Correction du devoir surveillé 4.

Exercice 1

 1°) a) La fonction f est continue sur [0,1], qui est bien un intervalle.

De plus, f est dérivable sur [0,1], et pour tout $x \in [0,1]$, $f'(x) = 2xe^x + 2e^x = 2e^x(1+x) > 0$, donc f est strictement croissante sur [0,1].

D'après le théorème de la bijection, f réalise une bijection de [0,1] dans [f(0),f(1)]=[0,2e].

x	0	1
f'(x)	+	
f(x)	2e	

x	0	2e
$f^{-1}(x)$	0	1

b) Soit $x \in [0, 1]$.

$$xe^x = 1 \Longleftrightarrow 2xe^x = 2 \Longleftrightarrow f(x) = 2$$

Or $2 \in [0, 2e]$ (puisque e > 1). Puisque f est une bijection de [0, 1] sur [0, 2e], 2 admet un unique antécédent α par f, i.e. l'équation $\alpha e^{\alpha} = 1$ admet une unique solution dans [0, 1]. On a $0e^0 = 0 \neq 1$ donc $\alpha \neq 0$.

c) Soit $x \in [0, 1]$.

$$f(x) = x \Longleftrightarrow 2xe^x = x$$

$$\iff x(2e^x - 1) = 0$$

$$\iff x = 0 \text{ ou } e^x = \frac{1}{2}$$

$$\iff x = 0 \text{ ou } x = -\ln(2) \quad \text{car ln est bijective}$$

$$\iff x = 0 \quad \text{car } x \ge 0$$

Pour résoudre (I), on peut donc supposer $x \neq 0$.

$$f(x) > x \Longleftrightarrow 2xe^x > x$$

$$\iff 2e^x > 1 \quad \text{car } x > 0$$

$$\iff e^x > \frac{1}{2}$$

$$\iff \underbrace{x > -\ln 2}_{\text{vrai car } x \in [0, 1]} \quad \text{car ln est strictement croissante}$$

L'ensemble des solutions de (E) est $\{0\}$ et celui de (I) est]0,1]

- **2°) a)** Pour $n \in \mathbb{N}$, on pose $\mathcal{P}(n) : u_n$ est bien défini et $u_n \in [0,1]$.
 - $\mathcal{P}(0)$ est vrai car $u_0 = \alpha \in [0,1]$ d'après la question 1.b.
 - Soit $n \in \mathbb{N}$ fixé. On suppose que $\mathcal{P}(n)$ est vrai. $u_n \in]0,1] \subset [0,2e]$. Comme f^{-1} est défini sur [0,2e], $f^{-1}(u_n)$ i.e. u_{n+1} existe. De plus, f^{-1} est strictement croissante sur [0,2e]. $0 < u_n \le 2e$ donc $f^{-1}(0) < f^{-1}(u_n) \le f^{-1}(2e)$. Donc $0 < u_{n+1} \le 1$. Ainsi, \mathcal{P}_{n+1} est vraie.

- On a montré par récurrence que pour tout $n \in \mathbb{N}$, u_n est bien défini et $u_n \in [0,1]$.
- b) D'après 1.c, pour tout $x \in]0,1]$, f(x) > x; donc, par la question précédente, pour tout $n \in \mathbb{N}$, $f(u_n) > u_n$. Comme f^{-1} est strictement croissante, pour tout $n \in \mathbb{N}$, $u_n > f^{-1}(u_n)$ c'est-à-dire $u_n > u_{n+1}$. Ainsi la suite (u_n) est strictement décroissante.
- c) La suite (u_n) est décroissante et minorée par 0, donc elle converge vers un réel ℓ Puisque pour tout $n \in \mathbb{N}$, $u_n \in]0,1]$, $\ell \in [0,1]$ par passage à la limite. Or la fonction f^{-1} est continue sur [0,2e] donc en ℓ . On en déduit que ℓ est un point fixe de $f^{-1}:f^{-1}(\ell)=\ell$. En prenant l'image par f cela donne $\ell=f(\ell)$. D'après 1.c, $\ell=0$.

