

Worksheet: The χ^2 Test

- 1. Plotting the χ^2 curve.
 - a) Use the following to plot a χ^2 curve with 5 degrees of freedom. Make a sketch the result.

$$> x < -seq(0, 30, by=0.2)$$

$$>$$
plot(x, **dchisq**(x, **df**=5), type='l', ylim=**c**(0, 0.15))

- b) Repeat part a) for a χ^2 curve with 10 degrees of freedom. Make a sketch of the result using the same axes you used in a).
- c) Repeat part a) for a χ^2 curve with 15 degrees of freedom. Make a sketch of the result using the same axes you used in a).
- d) Describe the effect that increasing the number of degrees of freedom has on the shape of the curve.
- e) (Trick question) Estimate the area under each curve.
- 2. Find the area under the χ^2 -curve with 5 degrees of freedom to the right of the given value. (Hint: $1-\mathbf{pchisq}(\mathbf{x})$)
 - a) 1.61
- b) 9.24
- c) 15.09
- 3. Repeat exercise #1 for a χ^2 -curve with 10 degrees of freedom.
- 4. A die is rolled 60 times. The following frequency table is calculated. Is the die fair?

	observed
value	frequency
1	5
2	7
3	17
4	16
5	8
6	7

5. A die is rolled 60 times. The following frequency table is calculated. Is the die fair?

	observed
value	frequency
1	9
2	11
3	10
4	8
5	12
6	10

6. A die is rolled 600 times. The following frequency table is calculated. Is the die fair?

	observed
value	frequency
1	90
2	110
3	100
4	80
5	120
6	100

7. A die is rolled 60,000 times. The following frequency table is calculated. Is the die fair?

	observed
value	frequency
1	10,287
2	10,056
3	9,708
4	10,080
5	9,935
6	9,934

8. A four-sided die is rolled several times. The following frequency table is calculated. Is the die fair?

	observed
value	frequency
1	105
2	90
3	111
4	94

Solutions: 1. d) Increasing the degrees of freedom shifts area to the right and flattens the curve. e) area = 1 2. a) 90% b) 10% c) 1% 3. a) 100% b) 51% c) 13% 4. Probably not: $\chi^2 = 13.2$ and P = 2.2% 5. Yes: $\chi^2 = 1.0$ and P = 96.3% 6. Maybe: $\chi^2 = 10.0$ and P = 7.5% 7. No: $\chi^2 = 18.6$ and P = 0.2% 8. Yes: $\chi^2 = 2.82$ and Q = 42.0%

Worksheet: The χ^2 Test

- 1. Plotting the χ^2 curve.
 - a) Use the following to plot a χ^2 curve with 5 degrees of freedom. Make a sketch the result.

$$> x < -seq(0, 30, by=0.2)$$

$$>$$
plot(x, **dchisq**(x, **df**=5), type='l', ylim=**c**(0, 0.15))

There are some nice examples here: https://en.wikipedia.org/wiki/Chi-squared_distribution

- b) Repeat part a) for a χ^2 curve with 10 degrees of freedom. Make a sketch of the result using the same axes you used in a).
- c) Repeat part a) for a χ^2 curve with 15 degrees of freedom. Make a sketch of the result using the same axes you used in a).
- d) Describe the effect that increasing the number of degrees of freedom has on the shape of the curve. It shifts the peak to the right.
 - e) (Trick question) Estimate the area under each curve. The area under any histogram is 1.
- 2. Find the area under the χ^2 -curve with 5 degrees of freedom to the right of the given value. (Hint: $1-\mathbf{pchisq}(\mathbf{x})$)
 - a) 1.61
- b) 9.24
- c) 15.09

- a) 90.0%
- b) 9.99%
- c) 0.999%
- 3. Repeat exercise #1 for a χ^2 -curve with 10 degrees of freedom.
 - a) 99.9%
- b) 50.9%
- c) 12.9%
- 4. A die is rolled 60 times. The following frequency table is calculated. Is the die fair?

For a fair die, the expected frequence is
$$60 \times \frac{1}{6} = 10$$
. So, $\chi^2 = \frac{(5-10)^2}{10} + \frac{(7-10)^2}{10} + \frac{(17-10)^2}{10} + \frac{(16-10)^2}{10} + \frac{(8-10)^2}{10} + \frac{(7-10)^2}{10}$. The sum is 13.2. So, the *P*-value is $1 - \text{pchisq}(13.2, \text{df} = 5)$ which is 2.16%. This supports the alternative hypothesis: the die is not fair.

	observed
value	frequency
1	5
2	7
3	17
4	16
5	8
6	7

5. A die is rolled 60 times. The following frequency table is calculated. Is the die fair?

For a fair die, the expected frequence is $60 \times \frac{1}{6} = 10$. So, $\chi^2 = \frac{(9-10)^2}{10} + \frac{(11-10)^2}{10} + \frac{(10-10)^2}{10} + \frac{(8-10)^2}{10} + \frac{(12-10)^2}{10} + \frac{(10-10)^2}{10}.$ The sum is 1.0. So, the P-value is 1 - pchisq(1.0, df = 5)which is 96.3%. This supports the null hypothesis: the die is fair.

	observed
value	frequency
1	9
2	11
3	10
4	8
5	12
6	10

6. A die is rolled 600 times. The following frequency table is calculated. Is the die fair?

For a fair die, the expected frequence is $600 \times \frac{1}{6} = 100$. So, $\chi^2 = \frac{(90-100)^2}{100} + \frac{(110-100)^2}{100} + \frac{(100-100)^2}{100} + \frac{(80-100)^2}{100} + \frac{(120-100)^2}{100} + \frac{(100-10)^2}{100}.$ The sum is 10.0. So, the P-value is 1 - pchisq(10.0, df = 5)which is 7.5%. This weakly supports the null hypothesis: the die might be fair.

	observed
value	frequency
1	90
2	110
3	100
4	80
5	120
6	100

7. A die is rolled 60,000 times. The following frequency table is calculated. Is the die fair?

For a fair die, the expected frequence is $60,000 \times \frac{1}{6} = 10,000$. So, $\chi^2 = \frac{(10,287-10,000)^2}{10,000} + \frac{(10,056-10,000)^2}{10,000} + \cdots + \frac{(9,934-10,000)^2}{10,000}$. The sum is 18.6. So, the P-value is 1 - pchisq(18.6, df = 5)which is 0.2%. This supports the alternative hypothesis: the die is not fair.

	observed
value	frequency
1	10,287
2	10,056
3	9,708
4	10,080
5	9,935
6	9,934

8. A four-sided die is rolled several times. The following frequency table is calculated. Is the die fair?

The die was rolled a total of 400 times. For a fair die, the expected frequence is $400 \times \frac{1}{4} = 100$. So, $\chi^2 = \frac{(105-100)^2}{100} + \frac{(90-100)^2}{100} + \frac{(111-100)^2}{100} + + \frac{(94-100)^2}{100}$. The sum is 2.82. So, the *P*-value is 1 - pchisq(2.82, df = 3)

which is 0.2%. This supports the null hypothesis: the die is fair.

	observed
value	frequency
1	105
2	90
3	111
4	94