

Facultad Regional Mar del Plata - TECNICO SUPERIOR EN PROGRAMACIÓN Elementos de la Investigación Operativa

Programación Lineal Particular: Problemas de Transporte y Asignación

1) Tres corredores A, B, C poseen productos que desean vender en 3 almacenes X, Y, Z. Las disponibilidades de los corredores y los requerimientos de los almacenes están dados en la siguiente tabla, como así también el gasto que ocasionan de transporte hasta los almacenes. Se desea saber cuántas unidades debe vender cada corredor a cada almacén para que el gasto por movilidad se mínimo.

Orígenes\ Destinos	X	Υ	Z	Di
Α	2	4	5	50
В	7	3	6	70
С	5	1	9	60
Rj	25	90	65	180/180

Resolver por los tres métodos conocidos.

2) El Centro de Cómputos de la Facultad tiene tres programadores: Marcela, Rocío y Patricia. El Lic. Carlo ha recibido cinco trabajos para programación. Cada uno de los cuales requiere una semana de labor. Asignar dos programadores a un trabajo no es rentable, además el Lic. Carlo quiere asignar un programador a cada trabajo y rechazar dos de ellos, de tal manera que pueda maximizar su utilidad. La siguiente tabla presenta las unidades de utilidad de cada trabajo por cada programador. Es necesario aclarar que la utilidad de cada trabajo depende de quién esté asignado a él.

Programadores\ Trabajos	T1	T2	Т3	T4	T5
Marcela	10	70	20		42
Rocío	50	90	50	40	62
Patricia	30	80	40	35	58

3) Una empresa que se dedica a la fabricación de botines de fútbol, tiene tres plantas ubicadas cada una en Munro, San Luis y Neuquén. Asimismo, cuenta con cuatro depósitos. La tabla siguiente presenta los costos unitarios de transporte y los requerimientos y capacidad en miles de unidades de sus depósitos y plantas.

Depósitos \ Plantas	Cap.Fed.	Rosario	Córdoba	M.d.P.	Cap.máx.plantas
Munro	50	60	90	15	500
San Luis	80	3 0	80	10	150
Neuquén	15	20	50	12	125
Demanda	30	30	100	50	

Formular una óptima política de transporte. Plantear la solución inicial por el método del Noroeste (NWC).

4) Para cubrir 4 cargos vacantes en una empresa se presentaron 4 operarios, se desea saber cuál será la asignación más conveniente para la empresa, si los costos de tener cada empleado en los distintos cargos se dan en la siguiente tabla.

	C1	C2	C3	C4
01	4	6	6	7
02	5	7	3	12
О3	6	2	8	5
04	11	3	3	5

5) Una fábrica de muebles ha decidido producir tres tipos de muebles para oficina. Actualmente cuatro de sus plantas tienen capacidad de producción en exceso. La tabla siguiente presenta el costo de producción (en miles de pesos) de cada producto en cada planta, y la capacidad diaria de producción en cada una de ellas.

Facultad Regional Mar del Plata - TECNICO SUPERIOR EN PROGRAMACIÓN Elementos de la Investigación Operativa

Programación Lineal Particular: Problemas de Transporte y Asignación

Plantas\ Muebles	M1	M2	М3	Capacidad de producción
P1	10	6	8	200
P2	8	7	7	300
P3	9	5	8	200
P4	11	6	0	300

El pronóstico de ventas demuestra que es posible vender 500, 300 y 400 unidades de los productos 1, 2, y 3, respectivamente. Las plantas pueden fabricar un producto completamente o una combinación de productos según sus posibilidades.

El director de la empresa, quiere saber cómo deberá asignar los nuevos productos a las plantas para minimizar el costo total de fabricación. Plantear la solución inicial por el método de Ballas-Hammer o de aproximación de Vogel (VAM).

