APPENDIX B AW2

In this section, we describe the results for use case AW2. First, for each problem and each time budget, we compare a pair of algorithms. Second, to compare the overall performance of the algorithms, we combine all objectives together by calculating average values of the objective functions (called *OFV*):

$$OFV = \frac{\sum_{i=1}^{n} Fitness_i}{n}$$

where n is the number of objectives for the prioritization problem, and $Fitness_i$ is the fitness value of the ith objective for the problem. Third, we used hypervolume (HV)—the most commonly used quality indicator to compare the overall performance of multi-objective search algorithms. Last, we calculated Rank and Confidence (as described in Section 4.1.5) for group comparison.

B.1 Experiment Results for RQ1

This section describes the results for Experiment Results for RQ1.

B.1.1 Problem 1

This section describes the results for prioritization problem f(PET, PTR, AUM).

TABLE 1. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics between Multi-Objective Algorithms and RS (AW2, f(PET, PTR, AUM))

ТВ	A loo with me A	A loonith as D	P	ET	P	TR	A	UM	О	FV	I	IV
I D	AlgorithmA	AlgorithmB	A12	р	A12	р	A12	р	A12	р	A12	р
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
TB010	MoCell	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
1 0010	SPEA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
TB020	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
1 0020	SPEA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB030	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB040	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10040	SPEA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB050	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB060	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB070	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10070	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB080	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB090	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	<0.1	< 0.01	>0.9	< 0.01

ТВ	AlgorithmA	AlgorithmB	P	ET	P	ΓR	Al	UM	О	FV	H	IV
10	Aigonuma	Aigontiilib	A12	p	A12	p	A12	p	A12	p	A12	p
TB090	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB100	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10100	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01

B.1.2 Problem 2

This section describes the results for prioritization problem f(PET, PTR, PUS).

TABLE 2. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics between Multi-Objective Algorithms and RS (AW2, f(PET, PTR, PUS))

ТВ	AlgorithmA	AlgorithmB	P	ET	P	TR	P	US	О	FV	H	IV
1 D		Aigoritimib	A12	p	A12	p	A12	p	A12	p	A12	p
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
TB010	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
10010	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	>0.05	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB020	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10020	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB030	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01
10000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.05	< 0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
TB040	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01
10040	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
TB050	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
TB060	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
10000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
TB070	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
10070	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
TB080	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
TB090	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01
10090	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB100	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10100	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01

B.1.3 Problem 3

This section describes the results for prioritization problem f(PET, PTR, ANU).

TABLE 3. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics between Multi-Objective Algorithms and RS (AW2, f(PET, PTR, ANU))

TD	A1	A1	P	ET	P	TR	A	NU	0	FV	I	IV
TB	AlgorithmA	AlgorithmB	A12	р	A12	р	A12	р	A12	р	A12	р
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.9	< 0.01
TD010	MoCell	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.9	< 0.01
TB010	SPEA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.5	>0.05	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.9	< 0.01
TD000	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.9	< 0.01
TB020	SPEA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
TDOO	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
TB030	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB040	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 DU4U	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB050	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB060	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.05	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB070	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10070	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB080	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB090	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 0090	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB100	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 D 1 U U	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01

B.1.4 Problem 4

This section describes the results for prioritization problem f(PET, PTR, PUU).

TABLE 4. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics between Multi-Objective Algorithms and RS (AW2, f(PET, PTR, PUU))

ТВ	AlgorithmA	AlgorithmB	P	ET	P'	TR	P	UU	О	FV	Н	IV
1 1 1	Aigontillia	Aigoriumb	A12	p	A12	p	A12	p	A12	p	A12	p
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.05	< 0.5	< 0.01	>0.9	< 0.01
TB010	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
1 10010	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	>0.9	< 0.01
TB020	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 0020	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01

ТВ	AlgorithmA	AlgorithmB	P	ET	P	TR	P	UU	0	FV	H	IV
1 D	AigoriumA	Aigoriumb	A12	р	A12	р	A12	р	A12	р	A12	p
TB020	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10020	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB030	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB040	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10040	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	>0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB050	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	>0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB060	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	>0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB070	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10070	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB080	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB090	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10070	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB100	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10100	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01

B.1.5 Problem 5

This section describes the results for prioritization problem f(PET, PTR, AUM, PUS).

TABLE 5. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics between Multi-Objective Algorithms and RS (AW2, f(PET, PTR, AUM, PUS))

ТВ	AlgorithmA	AlgorithmB	P	ET	P	TR	Al	UM	P	US	О	FV	H	IV
1 1 1	AigoriumiA	Aigoriumib	A12	p	A12	p	A12	p	A12	p	A12	p	A12	p
	NSGA2	SimpleRS	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01
TB010	MoCell	SimpleRS	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
1 0010	SPEA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01
TB020	MoCell	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
1 0020	SPEA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
TB030	MoCell	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB040	MoCell	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	SPEA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01

ТВ	AlgorithmA	AlgorithmB	P	ET	P	TR	A	UM	P	US	О	FV	I.	IV
1 D	AigoriumA	Aigoriumib	A12	p	A12	р	A12	р	A12	p	A12	p	A12	р
TB040	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB050	MoCell	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB060	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB070	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 0070	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB080	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB090	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 0090	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB100	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 1 1 1 1 0 0	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01

B.1.6 Problem 6

This section describes the results for prioritization problem f(PET, PTR, AUM, ANU).

TABLE 6. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics between Multi-Objective Algorithms and RS (AW2, f(PET, PTR, AUM, ANU))

			D	ET	D'	TD	Α1	TIM	A 1	NIT I		FV	Т.	IV
TB	AlgorithmA	AlgorithmB				TR		UM		NU				
	NICCAO	C: 1 DC	A12	p	A12	p	A12	p	A12	p	A12	p	A12	p (0.01
	NSGA2	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	<0.1	< 0.01	< 0.5	< 0.01	>0.5	<0.01	>0.9	<0.01
TB010	MoCell	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	SPEA2	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.9	< 0.01
TB020	MoCell	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
10020	SPEA2	SimpleRS	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.5	>0.05	>0.9	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.9	< 0.01
TDOO	MoCell	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
TB030	SPEA2	SimpleRS	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
TB040	MoCell	SimpleRS	< 0.5	>0.05	>0.9	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.9	< 0.01
10040	SPEA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
TB050	MoCell	SimpleRS	< 0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
10000	SPEA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
TB060	MoCell	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
1 10000	SPEA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01

ТВ	AlgorithmA	AlgorithmB	P	ET	P	TR	Al	UM	A	NU	О	FV	I.	IV
1 1	AigontiiliA	Aigoriumb	A12	p	A12	p	A12	p	A12	p	A12	p	A12	p
	NSGA2	SimpleRS	< 0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
TB070	MoCell	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
1 0070	SPEA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB080	MoCell	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.5	>0.05	>0.9	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB090	MoCell	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
1 0090	SPEA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.05	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB100	MoCell	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
1 1 100	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01

B.1.7 Problem 7

This section describes the results for prioritization problem f(PET, PTR, AUM, PUU).

TABLE 7. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics between Multi-Objective Algorithms and RS (AW2, f(PET, PTR, AUM, PUU))

TD	A1 '(1 A	A1 '(1 D	P	ET	P'	TR	A	UM	P	UU	О	FV	H	IV
TB	AlgorithmA	AlgorithmB	A12	р	A12	р	A12	р	A12	р	A12	р	A12	р
	NSGA2	SimpleRS	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01
TB010	MoCell	SimpleRS	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
1 0010	SPEA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01
TB020	MoCell	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01
1 0020	SPEA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
TB030	MoCell	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
1 0030	SPEA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB040	MoCell	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 0040	SPEA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB050	MoCell	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB060	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB070	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 0070	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB080	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB090	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01

ТВ	AlgorithmA	AlgorithmB	P	ET	P	TR	Al	U M	P	UU	О	FV	H	IV
10	AigonumiA	Aigonumb	A12	p	A12	p	A12	p	A12	p	A12	p	A12	p
	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB090	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB100	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10100	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01

B.1.8 Problem 8

This section describes the results for prioritization problem f(PET, PTR, PUS, ANU).

TABLE 8. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics between Multi-Objective Algorithms and RS (AW2, f(PET, PTR, PUS, ANU))

ТВ	A 1 A	A la a with me D	P	ET	P	ΓR	P	US	A	NU	О	FV	I	IV
1 D	AlgorithmA	AlgorithmB	A12	р	A12	р	A12	p	A12	р	A12	р	A12	p
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.9	< 0.01
TB010	MoCell	SimpleRS	< 0.5	< 0.01	>0.9	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.9	< 0.01
1 10010	SPEA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.9	< 0.01
TB020	MoCell	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.9	< 0.01
1 0020	SPEA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.9	< 0.01
TB030	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.9	< 0.01
1 0030	SPEA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
TB040	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
10040	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB050	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB060	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB070	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 0070	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB080	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB090	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB100	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10100	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01

B.1.9 Problem 9

This section describes the results for prioritization problem f(PET, PTR, PUS, PUU).

TABLE 9. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics between Multi-Objective Algorithms and RS (AW2, f(PET, PTR, PUS, PUU))

TD	A 1: 11 A	A 1: (1 D	P	ET	P'	TR	P	US	P	UU	О	FV	H	IV
TB	AlgorithmA	AlgorithmB	A12	р	A12	р								
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	>0.9	< 0.01
TD010	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
TB010	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.05	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB020	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10020	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	>0.5	>0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB030	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10030	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.05	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	>0.5	>0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB040	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10040	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	>0.05	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB050	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	>0.05	>0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB060	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB070	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10070	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	>0.05	>0.5	>0.05	>0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB080	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	>0.05	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB090	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10090	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	>0.05	>0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB100	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10100	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	>0.5	>0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01

B.1.10 Problem 10

This section describes the results for prioritization problem f(PET, PTR, ANU, PUU).

TABLE 10. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics between Multi-Objective Algorithms and RS (AW2, f(PET, PTR, ANU, PUU))

ТВ	AlgorithmA	AlgorithmB	P	PET		PTR		ANU		PUU		OFV		IV
1 1 1	AigontiiliA	Aigoritimib	A12	p	A12	p	A12	p	A12	p	A12	p	A12	p
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
TB010	MoCell	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01
1 0010	SPEA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.9	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
TB020	NSGA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01
1 0020	MoCell	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01

ТВ	AlgorithmA	AlgorithmB	P	ET	P	TR	A	NU	P	UU	О	FV	H	IV
1 1 1	AigonumA	Aigoriumib	A12	p	A12	р	A12	p	A12	р	A12	p	A12	р
TB020	SPEA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.9	< 0.01	>0.9	< 0.01
1 0020	CellDE	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01
TB030	MoCell	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
10000	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
TB040	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
10040	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB050	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB060	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB070	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10070	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB080	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 1 1 1 1 1 1 1	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB090	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10070	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB100	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
15100	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01

B.2 Experiment Results for RQ2

This section describes the results for Experiment Results for RQ2.

B.2.1 Problem 1

This section describes the results for prioritization problem f(PET, PTR, AUM).

TABLE 11. Results for the Kruskal-Wallis Test among Multi-Objective Algorithms (AW2, f(PET, PTR, AUM))

TB	Metric	ChiSq	DF	p
	ET	14175.51	3	< 0.01
	CTR	7346.05	3	< 0.01
TB010	UM	16673.09	3	< 0.01
	OFV	2284.46	3	< 0.01
	HV	200.72	3	< 0.01
	ET	16882.99	3	< 0.01
	CTR	9691.58	3	< 0.01
TB020	UM	24380.91	3	< 0.01
	OFV	1679.71	3	< 0.01
	HV	292.89	3	< 0.01
TB030	ET	23556.3	3	< 0.01
1 0000	CTR	8053.2	3	< 0.01

ТВ	Metric	ChiSq	DF	p
	UM	28379.06	3	< 0.01
TB030	OFV	2891.6	3	< 0.01
	HV	338.97	3	< 0.01
	ET	28315.35	3	< 0.01
	CTR	7131.72	3	< 0.01
TB040	UM	30339.75	3	< 0.01
	OFV	13812.71	3	< 0.01
	HV	346.26	3	< 0.01
	ET	31182.54	3	< 0.01
	CTR	6179.64	3	< 0.01
TB050	UM	31007.91	3	< 0.01
	OFV	25353.43	3	< 0.01
	HV	349.04	3	< 0.01
	ET	32786.06	3	< 0.01
	CTR	5624.89	3	< 0.01
TB060	UM	31065.72	3	< 0.01
	OFV	29899.55	3	< 0.01
	HV	352.67	3	< 0.01
	ET	32231.22	3	< 0.01
	CTR	3523.93	3	< 0.01
TB070	UM	30035.55	3	< 0.01
	OFV	31139.4	3	< 0.01
	HV	357.02	3	< 0.01
	ET	31014.42	3	< 0.01
	CTR	3233.77	3	< 0.01
TB080	UM	29064.14	3	< 0.01
	OFV	30596.86	3	< 0.01
	HV	351.33	3	< 0.01
	ET	27440.64	3	< 0.01
	CTR	1870.72	3	< 0.01
TB090	UM	25028.22	3	< 0.01
	OFV	27061.46	3	< 0.01
	HV	351.08	3	< 0.01
	ET	18297.92	3	< 0.01
	CTR	960.39	3	< 0.01
TB100	UM	17593.49	3	< 0.01
	OFV	18091.92	3	< 0.01
	HV	333.16	3	< 0.01

TABLE 12. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics among Multi-Objective Algorithms (AW2, f(PET, PTR, AUM))

ТВ	AlgorithmA	AlgorithmB	E	ET	C	TR	U	M	OFV		HV	
1 1 1	AiguittiiiA	Aigontillio	A12	p								
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	>0.5	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	>0.05
TB010	NSGA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.9	< 0.01
10010	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01
	MoCell	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01
TB020	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.9	< 0.01
10020	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.9	< 0.01
TB030	NSGA2	MoCell	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
1 0000	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01

