一阶逻辑(I)

第8章-哥德尔不完备性定理

姚宁远

复旦大学哲学学院

December 13, 2021

目录

- 1 可表示性
- 2 鲁宾逊算术 Q
 - 可表示性
 - 函数的可表示性
 - 仅用加法和乘法的编码
 - 可表示定理
- 3 语法的算术化
- 4 不动点引理与递归定理
- 5 不可定义性、不完全性、不可判定性

算术模型

标准算术模型

结构 $\mathfrak{N}=(\mathbb{N},\ 0,\ 1,\ \times,\ +)$, 语言是 $\mathbf{L}=\{0,1,\times,+\}$ 。 称 $\mathrm{Th}(\mathfrak{N})$ 算术理论。

- 我们已经研究过结构 \mathfrak{N}_S , $\mathfrak{N}_{<}$, \mathfrak{N}_{+} ;
- 其一阶理论可以分别被 $T_S, T_<, T_\equiv$ 公理化;
- 我们将证明 Th(𝔄) 不能被公理化;
- 与之前的结构相比较, \(\Omega\) 的表达能力有本质提升;
- M 可以表述有穷集合的理论。
- $\exists x_0...\exists x_n\phi(\bar{x})$ 是一个合法的一阶表达式;
- 该公式的含义是: 存在一个长度为 n+1 的序列使得 ϕ 成立
- 如何表述"存在一个有穷序列 x,使得 $\phi(x)$ 成立"?

目录

- 1 可表示性
- 2 鲁宾逊算术 Q
 - 可表示性
 - 函数的可表示性
 - 仅用加法和乘法的编码
 - 可表示定理
- 3 语法的算术化
- 4 不动点引理与递归定理
- 5 不可定义性、不完全性、不可判定性

鲁宾逊算术理论 Q

鲁宾逊算术理论 Q

- 1 (Q1) $Sx \neq 0$;
- **2** (Q2) $Sx = Sy \to x = y$;
- **3** (Q3) $x \neq 0 \rightarrow \exists y (x = sy);$
- 4 (Q4) x + 0 = x;
- 5 (Q5) x + Sy = S(x + y);
- 6 (Q6) $x \cdot 0 = 0$;
- 7 (Q7) $x \times Sy = x \times y + x$.

显然 $\mathfrak{N} \models Q$.

引理

- 1 $Q \not\vdash \forall x (Sx \neq x);$
- 2 对每个标准自然数 $n \in \mathbb{N}$, $Q \vdash Sn \neq n$, 其中 n 代表 $S^n 0$.

一阶逻辑 (I) 上_{鲁宾逊复术 Q}

证明

- **1** 构造一个非标准的 $\mathfrak{M} = \mathbb{N} \cup \{\infty\}$;
- **2** 对 $n \in \mathbb{N}$ 归纳证明。

注

- **1** 标准自然数 n 对应闭项 $S^n(0)$;
- 2 非标准数不是"自然的"。
- **③** 断言"对每个标准自然数 $n \in \mathbb{N}$, $Q \vdash Sn \neq n$ "不是一个证明,而是一族证明。
- 4 数学归纳法是元定理;

用
$$x \le y$$
 表示 $\exists z(x + z = y)$ 。用 \vdash 表示 Q \vdash

引理

对所有的 $m, n \in \mathbb{N}$, 有

- 3 如果 $n \neq m$ 则 $\vdash n \neq m$;
- 4 如果 $n \neq m$ 则 $\vdash n \neq m$;
- $\forall x (x \leq n \leftrightarrow x = 0 \lor ... \lor x = n);$
- 6 $\forall x (x \leq n \vee n \leq x)$.

注

设 $\mathfrak{M}\models Q$, \mathfrak{N} 是标准模型,则

- **1** $n \mapsto n^{\mathfrak{M}}$ 是 \mathfrak{N} 到 \mathfrak{M} 的嵌入;
- 2 $\mathfrak{N} \subseteq \mathfrak{M}$;
- 3 如果 $b \in \mathfrak{N}$ 且 $a \leq^{\mathfrak{M}} b$,则 $a \in \mathfrak{N}$;

注

- **1** 设 t 是一个含有 n 个变元的项;
- 2 则存在 $f \in \mathbb{N}[x_1...,x_n]$ 使得 $Q \vdash t(x_1,...,x_n) = f(x_1,...,x_n)$;
- **3** 如果 *t* 不含自由变元,则称 *t* 是一个闭项;
- 4 如果 t 是一个闭项,则存在 $n \in \mathbb{N}$ 使得 $Q \vdash t = n$;
- 5 对于闭项 t,s,

$$Q \vdash t = s \iff \mathfrak{N} \models t = s \pmod{\sharp} t = s$$

- 1 可表示性
- 2 鲁宾逊算术 Q
 - 可表示性
 - 函数的可表示性
 - 仅用加法和乘法的编码
 - 可表示定理
- 3 语法的算术化
- 4 不动点引理与递归定理
- 5 不可定义性、不完全性、不可判定性

定义

称一个自然数上的 k-元关系 P 为在 T 中数码逐点可表示的(简称可表示的),如果存在公式 $\rho(x)$,称为 P 的一个表示公式,使得

$$(n_1,...n_k) \in P \Rightarrow T \vdash \rho(n_1,...n_k);$$
 且
 $(n_1,...n_k) \notin P \Rightarrow T \vdash \neg \rho(n_1,...n_k)$

注

与

$$(n_1,...,n_k) \in P \iff T \vdash \rho(n_1,...,n_k); \; \underline{\mathbf{H}}$$

不等价。

引理

如果T可公理化,则T是递归可枚举的。

证明:

1 T 是可公理化的 \longleftrightarrow 存在可判定的 ∑ 使得

$$T = \{ \sigma | \ \Sigma \vdash \sigma \}$$

- ② Σ 可判定: $\sharp \Sigma = \{\sharp \sigma | \sigma \in \Sigma\} \subseteq \mathbb{N}$ 是可判定(递归)集合;
- 3 Σ 的证明的集合 P_{Σ} 可判定(递归)
 - 公式序列 $(\sharp \sigma_1, ..., \sharp \sigma_n) \mapsto p \in \mathbb{N}$;
 - $\blacksquare p \in P_{\Sigma} \iff \forall i < \mathrm{lh}(p)$
 - \blacksquare $p_i \in \Sigma \cup Ax$;
 - **■** 或 $\exists j, k < \text{lh}(p)(\alpha_k := \alpha_j \rightarrow \alpha_i)$, $\sharp \alpha_{ijk} = p_{ijk}$;
 - P_{Σ} 是递归的。

4
$$\sigma \in T \iff \exists p(p \in P_{\Sigma} \land \exists i < \text{lh}(p)(p_i = \sharp \sigma));$$

- **5** *T* (♯*T*) 是递归可枚举的;
- **6** ♯ T 递归函数的值域。

引理

- **1** 自然数上的等同关系 $\{(n,n)|n\in\mathbb{N}\}$ 被公式 x=y 所表示;
- 2 小于关系 \leq 被公式 $x \leq y$ 所表示;
- **3** 如果 *P* 是可表示的,则 *P* 是递归的;
- 4 可表示的关系在布尔运算下是封闭的;
- 5 如果 P 在 Q 中被 ρ 表示,则 P 在 Q 的任何一致扩张中都 被 ρ 表示;
- **6** P 在 $\mathrm{Th}(\mathfrak{N})$ 中被 ρ 表示当且仅当 P 在结构 \mathfrak{N} 中被 ρ 定义。

```
-阶逻辑(I)
- 鲁宾逊算术 Q
└─可表示性
```

证明

证明:

