BOLETÍN VI: SEMICONDUCTORES Y DIODOS

[1] Determinar la concentración de electrones en la banda de conducción, n, y de huecos en la banda de valencia, p, de un semiconductor de silicio a temperatura ambiente (n_i = 10^{10} portadores/cm³), dopado con 3 10^{14} átomos/cm³ de impurezas donadoras, N_d , y 10^{14} átomos/cm³ de impurezas aceptoras, N_a . Considerar que todas las impurezas están ionizadas. Indicar, finalmente, el tipo de semiconductor que se tiene. Nota: n > p y, por tanto, $n \cong N_d - N_a$.

<u>Solución</u>: $n = 2 \cdot 10^{14}$ electrones/cm³, $p = 5 \cdot 10^5$ huecos/cm³; semiconductor compensado de tipo n.

[2] Determinar la concentración de electrones en la banda de conducción, n, y de huecos en la banda de valencia, p, de un semiconductor de germanio a temperatura ambiente (n_i = 10^{13} portadores/cm³), no dopado con impurezas donadoras (N_d =0), pero dopado con 10^{17} átomos/cm³ de impurezas aceptoras, N_a . Considerar que todas las impurezas están ionizadas. Indicar, finalmente, el tipo de semiconductor que se tiene. Nota: $p \gg n$ y, por tanto, $p \cong N_a$.

<u>Solución</u>: $n = 10^9$ electrones/cm³, $p = 10^{17}$ huecos/cm³; semiconductor extrínseco de tipo p.

[3] Determinar la concentración de electrones en la banda de conducción, n, y de huecos en la banda de valencia, p, de un semiconductor de arseniuro de galio (AsGa) a temperatura ambiente (n_i = 2 10^6 portadores/cm³), dopado con 10^{10} átomos/cm³ de impurezas donadoras, N_d , y 10^{10} átomos/cm³ de impurezas aceptoras, N_a . Considerar que todas las impurezas están ionizadas. Indicar, finalmente, el tipo de semiconductor que se tiene.

Solución: $n = p = 2 \cdot 10^6$ portadores/cm³; semiconductor compensado tipo i.

[4] Determinar la concentración de electrones en la banda de conducción, n, y de huecos en la banda de valencia, p, de un semiconductor de silicio a temperatura ambiente ($n_i = 10^{10} \text{ portadores/cm}^3$), no dopado con impurezas aceptoras ($N_a=0$), pero dopado con 10^{22} átomos/cm³ de impurezas donadoras, N_d . Considerar que todas las impurezas están ionizadas. Indicar, finalmente, el tipo de semiconductor que se tiene. Nota: $n \gg p$ y, por tanto, $n \cong N_d$.

Solución: $n = 10^{22}$ electrones/cm³ (similar a la conc. de portadores de carga en metales); $p = 10^{-4}$ huecos/cm³; semiconductor degenerado de tipo n.

[5] Sabiendo que la tensión umbral del diodo de la siguiente figura es de 0,7 V (silicio), calcular la caída de potencial y la intensidad de corriente asociadas al diodo empleando el teorema de Thevenin en dos situaciones: 1°) la indicada en la figura y 2°) la que se tiene cambiando el sentido del diodo. Datos: $R_1 = 6 \text{ k}\Omega$, $R_2 = 3 \text{ k}\Omega$, $R_3 = 1 \text{ k}\Omega$, $\epsilon = 12 \text{ V}$.

<u>Solución</u>: 1°) 0,7 V, 1,1 A (pol. directa); 2°) 4 V, 0 A (pol. inversa).

[6] Sabiendo que la tensión umbral del diodo de la figura es de 0,3 V (germanio), calcular la caída de potencial y la intensidad de corriente asociadas al diodo empleando el teorema de Thevenin en dos situaciones: 1°) la indicada en la figura y 2°) la que se tiene cambiando el sentido del diodo. Datos: $R_1 = 80 \text{ k}\Omega$, $R_2 = 20 \text{ k}\Omega$, $R_3 = 40 \text{ k}\Omega$, $\epsilon = 30 \text{ V}$.

