

7강: 선형회귀의 이해

인공지능 일반강좌: 기계학습의 이해(L2-1)

Contents

선형회귀 소개
경사 하강법
회귀와 과적합
보스턴 주택 가격 예측 데이터 적용
Regularization(규제) 선형모델
숙제/선형회귀 팁

회귀(Regression) 소개(1)

• 회귀의 역사

- ✓ 영국의 통계학자 ' 갈톤(Galton)'의 유전적 특성중에 부모와 자식의 키 관계
- √ "사람의 키는 평균 키로 회귀(Regression)하려는 경향을 가진다는 자연의 법칙이 있다"
- ✓ 회귀 분석은 데이터 값이 평균과 같은 일정한 값으로 돌아가려는 경향을 이용한 통계학 기법이다.

• 회귀에 대하여

- ✓ 대부분 알고리즘은 블랙박스처럼 사용 가능
- ✓ 하지만, 기본적인 모델이 작동하는 방식을 이해해야 함
- ✓ 이 장에서 다루는 주제는 대부분 신경망 설계, 훈련, 이해 의 핵심

회귀(Regression) 소개(2)

- 통계학 측면에서 회귀는
 - ✓ 독립변수는 기계학습/신경망에서 피처(특성)/입력에 해당하며
 - ✓ 종속변수는 기계학습/신경망에서 결정 값(target)/라벨(label)에 해당
- 지도학습은 2가지 유형으로 나눔
 - ✓ 회귀는 연속적인 숫자 값
 - ✓ 분류는 예측값이 카테고리와 같은 이산형 클래스 값
- 선형회귀
 - ✓ 가장 많이 사용되며, 실제 값과 예측 값의 차이(오류의 제곱)를 최소화하는 직선 형 회귀선을 최적화하는 방식
- 선형회귀는 규제(Regularization)에 대하여 분류 가능
 - ✓ 선형 회귀의 과적합을 해결하기 위해서 회귀 계수에 페널티 값을 적용

회귀(Regression) 소개(3)

- 대표적인 선형회귀 모형
 - ✓ 일반 선형 회귀는 규제를 적용하기 않음
 - ✓ 릿지(Ridge) 회귀는 선형회귀에 L2 규제를 추가한 모델
 - L2 규제는 회귀 계수 값의 예측 영향도를 감소시키기 위해 회귀 계수를 작게 만듬
 - ✓ 라쏘(Lasso) 회귀는 선형회귀에 L1 규제를 적용한 모델
 - L1 규제는 예측 영향력이 작은 피처의 회귀 계수를 0으로 만듬. 피처 선택 가능
 - ✓ 엘라스틱(ElaticNet) 회귀는 L1과 L2가 결합한 모델.
 - 주로 피처가 많은 모델에 적용되며, L1 규제로 피처를 줄이고, 동시에 L2 규제 적용
 - ✓ 로지스틱 회귀 (Logistic Regression)은 회귀라는 이름이 있지만, 사실은 분류 에 사용되는 선형모델.
 - 강력한 분류 알고리즘.
 - 이진분류 뿐만 아니라 희소영역의 분류에서 뛰어난 예측 성능을 보임

회귀(Regression) 소개(4)

- 단순 선형회귀를 통한 회귀의 이해
 - ✓ 단순 선형회귀는 1개의 독립변수, 1개의 종속변수.
 - ✓ (예) 주택 가격이 주택의 크기로만 결정된다고 해보면,

회귀(Regression) 소개(7)

최적의 회귀 모델은 전체 데이터의 잔차(오차) 합이 최소가 되는 모델을 만드는 것임!

비용 최소화 _ 경사 하강법(1)

• 경사 하강법 (Gradient Descent)

비용 최소화 _ 경사 하강법(2)

$$RSS(w_0, w_1) = \frac{1}{N} \sum_{i=1}^{N} (y_i - (w_o + w_1 \times x_i))^2$$

$$\frac{\partial \text{RSS}(w_0, w_1)}{\partial w_1} = \frac{2}{N} \sum_{i=1}^{N} -x_i \times (y_i - (w_o + w_1 \times x_i)) = -\frac{2}{N} \sum_{i=1}^{N} x_i * (\text{real}_i - \text{pred}_i)$$

$$\frac{\partial RSS(w_0, w_1)}{\partial w_0} = \frac{2}{N} \sum_{i=1}^{N} -(y_i - (w_o + w_1 \times x_i)) = -\frac{2}{N} \sum_{i=1}^{N} (real_i - pred_i)$$

$$w=w-\eta \sum_{i=1}^{N} (\mathrm{real_i}-\mathrm{pred_i})$$

ਪੈਰਫ਼ਿਵਪੀ $\eta \sim \mathrm{learning}$ rate

비용 최소화 _ 경사 하강법(3)

- 데이터를 학습하는 방법으로 배치(Batch)
 - ✓ 매 경사 하강법 스탭에서 전체 훈련 세트 (X)에 대해 계산
 - ✓ 전체 입력 데이터를 훈련에 사용해서 큰 메모리 필요, 계산 시간 오래 걸림

$$\frac{\partial}{\partial \theta_j} \text{MSE}(\mathbf{\theta}) = \frac{2}{m} \sum_{i=1}^{m} \left(\mathbf{\theta}^T \mathbf{x}^{(i)} - y^{(i)} \right) x_j^{(i)}$$

$$\theta^{(\text{next step})} = \theta - \eta \nabla_{\theta} MSE(\theta)$$

비용 최소화 _ 경사 하강법(4)

경사 하강법을 이용한 회귀의 간단한 예제 200개의 데이터을 이용하여 y=4x+6에 근사하시오.

```
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline

np.random.seed(0)
X = 2 * np.random.rand(300,1)
y = 6 +4 * X+np.random.randn(300,1)
plt.scatter(X, y)
```