$ \begin{array}{ c c c c c c c c c } \hline TB & AlgorithmA & AlgorithmB & ET & CTR & UM \\ \hline \hline A12 & p & A12 & p & A12 & p \\ \hline \hline NSGA2 & CellDE & <0.1 & <0.01 & >0.5 & <0.01 & <0.1 & <0 \\ \hline MoCell & SPEA2 & >0.5 & <0.01 & <0.5 & <0.01 & >0.9 & <0 \\ \hline MoCell & CellDE & <0.1 & <0.01 & >0.5 & <0.01 & <0.1 & <0 \\ \hline SPEA2 & CellDE & <0.1 & <0.01 & >0.5 & <0.01 & <0.1 & <0 \\ \hline SPEA2 & CellDE & <0.1 & <0.01 & >0.5 & <0.01 & <0.1 & <0 \\ \hline \end{array} $	p A12 0.01 <0.5 0.01 >0.5 0.01 <0.5 0.01 <0.5 0.01 <0.5 0.01 <0.5	P	A12 >0.9 <0.1 >0.9	P <0.01 <0.01
TB030	0.01 <0.5 0.01 >0.5 0.01 <0.5 0.01 <0.5 0.01 <0.5	<0.01 <0.01 <0.01	>0.9	< 0.01
TB030 MoCell SPEA2 >0.5 <0.01 <0.5 <0.01 >0.9 <0 MoCell CellDE <0.1 <0.01 >0.5 <0.01 <0.1 <0	0.01 >0.5 0.01 <0.5 0.01 <0.5 0.01 <0.5	<0.01 <0.01	<0.1	
MoCell CellDE <0.1 <0.01 >0.5 <0.01 <0.1 <0	0.01 < 0.5 0.01 < 0.5 0.01 < 0.5	< 0.01		\ \0.01
	0.01 <0.5 0.01 <0.5		/ /0.5	< 0.01
	0.01 < 0.5		>0.9	< 0.01
NSGA2 MoCell <0.5 <0.01 >0.5 <0.01 <0.5 <0		< 0.01	>0.9	< 0.01
NSGA2 SPEA2 >0.5 <0.01 <0.5 <0.01 >0.5 <0	0.01 >0.5	< 0.01	<0.5	< 0.01
NSCA2 CallDE 0.1 0.01 0.5 0.01 0.1 0.1	I	< 0.01	>0.9	< 0.01
TB040 NoCal SPEA2 S0.9 C0.01 C0.5 C0.01 C0.7 C0.7 C0.01 C0.7 C0		< 0.01	<0.1	< 0.01
MoCell CellDE <0.1 <0.01 >0.5 <0.01 <0.1 <0		< 0.01	>0.9	< 0.01
SPEA2 CellDE <0.1 <0.01 >0.5 <0.01 <0.1 <0		< 0.01	>0.9	< 0.01
NSGA2 MoCell <0.1 <0.01 >0.5 <0.01 <0.5 <0		< 0.01	>0.9	< 0.01
NSGA2 SPEA2 >0.5 <0.01 >0.5 <0.01 >0.5 <0		< 0.01	< 0.5	< 0.01
NGC 4.2 Coll DE 20.1 20.01 20.5 20.01 20.1 20.0	I	< 0.01	>0.9	< 0.01
TB050 NSGA2 CellDE <0.1 <0.01 >0.5 <0.01 <0.1 <0 <0.1 <0 <0 <0 <0 <0 <0 <0 <	I	< 0.01	< 0.1	< 0.01
MoCell CellDE <0.1 <0.01 >0.5 <0.01 <0.1 <0		< 0.01	>0.9	< 0.01
SPEA2 CellDE <0.1 <0.01 >0.5 <0.01 <0.1 <0		< 0.01	>0.9	< 0.01
NSGA2 MoCell <0.1 <0.01 >0.5 <0.01 <0.1 <0	I	< 0.01	>0.9	< 0.01
NSGA2 SPEA2 >0.5 <0.01 >0.5 <0.01 >0.5 <0	I	< 0.01	< 0.5	< 0.01
NSCA2 CollDE <0.1 <0.01 >0.5 <0.01 <0.1 <0.1		< 0.01	>0.9	< 0.01
TB060 MoCell SPEA2 >0.9 <0.01 >0.5 <0.01 >0.9 <0		< 0.01	<0.1	< 0.01
MoCell CellDE <0.1 <0.01 >0.5 <0.01 <0.1 <0	0.01 < 0.1	< 0.01	>0.9	< 0.01
SPEA2 CellDE <0.1 <0.01 >0.5 <0.01 <0.1 <0	0.01 < 0.1	< 0.01	>0.9	< 0.01
NSGA2 MoCell <0.1 <0.01 <0.5 <0.01 <0.1 <0	0.01 < 0.1	< 0.01	>0.9	< 0.01
NSGA2 SPEA2 >0.5 <0.01 >0.5 <0.01 >0.5 <0	0.01 >0.5	< 0.01	< 0.5	< 0.01
NSGA2 CellDE <0.1 <0.01 >0.5 <0.01 <0.1 <0	0.01 < 0.1	< 0.01	>0.9	< 0.01
TB070 MoCell SPEA2 >0.9 <0.01 >0.5 <0.01 >0.9 <0	0.01 >0.9	< 0.01	< 0.1	< 0.01
MoCell CellDE <0.1 <0.01 >0.5 <0.01 <0.1 <0	0.01 < 0.1	< 0.01	>0.9	< 0.01
SPEA2 CellDE <0.1 <0.01 >0.5 <0.01 <0.1 <0	0.01 < 0.1	< 0.01	>0.9	< 0.01
NSGA2 MoCell <0.1 <0.01 <0.5 <0.01 <0.1 <0	0.01 < 0.1	< 0.01	>0.9	< 0.01
NSGA2 SPEA2 >0.5 <0.01 >0.5 <0.01 >0.5 <0	0.01 >0.5	< 0.01	< 0.5	< 0.01
TB080 NSGA2 CellDE <0.1 <0.01 >0.5 <0.01 <0.1 <0	0.01 < 0.1	< 0.01	>0.9	< 0.01
MoCell SPEA2 >0.9 <0.01 >0.5 <0.01 >0.9 <0	0.01 >0.9	< 0.01	< 0.1	< 0.01
MoCell CellDE <0.1 <0.01 >0.5 <0.01 <0.1 <0	0.01 < 0.1	< 0.01	>0.9	< 0.01
SPEA2 CellDE <0.1 <0.01 >0.5 <0.01 <0.1 <0	0.01 < 0.1	< 0.01	>0.9	< 0.01
NSGA2 MoCell <0.1 <0.01 <0.5 <0.01 <0.5 <0	0.01 < 0.1	< 0.01	>0.9	< 0.01
NSGA2 SPEA2 >0.5 <0.01 >0.5 <0.01 >0.5 <0	0.01 >0.5	< 0.01	< 0.5	< 0.01
NSGA2 CellDE <0.1 <0.01 >0.5 <0.01 <0.1 <0	0.01 < 0.1	< 0.01	>0.9	< 0.01
TB090 MoCell SPEA2 >0.9 <0.01 >0.5 <0.01 >0.9 <0	0.01 >0.9	< 0.01	< 0.1	< 0.01
MoCell CellDE <0.1 <0.01 >0.5 <0.01 <0.1 <0	0.01 < 0.1	< 0.01	>0.9	< 0.01
SPEA2 CellDE <0.1 <0.01 >0.5 <0.01 <0.1 <0	0.01 < 0.1	< 0.01	>0.9	< 0.01
NSGA2 MoCell <0.1 <0.01 <0.5 <0.01 <0.5 <0	0.01 < 0.5	< 0.01	>0.9	< 0.01
NSGA2 SPEA2 >0.5 <0.01 >0.5 <0.01 >0.5 <0		< 0.01	< 0.5	< 0.01
NSGA2 CellDF <0.1 <0.01 >0.5 <0.01 <0.1 <0.1		< 0.01	>0.9	< 0.01
TB100 MoCell SPEA2 >0.9 <0.01 >0.5 <0.01 >0.9 <0		< 0.01	<0.1	< 0.01
MoCell CellDE <0.1 <0.01 >0.5 <0.01 <0.1 <0		< 0.01	>0.9	< 0.01
SPEA2 CellDE <0.1 <0.01 >0.5 <0.01 <0.1 <0		< 0.01	>0.9	< 0.01

TABLE 13. Rank Results for each Multi-Objective Algorithms (AW2, f(PET, PTR, AUM))

ТВ	Metric		Rar	ık		Confidence					
	Wietric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE		
	ET	3	2	4	1	30%	20%	40%	10%		
	CTR	3	2	4	1	30%	20%	40%	10%		
TB010	UM	2	3	1	4	20%	30%	10%	40%		
	OFV	2	2	3	1	25%	25%	38%	12%		
	HV	3	2	3	1	33%	22%	33%	11%		

ТВ	Matria		Ra	nk	Confidence					
1 D	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE	
	ET	3	2	4	1	30%	20%	40%	10%	
	CTR	3	2	4	1	30%	20%	40%	10%	
TB020	UM	2	3	1	4	20%	30%	10%	40%	
	OFV	3	2	4	1	30%	20%	40%	10%	
	HV	3	2	4	1	30%	20%	40%	10%	
	ET	3	2	4	1	30%	20%	40%	10%	
	CTR	3	2	4	1	30%	20%	40%	10%	
TB030	UM	2	3	1	4	20%	30%	10%	40%	
	OFV	1	2	1	3	14%	29%	14%	43%	
	HV	3	2	4	1	30%	20%	40%	10%	
	ET	3	2	4	1	30%	20%	40%	10%	
	CTR	3	2	4	1	30%	20%	40%	10%	
TB040	UM	2	3	1	4	20%	30%	10%	40%	
	OFV	2	3	1	4	20%	30%	10%	40%	
	HV	3	2	4	1	30%	20%	40%	10%	
	ET	3	2	4	1	30%	20%	40%	10%	
	CTR	4	3	2	1	40%	30%	20%	10%	
TB050	UM	2	3	1	4	20%	30%	10%	40%	
	OFV	2	3	1	4	20%	30%	10%	40%	
	HV	3	2	4	1	30%	20%	40%	10%	
	ET	3	2	4	1	30%	20%	40%	10%	
	CTR	4	3	2	1	40%	30%	20%	10%	
TB060	UM	2	3	1	4	20%	30%	10%	40%	
	OFV	2	3	1	4	20%	30%	10%	40%	
	HV	3	2	4	1	30%	20%	40%	10%	
	ET	3	2	4	1	30%	20%	40%	10%	
	CTR	3	4	2	1	30%	40%	20%	10%	
TB070	UM	2	3	1	4	20%	30%	10%	40%	
	OFV	2	3	1	4	20%	30%	10%	40%	
	HV	3	2	4	1	30%	20%	40%	10%	
	ET	3	2	4	1	30%	20%	40%	10%	
	CTR	3	4	2	1	30%	40%	20%	10%	
TB080	UM	2	3	1	4	20%	30%	10%	40%	
	OFV	2	3	1	4	20%	30%	10%	40%	
	HV	3	2	4	1	30%	20%	40%	10%	
	ET	3	2	4	1	30%	20%	40%	10%	
	CTR	3	4	2	1	30%	40%	20%	10%	
TB090	UM	2	3	1	4	20%	30%	10%	40%	
1 2070	OFV	2	3	1	4	20%	30%	10%	40%	
	HV	3	2	4	1	30%	20%	40%	10%	
	ET	3	2	4	1	30%	20%	40%	10%	
	CTR	3	4	2	1	30%	40%	20%	10%	
TB100	UM	2	3	1	4	20%	30%	10%	40%	
1 D100	OFV	2	3	1 1	4	20%	30%	10%	40%	
	HV	3	2	4	1	30%	20%	40%	10%	
	пν	3		4	1	30%	ZU%	4 U%	10%	

B.2.2 Problem 2

This section describes the results for prioritization problem f(PET, PTR, PUS).

TABLE 14. Results for the Kruskal-Wallis Test among Multi-Objective Algorithms (AW2, f(PET, PTR, PUS))

TB	Metric	ChiSq	DF	p
	ET	1501.45	3	< 0.01
	CTR	19.47	3	< 0.01
TB010	USP	17.53	3	< 0.01
	OFV	8.4	3	< 0.05
	HV	174.36	3	< 0.01

TB	Metric	ChiSq	DF	p
	ET	1566.03	3	< 0.01
	CTR	116.75	3	< 0.01
TB020	USP	0.47	3	>0.05
	OFV	279.32	3	< 0.01
	HV	293.98	3	< 0.01
	ET	1244.62	3	< 0.01
	CTR	31.24	3	< 0.01
TB030	USP	15.58	3	< 0.01
	OFV	830.77	3	< 0.01
	HV	336.11	3	< 0.01
	ET	946.73	3	< 0.01
	CTR	94.25	3	< 0.01
TB040	USP	5.85	3	>0.05
	OFV	865.54	3	< 0.01
	HV	342.23	3	< 0.01
	ET	920.58	3	< 0.01
	CTR	141.41	3	< 0.01
TB050	USP	8.64	3	< 0.05
	OFV	908.48	3	< 0.01
	HV	346.7	3	< 0.01
	ET	930.37	3	< 0.01
	CTR	152.37	3	< 0.01
TB060	USP	7.57	3	>0.05
	OFV	917.87	3	< 0.01
	HV	343.83	3	< 0.01
	ET	998.18	3	< 0.01
	CTR	111.74	3	< 0.01
TB070	USP	9.74	3	< 0.05
	OFV	991.53	3	< 0.01
	HV	342.54	3	< 0.01
	ET	888.28	3	< 0.01
	CTR	96.55	3	< 0.01
TB080	USP	2.76	3	>0.05
	OFV	883.78	3	< 0.01
	HV	348.61	3	< 0.01
	ET	922.38	3	< 0.01
	CTR	107.91	3	< 0.01
TB090	USP	8.36	3	< 0.05
	OFV	921.68	3	< 0.01
	HV	344.02	3	< 0.01
	ET	765.19	3	< 0.01
	CTR	82.34	3	< 0.01
TB100	USP	12.11	3	< 0.01
	OFV	762.77	3	< 0.01
	HV	343.9	3	< 0.01

TABLE 15. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics among Multi-Objective Algorithms (AW2, f(PET, PTR, PUS))

ТВ	AlgorithmA	AlgorithmB -	ET		CTR		USP		OFV		HV	
10	Aiguittilia		A12	p								
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	>0.05	< 0.5	>0.05	< 0.5	>0.05	>0.5	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	>0.05	< 0.5	>0.05	>0.5	>0.05	< 0.5	< 0.01
TB010	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.05	>0.5	>0.05	>0.5	< 0.01
1 10010	MoCell	SPEA2	>0.5	< 0.01	>0.5	>0.05	< 0.5	>0.05	>0.5	>0.05	< 0.5	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.05	>0.9	< 0.01
TB020	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	>0.05	>0.5	>0.05	< 0.5	>0.05	>0.5	< 0.01

