Contents

1	Lect	Lectures														
	1.1	Representation	3													
	1.2	Autoregressive Models	4													
	1.3	Variational Autoencoders	7													
			12													
	1.4	Normalizing Flow Models	16													
		1.4.1 Homework 3	22													
	1.5	Generative Adversarial Networks	23													
	1.6	Energy-Based Models I	29													
2	Con	cepts	31													
_	2.1	Evidence Lower Bound (ELBo)	32													

LECTURES

Contents

1.1	Represer	ntation																		3
1.2	Autoregr	essive Mod	els .																	4
1.3	Variation	nal Autoeno	oders																	7
	1.3.1	Homework	2.																	12
1.4	Normaliz	zing Flow M	Iodels																	16
	1.4.1	Homework	3.																	22
1.5	Generati	ve Adversa	rial N	etw	ork	s			 											23
1.6	Energy-I	Based Mode	ls I																	29

Representation

Table of Contents Local

Written by Brandon McKinzie

Learning a Generative Model. We are given a set of examples $\{x\}$. Want to learn p(x) such that

- Generation: $x \sim p(x)$ should look like an example from the data.
- **Density estimation**: p(x) should be high if x looks like the data, and low otherwise (anomaly detection).
- Unsupervised representation learning. Learn what the examples have in common (features).

Structure through Conditional Independence [27:30]

- 1. How many parameters to specify joint distribution $p(x_1, ..., x_n)$ with the chain rule?
- 2. Now suppose $X_{i+1} \perp X_1, \ldots, X_{i-1} \mid X_i$

Answers:

- 1. $1+2+\cdots+2^{n-1}=2^n-1$ (duh, chain rule is fully general).
- 2. 2n-1

Bayes Networks [34:00]. Use conditional parameterization (instead of joint). For each RV X_i specify $p(x_i \mid \mathbf{x_{A_i}})$ for set X_{A_i} of RVs. The model joint as

$$p(x_1, \dots, x_n) = \prod_i p(x_i \mid \boldsymbol{x}_{A_i})$$
 (1)

A Bayesian network is a DAG G = (V, E). RVs are nodes, edges specify conditional dependencies. **Economical representation**: we are now exponential in |Pa(i)| (instead of |V|)¹.

Stopped at [46:00]. Lecture seems to be transitioning from CPDs to generative models. Watched the rest on the bus, nothing too informative.

¹In general, you are "exponential in" the number of RVs appearing in a given CPD

Autoregressive Models

Table of Contents Local

Written by Brandon McKinzie

Autoregressive Models [23:00]. AR models assume an ordering of the modeling variables x_1, \ldots, x_n , and assume that $X_i \mid X_1, \ldots, X_{i-1}$ can be modeled as a parameterized function of X_1, \ldots, X_{i-1} with number of params $\mathcal{O}(i-1)$. For example, consider the problem where each x_i is binary bernoulli RV. We could model the joint distribution via the chain rule with the following conditionals:

$$p_{CPT}(X_1=1;\alpha^{(1)}) = \alpha^{(1)}$$
 (2)

$$p_{logit}(X_2=1 \mid x_1; \boldsymbol{\alpha}^{(2)}) = \sigma(\boldsymbol{\alpha}_0^{(2)} + \boldsymbol{\alpha}_1^{(2)} x_1)$$
 (3)

$$p_{logit}(X_n=1 \mid x_1, \dots, x_{n-1}; \boldsymbol{\alpha}^{(n)}) = \sigma(\boldsymbol{\alpha}_0^{(n)} + \sum_{i=1}^{n-1} \boldsymbol{\alpha}_i^{(n)} x_i)$$
(4)

which has $\mathcal{O}(n^2)$ parameters.

AR Models vs. Autoencoders (AE) [1:02:00]. AEs consist of two stages:

- 1. **Encoder**: maps inputs $\mathbf{x} = x_1, \dots, x_n$ to some hidden representation $e(\mathbf{x})$.
- 2. **Decoder**: function d such that $d(e(x)) \approx x$.

A vanilla AE is not a generative model: it doesn't define some p(x) we can sample from².

²Why? Because it doesn't specify an *ordering* of the variables.

MADE (Masked Autoencoder for Distribution Estimation) is an AE architecture that is autoregressive. It defines an ordering of the variable via masking. Consider a 3-variable model over x_1, x_2, x_3 with ordering x_2, x_2, x_1 :

- The unit producing the parameters for $p(x_2)$ cannot depend on any inputs.
- Any weights leading to $p(x_3 \mid x_2)$ can only be traceable back to x_2 .
- Any weights leading to $p(x_1 \mid x_2, x_3)$ can only be traceable back to x_2 or x_3 .

To accomplish this, we perform the following masking operations:

- Assign each of the n input units a **degree** i that defines their index in the ordering. For our working example, assume we got degrees $\{x_1=3, x_2=1, x_3=2\}$.
- This defines the output conditionals of the model as

$$p(x_1 \mid x_2, x_3)$$
 $p(x_2)$ $p(x_3 \mid x_2)$

• For each unit in a hidden layer, pick a random integer i in $[1, n-1]^3$. That unit only has connections from units j (in the previous layer) that were assigned a number less than or equal to i. Conceptually, a hidden unit with degree i can depend on inputs in the (inclusive) range [1..i].

Learning Setting [48:30]. Given dataset \mathcal{D} of m IID samples from P_{data} . Also given some family of models \mathcal{M}^4 , and our task is to learn some "good" model $\hat{\mathcal{M}} \in \mathcal{M}$.

The KL-divergence between two distributions p and q is defined as

$$D_{KL}(p||q) = \sum_{\boldsymbol{x}} p(\boldsymbol{x}) \log \frac{p(\boldsymbol{x})}{q(\boldsymbol{x})}$$
(5)

• (Gibb's inequality) $D(p||q) \ge 0 \ \forall p,q$ with equality iff p=q. **Proof**⁵:

$$\mathbb{E}_{x \sim p} \left[-\log \frac{q(x)}{p(x)} \right] \ge -\log \left(\mathbb{E}_{x \sim p} \left[\frac{q(x)}{p(x)} \right] \right) = -\log \left(\sum_{x} p(x) \frac{q(x)}{p(x)} \right) = 0 \tag{6}$$

- Asymmetry: $D(p||q) \neq D(q||p)$.
- Measures the expected number of extra bits required to describe samples from p(x) using a code based on q instead of p^6 .

$$D(p||q) = \mathbb{E}_p \left[\log \frac{1}{q(x)} \right] - \mathbb{E}_p \left[\log \frac{1}{p(x)} \right]$$
 (7)

 $^{^{3}}n-1$ (not n) because none of the outputs (and thus hidden layers, too) can be conditioned on the final variable (given by index n).

⁴Examples of model families \mathcal{M} are things like (a) all Bayes nets with a specific structure, or (b) all neural networks with a given architecture (our goal is to search for the correct params in that space).

⁵This proof relies on Jensen's Inequality, which says that for any convex function f(x): $f(\mathbb{E}[x]) \leq \mathbb{E}[f(x)]$. See my exercises from PGM chapter 2 for related proofs.

⁶Mathematically, you can indeed see that:

In terms of parameter optimization with some model $q(x) := P_{\theta}(x)$, minimizing $D(P_{data}||P_{\theta})$ is equivalent to maximizing the expected log-likelihood, $\log P_{\theta}(x)$ [1:15:00].

Monte Carlo Estimation [1:21:16].

1. Express quantity of interest as the expected value of a random variable:

$$\mathbb{E}_{x \sim P(x)} \left[g(x) \right] = \sum_{x} g(x) P(x) \tag{8}$$

- 2. Generate T samples $\boldsymbol{x}^{(1)}, \dots, \boldsymbol{x}^{(T)}$ from P.
- 3. Estimate the expected value using:

$$\hat{g} \triangleq \frac{1}{T} \sum_{t=1}^{T} g(\boldsymbol{x}^{(t)}) \tag{9}$$

Properties of the MC estimate \hat{g} :

• Unbiased: $\mathbb{E}_P\left[\hat{g}\right] = \mathbb{E}_p\left[g(x)\right]$

• Convergence: $\hat{g} \to \mathbb{E}_P[g(x)]$ as $T \to \infty$. • Variance: $\operatorname{Var}[\hat{g}] = \frac{1}{T} \operatorname{Var}[g(x)]$

Lectures

October 07, 2019

Variational Autoencoders

Table of Contents Local

Written by Brandon McKinzie

Mixture of Gaussians [55:40]. A shallow LVM.

$$z \sim \text{Categorical}(1, \dots, K)$$
 (10)

$$p(\boldsymbol{x} \mid \boldsymbol{z} = k) = \mathcal{N}(\mu_k, \Sigma_k) \tag{11}$$

which also provides the generative process: sample a component $k \sim p(z)$, then generate data point x by sampling from $p(x \mid z=k)$. We can also do clustering using the posterior $p(z \mid x)$. Another interpretation/motivation for LVMs is that we can combine simple models into a more complex and expressive one. E.g. MoG results in a complex distribution p(x) even though it is combining very simple Gaussians components:

$$p(x) = \sum_{z} p(z)p(x \mid z) = \sum_{k=1}^{K} p(z=k) \underbrace{\mathcal{N}(x; \mu_k, \Sigma_k)}_{component}$$
(12)

Variational Autoencoder (VAE) [1:09:15]: a mixture of an infinite number of Gaussians.

$$z \sim \mathcal{N}(0, I)$$
 (13)

$$p(\boldsymbol{x} \mid \boldsymbol{z}) = \mathcal{N}\left(\mu_{\theta}(\boldsymbol{z}), \Sigma_{\theta}(\boldsymbol{z})\right) \tag{14}$$

where μ_{θ} , Σ_{θ} are neural networks.

