Second Degree Equations Part 2

Factoring

Remember that we have seen before that we can factor a quadratic expression in a couple of ways

$$x^{2} - 4 = (x + 2)(x - 2)$$
 special product
$$x^{2} + 2x - 24 = (x - 4)(x + 6)$$
 factor directly

We have also seen that there are some equations that we cannot factor with direct methods, such as

$$x^2 - 3x - 7$$

But maybe the quadratic formula can help factor our expression.

Some Review

Let's use the quadratic equation on $x^2 - x - 6 = 0$. We get

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$x = \frac{1 \pm \sqrt{1 - 4(1)(-6)}}{2 \cdot 1}$$

$$x = \frac{1 \pm \sqrt{1 + 24}}{2}$$

$$x = \frac{1 \pm \sqrt{25}}{2}$$

$$x = \frac{1 \pm 5}{2}$$

$$x = 3, -2 = x_+, x_-$$

Factoring

Let us try to factor

$$x^2 - x - 6$$

using a new method.

Our goal is to find c_1 and c_2 such that

$$x^2 - x - 6 = (x + c_1)(x + c_2)$$

The quadratic equation gives us all x such that $x^2 - x - 6 = 0$. This means that we know an x such that

$$x^{2} - x - 6 = (x + c_{1})(x + c_{2}) = 0$$

In order for $(x + c_1)(x + c_2) = 0$, it **must** be true that eiter $(x + c_1) = 0$ or $(x + c_2) = 0$.

Hmmmmm....

Let's try

$$x_+, x_- = 3, -2$$

We want to find c_1 and c_2 so that $(x + c_1)(x + c_2) = 0$ only when $x = x_+$ and $x = x_-$

Idea: let $c_1 = -x_+$ and $c_2 = -x_-!$

We get $x^2 - 3x - 7 = (x - x_+)(x - x_-)$, which is zero only when $x = x_+$ or $x = x_-$!

This gives us

$$x^2 - x - 6 = (x - 3)(x + 2)$$

Last Comments on Factoring

What happens if $a \neq 1$?

All we have to do is add a factor of a into our factorization!

To factor an expression $ax^2 + bx + c$ for any values of a, b, c

Calculate

$$x_{+}, x_{-} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Factor

$$ax^{2} + bx + c = a(x - x_{+})(x - x_{-})$$

Practice

In groups of 3, factor the following expressions with the quadratic formula

$$x^{2} + x - 6$$
$$3x^{2} - 9x + 6$$
$$5x^{2} + 6x + 1$$

$$x_{+}, x_{-} = \frac{-1 \pm \sqrt{(1)^{2} - 4(1)(-6)}}{2(1)}$$

$$= \frac{-1 \pm \sqrt{1 + 24}}{2}$$

$$= \frac{-1 \pm 5}{2}$$

$$= 2, -3$$

$$x^{2} + x - 6 = (1)(x - x_{+})(x - x_{-})$$

$$x^{2} + x - 6 = (x - 2)(x + 3)$$

$$x_{+}, x_{-} = \frac{9 \pm \sqrt{(-9)^{2} - 4(3)(6)}}{2(3)}$$

$$= \frac{9 \pm \sqrt{81 - 72}}{6}$$

$$= \frac{9 \pm \sqrt{9}}{6}$$

$$= \frac{9 \pm 3}{6}$$

$$= 2, 1$$

$$3x^{2} - 9x + 6 = (3)(x - x_{+})(x - x_{-})$$

$$3x^{2} - 9x + 6 = 3(x - 2)(x - 1)$$

$$x_{+}, x_{-} = \frac{-6 \pm \sqrt{(6)^{2} - 4(5)(1)}}{2(5)}$$

$$= \frac{-6 \pm \sqrt{36 - 20}}{10}$$

$$= \frac{-6 \pm \sqrt{16}}{10}$$

$$= \frac{-6 \pm 4}{10}$$

$$= \frac{-2}{10}, -1$$

$$5x^{2} + 6x + 1 = (5)(x - x_{+})(x - x_{-})$$

$$5x^{2} + 6x + 1 = 5\left(x + \frac{2}{10}\right)(x + 1) = (5x + 1)(x + 1)$$

Graphing Parabolas

Before we start computing points to graph, let us understand the parts of a second degree equation. Remember we are looking at the graph

$$y = ax^2 + bx + c$$

True or False: If a is positive, the parabola always looks like a \cup , and if a is negative, the parabola always looks like a \cap .

Graphing Parabolas

True!

Positive: @, Negative: @

Axis of Symmetry

Notice how a parabola is symmetric about its minimum/maximum point (called its vertex).

Axis of Symmetry

For a parabola given as

$$y = f(x) = ax^2 + bx + c$$

We can calculate the x value for the axis of symmetry (the red line from before!) as

$$x_{axis} = \frac{-b}{2a}$$

True or False: If we know x_{axis} and f(x), we can calculate the vertex

Finding the Vertex

If we know the equation of the parabola $y=f(x)=ax^2+bx+c$ and we calculated the axis of symmetry

$$x_{axis} = \frac{-b}{2a}$$

then the vertex is located at

$$(x_{vertex}, y_{vertex}) = (x_{axis}, f(x_{axis}))$$

Practice

In groups of 3, find the vertex of each of the following parabolas

$$x^{2} + x - 6$$
$$3x^{2} - 9x + 6$$
$$5x^{2} + 6x + 1$$
$$6x^{2} - 24x - 30$$

$$y = f(x) = x^{2} + x - 6$$

$$x_{axis} = \frac{-b}{2a}$$

$$x_{axis} = \frac{-1}{2} = -0.5$$

$$y_{vertex} = f(-0.5) = (-0.5)^{2} - 0.5 - 6 = -6.25$$

$$(x_{vertex}, y_{vertex}) = (-0.5, -6.25)$$

$$y = f(x) = 3x^{2} - 9x + 6$$

$$x_{axis} = \frac{-b}{2a}$$

$$x_{axis} = \frac{9}{6} = \frac{3}{2}$$

$$y_{vertex} = f(3/2) = 3(3/2)^{2} - 9(3/2) + 6 = \frac{-3}{4}$$

$$(x_{vertex}, y_{vertex}) = (3/2, -3/4)$$

$$y = f(x) = 5x^{2} + 6x + 1$$

$$x_{axis} = \frac{-b}{2a}$$

$$x_{axis} = \frac{-6}{10} = \frac{-3}{5}$$

$$y_{vertex} = f(-3/5) = 5(-3/5)^{2} + 6(-3/5) + 1 = \frac{-4}{5}$$

$$(x_{vertex}, y_{vertex}) = (-3/5, -4/5)$$

$$f(x) = 6x^{2} - 24x - 30$$

$$x_{axis} = \frac{-b}{2a}$$

$$x_{axis} = \frac{24}{12} = 2$$

$$y_{vertex} = f(2) = 6(2)^{2} - 24(2) - 30 = -54$$

$$(x_{vertex}, y_{vertex}) = (2, -54)$$

Tomorrow

Tomorrow we will finish learning how to graph parabolas!