УДК 681.3

Свойства бисимуляции разметок в ограниченных сетях Петри

Башкин В.А. Ярославский государственный университет 150000, Ярославль, Советская, 14 получена 22 марта 2006

Аннотация

Рассматривается проблема поиска бисимулярных разметок в ограниченных сетях Петри. Вводятся и исследуются специальные виды бисимуляции для случая ограниченных сетей, в том числе расширение бисимуляции достижимых разметок — отношение, учитывающее кроме достижимых разметок еще и все разметки, бисимулярные достижимым (среди которых могут быть и неограниченные). Доказана разрешимость расширения бисимуляции разметок. Вводится понятие элементарного расширения бисимуляции — конечного подмножества полного расширения, в которое входят только минимальные (относительно вложения) пары разметок. Доказана вычислимость элементарного расширения бисимуляции (предложен алгоритм его построения).

1. Введение

Сети Петри являются одним из наиболее распространенных формализмов, используемых при моделировании сложных систем. Они применяются в разных областях — от разработки параллельных и распределенных информационных систем до моделирования бизнес-процессов. Обыкновенные сети Петри могут содержать бесконечно много состояний и по выразительной мощности находятся строго между конечными автоматами и машинами Тьюринга (и при этом не сравнимы с магазинными автоматами). В частности, для них разрешимы проблемы достижимости, останова, живости и ограниченности и неразрешима проблема эквивалентности языков.

Понятие эквивалентности поведений — одно из центральных понятий теории формальных систем. Для сравнения поведения параллельных и распределенных систем Д.Парком и Р.Милнером в начале 80-х гг. было введено понятие бисимуляционной эквивалентности. Бисимуляция обладает четкой математической трактовкой и более тонко отслеживает ветвления в дереве срабатываний системы по сравнению с языковой эквивалентностью. Два состояния системы бисимулярны, если внешний наблюдатель, который видит только метки срабатываний переходов, по наблюдаемому поведению системы не может определить, с какого из этих двух состояний она начала работу. Для сетей Петри проблема определения бисимулярности двух состояний (разметок) неразрешима [2].

В данной работе рассматривается сужение класса обыкновенных сетей Петри — ограниченные сети Петри. Ограниченные сети — это сети с заданной начальной разметкой, причем такой, что множество достижимых от нее разметок конечно. Очевидно, что бисимуляция достижимых разметок в ограниченных сетях разрешима (благодаря конечности самого множества достижимых разметок). Однако при этом следует отметить, что ограниченность сети — это свойство начальной разметки, а не самой структуры сети. Наряду с достижимыми разметками мы можем рассматривать и разметки, недостижимые от заданной начальной разметки. Этих разметок бесконечно много, причем некоторые из них, в свою очередь, могут порождать бесконечные множества достижимости. При этом, несмотря на неограниченность, такие разметки могут быть бисимулярны заданной начальной (ограниченной) разметке.

В данной работе исследуются свойства нескольких специальных видов бисимуляции в ограниченных сетях Петри — бисимуляции ограниченных разметок, бисимуляции достижимых разметок и расширения бисимуляции достижимых разметок. В частности, доказано, что все эти отношения разрешимы.

Вводится понятие элементарного расширения бисимуляции — сокращенный вариант (полного) расширения бисимуляции, в котором рассматриваются не все бисимулярные разметки, а только минимальные (относительно вложения). Элементарное расширение можно рассматривать как конечный базис (полного) расширения. В работе доказана вычислимость элементарного расширения бисимуляции. Предложен алгоритм, вычисляющий все минимальные (по вложению) разметки, бисимулярные данной достижимой разметке ограниченной сети Петри.

2. Основные определения

Через Nat обозначим множество неотрицательных целых чисел.

Пусть X — непустое множество.

