# MT3503 Complex Analysis<sup>1</sup>

#### 1 Revision

#### 1.1 Complex Numbers

In practice, recall that a complex number can be written in the form a + ib where a and b are real numbers and i is the 'imaginary' number such that  $i^2 = -1$ . The quantity a is called the *real part* of the complex number and b is called the *imaginary part*. We operate on complex numbers in much the same way as we do on real numbers.

- Addition (a+ib) + (a'+ib') = (a+a') + i(b+b').
- Multiplication(a + ib)(a' + ib') = (aa' bb') + i(ab' + ba').
- Division  $\frac{a+ib}{a'+ib'} = \frac{(a+ib)(a'-ib')}{(a'+ib')(a'-ib')} = \frac{(aa'+bb')+i(ba'-ab')}{a'^2+b'^2}.$

Each of the above arithmetic operations (addition, multiplication and division) produces another complex number. Note that  $(a+ib)(a-ib) = a^2 + b^2$ , which is real and non-negative. The number a-ib is called the *conjugate* of a+ib.

Let z be a complex number where

$$z = x + iy$$

then the conjugate of z is

$$\bar{z} = x - iy$$

and

$$z\bar{z} = x^2 + y^2 = |z|^2,$$

where |z| is called the *modulus* of z and |z| > 0 unless  $z \equiv 0$ . The following notation is also used:

$$x = \text{Re}(z) = (z + \bar{z})/2$$
 and  $y = \text{Im}(z) = (z - \bar{z})/2i$ .

It should be noted that if  $z_1$ , and  $z_2$  are two complex number then

$$|z_1 z_2| = |z_1||z_2|.$$

The corollaries are that  $|z|^2 = |z^2|$ . However,  $|z|^2 \neq z^2$ , unless z is real. The results generalises itself naturally, and for complex numbers  $z_1, z_2, \dots, z_n$ , we have

$$|z_1z_2\cdots z_n|=|z_1||z_2|\cdots|z_n|.$$

Two complex numbers  $z_1$  and  $z_2$  are equal when

$$\operatorname{Re}(z_1) = \operatorname{Re}(z_2)$$
 and  $\operatorname{Im}(z_1) = \operatorname{Im}(z_2)$ .

<sup>&</sup>lt;sup>1</sup>Original notes written by Dr C.V. Tran 2014/2015. Several minor modifications by JNR 2015/2016.



Figure 1: addition and multiplication of complex numbers.

We can identify z with a point or a vector on a plane (the Argand diagram). With this identification, complex addition is like vector addition, while multiplication has the effect of rotating and scaling a vector. From a geometric point of view, an obvious result is the triangle inequality (see figure 1)

$$|z_1 + z_2| \le |z_1| + |z_2|.$$

Here the equality occurs iff  $z_1 = \alpha z_2$ , where  $\alpha \geq 0$ . We also have  $|z_1 + z_2| \geq |z_1| - |z_2|$ .

We will refer to the plane, upon which z = x + iy is a point with co-ordinates (x, y), as the "complex plane". The x-axis is called the "real axis" while the y-axis is called the "imaginary axis". This visualisation is important, allowing us to express complex numbers in modulus-argument form and to perform certain calculations with ease.

# 1.2 Modulus-argument form

Recall that we can represent a point (x, y) using polar coordinates  $(r, \theta)$ :

$$(x, y) = r(\cos \theta, \sin \theta).$$

This allows us to write z in modulus-argument form (sometimes polar form for short)

$$z = x + iy = r(\cos\theta + i\sin\theta).$$

Note that

$$|z|^2 = x^2 + y^2 = r^2,$$

and remember r > 0 unless  $z \equiv 0$ . The argument  $\theta$  satisfies

$$\tan \theta = \frac{y}{x}.$$

When expressed in modulus-argument form, the signs of the real and imaginary part of z are taken care of by the value of the argument  $\theta$  (see figure 2).

**Example 1.2.1** The real number -1 has modulus 1 and argument  $\pi$ . Note that the same point in the complex plane is identified when the argument is  $-\pi$ .

Hence, the value of  $\theta$  is not unique. In fact, we can always add (or subtract) a multiple of  $2\pi$  and arrive at the same point in the complex plane. It is therefore convenient to adopt the convention that the value of  $\theta$  lies in the range  $(-\pi, \pi]$ . This is called the *Principal Value* of the argument and is denoted by Arg(z).