3°) a)
$$\forall n \in \mathbb{N}, u_n = f(f^{-1}(u_n)) = f(u_{n+1}) = 2u_{n+1}e^{u_{n+1}}, \text{d'où } u_{n+1} = \frac{u_n}{2e^{u_{n+1}}} \text{ i.e. } \boxed{u_{n+1} = \frac{1}{2}u_ne^{-u_{n+1}}.}$$

- **b)** Pour $n \in \mathbb{N}$, on pose $\mathcal{P}(n) : u_n = \frac{e^{-S_n}}{2^n}$.
 - $\mathcal{P}(0)$ est vrai car $u_0 = \alpha$, et $\frac{e^{-S_0}}{2^0} = e^{-u_0} = \frac{1}{e^{\alpha}} = \frac{\alpha e^{\alpha}}{e^{\alpha}} = \alpha$.
 - Soit $n \in \mathbb{N}$ fixé. On suppose que $\mathcal{P}(n)$ est vrai

$$u_{n+1} = \frac{1}{2}u_n e^{-u_{n+1}} = \frac{1}{2}\frac{e^{-S_n}}{2^n}e^{-u_{n+1}} = \frac{e^{-S_n - u_{n+1}}}{2^{n+1}} = \frac{e^{-S_{n+1}}}{2^{n+1}}$$

Ainsi $\mathcal{P}(n+1)$ est vrai.

- On a montré par récurrence que pour tout $n \in \mathbb{N}$, $u_n = \frac{e^{-S_n}}{2^n}$.
- c) Soit $k \in \mathbb{N}$. $u_k = \frac{e^{-S_k}}{2^k}$.

$$S_k = \sum_{p=0}^k u_p$$
. Pour tout $p \in \mathbb{N}$, $u_p \ge 0$, donc $S_k \ge 0$ soit $-S_k \le 0$.

Comme exponentielle est croissante, $e^{-S_k} \le e^0 = 1$.

Ainsi, puisque
$$\frac{1}{2^k} \ge 0$$
, $u_k \le \left(\frac{1}{2}\right)^k$.

d) (S_n) est croissante puisque pour tout $n, S_{n+1} - S_n = u_{n+1} \ge 0$.

Soit $n \in \mathbb{N}$. Pour tout $k \in \mathbb{N}$, $u_k \leq \left(\frac{1}{2}\right)^k$ donc, en sommant ces inégalités pour k de 0 à n on trouve :

$$S_n = \sum_{k=0}^n u_k \le \sum_{k=0}^n \left(\frac{1}{2}\right)^k$$

Or
$$\sum_{k=0}^{n} \left(\frac{1}{2}\right)^k = \frac{1 - \left(\frac{1}{2}\right)^{n+1}}{1 - \frac{1}{2}} = 2\left(1 - \left(\frac{1}{2}\right)^{n+1}\right) \le 2$$
. Donc $S_n \le 2$.

 (S_n) est majorée par 2, comme (S_n) est croissante, on en déduit que (S_n) converge vers un réel $L \leq 2$.

Par croissance de (S_n) , $L \geq S_0$. Or $S_0 = u_0 = \alpha$ donc $L \geq \alpha$.

Ainsi, $\alpha \leq L \leq 2$

e) Pour tout $n \in \mathbb{N}$, $2^n u_n = e^{-S_n}$ et (S_n) converge vers L.

Comme la fonction exponentielle est continue, on obtient :

$$\lim_{n \to +\infty} 2^n u_n = e^{-L}.$$

Exercice 2

1°) On pose h = x - 1. $h \xrightarrow[x \to 1]{} 0$.

$$f(x) = f(1+h) = \frac{\cos\left(\frac{\pi}{2}(1+h)\right)}{\ln(1+h)}$$

$$= \frac{\cos\left(\frac{\pi}{2} + \frac{\pi h}{2}\right)}{\ln(1+h)} = \frac{-\sin\left(\frac{\pi h}{2}\right)}{\ln(1+h)}$$

$$= \frac{-\frac{\pi h}{2} + o(h)}{h + o(h)} \qquad \text{car } -\frac{\pi h}{2} \xrightarrow{h \to 0} 0$$

$$= \frac{-\frac{\pi}{2} + o(1)}{h + o(1)}$$

Par quotient de limites, cette dernière expression tend vers $-\frac{\pi}{2}$ lorsque h tend vers 0.

