

Øving 10: Høst 2014

Fluidmekanisk dipol

En kilde plassert i (-a,0) og et sluk plassert i (a,0), som vist nedenfor. Kilden og sluket har i tallverdi samme styrke m. Når $a \to 0, m \to \infty$ slik at $\lambda \equiv 2ma =$ konstant, får vi en dublett (dipol). Finn hastighetspotensialet

 Φ og strømfunksjonen Ψ i et punkt P med polarkoordinater (r, θ) i stor avstand fra dubletten. Skisser omtrentlig forløp av strømlinjer og ekvipotensiallinjer.

Potensialteori

Gitt en (utvendig) potensialstrømning rundt et hjørne AOB med utvendig vinkel $\alpha=3\pi/2$, som vist i ovenstående figur. Benytt polarkoordinater med r og θ med origo i O, hvor $\theta=-\pi/2$ langs OB og $\theta=\pi$ langs AO. Regn per lengdeenhet loddrett på papirplanet.

a

Vis at strømfunksjonen

$$\Psi = \mathcal{A}r^{\frac{2}{3}}\sin\left(\frac{2\theta}{3} + \frac{\pi}{3}\right),\tag{1}$$

hvor \mathcal{A} er en positiv konstant, tilfredstiller feltligningen for Ψ samt at den oppfyller grensebetningelsene på AO og AB.

b

Punktet P ligger på x-aksen, i avstand r = a fra O. Hvor stor er volumstrømmen Q mellom punktene O og P?

Solvind

Vi ønsker i denne oppgaven å studere solas korona basert på en hydrostatisk modell. Koronaen er en gass som strekker seg langt utenfor solas radius r_0 , som skissert nedenfor.

La r være den radielle koordinat og gå ut fra den statiske likevektsligningen

$$\frac{dp}{dr} = -\rho g,\tag{2}$$

hvor $\rho = \rho(r)$ og $g = GM/r^2$. Her er G Newtons gravitasjonskonstant og M er solas masse. Vi antar at koronaen kan beskrives som en ideel gass, slik at tilstandsligningen er gitt som

$$p = \rho RT,\tag{3}$$

hvor R er den spesifikke gasskonstanten for koronaen. Ved solas overflate er temperaturen T_0 .

 \mathbf{a}

Det oppgis at varmeledningsligningen for dette problemet reduseres til

$$\frac{d}{dr}\left(Kr^2\frac{dT}{dr}\right) = 0,\tag{4}$$

hvor den termiske konduktivitet $K = \alpha T^{\frac{5}{2}}$.

Finn herav T(r).

b

Bruk resultatet for T(r), sammen med 2 og 3, til å finne trykket p(r). Sett $p = p_0$ ved solas overflate.

 \mathbf{c}

Skisser trykket og temperaturen for $r > r_0$. Du vil her se at $p \neq 0$ når $r \to \infty$. Hva er den fysiske tolkningen av dette?