Agrégation Externe

Éléments algébriques sur un corps

¹Ce problème est en relation avec les leçons d'oral suivante :

- 122 Anneaux principaux. Exemples et applications.
- 125 Extensions de corps. Exemples et applications.
- 141 Polynômes irréductibles à une indéterminée. Corps de rupture. Exemples et applications.

On pourra consulter les ouvrages suivants.

- S. Francinou, H. Gianella, S. Nicolas : Exercices de mathématiques. Oraux X-ENS. Algèbre 1. Cassini (2001).
- S. Francinou, H. Gianella. Exercices de mathématiques pour l'agrégation. Algèbre 1. Masson (1994).
 - P. Samuel. Théorie algébrique des nombres. Hermann (1971).
 - A. SZPIRGLAS. Mathématiques L3. Algèbre. Pearson (2009).
 - P. TAUVEL. Mathématiques générales pour l'agrégation. Masson (1993).

^{1.} Le 05/10/2013

1 Énoncé

Notations et définitions

Définition 1 Une algèbre unitaire sur un corps commutatif \mathbb{K} est un \mathbb{K} -espace vectoriel $(A, +, \cdot)$ muni d'une multiplication interne \times telle que $(A, +, \times)$ soit un anneau unitaire et :

$$\forall \lambda \in \mathbb{K}, \ \forall (a,b) \in A^2, \ \lambda \cdot (a \times b) = (\lambda \cdot a) \times b = a \times (\lambda \cdot b)$$

Une K-algèbre A est intègre si l'égalité ab = 0 dans A équivaut à a = 0 ou b = 0.

Les algèbres considérées dans ce problème sont supposées unitaires. Si A est une \mathbb{K} -algèbre, on note 1 l'unité pour la multiplication de \mathbb{K} ou de A et λa , ab pour $\lambda \cdot a$ et $a \times b$ respectivement.

On note $\mathbb{K}[X]$ l'algèbre des polynômes à coefficients dans un corps \mathbb{K} et pour tout entier naturel n, $\mathbb{K}_n[X]$ est le sous-espace vectoriel de $\mathbb{K}[X]$ formé des polynômes de degré au plus égal à n.

Pour tout polynôme P à coefficients dans un corps \mathbb{K} , on note :

$$(P) = \mathbb{K}[X] \cdot P$$

l'idéal principal de $\mathbb{K}[X]$ engendré par P.

Si A est une algèbre sur un corps \mathbb{K} , pour tout élément α de A, $\mathbb{K}[\alpha]$ est l'image du morphisme d'algèbres :

$$\varphi_{\alpha}: \mathbb{K}[X] \to A$$

$$P = \sum_{k=0}^{n} a_{k} X^{k} \mapsto P(\alpha) = \sum_{k=0}^{n} a_{k} \alpha^{k}$$

avec la convention que $\alpha^0 = 1$ (c'est la sous-K-algèbre de A engendrée par α).

- I - Extensions de corps

Définition 2 Si \mathbb{K} , \mathbb{L} sont deux corps tels que $\mathbb{K} \subset \mathbb{L}$, on dit alors que \mathbb{L} est une extension de \mathbb{K} .

De manière plus générale, une extension d'un corps \mathbb{K} est la donnée d'un couple (\mathbb{L}, φ) où \mathbb{L} est un corps et φ est un morphisme de corps de \mathbb{K} dans \mathbb{L} (un tel morphisme est toujours injectif puisqu'on impose $\varphi(1) = 1$, ce qui permet d'identifier \mathbb{K} au sous-corps $\varphi(\mathbb{K})$ de \mathbb{L}).

Une telle extension \mathbb{L} est une algèbre sur \mathbb{K} . Sa dimension est appelée degré de l'extension et est notée $[\mathbb{L} : \mathbb{K}]$.

Dans le cas où ce degré est fini, on dit que L est une extension finie de K.

Le sous-corps premier d'un corps \mathbb{K} est le sous-corps de \mathbb{K} engendré par 1, c'est-à-dire l'intersection de tous les sous-corps de \mathbb{K} (ou encore le plus petit sous-corps de \mathbb{K}).

Pour tout nombre premier $p \geq 2$, $\mathbb{Z}_p = \frac{\mathbb{Z}}{p\mathbb{Z}}$ désigne le corps commutatif des classes résiduelles modulo p.

- 1. Montrer qu'un corps \mathbb{K} de caractéristique nulle (resp. de caractéristique p) est une extension de \mathbb{Q} (resp. de \mathbb{Z}_p). Préciser, dans chaque cas, le sous-corps premier \mathbb{K}_0 de \mathbb{K} .
- 2. Soit P un polynôme irréductible dans $\mathbb{K}[X]$. Montrer que $\mathbb{L} = \frac{\mathbb{K}[X]}{(P)}$ est une extension de \mathbb{K} dans laquelle le polynôme P a une racine α (corps de rupture de P sur \mathbb{K}), puis que $\mathbb{L} = \mathbb{K}[\alpha]$. Quel est le degré $[\mathbb{L} : \mathbb{K}]$ de cette extension?