Need way of approximating $\nabla \log \sum_{s} p(x, z; \theta)$.

Naive Monte Carlo [13:50]. As usual, we can express $p_{\theta}(x)$ as

$$p_{\theta}(x) = \sum_{z} p_{\theta}(x, z) = |\mathcal{Z}| \mathbb{E}_{z \sim U(\mathcal{Z})} \left[p_{\theta}(x, z) \right]$$
(15)

where \mathcal{Z} is the set of all possible values that z can take. **NB:** the expectation is over (uniform) $U(\mathcal{Z})$, NOT p(z) as we often see⁷; hence the scaling factor of $|\mathcal{Z}|$. The naive MC procedure is then to perform:

1. Sample $z^{(1)}, \dots, z^{(k)}$ uniformly at random.

⁷The form we typically write is $\mathbb{E}_{z \sim p(z)}[p(x \mid z)]$, an equivalent expression.

2. Approximate expectation with sample average:

$$\sum_{z} p_{\theta}(x, z) \approx |\mathcal{Z}| \frac{1}{k} \sum_{j=1}^{k} p_{\theta}(x, z^{(j)})$$
(16)

Problem: for most values of z, $p_{\theta}(x,z)$ is very low. Results in very high estimator variance.

Importance Sampling [19:20]. Sample instead from a distribution q(z) instead of $U(\mathcal{Z})$.

$$p_{\theta}(x) = \sum_{z \in \mathcal{Z}} \frac{q(z)}{q(z)} p_{\theta}(x, z) = \mathbb{E}_{z \sim q(z)} \left[\frac{p_{\theta}(x, z)}{q(z)} \right]$$
 (17)

$$p_{\theta}(x) \approx \frac{1}{k} \sum_{j=1}^{k} \frac{p_{\theta}(x, z)}{q(z)}$$
(18)

Want to choose q(z) that assigns high probabilities to $p_{\theta}(x, z)$, since (a) those terms contribute most to the true expectation, and (b) it reduces the variance of our estimator. **Problem**: we want to work with $\log p_{\theta}(x) = \log \mathbb{E}_z \left[p/q \right]$ as usual, but this process would actually result in us working with $\mathbb{E}_z \left[\log p/q \right]$ which is not equivalent⁸

Evidence Lower Bound [29:00]. Idea: use Jensen's inequality to get a lower bound on $\log p_{\theta}(x)$:

$$\log\left(\mathbb{E}_{z \sim q(z)}\left[\frac{p_{\theta}(x, z)}{q(z)}\right]\right) \ge \mathbb{E}_{z \sim q(z)}\left[\log\frac{p_{\theta}(x, z)}{q(z)}\right]$$
(19)

$$= \sum_{z} q(z) \log p_{\theta}(x, z) - \sum_{z} q(z) \log q(z)$$
 (20)

$$= \sum_{z} q(z) \log p_{\theta}(x, z) + H(q)$$
 (21)

$$\triangleq \mathcal{L}_{\theta}(x) \tag{22}$$

which is called the evidence lower bound (ELBo)⁹. Some properties/facts:

- Equality holds (trivially) if you can remove the z dependence of p(x, z)/q(z). This occurs if $q(z) = p_{\theta}(z \mid x)$.
- $\log p_{\theta}(x) = \text{ELBo} + D_{KL}(q(z)||p(z \mid x))$

Variational inference: learn a parameterized function $q_{\phi}(z)$ such that it's as close as possible to $p_{\theta}(z \mid x)$.

⁸**TODO**: As everyone in the class has asked: why can't we just sample from p directly and then compute the log after??

⁹This can also be derived via $D_{KL}(q(z)||p_{\theta}(z \mid x))$

Learning Deep Generative Models. We can replace $\log p$, when computing maximum likelihood, with \mathcal{L} as follows:

$$\ell(\theta; \mathcal{D}) = \sum_{x^{(i)} \in \mathcal{D}} \log p_{\theta}(x^{(i)}) \ge \sum_{x^{(i)} \in \mathcal{D}} \mathcal{L}(x^{(i)}; \theta, \phi^{(i)})$$
(23)

$$\ell(\theta; \mathcal{D}) = \sum_{x^{(i)} \in \mathcal{D}} \log p_{\theta}(x^{(i)}) \ge \sum_{x^{(i)} \in \mathcal{D}} \mathcal{L}(x^{(i)}; \theta, \phi^{(i)})$$

$$\max_{\theta} \ell(\theta; \mathcal{D}) \ge \max_{\theta, \phi^{(1)}, \dots, \phi^{(M)}} \sum_{x^{(i)} \in \mathcal{D}} \mathcal{L}(x^{(i)}; \theta, \phi^{(i)})$$
(23)

We use different variational parameters $\phi^{(i)}$ for each data point $x^{(i)}$ because the true posterior $p_{\theta}(z \mid x^{(i)})$ is different for each $x^{(i)}$. We can optimize via stochastic variational inference (SVI), which is just performing SGD on \mathcal{L} .

Stochastic Variational Inference

- 1. Initialize $\theta, \phi^1, \dots, \phi^M$.
- 2. Randomly sample $x^{(i)}$ from \mathcal{D} .
- 3. Optimize $\mathcal{L}(\boldsymbol{x}^{(i)}, \theta, \phi^i)$ as a function of ϕ^i :
 - (a) Repeat $\phi^i = \phi^i + \eta \nabla_{\phi^i} \mathcal{L}(\boldsymbol{x}^{(i)}; \theta, \phi^i)$
 - (b) Until convergence to $\phi^{i*} \approx \arg \max_{\alpha} \mathcal{L}(\boldsymbol{x}^{(i)}; \theta, \phi)$
- 4. Update θ using $\nabla_{\theta} \mathcal{L}(\boldsymbol{x}^{(i)}; \theta, \phi^{i*})$

Computing $\nabla_{\theta} \mathcal{L}$ is easy: do MC sampling and compute via backprop as usual. To compute $\nabla_{\phi^i}\mathcal{L}$, we can't just MC sample because the sampling procedure itself depends on $q_{\phi^i}(z)$. One approach is a general technique called REINFORCE [1:18:00].

Reparameterization. A better but less general alternative to REINFORCE that only works for [some] continuous z. Again, our goal is to compute the gradient wrt ϕ of

$$\mathbb{E}_{q_{\phi}(z)}[r(z)] = \int q_{\phi}(z)r(z)dz \tag{25}$$

Suppose $q_{\phi}(z) = \mathcal{N}(\mu, \sigma^2 I)$. We can then do:

$$\epsilon \sim \mathcal{N}\left(0, I\right)$$
 (26)

$$z = \mu + \sigma \epsilon = g(\epsilon; \phi) \tag{27}$$

$$\mathbb{E}_{z \sim q_{\phi}(z)}\left[r(z)\right] = \mathbb{E}_{\epsilon \sim \mathcal{N}(0,I)}\left[r(g(\epsilon;\phi))\right] \tag{28}$$

The primary result here is that we've reparameterized z to be a function of auxiliary variable ϵ such that we can push the gradient inside the expectation:

$$\nabla_{\phi} \mathbb{E}_{q_{\phi}} [r(z)] = \nabla_{\phi} \mathbb{E}_{\epsilon} [r(g(\epsilon; \phi))] = \mathbb{E}_{\epsilon} [\nabla_{\phi} r(g(\epsilon; \phi))]$$
 (29)

which we can estimate via Monte Carlo if r and q are differentiable wrt ϕ , and if ϵ is easy to sample from (backpropagation). Typically much lower variance than REINFORCE.

Amortized Inference [16:00]. Having a different ϕ^i for each example x^i doesn't scale to larger datasets. **Amortization**¹⁰: learn a single parametric function f_{λ} that maps each x to a set of (good) variational parameters. Like doing regression on $x^i \mapsto \phi^{i,*}$. We approximate the posteriors $q(z \mid x^i)$ using $q_{\lambda}(z \mid x)$.

Autoencoder Perspective [26:00]. We can rewrite our variational objective \mathcal{L} as follows:

$$\mathcal{L}(x;\theta,\phi) = \mathbb{E}_{q_{\phi}(z|x)} \left[\log p_{\theta}(x,z) - \log q_{\phi}(z\mid x) \right]$$
(30)

$$= \mathbb{E}_{q_{\phi}(z|x)} \left[(\log p_{\theta}(x, z) - \log p(z)) - (-\log p(z) + \log q_{\phi}(z \mid x)) \right]$$
(31)

$$= \mathbb{E}_{q_{\phi}(z|x)} \left[\log p_{\theta}(x \mid z) \right] - D_{KL} \left(q_{\phi}(z \mid x) || p(z) \right) \tag{32}$$

Interpretation Break. Remember, our overall goal here is to have some way of sampling $x \sim p(x)$. The steps we've covered in this class so far can be summarized as follows:

- 1. LVMs and difficulties of sampling. We are also using latent variables z^{11} , so that means we need to figure out how to sample $x \sim \sum_{z} p(x, z) = \mathbb{E}_{z \sim p(z)} [p(x \mid z)]$ (challenging).
- 2. Importance/MC Sampling. We can equivalently write $p_{\theta}(x) = \mathbb{E}_{z \sim q(z)}[p_{\theta}(x,z)/q(z)]$ for any distribution q(z). We can approximate this expectation with a MC estimator $\hat{p} = \frac{1}{k} \sum_{j=1}^{k} p_{\theta}(x,z)/q(z)$.
- 3. Variational objective (ELBo). For reasons unknown, we only are able to sample $\log(p/q)$ (not from p/q directly). This leads to the variational objective, a.k.a. the ELBo:

$$\mathcal{L}_{\theta}(x) = \sum_{z} q(z) \log p_{\theta}(x, z) + H(q)$$
(33)

which is guaranteed to be less than or equal to $\log \mathbb{E}[p/q]$. Therefore, we want to maximize this quantity.

