ShanghaiTech University

EE 115B: Digital Circuits

Fall 2022

Lecture 8

Hengzhao Yang October 20, 2022

Boolean Algebra and Logic Simplification

- Boolean Algebra
- Logic Simplification
 - Karnaugh Map
 - Quine-McCluskey Method

Terminology

- Variable: the input
- Literal: a variable complemented or uncomplemented
- Implicant: a product term of literals obtained from the K-map such that when implicant = 1, F = 1
- Prime implicant (PI): The implicant which cannot be simplified further, i.e. no literal can be removed
- Essential prime implicant: The prime implicants which contain
 1's that can only be grouped in 1 way
- Cover: A set of prime implicants which covers all 1's

Terminology Example

AB CD	00	01	11	10
00	1	1	0	0
01	1	1	1	0
11	0	0	1	1
10	1	1	0	0

- Variable: A, B, C and D
- Literal: A, B', etc
- Implicant: A'BC', AB'CD, A'D', etc.
- Prime implicant (PI): A'C', ACD, ABD, BC'D, A'D', etc
- Essential prime implicant: ACD, not ABD, not BC'D, etc
- Cover: ACD, A'D', A'C' and (BC'D or ABD)

Limitations of K-Map

- K-map is a very effective way to simplify functions with small number of variables
- When the number of variables is large, or when several functions need to be simplified, the use of a digital computer is desirable
- Quine-McCluskey (QM) method provides a systematic simplification procedure which can be readily programmed for a computer
- QM reduces the minterm expansion to obtain MSOP

Basic Two-level QM Minimization Steps

- The basic steps are the same for K-Map and Quine McCluskey (QM):
- Form all prime implicants (PIs) (in a K-map we do it by grouping ones in as large a group as possible)
- Determine a minimum cost set of PIs to cover all minterms (MTs)
 - Determine essential prime implicants (EPIs), include them in the final expression and delete all MTs they cover
 - Determine a min cost set of the remaining PIs to cover the remaining MTs (NP-hard)

_

- For each term
 - eliminate as many literals as possible by systematically XY + XY' = X
 - where X represents a product of literals and Y is a single variable
- Two minterms will combine only if they differ in exactly one variable
- The resulting terms are called prime implicants

Determination of Prime Implicants

- To find all PIs, all possible pairs of minterms should be compared and combined
- To reduce the number of comparisons, the minterms are sorted into groups according to the number of 1's in each term
- Consider an example $f(a,b,c,d) = \sum m(0,1,2,5,6,7,8,9,10,14)$

In the list, each term in group i has i 1's. E.g. all terms in group 2 have exactly two 1's

J

- Two terms can be combined if they differ in exactly one variable
- Non-adjacent groups differ in at least two variables and cannot be combined using XY + XY' = X
- Similarly, comparison of terms within a group is unnecessary
 - Since they have the same number of 1's, so they must differ in at least two variables
- Note that whenever the terms combine, they differ by a power of 2
- The terms are checked off whenever they are combined with another term
- Even when two terms have been checked and combined, they should still be compared and combined if possible - the resulting implicant may be used to form the minimum sum solution
- The redundant terms will be eliminated later

)

Group 0	0	V 0000
	1	√ 0001
Group 1	2	√ 0010
	8	V 1000
	5	√ 0101
C***** 2	6	√ 0110
Group 2	9	V 1001
	10	V 1010
Group 3	7	V 0111
	14	√ 1110

0, 1	000-
0, 2	00-0
0, 8	-000
1, 5	0-01
1, 9	-001
2, 6	0-10
2, 10	-010
8, 9	100-
8, 10	10-0
5, 7	01-1
6, 7	011-
6, 14	-110
10,14	1-10

- Note that the terms in the new column are also divided into groups according to the 1's present
- Again, the terms in this new column are compared and combined using XY + XY' = XY
- In order to combine now, the terms must
 - have the same variables i.e dashes should be in corresponding places and
 - differ in exactly one of these variables

Group 0	0 🗸 0000
	1 🗸 0001
Group 1	2 🗸 0010
	8 🗸 1000
	5 🗸 0101
Cuarin 2	6 🗸 0110
Group 2	9 🗸 1001
	10 🗸 1010
Group 3	7 🗸 0111
	14 1110

0, 1	\checkmark	000-
0, 2	\checkmark	00-0
0, 8	\checkmark	-000
1, 5		0-01
1, 9	V	-001
2, 6	V	0-10
2, 10	V	-010
8, 9	V	100-
8, 10	V	10-0
5, 7		01-1
6, 7		011-
6, 14	V	-110
10,14	V	1-10

0, 1, 8, 9	-00-
0, 2, 8, 10	-0-0
0, δ, i, 9	-00-
0, 8, 2, 10	-û-û
2, 6, 10, 14	10
- 1	
2, 10, 6, 14	10