Figure 2: A complex number z in the second quadrant with modulus r and principal argument  $\theta$ .

**Example 1.2.2** Determine the principal value of the argument of  $(-\sqrt{3}+i)$ 

Solution

$$\tan \theta = \frac{y}{x} = \frac{1}{-\sqrt{3}} = -\frac{1}{\sqrt{3}}.$$

Therefore, the two solution within  $(-\pi, \pi]$  are

$$\theta = -\frac{\pi}{6}$$
 and  $\theta = \frac{5\pi}{6}$ .

Observe that the given complex number lies in the second quadrant of the complex plane (see figure 2). So the argument is  $5\pi/6$ . Thus

$$Arg(-\sqrt{3}+i) = \frac{5\pi}{6}.$$

# 1.3 Introducting the complex exponential

For real x, recall the power series of  $e^x$ :

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \frac{x^5}{5!} + \cdots$$

We can formally define the exponential of a complex number z by replacing x in the above series by z. We will see the complex exponential in more details later in the course, but the following result should be very familiar. When z is purely imaginary, i.e.  $z = i\theta$  (for real  $\theta$ ), we have (by definition)

$$e^{i\theta} = 1 + i\theta - \frac{\theta^2}{2} - i\frac{\theta^3}{3!} + \frac{\theta^4}{4!} + i\frac{\theta^5}{5!} + \cdots$$
$$= 1 - \frac{\theta^2}{2} + \frac{\theta^4}{4!} + \cdots + i\left(\theta - \frac{\theta^3}{3!} + \frac{\theta^5}{5!} + \cdots\right).$$

The two series appear above are those of  $\cos \theta$  and  $\sin \theta$ . So we have the identity

$$e^{i\theta} = \cos\theta + i\sin\theta.$$

Replacing  $\theta$  by  $-\theta$  yields

$$e^{-i\theta} = \cos \theta - i \sin \theta.$$

It follows that

$$z = x + iy = r(\cos \theta + i \sin \theta) = re^{i\theta},$$
  
$$\bar{z} = x - iy = r(\cos \theta - i \sin \theta) = re^{-i\theta}$$

and

$$\cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2}$$
 and  $\sin \theta = \frac{e^{i\theta} - e^{-i\theta}}{2i}$ .

The modulus-argument form  $z = r(\cos \theta + i \sin \theta) = re^{i\theta}$  provides a very powerful means of manipulating complex numbers. For example, let

$$z_1 = r_1 e^{i\theta_1} \quad \text{and} \quad z_2 = r_2 e^{i\theta_2},$$

then

$$z_1 z_2 = r_1 r_2 e^{i(\theta_1 + \theta_2)}$$

and

$$z_1^{\alpha} = (r_1 e^{i\theta_1})^{\alpha} = r_1^{\alpha} e^{i\alpha\theta_1} = r_1^{\alpha} (\cos \alpha \theta_1 + i \sin \alpha \theta_1).$$

Note that  $\arg(z_1z_2) = \arg(z_1) + \arg(z_2)$ . This is not necessarily true for Arg. In a similar way

$$\frac{z_1}{z_2} = \frac{r_1}{r_2} e^{i(\theta_1 - \theta_2)}.$$

The modulus-argument representation allows us to contemplate strange things such as  $i^i$ :

$$i = e^{i\pi/2}$$
, so  $i^i = (e^{i\pi/2})^i = e^{-\pi/2}$ .

This may seem rather fanciful but shortly we will consider complex functions such as  $e^z$  and  $\log(z)$  and wish to make sense of such mathematical forms. Some more routine illustrative examples follow.

**Example 1.3.1** Evaluate (1 + 2i)(3 - i).

Solution Direct calculation gives

$$(1+2i)(3-i) = 3-i+6i-2i^2 = 3+5i+2 = 5(1+i).$$

Now observe that this implies that

$$\tan^{-1}(2) + \tan^{-1}(-1/3) = \pi/4.$$

Compute the values (in radians) to get

$$1.107148718 + (-0.3217505544) = \pi/4.$$

**Example 1.3.2** Determine the real and imaginary parts of  $z^n = (x + iy)^n$ , where n is a positive integer.

Solution We write

$$z = re^{i\theta}$$
, where  $r = (x^2 + y^2)^{1/2}$  and  $\tan \theta = \frac{y}{x}$ .