TBOQ NSGA2 SPEA2 O.5 C.01 O.5 O.01 O.5 O.05 O	TTD.	A1 '-1 A	41 '41 B	I	ET	С	TR	U	SP	О	FV	I	IV
TBOOM NSCA2 SPEA2 SUS SUD SUS SUD SUS SUD SUS SUD	TB	AlgorithmA	AlgorithmB	A12	p		1			A12	р		p
MoCell					< 0.01			>0.5	>0.05		< 0.01	< 0.5	
MoCell CellDe Coll Col		NSGA2		< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	>0.9	< 0.01
SPEA2	TB020	MoCell	SPEA2	>0.9		>0.5	< 0.01		>0.05	>0.5	< 0.01	< 0.1	< 0.01
NSGA2 McCell c0.1 c0.01 c0.5 c0.05		MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	>0.9	< 0.01
TB004		SPEA2		< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	>0.9	< 0.01
NSGA2		NSGA2	MoCell	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	>0.05	< 0.5	< 0.01	>0.9	< 0.01
MoCell SPEA2 S.99 C.001 S.05 S.005 C.001 S.05 C.001 C.01 C.01 C.01 MoCell CellDE C.01 C.01 C.05 C.001 S.05 C.001 C.05 C.001 C.01 C.001 C.00 SPEA2 CellDE C.01 C.001 C.05 C.001 S.05 C.001 C.05 C.001 C.00 C.00 C.00 NSGA2 SPEA2 S.05 C.001 S.05 C.001 S.05 C.001 C.05 C.00 C.00 C.00 C.00 MoCell SPEA2 C.01 C.01 C.00 C.05 C.00 S.05 C.00				>0.5	< 0.01		>0.05	< 0.5	< 0.01	< 0.5	< 0.05	< 0.5	
MoCell SPEAZ SPS Quo SPS Sub	TB030								l		1		
SPEA2 CelIDE	10000												
TB040									l	l	1		
TB040				< 0.1	< 0.01	I	< 0.01		< 0.01	l	< 0.01	>0.9	
TB040 MSCA2					< 0.01		>0.05		< 0.01		< 0.01		
MoCell SPEA2 SP9 SP01 SP05 SP05 SP06 SP09 SP01		NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.05	>0.5	< 0.01	< 0.5	< 0.01
MoCell SFEAZ SU9 CU01 CU5 CU05 CU05 SU6 SU9 CU1 CU1 CU1	TR040				< 0.01		< 0.01		>0.05		< 0.01	>0.9	
SPEA2 CelIDE c.0.1 c.0.01 c.0.5 c.0.01 c.0.5 c.0.01 c.0.0	10040								l	l	I		
TB050													
TB050 NSGA2 SPEA2 O.5 O.01 O.5 O.05 O.01 O.05 O.05 O.01 O.01 O.05 O.01 O.05 O.05 O.01 O.01 O.05 O.05 O.05 O.01 O.01 O.05 O.05 O.05 O.05 O.01 O.01 O.05		SPEA2	CellDE	< 0.1		< 0.5	< 0.01	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
TB050 NSGA2		NSGA2	MoCell	< 0.1	< 0.01	< 0.5	>0.05	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
MoCell		NSGA2	SPEA2	>0.5	< 0.01	>0.5	>0.05	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
MoCell CellDE Col. Col	TROSO	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
SPEA2 CellDE <0.1 <0.01 <0.5 <0.01 <0.5 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.05 <0.001 <0.05 <0.005 <0.05 <0.01 <0.05 <0.01 <0.05 <0.01 <0.05 <0.01 <0.05 <0.01 <0.05 <0.01 <0.05 <0.01 <0.05 <0.01 <0.05 <0.01 <0.05 <0.01 <0.05 <0.01 <0.05 <0.01 <0.05 <0.01 <0.05 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.05 <0.01 <0.05 <0.05 <0.05 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.05 <0.01 <0.05 <0.05 <0.05 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.05 <0.01 <0.05 <0.01 <0.05 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.0	10000	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.5	>0.05	>0.9	< 0.01	< 0.1	< 0.01
TB060		MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
TB060		SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB060		NSGA2	MoCell	< 0.1	< 0.01	< 0.5	>0.05	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
MoCell SPEA2 No.9 No.1 No.5 No.0 No.5 No.9 No.0 No.0 No.0 No.0		NSGA2	SPEA2	>0.9	< 0.01	>0.5	< 0.01	< 0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01
MoCell SPEA2 9.09 <0.01 <0.5 <0.01 <0.5 <0.05 <0.05 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	TP060	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
SPEA2 CellDE <0.1 <0.01 <0.5 <0.01 <0.5 <0.05 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.05 <0.05 <0.05 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.05 <0.05 <0.05 <0.05 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.05 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.05 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.05 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.05 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.05 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	1 0000	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	< 0.5	< 0.05	>0.9	< 0.01	< 0.1	< 0.01
TB070 NSGA2 MoCell <0.1 <0.01 <0.5 >0.05 >0.05 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01		MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
TB070		SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
TB070 NSGA2 CellDE <0.1 <0.01 <0.5 <0.01 <0.5 <0.01 <0.05 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.05 <0.001 <0.05 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.05 <0.01 <0.05 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.05 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.05 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.05 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.05 <0.01 <0.05 <0.05 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.05 <0.01 <0.01 <0.01 <0.05 <0.01 <0.01 <0.05 <0.01 <0.01 <0.05 <0.01 <0.01 <0.01 <0.05 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01			MoCell	< 0.1	< 0.01	< 0.5	>0.05	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
MoCell SPEA2 So.9 Co.01 So.5 So.05 Co.01 So.9 Co.01 Co.1 Co.01		NSGA2	SPEA2	>0.9	< 0.01	>0.5	>0.05	< 0.5	>0.05	>0.9	< 0.01	< 0.5	< 0.01
MoCell SPEA2 \$0.9 \$0.01 \$0.5 \$0.05 \$0.01 \$0.9 \$0.01 \$0.1 \$0.01	TP070	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
SPEA2 CelIDE <0.1 <0.01 <0.5 <0.01 >0.5 >0.05 <0.1 <0.01 >0.9 <0.01 <0.01 <0.05 <0.01 >0.5 >0.05 <0.01 <0.01 >0.9 <0.01 <0.01 <0.01 <0.01 >0.05 >0.05 >0.05 <0.01 <0.01 >0.9 <0.01 <0.01 <0.01 <0.01 >0.05 >0.05 >0.05 >0.05 <0.01 <0.01 >0.9 <0.01 <0.01 <0.01 <0.05 <0.01 <0.05 >0.05 <0.01 <0.01 <0.05 <0.01 <0.05 <0.01 <0.05 <0.01 <0.05 <0.01 <0.05 <0.01 <0.05 <0.01 <0.05 <0.01 <0.05 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.0	10070	MoCell	SPEA2	>0.9	< 0.01	>0.5	>0.05	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB080		MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01
TB080		SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
TB080		NSGA2	MoCell	< 0.1	< 0.01	>0.5	>0.05	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
MoCell SPEA2 So.9 Co.01 So.5 So.05 So.9 Co.01 Co.01 Co.01		NSGA2	SPEA2	>0.5	< 0.01	>0.5	>0.05	< 0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01
MoCell SPEAZ So.9 Co.01 So.5 So.05 So.05 So.9 Co.01 Co.1 Co.01	TROSO		CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
SPEA2 CellDE <0.1 <0.01 <0.5 <0.01 <0.5 <0.05 <0.01 <0.01 >0.9 <0.01 <0.01	10000	MoCell	SPEA2	>0.9	< 0.01	>0.5	>0.05	< 0.5	>0.05	>0.9	< 0.01	< 0.1	< 0.01
TB090 NSGA2 MoCell <0.1 <0.01 <0.5 >0.05 >0.05 <0.01 <0.01 >0.9 <0.01 TB090 NSGA2 SPEA2 >0.5 <0.01		MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB090 NSGA2 SPEA2 SO.5 SO.01 SO.5 SO.05 SO.5 SO.01		SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01
TB090 NSGA2 CelIDE <0.1 <0.01 <0.5 <0.01 >0.5 <0.05 <0.01 <0.01 >0.9 <0.01 MoCell SPEA2 >0.9 <0.01		NSGA2	MoCell	< 0.1	< 0.01	< 0.5	>0.05	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
MoCell SPEA2 >0.9 <0.01 >0.5 <0.05 <0.05 <0.05 >0.9 <0.01 <0.1 <0.01 <0.01		NSGA2	SPEA2	>0.5	< 0.01	>0.5	>0.05	< 0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01
MoCell SPEAZ >0.9 <0.01 >0.5 <0.05 <0.05 >0.9 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.05 <0.05 <0.05 <0.05 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	TROOG	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
SPEA2 CellDE <0.1 <0.01 <0.5 <0.01 >0.5 >0.05 <0.1 <0.01 >0.9 <0.01	1 DU9U	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.05	< 0.5	< 0.05	>0.9	< 0.01	< 0.1	< 0.01
NSGA2 MoCell <0.1 <0.01 >0.5 >0.05 >0.05 <0.01 <0.01 >0.9 <0.01 NSGA2 SPEA2 >0.5 <0.01		MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
TB100 NSGA2 SPEA2 >0.5 <0.01 >0.5 >0.05 <0.5 >0.05 >0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0		SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
TB100		NSGA2	MoCell	< 0.1	< 0.01	>0.5	>0.05	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
TB100 NSGA2 CellDE <0.1 <0.01 <0.5 <0.01 <0.5 <0.01 <0.1 <0.01 >0.9 <0.01 MoCell SPEA2 >0.9 <0.01 >0.5 >0.05 <0.5 <0.05 >0.9 <0.01 <0.1 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <		NSGA2	SPEA2		< 0.01					>0.5	< 0.01	< 0.5	< 0.01
MoCell SPEA2 >0.9 <0.01 >0.5 >0.05 <0.05 <0.05 >0.9 <0.01 <0.1 <0.01 MoCell CellDE <0.1	TD100	NSGA2	CellDE	< 0.1	< 0.01	< 0.5		< 0.5		< 0.1	< 0.01	>0.9	< 0.01
MoCell CellDE <0.1 <0.01 <0.5 <0.01 <0.5 <0.01 <0.1 <0.01 >0.9 <0.01	1 D100	MoCell	SPEA2	>0.9	< 0.01	>0.5	>0.05	< 0.5	< 0.05	>0.9	< 0.01	< 0.1	< 0.01
SPEA2 CelIDE <0.1 <0.01 <0.5 <0.01 <0.5 >0.05 <0.1 <0.01 >0.9 <0.01		MoCell	CellDE	< 0.1	< 0.01	< 0.5		< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
51212 56122 561 566 5		SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01

TABLE 16. Rank Results for each Multi-Objective Algorithms (AW2, f(PET, PTR, PUS))

	25.4		Ra	nk			Confidence				
TB	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE		
	ET	3	2	4	1	30%	20%	40%	10%		
	CTR	2	2	2	1	29%	29%	29%	14%		
TB010	USP	2	2	2	1	29%	29%	29%	14%		
	OFV	1	1	1	1	25%	25%	25%	25%		
	HV	3	2	4	1	30%	20%	40%	10%		
	ET	3	2	4	1	30%	20%	40%	10%		
	CTR	2	2	1	3	25%	25%	12%	38%		
TB020	USP	1	1	1	1	25%	25%	25%	25%		
	OFV	2	2	1	3	25%	25%	12%	38%		
	HV	3	2	4	1	30%	20%	40%	10%		
	ET	3	2	4	1	30%	20%	40%	10%		
	CTR	1	1	1	2	20%	20%	20%	40%		
TB030	USP	1	1	2	1	20%	20%	40%	20%		
	OFV	1	3	2	4	10%	30%	20%	40%		
	HV	3	2	4	1	30%	20%	40%	10%		
	ET	3	2	4	1	30%	20%	40%	10%		
	CTR	2	2	1	3	25%	25%	12%	38%		
TB040	USP	2	1	1	2	33%	17%	17%	33%		
	OFV	2	3	1	4	20%	30%	10%	40%		
	HV	3	2	4	1	30%	20%	40%	10%		
	ET	3	2	4	1	30%	20%	40%	10%		
	CTR	1	2	1	3	14%	29%	14%	43%		
TB050	USP	1	1	1	1	25%	25%	25%	25%		
	OFV	2	3	1	4	20%	30%	10%	40%		
	HV	3	2	4	1	30%	20%	40%	10%		
	ET	3	2	4	1	30%	20%	40%	10%		
	CTR	2	2	1	3	25%	25%	12%	38%		
TB060	USP	1	1	2	2	17%	17%	33%	33%		
	OFV	2	3	1	4	20%	30%	10%	40%		
	HV	3	2	4	1	30%	20%	40%	10%		
	ET	3	2	4	1	30%	20%	40%	10%		
	CTR	1	1	1	2	20%	20%	20%	40%		
TB070	USP	1	1	2	2	17%	17%	33%	33%		
	OFV	2	3	1	4	20%	30%	10%	40%		
	HV	3	2	4	1	30%	20%	40%	10%		
	ET	3	2	4	1	30%	20%	40%	10%		
	CTR	1	1	1	2	20%	20%	20%	40%		
TB080	USP	1	1	1	2	20%	20%	20%	40%		
	OFV	2	3	1	4	20%	30%	10%	40%		
	HV	3	2	4	1	30%	20%	40%	10%		
	ET	3	2	4	1	30%	20%	40%	10%		
	CTR	1	2	1	3	14%	29%	14%	43%		
TB090	USP	1	1	2	2	17%	17%	33%	33%		
	OFV	2	3	1	4	20%	30%	10%	40%		
	HV	3	2	4	1	30%	20%	40%	10%		
	ET	3	2	4	1	30%	20%	40%	10%		
	CTR	1	1	1	2	20%	20%	20%	40%		
TB100	USP	1	1	2	2	17%	17%	33%	33%		
	OFV	2	3	1	4	20%	30%	10%	40%		
	HV	3	2	4	1	30%	20%	40%	10%		

B.2.3 Problem 3

This section describes the results for prioritization problem f(PET, PTR, ANU).