Ainsi,
$$\lim_{x \to 1} f(x) = -\frac{\pi}{2}$$
.

2°) Au voisinage de 0,

$$f(x) = \ln\left(1 + x + 1 + \frac{1}{2}x - \frac{1}{8}x^2 + o(x^2)\right)$$

$$= \ln\left(2 + \frac{3}{2}x - \frac{1}{8}x^2 + o(x^2)\right)$$

$$= \ln\left(2\left(1 + \frac{3}{4}x - \frac{1}{16}x^2 + o(x^2)\right)\right)$$

$$= \ln 2 + \ln\left(1 + \underbrace{\frac{3}{4}x - \frac{1}{16}x^2 + o(x^2)}_{X}\right)$$

 $X \xrightarrow[x \to 0]{} 0$. De plus, un $o(x^2)$ est un $o(X^2)$.

Ainsi, on développe $\ln(1+X)$ à l'ordre 2 en 0 : $\ln(1+X) \underset{X\to 0}{=} X - \frac{X^2}{2} + o(X^2)$. D'où,

$$f(x) \underset{x \to 0}{=} \ln 2 + \left(\frac{3}{4}x - \frac{1}{16}x^2 + o(x^2)\right) - \frac{1}{2}\left(\frac{3}{4}x - \frac{1}{16}x^2 + o(x^2)\right)^2 + o(x^2)$$

$$\underset{x \to 0}{=} \ln 2 + \frac{3}{4}x + x^2\left(-\frac{1}{16} - \frac{9}{32}\right) + o(x^2)$$

$$f(x) \underset{x \to 0}{=} \ln 2 + \frac{3}{4}x - \frac{11}{32}x^2 + o(x^2)$$

 3°) Au voisinage de $+\infty$,

$$f(x) = \frac{\sqrt{x^2 + 1}}{\sin\left(\frac{1}{x}\right) + e^{\frac{1}{x}}} = \frac{\sqrt{x^2 \left(1 + \frac{1}{x^2}\right)}}{\sin\left(\frac{1}{x}\right) + e^{\frac{1}{x}}} = \frac{x\sqrt{\left(1 + \frac{1}{x^2}\right)}}{\sin\left(\frac{1}{x}\right) + e^{\frac{1}{x}}} \qquad \text{car } x > 0$$

$$= \frac{1 + \frac{1}{2} \frac{1}{x^2} + o\left(\frac{1}{x^2}\right)}{\frac{1}{x} + o\left(\frac{1}{x^2}\right) + 1 + \frac{1}{x} + \frac{1}{2x^2} + o\left(\frac{1}{x^2}\right)} \qquad \text{car } \frac{1}{x} \xrightarrow{x \to +\infty} 0 \text{ et } \frac{1}{x^2} \xrightarrow{x \to +\infty} 0$$

$$= \frac{x}{x \to +\infty} x \frac{1 + \frac{1}{2x^2} + o\left(\frac{1}{x^2}\right)}{1 + \frac{2}{x} + \frac{1}{2x^2} + o\left(\frac{1}{x^2}\right)}$$

On pose $X = \frac{2}{x \to +\infty} \frac{2}{x} + \frac{1}{2x^2} + o\left(\frac{1}{x^2}\right)$. $X \xrightarrow[x \to +\infty]{} 0$ et $X \underset{x \to +\infty}{\sim} \frac{2}{x}$ donc un $o(X^2)$ est un $o\left(\frac{1}{x^2}\right)$. On sait que $\frac{1}{1+X} = 1 - X + X^2 + o(X^2)$ d'où :

$$\frac{1}{1 + \frac{2}{x} + \frac{1}{2x^2} + o\left(\frac{1}{x^2}\right)} \underset{x \to +\infty}{=} 1 - \frac{2}{x} - \frac{1}{2x^2} + o\left(\frac{1}{x^2}\right) + \left(\frac{2}{x} + \frac{1}{2x^2} + o\left(\frac{1}{x^2}\right)\right)^2 + o\left(\frac{1}{x^2}\right)$$

$$\stackrel{=}{\underset{x \to +\infty}{=}} 1 - \frac{2}{x} + \frac{1}{x^2} \left(-\frac{1}{2} + 4\right) + o\left(\frac{1}{x^2}\right)$$

$$\stackrel{=}{\underset{x \to +\infty}{=}} 1 - \frac{2}{x} + \frac{7}{2x^2} + o\left(\frac{1}{x^2}\right)$$