Then

$$z^n = r^n e^{in\theta} = r^n \cos(n\theta) + ir^n \sin(n\theta).$$

otherwise  $z^n = (x + iy)^n$  leads to a cumbersome binomial expansion for large value of n.

**Example 1.3.3** Determine the modulus and argument of  $(1+i\sqrt{3})^5$ .

Solution Let  $z = 1 + i\sqrt{3}$ , then

$$|z| = \sqrt{1+3} = 2 = r$$
 and  $\tan \theta = \sqrt{3}$ .

Since z is in the first quadrant we choose  $\theta = \pi/3$ . Therefore,

$$z = 2e^{i\pi/3}$$
 and  $z^5 = 32e^{5\pi i/3}$ 

giving a modulus of 32 and an argument of  $5\pi/3$ . The principal value of the argument is  $Arg(z^5) = -\pi/3$ . Writing  $z^5$  in the form a + ib we get

$$z^5 = 32(\cos 5\pi/3 + i\sin 5\pi/3) = 32(\cos \pi/3 - i\sin \pi/3) = 16(1 - i\sqrt{3}).$$

You can check this by direct evaluation:

$$(1+i\sqrt{3})^5 = 1+5i\sqrt{3}+10(i\sqrt{3})^2+10(i\sqrt{3})^3+5(i\sqrt{3})^4+(i\sqrt{3})^5$$
$$=1+i5\sqrt{3}-30-i30\sqrt{3}+45+i9\sqrt{3}=16-i16\sqrt{3}.$$

Likewise we can determine the roots of a complex number.

**Example 1.3.4** Determine  $(1 + i\sqrt{3})^{1/2}$ .

Solution Observe that this exercise is equivalent to finding the solutions of the quadratic equation:

$$z^2 = 1 + i\sqrt{3}$$
.

so we should expect 2 solutions. This is a straightforward exercise using the modulus-argument form. From above we have

$$(1+i\sqrt{3}) = 2e^{i\pi/3} = 2e^{i\pi/3 + 2ik\pi}.$$

where k is an integer. Therefore,

$$(1+i\sqrt{3})^{1/2} = \sqrt{2}e^{i\pi/6+ik\pi}$$
, where  $k = 0, 1$ 

and we have two roots of modulus  $\sqrt{2}$  with arguments  $\pi/6$  and  $7\pi/6$  (or principal arguments  $\pi/6$  and  $-5\pi/6$ ). In the form of a+ib we get

$$\frac{\sqrt{3}}{\sqrt{2}} + \frac{i}{\sqrt{2}}$$
 and  $-\frac{\sqrt{3}}{\sqrt{2}} - \frac{i}{\sqrt{2}}$ .

#### 6

### 1.4 Geometric interpretation of some complex equations

Equations involving the modulus |z| identify curves and regions of the complex plane. Below are popular examples, many of which appear in subsequent sections.



Figure 3: The points z satisfying  $|z - z_0| = r$  form a circle centred at  $z_0$  with radius r.

**Example 1.4.1** |z|=1 is the circle with centre (0,0) and radius unity. It is equivalent to  $\sqrt{x^2+y^2}=1$  or  $x^2+y^2=1$ . This is usually called the unit circle and can also be described by  $z=e^{i\theta}$ , for  $-\pi<\theta\leq\pi$ .

**Example 1.4.2**  $|z - z_0| = r$  is the circle with centre  $z_0$  and radius r (see figure 3). This circle can also be described by  $z - z_0 = re^{i\theta}$ , for  $-\pi < \theta \le \pi$ .

**Example 1.4.3** |z| < 1 is an open circular region with centre (0,0) and radius unity. This is usually called the (open) unit disk.

**Example 1.4.4**  $|z-z_0| \le a$  is the closed disk centred on the point  $z_0$  with radius a.

**Example 1.4.5**  $|z-z_0| > a$  are all point outside the circle centred on  $z_0$  with radius a.

**Example 1.4.6**  $a \le |z - z_0| \le b$ , where a and b are real, is the closed annulus centred on the point  $z_0$  with inner radius a and outer radius b.



Figure 4: circle, open circular and closed annular regions

**Example 1.4.7**  $\text{Im}(z) \geq 0$  is the upper half plane, including the real axis.

**Example 1.4.8**  $|z - \overline{z}| < a$  is the (open) infinite horizontal strip -a/2 < y < a/2.

**Example 1.4.9**  $|z + \overline{z}| < a$  is the (open) infinite vertical strip -a/2 < x < a/2.