Tableau

1 Séance 19 oct 2020

Exercice. (TD2 Ex6.2) Donner un exemple de 10 entiers consécutifs non premiers.

Soient $n \in \mathbb{N}_{>0}$, N := n!. alors pour $2 \le k \le n$, on a $k \mid N+k$, donc N+k est non-premier. En utilisant ce résultat, on a n = 11, alors $11! + 2, \dots, 11! + 11$ sont non-premiers.

Exercice. (TD2 Ex7) Calculer pgcd(195, 143) et ppcm(195, 143). En utilisant l'algorithme d'Euclide.

Réponse.

$$195 = 1 \times 143 + 52$$

$$143 = 2 \times 52 + 39$$

$$52 = 1 \times 39 + 13$$

$$39 = 3 \times 13$$

Donc pgcd(195.143) = 13.

En effet, par l'Ex12 de TD2, on a $ppcm(195, 143) = 195 \times 143 / pgcd(195.143) = 195 \times 143 / 13$,

Maintenant, $195/13 = 15 \Longrightarrow 195 = 13 \times 15 = 3 \times 5 \times 13$. $143 = 13 \times 11$, alors on a $ppcm(195, 143) = 3 \times 5 \times 11 \times 13$ par la formule de ppcm.

Remarque 1. On peut utiliser l'algorithme d'Euclide pour faciliter la factorisation.

Remarque 2. En effet, l'algorithme d'Euclide ($\sim \log(\max{(m,n)})$) est beaucoup plus efficace que la factorisation ($\sim \sqrt{\max{(m,n)}}$) pour calculer ppgcd(m,n) quand $m,n \gg 0$ pour les ordinateurs.

Exercice. (TD2 Ex8) Trouver d = pgcd(36, 126) et une relation 36 a + 126 b = d en utilisant l'algorithme d'Euclide. Réponse.

$$126 = 3 \times 36 + 18$$

$$36 = 2 \times 18$$
(1)

Donc d = 18. Par (1), on a $18 = 36 \times (-3) + 126 \times 1$, donc on peut prendre $a = -3 =: a_0$ et $b = 1 = b_0$.

Chercher tous les $(a,b) \in \mathbb{Z}^2$ t.q. $36 \, a + 126 \, b = d \Longleftrightarrow \frac{36}{d} \, a + \frac{126}{d} \, b = 1$ où $\operatorname{pgcd}(36/d, 126/d) = 1$ (en effet, 36/d = 2 et 126/d = 7).

Donc on a $\frac{36}{d}a + \frac{126}{d}b = 1 = \frac{36}{d}a_0 + \frac{126}{d}b_0 \Longrightarrow \frac{36}{d}(a - a_0) = \frac{126}{d}(b_0 - b) \Longrightarrow \frac{126}{d}|a - a_0$. On prend $t \in \mathbb{Z}$ t.q. $a - a_0 = \frac{126}{d}t$, on a $b - b_0 = -\frac{36}{d}t$

En résumé, $a=a_0+\frac{126}{d}\,t$ et $b=b_0-\frac{36}{d}\,t$.

Remarque 3. Pour résoudre une équation ax + by = c où $a, b, c, x, y \in \mathbb{Z}$

- 1. Calculer $d = \operatorname{pgcd}(a, b)$ (par l'algorithme d'Euclide)
- 2. Si $d \nmid c$, aucune solutions. Sinon, on a $a_0 x + b_0 y = c_0$, où $a_0 = a/d \in \mathbb{Z}, b_0 = b/d \in \mathbb{Z}, c_0 = c/d \in \mathbb{Z}$
- 3. Par l'algorithme d'Euclide, on a trouvé $(x_0, y_0) \in \mathbb{Z}$ t.q. $a_0x_0 + b_0y_0 = 1$, donc (c_0x_0, c_0y_0) est une solution de ax + by = c.
- 4. En général, les solutions sont $(x,y)=(x_0+b_0\,t\,,\,y_0-a_0\,t)$ où $t\in\mathbb{Z}.$

Exercice. (TD2 Ex9) Résoudre dans \mathbb{Z}^2 les équations suivantes: 4x+9y=1, 18x+7y=2, 5x-18y=4, 6x+15y=28, 56x+35y=14

Réponse. Tout d'abord, nous essayons de résoudre 6x + 15y = 28. $3 = pgcd(6, 15) \nmid 28$ donc aucune solution.

Pour 4x + 9y = 1, une solution particulière (x, y) = (-2, 1). Toutes les solutions: $(x, y) = (-2 + 9t, 1 - 4t), t \in \mathbb{Z}$.

2 Séance 21 oct 2020

Exercice. (TD2 Ex9) Résoudre dans \mathbb{Z}^2 les équations suivantes: 18x + 7y = 2, 5x - 18y = 4, 56x + 35y = 14

Réponse. Pour 56 x + 35 y = 14, on utilise l'algorithme d'Euclide

$$56 = 1 \times 35 + 21$$

 $35 = 1 \times 21 + 14$
 $21 = 1 \times 14 + 7$
 $14 = 2 \times 7$

Donc pgcd(56, 35) = 7.

$$8 = 1 \times 5 + 3 \tag{2}$$

$$5 = 1 \times 3 + 2 \tag{3}$$

$$3 = 1 \times 2 + 1 \tag{4}$$

Alors on a
$$1 = (4) = 3 - 1 \times 2 = (3) = 3 - 1 \times (5 - 1 \times 3) = (-1) \times 5 + 2 \times 3 = (-1) \times 5 + 2 \times (8 - 1 \times 5) = 2 \times 8 - 3 \times 5 = (-1) \times 5 + 2 \times (8 - 1 \times 5) = 2 \times 8 - 3 \times 5 = (-1) \times 5 + 2 \times (8 - 1 \times 5) = 2 \times 8 - 3 \times 5 = (-1) \times 5 + 2 \times (8 - 1 \times 5) = 2 \times 8 - 3 \times 5 = (-1) \times 5 + 2 \times (8 - 1 \times 5) = 2 \times 8 - 3 \times 5 = (-1) \times 5 + 2 \times (8 - 1 \times 5) = 2 \times 8 - 3 \times 5 = (-1) \times 5 + 2 \times (8 - 1 \times 5) = 2 \times 8 - 3 \times 5 = (-1) \times 5 + 2 \times (8 - 1 \times 5) = 2 \times 8 - 3 \times 5 = (-1) \times 5 + 2 \times (8 - 1 \times 5) = 2 \times 8 - 3 \times 5 = (-1) \times 5 + 2 \times (8 - 1 \times 5) = 2 \times 8 - 3 \times 5 = (-1) \times 5 + 2 \times (8 - 1 \times 5) = 2 \times 8 - 3 \times 5 = (-1) \times 5 + 2 \times (8 - 1 \times 5) = 2 \times 8 - 3 \times 5 = (-1) \times 5 + 2 \times (8 - 1 \times 5) = 2 \times 8 - 3 \times 5 = (-1) \times 5 + 2 \times (8 - 1 \times 5) = 2 \times 8 - 3 \times 5 = (-1) \times 5 + 2 \times (8 - 1 \times 5) = 2 \times 8 - 3 \times 5 = (-1) \times 5 + 2 \times (8 - 1 \times 5) = 2 \times 8 - 3 \times 5 = (-1) \times 5 = ($$

Donc $56 \, x + 35 \, y = 14$ admet une solution $(x,y) = (2 \, 2, 2 \, (-3)) = (4,-6)$. La solution générale $(x,y) = (4+5 \, t, -6-8 \, t)$ où $t \in \mathbb{Z}$

 $lci a_0 = 8, b_0 = 5, c_0 = 14/7 = 2$

Pour 18 x + 7 y = 2,

$$18 = 2 \times 7 + 4$$
$$7 = 2 \times 4 - 1$$

Remarque 4. Pour a=b q+r, vous pouvez remplacer le reste $r \in [0,b[$ par $r \in [-E(b/2),E(-b/2)+b[$

Alors $1 = 2 \times 4 - 7 = 2 \times (18 - 2 \times 7) - 7 = 2 \times 18 - 5 \times 7$

On trouve une solution particulière (x,y)=(4,-10). La solution générale: $(4+7\,t,-10-18\,t)$ pour $t\in\mathbb{Z}$.

Remarque 5. Si on remplace t par $c\,t+d$ où $c=\pm 1, d\in \mathbb{Z}$, $(4+5\,t, -6-8\,t)\leftarrow (4+5\,(c\,t+d), -6-8\,(c\,t+d))=(5\,c\,t+5\,d+4, -8\,c\,t-8\,d-6)$

Remarque 6.

$$r_{n-2} = r_{n-1} q_{n-1} + r_n$$

$$r_{n-3} = r_{n-2} q_{n-2} + r_{n-1}$$

$$r_{n-4} = r_{n-3} q_{n-3} + r_{n-2}$$

Alors $r_n = -q_{n-1} r_{n-1} + r_{n-2} = -q_{n-1} \left(r_{n-3} - q_{n-2} r_{n-2} \right) = q_{n-1} q_{n-2} r_{n-2} - q_{n-1} r_{n-3} = q_{n-1} q_{n-2} \left(r_{n-4} - q_{n-3} r_{n-3} \right) - q_{n-1} r_{n-3} = -q_{n-1} \left(1 + q_{n-2} q_{n-3} \right) r_{n-3} + q_{n-1} q_{n-2} r_{n-4} = \cdots$ (les formules pour la fraction continuée)

$$\begin{pmatrix} r_n \\ r_{n-1} \end{pmatrix} = A_{n-1} \begin{pmatrix} r_{n-1} \\ r_{n-2} \end{pmatrix}$$
$$= A_{n-1} A_{n-2} \begin{pmatrix} r_{n-2} \\ r_{n-3} \end{pmatrix}$$
$$= \cdots$$
$$= A_{n-1} A_{n-2} \cdots \begin{pmatrix} a \\ b \end{pmatrix}$$

où
$$A_n = \begin{pmatrix} 1 & * \\ & 1 \end{pmatrix}$$

3 Séance 26 oct 2020

Exercice. (TD2 Ex10) Soient $a, b, x, y \in \mathbb{Z}$ $(a, b \neq 0)$. Montrer que si l'entier d = a x + b y > 0 divise a et b alors $d = \operatorname{pgcd}(a, b)$.