TABLE 17. Results for the Kruskal-Wallis Test among Multi-Objective Algorithms (AW2, f(PET, PTR, ANU))

TB010	ET CTR NU OFV	26429.48 10522.79	3 3	<pre></pre>
TB010	NU		3	20 O1
TB010		20057.20		< 0.01
	OEV	20857.29	3	< 0.01
	OI V	8151.06	3	< 0.01
	HV	257.56	3	< 0.01
	ET	20228.29	3	< 0.01
	CTR	15042.94	3	< 0.01
TB020	NU	27523.18	3	< 0.01
	OFV	10884.49	3	< 0.01
	HV	305.76	3	< 0.01
	ET	26612.7	3	< 0.01
	CTR	9314.68	3	< 0.01
TB030	NU	28482.28	3	< 0.01
	OFV	661.85	3	< 0.01
	HV	341.17	3	< 0.01
	ET	28325.89	3	< 0.01
	CTR	5442.15	3	< 0.01
TB040	NU	30574.39	3	< 0.01
	OFV	6176.36	3	< 0.01
	HV	340.22	3	< 0.01
	ET	28698.19	3	< 0.01
	CTR	5251.9	3	< 0.01
TB050	NU	30198.4	3	< 0.01
	OFV	17694.11	3	< 0.01
	HV	344.68	3	< 0.01
	ET	27025.75	3	< 0.01
	CTR	4090.53	3	< 0.01
TB060	NU	27973.81	3	< 0.01
	OFV	21441.55	3	< 0.01
	HV	347.34	3	< 0.01
	ET	25886.09	3	< 0.01
	CTR	4690.48	3	< 0.01
TB070	NU	26294.92	3	< 0.01
	OFV	24583.63	3	< 0.01
	HV	350.17	3	< 0.01
	ET	25119.92	3	< 0.01
	CTR	5015.73	3	< 0.01
TB080	NU	25070.7	3	< 0.01
	OFV	25162.86	3	< 0.01
	HV	355.02	3	< 0.01
	ET	20861.68	3	< 0.01
	CTR	4385.86	3	< 0.01
TB090	NU	19924.75	3	< 0.01
	OFV	21044.79	3	< 0.01
	HV	350.73	3	< 0.01
	ET	11542.22	3	< 0.01
	CTR	1831.93	3	< 0.01
TB100	NU	11085.62	3	< 0.01
	OFV	11686.15	3	< 0.01
	HV	333.7	3	< 0.01

TABLE 18. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics among Multi-Objective Algorithms (AW2, f(PET, PTR, ANU))

ТВ	AlgorithmA	AlgorithmB	F	ET	С	TR	N	NU	0	FV	ŀ	ΙV
10	•	Ŭ	A12	p	A12	р	A12	p	A12	p	A12	p
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
TB010	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.9	< 0.01
10010	MoCell	SPEA2	>0.9	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	>0.05
	MoCell	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
TB020	NSGA2	CellDE	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.9	< 0.01
10020	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01
	MoCell	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01
TB030	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.9	< 0.01
10000	MoCell	SPEA2	>0.9	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
TB040	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
10010	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
TB050	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.9	< 0.01	<0.1	< 0.01
	MoCell	CellDE	< 0.5	< 0.01	>0.5	< 0.01	<0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	<0.5	< 0.01	<0.1	< 0.01	<0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	<0.5	< 0.01	<0.1	< 0.01	<0.5	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	<0.5	< 0.01
TB060	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	<0.1	< 0.01	<0.1	< 0.01	>0.9	< 0.01
	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.9	< 0.01	<0.1	< 0.01
	MoCell	CellDE	<0.1	< 0.01	>0.5	< 0.01	<0.1	<0.01	<0.5	<0.01	>0.9	<0.01
	SPEA2	CellDE	<0.1	< 0.01	<0.5	< 0.01	<0.1	<0.01	<0.1	<0.01	>0.9	<0.01
	NSGA2	MoCell	< 0.1	< 0.01	<0.5	<0.01	<0.1	<0.01	<0.1	<0.01	>0.9	<0.01
	NSGA2	SPEA2	>0.5	<0.01	>0.5	<0.01	>0.5	<0.01	>0.5	<0.01	<0.5	<0.01
TB070	NSGA2	CellDE	<0.1	< 0.01	>0.5	<0.01	<0.1	<0.01	<0.1	<0.01	>0.9	<0.01
	MoCell	SPEA2	>0.9	< 0.01	>0.5	<0.01	>0.9	<0.01	>0.9	<0.01	<0.1	<0.01
	MoCell	CellDE	<0.1	<0.01	>0.5	<0.01	<0.1	<0.01	<0.1	<0.01	>0.9	<0.01
	SPEA2	CellDE	<0.1	<0.01	< 0.5	<0.01	<0.1	<0.01	<0.1	<0.01	>0.9	<0.01
	NSGA2	MoCell	<0.1	<0.01	<0.5	<0.01	<0.1	<0.01	<0.1	<0.01	>0.9	<0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	<0.01	>0.5	<0.01	>0.5	<0.01	<0.5	<0.01
TB080	NSGA2	CellDE	<0.1	<0.01	<0.5	<0.01	<0.1	<0.01	<0.1	<0.01	>0.9	<0.01
	MoCell	SPEA2	>0.9	< 0.01	>0.5	<0.01	>0.9	<0.01	>0.9	<0.01	<0.1	<0.01
	MoCell	CellDE	<0.1	<0.01	>0.5	<0.01	<0.1	<0.01	<0.1	<0.01	>0.9	<0.01
	SPEA2	CellDE	<0.1	<0.01	<0.5	<0.01	<0.1	<0.01	<0.1	<0.01	>0.9	<0.01
	NSGA2	MoCell	<0.1	<0.01	<0.5	<0.01	<0.1	<0.01	<0.1	<0.01	>0.9	<0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	<0.01	>0.5	<0.01	>0.5	<0.01	<0.5	<0.01
TB090	NSGA2	CellDE	<0.1	< 0.01	<0.5	<0.01	<0.1	<0.01	<0.1	< 0.01	>0.9	<0.01
	MoCell MoCell	SPEA2	>0.9	<0.01	>0.5	<0.01	>0.9	<0.01	>0.9	<0.01	<0.1	<0.01
	MoCell	CellDE	<0.1	<0.01	>0.5	<0.01	<0.1	<0.01	<0.1	<0.01	>0.9	<0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01

ТВ	AlgorithmA	AlgorithmB -	ET		CTR		NU		OFV		HV	
10	Aigonuma		A12	p								
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
TB100	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10100	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01

TABLE 19. Rank Results for each Multi-Objective Algorithms (AW2, f(PET, PTR, ANU))

TB	Metric –		Ra	nk			Confidence				
1 D		NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE		
	ET	3	2	4	1	30%	20%	40%	10%		
	CTR	2	2	3	1	25%	25%	38%	12%		
TB010	NU	2	3	1	4	20%	30%	10%	40%		
	OFV	2	3	4	1	20%	30%	40%	10%		
	HV	3	2	2	1	38%	25%	25%	12%		
	ET	3	2	4	1	30%	20%	40%	10%		
	CTR	3	2	4	1	30%	20%	40%	10%		
TB020	NU	2	3	1	4	20%	30%	10%	40%		
	OFV	3	2	4	1	30%	20%	40%	10%		
	HV	4	2	3	1	40%	20%	30%	10%		
	ET	3	2	4	1	30%	20%	40%	10%		
	CTR	3	2	4	1	30%	20%	40%	10%		
TB030	NU	2	3	1	4	20%	30%	10%	40%		
	OFV	2	4	3	1	20%	40%	30%	10%		
	HV	3	2	4	1	30%	20%	40%	10%		
	ET	3	2	4	1	30%	20%	40%	10%		
	CTR	4	3	2	1	40%	30%	20%	10%		
TB040	NU	2	3	1	4	20%	30%	10%	40%		
•	OFV	2	3	1	4	20%	30%	10%	40%		
	HV	3	2	4	1	30%	20%	40%	10%		
	ET	3	2	4	1	30%	20%	40%	10%		
	CTR	3	4	1	2	30%	40%	10%	20%		
TB050	NU	2	3	1	4	20%	30%	10%	40%		
•	OFV	2	3	1	4	20%	30%	10%	40%		
•	HV	3	2	4	1	30%	20%	40%	10%		
	ET	3	2	4	1	30%	20%	40%	10%		
	CTR	3	4	1	2	30%	40%	10%	20%		
TB060	NU	2	3	1	4	20%	30%	10%	40%		
	OFV	2	3	1	4	20%	30%	10%	40%		
•	HV	3	2	4	1	30%	20%	40%	10%		
	ET	3	2	4	1	30%	20%	40%	10%		
	CTR	3	4	1	2	30%	40%	10%	20%		
TB070	NU	2	3	1	4	20%	30%	10%	40%		
	OFV	2	3	1	4	20%	30%	10%	40%		
	HV	3	2	4	1	30%	20%	40%	10%		
	ET	3	2	4	1	30%	20%	40%	10%		
	CTR	2	4	1	3	20%	40%	10%	30%		
TB080	NU	2	3	1	4	20%	30%	10%	40%		
	OFV	2	3	1	4	20%	30%	10%	40%		
}	HV	3	2	4	1	30%	20%	40%	10%		
	ET	3	2	4	1	30%	20%	40%	10%		
-	CTR	2	4	1	3	20%	40%	10%	30%		
TB090	NU	2	3	1	4	20%	30%	10%	40%		
-2070	OFV	2	3	1	4	20%	30%	10%	40%		
	HV	3	2	4	1	30%	20%	40%	10%		

ТВ	Metric		Rar	ık			Confic	lence	
10	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	2	3	1	3	22%	33%	11%	33%
TB100	NU	2	3	1	4	20%	30%	10%	40%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%

B.2.4 Problem 4

This section describes the results for prioritization problem f(PET, PTR, PUU).

TABLE 20. Results for the Kruskal–Wallis Test among Multi-Objective Algorithms (AW2, f(PET, PTR, PUU))

TB	Metric	ChiSq	DF	p
	ET	1870.96	3	< 0.01
	CTR	119.19	3	< 0.01
TB010	NUU	143.47	3	< 0.01
	OFV	266.77	3	< 0.01
	HV	254.03	3	< 0.01
	ET	1433.8	3	< 0.01
	CTR	170.4	3	< 0.01
TB020	NUU	76.16	3	< 0.01
	OFV	631.12	3	< 0.01
	HV	314.3	3	< 0.01
	ET	1197.63	3	< 0.01
	CTR	146.14	3	< 0.01
TB030	NUU	97.64	3	< 0.01
	OFV	963.56	3	< 0.01
	HV	344.31	3	< 0.01
	ET	992.19	3	< 0.01
	CTR	151.6	3	< 0.01
TB040	NUU	180.62	3	< 0.01
	OFV	962.37	3	< 0.01
	HV	342.26	3	< 0.01
	ET	944.37	3	< 0.01
	CTR	125.25	3	< 0.01
TB050	NUU	111.93	3	< 0.01
	OFV	899.67	3	< 0.01
	HV	345.97	3	< 0.01
	ET	937.09	3	< 0.01
	CTR	160.71	3	< 0.01
TB060	NUU	142.66	3	< 0.01
	OFV	936.96	3	< 0.01
	HV	344.12	3	< 0.01
	ET	894.03	3	< 0.01
	CTR	102.02	3	< 0.01
TB070	NUU	118.13	3	< 0.01
	OFV	887.55	3	< 0.01
	HV	339.63	3	< 0.01
	ET	822.49	3	< 0.01
	CTR	264.47	3	< 0.01
TB080	NUU	91.6	3	< 0.01
	OFV	823.6	3	< 0.01
	HV	341.09	3	< 0.01
	ET	861.27	3	< 0.01
	CTR	142.77	3	< 0.01
TB090	NUU	112.46	3	< 0.01
	OFV	861.43	3	< 0.01
	HV	344.14	3	< 0.01

TB	Metric	ChiSq	DF	p
	ET	790.53	3	< 0.01
	CTR	109.13	3	< 0.01
TB100	NUU	63.33	3	< 0.01
	OFV	789.16	3	< 0.01
	HV	348.34	3	< 0.01

TABLE 21. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics among Multi-Objective Algorithms (AW2, f(PET, PTR, PUU))

TD	A1 '11 A	A1 '(1 D	l l	ET	С	TR	N	UU	OFV		ŀ	ΙV
TB	AlgorithmA	AlgorithmB	A12	р								
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
	NSGA2	SPEA2	>0.5	< 0.05	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
TB010	NSGA2	CellDE	< 0.1	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.5	< 0.05	>0.9	< 0.01
10010	MoCell	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	< 0.01	>0.5	>0.05	< 0.5	>0.05	>0.5	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	>0.05
TB020	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
10020	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	< 0.05	< 0.5	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	>0.05	>0.5	>0.05	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
TB030	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10000	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.5	< 0.05	>0.5	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	>0.5	>0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	< 0.5	>0.05	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
TB040	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10040	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	>0.05	>0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01
TB050	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
12000	MoCell	SPEA2	>0.9	< 0.01	< 0.5	>0.05	>0.5	>0.05	>0.9	< 0.01	<0.1	< 0.01
	MoCell	CellDE	<0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	<0.1	< 0.01	<0.5	>0.05	<0.5	< 0.05	<0.1	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	<0.5	< 0.01
TB060	NSGA2	CellDE	<0.1	< 0.01	<0.5	< 0.01	<0.5	< 0.01	<0.1	< 0.01	>0.9	< 0.01
	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	<0.01	<0.1	< 0.01
	MoCell	CellDE	<0.1	< 0.01	<0.5	<0.01	<0.5	< 0.01	<0.1	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	<0.1	< 0.01	<0.5	<0.01	<0.5	<0.01	<0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	<0.1	< 0.01	<0.5	>0.05	>0.5	>0.05	<0.1	<0.01	>0.9	< 0.01
	NSGA2	SPEA2	>0.5	< 0.05	<0.5	< 0.05	>0.5	>0.05	>0.5	< 0.05	<0.5	< 0.01
TB070	NSGA2	CellDE	<0.1	< 0.01	<0.5	< 0.01	<0.5	< 0.01	<0.1	< 0.01	>0.9	< 0.01
	MoCell	SPEA2	>0.9	< 0.01	<0.5	>0.05	>0.5	>0.05	>0.9	< 0.01	<0.1	<0.01
	MoCell	CellDE	<0.1	<0.01	<0.5	<0.01	< 0.5	<0.01	<0.1	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	<0.1	< 0.01	<0.5	<0.01	<0.5	<0.01	<0.1	<0.01	>0.9	<0.01
	NSGA2	MoCell	<0.1	< 0.01	<0.5	>0.05	>0.5	>0.05	<0.1	<0.01	>0.9	<0.01
TEDOOO	NSGA2	SPEA2	>0.5	<0.01	>0.5	<0.01	<0.5	>0.05	>0.5	<0.01	<0.5	<0.01
TB080	NSGA2	CellDE	<0.1	< 0.01	<0.5	<0.01	< 0.5	<0.01	<0.1	<0.01	>0.9	<0.01
	MoCell	SPEA2	>0.9	< 0.01	>0.5	<0.01	< 0.5	>0.05	>0.9	<0.01	<0.1	<0.01
	MoCell	CellDE	<0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	<0.1	< 0.01	>0.9	< 0.01

