Lorenzo Bocola, Francesco Massimo Faccenda, Leonardo Fanti, Leonardo Fiori, Federico Salonico

RELAZIONE DELL'ESPERIENZA DI LABORATORIO SULLA DIFFRAZIONE

Introduzione

L'obiettivo di questo esperimento è la misurazione dello spessore di un capello tramite l'osservazione delle figure di diffrazione prodotte da un fascio di luce ostacolato da esso.

Materiali e strumenti

Materiali

- LASER (650 nm)
- Staffa
- Capello

Strumenti

Tabella 1: Strumenti utilizzati

Strumento	Sensibilità
Metro	1 <i>cm</i>
Carta millimetrata	1 <i>mm</i>

Descrizione dell'esperimento

Si posiziona con l'ausilio di del nastro adesivo un capello in modo tale che ostacoli il fascio emesso dal LASER che viene fissato su una staffa.

Si colloca il LASER con attaccato il capello ad una distanza di circa 1.5m da un muro in modo tale che il raggio emesso lo colpisca perpendicolarmente quindi si misura la distanza precisa (H).

Dopo aver oscurato la stanza si riporta la figura di diffrazione visibile sul muro su un foglio di carta millimetrata per poi misurare le distanze (Δ_k) tra le frange scure e la frangia luminosa centrale (figura 1). Questo procedimento viene ripetuto aumentando di circa 20cm la distanza tra il LASER e il muro fino a raggiungere 3.60m.

Figura 1: figura di diffrazione

Dati

La lunghezza d'onda del fascio di luce emesso dal LASER utilizzato è pari a $650nm \pm 2nm$.

I valori di *H* corrispondono alle distanze tra il muro e l'ostacolo e sono espresse in metri con errore di misura pari a 1*cm*.

I valori di Δ_k corrispondono invece alla distanza tra la k-esima frangia scura e la frangia luminosa centrale; questi valori sono espressi in millimetri ed hanno errore di misura pari a 1mm.

Tabella 2: Distanze Δ_k per	la miamattirea diatamaa	dal muma dall'astanala II
rabella 2. Distanze Δt ber	ie rispettive distanze	dei muro dan ostacolo <i>n</i>

	H_1	H_2	H_3	H_4	H_5	H_6	H_7	H_8	H_9	H_{10}
Н	1.64	1.82	2.00	2.20	2.44	2.84	3.00	3.19	3.39	3.60
Δ_1	11	12	13	10	16	18	14	18	19	21
Δ_2	21	23	25	27	31	36	37	39	43	45
Δ_3	32	34	38	40	47	55	56	61	64	68
Δ_4	43	47	51	54	62	71	75	81	85	92
Δ_5	53	58	64	68	77	89	96	92	107	114
Δ_6	64	69	76	81	92	110	114	112	128	138
Δ_7	74	82	88	96	107	127	133	122	150	_
Δ_8	84	94	103	108	123	144	154	143	_	_
Δ_9	95	106	114	125	137	_	_	_	_	_
Δ_{10}	105	117	127	138	154	_	_	_	_	_
Δ_{11}	116	128	140	153	_	_	_	_	_	_
Δ_{12}	127	139	152	_	_	_	_	_	_	_
Δ_{13}	137	151	_	_	_	_	_	_	_	_
Δ_{14}	148	_	_	_	_	_	_	_	_	_

Elaborazione matematica

Figura 2: Rappresentazione schematica del fenomeno di diffrazione

Per avere un interferenza costruttiva¹ sarà necessario avere

$$AD = BD + \lambda (k - 1/2) \tag{1}$$

Dato che la distanza tra il laser e il muro H è molto maggiore dello spessore del capello d, i segmenti AD e AB si possono considerare paralleli.

Poiché l'angolo $\alpha + \beta = \pi/2$ e l'angolo $\beta + \theta = \pi/2$ allora $\alpha = \theta$, quindi $\sin \theta = \sin \alpha$.

Inoltre poiché $AD - BD = d \sin \theta$ (si veda Fig. 2) e $\sin \alpha = \frac{ED}{DM} = \frac{\bar{\Delta}}{H}$ (essendo α molto piccolo si può approssimare DM alla distanza con il muro) si può riscrivere [1] come

$$d\frac{\Delta}{H} = \lambda \left(k - \frac{1}{2}\right) \tag{2}$$

Essendo [2] nella forma Xd = Y si può determinare d calcolando la regressione lineare di [2].

