-content/uploads/2016/02/insight7.pdf)
- discriminant function analysis (http://faculty.chass.ncsu.edu/garson/PA765/discrim.htm)

One-way MANOVA

```
to conduct a MANOVA. The h= on the manova statement is used to specify the hypothesized effect.

proc glm data = "c:/mydata/hsb2";
  class prog;
  model read write math = prog;
  manova h=prog;
run;
quit;
```

			Sum of			
Source		DF	Squares	Mean Square	F Value	Pr > F
Model		2	3716.86127	1858.43063	21.28	<.0001
Error		197	17202.55873	87.32263		
Corrected 1	[otal	199	20919.42000			
R-Square	Coeff Var	Root	MSE read Mea	an		
0.177675	17.89136	9.344	1658 52.2300	00		
Source		DF	Type I SS	Mean Square	F Value	Pr > F
prog		2	3716.861270	1858.430635	21.28	<.0001
Source		DF	Type III SS	Mean Square	F Value	Pr > F
prog		2	3716.861270	1858.430635	21.28	<.0001

Model		2	3175.69786	1587.84893	21.27	<.0001
Error		197	14703.17714	74.63542		
Corrected '	Total	199	17878.87500			
R-Square	Coeff Var	Root	MSE write Mea	an		
0.177623	16.36983	8.63	9179 52.7750	00		
Source		DF	Type I SS	Mean Square	F Value	Pr > F
prog		2	3175.697857	1587.848929	21.27	<.0001
Source		DF	Type III SS	Mean Square	F Value	Pr > F
prog		2	3175.697857	1587.848929	21.27	<.0001

Error		197	13463.69111	68.34361		
Corrected Total		199	17465.79500			
R-Square	Coeff Var	Root	MSE math Mea	an		
0.229140	15.70333	8.267	7019 52.6450	00		
					_	
Source		DF	Type I SS	Mean Square	F Value	Pr > F
prog		2	4002.103889	2001.051944	29.28	<.0001
Source		DF	Type III SS	Mean Square	F Value	Pr > F
prog		2	4002.103889	2001.051944	29.28	<.0001

Characteristic		Characteristic	Vector V'EV=1	
Root	Percent	read	write	math
0.35628297	98.74	0.00208033	0.00273039	0.00501196
0.00454266	1.26	-0.00312441	0.00975958	-0.00565061
0.00000000	0.00	-0.00904826	0.00054800	0.00823531

E = Error SSCP Matrix

MANOVA Test Criteria and F Approximations for the Hypothesis of No Overall prog Effect

H = Type III SSCP Matrix for prog

E = Error SSCP Matrix

S=2 M=0 N=96.5

Statistic	Value	F Value	Num DF	Den DF	Pr > F
Wilks' Lambda	0.73397507	10.87	6	390	<.0001
Pillai's Trace	0.26721285	10.08	6	392	<.0001
Hotelling-Lawley Trace	0.36082563	11.70	6	258.23	<.0001
Roy's Greatest Root	0.35628297	23.28	3	196	<.0001

NOTE: F Statistic for Roy's Greatest Root is an upper bound.

NOTE: F Statistic for Wilks' Lambda is exact.

This command produces four different test statistics that are used to evaluate the statistical significance of the relationship

- SAS Textbook Examples: Design and Analysis (/sas/examples/da/design-and-analysis-a-researchers-handbook-by-geoffrey-keppel-download-sas-data-files/)
- SAS Learning Module: Missing Data in SAS (/sas/modules/missing-data-in-sas/)

Multivariate multiple regression

statement tests the hypothesis that all estimated parameters except the intercept are zero. In other words, the multivariate tests test whether the independent variable specified predicts the dependent variables together, holding all of the other independent variables constant. You can put a label in front of the **mtest** statement to aid in the interpretation of the output (this is particularly useful when you have multiple **mtest** statements).

```
proc reg data = "c:/mydata/hsb2";
  model write read = female math science socst;
  female: mtest female;
  math: mtest math;
  science: mtest science;
  socst: mtest socst;
run;
quit;
```

