Data Mining

Ensemble Techniques

Ensemble Methods

- Construct a set of base classifiers learned from the training data
- Predict class label of test records by combining the predictions made by multiple classifiers (e.g., by taking majority vote)

Example: Why Do Ensemble Methods Work?

- Suppose there are 25 base classifiers
 - Each classifier has error rate, ϵ = 0.35
 - Majority vote of classifiers used for classification
 - If all classifiers are identical:
 - Error rate of ensemble = ϵ (0.35)
 - If all classifiers are independent (errors are uncorrelated):
 - Error rate of ensemble = probability of having more than half of base classifiers being wrong

$$e_{\text{ensemble}} = \sum_{i=13}^{25} {25 \choose i} \epsilon^i (1-\epsilon)^{25-i} = 0.06$$

Necessary Conditions for Ensemble Methods

- Ensemble Methods work better than a single base classifier if:
 - 1. All base classifiers are independent of each other
 - 2. All base classifiers perform better than random guessing (error rate < 0.5 for binary classification)

Classification error for an ensemble of 25 base classifiers, assuming their errors are uncorrelated.

Rationale for Ensemble Learning

- Ensemble Methods work best with unstable base classifiers
 - Classifiers that are sensitive to minor perturbations in training set, due to high model complexity
 - Examples: Unpruned decision trees, ANNs, ...

Bias-Variance Decomposition

 Analogous problem of reaching a target y by firing projectiles from x (regression problem)

 $\hfill \hfill \hfill$

$$gen.error(m) = c_1 + bias(m) + c_2 \times variance(m)$$

Bias-Variance Trade-off and Overfitting

 Ensemble methods try to reduce the variance of complex models (with low bias) by aggregating responses of multiple base classifiers

General Approach of Ensemble Learning

Constructing Ensemble Classifiers

- By manipulating training set
 - Example: bagging, boosting, random forests
- By manipulating input features
 - Example: random forests
- By manipulating class labels
 - Example: error-correcting output coding
- By manipulating learning algorithm
 - Example: injecting randomness in the initial weights of ANN

Bagging (Bootstrap AGGregatING)

Bootstrap sampling: sampling with replacement

Original Data	1	2	3	4	5	6	7	8	9	10
Bagging (Round 1)	7	8	10	8	2	5	10	10	5	9
Bagging (Round 2)	1	4	9	1	2	3	2	7	3	2
Bagging (Round 3)	1	8	5	10	5	5	9	6	3	7

- Build classifier on each bootstrap sample
- Probability of a training instance being selected in a bootstrap sample is:
 - $> 1 (1 1/n)^n$ (n: number of training instances)
 - ~0.632 when n is large

Bagging Algorithm

Algorithm 4.5 Bagging algorithm.

- 1: Let k be the number of bootstrap samples.
- 2: **for** i = 1 to k **do**
- 3: Create a bootstrap sample of size N, D_i .
- 4: Train a base classifier C_i on the bootstrap sample D_i .
- 5: end for
- 6: $C^*(x) = \underset{y}{\operatorname{argmax}} \sum_i \delta(C_i(x) = y)$. $\{\delta(\cdot) = 1 \text{ if its argument is true and 0 otherwise.}\}$

Consider 1-dimensional data set:

Original Data:

X	0.1	0.2	0.3	0.4	0.5	0.6	0.7	8.0	0.9	1
у	1	1	1	-1	-1	-1	-1	1	1	1

- Classifier is a decision stump (decision tree of size 1)
 - Decision rule: $x \le k$ versus x > k
 - Split point k is chosen based on entropy