- 【3】如果 P 是可表示的,则 P 是递归的。
 - **1** T 有一个枚举函数(程序)f,即 $\sharp T = f(\mathbb{N})$;
 - ② 设 $P(x_1,...,x_k)$ 被 ρ 表示;
 - **3** 设 $n_1, ..., n_k ∈ \mathbb{N}$;
 - 4 用 T 的枚举函数(程序)检测 $\rho(n_1,...,n_k)$ 与 $\neg \rho(n_1,...,n_k)$ 是否属于 T;
 - **5** 如果 $\rho(n_1,...,n_k) \in T$,则 $(n_1,...,n_k) \in P$;
 - **6** 如果 $\neg \rho(n_1,...,n_k) \in T$,则 $(n_1,...,n_k) \notin P$ 。
 - **7** 以上的"算法"可以有效判定关系 $P(n_1,...,n_k)$ 。

一阶逻辑(I) 上_{鲁宾逊算术(I)} 上_{可表示性} 证明

- 【4】可表示的关系在布尔运算下是封闭的。
 - **1** 设 $P, R \subseteq \mathbb{N}^k$ 分别被 ψ 和 ρ 表示;
 - **2** $P \cup R$ 被 $\psi \lor \rho$ 表示,ℕ\P 被 ¬ ψ 表示。

证明

- 【5】如果 P 在 Q 中被 ρ 表示,则 P 在 Q 的任何一致扩张中都 被 ρ 表示。
 - 1 对任意的 $n_1,...,n_k \in \mathbb{N}^k$

$$Q \vdash \rho(n_1, ..., n_k)$$
 和 $Q \vdash \neg \rho(n_1, ..., n_k)$ 有且仅有一个成立

2 如果 Q ⊆ T, 则

$$T \vdash \rho(n_1, ..., n_k) \iff P \vdash \rho(n_1, ..., n_k)$$
$$T \vdash \neg \rho(n_1, ..., n_k) \iff P \vdash \neg \rho(n_1, ..., n_k).$$

所逻辑(I) -鲁宾逊算术 Q └─可表示性

证明

- 【6】 P 在 $\mathrm{Th}(\mathfrak{N})$ 中被 ρ 表示当且仅当 P 在结构 \mathfrak{N} 中被 ρ 定义。
 - 这是因为 Th(𝔐) 是完备的。

推论

P 在 Q 中可表示,则 P 在 \mathfrak{N} 中可定义。(反之则不成立)

Q 的 Σ_1 -完备性

- **11** 称一个 L_{ar} 公式是 Δ_0 的,如果它只包含有界量词。;
- 2 如果一个公式 ϕ (在 Q 下) 等价于 $\exists x_1...\exists x_n\theta$, 其中 θ 是 Δ_0 的,则称 ϕ 是 Σ_1 公式;
- 3 如果一个公式 ϕ 等价于 $\forall x_1...\forall x_n\theta$,其中 θ 是 Δ_0 的,则 ϕ 是 Π_1 公式;
- 4 如果一个公式既等价于 Σ_1 公式,又等价于 Π_1 公式。则它是 Δ_1 公式;

定理 $(\Sigma_1$ -完备性)

对任何一个 Σ_1 -闭语句 τ ,我们有

$$\mathfrak{N} \models \tau \iff \mathbf{Q} \vdash \tau$$

证明丨

■: \Leftarrow : 对任意的 τ 都成立;

■: ⇒:

■: 断言: 对任何 Δ_0 -闭语句 σ , 对任何的 $\mathfrak{M} \models Q$, 有

$$\mathfrak{M} \models \sigma \iff \mathfrak{N} \models \sigma$$

$(\Delta_0$ -完备性)

1 对 σ 归纳证明 $(\mathfrak{N} \subseteq \mathfrak{M})$;

2 σ 不含量词时, $\sigma = \psi(\mathbf{n})$:

$$\mathfrak{N} \models \psi(\mathbf{n}) \iff \mathfrak{M} \models \psi(\mathbf{n}^{\mathfrak{M}}) \iff \mathfrak{M} \models \psi(\mathbf{n}).$$

3 ∨与¬显然保持归纳假设;

4 设 σ 为 $(\forall x \leq t)\psi$ 且 ψ 是一个 Δ_0 公式,t 是一个闭项

证明Ⅱ

- 5 注意:存在 $n \in \mathbb{N}$ 使得 $Q \vdash t = n$;
- 6 如果 $\mathfrak{M}\models (\forall x\leq t)\psi(x,t)$,则 $\mathfrak{M}\models (\forall x\leq n)\psi(x,n)$;
- 7 $Q \vdash x \leq n \leftrightarrow \bigvee_{k \leq n} (x = k);$
- 8 $\mathfrak{M} \models (\forall x \leq t)\psi(x,t) \iff \mathfrak{M} \models \bigwedge_{k \leq n} \psi(k,n);$
- 9 由归纳假设: $\mathfrak{M} \models \psi(\mathbf{k}, \mathbf{n}) \iff \mathfrak{N} \models \psi(\mathbf{k}, \mathbf{n})$;
- 10 $\mathfrak{N} \models \bigwedge_{k \leq n} \psi(k, n) \iff \mathfrak{N} \models (\forall x \leq t) \psi(x, t)$
- 现在设 σ 形如 $\exists x \psi(x), x = x_1, ..., x_n, \psi \in \Delta_0$ 公式。
 - 1 设 $\mathfrak{N} \models \sigma$;
 - ② 则存在 $m \in \mathbb{N}^n$ 使得 $\mathfrak{N} \models \psi(m)$:

引理

如果关系 $P \subseteq \mathbb{N}^{k+1}$ 被公式 $\rho(x,y)$ 所表示,则关系

$$(\exists c < b) P(a, c)$$
 和 $(\forall c < b) P(a, c)$

分别被

$$(\exists z < b) \rho(x, z)$$
 和 $(\forall z < b) \rho(x, z)$

所表示。

证明:
$$Q \vdash x \leq n \leftrightarrow \bigvee_{k \leq n} (x = k)$$
。

- 1 可表示性
- 2 鲁宾逊算术 Q
 - 可表示性
 - 函数的可表示性
 - 仅用加法和乘法的编码
 - 可表示定理
- 3 语法的算术化
- 4 不动点引理与递归定理
- 5 不可定义性、不完全性、不可判定性

- 所定辑(I) - 鲁宾逊算术 Q - ____函数的可表示性

函数的可表示性

定义

称一个函数 $f: \mathbb{N}^k \to \mathbb{N}$ 为在 T 中可表示的,如果存在一个 L_{ra} 中的公式 $\phi(x_1, ..., x_k, y)$,使得对所有的 $(n_1, ..., n_k) \in \mathbb{N}^k$,有

$$T \vdash \forall y \bigg(\phi(n_1, ..., n_k, y) \leftrightarrow y = f(n_1, ..., n_k) \bigg)$$

此时称 ϕ 作为一个函数表示 f。

注

- 以上定义中的 f 是任意函数,不必可定义;
- 可以推出 f 在 \mathfrak{N} 中是可定义的;
- 公式 φ(x, y) 使得

$$\mathfrak{N} \models \phi(\mathbf{m}, \mathbf{n}) \Leftrightarrow \mathbf{n} = f(\mathbf{m}),$$

$$\mathfrak{N} \models \neg \phi(m, n) \Leftrightarrow n \neq f(m) \quad (\forall m, n \in \mathbb{N})$$

■ 在 T 中可表示意味着:存在一个公式 $\psi(x,y)$ 表示函数 f 的 图像,且对任意的 $a \in \mathbb{N}^k$,有

$$T \vdash \exists ! y \psi(a, y)$$
 (注意: $\mathfrak{N} \models \forall x \exists ! y \psi(x, y)$ 总是成立)

