The Math Needed to Understand Image Processing

- Representation of images as Taylor series
 - Thus computation of image derivatives
- Invariant operators: to shift, rotation, scale
- Shift-invariant, linear operators
 - Image representations consistent with these operators
 - Representation of images via orthogonal basis functions, esp. sinusoids (Fourier basis functions)
 - Convolution
 - Point and line spread functions and other convolution kernels
 - Understanding convolution and derivatives via Fourier basis functions
- Representation of images as pixels or voxels: understanding sampling effects

Discrete Representations of Images

- Sampled
 - Pixels
 - Pixel displacements
 - Need for interpolation of intensities
 - Limiting damage of sampling will be a topic later

One image is a deformed version of the other

- Parametrized
 - Global: $I(x,y) = \sum_{k=1}^{n} a_k \Psi^k(x,y)$; evaluable at any (x,y) the image representation is the n-vector \underline{a}
 - For an error-free representation n = number of pixels or voxels
 - Frequently you want n << number of pixels or voxels, so issue is which representation allows the smaller values of n
 - Later topic: local over patches: linear combination of local basis
- Interpolation from sampled to parametrized via the Ψ^k

Basis Functions for Parametrized Discrete Representations of Images

- Global vs. local:
 - Global: $I(x,y) = \sum_k a_k \Psi^k(x,y)$; the representation is the vector <u>a</u>
 - Later topic: local over patches: linear combination of local basis
- What basis functions $\Psi^k(x,y)$?
 - Choices
 - The pixel representation: for it $\Psi^{\mathbf{k}}(\mathbf{x},\mathbf{y}) = 1$ at \mathbf{k}^{th} pixel, 0 elsewhere
 - This is very (too) local
 - We have seen Taylor as too local with $\Psi^k(x,y) = \text{an } image$ formed by a polynomial whose degree is non-decreasing as k increases: e.g., $(x-x_0)(y-y_0)$
 - Other choices specialized to operators being applied

Basis Functions for Parametrized Discrete Representations of Images^{cont.}

- $I(x,y) = \sum_k a_k \Psi^k(x,y)$;
- What basis functions $\Psi^k(x,y)$?
 - Issues
 - Ease of applying processing operators, e.g., shift-invariant, linear
 - How to handle different levels of detail?
 - How to handle level(s) of locality?
 - How get good approximation with few basis functions?
- Ideas are extendable to objects
 - Of boundary with $\Psi^{\kappa}(\theta, \phi)$
 - Of interior

Invariant operators: to shift, rotation, scale

- Let T be an operator on images
 - so let image $J = T \circ I$
 - Example of a T: averaging over a rectangle centered at each pixel
- Let G be a geometric operation on an image, such as shifting (translation), rotation, and scale change
 - so let image $J = G \circ I$
- T is said to be G-invariant (equivariant in math terminology) iff
 ∀I [T o G o I = G o T o I]
 - equivalently, $\forall I \ [T \circ I = G^{-1} \circ T \circ G \circ I]$
- "Invariant" is called "equivariant" in the math literature

Basis Functions for Linear Operators

- Let **T** be a set of linear operators T_j on image functions $I(\underline{x})$
- Consider a basis $\{\Psi^k(\underline{x}), k=1, ...\}$ for functions $I(\underline{x})$
 - $-I(\underline{\mathbf{x}}) = \sum_{\mathbf{k}} a_{\mathbf{k}} \Psi^{\mathbf{k}}(\underline{\mathbf{x}})$
 - Let $J_i(\underline{x})$ be I processed by T_i , i.e., $J_i(\underline{x}) = T_i(I(\underline{x}))$
 - $J_j(\underline{x}) = \sum_m b_{jm} \Psi^m(\underline{x})$
 - But by linearity $T_j(I(\underline{x})) = T_j(\sum_k a_k \Psi^k(\underline{x})) = \sum_k a_k T_j(\Psi^k(\underline{x}))$
 - Let $T_j(\Psi^k(\underline{x})) = \sum_m c_{mjk} \Psi^m(\underline{x})$; there is cross-talk between the basis functions when T_i is applied
 - So $T_i(I(\underline{x})) = \sum_k a_k \sum_m c_{mjk} \Psi^m(\underline{x}) = \sum_m \left[\sum_k c_{mjk} a_k\right] \Psi^m(\underline{x})$
 - Thus $b_{jm} = \sum_k c_{mjk} a_k$; matrix multiplications $\underline{b}^j = C^j \underline{a}$
 - the el'ts of <u>a</u> and the rows & columns of C^{j} run over the basis functions
 - Inefficient and hard to understand
 - We would thus like to avoid crosstalk

Basis Functions for Linear Operators

- Let T be a linear operator on images $I(\underline{x})$
- Consider a set of eigenimages $\Psi^k(\underline{x})$ of T
 - Definition of eigen-image of T: $T(\Psi^k(\underline{x})) = \lambda_k \Psi^k(\underline{x});$ no cross-talk
 - The $\Psi^k(\underline{x})$ span the space of $I(\underline{x})$
 - $-\text{So if } I(\underline{x}) = \sum_k a_k \ \Psi^k(\underline{x}), \ T(I(\underline{x})) = \sum_k \lambda_k \ a_k \ \Psi^k(\underline{x})$
 - Really simple; no cross-talk between the basis functions
 - After application of T, a_k becomes λ_k a_k
 - But still need a separate eigen-analysis for each $T \in T$
 - For one important class of operators, the eigenfunctions are the same

Basis Functions for Shift-Invariant

Linear Operators in 1D

- $T(A \cos(2\pi vx) + B \sin(2\pi vx))$
 - = $C \cos(2\pi vx) + D \sin(2\pi vx)$) -0.25
 - Argument of T is a phase-shifted sinusoid of some amplitude and frequency ν
 - Because A $cos(2\pi\nu x)$ +B $sin(2\pi\nu x)$ = |(A,B)| $cos(2\pi\nu x$ - $\phi_{AB})$, where ϕ_{AB} = $tan^{-1}(B/A)$
 - Similarly, $C \cos(2\pi vx) + D \sin(2\pi vx) = |(C,D)| \cos(2\pi vx \phi_{CD})$
 - When a sinusoid of some frequency ν is input, the output is a sinusoid of the same frequency!
 - But with a modified amplitude and phase shifted

Basis Functions for Shift-Invariant

Linear Operators

- When a sinusoid $E_{in} \cos(2\pi \nu x \phi_{in})$, of some frequency ν is input, the output is a sinusoid of the same frequency: $E_{out} \cos(2\pi \nu x \phi_{out})$,
- - Expressing the sinusoids in a complex form, that is, $\exp(-i2\pi vx) = \cos(2\pi vx) i\sin(2\pi vx)$, these functions are eigenfunctions of all shift-invariant, linear operators
- Consider $\exp(-i2\pi vx)$ for v = k/N with k = 0, 1, 2, ..., N/2
 - These basis functions span the space of 1D discrete "images" when x = 0, 1, 2, ..., N-1, with N even
 - These basis functions are called the discrete Fourier basis in 1D

