Homework 2 Solutions

1. This problem provides a numerical example of encryption using a one-round version of DES. Suppose both the key and the output of the initial p-box are:

1010 1101 0101 0110 1100 1001 1101 1010 1001 0001 1011 1011 0001 1001 1011 1010

a. Derive k1, the first round subkey

	Τ	able: I	Parity-l	oit drop	table			
57	49	41	33	25	17	09	01	1
58	50	42	34	26	18	10	02	
59	51	43	35	27	19	11	03	
60	52	44	36	63	55	47	39	
31	23	15	07	62	54	46	38	
30	22	14	06	61	53	45	37	
29	21	13	05	28	20	12	04	

After parity drop and permutation:

L R 1011 1101 0000 1110 1010 0001 1111 1010 1010 0000 0011 1110 1101 1010

Both parts are shifted to the left by 1 bit:

4 8 12 16 20 24 28 32 36 40 44 48 52 56 0111 1010 0001 1101 0100 0011 1111 0101 0100 0000 0111 1101 1011 0101

After going through the compression P-box:

14	17	11	24	01	05	03	28
15	06	21	10	23	19	12	04
26	08	16	07	27	20	13	02
41	52	31	37	47	55	30	40
51	45	33	48	44	49	39	56
34	53	46	42	50	36	29	32

 $K1 = 1001\ 0111\ 0000\ 1011\ 1011\ 1011\ 0100\ 0010\ 1101\ 1101\ 1011\ 0001\ (970\ B\ B\ B\ 42\ D\ D\ D\ 1)$

b. Derive L0, R0

L0 = 1010 1101 0101 0110 1100 1001 1101 1010 R0 = 1001 0001 1011 1011 0001 1001 1011 1010

c. Expand R0 to get E[R0] using the Expansion P-box

d. Calculate A = E[R0] XOR K1

$E[R0] \oplus K1$

- = 1101 1101 0011 0110 0100 1101 1100 1101 1110 0000 0100 0100
- = DD364D CDE044

e. Group the 48-bit result of (d) into sets of 6 bits and get the corresponding S-box substitutions

1101 1101 0011 0110 0100 1101 1100 1101 1110 0000 0100 0100

Formatted to groups of 6 bits:

110111	010011	011001	001101	110011	011110	000001	000100
S 1	S 2	S 3	S 4	S 5	S 6	S 7	S 8
		4		8		1	2

- [14	-4	13	- 1	2	15	11	8	3	10	6	12	5	9	0	7
1	0	15	7	4	14	2	13	1	10	6	12	11	9	5	3	8
	4	1	14	8	13	6	2	11	15	12	9	7	3	10	5	0
ı	15	12	8	2	4	9	- 1	7	5	11	3	14	10	0	6	13
-	15	- 1	8	14	6	11	3	- 4	9	7	2	13	12	0	5	10
2	3	13	4	7	15	2	8	14	12	0	1	10	6	9	11	5
-	0	14	7	11	10	4	13	1	5	8	12	6	9	3	2	15
ı	13	8	10	- 1	3	15	4	2	-11	6	7	12	0	5	14	9
1	10	0	9	14	6	3	15	- 5	- 1	13	12	7	11	4	2	8
3	13	7	0	9	3	4	6	10	2	8	5	14	12	11	15	1
٦	13	6	4	9	8	15	3	0	11	1	2	12	5	10	14	7
ı	1	10	13	0	6	9	8	7	4	15	14	3	-11	5	2	12
1	7	13	14	3	0	6	9	10	- 1	2	-8	5	11	12	4	15
4	13	8	11	5	6	15	0	3	4	7	2	12	1	10	14	9
٦	10	6	9	0	12	11	7	13	15	1	3	14	5	2	8	4
ı	3	15	0	6	10	1	13	8	9	4	5	11	12	7	2	14
-	2	12	-4	1	7	10	11	6	8	5	3	15	-13	0	14	9
5	14	11	2	12	4	7	13	1	5	0	15	10	3	9	8	6
٦	4	2	1	11	10	13	7	8	15	9	12	5	6	3	0	14
ı	11	8	12	7	1	14	2	13	6	15	0	9	10	4	5	3
1	12	1	10	15	9	2	6	8	0	13	3	4	14	7	5	11
6	10	15	4	2	7	12	9	5	6	1	13	14	0	11	3	8
۱	9	14	15	5	2	8	12	3	7	0	4	10	1	13	11	6
Į	4	3	2	12	9	5	15	10	11	14	ì	7	6	0	8	13
ı	-4	11	2	14	15	0	8	13	3	12	9	7	5	10	6	1
7	13	0	11	7	4	9	1	10	14	3	5	12	2	15	8	6
	1	4	11	13	12	3	7	14	10	15	6	8	0	5	9	2
ı	6	11	13	8	- 1	4	10	7	9	5	0	15	14	2	3	12
ı	13	2	8	4	6	15	11	-1	10	9	3	14	.5	0	12	7
8	1	15	13	8	10	3	7	4	12	5	6	11	0	14	9	2
	7	11	4	1	9	12	14	2	0	6	10	13	15	3	5	8
- 1	2	1	14	7	4	10	8	13	15	12	9	0	3	5	6	11.

