doc. RNDr. Peter Ružička, CSc **Efektívne paralelné algoritmy**

neautorizovaný preklad slajdov verzia 0.1 build 5 typeset by NoP-MEX1.5

preklad: **Peter Hraško**, NoP@hello.to

korektúry: ... zatiaľ bez korektúr obrázky: ... zatiaľ bez obrázkov

distribúcia: http://www.sturak.sk/~hrasko/download/epa.zip

Predhovor prekladateľa

Zodpovednosť:-)

Dostávate do ruky slovenský preklad anglických slajdov doc. Ružičku, ktoré tento používa ako sprievodný materiál pri prednáškach, a ktorý aj s týmto zámerom dal do obehu.

Autor prekladu sa pri preklade rozhodol pokúsiť sa dať týmto slajdom štýl samostatných ucelených skrípt, čo však miestami zrejme nebolo celkom uskutočniteľné vzhľadom k nekonzistentnosti pôvodných slajdov (čo človek nakoniec u slajdov očakávať ani nemôže). Preto autor vrelo odporúča používať tento preklad ako sprievodný text k prednáške.

Po konzultácii s doc. Ružičkom som nakoniec ešte nútený vložiť sem nasledujúci text, a síce, že

tento preklad je neautorizovaný

... čo znamená, že doc. Ružička **nezodpovedá** za korektnosť údajov v tomto preklade uvedených.

Korektúry

Korektúry, ktoré boli doteraz (30. septembra 2000) v tomto dokumente prevedené, sú zatiaľ len výsledkom "učenia sa" autora prekladu na skúšku z EPA. Ostatné korektúry ponecháva autor prekladu na budúcich čitateľov. Zodpovednosť za akceptáciu čitateľmi zaslaných korektúr nesie aktuálny distribútor tohto prekladu uvedený na titulnej strane. Upozornenia na prípadné chyby v texte posielajte prosím jemu.

Obrázky

Obrázky momentálne nie sú. Človek, ktorý sem tie obrázky mal nakresliť, nakreslil len prvých päť, a aj tie absolútne odflákol... vyzeralo to tu značne nechutne **nekonzistentne** a **neestiticky**... tak ani tých prvých päť tu teraz nie je.

Ak by teda niekto mal záujem na prekreslení obrázkov z pôvodných slajdov doc. Ružičku, tak dotyčný musí splniť nasledovné kritériá:

- (1) Obrázok musí byť vektorový, nesmie to byť bitmapa.
- (2) Obrázok smie mať rozmery max. 10×4 cm.
- (3) Použitý font **musí** byť čo najviac podobný štandardnému TEX-ovému fontu Computer Modern Roman, ktorý je použitý aj v tomto dokumente. Autor prekladu odporúča font *Century 731* alebo nejaký iný font z triedy fontov *Century* s podobným vzhľadom. Každopádne, ak sa nádejný "kreslič" vyzná do typografie, potom by to mal byť *statický serifový font*.
- (4) Použitý font môže mať veľkosť max. 12pt, odporúčaná a zároveň minimálna veľkosť je 10pt. Formátovanie matematiky **musí** byť rovnaké ako v I^AT_EX-u.
- (5) Texty by mali byť (pokiaľ to nie je vyslovene nemožné) zarovnávané podľa y-ovej súradnice, a celé rozloženie textov by malo "lahodiť oku".

- (6) Pre čiary treba použíť čo najmenšiu hrúbku. Ideálne sú "hairlines" používané napr. v Corel-DRAW.
- (7) Podľa možnosti nepoužívať vyplňované plochy. Avšak ak je to vhodné, možno použiť odtiene šedej, no netreba zabúdať na čitateľnosť obrázku po vytlačení aj na ihličkových tlačiarňách.

Nože a vidly

Ak sa niekomu nepáči tento preklad, autor prekladu odporúča dotyčným osobám odložiť nože a vidly a ísť si to hodiť. Autor prekladu sa nepodujal na tento projekt kvôli blahu všeobecných matfyzáckych más, ale robil to hlavne kvôli sebe a svojim najbližším kolegom.

S pozdravom, autor prekladu

Peter Hraško

Obsah

1.	Par	lelné modely
	1.1	Orientované acyklické grafy
	1.2	Shared-memory model
	1.3	Sieťový model
		1.3.1 Lineárne procesorové pole a kruh
		1.3.2 Mriežka
		1.3.3 Hyperkocka
	1.4	Porovnanie paralelných modelov
		1.4.1 – Orientované acyklické grafy (DAG model)
		1.4.2 Shared-memory model
		1.4.3 Sieťový model
		1.4.4 PRAM model
	1.5	Zložitosť paralelných algoritmov
	1.6	Work-Time <u>prezentačný systém</u> paralelných algoritmov
		1.6.1 Vrchná úroveň (WT <u>prezentácia</u> algoritmu)
		1.6.2 Spodná vrstva (plánovací princíp WT)
		1.6.3 Predstava optimálnosti
_		
2.		adné techniky 15
	2.1	Vyvážené stromy
		2.1.1 Optimálny algoritmus prefixových súčtov
		2.1.2 Nerekurzívny algoritmus na prefixové sumy
	2.2	Pointer jumping
		2.2.1 Nájdenie koreňov lesa
	2.3	Divide & Conquer
		2.3.1 Problém konvexného obalu
		2.3.2 Paralelný algoritmus pre Problém konvexného obalu
	2.4	Rozkladanie
		2.4.1 Jednoduchý spájací algoritmus
		2.4.2 Optimálny spájací algoritmus
	2.5	Pipelining
		2.5.1 Základné operácie na 2-3 stromoch
	2.6	Accelerated Cascading
		2.6.1 Počítanie maxima v konštantom čase
		2.6,2 Dvoj-logaritmický algoritmus
		2.6.3 Rýchly algoritmus spravíme optimálnym
	2.7	Lámanie symetrie
		2.7.1 Priamočiary algoritmus (sekvenčný)
		2.7.2 Základný farbiaci algoritmus
		2.7.3 Optimálny 3-farbiaci algoritmus
		2.7.4 Superrýchly 3-farbiaci algoritmus
	$^{2.8}$	Resumé

	2.9	Cvičenia	24
3.	Zoz	namy a stromy	25
	3.1	List-ranking	25
		3.1.1 Jednoduchý optimálny list-ranking algoritmus	25
		3.1.2 List-ranking stratégia	25
		3.1.3 Nezávislé množiny	25
		3.1.4 Určenie nezávislej množiny	26
	3.2	Technika Eulerovských ťahov	27
		3.2.1 Výpočty na stromoch	27
	3.3	Kontrakcia stromu	28
		3.3.1 Operácia <i>Rake</i>	28
		3.3.2 Vyhodnocovanie aritmetických výrazov	29
		3.3.3 Výpočet stromových funkcií	29
	3.4	Najnižší spoloční predkovia	30
		3.4.1 Redukcia na problém minima intervalu	30
		3.4.2 Problém minima intervalu	31
		3.4.3 Optimálny základný algoritmus minima intervalu	32
	3.5	Resumé	32
	3.6	Cvičenia	33
4.	Vvh	l'adávanie, spájanie a triedenie	35
	4.1	Vyhľadávanie	35
	4.2	Spájanie	36
		4.2.1 Ohodnotenie krátkej postupnosti v utriedenej postupnosti	36
	4.3	Rýchlý spájací algoritmus	37
	4.4	Optimálne rýchly spájací algoritmus	37
	4.5	Triedenie	39
		4.5.1 Jednoduchý optimálny triediaci algoritmus	39
	4.6	Triedenie sietí	40
	4.7	Problém výberu	41
	4.8	Resumé	43
5.	Efel	ktívne paralelné algoritmy	45
	5.1	Model paralelného výpočtu	45
	5.2	Redukcia počtu procesorov	45
6.	Para	alelný string-matching	47
	6.1	Analýza textu	47
	6.2	Predepracovanie vzorky	50

1. Paralelné modely

Algoritmické modely, ktoré môžu byť použité ako všeobecné systémy pre popis a analýzu paralelných algoritmov. Požiadavky (konfliktujúce):

- Jednoduchosť
 - popísať paralelný algoritmus ľahko
 - analyzovať miery výkonu (rýchlosť, komunikácia)
 - byť natoľko hardwarovo nezávislý, ako je to možné
- Implementovateľnosť
 - byť ľahko implementovateľný na paralelných počítačoch
 - analýza by mala vyjadrovať aktuálny výkon algoritmov na paralelných počítačoch

Žiadny jednotlivý model sa neukázal byť dosť dobrý pre väčšinu výskumov v paralelnom spracúvaní. Hojné množstvo špecifických architektúr a paralelných strojov, ale málo zjednoducujúcich techník a metód v litearúre.

1.1 Orientované acyklické grafy

Zavedieme označenie DAG pre orientovaný acyklický graf. Nech V_G (alebo len V) je množina vrcholov (uzlov) DAGu G a E_G (alebo len E) je množina hrán (liniek) DAGu G.

Sú vhodné pre analýzu numerických výpočtov. Algoritmus je reprezentovaný triednou DAGov $\{G_n\}_i\}$ s veľkosťou vstupu n. Implementácia algoritmu môže byť špecifikovaná naplánovaním každého uzla na procesor.

Nech je daných p procesorov. S každým vnútorným uzlom asociujeme dvojicu $(j_i, t-i)$; $j_i \leq p$ je index procesora; t_i je časová jednotka.

- (1) Ak $t_i=t_k$ pre $i\neq k$, potom $j_i\neq j_k$. (Každý procesor môže vykonať jedinú operáciu v jednej časovej jednotke.)
- (2) Ak (i, k) je hrana v DAGu, potom $t_k \ge t_i + 1$. (Operácia reprezentovaná uzlom k by mala byť plánovaná po tom, ako sa vykonala operácia reprezentovaná uzlom i.)

Čas t_i vstupu i je 0. Plánovanie je $\{(j_i,t_i)\mid i\in V\}$ používajúce p procesorov. Čas je daný ako $\max_{i\in V}t_i$. Paralelná zložitosť DAGu je

$$T_p = \min\{\max_{i \in V} t_i\},\,$$

kde minimum je vzaté zo všetkých plánovaní používajúcich p procesorov.

Príklad 1.1.1: Nech A, B sú $n \times n$ matice. Uvažujme štandardný algoritmus na vypočítanie C = AB. Každé C_{ij} je vypočítané podľa

$$C_{ij} = \sum_{\ell=1}^{n} A_{i\ell} B_{\ell j}.$$

S n^3 procesormi môžu byť operácie naplánované po úrovniach, s n procesormi na výpočet každého C_{ij} ; teda DAG môže byť naplánovaný na výpočet C v čase $O(\log n)$.

1.2 Shared-memory model

Dva základné módy:

- synchrónny SIMD (PRAM)
- asynchrónny MIMD

Príklad 1.2.1: (Násobenie matice a vektora na Shared-Memory modeli)

Nech A je $n \times n$ matica, x je vektor rádu n a oba sú uložené v zdieľanej pamäti; $p \le n$, $r = \left\lfloor \frac{n}{p} \right\rfloor$; uvažujeme asynchrónný mód. Nech

$$A = \left(\begin{array}{c} A_1 \\ \vdots \\ A_p \end{array}\right),$$

kde A_i je veľkosti $r \times n$. Problém teraz je vypočítať y = Ax.

Algoritmus 1.2.1:

vstup: $n \times n$ matica A, vektor x rádu n, uložené v zdieľanej pamäti. Inicializované lokálne premenné sú: rád n, číslo procesora i, počet procesorov p ($p \le n$) a $r = \left\lfloor \frac{n}{p} \right\rfloor$.

výstup: Komponenty (i-1)r+1,...,ir vektora y=Ax uložené v zdieľanej premennej y.

begin

1: global read (x,z);

2: global read (A((i-1)r+1:ir,1:n),B);

3: $\underline{\text{compute}} \ w = Bz;$

4: global write (w, y((i-1)r + 1:ir));

end.

 $Concurrent\ read$ premennej x je požadované všetkými procesormi v kroku 1. $Exclusive\ write$ do toho istého pamäťového miesta.

krok 3: $O(\frac{n^2}{p})$ aritmetických operácií

kroky 1+2: $O(\frac{n^2}{p})$ prenosov

krok 4 $\left\lfloor \frac{n}{p} \right\rfloor$ uložení

Dôležitá črta algoritmu: procesory sa nepotrebujú synchronizovať. Na druhej strane, ak $A = (A_1, ..., A_p)$, $x = (x_1, ..., x_p)$, potom $y = A_1x_1 + ... + A_px_p$. Ale výpočet sumy $z_1 + ... + z_p$, $z_i = A_ix_i$ musí byť explicitne synchronizovaný.

PRAMy:

- EREW PRAM exclusive read, exclusive write
- CREW PRAM concurrent read, exclusive write
- CRCW PRAM concurrent read, concurrent write
 - common (obyčajný) CRCW všetky procesory zapisujú rovnakú hodnotu
 - arbitrary (ľubovoľný, svojvoľný) CRCW ľubovoľný procesor uspeje
 - priority (prioritný) CRCW uspeje procesor s minimálnym indexom

1.2. Shared-memory model

```
pozn.: Zvyčajne píšeme A := B + C namiesto global read (B, x); global read (C, y); set z := x + y; global write (z, A);
```

Algoritmus 1.2.2: (Násobenie matíc na PRAM)

vstup: Dve $n \times n$ matice A, B uložené v zdieľanej pamäti, kde $n = 2^k$. Inicializované lokálne premenné sú n a trojica indexov (i, ℓ, l) identifikujúcich procesor.

výstup: Produkt C = AB uložený v zdieľanej pamäti.

begin

<u>end</u>.

 n^3 procesorov, $O(\log n)$ paralelných krokov; vyžaduje concurrent-read (krok 1) CREW PRAM

Príklad 1.2.2: Máme dané pole A $n=2^k$ čísiel a PRAM s n procesormi $\{P_1,...,P_n\}$, počítame S=A(1)+...+A(n). Každý procesor vykoná rovnaký algoritmus.

Algoritmus 1.2.3:

vstup: Pole A rádu $n=2^k$ uložené v zdieľanej pamäti PRAMu s n procesormi. Inicializované lokálne premenné sú n a číslo procesora i.

 $\mathbf{výstup}$: Suma položiek A uložené v zdieľanej premennej S. Pole A obsahuje svoje pôvodné hodnoty.

begin

```
1: global read (A(i), a);
2: global write (a, B(i));
3: for k=1 to log n do

if i \leq \frac{n}{2^k} then begin

global read (B(2i-1), x);
global read (B(2i), y);
set z := x + y;
global write (z, B(i));

end

4: if i = 1 then global write (z, S);
```

1.3 Sieťový model

1.3.1 Lineárne procesorové pole a kruh

Algoritmus 1.3.1: (Aynchrónny súčin matica-vektor na kruhu)

```
vstup: (1) Číslo procesora i (2) počet p procesorov (3) i-ta podmatica B = A(1:n, (i-1)r+1:ir) veľkosti n \times r, kde r = \left\lfloor \frac{n}{p} \right\rfloor (4) i-ty podvektor w = x((i-1)r+1:ir) veľkosti r.
```

výstup: Procesor P_i vypočíta vektor $y = A_1x_1 + ... + A_ix_i$ a pošle výsledok napravo. Keď algoritmus skončí, P_1 bude poznať Ax.

begin

```
1: Vypočítaj súčin z = Bw matice B a vektora w;
2: <u>if</u> i = 1 <u>then</u> <u>set</u> y := 0 <u>else</u> <u>receive</u> (y, left);
3: <u>set</u> y := y + z;
4: <u>send</u> (y, right);
5: <u>if</u> i = 1 <u>then</u> <u>receive</u> (t, left);
```

1.3.2 Mriežka

end.

Priemer $(p=m^2)$ -procesorovej mriežky je \sqrt{p} ; max. stupeň ľubovoľného uzla je 4; takmer každý netriviálny výpočet vyžaduje $\Omega(\sqrt{p})$ paralelných krokov.

Systolické algoritmy operujú plne synchrónnym spôsobom, kde v každej časovej jednotke procesor dostane dáta od nejakých susedov, potom vykoná lokálnu operáciu a nakoniec pošle dáta niektorému zo svojich susedov.

1.3.3 Hyperkocka

Algoritmus 1.3.2: (Suma na hyperkocke)

vstup: Pole A $n=2^d$ provkov, kde A(i) je uložené v lokálnej pamäti procesora uzla P_i n-procesorovej <u>synchrónnej</u> hyperkocky, kde $0 \le i \le n-1$.

výstup: Súčet
$$S = \sum_{i=0}^{\infty} n - 1A(i)$$
 uložený v P_0 .