Exp(iφ) as unit circle and capturing sinusoids

- $exp(i\phi)$ is the point at angle ϕ on the unit circle in 2D complex space
- Trig shows that $Re(exp(i\phi)) = cos(\phi)$ and $Im(exp(i\phi)) = sin(\phi)$
 - -i.e., $exp(i\phi) = cos(\phi) + i sin(\phi)$
- Taylor series shows the same:
 - Taylor series for exp(i ϕ) is $\Sigma_{k=0}^{\infty}$ (i ϕ)^k / k! = $\Sigma_{k=0}^{\infty}$ (-1)^k ϕ ^{2k} / (2k)! +

$$i \sum_{k=0}^{\infty} (-1)^k \phi^{2k+1} / (2k+1)! =$$

- $\cos(\phi) + i \sin(\phi)$
- $\exp(-i\phi) = \exp(i(-\phi)) = \cos(\phi) i\sin(\phi)$
- $cos(\phi) = \frac{1}{2}(exp(i\phi) + exp(-i\phi));$ $sin(\phi) = \frac{1}{2}(exp(i\phi) - exp(-i\phi))/i$

Discrete Basis Eigenfunctions for Shift-Invariant Linear Operators in 1D

- $\exp(-i2\pi vx)$ for v = k/N with k = 0, 1, 2, ..., N/2
 - These basis functions span the space of 1D discrete "images" when x = 0, 1, 2, ..., N-1, with N even
- $I(x) = \sum_{k=-N/2+1}^{N/2} A_k \exp(-i2\pi(k/N)x)$ with k = 0, 1, 2, ..., N/2
 - $= \sum_{k=1}^{N/2-1} \left[(A_k + A_{-k}) \cos(2\pi(k/N)x) i (A_k A_{-k}) \sin(2\pi(k/N)x) \right] + A_0 \cos(-2\pi(0/N)x) + A_{N/2} \cos(-2\pi((N/2)/N)x)$
 - $(A_k + A_{-k})$ must be real, and $(A_k A_{-k})$ must be imaginary, so $A_{-k} = A_k *$, k = 1, 2, ..., N/2-1
 - A_0 and $A_{N/2}$ must be real, i.e., have phase 0
 - $A_0 \cos(-2\pi(0/N)x) + A_{N/2} \cos(-2\pi((N/2)/N)x) = A_0 + A_{N/2} \cos(\pi x)$

Discrete Basis Eigenfunctions for Shift-

Invariant Linear Operators in 1D

- $I(x) = \sum_{k=1}^{N/2-1} [(A_k + A_{-k}) \cos(2\pi(k/N)x) i (A_k A_{-k}) \sin(2\pi(k/N)x))] + A_0 \cos(-2\pi(0/N)x) + A_{N/2} \cos(-2\pi((N/2)/N)x) =$
- $2\Sigma_{k=1}^{N/2-1} [\text{Re}(A_k) \cos(2\pi(k/N)x) + \text{Im}(A_k) \sin(2\pi(k/N)x))] + A_0 1 + A_{N/2} \cos(-\pi x) =$
- $\begin{array}{l} \bullet \ \ \, 2\Sigma_{k=1}^{\ \ \, N/2\text{-}1} \left[|A_k| \cos(2\pi(k/N)x \text{-} \, \varphi(\nu_k)) \right] + \\ A_0 \ 1 + A_{N/2} \cos(\text{-}\pi x), \\ \text{where } \, \varphi(\nu_k) = tan^{\text{-}1} (Im(A_k) \, / \, Re(A_k)) \end{array}$
 - For k≠0 or N/2, amplitude is $2 |A_k|$, and phase is $tan^{-1}(Im(A_k) / Re(A_k))$
 - For k=0 or N/2 phase is 0 or π

Basis Functions for Shift-Invariant Linear Operators in *M* dimensions

- When a sinusoid $E_{in} \exp(-i(2\pi \underline{v} \bullet \underline{x}))$, of some frequency $\underline{v} = (v_{x_1}, v_{x_2}, ..., v_{x_M})$ is input,
 - then the output is a sinusoid of the same frequency:
 - $E_{out} \exp(-i2\pi \underline{v} \cdot \underline{x})$, but E_{out} can be complex
 - This is the eigen-condition: $\lambda_{\nu} = E_{out} / E_{in}$
 - Note λ_v may be complex; its magnitude changes the sinusoidal amplitude, and the ratio of its imaginary to real parts changes the sinusoidal "phase"
- $\exp(-i2\pi \underline{v} \bullet \underline{x}) = \prod_{j=1}^{M} \exp(-i2\pi v_{x_j} \times x_j)$ for $v_{x_j} = k_j/N_j$ with $k_j = 0, \pm 1, \pm 2, ..., \pm N_j/2-1, N_j/2$
 - These separable basis functions span the space of 1D discrete "images" when $x_i = 0, 1, 2, ..., N_i-1$, with N_i even
 - These basis functions are called the discrete Fourier basis in M dimensions

Discrete Basis Eigenfunctions for Shift-Invariant Linear Operators in *M*-D

- exp(- $i2\pi\underline{v}$ • \underline{x}) for $v_{x_j} = k_j/N_j$ with each $k_j = 0, \pm 1, \pm 2, ..., \pm N_j/2-1, N_j/2$
- $I(\mathbf{x}) = \sum_{j=1}^{M} \sum_{k_j=-N_j/2+1}^{N_j/2} A_{\underline{k}} \prod_{j=1}^{M} \exp(-i2\pi (k_j/N_j)x)$ with $\underline{\mathbf{k}} = (k_1, k_2, \dots, k_M)$
- $(A_{\underline{k}} \exp(-i2\pi \underline{v}_{\underline{k}} \bullet \underline{x}) + A_{\underline{k}} \exp(+i2\pi \underline{v}_{\underline{k}} \bullet \underline{x})) = (A_{\underline{k}} + A_{\underline{k}})(\cos(2\pi \Sigma_{i}(k_{i}/N_{i})x_{i}) i(A_{\underline{k}} A_{\underline{k}})(\sin(2\pi \Sigma_{i}(k_{i}/N_{i})x_{i})$
 - $\begin{array}{l} (A_{\underline{k}} + A_{\underline{k}}) \text{ must be real, and } (A_{\underline{k}} A_{\underline{k}}) \text{ must be} \\ \text{imaginary,} \\ \text{so } A_{\underline{k}} = A_{\underline{k}}^*, \underline{k} \text{: all indices } \geq 0 \text{, not all either } 0 \text{ or } N_i/2 \end{array}$
- For <u>k</u> with each component either 0 or N_j/2,
 A_k must be real.

2D Basis Functions

- Separability: Products of $\Psi^{k_1}(x)$ and $\Psi^{k_2}(y)$
 - Each factor has its own frequency

- Diagram shows N=8
- Different sub-panels show differing level of detail, by x and by y
- Indeed, the union of the sine and cosine basis forms an equivalent basis to the negative exponentials

