

ВЫСШАЯ ШКОЛА ЭКОНОМИКИ

НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ

Эконометрика

Лекция 10 Ошибки спецификации модели регрессии

Вакуленко Е.С.

д.э.н., доцент департамента прикладной экономики

evakulenko@hse.ru

«Регрессионный анализ – это своего рода водородная бомба в арсенале статистики».

Ч. Уилан

План

- Ошибки спецификации
- Пропущенные регрессоры в модели
- Лишние регрессоры в модели
- Приложение: модель Минцера для заработной платы
- Квадратичные модели и модели с перекрестными переменными
- Тест Рамсея

Пропущенные регрессоры в модели

Теорема Гаусса-Маркова

- Если выполнены предположения для случайного члена $(E(\epsilon_i) = 0, Var(\epsilon_i) = \sigma^2, Cov(\epsilon_i, \epsilon_j) = 0,$ случайный член независим от объясняющих переменных)
- Модель регрессии правильно специфицирована
 - Нет пропущенных или лишних переменных
 - Выбрана правильная функциональная форма
- Х_і детерминированы и не все равны между собой

То оценки метода наименьших квадратов эффективны в классе линейных несмещённых оценок.

Теорема Гаусса-Маркова

- Если выполнены предположения для случайного члена $(E(\epsilon_i) = 0, Var(\epsilon_i) = \sigma^2, Cov(\epsilon_i, \epsilon_j) = 0,$ случайный член **независим** от объясняющих переменных)
- Модель регрессии правильно специфицирована
 - Нет пропущенных или лишних переменных
 - Выбрана правильная функциональная форма
- Х_і детерминированы и не все равны между собой

То оценки метода наименьших квадратов эффективны в классе диной:--

Что произойдет с оценками МНК, если будет нарушено требование о правильной спецификации?

Ошибки спецификации

- Пропуск важной переменной
- Включение лишней переменной
- Выбор неправильной функциональной формы

Пример про гольф

• Игроки в гольф чаще болеют сердечно-сосудистыми заболеваниями, раком и артритом.

Пример про гольф

- Игроки в гольф чаще болеют сердечно-сосудистыми заболеваниями, раком и артритом.
- Пропущена важная переменная возраст!
- Не гольф убивает людей, а старость.
- Включили возраст и получили:
- Для людей одного и того же возраста игра в гольф может стать профилактикой серьезных заболеваний.

Пример со школами

- Задача: объяснить качество школ
- Зависимая переменная: результаты экзаменов
- Объясняющая переменная: расходы школы
- Результат: положительная корреляция.

Пример со школами

- Задача: объяснить качество школ
- Зависимая переменная: результаты экзаменов
- Объясняющая переменная: расходы школы
- Результат: положительная корреляция.
- Что пропущено?
- Способности учеников (уровень образования родителей)
- Социально-экономическое положение учащихся

Пропуск важной переменной

- Оценки коэффициентов регрессии смещены!
- Оценки дисперсий коэффициентов регрессии также смещены!
- t и F статистики рассчитываются неправильно
- Диагностика: тест Рамсея

Ошибки спецификации: невключение существенной переменной

$$Y = \alpha + \beta_1 X_1 + \beta_2 X_2 + \varepsilon$$
 $\hat{Y} = \hat{\alpha} + \hat{\beta}_1 X_1$

$$E(\hat{\beta}_{1}) = \beta_{1} + \frac{\beta_{2} \frac{\sum (X_{1i} - \bar{X}_{1}) (X_{2i} - \bar{X}_{2})}{\sum (X_{1i} - \bar{X}_{1})^{2}}}{\sum (X_{1i} - \bar{X}_{1})^{2}}$$

Смещение в коэффициенте

Ошибки спецификации: невключение существенной переменной

Пропуск существенной переменной

Истинная модель (1)

$$Y = X\beta + Z\gamma + \varepsilon$$

Оцениваемая модель (2)

$$Y = X\beta + \varepsilon$$

Оценки «длинной» модели (1)

