Linear Regression with One Variable

Model and Cost Function

Model Representation

- Supervised Learning (监督学习): Given the "right answer" for each example in the data.
 - o Regression Problem (回归问题): Predict real-valued output.
 - o Classification Problem (分类问题): Predict discrete-valued output.
- Training set (训练集)
 - **m**: number of training examples
 - x's: "input" variable / features
 - y's: "output" variable / "target" variable
 - \circ (x,y): one training example
 - $\circ (x^i, y^i)$: i^{th} training example
- Training Set -> Learning Algorithm -> h(hypothesis, 假设)
 - h is a function maps from x's to y's
 - o e.g. Size of house -> h -> Estimated price
- Linear regression with one variable
 - $\circ \ \ h_{ heta}(x) = heta_0 + heta_1 x$
 - Shorthand: h(x)
 - o Or named Univariate linear regression (单变量线性回归)

Cost Function

- Hypothesis: $h_{ heta}(x) = heta_0 + heta_1 x$
 - o θ_i 's: Parameters (模型参数)
 - How to choose θ_i 's?
 - Idea: Choose θ_0, θ_1 so that $h_{\theta}(x)$ is close to y for our training example (x, y)
- Cost function (代价函数)
 - $\circ \ J(heta_0, heta_1) = rac{1}{2m} \sum_{i=1}^m \left(h_ heta(x^{(i)}) y^{(i)}
 ight)^2$
 - 。 Sometimes called Square error function (平方误差代价函数)
- Goal: minimise $J(\theta_0, \theta_1)$

Parameter Learning

Gradient Descent

- Gradient Descent (梯度下降)
 - o Goal
 - Have some function $J(\theta_0, \theta_1)$
 - Want θ_0, θ_1 of $minJ(\theta_0, \theta_1)$
 - Outline
 - Start with some θ_0, θ_1 , usually all set to 0.
 - lacktriangledown Keep changing $heta_0, heta_1$ to reduce $J(heta_0, heta_1)$ until we hopefully end up at minimum
- Gradient descent algorithm

repeat until convergence (收敛) {
$$heta_j:= heta_j-lpharac{\partial}{\partial heta_j}J(heta_0, heta_j) ext{ (for }j=0 ext{ and }j=1)$$
}

- := denotes assignment
- \circ α denotes learning rate
 - if too small, gradient descent can be slow
 - If too large, gradient descent can overshoot the minimum. It may fail to converge or even diverge.
- \circ You should <u>simultaneously</u> update $heta_0$ and $heta_1$
 - That is, you should compute the right-hand sides of θ_0 and θ_1 , then save them to temporary variables, and finally update θ_0 and θ_1 .

$$egin{aligned} temp0 &:= heta_0 - lpha rac{\partial}{\partial heta_0} J(heta_0, heta_j) \ temp1 &:= heta_1 - lpha rac{\partial}{\partial heta_1} J(heta_0, heta_j) \ heta_0 &:= temp0 \ heta_1 &:= temp1 \end{aligned}$$

Intuition

- If θ_1 at local optima, it leaves θ_1 unchanged.
- gradient descent can converge to a local minimum, even with the learning rate α fixed.
 - o As we approach a local minimum, gradient descent will automatically take smaller steps. So, no need to decrease α over time.

Gradient Descent For Linear Regression

We can compute that

$$egin{aligned} rac{\partial}{\partial heta_0} J(heta_0, heta_1) &= rac{1}{m} \sum_{i=1}^m \left(h_ heta(x^{(i)}) - y^{(i)}
ight) \ rac{\partial}{\partial heta_1} J(heta_0, heta_1) &= rac{1}{m} \sum_{i=1}^m \left(h_ heta(x^{(i)}) - y^{(i)}
ight) \cdot x^{(i)} \end{aligned}$$

Thus the Gradient descent algorithm can be expressed as

```
repeat until convergence { 	heta_0 := 	heta_0 - lpha rac{1}{m} \sum_{i=1}^m \left( h_{	heta}(x^{(i)}) - y^{(i)} 
ight)  	heta_1 := 	heta_1 - lpha rac{1}{m} \sum_{i=1}^m \left( h_{	heta}(x^{(i)}) - y^{(i)} 
ight) \cdot x^{(i)}  }
```

And the cost function of linear refression is always a convex function (凸函数), or called Bowlshaped function (弓形函数). It doesn't have any local optima except for the one global optimum.

"Batch" Gradient Descent

- The algorithm that we just went over is sometimes called Batch Gradient Descent (批量梯度下降).
- "Batch": Each step of gradient descent uses all th etraining examples.