ТВ	AlgorithmA	AlgorithmB	I	ET	С	TR	N	UU	О	FV	HV	
1 D	AigontiiliA	Aiguittiiii	A12	p								
TB080	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	>0.05	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	>0.5	>0.05	>0.5	< 0.01	>0.5	>0.05	>0.5	>0.05	< 0.5	< 0.01
TB090	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10090	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.5	>0.05	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	>0.5	< 0.05	>0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.05	>0.5	< 0.01	< 0.5	< 0.01
TB100	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10100	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	< 0.5	>0.05	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01

TABLE 22. Rank Results for each Multi-Objective Algorithms (AW2, f(PET, PTR, PUU))

TD	Matria		Rai	nk		Confidence						
TB	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	2	3	1	2	25%	38%	12%	25%			
TB010	NUU	2	3	1	3	22%	33%	11%	33%			
	OFV	2	3	1	3	22%	33%	11%	33%			
	HV	3	2	4	1	30%	20%	40%	10%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	2	3	1	3	22%	33%	11%	33%			
TB020	NUU	2	2	1	3	25%	25%	12%	38%			
	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	3	1	33%	22%	33%	11%			
	ET	4	2	3	1	40%	20%	30%	10%			
	CTR	2	2	1	3	25%	25%	12%	38%			
TB030	NUU	2	2	1	3	25%	25%	12%	38%			
	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	4	1	30%	20%	40%	10%			
	ET	3	2	3	1	33%	22%	33%	11%			
	CTR	2	2	1	3	25%	25%	12%	38%			
TB040	NUU	2	2	1	3	25%	25%	12%	38%			
	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	4	1	30%	20%	40%	10%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	1	1	1	2	20%	20%	20%	40%			
TB050	NUU	1	1	1	2	20%	20%	20%	40%			
	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	4	1	30%	20%	40%	10%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	2	2	1	3	25%	25%	12%	38%			
TB060	NUU	2	3	1	4	20%	30%	10%	40%			
	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	4	1	30%	20%	40%	10%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	1	1	1	2	20%	20%	20%	40%			
TB070	NUU	1	1	1	2	20%	20%	20%	40%			
	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	4	1	30%	20%	40%	10%			
	ET	3	2	4	1	30%	20%	40%	10%			
TB080	CTR	2	2	1	3	25%	25%	12%	38%			
	NUU	1	1	1	2	20%	20%	20%	40%			

ТВ	Metric		Rai	nk		Confidence						
1 1 1	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE			
TB080	OFV	2	3	1	4	20%	30%	10%	40%			
1 0000	HV	3	2	4	1	30%	20%	40%	10%			
	ET	3	2	3	1	33%	22%	33%	11%			
	CTR	2	2	1	3	25%	25%	12%	38%			
TB090	NUU	1	1	1	2	20%	20%	20%	40%			
	OFV	1	2	1	3	14%	29%	14%	43%			
	HV	3	2	4	1	30%	20%	40%	10%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	3	2	1	4	30%	20%	10%	40%			
TB100	NUU	2	1	1	3	29%	14%	14%	43%			
	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	4	1	30%	20%	40%	10%			

B.2.5 Problem 5

This section describes the results for prioritization problem f(PET, PTR, AUM, PUS).

TABLE 23. Results for the Kruskal-Wallis Test among Multi-Objective Algorithms (AW2, f(PET, PTR, AUM, PUS))

ТВ	Metric	ChiSq	DF	p
	ET	13433.1	3	< 0.01
	CTR	9243.85	3	< 0.01
TB010	UM	15659.97	3	< 0.01
10010	USP	8843.92	3	< 0.01
	OFV	6887.61	3	< 0.01
	HV	196.63	3	< 0.01
	ET	16992.87	3	< 0.01
	CTR	10812.77	3	< 0.01
TB020	UM	22727.58	3	< 0.01
1 DUZU	USP	10315.08	3	< 0.01
	OFV	6598.47	3	< 0.01
	HV	268.42	3	< 0.01
	ET	22280.68	3	< 0.01
	CTR	10152.52	3	< 0.01
TB030	UM	26869.3	3	< 0.01
1 DU3U	USP	9903.45	3	< 0.01
	OFV	1031.74	3	< 0.01
	HV	265.52	3	< 0.01
	ET	25115.85	3	< 0.01
	CTR	8685.7	3	< 0.01
TB040	UM	27006.32	3	< 0.01
1 DU4U	USP	8940.18	3	< 0.01
	OFV	1077.6	3	< 0.01
	HV	261.96	3	< 0.01
	ET	28503.27	3	< 0.01
	CTR	6317.7	3	< 0.01
TB050	UM	27655.86	3	< 0.01
1 DUOU	USP	6532.82	3	< 0.01
	OFV	9840.46	3	< 0.01
	HV	298.37	3	< 0.01
	ET	30290.52	3	< 0.01
	CTR	6910.37	3	< 0.01
TB060	UM	27922.18	3	< 0.01
I DUOU	USP	6755.43	3	< 0.01
	OFV	16988.69	3	< 0.01
	HV	313.7	3	< 0.01
TB070	ET	31002.19	3	< 0.01
1 DU/ U	CTR	6288.31	3	< 0.01

TB	Metric	ChiSq	DF	p
	UM	28522.02	3	< 0.01
TB070	USP	6340.42	3	< 0.01
1 0070	OFV	24480.57	3	< 0.01
	HV	312.9	3	< 0.01
	ET	31768.59	3	< 0.01
	CTR	6200.84	3	< 0.01
TB080	UM	30075	3	< 0.01
1 0000	USP	5890.82	3	< 0.01
	OFV	28060.85	3	< 0.01
	HV	323.52	3	< 0.01
	ET	30684.56	3	< 0.01
	CTR	4674.96	3	< 0.01
TB090	UM	30215.06	3	< 0.01
1 0090	USP	4284.48	3	< 0.01
	OFV	27865.74	3	< 0.01
	HV	321.72	3	< 0.01
	ET	26111.32	3	< 0.01
	CTR	2218.18	3	< 0.01
TB100	UM	25857.3	3	< 0.01
10100	USP	1712.72	3	< 0.01
	OFV	24652.15	3	< 0.01
	HV	321.06	3	< 0.01

TABLE 24. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics among Multi-Objective Algorithms (AW2, f(PET, PTR, AUM, PUS))

ТВ	AlgorithmA	AlgorithmB	I	ET	С	TR	U	M	U	SP	О	FV	H	IV
1 1 1	AigoriumiA	Aigoriumib	A12	p										
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	< 0.05	< 0.5	< 0.01	>0.5	< 0.01	>0.5	>0.05	>0.5	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
TB010	NSGA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
10010	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
	MoCell	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
TB020	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
10020	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
	MoCell	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	>0.05	>0.5	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.05	>0.5	< 0.01
TB030	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
10030	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	>0.05
TB040	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
10040	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	>0.05	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	>0.5	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
TB050	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
1 0000	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01

	I	<u> </u>	ET		тр	т.	TN /	USP OFV				HV		
TB	AlgorithmA	AlgorithmB				TR		M						
	710010) (C !!	A12	p	A12	p	A12	p	A12	p	A12	p	A12	p
	NSGA2	MoCell	<0.5	<0.01	<0.5	< 0.01	<0.5	< 0.01	< 0.5	<0.01	<0.5	< 0.01	>0.5	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	<0.5	< 0.01
TB060	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	<0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
TB070	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10070	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
TB080	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 0000	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
TB090	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 0090	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
TB100	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 D100	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01

TABLE 25. Rank Results for each Multi-Objective Algorithms (AW2, f(PET, PTR, AUM, PUS))

ТВ	Metric		Rai	nk			Confid	dence	
1 D	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	3	2	4	1	30%	20%	40%	10%
TB010	UM	2	3	1	4	20%	30%	10%	40%
10010	USP	3	2	4	1	30%	20%	40%	10%
	OFV	2	2	3	1	25%	25%	38%	12%
	HV	4	3	2	1	40%	30%	20%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	3	2	4	1	30%	20%	40%	10%
TB020	UM	2	3	1	4	20%	30%	10%	40%
1 0020	USP	3	2	4	1	30%	20%	40%	10%
	OFV	3	2	4	1	30%	20%	40%	10%
	HV	4	3	2	1	40%	30%	20%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	3	2	4	1	30%	20%	40%	10%
TB030	UM	2	3	1	4	20%	30%	10%	40%
10030	USP	3	2	4	1	30%	20%	40%	10%
	OFV	2	2	3	1	25%	25%	38%	12%
	HV	4	2	3	1	40%	20%	30%	10%
	ET	3	2	4	1	30%	20%	40%	10%
TB040	CTR	2	2	3	1	25%	25%	38%	12%
	UM	2	3	1	4	20%	30%	10%	40%

ТВ	Makria		Raı	ık		Confidence						
1 D	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE			
	USP	3	2	2	1	38%	25%	25%	12%			
TB040	OFV	2	3	1	3	22%	33%	11%	33%			
	HV	3	2	3	1	33%	22%	33%	11%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	3	3	2	1	33%	33%	22%	11%			
TB050	UM	2	3	1	4	20%	30%	10%	40%			
1 0000	USP	3	3	2	1	33%	33%	22%	11%			
	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	4	1	30%	20%	40%	10%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	3	4	2	1	30%	40%	20%	10%			
TB060	UM	2	3	1	4	20%	30%	10%	40%			
1 0000	USP	3	4	2	1	30%	40%	20%	10%			
	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	4	1	30%	20%	40%	10%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	3	4	2	1	30%	40%	20%	10%			
TB070	UM	2	3	1	4	20%	30%	10%	40%			
1 0070	USP	3	4	2	1	30%	40%	20%	10%			
	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	4	1	30%	20%	40%	10%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	3	4	2	1	30%	40%	20%	10%			
TB080	UM	2	3	1	4	20%	30%	10%	40%			
1 0000	USP	3	4	2	1	30%	40%	20%	10%			
	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	4	1	30%	20%	40%	10%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	3	4	1	2	30%	40%	10%	20%			
TB090	UM	2	3	1	4	20%	30%	10%	40%			
1 0090	USP	2	3	1	1	29%	43%	14%	14%			
	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	4	1	30%	20%	40%	10%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	2	3	1	1	29%	43%	14%	14%			
TB100	UM	2	3	1	4	20%	30%	10%	40%			
1 D100	USP	3	4	1	2	30%	40%	10%	20%			
	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	4	1	30%	20%	40%	10%			

B.2.6 Problem 6

This section describes the results for prioritization problem f(PET, PTR, AUM, ANU).

TABLE 26. Results for the Kruskal-Wallis Test among Multi-Objective Algorithms (AW2, f(PET, PTR, AUM, ANU))

ТВ	Metric	ChiSq	DF	p
	ET	2065.44	3	< 0.01
	CTR	8615.69	3	< 0.01
TB010	UM	324.74	3	< 0.01
1 0010	NU	14283.14	3	< 0.01
	OFV	5196.09	3	< 0.01
	HV	175.27	3	< 0.01
	ET	3662.44	3	< 0.01
	CTR	11372.44	3	< 0.01
TB020	UM	794.33	3	< 0.01
	NU	19406.44	3	< 0.01
	OFV	5156.67	3	< 0.01

TB	Metric	ChiSq	DF	p
TB020	HV	311.04	3	< 0.01
	ET	8887.6	3	< 0.01
	CTR	7674.68	3	<0.01
TD000	UM	2265.69	3	< 0.01
TB030	NU	25387.54	3	< 0.01
	OFV	690.94	3	< 0.01
	HV	313.62	3	< 0.01
	ET	12937.5	3	< 0.01
	CTR	4518.8	3	< 0.01
TP040	UM	4971.07	3	< 0.01
TB040	NU	25048.32	3	< 0.01
	OFV	7616.31	3	< 0.01
	HV	246.68	3	< 0.01
	ET	16742.92	3	< 0.01
	CTR	2567.12	3	< 0.01
TB050	UM	6155.25	3	< 0.01
1 6030	NU	24414.5	3	< 0.01
	OFV	14514.24	3	< 0.01
	HV	236.54	3	< 0.01
	ET	17776.55	3	< 0.01
	CTR	2203.29	3	< 0.01
TB060	UM	7452.83	3	< 0.01
1 0000	NU	23925.09	3	< 0.01
	OFV	17293.23	3	< 0.01
	HV	246.11	3	< 0.01
	ET	18273.72	3	< 0.01
	CTR	1335.61	3	< 0.01
TB070	UM	8120.36	3	< 0.01
15070	NU	24758.02	3	< 0.01
	OFV	19254.31	3	< 0.01
	HV	256.28	3	< 0.01
	ET	19414.65	3	< 0.01
	CTR	693.21	3	< 0.01
TB080	UM	8692.15	3	< 0.01
12000	NU	24156	3	< 0.01
	OFV	20670.64	3	< 0.01
	HV	269.6	3	< 0.01
	ET	20214.73	3	< 0.01
	CTR	522.92	3	<0.01
TB090	UM	10772.09	3	<0.01
	NU	23444.02	3	<0.01
	OFV	21396.08	3	<0.01
	HV	269.73	3	<0.01
	ET	20201.52	3	<0.01
	CTR	538.43	3	<0.01
TB100	UM	11662.41	3	<0.01
	NU	24322.81	3	<0.01
	OFV	21089.12	3	<0.01
	HV	226.88	3	< 0.01

TABLE 27. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics among Multi-Objective Algorithms (AW2, f(PET, PTR, AUM, ANU))

ТВ	Algorithm A	AlgorithmB	ET		CTR		UM		NU		OFV		HV	
	AiguittiiiA	Aigoriumb	A12	p										
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01
TB010	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
1 0010	NSGA2	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01
	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01

T.D.		41 td B	E	T	С	TR	U	M	N	IU	О	FV	I	ΙV
TB	AlgorithmA	AlgorithmB	A12	р	A12	р	A12	p	A12	р	A12	р	A12	р
TD010	MoCell	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01
TB010	SPEA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	>0.05
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
TB020	NSGA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
1 0020	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	MoCell	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01
TB030	NSGA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
1 0000	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.5	< 0.01
TB040	NSGA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
1 0040	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.5	< 0.01
	MoCell	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
TB050	NSGA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
10000	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	< 0.5	>0.05
	MoCell	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.05
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
TB060	NSGA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
10000	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
	MoCell	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.05
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.05	>0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
TB070	NSGA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
120,0	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.05	>0.5	< 0.01	>0.9	< 0.01	>0.9	< 0.01	< 0.5	< 0.01
	MoCell	CellDE	< 0.5	< 0.01	>0.5	< 0.01	<0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01		< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	<0.5	< 0.01	>0.5	>0.05	<0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	<0.5	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01
TB080	NSGA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	<0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.9	< 0.01	<0.5	< 0.01
	MoCell	CellDE	< 0.5	< 0.01	>0.5	< 0.01	<0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	<0.1	< 0.01	>0.5	< 0.01	<0.5	< 0.01	<0.1	< 0.01	<0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	<0.5	< 0.01	< 0.5	< 0.01	<0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	>0.05
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01
TB090	NSGA2	CellDE	<0.5	< 0.01	>0.5	< 0.01	<0.5	< 0.01	<0.1	< 0.01	<0.5	< 0.01	>0.9	< 0.01
	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	<0.5	< 0.01
	MoCell	CellDE	<0.5	< 0.01	>0.5	< 0.01	<0.5	< 0.01	< 0.5	< 0.01	<0.5	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	<0.1	< 0.01	>0.5	< 0.01	<0.5	< 0.01	< 0.1	< 0.01	<0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	<0.5	< 0.01	<0.5	>0.05	<0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	<0.5	< 0.05
	NSGA2	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	<0.5	< 0.01
TB100	NSGA2	CellDE	<0.5	< 0.01	>0.5	< 0.01	<0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.9	< 0.01	<0.5	< 0.01
	MoCell SPEA2	CellDE CellDE	<0.5 <0.1	< 0.01	>0.5	< 0.01	<0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
				< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01		< 0.01