- 4. Variational Inference. \mathcal{L} is maximized when $q(z) = p_{\theta}(z \mid x)$. The goal of VI is to learn a parameterized function $q_{\phi}(z)$ as close as possible to $p_{\theta}(z \mid x)$. The challenge is that $p_{\theta}(z \mid x)$ is a function of $x p_{\theta}(z \mid x^i)$ is different for each x^i . Therefore, we use different variational parameters ϕ^i for each x^i .
- 5. Stochastic Variational Inference. One method for learning the parameters $\{\theta, \{\phi^i\}\}$ is SVI. Unfortunately, in order to approximate $\nabla_{\phi^i} \mathcal{L}(x^i)$, we first need to sample from $q_{\phi^i}(z)$, which itself is a function of phi^i .
- 6. Reparameterization & Amortized Inference. Reparameterization allows us to push the gradient of ϕ inside the expectation, which means we can first draw our samples, and then compute gradients of those samples via e.g. backprop. Also, instead of having a different ϕ^i for every data point x^i , we can use amortized inference: learn a single parametric function $q_{\lambda}(z \mid x)$.

¹⁰Called "amortized" because, by removing the constraint that every single x^i must have it's own ϕ^i , we remove the need to train the ϕ^i when trying to do inference at test time on new x^i . Although learning a generic f_{λ} is more challenging than learning a separate ϕ^i for each x^i , those costs are "paid off" at test time, since we no longer have to learn parameters every time we want to do inference.

¹¹Recall that LVMs are useful for generating samples and for combining simple models into a more complex/expressive one.

Now, let's see how we can use this knowledge to outline the algorithm for a VAE.

VAE

- 1. Take a data point x^i .
- 2. **Encoder**: Map it to \hat{z} by MC sampling from $q_{\phi}(z \mid x^i)$
- 3. **Decoder**: Reconstruct \hat{x} by MC sampling from $p_{\theta}(x \mid \hat{z})$

The reason we are doing MC samples from the encoder (instead of just single top-1 sampling) is because we are eventually going to use these to evaluate \mathcal{L} . They represent the approximation, for example, to $\mathbb{E}_{q_{\phi}(z|x)} [\log p_{\theta}(z \mid x)]$. Ok but why MC sampling from decoder? The first time in \mathcal{L} implies we should simply evaluate $\log p(x \mid z)$ for each sample of z from the encoding step.

Analysis of \mathcal{L} (from VAE perspective).

- $\mathbb{E}_{q_{\theta}(z|x)}[\log p_{\theta}(x \mid z)]$ encourages $\hat{x} \approx x^i$ (x^i likely under $p_{\theta}(x \mid \hat{z})$).
- $D_{KL}(q_{\phi}(z \mid x)||p(z))$ encourages \hat{z} to be likely under p(z).
- Our approximations work well if $\mathbb{E}_{q_{\phi}(z|x)}[\log p_{\theta}(x \mid z)]$ is large. The largest this expectation can get corresponds to how well large values of $q_{\phi}(z \mid x)$ align with large values of $p_{\theta}(x \mid z)$. If they do align well, then our samples from $z \sim q$ (which will naturally tend to be values of \hat{z} for which $q_{\phi}(z \mid x)$ is large) will correspond to the large values of $p_{\theta}(x \mid \hat{z})$.
- As we learn, $D_{KL}(q_{\phi}(z \mid x)||p(z))$ encourages $q_{\phi}(z \mid x)$ (which remember is a function of x!) to be shaped like the prior p(z) (independent of x). This is useful because if we know p(z) and don't have access to data points x in the future, we can still generate reasonable values of \hat{x} by sampling $\hat{z} \sim p(z)$ instead!

Some good paper references shown in the slides around [42:00].

1.3.1 Homework 2

VAEs utilize the following form of $\mathcal{L}(x;\theta,\phi)$:

$$\mathcal{L}(x;\theta,\phi) = \mathbb{E}_{z \sim q_{\phi}(z|x)} \left[\log p_{\theta}(x|z) \right] - D_{KL} \left(q_{\phi}(z|x) || p(z) \right)$$
(34)

We can interpret $q_{\phi}(z \mid x)$ as an encoder and $p_{\theta}(x \mid z)$ as a decoder.

$$p_{\theta}(z) := \mathcal{N}(z; 0, I) \tag{35}$$

$$\log q_{\phi}(z \mid x^{(i)}) := \log \mathcal{N}\left(z; \mu^{(i)}, \sigma^{2}(i)I\right)$$
(36)

Problem 1: Implementing the VAE. Setting:

- Task: learn probabilistic model of MNIST.
- Observed variables: $x \in \{0,1\}^d$ (binary pixel sequence)
- Latent variables $z \in \mathbb{R}^k$.
- Goal: Learn LVM $p_{\theta}(x)$ of the high-dimensional data distribution $p_{data}(x)$.

The VAE for this problem is defined by the generative process

$$p(z) = \mathcal{N}(z \mid 0, I)$$
[decoder] $p_{\theta}(x \mid z) = \text{Bern}(x \mid f_{\theta}(z))$ (38)

Setup

where z has dimension z_{dim}^{12} . The function $f_{\theta}(z)$ is parameterized by a neural network with weights θ . It outputs logits for each of the d values associated with x. We can apply a sigmoid to obtain the bernoulli probabilities of each value being 1.

Although sampling is easy, we need to train our parameters first. Computing $p_{\theta}(x)$ (needed for MLE) is intractable:

$$p_{\theta}(\boldsymbol{x}) = \int p_{\theta}(\boldsymbol{x}, \boldsymbol{z}) d\boldsymbol{z}$$
 (39)

since this requires integrating over all of $\mathbb{R}^{z_{dim}}$. In MLE, we need to compute $\log p_{\theta}(\boldsymbol{x})$. Therefore, we need some approximation of this value that's tractable to compute.

We know that, for any distribution q(z), we can obtain a lower bound on $\log p_{\theta}(x)$ with

$$\mathcal{L}(x; \theta, \phi) \triangleq \mathbb{E}_{z \sim q(z)} \left[\log \frac{p_{\theta}(x, z)}{q(z)} \right]$$
(40)

 $^{^{12}\}mathrm{Don't}$ forget to sqrt the variance when computing \boldsymbol{z} with the reparameterization trick!

Ok, so how do we implement q(z)? Note that, for a given z, the optimal choice for q is $p(z \mid x)^{13}$. VAEs exploit this via an encoder $q_{\phi}(z \mid x)$ parameterized by ϕ .

[encoder]
$$q_{\phi}(\boldsymbol{z} \mid \boldsymbol{x}) = \mathcal{N}\left(\boldsymbol{x}; \mu_{\phi}(\boldsymbol{x}), \operatorname{diag}\left(\sigma_{\phi}^{2}(\boldsymbol{x})\right)\right)$$
 (41)

Of the many ways to write $\mathcal{L}(x;\theta,\phi)$, the formula useful for our VAE here will be

$$\mathcal{L}(x; \theta, \phi) = \mathbb{E}_{q_{\phi}(\boldsymbol{z}|\boldsymbol{x})} \left[\log p_{\theta}(\boldsymbol{x} \mid \boldsymbol{z}) \right] - D_{KL} \left(q_{\phi}(\boldsymbol{z} \mid \boldsymbol{x}) || p(\boldsymbol{z}) \right)$$
(42)

consisting of the reconstruction loss and KL terms. So how do we actually *implement* this? Well, one hacky way (and the way we do in the homework) for implementing the reconstruction loss is to take a single z MC sample estimate instead of dealing with the expectation. In other words, we literally compute $\log p_{\theta}(x \mid z^{(1)})$ where $z^{(1)}$ is our single sample from $q_{\phi}(z \mid x)$. Apparently the KL term can be computed analytically if $q_{\phi}(z \mid vecx)$ and p(z) are both Gaussian:

$$D_{KL}\left(q_{\phi}(\boldsymbol{z}\mid\boldsymbol{x})||p(\boldsymbol{z})\right) = \frac{1}{2}\left[\log\frac{\sigma_{p}^{2}}{\sigma_{q}^{2}} + \frac{\sigma_{p}^{2}}{\sigma_{q}^{2}} + \frac{\left(\mu_{q} - \mu_{p}\right)^{2}}{\sigma_{p}^{2}} - 1\right]$$
(43)

Problem 2: GMVAE. Mixture of Gaussians VAE. Instead of the parameter-free isotropic Gaussian p(z) from problem 1, we now have:

$$p_{\theta}(z) = \sum_{i=1}^{k} \frac{1}{k} \mathcal{N}\left(z; \mu_i, \operatorname{diag}\left(\sigma_i^2\right)\right)$$
(44)

One challenge is that the KL term can't be computed analytically between a Gaussian q and mixture of Gaussians p. In the homework, we use the unbiased MC estimator with a single sample $z^{(1)}$:

$$D_{KL}(q_{\phi}(\boldsymbol{z} \mid \boldsymbol{x}) || p(\boldsymbol{z})) \approx \log q_{\phi}(\boldsymbol{z}^{(1)} \mid \boldsymbol{x}) - \log p_{\theta}(\boldsymbol{z}^{(1)})$$

$$= \log \mathcal{N}\left(\boldsymbol{z}^{(1)}; \mu_{\phi}(\boldsymbol{x}), \operatorname{diag}\left(\sigma_{\phi}^{2}(\boldsymbol{x})\right)\right) - \log \sum_{i=1}^{k} \frac{1}{k} \mathcal{N}\left(\boldsymbol{z}^{(1)}; \mu_{i}, \operatorname{diag}\left(\sigma_{i}^{2}\right)\right)$$

$$\tag{46}$$

 $^{^{13} \}text{Why?}$ because it removes the dependence on \boldsymbol{z} from the fraction, thus making the lower bound equal to $\log \mathbb{E}\left[p/q\right]$

