

CSEN1083: Data Mining

Data (1)

Seif Eldawlatly

Data

- A dataset can often be viewed as a collection of data objects
- Other names: Record, point, vector, pattern, event, case, sample, observation, or entity
- Data objects are described by a number of attributes that capture the basic characteristics of an object
- Other names: Variable, characteristic, field, feature, or dimension

Data

• Examples:

Attributes

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Student ID	Year	Grade Point Average (GPA)	
1034262 1052663 1082246	Senior Sophomore Freshman	3.24 3.51 3.62	
	:		

Attributes

- An attribute is a property or characteristic of an object that may vary;
 either from one object to another or from one time to another
- Example: Eye color varies from person to person, while the temperature of an object varies over time
- A measurement scale is a rule (function) that associates a numerical or symbolic value with an attribute of an object
- Examples:
 - Two attributes that might be associated with an employee are ID and age (in years). Both can be represented as integers
 - Average age is reasonable, but average ID is not

Attributes

Example: Length of Line Segments

Types of Attributes

 The type of an attribute depends on which of the following properties/operations it possesses:

```
Distinctness: = #
Order: < >
Differences are + - meaningful : * / meaningful
```

 Example: It makes sense to compare and order lengths and compute differences and ratios of length

- Attributes can be categorized to:
 - Nominal
 - Examples: ID numbers, eye color, postal codes

Ordinal

 Examples: rankings (e.g., taste of potato chips on a scale from 1-10), grades, height {tall, medium, short}

Interval

Examples: calendar dates, temperatures in Celsius or Fahrenheit

Ratio

• Examples: temperature in Kelvin, length, time, counts

	Attribute Type	Description	Examples	Operations
Categorical Qualitative	Nominal	Nominal attribute values only distinguish. (=, ≠)	postal codes, employee ID numbers, eye color, gender: { <i>male,</i> <i>female</i> }	mode, entropy, contingency correlation, χ2 test
Cate Qua	Ordinal	Ordinal attribute values also order objects. (<, >)	hardness of minerals, {good, better, best}, grades, street numbers	median, percentiles, rank correlation, run tests, sign tests
Numeric Quantitative	Interval	For interval attributes, differences between values are meaningful. (+, -)	calendar dates, temperature in Celsius or Fahrenheit	mean, standard deviation, Pearson's correlation, <i>t</i> and <i>F</i> tests
Nu	Ratio	For ratio variables, both differences and ratios are meaningful. (*, /)	temperature in Kelvin, monetary quantities, counts, age, mass, length, current	geometric mean, harmonic mean, percent variation

Transformations that define attribute levels

	Attribute	Transformation	Comments
	Type		
cal ve	Nominal	Any permutation of values	If all employee ID numbers were reassigned, would it make any difference?
Categorical Qualitative	Ordinal	An order preserving change of values, i.e., new_value = f(old_value) where f is a monotonic function	An attribute encompassing the notion of good, better or best can be represented equally well by the values {1, 2, 3} or by { 0.5, 1, 10}.
	Interval	$new_value = a * old_value + b$	Thus, the Fahrenheit and
<u>S</u>		where a and b are constants	Celsius temperature scales
neri tital			differ in terms of where their zero value is and the size of a
Numeric Quantitative			unit (degree).
_	Ratio	new_value = a * old_value	Length can be measured in
			meters or feet.

- Each attribute type in the tables possesses all of the properties and operations of the attribute types above it
- Example:
- Temperature can be either an interval or a ratio attribute, depending on its measurement scale
- When measured on the Kelvin scale, a temperature of 2° is, in a physically meaningful way, twice that of a temperature of 1°
- This is not true when temperature is measured on either the Celsius or Fahrenheit scales

- An independent way of distinguishing between attributes is by the number of values they can take:
- Discrete: A discrete attribute has a finite or countably infinite set of values
 - Such attributes can be categorical, such as gender or eye color, or numeric, such as counts
 - Discrete attributes are often represented using integer variables
 - Binary attributes are a special case of discrete attributes and assume only two values, e.g., true/false, yes/no, male/female, or 0/1

- An independent way of distinguishing between attributes is by the number of values they can take:
- Continuous: A continuous attribute is one whose values are real numbers
 - Examples include attributes such as temperature, height, or weight
 - Continuous attributes are typically represented as floating-point variables

Asymmetric Attributes

For asymmetric attributes, only presence – a non-zero attribute value – is regarded as important

Example:

If we met a friend in the grocery store would we ever say the following?