Mультимножеством M над множеством X называется функция $M:X \to N$ ат. Мощность мультимножества $|M| = \sum_{x \in X} M(x)$. Числа $\{M(x) \mid x \in X\}$ называются коэффициентами мультимножества, коэффициент M(x) определяет число экземпляров элемента x в M. Мультимножество M конечно, если конечно множество $\{x \in X \mid M(x) > 0\}$. Множество всех конечных мультимножеств над данным множеством X обозначается как M(X).

Операции и отношения теории множеств естественно расширяются на конечные мультимножества.

Пусть $M_1, M_2, M_3 \in \mathcal{M}(X)$. Полагаем: $M_1 = M_2 + M_3 \Leftrightarrow \forall x \in X \ M_1(x) = M_2(x) + M_3(x) -$ операция сложения двух мультимножеств; $M_1 = M_2 - M_3 \Leftrightarrow \forall x \in X \ M_1(x) = M_2(x) \ominus M_3(x) -$ разность мультимножеств (где \ominus — вычитание до нуля).

Сетью Петри называется набор N=(P,T,F), где P — конечное множество позиций; T — конечное множество переходов, $P\cap T=\emptyset$; $F:(P\times T)\cup (T\times P)\to Nat$ — функция инцидентности.

Pазметкой (состоянием) сети N называется функция вида $M:P\to Nat$, сопоставляющая каждой позиции сети некоторое натуральное число (или ноль). Разметка может рассматриваться как мультимножество над множеством позиций сети.

Графически сеть Петри изображается как двудольный ориентированный граф. Вершины-позиции изображаются кружками и характеризуют локальные состояния сети, вершины-переходы изображаются прямоугольниками и соответствуют действиям. Дуги соответствуют элементам F. Позиции могут содержать маркеры (фишки), изображаемые черными точками. При разметке M в каждую позицию p помещается M(p) фишек.

Для перехода $t \in T$ через ${}^{\bullet}t$ и t^{\bullet} обозначим мультимножества его входных и выходных позиций, такие, что $\forall p \in P$ ${}^{\bullet}t(p) =_{def} F(p,t)$, $t^{\bullet}(p) =_{def} F(t,p)$. Переход $t \in T$ готов κ срабатыванию при разметке M, если ${}^{\bullet}t \subseteq M$ (все входные позиции содержат достаточное количество фишек). Готовый κ срабатыванию переход t может сработать, порождая новую разметку $M' =_{def} M - {}^{\bullet}t + t^{\bullet}$ (используется обозначение $M \xrightarrow{t} M'$).

Понятие срабатывания переходов может быть обобщено на случай последовательностей: пусть $\sigma = t_1.t_2...t_n$, тогда $M \stackrel{\sigma}{\to} M'$ обозначает последовательность срабатываний $M \stackrel{t_1}{\to} M_1 \stackrel{t_2}{\to} M_2 \stackrel{t_3}{\to} \cdots \stackrel{t_n}{\to} M'$.

 $M \to M'$ обозначает возможность какого-либо срабатывания, переводящего разметку M в разметку M'. При этом говорят, что M' достижима от M. Множество всех разметок сети N, достижимых от начальной разметки M, обозначается как $\mathcal{R}(M)$.

Разметка M сети N называется ограниченной, если множество $\mathcal{R}(M)$ — конечно.

Срабатывания переходов в сети Петри соответствуют различным наблюдаемым событиям в моделируемой системе. Чтобы идентифицировать их, переходы помечаются специальными метками. Пусть Act — множество таких меток.

Помеченной сетью Петри называется набор N=(P,T,F,l), где (P,T,F) — сеть Петри, $l:T\to Act$ — помечающая функция.

Запись $M \stackrel{a}{\to} M'$, где $a \in Act$, означает, что существует переход $t \in T$, такой что l(t) = a и $M \stackrel{t}{\to} M'$.

