Commutative algebra

Contents

1.	Introduction	4
2.	Graded commutative algebra	4
3.	Graded algebraic geometry	13
4.	Graded Riemann–Zariski spaces	13
5.	The birational category	16
6.	Miscellany	17
Biblio	ography	19

4

1. Introduction

2. Graded commutative algebra

Let G be an Abelian group. We write the group operation of G multiplicatively and denote the identity of G as 1.

Definition 2.1. Let A be an Abelian group. A G-grading on A is a coproduct decomposition

$$A = \bigoplus_{g \in G} A_g$$

of Abelian groups such that $A_g \subseteq A$. An Abelian group with a G-grading is called a G-graded Abelian group.

An element $a \in A$ is said to be homogeneous if there is $g \in G$ such that $a \in A_g$. If a is furthermore non-zero, we write $g = \rho(a)$. We set $\rho(0) = 0$. We will write $\rho(A)$ for the set of $\rho(a)$ when a runs over all homogeneous elements in A.

A G-graded homomorphism between G-graded Abelian groups A and B is a homogeneous of the underlying Abelian groups $f: A \to B$ such that $f(A_g) \subseteq B_g$ for any $g \in G$.

The category of G-graded Abelian groups is denoted by $\mathcal{A}b^G$.

Remark 2.2. A usual Abelian group A can be given the *trivial G-grading*: $A_0 = A$ and $A_q = 0$ for $g \in G$, $g \neq 0$. In this way, we find a fully faithful embedding

$$\mathcal{A}\mathbf{b} \to \mathcal{A}\mathbf{b}^G$$

When we regard an Abelian group as a G-graded Abelian group and there are no natural gradings, we always understand that we are taking the trivial G-grading.

More generally, let G' be a subring of G. Then any G'-graded Abelian group can be canonically identified with a G-graded Abelian group: for the extra pieces in the grading, we simply put 0.

The same remark applies to all the other constructions in this section, which we will not repeat.

Definition 2.3. A *G-graded ring* is a commutative ring *A* endowed with a *G*-grading:

$$A = \bigoplus_{g \in G} A_g$$

as Abelian groups and such that

- (1) $A_g A_h \subseteq A_{gh}$ for any $g, h \in G$;
- $(2) 1 \in A_1$

A G-graded homomorphism of G-graded rings A and B is a ring homomorphism $f:A\to B$ such that $f(A_g)\subseteq B_g$ for each $g\in G$. A G-graded subring of a G-graded ring B is a subring A of B such that the grading on B restricts to a grading on A.

The category of G-graded rings is denoted by $\mathcal{R}ing^G$.

Example 2.4. Let A be a G-graded ring, $n \in \mathbb{N}$ and $g = (g_1, \ldots, g_n) \in G^n$. Then there is a unique G-grading on $A[T_1, \ldots, T_n]$ extending the grading on A and such that $\rho(T_i) = g_i$ for $i = 1, \ldots, n$. We will denote $A[T_1, \ldots, T_n]$ with this grading as $A[g_1^{-1}T_1, \ldots, g_n^{-1}T_n]$ or simply $A[g^{-1}T]$.

Example 2.5. Let A be a G-graded ring and S be a multiplicative subset of A consisting of homogeneous elements, then $S^{-1}A$ has a natural G-grading. To see this,

recall the construction of $S^{-1}A$ in [Stacks, Tag 00CM]. One defines an equivalence relation on $A \times S$: $(x,s) \sim (y,t)$ if there is $u \in S$ such that (xt-ys)u=0. For each $g \in G$, we define $(S^{-1}A)_g$ as the set of (x,s) for all $s \in S$ and $x \in A_{g\rho(s)}$. It is easy to verify that this is a well-defined G-grading on $S^{-1}A$. Add details.

In particular, if $f \in A$ is a non-zero homogeneous element, then we define A_f as $S^{-1}f$ with $S = \{f^n : n \in \mathbb{N}\}.$

Definition 2.6. Let A be a G-graded ring. A G-homogeneous ideal in A is an ideal I in G such that if $a \in A$ can be written as

$$a = \sum_{g \in G} a_g, \quad a_g \in A_g$$

with almost all $a_g = 0$, then $a_g \in I$.

Example 2.7. Let A be a G-graded ring and $n \in \mathbb{N}$ and a_1, \ldots, a_n be homogeneous elements in A. Then a_1, \ldots, a_n generate a G-homogeneous ideal (a_1, \ldots, a_n) as follows:

$$(a_1, \dots, a_n)_g = \sum_{i=1}^n A_{g\rho(a_i)^{-1}} a_i$$

for any $g \in G$.

Lemma 2.8. Let $f: A \to B$ be a G-homomorphism of G-graded rings. Then $\ker f$ is a G-homogeneous ideal in A.

PROOF. We need to show that

$$\ker f = \sum_{g \in G} (\ker f) \cap A_g.$$

Take $x \in \ker f$, we can write x as

$$\sum_{g \in G} a_g, \quad a_g \in A_g$$

and almost all a_q 's are 0. Then

$$f(x) = \sum_{g \in G} f(a_g), \quad f(a_g) \in B_g.$$

It follows that $f(a_g) = 0$ for each $g \in G$ and hence $a_g \in (\ker f) \cap A_g$.

Definition 2.9. Let A be a G-graded ring and I be a G-homogeneous ideal in A. Then we define a G-grading on A/I as follows: for any $g \in G$

$$(A/I)_q := (A_q + I)/I.$$

Proposition 2.10. Let A be a G-graded ring and I be a G-homogeneous ideal in A. Then the construction in Definition 2.9 defines a grading on A/I. The natural map $\pi: A \to A/I$ is a G-homomorphism.

For any G-graded ring B and any G-homomorphism $f: A \to B$ such that $I \subseteq \ker A$, there is a unique G-homomorphism $f': A/I \to B$ such that $f' \circ \pi = f$.

