Matemática Discreta - 2019/2020

Resolução do Teste N^01 de Matemática Discreta

Realizado em 29-04-2020

Nas perguntas com mais do que uma versão apenas se inclui a resolução de uma delas (uma vez que para as outras versões o método de resolução é o mesmo).

1 Relações binárias

Considera a relação \sim definida em S_3 , conjunto das permutações dos elemento de $\{1,2,3\}$, tal que $\pi \sim \pi'$ se e só se $\exists \rho \in S_3 : \rho^{-1} \circ \pi \circ \rho = \pi'$.

(a) Mostra que \sim é uma relação de equivalência em S_3 .

Resolução:

- **Reflexiva:** Seja π uma qualquer permutação em S_3 . Seja $\rho = \mathrm{id}$. Então $\rho^{-1} = \mathrm{id}^{-1} = \mathrm{id}$ e $\rho^{-1} \circ \pi \circ \rho = \pi$. Logo $\pi \sim \pi$.
- Simétrica: Sejam π e π' duas quaisquer permutações em S_3 . Se $\pi \sim \pi'$ então existe $\rho \in S_3$ tal que $\rho^{-1} \circ \pi \circ \rho = \pi'$. Assim, $\rho \circ \rho^{-1} \circ \pi \circ \rho = \rho \circ \pi'$ ou seja $\pi \circ \rho = \rho \circ \pi'$. Logo, $\pi \circ \rho \circ \rho^{-1} = \rho \circ \pi' \circ \rho^{-1}$, ou seja, $\pi = \rho \circ \pi' \circ \rho^{-1}$. Concluímos que para $\rho' = \rho^{-1}$, $\rho'^{-1} \circ \pi' \circ \rho' = \pi$ e portanto $\pi' \sim \pi$.
- **Transitiva:** Sejam π, π' e π'' três quaisquer permutações em S_3 . Se $\pi \sim \pi'$ então existe $\rho_1 \in S_3$ tal que $\rho_1^{-1} \circ \pi \circ \rho_1 = \pi'$. Se $\pi' \sim \pi''$ então existe $\rho_2 \in S_3$ tal que $\rho_2^{-1} \circ \pi' \circ \rho_2 = \pi''$. Logo, $\rho_2^{-1} \circ (\rho_1^{-1} \circ \pi \circ \rho_1) \circ \rho_2 = \pi''$, ou seja, $(\rho_2^{-1} \circ \rho_1^{-1}) \circ \pi \circ (\rho_1 \circ \rho_2) = \pi''$. Seja $\rho_3 = \rho_1 \circ \rho_2$. Então $\rho_3^{-1} = \rho_2^{-1} \circ \rho_1^{-1}$ e portanto existe $\rho_3 \in S_3$ tal que $\rho_3^{-1} \circ \pi \circ \rho_3 = \pi''$, pelo que $\pi \sim \pi''$.
- (b) Determina a classe de equivalência $[\pi]_{\sim}$ da permutação $\pi = (2,1,3)$.

Resolução: $[\pi]_{\sim} = {\pi' : \pi \sim \pi'} = {\rho^{-1} \circ (2,1,3) \circ \rho : \rho \in S_3}.$

ρ	$ ho^{-1}$	$ ho^{-1} \circ (2,1,3) \circ ho$
(1,2,3)	(1,2,3)	(2,1,3)
(1,3,2)	(1,3,2)	(3,2,1)
(2,1,3)	(2,1,3)	(2,1,3)
(2,3,1)	(3,1,2)	(3,2,1)
(3,1,2)	(2,3,1)	(1,3,2)
(3,2,1)	(3,2,1)	(1,3,2)

 $Logo, [\pi]_{\sim} = \{(2,1,3), (3,2,1), (1,3,2)\}$

2 Lógica (demonstração automática)

No universo dos números naturais, no contexto dos corpos finitos, podemos afirmar o seguinte.

 F_1 : Se x é um número primo e y é menor do que x, então x e y são coprimos.

 F_2 : Se x e y são coprimos e y < x, então y é invertível módulo x.

Utilizando os predicados

 $P(x) \equiv x \text{ \'e primo}$ $M(y,x) \equiv y \text{ \'e menor do que x}$ $CP(y,x) \equiv y \text{ e x são coprimos}$ $I(y,x) \equiv y \text{ \'e invertível m\'odulo x}$

a) Exprima F_1 e F_2 em linguagem matemática, com recurso aos predicados indicados acima.

