Álgebra lineal numérica Fundamentos de Álgebra Lineal

Mg. Roger Mestas Chávez

Ciencia de la Computación

Setiembre, 2020

Espacios vectoriales

Definición

Un espacio vectorial E sobre el campo $K = \mathbb{R} \circ \mathbb{C}$ consiste de un conjunto no vacío con dos operaciones: adición $E \times E \stackrel{+}{\to} E$ y multiplicación por escalar $K \times E \stackrel{.}{\to} E$ tales que las siguientes propiedades se satisfacen:

- 1. $u, v \mapsto u + v \in E$;
- 2. $u + (v + w) = (u + v) + w, \forall u, v, w \in E$;
- 3. $u + v = v + u, \forall u, v \in E;$
- **4**. \exists 0 ∈ *E* tal que 0 + *v* = *v* + 0 = *v*, \forall *v* ∈ *E*;
- 5. Dado $v \in E$, $\exists (-v) \in E$ tal que v + (-v) = 0;
- **6.** $\alpha \in K = \mathbb{R} \circ \mathbb{C}, v \in E \mapsto \alpha v \in E$;
- 7. $1v = v, \forall v \in E$;
- 8. $(\alpha\beta) \mathbf{v} = \alpha (\beta \mathbf{v}), \forall \alpha, \beta \in \mathbf{K}, \mathbf{v} \in \mathbf{E};$
- 9. $\alpha(u+v) = \alpha u + \alpha v, \forall \alpha \in K, v \in E$;
- 10. $(\alpha + \beta) \mathbf{v} = \alpha \mathbf{v} + \beta \mathbf{v}, \forall \alpha, \beta \in \mathbf{K}, \mathbf{v} \in \mathbf{E}.$

Ejemplos

Los siguientes conjuntos:

$$\mathbb{R}^0 = \left\{0: 0 \in \mathbb{R}\right\}, \; \mathbb{R}^1 = \mathbb{R}, \; \mathbb{R}^2 = \mathbb{R} \times \mathbb{R} \; \textit{y} \; \mathbb{R}^3 = \mathbb{R}^2 \times \mathbb{R}$$

con la suma y multiplicación por escalar usuales en $\ensuremath{\mathbb{R}}$ son espacios vectoriales reales.

Ejemplo

 $E = \mathbb{R}^{m \times n}$, el conjunto de las matrices reales $m \times n$ con la suma y producto por un escalar es un espacio vectorial real.

Ejemplo

 $E = \mathcal{P}_n$, el conjunto de los polinomios con coeficientes reales, de grado menor o igual a n es un espacio vectorial real.

Subespacios vectoriales

Definición

 $F \subset E$ se llama un subespacio vectorial de E, si F es un espacio vectorial sobre \mathbb{R} bajo las operaciones de adición vectorial y multiplicación por escalares definidas en E.

Teorema

 $F \subset E$ es dicho un subespacio vectorial de E si y solo si

- **1**. 0 ∈ *F*.
- 2. Si $u, v \in F$, entonces $u + v \in F$.
- 3. Si $v \in F$, entonces $\alpha v \in F$, $\forall \alpha \in \mathbb{R}$.

Ejemplo

En $E = \mathbb{R}^2$, un subespacio vectorial F, es una recta de este plano que pasa por el origen.

Ejemplo

En $E = \mathbb{R}^3$, un subespacio vectorial F, es un plano pasando por el origen.

Ejemplo

$$\mathcal{F}\left(\mathbb{R},\mathbb{R}
ight)\supset\mathcal{C}^{k}\left(\mathbb{R},\mathbb{R}
ight)\supset\mathcal{C}^{k+1}\left(\mathbb{R},\mathbb{R}
ight)\supset\ldots\supset\mathcal{C}^{\infty}\left(\mathbb{R},\mathbb{R}
ight)$$

Hiperplanos

Si $a_1, \ldots, a_n \in \mathbb{R}$ consideremos un conjunto de la forma:

$$\mathcal{H} = \{ v = (x_1, \dots, x_n) : a_1 x_1 + \dots + a_n x_n = 0 \}$$

se llama hiperplano.

