Schriftliche Prüfung aus Energieversorgung, am 20.06.2012

and the second s		
Name/Vorname:	/ MatrNr./Knz.: /	,
	,	

1. Betriebsparameter einer Freileitung und Leistungskompensation (24 Punkte)

Auf einem Donaumast ist ein $380\ kV$ -Drehstromfreileitungssystem bestehend aus Viererbündeln mit den folgenden geometrischen Daten der Aufhängung aufgezogen (Koordinatenursprung = Mastfußpunkt):

Leiter A:
$$x = 6m$$
, $y = 25m$
Leiter B: $x = -7m$, $y = 20m$
Leiter C: $x = -4m$, $y = 28m$

Der gegenseitige Abstand der Leiter a im Viererbündel beträgt 30~cm. Der Querschnitt eines Leiterseils berechnet sich auf $176,714~mm^2$. Der spezifische Widerstand des Leitermaterials ist $0,0269~\Omega \cdot mm^2/m$. Der Verseilungsfaktor beträgt 1,07. Die Leitung ist 600km lang und verdrillt.

- a. (5) Wie groß ist die längenbezogene symmetrische Betriebsinduktivität der Leitung?
- b. (5) Wie groß ist die **komplexe Ausbreitungskonstante** γ unter der zusätzlichen Annahme, dass G'=0 S/km und G'=12,6 nF/km ist? Verwenden Sie die Näherung für die Dämpfungs- und Phasenkonstante $(R\ll\omega L,\ G\ll\omega C)$.
- c. (4) Wie groß ist der Wellenwiderstand der Leitung unter der gleichen Annahme wie im Punkt b?
- d. (6) Die Spannung am Leitungsende beträgt im **Leerlauf** (470,348-15,826j)kV, die Leitung muss daher kompensiert werden. Welche **Kompensationsart** soll gewählt werden, damit am Ende der Leitung der Spannungsanstieg unter 10% bleibt? Berechnen Sie das **Kompensationselement**.
- e. (4) Wie groß ist die **natürliche Leistung der kompensierten Leitung**, wenn sie als verlustlose Leitung angenommen wird (R' = 0 Ω /km, G' = 0 S/km)?

2. Wirtschaftlichkeitsvergleich (24 Punkte)

Über das als Versuchsanlage gebaute Solarkraftwerk "Gemasolar" (solarthermisches Kraftwerk mit Salzschmelze und Speicher) in Spanien sind folgende Angaben bekannt:

installierte Leistung 19,9 MW_{el} Errichtungskosten 230 Mio. € geschätzte Jahresenergieeinspeisung 110 GWh/a

leistungsabhängige Kosten 6% der Errichtungskosten pro Jahr

Um die Versuchsanlage beurteilen zu können, soll ein konventionelles GuD-Kraftwerk mit folgenden Daten betrachtet werden:

spezifische Errichtungskosten 650 €/kW_{el}
leistungsabhängige Kosten 95 €/kW_{el}a
Brennstoffkosten 0,40 €/m³ Erdgas
Heizwert von Erdgas H_{II} 30 MJ/m³

Gesamtwirkungsgrad 58 %

betriebsabhängige Kosten 0,001 €/kWh_{el}

Für beide Anlagen sollen eine Nutzungsdauer von 25 Jahren und ein Zinssatz am Kapitalmarkt von 7% gelten.

- a. (7) Ermitteln Sie die Stromgestehungskosten für das Versuchskraftwerk "Gemasolar".
- b. (4) Wie hoch sind die **Stromgestehungskosten des GuD-Kraftwerks**, wenn es die gleiche Volllaststundenzahl pro Jahr aufweist, wie das Versuchskraftwerk?
- c. (6) Wie hoch dürften die **spezifischen Errichtungskosten** von "Gemasolar" **maximal** sein, damit dieses mit dem konventionellen GuD-Kraftwerk konkurrieren kann?
- d. (7) Um zusätzliche 40 Mio. € könnte das Versuchskraftwerk "Gemasolar" mit größeren Speichern ausgestattet werden, wodurch sich die Volllaststundenzahl um 10% erhöht. Wäre dies eine sinnvolle Investition?

