

AD-A074 846 MICHIGAN STATE UNIV EAST LANSING DEPT OF STATISTICS --ETC F/G 12/1
ASYMPTOTIC NORMALITY OF A VARIANCE ESTIMATOR OF A LINEAR COMBIN--ETC(U)
JUL 79 J C GARDINER, P K SEN
UNCLASSIFIED RM-389-REV N00014-79-C-0522 NL

| OF |
AD
A074846

END
DATE
FILMED
11-79
DDC

See 1473

**Michigan
State**

RM-389 JCG-1 PKS-1
November 1978
Rev. July 1979

ASYMPTOTIC NORMALITY OF A VARIANCE ESTIMATOR OF A LINEAR COMBINATION
OF A FUNCTION OF ORDER STATISTICS

By

Joseph C. Gardiner* and Pranab Kumar Sen
Michigan State University and University of North Carolina, Chapel Hill

Abstract

An estimator of the asymptotic variance of (a randomly stopped) linear combination of a function of order statistics is considered and its asymptotic normality is studied under appropriate regularity conditions. A comparative study of the regularity conditions pertaining to the asymptotic normality and strong convergence of linear combinations of functions of order statistics and their estimated asymptotic variances is also made.

Accession for	
NTIS GEN&I	
DOC TAB	
Unpublished	
Justification	
By _____	
Distribution	
Availability Codes	
Distr.	Avail and/or special
A	

AMS Classifications: 60F05, 62G30

D D C
P R E P A R E D
OCT 10 1979
D I S T R I B U T I O N
A

Key Words and Phrases: Asymptotic normality; asymptotic variance; almost sure convergence; empirical distribution; linear combination of order statistics; quantile process; stopping time; Wiener process.

* Research supported by the Office of Naval Research under ONR Contract N00014-79-C-0522.

DISTRIBUTION STATEMENT A
Approved for public release
Distribution Unlimited

1. Introduction.

Let $\{X_i, i \geq 1\}$ be a sequence of independent and identically distributed random variables (i.i.d.r.v.) with a continuous distribution function (df) F , defined on the real line $R = (-\infty, \infty)$. For every $n (\geq 1)$, let $X_{n,1}, \dots, X_{n,n}$ be the order statistics corresponding to x_1, \dots, x_n and consider the statistics

$$T_{n,k} = n^{-1} \sum_{i=1}^k c_{n,i} h(X_{n,i}), \quad 1 \leq k \leq n, \quad (1.1)$$

where $\{c_{n,i}, 1 \leq i \leq n; n \geq 1\}$ is a triangular array of (known) real constants and h is a specified function. Actually, if we let $g = h \circ F^{-1}$ and $\xi_{n,i} = F(X_{n,i})$, $1 \leq i \leq n$ (so that $\xi_{n,1}, \dots, \xi_{n,n}$ are the ordered r.v. of a sample of size n from the uniform $(0,1)$ df), we may rewrite (1.1) as

$$T_{n,k} = n^{-1} \sum_{i=1}^k c_{n,i} g(\xi_{n,i}), \quad 1 \leq k \leq n. \quad (1.2)$$

Under suitable regularity conditions (on g and the $c_{n,i}$), for $k/n \rightarrow \alpha$ ($0 < \alpha \leq 1$),

$$n^{1/2}(T_{n,k} - \mu(\alpha))/\sigma(\alpha) \xrightarrow{D} N(0,1), \quad (1.3)$$

where for each $\alpha \in (0,1]$, $\mu(\alpha)$ (asymptotic mean) and $\sigma^2(\alpha)$ (asymptotic variance) are functionals of g and the score function J (which generates the $c_{n,i}$). (1.3) has been proved under diverse regularity conditions by a host of research workers (viz. [1, 3, 4, 5, 6, 7, 8]). Stigler (1969) has also shown that under suitable regularity conditions,

$$n \operatorname{Var}(T_{n,k})/\sigma^2(\alpha) \rightarrow 1 \text{ as } n \rightarrow \infty. \quad (1.4)$$

Let $\{\tau_n, n \geq 1\}$ be a class of stopping times, where, for each $n (\geq 1)$, τ_n is defined in terms of $X_{n,1}, \dots, X_{n,n}$ and it assumes values in

$\{1, \dots, n\}$. Gardiner and Sen (1978) have shown that if $n^{-1}\tau_n \stackrel{P}{\rightarrow} \alpha \in (0, 1]$ and the regularity conditions pertaining to (1.3) hold, then

$$n^{1/2}(T_{n,\tau_n} - \mu(n^{-1}\tau_n)) / \sigma(\alpha) \xrightarrow{D} N(0, 1), \quad (1.5)$$

while if $n^{-1}(\tau_n - n\alpha) \stackrel{P}{\rightarrow} 0$, then in (1.5), $\mu(n^{-1}\tau_n)$ may also be replaced by $\mu(\alpha)$.

In a variety of practical applications, $\mu(\alpha)$ can be related to the basic (viz., location or scale) parameters of F , and thereby, confidence intervals or tests of significance for $\mu(\alpha)$ can be transmitted to yield parallel conclusions for these parameters. In this context, one confronts the problem of estimating $\sigma^2(\alpha)$ and natural estimators of $\sigma^2(\alpha)$ can be derived from the sample. The object of the present investigation is to consider such an estimator of $\sigma^2(\alpha)$ and to study its asymptotic normality. Along with the preliminary notions, the main theorems are presented in Section 2 and their proofs are considered in Section 3. Section 4 is devoted to some general remarks including a comparative study of the regularity conditions pertaining to the almost sure (a.s.) convergence and asymptotic normality of $T_{n,k}$ and the estimator of $\sigma^2(\alpha)$. For the convenience of presentation, some of the technicalities are postponed to the Appendix.

2. Preliminary notions and the main theorems.

Define g as in after (1.1)

and assume that for every $\theta \in (0, 1)$, g is of bounded variation in

$(0, 1-\theta)$. For each $n (\geq 1)$, define J_n on $[0, 1]$ by letting $J_n(t) = c_{n,i}$ for $(i-1)/n < t \leq i/n$, $1 \leq i \leq n$ and $J_n(0) = c_{n,1}$. Also, let $\Gamma_n(t) = n^{-1} \sum_{i=1}^n I(\xi_{n,i} \leq t)$, $t \in [0, 1]$ be the empirical df. Then $T_{n,k}$ in (1.2) can be expressed as

$$T_{n,k} = \int_0^{\Gamma_n^{-1}(k)} J_n(\Gamma_n(t)) g(t) d\Gamma_n(t). \quad (2.1)$$

We define a bounding function

$$B(\cdot, \underline{a}) = \{B(t, \underline{a}) = M t^{-a_1} (1-t)^{-a_2}, t \in (0,1)\} \quad (2.2)$$

where $M(0 < M < \infty)$, $\underline{a} = (a_1, a_2)$ and a_1, a_2 are real numbers. Also, for fixed $\beta(>0)$ and $\delta(>0)$, we define

$$q_\beta = \{q_\beta(t) = [t(1-t)]^{\beta-\delta/2}, t \in (0,1)\}. \quad (2.3)$$

Then, we make the following assumptions:

[A1]: $|g| \leq B(\cdot, \underline{a})$ for some $\underline{a} = (a_1, a_2)$.

[A2]: There exists a J , defined on $(0,1)$, such that

$$|J| \leq B(\cdot, \underline{b}) \text{ and } |J_n| \leq B(\cdot, \underline{b}), \forall n, \quad (2.4)$$

where $\underline{b} = (b_1, b_2)$ with real b_1, b_2 and except on a set of t 's of $|g|$ -measure zero, both J is continuous at t and $J_n \rightarrow J$ uniformly in some neighborhood of t as $n \rightarrow \infty$.

For each $\alpha \in (0,1]$, let us then define

$$\mu_n(\alpha) = \int_0^\alpha J_n(t) g(t) dt, \quad (2.5)$$

$$\sigma^2(\alpha) = \int_0^\alpha \int_0^\alpha (s \wedge t - st) J(s) J(t) dg(s) dg(t); \quad a \wedge b = \min(a, b). \quad (2.6)$$

Note that if

$$a_1 + b_1 = a_2 + b_2 = 1/2 - \delta \quad (2.7)$$

then $\int_0^1 B(\cdot, \underline{b}) q_\beta d|g| < \infty$ and it follows from assumptions A1, A2 that both $\mu_n(\alpha)$ and $\sigma^2(\alpha)$ are finite and then (1.3) holds [cf. Shorack (1972)]. If, in addition $n^{-1} \tau_n \xrightarrow{P} \alpha \in (0,1)$ and g admits a derivative

at α or $n^{-\frac{1}{2}}(\tau_n - n\alpha) = o_p(1)$ and g is continuous at α then (1.5) obtains [cf. Gardiner & Sen (1978)].

In the current paper, we consider the following estimator of $\sigma^2(\alpha)$:

$$\hat{\sigma}_n^2(\alpha) = \int_0^\alpha \int_0^\alpha \{r_n(s \wedge t) - r_n(s)r_n(t)\} J_n(r_n(s)) J_n(r_n(t)) dg(s) dg(t) \quad (2.8)$$

which can also be written as

$$\begin{aligned} \hat{\sigma}_n^2(\alpha) = n^{-2} \sum_{i=1}^{n^*} \sum_{j=1}^{n^*-1} c_{n,i} c_{n,j} [n(i \wedge j) - ij] [h(x_{n,i+1}) - \\ h(x_{n,i})][h(x_{n,j+1}) - h(x_{n,j})] + r_n, \end{aligned} \quad (2.9)$$

where $n^* = \max\{k: \xi_{n,k} \leq \alpha\}$ and $r_n = o_p(n^{-\frac{1}{2}})$. Also, as in Sen (1978), $\hat{\sigma}_n^2(\alpha)$ can be interpreted as the conditional variance of nT_{n,n^*} given $\{x_{n+k,j}, 1 \leq j \leq n+k \text{ and } k \geq 1\}$. Our main concern is to study regularity conditions pertaining to the asymptotic normality of $n^{\frac{1}{2}}(\hat{\sigma}_n^2(\alpha) - \sigma^2(\alpha))$.

For this purpose we need some additional regularity conditions:

$$[A3]: n^{\frac{1}{2}} \int_0^1 |J_n(r_n(t)) - J(r_n(t))| d|g(t)| \rightarrow 0, \text{ as } n \rightarrow \infty,$$

$$\begin{aligned} [A4]: \text{except on a set of } t \text{'s of } |g| \text{ measure zero, } J'(t) = \\ (d/dt)J(t) \text{ exists and is continuous at } t, \text{ and for some} \\ \underline{c} = (c_1, c_2), \end{aligned}$$

$$|J'| \leq B(\cdot, \underline{c}) \text{ where } 0 \leq c_1 - b_1, c_2 - b_2 \leq 1, \quad (2.10)$$

with b defined in [A2].

Let us now write I for the identity function on $(0,1)$ and let

$$J_{(1)} = IJ, \quad J_{(2)} = (I - I)J; \quad (2.11)$$

$$L_1(t) = 2 \int_t^1 J_{(2)} dg, \quad L_2(t) = 2 \int_0^t J_{(1)} dg, \quad 0 < t < 1; \quad (2.12)$$

$$L_0 = L_1 J'_{(1)} + L_2 J'_{(2)}. \quad (2.13)$$

Define

$$\gamma^2 = \int_0^1 \int_0^1 (s \wedge t - st) L_0(s) L_0(t) dg(s) dg(t). \quad (2.14)$$

Then, we have the following.

Theorem 1. Suppose that A1, A2, A3 and A4 hold and

$$\int_0^1 B(\cdot, b) q_{\lambda} d|g| < \infty. \quad (2.15)$$

Then, both $\sigma^2(1)$ and γ^2 are finite and

$$n^{\frac{1}{2}}(\hat{\sigma}_n^2(1) - \sigma^2(1))/\gamma \xrightarrow{P} N(0,1). \quad (2.16)$$

The proof is considered in the next section. We may remark here that in (2.11) through (2.14), if we let $J(t) = 0$ for $t \geq \alpha$ (when $0 < \alpha < 1$) and denote the resulting expression in (2.14) by γ_{α}^2 , then (2.16) holds for $n^{\frac{1}{2}}(\hat{\sigma}_n^2(\alpha) - \sigma^2(\alpha))/\gamma_{\alpha}$. Hence, for the sake of simplicity, we consider the case of $\alpha = 1$ and, for notational convenience, write $\hat{\sigma}_n^2(1) = \hat{\sigma}_n^2$, $\sigma^2(1) = \sigma^2$. We may also remark that whenever L_0 in (2.13) is integrable with respect to the signed measure g on $(0,1)$, a more convenient form of (2.14) can be obtained. Define G_0 on $(0,1)$ by

$$G_0(t) = \int_0^t L_0(s) dg(s), \quad 0 < t < 1. \quad (2.17)$$

Then, a pedestrian calculation leads us to

$$\gamma^2 = \int_0^1 G_0^2(t) dt - \left(\int_0^1 G_0(t) dt \right)^2. \quad (2.18)$$

Now let us suppose $0 < \alpha < 1$ and set $\sigma_n^{*2} = \hat{\sigma}_n^2(n^{-1} \tau_n)$. In the statement of A4 we assume additionally that J is continuous at α and $J_n \rightarrow J$ uniformly in some neighborhood of α as $n \rightarrow \infty$. For $t \in (0, \alpha)$ we define $L_1^+(t) = 2 \int_t^\alpha J_{(2)} dg$ and $L_0^+ = L_1^+ J'_{(1)} + L_2 J'_{(2)}$. Let $(\gamma^+(\alpha))^2 = \int_0^\alpha \int_0^\alpha (s \wedge t - st) L_0^+(s) L_0^+(t) dg(s) dg(t)$.

Theorem 2. With the remarks noted above suppose that A1 through A4 hold together with (2.15). Then both $\sigma^2(\alpha)$ and $\gamma^+(\alpha)$ are finite and if, in addition, $n^{-1}\tau_n \xrightarrow{P} \alpha$ then

$$n^{\frac{1}{2}}(\sigma_n^{*2} - \sigma^2(n^{-1}\tau_n)) / \gamma^+(\alpha) \xrightarrow{D} N(0,1) \quad (2.19)$$

while if $n^{-\frac{1}{2}}(\tau_n - n\alpha) \xrightarrow{P} 0$ and g admits a derivative at α then in (2.19) $\sigma^2(n^{-1}\tau_n)$ may also be replaced by $\sigma^2(\alpha)$.

