Justifying the First-Order Approach in Agency Frameworks with the Agent's Possibly Non-Concave Value Function

Jin Yong Jung Kangnam University Son Ku Kim Seoul National University Seung Joo Lee Oxford University-Saïd

November 28, 2022

First-Order Approach

Principal's canonical problem (x is multi-dimensional):

$$\max_{a,s(\cdot)} \int \left(\underbrace{\pi(\mathbf{x})}_{\text{Principal's value}} - \underbrace{s(\mathbf{x})}_{\text{Contract}}\right) f(\mathbf{x}|a) d\mathbf{x}$$

$$s.t. \quad (i) \ U(s(\cdot), a) \ge \overline{U}$$

$$(ii) \ a \in \arg\max_{a'} \ U(s(\cdot), a') = \int u(s(\mathbf{x})) f(\mathbf{x}|a') d\mathbf{x} - c(a') = 0$$

$$(iii) \ (LL) \ s(\mathbf{x}) \ge \underline{s}$$

First-Order Approach (FOA): replace (ii) with its first-order condition (ii)'

$$\max_{a,s(\cdot)} \int \left(\underbrace{\pi(\mathbf{x})}_{\text{Principal's value}} - \underbrace{s(\mathbf{x})}_{\text{Contract}}\right) f(\mathbf{x}|a) d\mathbf{x}$$

$$s.t. \quad (i) \ U(s(\cdot), a) \geq \overline{U}$$

$$(ii)' \ U_a(s(\cdot), a) = \int u(s(\mathbf{x})) f_a(\mathbf{x}|a) d\mathbf{x} - c'(a) = 0$$

$$(iii) \ (LL) \ s(\mathbf{x}) \geq \underline{s}$$

Note: the limited-liability (LL) $s(x) \ge \underline{s}$ for the solution existence (e.g., Mirrlees (1975))

First-Order Approach

Optimal contract $(s^o(x), a^o)$ based on the first-order approach:

$$\frac{1}{u'(s^{o}(\mathbf{x}))} = \begin{cases} \lambda + \mu \frac{f_{a}(\mathbf{x}|a^{o})}{f(\mathbf{x}|a^{o})}, & \text{if } s^{o}(\mathbf{x}) \geq \underline{s}, \\ \frac{1}{u'(\underline{s})}, & \text{otherwise}, \end{cases}$$

with $\lambda \geq 0$ and $\mu > 0$

• Existence and uniqueness: Jewitt, Kadan, and Swinkels (2008)

If the agent's value function $U(s^{\circ}(\cdot), a)$,

$$U(s^{\circ}(\cdot),a) = \int u(s^{\circ}(\mathbf{x}))f(\mathbf{x}|a)d\mathbf{x} - c(a)$$

is 'concave' in a, then the first-order approach is valid (e.g., Mirrlees (1975))

• The previous literature since Mirrlees (1975): 'sufficient' conditions for

$$U(s^{\circ}(\cdot), a)$$
 to be 'concave' in a

The previous literature

Question (Focus of the literature)

How can we make $U(s^{\circ}(\cdot), a)$ concave in a?

Strategy 1: put conditions on f(x|a), the technology, only:

- One-signal (i.e., x is scalar): Mirrlees (1975) and Rogerson (1985): MLRP (monotone likelihood ratio property) and CDFC (convexity of the distribution function condition)
- Multi-signal extension of CDFC: Sinclair-Desgagné (1994, GCDFC: generalized CDFC), Conlon (2009, CISP: concave increasing set property), and Jung and Kim (2015, CDFCL: convexity of the distribution function condition for the likelihood ratio)
- 3 Too restricted (e.g., normal, gamma distributions excluded)

The previous literature

Question (Focus of the literature)

How can we make $U(s^{\circ}(\cdot), a)$ concave in a?

