Smart Mobility ARChitecture

Hardware Specification

SMARC 2.2 Specification 2024-06-12

1 Introduction

1.1 Legal

© Copyright 2024, SGET Standardization Group for Embedded Technology e.V.

Note that some content of this SGET document may be legally protected by patent rights not held by SGET. SGET is not obligated to identify the parts of this specification that require licensing or other legitimization. The contents of this SGET document are advisory only. Users of SGET documents are responsible for protecting themselves against liability for infringement of patents. All content and information within this document are subject to change without prior notice.

SGET provides no warranty with regard to this SGET document or any other information contained herein and hereby expressly disclaims any implied warranties of merchantability or fitness for any particular purpose with regard to any of the foregoing. SGET assumes no liability for any damages incurred directly or indirectly from any technical or typographical errors or omissions contained herein or for discrepancies between the product and this SGET document. In no event shall SGET be liable for any incidental, consequential, special, or exemplary damages, whether based on tort, contract or otherwise, arising out of or in connection with this SGET document or any other information contained herein or the use thereof.

1.2 Revision History

Rev	Date	Originator	Notes	
1.0	Dec. 20, 2012	S. Milnor	Initial release	
1.1	May 29, 2014	S. Milnor	Change notes for V1.0 to V1.1 can be found in the V1.1 document	
2.0	June 2, 2016	C. Eder	See section 9.1 'Changes V1.1 to V2.0' on page 95	
2.1	March 23, 2020	C. Eder	See section 9.2 'Changes V2.0 to V2.1' on page 96	
2.1.1	May 20, 2020	C. Eder	Removed wrong AC coupling comment in Table 8: Secondary HDMI Signals in section 3.5.1 HDMI	
2.2	June 12, 2024	S. Yagci	See section 9.4 'Changes V2.1.1 to V2.2' on page 97	

Table 1: Revision History

1.3 Table of Contents

1	Intr	oduction	2
			2
		Revision History	2
	1.3	Table of Contents	3
		List of Figures	
		List of Tables	
	1.6	General Introduction	7
	1.7	Purpose of This Document	7
		Document and Standards References	
2		dule Overview	
	2.1		
	2.2	Module Interface Summary	
3		dule Interface Required and Optional Features	
	3.1	Required and Optional Feature Table	
	3.2	Feature Fill Order	
		Signal Direction and Type Definitions	
		Primary Display Interfaces	
		3.4.1 LVDS	_19
		3.4.2 eDP	_21
		3.4.4 IV/DS / aDD / MIDL DSI Dia Sharing	_23 24
	2.5	3.4.4 LVDS / eDP / MIPI DSI Pin Sharing	_24 25
	3.5	Secondary Display Interface	_∠ɔ 25
		3.5.2 DP++	_26
		3.5.3 Secondary HDMI / DP++ Pin Sharing	_ _27
	3.6	Third Display Interface	_28
		3.6.1 DP++	_28
	3.7		_29
		3.7.1 1st and 2nd MIPI CSI on SMARC Edge Connector	_29
	2.0	•	
		SDIO Card (4 bit) Interface	_34
	3.9	SPI Interfaces	_35 35
		3.9.1 SPI0	_35
		3.9.3 QSPI	_36

	3.9.4	eSPI	37
	3.9.5	eSPI/SPI1/QSPI Pin Sharing	38
	3.10 Audio _	1250	39
	3.10.1	1230	
	3.10.2		
	3.10.3 3.10.4	0	4.4
	3.10.4		
		erfaces	
		ronous Serial Ports	
		us	
	3.14 USB Int		
	3.14.1	USB Signal Assignments	45
	3.14.2	USB configurations	46
	3.14.3	USB Signals	47
		USB[0:5]_EN_OC# Discussion	
	3.15 PCI Exp	oress PCI Express Link Width	50
	3.16 SERDE		53
	3.16.1		
		et	
	3.19 Watchd	log	58
	3.20 GPIO_		59
		Alternative GPIO Pin Usage	60
		GPIO Pin Sharing	
	3.21 Manage	ement Pins	61
	3.22 Boot Se	elect	63
	3.23 Power a	and GND	65
	3.24 JTAG _		66
		Terminations	
		General	
4		-Out Map	
	4.1 Module	Pin-Out	68
5	Mechanical	Definitions	73

	5.1	Carrier Connector	73
	5.2	Connector Pin Numbering Convention	74
	5.3	Module Outline – 82x50mm Module	75
	5.4	Module Outline – 82x80mm Module	
		5.4.1 RF Connector Placement	77
	5.5	Module 'Z' Height Considerations	78
	5.6	Carrier Board Connector PCB Footprint	79
	5.7	GND Connection Mounting Holes	80
	5.8	Carrier Board Standoffs	80
		Thermal Attachment Points	
	5.10	Heat Spreader – 82mm x 50mm Module	81
	5.11	Heat Spreader – 82mm x 80mm Module	84
	5.12	2 Mechanical Tolerances	85
6	Mod	dule Power	86
	6.1	Input Voltage / Main Power Rail	86
	6.2	No Separate Standby Voltage	86
	6.3	RTC Voltage Rail	86

	6.4 Power Rail Definition			87
	6.5	Power S	Sequencing	88
		6.5.1	Power up sequence scenario 1	88
		6.5.2	Power up sequence scenario 2	89
		6.5.3	Power up sequence scenario 3	90
		6.5.4	Power up sequence scenario 4	91
7	MO	DULE A	ND CARRIER SERIAL EEPROMS	92
8	App	oendix A	: LVDS LCD Color Mappings	93
	8.1	LVDS L	CD Color Mappings	93
		8.1.1	Single Channel Color Mapping	94
9	App	oendix B	: Document Changes	95
	9.1	Change	s V1.1 to V2.0	95
	9.2	Change	s V2.0 to V2.1	96
	9.3	Change	s V2.1 to V2.1.1	96
	9.4	Change	s V2.1.1 to V2.2	97
	9.5	Pinout (Comparison	97
	9.6	Signal N	Name Index	106

1.4 List of Figures

Figure 1: MIPI CSI feature connector placement (82x50mm Module)_	_33
Figure 2: MIPI CSI feature connector placement (82x80mm Module)_	_33
Figure 3: JTAG Connector	_66
Figure 4: 82x50mm Module Outline	_75
Figure 5: Module Edge Finger Keep Out Area (82x50mm Module)	_76
Figure 6: 82x80mm Module Outline	76
Figure 7: Module Edge Finger Keep Out Area (82x80mm Module)	_76
Figure 8: u.FL connector	_77
Figure 9: RF connector placement (82x80mm Module)	_77
Figure 10: RF connector placement (82x50mm Module)	_77
Figure 11: Module Minimum 'Z' Height	78

Figure 12: Carrier Board Connector PCB Footprint	79
Figure 13: Heat Spreader Isometric View	81
Figure 14: Heat Spreader Plan View	82
Figure 15: Heat Sink Attachment Option	83
Figure 16: Heat Spreader - 82mm x 80mm Module	84
Figure 17: Power sequence diagram sleep and power button	89
Figure 18: Power sequence diagram sleep, no power button	89
Figure 19: Power sequence diagram power button	90
Figure 20: Power sequence diagram, no power button	91

1.5 List of Tables

Table 1: Revision History	2
Table 2: Required and Optional Features	16
Table 3: Signal Direction and Type Definitions	17
Table 4: LVDS Signals	20
Table 5: eDP Signals	22
	23
Table 7: LVDS / eDP / MIPI DSI Pin Sharing	24
Table 8: Secondary HDMI Signals	25
Table 9: DP++ Signals	26
Table 10: Secondary HDMI / DP++ Pin Sharing	27
Table 11: Third Display Interface DP++ Signals	28
Table 12: MIPI-CSI Signals	30
Table 13: MIPI-CSI Feature Connector Signals for 3rd Camera	31
Table 14: MIPI-CSI Feature Connector Signals for 4th Camera	32
Table 15: SDIO Signals	34
Table 16: SPI0 Signals	35
Table 17: SPI1 Signals	35
Table 18: QSPI Signals	36
Table 19: eSPI Signals	38
Table 20: eSPI/SPI1/QSPI Pin Sharing	38
Table 21: I2S0 Signals	39
Table 22: I2S2 Signals	40
Table 23: HDA Signals	40
Table 24: I2S/HDA/SNDW Pin Sharing	41
Table 25: I2C Signals	42
Table 26: General Purpose I2C Signals	42
Table 27: Serial Port Signals	43
Table 28: CAN Bus Signals	44
Table 29: USB Signal Assignments	45
Table 30: USB configurations	46
Table 31: USB Signals	48
Table 32: PCI Express Signals	51

Table 33: PCIe Link Configurations	52
Table 34: PCIe Clock and Reset Assignments	52
Table 35: SERDES Signals	53
Table 36: PCIe Lane C&D / SERDES Pin Sharing	54
Table 37: SATA Signals	55
Table 38: Ethernet Signals GBE0 and GBE1	57
Table 39: Watchdog Signals	58
Table 40: GPIO Signals	59
Table 41: Alternative Use of GPIO Signals	60
Table 42: GPIO Pin Sharing	60
Table 43: Management Signals	62
Table 44: Boot Select Signals	63
Table 45: Control of Boot Sources	64
Table 46: Power Signals	65
Table 47: JTAG Signals	66
Table 48: Module Pin-Out	72
Table 49: Carrier Connectors	73
Table 50: Heat Spreader Hole Reference	82
Table 51: Power Rail Definitions	87
Table 52: LVDS Color Mapping	94

1.6 General Introduction

The SMARC ("Smart Mobility ARChitecture") is a versatile small form factor computer Module definition targeting applications that require low power, low costs, and high performance. The Modules will typically use ARM SOCs similar or the same as those used in many familiar devices such as tablet computers and smart phones. Alternative low power SOCs and CPUs, such as tablet oriented x86 devices and other RISC CPUs *may* be used as well. The Module power envelope is typically under 6W although designs up to about 15W are possible.

