Seminar 14

03 1

Dit.

a)
$$\iint_A (1-y) dx dy$$
, mod $A = \{(\lambda_1 y) \in \mathbb{R}^2 \mid x^2 + (y-1)^2 \le 1$, $y \le x^2$, $x \ge 0$

1)
$$\iint_A xy dx dy$$
, and A esta multimea
pland manginità de $x = y^2 x$, $x = 2 - y^2$

c)
$$\iint_A y dxdy$$
, and $A=1(x,y) \in \mathbb{R}^2$)
 $x \ge y^2$, $x^2 + y^2 \le 2$

d)
$$\iint_A e^{y^n} dx dy$$
, mou A est mullimes plans limitata de $x = y^3$, $x = 0$, $y = 1$, $y = -1$

m 2

a) Det
$$\iint_A x dx dy$$
, under A este multimeze plane limitata de $SOSC$, $O(0,0)$, $S(2,1)$, $C(1,2)$

1) Det
$$\iint_A y \, dx \, dy$$
, may $A = \frac{1}{4}(4, y) \in \mathbb{R}^2$ | $x^2 + y^2 \in \mathbb{Z}^2$, $x \ge -y^2$, $x \le y^2$, $y \le 0$

Dst.

a)
$$\iint e^{-x^2-y^2} dx dy$$
, $A = \frac{1}{(219)} \sin^2 y$
 $x^2 + y^2 \le 9$, $y \ge 0$

1)
$$\iint_{A} \sqrt{1 - \frac{x^{2}}{5} - \frac{y^{2}}{5}} dx dy A = 1(x_{1}y_{1}) \in \mathbb{R}^{2}$$

$$\frac{x^{2} + y^{2}}{5} \le 1, \quad x \ge 0, \quad y \ge 0$$

c)
$$\iint_{A} x \, dx \, dy$$
 $A = \{(x_{1}y_{1}) \in \mathbb{R}^{2} \}$
 $h \le x^{2} + y^{2} \le 9, \quad x \ge 0$

(3-1)2 + y2 ≤ 4

$$A = \{(x_1, y_1) \in \mathbb{R}^2 \}$$