US 3

Doppler-Sonographie

 $\begin{tabular}{lll} Felix Symma & Joel Koch \\ felix.symma@tu-dortmund.de & joel.koch@tu-dortmund.de \\ \end{tabular}$

Durchführung: 19.04.2022 Abgabe: 26.04.2022

grün: Anmerkung

rot: Korrektur

TU Dortmund – Fakultät Physik

Inhaltsverzeichnis

	1	Zielsetzung	3
	2	Theorie	3
	3	Durchführung	3
	4	Auswertung4.1 Auswertung der Strömungsgeschwindigkeit4.2 Auswertung des Strömnugprofils	
	5	Diskussion	8
7	6	Anhang	9
6	Lit	teratur	11

Der Anhang kommt nach dem Literaturverzeichnis. Auch der Anhang wird wie das Literaturverzeichnis im Inhaltsverzeichnis nicht nummeriert.

1 Zielsetzung

Ziel dieses Versuches ist es, das Verhalten von Rohrströhmungen mit Hilfe von Ultraschall zu untersuchen.

2 Theorie

Menschen können in einem Frequenzintervall von ca. 16 Hz bis 20 kHz hören. Der Frequenzbereich darüber bis 1 GHz wird als Ultraschall und der jenseits von 1 GHz als Hyperschall bezeichnet. Frequenzen unterhalb des für Menschen hörbaren Bereichs werden Infraschall gennant.

Zur Erzeugung des Schalls wird sich der reziproke piezo-elektrische-Effekt zu Nutzen gemacht. Hierfür wird ein geeigneter piezo-elektrischer Kristall in einem elektrischen Wechselfeld zu Schwingungen angeregt, wobei dieser Ultraschallwellen abstrahlt. Der Kristall kann ebenso genutzt werden, um Schallwellen zu empfangen, da diese ihn wiederum zu Schwingungen anregen.

In diesem Versuch wird der Doppler-Effekt ausgenutzt, um die Geschwindigkeit von Rohrströhmungen zu messen. Durch die Bewegungsgeschwindigkeit der Flüssigkeit wird die Frequenz der Schallwellen verändert. Aus der Differenz der Frequenzen lässt sich dann wiederum auf die Geschwindigkeit der Strömung schließen. Für die Differenz der Frequenzen gilt

$$\Delta \nu = 2\nu_0 \frac{v}{c} \cos(\alpha),\tag{1}$$

wobei ν_0 die ursprüngliche Frequenz, v die Geschwindigkeit der Strömung, c die Schallgeschwindigkeit in der Flüssigkeit und α der Winkel unter dem die Schallwellen auf die Röhre treffen ist.

Um die verwendete Ultraschallsonde besser an die Röhre koppeln zu können und dies vor allem auch unter einfach reproduzierbaren Winkeln, wird ein Doppler-Prisma aus Acryl verwendet. Auf Grund von Brechung innerhalb des Prismas entsprechen die Einstellwinkel des Prismas nicht den zu verwendenden Doppler-Winkeln. Aus dem Brechungsgesetz folgt für die zu verwendenden Winkel α

$$\alpha = 90^{\circ} - \arcsin(\sin(\varphi) \frac{c_{\rm L}}{c_{\rm P}}), \tag{2}$$

wobei $c_{\rm L}$ die Schallgeschwindigkeit in der Flüssigkeit, $c_{\rm P}$ die Schallgeschwindigkeit im Prismenmaterial und φ der Einstellwinkel des Prismas ist.

[1]

3 Durchführung

Der Versuch besteht aus einem Kreislauf aus Acryl Rohren und Schläuchen, durch den ein Gemisch aus Wasser, Glycerin und Glaskugeln fließt. Die Flüßigkeit wird von einer Zentrifugalpumpe angetrieben. Die Fleißgeschwindigkeit ist hierbei einstellbar.

Abbildung 1: Doppler-Prisma mit Winkeln. Quelle fehlt!

Es wird ein ebenfalls aus Acryl bestehendes Doppler-Prisma, wie in Abbildung 1 verwendet, um die Schallsonde in einem reproduzierbaem Winkel mit dem Rohr zu koppeln. Alle Abstände der verschiedenen Flächen des Prismas zum Rohr sind hierbei identisch. Zum Senden und Empfangen von Ultraschallwellen wird in diesem Versuch eine, an einen Doppler-Generaor angeschlossene und zur Auslesung von Daten mit einen Computer verbundene 2MHz Schallsonde verwendet. Die Messdaten werden am Computer mit dem Programm Flowview dargestellt und gespeichert.

