2.1.3. Определение γ по скорости звука в газе

Реутский Даниил, 793

11 марта 2018 г.

Цель: измерение частоты колебаний и длины волны при резонансе звуковых колебаний в газе, заполняющем трубу; определение показателя адиабаты с помощью уравнения состояния идеального газа.

Инструменты: звуковой генератор; электронный осциллограф; микрофон; телефон; теплоизолированная труба, обогреваемая водой из термостата; баллон со сжатым воздухом; газгольдер;

Введение. Скорость звука в газе может быть найдена по формуле

$$c = \sqrt{\gamma \frac{RT}{\mu}},$$

где μ — молярная масса газа. Выразим постоянную адиабаты:

$$\gamma = \frac{\mu}{RT}c^2.$$

Звуковые волны, проходя через трубу с газом, отражаются от стеноки накладываются друг на друга. Но если длины трубы кратна полуволне:

$$L = n\frac{\lambda}{2} \quad (n \in \mathbb{N}),$$

то отражённые волны совпадают по фазе. Они накладываются друг на друга, и наступает резонанс.

Зафиксируем длину трубы L. Будем генерировать звуковые волны частотой f. Допустим, при $f=f_0$ наступил резонанс. Тогда для этой частоты справедливо

$$L = \frac{\lambda_0}{2}n = \frac{c}{2f_0}n.$$

Если следующая найденная резонансная частота есть f_1 , то

$$L = \frac{c}{2f_1}(n+1).$$

Продожим эту последовательность:

$$L = \frac{c}{2f_k}(n+k)$$

$$f_k = \frac{c}{2L}n + \frac{c}{2L}k$$

Таким образом, зависимость f(k) линейна, и коэффициент наклона графика в осях k и f будет равен c/2L.

Экспериментальная установка. Представляет из себя трубу, в одном конце которой установлен телефон, возбуждающий звуковые колебания, а в другом микрофон, улавливающий их. Источник колебаний телефона — подключенный к нему звуковой генератор. Микрофон подключен ко входу осциллографа, его сигнал можно наблюдать на экране. Труба нагревается до определённой температуры водой из термостата. Для каждой температуры проводятся измерения для определения скорости звука.

Экспериментальные данные.

	$t=25^{\circ}$	$t = 30^{\circ}$	$t = 35^{\circ}$	$t = 40^{\circ}$	$t = 45^{\circ}$	$t = 50^{\circ}$	$t = 55^{\circ}$	$t = 60^{\circ}$
k	f, Гц	f, Гц	f, Гц	f, Гц	f, Гц	f , Γ ц	f , Γ ц	f , Γ ц
1	473	482	488	488	494	499	503	506
2	699	710	716	722	728	732	738	746
3	926	941	948	957	963	971	980	987
4	1153	1173	1181	1193	1202	1211	1220	1228
5	1384	1407	1417	1431	1442	1453	1464	1474
6	1612	1640	1653	1668	1679	1694	1706	1718
7	1843	1873	1890	1904	1920	1935	1950	1964
8	2073	2108	2124	2143	2159	2178	2191	2209
9	2303	2341	2363	2380	2398	2418	2436	2455

Для каждой температуры находим $\alpha=c/2L$ методом наименьших квадратов.

$$\langle k \rangle = 5, \langle k^2 \rangle \approx 31,666$$

t	25°	30°	35°	40°	45°	50°	55°	60°
$\langle f \rangle$, Γ ц	1385	1408	1420	1431	1442	1454	1465	1476
$\langle f^2 \rangle$, к Γ ц 2	2,267	2,344	2,383	2,423	2,460	2,501	2,537	2,575
$\langle kf \rangle$, Гц	8451	8592	8664	8736	8802	8875	8939	9007
α , Гц	228,9	232,6	234,6	236,67	238,3	240,4	241,9	243,8
σ_{α} , Гц	0,3	0,3	0,4	0,19	0,3	0,4	0,3	0,4

Использованные выражения для α и σ_{α} :

$$\alpha = \frac{\langle kf \rangle - \langle k \rangle \langle f \rangle}{\langle k^2 \rangle - \langle k \rangle^2}$$

$$\sigma_{\alpha} = \frac{1}{\sqrt{n}} \sqrt{\frac{\langle f^2 \rangle - \langle f \rangle^2}{\langle k^2 \rangle - \langle k \rangle^2} - \alpha^2}$$

