06.10.2004

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日 Date of Application:

2003年10月15日

出 願 番 号 Application Number:

特願2003-355580

[ST. 10/C]:

[JP2003-355580]

REC'D 26 NOV 2004

WIPO

PCT

出 願 人
Applicant(s):

本田技研工業株式会社

PRIORITY DOCUMENT SUBMITTED OR TRANSMITTED IN

COMPLIANCE WITH
RULE 17.1(a) OR (b)

2004年11月12日

特許庁長官 Commissioner, Japan Patent Office) (1)

【書類名】 特許願 【整理番号】 H0-0336

【提出日】平成15年10月15日【あて先】特許庁長官 殿【国際特許分類】H01L 41/26
H01L 41/09

【発明者】

【住所又は居所】 埼玉県和光市中央一丁目4番1号 株式会社本田技術研究所内

【氏名】 服部 達哉

【発明者】

【住所又は居所】 埼玉県和光市中央一丁目4番1号 株式会社本田技術研究所内

【特許出願人】

【識別番号】 000005326

【氏名又は名称】 本田技研工業株式会社

【代理人】

【識別番号】 100080012

【弁理士】

【氏名又は名称】 高石 橘馬 【電話番号】 03(5228)6355

【手数料の表示】

【予納台帳番号】 009324 【納付金額】 21,000円

【提出物件の目録】

【物件名】 特許請求の範囲 1

 【物件名】
 明細書 1

 【物件名】
 図面 1

 【物件名】
 要約書 1

 【包括委任状番号】
 9713034

【請求項1】

導電性高分子及びドーパントを含有する導電性粉末からなる圧粉体と、イオン供給体と、作用電極と、対極とからなり、前記作用電極と前記対極との間に電圧を印加することにより収縮又は伸張することを特徴とする高分子アクチュエータ。

【請求項2】

請求項1に記載の高分子アクチュエータにおいて、前記導電性高分子が共役構造を有することを特徴とする高分子アクチュエータ。

【請求項3】

請求項1又は2に記載の高分子アクチュエータにおいて、前記導電性高分子がポリピロール、ポリチオフェン、ポリアニリン、ポリアセチレン及びこれらの誘導体からなる群より選ばれた少なくとも一種からなることを特徴とする高分子アクチュエータ。

【請求項4】

請求項1~3のいずれかに記載の高分子アクチュエータにおいて、前記イオン供給体が 電解質及び/又は導電性高分子を含有することを特徴とする高分子アクチュエータ。

【請求項5】

請求項1~4のいずれかに記載の高分子アクチュエータにおいて、前記イオン供給体が 溶液、ゾル、ゲル又はこれらの組合せであることを特徴とする高分子アクチュエータ。

【請求項6】

請求項1~5のいずれかに記載の高分子アクチュエータにおいて、前記イオン供給体が 両親媒性化合物を含有することを特徴とする高分子アクチュエータ。

【請求項7】

請求項1~6のいずれかに記載の高分子アクチュエータにおいて、前記イオン供給体が バインダー機能を有することを特徴とする高分子アクチュエータ。

【請求項8】

請求項1~7のいずれかに記載の高分子アクチュエータにおいて、前記ドーパントがバインダー機能を有することを特徴とする高分子アクチュエータ。

【請求項9】

請求項1~8のいずれかに記載の高分子アクチュエータにおいて、前記作用電極が前記 圧粉体に接触しており、前記対極は前記イオン供給体中であって前記圧粉体から離隔した 位置に設けられていることを特徴とする高分子アクチュエータ。

【請求項10】

請求項1~9のいずれかに記載の高分子アクチュエータにおいて、前記圧粉体が板状又は柱状であることを特徴とする高分子アクチュエータ。

【請求項11】

請求項 $1\sim 10$ のいずれかに記載の高分子アクチュエータにおいて、前記導電性粉末の電気抵抗が $10^{-4}\,\Omega\sim 1\,\mathrm{M}\Omega$ であることを特徴とする高分子アクチュエータ。

【請求項12】

請求項 $1\sim11$ のいずれかに記載の高分子アクチュエータにおいて、前記導電性粉末中の前記導電性高分子の含有量が $1\sim99.9$ 質量%であることを特徴とする高分子アクチュエータ。

