Final Project - Predicting survival of people with Heart Failure

Libraries

```
In [1]: import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn import linear_model
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn import metrics

from sklearn.tree import DecisionTreeClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.svm import SVC

from scipy.cluster.hierarchy import linkage, fcluster
from sklearn.cluster import KMeans, DBSCAN
```

Data Import

In [2]: data = pd.read_csv('heart_failure_clinical_records_dataset.csv') data.head()

Out[2]:

	age	anaemia	creatinine_phosphokinase	diabetes	ejection_fraction	high_blood_pressure	platelets	serum_creatinine	serum_sodium	sex
0	75.0	0	582	0	20	1	265000.00	1.9	130	1
1	55.0	0	7861	0	38	0	263358.03	1.1	136	1
2	65.0	0	146	0	20	0	162000.00	1.3	129	1
3	50.0	1	111	0	20	0	210000.00	1.9	137	1
4	65.0	1	160	1	20	0	327000.00	2.7	116	0
4										•

In [3]: data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 299 entries, 0 to 298
Data columns (total 13 columns):

#	Column	Non-Null Count	Dtype
0	age	299 non-null	float64
1	anaemia	299 non-null	int64
2	creatinine_phosphokinase	299 non-null	int64
3	diabetes	299 non-null	int64
4	ejection_fraction	299 non-null	int64
5	high_blood_pressure	299 non-null	int64
6	platelets	299 non-null	float64
7	serum_creatinine	299 non-null	float64
8	serum_sodium	299 non-null	int64
9	sex	299 non-null	int64
10	smoking	299 non-null	int64
11	time	299 non-null	int64
12	DEATH_EVENT	299 non-null	int64

dtypes: float64(3), int64(10)

memory usage: 30.5 KB

Number of variables: 13

Types of variables: int64, float64

Redundant Variables: None

In [4]: data.dropna(0) Out[4]: age anaemia creatinine_phosphokinase diabetes ejection_fraction high_blood_pressure platelets serum creatinine serum sodium sex 75.0 1 265000.00 1.9 0 263358.03 55.0 1.1 0 162000.00 65.0 1.3 0 210000.00 50.0 1.9 0 327000.00 2.7 65.0 62.0 1 155000.00 1.1 0 270000.00 55.0 1.2 45.0 0 742000.00 8.0 45.0 0 140000.00 1.4 50.0 0 395000.00 1.6 299 rows × 13 columns In [5]: data.shape Out[5]: (299, 13)

There are no missing data, noise, outliers

In [6]: # statistic description for heart failure data
data.describe().transpose().round(2)

Out[6]:

	count	mean	std	min	25%	50%	75%	max
age	299.0	60.83	11.89	40.0	51.0	60.0	70.0	95.0
anaemia	299.0	0.43	0.50	0.0	0.0	0.0	1.0	1.0
creatinine_phosphokinase	299.0	581.84	970.29	23.0	116.5	250.0	582.0	7861.0
diabetes	299.0	0.42	0.49	0.0	0.0	0.0	1.0	1.0
ejection_fraction	299.0	38.08	11.83	14.0	30.0	38.0	45.0	80.0
high_blood_pressure	299.0	0.35	0.48	0.0	0.0	0.0	1.0	1.0
platelets	299.0	263358.03	97804.24	25100.0	212500.0	262000.0	303500.0	850000.0
serum_creatinine	299.0	1.39	1.03	0.5	0.9	1.1	1.4	9.4
serum_sodium	299.0	136.63	4.41	113.0	134.0	137.0	140.0	148.0
sex	299.0	0.65	0.48	0.0	0.0	1.0	1.0	1.0
smoking	299.0	0.32	0.47	0.0	0.0	0.0	1.0	1.0
time	299.0	130.26	77.61	4.0	73.0	115.0	203.0	285.0
DEATH_EVENT	299.0	0.32	0.47	0.0	0.0	0.0	1.0	1.0

```
In [7]: ax = sns.distplot(data[data['DEATH_EVENT'] == 1][['age']])
ax.figure.set_size_inches(20, 5)
ax.set(title = 'Age vs Death', xlabel = 'age', ylabel = 'deaths')
```

Out[7]: [Text(0, 0.5, 'deaths'), Text(0.5, 0, 'age'), Text(0.5, 1.0, 'Age vs Death')]


```
In [8]: fig, axs = plt.subplots(1)
fig.set_size_inches(15, 5)
axs = sns.distplot(data[data['DEATH_EVENT'] == 1][['creatinine_phosphokinase']])
```



```
In [9]: ax = sns.distplot(data[data['DEATH_EVENT'] == 1][['platelets']])
    ax.figure.set_size_inches(20, 7)
    ax.set(title = 'Platelets vs Death', xlabel = 'Platelets', ylabel = 'deaths')
Out[9]: [Text(0, 0.5, 'deaths').
```



```
In [10]: ax = sns.distplot(data[data['DEATH_EVENT'] == 1][['serum_creatinine']])
    ax.figure.set_size_inches(20, 5)
    ax.set(title = 'Serum Creatinine vs Death', xlabel = 'Serum Creatinine', ylabel = 'deaths')

Out[10]: [Text(0, 0.5, 'deaths'),
    Toxt(0.5, 0. 'Serum Creatinine')
```



```
In [11]: sns.countplot(x = 'DEATH_EVENT', hue = 'high_blood_pressure', data = data)
```

