#### **Functional Dependencies**

Meaning of FD's
Keys and Superkeys
Inferring FD's

# Functional Dependencies

- $\bigstar X -> A$  is an assertion about a relation R that whenever two tuples of R agree on all the attributes of X, then they must also agree on the attribute A.
  - ◆ Say "X-> A holds in R."
  - Convention: ..., X, Y, Z represent sets of attributes; A, B, C,... represent single attributes.
  - Convention: no set formers in sets of attributes, just ABC, rather than {A,B,C}.

#### Example

Drinkers(name, addr, beersLiked, manf, favBeer)

- Reasonable FD's to assert:
  - 1. name -> addr
  - 2. name -> favBeer
  - 3. beersLiked -> manf

# **Example Data**



Because beersLiked -> manf

# FD's With Multiple Attributes

- No need for FD's with > 1 attribute on right.
  - But sometimes convenient to combine FD's as a shorthand.
  - Example: name -> addr and name -> favBeer become name -> addr favBeer
- > 1 attribute on left may be essential.
  - Example: bar beer -> price

## Keys of Relations

- \[
  \left\ K \] is a superkey for relation R if
  \[
  K \] functionally determines all of R.
  \[
  \]
- \( \begin{aligned}
  \text{K is a key for } R \) if \( K \) is a superkey, but no proper subset of \( K \) is a superkey, superkey.

## Example

Drinkers(name, addr, beersLiked, manf, favBeer)

- {name, beersLiked} is a superkey because together these attributes determine all the other attributes.
  - name -> addr favBeer
  - beersLiked -> manf

# Example, Cont.

- •{name, beersLiked} is a key because neither {name} nor {beersLiked} is a superkey.
  - name doesn't -> manf; beersLiked doesn't
     -> addr.
- There are no other keys, but lots of superkeys.
  - Any superset of {name, beersLiked}.

## E/R and Relational Keys

- Keys in E/R concern entities.
- Keys in relations concern tuples.
- Usually, one tuple corresponds to one entity, so the ideas are the same.
- But --- in poor relational designs, one entity can become several tuples, so E/R keys and Relational keys are different.

# Example Data

| name    | addr       | beersLiked | manf   | favBeer   |
|---------|------------|------------|--------|-----------|
| Janeway | Voyager    | Bud        | A.B.   | WickedAle |
| Janeway | Voyager    | WickedAle  | Pete's | WickedAle |
| Spock   | Enterprise | Bud        | A.B.   | Bud       |
|         |            |            |        |           |

Relational key = {name beersLiked}

But in E/R, name is a key for Drinkers, and beersLiked is a key for Beers.

Note: 2 tuples for Janeway entity and 2 tuples for Bud entity.

## Where Do Keys Come From?

- 1. Just assert a key K.
  - The only FD's are K-> A for all attributes A.
- Assert FD's and deduce the keys by systematic exploration.
  - E/R model gives us FD's from entity-set keys and from many-one relationships.

# More FD's From "Physics"

◆Example: "no two courses can meet in the same room at the same time" tells us: hour room -> course.

## Inferring FD's

- We are given FD's  $X_1 \rightarrow A_1$ ,  $X_2 \rightarrow A_2$ ,...,  $X_n \rightarrow A_n$ , and we want to know whether an FD  $Y \rightarrow B$  must hold in any relation that satisfies the given FD's.
  - Example: If  $A \rightarrow B$  and  $B \rightarrow C$  hold, surely  $A \rightarrow C$  holds, even if we don't say so.
- Important for design of good relation schemas.

#### Inference Test

 $\bullet$  To test if Y -> B, start by assuming two tuples agree in all attributes of Y.

```
    ← Y → 
    0000000...0 
    00000??...?
```

#### Inference Test – (2)

- Use the given FD's to infer that these tuples must also agree in certain other attributes.
  - If B is one of these attributes, then Y-> B
    is true.
  - Otherwise, the two tuples, with any forced equalities, form a two-tuple relation that proves Y-> B does not follow from the given FD's.

#### Closure Test

- ◆An easier way to test is to compute the closure of Y, denoted Y+.
- lacktriangle Basis:  $Y^+ = Y$ .
- Induction: Look for an FD's left side X that is a subset of the current  $Y^+$ . If the FD is  $X \rightarrow A$ , add A to  $Y^+$ .



# Finding All Implied FD's

- Motivation: "normalization," the process where we break a relation schema into two or more schemas.
- ◆Example: ABCD with FD's  $AB \rightarrow C$ ,  $C \rightarrow D$ , and  $D \rightarrow A$ .
  - Decompose into ABC, AD. What FD's hold in ABC?
  - Not only  $AB \rightarrow C$ , but also  $C \rightarrow A$ !

## Why?



Thus, tuples in the projection with equal C's have equal A's; C -> A.

#### Basic Idea

- 1. Start with given FD's and find all *nontrivial* FD's that follow from the given FD's.
  - Nontrivial = left and right sides disjoint.
- 2. Restrict to those FD's that involve only attributes of the projected schema.

# Simple, Exponential Algorithm

- 1. For each set of attributes X, compute  $X^+$ .
- 2. Add  $X \rightarrow A$  for all A in  $X^+ \rightarrow X$ .
- 3. However, drop  $XY \rightarrow A$  whenever we discover  $X \rightarrow A$ .
  - Because XY->A follows from X->A in any projection.
- 4. Finally, use only FD's involving projected attributes.

#### A Few Tricks

- No need to compute the closure of the empty set or of the set of all attributes.
- If we find  $X^+$  = all attributes, so is the closure of any superset of X.

#### Example

- ABC with FD's  $A \rightarrow B$  and  $B \rightarrow C$ . Project onto AC.
  - A + = ABC; yields A > B, A > C.
    - We do not need to compute AB + or AC +.
  - $B^+ = BC$ ; yields  $B \rightarrow C$ .
  - C += C; yields nothing.
  - $BC^+ = BC$ ; yields nothing.

#### Example --- Continued

- Resulting FD's:  $A \rightarrow B$ ,  $A \rightarrow C$ , and  $B \rightarrow C$ .
- Projection onto  $AC: A \rightarrow C$ .
  - Only FD that involves a subset of {A, C}.

#### A Geometric View of FD's

- Imagine the set of all *instances* of a particular relation.
- That is, all finite sets of tuples that have the proper number of components.
- Each instance is a point in this space.

# Example: R(A,B)



#### An FD is a Subset of Instances

- $\bullet$  For each FD X -> A there is a subset of all instances that satisfy the FD.
- We can represent an FD by a region in the space.
- Trivial FD = an FD that is represented by the entire space.
  - ◆ Example: A -> A.

# Example: $A \rightarrow B$ for R(A,B)



# Representing Sets of FD's

- If each FD is a set of relation instances, then a collection of FD's corresponds to the intersection of those sets.
  - Intersection = all instances that satisfy all of the FD's.

# Example



# Implication of FD's

- ♦ If an FD Y -> B follows from FD's  $X_1 -> A_1, ..., X_n -> A_n$ , then the region in the space of instances for Y -> B must include the intersection of the regions for the FD's  $X_i -> A_i$ .
  - That is, every instance satisfying all the FD's  $X_i -> A_i$  surely satisfies Y -> B.
  - But an instance could satisfy Y-> B, yet not be in this intersection.

# Example

