

Эксперимент с переключателем Холла

Введение переключателя Холла

Когда металлический или полупроводниковый лист с током расположен вертикально в магнитном поле, на обоих концах листа будет иметь место разность потенциалов, что называется эффектом Холла. Значение электрической разности на обоих концах называется потенциалом Холла U, а его выражение равно U = Kk • I • B / d. Переключатели Холла используют этот принцип. Осветительный прибор серии 3144 представляет собой цепь магнитного датчика, состоящую из регулятора напряжения, генератора Холловского напряжения, усилителя скоринга, триггера Шмитта и температурного компенсатора, его вход - магнитная индукция, а выход - цифровой сигнал напряжения. , Обладает малым объемом, высокой чувствительностью, быстрым откликом и хорошими температурными характеристиками. Типичные области применения: устройства охранной сигнализации, бесконтактные переключатели и т. Д.

Классификация выключателей холл

- 1. Униполярный переключатель эффекта Холла (цифровой выход)
- 2. Униполярный переключатель эффекта Холла имеет магнитный порог срабатывания (Вор). Если плотность магнитного потока блока Холла больше рабочего порога, выходной транзистор будет включен, а когда плотность магнитного потока падает ниже рабочего порога (Вгр), транзистор будет выключен. Гистерезис (Вhys) -

это разница между двумя порогами (Вор-Вгр). Даже если есть внешняя механическая вибрация и электрический шум, эта встроенная страница гистерезиса может обеспечить чистое переключение выходного сигнала. Цифровой выход униполярного эффекта Холла можно адаптировать к различным логическим системам. Эти устройства идеально подходят для использования с простыми магнитами или стержнями. Униполярный переключатель Холла будет указывать индукцию магнитного полюса на его передней и задней сторонах. В особых случаях следует обратить внимание на установку магнитного полюса магнита.

2. Биполярный переключатель эффекта Холла (цифровой выход)

Биполярный зал разделен на биполярный переключатель без защелки и биполярный переключатель типа защелки.

Биполярные переключатели с эффектом Холла обычно размыкаются, когда напряженность магнитного поля южного полюса достаточна, и замыкаются, когда напряженность магнитного поля северного полюса достаточна, но если магнитное поле удаляется, это случайный выход, который может быть включен или выключен. Биполярные запирающие переключатели с эффектом Холла обычно размыкаются, когда напряженность магнитного поля южного полюса достаточна, и замыкаются, когда напряженность магнитного поля северного полюса достаточна, но если магнитное поле удаляется, состояние выхода не будет изменено. Эти переключатели с эффектом Холла могут приводиться в действие магнитами с помощью переменных магнитных полей север-юг и многополюсных кольцевых магнитов.

3. Переключатель Холла с биполярным замком (цифровой выход)

Когда он помещен в n-полюс (или s-полюс), он будет включен и останется включенным после удаления, и только когда он будет помещен в s-полюс (или n-полюс), он будет выключен. До следующего раза магнитное поле не изменится. Эта характеристика поддержания последнего состояния является характеристикой фиксации, а этот тип переключателя преимуществ Холла является переключателем эффекта Холла с биполярным типом фиксации.

4. Омниполярный переключатель эффекта Холла (цифровой выход)

В отличие от других переключателей с эффектом Холла, при наличии достаточного магнитного поля северного или южного полюса эти устройства можно включать, а при отсутствии магнитного поля выход будет отключен.

5. Линейная ИС датчика Холла (аналоговый выход)

Выходное напряжение линейной ИС датчика Холла точно отслеживает изменения плотности магнитного потока. В статическом (без магнитного поля) теоретически

выходной сигнал должен быть равен половине напряжения источника питания в пределах рабочего напряжения и диапазона рабочих температур. Увеличение магнитного поля южного полюса приведет к увеличению напряжения от его статического напряжения. И наоборот, увеличение магнитного поля Северного полюса приведет к увеличению напряжения от его статического напряжения. Эти компоненты могут измерять угол, близость, движение и магнитный поток тока. Они могут отражать механические события магнитным способом.

6. Микро-энергопотребление с эффектом Холла (цифровой выход) С популяризацией портативных устройств, таких как мобильные телефоны, ноутбуки и цифровые видеомагнитофоны, требуется энергопотребление ИС Холла, что приводит к появлению нового класса ИС Холла. Это отдельный тип цифровой интегральной схемы Холла в зависимости от потребляемой мощности, ее внутренний механизм ожидания снижает энергопотребление, а среднее энергопотребление может достигать уровня иА. Его также можно разделить на три категории в зависимости от функций: одноэтапная ИС Холла, ИС Холла закрытого типа и полнофункциональная ИС Холла. Этот тип обычно используется для систем с длительным питанием от батарей.

Цель эксперимента

Используйте переключатель Холла для управления светодиодными огнями.

Принцип эксперимента

Когда на переключатель Холла подается напряжение, когда через переключатель Холла не проходит магнитный поток, он находится в выключенном состоянии. Когда объект, такой как магнит, который генерирует линии магнитной индукции, находится близко к переключателю Холла, создается магнитный поток, чтобы сделать переключатель Холла проводящим. Пусть светодиод загорится.

Компоненты

- ♦ Материнская плата Keywish Arduino UNO R3
- Макетная плата
- USB-кабель для передачи данных
- переключатель Холла
- ◆ LED *1
- 10kΩсопротивление*1
- Несколько перемычек
- Проводка

Arduino UNO	переключатель Холла
5V	VCC (R)
GND	GND(G)
9	OUT(Y)
Arduino UNO	LED модуль
8	+
GND	

Результаты эксперимента

После успешного подключения включите главную плату управления, а затем с помощью магнита подойдите к выключателю Холла. Когда выключатель Холла включен, загорится светодиодный индикатор. Отодвиньте магнит, и светодиодный индикатор снова погаснет.

• Программа

Программа графического программирования mBlock

```
sensor Program

Set Baud Rate 9600*

forever

set val * to Read Digital Pin 8

Serial Print Number val

if val = 1 then

set digital pin 9 output as HIGH*
else

set digital pin 9 output as LOW*
```

Программа графического программирования Mixly

```
Declare val as int v value | DigitalRead PIN# 8 v

Serial v println | val

if | val = v | 1

do | DigitalWrite PIN# 9 v | Stat | HIGH v

else | DigitalWrite PIN# 9 v | Stat | LOW v
```


Программа графического программирования MagicBlock

• MagicBlock пишет программу переключения Холла, как показано ниже:

