School of Engineering and Applied Science (SEAS), Ahmedabad University

B.Tech(CSE) Semester IV: Probability and Stochastic Processes (MAT 277)

• Group No: sb15

• Name (Roll No): Group Members

AU1940275 : Anshul Mehta

AU1940160: Chirayu Vithalani

AU1940114 : Harsh Patel AU1940126 : Kavan Desai AU1940217 : Nihal Aggrawal AU1940176 : Sarthak Bharad

AU1940156: Jeenal Shah

• Project Title: Multiscale Approach for Ion-beam Therapy

1 Justify how probabilistic model/PSP concept is used in your project. How uncertainty is modeled?

Modeling of physical/real-time uncertain Problem, Study of any existing probability based models etc.,
 MSA has an advantage over LQ that it can predict quantitatively survival chances of cells in a tumor theoretically. LQ model took into consideration only dose given whereas MSA includes biological factors like genome size of cell, conversion of SSBs to DSBs, number of base pairs and physical factors as well like energy of the ion beam.

The main parameter for calculating the probability of cell survival is damage yield. This yield is derived by calculating the number of lethal lesions in the tumors which follows Poisson distribution.

 $Y_l = \frac{\pi}{16} \sigma N_g \frac{1}{S_e} d$

 Y_l is number of lethal lesions

 N_g is the genome size

Se is the stopping potential

d is the dose

Finally, a parameter χ , is introduced which is the probability of successful repair of a lesion. The probability of cell survival is certainly not purely exponential and there is a deviation up to certain

1

quantity of dose up to which cell repair is possible, after which the relation follows a purely exponential behavior.

$$\chi = (\chi_0 Y_l)\theta(\chi_0 - \chi_1 Y_l)$$

$$\pi_{surv} = exp[-(1 - \chi_0 Y_l - \chi_1 Y_l^2)]$$

$$\pi_{surv} = e^{-Y_l}$$

2 Clearly enlist the new things done in the coding part, excluding the shared code. [If no new code is written/added/modified, then please write NA]

1. Code change-1

We showed the decreasing exponential nature of cell survival and also derived the increasing exponential damage that is done as we increase the dose. The cell Survival and Cell Damage are both plotted against dose and both Yield desired Exponential Results as dose is directly proportional to Yield.

2. Code change-2

We were given one method to calculate the Survival Curve. We enhanced the Method to derive results for All the 6 Cell Lines that were described in the Paper We Moreover derived the Values of Yield and then iterated to tweak the method and derive more accurate and informative results.

We also used other methods to derive parameters that were directly provided to us hence making the code more comprehensive.

3. Code change-3

We showed the deviation in the same curve by Changing the LET Values in Accordance with OER Ratio and then we Plotted to show the change from the Normal Curve.

4. Code change-4

We used the Poisson PMF to show the cell repair which is given as a formula to show the cell repair and the deviation that is caused by the Hypoxic Conditions and this was illustrated by Poisson PMF Modelling which is Modelling the Uncertainty of Cell Repair in this Case.

5. Code change-5

The same set of results have been able to provide Justification for the LQ model that has been a semi empirical model and the results of MSA are pretty much Similar when Shouldered to LQ.

6. Code change-6

We have implemented a functionality from the user perspective of a medical professional/doctor where inputs are Cell Line and LET . The output gives a value for dose after which there is no cell repair and also gives the user an idea after what dose there are no chances of repair.

3 Any innovation done considering the society/neighborhood problem?

• Innovation 1

We have implemented a small innovation that helps the doctors to estimate the number of Double Strand Breaks caused per cell and also the number of DSBS caused per particle.

• Innovation 2

We have given the doctor the function to input the cell line and the LET to estimate at what dose there will be 0 cell repair. This will help the medical professional in planning dosage for the treatment for optimal efficacy.

• Innovation 3

By making the dose time dependent and by increasing the dose in a linear fashion, we observed a significant decrease in relative cell survival. As we have decreased the dose in a pattern 0.96, 0.93, 0.90, 0.88, 0.85(3/(3+i/10); i=1,2,3,4,5) as parameters. We assumed a linear relation between dose and time that implies dose is directly proportional to time. Making dose time dependent we also found the exponential nature of survival curves which suffice the inclination of curves towards Linear quadratic equation and multiscale approach. We took a total time interval of 8 minutes and 1 minute is divided into 100 fractions which makes the plot more efficient.

4 Enumerate the inferences derived from user-centric perspective.

MSA takes into consideration key biological factors to calculate survival chances of cells in a tumor. Hence, this approach can be extended to predict radiobiological effects of other cell lines as well. The graph of survival fraction with dose helps the user decide the quantity of the dose to be given, adjust the energy of the ion beam in accordance with the area of tumor. This will also help users to determine the relationship between various biological parameters such as genome size, number of base pairs and physical factors like energy. Researchers can try to study these relationships and build up further theories of MSA.