Out[11]: <matplotlib.axes. subplots.AxesSubplot at 0x7faa66ed0890>

In [12]: sns.countplot(x = 'DEATH_EVENT', hue = 'diabetes', data = data)

Out[12]: <matplotlib.axes._subplots.AxesSubplot at 0x7faa66e3d450>


```
In [13]: sns.countplot(x = 'anaemia', hue = 'DEATH_EVENT', data = data)
```

Out[13]: <matplotlib.axes._subplots.AxesSubplot at 0x7faa66dbd050>

In [14]: sns.countplot(x = 'sex', hue = 'DEATH_EVENT', data = data)

Out[14]: <matplotlib.axes._subplots.AxesSubplot at 0x7faa66d25150>

Data Preparation

Classification

1: Decision Tree

1.1: Using all predictor variables

```
In [19]: conf_matrix = metrics.confusion_matrix(y_val, y_pred)
    sns.heatmap(conf_matrix, annot = True, fmt = ".3f", square = True, cmap = plt.cm.Blues)
    plt.ylabel('Actual')
    plt.xlabel('Predicted')
    plt.title('Confusion matrix')
    plt.tight_layout()
```



```
In [20]: accuracy = metrics.accuracy_score(y_val, y_pred)
    print("Accuracy: ", accuracy)
    error = 1 - accuracy
    print("Error: ", error)
    precision = metrics.precision_score(y_val, y_pred)
    print("Precision: ", precision)
    recall = metrics.recall_score(y_val, y_pred)
    print("Recall: ", recall)
    F1_score = metrics.f1_score(y_val, y_pred)
    print("F1 score: ", F1_score)
```

Accuracy: 0.8133333333333334 Error: 0.1866666666666665 Precision: 0.7241379310344828 Recall: 0.7777777777778

F1 score: 0.75

1.2: Using Age and Gender as predictor variables

```
In [24]: conf_matrix = metrics.confusion_matrix(y_val, y_pred)
    sns.heatmap(conf_matrix, annot = True, fmt = ".3f", square = True, cmap = plt.cm.Blues)
    plt.ylabel('Actual')
    plt.xlabel('Predicted')
    plt.title('Confusion matrix')
    plt.tight_layout()
```



```
In [25]: accuracy = metrics.accuracy_score(y_val, y_pred)
    print("Accuracy: ", accuracy)
    error = 1 - accuracy
    print("Error: ", error)
    precision = metrics.precision_score(y_val, y_pred)
    print("Precision: ", precision)
    recall = metrics.recall_score(y_val, y_pred)
    print("Recall: ", recall)
    F1_score = metrics.f1_score(y_val, y_pred)
    print("F1 score: ", F1_score)
```

1.3: Using Diabetes, High Blood Pressure and anaemia, platelets, smoking as predictor variables

```
In [29]: conf_matrix = metrics.confusion_matrix(y_val, y_pred)
    sns.heatmap(conf_matrix, annot = True, fmt = ".3f", square = True, cmap = plt.cm.Blues)
    plt.ylabel('Actual')
    plt.xlabel('Predicted')
    plt.title('Confusion matrix')
    plt.tight_layout()
```



```
In [30]: accuracy = metrics.accuracy_score(y_val, y_pred)
    print("Accuracy: ", accuracy)
    error = 1 - accuracy
    print("Error: ", error)
    precision = metrics.precision_score(y_val, y_pred)
    print("Precision: ", precision)
    recall = metrics.recall_score(y_val, y_pred)
    print("Recall: ", recall)
    F1_score = metrics.f1_score(y_val, y_pred)
    print("F1 score: ", F1_score)
```

1.4: Using creatinine_phosphokinase, serum_creatinine, serum_sodium and ejection_fraction as predictor variables

```
In [34]: conf_matrix = metrics.confusion_matrix(y_val, y_pred)
    sns.heatmap(conf_matrix, annot = True, fmt = ".3f", square = True, cmap = plt.cm.Blues)
    plt.ylabel('Actual')
    plt.xlabel('Predicted')
    plt.title('Confusion matrix')
    plt.tight_layout()
```



```
In [35]: accuracy = metrics.accuracy_score(y_val, y_pred)
    print("Accuracy: ", accuracy)
    error = 1 - accuracy
    print("Error: ", error)
    precision = metrics.precision_score(y_val, y_pred)
    print("Precision: ", precision)
    recall = metrics.recall_score(y_val, y_pred)
    print("Recall: ", recall)
    F1_score = metrics.f1_score(y_val, y_pred)
    print("F1 score: ", F1_score)
```

1.5: Using serum_creatinine and ejection_fraction as predictor variables

```
In [39]: conf_matrix = metrics.confusion_matrix(y_val, y_pred)
    sns.heatmap(conf_matrix, annot = True, fmt = ".3f", square = True, cmap = plt.cm.Blues)
    plt.ylabel('Actual')
    plt.xlabel('Predicted')
    plt.title('Confusion matrix')
    plt.tight_layout()
```



```
In [40]: accuracy = metrics.accuracy_score(y_val, y_pred)
    print("Accuracy: ", accuracy)
    error = 1 - accuracy
    print("Error: ", error)
    precision = metrics.precision_score(y_val, y_pred)
    print("Precision: ", precision)
    recall = metrics.recall_score(y_val, y_pred)
    print("Recall: ", recall)
    F1_score = metrics.f1_score(y_val, y_pred)
    print("F1 score: ", F1_score)
```