Оценки коэффициентов

$$\hat{\beta}^{(1)} = (X'X)^{-1}X'Y - LM_Z^{-1}Z'M_XY$$

$$\hat{\gamma}^{(1)} = M_Z^{-1}Z'M_XY$$

Ковариационная матрица оценок коэффициентов

$$V\begin{pmatrix} \hat{\beta}^{(1)} \\ \hat{\gamma}^{(1)} \end{pmatrix} = \sigma_{\varepsilon}^{2} \begin{bmatrix} X'X & X'Z \\ Z'X & Z'Z \end{bmatrix}^{-1} = \sigma_{\varepsilon}^{2} \begin{bmatrix} (X'X)^{-1} + LM_{Z}^{-1}L' & -LM_{Z}^{-1} \\ -M_{Z}^{-1}L' & M_{Z}^{-1} \end{bmatrix}$$

$$M_Z = I - Z (Z'Z)^{-1} Z'$$
где $M_X = I - X (X'X)^{-1} X'$
 $L = (X'X)^{-1} X'Z$

На заметку: обращение блочных матриц

Теорема [Фробениус]. Пусть имеется блочная квадратная матрица вида

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix}$$
 ,

где матрица A — квадратная порядка k, а матрица D — квадратная порядка ℓ . Тогда

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix}^{-1} = \begin{pmatrix} A^{-1} + A^{-1}BK^{-1}CA^{-1} & -A^{-1}BK^{-1} \\ -K^{-1}CA^{-1} & K^{-1} \end{pmatrix} ,$$

где матрица

$$K = D - CA^{-1}B$$

называется **шуровским дополнением** κ подматрице A. Здесь предполагается, что матрицы A и K — неособенные.

=> При $B=\mathbb{O}$ имеем:

$$\begin{pmatrix} A & \mathbb{O} \\ C & D \end{pmatrix}^{-1} = \begin{pmatrix} A^{-1} & \mathbb{O} \\ -D^{-1}CA^{-1} & D^{-1} \end{pmatrix}$$
,

если матрицы A и D — неособенные.

Доказательство. Будем искать

Оценки «короткой» модели (2)

Оценки коэффициентов

$$\hat{\boldsymbol{\beta}}^{(2)} = (XX)^{-1}XY$$

Ковариационная матрица оценок коэффициентов

$$V(\hat{\beta}^{(2)}) = \sigma_{\varepsilon}^{2} (XX)^{-1}$$

Свойства оценок коэффициентов

Исследование свойств оценок коэффициентов модели (2): $\hat{\beta}^{(2)} = (XX)^{-1}XY^{Y=X\beta+Z\gamma+\varepsilon} = \beta + (XX)^{-1}XZ\gamma + (XX)^{-1}X'\varepsilon$

Оценка оказывается смещенной:
$$E\left(\hat{\beta}^{(2)}\right) = \beta + (X'X)^{-1}X'Z\gamma + (X'X)^{-1}X'E\left(\varepsilon\right) = \beta + (X'X)^{-1}X'Z\gamma \neq \beta$$

Смещение $(X'X)^{-1}X'Z\gamma$ не исчезает при увеличении объема выборки, оценка становится несостоятельной Интерпретация смещения: произведение коэффициентов регрессий Z на X и истинного значения коэффициентов у.

Всегда ли будет смещение? X'Z=0

Если X и Z ортогональны, то есть в этом случае смещения не будет, но чем значительнее κ

Свойства ковариационной матрицы оценок коэффициентов

Исследование свойств ковариационной матрицы оценок коэффициентов:

$$V\left(\widehat{\beta}^{(2)}\right) = \sigma_{\varepsilon}^{2} (X'X)^{-1} \neq V\left(\widehat{\beta}^{(1)}\right) = \sigma_{\varepsilon}^{2} \left[(X'X)^{-1} + LM_{Z}^{-1}L' \right] =$$

$$= \sigma_{\varepsilon}^{2} \left[(X'X)^{-1} + \left(X'X\right)^{-1} X'Z \left(I - Z\left(Z'Z\right)^{-1}Z'\right)^{-1} Z'X \left(X'X\right)^{-1} \right]$$

Ковариационная матрица вычисляется неверно: ее диагональные элементы занижены по сравнению с теоретическими значениями

Всегда ли будет смещение?

