Combo 1 de teoremas

Emanuel Nicolás Herrador - November 2024

Teorema del Filtro Primo

Sea (L, s, i) un reticulado terna distributivo y F un filtro. Supongamos $x_0 \in L - F$. Entonces hay un filtro primo P tal que $x_0 \notin P$ y $F \subseteq P$.

Demostración

Consideremos $\mathcal{F} = \{F_1 : F_1 \text{ es un filtro}, x_0 \notin F_1 \text{ y } F \subseteq F_1\}$. Como $F \subseteq \mathcal{F}$, entonces $\mathcal{F} \neq \emptyset$ y, por lo tanto, (\mathcal{F}, \subseteq) es poset.

Sea C una cadena, vamos a ver que tiene cota superior:

- Si $C = \emptyset$, entonces todo elemento de \mathcal{F} es cota de C
- Si $C \neq \emptyset$, consideremos $G = \{x : x \in F_1 \text{ para } F_1 \in C\}$
 - Como $C \neq \emptyset$, existe un filtro $F_1 \in C$. Luego, por def. de filtro, $F_1 \neq \emptyset$. Por ello, $\exists x \in F_1$ y eso significa que $x \in G$ por lo que $G \neq \emptyset$.
 - Sean $x, y \in G$, entonces $\exists F_1, F_2 \in C : (x \in F_1 \land y \in F_2)$. Por def. de cadena, $F_1 \subseteq F_2 \lor F_1 \supseteq F_2$. Sin pérdida de generalidad, supongamos $F_1 \subseteq F_2$. Luego, $x, y \in F_2$ por lo que $x \ i \ y \in F_2$ por def. de filtro. Por ello, como $F_2 \subseteq G$, tenemos que $x, y \in G \Rightarrow x \ i \ y \in G$.
 - Sea $x \in G$, entonces $\exists F_1 : x \in F_1$. Sea $y \in L : x \leq y$, como $x \in F_1 \land x \leq y$, por def. de filtro $y \in F_1$. Como $F_1 \subseteq G$, entonces $y \in G$. Por ello, $x \in G \land x \leq y \Rightarrow y \in G$.
 - Debido a las tres propiedades anteriores, por def. tenemos que G es un filtro
 - Como $x_0 \notin F_1 \forall F_1 \in C$, claramente $x_0 \notin G$
 - Sea $F_1 \in C$, entonces $F_1 \in \mathcal{F}$, por lo que por def. $F \subseteq F_1$. Luego, como $F_1 \subseteq G$, entonces $F \subseteq G$.
 - Como G es un filtro, $x_0 \notin G$ y $F \subseteq G$, entonces $G \in \mathcal{F}$.
 - Luego, llegamos a que G es cota superior de C

Ahora, como (\mathcal{F}, \leq) es un poset y toda cadena de (\mathcal{F}, \leq) tiene cota superior, entonces por el **Lema de Zorn**, hay un elemento maximal en (\mathcal{F}, \leq) . Sea P ese elemento maximal, vamos a ver que P es un filtro primo.

Supongamos $x \ s \ y \in P \ y \ x, y \notin P$. Como $[P \cup \{x\}), [P \cup \{y\})$ son filtros que por lema cumplen que contienen a P, y como $x, y \notin P$, entonces claramente $P \subsetneq [P \cup \{x\}), [P \cup \{y\})$. Ahora, como P es maximal, entonces $[P \cup \{x\}), [P \cup \{y\}) \notin \mathcal{F}$, por lo que: o no son filtros, o contienen como elemento a x_0 , o no contienen a F. De aquí llegamos a que $x_0 \in [P \cup \{x\}), [P \cup \{y\})$.

