

Chapter 6: Nameless Representation of Terms

Terms and Contexts
Shifting and Substitution

Bound Variables

 Recall: bound variables can be renamed, at any moment, to enable substitution:

$$[x \mapsto s]x = s$$

$$[x \mapsto s]y = y \qquad \text{if } y \neq x$$

$$[x \mapsto s](\lambda y.t_1) = \lambda y. [x \mapsto s]t_1 \qquad \text{if } y \neq x \text{ and } y \notin FV(s)$$

$$[x \mapsto s](t_1 t_2) = [x \mapsto s]t_1 [x \mapsto s]t_2$$

- Variable Representation
 - Represent variables symbolically, with variable renaming mechanism
 - Represent variables symbolically, with bound variables are all different
 - "Canonically" represent variables in a way such that renaming is unnecessary
 - No use of variables

Terms and Contexts

Nameless Terms

- **De Bruijin** Idea: Replacing named variables by natural numbers, where the number k stands for "the variable bound by the k'th enclosing λ ".
 - Examples:

- **Definition** [Terms]: Let T be the smallest family of sets $\{T_0, T_1, T_2, ...\}$ such that
 - 1. $k \in T_n$ whenever $0 \le k < n$;
 - 2. if $t_1 \in T_n$ and n>0, then $\lambda . t_1 \in T_{n-1}$;
 - 3. if $t_1 \in T_n$ and $t_2 \in T_n$, then $(t_1, t_2) \in T_n$.

Note: T_n are set of terms with at most n free variables, numbered between 0 and n-1.

Name Context

- Naming Context
 - To deal with terms containing free variables
 - $\Gamma = x \rightarrow 4$; $y \rightarrow 3$; $z \rightarrow 2$; $a \rightarrow 1$; $b \rightarrow 0$
- Examples

Under the naming context Γ , we have

- $\times (y z)$ 4 (3 2)
- $-\lambda w. yw \lambda. 40$
- $-\lambda w.\lambda a.x$ $\lambda.\lambda.6$

Shifting and Subtitution

How to define substitution $[k \rightarrow s]t$?

Shifting

• Under the naming context $x \rightarrow 1$, $z \rightarrow 2$ [$1 \rightarrow 2 (\lambda .0)$] $\lambda .2 \rightarrow ?$ i.e., [$x \rightarrow z (\lambda w.w)$] $\lambda y.x \rightarrow ?$

DEFINITION [SHIFTING]: The *d*-place shift of a term t above cutoff *c*, written $\uparrow_c^d(t)$, is defined as follows:

$$\uparrow_c^d(\mathbf{k}) = \begin{cases} \mathbf{k} & \text{if } k < c \\ \mathbf{k} + d & \text{if } k \ge c \end{cases}
\uparrow_c^d(\lambda. \mathbf{t}_1) = \lambda. \uparrow_{c+1}^d(\mathbf{t}_1)
\uparrow_c^d(\mathbf{t}_1 \mathbf{t}_2) = \uparrow_c^d(\mathbf{t}_1) \uparrow_c^d(\mathbf{t}_2)$$

We write $\uparrow^d(t)$ for $\uparrow^d_0(t)$.

- 1. What is $\uparrow^2(\lambda.\lambda.1(02))$?
- 2. What is $\uparrow^2(\lambda.01(\lambda.012))$?

Substitution

Definition

$$[j \mapsto s]k = \begin{cases} s & \text{if } k = j \\ k & \text{otherwise} \end{cases}$$
$$[j \mapsto s](\lambda.t_1) = \lambda. [j+1 \mapsto \uparrow^1(s)]t_1$$
$$[j \mapsto s](t_1 t_2) = ([j \mapsto s]t_1 [j \mapsto s]t_2)$$

Example

[1
$$\rightarrow$$
 2 (λ .0)] λ .2 \rightarrow λ .3 (λ .0)
i.e., [x \rightarrow z (λ w.w)] λ y.x \rightarrow λ y. z (λ w.w)

Evaluation

(
$$\lambda x. t_{12}$$
) $t_2 \rightarrow [x \mapsto t_2]t_{12}$,

$$(\lambda.t_{12}) v_2 \rightarrow \uparrow^{-1}([0 \mapsto \uparrow^1(v_2)]t_{12})$$

Example:

$$(\lambda.102)(\lambda.0) \rightarrow 0(\lambda.0)1$$

Homework

国立情報学研究所 Noticed Institute of Informatics

- Read Chapter 6.
- Do Exercise 6.2.5.

