идз №3

Функциональный тип

	На заданном отрезке [a; b] с заданной точностью для каждого уравнения вида f(x, C)=0, получаемого при фиксированном значении	Аллаярова Софья Игоревна
1		игоревна
1.	С (где С∈[0; 1] и изменяется с шагом h), найти корень методом	
	половинного деления. $f(x, C) = x^2 + \sin(C + x)$	
	$f(x, C) = x^2 + \sin(C + x).$	Angry Avisor
	На заданном отрезке [a; b] с заданной точностью для каждого	Амин Ахмед
	уравнения вида $f(x, C)=0$, получаемого при фиксированном значении	Ашраф Мохаммед Фатхи Камель
2.	С (где С∈[1; 3] и изменяется с шагом h), найти корень методом	Фатхи Камель
	касательных.	
	$f(x, C) = \cos(Cx)$.	Б
	В файле заданы строки из 4-ти чисел:	Бал Александр
	границы отрезка, точность, номер метода.	Вадимович
	Номер метода = {1,2,3}, где 1. правых прямоугольников;	
3.	2. трапеций;	
	3. Симпсона.	
	На заданном отрезке с заданной точностью вычислить приближенно	
	значение интеграла от функции $f(x) = \sum_{n=0}^{\infty} \frac{x^{2n}}{2n!}$ заданным методом.	
	Разработать класс Integral для моделирования определенного	Банников Максим
	интеграла. Членами класса должны быть указатель на	Дмитриевич
4.	подынтегральную функцию, пределы интегрирования и значение	
4.	интеграла. Интеграл вычислять в конструкторе методом Симпсона.	
	Предусмотреть функцию-метод класса - вычисления интеграла на	
	новом отрезке. Протестировать класс.	
	В файле заданы строки из 5-ти чисел:	Барышев Андрей
	границы отрезка, точность, номер функции и номер метода.	Константинович
	Номер функции = $\{1,2,3\}$, где $1. f(x)=2-x$;	
	$2. f(x) = x^3;$	
5.	$3. f(x) = \cos(x).$	
٥.	Номер метода = {1,2,3}, где 1. средних прямоугольников;	
	2. трапеций;	
	3. Симпсона.	
	На заданном отрезке с заданной точностью вычислить приближенно	
	значение интеграла от заданной функции заданным методом.	

	В файле заданы строки из 5-ти чисел:	Берниченко
	границы отрезка, точность, номер функции и номер метода.	Алексей Евгеньевич
	Номер функции = $\{1,2,3\}$, где $1. f(x)=x^3-1$;	
	2. $f(x) = tg(x) - 1$;	
6.	3. $f(x)=x+2$.	
	Номер метода = {1,2,3}, где 1. половинного деления;	
	2. Ньютона.	
	На заданном отрезке с заданной точностью вычислить приближенно	
	корень уравнения $f(x)=0$ для заданной функции заданным методом.	
	В файле заданы строки из 4-ти чисел:	Гарифулин Данил
	границы отрезка, точность, номер метода.	Русланович
	Номер метода = {1,2,3}, где 1. левых прямоугольников;	
	2. правых прямоугольников;	
7.	3. Симпсона.	
	На заданном отрезке с заданной точностью вычислить приближенно	
	значение интеграла от функции $f(x) = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^{2n-1}}{(2n-1)!}, x \le \frac{\pi}{2}$	
	заданным методом.	
	В файле заданы строки из 4-ти чисел:	Городилов Андрей
	границы отрезка, точность, номер метода.	Аркадиевич
	Номер метода = {1,2,3}, где 1. правых прямоугольников;	
	2. средних прямоугольников;	
8.	3. трапеций.	
	На заданном отрезке с заданной точностью вычислить приближенно	
	значение интеграла от функции $f(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}$ заданным	
	методом.	
	В файле заданы строки из 5-ти чисел:	Гребнев Фёдор
	границы отрезка, точность, номер функции и номер метода.	Алексеевич
	Номер функции = $\{1,2,3\}$, где $1. f(x)=x^3-x-9$;	
	2. $f(x) = \sin(x) - 1$;	
9.	3. $f(x)=x+2$.	
	Номер метода = $\{1,2\}$, где 1. хорд;	
	2. касательных.	
	На заданном отрезке с заданной точностью вычислить приближенно	
	корень уравнения $f(x)=0$ для заданной функции заданным методом.	