Notar que ${\mathcal H}$ es un subespacio vectorial de

$$\mathbb{R}^{n} = \{(x_{1}, \ldots, x_{n}) : x_{i} \in \mathbb{R}, i = 1, \ldots, n\}$$

Si E es un espacio vectorial y $X \subset E$ con $X = \{v_1, \dots, v_m\}$, entonces

$$span X = \{\alpha_1 v_1 + \ldots + \alpha_m v_m : v_1, \ldots, v_m \in X \ y \ \alpha_1, \ldots, \alpha_n \in \mathbb{R}\}$$
$$X(S) = span X$$

Ejemplos

- 1. Si $X = \{v\}$, entonces el spanX es la recta pasando por el origen y pasando por el vector v.
- 2. Si u = (a, b), v = (c, d) con $ad bc \neq 0$, entonces

$$\mathbb{R}^2 = \operatorname{span} \{u, v\}$$

Notar que una condición necesaria y suficiente para que u sea múltiplo de v (es decir, $u = \alpha v$ o $v = \alpha u$ en que $\alpha \in \mathbb{R}$) es que

$$\det \left[\begin{array}{cc} a & b \\ c & d \end{array} \right] = 0$$

Ejemplo

Si $E = \mathbb{R}^n$ y $X = \{e_1, \dots, e_n\}$, entonces

$$\operatorname{span} X = \mathbb{R}^n$$

en que

$$(e_i)_j = \begin{cases} 1, & \text{si } i = j \\ 0, & \text{si } i \neq j \end{cases}$$

Además,

$$x = (x_1, \ldots, x_n) = \sum_{i=1}^n x_i e_i$$

se puede identificar con un vector columna

$$\left[\begin{array}{c} X_1 \\ \vdots \\ X_n \end{array}\right] \in \mathbb{R}^{n \times 1}$$

Combinación lineal y sistemas de ecuaciones lineales

Considerar
$$A = \left[egin{array}{ccc} a_{11} & \dots & a_{1n} \ \vdots & \ddots & \vdots \ a_{m1} & \dots & a_{mn} \end{array}
ight] \in \mathbb{R}^{m \times n}$$
 y

$$\begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{bmatrix}, \begin{bmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{m2} \end{bmatrix}, \dots, \begin{bmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{bmatrix} \in \mathbb{R}^{m \times 1} \cong \mathbb{R}^m$$

Notar que
$$(x_1, \ldots, x_m) \leftrightarrow \begin{bmatrix} x_1 \\ \vdots \\ x_m \end{bmatrix}$$
.

El siguiente sistema:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$
(1)

posee solución $(x_1, \ldots, x_n) \in \mathbb{R}^n$ si y solo si $b = (b_1, b_2, \ldots, b_m)$ es combinación lineal

$$egin{aligned} v_1 &= (a_{11}, a_{21}, \dots, a_{m1}) \ v_2 &= (a_{12}, a_{22}, \dots, a_{m2}) \ & \vdots \ v_n &= (a_{1n}, a_{2n}, \dots, a_{mn}) \end{aligned}$$

Se puede poner el sitema 1 de la siguiente forma:

$$\begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{bmatrix} x_1 + \begin{bmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{mn} \end{bmatrix} x_2 + \ldots + \begin{bmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{bmatrix} x_n = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix} \in \mathbb{R}^{m \times 1} \cong \mathbb{R}^m$$

Considerar

$$A = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{bmatrix} \in \mathbb{R}^{m \times n} \text{ y } b = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix} \in \mathbb{R}^{m \times 1}$$

para obtener Ax = b.

Notar que $(Ax)_i = \sum_{j=1}^n a_{ij}x_j$. La compenente i es dada por:

$$\sum_{j=1}^n a_{ij}x_j=b_i,\ i=1,\ldots,m$$

Si F_1 , F_2 son subespacios de E, entonces

$$F_1 + F_2 = \{u + v : u \in F_1, v \in F_2\}$$

es un subespacio vectorial de E.

Suma directa

Definición

Si $F_1+F_2=E$ y $F_1\cap F_2=\{0\},$ decimos que

$$E = F_1 \oplus F_2$$

es la suma directa de F_1 y F_2 .

Teorema

Sean F_1 , $F_2 \subset F$ subespacios vectoriales de E, entonces son equivalentes:

- 1. $F = F_1 \oplus F_2$
- 2. $\forall w \in F$ se puede escribir de modo único como $w = v_1 + v_2$ con $v_1 \in F_1$, $v_2 \in F_2$.