Two Module sizes are defined: 82mm x 50mm and 82mm x 80mm. The Module PCBs have 314 edge fingers that mate with a low profile 314 pin 0.5mm pitch right angle connector (the connector is sometimes identified as a 321 pin connector, but 7 pins are lost to the key).

The Modules are used as building blocks for portable and stationary embedded systems. The core CPU and support circuits, including DRAM, boot flash, power sequencing, CPU power supplies, Gigabit Ethernet and dual channel LVDS display transmitter are concentrated on the Module. The Modules are used with application specific Carrier Boards that implement other features such as audio CODECs, touch controllers, wireless devices, etc. The modular approach allows scalability, fast time to market and upgradability while still maintaining low costs, low power and small physical size.

1.7 Purpose of This Document

This document defines the Module mechanical, electrical, signal and thermal parameters at a level of detail sufficient to provide a framework for SMARC Module and Carrier Board designs.

1.8 Document and Standards References

- CAN ("Controller Area Network") Bus Standards
 ISO 11898-1:2015 Road vehicles Controller area network (CAN) Part 1: Data link layer and physical signaling, (www.iso.org)
 ISO 11992-1:2019 Road vehicles Interchange of digital information on electrical connections between towing and towed vehicles Part 1: Physical and data-link layers (www.iso.org)
 SAE J2411: Feb 14, 2000, Single Wire CAN Network for Vehicle Applications (www.sae.org)
- MIPI CSI-2 (Camera Serial Interface version 2) The MIPI CSI-2 standard is owned and maintained by the MIPI Alliance ("Mobile Industry Processor Alliance") (www.mipi.org)
- **MIPI CSI-3** (Camera Serial Interface version 3) The MIPI CSI-3 standard is owned and maintained by the MIPI Alliance ("Mobile Industry Processor Alliance") (www.mipi.org)
- **COM Express** the formal title for the COM Express specification is "PICMG® COM.0 COM Express Module Base Specification", Revision 3.0, March 31, 2017. This standard is owned and maintained by the PICMG ("PCI Industrial Computer Manufacturer's Group") (www.picmg.org)
- DisplayPort and Embedded DisplayPort These standards are owned and maintained by VESA ("Video Electronics Standards Association")
 (www.vesa.org)
- MIPI DSI (Display Serial Interface) The DSI standard is owned and maintained by the MIPI Alliance ("Mobile Industry Processor Alliance")
 (www.mipi.org)
- **eMMC** ("Embedded Multi-Media Card") The eMMC electrical standard is defined by JEDEC JESD84-B51A and the mechanical standard by JESD84-C44 (www.jedec.org)
- eSPI ("Enhanced Serial Peripheral Interface") The eSPI Interface Base Specification is defined by Intel (www.intel.com)
- *Fieldbus* this term refers to a number of network protocols used for real time industrial control. Refer to the following web sites: www.profibus.com/download/ and www.can-cia.org
- **GBE MDI** ("Gigabit Ethernet Medium Dependent Interface") This is defined by IEEE 802.3. The 1000Base-T operation over copper twisted pair cabling is defined by IEEE 802.3ab (www.ieee.org)
- HDA (HD Audio), High Definition Audio Specification, Intel, Revision 1.0a, June 17, 2010 (www.intel.com)
- HDMI Specification, Version 2.1, November 28, 2017 (www.hdmi.org)
- I2C Specification, Version 6.0, April 4th 2014, Philips Semiconductor (now NXP) (www.nxp.com)
- I2S Bus Specification, Feb. 1986 and Revised June 5, 1996, Philips Semiconductor (now NXP) (www.nxp.com)
- IEEE1588 2008. IEEE Standard for a Precision Clock Synchronization Protocol for Networked Measurement and Control Systems (standards.ieee.org)
- JTAG ("Joint Test Action Group") This is defined by IEEE 1149.1-2001 IEEE Standard Test Access Port and Boundary Scan Architecture (ieeexplore.ieee.org)
- **MXM3** Graphics Module Mobile PCI Express Module Electromechanical Specification, Version 3.1, NVidia Corporation
- PICMG® EEEP Embedded EEPROM Specification, Rev. 1.0, August 2010 (www.picmg.org)
- PCI Express Specifications (www.pci-sig.org)
- Serial ATA Revision 3.1, July 18, 2011, Gold Revision, © Serial ATA International Organization (www.sata-io.org)

- **SD Specifications** Part 1 Physical Layer Simplified Specification, Version 6.00, Aug 29, 2018, SD Group and SD Card Association ("Secure Digital") (www.sdcard.org)
- **SM Bus** "System Management Bus" Specification Version 3.1, March 19, 2018, System Management Interface Forum, Inc. (www.smbus.org)
- SPI Bus "Serial Peripheral Interface" de-facto serial interface standard defined by Motorola. A good description may be found on Wikipedia (en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus)
- USB Specifications (www.usb.org)

2 MODULE OVERVIEW

2.1 Form Factor Feature Summary

- Small form factor, low profile and low power edge-finger card format Module with pin-out optimized for ARM and x86 architecture processors;
 may also be used with low power, tablet oriented X86 and RISC devices.
- Two Module sizes:
 - o 82mm x 50mm
 - 5 **82mm x 80mm**
- Carrier Board connector: 314 pin 0.5mm pitch R/A memory socket style connector
 - Originally defined for use with MXM3 graphics cards
 - o SMARC Module pin-out is separate from and not related to MXM3 pin-out
 - Multiple sources for Carrier Board connector
 - Low cost
 - Low profile:
 - As low as 1.5mm (Carrier Board top to Module bottom)
 - Other stack height options available, including 2.7mm, 5mm, 8mm
 - Overall assembly height (Carrier Board top to tallest Module component) is less than 6mm
 - Excellent signal integrity suitable for 2.5 GHz / 5 GHz / 8 GHz data rate signals such as PCle Gen 1, Gen 2 and Gen 3.
 - Robust, vibration resistant connector
- Module input voltage range: 4.75V to 5.25V or 3.0V to 5.25V (module dependent)
 - Allows operation from 3.6V nominal Lithium-ion battery packs
 - Allows operation from 3.3V fixed DC supply
 - Allows operation from 5.0V fixed DC supply
 - Single supply (no separate standby voltage)
 - Module power pins allow 5A max
- Low power designs
 - Fanless
 - Passive cooling
 - Low standby power
 - Design for battery operation
 - o 1.8V default I/O voltage

2.2 Module Interface Summary

The interfaces listed below are available per the Module pin definition. Some features are optional and availability is Module design dependent.

- Display Interfaces
 - o Single or dual channel LVDS LCD 18 or 24 bit
 - Panel support signals (I2C, Power Enables, PWM)
 - Support for dual channel implementations
 - Multiplexing with eDP and MIPI DSI
 - HDMI port multiplexed with DP++ full featured implementation
 - Additional full featured DisplayPort++
- Camera Interfaces
 - Serial configuration: MIPI CSI (2 lane) + MIPI CSI (2 or 4 lane)
 - Two additional MIPI CSI interfaces available on optional connectors
- SDIO Interface
 - 4 bit SD card / SDIO interface with support lines
- SPI Interfaces
 - Two SPI interfaces
 - One maybe implemented as eSPI (x86) or QSPI (ARM)
- Audio Interfaces
 - o First I2S interface
 - HDA interfaced multiplexed with second I2S or Soundwire interface
- I2C Interfaces
 - Seven I2C interfaces
 - Power Management
 - General Purpose
 - 4x Camera Interfaces (2x via SMARC connector and 2x via on module FFC connectors)
 - LCD Display ID
 - o HDMI interface also has private I2C interface for HDMI use
- Asynchronous Serial Port Interfaces
 - o Four asynchronous serial ports
 - Two supporting 2 wire handshake (RXD, TXD, RTS#, CTS#)
 - Two supporting data only (RXD, TXD)
 - Logic level interface

CAN Bus Interfaces

- Two CAN bus interfaces
 - Logic level signals from Module based CAN bus protocol controllers
 - RXD, TXD only

USB Interfaces

- Six ports total
- Two sets of super speed signals for support of two USB 3.2 ports
- Two ports supporting USB OTG (USB client or host)
- USB support signals (VBUS enable / Over-current detects, OTG support signals)

PCI Express

- o Four PCIe lanes
- o PCIe Gen1, Gen 2 or Gen 3 (Module dependent)
- Three reference clock pairs
- o Three PCIe reset signals
- Common PCIe wake signal (PCIE_WAKE#)
- Two PCIE_CKREQ# signals for PCIE_A and PCIE_B

SERDES

- Alternative use of PCIE C and PCIE D as SERDES interface
- One MDIO interface
- SATA Interface
 - One SATA interface
 - Gen 1, 2 or 3 (Module dependent)
- Gigabit Ethernet
 - Two analog GBE MDI interface
 - No magnetics on Module
 - LED support signals
 - CTREF (center tap reference voltage) for Carrier magnetics (if required by the Module GBE PHY)
 - Individual IEEE1588 trigger signal for each Ethernet interface to allow for enhanced real time applications. This utilizes a software definable pin (SDP) from the Ethernet controller.