Amplitude and Phase for Fourier Eigenimages in *M*-D

- $\underline{\mathbf{k}}^{\text{th}}$ term for eigenvector decomposition:
 - $(A_{\underline{k}} \exp(-i2\pi \underline{\nu}_{\underline{k}} \bullet \underline{x}) + A_{\underline{k}} \exp(+i2\pi \underline{\nu}_{\underline{k}} \bullet \underline{x})) =$ $2 \operatorname{Re}(A_{\underline{k}})(\cos(2\pi \Sigma_{i}(k_{i}/N_{i})x_{i})$ $-i 2 \operatorname{Im}(A_{\underline{k}})(\sin(2\pi \Sigma_{i}(k_{i}/N_{i})x_{i}) \text{ when } \underline{k} \neq \text{a tuple of 0s or } N_{i}/2\text{'s}$
 - $\begin{array}{ll} & = 2|A_{\underline{k}}|cos(2\pi\Sigma_{i}(k_{i}/N_{i})x_{i}\text{-}\phi(\underline{\nu}_{\underline{k}})),\\ & \text{where } \phi(\underline{\nu}_{k})\text{=} \ tan^{\text{-}1}(Im(A_{k})\ /\ Re(A_{k})) \end{array}$
 - In 2D there are complex conjugate pairs for every frequency pair but 4: $(k_1=0 \text{ or } N/2, k_2=0 \text{ or } N/2)$. Thus, at those frequency pairs, in 2D
 - You get a magnitude and a phase for (k_1,k_2) and another magnitude and phase for $(-k_1,k_2)$ if $k_1 > 0$ or at $(k_1,-k_2)$ if $k_1 = 0$
 - For $\underline{\mathbf{k}}$ with both components either 0 or $N_i/2$,
 - A_k must be real, so phase = 0 or π .
- To summarize, in fig. there is a mag and phase everywhere shaded but on the heavy lines and dots and a signed real on the dots.
 - (Each N/2 can equally well be -N/2)

Reconstruction of an Image from Amplitudes and Phases for in N×N 2-D

```
• For x=0 to N-1 I_{reconstr}(x,y)=A(0,0)+A(N/2,0)\cos(\pi x)+A(0,N/2)\cos(\pi y)+A(N/2,N/2)\cos(\pi (x+y))+\\ \Sigma_{(k1,k2)\text{ in green region}} 2\text{ Amplitude}(k1,k2)\cos(2\pi(k1\text{ }x+k2\text{ }y)/N-Phase(k1,k2))\\ -\text{ The complex }A(i,j)\text{ items are normally stored in slot }(k1,k2)
```


Relocation of frequencies 2 dimensions due to periodicity of the basis functions

(N-1,N-1)

(0,N-1)

(0,N/2)

(N/2),0

(0,0)

Original freqs

How they appear

- Each sinusoid $\exp(-i(2\pi\Sigma_i(k_i/N_i)x))$ is periodic in k_i with period N_i
- Thus the coefficient for frequency $(-k_i/N_i)$ is the same as that for frequency $(-k_i+N_i)/N_i$
 - That is, in frequency space
 all but the first quadrant can
 get transplanted, as in the figure
 - Dashed is how the FFT algorithm you could use displays the coefficient results it computes for an $N \times N$ input image I
 - Amplitudes and phases in the bottom half of the dashed square imply the rest of the solidly surrounded region

Basis Functions Orthogonality for Shift-Invariant Linear Operators

- Thm: The eigenimages $\Psi^j(\underline{x}_m)$ of shift-invariant linear operators are orthogonal
 - That is, in M-D $\sum_m \Psi^j(\underline{x}_m) \Psi^k(\underline{x}_m) = 0$ if $j \neq k$
- The $\Psi^{j}(\underline{x}_{m})$ can be normalized in Euclidean length so that $\sum_{m} \Psi^{j}(\underline{x}_{m}) \Psi^{j}(\underline{x}_{m}) = 1$
- With these orthonormal $\Psi^{j}(\underline{x}_{m})$, the representation \underline{a} of $I(\underline{x}_{m})$ is computed(!) by $a_{j} = \sum_{m} I(\underline{x}_{m}) \Psi^{j}(\underline{x}_{m})$
 - With n=# of a_j and N being number of pixels or voxels, this O(nN) arithmetic operations for all n a_j is way faster (when n not << N) than the $O(n^3)$ needed when the basis is not orthogonal
 - Separability yields rows then columns appl'n: $O(n^{1/M}N)$

The Coefficients of the Discrete Fourier Basis Functions (Sinusoids)

- The basis functions are $\exp(-i2\pi v \cdot x) =$ $\Pi_{j=1}^{M} \exp(-i2\pi v_{x_j} x_j)$; note separability – Or equivalently sines and cosines

 - Or equivalently cosines with amplitude and phase
- The coefficients of the representation of the discrete image I(x) is called the "Discrete Fourier Transform" of I
 - We write this $\mathcal{F}(I)$
- Due to orthogonality and separability, $\mathcal{F}(I)(v) = \mathcal{F}(columns of \mathcal{F}(rows of I))$
- $\mathcal{F}(\text{row of I})(\nu_{\underline{x_i}}) = \text{row of I} \bullet [\text{constant} \times \exp(-i2\pi \nu_{x_i} \underline{x})]$
 - Same for column

What you see when visualizing the DFT (coeffs of Fourier basis functions)

- Magnitude and phase images vs. frequencies: low to high ≥ 0
 - Not normally how the computation output appears, since it is done via complex exponentials at negative and positive frequencies:
 - $cos(\phi) = \frac{1}{2}(exp(i\phi) + exp(-i\phi))$
 - $\sin(\phi) = \frac{1}{2}(\exp(i\phi) \exp(-i\phi))/i$

- Edges and bars appear in the magnitude image as lines orthogonal to the edge or bar
 - when displayed centered at freq. (0,0)

Major position changes are reflected in the phase image!

Alternative 2D Orthogonal Basis Functions Different sub-panels show differing level of detail

Properties of Alternative 2D Basis Functions

- They typically are chosen to be orthogonal
 - So image representation is pretty fast
- They are typically chosen to be separable
 - So image representation is even faster
- We will see yet another property of sinusoids that often yields a further speedup; only few of the alternatives (Hadamard) have this property
- Not eigenimages of shift-invariant linear operators
 - so crosstalk prevents simple understanding and computation of application of operators

Global Sinusoidal Basis Functions: the wraparound property

- The basis functions are cyclic: across image boundary, right to left and bottom to top
- Thus images represented via Fourier coefficients are cyclic
 - Shift-invariance is wrt to shifts that have this cyclic effect
 - The required value of n can be lowered if the image is adjusted to be smooth across these boundaries
- The coefficients $\underline{a} = \mathcal{F}(I)$ are cyclic in the frequencies $v_{x_j} = k_j/N_j$, with N_j entries in dim j

(a) Cosine

Global Sinusoidal Basis Functions: Details

- On $[0, 2\pi)^n$: Fourier basis functions
 - Three equivalent forms:
 - sine, cosine; negative exponential; amplitude, phases
 - For sine, cosine form, coefficients are real and frequencies ≥ 0
 - For negative exponential form, coefficients are complex and frequencies are corresponding positive and negative
 - For amplitude, phase form, "coefficients" are an amplitude >0 and an angle
- Different frequencies correspond to different levels of detail) in each parameter
- Generalizes for object to functions on the sphere $[0, \pi] \times [0,2\pi)$: spherical harmonics

Linear Shift-Invariant Operators

- Assume input image I and output image J are cyclic
- When input is

$$I_{\text{shift}}(\underline{x}) = I(\underline{x} - \underline{\Delta x}), \text{ output } J(\underline{z})$$

$$= T(I_{\text{shift}}(\underline{x}))|_{\underline{x}=\underline{z}} = T(I(\underline{x}))|_{\underline{x}=\underline{z}-\underline{\Delta x}}$$

- Theorem: for all such T, there exists a kernel (or a limit of kernels) $h(\underline{x})$ such that if $J = T \circ I$,
 - for continuous images: output $J(\underline{z}) = T(I(\underline{x}))|_{x=z} = \int_x h(\underline{z}-\underline{x}) \ I(\underline{x}) \ d\underline{x}$
 - For discrete images $T(I(\underline{x}_q)) = \sum_{\underline{x}_m} h(\underline{x}_q \underline{x}_m) I(\underline{x}_m)$
 - With indices wrapping around
- This operation is called "convolution" of h with I
 - Written h∗I (so you need to use × for multiplication)