TABLE 28. Rank Results for each Multi-Objective Algorithms (AW2, f(PET, PTR, AUM, ANU))

	25.4		Rai	nk		Confidence						
TB	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE			
	ET	2	1	4	3	20%	10%	40%	30%			
	CTR	2	2	3	1	25%	25%	38%	12%			
TP010	UM	1	2	2	3	12%	25%	25%	38%			
TB010	NU	2	3	1	4	20%	30%	10%	40%			
	OFV	2	3	4	1	20%	30%	40%	10%			
	HV	2	3	1	1	29%	43%	14%	14%			
	ET	3	1	4	2	30%	10%	40%	20%			
	CTR	2	2	3	1	25%	25%	38%	12%			
TP020	UM	2	3	1	4	20%	30%	10%	40%			
TB020	NU	2	3	1	4	20%	30%	10%	40%			
	OFV	2	3	4	1	20%	30%	40%	10%			
	HV	3	4	2	1	30%	40%	20%	10%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	2	2	3	1	25%	25%	38%	12%			
TD020	UM	2	3	1	4	20%	30%	10%	40%			
TB030	NU	2	3	1	4	20%	30%	10%	40%			
	OFV	2	4	1	3	20%	40%	10%	30%			
	HV	3	4	2	1	30%	40%	20%	10%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	2	3	4	1	20%	30%	40%	10%			
TTD0 40	UM	2	3	1	4	20%	30%	10%	40%			
TB040	NU	2	3	1	4	20%	30%	10%	40%			
	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	4	2	1	30%	40%	20%	10%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	2	3	4	1	20%	30%	40%	10%			
	UM	2	3	1	4	20%	30%	10%	40%			
TB050	NU	2	3	1	4	20%	30%	10%	40%			
	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	2	3	3	1	22%	33%	33%	11%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	2	2	3	1	25%	25%	38%	12%			
	UM	2	3	1	4	20%	30%	10%	40%			
TB060	NU	2	3	1	4	20%	30%	10%	40%			
	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	2	3	4	1	20%	30%	40%	10%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	2	2	3	1	25%	25%	38%	12%			
	UM	2	3	1	4	20%	30%	10%	40%			
TB070	NU	2	3	1	4	20%	30%	10%	40%			
	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	2	3	4	1	20%	30%	40%	10%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	3	3	2	1	33%	33%	22%	11%			
	UM	2	3	1		20%	30%	10%	40%			
TB080	NU	2	3	1	4	20%	30%	10%	40%			
	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	2	3	4	1	20%	30%	40%	10%			
	ET						20%					
		3	2	4	1	30%		40%	10%			
	CTR	3	4	2	1	30%	40%	20%	10%			
TB090	UM	2	3	1	4	20%	30%	10%	40%			
	NU	2	3	1	4	20%	30%	10%	40%			
	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	2	2	3	1	25%	25%	38%	12%			

ТВ	Metric		Rar	ık		Confidence						
10	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	3	3	2	1	33%	33%	22%	11%			
TB100	UM	2	3	1	4	20%	30%	10%	40%			
10100	NU	2	3	1	4	20%	30%	10%	40%			
	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	2	3	4	1	20%	30%	40%	10%			

B.2.7 Problem 7

This section describes the results for prioritization problem f(PET, PTR, AUM, PUU).

TABLE 29. Results for the Kruskal-Wallis Test among Multi-Objective Algorithms (AW2, f(PET, PTR, AUM, PUU))

TB	Metric	ChiSq	DF	p
	ET	14105.9	3	< 0.01
	CTR	10306.54	3	< 0.01
TB010	UM	17038.39	3	< 0.01
10010	NUU	7851.25	3	< 0.01
	OFV	5508.21	3	< 0.01
	HV	187.9	3	< 0.01
	ET	17694.67	3	< 0.01
	CTR	11244.03	3	< 0.01
TB020	UM	22588.3	3	< 0.01
10020	NUU	9082.5	3	< 0.01
	OFV	4682.61	3	< 0.01
	HV	236.45	3	< 0.01
	ET	23912.56	3	< 0.01
	CTR	10454.53	3	< 0.01
TB030	UM	28070.08	3	< 0.01
1 0030	NUU	8297.36	3	< 0.01
	OFV	197.42	3	< 0.01
	HV	270.19	3	< 0.01
	ET	25692.54	3	< 0.01
	CTR	8791.7	3	< 0.01
TB040	UM	29694.16	3	< 0.01
1 D040	NUU	7429.35	3	< 0.01
	OFV	2807.67	3	< 0.01
	HV	299.23	3	< 0.01
	ET	30447.4	3	< 0.01
	CTR	7612.15	3	< 0.01
TB050	UM	28305.25	3	< 0.01
1 0000	NUU	7004.07	3	< 0.01
	OFV	12989.4	3	< 0.01
	HV	327.93	3	< 0.01
	ET	31706.48	3	< 0.01
	CTR	7786.44	3	< 0.01
TB060	UM	30595.15	3	< 0.01
1 D000	NUU	8071.41	3	< 0.01
	OFV	22497.82	3	< 0.01
	HV	337.66	3	< 0.01
	ET	31400.1	3	< 0.01
	CTR	8310.06	3	< 0.01
TB070	UM	29791.39	3	< 0.01
1 00/0	NUU	8896.1	3	< 0.01
	OFV	28077.22	3	< 0.01
	HV	321.82	3	< 0.01
TB080	ET	32606.62	3	< 0.01
1 0000	CTR	6735.09	3	< 0.01

ТВ	Metric	ChiSq	DF	p
	UM	30969.04	3	< 0.01
TB080	NUU	7644.67	3	< 0.01
10000	OFV	29937.83	3	< 0.01
	HV	338.57	3	< 0.01
	ET	31475.8	3	< 0.01
	CTR	6970.17	3	< 0.01
TB090	UM	29983	3	< 0.01
1 0090	NUU	7184.67	3	< 0.01
	OFV	29603.06	3	< 0.01
	HV	347.57	3	< 0.01
	ET	23183.22	3	< 0.01
	CTR	2496.81	3	< 0.01
TB100	UM	21107.07	3	< 0.01
10100	NUU	2909.46	3	< 0.01
	OFV	22415.54	3	< 0.01
	HV	332.32	3	< 0.01

TABLE 30. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics among Multi-Objective Algorithms (AW2, f(PET, PTR, AUM, PUU))

ТВ	AlgorithmA	AlgorithmB		ET	С	TR	U	M	N	UU	О	FV	F	IV
1 D	AigorithmA	Aigorithmb	A12	р	A12	p	A12	р	A12	р	A12	р	A12	р
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	>0.05	>0.5	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
TB010	NSGA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
10010	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	>0.05
	MoCell	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	>0.05	>0.5	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
TB020	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
10020	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	>0.05
	MoCell	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	>0.5	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	>0.05	>0.5	>0.05	>0.5	>0.05
TB030	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
1 0000	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	>0.05
TB040	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
10040	MoCell	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	>0.5	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
TB050	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
10000	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
TB060	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
1 D000	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01

			т	ET		тр	T	T. /	N.T	TITI		FV	т.	T T 7
TB	AlgorithmA	AlgorithmB	_			TR	_	M		UU	_			IV
			A12	p										
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	> 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
TB070	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10070	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
TB080	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 0000	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
TB090	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 1 1 1 1 1 1 1 1	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
TB100	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10100	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01

TABLE 31. Rank Results for each Multi-Objective Algorithms (AW2, f(PET, PTR, AUM, PUU))

ТВ	Metric		Raı	ık		Confidence						
I D	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	3	2	4	1	30%	20%	40%	10%			
TB010	UM	2	3	1	4	20%	30%	10%	40%			
1 1 1 1 1 1 1 1	NUU	3	2	4	1	30%	20%	40%	10%			
	OFV	2	2	3	1	25%	25%	38%	12%			
	HV	3	2	2	1	38%	25%	25%	12%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	3	2	4	1	30%	20%	40%	10%			
TB020	UM	2	3	1	4	20%	30%	10%	40%			
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	NUU	3	2	4	1	30%	20%	40%	10%			
	OFV	2	2	3	1	25%	25%	38%	12%			
	HV	3	2	2	1	38%	25%	25%	12%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	2	2	3	1	25%	25%	38%	12%			
TB030	UM	2	3	1	4	20%	30%	10%	40%			
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	NUU	2	2	2	1	29%	29%	29%	14%			
	OFV	2	3	2	1	25%	38%	25%	12%			
	HV	3	2	3	1	33%	22%	33%	11%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	4	3	2	1	40%	30%	20%	10%			
TB040	UM	2	3	1	4	20%	30%	10%	40%			
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	NUU	4	3	2	1	40%	30%	20%	10%			
	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	3	1	33%	22%	33%	11%			
	ET	3	2	4	1	30%	20%	40%	10%			
TB050	CTR	3	3	2	1	33%	33%	22%	11%			
	UM	2	3	1	4	20%	30%	10%	40%			

TD	M-1		Rai	nk		Confidence						
TB	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE			
	NUU	3	3	2	1	33%	33%	22%	11%			
TB050	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	4	1	30%	20%	40%	10%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	3	3	2	1	33%	33%	22%	11%			
TB060	UM	2	3	1	4	20%	30%	10%	40%			
1 0000	NUU	3	3	2	1	33%	33%	22%	11%			
	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	4	1	30%	20%	40%	10%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	2	3	1	1	29%	43%	14%	14%			
TB070	UM	2	3	1	4	20%	30%	10%	40%			
1 007 0	NUU	3	4	1	2	30%	40%	10%	20%			
	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	4	1	30%	20%	40%	10%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	2	3	1	1	29%	43%	14%	14%			
TB080	UM	2	3	1	4	20%	30%	10%	40%			
1 0000	NUU	3	4	1	2	30%	40%	10%	20%			
	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	4	1	30%	20%	40%	10%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	3	4	1	2	30%	40%	10%	20%			
TB090	UM	2	3	1	4	20%	30%	10%	40%			
1 0090	NUU	3	4	1	2	30%	40%	10%	20%			
	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	4	1	30%	20%	40%	10%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	3	4	1	2	30%	40%	10%	20%			
TB100	UM	2	3	1	4	20%	30%	10%	40%			
1 D100	NUU	3	4	1	2	30%	40%	10%	20%			
	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	4	1	30%	20%	40%	10%			

B.2.8 Problem 8

This section describes the results for prioritization problem f(PET, PTR, PUS, ANU).

TABLE 32. Results for the Kruskal-Wallis Test among Multi-Objective Algorithms (AW2, f(PET, PTR, PUS, ANU))

TB	Metric	ChiSq	DF	p
	ET	23577	3	< 0.01
	CTR	13237.58	3	< 0.01
TB010	USP	12319.66	3	< 0.01
10010	NU	21178.43	3	< 0.01
	OFV	11782.63	3	< 0.01
	HV	332.02	3	< 0.01
	ET	22418.37	3	< 0.01
	CTR	16322.81	3	< 0.01
TB020	USP	15275.95	3	< 0.01
1 0020	NU	22918.86	3	< 0.01
	OFV	13720.88	3	< 0.01
	HV	306.75	3	< 0.01
	ET	26173.65	3	< 0.01
	CTR	12551.9	3	< 0.01
TB030	USP	12547.29	3	< 0.01
	NU	27697.7	3	< 0.01
	OFV	4462.69	3	< 0.01

TB	Metric	ChiSq	DF	p
TB030	HV	266.36	3	< 0.01
	ET	28031.87	3	< 0.01
	CTR	8415.87	3	< 0.01
TB040	USP	9943.55	3	< 0.01
1 DU4U	NU	27982.13	3	< 0.01
	OFV	3654.44	3	< 0.01
	HV	282.99	3	< 0.01
	ET	28558.5	3	< 0.01
	CTR	8416.69	3	< 0.01
TB050	USP	10213.56	3	< 0.01
10000	NU	29255.45	3	< 0.01
	OFV	10326.06	3	< 0.01
	HV	303.21	3	< 0.01
	ET	28822.11	3	< 0.01
	CTR	8672.05	3	< 0.01
TB060	USP	9653.19	3	< 0.01
1 0000	NU	28155.51	3	< 0.01
	OFV	17719.99	3	< 0.01
	HV	303.32	3	< 0.01
	ET	30679.82	3	< 0.01
	CTR	9185.72	3	< 0.01
TB070	USP	9001.34	3	< 0.01
10070	NU	30426.7	3	< 0.01
	OFV	25234.84	3	< 0.01
	HV	328.22	3	< 0.01
	ET	30836.55	3	< 0.01
	CTR	9019.01	3	< 0.01
TB080	USP	7175.66	3	< 0.01
12000	NU	31082.6	3	< 0.01
	OFV	28464.99	3	< 0.01
	HV	328.71	3	< 0.01
	ET	30580.75	3	< 0.01
	CTR	8672.65	3	< 0.01
TB090	USP	6412.38	3	< 0.01
220,0	NU	29338.45	3	<0.01
	OFV	29573.36	3	<0.01
	HV	334.69	3	<0.01
	ET	25915.72	3	< 0.01
	CTR	5390.02	3	<0.01
TB100	USP	3153.01	3	<0.01
	NU	25572.36	3	<0.01
	OFV	26580.67	3	<0.01
	HV	315.92	3	< 0.01

TABLE 33. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics among Multi-Objective Algorithms (AW2, f(PET, PTR, PUS, ANU))

ТВ	AlgorithmA	AlgorithmB	F	ET	C'	CTR		USP		IU	OFV		HV	
10	AigontilliA	Aigontillio	A12	p	A12	p	A12	p	A12	p	A12	р	A12	p
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
TB010	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.9	< 0.01
10010	MoCell	SPEA2	>0.9	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.9	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.5	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01
TB020	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	CellDE	< 0.1	< 0.01	>0.9	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.9	< 0.01

