

Michael J. Calaway
Jacobs Technology
at NASA Johnson Space Center

Acknowledgements:

Eileen Stansbery (NASA/JSC)

TEM Work:

Roy Christoffersen (SAIC at JSC)
Lindsay Keller (NASA/JSC)
Jie Lian (University of Michigan, Ann Arbor)
Rodney Ewing (University of Michigan, Ann Arbor)

TRIM Modeling:

Bruce King (University of New Castle and Argonne National Laboratory)
Chad Olinger (Los Alamos National Laboratory)
Dan Reisenfeld (University of Montana)
Roger Weins (Los Alamos National Laboratory)
Grace Asanaenyi (NASA intern)

FIB Pull: Nick Teslich, John Bradley, and Giles Graham (Lawrence Livermore National Laboratory)

JSC Curation: Judy Allton (NASA/JSC) and Melissa Rodriguez (GeoControl)

GENESIS Journeyed to Earth-Sun Lagrange 1

Wafer Thickness Measurement Determines Solar Wind Regime

Bulk (B/C) collector arrays = ~700 μm Coronal Mass Ejection (E) array = ~650 μm High Speed (H) collectors = ~600 μm Low Speed (L) collectors = ~550 μm

FT-IR Determines FZ or CZ Silicon

GENESIS Ultra-Pure Water Megasonic Wafer Spin Cleaner

(NASA New Technology # 24499)

- ♣ 1.5 I/min , 40° C UPW flow
- 1 MHz, 0.4 A Sonication
- ❖ 3000 RPM Spin
- 24" Hg Vacuum Sample Holder
- 3 mm to 10 cm Genesis Samples

Genesis Si B/C array sample 60458

Before and After UPW/Megasonic Cleaning

Genesis Si B/C array sample 60458

Before and After UPW/Megasonic Cleaning

Taken with Leica DM 6000 M Optical Microscope with 50X lens

ALL SILICON

Possible Contamination Sources from the SRC

Possible Contamination Source?

Al-arc spray on the C-C ablator

Stainless Steel Contamination

Pure Aluminum Contamination

Contamination Remaining After UPW/Megasonic Cleaning

- 92% pure Silicon contamination with no other elements in a randomly selected 0.5 mm² area. The vast majority of contamination is Silicon.
- Remaining Si contamination seems to be fused to the Si substrate.
- Sources of Si are possibly from solar wind collectors and SRC super-light ablator (SLA) filled with soda-lime glass.
- Other contamination on 60458 include pure Al, Al₂O₃, and stainless steel.
- Contamination sources for Al and Al₂O₃ are possibly from SLA honeycomb, array frames, and other parts of the SRC.

Spectroscopic Ellipsometer

Characterize Molecular Thin -films

Woollam M-2000

Sample 60208 Flown Genesis Si B/C array

1	sio2_jaw	36.13 Å
0	si_jaw	1 mm

Note that the delta parameter is the difference in the phase of the measured sample between the p- and s-polarized pseudo-Fresnel reflection coefficient at the angle of incidence and a given wavelength

Bright-field micrograph of the FIB lift-out membrane

The Famous Brown Stain Visible on the Gold Foil

HRTEM micrograph showing the contamination film between the Pt protective capped layer and the Genesis Au-foil. Thickness of the contamination film is 50.5 Å.

If Brown Stain Existed: Two possible Ellipsometry Models (2005-2006)

Sample 60208 Flown Genesis Si B/C array

2 cauchy	0.00 Å
1 sio2_jaw	36.14 Å
0 si_jaw	1 mm

If Brown Stain was not present: Ellipsometry Model for Radiation Damage

Sample 60208 Flown Genesis Si B/C array

2 sio2_jaw	34.55 Å
1 EMA (si_jaw)/1.24% void	609.85 Å
0 si_jaw	1 mm

Sample 60208 Flown Genesis Si B/C array

2 sio2_jaw	34.55 Å
1 EMA (si_jaw)/1.24% void	609.85 Å
0 si_jaw	1 mm

PSI is the magnitude of the ratio of the p- to s- direction pseudo-Fresnel reflection coefficient of the sample at the given wavelength and angle of incidence.

STEM Study Objectives

- Characterize the Brown Stain and any other thin film contamination.
- Characterize (if possible) surface particle contamination and the interaction with the wafer surface.
- Characterize the native oxide layer and verify ellipsometry thickness results.
- Verify ellipsometry EMA layer model for Silicon and substrate alteration thickness.
- Did the Silicon substrate experience lattice alteration during flight?

FIB Pull Locations for Stratigraphic Profiles

FIB Stratigraphic Cross-section Pull Sample 60208.4 (Surface particle Pull)

Application of a Platinum Coating for FIB Pull Section

Ion Milling Stratigraphic Cross-section

FIB Pull and Mounting Section on TEM Grid

Final Configuration After Thinning Sample 60208.1 (~10 x 6 μm and ~60 nm thick)

JEOL JEM 2500SE STEM Image of 60208.1 Si B/C Array

Wafer Surface Native Oxide Layer $SiO_2 = \sim 38 \text{ Å}$

Complex Diffraction Contrast Radiation Damage Zone Depth = $\sim 610 \text{ Å}$ Range = 60 - 75 nm

Crystalline Si Substrate

STEM Image of 60208.1 Si B/C Array

Wafer Surface Native Oxide Layer $SiO_2 = \sim 38 \text{ Å}$

Complex Diffraction Contrast

Radiation Damage Zone Depth = $\sim 610 \text{ Å}$ Range = 60 - 70 nm

Crystalline Si Substrate

STEM Image of 60208.1 Si B/C Array

Wafer Surface

Native Oxide Layer $SiO_2 = \sim 38 \text{ Å}$

Radiation
Damage Zone

Arrows show possible stacking faults within the strained region directly below the native oxide layer.