Order of Convolution Operands

- Provable that I*h = h*I (commutativity)
 - Equivalence is proven by change of variables $\underline{y} = \underline{z} \underline{x}$ in $\int_x I(\underline{z} \underline{x}) h(\underline{x}) d\underline{x}$
 - Note that the kernel h is itself an image
 - Alternatively provable via fact (see later) that convolution in space is equivalent to multiplication of FTs (just the eigen-relation), and multiplication is commutative
- Provable that $h_1*(h_2*I) = (h_1*h_2)*I = h_2*(h_1*I)$ (associativity)
 - Also due to associativity of multiplication, as applied to the 3 FTs (of I, of h₁, of h₂)

Interpretation and Direct Computation of Convolution

- Each input position \underline{x} with value $\underline{I}(\underline{x})$ is replaced by $\underline{I}(\underline{x})$ times kernel $\underline{h}(\underline{x})$, then superposition
 - $-\int_{\underline{x}} h(\underline{z}-\underline{x}) I(\underline{x}) d\underline{x}$ [see online movies found by Google (convolution), both Wiki and Wolfram]
- Output at each \underline{z} from weighting function per pixel: $w(\underline{z}) = h(-\underline{z})$
 - $-\int_{\underline{x}} I(\underline{z}-\underline{x}) h(\underline{x}) d\underline{x}, \text{ then change variables } \underline{y} = -\underline{x}, \text{ leading to}$ $\int_{\underline{y}} I(\underline{z}+\underline{y}) h(-\underline{y}) d\underline{y}$
 - If h is symmetric, weighting function w = kernel h

Examples of Continuous Convolution Kernels

- For blurring, $h(\underline{x}) = isotropic$ Gaussian w/ RMS width σ :
 - $(1/(\sigma \sqrt{2\pi})^{M}) \exp(-\frac{1}{2}|\underline{x}|^{2}/\sigma^{2}) = \Pi_{i=1}^{M} (1/(\sigma \sqrt{2\pi})) \exp(-\frac{1}{2}|\underline{x}_{i}|^{2}/\sigma^{2}).$

It has unit volume

- For unweighted regional averaging, $h(\underline{x}) = \text{rect}_{\Delta x}(\underline{x}) = (\Delta x)^{-M}$ inside the rectangle $[-\Delta x/2, \Delta x/2]$ in each of the M dimensions; and 0 elswhere. That h has unit volume
- For identity operator, it is a limit (next slide) $\delta(x)$
- For derivative taking, it is a limit (later slides)
- For imaging, h = point spread function ("psf") = image of a point (a few slides later)

Convolution Kernels that are Limits

- Identity kernel $\delta(\underline{x})$, the "Dirac delta function"
 - Limit as width goes to zero of any positive function with width as a parameter and integral over $[-\infty, \infty] = 1$
 - Examples: Gaussian(\underline{x}), $rect_{\Delta x}(x)$ [see movie found via Google(Dirac delta function)]
 - It is an infinitely high spike that is zero except at x=0
 - $-\int_{\Omega} \delta(\underline{\mathbf{x}}_0 \underline{\mathbf{x}}) \ \mathbf{f}(\underline{\mathbf{x}}) \ \mathbf{d}\underline{\mathbf{x}} = \mathbf{f}(\underline{\mathbf{x}}_0)$
 - Discrete counterpart is an image centered at (0,0) or (0,0,0) that is 1/voxel (pixel) volume (area) (typically 1) at the center voxel and zero in every other pixel or voxel

Convolution Kernels that are Limits

• The Comb_{Λ_x}(x) function has a δ function centered at every integer multiple of Δx ;

$$= \sum_{j=-\infty}^{\infty} \delta(x-j\Delta x)$$

• $\Delta x \text{ Comb}_{\Delta x}(x) \times I = \text{ sampled}$ version of I

Convolution Kernels that are Limits

- Derivatives D of any order in any direction(s)
 - They are linear and shift-invariant:
 - Consider $D(\alpha I_1 + \beta I_2)$
 - Consider $DI(\underline{x}-\underline{\Delta x})$
 - Due to linearity and shift-invariance, their operation commutes and is associative with other linear, shiftinvariant operators
 - They need to be computationally applied using a unit-volume kernel h, e.g., Gaussian: $[Dh]*I(\underline{x}) = D(h*I(\underline{x}))$ $= h*DI(\underline{x})$
 - Math derivative is limit of Dh as width goes to zero of that derivative of the unit-volume kernels that led to $\delta(\underline{x})$

Convolution Kernels for Imaging

- $h(\underline{x}) = \text{ point spread function ("psf")} = \text{ image of a}$ point $\delta(\underline{x})$: $\int_{\underline{x}} I(\underline{z}-\underline{x}) h(\underline{x}) d\underline{x} = \int_{\underline{x}} \delta(\underline{z}-\underline{x}) h(\underline{x}) d\underline{x} = h(\underline{z})$
 - RMS width of h is amount of blurring
 - Since $I(\underline{z}) = \int_{\underline{x}} I(\underline{x}) \, \delta(\underline{z} \underline{x}) \, d\underline{x}$, a linear combination of Dirac δ functions, $T(I(\underline{z})) = \int_{\underline{x}} I(\underline{x}) \, T(\delta(\underline{z} \underline{x})) \, d\underline{x} = \int_{\underline{x}} I(\underline{x}) \, h(\underline{z} \underline{x}) \, d\underline{x}$, the convolution of I with the psf.
 - Alternative: line spread function = image of a line $I(\underline{x}) = \delta(x)$ [the function is constant in all variables but x]

Common Fourier Transforms

Kernel

- $\delta(x)$, $\delta(x-x_0)$
- Sampling function $\Delta x \text{ Comb}_{\Delta x}(x)$
- Averaging: $Rect_{\Delta x}(x)$
- Gaussian(\underline{x} ; 0, σ)

• $\partial^n/\partial x^n$

• Laplacian: $\Sigma_{i=1}^{M} \partial^2/\partial x_i^2$

Fourier transform

1, $e^{i2\pi\nu x_0}$

 $Comb_{1/\Lambda x}(v)$

 $\sin(\pi \nu \Delta x)/(\pi \nu \Delta x)$

 $\exp(-\frac{1}{2}[2\pi\sigma]^2|\underline{v}|^2) =$

 $2\pi\sigma^2$ Gaussian(\underline{v} ; 0,1/[$2\pi\sigma$])

 $(2\pi i v_x)^n$

 $-(2\pi |\underline{\mathbf{v}}|)^2$

The sinc function: $\sin(\alpha x)/(\alpha x)$

Laplacian of Gaussian kernel Wider or larger aperture gives different scales

- In M-D: $\nabla^2 G = \sum_{i=1}^M \partial^2 G / \partial x_i^2$
- FT of $\nabla^2 = -(2\pi |\underline{\mathbf{v}}|)^2$
 - Circularly symmetric in
 both freq and space, like isotr'c. G
 - For all kernels, circularly symmetric in space ⇔ circularly symmetric in freq
 - Thus independent of coordinate dirs.

