Classical Lost-Lepton Background

Tag & Probe Efficiencies (Update)
Isolated Tracks Implementation in Method

Arne-Rasmus Dräger(Uni Hamburg)

June 04, 2015

Tag & Probe Efficiencies for Lost-Lepton Background

Deriving reco & iso Efficiencies via Tag&Probe

Electron Muon Lepton Tag & Probe Setup

- Muon:
 - ▶ Reco/ID: "Tight" ID, $p_T > 10 GeV$, $|\eta| < 2.4$
 - ▶ Iso: Mini Isolation: Max Cone: 0.2 Min Cone: 0.05 $\delta\beta I(rel)$ < 0.2
- Electron:
 - Reco/ID: "Veto" ID, $p_T > 10 \, GeV$, $|\eta| < 2.5$
 - ▶ Iso: Mini Isolation: Max Cone: 0.2 Min Cone: 0.05 $\delta\beta I(rel) < 0.1$
- Tag & Probe:
 - ▶ Tag: Isolated μ /e (high purity RA2b definition)
 - ▶ ID: (problematic direct comparison to eff from $t\bar{t} \& W + jets$)
 - Problem: ChargedPFCands(slimmedPhotons) → Reco&ID muon(electron)
 - * Problem: Muons: chargedPFCands, bad ratio signal / background, electron: slimmedPhotons miniAOD stores only down to 14 GeV → use AOD (not done)
 - ▶ Iso: (directly comparable to eff from $t\bar{t}$ & W + jets)
 - ★ Tag: Iso muon(Electron)
 - **★** Probe: Reco/ID muon(electron) → Iso muon(electron)

Tag & Probe μ Isolation/Reconstruction Efficiencies

Comparison $t\bar{t}$ & W + jets vs DY Tag & Probe μ Iso Efficiencies

- Efficiencies obtained (using truth information) from $t\bar{t} \& W + jets$ and DY are in good agreement
- Lepton p_T and Activity are sufficient topology independent to be transfered from DY to signal region! (Confirm Florent)
- Overall the efficiencies from DY are slightly higher. (No cuts applied to DY tt & W + iets baseline applied)

Comparison $t\bar{t} \& W + jets vs DY-Truth \mu Reco Efficiencies$

• μ ID $t\bar{t}$ & W + jets eff. (truth info.)

• μ ID DY eff. (truth info.)

 μ ID Tag & Probe eff.

- Efficiencies obtained (using truth information) from $t\bar{t} \& W + jets$ and DY are in good agreement.
- $t\bar{t} \& W + jets \ eff.$ matching from all in acceptance (gen lepton) including non reco leptons
- $Z \rightarrow II$ eff. start with chargedPFCands/slimmedPhotons (slimmedMuon/slimmedElectron) (non reco excluded only test for ID)

Comparison $t\bar{t}$ & W + jets vs DY Tag & Probe μ Reco Efficiencies

 $\mu \text{ Reco } t\bar{t} \& \\ W + \text{jets } \text{eff. (truth info.)}$ $\sum_{\text{Simulation, L=4 fb-1, f5=13 TeV}} \text{preco} \\ \text{Simulation, L=4 fb-1, f5=13 TeV} \\ \text{preco} \\ \text{To} \\$

- Starting from probe charged pfCand too high background to signal event ratio in failing. (Here only DY sample used full SM process a lot higher background)
- Need to apply more cuts on probe to achieve higher purity. (follow official approach)

Tag & Probe e Efficiencies

Comparison $t\bar{t} \& W + jets vs DY Tag \& Probe e Iso$ **Efficiencies**

- Efficiencies obtained (using truth information) from $t\bar{t} \& W + jets$ and DY are in good agreement
- Lepton p_T and Activity are sufficient topology independent to be transfered from DY to signal region! (Confirm Florent)
- Overall the efficiencies from DY are slightly higher. (No cuts applied to DY $t\bar{t} \& W + jets$ baseline applied)

Comparison $t\bar{t} \& W + jets vs DY-Truth e Reco Efficiencies$

• e ID tt & W + jets eff. (truth info.)

• e ID DY eff.

• e ID Tag & Probe eff.

