

Probabilistic Small-Disturbance Stability Analysis of Renewable-rich Power Systems

Kazi Hasan, RMIT University, Australia

Acknowledgement: Dr. Robin Preece, Prof. Jovica Milanović, The University of Manchester, UK

Outline of the Presentation

- Motivation for Probabilistic Stability Studies
- Uncertainty Modelling and Probabilistic Analysis Framework
 - Input Modelling
 - Computational Techniques
 - Applications to Power Systems
- Conclusions
 - Accuracy vs. Efficiency

Motivation for Probabilistic Stability Analysis

- **Operational uncertainty** is increasing in power systems due to the integration of new energy resources
- As a short-term phenomenon, system stability is significantly affected by the intermittent generation and behind-the-meter demand variability
- Probabilistic analysis is highly required
- KN Hasan, R Preece, JV Milanović, Priority ranking of critical uncertainties affecting small-disturbance stability using sensitivity analysis techniques, *IEEE Transactions on Power Systems*, 32 (4), 2016.
- KN Hasan, R Preece, JV Milanović, The Influence of Load on Risk-based Small-Disturbance Security Profile of a Power System, *IEEE Transactions on Power Systems*, 33 (1), 2018.
- KN Hasan, R Preece, Influence of Stochastic Dependence on Small-Disturbance Stability and Ranking Uncertainties, *IEEE Transactions on Power Systems*, 33 (3), 2018.
- B Qi, KN Hasan, JV Milanović, Identification of Critical Parameters Affecting Voltage and Angular Stability Considering Load-Renewable Generation Correlations, *IEEE Transactions on Power Systems*, 34(4), 2019.
- KN Hasan, R Preece, JV Milanović, Existing approaches and trends in uncertainty modelling and probabilistic stability analysis of power systems with renewable generation, *Renewable and Sustainable Energy Reviews*, vol 101, 2019.
- RF Mochamad, R Preece, KN Hasan, Probabilistic multi-stability operational boundaries in power systems with high penetration of power electronics, *International Journal of Electrical Power & Energy Systems*, 135, 107382, 2022.

Framework for Probabilistic Stability Analysis

• KN Hasan, R Preece, JV Milanović, Existing approaches and trends in uncertainty modelling and probabilistic stability analysis of power systems with renewable generation, *Renewable and Sustainable Energy Reviews*, vol 101, 2019.

Probability Distribution of Power System Input Parameters

Probability Distribution of Power System Input Parameters

Variables	Independent Probability distributions			
Operational variables				
Power system load	Normal $[\underline{19-40}]$, Gumbel $[\underline{41}, \underline{42}]$, discrete Normal $[\underline{43}]$, pdf of past data $[\underline{44}, \underline{45}]$, joint Normal $[\underline{46-48}]$, Brownian motion $[\underline{49}]$			
Wind speed/power	Weibull [20, 21, 24, 27-34, 36, 41, 50-53], Normal [22, 35], discrete Normal [43, 54], joint Gaussian [55, 56], log-normal [52, 53, 57], gamma [52]			
Solar power	Beta $\lfloor 27-36 \rfloor$, Weibull $\lfloor 21, 58 \rfloor$, pdf of past data $\lfloor 44 \rfloor$			
Power generation	Normal [20, 23], historical system data and statistics [47]			
EV demand	Normal [15, 20]			
EV charging time	Exponential [15, 20]			
EV customer arrival	Poisson [20]			
Generator fuel price	Geometric Brownian motion [21]			
Disturbance variables				
Fault clearing time	Normal [23, 41, 48, 59-61], Poisson jump process [62]			
Fault type	Historical system data and statistics [23, 41, 45, 59], pdf of past data [45]			
Fault location	Historical data $[41, 60]$, uniform $[15, 23, 59]$, empirical pdf of data $[45]$			
Fault incident	Poisson [<u>59</u> , <u>63</u> , <u>64</u>], binomial [<u>64</u>]			
Fault impedance	Normal [<u>23</u> , <u>41</u>]			
Fault duration	Rayleigh [<u>23</u> , <u>41</u>]			
Load change	Poisson jump process [15, 62]			
Contingency/failure	Markov model [43, 46]			
Transformer failure	Arrhenius-Weibull $[\underline{65}]$, Normal $[\underline{65}]$			
Time to failure	Exponential [63]			
Unsuccessful reclose	Bernoulli [62]			
HVDC failure	Weibull [<u>66</u>]			
Transformer overloading	Binomial [61, 67]			

KN Hasan, R Preece, JV Milanović, Existing approaches and trends in uncertainty modelling and probabilistic stability analysis of power systems with renewable generation, Renewable and Sustainable Energy Reviews, vol 101, 2019.

