Introducción a la Lógica y la Computación

Mariana Badano Facundo Bustos Mauricio Tellechea Gonzalo Zigarán

FaMAF, 9 de octubre de 2024

Contenidos estimados para hoy

- Completitud de la lógica proposicional
 - Relación entre verdad y demostrabilidad
- 2 Consistencia
 - No derivación
- 3 Conjuntos consistentes maximales
- Teorema de Completitud

¿Cómo se comparan las nociones semánticas con la de derivabilidad?

¿Cómo se comparan las nociones semánticas con la de derivabilidad?

Semántica	Cálculo
Tautologías (valuar 1)	Teoremas (derivable)
=	F
Asignaciones (modelo)	Derivaciones (pruebas formales)

¿Cómo se comparan las nociones semánticas con la de derivabilidad?

Semántica	Cálculo
Tautologías (valuar 1)	Teoremas (derivable)
=	
Asignaciones (modelo)	Derivaciones (pruebas formales)

Completitud y Corrección de la Lógica Proposicional

Para todos $\Gamma \subseteq PROP$ y $\varphi \in PROP$, se tiene

$$\Gamma \models \varphi \iff \Gamma \vdash \varphi$$

¿Cómo se comparan las nociones semánticas con la de derivabilidad?

Semántica	Cálculo
Tautologías (valuar 1)	Teoremas (derivable)
=	⊢
Asignaciones (modelo)	Derivaciones (pruebas formales)

Completitud y Corrección de la Lógica Proposicional

Para todos $\Gamma \subseteq PROP$ y $\varphi \in PROP$, se tiene

$$\Gamma \models \varphi \iff \Gamma \vdash \varphi$$

La clase pasada vimos la implicación (\Leftarrow) Corrección.

¿Cómo se comparan las nociones semánticas con la de derivabilidad?

Semántica	Cálculo
Tautologías (valuar 1)	Teoremas (derivable)
=	
Asignaciones (modelo)	Derivaciones (pruebas formales)

Completitud y Corrección de la Lógica Proposicional

Para todos $\Gamma \subseteq PROP$ y $\varphi \in PROP$, se tiene

$$\Gamma \models \varphi \iff \Gamma \vdash \varphi$$

La clase pasada vimos la implicación (\Leftarrow) Corrección.

Hoy vamos por la implicación (\Rightarrow) : **Completitud**.

Definición

Dado un conjunto $\Gamma \subseteq PROP$ diremos que

 Γ es inconsistente $\iff \Gamma \vdash \bot$;

Definición

Dado un conjunto $\Gamma \subseteq PROP$ diremos que

 Γ es inconsistente $\iff \Gamma \vdash \bot$;

 Γ es **consistente** \iff **no** es inconsistente

Definición

Dado un conjunto $\Gamma \subseteq PROP$ diremos que

$$\Gamma$$
 es inconsistente $\iff \Gamma \vdash \bot$;

 Γ es **consistente** \iff **no** es inconsistente (o sea, $\Gamma \nvdash \bot$).

Definición

Dado un conjunto $\Gamma \subseteq PROP$ diremos que

$$\Gamma$$
 es inconsistente $\iff \Gamma \vdash \bot$;

 Γ es **consistente** \iff **no** es inconsistente (o sea, $\Gamma \nvdash \bot$).

Lema

1 $\Gamma \vdash \varphi \iff \Gamma \cup \{\neg \varphi\}$ es inconsistente.

Definición

Dado un conjunto $\Gamma \subseteq PROP$ diremos que

$$\Gamma$$
 es inconsistente $\iff \Gamma \vdash \bot$;

 Γ es **consistente** \iff **no** es inconsistente (o sea, $\Gamma \nvdash \bot$).

Lema

- **1** $\Gamma \vdash \varphi \iff \Gamma \cup \{\neg \varphi\}$ es inconsistente.

Léxico: Dado un conjunto Γ , si f es una asignación que valida a Γ decimos que f es un modelo de Γ .

Léxico: Dado un conjunto Γ , si f es una asignación que valida a Γ decimos que f es un *modelo* de Γ .

Lema (de No Derivación)

 $\mathit{Sif} \,\, \mathsf{es} \,\, \mathsf{un} \,\, \mathsf{modelo} \,\, \mathsf{de} \,\Gamma \,\, \mathsf{y} \, [\![\varphi]\!]_f = 0, \, \mathsf{entonces} \,\, \Gamma \not\vdash \varphi.$

Léxico: Dado un conjunto Γ , si f es una asignación que valida a Γ decimos que f es un *modelo* de Γ .

Lema (de No Derivación)

Sif es un modelo de Γ y $[\![\varphi]\!]_f=0$, entonces $\Gamma \nvdash \varphi$.

Ejemplo $\{p_1 \lor p_4\} \not\vdash p_1$.

Léxico: Dado un conjunto Γ , si f es una asignación que valida a Γ decimos que f es un *modelo* de Γ .

