Лекция 10

Теория формальных языков (II)

(Конспект: К. Ефремова)

10.1 Конечные автоматы (продолжение)

Определение 10.1. Детерминированный конечный автомат — это недетерминированный конечный автомат, у которого $\delta(q,\epsilon)=\emptyset$ и $|\delta(q,a)|\leqslant 1$. Полностью определенным детерминированным конечным автоматом называется автомат, у которого $|\delta(q,a)|=1$. (Иначе говоря, можно считать, что у него $\delta:Q\times\Sigma\to Q$.)

Определение 10.2. Обозначение: $q_1 \stackrel{a}{\rightarrow} q_2$ означает $q_2 \in \delta(q_1, a)$.

Теорема 10.1. Для любого недетерминированного конечного автомата $\mathcal{A} = (Q, \Sigma, q_s, F, \delta)$ можно построить полностью определенный детерминированный конечный автомат $\mathcal{A}' = (Q', \Sigma, q'_s, F', \delta')$, такой, что $L(\mathcal{A}) = L(\mathcal{A}')$.

Доказательство. 1. Избавимся от ϵ -переходов. Найдем все пары состояний (q_1,q_2) , такие, что q_2 достижимо из q_1 по ϵ -переходам: $q_1 \stackrel{\epsilon}{\to} q' \stackrel{\epsilon}{\to} \dots \stackrel{\epsilon}{\to} q_2$. Для каждого ne- ϵ -перехода $q_2 \stackrel{a}{\to} q_3$ добавим переход $q_1 \stackrel{a}{\to} q_3$. Кроме того, если $q_2 \in F$, добавим и q_1 в F.

После этого удалим все ϵ -переходы. Заметим, что язык при этом не изменится. Действительно, раньше мы шли по пути $q_1 \to \ldots \to q_2 \to q_3$, считывая a, а теперь по другому пути, но все равно считываем a; и наоборот.

2. Пусть $Q' = 2^Q$; $q'_s = \{q_s\}$; $F' = \{q' \in Q' \mid q' \cap F \neq \emptyset\}$. Напишем новые переходы вида $q'_1 \stackrel{a}{\to} q'_2$, где $q'_2 = \{q \in Q \mid \exists r \in q'_1 : r \stackrel{a}{\to} q\}$. Построенный новый автомат, очевидно, детерминированный.

Докажем, что язык не меняется.

- (а) Пусть старый автомат принимает строчку. Покажем, что новый автомат тоже примет эту строчку. Раньше мы совершали переход $q_s \stackrel{a_1}{\to} q_1$, теперь переход $\{q_s\} \stackrel{a_1}{\to} \{q_1,\ldots\}$. Последующие переходы $q_{i-1} \stackrel{a_i}{\to} q_i$ превращаются в $\{q_{i-1},\ldots\} \stackrel{a_i}{\to} \{q_i,\ldots\}$. Последнее состояние будет принадлежать F', ибо оно содержит конечное состояние старого автомата.
- (b) Пусть строчка принимается новым автоматом. По определению, в состоянии, в котором он завершает работу, содержится некоторое конечное состояние старого автомата. Пусть последний переход нового автомата $q' \stackrel{a}{\to} \{p, \ldots\}$ (где $p \in F$). По определению новой функции перехода, существует $q \in q'$, такое, что $q \stackrel{a}{\to} p$ в старом автомате. Далее рассмотрим предыдущий переход $r' \stackrel{b}{\to} \{q, \ldots\}$ в новом автомате, и т. д., пока не дойдем до стартового состояния.

Теорема 10.2. Множества языков, задаваемых

- (1) конечными автоматами,
- (2) регулярными выражениями,
- (3) праволинейными грамматиками

в одном и том же алфавите Σ , совпадают.

Доказательство. (2)⇒(1). Доказательство по индукции. База:

- 1. Пустой язык. Автомат, принимающий пустой язык автомат с пустым F.
- 2. Язык $\{\epsilon\}$. В автомате, принимающем его, $F=\{q_s\}$, а переходов в нем нет.
- 3. Язык $\{a\}$. Единственный переход такого автомата: $q_s \stackrel{a}{\to} q$; $F = \{q\}$.

Индукционный переход:

1. Рассмотрим конкатенацию языков L_1 и L_2 . Пусть есть автомат, принимающий язык L_1 ; и другой автомат, принимающий L_2 . Мы хотим построить автомат, принимающий $L_1 \cdot L_2$.

Объединим эти два автомата в один, и слегка модифицируем его. Новым стартовым состоянием будет стартовое состояние первого автомата. Новым множеством конечных состояний будет множество конечных состояний второго автомата. Также добавим ϵ -переходы из (бывших) конечных состояний первого автомата в (бывшее) начальное состояние второго автомата.

- 2. $L_1 \cup L_2$. Снова объединим два автомата. Добавим новое стартовое состояние, а из него ϵ -переходы в два старых стартовых состояния. На сей раз конечными состояниями построенного автомата будут конечные состояния обоих автоматов.
- 3. L^* . Добавим ϵ -переходы из конечных состояний в начальное, а также добавим ϵ -переход из стартового состояния в *новое* (дополнительное) конечное состояние.
- $(1)\Rightarrow (3)$. Нетерминалы грамматики состояния автомата. Если $q\stackrel{a}{\to} p$, то добавим правило $q\to ap$. Если еще и $p\in F$, то добавим еще правило $q\to a$.
 - $(3) \Rightarrow (2)$. Можно построить систему уравнений

$$A_{1} = \alpha_{10} \cup (\alpha_{11}A_{1}) \cup (\alpha_{12}A_{2}) \dots \cup (\alpha_{1n}A_{n})$$

$$A_{2} = \alpha_{20} \cup (\alpha_{21}A_{1}) \cup (\alpha_{22}A_{2}) \dots \cup (\alpha_{2n}A_{n})$$

$$\dots$$

$$A_{n} = \alpha_{n0} \cup (\alpha_{n1}A_{1}) \cup (\alpha_{n2}A_{2}) \dots \cup (\alpha_{nn}A_{n}),$$