-Laplacian of Gaussian

- As kernel, selects out circular blobs
 - Response high at center of blob
- When applied as kernel, zero crossings select edges

The Convolution Theorem

- Think of convolution under Fourier representation
 - -Thm: If $\mathcal{F}(I)$ is Fourier rep of I and \mathcal{H} is Fourier rep of kernel h, then $\mathcal{F}(I) \times \mathcal{H}$ is Fourier rep of I*h
 - This is how you prove commutativity and associativity of shift-invariant linear operators
- What this buys you
 - Yields fast convolution
 - Yields good understanding of convolution and thus the ability to design convolution kernels
 - Think of *filters* $\mathcal{H}(\underline{v})$ vs \underline{v} rather than kernels $h(\underline{x})$ vs \underline{x}

Examples of Filters

- Gaussian(\underline{v}): low pass, blurring
 - Separable and isotropic
- Rect(\underline{v}): low pass, blurring
 - Not isotropic if applied separably

- $1/\mathcal{H}(\underline{v})$: high pass, sharpening
- $1/\mathcal{H}(\underline{v})$ up to some $|\underline{v}|$, then falloff: sharpening, then smoothing of small detail

Fast Convolution and Fast Computation of Fourier Image Representation

- Fast convolution results from basis functions that are 1) eigenfunctions of convolution;
 2) orthonormal; 3) separable, and
 - Multiplicative decomposition of levels of detail: $\psi^{j}(\mathbf{x}) = \psi^{j_1}(\mathbf{x}) \ \psi^{j_2}(\mathbf{x})$
- This is true of the sinusoids
- This allows a divide-and-conquer algorithm
 FFT for computing the Fourier image representation or its inverse that is Θ(N log N)

Speedy Convolution via the Frequency Domain

- Convolution of I with impulse response function h is filtering (when convolution wraps around)
- Method
 - Compute coefficients of sinusoidal decompositions $\mathcal{F}(I)$, $\mathcal{F}(h)$ in exponential form ("Fourier transform")
 - By FFT; speed O(N log N); N= # of pixels /voxels in image
 - Compute product, level of detail by level of detail, $\mathcal{F}(I) \times \mathcal{F}(h)$; speed $\Theta(N)$ vs. $\Theta(Nm)$ for direct convolution
 - Where m is number of pixels or voxels in the kernel h
 - Reconstruct result from sinusoidal basis functions ("inverse Fourier transform)"
 - By FFT; speed $\Theta(N \log N)$

The Inverse DFT

- Reconstructing $J(\underline{x})$ from the coefficients of the Fourier basis functions
- It turns out that it is exactly the same as the DFT, except with $\exp(i\theta)$ replacing $\exp(-i\theta)$
- Thus FFT⁻¹ is done by FFT algorithm with one sign changed
 - So speed of FFT⁻¹ is $\Theta(N \log N)$
- Convolution theorem works re inverse
 - Not only $\mathcal{F}^1[\mathcal{F}(I) \mathcal{F}(h)] = I^*h$ but also $\mathcal{F}^1[\mathcal{F}(I)^*\mathcal{F}(h)] = I \times h$

Convolution Kernels that are Limits

- Fourier transform of the derivative operators
 - $$\begin{split} -\operatorname{If} \, DI &= \partial^{n_1}/\partial x_1^{n_1} \, \, \partial^{n_2}/\partial x^{n_2} \dots \\ \partial^{n_M}/\partial x^{n_M} \, I, \\ \mathcal{F} \left(DI(\underline{x}) \right) &= \Pi_j (2\pi i \nu_{x_j})^{n_j} \, \mathcal{F}(I) \end{split}$$
 - $-\mathcal{F}([D^*h] I(\underline{x})) = [\Pi_j (\mathring{2}\pi i \nu_{x_j})^{n_j} \\ \mathcal{H}(\underline{\nu})] \mathcal{F}(I)$
 - -As h→δ(\underline{x}), $\mathcal{H}(\underline{v}) \to 1$, e.g., for Gaussian
 - Discrete counterpart used is typically sampled deriv. of Gaussian

Sampling and integration (digital images)

- Model
 - Within-pixel integration at all points
 - Has its own kernel, typically rect over pixel
 - Then sampling
- Sampling = multiplication by pixel area × brush function
 - Brush function is sum of impulses (δ functions) at pixel centers

Sampling and integration (digital images)

- Model
 - Within-pixel integration at all points
 - Has its own kernel, typically rect over pixel
 - Then sampling

- Brush function is sum of impulses
- $\Delta x^{M} comb_{\Delta x}(\underline{x}) = \Delta x^{M} \sum_{j,k=-\infty}^{\infty} \delta(x-j\Delta x,y-k\Delta y); M=2$

Creating digital images

- $I_{\text{sampled}} = [I(\underline{x})^* \operatorname{rect}_{\Delta x}(\underline{x})] \times \Delta x^{M} \operatorname{comb}_{\Delta x}(\underline{x})$
 - Within-pixel integration at all points
 - For unweighted averaging within pixel: rect
 - For weighted averaging, extending beyond pixel: Gaussian
 - Then sampling (then cutoff to finite image; see later)
- Consider in frequency domain (with rect)
 - $\mathcal{F}[I_{\text{sampled}}] = \mathcal{F}([I(\underline{x})^* \operatorname{rect}_{\Delta x}(\underline{x})] \times \Delta x^{M} \operatorname{comb}_{\Delta x}(\underline{x})) = \\ \mathcal{F}(I(\underline{x})^* \operatorname{rect}_{\Delta x}(\underline{x})) * \mathcal{F}(\Delta x^{M} \operatorname{comb}_{\Delta x}(\underline{x})) = \\ [\mathcal{F}(I(\underline{x})) \times \Pi_{i=1}^{M} [\sin(\pi \nu_{i} \Delta x) / (\pi \nu_{i} \Delta x)]] * \operatorname{comb}_{1/\Delta x}(\underline{\nu})$
 - Define $G(\underline{v}) = [\mathcal{F}(I(\underline{x})) \times \prod_{i=1}^{M} [\sin(\pi v_i \Delta x) / (\pi v_i \Delta x)]]$

Sampling = Aliasing [Shannon]

FIG. 4-22 Fourier transform of a sampled function

Frequencies $v \pm j(1/\Delta x)$ for $j \ne 0$ aliases as freq. v

The effect of aliasing: folding

- Folding frequency = Nyquist frequency $v_N = \pm \frac{1}{2}(1/\Delta x)$
 - There is folding at $v = v_N$
 - With each fold, there is complex conjugation of $G(\underline{v})$
 - $\mathcal{F}[I_{\text{sampled}}](\underline{v})$ in $[0, +\frac{1}{2}(1/\Delta x)] = \sum_{k=-\infty}^{\infty} G^{*k}(\underline{v} k(1/\Delta x))$
 - where $G(\underline{v}) = \mathcal{F}(I(\underline{x}))(\underline{v}) \times \Pi_{i=1}^{M} \left[\sin(\pi v_i \Delta x) / (\pi v_i \Delta x) \right]$
 - and ** means k applications of complex conjugation

