Spaces

$$size(C) =$$
 $size(F)_x = size(F)_y = size(F)_z =$ $N_x + 2,$ $N_x + 1,$ $N_x + 2,$ $N_x + 2,$ $N_y + 2,$ $N_y + 2,$ $N_y + 1,$ $N_y + 2,$ $N_z + 2$ $N_z + 2$ $N_z + 2$ $N_z + 1$

Divergence

size(out) =

 $N_{x} + 2$,

 $N_{v} + 2$,

 $N_z + 2$

$$(Dq) \in C$$

$$q \in F$$

$$size(u) = N_x + 1,$$

$$N_y + 2,$$

$$N_z + 2$$

$$size(v) = N_x + 2,$$

$$N_y + 1,$$

$$N_z + 2$$

$$size(w) = N_z + 2$$

Cell data Gradient

$$(Gp) \in F$$
 $p \in C$

 $N_z + 1$

 $N_{v} + 2$, $N_z + 2$ $size(calculated)_v =$ size(in) = $N_{x} + 2$, $N_{x} + 2$, $N_{y} - 1$, $N_{v} + 2$, $N_z + 2$ $N_z + 2$ $size(calculated)_z =$ $N_{x} + 2$, $N_{y} + 2$, $N_z - 1$

 $N_x - 1$,

 $size(calculated)_x =$

Diagram for x calculation $size(out)_x =$ $N_{x} + 1$, $N_{y} + 2$, $N_z + 2$ $size(out)_y =$ $N_{x} + 2$, $N_{y} + 1$, $N_z + 2$ $size(out)_z =$ $N_{x} + 2$, $N_{y} + 2$,

Face data Gradient

 $size(G_F u)_x =$

 $size(G_F u)_v =$

 $N_{x} + 1$,

 $N_{y} + 2$,

 $N_z + 2$

 $N_{x} + 2$,

 $N_{y} + 1$,

 $N_z + 2$

$$(G_Fq) \in F \quad q \in C$$

Padding: tangential terms

 $N_x + 1$,

 $N_{v} + 2$,

 $N_{v} + 1$,

 $N_z + 2$

size(w) =

 $N_{x} + 2$,

 $N_{v} + 2$,

 $N_z + 1$

$$(G_Fq)\in F \quad q\in C$$

= modified stencil

= ordinary stencil

 $size\left(\frac{\partial u}{\partial x}\right) =$ size(u) =

$$N_x + 1$$
,

$$N_y + 2$$
,

$$N_z + 2$$

$$size\left(\frac{\partial u}{\partial y}\right) =$$

$$size(v) = \begin{cases} size(\sqrt{\partial y}) = \\ N_x + 2, \end{cases}$$

$$N_x + 1,$$

$$N_y$$
,

$$N_z + 2$$

$$size\left(\frac{\partial u}{\partial z}\right) =$$

$$N_x + 1$$
,

$$N_y + 2$$
, N_z

$$size(G_F u)_z = N_x + 2,$$

$$N_y + 2$$
, $N_z + 1$

Diagram for x calculation

Face data Laplacian

$$(L_F q) \in F \ q \in F$$

Padding: tangential terms

$$(L_Fq)\in F$$
 $q\in F$

$$size\left(\frac{\partial^2 u}{\partial x^2}\right) =$$

$$N_x + 1$$
, $N_x + 1$,

$$N_y + 2$$
, $N_y + 2$, $N_z + 2$

 $N_{v} + 1$,

$$size(v) = \begin{cases} \partial y^2 \\ N_x + 2, \end{cases}$$

$$N_x + 1,$$

$$N_y$$
, $N + 2$

$$N_z + 2$$

$$size(w) = \begin{cases} N_z + 2 \\ size(\frac{\partial^2 u}{\partial z^2}) = \end{cases}$$

$$N_x + 2$$
, $N_x + 1$,

$$N_y + 2$$
, $N_y + 2$, $N_z + 1$

$$V_x + 1$$
, $V_y + 2$,

 N_z

$$N_x + 1,$$

$$N_y + 2,$$

$$N_z + 2$$

$$size(Lq)_y = N_x + 2,$$

$$N_y + 1$$
,

$$N_z + 2$$

$$size(Lq)_z =$$

$$N_x + 2,$$

$$N_y + 2,$$

$$N_z + 1$$

= modified stencil

Face Average

$faceAve(q) \in F$

 $q \in F$

Padding: all terms