"I see our purchases are very similar since we didn't buy most of the same things."

 Consider a dataset where each object is a student and each attribute records whether or not a student took a particular course at a university. For a specific student, an attribute has a value of 1 if the student took the course associated with that attribute and a value of 0 otherwise

Types of Datasets: Characteristics

- Three characteristics that apply to many datasets
- Dimensionality: The dimensionality of a dataset is the number of attributes that the objects in the dataset possess

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Three-dimensional Data

Types of Datasets: Characteristics

 Sparsity: For some datasets, such as those with asymmetric features, most attributes of an object have values of 0

	team	coach	play	ball	score	game	win	lost	timeout	season
Document 1	3	0	5	0	2	6	0	2	0	2
Document 2	0	7	0	2	1	0	0	3	0	0
Document 3	0	1	0	0	1	2	2	0	3	0

Types of Datasets: Characteristics

 Resolution: It is frequently possible to obtain data at different levels of resolution, and often the properties of the data are different at different resolutions

Types of Datasets: Record Data

 Data that consists of a collection of records, each of which consists of a fixed set of attributes

Tid	Employed	Level of Education	# years at present address	Credit Worthy
1	Yes	Graduate	5	Yes
2	Yes	High School	2	No
3	No	Undergrad	1	No
4	Yes	High School	10	Yes
	•••		•••	•••

- Record data is usually stored either in flat files or in relational databases
- Record data has different types

Types of Datasets: Record Data

 Transaction or Market Basket Data: Each record (transaction) involves a set of items

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk

 Data Matrix: If the data objects in a collection of data all have the same fixed set of numeric attributes, then the data objects can be thought of as points (vectors) in a multidimensional space

Projection of x Load	Projection of y load	Distance	Load	Thickness
10.23	5.27	15.22	2.7	1.2
12.65	6.25	16.22	2.2	1.1

Types of Datasets: Record Data

 The Sparse Data Matrix: A special case of a data matrix in which the attributes are of the same type and are asymmetric; i.e., only non-zero values are important

	team	coach	play	ball	score	game	win	lost	timeout	season
Document 1	3	0	5	0	2	6	0	2	0	2
Document 2	0	7	0	2	1	0	0	3	0	0
Document 3	0	1	0	0	1	2	2	0	3	0

- There are two types of graph-based data
- Data with Relationships among Objects: Data objects are mapped to nodes of the graph, while the relationships among objects are captured by the links between objects

- Example: Graphical representation of brain activation
- Data Recording
 - Anesthetized rats (5 subjects)
 - Multi-electrode array with 32 channels
 - Recorded from layer V (Depth: $1100 1500 \mu m$)
 - Populations size: 20 ± 7 neurons

- 3 whiskers/rat
- 900 horizontal deflections of 80 µm for 100 ms
- 1 Hz frequency

Variability Across Whiskers

Sample Neuron 2a

Whisker C2 Stimulation Whisker D1 Stimulation Whisker D2 Stimulation (mm) O Raster for Neuron 2a Raster for Neuron 2a Raster for Neuron 2a <u>la</u> 400 **PSTH PSTH** 100 150 50 100 50 100 150 Time (msec) Time (msec) Time (msec)

Sample Neuron 10a

Sample inferred graphs of whisker-specific datasets

26a 26b 26c 31a 31b

 Data with Objects That Are Graphs: If objects have structure, that is, the objects contain sub-objects that have relationships, then such objects are frequently represented as graphs

Benzene Molecule: C6H6

- For some types of data, the attributes have relationships that involve order in time or space
- Sequential Data: Can be thought of as an extension of record data, where each record has a time associated with it
- Example: Consider a retail transaction dataset that also stores the time at which the transaction took place

Time	Customer	Items Purchased
t1	C1	A, B
t2	C3	A, C
t2	C1	C, D
t3	C2	A, D
t4	C2	E
t5	C1	A, E

Customer	Time and Items Purchased
C1	(t1: A,B) (t2:C,D) (t5:A,E)
C2	(t3: A, D) (t4: E)
C3	(t2: A, C)

- Sequence Data: Consists of a dataset that is a sequence of individual entities, such as a sequence of words or letters
- Same as sequential but with no time information

 Time Series Data: Each record represents a series of measurements taken over time

Monthly Temperature with Time

 Spatial Data: Some objects have spatial attributes, such as positions or areas, as well as other types of attributes

Average Temperature with Location