Strategy 2: put conditions on both u(s) and f(x|a):

1 Theorem 1 in Jewitt (1988):

$$w(z) \equiv u\left(u'^{-1}\left(\frac{1}{z}\right)\right)$$
 is concave in $z > 0$ (1)

or Proposition 7 in Jung and Kim (2015):

$$U(s^{\circ}(\mathbf{x}), a^{\circ})$$
 is concave in $q \equiv \frac{f_a}{f}(\mathbf{x}|a^{\circ})$ (2)

- \longrightarrow (1) and (2) are equivalent
- **2** Problem: Cannot be used when the agent's limited liability $s(x) \ge \underline{s}$ binds:

$$U(s^{o}(\mathbf{x}), a^{o})$$
 becomes convex in $q \equiv \frac{f_{a}}{f}(\mathbf{x}|a^{o})$

around x where s(x) > s binds

Examples show the existing conditions are not enough

The first-order approach cannot be justified by the previous literature in:

Example (Exponential distribution: (LL) not binding)

The agent's utility is $u(s) = \frac{1}{r}s^r$, $r \leq \frac{1}{2}$, and cost c(a) is increasing and convex in a. The signal generating function has a multiplicative form, $\tilde{x} = h(a)\tilde{\theta}$, where h(0) = 0, h(a) is increasing and convex to a small degree, and $\tilde{\theta}$ is exponentially distributed with mean 1, i.e., the density function of $\tilde{\theta}$ is $p(\theta) = e^{-\theta}$, $\theta \in [0, \infty)$. \underline{s} is low enough. Thereby

$$f(x|a) = \frac{1}{h(a)}e^{-\frac{x}{h(a)}},\tag{3}$$

- A little convexity of h(a): does not satisfy Jewitt (1988) and Jung and Kim (2015) in Strategy 2
- Our Proposition 1 justifies the first-order approach in this case if $c(\cdot)$ becomes convex in $h(\cdot)$

Examples show the existing conditions are not enough

The first-order approach cannot be justified by the previous literature in:

Example (Exponential distribution: (LL) not binding)

The agent's utility is $u(s)=\frac{1}{r}s^r$, $1>r>\frac{1}{2}$ (difference from the above example), and cost c(a) is increasing and convex in a. The signal generating function has a multiplicative form, $\tilde{x}=h(a)\tilde{\theta}$, where h(0)=0, h(a) is increasing and concave, and $\tilde{\theta}$ is exponentially distributed with mean 1, i.e., the density function of $\tilde{\theta}$ is $p(\theta)=e^{-\theta}$, $\theta\in[0,\infty)$. \underline{s} is low enough. Thereby

$$f(x|a) = \frac{1}{h(a)}e^{-\frac{x}{h(a)}},\tag{4}$$

- Now concave h(a): following Jewitt (1988) and Jung and Kim (2015)
- $1 > r > \frac{1}{2}$: w(z) in Jewitt (1988) is convex in z > 0, thereby not satisfying Jewitt (1988) and Jung and Kim (2015)
- Our Proposition 2 justifies the first-order approach in this case

^aWe assume $h(\cdot)$ is concave enough satisfying a regularity condition.

Examples show the previous literature is not enough

The first-order approach cannot be justified by the previous literature in:

Example (Normal distribution: (LL) binding)

The agent's utility is $u(s) = \frac{1}{r}s^r$, $r \le 1$, The cost function is $c(a) = D(e^{ka} - 1)$, D > 0, k > 0, and the signal generating function has an additive form $\tilde{x} = a + \tilde{\theta}$, $\tilde{\theta} \sim N(0, \sigma^2)$ thereby

$$f(x|a) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-a)^2}{2\sigma^2}}$$

- Normal distributions often excluded by the previous literature: (← its likelihood ratio unbounded)
- r < 1: includes $r > \frac{1}{2}$ with which w(z) in Jewitt (1988) is convex in z > 0 not satisfying Jewitt (1988) and Jung and Kim (2015)
- Our Proposition 3 justifies the first-order approach if

$$D \ge \overline{U} - u(\underline{s}) \tag{5}$$

Examples show the previous literature is not enough

The first-order approach cannot be justified by the previous literature in:

Example (Gamma distribution: (LL) binding)

