Formelblad för Ellära

1. Ohms Lag

U = I * R (Spänning = Ström * Resistans) I = U / R (Ström = Spänning / Resistans) R = U / I (Resistans = Spänning / Ström)

2. Effektberäkningar

 $P = U * I * cos(\phi)$ (Aktiv effekt) $Q = U * I * sin(\phi)$ (Reaktiv effekt) S = U * I (Total effekt) Effektfaktor = $P / S = cos(\phi)$

3. AC-kretsar (Växelström)

 $Z = \sqrt{(R^2 + (X_L)^2)}$ (Impedans för seriekrets med R och L) $Z = \sqrt{(R^2 + (X_C)^2)}$ (Impedans för seriekrets med R och C) $\tan(\phi) = (X_L - X_C) / R$ (Fasförskjutning)

4. Seriekoppling och Parallellkoppling

Seriekoppling av resistorer: R_total = R1 + R2 + ... + Rn

Parallellkoppling av resistorer: 1 / R_total = 1 / R1 + 1 / R2 + ... + 1 / Rn

Seriekoppling av kondensatorer: 1 / C_total = 1 / C1 + 1 / C2 + ... + 1 / Cn

Parallellkoppling av kondensatorer: C_total = C1 + C2 + ... + Cn

5. Spänning, Ström och Resistans i Förhållande till Effekt

 $P = I^2 * R = U^2 / R$ (Effektberäkning med Ström och Resistans)

6. Induktiva och Kapacitiva Komponenter

 $X_L = 2\pi f L$ (Induktiv reaktans) $X_C = 1 / (2\pi f C)$ (Kapacitiv reaktans)

7. Effektivvärde och Peakvärde

I_eff = I_max / $\sqrt{2}$ (Effektivström) U_eff = U_max / $\sqrt{2}$ (Effektivspänning) I_max = I_eff * $\sqrt{2}$ (Peakström) U_max = U_eff * $\sqrt{2}$ (Peakspänning)

8. Formel för Beräkning av Ström i Parallellkopplade Komponenter

I = U / R (Ström för parallellkopplade komponenter)