Análise Explorátoria de Dados : Registro de Acidentes de trânsito da Polícia Rodoviária Federal (PRF)-2019

By Gilson Castro

Os acidentes rodoviarios são as principais causas de morbidade e mortalidade violentas , estes mesmos provocam prejuizos econômicos e psicológicos sobretudo para as familias das vitimas. O registro desses acidentes são de grande importância para o desenvolvimento de soluções voltadas para **segurança viária** como também politicas públicas com objetivo de reduzir a mortalidade .

Segundo Bringmann, P. B., Ferreira, et al (2014) Mais da metade das vítimas fatais possui entre 15 e 44 anos, essas vitimas que se encontram na época mais produtiva de suas vidas. As projeções indicam que até o ano de 2020 essas mortes terão um decréscimo nos países de alta renda. Porém, aumentarão consideravelmente nos países de média e baixa renda, passando a ocupar a sexta posição na lista das principais causas de morte mundiais.

Para entender o problema foi realizada uma pequena análise explorátoria de dados que visa identificar, caratecrizar o perfil e explorar o conjunto de dados afim de apresentar as circunstâncias que contribuíram para o envolvimento das pessoas nos acidentes rodoviarios em 2019.O fator humano, a desatenção tem um grande impacto nos acidentes para isso, vamos comprovar através dessa análise.

Base de dados

A base de dados escolhida foi da **Polícia Rodoviária Federal**, segundo a PRF é realizado um registro de acidentes através do sistema BR-Brasil, que coleta informações referentes aos envolvidos (identificação, estado físico, se era passageiro, condutor, etc.). No site está disponivel os acidentes por ocorrência, por pessoa e todas as causas.

Acesse aqui a base de dados

In [69]:

#importando bibliotecas

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

import numpy as np

esse comando serve para mostrar os gráficos dentro do nosso notebook

%matplotlib inline

#carregando dados

df=pd.read_csv('acid2019.csv', delimiter=";", encoding='latin1')

#visualizando a primeiras 5 linhas

df.head(5)

Out[69]:

	id	pesid	data_inversa	dia_semana	horario	uf	br	km	municipio	causa_principal	 sexo	ilesos	feridos_leves	ferid
0	182210.0	402103.0	2019-01-01	terça-feira	01:30:00	SP	116.0	218	GUARULHOS	Sim	 Masculino	0.0	1.0	
1	182210.0	402106.0	2019-01-01	terça-feira	01:30:00	SP	116.0	218	GUARULHOS	Sim	 Masculino	0.0	1.0	
2	182210.0	402104.0	2019-01-01	terça-feira	01:30:00	SP	116.0	218	GUARULHOS	Sim	 Feminino	0.0	1.0	
3	182210.0	402102.0	2019-01-01	terça-feira	01:30:00	SP	116.0	218	GUARULHOS	Sim	 Masculino	0.0	1.0	
4	182211.0	402126.0	2019-01-01	terça-feira	01:30:00	PR	373.0	177,3	PONTA GROSSA	Sim	 Masculino	0.0	1.0	

5 rows × 37 columns

In [68]:

viusulizando últimas linhas df.tail()

Out[68]:

	dia_semana	horario	uf	br	municipio	causa_acidente	tipo_acidente	classificacao_acidente	fase_dia	condicao_metereologica	tipo_
272064	terça-feira	00:10:00	PR	369.0	ARAPONGAS	Falta de Atenção à Condução	Capotamento	Com Vítimas Feridas	Plena Noite	Céu Claro	

272065	dia <u>lesemana</u>	୍ଧ ପ୍ରାପ୍ତ ବିଷ୍	Pulit	369 6	ARARONOPAS	causa acidente	tipo_acidente	classificaciao_actiquidas	fasevolia	condicao_metereblogଲେଶ	tipo_
272066	terça-feira	00:10:00	PR	369.0	ARAPONGAS	Falta de Atenção à Condução	Colisão traseira	Com Vítimas Feridas	Plena Noite	Céu Claro	
272067	terça-feira	00:10:00	PR	369.0	ARAPONGAS	Velocidade Incompatível	Saída de leito carroçável	Com Vítimas Feridas	Plena Noite	Céu Claro	
272068	terça-feira	00:10:00	PR	369.0	ARAPONGAS	Falta de Atenção à Condução	Saída de leito carroçável	Com Vítimas Feridas	Plena Noite	Céu Claro	
4											▶

