SOME SPECIAL COALITION FORMATION GAMES

Dhruv Singal

November 16, 2015

Department of Computer Science Indian Institute of Technology Kanpur dhruv@iitk.ac.in

With Prof. Sunil Simon

PRELIMINARIES

Strategic form games with set of players or agents $N = \{1, 2, ..., n\}$ and set of coalitions $\{C \mid C \subseteq N\}$ [1]

Strategic form games with set of players or agents $N = \{1, 2, ..., n\}$ and set of coalitions $\{C \mid C \subseteq N\}$ [1]

Players get divided into disjoint coalitions

Strategic form games with set of players or agents $N = \{1, 2, ..., n\}$ and set of coalitions $\{C \mid C \subseteq N\}$ [1]

Players get divided into disjoint coalitions

Applications in any activity involving group formation

Coalition structure $\pi = \{C_i\}_{i=1}^h$ is such that every player is present in exactly one coalition and every player is assigned to some coalition

Coalition structure $\pi = \{C_i\}_{i=1}^h$ is such that every player is present in exactly one coalition and every player is assigned to some coalition

Formally,
$$\cup_{i=1}^{h} C_i = N$$
 and $C_i \cap C_j = \phi \ \forall i \neq j$

Coalition structure $\pi = \{C_i\}_{i=1}^h$ is such that every player is present in exactly one coalition and every player is assigned to some coalition

Formally,
$$\bigcup_{i=1}^{h} C_i = N$$
 and $C_i \cap C_j = \phi \ \forall i \neq j$

 \leq_i is the preference relation for player i over coalitions containing i, i.e. $\{C_i \mid C_i \subseteq N, i \in C_i\}$

Coalition structure $\pi = \{C_i\}_{i=1}^h$ is such that every player is present in exactly one coalition and every player is assigned to some coalition

Formally,
$$\bigcup_{i=1}^{h} C_i = N$$
 and $C_i \cap C_j = \phi \ \forall i \neq j$

 \leq_i is the preference relation for player i over coalitions containing i, i.e. $\{C_i \mid C_i \subseteq N, i \in C_i\}$

 $\pi(i)$ is the coalition in π containing the player i

HEDONIC GAMES

Preference of a player for a coalition depends on the players in that coalition (a natural concern!)

HEDONIC GAMES

Preference of a player for a coalition depends on the players in that coalition (a natural concern!)

Successful models for practical situations:

- · research team formation [2]
- group activity scheduling [3]
- coalition governments [4]

- cluster forming in social networks [5]
- distributed task allocation for wireless agents [6]

HEDONIC GAMES

Preference of a player for a coalition depends on the players in that coalition (a natural concern!)

Successful models for practical situations:

- research team formation [2]
- group activity scheduling [3]
- · coalition governments [4]

- cluster forming in social networks [5]
- distributed task allocation for wireless agents [6]

Generalization of classical problems like marriage market [7], roommate market and many-to-one market [8]

 π is Nash stable if every player i (weakly) prefers staying in $\pi(i)$ than moving to any other coalition alone

 π is Nash stable if every player i (weakly) prefers staying in $\pi(i)$ than moving to any other coalition alone

No agent can profit by switching to some other coalition unilaterally (stability!)

 π is Nash stable if every player i (weakly) prefers staying in $\pi(i)$ than moving to any other coalition alone

No agent can profit by switching to some other coalition unilaterally (stability!)