3. Proofs of Theorems.

Note that by (2.4) and (2.6),

$$\begin{aligned} 0 &\leq \sigma^2(\alpha) = 2 \int_0^\alpha \int_0^s s(1-t) J(s) J(t) d g(s) d g(t) \\ &\leq 2 \left(\int_0^\alpha \{t(1-t)\}^{\frac{1}{2}} |J(t)| d|g(t)| \right)^2 \\ &\leq 2 \left(\int_0^1 \{t(1-t)\}^{\frac{1}{2}} |J(t)| d|g(t)| \right)^2, \quad \forall \alpha \in (0,1] \\ &\leq 2M^2 \left(\int_0^1 B q_{\frac{1}{2}} d|g(t)| \right)^2, \quad \forall \alpha \in (0,1]. \end{aligned} \quad (3.1)$$

Now (2.15) ensures the less restrictive condition $\int_0^1 B q_{\frac{1}{2}} d|g(t)| < \infty$ and so $\sigma^2(\alpha) < \infty$ for every $\alpha \in (0,1]$. Similarly, on noting that under (2.15), by (2.11), (2.12) and (2.13)

$$|L_0(t)| \leq M^* \{t(1-t)\}^{-\frac{1}{2}} B(t, \frac{1}{2}), \quad \forall t \in (0,1], \text{ for some } M^* < \infty, \quad (3.2)$$

we have by (2.14) and (3.2),

$$\begin{aligned} \gamma^2 &\leq 2 \left(\int_0^1 \{t(1-t)\}^{\frac{1}{2}} |L_0(t)| d|g(t)| \right)^2 \\ &\leq 2(M^*)^2 \left(\int_0^1 \{t(1-t)\}^{\frac{1}{2}} B(t, \frac{1}{2}) d|g(t)| \right)^2 \\ &< 2M^{*2} \left(\int B(\cdot, \frac{1}{2}) q_{\frac{1}{2}} d|g(t)| \right)^2 < \infty, \text{ by (2.15)} \end{aligned} \quad (3.3)$$

Note that by (2.6), (2.11) and (2.12),

$$\sigma^2 = 2 \int_0^1 \int_0^1 s(1-t) J(s) J(t) d\gamma(s) d\gamma(t) = \frac{1}{2} \int_0^1 L_1(t) dL_2(t). \quad (3.4)$$

Again, if we define for each $n > 1$ and $t \in [\xi_{n,1}, \xi_{n,n}]$,

$$L_{n,1}(t) = 2 \int_t^{\xi_{n,n}} (1-\Gamma_n) J_n(\Gamma_n) dg \quad \text{and} \quad L_{n,2}(t) = 2 \int_{\xi_{n,1}}^t \Gamma_n J_n(\Gamma_n) dg, \quad (3.5)$$

with both $L_{n,1}$ and $L_{n,2}$ set equal to zero otherwise, we may write

$$\hat{\sigma}_n^2 = (1/2) \int_0^1 L_{n,1}(t) dL_{n,2}(t). \quad (3.6)$$

From (3.4) and (3.6), we have

$$n^{1/2} (\hat{\sigma}_n^2 - \sigma^2) = \frac{1}{2} \{ S_{n,1} + S_{n,2} + R_n \}, \quad (3.7)$$

where

$$S_{n,1} = \int_0^1 n^{1/2} (L_{n,1}(t) - L_1(t)) dL_2(t), \quad (3.8)$$

$$S_{n,2} = \int_0^1 L_1(t) d\{n^{1/2} (L_{n,2}(t) - L_2(t))\}, \quad (3.9)$$

$$R_n = \int_0^1 n^{1/2} (L_{n,1}(t) - L_1(t)) d(L_{n,2}(t) - L_2(t)). \quad (3.10)$$

Let (Ω, \mathcal{B}, P) be the underlying probability space and let $U_n = n^{1/2} (\Gamma_n - 1)$ be the uniform empirical process on $[0,1]$. Suppose U denotes a standard Brownian bridge process on $[0,1]$ defined on the same probability space. $[(\Omega, \mathcal{B}, P)]$ may not be rich enough to support U . However, by one of the usual techniques of embedding [cf. Shorack (1972)], we may construct another probability space $(\Omega^*, \mathcal{B}^*, P^*)$ where the distributions of our original variables are preserved and which is rich enough to support U .] Let \mathcal{Q} be the class of all nonnegative, continuous q on $[0,1]$ which are bounded below by functions \bar{q} nondecreasing (nonincreasing) on $[0, \frac{1}{2}]$ ($[\frac{1}{2}, 1]$) and

satisfy $\int_0^1 \frac{1}{q} dI < \infty$. Let $\rho_q(f, g) = \sup\{|f(t) - g(t)|/q(t) : 0 < t < 1\}$ be the usual sup-norm metric. Then, it is known that for each $q \in Q$

$$\rho_q(U_n, U) = o_p(1) \quad \text{and} \quad \rho_q(U_n, 0) = o_p(1) = \rho_q(U, 0). \quad (3.11)$$

Note that by our definitions,

$$\begin{aligned} \zeta_n \delta_{(L_{n,1} - L_1)} &= - \int_t^{\xi_{n,n}} u_n J_n(\Gamma_n) dg + \int_t^{\xi_{n,n}} (1-I)n^{\frac{1}{2}} (J_n(\Gamma_n) - J(\Gamma_n)) dg \\ &\quad + \int_t^{\xi_{n,n}} (1-I)n^{\frac{1}{2}} (J(\Gamma_n) - J) dg - n^{\frac{1}{2}} \int_{\xi_{n,n}}^1 (1-I) J dg, \\ &\quad \text{for } t \in [\xi_{n,1}, \xi_{n,n}) \\ &= -n^{\frac{1}{2}} \int_t^1 (1-I) J dg, \text{ otherwise} \end{aligned} \quad (3.12)$$

$$\begin{aligned} \zeta_n \delta_{(L_{n,2} - L_2)} &= \int_{\xi_{n,1}}^t u_n J_n(\Gamma_n) dg + \int_{\xi_{n,1}}^t I n^{\frac{1}{2}} (J_n(\Gamma_n) - J(\Gamma_n)) dg \\ &\quad + \int_{\xi_{n,1}}^t I n^{\frac{1}{2}} (J(\Gamma_n) - J) dg - n^{\frac{1}{2}} \int_0^{\xi_{n,1}} I J dg, \\ &\quad \text{for } t \in [\xi_{n,1}, \xi_{n,n}), \\ &= -n^{\frac{1}{2}} \int_0^t I J dg, \text{ otherwise.} \end{aligned} \quad (3.13)$$

Substituting (3.12) in (3.8), we write

$$s_{n,1} = -s_{n,1}^{(1)} + s_{n,1}^{(2)} + s_{n,1}^{(3)} - s_{n,1}^{(4)}. \quad (3.14)$$

