# **Assignment 1**

## **BRI 509 Introduction to Brain Signal Processing**

2021.4.6

| Name :         |   |  |
|----------------|---|--|
| Studendt ID #: | · |  |
|                |   |  |

1. Explain the following terms briefly.

(a) Sampling property of the impulse

(b) Time invariance

(d) Linearity and Superposition

(e) Zero Input response vs zero state response

### 2. Solve the following simple problems.

(a) What is its fundamental period?

$$g(t) = 2cos(300\pi t)$$

(b) Find and graph the even and odd parts of the function x(t).



(c) What is the numerical value of the following accumulation?

$$\sum_{n=-5}^{10} \delta_3[n]$$

| (d) Find the average s | signal power | of the periodic | signal x(t) in | the figure. |
|------------------------|--------------|-----------------|----------------|-------------|
|------------------------|--------------|-----------------|----------------|-------------|

$$\mathbf{x}(t) = A\cos(2\pi f t)$$

$$g[n] = 5(u[n-1] - u[4-n])$$

#### 3. Solve the following problems.

(a) Fine the zero-input response of the system in the figure, the response with x(t) = 0, if the initial value of y(t) is y(0) = 1, the initial rate of change of y(t) is  $y'(t)|_{t=0} = 0$ , a = 1, b = 0 and c = 4.



(b) Fine the response of the system in the figure if x[n] = u[n] and the system is in its zero state before time n = 0.



#### 4. MATLAB coding.

(a) Graph the function combinations with MATLAB (refer example 2.1)

$$x_1(t) = e^{-t} \sin(20\pi t) + e^{-t/2} \sin(19\pi t)$$
  
 $x_2(t) = \text{rect}(t)\cos(20\pi t)$ 

- Source Code

- Graph

7

- (b) Make sinusoid signals whose fundamental frequencies are the normal scale, 440Hz(A4), 466.1Hz(A4#), 493.8Hz(B4), 523.25Hz(C5), 554.36Hz(C5#), 587.33Hz(D5), 622.25Hz(D5#), 659.26Hz(E5), 698.46Hz(F5), 739.99Hz(F5#), 784.00Hz(G5), 830.60Hz(G5#), 880Hz(A5).
  - Source Code

- Graph

9

- Make an MP3 file containing /do/, /re/, /mi/, ... /si/,/do/.