Formally, $\forall i \in N$ and $\forall C \in \pi \cup \phi$ such that $C \neq \pi(i)$

$$\pi(i) \succeq_i C \cup \{i\}$$

A non-empty coalition C is a blocking coalition for π if all players in C can profitably deviate in π to form C

$$C \succ_i \pi(i) \ \forall i \in C$$

A non-empty coalition C is a blocking coalition for π if all players in C can profitably deviate in π to form C

$$C \succ_i \pi(i) \ \forall i \in C$$

 π is core stable, if there exists no blocking coalition for π

Nash stability ⇒ core stability

Two is a company, three is a crowd [9], $N = \{1, 2, 3\}$

$$\{1,2\} \succ_1 \{1,3\} \succ_1 \{1,2,3\} \succ_1 \{1\}$$

$$\{2,3\} \succ_2 \{1,2\} \succ_2 \{1,2,3\} \succ_2 \{2\}$$

$$\{1,3\} \succ_3 \{2,3\} \succ_3 \{1,2,3\} \succ_3 \{3\}$$

Nash stability ⇒ core stability

Two is a company, three is a crowd [9], $N = \{1, 2, 3\}$

$$\{1,2\} \succ_1 \{1,3\} \succ_1 \{1,2,3\} \succ_1 \{1\}$$

$$\{2,3\} \succ_2 \{1,2\} \succ_2 \{1,2,3\} \succ_2 \{2\}$$

$$\{1,3\} \succ_3 \{2,3\} \succ_3 \{1,2,3\} \succ_3 \{3\}$$

 $\{\{1,2,3\}\}$ is (unique) Nash stable

No core stable partition

core stability ⇒ Nash stability

An undesired guest [9], $N = \{1, 2, 3\}$

$$\{1,2\}\succ_1 \{1\}\succ_1 \{1,2,3\}\succ_1 \{1,3\}$$

$$\{1,2\} \succ_2 \{2\} \succ_2 \{1,2,3\} \succ_2 \{2,3\}$$

$$\{1,2,3\} \succ_3 \{2,3\} \succ_3 \{1,3\} \succ_3 \{3\}$$

core stability ⇒ Nash stability

An undesired guest [9], $N = \{1, 2, 3\}$

$$\{1,2\} \succ_1 \{1\} \succ_1 \{1,2,3\} \succ_1 \{1,3\}$$

$$\{1,2\} \succ_2 \{2\} \succ_2 \{1,2,3\} \succ_2 \{2,3\}$$

$$\{1,2,3\} \succ_3 \{2,3\} \succ_3 \{1,3\} \succ_3 \{3\}$$

 $\{\{1,2\},\{3\}\}\$ is core stable

No Nash stable partition

Model real life situations as hedonic games

- · Model real life situations as hedonic games
- Existence of Nash stable or core stable partitions

- Model real life situations as hedonic games
- Existence of Nash stable or core stable partitions
- Complexity of determining existence of Nash stable or core stable partitions

- Model real life situations as hedonic games
- Existence of Nash stable or core stable partitions
- Complexity of determining existence of Nash stable or core stable partitions
- · Complexity of computing Nash stable or core stable partitions

SHARED PREFERENCE HEDONIC GAMES

MOTIVATION

Preference is an inherent property of the coalition

MOTIVATION

Preference is an inherent property of the coalition

The common preference relation \leq over coalitions is shared by all the players

HEDONIC GAME MODEL

Assign weights to coalitions via the weight function $w: 2^N \longrightarrow \mathbb{R}$ such that:

$$w(C) \le w(D) \Leftrightarrow C \le D$$

and

$$w(C) < w(D) \Leftrightarrow C \prec D$$

CORE STABLE PARTITION

Theorem

Every shared preference hedonic game (SPHG) always admits a core stable partition

CORE STABLE PARTITION

Theorem

Every shared preference hedonic game (SPHG) always admits a core stable partition

Proof.

Create a core stable partition iteratively. Choose the coalition with highest weight.

Consider the sub-game after removing the players in the chosen coalition. Continue doing this until no more players remain in the sub-game.

CORE STABLE PARTITION

Theorem

Every shared preference hedonic game (SPHG) always admits a core stable partition

Proof.

Create a core stable partition iteratively. Choose the coalition with highest weight.

Consider the sub-game after removing the players in the chosen coalition. Continue doing this until no more players remain in the subgame.