Скажем, что отношение $R\subseteq \mathcal{M}(P)\times \mathcal{M}(P)$ называется бисимуляцией разметок, если для любой пары $(M_1,M_2)\in R$ и для любого $a\in Act$:

- ullet если $M_1\stackrel{a}{ o} M_1'$, то $M_2\stackrel{a}{ o} M_2'$, причем $(M_1',M_2')\in R;$ и
- если $M_2 \stackrel{a}{\to} M_2'$, то $M_1 \stackrel{a}{\to} M_1'$, причем $(M_1', M_2') \in R$.

Объединение всех бисимуляций разметок обозначается как \sim . Известно, что для любой сети отношение \sim является бисимуляцией разметок.

Также существует понятие i-бисимуляции (обозначается \sim_i). Оно определяется индуктивно:

Во-первых, полагаем $M_1 \sim_0 M_2$ для любых $M_1, M_2 \in \mathcal{M}(P)$. Далее, для любого $n \in Nat$ полагаем $M_1 \sim_{n+1} M_2$, если для любого $a \in Act$:

- если $M_1 \stackrel{a}{\to} M_1'$, то $M_2 \stackrel{a}{\to} M_2'$, причем $M_1' \sim_n M_2'$; и
- если $M_2 \stackrel{a}{\rightarrow} M_2'$, то $M_1 \stackrel{a}{\rightarrow} M_1'$, причем $M_1' \sim_n M_2'$.

Для любого i отношение \sim_i является отношением эквивалентности, кроме того, $\sim_{i+1} \subseteq \sim_i$. Также выполняется $M_1 \sim M_2 \Leftrightarrow M_1 \sim_i M_2$ для любого $i \in Nat$.

Известно [3], что проблема бисимулярности разметок неразрешима, то есть не существует алгоритма, определяющего за конечное число шагов, являются ли данные две разметки бисимулярными. Проблема i-бисимулярности разметок разрешима для любого i. Известно следующее свойство:

Лемма 1. [4] Пусть $M, M' \in \mathcal{M}(P)$, где $|\mathcal{R}(M)| = n < \infty$. Тогда

$$M \sim M' \iff M \sim_n M' \land \mathcal{R}(M') \cap Inc(N, M) \neq \emptyset.$$

Здесь Inc(N, M) обозначает множество несовместимых с M разметок сети N. Это линейное множество, которое может быть эффективно построено. Выполнение условия $\mathcal{R}(M') \cap Inc(N, M) \neq \emptyset$ может быть установлено при помощи алгоритма определения достижимости подразметки. Отсюда следует разрешимость проблемы бисимулярности ограниченной и неограниченной разметок сети Петри [4].

3. Специальные виды бисимуляции ограниченных сетей Петри

Введем три сужения отношения бисимуляции разметок, которые тем или иным образом учитывают свойства ограниченности и достижимости разметок ограниченной сети Петри.

Пусть N = (P, T, F, l) — помеченная сеть Петри, M_0 — ограниченная разметка сети N.

Определение 1. Бисимуляцией достижимых разметок называется множество

$$R(N, M_0) = \{(M_1, M_2) \in \mathcal{M}(P) \times \mathcal{M}(P) \mid M_1 \sim M_2 \land M_1 \in \mathcal{R}(M_0) \land M_2 \in \mathcal{R}(M_0)\}.$$

Определение 2. Бисимуляцией ограниченных разметок называется множество

$$B(N) = \{ (M_1, M_2) \in \mathcal{M}(P) \times \mathcal{M}(P) \mid M_1 \sim M_2 \land |\mathcal{R}(M_1)| < \infty \land |\mathcal{R}(M_2)| < \infty \}.$$

Определение 3. Расширением бисимуляции (достижимых разметок) называется множество

$$E(N, M_0) = \{ (M_1, M_2) \in \mathcal{M}(P) \times \mathcal{M}(P) \mid \exists M_3 \in \mathcal{R}(M_0) : M_1 \sim M_2 \sim M_3 \}.$$

Пример ограниченной сети Петри и отношений $R(N, M_0), B(N), E(N, M_0)$ и (\sim) представлен на рис. 1.

