Lecture 15

Advanced Topics

STAT 8020 Statistical Methods II September 23, 2019

Nonlinear Regression

lon-parametric Regression

Ridge Regress

Whitney Huang Clemson University

Agenda

Nonlinear Regression

Non-parametric Regression

idge Regression

1 Nonlinear Regression

2 Non-parametric Regression

Moving Away From Linear Regression

Nonlinear Regression

Non-parametri Regression

- We have mainly focused on linear regression so far
- The class of polynomial regression can be thought as a starting point for relaxing the linear assumption
- In this lecture we are going to discuss non-linear and non-parametric regression modeling

Population of the United States

Let's look at the USPop data set, a bulit-in data set in R. This is a decennial time-series from 1790 to 2000.

Ridge Regression

Advanced Topics

$$Y = m(X, \phi) + \varepsilon$$
$$= \frac{\phi_1}{1 + \exp\left[-(x - \phi_2)/\phi_3\right]} + \varepsilon$$

We are going to fit a logistic growth curve to the U.S. population data set

Advanced Topics

Nonlinear Regression

on-parametric egression

Fitting logistic growth curve to the U.S. population

$$\hat{\phi}_1 = 440.83, \, \hat{\phi}_2 = 1976.63, \, \hat{\phi}_3 = 46.29$$

Advanced Topics

Nonlinear Regression

Non-parametri Regression

Non-parametric Regression

Let's use the motor-cycle impact data as an illustrative example. This data set is taken from a simulated motor-cycle crash experiment in order to study the efficacy of crash helmets.

Nonlinear Regression

Non-parametr Regression

Non-parametric Regression Fits

The main idea "non-parametric" regression modeling is to fit the data "locally". Therefore, no global structure assumption made when fitting the data.

Nonlinear Regression

Non-parametric Regression

Regression Tree

- Partitioning X-space into sub-regions and fit simple model to each sub-region
- The partitioning pattern is encoded in a tree structure

We will use Major League Baseball Hitters Data from the 1986–1987 season to give you a quick idea of what a regression tree might look like

Nonlinear Regression

Non-parametri Regression

Regression Tree

Advanced Topics

Nonlinear Regression

Non-parametric Regression

Longley's Economic Regression Data

Advanced Topics

CLEMS

N | V E R S | T Y

Nonlinear Regression

on-parametric

Ridge Regression

well-known example of multicollinearity, to illustrate Ridge
regression.

We are going to use Longley's data set, which provides a

	GNP.deflator	GNP	Unemployed	Armed.Forces	Population	Year	Employed
1947	83.0	234.289	235.6	159.0	107.608	1947	60.323
1948	88.5	259.426	232.5	145.6	108.632	1948	61.122
1949	88.2	258.054	368.2	161.6	109.773	1949	60.171
1950	89.5	284.599	335.1	165.0	110.929	1950	61.187

8

```
Call:
```

lm(formula = response ~ ., data = trainingData)

Residuals:

195	1962	1954	1959	1947	1949	1953	1948	1960
1.292	-0.1808	0.1607	-0.3387	-0.3187	-0.7423	0.6495	0.9650	-0.2393
						1955	1957	1956
						-2.0104	0.3889	0.3738

Estimate Std. Error t value Pr(>|t|)

Coefficients:

```
(Intercept) -2.232e+04 2.332e+04 -0.957
                                         0.382
GNP
           -1.596e-01 4.535e-01 -0.352
                                         0.739
Unemployed -8.768e-02 1.138e-01 -0.770
                                         0.476
Armed.Forces -5.346e-02 5.626e-02 -0.950
                                         0.386
Population -1.331e+00 1.322e+00 -1.007
                                         0.360
Year
           1.173e+01
                     1.210e+01 0.970
                                         0.377
Employed
         -3.918e+00
                     3.498e+00 -1.120
                                         0.314
```

Residual standard error: 1.284 on 5 degrees of freedom Multiple R-squared: 0.9939, Adjusted R-squared: 0.9866 F-statistic: 136.2 on 6 and 5 DF, p-value: 2.251e-05

The Predictor Variables are Highly Correlated

0.50

0.98

Employed

	GNP	Unemployed	Armed.Forces	Population	Year	Employed
GNP	1.00	0.60	0.45	0.99	1.00	0.98
Unemployed	0.60	1.00	-0.18	0.69	0.67	0.50
Armed.Forces	0.45	-0.18	1.00	0.36	0.42	0.46
Population	0.99	0.69	0.36	1.00	0.99	0.96
Year	1.00	0.67	0.42	0.99	1.00	0.97

0.46

0.96 0.97

1.00

Advanced Top	DICS	5	
CLEMS		Ì	J
UNIVERS	Ī	T	Y

Nonlinear Regression

n-parametric

GNP	Unemployed	Armed.Forces	Population	Year
14350.70398	601.69137	98.18754	558.11084	22897.44840
Employed				
1064.78369				

Modification of least squares that overcomes

multicollinearity problem

- Recall least squares suffers because (X^TX) is almost singular thereby resulting in highly unstable parameter estimates

$$\hat{\boldsymbol{\beta}}_{\mathsf{ridge}} = \operatorname*{argmin}_{\boldsymbol{\beta}} \left(\tilde{\boldsymbol{Y}} - \boldsymbol{Z} \boldsymbol{\beta} \right)^T \left(\tilde{\boldsymbol{Y}} - \boldsymbol{Z} \boldsymbol{\beta} \right) \quad \mathsf{s.t.} \ \sum_{j=1}^{p-1} \beta_j^2 \leq t,$$

where Z is assumed to be standardized and \tilde{Y} is assumed to be centered

 Ridge regression results in (slightly) biased but more stable estimates and better prediction performance

Ridge Regression

```
Call:
linearRidge(formula = response ~ ., data = trainingData)
Coefficients:
              Estimate Scaled estimate Std. Error (scaled)
(Intercept) -1.337e+03
                                    NA
                                                       NA
GNP
             2.997e-02
                             1.016e+01
                                                1.973e+00
Unemployed 1.614e-02
                             4.465e+00
                                                2.033e+00
Armed.Forces 8.106e-03
                             1.833e+00
                                                1.835e+00
Population 4.732e-02 1.086e+00
                                                 4.174e+00
            6.940e-01
                            1.114e+01
                                                1.356e+00
Year
Employed
           8.821e-01
                                                3.988e+00
                             1.056e+01
            t value (scaled) Pr(>|t|)
                          NA
(Intercept)
                                   NA
                       5.151 2.60e-07 ***
GNP
                       2.196 0.02807 *
Unemployed
Armed Forces
                       0.999 0.31800
Population
                       0.260 0.79480
                       8.215 2.22e-16 ***
Year
Employed
                       2.648 0.00809 **
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Ridge parameter: 0.01640472, chosen automatically, computed using 2 PCs
```

Degrees of freedom: model 3.474 , variance 3.104 , residual 3.844