비용 최소화 _ 경사 하강법(5)

```
# w1 과 w0 를 업데이트 할 w1_update, w0_update를 반환.
def get weight updates(w1, w0, X, y, learning rate=0.01):
   N = Ien(v)
   # 먼저 w1 update. w0 update를 각각 w1. w0의 shape와 동일한 크기를 가진 0 값으로 초기화
   w1 update = np.zeros like(w1)
   w0_update = np.zeros_like(w0)
   # 예측 배열 계산하고 예측과 실제 값의 차이 계산
   y_pred = np.dot(X, w1.T) + w0
   diff = y-y_pred
   # wO update를 dot 행렬 연산으로 구하기 위해 모두 1값을 가진 행렬 생성
   w0_factors = np.ones((N, 1))
   # w1과 w0을 업데이트할 w1_update와 w0_update 계산
   w1\_update = -(2/N)*learning\_rate*(np.dot(X.T, diff))
   w0\_update = -(2/N)*learning\_rate*(np.dot(w0\_factors.T, diff))
   return w1_update, w0_update
```

비용 최소화 _ 경사 하강법(6)

```
# 입력 인자 iters로 주어진 횟수만큼 반복적으로 w1과 w0를 업데이트 적용함.

def gradient_descent_steps(X, y, iters=10000):
# w0와 w1을 모두 0으로 초기화.
w0 = np.zeros((1,1))
w1 = np.zeros((1,1))
# 인자로 주어진 iters 만큼 반복적으로 get_weight_updates() 호출하여 w1, w0 업데이트 수행.
for ind in range(iters):
    w1_update, w0_update = get_weight_updates(w1, w0, X, y, learning_rate=0.01)
    w1 = w1 - w1_update
    w0 = w0 - w0_update

return w1, w0
```

비용 최소화 _ 경사 하강법(7)

```
def get_cost(y, y_pred):
    N = len(y)
    cost = np.sum(np.square(y - y_pred))/N
    return cost

w1, w0 = gradient_descent_steps(X, y, iters=1000)
print("w1:{0:.3f} w0:{1:.3f}".format(w1[0,0], w0[0,0]))

y_pred = w1[0,0] * X + w0
print('Gradient Descent Total Cost:{0:.4f}'.format(get_cost(y, y_pred)))
```

w1:3.919 w0:5.964 Gradient Descent Total Cost:0.9837

비용 최소화 _ 경사 하강법(8)

```
plt.scatter(X, y)
plt.plot(X,y_pred)
```

[<matplotlib.lines.Line2D at 0x1ce5ef1d208>]

전체 데이터를 사용하는 것은 학습에 시간이 많이 소요된다.

비용 최소화 _ 경사 하강법(9)

실전에서는 확률론적 경사 하강법을 사용한다.

```
def stochastic_gradient_descent_steps(X, y, batch_size=10, iters=1000):
   w0 = np.zeros((1.1))
   w1 = np.zeros((1,1))
   prev_cost = 100000
   iter index =0
   for ind in range(iters):
       np.random.seed(ind)
       # 전체 X, v 데이터에서 랜덤하게 batch size만큼 데이터 추출하여
       # sample X, sample v로 저장
       stochastic random index = np.random.permutation(X.shape[0])
       sample X = X[stochastic random index[0:batch size]]
       sample v = v[stochastic random index[0:batch size]]
       # 랜덤하게 batch size만큼 추출된 데이터 기반으로
       # w1 update. w0 update 계산 후 업데이트
       w1_update, w0_update = get_weight_updates(w1, w0, sample_X, sample_y, learning_rate=0.01)
       w1 = w1 - w1 update
       w0 = w0 - w0_update
   return w1, w0
```

비용 최소화 _ 경사 하강법(10)

```
w1, w0 = stochastic_gradient_descent_steps(X, y, iters=1000)
print("w1:",round(w1[0,0],3),"w0:",round(w0[0,0],3))

y_pred = w1[0,0] * X + w0
print('Stochastic Gradient Descent Total Cost:{0:.4f}'.format(get_cost(y, y_pred)))
```

w1: 3.973 w0: 5.92

Stochastic Gradient Descent Total Cost:0.9869

확률론적 경사 하강법에 따른 비용함수 계산. 배치 방법의 비용함수는 98.37%이지만, 데이터 개수가 300일 경우 확률론적 경사 하강법이 약간 우수한 성능을 보임.

실전에서는 정확도 보다는 빅데이터를 처리할 경우 전체 데이터를 처리하는데 필요한 계산시간이 중요해진다.

신경망에서는 GPU 고속처리가 필요하며, Mini-Batch Stocastic Gradient Descent 방법 등이 사용된다.

선형회귀 (Linear Regression)

• 선형 모델은 입력 피처의 웨이트 된 합과 바이어스 항으로 구성

모델 학습 데이터를 가장 잘 피팅(fit)하는 파라미터를 찾자.
 ✓ 오차를 이용. MSE, RMSE(Root Mean Square Error)가 최소가 되도록

$$\mathrm{MSE}(\mathbf{X},h_{\mathbf{\theta}}) = \frac{1}{m} \sum_{i=1}^{m} \left(\mathbf{\theta}^T \mathbf{x}^{(i)} - y^{(i)}\right)^2$$
 벡터 표현, m은 입력 데이터 개수
$$\widehat{\mathbf{\theta}} = \left(\mathbf{X}^T \mathbf{X}\right)^{-1} \quad \mathbf{X}^T \quad \mathbf{y}$$
 타켓 값

경사 하강법 - 확률론적 (1)

```
Setup
import sys
assert sys.version_info >= (3, 5)
                                          • 공통 모듈을 임포트
import sklearn
                                          • 파이썬 3.5 이상
assert sklearn.__version__ >= "0.20"

    사이킷런 ≥0.20.

# Common imports
import numpy as np
import os
# to make this notebook's output stable across runs
np.random.seed(99)
# To plot pretty figures
%matplotlib inline
import matplotlib as mpl
import matplotlib.pyplot as plt
mpl.rc('axes', labelsize=14)
mpl.rc('xtick', labelsize=12)
mpl.rc('ytick', labelsize=12)
```

