Esperimento di Equilibrio su un piano inclinato al variare della massa

Lorenzo Mauro Sabatino

Sommario

Gli obiettivi che ci prefiggiamo in questa esperienza sono:

• Determinare l'intensità della forza equilibrante che serve per mantenere in equilibrio il corpo sul piano inclinato., al variare della massa del corpo

1 Introduzione

Posizionare sul piano inclinato il carrellino, quindi collegare attraverso un filo passante per una carrucola il carrellino a un dinamometro. L'esperimento dimostra che il carrello rimane in equilibrio sul piano inclinato. Ciò vuol dire, facendo riferimento alla figura, che la componente parallela della forza peso del carrello $\vec{P}_{//}$ è equilibrata dalla forza elastica del dinamometro.

Figura 1: Setup

Per le considerazioni precedenti possiamo scrivere: $P_{//} = F_{el} \Rightarrow mgsen\theta = F_{el}$. Da cui:

$$mg\frac{h}{l} = F_{el} \tag{1}$$

Con l lunghezza del piano e h altezza.

Pertanto possiamo verificare questa legge variando la massa del carrello e leggendo in corrispondenza il valore di forza elastica sul dinamometro.

Alternativamente si potrebbe anche verificare la legge variando l'angolo θ e mantenendo la massa costante.

2 Procedimento

- Realizzare l'apparato come quello in figura (1), dopo aver opportunamente pesato il carrellino;
- Utilizzare un carrellino da legare con un filo al dinamometro;
- Fare passare il filo sulla carrucola e posizionare il piano ad una inclinazione non troppo elevata. Misurare l e h;
- A questo punto iniziare la raccolta della misure: leggere la forza elastica quando il carrellino è a vuoto;
- Aggiungere progressivamente delle massette al carrellino e leggere il valore di forza elastica;
- Verificare la legge 1.

3 Tabelle e analisi dati

I dati devono essere raccolte in tabelle ordinate. Esempio di tabella:

		F_{el} [N]	e_F	m_{tot} [g]	e_m
	Mis. 1	±		±	
$\max 1$	Mis. 2	±		\pm	
	Mis. 3	±			\pm
		±			\pm
Mis. 1		土		±	
${\it massa} \ 2$	Mis. 2	土		±	
	Mis. 3	土			\pm
	•••	土			±

- Potete creare le tabelle nella maniera che preferite
- Importante: segnate sempre gli errori (calcolati con le formule viste a lezione). Per quanto riguarda la stima della misura fate di nuovo riferimento alle formule viste (media aritmetica ed errore assoluto)

- Può essere utile disegnare il diagramma delle forze e scrivere le equazioni
- Disegnare un grafico che mostri la relazione tra F_{el} e la forza peso P del carrellino al variare della massa. Dalla relazione 1, possiamo scrivere:

$$F_{el} = W \cdot P \tag{2}$$

con P = mg e W = $\frac{h}{l}$.

Verificare, dunque, che il coefficiente della retta del grafico che si ottiene valga $W = \frac{h}{l}$.

4 Conclusioni e domande

- La legge è verificata?
- Il valore del coefficiente W teorico e sperimentale sono compatibili?
- Se anziché utilizzare un dinamometro si avesse deciso di utilizzare una molla, come sarebbero diventate le equazioni dell'equilibrio? Che informazioni sulla molla si sarebbero potute ricavare effettuando misure diverse?