- Efficiencies obtained (using truth information) from $t\bar{t}~\&~W+jets$ and DY are in good agreement.
- $t\bar{t}$ & W + jets eff. matching from all in acceptance (gen lepton) including non reco leptons
- Z \rightarrow II eff. start with chargedPFCands/slimmedPhotons (slimmedElecton/slimmedElectron) (non reco excluded only test for

Comparison $t\bar{t} \& W + jets vs DY Tag \& Probe e Reco Efficiencies$

- Starting from probe charged pfCand too high background to signal event ratio in failing. (Here only DY sample used full SM process a lot higher background)
- Need to apply more cuts on probe to achieve higher purity. (follow official approach)

Isolated e/μ Tracks: Implementation in Lost-Lepton Method

Classical Lost-Lepton Estimation with Isotrack Reduction

- Isolated track (mainly pdgID=11,13) reduce lost-lepton background even further 22% reduction (on baseline)
- Current idea of including this reduction in method:
 - Apply full classical lost-lepton method. In the very end correct for isolated track reduction of lost-lepton background (C_{IsoTrack})
 - ▶ Problem: Mixture of (classical) lepton efficiencies and isolated track efficiencies. (note: correcting relative to single lep. control-sample)
 - ► Correction of lost-lepton background depends not only on isolated track efficiencies but also on lepton eff.
 - $p_{full}(\epsilon_{II}, \epsilon_{IsoTrackRel}) = p_{II}(\epsilon_{II}) * (1 C_{IsoTrack}(\epsilon_{II}, \epsilon_{IsoTrackRel}))$
 - $C_{\textit{IsoTrackRel}}(\epsilon_{\textit{II}}, \epsilon_{\textit{isotrack}}) = \frac{(1 \epsilon_{\textit{II}}) * \epsilon_{\textit{IsoTrack}}}{\epsilon_{\textit{II}}} (1 \epsilon_{\textit{II}}) * \epsilon_{\textit{IsoTrack}}/\epsilon_{\textit{II}}$
 - ▶ Sample to derive *C*_{IsoTrackRel} consists of only failing (lost-lepton) events.
 - ▶ Deriving/estimating uncertainties complicated. Note: $\epsilon_{II}(\epsilon_{e/uacc,reco,iso,m_T})$

Isolated Track: Elec & Muon Tracks

- Muon. Electron Tracks:
 - ▶ Charged PFCand, $p_T > 5 GeV$, $m_T < 100 GeV$ ask for pdglD=11,13
 - ▶ Iso: $\Sigma(p_T(Tracks)\Delta R < 0.3)/(p_TTrack) < 0.2$ (with dz < 0.05)
- Tag & Probe:
 - ▶ Tag: Isolated μ /e (high purity RA2b definition)
 - ▶ Prohe
 - ★ Probe: chargedPFCands → iso Mu/Elec Track
 - ★ Problem: Large amount chargedPFCands, bad ratio signal / background
 - ★ Problem: Small statistics due to deriving efficiencies of isolated tracks to failing isolated leptons (not applied yet)
 - ★ Problem: No $m_T < 100 GeV$ applicable

Isolated e Tracks: First try with Tag&Probe μ similar not shown here

First Look at Isolated Electron Tracks

- Starting with any charged track (applying only p_T , η cuts) as probe
- Most bins too bad background/signal events (see middle plot)
- Adaptation of background fit function can help in some bins, BUT here only DY $H_T > 400 \, GeV$ sample used. Expected a lot worse contamination in data.
- This lose definition of probe candidates has too high background/signal ratio.
- Apply some sort of preselection (can test for isolation by starting with pdgID lepton track but excluding pdgID determination efficiency!)

Conclusion

- Bug fixed (moved to eGamma maintained tools)
- Lepton Isolation eff:
 - Still residual difference visible. Try applying H_T > 500 GeV cut more busy environment
- Lepton ID/Reco eff:
 - Starting with slimmedMuon/slimmedElecon as probe tests only for ID criteria not sufficient
 - ► Starting with chargedTrack too high background/signal ratio in failing collection (for muons)
 - Starting with slimmedPhoton starts only at 14 GeV (in miniAOD) need to move to AOD
- Lepton Tracks:
 - ▶ Start with charged tracks (only p_T , η cuts applied)
 - Suffers from very bad background/signal ratio even when looking at 'pure' DY sample
 - Need to start with some sort of preselection maybe pdgID already applied (cant test for pdgID efficiency)

Backup