Réponse. Pour $(a, b) \in \mathbb{Z} \setminus \{0\}$, la définition de $\operatorname{pgcd}(a, b)$: un entier positif e > 0 t.q.

- 1. e | a, e | b;
- 2. Pour tout $f \in \mathbb{Z}$ t.q. $f \mid a$, $f \mid b$, alors on a $f \mid e$.

Il suffit de vérifier que d satisfait les énoncés pou e au-dessus.

Exercice. (TD2 Ex11) Soient $a, b, c, d \in \mathbb{Z} \setminus \{0\}$. Montrer que

- 1. $\operatorname{pgcd}(a, b) = d \Longrightarrow \operatorname{pgcd}(a c, b c) = d |c|$.
- 2. $(\operatorname{pgcd}(a, b) = 1 \text{ et } \operatorname{pgcd}(a, c) = 1) \Longrightarrow \operatorname{pgcd}(a, b c) = 1.$
- 3. $\operatorname{pgcd}(a, b) = 1 \Longrightarrow (\forall m, n \ge 2 : \operatorname{pgcd}(a^m, b^n) = 1).$
- 4. $\operatorname{pgcd}(a, b) = d \Longrightarrow (\forall m \ge 2 : \operatorname{pgcd}(a^m, b^m) = d^m).$

Réponse.

- 1. Il suffit de montrer que
 - a. d|c| divise ac et bc
 - b. si e divise a c et b c alors e divise d | c | (Bézout: d = a x + b y).
- 2. Il suffit de montrer que pour tout premier $p \mid a$, on a $p \nmid b c$. $\operatorname{pgcd}(a,b) = 1 \Longrightarrow p \nmid b$. p ne divise pas c. Donc $p \nmid b c$. Alternativement, vous pouvez utiliser l'identité d'Euclide.
- 3. Méthode 1: par récurrence sur m et n. Méthode 2: Pour tout $p \mid a^m$, p divise a alors p ne divise pas b, donc p ne divise pas b^n .
- 4. $\operatorname{pgcd}(a/d, b/d) = 1 \Longrightarrow \operatorname{pgcd}((a/d)^m, (b/d)^m) = 1 \Longrightarrow \operatorname{pgcd}(a^m, b^m) = d^m$.

4 Séance 28 oct 2020

Question. (CC1) Soient n > 1 un entier et $p \neq q$ deux nombres premiers distincts. Montrer que la racine n-ième $\sqrt[n]{p \, q} \notin \mathbb{Q}$.

Réponse. Sinon, $r = (p q)^{1/n} \in \mathbb{Q}$, alors $r^n = p q \Longrightarrow n v_p(r) = v_p(p q) = v_p(p) + v_p(q) = 1 \Longrightarrow v_p(r) = 1/n \notin \mathbb{Z}$.

Question. (CC1) Soient $n \in \mathbb{N}_{>0}$ et $a, b \in \mathbb{Z} \setminus \{0\}$. Montrer que si $a^{n+1} \mid b^n$, alors on a $a \mid b$.

Réponse. $a^{n+1} \mid b^n$ implique que pour tout premier p, $(n+1) v_p(a) \le n v_p(b) \Longrightarrow v_p(a) \le n v_p(b) / (n+1) \le v_p(b)$, donc $a \mid b$.

Question. (CC2) Calculer $\operatorname{pgcd}(a,b), \operatorname{ppcm}(a,b)$ et résoudre l'équation $a\,x+b\,y=c$ pour $(x,y)\in\mathbb{Z}^2$ où a=68, b=42 et c=12 (Il n'est pas nécessaire d'évaluer $\operatorname{ppcm}(a,b)$ dont une factorisation suffit).

Réponse. Calculons pgcd(a, b) par l'algorithme d'Euclide,

$$68 = 1 \times 42 + 26$$

$$42 = 1 \times 26 + 16$$

$$26 = 1 \times 16 + 10$$

$$16 = 1 \times 10 + 6$$

$$10 = 1 \times 6 + 4$$

$$6 = 1 \times 4 + 2$$

$$4 = 2 \times 2$$

Donc pgcd(a, b) = 2. ppcm $(a, b) = 68 \times 42/2$

Pour résoudre l'équation a x + b y = c, tout d'abord, $pgcd(a, b) \mid c$.

$$2 = 1 \times 6 - 1 \times 4 \in 4 \mathbb{Z} + 6 \mathbb{Z}$$

$$= 1 \times 6 - 1 \times (10 - 1 \times 6)$$

$$= 2 \times 6 - 1 \times 10 \in 6 \mathbb{Z} + 10 \mathbb{Z}$$

$$= 2 \times (16 - 10) - 1 \times 10$$

$$= 2 \times 16 - 3 \times 10 \in 10 \mathbb{Z} + 16 \mathbb{Z}$$

$$= 2 \times 16 - 3 \times (26 - 16)$$

$$= -3 \times 26 + 5 \times 16 \in 16 \mathbb{Z} + 26 \mathbb{Z}$$

$$= -3 \times 26 + 5 \times (42 - 26)$$

$$= 5 \times 42 - 8 \times 26 \in 26 \mathbb{Z} + 42 \mathbb{Z}$$

$$= 5 \times 42 - 8 \times (68 - 42)$$

$$= -8 \times 68 + 13 \times 42 \in 42 \mathbb{Z} + 68 \mathbb{Z}$$

Donc en multipliant 6, on obtient une solutions particulière: (x,y) = (-48,78). La solution générale: (x,y) = (-48+21t,78-34t).

Question. (TD3 Ex4.bc) Résoudre dans Z:

- 1. $10 x \equiv 6 \pmod{14}$
- 2. $\begin{cases} 7x \equiv 5 \pmod{19} \\ 6x \equiv 3 \pmod{15} \end{cases}$

Réponse.

- 1. L'équation $a x \equiv c \pmod{b}$: a x b y = c. En général,
 - a. Calculer $d := \operatorname{pgcd}(a, b)$. Si $d \nmid c$, aucune solution.
 - b. Sinon, il suffit de résoudre l'équation $\frac{a}{d}x \equiv \frac{c}{d} \pmod{\frac{b}{d}}$. On utilise l'algorithme d'Euclide pour chercher un inverse de $\frac{a}{d} \pmod{\frac{b}{d}}$: posons $a_1 := a/d$, $b_1 := b/d$ et $c_1 := c/d$. si vous trouvez $u, v \in \mathbb{Z}$ t.q. $a_1 u + b_1 v = 1$, alors $a_1 u \equiv 1 \pmod{b_1}$, donc u est un inverse.
 - c. $a_1 x u \equiv c_1 u \pmod{b_1} \Longrightarrow x \equiv c_1 u \pmod{b_1}$.

En particulier,

- a. $14 = 1 \times 10 + 4$, $10 = 2 \times 4 + 2$, $4 = 2 \times 2$, donc pgcd(10, 14) = 2.
- b. $5 x \equiv 3 \pmod{7}$. $2 = 10 2 \times 4 = 10 2 \times (14 1 \times 10) = -2 \times 14 + 3 \times 10$. Donc $1 = -2 \times 7 + 3 \times 5$, alors $3 \times 5 \equiv 1 \pmod{7}$.
- c. $x \equiv 3 \times 3 \equiv 2 \pmod{7}$
- 2. En résolvant les équations, le système est équivalent à $\begin{cases} x \equiv -2 \pmod{19} \\ x \equiv -2 \pmod{5} \end{cases}$ donc $x \equiv -2 \pmod{95} = \operatorname{ppcm}(19, 5))$

Remarque 7. En général, pour résoudre un système d'équations $\begin{cases} x \equiv c_1 \pmod{a_1} \\ x \equiv c_2 \pmod{a_2} \end{cases}$, $x = a_1 y + c_1 = a_2 z + c_2$ où $y, z \in \mathbb{Z}$, il suffit de résoudre $a_1 y + c_1 = a_2 z + c_2 \Rightarrow a_1 y - a_2 z = c_2 - c_1$. En particulier, alors la solution générale s'écrit comme $x \equiv \pmod{pcm(a_1, a_2)}$.

Pour un système

$$\begin{cases} x \equiv c_1 \pmod{a_1} \\ x \equiv c_2 \pmod{a_2} \\ \dots \\ x \equiv c_n \pmod{a_n} \end{cases}$$

où $\operatorname{pgcd}(a_i,a_j)=1$ pour tout $i\neq j$ (il suffit de résoudre le système avec $(c_1,\ldots,c_n)=(0,\ldots,0,1,0,\ldots,0)$, par exemple, $c_1=1$ et $c_2=\cdots=c_n=0$, alors il est équivalent à $\left\{ egin{array}{ll} x\equiv 1\pmod{a_1} \\ x\equiv 0\pmod{a_2\cdots a_n} \end{array} \right.$ Pour les (c_1,\ldots,c_n) , il suffit de faire une combinaison linéaire des solutions pour $(c_1,\ldots,c_n)=(0,\ldots,0,1,0,\ldots,0)$.

Question. $\operatorname{pgcd}(a,b) = d \Longrightarrow (\forall m, n \ge 2 : \operatorname{pgcd}\left(\frac{a^m}{d^m}, \frac{b^n}{d^n}\right) = 1\right).$

Réponse. $a = a_1 d, b = b_1 d$ alors $\operatorname{pgcd}(a_1, b_1) = 1$. Donc $\operatorname{pgcd}(a_1^m, b_1^n) = 1$.

Exercice. (TD2 Ex12) Soient $a, b \in \mathbb{Z}$. Montrer que $\operatorname{pgcd}(a, b) \operatorname{ppcm}(a, b) = |ab|$.