Ainsi,

$$f(x) \underset{x \to +\infty}{=} x \left(1 + \frac{1}{2x^2} + o\left(\frac{1}{x^2}\right) \right) \left(1 - \frac{2}{x} + \frac{7}{2x^2} + o\left(\frac{1}{x^2}\right) \right)$$

$$\underset{x \to +\infty}{=} x \left(1 - \frac{2}{x} + \frac{1}{x^2} \left(\frac{1}{2} + \frac{7}{2}\right) + o\left(\frac{1}{x^2}\right) \right)$$

$$\underset{x \to +\infty}{=} x - 2 + \frac{4}{x} + o\left(\frac{1}{x}\right)$$

On en déduit que $\underbrace{f(x) - (x-2)}_{\Delta(x)} = \frac{4}{x} + \underset{+\infty}{o} \left(\frac{1}{x}\right) \text{ donc } \Delta(x) \underset{x \to +\infty}{\sim} \frac{4}{x}$.

- ★ Comme $\frac{4}{x} \xrightarrow[x \to +\infty]{} 0$, on a $\Delta(x) \xrightarrow[x \to +\infty]{} 0$. Donc la droite D d'équation y = x - 2 est asymptote à la courbe \mathcal{C} de f en $+\infty$.
- ★ Comme $\frac{4}{x} > 0$ pour x > 0, on a $\Delta(x) > 0$ au voisinage de $+\infty$. Donc \mathcal{C} est au-dessus de \mathcal{D} au voisinage de $+\infty$.

Exercice 3

Partie 1 : Étude de deux suites

- 1°) Pour $n \in \mathbb{N}$, on pose H_n : "les réels u_n et v_n existent et $u_n > 0$ et $v_n > 0$ ".
 - \star H_0 est vraie.
 - ★ On suppose H_n vraie pour un rang n fixé dans \mathbb{N} . Alors, u_n et v_n existent et $u_n > 0$ et $v_n > 0$. D'où $u_n v_n > 0$ et $u_n + v_n > 0$. Ainsi, $u_{n+1} = \frac{2u_n v_n}{u_n + v_n}$ et $v_{n+1} = \frac{u_n + v_n}{2}$ existent et sont strictement positifs. H_{n+1} est donc vraie.
 - \star On a montré par récurrence que, pour tout $n \in \mathbb{N}$, u_n et v_n existent et sont strictement positifs
- 2°) Soient x et y deux réels strictement positifs.

$$\frac{2xy}{x+y} \le \frac{x+y}{2} \iff 4xy \le (x+y)^2 \qquad \text{car } x+y>0$$

$$\iff x^2 - 2xy + y^2 \ge 0$$

$$\iff (x-y)^2 \ge 0 \qquad \text{ce qui est toujours vrai.}$$

Ainsi, on a bien : $\left[\frac{2xy}{x+y} \le \frac{x+y}{2}\right]$.

3°) Soit
$$n \in \mathbb{N}$$
. $u_n > 0$ et $v_n > 0$ donc, par ce qui précède, $\frac{2u_nv_n}{u_n + v_n} \le \frac{u_n + v_n}{2}$ ie $u_{n+1} \le v_{n+1}$. De plus $u_0 \le v_0$. Donc, pour tout $n \in \mathbb{N}$, $u_n \le v_n$.

 $\mathbf{4}^{\circ}$) Soit $n \in \mathbb{N}$.

$$\begin{split} u_{n+1} - u_n &= \frac{2u_n v_n}{u_n + v_n} - u_n \\ &= \frac{2u_n v_n - u_n (u_n + v_n)}{u_n + v_n} \\ &= \frac{u_n (v_n - u_n)}{u_n + v_n} \ge 0 \text{ car } u_n > 0, \ v_n > 0, \text{ et } u_n \le v_n \\ v_{n+1} - v_n &= \frac{u_n - v_n}{2} \le 0 \text{ car } u_n \le v_n \end{split}$$

Ainsi, la suite (u_n) est croissante et la suite (v_n) est décroissante.