Problem 3: Importance Weighted Autoencoder (IWAE). Note that we can rewrite the ELBo in the form

$$\mathcal{L}(x; \theta, \phi) = \mathbb{E}_{\boldsymbol{z} \sim q_{\phi}(\boldsymbol{z}|\boldsymbol{x})} \left[\log \frac{p_{\theta}(\boldsymbol{z} \mid \boldsymbol{x})}{q_{\phi}(\boldsymbol{z} \mid \boldsymbol{x})} \cdot p_{\theta}(\boldsymbol{x}) \right]$$
(47)

The term in brackets is unnormalized¹⁴. We can obtain a tighter [lower] bound by averaging m > 1 samples from the approximate posterior $q_{\phi}(\boldsymbol{z} \mid \boldsymbol{x})$.

$$\mathcal{L}_{m}(\boldsymbol{x}; \boldsymbol{\theta}, \boldsymbol{\phi}) = \mathbb{E}_{\boldsymbol{z}^{(1)}, \dots, \boldsymbol{z}^{(m)} \sim q_{\boldsymbol{\phi}}(\boldsymbol{z} | \boldsymbol{x})} \left[\log \frac{1}{m} \sum_{i=1}^{m} \frac{p_{\boldsymbol{\theta}}(\boldsymbol{x}, \boldsymbol{z}^{(i)})}{q_{\boldsymbol{\phi}}(\boldsymbol{z}^{(i)} | \boldsymbol{x})} \right]$$
(48)

Problem 4: Semi-Supervised VAE (SSVAE). Setting:

- Small number of labeled pairs $\boldsymbol{x}_{\ell} = \{ \left(\boldsymbol{x}^{(i)}, y^{(i)} \right) \}_{i=1}^{100}$ where the labels $y^{(i)}$ are the integer that the MNIST image $\boldsymbol{x}^{(i)}$ represents.
- Large amount of unlabeled data $\boldsymbol{x}_u = \{\boldsymbol{x}^{(i)}\}_{i=101}^{60000}$

The SSVAE implements the generative process

$$p(z) = \mathcal{N}(z; 0, I) \tag{49}$$

$$p(y) = \text{Cat}(y; \pi) = \frac{1}{10}$$
 (50)

$$p_{\theta}(\boldsymbol{x} \mid \boldsymbol{y}, \boldsymbol{z}) = \text{Bern}(\boldsymbol{x}; f_{\theta}(\boldsymbol{y}, \boldsymbol{z})) \tag{51}$$

$$q_{\phi}(y, \boldsymbol{z} \mid \boldsymbol{x}) = q_{\phi}(y \mid \boldsymbol{x})q_{\phi}(\boldsymbol{z} \mid \boldsymbol{x}, y) \tag{52}$$

$$q_{\phi}(y \mid \boldsymbol{x}) = \operatorname{Cat}(y; f_{\phi}(\boldsymbol{x})) \tag{53}$$

$$q_{\phi}(\boldsymbol{z} \mid \boldsymbol{x}, y) = \mathcal{N}\left(\boldsymbol{z}; \mu_{\phi}(\boldsymbol{x}, y), \operatorname{diag}\left(\sigma_{\phi}^{2}(\boldsymbol{x}, y)\right)\right)$$
 (54)

For the homework, we'll maximize the objective

$$\max_{\theta, \phi} \sum_{\boldsymbol{x} \in \boldsymbol{X}} \mathcal{L}(x; \theta, \phi) + \alpha \sum_{\boldsymbol{x}, y \in \boldsymbol{X}_{\ell}} \log q_{\phi}(y \mid \boldsymbol{x})$$
 (55)

¹⁴They say this is because of the factor of $p_{\theta}(x)$ but I don't see how the fraction is normalized at all.

other/idk leave me alone.

Notes while I work through some homework/coding. Recall that for VAEs, we prefer to express the ELBo in the form

$$\mathcal{L}(x;\theta,\phi) = \mathbb{E}_{q_{\phi}(z|x)} \left[\log p_{\theta}(x \mid z) \right] - D_{KL} \left(q_{\phi}(z \mid x) || p(z) \right)$$
(56)

Consider the case where both p(z) and $q_{\theta}(z \mid x)$ are Gaussian, i.e. that $p(z) = \mathcal{N}\left(z; \mu_p, \sigma_p^2\right)$ and $q_{\theta}(z \mid x) = \mathcal{N}\left(z; \mu_q, \sigma_q^2\right)$. To evaluate the $D_{KL}\left(q||p(z)\right)$ term,

$$D_{KL}\left(q||p\right) \triangleq \int \mathcal{N}\left(z; \mu_q, \sigma_q^2\right) \left(\log \mathcal{N}\left(z; \mu_q, \sigma_q^2\right) - \log \mathcal{N}\left(z; \mu_p, \sigma_p^2\right)\right) dz \tag{57}$$

Normalizing Flow Models

Table of Contents Local Written by Brandon McKinzie

Recap of likelihood-based learning [48:30]. We've seen the following two model families so far, along with their respective pros/cons:

- Autoregressive Models: $p_{\theta}(x) = \prod_{i=1}^{n} p_{\theta}(x_i \mid x_{< i})$. Pro: tractable likelihoods. Con: no direct mechanism for learning features.
- VAEs: $p_{\theta}(x) = \int p_{\theta}(x, z) dz$. **Pro**: can learn feature representations (via latent z). **Con**: intractable marginal likelihoods.

Key question: Can we design an LVM with tractable likelihoods? Yes! With caveats.

Change of Variables [General Case¹⁵]

Define invertible $\mathbf{f}: \mathbb{R}^n \to \mathbb{R}^n$, where $X = \mathbf{f}(Z)$, and $Z = \mathbf{f}^{-1}(X)$.

$$p_X(\boldsymbol{x}) = p_Z\left(\boldsymbol{f}^{-1}(\boldsymbol{x})\right) \left| \det\left(\frac{\partial \boldsymbol{f}^{-1}(\boldsymbol{x})}{\partial \boldsymbol{x}}\right) \right|$$
 (58)

$$= p_Z(\boldsymbol{z}) \left| \det \boldsymbol{J}_{\boldsymbol{f}^{-1}(\boldsymbol{x}) \to \boldsymbol{x}} \right| \tag{59}$$

$$= p_{Z}(\boldsymbol{z}) \left| \det \boldsymbol{J}_{\boldsymbol{f}^{-1}(\boldsymbol{x}) \to \boldsymbol{x}} \right|$$

$$= p_{Z}(\boldsymbol{z}) \left| \det \boldsymbol{J}_{\boldsymbol{f}(\boldsymbol{z}) \to \boldsymbol{z}} \right|^{-1}$$

$$(60)$$

(61)

 $[\boldsymbol{J_{z \to x}}]_{i,j} \triangleq \frac{\partial z_i}{\partial x_i}$

- x, z must be continuous and have same dimension.
- For linear x = Az, change in volume is det A.
- For non-linear $f(\cdot)$, the linearized (?) change in volume is det J^{16}
- For any invertible matrix A: $\det A^{-1} = \det(A)^{-1}$.

$$\boldsymbol{J}_{f(z)\mapsto z}^{-1} = \left(\frac{\partial \boldsymbol{f}(z)}{\partial \boldsymbol{z}}\right)^{-1} = \frac{\partial \boldsymbol{f}^{-1}(\boldsymbol{x})}{\partial \boldsymbol{x}} = \boldsymbol{J}_{f^{-1}(x)\mapsto x}$$
(62)

¹⁵Hands-down best explanation/proof of this is this S.O. answer.

¹⁶Note that, for invertible function $f: z \mapsto x$:

Normalizing Flow Models [1:12:30]. A normalizing flow model (NFM) defines a deterministic/invertible mapping $\mathbf{f}_{\theta} : \mathbb{R}^n \mapsto \mathbb{R}^n$, with $X = \mathbf{f}_{\theta}(Z)$ and $Z = \mathbf{f}_{\theta}^{-1}(X)$.

- **Normalizing**: C.o.V. gives normalized density after applying an invertible transformation.
- Flow: Invertible transformations can be composed with each other.

$$\mathbf{x} \triangleq \mathbf{z}_M = \mathbf{f}_{\theta}^M \circ \cdots \circ \mathbf{f}_{\theta}^1(\mathbf{z}_0) \triangleq \mathbf{f}_{\theta}(\mathbf{z}_0)$$
 (63)

$$\boldsymbol{z}_0 = \left(\boldsymbol{f}_{\theta}^1\right)^{-1} \circ \cdots \circ \left(\boldsymbol{f}_{\theta}^M\right)^{-1} (\boldsymbol{x}) \tag{64}$$

$$p_X(\boldsymbol{x};\theta) = p_{Z_0}(\boldsymbol{f}_{\theta}^{-1}(\boldsymbol{x})) \prod_{m=1}^{M} \left| \det \boldsymbol{J}_{(f_{\theta}^m)^{-1} \to z_m} \right|$$
(65)

Planar Flows. Invertible transformation

$$x = f_{\theta}(z) = z + uh\left(w^{T}z + b\right)$$
(66)

$$\left| \det \mathbf{J}_{\mathbf{f}(\mathbf{z}) \mapsto \mathbf{z}} \right| = \left| \det \left(\mathbf{I} + h' \left(\mathbf{w}^T \mathbf{z} + b \right) \mathbf{u} \mathbf{w}^T \right) \right|$$
(67)

$$= \left| 1 + h' \left(\boldsymbol{w}^T \boldsymbol{z} + b \right) \boldsymbol{u}^T \boldsymbol{w} \right| \tag{68}$$

Note that we need to restrict parameters and non-linearity to ensure the mapping is invertible ¹⁷.