Wireless

- o Optional on module wireless functionality with designated area for antenna connections
- Watchdog Timer Interface
- General Purpose I/O
 - o 14x GPIO signals

- Specific alternate functions are assigned to some GPIOs
 - PWM / Tachometer capability
 - Camera support
 - HD Audio reset
- System and Power Management Signals
 - Reset out and Reset in
 - Power button in
 - Power source status
 - Module power state status
 - System management pins
 - Battery and battery charger management pins
 - Carrier Power On control
- Boot Source Select
 - Three pins to allow selection from Carrier Board
 - Select options to include boot from one of the following:
 - Module SPI
 - Module eMMC Flash
 - Module NAND / NOR Flash (vendor defined)
 - Module Remote Boot (Network or Serial Port, vendor defined)
 - Carrier SPI
 - Carrier SD Card
 - Carrier SATA
- JTAG functions for CPU debug and test are optionally implemented on separate small form factor connector

3 MODULE INTERFACE REQUIRED AND OPTIONAL FEATURES

3.1 Required and Optional Feature Table

Required and optional features for an SMARC Module are summarized in the table below.

"Shall" indicates a mandatory requirement

"Should" indicates a recommended but not mandatory requirement

"May" indicates a lesser used optional interface

"Alternate" indicates an optional interface, implemented on pins shared with another use

Feature	Sub Feature	Requirement	Notes
LVDS LCD	18 bit single channel	Should	Default Display (serial LVDS)
	24 bit single channel – 18 bit compatible	Should	
	24 bit single channel – standard color map	May	
	24 bit dual channel – 18 bit compatible	May	
	24 bit dual channel – standard color map	May	
DSI on LVDS Pins	DSI0 – 2 lane implementation	May	
	DSI0 – 4 lane implementation	May	
	DSI1 – 2 lane implementation	May	
	DSI1 – 4 lane implementation	May	
HDMI	HDMI display interface	Should	
DP on HDMI Pins		May	
DP++	DisplayPort++	May	
CSI	CSI0 – 2 lane	May	
	CSI1 – 2 lane implementation	Should	
	CSI1 – 4 lane implementation	Should	
	CSI2 – 2 lane implementation	May	
	CSI2 – 4 lane implementation	May	
	CSI3 – 2 lane implementation	May	
	CSI3 – 4 lane implementation	May	
SDIO	SDIO (4 bit, for SD cards)	Should	May be Carrier boot device

SPI	SPI0	Should	May be Carrier boot device
	SPI2	Should	
	QuadSPI	Should	
	eSPI	Should	May be Carrier boot device
Audio	12\$0	Should	
	HDA or I2S2	Should	
I2C	Power Management	Shall	
	General Purpose	Shall	
	Camera 0/1/2/3	Should	
	LCD Display I/D	Should	
	HDMI	Should	Dedicated HDMI I2C interface
Serial Ports	SER0 (4 wire)	Shall	May be used for optional serial console
	SER1 (2 wire)	Shall	May be used for optional serial console
	SER2 (4 wire)	Should	
	SER3 (2 wire)	Should	
CAN Bus	CAN0	May	
	CAN1	May	
USB	USB0	Shall	
	USB1	Should	
	USB[2:5]	May	
PCle	PCIE_A (x1 Gen 1 Root)	Should	
	PCIE_B (x1 Gen 1 Root)	May	
	PCIE_C (x1 Gen 1 Root)	May	
	PCIE_D (x1 Gen 1 Root)	May	
	PCIE_ Target operation	May	
	PCIE Gen 2 and Gen 3 operation	May	
SERDES	Alternative use of PCIE_C and/or PCIE_D	May	
SATA	SATA Gen 1	Should	May be Carrier boot device
	SATA Gen 2 operation	May	
	SATA Gen 3 operation	May	
GBE	GBE0	Should	
	GBE1	May	

	IEEE 1588 Trigger Signals (GBE[0:1]_SDP)	May	
Watchdog	WDT Out	Should	
GPIO	GPIO[0:11]	Shall	
	GPIO[12:13]	Should	
	GPIO[0:11] interrupt capability	Shall	
	GPIO[12:13] interrupt capability	Should	
	GPIO Camera Support (only when camera is supported)	Shall	As appropriate for Module Camera implementation
	GPIO5 PWM capability	Should	
	GPIO6 Tachin capability	Should	
Management	System and power management features CARRIER_PWR_ON VIN_PWR_BAD#	Shall	See section 3.21'Management Pins' for details
	All other signals	Should	
Boot Select		Shall	
Force Recov		Should	See section 3.22 'Boot Select' for details
JTAG	JTAG connector on Module	May	Some vendors prefer test point access
RTC		Should	

Table 2: Required and Optional Features

3.2 Feature Fill Order

Features **shall** be filled in a low – to – high order, based on the signal group names. For example, there are four possible asynchronous serial ports, designated with signal prefixes SER0 to SER3. If a Module design implements only two SER ports, those would be SER0 and SER1. The PCIe links are designated PCIE_A, PCIE_B, PCIE_C and PCIE_D. If only one is implemented, it would be PCIE_A.

USB 3.2 port number 2 is the first in the fill order as the counting of USB 3.2 lines starts with number 2.

USB Super Speed operation is only defined for SMARC USB ports USB2 and USB3. Therefore, USB2 is the first in the fill order for USB Super Speed (aka USB 3.2) implementations on SMARC. If only two USB ports are implemented, USB1 can be skipped in the fill order to support one USB3.2 port on USB2.

Important exception, introduced with SMARC 2.1: The fill order for MIPI CSI is CSI1 (4 lane) first, then CSI0 (2 lane).

3.3 Signal Direction and Type Definitions

Term	Description
I	Input to the Module
0	Output from the Module
I/O	Bi-directional input/output
OD	Open drain
PU	PU (pull-up) resistor
PD	PD (pull-down) resistor
CMOS	Logic input or output
GBE MDI	Differential analog signaling for gigabit media dependent interface
DP	Low voltage differential signal for DisplayPort interface
D-PHY	Low voltage differential signal for MIPI CSI-2 cameras and DSI displays
M-PHY	Low voltage differential signal for MIPI CSI-3 cameras
LVDS	Low voltage differential signal for LCD displays
PCIE	Low voltage differential signal for PCIe
SATA	Low voltage differential signal for SATA
TMDS HDMI	Transition minimized differential signal for HDMI displays
USB	DC coupled differential signaling for traditional (non-Superspeed) USB signals
USB SS	Differential signal for SuperSpeed USB signals
USB VBUS 5V	5V tolerant input for USB VBUS detection
VDD_IN	Main power source from Carrier to Module
3.3V	3.3V power domain: Active while CARRIER_PWRON is high and CARRIER_SBY# is NOT active (i.e. both signals are high)
1.8V	1.8V power domain: Active while CARRIER_PWRON is high and CARRIER_SBY# is NOT active (i.e. both signals are high)
3.3Vsb	3.3V standby power domain: Active while CARRIER_PWRON is high (regardless of CARRIER_SBY#)
1.8Vsb	1.8V standby power domain: Active while CARRIER_PWRON is high (regardless of CARRIER_SBY#)
Sleep	Module is in its lowest power state
Runtime	Module is full on. CARRIER_PWRON is high and CARRIER_SBY# is NOT active (i.e. both signals are high)
Standby	Module is in Standby State or higher

Table 3: Signal Direction and Type Definitions

3.4 Primary Display Interfaces

Pins used for LVDS LCD support **may** alternatively be used to support up to two Embedded DisplayPorts. The AC coupling required for eDP operation **shall** be done off-Module.

Pins used for LVDS LCD support **may** alternatively be used to support a MIPI DSI (Display Serial Interface). There is no AC coupling required for DSI operation.

3.4.1 LVDS

Single channel, dual channel or two single channel LVDS display panel interfaces are defined. The implementation of two single channel LVDS display interfaces is not expected to be common but is defined as an option for Module vendors. The LVDS interfaces support 18 and 24 bit display implementations.

In a Module implementation with two single LVDS channels, the panel EDID proms would be in conflict and measures need to be taken to avoid this. One possible solution is that the 2nd LVDS EDID prom could be read over the I2C_GP pin pair rather than the I2C_LCD pin pair.

The Module **should** implement an 18 / 24 bit LVDS output stream for the Primary display.

All 18 bit TFT panels use the same LVDS color mapping. Only 3 data pairs (LVDS[0:1]_[0:2] +/-) and the clock pair are needed to drive an 18 bit TFT panel.

Unfortunately, there are two 24 bit LVDS color mappings in the industry:

- Most significant color bits on the 4th LVDS data pair (LVDS[0:1]_[3] +/- here). This is the more common 24 bit mapping. It is not compatible with the 18 bit LVDS color mapping.
- Least significant color bits on the 4th LVDS data pair. This is compatible with the 18 LVDS color mapping.

Modules that implement LVDS **shall** implement single channel 18 bit LVDS; **should** implement a 24 bit "18 bit compatible" LVDS mapping and **may** implement the "MS bit on 4th LVDS pair" mapping. The second LVDS channel **may** be implemented.

Details on LVDS color mappings are provided in Section 8 Appendix A: LVDS LCD Color Mappings.

