Exercise 1 (5 credits). Recall the following characterizations of the complexity classes Σ_i^{P} and Π_i^{P} for $i \geq 1$.

Theorem 1. Let L be a language and $i \geq 1$.

• Then $L \in \Sigma_i^{\mathsf{P}}$ iff there is a polynomially balanced relation R such that the language $\{x \# y \mid (x,y) \in R\}$ is in Π_{i-1}^{P} and

$$L = \{x \mid there \ exists \ a \ y \ with \ |y| \le |x|^k \ s.t. \ (x,y) \in R\}$$

• Then $L \in \Pi_i^{\mathsf{P}}$ iff there is a polynomially balanced relation R such that the language $\{x \# y \mid (x,y) \in R\}$ is in $\Sigma_{i-1}^{\mathsf{P}}$ and

$$L = \{x \mid for \ all \ y \ with \ |y| \le |x|^k, (x, y) \in R\}$$

Corollary 2. Let L be a language and $i \geq 1$.

• Then $L \in \Sigma_i^{\mathsf{P}}$ iff there is a polynomially balanced, polynomial-time decidable (i+1)ary relation R such that

$$L = \{x \mid \exists y_1 \forall y_2 \exists y_3 \cdots Q y_i \text{ such that } (x, y_1, \dots, y_i) \in R\}$$

where Q is \forall if i is even and \exists if i is odd.

• Then $L \in \Pi_i^{\mathsf{P}}$ iff there is a polynomially balanced, polynomial-time decidable (i+1)ary relation R such that

$$L = \{x \mid \forall y_1 \exists y_2 \forall y_3 \cdots Q y_i \text{ such that } (x, y_1, \dots, y_i) \in R\}$$

where Q is \exists if i is even and \forall if i is odd.

Give a rigorous proof of this corollary.

Hint. Use the above theorem and proceed by induction on i. It suffices to prove the correctness of the characterization of Σ_i^{P} . You may use the characterization of Π_i^{P} in the induction step.

Solution To make the proof Corollary of more concise consider the following.

Definition 3. For some n let \mathbb{R}^n represent the set of all n-ary relations. Moreover, if $R \in \mathbb{R}^2$, then let $\mathcal{L}(R) := \{x \# y \mid (x,y) \in R\}$. Furthermore, as an abbreviation let p.b. stand for polynomially balanced and let p.d. stand for polynomial-time decidable

Before delving into the proof of Corollary consider the following remark.

Remark 4. As proposed in the slides. It is possible to omit the condition $|y| \leq |x|^k$, due to fact that R is a polynomially balanced relation.

Moreover, some preliminary results.

Lemma 5. For some $R \in \mathbb{R}^2$ with R p.b. it follows that $(x,y) \in R =_{\mathsf{P}} x \# y \in \mathcal{L}(R)$.

Proof. Let τ be the bijection $\tau(x,y) = x \# y$ (and its inverse $\tau^{-1}(x \# y) = (x,y)$).

Firstly, τ can be computed in polynomial time with respect to $|x|^1$. That is, given the input (x,y) one can easily create the string x#y by copying x adding a # and copying y, and since R is p.b. it must be that $|y| \leq |x|^k$ for some k > 0. Hence, it follows that this transformation can be done in linear time with respect to |x|.

Secondly, τ^{-1} can be computed in polynomial time with respect to |x|. That is, given the input x # y one can easily create the tuple (x, y) iterating over x # y until # is reached. Then one merely copies everything before the separator into the first position of the tuple and everything after into the second position. Since R is p.b. it must be that $|y| \leq |x|^k$ for some k > 0. Hence, it follows that this transformation can be done in linear time with respect to |x|.

Thirdly, it must be established that

$$(x,y) \in R \iff \tau(x,y) \in \mathcal{L}(R) \land \tau^{-1}(x\#y) \iff x\#y \in \mathcal{L}(R)$$

However, since $\tau(x,y) = x \# y$ and $\tau^{-1}(x \# y) = (x,y)$ this follows by construction of \mathcal{L} . \square

Finally, allowing the demonstration of the following corollary.

Corollary 6. Let L be a language and $i \geq 1$.

• $L \in \Sigma_i^{\mathsf{P}}$ iff there is a polynomially balanced, polynomial-time decidable (i+1)-ary relation R such that

$$L = \{x \mid \exists y_1 \forall y_2 \exists y_3 \cdots Q y_i \text{ such that } (x, y_1, \dots, y_i) \in R\}$$

where Q is \forall if i is even and \exists if i is odd.

• $L \in \Pi_i^{\mathsf{P}}$ iff there is a polynomially balanced, polynomial-time decidable (i+1)-ary relation R such that

$$L = \{x \mid \forall y_1 \exists y_2 \forall y_3 \cdots Q y_i \text{ such that } (x, y_1, \dots, y_i) \in R\}$$

where Q is \exists if i is even and \forall if i is odd.

Proof. Firstly, in the subsequent proof a p.b. relation $R \in \mathbb{R}^2$ will be obtained by applying Theorem 1 w.l.o.g. assume that $\forall (x,y) \in R \ |x| > 1$. As for any polynomially balanced relation R, where there exists an $(x,y) \in R$ such that $x \leq 1$ it is possible to construct the relation $R' := \{(x \boxtimes, y) \mid (x,y) \in R\}$ (where \boxtimes is some new character) that still is polynomially balanced, i.e. increasing the size of x can not invalidate the condition for being polynomially balanced. Moreover, this construction can clearly be done in polynomial time. Moreover, using R' one can just as easily reconstruct R. Hence, $\mathcal{L}(R')$ will live at the same level of the polynomial hierarchy as $\mathcal{L}(R)$.

Secondly, the claim can be demonstrated by induction on i.

• **IH:** For a fixed i > 0.

$$L \in \Sigma_{i}^{\mathsf{P}} \iff \exists R \in \mathcal{R}^{i+1} \ R \ p.b. \land R \ p.d. \land$$

$$L = \{x \mid \exists y_{1} \forall y_{2} \exists y_{3} \dots Q y_{i} \ (x, y_{1}, \dots, y_{i}) \in R\}$$

$$(i \text{ even } \Rightarrow Q = \forall) \land (i \text{ odd } \Rightarrow Q = \exists)$$

¹This is stronger than required.

and

$$L \in \Pi_i^{\mathsf{P}} \iff \exists R \in \mathcal{R}^{i+1} \ R \ p.b. \land R \ p.d. \land$$

$$L = \{x \mid \forall y_1 \exists y_2 \forall y_3 \dots Q y_i \ (x, y_1, \dots, y_i) \in R\} \land$$

$$(i \text{ even } \Rightarrow Q = \exists) \land (i \text{ odd } \Rightarrow Q = \forall)$$

• **IB:** For i=1. Firstly, starting from $L \in \Sigma_1^{\mathsf{P}}$, by Theorem 1, on obtains

$$L \in \Sigma_1^{\mathsf{P}} \iff \exists R \in \mathcal{R}^2 \ R \ p.b. \land \mathcal{L}(R) \in \Pi_0^{\mathsf{P}} \land L = \{x \mid \exists y \ (x,y) \in R\}$$

Since, $\Pi_0^{\mathsf{P}} = \mathsf{P}$ this is equivalent to

$$L \in \Sigma_1^{\mathsf{P}} \iff \exists R \in \mathcal{R}^2 \ R \ p.b. \land \mathcal{L}(R) \in \mathsf{P} \land L = \{x \mid \exists y \ (x,y) \in R\}$$

By Lemma 5, since $\mathcal{L}(R) \in \mathsf{P}$, it follows that $(x,y) \in R$ can be decided in polynomial time. Hence, the previous equality is equivalent to

$$L \in \Sigma_1^{\mathsf{P}} \iff \exists R \in \mathcal{R}^2 \ R \ p.b. \land R \ p.d. \land L = \{x \mid \exists y \ (x,y) \in R\}$$

which is precisely what was desired.