 5°) a) Soit $n \in \mathbb{N}$.

$$\alpha_{n+1} = \frac{u_n + v_n}{2} - \frac{2u_n v_n}{u_n + v_n} = \frac{(u_n + v_n)^2 - 4u_n v_n}{2(u_n + v_n)}$$
$$= \frac{(u_n - v_n)^2}{2(u_n + v_n)} = \frac{v_n - u_n}{u_n + v_n} \times \frac{\alpha_n}{2}$$

On a $0 \le v_n - u_n$ puisque $u_n \le v_n$, et on a $v_n - u_n \le v_n + u_n$ car $0 < u_n$.

Donc, puisque $u_n + v_n > 0$, $0 \le \frac{v_n - u_n}{u_n + v_n} \le 1$.

Ainsi, puisque
$$\frac{\alpha_n}{2} \ge 0$$
, il vient $0 \le \frac{v_n - u_n}{u_n + v_n} \times \frac{\alpha_n}{2} \le \frac{\alpha_n}{2}$ i.e. $0 \le \alpha_{n+1} \le \frac{\alpha_n}{2}$

b) Comme pour tout $n \in \mathbb{N}$, $\alpha_n \ge 0$, on a $\frac{\alpha_n}{2} \le \alpha_n$, et donc $\alpha_{n+1} \le \alpha_n$.

Ainsi (α_n) est décroissante, et minorée (par 0), donc elle converge. Notons ℓ' sa limite.

En passant à la limite dans l'inégalité de la question précédente, on obtient : $0 \le \ell' \le \frac{\ell'}{2}$, d'où $0 \le \ell'$ et $\ell' - \frac{\ell'}{2} \le 0$, d'où $\ell' \ge 0$ et $\ell' \le 0$ donc $\ell' = 0$.

 $Autre\ m\'ethode:$

À l'aide de la question précédente, on peut montrer, par récurrence : $\forall n \in \mathbb{N}, 0 \leq \alpha_n \leq \frac{\alpha_0}{2^n}$.

Comme 2 > 1, il vient : $\frac{\alpha_0}{2^n} \underset{n \to +\infty}{\longrightarrow} 0$.

Donc, par le théorème d'encadrement, la suite (α_n) converge vers 0

- **6°)** La suite (u_n) est croissante, la suite (v_n) est décroissante et $v_n u_n \xrightarrow[n \to +\infty]{} 0$ donc les suites (u_n) et (v_n) sont adjacentes. Par le théorème sur les suites adjacentes, on en déduit que les suites (u_n) et (v_n) convergent vers une même limite ℓ .
- **7°**) Pour tout $n \in \mathbb{N}$,

$$w_{n+1} = u_{n+1}v_{n+1} = \frac{2u_nv_n}{u_n + v_n} \frac{u_n + v_n}{2} = u_nv_n = w_n.$$

Ainsi, la suite (w_n) est constante : pour tout $n \in \mathbb{N}$, $w_n = u_0 v_0 = ab$ ie $u_n v_n = ab$.

Donc, d'une part, $u_n v_n \xrightarrow[n \to +\infty]{} ab$. D'autre part, par produit de limites, $u_n v_n \xrightarrow[n \to +\infty]{} \ell^2$.

Par unicité de la limite, il vient : $\ell^2 = ab$. D'où $|\ell| = \sqrt{ab}$.

Comme ℓ est la limite de suites positives, il vient, par passage à la limite, $\ell \geq 0$.

D'où, finalement, $\ell = \sqrt{ab}$.

Partie 2: Une équation fonctionnelle

8°) Soit $n \in \mathbb{N}$.

$$z_{n+1} = f(u_{n+1}) + f(v_{n+1})$$

$$= f\left(\frac{2u_n v_n}{u_n + v_n}\right) + f\left(\frac{u_n + v_n}{2}\right)$$

$$= f(u_n) + f(v_n) \quad \text{par (**)}$$

Ainsi, pour tout $n \in \mathbb{N}$, $z_{n+1} = z_n$. La suite (z_n) est donc constante.

9°) Soient a et b des réels tels que $0 < a \le b$, et (u_n) et (v_n) comme dans la partie 1. On rappelle que (u_n) et (v_n) convergent vers $\ell = \sqrt{ab}$. On a donc d'ailleurs $\ell > 0$. D'une part, puisque (z_n) est constante, pour tout $n \in \mathbb{N}$:

$$z_n = f(u_n) + f(v_n) = f(u_0) + f(v_0) = f(a) + f(b).$$

Ainsi, $z_n \xrightarrow[n \to +\infty]{} f(a) + f(b)$.