Nasledujúci algoritmus je pre procesor P_i .

<u>begin</u>

 $^{^{1}}$ **pozn.**: $i^{(\ell)}$ je i s negovaným ℓ -tým bitom; INF: $i^{(\ell)} := i$ xor (1 shl $\ell)$

end.

Koniec po $\log n$ paralelných krokoch.

Algoritmus 1.3.3: (Broadcast z jedného procesora po hyperkocke)

vstup: Procesor P_0 $p = 2^d$ -procesorovej synchrónnej hyperkocky drží informáciu X vo svojom registri D(0).

výstup: X je vyslané všetkým procesorom tak, že D(i) = X, kde $1 \le i \le p-1$. Algoritmus je pre procesor P_i .

begin

1: for
$$\ell=0$$
 to $d-1$ do
$$\label{eq:def} \underline{\text{if}}\ 0\leq i\leq 2^\ell \ \underline{\text{then set}}\ D(i^{(\ell)}):=D(i)$$

end.

Broadcast potrvá $O(\log n)$ paralelných krokov.

Príklad 1.3.2: (Násobenie matíc na hyperkocke)

C=AB na synchrónnej hyperkocke s $p=n^3$ procesormi, kde C,A,B sú rádu $n\times n$. Nech $n=2^q$ a teda $p=2^{3q}$. Indexujeme procesory podľa (ℓ,i,j) tak, že $P_{\ell,i,j}$ reprezentuje P_r , kde $r=\ell n^2+in+j$. Ak upevníme ľubovoľnú dvojicu indexov ℓ,i,j a budeme meniť ten ostávajúci index, dostaneme podkocku rozmeru q.

$$\begin{split} &A \text{ je uložené v } P_{\ell,i,0}, \ 0 \leq \ell, i \leq n-1 \text{ tak, že } A(i,\ell) \text{ je v } P_{\ell,i,0}. \\ &B \text{ je uložené v } P_{\ell,0,j}, \ 0 \leq \ell, j \leq n-1 \text{ tak, že } B(\ell,j) \text{ je v } P_{\ell,0,j}. \\ &\text{Vypočítame } C(i,j) = \sum_{\ell=0}^{n-1} A(i,\ell) B(\ell,j) \text{ pre } 0 \leq i,j \leq n-1. \end{split}$$

- (1) Vstupné dáta sú distribuované tak, že $P_{i,j,\ell}$ obsahuje $A(i,\ell)$ a $B(\ell,j)$ pre $0 \le \ell, i,j \le n-1$.
- (2) $P_{\ell,i,j}$ vypočíta $C'(\ell,i,j) = A(i,\ell)B(\ell,j)$.
- (3) Pre $\forall i, j; 0 \leq i, j \leq n-1$ procesory $P_{\ell,i,j}$ $(0 \leq \ell \leq n-1)$ vypočítajú $C(i,j) = \sum_{\ell=1}^{n-1} C'(\ell,i,j)$.

$$\text{\bf krok 1} \ \frac{\text{Broadcast } A(i,\ell) \text{ z } P_{\ell,i,0} \text{ všetkým } P_{\ell,i,j}}{\text{Broadcast } B(\ell,j) \text{ z } P_{\ell,0,j} \text{ všetkým } P_{\ell,i,j}} \ \right\} O(\log n) \text{ krokov.}$$

krok 2 Vykoná sa 1 násobenie v každom $P_{\ell,i,j}$.

krok 3 Vypočíta sa n^2 súm C(i,j); <u>výrazy</u> (terms) $C'(\ell,i,j)$ každej sumy spočívajú v q-rozmernej hyperkocke $\{P_{\ell,i,j} \mid 0 \leq \ell \leq n-1\}$. Použije sa algoritmus 1.3.2. Každá suma môže byť vypočítaná v $O(\log n)$ paralelných krokoch.

Teda C = AB môže byť vypočítaná v čase $O(\log n)$ na n^3 -procesorovej hyperkocke.

1.4 Porovnanie paralelných modelov

1.4.1 Orientované acyklické grafy (DAG model)

Tento model sa používa na špecializovanú triedu problémov; trpí niekoľkými nedostatkami. Predstavuje iba čiastočnú informáciu o paralelnom algoritme (musí byť vyriešený problém plánovania + problém alokácie). Nie je (it is no) prirodzený mechanizmus na zvládnutie komunikácie medzi procesormi a alokácií a prístupu do pamäte.

1.4.2 Shared-memory model

Je najvhodnejší pre všeobecnú prezentáciu paralelných algoritmov.

1.4.3 Sieťový model

Je primeranejší na riešenie výpočtových a komunikačných otázok ako DAG model. Má dva hlavné nedostatky:

- (1) Je významne zložitejší na popis a analýzu algoritmov.
- (2) Silne závisí na čiastočnej topológii. Rôzne topológie môžu vyžadovať úplne rozdielne algoritmy na vyriešenie toho istého problému (ako v probléme násobenia matíc).

1.4.4 PRAM model

Je najvhodnejší algoritmický model:

- Existujú techniky a metódy na zvládnutie problémov na PRAM.
- PRAM odstraňuje detaily týkajúce sa synchronizácie a komunikácie (dovoľuje zamerať sa na štrukturálne vlastnosti problému.
- PRAM vyjadruje niekoľko dôležitých parametrov paralelných výpočtov (explicitná alokácia procesorov a pochopenie operácií).
- PRAM-návrhové-paradigmy sú robustné. Sieťové algoritmy môžu byť odvodené od PRAM algoritmov. PRAM algoritmy môžu byť zobrazené na siete (ohraničeného stupňa).

1.5 Zložitosť paralelných algoritmov

Je daný problém Q; PRAM algoritmus pre Q v čase T(n) použijúc P(n) procesorov. Súčin Čas-Procesor C(n) = T(n)P(n) je cena paralelného algoritmu. Paralelný algoritmus môže byť prevedený na sekvenčný algoritmus bežiaci v čase O(C(n)). Použijúc $p \leq P(n)$ procesorov, simulácia skonzumuje celkovo $O(\frac{T(n)P(n)}{p})$ času.

Štyri spôsoby merania zložitosti paralelných algoritmov: (asymptoticky ekvivalentné)

- (1) P(n) procesorov a T(n) čas.
- (2) C(n) = P(n)T(n) cena a T(n) čas.
- (3) $O(\frac{T(n)P(n)}{p})$ čas pre p procesorov; $p \leq P(n)$.
- (4) $O(\frac{C(n)}{p} + T(n))$ čas pre ľubovoľný počet p procesorov.

PRAM aloritmus na výpočet sumy n prvkov:

- (1) n procesorov a $O(\log n)$ čas.
- (2) $O(n \log n)$ cena a $O(\log n)$ čas.
- (3) $O(\frac{n \log n}{n})$ čas pre $p \le n$ procesorov.
- (4) $O(\frac{n \log n}{p} + \log n)$ čas pre ľubovoľné p.

PRAM algoritmus pre násobenie matíc:

1.6. Work-Time prezentačný systém paralelných algoritmov

- (1) n^3 procesorov a $O(\log n)$ čas.
- (2) $O(n^3 \log n)$ cena a $O(\log n)$ čas.
- (3) $O(\frac{n^3 \log n}{p})$ čas pre $p \le n^3$ procesorov.
- (4) $O(\frac{n^3 \log n}{p} + \log n)$ čas pre ľubovoľné p.

1.6 Work-Time prezentačný systém paralelných algoritmov

Work-Time (WT) paradigma poskytuje neformálne vodítko pre dvojúrovňový top-down popis paralelných algoritmov. Vrchná úroveň utajuje detaily algoritmu. Spodná úroveň sleduje všeobecný plánovací princíp v plnom popise PRAMu.

1.6.1 Vrchná úroveň (WT <u>prezentácia</u> algoritmu)

Popisuje algoritmus v pojmoch postupnosti časových jednotiek, kde každá časová jednotka môže zahŕňať ľubovoľný počet konkurentných operácií. *Práca* vykonaná paralelným algoritmom je celkový počet použitých operácií.

Algoritmus 1.6.1: (Suma)

vstup: $n = 2^k$ čísiel uložených v poli A.

výstup: Suma
$$S = \sum_{i=1}^{n} A(i)$$
.

begin

1: for
$$1 \le i \le n$$
 pardo

$$\underline{\mathtt{set}}\ B(i) := A(i);$$

2: for
$$k = 1$$
 to $\log n$ do

$$\underline{\text{for}} \ 1 \leq i \leq \frac{n}{2^k} \ \underline{\text{pardo}}$$

$$\underline{\mathtt{set}}\ B(i) := B(2i-1) + B(2i);$$

3:
$$\underline{\text{set}} \ S := B(1);$$

end.

$$T(n) = \log n + 2 = O(\log n); W(n) = n + \sum_{i=1}^{n} \frac{n}{2^{i}} + 1 = O(n)$$

1.6.2 Spodná vrstva (plánovací princíp WT)

Nech $W_i(n)$ je počet vykonaných operácií v časovej jednotke i, kde $1 \le i \le T(n)$. Simulujme každú množinu $W_i(n)$ operácií v najviac $\left\lceil \frac{W_i(n)}{p} \right\rceil$ paralelných krokoch p procesormi, pre každé $1 \le i \le T(n)$. Ak je simulácia úspešná, odpovedajúci p-procesorový PRAM použije najviac

$$\sum_{i} \left\lceil \frac{W_{i}(n)}{p} \right\rceil \leq \sum_{i} \left(\left\lfloor \frac{W_{i}(n)}{p} \right\rfloor + 1 \right) \leq \left\lfloor \frac{W(n)}{p} \right\rfloor + T(n)$$

paralelných krokov, ako sme požadovali.

Algoritmus 1.6.2: (Suma pre procesor P_s)

vstup: Pole A veľkosti $n=2^k$ uložené v zdieľanej pamäti. Inicializované lokálne premenné sú (1) n rád poľa A; (2) počet p procesorov, $p=2^q \le n$; (3) s číslo procesora P_s .

výstup: Suma prvkov A uložená v zdieľanej premennej S. Pole A si ponechá svoje pôvodné hodnoty. Nech $h = \left| \frac{n}{p} \right|$.

begin

1: for
$$j=1$$
 to h do
$$\operatorname{set}\ B(k(s-1)+j):=A(k(s-1)+j)l;$$

2: for
$$k = 1$$
 to $\log n$ do

$$\frac{\text{if}}{h-k-q} \ge 0 \ \underline{\text{then}}$$

$$\frac{\text{for}}{j} = 2^{h-k-q}(s-1) + 1 \ \underline{\text{to}} \ 2^{h-k-q}s \ \underline{\text{do}}$$

$$\underline{\text{set}} \ B(j) := B(2j-1) + B(2j)$$

<u>else</u>

$$\underline{\text{if}} \ s \leq 2^h - k \ \underline{\text{then}} \ \underline{\text{set}} \ B(s) := B(2s-1) + B(2s);$$

3: if
$$s = 1$$
 then set $S := B(1)$;

end.

$$T_p = O\left(\frac{n}{p} + \sum_{h=1}^{\log n} \left\lceil \frac{n}{2^h p} \right\rceil\right) = O\left(\frac{n}{p} + \log n\right).$$

1.6.3 Predstava optimálnosti

Je daný výpočtový problém Q sekvnečnej časovej komplexnosti $T^*(n)$. Paralelný algoritmus riešiaci Q (daný vo vrchnej WT úrovni) je optimálny, ak $W(n) = \Theta(T^*(n))$. Zrýchlenie dosiahnuté paralelným algoritmom s p procesormi je $S_p(n) = \frac{T^*(n)}{T_p(n)}$ je čas paralelného algoritmu s p procesormi riešiaci Q. Optimálny paralelný algoritmus v čase T(n) môže byt simulovaný na p-procesorovom PRAMe v čase $T_p(n) = O\left(\frac{T^*(n)}{p} + T(n)\right)$ (použitím WT princípu).

Zrýchlenie
$$S_p = \Omega\left(\frac{T^*(n)}{\frac{T^*(n)}{n} + T(n)}\right) = \Omega\left(\frac{pT^*(n)}{T^*(n) + pT(n)}\right)$$

Optimálne zrýchlenie (napr. $S_p = \Theta(p)$) sa dosiahne, keď $p = O\left(\frac{T^*(n)}{T(n)}\right)$.

Optimálny paralelný algoritmus je WT-optimálny (optimálny v silnom zmysle), ak môže byť ukázané, že T(n) nemôže byť vylepšené žiadnym iným optimálnym algoritmom.

Príklad 1.6.1: (PRAM algoritmus na výpočet sumy vo WT konštrukcii)

$$T(n) = O(\log n)$$
 a $W(n) = O(n)$. Pretože $T^*(n) = n$, tento algoritmus je optimálny. Získa optimálne zrýchlenie vždy, keď $p = O\left(\frac{n}{\log n}\right)$.

Ľubovoľný CREW PRAM bude potrebovať $\Omega(\log n)$ času na výpočet sumy, bez ohľadu na počet procesorov. WT-optimálny algoritmus pre CREW PRAM²

 $^{^2}$ pozn.prekl.: ???

2. Základné techniky

2.1 Vyvážené stromy

2.1.1 Optimálny algoritmus prefixových súčtov

```
Postupnosť n prvkov \{x_1,...,x_n\}\subseteq S (s binárnou asociatívnou operáciou *). Prefixové súčty
s_i = x_1 * ... * x_i, 1 \le i \le n.
    Triviálny sekvenčný algoritmus: s_i = s_i - 1 * x_i pre 2 \le i \le n. Zložitosť O(n).
Algoritmus 2.1.1: (Rekurzívne prefixové sumy)
        vstup: Pole n = 2^k prvkov (x_1, ..., x_n); k je nezáporné celé.
       výstup: Prefixové sumy s_i pre 1 \le i \le n.
       begin
         1: if n = 1 then begin
                     \underline{\mathtt{set}}\ s_1 := x_1;
                     halt;
              end;
          2: for 1 \le i \le \frac{n}{2} pardo
                    \underline{\mathtt{set}} \ y_i := x_{2i-1} * x_{2i};
          3: Rekurzívne počítaj prefixové sumy z \{y_1,...,y_{\frac{n}{2}}\} a ulož ich do z_1,...,z_{\frac{n}{2}}
          4: for 1 \le i \le n pardo
                     if i = 1 then
                          \underline{\mathtt{set}} \ s_1 := x_1
                     \underline{\mathtt{else}}\ \underline{\mathtt{if}}\ i > 1 je párne \underline{\mathtt{then}}
                          \underline{\mathtt{set}} \ s_i := z_{\frac{i}{n}}
                     \underline{\mathtt{else}}\ \underline{\mathtt{if}}\ i > 1 je nepárne \underline{\mathtt{then}}
```

<u>end</u>.

Veta 2.1.1: Algoritmus na prefixové sumy počíta prefixové sumy n prvkov v čase $T(n) = O(\log n)$ používajúc celkovo W(n) = O(n) operácií.

Dôkaz 2.1.1: Správnosť dokážeme indukciou na k, kde veľkosť vstupu je $n=2^k$.

 $\underline{\mathsf{set}}\ s_i := z_{\frac{i-1}{2}} * x_i;$

```
1^{\circ} k = 0 \text{ krok } 1
```

2° Predpokladajme platnosť pre $n=2^k$. Podľa indukčného prepokladu premenné $z_1,...,z_{\frac{n}{2}}$ (krok 3) obsahujú prefixové sumy od $\{y_1,...,y_{\frac{n}{2}}\}$, kde $y_i=x_{2i-1}*x_{2i}$ a $z_j=y_1*...*y_j$ a teda $z_j=x_1*x_2*...*x_{2j}$.

krok 4
$$i=2j:$$
 $s_i=z_{\frac{i}{2}}$
$$i=2j+1:$$
 $s_i=s_{2j+1}=s_{2j}*x_{2j+1}=z_{\frac{i-1}{2}}*x_i$
$$T(n)=T(\frac{n}{2})+a;$$
 $W(n)=W(\frac{n}{2})+bn.$ EREW PRAM

2.1.2 Nerekurzívny algoritmus na prefixové sumy

Nech $A(i) = x_i$, $1 \le i \le n$. Nech B(h,j), C(h,j) sú pomocné premenné $(0 \le h \le \log n, 1 \le j \le \frac{n}{2^k})$ na zaznamenávanie informácie počas dopredného prechádzania stromu (B) a spätného prechádzania stromu (C).