Lema (de No Derivación)

Sif es un modelo de Γ y $[\![\varphi]\!]_f=0$, entonces $\Gamma \nvdash \varphi$.

Ejemplo $\{p_1 \lor p_4\} \nvdash p_1$.

Lema (Criterio de Consistencia)

Si Γ tiene un modelo, entonces Γ es consistente.

Léxico: Dado un conjunto Γ , si f es una asignación que valida a Γ decimos que f es un *modelo* de Γ .

Lema (de No Derivación)

 $\textit{Si} f \textit{ es un modelo de } \Gamma \textit{ y } [\![\varphi]\!]_f = 0, \textit{ entonces } \Gamma \nvdash \varphi.$

Ejemplo $\{p_1 \lor p_4\} \nvdash p_1$.

Lema (Criterio de Consistencia)

Si Γ tiene un modelo, entonces Γ es consistente.

Ejemplo

1. $\{(\neg p_4 \lor p_0), p_4\}$ es consistente.

Léxico: Dado un conjunto Γ , si f es una asignación que valida a Γ decimos que f es un *modelo* de Γ .

Lema (de No Derivación)

Sif es un modelo de Γ y $[\![\varphi]\!]_f = 0$, entonces $\Gamma \nvdash \varphi$.

Ejemplo $\{p_1 \lor p_4\} \nvdash p_1$.

Lema (Criterio de Consistencia)

Si Γ tiene un modelo, entonces Γ es consistente.

Ejemplo

- 1. $\{(\neg p_4 \lor p_0), p_4\}$ es consistente.
- 2. Dada f una asignación, $\mathrm{Th}(f):=\{\varphi\in PROP: [\![\varphi]\!]_f=1\}$ es consistente.

Conjuntos consistentes maximales

Definición

 Γ es **consistente maximal** si es consistente y, para todo $\Delta \subseteq PROP$, si $\Gamma \subseteq \Delta$ entonces Δ es inconsistente.

lacksquare C es consistente maximal si es maximal en el poset

(Conjuntos consistentes, \subseteq).

Lema

Para toda asignación f, $\mathrm{Th}(f):=\{\varphi\in PROP: [\![\varphi]\!]_f=1\}$ es un conjunto consistente maximal.

Lema (Consistentes maximales son cerrado por derivaciones)

Sea Γ consistente maximal.

$$\Gamma \vdash \varphi \Rightarrow \varphi \in \Gamma.$$

Lema (Consistentes maximales son cerrado por derivaciones)

Sea Γ consistente maximal.

$$\Gamma \vdash \varphi \Rightarrow \varphi \in \Gamma$$
.

Lema (Consistentes maximales realizan conectivos)

Sea Γ consistente maximal. Para todas $\varphi, \psi \in PROP$,

Lema (Consistentes maximales son cerrado por derivaciones)

Sea Γ consistente maximal.

$$\Gamma \vdash \varphi \Rightarrow \varphi \in \Gamma$$
.

Lema (Consistentes maximales realizan conectivos)

Sea Γ consistente maximal. Para todas $\varphi, \psi \in PROP$,

- $\ \ \, (\varphi \to \psi) \in \Gamma \iff [\varphi \in \Gamma \text{ implica } \psi \in \Gamma].$

Lema (Consistentes maximales son cerrado por derivaciones)

Sea Γ consistente maximal.

$$\Gamma \vdash \varphi \Rightarrow \varphi \in \Gamma$$
.

Lema (Consistentes maximales realizan conectivos)

Sea Γ consistente maximal. Para todas $\varphi, \psi \in PROP$,

- $\ \ \, (\varphi \to \psi) \in \Gamma \iff [\varphi \in \Gamma \text{ implica } \psi \in \Gamma].$
- $(\varphi \lor \psi) \in \Gamma \iff [\varphi \in \Gamma \circ \psi \in \Gamma].$

Lema (Consistentes maximales son cerrado por derivaciones)

Sea Γ consistente maximal.

$$\Gamma \vdash \varphi \Rightarrow \varphi \in \Gamma$$
.

Lema (Consistentes maximales realizan conectivos)

Sea Γ consistente maximal. Para todas $\varphi, \psi \in PROP$,

- $(\varphi \lor \psi) \in \Gamma \iff [\varphi \in \Gamma \circ \psi \in \Gamma].$

Lema

Si Γ es consistente maximal existe una asignación f tal que $\Gamma = \mathrm{Th}(f)$.

Si Γ es consistente existe Γ^* consistente maximal tal que $\Gamma \subseteq \Gamma^*$.

Si Γ es consistente existe Γ^* consistente maximal tal que $\Gamma \subseteq \Gamma^*$.

Demostración.

■ El conjunto de **todas** las proposiciones se puede enumerar:

$$PROP = \{\varphi_0, \varphi_1, \varphi_2, \dots\}.$$

Si Γ es consistente existe Γ^* consistente maximal tal que $\Gamma \subseteq \Gamma^*$.

Demostración.