3. Fünf Sicherheitsregeln (4 Punkte)

Bringen Sie die fünf Sicherheitsregeln in die richtige Reihenfolge:

Benachbarte, unter Spannung stehende Teile abdecken oder abschranken
Gegen Wiedereinschalten sichern
Freischalten (d.h. allpoliges Trennen einer elektrischen Anlage von
spannungsführenden Teilen)
Spannungsfreiheit allpolig feststellen
Erden und kurzschließen

EV - 2012

4. Dreipoliger Kurzschluss (24 Punkte)

Die Netzeinspeisung weist folgende Kenndaten auf:

Nennspannung	U_{nQ}	110 kV
Kurzschlussleistung	$S_{kQ}^{"}$	4 GVA
Sicherheitsfaktor	С	1,1
Resistanz-Reaktanz-Verhältnis	R_Q / X_Q	0,3

Der Transformator weist folgende Kenndaten auf:

Primärspannung	U_1	110	kV
Sekundärspannung	U_2	30	kV
Nennscheinleistung	S_N	40	MVA
Kurzschlussspannung	u_k	0,12	
Kurzschlussverluste	P_k	430	kW

Die Leitung weist folgende Kenndaten auf:

Widerstandsbelag	R'	0,15	Ω/km
Induktivitätsbelag	L'	1	mH/km
Kapazitätsbelag	<i>C'</i>	10	nF/km
Länge	l	50	km

Am Ende der Leitung ereignet sich ein 3-poliger Kurzschluss.

- a. (3) Berechnen Sie die **Netzimpedanz** (Resistanz und Reaktanz) bezogen auf die Kurzschlussseite (Leitung).
- b. (3) Berechnen Sie die Transformatorimpedanz (Resistanz und Reaktanz) bezogen auf die Kurzschlussseite (Leitung).
- c. (2) Berechnen Sie die **Leitungsimpedanz** (Resistanz und Reaktanz) bezogen auf die Kurzschlussseite (Leitung).
- d. (3) Berechnen Sie die **Gesamtimpedanz** (Resistanz und Reaktanz) bezogen auf die Kurzschlussseite (Leitung).
- e. (4) Berechnen Sie den dreiphasigen **Anfangs-Kurzschlussstrom** $I_{k3p}^{"}$.
- f. (4) Berechnen Sie den maximalen **dreiphasigen Stoßstrom** i_p HINWEIS: $i_p=\sqrt{2}\left(1+e^{-t.R/L}\right)I_{k3p}^{"}$ "worst case" für $t~\cong~10~ms$
- g. (5) Wie hoch ist der Anfangs-Kurzschlussstrom $I_{\kappa 3p}^{r}$, wenn der dreipolige **Fehler** nicht am Ende der Leitung sondern auf der **Primärseite** des **Transformators** erfolgt?

EV - 2012

5. Wasserkraft (24 Punkte)

Ein Pumpspeicherkraftwerk weist folgende Kenndaten auf:

Volumen Obersee	V_{OS}	60	Mio. m³
Volumen Untersee	V_{US}	20	Mio. m³
Füllstand Obersee (des Volumens)		40	%
Füllstand Untersee (des Volumens)		75	%
mittlere Fallhöhe	h	231	m
Nenndurchfluss	Q_N	110	m³/s
Hydraulischer Wirkungsgrad	η_H	94	%
Turbinenwirkungsgrad	η_T	90	%
Pumpenwirkungsgrad	η_P	88	%
Elektrischer Wirkungsgrad	η_{el}	96	%
Eigenbedarfsfaktor	ε	2	%

Die mittlere Fallhöhe h und der Durchfluss Q sollen als konstant angenommen werden.

- a. (4) Welche potenzielle Energie weist der Speicherinhalt des Oberbeckens gegenüber dem Unterbecken auf?
- b. (4) Um wie viel °C würde die Temperatur des Speicherinhalts des Untersees steigen, wenn genau die potenzielle Energie aus Punkt (a) zugeführt wird?

HINWEIS:
$$c_{p Wasser} = 4.18 \frac{J}{g.K}$$

- c. (7) Wie hoch ist die **elektrische Nennleistung** P_{el} des Pumpspeicherkraftwerks im Turbinenbetrieb?
- d. (5) Wie lange kann unter den gegebenen Füllständen das Kraftwerk im Turbinenbetrieb gefahren werden?
 HINWEIS: es finden keine weiteren Zu- oder Abflüsse aus Ober- und Untersee statt.
- e. (4) Welche elektrische Energie wird in dem Zeitraum aus Punkt (d) abgegeben?