The Mathematics Behind Neural Networks

STIVERSITY ON 18 56

Pattern Recognition and Machine Learning by Christopher M. Bishop

Student: Shivam Agrawal

Mentor: Nathaniel Monson

Courtesy of xkcd.com

The Black Box

"Training" the network tunes a network function.

This **network function** is used to approximate functions that we believe model some data.

For example, we believe that whether a picture has a dog or a cat is modeled by some function, and we train NN's to approximate this function.

Structure of a NN

- Input Layer
- Hidden Layers
- Output Layers

Individual neurons make up layers

- Input Vector of activations of previous layer
- Weights Vector for linear transformation of input
- Bias To shift function
- Activation Function Applies nonlinear transformation
- Activation Output of neuron

Actually Seeing It

	w ₃₁₁ * f ($\mathbf{w}_{211} * \mathbf{f} (\mathbf{w}_{111} * \mathbf{x}_0 + \mathbf{w}_{112} * \mathbf{x}_1 + \mathbf{b}_0)$	+ b ₁)		
		$\mathbf{w}_{212} * \mathbf{f} (\mathbf{w}_{121} * \mathbf{x}_0 + \mathbf{w}_{122} * \mathbf{x}_1 + \mathbf{b}_0)$			
		$\mathbf{w}_{213} * \mathbf{f} (\mathbf{w}_{131} * \mathbf{x}_0 + \mathbf{w}_{132} * \mathbf{x}_1 + \mathbf{b}_0)$			
1	W ₃₁₂ * f ($w_{221} * f(w_{111} * x_0 + w_{112} * x_1 + b_0)$			
		$\mathbf{w}_{222} * \mathbf{f} (\mathbf{w}_{121} * \mathbf{x}_0 + \mathbf{w}_{122} * \mathbf{x}_1 + \mathbf{b}_0)$	$+b_1$)	+ b ₂)	= O
1		$\mathbf{w}_{223} * \mathbf{f} (\mathbf{w}_{131} * \mathbf{x}_0 + \mathbf{w}_{132} * \mathbf{x}_1 + \mathbf{b}_0)$			
	W ₃₁₃ * f ($\mathbf{w}_{231} * \mathbf{f} (\mathbf{w}_{111} * \mathbf{x}_0 + \mathbf{w}_{112} * \mathbf{x}_1 + \mathbf{b}_0)$	+ b ₁)		
		$w_{232} * f(w_{121} * x_0 + w_{122} * x_1 + b_0)$			
		$w_{233} * f(w_{131} * x_0 + w_{132} * x_1 + b_0)$			

\	w ₃₁₁ * f ($\begin{aligned} w_{211} * f (w_{111} * x_0 + w_{112} * x_1 + b_0) \\ w_{212} * f (w_{121} * x_0 + w_{122} * x_1 + b_0) \\ w_{213} * f (w_{131} * x_0 + w_{132} * x_1 + b_0) \end{aligned}$	+ b ₁)	
	W ₃₁₂ * f ($w_{221} * f(w_{111} * x_0 + w_{112} * x_1 + b_0)$ $w_{222} * f(w_{121} * x_0 + w_{122} * x_1 + b_0)$ $w_{223} * f(w_{131} * x_0 + w_{132} * x_1 + b_0)$	+ b ₁)	+ b ₂)
	w ₃₁₃ * f ($w_{231} * f(w_{111} * x_0 + w_{112} * x_1 + b_0)$ $w_{232} * f(w_{121} * x_0 + w_{122} * x_1 + b_0)$ $w_{233} * f(w_{131} * x_0 + w_{132} * x_1 + b_0)$	+ b ₁)	

 $= O_2$

Application to Digit Recognition

We believe there is some function out there, that if we give it a picture of a digit represented as a vector, that it can **classify** the picture as either 0, 1, 2, 3, 4, 5, 6, 7, 8, or 9

```
D00000000000000
222422222222222222222
83333333333333333333333
44444444444444444444444
66666666666666666666
 フフマァファフィフリファ
88888888888888888888888
```

The Network Structure

784 inputs, 1 hidden layer with 10 neurons, output layer with 10 neurons corresponding to probability that the image is of the (n-1)th digit for the nth neuron

Optimizing the Network

But how do we set the weights and biases and the number of layers and the number of neurons and...(the list goes on and on) \rightarrow We train the network

Learnable Parameters

Parameters that the network learns over the training period

- Weights
- Biases

Hyper Parameters

Parameters that humans must set before the network training begins

- Structure of the network (number of layers, number of neurons per layer, activation function)
- Learning Rate
- Error Function

Step 1 of Training: How Wrong is It?

