Übungsblatt 9

Abgabetermin: 22.06.2017, 9:20 Uhr.

Aufgabe 1 ($2+3 = 5 \ Punkte$)

- a) Zeigen Sie: Der Unterring $\mathbb{Q}[\sqrt{-5}] = \{x + yi\sqrt{5} | x, y \in \mathbb{Q}\}$ von \mathbb{C} ist isomorph zu $\mathbb{Q}[X]/(X^2-2X+6)$. (Sie dürfen ohne Beweis verwenden, dass $\mathbb{Q}[\sqrt{-5}]$ tatsächlich einen Unterring von \mathbb{C} definiert.)
- b) Sei $f:R\to S$ ein Ringhomomorphismus. Zeigen Sie: Es besteht eine inklusionserhaltende Bijektion zwischen den Idealen von $\operatorname{im}(f)$ und den Idealen von R welche $\ker(f)$ enthalten. Sei nun I ein Ideal in einem Ring R, folgern Sie dann die Existenz einer Bijektion

$$\varphi: \{J \subseteq R \mid J \text{ ist Ideal und } I \subseteq J\} \rightarrow \{J' \subseteq R/I \mid J' \text{ ist Ideal}\}$$

und geben Sie eine explizite Beschreibung für φ und die Umkehrabbildung φ^{-1} an.

(Hinweis: Eine Abbildung ψ zwischen Mengen von Mengen heisst inklusionserhaltend, wenn aus $A \subseteq B$ auch bereits $\psi(A) \subseteq \psi(B)$ folgt.)

Aufgabe 2 $(2+2+2=6 \ Punkte)$

Sei R ein nullteilerfreier Ring und $X \subseteq R$ eine Teilmenge. Ein Element $d \in R$ heisst kleinstes gemeinsames Vielfaches von X, wenn gilt:

- Jedes $x \in X$ ist Teiler von d;
- Ist $d' \in R$ ein weiteres Element welches von jedem $x \in X$ geteilt wird, so folgt: $d \mid d'$.

Analog verallgemeinern wir Definition 26.20 der Vorlesung: $d \in R$ heisst $gr\ddot{o}\beta ter$ gemeinsamer Teiler von X, wenn gilt:

- Jedes $x \in X$ wird von d geteilt;
- Ist $d' \in R$ ein weiteres Element welches jedes $x \in X$ teilt, so folgt: d'|d.
- a) Zeigen Sie: Ist R faktoriell, so existiert zu jeder Teilmenge X ein größter gemeinsamer Teiler.
- b) Zeigen Sie: Ist R faktoriell, so existiert zu jeder endlichen Teilmenge X ein kleinstes gemeinsames Vielfaches. Zeigen Sie auch, dass auf die Endlichkeitsbedingung nicht verzichtet werden kann.

c) Geben Sie ein Beispiel für einen faktoriellen Ring R, zwei Elemente $r, s \in R$ und ein größten gemeinsamen Teiler d von r und s, so dass d nicht von der Form d = ar + bs für $a, b \in R$ ist.

(Hinweis für Teil c: Sie dürfen ohne Beweis den Satz von Gauß verwenden: Ist R ein faktorieller Ring, so ist auch der Polynomring R[T] faktoriell.)

Aufgabe 3 (2+3+2+3* = 7 Punkte)

- a) Wir betrachten den Unterring $\mathbb{Z}[\sqrt{5}] = \{x + y\sqrt{5} | x, y \in \mathbb{Z}\}$ von \mathbb{R} . Zeigen Sie, dass das Element $1 + \sqrt{5}$ irreduzibel, aber nicht prim ist. Folgern Sie, dass Unterringe von Hauptidealringen im Allgemeinen keine Hauptidealringe sein müssen.
- b) Sei R ein Ring, $U\subseteq R$ ein Unterring und $V\subseteq R$ ein Ideal. Zeigen Sie: $U+V=\{u+v|u\in U,v\in V\}$ ist ein Unterring von R und es existiert ein Ringisomorphismus

$$(U+V)/V \cong U/(U \cap V).$$

- c) Wir betrachten den Unterring $R = \mathbb{R} + X^2 \cdot \mathbb{R}[X]$ von $\mathbb{R}[X]$. Zeigen Sie, dass X^2 und X^3 irreduzible, aber nicht-prime Elemente von R sind.
- d) Wir betrachten den Unterring $R = \mathbb{Z} + X \cdot \mathbb{Q}[X]$ von $\mathbb{Q}[X]$. Zeigen Sie: Die irreduziblen Elemente von R sind gerade die Primzahlen in \mathbb{Z} und die irreduziblen Polynome $f(X) \in \mathbb{Q}[X]$ mit $f(0) = \pm 1$. Dies sind auch genau die Primelemente. Dennoch ist R kein faktorieller Ring. (3 Bonuspunkte)

(Hinweis: Eine Teilmenge S eines Ringes R heißt Unterring, wenn die folgenden Eigenschaften erfüllt sind:

- S enthält das multiplikativ neutrale Element $1 \in R$;
- Zu je zwei Elementen $s_1, s_2 \in S$ sind sowohl $s_1 \cdot s_2$ als auch $s_1 s_2$ in S enthalten.

In diesem Fall bildet S mit den von R vererbten Operationen einen Ring.)