Non-aliasing under band limitation

- Folding frequency = Nyquist frequency $v_N = \pm \frac{1}{2}(1/\Delta x)$
- If G is band-limited to frequency v_N ,

$$\mathcal{F}(I(\underline{x}))(\underline{v}) \times$$

$$\Pi_{i=1}^{M} \left[\sin(\pi v_i \Delta x) / (\pi v_i \Delta x) \right]$$

= G in interval

$$[-\frac{1}{2}(1/\Delta x), +\frac{1}{2}(1/\Delta x)],$$

0 elsewhere

$$= G(\underline{v}) \times \operatorname{rect}_{1/(2\Delta x)}(\underline{v})$$

Recovering continuous image from the discrete image, when no aliasing

- Divide by $\Pi_{i=1}^{M} [\sin(\pi v_i \Delta x)/(\pi v_i \Delta x)]]$ in $[-\frac{1}{2}(1/\Delta x), +\frac{1}{2}(1/\Delta x)]$
 - Or by Gaussian if that was used in forming pixels
- Then multiply by $\operatorname{rect}_{1/(2\Delta x)}(\underline{v})$ to yield $\mathcal{F}(I(\underline{x}))(\underline{v})$
- Apply \mathcal{F}^1
 - Multiplication by rect in freq. is equivalent to convolution with $\Pi_k \text{sinc}(\pi v_k \Delta x)$ in space

Preventing aliasing by adequate sampling

- Band limit to $v = \pm v_N = \pm \frac{1}{2}(1/\Delta x)$
 - After rect blurring (sinc multiplication) is accounted for
 - Treat as $1/(\pi \nu_N \Delta x) = 2/\pi$ at $\nu = \nu_N$
- But most spectra get small but not zero for large frequencies
 - If imaging convolution kernel has std dev σ (so its FT has std dev (in v) $1/(2\pi\sigma)$)
 - And your objective is $\mathcal{F}(I)(v_N)/\mathcal{F}(I)(v=0)=\epsilon$ in order to get under ϵ fractional pollution from the first round of folding
 - And you assume scene FT (spectrum) is flat in ampl.
 - Then $\Delta x = \pi \sigma / \sqrt{[2 \ln(2/\pi \epsilon)]}$
- Sampling can coarsen as you increase scale

Anti-aliasing

- For fixed Δx : band limit by Gaussian blurring so that $\Delta x = \pi \sigma / \sqrt{[2 \log(2/\pi \epsilon)]}$, i.e., by convolution with Gaussian that when combined with the other sources of blurring produces $\sigma = (\Delta x/\pi) \sqrt{[2 \log(2/\pi \epsilon)]}$
 - Do it before sampling!
- Typically it is too expensive to blur with Gaussian
 - Blur with cheaper function with same rms value as the aforementioned Gaussian, e.g., rect
 - Exercise: what is RMS width of rect as a function of Δx ?

Good things about the Fourier representation

- Eigenfunctions of all shift-invariant operators
- Separable, rotational invariance, multiplicative decomposition, orthonormality
 - Thus fast calculation of coefficients of basis functions
 - Thus fast calculation of convolution
- Need relatively few eigenfunctions (and thus coefficients) to get a rather accurate approximation to an image, if the image is pretty smooth
 - Thus, most common compression methods store the coefficients, not the image pixel values

Linear Non-Shift-Invariant Operators

• For shift-invariant (linear) operators, the weighting function (equivalently the kernel) is not a function of position, only of position relative to the application pixel

 $-h(\underline{x}-\underline{y})$

• For non-shift-invariant operators, the weighting function varies with position of application

 $-h(\underline{y}, \underline{x}-\underline{y})$

A bad thing about the Fourier representation

- Need more basis functions for any level of accuracy than is necessary
- What basis requires the fewest basis functions on average?
 - Ones specialized to your particular family of images
 - See next few slides

The Big! Difficulty with the Fourier Representation

- It expresses locality very badly
 - For example, phase info is the only reflection of position, but only global shifts show up clearly
 - Somehow you need Fourier analysis through a Gaussian window centered at the location of interest
 - Multiplication by a Gaussian in space, so convolution with a Gaussian in DFT ("frequency space")
 - But you need this for many window locations
- For better locality than with Fourier basis, see the "scale and locality" section, coming up

Orthogonal Decomposition with Basis Images Specialized to Your Data

- Objective: a set of N basis vectors **u**^j for an N-tuple **a** (for us, the discrete image **I** in row major order) in order, j = 1, 2, ..., N, such that for each J = 1, 2, ..., N, decomposition into the first J basis vectors produces a vector decomposition of **a** in the basis functions that on the average, over the *training population* of **A**, is closest to **A**
 - Depends on the population
 - Is computed from a training sample of the population: $\underline{\mathbf{I}}^k$, k = 1, 2, ..., n

Orthogonal Decomposition Specialized to Your Data: Strategy

- Data list A with N features (pixels) and n instances
 - $n \times N$ array A; each of the n rows I^k is a training sample
 - Typically n << N
- Consider an orthonormal row-major-image basis $\{\mathbf{u}^j \mid j=1,2,...,N\}$, to be discovered
 - Let \mathbf{b}^k list the N coefficients of the \mathbf{u}^j in \mathbf{I}^k
 - If the coefficient of \mathbf{u}^1 in \mathbf{b}^k (i.e., $\mathbf{b}^k_1 = \mathbf{I}^k \bullet \mathbf{u}^1$) provides a maximally accurate fit, on the average, to the training samples
 - i.e., $(1/N)\Sigma_k |\mathbf{I}^k (\mathbf{I}^k \bullet \mathbf{u}^1) \mathbf{u}^1|^2$ is minimum
 - then we will prove that on the average, the square of the part of \mathbf{b}^k that is the coefficient of \mathbf{u}^1 (i.e., $(b^k_1)^2$), summed over the training images, is the largest proportion of $\Sigma_k |\mathbf{b}^k|^2$ (i.e., of $\Sigma_{k,i}(b^k_i)^2$)
 - That is, $\Sigma_k(b^k_1)^2/\Sigma_{k,j}(b^k_j)^2 = \Sigma_k(\mathbf{I}^k \bullet \mathbf{u}^1)^2/\Sigma_{k,j}(\mathbf{I}^k \bullet \mathbf{u}^j)^2$ is maximum
- To see this, we need the general Parseval's theorem

Visualizing training images, **u**¹, and **u**²

- With N pixels a row-major-image I^k is a point in N-space
- A (unit) basis image is a unit vector \mathbf{u}^{j} for each j
- There is a line in N-space along each **u**^j
- **u**¹ and **u**² span a plane; the first J **u**^j span a flat J-dimensional hyperplane
- You want best fitting (in distance²) to the I^k , of the line, of the plane,
 - So \mathbf{u}^1 is along best fitting line, $\mathbf{u}^2 \perp$ and with \mathbf{u}^1 defines best fitting plane, ...

Parseval's Theorem

- Consider a full orthonormal basis $\{\mathbf{u}^i, i=1, 2, ..., N\}$ for N-entry vectors
 - The coefficients b_i for **I** in this basis are $b_i = \mathbf{I} \bullet \mathbf{u}^i$
- Consider another full orthonormal basis

$$\{\mathbf{v}^i, i=1, 2, ..., N\}$$
 for N-entry vectors

- The coefficients c_i for any **I** in this basis are $c_i = \mathbf{I} \cdot \mathbf{v}^i$
- Then $\Sigma_{i=1}^{N}(b_i)^2 = \Sigma_{i=1}^{N}(c_i)^2$
 - Proved by looking at $\mathbf{I} \bullet \mathbf{I} = (\Sigma_{i=1}^{N} b_i \mathbf{u}^i) \bullet (\Sigma_{j=1}^{N} b_j \mathbf{u}^j) = (\Sigma_{i=1}^{N} c_i \mathbf{v}^i) \bullet (\Sigma_{i=1}^{N} c_i \mathbf{v}^j)$
 - One possible orthonormal set is the discrete δ -function images δ^i
 - δ^i is zero except that in pixel i it is 1
 - the coefficient of δ^i is I's entry in the ith pixel
 - Thus $\Sigma_{i=1}^{N}(b_i)^2 = \Sigma_{i,k=1}^{N}(\mathbf{I}(x_i,y_k))^2$ for any orthonormal basis