Secondly, starting from $L \in \Pi_1^{\mathsf{P}}$ this is done completely in analogue. That is, by Theorem 1, on obtains

$$L \in \Pi_1^{\mathsf{P}} \iff \exists R \in \mathcal{R}^2 \ R \ p.b. \land \mathcal{L}(R) \in \Sigma_0^{\mathsf{P}} \land L = \{x \mid \forall y \ (x,y) \in R\}$$

Since, $\Sigma_0^{\mathsf{P}} = \mathsf{P}$ this is equivalent to

$$L \in \Pi_{1}^{\mathsf{P}} \iff \exists R \in \mathcal{R}^{2} \; R \; p.b. \land \mathcal{L}(R) \in \mathsf{P} \land L = \{x \; | \; \forall y \; (x,y) \in R\}$$

By Lemma 5, since $\mathcal{L}(R) \in \mathsf{P}$, it follows that $(x,y) \in R$ can be decided in polynomial time. Hence, the previous equality is equivalent to

$$L \in \Pi_{1}^{\mathsf{P}} \iff \exists R \in \mathcal{R}^{2} \ R \ p.b. \land R \ p.d. \land L = \{x \mid \forall y \ (x,y) \in R\}$$

which is precisely what was desired.

• **IS:** Let i = n + 1. Observe the following

$$L \in \Sigma_{n+1}^{\mathsf{P}}$$

$$\stackrel{\text{(i)}}{\iff} \exists R_2 \in \mathcal{R}^2 \ R_2 \ p.b. \land \mathcal{L}(R_2) \in \Pi_n^{\mathsf{P}} \land L = \{x \mid \exists y \ (x,y) \in R_2\}$$

$$\stackrel{\text{(ii)}}{\Longrightarrow} \exists R_2 \in \mathcal{R}^2 \ R_2 \ p.b. \land \exists R_{n+1} \in \mathcal{R}^{n+1} \ R_{n+1} \ p.b. \land R_{n+1} \ p.d. \land$$

$$\mathcal{L}(R_2) = \{ x \# y \mid \forall y_1 \exists y_2 \forall y_3 \dots Q y_n \ (x \# y, y_1, \dots, y_n) \in R_{n+1} \} \land$$

$$L = \{ x \mid \exists y \ (x, y) \in R_2 \} \land$$

$$(n \text{ even } \Rightarrow Q = \exists) \land (n \text{ odd } \Rightarrow Q = \forall)$$

$$\stackrel{\text{(iii)}}{\Longrightarrow} \exists R_2 \in \mathcal{R}^2 \ R_2 \ p.b. \land \exists R_{n+2} \in \mathcal{R}^{n+2} \ R_{n+2} \ p.b. \land R_{n+2} \ p.d. \land$$

$$\mathcal{L}(R_2) = \{ x \# y \mid \forall y_1 \exists y_2 \forall y_3 \dots Qy_n \ (x, y, y_1, \dots, y_n) \in R_{n+2} \} \land$$

$$L = \{ x \mid \exists y \ (x, y) \in R_2 \} \land$$

$$(n \text{ even } \Rightarrow Q = \exists) \land (n \text{ odd} \Rightarrow Q = \forall)$$

$$\stackrel{\text{(iv)}}{\Longrightarrow} \exists R_2 \in \mathcal{R}^2 \ R_2 \ p.b. \land \exists R_{n+2} \in \mathcal{R}^{n+2} \ R_{n+2} \ p.b. \land R_{n+2} \ p.d. \land$$

$$R_2 = \{(x,y) \mid \forall y_1 \exists y_2 \forall y_3 \dots Qy_n \ (x,y,y_1,\dots,y_n) \in R_{n+2} \} \land$$

$$L = \{x \mid \exists y \ (x,y) \in \{(x,y) \mid \forall y_1 \exists y_2 \forall y_3 \dots Qy_n \ (x,y,y_1,\dots,y_n) \in R_{n+2} \} \} \land$$

$$(n \text{ even } \Rightarrow Q = \exists) \land (n \text{ odd } \Rightarrow Q = \forall)$$

$$\stackrel{\text{(v)}}{\iff} \exists R_{n+2} \in \mathcal{R}^{n+2} \ R_{n+2} \ p.b. \land R_{n+2} \ p.d. \land$$

$$L = \{x \mid \exists y \ (x,y) \in \{(x,y) \mid \forall y_1 \exists y_2 \forall y_3 \dots Qy_n \ (x,y,y_1,\dots,y_n) \in R_{n+2}\}\} \land$$

$$(n \text{ even } \Rightarrow Q = \exists) \land (n \text{ odd } \Rightarrow Q = \forall)$$

$$\stackrel{\text{(vi)}}{\Longrightarrow} \exists R_{n+2} \in \mathcal{R}^{n+2} \ R_{n+2} \ p.b. \land R_{n+2} \ p.d. \land$$

$$L = \{x \mid \exists y \forall y_1 \exists y_2 \forall y_3 \dots Qy_n \ (x, y, y_1, \dots, y_n) \in R_{n+2} \} \land$$

$$(n \text{ even } \Rightarrow Q = \exists) \land (n \text{ odd } \Rightarrow Q = \forall)$$

$$\stackrel{\text{(vii)}}{\Longrightarrow} \exists R_{n+2} \in \mathcal{R}^{n+2} \ R_{n+2} \ p.b. \land R_{n+2} \ p.d. \land$$

$$L = \{x \mid \exists y_1 \forall y_2 \exists y_3 \dots Qy_{n+1} \ (x, y, y_1, \dots, y_n) \in R_{n+2} \} \land$$

$$(n+1 \text{ even} \Rightarrow Q = \forall) \land (n+1 \text{ odd} \Rightarrow Q = \exists)$$

- (i) Here Theorem 1 was applied.
- (ii) Here the **IH** was applied, i.e.

