Honors Discrete Mathematics: Lecture 14 Notes

Gerandy Brito Spring 2022

Sarthak Mohanty

TA Remark. It's only Monday and I'm already tired: (

Division

Definition. We said d is the greatest common divisor of a and b (notation: $d = \gcd(a, b)$) if $d \mid a, d \mid b$, and d is the largest integer with these properties.

Lemma. Let $a \ge b > 0$. Then gcd(a, b) = gcd(a - b, b).

Proof. Set $d = \gcd(a, b)$ and $\hat{d} = \gcd(a - b, b)$

- 1. We will show first that $d \leq \hat{d}$. $d \mid a$ and $d \mid b$ by definition of d. Then $d \mid a b$ and d is a common divisor of a b and b. $d \leq \hat{d}$ by definition of \hat{d} .
- 2. Now we show that $\hat{d} \leq d$. $\hat{d} \mid a b$ and $\hat{d} \mid b$ by definition. Then $\hat{d} \mid ((a b) + b)$. \hat{d} is also a common divisor of a and b, implying $d \leq d$ by definition.

Note the same proof leads to gcd(a, b) = gcd(a - b, a).

$$\gcd(a, b) = \gcd(a - b, b)$$

$$= \gcd(a - 2b, b)$$

$$= \gcd(a - 3b, b)$$

$$\vdots$$

$$= \gcd(a - qb, b)$$

Reminder. We said d divides a if $\exists q \in \mathbb{Z}$ such that a = qd.

Claim. Let $a, d \in \mathbb{N}$. There exists a unique pair $(q, r) \in \mathbb{N}$ such that:

- $0 \le r \le d 1$
- $a = q \cdot d + r$.

Proof of Claim.

- Existence: Follows from long division.
- Uniqueness: Assume $\exists (q,r)$ and $\exists (q',r')$ such that $a=q\cdot d+r$ and a=q'd+r' and $0\leq r,r'\leq d-1$. We have $a=q\cdot d+r=q'\cdot d+r'$. Rearranging, we get d(q-q')=r'-r< d (More precisely: |r-r'|< d). Thus, equality only holds if q-q'=0 OR q=q' and r-r'=0 OR r=r'.

We now devise a procedure for finding the greatest common divisor, known as the Euclidean algorithm.

Initialization. Set $a_1 = a$ and $b_1 = b$.

Inductive Step. Set $a_i = b_{i-1}$, and set $b_i = a - qb$. Repeat this step, incrementing i in each iteration, until i = n such that b_n is set equal to 0.

Termination. Return gcd(a, b), given by a_n .

Definition. Consider \mathcal{R}_m to be the equivalence relation over \mathbb{Z} :

 $a\mathcal{R}_m b$ if the remainder of a when divided by m equals remainder of b when divided by m.

With this equivalence relation, we can partition the elements in \mathbb{Z} int he form $[0], [1], [2], \ldots, [m-1]$.

TA Remark. . These equivalency classes are known as congruency classes.

Definition. \mathbb{Z}_m is the set of equivalence classes of $\mathcal{R}_m(|\mathbb{Z}_m|=m)$.

Notation:

- Elements in \mathbb{Z}_m are denoted by \bar{a} .
- $r = \min\{x \ge 0 \text{ in each equivalence class}\}\$ is the representative of the class.
- $a\mathcal{R}_m$ is denoted as $a \equiv b \pmod{m}$.

Examples. m=4.

Then $\mathbb{Z}_m = \{\bar{0}, \bar{1}, \bar{2}, \bar{3}\}$ where $\bar{0} = \{-12, -8, -4, 0, 4, 8, 12, \dots\}$ and $\bar{1} = \{-11, -7, -3, 1, 5, 9, 12, 17, \dots\}$. Operations on \mathbb{Z}_m . (Used on homework)

- $\bar{a} + \bar{b} = \overline{a+b}$
- $\bar{a} + \bar{b} = \overline{a \cdot b}$

In \mathbb{Z}_4 :

- $\bar{1} + \bar{2} = \bar{3}$
- $\bar{6} + \bar{8} = \bar{14} \sim \bar{2} + \bar{0} = \bar{2}$
- $\bar{1} + \bar{3} = \bar{0}$
- $\bar{2} + \bar{3} = \bar{1}$.

Post Lecture

Question 1

Let $m, a_1, b_1, a_2, b_2 \in \mathbb{Z}$. Suppose that $a_1 \equiv b_1 \pmod{m}$ and $a_2 \equiv b_2 \pmod{m}$.

- (a) Prove that $a_1 + a_2 \equiv b_1 + b_2 \pmod{m}$.
- (b) Prove that $a_1a_2 \equiv b_1b_2 \pmod{m}$.
- (c) Prove that $a^k \equiv b^k \pmod{m}$ for any $k \in \mathbb{N}$.

Solution

- (a) Since $m \mid b_1 a_1$ and $m \mid b_2 a_2$, we know $m \mid (b_1 a_1) + (b_2 b_1)$; rearranging, we find that $m \mid (b_1 + b_2) (a_1 + a_2)$, so $b_1 + b_2 \equiv a_1 + a_2 \pmod{m}$.
- (b) Since $m \mid b_1 a_1$, it follows that $m \mid b_2(b_1 a_1)$. Since $m \mid b_2 a_2$, it follows that $m \mid a_1(b_2 a_2)$. Then $m \mid [b_2(b_1 a_1) + a_1(b_2 a_2)]$; simplifying, we find that $m \mid b_1b_2 a_1a_2$, so $a_1a_2 \equiv b_1b_2 \pmod{m}$.
- (c) Let P(n) be the sentence

$$a \equiv b \pmod{m} \Rightarrow a^n \equiv b^n \pmod{m}$$
.

Base Case: P(1) is true, since $a \equiv b \pmod{m} \Rightarrow a^1 \equiv b^1 \pmod{m}$ is always true.

INDUCTIVE STEP: Now let $n \in \mathbb{N}$ such that P(n) is true. Then since $a \equiv b \pmod{m}$ and $a^n \equiv b^n \pmod{m}$, we know $a(a^n) \equiv b(b^n) \pmod{m}$, or equivalently, $a^{n+1} \equiv b^{n+1} \pmod{m}$. Hence P(n+1) is true as well.

CONCLUSION: We have proved by induction that for each $n \in \mathbb{N}$, P(n) is true.