D'autre part, (u_n) converge vers ℓ , et f est continue sur \mathbb{R}_+^* donc en ℓ . Ainsi, $f(u_n) \underset{n \to +\infty}{\longrightarrow} f(\ell)$.

De même
$$f(v_n) \underset{n \to +\infty}{\longrightarrow} f(\ell)$$
. D'où, $z_n = f(u_n) + f(v_n) \underset{n \to +\infty}{\longrightarrow} 2f(\ell) = 2f(\sqrt{ab})$.

Par unicité de la limite, il vient : $2f(\sqrt{ab}) = f(a) + f(b)$

Prenons maintenant a et b deux réels quelconques de \mathbb{R}_{+}^{*} .

Si $a \le b$, on a montré que $2f(\sqrt{ab}) = f(a) + f(b)$.

Si a > b, on peut appliquer le résultat précédent en remplaçant a par b et b par a, ce qui donne $2f(\sqrt{ba}) = f(b) + f(a)$.

Donc la relation $2f(\sqrt{ab}) = f(a) + f(b)$ est encore valable pour tout $(a,b) \in (\mathbb{R}_+^*)^2$.

10°) Soit $t \in \mathbb{R}_+^*$.

Posons a=t et b=1, ce sont deux réels strictement positifs, donc par la question précédente, $2f(\sqrt{t\times 1})=f(t)+f(1)$ i.e. $2f(\sqrt{t})=f(t)$ puisque f(1)=0.

11°) Montrons que f vérifie la relation (*).

Soit x et y deux réels strictement positifs. On a $xy \in \mathbb{R}_+^*$ donc, par 10,

$$f(xy) = 2f(\sqrt{xy}).$$

On peut alors appliquer le résultat de la question 9 avec x et y:

$$2f(\sqrt{xy}) = f(x) + f(y).$$

Ainsi, on a bien f(xy) = f(x) + f(y).

f vérifie la relation (*) et f est continue sur \mathbb{R}_{+}^{*} , donc, par la propriété admise :

$$\exists \alpha \in \mathbb{R}, \ \forall x > 0, \ f(x) = \alpha \ln x$$

Partie 3 : Preuve du résultat provisoirement admis

12°) a) On utilise (*) avec le couple (1,1): f(1)=f(1)+f(1). Donc f(1)=0. Soit $t \in \mathbb{R}_+^*$. On utilise (*) avec le couple $\left(t,\frac{1}{t}\right): f\left(t \times \frac{1}{t}\right) = f(t) + f\left(\frac{1}{t}\right)$.

Donc
$$f(1) = f(t) + f\left(\frac{1}{t}\right)$$
. Comme $f(1) = 0$, il vient : $f\left(\frac{1}{t}\right) = -f(t)$.

6

b) \star Soit $t \in \mathbb{R}_+^*$. Pour $n \in \mathbb{N}$, on pose $H_n : f(t^n) = nf(t)$.

- Pour n = 0: $f(t^0) = f(1) = 0 = 0 \times f(t)$. Donc H_0 est vraie.
- Soit $n \in \mathbb{N}$ fixé. On suppose que H_n est vraie.

$$\begin{split} f(t^{n+1}) &= f(t^n \times t) \\ &= f(t^n) + f(t) \quad \text{par (*) avec le couple } (t^n, t) \\ &= nf(t) + f(t) \quad \text{par } H_n \\ f(t^{n+1}) &= (n+1)f(t) \end{split}$$

Ainsi, H_{n+1} est vraie.

- On a montré par récurrence que : $\forall n \in \mathbb{N}, f(t^n) = nf(t)$. Et ceci pour tout $t \in \mathbb{R}_+^*$.
- \bigstar Montrons le résultat sur \mathbb{Z}_{-}^* .

Soit $t \in \mathbb{R}_+^*$ et $n \in \mathbb{Z}^-$. Soit m = -n, alors $m \in \mathbb{N}$.

$$f(t^n) = f(t^{-m}) = f\left(\frac{1}{t^m}\right) = -f(t^m)$$
 par la question précédente.