경사 하강법 - 확률론적 (2)

```
import numpy as np

X = 2 * np.random.rand(100, 1)
y = 4 + 3 * X + np.random.randn(100, 1)

plt.plot(X, y, "b.")
plt.xlabel("$x_1$", fontsize=18)
plt.ylabel("$y$", rotation=0, fontsize=18)
plt.axis([0, 2, 0, 15])
save_fig("generated_data_plot")
plt.show()
```

Saving figure generated_data_plot

경사 하강법 - 확률론적 (3)

```
X_b = np.c_[np.ones((100, 1)), X]
                                                                     역행렬을 구하고,
theta_best = np.linalg.inv(X_b.T.dot(X_b)).dot(X_b.T).dot(y
                                                                     dot()로 행렬 곱셈 수행
theta best
array([[4.6263185], -----
                                                thea 0
       [2.46782729]]) ------
                                                thea 1
X_{new} = np.array([[0], [2]])
X_{new_b} = np.c_{np.ones((2, 1)), X_{new}}
y predict = X new b.dot(theta best)
y_predict
                                                   14
array([[4.6263185],
                                                   12
       [9.56197309]])
                                                   10
                                                    8
plt.plot(X_new, y_predict, "r-")
plt.plot(X, y, "b.")
plt.axis([0, 2, 0, 15])
plt.show()
                                                        0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
```

경사 하강법 - 확률론적 (4)

```
from sklearn.linear_model import LinearRegression
lin_reg = LinearRegression()
lin_reg.fit(X, y)
lin_reg.intercept_, lin_reg.coef_
(array([4.6263185]), array([[2.46782729]]))
lin_reg.predict(X_new)
                                                                 최소제곱함수
array([[4.6263185],
                                                                 (least square)
      [9.56197309]])
theta_best_svd, residuals, rank, s = np.linalg.lstsq(X_b, y, rcond=1e-6)
theta best svd
array([[4.6263185],
                                                                              SVM 분류기
       [2.46782729]])
                                           참고, 역핼렬 계산은 행렬 크기의 O(3) 소요
np.linalg.pinv(X_b).dot(y)
array([[4.6263185],
       [2.46782729]])
                                        역 벡터를 구하는 함수
                                        Pseudoinverse (Moore-Ponrose inverse)
```

경사하강 학습률(eta)

경사 하강법 - 확률론적 (5)

배치(Batch) 경사 하강법

```
eta = 0.1
n_iterations = 1000
m = 100
theta = np.random.randn(2,1)
for iteration in range(n_iterations):
    gradients = 2/m * X_b.T.dot(X_b.dot(theta) - y)
    theta = theta - eta * gradients
theta
array([[4.6263185],
       [2.46782729]])
X_new_b.dot(theta)
array([[4.6263185],
       [9.56197309]])
```

경사 하강법 - 확률론적 (6)

배치(Batch) 경사 하강법

```
theta_path_bgd = []
def plot_gradient_descent(theta, eta, theta_path=None):
    m = len(X_b)
    plt.plot(X, y, "b.")
    n iterations = 1000
    for iteration in range(n_iterations):
         if iteration < 10:</pre>
             y predict = X new b.dot(theta)
             style = "b-" if iteration > 0 else "r--"
             plt.plot(X_new, y_predict, style)
        gradients = 2/m * X_b.T.dot(X_b.dot(theta) - y)
         theta = theta - eta * gradients
         if theta path is not None:
             theta path.append(theta)
    plt.xlabel("$x_1$", fontsize=18)
    plt.axis([0, 2, 0, 15])
    plt.title(r"$\text{\text{\text{weta}}}= {\}$\text{\text{\text{s}}}\text{.format(eta)}, fontsize=16)
```

경사 하강법 - 확률론적 (7)

배치(Batch) 경사 하강법

적절한 학습률은 어떻게 구할까?

- 1) 답은 그리드서치 하면 된다. 하지만 무엇이 문제일까?
- 2) 대안은 허용오차를 설정하여 조기 종료

경사 하강법 - 확률론적 (8)

- 확률적 경사하강법(Stochastic Gradient Descent) 장점
 - ✓ 매 스텝에서 딱 1개의 샘플을 무작위로 선택하여 하나의 샘플의 경사하강 계산
 - ✓ 계산이 확실히 빠르다
 - ✓ 큰 훈련 데이터도 학습이 가능하다
 - ✓ 배치 경사하강법보다 불안정한 계산 결과
 - 최소점 근처에서 비교적 큰 요동이 발생함
 - ✓ 전역 최소값을 찾을 가능성이 배치 경사하강법보다 높다.
 - ✓ 무작위성은 지역 최소값을 탈출시켜서 좋지만, 전역에는 다다르지 못하게 한다
 - 해결방법은 어닐링(Annealing)

경사 하강법 - 확률론적 (9)

```
무작위 반복횟수
n epochs = 50
t0. t1 = 5.50
def learning_schedule(t):
    return t0 / (t + t1)
theta = np.random.randn(2,1)
for epoch in range(n_epochs):
    for i in range(m): ----- 입력데이터개수
        if epoch = 0 and i < 20:
           y predict = X new b.dot(theta)
           style = b- if i > 0 else r-
           plt.plot(X new, y predict, style)
        random_index = np.random.randint(m)
        xi = X b[random index:random index+1]
        yi = y[random_index:random_index+1]
        gradients = 2 * xi.T.dot(xi.dot(theta) - yi)
        eta = learning_schedule(epoch * m + i)
        theta = theta - eta * gradients
        theta_path_sgd.append(theta)
```

경사 하강법 - 확률론적 (10)

무작위 선택으로 한 샘플은 주어진 한 에포크에서 여러 번 선택될 수 있음

경사 하강법 - 확률론적 (11)

- 미니배치 장점
 - ✓ 각 스텝에서 일부 미니배치라 부르는 작은 데이터 세트로 학습
 - ✓ 미니배치 경사하강법은 확률적 경사하강법 보다 덜 불규칙하다

다항회귀와 과적합(1)