Que dire du corps de rupture de $P(X) = X^2 + bX + c$ irréductible dans $\mathbb{R}[X]$?

3. Montrer $[\mathbb{R} : \mathbb{Q}]$ est infini.

4. Soient $\mathbb{K} \subset \mathbb{L} \subset \mathbb{M}$ des corps. Montrer que :

$$[\mathbb{M}:\mathbb{K}]=[\mathbb{M}:\mathbb{L}]\,[\mathbb{L}:\mathbb{K}]$$

- 5. Soit $p \ge 2$ un nombre premier. Montrer que les polynômes $X^2 p$ et $X^3 p$ sont irréductibles dans $\mathbb{Q}[X]$. Peut-on avoir un morphisme de corps de $\frac{\mathbb{Q}[X]}{(X^2 p)}$ dans $\frac{\mathbb{Q}[X]}{(X^3 p)}$?
- 6. Soit \mathbb{L} une extension d'un corps \mathbb{K} de degré $p \geq 2$ premier. Quels sont les corps \mathbb{K} tels que $\mathbb{K} \subset \mathbb{M} \subset \mathbb{L}$.
- 7. Soient \mathbb{L} une extension d'un corps \mathbb{K} et P un polynôme irréductible dans $\mathbb{K}[X]$ de degré $n \geq 1$. Montrer que si $m = [\mathbb{L} : \mathbb{K}]$ est premier avec n, alors P est irréductible dans $\mathbb{L}[X]$.

- II - Nombres algébriques

Définition 3 On dit qu'un élément α d'une algèbre A sur un corps \mathbb{K} est algébrique sur \mathbb{K} , s'il existe un polynôme non nul P dans $\mathbb{K}[X]$ tel que $P(\alpha) = 0$.

Définition 4 Un élément non algébrique d'une K-algèbre A est dit transcendant.

- 1. Soient A une K-algèbre et α un élément de A algébrique sur K.
 - (a) Montrer qu'il existe un unique polynôme unitaire π_{α} dans $\mathbb{K}[X]$ tel que :

$$\{P \in \mathbb{K}[X] \mid P(\alpha) = 0\} = (\pi_a)$$

On dit que π_{α} est le polynôme minimal de α sur \mathbb{K} et le degré de ce polynôme est le degré de α sur \mathbb{K} .

- (b) Montrer que, si A est intègre, alors le polynôme minimal de α est l'unique polynôme unitaire irréductible de $\mathbb{K}[X]$ qui annule α .
- (c) Pour A non intègre, le polynôme minimal est-il irréductible?
- (d) Montrer que:

$$\dim_{\mathbb{K}} \left(\frac{\mathbb{K}[X]}{(\pi_a)} \right) = \dim_{\mathbb{K}} \left(\mathbb{K}[\alpha] \right) = \deg \left(\pi_{\alpha} \right)$$

- (e) Montrer que, si A est intègre, $\mathbb{K}[\alpha]$ est alors un corps.
- (f) Montrer que tout élément β de $\mathbb{K}[\alpha]$ est algébrique sur \mathbb{K} . Comparer les degrés de β et α .
- 2. Soient A une \mathbb{K} -algèbre intègre et α un élément de A. Montrer que les assertions suivantes sont équivalentes :
 - (a) α est algébrique sur \mathbb{K} ;
 - (b) $\mathbb{K}[\alpha]$ est de dimension finie;
 - (c) $\mathbb{K}[\alpha]$ est un corps.
- 3. Soit \mathbb{L} une extension d'un corps \mathbb{K} . Montrer que si $[\mathbb{L} : \mathbb{K}]$ est fini, alors tout élément de \mathbb{L} est algébrique sur \mathbb{K} .
- 4. Montrer que les réels $\alpha = \sqrt{\frac{1+\sqrt{5}}{2}}$, $\beta = \sqrt{2} + \sqrt{3}$, $\gamma = \sqrt{2} + \sqrt[3]{7}$ et $\delta = \sqrt[3]{2} + \sqrt[3]{4}$ sont algébriques sur \mathbb{Q} et calculer les polynômes minimaux correspondants.
- 5. Montrer que l'ensemble des nombres réels algébriques sur Q est dénombrable et en déduire qu'il existe une infinité de nombres réels transcendants.

6.