 $^{^1}$ Il fenomeno di interferenza avviene solamente quando, come in questo esperimento, $\lambda << d << H$.

Tabella 3: Elaborazione dati tabella 2

Δ/H	$\lambda (k-1/2)$ (m)
0.0067 ± 0.0007	$3.25 \cdot 10^{-7} \pm 1 \cdot 10^{-9}$
0.0066 ± 0.0006	$3.25 \cdot 10^{-7} \pm 1 \cdot 10^{-9}$
0.0065 ± 0.0005	$3.25 \cdot 10^{-7} \pm 1 \cdot 10^{-9}$
0.0045 ± 0.0005	$3.25 \cdot 10^{-7} \pm 1 \cdot 10^{-9}$
0.0066 ± 0.0004	$3.25 \cdot 10^{-7} \pm 1 \cdot 10^{-9}$
0.0063 ± 0.0004	$3.25 \cdot 10^{-7} \pm 1 \cdot 10^{-9}$
0.0047 ± 0.0003	$3.25 \cdot 10^{-7} \pm 1 \cdot 10^{-9}$
0.0056 ± 0.0003	$3.25 \cdot 10^{-7} \pm 1 \cdot 10^{-9}$
0.0056 ± 0.0003	$3.25 \cdot 10^{-7} \pm 1 \cdot 10^{-9}$
0.0058 ± 0.0003	$3.25 \cdot 10^{-7} \pm 1 \cdot 10^{-9}$
0.0128 ± 0.0007	$9.75 \cdot 10^{-7} \pm 3 \cdot 10^{-9}$
0.0126 ± 0.0006	$9.75 \cdot 10^{-7} \pm 3 \cdot 10^{-9}$
0.0125 ± 0.0006	$9.75 \cdot 10^{-7} \pm 3 \cdot 10^{-9}$
0.0123 ± 0.0005	$9.75 \cdot 10^{-7} \pm 3 \cdot 10^{-9}$
0.0127 ± 0.0005	$9.75 \cdot 10^{-7} \pm 3 \cdot 10^{-9}$
0.0127 ± 0.0004	$9.75 \cdot 10^{-7} \pm 3 \cdot 10^{-9}$
0.0123 ± 0.0004	$9.75 \cdot 10^{-7} \pm 3 \cdot 10^{-9}$
0.0122 ± 0.0004	$9.75 \cdot 10^{-7} \pm 3 \cdot 10^{-9}$
0.0127 ± 0.0003	$9.75 \cdot 10^{-7} \pm 3 \cdot 10^{-9}$
0.0125 ± 0.0003	$9.75 \cdot 10^{-7} \pm 3 \cdot 10^{-9}$
0.0195 ± 0.0007	$1.625 \cdot 10^{-6} \pm 5 \cdot 10^{-9}$
0.0187 ± 0.0007	$1.625 \cdot 10^{-6} \pm 5 \cdot 10^{-9}$
0.0190 ± 0.0006	$1.625 \cdot 10^{-6} \pm 5 \cdot 10^{-9}$
0.0181 ± 0.0005	$1.625 \cdot 10^{-6} \pm 5 \cdot 10^{-9}$
0.0193 ± 0.0005	$1.625 \cdot 10^{-6} \pm 5 \cdot 10^{-9}$
0.0193 ± 0.0004	$1.625 \cdot 10^{-6} \pm 5 \cdot 10^{-9}$
0.0187 ± 0.0004	$1.625 \cdot 10^{-6} \pm 5 \cdot 10^{-9}$
0.0191 ± 0.0004	$1.625 \cdot 10^{-6} \pm 5 \cdot 10^{-9}$
0.0189 ± 0.0004	$1.625 \cdot 10^{-6} \pm 5 \cdot 10^{-9}$
0.0189 ± 0.0003	$1.625 \cdot 10^{-6} \pm 5 \cdot 10^{-9}$
0.0263 ± 0.0008	$2.275 \cdot 10^{-6} \pm 7 \cdot 10^{-9}$
0.0258 ± 0.0007	$2.275 \cdot 10^{-6} \pm 7 \cdot 10^{-9}$
0.0256 ± 0.0006	$2.275 \cdot 10^{-6} \pm 7 \cdot 10^{-9}$
0.0245 ± 0.0006	$2.275 \cdot 10^{-6} \pm 7 \cdot 10^{-9}$
0.0254 ± 0.0005	$2.275 \cdot 10^{-6} \pm 7 \cdot 10^{-9}$
0.0250 ± 0.0004	$2.275 \cdot 10^{-6} \pm 7 \cdot 10^{-9}$
0.0250 ± 0.0004	$2.275 \cdot 10^{-6} \pm 7 \cdot 10^{-9}$
0.0254 ± 0.0004	$2.275 \cdot 10^{-6} \pm 7 \cdot 10^{-9}$
0.0251 ± 0.0004	$2.275 \cdot 10^{-6} \pm 7 \cdot 10^{-9}$
0.0256 ± 0.0003	$2.275 \cdot 10^{-6} \pm 7 \cdot 10^{-9}$
0.0324 ± 0.0008	$2.925 \cdot 10^{-6} \pm 9 \cdot 10^{-9}$
0.0319 ± 0.0007	$2.925 \cdot 10^{-6} \pm 9 \cdot 10^{-9}$
0.0321 ± 0.0007	$2.925 \cdot 10^{-6} \pm 9 \cdot 10^{-9}$
0.0309 ± 0.0006	$2.925 \cdot 10^{-6} \pm 9 \cdot 10^{-9}$
0.0316 ± 0.0005	$2.925 \cdot 10^{-6} \pm 9 \cdot 10^{-9}$
0.0313 ± 0.0005	$2.925 \cdot 10^{-6} \pm 9 \cdot 10^{-9}$
0.0320 ± 0.0004	$2.925 \cdot 10^{-6} \pm 9 \cdot 10^{-9}$
0.0288 ± 0.0004	$2.925 \cdot 10^{-6} \pm 9 \cdot 10^{-9}$
0.0316 ± 0.0004	$2.925 \cdot 10^{-6} \pm 9 \cdot 10^{-9}$
0.0317 ± 0.0004	$2.925 \cdot 10^{-6} \pm 9 \cdot 10^{-9}$