$$\boldsymbol{f}_{\theta}^{-1}(\boldsymbol{x}) = \boldsymbol{f}_{\theta}^{-1}(\boldsymbol{z} + \boldsymbol{u} \tanh(\boldsymbol{w}^{T} \boldsymbol{z} + \boldsymbol{b})) = \boldsymbol{z}$$
(69)

Recall that any function f is invertible IFF it is a bijection. Equivalently, any function f is invertible IFF it is either strictly increasing or decreasing (with no local maxima/minima). Let $z = z_{\perp} + z_{\parallel}$, defined relative to w, i.e. such that $z_{\perp}^T w = 0$ and $z_{\parallel} = \alpha \frac{w}{||w||^2}$ for some $\alpha \in \mathbb{R}$. This gives

$$f(z) = z_{\perp} + z_{\parallel} + u \tanh\left(w^{T} z_{\parallel} + b\right)$$
(70)

$$\boldsymbol{w}^{T} f(\boldsymbol{z}) = \alpha + \boldsymbol{w}^{T} \boldsymbol{u} \tanh (\alpha + b) \triangleq f_{\alpha}(\alpha)$$
(71)

Again, note that $f_{\alpha}(\alpha)$ is invertible IFF it's monotonic:

$$\frac{df_{\alpha}(\alpha)}{d\alpha} = 1 + \boldsymbol{w}^{T}\boldsymbol{u}\tanh'(\alpha + b)$$
(72)

$$1 + \boldsymbol{w}^{T} \boldsymbol{u} \tanh'(\alpha + b) \ge 0 \iff \boldsymbol{w}^{T} \boldsymbol{u} \ge -\frac{1}{\tanh'(\alpha + b)}$$
(73)

Since $0 < \tanh'(\cdot) \le 1$, we simply need $\mathbf{w}^T \mathbf{u} \ge -1$. The planar flow authors accomplish this via

$$\hat{u}(w, u) = u + \left[m(w^T u) - (w^T u) \right] \frac{w}{||w||^2}$$
(74)

$$m(x) = -1 + \log(1 + e^x) \tag{75}$$

¹⁷ For example, let $h=\tanh$. Need to ensure that $\boldsymbol{f}_{\theta}^{-1}(\boldsymbol{x})$ exists such that

Learning and Inference [1:20:10]. Learning via maximum likelihood over \mathcal{D} :

$$\max_{\theta} \log p_X(\mathcal{D}; \theta) = \sum_{\boldsymbol{x} \in \mathcal{D}} \log p_Z(\boldsymbol{f}_{\theta}^{-1}(\boldsymbol{x})) + \log \left| \det \boldsymbol{J}_{\boldsymbol{f}^{-1}(\boldsymbol{x}) \to \boldsymbol{x}} \right|$$
(76)

- ✓ Exact likelihood evaluation via inverse transformation $x \mapsto z$ and c.o.v. formula (instead of intractable summation over all z).
 - **X** Requires evaluation of det J, where J is an $n \times n$ Jacobian¹⁸. Computing such a determinant in general is $\mathcal{O}(n^3)$.

Key Idea: choose transformations s.t. J has special structure allowing for fast computation of det J. For example, if J is triangular, then det $J = \prod_i J_{ii}$. Conceptually, if J is lower triangular, for example, then $(\forall i, j > i)$, $\frac{\partial f^{-1}(\mathbf{x})_i}{\partial x_j} = \frac{\partial f(z)_j}{\partial z_i} = 0$. This would be true if e.g. x_i depended only on $z_{>i}$.

✓ **Sampling** via forward transformation $z \mapsto x$:

$$z \sim p_Z(z)$$
 $x = f_{\theta}(z)$ (78)

✓ Latent representations inferred via inverse transformation $z = f_{\theta}^{-1}(x)$.

$$\det A \triangleq \sum_{c=1}^{N_c} (-1)^{c-1} a_{11} \det A_{11} \tag{77}$$

where a_{ij} is element at row i, column j, and A_{ij} is the $(n-1) \times (n-1)$ sub-matrix resulting from removing row i column j from the original matrix A.

¹⁸Determinant review: For 3×3 matrices, you do that technique from physics for calculating vector cross products. For arbitrary $n \times n$ matrices,

Designing Invertible Transformations. In what follows, we look at two models, NICE and Real-NVP, that have invertible transformations with diagonal Jacobians.

NICE¹⁹ [9:00] composes two kinds of invertible transformations:

• Additive coupling layers²⁰. Partition z into two disjoint subsets $z_{1:d}$ and $z_{d+1:n}$. for any $1 \le d < n$.

$$[z \mapsto x] \qquad \boldsymbol{x}_{1:d} = \boldsymbol{z}_{1:d} \tag{79}$$

$$x_{d+1:n} = z_{d+1:n} + m_{\theta}(z_{1:d})$$
(80)

$$[x \mapsto z] \qquad \mathbf{z}_{1:d} = \mathbf{x}_{1:d} \tag{81}$$

$$z_{d+1:n} = x_{d+1:n} - m_{\theta}(x_{1:d})$$
(82)

where m_{θ} is a NN mapping d inputs to n-d outputs. Jacobian of forward mapping:

$$J_{x \to z} \triangleq \frac{\partial x}{\partial z} = \begin{pmatrix} I_d & \mathbf{0} \\ \frac{\partial x_{d+1:n}}{\partial z_{1:d}} & I_{n-d} \end{pmatrix}$$
(83)

$$\det J = 1 \tag{84}$$

Volume preserving transformation since det is 1 [17:17].

• Rescaling layers (final layer). The forward/inverse mappings and J:

$$[z \mapsto x] \qquad x_i = s_i z_i \tag{85}$$

$$[x \mapsto z] \qquad z_i = \frac{x_i}{s_i} \tag{86}$$

$$J_{x\mapsto z} = \operatorname{diag}(s) \tag{87}$$

where $s_i > 0$ is the scaling factor of the *i*th dimension.

Real-NVP²¹. Coupling layers now shift and scale.

$$[z \mapsto x] \qquad \mathbf{x}_{1:d} = \mathbf{z}_{1:d} \tag{88}$$

$$\boldsymbol{x}_{d+1:n} = \boldsymbol{z}_{d+1:n} \odot \exp\left(\alpha_{\theta}\left(\boldsymbol{z}_{1:d}\right)\right) + \mu_{\theta}(\boldsymbol{z}_{1:d}) \tag{89}$$

$$[x \mapsto z] \qquad \mathbf{z}_{1:d} = \mathbf{x}_{1:d} \tag{90}$$

$$\boldsymbol{z}_{d+1:n} = (\boldsymbol{x}_{d+1:n} - \mu_{\theta}(\boldsymbol{x}_{1:d})) \odot (\exp(-\alpha_{\theta}(\boldsymbol{x}_{1:d})))$$
(91)

$$J_{x \to z} \triangleq \frac{\partial x}{\partial z} = \begin{pmatrix} I_d & \mathbf{0} \\ \frac{\partial x_{d+1:n}}{\partial z_{1:d}} & \mathbf{diag} \left(\exp \left(\alpha_{\theta} \left(z_{1:d} \right) \right) \right) \end{pmatrix}$$
(92)

$$\det J = \prod_{i=d+1}^{n} \exp\left(\alpha_{\theta} \left(\boldsymbol{z}_{1:d}\right)_{i}\right) \tag{93}$$

$$= \exp\left(\sum_{i=d+1}^{n} \alpha_{\theta} \left(\boldsymbol{z}_{1:d}\right)_{i}\right) \tag{94}$$

¹⁹Nonlinear Independent Components Estimation (Dinh et al., 2014).

²⁰In practice, we assign d randomly for each layer.

²¹Non-volume preserving extension of NICE.

Autoregressive Models as Flow Models [43:00]. Consider a Gaussian AR model:

$$p(\boldsymbol{x}) = \prod_{i=1}^{n} p(x_i \mid \boldsymbol{x}_{< i})$$
(95)

$$= \prod_{i=1}^{n} \mathcal{N}\left(x_i; \mu_i, \exp(\alpha_i)^2\right)$$
(96)

where both μ_i and α_i are functions (neural nets) of $x_1, \ldots x_{i-1}$ (constants for i=1). The sampling procedure is defined as follows:

- 1. Sample $z_i \sim \mathcal{N}(0,1)$ for $i = 1, \ldots, n$.
- 2. Set $x_1 := \exp(\alpha_1)z_1 + \mu_1$.
- 3. For i in [2..n] (inclusive): do
 - (a) Compute $\mu_i(x_1,\ldots,x_{i-1})$ and $\alpha_i(x_1,\ldots,x_{i-1})$.
 - (b) Set $x_i := \exp(\alpha_i)z_i + \mu_i$.

Flow Interpretation [45:57]

Sampled each z_i from a (simple) Gaussian, $\mathcal{N}(0,1)$. Sampled the associated x_i via invertible transformations parameterized by $\mu_i(\cdot)$, $\alpha_i(\cdot)$.

We've just described the Masked Autoregressive Flow (MAF) [46:11] model. The sampling for the forward mapping $z \mapsto x$ is illustrated below.

Inverse Autoregressive Flow (IAF) [52:00].

Probability Density Distillation

Student distribution is trained to minimize D_{KL} between student s and teacher t:

$$D_{KL}(s||t) = \mathbb{E}_{\boldsymbol{x} \sim s} \left[\log s(\boldsymbol{x}) - \log t(\boldsymbol{x}) \right]$$
(97)

Parallel Wavenet

Training.

- 1. Train teacher model (MAF) via MLE.
- 2. Train student model (IAF) to minimize D_{KL} .

Testing. Use student model.

Improves sampling efficiency over Wavenet by 1000x!

Change of Variables: Derivation

Given some [continuous] $z \sim p_Z$, and monotonic f(z) = x, derive $p_X(x)$. Both z and x must have the same dimension.