-阶逻辑(Ⅰ) - 鲁宾逊算术 Q _____函数的可表示性

注

表示函数图像的公式不能表示函数:

- 设 f 是一个函数;
- \diamondsuit $G_f = \{(x, y) | y = f(x)\};$
- 设公式 $\phi(x,y)$ 表示 G_f ;
- 对任意的 $a \in \mathbb{N}^k, b \in \mathbb{N}$,有

$$f(a) = b \Rightarrow T \vdash \phi(a, b), \quad f(a) \neq b \Rightarrow T \vdash \neg \phi(a, b)$$

■ 设 $\mathfrak{M} \models T$,对于非标准的 $y \in M$

$$\mathfrak{M} \models \mathbf{y} \neq \mathbf{f}(\mathbf{a}) \rightarrow \neg \phi(\mathbf{a}, \mathbf{y})$$

不一定成立。

-阶逻辑(I) - 鲁宾逊算术 Q └─ 函数的可表示性

例

- 函数 Z(x) = 0;
- 公式 $\phi(x, y) : y + y = y$ 表示 G_Z ;
- Q 不能证明 $y + y = y \rightarrow y = 0$
- ■: 如果 $\phi(x,y)$ 表示一个函数 f,则 $\phi(x,y)$ 表示 f 的函数图像;
- ■: 反之则不成立。

一阶逻辑(I) └──鲁宾逊算术 Q └──函数的可表示性

引理

令 t 为语言 L_{ar} 中的项,则 t 诱导出来的函数是可表示的。

证明

$$\mathfrak{N} \models t(n_1,...,n_k) = m \iff T \models t(n_1,...,n_k) = m$$
$$T \models \forall x \exists ! y(t(x) = y).$$

□ 鲁宾逊算术 Q □ 图数的可表示性

定理

可表示函数类关于复合封闭。

证明丨

- **■** 设 $f(x) = g(h_1(x), ..., h_k(x))$
 - **1** $h_i(x)$ 被 $\theta_i(x, y_i)$ 表示;
 - 2 $g(y_1,...,y_k)$ 被 $\psi(y_1,...,y_nk,z)$ 表示;
- 断言: f 被

$$\varphi(x,z) := \forall y_1,...,y_n(\bigwedge_i \theta_i(x,y_i) \to \psi(y_1,...,y_k,z))$$

表示,即需要证明:
$$\forall n \in \mathbb{N}$$
, $T \vdash \forall z \bigg(\varphi(n, z) \leftrightarrow z = f(n) \bigg)$

 $\blacksquare\Rightarrow$

证明Ⅱ

故

33/102

显然
$$T \vdash \bigwedge_i \theta_1(n, y_i) \leftrightarrow \bigwedge_i y_i = h_i(n)$$
;

$$\left(\bigwedge_{i}\theta_{1}(n,y_{i})\rightarrow\psi(y_{1},...,y_{k},z)\right)\leftrightarrow\left(\bigwedge_{i}y_{i}=h_{i}(n)\rightarrow\psi(y_{1},...,y_{k},z)\right)$$

$$\left(\bigwedge_{i}\theta_{1}(\mathbf{n},\mathbf{y}_{i})\rightarrow\psi(\mathbf{y}_{1},...,\mathbf{y}_{k},\mathbf{z})\right)\leftrightarrow\left(\bigwedge_{i}\theta_{1}(\mathbf{n},\mathbf{y}_{i})\rightarrow\psi(\mathbf{y}_{1},...,\mathbf{y}_{k},\mathbf{z})\right)$$

$$\left(\bigwedge_{i}\theta_{1}(n,y_{i})\rightarrow\psi(y_{1},...,y_{k},z)\right)\leftrightarrow\left(\bigwedge_{i}\theta_{1}(n,y_{i})\rightarrow\psi(y_{1},...,y_{k},z)\right)$$

$$\int \int V_i - h_i(p) = 2h(V_i - V_i)$$

$$T \cup \{ \bigwedge_{i} y_{i} = h_{i}(n) \rightarrow \psi(y_{1},...,y_{n},z) \} \vdash \psi(h_{1}(n),...,h_{k}(n),z)$$

$$\bigcup \{ \bigwedge_{i} \mathbf{y}_{i} = \mathbf{n}_{i}(\mathbf{n}) \to \psi(\mathbf{y}_{1},$$

$$\{\bigwedge_{i} y_{i} = h_{i}(n) \rightarrow \psi(y_{i})\}$$

$$n_i(n) \to \psi(y_1,$$

 $T \cup \{ \bigwedge_{i} \theta_{i}(n, y_{i}) \rightarrow \psi(y_{1}, ..., y_{n}, z) \} \vdash z = f(n)$

$$\{u,z\}\}\vdash\psi(h_1(n))$$

$$\psi(n_1(n),...,n_k)$$

$$(1),...,h_k(n),z)$$

$$T \cup \{ \bigwedge_{i} y_i = h_i(n) \to \psi(y_1, ..., y_n, z) \} \vdash z = g(h_1(n), ..., h_k(n))$$

故

$$T \vdash \forall z \bigg(\forall y_1, ..., y_n (\bigwedge_i \theta_i(n, y_i) \rightarrow \psi(y_1, ..., y_k, z)) \rightarrow z = f(n) \bigg)$$

即
$$T \vdash \forall z \bigg(\varphi(n, z) \to z = f(n) \bigg)$$

$$T \cup \{z = g(h_1(n), ..., h_k(n)), \bigwedge_i \theta_i(n, y_i)\} \vdash \psi(h_1(n), ..., h_k(n), z)$$
$$T \cup \{z = g(h_1(n), ..., h_k(n)), \bigwedge_i \theta_i(n, y_i)\} \vdash \bigwedge_i y_i = h_i(n)$$

阶逻辑(I) - 鲁宾逊算术 Q └─ 函数的可表示性

证明 IV

$$T \cup \{z = f(n), \bigwedge_{i} \theta_{i}(n, y_{i})\} \vdash \psi(y_{1}, ..., y_{k}, z)$$
$$T \cup \{z = f(n)\} \vdash \bigwedge_{i} \theta_{i}(n, y_{i}) \rightarrow \psi(y_{1}, ..., y_{k}, z)$$

─阶逻辑(I) └──鲁宾逊算术 Q ──└─函数的可表示性

引理

可表示函数类关于极小算子封闭:

- 1 设 $P \subseteq \mathbb{N}^{k+1}$ 被 $\alpha(\mathbf{x}, \mathbf{y})$ 表示;
- **2** 令 $\phi(x, y)$ 为 $\alpha(x, y) \wedge (\forall z < y) \neg \alpha(x, z)$;
- 到 则 $f: a \mapsto \mu b[P(a,b)]$ 被 $\phi(x,y)$ 表示:

证明:

首先证明:
$$\vdash \forall (y = f(a) \rightarrow \phi(a, y))$$
:

- 11 $y = f(a) \implies P(a, f(a))$ 且对每个 c < f(a) 有 $\neg P(a, c)$;
- **2** 故 \vdash α (a, f(a)) 且;

- **5** 故 $\vdash \forall (y = f(a) \rightarrow \phi(a, y)).$

再证明: $\vdash \forall (\phi(a, y) \rightarrow y = f(a))$:

- **1** 只需证明: $(f(a) < y \lor y < f(a)) \land \phi(a, y)$ 不一致;
- $f(a) < y \vdash \exists z < y \ (\alpha(a, z));$
- 3 $\mathbf{v} < f(\mathbf{a}) \vdash \mathbf{v} = 0 \lor ... \lor \mathbf{v} = f(\mathbf{a}) 1$;
- 4 故 $(f(a) < y \lor y < f(a)) \land \phi(a,y)$ 不一致;