		Ana	alysis of Va	riance			
			Sum of	Mean			
Source		DF	Squares	Square	F Value	Pr > F	
Model		4	10620	2655.02312	71.32	<.0001	
Error		195	7258.78251	37.22453			
Corrected	Total	199	17879				
Root MSE		6.10119	R-Square	0.5940			
Dependent	Mean	52.77500	Adj R-Sq	0.5857			
Coeff Var		11.56076					
			Paramete	er Estimates			
				Parameter	Standard		
Variable	Label		DF	Estimate	Error	t Value	Pr > t
Intercept	Inter	cept	1	6.56892	2.81908	2.33	0.0208
female			1	5.42822	0.88089	6.16	<.0001
math	math s	score	1	0.28016	0.06393	4.38	<.0001
science	scienc	ce score	1	0.27865	0.05805	4.80	<.0001
socst	social	l studies scor	re 1	0.26811	0.04919	5.45	<.0001
Model: MOD	EL1						

			Sum of	Mean			
Source		DF	Squares	Square	F Value	Pr > F	
Model		4	12220	3054.91459	68.47	<.0001	
Error		195	8699.76166	44.61416			
Corrected T	otal	199	20919				
Root MSE	6.	67938	R-Square	0.5841			
Dependent M	ean 52.	23000	Adj R-Sq	0.5756			
Coeff Var	12.	78840					
			Paramet	er Estimates			
				Parameter	Standard		
Variable	Label		DF	Estimate	Error	t Value	Pr > t
Intercept	Intercept		1	3.43000	3.08624	1.11	0.2678
female			1	-0.51261	0.96436	-0.53	0.5956
math	math score		1	0.33558	0.06999	4.79	<.0001
science	science sco	ore	1	0.29276	0.06355	4.61	<.0001
socst	social stud	lies sco	re 1	0.30976	0.05386	5.75	<.0001

Model: MODEL1

Multivariate Test: female

Statistic	Value	F Value	Num DF	Den DF	Pr > F
Wilks' Lambda	0.83011470	19.85	2	194	<.0001
Pillai's Trace	0.16988530	19.85	2	194	<.0001
Hotelling-Lawley Trace	0.20465280	19.85	2	194	<.0001
Roy's Greatest Root	0.20465280	19.85	2	194	<.0001

Model: MODEL1

Multivariate Test: math

Multivariate Statistics and Exact F Statistics

0 1	7. T. O	3.T O C
S=1	M=0	N = 96

Statistic	Value	F Value	Num DF	Den DF	Pr > F
Wilks' Lambda	0.84006791	18.47	2	194	<.0001
Pillai's Trace	0.15993209	18.47	2	194	<.0001
Hotelling-Lawley Trace	0.19037995	18.47	2	194	<.0001
Roy's Greatest Root	0.19037995	18.47	2	194	<.0001

Model: MODEL1

Multivariate Test: science

Multivariate Statistics and Exact F Statistics

Pillai's Trace	0.16642538	19.37	2	194	<.0001
Hotelling-Lawley Trace	0.19965265	19.37	2	194	<.0001
Roy's Greatest Root	0.19965265	19.37	2	194	<.0001

Model: MODEL1

Multivariate Test: socst

Multivariate Statistics and Exact F Statistics

S=1	M=0	N = 96

Statistic	Value	F Value	Num DF	Den DF	Pr > F
 Wilks' Lambda	0.77932902	27.47	2	194	<.0001
Pillai's Trace	0.22067098	27.47	2	194	<.0001
Hotelling-Lawley Trace	0.28315509	27.47	2	194	<.0001
Roy's Greatest Root	0.28315509	27.47	2	194	<.0001

With regard to the univariate tests, each of the independent variables is statistically significant predictor for writing. All of the independent variables are also statistically significant predictors for reading except **female** (t = -0.53, p = 0.5956). All of the multivariate tests are also statistically significant.

Canonical correlation

```
cancorr statement provides additional output that many researchers might find useful.
```

```
proc cancorr data = "c:/mydata/hsb2" all;
  var read write;
  with math science;
run;
```

The CANCORR Procedure

VAR Variables 2
WITH Variables 2
Observations 200

Means and Standard Deviations

		Standard	
Variable	Mean	Deviation	Label
read	52.230000	10.252937	reading score
write	52.775000	9.478586	writing score
math	52.645000	9.368448	math score
science	51.850000	9.900891	science score

	read	write
read	1.0000	0.5968
write	0.5968	1.0000
Correlat	ions Among the WITH	H Variables
	math	science
math	1.0000	0.6307
science	0.6307	1.0000
Correlation	s Between the VAR V	Variables and the
	math	science
read	0.6623	0.6302
write	0.6174	0.5704