Resolução:

$$F_1: \forall x \forall y \ (P(x) \land M(y,x)) \Rightarrow CP(x,y).$$

 $F_2: \forall x \forall y \ (CP(x,y) \land M(y,x)) \Rightarrow I(y,x).$

b) Utilizando o princípio da resolução, a partir de F_1 e F_2 deduza

$$F_3$$
: $\forall x \forall y (P(x) \land M(y,x)) \Rightarrow I(y,x)$.

Resolução: Para deduzirmos F_3 a partir de F_1 e F_2 , aplicando o princípio da resolução, vamos provar que $\neg (F_1 \land F_2 \Rightarrow F_3)$ é uma fórmula inconsistente, reduzindo-a à forma normal conjuntiva de Skolem e aplicando resolventes até se obter a cláusula vazia. Uma vez que

$$\neg F_3 \equiv \exists x \exists y \neg (\neg P(x) \lor \neg M(y,x)) \lor I(y,x))$$

$$\equiv \exists x \exists y P(x) \land M(y,x)) \land \neg I(y,x)$$

$$\equiv P(a) \land M(b,a)) \land \neg I(b,a).$$

onde a e b são as constantes que correspondem às funções de Skolem que substituem os quantificadores existenciais, obtém-se

$$\neg (F_1 \land F_2 \Rightarrow F_3) \equiv \neg (\neg (F_1 \land F_2) \lor F_3)
\equiv F_1 \land F_2 \land \neg F_3
\equiv \underbrace{(\neg P(x) \lor \neg M(y,x) \lor CP(x,y))}_{C_1} \land \underbrace{(\neg CP(x,y) \lor \neg M(y,x) \lor I(y,x))}_{C_2}
\land \underbrace{P(a)}_{C_3} \land \underbrace{M(b,a)}_{C_4} \land \underbrace{\neg I(b,a)}_{C_5}.$$

Assim, obtém-se o conjunto de cláusulas $S = \{C_1, C_2, C_3, C_4, C_5\}$ do qual nos resta obter a cláusula vazia, \diamondsuit , de acordo com os seguintes passos:

1. Sendo C_6 a resolvente de C_1 e C_2 ,

2. Considerando a substituição $\sigma = \{a/x\}$ e sendo C_7 a resolvente de $C_6\sigma$ e C_3 ,

$$\begin{array}{ccccc} C_6\sigma: & \neg P(a) & \vee & \neg M(y,a) & \vee & I(y,a) \\ \hline C_3: & P(a) & & & \\ \hline C_7: & & \neg M(y,a) & \vee & I(y,a) \\ \end{array}$$

3. Considerando as substituição $\gamma = \{b/y\}$ e sendo C_8 a resolvente de $C_7\gamma$ e C_4 ,

$$C_7\gamma: \neg M(b,a) \lor I(b,a)$$
 $C_4: M(b,a)$
 $C_8: I(b,a)$

4. Finalmente, vem que

$$\begin{array}{ccc} C_8: & I(b,a) \\ C_5: & \neg I(b,a) \\ \hline & \diamondsuit \end{array}$$

3 Estratégias de demonstração

A sequência de Fibonacci é definida por recorrência por

$$f_0 = 0$$

$$f_1 = 1$$

$$f_{n+1} = f_{n-1} + f_n, \text{ para } n \ge 1$$

Mostre que
$$\sum_{i=1}^{n} f_{2i} = f_{2n+1} - 1$$
, para $n \ge 1$.

Resolução: Prova pelo método de Indução Matemática:

Condição inicial: Se
$$n=1$$
 tem-se $\sum_{i=1}^1 f_{2i}=f_2=f_1+f_0=1$ e $f_{2\times 1+1}-1=f_3-1$ $=f_1+f_2-1$ $=f_1+f_0+f_1-1$

Portanto,
$$\sum_{i=1}^{n} f_{2i} = f_{2 \times n+1} - 1$$
, para $n = 1$.

Hipótese de Indução:
$$\sum_{i=1}^k f_{2i} = f_{2k+1} - 1$$

Tese de Indução:
$$\sum_{i=1}^{k+1} f_{2i} = f_{2(k+1)+1} - 1$$

$$\sum_{i=1}^{k+1} f_{2i} = \sum_{i=1}^{k} f_{2i} + f_{2(k+1)}$$

$$= f_{2k+1} - 1 + f_{2k+2} \qquad \text{pela hipótese de indução}$$

$$= f_{2k+3} - 1 \qquad \text{pela relação de recorrência}$$

Portanto, usando indução matemática tem-se $\sum_{i=1}^{n} f_{2i} = f_{2n+1} - 1$, para qualquer $n \ge 1$.