Réponse. Il suffit de vérifier que pour tout premier p, on a $v_p(\operatorname{pgcd}(a,b)\operatorname{ppcm}(a,b)) = v_p(|ab|) = v_p(ab)$. En effet, $v_p(\operatorname{pgcd}(a,b)\operatorname{ppcm}(a,b)) = v_p(\operatorname{pgcd}(a,b)) + v_p(\operatorname{ppcm}(a,b)) = \min(v_p(a),v_p(b)) + \max(v_p(a),v_p(b)) = v_p(a) + v_p(b) = v_p(ab)$.

Question. (TD3 Ex1) $a = \sum_{j=0}^{r} a_j \times 10^j$. Montrer que

- 1. 3 divise a ssi 3 divise $\sum_{j=0}^{r} a_j$
- 2. 9 divise a ssi 9 divise $\sum_{j=0}^{r} a_j$
- 3. 11 divise a ssi 11 divise $\sum_{j=0}^{r} (-1)^{j} a_{j}$

Réponse.

- 1. $a \equiv \sum_{j=0}^{r} a_j \pmod{3}$
- 2. Similaire
- 3. $10 \equiv -1 \pmod{11}$ donc $a \equiv \sum_{j=0}^{r} (-1)^j a_j$

5 Séance 2 nov 2020

Question. (TD3 Ex7) Trouver $100^{1000} \mod 13$ [Indication $x^{12} \equiv 1 \pmod{13}$ pour $x \not\equiv 0 \pmod{13}$].

Réponse. $1000/12 = 500/6 = 250/3 \in \mathbb{Z} + 1/3$ donc le reste est $1/3 \times 12 = 4$. Donc $100^{1000} \equiv 100^4 \pmod{13}$, ensuite $100/13 \in \mathbb{Z} + 9/13 = \mathbb{Z} - 4/13$ donc le reste est -4. Alors $100^{1000} \equiv 100^4 \equiv (-4)^4 \equiv 16^2 \equiv 3^2 \equiv -4 \pmod{13}$.

Question. (TD3 Ex8) Montrer que $13 \mid 2^{70} + 3^{70}$.

Réponse. Il suffit de calculer $2^{70} \mod 13$ et $3^{70} \mod 13$. $70/12 = 35/6 \in \mathbb{Z} - 1/6$ donc le reste est -2. Donc $2^{70} \equiv 2^{-2} \equiv 7^2 \equiv -3 \pmod{13}$ et $3^{70} \equiv 3^{-2} \equiv (-4)^2 \equiv 3 \pmod{13}$, donc $2^{70} + 3^{70} \equiv 0 \pmod{13}$.

6 Séance 4 nov 2020

Algorithme d'Euclide Pour $(a,b) \in \mathbb{Z}^2$ où $b \neq 0$, on a

```
\begin{array}{lll} a & = & b \, q_1 + r_1 \\ b & = & r_1 \, q_2 + r_2 \\ r_1 & = & r_2 \, q_3 + r_3 \\ r_2 & = & r_3 \, q_4 + r_4 \\ \vdots \\ r_{n-2} & = & r_{n-1} \, q_n + r_n \\ r_{n-1} & = & r_n \, q_{n+1} \end{array} \right| \begin{array}{lll} r_1 & = & a - b \, q_1 = a \, s_1 + b \, t_1 \in a \, \mathbb{Z} + b \, \mathbb{Z} \\ r_2 & = & b - r_1 \, q_2 = b - (a \, s_1 + b \, t_1) \, q_2 = a \, s_2 + b \, t_2 \in a \, \mathbb{Z} + b \, \mathbb{Z} \\ r_3 & = & r_1 - r_2 \, q_3 = (a \, s_1 + b \, t_1) - (a \, s_1 + b \, t_1) \, q_3 = a \, s_3 + b \, t_3 \in a \, \mathbb{Z} + b \, \mathbb{Z} \\ r_4 & = & r_2 - r_3 \, q_4 = (a \, s_2 + b \, t_2) - (a \, s_3 + b \, t_3) \, q_4 = a \, s_4 + b \, t_4 \in a \, \mathbb{Z} + b \, \mathbb{Z} \\ r_5 & = & r_{n-1} \, q_n + r_n \\ r_7 & = & r_{n-2} - r_{n-1} \, q_n = (a \, s_{n-2} + b \, t_{n-2}) - (a \, s_{n-1} + b \, t_{n-1}) \, q_n = a \, s_n + b \, t_n \in a \, \mathbb{Z} + b \, \mathbb{Z} \end{array}
```

Cela veut dire que nous écrivons $a, b, r_1, ..., r_n$ consécutivement comme des combinaisons linéaires de a, b. Alors $r_n = \operatorname{pgcd}(a, b)$, et que $r_n = a \, s_n + b \, t_n$, une relation de Bézout.

C'est « meilleur » que ce que je vous ai affiché avant à point de vue informatique: la complexité en espace est constante.

Question. (TD3 Ex2) Soient $x, y, z \in \mathbb{Z}$. Montrer que

- 1. $x^2 \equiv 0, 1 \pmod{3}$
- 2. Si $3 | (x^2 + y^2)$, alors 3 | x et 3 | y.
- 3. Si $x^2 + y^2 = 3z^2$, alors 3 | x, 3 | y et 3 | z.
- 4. Si $x^2 + y^2 = 3z^2$, alors x = y = z = 0.
- 5. Que se passe-t-il si l'on remplace 3 par 5 (resp. par 7)?

Réponse.

- 1. Soit $x \equiv 0, \pm 1 \pmod{3}$, $x^2 \equiv 0, 1 \pmod{3}$ (énumérer toutes les possibilités)
- 2. Énumérer $x^2 \equiv 0, 1$ ou $y^2 \equiv 0, 1$. D'autant que $x^2 + y^2 \equiv 0$, la seule possibilité: $x^2 \equiv 0$ et $y^2 \equiv 0$, donc $x \equiv y \equiv 0$.
- 3. $x^2 + y^2 = 3z^2$ alors $3 \mid (x^2 + y^2) \Longrightarrow 3 \mid x$ et $3 \mid y \Longrightarrow 9 \mid (x^2 + y^2) \Longrightarrow 9 \mid (3z^2) \Longrightarrow 3 \mid z^2 \xrightarrow{\text{(3 est premier)}} 3 \mid z$.
- 4. Il suffit de montrer que

Lemme 8. Pour tout $n \in \mathbb{N}$, on a $3^n \mid x, 3^n \mid y \mid et \mid 3^n \mid z$.

Tout d'abord, pourquoi c'est suffisant, c'est-à-dire, si pour tout $n \in \mathbb{N}$, on a $3^n \mid x$, alors x = 0.

On peut montre Lemme 8 par récurrence. Tout d'abord, quand n=0, c'est tautologie. Supposons que $3^m \mid x,y \text{ et } z$, alors on prend $x=3^m x_1, y=3^m y_1, z=3^m z_1$ ou $x_1,y_1,z_1 \in \mathbb{Z}$. Alors $x^2+y^2=3$ $z^2 \Longrightarrow x_1^2+y_1^2=3$ z_1^2 . Ensuite, par la question précédente, on a $3 \mid x_1,y_1 \text{ et } z_1$, donc $3^{m+1} \mid x,y \text{ et } z$.

5. Pour 5, c'est faux: $1^2 + 2^2 = 5 \times 1^2$. Pour 7, c'est vrai dont le raisonnement est similaire au cas de 3.

Question. En utilisant l'algorithme d'Euclide, résoudre dans \mathbb{Z} les systèmes d'équations

$$\begin{cases} x \equiv 1 \pmod{34} \\ x \equiv 0 \pmod{55} \end{cases}$$

et

$$\begin{cases} x \equiv 0 \pmod{34} \\ x \equiv 1 \pmod{55} \end{cases}$$

[Indication: on peut résoudre les deux systèmes d'équations en même temps.]

En déduire la solution de

$$\begin{cases} x \equiv \alpha \pmod{34} \\ x \equiv \beta \pmod{55} \end{cases}$$

pour tout $(\alpha, \beta) \in \mathbb{Z}^2$.

Remarque. $x \equiv 0 \pmod{55}$ c'est équivalent à, par exemple, $x = 55 \ y$ où $y \in \mathbb{Z}$, alors la première équation est essentiellement équivalente à $55 \ y \equiv 1 \pmod{34}$.

Réponse. Tout d'abord, on utilise l'algorithme d'Euclide:

Donc la relation de Bézout: $1=13\times 55-21\times 34$ et $\operatorname{pgcd}(34,55)=1$, donc les systèmes admettent une seule solution $(\operatorname{mod} 34\times 55)$, et $13\times 55\equiv 1\ (\operatorname{mod} 34)$ et $13\times 55\equiv 0\ (\operatorname{mod} 55)$ donc $x\equiv 13\times 55\ (\operatorname{mod} 34\times 55)$ est une solution du premier système (vous pouvez voir que les étapes ici sont parallèles à celles de $55\ y\equiv 1\ (\operatorname{mod} 34)$: 13 est l'inverse de $55\ \operatorname{mod} 34$). Parallèlement, $x\equiv -21\times 34\ (\operatorname{mod} 34\times 55)$ est une solution du second système.

Pour la troisième, $x \equiv 13 \times 55 \alpha - 21 \times 34 \beta \pmod{34 \times 55}$.

7 Séance 23 nov 2020

Exercice. (TD3 Ex4.a) Résoudre dans \mathbb{Z}

$$\begin{cases} x \equiv 3 \pmod{7} \\ x \equiv 1 \pmod{8} \\ x \equiv 4 \pmod{9} \end{cases}$$
 (5)

Solution. Tout d'abord, nous résolvons

$$\begin{cases} x \equiv 3 \pmod{7} \\ x \equiv 1 \pmod{8} \end{cases}$$

D'autant que 8-7=1, alors $8 \equiv 1 \pmod{7}$ et $8 \equiv 0 \pmod{8}$; $-7 \equiv 0 \pmod{7}$ et $-7 \equiv 1 \pmod{8}$. La solution est $x \equiv 8 \times 3 + (-7) \times 1 \equiv 17 \pmod{7}$.