$$\mathcal{L}(R_2) \in \Pi_n^{\mathsf{P}} \iff \exists R_{n+1} \in \mathcal{R}^{n+1} \ R_{n+1} \ p.b. \land R_{n+1} \ p.d. \land$$

$$\mathcal{L}(R_2) = \{ x \# y \mid \forall y_1 \exists y_2 \forall y_3 \dots Q y_n \ (x \# y, y_1, \dots, y_n) \in R_{n+1} \} \land$$

$$(n \text{ even } \Rightarrow Q = \exists) \land (n \text{ odd } \Rightarrow Q = \forall)$$

(iii) Firstly, \Rightarrow . Starting from

$$\exists R_2 \in \mathcal{R}^2 \ R_2 \ p.b. \land \exists R_{n+1} \in \mathcal{R}^{n+1} \ R_{n+1} \ p.b. \land R_{n+1} \ p.d. \land$$
$$\mathcal{L}(R_2) = \{ x \# y \mid \forall y_1 \exists y_2 \forall y_3 \dots Qy_n \ (x \# y, y_1, \dots, y_n) \in R_{n+1} \}$$

Taking the relation R_{n+1} one can construct the relation $R_{n+2} \in \mathbb{R}^{n+2}$ such that

$$R_{n+2} = \{(x, y, y_1, \dots, y_n) \mid (x \# y, y_1, \dots, y_n) \in R_{n+1}\}$$

To do so one merely has to split the first entry in $(x \# y, y_1, \ldots, y_n) \in R_{n+1}$ into two, which can be done in polynomial time (similar argument as in Lemma 5). Moreover, by construction it clearly holds that

$$(x, y, y_1, \dots, y_n) \in R_{n+2} \iff (x \# y, y_1, \dots, y_n) \in R_{n+1}$$

Since by assumption R_2 is polynomially balanced it follows that there exists a k such that for any $(x,y) \in R_2$ one has $|y| \leq |x|^k$. Furthermore, it is known that R_{n+1} is p.b., thus there exists a k' such that for any $1 \leq i \leq n$ one has $|y_i| \leq |x\#y|^{k'} \leq |x| + 1 + |x|^k$. By assumption, i.e. |x| > 1, it follows that there exists a $k^* \geq k$ such that $|y_i| \leq |x|^{k*}$ and $|y| \leq |x|^{k*}$. Hence, R_{n+2} is polynomially balanced. Additionally, one knows that R_{n+1} is p.d., thus R_{n+2} can be decided by concatenating the first two entries and querying R_{n+1} . Both operations can be done in polynomial time, thus R_{n+2} is p.d.. Hence, one obtains

$$\exists R_2 \in \mathcal{R}^2 \ R_2 \ p.b. \land \exists R_{n+2} \in \mathcal{R}^{n+2} \ R_{n+2} \ p.b. \land R_{n+2} \ p.d. \land$$
$$\mathcal{L}(R_2) = \{ x \# y \mid \forall y_1 \exists y_2 \forall y_3 \dots Q y_n \ (x, y, y_1, \dots, y_n) \in R_{n+2} \}$$

Secondly, \Leftarrow . This argument is essentially the same as the previous one, but in reverse (and with slight alterations in the complexity arguments). That is, starting from

$$\exists R_2 \in \mathcal{R}^2 \ R_2 \ p.b. \land \exists R_{n+2} \in \mathcal{R}^{n+2} \ R_{n+2} \ p.b. \land R_{n+2} \ p.d. \land$$
$$\mathcal{L}(R_2) = \{ x \# y \mid \forall y_1 \exists y_2 \forall y_3 \dots Qy_n \ (x, y, y_1, \dots, y_n) \in R_{n+2} \}$$

Taking the relation R_{n+2} one can construct the relation $R_{n+1} \in \mathbb{R}^{n+1}$ such that

$$R_{n+1} = \{(x \# y, y_1, \dots, y_n) \mid (x, y, y_1, \dots, y_n) \in R_{n+2}\}$$

To do so one merely has to concatenate the first two entries in $(x, y, y_1, ..., y_n) \in R_{n+1}$ using the separator #, which can be done in polynomial time (similar argument as in Lemma 5). Moreover, it clearly holds that

$$(x \# y, y_1, \dots, y_n) \in R_{n+1} \iff (x, y, y_1, \dots, y_n) \in R_{n+2}$$

It is known that R_{n+2} is p.b., thus there exists a k such that for $1 \leq i \leq n$, $|y_i| \leq |x|^k$ and $|y| \leq |x|^k$. Now since |x| < |x#y| it must be that R_{n+1} is p.b. as well. Additionally, one knows that R_{n+2} is p.d., thus R_{n+1} can be decided by splitting the first entry on # and querying R_{n+2} . Both operations can be done in polynomial time, thus R_{n+1} is p.d.. Hence, one obtains

$$\exists R_2 \in \mathcal{R}^2 \ R_2 \ p.b. \land \exists R_{n+1} \in \mathcal{R}^{n+1} \ R_{n+1} \ p.b. \land R_{n+1} \ p.d. \land$$
$$\mathcal{L}(R_2) = \{ x \# y \mid \forall y_1 \exists y_2 \forall y_3 \dots Q y_n \ (x \# y, y_1, \dots, y_n) \in R_{n+1} \}$$

(iv) This equality is guaranteed by the following. Take an arbitrary relation R. Clearly, $(x,y) \in R \iff x\#y \in \mathcal{L}(R)$. Hence, in this particular case one has $(x,y) \in R_2 \iff x\#y \in \mathcal{L}(R_2)$. Now starting from

$$\mathcal{L}(R_2) = \{ x \# y \mid \forall y_1 \exists y_2 \forall y_3 \dots Q y_n \ (x, y, y_1, \dots, y_n) \in R_{n+2} \} \land L = \{ x \mid \exists y \ (x, y) \in R_2 \}$$

due to

$$(\alpha, \beta) \in R_2 \iff \alpha \# \beta \in \mathcal{L}(R_2)$$

$$\iff \alpha \# \beta \in \{x \# y \mid \forall y_1 \exists y_2 \forall y_3 \dots Qy_n \ (x, y, y_1, \dots, y_n) \in R_{n+2}\}$$

$$\iff (\alpha, \beta) \in \{(x, y) \mid \forall y_1 \exists y_2 \forall y_3 \dots Qy_n \ (x, y, y_1, \dots, y_n) \in R_{n+2}\}$$

one obtains the equivalent statement

$$R_2 = \{(x,y) \mid \forall y_1 \exists y_2 \forall y_3 \dots Qy_n \ (x,y,y_1,\dots,y_n) \in R_{n+2} \} \land L = \{x \mid \exists y \ (x,y) \in \{(x,y) \mid \forall y_1 \exists y_2 \forall y_3 \dots Qy_n \ (x,y,y_1,\dots,y_n) \in R_{n+2} \} \}$$

(v) Firstly, \Rightarrow . Starting from

$$\exists R_2 \in \mathcal{R}^2 \ R_2 \ p.b. \land \exists R_{n+2} \in \mathcal{R}^{n+2} \ R_{n+2} \ p.b. \land R_{n+2} \ p.d. \land$$

$$R_2 = \{(x,y) \mid \forall y_1 \exists y_2 \forall y_3 \dots Qy_n \ (x,y,y_1,\dots,y_n) \in R_{n+2} \} \land$$

$$L = \{x \mid \exists y \ (x,y) \in \{(x,y) \mid \forall y_1 \exists y_2 \forall y_3 \dots Qy_n \ (x,y,y_1,\dots,y_n) \in R_{n+2} \} \}$$

one can simply use weakening to obtain the part of the statement, where R_2 does not occur.

$$\exists R_{n+2} \in \mathcal{R}^{n+2} \ R_{n+2} \ p.b. \land R_{n+2} \ p.d. \land L = \{x \mid \exists y \ (x,y) \in \{(x,y) \mid \forall y_1 \exists y_2 \forall y_3 \dots Qy_n \ (x,y,y_1,\dots,y_n) \in R_{n+2}\}\}$$

Thereby, eradicating all references of R_2 .