Orthogonal Decomposition: Mathematical setup

- Consider an orthonormal basis $\{ \mathbf{u}^i \}$, to be discovered from the training images \mathbf{I}^k
 - We think of a set of basis functions (images) $\{\mathbf{u}^i, i=1,2,...,N\}$. Let the matrix U have columns $\mathbf{u}^i, i=1,2,...,N$. U is square.
 - The coefficient of \mathbf{u}^i for expressing \mathbf{I}^k is $\mathbf{b}_i^k = \mathbf{I}^k \bullet \mathbf{u}^i = \mathbf{I}^{kT} \mathbf{u}^i$, so $\mathbf{b}^k = (\mathbf{I}^{kT} \mathbf{U})^T = \mathbf{U}^T \mathbf{I}^k$
 - Each of those basis vectors \mathbf{u}^i , as well as the vectors \mathbf{I}^k , is an image tuple produced by expressing the image array in row-major order
 - Write the set of coefficients $\{b_i^k \mid i=1,2,...,N\}$ for expressing \mathbf{I}^k as the tuple (vector) \mathbf{b}^k . Then $\mathbf{I}^k = \sum_{i=1}^N b_i^k \mathbf{u}^i = U \mathbf{b}^k$ = $U (U^T \mathbf{I}^k) = (U U^T) \mathbf{I}^k$
 - Having orthonormal columns means $U^T = U^{-1}$, so $UU^T =$ the identity matrix **Id**
 - Also, orthonormality means $U^{T}U = Id$ and mult'n by U is a rotation.
 - Let the approximation of \mathbf{I}^k up to the J^{th} basis function be $\mathbf{I}^{k,J} = \Sigma_{i=1}^J b_i^k \mathbf{u}^i = U \mathbf{c}^k$, where $c_i^k = b_i^k = \text{if } i \leq J$ and zero otherwise

Orthogonal Decomposition Specialized to Your Data: what is to be proved

- Consider an orthonormal basis $\{ {\bf u}^i \}$, to be discovered from the training images ${\bf I}^k$
 - From the previous slide,
 - $\mathbf{I}^k = \mathbf{U} \mathbf{b}^k$
 - $\mathbf{I}^k = \mathbf{U}\mathbf{U}^T\mathbf{I}^k$
 - $\mathbf{I}^{k,J} = VV^T\mathbf{I}^k$, where V is the same as U in its first J columns and 0 in the remaining columns
 - Thus $\mathbf{I}^{k,1} = \mathbf{u}^1 \mathbf{u}^{1T} \mathbf{I}^k$
 - We will prove that if $(1/n)\Sigma_k |\mathbf{I}^k \mathbf{I}^{k,1}|^2$ is at a minimum over all choices of basis function \mathbf{u}^1 ,
 - $\Sigma_k(b^k_1)^2/\Sigma_{k,j}(b^k_j)^2 = \Sigma_k(\mathbf{I}^k \bullet \mathbf{u}^1)^2/\Sigma_{k,j}^N(\mathbf{I}^k \bullet \mathbf{u}^j)^2$ is at a maximum
 - Re the denominators in the 2^{nd} and 3^{rd} expressions: Parseval's theorem shows that $\Sigma_{j=1}^{N}(b^{k}_{j})^{2} = \Sigma_{j=1}^{N}(\mathbf{I}^{k} \bullet \mathbf{u}^{j})^{2}$ is fixed for that k, independent of the basis chosen, so the sum of those over k is independent of that basis choice
 - It follows from Parseval's theorem that the part of the \mathbf{I}^k to be expanded in the \mathbf{u}^j for $j{>}1$ is *minimum*
 - Also for j > 2, j > 3, ..., j > N-1

Orthogonal Decomposition Specialized to Your Data: what is to be proved

• To prove that if $(1/n)\Sigma_k |\mathbf{I}^k - \mathbf{I}^{k,1}|^2$ is minimum over all choices of basis function \mathbf{u}^1 ,

$$\begin{split} & \Sigma_k(\mathbf{b}^k{}_1)^2 / \, \Sigma_{k,j}(\mathbf{b}^k{}_j)^2 = \Sigma_k(\mathbf{I}^k \bullet \mathbf{u}^1)^2 \, / \, \Sigma_{k,j} \, (\mathbf{I}^k \bullet \mathbf{u}^j)^2 \text{ is maximum} \\ & - \, \Sigma_k |\mathbf{I}^k - \mathbf{I}^{k,1}|^2 = \Sigma_k(\mathbf{I}^k - \mathbf{I}^{k,1})^T (\mathbf{I}^k - \mathbf{I}^{k,1}) = \\ & \Sigma_k(\mathbf{I}^k - \mathbf{u}^1 \mathbf{u}^{1^T} \mathbf{I}^k)^T (\mathbf{I}^k - \mathbf{u}^1 \mathbf{u}^{1^T} \mathbf{I}^k) = \Sigma_k \mathbf{I}^{k^T} \mathbf{I}^k \\ & - (\Sigma_k(\mathbf{I}^{k^T} \mathbf{u}^1 \mathbf{u}^{1^T}) \mathbf{I}^k - \Sigma_k \mathbf{I}^{k^T} (\mathbf{u}^1 \mathbf{u}^{1^T} \mathbf{I}^k)) \\ & + \Sigma_k \mathbf{I}^{k^T} \mathbf{u}^1 \mathbf{u}^{1^T} \mathbf{u}^1 \mathbf{u}^{1^T} \mathbf{I}^k \end{split}$$

- The first term in the final sum does not depend on the basis
- Both components in the second term pair are the same, so the second term is $-2 \sum_{k} \mathbf{I}^{kT} \mathbf{u}^{1} \mathbf{u}^{1T} \mathbf{I}^{k}$
- Due to normality $\mathbf{u}^{1T}\mathbf{u}^{1}=1$, so the third term collapses to $\Sigma_{k}\mathbf{I}^{kT}\mathbf{u}^{1}\mathbf{u}^{1T}\mathbf{I}^{k}$, so combining the 2nd and 3rd terms gives $\Sigma_{k}\mathbf{I}^{kT}\mathbf{u}^{1}\mathbf{u}^{1T}\mathbf{I}^{k}$
- So the term to be minimized is $-\Sigma_k \mathbf{I}^{kT} \mathbf{u}^1 \mathbf{u}^{1T} \mathbf{I}^k$
- That is, maximize $\Sigma_k \mathbf{I}^{kT} \mathbf{u}^1 \mathbf{u}^{1T} \mathbf{I}^k$, which can be rewritten as $\Sigma_k (b^k_1)^2$, thus also maximizing $\Sigma_k (b^k_1)^2 / \Sigma_{k,j} (b^k_j)^2$

Orthogonal Decomposition Specialized to Your Data: Rewriting in terms of the data matrix

