Lecture 3: Learning via uniform convergence

Machine Learning 2025

Federico Chiariotti (federico.chiariotti@unipd.it)

Lecture plan

Date	#	Topic	Date	#	Topic	Date	#	Topic
Sep. 30	1	Introduction	Nov. 4	L2	Model selection	Nov. 28	12	CNNs
Oct. 7	2	PAC learning	Nov. 7	8	SVMs	???	13	PCA
Oct. 10	3	Uniform convergence	Nov. 11	L3	Linear models	Dec. 5	14	Clustering models
Oct. 14	L1	Python basics	???	9	Kernels	Dec. 9	L6	Neural networks
Oct. 17	4	VC dimension	Nov. 14	10	Ensemble models	Dec. 16	L7	Clustering
Oct. 21	5	Model selection	Nov. 18	L4	SVMs	Dec. 19	15	Reinforcement
Oct. 24	6	Linear classification	Nov. 21	11	Neural networks	???	L8	Reinforcement
Oct. 31	7	Linear regression	Nov. 25	L5	Random forests	???	16	Exercises and Q&A

IMPORTANT: no lecture on October 28!

Recap

Supervised learning model

- Domain set (or instance space) X
 - $\circ \quad x \in X$ is a domain point or instance
 - \circ Usually, x is represented by a tensor of *features*
- Label set *Y*
 - \circ Simplest case: binary classification, $Y = \{0, 1\}$
- Training set S
 - \circ Finite sequence of labeled points $((x_1, y_1), (x_2, y_2), \dots, (x_m, y_m))$
 - \circ Each point x_i is associated to its label y_i

Supervised learning model

- Prediction rule $h: X \to Y$
 - The learner's output (hypothesis)
 - \circ A(S): hypothesis produced by algorithm A when it is fed training set S
- Data generation model
 - \circ D is a distribution over X (unknown to the machine learning algorithm)
 - \circ Instances are labeled according to $f: X \to Y$ (unknown to the ML algorithm)
 - \circ Training set: sampling according to $D, y_i = f(x_i) \ \forall x_i \in S$
- Success metric
 - \circ Classifier error: probability of predicting the wrong label over D

Loss functions

- \rightarrow Assume a domain subset $A \subset X$
- \rightarrow A is an event expressed by $\pi: X \rightarrow \{0,1\}$, i.e., $A = \{x \in X : \pi(x) = 1\}$
- \rightarrow We get $P_{x \sim D}[\pi(x) = 1] = D(A)$

Error of prediction rule $h: X \to Y$

$$L_{D,f}(h) \stackrel{\text{def}}{=} P_{x \sim D}[h(x) \neq f(x)] = D(x : h(x) \neq f(x))$$

 $L_{D,f}(h)$ (often written just as $L_D(h)$) is called true loss, true risk, or generalization loss

Empirical Risk Minimization (ERM)

- \rightarrow Learner outputs $h_S: X \to Y$
- \rightarrow Goal: find h^* that minimizes $L_{D,f}(h)$
- → Both D and f are unknown!

ERM: we minimize the loss on the training set $L_S(h) = \frac{\sum_{i=1}^m |h(x_i) - y_i|}{m}$

This works if we use a 0-1 loss: the definition can be generalized

The empirical risk is also called training error or training loss

PAC learning theorem

Let H be a finite hypothesis class. Let $\delta, \varepsilon \in (0,1)$ and $m \in \mathbb{N}$ such that:

$$m \ge \frac{1}{\varepsilon} \log \left(\frac{|H|}{\delta} \right)$$

- Inversely proportional to ε Logarithmic growth with the size of H and $1/\delta$

For any D and f for which **realizability holds**, we have that any h_S computed with ERM over training set S of size m respects $L_{D,f}(h_S) \leq \varepsilon$ with probability greater than $1-\delta$

