Q1. Supervised Outlier Detection

Just run the jupyter notebook of `Q1.ipynb`. It uses the given dataset. The program has one output file: * Q1_output.csv.

a. preprocessing

remove the outlier by IsolationForest

b. choose model

Random Forest

class_weights = {0: 121277 , 1: 6573 }

Random Forest	evaluate on precision		on set f1-score	support
0 1	0. 95 0. 47	0. 99 0. 12	0. 97 0. 19	6280 343
accuracy macro avg weighted avg	0. 71 0. 93	0. 56 0. 95	0. 95 0. 58 0. 93	6623 6623 6623

SMOTEENN

Before SMOTEENN Counter({0: 127656, 1: 6573}) After SMOTEENN Counter({1: 123078, 0: 118077})

Random Forest	evalute on precision		on set f1-score	support
	0. 96 0. 46	0. 98 0. 24	0. 97 0. 31	6280 343
accuracy macro avg weighted avg	0. 71 0. 93	0. 61 0. 95	0. 95 0. 64 0. 94	6623 6623 6623

Random Undersampling

After RU Counter({0: 6573, 1: 6573})

Random Forest	evalute on precision		n set f1-score	support
0 1	0. 97 0. 14	0. 80 0. 61	0. 88 0. 23	6280 343
accuracy macro avg weighted avg	0. 56 0. 93	0. 71 0. 79	0. 79 0. 56 0. 85	6623 6623 6623

SMOTE

After SMOTE Counter({0: 127656, 1: 127656}) class_weight = {0: 24, 1: 1}

evalute on validation set precision recall f1-score support

0 0.96 0.98 0.97 6280
1 0.47 0.27 0.34 343

accuracy 0.95 6623
macro avg 0.71 0.62 0.66 6623
weighted avg 0.94 0.95 0.94 6623

c. Train the model

• Introduce Focal loss FocalLoss(alpha=0.949, gamma=2.1)

₹	precision	recall	f1-score	support	
0 1	1. 00 0. 64	0. 97 0. 96	0. 98 0. 77	6280 343	
accuracy macro avg weighted avg	0. 82 0. 98	0. 97 0. 97	0. 97 0. 88 0. 97	6623 6623 6623	

sReference

- [1]https://zhuanlan.zhihu.com/p/258506276 focal_loss
- [2]https://blog.csdn.net/qq_41917697/article/details/117471604
- [3] https://zhuanlan.zhihu.com/p/404798546 PR curve