─阶逻辑(I) ──鲁宾逊算术 Q ──<mark>─</mark>─函数的可表示性

推论

函数 f 可表示当且仅当 G_f 可表示。

证明

 $a \mapsto \mu b[G_f(a,b)]$ 是可表示函数,它是 f 自身。

─阶逻辑(I) └──鲁宾逊算术 Q └──函数的可表示性

推论

假定函数 g(x,y) 可表示,则函数

$$f(\mathbf{x}) := \mu \mathbf{y}(\mathbf{g}(\mathbf{x}, \mathbf{y}) = 0)$$

也可表示

目标

可表示函数类关于原始递归封闭

■: 初始函数 Y

■: 复合 Y

■: 正则极小化 Y

■:原始递归?(编码)

 \blacksquare : $f(x, n) = m \Leftrightarrow$

$$\exists s \Big(\operatorname{lh}(s) = n+1, s_0 = g(x), \forall i < n(s_{i+1} = h(x, i, s_i)), s_n = m \Big)$$

■:哥德尔数编码函数和解码函数涉及指数映射 x^y ,不满足要求。

- 1 可表示性
- 2 鲁宾逊算术 Q
 - 可表示性
 - 函数的可表示性
 - 仅用加法和乘法的编码
 - 可表示定理
- 3 语法的算术化
- 4 不动点引理与递归定理
- 5 不可定义性、不完全性、不可判定性

哥德尔的 β 函数 I

定义

哥德尔函数 $\beta: \mathbb{N}^3 \to \mathbb{N}^{<\omega}$ 定义为: 对任意的 $u, v, w, \beta(u, v, w)$ 是一个长度为 w 的序列 $a_0, ..., a_{w-1}$, 其中 a_i 满足:

$$u = d((i+1)v + 1) + a_i$$

注

- 定义 $\alpha(u, v, i)$ 为 $\frac{u}{v(i+1)+1}$ 的余数,即 β 函数的坐标分量函数,则 $\alpha(u, v, i)$ 是可表示的 (稍后证明)。
- β 将有穷序列 $\alpha(u, v, 0), ..., \alpha(u, v, w)$ 编码为一个三元组

- 鲁宾逊算术 Q └─ 仅用加法和乘法的编码

哥德尔的 β 函数 \parallel

定理

哥德尔函数 $\beta: \mathbb{N}^3 \to \mathbb{N}^{<\omega}$ 是满射。

注

- 每个有穷序列被哥德尔函数编码为一个三元组;
- "存在一个有穷序列"可表述为 "(∃u, v, w)…"

接下来我们来证明该定理。

欧几里得引理(PA 可证)

设 $a, b \in \mathbb{N}$ 是互素的,则存在 $x, y \in \mathbb{Z}$ 使得 ax + by = 1。

证明:

- \diamondsuit $X = \{ax + by | x, y \in \mathbb{Z}\} \cap \mathbb{N};$
- 则 X 有最小元 x₀;
- 如果 x_0 不能整除 a, 则 $a = cx_0 + r$;
- 从而 $0 < r < x_0$,且 $r = a cx_0 \in X$,与 x_0 是最小元矛盾。
- x_0 是 a, b 的公约数,即 $x_0 = 1$ 。

中国剩余定理(PA 可证)

令 $d_0, ..., d_n$ 是两两互素的自然数, $a_0, ..., a_n$ 为满足 $a_i < d_i$ 的自然数,则存在自然数 c,使得 a_i 是 c 除 d_i 的余数。即 c 是以下同余方程组的解。

$$\begin{array}{ccc}
x & \equiv_{d_0} & a_0 \\
x & \equiv_{d_1} & a_1 \\
& \cdots \\
x & \equiv_{d_n} & a_n
\end{array}$$

一阶逻辑(I) 一鲁宾逊算术 Q ——仅用加法和乘法的编码

证明

对 *n* 归纳证明;

- **1** n=0 (一个方程) 时显然
- ② 设 n = k 时成立, 下面证明 n = k + 1 的情形;
- ③ 令 b 为方程组 { $x \equiv_{d_i} a_i | i \le k$ } 的解;
- 4 令 d 为 $d_0, ..., d_k$ 的最小公倍数,则 $(d, d_{k+1}) = 1$;
- **5** 显然,对任意的 m,以及 d_i , $b + md \equiv_{d_i} b$;
- **6** 故 b + md 也是方程组 $\{x \equiv_{d_i} a_i | i \le k\}$ 的解;
- **7** 断言:存在 r, s 使得 $b + rd = sd_{k+1} + a_{k+1}$:
- 图 取 $u, v \in \mathbb{Z}$ 使得 $ud + vd_{k+1} = 1$;
- 9 $b = b(ud + vd_{k+1})$. $a_{k+1} = a_{k+1}(ud + vd_{k+1})$;
- 10 $b-a_{k+1} = b(ud+vd_{k+1})-a_{k+1}(ud+vd_{k+1}) = -rd-sd_{k+1};$
- 11 显然 b + rd 是方程组 $\{x \equiv_{d_i} a_i | i \leq k+1\}$ 的解.

一阶逻辑(I) └─ 鲁宾逊算术 Q └─ 仅用加法和乘法的编码

引理

对任意的 n, 存在 n+1 个数两两互素:

$$1 + n!$$
, $1 + 2 \cdot n!$, ..., $1 + (n+1) \cdot n!$

证明

设
$$p|1+(i+1)\cdot s!$$
. $p|1+(j+1)\cdot s!$, 则 $p|(j-i)\cdot s!$ \Rightarrow $p|s!$ 。矛盾。

哥德尔定理

定理

哥德尔函数 $\beta: \mathbb{N}^3 \to \mathbb{N}^{<\omega}$ 是满射。

证明:

- 设 $a_0, ..., a_{w-1}$ 是一个自然数的序列;
- \diamondsuit $n = \max\{a_0, ..., a_{w-1}, w\}$
- \diamondsuit v = n!
- 则 $\{v(i+1)+1|i=0,...,w-1\}$ 两两互素且
- $a_i < v(i+1)+1;$
- 根据中国剩余定理,存在 $u \in \mathbb{N}$ 使得 $u \equiv_{v(i+1)+1} = a_i$;
- 故 β 是满射。

注

对 i < w, 令 $\beta(u, v, w, i) = a_i$, 则 $\beta(u, v, w, i)$ 是一个可定义函数,也是递归函数。

$\alpha(\mathbf{u}, \mathbf{v}, \mathbf{i})$ 的可表示性 I

引理

$$\alpha(u, v, i) = \frac{u}{v(i+1)+1}$$
 的余数

是可表示的

- 1 关系 $P(c, d, i, r, q) =_{def} (c = q(1 + (i + 1)d) + r)$ 可表示;
- ② 关系 $R(c,d,i,r) =_{def} \exists q \leq c \ P(c,d,i,r,q)$ 可表示:

$\alpha(u, v, i)$ 的可表示性 \parallel

3

$$R(c,d,i,r) \Rightarrow \mathfrak{N} \models \exists q \leq c(P(c,d,i,r,q))$$

$$\Rightarrow Q \vdash \exists q \leq c(P(c,d,i,r,q);$$

$$\neg R(c,d,i,r) \Rightarrow \mathfrak{N} \models \forall q \leq c \neg (P(c,d,i,r,q))$$

$$\iff \mathfrak{N} \models \bigwedge_{k \leq c} \neg P(k,d,i,r,q) \iff Q \vdash \bigwedge_{k \leq c} \neg P(k,d,i,r,q);$$

$$\Rightarrow Q \vdash \forall q \leq c \neg (P(c,d,i,r,q);$$

4 $\mu r(R(c,d,i,r))$ 是可表示函数。

- 鲁宾逊算术 Q └─ 仅用加法和乘法的编码

递归函数的可表示性I

定义 $\alpha(u, v, i)$ 为 $\frac{u}{v(i+1)+1}$ 的余数。

定理

递归可枚举函数都是可表示的。

证明:

- 只需证明 ℜ 中的可表示函数类包含初始函数,且对复合, 极小化, 以及原始递归封闭。
- 显然初始函数都是可定义的;
- 可定义函数显然对复合封闭;
- 可定义函数显然对极小化封闭;
- 可定义函数对原始递归封闭:
 - **1** 设 f(x,0) = g(x), f(x,n+1) = h(x,n,f(x,n));

--鲁宾逊算术 Q

└─仅用加法和乘法的编码

递归函数的可表示性 ||

- **2** 其中 *g*, *h* 均是可定义函数;
- **3** $\Leftrightarrow \psi(u, v, x) := \alpha(u, v, 0) = g(x)$
- 5 则定义 f(x,y) = z 的公式为:

$$\exists u, v \Big(\psi(u, v, x) \bigwedge \phi(u, v, x) \bigwedge z = \alpha(u, v, y) \Big)$$

6 由 Q 的 Σ_1 -完备性, f 可表示。

推论

由以上证明可知:原始递归函数都是 Σ_1 -可表示的,从而也是 Π_1 -可表示的。

同理,递归可枚举集合都是 Σ_1 -可表示的,从而递归关系都是 Δ_1 -可表示的。

- 附を辑(I) 一 鲁宾逊算术 Q └─ 仅用加法和乘法的编码

注

- (在 PA 下) 根据中国剩余定理:
- **2** 对任意的 n, 以及 $a_0, ..., a_n$;
- 3 存在 c, d 使得 $\alpha(c, d, i) = a_i$:
- 4 即 (c, d) 是 $a_0, ..., a_n$ 的编码, α 是一个解码函数。

─阶逻辑(I) └─ 鲁宾逊算术 Q └─ 仅用加法和乘法的编码

引理 $(\mathbb{N}^2$ 编码为 $\mathbb{N})$

令

$$J(a,b) = \frac{1}{2}(a+b)(a+b+1) + a;$$

$$K(p) = \mu a \le p \exists b \le p(J(a,b) = p);$$

$$L(p) = \mu b \le p \exists a \le p(J(a,b) = p);$$

则函数 J, K, L 都在 Q 中可表示。

一阶逻辑(I) └─ 鲁宾逊算术 Q └─ 仅用加法和乘法的编码

引理 (PA)

J(a,b) 是双射函数。因此对任意的 $(a,b) \in \mathbb{N}^2$,存在 $p \in \mathbb{N}$ (p = J(a,b)) 使得 K(p) = a, L(p) = b.

Proof.

对 a, b 归纳证明。

-阶逻辑(I) 一鲁宾逊算术 Q ──仅用加法和乘法的编码

定理 (PA)

存在一个由加法,乘法,以及极小算子复合而成的函数 $\beta^*: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$,使得对任意的

$$n, a_0, ..., a_n \in \mathbb{N}$$

都存在 $s \in \mathbb{N}$ 满足 $\beta^*(s,i) = a_i$ ($i \le n$)

证明

- 1 可表示性
- 2 鲁宾逊算术 Q
 - 可表示性
 - 函数的可表示性
 - 仅用加法和乘法的编码
 - 可表示定理
- 3 语法的算术化
- 4 不动点引理与递归定理
- 5 不可定义性、不完全性、不可判定性

一所逻辑(I) 一鲁宾逊算术 Q 一可表示定理

定理

所有的递归函数都是可表示的,故递归关系也都是可表示的。

回忆:可表示关系是被"T⊢"表示的,从而是递归的。

推论

若 $R \subseteq \mathbb{N}^k$, $Q \subseteq T$ 是递归且一致的。则以下命题等价

- R 在 T 中可表示;
- 2 R 是递归关系;

一阶逻辑(I) 一鲁宾逊算术 Q 一可表示定理

推论

若 $R \subseteq \mathbb{N}^k$, $Q \subseteq T$ 是递归且一致的。则以下命题等价

- R 在 T 中可表示:
- 2 R 是在 T 中被一个 Δ_1 公式表示;

断言

递归关系被结构 \mathfrak{N} 中的一个 Δ_1 公式定义;

─阶逻辑(I) └─ 鲁宾逊算术 Q └─ 可表示定理

证明

 $1 \Rightarrow 2$: R 被一个 Σ_1 公式定义, $\neg R$ 也被 Σ_1 公式定义(在 \mathfrak{N} 中)。由 Q 的 Σ_1 完备性可得。

60/102

目录

- 1 可表示性
- 2 鲁宾逊算术 Q
 - 可表示性
 - 函数的可表示性
 - 仅用加法和乘法的编码
 - 可表示定理
- 3 语法的算术化
- 4 不动点引理与递归定理
- 5 不可定义性、不完全性、不可判定性

哥德尔编码

本节的目标是利用编码在 \mathfrak{N} (或 Q) 中讨论语法和部分语义

符号 ζ		\forall	0	S	+		()	_	\rightarrow	=	v_0	v_1	
哥德尔数	$\sharp \zeta$	0	3	5	7	9	11	13	15	17	19	21	23	

1 符号串 $\xi = \xi_0 ... \xi_n$ 的编码为哥德尔数

$$(\sharp \xi_0, ..., \sharp \xi_n) = \boldsymbol{p}_0^{\sharp \xi_0 + 1} ... \boldsymbol{p}_n^{\sharp \xi_0 - -+1}$$

- 2 项与公式作为符号串,编码是一个偶数;
- 6 作为符号的 0 编码为 3, 作为项的 0 编码为 16;
- ▲ 上述编码方案可以推广到一般的语言 L 上,要求 L 的符号 集合可判定;
- 本节的工作都是在标准模型 \(\Omega\) 中完成的。

语法算术化丨

变元集

$$V = \{ \sharp \alpha | \alpha$$
是一个变元 $\}$ 是原始递归的:

$$Var = \{ n \in \mathbb{N} | \exists k < n(n = 2k + 21) \}$$

注

一般地,对逻辑对象 O,我们用 O 表示的编码集(其在 Ω 中的 同构像),即

$$\underline{\mathbf{O}} = \{ \sharp \alpha | \ \alpha \in \mathbf{O} \}$$

语法算术化 ||

项集

Term =
$$\{\alpha | \alpha$$
是一个项 $\}$

是原始递归的.

证明:

项的定义是递归的。 t 是一个 项,如果

- 11 $\exists s < t(t = (s) \land (s \in \mathsf{Var} \lor s = 0))$,或者
- $\exists r, s < t(t = (r)\hat{s} \land r = \underline{S} \land s \in \text{Term})$
- $\exists q,r,s < t \big(t = (q) \hat{\ r} \hat{\ s} \land (q = \underline{+} \lor q = \underline{\cdot}) \land r,s \in \mathsf{Term})\big)$

故 Term 是原始递归的

语法算术化 Ⅲ

类似地:

公式集

Form =
$$\{\alpha | \alpha$$
是一个公式 $\}$

是原始递归的.

替换函数

语法算术化 IV

存在一个原始递归函数 Sb 使得对任意的项或者公式 α ,对任意的变元 x 和任意的项 t,有

$$Sb(\sharp \alpha, \sharp x, \sharp t) = \sharp \alpha_t^x$$

是原始递归的.

语法算术化 V

数码集合

函数

$$f(n) = \sharp (S^n 0)$$

是原始递归的, 故数码集合

$$\mathsf{Num} = \{ m | \ m$$
是一个数码 $\} = \{ m | \ \exists n < m (m = f(n)) \}$

是原始递归的。

语法算术化 VI

.