Alors le système (5) est équivalent à

$$\begin{cases} x \equiv 17 \pmod{7 \times 8} \\ x \equiv 4 \pmod{9} \end{cases}$$
 (6)

Il suffit d'applique l'algorithme d'Euclide au pair $(7 \times 8, 9)$.

Alternativement, on peut évaluer les inverses de 7,8 modulo $9:8^{-1} \equiv (-1)^{-1} \equiv -1 \pmod{9}$. Ensuite, on applique l'algorithme d'Euclide au pair (7,9):

$$9 = 1 \times 7 + 2$$
$$7 = 3 \times 2 + 1$$

Alors $2=9-1\times 7$ et $1=7-3\times 2=7-3$ $(9-1\times 7)=4\times 7-3\times 9$. Donc $4\times 7\equiv 1\pmod 9$, cela vaut dire, $7^{-1}\equiv 4\pmod 9$. Pour résoudre le système (6), on prend $x=17+7\times 8$ y, alors on a $17+7\times 8$ $y\equiv 4\pmod 9$, cela vaut dire 7×8 $y\equiv 5\pmod 9$ $\Longrightarrow y\equiv 5\pmod (8^{-1})$ $(8^{-1})\equiv 5\times 4\times (-1)\equiv -2\pmod 9$. Donc $x=17+7\times 8\times (9\ k-2)\equiv 17-2\times 7\times 8\pmod 7\times 8\times 9$.

Exercice. (TD3 Ex6) Enumérer les classes de congruence inversibles $a \pmod{12} \in (\mathbb{Z}/12\mathbb{Z})^{\times}$. Pour chaque élément de l'ensemble $(\mathbb{Z}/12\mathbb{Z})^{\times}$ determiner son inverse. Idem pour $(\mathbb{Z}/18\mathbb{Z})^{\times}$.

Solution. $a \pmod{12} \in (\mathbb{Z}/12\mathbb{Z})^{\times}$ ssi $\operatorname{pgcd}(a,12) = 1$ ($12 = 2^2 \times 3$ alors $\operatorname{pgcd}(a,12) = 1$ ssi $2 \nmid a$ et $3 \nmid a$), c'est-à-dire, $a \equiv \pm 1, \pm 5$. Dans ce cas, $\operatorname{ppcm}(\varphi(2^2), \varphi(3)) = \operatorname{ppcm}(2,2) = 2$, donc pour tout tel a, on a $a^2 \equiv 1 \pmod{12}$, donc $a^{-1} \equiv a \pmod{12}$.

Parallèllement, $a \pmod{18} \in (\mathbb{Z}/18\mathbb{Z})^{\times}$ ssi $\operatorname{pgcd}(a,18) = 1$ ($18 = 2 \times 3^2$ alors $\operatorname{pgcd}(a,18) = 1$ ssi $2 \nmid a$ et $3 \nmid a$), c'est-à-dire, $a \equiv \pm 1, \pm 5, \pm 7 \pmod{18}$. On peut évaluer un par un $a^{-1} \pmod{18}$. Il suffit de trouver les inverses de 1,5,7. On utilise l'algorithme d'Euclide pour évaluer 5^{-1} et 7^{-1} modulo 18.

Problème. Calculer la fonction d'Euler $\varphi(n)$ et le reste $a^m \mod n$.

Proposition. Si
$$n = \prod_{j=1}^{s} p_{j}^{r_{j}}$$
, alors $\varphi(n) = \prod_{j=1}^{s} (p_{j}-1) p_{j}^{r_{j}-1}$. Par exemple, $\varphi(9) = \varphi(3^{2}) = (3-1) \times 3^{2-1} = 6$

Exercice. (TD4 Ex4.1) Calculer $\varphi(64)$, $\varphi(125)$, $\varphi(100)$ et $\varphi(108)$.

Solution.
$$\varphi(64) = \varphi(2^6) = 2^5 = 32$$
, $\varphi(125) = \varphi(5^3) = 4 \times 5^2 = 100$, $\varphi(100) = 2 \times 4 \times 5 = 40$, $\varphi(108) = \varphi(2^2 \times 3^3) = 2 \times 2 \times 3^2 = 36$.

Cas particulier n = p. $a^m \mod p$ pour $m \ge 1$

- **1.** Si $p \mid a$, alors $p \mid a^m$, donc $a^m \equiv 0 \pmod{p}$.
- 2. Sinon, on a $a^{p-1} \equiv 1 \pmod{p}$. On calcule le reste $m \equiv m_0 \pmod{p-1}$. Alors $a^m \equiv a^{m_0} (a^{p-1})^{(m-m_0)/(p-1)} \equiv a^{m_0} \pmod{p}$.
- 3. Évaluer $a^{m_0} \mod p$ (on peut remplacer a par le reste $a \mod p$).

Remarque. Si nous devons calculer $a^m \mod p$ pour tout $m \in \mathbb{N}$, il suffit de calculer $(a^m \mod p)_{m \in \mathbb{N}}$ un par un a^0 , a^1, a^2, \ldots en utilisant $a^m = a^{m-1} \times a$. En particulier, si $p \nmid a$ et m_1 est le premier $m \in \mathbb{N}_{>0}$ t.q. $a^m \equiv 1 \pmod p$, alors l'ordre de $a \pmod p$ est m_1 .

Exercice. (TD3 Ex9) Montrer que $a^{m+10n} \equiv a^m \pmod{11}$ pour tout $a \in \mathbb{Z}$ et $m, n \ge 1$. Déterminer $2019^{9102} \mod{11}$.

Solution. m+10 $n \equiv m \pmod{10} \Longrightarrow a^{m+10n} \equiv a^m \pmod{11}$. Alors $2019 \equiv 2 \times (-1)^3 + 1 \times (-1) + 9 \equiv 6 \equiv -5 \pmod{11}$, donc $2019^{9102} \equiv (-5)^2 \equiv 25 \equiv 3 \pmod{11}$

Exercice. (TD3 Ex14) Pour $n \in \mathbb{N}$, on note $a_n = 3^n$, $b_n = 4^n$ et $c_n = 1018 \times 2018^n + 1026 \times 2019^n$. Calculer $a_n \mod 13$, $b_n \mod 13$ et $c_n \mod 13$.

Solution. Tout d'abord, $13 \nmid 3$ et $13 \nmid 4$. $1001 = 7 \times 11 \times 13 \equiv 0 \pmod{13}$, donc $2018 \equiv 3 \pmod{13}$ et $2019 \equiv 4 \pmod{13}$. Alors $c_n \equiv 4 \times 3^n - 4^n \equiv 4 a_n - b_n \pmod{13}$. Pour tout $n \in \mathbb{N}$, on prend n_0 est le reste de $n \pmod{12}$. Alors $a_n \equiv 3^{n_0} \pmod{13}$ et $b_n \equiv 4^{n_0} \pmod{13}$.

n	0	1	2	3	4	5	6
$3^n \mod 13$	1	3	-4	1	3	-4	1
$4^n \mod 13$	1	4	3	-1	-4	-3	1
$c_n \bmod 13$	3	-5	-6	5	3	0	3
en utilisant							
$c_n \equiv 4 a_n - b_n (\bmod 13)$							

Donc les ordres de $3 \pmod{13}$ et $4 \pmod{13} \in (\mathbb{Z}/13\mathbb{Z})^{\times}$ sont respectivement 3 et 6. Les valeurs de a_n , b_n , c_n modulo 13 ne dépend que de $n \pmod{6}$.

Cas particulier $n = p^r$. $a^m \mod p^r$ pour $m \ge 1$

Cas $\operatorname{pgcd}(a,n) = 1$, c'est-à-dire, $p \nmid a$.

- 1. On a $a^{\varphi(n)} \equiv 1 \pmod{n}$. On calcule le reste $m \equiv m_0 \pmod{\varphi(n)}$. Alors $a^m \equiv a^{m_0} (a^{\varphi(n)})^{(m-m_0)/\varphi(n)} \equiv a^{m_0} \pmod{n}$.
- **2.** Évaluer $a^{m_0} \mod n$ (on peut remplacer a par le reste $a \mod n$).

Cas $p \mid a$. On écrit $a = p^{v_p(a)} a_0$, alors $p^{mv_p(a)} \mid a^m$. Si $r \le m v_p(a)$, alors le reste est 0. Sinon, il suffit de déterminer $a_0^m \mod p^{r-mv_p(a)}$ où $p \nmid a_0$.

Exemple. Pour évaluer $12^{10} \mod 3^{100}$, on écrit $12 = 3^1 \times 4$, alors $12^{10} = 3^{10} \times 4^{10}$. Pour évaluer $3^{10} \times 4^{10} \mod 3^{100}$, il suffit d'évaluer $4^{10} \mod 3^{90}$ (parce que si $4^{10} \equiv b \pmod{3^{90}}$, alors $3^{10} \times 4^{10} \equiv 3^{10} b \pmod{3^{90}} \times 3^{10} = 3^{100}$)).

8 Séance 25 nov 2020

Exercice. (TD3 Ex5(2), pas bon) Déterminer $3^{15} \mod 5^3$.

Solution. $\varphi(5^3) = 100$. $15 = 1 + 2 + 2^2 + 2^3$ donc $3^{15} = 3^1 3^2 3^4 3^8$, donc il suffit d'évaluer (on note que $3^{2^n} = (3^{2^{n-1}})^2$)

n		0	1	2	3
3^{2^n} mod	15^3	3	9	-44	$44^2 \bmod 5^3$

Cas particulier $n=2^r, r \geq 3$.

Cas $2 \nmid a$. On a $a^{\varphi(n)/2} \equiv 1 \pmod{2^r}$ où $\varphi(n)/2 = 2^{r-2}$. Donc évaluer $a^m \mod n$:

- 1. Évaluer $m \mod \varphi(n)/2 =: m_0$.
- **2.** Évaluer $a^{m_0} \mod n$, c'est le résultat de $a^m \mod n$.