Como $x_0 \in [P \cup \{x\}), [P \cup \{y\})$, por definición de filtro generado tenemos que $\exists p_1, \dots, p_n \in P$ y $\exists q_1, \dots, q_m \in P$ tales que:

$$x_0 \ge p_1 \ i \ \dots \ i \ p_n \ i \ x$$
$$x_0 \ge q_1 \ i \ \dots \ i \ q_m \ i \ y$$

(Notar que colocamos a x e y porque sino fueran necesarios, $x_0 \in [P)$ y sería absurdo ya que $[P) = P \in \mathcal{F}$ porque P es maximal)

Sea $p = p_1 i \dots i p_n i q_1 i \dots i q_m$, tenemos que:

$$x_0 \ge p \ i \ x$$
$$x_0 \ge p \ i \ y$$

Luego, por propiedad de reticulado, $x_0 \ge (p \ i \ x) \ s \ (p \ i \ y)$. Como el reticulado es distributivo, entonces $x_0 \ge p \ i \ (x \ s \ y)$. Como $p, (x \ s \ y) \in P$, por def. de filtro $p \ i \ (x \ s \ y) \in P$. Ahora, como P = [P), por def. de filtro generado tenemos que $x_0 \in P$. Finalmente, como sabemos que $P \in \mathcal{F}$, entonces $x_0 \notin P$ y llegamos a un absurdo que vino de suponer que $x \ s \ y \in P$ y $x, y \notin P$.

Por ello, tenemos que x s $y \in P \Rightarrow (x \in P \lor y \in P)$. Luego, por ello y dado que $P \neq L$ (porque $x_0 \notin P$), tenemos que P es un filtro primo por def.

Con todo esto, entonces, llegamos a que P es un filtro primo tal que $x_0 \notin P$ y $F \subseteq P$, por lo que se demuestra. \blacksquare

Propiedades básicas de la consistencia

Sea (Σ, τ) una teoría:

- 1. Si (Σ, τ) es inconsistente, entonces $(\Sigma, \tau) \vdash \varphi$ para toda sentencia φ
- 2. Si (Σ, τ) es consistente y $(\Sigma, \tau) \vdash \varphi$, entonces $(\Sigma \cup \{\varphi\}, \tau)$ es consistente
- 3. Si $(\Sigma, \tau) \nvdash \neg \varphi$, entonces $(\Sigma \cup \{\varphi\}, \tau)$ es consistente

Demostración

Demostremos cada punto por separado:

- 1. Como (Σ, τ) es inconsistente, por def. $\exists \psi \in S^{\tau} : (\Sigma, \tau) \vdash (\psi \land \neg \psi)$. Sea ψ esa sentencia, podemos ver que dada una sentencia φ se cumple que $(\Sigma, \tau) \vdash \varphi$ y la prueba que lo atestigua es:
 - 1. $\neg \varphi$ HIP1
 - 2. $\psi \lor \neg \psi$ TESIS1 AXIPROP
 - 3. $\neg \varphi \rightarrow (\psi \lor \neg \psi)$ CONC
 - 4. φ ABS(3)

Con ello, se demuestra. ■

- 2. Supongamos que (Σ, τ) es consistente y $(\Sigma, \tau) \vdash \varphi$. Si $(\Sigma \cup \{\varphi\}, \tau)$ fuera inconsistente, por def. $\exists \psi \in S^{\tau}: (\Sigma \cup \{\varphi\}, \tau) \vdash (\psi \land \neg \psi)$. Luego, sea ψ esa sentencia, por lema de *uso de teoremas*, llegamos a que $(\Sigma, \tau) \vdash (\psi \land \neg \psi)$, por lo que (Σ, τ) es inconsistente por def.. Como (Σ, τ) es consistente por suposición y llegamos a que es inconsistente, tenemos un absurdo que vino de suponer que $(\Sigma \cup \{\varphi\}, \tau)$ es inconsistente. Luego, es consistente y se demuestra.
- 3. Supongamos que $(\Sigma, \tau) \nvdash \neg \varphi$. Si $(\Sigma \cup \{\varphi\}, \tau)$ fuera inconsistente, por def. $\exists \psi \in S^{\tau} : (\Sigma \cup \{\varphi\}, \tau) \vdash (\psi \land \neg \psi)$. Sea ψ esa sentencia, por lema sabemos que eso implica que $(\Sigma, \tau) \vdash (\varphi \to (\psi \land \neg \psi))$. Ahora, como $\neg \varphi$ se deduce de $\varphi \to (\psi \land \neg \psi)$ por la regla del absurdo, llegamos a que $(\Sigma, \tau) \vdash \neg \varphi$. Con ello, llegamos a un absurdo que vino de suponer que $(\Sigma \cup \{\varphi\}, \tau)$ era inconsistente. Luego, es consistente y se demuestra.