	Correlation	Correlation	ì	Error	Correlat	ion				
1	0.772841	0.771003	3	0.028548	0.597	283				
2	0.023478	•		0.070849	0.000	551				
					Test of	HO: The	canonical	CO	rrelati	ons in
						the cu	rrent row	and	all	
	Ei	genvalues of 1	nv(E)*F	I		that	follow ar	e z	ero	
		= $CanRsq/(1-Ca)$	anRsq)							
		_	_		Likelihoo	d Approx	ximate			
	Eigenvalue D	Difference Prop	ortion	Cumulative	Rati	o F	Value Num	DF	Den DF	r Pr >
1	1.4831	1.4826	0.9996	0.9996	0.4024949	8	56.47	4	392	<.000
2	0.0006		0.0004	1.0000	0.9994487	6	0.11	1	197	0.742
	Mult	civariate Stati			ximations					
		S=2	M = -0.5	5 N=97						
Statistic	C	Va	alue	F Value	Num DF	Den DF	Pr > F			
Wilks' La	ambda	0.40249	9498	56.47	4	392	<.0001			
Pillai's	Trace	0.59783	3426	42.00	4	394	<.0001			
Hotelling	g-Lawley Trac	ce 1.48368	3501	72.58	4	234.16	<.0001			
Roy's Gre	eatest Root	1.48313	3347	146.09	2	197	<.0001			
NOTE: F	Statistic for	Roy's Greates	st Root	is an upper	r bound.					

		V1	V2
read	reading score	0.063261313	0.1037907932
write	writing score	0.0492491834	-0.12190836
Raw	Canonical Coefficion	ents for the WITH	Variables
		W1	W2
math	math score	0.0669826768	-0.120142451
		0 0482406314	0.1208859811
	zed Canonical Coeff		AR Variables
Standardi	zed Canonical Coeff	icients for the V. V1	V2
Standardi:	zed Canonical Coeff reading score	icients for the V. V1 0.6486	V2 1.0642
Standardi: read write	zed Canonical Coeff reading score writing score	v1 0.6486 0.4668	V2 1.0642 -1.1555
Standardi: read write	zed Canonical Coeff reading score	v1 0.6486 0.4668	V2 1.0642 -1.1555
Standardi: read write	zed Canonical Coeff reading score writing score	v1 0.6486 0.4668	V2 1.0642 -1.1555
Standardi: read write Standardi:	zed Canonical Coeff reading score writing score	v1 0.6486 0.4668 icients for the W	V2 1.0642 -1.1555 ITH Variables W2

		V1	V2	
read	reading score	0.9272	0.3746	
write	writing score	0.8539	-0.5205	
Correlati	ons Between the WIT	H Variables and	Their Canonic	al Variables
		W1	W2	
math	math score	0.9288	-0.3706	
	science score	0.8734	0.4870	
			the Canonical	Variables of the WITH Variables
		Variables and		Variables of the WITH Variables
Correlati	ons Between the VAR	Variables and W1	W2	Variables of the WITH Variables
Correlati		Variables and W1	W2	Variables of the WITH Variables
Correlati read write	ons Between the VAR reading score writing score	W1 0.7166 0.6599	W2 0.0088 -0.0122	
Correlati read write	ons Between the VAR reading score writing score	W1 0.7166 0.6599	W2 0.0088 -0.0122	Variables of the WITH Variables Variables of the VAR Variables
Correlati read write	ons Between the VAR reading score writing score	W1 0.7166 0.6599	W2 0.0088 -0.0122	
Correlati read write	ons Between the VAR reading score writing score	Variables and W1 0.7166 0.6599 H Variables and	W2 0.0088 -0.0122 the Canonical	

	Canonical	Variables		Canonical	Variables
Canonical					
Variable		Cumulative	Canonical		Cumulative
Number	Proportion	Proportion	R-Square	Proportion	Proportion
1	0.7995	0.7995	0.5973	0.4775	0.4775
2	0.2005	1.0000	0.0006	0.0001	0.4777
	Raw Varia	nce of the WITI	H Variables Ex	plained by	
	Thei	r Own		The Opp	posite
	Canonical	Variables		Canonical	Variables
Canonical					
Variable		Cumulative	Canonical		Cumulative
Number	Proportion	Proportion	R-Square	Proportion	Proportion
1	0.8100	0.8100	0.5973	0.4838	0.4838
2	0.1900	1.0000	0.0006	0.0001	0.4839
	Standardized	Variance of the	e VAR Variable	s Explained by	
	Thei	r Own		The Opp	posite
	Canonical	Variables		Canonical	Variables
Canonical					
Variable		Cumulative	Canonical		Cumulative
Number	Proportion	Proportion	R-Square	Proportion	Proportion
1	0.7944	0.7944	0.5973	0.4745	0.4745