Question. (TD3 Ex11.1) Montrer que $2 \nmid a \Longrightarrow a^2 \equiv 1 \pmod{8}$ (En effet, ici r = 3)

Question. (TD3 Ex5(1)) Déterminer $3^{15} \mod 2^3$. $3^{15} = (3^2)^7 3 \equiv 3 \pmod{8}$

Cas $2 \mid a$.

Cas général. 1 étape: factoriser $n = p_1^{r_1} \cdots p_s^{r_s}$.

Cas général. (Important)

- 1. Évaluer $a^m \mod p_i^{r_j} =: \alpha_i$ pour $j = 1, 2, \dots, s$ par les méthodes au-dessus.
- **2.** Résoudre le système d'équations $(x \equiv \alpha_j \pmod{p_i^{r_j}})_{j=1}^s$.

Cas $\operatorname{pgcd}(a,n)=1$. On peut utiliser l'amélioration de théorème d'Euler: $a^{\operatorname{ppcm}(\varphi(p_1^{r_1}),\ldots,\varphi(p_s^{r_s}))}\equiv 1\ (\operatorname{mod}\ n)$ (si $p_j^{r_j}=2^{r_j}$, on peut remplacer $\varphi(p_j^{r_j})$ par $\varphi(p_j^{r_j})/2$). En effet, ce nombre est « optimal ». Alors on peut calculer $m\ \operatorname{mod}\operatorname{ppcm}(\varphi(p_1^{r_1}),\ldots,\varphi(p_s^{r_s}))=:m_0$, alors on calcule $a^{m_0}\ \operatorname{mod} n$.

Question. (TD3 Ex10) Déterminer $2019^{2018} \mod 91$.

Solution. $91 = 7 \times 13$. $2019 \equiv 17 \pmod{91}$ ($7 \times 13 \mid 1001 = 7 \times 11 \times 13$), donc $2019^{2018} \equiv 17^{2018} \pmod{91}$. pgcd(17, 91) = 1. On peut utiliser deux méthodes pour évaluer $17^{2018} \pmod{91}$:

- 1. On peut évaluer $\operatorname{ppcm}(\varphi(7), \varphi(13)) = \operatorname{ppcm}(6, 12) = 12$, donc $17^{12} \equiv 1 \pmod{91}$ par l'amélioration du théorème d'Euler. On éavlue $2018 \bmod 12$. $2018/12 = 1009/6 \in \mathbb{Z} + 1/6 \Rightarrow 2018 \bmod 12 = 2 \Rightarrow 17^{2018} \equiv 17^2 \equiv 289 91 \times 2 \equiv 16 \pmod{91}$.
- 2. Alternativement, on peut évaluer $17^{2018} \mod 7 = 2$ et $17^{2018} \mod 13 = 3$. Alors il suffit de résoudre le système $(x \equiv 2 \pmod{7}, x \equiv 3 \pmod{13}) \Rightarrow (x \equiv 16 \pmod{91})$

Exercice. (TD3 Ex16) Montrer que pour tout $n \in \mathbb{N}_{>0}$, on a $19 \mid 2^{2^{6n+2}} + 3$.

Solution. On commence par déterminer $2^{6n+2} \mod 18$. $18 = 2 \times 3^2$ et $\operatorname{pgcd}(2,18) = 2 \neq 1$. Pour cela, il faut déterminer $2^{6n+2} \mod 2$ et $2^{6n+2} \mod 3^2$. Tout d'abord, $2^{6n+2} \equiv 0 \pmod 2$. Ensuite, $\varphi(3^2) = 2 \times 3 = 6$, et $6n+2 \equiv 2 \pmod 3^2$, alors $2^{6n+2} \equiv 2^2 \pmod 3^2$. Il reste de résoudre le système $(x \equiv 0 \pmod 2), x \equiv 4 \pmod 9$). La solution est $x \equiv 4 \pmod 18$. Alors $2^{2^{6n+2}} \equiv 2^4 \equiv -3 \pmod 19 \implies 19 \mid 2^{2^{6n+2}} + 3$.

9 Séance 30 nov 2020

Exercice. (TD3 Ex11.2,3) Soit $a \in \mathbb{Z}$.

- 1. Montrer que $\operatorname{pgcd}(a,6) = 1 \Longrightarrow a^2 \equiv 1 \pmod{24}$.
- 2. Montrer que $a^{13} \equiv a \pmod{2730}$.

Solution.

- 1. $24 = 2^3 \times 3$. Alors il suffit ($\operatorname{pgcd}(2^3,3) = 1$) de montrer que $a^2 \equiv 1 \pmod{2^3}$ et $a^2 \equiv 1 \pmod{3}$. D'autant que $\operatorname{pgcd}(2,a) = 1$, on a $a^{2^{n-2}} \equiv 1 \pmod{2^n}$ pour $n \geq 3$ ($\varphi(2^n)/2 = 2^{n-2}$). En particulier, $a^2 \equiv 1 \pmod{2^3}$. D'autant que $3 \nmid a \Longrightarrow a^2 \equiv 1 \pmod{3}$.
- 2. $2730 = 2 \times 3 \times 5 \times 7 \times 13$, alors il suffit de montrer que $a^{13} \equiv a \pmod{2}, 3, 5, 7, 13$). Par exemple, pour le premier 7, on a $a^7 \equiv a \pmod{7}$, alors $a^{6k+1} \equiv a \pmod{7}$ où $k \in \mathbb{N}$ (soit par récurrence, soit la méthode suivante: quand $7 \nmid a$, alors par le petit théorème de Fermat, $a^6 \equiv 1$ alors $a^{6k+1} \equiv (a^6)^k a \equiv a \pmod{7}$; quand $7 \mid a$, alors $7 \mid a$ et $7 \mid a^{6k+1}$, donc $a \equiv 0 \equiv a^{6k+1} \pmod{7}$.

Exercice. (TD4 Ex3.3) Montrer que $n \equiv 1 \pmod{12} \Longrightarrow a^n \equiv a \pmod{91}$.

Problème. Énumerer toutes les valeurs possibles de $a^m \mod n$.

- 1. Factoriser $n = p_1^{\alpha_1} \cdots p_r^{\alpha_r}$.
- 2. Énumerer toutes les valeurs possible de $a^m \mod p_i^{\alpha_i}$ (ici, on utilise l'améloration de théorème d'Euler pour simplifier le calcul).
- 3. Résoudre des systèmes d'équations $x \equiv \beta_i \pmod{p_i^{\alpha_i}}$.

Exercice. (TD4 Ex3.1, Ex3.2) Déterminer les valeurs possibles de $a^{12} \mod 7$, de $a^{12} \mod 13$ et de $a^{12} \mod 91$ pour $a \in \mathbb{Z}$. Idem pour a^6 au lieu de a^{12} .

Solution.

- 1. Déterminer toutes les valeurs possibles de $a^{12} \mod 91$:
 - a. $91 = 7 \times 13$
 - b. $a^{12} \mod 7$: si $7 \mid a$, alors $a^{12} \equiv 0 \pmod 7$). Sinon, par le théorème de Fermat, on a $a^6 \equiv 1 \pmod 7$, donc $a^{12} \equiv 1 \pmod 7$. En résumé, $a^{12} \equiv 0, 1 \pmod 7$. Parallèllement, $a^{12} \equiv 0, 1 \pmod 13$.
 - c. Pour déterminer toutes les valeurs possibles de $a^{12} \mod 7 \times 13$, il suffit de résoudre les systèmes

$$\begin{cases} x \equiv \alpha \pmod{7} \\ x \equiv \beta \pmod{13} \end{cases}$$

pour tout $\alpha \in \{0,1\}$ et $\beta \in \{0,1\}$. $2 \times 7 - 13 = 1$, on a $x \equiv -13 \ \alpha + 14 \ \beta \ (\text{mod} \ 7 \times 13)$, donc toutes les valeurs possibles de $a^{12} \ \text{mod} \ 7 \times 13$ sont 0,14,-13,1.

- 2. Déterminer toutes les valeurs possibles de $a^6 \mod 91$:
 - a. $91 = 7 \times 13$
 - b. Indication: pour déterminer toutes les valeurs possibles de $a^6 \mod 13$, il faut énumérer $a \equiv 0, \pm 1, \pm 2, \pm 3, \pm 4, \pm 5, \pm 6$. $a^6 = (a^2)^3$

Quand $7 \mid a$, on a $a^6 \equiv 0 \pmod{7}$. Quand $7 \nmid a$, alors $a^6 \equiv 1 \pmod{7}$ par le théorème de Fermat. Donc $a^6 \equiv 0, 1 \pmod{7}$.

Pour $a^6 \mod 13$: $a^2 \equiv 0, 1, 4, -4, 3, -1, -3 \equiv 0, \pm 1, \pm 3, \pm 4 \pmod{13}$, donc $((-b)^3 = -b^3)$, donc $(\pm b)^3 = \pm b^3$) $a^6 = (a^2)^3 \equiv 0, \pm 1 \pmod{13}$. Donc il reste de résoudre

$$\begin{cases} x \equiv \alpha \pmod{7} \\ x \equiv \beta \pmod{13} \end{cases}$$

Exercice. (TD3 Ex12) Soit $x \in \mathbb{Z}$. Montrer que

- 1. si pgcd(x, 30) = 1, alors on a $x^4 \equiv 1 \pmod{240}$.
- 2. $x^4 \equiv 0$ ou $1 \pmod{q}$ où $q = 2^4, 3, 5$.
- 3. $x^4 \equiv x^8 \pmod{240}$
- 4. Pour tout $n \ge 0$, $x^{n+4} \equiv x^{n+8} \pmod{240}$
- 5. $x^4 \equiv 0, 16, 96, 160 \pmod{240}$ ou $x^4 \equiv 1, 81, 145, 225 \pmod{240}$.

Solution.