Если XZ=0, в этом случае смещения не будет, но чем значительнее корреляция между X и Z, тем серьезнее смещение

Оценка дисперсии регрессии

Оценка дисперсии регрессии

$$\left(\hat{\sigma}_{\varepsilon}^{2}\right)^{(2)} = \frac{RSS^{(2)}}{n-k} = \frac{e^{(2)'}e^{(2)}}{n-k} = \frac{\left(Y - X\hat{\beta}^{(2)}\right)'\left(Y - X\hat{\beta}^{(2)}\right)}{n-k} = \frac{Y'M_{x}Y}{n-k}$$

Оценка оказывается смещенной:

$$E\left\{\left(\hat{\sigma}_{\varepsilon}^{2}\right)^{(2)}\right\} = \frac{E\left\{\left(X\beta + Z\gamma + \varepsilon\right)' M_{x} \left(X\beta + Z\gamma + \varepsilon\right)\right\}_{M_{x}X\beta = 0}}{n - k} = \frac{E\left\{\left(Z\gamma + \varepsilon\right)' M_{x} \left(Z\gamma + \varepsilon\right)\right\}_{E(M_{x}\varepsilon) = 0}}{n - k} = \frac{E\left(\varepsilon' M_{x}\varepsilon\right) + \gamma' Z' M_{x} Z\gamma}{n - k} = \frac{\sigma_{\varepsilon}^{2} tr M_{x} + \gamma' Z' M_{x} Z\gamma}{n - k} = \sigma_{\varepsilon}^{2} + \frac{\gamma' Z' M_{x} Z\gamma}{n - k} \neq \sigma_{\varepsilon}^{2}$$

Модель Минцера

- Зависимость заработной платы от индивидуальных характеристик работника.
- Расширение модели: характеристики предприятия, отрасли, макро переменные и т.д.
- Базовая модель:

$$\ln wage_i = \alpha + \beta_1 S_i + \beta_2 EXP_i + \beta_3 EXP_i^2 + \varepsilon_i$$

Inwage – логарифм почасовой заработной платы;

S — число лет обучения EXP — опыт работы.

Пример. Модель заработной платы

$$\ln \widehat{wage}_i = 0.36 + 0.13S_i + 0.04EXP_i$$

Inwage – логарифм почасовой заработной платы, S – число лет обучения, EXP – опыт работы

Интерпретация полулогарифмической модели

$$\ln \widehat{wage}_i = 0.36 + 0.13S_i + 0.04EXP_i$$

- При увеличении X на 1 ед. измерения Y изменится на $(e^{\beta}-1)\cdot 100\%$
- Увеличение числа лет обучения на 1 год приводит к росту заработной платы на 13.9%
- Увеличение опыта работы на 1 год приводит к увеличению заработной платы на 4%

$$\ln \widehat{wage}_i = 0.36 + 0.13S_i + 0.04EXP_i$$

Корреляция между S и

EXP

	•	י וע
	S	EXP
S	1.0000	
EXP	-0.2179	1.0000

$$E\left(\hat{eta}_{1}
ight)=eta_{1}+eta_{2}rac{\sum\left(S_{i}-ar{S}
ight)\left(EXP_{i}-ar{EXP}
ight)}{\sum\left(S_{i}-ar{S}
ight)^{2}}$$

Если опущена переменная EXP, то смещение коэффициента перед переменной S будет отрицательным, т.к. оценка коэффициента β_2 положительная, а коэффициент корреляции S и EXP отрицательный .

$$\ln \widehat{wage}_i = 0.36 + 0.13S_i + 0.04EXP_i$$

Корреляция между S и

EXP

l l	•	1 12		
	S	EXP		
S	1.0000			
EXP	-0.2179	1.0000		

$$E\left(\hat{\beta}_{2}\right) = \beta_{2} + \beta_{1} \frac{\sum \left(EXP_{i} - \overline{EXP}\right)\left(S_{i} - \overline{S}\right)}{\sum \left(EXP_{i} - \overline{EXP}\right)^{2}}$$

Аналогично, если пропущена переменная S, то оценка коэффициента перед переменной EXP будет смещена вниз.

