

IIC1253 — Matemáticas Discretas — 1' 2022

PAUTA TAREA 4

Pregunta 1

Sean $f_1: A \to B$ y $f_2: B \to C$ dos funciones cualquiera desde los conjuntos A a B y B a C respectivamente, con A, B y C distintos de vacío.

Pregunta 1.a

Demuestre que si $f_1 \circ f_2$ es sobreyectiva, entonces existe i $in\{1,2\}$ tal que f_i es sobreyectiva.

Solución:

Suponga que $f_1 \circ f_2$ es sobreyectiva. Demostraremos que f_2 es siempre sobreyectiva. Por definición, debemos probar que para todo $c \in C$, existe $b \in B$ tal que f(b) = c.

Consideramos un $c \in C$ cualquiera. Como $f_1 \circ f_2$ es sobreyectiva y $c \in C$ entonces existe $a \in A$ tal que $f_1 \circ f_2(a) = c$. Por definición de la composición de funciones, sabemos que existe $b \in B$ tal que:

$$f_1(a) = b$$
 y $f_2(b) = c$.

Por lo tanto, $f_2(b) = c$ para algún $b \in B$. De esto podemos concluir que f_2 es sobreyectiva.

Dado lo anterior la distribución de puntaje es la siguiente:

- (4 Puntos) Por todo correcto.
- (3 Puntos) Por presentar errores menores en la demostración.
- (2 Puntos) Por notar que f_2 es la función sobreyectiva y dar breve argumento de demostración.
- (**0 Puntos**) En otro caso.

Pregunta 1.b

Demuestre que si $f_1 \circ f_2$ es inyectiva, entonces existe $i \in \{1,2\}$ tal que f_i es inyectiva.

Solución:

Suponga que $f_1 \circ f_2$ es inyectiva. Probaremos que f_1 es siempre inyectiva, esto es, que para todo $a_1, a_2 \in A$, si $f_1(a_1) = f_1(a_2)$, entonces $a_1 = a_2$.

Sea $a_1, a_2 \in A$ tal que $f_1(a_1) = f_1(a_2)$. Demostraremos entonces que $a_1 = a_2$. Como $f_1(a_1) = f_1(a_2)$, entonces deducimos que $f_1 \circ f_2(a_1) = f_1 \circ f_2(a_2)$ aplicando f_2 en ambos lados de la igualdad. Luego, como $f_1 \circ f_2$ es inyectiva y $f_1 \circ f_2(a_1) = f_1 \circ f_2(a_2)$, entonces $a_1 = a_2$ por la definición de inyectividad, que es lo que queríamos demostrar.

Dado lo anterior la distribución de puntaje es la siguiente:

- (4 Puntos) Por todo correcto.
- (3 Puntos) Por presentar errores menores en la demostración.
- (2 Puntos) Por notar que f_1 es la función inyectiva y dar breve argumento de demostración.
- (0 Puntos) En otro caso.

Pregunta 2

Sea $n \in \mathbb{N}$. Para $A \subseteq \{0, ..., n\}$, decimos que A es un emphintervalo en $\{0, ..., n\}$ si existen $a, b \in A$ tal que:

$$A = \{c \in \{0, ..., n\} \mid a \le c \le b\}$$

y lo denotamos por [a, b]. Por otro lado, para $a, b \in \{0, ..., n\}$ definimos el intervalo absoluto entre a y b como

$$[a, b] := [\min(\{a, b\}), \max(\{a, b\})].$$

Sea $S \subseteq \{0,...,n\}$ un conjunto distinto de vacío. Considere la relación $\sim_S \subseteq \{0,...,n\} \times 0,...,n\}$ tal que para todo $a,b \in \{0,...,n\}, a \sim_S b$ si, y solo si,

$$\llbracket a, b \rrbracket \cap S \neq \varnothing \rightarrow \llbracket a, b \rrbracket \subseteq S.$$

Por ejemplo, tomando n=20, para $S=\{1,4,5,6,7,10,11,15\}$ se cumple que 7 $sim_S 5$ y 12 $\sim_S 13$ pero $3 \not\sim_S 1$.

Pregunta 2.a

Para todo $S \subseteq \{0,...,n\}, \sim_S$ es una relación de equivalencia sobre $\{0,...,n\}$.

Solución:

Sea $S \subseteq \{0, ..., n\}$. Primero, note que se cumple la siguiente equivalencia lógica respecto a la definición de la relación \sim_S :

$$[a,b] \cap S \neq \phi \to [a,b] \subseteq S \quad \equiv \quad [a,b] \cap S = \varnothing \quad \lor \quad [a,b] \subseteq S \tag{1}$$

Esto resulta útil para visualizar que $a \sim_S b$ ssi se cumple alguna de las afirmaciones de la disyunción del lado derecho de (1). Dado eso, en general se analizarán esos dos casos.

Se procede entonces a demostrar que \sim_S es relación de equivalencia:

1. \sim_S es refleja

Sea $a \in \{0, ..., n\}$, consideremos dos posibles casos:

- Si $a \in S$ entonces $[a, a] = [a, a] = \{a\} \subseteq S$, por lo que $a \sim_S a$.
- Si $a \notin S$ entonces $[a, a] = \{a\} \cap S = \phi$, por lo que $a \sim_S a$.

