

MAY 10, 2023

OPEN ACCESS

DOI:

dx.doi.org/10.17504/protocol s.io.eq2ly7kxqlx9/v1

Protocol Citation: Prosenjit Pal, Raja S. Nirujogi, Francesca Tonelli, Dario R Alessi 2023. GFP Immunoprecipitation and Sample Preparation for Tandem Mass Tag (TMT) Mass Spectrometry Analysis. protocols.io

https://dx.doi.org/10.17504/protocols.io.eq2ly7kxqlx9/v1

License: This is an open access protocol distributed under the terms of the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: Working We use this protocol and it's working

Created: May 05, 2023

Last Modified: May 10,

2023

PROTOCOL integer ID: 81447

GFP Immunoprecipitation and Sample Preparation for Tandem Mass Tag (TMT) Mass Spectrometry Analysis

Raja S.

Prosenjit Pal^{1,2}, Nirujogi^{1,2}, Dario R Alessi^{1,2} Francesca Tonelli^{1,2},

¹MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, DD1 5EH, UK;

²Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815

Francesca Tonelli

ABSTRACT

We describe a method to identify potential interactors of any Green Fluorescent Protein (GFP) tagged protein expressed in mammalian cells by GFP immunoprecipitation coupled to Tandem Mass Tag (TMT) mass spectrometry analysis. As an example, we used a GFP-tagged phosphoRab interactor protein (RILPL1-GFP), and its non-binding mutant (RILPL1 [R293A]-GFP, which cannot interact with phosphorylated Rab proteins) as a control.

ATTACHMENTS

710-1531.docx

GUIDELINES

Protocol overview:

- 1. Transient transfection of HEK293 cells for expression of GFP-tagged proteins.
- 2. Preparation and quantification of cell lysates from HEK293 cells.
- 3. Immunoprecipitation of GFP-tagged proteins from cell lysates.
- 4. On-bead tryptic digestion and TMT labelling of immunoprecipitated proteins for LC-MS/MS mass spectrometry analysis.

MATERIALS

Reagents

A. For cell culture, transient transfection and GFP immunoprecipitation:

protocols.io |

Keywords:

Immunoprecipitation of GFPtagged proteins from cell lysates, Tandem Mass Tag (TMT) Mass Spectrometry Analysis

- B HEK293 ATCC Catalog #CRL-1573 cultured in complete growth medium.
- **Growth medium**: Dulbecco's Modified Eagle's Medium (DMEM), High Glucose, no glutamine (GibcoTM, catalog number: 11960044, or equivalent) supplemented with 10% (v/v) Foetal Bovine Serum (FBS) (Sigma #F7524, or equivalent), 2 mM L-glutamine (GibcoTM, catalog number: 25030024, or equivalent), Penicillin-Streptomycin 100U/mL (GibcoTM, catalog number: 15140122, or equivalent).
- Trypsin-EDTA 0.05% phenol red Gibco Thermo Fischer Catalog #25300054

(or equivalent)

- DPBS no calcium no magnesium **Gibco Thermo Fischer Catalog** #14190169
- Linear polyethylenimine (
 - PEI MAX® Transfection Grade Linear Polyethylenimine Hydrochloride (MW 40000) Polysciences, Inc. Catalog #24765-1

); 1 mg/ml (w/v) stock in de-ionised H₂O, pH 7.4; sterile filtered.

- Transfection media (for HEK293FT cells):
 - Opti-MEM (Reduced Serum Medium) **Thermo Fisher Scientific Catalog** #31985062
- Plasmids for mammalian expression (pCMV vector):

FLAG-LRRK2 Y1699C (DU26486, available at MRCPPU Reagents and Services https://mrcppureagents.dundee.ac.uk)

RILPL1-GFP WT (DU27305, available at MRCPPU Reagents and Services https://mrcppureagents.dundee.ac.uk)

RILPL1-GFP R293A (DU68072, available at MRCPPU Reagents and Services https://mrcppureagents.dundee.ac.uk)

HA-Rab8A Q67L (DU51181, available at MRCPPU Reagents and Services https://mrcppureagents.dundee.ac.uk)

- Bradford Protein Assay Kit
- X ChromoTek GFP-Trap® Agarose Proteintech Catalog # gta-20
- Lysis Buffer:

