

Árboles II

Martín René Vilugron martinvilu@unrn.edu.ar

PROGRAMACIÓN 2

2023

Más operaciones con nodos

Rotación

Rotación izquierda

 el nodo izquierdo ahora es la raíz

- el nodo izquierdo ahora es la raíz
- 2. el nodo izquierdo apunta a la raíz anterior

- el nodo izquierdo ahora es la raíz
- 2. el nodo izquierdo apunta a la raíz anterior
- 3. la raíz anterior apunta al subarbol izquierdo

Y hacia la derecha

Un ejemplo mas concreto

El recorrido inorder no cambia

para que se usa esta operación

Árbol binario de búsqueda

El menor a la izquierda y el mayor a la derecha

[1, 2, 3, 4]

Se 'degradan' a una lista enlazada

Se 'reducen' en una lista enlazada

Múltiples operaciones en el árbol pueden dejarlo en este estado

Es aquí donde

entran los Árboles balanceados

Arboles AVL

Adelson-Velskii, Landis (1962)

Cada nodo guarda el balance de los subarboles

Como la diferencia de altura entre el izquierdo y derecho

Que no puede ser mayor que 1

busqueda

inserción

Algoritmo

- 1. Se inserta como un árbol binario de búsqueda tradicional
- 2. Se actualizan las alturas y balances en los nodos
- 3. Si el balance es mayor que |1| se comienzan las rotaciones sobre los nodos desbalanceados
- 4. Repetir pasos 2 y 3

Y actualizamos el balance

una rotación sobre 100

Pero sigue en -2

otra rotación sobre 100

Eliminación

Proxima clase

Para qué se usan

Implementación de sets Búsquedas

