Project Report: TrafficTelligence - Traffic Volume Prediction System

1. Project Title:

TrafficTelligence - An ML-Powered Web Application for Predicting Traffic Volume

2. Objective:

To develop a machine learning-based web application that predicts traffic volume based on weather and time-related features to help urban planners, traffic managers, and commuters make informed decisions.

3. Tools & Technologies Used:

Programming Languages: Python, HTML, CSS

• Libraries: Scikit-learn, NumPy, Joblib, Flask

Frontend: HTML5, CSS3

• Backend: Flask (Python Microframework)

Model Serialization: Joblib

4. Dataset Overview:

• Source: Google Drive

• Number of Rows: 48204

Features Used (Total: 19):

o Numerical: Temperature, Rain, Snow

Time: Hour, Month, Day, Weekday

Categorical/Binary: Is_weekend, Is_holiday

 One-hot Encoded Weather Conditions: Clear, Clouds, Drizzle, Fog, Haze, Mist, Rain, Smoke, Snow, Thunderstorm

5. Methodology:

1. Data Preprocessing:

- Handled missing values and duplicates
- o Converted datetime into separate features
- One-hot encoded weather conditions

2. Model Training:

- Split data into training and testing sets
- Used RandomForestRegressor (from Scikit-learn)
- Evaluated with Mean Squared Error (MSE)

3. Model Deployment:

- Saved trained model using joblib
- o Developed a Flask-based web app
- o Created a user-friendly form to input features
- o Connected form input to prediction logic

6. Application Flow:

- User accesses the form via the homepage (index.html)
- Enters inputs like temperature, rain, snow, hour, date, and weather conditions
- Submits form → Triggers Flask POST request
- Model processes the inputs and returns a predicted traffic volume
- Output is rendered back on the same page

7. Challenges Faced:

- Handling mixed data types (datetime, float, bool)
- Managing feature mismatch between training and prediction
- Ensuring form inputs are accurately mapped to model features

8. Output Example:

- Inputs:
 - o Temperature: 12.5
 - o Rain: 0.0
 - o Snow: 0.0
 - o Hour: 8
 - o Month: 5
 - o Day: 23
 - o Weekday: 4

o is_weekend: 0

o is_holiday: 0

o Weather: Clouds

• Output: Predicted Traffic Volume = 3526 vehicles

9. Future Enhancements:

- Add maps and visualizations
- Integrate live weather data APIs
- Include peak-hour logic and congestion alerts
- Export predictions to Excel/CSV

10. Conclusion:

The TrafficTelligence project successfully demonstrates the integration of machine learning with web development to build a practical, user-friendly system for predicting traffic volume. It can serve as a foundation for intelligent transport systems and real-time traffic monitoring applications.