

3.6 只读存储器 (ROM)

掩模 ROM

分类 〈可编程 ROM (PROM — Programmable ROM)

可擦除可编程 ROM (EPROM — Erasable PROM)

说明:

掩模 ROM 生产过程中在掩模板控制下写入,内容固定, 不能更改

PROM 内容可由用户编好后写入,一经写入不能更改 紫外光擦除(约二十分钟)

存储数据可以更改,但改写麻烦,工作时只读 **EPROM**

EEPROM 或 E²PROM 电擦除(几十毫秒)

3.6.1 ROM 的结构和工作原理

一、ROM 的结构示意图

1. 基本结构

$$A_{n-1} \sim A_0$$
 — n 位地址 $D_{b-1} \sim D_0$ — b 位数据 最高位 最低位

2. 内部结构示意图

ROM 存储容量 = 字线数 × 位线数 = $2^n \times b$ (位)

3. 逻辑结构示意图

(1) 中、大规模集成电路中逻辑图简化画法的约定

- * 连上且为硬连接,不能通过编程改变
- * 编程连接,可以通过编程将其断开
- 十 断开

缓冲器

(2) 逻辑结构示意图

$$Z_0 = m_1 + m_i + m_{2^n - 1} = D_0$$

 $Z_1 = m_0 + m_1 + m_i = D_1$

$$Z_{b-1} = m_0 + m_1 + m_i + m_{2^n-1} = D_{b-1}$$

二、ROM 的基本工作原理

1. 电路组成

2. 工作原理

输出信号的逻辑表达式

字线:
$$W_0 = m_0 = \overline{A_1} \overline{A_0}$$
 $W_1 = m_1 = \overline{A_1} A_0$
 $W_2 = m_2 = A_1 \overline{A_0}$
 $W_3 = m_3 = A_1 A_0$

位线:

$$D_0 = W_0 + W_2 = m_0 + m_2$$

$$= \overline{A_1} \overline{A_0} + A_1 \overline{A_0} = \overline{A_0}$$

$$D_1 = W_1 + W_2 + W_3 = A_1 + A_0$$

$$D_2 = W_0 + W_2 + W_3 = \overline{A_0} + A_1$$

$$D_3 = W_1 + W_3 = A_0$$

3. 功能说明

输出信号的真值表

(1) 存储器

输入 变量

函数

输出

(2) 函数发生器

输入变量 A_1 A_0

输出函数 D_3 D_2 D_1 D_0

(3) 译码编码

$A_1 A_0$	字线	编码
0 0	W_0	0101
0 1	W_1	1010
1 0	W_2^{-}	0111
1 1	W_3^-	1110

3.6.2 ROM 应用举例及容量扩展

一、ROM 应用举例

[例 3.6.2] 用 ROM 实现 以下逻辑函数

$$Y_1 = \sum_{m} (2,3,4,5,8,9,14,15)$$

$$Y_2 = \sum_m (6,7,10,11,14,15)$$

$$Y_3 = \sum_m (0,3,6,9,12,15)$$

$$Y_4 = \sum_m (7,11,13,14,15)$$

二、ROM 容量扩展

1. 存储容量 存储器存储数据的能力,为存储器含存储单元的总位数。

存储容量 = 字数× 位数 字—word 位—bit

1k×1:1024个字 每个字1位 存储容量1k

1k×4:1024个字 每个字 4 位 存储容量 4 k

256×8: 256 个字 每个字 8 位 存储容量 2 k

64 k×16: 64 k 个字 每个字 16 位 存储容量 1024 (1M)

2. 存储容量与地址位数的关系

存储容量 256×4 256 = 28 8 位地址 4 位数据输出

存储容量 8k×8 8k=8×2¹⁰=2¹³ 13 位地址 8 位数据输出

3. 常用 EPROM

$$2764 : 8k \times 8 (64k)$$

13 位地址输入:
$$A_0 \sim A_{12}$$

13 位地址输入:
$$A_0 \sim A_{12}$$
8 位数据输出: $O_0 \sim O_7$

输出使能端
$$\overline{OE}$$
 $\left\{ egin{array}{lll} 0 & 使能 & 地 \\ 1 & 输出呈高阻 u $u$$

片选端
$$\overline{CS}$$
 $\left\{ \begin{array}{ll} \mathbf{0} & \mathbf{ROM} & \mathbf{T} \\ \mathbf{1} & (\overline{OE} & \mathbf{HE}) & \mathbf{ROM} \\ & \mathbf{T} & \mathbf{T} & \mathbf{F} & \mathbf{HE} & \mathbf{HE} \\ \end{array} \right\}$

其他常用的 EPROM

27128:
$$16k \times 8$$
 (128k) $16k = 16 \times 2^{10} = 2^{14}$

27256:
$$32k \times 8$$
 (256k) $32k = 32 \times 2^{10} = 2^{15}$

4. ROM 容量的扩展

(2) 字线的扩展(地址码的扩展 — 字扩展)

两片 $4 \times 4 \rightarrow 8 \times 4$: 增加一位地址 A_2

四片 $32 k \times 8 \rightarrow 4 \times 32 k \times 8$:

15 位地址输入 $A_0 \sim A_{14}$ 增加两位地址 A_{15} A_{16}

经过2线-4线译码控制四个芯片的 CS (电路略)