To optimize the network, we need to quantify how wrong the network is:

Cost Function (AKA Error Function) \rightarrow A function of the input, weights, and bias

$$E(\mathbf{x}, \mathbf{W}, \mathbf{b}) = \frac{1}{N} \sum_{i=1}^{N} ||y_{pred} - y_{actual}||^2$$

Step 2 of Training: Minimize How Wrong It is!

Error function is a function of input, weights, and biases. Inputs are constant, but weights and biases can be changed.

Say we want to move from point A on the function to point B such that the value of the error function is lower at B than at A.

How? \rightarrow Move in the direction **OPPOSITE** the gradient. (gradient with respect to weights of a layer and gradient with respect to biases of a layer)

Descending The Curve → Gradient Descent

$$\mathbf{w}^{t+1} = \mathbf{w}^t - \eta \nabla C$$

Where w is a weight in layer l, neuron i, weight j

t is the index of the iteration

 ${\bf n}$ is the learning rate and $\nabla {\bf C}$ is the cost with respect to this weight

Opposite direction \rightarrow negative sign

Same idea for biases

Types of Gradient Descent

Different Ways - Batch works best in practice considering training time vs accuracy

- Over entire data set batch gradient descent
- Over portion mini-batch gradient descent
- Over single input stochastic gradient descent

Calculating the Gradient

- Using Limits
- Backpropagation

$$\nabla C = \frac{1}{N} \sum_{i=1}^{N} \nabla C_i$$

$$\nabla C = \frac{1}{n} \sum_{i=1}^{n} \nabla C_i$$

$$\nabla C = \nabla C_i$$

Calculate Using Limits

$$\frac{\partial C}{\partial w_{ij}^{(l)}} = \frac{C_2 - C_1}{2\epsilon}$$

Calculate cost after altering a single weight

Calculate
$$C_2$$
 with $w_{ij}^{(l)} o w_{ij}^{(l)} + \epsilon$

Calculate
$$C_1$$
 with $w_{ij}^{(l)} \rightarrow w_{ij}^{(l)} - \epsilon$

Same idea for biases

Calculate Using Backprop

Intuition: Any change in a neuron will impact the output of the entire layer, which then impacts the output of the next layer, and keeps going till the end of the network → the error propagates forward.

$$\delta^{(l)} = ((w^{(l+1)})^T \delta^{(l+1)}) \odot f'(z^{(l)})$$

The weights are a scaling factor for the previous layer's output

A value to represent the error in the rest of the network, caused by the change in z How the change in z affected output of neuron, i.e. the change in activation

Nuances

Neural network requires a significant amount of human input:

- Structure of network (number of layers, number of neurons, etc.)
- Choice of Cost function
- Choice of Activation function
- Optimization technique
- Learning rate

Hyperparameters → parameters set before learning and remain constant

Problem: How to pick the right hyperparameters \rightarrow Good news

Overfitting \rightarrow Risk of creating a network function that predicts extremely well for training data, but extremely poor on test data.

Talk about solutions to these problems.

Network Training Results

Network Parameters:

- Number of Epochs: 30000
- Batch Size: 100
- Learning Rate: 0.5

Results: Around 75% accuracy → this is really bad! (for MNIST)

```
(nn) wireless-10-104-42-111:bin shivamagrawal$
```

Future

75% accuracy may be good for certain situations, but it is really bad when the data is as "easy" as MNIST - all the digits are centered, there is little deviation between labels (only so many ways to write a digit), and there is a lot of data.

To improve this accuracy:

- Optimize hyperparameters there are algorithms that can change the learning rate over time, deactivate/activate neurons to prevent overfitting, etc.
- Use a Convolutional Neural Network Specifically for images, "3D" connectivity between neurons.

Questions?

P.S. If you need someone to get you coffee everyday, or possibly translate some math into Matlab, Python, Java (soon to include C and R) code, let's talk!

Or drop me a line at **sagrawa2@terpmail.umd.edu**