

厦门大学《概率统计 I》期末试卷

主考教师: 试卷类型: (A卷)

一、(14分)设二维随机变量 (X, Y) 在以 (0, 0), (0, 1), (1, 0) 为顶点的三角形区域上服从均匀分布,求 Cov(X, Y), ρ_{XY} .

二、(10分) 甲乙两个剧院在竞争 1000 名观众。假定每个观众完全随意地选择一个剧院,且观众选择剧院是彼此独立的,用中心极限定理计算,每个剧院应设置多少个座位,才能保证因缺少座位而使观众离去的概率小于 1%? Φ (2.33) = 0.99

三、(14分) (1) 设总体 X 的概率分布为

X	0	1	2	3
P	θ^2	$2\theta(1-\theta)$	θ^2	$1-2\theta$

其中 $\theta(0<\theta<\frac{1}{2})$ 是未知参数,利用总体的如下样本值 3, 1, 3, 0, 3, 1, 2, 3 求 θ 的矩估计值

(2) 设总体 $X \sim N(1,\sigma^2)$, σ^2 ($\sigma^2 > 0$) 未知, x_1, x_2, Λ , x_n 为一相应的样本值。求 σ^2 的最大似然估计。

四、(12分) 10,以 X 表示耶路撒冷新生儿的体重(以克计),设 $X\sim N(\mu,\sigma^2)$, μ,σ^2 均未知。现测得一容量为 30 的样本,得样本均值为 3189,样本**标准差**为 488。试检验假设($\alpha=0.1$):

- (1) $H_0: \mu \ge 3315$, $H_1: \mu < 3315$, $t_{0.1}(29) = 1.3114$
- (2) $H_0: \sigma \le 525$, $H_1: \sigma > 525$. $\chi_{0.1}^2(29) = 42.557$

五、(10 分). 为比较两个学校同一年级学生数学课程的成绩,随机地抽取学校 A 的 9 个学生,得分数的平均值为 $\bar{x}_A=81.31$,方差为 $s_A^2=60.76$;随机地抽取学校 B 的 15 个学生,得分数的平均值为 $\bar{x}_B=78.61$,方差为 $s_B^2=48.24$ 。设样本均来自正态总体且方差相等,参数均未知,两样本独立。求均值差 $\mu_A-\mu_B$ 的置信水平为 0.95 的置信区间。 $t_{0.025}(22)=2.0739$

六、(14 分) 随机抽取了 10 个家庭,调查了他们的家庭月收入 x (单位:百元)和月支出 y(单位:百元),记录于下表:

х	20	15	20	25	16	20	18	19	22	16
у	18	14	17	20	14	19	17	18	20	13

经计算可得
$$\sum_{i=1}^{10} x_i = 191$$
, $\sum_{i=1}^{10} y_i = 170$, $\sum_{i=1}^{10} x_i^2 = 3731$, $\sum_{i=1}^{10} x_i y_i = 3310$, $\sum_{i=1}^{10} y_i^2 = 2948$,

- 求: (1) 求 y 与 x 的一元线性回归方程.
 - (2) 对所得的回归方程作显著性检验. (α =0.05) $F_{0.05}(1,8) = 5.32, t_{0.025}(8) = 2.306$

七、(10 分) 灯泡厂用 4 种不同的材料制成灯丝, 检验灯线材料这一因素对灯泡寿命的影响. 若灯泡寿命服从正态分布, 不同材料的灯丝制成的灯泡寿命的方差相同, 试根据表中试验结果记录, 在显著性水平 0.05 下检验灯泡寿命是否因灯丝材料不同而有显著差异?

		试验批号									
		1	2		3	4	5	6	8		
		7									
灯丝	A_1	1600	1610	1650	1680	1700	1720	1800			
材料	A_2	1580	1640	1640	1700	1750					
水平	A_3	1460	1550	1600	1620	1640	1660	1740	1820		
	A_4	1510	1520	1530	1570	1600	1680				

计算得到 $\sum_{i=1}^{4} \sum_{j=1}^{4} x_{ij}^2 = 69895900$, $T_{.1} = 11760$, $T_{.2} = 8310$, $T_{.3} = 13090$, $T_{.4} = 9410$. $F_{0.05}(3, 22) = 3.05$.

八. (10分)统计了日本西部地震在一天中发生的时间段,共观察了527次地震,这些地震在一天中的四个时间段的分布如下表

时间段	0点—6点	6点—12点	12 点—18 点	18 点—24 点	
次 数	123	135	141	128	

试取 $\alpha = 0.05$ 检验假设: 地震在各个时间段内发生时等可能的。 $\chi^2_{0.05}(3) = 7.815$

九、(6 分) 设总体 $X \sim N(\mu, \sigma^2)$, X_1 , X_2 , ..., $X_{2n}(n \ge 2)$ 是总体 X 的一个样本, $\overline{X} = \frac{1}{2n} \sum_{i=1}^{2n} X_i$,

$$\Rightarrow Y = \sum_{i=1}^{n} (X_i + X_{n+i} - 2\overline{X})^2, \quad Rightarrow E (Y).$$