Accuracy: 0.72 Error: 0.28

Precision: 0.6363636363636364 Recall: 0.5185185185185 F1 score: 0.5714285714285714

2) K Nearest Neighbors

2.1: Using all predictor variables

```
In [43]: conf_matrix = metrics.confusion_matrix(y_val, y_pred)
    sns.heatmap(conf_matrix, annot = True, fmt = ".3f", square = True, cmap = plt.cm.Blues)
    plt.ylabel('Actual')
    plt.xlabel('Predicted')
    plt.title('Confusion matrix')
    plt.tight_layout()
```



```
In [44]: accuracy = metrics.accuracy_score(y_val, y_pred)
    print("Accuracy: ", accuracy)
    error = 1 - accuracy
    print("Error: ", error)
    precision = metrics.precision_score(y_val, y_pred)
    print("Precision: ", precision)
    recall = metrics.recall_score(y_val, y_pred)
    print("Recall: ", recall)
    F1_score = metrics.f1_score(y_val, y_pred)
    print("F1 score: ", F1_score)
```

2.2: Using Age and Gender Variables

```
In [48]: conf_matrix = metrics.confusion_matrix(y_val, y_pred)
    sns.heatmap(conf_matrix, annot = True, fmt = ".3f", square = True, cmap = plt.cm.Blues)
    plt.ylabel('Actual')
    plt.xlabel('Predicted')
    plt.title('Confusion matrix')
    plt.tight_layout()
```



```
In [49]: accuracy = metrics.accuracy_score(y_val, y_pred)
    print("Accuracy: ", accuracy)
    error = 1 - accuracy
    print("Error: ", error)
    precision = metrics.precision_score(y_val, y_pred)
    print("Precision: ", precision)
    recall = metrics.recall_score(y_val, y_pred)
    print("Recall: ", recall)
    F1_score = metrics.f1_score(y_val, y_pred)
    print("F1 score: ", F1_score)
```

2.3: Using Diabetes, High Blood Pressure and anaemia, platelets, smoking as predictor variables

```
In [53]: conf_matrix = metrics.confusion_matrix(y_val, y_pred)
    sns.heatmap(conf_matrix, annot = True, fmt = ".3f", square = True, cmap = plt.cm.Blues)
    plt.ylabel('Actual')
    plt.xlabel('Predicted')
    plt.title('Confusion matrix')
    plt.tight_layout()
```



```
In [54]: accuracy = metrics.accuracy_score(y_val, y_pred)
    print("Accuracy: ", accuracy)
    error = 1 - accuracy
    print("Error: ", error)
    precision = metrics.precision_score(y_val, y_pred)
    print("Precision: ", precision)
    recall = metrics.recall_score(y_val, y_pred)
    print("Recall: ", recall)
    F1_score = metrics.f1_score(y_val, y_pred)
    print("F1 score: ", F1_score)
```

2.4: Using creatinine_phosphokinase, serum_creatinine, serum_sodium and ejection_fraction as predictor variables

```
In [58]: conf_matrix = metrics.confusion_matrix(y_val, y_pred)
    sns.heatmap(conf_matrix, annot = True, fmt = ".3f", square = True, cmap = plt.cm.Blues)
    plt.ylabel('Actual')
    plt.xlabel('Predicted')
    plt.title('Confusion matrix')
    plt.tight_layout()
```



```
In [59]: accuracy = metrics.accuracy_score(y_val, y_pred)
    print("Accuracy: ", accuracy)
    error = 1 - accuracy
    print("Error: ", error)
    precision = metrics.precision_score(y_val, y_pred)
    print("Precision: ", precision)
    recall = metrics.recall_score(y_val, y_pred)
    print("Recall: ", recall)
    F1_score = metrics.f1_score(y_val, y_pred)
    print("F1 score: ", F1_score)
```

2.5: Using serum_creatinine and ejection_fraction as predictor variables

```
In [63]: conf_matrix = metrics.confusion_matrix(y_val, y_pred)
    sns.heatmap(conf_matrix, annot = True, fmt = ".3f", square = True, cmap = plt.cm.Blues)
    plt.ylabel('Actual')
    plt.xlabel('Predicted')
    plt.title('Confusion matrix')
    plt.tight_layout()
```



```
In [64]: accuracy = metrics.accuracy_score(y_val, y_pred)
    print("Accuracy: ", accuracy)
    error = 1 - accuracy
    print("Error: ", error)
    precision = metrics.precision_score(y_val, y_pred)
    print("Precision: ", precision)
    recall = metrics.recall_score(y_val, y_pred)
    print("Recall: ", recall)
    F1_score = metrics.f1_score(y_val, y_pred)
    print("F1 score: ", F1_score)
```

Accuracy: 0.64 Error: 0.36 Precision: 0.5

3) Naive Bayes

3.1: Using all predictor variables

```
In [67]: conf_matrix = metrics.confusion_matrix(y_val, y_pred)
    sns.heatmap(conf_matrix, annot = True, fmt = ".3f", square = True, cmap = plt.cm.Blues)
    plt.ylabel('Actual')
    plt.xlabel('Predicted')
    plt.title('Confusion matrix')
    plt.tight_layout()
```



```
In [68]: accuracy = metrics.accuracy_score(y_val, y_pred)
    print("Accuracy: ", accuracy)
    error = 1 - accuracy
    print("Error: ", error)
    precision = metrics.precision_score(y_val, y_pred)
    print("Precision: ", precision)
    recall = metrics.recall_score(y_val, y_pred)
    print("Recall: ", recall)
    F1_score = metrics.f1_score(y_val, y_pred)
    print("F1 score: ", F1_score)
```