【請求項13】

請求項1~12のいずれかに記載の高分子アクチュエータにおいて、前記導電性高分子の 平均粒径が10 nm~1 mmであることを特徴とする高分子アクチュエータ。

【魯類名】明細魯

【発明の名称】高分子アクチュエータ

【技術分野】

[0001]

本発明は、大きな変位量及び発生力を有し、収縮時及び伸張時の変位を利用可能な高分子アクチュエータに関する。

【背景技術】

[0002]

ロボット、工作機械、自動車等の電磁モータを利用する分野では、駆動システムの軽量 化が求められている。しかし電磁モータの出力密度はモータの重量に依存するため、電磁 モータを利用したアクチュエータの軽量化には限界がある。そのため、小型軽量化が可能 であるとともに、大きな出力が得られるアクチュエータが望まれている。

[0003]

小型軽量化が可能なアクチュエータとして、近年、高分子材料からなるアクチュエータが注目されている。高分子材料からなるアクチュエータとして、導電性高分子ゲルを用いたがルアクチュエータ、導電性高分子膜を用いた高分子膜アクチュエータ等が知られている。

[0004]

導電性高分子膜アクチュエータとしては、導電性高分子膜とその表面に接合した金属電極とからなるものが挙げられる。金属電極は化学めっき、電気めっき、真空蒸着、スパッタリング、塗布、圧着、溶着等の方法によって導電性高分子膜の表面に形成されている。 導電性高分子膜と金属電極の接合体を含水状態にして電位差をかけると、導電性高分子膜に湾曲及び変形が生じるので、これを駆動力として利用することができる。

[0005]

特開2003-152234号(特許文献1)は、電極の間に電解質が配置され、上記電極間に電圧を印加することで形状が変化するアクチュエータにおいて、上記電極が導電性高分子と、上記導電性高分子と電気的に接触する導電材とを備え、上記導電材が粉末状、網状又は多孔質状を呈しているアクチュエータを記載している。このアクチュエータは、粉末状導電材の層と、導電材の層を挟持する一対の導電性高分子膜を有し、導電材層及び導電性高分子膜が通電により湾曲する。粉末状等の導電材は、電圧印加時に起こる電極の形状変化に追従し易く、導電性高分子の層が湾曲してもそこから剥がれ難くいと記載されている。しかし変位形状が湾曲状態であるので、変位量や変位位置の制御は難しいという問題がある。また高分子膜は収縮する際には大きな発生力を示すものの、伸びる際に発生する力は小さいので伸張時の変位を利用できない。このため効率的なアクチュエータであるとは言い難い。

[0006]

特開2003-170400号(特許文献 2)は、アニオン交換樹脂成形体、前記アニオン交換樹脂成形体の表面に相互に絶縁状態で形成された金属電極、及び前記金属電極上に形成された導電性高分子膜からなるアクチュエータ素子を開示している。このアクチュエータ素子の導電性高分子膜は、電解重合法によって金属電極上に形成されている。金属電極間に通電すると、電極間に挟まれたアニオン交換樹脂成形体及び導電性高分子膜に電気が流れる。通電により樹脂中のマイナスイオンは陽極側に移動し、このイオンに伴って水分子が移動するので、陽極側が膨張する。また導電性高分子膜も陽極側では酸化されて膨張し、陰極側では還元されて収縮する。このためアニオン交換樹脂成形体と、導電性高分子膜が相乗的に作用し、大きな変位を示すことができる。

[0007]

しかしこのアクチュエータ素子も電子導電性高分子膜を湾曲状態に変位させるものであり、特許文献1のアクチュエータと同様に変位量や変位位置の制御が難しい上、伸張時の変位を利用できない。また電解重合法により導電性高分子膜を作製するには非常に時間がかかり、コスト高であるという問題もある。

[0008]

【特許文献 1】特開2003-152234号公報

【特許文献 2】特開2003-170400号公報

【発明の開示】

【発明が解決しようとする課題】

[0009]

従って、本発明の目的は、大きな変位量及び発生力を有するとともに、変位の制御が容易であり、かつ導電性高分子からなる駆動体の収縮時のみならず伸張時の変位も利用可能であって、低コストで量産できる高分子アクチュエータを提供することである。