<u>Solución</u>: 1^a) – 6 V, O A (pol. inversa); 2^a) 0,3 V, 102 μ A (pol. directa).

[7] Calculando el equivalente Thevenin en función de R, determinar: a) el rango de valores de R para el que el LED, de tensión umbral 2 V, se enciende; b) la caída de tensión y la intensidad asociadas al diodo para R = 0 Ω . Datos: R_0 = 100 Ω , ϵ = 12 V.

Solución: a) R < 50 Ω ; b) 2 V, 0,08 A (pol. directa).

[8] La tensión de ruptura del diodo zéner, V_Z , es 15 V, V = 30 V, R_0 = R_1 + R_2 = 95 $k\Omega$, R = 5 $k\Omega$. Determinar: a) el valor de R_1 y de R_2 para que el punto de trabajo del diodo corresponda a la tensión de ruptura sin conducción, es decir, a que conduzca si se supera V; b) ¿Se encuentra protegido el diodo zéner con el valor de R_1 obtenido frente a una hipotética desconexión de la carga, de R, si soporta como máximo 0,1 A?; c) ¿Se encuentra protegida R, si soporta como máximo 0,25 W?; d) ¿Qué ocurre si se aumenta el valor de R_1 y se disminuye el de R_2 ? ¿Y qué ocurre en caso contrario?

<u>Solución</u>: a) $R_1 = 50 \text{ k}\Omega$, $R_2 = 45 \text{ k}\Omega$; b) sí, $R_1 > 150 \Omega$; c) sí, $P_{\text{máx}} > 0.45 \text{ mW}$; d) El diodo no conduce, $V_D < V_Z$ e I_R no cambia; el diodo conduce, $V_D = V_Z$ e I_R disminuye.

[9] Las características de los diodos zéner son V_Z = 9 V, $P_{m\acute{a}x}$ = 0,9 W; las de la bombilla V_N = 12 V, P_N = 6 mW; y la tensión de alimentación V = 24 V. Determinar: a) el valor mínimo de R_0 para que los diodos zéner se encuentren protegidos ante una eventual desconexión de la bombilla; b) el valor de R_1 para que la bombilla esté protegida; c) el valor de R_0 para que el punto de trabajo de los diodos corresponda a la tensión de ruptura sin conducción, es decir, a que conduzcan si se supera V (usar el valor obtenido para R_1); d) ¿Qué ocurre si aumenta el valor de V? ¿Y qué ocurre en caso contrario?

Solución: a) $R_{o(min)}$ = 60 Ω ; b) R_1 = 12 $k\Omega$; c) R_o = 12 $k\Omega$; d) los diodos conducen, V_D = V_Z y $V_{bombilla}$ = V_N ; los diodos no conducen, V_D < V_Z y $V_{bombilla}$ < V_N .

[10] Las características del diodo zéner son V_Z = 10 V, $P_{m\acute{a}x}$ = 1 W; las del diodo LED V_{umbral} = 2 V, $I_{m\acute{a}x}$ = 20 mA; y la tensión de alimentación V = 24 V. Determinar: a) el valor mínimo de R_o para que el diodo zéner se encuentre protegido ante una eventual desconexión del LED; b) el valor de R_1 para que circule por el LED una intensidad igual al 80 % de $I_{m\acute{a}x}$; c) el valor de R_o para que el punto de trabajo del diodo corresponda a la tensión de ruptura sin conducción, es decir, a que conduzcan si se supera V (usar el valor obtenido para R_1); d) ¿Qué ocurre si disminuye el valor de V? ¿Y qué en caso contrario?

<u>Solución</u>: a) $R_{o(mín)}$ = 140 Ω ; b) R_1 = 0,5 $k\Omega$; c) R_o = 0,94 $k\Omega$; d) el diodo zéner no conduce, $V_D < V_Z$ y $I_{LED} < 0.8$ $I_{máx}$; el diodo zéner conduce, $V_D = V_Z$ y $I_{LED} = 0.8$ $I_{máx}$.