COMP 3311: Database Management Systems

Lecture 21 Exercises Concurrency Control: Timestamp-based Protocols

Exercise 1: Use the <u>single version</u>, <u>timestamp-ordering protocol</u> to complete the following non-serializable schedule assuming the timestamps 1, 2, and 3 for transactions T_1 , T_2 , and T_3 , respectively. Show where the protocol will fail. Assume initial R/W timestamp of all items is 0.

X		Υ		Z	
RTS(X) =	WTS(X) =	RTS(Y) =	WTS(Y) =	RTS(Z) =	WTS(Z) =

T ₁ [TS=1]	T ₂ [TS=2]	T ₃ [TS=3]
read(X)		
	read(Y)	
	write(Y)	
,		write(Z)
write(X)		
	read(X)	
i i	write(X)	
		read(Y)
		write(Y)
write(Z)		

Exercise 2: Use the <u>multi-version</u>, <u>timestamp-ordering protocol</u> to complete the schedule of Exercise 1 assuming the timestamps 1, 2, and 3 for transactions T_1 , T_2 , and T_3 , respectively. Assume initial R/W timestamp of X_0 , Y_0 and Z_0 is 0.

X		
$RTS(X_0) = 0$	$WTS(X_0) = 0$	
RTS(X ₁) =	WTS(X ₁) =	
RTS(X ₂) =	$WTS(X_2) =$	

Υ			
$RTS(Y_0) = 0$	$WTS(Y_0) = 0$		
RTS(Y ₁) =	WTS(Y ₁) =		
RTS(Y ₂) =	$WTS(Y_2) =$		

Z			
$RTS(Z_0) = 0$	$WTS(Z_0) = 0$		
RTS(Z ₁) =	$WTS(Z_1) =$		
RTS(Z ₂) =	$WTS(Z_2) =$		

T ₁ [TS=1]	T ₂ [TS=2]	T ₃ [TS=3]
read(X)		
	read(Y)	
	write(Y)	
		write(Z)
write(X)		
	read(X)	
	write(X)	
		read(Y)
		write(Y)
write(Z)		

Do not upload this exercise sheet to Canvas.

Name:		1	Student#:	Date:
	Family/Last (PRINT)	Given/First (PRINT)		

COMP 3311: Database Management Systems

Lecture 21 Exercises Concurrency Control: Timestamp-based Protocols

Exercise 3: The following schedule is conflict serializable.

- (a) What is the equivalent serial schedule?
- (b) Assign appropriate timestamps to the transactions T_1 , T_2 , T_3 and T_4 so that the schedule is conflict serializable according to the <u>single version</u>, <u>timestamp-ordering protocol</u>. Assume initial R/W timestamp of all items is 0.

T ₁ [TS=]	<i>T</i> ₂ [TS=]	<i>T</i> ₃ [TS=]	T ₄ [TS=]
read(X)							
write(X)							
		read(X)					
				read(Y)			
				write(Y)			
		write(X)					
						read(Y)	
write(Y)							

Exercise 4: Use the <u>multi version</u>, <u>timestamp-ordering protocol</u> to complete the conflict serializable schedule of Exercise 3 assuming the timestamps 1, 2, 3, and 4 for transactions T_1 , T_2 , T_3 and T_4 , respectively. Show where the protocol will fail. Assume initial R/W timestamp of all items is 0.

X			
$RTS(X_0) = 0$	$WTS(X_0) = 0$		
RTS(X ₁) =	WTS(X ₁) =		
RTS(X ₂) =	WTS(X ₂) =		

Y		
$RTS(Y_0) = 0$	$WTS(Y_0) = 0$	
RTS(Y ₁) =	$WTS(Y_1) =$	
RTS(Y ₂) =	WTS(Y ₂) =	

T ₁ [TS=1]	T ₂ [TS=2]	T ₃ [TS=3]	T ₄ [TS=4]
read(X)			
write(X)			
	read(X)		
		read(Y)	
		write(Y)	
	write(X)		
			read(Y)
write(Y)			