1. The density for continuous RV \boldsymbol{z} is defined as

$$p_Z(z) \triangleq \frac{\partial P(Z \le z)}{\partial z} \tag{98}$$

2. Since f(z) is monotonic, we know that the CDF for X can be defined in terms of the CDF for Z as

$$P(X \le \boldsymbol{x}) = P(Z \in \{\boldsymbol{z} | \boldsymbol{f}(\boldsymbol{z}) \le x\}) \tag{99}$$

3. We can use the above, along with the fact that any monotonic function is invertible, to define the density $p_X(\boldsymbol{x})$ as

$$p_X(\boldsymbol{x}) \triangleq \frac{\partial P(X \leq \boldsymbol{x})}{\partial \boldsymbol{x}} \tag{100}$$

$$= \frac{\partial P\left(Z \in \{z | f(z) \le x\}\right)}{\partial x} \tag{101}$$

$$\frac{\partial \mathbf{x}}{\partial \mathbf{z}} = \frac{\partial P\left(Z \in \{\mathbf{z} | \mathbf{f}(\mathbf{z}) \le \mathbf{x}\}\right)}{\partial \mathbf{x}} \tag{101}$$

$$= \frac{\partial P\left(Z \in \{\mathbf{z} | \mathbf{f}(\mathbf{z}) \le \mathbf{x}\}\right)}{\partial \mathbf{z}} \frac{\partial \mathbf{z}}{\partial \mathbf{x}} \tag{102}$$

$$= \frac{\partial P\left(Z \le f^{-1}(x)\right)}{\partial z} \frac{\partial z}{\partial x}$$
(103)

$$= p_Z(\mathbf{f}^{-1}(\mathbf{x})) \frac{\partial \mathbf{z}}{\partial \mathbf{x}} \tag{104}$$

$$= p_Z(\boldsymbol{f}^{-1}(\boldsymbol{x}))\boldsymbol{J}_{\boldsymbol{z}\to\boldsymbol{x}} \tag{105}$$

In summary, the density $p_X(x)$, where x = f(z), can be written as:

$$p_X(\boldsymbol{x}) = p_Z \left(\boldsymbol{z} = \boldsymbol{f}^{-1}(\boldsymbol{x}) \right) \tag{106}$$

TODO: FINISH THIS AFTER THE STATS BOOKS ARRIVES

^aThis part is intuitively clear to me, yet I'm not sure how I'd actually *prove* it.

1.4.1 Homework 3

Problem 1: Flow Models. Implement a Masked Autoregressive Flow (MAF) model. MAF models are themselves composed of Masked Autoregressive Distribution Estimator (MADE) blocks (each $f(\cdot)$ will be a MADE block).

```
nf_blocks = []
for i in range(self.n_flows):
    nf_blocks.append(
        MADE(self.input_size, self.hidden_size, self.n_hidden))
    nf_blocks.append(PermuteLayer(self.input_size)) # permute dims
self.nf = nn.Sequential(*nf_blocks)
```

Each MADE block is consists of some number of hidden layers, each with an associated mask.

• Forward Pass $[z \mapsto x]$: Assuming that z comes from some base noise distribution like $\mathcal{N}(0,I)$ (is this still valid when e.g. z is just the output of the previous layer (as in MAF)), we can use the reparameterization trick for Gaussian sampling to obtain each x_i :

$$x_1 = \mu_1 + z_1 \exp\left(\alpha_1\right) \tag{107}$$

$$x_2 = \mu_2(x_1) + z_2 \exp\left(\alpha_2(x_1)\right) \tag{108}$$

$$\vdots (109)$$

$$x_n = \mu_2(x_1, \dots, x_{n-1}) + z_n \exp(\alpha_n(x_1, \dots, x_{n-1}))$$
 (110)

Since this is an invertible transformation,

$$\log \left| \det \frac{\partial z}{\partial x} \right| = \log \left| \det \frac{\partial x}{\partial z} \right|^{-1} \tag{111}$$

$$= \log \left| \prod_{i=1}^{n} \exp\left(\alpha_{i}\right) \right|^{-1} \tag{112}$$

$$= -\sum_{i=1}^{n} \alpha_i \tag{113}$$

Note that everything we've seen so far has been within a single MADE layer. Our full MAF model consists of 5 such MADE layers.

Lectures October 21, 2019

Generative Adversarial Networks

Table of Contents Local

Written by Brandon McKinzie

Recap [8:00]. We've seen the following model families so far:

- Autoregressive Models: $p_{\theta}(x) = \prod_{i=1}^{n} p_{\theta}(x_i \mid x_{< i})$. Pro: tractable likelihoods. Con: no direct mechanism for learning features.
- VAEs: $p_{\theta}(x) = \int p_{\theta}(x, z) dz$. **Pro**: can learn feature representations (via latent z). **Con**: intractable marginal likelihoods.
- Normalizing Flow Models: $p_{\theta,X}(x) = p_{\theta,Z}(f_{\theta}^{-1}(x)) |\det J_{z \to x}|$

All the above are based on maximizing likelihoods (or approximations).

Example: great $\log p_{\text{test}}(x)$; poor samples [12:14]

Consider a noise mixture model $p_{\theta}(x)$ where x is some d_x -dimensional vector, with sampling procedure

- 1. Sample binary-valued $b \sim \text{Bern}(0.01)$.
- 2. If b = 1 (probability 1 percent), then return sample $\mathbf{x} \sim p_{data}(\mathbf{x})$.
- 3. Else, return sample $\boldsymbol{x} \sim p_{noise}(\boldsymbol{x})$.

Note that the above procedure can be written as

$$p_{\theta}(\boldsymbol{x}) = 0.01 p_{\text{data}}(\boldsymbol{x}) + 0.99 p_{\text{noise}}(\boldsymbol{x})$$
(114)

In what follows, we find an upper and lower bound on $\log p_{\theta}(x)$ to prove it can have great likelihoods.

$$\log p_{\theta}(\boldsymbol{x}) = \log (0.01 p_{\text{data}}(\boldsymbol{x}) + 0.99 p_{\text{noise}}(\boldsymbol{x}))$$
(115)

$$\geq \log 0.01 p_{\text{data}}(\boldsymbol{x}) \tag{116}$$

$$=\log p_{\text{data}}\left(\boldsymbol{x}\right) - \log 100\tag{117}$$

$$\mathbb{E}_{p_{data}} \left[\log p_{\theta} \left(\boldsymbol{x} \right) \right] \ge \mathbb{E}_{p_{data}} \left[\log p_{\text{data}} \left(\boldsymbol{x} \right) \right] - \log 100 \tag{118}$$

$$\mathbb{E}_{p_{data}}\left[\log p_{\text{data}}\left(\boldsymbol{x}\right)\right] \ge \mathbb{E}_{p_{data}}\left[\log p_{\theta}\left(\boldsymbol{x}\right)\right] \tag{119}$$

where the last line is true because $D_{KL}(p_{data}||p_{\theta}) \geq 0$. This gives us the following upper and lower bound:

$$\mathbb{E}_{p_{data}}\left[\log p_{\text{data}}\left(\boldsymbol{x}\right)\right] \ge \mathbb{E}_{p_{data}}\left[\log p_{\theta}\left(\boldsymbol{x}\right)\right] \ge \mathbb{E}_{p_{data}}\left[\log p_{\text{data}}\left(\boldsymbol{x}\right)\right] - \log 100 \tag{120}$$

For larger and larger d_x , the absolute values of $\log p_{\rm data}(x)$ increases^a. and the contribution of $-\log 100$ becomes less and less significant, until

$$\mathbb{E}_{p_{data}} \left[\log p_{\theta} \left(\boldsymbol{x} \right) \right] \approx \mathbb{E}_{p_{data}} \left[\log p_{\text{data}} \left(\boldsymbol{x} \right) \right] \tag{121}$$

which results in a model with great likelihoods, but horrible samples (mostly noise).

^aThink about it. Higher dimensional spaces have more unique possible values for \boldsymbol{x} . For higher dimensional spaces, the observed points \boldsymbol{x} represent a much smaller fraction of the total number of points, and will thus likely get assigned lower probabilities (and thus larger $|\log p|$) than e.g. observed data in small dimensional spaces.

Towards likelihood-free learning [11:23]. GANs can be motivated by asking whether optimizing *likelihoods* is a good approach. There exist cases where model can generate poor samples with great likelihoods, and vice-versa. For example, memorizing training set can result in great samples, but have horrible test likelihoods. Can we disentangle likelihoods and samples?

Two-Sample Tests [23:48]

- ▶ Given $S_1 = \{x \sim P\}$ and $S_2 = \{x \sim Q\}$, a two-sample test considers the following hypotheses:
 - Null hypothesis $H_0: P = Q$.
 - Alternate hypothesis $H_1: P \neq Q$.
- ▶ Test statistic T compares S_1 and S_2 (e.g. difference in means)²².
- ▶ If $T < \alpha$, then accept H_0 else reject it.
- ▶ **Key observation**: T is likelihood-free since it doesn't involve densities P or Q (only samples).

GANs [30:40]. Key idea: learn a statistic that maximizes a suitable notion of distance between S_1 and S_2^{23} . GANs involve a two player minimax game between a **generator** G_{θ} and a **discriminator**

- Generator $G_{\theta}: \mathbf{z} \mapsto \mathbf{x}$. Deterministic directed LVM. Minimizes the two-sample test objective in support of $H_0: p_{data} = p_{\theta}$.
- **Discriminator** $D_{\phi}: \boldsymbol{x} \mapsto \boldsymbol{y}$ where \boldsymbol{y} is a binary RV. **Maximizes** the two-sample test objective in support of $H_1: p_{data} \neq p_{\theta}$. For fixed G, the discriminator D is performing binary classification with cross entropy.