Δ/H	$\lambda(k-1/2)$ (m)
0.0391 ± 0.0008	$3.575 \cdot 10^{-6} \pm 1.1 \cdot 10^{-8}$
0.0379 ± 0.0008	$3.575 \cdot 10^{-6} \pm 1.1 \cdot 10^{-8}$
0.0381 ± 0.0007	$3.575 \cdot 10^{-6} \pm 1.1 \cdot 10^{-8}$
0.0368 ± 0.0006	$3.575 \cdot 10^{-6} \pm 1.1 \cdot 10^{-8}$
0.0377 ± 0.0006	$3.575 \cdot 10^{-6} \pm 1.1 \cdot 10^{-8}$
0.0387 ± 0.0005	$3.575 \cdot 10^{-6} \pm 1.1 \cdot 10^{-8}$
0.0380 ± 0.0005	$3.575 \cdot 10^{-6} \pm 1.1 \cdot 10^{-8}$
0.0351 ± 0.0004	$3.575 \cdot 10^{-6} \pm 1.1 \cdot 10^{-8}$
0.0378 ± 0.0004	$3.575 \cdot 10^{-6} \pm 1.1 \cdot 10^{-8}$
0.0383 ± 0.0004	$3.575 \cdot 10^{-6} \pm 1.1 \cdot 10^{-8}$
0.0452 ± 0.0009	$4.225 \cdot 10^{-6} \pm 1.3 \cdot 10^{-8}$
0.0451 ± 0.0008	$4.225 \cdot 10^{-6} \pm 1.3 \cdot 10^{-8}$
0.0441 ± 0.0007	$4.225 \cdot 10^{-6} \pm 1.3 \cdot 10^{-8}$
0.0436 ± 0.0007	$4.225 \cdot 10^{-6} \pm 1.3 \cdot 10^{-8}$
0.0439 ± 0.0006	$4.225 \cdot 10^{-6} \pm 1.3 \cdot 10^{-8}$
0.0447 ± 0.0005	$4.225 \cdot 10^{-6} \pm 1.3 \cdot 10^{-8}$
0.0443 ± 0.0005	$4.225 \cdot 10^{-6} \pm 1.3 \cdot 10^{-8}$
0.0382 ± 0.0004	$4.225 \cdot 10^{-6} \pm 1.3 \cdot 10^{-8}$
0.0442 ± 0.0004	$4.225 \cdot 10^{-6} \pm 1.3 \cdot 10^{-8}$
0.0513 ± 0.0009	$4.875 \cdot 10^{-6} \pm 1.5 \cdot 10^{-8}$
0.0516 ± 0.0008	$4.875 \cdot 10^{-6} \pm 1.5 \cdot 10^{-8}$
0.0516 ± 0.0008	$4.875 \cdot 10^{-6} \pm 1.5 \cdot 10^{-8}$
0.0490 ± 0.0007	$4.875 \cdot 10^{-6} \pm 1.5 \cdot 10^{-8}$
0.0504 ± 0.0006	$4.875 \cdot 10^{-6} \pm 1.5 \cdot 10^{-8}$
0.0506 ± 0.0005	$4.875 \cdot 10^{-6} \pm 1.5 \cdot 10^{-8}$
0.0513 ± 0.0005	$4.875 \cdot 10^{-6} \pm 1.5 \cdot 10^{-8}$