3.2: Using Age and Gender Variables

```
In [72]: conf_matrix = metrics.confusion_matrix(y_val, y_pred)
    sns.heatmap(conf_matrix, annot = True, fmt = ".3f", square = True, cmap = plt.cm.Blues)
    plt.ylabel('Actual')
    plt.xlabel('Predicted')
    plt.title('Confusion matrix')
    plt.tight_layout()
```



```
In [73]: accuracy = metrics.accuracy_score(y_val, y_pred)
    print("Accuracy: ", accuracy)
    error = 1 - accuracy
    print("Error: ", error)
    precision = metrics.precision_score(y_val, y_pred)
    print("Precision: ", precision)
    recall = metrics.recall_score(y_val, y_pred)
    print("Recall: ", recall)
    F1_score = metrics.f1_score(y_val, y_pred)
    print("F1 score: ", F1_score)
```

3.3: Using Diabetes, High Blood Pressure and anaemia, platelets, smoking as predictor variables

```
In [77]: conf_matrix = metrics.confusion_matrix(y_val, y_pred)
    sns.heatmap(conf_matrix, annot = True, fmt = ".3f", square = True, cmap = plt.cm.Blues)
    plt.ylabel('Actual')
    plt.xlabel('Predicted')
    plt.title('Confusion matrix')
    plt.tight_layout()
```



```
In [78]: accuracy = metrics.accuracy_score(y_val, y_pred)
    print("Accuracy: ", accuracy)
    error = 1 - accuracy
    print("Error: ", error)
    precision = metrics.precision_score(y_val, y_pred)
    print("Precision: ", precision)
    recall = metrics.recall_score(y_val, y_pred)
    print("Recall: ", recall)
    F1_score = metrics.f1_score(y_val, y_pred)
    print("F1 score: ", F1_score)
```

Accuracy: 0.64 Error: 0.36 Precision: 0.0 Recall: 0.0 F1 score: 0.0

/home/ashwin/anaconda3/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1272: UndefinedMetri cWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` p arameter to control this behavior.

warn prf(average, modifier, msg start, len(result))

3.4: Using creatinine_phosphokinase, serum_creatinine, serum_sodium and ejection_fraction as predictor variables


```
In [83]: accuracy = metrics.accuracy_score(y_val, y_pred)
    print("Accuracy: ", accuracy)
    error = 1 - accuracy
    print("Error: ", error)
    precision = metrics.precision_score(y_val, y_pred)
    print("Precision: ", precision)
    recall = metrics.recall_score(y_val, y_pred)
    print("Recall: ", recall)
    F1_score = metrics.f1_score(y_val, y_pred)
    print("F1 score: ", F1_score)
```

Accuracy: 0.64 Error: 0.36 Precision: 0.5

Recall: 0.18518518518518517 F1 score: 0.2702702702703

3.5: Using serum_creatinine and ejection_fraction as predictor variables


```
In [88]: accuracy = metrics.accuracy_score(y_val, y_pred)
    print("Accuracy: ", accuracy)
    error = 1 - accuracy
    print("Error: ", error)
    precision = metrics.precision_score(y_val, y_pred)
    print("Precision: ", precision)
    recall = metrics.recall_score(y_val, y_pred)
    print("Recall: ", recall)
    F1_score = metrics.f1_score(y_val, y_pred)
    print("F1 score: ", F1_score)
```

4) Support Vector Machine

4.1: Using all predictor variables

```
In [91]: conf_matrix = metrics.confusion_matrix(y_val, y_pred)
    sns.heatmap(conf_matrix, annot = True, fmt = ".3f", square = True, cmap = plt.cm.Blues)
    plt.ylabel('Actual')
    plt.xlabel('Predicted')
    plt.title('Confusion matrix')
    plt.tight_layout()
```



```
In [92]: accuracy = metrics.accuracy_score(y_val, y_pred)
    print("Accuracy: ", accuracy)
    error = 1 - accuracy
    print("Error: ", error)
    precision = metrics.precision_score(y_val, y_pred)
    print("Precision: ", precision)
    recall = metrics.recall_score(y_val, y_pred)
    print("Recall: ", recall)
    F1_score = metrics.f1_score(y_val, y_pred)
    print("F1 score: ", F1_score)
```

Accuracy: 0.8133333333333334 Error: 0.186666666666665 Precision: 0.8421052631578947 Recall: 0.5925925925926 F1 score: 0.6956521739130435

4.2: Using Age and Gender Variables

```
In [96]: conf_matrix = metrics.confusion_matrix(y_val, y_pred)
    sns.heatmap(conf_matrix, annot = True, fmt = ".3f", square = True, cmap = plt.cm.Blues)
    plt.ylabel('Actual')
    plt.xlabel('Predicted')
    plt.title('Confusion matrix')
    plt.tight_layout()
```



```
In [97]: accuracy = metrics.accuracy_score(y_val, y_pred)
    print("Accuracy: ", accuracy)
    error = 1 - accuracy
    print("Error: ", error)
    precision = metrics.precision_score(y_val, y_pred)
    print("Precision: ", precision)
    recall = metrics.recall_score(y_val, y_pred)
    print("Recall: ", recall)
    F1_score = metrics.f1_score(y_val, y_pred)
    print("F1 score: ", F1_score)
```