Signal Name	Pin#	Description	I/O Type	I/O Level	Power Domain	PU / PD	Comments
LVDS0_0+ LVDS0_0- LVDS0_1+ LVDS0_1- LVDS0_2+ LVDS0_2- LVDS0_3+ LVDS0_3-	\$125 \$126 \$128 \$129 \$131 \$132 \$137 \$138	Primary LVDS Channel Differential Pair Data Lines	O LVDS		Runtime		100 ohm differential termination across the differential pairs at the endpoint of the signal path, usually on the display assembly.
LVDS0_CK+ LVDS0_CK-	S134 S135	Primary LVDS Channel Differential Pair Clock Lines	O LVDS		Runtime		100 ohm differential termination across the differential pair at the endpoint of the signal path, usually on the display assembly.
LCD0_VDD_EN	S133	Primary LVDS Channel Power Enable	O CMOS	1.8V	Runtime		Active high

SMARC 2.2 Specification © 2024 SGET e.V. Page 19 of 110

Signal Name	Pin#	Description	I/O Type	I/O Level	Power Domain	PU / PD	Comments
LCD0_BKLT_EN	S127	Primary LVDS Channel Backlight Enable	O CMOS	1.8V	Runtime		Active high
LCD0_BKLT_PWM	S141	Primary LVDS Channel Brightness Control	O CMOS	1.8V	Runtime		Through Pulse Width Modulation (PWM)
LVDS1_0+ LVDS1_0- LVDS1_1+ LVDS1_1- LVDS1_2+ LVDS1_2- LVDS1_3+ LVDS1_3-	S111 S112 S114 S115 S117 S118 S120 S121	Secondary LVDS Channel Differential Pair Data Lines	O LVDS		Runtime		100 ohm differential termination across the differential pairs at the endpoint of the signal path, usually on the display assembly.
LVDS1_CK+ LVDS1_CK-	S108 S109	Secondary LVDS Channel Differential Pair Clock Lines	O LVDS		Runtime		100 ohm differential termination across the differential pair at the endpoint of the signal path, usually on the display assembly.
LCD1_VDD_EN	S116	Secondary LVDS Channel Power Enable	O CMOS	1.8V	Runtime		Active high Only in use, when two separate LVDS ports are supported, please check Module user manual
LCD1_BKLT_EN	S107	Secondary LVDS Channel Backlight Enable	O CMOS	1.8V	Runtime		Active high Only in use, when two separate LVDS ports are supported, please check Module user manual
LCD1_BKLT_PWM	S122	Secondary LVDS Channel Brightness Control	O CMOS	1.8V	Runtime		Through pulse width modulation (PWM) only in use, when two separate LVDS ports are supported, please check Module user manual
I2C_LCD_DAT	S140	DDC Data Line Used for Flat Panel Detection and Control	I/O OD CMOS	1.8V	Runtime	PU 2k2	Possible conflict if two LVDS panels are used
I2C_LCD_CK	S139	DDC Clock Line Used for Flat Panel Detection and Control	I/O OD CMOS	1.8V	Runtime	PU 2k2	Possible conflict if two LVDS panels are used

Table 4: LVDS Signals

3.4.2 eDP

Signal Name	Pin#	Description	I/O Type	I/O Level	Power Domain	PU / PD	Comments
eDP0_TX0+ eDP0_TX0- eDP0_TX1+ eDP0_TX1- eDP0_TX2+ eDP0_TX2- eDP0_TX3+ eDP0_TX3-	\$125 \$126 \$128 \$129 \$131 \$132 \$137 \$138	Primary 4-Lane eDP Differential Pair Data Lines	O DP		Runtime		AC coupled off Module 100 nF DC blocking capacitors shall be placed on the Carrier.
eDP0_AUX+ eDP0_AUX-	S134 S135	Primary Bidirectional Channel used for Link Management and Device Control	I/O DP		Runtime		AC coupled off Module
LCD0_VDD_EN	S133	Primary Panel Power Enable	O CMOS	1.8V	Runtime		Active high
LCD0_BKLT_EN	S127	Primary Panel Backlight Enable	O CMOS	1.8V	Runtime		Active high
LCD0_BKLT_PWM	S141	Primary Panel Brightness Control	O CMOS	1.8V	Runtime		Through pulse width modulation (PWM)
eDP0_HPD	S144	Detection of Hot Plug / Unplug of Primary eDP Display and Notification of the Link Layer	I CMOS	1.8V	Runtime	PD 1M	Module must tolerate high level in stand-by mode
eDP1_TX0+ eDP1_TX0- eDP1_TX1+ eDP1_TX1- eDP1_TX2+ eDP1_TX2- eDP1_TX3+ eDP1_TX3-	S111 S112 S114 S115 S117 S118 S120 S121	Secondary 4-Lane eDP Differential Pair Data Lines	O DP		Runtime		AC coupled off Module 100 nF DC blocking capacitors shall be placed on the Carrier. Only in use, when two separate eDP ports are supported, please check Module user manual.
eDP1_AUX+ eDP1_AUX-	S108 S109	Secondary Bidirectional Channel used for Link Management and Device Control	I/O DP		Runtime		AC coupled off Module -only in use, when two separate eDP ports are supported, please check Module user manual.
LCD1_VDD_EN	S116	Secondary Panel Power Enable	O CMOS	1.8V	Runtime		Active high Only in use, when two separated eDP ports are supported. Please check Module user manual.
LCD1_BKLT_EN	S107	Secondary Panel Backlight Enable	O CMOS	1.8V	Runtime		Active high Only in use, when two separated eDP ports are supported. Please check Module user manual.

Signal Name	Pin#	Description	I/O Type	I/O Level	Power Domain	PU / PD	Comments
LCD1_BKLT_PWM	S122	Secondary Panel Brightness Control	O CMOS	1.8V	Runtime		Through Pulse Width Modulation (PWM) Only in use, when two separated eDP ports are supported. Please check Module user manual.
eDP1_HPD	S113	Detection of Hot Plug / Unplug of Secondary eDP Display and Notification of the Link Layer	I CMOS	1.8V	Runtime	PD 1M	Only in use, when two separated eDP ports are supported. Please check Module user guide! Module must tolerate high level in stand-by mode
I2C_LCD_DAT	S140	I2C Data to Read LCD Display EDID EEPROMs	I/O OD CMOS	1.8V	Runtime	PU 2k2	Possible EDID EEPROM Address conflicts may occur if multiple displays are implemented. Optional - eDP panel information is usually exchanged via the eDP auxiliary pair
I2C_LCD_CK	S139	I2C clock to read LCD display EDID EEPROMs	I/O OD CMOS	1.8V	Runtime	PU 2k2	Optional - eDP panel information is usually exchanged via the eDP auxiliary pair

Table 5: eDP Signals

3.4.3 MIPI DSI Display

Signal Name	Pin #	Description	I/O Type	I/O Level	Power Domain	PU / PD	Comments
DSI0_D0+	S125	Primary DSI Panel Differential Pair	O D-PHY		Runtime		No blocking capacitors or
DSI0_D0-	S126	Data Lines					termination required. Layout
DSI0_D1+	S128						for 90 ohm differential
DSI0_D1-	S129						impedance.
DSI0_D2+	S131						
DSI0_D2-	S132						
DSI0_D3+	S137						
DSI0_D3-	S138						
DSI0_CLK+	S134	Primary DSI Panel Differential Pair	O D-PHY		Runtime		
DSI0_CLK-	S135	Clock Lines		ļ			
LCD0_VDD_EN	S133	Primary Panel Power Enable	O CMOS	1.8V	Runtime		Active high
LCD0_BKLT_EN	S127	Primary Panel Backlight Enable	O CMOS	1.8V	Runtime		Active high
LCD0_BKLT_PWM	S141	Primary Panel Brightness Control	O CMOS	1.8V	Runtime		Through pulse width modulation (PWM)
DSI0_TE	S144	Primary DSI Panel Tearing Effect Signal	I CMOS	1.8V	Runtime	1M PD	
DSI1_D0+	S111	Secondary DSI Panel Differential Pair	O D-PHY		Runtime		No blocking capacitors or
DSI1 D0-	S112	Data Lines	0 5 1 111		rantimo		termination required. Layout
DSI1_D1+	S114	Data Ziirioo					for 90 ohm differential
DSI1_D1-	S115						impedance.
DSI1_D2+	S117						poddiroo.
DSI1_D2-	S118						
DSI1_D3+	S120						
DSI1_D3-	S121						
DSI1_CLK+	S108	Secondary DSI Panel Differential Pair	O D-PHY		Runtime		
DSI1_CLK-	S109	Clock Lines					
LCD1_VDD_EN	S116	Secondary Panel Power Enable	O CMOS	1.8V	Runtime		Active high
LCD1_BKLT_EN	S107	Secondary Panel Backlight Enable	O CMOS	1.8V	Runtime		Active high
LCD1_BKLT_PWM	S122	Secondary Panel Brightness Control	O CMOS	1.8V	Runtime		Through pulse width modulation (PWM)
DSI1_TE	S113	Secondary DSI Panel Tearing Effect Signal	I CMOS	1.8V	Runtime	1M PD	` ,
I2C_LCD_DAT	S140	DDC Data Line Used for Flat Panel	I/O OD	1.8V	Runtime	PU 2k2	Possible conflict if two LVDS
	- 1-	Detection and Control	CMOS				panels are used
I2C_LCD_CK	S139	DDC Clock Line Used for Flat Panel Detection and Control	I/O OD CMOS	1.8V	Runtime	PU 2k2	Possible conflict if two LVDS panels are used

