Real Numbers, Slope and Line Equations Calculus I

Wisnu Aribowo

President University, Cikarang

Week 1

Outline for the Day

- 1 Real Numbers
 - Concept of Real Numbers
 - Properties of Real Numbers
- 2 Line Equations
 - Slope
 - Finding Line Equations
 - Parallel and Perpendicular Lines

Some Elementary Sets

Natural Number, denoted by N (often styled as \mathbb{N}), is the set

$$\{1,2,3,\cdots\}$$

■ Integers, denoted by Z (often styled as \mathbb{Z}), is the set

$$\{\cdots, -2, -1, 0, 1, 2, \cdots\}$$

Rational Number, denoted by Q (often styled as \mathbb{Q}), is the set that contains **all** integral fractions. That is,

$$\mathbb{Q} := \left\{ \frac{a}{b} : a, b \in \mathbb{Z}, b \neq 0 \right\}$$

Example:
$$2 \in \mathbb{Q}$$
 and $-0.4 \in \mathbb{Q}$ since $2 = \frac{2}{1}$ and $-0.4 = \frac{-4}{10}$

Irrational Numbers

- Irrational Number contains all the non-rational numbers, i.e. the ones that cannot be expressed as a ratio of two integers.
- It doesn't have any designated notation, but because it acts as the **opposite** of rational number set, it's often written as \mathbb{Q}^C , the complement of set \mathbb{Q} .
- Examples: the number π , e and $\sqrt{2}$ are elements of the irrational numbers. 22/7, albeit a very good one, is just an approximation of π —hence it won't make π rational.
- All repeating decimals are rational, and all nonrepeating decimals are irrational.

Concept of Real Numbers

Figure: Real Numbers and its subsets

Some Properties of Real Numbers

- \mathbb{R} is a **completely ordered** set, meaning all elements of \mathbb{R} are *comparable*. Mathematically, if $a, b \in \mathbb{R}$, then exactly one of a < b, a = b, or a > b must be true. This property is also called the trinity axiom.
- \mathbb{R} is **dense**, meaning we cannot state two *consecutive* real numbers (unlike natural, integers). Mathematically, if $a, b \in \mathbb{R}$, then there's always a real number c such that

A trivial value of c is the *middle value* between a and b, that is $c = \frac{a+b}{2}$.

Smallest Positive Real Numbers

Cool trivia: there's no such number called the 'smallest positive real number'. Let $a \in \mathbb{R}$ is such number, then we will have $\frac{a}{2} \in \mathbb{R}$ that satisfies $0 < \frac{a}{2} < a$ hence contradicting the assumption that a is the smallest positive real number.

Slope or Gradient

- The Slope (or Gradient) is a universal measure of **how steep** a line is.
- It is defined by the ratio of its 'rise' and 'run', often denoted as m.

Figure: Visualization of Gradient

$$m = \frac{\text{rise}}{\text{rin}} = \frac{y_2 - y_1}{x_2 - x_1}$$

Line Equations

- Generally we need two things to **uniquely define** a line equation: a gradient of the line (m) and a point that lies in said line (x_1, y_1) .
- Formula used to find a line equation:

$$y - y_1 = m(x - x_1)$$

Line Equations

Example: Find the line equation that passes both (-1,3) and (4,2).

On Parallel and Perpendicular Lines

Let g and h be a couple of straight lines and m_g and m_h as their slopes respectively. If g is parallel to h, then $m_g = m_h$ If g is perpendicular to h, then $m_g \times m_h = -1$

Example

Find line equations that passes through (-1,3) if:

- 1 it's parallel with the line x + 3y 4 = 0
- 2 it's perpendicular to $y = -\frac{1}{4}x \frac{5}{4}$

Exercise

Calculus 9th Edition: Problem Set 0.3 (page 22)

- 1 Do all odd numbered problems from 23-38
- 2 Do 39, 41, 42 and 44.