4.3: Using Diabetes, High Blood Pressure and anaemia, platelets, smoking as predictor variables

```
In [101]: conf_matrix = metrics.confusion_matrix(y_val, y_pred)
    sns.heatmap(conf_matrix, annot = True, fmt = ".3f", square = True, cmap = plt.cm.Blues)
    plt.ylabel('Actual')
    plt.xlabel('Predicted')
    plt.title('Confusion matrix')
    plt.tight_layout()
```



```
In [102]: accuracy = metrics.accuracy_score(y_val, y_pred)
    print("Accuracy: ", accuracy)
    error = 1 - accuracy
    print("Error: ", error)
    precision = metrics.precision_score(y_val, y_pred)
    print("Precision: ", precision)
    recall = metrics.recall_score(y_val, y_pred)
    print("Recall: ", recall)
    F1_score = metrics.f1_score(y_val, y_pred)
    print("F1 score: ", F1_score)

Accuracy: 0.64
```

Accuracy: 0.64 Error: 0.36 Precision: 0.0 Recall: 0.0 F1 score: 0.0

/home/ashwin/anaconda3/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1272: UndefinedMetri cWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` p arameter to control this behavior.

_warn_prf(average, modifier, msg_start, len(result))

4.4: Using creatinine_phosphokinase, serum_creatinine, serum_sodium and ejection_fraction as predictor variables

```
In [104]: classifier = SVC(kernel='rbf')
          classifier.fit(x train scaled df[selected predictor variables], y train)
          /home/ashwin/anaconda3/lib/python3.7/site-packages/sklearn/utils/validation.py:760: DataConversionWarning:
          A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n samples, ),
          for example using ravel().
            y = column or 1d(y, warn=True)
Out[104]: SVC(C=1.0, break ties=False, cache size=200, class weight=None, coef0=0.0,
              decision_function_shape='ovr', degree=3, gamma='scale', kernel='rbf',
              max iter=-1, probability=False, random state=None, shrinking=True,
              tol=0.001, verbose=False)
In [105]: y pred = classifier.predict(x val scaled df[selected predictor variables])
In [106]: conf matrix = metrics.confusion matrix(y val, y pred)
          sns.heatmap(conf matrix, annot = True, fmt = ".3f", square = True, cmap = plt.cm.Blues)
          plt.ylabel('Actual')
          plt.xlabel('Predicted')
          plt.title('Confusion matrix')
          plt.tight layout()
```



```
In [107]: accuracy = metrics.accuracy_score(y_val, y_pred)
    print("Accuracy: ", accuracy)
    error = 1 - accuracy
    print("Error: ", error)
    precision = metrics.precision_score(y_val, y_pred)
    print("Precision: ", precision)
    recall = metrics.recall_score(y_val, y_pred)
    print("Recall: ", recall)
    Fl_score = metrics.fl_score(y_val, y_pred)
    print("Fl score: ", Fl_score)
```

4.5: Using serum_creatinine and ejection_fraction as predictor variables

```
In [111]: conf_matrix = metrics.confusion_matrix(y_val, y_pred)
    sns.heatmap(conf_matrix, annot = True, fmt = ".3f", square = True, cmap = plt.cm.Blues)
    plt.ylabel('Actual')
    plt.xlabel('Predicted')
    plt.title('Confusion matrix')
    plt.tight_layout()
```



```
In [112]: accuracy = metrics.accuracy_score(y_val, y_pred)
    print("Accuracy: ", accuracy)
    error = 1 - accuracy
    print("Error: ", error)
    precision = metrics.precision_score(y_val, y_pred)
    print("Precision: ", precision)
    recall = metrics.recall_score(y_val, y_pred)
    print("Recall: ", recall)
    F1_score = metrics.f1_score(y_val, y_pred)
    print("F1 score: ", F1_score)
```

Precision: 0.7

Recall: 0.5185185185185185 F1 score: 0.5957446808510639

Classification: Model Performances

• Decision Tree

Variables		Precision	Recall	F1 Score
All	0.81	0.72	0.78	0.75
Age & Gender	0.65	0.53	0.30	0.38
Diabetes, High BP, Platelets, Anaemia & Smoking	0.51	0.29	0.26	0.27
creatinine_phosphokinase, serum_creatinine,serum_sodium and ejection_fraction		0.46	0.48	0.47
serum_sodium and ejection_fraction	0.72	0.64	0.52	0.57

• K Nearest Neighbors

Variables		Precision	Recall	F1 Score
All	0.69	0.67	0.30	0.41
Age & Gender	0.59	0.42	0.37	0.39
Diabetes, High BP, Platelets, Anaemia & Smoking	0.55	0.33	0.26	0.29
creatinine_phosphokinase, serum_creatinine,serum_sodium and ejection_fraction		0.56	0.37	0.44
serum_sodium and ejection_fraction	0.64	0.50	0.44	0.47