Рис. 1. Пример отношений $R(N, M_0), B(N), E(N, M_0)$ и (\sim)

Утверждение 1. Для любых сети N и ограниченной разметки M_0 :

- 1. $|R(N, M_0)| < \infty$;
- 2. $R(N, M_0) \subseteq B(N) \subseteq (\sim)$;
- 3. $R(N, M_0) \subset E(N, M_0) \subset (\sim)$;
- 4. $B(N), R(N, M_0)$ и $E(N, M_0)$ отношения бисимуляции.

Доказательство. (1) Следует из конечности множества $\mathcal{R}(M_0)$.

- (2-3) $R(N, M_0) \subseteq B(N)$ следует из того, что для любой разметки $M \in \mathcal{R}(M_0)$ выполняется $|\mathcal{R}(M)| < \infty$. $R(N, M_0) \subseteq E(N, M_0)$ следует из определений $R(N, M_0)$ и $E(N, M_0)$.
- $B(N)\subseteq (\sim)$ и $E(N,M_0)\subseteq (\sim)$ следуют из того, что (\sim) наибольшая бисимуляция разметок.
- (4) Легко убедиться, что все эти отношения замкнуты относительно срабатывания переходов сети. 🗆

Утверждение 2. Найдутся сеть N и ограниченная разметка M_0 , такие, что:

1.
$$|B(N)| = |E(N, M_0)| = \infty$$
;

- 2. $R(N, M_0) \subset B(N) \subset (\sim)$;
- 3. $R(N, M_0) \subset E(N, M_0) \subset (\sim);$
- 4. $B(N) \not\subseteq E(N, M_0) \wedge E(N, M_0) \not\subseteq B(N)$.

Доказательство. См. пример сети на рисунке 1.

Теорема 1. Отношения B(N), $R(N, M_0)$ и $E(N, M_0)$ разрешимы.

(Существуют алгоритмы, отвечающие на вопросы " $(M_1,M_2)\in B(N)$?", " $(M_1,M_2)\in R(N,M_0)$?" и " $(M_1,M_2)\in E(N,M_0)$?" для произвольной сети N, произвольной ограниченной разметки M_0 и произвольных разметок M_1 и M_2 .)

Доказательство. Поскольку отношениями B(N) и $R(N,M_0)$ могут быть связаны только ограниченные разметки, в случае неограниченности одной из разметок M_1 и M_2 ответ на вопрос отрицательный. Установить ограниченность разметок можно при помощи алгоритма построения полного покрывающего дерева сети Петри [1]. Таким образом, для доказательства разрешимости B(N) и $R(N,M_0)$ достаточно доказать разрешимость бисимулярности ограниченных разметок. Заметим, что две ограниченные разметки порождают две системы с конечным числом состояний, а их бисимулярность можно установить простым перебором всех состояний.

Отношением $E(N, M_0)$ могут быть связаны неограниченные разметки. Однако из $(M_1, M_2) \in E(N, M_0)$ следует существование достижимой разметки $M_3 \in \mathcal{R}(M_0)$, такой что $M_1 \sim M_2 \sim M_3$. Поскольку множество $\mathcal{R}(M_0)$ конечно и мы можем его эффективно перебрать, разрешимость $E(N, M_0)$ сводится к разрешимости бисимулярности ограниченной и неограниченной разметок. Разрешимость этой проблемы следует из леммы 1.

Свойства отношений $B(N), R(N, M_0)$ и $E(N, M_0)$ можно представить в виде диаграммы:

Рис. 2. Свойства отношений бисимуляции

4. Элементарное расширение бисимуляции

Из диаграммы видно, что наибольший практический интерес представляет отношение $E(N, M_0)$. Вопервых, в нем учитываются неограниченные разметки. Во-вторых, не рассматриваются неактуальные разметки, то есть те состояния, которые в принципе не могут быть получены в моделируемой системе (например, состояния с фишками в позиции p_3 для сети на рисунке 1).

Однако множество $E(N, M_0)$ может содержать бесконечно много пар разметок. Следовательно, для его практического использования необходимо уметь строить какие-то конечные представления или подмножества.