■ El conjunto de **todas** las proposiciones se puede enumerar:

$$PROP = \{\varphi_0, \varphi_1, \varphi_2, \dots\}$$
. (esquema de numeración "por pisos")

Si Γ es consistente existe Γ^* consistente maximal tal que $\Gamma \subseteq \Gamma^*$.

Demostración.

- El conjunto de **todas** las proposiciones se puede enumerar: $PROP = \{\varphi_0, \varphi_1, \varphi_2, \dots\}$. (esquema de numeración "por pisos")
- Empezando con Γ , vamos agregándole proposiciones de a una cuidando que no se vuelva inconsistente. Para cada $n \in \mathbb{N}_0$ definimos

Si Γ es consistente existe Γ^* consistente maximal tal que $\Gamma \subseteq \Gamma^*$.

Demostración.

- El conjunto de **todas** las proposiciones se puede enumerar: $PROP = \{\varphi_0, \varphi_1, \varphi_2, \dots\}$. (esquema de numeración "por pisos")
- Empezando con Γ , vamos agregándole proposiciones de a una cuidando que no se vuelva inconsistente. Para cada $n \in \mathbb{N}_0$ definimos

$$\Gamma_0 := \Gamma$$

Si Γ es consistente existe Γ^* consistente maximal tal que $\Gamma \subseteq \Gamma^*$.

Demostración.

- El conjunto de **todas** las proposiciones se puede enumerar: $PROP = \{\varphi_0, \varphi_1, \varphi_2, \dots\}$. (esquema de numeración "por pisos")
- Empezando con Γ , vamos agregándole proposiciones de a una cuidando que no se vuelva inconsistente. Para cada $n \in \mathbb{N}_0$ definimos

$$\Gamma_0 := \Gamma$$

$$\Gamma_{n+1} := \left\{ \begin{array}{ll} \Gamma_n \cup \{\varphi_n\} & \text{si } \Gamma_n \cup \{\varphi_n\} \text{ es consistente;} \\ \Gamma_n & \text{caso contrario} \end{array} \right.$$

Si Γ es consistente existe Γ^* consistente maximal tal que $\Gamma \subseteq \Gamma^*$.

Demostración.

- El conjunto de **todas** las proposiciones se puede enumerar: $PROP = \{\varphi_0, \varphi_1, \varphi_2, \dots\}$. (esquema de numeración "por pisos")
- Empezando con Γ , vamos agregándole proposiciones de a una cuidando que no se vuelva inconsistente. Para cada $n \in \mathbb{N}_0$ definimos

$$\Gamma_0 := \Gamma$$

$$\Gamma_{n+1} := \left\{ \begin{array}{ll} \Gamma_n \cup \{\varphi_n\} & \text{si } \Gamma_n \cup \{\varphi_n\} \text{ es consistente;} \\ \Gamma_n & \text{caso contrario} \end{array} \right.$$

y definimos $\Gamma^* := \bigcup_{n \in \mathbb{N}_0} \Gamma_n$.

Si Γ es consistente existe Γ^* consistente maximal tal que $\Gamma \subseteq \Gamma^*$.

Demostración.

- El conjunto de **todas** las proposiciones se puede enumerar: $PROP = \{\varphi_0, \varphi_1, \varphi_2, \dots\}$. (esquema de numeración "por pisos")
- Empezando con Γ , vamos agregándole proposiciones de a una cuidando que no se vuelva inconsistente. Para cada $n \in \mathbb{N}_0$ definimos

$$\Gamma_0 := \Gamma$$

$$\Gamma_{n+1} := \left\{ \begin{array}{ll} \Gamma_n \cup \{\varphi_n\} & \text{si } \Gamma_n \cup \{\varphi_n\} \text{ es consistente;} \\ \Gamma_n & \text{caso contrario} \end{array} \right.$$

y definimos $\Gamma^*:=\bigcup_{n\in\mathbb{N}_0}\Gamma_n$. Probamos que Γ^* es consistente maximal.

Corolario

Si Γ es consistente tiene un modelo.

Prueba de Completitud

Corolario

 $\Gamma \vDash \bot$ implica $\Gamma \vdash \bot$.

Prueba de Completitud

Corolario

$$\Gamma \vDash \bot$$
 implica $\Gamma \vdash \bot$.

Ejercicio:
$$\Gamma \vDash \varphi$$
 implica $\Gamma \cup \{\neg \varphi\} \vDash \bot$.

Prueba de Completitud

Corolario

 $\Gamma \vDash \bot$ implica $\Gamma \vdash \bot$.

Ejercicio: $\Gamma \vDash \varphi$ implica $\Gamma \cup \{\neg \varphi\} \vDash \bot$.

Prueba de Completitud

$$\begin{array}{c} \Gamma \vDash \varphi \implies \\ \Gamma \cup \{\neg \varphi\} \vDash \bot \implies \\ \Gamma \cup \{\neg \varphi\} \vdash \bot \implies \\ \Gamma \vdash \varphi. \end{array}$$