A
50 mM Tris-HCl, pH 7.5
10% (v/v) glycerol
150 mM NaCl
0.5 mM EDTA
1% (v/v) NP-40 Alternative (Merck #492016)
1X phosSTOP phosphatase inhibitor cocktail (PhosSTOP tablet: Roche, REF# 04906837001; to be added just before use)

Α

1X protease inhibitor cocktail (cOmplete EDTA-free protease inhibitor cocktail tablet: Roche, REF# 11873580001; to be added just before use)

- IP Wash Buffer: 50 mM Tris-HCl pH 7.5, 150 mM NaCl
- B. For TMT mass spectrometry analysis:
- DL-Dithiothreitol Merck MilliporeSigma (Sigma-Aldrich) Catalog #D0632-
 - Prepare fresh as a 100 mM Stock in Milli-Q H20
- ⊠ lodoacetamide Merck MilliporeSigma (Sigma-Aldrich) Catalog #I1149

 Prepare fresh as a 200 mM stock in Milli-Q H₂O
- W Urea Thermo Fisher Catalog #29700
- Elution buffer I (to be made just before use):

A	В
Urea	2 M
Tris-HCl pH 7.5	50 mM
DTT	1 mM

• Elution buffer II (to be made just before use):

A	В
Urea	2 M
Tris-HCl pH 7.5	50 mM
Iodoacetamide	5 mM

- TMT Isobaric Label Reagent Set (Thermo Scientific TM)
- LC-grade Water Fisher Scientific Catalog #10777404
- Triethylammonium bicarbonate buffer Merck MilliporeSigma (Sigma-Aldrich) Catalog #18597
 - Make a 50 mM and 300 mM stock in LC-MS grade H₂O, pH 8
- Seq Grade Modified Trypsin, 100ug (5 x 20ug) **Promega Catalog** #V5111

Make a stock by resuspending 20 μ g trypsin in 0.05% (v/v) Acetic acid (just before use)

- LC-MS grade Methanol (MeOH) (Cat# 20847.307)
- LC-MS grade Acetonitrile (ACN) (Cat# 83640.320)
- Hydroxylamine solution Merck MilliporeSigma (Sigma-Aldrich) Catalog
 #438227
- Trifluoroacetic acid Merck MilliporeSigma (Sigma-Aldrich) Catalog #T6508
- Formic acid (Sigma; Cat # 56302)
- Ammonium formate Merck MilliporeSigma (Sigma-Aldrich) Catalog #70221-25G-F
- Ammonium hydroxide solution Merck MilliporeSigma (Sigma-Aldrich) Catalo #338818
- 2-propanol
- C18-HD bonded silica 12um particle size 47mm. CDS Analytical LLC Catalog #2215
- Empore Disk Strong Cation Exchange 12um particle size 47mm CDS Analytic LLC Catalog #Empore 2251
- pH indicator strips mid range VWR International Catalog #1.09584.0001
- LC vials

Equipment

- CO₂ Incubator for cell culture maintained at 37 °C, 5% CO₂ (v/v).
- Laminar flow hood for cell culture.
- Refrigerated bench-top centrifuge (Eppendorf microcentrifuge 5417R, or equivalent).
- Plate reader for Protein quantification (BioTek Epoch, or equivalent)
- Thermo mixer (Eppendorf ThermoMixer, or equivalent)

Equipment

Savant™ SpeedVac™ Medium Capacity Vacuum Concentrators for Combinatorial Chemistry Applications

TYPE

SpeedVac Vacuum Concentrator

BRAND

Thermo Scientific™

SPD140P1

SKU

https://www.thermofisher.com/order/catalog/product/SPD140P1-115

LINK

Consumables

- Falcon® 100 mm x 15 mm Not TC-treated Bacteriological Petri Dish 20/Pack 500/Case Sterile Corning Catalog #351029
- SafeSeal reaction tube 1.5 ml PP PCR Performance Tested Low protein-binding Sarstedt Catalog #72.706.600
- Greiner Bio-One™ Polypropylene Pipette Tip **Fisher Scientific Catalog**#686271