- 1. Derived inference-1 from the work. We can observe that Chi1 (X1) is negatively proportional to Cell Repair Function. Which makes it Negatively Proportional to the Cell Survival. This means that larger the value of CHi1(X1), lesser will be the Cell Repair. This means that the Surviving Fraction will decrease when we increase the value of CHI1(X1).
- 2. Derived inference-2 from the work. We also observe that CHIO(X0) is directly proportional to the Cell Repair Function. Which means a larger value of CHIO(X0) will result in a larger cell repair which in turn will increase the surviving fraction of cells.

- 3. Derived inference-3 from the work. By making the dose time dependent and by increasing the dose in a linear fashion, we observed a significant decrease in relative cell survival. cell repair which in turn will increase the surviving fraction of cells.
- 4. Derived inference-4 from the work. From Our Small Innovations part we derive that there exists a dose value after which cell repair is 0 which is mentioned as the critical value. So we derive the Critical Value for the input of Se and Cell Line. This Critical Value might be of some help in dose planning as doctor firsthand knows about the value of dose after which there is no chance of cell repair.

5 Contribution of team members

- 5.1 Technical contribution of all team members: Tables 1 and 2
- 5.2 Non-Technical contribution of all team members: Tables 3 and 4

Tasks	Anshul Mehta	Chirayu Vitha-	Harsh	Patel	Kavan De	sai	Nihal Aggrawal
Task-1	Coding- Innovation of Max Dose for Cell Repair	$\begin{array}{ccc} Coded & the \\ derivation & of \\ average & length \\ of & cell & traverse & through \\ diameter & & & \end{array}$	viation expect	l the de- n between ted curve actual Plotted	Coded the survival using the dition rate x0/x1	with con-	Coded the parameters of alpha and beta for incorporating the LQ model.
Task-2	Coding- Innova- tion for number of DSBs and le- sions	Coded the function of calculating number of base pairs and genome size with various biological factors		some vement in ge curve	Coded the novation of dependent various dependent time.	of time dose.	Coded and Debugged improvements in Survival Curves and Damage Curves.
Task-3	Coding Part - Main and Main extension Code	Defined all these functionalities for all types of cells	tion o	the Equa- of cell sur- vithout re- factor of	Coded the varying Clues	_	Coded the above parameters for all types of cells.
Task-4	Monte Carlo Simulations for parameters 7 and 6		ing co	d in find- prect lin- elation be- time and	Coded plots with ious rati CHI0/CH	os of	Helped in coding the cell survival probability by assimilating the empirical parameters of LQ Model
Task-5	Reproducing Figures 1.				Coded the keeping constant CHI0/CH	ratio of	
	Tasks	Sarthak Bhar	Sarthak Bharad Jeena Coding - Yield for Struct		ah		
	Task-1				tructuring the		
		different cells		code			
	Task-2	Coding - value stopping pote	ies for	Comment	nting the		
	Task-3	Coding -5 inc	clusion				
		of equations	of equations 13,14 Approach		Approach to Linear		
		and 15			model		
	Task-4						

Tasks	Sarthak Bharad	Jeenal Shah
Task-1	Coding - Yield for	Structuring the
	different cells	code
Task-2	Coding - values for	Commenting the
	stopping potential	code
Task-3	Coding -5 inclusion	Coding Multiscale
	of equations 13,14	Approach to Linear
	and 15	Quadretic model
Task-4		
I .		

Tasks	Anshul Mehta	Chirayu Vitha-	Harsh Patel	Kavan Desai	Nihal Aggrawal
Task-1	Hand- Written	Contributed in	Concept map =	Report- En-	Concept Map
	Analysis	deciding the or-	Contributed in	listed Inference	- Reproducing
		der of equations	condition part	regarding our	Mathematical
		of the model		code	Methods
Task-2	Inference Draw-	Modelling of	Defining the	Modelling -	Modelling: Ex-
	ing	experiments	flow of all the	Beginning	plaining the
		and results	equations for	with modelling	LQ model with
			the modelling	and analyzed	specification
				the flow over	of empirical
				modelling	parameters
Task-3	Concept Map -	Summarized the	Mathematical	Concept Map -	Modelling-
	Maths Part	modelling for	modelling and	MSA part	Specifics for
		the report	writing infer-		N(r), Criterion
			ence about		for Lethality
			equation 4 and		and total RVs
			5		
Task-4	Report Writing-	Derived infer-	Report innova-	Report - En-	Incorporating
	Part 2 and Part	ences of the	tion part =Con-	listed Inference	formulas for
	4	MSA approach	tributed in find-	regarding Inno-	modelling and
		in the report.	ing number of	vation	concept map
			DBS and num-		
			ber of lesions		
Task-5	Mathematical			Incorporating	
	Modelling Eqn			Two-lesian-	
	3 to 6			Kinetic Model	
				and time depen-	
				dent Dose as	
				innovation	
	Tagles	Canthal Dhar	and Install Class		

Tasks	Sarthak Bharad	Jeenal Shah	
Task-1	Concept Map - Re-	Concept map's for-	
	sults and Discus-	mat and MSA part	
	sions part		
Task-2	Modelling - Steps 8	Introduction,	
	to 10 equation and	mathematical part	
	their explanations	and inferences in	
		modeling	
Task-3	Report Writing in	Report writing in	
	LaTex, question 1	LaTex	
Task-4	clicking snapshots	Finding innovation	
	of plots generated	methods	