In [4]:

dimensão linhas x colunas do conjunto de dados df.shape

Out[4]:

(272070, 37)

In [5]:

#informações do conjunto de dados df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 272070 entries, 0 to 272069 Data columns (total 37 columns):

Column Non-Null Count Dtype

0 id 272070 non-null float64 pesid 251469 non-null float64 1 data inversa 272070 non-null object 3 dia_semana 272070 non-null object 4 horario 272069 non-null object 5 272069 non-null object uf 271733 non-null float64 6 br 271733 non-null object 7 km 8 municipio 272069 non-null object 272069 non-null object causa_principal 9

10 causa_acidente 272069 non-null object
11 ordem_tipo_acidente 272029 non-null float64
12 tipo_acidente 272029 non-null object
13 classificacao_acidente 272069 non-null object

14 fase_dia
15 sentido_via
272069 non-null object
16 condicao_metereologica
272069 non-null object
17 tipo_pista
272069 non-null object

18 tracado_via 272069 non-null object
19 uso_solo 272069 non-null object
20 id_veiculo 272069 non-null float64
21 tipo_veiculo 272069 non-null object
22 marca 260243 non-null object
23 ano_fabricacao_veiculo 257604 non-null float64

24 tipo envolvido 272069 non-null object 272069 non-null object 25 estado_fisico 26 idade 220878 non-null float64 272069 non-null object 27 sexo 272069 non-null float64 28 ilesos 272069 non-null float64 29 feridos leves 272069 non-null float64 30 feridos_graves 272069 non-null float64 31 mortos 32 latitude 272069 non-null object 33 longitude 272069 non-null object 34 regional 272069 non-null object

272069 non-null object

36 uop 257970 non-null object dtypes: float64(11), object(26) memory usage: 76.8+ MB

In [6]:

35 delegacia

#removendo colunas desnecessárias para análise

criamos uma lista de colunas para remoção

colunas=['km','id','pesid','ordem_tipo_acidente','id_veiculo','mortos','latitude','longitude','regional','delegacia','uop','uso_solo','marca','ano_fabricacao_veiculo','causa_principal','feridos_leves','feridos_graves','ilesos','mortos', 'data_inversa','sentido_via','tracado_via']

passamos para a função que remove colunas df.drop(colunas,axis=1,inplace=**True**) df.head()

Out[6]:

	dia_semana	horario	uf	br	municipio	causa_acidente	tipo_acidente	classificacao_acidente	fase_dia	condicao_metereologica	tipo_pista
0	terça-feira	01:30:00	SP	116.0	GUARULHOS	Falta de Atenção à Condução	Colisão com objeto estático	Com Vítimas Feridas	Plena Noite	Céu Claro	Múltipla
1	terça-feira	01:30:00	SP	116.0	GUARULHOS	Falta de Atenção à Condução	Colisão com objeto estático	Com Vítimas Feridas	Plena Noite	Céu Claro	Múltipla
2	terça-feira	01:30:00	SP	116.0	GUARULHOS	Falta de Atenção à Condução	Colisão com objeto estático	Com Vítimas Feridas	Plena Noite	Céu Claro	Múltipla
3	terça-feira	01:30:00	SP	116.0	GUARULHOS	Falta de Atenção à Condução	Colisão com objeto estático	Com Vítimas Feridas	Plena Noite	Céu Claro	Múltipla
4	terça-feira	01:30:00	PR	373.0	PONTA GROSSA	Falta de Atenção à Condução	Colisão traseira	Com Vítimas Feridas	Plena Noite	Nublado	Dupla
4											Þ

In [8]:

resumo númerico ou estatistico dos dados df.describe().T

Out[8]:

		count	mean	std	min	25%	50%	75%	max
	br	271733.0	220.587209	131.192739	10.0	101.0	163.0	364.0	495.0
id	lade	220878.0	40.440605	65.348944	0.0	27.0	37.0	48.0	2018.0

Note que a idade média é de 40 anos das vitimas de acidentes

In [10]:

verifica as colunas df.columns

Out[10]:

Index(['dia_semana', 'horario', 'uf', 'br', 'municipio', 'causa_acidente',
 'tipo_acidente', 'classificacao_acidente', 'fase_dia',
 'condicao_metereologica', 'tipo_pista', 'tipo_veiculo',
 'tipo_envolvido', 'estado_fisico', 'idade', 'sexo'],
 dtype='object')

In [17]:

 $\textit{\# selecionando indices e colunas com LOC} \\ \textit{df.loc}[[1,2,3,4,5,6,7,8,9,10], ['uf','sexo','causa_acidente']]$

Out[17]:

	uf	sexo	causa_acidente
1	SP	Masculino	Falta de Atenção à Condução
2	SP	Feminino	Falta de Atenção à Condução
3	SP	Masculino	Falta de Atenção à Condução
4	PR	Masculino	Falta de Atenção à Condução
5	SC	Feminino	Animais na Pista
6	CE	Feminino	Ingestão de Substâncias Psicoativas
7	MG	Masculino	Falta de Atenção à Condução
8	MG	Masculino	Falta de Atenção à Condução
9	sc	Masculino	Ingestão de Substâncias Psicoativas

10 MA Não Informação

Aausaisacadeiste

Limpeza dos dados

```
In [9]:
```

```
# aqui vamos verificar os valores faltantes em cada coluna df.isnull().sum()
```

Out[9]:

```
dia_semana
                    1
horario
                  1
uf
br
                 337
municipio
causa_acidente
tipo_acidente
classificacao_acidente
fase dia
condicao_metereologica
tipo_pista
                     1
tipo_veiculo
tipo_envolvido
                      1
estado_fisico
                      1
idade
                 51192
sexo
                    1
dtype: int64
```

In [21]:

Antes: (271693, 16) Depois: (220587, 16)

In [22]:

#verica se existe valores ausentes novamente
df.isnull().sum()

Out[22]:

```
dia_semana
                     0
                 0
horario
uf
                0
br
                0
municipio
                   0
causa_acidente
                    0
tipo_acidente
classificacao_acidente
fase_dia
                  0
condicao_metereologica 0
tipo_pista
                  0
                   0
tipo_veiculo
                    0
tipo_envolvido
estado fisico
                    0
                 0
idade
sexo
                 0
dtype: int64
```

In [11]:

tipo de dados df.dtypes

Out[11]: dia semana object horario object uf object br float64 municipio object causa acidente object tipo_acidente object classificacao_acidente object fase_dia object condicao_metereologica object tipo_pista object tipo_veiculo object tipo_envolvido object estado_fisico object idade float64 sexo object dtype: object

Visualização dos dados

In [27]:

```
#contagem por sexo
df['sexo'].value_counts()
```

Out[27]:

Masculino 167060 Feminino 53370 Ignorado 157 Name: sexo, dtype: int64

In [28]:

```
#plotando um gráfico
sexo = df['sexo'].value_counts()
plt.figure()
sns.barplot(sexo.index, sexo.values, alpha=0.8)
plt.title(")
plt.ylabel('Nº', fontsize=12)
plt.xlabel(", fontsize=12)
plt.show()
```


In [55]:

```
#fase do dia que mais ocorre acidentes
fase = df['fase_dia'].value_counts()
plt.figure()
sns.barplot(fase.index, fase.values, alpha=0.8)
plt.title('Fase do dia dos acidentes')
plt.ylabel('Nº', fontsize=12)
plt.xlabel(", fontsize=12)
plt.show()
```

Fase do dia dos acidentes 120000 100000 -

```
80000 - 40000 - 20000 - Pleno dia Plena Noite Anoitecer Amanhecer
```

In [56]:

```
# qual a condição metereológica dos acidentes ?

df['condicao_metereologica'].value_counts().plot(kind='barh', figsize=(8, 6))

plt.xlabel("", labelpad=14)

plt.ylabel("condições meteorológicas", labelpad=14)

plt.title("Condições meteorológicas dos acidentes", y=1.02);
```

Condições meteorológicas dos acidentes

In [57]:

```
#tipo de pista
sns.set(font_scale=1.4)
df['tipo_pista'].value_counts().plot(kind='bar', figsize=(7, 6), rot=0)
plt.xlabel("", labelpad=14)
plt.ylabel("Nº", labelpad=14)
plt.title("Tipo de pistas relacionadas aos acidentes", y=1.02);
```