【課題を解決するための手段】

[0010]

上記目的に鑑み鋭意研究の結果、本発明者らは、導電性高分子及びドーパントを含有する導電性粉末からなる圧粉体と、イオン供給体と、作用電極と、対極とからなるアクチュエータは、変位量及び発生力が大きく、圧粉体の収縮時及び伸張時の両方の変位を利用可能である上、直線的に変位するために変位量等の制御が容易であることを発見し、本発明に想到した。

[0011]

すなわち本発明の高分子アクチュエータは、導電性高分子及びドーパントを含有する導 電性粉末からなる圧粉体と、イオン供給体と、作用電極と、対極とからなり、作用電極及 び対極の間に電圧を印加することにより収縮又は伸張することを特徴とする。

[0012]

前記導電性高分子は共役構造を有するのが好ましい。具体的にはポリピロール、ポリチオフェン、ポリアニリン、ポリアセチレン及びこれらの誘導体からなる群より選ばれた少なくとも一種であるのが好ましい。

[0013]

前記イオン供給体は電解質及び/又は高分子を含有し、液状、ゾル状、ゲル状又はこれらの組合わせであるのが好ましい。前記イオン供給体及び/又は前記ドーパントは、バインダー機能を有するのが好ましい。

[0014]

前記作用電極は前記圧粉体に接触しており、前記対極は前記イオン供給体中であって前 記圧粉体から離隔した位置に設けられているのが好ましい。前記圧粉体は前記イオン供給 体に浸漬されているのが好ましい。前記圧粉体は板状又は柱状であるのが好ましい。

[0015]

前記導電性粉末中の前記導電性高分子の含有量は $1\sim99.9$ 質量%であるのが好ましい。前記導電性高分子の平均粒径は $10~m\sim1~m$ であるのが好ましい。前記導電性高分子の電気抵抗は $10^{-4}~\Omega\sim1~M\Omega$ であるのが好ましい。

【発明の効果】

[0016]

本発明の高分子アクチュエータは、導電性高分子及びドーパントを含有する導電性粉末からなる圧粉体と、イオン供給体と、作用電極と、対極とからなり、作用電極及び対極の間に電圧を印加することにより、導電性粉末がイオン供給体を吸収及び放出し、圧粉体が収縮及び伸張するものである。このため、大きな変位量及び発生力を有するとともに、直線的に変位するために変位量の制御が容易である。また駆動体である圧粉体が電極から剥がれ難く、繰り返し使用しても劣化し難い。圧粉体は収縮する時のみならず伸張時にも大きな発生力を示すので、伸張時の変位も利用可能である。さらに粉末状の導電性高分子は酸化重合により作製できるので、低コストで量産可能である。

【発明を実施するための最良の形態】

[0017]

図1は本発明の高分子アクチュエータの一例を示す。図1に示す高分子アクチュエータは、導電性粉末からなる圧粉体1と、圧粉体1の固定端11に接合された作用電極2と、圧

[0018]

圧粉体1は板状であるのが好ましく、厚さ0.1~20 mmであるのが好ましい。厚さ0.1 mm 未満であると、割れ易く取扱いが難しすぎるので好ましくない。厚さ20 mm超であると、イオン供給体5から電解質等を吸収及び放出するのが遅過ぎて、圧粉体1の応答性が悪化し過ぎる。図1及び2に示す例では圧粉体1は円板状であるが、角板状等であっても差し支えない。

[0019]

圧粉体 1 は、導電性粉末を圧縮することにより形成される。例えば錠剤用製錠器に導電性粉末を入れた後、製錠器内を減圧し、 $700\sim900$ MPaで $3\sim10$ 分程度加圧することにより作製できる。導電性粉末を圧粉体にすることにより、通電した時に起こる導電性粉末の膨張及び収縮をアクチュエータの変位として利用可能になる。導電性粉末の電気抵抗は、 10^{-4} $\Omega\sim1$ M Ω であるのが好ましい。本明細書中、導電性粉末の電気抵抗は、電極間隔1.5 mmの 4 端子法によって測定した値とする。電気抵抗が 1 M Ω 超であると、導電性が小さすぎてアクチュエータの効率が悪すぎる。電気抵抗が 10^{-4} Ω 未満のものは作製困難である。

