4.1 test ms

1. (a) (i) Rate = $k[X][Y]^2$ (2)

		(ii)	3 (1)			
		(iii)	8 (1)			4
	(b)	(i)	Overall order of red	action	2 (1)	
			Explanation		g both [A] and [B] Rate \times 4 (1)	
		(ii)	Order with respect	to B	0 (1)	
			Explanation		g [A] at constant [B] ds to rate \times 4 (1)	
		(iii)	Rate = $k[A]^2$ (1)			
		(iv)	$k = \frac{\text{Rate}}{[A]^2} = \frac{3.5 \times 10^{-3}}{(0.2)}$	$\frac{0^{-4}}{2}$ (1)		
			$= 8.75 \times 10^{-3} \mathrm{dm}^3 \mathrm{r}$	$\text{mol}^{-1} \text{s}^{-1}$ ((1)	7
		-	(F.G.Y. G.Y. G.O.O.Y.	· >+		[11]
2.	(a)	$k = \text{rate/}[\text{CH}_3\text{CH}_2\text{COOCH}_3][\text{H}^+] \text{ or}$				
		$=\frac{1}{(0)}$	$\frac{1.15 \times 10^{-4}}{.150)(0.555)}$			1
		= 1.3	$8 \times 10^{-3} \text{ to } 1.4 \times 10^{-3}$	3		1
		mol ⁻	1 dm 3 s $^{-1}$			1
	(b)	ans =	= rate constant \times (½ \times ignore units	0.150) ×	$(\frac{1}{2} \times 0.555)$	1
			rate constant \times 0.020 \times 10 ⁻⁵ (1.38 \times 10 ⁻³ gi <i>Allow</i> 2.87 – \times 10 ⁻⁵)	ives 2.87	$\times 10^{-5}$) $0^{-5} (1.4 \times 10^{-3} \text{ gives } 2.91$	
						[4]
3.	(a)	order with respect to P is 2 order with respect to Q is 1				1 1
	(b)	(i)	$rate = k[\mathbf{R}][\mathbf{S}]^2$		g expression, no further marks)	1
			rate = (4.2×10^{-4}) > = 4.7×10^{-5} (mol d		ignore units even if wrong	1 1
					8	
		(ii)	$k = \frac{\text{rate}}{[R][S]^2} = \frac{8.1 \times 10^{-10}}{0.76 \times 10^{-10}}$	<0.98 ²		1
			$= 1.1 \times 10^{-4} *$			1
		(iii)	=		4	1
			*If calculated value	for $k > 4$	0.2×10^{-4} , then answer to (iii) is T_2	[8]

4.	(a)	(i)	Experiment 2 2.60×10^{-3} Experiment 3 0.60×10^{-2} Experiment 4 11.4×10^{-2}	1 1 1			
		(ii)	$k = \frac{10.4 \times 10^{-3}}{(4.80 \times 10^{-2})(6.60 \times 10^{-2})^2}$ = 49.7 (Allow 49.8 and 50)	1			
	(b)	No c	$\mathrm{mol}^{-2}\mathrm{dm}^6\mathrm{s}^{-1}$ change	1			
5.	(a)	Orde	er with respect to iodine: 0 (1) rall order: 2 (1)	[7] 2			
	(b)	Rate constant: $k = \frac{2 \times 10^{-5}}{(1.5) \times (3 \times 10^{-2})} = 4.4(4) \times 10^{-4} (1)$ Units: $mol^{-1} dm^3 s^{-1} (1)$					
	(c)	Appears in rate equation (1) OR implied by mention of concentration or order					
		does not appear in (stoichiometric / overall) equation (1)					
6.	(a)	(i)	change in concentration / amount / mass / volume / (partial) pr per unit time / per s (1)	essure 1			
		(ii)	constant of (proportionality) in the rate equation (1) allow reference to k in rate equation	1			
		(iii)	sum of dependent on 2 nd mark or reference to 'orders' (1)				
			powers in rate equation (1) allow reference to annotated rate equation	2			

```
(H_2) - 1 (1)
(b)
       (i)
              eg rate trebles as [H_2] trebles not rate doubles as [H_2] doubles (1)
              (I_2) - 1 (1)
              eg rate doubles as [I_2] doubles (1)
              mark these points independently
              allow 1 mark for orders if not clear that both are first order
                                                                                                4
       (ii)
             rate = k[H_2][I_2] (1)
              must be [H2] not [H]
              allow e.c.f from (b)(i)
              allow mark for correct answer for (b)(ii), even if (b)(i) wrong
                                                                                                 1
       (iii) rearrange correctly (1)
              correct substitution and correct consequential answer (1)
              correct units (\text{mol}^{-1} \text{dm}^3 \text{s}^{-1}) (1)
              allow e.c.f. from (b)(ii)
              allow e.c.f. for incorrect arrangement
                                                                                                 3
      4 \times 10^{-6} (1)
(c)
       allow e.c.f. from (b)(ii) and (b)(iii)
       could be worked by ratio from values in table or from rate equation
                                                                                           [13]
```