Оценка полной модели

$$\ln \widehat{wage}_i = 0.36 + 0.13S_i + 0.04EXP_i \ (0.17) \ (0.01) \ (0.01)$$

Оценка модели без опыта работы

$$\ln \widehat{wage}_i = 1.29 + 0.11S_i \ (0.13) \ (0.01)$$

Оценка модели без образования

$$\ln \widehat{wage}_i = 2.45 + 0.02EXP_i \ (0.1) \ (0.01)$$

Смещение в случае невключения одной из переменных S или EXP действительно является отрицательным.

Включение лишней переменной

Важное предостережение

- Боясь пропустить важную переменную, не следует наращивать число регрессоров, включая их без особого основания.
- Какая-то из них по чистой случайности может оказаться значимой, хотя на самом деле это не так.
- Сложно распознать, какая из них действительно лишняя.
- Нужна экономическая теория!

Включение лишней переменной

- Оценки коэффициентов регрессии несмещенные
- Оценки дисперсий коэффициентов смещены

- Оценки коэффициентов неэффективные
- Диагностика: F-тест на группу незначимых переменных

Ошибки спецификации: включение лишней переменной

$$Y = \alpha + \beta_1 X_1 + \varepsilon$$

Истинная модель

$$\hat{Y} = \hat{lpha} + \hat{eta}_1 X_1 + \hat{eta}_2 X_2$$
 модель

Оценивается такая

$$Y = \alpha + \beta_1 X_1 + 0X_2 + \varepsilon$$

Но в истинной модели нет фактора X_2

Ошибки спецификации: включение лишней переменной

При включении лишней переменной X_2 увеличивается оценка дисперсии коэффициента перед переменной X_1 . Добавляется множитель $1 / (1 - r^2)$, где r — коэффициент корреляции между X_1 и X_2 . Чем больше корреляция, тем больше дисперсия.

$$\sigma_{\hat{eta}_1}^2 = rac{\sigma_arepsilon^2}{\sum \left(X_{1i} - ar{X}_1
ight)^2} imes rac{1}{1 - r_{X_1,X_2}^2}$$

По данным 1995 г. US Consumer Expenditure Survey для 868 домохозяйств:

$$LN\widehat{FDHO} = 4.72 + 0.29LNEXP + 0.49LNSIZE \\ (0.22) \ (0.02) \ \ (0.03)$$

 $R^2 = 0.52$

LNFDHO – логарифм ежегодных расходов домохозяйств на продукты домашнего потребления; LNEXP – логарифм общих годовых расходов домохозяйств; LNSIZE – логарифм числа потребителей в домохозяйстве.

Добавим в модель лишнюю переменную LNHOUS (логарифм расходов на жилье).

Корреляция между LNHOUS, LNEXP, LNSIZE

	LNHOUS	LNEXP	LNSIZE
LNHOUS	1.0000		
LNEXP	0.8137	1.0000	
LNSIZE	0.3256	0.4491	1.0000

$$LN\widehat{FDHO} = 4.71 + 0.27LNEXP + 0.49LNSIZE + 0.02LNHOUS$$

$$(0.22) (0.04) (0.03) (0.03)$$

LNHOUS – логарифм годовых расходов на жилье. Переменная незначима, т.е. лишняя в этой регрессии.

Обратим внимание на коэффициенты регрессии

Первоначальное уравнение регрессии

$$LN\widehat{FDHO} = 4.72 + 0.29LNEXP + 0.49LNSIZE$$
 $(0.22) (0.02) (0.03)$

Оценка с дополнительным факторов – логарифм расходов на жилье.

$$LN\bar{F}DHO = 4.71 + 0.27LNEXP + 0.49LNSIZE + 0.02LNHOUS$$

$$(0.22) (0.04) (0.03) (0.03)$$

Коэффициенты регрессии практически не меняются!

Обратим внимание на стандартные отклонения коэффициентов

Первоначальное уравнение регрессии

LNFDHO	Coef.	Std. Err.	t	P> t	[95% Conf. Interval]
LNEXP	.2866813	.0226824	12.639	0.000	.2421622 .3312003
LNSIZE	.4854698	.0255476	19.003	0.000	.4353272 .5356124
_cons	4.720269	.2209996	21.359	0.000	4.286511 5.154027

Оценка с дополнительным факторов – логарифм расходов на жилье.

LNFDHO	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
LNEXP	. 2673552	.0370782	7.211	0.000	.1945813	.340129
LNSIZE	.4868228	.0256383	18.988	0.000	.4365021	.5371434
LNHOUS	.0229611	.0348408	0.659	0.510	0454214	.0913436
_cons	4.708772	.2217592	21.234	0.000	4.273522	5.144022

Стандартные отклонения коэффициентов регрессирастут!

		Истинная модель		
		$Y = \alpha + \beta_1 X_1 + \varepsilon$	$Y = \alpha + \beta_1 X_1 + \beta_2 X_2 + \varepsilon$	
модель	$\hat{Y} = \hat{\alpha} + \hat{\beta}_1 X_1$	Правильная спецификация, все в порядке		
Оцененная	$\hat{Y} = \hat{\alpha} + \hat{\beta}_1 X_1 + \hat{\beta}_2 X_2$			

		Истинная модель		
		$Y = \alpha + \beta_1 X_1 + \varepsilon$	$Y = \alpha + \beta_1 X_1 + \beta_2 X_2 + \varepsilon$	
Эцененная модель	$\hat{Y} = \hat{\alpha} + \hat{\beta}_1 X_1$	Правильная спецификация, все в порядке		
	$\hat{Y} = \hat{\alpha} + \hat{\beta}_1 X_1 + \hat{\beta}_2 X_2$		Правильная спецификация, все в порядке	
0			The state of the s	

		Истинная модель		
		$Y = \alpha + \beta_1 X_1 + \varepsilon$	$Y = \alpha + \beta_1 X_1 + \beta_2 X_2 + \varepsilon$	
модель	$\hat{Y} = \hat{\alpha} + \hat{\beta}_1 X_1$	Правильная спецификация, все в порядке		
Оцененная	$\hat{Y} = \hat{\alpha} + \hat{\beta}_1 X_1 + \hat{\beta}_2 X_2$	Оценки коэффициентов являются несмещенными, но неэффективными	Правильная спецификация, все в порядке	

		Истинная модель	
		$Y = \alpha + \beta_1 X_1 + \varepsilon$	$Y = \alpha + \beta_1 X_1 + \beta_2 X_2 + \varepsilon$
модель	$\hat{Y} = \hat{\alpha} + \hat{\beta}_1 X_1$	Правильная спецификация, все в порядке	Оценки коэффициентов будут смещены
Оцененная	$\hat{Y} = \hat{\alpha} + \hat{\beta}_1 X_1 + \hat{\beta}_2 X_2$	Оценки коэффициентов являются несмещенными, но неэффективными	

Квадратичные модели и модели с перекрестными переменными

Квадратичные модели и модели с перекрестными переменными

Трансформация квадратичной модели

Рассмотрим модель, в которой объясняемая переменная y зависит от одного фактора x, но зависимость является квадратичной:

$$y = \alpha + \beta_1 x + \beta_2 x^2 + \varepsilon$$

Можно считать, что объясняемая переменная y — это заработная плата, а x — опыт работы.

Заметим, что в данном случае β_1 не отражает изменение y при изменении x. Поскольку, изменяя x, меняется также x^2 .

Трансформация квадратичной модели

Рассмотрим оценку модели:

$$\hat{y} = \hat{\alpha} + \hat{\beta}_1 x + \hat{\beta}_2 x^2$$

тогда можно оценить изменение y как:

$$\Delta \hat{y} = \left(\hat{eta}_1 + 2\hat{eta}_2 x
ight)\Delta x, \quad \Delta \hat{y}/\Delta x = \hat{eta}_1 + 2\hat{eta}_2 x$$

Таким образом, эффект изменения x на y в данном случае зависит от конкретного значения x.

Пример. Квадратичная модель

Рассмотрим взаимосвязь между заработной платой и опытом работы.

$$m = 526, R^2 = 0.093$$
 $\widehat{wag}e_i = 3.73 + 0.298EXP_i - 0.0061EXP_i^2 \ (0.35) \ (0.04) \ (0.001)$

Расчет вершины

Вершина параболы рассчитывается по следующей формуле:

$$x^* = \left|\hat{eta}_1/\left(2\hat{eta}_2
ight)
ight|$$

В примере с заработной платой:

$$x^* = \text{EXP}^* \quad 0.298/[2(0.0061)] \approx 24.4$$

Пример. Иллюстрация

Пример. Модель с перекрестными переменными

$$price_{i} = \alpha + \beta_{1} sqrft_{i} + \beta_{2} bdrms_{i} + \beta_{3} sqrft_{i} \cdot bdrms_{i} + \beta_{4} bthrms_{i} + \varepsilon_{i}$$

- price цена квадратного метра жилья;
- sqrft площадь жилья в футах;
- bdrms число спальных комнат;
- bthrms число ванных комнат.

Интерпретация

$$price_{i} = \alpha + \beta_{1} sqrft_{i} + \beta_{2} bdrms_{i} + \beta_{3} sqrft_{i} \cdot bdrms_{i} + \beta_{4} bthrms_{i} + \varepsilon_{i}$$

Если $\beta_3 > 0$, то дополнительная спальня дает более высокий рост цен на жилье для больших домов. Другими словами, существует перекрестный эффект между площадью дома и количеством спален.

Интерпретация

$$price_{i} = \alpha + \beta_{1} sqrft_{i} + \beta_{2} bdrms_{i} + \beta_{3} sqrft_{i} \cdot bdrms_{i} + \beta_{4} bthrms_{i} + \varepsilon_{i}$$

Исходные параметры сложнее интерпретировать, когда мы включаем в уравнение перекрестный член.

Например, β_2 - это влияние bdrms на цену дома с нулевой площадью!

Этот параметр не представляет особого интереса.

Вместо этого мы должны подставить такие значения sqrft, как среднее или медианное значение выборки в уравнение.

Перепараметризация

Рассмотрим модель с двумя объясняющими переменными и перекрестным членом:

$$y = \alpha + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 x_2 + \varepsilon$$

 β_2 - это влияние x_2 на y, когда x_1 = 0. Часто это не то, что интересует исследователя. Вместо этого мы можем перепараметризовать модель следующим образом:

где μ_1 - выборочное среднее x_1 , μ_2 - выборочное среднее x_2 .

$$y = \alpha + \delta_1 x_1 + \delta_2 x_2 + \beta_3 (x_1 - \mu_1) (x_2 - \mu_2) + \varepsilon,$$

Перепараметризация

 $y=lpha+\delta_1x_1+\delta_2x_2+eta_3\left(x_1-\mu_1
ight)\left(x_2-\mu_2
ight)+arepsilon,$ Теперь δ_2 - это влияние x_2 на y, когда x_1 = μ_1 .

Кроме того, мы сразу же получаем стандартные ошибки для предельных эффектов при средних значениях.

Тест Рамсея

RESET – regression specification error test

RESET – тест Рамсея отвечает на вопрос, надо ли включать в регрессию **степени независимых переменных** (регрессоров).

