TITLE HERE

In Partial Fulfillment of the Requirements for the Degree of degree ${\it degree}$

1st Semester A.Y. 2025-2026

by

Nmae

Abstract

Contents

Abstract							
1	Met	thodology	4				
	1.1	Parametric bootstrap	4				
	1.2	Nonrank-based method	5				
2	Intr	roduction	6				
	2.1	Background of the Study	6				
	2.2	Statement of the Problem	6				
	2.3	Objective of the Study	6				
	2.4	Study Hypothesis	6				
	2.5	Significance of the Study	6				
	2.6	Scope and Limitation	6				
	2.7	Definition of Terms	6				
3	Bac	kground	6				
4	{r,	<pre>child = "child/rrl.Rmd"} # #</pre>	6				
R	efere	nces	7				
$\mathbf{A}_{]}$	ppen	dices	7				

1 Methodology

1.1 Parametric bootstrap

Algorithm 1 Computation of Joint Confidence Region via Parametric Bootstrap

- 1: **for** $b = 1, 2, \dots, B$ **do**
- 2: Generate $\hat{\theta}_{bi}^* \sim N(\hat{\theta}_i, \sigma_i^2)$, i = 1, 2, ..., K and let $\hat{\theta}_{b(1)}, \hat{\theta}_{b(2)}, ..., \hat{\theta}_{b(K)}$ be the corresponding ordered values

	k = 1	k=2	 k = K
b=1	$\hat{\theta}_{1(1)}^*$	$\hat{ heta}_{1(2)}^*$	 $\hat{ heta}_{1(K)}^*$
b=2	$\hat{ heta}_{2(1)}^*$	$\hat{\theta}_{2(2)}^*$	 $\hat{ heta}_{2(K)}^*$
:	:	:	 :
b = B	$\hat{ heta}_{B(1)}^*$	$\hat{ heta}_{B(2)}^*$	 $\hat{\theta}_{B(K)}^*$

3: Compute

$$\hat{\sigma}_{b(k)}^* = \sqrt{\text{kth ordered value among } \left\{ \hat{\theta}_{b1}^{*2} + \sigma_1^2, \hat{\theta}_{b2}^{*2} + \sigma_2^2, \dots, \hat{\theta}_{bK}^{*2} + \sigma_K^2 \right\} - \hat{\theta}_{(k)}^{*2}}$$

4: Compute
$$t_b^* = \max_{1 \le k \le K} \left| \frac{\hat{\theta}_{b(k)}^* - \hat{\theta}_k^*}{\sigma_{b(k)}^*} \right|$$

- 5: end for
- 6: Compute the (1α) -sample quantile of $t_1^*, t_2^*, \dots, t_B^*$, call this \hat{t} .
- 7: The joint confidence region of $\theta_{(1)}, \theta_{(2)}, \dots, \theta_{(K)}$ is given by

$$\mathfrak{R} = \left[\hat{\theta}_{(1)} \pm \hat{t} \times \hat{\sigma}_{(1)}\right] \times \left[\hat{\theta}_{(2)} \pm \hat{t} \times \hat{\sigma}_{(2)}\right] \times \cdots \times \left[\hat{\theta}_{(K)} \pm \hat{t} \times \hat{\sigma}_{(K)}\right]$$

where $\hat{\sigma}_{(k)}$ is computed as

$$\hat{\sigma}_{(k)} = \sqrt{\text{kth ordered value among } \left\{\hat{\theta}_1^2 + \sigma_1^2, \hat{\theta}_2^2 + \sigma_2^2, \dots, \hat{\theta}_K^2 + \sigma_K^2\right\} - \hat{\theta}_{(k)}^2}$$

Algorithm 2 Computation of Coverage Probability for Parametric Bootstrap

For given values of $\theta_1, \theta_2, \dots, \theta_K$ and thus $\theta_{(1)}, \theta_{(2)}, \dots, \theta_{(K)}$