[0020]

導電性粉末は導電性高分子及びドーパントを含有する。導電性高分子は共役構造を有するのが好ましい。具体的にはポリピロール、ポリチオフェン、ポリアニリン、ポリアセチレン及びこれらの誘導体からなる群より選ばれた少なくとも一種であるのが好ましく、ポリピロールからなるのがより好ましい。ポリピロールの粉末からなる圧粉体1は、通電により大きな変位を示す。

[0021]

ドーパントは、p型でもn型でも良く、一般的なものを使用することができる。p型ドーパントとしては Cl_2 、 Br_2 、 I_2 、ICl、 ICl_3 、IBr、 IF_3 等のハロゲンや、 PF_5 、 PF_6 、 BF_4 、 AsF_5 、 SbF_5 等のルイス酸、硫酸、硝酸、過塩素酸、有機酸(p-トルエンスルホン酸等)等が挙げられる。n型ドーパントとしては、Li、Na、K、Rb、Cs等のアルカリ金属や、Be、Mg、Ca、Sc、Ba、Ag、Eu、Yb等のアルカリ土類金属が挙げられる。

[0022]

導電性粉末中の導電性高分子の含有量は1~99.9質量%であるのが好ましく、30~70質量%であるのがより好ましい。導電性高分子が1質量%未満であると、導電性粉末が吸収及び放出する電解質や水の量が少な過ぎて、高分子アクチュエータの変位量が小さ過ぎる。99.9質量%超であると、金属塩の含有量が少な過ぎるために導電性が小さ過ぎる。導電性高分子の平均粒径は10 nm~1 mmであるのが好ましい。平均粒径1 mm超であると、導電性高分子が電解液5 に接触している面積が小さすぎるため、高分子アクチュエータの応答性が低過ぎるので好ましくない。平均粒径10 nm未満のものは、作製及び取扱いが困難である。

[0023]

導電性粉末は導電性高分子及びドーパントの外に、金属、金属塩及びカーボンからなる 群より選ばれた少なくとも一種を含有するのが好ましい。金属、金属塩及びカーボンから なる群より選ばれた少なくとも一種を含有することにより、導電性粉末の導電性が向上す る。金属としては鉄、銅、ニッケル、チタン、亜鉛、クロム、アルミニウム、コバルト、 金、白金、銀、マンガン、タングステン、パラジウム、ルテニウム、ジルコニウム等が好 ましい。金属塩としては、三塩化鉄、塩化銅等が挙げられる。

[0024]

導電性高分子、ドーパント及び金属塩を含有する場合を例にとって、導電性粉末を作製する方法を説明する。導電性高分子は、酸化重合により効率的に合成することができる。ドーパント及び金属塩を含む水溶液中にモノマーを滴下して撹拌することにより、モノマーがドーパント及び金属塩を取り込みながら重合する。これにより、導電性高分子中にド

[0025]

作用電極 2 は、圧粉体 1 及びセル 4 に接触するように設けられており、リード線21に接続されている。作用電極 2 は、圧粉体 1 の固定端11とセル 4 の内面とに接着されているのが好ましい。作用電極 2 が固定端11及びセル 4 に接着されていると、圧粉体 1 が伸張した後で収縮する際に、圧粉体 1 が元の位置に戻ることができる。作用電極 2 を固定端11に接合するには、接着剤で接着すれば良い。作用電極 2 は白金、金、銀、銅、ニッケル、ステンレス、カーボンからなるのが好ましい。作用電極 2 の厚さは0.1 μ m~10 mm程度である。圧粉体 1 上に作用電極 2 を形成する方法としては、化学めっき、電気めっき、真空蒸着、スパッタリング、塗布、圧着、溶着等が挙げられる。

[0026]