In [58]:

df['tipo_veiculo'].value_counts().plot(kind='barh', figsize=(8, 6))
plt.xlabel("", labelpad=14)
plt.ylabel("Tipo", labelpad=14)
plt.title("Tipos de veículos envolvidos nos acidentes", y=1.02);

Tipos de veículos envolvidos nos acidentes

In [59]:

```
# quem são os envolvidos nos acidentes ?

df['tipo_envolvido'].value_counts().plot(kind='barh',color='#00FF00');

plt.title("Tipo de pessoa envolvida nos acidentes", y=1.02);
```


In [60]:

```
# qual o estado fisico das vitimas de acidentes ?

df['estado_fisico'].value_counts().plot(kind='barh', figsize=(8, 6))

plt.xlabel("", labelpad=14)

plt.ylabel("Estado Fisico", labelpad=14)

plt.title("Estado fisico das vitimas dos acidentes", y=1.02);
```

Estado fisico das vitimas dos acidentes

0 20000 40000 60000 80000

In [61]:

```
# qual o dia da semana que mais ocorre acidentes ? fase = df['dia_semana'].value_counts().plot.barh()
```


In [62]:

```
# classificação dos acidentes
df['classificacao_acidente'].value_counts().plot.barh()
```

Out[62]:

<matplotlib.axes._subplots.AxesSubplot at 0x20ae3512e50>

In [66]:

```
#acidentes por estados
plt.style.use('ggplot')
plt.rcdefaults()
fig, ax = plt.subplots()

y_pos = np.arange(len(df['uf'].value_counts()))
values = df['uf'].value_counts()
ufs = df['uf'].unique()

ax.barh(y_pos, values, align='center', color='#1E90FF')
ax.set_yticks(y_pos)
ax.set_yticklabels(ufs)
ax.invert_yaxis()
ax.set_xlabel(")
ax.set_title('Acidentes por estado')
plt.show()
```

Acidentes por estado

In [65]:

```
fig, ax = plt.subplots()

y_pos = np.arange(len(df['municipio'].value_counts()[:10])))

values = df['municipio'].value_counts()[:10]

muni = df['municipio'].unique()[:10]

ax.barh(y_pos, values, align='center', color='#00FF7F')

ax.set_yticks(y_pos)

ax.set_yticklabels(muni)

ax.invert_yaxis()

ax.set_xlabel(")

ax.set_title('Rank dos 10 municipios com maior número de acidentes')

plt.show()
```


In [71]:

```
fig, ax = plt.subplots()

y_pos = np.arange(len(df['causa_acidente'].value_counts()[:5]))

values = df['causa_acidente'].value_counts()[:5]

muni = df['causa_acidente'].unique()[:5]

ax.barh(y_pos, values, align='center', color='#00FF7F')

ax.set_yticks(y_pos)

ax.set_yticklabels(muni)

ax.invert_yaxis()

ax.set_xlabel(")

ax.set_title(' 5 principais causas de acidentes')

plt.show()
```


In [73]:

df.groupby('sexo')['causa_acidente'].value_counts()

Out[73]:

sexo causa_acidente

Feminino Falta de Atenção à Condução 19160

Desobediência às normas de trânsito pelo condutor 7502

Velocidade Incompatível 6374 Não guardar distância de segurança 4349

Ingestão de Álcool 3301

Não Informado Desobediência às normas de trânsito pelo pedestre 218

Deficiência ou não Acionamento do Sistema de Iluminação/Sinalização do Veículo 188

Ingestão de álcool e/ou substâncias psicoativas pelo pedestre

Agressão Externa 163

Ingestão de Substâncias Psicoativas 81

Name: causa_acidente, Length: 96, dtype: int64

Referências

BRINGMANN, Paulina Bertól et al. Um padrão de envolvimento dos adultos em acidentes rodoviários. Ciência & Saúde Coletiva, v. 19, n. 12, p. 4861-4868, 2014. https://pandas.pydata.org/

https://paulovasconcellos.com.br/15-comandos-de-matplotlib-que-talvez-voc%C3%AA-n%C3%A3o-conhe%C3%A7a-17cf88a75119

https://minerandodados.com.br/analise-exploratoria-de-dados-passo-a-passo-com-python/

In []: