

2. Kinematics

Problem Set 1 Solutions

VECTORS AND DIRECTIONS

- Final displacement
 will be the bottom as
 it is FALLING. Or, the
 height is taken as
 the INITIAL
 displacement.
- The g is negative according to the direction of the dimension $y = \hat{j}$.

Displacement

$$\Delta x = x_2 - x_1$$

Average Velocity

$$v_{av-x} = rac{\Delta x}{\Delta t}$$

Instantaneous Velocity

• Instantaneous Velocity is defined as the \varliminf of the average velocity as the time interval Δt becomes infinitesimally small:

$$ec{v}_x = \lim_{\Delta t o 0} rac{\Delta ec{x}}{\Delta t} = rac{dec{x}}{dt}$$

- The instantaneous speed of an object, which is a scalar quantity, is defined as the absolute magnitude of the instantaneous velocity.
- Whenever you are integrating always pay attention to the **initial** displacement (it comes as the constant +c).

$$x = x_0 + \int_{t_1}^{t_2} v_x \ dt$$

Average Acceleration

$$a_{av-x}=rac{v_{2x}-v_{1x}}{t_2-t_11}=rac{\Delta v}{\Delta t}$$

Instantaneous Acceleration

$$a_x = \lim_{\Delta t o 0} rac{\Delta v_x}{\Delta t} = rac{dv_x}{dt}$$

Always pay attention to the initial velocity (it comes as the constant v_0)

$$v_x = v_0 + \int_{t_1}^{t_2} a_x \ dt$$

Equations of Motion with constant acceleration

$$v_x = v_{0x} + a_x t$$

$$x = x_0 + v_{0x}t + rac{1}{2}a_xt^2$$

$$v_x^2 = v_{0x}^2 + 2(x - x_0)$$

$$x-x_0=\Bigl(rac{v_{0x}+v_x}{2}\Bigr)t$$