Algoritmus 2.1.2: (Nerekurzívne prefixové sumy)

vstup: Pole A veľkosti $n = 2^k$, kde k je nezáporné celé.

výstup: Pole C také, že C(0,j) je j-ta prefixová suma, $1 \le i \le n$.

begin

1: for $1 \le j \le n$ pardo

 $\underline{\mathtt{set}}\ B(0,j) := A(j)\,;$

2: for h = 1 to $\log n$ do

for $1 \le j \le \frac{n}{2^h}$ pardo set B(h, j) := B(h - 1, 2j - 1) * B(h - 1, 2j);

3: $\underline{\text{for}} \ h = \log n \ \underline{\text{to}} \ 0 \ \underline{\text{do}}$

$$\begin{array}{l} \underline{\text{for}} \ 1 \leq j \leq \frac{n}{2^h} \ \underline{\text{pardo}} \\ \\ \underline{\text{if}} \ j = 1 \ \underline{\text{then}} \\ \\ \underline{\text{set}} \ C(h,1) := B(h,1) \\ \\ \underline{\text{else}} \ \underline{\text{if}} \ j > 1 \ \underline{\text{je parne then}} \\ \\ \underline{\text{set}} \ C(h,j) := C(h+1,\frac{j}{2}) \\ \\ \underline{\text{else}} \ \underline{\text{if}} \ j > 1 \ \underline{\text{je neparne then}} \end{array}$$

<u>set</u> $C(h,j) := C(h+1, \frac{j-1}{2}) * B(h,j)$;

 $\underline{\mathtt{end}}$.

2.2 Pointer jumping

 $Zakorenen\acute{y}$ (orientovan \acute{y}) strom T je orientovan \acute{y} strom s koreňom r. Technika $Pointer\ jumping$ dovoľuje rýchle spracovanie dát uložených v zakorenených stromoch.

2.2.1 Nájdenie koreňov lesa

Nech F je les zakorenených stromov špecifikovaný poľom P takým, že P(i) = j práve vtedy, keď $(i,j) \in F$ a P(i) = i pre koreň i. Problém je určiť koreň S(j) stromu obsahujúceho vrchol j. Jednoduchý sekvenčný algoritmus: identifikovať korene; reverzné hrany; BFS ... čas O(n).

Algoritmus 2.2.1: (Pointer Jumping)

vstup: Les zakorenených stromov, každý so samo-slučkou v koreni také, že každý oblúk je špecifikovaný podľa $(i, P(i)), 1 \le i \le n$.

výstup: Pre $\forall i$: koreň S(i) stromu obsahujúceho i.

begin

```
1: for 1 \le i \le n pardo \frac{\text{begin}}{\text{set } S(i) := P(i);} \frac{\text{while } S(i) \ne S(S(i)) \text{ do set } S(i) := S(S(i));}{\text{end}}
```

end.

$$T(n) = O(\log n); W(n) = O(n \log n)$$

 ${\bf CREW\ PRAM}$

Špeciálny prípad: každý strom je spájaný zoznam. Prefixová suma na spájaných zoznamoch sa nazýva paralelný prefix.

2.3 Divide & Conquer

Divide & Conquer (DnC) stratégia pozostáva z troch hlavných krokov:

- (1) Rozdelenie vstupu do inekoľkých tried rozkladu približne rovnakých veľkostí.
- (2) Rekurzívne riešenie podproblému pre každú triedu rozkladu vstupu.
- (3) Skombinovanie alebo spojenie riešení rôznych podproblémov do riešenia celkového problému.

2.3.1 Problém konvexného obalu

Nech $S = \{p_1, ..., p_n\}$ je množina n bodov v rovine, reprezentovaných súradnicami (x, y). Planárny konvexný obal množiny S je najmenší konvexný polygón obsahujúci S. Polygón Q je konvexný, ak pre dané $p, q \in Q$ priamkový segment, ktorého koncové body sú p, q leží celý v Q. Problém konvexného obalu (CHP¹) je určiť usporiadaný (povedzme v smere hod. ručičiek) zoznam CH(S) bodov S definujúcich hranice konvexného obalu S.

Jednoduchá DnC stratégia rieši CHP v $O(n \log n)$ sekvenčnom čase. Triedenie môže byť redukované na CHP. Teda $T^*(n) = \Theta(n \log n)$.

Pozn.: Utriedenie n čísiel môže byť vykonané v čase $O(\log n)$ na EREW PRAM použitím celkovo $O(n\log n)$ operácií. (Teraz využijeme túto skutočnosť.)

 $^{^1}$ FROM ENGLISH: Convex-Hull Problem

2.3.2 Paralelný algoritmus pre Problém konvexného obalu

Nech $p,q \in S$ sú body s najmenšou a najväčšou x-ovou súradnicou, resp. p,q sú v CH(S) a rozkladajú CH(S) na vrchný obal UH(S) a spodný obal LH(S). Prepokladajme, že $n=2^k$ a žiadne dva body nie sú totožné.

Predpríprava: V čase $O(\log n)$ a s $O(n\log n)$ operáciami utriedime body p_i podľa x-ovej súradnice: $x(p_1) < x(p_2) < ... < x(p_n)$. Nech $S_1 = (p_1, ..., p_{\frac{n}{2}})$ a $S_2 = (p_{\frac{n}{2}}, ..., p_n)$. Predpokladajme, že $UH(S_1)$ a $UH(S_2)$ boli určené. Spoločná vrchná dotyčnica medzi $UH(S_1)$ a $UH(S_2)$ je spoločná dotyčnica taká, že oba $UH(S_1)$ a $UH(S_2)$ sú pod ňou. Horná spoločná dotyčnica môže byť zostrojená v čase $O(\log n)$ (sekvenčne) metódou binárneho vyhľadávania.

Keď sú dané $UH(S_1)$ a $UH(S_2)$, určenie hornej spoločnej dotyčnice medzi nimi: konštrukcia UH(S) v čase O(1) a celkovo O(n) operácií.

CREW PRAM

Algoritmus 2.3.1: (Jednoduchý vrchný obal)

vstup: Množina S bodov v rovine (žiadne dva nemajú rovnakú x-ovú alebo y-ovú súradnicu) taká, že $x(p_1) < x(p_2) < ... < x(p_n)$, kde n je mocnina 2.

 $\mathbf{v}\mathbf{\acute{y}stup}$: Vrchn $\mathbf{\acute{y}}$ obal S.

begin

1: $\underline{\text{if}} \ n \leq 4 \ \underline{\text{then}}$

Použi brute-force algoritmus na určenie UH(S) a skonči;

- 2: Nech $S_1=(p_1,...,p_{\frac{n}{2}})$ a $S_2=(p_{\frac{n}{2}+1},...,p_n)$. Rekurzívne počítaj $UH(S_1)$ a $UH(S_2)$ paralelne;
- 3: Nájdi vrchnú spoločnú dotyčnicu bedzi $UH(S_1)$ a $UH(S_2)$ a odvoď vrchný obal S;

end.

Veta 2.3.1: Algoritmus správne vypočíta vrchný obal n bodov v rovine. Tento algoritmus zbehne v čase $O(\log^2 n)$ s použitím celkovo $O(n \log n)$ operácií.

Dôkaz 2.3.1: Jednoduchou indukciou na n s predpokladom správnosti spoločnej vrchnej dotyčnice.

$$T(n) \le T\left(\frac{n}{2}\right) + a\log n = O(\log^2 n)W(n) \le 2W\left(\frac{n}{2}\right) + bn = O(n\log n)$$

Algoritmus potrebuje CREW PRAM (cvičenie: adaptovať na EREW PRAM). V Time-Processor systéme: $T(n) = O\left(\frac{n\log n}{p} + \log^2 n\right)$. Tento algoritmus dosiahne optimálne zrýchlenie pre $p \leq \frac{n}{\log n}$.

2.4 Rozkladanie

Stratégia rozkladania pozostáva z

- (1) Rozbitia problému do p nezávislých podproblémov rovnakých veľkostí.
- (2) Vyriešenia p podproblémov súčasne.

Spojenie dvoch utriedených postupností:

-S s čiastočným usporiadaním \leq

-S s lineárnym usporiadaním \leq

Nech $A = (a_1, ..., a_n)$, $B = (b_1, ..., b_n)$ sú dve beklesajúce postupnosti. V nasledujúcich častiach uveieme nejaké sekvenčné algoritmy riešiace problém spájania.

2.4.1 Jednoduchý spájací algoritmus

Nech $X=(x_1,...,x_n)$ je postupnosť. Nech $x\in S$. ${\tt rank}(x:X)$ je počet prvkov X menších alebo rovných ako x. Umiestnenie $Y=(y_1,...,y_s)$ v X: $({\tt rank}(Y:X)=(r_1,...,r_s),$ kde $r_i={\tt rank}(y_i,X))$. Prepokladajme, že A,B sú rôzne. Problém spojenia je pre všetky $x\in A\cup B$ určiť ${\tt rank}(x:A\cup B)$. Vieme riešiť tento problém určením ${\tt rank}(A:B)$ a ${\tt rank}(B:A)$. ${\tt rank}(A:B)$ môže byť paralelne vypočítaný v čase $O(\log n)$. Celkový počet operácií je $O(n\log n)$ — neoptimálne riešenie.

2.4.2 Optimálny spájací algoritmus

Algoritmus 2.4.1: (Rozdelenie)

```
vstup: Dve polia A = (a_1, ..., a_n), B = (b_1, ..., b_m) v rastúcom usporiadaní, kde aj \log m aj k(m) = \frac{m}{\log m} sú celé.
```

výstup: k(m) dvojíc (A_i, B_i) podspostupností A a B takých, že (1) $|B_i| = \log m$; (2) $\sum_i |A_i| = n$; (3) každý prvok A_i a B_i je väčší ako každý prvok A_{i-1} a B_{i-1} pre všetky $1 \le i \le k(m) - 1$.

begin

```
1: \underline{\text{set}}\ j(0) := 0, j(k(m)) := n;
2: \underline{\text{for}}\ 1 \le i \le k(m) - 1\ \underline{\text{pardo}}

Umiestni b_{i\log m} v A použijúc binárne vyhľadávanie a nech j(i) = \operatorname{rank}(b_{i\log m}:A);
3: \underline{\text{for}}\ 0 \le i \le k(m) - 1\ \underline{\text{pardo}}

\underline{\text{begin}}

\underline{\text{set}}\ B_i := (b_{i\log m+1}, ..., b_{(i+1)\log m});
\underline{\text{set}}\ A_i := (a_{j(i)+1}, ..., a_{j(i+1)});
//\ A_i je prázdna, ak j(i) = j(i+1)
\underline{\text{end}}
```

 $\underline{\mathtt{end}}$.

Algoritmus rozdelí A a B do dvojice podpostupností (A_i, B_i) takých, že $|B_i| = O(\log m)$, $\sum_i |A_i| = n$. Utriedená postupnosť $C = (C_0, C_1, ...)$, kde C_i sme získali spojením A_i a B_i , jde skonštruovaná v čase $O(\log n)$ použitím celkovo O(m+n) operácií.

krok 1: sekvenčný čas O(1)

krok 2: čas $O(\log n)$ a práca je $O(\log n \frac{m}{\log m}) = O(m+n)$, pretože $m \frac{\log m}{\log n} < m \frac{\log (n+m)}{\log m} \le n+m$ pre $n, m \ge 4$.

krok 3: paralelný čas O(1) použitím lineárneho počtu operácií.

Veta 2.4.1: Nech A, B sú utriedené postupnosti dĺžky n. Spojenie A a B môže byť vykonané v čase $O(\log n)$ použijúc celkovo O(n) operácií.

Dôkaz 2.4.1: Uvažujme spájanie (A_i, B_i) pre $|B_i| = \log n$. Ak $|A_i| = O(\log n)$, potom spojíme každé (A_i, B_i) v sekvenčnom čase $O(\log n)$ použitím optimálneho sekvenčného algoritmu.

Inak použijeme algoritmus 2.4.1 na rozdelenie A_i do blokov veľkosti $O(\log n)$ (v tomto prípade A_i hrá úlohu B a B_i úlohu A). Tento krok zoberie $O(\log \log n)$ času použijúc celkovo $O(|A_i|)$ operácií.

Nakoniec, optimálny sekvenčný algoritmus pre spájanie môže byť použitý na každú dvojicu podpostupností.

Krok 2: A sa umiestni do B súčasne.

CREW PRAM

2.5 Pipelining

 $2\text{-}3\ strom$ je strom, v ktorom každý vnútorný vrchol má práve dvoch alebo práve troch potomkov. Utriedený zoznam $A=(a_1,...,a_n)$, kde $a_1< a_2< ...< a_n$ môže byť reprezentovaný 2-3 stromom tak, že každý vnútorný vrchol v obsahuje L(v), M(v), R(v) – najväčšiu hodnotu v ľavom, strednom a pravom podstrome.

2.5.1 Základné operácie na 2-3 stromoch

Sekvenčné Search, Insert, Delete v čase $O(\log n)$. Vloženie postupnosti k prvkov $b_1 < b_2 < \ldots < b_k$ do 2-3 stromu T by pomocou predchádzajúcich elementárnych sekvenčných operácií potrebovalo $O(k \log n)$ operácií v čase $O(\log n)$.

Pipelining:

- Vložiť b_1 a b_k do T použitím sekvenčného vkladacieho algoritmu v sekvenčnom čase $O(\log n)$.
- Súčasne určiť polohu všetkých b_i v T pomocou vyhľadávacej procedúry v $O(\log n)$ paralelných krokoch použitím celkovo $O(k \log n)$ operácií.
- CREW PRAM; (vyhľadanie všetkých b_i potrebuje concurrent-read)

Cvičenie: Ukázať, ako dosiahnuť rovnaký výkon na EREW PRAM.

Refaz je usporiadaná množina prvkov b_i , ktoré pasujú medzi a_i a a_{i+1} (vyjadruje B_i (???)). Nech $|B_i|=k_i,\ 1\leq i\leq n-1$. Zreteľne $\sum\limits_i k_i=k-2$. Špeciálny prípad: $k_i\leq 1$ pre všetky $1\leq i\leq n-1$.

Jednoduchý paralelný algoritmus na paralelné vkladanie: Súčasne vložiť všetkých k prvkov. Vnútorné vrcholy na výške 1 môžu mať 3..6 potomkov. Teda možno rozdeliť rodičovský vrchol na dva také, že každý bude mať majviac 3 potomkov. Toto možno vykonať súčasne pre všetky vnútorné vrcholy na výške 1 s viac ako 3 potomkami. Toto možno opakovať až po koreň. — $O(\log n)$ času použitím $O(k \log n)$ operácií.

Všeobecný prípad: Uvažujme $|B_i| = k_i$; zoberme stredný prvok B_i a použijeme jednoduchý vkladací algoritmus. Opakujeme tento proces pre nové refaze. — $O(\log k \log n)$ času.

Pipelining: Každá aplikácia jednoduchého vkladacieho algoritmu sa nazýva úsek. Na úsek i sa možno pozerať ako na vlnu vystupujúcu na T_i (???). Rôzne vlny môžu byť pipelined jedna za druhou nahor po strome. — $O(\log n + \log k) = O(\log n)$ času a $O(k \log n)$ operácií.

CREW PRAM

2.6 Accelerated Cascading

2.6.1 Počítanie maxima v konštantom čase

```
Algoritmus 2.6.1: (Základné maximum)
```

 \mathbf{vstup} : Pole A p rôznych prvkov.

výstup: Boolean pole M také, že M(i) = true práve vtedy, keď A(i) je maximum z A.

<u>begin</u>

```
1: for 1 \leq i, j \leq p pardo  \underbrace{ \text{if} \ A(i) \geq A(j) }   then set B(i,j) := \text{true}  else set B(i,j) := \text{false};
2: for 1 \leq i \leq p pardo  \underbrace{ \text{set} \ M(i) := B(i,1) \wedge B(i,2) \wedge ... \wedge B(i,p); }
```

 $\underline{\mathrm{end}}$.

Maximum z p prvkov možno vypočítať na common CRCW PRAM v čase O(1) použitím celkovo $O(p^2)$ operácií.

2.6.2 Dvoj-logaritmický algoritmus

 $ilde{U}$ roveň vrchola w je jeho jeho vzdialenosť od koreňa. Prepokladajme, že $n=2^{2^k}$. $Strom\ s\ dvojlogaritmickou\ hĺbkou\ (DLDT^2)$ s n listami je taký, že koreň má $2^{2^{k-1}}$ potomkov (napr. \sqrt{n}) a každý z jeho potomkov má $2^{2^{k-2}}$ potomkov, etc. Teda každý vrchol na úrovni i má $2^{2^{k-i-1}}$ potomkov a vrchol na úrovni k má 2 potomkov. Počet vrcholov na úrovni i je $2^{2^k-2^{k-i}}$ a na úrovni k je $2^{2^{k-1}}=\frac{n}{2}$. Hĺbka takéhoto stromu je $k+1=\log\log n+1\ (0\leq i\leq k)$.

