Set Theory - Solutions

Riddhiman

July 2023

1 Preface

Nothing to put here for now.

2 Fundamentals

Exercise 3.1.1. Show that the definition of equality in Definition 3.1.4 (Definition 2.2 in notes) is reflexive, symmetric, and transitive.

Proof. Let A, B, C be sets. To prove reflexivity we have to prove that $\forall x (x \in A \iff x \in A)$. Since this statement is obviously true we have A = A.

To prove symmetry, consider A and B such that A=B. By definition we have $\forall x(x\in A\iff x\in B)$. We have to show that $\forall y(y\in B\iff y\in A)$. However, note that the result follows since the two statements are logically equivalent. Therefore, B=A.

To prove transitivity, note that for some $x \in A$ we have $x \in B$ since A = B and because B = C we have $x \in C$. Similarly for some $y \in C$ we have $y \in B$ and thus $y \in A$. Thus by definition we get A = C.

Exercise 3.1.2. Using only Definition 3.1.4 and Axiom 3.1, Axiom 3.2 and Axiom 3.3, prove that \emptyset , $\{\emptyset\}$, $\{\{\emptyset\}\}\}$ and $\{\emptyset, \{\emptyset\}\}\}$ are all distinct.

Proof. If \emptyset is equal to the other sets (say \mathcal{S}) we have to show that $\forall x (x \in \emptyset \iff x \in \mathcal{S})$. However, note that \emptyset is empty while the others are non-empty. Hence, \emptyset cannot be equal to the other sets.

For the rest of the sets, Axiom 1 and Axiom 2 guarantee us to compare them with Definition 3.1.4. The sets $\{\emptyset\}$ (say A) and $\{\{\emptyset\}\}$ (say B) are not equal since $\emptyset \notin B$ and $\{\emptyset\} \notin A$. Hence, $\{\emptyset\} \neq \{\{\emptyset\}\}$. The other pairs can be proven similarly. \square