PROOF. We first argue that for different $g, h \in G$, $(A/I)_g \cap (A/I)_h = 0$. Suppose $x \in (A/I)_g \cap (A/I)_h$, we can lift x to both $y_g + i_g \in A$ and $y_h + i_h \in A$ with $y_g, y_h \in A$ and $i_g, i_h \in I$. It follows that $y_g - y_h \in I$. But I is a G-homogeneous ideal, so it follows that $y_g, y_h \in I$ and hence x = 0.

Next we argue that

6

$$A/I = \sum_{g \in G} (A/I)_g.$$

Lift an element $x \in A/I$ by $a \in A$, we represent a as

$$a = \sum_{g \in G} a_g, \quad a_g \in A_g$$

with almost all a_g 's equal to 0. Then x can be represented as

$$x = \sum_{g \in G} \pi(a_g).$$

We have shown that the construction in Definition 2.9 gives a G-grading on A. It is clear from the definition that π is a G-homomorphism.

Next assume that B and f are given as in the proposition. Then there is a ring homomorphism $f': A/I \to B$ such that $f = f' \circ \pi$. We need to argue that f' is a G-homomorphism. For this purpose, take $g \in G$, $x \in (A/I)_g$, we need to show that $f'(x) \in B_g$. Lift x to y+i with $y \in A_g$ and $i \in I$, then we know that $f'(x) = \pi(y+i) = \pi(y) \in B_g$.

Definition 2.11. Let A be a G-graded ring.

Let M an A-module which is also a G-graded Abelian group. We say M is a G-graded A-module if for each $g,h\in G$, we have

$$A_a M_h \subseteq M_{ah}$$
.

A G-graded homomorphism of G-graded A-modules M and N is an A-module homomorphism $f:M\to N$ which is at the same time a homomorphism of the underlying G-graded Abelian groups.

The category of G-graded A-modules is denoted by $\mathcal{M}od_A^G$.

A G-graded A-algebra is a G-graded ring B together with a G-graded ring homomorphism $A \to B$ such that B is also a G-graded A-module.

A G-graded homomorphism between G-graded A-algebras B and C is a G-graded homomorphism between the underlying G-graded rings that is at the same time a G-graded homomorphism of G-graded A-modules.

Observe that G-homogeneous ideals of A are G-graded submodules of A. Also observe that $\mathcal{M}\mathrm{od}_{\mathbb{Z}}^G$ is isomorphic to $\mathcal{A}\mathrm{b}^G$.

Proposition 2.12. Let A be a G-graded ring. Then $\mathcal{M}od_A^G$ is an Abelian category satisfying AB5.

PROOF. We first show that $\mathcal{M}\mathrm{od}_A^G$ is preadditive. Given $M, N \in \mathcal{M}\mathrm{od}_A^G$, we can regard $\mathrm{Hom}_{\mathcal{M}\mathrm{od}_A^G}(M,N)$ as a subgroup of $\mathrm{Hom}_A(M,N)$. It is easy to see that this gives $\mathcal{M}\mathrm{od}_A^G$ an enrichment over $\mathcal{A}\mathrm{b}$.

Next we show that $\mathcal{M}od_A^G$ is additive. The zero object is clearly given by 0 with the trivial grading. Given $M, N \in \mathcal{M}od_A^G$, we define

$$(M \oplus N)_g := M_g \oplus N_g, \quad g \in G.$$

This construction makes $M \oplus N$ a G-graded A-module. It is easy to verify that $M \oplus N$ is the biproduct of M and N.

Next we show that $\mathcal{M}od_A^G$ is pre-Abelian. Given an arrow $f:M\to N$ in $\mathcal{M}od_A^G$, we need to define its kernel and cokernel. We define

$$(\ker f)_q := (\ker f) \cap M_q$$

and $(\operatorname{coker} f)_g$ as the image of N_g for any $g \in G$. It is straightforward to verify that these are kernels and cokernels.

Next, given a monomorphism $f: M \to N$, it is obvious that the map f is injective and f can be identified with the kenrel of the natural map $N/\operatorname{Im} f$. A dual argument shows that an epimorphism is the cokernel of some morphism as well.

The AB5 condition is easily verified. Expand the details of this argument! \Box

Next we define the tensor product of G-graded modules.

Definition 2.13. Let A be a G-graded ring and M, N be G-graded A-modules. We define a G-grading on $M \otimes_A N$ as follows: for any $g \in G$, $(M \otimes_A N)_g$ is defined as the image of $\sum_{h \in G} M_h \times N_{gh^{-1}}$ in $M \otimes_A N$. We always endow $M \otimes_A N$ with this G-grading.

verify the universal property; show that this is indeed a grading

Example 2.14. This is a continuition of Example 2.5. Let A be a G-graded ring and S be a multiplicative subset of A consisting of homogeneous elements. Consider a G-graded A-module M. We define a G-grading on $S^{-1}M$. Recall that $S^{-1}M$ can be realized as follows: one defines an equivalence relation on $M \times S$: $(x, s) \sim (y, t)$ if there is $u \in S$ such that (xt - ys)u = 0. For each $g \in G$, we define $(S^{-1}M)_g$ as the set of (x, s) for all $s \in S$ and $x \in M_{g\rho(s)}$. It is easy to verify that this is a well-defined G-grading on $S^{-1}M$ and $S^{-1}M$ is a G-graded $S^{-1}A$ -module. Add details.

Example 2.15. Let A be a G-graded ring and $g \in G$. We define $g^{-1}A$ as the G-graded A-module:

$$(g^{-1}A)_h = A_{g^{-1}h}$$

for any $h \in G$. Observe that $1 \in (g^{-1}A)_g$.

Definition 2.16. Let A be a G-graded ring and M be a G-graded A-module. We say M is free if there exists a family $\{g_i\}_{i\in I}$ in G such that

$$M = \coprod_{i \in I} g_i^{-1} A.$$

Definition 2.17. Let $f: A \to B$ be a G-graded homomorphism of G-graded rings. We say f is *finite* (resp. *finitely generated*, resp. *integral*) if it is finite (resp. finitely generated, resp. integral) as a usual ring map.