- 1. $240 = 2^4 \times 3 \times 5$. Alors par l'amélioration de théorème d'Euler, quand $pgcd(x, 30 = 2 \times 3 \times 5) = 1$, alors $x^4 \equiv x^{2^{4-2}} \equiv 1 \pmod{2^4}$, $x^2 \equiv 1 \pmod{3}$, $x^4 \equiv 1 \pmod{5}$. Donc $x^4 \equiv 1 \pmod{ppcm(2^4, 3, 5)} = 240$).
- 2. $q = 2^4$: si $2 \mid x$ alors $2^4 \mid x^4 \Rightarrow x^4 \equiv 0 \pmod{2^4}$. Si $2 \nmid x$, alors $x^4 \equiv 1 \pmod{2^4}$ (voir au-dessus). q = 3, 5: si $3 \mid x$, alors Si $3 \nmid x$, alors
- 3. D'autant que $0^2 = 0$ et $1^2 = 1$, alors $(x^4)^2 \equiv x^4 \pmod{q}$ où $q = 2^4, 3, 5$, alors $x^8 \equiv x^4 \pmod{ppcm(2^4, 3, 5)} = 240$).
- 4. $x^{n+4} \equiv x^n x^4 \equiv x^n x^8 \equiv x^{n+8} \pmod{240}$
- 5. Il reste de résoudre les systèmes

$$\begin{cases} x \equiv \alpha \pmod{2^4} \\ x \equiv \beta \pmod{3} \\ x \equiv \gamma \pmod{5} \end{cases}$$

pour $\alpha, \beta, \gamma \in \{0, 1\}$. Truc: $2^4 = 3 \times 5 + 1$. Donc cela va mieux de commencer par résoudre

$$\begin{cases} x \equiv \beta \pmod{3} \\ x \equiv \gamma \pmod{5} \end{cases}$$

D'autant que $2 \times 3 - 5 = 1$, alors la solution est $x \equiv -5 \ \beta + 6 \ \gamma \ (\text{mod} \ 15)$. Il reste de résoudre

$$\begin{cases} x \equiv \alpha \pmod{16} \\ x \equiv 6\beta - 5\gamma \pmod{15} \end{cases}$$

Solution: $x \equiv -15 \alpha + 16 (6 \beta - 5 \gamma) \pmod{15 \times 16}$. On prend $\alpha, \beta, \gamma \in \{0, 1\}$.

10 Séance 2 déc 2020

Exercice. (TD4 Ex5) Soit $a \in \mathbb{Z}$.

- 1. Si $17 \nmid a$, alors $a \pmod{17}$ générateur ssi $a^8 \not\equiv 1 \pmod{17}$. Trouver un tel générateur.
- 2. Si $3 \nmid a$, alors $a \pmod{27}$ générateur ssi $a^6, a^9 \not\equiv 1 \pmod{27}$. Trouver un tel générateur.

Solution.

1. $\operatorname{ord}(a) \mid \varphi(17) = 16 = 2^4$, alors $\operatorname{ord}(a) = 16$ ssi $\operatorname{ord}(a) \nmid 8$ ssi $a^8 \not\equiv 1 \pmod{17}$ (en général, pour $a \in (\mathbb{Z}/n\mathbb{Z})^\times$, $a^m \equiv 1 \pmod{n}$ ssi $\operatorname{ord}(a) \mid m$).

Pour trouver un tel générateur, $a=1,2,\ldots$ Tout d'abord, 1 n'est pas un générateur. $2^8=(2^4)^2\equiv (-1)^2\equiv 1\pmod{17}$ donc 2 n'est pas un générateur (en effet, $\operatorname{ord}(2)=8$). On évalue $3^8 \operatorname{mod} 17$: $3^2\equiv -8\pmod{17}$, $3^4=(3^2)^2\equiv -4\pmod{17}$, $3^8\equiv -1\not\equiv 1\pmod{17}$, donc 3 est un générateur.

2. $\varphi(27) = 18$. Donc $\operatorname{ord}(a) \mid 18 = 2 \times 3^2$, $\operatorname{ord}(a) = 18 \operatorname{ssi} \operatorname{ord}(a) \nmid 6 \operatorname{et} \operatorname{ord}(a) \nmid 9 \operatorname{ssi} a^6 \not\equiv 1 \pmod{27}$ et $a^9 \not\equiv 1 \pmod{27}$. Donc on teste $a = 1, 2, \ldots 2^6 \equiv (2^3)^2 \equiv 8^2 \equiv 64 \not\equiv 1 \pmod{27}$ et $2^9 \equiv (2^3)^3 \equiv 8^3 \equiv (-1)^3 \equiv -1 \not\equiv 1 \pmod{9} \Rightarrow 2^9 \not\equiv 1 \pmod{27}$. Donc 2 est un générateur.

Remarque. En général, soit $m, n \in \mathbb{N}$, $m \mid n$. Alors m = n ssi n/m = 1 ssi pour tout premier $p \mid n$, on a $m \nmid (n/p)$.

Définition. Soit $n \in \mathbb{N}_{>0}$. $a \in (\mathbb{Z}/n\mathbb{Z})^{\times}$ (i.e. $\operatorname{pgcd}(a,n)=1$) est un générateur si l'ordre de a est $\varphi(n)$ (Rappelons que $\operatorname{ord}(a) \mid \varphi(n)$).

Exercice. (TD4 Ex2) Soient $a, b \in \mathbb{Z}$. Montrer que

- 1. si $2 \nmid a$ et $5 \nmid a$, alors $a^{100} \equiv 1 \pmod{1000}$.
- 2. $b^{100} \equiv 0, 1, 376, 625 \pmod{1000}$.

Solution.

- 1. $1000 = 2^3 \times 5^3$, alors quand $2 \nmid a$ et $5 \nmid a$, on a $a^2 \equiv 1 \pmod{2^3}$ et $a^{100} \equiv a^{\varphi(5^3)} \equiv 1 \pmod{5^3}$. Donc $a^{100} \equiv 1 \pmod{1000} = \operatorname{ppcm}(2^3, 5^3)$.
- 2. Si $2 \mid b$ alors $2^3 \mid b^{100}$, sinon $b^{100} \equiv (b^2)^{50} \equiv 1 \pmod{2^3}$. Si $5 \mid b$, alors $5^3 \mid b^{100}$, sinon $b^{100} \equiv 1 \pmod{5^3}$ par thm d'Euler. Conclusion: $b^{100} \equiv 0, 1 \pmod{2^3}$ et $b^{100} \equiv 0, 1 \pmod{5^3}$. Il suffit de résoudre le système $x \equiv \alpha \pmod{2^3}$ et $x \equiv \beta \pmod{5^3}$. On a $125 = 15 \times 8 + 5$, $8 = 1 \times 5 + 3$, $5 = 1 \times 3 + 2$, $3 = 1 \times 2 + 1$. Alors $5 = 125 15 \times 8$, $3 = 8 1 \times 5 = 8 1 \times (125 15 \times 8) = 16 \times 8 125$, $2 = 5 1 \times 3 = (125 15 \times 8) (16 \times 8 125) = 2 \times 125 31 \times 8$, $1 = 3 1 \times 2 = (16 \times 8 125) 1 \times (2 \times 125 31 \times 8) = 47 \times 8 3 \times 125$. Alors $x \equiv -3 \times 125 \alpha + 47 \times 8 \beta \pmod{1000}$. On prend $\alpha \in \{0, 1\}$, $\beta \in \{0, 1\}$, on en déduit le résultat.

Problème. (Si le temps le permet) Résoudre une équation $f(x) \equiv 0 \pmod{n}$ où $f \in \mathbb{Z}[x]$ se factorise comme $a(x - r_1) \cdots (x - r_m)$ où $a, r_1, \ldots, r_m \in \mathbb{Z}$.

On explique par exemples:

Exercice. (TD4 Ex6) Étude de l'équation $x^2 \equiv 1 \pmod{n}$.

- 1. Montrer que si n = p (premier), alors les solutions sont $\pm 1 \pmod{n}$.
- 2. Montrer que si $n = p^r$ (p > 2 premier, $r \in \mathbb{N}_{>0}$), alors les solutions sont $\pm 1 \pmod{n}$.
- 3. Combien y a-t-il de solutions quand n=91 ou n=105?
- 4. Montrer que si $n = 2^r$ (r > 2), alors les solutions sont $\pm 1, \pm (1 + n/2) \pmod{n}$.

Solution.

1. $x^2 \equiv 1 \pmod{p}$ ssi $p \mid (x-1)(x+1)$ ssi (p est premier) $p \mid x-1 \text{ ou } p \mid x+1 \text{ ssi } x \equiv \pm 1 \pmod{p}$.

- 2. $x^2 \equiv 1 \pmod{p^r}$ ssi $p^r \mid (x-1)(x+1)$. En particulier, $p \mid x-1$ ou $p \mid x+1$. Si $p \mid x-1$, alors $x+1 \equiv 2 \not\equiv 0 \pmod{p} \Rightarrow p \nmid x+1 \Rightarrow \operatorname{pgcd}(p^r, x+1) = 1 \xrightarrow{p^r \mid (x-1)(x+1)} p^r \mid x-1$. Parallèllement, si $p \mid x+1$ alors on a $p^r \mid x+1$. Conclusions: si $p^r \mid (x-1)(x+1)$, alors $x \equiv \pm 1 \pmod{p^r}$. Vérifier que ce sont les solutions.
- 3. On factorise $91=7\times 13$ et $105=3\times 5\times 7$. Alors $x^2\equiv 1 \pmod{91}$ ssi $x^2\equiv 1 \pmod{7}$ et $x^2\equiv 1 \pmod{13}$ ssi $x\equiv \pm 1 \pmod{7}$ et $x\equiv \pm 1 \pmod{13}$. Par le thm de reste chinois, il y a $2\times 2=4$ solutions quand n=91. Parallèllement, pour $n=3\times 5\times 7$, il y a $2\times 2\times 2=8$ solutions.
- $4. \ 2^r | (x-1)(x+1) \Rightarrow 2 | x-1. \ \mathsf{Donc} \ 2^{r-2} | \frac{x+1}{2} \frac{x-1}{2} \Rightarrow 2 | \frac{x+1}{2} \ \mathsf{ou} \ 2 | \frac{x-1}{2}. \ \mathsf{Si} \ 2 | \frac{x-1}{2}, \ \mathsf{alors} \ \frac{x+1}{2} = \frac{x-1}{2} + 1 \equiv 1 (\bmod 2) \Rightarrow \\ \mathsf{pgcd} \Big(2^{r-2}, \frac{x+1}{2} \Big) = 1 \xrightarrow{\frac{2^{r-2} | \frac{x+1}{2} \frac{x-1}{2}}{2}} 2^{r-2} | \frac{x-1}{2} \Rightarrow 2^{r-1} | x-1. \ \mathsf{Si} \ 2 | \frac{x+1}{2}, \ \mathsf{parallèllement}, \ \mathsf{on} \ \mathsf{a} \ 2^{r-1} | x+1. \ \mathsf{Conclusion} : \\ x \equiv \pm 1 \ (\bmod 2^{r-1} = n/2). \ \mathsf{On} \ \mathsf{peut} \ \mathsf{v\'erfier} \ \mathsf{que} \ \mathsf{quand} \ x \equiv \pm 1 (\bmod 2^{r-1}), \ \mathsf{on} \ \mathsf{a} \ x^2 \equiv 1 \ (\bmod n).$

Exercices non-traités

Exercice. (TD4 Ex7) Étude de l'équation $x^2 \equiv x \pmod{n}$.