$$110111 \rightarrow S1 \rightarrow 714 = 011111110$$

$$010011 \rightarrow S2 \rightarrow 0 = 0000$$

$$011001 \rightarrow S3 \rightarrow 12 = 1100$$

$$001101 \rightarrow S4 \rightarrow 0 = 0000$$

$$110011 \rightarrow S5 \rightarrow F = 1111$$

$$0111110 \rightarrow S6 \rightarrow 11 = 1011$$

$$000001 \rightarrow S7 \rightarrow 13 = 1101$$

$$000100 \rightarrow S8 \rightarrow 8 = 1000$$

f. Concatenate the results of (e) to get a 32-bit results, B

g. Apply the permutation to get P(B)

The straight P-box:

16	07	20	21	29	12	28	17
01	15	23	26	05	18	31	10
02	08	24	14	32	27	03	09
19	13	30	06	22	11	04	25

```
4 8 12 16 20 24 28 32
B = 1110 0000 1100 0000 0110 1011 1101 1000
```

$$P(B) = 0011\ 1011\ 1011\ 0101\ 1010\ 0011\ 1000\ 0001$$

h. Calculate
$$R1 = P(B)$$
 XOR L0

```
P(B) \bigoplus L0
= 0011 1011 1011 0101 1010 0011 1000 0001
\bigoplus 1010 1101 0101 0110 1100 1001 1101 1010
= 1001 0110 1110 0011 0110 1010 0101 1011
= 9 6 E 3 6 A 5 C
```

i. Write down the output of the first round.

- 2. For the group $G = \langle Z_{26*}, x \rangle$
- a. Find the order of the group

$$Z_{26*} = \{1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25\}$$

There are 12 elements in the group, so the order of the group is 12

b. Find the order of each element in the group

$$1^{0}=1$$

 $ord(1) = 1$
 $3^{0}=1$
 $3^{1}=3$
 $3^{2}=9$
 $3^{3}=9*3 \mod 26 = 1$
 $ord(3) = 3$
 $5^{0}=1$
 $5^{1}=5$
 $5^{2}=25$
 $5^{3}=25*5 \mod 26 = 21$
 $5^{4}=21*5 \mod 26 = 1$
 $ord(5) = 4$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$
 $5^{0}=1$

```
7^6= 11*7 mod 26 = 25

7^7= 25*7 mod 26 = 19

7^8= 19*7 mod 26 = 3

7^9= 3*7 mod 26 = 21

7^{10}= 21*7 mod 26 = 17

7^{11}= 17*7 mod 26 = 15

7^{12}= 15*7 mod 26 = 1

Ord(7) = 12
```

