

MEHRAN UNIVERSITY OF ENGINEERING AND TECHNOLOGY, JAMSHORO Department of Electronics System Engineering SIGNALS & SYSTEMS

LAB # 15: OPEN ENDED LAB

Name Karan	Roll #	20ES062
Signature of Lab Tutor	Date	

OBJECTIVE(S)

#	Topic	# Of Lectures	CLO	Taxonomy level
1	To Perform Filters using MATLAB	3	4,5	P3,A4
	Functions		,-	- ,

OUTCOME(S)

•	An ability to use the techniques, skills, and modern	PLO5:Modern Tool Usage
	engineering tools necessary for engineering practice.	
•	An ability to communicate effectively (written/oral)	PLO10: Communication

LAB RUBRICS:

Performance Metric	Good (5-4)	Average (3-2)	Poor (1-0)	Score
Use of modern	Demonstrates	Demonstrates awareness	Unable to use modern	
engineering software	knowledge and	of modern engineering	engineering software to	
[PLO5]	application of modern	software through mostly	develop or interpret	
	engineering software	correct development and	computer programs to	
	through accurate	interpretation of	solve problems.	
	development and	computer programs to		
	interpretation of computer	solve problems, but may		
	programs to solve	contain minor mistakes		
	problems.	or syntax errors		
Level of understanding	Demonstration of full	At ease with content and	No grasp of information.	
of the learned skill	knowledge of the handout	able to elaborate and	Clearly no knowledge of	
[PLO5]	with explanations and	explain to some degree.	subject matter. No	
	elaboration.		questions are answered.	
			No interpretation made.	
Conducting	Has an excellent simulations	Has a good simulation skill	Has poor simulation skill in	
simulation [PLO5]	skill in the simulator. Always	in the simulator. Always	the simulator. Unable to	
	able to make the logical code	able to make the logical	make the logical code for the	
	for the given task.	code for the given task.	given task.	
Responsiveness to	Responds well, quick and	Generally responsive	Non-responsive at all or	
Questions/ Accuracy	very accurate all the time.	and accurate most of the	the candidate giving only	
[PLO10]		times.	one correct response of	
			viva voce questions.	
Documentation:	Report well organized,	Report reasonably well	Report not well	
contents and	Appropriately sectioned,	documented. May lack	organized, lack key	
organization [PLO10]	uses diagram/dscription	some minor aspects.	aspects.	
	when appropriate,			
	important issues clearly			
	stated.			

Total	

EQUIPMENT/SOFTWARE TOOL:

MATLAB - The Language of Technical Computing.

DISCUSSION AND SETUP:

Introduction:

Lab Tasks

Sinusoids using butterworth, chebyshev1, chebyshev2 and FIR filter. Please run them and generate plots. Youwill note that they all have unit amplitude

BUTTERWORTH FILTER:

Code:

```
%Filtering using a butterworth filter
clear;
%Generate a sine wave
% Define the parameters
freq1 = 10;
              % Frequency of the sine wave (in Hz)
freq2 = 50;
              % Frequency of the sine wave (in Hz)
               % Amplitude of the sine wave
amp =62;
time = 0:0.001:1; % Time vector (from 0 to 1 second with 0.001 sec step)
% Generate the sine wave1
sine_wave1 = amp*sin(2*pi*freq1*time);
sine_wave2 = amp*sin(2*pi*freq2*time);
combined sine = sine wave1 + sine wave2;
%Plot the sine waves
figure;
subplot(311)
plot(time, sine_wave1);
title("Sine Wave (10 Hz)")
ylabel('Amplitude');
subplot(312)
plot(time, sine_wave2);
title("Sine Wave (50 Hz)")
ylabel('Amplitude');
subplot(313)
plot(time, combined_sine);
title("Combined Sine (10 + 50 Hz)")
xlabel('Time (s)');
```

```
ylabel('Amplitude');
% Create a butterworth filter to remove the 50 Hz sine wave, what kind of
% filter do we need
%Cutoff frequency we need to use
fc = 10;
%Set sampling frequency of signal
fs = 200;
%Construct the butterworth filter
[b,a] = butter(20,fc/(fs/2));
%Plot the response
figure;
freqz(b,a,[],fs)
subplot(2,1,1)
title("Frequency response of a 20th order LP butterworth filter (Fc = 10)")
ylim([-100 20])
%Filter the combined signal
filtered_combined_sine = filter(b,a,combined_sine);
figure;
subplot(211)
plot(combined_sine)
ylabel("Amplitude")
title('Original signal')
subplot(212)
plot(filtered_combined_sine)
title('Filtered signal')
ylabel("Amplitude")
xlabel("Time")
dataIn = randn(1000,1);
dataOut = filter(b,a,dataIn);
```


CHEBYSHEV1 FILTER:

Code:

```
clear;
% Generate a sine wave
% Define the parameters
              % Frequency of the sine wave (in Hz)
freq1 = 10;
               % Frequency of the sine wave (in Hz)
freq2 = 50;
amp = 62; % Amplitude of the sine wave
time = 0:0.001:1; % Time vector (from 0 to 1 second with 0.001 sec
step)
% Generate the sine wave1
sine wave1 = amp*sin(2*pi*freq1*time);
sine wave2 = amp*sin(2*pi*freg2*time);
combined sine = sine wave1 + sine wave2;
% Plot the sine waves
figure;
subplot(311)
plot(time, sine wave1);
title("Sine Wave (10 Hz)")
ylabel('Amplitude');
subplot(312)
plot(time, sine wave2);
title("Sine Wave (50 Hz)")
ylabel('Amplitude');
subplot(313)
plot(time, combined sine);
title("Combined Sine (10 + 50 Hz)")
xlabel('Time (s)');
ylabel('Amplitude');
% Create a chebyshev1 filter to remove the 50 Hz sine wave
fc = 10; % Cutoff frequency we need to use
fs = 200; % Set sampling frequency of signal
[b,a] = cheby1(10,0.5, fc/(fs/2)); % Construct the cheby1 filter
% Plot the filter response
figure;
freqz(b,a,[],fs)
subplot(2,1,1)
title("Frequency response of a 10th order LP cheby1 filter (Fc = 10)")
```

```
ylim([-100 20])

% Filter the combined signal
filtered_combined_sine = filter(b,a,combined_sine);
figure;
subplot(211)
plot(combined_sine)
ylabel("Amplitude")
title('Original signal')

subplot(212)
plot(filtered_combined_sine)
title('Filtered signal (cheby1)')
ylabel("Amplitude")
xlabel("Time")
```


• CHEBYSHEV2 FILTER:

Source Code:

```
clear;
% Define the parameters
freq1 = 10;
                 % Frequency of the first sine wave (in Hz)
freq2 = 50;
                 % Frequency of the second sine wave (in Hz)
                 % Amplitude of the sine waves
amp = 62;
time = 0:0.001:1; % Time vector (from 0 to 1 second with 0.001 sec step)
% Generate the sine waves
sine_wave1 = amp*sin(2*pi*freq1*time);
sine_wave2 = amp*sin(2*pi*freq2*time);
% Combine the sine waves
combined_sine = sine_wave1 + sine_wave2;
% Plot the sine waves
figure;
subplot(311)
plot(time, sine_wave1);
title("Sine Wave (10 Hz)")
ylabel('Amplitude');
subplot(312)
plot(time, sine wave2);
title("Sine Wave (50 Hz)")
ylabel('Amplitude');
subplot(313)
plot(time, combined_sine);
```

```
title("Combined Sine (10 + 50 Hz)")
 xlabel('Time (s)');
 ylabel('Amplitude');
 % Create a Chebyshev Type II filter to remove the 50 Hz sine wave
 fc = 10;
                  % Cutoff frequency
 fs = 200;
                  % Sampling frequency
 [b,a] = cheby2(10,0.5, fc/(fs/2)); % Construct the filter
 % Plot the filter response
 figure;
 freqz(b,a,[],fs)
 subplot(2,1,1)
 title("Frequency Response of a 10th Order LP Chebyshev Type II Filter (Fc =
10)")
 ylim([-100 20])
 % Filter the combined signal
 filtered_combined_sine = filter(b,a,combined_sine);
 % Plot the original and filtered signals
 figure;
 subplot(211)
 plot(combined_sine)
 ylabel("Amplitude")
 title('Original Signal')
 subplot(212)
 plot(filtered_combined_sine)
 title('Filtered Signal (Chebyshev Type II)')
 ylabel("Amplitude")
 xlabel("Time")
```


• FIR FILTER:

Code:

```
% Define the filter specifications
passband_freq = 20; % Hz
stopband_freq = 40; % Hz
Fs = 200; % Hz

% Determine the filter order
f_norm = passband_freq / (Fs/2);
filter_order = 4 / f_norm;

% Design the filter using FIR1
b = fir1(filter_order, f_norm, 'low');
```

```
% Generate a test signal with a 50 Hz component
t = 0:1/Fs:1;
x = 62*sin(2*pi*50*t) + sin(2*pi*10*t); % 62 is my roll number
% Apply the filter to the signal
y = filter(b, 1, x);
% Plot the original and filtered signals
figure;
subplot(2,1,1);
plot(t, x);
xlabel('Time (s)');
ylabel('Amplitude');
title('Original Signal');
subplot(2,1,2);
plot(t, y);
xlabel('Time (s)');
ylabel('Amplitude');
title('Filtered Signal');
```