- 1. Montrer que si $n = p^r$ (p premier), alors les solutions sont $x \equiv 0, 1 \pmod{n}$.
- 2. Combien y a-t-il de solutions quand n = 10, 100, 1000, 840?

Exercice. (TD3 Ex15, pas important) Soient $x, y, z \in \mathbb{Z}$. Montrer que

- 1. $x^2 \equiv 0, 1, 4 \pmod{8}$
- 2. Si $4 | (x^2 + y^2 + z^2)$, alors 2 | x et y et z.
- 3. Si $x^2 + y^2 + z^2 \equiv 3 \pmod{4}$, alors $2 \nmid x$ ou y ou z, et $x^2 + y^2 + z^2 \equiv 3 \pmod{8}$.
- 4. $x^2 + y^2 + z^2 \neq 4^k (8l + 7), k, l \in \mathbb{N}.$

11 Séance 7 déc 2020

Définition. Groupe $G: \text{mult}: G \times G \to G$ et un élément (neutre) $e \in G$ (on va écrire mult(a, b) comme ab) t.q.

- 1. (ab) c = a (bc) pour tout $a, b, c \in G$.
- 2. e a = a e = a pour tout $a \in G$
- 3. Pour tout $a \in G$, il existe un inverse $a^{-1} \in G$ t.g. $a a^{-1} = a^{-1} a = e$.

Si ab = ba pour tout $a, b \in G$, alors on dit que le groupe G est abélien.

Remarque. L'élément neutre et l'inverse sont en effet unique.

Définition. Sous-groupe $H \subseteq G$

- 1. $e \in H$
- 2. Pour tout $a, b \in H$, on a $a b \in H$
- 3. Pour tout $a \in G$, on a $a^{-1} \in H$.

Définition. Un morphisme de groupes $f: G \to H$: pour tout $a, b \in G$, on a f(ab) = f(a) f(b) (par conséquent, f(e) = e et $f(a^{-1}) = f(a)^{-1}$). En particulier, si $H \subseteq G$, alors l'inclusion $H \hookrightarrow G$ est un morphisme de groupes.

Exercice. (TD5 Ex1) Vrai ou faux: $(\mathbb{N},+)$ (resp. $(\mathbb{Z},+)$, (\mathbb{Z},\cdot) , $(\mathbb{Z}\setminus\{0\},\cdot)$, $(\mathbb{R}\setminus\{0\},\cdot)$, (\mathbb{R},\cdot) , $(\mathbb{Z}\mathbb{Z}+1,+)$) est un groupe.

Solution.

- 1. $(\mathbb{N},+)$ n'est pas un groupe. Sinon, soit $e\in\mathbb{N}$ l'élément neutre. Alors par définition, on a e+0=0 donc e=0 (vous pouvez aussi utiliser l'unicité de l'élément neutre pour montrer que si $(\mathbb{N},+)$ est un groupe, alors $0\in\mathbb{N}$ est l'élément neutre). Alors pour tout $x\in\mathbb{N}$, on a $x+1>1\neq 0$ donc il n'y pas d'inverse de $1\in\mathbb{N}$.
- 2. $(\mathbb{Z}, +)$ est un groupe. L'élément neutre: $0 \in \mathbb{Z}$. L'inverse d'un élément $x \in \mathbb{Z}$: -x.
- 3. (\mathbb{Z},\cdot) n'est pas un groupe. Sinon, soit $e \in \mathbb{Z}$ l'élément neutre, alors $e \mid 1 = 1 \Rightarrow e = 1$. Alors pour tout $x \in \mathbb{N}$, $2 \mid 2x$, $2 \nmid 1 \Rightarrow 2x \neq 1$, donc 2 n'admet pas d'inverse.
- 4. $(\mathbb{Z}\setminus\{0\},\cdot)$ n'est pas un groupe. Sinon, soit $e\in\mathbb{Z}$ l'élément neutre, alors $e1=1\Rightarrow e=1$. Alors pour tout $x\in\mathbb{N}$, $2\mid 2x$, $2\nmid 1\Rightarrow 2x\neq 1$, donc 2 n'admet pas d'inverse.
- 5. $(\mathbb{R}\setminus\{0\},\cdot)$ est un groupe dont l'élément neutre: $1\in\mathbb{R}\setminus\{0\}$, l'inverse de $x\in\mathbb{R}\setminus\{0\}$: x^{-1} .
- 6. (\mathbb{R},\cdot) n'est pas un groupe. Sinon, soit $e\in\mathbb{Z}$ l'élément neutre, alors e $1=1\Rightarrow e=1$. Alors pour tout $x\in\mathbb{R}$, on a x $0=0\neq 1$, donc $x\in\mathbb{R}$ n'admet pas d'inverse.
- 7. $(2\mathbb{Z}+1,+)$ (où $2\mathbb{Z}+1$ est l'ensemble des impairs). Sinon, $2\mathbb{Z}+1$ est un groupe. Quelques méthodes:
 - a. $2\mathbb{Z}+1\subseteq\mathbb{Z}$ est un sous-groupe, mais $0\in\mathbb{Z}$ est l'élément neutre dans \mathbb{Z} , mais $0\notin 2\mathbb{Z}+1$, c'est absurde.
 - b. + n'est pas bien définie sur $2\mathbb{Z}+1$. Par exemple, $1+1=2\notin 2\mathbb{Z}+1$.

Exercice. (TD5 Ex2) Montrer que $2\mathbb{Z} \subseteq \mathbb{Z}$ est un sous-groupe et que l'app $f: \mathbb{Z} \to 2\mathbb{Z}, x \mapsto 2x$ est un isomorphisme de groupes.

Solution. Pour montrer que $2\mathbb{Z} \subseteq \mathbb{Z}$ (c'est le groupe $(\mathbb{Z}, +)$) est un sous-groupe, il suffit de vérifier que

- 1. L'élément neutre $0 \in 2 \mathbb{Z}$.
- 2. Si $x, y \in 2\mathbb{Z}$, alors $x + y \in 2\mathbb{Z}$ (déjà vu dans la partie d'arithmétique)
- 3. Si $x \in 2 \mathbb{Z}$, alors $-x \in 2 \mathbb{Z}$.

Pour montrer que $f: \mathbb{Z} \to 2\mathbb{Z}, x \mapsto 2x$ est un isomorphisme, il faut montrer tout d'abord que f est un morphisme de groupes, c'est-à-dire, pour tout $x, y \in \mathbb{Z}$, on a $f(x) + f(y) = f(x+y) \Longleftrightarrow 2x+2y=2(x+y)$, c'est vrai. Alors pour montrer que f est un isomorphisme, il suffit de montrer que $\operatorname{Ker}(f) = 0$ et f est surjective. Pour tout f est surjective. Pour tout f est surjective. f est surjective. Pour tout f est surjective.

Exercice. (TD5 Ex7) Les groupes suivants, sont-ils isomorphes? Pourquoi?

1. $G := (\mathbb{Z}/4\mathbb{Z}, +)$ et $H := (\mathbb{Z}/2\mathbb{Z}, +) \times (\mathbb{Z}/2\mathbb{Z}, +)$;

Solution.

 $1. \ G[2] = \{x \in \mathbb{Z} \, / \, 4 \, \mathbb{Z} \, | \, x + x \equiv 0 \, (\text{mod } 4)\} = \{0 (\text{mod } 4), 2 (\text{mod } 4)\}. \ \text{Pour autant, } H[2] = H, \text{ c'est-à-dire, pour tout } x \in H, \text{ on a } x + x = 0 \, \text{ (en effet, pour tout } (x,y) \in \mathbb{Z} / 2 \, \mathbb{Z} \times \mathbb{Z} / 2 \, \mathbb{Z}, \text{ on a } (x,y) + (x,y) \xrightarrow{\underline{\text{déf d'un groupe produit}}} (x + x, y + y) = (0 (\text{mod } 2), 0 (\text{mod } 2)), \text{ alors par définition, } H[2] = H). \ \text{Maintenant, } \#G[2] = 2 \, \text{mais } \#H[2] = \#H = 4 \, \text{donc } \#G[2] \neq \#H[2] \Longrightarrow G[2] \not\cong H[2] \Longrightarrow G \not\cong H.$

Remarque 9. Soient G, H deux groupes. Il n'y pas d'algorithme pour déterminer si G et H sont isomorphes. Pour autant, on a quelques trucs pour déterminer si les deux groupes ne sont pas isomorphes:

- 1. Si G est fini, H est infini, alors G n'est pas isomorphe à H (parce que comme deux ensembles).
- 2. Si G, H sont finis et $\#G := \operatorname{Card}(G) \neq \#H$, alors G n'est pas isomorphe à H (parce que comme deux ensembles).
- 3. Soit G un groupe abélien, $G[n]:=\{g\in G\mid g^n=e\}\subseteq G$ est un sous-groupe (tout d'abord, $e\in G[n]$. Ensuite, si $x,y\in G[n]$, alors $(x\,y)^n\stackrel{\mathrm{abel}}{=\!=\!=\!=} x^n\,y^n=e\,e=e\Longrightarrow x\,y\in G[n]$. Enfin, si $x\in G[n]$, alors $(x^{-1})^n=(x^n)^{-1}=e^{-1}=e$).

