

교과서 변형문제 기본

2-3-1.사인법칙과 코사인법칙 미래엔(황선욱)

내 교과서 속 문제를 실제 기출과 유사 변형하여 구성한 단원별 족보

◇「콘텐츠산업 진흥법 시행령」제33조에 의한 표시

- 1) 제작연월일 : 2020-03-10
- 2) 제작자 : 교육지대㈜
- 3) 이 콘텐츠는 「콘텐츠산업 진흥법」에 따라 최초 제작일부터 5년간 보호됩니다.

◇「콘텐츠산업 진흥법」외에도「저작권법」에 의하여 보호 되는 콘텐츠의 경우, 그 콘텐츠의 전부 또는 일부를 무 단으로 복제하거나 전송하는 것은 콘텐츠산업 진흥법 외에도 저작권법에 의한 법적 책임을 질 수 있습니다.

개념check /

[사인법칙]

• 사인법칙

삼각형 ABC에서 외접원의 반지름의 길이를

$$R$$
이라 하면 $\frac{a}{\sin\!A} \!=\! \frac{b}{\sin\!B} \!=\! \frac{c}{\sin\!C} \!=\! 2R$

(1)
$$\sin A = \frac{a}{2R}$$
, $\sin B = \frac{b}{2R}$, $\sin C = \frac{c}{2R}$

(2)
$$a = 2R\sin A$$
, $b = 2R\sin B$, $c = 2R\sin C$

(3)
$$a:b:c = \sin A: \sin B: \sin C$$

[코사인법칙]

• 코사인법칙: 삼각형 ABC에서

(1)
$$a^2 = b^2 + c^2 - 2bc\cos A$$

(2)
$$b^2 = c^2 + a^2 - 2ca\cos B$$

(3)
$$c^2 = a^2 + b^2 - 2ab\cos C$$

• 코사인법칙의 변형

$$\cos A = \frac{b^2 + c^2 - a^2}{2bc}$$
, $\cos B = \frac{c^2 + a^2 - b^2}{2ca}$, $\cos C = \frac{a^2 + b^2 - c^2}{2ab}$

기본문제

[예제]

- **1.** $\triangle ABC$ 에 대하여 a=6, $\angle A=60$ °일 때, △ABC의 외접원의 반지름의 길이를 구한 것은?
 - (1) $3\sqrt{2}$
- ② $3\sqrt{3}$
- $3 2\sqrt{2}$
- (4) $2\sqrt{3}$
- (5) $2\sqrt{6}$

[문제]

- 2. $\triangle ABC$ 에서 $\angle A = 60^{\circ}$, $\angle B = 75^{\circ}$, c = 6일 때, 외접원의 넓이를 구한 것은?
 - ① 12π
- ② 15π
- $(3) 18\pi$
- (4) 21π
- (5) 24π

[예제]

- **3.** $\sin^2 B = \sin^2 A + \sin^2 C$ 을 만족시키는 $\triangle ABC$ 는 어떤 삼각형인지 옳은 것은?
 - ① $\angle A = 90^{\circ}$ 인 직각삼각형이다.
 - ② ∠*B* = 90°인 직각삼각형이다.
 - ③ $\angle C = 90$ ° 인 직각삼각형이다.
 - ④ $\angle A = \angle B$ 인 이등변삼각형이다.
 - ⑤ 정삼각형

[문제]

4. 다음은 $a \sin A = b \sin B = c \sin C$ 를 만족하는 △ABC가 어떤 삼각형인지 보이는 과정이다. 빈 칸에 들어갈 것으로 적절한 것은?

 \triangle ABC의 외접원의 반지름을 R이라고 할 때 사인법칙에 의하여 $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = \boxed{\text{(가)}}$ $\sin A = \frac{a}{(7)}, \sin B = \frac{b}{(7)},$ $\sin C = \frac{c}{\lceil (7) \rceil}$ 을 대입하여 정리하면 $\boxed{ (나)}$ 이다. 이때 a, b, c는 모두 (Γ) 이므로 (Γ) 이고,

- ① (7) R
- (2) (나) $a^2 = b^2 + c^2$
- ③ (다) 음수
- ④ (라) a = b = c
- ⑤ (마) ∠ C = 90° 인 직각삼각형

△ABC는 (마) 이다.