	В файле заданы строки из 5-ти чисел:	Губайдуллин
	границы отрезка, точность, номер функции и номер метода.	Михаил Евгеньевич
	Номер функции = $\{1,2,3\}$, где $1.f(x)=1/x$;	
	$2. f(x) = x^2 - 3x;$	
	$3. f(x) = x - \sin x.$	
10.	Номер метода = $\{1,2,3\}$, где 1. левых прямоугольников;	
	2. средних прямоугольников;	
	3. правых прямоугольников.	
	На заданном отрезке с заданной точностью вычислить приближенно	
	значение интеграла от заданной функции заданным методом.	
	На заданном отрезке [a; b] с заданной точностью для каждого	Засухин Егор
	уравнения вида $f(x, C)=0$, получаемого при фиксированном значении	Андреевич
11.	С (где С∈[1; 3] и изменяется с шагом h), найти корень методом	-
	половинного деления.	
	$f(x, C)=x^2+Cx-4$.	
	На заданном отрезке [a; b] с заданной точностью для каждого	Захарова Анастасия
	уравнения вида f(x, C)=0, получаемого при фиксированном значении	Константиновна
12.	С (где С∈[1; 2] и изменяется с шагом h), найти корень методом хорд.	
	$f(x, C) = \frac{(C + x^4)}{6}$.	
	$I(x,C) = \frac{1}{6}$.	
	На заданном отрезке [a; b] с заданной точностью для каждого	Колчеданцев
	уравнения вида $f(x, C)=0$, получаемого при фиксированном значении	Сергей Алексеевич
13.	С (где $C \in [1; 2]$ и изменяется с шагом h), найти корень методом хорд.	
	$f(x,C) = \frac{(C+x^4)}{6}.$	
	$f(x,C) = \frac{1}{6}$	
	В файле заданы строки из 5-ти чисел:	Копин Никита
	границы отрезка, точность, номер функции и номер метода.	Андреевич
	Номер функции = $\{1,2,3\}$, где $1. f(x)=x^3-x-9$;	
14.	2. $f(x) = \sin(x) - 1$;	
	3. $f(x)=x+2$.	
	Номер метода = $\{1, 2\}$, где 1. хорд;	
	2. подвижных хорд.	
	На заданном отрезке с заданной точностью вычислить приближенно	
	корень уравнения $f(x)=0$ для заданной функции заданным методом.	
	Разработать класс Uravnenie для моделирования уравнений вида	Кузьмин Иван
	f(x)=0. Членами класса должны быть указатель на функцию, отрезок,	Михайлович
15.	на котором рассматривается уравнение, и значение корня на этом	
	отрезке. Корень вычислять в конструкторе методом касательных.	
	Предусмотреть функцию-метод класса – вычисления корня на новом	
	отрезке. Протестировать класс.	

	I = 4 ···	
16.	В файле заданы строки из 5-ти чисел:	Марченко Арсений
	границы отрезка, точность, номер функции и номер метода.	Викторович
	Номер функции = $\{1,2,3\}$, где $1. f(x)=x^3-3$;	
	$2. f(x) = (x+1)^2;$	
	3. $f(x) = e^{\sqrt{1+x+x^2}}$.	
	Номер метода = {1,2,3}, где 1. левых прямоугольников;	
	2. правых прямоугольников;	
	3. Симпсона.	
	На заданном отрезке с заданной точностью вычислить приближенно	
	значение интеграла от заданной функции заданным методом.	
17.	На заданном отрезке [a; b] с заданной точностью для каждого	Чиркова Мария
	уравнения вида f(x, C)=0, получаемого при фиксированном значении	Сергеевна
	С (где С∈[1; 2] и изменяется с шагом h), найти корень методом	
	касательных. $f(x, C)=C-6x-x^2$.	