$$9^0 = 1$$

 $9^1 = 9$
 $9^2 = 9*9 \mod 26 = 3$
 $9^3 = 3*9 \mod 26 = 1$
 $Ord(9) = 3$

$$11^0 = 1$$

 $11^1 = 11$
 $11^2 = 11 * 11 \mod 26 = 17$
 $11^3 = 17*11 \mod 26 = 5$
 $11^4 = 5*11 \mod 26 = 3$
 $11^5 = 3*11 \mod 26 = 7$
 $11^6 = 7*11 \mod 26 = 25$
 $11^7 = 25*11 \mod 26 = 15$
 $11^8 = 15*11 \mod 26 = 9$
 $11^9 = 9*11 \mod 26 = 21$
 $11^{10} = 21*11 \mod 26 = 23$
 $11^{11} = 23*11 \mod 26 = 19$
 $11^{12} = 19*11 \mod 26 = 1$

```
Ord(11) =12
```

```
15^0 = 1
15^1 = 15
15^2 = 15 * 15 \mod 26 = 17
15^3 = 17 * 15 \mod 26 = 21
15^4 = 21 * 15 \mod 26 = 3
15^5 = 3 * 15 \mod 26 = 19
15^6 = 19 * 15 \mod 26 = 25
15^7 = 25 * 15 \mod 26 = 11
15^8 = 11 * 15 \mod 26 = 9
15^9 = 9 * 15 \mod 26 = 5
15^{10} = 5 * 15 \mod 26 = 23
15^{11} = 23 * 15 \mod 26 = 7
15^{12}= 7 * 15 mod 26 = 1
Ord(15) = 12
17^0 = 1
17^1 = 17
17^2 = 17 * 17 \mod 26 = 3
17^3 = 3*17 \mod 26 = 25
17^4 = 25*17 \mod 26 = 9
17^5 = 9*17 \mod 26 = 23
17^6 = 23*17 \mod 26 = 1
Ord(17) = 6
19^0 = 1
19^1 = 19
19^2 = 19 * 19 \mod 26 = 23
```

```
19^3 = 23*19 \mod 26 = 21
19^4 = 21*19 \mod 26 = 9
19^5 = 9*19 \mod 26 = 15
19^6 = 15*19 \mod 26 = 25
19^7 = 25*19 \mod 26 = 7
19^8 = 7*19 \mod 26 = 3
19^9 = 3*19 \mod 26 = 5
19^{10}= 5*19 mod 26 = 17
19^{11} = 17*19 \mod 26 = 11
19^{12}= 11*19 \mod 26 = 1
Ord(19) = 12
21^0 = 1
21^{1}=21
21^2 = 21 * 21 \mod 26 = 25
21^3 = 25*21 \mod 26 = 5
21^4 = 5*21 \mod 26 = 1
Ord(21) = 4
23^0 = 1
23^{1}=23
23^2 = 23 * 23 \mod 26 = 9
23^3 = 9*23 \mod 26 = 25
23^4 = 25*23 \mod 26 = 3
23^5 = 3*23 \mod 26 = 17
23^6 = 17*23 \mod 26 = 1
```

$$25^0 = 1$$

 $25^1 = 25$

Ord(19) = 6

$$25^2 = 25 * 25 \mod 26 = 1$$

Ord(25) = 2

c. Is the group is a cyclic group? Prove your answer and find the generator(s) if the answer is yes.

Yes. The generators are: 7,11,15,19

- 3. Using the irreducible polynomial $f(x) = x^5 + x^4 + x^3 + x^2 + 1$ to
 - a) generate the elements of the field $GF(2^5)$

0	0	0	0	00000
\mathbf{g}^{0}	\mathbf{g}^{0}	\mathbf{g}^{0}	\mathbf{g}^0	00001
\mathbf{g}^1	\mathbf{g}^{1}	g^1	g^1	00010
g^2	\mathbf{g}^2	g^2	g^2	00100
g^3	g^3	g^3	g^3	01000
\mathbf{g}^4	g^4	g^4	g^4	10000
g ⁵	g^5	g^5	$g^4 + g^3 + g^2 + 1$	11101
\mathbf{g}^{6}	g (g ⁵)	$g (g^4 + g^3 + g^2 + 1)$	$g^2 + g + 1$	00111
g ⁷ g ⁸	$g(g^6)$	$g(g^2 + g+1)$	$g^3 + g^2 + g$	01110
g ⁸	$g(g^7)$	$g(g^3 + g^2 + g)$	$g^4 + g^3 + g^2$	11100
\mathbf{g}^{9}	g (g ⁸)	$g(g^4 + g^3 + g^2)$	$g^2 + 1$	00101
\mathbf{g}^{10}	$g(g^9)$	$g(g^2+1)$	$g^3 + g$	01010
g ¹¹	g (g ¹⁰)	$g(g^3+g)$	$g^4 + g^2$	10100
\mathbf{g}^{12}	g (g ¹¹)	$g (g^4 + g^2)$	$g^4 + g^2 + 1$	10101