TD	A 1 A	A loo with me D	I	ET	С	TR	U	SP	N	IU	О	FV	H	IV
TB	AlgorithmA	AlgorithmB	A12	р										
	MoCell	SPEA2	>0.9	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
TB020	MoCell	CellDE	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.9	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	>0.05	>0.5	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.05
TPO20	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.9	< 0.01
TB030	MoCell	SPEA2	>0.9	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
	MoCell	CellDE	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
TB040	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.9	< 0.01
10040	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
TB050	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
10000	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
TB060	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
1 0000	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
TB070	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10070	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
TB080	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10000	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
TB090	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
טפטענ	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
TB100	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	>0.05	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10100	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01

TABLE 34. Rank Results for each Multi-Objective Algorithms (AW2, f(PET, PTR, PUS, ANU))

TD	3.5.4.5		Ra	nk			Confid	lence	
TB	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	2	3	4	1	20%	30%	40%	10%
TB010	USP	2	2	3	1	25%	25%	38%	12%
1 0010	NU	2	3	1	4	20%	30%	10%	40%
	OFV	2	3	4	1	20%	30%	40%	10%
	HV	4	3	2	1	40%	30%	20%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	3	2	4	1	30%	20%	40%	10%
TB020	USP	3	2	3	1	33%	22%	33%	11%
1 0020	NU	2	3	1	4	20%	30%	10%	40%
	OFV	3	2	4	1	30%	20%	40%	10%
	HV	4	3	2	1	40%	30%	20%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	4	2	3	1	40%	20%	30%	10%
TB030	USP	4	3	2	1	40%	30%	20%	10%
1 0030	NU	2	3	1	4	20%	30%	10%	40%
	OFV	3	3	2	1	33%	33%	22%	11%
	HV	4	2	3	1	40%	20%	30%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	3	3	2	1	33%	33%	22%	11%
TD040	USP	3	4	2	1	30%	40%	20%	10%
TB040	NU	2	3	1	4	20%	30%	10%	40%
	OFV	3	4	1	2	30%	40%	10%	20%
	HV	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	3	4	2	1	30%	40%	20%	10%
TD 0.	USP	3	4	2	1	30%	40%	20%	10%
TB050	NU	2	3	1	4	20%	30%	10%	40%
	OFV	2	4	1	3	20%	40%	10%	30%
	HV	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	3	4	2	1	30%	40%	20%	10%
	USP	3	4	2	1	30%	40%	20%	10%
TB060	NU	2	3	1	4	20%	30%	10%	40%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	3	4	1	2	30%	40%	10%	20%
	USP	3	4	2	1	30%	40%	20%	10%
TB070	NU	2	3	1	4	20%	30%	10%	40%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	3	4	1	2	30%	40%	10%	20%
	USP	2	3	1	1	29%	43%	14%	14%
TB080	NU	2	3	1	4	20%	30%	10%	40%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	3	4	1	2	30%	40%	10%	20%
	USP					30%	40%		20%
TB090	NU	3	4	1	2			10%	
		2	3	1	4	20%	30%	10%	40%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%

ТВ	Metric		Rai	ık		Confidence					
10	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE		
	ET	3	2	4	1	30%	20%	40%	10%		
	CTR	2	3	1	2	25%	38%	12%	25%		
TB100	USP	3	4	1	2	30%	40%	10%	20%		
10100	NU	2	3	1	4	20%	30%	10%	40%		
	OFV	2	3	1	4	20%	30%	10%	40%		
	HV	3	2	4	1	30%	20%	40%	10%		

B.2.9 Problem 9

This section describes the results for prioritization problem f(PET, PTR, PUS, PUU).

TABLE 35. Results for the Kruskal-Wallis Test among Multi-Objective Algorithms (AW2, f(PET, PTR, PUS, PUU))

ТВ	Metric	ChiSq	DF	p
	ET	2422.93	3	< 0.01
	CTR	323.3	3	< 0.01
TB010	USP	10.28	3	< 0.05
1 DU1U	NUU	170.86	3	< 0.01
	OFV	274.42	3	< 0.01
	HV	165.3	3	< 0.01
	ET	1926.56	3	< 0.01
	CTR	152.62	3	< 0.01
TB020	USP	13.07	3	< 0.01
10020	NUU	138.76	3	< 0.01
	OFV	560.12	3	< 0.01
	HV	279.38	3	< 0.01
	ET	1636.72	3	< 0.01
	CTR	51.83	3	< 0.01
TB030	USP	9.96	3	< 0.05
10000	NUU	63.8	3	< 0.01
	OFV	1211.88	3	< 0.01
	HV	315.61	3	< 0.01
	ET	1513.98	3	< 0.01
	CTR	253.64	3	< 0.01
TB040	USP	1.48	3	>0.05
10040	NUU	118.44	3	< 0.01
	OFV	1443.83	3	< 0.01
	HV	334.92	3	< 0.01
	ET	1416.18	3	< 0.01
	CTR	256.92	3	< 0.01
TB050	USP	7.27	3	>0.05
10000	NUU	173.87	3	< 0.01
	OFV	1392.58	3	< 0.01
	HV	330.11	3	< 0.01
	ET	1465.13	3	< 0.01
	CTR	232.27	3	< 0.01
TB060	USP	51.93	3	< 0.01
10000	NUU	117.56	3	< 0.01
	OFV	1457	3	< 0.01
	HV	335.12	3	< 0.01
	ET	1586.13	3	< 0.01
	CTR	204.69	3	< 0.01
TB070	USP	4.76	3	>0.05
120.0	NUU	195.03	3	< 0.01
	OFV	1588.84	3	<0.01
	HV	340.08	3	< 0.01
TB080	ET	1541.84	3	< 0.01
12000	CTR	233.19	3	< 0.01

ТВ	Metric	ChiSq	DF	p
	USP	8.59	3	< 0.05
TB080	NUU	136.45	3	< 0.01
1 0000	OFV	1536.71	3	< 0.01
	HV	336.27	3	< 0.01
	ET	1454.03	3	< 0.01
	CTR	200.59	3	< 0.01
TB090	USP	10.5	3	< 0.05
1 0090	NUU	121.08	3	< 0.01
	OFV	1449.85	3	< 0.01
	HV	341.76	3	< 0.01
	ET	1327.4	3	< 0.01
	CTR	130.84	3	< 0.01
TB100	USP	0.75	3	>0.05
10100	NUU	96.61	3	< 0.01
	OFV	1328.7	3	< 0.01
	HV	329.28	3	< 0.01

TABLE 36. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics among Multi-Objective Algorithms (AW2, f(PET, PTR, PUS, PUU))

ТВ	Algorithm A	AlcorithmD		ET	С	TR	U	SP	N	UU	0	FV	I	ΙV
1 D	AlgorithmA	AlgorithmB	A12	p										
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.05	< 0.5	>0.05	< 0.5	>0.05	< 0.5	< 0.01	>0.5	< 0.01
	NSGA2	SPEA2	>0.5	>0.05	>0.5	< 0.01	< 0.5	>0.05	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
TB010	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	>0.05	>0.5	>0.05	< 0.5	< 0.05	< 0.5	>0.05	>0.5	< 0.01
1 0010	MoCell	SPEA2	>0.5	< 0.01	>0.5	< 0.01	< 0.5	>0.05	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	>0.05	>0.5	< 0.05	< 0.5	>0.05	< 0.5	>0.05	>0.5	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.05	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.05	< 0.5	>0.05	< 0.5	>0.05	< 0.5	< 0.01	>0.5	< 0.01
	NSGA2	SPEA2	< 0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	>0.05
TB020	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.05	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
10020	MoCell	SPEA2	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	>0.05	< 0.5	>0.05	< 0.5	>0.05	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	>0.5	< 0.05	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01
TB030	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10030	MoCell	SPEA2	>0.9	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	>0.5	>0.05	< 0.5	>0.05	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	< 0.5	>0.05	>0.5	< 0.05	>0.5	< 0.01	< 0.5	< 0.01
TB040	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10040	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.5	>0.05	>0.5	>0.05	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	>0.5	< 0.05	< 0.5	>0.05	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	>0.5	>0.05	>0.5	< 0.01	>0.5	>0.05	>0.5	>0.05	>0.5	>0.05	< 0.5	< 0.01
TB050	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10050	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.05	>0.5	< 0.01	< 0.5	< 0.05	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	>0.5	>0.05	< 0.5	>0.05	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	< 0.5	>0.05	>0.5	< 0.05	>0.5	< 0.01	>0.5	< 0.05	>0.5	>0.05	< 0.5	< 0.01
TB060	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 0000	MoCell	SPEA2	>0.9	< 0.01	>0.5	>0.05	>0.5	< 0.01	>0.5	>0.05	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01

ТВ	AlgorithmA	AlgorithmB	I	ET	С	TR	USP		NUU		OFV		HV	
1 D	Aigorumia	Aigontillib	A12	p										
	NSGA2	MoCell	< 0.1	< 0.01	>0.5	>0.05	< 0.5	< 0.05	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	< 0.5	>0.05	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
TB070	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10070	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.05	>0.5	>0.05	>0.5	< 0.05	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	>0.5	>0.05	< 0.5	>0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	>0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01
TB080	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 0000	MoCell	SPEA2	>0.9	< 0.01	>0.5	>0.05	< 0.5	>0.05	>0.5	>0.05	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	>0.5	>0.05	< 0.5	>0.05	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01
TB090	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10090	MoCell	SPEA2	>0.9	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	>0.5	< 0.05	< 0.5	>0.05	>0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	>0.05	< 0.5	>0.05	>0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01
TB100	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10100	MoCell	SPEA2	>0.9	< 0.01	< 0.5	>0.05	>0.5	>0.05	< 0.5	>0.05	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01

TABLE 37. Rank Results for each Multi-Objective Algorithms (AW2, f(PET, PTR, PUS, PUU))

ТВ	Metric		Raı	ık		Confidence						
I D	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE			
	ET	3	2	3	1	33%	22%	33%	11%			
	CTR	2	3	1	3	22%	33%	11%	33%			
TB010	USP	1	2	2	1	17%	33%	33%	17%			
1 10010	NUU	2	2	1	3	25%	25%	12%	38%			
	OFV	2	3	1	3	22%	33%	11%	33%			
	HV	3	2	4	1	30%	20%	40%	10%			
	ET	3	2	3	1	33%	22%	33%	11%			
	CTR	2	3	1	4	20%	30%	10%	40%			
TB020	USP	1	1	2	2	17%	17%	33%	33%			
1 0020	NUU	2	2	1	3	25%	25%	12%	38%			
	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	3	1	33%	22%	33%	11%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	1	1	2	3	14%	14%	29%	43%			
TB030	USP	1	1	1	2	20%	20%	20%	40%			
1 0030	NUU	1	1	2	3	14%	14%	29%	43%			
	OFV	1	3	2	4	10%	30%	20%	40%			
	HV	3	2	4	1	30%	20%	40%	10%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	2	2	1	3	25%	25%	12%	38%			
TB040	USP	1	1	1	1	25%	25%	25%	25%			
10040	NUU	1	1	1	2	20%	20%	20%	40%			
	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	4	1	30%	20%	40%	10%			
	ET	3	2	3	1	33%	22%	33%	11%			
TB050	CTR	3	2	1	4	30%	20%	10%	40%			
	USP	1	2	1	2	17%	33%	17%	33%			

TD	34.1.		Rai	nk		Confidence						
TB	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE			
	NUU	2	1	2	3	25%	12%	25%	38%			
TB050	OFV	1	2	1	3	14%	29%	14%	43%			
	HV	3	2	4	1	30%	20%	40%	10%			
	ET	3	2	3	1	33%	22%	33%	11%			
	CTR	1	1	1	2	20%	20%	20%	40%			
TB060	USP	2	2	1	3	25%	25%	12%	38%			
1 DUOU	NUU	1	1	1	2	20%	20%	20%	40%			
	OFV	1	2	1	3	14%	29%	14%	43%			
	HV	3	2	4	1	30%	20%	40%	10%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	2	2	1	3	25%	25%	12%	38%			
TB070	USP	1	2	2	2	14%	29%	29%	29%			
1 D07 0	NUU	3	2	1	4	30%	20%	10%	40%			
	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	4	1	30%	20%	40%	10%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	1	1	1	2	20%	20%	20%	40%			
TB080	USP	1	1	1	1	25%	25%	25%	25%			
1 0000	NUU	1	1	1	2	20%	20%	20%	40%			
	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	4	1	30%	20%	40%	10%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	1	1	2	3	14%	14%	29%	43%			
TB090	USP	1	2	1	2	17%	33%	17%	33%			
1 0090	NUU	1	1	2	3	14%	14%	29%	43%			
	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	4	1	30%	20%	40%	10%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	2	1	2	3	25%	12%	25%	38%			
TB100	USP	1	1	1	1	25%	25%	25%	25%			
1 0100	NUU	2	1	2	3	25%	12%	25%	38%			
	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	4	1	30%	20%	40%	10%			

B.2.10 Problem 10

This section describes the results for prioritization problem f(PET, PTR, ANU, PUU).