Auf jegliche Flächen zwischen Rohr, Prisma und Schallsonde wird Ultrschallgel aufgetragen, um die Absorbtion von Schall durch die Luft zu minimieren.

Der ersten Teil des Versuches besteht darauß, die Strömungsgeschwindigkeit der Flüßigkeit durch das Acryl Rohr für fünf verschiedene Leistungsstufen der Zentrifugalpumpe zu bestimmen. Die Messung für alle fünf Geschwindigkeiten werden jewils an allen dreien in Abbildung 1 zu sehenden Winkeln durchgeführt.

Es wird hierzu die Schallsonde unter Verwendung von Ultraschallgel an das Doppler-Prisma gekoppelt und am Doppler-Generator ein Sample-Volume von Large eingestellt. Im Anschluss kann die Zentrifugalpumpe auf bestimmte Leistungswerte eingestellt werden. Diese werden zusammen mit den zugehörigen Messwerte der Schallsonde für die

Frequenzen am Computer gespeichert.

Im zweiten Teil des Versuches wird nun das Strömungsprofil der Dopplerflüssigkeit bestimmt. Es wird die Schallsonde mit dem Doppler-Prisma gekoppelt und das Sample-Volume auf Small gestellt. Die Zentrifugalpumpe wird zunächst auf 70% der Maximalleistung eingestellt, wobei im Anschluss eine identische Messreihe mit 45% durchgeführt wird.

Zur Messung des Strömungsprofils muss die Messtiefe der Schallsonde variirt werden. Sie wird von 12µs auf 20µs in Schritten von 0,5µs erhöht. Die Messwerte der Streuintensität und Momentangeschwindigkeit werden jeweils mit den zugehörigen Messtiefen vom Computer abgelesen und notiert.

4 Auswertung kurze Einleitung zwischen der Kapitelüberschrift und der des Unterkapitels

4.1 Auswertung der Strömungsgeschwindigkeit

Als erstes wird zu den jeweiligen Winkeln φ , die am Prisma eingestellt wurden, der zugehörige Dopplerwinkel α nach Gleichung (2) berechnet und in Tabelle 1 eingetragen.

Tabelle 1: Prisma- und Dopplewinkel.

Prismawinkel φ	Dopplerwinkel o
15° 30° 45°	90,58° 88,85° 91,41°
40	g_1, q_1

Ihr habt euch hier irgendwie verrechnet. Für 15° sollte z.B. 80,06° als Dopplerwinkel rauskommen. Auf dem Bild im Anhang habt ihr die Winkel eigentlich richtig berechnet, verwendet diese Werte hier. Leider müsst ihr dann auch noch die Geschwindigkeiten in Tabelle 3 überarbeiten, da diese ja mit dem Dopplerwinkel berechnet wurden.

Es wird die Strömungsgeschwindigkeit in Abhängigkeit des Dopplerwinkels α untersucht. Hierzu wird ein Rohr mit einem Außendurchmesser von 20 mm und einem Innendurchmesser von 16 mm verwendet und an den drei verschiedenen Winkeln ausgewertet. Die Messwerte sind der Tabelle 2 zu entnehmen. An der Zentrifugalpumpe, die die Strömungsgeschwindigkeit regelt, wurde in einem Bereich von 3000 rpm bis 7000 rpm in Schrittweiten von 1000 rpm gemessen. Dies entsricht den in der Tabelle verzeichneten Abweichungen von der maximalen Leistung (8400 rpm). Sie sind gegenüber der Differenz der maximalen und minimalen Frequenz $\Delta \nu = f_{\rm max} - f_{\rm mean}$ dargestellt.

Tabelle 2: Prisma- und Dopplewinkel.

Tabellen Überschriften passen nicht

Prismawinkel φ	35,7%	47,62%	59,52%	71,43%	83,3%
15°	$45\mathrm{Hz}$	$62\mathrm{Hz}$	$91\mathrm{Hz}$	$175\mathrm{Hz}$	$186\mathrm{Hz}$
30°	$55\mathrm{Hz}$	$102\mathrm{Hz}$	$152\mathrm{Hz}$	$246\mathrm{Hz}$	$355\mathrm{Hz}$
45°	$96\mathrm{Hz}$	$184\mathrm{Hz}$	$298\mathrm{Hz}$	$461\mathrm{Hz}$	$643\mathrm{Hz}$

Die Strömungsgeschwindigkeiten v folgen nun, indem die Gleichung 1 umgestellt wird.