Variedades afín

Un conjunto $\mathcal V$ es dicho una variedad afín si y solo si la recta r que une cualquiera de dos puntos de $\mathcal V$ está completamente contenida en $\mathcal V$, en que

$$r = \{(1-t)x + ty : t \in \mathbb{R}\}$$

Teorema

Sea $\mathcal V$ una variedad afín no vacío del espacio vectorial E, entonces $\exists ! F \subset E$, subespacio vectorial tal que $\forall x \in \mathcal V$ tenemos

$$\mathcal{V} = \mathbf{X} + \mathbf{F} = \{\mathbf{X} + \mathbf{V} : \mathbf{V} \in \mathbf{F}\}$$

Independencia lineal

Definición

Si E es un espacio vectorial, $X \subset E$ es dicho linealmente independiente cuando ningun vector $v \in X$ es combinación lineal de otros elementos de X. Caso que $X = \{v\}$ es dicho linealmente independiente si $v \neq 0$.

Ejemplo

 $\{\left(1,0\right),\left(0,1\right),\left(x_{1},x_{2}\right)\}$ no es linealmente independiente en $\mathbb{R}^{2}.$

Ejemplo

 $\{e_1,\ldots,e_n\}\subset\mathbb{R}^n$ es linealmente independiente.

Teorema

1. Si X es un conjunto linealmente independiente de E y

$$\alpha_1 \mathbf{v}_1 + \ldots + \alpha_m \mathbf{v}_m = \mathbf{0}$$

con
$$v_1, \ldots, v_m \in X$$
, $\alpha_1, \ldots, \alpha_m \in \mathbb{R}$, entonces

$$\alpha_1 = \alpha_2 = \ldots = \alpha_m = 0$$

2. Si la única combinación lineal nula de vectores de $X \subset E$ es aquella cuyos coeficientes son todos iguales a cero, entonces X es linealmente independiente.

Corolario

Si

$$v = \alpha_1 v_1 + \ldots + \alpha_m v_m$$

= $\beta_1 v_1 + \ldots + \beta_m v_m$

 $con \ v_1, \dots, v_m \in X \ \textit{linealmente independiente, entonces}$

$$\alpha_1 = \beta_1, \dots, \alpha_m = \beta_m$$

Ejemplo

 $\{1, x, x^2, \dots, x^n\}$ es linealmente independiente en \mathcal{P}_n .

Teorema

Sean $v_1, v_2, ..., v_n$ elementos no nulos del espacio vectorial E si ninguno de ellos es combinación lineal de los anteriores, entonces $\{v_1, ..., v_m\}$ es linealmente independiente.

Base

Definición

Un conjunto $B \subset E$ linealmente independiente que genera E es dicho una base de E.

Ejemplo

 $B = \{e_1, \dots, e_n\}$ es la base canónica de \mathbb{R}^n .

Ejemplo

 $B = \{1, x, \dots, x^n\}$ es la base canónica de \mathcal{P}_n .

Dimensión

El número de elementos de una base de un espacio vectorial \boldsymbol{E} es llamado dimensión de \boldsymbol{E} y es denotado por:

 $\dim E$

Ejemplo

 $B = \{(1,0),(0,1)\}$ y $\beta = \{(1,1),(0,1)\}$ son bases de \mathbb{R}^2 . Entonces dim $\mathbb{R}^2 = 2$.

$$B = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\} \text{ es la base canónica de } \mathbb{R}^{2 \times 2}. \text{ Entonces } \dim \mathbb{R}^{2 \times 2} = 4.$$

Ejemplo

 $E = \mathbb{R}^{\infty} = \{(x_1, x_2, \dots, x_n, \dots) : x_i \in \mathbb{R}, i = 1, 2, \dots \in \mathbb{R}\}$ es un espacio vectorial real de dimensión infinita.

Lema

Sistema lineal homogéneo con mas incógnitas que ecuaciones posee una solución no trivial.

Teorema

Si v_1, \ldots, v_m generan E, entonces cualquier conjunto con mas de m vectores en E es linealmente dependiente.

Teorema

 $Si \dim E = n$, entonces

- 1. Todo conjunto *X* de generadores de *E* contiene una base.
- 2. Todo conjunto linealmente independiente $\{v_1, \ldots, v_n\} \subset E$ está conteniendo una base.
- 3. Todo $F \subset E$ subespacio vectorial de E tiene dim $F \leq n$.
- 4. Si $F \subset E$ es subespacio vectorial con dim F = n, entonces F = E.

Transformación lineal

Definición

Sean E y F dos espacios vectoriales. $T: E \to F$ es dicha lineal si satisfacen las siguientes condiciones:

- 1. $T(u + v) = T(u) + T(v), \forall u, v \in E$.
- 2. $T(\alpha u) = \alpha T(u), \forall u \in E, \forall \alpha \in \mathbb{R}.$

Ejemplo

Si $\lambda \in \mathbb{R}$ es fijo, entonces $T : E \to E$ dada por $T(v) = \lambda v$ es una transformación lineal.

