Boolean Algebra and Combinatorial Logic

Part 1: Boolean algebra

Part 2: Combinatorial Logic.

Learning objectives:

- Understanding Boolean algebra.
- Understanding the difference between variable and operator.
- Be able to describe a system by an equation or a truth table.
- Understanding Combinatorial Logic

Part 1: Boolean Algebra

- Developed by George Boole in the 1850s
- Shannon was the first to use Boolean Algebra to solve problems in electronic circuit design. (1938)

Variables & Operations

■ In Boolean algebra, all variables have the values 1 or 0.

(sometimes we call the values TRUE or FALSE)

- Basic operators used in Boolean algebra:
 - OR written as +, e.g. in A +B
 - AND written as •, e.g. in A.B
 - NOT written as an over line or apostrophe, as in \overline{A} or A'

:

Operators: OR

 The result of the OR operator is 1 if either 	а	Ь	f(a,b)	
of the operands is a 1.	0	0	0	
■ The only time the	0	1	1	
result of an OR is 0 is when both operands	1	0	1	
are 0s.	1	1	1	
		ı		

Operators: AND							
■ The result of an AND is a 1 only	а	b	f(a,b)				
when both	0	0	0				
operands are 1s. Therefore if either	0	1	0				
operand is a 0, the result is 0.	1	0	0				
	1	1	1				
			5				

Operators: N	U I	
■ NOT <i>negates</i> it's operand.	<i>a</i>	a'
If the operand is a	0	1
1, the result of the NOT is a 0.	1	0
If the operand is a		
0, the result of the NOT is a 1.		

Equations

Boolean algebra uses equations to express relationships. For example:

$$X = A \cdot (\overline{B} + C)$$

This equation expresses a relationship between the value of \boldsymbol{X} and the values of \boldsymbol{A} , \boldsymbol{B} and \boldsymbol{C} .

7

Quiz

What is the value of each X_n:

$$X_1 = 1 \cdot (0+1)$$

$$X_2 = A + \overline{A}$$

$$X_3 = A \cdot \overline{A}$$

$$X_4 = X_4 + 1$$

Laws of Boolean Algebra

Just like in normal algebra, Boolean Algebra has postulates and identities.

These laws are useful for reducing or simplifying expressions.

9

Boolean Algebra Laws and Rules

Boolean algebra uses many of the same laws as those of ordinary algebra.

Commutative law
Distributive law
Associative law

Commutative Laws

$$A + B = B + A$$

$$A \cdot B = B \cdot A$$

11

Distributive Laws

$$A + (B \cdot C) = (A + B) \cdot (A + C)$$

$$A \cdot (B+C) = (A \cdot B) + (A \cdot C)$$

Associative Laws

$$A(B.C) = (A.B) C$$

$$A + (B + C) = (A + B) + C$$

13

Other Operators

- Boolean Algebra is defined over the 3 operators AND, OR and NOT.
 - this is a *functionally complete set*.
- However, there are other useful operators:
 - NOR: NOT(OR) is a 0 if either operand is a 1
 - NAND: NOT (AND) is a 0 only if both operands are 1
 - XOR: is a 1 if the operands are different.

More Laws!

$\mathbf{A.B} = \mathbf{B.A}$	$\mathbf{A} + \mathbf{B} = \mathbf{B} + \mathbf{A}$	Commutative law
$\mathbf{A}(\mathbf{B} + \mathbf{C}) = \mathbf{A}.\mathbf{B} + \mathbf{A}.\mathbf{C}$	A + (B + C) = (A + B) + (A + C)	Distributive law
$\mathbf{A}\left(\mathbf{B.C}\right) = (\mathbf{A.B})\ \mathbf{C}$	$\mathbf{A} + (\mathbf{B} + \mathbf{C}) = (\mathbf{A} + \mathbf{B}) + \mathbf{C}$	Associative Law
1.A = A	0 + A = A	Identity law
$\mathbf{A.A'} = 0$	A + A' = 1	Inverse Element
$\mathbf{0.A} = 0$	1 + A = 1	Null Element
A.A = A	$\mathbf{A} + \mathbf{A} = \mathbf{A}$	Idempotent law
(A.B)' = A' + B'	$(\mathbf{A} + \mathbf{B})' = \mathbf{A}' \cdot \mathbf{B}'$	De Morgan's Theorem

Boolean Functions

- 1. Boolean functions are functions that operate on a number of Boolean variables.
- 2. The result of a Boolean function is itself either a 0 or a 1.