RESET – тест Рамсея

$$Y = \alpha + \beta_1 X_1 + \ldots + \beta_k X_k + \varepsilon \qquad (*)$$

 H_0 : спецификация модели (*) является правильной;

 H_1 : спецификация модели (*) является неправильной.

Процедура теста Рамсея

1. Оцениваем коэффициенты функции регрессии (*)

$$\hat{Y} = \hat{\alpha}_1 + \hat{\beta}_1 X_1 + \ldots + \hat{\beta}_1 X_k$$

- 2. Сохраняем столбец оцененных значений \widehat{Y}
- 3. Оцениваем коэффициенты вспомогательной регрессии (**)

$$Y = \alpha + \beta_1 X_1 + \ldots + \beta_k X_k + \alpha_2 \hat{Y}^2 + \ldots + \alpha_m \hat{Y}^m + \varepsilon$$

Процедура теста Рамсея

4. Тогда проверка гипотезы о правильной спецификации равносильна проверке гипотезы (коэффициенты при \widehat{Y}):

 H_0 : $\alpha_2 = \cdots = \alpha_m = 0$ модель правильно специфицирована H_1 : $\exists \alpha_i \neq 0$, i = 2, ..., m

5. Вычисляем значение тестовой статистики

$$F = rac{\left(RSS_R - RSS_{UR}
ight)/(m-1)}{RSS_{UR}/(n-(k+m))}$$

где RSS_R - это сумма квадратов остатков модели (*), а RSS_{UR} - это сумма квадратов остатков модели (**)

Процедура теста Рамсея

4. Тогда проверка гипотезы о правильной спецификации равносильна проверке гипотезы (коэффициенты при \widehat{Y}):

 H_0 : $\alpha_2 = \cdots = \alpha_m = 0$ модель правильно специфицирована H_1 : $\exists \alpha_i \neq 0$, i = 2, ..., m

5. Вычисляем значение тестовой статистики

$$F = rac{\left(RSS_R - RSS_{UR}
ight)/(m-1)}{RSS_{UR}/(n-(k+m))}$$

$$F > F_{m-1,n-(k+m)}$$

- 6. Если для заданного уровня значимости α , то гипотеза H_0 отвергается.
- 7. Или если $p-value < 0.05 \Rightarrow H_0$ отвергается на 5% уровне значимости

Пример. Модель заработной платы

Имеется выборка результатов опросов населения РМЭЗ НИУ ВШЭ, XVI волна, 2007 г. Отобраны данные только по трудоспособному населению Центрального и Центрально-Черноземного экономического района.

Список переменных:

- wage заработная плата, полученная за последние 30 дней по основному месту работы (в рублях);
- high 1, если высшее образование, 0 иначе;
- male пол, 1 для мужчин, 0 для женщин;
- EXP число лет общего трудового стажа респондента.

Пример. Модель заработной платы

 Оцените зависимость заработной платы от опыта работы, образования и пола респондента в виде линейной регрессии:

$$\ln wage_i = \alpha + \beta_1 EXP_i + \beta_2 high_i + \beta_3 male_i + \varepsilon_i$$

- Проделайте тест Рамсея на ошибки спецификации.
- Включите в модель дополнительную переменную квадрат опыта работы. Оцените регрессию:

$$\ln wage_i = \alpha + \beta_1 EXP_i + \beta_4 EXP_i^2 + \beta_2 high_i +$$

 $+\beta_3 male_i + \varepsilon_i$

• Проделайте тест Рамсея на ошибки спецификации для расширенной модели. Сделайте выводы.

