

¿Qué utilidad tiene?

- Medir cuantitativamente expresión génica.
- Construir un mapa transcriptómico.
- Descubrir nuevos genes.
- Identificar sitios de splicing.

Consideraciones generales

- Generalmente se secuencia cDNA
- La preparación de librerías dependen del tipo de RNA, y varían en cuanto a la forma de:
 - Capturar las moléculas de RNA interés
 - Convertir RNA a cDNA
 - Agregar los adaptadores
- Detalles en WIREs RNA 2017, 8:e1364. doi: 10.1002/wrna.1364

Métodos para discriminación de transcritos

- Detección de alternativas de splicing (isoformas)
 - Uniones exón-exón (ej. RASL-Seq)
 - Comparación estadística de lecturas dentro de exones
- Detección de fusiones de genes (ej. En cáncer)
 - Enriquecimiento para genes de interes
 - Captura de exones
 - Single-molecule real-time sequencing (SMRT) on the PacBio
 - SLR-RNA-Seq en Illumina MOLECULO system

Distintos métodos para interrogar cada aspecto del ciclo de vida del RNA

Purpose	Methods	RNA Species Sequenced
Transcribing RNA polymerase	GRO-Seq ¹⁰²	Nascent RNA transcribed in vitro
	NET-Seq ^{103–105}	Nascent RNA associated with RNA polymerase in vivo
RNA synthesis, processing and degradation	4sU-Seq ^{106–108}	Newly synthesized RNA labeled with 4-thiouridine (4sU) in vivo
Translational status	Ribosome profiling (Ribo-seq) ⁹⁹	Ribosome-bound mRNA fragments protected from RNase digestion
RNA-protein interactions	RIP-Seq ^{109–111}	RNA in immunoprecipitated ribonucleoprotein complex
	HIT-CLIP/CLIP-seq, 112-114 iCLIP115	RNA fragments crosslinked to interacting proteins by UV (254 nm)
	PAR-CLIP ¹¹⁶	RNA labeled with 4sU and crosslinked to interacting proteins by UV (365 nm)
RNA structure probing	PARS, ¹¹⁷ FragSeq ¹¹⁸	RNA fragments generated by RNases digesting double- stranded regions (V1) or single-stranded regions (S1 or P1)
	DMS-Seq ¹¹⁹ ; SHAPE-S ¹²⁰ icSHAPE ¹²¹	Unstructured RNA regions labeled with reactive chemicals
RNA-RNA interactions	RAP-RNA ¹²²	RNA isolated by antisense probe

Hrdlickova, R., Toloue, M., Tian, B., 2017. RNA-Seq methods for transcriptome analysis: RNA-Seq. Wiley Interdisciplinary Reviews: RNA. doi:10.1002/wma.1364

Profundidad de Cobertura

- G = Largo completo del genoma.
- N = Número de lecturas.
- L = Largo de lecturas.

$$D = \frac{N * L}{G}$$

$$D = \frac{8*500}{2000} = 2X$$

Abundancia de un Transcrito 1370500 AT1036380.1 AT1036380.2 Número de lecturas dependen del tamaño

Normalización de Abundancia

RPKM

Reads per Kilobase of exon model per Million of reads mapped.

$$RPKM = \frac{10^9 \cdot C}{N \cdot L}$$

- Donde:
 - C = Número de lecturas mapeadas por gen.
 - N = Total de lecturas.
 - L = Largo del exón.

Expresión Diferencial

- Secuenciar un organismo bajo 2 o más condiciones experimentales diferentes.
 - Estimulado vs No-estimulado.
 - Wild-type vs Mutante.
- Comparar niveles de expresión en genes de interés.
- Pruebas estadísticas:
 - T-test.
 - □ F-test.
 - Exact Test.

Exact Test

 \blacksquare Sea Y_{ij} la abundancia observada para el gen 'j' en la librería 'i'

$$Y_{ii} \sim NB(\mu_i, \phi)$$

■ Distribución **Binomial Negativa** modela sucesos ocurridos en un intervalo de tiempo ó espacio.

$$E(Y_{ij}) = \mu_{ij} = m_i \lambda_{ij}$$

$$\operatorname{var}(Y_{ij}) = \mu_{ij} + \phi_g \mu_{ij}^2$$

Exact Test

$$H_0: \mu_{1j} - \mu_{2j} = 0$$

- Definir si diferencias de conteos entre librerías son significativas.
- Dada una diferencia entre promedios observada:

 $\dot{\epsilon}$ Cuál es la probabilidad de encontremos una diferencia igual o mayor asumiendo H_0 ?

Valor P

Exact Test

- **D** Dado un valor de α previamente definido
 - **0.05**
 - **0**.1
 - **0**.2
- Rechazar H₀ si:
 - P-valor $< \alpha$

!Gen J está diferencialmente expresado!

Práctico

- Sulfolobus acidocaldarius
 - Arqueobacteria termo-acidofílica.
 - Habita en medios por sobre 80° C y con PH ~ 2.
- Lrs14-like: Factor de transcripción con rol clave en la formación de biopelícula.
 - Medio preferencial de crecimiento de este organismo.
- ¿Qué otros genes se ven afectados por la expresión de Lrs14-like?
- Si se cambia el medio de crecimiento ¿Cómo afecta en la expresión génica?

Hipótesis

- 1. Lrs14-like, regula la expresión de otros genes en el proceso de formación de biopelículas.
- 2. Realizar un cultivo de esta bacteria en un medio diferente a biopelícula, afecta la expresión génica.

Experimento

■ Secuenciación de 4 muestras

Wild Type, Plantónico	Wild Type, Biopelícula
Mutante, Plantónico	Mutante, Biopelícula

■ Plataforma Illumina HiSeq 2500

Muestra	Tamaño	Largo Lecturas	
Wild Type, Plantónico	~ 22 4 M	Largo Lectoras	
71 -			
Wild Type, Biopelícula	~ 24.9 M	94 pb	
Mutante, Plantónico	~ 22.4 M		
Mutante, Biopelícula	~ 25.3 M		

Test para Medio de cultivo

 $y_{ij} = \mu + Medio_i + e_{ij}$

donde,

y_{ij} : Expresión de un gen

μ : expresión promedio en medio planctónico Medio; : Efecto (diferencia) de medio biopelícula

e_{ij} : efecto residual

Test para Genotipo de Lrs14-like

 $y_{ij} = \mu + Genotipo_j + e_{ij}$

donde,

y_{ij} : Expresión de un gen

 μ : expresión promedio en genotipo wildtype Genotipo $_{\rm i}$: Efecto (diferencia) del genotipo mutante

(Knock Down) para Lrs14-like

e_{ij} : efecto residual

Resultados

■ Número de genes diferencialmente expresados (FDR < 0.1)

Resultados

■ Scatterplot de Valores de Expresión

Resultados

■ Tabla de genes diferencialmente expresados.

Conclusiones

- Se observa expresión diferencial entre 163 genes de S. acidocaldarius cuando la archeobacteria crece en diferentes medios de cultivo.
- Se observa solo un gen (Saci_2195) diferencialmente expresado entre los genotipos silvestres y mutantes para el gen Lrs14-like. Este gen está anotado como "Hypothetical protein".
- No hay suficiente evidencia para determinar si la deleción de Lrs14-like genera efectos en la regulación génica de otros genes.
- Se sugiere realizar un nuevo experimento con réplicas experimentales.