Monte Carlo Simulations (MA323) Lab 6

Name - Kartikeya Singh Roll no - 180123021

Question 1

First Z_1 and Z_2 are generated such that Z_1 , $Z_2 \sim N(0,1)$ (Univariate Normal Distribution). Then the matrix A satisfying $AA^T = \Sigma$ is calculated using Cholesky Factorization, and the transformation $X = \mu + AZ$ is applied to generate the random variable X which follows the distribution $X \sim N(\mu, \Sigma)$.

Question 2 and 3

For the case a = 1, the Variance-Covariance matrix becomes singular (determinant = 0), Hence the Normal Distribution doesn't exist. So in order to get an approximate plot the value of a is changed slightly **only for the actual distribution**. The graphs generated are -

Simulated Distribution for a = 0.5

Actual Distribution for a = 0.5

Simulated Distribution for a = -0.5

Actual Distribution for a = -0.5

Simulated Distribution for a = 1

