Conjunto de Números Reales

Prof. José Suero.

Universidad Simón Bolívar. (USB)

- 1 Preliminares de la teoría de conjuntos.
 - Notación.
 - Operaciones.
- 2 Implicaciones lógicas.
 - Elementos básicos de lógica.
 - Demostración matemática.
- 3 El conjunto de números reales.
 - \blacksquare Relación de orden en \mathbb{R} .
 - Intervalos.
 - \blacksquare Operaciones en \mathbb{R} .
 - Valor absoluto.

- A los conjuntos se les denota utilizando letras mayúsculas.
- A los objetos de un conjunto se le conocen como elementos, y se denotan utilizando letras minúsculas.
- Se utiliza el símbolo ∈ o ∉ para denotar la pertenencia o no, de algún elemento a un conjunto dado.
- Se puede definir a un conjunto por extensión o por descripción, es decir, se puede presentar todos o algunos de los elementos del conjunto o enunciar las propiedades que cumplen.

En ambos caso se utilizará las llaves para representar los conjuntos.

$$A = \{0, 1, 2, 3, ..., 9\} = \{x \in \mathbb{N} : x \le 9\}$$

- Sean A y B son dos conjuntos. Si para todo $x \in A$, entonces $x \in B$, se dice que A es **subconjunto** de B y se denota por $A \subseteq B$.
- El conjunto que no posee ningún elemento se le conoce como vacio y se denota por \varnothing .
- En nuestro caso, se considera un conjunto universal como punto de referencia y este será el *conjunto de los números reales*.

El conjunto de los números reales es el conjunto formado por todas las expresiones decimales (periódicas y no periódicas) y se denota por \mathbb{R} .

Dentro del conjunto de los números reales se consideran los siguientes subconjuntos notables:

- Conjunto de los Números Naturales. Se denota por N.
- Conjunto de los Números Enteros. Se denota por \mathbb{Z} .
- Conjunto de los Números Racionales. Se denota por Q.
- Conjunto de los Números Irracionales. Se denota por I.

Sea A un conjunto. Se define el complemento de A como el conjunto de todos los $x \in \mathbb{R}$ tales que $x \notin A$ y se denota A^c .

$$A^c = \{ x \in \mathbb{R} : x \notin A \}$$

Sean A yB dos conjuntos, se definen las siguientes operaciones:

■ Unión.

$$A \cup B = \{x \in \mathbb{R} : x \in A \lor x \in B\}$$

■ Intersección.

$$A \cap B = \{ a \in \mathbb{R} : a \in A \land x \in B \}$$

■ Diferencia.

$$A - B = A \setminus B = \{ x \in \mathbb{R} : x \in A \land x \notin B \}$$

- 1 Preliminares de la teoría de conjuntos.
 - Notación.
 - Operaciones.
- 2 Implicaciones lógicas.
 - Elementos básicos de lógica.
 - Demostración matemática.
- 3 El conjunto de números reales.
 - \blacksquare Relación de orden en \mathbb{R} .
 - Intervalos.
 - \blacksquare Operaciones en \mathbb{R} .
 - Valor absoluto.

Si P entonces Q

$$P \Rightarrow Q$$

Algunas consideraciones

- Proposiciones.
- Negación. $\neg P$
- \blacksquare Equivalencia Lógica. $P \Leftrightarrow Q$
- Cuantificadores. \forall , \exists

Razonamientos Válidos

Diremos que un razonamiento es valido o correcto si y sólo si la conjunción de un conjunto de premisas (Hipótesis) implica lógicamente a una conclusión (Tésis).

$$P_1 \wedge P_2 \wedge ... \wedge P_n \Rightarrow C$$

Tipos de demostraciones:

- Método directo.
- Por casos.
- Método del contrarecíproco.
- Reducción al absurdo.

- 1 Preliminares de la teoría de conjuntos.
 - Notación.
 - Operaciones.
- 2 Implicaciones lógicas.
 - Elementos básicos de lógica.
 - Demostración matemática.
- 3 El conjunto de números reales.
 - \blacksquare Relación de orden en \mathbb{R} .
 - Intervalos.
 - \blacksquare Operaciones en $\mathbb{R}.$
 - Valor absoluto.

El *conjunto de los números reales* es el conjunto formado por todas las expresiones decimales.

Se puede comparar dos números reales y esto permite obtener un conjunto ordenado.

Propiedad (Propiedad de tricotomía)

Dado $a, b \in \mathbb{R}$, entonces se verifica una y sólo una de las siguientes condiciones.

- a = b
- *a* < *b*
- $\blacksquare a > b$

Propiedad (Propiedad de transitiva)

Dado $a, b, c \in \mathbb{R}$ se tiene que:

- \blacksquare Si a = b y b = c, entonces a = c.
- \blacksquare Si a < b y b < c, entonces a < c.

Adicionalmente de los símbolos "<" y ">", tambien se considera los símbolos, " \leq " y " \geq " y se hace referencia a:

- \bullet $a \leq b$ significa que a < b o a = b.
- $a \ge b$ significa que a > b o a = b.

Se puede establecer una correspondencia entre los números reales y los puntos de una recta. "Recta Numérica"

Dados $a, b \in \mathbb{R}$ con a < b, se puede definir el conjunto formado por los números reales que se encuentran entre a y b, incluyéndolos o no. A estos conjuntos se les conoce como *intervalos*.

