

Comenzado el	lunes, 25 de julio de 2022, 08:25
Estado	Finalizado
Finalizado en	lunes, 25 de julio de 2022, 08:59
Tiempo empleado	34 minutos 44 segundos
Calificación	8,80 de 10,00 (88 %)

Finalizado

Puntúa 2,00 sobre 2,00

Utilizar los métodos de Euler-Cromer y Runge-Kutta 4 para resolver la ecuación del movimiento para un oscilador armónico de frecuencia unitaria con las condiciones iniciales: $x_0=0$ y $v_0=1$. En los dos casos encontrar la posición del oscilador para $0< t< 4\pi$ utilizando $dt=0.01*2\pi$ y calcular los valores rmsd.

- 1. Presentar la parte del código en la que se calculan los valores rmsd.
- 2. Presentar el valor del rmsd asociado a cada método.
- 1. //La expresión teórica con las condiciones iniciales dadas es cos(t-pi/2) //Los valores $rmsd^2$ de Euler cromer y RK4 son r[0] y r[4] respectivamente eulercrommer(x1,v1); $r[0]=r[0]+(cos(t-pi/2)-x1)*(cos(t-pi/2)-x1)/Nr; \\ rk4(x4,v4); \\ r[3]=r[3]+(cos(t-pi/2)-x4)*(cos(t-pi/2)-x4)/Nr; \\ ... \\ for (int i=0; i<4; i++)$
- 2. //Se usaron 100 divisiones con Nr=200

cout<<sqrt(r[i])<<" "; // Cálculo de rmsd

rmsd Euler Cromer=0.000889233 rmsd Runge Kutta 4=6.60272e-07

Comentario:

Finalizado

Puntúa 2,00 sobre 2,00

Resolver la ecuación del movimiento para un oscilador amortiguado para el cual $\omega_0=1$ y q=0.1.

- 1. Presentar la parte del código que evalúa g_2 (0.4pts)
- 2. Presentar un gráfico de la posición en función del tiempo. (0.8pts)
- 3. Presentar un gráfico de la velocidad en función del tiempo. (0.8 pts)

```
1. double g2 (double y1, double y2){
double f;

f=-wo*wo*y1-q*y2;
return f;
}
```

2. //Se usan xo=1 y vo=0. Se define T como $T=rac{2\pi}{\omega_0}$.

3.

Comentario:

Finalizado

Puntúa 2,30 sobre 3,00

Encontrar la curva de la amplitud en función del tiempo para un oscilador amortiguado con q=0.2.

- 1. Presentar la parte del código que permite obtener la información de la amplitud.
- 2. Presentar el gráfico de la amplitud en función del tiempo.

```
1. //La posición es x4 y la velocidad es v4. Se grafica en unidades de T=rac{2\pi}{\omega_0} .
```

```
//xo=1, v0=0
if(abs(v4)<1e-3){
file3<<t/T<<" "<<x4<<endl;
}
```

<

Comentario: Punto 1: 0.8 La amplitud corresponde al valor absoluto de \boldsymbol{x}

Punto 2: 1.5

Finalizado

Puntúa 2,50 sobre 3,00

Resolver la ecuación de movimiento para un péndulo simple con frecuencia natural $\omega_o=1$ y condiciones iniciales $heta_0=1 rad$ y $\dot{ heta}=0$.

- 1. Presentar el gráfico de θ vs t.
- 2. Considerando el gráfico anterior encontrar el periodo de las oscilaciones en términos de $T_{
 m 0}$

1.

<

Comentario:

Punto 1: 1.5

Punto 2: 1.0

Cómo se encontró el periodo?

 \wedge

« »

4