Define $\zeta_1 = \int_0^1 \{ \int_t^1 U J dg \} dL_2$ and let $\chi_{n,1}, \chi_{n,2}$ denote the indicators of $[\xi_{n,1}, \xi_{n,n})$ and $[t, \xi_{n,n}), t \in (0, 1)$ respectively. Then

$$\begin{aligned}
|s_{n,1}^{(1)} - \xi_1| &\leq \int_0^1 IB(\cdot, b) \chi_{n,1} d|g| \left\{ \int_t^1 |\chi_{n,2} u_n J_n(\Gamma_n) - UJ| d|g| \right\} \\
&+ \int_0^1 IB(\cdot, b) \bar{\chi}_{n,1} d|g| \left\{ \int_t^1 |UJ| d|g| \right\} \\
&= s_{n,11}^{(1)} + s_{n,12}^{(1)}, \text{ say,}
\end{aligned} \tag{3.15}$$

where $\bar{\chi}_{n,1}$ is the indicator of the complement of $[\xi_{n,1}, \xi_{n,n})$ relative to $(0,1)$. To handle $s_{n,11}^{(1)}$ note that for $\chi_{n,1} = 1$ and $\chi_{n,2} = 1$ we have

$$|\chi_{n,2} u_n J_n(\Gamma_n) - UJ| \leq |u_n - U| B(\cdot, b) + |J_n(\Gamma_n) - J| |u_n|. \tag{3.16}$$

Furthermore, $|J_n(\Gamma_n) - J| \leq 2B(\Gamma_n, b) \vee B(I, b)$, and since $0 < \Gamma_n < 1$, in

the range under consideration, we obtain by Theorem 2 of Wellner (1977)

that there exists a set $A \subset \Omega$ such that $P(A) = 1$ and for each $\omega \in A$ there exists an integer n_ω for which $n \geq n_\omega$ implies

$$|J_n(\Gamma_n) - J| \leq M^0 B(\cdot, b) q_b / \tilde{q}, \tag{3.17}$$

where $M^0 (< \infty)$ is a constant and $\tilde{q} = \{I(l - I)\}^{1-\delta/4}$. For such ω and n , therefore, from (3.11) and (3.17), the right hand side of (3.16) is bounded by

$$\rho_{q_b} (u_n, U) B(\cdot, b) q_b + M^0 \rho_{\tilde{q}} (u_n, 0) B(\cdot, b) q_b = o_p(1) B(\cdot, b) q_b \tag{3.18}$$

whenever $\chi_{n,1} = 1$ and $\chi_{n,2} = 1$. When $\chi_{n,1} = 1$ and $\chi_{n,2} = 0$, however the left hand side of (3.16) is again dominated by $o_p(1) B(\cdot, b) q_b$. We note that $\Gamma_n \rightarrow I$ uniformly on $[0,1]$ and thus by [A4], $J_n(\Gamma_n) \rightarrow J$ (a.s.), pointwise a.e. $|q|$. Since $\xi_{n,n} \rightarrow 1$ a.s. and from (3.11) we have for each $t \in (0,1)$, $\chi_{n,2} u_n J_n(\Gamma_n) \rightarrow UJ$ (a.s.), pointwise a.e. $|q|$. Hence the dominated convergence theorem applies and for each $t \in (0,1)$, we obtain

$$x_{n,1}(t) \int_t^1 |x_{n,2} u_n J_n(\Gamma_n) - u J d|g| \stackrel{P}{\rightarrow} 0. \quad (3.19)$$

Again for each $t \in (0,1)$, we have using the upper bound in (3.18)

$$\begin{aligned} & IB(\cdot, b) \left\{ \int_t^1 |x_{n,2} u_n J_n(\Gamma_n) - u J d|g| \right\} \\ & \leq \{\mathbb{I}(1 - \mathbb{I})\}^{\delta/2} B(\cdot, b) q_{\frac{1}{4}} \left\{ \int_0^1 B(\cdot, b) q_{\frac{1}{4}} d|g| \right\} o_p(1), \end{aligned} \quad (3.20)$$

where the right hand side is a $|g|$ -integrable function. It then follows from (3.19) and the dominated convergence theorem that $s_{n,11}^{(1)} \stackrel{P}{\rightarrow} 0$ as $n \rightarrow \infty$.

To handle $s_{n,12}^{(1)}$ we write

$$\begin{aligned} s_{n,12}^{(1)} & \leq \int_0^{\xi_{n,1}} IB(\cdot, b) d|g| \left\{ \int_t^1 |u| B(\cdot, b) d|g| \right\} \\ & + \int_{\xi_{n,n}}^1 IB(\cdot, b) d|g| \left\{ \int_t^1 |u| B(\cdot, b) d|g| \right\}. \end{aligned} \quad (3.21)$$

The first term on the right hand side may be bounded by

$$\begin{aligned} & \int_0^{\xi_{n,1}} IB(\cdot, b) d|g| \left\{ \int_t^1 \{\mathbb{I}(1 - \mathbb{I})\}^{\frac{1}{4}} B(\cdot, b) q_{\frac{1}{4}} d|g| \right\} o_{q_{\frac{1}{4}}}(u, 0) \\ & \leq \left(\int_0^{\xi_{n,1}} \{\mathbb{I}(1 - \mathbb{I})\}^{\delta/2} B(\cdot, b) q_{\frac{1}{4}} d|g| \right) \left(\int_0^1 B(\cdot, b) q_{\frac{1}{4}} d|g| \right) o_p(1) \end{aligned}$$

$= o_p(1)$, since $\xi_{n,1} \stackrel{P}{\rightarrow} 0$ and the integral converges.

The same argument will also show that the second term on the right hand side of (3.21) is $o_p(1)$. Hence, finally it follows from (3.15) that

$$s_{n,1}^{(1)} \stackrel{P}{\rightarrow} \zeta_1 = \int_0^1 \left[\int_t^1 u J d|g| \right] dL_2, \quad \text{as } n \rightarrow \infty. \quad (3.22)$$

Next, we note that by [A3] and the definition of $s_{n,1}^{(2)}$,

$$\begin{aligned}
|s_{n,1}^{(2)}| &\leq \int_0^1 IB(\cdot, \tilde{\omega}) d|g| \left\{ \int_t^1 (1-I)n^{\frac{1}{2}} |J_n(\Gamma_n) - J(\Gamma_n)| d|g| \right\} \\
&\leq \left(\int_0^1 \{I(1-I)\}^{\delta/2} B(\cdot, \tilde{\omega}) q_k d|g| \right) \left(\int_0^1 n^{\frac{1}{2}} |J_n(\Gamma_n) - J(\Gamma_n)| d|g| \right) \\
&= O(1)o_p(1). \tag{3.23}
\end{aligned}$$