- 1: for replications = $1, 2, \ldots, 5000$ do
- 2: Generate $\hat{\theta}_i \sim N(\theta_i, \sigma_i^2)$, for i = 1, 2, ..., K
- 3: Compute the rectangular confidence region \Re using Algorithm 1.
- 4: Check if $(\theta_{(1)}, \theta_{(2)}, \dots, \theta_{(K)}) \in \mathfrak{R}$ and compute $T = \prod_{k=1}^{K} |\Lambda_{Ok}|$.
- 5: end for
- 6: Compute the proportion of times that the condition in step 4 is satisfied and the average of T

1.2 Nonrank-based method

The nonrank-based method accounts for potential correlation among items being ranked. For this case, an exchangeable correlation, ρ (See Equation 1.1.), is assumed and used in the calculation of the variance covariance matrix (See Equation 1.2.).

$$\boldsymbol{\rho} = (1 - \rho) \mathbf{I}_K + \rho \mathbf{1}_K \mathbf{1}_K' \tag{1.1}$$

$$\Sigma = \Delta^{1/2} \rho \Delta^{1/2} \tag{1.2}$$

where $\Delta = \text{diag}\{\sigma_1^2, \sigma_2^2, \dots, \sigma_K^2\}$, with known σ_k 's and ρ is studied for 0.1, 0.5, 0.9.

Algorithm 3 Computation of Joint Confidence Region via Nonrank-based Method Let the data consist of $\hat{\theta}_1, \dots, \hat{\theta}_K$ and suppose Σ is known

- 1: **for** b = 1, 2, ..., B **do**
- 2: Generate $\hat{\boldsymbol{\theta}}_b^* \sim N_K \left(\hat{\boldsymbol{\theta}}, \boldsymbol{\Sigma} \right)$ and write $\hat{\boldsymbol{\theta}}_b^* = \left(\hat{\theta}_{b1}^*, \hat{\theta}_{b2}^*, \dots, \hat{\theta}_{bK}^* \right)'$
- 3: Compute $t_b^* = \max_{1 \le j \le K} \left| \frac{\hat{\theta}_{bj}^* \hat{\theta}_j^*}{\sigma_j} \right|$
- 4: end for
- 5: Compute the (1α) -sample quantile of $t_1^*, t_2^*, \dots, t_B^*$, call this \hat{t} .
- 6: The joint confidence region of $\theta_1, \theta_2, \dots, \theta_K$ is given by

$$\mathfrak{R} = \left[\hat{\theta}_1 \pm \hat{t} \times \sigma_1\right] \times \left[\hat{\theta}_2 \pm \hat{t} \times \sigma_2\right] \times \cdots \times \left[\hat{\theta}_K \pm \hat{t} \times \sigma_K\right]$$

Algorithm 4 Computation of Coverage Probability for Nonrank-based Method

For given values of $\theta_1, \theta_2, \dots, \theta_K$ and Σ

- 1: for replications = $1, 2, \dots, 5000$ do
- 2: Generate $\hat{\boldsymbol{\theta}} \sim N_K(\boldsymbol{\theta}, \boldsymbol{\Sigma})$
- 3: Compute the rectangular confidence region \Re using Algorithm 3.
- 4: Check if $(\theta_1, \theta_2, \dots, \theta_K) \in \mathfrak{R}$ and compute $T = \prod_{k=1}^K |\Lambda_{Ok}|$.
- 5: end for
- 6: Compute the proportion of times that the condition in step 4 is satisfied and the average of T

2 Introduction

- 2.1 Background of the Study
- 2.2 Statement of the Problem
- 2.3 Objective of the Study
- 2.4 Study Hypothesis
- 2.5 Significance of the Study
- 2.6 Scope and Limitation
- 2.7 Definition of Terms
- 3 Background
- 4 {r, child = "child/rrl.Rmd"} # #

THIS IS Rizzo (2008) and Klein et al. (2020)

References

Klein, M., Wright, T., & Wieczorek, J. (2020). A joint confidence region for an overall ranking of populations.

Rizzo, M. (2008). Statistical computing with r.

Appendices