Bagg	Bagging Round 1:									
X	0.1	0.2	0.2	0.3	0.4	0.4	0.5	0.6	0.9	0.9
У	1	1	1	1	-1	-1	-1	-1	1	1

$$x \le 0.35 \Rightarrow y = 1$$

 $x > 0.35 \Rightarrow y = -1$

Baggir	ng Roun	nd 1:			ı						
X	0.1	0.2	0.2	0.3	0.4	0.4	0.5	0.6	0.9	0.9	$x <= 0.35 \Rightarrow y = 1$
у	1	1	1	1	-1	-1	-1	-1	1	1	$x > 0.35 \implies y = -1$
Baggir	ng Rour	nd 2:									
X	0.1	0.2	0.3	0.4	0.5	0.5	0.9	1	1	1	$x <= 0.7 \implies y = 1$
У	1	1	1	-1	-1	-1	1	1	1	1	$x > 0.7 \Rightarrow y = 1$
Baggir x	ng Roun	nd 3:	0.3	0.4	0.4	0.5	0.7	0.7	0.8	0.9	x <= 0.35 → y = 1
У	1	1	1	-1	-1	-1	-1	-1	1	1	$x > 0.35 \implies y = -1$
Baggir	ng Rour	nd 4:									
X	0.1	0.1	0.2	0.4	0.4	0.5	0.5	0.7	8.0	0.9	$x \le 0.3 \Rightarrow y = 1$ $x > 0.3 \Rightarrow y = -1$
У	1	1	1	-1	-1	-1	-1	-1	1	1	x > 0.3 y y = -1
Baggir	ng Rour	nd 5:									
X	0.1	0.1	0.2	0.5	0.6	0.6	0.6	1	1	1	$x <= 0.35 \Rightarrow y = 1$
у	1	1	1	-1	-1	-1	-1	1	1	1	$x > 0.35 \implies y = -1$

Baggir	ng Rour	nd 6:									
X	0.2	0.4	0.5	0.6	0.7	0.7	0.7	8.0	0.9	1	$x <= 0.75 \Rightarrow y = -1$
у	1	-1	-1	-1	-1	-1	-1	1	1	1	$x > 0.75 \implies y = 1$
Baggir	ng Rour	nd 7:									
X	0.1	0.4	0.4	0.6	0.7	8.0	0.9	0.9	0.9	1	$x <= 0.75 \Rightarrow y = -1$
У	1	-1	-1	-1	-1	1	1	1	1	1	$x > 0.75 \implies y = 1$
	ng Rour				0.5	0.7					0.75 4
X	0.1	0.2	0.5	0.5	0.5	0.7	0.7	0.8	0.9	1	$x <= 0.75 \Rightarrow y = -1$ $x > 0.75 \Rightarrow y = 1$
У	1	1	-1	-1	-1	-1	-1	1	1	1	X > 0.70 2 y = 1
Baggir	ng Rour	nd 9:									
X	0.1	0.3	0.4	0.4	0.6	0.7	0.7	8.0	1	1	$x <= 0.75 \Rightarrow y = -1$
У	1	1	-1	-1	-1	-1	-1	1	1	1	$x > 0.75 \implies y = 1$
Baggir	ng Rour	nd 10:									
X	0.1	0.1	0.1	0.1	0.3	0.3	8.0	8.0	0.9	0.9	$x <= 0.05 \Rightarrow y = 1$
У	1	1	1	1	1	1	1	1	1	1	$x > 0.05 \implies y = 1$

Summary of Trained Decision Stumps:

Round	Split Point	Left Class	Right Class
1	0.35	1	-1
2	0.7	1	1
3	0.35	1	-1
4	0.3	1	-1
5	0.35	1	-1
6	0.75	-1	1
7	0.75	-1	1
8	0.75	-1	1
9	0.75	-1	1
10	0.05	1	1

 Use majority vote (sign of sum of predictions) to determine class of ensemble classifier

Round	x=0.1	x=0.2	x=0.3	x=0.4	x=0.5	x=0.6	x=0.7	8.0=x	x=0.9	x=1.0
1	1	1	1	-1	-1	-1	-1	-1	-1	-1
2	1	1	1	1	1	1	1	1	1	1
3	1	1	1	-1	-1	-1	-1	-1	-1	-1
4	1	1	1	-1	-1	-1	-1	-1	-1	-1
5	1	1	1	-1	-1	-1	-1	-1	-1	-1
6	-1	-1	-1	-1	-1	-1	-1	1	1	1
7	-1	-1	-1	-1	-1	-1	-1	1	1	1
8	-1	-1	-1	-1	-1	-1	-1	1	1	1
9	-1	-1	-1	-1	-1	-1	-1	1	1	1
10	1	1	1	1	1	1	1	1	1	1
Sum	2	2	2	-6	-6	-6	-6	2	2	2
Sign	1	1	1	-1	-1	-1	-1	1	1	1