То же, но вместо букв подставлены цифры, и так 8 раз (размерность подразумевается):

$$t = 25^{\circ}: \quad \alpha = \frac{8451 - 5.0 \cdot 1385}{31.66 - 5.0^2}, \quad \sigma_{\alpha} = \frac{1}{\sqrt{9}} \sqrt{\frac{2267889 - 1385^2}{31.66 - 5.0^2} - 228.9^2}$$

$$t = 30^{\circ}: \quad \alpha = \frac{8592 - 5.0 \cdot 1408}{31.66 - 5.0^2}, \quad \sigma_{\alpha} = \frac{1}{\sqrt{9}} \sqrt{\frac{2344350 - 1408^2}{31.66 - 5.0^2} - 232.6^2}$$

$$t = 35^{\circ}: \quad \alpha = \frac{8664 - 5.0 \cdot 1420}{31.66 - 5.0^2}, \quad \sigma_{\alpha} = \frac{1}{\sqrt{9}} \sqrt{\frac{2383534 - 1420^2}{31.66 - 5.0^2} - 234.6^2}$$

$$t = 40^{\circ}: \quad \alpha = \frac{8736 - 5.0 \cdot 1431}{31.66 - 5.0^2}, \quad \sigma_{\alpha} = \frac{1}{\sqrt{9}} \sqrt{\frac{2423397 - 1431^2}{31.66 - 5.0^2} - 236.6^2}$$

$$t = 45^{\circ}: \quad \alpha = \frac{8802 - 5.0 \cdot 1442}{31.66 - 5.0^2}, \quad \sigma_{\alpha} = \frac{1}{\sqrt{9}} \sqrt{\frac{2460298 - 1442^2}{31.66 - 5.0^2} - 238.3^2}$$

$$t = 50^{\circ}: \quad \alpha = \frac{8875 - 5.0 \cdot 1454}{31.66 - 5.0^2}, \quad \sigma_{\alpha} = \frac{1}{\sqrt{9}} \sqrt{\frac{2501073 - 1454^2}{31.66 - 5.0^2} - 240.4^2}$$

$$t = 55^{\circ}$$
: $\alpha = \frac{8939 - 5.0 \cdot 1465}{31.66 - 5.0^2}$, $\sigma_{\alpha} = \frac{1}{\sqrt{9}} \sqrt{\frac{2537473 - 1465^2}{31.66 - 5.0^2} - 241.9^2}$

$$t = 60^{\circ}: \quad \alpha = \frac{9007 - 5.0 \cdot 1476}{31.66 - 5.0^2}, \quad \sigma_{\alpha} = \frac{1}{\sqrt{9}} \sqrt{\frac{2575878 - 1476^2}{31.66 - 5.0^2} - 243.8^2}$$

Скорость звука и её погрешность вычисляются соответственно по формулам:

$$c = 2\alpha L$$
, $\sigma_c = c\sqrt{(\frac{\sigma_\alpha}{\alpha})^2 + (\frac{\sigma_L}{L})^2}$

Подставим в эти формулы α и σ_{α} для каждой температуры:

