Полносвязный слой

• Картинка 32х32х3 вытягиваем в вектор 3072

Каждое применение фильтра к исходной картинке, это операция скалярного умножения и суммирования. Результат **одно** значение

т.е 5х5х3 = 75 – размерное скалярное произведение + смещение

$$w^T x + b$$

Свертка пробегает по входному изображению по всем размерностям высота и ширина

Карта активации

32

Применим еще фильтр

Свертка пробегает по входному изображению по всем размерностям высота и ширина

Карта активации

Получим новое представление изображения 28x28x6

Применим еще четыре фильтра 5x5x3

Свертка пробегает по входному изображению по всем размерностям высота и ширина

7

7

7

7

Применяем ядро размером 3x3 к карте признаков 7x7, шаг=1

7

7

7

7

Как рассчитать размер выходной карты

Размер выходной карты:

$$W = (W-K) / шаг + 1$$

$$H = (H - K) / шаг + 1$$

Картинка 7х7 – ядро 3х3:

Stride
$$1 - (7-3)/1+1=5$$

Stride
$$2 - (7-3)/2 + 1 = 3$$

Stride
$$3 - (7-3)/3 + 1 = 2.3$$

Когда нельзя но очень хочется

Добавим поля к нашей входной карте, если мы хотим пройти сверткой 3х3

Тогда:

Stride 3 - (9 - 3)/3 + 1 = 3

Мы можем не менять размер

картинки:

Stride
$$1 - (9 - 3)/1 + 1 = 7$$

$$K=5$$
, $P=2 - (11 - 5)/1 + 1 = 7$

$$W = (W + 2P - K) / S + 1$$

Сверточная нейросеть