- We wish maximize $\Sigma_k \mathbf{I}^{kT} \mathbf{u}^1 \mathbf{u}^{1T} \mathbf{I}^k$
- $\Sigma_k \mathbf{I}^{kT} \mathbf{u}^1 \mathbf{u}^{1T} \mathbf{I}^k = \Sigma_k \mathbf{u}^{1T} \mathbf{I}^k \mathbf{I}^{kT} \mathbf{u}^1 = \mathbf{u}^{1T} (\Sigma_k \mathbf{I}^k \mathbf{I}^{kT}) \mathbf{u}^1$
- The \mathbf{I}^{kT} are the rows of the data matrix A, so $\Sigma_k \mathbf{I}^k \mathbf{I}^{kT} = A^T A$, an N×N (square), symmetric matrix that does not depend on \mathbf{u}^1
- Maximizing **u**¹^TA^TA **u**¹ is accomplished by choosing **u**¹ to be the eigenvector of A^TA with the maximum eigenvalue, as proven in the next 3 slides
 - Also proven there is that A^TA has only non-negative eigenvalues
 - This is called *singular value decomposition* of A

The Major Points So Far Re Avg Case Best MS Fitting

- An important linear algebra theorem: For all n×N matrices M, M=R Γ S^T =R₁^{n×n} Γ ^{n×N} R₂^{N×N}
 - Each R_i is a rotation matrix
 - $-\Gamma^{n\times N}$ is "diagonal" (zeroes everywhere except on $n\times n$ diagonal if $n{<}N)$
- For all **I** and all $U^{N\times N}$ = columns of orthonormal basis vectors, if $\mathbf{I} = \Sigma_{i=1}^{N} b_i \mathbf{u}^i$, $\Sigma_{i=1}^{N} (b_i)^2$ is independent of U
- With $\mathbf{I}^{k,1} = c^k_1 \mathbf{u}^1$, to minimize the average (over k and pixels) MS error between $\mathbf{I}^{k,1}$ and \mathbf{I}^k , set $c^k_1 = b^k_1$ and maximize $\mathbf{u}^{1T}(\Sigma_k \mathbf{I}^k \mathbf{I}^{kT}) \mathbf{u}^1 = \mathbf{u}^{1T} \mathbf{A}^T \mathbf{A} \mathbf{u}^1$

Towards Analysis of A^TA This is basic linear algebra

- Data list A with N features and n instances
 - $n \times N \text{ array } A = R\Gamma S^{-1} = R\Gamma S^{T} \text{ (typically } n << N)$
 - S is N \times N, R is n \times n, Γ is n \times N
 - R and S are orthonormal, rotation matrices; Γ is n×N with $\Gamma_{ij} = 0$ if $i \neq j$ ("diagonal", but not necessarily square)
 - $R^{-1} = R^{T}$; $S^{-1} = S^{T}$
 - $R^TA = \Gamma S^T$; $AS = R\Gamma$
 - The columns of R (n-vectors) and of S (N-vectors) are called respectively the left and right eigenvectors of A
 - » Both are orthonormal bases of their respective (n- and N-) spaces
 - Transposing the first expression gives $A^TR=S\Lambda$, so the left eigenvectors of A are the right eigenvectors of A^T and vice-versa
- Consider A^TA (N×N, big, symmetric) = $S\Gamma^TR^TR\Gamma S^T = S(\Gamma^T\Gamma)S^T = S(\Gamma^T\Gamma)S^{-1}$
 - $-N\times N \Gamma^T\Gamma$ is diagonal with eigenvalues of A^TA

Analysis of A^TA This is basic linear algebra

- Data list A with N features and n instances
- Consider A^TA (N×N, big, symmetric) = $S\Gamma^TR^TS\Gamma R^T = S(\Gamma^T\Gamma)S^T$
 - $-\Gamma^T\Gamma$ is an N×N diagonal matrix
 - Thus S is a matrix of (orthonormal) eigenvectors of A^TA , and the diagonal elements of $\Gamma^T\Gamma$ are eigenvalues of A^TA
 - The diagonal elements of $\Gamma^T\Gamma$ are zeros or squares of the diagonal elements of the n×N matrix Γ
 - Thus A^TA is "non-negative definite"
- Arrange the columns and rows of $\Gamma^T\Gamma$ in decreasing order of its diagonal elements
 - The columns of S must be reordered accordingly

Over all unit \mathbf{u} , the one that maximizes $\mathbf{u}^{T} \mathbf{A}^{T} \mathbf{A} \mathbf{u}$

- Data list A with N features and n instances
- Consider $A^TA = S(\Gamma^T\Gamma)S^T$
 - $\mathbf{u}^T A^T A \mathbf{u} = \mathbf{u}^T S(\Gamma^T \Gamma) S^T \mathbf{u} = \Sigma_{i=1}^{N} (\Gamma^T \Gamma)_{ii} \ w_i^2 \ , \ where \ \mathbf{w} = S^T \mathbf{u}$ Thus $\mathbf{u} = S \mathbf{W}$
 - To maximize $\Sigma_{i=1}^{N}(\Gamma^{T}\Gamma)_{ii}$ w_{i}^{2} with $|\mathbf{w}|=1$, $w_{1}=1$ and $w_{i}=0$ for i>1
 - Thus **u** should be the first column of S, i.e., the eigenvector of A^TA with the largest magnitude eigenvalue
- Similar considerations show that the next (with J=2) major part of the error in approximation of \mathbf{I} is given by choosing the 2^{nd} eigenvector (in decreasing order of eigenvalues) of $\mathbf{A}^T\mathbf{A}$ as \mathbf{u}^2
 - Etc. for successive **u**ⁱ choices; i.e., U=S

Singular Value Decomposition via eigenanalysis of AA^T

- Data list A with N features and n instances
 - N×n array A = R Γ S^T (typically n << N)
 - S is $N\times N$, R is $n\times n$
 - R and S are orthonormal, rotation matrices Γ is n×N with $\Gamma_{ij}=0$ if $i\neq j$ ("diagonal")
- Consider AA^T (n×n, small, symmetric)
 - $-AA^{T} = R\Gamma S^{T}S\Gamma^{T}V^{T} = R(\Gamma\Gamma^{T})R^{T}; \Gamma\Gamma^{T} \text{ is } n \times n \text{ diag.}$
 - So columns of R are (orthonormal) eigenvectors of AA^T and diagonal elements of $\Gamma\Gamma^T$ are (non-negative) eigenvalues of AA^T
 - Diagonal elements of AA^T (after reordering in decreasing order) are the first n diagonal entries in $\Gamma^T\Gamma$, the eigenvalues of A^TA
 - The rest of the diagonal elements of $\Gamma^T\Gamma$, the final N-n eigenvalues of A^TA , are zero
 - Considering $AA^T\mathbf{v} = \lambda \mathbf{v}$, $A^TAA^T\mathbf{v} = \lambda A^T\mathbf{v}$, i.e., $A^T\mathbf{v}$ is an eigenvector of A^TA with eigenvalue λ , so $\mathbf{u}^i =$ normalized $A^T\mathbf{v}^i$
 - Thus solve eigenproblem on AA^{T} , then convert to the \mathbf{u}^{i} we need

Principal Component Analysis

- A standard approach in statistics for lowering the number of features used
- It is SVD after modifying the training cases by subtracting out the mean of the training cases from each case
 - For images, the mean is also an image
 - So eigendirections are through mean rather than through origin
 - A^TA/(n-1) is the estimated covariance matrix of the features, i.e.,
 of the pixel values

Summary of Specialized Basis Functions

- As with Fourier basis functions they are eigenimages, but of A^TA, where A is the training matrix
- They are the most efficient set, according to the least squares measure
- Their compression effectiveness rises strongly when the images are well aligned and the intensity values are well normalized
 - But they are specialized to the training images and thus do not compress well images not like the training set
- They do not provide fast implementation of shift-invariant operators