descriptive statistics 1-1: relationships: summarizing more than one variable: crosstabs and correlation, (Wheelan, 2013, ch3,4)

Adam Okulicz-Kozaryn adam.okulicz.kozaryn@gmail.com

this version: Wednesday 16th September, 2020 10:17

howto describe data?

- numbers
- ullet graphs (always better unless very few data, say <5) humans recognize patterns in graphs better and faster
- break it up into subsets/subsamples! dig deeper!
- say see hist/tab for males and females separately
- say corr or crosstab for low and hi val separately that's a quick way to see nonlinear relationship!
 eg may rise and fall, eg swb and place size in china
- googSheet or xournal

few categories / categorical

- use contingency tab / cross-tab (bc you cross-tab dat)
- use percents, not counts: usually clearer
- o so what's the relationship: age and being a student?

What is your	Are you a student?						
age?	Yes - Full Time	Yes - Part Time	No	Total			
15 and under	88%	12%	-	8			
16 - 18	95%	-	5%	42			
19 - 23	68%	12%	20%	205			
24 - 29	16%	10%	74%	353			
30 - 35	5%	9%	86%	192			
36 - 45	4%	8%	88%	165			
over 45	1%	7%	92%	129			

http://www.custominsight.com/articles/crosstab-sample.asp

crosstabs: row percents v col percents

	C. 000	cabbi		, ,			•	o. p.	J. C.	31165			
ort:	Cols ▼	Rows▼	Coun	t All	l %	Row %	Col 9	6					
Number of Employees at Company													
lob Satisfaction		1-3	1-25		26-100		1,00		0-3,000 > 3		000 Total		
Hate my job			24.4%		14.1%		26.9%		12.8%		21.8%	100%	
I'm not happy in my job			31.6%		21.3%		19.2%		6.3%		21.5%	100%	
It's a paycheck		×	27.6%		20.4%		22.6%		7.7%	^	21.8%	100%	
I enjoy going to work		×	32.3%	^	21.8%		21.3%		7.0%		17.6%	100%	
Love my job		^	47.8%	×	17.2%	×	17.0%	>	5.0%	×	13.0%	100%	
ort:	Cols ▼	Rows▼	Co	unt	All	% Row	%	Col %					
Number of Employees at Company													
lob Satisfaction			1-25		26-100		101-999		1,000-3,000		> 3000		
Hate my job			0.8%		(0.8%		1.5%	2.2%		1.5%		
I'm not happy in my job			6.6%		7.9%			7.1%		7.2%		9.3%	
It's a paycheck		×	12	.6%	10	5.4%	1	18.1%		18.9%	^	20.4%	
I enjoy going to work		×	43	. 3%	^ 5:	1.6%		50.3%		50.8%		48.4%	
Love	my job		\$	36	.7%	× 2	3.2%	× :	23.0%	~	20.9%	×	20.5%
Total			10	00%	:	100%		100%		100%		100%	
			_										

percentage change v percentage point change

- say good school's dropout rate increases from 2% to 4%
- \circ percentage point increase is 4-2=2
- o percentage increase is $(\frac{4-2}{2}) * 100 = 100$
- say bad school's dropout rate increases from 50% to 75%
- \circ percentage point increase is 75 50 = 25
- \circ percentage increase is $(\frac{75-50}{50})*100=50$
- if you start from low base (eg 2), then small percentage point increase is huge percent increase!

many categories / continuous data

- use correlation and scatterplots
- o just plot them in scatterplot; identify outliers!
- xournal: ex with outliers cops/1k and crime (note dc and camden)
- o correlation range: -1 to 1
- o < |4| low
- \circ |.4 .6| moderate
- $\circ > |.7|$ strong
- again, keep in mind causation v correlation

correlations for different scenarios

scatterplot

- o also see http://www.socialresearchmethods.net/kb/statcorr.php
- next slide: https://danley.camden.rutgers.edu/2017/04/13/ who-suspends-the-highest-percentage-of-camden-students-freedom-prep/
- o red: charter/renaissance; black: Camden schools

Suspension Data

do scatterplots

- it is useful to produce a scatterplot
- you'd see outliers—
- o and whether the relationship is due to them
- blackboard: relationships biased due to outliers
- say marriage rate and divorce rate and Nevada

calculate it!

- there are formulas in wheelan and trochim
- o but can just calc with software:)
- o can do it excel or google sheets etc
- but it's 21st century, so lets do it in Python :)
- see des.py

Wheelan in ch11 mentions Whitehall studies

- high status causes better health!
- o great book 'Status Syndrome' http://a.co/jaUuwT7
- eg nobel or oscar boosts one's health and longevity
- o these successful folks live longer and in better health
- than exact same people (income, lifestyle, etc) but without status
- https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2566175/
- see Table 2A for correlations
- especially 'Decision latitude'
- conclusions? extra credit

wrap-up

- end every class discussing what we covered and quick look at next week
- end with a review Q&A,
- give some examples (essp in pub pol and pub adm) for concepts covered
- students will discuss concepts from the class

•

quick look at next class

bibliography I

WHEELAN, C. (2013): Naked statistics: stripping the dread from the data, WW Norton & Company.