Proposition 2.18. Let $f:A\to B$ be a G-graded homomorphism of G-graded rings. Then

(1) f is finite if and only if there are $n \in \mathbb{N}$, $g_1, \ldots, g_n \in G$ and a surjective G-graded homomorphism

$$\bigoplus_{i=1}^{n} (g_i^{-1}A)^n \to B$$

of graded A-modules.

8

(2) f is finitely generated if and only if there are $n \in \mathbb{N}$, $g_1, \ldots, g_n \in G$ and a surjective G-graded A-algebra homomorphism

$$A[g_1^{-1}T_1, \dots, g_n^{-1}T_n] \to B.$$

(3) f is integral if and only if for any non-zero homogeneous element $b \in B$, there is $n \in \mathbb{N}$ and homogeneous elements $a_1, \ldots, a_n \in A$ such that

$$b^{n} + f(a_{1})b^{n-1} + \dots + f(a_{n}) = 0.$$

(4) A non-zero homogeneous element $b \in B$ is integral over A if there is $n \in \mathbb{N}$ and homogeneous elements $a_1, \ldots, a_n \in A$ such that

$$b^{n} + f(a_{1})b^{n-1} + \dots + f(a_{n}) = 0.$$

PROOF. (1) The non-trivial direction is the direct implication. Assume that f is finite. Take $b_1, \ldots, b_n \in B$ so that $\sum_{i=1}^n f(A)b_i = B$. Up to replacing the collection $\{b_i\}_i$ by the finite collection of non-zero homogeneous components of the b_i 's, we may assume that each b_i is homogeneous. We define $g_i = \rho(b_i)$ and the map $\bigoplus_{i=1}^n (g_i^{-1}A)^n \to B$ sends 1 at the i-th place to b_i .

- (2) The non-trivial direction is the direct implication. Suppose f is finitely generated, say by b_1, \ldots, b_n . Up to replacing the collection $\{b_i\}_i$ by the finite collection of non-zero homogeneous components of the b_i 's, we may assume that each b_i is homogeneous. Then we define $g_i = \rho(b_i)$ for $i = 1, \ldots, n$ and the A-algebra homomorphism $A[g_1^{-1}T_1, \ldots, g_n^{-1}T_n] \to B$ sends T_i to b_i for $i = 1, \ldots, n$.
- homomorphism $A[g_1^{-1}T_1,\ldots,g_n^{-1}T_n]\to B$ sends T_i to b_i for $i=1,\ldots,n$. (3) Assume that f is integral, then for any non-zero homogeneous element $b\in B$, we can find $a_1,\ldots,a_n\in A$ such that

$$b^{n} + f(a_{1})b^{n-1} + \dots + f(a_{n}) = 0.$$

Obviously, we can replace a_i by its component in $\rho(b)^i$ for $i=1,\ldots,n$ and the equation remains true.

The reverse direction follows from [Stacks, Tag 00GO].

(4) This is argued in the same way as (3).

Definition 2.19. A G-graded ring A is a G-graded field if

- (1) $A \neq 0$.
- (2) A does not admit any non-zero proper G-homogeneous ideals.

Proposition 2.20. Let A be a non-zero G-graded ring. Then the following conditions are equivalent:

- (1) A is a G-graded field.
- (2) Any non-zero homogeneous element in A is invertible.

PROOF. Assume that A is a G-graded field. Let $a \in A$ be a non-zero homogeneous element. Consider the G-homogeneous ideal (a) generated by a as in Example 2.7. As $a \neq 0$, it follows that (a) = 1. Hence, a is invertible.

Conversely, suppose that any non-zero homogeneous element in A is invertible. If I is a non-zero G-homogeneous ideal in A. There is a non-zero homogeneous element $a \in I$. But we know that a is invertible and hence I = A.

Definition 2.21. A G-graded ring A is an *integral domain* if for any non-zero homogeneous elements $a, b \in A$, $ab \neq 0$.

Lemma 2.22. Let A be a G-graded integral domain. Let S denote the set of non-zero homogeneous elemnts in A. Then $S^{-1}A$ is a graded field. The natural map $A \to S^{-1}A$ is injective.

Recall that $S^{-1}A$ is defined in Example 2.5.

PROOF. By Proposition 2.20, it suffices to show that each non-zero homogeneous element in $S^{-1}A$ is invertible. Such an element has the form a/s for some homogeneous element $a \in A$ and $s \in S$. As A is a G-graded integral domain, a is invertible and hence $s/a \in S^{-1}A$.

In general, the kernel of the localization map is given by $\{a \in A : \text{ there is } s \in S \text{ such that } sa = 0\}$. As $A \to S^{-1}A$ is a G-graded homomorphism, the kernel is in addition a G-homogeneous ideal in A by Lemma 2.8. So it suffices to show that each homogeneous element in the kenrel vanishes: if $a \in A$ is a homogeneous element and there is $s \in S$ such that sa = 0, then a = 0. Otherwise, a is invertible by Proposition 2.20, which is a contradiction.

Definition 2.23. Let A be a G-graded integral domain. We call the graded field defined in Lemma 2.22 the fraction G-graded field of A and denote it by $\operatorname{Frac}^G A$.

Definition 2.24. Let A be a G-graded ring. A proper G-homogeneous ideal I in A is called *prime* if the G-graded ring A/I is a G-graded integral domain.

Proposition 2.25. Let A be a G-graded ring and I be a proper homogeneous ideal in A. Then the following are equivalent:

- (1) I is a G-graded prime ideal in A.
- (2) For any homogeneous elements $a, b \in A$ satisfying $ab \in I$, at least one of a and b lies in I.

PROOF. Assume that I is a G-graded prime ideal in A. Let $a, b \in A$ be homogeneous elements satisfying $ab \in I$. Let \bar{a}, \bar{b} be the images of a, b in A/I. Then \bar{a}, \bar{b} are homogeneous and $\bar{a}\bar{b} = 0$. So at least one of \bar{a} and \bar{b} is zero. That is, a or b lies in I.

Conversely, assume that the condition in (2) is satisfied. Take $x, y \in A/I$ with xy = 0. We need to show that at least one of x and y is 0. Lift x and y to a + i and b + i' in A with a, b being homogeneous and $i, i' \in I$. Then $ab \in I$ and hence $a \in I$ or $b \in I$. It follows that x = 0 or y = 0.

Definition 2.26. Let A be a G-graded ring and \mathfrak{p} be a prime G-homogeneous ideal in A. Then we define the G-graded localization $A_{\mathfrak{p}}^G$ of A at \mathfrak{p} as $S^{-1}A$, where S is the set of homogeneous elements in $A \setminus \mathfrak{p}$.

Similarly, let M be a G -graded A-module. We define the G -graded localization $M_{\mathfrak{p}}^G$ as $S^{-1}M.$

Recall that $S^{-1}A$ and $S^{-1}M$ are defined in Example 2.5 and Example 2.14.

Definition 2.27. Let A be a G-graded ring.

A G-homogeneous ideal I in A is said to be maximal if it is proper, and it is not contained in any other proper G-homogeneous ideals.

We call A a G-graded local ring if it has a unique maximal homogeneous ideal. This ideal is called the maximal G-homogeneous ideal of A.

Proposition 2.28. Let A be a G-graded ring and I be a G-homogeneous ideal in A. Then the following are equivalent:

- (1) I is a maximal G-homogeneous ideal in A;
- (2) A/I is a G-graded field.

In particular, a maximal G-homogeneous ideal is a prime G-homogeneous ideal.

PROOF. Assume (1). Then I is a proper ideal, so A/I is non-zero. Suppose that A/I has a proper G-homogeneous ideal J, it lifts to an ideal J' of A. We claim that J' is G-homogeneous. In fact, we set $J'_g := \{x \in A_g : x + I \in J\}$ for $g \in G$, we need to show that

$$J' = \sum_{g \in G} J'_g.$$

For any $j \in J'$, we can expand j + I as $\sum_{g \in G} a_g + I$ with $a_g \in A_g$ and almost all a_g 's are 0. We take $i \in I$ so that

$$j = i + \sum_{g \in G} a_g.$$

The desired equation follows. But then it follows that J' = I and hence J = 0.

Assume (2). Then I is a proper ideal in A. If J is a G-homogeneous proper ideal of A containing I, then J/I is a G-homogeneous proper ideal of A/I. It follows that J/I = 0 and hence J = I.

Corollary 2.29. Let A be a non-zero G-graded ring, then A admits a prime G-homogeneous ideal.

PROOF. By our assumption, 0 is a proper ideal in A. By Zorn's lemma, A admits a maximal G-homogeneous ideal, which is prime by Proposition 2.28. \square

Proposition 2.30. Let A be a G-graded ring and $a \in A$ be a homogeneous element. Then a is a unit in A if and only if a is not contained in any maximal G-homogeneous ideal of A.

PROOF. The direct implication is trivial. Assume that a is not a unit. Then the ideal (a) generated by a is G-homogeneous. By Zorn's lemma, there is a maximal G-homogeneous ideal containing (a).

Lemma 2.31. Let $f: A \to B$ be a G-graded homomorphism of G-graded rings. Let $b_1, \ldots, b_n \in B$ be a finite set of homogeneous elements integral over A, then there is a G-graded A-subalgebra $B' \subseteq B$ containing b_1, \ldots, b_n such that $A \to B'$ is finite.

PROOF. We may assume that none of the b_i 's is zero. By Proposition 2.18, we can find $m_1, \ldots, m_n \in \mathbb{N}$ and homogeneous elements $a_{i,j} \in A$ for $i = 1, \ldots, n$ and $j = 1, \ldots, m_i$ such that

$$b_i^{m_i} + f(a_{i,1})b_i^{m_i-1} + \dots + f(a_{i,m_i}) = 0$$

for i = 1, ..., n. It suffices to take B' as the A-submodule generated by $a_{i,j}$ for i = 1, ..., n and $j = 1, ..., m_i$.

Proposition 2.32. Let $f: A \to B$ be an injective integral G-graded homomorphism of G-graded rings. Then for any prime G-homogeneousideal \mathfrak{p} in A, there is a prime G-homogeneousideal \mathfrak{p}' in B such that $\mathfrak{p} = f^{-1}\mathfrak{p}'$.

PROOF. We may assume that $A \neq 0$, as otherwise there is nothing to prove.

It suffices to show that $\mathfrak{p}B_{\mathfrak{p}} \neq B_{\mathfrak{p}}$. Include a proof We could localize that \mathfrak{p} and assume that \mathfrak{p} is a maximal G-homogeneous ideal. Include details about localization It suffices then to show that $\mathfrak{p}B \neq B$. Assume by contrary that we can write $1 = \sum_{i=1}^{n} f_i b_i$ for some homogeneous elements $f_i \in \mathfrak{p}$ and some homogeneous elements $b_i \in B$. Let B' be a G-graded subring of B containg A and b_1, \ldots, b_n and such that $A \to B'$ is finite. The existence of B' is guaranteed by Lemma 2.31. Then we find immediately $B' = \mathfrak{m}_A B'$. Then B' = 0 by the graded Nakayama's lemma. Include details So A = 0, which is a contradiction.

Lemma 2.33. Let A be a G-graded ring. Then the following are equivalent:

- (1) A is a G-graded local ring;
- (2) There is a proper homogeneous ideal I in A such that any non-invertible homogeneous element in A is contained in I.

In fact, I in (2) is just the maximal G-homogeneous ideal in A.

PROOF. Assume that (1) holds, let I be the maximal G-homogeneous ideal of A. Let a be a non-invertible homogeneous element in A. Then the image of a in A/I is invertible by Proposition 2.28 and Proposition 2.20.

Assume (2). We show that I is the maximal G-homogeneous ideal in A. By Proposition 2.28, it suffices to show that A/I is a graded field. By Proposition 2.20, we need to show that any non-zero homogeneous element $b \in A/I$ is invertible. Lift b to $a + i \in A$ with $a \in A$ homogeneous and $i \in I$. If a is not invertible, then $a \in I$ by the assumption hence b = 0. This is a contradiction.

Lemma 2.34. Let k be a G-graded field and A be a graded k-algebra. Suppose that $\rho(A) = \rho(k)$, then

(1) For any $g \in G$, there is a natural isomorphism

$$A_g \cong A_1 \otimes_{k_1} k_g$$
.

(2) The map $I \mapsto I \cap A_1$ is a bijection between the set of G-homogeneous ideals (resp. prime G-homogeneousideals) in A and ideals (resp. prime ideals) in A_1 .

PROOF. (1) Take $g \in \rho(A)$. As $\rho(A) = \rho(k)$, we can take a non-zero homogeneous element $b \in k_g$. Then b and b^{-1} induces inverse bijections between A_1 and A_g .

(2) The part about ideals can be proved in the same way as (1). The part about prime ideals follows easily. \Box

Proposition 2.35. Let k be a G-graded field and M be a G-graded A-module. Then M is free as G-graded A-module.

PROOF. We may assume that $M \neq 0$. Let $\{m_i\}_{i \in I}$ be a maximal set of non-zero homogeneous elements in M such that the corresponding homomorphism

$$F := \bigoplus_{i \in I} (\rho(f))^{-1} k \to M$$

is injective. The existence of $\{m_i\}_{i\in I}$ follows from Zorn's lemma.

If $f \in M/F$ is a non-zero homogeneous element, then we get a homomorphism $(\rho(f))^{-1}k \to M/F$. This map is necessarily injective as $(\rho(f))^{-1}k$ does not have non-zero proper graded submodules. This contradicts the definition of F.

Corollary 2.36. Let k be a G-graded field, C be a G-graded k-algebra. Consider a G-graded homomorphism of G-graded k-algebras $f:A\to B$. Then the following are equivalent:

- (1) f is finite (resp. finitely generated);
- (2) $f \otimes_k C$ is finite (resp. finitely generated).

PROOF. (1) \implies (2): This implication is trivial.

(2) \Longrightarrow (1): By Proposition 2.35, this implication follows from fpqc descent [Stacks, Tag 02YJ].

Definition 2.37. Let K be a G-graded field. A G-graded subring $A \subseteq K$ is a G-graded valuation ring in K if

- (1) A is a local G-graded ring;
- (2) the natural map $\operatorname{Frac}^G A \to K$ is an isomorphism;
- (3) For any non-zero homogeneous element $f \in K$, either $f \in A$ or $f^{-1} \in A$.

Definition 2.38. Let K be a G-graded field and A, B be G-graded local subrings of K. We say B dominates A if $A \subseteq B$ and $\mathfrak{m}_B \cap A = \mathfrak{m}_A$, where \mathfrak{m}_A and \mathfrak{m}_B are the maximal G-homogeneous ideals in A and B.

Proposition 2.39. Let K be a G-graded field and $A \subseteq K$ be a G-graded local subring. Then the following are equivalent:

- (1) A is a G-graded valuation ring in K.
- (2) A is maximal among the G-graded local subrings of K with respect to the order of domination.

PROOF. Assume (1). We may assume that $A \neq K$. Then A is not a G-graded field as $\operatorname{Frac}^G = K$. Let \mathfrak{m} be a maximal G-homogeneous ideal in A. Then $\mathfrak{m} \neq 0$.

We argue first that A is a G-graded local ring. Assume the contrary. Let $\mathfrak{m}' \neq \mathfrak{m}$ be maximal G-homogeneous ideal in A. Choose non-zero homogeneous elements $x,y \in A$ with $x \in \mathfrak{m}' \setminus \mathfrak{m}, \ y \in \mathfrak{m} \setminus \mathfrak{m}'$. Then $x/y \notin A$ as otherwise $x = (x/y)y \in \mathfrak{m}$. Similarly, $y/x \notin A$. This is a contradiction.

Next suppose that A' is a G-graded local subring of K dominating A. Let $x \in A'$ be a non-zero homogeneous element, we need to show that $x \in A$. If not, we have $x^{-1} \in A$ and as x^{-1} is not a unit, $x^{-1} \in \mathfrak{m}_A$. But then $x^{-1} \in \mathfrak{m}_{A'}$, the maximal G-homogeneous ideal in A'. This contradicts the fact that $x \in A'$.

Assume (2). Take a homogeneous element $x \in K \setminus A$, we need to argue that $x^{-1} \in A$. Let A' denote the minimal G-homogeneous subring of K containing A and X. It is easy to see that A' is the usual subring generated by A and X.

By our assumption, there is no G-graded prime ideal of A' lying over \mathfrak{m}_A , as otherwise, if \mathfrak{p} is such an ideal, the G-graded local subring $A'^G_{\mathfrak{p}}$ of K dominates A.

In other words, the G-graded ring $A'/\mathfrak{m}_A A'$ does not have any homogeneous prime ideals and hence $A' = \mathfrak{m}_A A'$ by Corollary 2.29.

We can therefore write

$$1 = \sum_{i=0}^{d} t_i x^i$$

with some homogeneous elements $t_i \in \mathfrak{m}_A$. In particular,

$$(1 - t_0)(x^{-1})^d - \sum_{i=1}^d t_i(x^{-1})^{d-i} = 0.$$

So x^{-1} is integral over A. Let A'' be the subring of K generated by A and x^{-1} . Then $A \to A''$ is finite and there is a G-homgeneous prime ideal \mathfrak{m}'' of A'' lying over \mathfrak{m}_A by Proposition 2.32. By our assumption, $A = A'''^G_{\mathfrak{m}''}$ and hence $x^{-1} \in A$.

It remains to verify that $\operatorname{Frac}^G A = K$. Suppose that it is not the case, let $B \subseteq K$ be a G-graded local subring dominating A. Take a homogeneous element $t \in K$ that is not in $\operatorname{Frac}^G A$. Observe that t can not be transcendental over A, as otherwise $A[t] \in K$ is a G-graded subring, and we can localize it at the prime G-homogeneous generated by t and \mathfrak{m}_A . We get a G-graded local ring dominating A that is different from A.

So t is algebraic over A. We can then take a non-zero homogeneous $a \in A$ such that at is integral over A. The ring $A' \subseteq K$ generated by A and ta is a G-graded subring and $A \to A'$ is finite. By Proposition 2.32, tehre is a prime G-homogeneousideal \mathfrak{m}' of A' lifting \mathfrak{m}_A . But then $A'^G_{\mathfrak{m}'}$ dominates A and so $A = A'^G_{\mathfrak{m}'}$. It follows that $t \in \operatorname{Frac}^G A$, which is a contradiction.

Corollary 2.40. Let K be a G-graded field. Any G-graded local subring $B \subseteq K$ is dominated by a G-graded valuation subring of K.

PROOF. This follows from Proposition 2.39 and Zorn's lemma.

3. Graded algebraic geometry

Let G be an Abelian group. We write the group operation of G multiplicatively and denote the identity of G as 1.

Definition 3.1. Let A be a G-graded ring. We define the G-graded affine spectrum $\operatorname{Spec}^G(A)$ as follows: as a set $\operatorname{Spec}^G(A)$ consists of all prime G-homogeneous ideals of A; we endow $\operatorname{Spec}^G(A)$ with the Z-ariski topology, whose base consists of sets of the form

$$D(f) := \left\{ \mathfrak{p} \in \operatorname{Spec}^{G}(A) : f \not\in \mathfrak{p} \right\}$$

for all homogeneous elements $f \in A$.

Lemma 3.2. Let k be a G-graded field and A be a finitely generated G-graded k-algebra. Then $\operatorname{Spec}^G(A)$ has only finitely many maximal points.

Proof.

4. Graded Riemann–Zariski spaces

Let G be an Abelian group. Let k be a G-graded field and K/k be a G-graded field extension.

Definition 4.1. We let $\mathbf{P}_{K/k}$ denote the set of G-graded valuation rings \mathcal{O} of K with G-graded fraction field K such that $k \subseteq \mathcal{O}$.

We endow $\mathbf{P}_{K/k}$ with the weakest topology with respect to which $\{\mathcal{O} \in \mathbf{P}_{K/k} : f \in \mathcal{O}\}$ is open for any homogeneous element $f \in K$.

Given an inclusion of G-graded fields $i:L\to K$ over k, we have a natural continuous map $i^{\#}:\mathbf{P}_{K/k}\to\mathbf{P}_{L/k}$ sending $\mathcal O$ to $i^{-1}(\mathcal O)\cap K$.

Given $X \subseteq \mathbf{P}_{K/k}$ and $A \subseteq K$ consisting of homogeneous elements, we write

$$X\{A\} := \{ \mathcal{O} \in X : f \in \mathcal{O} \text{ for all non-zero } f \in A \},$$

$$X\{\{A\}\} := \{ \mathcal{O} \in X : f \in \mathfrak{m}_{\mathcal{O}} \text{ for all non-zero } f \in A \},$$

where $\mathfrak{m}_{\mathcal{O}}$ is the maximal G-homogeneous ideal of \mathcal{O} . When A consists of finitely many elements f_1, \ldots, f_n , we will write $X\{f_1, \ldots, f_n\}$ and $X\{\{f_1, \ldots, f_n\}\}$ instead.

Definition 4.2. An affine subset of $\mathbf{P}_{K/k}$ is a subset of $\mathbf{P}_{K/k}$ of the form: $\mathbf{P}_{K/k}\{F\}$ for some finite set F of homogeneous elements in K.

Lemma 4.3. Let $X \subseteq \mathbf{P}_{K/k}$ and $f \in K$ be a non-zero homogeneous element. Then

$$X\setminus X\{f\}=X\{\{f^{-1}\}\}.$$

PROOF. We first observe that $X\{f\} \cap X\{\{f^{-1}\}\} = \emptyset$. Otherwise, let \mathcal{O} be a G-graded valuation ring in this intersection, then $f \in \mathcal{O}$ and $f^{-1} \in \mathfrak{m}_{\mathcal{O}}$. So $1 \in \mathfrak{m}_{\mathcal{O}}$, which is a contradiction.

To show that $X\{f\} \cup X\{\{f^{-1}\}\} = X$, we may assume that $X = \mathbf{P}_{K/k}$. Let $\mathcal{O} \in \mathbf{P}_{K/k}$. We need to show that $f \in \mathcal{O}$ or $f^{-1} \in \mathfrak{m}_{\mathcal{O}}$.

By definition, either $f \in \mathcal{O}$ or $f^{-1} \in \mathcal{O}$. We may assume that $f \notin \mathcal{O}$ and $f^{-1} \in \mathcal{O}$. If $f^{-1} \notin \mathfrak{m}_{\mathcal{O}}$, then f^{-1} is invertible in \mathcal{O} by Lemma 2.33. In particular, $f \in \mathcal{O}$, which is a contradiction.

Lemma 4.4. Let $A \subseteq K$ be a subset of K consisting of homogeneous elements, then $\mathbb{P}_{K/k}\{A\}$ is quasi-compact.

PROOF. We may replace A by the G-graded subring generated of K generated by A. So we may assume that A is a G-graded subring of K.

Write $X = \mathbb{P}_{K/k}\{A\}$. By definition, a sub-base for the topology on X is given by $X\{f\}$ for all non-zero homogeneous elements $f \in K$.

By Alexander sub-base theorem and Lemma 4.3, in order to show that X is quasi-compact, it suffices to show that if $F \subseteq K$ consists of homogeneous elements and if for any finite subset $F_0 \subseteq F$, $X\{\{F_0\}\} \neq \emptyset$, then $X\{\{F\}\}$ is non-empty. We assume by contrary that $X\{\{F\}\}$ is empty.

Let B be the G-graded subring of K generated by A and F. Let \mathfrak{m} be the G-homogeneous ideal of B generated by elements in F. We claim that $\mathfrak{m}=B$. Otherwise, let \mathfrak{p} be a maximal G-homogeneous ideal of B containing \mathfrak{m} , then we can find a G-graded valuation subring \mathcal{O} of K dominating $B_{\mathfrak{p}}^G$. The existence of \mathcal{O} is guaranteed by Proposition 2.39. It follows that $\mathcal{O} \in \{\{F\}\}$.

We write $1 = b_1 f_1 + \dots + b_n f_n$ for some $n \in \mathbb{Z}_{>0}$, $b_1, \dots, b_n \in B$ and $f_1, \dots, f_n \in F$. Then $X\{\{f_1, \dots, f_n\}\}$ is empty.

Lemma 4.5. Let $A \subseteq B \subseteq K$ be G-graded subalgebras of K. Assume that both A and B are finitely generated over k. Then the following are equivalent:

- (1) $\mathbf{P}_{K/k}\{A\} = \mathbf{P}_{K/k}\{B\};$
- (2) B is finite over A;
- (3) B is integral over A.

PROOF. (3) \Longrightarrow (1): Let $\mathcal{O} \in \mathbf{P}_{K/k}\{A\}$ and $x \in B$ a non-zero homogeneous element, we need to show that $x \in \mathcal{O}$. If not, $x^{-1} \in \mathfrak{m}_{\mathcal{O}}$ by Lemma 4.3. As x is integral over A, we can find $n \in \mathbb{Z}_{>0}$, homogeneous elements $a_1, \ldots, a_n \in A$ such that

$$b^n + a_1 b^{n-1} + \dots + a_0 = 0$$

by Proposition 2.18. So

$$1 = -b^{-n} (a_1 b^{n-1} + \dots + a_0) \in \mathfrak{m}_{\mathcal{O}},$$

which is a contradiction.

(1) \Longrightarrow (3): Suppose $x \in B$ is a homogeneous element which is not integral over A. The existence of x is guaranteed by Proposition 2.18. Then x^{-1} is not invertible in C = A[1/x]: otherwise, we can find $n \in \mathbb{N}$, $a_1, \ldots, a_n \in A$ such that

$$(a_n x^{-n} + a_{n-1} x^{1-n} + \dots + a_0) x^{-1} = 1$$

or equivalently,

$$x^{n+1} = a_0 x^n + \dots + a_n.$$

This contradicts the fact that x is not integral. In particular, there is a maximal G-homogeneous ideal $\mathfrak p$ containing x^{-1} by Proposition 2.30. Let $\mathcal O$ be a G-graded valuation ring of K dominating $C_{\mathfrak p}^G$, whose existence is guaranteed by Corollary 2.40. But then x^{-1} lies in the maximal ideal of $\mathcal O$ and hence $x \notin \mathcal O$ by Lemma 4.3. It follows that $B \not\subset \mathcal O$.

(2) \equiv (3): This follows from [Stacks, Tag 02JJ].

Definition 4.6. Let X be an open subset of $\mathbf{P}_{K/k}$. A Laurent covering of X is a covering of X of the form

$$\{X\{f_1^{\epsilon_1},\ldots,f_n^{\epsilon_n}\}: \epsilon_i = \pm 1 \text{ for } i = 1,\ldots,n\},\$$

where $n \in \mathbb{Z}_{>0}$, $f_1, \ldots, f_n \in K$ are homogeneous. We say the Laurent covering is generated by f_1, \ldots, f_n .

Definition 4.7. Let X be an open subset of $\mathbf{P}_{K/k}$. A rational covering of X is a covering of the form:

$$\left\{X\left\{\frac{f_1}{f_i},\dots,\frac{f_n}{f_i}\right\}: i=1,\dots,n\right\},\,$$

where $n \in \mathbb{Z}_{>0}$, $f_1, \ldots, f_n \in K$ are non-zero homogeneous elements. We say the rational covering is *generated by* f_1, \ldots, f_n .

Lemma 4.8. Let X be an open subset of $\mathbf{P}_{K/k}$. Any finite covering \mathcal{U} of X by open subsets of the form $X\{A\}$ for some finite set of homogeneous elements $A \subseteq K$ has a refinement which is a Laurent covering of X.

PROOF. **Step 1**. We show that \mathcal{U} admits a refinement by a rational covering. We may assume that there is $n \in \mathbb{Z}_{>0}$ such that \mathcal{U} consists of U_1, \ldots, U_m below:

$$U_i = X\{f_{i1}, \dots, f_{in}\}$$

with $f_{ij} \in K$ being non-zero and homogeneous for i = 1, ..., m and j = 1, ..., n. We may assume that $f_{in} = 1$ for i = 1, ..., m.

Let

$$J := \left\{ \alpha = (\alpha_1, \dots, \alpha_m) \in \mathbb{N}^m : 1 \le \alpha_i \le n \text{ for } i = 1, \dots, m; \max_{i = 1, \dots, m} \alpha_i = n \right\}.$$

We claim that the rational covering generated by $g_{\alpha} = f_{1\alpha_1} \cdots f_{m\alpha_m}$ with $\alpha = (\alpha_1, \dots, \alpha_m) \in J$ refines \mathcal{U} .

Given $\alpha = (\alpha_1, \dots, \alpha_m) \in J$, we consider the set

$$V_{\alpha} = X \{ g_{\beta}/g_{\alpha} : \beta \in J \}$$
.

Let $i \in \{1, ..., m\}$ such that $j_i = n$. We claim that

$$V_{\alpha} \subseteq U_{i}$$
.

Suppose it is not the case, let $\mathcal{O} \in V_{\alpha}$ not lying in U_i , we need to verify that $f_{ik} \in \mathcal{O}$ for k = 1, ..., n. Take $l \neq i$ so that $\mathcal{O} \in U_l$. So $f_{lj_l} \in \mathcal{O}$. On the other hand, if $\beta \in J$ with $\beta_l = n$ and $\beta_k = \alpha_k$ for $k \neq l$, we have $f_{lj_l}^{-1} = g_{\beta}/g_{\alpha} \in \mathcal{O}$, so f_{lj_l} is invertible in \mathcal{O} .

Fix k = 1, ..., n, consider $\gamma \in J$ given by $\gamma_i = k$, $\gamma_l = n$ and $\gamma_p = \alpha_p$ otherwise. Then $g_{\gamma}/g_{\alpha} = f_{ik}/f_{lj_l} \in \mathcal{O}$ and $f_{ik} \in \mathcal{O}$.

Step 2. It remains to show that each rational convering generated by non-zero homogeneous elements $f_1, \ldots, f_n \in K$ admits a refinement by Laurent coverings.

We claim that the Laurent covering of X generated by $g_{ij} = f_i/f_j$ with $1 \le i < j \le n$ refines the given covering. Let V be a subset of the form

$$V = X\{g_{ij}^{\epsilon_{ij}} : 1 \le i < j \le n\}$$

for some $\epsilon_{ij} = \pm 1$ for $1 \le i < j \le n$. We need to show that V is contained in a set in \mathcal{U} .

For $1 \leq i, j \leq n$ and $i \neq j$, we write $i \leq j$ if i < j and $\epsilon_{ij} = 1$ or i > j and $\epsilon_{ji} = -1$. This is an ordering on $\{1, \ldots, n\}$. Choose a maixmal element i. Then $f_j/f_i \in \mathcal{O}$ for all $\mathcal{O} \in V$, so

$$V \subseteq X \{f_1/f_i, \ldots, f_n/f_i\}.$$

5. The birational category

Let G be an Abelian group and k be a G-graded field.

Definition 5.1. The category bir_k is defined as follows:

- (1) the objects are $\bar{X} = (X, K, \phi)$, where X is a connected qsqc topological space, K is a G-graded field extending k and ϕ is a local homeomorphism $X \to \mathbf{P}_{K/k}$;
- (2) a morphism $\bar{X} = (X, K, \phi)$ to $\bar{Y} = (Y, L, \psi)$ is a pair (h, i), where $h: X \to Y$ is a continuous map and $i: L \to K$ is an embedding of G-graded fields such that the following diagram commutes:

$$X \xrightarrow{\phi} \mathbf{P}_{K/k}$$

$$\downarrow^{h} \qquad \downarrow^{i^{\#}};$$

$$Y \xrightarrow{\psi} \mathbf{P}_{L/k}$$

(3) the composition of morphisms (h, i) and (h', i') is $(h \circ h', i \circ i')$.

We observe that there is a final object in bir_k : X is a single point, K=k and ϕ is the unique map between single points.

Definition 5.2. Let $\bar{X} = (X, K, \phi), \bar{Y} = (Y, L, \psi) \in \text{bir}_k$ and $(h, i) : \bar{X} \to \bar{Y}$ be a morphism. We say the morphism is *separated* (resp. *proper*) if $X \to Y \times_{\mathbb{P}_{L/k}} \mathbb{P}_{K/k}$ is injective (resp. bijective).

Here the fiber product is in the category of topological spaces.

We say $\bar{X} = (X, K, \phi)$ is *separated* (resp. *proper*) if the morphism to the final object is separated (resp. proper). That is, ϕ is injective (resp. bijective).

Observe that $X \to Y \times_{\mathbb{P}_{L/k}} \mathbb{P}_{K/k}$ is automatically an open embedding (resp. a homeomorphism).

Definition 5.3. An object $\bar{X} = (X, K, \phi) \in \text{bir}_k$ is affine if ϕ induces a homeomorphism with an affine subset of $\mathbf{P}_{K/k}$.

Given $\bar{X} = (X, K, \phi) \in \text{bir}_k$ and a quasi-compact open subset $X' \subseteq X$, if $(X', K, \phi|_{X'})$ is affine, we say X' is an affine subset of X.

6. Miscellany

Proposition 6.1. Let R be a noetherian N-2 integral domain. Let $\psi: R \to S$ be a ring homomorphism such that S is reduced, torsion-free as R-module and has finite rank as R-module. Then ψ is finite.

[BGR84, Page 122]. Reproduce the argument later.

PROOF. As ψ is injective by assumption, we may assume that R is a subring of S and ψ is identity. The ring $S_{R\setminus\{0\}} = \operatorname{Frac} S$ is a finite-dimensional reduced Frac R-algebra, hence as a ring, Frac S is the product of finitely many finite field extensions of Frac R, say K_1, \ldots, K_t . As R is N-2, the integral closure R_i of R in K_i is finite as R-module for $i = 1, \ldots, t$. As S is integral over R, we have

$$S \subseteq R_1 \times \cdots \times R_t$$
.

As R is noetherian, we conclude that S is finite as R-module.

Lemma 6.2. Let R be a commutative ring. A polynomial $a_0 + a_1X + \cdots + a_nX^n \in R[X]$ is a unit if and only if a_0 is a unit in R and a_1, \ldots, a_n are nilpotents.

Bibliography

- [BGR84] S. Bosch, U. Güntzer, and R. Remmert. Non-Archimedean analysis. Vol. 261. Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. A systematic approach to rigid analytic geometry. Springer-Verlag, Berlin, 1984, pp. xii+436. URL: https://doi.org/10.1007/978-3-642-52229-1.
- [Stacks] T. Stacks Project Authors. Stacks Project. http://stacks.math.columbia.edu. 2020.