设 x 是一个数,则 x 表示 x 的解码后得到的"一阶语言"对应物。

自由出现

Free(x, y) 表示: $x \in \underline{\mathfrak{G}}$, $y \in \underline{\mathfrak{G}}$, $g \in \underline{\mathfrak{G}}$, 且 $g \in \mathfrak{G}$, 由 $g \in \mathfrak$

 $Free(x, a) \iff Sb(a, x, (0)) \neq a$

语法算术化 VII

闭语句

Sen(x) 表示: x 是 闭语句。则 Sen(x) 是原始递归的。

$$Sen(x) \iff (x$$
是公式) $\land (\forall x < a \neg Free(x, a))$

闭语句

 $\operatorname{Sub}(x,t,a)$ 表示: a 是 <u>公式</u>, t 是 <u>项</u>, x 是 <u>变元</u>, u 可在 u 中替换 u 。则 $\operatorname{Sub}(x,t,a)$ 是原始递归的.

语法算术化 VIII

证明

- **1** a 是 ¬b, a 是 b → c, 和 a 是 \forall yb 均是原始递归的;
- 2 Sub(x, t, a) 递归地定义为
 - 如果 a 是 原子公式,则 Sub(x, t, a) 总是成立;
 - 如果 a 是 $\overline{-b}$, 则 $\mathrm{Sub}(x,t,a)$ \iff $\mathrm{Sub}(x,t,b)$;
 - 如果 $a \not\in b \to c$,则 Sub $(x, t, a) \iff$ Sub $(x, t, b) \land$ Sub(x, t, b);
 - 如果 $a \in \forall yb$, 则 $\operatorname{Sub}(x,t,a) \iff \operatorname{Sub}(x,t,b) \land y \notin t$;

i

语法算术化 IX

逻辑公理

集合

$$Ax = \{a \mid a$$
是一条逻辑公理 $\}$

是原始递归集。

证明序列

设 T 是可公理化的的,则 T 被可判定集合 X 公理化,集 X 是递 归集,则谓词

b是T上的一个证明序列

是递归的。

语法算术化 X

证明 + 结论

设 T 同上,令 $\text{bew}_T(b, a)$ 表示

b是T上的一个证明序列且 $b_{lh(b)-1} = a$

则 $bew_T(b, a)$ 是递归的

可证性

设 T 同上,令 $bwb_T(a)$ 表示 $\exists b bew_T(b,a)$ 。它是递归可枚举的。

目录

- 1 可表示性
- 2 鲁宾逊算术 Q
 - 可表示性
 - 函数的可表示性
 - 仅用加法和乘法的编码
 - 可表示定理
- 3 语法的算术化
- 4 不动点引理与递归定理
- 5 不可定义性、不完全性、不可判定性

不动点引理

设 $\beta(v_1)$ 是一个算术公式,其中变元 v_1 自有出现,则存在闭语 句 σ 使得

$$\mathbf{Q} \vdash \sigma \leftrightarrow \beta(\sharp \sigma)$$

其中 $\sharp \sigma$ 表示 $S^{\sharp \sigma}0$,是一个闭项。

注

- **1** σ 说: β 满足我的镜像;
- **2** β 对我成立;
- 3 我们将 $S^{\sharp\sigma}0$ 记作 $\lceil \sigma \rceil$;
- **4** 即 $Q \vdash \sigma \leftrightarrow \beta(\lceil \sigma \rceil)$

证明Ⅰ

- 1 ($\sharp \alpha(\mathbf{X}), \mathbf{n}$) $\mapsto \sharp \alpha(\mathbf{n})$ 是一个递归函数; $\theta(\mathbf{V}_1, \mathbf{V}_2, \mathbf{V}_3)$ 表示此递 归函数(作为函数);
- 2 则 $Q \vdash \forall v_3 \Big(\theta(\lceil \alpha \rceil, n, v_3) \leftrightarrow v_3 = \lceil \alpha(n) \rceil \Big);$
- 3 令公式 $\tau(v_1)$ 为

$$\forall \mathbf{v}_3 \bigg(\theta(\mathbf{v}_1, \mathbf{v}_1, \mathbf{v}_3) \to \beta(\mathbf{v}_3) \bigg)$$

- 5 令σ为

$$\forall \mathbf{v}_3 \bigg(\theta(\mathbf{q}, \mathbf{q}, \mathbf{v}_3) \to \beta(\mathbf{v}_3) \bigg)$$

证明Ⅱ

6 下面验证
$$Q \vdash \sigma \leftrightarrow \beta(\lceil \sigma \rceil)$$
;

7 显然
$$Q \vdash \forall v_3 \left(\theta(\lceil \tau(v_1) \rceil, q, v_3) \leftrightarrow v_3 = \lceil \tau(q) \rceil \right)$$

8 「
$$\tau(\mathbf{v}_1)$$
」 = \mathbf{q} , $\tau(\mathbf{q}) = \sigma$, 故

$$Q \vdash \forall v_3 \bigg(\theta(q, q, v_3) \leftrightarrow v_3 = \lceil \sigma \rceil \bigg);$$

$$\underbrace{\theta(q,q,v_3) \to \beta(v_3)}_{\vdash Q} \vdash_{Q} v_3 = \ulcorner \sigma \urcorner \to \beta(v_3);$$

10 即
$$\sigma \vdash_{Q} \beta(\ulcorner \sigma \urcorner)$$
;

11 下面证明
$$\beta(\lceil \sigma \rceil) \vdash_{Q} \theta(q, q, v_3) \rightarrow \beta(v_3)$$
;

一阶逻辑(I) 一不动点引理与递归定理

证明Ⅲ

12
$$\theta(q, q, v_3)$$
 成立当且仅当 $v_3 = \lceil \sigma \rceil$,故

$$\beta(\lceil \sigma \rceil) \vdash_{\mathbf{Q}} \theta(\mathbf{q}, \mathbf{q}, \mathbf{v}_3) \to \beta(\mathbf{v}_3)$$

成立。

注

- 1 σ 和 β 没有关系;
- 2 $\beta :=_{def} \exists x (v_1 = x + x);$
- 3 σ 取任意的公理 $(0 = 0, S0 \neq 0)$;
- 4 则 σ 是 β 的不动点。

──财逻辑(I) └─不动点引理与递归定理

克林尼递归定理

设 $\phi_0,...,\phi_1,...$ 是所有部分递归函数的能行枚举 $\phi_n=\Phi(n,x)$ 。 对任何递归函数 f(x) 都存在一个自然数 e 使得 $\phi_{f(e)}=\phi(e)$.