$$\begin{array}{lll} t=25^\circ: & c=2\cdot 0.74\cdot 228.9 \; \text{m/c} = 338.7 \; \text{m/c} \\ & \sigma_c = 338.7 \sqrt{(\frac{0.3}{228.9})^2 + (\frac{1}{740})^2} \; \text{m/c} = 0.6 \; \text{m/c} \\ t=30^\circ: & c=2\cdot 0.74\cdot 232.6 \; \text{m/c} = 344.2 \; \text{m/c} \\ & \sigma_c = 344.2 \sqrt{(\frac{0.3}{232.6})^2 + (\frac{1}{740})^2} \; \text{m/c} = 0.6 \; \text{m/c} \\ t=35^\circ: & c=2\cdot 0.74\cdot 234.6 \; \text{m/c} = 347.2 \; \text{m/c} \\ & \sigma_c = 347.2 \sqrt{(\frac{0.4}{234.6})^2 + (\frac{1}{740})^2} \; \text{m/c} = 0.7 \; \text{m/c} \\ t=40^\circ: & c=2\cdot 0.74\cdot 236.67 \; \text{m/c} = 350.3 \; \text{m/c} \\ & \sigma_c = 350.3 \sqrt{(\frac{0.19}{236.67})^2 + (\frac{1}{740})^2} \; \text{m/c} = 0.5 \; \text{m/c} \\ t=45^\circ: & c=2\cdot 0.74\cdot 238.3 \; \text{m/c} = 352.6 \; \text{m/c} \\ & \sigma_c = 352.6 \sqrt{(\frac{0.3}{238.6})^2 + (\frac{1}{740})^2} \; \text{m/c} = 0.7 \; \text{m/c} \\ t=50^\circ: & c=2\cdot 0.74\cdot 240.4 \; \text{m/c} = 355.8 \; \text{m/c} \\ & \sigma_c = 355.8 \sqrt{(\frac{0.4}{240.4})^2 + (\frac{1}{740})^2} \; \text{m/c} = 0.7 \; \text{m/c} \\ t=55^\circ: & c=2\cdot 0.74\cdot 241.9 \; \text{m/c} = 358.0 \; \text{m/c} \\ & \sigma_c = 358.0 \sqrt{(\frac{0.3}{241.9})^2 + (\frac{1}{740})^2} \; \text{m/c} = 0.7 \; \text{m/c} \\ \end{array}$$

$$t=60^\circ$$
: $c=2\cdot 0.74\cdot 243.8~{\rm m/c}=360.8~{\rm m/c}$
$$\sigma_c=360.8\sqrt{(\frac{0.3}{243.8})^2+(\frac{1}{740})^2}~{\rm m/c}=0.8~{\rm m/c}$$

Поскольку

$$c^2 = \frac{\gamma R}{\mu} T,$$

то коэффициент при T (назовём его β) может быть найден при помощи метода наименьших квадратов.

Составим для этого таблицу.

$t,^{\circ}C$	<i>T</i> , K	c, м/с	c^2 , ${ m M}^2/{ m c}^2$
25	298	338,7	114717
30	303	344,2	118473
35	308	347,2	120547
40	313	350,3	122710
45	318	352,6	124326
50	323	355,8	126593
55	328	358,0	128164
60	333	360,8	130176

Коэффициент β и его погрешность σ_{β} находим по формулам

$$\beta = \frac{\langle Tc^2 \rangle}{\langle T^2 \rangle}, \quad \sigma_\beta = \frac{1}{\sqrt{n}} \sqrt{\frac{\langle c^4 \rangle}{\langle T^2 \rangle} - \beta^2}$$

Необходимые средние значения (размерность подразумевается):

$$\langle Tc^2 \rangle = 38929080, \quad \langle T^2 \rangle = 99671, \quad \langle c^4 \rangle = 123213$$

Подставляем их в формулы:

$$\beta = \frac{38929080}{99671} = 390, 5, \quad \sigma_{\beta} = \frac{1}{\sqrt{8}} \sqrt{\frac{123213}{99671} - 390, 5^2} = 0, 7$$

А вот и график на следующей странице:

Обратите внимание, как располагаются точки относительно прямой. Это свидетельство того, что на больших диапазонах температуры зависимость вряд ли будет иметь линейный характер.

 γ и её погрешность находим из формул

$$\gamma = \frac{\beta \mu}{R}, \quad \sigma_{\gamma} = \gamma \sqrt{\left(\frac{\sigma_{\beta}}{\beta}\right)^{2} + \left(\frac{\sigma_{\mu}}{\mu}\right)^{2}}$$

$$\gamma = \frac{390, 5 \cdot 0,029}{8,314472} = 1,36, \quad \sigma_{\gamma} = \gamma \sqrt{\left(\frac{0,7}{390,5}\right)^{2} + \left(\frac{1}{29}\right)^{2}} = 0,05$$

Итак, мы нашли постоянную адиабаты для воздуха в одной теплоизолированной трубе:

$$\gamma = 1,36 \pm 0,05$$