and

- PIPETTE TIP 10 100 μ L SUITABLE FOR EPPENDORF 96 PIECES / ST RACK greiner bio-one Catalog #685261
- Stripetter/stripette gun and stripettes
- Set of Gilson pipettes P10, P200, P1000
- 15 ml and 50 ml Falcons
- Stainless steel 316 syringe needle pipetting blunt 90° tip Merck MilliporeSigm (Sigma-Aldrich) Catalog #Z261378
- Glass pipettes (5 ml, 10 ml, 50 ml)
- C18 stage-tips (3 M Empore discs; C18 # 3M 2215 and SCX # 3M 2251)
- DMEM high glucose no glutamine Thermo Fisher Scientific Catalog #11960044
- Fetal Bovine Serum **Merck MilliporeSigma (Sigma-Aldrich) Catalog** #F7524
- L-Glutamine (200mM) **Thermo Fisher Scientific Catalog** #25030024
- Penicillin-Streptomycin (10,000 U/mL) **Gibco Thermo Fisher Catalog** #15140122
- NP-40 Alternative Merck Millipore (EMD Millipore) Catalog #492016
- Roche PhosSTOP™ **Merck MilliporeSigma (Sigma-Aldrich) Catalog** #4906837001

Transient transfection of HEK293 cells

1 Plate cells in 10 cm dishes (one dish for each experimental condition) to give a 60-70% confluency the following day (around 2.2 x 10⁶ cells seeded per 10 cm dish).

Note

Note: For cells stably expressing the GFP-tagged protein of interest, proceed to Preparation and quantification of cell lysates (when cells are 90-100% confluent).

2 Prepare a transfection mix in a sterile 1.5ml Eppendorf tube, containing (for each 10 cm dish):

A	В
FLAG-LRRK2 [Y1699C] plasmid	3 µg
wild type RILPL1-GFP or 2 μg [R293A] RILPL1-GFP plasmid	2 μg
HA-Rab8A [Q67L] plasmid	1 μg
1 mg/ml PEI Max 40K	18 µl
OptiMem	500 µl

3 Mix by vortexing and incubate at \$\mathbb{S}\$ Room temperature for \(\bar{\chi} \) 00:20:00

20m

Add the mixture dropwise to the cells from step 1 using a P1000 sterile pipette.

Preparation and quantification of cell lysates

- Remove culture medium completely from each dish using an aspirator. 6
- 7 Quickly rinse cells in the tissue culture dish by carefully pouring culture media without Foetal bovine serum (at | Room temperature) into the dish.

Note: As HEK293 cells are loosely attached to the dish surface, extra care should be taken during the washing step.

- 8 Pour off media from the culture dish and completely aspirate any residual media.
- 9 Immediately add A 400 µL of ice-cold complete lysis buffer to each dish ensuring that the entire surface is covered by lysis buffer.
- 10
- 11 Scrape the cells on the dish using a cell lifter to ensure all cells are detached from the dish.

12 Using a pipette, transfer the lysate to a 1.5mL Eppendorf tube.

Leave samples on ice for 20-30 minutes to allow for efficient lysis.

14

Spin down lysates at 😩

10m

- 15 Transfer supernatant to a new Eppendorf tube and discard the pellet.
- Proceed to estimating the protein concentration of cell lysates by Bradford assay according to the manufacturer's instructions.

Note

Note: We recommend confirming the expression of the transiently expressed proteins by performing quantitative immunoblotting analysis as described in dx.doi.org/10.17504/protocols.io.bsgrnbv6.

Immunoprecipitation of GFP-tagged proteins from cell lysat.

Transfer n x \square 20 μ L of packed ChromoTek GFP-Trap Agarose Beads (where n = number of samples) into a low binding Eppendorf tube.

18

Pellet the beads by centrifuging at

3m

- 19 Carefully aspirate the supernatant.
- Resuspend the beads in 4 1 mL of IP wash buffer.
- 21 Repeat steps 18 to 20 twice.
- Centrifuge at Centrifuge at 00:03:00 and aspirate the supernatant.
- Resuspend beads from step 22 in n x \square 20 μ L of IP wash buffer (where n = number of samples) to make a 1:1 slurry.
- Aliquot the washed beads from step 23 into fresh low-binding Eppendorf tubes ($\bot 40 \, \mu L$ of slurry for each sample, corresponding to $\bot 20 \, \mu L$ of packed ChromoTek GFP-Trap Agarose Beads). Leave the tubes \lozenge On ice until use.
- B
- Incubate for 02:00:00 at 4 °C under mild agitation (on an orbital shaker).

2h

3m

Pellet the beads by centrifuging at

- 28 Carefully aspirate the supernatant.
- Resuspend the beads in 4 1 mL of IP wash buffer.
- Repeat steps 27 to 29 twice.
- 31

Centrifuge at

and aspirate the supernatant.

