Badanie zależności między cechami

Obserwujemy dwie cechy: X oraz Y Obiekt $\longrightarrow (X, Y)$

 H_0 : Cechy X oraz Y są niezależne

Próba: $(X_1, Y_1), \dots, (X_n, Y_n)$

Cechy X, Y są dowolnego typu: **Test Chi–Kwadrat niezależności**

Łączny rozkład cech X, Y jest normalny: Test współczynnika korelacji Pearsona

Cechy X, Y są typu ciągłego:

Test współczynnika korelacji rangowej Spearmana

Test współczynnika korelacji rangowej Kendalla

Test Chi-Kwadrat niezależności

(poziom istotności α)

Klasy	Klasy cechy X			
$\operatorname{cechy} Y$	1	2		m
1	n_{11}	n_{12}		$\overline{n_{1m}}$
2	n_{21}	n_{22}		n_{2m}
•	•	•		•
k	n_{k1}	n_{k2}		n_{km}

Statystyka testowa

$$\chi_{\text{emp}}^2 = \sum_{i=1}^k \sum_{j=1}^m \frac{(n_{ij} - n_{ij}^t)^2}{n_{ij}^t}$$

$$n_{ij}^t = \frac{n_i \cdot n_{\cdot j}}{N}, \ N = \sum_{i=1}^k \sum_{j=1}^m n_{ij}$$

$$n_{i.} = \sum_{j=1}^{m} n_{ij}, \ n_{\cdot j} = \sum_{i=1}^{k} n_{ij}$$

Jeżeli $\chi^2_{\rm emp} > \chi^2(\alpha; (k-1)(m-1)),$ to hipotezę H_0 odrzucamy

Przykład. W celu zbadania istnienia związku między wykształceniem (X) a zarobkami (Y) wylosowano 950 osób. Uzyskano następujące dane

	podstawowe	średnie	wyższe	ponad wyższe
	(W_1)	(W_2)	(W_3)	(W_4)
$(Z_1) \leq 500$	21	41	93	47
(Z_2) 500-1000	33	37	35	53
$(Z_3 1000-1500$	45	75	27	43
(Z_4) 1500-2000	30	48	50	55
$(Z_5) \ge 2000$	71	47	49	50

Czy powyższe świadczą o istnieniu zależności między wykształceniem i zarobkami?

Populacja

Cechy X, Y para cech (wykształcenie, zarobki)

Założenia

obie cechy traktowane są jakościowo

Formalizacja

W celu uzyskania odpowiedzi na postawione pytanie formułowana jest hipoteza o wzajemnej niezależności wykształcenia i zarobków

 H_0 : cechy X oraz Y są niezależne

Technika statystyczna

Test chi–kwadrat niezależności poziom istotności $\alpha=0.05$

Obliczenia

Zbadano łącznie N=950 osób Liczebności brzegowe:

$$n_{1.} = 21 + 41 + 93 + 47 = 202$$

 $n_{2.} = 158, n_{3.} = 190, n_{4.} = 183, n_{5.} = 217$
 $n_{.1} = 21 + 33 + 45 + 30 + 71 = 200$
 $n_{.2} = 248, n_{.3} = 254, n_{.4} = 248.$

	W_1	W_2	W_3	W_4	
Z_1	$n_{11} = 21$	$n_{12} = 41$	$n_{13} = 93$	$n_{14} = 47$	$n_1 = 202$
Z_2	$n_{21} = 33$	$n_{22} = 37$	$n_{23} = 35$	$n_{24} = 53$	$n_2.\!=\!158$
Z_3	$n_{31} = 45$	$n_{32} = 75$	$n_{33} = 27$	$n_{34} = 43$	$n_3. = 190$
Z_4	$n_{41} = 30$	$n_{42} = 48$	$n_{43} = 50$	$n_{44} = 55$	$n_4. = 183$
Z_5	$n_{51} = 71$	$n_{52} = 47$	$n_{53} = 49$	$n_{54} = 50$	n ₅ .=217
	$n_{\cdot 1} = 200$	n2 = 248	n3 = 254	$n{4}=248$	N=950

Liczebności teoretyczne:

$$n_{11}^{t} = \frac{n_{1} \cdot n_{1}}{N} = \frac{202 \cdot 200}{950} = 42.5263$$
$$n_{43}^{t} = \frac{n_{4} \cdot n_{3}}{N} = \frac{183 \cdot 254}{950} = 48.9284$$

Wyznaczenie $(n_{ij} - n_{ij}^t)^2/n_{ij}^t$ dla wszystkich dwudziestu kombinacji i, j.

$$\frac{(n_{11} - n_{11}^t)^2}{n_{11}^t} = \frac{(21 - 42.5263)^2}{42.5263} = 10.8964$$

$$\frac{(n_{43} - n_{43}^t)^2}{n_{42}^t} = \frac{(50 - 48.9284)^2}{48.9284} = 0.0235$$

	W_1	W_2	W_3	W_4	
Z_1		$n_{12}^t = 52.7326$			
Z_2		$n_{22}^t = 41.2463$			
Z_3		$n_{32}^t = 49.6000$		_	
Z_4		$n_{42}^t = 47.7726$	$n_{43}^t = 48.9284$		
Z_5	$n_{51}^t = 45.6842$	$n_{52}^t = 56.6484$	$n_{53}^t = 58.0189$	$n_{54}^t = 56.6484$	

	W_1	W_2	W_3	W_4	
$\overline{Z_1}$					
	10.8964	2.6104	28.1501	0.6232	
Z_2					
	0.0021	0.4372	1.2423	3.3494	
$\overline{Z_3}$	0.0021	0.4012	1.2420	0.0404	
\mathbb{Z}_3					
	0.6250	13.0073	11.1504	0.8782	
$\overline{Z_4}$					
	1.8870	0.0011	0.0235	1.0934	
Z_5					
	14 0007	1 6499	1 4000	0 7000	
	14.0287	1.6433	1.4020	0.7803	

Wartość statystyki testowej

$$\chi^2_{\rm emp} = 93.8311$$

Wartość krytyczna

$$\chi^2(0.05; 12) = 21.0261$$

Odpowiedź

Hipotezę odrzucamy

Wniosek

Stwierdzamy istnienie zależności między wykształceniem i zarobkami