 $^{^{22}}$ We interpret large T as meaning the samples appear to come from different distributions, and low T as meaning the samples appear to come from the same distribution

 $^{^{23}}$ The wording is subtle/confusing here. What we mean is we want to somehow learn a high-quality statistic T that's very large when the samples are not from the same distribution. Why? Because such a T makes the task of minimizing its value (job of the generator) difficult. If T was low to begin with, there wouldn't be much of a task. Stated another way: given that G wants to minimize the test statistic, the job of D is to find a test statistic that is hard for G to minimize.

The GAN objective function is defined as [38:00]

$$\min_{\theta} \max_{\phi} V(G_{\theta}, D_{\phi}) = \mathbb{E}_{\boldsymbol{x} \sim p_{data}} \left[\log D_{\phi}(\boldsymbol{x}) \right] + \mathbb{E}_{\boldsymbol{z} \sim p(\boldsymbol{z})} \left[\log (1 - D_{\phi}(G_{\theta}(\boldsymbol{z}))) \right]$$
(122)

Optimal Discriminator

The optimal discriminator function D for a given generator G is

$$D_G^*(\mathbf{x}) = \frac{p_{data}(\mathbf{x})}{p_{data}(\mathbf{x}) + p_G(\mathbf{x})}$$
(123)

If we plug this into V(G, D), we obtain

$$V(G, D_G^*(\mathbf{x})) = 2D_{JSD}(p_{data}||p_G) - \log 4$$
(124)

$$D_{JSD}\left(p||q\right) \triangleq \frac{1}{2} \left(D_{KL}\left(p||\frac{p+q}{2}\right) + D_{KL}\left(q||\frac{p+q}{2}\right) \right) \tag{125}$$

where $D_{JSD}(p||q)$ is the Jensen-Shannon Divergence²⁴.

The GAN Training Algorithm [52:00]

1. Sample minibatch of m training points from data.

$$oldsymbol{x}^{(1)}, oldsymbol{x}^{(2)}, \dots, oldsymbol{x}^{(m)} \sim \mathcal{D}$$

2. Sample minibatch of m noise vectors from p_Z .

$$z^{(1)}, z^{(2)}, \dots, z^{(m)} \sim p_Z$$

3. Update generator parameters θ by stochastic gradient descent.

$$\nabla_{\theta} V(G_{\theta}, D_{\phi}) = \frac{1}{m} \nabla_{\theta} \sum_{i=1}^{m} \log \left(1 - D_{\phi} \left(G_{\theta} \left(\boldsymbol{z}^{(i)} \right) \right) \right)$$
(130)

4. Update discriminator parameters ϕ by stochastic gradient ascent.

$$\nabla_{\phi} V(G_{\theta}, D_{\phi}) = \frac{1}{m} \nabla_{\phi} \sum_{i=1}^{m} \left[\log D_{\phi} \left(\boldsymbol{x}^{(i)} \right) + \log \left(1 - D_{\phi} \left(G_{\theta} \left(\boldsymbol{z}^{(i)} \right) \right) \right) \right]$$
(131)

5. Repeat for fixed number of epochs.

$$D_{JSD}\left(p||q\right) \ge 0\tag{126}$$

$$D_{JSD}(p||q) = 0 \quad \text{iff} \quad p = q \tag{127}$$

$$D_{JSD}(p||q) = D_{JSD}(q||p)$$
(128)

$$\sqrt{D_{JSD}(p||q)} \le \sqrt{D_{JSD}(p||r)} + \sqrt{D_{JSD}(r||q)}$$
 (129)

²⁴Properties of $D_{JSD}(p||q)$:

Challenges.

- Unstable Optimization. G and D often oscillate during training without converging. No robust stopping criteria.
- Mode Collapse [1:11:00]. Generator collapses to one or few samples (dubbed as "modes"). For example, if p_{data} is multimodal, the generator may collapse to modeling just one of these modes.
- Evaluation.

Beyond KL and JSD.

- $D_{KL}(p||q)$: used by AR and Flow models.
- $D_{JSD}(p||q)$ (scaled & shifted): original GAN objective.

f-divergence [8:30]

Given two densities p and q, the f-divergence is given by

$$D_f(p||q) \triangleq \mathbb{E}_{\boldsymbol{x} \sim q} \left[f\left(\frac{p(\boldsymbol{x})}{q(\boldsymbol{x})}\right) \right]$$
 (132)

where f is any convex, lower-semicontinuous²⁵ function with f(1) = 0. Note that if $f(u) = u \log u$, $D_f(p||q) \equiv D_{KL}(p||q)$.

Fenchel Conjugate (Complex Conjugate)

For any function²⁶ $f(\cdot)$, its Fenchel conjugate (a.k.a. the complex conjugate) is defined as^{27}

$$f^*(t) \triangleq \sup_{u \in dom_f} (ut - f(u)) \tag{134}$$

- f^* is always lower semi-continuous.
- $f^{**} = f$ IFF f is convex and lower semi-continuous.

$$f(x) = \begin{cases} 1 & x < 0 \\ -1 & x \ge 0 \end{cases} \tag{133}$$

In particular, we say that f(0) = -1, while $f(0 + \epsilon) = 1$. For this reason, we say f is lower-semicontinuous, because $\forall x$, the "function value" at x is either literally just f(x) (true everywhere if e.g. f were continuous), or it's larger. Stated even more sloppily, it just means that whenever you try to evaluate f at x, you are guaranteed to get back exactly f(x) or a value that's larger than f(x) (which occurs if you are at a discontinuity).

Technically, any function $f: X \mapsto \mathbb{R} \cup \{-\infty, +\infty\}$ where X is a real vector space. Similarly $f^*: X^* \mapsto \mathbb{R} \cup \{-\infty, +\infty\}$, where X^* is the dual space to X.

²⁷Recall that the supremum of a set $S \subset T$ is the smallest element of T that's greater than or equal to all elements in S.

²⁵Ok, I understand this now. Remember how piecewise functions over real numbers are defined like

To use f-divergences as our 2-sample test objective for likelihood-free learning, we need to be able to estimate it only via samples²⁸. We can obtain a lower bound that is likelihood-free wrt p and q to any f-divergence via its Fenchel conjugate [20:00].

$$D_f(p||q) \triangleq \mathbb{E}_{\boldsymbol{x} \sim q} \left[f\left(\frac{p(\boldsymbol{x})}{q(\boldsymbol{x})}\right) \right]$$
 (135)

$$= \mathbb{E}_{\boldsymbol{x} \sim q} \left[f^{**} \left(\frac{p(\boldsymbol{x})}{q(\boldsymbol{x})} \right) \right] \tag{136}$$

$$= \mathbb{E}_{\boldsymbol{x} \sim q} \left[\sup_{t \in \text{dom}_{f^*}} \left(t \frac{p(\boldsymbol{x})}{q(\boldsymbol{x})} - f^*(t) \right) \right]$$
 (137)

$$:= \mathbb{E}_{\boldsymbol{x} \sim q} \left[T(x) \frac{p(\boldsymbol{x})}{q(\boldsymbol{x})} - f^* \left(T(x) \right) \right]$$
(138)

$$= \int d\boldsymbol{x} \left[T(x)p(\boldsymbol{x}) - f^* \left(T(x) \right) q(\boldsymbol{x}) \right]$$
 (139)

$$\geq \sup_{\hat{T} \in \mathcal{T}} \int d\boldsymbol{x} \left[\hat{T}(\boldsymbol{x}) p(\boldsymbol{x}) - f^* \left(\hat{T}(\boldsymbol{x}) \right) q(\boldsymbol{x}) \right]$$
(140)

$$= \sup_{\hat{T} \in \mathcal{T}} \left(\mathbb{E}_{\boldsymbol{x} \sim p} \left[\hat{T}(\boldsymbol{x}) \right] - \mathbb{E}_{\boldsymbol{x} \sim q} \left[f^* \left(\hat{T}(\boldsymbol{x}) \right) \right] \right)$$
(141)

where $\mathcal{T}: \mathcal{X} \mapsto \mathbb{R}$ is an arbitrary class of functions.

f-GAN: Variational Divergence Minimization. We can rewrite the result above, plugging in $p := p_{data}$, $q := p_{G_{\theta}}$, $\hat{T} := T_{\phi}$, to obtain

$$D_{f}\left(p||q\right) \ge \sup_{\hat{T} \in \mathcal{T}} \left(\mathbb{E}_{\boldsymbol{x} \sim p} \left[\hat{T}(\boldsymbol{x}) \right] - \mathbb{E}_{\boldsymbol{x} \sim q} \left[f^{*} \left(\hat{T}\left(\boldsymbol{x}\right) \right) \right] \right) \tag{142}$$

$$\min_{\theta} \max_{\phi} F(\theta, \phi) = \mathbb{E}_{\boldsymbol{x} \sim p_{data}} \left[T_{\phi}(\boldsymbol{x}) \right] - \mathbb{E}_{\boldsymbol{x} \sim p_{G_{\theta}}} \left[f^* \left(T_{\phi} \left(\boldsymbol{x} \right) \right) \right]$$
(143)

where the interpretations of ϕ (discriminator) and θ (generator) are consistent with our original GAN formulation²⁹

$$\min_{\theta} \max_{\phi} V(G_{\theta}, D_{\phi}) = \mathbb{E}_{\boldsymbol{x} \sim p_{data}} \left[\log D_{\phi}(\boldsymbol{x}) \right] + \mathbb{E}_{\boldsymbol{z} \sim p(\boldsymbol{z})} \left[\log (1 - D_{\phi}(G_{\theta}(\boldsymbol{z}))) \right] \tag{144}$$

²⁸Why can't we already? Technically, all MLE applications minimize $D_{KL}(p_{data}||p_{\theta})$ but (obviously) never have direct access to p_{data} . Confused in general by the notion of likelihood-free learning, since it seems no different *in practice* (as opposed to in theory/formulas)

 $^{^{29} \}mbox{For convenience:}$

Inferring Latent Representations in GANs [30:50]. Unlike...