Определение 4. Элементарным расширением бисимуляции называется множество

$$EL(N, M_0) = \{ (M_1, M_2) \in E(N, M_0) \mid \not\exists M_3 \in \mathcal{M}(P) : (M_1 \sim M_2 \sim M_3 \land (M_3 \subset M_1 \lor M_3 \subset M_2)) \}.$$

Другими словами, элементарное расширение — это подмножество (полного) расширения, где в каждом классе эквивалентности оставлены только попарно несравнимые разметки.

Утверждение 3. Для любых сети N и ограниченной разметки M_0 :

- 1. $|EL(N, M_0)| < \infty$;
- 2. $EL(N, M_0)$ отношение эквивалентности.

Доказательство. (1) Следует из конечности $\mathcal{R}(M_0)$, а также из конечности любого множества попарно несравнимых векторов с целыми неотрицательными коэффициентами.

(2) Следует из определений.

Утверждение 4. Найдутся сеть N и ограниченная разметка M_0 , такие, что $EL(N,M_0)$ не является бисимуляцией разметок.

Доказательство. См. рисунок 3.

$$E(N, M_0) = \{ (np_1 + mp_2, kp_1 + lp_2) \mid n + m, k + l > 0 \}$$

$$EL(N, M_0) = \{ (p_1, p_1), (p_2, p_2), (p_1, p_2), (p_2, p_1) \}$$

Рис. 3. Пример отношений $E(N, M_0)$ и $EL(N, M_0)$

Теорема 2. *Множество* $EL(N, M_0)$ вычислимо.

В качестве доказательства приведем алгоритм построения $EL(N, M_0)$ (см. далее). Пусть $M \in \mathcal{M}(P)$. Через Act(M) обозначим множество меток переходов, готовых к срабатыванию:

$$Act(M) =_{def} \{ a \in Act \mid \exists t \in T : (M \xrightarrow{t} M' \land l(t) = a) \}.$$

Аналогично для множества переходов $U\subseteq T$ через Act(U) обозначим множество всех его меток:

$$Act(U) =_{def} \{a \in Act \mid \exists t \in U \ : \ l(t) = a\}.$$

Пусть $U\subseteq T$ — некоторое множество переходов. Через ${}^{ullet} U$ обозначим его (минимальное) предусловие:

$$U =_{def} \bigcup_{t \in U} t.$$

Лемма 2. Пусть $M, M' \in \mathcal{M}(P)$. Тогда $Act(M) = Act(M') \iff M \sim_1 M'$.

Доказательство. Следует из того, что $M \sim_0 M'$ для любых M и M'.

Алгоритм. (построения элементарного расширения бисимуляции)

ввод : Сеть Петри N=(P,T,F,l), ограниченная разметка $M_0\in\mathcal{M}(P)$.

вывод: Множество $EL(N, M_0)$.

mar I: Пусть $EL(N, M_0) = \{(\emptyset, \emptyset)\}.$

 $\mathbf{mar}\ \mathbf{H}: Для каждой разметки <math>M \in \mathcal{R}(M_0)$ (далее $n = |\mathcal{R}(M)|$):

- 1. Положим $B = \emptyset$, $C = \{M' \in \mathcal{M}(P) \mid \exists U \subseteq T : (Act(U) = Act(M) \land M' = {}^{\bullet}U)\}.$
- 2. Пока в C есть элементы, будем выполнять следующие действия:
- 2.1. Удалим из C каждую разметку M', для которой найдется $M'' \in B$, такая что $M'' \subseteq M'$.
- 2.2. Удалим из C каждую разметку M', для которой выполняется $\mathcal{R}(M')\cap Inc(N,M) \neq \emptyset$.
- 2.3. Рассмотрим произвольную разметку $M' \in C$. Определим наибольшее $m \le n$, такое что $M \sim_m M'$. (Из леммы 2 следует, что m > 0.)