DLDT počíta maximum n prvkov v čase $O(\log \log n)$ nasledovne:

- Každý vnútorný vrchol obsahuje maximum prvkov vo svojom podstrome.
- Algoritmus 2.6.1 is using in bottom-up, at any level needs čas O(1).
- Počet operácií na úrovni i je $O((2^{2^{k-i-1}})^2)$ na jeden vrchol $(0 \le i \le k)$ Celkový počet operácií je $O((2^{2^{k-i-1}})^2(2^{2^k-2^{k-i}})) = O(2^{2^k}) = O(n)$ operácií na jednu úroveň. $W(n) = O(n \log \log n)$ nie je optimálny !!

 $^{^2}$ FROM ENGLISH: Doubly Logarithmic-Depth Tree

2.6.3 Rýchly algoritmus spravíme optimálnym

Accelerated cascading:

(1) Začneme s optimálnym algoritmom pokiaľ veľkosť problému nezredukujeme na istú prahovú hodnotu.

Použijeme algoritmus s binárnym stromom, začneme od listov, moving $\lceil \log \log \log n \rceil \frac{(???)^3}{2}$, pretože počet kandidátov sa redukuje o $\frac{1}{2}$ na úroveň, maximum je medzi $n' = O(\frac{n}{\log \log n})$ prvkami.

```
T(n) = O(\log \log \log n); W(n) = O(n).
```

(2) Potom sa presunieme na rýchly ale neoptimálny algoritmus.

Použijeme DLDT na n' prvkoch.

$$T(n) = O(\log \log n') = O(\log \log n); W(n) = O(n' \log \log n') = O(n).$$

2.7 Lámanie symetrie

Nech G=(V,E) je orientovaná kružnica. k-farbenie G je zobrazenie $c:V\longrightarrow \{0,1,...,k-1\}$ také, že $c(i)\neq c(j)$, ak $(i,j)\in E$. Určíme 3-farbenie G.

2.7.1 Priamočiary algoritmus (sekvenčný)

Traverzujeme cyklus G z ľubovoľného vrchola a použijeme striedavo farby 0 a 1 na susedné vrcholy. Tretia farba môže byť potrebná na zakončenie kružnice ... optimálny sekvenčný algoritmus.

2.7.2 Základný farbiaci algoritmus

```
Algoritmus 2.7.1: (Základné farbenie)
```

vstup: Orientovaná kružnica veľkosti n; hrany špecifikované poľom S; vrcholové farbenie c. výstup: Ďalšie farbenie c' vrcholov kružnice.

begin

end.

Veta 2.7.1: Výstupná funkcia c' generovaná algoritmom 2.7.1 je platné farbenie vždy, keď c je platné farbenie. Algoritmus beží v čase T(n) = O(1) a používa W(n) = O(n) operácií.

end

 $^{^3}$ pozn.prekl.: nevedel som prečítať

Dôkaz 2.7.1: Index k musí vždy existovať, pretože c je farbenie.

```
Ak c'(i) = c'(j), potom c'(i) = 2k + c(i)_k = c'(j) = 2\ell + c(j)_\ell; teda k = \ell a c(i)_k = c(j)_k, čo je spor. Teda c'(i) \neq c'(j).
```

Pozície najnižších bitov, v ktorých sa dve binárne čísla líšia možno nájsť v čase O(1) sekvenčne vždy, keď každé z tých dvoch binárnych čísiel je veľkosti $O(\log n)$ bitov.

2.7.3 Optimálny 3-farbiaci algoritmus

Utriedenie n celých čísiel z intervalu $(0, O(\log n))$ možno vykonať v čase $O(\log n)$ použitím lineárneho počtu operácií. (Kombinácia algoritmov radix-sort a prefix-sums).

Algoritmus 2.7.2: (3-farbenie kružnice)

vstup: Orientovaná kružnica dĺžky n, ktorej hrany sú špecifikované poľom S.

výstup: Vrcholové 3-farbenie kružnice.

begin

```
1: for 1 \le i \le n pardo set c(i) := i;
```

2: Použijeme algoritmus 2.7.1 raz;

3: Utriedime vrcholy podľa ich farby;

4: $\underline{\text{for}} \ i = 3 \ \underline{\text{to}} \ \lceil \log n \rceil \ \underline{\text{do}}$

 $\underline{\text{for}}$ všetky vrcholy v farby i $\underline{\text{pardo}}$

Zafarbi v najmenšou farbou z $\{0,1,2\}$ rôznou od farieb jeho dvoch susedov;

end.

Veta 2.7.2: Môžeme zafarbiť vrcholy orientovanej kružnice tromi farbami v čase $O(\log n)$ použitím celkovo O(n) operácií.

Dôkaz 2.7.2:

krok 1+2: O(1) času a O(n) operácií;

krok 3: $O(\log n)$ času, O(n) operácií;

krok 4: Všetky vrcholy s rovnakou farbou v následných pamäťových miestach; poznáme miesta prvého a posledného vrchola. Prefarbenie potrvá O(1) paralelného času a $O(n_i)$ operácií (n_i) je počet vrcholov farby i).

2.7.4 Superrýchly 3-farbiaci algoritmus

Nech t>3 je počet bitov preprezentujúci farby v počiatočnom farbení c. Potom c' môže byť reprezentované s $\lceil \log t \rceil + 1$ bitmi. Teda ak q je počet farieb v c, potom c' používa $O(\log q)$ farieb. Procedúra 2.7.1 môže byť opakovane použitá (pokiaľ $t>\lceil \log t \rceil + 1$ také, že t>3). Algoritmus 2.7.1 pre t=3 dá farbenie s 6 (???) farbami. Počet iterácií 2.7.1 je $\log^* x = \min\{i \mid \log^{(i)} x \leq 1\}$. Počet farieb bude zredukovaný na menej ako 6 po $O(\log^* n)$ iteráciách. Zredukujeme počet farieb na 3:

pre každé $3 \le \ell \le 5$: pre každý vrchol i farby ℓ prefarbíme i s najmenšou možnou farbou z $\{0,1,2\}$ (napr. rôznou od predchodcu a nasledovníka)

Lema 2.7.3: Vrcholy orientovanej kružnice možno zafarbiť tromi farbami v čase $O(\log^* n)$ použitím $O(n \log^* n)$ operácií.

EREW PRAM: Simultánnemu prístupu kc(i) sa možno vyhnúť vytvorením kópie c a pristupovaním ku kópii farby nasledovníka.

2.8 Resumé

Algoritmus	Čas	Práca	Metóda	PRAM
Prefixové sumy	$O(\log n)$	O(n)	Vyvážený bin. strom	EREW
Nerekurzívne prefix. sumy	$O(\log n)$	O(n)	Vyvážený bin. strom	EREW
Pointer Jumping	$O(\log h)$	$O(n \log h)$	Pointer Jumping	CREW
Paralelný prefix Zakorenené stromy	$O(\log h)$	$O(n \log h$	Pointer Jumping	CREW
Vrchný obal	$O(\log^2 n)$	$O(n \log n)$	Divide & Conquer	CREW
Rozdelenie	$O(\log n)$	O(n+m)	Rozkladanie	CREW
Spojenie	$O(\log n)$	O(n)	Rozkladanie	CREW
Základné maximum	O(1)	$O(n^2)$	Porovnanie ∀ dvojíc	Cmn. CRCW
Rýchle/Opt. maximum	$O(\log \log n)$	O(n)	Accel. Cascading	Cmn. CRCW
Základné farbenie	O(1)	O(n)	Lámanie symetrie	EREW
Rýchle farbenie	$O(\log^* n)$	$O(n\log^* n)$	Lámanie symetrie	EREW
3-farbenie kružnice	$O(\log n)$	O(n)	Lámanie symetrie Integer Sort	EREW

2.9 Cvičenia

- (1) Nech $A = (a_1, ..., a_n)$ je pole prvkov. "Sufixové minimum" je minimum spomedzi $\{a_i, ..., a_n\}$ pre všetky $1 \le i \le n$. Vymyslite algoritmus pracujúci v čase $O(\log n)$ pre suxixové a prefixové minimum A použitím O(n) operácií na EREW PRAM.
- (2) Nech A je boolean pole veľkosti n.
 - (a) Vymyslite algoritmus pracujúci v čase O(1) na CRCW PRAM, ktorý nájde najmenší index k taký, že A(k)=1. Celkový počet operácií musí byť O(n). HINT: Použite \sqrt{n} Divide&Conquer stratégiu. Začnite riešením podproblémov.
 - (b) V akom čase možno riešiť tento problém na CREW PRAM ? Váš algoritmus musí používať O(n) operácií.
- (3) Nech T je 2-3 strom s n listami. Chceme vyhľadať danú množinu k prvkov v T, kde k < n. Ukážte, ako toto dosiahnuť v čase $O(\log n)$ na EREW PRAM.
- (4) Nech T=(V,E) je zakorenený strom špecifikovaný $(i,p(i)), 1 \le i \le |V|=n$, kde p(i) je rodič i. Ukážte, že T môže byť vždy 2-zafarbený. Vymyslite algoritmus pracujúci v čase $O(\log n)$ na CREW PRAM, ktorý nájde takéto farbenie.
- (5) Je daných n nezávislých úloh s časmi vykonávania $\{t_1, ..., t_n\}$, ktoré určujú rozvrh každej úlohy na množine m strojov tak, že čas ukončenia je maximum. Úloha môže byť rozdelená na rôzne stroje. Váš algoritmus by mal bežať v čase $O(\log n)$ použitím celkovo O(n) operácií.

3. Zoznamy a stromy

3.1 List-ranking

Nech L je spájaný zoznam n uzlov, špecifikovaný poľom S(i). List-ranking problém je určiť vzdialenosť každého uzla i od konca zoznamu.

Riešenie pomocou techniky Pointer-Jumping: $T(n) = O(\log n)$, $W(n) = O(n \log n)$.

3.1.1 Jednoduchý optimálny list-ranking algoritmus

```
Algoritmus 3.1.1: (List-ranking s použitím Pointer-Jumping)
```

```
vstup: Spájaný zoznam n uzlov taký, že (1) nasledovník každého uzla i je daný S(i) (2) S hodnota posledného uzla zoznamu je 0.
```

```
výstup: Pre každé 1 \le i \le n vzdialenosť R(i) uzla i od konca zoznamu.
```

begin

```
1: \underline{\text{for}} \ 1 \leq i \leq n \ \underline{\text{pardo}}
\underline{\text{if}} \ S(i) \neq 0
\underline{\text{then set}} \ R(i) := 1
\underline{\text{else set}} \ R(i) := 0;
2: \underline{\text{for}} \ 1 \leq i \leq n \ \underline{\text{pardo}}
\underline{\text{begin}}
\underline{\text{set}} \ Q(i) := S(i);
\underline{\text{while}} \ (Q(i) \neq 0) \ \text{and} \ (Q(Q(i)) \neq 0) \ \underline{\text{do begin}}
\underline{\text{set}} \ R(i) := R(i) + R(Q(i));
\underline{\text{set}} \ Q(i) := Q(Q(i));
\underline{\text{end}}
```

end.

Čas $O(\log n)$, počet operácií $O(n \log n)$.

EREW PRAM

3.1.2 List-ranking stratégia

- (1) Zmenšíme spájaný zoznam Laž pokiaľ neostane $O(\frac{n}{\log n})$ uzlov.
- (2) Použijeme techniku Pointer-Jumping na krátky zoznam ostávajúcich uzlov.
- (3) Obnovíme pôvodný zoznam a ohodnotíme všetky vrcholy odstránené v kroku 1.

3.1.3 Nezávislé množiny

```
Množina \mathcal{I} vrcholov je nezávislá, ak vždy keď i \in \mathcal{I}, tak S(i) \in \mathcal{I}.
```

Algoritmus 3.1.2: (Odstránenie uzlov z nezávislej množiny)

vstup: (1) Polia S a P dĺžky n reprezentujúce relácie nasledovníka a predchodcu spájaného zoznamu (2) nezávislá množina \mathcal{I}_S taká, že $P(i), S(i) \neq 0$ (3) hodnota R(i) pre každý vrchol i.

 $\mathbf{v}\mathbf{\acute{y}stup:}$ Zoznam získaný po odstránení všetkých uzlov v $\mathcal I$ s aktualizovanými Rhodnotami.

begin

```
1: Priraď postupné sériové čísla N(i) prvkom \mathcal{I}, kde 1 \leq N(i) \leq |\mathcal{I}| = n';
```

2: for $\forall i \in \mathcal{I}$ pardo

$$\begin{split} & \underline{\text{begin}} \\ & \underline{\text{set}} \ U(N(i)) := (i, S(i), R(i)); \\ & \underline{\text{set}} \ R(P(i)) := R(P(i)) + R(i); \\ & \underline{\text{set}} \ S(P(i)) := S(i); \\ & \underline{\text{set}} \ P(S(i)) := P(i); \end{split}$$

end.

Čas $O(\log n)$, počet operácií O(n).

end

3.1.4 Určenie nezávislej množiny

Je dané k-farbenie zoznamu L. Vrchol u je $lokálne\ minimum\ (lokálne\ maximum)$, ak farba u je menšia (väčšia) ako farby predchodcu aj nasledovníka uzla u.

Lema 3.1.1: Nech je dané k-farbenie zoznamu L veľkosti n. Množina \mathcal{I} lokálnych miním (maxím) je nezávislá množina veľkosti $\Omega(\frac{n}{k})$. Množina \mathcal{I} môže byť identifikovaná v čase O(1) použitím lineárneho počtu operácií.

- u, v sú susediace lokálne minimá. Maximálny počet uzlov medzi u, v je 2k 3.
- Množina lokálnych miním má veľkosť $\Omega(\frac{n}{k}) \geq \frac{n}{5}$.
- \mathcal{I} môže byť identifikovaná v čase O(1) (kontrolovaním farby predchodcu a nasledovníka).

Algoritmus 3.1.3: (Jednoduchý optimálny List-Ranking)

```
vstup: Spájaný zoznam s n uzlami taký, že nasledovník každého uzla i je daný S(i).
```

výstup: Pre každý uzol i jeho vzdialenosť od konca zoznamu.

begin

```
1: \underline{\operatorname{set}} \ n_0 := n;
\underline{\operatorname{set}} \ k := 0;
2: \underline{\operatorname{while}} \ n_k > \frac{n}{\log n} \ \underline{\operatorname{do}}
\underline{\operatorname{begin}}
2.a: \underline{\operatorname{set}} \ k := k+1;
2.b: \underline{\operatorname{Zafarbi}} \ \operatorname{zoznam} \ 3 \ \operatorname{farbami} \ a \ \operatorname{identifikuj} \ \operatorname{množinu} \ \mathcal{I} \ \operatorname{lokálnych}
\underline{\operatorname{miním}};
2.c: \underline{\operatorname{Odstráň}} \ \operatorname{uzly} \ v \ \mathcal{I} \ (\operatorname{algoritmus} \ 3.1.2);
2.d: \underline{\operatorname{Nech}} \ n_k \ \operatorname{je} \ \operatorname{veľkosť} \ \operatorname{ostávajúceho} \ \operatorname{zoznamu}. \ \operatorname{Stlač} \ \operatorname{tento} \ \operatorname{zoznam} \ \operatorname{do}
\underline{\operatorname{po}} \ \operatorname{sebe} \ \operatorname{nasledujúcich} \ \operatorname{pamäťových} \ \operatorname{miest};
end
```

3: Použi techniku Pointer-Jumping na výsledný zoznam;

4: Obnov pôvodný zoznam a ohodnoť všetky odstránené uzly postupom z kroku 2, ale obrátene;

end.

Veta 3.1.2: Algoritmus 3.1.3 ohodnotí spájaný zoznam L s n uzlami v čase $O(\log n \log \log n)$ použitím lineárneho počtu operácií.