• 다항회귀는 2차 3차 방정식과 같은 다항식으로 표현 ✓ 다항회귀는 선형회귀이지, 비선형 회귀는 아니다.

$$y = w_0 + w_1 * x_1 + w_2 * x_2 + w_3 * x_1 * x_2 + w_4 * x_1^2 + w_5 * x_2^2$$

target y에 대하여 단순 선형 회귀 직선형 보다 다항 회귀 곡선형으로 표현이 더 예측 성능이 높다

다항회귀와 과적합(2)

```
import numpy as np
import numpy.random as rnd
np.random.seed(42)

m = 300
X = 6 * np.random.rand(m, 1) - 3
y = 0.5 * X**2 + 0.3*X + 2 + np.random.randn(m, 1)
```

```
y = 2 + 0.3 * x + 0.5 * x^{2}

x = -3 + 6 * \text{np.random.rand}(300, 1)
```

```
plt.plot(X, y, "b.")
plt.xlabel("$x_1$", fontsize=18)
plt.ylabel("$y$", rotation=0, fontsize=18)
plt.axis([-3, 3, 0, 10])
save_fig("quadratic_data_plot")
plt.show()
```


다항회귀와 과적합(3)

```
from sklearn.preprocessing import PolynomialFeatures
poly_features = PolynomialFeatures (degree=2, include_bias=False)
                                       이 클래스를 통해서 피처를 다항식 피처로 변환함
X_poly = poly_features.fit_transform(X)
print('x[0]=',X[0])
print('x_ploy[0]=',X_poly[0])
x[0] = [-0.75275929]
x_ploy[0] = [-0.75275929 0.56664654]
lin_reg = LinearRegression()
lin_reg.fit(X_poly, y)
lin_reg.intercept_, lin_reg.coef_
(array([2.02145529]), array([[0.34309641, 0.48892735]]))
```

다항회귀와 과적합(4)

```
X_new=np.linspace(-3, 3, 100).reshape(100, 1)
X_new_poly = poly_features.transform(X_new)
y_new = lin_reg.predict(X_new_poly)
plt.plot(X, y, "b.")
plt.plot(X_new, y_new, "r-", linewidth=2, label="Predictions")
plt.xlabel("$x_1$", fontsize=18)
plt.ylabel("$y$", rotation=0, fontsize=18)
plt.legend(loc="upper left", fontsize=14)
plt.axis([-3, 3, 0, 10])
save_fig("quadratic_predictions_plot")
plt.show()
```

Saving figure quadratic_predictions_plot

다항회귀와 과적합(5)

다항함수의 과적합을 알아보기 위해서, 다항식의 개수를 300, 2, 1개로 수정함

```
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import Pipeline
for style, width, degree in (("g-", 1, 300), ("b---", 2, 2), ("r-+", 2, 1)):
   polybig_features = PolynomialFeatures(degree=degree, include_bias=False)
   std_scaler = StandardScaler()
   lin_reg = LinearRegression()
   polynomial_regression = Pipeline([
            ("poly_features", polybig_features),
            ("std_scaler", std_scaler),
            ("lin reg", lin reg),
   polynomial_regression.fit(X, y)
   y_newbig = polynomial_regression.predict(X_new)
   plt.plot(X_new, y_newbig, style, label=str(degree), linewidth=width)
```

다항회귀와 과적합(6)

```
plt.plot(X, y, "b.", linewidth=3)
plt.legend(loc="upper left")
plt.xlabel("$x_1$", fontsize=18)
plt.ylabel("$y$", rotation=0, fontsize=18)
plt.axis([-3, 3, 0, 10])
save_fig("high_degree_polynomials_plot")
plt.show()

- 그차 다항회귀 모델의
과적합
- 고차 다항회귀 모델의
고차 다항회귀 모델의
소착합
- 고차 다항회귀 모델의
- 과적합
- 고차 다항회귀를 적용하면
선형회귀보다 더 훈련데이터를
잘맞춤
```

Saving figure high_degree_polynomials_plot

다항회귀와 과적합(7)

저편향/저분산

- 예측 결과가 실제 결과에 매우 잘 접근.
- 아주 뛰어난 성능을 보여줌.

Low Bias

고편향/저분산

- 실제 결과에서 벗어나면서도, 예측이 특정부분에 집중되어 있다.

High Bias

저편향/고분산

- 예측이 실제 결과 중심으로 넓게 분포

고편향/고분산

 예측 결과를 벗어나면서도 실제 결과 중심으로 넓게 분포

다항회귀와 과적합(8)

편향-분산 트레이드오프(trade off)

다항회귀와 과적합(8)

과적합을 해소 하기 위해서는 데이터를 추가하면서 오차의 추이를 살펴봄

과소적합 대표사례

- RMSE 값이 높다
- 데이터가 증가할수록 검증과 훈련은 좁아짐

과대적합 대표사례

- RMSE 값이 상대적으로 작다 (이미 훈련됨)
- 데이터가 증가해도 검증과 훈련 간격은 감소 없음

보스턴 주택가격예측(1)

- 회귀 평가 지표
 - ✓ MSE
 - ✓ MAE
 - **✓** RMSE
 - ✓ R2

$$MAE = \frac{1}{N} \sum_{i=1}^{N} |Y_i - \hat{Y}_i|$$

MSE =
$$\frac{1}{N} \sum_{i=1}^{N} (Y_i - \hat{Y}_i)^2$$

RMSE =
$$\sqrt{\frac{1}{N} \sum_{i=1}^{N} (Y_i - \hat{Y}_i)^2}$$

$$R^2 = \frac{\text{pred Variance}}{\text{real Variance}}$$

보스턴 주택가격예측(2)

sklearn.linear_model.LinearRegression

 $class \ \, sklearn.linear_model. \ \, LinearRegression(fit_intercept=True, normalize=False, copy_X=True, n_jobs=None)$

[source]

Ordinary least squares Linear Regression.

LinearRegression fits a linear model with coefficients w = (w1, ..., wp) to minimize the residual sum of squares between the observed targets in the dataset, and the targets predicted by the linear approximation.

