

Theoretische Grundlagen der Informatik

Tutorium 1

Institut für Kryptographie und Sicherheit

whois tutor

- Alexander Kwiatkowski alexander.kwiatkowski@gmx.net Dienstag 17:30, SR -120
- Michael Vollmer Michael@trollbu.de Dienstag 17:30, SR -119
- Matthias Holoch Matthias.Holoch@student.kit.edu Donnerstag 8:00, SR -120

Organisatorisches – Zum Übungsbetrieb

- Abgabe: Handschriftlich in Gruppen
 - Bis zu 5 Personen pro Gruppe
 - Erste Abgabe legt die Gruppe fest
 - Jede Person muss ein eigenes Blatt abgeben (mit Gruppenname falls vorhanden)
- Schein:
 - Klausurbonus (1 Notenschritt)
 - Bei min. 6 (von 7) Blättern 50% Punkte
- korrigierte Übungsblätter gibt es im Tutorium
 - Bei Nichtabholung: Büro 274 Montags 14:00-15:00

Organisatorisches – Zum Tutorium

- Tutoriumsfolien
 - http://tinyurl.com/tgi1213
- E-Mail-Liste geht rum
- Stoff soll wiederholt werden
- Dabei Fokus auf Übungsbetrieb
- Fragen/Vorschläge/Anmerkungen willkommen!

Deterministische endliche Automaten

Ein deterministischer endlicher Automat *M* ist ein 5-Tupel

$$M = (Q, \Sigma, \delta, s, F).$$

- Q: endliche Zustandsmenge
- Σ : endliches Alphabet
- δ : Zustandsübergangsfunktion $Q \times \Sigma \rightarrow Q$
- s: Startzustand ∈ Q
- F: Endzustandsmenge $\subseteq Q$

Nichtdeterministische endliche Automaten

Ein nichtdeterministischer endlicher Automat *M* ist ein 5-Tupel

$$M = (Q, \Sigma, \delta, s, F).$$

- Q: endliche Zustandsmenge
- Σ : endliches Alphabet
- δ : Zustandsübergangsfunktion $Q \times (\Sigma \cup \varepsilon) \to \mathcal{P}(Q)$
- s. Startzustand $\in Q$
- F: Endzustandsmenge $\subseteq Q$

Damit der NEA ein Wort akzeptiert, muss es einen akzeptierenden Weg geben.

NEA: Beispiel

Bei Eingabe von b im Zustand q_1 gibt es mehrere Möglichkeiten.

(siehe Berechnungsbaum an der Tafel).

Rechtslineare Grammatiken

Eine Grammatik G = (T, V, S, P)

- T = Menge der Terminale (a.k.a. Alphabet der Sprache)
- V = Menge der Nichtterminale (zu T disjunkt)
- $S \in V = Startsymbol$
- $P \subset V^+ \times (V \cup T)^*$ = Menge der Produktionen

bei der alle Produktionen so aussehen:

- $A \rightarrow \lambda$
 - A ∈ V
 - λ ist leeres Wort
- $A \rightarrow bC$
 - $A. C \in V$
 - b ∈ T

heißt rechtslinear bzw. regulär.

Reguläre Ausdrücke

A ist ein regulärer Ausdruck über dem Alphabet Σ wenn:

- $\mathbf{A} = \lambda$
- $A = x \in \Sigma$
- $A = B^* = \{\lambda, B, BB, BBB, \ldots\}$
- $A = B^+ = \{B, BB, BBB, \ldots\}$
- $A = B \cdot C = \{BC\}$
- $A = B + C = \{B, C\}$

Wobei B und C ebenfalls reguläre Ausdrücke über Σ sind.

Bitte deutlich schreiben:

$$B^+C \neq B+C$$

Gegeben sei der folgende endliche Automat:

 $\mathcal{M} = (\mathcal{Q}, \Sigma, \delta, S, \mathcal{F}) \text{ mit } \Sigma = \{a, b\}, \mathcal{Q} = \{S, B, C, D\}, \mathcal{F} = \{B, C\} \text{ und } \delta$ gegeben durch:

- Geben Sie die von diesem Automaten akzeptierte Sprache in einem regulären Ausdruck an!
- 2. Um was für einen Automaten handelt es sich?
- Konstruieren Sie einen äquivalenten endlichen Automaten, der nur einen einzigen Endzustand besitzt!
- 4. Geben Sie eine linkslineare Grammatik für die Sprache dieses Automaten an, die keine überflüssigen Nichtterminale und Regeln enthält!