De

- Duplicate terms are deleted
- The remaining implicants are again grouped and compared, but since no combination is possible, the procedure is terminated
- Grouping, comparison and combination continues until no more terms can be combined
- Terms which are not checked off in any level are prime implicants
 - Can also be in the first table itself

Prime Implicants

Group 0	0 🗸 0000
Group 1	1 🗸 0001
	2 🗸 0010
	8 🗸 1000
	5 🗸 0101
C 2	6 🗸 0110
Group 2	9 🗸 1001
	10 🗸 1010
Group 3	7 🗸 0111
	14 🗸 1110

√ 000-
√ 00-0
√ -000
0-01
√ -001
√ 0-10
√ -010
√ 100-
√ 10-0
01-1
011-
√ -110
✓ ₁₋₁₀

0, 1, 8, 9	-00-
0, 2, 8, 10	-0-0
2, 6, 10, 14	10

Prime Implicants

1, 5	0-01	a′c′d
5, 7	01-1	a'bd
6, 7	011-	a′bc
0, 1, 8, 9	-00-	b′c′
0, 2, 8, 10	-0-0	b′d′
2, 6, 10, 14	10	cd′

Prime Implicant Cover

 Since every minterm is included in at least one of the prime implicants, the function is equal to the sum of its prime implicants. Therefore,

$$f = a'c'd + a'bd + a'bc + b'c' + b'd' + cd'$$

(1,5) (5,7) (6,7) (0,1,8,9) (0,2,8,10) (2,6,10,14)

- In this expression, each term has a minimum number of literals (prime implicant), but the number of terms is not minimum
- Can be minimized by using consensus theorem

$$AB + A'C + BC = AB + A'C$$

$$f = a'c'd + a'bd + a'bc + b'c' + b'd' + cd'$$

$$f = a'c'd + a'bd + a'bc + b'c' + cd'$$

$$f = a'c'd + ((a'b)d + (a'b)c + cd') + b'c'$$

$$f = a'c'd + (a'b)d + cd' + b'c'$$

$$f = (a'd)c' + (a'd)b + b'c' + cd'$$

$$f = a'db + b'c' + cd'$$

Prime Implicant Cover

- The Quine-McCluskey algorithm finds all the product term implicants of a function
- The non-prime terms are checked off
- The remaining terms are all prime implicants
- An MSOP expression consists of a sum of some of the prime implicants, but not necessarily all
- Deriving minimal cover by algebraically manipulating is not always easy
- The prime implicant chart provides a systematic way to derive MSOP

(

Prime Implicant Chart

- Second part of the Quine McCluskey algorithm selects a minimum set of prime implicants
- Minterms of the functions listed across the top, implicants on the side
- A prime implicant is equal to a sum of minterms
 - It is said to cover these minterms
- If a prime implicant covers a minterm, an X is placed at the intersection of the minterm and prime implicant
- If a minterm column contains only one X, then the corresponding row is an essential prime implicant
 - This implies that we need that implicant in order to cover that minterm
 - Always choose essential prime implicants first!
- After an implicant is chosen, the corresponding row is crossed out
- All the minterms covered by this implicant are also crossed out

Prime Implicant Chart

Minterms	Prime Implicants	0	1	2	5	6	7	8	9	10	14
1, 5	a′c′d		Χ		Χ						
5, 7	a'bd				Χ		Χ				
6, 7	a'bc					Χ	Χ				
0, 1, 8, 9	b′c′	Χ	Χ					Χ	(X)		
0, 2, 8, 10	c′d′	Χ		Χ				Χ		Χ	
2, 6, 10, 14	cd'			Χ		Χ				Χ	(X)

 If a minterm is covered by only one implicant, the implicant is called essential prime implicant

Prime Implicant Chart

Minterms	Prime Implicants	0	1	2	5	6	7	8	9	10	14	
1, 5	a′c′d		X		X		1					Χ
5, 7	<i>a'bd</i>				<u> </u> <u> </u> X_	-4-	<u>- </u>	-4-				V
6, 7	a'bc					X	X					Χ
0, 1, 8, 9	b'c'	Х	Х					Х	())			\checkmark
0, 2, 8, 10	c′d′	χ		Х				Х		Х		
2, 6, 10, 14	cd"			X		X				X	(1)	\checkmark

- Chosen implicants: b'c' and cd'
- Two minterms remaining: 5 and 7 include a'bd

Minimal Cover

In total, 3 prime implicants are needed to cover the function f

$$f = a'bd + b'c' + cd'$$

- Note that a'bd is not an essential prime implicant
 - m(5) and m(7) are also covered in other PIs
 - a'c'd and a'bc could have also been chosen
 - But then, we won't have obtained minimum SOP

