Árvore Geradora Mínima

prof. Leandro G. M. Alvim

 Seja um grafo G=(V,E) com custos ce nas aretas, uma MST é um subconjunto de arestas T c E tal que T é um árvore geradora cuja soma dos custos das aretas é a menor possível. (Kleinberg e Tardos, 2005)

- Seja um grafo G=(V,E) com custos ce nas aretas, uma MST é um subconjunto de arestas T c E tal que T é um árvore geradora cuja soma dos custos das aretas é a menor possível. (Kleinberg e Tardos, 2005)
- Teorema de Caley (n^(n-2) árvores)
 - Inviável por força bruta

T,
$$\Sigma_{e \in T} c_e = 50$$

Algumas Aplicações

- Projeto de Redes
 - Tv a cabo, rede elétrica, hidráulica, computadores, estradas
- Agrupamento
- Algoritmos aproximativos para problemas da classe NP-Difícil (ex. Caixeiro Viajante)

TV a Cabo

- Conectar regiões com o menor custo possível
 - Certos "caminhos" precisam de cabos maiores
 - Em certos "caminhos" é necessário
 passar o cabo em um maior profundidade

Agrupamento

- Agrupar vértices em k grupos
 - Encontrar MST
 - Remover k-1 maiores arestas

Algoritmos para MST

Kruskal

 Comece com T={}. Insira, em ordem crescente de custo, arestas que não gerem ciclos

Prim

 Escolha um vértice s. Construa uma árvore T a partir de s adicionando o vértice cuja aresta possui menor custo e que possua apenas um vertice em T.

Remoção Reversa

 Comece com T=E. Seja as arestas em ordem decrescente, remova cada aresta e que não desconecta T.

Ciclo

 Conjunto de arestas na forma (a,b), (b,c), ..., (y,z).

Conjunto de Corte

 Um corte é um subconjunto dos vértices de S. O correspondente conjunto de corte D é o subconjunto de arestas com exatamente um vértice em S.

Arestas ordenadas

Aresta	Peso
{b,d}	5
{a,d}	10
{a,b}	12
{a,c}	13
{d,e}	17
{c,e}	23
{c,d}	50

e

a

Floresta

Arestas ordenadas

Aresta	Peso
{b,d}	5
$\{a,d\}$	10
{a,b}	12
{a,c}	13
{d,e}	17
{c,e}	23
{c,d}	50

Aresta	Peso
{b,d}	5
{a,d}	10
{a,b}	12
{a,c}	13
{d,e}	17
{c,e}	23
{c,d}	50

Aresta	Peso
{b,d}	5
{a,d}	10
{a,b}	12
{a,c}	13
{d,e}	17
{c,e}	23
{c,d}	50

Aresta	Peso
{b,d}	5
{a,d}	10
{a,b}	12
{a,c}	13
{d,e}	17
{c,e}	23
{c,d}	50

Aresta	Peso
{b,d}	5
$\{a,d\}$	10
{a,b}	12
{a,c}	13
{d,e}	17
{c,e}	23
{c,d}	50

Aresta	Peso
{b,d}	5
{a,d}	10
{a,b}	12
{a,c}	13
{d,e}	17
{c,e}	23
{c,d}	50

Aresta	Peso
{b,d}	5
{a,d}	10
{a,b}	12
{a,c}	13
{d,e}	17
{c,e}	23
{c,d}	50

Aresta	Peso
{b,d}	5
{a,d}	10
{a,b}	12
{a,c}	13
{d,e}	17
{c,e}	23
{c,d}	50

C(MST) = 45

Aresta	Peso
{b,d}	5
{a,d}	10
{a,b}	12
{a,c}	13
{d,e}	17
{c,e}	23
{c,d}	50

- Passos
 - Comece com uma floresta
 - Adicione a menor aresta que não gere ciclo
 - Volte ao passo anterior até que a floresta se transforme em árvore
- Observação: Ao contrário do Prim, que cresce a partir de uma árvore, kruskal cresce com florestas até que se obtenha

Implementação

- Requer ordenação de arestas: O(E log(E))
- Requer estrutura de dados Union-Find
 - createSet(u): O(1)
 - findSet(u): O(log(V))
 - union(u,v): O(log(V))

Implementação

sorted(E)

 $O(E \log(E))$

- $a = \{\}$
- for u in V:

O(V)

- createSet(u)
- **for** (u,v) **in** E:

- O(E log(V))
- if findSet(u) != findSet(v):
 - a.append((u,v))
 - union(u,v)

Implementação

- Kruskal
 - Com implementação union-find eficiente
 - O(E log(E))
 - Como E < V^2, então log(E) = O(log(V))
 - O(Elog(V))

Corretude

Propriedade do corte: Seja S um subconjunto qualquer de vértices e e a aresta de menor custo com exatamente um vértice em S. Então MST T* contém e.

- Prova
 - Suponha que e não pertença a T*,
 - então, adicionar e em T* cria um ciclo C
 - Aresta e está no ciclo C e no conjunto de corte D
 - T'= T* U {e} {f} também é uma
 MST
 - Como Ce < Cf, Custo(T') < Custo(T*)
 (Contradição)

Corretude

Arestas em ordem crescente

Case 1

Caso I: Se aresta e gera um ciclo, descarte.

Case 2

Caso 2: Caso contrário, insira aresta e em T de acordo com a propriedade do corte em que S é o conjunto de vértices da mesma componente conexa de u

Corretude

Theorem 13.3 Kruskal's algorithm correctly finds a minimum spanning tree of the given graph.

Proof: We can use a similar argument to the one we used for Prim's algorithm. Let G be the given graph, and let F be the forest we have constructed so far (initially, F consists of n trees of 1 node each, and at each step two trees get merged until finally F is just a single tree at the end). Assume by induction that there exists an MST M of G that is consistent with F, i.e., all edges in F are also in M; this is clearly true at the start when F has no edges. Let e be the next edge added by the algorithm. Our goal is to show that there exists an MST M' of G consistent with $F \cup \{e\}$.

If $e \in M$ then we are done (M' = M). Else add e into M, creating a cycle. Since the two endpoints of e were in different trees of F, if you follow around the cycle you must eventually traverse some edge $e' \neq e$ whose endpoints are also in two different trees of F (because you eventually have to get back to the node you started from). Now, both e and e' were eligible to be added into F, which by definition of our algorithm means that $len(e) \leq len(e')$. So, adding e and removing e' from M creates a tree M' that is also a MST and contains $F \cup \{e\}$, as desired.

$$S = \{a\}$$

V	Pred(v)
a	-

$$S = \{a\}$$

V	Pred(v)
a	-

$$S = \{a\}$$

V	Pred(v)
a	-

Adicionar novo vértice em S

	•	1)
5	₹a.	d }

V	Pred(v)
a	-
ש	a

$$S = \{a,d\}$$

V	Pred(v)
a	-
Ъ	a

S	=	$\{a,c\}$	$I,b\}$
---	---	-----------	---------

V	Pred(v)
a	-
Ъ	a
b	d

$$S = \{a,d,b\}$$

V	Pred(v)
a	-
Ь	a
b	d

Prim

$$S = \{a,d,b,c\}$$

V	Pred(v)
a	-
Ъ	a
Ь	d
С	a

Prim

$$S = \{a,d,b,c\}$$

V	Pred(v)
a	-
Ъ	a
b	d
С	a

Prim

$$C(MST) = 45$$

S =	$\{a,d,d\}$	b,c,e}
-----	-------------	--------

V	Pred(v)
a	-
ש	a
Ь	Ъ
C	a
е	d

Implementação

- **for** u **in** V:
 - u.key = inf
 - u.pred = nil
- r.key = 0
- Q = V
- while not empty(Q):
 - u = min(Q)
 - **for** v **in** vizinhos(u):
 - If v in Q and w(u,v) < v.key:
 - pred(v) = u
 - v.key = w(u,v)

- for u in V: O(?)
 - u.key = inf
 - u.pred = nil
- r.key = 0
- Q = V
- while not empty(Q): O(?)
 - u = min(Q)
 - **for** v **in** vizinhos(u):

- O(?) // Ao todo
 - O(?) // Ao todo
- If v in Q and w(u,v) < v.key:
- pred(v) = u
- v.key = w(u,v)
- O(?) // atualizar heap
 O(?) // Ao todo

- for u in V:
 - u.key = inf
 - u.pred = nil
- r.key = 0
- Q = V
- **while not** empty(Q):
 - u = min(Q)
 - **for** v **in** vizinhos(u):
- O(E) // Ao todo

O(VlogV) // Ao todo

- If v in Q and w(u,v) < v.key:
- pred(v) = u
- v.key = w(u,v)O(logV) // atualizar heap O(ElogV) // Ao todo

- Prim
 - Com implementação min-heap eficiente
 - O(Vlog(V) + Elog(V)) = O(ElogV)

A mesma que a do Kruskal!

- Prim
 - Com implementação min-heap Fibonacci
 - O(E+Vlog(V))

Supera o Kruskal!

Semelhante ao
Djkstra em
complexidade,
execução e
implementação!

Corretude

Adicione um nó v qualquer em S

Aplicar a propriedade do corte

Adicione uma aresta do corte, de custo mínimo, que incide

em T

Corretude

Theorem 13.2 Prim's algorithm correctly finds a minimum spanning tree of the given graph.

Proof: We will prove correctness by induction. Let G be the given graph. Our inductive hypothesis will be that the tree T constructed so far is consistent with (is a subtree of) some minimum spanning tree M of G. This is certainly true at the start. Now, let e be the edge chosen by the algorithm. We need to argue that the new tree, $T \cup \{e\}$ is also consistent with some minimum spanning tree M' of G. If $e \in M$ then we are done (M' = M). Else, we argue as follows.

Consider adding e to M. As noted above, this creates a cycle. Since e has one endpoint in T and one outside T, if we trace around this cycle we must eventually get to an edge e' that goes back in to T. We know $len(e') \ge len(e)$ by definition of the algorithm. So, if we add e to M and remove e', we get a new tree M' that is no larger than M was and contains $T \cup \{e\}$, maintaining our induction and proving the theorem.

Evolução

- Comparativo de algoritmos determinísticos
 - O(Elog(V)) [Jarnik,Prim,Dijkstra,kruskal,Boruvka]
 - O(Elog(log(V))) [Cheriton-Tarjan 1976, Yao 1975]
 - O(Eb(E,V)) [Fredman-Tarjan 1987]
 - O(Elog(b(E,V))) [Gabow-Galil-Spencer-Tarjan 1986]
 - O(Ea(E,V)) [Chazelle 2000]
- Santo Graal O(E)
- Notáveis
 - O(E) aleatorizado [Karger-Klein-Tarjan 1995]
 - O(E) verificação [Dixon-Rauch-Tarjan 1992]

Questões

- Passo-a-passo Prim e Kruskal
- Desenvolva um algoritmo que encontre MST utilizando busca em largura
- Desenvolva um algoritmo que encontre MST por remoções de arestas