Table 6: MIPI-DSI Signals

3.4.4 LVDS / eDP / MIPI DSI Pin Sharing

Pin#	LVDS Signal Name	MIPI DSI Signal Name	eDP Signal Name
S125	LVDS0_0+	DSI0_D0+	eDP0_TX0+
S126	LVDS0_0-	DSI0_D0-	eDP0_TX0-
S128	LVDS0_1+	DSI0_D1+	eDP0_TX1+
S129	LVDS0_1 -	DSI0_D1-	eDP0_TX1-
S131	LVDS0_2+	DSI0_D2+	eDP0_TX2+
S132	LVDS0_2-	DSI0_D2-	eDP0_TX2-
S137	LVDS0_3+	DSI0_D3+	eDP0_TX3+
S138	LVDS0_3-	DSI0_D3-	eDP0_TX3-
S134	LVDS0_CK+	DSI0_CLK+	eDP0_AUX+
S135	LVDS0_CK-	DSI0_CLK-	eDP0_AUX-
S133	LCD0_VDD_EN	LCD0_VDD_EN	LCD0_VDD_EN
S127	LCD0_BKLT_EN	LCD0_BKLT_EN	LCD0_BKLT_EN
S141	LCD0_BKLT_PWM	LCD0_BKLT_PWM	LCD0_BKLT_PWM
S144	-	DSI0_TE	eDP0_HPD
S111	LVDS1_0+	DSI1_D0+	eDP1_TX0+
S112	LVDS1_0-	DSI1_D0-	eDP1_TX0-
S114	LVDS1_1+	DSI1_D1+	eDP1_TX1+
S115	LVDS1_1 -	DSI1_D1-	eDP1_TX1-
S117	LVDS1_2+	DSI1_D2+	eDP1_TX2+
S118	LVDS1_2-	DSI1_D2-	eDP1_TX2-
S120	LVDS1_3+	DSI1_D3+	eDP1_TX3+
S121	LVDS1_3-	DSI1_D3-	eDP1_TX3-
S108	LVDS1_CK+	DSI1_CLK+	eDP1_AUX+
S109	LVDS1_CK-	DSI1_CLK-	eDP1_AUX-
S116	LCD1_VDD_EN	LCD1_VDD_EN	LCD1_VDD_EN
S107	LCD1_BKLT_EN	LCD1_BKLT_EN	LCD1_BKLT_EN
S122	LCD1_BKLT_PWM	LCD1_BKLT_PWM	LCD1_BKLT_PWM
S113	-	DSI1_TE	eDP1_HPD
S140	I2C_LCD_DAT	I2C_LCD_DAT	I2C_LCD_DAT
S139	I2C_LCD_CK	I2C_LCD_CK	I2C_LCD_CK

Table 7: LVDS / eDP / MIPI DSI Pin Sharing

3.5 Secondary Display Interface

The SMARC HDMI pins *may* alternatively be used for DisplayPort++ (DP++) operation. This is Module vendor dependent.

3.5.1 HDMI

Signal Name	Pin#	Description	I/O Type	I/O Level	Power Domain	PU / PD	Comments
HDMI_D2+ HDMI_D2- HDMI_D1+ HDMI_D1- HDMI_D0+ HDMI_D0-	P92 P93 P95 P96 P98 P99	HDMI Port, Differential Pair Data Lines	O TMDS HDMI		Runtime		
HDMI_CK+ HDMI_CK-	P101 P102	HDMI Port, Differential Pair Clock Lines	O TMDS HDMI		Runtime		
HDMI_CTRL_CK	P105	I2C_CLK Line Dedicated to HDMI	I/O OD CMOS	1.8V	Runtime	PU 100K	Level shifter FET and 5V PU resistor shall be placed between the Module and the HDMI connector. Stronger pull-up is demanded to the carrier board. The pull-ups may be part of an integrated HDMI ESD protection and control-line level shift device, such as the Texas Instruments TPD12S016. If discrete Carrier pull-ups are used, the value depends on the individual carrier board implementation.
HDMI_CTRL_DAT	P106	I2C_DAT Line Dedicated to HDMI	I/O OD CMOS	1.8V	Runtime	PU 100K	Level shifter FET and 5V PU resistor shall be placed between the Module and the HDMI connector. Stronger pull-up is demanded to the carrier board. The pull-ups may be part of an integrated HDMI ESD protection and control-line level shift device, such as the Texas Instruments TPD12S016. If discrete Carrier pull-ups are used, the value depends on the individual carrier board implementation.
HDMI_HPD	P104	HDMI Hot Plug Active High Detection Signal that Serves as an Interrupt Request	I CMOS	1.8V	Runtime	PD 1M	Important: Module shall tolerate high level in stand-by mode

Table 8: Secondary HDMI Signals

HDMI displays uses 5V I2C signaling. The Module HDMI_CTRL_DAT and HDMI_CTRL_CK signals need to be level translated on the Carrier from the Module 1.8V level. A similar consideration applies to the HDMI_HPD signal. There are a number of single chip devices on the market that perform ESD protection and control signal level shifting for HDMI interfaces. The Texas Instruments TPD12S016 is one such device.

3.5.2 DP++

Signal Name	Pin#	Description	I/O Type	I/O Level	Power Domain	PU / PD	Comments
DP1_LANE0+ DP1_LANE0- DP1_LANE1+ DP1_LANE1- DP1_LANE2+ DP1_LANE2- DP1_LANE3+ DP1_LANE3-	P92 P93 P95 P96 P98 P99 P101 P102	Secondary DP Port Differential Pair Data Lines	O DP		Runtime		AC coupled off Module 100 nF DC blocking capacitors shall be placed on the Carrier
DP1_AUX+	P105	Secondary DP Port Bidirectional Channel used for Link Management and Device Control	I/O DP	3.3V	Runtime	PD 100k	AC coupled on Module If DP1_AUX_SEL=0 (DP mode): AC coupled on module, 100k PD. If DP1_AUX_SEL=1 (HDMI mode): DC coupled, CMOS, 100k PU. In case of HDMI over DP++ implementation, stronger pull-up is demanded to the Carrier Board.
DP1_AUX-	P106	Secondary DP Port Bidirectional Channel used for Link Management and Device Control	I/O DP	3.3V	Runtime	PU 100k	AC coupled on Module If DP1_AUX_SEL=0 (DP mode): AC coupled on module, 100k PU. If DP1_AUX_SEL=1 (HDMI mode): DC coupled, CMOS, 100k PU. In case of HDMI over DP++ implementation, stronger pull-up is demanded to the Carrier Board.
DP1_HPD	P104	DP Hot Plug Detect Input	I CMOS	1.8V	Runtime	PD 1M	Module must tolerate high level in stand-by mode. The Carrier shall include a blocking FET on DP1_HPD to prevent back-drive current from damaging the Module.
DP1_AUX_SEL	P107	Strapping Signal to Enable Either HDMI or DP Output	I CMOS	1.8V	Runtime	PD 1M	Pulled to GND on Carrier for DP operation in Dual Mode (DP++) implementations. Driven to 1.8V on Carrier for HDMI mode. Module must tolerate high level in stand-by mode. Should be connected to pin 13 of the DisplayPort connector to enable a dual-mode DisplayPort interface.

Table 9: DP++ Signals

Dual Mode (HDMI and DisplayPort on the same pins) implementations **may** be realized. This is desirable for SOCs that natively implement this capability. With such SOCs, the primary Dual Mode implementation challenge is that the HDMI_CTRL_DAT and HDMI_CTRL_CK lines are DC coupled, but the DP_AUX+ /- pair must be AC coupled. A set of FET switches is usually used to sort this out. The FET gates can be controlled by the AUX_SEL pin function.

3.5.3 Secondary HDMI / DP++ Pin Sharing

Pin #	HDMI Signal Name	DP++ Name
P92	HDMI_D2+	DP1_LANE0+
P93	HDMI_D2-	DP1_LANE0-
P95	HDMI_D1+	DP1_LANE1+
P96	HDMI_D1-	DP1_LANE1-
P98	HDMI_D0+	DP1_LANE2+
P99	HDMI_D0-	DP1_LANE2-
P101	HDMI_CK+	DP1_LANE3+
P102	HDMI_CK-	DP1_LANE3-
P105	HDMI_CTRL_CK	DP1_AUX+
P106	HDMI_CTRL_DAT	DP1_AUX-
P104	HDMI_HPD	DP1_HPD

Table 10: Secondary HDMI / DP++ Pin Sharing

3.6 Third Display Interface

3.6.1 DP++

A DP++ interface can output signals that are formatted per either DP or HDMI / DVI protocols. The signal levels are DP compliant. For DP use, off-Module coupling caps are needed on the 4 DP display data lanes. A Carrier Board level translator is usually needed for HDMI / DVI operation.

DP++ or DisplayPort++ (also named as Dual-mode DisplayPort) can directly output HDMI and DVI signals. The level adaptation can be implemented on the Carrier or via plug in cable adapter. In case of Carrier Board implementation, a level shifter adjusts the I/O voltage to HDMI/DVI compliant signal levels. A dual-mode chipset switches to DVI/HDMI mode (4-lane main DisplayPort link and AUX channel) if a DVI or HDMI passive adapter is detected (by DP0_AUX_SEL).