где A_1, A_2, \ldots, A_n — все нетерминалы, они же неизвестные этой системы уравнений; α_{ij} — регулярные выражения в алфавите Σ , коэффициенты системы, строятся они следующим образом. Посмотрим все правила для нетерминала A_i , у которых в правой части A_j ; пусть это $A_i \to a_1 A_j, \ldots, A_i \to a_k A_j$. Тогда $\alpha_{ij} := \{a_1\} \cup \{a_2\} \cup \ldots \cup \{a_k\}$. (Если j = 0, рассматриваем правила, не содержащие нетерминала в правой части.)

Исключим A_1 : перепишем первое неравенство в виде $A_1 = (\alpha_{11}A_1) \cup \beta$; теперь $A_1 = \alpha_{11}^*\beta$ (где $\beta \in (\Sigma \cup N)^*$) подставляем везде в последующие уравнения системы. Аналогично поступаем с A_2, \ldots, A_n , находя A_i из i-го уравнения. Найдя, таким образом, регулярное выражение (уже в алфавите Σ , а не $\Sigma \cup N$) для A_n , подставим его в предыдущие уравнения, и т. д. В результате будет получено решение, которое будет минимальным¹, т.е. не будет содержать других решений; значения для нетерминалов будут, очевидно, будет регулярными выражениями. Значение для стартового нетерминала — искомое² регулярное выражение.

Задача 10.1. Завершить доказательство теоремы 10.2: доказать, что найденное так «решение» действительно будет минимальным решением, а также, что минимальное решение (точнее, соответствующее выражение для стартового нетерминала) действительно является языком, порождаемым данной грамматикой.

¹См. задачу 10.1.

 $^{^{2}}$ См. задачу 10.1.

Лемма 10.1 (лемма о разрастании для регулярных языков (pumping lemma)). Пусть L — регулярный язык. Тогда существует константа c, такая, что любую строку $x \in L$ длины не менее c можно разбить на три части $x = u \cdot v \cdot w$, такие что $0 < |v| \leqslant c$ и $\forall i \geqslant 0$ $u \cdot v^i \cdot w \in L$.

Доказательство. Рассмотрим детерминированный конечный полностью определенный автомат для языка L. Пусть c = |Q| + 1. Посмотрим, как он работает на цепочке $x: q_s \to q_1 \to \ldots \to q_k \in F$. На каждом шаге считывается некоторый символ. Поскольку $|x| \geqslant c$, мы должны были побывать в каком-то состоянии дважды, и в нашем пути есть циклы. Выберем несамопересекающийся цикл; пусть до первого прохождения по нему считывалась строка u, при прохождении по нему считывалась строка v (ее длина не превосходит c, поскольку цикл — несамопересекающийся), а после прохождения по нему (в том числе, если по нему пошли еще раз) — строка w. Очевидно, наш автомат примет любую строку вида uv^iw .

С помощью этой леммы можно доказывать, что какой-нибудь язык не является регулярным.

Пример 10.1. $L = \{0^n 1^n | n \in \mathbb{N} \cup 0\}$ не является регулярным. Доказательство. Пусть регулярный. Рассмотрим варианты подстроки v из леммы.

- 1. В строку попадают только нули \Rightarrow в uv^2w количество 0 увеличится, а количество 1 останется неизменным \Rightarrow строка не будет принадлежать L.
- 2. В строку попадают только единицы аналогично.
- 3. $v=0^i1^j\Rightarrow$ в uv^2w после 1 будет идти $0\Rightarrow$ строка опять не будет принадлежать языку.

(Замечание: тем не менее, этот язык может быть порожден бесконтекстной грамматикой $S \to 0S1, S \to \epsilon$.)

Полезные свойства регулярных языков:

1. Множество всех регулярных языков в данном алфавите замкнуто относительно операций, которые их порождают: \cup , ·, *.

2.

Пемма 10.2. Множество всех регулярных языков в данном алфавите замкнуто относительно дополнения.

Доказательство. Рассмотрим детерминированный конечный полностью определенный автомат, задающий язык L. Поменяем местами его конечные состояния с остальными: $F':=Q\setminus F$. Полученный автомат задает язык \overline{L} .

3.

Следствие 10.1. ... и замкнуто относительно пересечения.

Разрешимые проблемы, связанные с регулярными языками:

- 1. Принадлежность. Рассмотрим детерминированный конечный полностью определенный автомат, принимающий данный язык. Чтобы узнать, принадлежит ли этому языку некоторая строка, запустим наш автомат на этой строке x. После |x| переходов мы поймем, принадлежит ли она языку.
- 2. Пустота языка. Чтобы решить эту проблему, достаточно проверить, достижимо ли какое-нибудь конечное состояние автомата из начального. Эта задача, очевидно, алгоритмически разрешима.
- 3. Равенство языков. Чтобы построить алгоритм для этой задачи, достаточно заметить, что

$$L_1 = L_2 \Leftrightarrow L_1 \cap \overline{L_2} = \emptyset \wedge L_2 \cap \overline{L_1} = \emptyset$$
 (или: $(L_1 \cap \overline{L_2}) \cup (L_2 \cap \overline{L_1}) = \emptyset$).

4. Включение языков. Чтобы построить алгоритм для этой задачи, достаточно заметить, что

$$L_1\subseteq L_2\Leftrightarrow (L_1\cap \overline{L_2}=\emptyset)$$
 (или: $(L_1\cap L_2=L_1)$).