Національний технічний університет України «Київський Політехнічний Інститут імені Ігоря Сікорського»

Факультет інформатики і обчислювальної техніки Кафедра обчислювальної техніки

Лабораторна робота №5

з дисципліни «Комп'ютерна логіка»

Тема: «Синтез цифрових автоматів на тригерах»

Підготував: студент групи IO-61 Лисенко Дмитро Вадимович

Перевірив:

Верба Олександр Андрійович

Короткі теоретичні відомості

Цифровий автомат, що має два і більше станів, є послідовносною схемою. Ознакою такої логічної схеми є наявність петель. Під петлею розуміється шлях з виходу логічного елемента на його вхід безпосередньо або через інші елементи.

Якщо вихідні сигнали залежать тільки від стану, в якому знаходиться автомат, його називають автоматом Мура. Закон функціонування такого автомата визначається функціями переходів і виходів відповідно

$$a^{S+1} = \delta(a^S, x^S),$$
$$y^{S+1} = \lambda(a^S),$$

де s=0, 1, 2,... – моменти автоматного (дискретного) часу;

 δ – функція переходів;

 λ – функція виходів;

 $a \in \{a1, a2, ..., am\}$ – стан автомата;

 $x=\{x1, x2, ..., xk\}$ – вектор значень вхідних сигналів;

у={у1, у2, ..., ур} – вектор вихідних сигналів автомата.

Автомат, вихідні сигнали якого залежать як від стану, так і від вхідних сигналів, називають автоматом Мілі. Його функціонування визначається виразами

$$a^{S+1} = \delta(a^S, x^S),$$

$$y^{S+1} = \lambda(a^S, x^S)$$

Можна виділити чотири основні функціональні типи тригерів: RS-тригери, JK-тригери, D- тригери і Т-тригери.

Тригери мають тільки два стани: нульовий стан — при Q=0 і $\overline{Q}=1$, та одиничний стан — при Q=1 і $\overline{Q}=0$. Перехід тригерів з одного стану в інший визначається інформаційними сигналами, а момент переходу — перепадом синхросигналу C (в даному випадку перепад з 1 в 0). Асинхронні входи тригерів R і S дозволяють встановлювати початковий стан тригерів.

Синтез автомата включає наступні етапи:

- 1) складання списку керуючих сигналів, що забезпечують виконання кожної мікрооперації;
- 2) визначення тривалості кожного керуючого сигналу (в числі тактів) і періоду тактуючих сигналів автомата;
 - 3) одержання закодованого мікроалгоритму;
 - 4) відмітка станів автомата;
 - 5) складання графа автомата;
 - 6) кодування станів автомата;
 - 7) складання структурної таблиці автомата;
 - 8) одержання МДНФ функцій збудження тригерів і керуючих сигналів;
- 9) представлення функцій збудження тригерів і керуючих сигналів в операторной формі;
 - 10) побудова схеми керуючого автомата.

Таблиця варіантів

h_8 h_4 h_2	Порядок з'єднання фрагментів							
1 0 0	3, 1, 4							
h_8 h_7 h_3	Послідовність логічних умов							
1 1 1	$\overline{X_1}, \overline{X_2}, \overline{X_1}$							
h_9 h_4 h_1	Послідовність вихідних сигналів							
1 0 0	$y_1, y_3, y_2, y_4, y_1, y_2$							
h_6 h_2	Сигнал, тривалістю 2 <i>t</i>							
1 0	\mathcal{Y}_3							
h_9 h_4	Тип тригерів							
1 0	JK							
h_1	Тип автомата							
0	Мілі							
h_3 h_2 h_1	Логічні елементи							
1 0 0	2АБО-НЕ, 4І							

Перехід	Старий	Новий	Вхідні	Вихідні	Функції тригерів		
	стан	стан	сигнали	сигнали	J_3K_3	J_2K_2	J_1K_1
	$Q_3Q_2Q_1$	$Q_3Q_2Q_1$	x_1x_2	$y_4y_3y_2y_1$	- 3 - 3	- 2 2	
$Z_1 \rightarrow Z_2$	000	001	0-	0100	0-	0-	1-
$Z_1 \rightarrow Z_3$	000	010	1-	0001	0-	1-	0-
$Z_2 \rightarrow Z_3$	001	010		0100	0-	1-	-1
$Z_3 \rightarrow Z_4$	010	110		0010	1-	-0	0-
$Z_4 \rightarrow Z_4$	110	110	-1	0010	-0	-0	0-
$Z_4 \rightarrow Z_5$	110	100	-0	1000	-0	-1	0-
$Z_5 \rightarrow Z_5$	100	100	1-	0001	-0	0-	0-
$Z_5 \rightarrow Z_1$	100	000	0-	0010	-1	0-	0-

$$\begin{array}{cccc}
J & K & & & & \\
0 & - & & & & \\
0 & \longrightarrow 0 & & & \\
& & 1 & - & \\
& & - & 1 & \\
1 & \longrightarrow 0 & & \\
& & - & 0 & \\
1 & \longrightarrow 1 & & \\
\end{array}$$

$$y_4 = \overline{x_2}Q_2Q_3$$

$$y_3 = (Q_1 \vee \overline{x_1})\overline{Q_2} \, \overline{Q_3} = \overline{\overline{Q_1}}x_1 \vee Q_2 \vee Q_3 = \overline{\overline{\overline{Q_1}}x_1 \vee \overline{Q_2}} \vee Q_3$$

$$y_2 = (Q_2 \vee \overline{x_1})(Q_3 \vee Q_2)(\overline{Q_3} \vee \overline{Q_2} \vee x_2) = \overline{\overline{Q_2}x_1 \vee \overline{Q_3}} \, \overline{Q_2} \vee Q_3Q_2\overline{x_2} = \overline{\overline{\overline{Q_2}x_1 \vee \overline{Q_3}}} \vee Q_3Q_2\overline{x_2}$$

$$y_1 = \overline{Q_2} \, \overline{Q_1}x_1$$

$$J_3 = Q_2$$

$$K_3 = \overline{Q_2}\overline{x_1}$$

$$J_2 = \overline{Q_3}(Q_1 \vee x_1) = \overline{Q_3 \vee \overline{Q_1}}\overline{x_1}$$

$$K_2 = Q_3\overline{x_2}$$

$$J_1 = \overline{Q_3} \, \overline{Q_2} \, \overline{x_1}$$

$$K_1 = \overline{0} = 1$$

Висновок: я вивчити методи структурного синтезу керуючих автоматів із жорсткою логікою, одержав навички в їх налагодженні та експериментальному дослідженні.