注

克林尼递归定理是递归论版的"不动点定理";

不动点定理的其它证明

- 11 设 $\beta(u)$ 是一个公式;
- ② 设 $\phi_0(u), \phi_1(u), \dots$ 是全部以 u 为自由变元的公式的枚举;
- 3 显然 $h: n \mapsto \sharp \phi_n(n)$ 是一个递归函数;
- 4 则 h 在 Q 下可表示;
- 5 即存在 $\theta(x,y)$ 使得

$$\forall n \in \mathbb{N}: \quad Q \vdash \forall y (\theta(n, y) \leftrightarrow y = \lceil \phi_n(n) \rceil).$$

6 故

$$\forall n \in \mathbb{N}: \quad Q \vdash \exists y (\theta(n, y) \land \beta(y)) \leftrightarrow \beta(\lceil \phi_n(n) \rceil);$$

- **7** 存在 $q \in \mathbb{N}$ 使得 $\exists y (\theta(u, y) \land \beta(y))$ 是 $\phi_q(u)$;
- **8** 即 $\forall n \in \mathbb{N}: Q \vdash \phi_{\alpha}(n) \leftrightarrow \beta(\lceil \phi_{n}(n) \rceil);$
- 9 特别地: $Q \vdash \phi_{q}(q) \leftrightarrow \beta(\lceil \phi_{q}(q) \rceil)$;
- 10 即 $\phi_q(q)$ 是 β 的不动点。

注

1 在第一个证明中, β 的不动点是

$$\forall \mathbf{v}_3 \bigg(\theta(\mathbf{q}, \mathbf{q}, \mathbf{v}_3) \to \beta(\mathbf{v}_3) \bigg)$$

- 2 当 β 是 Π_1 时, σ 是 Π_1 公式;
- **3** 在第二个证明中, β 的不动点是

$$\exists y (\theta(q, y) \land \beta(y))$$

4 当 β 是 Σ_1 时, σ 是 Σ_1 公式;

目录

- 1 可表示性
- 2 鲁宾逊算术 Q
 - 可表示性
 - 函数的可表示性
 - 仅用加法和乘法的编码
 - 可表示定理
- 3 语法的算术化
- 4 不动点引理与递归定理
- 5 不可定义性、不完全性、不可判定性

塔斯基定理

定理

集合 $\sharp \operatorname{Th}(\mathfrak{N})$ 在结构 \mathfrak{N} 中是不可定义的。

证明

- 使用不动点定理;
- 2 假设 $\sharp \operatorname{Th}(\mathfrak{N})$ 被公式 $\beta(u)$ 定理;
- 3 设 σ 是 $\neg \beta(u)$ 的不动点;
- 4 可定义 \Rightarrow : $\mathfrak{N} \models \sigma \iff \mathfrak{N} \models \beta(\lceil \sigma \rceil)$;
- **5** 不动点 \Rightarrow : $\mathfrak{N} \models \sigma \iff \mathfrak{N} \models \neg \beta(\lceil \sigma \rceil)$

│ │ │ ○ 不可定义性、不完全性、不可判定性

推论

集合 $\mathrm{Th}(\mathfrak{N})$ 不是可判定的,即 $\sharp \mathrm{Th}(\mathfrak{N}) \subseteq \mathbb{N}$ 不是递归的。

一所逻辑(1*)* └─ 不可定义性、不完全性、不可判定性

哥德尔第一不完全性定理

定理

如果 $T \subseteq Th(\mathfrak{N})$ 是可公理化的的,则 T 是不完全的。特别地, $Th(\mathfrak{N})$ 不能公理化。

证明

- 1 如果 $T \subseteq Th(\mathfrak{N})$ 是完全的,则 $T = Th(\mathfrak{N})$;
- 2 如果 T 可得公理化,则 T 是递归可枚举的;
- 3 递归可枚举集合被一个 Σ_1 -公式定义;
- 4 也可以从 $T = Th(\mathfrak{N})$ 是递归的推出可定义性。

一阶逻辑(Ⅰ) └─ 不可定义性、不完全性、不可判定性

ω -一致性

定义

设 $T \in L_{ar}$ 上的一个理论 (关于蕴含封闭)。称 $T \in \omega$ -不一致的,如果存在公式 $\phi(x)$ 使得 $T \vdash \exists x \phi(x)$,且

$$\forall n \in \mathbb{N} : T \vdash \neg \phi(n).$$

否则,称 $T \in \omega$ -一致的,即

$$T \vdash \exists x \phi(x) \Rightarrow \exists n \in \mathbb{N}(T \nvdash \neg \phi(n))$$

注Ⅰ

- **1** $T \in \omega$ -一致的,则 $T \in \omega$ -一致的理论可以证明任何句子);
- 2 ω-一致性不是一个纯语法概念,是在"系统外面"定义的;
- 3 如果 $T \in \omega$ -不一致的,则 $\mathfrak{N} \not\models T$;
- 4 这是因为

$$\forall n \in \mathbb{N} : \operatorname{Th}(\mathfrak{N}) \vdash \neg \phi(n) \iff \mathfrak{N} \models \neg \phi(n)$$
$$\left(\forall n \in \mathbb{N} : \mathfrak{N} \models \neg \phi(n)\right) \iff \mathfrak{N} \models \forall x \phi(x).$$

5 如果 $\mathfrak{N} \models T$,则 $T \in \omega$ -一致的;

注Ⅱ

⑥ 设 c 是一个新常元,则 $T = PA \cup \{c \neq n | n \in \mathbb{N}\}$ 是一致的,但

$$T \vdash \exists x(x = c), \ (\forall n : T \models \neg(n = c))$$

表明 T 不是 ω -一致的;

1 第二不完全性 \Rightarrow $PA + \neg \cos(PA)$ 一致,但不是 ω -一致的;

一财 逻辑(') └─ 不可定义性、不完全性、不可判定性

第1不完全性最初版

设 $T \supseteq Q$ 是可公理化的。如果 T 是 ω -一致的,则存在一个 Π_1 -闭语句 σ ,使得 $T \nvdash \sigma$ 并且 $T \nvdash \neg \sigma$

证明丨

- 使用不动点定理;
- 2 回忆公式 $bew_T(x,y)$ 满足

$$\forall m, n \in \mathbb{N}: T \vdash \text{bew}_T(m, n) \iff x$$
是公式 y 的证明;

- 4 回忆公式 $bwb_T(y)$ 为 $\exists x bew_T(x,y)$,是一个 Σ_1 -公式;
- **5** 如果 $T \vdash \alpha$,则存在在证明 α 的证明 m,因此

$$T \vdash \text{bew}_{T}(m, \lceil \alpha \rceil) \Rightarrow T \vdash \text{bwb}_{T}(\lceil \alpha \rceil);$$

- 6 $\diamond \sigma$ 为 $\neg bwb_{\tau}(v)$ 的不动点;
- **7** 如果 $T \vdash \sigma$,则 $T \vdash \text{bwb}_T(\lceil \sigma \rceil)$,矛盾,故 $T \nvdash \sigma$;

证明Ⅱ

8 由可表示性:

$$\forall n \in \mathbb{N} : T \vdash \neg \text{bew}_{T}(n, \lceil \sigma \rceil)$$

9 根据 ω -一致性

$$T \nvdash \exists x \text{bew}_T(x, y) \text{ i. e. } T \nvdash \text{bew}_T(y)$$

10 根据不动点性, $T \nvdash \sigma$.

一阶逻辑(I) └ 不可定义性、不完全性、不可判定性

罗瑟的改进

定理(哥德尔-罗瑟)

设 $T\supseteq Q$ 是可公理化的。如果 T 是一致的,则存在一个 Π_1 -闭语句 σ ,使得 $T\nvdash\sigma$ 并且 $T\nvdash\neg\sigma$

证明丨

- **1** 设 x 为 α 的编码,则 $\tilde{\neg}x$ 表示 $\neg \alpha$ 的编码;
- **2** $\sharp \alpha \mapsto \sharp (\neg \alpha)$ 是一个递归函数,被 $\theta(x,y)$ 表示;
- 3 定义公式 $\operatorname{prov}_{T}(x)$ 为(设 x 为 α 的编码)

$$\exists y \bigg(\operatorname{bew}(y, x) \wedge (\forall z < y) \neg \operatorname{bew}(z, \tilde{\neg} x) \bigg)$$

- $T \vdash \text{bew}(z, \tilde{\neg} x) \leftrightarrow \exists u (\text{bew}_T(z, u) \land \theta(x, u)).$
- 5 故 $\operatorname{prov}_{T}(x)$ 是一个 Σ_{1} -公式

$$\forall m, n \in \mathbb{N}: T \vdash \text{bew}_T(m, n) \iff x$$
是公式 y 的证明

- $bew_T(x,y)$ 表示一个递归关系,因此是一个 Δ_1 -公式;