2. \sim_S es simétrica

Sean $a, b \in \{0, ..., n\}$ tal que $a \sim_S b$. En base a (1) existen dos casos:

- Si $[a, b] \subseteq S$ entonces tenemos por la definición de intervalo absoluto que $[b, a] = [a, b] \subseteq S$. Por lo tanto $b \sim_S a$
- Si $[a, b] \cap S = \emptyset$ luego nuevamente por el hecho de que [b, a] = [a, b] se cumplirá también que $[b, a] \cap S = \emptyset$. Por lo tanto $b \sim_S a$.

3. \sim_S es transitiva

Considere ahora $a, b, c \in \{0, ..., n\}$ tal que $a \sim_S b$ y $b \sim_S c$. Queremos demostrar que $a \sim_S c$. Por (1) tendremos ahora 4 casos posibles:

$$\blacksquare \ (\llbracket a,b \rrbracket \cap S = \varnothing \ \land \ \llbracket b,c \rrbracket \subseteq S) \quad \lor \quad (\llbracket a,b \rrbracket \subseteq S \ \land \ \llbracket b,c \rrbracket \cap S = \varnothing)$$

Estos dos casos no resultan ser relevantes ya que es fácil ver que se tiene la contradicción $b \in S \land b \notin S$. Por lo que no pueden ocurrir.

 $\blacksquare \ (\llbracket a,b \rrbracket \cap S = \varnothing \ \land \ \llbracket b,c \rrbracket \cap S = \varnothing) \quad \lor \quad (\llbracket a,b \rrbracket \subseteq S \ \land \ \llbracket b,c \rrbracket \subseteq S)$

Estos casos son similares. Por lo que, sin pérdida de generalidad, asuma que $a \le b$. Esto genera 3 sub-casos.

- Si $a \le c \le b$ luego $[a, c] = [a, c] \subseteq [a, b] = [a, b]$
- Si $c < a \le b$ luego $\llbracket a, c \rrbracket = \llbracket c, a \rrbracket \subseteq \llbracket c, b \rrbracket = \llbracket b, c \rrbracket$
- Si $a \le b < c$ luego $[a, c] = [a, b] \cup [b, c] = [a, b] \cup [b, c]$

Nótese que en todos los casos se cumple que

$$[\![a,c]\!] \subseteq [\![a,b]\!] \cup [\![b,c]\!], \tag{2}$$

y además, debido al caso en que estamos, se tiene que

$$(\llbracket a,b\rrbracket \cup \llbracket b,c\rrbracket) \cap S = \varnothing \quad \lor \quad (\llbracket a,b\rrbracket \cup \llbracket b,c\rrbracket) \subseteq S. \tag{3}$$

Por lo tanto, usando (2) y (3) junto a propiedades básicas de teoría de conjuntos, concluímos que

$$[\![a,c]\!]\cap S=\varnothing \quad \vee \quad [\![a,c]\!]\subseteq S$$

Y así $a \sim_S c$.

Ya que \sim_S es refleja, simétrica y transitiva, queda demostrado que \sim_S es una relación de equivalencia. Dado lo anterior la distribución de puntaje es la siguiente:

- (4 Puntos) Por todo correcto.
- (3 Puntos) Por solo demostrar que \sim_S es transitiva o bien presentar errores menores en la demostración completa.
- (2 Puntos) Por demostrar solo que \sim_S es simétrica y refleja correctamente.
- (**0 Puntos**) En otro caso.

Pregunta 2.b

Para todo $S \subseteq \{0,...,n\}$ y $c \in \{0,...,n\}$, la clase de equivalencia $[c]_{\sim_S}$ es un intervalo en $\{0,...,n\}$.

Solución:

Sea $S \subseteq \{0, \ldots, n\}$ y $c \in \{0, \ldots, n\}$ un elemento cualquiera. Considere $E = [c]_{\sim_S}$ la clase de equivalencia de c según \sim_S (olvídese de c, lo que nos interesa realmente es una clase de equivalencia $E \in \{0, \ldots, n\} / \sim_S$ cualquiera)

Sean $a, b \in E$ tal que $a \le b$. Se demostrará que el intervalo [a, b] siempre está contenido en E. Por contradicción, asuma que $[a, b] \not\subseteq E$. Esto quiere decir que

$$\exists x \in [a, b]. \ x \notin E. \tag{4}$$

Es claro que $a \sim_S b$ ya que a y b pertenecen a la misma clase de equivalencia. Luego, por definición de la relación \sim_S , se que

$$[a,b] \cap S = \emptyset \ \lor \ [a,b] \subseteq S. \tag{5}$$

Sin embargo, notar que

$$[a, x] \cup [x, b] = [a, b]$$

Por lo que $[a, x] \subseteq [a, b]$. Entonces, debido a (5), ocurre que:

- Si $[a, b] \cap S = \emptyset$, entonces $[a, x] \cap S = \emptyset$.
- Si $[a,b] \subseteq S$ entonces $[a,x] \subseteq S$

Es decir, $[a, x] \cap S = \emptyset \vee [a, x] \subseteq S$ se cumple, por lo que $a \sim_s x$, pero eso implicaría necesariamente que $x \in E$ lo que contradice a lo estipulado en (4).

Entonces $\forall a,b \in E$ tal que $a \leq b$, se cumple que $[a,b] \subseteq E$. En particular, tomando $a = \min E$ y $b = \max E$, se tiene

$$E = [\min E, \max E]$$

ya que siempre es cierto que $E\subseteq [\min E, \max E]$ por la definición de mínimo, máximo e intervalo.

Dado lo anterior la distribución de puntaje es la siguiente:

- (4 Puntos) Por todo correcto.
- (3 Puntos) Por presentar errores menores en la demostración.
- (2 Puntos) Por presentar errores mayores en la demostración.
- (0 Puntos) En otro caso.