6) En tres fábricas de una terminal automotriz se producen un modelo de automóvil que se debe transportar a centros de distribución. El requerimiento semanal de los centros es de 1200, 2000, 3800 y 4200 respectivamente; mientras que la capacidad de producción es de 3500, 6200 y 5100 unidades por fábrica. La tabla siguiente nos proporciona el costo unitario de transporte.

Fábricas \Centros de distrib.	C1	C2	C3	C4
F1	85	110	105	90
F2	70	130	160	110
F3	120	125	130	190

Determine la distribución óptima. Plantee la solución inicial por el método de los costos mínimos.

7) Cierta empresa fabrica un material especial de base de aceite que escasea en estos momentos. Los clientes ya han colocado los pedidos y los administradores deben decidir cuantas unidades deben enviar a cada cliente. Después de considerar el precio, los costos de producción y costos de transporte, la firma ha establecido las siguientes utilidades por unidad para cada alternativa de planta y cliente Las capacidades de las plantas y los pedidos de los clientes se detallan en la siguiente tabla:

Dootings \ Onimons		_	_	al:
Destinos \ Orígenes	Ε	Г	G	aı
Α	2	4	7	10
В	8	5	2	5
С	9	2	8	7
D	7	6	4	6
ri	8	9	11	

8) A un grupo de 5 operarios se les toma una prueba en 5 máquinas distintas obteniéndose la siguiente tabla de calificaciones:

	M1	M2	М3	M4	M5
01	10	6	5	8	6
02	7	9	8	7	6
О3	3	5	6	9	7
04	4	7	6	5	10
O5	6	6	8	5	4

¿Cuál deberá ser la asignación de máquinas para obtener la mayor eficiencia de operación?

Facultad Regional Mar del Plata - TECNICO SUPERIOR EN PROGRAMACIÓN Elementos de la Investigación Operativa

Programación Lineal Particular: Problemas de Transporte y Asignación

RESULTADOS DE LOS PROBLEMAS

1)

Transportar de	а	Una cantidad de	A un costo de
Α	X	25	50
Α	Z	25	125
В	Y	30	90
В	Z	40	240
С	Y	60	60
	565		

2) Maximizar

Programadores\ Trabajos	T1	T2	Т3	T4	T5
Marcela a T2		70			
Rocío a T1 ó T3	50		50		
Patricia a T5					58

Quedan sin cubrir T4 y T1 ó T3

3)

Transportar de	а	Una cantidad de	A un costo de
San Luis	Rosario	30	900
San Luis	Córdoba	5	400
San Luis	Mar del Plata	50	500
Neuquén	CABA	30	450
Neuquén	Córdoba	95	4.750
		Costo total	7 000

Quedan es stock en	Una cantidad de
Munro	500
San Luis	65

4) Minimizar

	C1	C2	C3	C4
01	4			
02			3	
О3		2		
04				5

Costo total: 14

5)

Fabricar en	Mueble	Una cantidad de	A un costo de
Planta 1	2	100	600
Planta 1	3	100	800
Planta 2	1	300	2.400
Planta 3	2	200	1.000
Planta 4	3	300	0
Costo total 4.800			

Quedan sin fabricarUna cantidad deMueble 1200

6)

Transportar de la Fábrica	Al Centro de distribución	Una cantidad de	A un costo de
1	3	3.500	367.500
2	1	1.200	84.000
2	4	4.200	462.000
3	2	2.000	250.000
3	3	300	39.000
Costo total			1.202.500

Quedan sin fabricar en	Una cantidad de
Fábrica 2	800

Facultad Regional Mar del Plata - TECNICO SUPERIOR EN PROGRAMACIÓN Elementos de la Investigación Operativa Programación Lineal Particular: Problemas de Transporte y Asignación

Fábrica 3	2.800
-----------	-------

7)

Transportar de	Al cliente	Una cantidad de	A un costo de
Α	E	8	16
Α	F	2	8
В	G	5	10
С	F	7	14
D	G	6	24
Costo total			72

8) Maximizar

	M1	M2	М3	M4	M5
01	10				
02		9			
О3				9	
04					10
O5			8		