证明Ⅱ

- **8** 断言 1: 如果 $T \vdash \alpha$,则 $T \vdash \text{prov}_{T}(\lceil \alpha \rceil)$;
 - 若 $T \vdash \alpha$,则存在证明 $n \in \mathbb{N}$ 使得 $T \vdash \text{bew}_{\tau}(n, \lceil \alpha \rceil)$;
 - 根据 T 的一致性, $T \nvdash \neg \alpha$
 - $\Rightarrow \forall m \in \mathbb{N}: T \nvdash \text{bew}_{T}(m, \lceil \neg \alpha \rceil);$
 - 由 bew $_T(x,y)$ 的 Δ_1 性(可表示性),有

$$\forall m \in \mathbb{N}: \ T \vdash \neg \text{bew}_{T}(m, \lceil \neg \alpha \rceil);$$

- (注:对 Δ_1 -公式 $\beta(x)$,总有 $T \vdash \beta(n)$ 或 $T \vdash \neg \beta(n)$ 成立)
- 故 $T \vdash \text{bew}(n, \lceil \alpha \rceil) \land (\forall z < n) \neg \text{bew}(z, \tilde{\neg} \lceil \alpha \rceil).$
- $\blacksquare \Rightarrow T \vdash \operatorname{prov}_{\mathcal{T}}(\lceil \alpha \rceil).$
- 9 断言 2: 如果 $T \vdash \neg \alpha$, 则 $T \vdash \neg \text{prov}_T(\lceil \alpha \rceil)$;
 - 若 $T \vdash \neg \alpha$,则存在证明 $n \in \mathbb{N}$ 使得 $T \vdash \text{bew}_{T}(n, \lceil \neg \alpha \rceil)$;
 - 根据 T 的一致性, T ⊬ α
 - $\Rightarrow \forall m \in \mathbb{N}: T \vdash \neg \text{bew}_{T}(m, \lceil \alpha \rceil);$

证明Ⅲ

■ $\neg \text{prov}_{\mathcal{T}}(x)$ 等价于公式

$$\forall y \bigg(\neg \operatorname{bew}(y, x) \lor (\exists z < y) \operatorname{bew}(z, \tilde{\neg} x) \bigg)$$

- 设 $\mathfrak{M} \models T$,我们来证明 $\mathfrak{M} \models \neg \operatorname{prov}_{T}(\lceil \alpha \rceil)$;
- 取 $\mathbf{a} \in \mathfrak{M}$, 若 $\mathbf{a} \in \mathbb{N}$, 则 $\mathfrak{M} \models \neg \text{bew}_{\mathcal{T}}(\mathbf{a}, \lceil \alpha \rceil)$;
- 若 $a \in \mathfrak{M} \setminus \mathbb{N}$; 则 $\forall m \in \mathbb{N} : T \vdash m < a$;
- $T \vdash \neg \alpha \Rightarrow \exists m \in \mathbb{N} : T \vdash \text{bew}_T(m, \neg \alpha \neg);$
- $\blacksquare \mathfrak{M} \models (\exists z < a)(\text{bew}_{T}(m, \lceil \neg \alpha \rceil));$
- $\implies \mathfrak{M} \models \forall y \bigg(\neg \operatorname{bew}(y, \lceil \alpha \rceil) \lor (\exists z < y) \operatorname{bew}(z, \tilde{\neg} \lceil \alpha \rceil) \bigg);$
- \mathbf{p} $T \vdash \neg \text{prov}_T(\lceil \alpha \rceil)$.
- 10 令 σ 是 $\neg \text{prov}_T(x)$ 的不动点,则 σ 可以是 Π_1 -公式;
- **11** 若 $T \vdash \sigma$, 则断言 $1 \Rightarrow T \vdash \text{prov}_T(\lceil \sigma \rceil)$;

─阶逻辑(I) └ ─ 不可定义性、不完全性、不可判定性

证明 IV

- 12 不动点 $T \vdash \sigma \leftrightarrow \neg \text{prov}_T(\lceil \sigma \rceil) \Rightarrow T \vdash \neg \text{prov}_T(\lceil \sigma \rceil), 矛盾;$
- 13 若 $T \vdash \neg \sigma$,则断言 $2 \Rightarrow T \vdash \neg \text{prov}_T(\lceil \sigma \rceil)$;
- **14** 不动点 $T \vdash \sigma \leftrightarrow \neg \text{prov}_T(\lceil \sigma \rceil) \Rightarrow T \vdash \sigma$,矛盾;

注

- **1** \perp 表示 $0 \neq 0$;
- **2** 断言 2 ⇒ $T \vdash \neg \text{prov}_{T}(\bot)$;
- $\exists \ \mathrm{bwb}_{T}(x) := \exists y (\mathrm{bew}_{T}(y, x));$
- $4 \operatorname{con}_T$ 表示 $\operatorname{bwb}_T(\bot)$, 是一致性的形式化;
- **5** 哥德尔第二不完全性: $T \nvdash con_T$.

一gri逻辑(1*)* ___ 不可定义性、不完全性、不可判定性

强不可判断性

定理(Q强不可判定)

任何一个理论 T, 如果 $T \cup Q$ 是一致的,则 T 不是递归的。

注

- T 包含了关于乘法和加法的算术公理;
- 普莱斯伯格算术只有加法公理,其可判定性与本定理不矛盾;
- **3** 特别地, $\{\sigma \mid Q \vdash \sigma\}$ 不可判定。

证明丨

- **1** 令 T' = T + Q,若 T 是递归的,则 T' 也递归;
- ② 这是因为 $\alpha \in T' \iff \bigwedge Q \rightarrow \alpha \in T$;
- **3** 反设 *T* 是递归的,则 *T'* 递归;
- 4 即 $\{\sharp \alpha | \alpha \in T'\}$ 是递归的;
- 5 递归关系是可表示的;
- **6** 存在一个公式 $\beta(x)$ (在 Q 中) 表示 T' 的句子;
- **7** 即 $\forall \alpha: \alpha \in T' \Rightarrow Q \vdash \beta(\lceil \alpha \rceil), \alpha \notin T' \Rightarrow Q \vdash \neg \beta(\lceil \alpha \rceil);$
- 8 设 σ 是 $\neg \beta(x)$ 的不动点,即 $Q \vdash \sigma \leftrightarrow \neg \beta(x)$;
- 9 若 $\sigma \in T'$,则

$$\Rightarrow$$
 $\mathbf{Q} \vdash \beta(\lceil \sigma \rceil) \Rightarrow$ $\mathbf{T}' \vdash \neg \sigma \Rightarrow \neg \sigma \in \mathbf{T}';$

一阶逻辑(I) 一不可定义性、不完全性、不可判定性

证明Ⅱ

10 若 $\sigma \notin T'$,则

$$\underset{\overline{\mathbf{T}}}{\Rightarrow} \mathbf{Q} \vdash \neg \beta(\lceil \sigma \rceil) \underset{\overline{\mathbf{T}}}{\Rightarrow} \mathbf{T}' \vdash \sigma \ \Rightarrow \ \sigma \in \mathbf{T}';$$

11 故 T' 不一致。

│ │ │ │ 一不可定义性、不完全性、不<u>可判定性</u>

推论 (丘奇)

固定语言 Lar。一阶逻辑的普遍有效性是不可判定的;即,集合

$$\{\sharp\sigma|\ \vdash\sigma\}$$

不是递归的。

注

该集合是递归可枚举集。

一阶逻辑(Ⅰ) └─ 不可定义性、不完全性、不可判定性

Thanks!