

UNIVERSIDADE FEDERAL DE OURO PRETO PRÓ-REITORIA DE GRADUCAÇÃO PLANO DE ENSINO

Nome do Componente Curricular em português: Introdução à Álgebra Linear		Código: MTM 112 Turma 85
Nome e sigla do departamento: DEMAT	Departamento de Matemática	- Unidade acadêmica: ICEB
Nome do docente: Bruno Men	des Rodrigues	
Carga horária semestral 72h	Carga horária semanal teórica 4 horas/aula	Carga horária semanal prática -
Data de aprovação na assemble	ia departamental:	
Ementa: Matrizes; Sistemas Lineares; Diagonalização.	Lineares; Determinantes. Espaç	ços Vetoriais. Transformações

1-MATRIZES

Definição; Operações com matrizes e suas propriedades; Matrizes: Identidade, transposta, simétrica, antissimétrica, ortogonal, idempotente, nilpotente e triangular.

2-DETERMINANTES

Conteúdo programático:

Permutações, transposições; Desenvolvimento por cofatores; Matriz adjunta; Propriedades do determinante.

3-INVERSÃO DE MATRIZES

Matriz inversa, matrizes singulares; Propriedades da matriz inversa; Operações elementares sobre matrizes; Inversão de matrizes por meio de operações elementares.

4-SISTEMAS DE EQUAÇÕES LINEARES

Definição; Tipos de Sistemas; Sistemas Equivalentes; Resolução de Sistemas usando operações elementares; Discussão de Sistemas.

5-ESPAÇOS VETORIAIS

Definição; Subespaços vetoriais; Combinação, gerador de um espaço; Dependência e Independência linear; Bases e dimensão; Vetor-coordenador e matriz-coordenada de um vetor; Espaço linha, espaço coluna; Posto de uma matriz; Produto interno em um espaço vetorial (desigualdade de Cauchy-Schwarz); Comprimento e ângulo.

6-TRANSFORMAÇÕES LINEARES

Definição; Operador linear; Funcional linear; Propriedades das transformações lineares; Núcleo e imagem de uma transformação; Matrizes de transformações lineares (L(IRⁿ, IR^m)= M_{mxn}(IR)); Mudança de base; Semelhança (Matrizes semelhantes).

7-DIAGONALIZAÇÃO

Valor característico de uma matriz; Vetor característico de uma matriz; Polinômio característico, equação característica; Espaço característico; Diagonalização.

Objetivos:

Como objetivos gerais, espera-se que o aluno desenvolva ao longo do curso a habilidade em resolução de sistemas lineares e a compreensão dos conceitos em espaços vetoriais de dimensão finita. Espera-se também que o aluno compreenda o conceito de transformações lineares entre estes espaços vetoriais, bem como o processo de diagonalização.

Metodologia:

- 1) Serão promovidas discussões e interações no ambiente virtual de aprendizagem;
- 2) Aulas expositivas que serão gravadas para estudantes ausentes (e também presentes) terem acesso;
- 3) Indicação de textos para leitura e discussão;
- 4) Desenvolvimentos de atividades e dinâmicas no ambiente virtual de aprendizagem, baseados em leituras e discussões;
- 5) Preparação de videoaulas e outros tipos de materiais complementares (aulas já disponíveis na plataforma Youtube).

Recursos utilizados:

Para o desenvolvimento da aprendizagem serão adotados, concomitantemente e em todos os tópicos da disciplina, os seguintes recursos de apoio didático-pedagógico:

- 6) Ferramentas do ambiente virtual de aprendizagem adotado (Moodle);
- 7) Videoaulas:
- 8) Fóruns de discussão com ferramentas do ambiente virtual;
- 9) E demais recursos que estiverem disponíveis.

Atividades avaliativas:

Na disciplina serão distribuídos 10 pontos da seguinte forma:

- Três avaliações assíncronas realizadas via plataforma Moodle:

Primeira avaliação: 3.3 pontos; Segunda avaliação: 3.3 pontos; Terceira avaliação: 3.4 pontos.

A nota final para aprovação é de 6 pontos numa escala de 0 a 10.

OBS.1: A utilização de meios ilícitos (cópia ou similares) para realização das atividades

elencadas acima acarretará a perda dos pontos correspondentes às mesmas para TODAS as partes envolvidas e passível de processo administrativo disciplinar conforme disposto na Resolução CUNI nº 586.

OBS.2: A noção de participação considera a presença virtual do estudante, considerando a sua contribuição nas discussões nos fóruns (caso exista), webconferências e nos grupos de discussões, a entrega das atividades e a sua colaboração para a boa conduta da disciplina.

Exame Especial - O exame especial será no dia 27/04. A atividade avaliativa será disponibilizada na plataforma Moodle na data prevista. O conteúdo do exame será todo o conteúdo trabalhado na disciplina.

Resolução CEPE 2880 de 05/2006: É assegurado a todo aluno regularmente matriculado com frequência mínima de setenta e cinco por cento e média inferior a seis, o direito de ser avaliado por Exame Especial.

Cronograma:

Disciplina com 72 horas/aula

Datas	Conteúdos e Atividades	
SEMANA 1	Matrizes;	
10/01		
18/01 a 22/01	Sistemas lineares parte 1;	
SEMANA 2	Sistemas Lineares parte 2;	
25/01 a 29/01	Sistemas Lineares parte 3;	
SEMANA 3	Inversão de matrizes;	
	,	
01/02 a 05/02	Determinantes;	
SEMANA 4	Vídeo Aula de exercícios (Assíncrona)	
08/02 a 12/02	PROVA 1 (ASSÍNCRONA):11/02	
SEMANA 5	Espaços R^n: Dependência e Independência Linear;	
15/02 a 19/02	Subespaços: Base e Dimensão;	
SEMANA 6	Espaço Linha e Espaço Coluna;	
22/02 a 26/02	Produto Interno;	
SEMANA 7	Bases Ortogonais e Ortonormais;	
01/03 a 05/03	Vídeo Aula de exercícios (Assíncrona)	
SEMANA 8	PROVA 2 (ASSÍNCRONA):09/03	

08/03 a 12/03	Transformações Lineares: Matriz da Transformação;	
SEMANA 9	Núcleo e Imagem;	
15/03 a 19/03	Mudança de Base;	
SEMANA 10	Semelhança;	
22/03 a 26/03	Autovalores e Autovetores;	
SEMANA 11	Diagonalização de Matrizes;	
29/03 a 02//04		
SEMANA 12	Vídeo Aula de exercícios (Assíncrona)	
05/04 a 09/04	PROVA 3 (ASSÍNCRONA):08/04	
SEMANA 13		
12/04 a 16/04		
SEMANA 14		
19/04 a 23/04		
SEMANA 15	Exame Especial: 27/04.	
26/04 a 30/04		

Bibliografia básica:

- 1. SANTOS, Reginaldo J. Introdução à Álgebra Linear Imprensa Universitária da UFMG, 2013. Disponível em: https://regijs.github.io/livros.html
- 2. ANTON, Howard, RORRES, Chris. Álgebra Linear com aplicações 8a ed., Porto Alegre: Bookman, 2001.
- 3. BOLDRINI, José Luiz et al. Algebra Linear 3a ed. Sao Paulo: Harper & Row do Brasil, 1980.

Bibliografia complementar:

- 1. LIPSCHUTZ, Seymour; LIPSON, Marc Álgebra Linear Coleção Schaum. 4ª ed. Bookman, 2011.
- 2. LANG, Serge Algebra Linear 3ª ed. Springer, 1987.