To handle $s_{n,1}^{(3)}$ we note that it may be written in the form

$$s_{n,1}^{(3)} = \int_0^1 dL_2(t) \chi_{n,1}(t) \left\{ \int_t^1 \chi_{n,2}(1-I) U_n(J(\Gamma_n) - J)/(\Gamma_n - I) d|g| \right\} \tag{3.24}$$

where the indicators $\chi_{n,1}, \chi_{n,2}$ were defined preceding (3.15). Define

$$\zeta_2 = \int_0^1 \left\{ \int_t^1 (1-I) U J' d|g| \right\} dL_2. \quad \text{Then}$$

$$|s_{n,1}^{(3)} - \zeta_2| \leq s_{n,13}^{(1)} + s_{n,14}^{(1)}, \tag{3.25}$$

where

$$s_{n,13}^{(1)} = \int_0^1 IB(\cdot, \tilde{\omega}) \chi_{n,1} d|g| \left\{ \int_t^1 (1-I) |\chi_{n,2} U_n(J(\Gamma_n) - J)/(\Gamma_n - I) - U J'| d|g| \right\}, \tag{3.26}$$

$$s_{n,14}^{(1)} = \int_0^1 IB(\cdot, \tilde{\omega}) \bar{\chi}_{n,1} d|g| \left\{ \int_t^1 (1-I) |U J'| d|g| \right\}. \tag{3.27}$$

The analysis of $s_{n,13}^{(1)}$ is very similar to that of $s_{n,11}^{(1)}$. Note that $|J(\Gamma_n) - J|/|\Gamma_n - I| \leq B(\Gamma_n, \tilde{\omega}) \vee B(I, \tilde{\omega})$ by [A4]. Once again since $0 < \Gamma_n < 1$ in the range under consideration in (3.26) we may invoke Theorem 2 of Wellner (1972): for some $A^* \subset \Omega$ with $P(A^*) = 1$, there exists for each $\omega^* \in A^*$, an integer n_{ω^*} such that for $n \geq n_{\omega^*}$

$$|J(\Gamma_n) - J|/|\Gamma_n - I| \leq M_0 B(\cdot, \tilde{\omega}) q_k / \tilde{q}, \tag{3.28}$$

where $M_0 (< \infty)$ is a constant and \tilde{q} is defined as in (3.17). By steps similar to (3.16) through (3.19) for $s_{n,11}^{(1)}$ and the continuity of J' , we obtain, for each $t \in (0,1)$

$$\chi_{n,1}(t) \int_t^1 (1-\tau) |\chi_{n,2} v_n(\tau(t_n) - \tau)/(\tau_n - \tau) - u\tau' d|q| \xrightarrow{P} 0. \quad (3.29)$$

Furthermore in view of [A4],

$$\begin{aligned} & IB(\cdot, b) \left\{ \int_t^1 (1-\tau) |\chi_{n,2} v_n(\tau(t_n) - \tau)/(\tau_n - \tau) - u\tau' d|q| \right\} \\ & \leq \{(1(1-\tau))^{1/2} B(\cdot, b) q_{\frac{1}{4}} \left\{ \int_0^1 \tau(1-\tau) B(\cdot, \xi) q_{\frac{1}{4}} d|q| \right\} \}_{p(1)} \end{aligned} \quad (3.30)$$

and the right hand side is a $|q|$ -integrable function. Hence from (3.29)

and the dominated convergence theorem we obtain $s_{n,13}^{(1)} \xrightarrow{P} 0$ as $n \rightarrow \infty$.

Finally from (3.27) and [A4]

$$\begin{aligned} s_{n,14}^{(1)} & \leq \int_0^{\xi_{n,1}} IB(\cdot, b) d|q| \left\{ \int_t^1 (1-\tau) |v| B(\cdot, \xi) d|q| \right\} \\ & + \int_{\xi_{n,n}}^1 IB(\cdot, b) d|q| \left\{ \int_t^1 (1-\tau) |v| B(\cdot, \xi) d|q| \right\}, \end{aligned} \quad (3.31)$$

and as in the treatment of (3.21) the first term on the right hand side of (3.31) may be bounded by

$$\begin{aligned} & \int_0^{\xi_{n,1}} IB(\cdot, b) d|q| \left\{ \int_t^1 \tau^{\frac{1}{4}} (1-\tau)^{5/4} B(\cdot, \xi) q_{\frac{1}{4}} d|q| \right\} \rho_{q_{\frac{1}{4}}} (v, 0) \\ & \leq \left(\int_0^{\xi_{n,1}} \{(1(1-\tau))^{1/2} B(\cdot, b) q_{\frac{1}{4}} d|q| \} \right) \left(\int_0^1 \tau(1-\tau) B(\cdot, \xi) q_{\frac{1}{4}} d|q| \right) o_p(1) \\ & = o_p(1), \text{ since the integral converges and } \xi_{n,1} \xrightarrow{P} 0. \end{aligned}$$

The same argument applies to the second term on the right hand side of (3.31) and so we have $s_{n,14}^{(1)} \xrightarrow{P} 0$ and hence finally from (3.25)

$$s_{n,1}^{(3)} \xrightarrow{P} \zeta_2 = \int_0^1 \left\{ \int_t^1 (1-\tau) u\tau' d|q| \right\} dL_2. \quad (3.32)$$

In the Appendix, Lemma 1, we show $s_{n,1}^{(4)} \xrightarrow{P} 0$ as $n \rightarrow \infty$. Thus from (3.14), (3.22), (3.23), (3.32) and the above, it follows that

$$s_{n,1} \xrightarrow{P} \zeta_2 - \zeta_1 \quad \text{as } n \rightarrow \infty. \quad (3.33)$$

The analysis of $s_{n,2}$ is entirely analogous, and hence, in the interest of brevity, we omit the details and present only the final result:

$$s_{n,2} \xrightarrow{P} \zeta_3 + \zeta_4 \quad \text{as } n \rightarrow \infty, \quad (3.34)$$

where

$$\zeta_3 = \int_0^1 L_1 U J dq \quad \text{and} \quad \zeta_4 = \int_0^1 I L_1 U J' dq. \quad (3.35)$$

Finally, a very similar analysis leads to the conclusion that

$$R_n \xrightarrow{P} 0 \quad \text{as } n \rightarrow \infty. \quad (3.36)$$

Hence from (3.7), (3.33), (3.34) and (3.36) we obtain that

$$n^{\frac{1}{2}}(\hat{o}_n^2 - o^2) \xrightarrow{P} \frac{1}{2}(\zeta_2 - \zeta_1 + \zeta_3 + \zeta_4) \quad \text{as } n \rightarrow \infty. \quad (3.37)$$

In Lemma 2 of the Appendix we show that

$$\frac{1}{2}(\zeta_2 - \zeta_1 + \zeta_3 + \zeta_4) = \int_0^1 U L_0 dq = S, \text{ say}, \quad (3.38)$$

where L_0 is defined by (2.13). Therefore with γ^2 defined by (2.14), S has the normal distribution with mean 0 and variance γ^2 . Q.E.D.

The proof of Theorem 2 proceeds very much along the same lines and so we omit some details here. Corresponding to (2.12) and (3.5) we define for each $n > 1$,

$$L_{n,1}^*(t) = 2 \int_t^{n^{-1}\tau_n} (1 - r_n) J_n(r_n) dq, \text{ for } t \in [\xi_{n,1}, n^{-1}\tau_n] \quad (3.39)$$

with $L_{n,1}^*$ set equal to zero otherwise and

$$L_{1,n}^*(t) = 2 \int_t^{n^{-1}\tau_n} J_2(q) dq, \text{ for } t \in (0, n^{-1}\tau_n], \quad (3.40)$$

with $L_{1,n}^*$ set equal to zero otherwise.