Soient G,H deux groupes abéliens, alors si G est isomorphe à H par $\varphi:G\to H$, alors pour tout $n\in\mathbb{N},\ G[n]\cong H[n]$ (parce que $\varphi(G[n])\subseteq H[n]$ cela induit un morphisme $\psi:G[n]\to H[n]$ de groupes. On peut vérifier que $\mathrm{Ker}(\psi)=0$ et $\mathrm{Im}(\psi)=H[n]$, donc ψ est un isomorphisme). Donc si nous pouvons trouver $n\in\mathbb{N}$ t.q. $G[n]\ncong H[n]$, alors $G\ncong H$.

12 Séance 9 déc 2020

Notation. $G \cong H$ ssi G, H sont isomorphes, et $G \ncong H$ ssi G, H ne sont pas isomorphes.

Remarque. Soit G un groupe abélien (la notation multiplicative). Alors pour tout $n \in \mathbb{N}$, on a $p_{G,n}: G \to G, g \mapsto g^n$ est un morphisme de groupes $((gh)^n = g^nh^n$ abélien). Alors $G[n] = \operatorname{Ker}(p_{G,n}) \subseteq G$ est un sous-groupe. En suite, si $f: G \to H$ est un morphisme de groupes abéliens, alors $f(G[n]) \subseteq H[n]$ parce que pour tout $g \in G$, on a $f(g^n) = f(g)^n$, donc si $g \in G[n] \Longrightarrow g^n = 0$, alors $f(g)^n = 0$, c'est-à-dire, $f(g) \in H[n]$. Si $f: G \to H$ est un isomorphisme, alors $f(G[n]) \subseteq H[n]$, et $f^{-1}: H \to G$, $f^{-1}(H[n]) \subseteq G[n]$. Donc $f|_{G[n]}: G[n] \to H[n]$ et $f^{-1}|_{H[n]}: H[n] \to G[n]$ sont deux morphismes de groupes et $f|_{G[n]}\circ f^{-1}|_{H[n]}=\operatorname{id}_{H[n]}, \ f^{-1}|_{H[n]}\circ f|_{G[n]}=\operatorname{id}_{G[n]}, \ \text{donc } G[n] \cong H[n].$

Question. $(\mathbb{Z}/m\mathbb{Z},+)$ est un groupe dont le cardinal est m. Alors si $m \neq n$, alors $\mathbb{Z}/m\mathbb{Z} \ncong \mathbb{Z}/n\mathbb{Z}$.

Exercice. (TD5 Ex7) Les groupes suivants, sont-ils isomorphes? Pourquoi? G et H.

- 1. $(\mathbb{R},+)$ et $(\mathbb{R}_{>0},\cdot)$;
- 2. $(\mathbb{Z}/6\mathbb{Z},+)$ et $(\mathbb{Z}/2\mathbb{Z},+)\times(\mathbb{Z}/3\mathbb{Z},+)$;
- 3. $(\mathbb{Z}/m n \mathbb{Z}, +)$ et $(\mathbb{Z}/m \mathbb{Z}, +) \times (\mathbb{Z}/n \mathbb{Z}, +)$;
- 4. $(\mathbb{Z}/4\mathbb{Z},+)$ et $((\mathbb{Z}/5\mathbb{Z})\setminus\{0\},\cdot)$;
- 5. $(\mathbb{R} \setminus \{0\}, \cdot)$ et $(\mathbb{C} \setminus \{0\}, \cdot)$;
- 6. (Difficile) $(\mathbb{R},+)$ et $(\mathbb{C},+)$;

Solution.

- 1. $\exp: (\mathbb{R}, +) \to (\mathbb{R}_{>0}, \cdot), x \mapsto e^x$, $\ln: (\mathbb{R}_{>0}, \cdot) \to (\mathbb{R}, +)$ sont les isomorphismes de groupes et $\exp^{-1} = \ln$.
- 2. Tout d'abord, l'app $(\mathbb{Z}/6\mathbb{Z},+) \to (\mathbb{Z}/2\mathbb{Z},+) \times (\mathbb{Z}/3\mathbb{Z},+), a \pmod{6} \mapsto (a \pmod{2}, a \pmod{3})$ est un morphisme de groupes. Par le thm des restes, cette app est bijective, donc c'est un isomorphisme de groupes.

Remarque. $\mathbb{Z}/n\mathbb{Z} := (\mathbb{Z}/n\mathbb{Z}, +)$

- 3. Si $\operatorname{pgcd}(m,n)=1$, alors l'app $\mathbb{Z}/m\,n\,\mathbb{Z}\to\mathbb{Z}/m\,\mathbb{Z}\times\mathbb{Z}/n\,\mathbb{Z}$ est un isomorphisme de groupes. Sinon, $G:=\mathbb{Z}/m\,n\,\mathbb{Z}\not\cong\mathbb{Z}/m\,\mathbb{Z}\times\mathbb{Z}/n\,\mathbb{Z}=:H$ parce que $d:=\operatorname{pgcd}(m,n)$, alors $G[d]=\{x\in\mathbb{Z}/m\,n\,\mathbb{Z}\mid d\,x\equiv 0(\operatorname{mod}m\,n)\}=\{x\in\mathbb{Z}/m\,n\,\mathbb{Z}\mid d\,x\equiv 0(\operatorname{mod}m\,n)\}=\{x\in\mathbb{Z}/m\,n\,\mathbb{Z}\mid d\,x\equiv 0(\operatorname{mod}m\,n/d)\}$, donc #G[d]=d. Mais $H[d]=\{(x,y)\in G\mid (d\,x,d\,y)=(0(\operatorname{mod}m),0(\operatorname{mod}n))\in G\}=\{(x,y)\in G\mid x\equiv 0(\operatorname{mod}m/d),y\equiv 0(\operatorname{mod}n/d)\}$ dont le cardinal est d^2 . $d>1\Longrightarrow d\neq d^2\Longrightarrow G[d]\ncong H[d]\Longrightarrow G\ncong H.$
- 4. $(\mathbb{Z}/p\mathbb{Z})^{\times} \cong ((\mathbb{Z}/p\mathbb{Z}) \setminus \{0\}, \times)$ admet un générateur $a \in (\mathbb{Z}/p\mathbb{Z})^{\times}$ pour tout premier p. Pour cet a, l'app $\mathbb{Z}/(p-1)\mathbb{Z} \to (\mathbb{Z}/p\mathbb{Z})^{\times}$, $n \pmod{p-1} \mapsto a^n$ est un isomorphisme de groupe (par définition de génerateur).
- 5. $G[3] = \{x \in \mathbb{R} \setminus \{0\} \mid x^3 = 1\} = \{1\}$. Pour autant, $H[3] = \{z \in \mathbb{C} \setminus \{0\} \mid z^3 = 1\}$ donc #H[3] = 3. $G[3] \not\cong H[3] \Longrightarrow G \not\cong H$.

Exercice. (TD5 Ex3) Montrer que $H = \{(a,b) \in \mathbb{Z}^2 \mid a \equiv b \pmod{2}\}$ est un sous-groupe de $\mathbb{Z}^2 = (\mathbb{Z}^2,+)$ et que l'application $f: \mathbb{Z}^2 \to H, (u,v) \mapsto u(2,0) + v(1,1) = (2u+v,v)$ est un isomorphisme de groupes.

Solution. Tout d'abord, l'élément neutre $(0,0) \in H$. Ensuite, si $(a,b), (a',b') \in H$, alors $(a+a',b+b') \in H$ et $(-a,-b) \in H$. Donc $H \subseteq G$ est un sous-groupe. Pour montrer que f est un isom, il faut montrer que f est un morph de groupes: f((u,v)+(u',v'))=f(u+u',v+v')=(2(u+u')+v+v',v+v')=(2u+v,v)+(2u'+v',v')=f(u,v)+f(u',v'). Ensuite, $\operatorname{Ker}(f)=\{(u,v)\in \mathbb{Z}^2 \mid 2u+v=0 \text{ et } v=0\}=\{(0,0)\in \mathbb{Z}^2\}$ et pour tout $(a,b)\in H$, on prend v=b et u=(b-a)/2, alors $f(u,v)=(a,b)\in H$.

Exercice. (TD5 Ex4) Soit (G,*) un groupe. Décrire tous les morphismes de groupes $\mathbb{Z} \to (G,*)$ (resp. $\mathbb{Z}^2 \to (G,*)$).

Exercice. (TD5 Ex5) Montrer: une app $f: \mathbb{Z} \to \mathbb{Z}$ est un morphisme de groupes ss'il existe $a \in \mathbb{Z}$ t.q. f(x) = a x pour tout $x \in \mathbb{Z}$. Déterminer le noyau et l'image de f. Quand est-ce que f est un isomorphisme de groupes?

Exercice. (Difficile?) Montrer: une app $f: \mathbb{Z}^2 \to \mathbb{Z}^2$ est un morphisme de groupes ss'il existe $a,b,c,d \in \mathbb{Z}$ t.q. $f(x,y) = (a\,x + b\,y,c\,x + d\,y)$ pour tout $(x,y) \in \mathbb{Z}^2$. Déterminer le noyau de f. Quand est-ce que f est un isomorphisme de groupes?

Exercice. (TD5 Ex8) Soit G un groupe. Montrer que pour tout $g \in G$, l'app $f: G \to G$, $h \mapsto g \ h \ g^{-1}$ est un auto. Déterminer f^{-1} .