- (a) Soit α un nombre réel algébrique sur $\mathbb Q$ de degré d. Montrer qu'il existe une constante $C_{\alpha} > 0$ telle que pour tout nombre rationnel $r = \frac{p}{q}$ distinct de α , on ait $\left|\alpha \frac{p}{q}\right| \ge \frac{C_{\alpha}}{q^d}$.
- (b) Soit $(a_n)_{n\geq 1}$ une suite d'entiers compris entre 0 et 9 telle que a_n soit non nul à partir d'un certain rang. Montrer que le réel :

$$\xi = \sum_{n \ge 1} \frac{a_n}{10^{n!}}$$

est transcendant.

- 7. Soit \mathbb{L} une extension de degré 2 d'un corps \mathbb{K} (une extension quadratique de \mathbb{K}). Montrer qu'il existe $\lambda \in \mathbb{L} \setminus \mathbb{K}$ tel que $\lambda^2 \in \mathbb{K}$ et $\mathbb{L} = \mathbb{K}[\lambda]$.
- 8. Soient \mathbb{L} une extension d'un corps \mathbb{K} et \mathbb{M} une extension du corps \mathbb{L} . Montrer que si $\alpha \in \mathbb{M}$ est algébrique sur \mathbb{K} , il est alors algébrique sur \mathbb{L} . Comparer les polynômes minimaux de α sur \mathbb{K} et sur \mathbb{L} .
- 9. Soit \mathbb{L} une extension d'un corps \mathbb{K} . Montrer que si $\alpha \in \mathbb{L} \setminus \{0\}$ est algébrique sur \mathbb{K} alors $\frac{1}{\alpha}$ est aussi algébrique sur \mathbb{K} .
- 10. Soit \mathbb{L} une extension d'un corps \mathbb{K} . Montrer que l'ensemble \mathbb{A} des éléments de \mathbb{L} qui sont algébriques sur \mathbb{K} est un sous-corps de \mathbb{L} contenant \mathbb{K} .
- 11. Soit p un nombre premier.
 - (a) Soit ξ une racine p-ème de l'unité distincte de 1. Montrer que ξ est algébrique sur $\mathbb Q$ et déterminer son polynôme minimal.
 - (b) Soit ξ une racine primitive p^2 -ème de l'unité. Montrer que ξ est algébrique sur \mathbb{Q} et déterminer son polynôme minimal.
- 12. On admettra que pour tout entier $n \geq 2$ le polynôme cyclotomique :

$$\Phi_n(X) = \prod_{\substack{1 \le k \le n-1\\k \land n=1}} \left(X - e^{\frac{2ik\pi}{n}} \right)$$

est irréductible dans $\mathbb{Q}[X]$. On rappelle que ce polynôme est de degré $\varphi(n)$ où φ est la fonction indicatrice d'Euler.

Montrer que pour tout entier naturel non nul n, le réel $\alpha = \cos\left(\frac{2\pi}{n}\right)$ est algébrique sur \mathbb{Q} et préciser son degré.

13.

- (a) Montrer que si \mathbb{L} une extension finie d'un corps \mathbb{K} alors tout élément de \mathbb{L} est algébrique sur \mathbb{K} et il existe des éléments $\alpha_1, \dots, \alpha_p$ dans \mathbb{L} algébriques sur \mathbb{K} tels que $\mathbb{L} = \mathbb{K} [\alpha_1, \dots, \alpha_p]$.
- (b) Soient \mathbb{L} une extension d'un corps \mathbb{K} , p un entier naturel non nul et $\alpha_1, \dots, \alpha_p$ des éléments de \mathbb{L} algébriques sur \mathbb{K} . Montrer que $\mathbb{K}[\alpha_1, \dots, \alpha_p]$ est une extension finie de \mathbb{K} avec $\dim_{\mathbb{K}}(\mathbb{K}[\alpha_1, \dots, \alpha_p]) \leq \prod_{k=1}^p \deg(\alpha_k)$.

14.

(a) Montrer que si $n \in \mathbb{N} \setminus \{0, 1\}$ est sans facteur carré (i.e. $n = \prod_{k=1}^{r} p_k$ où les p_k sont premiers deux à deux distincts), alors le réel \sqrt{n} est algébrique sur \mathbb{Q} de degré 2.

- (b) Soit p_1, \dots, p_n des entiers sans facteur carré dans $\mathbb{N} \setminus \{0, 1\}$ deux à deux premiers entre eux. Calculer le degré sur \mathbb{Q} de $\mathbb{Q}\left[\sqrt{p_1}, \dots, \sqrt{p_n}\right]$ en donnant une base de ce \mathbb{Q} -espace vectoriel.
- (c) Montrer que la famille de réels $\mathcal{L} = \{\sqrt{m} \in \mathbb{N} \setminus \{0,1\} \mid m \text{ est sans facteur carré}\}$ est libre sur \mathbb{Q} .