Please work the problems below on the paper provided to you in a neat, clear and complete manner. Make it easy for me to grade.

- 1. An objects velocity \mathbf{v} at time t seconds is given by $\mathbf{v}(t) = \langle 1, 1 \cos t, -\sin t \rangle$, for t > 0 seconds.
 - (a) Find the position function $\mathbf{r}(t)$, given that $\mathbf{r}(0) = \langle 0, 0, 0 \rangle$.
 - (b) Find the unit tangent vector $\hat{\mathbf{T}}$ to $\mathbf{r}(t)$ at time $t = \pi/2$.
 - (c) Find the accelleration function a(t).
- 2. $\mathbf{r}(t) = \langle 2t, \frac{4}{3}t^{3/2}, \frac{1}{2}t^2 \rangle$, for $t \ge 0$, is the vector position function of a curve.
 - (a) Find the arc length function s(t), for $t \ge 0$.
 - (b) Find the length of the curve over the interval $0 \le t \le 6$. Hint: The answer is between 25 and 32.
 - (c) What are the coordinates of the point, six units along the curve from r(0)? Hint: Find t, when s = 6.
 - (d) Find the curvature, κ , at t = 1