5m

32 Immediately proceed to Elution and on-bead tryptic digestion of immunoprecipitated proteins

Elution and on-bead tryptic digestion of immunoprecipitate..

Add $\underline{\underline{A}}$ 100 $\mu\underline{\underline{L}}$ of elution buffer I to the beads from step 32.

34 Add 🗸 500 ng of sequencing grade trypsin to the mixture and incubate on a Thermomixer at

\$00 rpm, 30°C, 00:30:00

Peptide clean-up using C18 stage-tips

Prepare a C18 stage-tip for each sample as described in dx.doi.org/10.17504/protocols.io.bs3tngnn.

Note

A minimum of two discs are recommended for each \square 200 μ L tip (assuming a peptide content of 5-10 μ g).

40 C18 stage tips activation: add \blacksquare 80 μ L of 100% ACN to each stage-tip and centrifuge at

41 C18 stage tips equilibration: add 🚨 80 µL of 0.1% TFA to each stage-tip and centrifuge at

4m

4m

2m

2000 x g, 00:02:00

42 Repeat step 41.

43 Transfer the C18 stage-tip to a new low-binding Eppendorf.

44

45 Collect the flowthrough from step 44 and re-load onto the same C18 stage-tip. Centrifuge at

46 Wash the C18 stage-tips by adding \perp 80 μ L of 0.1% TFA and centrifuging at

47 Repeat step 46. Transfer the C18 stage-tip to a new low-binding Eppendorf.

49 Add Δ 30 μL of 30% (v/v) ACN in 0.1% (v/v) TFA to each stage-tip and centrifuge at

Repeat step 49.

Take \square 1-2 μ L of the digested peptides, vacuum dry and inject on MS to verify the digestion efficiency.

Note

Note: Analyse data with a (1 h 10 mins) gradient run-on QE HF-X or Orbitrap Lumos mass spectrometer in a FT-FT-HCD mode. Search data with Proteome Discoverer 2.1 or 2.4 version. Determine the digestion efficiency by plotting number of missed cleavages. Zero missed cleavages should be >75% and single missed cleavages should be between 20-23%.

Vacuum dry completely the remaining peptides and store at 8 -80 °C until ready to undertake TMT labelling.

Tandem Mass Tag Labelling

Dissolve $\underline{\mathbb{Z}}$ 800 μg of each of the TMT mass tag reagents within the 11-plex TMT reagent kit in $\underline{\mathbb{Z}}$ 40 μL of 100% anhydrous acetonitrile to obtain a $\underline{\mathbb{Z}}$ 20 $\mu g/\mu L$ concentration for each TMT reporter tag.

Leave at Room temperature for 00:10:00, then vortex and spin

Note

Note: Dissolved TMT reagents are prone to hydrolysis. Once reconstituted, aliquot and immediately transfer to for storage (up to six months). Avoid multiple freeze thaw cycles.

Dissolve lyophilized peptides from step 52 in \square 50 μ L of a mixture containing \square 38 μ L [M] 50 millimolar (mM) TEAB buffer + \square 8 μ L 100% (by vol) anhydrous acetonitrile.

Note

Note: It is important to maintain a final 30% (by vol) of anhydrous Acetonitrile for an effective TMT reaction.

Place the samples in a water bath sonicator for 00:10:00

10m

10m

12m

57

Centrifuge the samples

Transfer dissolved peptides into a 1.5ml protein low binding Eppendorf tube.

60

Give a gentle vortex and spin at

Place samples on a Thermomixer and incubate with gentle agitation at

(5) 800 rpm, Room temperature, 02:00:00

20m

Note

00:10:00

In order to verify the TMT labelling efficiency of each TMT mass tag, take a unique from each of the TMT-labelled samples and pool the aliquots in a single tube. Vacuum dry immediately using a SpeedVac.

Note

Note: It is important to verify the labelling efficiency of each TMT mass tag and it should label > 98%, by analysing on Mass spec. We recommend doing this employing a (2 h 25 min) FT-FT-MS2 study. This will establish that each reporter tag is efficiently labelled and ensure that an equal level of each peptide is labelled with each of the TMT tags. Search MS raw data with Proteome Discoverer 2.2 or 2.4 by enabling TMTreporter tag mass (+229.163 Da) on Lysine residue and Peptide N-terminus as dynamic modifications. Filter TMT labelled Peptide spectral matches (PSMs) in the modification tab to calculate the number of labelled and unlabelled PSMs to determine the labelling efficiency. Also, export PSM abundance in txt.file, to plot a Boxplot using R-software to determine the ~1:1 abundance within and between replicates.