Chomsky-Hierarchie

Chomsky Typ 3

- Reguläre Sprachen (z.B. rechtslineare Sprachen)
- Reguläre Ausdrücke
- Endliche Automaten

Chomsky Typ 2

- Ch3 ⊂ Ch2
- Kontextfreie Sprachen
- Nichtdeterministische Kellerautomaten
- Programmiersprachen sind in der Regel Ch2

Chomsky Typ 1

- Ch2 ⊂ Ch1
- Kontextsensitiven Sprachen
- Nichtdeterministische, linear platzbeschränkte Turingmaschine

Chomsky Typ 0

- Ch1 ⊂ Ch0
- Semi-entscheidbare Sprachen (durch Turingmaschine)

- Formulieren Sie einen regulären Ausdruck über dem Alphabet $\Sigma = \{0, 1\}$, der jedes beliebige Wort erfasst, wobei die vorletzte Ziffer 0 sein soll!
- Geben Sie für diese Sprache den möglichst größten Chomsky-Typ und eine zugehörige Grammatik an!
- 3. Geben Sie einen dazugehörigen Automaten an, der diese Sprache akzeptiert!

Akzeptor \rightarrow Grammatik

Umwandlung von einem endlichen Akzeptor $M = (Q, \Sigma, \delta, q_0, F)$ in eine rechtslineare Grammatik G = (T, V, S, P):

- 1. $T := \Sigma$.
- 2. $\forall q \in Q$ ein Nichtterminalsymbol in V definieren, wobei S q_0 zugeordnet ist.
- 3. $P := \{(X \to tY) \mid (q_X, t) = q_Y \in \delta\} \cup \{(Z \to \lambda) \mid q_Z \in F\}.$ Wobei X, Y und Z jene Nichtterminalsymbole sind, welche q_X , q_Y , bzw. q₇ zugeordnet sind.

Gegeben sei der folgende endliche Akzeptor \mathcal{M} mit dem Eingabealphabet $\Sigma = \{a, b, c, d\}$:

- 1. Welche Sprache $\mathcal{L}(\mathcal{M})$ wird von dem Akzeptor \mathcal{M} akzeptiert?
- 2. Konstruieren Sie aus \mathcal{M} eine rechtslineare Grammatik, die $\mathcal{L}(\mathcal{M})$ erzeugt!

Konstruktion eines Akzeptors aus einer linearen Grammatik

Gegeben: rechtslineare Grammatik G = (T, V, S, P)Gesucht: endlicher Akzeptor $M = (Q, \Sigma, \delta, q_0, F)$

- 1. $\Sigma := T$
- 2. $Q := \{q_X \mid X \in V\}$
 - $q_0 = q_S$
- 3. $\delta := \{ (q_X, t) \to q_Y \mid (X \to tY) \in P \}$
- 4. $F := \{ q_X \mid (X \to \lambda) \in P \}$

Die Sprache \mathcal{L} sei durch den regulären Ausdruck $(aa^*b^*)^*cc^*$ definiert.

- 1. Geben Sie eine rechtslineare Grammatik \mathcal{G} an, die \mathcal{L} erzeugt!
- 2. Konstruieren Sie aus \mathcal{G} einen endlichen Akzeptor, der \mathcal{L} akzeptiert!

Bis zum nächsten Mal!

BUT TO FIND THEM WE'D HAVE TO SEARCH THROUGH 200 MB OF EMAILS LOOKING FOR SOMETHING FORMATTED LIKE AN ADDRESS!

Lizenzen

Dieses Werk ist unter einem "Creative Commons Namensnennung-Weitergabe unter gleichen Bedingungen 3.0 Deutschland"-Lizenzvertrag lizenziert. Um eine Kopie der Lizenz zu erhalten, gehen Sie bitte zu http://creativecommons.org/licenses/by-sa/3.0/de/ ozterschreiben Sie an Creative Commons, 171 Second Street, Suite 300, San Francisco, California 94105, USA.

Davon ausgenommen sind das Titelbild, welches aus der März-April 2002 Ausgabe von American Scientist erschienen ist und ohne Erlaubnis verwendet wird, sowie das KIT Beamer Theme. Hierfür gelten die Bestimmungen der jeweiligen Urheber.