Parameters:

fit_intercept : bool, optional, default True

Whether to calculate the intercept for this model. If set to False, no intercept will be used in calculations (i.e. data is expected to be centered).

보스턴 주택가격예측(3)

Boston 데이타셋 크기: (506, 14)

```
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
%matplotlib inline
from scipy import stats
from sklearn.datasets import load_boston
# boston 데이터셋 로드
boston = load_boston()
# boston 데이타셋 DataFrame 변환
bostonDF = pd.DataFrame(boston.data , columns = boston.feature_names)
# boston dataset의 target array는 주택 가격임. 이를 PRICE 컬럼으로 DataFrame에 추가함.
bostonDF['PRICE'] = boston.target
print('Boston 데이타셋 크기:',bostonDF.shape)
bostonDF.head()
```

보스턴 주택가격예측(4)

- CRIM: 지역별 범죄 발생률
- ZN: 25,000평방피트를 초과하는 거주 지역의 비율
- INDUS: 비상업 지역 넓이 비율
- CHAS: 찰스강에 대한 더미 변수(강의 경계에 위치한 경우는 1, 아니면 0)
- NOX: 일산화질소 농도
- RM: 거주할 수 있는 방 개수
- AGE: 1940년 이전에 건축된 소유 주택의 비율
- DIS: 5개 주요 고용센터까지의 가중 거리
- RAD: 고속도로 접근 용이도
- TAX: 10,000달러당 재산세율
- PTRATIO: 지역의 교사와 학생 수 비율
- B: 지역의 흑인 거주 비율
- LSTAT: 하위 계층의 비율
- MEDV: 본인 소유의 주택 가격(중앙값)

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT	PRICE
0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1.0	296.0	15.3	396.90	4.98	24.0
1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2.0	242.0	17.8	396.90	9.14	21.6
2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2.0	242.0	17.8	392.83	4.03	34.7
3	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3.0	222.0	18.7	394.63	2.94	33.4
4	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3.0	222.0	18.7	396.90	5.33	36.2

보스턴 주택가격예측(5)

```
bostonDF.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 506 entries, 0 to 505
Data columns (total 14 columns):
CRIM
           506 non-null float64
ZN.
           506 non-null float64
INDUS
           506 non-null float64
           506 non-null float64
CHAS
NOX
           506 non-null float64
RM
           506 non-null float64
AGE
           506 non-null float64
DIS
           506 non-null float64
RAD
           506 non-null float64
TAX
           506 non-null float64
PTRAT I O
           506 non-null float64
В
           506 non-null float64
LSTAT
           506 non-null float64
PRICE
           506 non-null float64
dtypes: float64(14)
memory usage: 55.4 KB
```

보스턴 주택가격예측(6)

보스턴 주택가격예측(7)

Variance score: 0.757

```
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error , r2_score
y_target = bostonDF['PRICE']
X data = bostonDF.drop(['PRICE'],axis=1,inplace=False)
X_train , X_test , y_train , y_test = train_test_split(X_data , y_target ,test_size=0.3, random_state=156)
# Linear Regression OLS로 학습/예측/평가 수행.
Ir = LinearRegression()
Ir.fit(X train ,y train )
y_preds = Ir.predict(X_test)
mse = mean_squared_error(y_test, y_preds)
rmse = np.sqrt(mse)
print('MSE : {0:.3f} , RMSE : {1:.3F}'.format(mse , rmse))
print('Variance score : {0:.3f}'.format(r2_score(y_test, y_preds))) ------ R2 스코어 값
MSE: 17.297, RMSE: 4.159
```

46

보스턴 주택가격예측(8)

```
coef_ 속성은 회귀 계수 값만 가지고
print('절편 값:', Ir. intercept )
                                              있으므로, 이를 피처별 회귀 계수 값으로
print('회귀 계수값:', np.round(Ir.coef_, 1))
                                              다시 매핑하고, 높은 값 순서로 출력.
절편 값: 40.9955951721646
회귀 계수값: [-0.1 0.1 0. 3. -19.8 3.4 0. -1.7 0.4 -0. -0.9 0.
 -0.61
# 회귀 계수를 큰 값 순으로 정렬하기 위해 Series로 생성. index가 컬럼명에 유의
coeff = pd.Series(data=np.round(|r.coef_, 1), index=X_data.columns)
coeff.sort values(ascending=False)
                        RM(거주 할 수 있는 방의 개수)은 양수로 계수가 가장 크다
RM
CHAS
          3.0
RAD
          0.4
ZΝ
          0.1
          0.0
         -0.0
TAX
AGE
        0.0
INDUS
       0.0
CRIM
         -0.1
LSTAT
        -0.6
PTRATIO
        -0.9
         -1.7
DIS
                        NOX(일산화질소의 농도) 음수(-) 값이 매우 크다
NOX
        -19.8
dtvpe: float64
```

보스턴 주택가격예측(9)

교차 검증 5개의 폴드 세트를 이용함.

```
from sklearn.model_selection import cross_val_score
y_target = bostonDF['PRICE']
X data = bostonDF.drop(['PRICE'].axis=1.inplace=False)
Ir = LinearRegression()
# cross val score( )로 5 Fold 셋으로 MSE 를 구한 뒤 이를 기반으로 다시 RMSE 구함.
neg_mse_scores = cross_val_score(lr, X_data, y_target, scoring="neg_mean_squared_error".cv = 5)
rmse_scores = np.sqrt(-1 * neg_mse_scores)
avg_rmse = np.mean(rmse_scores)
# cross_val_score(scoring="neg_mean_squared_error")로 반환된 값은 모두 음수
print(' 5 folds 의 개별 Negative MSE scores: ', np.round(neg mse scores, 2))
print(' 5 folds 의 개별 RMSE scores : ', np.round(rmse_scores, 2))
print(' 5 folds 의 평균 RMSE : {0:.3f} '.format(avg rmse))
5 folds 의 개별 Negative MSE scores: [-12.46 -26.05 -33.07 -80.76 -33.31]
5 folds 의 개별 RMSE scores : [3.53 5.1 5.75 8.99 5.77]
5 folds 의 평균 RMSE : 5.829
                                           교차 검증 평균 RMSE는 5.83%이고, 처음 계산 한 것은 4.16%이다.
                                           작은 숫자 일수록 예측 성능이 좋은 것이다.
                                           교차 검증 평균 RMSE 값이 더 높다는 것은
                                           무엇을 의미하는 것일까? (답은?)
```