Dôkaz 3.1.2: $n_{k+1} \leq \frac{4}{5}n_k \Longrightarrow n_k \leq \left(\frac{4}{5}\right)^k n \Longrightarrow \text{počet iterácií na redukovanie veľkosti zoznamu pod <math>\frac{n}{\log n}$ je $O(\log \log n)$.

$$|\mathcal{I}| \geq \frac{n_k}{5};$$

Čas $O(\log n \log \log n)$.

$$W(n) = O\left(\sum_{k} n_{k}\right) = O\left(\sum_{k} \left(\frac{4}{5}\right)^{k} n\right) = O(n).$$

3.2 Technika Eulerovských ťahov

Nech T=(V,E) je strom. T'=(V',E') je orientovaný graf. (u,v) v T zameníme za $\langle u,v\rangle,\langle v,u\rangle$ v T'. T' je eulerovský graf.

Eulerovský ťah grafu T'=(V',E') je definovaný funkciou nasledovníka s zobrazujúcou hrany $e \in E'$ do hrán $s(e) \in E'$. Pre každý vrchol $v \in V$ stanovíme usporiadanie susedných vrcholov: $adj(v) = \langle u_0, u_1, ..., u_{d-1} \rangle$. $s(\langle u_i, v \rangle) = \langle v, u_{(i+1) \bmod d} \rangle$ pre $0 \le i \le d-1$.

Lema 3.2.1: Je daný strom T=(V,E) a usporiadanie množiny vrcholov susedných s každým vrcholom $v \in V$. Funkcia s definovaná vyššie určuje eulerovský ťah v T'=(V',E').

Lema 3.2.2: Je daný strom T=(V,E) definovaný zoznamom susedností jeho vrcholov s "prídavnými ukazovateľmi". Môžeme zostrojiť eulerovskú kružnicu v T' v čase O(1) použitím O(n) operácií, kde n=|V|.

3.2.1 Výpočty na stromoch

Zakorenenie stromu

Algoritmus 3.2.1: (Zakorenenie stromu)

vstup: (1) Strom T definovaný zoznamami susedností jeho vrcholov (2) eulerovský ťah definovaný funkciou nasledovníka s (3) špeciálny vrchol r.

výstup: Pre každý vrchol $v \neq r$ rodič p(v) vrchola v v strome s koreňom r.

begin

- 1: Identifikuj posledný vrchol u objavujúci sa na zozname susedností r; set $s(\langle u,r\rangle)=0$;
- 2: Priraď váhu 1 každej hrane $\langle x,y\rangle$ a použi "paralelný prefix" na zoznam hrán definovaný funkciou s;
- 3: Pre každú hranu $\langle x,y \rangle$ polož x=p(y) vždy, keď prefixsum $(\langle x,y \rangle)<$ prefixsum $(\langle y,x \rangle);$

<u>end</u>.

Lema 3.2.3: Je daný strom T=(V,E) reprezentovaný cyklickými zoznamami susedností s prídavnými ukazovateľmi (popísanými vyššie) a špeciálny vrchol r. Môžeme zakoreniť strom T tak, že určíme rodiča p(v) každého vrchola $v \in V$ v čase $O(\log n)$ a O(n) operáciami, kde n = |V|.

Post-orderové očíslovanie

```
Algoritmus 3.2.2: (Post-orderové očíslovanie)
```

vstup: (1) Zakorenený strom T s koreňom r (2) odpovedajúci Eulerovský ťah definovaný funkciou s.

výstup: Post-orderové číslo post(v) každého vrchola v.

begin

- 1: Pre každý vrchol $v \neq r$ priraď váhy $w(\langle v, p(v) \rangle) = 1$ a $w(\langle p(v), v \rangle) = 0$;
- 2: Vykonaj "paralelný prefix" na zoznam hrán definovaný funkciou s;
- 3: Pre každý vrchol $v \neq r$ <u>set</u> $post(v) := prefixsum(\langle v, p(v) \rangle)$; Pre v = r <u>set</u> post(r) = n, kde n = |T|;

end.

Výpočet úrovne vrchola

- Priraď $w(\langle p(v), v \rangle) = +1$ a $w(\langle v, p(v) \rangle) = -1$
- level(v) = prefixsum($\langle p(v), v \rangle$)

Výpočet počtu potomkov

Veta 3.2.4: Nech T je strom s n vrcholmi, zakorenený v r, daný zoznamami susedností. Každý výpočet môže byť vykonaný optimálne v čase $O(\log n)$ na EREW PRAM:

- (1) Výpočet post-orderového čísla každého vrchola.
- (2) Výpočet úrovne každého vrchola.
- (3) Výpočet pre-orderového čísla každého vrchola.
- (4) Výpočet počtu potomokov každého vrchola.

```
Paralelný prefix <u>EP</u>; w(\langle p(v), v \rangle) = 0, w(\langle v, p(v) \rangle) = 1; size(v) = \text{prefixsum}(\langle v, p(v) \rangle) - \text{prefixsum}(\langle p(v), v \rangle)
```

3.3 Kontrakcia stromu

Problém vyhodnocovania výrazov.

3.3.1 Operácia Rake

Nech T=(V,E) je zakorenený binárny strom s koreňom r taký, že p(v) reprezentuje rodiča v. Rake použitá na u $(p(u) \neq r)$ pozostáva z odstránenia u a p(u) z T a pripojenia súrodenca u označeného $\mathrm{sib}(u)$ k p(p(u)).

Algoritmus 3.3.1: (Kontrakcia stromu)

vstup: (1) Zakorenený binárny strom T taký, že každý vrchol má práve dvoch potomkov (2) pre každý vrchol $v \neq r$ rodič p(v) a súrodenec sib(v).

výstup: T skontrahovaný na binárny strom s tromi vrcholmi.

begin

1: Postupne označíme listy v poradí zľava doprava, vyjmúc najľavejší a najpravejší list a uložíme označené listy do poľa A veľkosti n;

2: for [log(n+1)] iterácií do

begin

- 2.a: Použijeme rake operáciu súčasne na všetky prvky $A_{\rm nepárne}$, ktoré sú ľavými potomkami;
- 2.b: Použijeme rake operáciu súčasne na ostatok prvkov $A_{\mathrm{nepárne}}$;
- 2.c: set $A := A_{\text{párne}}$;

<u>end</u>

end.

$$O(\log n)$$
 čas na EREW PRAM; // $m \xrightarrow{1 \text{ iterácia}} \lfloor \frac{m}{2} \rfloor$; m je počet listov. $W(n) = O(\sum_i \frac{n}{2^i}) = O(n)$ // $|A_{párne}| \leq \frac{|A|}{2}$

3.3.2 Vyhodnocovanie aritmetických výrazov

S každým vrcholom $v \in V$ asociujeme návestie (a_v, b_v) reprezentujúce lineárny výraz $a_v X + b_v$. Invariant (I): Nech w je vnútorný vrchol aktuálneho stromu taký, že u obsahuje operátor $\bullet \in \{+, \times\}$ a má potomkov v, w, ktorých návestia sú príslušne (a_v, b_v) a (a_w, b_w) . Potom hodnota podvýrazu u je $val(u) = (a_v val(v) + b_v) \bullet (a_w val(w) + bw)$.

Veta 3.3.1: Je daný binárny strom T reprezentujúci aritmetický výraz. Algoritmus 3.3.1 so zväčšenou rake operáciou môže byť použitý na výpočet val(T) v čase $O(\log n)$ použitím lineárneho počtu operácií.

Zväčšená rake operácia: Hodnota u je daná podľa $val(u) = (a_v c_v + b_v) \bullet_u (a_w X + b_w)$; (X je neznáma hodnota (???)) Príspevok val(u) k uzlu p(u) je daný podľa

$$E = a_u \text{val}(u) + b_u = a_u [(a_v c_v + b_v) \bullet_u (a_w X + b_w)] + b_u$$

3.3.3 Výpočet stromových funkcií

Nech (U,*) je komutatívny monoid 1 s jednotkou $e.\ T=(V,E)$ je strom, v ktorom každý vrchol je označený návestím $L(v)\in U.$

Problém: Pre každý v vypočítať $L(v) \in U$ ktoré je výsledkom použitia * na všetky prvky v zakorenenom podstrome na v.

 $\mathbf{Cv.}(?)$: Nech * je operátor minima. Potom L(v) je minimálny prvok v podstrome zakorenenom vo v.

Veta 3.3.2: Je daný ľubovoľný strom T = (V, E) taký, že každý vrchol je označený s prvkom z lineárne usporiadanej množiny. Potom môžeme vypočítať minimálne návestie v strome zakorenenom vo v pre každý $v \in V$ v čase $O(\log n)$ použijúc lineárny počet operácií.

- Z ľubovoľného stromu skonštruujeme binárny strom:
- \bullet S každým novým vnútorným vrcholom asociujeme návestie e (jednotku monoidu).
- Vyhodnotíme všetky podvýrazy asociované so všetkými tými vrcholmi (použitím algoritmu 3.3.1 s rake. item Čas $O(\log n)$, práca O(n).)

 $^{^1}$ pologrupa s jednotkou

3.4 Najnižší spoloční predkovia

 $Najnižši\ spoločný\ predok\ (LCA^2)$ dvoch vrcholov $u,v\ (lca(u,v))$ je vrchol $w\ taký,$ že predok u,v je najďalej od koreňa.

LCA problém: Špeciálne prípady: cesta a kompletný binárny strom.

Cesta: Vypočítať vzdialenosť všetkých vrcholov od koreňa. Odpoveď na ľubovoľnú otázku lca(u, v) získame v čase O(1) vypočítaním vzdialeností u, v od koreňa.

Kompletný binárny strom: Predpočítať inorderové číslo každého vrchola stromu T. Potom lca(x,y) môže byť vypočítané: vyjadriť x,y ako binárne čísla, nech i je prvá pozícia zľava taká, že x,y nesúhlasia. lca(x,y) je rovné číslu vyjadrenému binárnym zápisom

$$z_1 z_2 \dots z_{i-1} 10 \dots 0,$$

kde $z_1 \dots z_{i-1}$ je najľavejších i-1 bitov, na ktorých sú x, y identické.

Príklad 3.4.1:
$$9 = (1001)_2$$
, $13 = (1101)_2$... teda $lca(9, 13) = (1100)_2 = 12$

Riešenie LCA problému: opatrne zobraziť T do binárneho stromu s logaritmickou hĺbkou.

3.4.1 Redukcia na problém minima intervalu

Vstupný strom T. Skonštruujeme eluerovský ťah v T. Vymeníme každé $\langle u,v \rangle$ za v. Definujeme Eulerovské pole A ako odpovedajúce usporiadané vrcholy s koreňom na začiatku. Ak n=|V|, potom veľkosť |A|=2n-1. Pole B je úroveň každého prvku A.

Príklad 3.4.2:
$$A = (1, 2, 3, 2, 4, 5, 4, 6, 4, 7, 4, 2, 1, 8, 1, 9, 1)$$
 $B = (0, 1, 2, 1, 2, 3, 2, 3, 2, 3, 2, 1, 0, 1, 0, 1, 0)$

 $\ell(v)$ a r(v) sú indexy najľavejšieho a najpravejšieho výskytu v v A. (**pozn.:** prvok $a_i = v$ je najľavejší výskyt v v $A \iff \mathtt{level}(a_{i-1}) = \mathtt{level}(v) - 1$; prvok $a_i = v$ je najpravejší výskyt v v $A \iff \mathtt{level}(a_{i+1}) = \mathtt{level}(v) + 1$.) $\ell(v)$, r(v) môžu byť vypočítané v čase O(1) použijúc linárny počet operácií.

Lema 3.4.1: Je daný zakorenený strom T=(V,E). Nech A, level(v), $\ell(c)$, r(v) (pre $v\in V$) sú ako definované vyššie. Nech $u,v\in V$. Potom platia nasledovné tvrdenia:

- (1) u je predok v práve vtedy, keď $\ell(u) < \ell(v) < r(u)$;
- (2) u,v nie sú príbuzní; t.j. u nie je potomok v a v nie je potomok u práve vtedy, keď buď $r(u) < \ell(v)$ alebo $r(v) < \ell(u)$;
- (3) $Ak \ r(u) < \ell(v)$, potom lca(u, v) je vrchol s minimálnou úrovňou nad intervalom $[r(u), \ell(v)]$

Dôkaz 3.4.1:

- (1) u je predok $v \Longrightarrow u$ je navštívený pred $v \Longrightarrow \operatorname{podstrom}$ zakorenený vo v je úplne prehľadaný pred posledným výskytom v v DFS (t.j. eulerovskom ťahu) $\Longrightarrow \ell(u) < \ell(v) < r(u)$.
 - $\ell(u) < \ell(v) < r(u)$ a u nie je predkom $v \Longrightarrow$ podstrom zakorenený v u je kompletne spracovaný pred prvou návštevou $v \Longrightarrow r(u) < \ell(v)$, čo je spor.
- (3) $r(u) < \ell(v) \Longrightarrow \text{vrcholy s úrovňou v } [r(u), \ell(v)] \text{ sú na ceste } u \to v \text{ alebo ich nasledovníkov } (???). Takže vrchol s minimálnou úrovňou je <math>lca(u, v)$.

²FROM ENGLISH: Lowest Common Ancestor

3.4.2 Problém minima intervalu

 $B=\mathtt{level}(A).$ Je daný ľubovoľný interval [k,j],kde $1\leq k\leq j\leq n.$ Nájdime minimum $\{b_k,...,b_j\}.$

Základný problém minima

Prefixové minimum z $B = (b_1, ..., b_n)$ sú prvky poľa $(c_1, ..., c_n)$ také, že $c_i = \min\{b_1, ..., b_i\}$ pre $1 \le i \le n$. Podobne definujeme sufixové minimum z B. Prefixové a sufixové minimá môžu byť vypočítané v čase $O(\log n)$ a práci O(n) pomocou algoritmu pre prefixové súčty.

Algoritmus 3.4.1: (Základné minimum intervalu)

vstup: Pole B veľkosti $n=2^{\ell}$, kde ℓ je kladné celé číslo.

výstup: Úplný binárny strom s pomocnými premennými P(h,j) a $S(h,j), 0 \le h \le \log n,$ $1 \le j \le \frac{n}{2^h}$ takými, že P(h,j) a S(h,j) reprezentujú prefixové a sufixové minimá podpoľa definovaného listami podstromu zakoreneného v (h,j).

<u>begin</u>

1:
$$\underline{\text{for}} \ 1 \leq j \leq n \ \underline{\text{pardo}}$$

$$\underline{\text{begin}}$$

$$\underline{\text{set}} \ P(0,j) := B(j);$$

$$\underline{\text{set}} \ S(0,j) := B(j);$$

$$\underline{\text{end}}$$
2: $\underline{\text{for}} \ h = 1 \ \underline{\text{to}} \ \log n \ \underline{\text{do}}$

$$\underline{\text{for}} \ 1 \leq j \leq \frac{n}{2^h} \ \underline{\text{pardo}}$$

$$\underline{\text{begin}}$$

$$\underline{\text{Spoj}} \ P(h-1,2j-1) \ \underline{\text{a}} \ P(h-1,2j) \ \underline{\text{do}} \ P(h,j);$$

$$\underline{\text{Spoj}} \ S(h-1,2j-1) \ \underline{\text{a}} \ S(h-1,2j) \ \underline{\text{do}} \ S(h,j);$$

$$\underline{\text{end}}$$

end.

Čas $O(\log n)$ použitím $O(n \log n)$ operácií.

Je daná <u>požiadavka</u> (query) minima z intervalu [i,j]. Nech $v = \mathtt{lca}(i,j)$. Vrchol v možno nájsť v sekvenčnom čase O(1). Nech u, w sú ľavý a pravý potomok vrchola v. Potom $\min\{a_i, ..., a_j\}$ je minimom dvoch prvkov: sufixového minima prislúchajúceho prvku i v S poli w a prefixového minima prislúchajúceho prvku i v i poli i poli i poli i v i poli i v i poli i v i poli i poli

Príklad 3.4.4:
$$i = 2, j = 5$$
 a teda $B(2) = 10$ a $B(5) = 7$. $lca(2,5)$ je koreň $(3,1)$ s potomkami $(2,1)$ a $(2,2)$. $S(2,1) = (4,3,3,3)$ a $P(2,2) = (7,1,1,1)$. Teda $min\{3,7\} = 3$.

Lema 3.4.2: Algoritmus 3.4.1 spracuje vstupné pole B v čase $O(\log n)$ použitím celkovo $O(n \log n)$ operácií. Každá otázka <u>minimálneho intervalu</u> (minimum-range) môže byť zodpovedaná v sekvenčnom čase O(1). (CREW PRAM)

Modifikácia pre EREW PRAM bez asymptotického zhoršenia v hraniciach zložitosti.³

³pozn.prekl.: ???