[예제

5. 다음 그림과 같이 서영이가 한 지점에서 애드벌 룬을 올려본각의 크기가 48° 이고, 이 지점에서 애드벌룬 쪽으로 8 m를 이동한 곳에서 애드벌룬을 올려본각의 크기가 70° 이다. 이때 애드벌룬의 높이를 구하시오. (단, 서영이의 눈높이는 1.8 m이고,

 $\sin 22^\circ = 0.34$, $\sin 48^\circ = 0.68$, $\sin 70^\circ = 0.89$ 로 계산한다.)

- ① 10.04 m
- ② 12.04 m
- ③ 14.04 m
- 4 16.04 m
- ⑤ 18.04 m

[문제]

다음 그림과 같이 A 지점과 강 건너편의 P 지점을 잇는 직선 다리를 건설하려고 한다. A 지점에서 12 m 떨어진 B 지점에서 ∠PAB=75°,
 ∠PBA=45°일 때, 다리의 길이 AP는?

- ① $4\sqrt{2}$ m
- $24\sqrt{3}$ m
- ③ $4\sqrt{6}$ m
- $4 6\sqrt{2} \text{ m}$
- ⑤ $6\sqrt{3}$ m

[예제]

- **7.** \triangle ABC에서 $\angle A = 45^{\circ}$, $b = 4\sqrt{2}$, c = 6일 때, a^2 의 값을 구한 것은?
 - 1) 20
- 2 24
- 3 28
- **4** 32
- **⑤** 36

- [문제]
- **8.** \triangle ABC에서 a=5, b=7, c=10일 때, $\cos B$ 의 크기를 구한 것은?
 - ① $\frac{17}{36}$
- $2 \frac{9}{16}$
- $3 \frac{4}{5}$
- $4\frac{19}{25}$

[예제]

9. 다음은 $b \cos B = a \cos A$ 을 만족하는 $\triangle ABC$ 가 어떤 삼각형인지 보이는 과정이다. 빈 칸에 들어갈 것으로 적절한 것은? (단, $a \neq b$ 이다.)

코사인 법칙에 의하여 $\cos B = \boxed{(プ)}, \cos A = \boxed{(\ref{h})}$ $b\cos B = a\cos A$ 에 대입하면 $b\boxed{(\ref{h})} = a\boxed{(\ref{h})}$ 이다.

정리하면 (다) 이므로

이 삼각형은 (라) 이다.

① (7)) $\frac{b^2+c^2-a^2}{2bc}$

② (나)
$$\frac{a^2+b^2-c^2}{2ac}$$

- (3) (다) $a^2 = b^2 + c^2$
- ④ (라)∠B=90° 인 직각삼각형
- ⑤ 모두 적절하지 않다.

[문제]

- **10.** $\sin A = \cos B \sin C$ 을 만족시키는 $\triangle ABC$ 는 어떤 삼각형인지 말한 것으로 옳은 것은?
 - ① ∠A = 90° 인 삼각형
 - ② ∠B=90°인 삼각형
 - ③ ∠ C=90° 인 삼각형
 - ④ 정삼각형
 - ⑤ $\angle A = \angle B$ 인 이등변삼각형

[예제]

11. 다음 그림과 같이 인명 구조 훈련을 위해 높이가 각각 $230\,\mathrm{m}$, $100\,\sqrt{2}\,\mathrm{m}$ 인 두 빌딩 A, B의 옥상에 로프를 직선으로 연결하였다. C 지점에서 두 빌딩 A, B를 올려본각의 크기가 각각 $75\,^\circ$, $45\,^\circ$ 일 때, 로프의 길이 \overline{AB} 는? (단, $\sin 75\,^\circ = 0.92$ 로 계산한 다.)