규제 선형 모델(1)

- 좋은 선형모델
 - ✓ 모델의 비용함수인 MSE(혹은 RSS)를 최소화 하는 방법
 - ✓ 과적합을 방지하기 위해 회귀 계수 값이 커지는 것을 제어 하여 균형인 모델
- 비용함수의 목표

$$Cost(w) = \min(MSE(w) + \alpha * ||w||_2^2)$$

- 규제
 - ✓ 릿지 회귀는 L2에 규제를 적용함 즉 규제를 다음 항목에 적용.
 - ✓ 라쏘 회귀는 L1에 규제를 적용.

$$\alpha * ||w||_1$$

$$\alpha * ||w||_2^2$$

최적 모델을 위한 비용함수 구성 요소

학습데이터 잔차 오차 최소화

회귀 계수 크기를 규제(제어)

규제 선형 모델(2)

릿지회귀(L2 규제)

 $\alpha * ||w||_2^2$

규제 선형 모델 적용 : 보스턴 주택 가격 데이터

릿지규제 적용 Ridge

```
# 앞의 LinearRegression예제에서 분할한 feature 데이터 셋인 X data과
# Target 데이터 셋인 Y target 데이터셋을 그대로 이용
from sklearn.linear_model import Ridge
from sklearn.model_selection import cross_val_score
                                릿지 회귀에서 alpha 값은 10 사용 했는데, 왜 일까요? 다른 값은?
ridge = Ridge(alpha = 10
neg_mse_scores = cross_val_score(ridge, X_data, y_target, scoring="neg_mean_squared_error",
rmse_scores = np.sqrt(-1 * neg_mse_scores)
avg_rmse = np.mean(rmse_scores)
                                                                                   교차 검증 횟수 5회
print(' 5 folds 의 개별 Negative MSE scores: ', np.round(neg_mse_scores, 3))
print(' 5 folds 의 개별 RMSE scores : ', np.round(rmse_scores,3))
print(' 5 folds 의 평균 RMSE : {0:.3f} '.format(avg_rmse))
5 folds 의 개별 Negative MSE scores: [-11.422 -24.294 -28.144 -74.599 -28.517]
5 folds 의 개별 RMSE scores : [3.38 4.929 5.305 8.637 5.34 ]
5 folds 의 평균 RMSE : 5.518
                                   ▶ 릿지회귀 (alpha=10) RMSE=5.51%로 성능이 더 좋다?
```

규제 선형 모델(3)

릿지 회귀에서 alpha의 증가에 따른 RMSE 변화와 회귀계수의 변화

```
# Ridge에 사용될 alpha 파라미터의 값들을 정의
alphas = [0 , 0.1 , 1 , 10 , 100]

# alphas list 값을 iteration하면서 alpha에 따른 평균 rmse 구함.
for alpha in alphas:
    ridge = Ridge(alpha = alpha)

#cross_val_score를 이용하여 5 fold의 평균 RMSE 계산
    neg_mse_scores = cross_val_score(ridge, X_data, y_target, scoring="neg_mean_squared_error", cv = 5)
    avg_rmse = np.mean(np.sqrt(-1 * neg_mse_scores))
    print('alpha {0} 일 때 5 folds 의 평균 RMSE : {1:.3f} '.format(alpha,avg_rmse))
```

alpha 0 일 때 5 folds 의 평균 RMSE : 5.836 alpha 0.1 일 때 5 folds 의 평균 RMSE : 5.796 alpha 1 일 때 5 folds 의 평균 RMSE : 5.659 alpha 10 일 때 5 folds 의 평균 RMSE : 5.524 alpha 100 일 때 5 folds 의 평균 RMSE : 5.332

규제 선형 모델(4)

```
# 각 alpha에 따른 회귀 계수 값을 시각화하기 위해 5개의 열로 된 맷플롯립 축 생성
fig , axs = plt.subplots(figsize=(18,6) , nrows=1 , ncols=5)
# 각 alpha에 따른 회귀 계수 값을 데이터로 저장하기 위한 DataFrame 생성
coeff df = pd.DataFrame()
# alphas 리스트 값을 차례로 입력해 회귀 계수 값 시각화 및 데이터 저장. pos는 axis의 위치 지정
for pos , alpha in enumerate(alphas) :
   ridge = Ridge(alpha = alpha)
   ridge.fit(X_data , y_target)
   # alpha에 따른 피처별 회귀 계수를 Series로 변환하고 이를 DataFrame의 컬럼으로 추가.
   coeff = pd.Series(data=ridge.coef . index=X data.columns )
   colname='alpha:'+str(alpha)
   coeff df[colname] = coeff
   # 막대 그래프로 각 alpha 값에서의 회귀 계수를 시각화. 회귀 계수값이 높은 순으로 표현
   coeff = coeff.sort values(ascending=False)
   axs[pos].set_title(colname)
   axs[pos].set_xlim(-3,6)
   sns.barplot(x=coeff.values . v=coeff.index. ax=axs[pos])
# for 문 바깥에서 맷플롯립의 show 호출 및 alpha에 따른 피처별 회귀 계수를 DataFrame으로 표시
plt.show()
```

규제 선형 모델(5)

릿지 회귀에서 alpha의 증가에 따른 회귀 계수의 값은 지속적으로 작아짐.