TABLE 38. Results for the Kruskal-Wallis Test among Multi-Objective Algorithms (AW2, f(PET, PTR, ANU, PUU))

TB	Metric	ChiSq	DF	p
	ET	28182.85	3	< 0.01
	CTR	13282	3	< 0.01
TB010	NU	21717.67	3	< 0.01
10010	NUU	11802.52	3	< 0.01
	OFV	10828.58	3	< 0.01
	HV	292.9	3	< 0.01
	ET	24953.24	3	< 0.01
	CTR	16683.23	3	< 0.01
TB020	NU	24011.16	3	< 0.01
1 0020	NUU	15210.63	3	< 0.01
	OFV	13080.3	3	< 0.01
	HV	280.82	3	< 0.01
	ET	28751.27	3	< 0.01
	CTR	9960.68	3	< 0.01
TB030	NU	27179.11	3	< 0.01
	NUU	9482.99	3	< 0.01
	OFV	3100.14	3	< 0.01

TB	Metric	ChiSq	DF	p
TB030	HV	294.1	3	< 0.01
	ET	28780.1	3	< 0.01
	CTR	10328.68	3	< 0.01
TB040	NU	28382.16	3	< 0.01
1 DU4U	NUU	10100.4	3	< 0.01
	OFV	8230.37	3	< 0.01
	HV	324.15	3	< 0.01
	ET	29500.97	3	< 0.01
	CTR	10391.5	3	< 0.01
TB050	NU	29243.94	3	< 0.01
1 0000	NUU	10253.99	3	< 0.01
	OFV	15436.04	3	< 0.01
	HV	320.01	3	< 0.01
	ET	29901.44	3	< 0.01
	CTR	12915.78	3	< 0.01
TD0/0	NU	29767.85	3	< 0.01
TB060	NUU	12440	3	< 0.01
	OFV	21029.57	3	< 0.01
	HV	329.83	3	< 0.01
	ET	30501.74	3	< 0.01
	CTR	11484.71	3	< 0.01
TD070	NU	31079.42	3	< 0.01
TB070	NUU	11686.19	3	< 0.01
	OFV	27930.91	3	< 0.01
	HV	334.43	3	< 0.01
	ET	31109.9	3	< 0.01
	CTR	10283.08	3	< 0.01
TB080	NU	30642.76	3	< 0.01
1 DUOU	NUU	9885.11	3	< 0.01
	OFV	30869.73	3	< 0.01
	HV	341.65	3	< 0.01
	ET	30269.12	3	< 0.01
	CTR	9891.15	3	< 0.01
TB090	NU	30674.98	3	< 0.01
1 DU9U	NUU	8639.5	3	< 0.01
	OFV	30663.45	3	< 0.01
	HV	339.37	3	< 0.01
	ET	20680.48	3	< 0.01
	CTR	5757.92	3	< 0.01
TB100	NU	20623.66	3	< 0.01
1 D100	NUU	5244.3	3	< 0.01
	OFV	21420.1	3	< 0.01
	HV	328.54	3	< 0.01

TABLE 39. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics among Multi-Objective Algorithms (AW2, f(PET, PTR, ANU, PUU))

ТВ	AlgorithmA	AlgorithmB	F	ET	С	CTR		NU		NUU		OFV		IV
10	AigoriumiA	Aigontillio	A12	p	A12	p								
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.5	>0.05	< 0.5	>0.05	>0.5	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
TB010	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
10010	MoCell	SPEA2	>0.9	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
	MoCell	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01
TB020	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
	NSGA2	CellDE	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01

ТВ	Alaarithm A	AlcorithmD	I	ET	С	TR	N	IU	N	UU	О	FV	I	IV
ID	AlgorithmA	AlgorithmB	A12	р	A12	р	A12	р	A12	р	A12	р	A12	р
	MoCell	SPEA2	>0.9	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
TB020	MoCell	CellDE	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.9	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
TDOO	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
TB030	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
TD 0.40	NSGA2	CellDE	<0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
TB040	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.5	< 0.01	<0.1	< 0.01
	MoCell	CellDE	<0.1	< 0.01	>0.5	< 0.01	<0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	<0.1	< 0.01	<0.5	< 0.01	<0.1	< 0.01	<0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	<0.5	< 0.01	<0.5	< 0.01	< 0.5	< 0.01	<0.5	< 0.01	<0.5	< 0.01	>0.5	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
	NSGA2	CellDE	<0.1	< 0.01	>0.5	< 0.01	<0.1	< 0.01	>0.5	< 0.01	<0.5	< 0.01	>0.9	< 0.01
TB050	MoCell	SPEA2	>0.1	< 0.01	>0.5	< 0.01	>0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	<0.1	< 0.01
	MoCell	CellDE	<0.1	< 0.01	>0.5	< 0.01	<0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.1	< 0.01
-	SPEA2	CellDE	<0.1	< 0.01	<0.5	>0.05	<0.1	< 0.01	<0.5	< 0.01	<0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	<0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	<0.5	< 0.01	<0.1	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	<0.5	< 0.01
	NSGA2	CellDE	<0.1	< 0.01	>0.5	< 0.01	<0.1	< 0.01	>0.5	< 0.01	<0.5	< 0.01	>0.9	< 0.01
TB060	MoCell	SPEA2	>0.1	< 0.01	>0.5	< 0.01	>0.1	< 0.01	>0.5	< 0.01	>0.9	< 0.01	<0.1	< 0.01
-	MoCell	CellDE	<0.1	< 0.01	>0.5	< 0.01	<0.1	< 0.01	>0.5	< 0.01	<0.5	< 0.01	>0.1	< 0.01
-	SPEA2	CellDE	<0.1	< 0.01	<0.5	< 0.01	<0.1	< 0.01	<0.5	< 0.01	<0.3	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	<0.1		<0.5		<0.1		<0.5		<0.1		>0.9	
	NSGA2 NSGA2	SPEA2	>0.5	<0.01	>0.5	<0.01	>0.5	<0.01 <0.01	>0.5	<0.01	>0.5	<0.01	<0.5	<0.01
-	NSGA2 NSGA2	CellDE	<0.1	< 0.01	>0.5	< 0.01	<0.1	< 0.01	>0.5	< 0.01	<0.1	< 0.01	>0.9	< 0.01
TB070		SPEA2	I		l				1			l	1	
	MoCell MoCell		>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	<0.1	< 0.01
	SPEA2	CellDE CellDE	<0.1	< 0.01	>0.5	< 0.01	<0.1	< 0.01	>0.5	< 0.01	<0.5	< 0.01	>0.9	< 0.01
			<0.1	<0.01	<0.5	< 0.01		<0.01	<0.5	< 0.01		< 0.01	>0.9	<0.01
	NSGA2	MoCell	<0.1	< 0.01	<0.5	< 0.01	<0.1	< 0.01	<0.5	< 0.01	<0.5	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	<0.01	>0.5	< 0.01	<0.5	< 0.01
TB080	NSGA2	CellDE	<0.1	< 0.01	>0.5	< 0.01	<0.1	< 0.01	>0.5	< 0.01	<0.1	< 0.01	>0.9	< 0.01
	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01		< 0.01
	MoCell	CellDE	<0.1	< 0.01	>0.5	<0.01	<0.1	< 0.01	>0.5	< 0.01	<0.1	<0.01	>0.9	<0.01
	SPEA2	CellDE	<0.1	< 0.01	<0.5	< 0.01	<0.1	< 0.01	<0.5	< 0.01	<0.1	< 0.01	>0.9	<0.01
	NSGA2	MoCell	<0.1	< 0.01	<0.5	< 0.01	<0.1	< 0.01	<0.5	< 0.01	<0.5	< 0.01	>0.9	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	<0.5	< 0.01
TB090	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
12070	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
TB100	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
1 1 1 1 1 1	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01

TABLE 40. Rank Results for each Multi-Objective Algorithms (AW2, f(PET, PTR, ANU, PUU))

			Rai	nk			Confid	lence	
TB	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE
	ET	3	2	4	1	30%	20%	40%	10%
TB010	CTR	2	2	3	1	25%	25%	38%	12%
	NU	2	3	1	4	20%	30%	10%	40%
	NUU	2	2	3	1	25%	25%	38%	12%
	OFV	2	2	3	1	25%	25%	38%	12%
	HV	4	3	2	1	40%	30%	20%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	3	2	4	1	30%	20%	40%	10%
TP020	NU	2	3	1	4	20%	30%	10%	40%
TB020	NUU	3	2	4	1	30%	20%	40%	10%
	OFV	3	2	4	1	30%	20%	40%	10%
	HV	4	3	2	1	40%	30%	20%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	4	3	2	1	40%	30%	20%	10%
TDOOO	NU	2	3	1	4	20%	30%	10%	40%
TB030	NUU	4	3	2	1	40%	30%	20%	10%
	OFV	4	3	2	1	40%	30%	20%	10%
	HV	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	3	4	1	2	30%	40%	10%	20%
	NU	2	3	1	4	20%	30%	10%	40%
TB040	NUU	3	4	1	2	30%	40%	10%	20%
	OFV	2	4	1	3	20%	40%	10%	30%
	HV	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	2	3	1	1	29%	43%	14%	14%
	NU	2	3	1	4	20%	30%	10%	40%
TB050	NUU	3	4	1	2	30%	40%	10%	20%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	3	4	1	2	30%	40%	10%	20%
	NU						30%		
TB060		2	3	1	4	20%		10%	40%
	NUU	3	4	1	2	30%	40%	10%	20%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
TB070	CTR	3	4	1	2	30%	40%	10%	20%
	NU	2	3	1	4	20%	30%	10%	40%
	NUU	3	4	1	2	30%	40%	10%	20%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
TB080	CTR	3	4	1	2	30%	40%	10%	20%
	NU	2	3	1	4	20%	30%	10%	40%
1 2000	NUU	3	4	1	2	30%	40%	10%	20%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	3	4	1	2	30%	40%	10%	20%
TROOO	NU	2	3	1	4	20%	30%	10%	40%
TB090 -	NUU	2	4	1	3	20%	40%	10%	30%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%

ТВ	Metric	Rank			Confidence				
		NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	2	3	1	4	20%	30%	10%	40%
TB100	NU	2	3	1	4	20%	30%	10%	40%
10100	NUU	2	3	1	4	20%	30%	10%	40%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%

B.3 Experiment Results for RQ4

This section describes the results for Experiment Results for RQ4.

 ${\it TABLE~41} \\ {\it Results~for~the~Kruskal-Wallis~Test~among~Test~Case~Prioritization~Problems~(AW2)} \\$

Metric	ChiSq	DF	p
ANOU	38769.12	9	< 0.01

TABLE 42. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics among Test Case Prioritization Problems (AW2)

ProblemA	ProblemB	BestAlgorithmA	BestAlgorithmB	A12	p
ET_CTR_UM	ET_CTR_USP	SPEA2	SPEA2	>0.9	< 0.01
ET_CTR_UM	ET_CTR_NU	SPEA2	SPEA2	< 0.5	< 0.01
ET_CTR_UM	ET_CTR_NUU	SPEA2	SPEA2	>0.9	< 0.01
ET_CTR_UM	ET_CTR_UM_USP	SPEA2	SPEA2	< 0.5	< 0.01
ET_CTR_UM	ET_CTR_UM_NU	SPEA2	SPEA2	< 0.1	< 0.01
ET_CTR_UM	ET_CTR_UM_NUU	SPEA2	SPEA2	>0.5	>0.05
ET_CTR_UM	ET_CTR_USP_NU	SPEA2	SPEA2	< 0.1	< 0.01
ET_CTR_UM	ET_CTR_USP_NUU	SPEA2	SPEA2	>0.9	< 0.01
ET_CTR_UM	ET_CTR_NU_NUU	SPEA2	SPEA2	< 0.1	< 0.01
ET_CTR_USP	ET_CTR_NU	SPEA2	SPEA2	< 0.1	< 0.01
ET_CTR_USP	ET_CTR_NUU	SPEA2	SPEA2	< 0.5	>0.05
ET_CTR_USP	ET_CTR_UM_USP	SPEA2	SPEA2	< 0.1	< 0.01
ET_CTR_USP	ET_CTR_UM_NU	SPEA2	SPEA2	< 0.1	< 0.01
ET_CTR_USP	ET_CTR_UM_NUU	SPEA2	SPEA2	< 0.1	< 0.01
ET_CTR_USP	ET_CTR_USP_NU	SPEA2	SPEA2	< 0.1	< 0.01
ET_CTR_USP	ET_CTR_USP_NUU	SPEA2	SPEA2	>0.5	< 0.05
ET_CTR_USP	ET_CTR_NU_NUU	SPEA2	SPEA2	< 0.1	< 0.01
ET_CTR_NU	ET_CTR_NUU	SPEA2	SPEA2	>0.9	< 0.01
ET_CTR_NU	ET_CTR_UM_USP	SPEA2	SPEA2	>0.5	< 0.01
ET_CTR_NU	ET_CTR_UM_NU	SPEA2	SPEA2	< 0.1	< 0.01
ET_CTR_NU	ET_CTR_UM_NUU	SPEA2	SPEA2	>0.5	< 0.01
ET_CTR_NU	ET_CTR_USP_NU	SPEA2	SPEA2	< 0.5	< 0.01
ET_CTR_NU	ET_CTR_USP_NUU	SPEA2	SPEA2	>0.9	< 0.01
ET_CTR_NU	ET_CTR_NU_NUU	SPEA2	SPEA2	< 0.5	< 0.01
ET_CTR_NUU	ET_CTR_UM_USP	SPEA2	SPEA2	< 0.1	< 0.01
ET_CTR_NUU	ET_CTR_UM_NU	SPEA2	SPEA2	< 0.1	< 0.01
ET_CTR_NUU	ET_CTR_UM_NUU	SPEA2	SPEA2	< 0.1	< 0.01
ET_CTR_NUU	ET_CTR_USP_NU	SPEA2	SPEA2	< 0.1	< 0.01
ET_CTR_NUU	ET_CTR_USP_NUU	SPEA2	SPEA2	< 0.5	< 0.01
ET_CTR_NUU	ET_CTR_NU_NUU	SPEA2	SPEA2	< 0.1	< 0.01
ET_CTR_UM_USP	ET_CTR_UM_NU	SPEA2	SPEA2	< 0.1	< 0.01
ET_CTR_UM_USP	ET_CTR_UM_NUU	SPEA2	SPEA2	>0.5	< 0.01
ET_CTR_UM_USP	ET_CTR_USP_NU	SPEA2	SPEA2	< 0.1	< 0.01
ET_CTR_UM_USP	ET_CTR_USP_NUU	SPEA2	SPEA2	>0.9	< 0.01
ET_CTR_UM_USP	ET_CTR_NU_NUU	SPEA2	SPEA2	< 0.1	< 0.01
ET_CTR_UM_NU	ET_CTR_UM_NUU	SPEA2	SPEA2	>0.9	< 0.01

ProblemA	ProblemB	BestAlgorithmA	BestAlgorithmB	A12	р
ET_CTR_UM_NU	ET_CTR_USP_NU	SPEA2	SPEA2	>0.9	< 0.01
ET_CTR_UM_NU	ET_CTR_USP_NUU	SPEA2	SPEA2	>0.9	< 0.01
ET_CTR_UM_NU	ET_CTR_NU_NUU	SPEA2	SPEA2	>0.9	< 0.01
ET_CTR_UM_NUU	ET_CTR_USP_NU	SPEA2	SPEA2	< 0.1	< 0.01
ET_CTR_UM_NUU	ET_CTR_USP_NUU	SPEA2	SPEA2	>0.9	< 0.01
ET_CTR_UM_NUU	ET_CTR_NU_NUU	SPEA2	SPEA2	< 0.1	< 0.01
ET_CTR_USP_NU	ET_CTR_USP_NUU	SPEA2	SPEA2	>0.9	< 0.01
ET_CTR_USP_NU	ET_CTR_NU_NUU	SPEA2	SPEA2	>0.5	>0.05
ET_CTR_USP_NUU	ET_CTR_NU_NUU	SPEA2	SPEA2	< 0.1	< 0.01