Or $m \in \mathbb{N}$ donc $f(t^m) = mf(t)$ donc $f(t^n) = -mf(t) = nf(t)$.

On a bien montré que : $\forall t \in \mathbb{R}_+^*, \forall n \in \mathbb{Z}, \ f(t^n) = nf(t)$

c) Soit $t \in \mathbb{R}_+^*$. Soit $p \in \mathbb{Z}^*$.

 $pf\left(t^{\frac{1}{p}}\right) = f\left(\left(t^{\frac{1}{p}}\right)^{p}\right)$ par 12b, puisque $p \in \mathbb{Z}$ et $t^{\frac{1}{p}} \in \mathbb{R}_{+}^{*}$.

Donc, $pf\left(t^{\frac{1}{p}}\right) = f(t)$. Finalement, $f\left(t^{\frac{1}{p}}\right) = \frac{1}{p}f(t)$ car $p \neq 0$.

d) Soit $r \in \mathbb{Q}$. Alors il existe des entiers p et q, avec $q \neq 0$, tels que $r = \frac{p}{q}$. Calculons :

 $f(e^r) = f(e^{\frac{p}{q}}) = f\left((e^p)^{\frac{1}{q}}\right)$ $= \frac{1}{q}f\left(e^p\right) \quad \text{par la question c avec } t = e^p \text{ (bien dans } \mathbb{R}_+^*\text{) et l'entier non nul } q$ $= \frac{p}{q}f\left(e\right) \quad \text{par la question b avec } t = e \text{ (bien dans } \mathbb{R}_+^*\text{) et l'entier } p$ $\boxed{f(e^r) = r\alpha}$

e) On sait qu'il existe une suite (r_n) de rationnels qui tend vers y. On a alors, pour tout $n \in \mathbb{N}$, $f(e^{r_n}) = \alpha r_n$ par la question précédente.

Or, d'une part, $\alpha r_n \xrightarrow[n \to +\infty]{} \alpha y$.

D'autre part, par continuité de exp en y, on a $e^{r_n} \xrightarrow[n \to +\infty]{} e^y$, puis par continuité de f en $e^y \in \mathbb{R}_+^*$, on a $f(e^{r_n}) \xrightarrow[n \to +\infty]{} f(e^y) = f(x)$.

Par unicité de la limite, on a donc $f(x) = \alpha y$

- 13°) Dans la question 1, on a montré que si $f:]0, +\infty[\to \mathbb{R}$ était une fonction continue vérifiant (*), alors il existe un réel α tel que pour tout $x \in \mathbb{R}_+^*$, $f(x) = \alpha \ln(x)$.
 - Soit $\alpha \in \mathbb{R}$, posons $f: x \mapsto \alpha \ln(x)$. Alors f est continue sur \mathbb{R}_+^* , et pour tout $(x,y) \in (\mathbb{R}_+^*)^2$,

$$f(xy) = \alpha \ln(xy) = \alpha(\ln(x) + \ln(y)) = \alpha \ln(x) + \alpha \ln(y) = f(x) + f(y).$$

Ainsi, f vérifie (*).

• Conclusion: l'ensemble des fonctions $f:]0, +\infty[\to \mathbb{R}$ continues vérifiant (*) est $\{x \mapsto \alpha \ln(x) / \alpha \in \mathbb{R}\}$

Exercice 4

1°) Soit
$$z \in \mathbb{C} \setminus \{1\}$$
. $|f(z)| = \frac{|z-1|}{|1-\overline{z}|}$. Or, $|1-\overline{z}| = |\overline{1-z}| = |1-z|$ donc $|f(z)| = 1$.

On en déduit, par exemple, que 2 n'admet pas d'antécédent par f, donc f n'est pas surjective.

 2°) Soit $z \in \mathbb{C} \setminus \{1\}$.

$$f(z) = 1 \iff \frac{z - 1}{1 - \overline{z}} = 1$$

$$\iff z - 1 = 1 - \overline{z}$$

$$\iff z + \overline{z} = 2$$

$$\iff \operatorname{Re}(z) = 1$$

$$\iff z = 1 + ia, \ a \in \mathbb{R}^* \quad \text{car pour } a = 0, \ 1 + ia = 1$$

L'ensemble des solutions de l'équation f(z) = 1 est donc $\{1 + ia / a \in \mathbb{R}^*\}$

f n'est pas injective | car, par exemple, 1 admet une infinité d'antécédents.

