Tutorial-5, MA 108 (ODE) Spring 2015, IIT Bombay

- 1. Determine if the following improper integrals exist.
 - (a) $\int_0^\infty (t^2+1)^{-1} dt$
 - (b) $\int_{1}^{\infty} t^{-2}e^{t} dt$
- 2. Find the Laplace transform of following functions.
 - (a) $\cosh t \sin t$, (b) $\cosh^2 t$, (c) $t \sinh 2t$, (d) $\sin(t + \frac{\pi}{4})$.
 - (e) $f(t) = \begin{cases} e^{-t}, & 0 \le t < 1\\ e^{-2t}, & t \ge 1 \end{cases}$, (f) $f(t) = \begin{cases} t, & 0 \le t < 1\\ 1, & t \ge 1 \end{cases}$
- 3. (a) Prove that if L(f(t)) = F(s), then $L(t^k f(t)) = (-1)^k F^{(k)}(s)$.

[Hint. Assume that we can differentiate the integral $\int_0^\infty e^{-st} f(t) dt$ with respect to s under the integral sign.]

- (b) Using L(1) = 1/s, show that $L(t^n) = \frac{n!}{s^{n+1}}$, n an integer.
- 4. Show that if f is piecewise continuous and of exponential order, then $\lim_{s\to\infty} F(s) = 0$.
- 5. Show that if f is continuous on $[0,\infty)$ and of exponential order $s_0>0$, then

$$L\left(\int_0^t f(\tau)d\tau\right) = \frac{1}{s}L(f), \quad s > s_0.$$

6. Suppose f is piecewise continuous and of exponential order, and $\lim_{t\to 0+} f(t)$ exists. Show that

$$L\left(\frac{f(t)}{t}\right) = \int_{s}^{\infty} F(r)dr.$$

- 7. Suppose s is piecewise continuous on $[0, \infty)$.
 - (a) Prove: If the integral $g(t) = \int_0^t e^{-s_0\tau} f(\tau) d\tau$ satisfies the inequality $|g(t)| \leq M$, $t \geq 0$, then f has a Laplace transform F(s) defined for $s > s_0$.

[Hint. Use integration by parts to show that

$$\int_0^T e^{-st} f(t)dt = e^{-(s-s_0)T} g(T) + (s-s_0) \int_0^T e^{-(s-s_0)t} g(t)dt$$

- (b) Show that if L(f) exists for $s = s_0$, then it exists for $s > s_0$.
- (c) Show that the function $f(t) = te^{t^2} \cos(e^{t^2})$ has a Laplace transform defined for s > 0, even though f is not of exponential order.

8. Find the Laplace transform of the following functions.

(a)
$$\frac{\sin \omega t}{t}$$
, $\omega > 0$, (b) $\frac{e^{at} - e^{bt}}{t}$, (c) $\frac{\cosh t - 1}{t}$, (d) $\frac{\sinh^2 t}{t}$.

(b)
$$\frac{e^{at} - e^{bt}}{t}$$

(c)
$$\frac{\cosh t - 1}{t}$$
,

(d)
$$\frac{\sinh^2 t}{t}$$

9. The **Gamma function** defined by

$$\Gamma(\alpha) = \int_0^\infty x^{\alpha - 1} e^{-x} dx$$

can be shown to converge, if $\alpha > 0$.

- (a) Use integration by parts to show that $\Gamma(\alpha + 1) = \alpha \Gamma(\alpha)$, $\alpha > 0$.
- (b) Show that $\Gamma(n+1) = n!$, if $n = 1, 2, \ldots$
- (c) $L(t^{\alpha}) = \frac{\Gamma(\alpha+1)}{s^{\alpha+1}}$, s > 0 holds if α is a non-negative integer. Show that this formula is
- 10. Suppose f is continuous on [0,T] and f(t+T)=f(t) for all $t\geq 0$. We say f is periodic with period T.
 - (a) Show that the Laplace transform L(f) is defined for s > 0.
 - (b) Show that

$$F(s) = \frac{1}{1 - e^{-sT}} \int_0^T e^{-st} f(t) dt, \quad s > 0$$

11. Find the Laplace transform of the following periodic functions.

(a)
$$f(t) = \begin{cases} t, & 0 \le t < 1 \\ 2 - t, & 1 \le t < 2 \end{cases}$$
, $f(t+2) = f(t), t \ge 0$.

(b)
$$f(t) = \begin{cases} 1, & 0 \le t < 1/2 \\ -1, & 1/2 \le t < 1 \end{cases}$$
, $f(t+1) = f(t), t \ge 0$.

(c)
$$f(t) = \begin{cases} \sin t, & 0 \le t < \pi \\ 0, & \pi \le t < 2\pi \end{cases}$$
, $f(t + 2\pi) = f(t), t \ge 0$.

- (d) $f(t) = |\sin t|$.
- 12. Find the inverse Laplace transform of the following functions

(a)
$$\frac{3}{(s-7)^4}$$
, (b) $\frac{2s-4}{s^2-4s+13}$, (c) $\frac{s^2-1}{(s^2+1)^2}$, (d) $\frac{s^2-4s+3}{(s^2-4s+5)^2}$, (e) $\frac{s^3+2s^2-s-3}{(s+1)^4}$,

(f)
$$\frac{3-(s+1)(s-2)}{(s+1)(s+2)(s-2)}$$
, (g) $\frac{3+(s-2)(10-2s-s^2)}{(s-2)(s+2)(s-1)(s+3)}$, (h) $\frac{2+3s}{(s^2+1)(s+2)(s+1)}$,

(i)
$$\frac{3s+2}{(s^2+4)(s^2+9)}$$
, (j) $\frac{17s-15}{(s^2-2s+5)(s^2+2s+10)}$, (k) $\frac{2s+1}{(s^2+1)(s-1)(s-3)}$.

13. Solve the following IVP's using Laplace transforms.

(a)
$$y'' + 3y' + 2y = e^t$$
, $y(0) = 1$, $y'(0) = -6$,

(b)
$$y'' - 3y' + 2y = 2e^{3t}$$
, $y(0) = 1$, $y'(0) = -1$.

(c)
$$y'' + y = \sin 2t$$
, $y(0) = 0$, $y'(0) = 1$,

(d)
$$y'' + 4y = 3\sin t$$
, $y(0) = 1$, $y'(0) = -1$.

(e)
$$y'' + y = t$$
, $y(0) = 0$, $y'(0) = 2$,

(f)
$$y'' + 2y' + y = 6\sin t - 4\cos t$$
, $y(0) = -1$, $y'(0) = 1$.

(g)
$$y'' - 5y' + 6y = 10e^t \cos t$$
, $y(0) = 2$, $y'(0) = 1$,

(h)
$$y'' + 4y' + 5y = e^{-t}(\cos t + 3\sin t)$$
, $y(0) = 0$, $y'(0) = 4$.

14. Suppose that

$$g(t) = \int_0^t f(r) \ dr.$$

If G(s) and F(s) are Laplace transforms of g and f respectively, show that

$$G(s) = F(s)/s$$
.