For simplicity we shall write L_1^* for $L_{1,n}^*$ in the sequel. Now

$$\sigma_n^{*2} = \frac{1}{2} \int_0^1 L_{n,1}^* dL_{n,2} \quad \text{and} \quad \sigma^2(n^{-1}\tau_n) = 1/2 \int_0^1 L_1^* dL_2. \quad (3.41)$$

Therefore corresponding to (3.7) through (3.10) we have

$$n^{\frac{1}{2}}(\sigma_n^{*2} - \sigma^2(n^{-1}\tau_n)) = \frac{1}{2}(s_{n,1}^* + s_{n,2}^* + r_n^*) \quad (3.42)$$

where

$$s_{n,1}^* = \int_0^{n^{-1}\tau_n} n^{\frac{1}{2}}(L_{n,1}^* - L_1^*) dL_2, \quad (3.43)$$

$$s_{n,2}^* = \int_0^{n^{-1}\tau_n} L_1^* d\{n^{\frac{1}{2}}(L_{n,2}^* - L_2)\}, \quad (3.44)$$

$$r_n^* = \int_0^{n^{-1}\tau_n} n^{\frac{1}{2}}(L_{n,1}^* - L_1^*) d(L_{n,2}^* - L_2). \quad (3.45)$$

The decomposition corresponding to (3.12) reads

$$\begin{aligned} \frac{1}{2}(L_{n,1}^* - L_1^*) &= - \int_t^{n^{-1}\tau_n} U_n J_n(\Gamma_n) dg + \int_t^{n^{-1}\tau_n} (1-\lambda)n^{\frac{1}{2}}(J_n(\Gamma_n) - J(\Gamma_n)) dg \\ &\quad + \int_t^{n^{-1}\tau_n} (1-\lambda)n^{\frac{1}{2}}(J(\Gamma_n) - J) dg, \quad t \in [\xi_{n,1}, n^{-1}\tau_n] \\ &= -n^{\frac{1}{2}} \int_t^{n^{-1}\tau_n} (1-\lambda) J dg, \quad t \in (0, \xi_{n,1}). \end{aligned} \quad (3.46)$$

since $n^{-1}\tau_n \xrightarrow{P} \alpha (< 1)$ by assumption and $\xi_{n,n} \xrightarrow{P} 1$, the set on which $n^{-1}\tau_n < \xi_{n,n}$ has probability which tends to one as $n \rightarrow \infty$. The argument used to examine (3.14) now applies with only minor modifications. For instance

$$\int_{\xi_{n,1}}^{n^{-1}\tau_n} dL_2 \left\{ \int_t^{n^{-1}\tau_n} U_n J_n(\Gamma_n) dg - \int_t^{n^{-1}\tau_n} U J dg \right\} \xrightarrow{P} 0, \quad (3.47)$$

and the usual argument shows that provided $n^{-1}\tau_n \xrightarrow{P} \alpha$

$$\int_{\xi_{n,1}}^{n^{-1}\tau_n} dL_2 \left\{ \int_t^{n^{-1}\tau_n} uJ dq \right\} \xrightarrow{P} \zeta_1^* = \int_0^\alpha dL_2 \left\{ \int_t^\alpha uJ dq \right\}. \quad (3.48)$$

Likewise $\int_{\xi_{n,1}}^{n^{-1}\tau_n} dL_2 \left\{ \int_t^{n^{-1}\tau_n} (1 - I)n^{\frac{1}{2}}(J_n(\Gamma_n) - J(\Gamma_n)) dq \right\} \xrightarrow{P} 0$ and

$$\int_{\xi_{n,1}}^{n^{-1}\tau_n} dL_2 \left\{ \int_t^{n^{-1}\tau_n} (1 - I)n^{\frac{1}{2}}(J(\Gamma_n) - J) dq \right\} \xrightarrow{P} \zeta_2^* \quad (3.49)$$

where

$$\zeta_2^* = \int_0^\alpha dL_2 \left\{ \int_t^\alpha (1 - I)uJ' dq \right\}. \quad (3.50)$$

Finally $n^{\frac{1}{2}} \int_0^{\xi_{n,1}} dL_2 \left\{ \int_t^{n^{-1}\tau_n} J_{(2)} dq \right\} \xrightarrow{P} 0$, by the argument in Lemma 1 of the Appendix. From (3.46) through (3.49) we obtain

$$s_{n,1}^* \xrightarrow{P} \zeta_2^* - \zeta_1^*. \quad (3.51)$$

Finally for $s_{n,2}^*$ and R_n^* the results are

$$s_{n,2}^* \xrightarrow{P} \zeta_3^* + \zeta_4^* \quad \text{and} \quad R_n^* \xrightarrow{P} 0 \quad (3.52)$$

where

$$\zeta_3^* = \int_0^\alpha L_1^+ uJ dq \quad \text{and} \quad \zeta_4^* = \int_0^\alpha IL_1^+ uJ dq. \quad (3.53)$$

Hence from (3.42), (3.51) and (3.52) we get

$$n^{\frac{1}{2}} (\sigma_n^{*2} - \sigma^2(n^{-1}\tau_n)) \xrightarrow{P} \frac{1}{2}(\zeta_2^* - \zeta_1^* + \zeta_3^* + \zeta_4^*).$$

A minor modification of Lemma 2 of the Appendix will show that

$$\frac{1}{2}(\zeta_2^* - \zeta_1^* + \zeta_3^* + \zeta_4^*) = \int_0^\alpha uL_0^+ dq,$$

and thus the first part of Theorem 2 is proven. For the second part we

need only recognize that for $n^{-1}\tau_n < \alpha$,

$$n^{\frac{1}{2}}(\sigma^2(n^{-1}\tau_n) - \sigma^2(\alpha)) = -2n^{\frac{1}{2}} \left(\int_0^{n^{-1}\tau_n} J_{(1)}^2 dq \right) \left(\int_{n^{-1}\tau_n}^\alpha J_{(2)}^2 dq \right) + 1/2 n^{\frac{1}{2}} \int_{n^{-1}\tau_n}^\alpha L_1^2 dL_2$$

with a similar expression if $n^{-1}\tau_n > \alpha$. Now, for the first term we may use the argument of Lemma 1 to show that it converges to zero in probability as $n \rightarrow \infty$. For the second term the additional assumptions on g and τ_n gives

$$\begin{aligned} \left| n^{\frac{1}{2}} \int_{n^{-1}\tau_n}^\alpha L_1^2 dL_2 \right| &\leq O(1)n^{\frac{1}{2}} |g(n^{-1}\tau_n) - g(\alpha)| \\ &\leq O(1)n^{\frac{1}{2}} |n^{-1}\tau_n - \alpha| |g'(\alpha) + o_p(1)| \\ &= o_p(1). \end{aligned}$$

Hence Theorem 2 is proven.