- ① $100\sqrt{21} \text{ m}$
- ② $100\sqrt{3}$ m
- ③ $100\sqrt{7} \text{ m}$
- $4 50 \sqrt{21} \text{ m}$
- $\bigcirc 50\sqrt{7} \text{ m}$

[문제]

12. 다음 그림과 같이 두 지점 A, B에 효인이와 동 근이가 각각 서 있다. $\overline{OA} = 90 \text{ m}$, $\overline{OB} = 50 \text{ m}$, $\angle AOB = 45 ^{\circ}$ 일 때, 두 사람 사이의 거리의 제곱인 \overline{AB}^2 을 구한 것은?

- (1) $300(32-5\sqrt{2})$
- $2 100(96-45\sqrt{2})$
- $3) 500(20-3\sqrt{6})$
- $\textcircled{4} 100(106-45\sqrt{2})$
- ⑤ $100\sqrt{61}$

평가문제

[중단원 마무리하기]

- **13.** $\triangle ABC에서 \cos^2 A = 1 \frac{a^2}{16}$ 일 때, 외접원의 반지름의 길이를 구한 것은? (단, a는 각 A의 대변의 길이에 해당한다.)
 - ① 1

2 2

3 3

4

⑤ 5

[중단원 마무리하기]

- **14.** $\triangle ABC$ 에서 a=5, b=8, $\angle C=60^{\circ}$ 일 때, $\triangle ABC$ 의 외접원의 반지름의 길이는?
- $2 \frac{7\sqrt{2}}{2}$
- $3 \frac{7\sqrt{3}}{2}$
- $4 \frac{7\sqrt{2}}{3}$

[중단원 마무리하기]

- **15.** $\triangle ABC$ 에서 $2c^2 = 2a^2 + 2b^2 ab$ 일 때, $\cos C$ 의 값을 구한 것은?
 - ① $\frac{1}{6}$
- ② $\frac{1}{5}$
- $3\frac{1}{4}$
- $4 \frac{1}{3}$
- $\frac{1}{2}$

[중단원 마무리하기]

- **16.** \triangle ABC에서 $a=2\sqrt{3}$, b=8, c=6일 때, $\cos A$ 의 값을 구한 것은?
 - ① $\frac{13}{14}$
- $3\frac{11}{12}$
- $4 \frac{10}{11}$

[중단원 마무리하기]

- **17.** 반지름의 길이가 12인 원에 내접하는 △ABC에 서 $4\cos(A+B)\cos C+3=0$ 이고 $\angle A=105$ °이 성 립할 때, b의 값은?
 - ① $6\sqrt{2}$
- ② $12\sqrt{2}$
- $3) 18\sqrt{2}$
- (4) $24\sqrt{2}$
- (5) $30\sqrt{2}$

[중단원 마무리하기]

 ${f 18}$. 다음 그림과 같이 $50\,\sqrt{6}$ m만큼 떨어져 있는 지 호와 민아가 하늘에 떠 있는 비행기를 올려본각의 크기가 각각 60°, 75°일 때, 비행기와 민아 사이의 거리는?

- ① $75\sqrt{2}$ m
- ② $75\sqrt{3}$ m
- ③ 100m
- (4) $100\sqrt{3}$ m
- ⑤ 150m

- [중단원 마무리하기]
- **19.** $\triangle ABC$ 의 세 변의 길이 a, b, c에 대하여 $(a+b)^2 = c^2 + 3ab$ 가 성립할 때, $\sin C$ 의 값을 구한 것은?

(5) 1

[중단원 마무리하기]

- **20.** $\triangle ABC$ **에** $A : \sin B : \sin C = 3 : 4 : 5$ **일 때**, $\cos A$ 의 값을 구한 것은?