Naive Bayes

Variables		Precision	Recall	F1 Score
All	0.67	0.57	0.30	0.39
Age & Gender	0.65	0.57	0.15	0.24
Diabetes, High BP, Platelets, Anaemia & Smoking	0.64	0.00	0.00	0.00
creatinine_phosphokinase, serum_creatinine,serum_sodium and ejection_fraction	0.64	0.50	0.19	0.27
serum_sodium and ejection_fraction	0.67	0.67	0.15	0.24

• Support Vector Machines

Variables		Precision	Recall	F1 Score
All	0.81	0.84	0.59	0.70
Age & Gender	0.65	0.57	0.15	0.24
Diabetes, High BP, Platelets, Anaemia & Smoking	0.64	0.00	0.00	0.00
$creatinine_phosphokinase, serum_creatinine, serum_sodium \ and \ ejection_fraction$		0.68	0.48	0.57
serum_sodium and ejection_fraction	0.75	0.70	0.52	0.60

Best performing classification model

Decision Tree using all predictor variables gives the best F1 Score

The performance of the model

Accuracy: 0.81Precision: 0.72Recall: 0.78F1 Score: 0.75

Selection of the parameters of the model

• Upon trial of many different combinations we understand that few group of variables do not contribute to the best performance of a model. So we chose all predictor variables for the classification as they give the best F1 score and performance.

```
In [113]: # Best performing classifiers & variables\n",
    # (DecisionTreeClassifier(criterion='entropy', random_state=0), ('age', 'anaemia', 'creatinine_phosphokin
    ase', 'platelets', 'serum_creatinine', 'serum_sodium', 'smoking', 'time'))\n",
    # (DecisionTreeClassifier(criterion='entropy', random_state=0), ('age', 'creatinine_phosphokinase', 'diab
    etes', 'platelets', 'serum_creatinine', 'serum_sodium', 'smoking', 'time'))\n",
    # (DecisionTreeClassifier(criterion='entropy', random_state=0), ('creatinine_phosphokinase', 'diabetes',
    'ejection_fraction', 'high_blood_pressure', 'platelets', 'serum_creatinine', 'serum_sodium', 'smoking',
    'time'))\n",
    # (DecisionTreeClassifier(criterion='entropy', random_state=0), ('ejection_fraction', 'serum_creatinine',
    'serum_sodium', 'time'))\n",
    # (DecisionTreeClassifier(criterion='entropy', random_state=0), ('ejection_fraction', 'high_blood_pressur
    e', 'serum_creatinine', 'serum_sodium', 'time'))"
```

5 Clustering

Following are the two true clusters based on "Serum Creatinine" and "Ejection Fraction"

5.1 Hierarchical Clustering - Single Linkage

5.1.1 All variables

```
In [116]: all_x = x_train_scaled_df.to_numpy()
```

```
In [117]: | clustering = linkage(all x, method="single", metric = "euclidean")
           clusters = fcluster(clustering, 2, criterion = 'maxclust')
In [118]: adjusted rand index = metrics.adjusted rand score(y train, clusters)
           silhouette coefficient = metrics.silhouette score(all x, clusters, metric = "euclidean")
          print([adjusted rand index, silhouette coefficient])
           [0.007441167976633384, 0.41639364203172197]
In [119]: data['clusters'] = clusters - 1
          ax = sns.scatterplot(data=data, x=col1, y=col2, hue='clusters')
          ax.set(title = '{} vs {}'.format(col1, col2), xlabel = col1, ylabel = col2)
Out[119]: [Text(0, 0.5, 'ejection fraction'),
           Text(0.5, 0, 'serum creatinine'),
           Text(0.5, 1.0, 'serum creatinine vs ejection fraction')]
                      serum creatinine vs ejection fraction
             80
             70
          ejection_fraction
```

dusters 0

• 1

8

6

serum creatinine

5.1.2: Using Age and Gender Variables

2

30

```
In [120]: selected predictor variables = ['age',
                                             sex'l
          x = x train scaled df.loc[:, selected predictor variables].to numpy()
In [121]: clustering = linkage(x, method="single", metric = "euclidean")
           clusters = fcluster(clustering, 2, criterion = 'maxclust')
In [122]: adjusted rand index = metrics.adjusted rand score(y train, clusters)
           silhouette coefficient = metrics.silhouette score(x, clusters, metric = "euclidean")
          print([adjusted rand index, silhouette coefficient])
           [-0.0018582102712868956, 0.551937322742283]
In [123]: data['clusters'] = clusters - 1
           ax = sns.scatterplot(data=data, x=col1, y=col2, hue='clusters')
          ax.set(title = '{} vs {}'.format(col1, col2), xlabel = col1, ylabel = col2)
Out[123]: [Text(0, 0.5, 'ejection fraction'),
           Text(0.5, 0, 'serum creatinine'),
           Text(0.5, 1.0, 'serum creatinine vs ejection fraction')]
                      serum creatinine vs ejection fraction
             80
             70
          ejection_fraction
+ S 9
```

dusters

0

1

serum creatinine

5.1.3: Using Health Problem Variables

8

serum creatinine

5.1.4: Using Body Parameter Variables

```
In [130]: adjusted rand index = metrics.adjusted rand score(y train, clusters)
           silhouette coefficient = metrics.silhouette score(x, clusters, metric = "euclidean")
           print([adjusted rand index, silhouette coefficient])
           [0.007441167976633384, 0.6662613003976123]
In [131]: data['clusters'] = clusters - 1
           ax = sns.scatterplot(data=data, x=col1, y=col2, hue='clusters')
          ax.set(title = '{} vs {}'.format(col1, col2), xlabel = col1, ylabel = col2)
Out[131]: [Text(0, 0.5, 'ejection_fraction'),
           Text(0.5, 0, 'serum creatinine'),
           Text(0.5, 1.0, 'serum creatinine vs ejection fraction')]
                       serum creatinine vs ejection fraction
              80
              70
             60
           ejection_fraction
              50
              30
                                                    dusters
```

