Computer System Organization Recitation [Fall 2017] CSCI-UA 201-006

R7: Pagetable

How to translate from the virtual space to physical space

- Can we use a static mapping?
 - paddr = f(vaddr)
 - e.g., f(x) = x + 0x210000, f(x) = (x & 0x10000000) + 100
- What's the problem with this method?
 - Static is bad because a physical address is wasted if the corresponding virtual address is not used.
 - How do we separate the virtual address 0x10000 in process
 1 and the virtual address 0x10000 in process
 - \triangleright Can encode the process id to f(x).
 - Process id will cause another problem...

How about a table?

How about a table?

- What's the problem with this method?
 - How many bytes does a table need?
 - ► To map N bytes, 4N (on a 32-bit machine) or 8N (on a 64-bit machine) are needed.
 - ► Memory utilization N / (N + 8N) = 11.11%

How about a page table?

- How is 0x20000010 translated?
 - 0x20000010 0x20000000 + 0x10000000 = 0x10000010

How about a page table?

- How many bytes does a table need?
 - Suppose the size of a page is P.
 - To map N bytes, N / P *4 (on a 32-bit machine) or N / P
 * 8 (on a 64-bit machine) are needed.
 - Memory utilization N / (N + 8N/P) = 1 / (1 + 8/P)
 - If P = 4096, the memory utilization is 99.8% (around 8MB per 4GB).
 - It seems to be fine...,

How many page tables do we need?

- Remember that each process has its own virtual memory space.
 - Each process needs a page table.
- NP * 8MB per 4GB
 - -200 * 8MB = 1.6GB

- In the recitation, we only implement a 32-bit MMU
 - 0xFFFF0001
 - b'111 = 7

- In the recitation, we only implement a 32-bit MMU
 - 0xFFFF0001
 - b'111 = 7
 - b'1111 = 15

- In the recitation, we only implement a 32-bit MMU
 - 0xFFFF0001
 - b'111 = 7
 - b'1111 = 15
 - b'11111 = 31

- In the recitation, we only implement a 32-bit MMU
 - 0xFFFF0001
 - b'111 = 7
 - **-** b'1111 = 15
 - b'11111 = 31
 - b'1110...01 = 0xF0001

More on...

 http://news.cs.nyu.edu/~zhaoguo/fa17-cso/notes/14virtual_memory.pdf