Predicted Class

 Bagging can also increase the complexity (representation capacity) of simple classifiers such as decision stumps

Boosting

- An iterative procedure to adaptively change distribution of training data by focusing more on previously misclassified records
 - Initially, all N records are assigned equal weights (for being selected for training)
 - Unlike bagging, weights may change at the end of each boosting round

Boosting

- Records that are wrongly classified will have their weights increased in the next round
- Records that are classified correctly will have their weights decreased in the next round

Boosting (Round 2) 5 4 9 4 2 5 1 7 4 2	Original Data	1	2	3	4	5	6	7	8	9	10
	Boosting (Round 1)	7	3	2	8	7	9	4	10	6	3
Boosting (Round 3) (4) (4) 8 10 (4) 5 (4) 6 3 (4)	Boosting (Round 2)	5	4	9	4	2	5	1	7	4	2
	Boosting (Round 3)	4	4	8	10	4	5	4	6	3	4

- Example 4 is hard to classify
- Its weight is increased, therefore it is more likely to be chosen again in subsequent rounds

AdaBoost

- □ Base classifiers: C₁, C₂, ..., C_T
- Error rate of a base classifier:

$$\epsilon_i = \frac{1}{N} \sum_{j=1}^{N} w_j^{(i)} \, \delta(C_i(x_j) \neq y_j) \int_{0}^{\frac{1}{2}} dx_j^{(i)} \, \delta(C_i(x_j) \neq y_j) \int_{0}^{\frac{1}{2}} dx_j^{(i)} \, dx_j^{(i)} \, \delta(C_i(x_j) \neq y_j)$$

Importance of a classifier:

$$\alpha_i = \frac{1}{2} \ln \left(\frac{1 - \varepsilon_i}{\varepsilon_i} \right)$$

AdaBoost Algorithm

Weight update:

$$w_j^{(i+1)} = \frac{w_j^{(i)}}{Z_i} \times \begin{cases} e^{-\alpha_i} & \text{if } C_i(x_j) = y_j \\ e^{\alpha_i} & \text{if } C_i(x_j) \neq y_j \end{cases}$$

Where Z_i is the normalization factor

- If any intermediate rounds produce error rate higher than 50%, the weights are reverted back to 1/n and the resampling procedure is repeated
- Classification:

$$C^*(x) = \arg\max_{y} \sum_{i=1}^{\infty} \alpha_i \delta(C_i(x) = y)$$

AdaBoost Algorithm

Algorithm 4.6 AdaBoost algorithm.

```
1: \mathbf{w} = \{w_j = 1/N \mid j = 1, 2, \dots, N\}. {Initialize the weights for all N examples.}
 2: Let k be the number of boosting rounds.
 3: for i = 1 to k do
       Create training set D_i by sampling (with replacement) from D according to w.
 4:
       Train a base classifier C_i on D_i.
 5:
       Apply C_i to all examples in the original training set, D.
 6:
      \epsilon_i = \frac{1}{N} \left[ \sum_j w_j \ \delta(C_i(x_j) \neq y_j) \right] {Calculate the weighted error.}
 7:
      if \epsilon_i > 0.5 then
 8:
          \mathbf{w} = \{w_j = 1/N \mid j = 1, 2, \dots, N\}. {Reset the weights for all N examples.}
 9:
          Go back to Step 4.
10:
       end if
11:
       \alpha_i = \frac{1}{2} \ln \frac{1 - \epsilon_i}{\epsilon_i}.
12:
       Update the weight of each example according to Equation 4.103.
13:
14: end for
15: C^*(\mathbf{x}) = \operatorname{argmax} \sum_{j=1}^T \alpha_j \delta(C_j(\mathbf{x}) = y).
```

