The Mole Lesson 4 Check for Understanding Stoichiometry Worksheet

Directions: Solve the following problems in your journal. Be sure to show all work. Use units in your final answer to the proper number of sig figs.. <u>Please note that you will find the answers at the end of the document</u>. All Calculations Must use a Mole Ratio to convert from one substance to another!

Mole Ratio: $? \mod A = ? \mod B$ (?= coefficient from balanced chemical equation)

Other conversion factors needed: $1 \text{ mol} = \text{molar mass } (g) \leftarrow \text{found on Periodic Table}$

PART ONE:

1. $N_2 + 3H_2 \rightarrow 2NH_3$ How many moles of NH_3 are produced when .60 mol of N_2 reacts with H_2 ?

2. $4\text{Li} + \text{O}_2 \rightarrow 2 \text{Li}_2\text{O}$ How many moles of Li₂O will form if **2.00 mol** Li reacts?

3. $2Mg + O_2 \rightarrow 2MgO$ What mass in grams of MgO is produced from 2.00 mol Mg?

4. $2 \text{HgO} \rightarrow 2 \text{Hg} + 1 \text{ O}_2$ How many moles of HgO are needed to produce 125 g of O_2 ?

5. 2 NaCl + 2 H₂O \rightarrow 2 NaOH + Cl₂ + H₂ If brine contains **250. g** NaCl, how many moles of Cl₂ are produced?

PART TWO

Equation for	questions 1-4:	$4Al + 3O_2 \rightarrow A$	$2 A l_2 O_2$
Liquidition		7110 1 3 0 7 7	= 1100 C 3

Mol-Mol

1. How many moles of oxygen are needed to react with 7.5 moles of aluminum?

Mol-Mass

2. How many grams of aluminum oxide would form if 12.5 moles of aluminum burned?

Mass-Mol

3. How many moles of oxygen are needed to react with 100.0 grams of aluminum?

Mass-Mass

4. How many grams of aluminum burned if 200.0 grams of aluminum oxide formed?

Ans: 1) 5.6 mol O_2 2) 637 g Al_2O_3 3) 2.780 mol O_2 4) 105.9 g Al

Equation for questions 5-8:	$C_3H_8 + 5 O_2 \rightarrow 3 CO_2 + 4 H_2O$
Mol-Mol 5. How many moles of carbon dioxide	e will form if 5.5 moles of C_3H_8 is burned

Mol-Mass

6. If 30.0 moles of oxygen are used, how many grams of water will form?

Mass-Mol

7. If 100. grams of C₃H₈ burns, how many moles of carbon dioxide will form?

Mass-Mass

8. How many grams of oxygen are needed to burn 5.0 grams of C₃H₈?

Equation for question 9: $2 \text{ KClO}_3 \rightarrow 2 \text{ KCl} + 3 \text{ O}_2$

Mass-Mass

9. If 5.0 g of KClO₃ is decomposed, how many grams of KCl would be produced?