Example: f(a,b,c) = (a+b).c

Alternative Representation

Boolean functions can be represented in two ways:

- 1. We can define a Boolean function by describing it with algebraic operations (use equation).
- 2. We can also define a Boolean function by listing the value of the function for all possible inputs (using a truth table)

17

Truth Table of a Boolean Function

Truth Tables						
a	b	OR	AND	NOR	NAND	XOR
0	0	0	0	1	1	0
ø	1	1	0	0	1	1
1	0	1	0	0	1	1
1	1	1	1	0	0	0
	'	,		1		I
						19

Truth	Truth Table for (X+Y)-Z'					
	Χ	Υ	Z	(X+Y)-Z'		
	0	0	0	0		
	0	0	1	0		
	0	1	0	1		
	0	1	1	0		
	1	0	0	1		
	1	0	1	0		
	1	1	0	1		
	1	1	1	0	20	

Sum of Products (SOP) and **Product of Sums (POS)**

	Α	В	С	F
0	0	0	0	0
1	0	0	1	1
2	0	1	0	0
3	0	1	1	1
4	1	0	0	1
5	1	0	1	0
6	1	1	0	1
7	1	1	1	1

•: F = A'B'C + A'BC + AB'C' + ABC' + ABC : Sum of products = SOP •: F = (A+B+C)(A+B'+C)(A'+B+C'): Product of Sums = POS

21

Part 2: Combinatorial Logic

Combinatorial and sequential logic

- Combinational logic is a type of logic circuit whose output is only a function of, the present input.
- Sequential logic is a type of logic circuit whose output depends not only on the present input but also on the previous inputs.
- Note: sequential logic will NOT be studied in this module

Combinatorial logic

n inputs, n is integer greater than one m outputs, m is integer greater than one

Sequential logic

■Example:

Electronics for an Automated teller machine (ATM)

■a pin number eg: 1342 will be different than 1234

27

Gates

- Digital logic circuits are electronic circuits that are implementations of some Boolean function(s).
- A circuit is built up of *gates*, each *gate* implements some simple logic function.

A Gate

29

Gates compute something!

- The output depends on the inputs.
- If the input changes, the output might change.
- If the inputs don't change the output does not change.

Combinational Circuits

- We can put gates together to produce a circuits
- We can design a circuit that represents any Boolean function!

37

A Simple Circuit

		_	•	• •
Iruth	Iahla	for our	CIPCI	111
HULLI	Iabic	IUI UUI		

а	b	a	b	<u>a</u> • <u>b</u>	<u>a • b</u>
0	0	1	1	1	0
0	1	1	0	0	1
1	0	0	1	0	1
1	1	0	0	0	1
		l I		•	1

39

Alternative Representations

- Any of these can express a Boolean function:
 - (1) Boolean Equation
 - (2) Circuit (Logic Diagram)
 - (3) Truth Table

Integrated Circuits

■ You can buy an AND gate *chip*:

41

Function Implementation

- Given a Boolean function expressed as a truth table or Boolean Equation, there are many possible implementations.
- The actual implementation depends on what kind of gates are available.
- In general we want to minimize the number of gates.

Example:
$$f = A \bullet \overline{B} + \overline{A} \bullet B$$
 $A B A \bullet \overline{B} A \bullet B f$
 $0 0 0 0 0$
 $0 1 0 1 1$
 $1 0 1 0 1$
 $1 1 0 0 0$
 4

One Implementation
$$f = A \bullet B + A \bullet B$$

A simplified version

Supplement: More example and Applications

47

Prove
$$f_1 = f_2$$

$$f_1 = A \bullet \overline{B} + \overline{A} \bullet B =$$

$$f_2 = (\overline{A} + \overline{B}) \bullet (A + B)$$

$$\begin{array}{l}
A \bullet \overline{B} + \overline{A} \bullet B = \\
\hline
(A \bullet \overline{B}) \bullet (\overline{A} \bullet B) = \\
\hline
(\overline{A} + B) \bullet (A + \overline{B}) = \\
\hline
((\overline{A} + B) \bullet A) + ((\overline{A} + B) \bullet \overline{B}) = \\
\hline
(\overline{A} \bullet A + B \bullet A) + (\overline{A} \bullet \overline{B} + B \bullet \overline{B}) = \\
\hline
(B \bullet A) + (\overline{A} \bullet \overline{B}) = \\
\hline
(B \bullet A) \bullet (\overline{A} \bullet \overline{B}) = \\
\hline
(B + \overline{A}) \bullet (A + B)
\end{array}$$