(Proof by induction)

A DETOUR

NASH STABILITY AND CONVERGENCE

STRATEGIC FORM GAMES

Strategic form game: (N, $\{S_i\}_{i\in N}$, $\{u_i\}_{i\in N}$)

STRATEGIC FORM GAMES

Strategic form game: $(N, \{S_i\}_{i \in N}, \{u_i\}_{i \in N})$

Utility functions: $\forall i \in N, u_i : S \equiv S_1 \times S_2 \dots \times S_n \longrightarrow \mathbb{R}$

STRATEGIC FORM GAMES

Strategic form game: $(N, \{S_i\}_{i \in N}, \{u_i\}_{i \in N})$

Utility functions: $\forall i \in N, u_i : S \equiv S_1 \times S_2 \dots \times S_n \longrightarrow \mathbb{R}$

Strategy profile: $s \equiv (s_1, s_2, \dots, s_n) \in S$ and $\forall i, s_i \in S_i$

Path: ($s^1, s^2, ...$) such that $\forall k > 1$, s^{k-1} and s^k differ in strategy of exactly one player i

Path: $(s^1, s^2, ...)$ such that $\forall k > 1$, s^{k-1} and s^k differ in strategy of exactly one player i

Improvement path: A path which is maximal and successive strategies occur due to profitable deviation

Path: $(s^1, s^2, ...)$ such that $\forall k > 1$, s^{k-1} and s^k differ in strategy of exactly one player i

Improvement path: A path which is maximal and successive strategies occur due to profitable deviation

$$\forall k > 1, \forall i \in N, \ u_i(s^{k-1}) < u_i(s^k)$$

Definition ([10])

A strategic form game has the *finite improvement property (FIP)* if every improvement path in the game is finite

Definition ([10])

A strategic form game has the *finite improvement property (FIP)* if every improvement path in the game is finite

Definition ([11])

A strategic form game is *weakly acylic (WA)* if for every strategy profile s, there exists atleast one finite improvement path

EXISTENCE OF NASH EQUILIBRIUM

Theorem

A Nash stable partition need not exist in every SPHG

EXISTENCE OF NASH EQUILIBRIUM

Theorem

A Nash stable partition need not exist in every SPHG

Proof.

(Counter example)
$$N = \{a, b\}$$
 and $w(\{a\}) < w(\{a, b\}) < w(\{b\})$

EXISTENCE OF NASH EQUILIBRIUM

Theorem

A Nash stable partition need not exist in every SPHG

Proof.

(Counter example)
$$N = \{a, b\}$$
 and $w(\{a\}) < w(\{a, b\}) < w(\{b\})$

Corollary

SPHG are not WA and do not have FIP

Coalition formation games \longrightarrow players want to collaborate

Coalition formation games \longrightarrow players want to collaborate

SPHG where all players prefer non-singleton coalitions

Coalition formation games \longrightarrow players want to collaborate

SPHG where all players prefer non-singleton coalitions

$$w(\{i\}) < w(C) \ \forall i \in N \ \text{and} \ C \neq \{j\} \ \text{for some} \ j \in N$$

Coalition formation games \longrightarrow players want to collaborate

SPHG where all players prefer non-singleton coalitions

$$w(\{i\}) < w(C) \ \forall i \in N \ \text{and} \ C \neq \{j\} \ \text{for some} \ j \in N$$

Zero weighted \longrightarrow offset weights to ensure singleton coalitions get lowest weights

Core stable partition construction still works!

Core stable partition construction still works!

Restriction of SPHG - Nash stable, WA, FIP?

Core stable partition construction still works!

Restriction of SPHG - Nash stable, WA, FIP?

Theorem

The grand coalition $\{N\}$ forms a trivial Nash stable partition in SPHG with zero weighted singleton sets

Core stable partition construction still works!

Restriction of SPHG - Nash stable, WA, FIP?

Theorem

The grand coalition $\{N\}$ forms a trivial Nash stable partition in SPHG with zero weighted singleton sets

Proof.

On unilateral deviation, player ends up in a singleton coalition!

NASH STABILITY AND CONVERGENCE

Theorem

SPHG with zero weighted singleton sets are not WA

NASH STABILITY AND CONVERGENCE

Theorem

SPHG with zero weighted singleton sets are not WA

Proof.