Secondly, \Leftarrow . Starting from

$$\exists R_{n+2} \in \mathcal{R}^{n+2} \ R_{n+2} \ p.b. \land R_{n+2} \ p.d. \land$$

$$L = \{ x \mid \exists y \ (x,y) \in \{ (x,y) \mid \forall y_1 \exists y_2 \forall y_3 \dots Qy_n \ (x,y,y_1,\dots,y_n) \in R_{n+2} \} \}$$

One can define the relation $R_2 := \{(x,y) \mid \forall y_1 \exists y_2 \forall y_3 \dots Qy_n \ (x,y,y_1,\dots,y_n) \in R_{n+2}\}$. Since it is known that R_{n+2} is p.b. this implies that there exists a k such that $|y| \leq |x|^k$, thus implying that R_2 is p.b.. Allowing one to conclude that

$$\exists R_2 \in \mathcal{R}^2 \ R_2 \ p.b. \land \exists R_{n+2} \in \mathcal{R}^{n+2} \ R_{n+2} \ p.b. \land R_{n+2} \ p.d. \land R_2 = \{(x,y) \mid \forall y_1 \exists y_2 \forall y_3 \dots Qy_n \ (x,y,y_1,\dots,y_n) \in R_{n+2} \} \land L = \{x \mid \exists y \ (x,y) \in \{(x,y) \mid \forall y_1 \exists y_2 \forall y_3 \dots Qy_n \ (x,y,y_1,\dots,y_n) \in R_{n+2} \} \}$$

(vi) Starting from $\{x \mid \exists y \ (x,y) \in \{(x,y) \mid \forall y_1 \exists y_2 \forall y_3 \dots Qy_n \ (x,y,y_1,\dots,y_n) \in R_{n+2}\}\}$. Notice that

$$(\alpha, \beta) \in \{(x, y) \mid \forall y_1 \exists y_2 \forall y_3 \dots Q y_n \ (x, y, y_1, \dots, y_n) \in R_{n+2} \}$$

$$\iff \forall y_1 \exists y_2 \forall y_3 \dots Q y_n \ (\alpha, \beta, y_1, \dots, y_n) \in R_{n+2} \}$$

From this it follows that

$$\exists y \ (\alpha, y) \in \{(x, y) \mid \forall y_1 \exists y_2 \forall y_3 \dots Qy_n \ (x, y, y_1, \dots, y_n) \in R_{n+2} \}$$

$$\iff \exists y \forall y_1 \exists y_2 \forall y_3 \dots Qy_n \ (\alpha, y, y_1, \dots, y_n) \in R_{n+2} \}$$

and therefore

$$\{x \mid \exists y \ (x,y) \in \{(x,y) \mid \forall y_1 \exists y_2 \forall y_3 \dots Qy_n \ (x,y,y_1,\dots,y_n) \in R_{n+2}\} \}$$

= $\{x \mid \exists y \forall y_1 \exists y_2 \forall y_3 \dots Qy_n \ (x,y,y_1,\dots,y_n) \in R_{n+2}\}$

(vii) This particular renaming of bound variables is clearly an equivalence transformation. Hence,

$$n \text{ even} \Rightarrow Q = \exists \land n \text{ odd} \Rightarrow Q = \forall \iff n+1 \text{ even} \Rightarrow Q = \forall \land n+1 \text{ odd} \Rightarrow Q = \exists$$

remains to be established. However, this follows directly from the fact that n is even if and only if n+1 is odd. That is, if n was even, one has $Q=\exists$. However, this implies that for $Q=\exists$ for n+1 being odd and if n+1 is odd then $Q=\exists$, meaning that $Q=\exists$ for n is even. Analogous for the other case.

The other case, i.e. for $L \in \Pi_{n+1}^{\mathsf{P}}$ is done completely analogously (see Appendix). \square

Exercise 2 (5 credits). Recall the Σ_2^P -hardness proof of **MINIMAL MODEL SAT** by reduction from the QSAT₂-problem: Let an arbitrary instance of QSAT₂ be given by the QBF

$$\psi = (\exists x_1, \dots, x_k)(\forall y_1, \dots, y_\ell)\varphi$$

Now let $\{x'_1, \ldots, x'_k, z\}$ be fresh propositional variables. Then we construct an instance of **MINIMAL MODEL SAT** by the *variable z* and the *formula*

$$\chi = \left(\bigwedge_{i=1}^{k} (\neg x_i \leftrightarrow x_i') \right) \wedge \left(\neg \varphi \vee (y_1 \wedge \dots \wedge y_\ell \wedge z) \right)$$

Recall from the lecture that we have already proved the following implication: ψ is **true** (in every interpretation) $\Rightarrow z$ is **true** in a minimal model of χ . Give a rigorous proof also of the opposite direction, i.e.: z is **true** in a minimal model of $\chi \Rightarrow \psi$ is **true** (in every interpretation).

Hint. Let \mathcal{J} be a minimal model of χ and let z be **true** in \mathcal{J} .

- First show that then $\mathcal{J}(y_j) = \mathbf{true}$ for every j.
- Second, let \mathcal{I} be the truth assignment obtained by restricting \mathcal{J} to the variables $\{x_1, \ldots, x_k\}$. Show that (by the minimality of \mathcal{J}) \mathcal{I} is indeed a partial assignment on $\{x_1, \ldots, x_k\}$ s.t. for any values assigned to $\{y_1, \ldots, y_\ell\}$, the formula φ is **true**.

Solution Firstly, a restatement of the reduction, to unify with the notation used in the solution.

Definition 7. Let $\varphi := (\exists x_1, \dots, x_k)(\forall y_1, \dots, y_\ell) \psi$ be a $\mathbf{QBF}_{2.\exists}$ -formula, then let

$$\chi(\varphi) := \left(\bigwedge_{i=1}^{k} (\neg x_i \leftrightarrow x_i') \right) \wedge \left(\neg \psi \vee (y_1 \wedge \dots \wedge y_\ell \wedge z) \right)$$

Moreover, $\mathcal{Y}(\varphi) := \{y_1, \dots, y_\ell\}, \ \mathcal{X}(\varphi) := \{x_1, \dots, x_k\} \ and \ \mathcal{X}'(\varphi) := \{x_1', \dots, x_k'\}.$ Lastly, let $\tau : \mathcal{X}(\varphi) \to \mathcal{X}'(\varphi)$ a bijection such that $x_i \mapsto \tau(x_i) = x_i'$.

Remark 8. The function τ is thus merely a function that given $x \in \mathcal{X}(\varphi)$ allows one to access the corresponding $x' \in \mathcal{X}'(\varphi)$. Moreover, corresponding in this case merely means they occur in the sub-formula $\neg x_i \leftrightarrow x_i'$ of $\chi(\varphi)$. Lastly, by construction of the sub-formula $\bigwedge_{i=1}^k (\neg x_i \leftrightarrow x_i')$ one can be sure that τ is actually bijective.

Secondly, in this proof the notion of subset minimality is required. To wield the usual notion of subset minimality, it is necessary to conceptualise an interpretation as a set of atoms, where an atom is true under this interpretation if and only if it is part of the set. Here, a marginally different approach shall be chosen.

Definition 9. Let \mathcal{I} be an interpretation over the set of atoms $A_{\mathcal{I}}$. Then $\mathfrak{S}(\mathcal{I}) := \{x \mid \forall x \in A_{\mathcal{I}} \ \mathcal{I}(x) = \mathbf{true}\}$. Moreover, an interpretation \mathcal{I} then $\mathcal{I} \subseteq \mathcal{I}$ if and only if $\mathfrak{S}(\mathcal{I}) \subseteq \mathfrak{S}(\mathcal{I})$ and $\mathcal{I} \subset \mathcal{I}$ if and only if $\mathfrak{S}(\mathcal{I}) \subset \mathfrak{S}(\mathcal{I})$ Moreover, \mathcal{I} is a subset minimal if and only if $\mathcal{I}' \ \mathcal{I}' \subset \mathcal{I}$. Similarly, \mathcal{I} is a subset minimal interpretation of a formula φ if and only if $\mathcal{I} \models \varphi \land \mathcal{I}' \ \mathcal{I}' \subset \mathcal{I} \land \mathcal{I}' \models \varphi$.

Remark 10. Notice that if \mathcal{I} is a subset minimal interpretation of the formula φ , then $\mathfrak{S}(\mathcal{I}) \subseteq Var(\varphi)$. That is, if there would exists an $x \in \mathfrak{S}(\mathcal{I})$ such that $x \notin Var(\varphi)$, \mathcal{I} would not be subset minimal.

Thirdly, the notion of extension is required.

Definition 11. Let \mathcal{I} be an interpretation. Then an extension of \mathcal{I} by the atoms X, is any interpretation \mathcal{J} such that $\mathcal{I} \subseteq \mathcal{J}$ and $\forall x \in X \mathcal{J}(x) = \mathbf{true} \vee \mathcal{J}(x) = \mathbf{false}$.

As suggested in the given hint, to demonstrate Lemma XX, two precursory results are demonstrated.

Lemma 12. Let $\varphi := (\exists x_1, \dots, x_k)(\forall y_1, \dots, y_\ell)\psi$ be a $\mathbf{QBF}_{2,\exists}$ -formula, such that there exists a minimal model \mathcal{J} of $\chi(\varphi)$, where $\mathcal{J} \models z$. Then $\forall y \in \mathcal{Y}(\varphi)$ $\mathcal{J} \models y$.

Proof. Assume that \mathcal{J} exists, thus it is known that $\mathcal{J} \models z$ and that \mathcal{J} is a subset minimal interpretation of $\chi(\varphi)$. Assume that there exists a $y \in \mathcal{Y}(\varphi)$ such that $\mathcal{J} \not\models y$. If this is the case, then clearly $\mathcal{J} \not\models (y_1 \land \cdots \land y_\ell \land z)$. However, since $\mathcal{J} \models \chi(\varphi)$, it must be that $\mathcal{J} \models \neg \psi$. By construction it is known that $z \notin Var(\varphi)$. Therefore, the only occurrence of z in $\chi(\varphi)$ is in the sub-formula $(y_1 \land \cdots \land y_\ell \land z)$. Now, with the one y evaluating to false under \mathcal{J} , the truth value of z is immaterial in the evaluation of $\chi(\varphi)$. Hence, one can construct the interpretation \mathcal{J}' such that $\forall x \neq z \mathcal{J}'(x) := \mathcal{J}(x)$ and $\mathcal{J}'(z) := \text{false}$ that satisfies $\chi(\varphi)$. Hence, by definition one obtains $\mathcal{J}' \subset \mathcal{J}$, which clearly violates the assumed subset minimality of \mathcal{J} . Therefore, one can conclude that $\forall y \in \mathcal{Y}(\varphi) \mathcal{J} \models y$. \square

Guided by the hint, the second relevant lemma.

Lemma 13. Let $\varphi := (\exists x_1, \dots, x_k)(\forall y_1, \dots, y_\ell)\psi$ be a $\mathbf{QBF}_{2,\exists}$ -formula, such that there exists a minimal model \mathcal{J} of $\chi(\varphi)$, where $\mathcal{J} \models z$. Let $\mathcal{I}_{|_X}$ be the interpretation $\forall x \in \mathcal{X}(\varphi)$ $\mathcal{I}_{|_X}(x) = \mathcal{J}(x) \wedge \mathfrak{S}(\mathcal{I}_{|_X}) \subseteq \mathcal{X}(\varphi)$, i.e. it is \mathcal{J} restricted to the variables in $\mathcal{X}(\varphi)$. Then it holds that for any arbitrary extension $\mathcal{I}_{|_{X \cup Y}}$ of $\mathcal{I}_{|_X}$ by the variables in $\mathcal{Y}(\varphi)$, it must be that $\mathcal{I}_{|_{X \cup Y}} \models \psi$.

Proof. Towards a contradiction, assume that there exists an extension $\mathcal{I}_{|_{X \cup Y}}$ of $\mathcal{I}_{|_X}$ by the variables in $\mathcal{Y}(\varphi)$ such that $\mathcal{I}_{|_{X \cup Y}} \not\models \psi$. Hence, by semantics this implies that $\mathcal{I}_{|_{X \cup Y}} \models \neg \psi$. Now using $\mathcal{I}_{|_{X \cup Y}}$ an interpretation \mathcal{J}' will be constructed such that $\mathcal{J}' \subset \mathcal{J}$ and $\mathcal{J}' \models \chi(\varphi)$. The sought after interpretation is defined such that

- $\forall x \in \mathcal{X}(\varphi) \ \mathcal{J}'(x) := \mathcal{I}_{|_{X \cup Y}}(x);$
- $\forall x \in \mathcal{X}(\varphi) \ \mathcal{J}'(\tau(x)) := \neg \mathcal{I}_{|_{Y \cup Y}}(x);$
- $\forall y \in \mathcal{Y}(\varphi) \ \mathcal{J}'(y) := \mathcal{I}_{|_{Y \cup Y}}(y);$
- $\mathcal{J}'(z) :=$ false.

Notice that \mathcal{J}' was constructed using $\mathcal{I}_{|X \cup Y}$, which is an extension of $\mathcal{I}_{|X}$, which itself is merely a restriction of \mathcal{J} to the variables in $\mathcal{X}(\varphi)$. Hence, it follows that $\forall x \in \mathcal{X}(\varphi) \ \mathcal{J}'(x) = \mathcal{J}(x)$. Moreover, together with the fact that $\mathcal{J} \models \bigwedge_{i=1}^k (\neg x_i \leftrightarrow x_i')$ (and the construction of τ) it follows that $\forall x' \in \mathcal{X}'(\varphi) \ \mathcal{J}'(x') = \mathcal{J}(x')$. Therefore, \mathcal{J} and \mathcal{J}' agree on the variables in $\mathcal{X}(\varphi) \cup \mathcal{X}'(\varphi)$, i.e. $\mathfrak{S}(\mathcal{J}') \cap (\mathcal{X}(\varphi) \cup \mathcal{X}'(\varphi)) = \mathfrak{S}(\mathcal{J}) \cap (\mathcal{X}(\varphi) \cup \mathcal{X}'(\varphi))$. Now, by Lemma 12, it is known that for any $y \in \mathcal{Y}(\varphi)$ it must be that $\mathcal{J} \models y$, i.e. $\mathfrak{S}(\mathcal{J}) \cap \mathcal{Y}(\varphi) = \mathcal{Y}(\varphi)$. Hence, $\mathfrak{S}(\mathcal{J}') \cap \mathcal{Y}(\varphi) \subseteq \mathfrak{S}(\mathcal{J}) \cap \mathcal{Y}(\varphi)$. Furthermore, by assumption it is known that $\mathcal{J} \models z$ while \mathcal{J}' does not, thus $\mathfrak{S}(\mathcal{J}') \cap \{z\} \subset \mathfrak{S}(\mathcal{J}) \cap \{z\}$ holds. To summarise,

- (i) $\mathfrak{S}(\mathcal{J}') \cap (\mathcal{X}(\varphi) \cup \mathcal{X}'(\varphi) = \mathfrak{S}(\mathcal{J}) \cap (\mathcal{X}(\varphi) \cup \mathcal{X}'(\varphi),$
- (ii) $\mathfrak{S}(\mathcal{J}') \cap \mathcal{Y}(\varphi) \subseteq \mathfrak{S}(\mathcal{J}) \cap \mathcal{Y}(\varphi)$ and
- (iii) $\mathfrak{S}(\mathcal{J}') \cap \{z\} \subset \mathfrak{S}(\mathcal{J}) \cap \{z\}.$

As this covers all variables assigned in \mathcal{J} by subset minimality and all variables assigned in \mathcal{J}' by construction, one can conclude that $\mathfrak{S}(\mathcal{J}') \subset \mathfrak{S}(\mathcal{J})$ which by definition implies that $\mathcal{J}' \subset \mathcal{J}$.

What remains to be shown is that $\mathcal{J}' \models \chi(\varphi)$. From (i) and the fact that $\mathcal{J} \models \chi(\varphi)$ one obtains $\mathcal{J}' \models \bigwedge_{i=1}^k (\neg x_i \leftrightarrow x_i')$. Furthermore, by assumption it is known that $\mathcal{I}_{|_{X \cup Y}} \models \neg \varphi$, by construction one knows that $\forall x \in \mathcal{X}(\varphi) \cup \mathcal{Y}(\varphi) \ \mathcal{J}'(x) = \mathcal{I}_{|_{X \cup Y}}(x)$, as well as $\mathcal{X}(\varphi) \cup \mathcal{Y}(\varphi) = Var(\varphi) = Var(\psi)$. Hence, one can conclude that $\mathcal{J}' \models \neg \psi$. Which thereby, forces that $\mathcal{J}' \models \chi(\varphi)$, thus clearly contradicting the subset minimality of \mathcal{J} .

Finally, allowing the proof of the main result.

Lemma 14. Let $\varphi := (\exists x_1, \dots, x_k)(\forall y_1, \dots, y_\ell)\psi$ be a $\mathbf{QBF}_{2,\exists}$ -formula. z is **true** in a minimal model of $\chi(\varphi) \implies \varphi$ is **true**.

Proof. If the antecedent is not satisfied, the statement holds vacuously. Hence, to demonstrate this claim, under the assumption that z is **true** in a minimal model of $\chi(\varphi)$, the formula φ is **true**. This is precisely the case if there exists a partial assignment \mathcal{I} of the variables $\mathcal{X}(\varphi)$ such that any extension \mathcal{I}' by the variables $\mathcal{Y}(\varphi)$ satisfies ψ , i.e. $\mathcal{I}' \models \psi$. However, this is precisely what Lemma 13 provides. That is, using this lemma it is possible to construct such a partial truth assignment for the variables in $\mathcal{X}(\varphi)$.

Appendix Let i = n + 1. Observe the following

$$L \in \Pi_{n+1}^{\mathsf{P}}$$

$$\stackrel{\text{(i)}}{\Longleftrightarrow} \exists R_2 \in \mathcal{R}^2 \ R_2 \ p.b. \land \mathcal{L}(R_2) \in \Sigma_n^{\mathsf{P}} \land L = \{x \mid \forall y \ (x,y) \in R_2\}$$

$$\stackrel{\text{(ii)}}{\Longrightarrow} \exists R_2 \in \mathcal{R}^2 \ R_2 \ p.b. \land \exists R_{n+1} \in \mathcal{R}^{n+1} \ R_{n+1} \ p.b. \land R_{n+1} \ p.d. \land$$

$$\mathcal{L}(R_2) = \{ x \# y \mid \exists y_1 \forall y_2 \exists y_3 \dots Qy_n \ (x \# y, y_1, \dots, y_n) \in R_{n+1} \} \land$$

$$L = \{ x \mid \forall y \ (x, y) \in R_2 \} \land$$

$$(n \text{ even} \Rightarrow Q = \forall) \land (n \text{ odd} \Rightarrow Q = \exists)$$

$$\stackrel{\text{(iv)}}{\Longrightarrow} \exists R_2 \in \mathcal{R}^2 \ R_2 \ p.b. \land \exists R_{n+2} \in \mathcal{R}^{n+2} \ R_{n+2} \ p.b. \land R_{n+2} \ p.d. \land$$

$$R_2 = \{(x,y) \mid \exists y_1 \forall y_2 \exists y_3 \dots Qy_n \ (x,y,y_1,\dots,y_n) \in R_{n+2} \} \land$$