5.1.5: Using Anaemia

20

2

6

serum creatinine

```
In [132]: selected_predictor_variables = ['anaemia']
x = x_train_scaled_df.loc[:, selected_predictor_variables].to_numpy()
```

```
In [133]: | clustering = linkage(x, method="single", metric = "euclidean")
           clusters = fcluster(clustering, 2, criterion = 'maxclust')
In [134]: adjusted rand index = metrics.adjusted rand score(y train, clusters)
           silhouette coefficient = metrics.silhouette score(x, clusters, metric = "euclidean")
           print([adjusted rand index, silhouette coefficient])
           [0.006938789172657143, 1.0]
In [135]: data['clusters'] = clusters - 1
           ax = sns.scatterplot(data=data, x=col1, y=col2, hue='clusters')
           ax.set(title = '{} vs {}'.format(col1, col2), xlabel = col1, ylabel = col2)
Out[135]: [Text(0, 0.5, 'ejection fraction'),
           Text(0.5, 0, 'serum creatinine'),
            Text(0.5, 1.0, 'serum creatinine vs ejection fraction')]
                       serum creatinine vs ejection fraction
              80
              70
             60
            ejection fraction
              30
                                                     dusters
                                                    0
              20
                                                  8
                        2
                                serum creatinine
```

2) Hierarchical Clustering - Complete Linkage

5.2.1 All variables

20

```
In [136]: all x = x train scaled df.to numpy()
In [137]: clustering = linkage(all x, method="complete", metric = "euclidean")
          clusters = fcluster(clustering, 2, criterion = 'maxclust')
In [138]: adjusted rand index = metrics.adjusted rand score(y train, clusters)
          silhouette coefficient = metrics.silhouette score(all x, clusters, metric = "euclidean")
          print([adjusted rand index, silhouette coefficient])
          [0.022507236951381675, 0.46861144710828245]
In [139]: data['clusters'] = clusters - 1
          ax = sns.scatterplot(data=data, x=col1, y=col2, hue='clusters')
          ax.set(title = '{} vs {}'.format(col1, col2), xlabel = col1, ylabel = col2)
Out[139]: [Text(0, 0.5, 'ejection fraction'),
           Text(0.5, 0, 'serum creatinine'),
           Text(0.5, 1.0, 'serum creatinine vs ejection fraction')]
                      serum creatinine vs ejection fraction
             80
             70
         ejection_fraction
9 9
```

dusters 0

• 1

8

serum_creatinine

5.2.2: Using Age and Gender Variables

8

5.2.3: Using Health Problem Variables

.

2

serum creatinine

```
In [146]: adjusted rand index = metrics.adjusted rand score(y train, clusters)
           silhouette coefficient = metrics.silhouette score(x, clusters, metric = "euclidean")
           print([adjusted rand index, silhouette coefficient])
           [-0.007387031337951726, 0.11014816465932352]
In [147]: data['clusters'] = clusters - 1
           ax = sns.scatterplot(data=data, x=col1, y=col2, hue='clusters')
          ax.set(title = '{} vs {}'.format(col1, col2), xlabel = col1, ylabel = col2)
Out[147]: [Text(0, 0.5, 'ejection fraction'),
           Text(0.5, 0, 'serum creatinine'),
           Text(0.5, 1.0, 'serum creatinine vs ejection fraction')]
                       serum creatinine vs ejection fraction
              80
              70
             60
            ejection fraction
              50
              30
                                                    dusters
```

8

6

serum creatinine

5.2.4: Using Body Parameter Variables

2

[0.02612613619798278, 0.6567989004211781]

8

5.2.5: Using Anaemia

2

serum creatinine

```
In [152]: selected_predictor_variables = ['anaemia']
    x = x_train_scaled_df.loc[:, selected_predictor_variables].to_numpy()

In [153]: clustering = linkage(x, method="complete", metric = "euclidean")
    clusters = fcluster(clustering, 2, criterion = 'maxclust')
```

```
In [154]: adjusted rand index = metrics.adjusted rand score(y train, clusters)
           silhouette coefficient = metrics.silhouette score(x, clusters, metric = "euclidean")
           print([adjusted rand index, silhouette coefficient])
           [0.006938789172657143, 1.0]
In [155]: data['clusters'] = clusters - 1
           ax = sns.scatterplot(data=data, x=col1, y=col2, hue='clusters')
           ax.set(title = '{} vs {}'.format(col1, col2), xlabel = col1, ylabel = col2)
Out[155]: [Text(0, 0.5, 'ejection fraction'),
           Text(0.5, 0, 'serum creatinine'),
           Text(0.5, 1.0, 'serum creatinine vs ejection fraction')]
                      serum creatinine vs ejection fraction
              80
             70
         ejection_fraction
9 9
```