The agent's utility is $u(s) = \frac{1}{r}s^r$, $r \le 1$, Cost function is given by c(a) = ka, k > 0, and $\tilde{x} \in (0, \infty)$ has the gamma distribution with shape parameter a, i.e.,

$$f(x|a) = \frac{x^{a-1}\beta^{-a}}{\Gamma(a)}e^{-\frac{x}{\beta}}.$$
 (6)

- Gamma distribution often excluded by the previous literature: (← its likelihood ratio unbounded)
- r < 1: includes $r > \frac{1}{2}$ with which w(z) in Jewitt (1988) is convex in z > 0 not satisfying Jewitt (1988) and Jung and Kim (2015)
- Our Proposition 3 justifies the first-order approach (even with linear cost)

Our paper: different approach

Big Question (Possibly Non-Concave Indirect Utility)

Why should the agent's value function $U(s^o(\cdot), a)$ be concave?

Figure: Possibly Non-Concave Indirect Utility of the Agent

obtained from the first-order approach

 $U(s^{\circ}(\cdot),a)$

Our approach: justify the first-order approach in all of the above examples

- Finding a proxy function $\hat{s}(\mathbf{x})$ where the proxy value $U(\hat{s}(\cdot), a)$ is maximized at $a = a^{\circ}$, the same target action level
- Proving $U(s^{\circ}(\cdot), a) < U(\hat{s}(\cdot), a)$, $\forall a$, justifying the first-order approach
- \bigcirc A proper proxy $\hat{s}(x)$ depends on whether the limited liability binds or not

Note: impose additional conditions on the agent's cost function $c(\cdot)$

Fundamental Lemma

Change of variables to q-space

À la Jung and Kim (2015), define the likelihood ratio

$$\tilde{q} \equiv Q_{a^o}(\tilde{\mathbf{x}}) \equiv \frac{f_a(\tilde{\mathbf{x}}|a^o)}{f(\tilde{\mathbf{x}}|a^o)}$$

The optimal contract $s^{\circ}(x)$ in q-space becomes:

$$s^{o}(x) \equiv w(q) \equiv (u')^{-1} \left(\frac{1}{\lambda + \mu q}\right)$$

The agent's indirect utility (value function) given $s^{\circ}(\cdot)$

$$u(s^{\circ}(\mathbf{x})) \equiv r(q) = \left\{ egin{array}{ll} u(w(q)) \equiv \overline{r}(q), & ext{when } q \geq q_c \\ u(\underline{s}), & ext{when } q < q_c \end{array} \right.$$

• Threshold q_c solves $u'(\underline{s})^{-1} = \lambda + \mu q_c > 0$: limited liability starts to bind

Distribution function for q given a (possbly different from a°)

$$G(q|a) \equiv Pr[Q_{a^o}(\tilde{\mathbf{x}}) \leq q|a], \quad dG(q|a) = g(q|a)dq$$

Properties of a proxy contract

Define $U^{\circ} \geq \overline{U}$ at the optimum:

$$U^{\circ} = U(s^{\circ}(\mathbf{x}), \mathbf{a}^{\circ}) = \int u(s^{\circ}(\mathbf{x})) f(\mathbf{x}|\mathbf{a}^{\circ}) d\mathbf{x} - c(\mathbf{a}^{\circ})$$
 (7)

Lemma (How to construct a proxy contract $\hat{s}(\cdot)$)

- (1a) $f(\mathbf{x}|a)$ satisfies that $\frac{g(q|a)}{g(q|\mathbf{a}^o)}$ is convex in $q=\frac{f_a(\mathbf{x}|\mathbf{a}^o)}{f(\mathbf{x}|\mathbf{a}^o)}$ for all a
- (2a) (DOUBLE-CROSSING PROPERTY) \exists a contract $\hat{s}(x)$ satisfying

(i)
$$\int u(\hat{s}(\mathbf{x}))f(\mathbf{x}|\mathbf{a}^{\circ})d\mathbf{x} - c(\mathbf{a}^{\circ}) = U^{\circ}$$
 (8)