- If the labelling efficiency is >98% and levels of each labelled peptide appear to be close to 1:1, then proceed with the below steps.
- Thaw stored TMT labelled samples from step 63 to Room temperature
- Prepare 5% (by vol) final Hydroxyl amine solution by dissolving in water from a 50% (by vol) stock solution.
- Add 🚨 5 µL 5% (by vol) Hydroxylamine to each sample to quench TMT reaction by incubating the reaction at 🖁 Room temperature on a Thermomixer for 👏 00:20:00

Pool all samples into a single tube.

20m

Transfer 20% of the reaction to a new low-binding Eppendorf tube as a backup: snap freeze on dry ice and vacuum dry.

Note

Note: This can be used in case of sample loss during the downstream analysis or for further validation.

Snap freeze the remaining 80% of the reaction and vacuum dry using Speed vac.

Mini-basic RPLC fractionation

71

Note

To improve the proteomic coverage of TMT labelled interactome, we recommend performing a stage-tip based mini-bRP fractionation (as described in [1]) by performing the following steps.

Prepare four C18 stage-tips as described in dx.doi.org/10.17504/protocols.io.bs3tngnn.

- 72 Label eight 1.5ml low-binding Eppendorf tubes as "Fraction 1" to "Fraction 8".
- Prepare \bot 50 mL of bRP stock solution ([M] 50 millimolar (mM) Ammonium formate in Milli-Q H₂O).
- Prepare Solvent A: Mix \square 20 mL of bRP stock solution with \square 20 mL of Milli-Q H₂O (= \square 1 25 millimolar (mM) Ammonium formate in Milli-Q H₂O).

- 75

Prepare elution solvents for fractionation (required in steps 92 and 93) as described in the table below.

Prepare each elution solvent in a 2 ml Eppendorf tube.

A	В	С	D	E
Elution solvent # (Fraction number)	Final ACN % in Elution solvent		Solvent A (ml)	Total volume (ml)
8	100%	100% ACN	0	N/A
7	17.5%	0.7 ml Solvent B (50% ACN)	1.3	2.0
6	15.0%	1.2 ml Elution solvent 7 (17.5% ACN)	0.2	1.4
5	12.5%	1.0 ml Elution solvent 6 (15.0% ACN)	0.2	1.2
4	10.0%	0.8 ml Elution solvent 5 (12.5% ACN)	0.2	1.0
3	7.5%	0.6 ml Elution solvent 4 (10.0% ACN)	0.2	0.8
2	5.0%	0.4 ml Elution solvent 3 (7.5% ACN)	0.2	0.6
1	2.5%	0.2 ml Elution solvent 2 (5.0% ACN)	0.2	0.4

77 Dissolve peptides from step 58 in $\ 200 \ \mu L$ of Solvent A.

Note

Note: Check the pH of the samples using a pH strip. Adjust to \bigcirc by adding \square 0.5 \square of 30% Ammonium hydroxide solution if necessary.

5m

- 87 Collect the flowthrough from step 86 and slowly load onto the same column.
- Centrifuge at 00:05:00

 Centrifuge at 00:05:00

5m

- Transfer the column into a new 1.5ml Eppendorf tube.

2m

- d
- **91** Transfer the column into the tube labelled as "Fraction 1" (from step 72).
- 92 Add Δ 60 μL of Elution solvent 1 (from step 76) to the column and centrifuge at

 1500 x g,
 00:02:00

2m

93

Repeat steps 91 and 92 to generate Fraction 2 to Fraction 8. For each fraction, add 60 μ l of the corresponding Elution solvent (from step 76) to the column and centrifuge at

- Pool the 8 fractions from steps 92 and 93 as follows (to generate 4 final fractions):
 - Pool fraction 1 and 5:
 - Pool fraction 2 and 6;
 - Pool fraction 3 and 7;
 - Pool fraction 4 and 8.
- Place fractions on dry ice and vacuum dry completely using a SpeedVac.