PAC learnability

A hypothesis class H is PAC learnable if there is a function $m_H:(0,1)^2\to\mathbb{N}$ and a learning algorithm such that for every $\delta,\varepsilon\in(0,1)$ and for every learning problem D,f with the realizability assumption, the algorithm will satisfy the PAC condition over an IID training set of size $m\geq m_H$

Agnostic PAC learnability

Since we dropped the realizability assumption, we cannot reach 0 loss. What we can try and guarantee is a bound on the loss with respect to the minimum possible loss in the hypothesis class

A hypothesis class H is **agnostic** PAC learnable if there is a function $m_H:(0,1)^2\to\mathbb{N}$ and a learning algorithm such that for every $\delta,\varepsilon\in(0,1)$ and for every learning problem D, the algorithm will satisfy the following condition over an IID training set of size $m\geq m_H$:

$$L_D(h) \le \min_{h^* \in H} L_D(h^*) + \varepsilon$$

Part 1: Uniform convergence

Empirical risk as an approximation

An ERM learning algorithm takes a training set S as input and selects a hypothesis $h_S \in H$ with the lowest possible empirical error

Why do we do this?

→ We see the training set as a representative sample, so we consider the empirical risk as a fair approximation of the true risk

Empirical risk as an approximation

If the empirical risk is a good approximation of the true risk for all hypotheses, learning will generalize:

$$L_S(h) \simeq L_D(h) \forall h \in H \implies PAC$$

This is a relatively restrictive condition: it is **sufficient** for learning, but not **necessary**

Definition: ε-representative sets

$$L_S(h) \simeq L_D(h) \forall h \in H \implies PAC$$

What does it mean for empirical risk to be a good approximation? We need a definition before we can get any results from this intuition

A training set S is ϵ -representative with respect to domain Z, distribution D, loss function ℓ , and hypothesis class H, if

$$|L_D(h) - L_S(h)| \le \varepsilon \ \forall h \in H$$

Representativeness lemma

If training set S is ϵ -representative with respect to domain Z distribution D, loss function ℓ , and hypothesis class H, any ERM rule satisfies

$$L_D(h_S) \le \arg\min_{h \in H} L_D(h) + 2\varepsilon$$

If we can prove that this happens with probability $1-\delta$, we have agnostic PAC learnability!

Proof

Let us take the best hypothesis h^* and the ERM hypothesis h_S

Due to ε-representativeness, we know that

$$L_S(h^*) - \varepsilon \le L_D(h^*) \le L_S(h^*) + \varepsilon$$

The same holds for h_S

$$L_S(h_S) - \varepsilon \le L_D(h_S) \le L_S(h_S) + \varepsilon$$

Proof: first step

Due to the ERM rule, we know that

$$L_S(h_S) \le L_S(h^*)$$

Combining this with the consequences of ε-representativeness,

$$L_S(h_S) - \varepsilon \le L_D(h_S) \le L_S(h_S) + \varepsilon$$

We get

$$L_D(h_S) - \varepsilon \le L_S(h^*)$$

Proof: second step

Due to the consequences of ε -representativeness,

$$L_S(h^*) - \varepsilon \le L_D(h^*) \le L_S(h^*) + \varepsilon$$

In the first step, we had

$$L_D(h_S) - \varepsilon \le L_S(h^*)$$

We can substitute the term on the right and get

$$L_D(h_S) - \varepsilon \le L_D(h^*) + \varepsilon$$

Uniform convergence and PAC learnability

A hypothesis class H has the uniform convergence property with respect to a domain Z and a loss function ℓ if there exists a function $m_H^{\mathrm{UC}}:(0,1)^2\to\mathbb{N}$ such that for every $\varepsilon,\delta\in(0,1)$ and every distribution D, any set S of size $m\geq m_H^{\mathrm{UC}}(\varepsilon,\delta)$ is ε -representative with probability higher than $1-\delta$

If a class H has the uniform convergence property with function m_H^{UC} , we have:

1. The class is agnostically PAC learnable with sample complexity

$$m_H(2\varepsilon,\delta) \le m_H^{\mathrm{UC}}(\varepsilon,\delta)$$

2. ERM is a valid PAC learning algorithm for H

Proof

- 1. By the definition of uniform convergence, a training set of size $m_H^{\rm UC}(\varepsilon,\delta)$ is ϵ -representative with probability higher than $1-\delta$
- 2. The representativeness lemma tells us that

$$L_D(h_S) \le \arg\min_{h \in H} L_D(h) + 2\varepsilon$$

3. Combining the two, we have the definition of agnostic PAC

Finite hypothesis classes are agnostic PAC learnable

Let H be a finite hypothesis class, let Z be a domain and let $\ell: H \times Z \to \mathbb{R}^+$ be a loss function.

1. H enjoys the uniform convergence property, with sample complexity

$$m_H^{\mathrm{UC}}(\varepsilon, \delta) \le \left\lceil \frac{\log\left(\frac{2|H|}{\delta}\right)}{2\varepsilon^2} \right\rceil$$

2. H is agnostic PAC learnable using ERM, with sample complexity

$$m_H(\varepsilon, \delta) \le m_H^{\mathrm{UC}}(\varepsilon, \delta) \le \left\lceil \frac{2 \log \left(\frac{2|H|}{\delta}\right)}{\varepsilon^2} \right\rceil$$

Proof: first step

The definition of uniform convergence tells us that

$$D^{m}(\{S: \exists h \in H: |L_{S}(h) - L_{D}(h)| > \varepsilon\}) \leq \delta$$

This can be rewritten as the union over all hypotheses

$$D^{m}\left(\bigcup_{h\in H}\left\{S:|L_{S}(h)-L_{D}(h)|>\varepsilon\right\}\right)\leq\delta$$

We can apply the union bound:

$$D^{m}(\{S : \exists h \in H : |L_{S}(h) - L_{D}(h)| > \varepsilon\}) \le \sum_{h \in H} D^{m}(\{S : |L_{S}(h) - L_{D}(h)| > \varepsilon\})$$

Hoeffding's inequality

Let $\theta_1, \ldots, \theta_m$ be a sequence of IID random variables, with $\mathbb{E}[\theta_i] = \mu$ and $P[a \le \theta_i \le b] = 1$. For any $\varepsilon > 0$, we have

$$P\left[\left|\frac{1}{m}\sum_{i=1}^{m}\theta_{i}-\mu\right|>\varepsilon\right]\leq 2e^{\frac{-2m\varepsilon^{2}}{(b-a)^{2}}}$$

Proof: second step

We can consider Hoeffding's inequality, with $\theta_i = \ell(h, z_i)$. We have $\mu = L_D(h)$

Let us assume that $\ell(h,z) \in [0,1]$, so [a,b] = [0,1]

$$P\left[\left|\frac{1}{m}\sum_{i=1}^{m}\theta_{i}-\mu\right|>\varepsilon\right]\leq2e^{\frac{-2m\varepsilon^{2}}{(b-a)^{2}}}\longrightarrow P\left[\left|\frac{1}{m}\sum_{i=1}^{m}\ell(h,z_{i})-L_{D}(h)\right|>\varepsilon\right]\leq2e^{-2m\varepsilon^{2}}$$

Proof: third step

$$P\left[\left|\frac{1}{m}\sum_{i=1}^{m}\ell(h,z_i) - L_D(h)\right| > \varepsilon\right] \le 2e^{-2m\varepsilon^2}$$

Let us take the constant term out of the sum:

$$P\left[\left|\left(\frac{1}{m}\sum_{i=1}^{m}\ell(h,z_i)\right) - L_D(h)\right| > \varepsilon\right] \le 2e^{-2m\varepsilon^2}$$