(ii)
$$\int u(\hat{\mathbf{s}}(\mathbf{x}))f_{\mathbf{a}}(\mathbf{x}|\mathbf{a}^{\circ})d\mathbf{x} - c'(\mathbf{a}^{\circ}) = 0$$
 (9)

such that $\hat{r}(q) \equiv u(\hat{s}(\mathbf{x}))$ crosses $r(q) \equiv u(s^{\circ}(\mathbf{x}))$ twice starting from above

(3a) $E[\hat{r}(q)|a]$ is concave in c(a)

then using the first-order approach is justified

Intuition

(1a) and (2a) jointly imply:

$$U(s^{\circ}(\cdot),a)-U(\hat{s}(\cdot),a)=\int (r(q)-\hat{r}(q))\,g(q|a)dq\leq 0,\quad \forall a\in \mathcal{S}$$

Why?: we know that $U(s^{\circ}(\cdot), a^{\circ}) = U(\hat{s}(\cdot), a^{\circ})$ when $a = a^{\circ}$

Figure: r(q) and $\hat{r}(q)$: double-crossing

As $a\uparrow$ from a': g(q|a) moves toward higher q, where $r(q) - \hat{r}(q)$ is more likely to be negative. When $a \downarrow$ from a° , the same

• (1a) condition operationalizes this intuition

(1a) and (2a) jointly imply:

$$U(s^{\circ}(\cdot),a)-U(\hat{s}(\cdot),a)=\int (r(q)-\hat{r}(q))g(q|a)dq\leq 0, \quad \forall a$$

But: It might be the following case

Figure: First-order approach not justified?

(3a) makes sure that $U(\hat{s}(\cdot), a)$ is maximized at $a = a^{\circ}$, therefore:

Figure: First-Order Approach Justified

So $U(s^{\circ}(\cdot), a)$ must be maximized at $a = a^{\circ}$

• The first-order approach (FOA) justified

When the Limited Liability (LL) Not Binds

Finding a proxy contract when (LL) does not bind

Proposition (When (LL) does not bind)

Given that the likelihood ratio, $\tilde{q} \equiv \frac{f_a(\tilde{\mathbf{x}}|\mathbf{a}^o)}{f(\tilde{\mathbf{x}}|\mathbf{a}^o)}$, is bounded below, a given \mathbf{a}^o ,

(1a)
$$\frac{g(q|a)}{g(q|a^o)}$$
 is convex in $q=\frac{f_a(\mathbf{x}|a^o)}{f(\mathbf{x}|a^o)}$ for all a

(2c)
$$c(a)$$
 is convex in $m(a) \equiv \int qg(q|a)dq$, and

(3c)
$$r(q) = \overline{r}(q)$$
 is concave in q

then the first-order approach is justified

Note: Now $\overline{r}(q) = r(q)$ due to the nonbinding (LL)

- In this case, finding a proxy contract ŝ(x) is easier (no need to respect the limited liability (LL))
- Find $\hat{s}(\mathbf{x})$ such that $u(\hat{s}(\mathbf{x})) \equiv \hat{r}(q)$ becomes linear in q

^aWe assume \underline{s} is small enough, so (LL) does not bind at optimum.

Figure: When the Limited Liability Constraint Does Not Bind

Simplest case: our proxy contract $\hat{r}(q)$ is linear in q

- (2c) makes sure under $\hat{r}(q)$, the agent will choose $a=a^{\circ}$
- With (1c) and (3c), we apply the lemma above (double-crossing) while (3c) is from Jewitt (1988) and Jung and Kim (2015)
- \bullet This case justifies Example 1 (the exponential distribution case with $r<\frac{1}{2})$

What happens if $\overline{r}(q)$ becomes convex in q?