可動板3は、圧粉体1の駆動端12に接合されている。図2に示すように、圧粉体1がイオン供給体5中の電解質等を吸収したり放出したりするのを妨げないように、可動板3は圧粉体1の下半分程度を覆っていない。図1及び2に示す例では可動板3は円板状であるが、圧粉体1が電解質等を吸収及び放出するのを妨げない限り、可動板3の形状は特に限定されない。圧粉体1に接合された面の反対側には、可動バー8が可動板3に垂直に取り付けられている。可動バー8は、セル4の開口部41を貫通しており、開口部41に設けられたベアリング42により移動自在に支持されている。通電により圧粉体1が駆動されると、可動バー8も同様に駆動される。従って、可動バー8の一端を駆動部とすることができる

[0027]

セル4は箱型であり、圧粉体1を縦に収容している。セル4の内径は圧粉体1の外径より僅かに大きい。このため圧粉体1はセル4内で伸張及び収縮することができる。セル4内には液状のイオン供給体5が充填されている。イオン供給体5が開口部41から漏出しないように、開口部41はシールされている。

[0028]

イオン供給体 5 は、電解質及び/又は高分子を含有する。電解質としては塩化ナトリウム、NaPF6、p-トルエンスルホン酸ナトリウム、過塩素酸ナトリウム等が挙げられる。高分子としては、ポリエチレングリコール、ポリアクリル酸等が挙げられる。イオン供給体 5 は圧粉体 1 の伸張及び収縮を妨げない程度の流動性を有する必要がある。イオン供給体 5 は溶液、ゾル、ゲル、溶液とゾルの混合物、ゾルとゲルの混合物、又は溶液とゾルの混合物であるのが好ましい。イオン供給体 5 がゾル又はゲル若しくはこれらの混合物であると、液漏れのおそれが無いので好ましい。イオン供給体 5 の溶媒及び/又は分散媒は、水であるのが好ましい。溶媒及び/又は分散媒が水であると、イオン供給体 5 は大きな導電性を示す。電解質水溶液の濃度は0.01~5 mol/L程度であるのが好ましい。

[0029]

対極6は、リード線61に接続されている。参照電極7はリード線71に接続されている。 対極6及び参照電極7としては一般的なものを使用することができる。好ましい電極材料 としては白金、金、銀、銅、ニッケル、ステンレス、カーボン等が挙げられる。

[0030]

作用電極2と対極6との間に通電すると、圧粉体1は伸張又は収縮し、可動板3に取り付けられた可動バー8も駆動される。図3(a)に示す位置(通電していない位置)で作用電極2が正極となるように通電すると、圧粉体1は伸張して可動バー8は図中右側に移動する(図3(b))。作用電極2が負極となるように通電すると、圧粉体1は収縮し、可動バー8は図中左側に移動する(図3(c))。このような圧粉体1の変位は、圧粉体1中の導電性高分子が、通電により酸化状態となってイオン供給体5中の電解質及び/又は導電性高分子並びに水を吸収したり、還元状態となってこれらを放出したりすることにより生じると考えられる。なお収縮の仕方は、導電性高分子やイオン供給体の種類、及びこれら

[0031]

図4及び5に示す高分子アクチュエータは、上部31がイオン供給体5から突出するように圧粉体1に取り付けられた可動板3を有する以外、図1~3に示す例とほぼ同じであるので相違点のみ以下に説明する。図4及び5に示すように、可動板3の下部32は圧粉体1に取り付けられている。可動板3は網状であり、圧粉体1がイオン供給体5を吸収及び放出するのを妨げないようになっている。可動板3は圧粉体1の伸張及び収縮に伴って移動する。

[0032]

可動バー8は、可動板3の上部31に取り付けられている。セル4の開口部41は圧粉体1より高い位置に設けられており、可動バー8を水平に支持している。このため液体のイオン供給体5を使用し、圧粉体1全体がイオン供給体5中に浸漬するようにセル4内にイオン供給体5を入れても、開口部41をシールする必要がない。このため駆動時に可動バー8に生じる摩擦抵抗を少なくすることができる。

[0033]

作用電極2と対極6との間に通電すると、圧粉体1中の導電性高分子がイオン供給体5を吸収又は放出するため、圧粉体1が伸張又は収縮し、可動板3に取り付けられた可動バー8も駆動される。可動板3が網状であると、圧粉体1はイオン供給体5との大きな接触面積を有し、イオン供給体5中の水や、電解質及び/又は導電性高分子を素早く吸収又は放出することができる。従って、圧粉体1の収縮及び伸張が早く、優れた応答性を有する

