Лабораторная работа 17

Имитационное моделирование

Голощапов Ярослав Вячеславович

Содержание

1	Цель работы												
2	2 Задание	6											
3	Выполнение лабораторной работы												
	3.1 Моделирование работы вычислительного центра	. 7											
	3.2 Модель работы аэропорта	. 9											
	3.3 Моделирование работы морского порта	. 11											
	3.3.1 Первый вариант	. 11											
	3.3.2 Второй вариант												
4	I Выводы	15											

Список иллюстраций

3.1	Модель	8
3.2	отчет	8
3.3	Модель	.0
3.4	Отчет 1	.0
3.5	Модель	.1
3.6	отчет 1	2
3.7	Отчет с оптимальным количеством причалов	2
3.8	Модель	.3
3.9	Отчет 1	.3
3.10	Отчет с оптимальным количеством причалов	.4

Список таблиц

1 Цель работы

Выполнить задания для самостоятельной работы

2 Задание

Смоделировать работу 3 моделей

3 Выполнение лабораторной работы

3.1 Моделирование работы вычислительного центра

На вычислительном центре в обработку принимаются три класса заданий A, B и C. Исходя из наличия оперативной памяти ЭВМ задания классов A и B могут решаться одновременно, а задания класса C монополизируют ЭВМ. Задания класса A посту- пают через 20 ± 5 мин, класса B — через 20 ± 10 мин, класса C — через 28 ± 5 мин и требуют для выполнения: класс A — 20 ± 5 мин, класс B — 21 ± 3 мин, класс C — 28 ± 5 мин. Задачи класса C загружаются в ЭВМ, если она полностью свободна. Задачи классов A и B могут дозагружаться к решающей задаче. Смоделировать работу ЭВМ за 80 ч. Определить её загрузку (рис. 3.1).

```
🅌 Untitled Model 1
                                                                                      ;моделирование заданий класса А
 GENERATE 20,5
 QUEUE class_A
ENTER ram,1
 DEPART class A
 ADVANCE 20,5
 LEAVE ram, 1
 TERMINATE 0
 ;моделирование заданий класса В
 GENERATE 20,10
 QUEUE class_A
ENTER ram,1
DEPART class_A
 ADVANCE 21,3
 LEAVE ram, 1
 TERMINATE 0
 ;моделирование заданий класса С
 GENERATE 28,5
 QUEUE class_A
 ENTER ram, 2
 DEPART class_A
 ADVANCE 28,5
 LEAVE ram, 2
 TERMINATE 0
 GENERATE 4800
 TERMINATE 1
 START 1
```

Рис. 3.1: Модель

Запускаем симуляцию и получаем отчёт по модели (рис. 3.2)

Рис. 3.2: отчет

3.2 Модель работы аэропорта

Самолёты прибывают для посадки в район аэропорта каждые 10 ± 5 мин. Если взлетно- посадочная полоса свободна, прибывший самолёт получает разрешение на посадку. Если полоса занята, самолет выполняет полет по кругу и возвращается в аэропорт каждые 5 мин. Если после пятого круга самолет не получает разрешения на посадку, он отправляется на запасной аэродром. В аэропорту через каждые 10 ± 2 мин к взлетно -посадочной полосе выруливают готовые к взлёту самолёты и получают разрешение на взлёт, если полоса свободна. Для взлета и посадки самолёты занимают полосу ровно на 2 мин. Если при свободной полосе одновременно один самолёт прибывает для посадки, а другой — для взлёта, то полоса предоставляется взлетающей машине. **Требуется:** — выполнить моделирование работы аэропорта в течение суток; — подсчитать количество самолётов, которые взлетели, сели и были направлены на запасной аэродром; — определить коэффициент загрузки взлетно-посадочной полосы

Строим модель (рис. 3.3)

```
QUEUE arrival
landing GATE NU runaway, wait
SEIZE runaway
DEPART arrival
ADVANCE 2
RELEASE runaway
TERMINATE 0

; O%MUHAHUE
wait TEST L pl, 5, goaway
ADVANCE 5
ASSIGN 1+, 1
TRANSFER 0, landing
goaway SEIZE reserve
DEPART arrival
RELEASE reserve
TERMINATE 0

; BBJET
GENERATE 10,2,,,2
QUEUE takeoff
SEIZE runaway
DEPART takeoff
ADVANCE 2
RELEASE runaway
TERMINATE 0

;timer
GENERATE 1440
TERMINATE 1
START 1
```

Рис. 3.3: Модель

Выводим отчёт (рис. 3.4).

