UNIVERSIDADE FEDERAL DE MINAS GERAIS
INSTITUTO DE CIÊNCIAS EXATAS
DEPARTAMENTO DE MATEMÁTICA
GEOMETRIA ANALÍTICA E ÁLGEBRA LINEAR - 21 de agosto de 2013
Prof. Reginaldo J. Santos

Exercícios Complementares sobre Retas e Planos

1. Determine as equações paramétricas da reta interseção dos planos:

(a)
$$x + 2y - 3z - 4 = 0$$
 e $x - 4y + 2z + 1 = 0$;

- (b) x y = 0 e x + z = 0.
- 2. Achar as equações da reta que intercepta as retas r_1 e r_2 e é perpendicular a ambas.

(a)
$$r_1: \begin{cases} x=1+t\\ y=2+3t, & \text{para } t\in \mathbb{R}\\ z=4t \end{cases}$$
 e
$$r_2: x+1=\frac{y-1}{2}=\frac{z+2}{3}.$$

(b)
$$r_1: \begin{cases} x=-1+t\\ y=2+3t, \text{ para } t \in \mathbb{R}\\ z=4t \end{cases}$$
 e
$$r_2: x=\frac{y-4}{2}=\frac{z-3}{3}.$$

Solução

1. (a) >>
$$N1=[1,2,-3]$$
; $N2=[1,-4,2]$; $V=pv(N1,N2)$
 $V=-8-5-6$

Os planos se interceptam segundo uma reta cujo vetor diretor é V=(-8,-5,-6). Fazendo y=0 nas equações obtemos um sistema de duas equações e duas incógnitas cuja solução é x=1,z=-1. Assim, $P_0=(1,0,-1)$ é um ponto da reta e as equações paramétricas da reta são

$$\begin{cases} x = 1 - 8t \\ y = -5t, & \text{para } t \in \mathbb{R} \\ z = -1 - 6t \end{cases}$$

(b) >>
$$N1=[1,-1,0]$$
; $N2=[1,0,1]$; $V=pv(N1,N2)$
 $V = -1 -1 1$

Os planos se interceptam segundo uma reta cujo vetor diretor é V=(-1,-1,1). Claramente $P_0=(0,0,0)$ é um ponto da reta e as equações paramétricas da reta são

$$\begin{cases} x = -t \\ y = -t, \text{ para } t \in \mathbb{R} \\ z = t \end{cases}$$

2. (a) Um ponto qualquer da reta r_1 é descrito por $P_{r_1} = (-1 + t, 2 + 3t, 4t)$ e um ponto qualquer da reta r_2 é da forma $P_{r_2} = (-1 + s, 1 + 2s, -2 + 3s)$. Aqui é necessário o uso de um parâmetro diferente para a reta r_2 . O vetor

$$\overrightarrow{P_{r_1}P_{r_2}} = (s-t, -1+2s-3t, -2+3s-4t)$$

"liga" um ponto qualquer de r_1 a um ponto qualquer de r_2 . Vamos determinar t e s tais que o vetor $P_{r_1}P_{r_2}$ seja perpendicular ao vetor diretor $V_1 = (1, 3, 4)$ de r_1 e ao vetor diretor $V_2 = (1, 2, 3)$ de r_2 , ou seja, temos que resolver o sistema

$$\begin{cases} P_{r_1} \overrightarrow{P}_{r_2} \cdot V_1 &= -11 + 19s - 26t &= 0 \\ \overrightarrow{P}_{r_1} \overrightarrow{P}_{r_2} \cdot V_2 &= -8 + 14s - 19t &= 0 \end{cases}$$

A solução deste sistema é t=-2/3, s=-1/3. Logo $P_{r_1}=(-5/3,0,-8/3)$, $P_{r_2}=(-4/3,1/3,-3)$, $P_{r_1}P_{r_2}=(1/3,1/3,-1/3)$ e $V_3=(1,1,-1)$ é um vetor

diretor da reta procurada. Assim as equações paramétricas da reta procurada são

$$r_3:$$

$$\begin{cases} x = -5/3 + t \\ y = t, & \text{para } t \in \mathbb{R}. \\ z = -8/3 - t \end{cases}$$

(b) Um ponto qualquer da reta r_1 é descrito por $P_{r_1} = (-1 + t, 2 + 3t, 4t)$ e um ponto qualquer da reta r_2 é da forma $P_{r_2} = (s, 4+2s, 3+3s)$. Aqui é necessário o uso de um parâmetro diferente para a reta r_2 . O vetor

$$\overrightarrow{P_{r_1}P_{r_2}} = (1+s-t, 2+2s-3t, 3+3s-4t)$$

"liga" um ponto qualquer de r_1 a um ponto qualquer de r_2 . Vamos determinar t e s tais que o vetor $P_{r_1}P_{r_2}$ seja perpendicular ao vetor diretor $V_1 = (1, 3, 4)$ de r_1 e ao vetor diretor $V_2 = (1, 2, 3)$ de r_2 , ou seja, temos que resolver o sistema

$$\begin{cases} P_{r_1} \overrightarrow{P}_{r_2} \cdot V_1 &= 19 + 19s - 26t &= 0 \\ \overrightarrow{P}_{r_1} \overrightarrow{P}_{r_2} \cdot V_2 &= 14 + 14s - 19t &= 0 \end{cases}$$

A solução deste sistema é t=0, s=-1. Logo $P_{r_1}=(-1,2,0)$, $P_{r_2}=(-1,2,0)$ e $P_{r_1}P_{r_2}=(0,0,0)$. Neste caso o vetor $P_{r_1}P_{r_2}$ não pode ser o vetor diretor da reta procurada. Vamos tomar como vetor diretor da reta procurada o vetor $V_3=V_1\times V_2=(1,1,-1)$.

Assim as equações paramétricas da reta procurada são

$$r_3: \left\{ \begin{array}{ll} x & = & -1+t \\ y & = & 2+t, \quad \text{para } t \in \mathbb{R}. \\ z & = & -t \end{array} \right.$$