Signal Name	Pin #	Description	I/O Type	I/O Level	Power Domain	PU / PD	Comments
DP0_LANE0+ DP0_LANE0- DP0_LANE1+ DP0_LANE1- DP0_LANE2+ DP0_LANE2- DP0_LANE3+ DP0_LANE3-	\$93 \$94 \$96 \$97 \$99 \$100 \$102 \$103		O DP		Runtime		AC coupled off Module 100 nF DC blocking capacitors shall be placed on the Carrier
DP0_AUX+	S105	Primary DP Port Bidirectional Channel used for Link Management and Device Control	I/O DP	3.3V	Runtime	PD 100k	AC coupled on Module If DP0_AUX_SEL=0 (DP mode): AC coupled on module, 100k PD. If DP0_AUX_SEL=1 (HDMI mode): DC coupled, CMOS, 100k PU. In case of HDMI over DP++ implementation, stronger pull-up is demanded to the Carrier Board.
DP0_AUX-	S106	Primary DP Port Bidirectional Channel used for Link Management and Device Control	I/O DP	3.3V	Runtime	PU 100k	AC coupled on Module If DP0_AUX_SEL=0 (DP mode): AC coupled on module, 100k PU. If DP0_AUX_SEL=1 (HDMI mode): DC coupled, CMOS, 100k PU. In case of HDMI over DP++ implementation, stronger pull-up is demanded to the Carrier Board.
DP0_AUX_SEL	S95	Auxiliary Selection	I CMOS	1.8V	Runtime	PD 1M	Pulled to GND on Carrier for DP operation in Dual Mode (DP++) implementations Module must tolerate high level in stand-by mode. Should be connected to pin 13 of the DisplayPort connector to enable a dual-mode DisplayPort interface.
DP0_HPD	S98	DP Hot Plug Detect Input	I CMOS	1.8V	Runtime	PD 1M	Module must tolerate high level in stand-by mode. The Carrier <i>shall</i> include a blocking FET on DP[0:1]_HPD to prevent back-drive current from damaging the Module.

Table 11: Third Display Interface DP++ Signals

3.7 Camera Interfaces

SMARC 2.0 defines four MIPI CSI serial camera interfaces. The defined CSI0 interface supports up to two differential data lanes (CSI0_D[0:1]+/signals). CSI1 *may* be implemented with up to four differential data lanes (CSI1_D[0:3]+/-signals) to support higher resolution cameras.

Both MIPI CSI interfaces support MIPI-CSI 2.0 but are also prepared to support the implementation of MIPI-CSI 3.0. Both standards continue to evolve (see http://mipi.org/specifications/camera-interface). While MIPI-CSI 2.0 utilizes an I2C bus (I2C_CAM[0:1]) to communicate with the camera the MIPI-CSI 3.0 uses a differential data lane (CSI[0:1]_TX+/-).

3.7.1 1st and 2nd MIPI CSI on SMARC Edge Connector

Signal Name	Pin#	Description	I/O Type	I/O Level	Power Domain	PU / PD	Comments
CSI0_RX0+ CSI0_RX0- CSI0_RX1+ CSI0_RX1-	S11 S12 S14 S15	CSI0 differential input	I D-PHY / I M-PHY		Runtime		
CSI0_CK+ CSI0_CK-	S8 S9	CSI0 differential clock input (point to point)	I D-PHY		Runtime		
I2C_CAM0_DAT / CSI0_TX-	S7	I2C data for serial camera data support link or differential data lane	I/O OD CMOS / O M-PHY	1.8V	Runtime	PU 2.2K	MIPI-CSI 2.0 uses I2C_CAM0_DAT which requires PU MIPI-CSI 3.0 uses CSI0_TX-, no PU required
I2C_CAM0_CK / CSI0_TX+	S5	I2C clock for serial camera data support link or differential data lane	I/O OD CMOS / O M-PHY	1.8V	Runtime	PU 2.2K	MIPI-CSI 2.0 uses I2C_CAM0_CK which requires PU MIPI-CSI 3.0 uses CSI0_TX+, no PU required
CAM0_PWR#	P108	Camera 0 Power Enable, active low output.	O CMOS	1.8V	Runtime		Shared with GPIO0
CAM0_RST#	P110	Camera 0 reset, active low output	O CMOS	1.8V	Runtime		Shared with GPIO2
CSI1_RX0+ CSI1_RX0- CSI1_RX1+ CSI1_RX1- CSI1_RX2+ CSI1_RX2- CSI1_RX3+ CSI1_RX3-	P7 P8 P10 P11 P13 P14 P16 P17	CSI1 differential input (point to point)	I D-PHY / I M-PHY		Runtime		

SMARC 2.2 Specification © 2024 SGET e.V. Page 29 of 110

Signal Name	Pin#	Description	I/O Type	I/O Level	Power Domain	PU / PD	Comments
CSI1_CK+ CSI1_CK-	P3 P4	CSI1 differential clock input (point to point)	I D-PHY		Runtime		
I2C_CAM1_DAT / CSI1_TX-	S2	I2C data for serial camera data support link or differential data lane	I/O OD CMOS / O M-PHY	1.8V	Runtime	PU 2.2K	MIPI-CSI 2.0 mode uses I2C_CAM1_DAT which requires PU MIPI-CSI 3.0 mode uses CSI1_TX- , no PU required
I2C_CAM1_CK / CSI1_TX+	S1	I2C clock for serial camera data support link or differential data lane	I/O OD CMOS / O M-PHY	1.8V	Runtime	PU 2.2K	MIPI-CSI 2.0 mode uses I2C_CAM1_CK which requires PU MIPI-CSI 3.0 mode uses CSI1_TX+, no PU required
CAM1_PWR#	P109	Camera 1 Power Enable, active low output.	O CMOS	1.8V	Runtime		Shared with GPIO1
CAM1_RST#	P111	Camera 1 reset, active low output	O CMOS	1.8V	Runtime		Shared with GPIO3
CAM_MCK	S6	Master clock output	O CMOS	1.8V	Runtime		

Table 12: MIPI-CSI Signals

MIPI CSI Configuration CSI-2 and CSI-3

The newer version of the MIPI Camera Serial Interface CSI-3 no longer uses an I2C bus to transmit commands and configurations to the camera. A newly defined high-speed differential signal pair is used instead.

Serial Cameras In

Two MIPI CSI camera interfaces are supported. The CSI0 interface supports two lanes, the CSI1 interface supports 4 lanes. MIPI CSI 2.0 and MIPI CSI 3.0 are supported. With SMARC 2.1 the fill order changed to CSI1 first.

3.7.2 3rd and 4th MIPI CSI on optional feature connector

Two identical feature connectors **may** be used to connect two extra MIPI cameras by flat foil cables

Signal Name	Pin#	Description	I/O Type	I/O Level	Power Domain	PU / PD	Comments
CSI2_RX0+ CSI2_RX0- CSI2_RX1+ CSI2_RX1- CSI2_RX2+ CSI2_RX2- CSI2_RX3+ CSI2_RX3-	4 5 7 8 10 11 13	CSI2 differential input (point to point)	I D-PHY / I M-PHY		Runtime		
CSI2_CK+ CSI2_CK-	16 17	CSI2 differential clock input (point to point)	I D-PHY		Runtime		
I2C_CAM2_DAT / CSI2_TX-	20	I2C data for serial camera data support link or differential data lane	I/O OD CMOS / O M-PHY	1.8V	Runtime	PU 2.2K	MIPI-CSI 2.0 mode uses I2C which requires PU MIPI-CSI 3.0 mode uses a differential pair, no PU required
I2C_CAM2_CK / CSI2_TX+	19	I2C clock for serial camera data support link or differential data lane	I/O OD CMOS / O M-PHY	1.8V	Runtime	PU 2.2K	MIPI-CSI 2.0 mode uses I2C which requires PU MIPI-CSI 3.0 mode uses a differential pair, no PU required
CAM2_PWR#	21	Camera 2 Power Enable, active low output.	O CMOS	1.8V	Runtime		
CAM2_RST#	12	Camera 2 reset, active low output	O CMOS	1.8V	Runtime		
CAM2_MCK	22	Master clock output	O CMOS	1.8V	Runtime		
CAM2_VCC	1, 2	Power		3.3V	Runtime		VCC Power for MIPI Camera Minimum current: 100mA ¹
GND	3, 6, 9, 15, 18	Ground					GND for MIPI Camera power and signals

Table 13: MIPI-CSI Feature Connector Signals for 3rd Camera

Signal Name	Pin#	Description	I/O Type	I/O Level	Power Domain	PU / PD	Comments
CSI3_RX0+ CSI3_RX0- CSI3_RX1+ CSI3_RX1- CSI3_RX2+ CSI3_RX2- CSI3_RX3+ CSI3_RX3-	4 5 7 8 10 11 13 14	CSI3 differential input (point to point)	I D-PHY / I M-PHY		Runtime		
CSI3_CK+ CSI3_CK-	16 17	CSI3 differential clock input (point to point)	I D-PHY		Runtime		
I2C_CAM3_DAT / CSI3_TX-	20	I2C data for serial camera data support link or differential data lane	I/O OD CMOS / O M-PHY	1.8V	Runtime	PU 2.2K	MIPI-CSI 2.0 mode uses I2C which requires PU MIPI-CSI 3.0 mode uses a differential pair, no PU required
I2C_CAM3_CK / CSI3_TX+	19	I2C clock for serial camera data support link or differential data lane	I/O OD CMOS / O M-PHY	1.8V	Runtime	PU 2.2K	MIPI-CSI 2.0 mode uses I2C which requires PU MIPI-CSI 3.0 mode uses a differential pair, no PU required
CAM3_PWR#	21	Camera 3 Power Enable, active low output.	O CMOS	1.8V	Runtime		
CAM3_RST#	12	Camera 3 reset, active low output	O CMOS	1.8V	Runtime		
CAM3_MCK	22	Master clock output	O CMOS	1.8V	Runtime		
CAM3_VCC	1, 2	Power		3.3V	Runtime		VCC Power for MIPI Camera Minimum current: 100mA ¹
GND	3, 6, 9, 15, 18	Ground					GND for MIPI Camera power and signals

Table 14: MIPI-CSI Feature Connector Signals for 4th Camera

The Host System (SMARC[™] module) shall provide 3.3V +/-5% over a maximum load current of 100mA. If a connected camera system will draw more power, it should either be supplied with an individual power-supply or the vendor should be asked for the maximum current capability.