- Normalizing flow models: $z = f_{\theta}^{-1}(x)$.
- VAEs: $z \sim q_{\phi}(z \mid x)$.

... the GAN generator is a directed LVM $z \mapsto x$ and it need not be invertible. In practice, there are a few ways to get latent representations [32:00]:

- \blacktriangleright [Use D] For any point \boldsymbol{x} , use the activations of the prefinal layer of D as feature representation³⁰
- \triangleright [Change learning algorithm] Compare samples of (z,x) (instead of just x) from joint distributions of model/data. Note that we don't have access to z for the x sampled from p_{data} .

BiGAN [35:00]. Introduces an encoder $E: x \mapsto z$ to obtain latent representation from $\boldsymbol{x} \sim p_{\mathrm{data}}(\boldsymbol{x}).$

- Discriminator maximizes two-sample test objective between (z, G(z)) and (E(x), x).
- After training, we can sample $x \sim p_{G_{\theta}}(x)$ (as usual), but now we can also infer z = E(x).

CycleGAN. Adversarial training across two domains. Setting: we have unpaired sets of samples $X \in \mathcal{X}$ and $Y \in \mathcal{Y}$. Can we translate $\mathcal{X} \rightleftharpoons \mathcal{Y}$ in an unsupervised manner? CycleGAN learns two parameterized conditional generative models:

$$G: \mathcal{X} \mapsto \mathcal{Y} \qquad F: \mathcal{Y} \mapsto \mathcal{X}$$
 (145)

$$G: \mathcal{X} \mapsto \mathcal{Y} \qquad F: \mathcal{Y} \mapsto \mathcal{X}$$
 (145)
 $F(G(X)) \approx X \qquad G(F(Y)) \approx Y$ (146)

Discriminator D_Y compares observed Y with samples $\hat{Y} = G(X)$, while D_X compares observed X with samples $\hat{X} = F(Y)$. The CycleGAN loss function is as follows, where for brevity I've defined $\mathcal{L}(G, D_Y) = \mathcal{L}_{GAN}(G, D_Y, X, Y)$

$$\min_{F,G,D_X,D_Y} \mathcal{L}_G + \mathcal{L}_F + \lambda \left(\mathbb{E}_X \left[||F(G(X)) - X||_1 \right] + \mathbb{E}_Y \left[||G(F(Y)) - Y||_1 \right] \right)$$
(147)

$$\mathcal{L}_G := \mathcal{L}_{GAN}(G, D_Y, X, Y) \tag{148}$$

$$\mathcal{L}_F := \mathcal{L}_{GAN}(F, D_X, X, Y) \tag{149}$$

³⁰What? How is this even remotely a valid approach? What does the prefinal layer have to z??

Lectures October 28, 2019

Energy-Based Models I

Table of Contents Local

Written by Brandon McKinzie

Say we have some function $g_{\theta}(x)$ and we want to model p(x). This obviously means we must satisfy:

$$g_{\theta}(x) \ge 0 \quad \forall x \tag{150}$$

$$\int g_{\theta}(x) \mathrm{d}x = 1 \tag{151}$$

We'll be referring to the integral above as the *volume* of g_{θ} . We typically choose g_{θ} s.t. we know the volume *analytically*, e.g.

[Gaussian]
$$g_{\mu,\sigma}(x) = e^{-\frac{(x-\mu)^2}{2\sigma^2}} \longrightarrow \sqrt{2\pi\sigma^2}$$
 (152)

[Exponential]
$$g_{\lambda}(x) = e^{-\lambda x} \longrightarrow \frac{1}{\lambda}$$
 (153)

Energy-Based Model. "Give up" on computing volume analytically and just do:

$$p_{\theta}(x) = \frac{1}{Z(\theta)} \exp(f_{\theta}(x))$$
(154)

$$Z(\theta) = \int \exp(f_{\theta}(x)) dx$$
 (155)

Exponentials allow us to work in log-probability space with f_{θ} . Allows for capturing large variations in probability. Also because exponential families, etc. In physics, $-f_{\theta}(x)$ represents the energy.

- \checkmark Extremely flexible. Works with basically any f_{θ} .
- **X** Sampling from $p_{\theta}(x)$ is hard.
- **X** Evaluating/optimizing likelihood $p_{\theta}(x)$ is hard (learning is hard).
- X No feature learning.
- X Computing $Z(\theta)$ scales exponentially in dimensionality of x.

Applications. Note that probability ratios for two points x and x' don't require knowing $Z(\theta)$:

$$\frac{p_{\theta}(x)}{p_{\theta}(x')} = \exp\left(f_{\theta}(x) - f_{\theta}(x')\right) \tag{156}$$

Useful for e.g. anomaly detection and denoising.

Training. Goal: maximize $f_{\theta}(x_{train})/Z(\theta)$ by increasing numerator, decreasing denominator. Contrastive divergence uses MC estimates to approximate $Z(\theta)$. Takes gradients $\nabla_{\theta}(f_{\theta}(x_{train}) - f_{\theta}(x_{sample}))$.

Concepts

Contents

2.1 Evidence Lower Bound (ELBo)		32
---------------------------------	--	----

Concepts October 20, 2019

Evidence Lower Bound (ELBo)

Table of Contents Local

Written by Brandon McKinzie

The evidence (a.k.a. the marginal likelihood) is defined as $p(x) = \sum_z p(x, z)$. The goal here to find a *lower bound* on the evidence. Computing the evidence is typically intractable, due to the expectation over latent variables:

$$\log p_{\theta}(x) = \log \mathbb{E}_{z \sim q(z)} \left[\frac{p_{\theta}(x, z)}{q(z)} \right]$$
(157)

Note that the above is true for any distribution q(z).

Convex functions and Jensen's Inequality

A function f(x) is convex over the interval [x=a,x=b] if every chord of the function lies above the function. That is, $\forall x_1, x_2 \in [a,b]$ and $0 \le \lambda \le 1$:

$$f(\lambda x_1 + (1 - \lambda)x_2) \le \lambda f(x_1) + (1 - \lambda)f(x_2)$$

$$\tag{158}$$

$$f\left(\mathbb{E}\left[x\right]\right) \leq \mathbb{E}\left[f(x)\right]$$
 [Jensen's Inequality] (159)

Observe that log is a **concave function**. In other words, $\log(\mathbb{E}[x]) \geq \mathbb{E}[\log x]$. This means that $\mathbb{E}[\log x]$ is a *lower bound* on $\log \mathbb{E}[x]$. From above, we see that $\log p_{\theta}(x)$ can be rewritten as a log of an expectation. As such, we define the evidence lower bound (ELBo), denoted $\mathcal{L}(x;\theta,\phi)$, as³¹

$$\mathcal{L}(x; \theta, \phi) \triangleq \mathbb{E}_{z \sim q(z)} \left[\log \frac{p_{\theta}(x, z)}{q(z)} \right]$$
 (166)

$$= \mathbb{E}_{z \sim q(z)} \left[\log p_{\theta}(x, z) \right] + H(q) \tag{167}$$

$$= \log p_{\theta}(x) - D_{KL}(q(z)||p_{\theta}(z \mid x))$$
 (168)

$$= \mathbb{E}_{z \sim q(z)} \left[\log p_{\theta}(x \mid z) \right] - D_{KL} \left(q(z) || p(z) \right)$$

$$\tag{169}$$

$$\log p_{\theta}(x) \ge \mathcal{L}(x; \theta, \phi) \tag{170}$$

$$D_{KL}\left(q(z)||p_{\theta}(z\mid x)\right) \triangleq \mathbb{E}_q \left[\log \frac{q(z)}{p_{\theta}(z\mid x)}\right]$$
(160)

$$= -H(q) - \mathbb{E}_q \left[\log p_{\theta}(z \mid x) \right] \tag{161}$$

$$= -H(q) - \mathbb{E}_q \left[\log p_{\theta}(x, z) / p_{\theta}(x) \right] \tag{162}$$

$$= -H(q) - \mathbb{E}_q \left[\log p_{\theta}(x, z) \right] + \mathbb{E}_q \left[\log p_{\theta}(x) \right]$$
 (163)

$$= -H(q) - \mathbb{E}_q \left[\log p_\theta(x, z) \right] + \log p_\theta(x) \tag{164}$$

$$= -\mathcal{L}(x; \theta, \phi) + \log p_{\theta}(x) \tag{165}$$

³¹Derivation of $\mathcal{L}(x;\theta,\phi)$ expressed with D_{KL} :

Questions/Answers

- ▶ **Q**: Why is a lower bound useful at all?
 - A: In this case it's useful because $\log p_{\theta}(x) = \mathcal{L}(x; \theta, \phi)$ when $D_{KL}(q(z)||p_{\theta}(z \mid x)) = 0$. The fact that the formula for $\mathcal{L}(x; \theta, \phi)$ is a lower bound on $\log p_{\theta}(x)$ isn't useful by itself; the useful part is that we can drive $\mathcal{L}(x; \theta, \phi)$ closer and closer to $\log p_{\theta}(x)$ by minimizing the KL-divergence of q with the posterior $p_{\theta}(z \mid x)$.
- ▶ **Q**: Why is $\log p(x)$ what we want? Why not just p(x)?
 - A: idk. Probably because logs are better for computational reasons.
- ▶ **Q**: Look at the form of $\mathcal{L}(x; \theta, \phi)$ given by 169. It implies that our lower bound gets maximized when $D_{KL}(q(z)||p(z)) \to 0$. Doesn't this just encourage our encoder to learn p(z)? How is that even useful (since we already know what p(z) is? What if we just use p(z) directly?)
 - A: yo good question idk tho