Оценка модели в Gretl

 $\widehat{\ln wage_i} = 8.18 + 0.002EXP_i + 0.36high_i + 0.48male_i$

```
🎇 gretl: модель 1
                                                            - - X
Файл Правка Тесты Сохранить Графики Анализ LaTeX
Модель 1: МНК, использованы наблюдения 1-1574
Зависимая переменная: Inwage
            Коэффициент Ст. ошибка t-статистика
                                                 Р-значение
  const 8,18381 0,0392599 208,5 0,0000
  EXP 0,00151431 0,00164966 0,9180 0,3588
  high 0,358090 0,0434703 8,238 3,66e-016
  male 0,478253 0,0356629 13,41
                                                6,66e-039
                                                           \star\star\star
Среднее зав. перемен
                    8,505909 Ст. откл. зав. перемен 0,751774
Сумма кв. остатков 774,5999 Ст. ошибка модели 0,702407
                   0,128688 Испр. R-квадрат 0,127023
R-квадрат
                    77,29365 Р-значение (F) 1,24e-46
-1675,404 Крит. Акаике 3358,807
F(3, 1570)
Лог. правдоподобие -1675,404 Крит. Акаике
                     3380,253 Крит. Хеннана-Куинна 3366,777
Крит. Шварца
Исключая константу, наибольшее р-значение получено для переменной 3 (ЕХР)
```

Переменная ЕХР (опыт работы) оказалась незначимая.

Результаты теста Рамсея (только квадраты)

P-value=0.0176<0.05. Следовательно, модель неправильно специфицирована, есть пропущенные степени регрессоров!

Добавим опыт в квадрате

∑ gretl: модель 2			V			
$\underline{\Phi}$ айл $\underline{\Pi}$ равка $\underline{\underline{\Gamma}}$ есты $\underline{\underline{C}}$ охранить $\underline{\underline{\Gamma}}$ рафики $\underline{\underline{A}}$ нализ $\underline{\underline{L}}$ а $\underline{\underline{T}}$ е X						
Модель 2: МНК, использ		цения 1-	-1574			
Зависимая переменная:	ınwage					
Коэффициен	нт Ст. оц	шибка	t-статистика	а Р-значение		
const 8,10444	0 , 0534	1235	151 , 7	0,0000	***	
EXP 0,0142626	0,0060	05603	2,355	0,0186	**	
EXP2 -0,000347	773 0 , 0001	L58976	-2 , 188	0 , 0288	* *	
male 0,486219	0,0358	3057	13,58	8,56e-040	***	
high 0,356150	0,0434	1271	8,201	4,90e-016	***	
Среднее зав. перемен	8 , 505909	CT. O	гкл. зав. пере	емен 0,751774		
Сумма кв. остатков	772,2445	CT. OI	шибка модели	0,701562		
R-квадрат	0,131338	Испр.	R-квадрат	0,129123		
F(4, 1569)	59 , 30640	Р-знач	иение (F)	1,11e-46		
Лог. правдоподобие	-1673 , 007	Крит.	Акаике	3356,014		
Крит. Шварца	3382,821	Крит.	Хеннана-Куинн	на 3365 , 976		

Переменная EXP (опыт работы) оказалась значимая, так как и EXP2 (квадрат опыта).

Результаты теста Рамсея для модели с квадратами

P-value=0.0595>0.05. Следовательно, модель правильно специфицирована, нет пропущенных степеней

Литература

Доугерти К. (1992). Введение в эконометрику. М. Инфра-М. Глава 6.

Демидова О. А., Малахов Д. И. (2016). ЭКОНОМЕТРИКА. Учебник и практикум для прикладного бакалавриата. М.: Юрайт. Глава 9.1, 9.2, 9.4.

Вербик М. Путеводитель по современной эконометрике. Научная книга, 2008. Глава 3.2.

Берндт, Э. Р. Практика эконометрики: классика и современность. М.: ЮНИТИ-ДАНА, 2005. - 863 с. Глава 4 (4.5С).

Борзых Д. А., Вакуленко Е. С., Фурманов К. К. Эконометрика: работа с данными на компьютере. Практикум: Элементы теории. Практические задания. Ответы и решения. Издательская группа URSS, 2021. Глава 3.

Вакуленко Е. С., Ратникова Т. А., Фурманов К. К. Эконометрика (продвинутый курс). Применение пакета Stata. М.: Юрайт, 2020. Глава 8.