Note:

The FFC cable used can limit the available current for the cameras. Please check the manufacturer maximum ratings for the used cables.

¹ Electrical Specification of 3.3V Supply

3.7.2.1 MIPI CSI feature connector

A 22 pin FPC connector with 22 pins may be used as feature connector for extra MIPI CSI signals.

TE part number: 2-1734592-2 or compatible (i.e. FDS0520 from company Sunfun or MWAFC07-S22FXA-HF from company 勝 達 電 子).

Figure 1: MIPI CSI feature connector placement (82x50mm Module)

Figure 2: MIPI CSI feature connector placement (82x80mm Module)

3.8 SDIO Card (4 bit) Interface

The SD Card / SDIO interface can support SD Cards as storage devices or additionally SDIO functionality. A SDIO (Secure Digital Input Output) card is an extension of the SD specification to cover I/O functions. SDIO cards are only fully functional in host devices designed to support their input-output functions. These devices can use the SD slot to support GPS receivers, modems, barcode readers, radio tuners, RFID readers, digital cameras, and interfaces to Wi-Fi, Bluetooth, Ethernet, and IrDA.

The SDIO and SD interfaces are mechanically and electrically identical. Host devices built for SDIO cards generally accept SD memory cards without I/O functions. However, the reverse is not true, because host devices need suitable drivers and applications to support the card's I/O functions.

The Carrier SDIO Card may be selected as the Boot Device – see Table 45 'Control of Boot Sources' on page 64.

Signal Name	Pin#	Description	I/O Type	I/O Level	Power Domain	PU / PD	Comments
SDIO_D0 SDIO_D1 SDIO_D2 SDIO_D3	P39 P40 P41 P42	SDIO Data lines. These signals operate in push-pull mode.	I/O CMOS	1.8V or 3.3V	Runtime		SDIO controller <i>may</i> detect SD Cards voltage level (1.8V for UHS-I and 3.3V for standard) and adjust its I/O voltage level accordingly
SDIO_WP	P33	SDIO Write Protect. This signal denotes the state of the write-protect tab on SD cards.	I OD CMOS	1.8V or 3.3V	Runtime	PU 10k	
SDIO_CMD	P34	SDIO Command/Response. This signal is used for card initialization and for command transfers. During initialization mode this signal is open drain. During command transfer this signal is in push-pull mode.	I/O CMOS	1.8V or 3.3V	Runtime		SDIO controller <i>may</i> detect SD Cards voltage level (1.8V for UHS-I and 3.3V for standard) and adjust its I/O voltage level accordingly
SDIO_CD#	P35	SDIO Card Detect. This signal indicates when a SDIO/MMC card is present.	I OD CMOS	1.8V or 3.3V	Runtime	PU 10k	
SDIO_CK	P36	SDIO Clock. With each cycle of this signal a one-bit transfer on the command and each data line occurs.	O CMOS	1.8V or 3.3V	Runtime		SDIO controller will detect SD Cards voltage level (1.8V for UHS-I and 3.3V for standard) and adjust its I/O voltage level accordingly
SDIO_PWR_EN	P37	SDIO Power Enable. This signal is used to enable the power being supplied to a SD/MMC card device.	O CMOS	3.3V	Runtime		Should be driven low in Standby Mode by the Module

Table 15: SDIO Signals

Note:

There are SD Cards with a 1.8V I/O voltage (UHS-I). SDIO controllers supporting these cards will adjust the I/O voltage levels.

3.9 SPI Interfaces

3.9.1 SPI0

The Carrier SPI0 device may be selected as the Boot Device – see Table 45 'Control of Boot Sources' on page 64

Signal Name	Pin#	Description	I/O Type	I/O Level	Power Domain	PU / PD	Comments
SPI0_CS0#	P43	SPI0 Master Chip Select 0	O CMOS	1.8V	Standby		This signal can be used to select Carrier SPI as boot device. (Shall)
SPI0_CS1#	P31	SPI0 Master Chip Select 1	O CMOS	1.8V	Standby		(Should)
SPI0_CK	P44	SPI0 Clock	O CMOS	1.8V	Standby		
SPI0_DIN	P45	SPI0 Master input / Slave output	I CMOS	1.8V	Standby		also referred to as MISO
SPI0_DO	P46	SPI0 Master output / Slave input	O CMOS	1.8V	Standby		also referred to as MOSI

Table 16: SPI0 Signals

3.9.2 SPI1

SPI1 is the general-purpose SPI bus.

Signal Name	Pin#	Description	I/O Type	I/O Level	Power Domain	PU / PD	Comments
SPI1_CS0#	P54	SPI1 Master Chip Select 0	O CMOS	1.8V	Standby		(Shall)
SPI1_CS1#	P55	SPI1 Master Chip Select 1	O CMOS	1.8V	Standby		(Should)
SPI1_CK	P56	SPI1 Clock	O CMOS	1.8V	Standby		
SPI1_DIN	P57	SPI1 Master input / Slave output	I CMOS	1.8V	Standby		also referred to as MISO
SPI1_DO	P58	SPI1 Master output / Slave input	O CMOS	1.8V	Standby		also referred to as MOSI

Table 17: SPI1 Signals

3.9.3 QSPI

The QSPI is a controller extension for the SPI Bus. The difference is that it uses a data queue with programmable queue pointers that allow the data transfers without the CPU intervention. It also has a wrap-around mode that allows continuous transfers and from the queue with no CPU intervention. The peripherals appear to the CPU as memory-mapped parallel devices. This is useful in application such as controlling an analog to digital converter. QSPI has some more programmable features like chip select and transfer length delay. – see Table 20: eSPI/SPI1/QSPI Pin SharingControl of Boot Sources' for further information regarding the different operation modes of the SPI interface.

Signal Name	Pin#	Description	I/O Type	I/O Level	Power Domain	PU / PD	Comments
QSPI_CS0#	P54	QSPI Master Chip Select 0	O CMOS	1.8V	Standby		(Shall)
QSPI_CS1#	P55	QSPI Master Chip Select 1	O CMOS	1.8V	Standby		(Should)
QSPI_CK	P56	QSPI Clock	O CMOS	1.8V	Standby		
QSPI_IO_3	S57	QSPI Data input / output	I/O CMOS	1.8V	Standby		
QSPI_IO_2	S56	QSPI Data input / output	I/O CMOS	1.8V	Standby		
QSPI_IO_1	P57	QSPI Data input / output	I/O CMOS	1.8V	Standby		
QSPI_IO_0	P58	QSPI Data input / output	I/O CMOS	1.8V	Standby		

Table 18: QSPI Signals

3.9.4 eSPI

eSPI stands for Enhanced Serial Peripheral Interface. It was introduced to replace the legacy LPC Bus. It is defined to meet the following requirements:

- Low Power: The interface may be active in all S0-S5 system states. The power consumed when the bus is operating in S3-S5 system states must be very low to meet the power requirements of these low power system states. When the interface is not transmitting or receiving, it should consume a negligible amount of power (at system level).
- Pin Count Reduction: Moving LPC devices over to the eSPI interface facilitates the removal of LPC pins in the longer term. On top of that messaging through sideband pins needed for communication between the chipset and slave devices (such as EC, BMC and SIO) is converted to in-band messages, resulting in further pin count reduction.
- Medium Bandwidth: The bus bandwidth needs to be higher than that of the Low Pin Count (LPC) bus.
- LPC Replacement: Supports all the capabilities needed to replace the parallel LPC interface. However, 8237 DMA and Firmware Hub (FWH) are not supported over this interface.
- Sideband Pins as In-Band Messaging: Facilitates the removal of sideband pins for communication between chipset and slave devices by converting this communication into in-band messages sent over the eSPI bus.
- Real-Time Flash Sharing: Supports flash sharing based on partition-able memory mapping. Allows real-time operational access by chipset and slave devices.
- Chipset and Slave Devices SMBus Replacement: Supports tunneling of all SMBus communication between chipset and slave devices over the new interface as in-band messages.
- Scalable bandwidth: Allows the bandwidth to be scaled based on application needs to optimize power versus performance. This could be done
 through frequency scaling or varying the number of active data pins.
- Low Voltage I/O Buffer: eSPI uses the same I/O buffer as Serial Peripheral Interface (SPI). The I/O buffer will support only 1.8V mode of operation for the eSPI bus.

SMARC 2.2 Specification © 2024 SGET e.V. Page 37 of 110

Signal Name	Pin#	Description	I/O Type	I/O Level	Power Domain	PU / PD	Comments
ESPI_CS0#	P54	ESPI1 Master Chip Select 0	O CMOS	1.8V	Standby		(Shall)
ESPI_CS1#	P55	ESPI1 Master Chip Select 1	O CMOS	1.8V	Standby		(Should)
ESPI_CK	P56	ESPI Master Clock Output	O CMOS	1.8V	Standby		Pin provides reference timing for all serial input / output operations.
ESPI_RESET#	S58	ESPI Reset	O CMOS	1.8V	Standby		Reset the eSPI interface for both master and slaves. eSPI Reset# is typically driven from eSPI master to eSPI slaves
ESPI_ALERT0# ESPI_ALERT1#	S43 S44	ESPI ALERT	I OD CMOS	1.8V	Standby	4.7k PU	These pins are used by eSPI slaves to request service from eSPI master. Open-drain output from the slave. This pin is optional for Single Master-Single Slave configuration where I/O[1] can be used to signal the Alert event.
ESPI_IO_0 ESPI_IO_1 ESPI_IO_2 ESPI_IO_3	P58 P57 S56 S57	ESPI Master Data Input / Output	I/O CMOS	1.8V	Standby		In Single I/O mode, ESPI_IO_0 is the eSPI master output / eSPI slave input (MOSI) whereas ESPI_IO_1 is the SPI master input / eSPI slave output (MISO).