f1 DeMorgan's Law

DeMorgan's Laws

Distributive

Distributive

Inverse, Identity

DeMorgan's Law

DeMorgan's Laws 4

Combinational Logic Circuits

- A combinational circuits
 - 2ⁿ possible combinations of input values

- These circuits implement specific functions such as
 - Adders, subtractors, comparators, decoders, encoders, and multiplexers

Decoder

- A circuit that converts binary information from n input lines to a maximum of 2ⁿ unique output lines
 - At anytime, exactly one output is 1, all others are 0.
- One of the applications of decoder is seven-segment display.

Example: A 3-8 Line decoder

3 inputs are decoded to eight outputs

51

Encoder

- Perform the inverse operation of a Decoder
- A encoder
 - Has 2ⁿ inputs and n outputs
 - The output lines generate binary code corresponding to the input

Encoder

Multiplexer

- A combinational circuit that selects binary information from one of the input lines and directs to a single output line
- The selection of a particular input line is controlled by a set of selection lines.

2 input mux will need 1 select input to indicated which input to route through
4 input mux will need 2 select inputs
8 input mux will need 3 select inputs
N inputs will need log2(N) select inputs

Multiplexer ■ 2 input mux will need 1 select input to indicated which input to route through ■ 4 input mux will need 2 select inputs ■ 8 input mux will need 3 select inputs ■ ■ N inputs will need log₂ (N) select inputs ■ Example: Train 1 Train 2 Train 3 Train 1

Demultiplexer

- Demultiplexer a circuit that receives information from a single line and directs it to one of the 2ⁿ possible outputs
 - Selection of the output is done by the n selection lines

A demultiplexer is a decoder with Enable inputs

59

Demultiplexer

Adders

- A Binary adder is a circuit that computes the arithmetic sum of two binary numbers of a given length
- There are several adder circuits
 - Half adder a combinational circuit that performs addition of 2 bits
 - Full adder a combinational circuit that performs addition of 3 bits (2 significant bits and a previous carry)
 - Two Half adders can be combined to form a Full adder

61

The Half Adder

- Adding two 1-bit values results in the following
 - -0+0=0, 0+1=1, 1+0=1 (a sum with 1 bit)

and

- 1+1=10 (a sum with 2 bits, including a higher significant bit called a carry)
- The Half Adder
 - requires two input variables: x, y
 - has two output variables: C (carry), S (sum)

* y C S
0 0 0 0
1 0 1
1 0 0 1

A Half-Adder Circuit

- The Boolean expressions are:
 - -S = xy' + x'y
 - -C = xy
- These can be implemented using
 - AND and OR gates in sum-ofproducts form
 - XOR and AND gate

63

A Half-Adder Circuit

- The Boolean expressions are:
 - -S = xy' + x'y
 - -C = xy

Full-Adder

- A full-adder is to perform the addition of three bits (with previous carry bit, z).
- The Full-Adder has
 - three input bits
 - x, y: two significant bits
 - z: the carry bit from the previous lower significant bit
 - two output bits: C, S

6

Implementing the Adder

■ The boolean expressions are:

$$C = X'YZ + XY'Z + XYZ' + XYZ$$
$$= Z(XY' + X'Y) + XY$$
$$S = X'Y'Z + X'YZ' + XY'Z' + XYZ$$

Implementation using 2 half adders

Implementing the Adder

■ The boolean expressions are:

$$C = Z(xy'+x'y) + xy$$

$$S = X'y'Z + X'yZ' + Xy'Z' + XyZ$$

Implementation using 2 half adders

Sequential logic: Example

Example:

Sequential logic: SR NOR Latch operation. (flip-flop of latch)

Let's Assume some previous operation has Q as a 1

Simple set-reset latches:

- SR NOR latch
- SR NAND latch
- SR AND-OR latch
- JK latch

D-type flip flop Synchronous latch

