

Dipartimento di Informatica, Sistemistica e Comunicazione Università degli Studi di Milano-Bicocca Milan - Italy

Alternative Splicing from RNA-seq Data without the Genome

Next Generation Sequencing Workshop Bari – October 12th/14th, 2011

Stefano Beretta Raffaella Rizzi Gianluca Della Vedova Paola Bonizzoni

Motivations and Challenges

Detecting Alternative Splicing (AS) variations from RNA-seq data

- No specific tools for large-scale inference of AS variations among gene transcripts
- Our goal: identification of AS variations without a reference genome

Motivations and Challenges

- Reference genome is not always available
- RNA-seq data alignment against the genome is too expensive

Our Solution

Linear time construction of a graph representation of AS variations from RNA-seq data **without a reference genome**

RNA-seq Data

- Basic Features:
 - Short sequences (30 400bp)
 - Depth sequencing → Millions / Billions of sequences
 - Quality
 - Error distribution not well characterized
- High-throughput sequencing platforms:
 - Illumina
 - Roche's 454
 - SOLiD
 - HeliScope

RNA-seq Analysis: State of Art

- Read Mapping (Spliced Aligners)
 - Exon-first methods (MapSplice, SpliceMap, Tophat)
 - Seed-extend methods (GSNAP, QPALMA)
- Expression Quantification
 - Gene quantification (Alexa-seq ,ERANGE, NEUMA)
 - Isoform quantification (Cufflinks, MISO, RSEM)
- Transcriptome Reconstruction
 - Genome-guided assembly (Scripture, Cufflinks)
 - Genome-independent assembly (Velvet, TransABySS, Trinity)

NATURE METHODS, June 2011

Our Goal: Isoform Graph

Gene isoforms

Set of blocks

Isoform graph

Block Definition

A *block* is a string that appears entirely (not partially) or not at all, in each isoform

Isoforms

Set of Blocks

Block Definition

A *block* is a string that appears entirely (not partially) or not at all, in each isoform

Isoforms

Set of Blocks

Block Definition

A *block* is a string that appears entirely (not partially) or not at all, in each isoform

Isoforms

Set of Blocks

Computational Problem

Isoform Graph Reconstruction

Input: a set of RNA-seq reads from unknown gene transcripts **Output**: isoform graph

Our Approach

Isoform Graph Reconstruction

Input: a set of RNA-seq reads from unknown gene transcripts

Isoform Graph:

Our Approach

Isoform Graph Reconstruction

Input: a set of RNA-seq reads from unknown gene transcripts

Unspliced reads:

Our Approach

Isoform Graph Reconstruction

Input: a set of RNA-seq reads from unknown gene transcripts

Spliced reads:

Method Outline

- Hashing input reads
 - Input set partitioning → Unspliced/Spliced
 - Constant time access to RNA-seq reads
- Assembling unspliced reads into blocks (graph nodes)

Linking blocks with spliced reads (graph edges)

Hashing of the input reads

Assembling

Assembly of unspliced reads

A' cagggtaccgcggatgattacgtatgattacgtaggcgaatttgatac

Linking

- Linking with spliced reads
- A' cagggtaccgcggaatgattacgtaggCGAATTTGATAC

CGAATTTGATAC GCTGGCTAGTCA

B GCTGGCTAGTCAgtcatttgcat

CGAGTTTGATAC TAGGTCAGGTTT

D TAGGTCAGGTTTgtagcatgagtatta

Experimental Assessment

- Datasets:
 - Simulated: 112 genes used as training set in EGASP
 - Real: RNA-seq data from ENCODE/Caltech
- Evaluation of:
 - Accuracy $(S_n \text{ and } S_p)$
 - Computational requirements (tested on a standard workstation with 12GB of RAM)

Example: gene TUFT1

Prediction summary

• Predicted nodes: 12

• Predicted arcs: 14

• S_n (nodes): 1

• S_p (nodes): 1

• S_n (arcs): 1

• S_p (arcs): 1

Example: gene L1CAM

Prediction summary

Predicted nodes: 22

• Predicted arcs: 27

• S_n (nodes): 0.84

• S_p (nodes): 0.95

• S_n (arcs): 0.71

• S_p (arcs): 0.82

Experiment on Simulated Data

Data from: 112 genes used as training set in EGASP*

- 22.8×10^6 simulated reads
- read length: 64bp
- % of mutated reads: 0, 2, 4, 8, 16

Results

- ~ 40 genes "correctly reconstructed"
- 67 minutes
- Average $S_n = 0.868$
- Average $S_p = 0.765$

^{*}Guigò et al., Genome Biology, 2006

Experiment on Real Data

RNA-seq data from ENCODE/Caltech

- \circ 2 \times 10⁹ reads
- read length: 75bp (Illumina)
- unknown error

Results

- 210 minutes
- Average $S_n = 0.358$
- Average $S_p = 0.294$

Issues and Future Work

Issues

- SNP
- Read error
- Splice junctions not uniquely identified
- Some AS variations are hard to characterize

Future Works

- Extract AS events (exon skipping, mutually exclusive exons, etc.) from isoform graph
- Use a reference genome to predict AS variants in a donor genome (also represented with RNA-seq reads)
- Genome-wide experiment on real data from different sequencing technologies

Conclusions

- New method for AS variants inference from NGS data
- Efficient in theory and practice
- 2 k-mers/read
- No error \rightarrow Good performance
- Extremely scalable approach
- Ongoing implementation development
 - Improving performances on real data
 - SNP
 - Error correction
 - Intron/Exon refinement (involving the genome)

References

- Software (soon available)
 - http://www.algolab.eu/RNA-seq-Graph/
- Contacts
 - Stefano Beretta

beretta@disco.unimib.it

- Raffaella Rizzi rizzi@disco.unimib.it
- Gianluca Della Vedova gianluca.dellavedova@unimib.it
- Paola Bonizzoni bonizzoni@disco.unimib.it