3.4.3 Optimálny základný algoritmus minima intervalu

Predspracovanie: EREW PRAM

- (1) Rozdeľ B do blokov B_i rovnakej veľkosti log n.
- (2) Predspracuj každý blok B_i osobitne pre problém minima intervalu použitím optimálneho sekvenčného algoritmu. Teda otázka, ktoré dva prvky patria do toho istého bloku B_i môže byť spracovaná v sekvenčnom čase O(1).
- (3) Pre každé B_i vypočítaj minimálny prvok x_i a jeho prefixové a sufixové minimum.
- (4) Predspracuj pole $(x_1,...,x_{\frac{n}{\log n}})$ ako v algoritme 3.4.1.

Teraz môžeme zodpovedať otázku minima intervalu v konštantnom čase:

Predpokladajme, že máme danú otázku na minimum intervalu nad intervalom $[i, j], 1 \le i \le j \le n$. Nech i', j' sú indexy blokov obsahujúcich a_i, a_j . Uvažujme tieto prípady:

- i'=j': Otázka minima intervalu je redukovaná na otázku na jedinom $B_{i'}$. Čas O(1)
- j'=i'+1: Odpoveď je minimum dvoch prvkov: sufixového minima v $B_{i'}$ prislúchajúceho k a_i a prefixového minima v $B_{j'}$ prislúchajúceho k a_j . Čas O(1).
- j' > i' + 1: Použijeme binárny strom na minimálnych prvkoch x_i (krok 4). Zodpovieme otázku prislúchajúcu k [i' + 1, j' 1] ako v algoritme 3.4.1. Odpoveď na otázku je minimum troch prvkov: prvku získaného použitím binárneho stromu (alg.3.4.1), sufixového minima prislúchajúceho k a_i v $B_{i'}$ a prefixového minima prislúchajúceho k a_j v $B_{j'}$. Čas O(1)

3.5 Resumé

Algoritmus	Čas	Práca	PRAM
3.1.1 List-ranking s použitím Pointer Jumping	$O(\log n)$	$O(n \log n)$	EREW
3.1.2 Odstránenie uzlov z nezávislej množiny	$O(\log n)$	O(n)	EREW
3.1.3 Jednoduchý optimálny list-ranking	$O(\log n \log \log n)$	O(n)	EREW
Kontrakcia zoznamu ⁴ (jedna úroveň)	O(1)	$O(\frac{n}{\log n})$	EREW
List-ranking	$O(\log n)$	O(n)	EREW
Konštrukcia Eulerovského ťahu	O(1)	O(n)	EREW
3.2.1 Zakorenenie stromu	$O(\log n)$	O(n)	EREW
3.2.2 Post-orderové číslovanie			
Výpočet úrovne vrchola	$O(\log n)$	O(n)	EREW
Výpočet počtu potomkov			
3.3.1 Kontrakcia stromu	$O(\log n)$	O(n)	EREW
Vyhodnocovanie aritmetických výrazov	$O(\log n)$	O(n)	EREW
Výpočet stromových funkcií	$O(\log n)$	O(n)	EREW
3.4.1 Základné minimum intervalu	$O(\log n)$	$O(n \log n)$	CREW
Minimum intervalu	$O(\log n)$	O(n)	CREW
LCA	$O(\log n)$	O(n)	CREW

3.6 Cvičenia

- (1) Prepokladajme, že použijeme $O(\log^* n)$ -časový algoritmus pre 3-farbenie na identifikáciu veľkej nezávislej množiny potrebnej v algoritme 3.1.3. Viete prinútiť výsledný list-ranking algoritmus bežať v čase $O(\log n)$ s $O(n\log^* n)$ operáciami? Zdôvodnite svoju odpoveď!
- (2) T=(V,E) je zakorenený strom. Ukážte, ako získať preorderové číslovanie každého vrchola v optimálne v čase $O(\log n)$ na EREW PRAM modeli, kde n=|V|.
- (3) Nech T=(V,E) je ľubovoľný strom s |V|=n. Vrchol v je ťažisko T, ak odstránenie v generuje podstromy každý veľkosti menšej alebo rovnej $\frac{n}{2}$. Vyrobte optimálny $O(\log n)$ -časový EREW PRAM algoritmus na nájdenie ťažiska T.
- (4) (a) Navrhnite O(1)-časový algoritmus pre výpočet prefixového a sufixového minima n-prvkového poľa A použijúc celkovo $O(n^2)$ operácií.
 - (b) Použite \sqrt{n} DnC stratégiu na získanie $O(\log \log n)$ -časového algoritmu. Celkový počet použitých operácií musí byť O(n). Špecifikujte použitý PRAM model.
- (5) Použitím $O(\log \log n)$ -časového algoritmu na výpočet prefixového minima poľa veľkosti n (cvičenie $\mathbf{3.(4)(b)}$) vyrobte algoritmus na riešenie problému minima intervalu v čase $O(\log \log n)$. Aký je celkový počet použitých operácií? Viete spraviť váš algoritmus optimálnym? Vysvetlite svoju odpoveď! Špecifikujte použitý PRAM model!

Kapitola 3. Zoznamy a stromy

4. Vyhľadávanie, spájanie a triedenie

4.1 Vyhľadávanie

```
X = (x_1, ..., x_n) je n rôznych prvkov z lineárne usporiadanej množiny (S, \leq) takých, že x_1 < \infty
x_2 < ... < x_n. Je dané y \in S. Problém vyhľadávania je určiť i také, že x_i \le y \le x_{i+1} (kde
x_0 = -\infty, x_{n+1} = +\infty).
Algoritmus 4.1.1: (Paralelné vyhľadávanie pre procesor P_i)
         vstup: (1) Pole X = (x_1, ..., x_n) také, že x_1 < ... < x_n (2) prvok y (3) počet p procesorov,
                kde p < n (4) číslo procesora j, kde 1 \le j \le p.
         výstup: Index i taký, že x_i \leq y < x_{i+1}.
        begin
           1: if j = 1 then begin
                       \underline{\operatorname{set}}\ \ell := 0; \underline{\operatorname{set}}\ r := n+1; \underline{\operatorname{set}}\ x_0 := -\infty; \underline{\operatorname{set}}\ x_{n+1} := +\infty; \underline{\operatorname{set}}\ c_0 := 0;
                        <u>set</u> c_{p+1} := 1;
                end;
           2: while r - \ell > p do begin
                    2.a: \underline{if} \ j = 1 \ \underline{then} \ \underline{begin}
                                 \underline{\mathtt{set}} \ q_0 := \ell; \ \underline{\mathtt{set}} \ q_{p+1} := r;
                              <u>end</u>;
                    2.b: \overline{\underline{\mathtt{set}}}'q_j := \ell + j\frac{r-\ell}{p+1};
2.c: \underline{\mathtt{if}} \ y = x_{q_j} \ \underline{\mathtt{then}} \ \underline{\mathtt{begin}}
                                 \underline{\text{return}}(q_i); \underline{\text{exit}};
                              end else
                                 <u>set</u> c_j := 0 <u>if</u> y > x_{q_i} and c_j := 1 <u>if</u> y < x_{q_j};
                    2.d: if c_j < c_{j+1} then begin
                                 \underline{\mathtt{set}}\ \ell := q_j;\ \underline{\mathtt{set}}\ r := q_{j+1};
                    2.e: if j = 1 \land c_0 < c_1 then begin
                                 \underline{\mathtt{set}} \ \ell := q_0 \, ; \ \underline{\mathtt{set}} \ r := q_1 \, ;
                              end;
                end;
           3: if j < r - \ell then begin
                    3.a: if y = x_{\ell+j} then begin
                                 \underline{\text{return}}(\ell+j); \ \underline{\text{exit}};
                              end else
                                 set c_j := 0 if y > x_{\ell+j} and set c_j := 1 if y < x_{\ell+j};
```

3.b: if
$$c_{j-1} < c_j$$
 then return $(\ell + j - 1)$; end;

end.

Príklad 4.1.1: X = (2, 4, 6, ..., 30) a y = 19. Predpokladajme, že p = 2. while slučka:

iterácia	1	2	3
q_0	0	5	7
q_1	5	6	8
q_2	10	7	9
q_3	16	10	10
c_0	0	0	0
c_1	0	0	0
c_2	1	0	0
c_3	1	1	1
ℓ	5	7	9
r	10	10	10

Veta 4.1.1: Je dané pole $X = (x_1, ..., x_n)$ s $x_1 < x_2 < ... < x_n$ a prvok y. Algoritmus 4.1.1 určí index i taký, že $x_i \le y < x_{i+1}$. Potrebný paralelný čas je

$$O\left(\frac{\log(n+1)}{\log(p+1)}\right),\,$$

kde p je číslo použitého procesora.

Dôkaz 4.1.1: $s_0 := n+1; s_i \le \frac{n+1}{(p+1)^i} + p+1 \Longrightarrow$ počet operácií je

$$O\left(\frac{\log(n+1)}{\log(p+1)^i}\right)$$

Každá operácia trvá čas O(1).

p-procesorový CREW PRAM

4.2 Spájanie

Spájací algoritmus založený na stretégii rozkladania v čase $O(\log n)$ s prácou O(n). Teraz $O(\log\log n)$ -časové spájanie na CREW PRAM. (**pozn.:** výpočet maxima vyžaduje čas $\Omega(\log n)$ na CREW PRAM)

4.2.1 Ohodnotenie krátkej postupnosti v utriedenej postupnosti

X je utriedená postupnosť s n rôznymi prvkami; V je postupnosť veľkosti $m = O(n^s)$, 0 < s < 1. Algoritmus 4.1.1 môže byť použitý na ohodnotenie každého prvku V v X osobitne. Nech $p = \lfloor \frac{n}{m} \rfloor = \Omega(n^{1-s})$. Potom každý prvok V môže byť ohodnotený v X v čase $O\left(\frac{\log(n+1)}{\log(p+1)}\right) = O(1)$. Celkový počet operácií použitých na ohodnotenie každého takého prvku je $O(\frac{n}{m})$, pretože $p = \lfloor \frac{n}{m} \rfloor$.

Lema 4.2.1: Nech V je ľubovoľná postupnosť s m prvkami a nech X je utriedená postupnosť s n rôznymi prvkami taká, že $m = O(n^s)$ pre nejakú konštantu 0 < s < 1. Potom všetky prvky V môžu byť ohodnotené v X v čase O(1) použijúc celkovo O(n) operácií.

4.3 Rýchlý spájací algoritmus

Algoritmus 4.3.1: (Ohodnotenie utriedenej postupnosti v ďalšej utriedenej postupnosti)

vstup: Dve polia $A = (a_1, ..., a_n)$ a $B = (b_1, ..., b_n)$ vo vzostupnom usporiadaní. Prepokladajme, že \sqrt{m} je celé; inak zameníme \sqrt{m} vždy, keď sa vyskytne, za $\lfloor \sqrt{m} \rfloor$.

výstup: Pole rank(A:B).

begin

- 1: Ak m < 4, potom ohodnotíme prvky B použitím algoritmu 4.1.1 s p = n; exit;
- 2: Súčasne ohodnotíme prvky $b_{\sqrt{m}}, b_{2\sqrt{m}}, ..., b_{i\sqrt{m}}, ..., b_m$ v A použitím algoritmu 4.1.1 s $p=\sqrt{m}$. Nech rank $(b_{i\sqrt{m}}:A)=j(i)$ pre $1\leq i\leq \sqrt{m}$; set j(0):=0;
- 3: Pre $0 \le i \le \sqrt{m} 1$ nech $B_i = (b_{i\sqrt{m}+1},...,b_{(i+1)\sqrt{m}-1})$ a nech $A_i = (a_{j(i)+1},...,a_{j(i+1)})$; $\underline{\text{if}}\ j(i) = j(i+1)\ \underline{\text{then}}$

set rank
$$(B_i:A_i)=(0,...,0)$$

<u>else</u>

Rekurzívne počítaj rank $(B_i:A_i)$;

4: Nech $1 \leq k \leq m$ je ľubovoľný index, ktorý nie je násobkom \sqrt{m} a nech $i = \left\lfloor \frac{k}{\sqrt{m}} \right\rfloor$. Potom $\mathrm{rank}(b_k:A) = j(i) + \mathrm{rank}(b_k:A)$.

end.

B	$b_1, \ldots, b_{\sqrt{m}-1}, b_{\sqrt{m}}, b_{\sqrt{m}+1}, \ldots, b_{2\sqrt{m}-1}, b_{2\sqrt{m}}, \ldots, b_{i\sqrt{m}+1}, \ldots, b_{(i+1)\sqrt{m}-1}, b_{(i+1)\sqrt{m}}, \ldots$	
	↓	
\overline{A}	$a_1, \ldots, a_{j(1)}, a_{j(1)+1}, \ldots, a_{j(2)}, \ldots, a_{j(i)+1}, \ldots, a_{j(i+1)}, \ldots$	

4.4 Optimálne rýchly spájací algoritmus

Predpokladajme m=n. Rozdeľíme A a B do blokov veľkosti aspoň $\lceil \log \log n \rceil$, napr. $A=(A_1,A_2,\ldots)$ a $B=(B_1,B_2,\ldots)$. Nech $A'=(p_1,p_2,\ldots)$, kde p_i je prvý prvok A_i . Nech $B'=(q_1,q_2,\ldots)$, kde q_i je prvý prvok B_i .

$$|A'| = O\left(\frac{n}{\log\log n}\right) \qquad |B'| = O\left(\frac{n}{\log\log n}\right)$$

(1) Spoj $A' = (p_1, p_2, ...)$ a $B' = (q_1, q_2, ...)$ použitím algoritmu 4.3.1.

Vysvetlenie: Algoritmus 4.3.1 vykonáva spájanie A', B' v čase $O(\log \log n)$ použijúc celkovo O(n) operácií. Na tomto mieste sme vypočítali $\operatorname{rank}(A':B')$ a $\operatorname{rank}(B':A')$.

(2) Urči rank(A':B) a rank(B':A).

Vysvetlenie: Nech $\operatorname{rank}(p_i:B')=r_i$. Teda p_i pasuje do B_{r_i} , pretože $q_{r_i}< p_i< q_{r_i+1}$. Pre $\forall p_i$ urči jeho umiestnenie v B_{r_i} sekvenčným algoritmom (napr. binárnym vyhľadávaním). Potrvá to $O(\log\log n)$ času za každý prvok. Pretože existuje $\leq \left\lceil \frac{n}{\log\log n} \right\rceil$ prvkov, $\operatorname{rank}(A':B)$ možno určiť v čase $O(\log\log n)$ použitím O(n) operácií. Podobne určíme $\operatorname{rank}(B':A)$.

(3) Pre $\forall i$ urči $\operatorname{rank}(A_i - \{p_i\} : B)$ a pre $\forall k$ urči $\operatorname{rank}(B_k - \{q_k\} : A)$.

Vysvetlenie: Nech rank $(p_i:B)=j(i)$ a rank $(q_k:A)=\tilde{j}(k)$. p_i,q_k sú prvé prvky A_i,B_k a $|A_i|,|B_k|$ sú veľkosti $\leq \lceil \log \log n \rceil$. V kroku (3) určíme ranky ostávajúcich prvkov v každom A_i a B_k .

Lema 4.4.1: Nech A a B sú utriedené postupnosti také, že |A| = n, |B| = m. Potom algoritmus 4.3.1 vypočíta pole rank(B:A) v čase $O(\log \log n)$ použijúc $O((n+m) \log \log m)$ operácií.

Dôkaz 4.4.1: Dokážeme správnosť ... indukciou na m.

(báza) m=3: ohodnotenie (b_1,b_2,b_3) v A (krok (1)).

indukčný predpoklad pre všetky m' < m: ukážeme, že všetky prvky v B_i sú presne medzi $a_{j(i)}$ a $a_{i(i+1)+1}$.

 $\forall p \in B_i: b_{i\sqrt{m}} dostávame <math>a_{j(i)} < b_{i\sqrt{m}}, b_{(i+1)\sqrt{m}} < a_{j(i+1)+1}. \text{ Teda } a_{j(i)} < p < a_{j(i+1)+1}. \text{ Preto } \text{rank}(p:A) = j(i) + \text{rank}(p:A_i). \text{ A teda dôkazu správnosti vyplýva z indukcie.}$

Dôkaz 4.4.1: Dokážeme zložitosť ...

krok (2):

čas: \sqrt{m} volaní algoritmu 4.3.1 pre $p = \sqrt{n}$. Čas je $O\left(\frac{\log(n+1)}{\log(\sqrt{n}+1)}\right) = O(1)$. **práca:** $O(\sqrt{m}\sqrt{n}) = \{ \text{ pretože } 2\sqrt{m}\sqrt{n} < n+m \} = O(n+m)$.

krok(3)+(4):

čas: Okrem rekurzívnych volaní budú volania trvať O(1) času a O(n+m) operácií. Nech $|A_i| = n_i$. Rekurzívne volania pre (B_i, A_i) potrvajú $T(n_i, \sqrt{m})$ času. $T(n, m) = \max_i T(n_i, \sqrt{m}) + O(1); T(n, 3) = O(1) \Longrightarrow T(n, m) = O(\log \log m).$

práca: Pre každé rekurzívne volanie je $O(n+m) \Longrightarrow W(n,m) = O((n+m)\log\log m)$.

