Lista 1 - MAC444

João Gabriel Basi - N° USP: 9793801

- 1. a) $D = \{a, b, c\}$ $I[P] = \{(a, b), (b, a)\}$ I[a] = c I[b] = a
 - **b)** $D = \{a, b, c\}$ $I[P] = \{(a, a), (b, b), (a, b), (b, a)\}$ I[a] = cI[b] = a
 - c) $D = \{a, b\}$ $I[P] = \{(a, a), (b, b), (a, b)\}$ I[a] = aI[b] = a
- **2.** a) E(x): $x \in esquiador$ A(x): $x \in alpinista$
 - N(x): x gosta de neve
 - C(x): x gosta de chuva
 - $D = \{\text{Tony}, \text{Mike}, \text{John}\}$
 - $E(x) \vee A(x)$
 - $\bullet \ \neg A(x) \lor \neg C(x)$
 - $N(x) \vee \neg E(x)$
 - $\neg C(Mike) \lor \neg C(Tony)$
 - $C(Mike) \lor C(Tony)$
 - $\neg N(\text{Mike}) \lor \neg N(\text{Tony})$
 - $N(\text{Mike}) \vee N(\text{Tony})$
 - C(Tony)
 - N(Tony)

- **b)** Sabendo que $(x \lor y) \land (\neg x \lor z) \vdash (y \land z)$ (regra da resolução), temos: KB $\vdash \exists x (A(x) \land \neg E(x))$
 - 1. $E(x) \vee A(x)$
 - $2. \qquad \neg A(x) \lor \neg C(x)$
 - 3. $N(x) \vee \neg E(x)$
 - 4. $\neg C(\text{Mike}) \lor \neg C(\text{Tony})$
 - 5. $C(Mike) \lor C(Tony)$
 - 6. $\neg N(\text{Mike}) \lor \neg N(\text{Tony})$
 - 7. $N(\text{Mike}) \vee N(\text{Tony})$
 - 8. C(Tony)
 - 9. N(Tony)

10.	$\neg A(x) \lor E(x)$	suposição
11.	E(x)	1,10 resolução
12.	N(x)	3,11 resolução
13.	N(Mike)	$12 \mathrm{~x/Mike}$
14.	$\neg N(\text{Tony})$	7,13 resolução
15.	1	$9,14 \perp_{i}$
16.	$\exists x (A(x) \land \neg E(x))$	$10-15 \exists_i$

c)

d) .