[0034]

図6に示す例は、複数の作用電極2及び圧粉体1がセル4内に積層されている以外、図1~3に示す例とほぼ同じであるので、相違点のみ以下に説明する。図6に示す例では、一つのセル4内に作用電極2及び圧粉体1が3つずつ収容されているが、本発明はこれに限定されるものではない。一つのセル4内に作用電極2及び圧粉体1が2つずつセル4内に収容されていても良いし、それぞれが4つ以上収容されていても良い。

[0035]

作用電極2と、圧粉体1と、板状の絶縁体9とがこの順に2組みセル4内に縦に積層されており、さらに作用電極2及び圧粉体1が積層されている。各作用電極2と各固定端11はそれぞれ接着されており、各駆動端12と各絶縁体9も接着されている。また各絶縁体9と各作用電極2も接着されている。このため通電により圧粉体1が伸張した後で収縮する際に、全ての圧粉体1及び作用電極2が元の位置に戻ることができる。対極6側の圧粉体1の駆動端12には、可動板3が接着されている。絶縁体9の外径はセル4の内径より僅かに小さく、絶縁体9はセル4に接触していないので、圧粉体1が伸縮しても絶縁体9とセル4との摩擦が起こらない。

[0036]

各作用電極2と対極6との間に通電すると、各圧粉体1がイオン供給体5を吸収又は放出することにより伸張又は収縮し、可動板3に取り付けられた可動バー8も駆動される。この高分子アクチュエータにおいては、複数の圧粉体1を積層しているので、変位量が大きい上、優れた応答性を有する。

【実施例】

[0 0 3 7]

本発明を以下の実施例によってさらに詳細に説明するが、本発明はそれらに限定されるものではない。

[0038]

実施例1

三塩化鉄3g、塩化銅1g、パラトルエンスルホン酸ナトリウム3.6 gを水100 吐に溶解した。得られた溶液を室温で撹拌しながらピロール1gをゆっくり滴下し、滴下終了後、2時間撹拌した。生成した黒色沈殿をろ別し、エタノール、蒸留水で順次洗浄してポリピ

ロール粉末を得た。ポリピロール粉末の電圧抵抗を測定したところ、20Ωであった。 【0039】

ポリピロール粉末をIR錠剤用製錠器(直径10 mm)に入れ、真空脱気しながら $748\sim873$ MPaの圧力で5分間圧縮し、ポリピロール圧粉体を形成した。圧粉体の厚さは0.5 mmであった。圧粉体の電圧抵抗を測定したところ、 0.2Ω であった。

[0040]

このポリピロール圧粉体の一面に白金箔(厚さ 30μ m)を貼り合わせ、リード線に接続した。得られた接合体を使用して図1及び2に示すアクチュエータを組立て、電圧を印加して電流及び伸縮率(変位量)を測定した。測定条件は下記のとおりとした。結果を図7に示す。圧粉体の最大変位率は約20%であった。

イオン供給体:NaPF6水溶液(1mol/L)

作用電極:白金 対極 :白金線 作用電極:銀線

印加電圧:-0.3 V~0.3 V

[0041]

次に酸化状態のポリピロール圧粉体をセルから取り出して赤外分光スペクトルを測定した。その後、ポリピロール圧粉体をセルに戻して還元状態にし、これを取り出して赤外分光スペクトルを測定した。結果を図8及び9に示す。図8に示すように、酸化状態のスペクトルにおいては $1630~{\rm cm}^{-1}$ 及び $830~{\rm cm}^{-1}$ にピークが出現していた。このピークは、イオン供給体中の電解質であるNaPF6のピークとほぼ一致し、酸化状態にすることによりポリピロール圧粉体はイオン供給体を吸収することが示唆された。

[0042]

実施例2

圧粉体の厚さが1mmとなるようにポリピロール粉末を圧縮した以外、実施例1と同様にしてポリピロール圧粉体を形成し、このポリピロール圧粉体を二つに割ってその一方に白金箔を接合し、白金箔が外側となるように重ねた物を作用電極2と可動板3との間に入れてアクチュエータを組み立てた。このアクチュエータ電圧を印加し、電流及び伸縮率を測定した。測定条件は下記のとおりとした。結果を図10に示す。圧粉体の最大変位率は約20%であった。

