

Analyses Using the Million Song Database

Wanlin Ji • Rodrigo Valdés • Erin M. Ochoa CS 123 • 2017 Spring

Goals

- ☐ Implement big-data techniques
 - □ Multiprocessing

 - □ MapReduce

Goals

- ☐ Explore the dataset
 - ☐ Distribution of pairwise similarities
 - ☐ Ten most eclectic songs
 - ☐ Ten most formulaic songs
 - ☐ Two most similar songs
 - ☐ Two least similar songs

segmentLoudMaxTime timeSignature artistName artistID songName segmentLoudMax

Pairwise Comparisons

Songs	Comparisons Needed
10	45
100	4,950
1,000	499,500
10,000	49,995,000
100,000	4,999,950,000
1,000,000	499,999,500,000

Methodological Overview

- ☐ Store selected songs in pickles
 - ☐ Administrative & musical pickles
- ☐ Pass pairs of pickles to worker nodes
 - ☐ Pairwise comparisons between songs
 - ☐ Report results to master node
- ☐ Compile results
- ☐ Run MapReduce scripts on results

Extracting Data

- ☐ HDF5 files: tables package (Python)
- ☐ Access administrative details (song name & ID and artist name, ID, & genre tags)
 - ☐ Store in dictionary
- ☐ Access musical details (sampleRate, length, key, loudness, tempo, timeSignature, segLoudMax, segLoudMaxTime, segPitches, segStart, segTimbre)
 - ☐ Store in second dictionary
- ☐ Return tuple: songIDX, adminDicto, musicDicto

Pairwise Comparison

- ☐ Compare lengths
- ☐ Pad arrays in shorter song
- □ Vectorize each song
- ☐ Compare vectors: cosine similarity
 - □ [-1,1]
 - □ →0←: Less similar
 - $\square \leftarrow 0 \rightarrow$: More similar

- ☐ Sample of 100,000 pairwise comparisons
- ☐ Subset of musical features:
 - □ segLoudMax
 - □ segLoudMaxTime
 - □ segPitches
 - □ segStart
 - □ segTimbre

(using a sample of 100,000 comparisons and a subset of musical features)

Meta-distribution of pairwise distances

Maximum	0.6847
Mean	0.2841
Median	0.2744
Minimum	-0.0565
Standard Deviation	0.1519
Skew	0.2505

(using a sample of 100,000 comparisons and a subset of musical features)

- ☐ The most eclectic song:
 - ☐ 9720: Hinge, "Pray The I Miss" (sic)
 - ☐ Mean pairwise distance of 0.01248307392
- ☐ The most formulaic song:
 - ☐ 9963: Owsley, "Class Clown/Good Old Days (Reprise)"
 - ☐ Mean pairwise distance of 0.41185859225

(using a sample of 100,000 comparisons and a subset of musical features)

- ☐ The two least similar songs: 1.546504982019e-05
 - ☐ 9734: Van Halen, "Why Can't This Be Love (Remastered Version)"
 - ☐ 9943: X-Ecutioners featuring Big Pun, "The Drama (intro)"
- ☐ The two most similar songs: 0.900037116659938
 - ☐ 9725: Livio Minafra, "Campane"
 - ☐ 9925: Semprini, "Rhapsody In Blue (2003 Digital Remaster)"

Challenges

- ☐ Time!
- □ Defining goals
- ☐ Accessing data from HDF5 files
- □ Distance metrics
 - □ Distance correlation or correlation distance?
 - □ Values > 1
 - □ Nebulous support pages
 - ☐ Increased computation time with cosine similarity
- □ Large number of comparisons necessary