By counter example.

NASH STABILITY AND CONVERGENCE

Theorem

SPHG with zero weighted singleton sets are not WA

Proof.

By counter example.

Corollary

SPHG with zero weighted singleton sets do not have FIP

Theorem

A non-trivial Nash stable partition is not guaranteed to exist in the restricted class of shared preference hedonic games.

T	h	ρ	n	r	ρ	m
		·	v		·	

A non-trivial Nash stable partition is not guaranteed to exist in the restricted class of shared preference hedonic games.

Proof.

By counter example.

 \cdot A core stable partition exists in all SPHG

- · A core stable partition exists in all SPHG
- A Nash stable partition need not exist in SPHG, hence SPHG are not WA and do not have FIP

- · A core stable partition exists in all SPHG
- A Nash stable partition need not exist in SPHG, hence SPHG are not WA and do not have FIP
- In restricted SPHG, a trivial Nash stable partition exists

- · A core stable partition exists in all SPHG
- A Nash stable partition need not exist in SPHG, hence SPHG are not WA and do not have FIP
- In restricted SPHG, a trivial Nash stable partition exists
- · Restricted SPHG are not WA and do not have FIP

- · A core stable partition exists in all SPHG
- A Nash stable partition need not exist in SPHG, hence SPHG are not WA and do not have FIP
- In restricted SPHG, a trivial Nash stable partition exists
- · Restricted SPHG are not WA and do not have FIP
- A non-trivial Nash equilibrium need not exist in restricted SPHG

- · A core stable partition exists in all SPHG
- A Nash stable partition need not exist in SPHG, hence SPHG are not WA and do not have FIP
- In restricted SPHG, a trivial Nash stable partition exists
- · Restricted SPHG are not WA and do not have FIP
- A non-trivial Nash equilibrium need not exist in restricted SPHG

Future Work

Complexity of checking for existence of Nash equilibrium in SPHG and non-trivial Nash equilibrium in restricted SPHG

Jacques H Dreze and Joseph Greenberg.

Hedonic coalitions: Optimality and stability.

Econometrica: Journal of the Econometric Society, pages 987–1003, 1980.

José Alcalde and Pablo Revilla. **Researching with whom? stability and manipulation.** *Journal of Mathematical Economics*, 40(8):869–887, 2004.

Andreas Darmann, Edith Elkind, Sascha Kurz, Jérôme Lang, Joachim Schauer, and Gerhard Woeginger.

Group activity selection problem.

In *Internet and Network Economics*, pages 156–169. Springer, 2012.

Michel Le Breton and François Salanié.

Lobbying under political uncertainty.

Journal of Public Economics, 87(12):2589–2610, 2003.

🗎 Haris Aziz, Felix Brandt, and Paul Harrenstein.

Fractional hedonic games.

In Proceedings of the 2014 international conference on Autonomous agents and multi-agent systems, pages 5–12. International Foundation for Autonomous Agents and Multiagent Systems, 2014.

闻 Walid Saad, Zhu Han, Tamer Başar, Mérouane Debbah, and Are Hjørungnes.

Hedonic coalition formation for distributed task allocation among wireless agents.

Mobile Computing, IEEE Transactions on, 10(9):1327–1344, 2011.

David Gale and Lloyd S Shapley.

College admissions and the stability of marriage.

American mathematical monthly, pages 9–15, 1962.

Alvin E Roth and Marilda A Oliveira Sotomayor.

Two-sided matching: A study in game-theoretic modeling and analysis.

Number 18. Cambridge University Press, 1992.

The stability of hedonic coalition structures.

Games and Economic Behavior, 38(2):201–230, 2002.

Dov Monderer and Lloyd S Shapley.

Potential games.

Games and economic behavior, 14(1):124–143, 1996.

H Peyton Young.

The evolution of conventions.

Econometrica: Journal of the Econometric Society, pages 57–84, 1993.