Riemann Surfaces An introduction

Taro Valentin Brown

University of California, Davis

May 26, 2021.

Overview

1 Idea of Riemann Surfaces

2 Applications

3 The Scattering Equations

Recap of complex analysis so far

Functions of one complex variable

Take some open set U in the complex plane and a function f which takes complex variables z and maps them to $\omega=f(z)$ in the open domain V

Recap of complex analysis so far

Functions of one complex variable

Requiring f to be holomorphic in a neighborhood around z_0 put great constraints on our functions, i.e. Cauchy Riemann conditions (among others) with $\omega=u+iv$, z=x+iy

$$\partial_x u = \partial_y v, \quad \partial_x v = -\partial_y u \tag{1}$$

Some definitions

Some definitions

- Isomorphism: Structure-preserving mapping between two structures of the same type that can be reversed by an inverse mapping.
- Homeomorphism: Isomorphism in the category of topological spaces. I.e. they are the mappings that preserve all the topological properties of a given space
- Injective holomorphic map is a holomorphic isomorphism

Given a holomorphic injective map from an open set U to ${\mathbb C}$

$$f:U\to\mathbb{C}$$
 (2)

then f(u) is open, and the inverse map is also holomorphic.

Complex analysis on surface

- Take a known surface that we can visualize.
- Pick some point x_0 on the surface on some disc-like domain \mathcal{D} .
- Introduce function f that takes on complex values on \mathcal{D} .
- Extend definition of holomorphic function at x_0 so that we can use tools of complex analysis on the surface.

Complex analysis on surface

Do this by identifying ${\mathcal D}$ with an open subset, say

$$\Delta = \{ z \in \mathbb{C} \mid |z| = 1 \} \tag{3}$$

by choosing a homeomorphism

$$\phi: \mathcal{D} \to \Delta \tag{4}$$

Hence we now have a map from the unit disc on the surface to the complex plane

$$\Delta \stackrel{\phi}{\leftarrow} \mathcal{D} \stackrel{f}{\rightarrow} \mathbb{C}$$

Complex analysis on surface

Require that $f \circ \phi^{-1}$ is holomorphic in points x ind \mathcal{D} . Just like on slide 5, we can say that f is holomorphic on D if $f \circ \phi^{-1}$ is holomorphic on Δ .

Complex analysis on surface

The pair (\mathcal{D},ϕ) is called a *complex coordinate chart* It allows us to do complex analysis on the disc, but we could have taken any open set.

Complex analysis on surface

More generally: a complex coorddinate chart is a pair

$$(\mathcal{U},\phi) \tag{5}$$

where \mathcal{U} is an open subset of X and $\phi: \mathcal{U} \to \mathcal{V}$ is a homemorphism onto an open subset \mathcal{V} of \mathbb{C} .

Applications

QFT scattering

Overlap between two asymptotic states

$$\langle f|i\rangle = (2\pi)^D \delta^D \left(\sum_i k_i\right) (\mathbb{1}_{fi} + iT_{fi}),$$
 (6)

Scattering cross section proportional to $|T_{fi}|^2$.

We refer to T_{fi} as the scattering amplitude and denote it by $\mathcal{A}(...)$ where (...) is the scattering data.

The CHY formalism

Scattering equations and amplitudes

The scattering equations are given by

$$S_i = \sum_{i \neq i} \frac{s_{ij}}{z_i - z_j} = 0, \quad i \in \{1, 2, ..., n\}.$$
 (7)

One can obtain amplitudes of various theories from the formula

$$\mathcal{A}_n(1,...,n) = \int d\Omega_{\mathsf{CHY}} \mathcal{I}(z_i, k_i, \epsilon_i, ...), \tag{8}$$

with
$$d\Omega_{\text{CHY}} = \frac{d^n z}{\text{Vol}(\text{SL}(2,\mathbb{C}))} \prod_i' \delta(\mathcal{S}_i)$$
.

Integration rules

Graphic representation of Möbious invariant integrands

We represent the integrands by four-regular graphs. Every factor of z_{ij}^{-1} is a line between vertices i and j and every factor z_{ij} is a dashed line.

$$A_{3}^{\text{YM}}(1,2,3) = \text{PT}(1,2,3)\text{Pf}'\Psi^{1,3}$$

$$= \frac{1}{z_{12}^{2}z_{23}^{2}z_{13}^{2}} \left\{ -\epsilon_{12}\epsilon k_{32} + \epsilon_{13}\epsilon k_{23} + \epsilon_{23}\epsilon k_{12} \right\}$$

$$= \underbrace{\sum_{1}^{2} \left\{ -\epsilon_{12}\epsilon k_{32} + \epsilon_{13}\epsilon k_{23} + \epsilon_{23}\epsilon k_{12} \right\}}_{3}$$

$$= -\epsilon_{12}\epsilon k_{32} - \epsilon_{13}\epsilon k_{21} + \epsilon_{23}\epsilon k_{12},$$
(9)

Thank you for your attention.

14 / 14