 $\mathbf{3}^{\circ}$) Soit $z \in \mathbb{C} \setminus \{1\}$.

$$z \in f^{-1}(\mathbb{R}) \iff f(z) \in \mathbb{R}$$

$$\iff f(z) = \overline{f(z)}$$

$$\iff \frac{z-1}{1-\overline{z}} = \frac{\overline{z}-1}{1-z}$$

$$\iff (z-1)(1-z) = (\overline{z}-1)(1-\overline{z})$$

$$\iff (z-1)^2 = (\overline{z}-1)^2$$

$$\iff z-1 = \overline{z}-1 \text{ ou } z-1 = 1-\overline{z}$$

$$\iff z = \overline{z} \text{ ou } z + \overline{z} = 2$$

$$\iff z \in \mathbb{R} \text{ ou } \operatorname{Re}(z) = 1$$

Donc
$$f^{-1}(\mathbb{R}) = (\mathbb{R} \cup \{1 + ia / a \in \mathbb{R}\}) \setminus \{1\}$$

4°) On résout, avec les notations de l'énoncé :

$$f(z) = e^{i\theta} \iff \frac{x + iy - 1}{1 - (x - iy)} = e^{i\theta}$$

$$\iff x - 1 + iy = e^{i\theta} (1 - x + iy)$$

$$\iff x(1 + e^{i\theta}) + iy(1 - e^{i\theta}) = 1 + e^{i\theta}$$

$$\iff x e^{i\frac{\theta}{2}} (e^{-i\frac{\theta}{2}} + e^{i\frac{\theta}{2}}) + iy e^{i\frac{\theta}{2}} (e^{-i\frac{\theta}{2}} - e^{i\frac{\theta}{2}}) = e^{i\frac{\theta}{2}} (e^{-i\frac{\theta}{2}} + e^{i\frac{\theta}{2}})$$

$$\iff x e^{i\frac{\theta}{2}} 2\cos\left(\frac{\theta}{2}\right) + iy e^{i\frac{\theta}{2}} \left(-2i\sin\left(\frac{\theta}{2}\right)\right) = e^{i\frac{\theta}{2}} 2\cos\left(\frac{\theta}{2}\right)$$

$$\iff (E) : x\cos\left(\frac{\theta}{2}\right) + y\sin\left(\frac{\theta}{2}\right) = \cos\left(\frac{\theta}{2}\right) \qquad \text{car } 2e^{i\frac{\theta}{2}} \neq 0$$

Si $\sin\left(\frac{\theta}{2}\right) \neq 0$, $(E) \iff y = -\frac{\cos\left(\frac{\theta}{2}\right)}{\sin\left(\frac{\theta}{2}\right)}x + \frac{\cos\left(\frac{\theta}{2}\right)}{\sin\left(\frac{\theta}{2}\right)}$. θ étant fixé, c'est l'équation d'une droite.

Si $\sin\left(\frac{\theta}{2}\right) = 0$, alors $\sin\left(\frac{\theta}{2}\right) \neq 0$ donc $(E) \iff x = 1$, c'est à nouveau l'équation d'une droite. Remarquons que l'inconnue z vérifie $z \neq 1$ i.e. $(x,y) \neq (1,0)$, et que (1,0) vérifie l'équation (E). Cependant, comme une droite est infinie, cela permet tout de même de conclure que l'ensemble des solutions de $f(z) = e^{i\theta}$ est infini.

Ainsi, pour tout $t \in \mathbb{U}$, t a au moins un antécédent par f dans $\mathbb{C}\setminus\{1\}$. On en déduit que $\mathbb{U} \subset f(\mathbb{C}\setminus\{1\})$.

Par ailleurs, d'après la question 1, $\forall z \in \mathbb{C} \setminus \{1\}, f(z) \in \mathbb{U}$, i.e. $f(\mathbb{C} \setminus \{1\}) \subset \mathbb{U}$.

On en déduit que : $f(\mathbb{C}\setminus\{1\}) = \mathbb{U}$.