Завдання 1–14 мають по п'ять варіантів відповіді, з яких лише один правильний. Виберіть правильний, на вашу думку, варіант відповіді.

1. У перервах футбольних матчів чемпіонату Європи з футболу повинні виступати групи підтримки, на кожному матчі по п'ять груп, причому українська група завжди має виступати останньою. Скількома різними способами можна

	A	Б	В	Γ	Д
	6	5	4	24	20
2.	У шкільній їдал	ьні за кожен стіл	и можна посадит	и щонайбільше б	3 учнів. Яка най-

менша кількість столів має бути в цій їдальні, щоби розсадити в ній 194 учні? B 30 29 21

30	31	32	ว	04
Металеву кулю поверхні цих ку	*	1		сумарна площа

\mathbf{A}	Б	В	Γ	Д
збільшилась у 4 рази	збільшилася вдвічі	зменшилася вдвічі	зменшилась у 8 разів	не змінилася

4.	Розв'яжіть систему рівнянь	$\begin{cases} 2x - 3y = 14, \\ x + 3y = -11. \end{cases}$	Для одержаного	о розв'язку $(x_{_{0}};y_{_{0}})$ об
	числіть суму $x_0 + y_0$.			

	-4	1	-1	4	-3
5.	До кола проведе	ено дотичну AB (B — точка доти	ку) та січну AC , і	що АД
	проходить через	з центр ${\it O}$ кола (див. рисунок). 🤇	Знайдіть градус	$_{\rm P}$

 \mathbf{B}

 Γ

 Γ

9x + 6y

 Γ

лише I і III

 Γ

(6; 32)

 Γ

 Γ

[-8; 8]

 Γ

8 см

 $(-1)^k \frac{\pi}{9} + \frac{1}{3}\pi k, \qquad \pm \frac{\pi}{9} + \frac{1}{3}\pi k,$

Д

Д

16x + 2y

Д

Д

 $[32; +\infty)$

Д

 $(-\infty; 8]$

Д

6 см

 \mathbf{B}

Б

Б

9x + 14y

Б

 \mathcal{Y}_{A}

Б

лише II і III

Б

(0; 1]

Б

Б

 $(-\infty; 0]$

 $(-1)^k\pi+3\pi k,$

Б

12 см

11. Укажіть похідну функції $f(x) = x(x^3 + 1)$.

 \overline{x}

го, сьомого і чотирнадцятого членів цієї прогресії дорівнює 15.

Спростіть вираз 2(x + 5y) - (4y - 7x).

A

Α

9x + y

 \mathbf{A}

 $\mathcal{Y}_{\blacktriangle}$

 ${\bf A}$

 \mathbf{A}

 $(-\infty; 0]$

 ${\bf A}$

 $f'(x) = 4x^3 + 1$

 \mathbf{A}

[-8; 0]

 \mathbf{A}

13 см

Функція

1 $y = x^3$

Вираз

1 $|x-\sqrt{5}|$

Відрізок

 $(\sqrt{5}+1)x$

і його довжиною (А–Д).

Початок речення

 $\mathbf{2}$

відносно площини

Точка C_1 симетрична точці A_1

Пряма *AD* паралельна площині

13.

міру кута <i>С</i> О	ОВ, якщо ∠ОА	$AB = 35^{\circ}$.			3
A	Б	В	Γ	Д	$ (? \bigcirc_O $
105°	115°	120°	125°	145°	

7.	На одному з рисунків зображено ескіз графіка функції $y=3^{-x}$. Укажіть цей
	рисунок.