Если m=n, то добавим (M,M') и (M',M) в $EL(N,M_0)$, добавим M' в B, удалим M' из C и вернемся на шаг 2.

Если m < n, то возможны две ситуации:

- (a) для некоторого срабатывания $M \stackrel{\sigma}{\to} L$, такого что $|\sigma| = m$, не найдется имитирующего срабатывания $M' \stackrel{\sigma'}{\to} L'$, такого что $l(\sigma) = l(\sigma')$ и $L \sim_1 L'$;
- (б) для некоторого срабатывания $M' \xrightarrow{\sigma'} L'$, такого что $|\sigma'| = m$, не найдется имитирующего срабатывания $M \xrightarrow{\sigma} L$, такого что $l(\sigma) = l(\sigma')$ и $L \sim_1 L'$.

Также возможна комбинация (а) и (б).

Заметим, что поскольку $M \sim_m M'$, сами последовательности σ и σ' всегда существуют. Не выполниться может только требование $L \sim_1 L'$. Согласно лемме 2, условия (а) и (б) можно переписать:

(a')
$$Act(L) \setminus Act(L') \neq \emptyset$$
; (6') $Act(L') \setminus Act(L) \neq \emptyset$.

Выполнение условия (6') означает, что от M не достижима ни одна разметка, которая правильно 1-симулирует разметку L', достижимую от M'. В таком случае удаляем M' из C и возвращаемся на шаг 2.

Рассмотрим ситуацию, когда выполнено только условие (а'):

Пусть $L'(\sigma) = \{L' \in \mathcal{M}(P) \mid \exists \sigma' : (M' \xrightarrow{\sigma'} L' \land l(\sigma) = l(\sigma'))\}$ — множество "потенциально имитирующих разметок". Для каждой разметки $L' \in L'(\sigma)$ и для каждого $U \subseteq T : Act(U) = Act(L) \setminus Act(L')$ добавим в C разметку $M' + ({}^{\bullet}U - L')$, а затем вернемся на шаг 2.

Алгоритм заканчивает свою работу за конечное число шагов, так как на шаге II рассматривается конечное множество $\mathcal{R}(M_0)$, а на шаге 1 в множество C помещается конечное число разметок. Кроме того, в ходе шага 2 при увеличении разметки (элемента множества C) строго увеличивается количество готовых к срабатыванию переходов. Очевидно, что это может привести либо к возникновению ситуации (б') (и прерыванию данной ветви алгоритма), либо к увеличению значения m. Поскольку m ограниченс сверху n, этот процесс не может продолжаться бесконечно долго.

Из вычислимости множества $EL(N, M_0)$ следует более слабое утверждение о разрешимости:

Следствие 1. Отношение $EL(N, M_0)$ разрешимо.

5. Заключение

Найденные при помощи предложенного алгоритма разметки наряду с достижимыми бисимулярными разметками могут быть использованы, например, в качестве альтернатив текущему состоянию системы. В частности, смена состояния на бисимулярное может применяться при адаптивном управлении потоками работ (workflow) [2], когда контролирующая программа "на лету" модифицирует состояние процесса в ответ на изменение внешних условий или возникновение каких-либо внутренних событий (системных сбоев и т.п.). Модели потоков работ (WF-сети) являются частным случаем ограниченных сетей Петри.

Список литературы

- 1. Котов В.Е. Сети Петри. М.: Наука. 1984.
- 2. Bashkin V.A. Applications of Marking Bisimulation for Adaptive Workflow Management // Proc. of CS&P'2005. Warsaw. 2005. P.41-49.
- 3. Jancar P. Decidability questions for bisimilarity of Petri nets and some related problems // Proc. of STACS'94. LNCS 775. 1994. P.581-592.
- 4. Jancar P., Moller F. Checking regular properties of Petri nets // Proc. of CONCUR'95. LNCS 962, 1995. P.348-362.
- 5. Milner R. A Calculus of Communicating Systems // LNCS 92. 1980