Ejemplo

Sean $E_1, E_2 \subset E$ dos subespacios vectoriales de E y $T: E = E_1 \oplus E_2 \to E = E_1 \oplus E_2$ dada por $T(u_1 + u_2) = u_1$ con $u_1 \in E_1$, $u_2 \in E_2$ es una transformación lineal.

Ejemplo

 $I_E: E \to E$ definida por $I_E(x) = x$, $\forall x \in E$ es una transformación y se llama **transformación lineal identidad**.

Ejemplo

 $O_E: E \to E$ definida por $O_E(x) = 0$, $\forall x \in E$ es una transformación lineal y se llama **transformación nula**.

Ejemplo

Si v_0 es fijo, entonces $S: E \to E$ dada por $S(u) = u + v_0$ no es una transformación, pero es la tranformación afín.

Si $R: E \to F$ y $T: E \to F$ son dos transformaciones lineales, entonces definimos

$$(R+T)u=R(u)+T(u), u\in E$$

Si $\alpha \in \mathbb{R}$, entonces

$$(\alpha T)(u) = \alpha (T(u))$$

Si $R, T \in \mathcal{L}(E, F)$, entonces $(R + T) \in \mathcal{L}(E, F)$.

Notar que $\mathcal{L}(E,F) \subset \mathcal{F}(E,F)$. Y si F = E, entonces

$$\mathcal{L}(E,E) = \mathcal{L}(E)$$

 $\mathcal{L}\left(\mathcal{E},\mathbb{R}
ight)$

es el **espacio dual** de E.

Teorema

Sean E, F espacios vectoriales, B una base de E, supongamos que tenemos

$$u \in B \longmapsto u'(u) \in F$$

Entonces, existe una única transformación lineal $T: E \to F$ tal que T(u) = u'(u), $\forall u \in B$.

En $\mathcal{L}(\mathcal{P}_n,\mathbb{R})$ podemos construir

$$T: p \rightarrow 0$$

Fijar $x \in \mathbb{R}$, podemos construir

$$T_x = p \in \mathcal{P}_n \mapsto p(x)$$

Si $F = \mathcal{F}(X, E)$, entonces

$$f \in F \mapsto f(x)$$

Si $(x_1, \ldots, x_n) \in \mathbb{R}^n$, entonces

$$\{1,\ldots,n\} \rightarrow \mathbb{R}$$
 $i \in \{1,\ldots,n\} \longmapsto x_i$

Base canónica $i_0 \in \{1, 2, \dots, n\}$

$$(e_{i_0})_i = \begin{cases} 1, & \text{si } i = i_0 \\ 0, & \text{si } i \neq i_0 \end{cases}$$

La matriz de una transformación lineal

Recordemos que si $\beta = \{e_1, \dots, e_n\} \subset \mathbb{R}^n$ es la base canónica de \mathbb{R}^n , entonces

$$x = \sum_{j=1}^{n} x_j e_j$$

Si
$$T \in \mathcal{L}\left(\mathbb{R}^n, \mathbb{R}^m\right)$$
 y

$$\mathbb{R}^{m \times 1} \ni (T(e_i)) = (a_{1i}, a_{2i}, \dots, a_{mi}) \ j = 1, \dots, n$$

entonces

$$T(x) = \sum_{j=1}^{n} \begin{bmatrix} a_{1j} \\ \vdots \\ a_{mj} \end{bmatrix} x_{j} = \begin{bmatrix} \sum_{j=1}^{n} a_{ij} x_{j} \\ \vdots \\ \sum_{j=1}^{n} a_{mj} x_{j} \end{bmatrix}$$

$$(a_{ij}) i = 1, \dots, m$$

$$j = 1, \dots, n$$

Ejemplo

Si $T: \mathbb{R}^2 \to \mathbb{R}^2$ es una transformación lineal tal que $T(1,1)=(2,1),\ T(1,-1)=(1,2).$ Hallar T(x,y).

Ejemplo

Sea $T: \mathbb{R}^3 \to \mathbb{R}^2$ tal que T(x,y,z) = (2x+y-z,3x-2y+4z) y sean $\beta = \{(1,0,0),(0,1,0),(0,0,1)\}$ y $\beta' = \{(1,0),(0,1)\}$, calcular $[T]_{\beta'}^{\beta}$.

Ejemplo

Sea $T: \mathcal{P}_1 \to \mathcal{P}_1$ tal que T(ax+b) = (a-b)x - a + 3b, hallar la matriz de la transformación lineal en relación a las base canónica.