규제 선형 모델(6)

```
ridge_alphas = [0 , 0.1 , 1 , 10 , 100]
sort_column = 'alpha:'+str(ridge_alphas[0])
coeff_df.sort_values(by=sort_column, ascending=False)
```

	alpha:0	alpha:0.1	alpha:1	alpha:10	alpha:100	
RM	3.804752	3.813177	3.849256	3.698132	2.331966	
CHAS	2.688561	2.671849	2.554221	1.953452	0.638647	
RAD	0.305655	0.303105	0.289650	0.279016	0.314915	
ZN	0.046395	0.046546	0.047414	0.049547	0.054470	
INDUS	0.020860	0.016293	-0.008547	-0.042745	-0.052626	
В	0.009393	0.009449	0.009754	0.010117	0.009471	
AGE	0.000751	-0.000212	-0.005368	-0.010674	0.001230	
TAX	-0.012329	-0.012415	-0.012907	-0.013989	-0.015852	
CRIM	-0.107171	-0.106612	-0.103622	-0.100352	-0.101451	
LSTAT	-0.525467	-0.526678	-0.534072	-0.560097	-0.661312	
PTRATIO	-0.953464	-0.941449	-0.876633	-0.798335	-0.829503	
DIS	-1.475759	-1.459773	-1.372570	-1.248455	-1.153157	
NOX	-17.795759	-16.711712	-10.793436	-2.374959	-0.263245	

▶ (소결)

릿지(Ridge) 회귀의 경우, alpha 값의 증가에 따라서 회귀 계수가 지속적으로 작아지고 있음을 알 수 있다.

하지만, Ridge 회귀의 경우는 회귀 계수를 0으로 만들지 않는다.

규제 선형 모델(7)

- 라쏘(Lasso) 회귀
 - ✓ 라쏘(Lasso) 회귀는 w에 페널티를 부여하는 것으로 L1 규제를 회귀에 적용
 - ✓ 릿지회귀가 L2 규제로 회귀 계수를 크게 감소하는 역할이라면,
 - ✓ L1 라쏘 규제는 불필요한 회귀 계수를 급격하게 감소하여 0으로 만듬
 - ✓ 라쏘는 꼭 필요한 피처(특성)만 선택하여 남김

규제 선형 모델(8)

라쏘에서 alpha를 변화시커서 출력을 살펴보는 함수를 만들자.

```
from sklearn.linear_model import Lasso, ElasticNet
# alpha값에 따른 회귀 모델의 폴드 평균 RMSE를 출력하고 회귀 계수값들을 DataFrame으로 반환
def get_linear_reg_eval(model_name, params=None, X_data_n=None, y_target_n=None, verbose=True):
   coeff df = pd.DataFrame()
   if verbose : print('####### ', model_name , '#######')
   for param in params:
       if model_name = 'Ridge': model = Ridge(alpha=param)
       elif model name == 'Lasso': model = Lasso(alpha=param)
       elif model name == 'ElasticNet': model = ElasticNet(alpha=param, 11 ratio=0.7)
       ned mse scores = cross val score(model, X data n.
                                         y_target_n, scoring="neg_mean_squared error", cv = 5)
       avg_rmse = np.mean(np.sqrt(-1 * neg_mse_scores))
       print('alpha {0}일 때 5 폴드 세트의 평균 RMSE: {1:.3f} '.format(param, avg_rmse))
       # cross_val_score는 evaluation metric만 반환하므로 모델을 다시 학습하여 회귀 계수 추출
       model.fit(X_data , y_target)
       # alpha에 따른 피처별 회귀 계수를 Series로 변환하고 이를 DataFrame의 컬럼으로 추가.
       coeff = pd.Series(data=model.coef , index=X data.columns )
       colname='alpha:'+str(param)
       coeff_df[colname] = coeff
   return coeff df
# end of get linear regre eval
```

규제 선형 모델(9)

라쏘에 대한 출력을 함

```
# 라쏘에 사용될 alpha 파라미터의 값들을 정의하고 gét_linear_reg_eval() 함수 호출
lasso_alphas = [ 0.07, 0.1, 0.5, 1, 3]
coeff_lasso_df =get_linear_reg_eval('Lasso', params=lasso_alphas, X_data_n=X_data, y_target_n=y_target)
```

Lasso

alpha 0.07일 때 5 폴드 세트의 평균 RMSE: 5.612 alpha 0.1일 때 5 폴드 세트의 평균 RMSE: 5.615 alpha 0.5일 때 5 폴드 세트의 평균 RMSE: 5.669 alpha 1일 때 5 폴드 세트의 평균 RMSE: 5.776 alpha 3일 때 5 폴드 세트의 평균 RMSE: 6.189 alpha=0.07 일대 가장 성능이 좋은 RMSE 5.61%를 얻음.

랏소보다 5.3% 높지만, 선형회귀 5.8% 보다 작은 값

규제 선형 모델(10)

라쏘에서 alpha를 증가할 때 회귀 계수의 변화는 줄어듬. 회기계수가 0도 있음.

		alpha:0.07	alpha:0.1	alpha:0.5	alpha:1	alpha:3	
F	RM	3.789725	3.703202	2.498212	0.949811	0.000000	
CHA	٩S	1.434343	0.955190	0.000000	0.000000	0.000000	
R/	۱D	0.270936	0.274707	0.277451	0.264206	0.061864	
7	ZN	0.049059	0.049211	0.049544	0.049165	0.037231	_
	В	0.010248	0.010249	0.009469	0.008247	0.006510	
NO	X	-0.000000	-0.000000	-0.000000	-0.000000	0.000000	
AC	3E	-0.011706	-0.010037	0.003604	0.020910	0.042495	
TA	λX	-0.014290	-0.014570	-0.015442	-0.015212	-0.008602	
INDU	JS	-0.042120	-0.036619	-0.005253	-0.000000	-0.000000	
CR	IM	-0.098193	-0.097894	-0.083289	-0.063437	-0.000000	
LST	ΑT	-0.560431	-0.568769	-0.656290	-0.761115	-0.807679	
PTRAT	10	-0.765107	-0.770654	-0.758752	-0.722966	-0.265072	
D	IS	-1.176583	-1.160538	-0.936605	-0.668790	-0.000000	