	NAME		VALUE						
AR	RIVAL		10002.000						
	AWAY		14.000						
	NDING		4.000						
	SERVE		UNSPECIFIED						
	NAWAY		10001.000						
	KEOFF		10000.000						
	IT		10.000						
LABEL	LOC	BLOCK TYPE	ENTRY COUNT	CURRENT	COUNT	RETRY			
	1	GENERATE	146		0	0			
	2	ASSIGN	146		0	0			
	3	QUEUE	146		0	0			
LANDING	4	GATE	184		0	0			
	5	SEIZE	146		0	0			
	6	DEPART	146		0	0			
	7	ADVANCE	146		0	0			
	8	RELEASE	146		0	0			
	9	TERMINATE	146		0	0		I	
WAIT	10	TEST	38		0	0		8	
	11	ADVANCE	38		0	0			
	12	ASSIGN	38		0	0			
	13	TRANSFER	38		0	0			
GOAWAY	14	SEIZE	0		0	0			
	15	DEPART	0		0	0			
	16	RELEASE	0		0	0			
	17	TERMINATE	0		0	0			
		GENERATE	142		0	ō			
		QUEUE	142		0	0			
		SEIZE	142		0	0			
	21	DEPART	142		0	0			
		ADVANCE	142		0	ō			
	23	RELEASE	142		0	0			
	24	TERMINATE	142		0	Ö			
		GENERATE	1		0	ō			
	26	TERMINATE	1		0	ō			
	26	TERMINATE	1		0	0			
FACILITY			E. TIME AVAIL.						
RUNAWAY	288	0.400	2.000 1	0	0	0 0	0		
QUEUE			NTRY(0) AVE.CON			AVE. (-0)			
TAKEOFF	1	0 142	114 0.017			0.880			
ARRIVAL	2	0 146	114 0.132	1.3	101	5.937	0		

Рис. 3.4: Отчет

Из отчета видим что взлетело 142 самолета, село 146, а отправилось на запас-

3.3 Моделирование работы морского порта

Морские суда прибывают в порт каждые [а \pm \Box] часов. В порту имеется N причалов. Каждый корабль по длине занимает M причалов и находится в порту [b \pm \Box] часов. Требуется построить GPSS-модель для анализа работы морского порта в течение полугода, определить оптимальное количество причалов для эффективной работы порта. Исходные данные: 1) а = 20 ч, \Box = 5 ч, b = 10 ч, \Box = 3 ч, N = 10, M = 3; 2) а = 30 ч, \Box = 10 ч, b = 8 ч, \Box = 4 ч, N = 6, M = 2.

3.3.1 Первый вариант

Строим модель для первого варианта (рис. 3.5)

```
prch STORAGE 10
GENERATE 20,5
; modelirovanie zanyatiya prichala
QUEUE arrival
ENTER prch,3
DEPART arrival
ADVANCE 10,3
LEAVE prch,3
TERMINATE 0
;timer
GENERATE 24
TERMINATE 1
START 180
```

Рис. 3.5: Модель

Выводим отчет (рис. 3.6)

Рис. 3.6: отчет

При запуске с 10 причалами видно, что судна обрабатываются быстрее, чем успевают приходить новые, так как очередь не набирается. Кроме того загруженность причалов очень низкая. Соответственно, установив наименьшее возможное число причалов – 3, получаем оптимальный результат, что видно на отчете (рис. 3.7).

	GPSS	World Si	imulation Re	eport - Unti	tled Model	1.6.1	
		понедель	ьник, марта	10, 2025 14	:58:27		
	START T	IME 000	END T1	IME BLOCKS	FACILITIES 0	STORAGES 1	
	NAME ARRIVAL PRCH			VALUE 10001.000 10000.000			
LABEL		1 GE 2 QU 3 EN 4 DE 5 AI 6 LE 7 TE 8 GE	LOCK TYPE ENERATE UEUE NTER EPART DVANCE EAVE ERMINATE ENERATE ERMINATE	215 215 215 215 214 214 180	1	COUNT RETRY 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0	
QUEUE ARRIVAL						ME AVE.(-0	
STORAGE PRCH						UTIL. RETRY 0.495 0	
396	0	4324.260			T PARAMETE	R VALUE	

Рис. 3.7: Отчет с оптимальным количеством причалов

3.3.2 Второй вариант

Строим модель для второго варианта (рис. 3.8).

```
prch STORAGE 6
GENERATE 30,10
; modelirovanie ranyatiya prichala
OUGUU arrival
ENTER prch, 2
DEPART arrival
ADVANCE 8,4
LEAVE prch, 2
TERMINATE 0
; timer
GENERATE 24
TERMINATE 1
START 180
```

Рис. 3.8: Модель

После запуска симуляции получаем отчёт (рис. 3.9).

Рис. 3.9: Отчет

При запуске с 6 причалами видно, что судна обрабатываются быстрее, чем успевают приходить новые, так как очередь не набирается. Кроме того загруженность причалов очень низкая. Соответственно, установив наименьшее возможное число причалов – 2, получаем оптимальный результат, что видно на отчете (рис. 3.10)

	GPSS	World	Sim	ulation	Report	- Unti	tle	d Model	1.8.	1	
		понед	ельн	ик, март	a 10,	2025 15	5:03	1:24			
				END 4320							
	NAME ARRIVAL PRCH				1000 1000	ALUE 1.000 0.000					
LABEL		1 2 3 4 5 6 7 8	GENI QUEI ENTI DEPI ADVI LEA' TERI GENI	ERATE UE ER ART ANCE		143 143 143 143 143 142 142 142			0 0 0 0 1 0 0	0 0 0 0 0 0	
QUEUE ARRIVAL		MAX C	ONT.	ENTRY E	NTRY (0 143) AVE.0	CONT	. AVE.T	IME 000	AVE.(- 0.0	0) RE
STORAGE PRCH										L. RETR	
	PRI 0 0 0	4325.	892 699	322 324	5	6		PARAMET	ER	VALUE	I

Рис. 3.10: Отчет с оптимальным количеством причалов

4 Выводы

В этой лабораторной работе я реализовал 3 модели : 1.Модель работы вычислительного центра 2.Модель работы аэропорта 3.Модель работы морского порта