	Their Own			The Opposite		
	Canonical	Variables		Canonical	Variables	
Canonical						
Variable		Cumulative	Canonical		Cumulative	
Number	Proportion	Proportion	R-Square	Proportion	Proportion	
1	0.8127	0.8127	0.5973	0.4854	0.4854	
2	0.1873	1.0000	0.0006	0.0001	0.4855	
	Squared	Multiple Corre	elations Betwe	en the VAR Var	riables and	
	the I	First M Canonic	al Variables	of the WITH Va	riables	
M		1	2			
read	reading score	0.5135	0.5136			
write	writing score	0.4355	0.4356			
	Square	ed Multiple Cor	relations Bet	ween the WITH	Variables	
	and th	ne First M Canc	nical Variabl	es of the VAR	Variables	
M		1		2		
math	math score	0.5152	0.515	3		
science	science score	e 0.4557	0.455	8		

The output above shows the linear combinations corresponding to the first canonical correlation. At the bottom of the output are the two canonical correlations. These results indicate that the first canonical correlation is .772841. The F-test in this output

Factor analysis

there are some common factors underlying the various test scores. We will use the principal components method of extraction, use a varimax rotation, extract two factors and obtain a scree plot of the eigenvalues. All of these options are listed on the **proc** factor statement.

proc factor data = "c:/mydata/hsb2" method=principal rotate=varimax nfactors=2 scree;
 var read write math science socst;
run;

Eigenvalues of the Correlation Matrix: Total = 5 Average = 1

	Eigenvalue	Difference	Proportion	Cumulative
1	3.38081982	2.82344156	0.6762	0.6762
2	0.55737826	0.15058550	0.1115	0.7876
3	0.40679276	0.05062495	0.0814	0.8690
4	0.35616781	0.05732645	0.0712	0.9402
5	0.29884136		0.0598	1.0000

2 factors will be retained by the NFACTOR criterion.

The FACTOR Procedure

Initial Factor Method: Principal Components

Factor Pattern

		Factor1	Factor2
READ	reading score	0.85760	-0.02037
WRITE	writing score	0.82445	0.15495
MATH	math score	0.84355	-0.19478
SCIENCE	science score	0.80091	-0.45608
SOCST	social studies score	0.78268	0.53573

Variance Explained by Each Factor

Final Communality E	stimates: Total	= 3.938198
---------------------	-----------------	------------

READ	WRITE	MATH	SCIENCE	SOCST
0.73589906	0.70373337	0.74951854	0.84945810	0.89958900

2

The FACTOR Procedure

Rotation Method: Varimax

Orthogonal Transformation Matrix

1	0.74236	0.67000
2	-0.67000	0.74236

Rotated Factor Pattern

		Factor1	Factor2
READ	reading score	0.65029	0.55948
WRITE	writing score	0.50822	0.66742
MATH	math score	0.75672	0.42058
SCIENCE	science score	0.90013	0.19804
SOCST	social studies score	0.22209	0.92210

Variance Explained by Each Factor

READ	WRITE	MATH	SCIENCE	SOCST
0.73589906	0.70373337	0.74951854	0.84945810	0.89958900

Communality (which is the opposite of uniqueness) is the proportion of variance of the variable (i.e., read) that is accounted for by all of the factors taken together, and a very low communality can indicate that a variable may not belong with any of the factors. From the factor pattern table, we can see that all five of the test scores load onto the first factor, while all five tend to load not so heavily on the second factor. The purpose of rotating the factors is to get the variables to load either very high or very low on each factor. In this example, because all of the variables loaded onto factor 1 and not on factor 2, the rotation did not aid in the interpretation. Instead, it made the results even more difficult to interpret. The scree plot may be useful in determining how many factors to retain.

3.5 + 1 3.0 + 2.5 +

g		
е		1
n		
V		
a		1
1		1
u		1
е	1.5	+
s		1
	1.0	+
		1
		1
	0.5	+
1		

2

See also

• SAS Library: Factor Analysis Using SAS PROC FACTOR (/sas/library/sas-libaryfactor-analysis-using-sas-proc-factor/)

Comment/Error Report (required)

How to cite this page (https://stats.idre.ucla.edu/other/mult-pkg/faq/general/faq-how-do-i-cite-web-pages-and-programs-from-the-ucla-statistical-consulting-group/)

© 2021 UC REGENTS (http://www.ucla.edu/terms-of-use/)

HOME (/) CONTACT (/contact)