Doing bayesian data analysis by Kruschke

Revisión

J. E. Alcalá CEIC, Universidad de Guadalajara

17 de abril de 2019

1. Capítulo 4: What is this stuff called probability?

1.1. Preliminares

Definiciones

Variable aleatoria: es una función que mapea los resultados de un experimento aleatorio al conjunto de los números reales (comúnmente). Se suele representar con letra mayúscula (e.g., X).

Espacio muestral: el conjunto de todos los resultados posibles. Se suele representar con Ω . De este conjunto la X mapea a los reales: $X:\Omega\to\mathbb{R}$. Es decir, a cada elemento de Ω asigna un número real, $X(\omega)$.

Evento: subconjunto de Ω , usualmente representado por una vocal mayúscula, e.g., A. Si lanzamos una moneda dos veces, $\Omega = \{HH, HT, TT, TH\}$. El evento "la primera moneda cae H" es $A = \{HH, HT\}$.

Probabilidad: la función p(A) asigna un valor numérico a cada evento A. Se llama probabilidad de A si satisface los siguientes axiomas:

- Axioma 1: $p(A) \ge 0$ para cada A. Es decir, p(A) es positiva.
- **Axioma 2:** $p(\Omega) = 1$.
- **Axioma 3:** para los eventos $A_i, A_j, \dots, i \neq j$ (es decir, si son disjuntos),

$$p\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} p(A_i)$$

Figura 1: Proporción de H al lanzar una moneda 1,2,..,N. La proporción se calcula con $\sum_{i=1}^{N} \mathbb{I}_{\omega=H} \times (1/i)$. Conforme $i=N,N\to\infty$, la proporción de $H\to p(H)$