Principle Component Analysis

Implementing dimensionality reduction

PCA

 Remember that for the matrix X we can perform the Singular Value Decomposition as:

$$X = USV^T$$

Where **US** gives us the coordinates of a sample in **X** in the space of principle components:

$$X/V^T = US$$

SVD and PCA

Singular Value Decomposition

For any matrix X:

$$X = USV^T$$

Singular Value

Data X, one US gives row per data coordinates of rows of X in the Data is zerospace of principle components

S is diagonal, $S_k > S_{k+1}$ Sk is kth largest eigenvalue

 $n \times n$

Rows of V^T are unit length eigenvectors

 $n \times n$

CSC345/M45: BDML

point

centred

Projecting the data into PC space

- Given that US is our original observations projected into Principal Component Space, we will need to solve $X = USV^T$ for US.
- To remove the V^T on the right, we can utilise the fact that a square orthogonal matrix multiplied by its inverse (the transpose) is the Identity Matrix and can be removed.

Projecting our data into PC space

$$X = USV^{T}$$

$$XV = USV^{T}V$$

$$XV = USI$$

$$XV = US$$

PCA for dimensionality reduction

- Given some observed data X:
 - Get the mean of the observed data: μ .
 - Perform a Singular Value Decomposition on the mean centred X: obtaining U,S and V.
 - Mean-centre the points in X.
 - Project points onto the new principle component space.

PCA in practice

- Given an N-by-F matrix of training data Xtrn:
 - $-\mu = mean(Xtrn);$
 - $Xtrn_centred = Xtrn \mu;$
 - $-[U,S,V'] = svd(Xtrn_centred);$
 - Xtrn_projected = Xtrn_centred * V;
 - Given an M-by-F matrix of **testing** data *Xtst*:
 - $-Xtst_centred = Xtst \mu;$
 - Xtst_projected = Xtst_centred * V;

How to reduce dimensions

Select f < F principle component features.

```
- f = 10;
- Xtrn_projected = Xtrn_projected(:, 1:f);
- Xtst_projected = Xtst_projected(:, 1:f);
```

- Or make the selection during the projection:
 - Xtrn_projected = Xtrn_centred * V(:, 1:f);
 - Xtst_projected = Xtst_centred * V(:, 1:f);