4 Princípios combinatórios

A Biblioteca Municipal de Aveiro, com o intuito de adquirir novos livros para algumas secções de leitura, selecionou uma amostra de 250 leitores e realizou o seguinte questionário:

A Maria, funcionária da Biblioteca, ficou responsável por fazer um estudo para perceber qual(ais) o(s) tipo(s) de livro(s) a adquirir. No entanto, esqueceu-se de registar o número de pessoas que prefere simultaneamente livros policiais e de ficção científica.

Tendo em conta os dados de que a Maria dispõe, e que se encontram abaixo, ajude a Maria a determinar o valor em falta. Justifique a sua resposta.

Dados:

- 120 pessoas preferem romances
- 110 pessoas preferem policiais

- 130 pessoas preferem livros de ficção científica
- 70 pessoas preferem romances e policiais
- 65 pessoas preferem romances e ficção científica
- 20 pessoas gostam dos três tipos de livros
- 40 pessoas não gostam de nenhum destes três tipos de livros.

Resolução:

Sejam:

- L o conjunto dos leitores da Biblioteca Municipal de Aveiro;
- R o conjunto dos leitores que preferem romances;
- P o conjunto dos leitores que preferem policiais;
- F o conjunto dos leitores que preferem ficção científica.

Sabemos que
$$|L| = 250$$
, $|R| = 120$, $|P| = 110$, $|F| = 130$, $|R \cap P| = 70$, $|R \cap F| = 65$, $|R \cap P \cap F| = 20$ e $|R^c \cap P^c \cap F^c| = 40$.

Por outro lado, $R^c \cap P^c \cap F^c = L \setminus (R \cup P \cup F)$ e, pelo princípio de inclusão-exclusão, temos:

$$\begin{aligned} |R^c \cap P^c \cap F^c| &= |L| - |R \cup P \cup F| \\ \Leftrightarrow |R^c \cap P^c \cap F^c| &= |L| - (|R| + |P| + |F| - |R \cap P| - |R \cap F| - |P \cap F| + |R \cap P \cap F|) \\ \Leftrightarrow 40 &= 250 - (120 + 110 + 130 - 70 - 65 - |P \cap F| + 20) \\ \Leftrightarrow |P \cap F| &= 35. \end{aligned}$$

Logo, há 35 pessoas que preferem simultaneamente livros policiais e de ficção científica.

5 Agrupamentos e identidades combinatórias

O Professor de MD foi buscar 8 marcadores à secretaria do DMAT onde estes estão disponíveis, em grandes quantidades, em quatro cores: preto, azul, vermelho e verde. Quantas possibilidades de escolha é que pode fazer? Considere cada uma das situações separadamente:

- a) leva pelo menos um marcador de cada cor;
- b) leva no máximo 2 marcadores vermelhos;
- c) sem restrições.

Não necessita fazer os cálculos, apresente apenas uma formula.

Resolução:

a) Como o Professor escolhe pelo menos um marcador de cada cor, o problema consiste em determinar o número de possibilidades de escolher 4 (= 8 - 4) marcadores de entre 4 tipos. Como pode repetir a cor, trata-se de um problema de combinações com repetição. Equivalente ao problema de colocar 4 bolas iguais em 4 caixas diferentes.

$$\binom{4+4-1}{4} = \binom{4+4-1}{3} = \frac{7!}{3!4!}$$

b) Podem ser escolhidos 0, 1 ou 2 marcadores vermelhos.

CASO 1: 0 marcadores vermelhos.

Existem 8 marcadores para serem escolhidos entre 3 tipos (sendo que não são escolhidos marcadores vermelhos). O número de possibilidades neste caso é dado por

$$\binom{8+3-1}{8} = \binom{8+3-1}{2} = \frac{10!}{2!8!}.$$

CASO 2: 1 marcador vermelho.

Faltam escolher 7 marcadores que não são vermelhos, isto é, de entre 3 tipos. O número de possibilidades neste caso é dado por

$$\binom{7+3-1}{7} = \binom{7+3-1}{2} = \frac{9!}{2!7!}.$$

CASO 3: 2 marcadores vermelhos.

Faltam escolher 6 marcadores, que não são vermelhos, isto é, de entre 3 tipos. O número de possibilidades neste caso é dado por

$$\binom{6+3-1}{6} = \binom{6+3-1}{2} = \frac{8!}{2!6!}.$$

Pelo Princípio da Adição o número total de possibilidades é dado pela soma dos valores obtidos nos casos 1, 2 e 3. Ou seja,

$$\frac{10!}{2!8!} + \frac{9!}{2!7!} + \frac{8!}{2!6!}$$

c) Neste caso são escolhidos 8 marcadores de entre 4 tipos diferentes.

$$\binom{8+4-1}{8} = \binom{8+4-1}{3} = \frac{11!}{3!8!}$$

5