Die berechneten Strömungsgeschwindigkeiten sind in Tabelle 3 eingetragen.

Tabelle 3: Prisma- und Dopplewinkel.

Prismawinkel φ	35,7%	47,62%	59,52%	71,43%	83, 3%
15°	$855\mathrm{m/s}$	$62\mathrm{m/s}$	$91\mathrm{m/s}$	$175\mathrm{m/s}$	$186\mathrm{m/s}$
30°	$55\mathrm{m/s}$	$102\mathrm{m/s}$	$152\mathrm{m/s}$	$246\mathrm{m/s}$	$355\mathrm{m/s}$
45°	$96\mathrm{m/s}$	$184\mathrm{m/s}$	$298\mathrm{m/s}$	$461\mathrm{m/s}$	$643\mathrm{m/s}$

Werte für v und Plot anpassen, s.o.

Die Strömungsgeschwindigkeiten v folgen nun, indem die Formel (1) umgestellt wird. In der folgenden Abbildung 2 sind die Werte aus der berechneten Strömungsgeschwindigkeiten visuell gegen den Quotient aus der Frequenzdifferenz $\Delta \nu$ und $\cos(\alpha)$ dargestellt.

Abbildung 2: Messwerte für drei verschiedene Einstrahlwinkel gegen die berechnete Strömungsgeschwindigkeit $\frac{\Delta \nu}{\cos(\alpha)}$.

4.2 Auswertung des Strömnugprofils

Im zweiten Teil des Versuches wird für einen Schlauch mit einem Außendurchmesser von 20 mm und einem Innendurchmesser von 16 mm ein Strömungsprofil unter einem Einfallwinkel von 45° angelegt. Die Messwerte für eine Leistung von 70% sind in Tabelle 4 und für 45% in Tabelle 5 zu finden. Dargestellt sind die Messtiefe des Ultraschalls, die Signalstärke und die Fließgeschwindigkeit der Flüssigkeit. Eine grafische Darstellung ist in diesem Fall nicht angebracht, da die Messwerte, wie in Abschnitt 5 näher erläutert wird, nicht repräsentant und sehr ungenau sind.

Ihr hattet das mittlere Rohr

Doch! Bitte plottet die Messwerte. Dann könnt ihr nachher in Diskussion erklären warum die Werte nicht repräsentativ sind.

Tabelle 4: Messwerte des zweiten Aufgabenteils bei 70 % Leistung (6.000 rpm) des Gerätes.

Tiefe / µs	Signalstärke / $1000 \mathrm{V^2/s}$	Fließgeschwindigkeit / cm/s
12,0	5	181,5
12,5	6	124,2
13,0	7	39,8
$13,\!5$	8	44,6
14,0	13	50,9
$14,\!5$	16	54,1
15,0	20	$60,\!5$
$15,\!5$	10	73,2
16,0	7	66,9
$16,\!5$	10	66,9
17,0	11	57,3
17,5	6	57,3
18,0	9	44,6
$18,\!5$	7	50,9
19,0	7	54,1
19,5	7	54,1
20,0	6	$60,\!5$

Tabelle 5: Messwerte des zweiten Aufgabenteils bei 45 % Leistung (3.870 rpm) des Gerätes

Tiefe / µs	Signalstärke / $1000\mathrm{V^2/s}$	Fließgeschwindigkeit / cm/s
12,0	4	342,2
12,5	5	79,6
13,0	6	$38,\!2$
$13,\!5$	7	28,7
14,0	8	28,7
$14,\!5$	9	28,7
15,0	14	$30,\!2$
$15,\!5$	17	$30,\!2$
16,0	16	31,8
16,5	12	28,7
17,0	16	27,1
17,5	11	$25,\!5$
18,0	8	$25,\!5$
18,5	7	28,7
19,0	8	28,7
$19,\!5$	8	31,8
20,0	6	36,6

5 Diskussion

Beim Aufbau ist anzumerken, dass die Flußgeschwindigkeit durch den kleinen Radius des Schlauches eventuell beinträchtigt werden könnte. Dieser könnte eventuell zu stark gebogen oder sogar geknickt sein, sodass die Flüssigkeit nicht ausreichend fließen kann. Außerdem konnte der Schlauch nicht an das Acryl mit den drei einzustellenden Winkeln gedrückt werden, da die Kunststoffplatte nicht unter den Schlauch passte und somit nicht für eine bessere Fixierung untergeschoben werden konnte.

