EXPONENTIAL:

1) CONDITION BASED EVALUATION OF EXPO EXPRESSIONS:

2007 Q1 *

(1) If
$$2^x \cdot 4^y = 32$$
 and $\frac{3^x}{9^y} = 3$, then $\frac{5^x}{125^y} =$

2012 Q1 *

(2) If
$$\frac{2^x - 2^{-x}}{2^x + 2^{-x}} = \frac{1}{3}$$
, then $x = \boxed{ }$

2) EXPO AS FUNCTIONS (MAXIMUM AND MINIMUM°

2012 Q2 ***

- 2. Take a point $P(a, e^{-a})$ (a > -1) on the curve $C : y = e^{-x}$. Let S(a) be the area of the triangle surrounded by the tangent line to C at P, the x-axis and the y-axis.
 - Find the function S(a).

2014 Q3 **

- 3. Consider the function $y = 8^x 9 \cdot 4^x + 15 \cdot 2^x$ of $x \ (-\infty < x < \infty)$. Fill in the blanks with the answers to the following questions.
 - Let X denote 2^x. Express y in terms of X.
 - (2) Calculate the local maximum and minimum of y, and the values of X in (1) at which y attains them.
- (3) Calculate the global maximum and minimum of y in the interval $0 \le x \le \log_2 7$, and the values of x at which y attains them.

(1)
$$y =$$

3) EXPO AS EQUATIONS:

(2) The real-number solution to the equation
$$2^{x+2} - 2^{-x} + 3 = 0$$
 is $x = \begin{bmatrix} \\ \\ \end{bmatrix}$.

LOGARITHMS:

1) EVALUATION OF LOG EXPRESSIONS:

2007 Q1 *

(3)
$$4 \log_2 \sqrt{2} - \frac{1}{2} \log_2 3 + \log_2 \frac{\sqrt{3}}{2} =$$

2012 Q1 **

(1) If
$$k = \frac{\log_7 9}{\log_7 4}$$
, then $2^{5k} = \boxed{}$.

2013 Q1 *

(5) If
$$3^x = 2^y = 5$$
, then $\frac{1}{x} + \frac{1}{y} = \log_5$

2015 Q1 *

(3) If
$$y = \log_2(x + \sqrt{x^2 + 1})$$
, then $2^y - 2^{-y} = \boxed{x}$.

2017 Q1 *

(1)
$$\log_{10} \frac{4}{5} + 2\log_{10} 5\sqrt{5} =$$

2) LOGARITHM AND INEQUALITIES:

2008 Q1*

		r	1		
(3)	The solution of the inequality $\log_2(x+1) \le 3$ is {	1	< <i>x</i> ≤	2	}
		S SS S	2	1	the market and

2014 Q1 *

(4) The solution to the inequality
$$\log_2 x + \log_2(x-2) < 4\log_{16} 8$$
, in the set of real numbers, is \bigcirc $< x < \bigcirc$

3) LOGARITHMS AND EQUATIONS:

2015 Q1 **

(1) If the equation
$$\log_{10}(ax)\log_{10}(bx) + 1 = 0$$
 with $a > 0, b > 0$ constants has a solution $x > 0$, it follows that $\frac{b}{a} \ge \boxed{0}$ or $\boxed{2}$ $\ge \frac{b}{a} > \boxed{3}$.

2016 Q1 *

(1) If
$$\log_3 6 - \log_9 x = \frac{1}{2}$$
, then $x =$

4) LOGARITHMS AS FUNCTIONS:
2010 Q7 *** partial presence only
2015 Q1 **
(4) The function $f(x) = \log_2(\log_3(\log_2(\log_3(\log_2 x))))$ has the interval
x > as its maximum domain on real numbers.

(6)	By log	$_{10} 2 \approx 0.3010$	and $\log_{10} 3 \approx 0.4771$, th	ne number	of digits of
	6^{100} is	1	, and its leading digit i	s 2	•

6) OTHER TYPES OF LOG EXERCISES:

2020 Q1 **

2019 Q1 **

(1) The largest one among natural numbers that are less than $\log_2 3 \cdot \log_3 4 \cdot \log_4 5 \cdot \dots \cdot \log_{2019} 2020$ is

Level 1:No uknown variables, straigtforward answer, mobilizes one concept at once*

Level 2:Inclusion of unknown variables which calls for more analysis, various condition, domains rahter than specific answers, mobilizes two to three concepts at once **

Level N:When the concept has partial presence***

Logarithms and exponentials have more presence than trigonometry, there was no presence of expo as inequalities, might appear next year,?