Dôsledok 4.4.2: Nech A, B sú utriedené postupnosti dĺžky n. Spojenie A a B môže byť vykonané v čase $O(\log \log n)$ použijúc celkovo $O(n \log \log n)$ operácií.

Lema 4.4.3: Problém spojenia dvoch utriedených postupností dĺžky n možno vyriešiť v čase $O(\log\log n)$ použitím O(n) operácií.

Správnosť: Všetky prvky A_i musia ležať medzi $b_{j(i)}$ a $b_{j(i+1)+1}$.

Predpokladajme j(i+1) > j(i). Ak počet prvkov $b_{j(i)}, ..., b_{j(i+1)}$ je menší ako $\log \log n$, potom spojíme A_i a B_{r_i} v sekvenčnom čase $O(\log \log n)$. Inak existujú $q_k, ..., q_{k+s}$, ktoré ležia medzi $b_{j(i)+1}$ a $b_{j(i+1)}$. Pretože ranky $\tilde{j}(k), ..., \tilde{j}(k+s)$ prvkov $q_k, ..., q_{k+s}$ sú jasne známe, náš problém sa zredukuje na spojenie nie viac ako s+2 dvojíc podpostupností veľkosti najviac $O(\log \log n)$. Podpostupnosti sú disjunktné.

V skratke ... optimálny spájací algoritmus:

- (1) Rozdeľ A,B na $A=(A_1,A_2,\ldots)$ a $B=(B_1,B_2,\ldots)$ také, že veľkosť každého bloku je $\leq \lceil \log\log n \rceil$. Použi algoritmus 4.3.1 na spojenie $A'=(p_1,p_2,\ldots)$ a $B'=(q_1,q_2,\ldots)$.
- (2) Pre $\forall p$ umiestni p_i v B_{r_i} , kde $|B_{r_i}| \leq \lceil \log \log n \rceil$. ranky prvku p_i sú určené súčasne. Podobne pre $\forall q_i$ umiestni q_i v A.

4.5. Triedenie

(3) Problém spájania je redukovaný na množinu neprekrývajúcich sa spájacích podproblémov; každá z odpovedajúcich dvojíc postupností zahŕňa (involves) $O(\log\log n)$ prvkov. Všetky spájacie podproblémy môžu byť vyriešené súčasne v čase $O(\log\log n)$ použijúc lineárny počet operácií.

4.5 Triedenie

4.5.1 Jednoduchý optimálny triediaci algoritmus

Dvojcestný merge-sort algoritmus:

- (1) rozdeľ vstupnú postupnosť X na X_1 a X_2 rovnakej veľkosti;
- (2) utried X_2 a X_2 oddelene;
- (3) spoj dve utriedené postupnosti;

Náš problém možno preformulovať nasledovne: Pre každý vrchol v vyváženého binárneho stromu T vypočítaj utriedený zoznam L[v] obsahujúci všetky prvky uložené v podstrome zakorenenom vo v. Samozrejme, koreň bude obsahovať utriedený zoznam.

Tento proces možno dosiahnuť modifikovaným algoritmom 3.4.1, ktorý pre každý vrchol v počíta prefixové minimum prvkov vysktujúcich sa v podstrome zakorenenom vo v. Jediný rozdiel leží v spájacej procedúre (použijeme optimálny $O(\log \log n)$ spájací algoritmus).

Algoritmus 4.5.1: (Jednoduchý Merge-Sort)

vstup: Pole X rádu n, kde $n = 2^k$ pre nejaké celé ℓ .

výstup: Vyvážený binárny strom s n listami taký, že pre každé $0 \le h \le \log n$, L(h,j) obsahuje utriedenú podpostupnosť pozostávajúca z prvkov uložených v podstrome zakorenenom v (h,j) pre $1 \le j \le \frac{n}{2^k}$. T.j. vrchol (h,j) obsahuje utriedený zoznam prvkov $X(2^h(j-1)+1), X(2^h(j-1)+2), ..., X(2^hj)$.

begin

1:
$$\underline{\text{for}}\ 1 \leq j \leq n\ \underline{\text{pardo}}$$

$$L(0,j) := X(j);$$
 2: $\underline{\text{for}}\ h = 1\ \underline{\text{to}}\ \log n\ \underline{\text{do}}$
$$\underline{\text{for}}\ 1 \leq j \leq \frac{n}{2^k}\ \underline{\text{pardo}}$$
 Spoj $L(h-1,2j-1)\ \text{a}\ L(h-1,2j)\ \text{do}\ \text{utrieden\'eho}\ \text{zoznamu}\ L(h,j);$

<u>end</u>.

Veta 4.5.1: Pre každý vrchol v vyváženého stromu T generuje algoritmus 4.5.1 utriedený zoznam L[v] pozostávajúci z prvkov uložených v podstrome zakorenenom vo vrchole v. Čas behu je $O(\log n \log \log n)$ a celkový počet operácií je $O(n \log n)$. Teda algoritmus 4.5.1 je optimálny.

Tento algoritmus vyžaduje CREW PRAM.

Optimálny $O(\log n)$ -časový triediaci algoritmus je založený na <u>pipelined</u> merge-sort algoritme.

4.6 Triedenie sietí

Siet~komparátorov pozostáva z komparátorov (modulov so vstupmi x,y a výstupmi $\min\{x,y\},\max\{x,y\}.$ Velkost siete komparátorov je počet komparátorov v sieti. Hlbka je maximálny počet komparátorov stretnutých na ceste od vstupu k výstupu.

Nevšímavé (oblivious) algoritmy

<u>Nevšímavý</u> porovnávací algoritmus – tok riadenia nezávisí na čiastočných hodnotách prvkov a_i , kde $(a_0, ..., a_{n-1})$ je vstup.

<u>Nevšímavé</u> triediace algoritmy (sa?) priamo zobrazujú na siete komparátorov.

Bitonické postupnosti

 $X=(x_0,...,x_{n-1})$ je postupnosť prvkov vytiahnutých z lineárne usporiadanej množiny, $n=2^k$. X je bitonická, ak pre j < n platí $x_{j \mod n} \leq x_{(j+1) \mod n} \leq ... \leq x_{\ell \mod n}$ a $x_{(\ell+1) \mod n} \geq ... \geq x_{(j+n-1) \mod n}$ pre nejaké ℓ .

Jedinečná cross-over vlastnosť bitonických postupností

Nech
$$X=(x_0,...,x_{n-1})$$
 je taká, že $x_0 \le x_1 \le ... \le x_{\frac{n}{2}-1}$ a $x_{\frac{n}{2}} \ge x_{\frac{n}{2}+1} \ge ... \ge x_{n-1}$.

Lema 4.6.1: Ľubovoľná bitnocká postupnosť spĺňa jedinečnú <u>cross-over</u> vlastnosť.

Triedenie bitonických postupností

```
X=(x_0,x_1,...,x_{n+1})je bitonická postupnosť. L(X)=(\min\{x_0,x_{\frac{n}{2}}\},\min\{x_1,x_{\frac{n}{2}+1}\},...,\min\{x_{\frac{n}{2}-1},x_{n-1}\}) R(X)=(\max\{x_0,x_{\frac{n}{2}}\},\max\{x_1,x_{\frac{n}{2}+1}\},...,\max\{x_{\frac{n}{2}-1},x_{n-1}\})
```

Lema 4.6.2: Nech X je bitonická postupnosť. Potom aj L(X) aj R(X) sú bitonické a každý prvok L(X) je menší ako každý prvok R(X).

Dôkaz 4.6.2: Podľa jedinečnej <u>cross-over</u> vlastnosti existuje rez medzi x_i, x_{i+1} (a $x_{\frac{n}{2}+i}, x_{\frac{n}{2}+i+1}$), ktorý indukuje dve podoblasti $\leq a >$. Povedzme, že \leq je navrchu.

Samozrejme,
$$L(X) = (x_0, ..., x_i, x_{\frac{n}{2}+i+1}, ..., x_{n-1})$$
 a $R(X) = (x_{\frac{n}{2}}, ..., x_{\frac{n}{2}+i}, x_{i+1}, ..., x_{\frac{n}{2}-1})$. $L(X) \leq R(X)$. $L(X)$ a $R(X)$ sú bitonické, keďže sú podpostupnosťami bitonickej X .

Algoritmus 4.6.1: (Bitonické spájanie)

vstup: Bitonická postupnosť $X = (x_0, ..., x_{n-1})$ taká, že $n = 2^k$, pre nejaké celé k.

 $\mathbf{výstup}$: Postupnosť X v utriedenom usporiadaní.

begin

```
1: \underline{\text{for}} \ 0 \leq i \leq \frac{n}{2} - 1 \ \underline{\text{pardo}}
\underline{\text{begin}}
\underline{\text{set}} \ \ell_i := \min(x_i, x_{i+\frac{n}{2}});
\underline{\text{set}} \ r_i := \max(x_i, x_{i+\frac{n}{2}});
\underline{\text{end}}
2: Použi algoritmus 4.6.1 rekurzívne na L(X) = (\ell_0, ..., \ell_{\frac{n}{2}-1}) a R(X) = (r_0, ..., r_{\frac{n}{2}-1});
3: \underline{\text{return}}(\text{utriedená} \ L(X) \ \text{nasledovaná} \ \text{utriedenou} \ R(X));
```

end.

Bitonické triediace siete (Bitonic Sorting Networks)

Veta 4.6.3: Bitonická triediaca sieť B(n) správne utriedi bitonickú postupnosť dĺžky $n=2^k$, kde k je kladné celé. Hĺbka siete je $D(n) = \log n$ a počet komparátorov je $C(n) = \frac{1}{2}n\log n$.

Dôkaz 4.6.3:
$$D(n)=1+D\left(\frac{n}{2}\right) \qquad C(n)=\frac{n}{2}+2C\left(\frac{n}{2}\right) \\ D(n)=1 \qquad C(2)=1$$

Veta 4.6.4: Vieme zostrojiť sieť na utriedenie ľubovoľnej postupnosti dĺžky n v hĺbke $O(\log^2 n)$ použitím $O(n\log^2 n)$ komparátorov.

Dôkaz 4.6.4: Hĺbka bitonickej triediacej siete na utriedenie ľubovoľnej postupnosti dĺžky $n = 2^k$ je $1 + 2 + ... + \log n = O(\log^2 n)$.

Počet komparátorov je daný vzťahom

$$\sum_{i=1}^{k-1} \frac{n}{2^i} C(2^i) = O(n \log^2 n).$$

Pozn.: Ďalšia dôležitá triediaca sieť je založená na "odd-even" spájacom algoritme. AKS triediaca sieť pracuje v hĺbke $O(\log n)$ a má veľkosť $O(n \log n)$.

Príklad 4.6.1: Nech $A=(a_1,a_2,...,a_n),\ B=(b_1,b_2,...,b_n)$ sú utriedené postupnosti, pre $n=2^k$. "Odd-even" spájací algoritmus pozostáva z rekurzívneho spájania dvoch "nepárnych" postupností $(a_1,a_3,...,a_{n-1}),\ (b_1,b_3,...,b_{n-1})$ do $(c_1,c_2,...,c_n)$ a dvoch "párnych" postupností $(a_2,a_4,...,a_n),\ (b_2,b_4,...,b_n)$ do $(c_1',c_2',...,c_n')$. Potom je utriedená postupnosť daná ako $(c_1,\min\{c_1',c_2\},\max\{c_1',c_2\},\min\{c_2',c_3\},\max\{c_2',c_3\},...,\min\{c_{n-1}',c_n\},\max\{c_{n-1}',c_n\})$. Použitím 0-1 princípu ukážeme správnosť "odd-even" spájacieho algoritmu. Odvodíme triediacu sieť založenú na "odd-even" spájacom algoritme a $\frac{???state}{}$ jeho hĺbky a veľkosti.

4.7 Problém výberu

Problém výberu: Je daná $A=(a_1,...,a_n)$ a $k,\ 1\leq k\leq n$. Treba určiť $a_i\in A$ také, že $\mathrm{rank}(a_i:A)=k$.

Špeciálne prípady:

- k = 1 (minimum), k = n (maximum) čas $O(\log \log n)$ na CRCW; O(n) na EREW PRAM.
- $k = \lceil \frac{n}{2} \rceil$ (medián) sekvenčný algoritmus pracujúci v lineárnom čase; čas $\Omega(\frac{\log n}{\log \log n})$ na CRCW PRAM

Všeobecný problém výberu: Používa $O(\log n)$ -časový triediaci algoritmus s $O(n \log n)$ operáciami ... neoptimálne riešenie.

Optimálny paralelný algoritmus výberu možno získať použitím techniky "Accelerated Cascading" Redukujeme veľkosť n vstupného poľa na $O(\frac{n}{\log n})$.

Myšlienka redukcie veľkosti: Predpokladajme, že a z A je identifikované s $\frac{n}{4} \leq \operatorname{rank}(a:A) \leq \frac{3n}{4}$. Potom a indukuje rozklad A na triedy A_1 , A_2 , A_3 prvkov $a_i = a$ a a > a. Nech $a_i = |A_i|$. $a_i = |A_i|$. $a_i = a_i = a_i$. Ak $a_i = a_i = a_i$ prvok je v $a_i = a_i = a_i$. Inak zredukujeme veľkosť faktorom aspoň $a_i = a_i = a_i$. Opakovanie tohto procesu $a_i = a_i = a_i$. Prvok je v $a_i = a_i$ potom sme skončili. Inak zredukujeme veľkosť faktorom aspoň $a_i = a_i$. Opakovanie tohto procesu $a_i = a_i$ potom sme skončili. Inak zredukujeme veľkosť faktorom aspoň $a_i = a_i$ potom sme skončili. Inak zredukujeme veľkosť faktorom aspoň $a_i = a_i$ potom sme skončili. Inak zredukujeme veľkosť faktorom aspoň $a_i = a_i$ potom sme skončili. Inak zredukujeme veľkosť faktorom aspoň $a_i = a_i$ potom sme skončili. Inak zredukujeme veľkosť faktorom aspoň $a_i = a_i$ potom sme skončili. Inak zredukujeme veľkosť faktorom aspoň $a_i = a_i$ potom sme skončili. Inak zredukujeme veľkosť faktorom aspoň $a_i = a_i$ potom sme skončili. Inak zredukujeme veľkosť faktorom aspoň $a_i = a_i$ potom sme skončili. Inak zredukujeme veľkosť faktorom aspoň $a_i = a_i$ potom sme skončili. Inak zredukujeme veľkosť $a_i = a_i$ potom sme skončili. Inak zredukujeme veľkosť $a_i = a_i$ potom sme skončili. Inak zredukujeme veľkosť $a_i = a_i$ potom sme skončili.

```
Pozn.: pipelined merge-sort algoritmus ... čas O(\log n), O(n \log n) operácií.
Algoritmus 4.7.1: (Výber)
      vstup: Pole A=(a_1,...,a_n) a celé kladné k (1 \le k \le n) také, že \log n je celé, ktoré delí n.
      výstup: Prvok a_i z A taký, že rank(a_i : A) = k.
      begin
       1: \underline{\text{set}} \ n_0 := n; \ \underline{\text{set}} \ s := 0;
       2: while n_s > \frac{n}{\log n} do begin
             2.a: \underline{\text{set}} \ s := s + 1;
             2.b: Rozdeľ A na bloky B_i, každý pozostávajúci z \log n následných
                    prvkov z A;
                    Vypočítaj medián m_i každého bloku B_i;
             2.c: Vypočítaj medián a postupnosti (m_1, m_2, ..., m_{\frac{n}{\log n}}) použitím
                    pipelined spájacieho algoritmu;
             2.d: Urči počty s_1, s_2, s_3 prvkov menších, rovných, väčších ako a;
             2.e: <u>if</u> s_1 < k \le s_1 + s_2 <u>then</u>
                      begin
                         return(a); exit;
                      <u>end</u>
                    else if k \leq s_1 then
                      begin
                         Stlač prvky A menšie ako a do následných miest;
                         \underline{\mathtt{set}} \ n_s := s_1;
                      end
                    else if k > s_1 + s_2 then
                      begin
                         Stlač prvky A väčšie ako a do následných miest;
                         <u>set</u> n_s := s_3; <u>set</u> k := k - (s_1 + s_3)^1
                      end;
           end
       3: Utrieď pole pozostávajúce z ostávajúcich n_s prvkov;
           return(k-ty prvok utriedeného poľa);
```

end.