g ¹³	g (g ¹²)	$g(g^4+g^2+1)$	$g^4 + g^2 + g + 1$	10111
g ¹⁴	g (g ¹³)	$g(g^4 + g^2 + g + 1)$	$g^4 + g + 1$	10011
g ¹⁵	g (g ¹⁴)	$g(g^4+g+1)$	$g^4 + g^3 + g + 1$	11011
g ¹⁶	g (g ¹⁵)	$g(g^4 + g^3 + g + 1)$	$g^3 + g + 1$	01011
g ¹⁷	g (g ¹⁶)	$g(g^3+g+1)$	$g^4 + g^2 + g$	10110
g ¹⁸	g (g ¹⁷)	$g(g^4+g^2+g)$	$g^4 + 1$	10001
g ¹⁹	g (g ¹⁸)	$g(g^4+1)$	$g^4 + g^3 + g^2 + g + 1$	11111
g ²⁰	g (g ¹⁹)	$g (g^4 + g^3 + g^2 + g + 1)$	g + 1	00011
g ²¹	g (g ²⁰)	g (g + 1)	$g^2 + g$	00110
g ²²	g (g ²¹)	$g(g^2+g)$	$g^3 + g^2$	01100
g ²³	g (g ²²)	$g (g^3 + g^2)$	$g^4 + g^3$	11000
g ²⁴	g (g ²³)	$g(g^4+g^3)$	$g^3 + g^2 + 1$	01101
g^{25}	g (g ²⁴)	$g(g^3+g^2+1)$	$g^4 + g^3 + g$	11010
g ²⁶	g (g ²⁵)	$g(g^4+g^3+g)$	$g^3 + 1$	01001
g ²⁷	g (g ²⁶)	$g(g^3+1)$	$g^4 + g$	10010
g ²⁸	g (g ²⁷)	$g(g^4+g)$	$g^4 + g^3 + 1$	11001

٤	g ²⁹	g (g ²⁸)	$g(g^4 + g^3 + 1)$	$g^3 + g^2 + g + 1$	01111
8	30	g (g ²⁹)	$g(g^3 + g^2 + g + 1)$	$g^4 + g^3 + g^2 + g$	11110

b) based on the results of a), calculate the followings in $GF(2^5)$

b.1)
$$(x^4 - x + 1)^{-1}$$

$$x^4 - x + 1 = x^4 + x + 1 = 10011 = g^{14}$$

$$(x^4 - x + 1)^{-1} = g^{-14 \mod 31} = g^{17} = 10110 = x^4 + x^2 + x$$

b.2)
$$(x^3-x+1)*(x^4+x^2-x+1)$$

$$x^3$$
- $x + 1 = 01011 = g^{16}$

$$x^4 + x^2 - x + 1 = 10111 = g^{13}$$

$$g^{16} \times g^{13} = g^{29}$$

so,
$$(x^3 - x + 1) * (x^4 + x^2 - x + 1) = x^3 + x^2 + x + 1$$

b.3)
$$(x^4 - x^3 + 1) / (x^2 + x + 1)$$

$$x^4$$
- x^3 + 1 = **11001** = g^{28}

$$x^2 + x + 1 = 00111 = g^6$$

$$(x^4-x^3+1)/(x^2+x+1) = \mathbf{g^{28}}/\mathbf{g^6} = \mathbf{g^{22}} = \mathbf{01100} = x^3+x^2$$