Im ersten Teil des Versuches konnten genaue Messwerte erfasst werden und eine grafische Auswertung dieser ergibt die zu erwartende lineare Abhängigkeit zwischen dem Quotienten $\Delta \nu/\cos(\alpha)$ und der Fließgeschwindigkeit v.

Der zweite Teil des Versuches ergab jedoch keine gebrauchbaren Messwerte. Dies liegt vermutlich an der Einstellung des Ultraschall-Doppler Generators. Es war nicht möglich den Fehler, der die Werte so stark verzerrte, zu finden. Es war zu erwarten, dass die Fließgeschwindigkeit mit der Tiefe zunimmt und ein Maximum erreicht, wenn der Ultraschall auf der Tiefe der zu untersuchenden Flüssigkeit angekommen ist. Danach hätte die gemessen Fließgeschwindigkeit wieder abnehmen sollen. In unserem Versuch ergaben sich keine Werte und es gab kein deutlich abzulesendes Maximum. Es ist deshalb zu sagen, dass der zweite Teil des Versuches nicht auszuwerten ist.

Eine mögliche Fehlerquelle ist das Programm Flow View, in dem die angezeigten Werte für die Maximal- und Minimalfrequenz f_{max} , f_{mean} starken Schwankungen unterlagen.

Es war demnach nicht möglich einen genauen Wert abzulesen, wodurch die dadurch bestimmte Frequenzdifferenz ebenfalls hohen Schwankungen unterliegt. Eine weitere Fehlerquelle könnte die Menge des verwendeten Ultraschallgels sein. Da hier jedoch mehrere Male mit unterschiedlichen Mengen versucht wurde, Messwerte zu erstellen und die Qualität nicht besser wurde, ist davon auszugehen, dass zumindest dieser Fehler gering gehalten wurde. Die Strömungsgeschwindigkeit, die von der Pumpe erzeugt wurde, unterlag ebenfalls hohen Schwankungen. Es war nicht möglich eine genaue Pumpleistung einzustellen, da bereits durch Erschütterungen des Tisches, auf dem die Pumpe stand, zu einer anderen Pumpleistung führte. All diese Ungenauigkeiten führten zu schlechteren Messwerten. Jedoch bleibt immer noch offen, weshalb die Messwerte im zweiten Versuchsteil so ungebrauchbar sind.

unbrauchbar

6 Anhang

Abbildung 3: Originale Messwerte des Versuches.

		1-80,00°	8005 cp= 2700	5	
$\theta = 15^{\circ} = 30^{\circ} = 30^{\circ}$	arcsin (s,o (180). 25	1-80,00°	9005 cp= 2700	5	
$\theta = 15^{\circ} = 30^{\circ} = 30^{\circ}$	arcsin (s,o (180). 25	1-80,00°			
$\theta = 30^{\circ} : \alpha = 7$ $\theta = 60^{\circ} : \alpha = 54$ 1010	0,53° 1,74° t-nax	trnean			
9=60°: a= 54 1010	1,74°				
(pn	t-nax				
1010					
	84,3	2 22 /			
200		2,23			
2000					
		1000 V2			010
Tiefe us s	ignal interity	5 3	speed 5	De 6.	70 > Ley6
13					
72.5	06		176.7		
13	7		39.8		
14	13		50,9		
14,5	16		54.1		
15			60.5		
			66.9		
	10		66,5		
17	11		57.3		
17,5	6		57.3		
18	<u> 9</u>		44.6		
	ŧ		54.7		
	7		54.1		
20			60.5		
	17.5 13.5 14.5 14.5 15.5 16 16.5 17. 18. 18. 18. 18. 18. 18.	172 5 6 173 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	172 5 6 173 7 1 13 14,5 16 17 17,5 16 17 17,5 16 17,5 17,5 17,5 17,5 17,5 17,5 17,5 17,5	172 5 181. 5 173.5 6 1724.72 13 7 191.6 13 50.9 14.5 16 50.7 15.5 10 73.7 16 7 66.5 16.5 10 66.5 174 11 57.3 18 175 6 57.3 18 175 7 57.3 18 175 7 57.3	172 5 181. 5 174. 72 173 6 174. 72 173 8 174. 6 114. 13 50, 9 144. 5 10 66. 5 15. 5 10 66. 5 15. 5 10 66. 5 174. 11 57. 3 18 18 18 18 18 18 18 18 18 18 18 18 18 1

Abbildung 4: Originale Messwerte des Versuches.

Literatur

[1] Doppler-Sonographie. TU Dortmund, Fakultät Physik. 2022.