Control System Laboratory Elect. Engg. Dept. IIT Kharagpur

Experiment No - 1

Study of Galvanometer

Objective:

- (i). Finding galvanometer Constants.
- (ii). Finding Transient Response of Galvanometer.
- (iii). Finding Frequency Response of Galvanometer.

(i) Finding Galvanometer Constants

- a) To determine free period T of the galvanometer on open circuit, keep R=0, and get a deflection of 20cms on the scale by adjusting P and Q in Fig. 1. Then open K_2 and find the time (in seconds) taken for a few oscillations. $\therefore T = \text{time/no}$ of oscillations.
- b) To determine coil resistance R_c (in ohms) of the galvanometer, keep R=0, and get a deflection of 20cms on the scale by adjusting P and Q in Fig. 1. Then increase R gradually so that the deflection is 10cms. This of R is R_c .

c) To determine sensitivity S (in radians per ampere) of the galvanometer, keep $R+R_{\rm c}$ a convenient value in Fig. 1, get the deflections corresponding to few different values of P.

The deflection of the coil in radian measure

Fig. 3

is
$$\theta = \frac{d_{mm}}{2*1000}$$
 if $2\theta \le 10^{\circ}$

or
$$\theta = \frac{1}{2} \tan -1 \left(\frac{dmm}{1000} \right)$$
 if $20 < 10^{\circ}$

plot θ vs galvanometer current I_g . Obtain current sensitivity S from the slope of the curve. Since P<<0

$$I_g = \frac{E_1}{R + R_c}$$
 Where $E_1 \square \frac{E * P}{P + Q}$

d) To determine external resistance R_s for critical damping of the galvanometer close keys K_1 and K_2 in Fig. 2, and when the deflection is 20cms, open K_2 . Now observe the movement of the light spot on the scale. First adjust R so as to obtain oscillatory motion, and then decrease R until the motion just ceases to be oscillatory. Note down the value of R for R_s .

Calculate the galvanometer constants from

Displacement constant
$$G = \frac{T(R_c + R_s)}{\pi S} mw - m/amp$$

Roatorating constant
$$C = \frac{T(R_c + R_s)}{\pi S^2} nw - m/rad$$

Movement of inertia of the moving system,
$$a = \frac{T^3 (R_c + R_s)}{4\pi^3 S^2} kg - m^2$$

2

(ii) Finding Transient Response of Galvanometer

Fig. 4

(a) Refer to Figs. 1 and 4. Note deflections θ_1 and θ_2 for two consecutive swings of the galvanometer under open circuit damping ratio

$$\delta_0 = \frac{1}{\pi} \log_e \left(\frac{\theta_1}{\theta_2} \right)$$

(b) Refer to Fig. 1 and 5 set different values for damping ratio δ using the formula

$$\delta = \delta_0 + \frac{G^2/R}{2\sqrt{ac}}$$

and for each value of R so set, note first throw θ_1 and final steady deflection θ . In each case calculate percent maximum overshoot using the formula

percent maximum overshoot =
$$\frac{\theta_1 - \theta_f}{\theta_f} X100$$

plot percent maximum overshoot verses δ

(iii) Finding frequency response of Galvanometer

Replace d.c. source by a low frequency function generator with output in sine wave mode. Natural frequency of the galvanometer is approximately given by $\omega_n = \frac{2_n}{T} rad/\sec$

(a) For $\delta = 0.2$, very frequency in the range $\frac{\omega_n}{20} \le \omega \le 20\omega_n$ and note amplitude of oscillation on the scale. The frequency must be varied in small steps since the amplitude of oscillations falls off sharply on either side of ω_n . Plot amplitude of oscillations verse \log_{10}^{w} repeat the above for $\delta = 0.4, 0.6, 0.8$ and 1.0.