LC-MS/MS analysis

- Dissolve each fraction from step 95 in \square 20 μ L of LC-buffer (3% (v/v) ACN, 0.1% (v/v) formic acid).
- Place samples on a Thermomixer at Place samples on a Thermomixer at 00:30:00
- Transfer \bot 10 μ L of the sample from step 97 into a LC-vial for analysis (Step 99). The remaining sample can be stored at \blacksquare -80 $^{\circ}$ C as a back-up.
- Perform LC-MS/MS analysis on an Orbitrap Lumos Tribrid mass spectrometer in MS3 mode. The mass spectrometer instrument settings in data acquisition are described in the table below.

A	В
Application Mode	Peptide
Method Duration (min)	140

A	В
Global Parameters	
Infusion Mode	Liquid Chromatography
Expected LC Peak Width (s)	30
Advanced Peak Determination	False
Default Charge State	2
Internal Mass Calibration	Off
Experiment#1 [MS]	
Start Time (min)	0
End Time (min)	140
Master Scan	
MS OT	
Detector Type	Orbitrap
Orbitrap Resolution	120000
Mass Range	Normal
Use Quadrupole Isolation	True
Scan Range (m/z)	350-1500
RF Lens (%)	30
AGC Target	Custom
Normalized AGC Target (%)	50
Maximum Injection Time Mode	Custom
Maximum Injection Time (ms)	50
Micro scans	1
Data Type	Profile
Polarity	Positive
Source Fragmentation	Disabled
Scan Description	
Filters	
MIPS	
Monoisotopic Peak Determination	Peptide

A	В
Charge State	
Include charge state(s)	2-7
Include undetermined charge states	False
Dynamic Exclusion	
Use Common Settings	False
Exclude after n times	1
Exclusion duration (s)	45
Mass Tolerance	ppm
Low	10
High	10
Exclude Isotopes	True
Perform dependent scan on single charge state per precursor only	True
Intensity	
Filter Type	Intensity Threshold
Intensity Threshold	5.00E+03
Data Dependent	
Data Dependent Mode	Number of Scans
Number of Dependent Scans	10
Scan Event Type 1	
Scan	
ddMS ² OT HCD	
Isolation Mode	Quadrupole
Isolation Window (m/z)	0.7
Isolation Offset	Off
Activation Type	HCD
Collision Energy Mode	Fixed
HCD Collision Energy (%)	39

A	В
Detector Type	Orbitrap
Orbitrap Resolution	30000
Mass Range	Normal
Scan Range Mode	Auto
AGC Target	Standard
Maximum Injection Time Mode	Custom
Maximum Injection Time (ms)	96
Micro scans	1
Data Type	Centroid
Use EASY-IC™	False
Scan Description	
Filters	
Precursor Selection Range	
Selection Range Mode	Mass Range
Mass Range (m/z)	400-1200
Precursor Ion Exclusion	
Exclusion mass width	ppm
Low	25
High	25
Isobaric Tag Loss Exclusion	
Reagent	ТМТ
Data Dependent	
Data Dependent Mode	Scans Per Outcome
Scan Event Type 1	
Scan	
ddMS3 OT HCD	
MS ⁿ Level	3
Synchronous Precursor Selection	True

A	В
Number of SPS Precursors	5
MS Isolation Window (m/z)	2
MS2 Isolation Window (m/z)	2
Isolation Offset	Off
Activation Type	HCD
HCD Collision Energy (%)	65
Detector Type	Orbitrap
Orbitrap Resolution	50000
Mass Range	Normal
Scan Range Mode	Define m/z range
Scan Range (m/z)	100-500
AGC Target	Custom
Normalized AGC Target (%)	200
Maximum Injection Time Mode	Custom
Maximum Injection Time (ms)	120
Micro scans	1
Data Type	Profile
Use EASY-IC™	False
Scan Description	
Number of Dependent Scans	5

100 The raw data was searched using MaxQuant version 1.6.6.0 using the parameters described below.

A	В
Parameter	Value
Version	1.6.6.0
User name	Rnirujogi

A	В
Machine name	SILAC-MRC0
Date of writing	10/23/2019 21:11:33
Include contaminants	TRUE
PSM FDR	0.01
PSM FDR Crosslink	0.01
Protein FDR	0.01
Site FDR	0.01
Use Normalized Ratios For Occupancy	TRUE
Min. peptide Length	7
Min. score for unmodified peptides	0
Min. score for modified peptides	40
Min. delta score for unmodified peptides	0
Min. delta score for modified peptides	6
Min. unique peptides	0
Min. razor peptides	1
Min. peptides	1
Use only unmodified peptides and	TRUE
Modifications included in protein quantification	Oxidation (M);Acetyl (Protein N- term);Deamidation (NQ)
Peptides used for protein quantification	Razor
Discard unmodified counterpart peptides	TRUE
Label min. ratio count	1
Use delta score	FALSE
iBAQ	TRUE
iBAQ log fit	TRUE
Match between runs	TRUE
Matching time window [min]	0.7
Match ion mobility window [indices]	0.05
Alignment time window [min]	20