$$L = \{x \mid \forall y \ (x,y) \in \{(x,y) \mid \exists y_1 \forall y_2 \exists y_3 \dots Qy_n \ (x,y,y_1,\dots,y_n) \in R_{n+2} \} \} \land$$

$$(n \text{ even } \Rightarrow Q = \forall) \land (n \text{ odd } \Rightarrow Q = \exists)$$

$$\stackrel{(v)}{\iff} \exists R_{n+2} \in \mathcal{R}^{n+2} \ R_{n+2} \ p.b. \land R_{n+2} \ p.d. \land$$

$$L = \{x \mid \forall y \ (x,y) \in \{(x,y) \mid \exists y_1 \forall y_2 \exists y_3 \dots Qy_n \ (x,y,y_1,\dots,y_n) \in R_{n+2}\}\} \land$$

$$(n \text{ even } \Rightarrow Q = \forall) \land (n \text{ odd} \Rightarrow Q = \exists)$$

$$\stackrel{\text{(vi)}}{\Longrightarrow} \exists R_{n+2} \in \mathcal{R}^{n+2} \ R_{n+2} \ p.b. \land R_{n+2} \ p.d. \land$$

$$L = \{x \mid \forall y \exists y_1 \forall y_2 \exists y_3 \dots Qy_n \ (x, y, y_1, \dots, y_n) \in R_{n+2} \} \land$$

$$(n \text{ even } \Rightarrow Q = \forall) \land (n \text{ odd } \Rightarrow Q = \exists)$$

$$\stackrel{\text{(vii)}}{\Longrightarrow} \exists R_{n+2} \in \mathcal{R}^{n+2} \ R_{n+2} \ p.b. \land R_{n+2} \ p.d. \land$$

$$L = \{x \mid \forall y_1 \exists y_2 \forall y_3 \dots Qy_{n+1} \ (x, y, y_1, \dots, y_n) \in R_{n+2} \} \land$$

$$(n+1 \text{ even} \Rightarrow Q = \exists) \land (n+1 \text{ odd} \Rightarrow Q = \forall)$$

- (i) Here Theorem 1 was applied.
- (ii) Here the **IH** was applied, i.e.

$$\mathcal{L}(R_2) \in \Sigma_n^{\mathsf{P}} \iff \exists R_{n+1} \in \mathcal{R}^{n+1} \ R_{n+1} \ p.b. \land R_{n+1} \ p.d. \land$$

$$\mathcal{L}(R_2) = \{ x \# y \mid \exists y_1 \forall y_2 \exists y_3 \dots Q y_n \ (x \# y, y_1, \dots, y_n) \in R_{n+1} \} \land$$

$$(n \text{ even } \Rightarrow Q = \forall) \land (n \text{ odd } \Rightarrow Q = \exists)$$

(iii) Firstly, \Rightarrow . Starting from

$$\exists R_2 \in \mathcal{R}^2 \ R_2 \ p.b. \land \exists R_{n+1} \in \mathcal{R}^{n+1} \ R_{n+1} \ p.b. \land R_{n+1} \ p.d. \land$$
$$\mathcal{L}(R_2) = \{ x \# y \mid \exists y_1 \forall y_2 \exists y_3 \dots Qy_n \ (x \# y, y_1, \dots, y_n) \in R_{n+1} \}$$

Taking the relation R_{n+1} one can construct the relation $R_{n+2} \in \mathbb{R}^{n+2}$ such that

$$R_{n+2} = \{(x, y, y_1, \dots, y_n) \mid (x \# y, y_1, \dots, y_n) \in R_{n+1}\}$$

To do so one merely has to split the first entry in $(x \# y, y_1, \ldots, y_n) \in R_{n+1}$ into two, which can be done in polynomial time (similar argument as in Lemma 5). Moreover, by construction it clearly holds that

$$(x, y, y_1, \dots, y_n) \in R_{n+2} \iff (x \# y, y_1, \dots, y_n) \in R_{n+1}$$

Since by assumption R_2 is polynomially balanced it follows that there exists a k such that for any $(x,y) \in R_2$ one has $|y| \leq |x|^k$. Furthermore, it is known that R_{n+1} is p.b., thus there exists a k' such that for any $1 \leq i \leq n$ one has $|y_i| \leq |x\#y|^{k'} \leq |x| + 1 + |x|^k$. By assumption, i.e. |x| > 1, it follows that there exists a $k^* \geq k$ such that $|y_i| \leq |x|^{k*}$ and $|y| \leq |x|^{k*}$. Hence, R_{n+2} is polynomially balanced. Additionally, one knows that R_{n+1} is p.d., thus R_{n+2} can be decided by concatenating the first two entries and querying R_{n+1} . Both operations can be done in polynomial time, thus R_{n+2} is p.d.. Hence, one obtains

$$\exists R_2 \in \mathcal{R}^2 \ R_2 \ p.b. \land \exists R_{n+2} \in \mathcal{R}^{n+2} \ R_{n+2} \ p.b. \land R_{n+2} \ p.d. \land$$
$$\mathcal{L}(R_2) = \{ x \# y \mid \exists y_1 \forall y_2 \exists y_3 \dots Q y_n \ (x, y, y_1, \dots, y_n) \in R_{n+2} \}$$

Secondly, \Leftarrow . This argument is essentially the same as the previous one, but in reverse (and with slight alterations in the complexity arguments). That is, starting from

$$\exists R_2 \in \mathcal{R}^2 \ R_2 \ p.b. \land \exists R_{n+2} \in \mathcal{R}^{n+2} \ R_{n+2} \ p.b. \land R_{n+2} \ p.d. \land$$
$$\mathcal{L}(R_2) = \{ x \# y \mid \exists y_1 \forall y_2 \exists y_3 \dots Qy_n \ (x, y, y_1, \dots, y_n) \in R_{n+2} \}$$

Taking the relation R_{n+2} one can construct the relation $R_{n+1} \in \mathbb{R}^{n+1}$ such that

$$R_{n+1} = \{(x \# y, y_1, \dots, y_n) \mid (x, y, y_1, \dots, y_n) \in R_{n+2}\}$$

To do so one merely has to concatenate the first two entries in $(x, y, y_1, \ldots, y_n) \in R_{n+1}$ using the separator #, which can be done in polynomial time (similar argument as in Lemma 5). Moreover, it clearly holds that

$$(x \# y, y_1, \dots, y_n) \in R_{n+1} \iff (x, y, y_1, \dots, y_n) \in R_{n+2}$$

It is known that R_{n+2} is p.b., thus there exists a k such that for $1 \leq i \leq n$, $|y_i| \leq |x|^k$ and $|y| \leq |x|^k$. Now since |x| < |x#y| it must be that R_{n+1} is p.b. as well. Additionally, one knows that R_{n+2} is p.d., thus R_{n+1} can be decided by splitting the first entry on # and querying R_{n+2} . Both operations can be done in polynomial time, thus R_{n+1} is p.d.. Hence, one obtains

$$\exists R_2 \in \mathcal{R}^2 \ R_2 \ p.b. \land \exists R_{n+1} \in \mathcal{R}^{n+1} \ R_{n+1} \ p.b. \land R_{n+1} \ p.d. \land$$
$$\mathcal{L}(R_2) = \{ x \# y \mid \exists y_1 \forall y_2 \exists y_3 \dots Q y_n \ (x \# y, y_1, \dots, y_n) \in R_{n+1} \}$$