Veta 4.7.1: Algoritmus 4.7.1 správne vypočíta k-ty najmenší prvok vstupného poľa A. Tento algoritmus beží v čase $O(\log n \log \log n)$ použijúc lineárny počet operácií.

Dôkaz 4.7.1:

- krok 2.b: Implementovaný sekvenčným lineárne-časovým algoritmom pre výber. Každý blok vezme $O(\log n)$ času a $O(n_s)$ operácií.
- **krok 2.c:** Používa <u>pipelined</u> merge-sort algoritmus v čase $O(\log n)$ a celkovo $O(\frac{n_s}{\log n}\log n) = O(n_s)$ operácií.
- krok 2.d: Označíme každý prvok a_i s 1, 2, 3 v závislosti na tom, či $a_i < a$, $a_i = a$ alebo $a_i > a$. Použijúc algoritmus 2.1.1 dostaneme s_1 , s_2 , s_3 . Čas $O(\log n)$, $O(n_s)$ operácií.
- **krok 2.e:** Čas $O(\log n)$, lineárny počet operácií.

Preto bude while slučka trvať $O(\log n)$ času s $O(n_s)$ operáciami. Kvôli nasledujúcej vete: $O(\log\log n)$ iterácií.

Veta 4.7.2: Pre veľkosti zoznamov v následných iteráciách platí $n_s \leq \frac{3n_s}{4}$.

Dôkaz 4.7.2: Samozrejme, stačí ukázať, že $\frac{n_s}{4} \leq \text{rank}(a:A_s) \leq \frac{3n_s}{4}$.

 $A_0=A$. Pretože a je medián z prvkov $m_i,\ a$ je väčšie ako polovica z prvkov m_i . Ale m_i je väčšie ako $\frac{1}{2}\log n$ prvkov v B_i , pre $\forall i$. Preto je a väčšie alebo rovné $\frac{n_s}{2\log n}\frac{\log n}{2}=\frac{n_s}{4}$ prvkom z A_s .

krok 2: čas $O(\log n \log \log n)$, $O(\sum n_s) = O(n)$ operácií.

krok 3: čas $O(\log n)$, O(n) operácií.

EREW PRAM

4.8 Resumé

Algoritmus	Čas	PRAM model
4.1.1 Paralelné vyhľadávanie	$O\left(\frac{\log(n+1)}{\log(p+1)}\right)$	CREW
Ohodnocovanie utriedenej po- 4.3.1 stupnosti v ďalšej utriedenej po- stupnosti	$O\left(\frac{(n+m)\log\log m}{p} + \log\log m\right)$	CREW
Optimálne spájanie	$O\left(\frac{n}{p} + \log\log n\right)$	CREW
4.5.1 Jednoduchý merge-sort	$O\left(\frac{n\log n}{p} + \log n \log \log n\right)$	CREW
<u>Pipelined</u> merge-sort	$O\left(\frac{n\log n}{p} + \log n\right)$	CREW
4.6.1 Bitonické spájanie	$O\left(\frac{n\log n}{p} + \log n\right)$	EREW
4.7.1 Výber	$O\left(\frac{n}{p} + \log n \log \log n\right)$	EREW

Dolné hranice na modeli stromu paralelného porovnávania

Problém	Dolná hranica	Počet procesorov	
Vyhľadávanie	$\Omega\left(\frac{\log n}{\log(p+1)}\right)$	$p \le n$	
Maximum	$\Omega\left(\frac{n}{p} + \log\log n\right)$	$p \le n$	
Spájanie	$\Omega\left(\frac{n}{p} + \log\log n\right)$	$p \leq n \log^k n$ pre konštantné k	

KAPITOLA 4. VYHĽADÁVANIE, SPÁJANIE A TRIEDENIE

5. Efektívne paralelné algoritmy

5.1 Model paralelného výpočtu

tuto ma prist obrazok ...

5.2 Redukcia počtu procesorov

Veta 5.2.1: Nech A je daný algoritmus s paralelným časom výpočtu t. Predpokladajme, že A vyžaduje celkový počet m výpočtových operácií. Potom A možno implmentovať použijúc p procesorov v paralelnom čase $O(\frac{m}{p} + t)$.

Dôkaz 5.2.1: Nech m(i) je počet operácií vykonaných (paralelne) v kroku i algoritmu A. Použitím p procesorov toto možno odsimulovať v čase $\left\lfloor \frac{m(i)}{4} \right\rfloor + 1$.

$$\sum_{1 < i < t} \left(\frac{m(i)}{p} + 1 \right) = \frac{m}{p} + t$$

$$(m = m(1) + \dots + m(t))$$

KAPITOLA 5. EFEKTÍVNE PARALELNÉ ALGORITMY

6. Paralelný string-matching

Nech pat a text sú stringy dĺžky m, n. pat sa vyskytuje na pozícii i v stringu text \iff pat = text[i..i+m+1]. Jednoduchý algoritmus pracuje v čase $O(\log m)$ s $n\frac{m}{\log n}$ procesormi na PRAM. Procesory organizované v binárnom strome na výpočet boolean and z m hodnôt match(i) = text[i+k-1] = pat[k] pre k=1,...,m.

Algoritmus nie je optimálny, pretože $pt = O(n^2)$.

- Galil, 1984: $O(\log^2 n)$ času, $\frac{n}{\log^2 n}$ procesorov, PRAM
- Vishkin, 1985: veľkosť abecedy nie je pevná

Majme dané stringy u, v. u je $periódou\ v,$ ak v je prefixom $u^k.$ $Veľkosť\ periódy\ v$ je dĺžka najkratšieho bloku v. (svedok): Pre dané j predpokladajme pat[j..m] nie je prefixom pat $(pat[j..m] \neq pat[1..m-j+1]).$ Potom existuje celé w $(1 \leq w \leq m-j+1)$ také, že $pat[w] \neq pat[s],$ s=j-1+w. w je svedkom tejto nezhody.

Nech wit[j] je ľubovoľný svedok w. pat =abaababa, wit[1]=0, wit[2]=1, wit[3]=2, wit[4]=4.

Vzorka je aperiodická \iff wit $[j] \neq 0$ pre každé $2 \leq j \leq \frac{m}{2}$

 \iff veľkosť jeho najmenšej periódy je $\geq \frac{m}{2}$.

Vzorka pat = abaababa je aperiodická.

6.1 Analýza textu

Aperiodický prípad

Predpokladajme, že wit je známe pre $1 \le j \le \frac{m}{2}$. Ako možno rýchlo nájsť pat v text?

Nech n' = n - m + 1. wit1[i] je svedkom nezhody, ak sa vzorka umiestnená na pozíciu i nezhoduje s textom; inak wit1[i] = 0 (kandidáti pre zhodu).

Duel medzi dvomi pozíciami $p, q: 1 \le p \le q \le n', q-p < \frac{m}{2}$. Výskyt pat nemôže začínať aj na p aj na q.

Nech j=q-p+1, wit[j]=w. Predpokladajme, že $\mathsf{text}[p..p+m-1]=\mathsf{pat}$. Potom $\{\mathsf{def}\;\mathsf{wit}\}\;\mathsf{pat}[j-1+w]\neq\mathsf{pat}[w]\Longrightarrow\mathsf{text}[q+w-1]\neq\mathsf{pat}[w]\Longrightarrow\mathsf{pat}\;\mathsf{sa}\;\mathsf{nevyskutuje}\;\mathsf{na}\;q\Longrightarrow\mathsf{wit}1[p]=q-p+w.$

 $\operatorname{pat}[w] = \operatorname{text}[q+w-1]$ a $\operatorname{text}[p+q-p+w-1] \neq \operatorname{pat}[q-p+w] \Longrightarrow \operatorname{pat}$ sa nevyskytuje na $p \Longrightarrow \operatorname{wit1}[p] = q - p + w$.

```
\{ \text{wit}[q-p+1] \neq 0 \}
function Duel(p,q)
begin
       \underline{\text{if}} p = \text{null } \underline{\text{then}} \text{ Duel} := q \underline{\text{else}}
              \underline{if} q = \text{null } \underline{then} \text{ Duel} := p \underline{else} \underline{begin}
                   \underline{\mathtt{set}} \ j := q - p + 1;
                   \underline{\mathtt{set}} \ w := \mathtt{wit}[j];
                   \underline{\mathtt{if}}\ \mathtt{text}[q+w-1] \neq \mathtt{pat}[w]
                         then begin
                           \underline{\mathtt{set}} wit1[q] := w;
                           \underline{\mathtt{set}} Duel := p;
                         end else begin
                           \underline{\mathtt{set}} wit1[p] := q - p + w;
                           \underline{\mathtt{set}} Duel := q;
                         end;
              end;
end;
    Predpokladajme, že m, n' sú mocniny 2. k-ty rozklad [1..2^k][2^k+1..2\times 2^k]...[i2^k+1..(i+1)2^k]...
pre k = 0, 1, ..., \log m - 1. V každom k-bloku existuje najviac jedna pozícia i, kde pat začína. Na
začiatku nech k=0, wit1[i]=0 pre každé i. Ak k=k+1, potom k-blok má dvoch kandidátov \Longrightarrow
duel. Iterujme túto procedúru (\log m - 1)-krát. wit1 je k-riedky^1 práve vtedy, keď každý k-blok
má najviac jednu položku js wit<br/>1[j] ^{\neq \, 0}_{=\, 0}.²
procedure MoreSparse(text, k)
                                                                                                 //wit1 je k-riedke;
begin
       for \forall k-bloky <sup>3</sup>pardo begin
              Nech p, q sú dvaja kandidáti v tomto bloku;
              // položky s nulovými hodnotami wit1
              candidate := Duel(p, q);
              // nech r je eliminované v tomto bloku; teraz wit1[r] \neq 0
       end;
end;
procedure MakeSparse(text, sparsity);
begin
       for k := 1 to sparsity do
              MoreSpace(text, k);
end;
                                              O(n) = n + \frac{n}{2} + \frac{n}{4} + \dots operácií
MakeSparse(text, log m - 1)
                                              \log m hĺbka
   <sup>1</sup>IN ENGLISH: k-sparse
   <sup>2</sup>pozn.prekl.: ???
   ^3\mathrm{poz.prekl.:}v origináli "in parallel\underline{\mathtt{do}}" ... takže teraz neviem
```

Brentova veta: čas $O(\log m)$, $O(\frac{n}{\log m})$ procesorov ... PRAM.

Lema 6.1.1: V tomto aperiodickom prípade a s predpokladom, že wit je predpočítané pre danú vzorku, string-matching možno vykonať v čase $O(\log m)$ s $\frac{n}{\log m}$ procesormi na PRAM.

Nech period(v) je najkratšia perióda v. periodsize(v) označíme |period(v)|. Reťazec v je periodický práve vtedy, keď $|v| \geq 2$ periodsize(v).

Lema 6.1.2: (lema o periodicite)

Ak v má dve periódy veľkostí p, q a $|v| \ge p + q$, potom v má tiež periódu veľkosti $\gcd(p, q)$.

Dôkaz 6.1.2: Nech p > q. Ak v má periódy veľkostí p, q $(|v| \ge p + q)$, potom v má tiež periódu veľkosti p - q ... $\forall i : v[i] = v[i + p] \land v[i] = v[i + q] \Longrightarrow v[i + p] = v[i + q] \Longrightarrow \forall i'; i' = i - q : v[i'] = v[i' + (p - q)], |v| \ge p + q$

Euklidovská metóda pre výpočet gcd(p,q)

 $\frac{\texttt{function}}{\texttt{begin}} \ \gcd(p,q);$

$$\underline{\text{if}} p' > q' \underline{\text{then set}} p' := p' - q' \underline{\text{else set}} q' := q' - p';$$

set
$$gcd := p'$$
;

end;

Invariant: v má periódy veľkostí p', q'. Ak sú posledné hodnoty p', q' rovné gcd(p, q), potom v má periódu veľkosti gcd(p, q).

Predpokladajme, že pat je periodická s periodsize(pat) - 7.4

Lema 6.1.3:

- (1) Ak sa pat nachádza na dvoch rôznych pozíciách $i, j, \text{ potom } |i-j| \geq P$.
- (2) Ak sa pat nachádza na j a j+D, kde $D \le m-P$, potom D je násobkom P.
- (3) Ak sa pat nachádza na j a j+D, kde $0 < D \le \frac{m}{2}$, potom sa pat nachádza aj na j+P.

Nech period(pat) = w, pat = $u^s x$, |w| = P, $|x| \le P$. Vezmime pat' = ux. Vzorka pat' je aperiodická. Všetky výskyty pat' v text nájdeme v čase $O(\log m)$ použitím $\frac{n}{\log m}$ procesorov na PRAM s predpokladom, že wit je predpočítané.

• next(i)=i+P: ak sa vzorka pat' nachádza na i

=i : inak

 $\bullet \ \mathrm{pre} \ \mathrm{next}(i) \neq i \qquad : \quad \mathrm{largest}(i) = \max\{k \mid \mathrm{next}^k(i) \neq \mathrm{next}^{k-1}(i)\}$

next(i)=i : largest(i)=0

Ak sa vypočíta largest, potom možno určiť všetky výskyty pat. {pat sa nachádza na pozícii $i \iff \texttt{largest}(i) \geq s$ } largest vypočítané v čase $O(\log n)$ s $\frac{n}{\log m}$ procesormi na PRAM, ak je dané match(pat').⁵

⁴pozn.prekl.: ???

⁵pozn.prekl.: ???

Ako vypočítať largest?

Dekomponujme match(pat') do P podpostupností. $\{p\text{-ta postupnost': pozície } i \text{ s } ((i-1) \text{ mod } P=p) \text{ pre } p=0,...,P-1\}.$

Pre každú podpostupnosť pre každú pozíciu obsahujúcu 1 vypočítame počet následných 1tiek z tejto pozície napravo.

Dĺžka podpostupnosti ... $\frac{n}{p} \Longrightarrow O(\log \frac{n}{p})$ času s $\frac{\frac{n}{p}}{\log \frac{n}{p}}$ procesormi. P podpostupností ... $O(\log \frac{n}{p})$ času s $\frac{n}{\log \frac{n}{p}}$ procesormi. Nakoniec, $\log n \ge \log \frac{n}{p}$, takže môžeme zoskupiť operácie do skupiniek veľkosti $\frac{\log n}{\log \frac{n}{p}}$.

Lema 6.1.4: Ak bola vzorka predspracovaná a wit vypočítané, potom pre periodický prípad možno string-matching vykonať v čase $O(\log n)$ s $\frac{n}{\log n}$ procesormi.

Kombinované výsledky pre analýzu textu

Lemy 6.1.1+6.1.4: v 6.1.1 výmenný čas pre procesory $\{\log n \geq \log m \text{ redukcia procesora faktorom } \frac{\log m}{\log n}\}^6$

Veta 6.1.5: Ak je vzorka predspracovaná a wit vypočítané, potom string-matching možno vykonať v čase $O(\log n)$ s $\frac{n}{\log n}$ procesormi na PRAM.

6.2 Predspracovanie vzorky

 $\begin{aligned} \text{Vypočítame wit pre segment } [1..2^{\log m-1}]; \text{ wit}(1) &= 0 \\ \text{witness}(j,r) &= \left\{ \begin{array}{ll} 0 & \text{ak pat}[j..r] \text{ je prefixom pat} \\ k & 1 \leq k \leq r-j+1 \text{ také, že pat}[k] \neq \text{pat}[j+r-1] \end{array} \right. & \text{pat}[k] \neq \text{pat}[j+k-1] \\ & \qquad \qquad 1 & - k & - - - - \text{vzorka} \\ & - j & - j+k-1 & - r & \text{text (=vzorka)} \end{array}$

a teda witness(j,r)=k. witness(j,r) je vypočítané v čase $O(\log r)$ s $O(\frac{r}{\log n})$ procesormi na PRAM.

No ...

... ďalej sa mi to už prekladať nechce. Ak sa to niekomu chce doprekladať, nech mi mailne na adresu uvedenú na titulnej strane. Po dohode mu môžem poskytnúť zdrojáky.

Zbohom!

⁶pozn.prekl.: ???