0.0448 ± 0.0005	$4.875 \cdot 10^{-6} \pm 1.5 \cdot 10^{-8}$
0.058 ± 0.001	$5.525 \cdot 10^{-6} \pm 1.7 \cdot 10^{-8}$
0.0582 ± 0.0009	$5.525 \cdot 10^{-6} \pm 1.7 \cdot 10^{-8}$
0.0571 ± 0.0008	$5.525 \cdot 10^{-6} \pm 1.7 \cdot 10^{-8}$
0.0567 ± 0.0007	$5.525 \cdot 10^{-6} \pm 1.7 \cdot 10^{-8}$
0.0562 ± 0.0006	$5.525 \cdot 10^{-6} \pm 1.7 \cdot 10^{-8}$
0.064 ± 0.001	$6.175 \cdot 10^{-6} \pm 1.9 \cdot 10^{-8}$
0.0643 ± 0.0009	$6.175 \cdot 10^{-6} \pm 1.9 \cdot 10^{-8}$
0.0636 ± 0.0008	$6.175 \cdot 10^{-6} \pm 1.9 \cdot 10^{-8}$
0.0626 ± 0.0007	$6.175 \cdot 10^{-6} \pm 1.9 \cdot 10^{-8}$
0.0631 ± 0.0007	$6.175 \cdot 10^{-6} \pm 1.9 \cdot 10^{-8}$
0.071 ± 0.001	$6.83 \cdot 10^{-6} \pm 2 \cdot 10^{-8}$
0.0703 ± 0.0009	$6.83 \cdot 10^{-6} \pm 2 \cdot 10^{-8}$
0.0701 ± 0.0009	$6.83 \cdot 10^{-6} \pm 2 \cdot 10^{-8}$
0.0694 ± 0.0008	$6.83 \cdot 10^{-6} \pm 2 \cdot 10^{-8}$
0.0776 ± 0.0011	$7.48 \cdot 10^{-6} \pm 2 \cdot 10^{-8}$
0.076 ± 0.001	$7.48 \cdot 10^{-6} \pm 2 \cdot 10^{-8}$
0.0762 ± 0.0009	$7.48 \cdot 10^{-6} \pm 2 \cdot 10^{-8}$
0.0837 ± 0.0011	$8.12 \cdot 10^{-6} \pm 2 \cdot 10^{-8}$
0.083 ± 0.001	$8.12 \cdot 10^{-6} \pm 2 \cdot 10^{-8}$
0.0904 ± 0.0012	$8.78 \cdot 10^{-6} \pm 3 \cdot 10^{-8}$
	•

Grafico 1: Rappresentazione grafica dei dati nella tabella con retta di regressione

Conclusioni

Osservando la retta di regressione del grafico 1 il suo coefficente angolare, ovvero lo spessore del capello, risulta essere pari a $0.0001014 \pm 0.0000005m$. Si nota come questo valore è coerente con lo spessore noto di un capello che può variare tra 0.06mm e 0.1mm.