We can see that the sum is simply the empirical risk:

$$D^{m}(S: |L_{S}(h) - L_{D}(h)| > \varepsilon) \le 2e^{-2m\varepsilon^{2}}$$

Proof: fourth step

$$D^m(S: |L_S(h) - L_D(h)| > \varepsilon) \le 2e^{-2m\varepsilon^2}$$

Let us then go back to our union bound:

$$D^{m}(\{S : \exists h \in H : |L_{S}(h) - L_{D}(h)| > \varepsilon\}) \le \sum_{h \in H} D^{m}(\{S : |L_{S}(h) - L_{D}(h)| > \varepsilon\})$$

If we substitute the bound, we get:

$$D^{m}(\{S: \exists h \in H: |L_{S}(h) - L_{D}(h)| > \varepsilon\}) \le 2|H|e^{-2m\varepsilon^{2}}$$

Proof: fifth step

We need to impose an unlucky training set probability δ using our bound:

$$D^{m}(\{S: \exists h \in H: |L_{S}(h) - L_{D}(h)| > \varepsilon\}) \le 2|H|e^{-2m\varepsilon^{2}} \le \delta$$

We can try to isolate the training set size:

$$e^{-2m\varepsilon^2} \le \frac{\delta}{2|H|}$$

Taking the logarithm on both sides,

$$-2m\varepsilon^2 \le \log\left(\frac{\delta}{2|H|}\right)$$

Proof: sixth step

$$-2m\varepsilon^2 \le \log\left(\frac{\delta}{2|H|}\right)$$

We can change the sign by using the logarithm properties

$$2m\varepsilon^2 \ge \log\left(\frac{2|H|}{\delta}\right)$$

This is equivalent to the m_H^{UC} bound in the theorem

Proof: final step

We proved that we have uniform convergence with

$$m_H^{\mathrm{UC}}(\varepsilon, \delta) \le \left\lceil \frac{\log\left(\frac{2|H|}{\delta}\right)}{2\varepsilon^2} \right\rceil$$

We proved PAC learnability earlier: we know that $m_H(2\varepsilon, \delta) \leq m_H^{\rm UC}(\varepsilon, \delta)$, so we simply get the second half of the theorem

$$m_H(\varepsilon, \delta) \le m_H^{\mathrm{UC}}\left(\frac{\varepsilon}{2}, \delta\right) \le \left\lceil \frac{2\log\left(\frac{2|H|}{\delta}\right)}{\varepsilon^2} \right\rceil$$

Part 2: No free lunch

Can we create a universal learner?

Ideally, given a training set S and a loss function ℓ , we would like to find a hypothesis \hat{h} with a small $L_D(\hat{h})$

Learning depends on the hypothesis class $\,H\,$ and on the algorithm $\,A\,$

- \rightarrow Can we build a **universal learner**, i.e., an algorithm A that finds \hat{h} for any distribution D?
- → What if we use the set of all functions as a hypothesis class?

No free lunch theorem

Let A be any learning algorithm for binary classification, with 0-1 loss, over a domain X. Let m be any number smaller than $\frac{|X|}{2}$. There exists a distribution D over $X \times \{0,1\}$ such that:

- 1. There exists a function $f: X \to \{0, 1\}$ with $L_D(f) = 0$
- 2. We have $L_D(A(S)) \ge \frac{1}{8}$ with probability $\frac{1}{7}$ over the choice of $S \sim D^m$

Corollary: if H is the set of all functions and X is an infinite set, we do **not** have PAC learnability

Consequences

- → We can design a task to make any ML algorithm fail (even if another algorithm is able to solve it)
- → Idea of the proof (not part of the course, it's in the book if you're curious): since our training set is smaller than half the domain, we have no idea what happens in the other half, so we can design a function that contradicts our predictor on that part
- → We have to use **prior knowledge** to restrict the hypothesis class

Proof of the corollary

Let us proceed by contradiction, and assume that H is PAC learnable

We can set
$$\varepsilon < \frac{1}{8}$$
 and $\delta < \frac{1}{7}$

The definition of PAC says that we must have a true risk higher than ϵ with a probability below δ for any value of ϵ and δ (as long as the training set is large enough)

However, this is **impossible** for any finite size due to the no free lunch theorem!