イオン供給体:NaPF6水溶液(1 mol/L)

作用電極:白金 対極 :白金線 参照電極:銀線

印加電圧:-0.8 V~0.8 V

[0043]

このアクチュエータの可動バーの先端に錘を付けた状態で、作用電極と対極の間に通電し、伸縮率を測定した。錘を種々の重さのものに付けかえて電極間に通電し、荷重と伸縮率を測定した。結果を図11に示す。図11から最大発生力(変位量0%において想定される発生力)を求めたところ、9.5 MPaであった。

[0044]

実施例3

実施例 1 で作製したアクチュエータに電圧を印加し、 $-0.8\sim1.2$ Vの範囲で変化させて電圧の変化に対する電流及び伸縮率の変化を測定した。まず電圧を約0.3 Vの自然電位から-0.8 Vまで変化させた後、1.2 Vまで変化させ、これを 2 回繰り返した。速度は20 mV/secとした。結果を図12に示す。図12中の破線の矢印は電流が変化した向きを示し、実線の矢印は伸縮率が変化した向きを示す。

イオン供給体:NaPF6水溶液(1 mol/L)

作用電極:白金 対極 :白金

作用電極:銀

印加電圧:-0.8~1.2 V

[0045]

図12に示すように、1周目と2周目とを比較すると、電流及び伸縮率の測定値はほぼ同じであった。このことから、このアクチュエータを繰り返し使用しても、変位量の減少、 導電性の低下等の劣化は少ないことが分かった。

【図面の簡単な説明】

[0046]

- 【図1】本発明の高分子アクチュエータの一例を示す縦断面図である。
- 【図2】図1のA-A断面図である。
- 【図3】高分子アクチュエータの変位を示す断面図である。
- 【図4】本発明の高分子アクチュエータの別の例を示す縦断面図である。
- 【図5】図4のB-B断面図である。
- 【図6】本発明の髙分子アクチュエータのさらに別の例を示す縦断面図である。
- 【図7】実施例1のアクチュエータに電圧を印加した際の電流及び伸縮率の時間変化を示すグラフである。
- 【図8】酸化状態のポリピロール圧粉体の赤外分光スペクトルを示すグラフである。
- 【図9】還元状態のポリピロール圧粉体の赤外分光スペクトルを示すグラフである。
- 【図10】実施例2のアクチュエータに電圧を印加した際の電流及び伸縮率の時間変化を示すグラフである。
- 【図11】実施例2のアクチュエータの発生力を示すグラフである。
- 【図12】実施例3のアクチュエータにおける印加電圧に対する電流及び伸縮率を示すグラフである。

【符号の説明】

[0047]

- 1・・・圧粉体
 - 11・・・固定端
 - 12・・・駆動端
- 2・・・作用電極
 - 21・・・リード線
- 3・・・可動板
 - 31・・・上部
 - 32・・・下部
- 4・・・セル
 - 41・・・開口部
 - 42・・・ベアリング
- 5 ・・・イオン供給体
- 6・・・対極
 - 61・・・リード線
- 7・・・参照電極
 - 71・・・リード線
- ・8・・・可動バー
 - 9・・・絶縁体

【図2】

【図5】

【図7】

【図8】

【図9】

[図10]

【図11】

【図12】

【曹類名】要約曹 【要約】

【課題】

大きな変位量及び発生力を有するとともに、変位量の制御が容易であり、かつ収縮及び伸張の両方の変位を利用可能であって、繰り返し使用しても劣化が少なく、低コストで量 産できる高分子アクチュエータを提供する。

【解決手段】

導電性高分子及びドーパントを含有する導電性粉末からなる圧粉体1と、イオン供給体5と、作用電極2と、対極6とからなり、作用電極2と対極6の間に電圧を印加することにより収縮又は伸張する高分子アクチュエータ。

【選択図】 図1

特願2003-355580

出願人履歴情報

識別番号

[000005326]

1. 変更年月日

1990年 9月 6日

[変更理由]

新規登録

住 所

東京都港区南青山二丁目1番1号

本田技研工業株式会社 氏 名