A	В
Alignment ion mobility window [indices]	1
Find dependent peptides	FALSE
Fasta file	D:\Database\HUMAN-Uniprot- 150317_Custom7.FASTA
Decoy mode	revert
Include contaminants	TRUE
Advanced ratios	TRUE
Fixed andromeda index folder	
Temporary folder	
Combined folder location	
Second peptides	FALSE
Stabilize large LFQ ratios	FALSE
Separate LFQ in parameter groups	FALSE
Require MS/MS for LFQ comparisons	FALSE
Calculate peak properties	FALSE
Main search max. combinations	200
Advanced site intensities	FALSE
Write msScans table	TRUE
Write msmsScans table	TRUE
Write ms3Scans table	TRUE
Write allPeptides table	TRUE
Write mzRange table	TRUE
Write pasefMsmsScans table	TRUE
Write accumulatedPasefMsmsScans table	TRUE
Max. peptide mass [Da]	4600
Min. peptide length for unspecific search	8
Max. peptide length for unspecific search	25
Razor protein FDR	TRUE
Disable MD5	FALSE

A	В
Max mods in site table	3
Match unidentified features	FALSE
Epsilon score for mutations	
Evaluate variant peptides separately	TRUE
Variation mode	None
MS/MS tol. (FTMS)	20 ppm
Top MS/MS peaks per Da interval. (FTMS)	12
Da interval. (FTMS)	100
MS/MS deisotoping (FTMS)	TRUE
MS/MS deisotoping tolerance (FTMS)	7
MS/MS deisotoping tolerance unit (FTMS)	ppm
MS/MS higher charges (FTMS)	TRUE
MS/MS water loss (FTMS)	TRUE
MS/MS ammonia loss (FTMS)	TRUE
MS/MS dependent losses (FTMS)	TRUE
MS/MS recalibration (FTMS)	FALSE
MS/MS tol. (ITMS)	0.5 Da
Top MS/MS peaks per Da interval. (ITMS)	8
Da interval. (ITMS)	100
MS/MS deisotoping (ITMS)	FALSE
MS/MS deisotoping tolerance (ITMS)	0.15
MS/MS deisotoping tolerance unit (ITMS)	Da
MS/MS higher charges (ITMS)	TRUE
MS/MS water loss (ITMS)	TRUE
MS/MS ammonia loss (ITMS)	TRUE
MS/MS dependent losses (ITMS)	TRUE
MS/MS recalibration (ITMS)	FALSE
MS/MS tol. (TOF)	40 ppm
Top MS/MS peaks per Da interval. (TOF)	10

A	В
Da interval. (TOF)	100
MS/MS deisotoping (TOF)	TRUE
MS/MS deisotoping tolerance (TOF)	0.01
MS/MS deisotoping tolerance unit (TOF)	Da
MS/MS higher charges (TOF)	TRUE
MS/MS water loss (TOF)	TRUE
MS/MS ammonia loss (TOF)	TRUE
MS/MS dependent losses (TOF)	TRUE
MS/MS recalibration (TOF)	FALSE
MS/MS tol. (Unknown)	0.5 Da
Top MS/MS peaks per Da interval. (Unknown)	8
Da interval. (Unknown)	100
MS/MS deisotoping (Unknown)	FALSE
MS/MS deisotoping tolerance (Unknown)	0.15
MS/MS deisotoping tolerance unit (Unknown)	Da
MS/MS higher charges (Unknown)	TRUE
MS/MS water loss (Unknown)	TRUE
MS/MS ammonia loss (Unknown)	TRUE
MS/MS dependent losses (Unknown)	TRUE
MS/MS recalibration (Unknown)	FALSE
Site tables	Deamidation (NQ)Sites.txt;Oxidation (M)Sites.txt;Phospho (STY)Sites.txt