dusters 0

1

3) KMeans Clustering

30

20

2

serum_creatinine

5.3.1: All variables

```
In [156]: | all x = x train scaled df.to numpv()
In [157]: | clustering = KMeans(n clusters = 2, init = 'random', n init = 10, random state=0).fit(all x)
           clusters = clustering.labels
In [158]: adjusted rand index = metrics.adjusted rand score(y train, clusters)
           silhouette coefficient = metrics.silhouette score(all x, clusters, metric = "euclidean")
           print([adjusted rand index, silhouette coefficient])
           [-0.0036799581865726927, 0.1178512561512019]
In [159]: data['clusters'] = clusters
           ax = sns.scatterplot(data=data, x=col1, y=col2, hue='clusters')
           ax.set(title = '{} vs {}'.format(col1, col2), xlabel = col1, ylabel = col2)
Out[159]: [Text(0, 0.5, 'ejection fraction'),
           Text(0.5, 0, 'serum creatinine'),
           Text(0.5, 1.0, 'serum creatinine vs ejection fraction')]
                      serum creatinine vs ejection fraction
              80
             70
         ejection_fraction
9 9
             30
                                                    dusters
                        2
                                         6
                                                  8
```

5.3.2 Using Age and Gender Variables

serum_creatinine

```
In [160]: selected predictor variables = ['age',
                                             sex'l
          x = x train scaled df.loc[:, selected predictor variables].to numpy()
In [161]: clustering = KMeans(n clusters = 2, init = 'random', n init = 10, random state=0).fit(x)
           clusters = clustering.labels
In [162]: adjusted rand index = metrics.adjusted rand score(y train, clusters)
           silhouette coefficient = metrics.silhouette score(x, clusters, metric = "euclidean")
           print([adjusted rand index, silhouette coefficient])
           [-0.0018582102712868956, 0.551937322742283]
In [163]: data['clusters'] = clusters
           ax = sns.scatterplot(data=data, x=col1, v=col2, hue='clusters')
           ax.set(title = '{} vs {}'.format(col1, col2), xlabel = col1, ylabel = col2)
Out[163]: [Text(0, 0.5, 'ejection fraction'),
           Text(0.5, 0, 'serum creatinine'),
           Text(0.5, 1.0, 'serum creatinine vs ejection fraction')]
                      serum creatinine vs ejection fraction
             80
             70
             60
           ejection_fraction
             50
```

dusters 0 • 1 8

serum_creatinine

40

5.3.3 Using Health Problem Variables

5.3.4 Using Body Parameter Variables

2

serum creatinine

```
In [170]: adjusted rand index = metrics.adjusted rand score(y train, clusters)
           silhouette coefficient = metrics.silhouette score(x, clusters, metric = "euclidean")
           print([adjusted rand index, silhouette coefficient])
           [0.15419143591523968, 0.24027667508494274]
In [171]: data['clusters'] = clusters
           ax = sns.scatterplot(data=data, x=col1, y=col2, hue='clusters')
          ax.set(title = '{} vs {}'.format(col1, col2), xlabel = col1, ylabel = col2)
Out[171]: [Text(0, 0.5, 'ejection_fraction'),
           Text(0.5, 0, 'serum creatinine'),
           Text(0.5, 1.0, 'serum creatinine vs ejection fraction')]
                       serum creatinine vs ejection fraction
              80
             70
             60
           ejection_fraction
             50
             30
```

5.3.5 Using Anaemia

20

2

```
In [172]: selected_predictor_variables = ['anaemia']
x = x_train_scaled_df.loc[:, selected_predictor_variables].to_numpy()
```

dusters

8

6

serum creatinine

```
In [173]: clustering = KMeans(n_clusters = 2, init = 'random', n_init = 10, random_state=0).fit(x)
clusters = clustering.labels_
In [174]: adjusted_rand_index = metrics.adjusted_rand_score(y_train, clusters)
    silhouette_coefficient = metrics.silhouette_score(x, clusters, metric = "euclidean")
    print([adjusted_rand_index, silhouette_coefficient])
    [0.006938789172657143, 1.0]
In [175]: data['clusters'] = clusters
    ax = sns.scatterplot(data=data, x=coll, y=col2, hue='clusters')
    ax.set(title = '{} vs {}'.format(coll, col2), xlabel = col1, ylabel = col2)
Out[175]: [Text(0, 0.5, 'ejection_fraction'),
    Text(0.5, 0, 'serum_creatinine'),
    Text(0.5, 1.0, 'serum_creatinine vs ejection_fraction')]
```


Classification: Model Performances

• Hierarchical Clustering - Single Linkage

Variables	Rand Index	Silhouette Coefficient
All	0.007	0.416
Age & Gender	-0.001	0.552
Health Problem	-0.003	0.543
Body Parameters	0.007	0.666
Anaemia	0.007	1.0

• Hierarchical Clustering - Complete Linkage

Variables	Rand Index	Silhouette Coefficient
All	0.022	0.469
Age & Gender	0.111	0.342
Health Problem	-0.007	0.11
Body Parameters	0.026	0.657
Anaemia	0.007	1.0

KMeans Clustering

Variables	Rand Index	Silhouette Coefficient
All	-0.003	0.117
Age & Gender	-0.001	0.552
Health Problem	-0.005	0.246
Body Parameters	0.154	0.240
Anaemia	0.007	1.0

In []:		