Arrows show possible dislocation line segments within the strained Region.

Arrows shows areas of possible dislocation loop defects within the strained region.

Oxygen Map Pt coat SiO₂

Brown Stain Search with a 1 nm EDS Spot

X-ray EDS spectrum of a 1.0 nm diameter probe transect analysis between the Si substrate and Pt coat. The spectrum clearly shows no change in the C/Pt ratio near the Pt to wafer interface.

STEM Image of 60208.4 Si B/C Array

STEM Image of 60208.4 Si B/C Array

a-Si Particle on wafer surface

Wafer Surface Native Oxide Layer $SiO_2 = \sim 18 \text{ Å}$

Radiation / Damage Zone

STEM Image of 60208.4 Si B/C Array

- ❖Below the threshold for generating a continuous amorphous region at ~ 600 eV/nm³ (12 eV/atom) [Dennis and Hale 1978; Schreutelkamp et al. 1991]
- ❖Si vacancy formation at 100 eV/nm³ (2.0 eV/atom)
- ❖Si self-interstitials formation at 159 eV/nm³ (3.18 eV/atom).

[Bracht et al. 1995; Nieminen and Puska 1999; Mozos and Nieminen 1999]

TRIM Model of Si Bulk Array Irradiation Damage

Conclusions

- Majority of the deposited energy was caused by H+ and He+ ion implantation. However, the heavier atomic mass ions (C, O, Ne, Mg, Si and Fe) with much lower fluences could have contributed the majority of the damage at depths greater than 16 nm.
- The fluence threshold required to alter Si materials is below 1.9 x 10¹⁶ atoms/cm² for solar wind exposure
- Analysis of elemental abundances from Genesis collectors must be aware of changes in the substrate structure due to solar wind irradiation damage that may have occurred throughout the implantation time.
- The results further suggest that surface analysis of any extraterrestrial material must also account for irradiation damage and elemental diffusion when exposed to solar wind.

Should we plan a GENSIS II mission with longer exposure times at L1 or on the moon?

10¹⁷ to 10²⁰ H⁺ atoms/cm² may cause exfoliation in pure crystalline silicon

Weldon and Chabal (1999) **Hydrogen-induced exfoliation of c-Si**, in: R. Hull (Ed.), Properties of Crystalline Silicon, INSPEC, London, p. 942.

GENESIS's need for Advanced Surface Analysis Techniques

MegaSIMS at UCLA

SARISA (Surface Analysis by Resonance Ionization of Sputtered Atoms) at Argonne National Lab

Human Skin Tissue

The Need for Advancements in Radiation Protection

Questions

ARTICLE IN PRESS

Nuclear Instruments and Methods in Physics Research B xxx (2009) xxx-xxx

Contents lists available at ScienceDirect

Nuclear Instruments and Methods in Physics Research B

iournal homepage: www.elsevier.com/locate/nimb

Genesis capturing the sun: Solar wind irradiation at Lagrange 1

Michael J. Calaway a,*, Eileen K. Stansbery b, Lindsay P. Keller b

ARTICLE INFO

Article history: Received 28 October 2008 Received in revised form 20 January 2009 Available online xxxx

PACS: 96.50.Ci 94.05.Dd 94.05.Sd

96.60.Vg

Keywords: Irradiation damage Radiation damage NASA Genesis Mission Solar wind Space weathering Silicon defects

ABSTRACT

Genesis, a member of NASAs Discovery Mission program, is the world's first sample return mission since the Apollo program to bring home solar matter in ultra-pure materials. Outside the protection of Earth's magnetosphere at the Earth-Sun Lagrange 1 point, the deployed sample collectors were directly exposed to solar wind irradiation. The natural process of solar wind ion implantation into a highly pure silicon (Si) bulk composition array collector has been measured by spectroscopic ellipsometry and scanning transmission electron microscopy (STEM). Ellipsometry results show that bulk solar wind ions composed of approximately 95% H⁺, 4% He⁺ and <1% other elements physically altered the first 59–63 nm of crystalline silicon substrate during 852.8 days of solar exposure. STEM analysis confirms that the solar accelerated ions caused significant strain and visible structural defects to the silicon structure forming a 60-75 nm thick irradiation damage region directly below the surface SiO₂ native oxide layer. Monte Carlo simulations of solar wind H, He, C, O, Ne, Mg, Si and Fe ion collisions in the Si collector with fluences calculated from the Genesis and ACE spacecrafts were used to estimate the energy deposited and Si vacancies produced by nuclear stopping in a flight-like Si bulk array collector. The coupled deposited energy model with the flown Genesis Si in situ measurements provides new insight into the basic principles of solar wind diffusion and space weathering of materials outside Earth's magnetosphere.

© 2009 Elsevier B.V. All rights reserved.

^a Jacobs (ESCG) at NASA Johnson Space Center, Mail Code KT, 2101 NASA Parkway, Houston, TX 77058, United States

^b NASA at NASA Johnson Space Center, Houston, TX 77058, United States