Probabilistic Computational Methods

Monte Carlo Simulation

The MC simulation involves,

- Defining a domain of possible inputs,
- Generating inputs randomly from a probability distribution over the domain,
- Performing deterministic computations on the inputs, and
- Aggregating the results.

Probabilistic Computational Methods

Monte Carlo Simulation is accurate but computationally expensive

The required number of Monte Carlo simulation can be calculated by using the stopping rule formula presented below.

$$E > \left[\left\{ \Phi^{-1} (1 - \frac{\delta}{2}) \cdot \sqrt{\sigma^2(X)/N} \right\} / \overline{X} \right]$$

In (1), $\Phi^{-1}(\bullet)$ represents the inverse Normal cdf with a mean of zero and standard deviation of one, $\sigma^2(\bullet)$ is the variance of a sample, and δ is the desired confidence level. As presented in (1), simulations can be stopped if the calculated sample mean error falls below a specific threshold, E. This is true assuming that the outputs follow Normal distribution (which might not be true in many cases).

Figure: Illustrative results of Monte Carlo stopping rule.

• KN Hasan, R Preece, JV Milanović, Existing approaches and trends in uncertainty modelling and probabilistic stability analysis of power systems with renewable generation, *Renewable and Sustainable Energy Reviews*, vol 101, 2019.

Probabilistic Computational Methods

Table: Probabilistic techniques and stability applications.

Amount of research interest of different computational methods with different stability studies

ranie unit er researen meerese er uniterene eemp deutstellar meere us wien uniterene seusmie, seudres					
	Transient Stability	Small-disturbance Stability	Voltage Stability	Frequency Stability	
Monte Carlo (MC)	High	High	High	High	
Sequential MC	Medium	None	None	Low	
Quasi-MC	None	Low	None	None	
Markov Chain MC	Low	Low	None	None	
Point Estimate (PEM)	Low	Medium	Low	None	
Cumulant-based	None	Low	Low	None	
Probabilistic Collocation	Low	Medium	Low	None	

[•] KN Hasan, R Preece, JV Milanović, Existing approaches and trends in uncertainty modelling and probabilistic stability analysis of power systems with renewable generation, *Renewable and Sustainable Energy Reviews*, vol 101, 2019.

Probabilistic Outputs

OUTPUT DISTRIBUTION IS AFFECTED BY THE INPUT UNCERTAINTIES

Figure: Contour plot and footprints of critical eigenvalue on the complex plane as affected by input parameter uncertainties.

Next Phases of the Work ... (1/5)

Application of sensitivity analysis techniques

IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 32, NO. 4, JULY 2017

2629

Priority Ranking of Critical Uncertainties Affecting Small-Disturbance Stability Using Sensitivity Analysis Techniques

Kazi Nazmul Hasan, Member, IEEE, Robin Preece, Member, IEEE, and Jovica V. Milanović, Fellow, IEEE

Next Phases of the Work ... (2/5)

Application of game theory approaches

Electrical Power and Energy Systems 97 (2018) 344-352

Contents lists available at ScienceDirect

Electrical Power and Energy Systems

journal homepage: www.elsevier.com/locate/ijepes

Application of game theoretic approaches for identification of critical parameters affecting power system small-disturbance stability

Kazi Nazmul Hasan*, Robin Preece, Jovica V. Milanović

School of Electrical and Electronic Engineering, The University of Manchester, M13 9PL, Manchester, UK.

Next Phases of the Work ... (3/5)

Application of risk analysis

IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 33, NO. 1, JANUARY 2018

557

The Influence of Load on Risk-Based Small-Disturbance Security Profile of a Power System

Kazi N. Hasan . Member. IEEE. Robin Preece . Member. IEEE. and Jovica V. Milanović . Fellow. IEEE

Next Phases of the Work ... (4/5)

Application of correlation modelling

IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 33, NO. 3, MAY 2018

3227

Influence of Stochastic Dependence on Small-Disturbance Stability and Ranking Uncertainties

Kazi N. Hasan , *Member, IEEE* and Robin Preece, *Member, IEEE*

Next Phases of the Work ... (5/5)

Application of multi-stability operational boundary identification

ELSEVIER

International Journal of Electrical Power and Energy Systems

journal homepage: www.elsevier.com/locate/ijepes

Probabilistic multi-stability operational boundaries in power systems with high penetration of power electronics

Rian Fatah Mochamad ^{a,*}, Robin Preece ^a, Kazi N. Hasan ^b

a Department of Electrical and Electronic Engineering, The University of Manchester, Manchester M13 9PL, UK

^b School of Engineering, RMIT University, Melbourne, VIC 3000, Australia

Summary

- Operational uncertainties are increasing
- Probabilistic analysis is required
- Efficient computational techniques needs to be applied
- A probabilistic framework may be applied to further analysis:
 - Sensitivity analysis
 - Game theory application
 - Risk assessment
 - Correlation modelling