4. Some general remarks.

Consider the following example. Let X_1, \dots, X_n be iid rv's with df F and $E|X_1|^r < \infty$ for some $r > 4$. We shall consider the sample variance

$$(4.1) \quad \hat{\sigma}_n^2 = n^{-1} \sum_{i=1}^n (X_i - \bar{X}_n)^2$$

where $\bar{X}_n = n^{-1} \sum_{i=1}^n X_i$ is the sample mean. Then in the notation of Theorem 1 we have $c_{n,i} = 1$ for all i , $1 \leq i \leq n$ and $g = F^{-1}$. Note that $E|X_1|^r < \infty$ implies $\lim_{t \rightarrow 0+, 1^-} t(1-t)|F^{-1}(t)|^r = 0$. Thus $|g| \leq D$ on $(0,1)$ with $a_1 = a_2 = 1/r$. Also $J = J_n = 1$ so that $b_1 = b_2 = 0$ and A3, A4 hold trivially. Therefore if we take δ such that $1/r = 1/4 - \delta$ we have $\delta > 0$ provided $r > 4$. By an integration by parts (2.15) holds.

Now L_0 of (2.13) reduces to

$$L_0(t) = -2F^{-1}(t) + 2 \int_0^1 F^{-1}(s)ds.$$

For simplicity let us take $EX_1 = 0$ so that $\int_0^1 F^{-1}(s)ds = 0$. Then in (2.17) we may take $G_0(t) = -(F^{-1}(t))^2$. So we obtain $\gamma^2 = \mu_4 - \sigma^4$ where $\mu_4 = EX_1^4$ and $\sigma^2 = EX_1^2 = \sigma^2(1)$. Hence Theorem 1 yields

$$n^{1/2}(\hat{\sigma}_n^2 - \sigma^2) \xrightarrow{D} N(0, \mu_4 - \sigma^4), \quad (4.2)$$

a result which is obtainable under the assumption $r = 4$. In this context Theorem 1 "just fails" to yield the slightly stronger conclusion.

The above example presents a very interesting observation pertaining to the different sets of conditions that suffice to yield the almost sure (a.s.) convergence of the statistics $T_{n,n}$, their asymptotic normality and the asymptotic normality of the estimator $\hat{\sigma}_n^2$ of the asymptotic variance. We have noted that if A1, A2 obtain and (2.7) holds then

$$\int_0^1 B(\cdot, b) q_b d|g| < \infty \quad (4.3)$$

and both $\mu_n(1)$ of (2.5) and $\sigma^2(1)$ of (2.6) are finite and

$$n^{1/2}(T_{n,n} - \mu_n(1)) \xrightarrow{D} N(0, \sigma^2(1)). \quad (4.4)$$

Under A1, A2 (2.7) ensures the finiteness of $\mu_n(1)$ and (4.3) that of $\sigma^2(1)$. To obtain the asymptotic normality of the variance estimator of $\hat{\sigma}_n^2(1)$ of (2.8) we impose the additional assumptions A3, A4 and replace (4.3) by the stronger condition (2.15). The a.s. convergence of $T_{n,n}$ has been studied by Wellner (1977). If A1, A2 obtain and $a_1 + b_1 = a_2 + b_2 = 1-\delta$ then $\mu_n(1)$ is finite and

$$(T_{n,n} - \mu_n) \xrightarrow{\text{a.s.}} 0. \quad (4.5)$$

Sen (1978) has obtained the a.s. convergence of $\hat{\sigma}_n^2(1)$ following a different technique.

For the "stopped statistics" T_{n,τ_n} their asymptotic normality is derived in [2]. Again if A1, A2 obtain and (2.7) holds

$$n^{\frac{1}{2}}(T_{n,\tau_n} - \mu_n(n^{-1}\tau_n)) \xrightarrow{\text{distr.}} N(0, \sigma^2(\alpha)) \quad (4.6)$$

provided $n^{-1}\tau_n \stackrel{\text{P}}{\rightarrow} \alpha \in (0,1)$ and g admits a derivative at α or $n^{\frac{1}{2}}(n^{-1}\tau_n - \alpha) = o_p(1)$ and g is continuous at α . In the latter case if we further assume the stronger condition $n^{\frac{1}{2}}(n^{-1}\tau_n - \alpha) \stackrel{\text{P}}{\rightarrow} 0$ then $\mu_n(n^{-1}\tau_n)$ in (4.6) can be also replaced by $\mu_n(\alpha)$.

The a.s. convergence of T_{n,τ_n} can be discussed along the lines of Wellner (1977) assuming $n^{-1}\tau_n \xrightarrow{\text{a.s.}} \alpha$.

5. Appendix

Lemma 1: Under the hypothesis of Theorem 1 and $s_{n,1}^{(4)}$ defined by (3.12) and (3.14), we have $s_{n,1}^{(4)} \stackrel{\text{P}}{\rightarrow} 0$ as $n \rightarrow \infty$.

Proof. We first write $s_{n,1}^{(4)}$ in the form

$$s_{n,1}^{(4)} = -(s_{n,11}^{(4)} + s_{n,12}^{(4)} + s_{n,13}^{(4)}) \quad (5.1)$$

where

$$\begin{aligned} s_{n,11}^{(4)} &= (n^{\frac{1}{2}} \int_{\xi_{n,1}}^{\xi_{n,n}} IJdg) \left(\int_{\xi_{n,n}}^1 (1-I)Jdg \right), \\ s_{n,12}^{(4)} &= n^{\frac{1}{2}} \int_0^{\xi_{n,1}} IJdg \left\{ \int_t^1 (1-I)Jdg \right\}, \\ s_{n,13}^{(4)} &= n^{\frac{1}{2}} \int_{\xi_{n,n}}^1 IJdg \left\{ \int_t^1 (1-I)Jdg \right\}. \end{aligned}$$

Therefore,

$$|s_{n,11}^{(4)}| \leq (n^{\frac{1}{2}} \int_{\xi_{n,1}}^{\xi_{n,n}} IB(\cdot, b) d|g|) (\int_{\xi_{n,n}}^1 (1 - I) B(\cdot, b) d|g|). \quad (5.2)$$

Now

$$\int_{\xi_{n,1}}^{\xi_{n,n}} IB(\cdot, b) d|g| \leq \xi_{n,n}^{3/4} \int_{\xi_{n,1}}^{\xi_{n,n}} I^{\frac{1}{2}} B(\cdot, b) d|g|, \quad (5.3)$$

and

$$\int_{\xi_{n,n}}^1 (1 - I) B(\cdot, b) d|g| \leq (1 - \xi_{n,n})^{\frac{1}{2}} \int_{\xi_{n,n}}^1 I^{\delta/2 - \frac{1}{2}} (1 - I)^{\delta/2 + \frac{1}{2}} B(\cdot, b) q_b d|g|. \quad (5.4)$$

and therefore from (5.2),

$$\begin{aligned} |s_{n,11}^{(4)}| &\leq n^{\frac{1}{2}} \int_{\xi_{n,1}}^{\xi_{n,n}} \{I(1 - I)\}^{\frac{1}{2}} B(\cdot, b) d|g| \left(\int_{\xi_{n,n}}^1 \{I(1 - I)\}^{\delta/2 + \frac{1}{2}} B(\cdot, b) q_b d|g| \right) \\ &\leq \left(\int_{\xi_{n,1}}^{\xi_{n,n}} \{I(1 - I)\}^{\delta/2} B(\cdot, b) q_b d|g| \right) \left(\int_{\xi_{n,n}}^1 B(\cdot, b) q_b d|g| \right) n^{\frac{1}{2}} (1 - \xi_{n,n})^{\frac{1}{2}} \\ &= o_p(1) o_p(1) o_p(1) = o_p(1). \end{aligned}$$

The argument for $s_{n,13}^{(4)}$ is entirely analogous while for $s_{n,12}^{(4)}$ the steps are similar except that we use $n\xi_{n,1} = o_p(1)$. Hence $s_{n,1i}^{(4)} \not\rightarrow 0$ for $i = 1, 2, 3$ and the lemma follows from (5.1).

