Trabalho 3 - Cálculo Numérico A

prof. Tiago Martinuzzi Buriol

1. Dada a tabela a seguir, de valores de uma função f,

\overline{x}	0,15	0,17	0,19	0,21	0,23	0,25	0,27	0,29	0,31
f(x)	0,1761	0,2304	0,2788	0,3222	0,3617	0,3979	0,4314	0,4624	0,4914

- (a) Utilize um programa em Python para interpolar todos os pontos tabelados usando a Forma de Lagrange e obtenha uma estimativa para f(0, 20) e para f(0, 22) utilizando esse polinômio.
- (b) Plote o gráfico do polinômio obtido juntamente com os pontos tabelados para verificar o resultado da interpolação.
- (c) Estime f(0,20) e f(0,22) utilizando uma polinomial de terceiro grau. Plote o gráfico e compare com o resultado do item anterior.
- (d) Resolva novamente o item a usando polinômio de Newton e compare os resultados obtidos. Explique o que você observou.
- 2. A tabela a seguir mostra a fração percentual F de luz polarizada refletida por uma superfície em função do ângulo de incidência θ (em graus).

$\theta(^{\rm o})$	50	52	54	56	58	60
F(%)	2,75	1,45	0,50	0,15	0,20	0,85

Use um polinômio de grau 2 para estimar o ângulo θ_B (ângulo de Brewster) para o qual a fração F_B de luz polarizada é mínima. Plote os dados tabelados, o polinômio obtido e o ponto (θ_B, F_B) .

3. A velocidade u do ar escoando por uma superfície plana é medida a diferentes distâncias y da superfície. Ajuste uma curva a esses dados, supondo que a velocidade seja zero na superfície (y=0). Use seu resultado para determinar a tensão de cisalhamento ($\mu du/dy$) na superfície ($\mu=1,8\times 10^{-5}N.s/m^2$)

y, m	0.002	0.006	0.012	0.018	0.024
u, m/s	0.287	0.899	1.915	3.048	4.299

4. A viscosidade dinâmica da água μ ($10^{-3}N.s/m^2$) está relacionada com a temperatura T (°C) da seguinte maneira

\overline{T}	0	5	10	20	30	40
μ	1.787	1.519	1.307	1.002	0.7975	0.6529

- (a) Plote esses dados.
- (b) Use interpolação para prever μ em $T = 7.5^{\circ}C$.
- (c) Use regressão polinomial para ajustar uma parábola aos dados e fazer a mesma previsão.

5. A taxa de arrasto $\dot{\varepsilon}$ é a taxa no tempo pela qual a deformação aumenta, e os dados de tensão a seguir foram obtidos de um procedimento de teste. Usando um ajuste por uma curva do tipo lei de potências,

$$\dot{\varepsilon} = B\sigma^m$$

determine os valores de B e m. Trace os resultados graficamente, incluindo a linearização.

$Taxa de arrasto, mim^{-1}$	0.0004	0.0011	0.0021	0.0031
Tenso, MPa	5.775	8.577	10.874	12.555