AdaBoost Example

Consider 1-dimensional data set:

Original Data:

X	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1
у	1	1	1	7	7	7	-1	1	1	1

- Classifier is a decision stump
 - Decision rule: $x \le k$ versus x > k
 - Split point k is chosen based on entropy

AdaBoost Example

Training sets for the first 3 boosting rounds:

Boostii	ng Roui	nd 1:								
X	0.1	0.4	0.5	0.6	0.6	0.7	0.7	0.7	8.0	1
У	1	-1	-1	-1	-1	-1	-1	-1	1	1
Boostii	ng Roui	nd 2:								
X	0.1	0.1	0.2	0.2	0.2	0.2	0.3	0.3	0.3	0.3
У	1	1	1	1	1	1	1	1	1	1
Boostin	ng Roui	nd 3:								
X	0.2	0.2	0.4	0.4	0.4	0.4	0.5	0.6	0.6	0.7
У	1	1	-1	-1	-1	-1	-1	-1	-1	-1

Summary:

Round	Split Point	Left Class	Right Class	alpha
1	0.75	-1	1	1.738
2	0.05	1	1	2.7784
3	0.3	1	-1	4.1195

AdaBoost Example

Weights

Round	x=0.1	x=0.2	x=0.3	x=0.4	x=0.5	x=0.6	x=0.7	8.0=	x=0.9	x=1.0
1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
2	0.311	0.311	0.311	0.01	0.01	0.01	0.01	0.01	0.01	0.01
3	0.029	0.029	0.029	0.228	0.228	0.228	0.228	0.009	0.009	0.009

Classification

	Round	x=0.1	x=0.2	x=0.3	x=0.4	x=0.5	x=0.6	x=0.7	x=0.8	x=0.9	x=1.0
	1	-1	-1	-1	-1	-1	-1	-1	1	1	1
	2	1	1	1	1	1	1	1	1	1	1
	3	1	1	1	-1	-1	-1	-1	-1	-1	-1
ļ	Sum	5.16	5.16	5.16	-3.08	-3.08	-3.08	-3.08	0.397	0.397	0.397
Ş	Sign	1	1	1	-1	-1	-1	-1	1	1	1

Predicted Class

Random Forest Algorithm

- Construct an ensemble of decision trees by manipulating training set as well as features
 - Use bootstrap sample to train every decision tree (similar to Bagging)
 - Use the following tree induction algorithm:
 - At every internal node of decision tree, randomly sample p attributes for selecting split criterion
 - Repeat this procedure until all leaves are pure (unpruned tree)

Characteristics of Random Forest

- Base classifiers are unpruned trees and hence are unstable classifiers
- Base classifiers are decorrelated (due to randomization in training set as well as features)
- Random forests reduce variance of unstable classifiers without negatively impacting the bias
- Selection of hyper-parameter p
 - Small value ensures lack of correlation
 - High value promotes strong base classifiers
 - Common default choices: \sqrt{d} , $\log_2(d+1)$

Gradient Boosting

- Constructs a series of models
 - Models can be any predictive model that has a differentiable loss function
 - Commonly, trees are the chosen model
 - XGboost (extreme gradient boosting) is a popular package because of its impressive performance
- Boosting can be viewed as optimizing the loss function by iterative functional gradient descent.
- Implementations of various boosted algorithms are available in Python, R, Matlab, and more.

Multiclass classification

- One-against-rest(1-r) approach
 - Decompose into binary problems

Multiclass classification

One-against-one(1-1)

constructs K(K - 1)/2 binary classifier

Binary pair	+: y ₁	+: y1	+: y1	+: y ₂	+: y ₂	+: y ₃	
of classes	-: y ₂	$-: y_3$	-: y ₄	-: y ₃	-: y ₄	-: y ₄	
Classification	+	+	-	+		+	