 ${f B}$

-5x + 6y

 \mathbf{B}

 \overline{x} OOO

Знайдіть восьмий член арифметичної прогресії, якщо відомо, що сума третьо-

 $\mathcal{Y}_{\mathbf{A}}$

	A	Ь	В	1	Д	
	1	15	10	5	0	
9.	На рисунку зобр	ражено паралел	ограм <i>АВСО</i> . Яз	кі з наведених	В	<i>C</i>
	тверджень є пра	авильними?			/	/
	I. $\angle ABC + \angle BCI$	$0 = 180^{\circ}$.			/	/
	II. $AB = CD$.					/
	III. $AC \perp BD$.				A	D

 \mathbf{B}

лише I i II

 \mathbf{B}

(1; 6]

 \mathbf{B}

 $f'(x) = 3x^2 + 1$ $f'(x) = 4x^3$ $f'(x) = 3x^2$ **12.** Розв'яжіть нерівність $(x + 4)^2 \le 16$.

10. Укажіть проміжок, якому належить корінь рівняння $\log_{64} x =$

Розв'яжіть рівня	яння $\cos 3x = \frac{1}{2}$			
Λ	E	\mathbf{p}	I F	П

 $\pm \pi + 6\pi k$, $k \in \mathbb{Z}$

 ${f B}$

 $(-\infty; 4]$

повної поверхні дорівнює 208 см^2 , а довжина сторони основи — 8 см .	14. Визначте довжину апофеми правильної чотирикутної піраміди, якщо площа	ïï					
	повної поверхні дорівнює $208 \ \mathrm{cm}^2$, а довжина сторони основи — $8 \ \mathrm{cm}$.						

 \mathbf{B}

9 см

У завданнях 15–18 до кожного з трьох пунктів інформації, позначених цифрами, доберіть один правильний, на вашу думку, варіант, позначений буквою.

15. Установіть відповідність між функцією (1–3) та її властивістю (А–Д).

Властивість функції

жок $[0; +\infty)$ $y = \cos x$ функція спадає на інтервалі $(0; +\infty)$ 3 y = tgxБ функція зростає на інтервалі $(-\infty; +\infty)$ парна функція

Д періодична функція з найменшим до-

Значення виразу

Б

5

Довжина відрізка

Закінчення

 (AA_1B_1) .

 $(DD_{\scriptscriptstyle 1}C_{\scriptscriptstyle 1}).$

речення

А областю визначення функції є промі-

Д 6 $x^2 + 2x + 1$

17. Квадрат *ABCD* й прямокутна трапеція *BMNC* лежать в одній площині (див. рисунок). Площа кожної із цих фігур дорівнює 36 см^2 , AM = 15 см. Установіть відповідність між відрізком (1–3)

 ${f B}$ 4

датним періодом $T=\pi$

16. Увідповідніть вираз (1—3) із його значенням (А—Д), якщо $x=\sqrt{5}-1$.

	сторона квадрата АВСО	A	2 см	13 U B		
${\bf 2}$	висота трапеції ВМNС	Б	3 см			
3	менша основа трапеції ВМNС	\mathbf{B}	4 см			AD
		Γ	6 см			АБВГД
		Д	9 см		1	00000
					2	
					3	

Пряма CC_1 є прямою перетину 3 $(A_{1}B_{1}C_{1}).$ площин ($BB_{1}C_{1}$) та (AA_1D_1) . Д (BB_1D_1) .

18. На рисунку зображено куб $ABCDA_1B_1C_1D_1$. Установіть відповідність між початком речення (1-3) та його закінченням (А–Д) так, щоб утворилося правильне твердження.

19. Укажіть ненульове значення x, за якого значення виразів x-8, 3x та $6x \in 10^{-3}$ слідовними членами геометричної прогресії.

Розв'яжіть завдання 19, 20. Відповідь записуйте лише десятковим дробом.

20. Основою прямої трикутної призми $ABCA_{1}B_{1}C_{1}$ є рівнобедрений трикутник ABC, де AB = BC = 25 см, AC = 30 см. Через бічне ребро AA_1 призми проведено площину, перпендикулярну до ребра BC. Визначте об'єм (у $c M^3$) призми, якщо площа утвореного перерізу дорівнює $72~{\rm cm}^2$.