Proposition (When (LL) does not bind)

Given that the likelihood ratio, $\tilde{q} \equiv \frac{f_a(\tilde{\mathbf{x}}|\mathbf{a}^o)}{f(\tilde{\mathbf{x}}|\mathbf{a}^o)}$, is bounded below, a given \mathbf{a}^o ,

(1a)
$$\frac{g(q|a)}{g(q|a^o)}$$
 is convex in $q = \frac{f_a(\mathbf{x}|a^o)}{f(\mathbf{x}|a^o)}$ for all a

(2c') (i) there exists t > 0 such that

$$\frac{c'(a^{\circ})}{M'(a^{\circ};t)}M(a^{\circ};t)-c(a^{\circ})=\overline{U}$$

and (ii) c(a) is convex in M(a; t) for such t > 0, and

(3c') $\ln \overline{r}(q)$ is concave in q

then the first-order approach is justified

Note: Now $\ln \overline{r}(q)$, not $\overline{r}(q)$, is concave so $\overline{r}(q)$ can be convex (\rightarrow weaker)

- (2c') is a bit stronger than (2c) instead

^aWe assume \underline{s} is small enough, so (LL) does not bind at optimum.

Another case

Simplest case: our proxy contract $\hat{r}(q)$ is exponential in q so $\ln \hat{r}(q)$ is linear

- (2c') makes sure under $\ln \hat{r}(q)$, the agent will choose $a=a^o$
- (1c) and (3c') allow us to apply the lemma above (double-crossing)
- This case justifies Example 2 (the exponential distribution case with $r > \frac{1}{2}$ and concave h(a))

When the Limited Liability (LL) Binds

Finding a proxy contract when (LL) binds for $q < q_c$

Define the moment generating function (MGF) of g(q|a):

$$M(a;t) \equiv \int e^{tq} g(q|a) dq.$$

Proposition (When (LL) binds for $q \leq q_c$)

Given that the likelihood ratio, $\tilde{q} \equiv \frac{f_a(\tilde{\mathbf{x}}|\mathbf{a}^o)}{f(\tilde{\mathbf{x}}|\mathbf{a}^o)}$, is unbounded below, given \mathbf{a}^o ,

- (1a) $\frac{g(q|a)}{\sigma(a|a^o)}$ is convex in $q = \frac{f_a(\mathbf{x}|a^o)}{f(\mathbf{x}|a^o)}$ for all a
- (2b) (i) there exists t > 0 such that

$$\frac{c'(a^{o})}{M'(a^{o};t)}M(a^{o};t)-c(a^{o})\leq \overline{U}-u(\underline{s})$$

and (ii) c(a) is convex in M(a;t) for such t, and

(3b) $\ln(\overline{r}(q) - u(s))$ is concave in q

then the first-order approach is justified

Note: Concave $\overline{r}(q) \longrightarrow \text{concave ln}(\overline{r}(q) - u(s)) (\longrightarrow \text{weaker})$

Finding a proxy contract when (LL) binds for $q \leq q_c$

Intuition: a proxy contract $\hat{s}(x)$ must respect the limited liability constraint (LL)

$$u(\hat{s}_t(\mathbf{x})) \equiv \hat{r}_t(q) = Ae^{tq} + B$$

which has a good property: $\hat{r}_t(q) \longrightarrow \underbrace{B \geq u(\underline{s})}_{\text{by (i) of (2b)}}$ as $q \longrightarrow -\infty$

r(q)=u(s) $r(q)=\overline{r}(q)$ Figure: When the Limited Liability Constraint Binds for $q\leq q_c$

Finding a proxy contract when (LL) binds for $q \leq q_c$

r(q)=u(s) $r(q)=\overline{r}(q)$ Figure: When the Limited Liability Constraint Binds for $q\leq q_c$

Note: Examples 3 and 4 (Normal and Gamma distributions) can be justified of their use of the first-order approach

- $\overline{r}(q)$ for $q \geq q_c$ can be convex
- Both distribution features unbounded likelihood ratio (thus we need (LL)):
 Jewitt (1988) and Jung and Kim (2015) assume away (LL) in contrast

Comparison with the earlier literature

To compare with Jung and Kim (2015)'s conditions (1J-1) and (1J-2):

- We introduce the total positivity of degree 3 (TP₃) (Karlin (1968))
- Our (1a) condition is related to this (TP₃) condition

Figure: Relation Diagram between Conditions

Conclusion: no direct inclusion between our paper and Jung and Kim (2015)

• Jung and Kim (2015): applicable only when (LL) does not bind