회귀 계수가 alpha=0.07 부터 0임

INDUS도 0으로 바뀜 CHAS도 0로 바뀜

조기종류 (Early Stopping)

- 반복 학습 알고리즘을 규제하는 방법중에 조기종료
 - ✓ 검증 에러가 최소값에 도달하면 바로 훈련을 중지함
 - ✓ 휼륭한 공짜 점심 (by Geoffrey Hinton)

검증 에러가 일정시간 동안 최소값보다 클 때 학습을 멈춤

(프로젝트) 선형회귀 최적 적용(1)

- 선형 회귀 모형 주의사항
 - ✓ 피처와 타깃 값이 정규 분포를 매우 선호함
 - ✓ 특히, 타싯이 정규 분포가 아닐 경우 성능에 매우 부정적인 영향을 끼침
- 선형 회귀를 위해 데이터 처리
 - ✓ 스케일링과 정규화를 하는 것이 일반적이다.
 - ✓ 스케일링과 정규화를 한다고 해서 예측 성능이 좋아지는 것은 아니고,
 - 사이킷런에서는 StandaradScaler 클래스를 이용하여
 - 타깃 값은 일반적으로 로그(log) 변환을 적용함

(프로젝트) 선형회귀 최적 적용(2)

- 프로젝트 (혹은 숙제)
- 최적 선형 회귀
 - ✓ 보스턴 주택 데이터 셋트를 사용하여, 최적의 선형회귀를 구해라
 - √ 정규화/스케일 적용
 - ✓ 최적의 alpha에서 최고 성능의 RMSE를 구하여라.

(프로젝트) 선형회귀 최적 적용(3)

```
from sklearn.preprocessing import StandardScaler, MinMaxScaler, PolynomialFeatures
# method는 표준 정규 분포 변환(Standard), 최대값/최소값 정규화(MinMax), 로그변환(Log) 결정
# p dearee는 다향식 특성을 추가할 때 적용. p dearee는 2이상 부여하지 않음.
def get_scaled_data(method='None', p_degree=None, input data=None):
   if method == 'Standard':
       scaled data = StandardScaler().fit transform(input data)
   elif method == 'MinMax':
       scaled_data = MinMaxScaler().fit transform(input data)
   elif method == 'Log':
       scaled_data = np.log1p(input data)
   else:
       scaled data = input data
   if p degree != None:
       scaled data = PolynomialFeatures(degree=p_degree,
                                      include bias=False).fit transform(scaled data)
   return scaled data
```

(프로젝트) 선형회귀 최적 적용(4)

(프로젝트) 선형회귀 최적 적용(5)

변환 유형:None, Polynomial Degree:None alpha 0.1일 때 5 폴드 세트의 평균 RMSE: 5.788 alpha 1일 때 5 폴드 세트의 평균 RMSE: 5.653 alpha 5일 때 5 폴드 세트의 평균 RMSE: 5.562 alpha 10일 때 5 폴드 세트의 평균 RMSE: 5.518

변환 유형:Standard, Polynomial Degree:None alpha 0.1일 때 5 폴드 세트의 평균 RMSE: 5.826 alpha 1일 때 5 폴드 세트의 평균 RMSE: 5.803 alpha 5일 때 5 폴드 세트의 평균 RMSE: 5.717 alpha 10일 때 5 폴드 세트의 평균 RMSE: 5.637

변환 유형:Standard, Polynomial Degree:2 alpha 0.1일 때 5 폴드 세트의 평균 RMSE: 8.827 alpha 1일 때 5 폴드 세트의 평균 RMSE: 6.871 alpha 5일 때 5 폴드 세트의 평균 RMSE: 5.889 alpha 10일 때 5 폴드 세트의 평균 RMSE: 5.485

변환 유형:MinMax, Polynomial Degree:None alpha 0.1일 때 5 폴드 세트의 평균 RMSE: 5.764 alpha 1일 때 5 폴드 세트의 평균 RMSE: 5.465 alpha 5일 때 5 폴드 세트의 평균 RMSE: 5.457 alpha 10일 때 5 폴드 세트의 평균 RMSE: 5.754

변환 유형:MinMax, Polynomial Degree:2 alpha 0.1일 때 5 폴드 세트의 평균 RMSE: 5.298 alpha 1일 때 5 폴드 세트의 평균 RMSE: 4.323 alpha 5일 때 5 폴드 세트의 평균 RMSE: 4.907 alpha 10일 때 5 폴드 세트의 평균 RMSE: 5.185

변환 유형:Log, Polynomial Degree:None alpha 0.1일 때 5 폴드 세트의 평균 RMSE: 4.770 alpha 1일 때 5 폴드 세트의 평균 RMSE: 4.676 alpha 5일 때 5 폴드 세트의 평균 RMSE: 4.729 alpha 10일 때 5 폴드 세트의 평균 RMSE: 4.836

(프로젝트) 선형회귀 최적 적용(6)

- Lasso, Ridge 등 최적의 alpha를 찾고
 - ✓ GridSearch, RandomSearch 가능
 - ✓ 최적의 alpha와 RMSE를 제시하시오.
 - ✓ 최적인 것을 증명할 수 있도록 그림(Matplotlib) 그려서 제출하시오.

정리 및 연습문제

- 퀴즈 및 숙제
 - ✓ 선형회귀의 장단점을 논해라 (BGD, SGD, Mini-BGD)
 - ✓ 훈련세트가 특성이 각기 다른 스케일로 구성되었다. 최적의 방법은
 - ✓ 로지스틱 회귀에서 로칼미너엄을 빠져나올 방법은?
 - ✓ 배치 경사 강하에서 에포크 마다 검증오차가 일정하게 상승한다면 문제점은?
 - ✓ 검증오차가 상승하면 미니매치 경사 하강법을 즉시 중단하는 것에 대하여
 - ✓ 다항회귀에서 검증과 훈련 오차가 사이 간격이 크다면 의미는

Thank You!

www.ust.ac.kr