Intervalos	Expresión Algebraíca
(a,b)	
[a,b]	$\{x \in \mathbb{R} : a \le x \le b\}$
(a,b]	$\{x \in \mathbb{R} : a < x \le b\}$
a,b	$\{x \in \mathbb{R} : a \le x < b\}$

Observación

Adicionalmente, se considera los siguientes intervalos utilizando los símbolos $+\infty$ y $-\infty$.

Intervalos	Expresión Algebraíca
$(a,+\infty)$	$\{x \in \mathbb{R} : a < x\}$
$[a, +\infty)$	$\{x \in \mathbb{R} : a \le x\}$
$(-\infty,a)$	$\{x \in \mathbb{R} : x < a\}$
$(-\infty,a]$	$\{x \in \mathbb{R} : x \le a\}$
$(-\infty,\infty)$	\mathbb{R}

En el conjunto de los números reales se definen las operaciones de Adici'on y Multiplicaci'on, denotadas por "+" y "·", que verifica las siguientes propiedades:

Propiedad	Adición
Conmutativa	a+b=b+a
Asociativa	(a+b) + c = a + (b+c)
Existencia del Neutro	$\exists \ 0 \in R : a + 0 = 0 + a = a$
Existencia del opuesto	$\forall a \in \mathbb{R}, \exists -a \in \mathbb{R} : a + (-a) = 0$

En el conjunto de los números reales se definen las operaciones de *Adición* y *Multiplicación*, denotadas por "+" y "·" que verifica las siguientes propiedades:

Propiedad	Multiplicación
Conmutativa	$a \cdot b = b \cdot a$
Asociativa	$(a \cdot b) \cdot c = a \cdot (b \cdot c)$
Existencia de la identidad	$\exists \ 1 \in \mathbb{R} : a \cdot 1 = 1 \cdot a = a$
Existencia del inverso	$\forall \ a \in \mathbb{R}^*, \ \exists \ a^{-1} : a \cdot a^{-1} = 1$

Propiedad	Adición y Multiplicación
Distributiva	$a \cdot (b+c) = a \cdot b + a \cdot c$

Observación

El caso de la sustracción y la división son casos particulares de la adición y multiplicación respectivamente.

Propiedad

Sean $a, b, c \in \mathbb{R}$, entonces se verifica las siguientes propiedades:

- $\blacksquare \ \forall \ a \in \mathbb{R}, \ a = a.$
- \blacksquare Si a = b entonces b = a.
- \blacksquare Si a=b y b=c entonces a=c.
- \blacksquare Si a = b, entonces a + c = b + c.
- \blacksquare Si a = b, entonces $a \cdot c = b \cdot c$.
- $\forall a \in \mathbb{R}, \ a \cdot 0 = 0 \cdot a = 0.$

Sean $a, b, c, d \in \mathbb{R}$, entonces se verifica las siguientes propiedades:

- \blacksquare Si a < b, entonces a + c < b + c.
- \blacksquare Si $a < b \ y \ c > 0$ entonces $a \cdot c < b \cdot c$.
- $Si \ a < b \ y \ c < 0 \ entonces \ a \cdot c > b \cdot c$.
- $Si \ 0 < a < b, \ entonces \ a^2 < b^2$.
- \bullet Si 0 > a > b, entonces $a^2 < b^2$.
- Si 0 < a < b, entonces $\sqrt{a} < \sqrt{b}$.

Sean $a, b \in \mathbb{R}$, entonces se verifica las siguientes propiedades:

$$\blacksquare$$
 Si $a \cdot b = 0$, entonces $a = 0$ o $b = 0$.

■
$$Si \ a \cdot b > 0$$
, $entonces$
$$\begin{cases} a > 0 & y & b > 0 \\ & o & \\ a < 0 & y & b < 0 \end{cases}$$
■ $Si \ a \cdot b < 0$, $entonces$
$$\begin{cases} a > 0 & y & b < 0 \\ & o & \\ a < 0 & y & b > 0 \end{cases}$$

Sean $a, b \in \mathbb{R}$, entonces se verifica las siguientes propiedades:

Sea $a \in \mathbb{R}$, entonces el **valor absoluto** a, denotado por |a|, es a si a es no negativo, y es -a si a es negativo.

$$|a| = \begin{cases} a & \text{si } a \geqslant 0 \\ -a & \text{si } a < 0 \end{cases}$$

Dado $a, b \in \mathbb{R}$, entonces se verifica las siguientes propiedades.

- $|a| \le b \ si \ y \ s\'olo \ si -b \le a \le b.$
- |a| > b si y sólo si a > b o a < -b.
- $|a| \ge b \ si \ y \ solo \ si \ a \ge b \ o \ a \le -b.$

Teorema

Sea a un número real, entonces

$$|a| = \sqrt{a^2}.$$

Teorema.

Sean $a, b \in \mathbb{R}$, entonces

Teorema (Desigualdad triangular.)

Sean $a, b \in \mathbb{R}$, entonces

$$|a+b| \leqslant |a| + |b|.$$

Teorema

Sean $a, b \in \mathbb{R}$, entonces

$$|a - b| \leqslant |a| + |b|.$$

Teorema

Sean $a, b \in \mathbb{R}$, entonces

$$|a| - |b| \leqslant |a - b|.$$