(5) 1

[중단원 마무리하기]

- **21.** $\triangle ABC$ 에서 a=2, b=3, c=4일 때, $\triangle ABC$ 의 외접원의 넓이를 구한 것은?
 - \bigcirc 4π
- ② $\frac{61}{64}\pi$
- $3\frac{31}{32}\pi$
- $4 \frac{64}{15} \pi$

[중단원 마무리하기]

- **22.** $a \sin A + b \sin B = \frac{b^2 + c^2}{2R}$ 을 만족시키는 $\triangle ABC$ 는 어떤 삼각형인지 옳게 말한 것은? (단, R는 △ABC의 외접원의 반지름의 길이이다.)
 - ① a = b인 이등변삼각형
 - ② a = c인 이등변삼각형
 - ③ $\angle A$ 가 직각인 직각삼각형
 - \P $\angle C$ 가 직각인 직각삼각형
 - ⑤ 정삼각형

[중단원 마무리하기]

23. 다음 그림과 같이 한 지점 P에서 두 조각상 A, B까지의 거리와 두 조각상 A, B를 바라본 각의 크 기를 측정하였더니 $\overline{AP} = 30 \text{ m}$, $\overline{BP} = 50 \text{ m}$,

 \angle APB = 30 ° 이었다. 두 조각상 A, B 사이의 거리 \overline{B} \overline{AB} m라 할 때, \overline{AB} ²의 값은?

- 1) 1900
- ② $3400+1500\sqrt{2}$
- $3400+1500\sqrt{3}$
- $4 3400 1500 \sqrt{2}$
- $3400-1500\sqrt{3}$

[중단원 마무리하기]

24. 다음 그림과 같이 밑면의 반지름의 길이가 7.5cm 이고 모선의 길이가 18cm인 원뿔이 있다. 원뿔의 밑면인 원의 둘레 위의 점 P에서 모선 AP를 1:2로 내분하는 점 Q까지 원뿔의 표면을 따라 실을 감 을 때, 감은 실의 길이의 최솟값을 acm라 하고, $a^2 = p + q\sqrt{3}$ 라 한다면 p - q의 값은? (단, p, q는 자연수이다.)

- ① 252
- 254
- 3 256
- 4 258
- (5) 260

- [중단원 마무리하기]
- **25.** 두 직선 y = 5x와 y = 2x가 이루는 예각의 크기 를 θ 라 할 때, $\cos \theta$ 의 값은?
 - ① $\frac{11}{130}\sqrt{130}$
- ② $\frac{6}{65}\sqrt{130}$
- $3\frac{1}{10}\sqrt{130}$ $4\frac{7}{65}\sqrt{130}$

[중단원 마무리하기]

26. 원 0 위의 세 점 A, B, C에 대하여

 $\overline{AB} = 7$, $\overline{AC} = 5$, A = 60 °일 때, 이 원의 넓이는?

- ① 11π
- ② 12π
- ③ 13π
- (4) 14π
- (5) 15π

- [대단원 평가하기]
- **27.** $\triangle ABC$ **에**서 $a = 6\sqrt{2}$, $\angle B = 75^{\circ}$, $\angle C = 45^{\circ}$ **일** 때, c의 값을 구한 것은?
 - ① $2\sqrt{2}$
- ② $2\sqrt{3}$
- 3 4

- (4) $4\sqrt{2}$
- (5) $4\sqrt{3}$

[대단원 평가하기]

- 28. △ABC의 외접원의 반지름의 길이가 6이고 $\angle A = 45^{\circ}$, $b = 6\sqrt{3}$ 일 때, $\angle C$ 의 크기가 될 수 있 는 것을 모두 고른 것은?
 - ① $15\degree$
- \bigcirc 30 $^{\circ}$
- 345°
- **4** 60 °
- ⑤ 75°

[대단원 평가하기]

29. 다음 그림과 같이 △ABC에 대하여 선분 BC를 3:7로 내분하는 점을 D라 한다. $\overline{AB}=6$, $\overline{AC}=14$ 일 때, $\overline{\mathrm{AD}}$ 의 길이를 구한 것은?

- ① $\sqrt{21}$
- ② $\sqrt{58}$
- $\sqrt{65}$
- $4 3\sqrt{7}$
- (5) $9\sqrt{7}$

[대단원 평가하기]

- **30.** $\overline{AB} = \overline{AC} = 6$, $\overline{BC} = 8$ 인 이등변삼각형 ABC에 대 하여 변 BC를 1:3로 내분하는 점을 D라 하자. $\angle BAD = \theta$ 라 할 때, $\cos \theta$ 의 값은?
- $2 \frac{7\sqrt{3}}{6}$
- $3 \frac{7\sqrt{6}}{18}$
- $4 \frac{7\sqrt{6}}{3}$

정답 및 해설

1) [정답] ④

[해설] 사인법칙에 의하여 $\frac{a}{\sin A} = 2R$ 이므로 $\frac{6}{\sin 60}$ $= 4\sqrt{3}$, $R = 2\sqrt{3}$

2) [정답] ③

[해설] △ABC에 대하여

$$\angle C = 180\degree - (60\degree + 75\degree) = 45\degree$$

 $\frac{c}{\sin C} = 2R$ 이므로 $\frac{6}{\sin 45\degree} = 6\sqrt{2}$

때라서
$$R=3\sqrt{2}$$

즉, 외접원의 넓이는 $\pi(3\sqrt{2})^2 = 18\pi$ 이다.

3) [정답] ②

[해설] $\triangle ABC$ 의 외접원의 반지름을 R이라고 할 때

사인법칙에 의하여
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R$$

$$\sin A = \frac{a}{2R}$$
, $\sin B = \frac{b}{2R}$, $\sin C = \frac{c}{2R}$ 이므로

$$\sin^2 B = \sin^2 A + \sin^2 C$$
에 대입하면

$$\frac{b^2}{4R^2} \! = \! \frac{a^2}{4R^2} \! + \! \frac{c^2}{4R^2} \mathrm{ol} \! \, \square \! \, \mathrm{\cdot}$$

$$b^2 = a^2 + c^2$$

따라서 $\angle B = 90$ °인 직각삼각형이다.

4) [정답] ④

[해설] \triangle ABC의 외접원의 반지름을 R이라고 할 때 사인법칙에 의하여 $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R$ $\sin A = \frac{a}{2R}$, $\sin B = \frac{b}{2R}$, $\sin C = \frac{c}{2R}$ 을 대입하여 정리하면 $a^2 = b^2 = c^2$ 이다. 이때 a, b, c는 모두 양수이므로 a = b = c이고, \triangle ABC는 정삼각형이다.

5) [정답] ④

[해설] 서영이가 이동하기 전의 지점을 A, 서영이가 8 m 이동한 지점을 B, 애드벌룬의 지점을 C,

C에서 직선 AB에 내린 수선의 발을 D라 하면

사인법칙에 의하여
$$\frac{8}{\sin 22^{\circ}} = \frac{\overline{BC}}{\sin 48^{\circ}}$$

$$\overline{BC} = \frac{8 \sin 48^{\circ}}{\sin 22^{\circ}} = 16$$

△CBD에서 CD=BC sin 70°이므로

 $\overline{\text{CD}} = 16 \times 0.89 = 14.24$

따라서 애드벌룬의 높이는

 $\overline{CD} + 1.8 = 14.24 + 1.8 = 16.04 \text{ (m)}$ 이다.

6) [정답] ③

[해설] △ABP에 대하여

$$\angle P = 180^{\circ} - (45^{\circ} + 75^{\circ}) = 60^{\circ}$$

사인 법칙에 의하여

$$\frac{12}{\sin 60^{\circ}} = \frac{\overline{AP}}{\sin 45^{\circ}}$$

$$\stackrel{\text{\tiny \ensuremath{\nwarrow}}}{=}$$
, $\overline{\text{AP}} = \sin 45^{\circ} \times \frac{12}{\sin 60^{\circ}} = 4\sqrt{6} \, (\text{m})$

7) [정답] ①

[해설] 코사인 법칙에 의하여

$$a^2 = 32 + 36 - 2 \times 4\sqrt{2} \times 6 \times \cos 45^{\circ}$$

= $68 - 48 = 20$

8) [정답] ④

[해설] 코사인 법칙에 의하여

$$49 = 25 + 100 - 100\cos B$$
이므로

$$\cos B = \frac{76}{100} = \frac{19}{25}$$

9) [정답] ⑤

[해설] 코사인 법칙에 의하여

$$\cos B = \frac{a^2 + c^2 - b^2}{2ac}$$
, $\cos A = \frac{b^2 + c^2 - a^2}{2bc}$

 $b\cos B = a\cos A$ 에 대입하면

$$\frac{b(a^2+c^2-b^2)}{2ac} = \frac{a(b^2+c^2-a^2)}{2bc} \, \text{or} \, .$$

정리하면 $c^2 = a^2 + b^2$ 이므로

이 삼각형은 $\angle C = 90$ °인 직각삼각형이다.

10) [정답] ③

[해설] 사인법칙에 의하여

$$\sin A = \frac{a}{2R}$$
, $\sin C = \frac{c}{2R}$

코사인 법칙에 의하여

$$\cos B = rac{a^2 + c^2 - b^2}{2ac}$$
 이므로 $\sin A = \cos B \sin C$ 를

정리하면 $a^2+b^2=c^2$ 이다.

따라서 이 삼각형은 $\angle C = 90\,^\circ$ 인 직각삼각형이다

11) [정답] ④

[해설] $\overline{AC}\sin 75^\circ = 230$ 에서 $\overline{AC} = 250$

$$\overline{BC}\sin 45^{\circ} = 100\sqrt{2}$$
에서 $\overline{BC} = 200$

∠ACB = 60°이므로 코사인법칙에 의하여

$$\overline{AB}^2 = 250^2 + 200^2 - 2 \times 250 \times 200 \times \cos 60$$
$$= 100 \left(25^2 + 20^2 - 2 \times 250 \times 2 \times \frac{1}{2} \right)$$

=52500

따라서
$$\overline{AB} = 50\sqrt{21} \text{ m}$$

12) [정답] ④

[해설] 코사인 법칙에 의하여

$$\overline{AB}^2 = 90^2 + 50^2 - 2 \times 90 \times 50 \times \cos 45^\circ$$

= $100(106 - 45\sqrt{2})$

13) [정답] ②

[해설]
$$\cos^2 A = 1 - \frac{a^2}{16}$$
 에서 $1 - \cos^2 A = \frac{a^2}{16}$ 즉, $\sin^2 A = \frac{a^2}{16}$ 이고, $0 < A < \pi$ 이므로 $\sin A > 0$ $\sin A = \frac{a}{4}$ 이다.
따라서 $\frac{a}{\sin A} = 4$ 이고, 사인법칙 $\frac{a}{\sin A} = 2R$ 에 의

따라서
$$\frac{a}{\sin A}$$
=4이고, 사인법칙 $\frac{a}{\sin A}$ =2 R 에 의하여 R =2이다.

14) [정답] ⑤

[해설] 코사인법칙에 의하여

$$c^2 = 5^2 + 8^2 - 2 \times 5 \times 8 \times \cos 60^\circ$$

= $25 + 64 - 40 = 49$
따라서 $c = 7$ 이고 사인법칙에 의하여
$$\frac{c}{\sin C} = \frac{7}{\sin 60^\circ} = \frac{14\sqrt{3}}{3} = 2R$$
이므로
$$R = \frac{7\sqrt{3}}{2}$$

15) [정답] ③

[해설] 코사인 법칙에 의하여
$$\cos C = \frac{a^2 + b^2 - c^2}{2ab}$$
이고
$$2c^2 = 2a^2 + 2b^2 - ab = ab = 2a^2 + 2b^2 - 2c^2$$
와 같이 변형하면
$$\cos C = \frac{a^2 + b^2 - c^2}{2(2a^2 + 2b^2 - 2c^2)} = \frac{1}{4}$$

16) [정답] ③

[해설] △ABC에서 코사인 법칙을 적용하면 $\cos A = \frac{64 + 36 - 12}{2 \times 8 \times 6} = \frac{11}{12}$

17) [정답] ②

17) [정답] ② [해설]
$$4\cos(A+B)\cos C+3=0$$
 $A+B+C=\pi$ 이므로 $4\cos(\pi-C)\cos C+3=0$ $-4\cos^2C+3=0$ $\cos C=\frac{\sqrt{3}}{2}$ 또는 $\cos C=-\frac{\sqrt{3}}{2}$ 이때 $0^\circ < C < 75^\circ$ 이므로 $\cos C=\frac{\sqrt{3}}{2}$ 즉, $\angle C=30^\circ$, $\angle B=45^\circ$ 따라서 사인법칙에 의하여 $\frac{b}{\sin B}=24$ 이므로 $b=12\sqrt{2}$

18) [정답] ⑤

[해설] 지호, 민아, 비행기를 각각 꼭짓점 A, B, C라하면, 삼각형 ABC에 대하여
$$\angle\,C\!=\!180\,^\circ-\!\left(60\,^\circ+75\,^\circ\right)=45\,^\circ$$
 사인법칙에 의해서

$$\frac{50\sqrt{6}}{\sin 45^{\circ}} = \frac{a}{\sin 60^{\circ}}$$
$$a = \frac{50\sqrt{6}}{\sin 45^{\circ}} \times \sin 60^{\circ} = 150 \text{ (m)}$$

[해설]
$$(a+b)^2=c^2+3ab$$
를 정리하면 $a^2+b^2-c^2=ab$ $\cos C=\frac{a^2+b^2-c^2}{2ab}$ 이므로 $\cos C=\frac{1}{2}$ $(0< C<\pi)$ $\angle C=60$ ° 따라서 $\sin C=\frac{\sqrt{3}}{2}$

20) [정답] ④

[해설] 이때 사인법칙에 의하여

$$\sin A = \frac{a}{2R}$$
, $\sin B = \frac{b}{2R}$, $\sin C = \frac{c}{2R}$
 $\sin A : \sin B : \sin C = a : b : c = 3 : 4 : 5$
따라서 $a = 3k$, $b = 4k$, $c = 5k$
코사인법칙에 의하여
 $\cos A = \frac{16k^2 + 25k^2 - 9k^2}{40k^2} = \frac{4}{5}$

21) [정답] ④

[해설] 코사인 법칙에 의하여

$$\cos A = \frac{9+16-4}{2\times 3\times 4} = \frac{21}{24} = \frac{7}{8}$$

$$\sin^2 A + \cos^2 A = 1$$
 이므로
$$\sin A = \frac{\sqrt{15}}{8}$$
 사인법칙에 의하여
$$\frac{2}{\sqrt{15}} = \frac{16}{\sqrt{15}} = 2R$$

$$R=rac{8}{\sqrt{15}}$$

따라서 외접원의 넓이는 $rac{64}{15}\pi$ 이다.

22) [정답] ②

[해설] 사인법칙에 의하여 $\sin A = \frac{a}{2B}$, $\sin B = \frac{b}{2B}$ 이 므로 대입하면 $a^2 = c^2$ 이다. 따라서 이 삼각형은 a=c인 이등변삼각형이다.

23) [정답] ⑤

[해설] 코사인법칙에 의해 $\overline{AB}^2 = 30^2 + 50^2 - 2 \times 30 \times 50 \times \cos 30^{\circ}$ $=3400-1500\sqrt{3}$

24) [정답] ①

[해설] 원뿔의 밑면인 원의 둘레의 길이와 옆면인 부 채꼴의 호의 길이가 같으므로 부채꼴의 중심각의 크기를 θ 라 하면

$$2\pi \times 7.5 = 18\theta$$
, $\theta = \frac{5}{6}\pi$

감은 실의 길이의 최솟값은 다음 그림에서 \overline{PQ} 의 길이와 같다.

 $\overline{\mathrm{PQ}}=a~\mathrm{cm}$ 라 하면 $\triangle\mathrm{OPQ}$ 에서 코사인법칙에 의하여 $a^2=6^2+18^2-2\times6\times18\times\cos\frac{5}{6}\pi=360+108\sqrt{3}$ 따라서 p-q=252

25) [정답] ①

[해설] x축에 수직인 직선 x=t에 대하여 직선 y=5x와의 교점을 P(t,5t) 직선 y=2x와의 교점을 Q(t,2t)라 하면 $\overline{OP}=\sqrt{t^2+(5t)^2}=\sqrt{26}\,t$ $\overline{OQ}=\sqrt{t^2+(2t)^2}=\sqrt{5}\,t$ $\overline{PQ}=3t$ $\triangle OPQ$ 에서 코사인법칙에 의하여 $\cos\theta=\frac{26t^2+5t^2-9t^2}{2\times\sqrt{26}\,t\times\sqrt{5}\,t}=\frac{11}{\sqrt{130}}=\frac{11}{130}\,\sqrt{130}$

26) [정답] ③

[해설] $\overline{\text{BC}} = x$ 라 하면 $\triangle \text{ABC}$ 에서 코사인법칙에 의하여 $x^2 = 7^2 + 5^2 - 2 \times 7 \times 5 \times \cos 60^\circ = 39$ 그런데 x > 0이므로 $x = \sqrt{39}$ 원 \bigcirc 인의 반지름의 길이를 R라 하면 사인법칙에 의하여 $\frac{\sqrt{39}}{\sin 60^\circ} = 2R, \ R = \sqrt{13}$ 따라서 구하는 원의 넓이는 $\pi \times (\sqrt{13})^2 = 13\pi$

27) [정답] ⑤

[해설] 삼각형의 내각의 합은 $180\,^\circ$ 이므로 $\angle A = 60\,^\circ$ 사인법칙에 의하여 $\frac{6\sqrt{2}}{\sin 60\,^\circ} = \frac{c}{\sin 45\,^\circ}$ 따라서 $c = 4\sqrt{3}$

28) [정답] ①, ⑤

[해설] 사인법칙 $\frac{b}{\sin B}$ = 2R에 의하여 $\sin B = \frac{\sqrt{3}}{2}$ 따라서 $\angle B = 60$ ° 또는 $\angle B = 120$ ° 따라서 $\angle C = 75$ ° 또는 $\angle C = 15$ °

29) [정답] ④

[해설] 점 D는 \overline{BC} 의 3:7로 내분점으로 \overline{AD} 는 각 A 의 이등분선이다. 즉, $\angle BAD = \angle CAD$ 따라서 \overline{AD} 의 길이를 x라 하면

코사인 법칙에 의하여

$$\begin{split} \cos(\angle \operatorname{BAD}) &= \frac{6^2 + x^2 - 3^2}{2 \times 6 \times x} = \frac{x^2 + 27}{12x} \\ \cos(\angle \operatorname{CAD}) &= \frac{14^2 + x^2 - 7^2}{2 \times 14 \times x} = \frac{147 + x^2}{28x} \\ \frac{x^2 + 27}{12x} &= \frac{147 + x^2}{28x}, \ x = 3\sqrt{7} \\ \text{따라서 } \overline{\operatorname{AD}} \, 의 길이는 3\sqrt{7} \, \mathrm{이다}. \end{split}$$

30) [정답] ③

[해설] \overline{BC} 를 점 D가 1:3로 내분하였으므로 \overline{BD} =2, \overline{CD} =6 \overline{AD} =x라 하면 코사인법칙에 의하여 $\cos C = \frac{6^2 + 8^2 - 6^2}{2 \times 6 \times 8} = \frac{6^2 + 6^2 - x^2}{2 \times 6 \times 6}$ 즉, $x = 2\sqrt{6}$ 따라서 $\triangle ABD$ 에서 코사인법칙에 의하여 $\cos \theta = \frac{6^2 + (2\sqrt{6})^2 - 2^2}{2 \times 6 \times 2\sqrt{6}} = \frac{7}{3\sqrt{6}} = \frac{7\sqrt{6}}{18}$