Lemma 2. With $\zeta_1, \zeta_2, \zeta_3, \zeta_4$ defined as in (3.22), (3.32) and (3.35) equation (3.38) holds.

Proof. From (2.11) and (3.35) we have

$$\zeta_3 + \zeta_4 = \int_0^1 L_1 UJ'_1(1) dg. \quad (5.5)$$

Also from (3.22) and (3.32)

$$\zeta_2 - \zeta_1 = \int_0^1 dL_2 \left\{ \int_t^1 UJ'_2(2) dg \right\}. \quad (5.6)$$

Integrating by parts, we obtain

$$\zeta_2 - \zeta_1 = \int_0^1 L_2 U J'_2 dg + L_2(t) \left(\int_t^1 U J'_2 dg \right) \Big|_{t=0}^{t=1},$$

We shall show

$$\lim L_2(t) \int_t^1 U J'_2 dg = 0 \quad (5.7)$$

where the limit is taken in each of the two cases $t \rightarrow 0+$ and $t \rightarrow 1-$. In what follows this is to be interpreted whenever the limit is not explicitly stated.

Now for each $t \in (0, 1)$

$$\left| L_2(t) \int_t^1 U J dg \right| \leq 2\rho_{q_2}(0, 0) \left(\int_0^t 1 B(\cdot, g) d|g| \right) \left(\int_t^1 B(\cdot, g) q_2 d|g| \right). \quad (5.8)$$

In view of relations similar to (5.3) and (5.4) the function on the right hand side of (5.8) is dominated by

$$\left(\int_0^t \{1(1-t)\}^{\delta/2} B(\cdot, g) q_2 d|g| \right) \left(\int_t^1 B(\cdot, g) q_2 d|g| \right), \quad (5.9)$$

and so by (2.15), (5.9) must vanish in the limit as $t \rightarrow 0+$ and $t \rightarrow 1-$.

Hence

$$\lim L_2(t) \int_t^1 U J dg = 0. \quad (5.10)$$

Again for each $t \in (0, 1)$

$$\left| L_2(t) \int_t^1 (1-t) U J' dg \right| \leq 2\rho_{q_2}(0, 0) \left(\int_0^t 1 B(\cdot, g) d|g| \right) \left(\int_t^1 (1-t) B(\cdot, g) q_2 d|g| \right), \quad (5.11)$$

and the function on the right hand side of (5.11) is dominated by

$$\left(\int_0^t \{1(1-t)\}^{\delta/2} B(\cdot, g) q_2 d|g| \right) \left(\int_t^1 1(1-t) B(\cdot, g) q_2 d|g| \right). \quad (5.12)$$

It follows from (2.10) and (2.15) that (5.12) vanishes in the limit as $t \rightarrow 0+$ and $t \rightarrow 1-$. So

$$\lim L_2(t) \int_t^1 (1 - 1) U J' dq = 0. \quad (5.13)$$

But (5.10) and (5.13) imply (5.7) and therefore $\zeta_2 - \zeta_1 = \int_0^1 L_2 U J'_{(2)} dq.$

Hence using (5.5) and (2.13),

$$\frac{1}{2} (\zeta_2 - \zeta_1 + \zeta_3 + \zeta_4) = \int_0^1 U L_0 dq,$$

which is (3.38).

References

1. Chernoff, H., Gastwirth, J., Johns, M.V.: Asymptotic distribution of linear combinations of functions of order statistics with applications to estimation. *Ann. Math. Statist.* 38, 52-72 (1967)
2. Gardiner, J.C., Sen, P.K.: Asymptotic normality of a class of time-sequential statistics and applications. *Commun. Statist.-Theor. Meth.*, A7(4), 373-388 (1978)
3. Mason, D.M.: The asymptotic normality of linear combinations of order statistics. *Mimeograph Ser. #520*, Dept. of Statistics, Purdue University. (1977)
4. Moore, D.S.: An elementary proof of asymptotic normality of linear functions of order statistics. *Ann. Math. Statist.* 39, 263-265. (1968)
5. Sen, P.K.: An invariance principle for linear combinations of order statistics. *Z. Wahrscheinlichkeitstheorie und Verw. Gebiete* 42, 327-340 (1978)
6. Shorack, G.: Asymptotic normality of functions of order statistics. *Ann. Math. Statist.* 40, 2041-2050. (1969)
7. Shorack, G.R.: Functions of order statistics. *Ann. Math. Statist.* 43, 412-427. (1972)
8. Stigler, S.M.: Linear functions of order statistics. *Ann. Math. Statist.* 40, 770-778. (1969)
9. Stigler, S.M.: Linear functions of order statistics with smooth weight functions. *Ann. Statist.* 2, 676-693. (1974)
10. Wellner, J.A.: A Glivenko-Cantelli theorem and strong laws of large numbers for functions of order statistics. *Ann. Statist.* 5, 473-480. (1977)

Department of Statistics and Probability
 Michigan State University
 East Lansing, Michigan 48824

Department of Biostatistics
 University of North Carolina
 Chapel Hill, North Carolina
 27514

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle) <i>(6) Asymptotic Normality of a Variance Estimator of a Linear Combination of a Function of Order Statistics, Revisions</i>		5. TYPE OF REPORT & PERIOD COVERED
7. AUTHOR(s) Joseph C. Gardiner Pranab Kumar Sen		6. PERFORMING ORG. REPORT NUMBER <i>(14) RM-389-REV</i>
8. PERFORMING ORGANIZATION NAME AND ADDRESS Department of Statistics and Probability Michigan State University East Lansing, Michigan 48824		9. CONTRACT OR GRANT NUMBER(s) <i>(15) N00014-79-C0522</i>
11. CONTROLLING OFFICE NAME AND ADDRESS ONR-Statistics and Probability Program (Code 436) Arlington, Virginia 22217		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS <i>(12) 236</i>
14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)		12. REPORT DATE <i>(11) Jul 1979</i>
		13. NUMBER OF PAGES <i>22</i>
16. DISTRIBUTION STATEMENT (of this Report) APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED.		15. SECURITY CLASS. (of this report) UNCLASSIFIED
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)		15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
18. SUPPLEMENTARY NOTES		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Asymptotic normality; asymptotic variance; almost sure convergence; empirical distribution; linear combination of order statistics; quantile process; stopping time; Wiener process		
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) An estimator of the asymptotic variance of (a randomly stopped) linear combination of a function of order statistics is considered and its asymptotic normality is studied under appropriate regularity conditions. A comparative study of the regularity conditions pertaining to the asymptotic normality and strong convergence of linear combinations of functions of order statistics and their estimated asymptotic variances is also made.		