(iv) This equality is guaranteed by the following. Take an arbitrary relation R. Clearly, $(x,y) \in R \iff x\#y \in \mathcal{L}(R)$. Hence, in this particular case one has $(x,y) \in R_2 \iff x\#y \in \mathcal{L}(R_2)$. Now starting from

$$\mathcal{L}(R_2) = \{ x \# y \mid \exists y_1 \forall y_2 \exists y_3 \dots Q y_n \ (x, y, y_1, \dots, y_n) \in R_{n+2} \} \land L = \{ x \mid \forall y \ (x, y) \in R_2 \}$$

due to

$$(\alpha, \beta) \in R_2 \iff \alpha \# \beta \in \mathcal{L}(R_2)$$

$$\iff \alpha \# \beta \in \{x \# y \mid \exists y_1 \forall y_2 \exists y_3 \dots Qy_n \ (x, y, y_1, \dots, y_n) \in R_{n+2}\}$$

$$\iff (\alpha, \beta) \in \{(x, y) \mid \exists y_1 \forall y_2 \exists y_3 \dots Qy_n \ (x, y, y_1, \dots, y_n) \in R_{n+2}\}$$

one obtains the equivalent statement

$$R_{2} = \{(x,y) \mid \exists y_{1} \forall y_{2} \exists y_{3} \dots Qy_{n} \ (x,y,y_{1},\dots,y_{n}) \in R_{n+2} \} \land L = \{x \mid \forall y \ (x,y) \in \{(x,y) \mid \exists y_{1} \forall y_{2} \exists y_{3} \dots Qy_{n} \ (x,y,y_{1},\dots,y_{n}) \in R_{n+2} \} \}$$

(v) Firstly, \Rightarrow . Starting from

$$\exists R_2 \in \mathcal{R}^2 \ R_2 \ p.b. \land \exists R_{n+2} \in \mathcal{R}^{n+2} \ R_{n+2} \ p.b. \land R_{n+2} \ p.d. \land$$

$$R_2 = \{(x,y) \mid \exists y_1 \forall y_2 \exists y_3 \dots Qy_n \ (x,y,y_1,\dots,y_n) \in R_{n+2} \} \land$$

$$L = \{x \mid \forall y \ (x,y) \in \{(x,y) \mid \exists y_1 \forall y_2 \exists y_3 \dots Qy_n \ (x,y,y_1,\dots,y_n) \in R_{n+2} \} \}$$

one can simply use weakening to obtain the part of the statement, where R_2 does not occur.

$$\exists R_{n+2} \in \mathcal{R}^{n+2} \ R_{n+2} \ p.b. \land R_{n+2} \ p.d. \land L = \{x \mid \forall y \ (x,y) \in \{(x,y) \mid \exists y_1 \forall y_2 \exists y_3 \dots Qy_n \ (x,y,y_1,\dots,y_n) \in R_{n+2}\}\}$$

Thereby, eradicating all references of R_2 .

Secondly, \Leftarrow . Starting from

$$\exists R_{n+2} \in \mathcal{R}^{n+2} \ R_{n+2} \ p.b. \land R_{n+2} \ p.d. \land$$

$$L = \{ x \mid \forall y \ (x,y) \in \{ (x,y) \mid \exists y_1 \forall y_2 \exists y_3 \dots Qy_n \ (x,y,y_1,\dots,y_n) \in R_{n+2} \} \}$$

One can define the relation $R_2 := \{(x,y) \mid \exists y_1 \forall y_2 \exists y_3 \dots Qy_n \ (x,y,y_1,\dots,y_n) \in R_{n+2}\}$. Since it is known that R_{n+2} is p.b. this implies that there exists a k such that $|y| \leq |x|^k$, thus implying that R_2 is p.b.. Allowing one to conclude that

$$\exists R_2 \in \mathcal{R}^2 \ R_2 \ p.b. \land \exists R_{n+2} \in \mathcal{R}^{n+2} \ R_{n+2} \ p.b. \land R_{n+2} \ p.d. \land$$

$$R_2 = \{(x,y) \mid \exists y_1 \forall y_2 \exists y_3 \dots Qy_n \ (x,y,y_1,\dots,y_n) \in R_{n+2} \} \land$$

$$L = \{x \mid \forall y \ (x,y) \in \{(x,y) \mid \exists y_1 \forall y_2 \exists y_3 \dots Qy_n \ (x,y,y_1,\dots,y_n) \in R_{n+2} \} \}$$

(vi) Starting from $\{x \mid \forall y \ (x,y) \in \{(x,y) \mid \exists y_1 \forall y_2 \exists y_3 \dots Qy_n \ (x,y,y_1,\dots,y_n) \in R_{n+2}\}\}$. Notice that

$$(\alpha, \beta) \in \{(x, y) \mid \exists y_1 \forall y_2 \exists y_3 \dots Qy_n \ (x, y, y_1, \dots, y_n) \in R_{n+2}\}$$

$$\iff \exists y_1 \forall y_2 \exists y_3 \dots Qy_n \ (\alpha, \beta, y_1, \dots, y_n) \in R_{n+2}\}$$

From this it follows that

$$\forall y \ (\alpha, y) \in \{(x, y) \mid \exists y_1 \forall y_2 \exists y_3 \dots Qy_n \ (x, y, y_1, \dots, y_n) \in R_{n+2} \}$$

$$\iff \forall y \exists y_1 \forall y_2 \exists y_3 \dots Qy_n \ (\alpha, y, y_1, \dots, y_n) \in R_{n+2} \}$$

and therefore

$$\{x \mid \forall y \ (x,y) \in \{(x,y) \mid \exists y_1 \forall y_2 \exists y_3 \dots Qy_n \ (x,y,y_1,\dots,y_n) \in R_{n+2}\} \}$$

= $\{x \mid \forall y \exists y_1 \forall y_2 \exists y_3 \dots Qy_n \ (x,y,y_1,\dots,y_n) \in R_{n+2}\}$

(vii) This particular renaming of bound variables is clearly an equivalence transformation. Hence,

$$n \text{ even} \Rightarrow Q = \forall \land n \text{ odd} \Rightarrow Q = \exists \iff n+1 \text{ even} \Rightarrow Q = \exists \land n+1 \text{ odd} \Rightarrow Q = \forall$$

remains to be established. However, this follows directly from the fact that n is even if and only if n+1 is odd. That is, if n was even, one has $Q=\forall$. However, this implies that for $Q=\forall$ for n+1 being odd and if n+1 is odd then $Q=\forall$, meaning that $Q=\forall$ for n is even. Analogous for the other case.