Table 19: eSPI Signals

3.9.5 eSPI/SPI1/QSPI Pin Sharing

Pin#	eSPI Signal Name	SPI1 Name	QSPI Name
P58	ESPI_IO_0	SPI1_DO	QSPI_IO_0
P57	ESPI_IO_1	SPI1_DIN	QSPI_IO_1
S56	ESPI_IO_2	-	QSPI_IO_2
S57	ESPI_IO_3	-	QSPI_IO_3
S43	ESPI_ALERT0#	-	-
S44	ESPI_ALERT1#	-	-
S58	ESPI_RESET	-	-
P56	ESPI_CK	SPI1_CK	QSPI_CK
P55	ESPI_CS1#	SPI1_CS1#	QSPI_CS1#
P54	ESPI_CS0#	SPI1_CS0#	QSPI_CS0#

Table 20: eSPI/SPI1/QSPI Pin Sharing

Note: Please refer to the **SMARC Design Guide** 2.1.1 (Chapter 11.6) for further information regarding the implementation of SPI and the recommended bus topology considerations.

3.10 Audio

Two audio interfaces are defined. One I2S interface is pin shared with HDA. I2S1 from SMARC V1.1 has been deprecated.

The I2S interface is typically used for ARM processor implementation. HDA is typically used for x86 processor implementations. The HDA interface *may* also be used for a second I2S interface.

3.10.1 I2S0

Two I2S interfaces are defined. These are typically used for digital audio I/O and other modest bandwidth functions. A common audio master clock signal is also defined.

Signal Name	Pin#	Description	I/O Type	I/O Level	Power Domain	PU / PD	Comments
I2S0_LRCK	S39	I2S0 Left & Right Synchronization Clock	I/O CMOS	1.8V	Runtime		Module Output if CPU acts in Master Mode. Module Input if CPU acts in Slave Mode
I2S0_SDOUT	S40	I2S0 Digital Audio Output	O CMOS	1.8V	Runtime		
I2S0_SDIN	S41	I2S0 Digital Audio Input	I CMOS	1.8V	Runtime		
12S0_CK	S42	I2S0 Digital Audio Clock	I/O CMOS	1.8V	Runtime		Module Output if CPU acts in Master Mode Module Input if CPU acts in Slave Mode
AUDIO_MCK	S38	Master Clock Output to I2S Codec(s)	O CMOS	1.8V	Runtime		

Table 21: I2S0 Signals

3.10.2 I2S2

The second I2S interface can also be implemented as HDA or Soundwire interface.

The master clock output (AUDIO_MCK) is shared between both I2S interfaces.

Signal Name	Pin #	Description	I/O Type	I/O Level	Power Domain	PU / PD	Comments
I2S2_LRCK	S50	I2S2 Left & Right Synchronization Clock	I/O CMOS	1.8V	Runtime		Module Output if CPU acts in Master Mode. Module Input if CPU acts in Slave Mode
I2S2_SDOUT	S51	I2S2 Digital Audio Output	O CMOS	1.8V	Runtime		
I2S2_SDIN	S52	I2S2 Digital Audio Input	I CMOS	1.8V	Runtime		
12S2_CK	S53	I2S2 Digital Audio Clock	I/O CMOS	1.8V	Runtime		Module Output if CPU acts in Master Mode. Module Input if CPU acts in Slave Mode
AUDIO_MCK	S38	Master Clock Output to I2S Codec(s)	O CMOS	1.8V	Runtime		

Table 22: I2S2 Signals

3.10.3 HDA

Signal Name	Pin#	Description	I/O Type	I/O Level	Power Domain	PU / PD	Comments
HDA_SYNC	S50	High Definition Audio Sample synchronization clock to codec	I/O CMOS	1.8V / 1.5V	Runtime		SMARC requires 1.5V or 1.8V HD Audio signaling. Please
HDA_SDO	S51	High Definition Audio data out to codec	O CMOS	1.8V / 1.5V	Runtime		check with your Module vendor if 1.5V or 1.8V are supported and use an audio codec that is
HDA_SDI	S52	High Definition Audio data in from codec"	I/O CMOS	1.8V / 1.5V	Runtime		capable to support the regarding I/O voltage. The
HDA_CK	S53	High Definition Audio clock to codec	O CMOS	1.8V / 1.5V	Runtime		SMARC HD Audio pins are
HDA_RST#	P112	High Definition Audio Reset Output to Codec, low active.	O CMOS	1.8V / 1.5V	Runtime		shared with the I2S2 pins, which are defined to be 1.8V. This specification ignores the discrepancy between the 1.5V and 1.8V signaling, as the chance of damage in mismatched systems is negligible.

Table 23: HDA Signals

3.10.4 Soundwire

Signal Name	Pin #	Description	I/O Type	I/O Level	Power Domain	PU / PD	Comments
SNDW_CLK1	S50	Clock for Soundwire 1 transactions	O CMOS	1.8V	Runtime		
SNDW_DAT1	S51	Soundwire 1 bi-directional PCM audio data lane	I/O CMOS	1.8V	Runtime		
SNDW_DAT0	S52	Soundwire 0 bi-directional PCM audio data lane	I/O CMOS	1.8V	Runtime		
SNDW_CLK0	S53	Clock for Soundwire 0 transactions	O CMOS	1.8V	Runtime		

3.10.5 I2S/HDA/SNDW Pin Sharing

Pin #	I2S2 Signal Name	HDA Signal Name	Soundwire Signal Name
S50	I2S2_LRCK	HDA_SYNC	SNDW_CLK1
S51	I2S2_SDOUT	HDA_SDO	SNDW_DAT1
S52	I2S2_SDIN	HDA_SDI	SNDW_DAT0
S53	12S2_CK	HDA_CK	SNDW_CLK0
P112	-	HDA_RST#	-

Table 24: I2S/HDA/SNDW Pin Sharing

Note: The numbering of the secondary, alternative I2S interface is #2 because the I2S interface #1 from SMARC 1.1 was removed for SMARC 2.0. Per the HD Audio specification, HD Audio *may* be run at either 1.5V or 3.3V. SMARC requires 1.5V or 1.8V HD Audio signaling. Please check with your Module vendor if 1.5V or 1.8V are supported and use an audio codec that is capable to support the regarding I/O voltage. The SMARC HD Audio pins are shared with the I2S2 and Soundwire[0:1] pins, which are defined to be 1.8V. This specification ignores the discrepancy between the 1.5V and 1.8V signaling, as the chance of damage in mismatched systems is negligible.

ARM SOCs generally run I2S audio and will likely use 1.8V signaling. X86 SOCs generally run 1.5V signal levels on the HD Audio interface.

3.11 I2C Interfaces

The Module supports upto eight I2C interfaces, per the following table. Except for the LCD and HDMI Module I2C interfaces, the I2C ports **should** be multi-master capable. Data rates of 100 kHz and 400 kHz **should** be supported.

I2C Port	Primary Purpose	Alternate Use	Note
I2C_PM	Power Management Support	System configuration management	see section 3.21 'Management Pins' on page 61
I2C_CAM0 I2C_CAM1 I2C_CAM2 I2C_CAM3	Camera Support	General Purpose	see section 3.7.1 '1st and 2nd MIPI CSI' on page 29
I2C_GP	General Purpose Use		
I2C_LCD	LCD Display Support	General Purpose	see section 3.4.1 'LVDS' on page 19
HDMI_CTRL	HDMI Control		see section 3.5.1 'HDMI' on page 25

Table 25: I2C Signals

All I2C interfaces but the I2C_GP interface are described in the section served by that I2C link (LCD, HDMI, Camera Interface, etc.). The I2C_GP Module interface consists of the following two pins:

Signal Name	Pin#	Description	I/O Type	I/O Level	Power Domain	PU / PD	Comments
I2C_GP_DAT	S49	General Purpose I2C Data Signal	I/O OD CMOS	1.8V	Runtime	PU 2k2	
I2C_GP_CK	S48	General Purpose I2C Clock Signal	I/O OD CMOS	1.8V	Runtime	PU 2k2	

Table 26: General Purpose I2C Signals

3.12 Asynchronous Serial Ports

Module pins for up to four asynchronous serial ports are defined. The ports are designated SER0 – SER3. Ports SER0 and SER2 are 4 wire ports (2 data lines and 2 handshake lines). Ports SER1 and SER3 are 2 wire ports (data only).

If a serial console of the bootloader/BIOS is to be implemented for the module the SER0 or SER1 ports *may* be used for this function. For further information regarding the implemented serial console port please contact the module vendor.

Signal Name	Pin #	Description	I/O Type	I/O Level	Power Domain	PU / PD	Comments
SER0_TX	P129	Asynchronous Serial Data Output Port 0	O CMOS	1.8V	Runtime		
SER0_RX	P130	Asynchronous Serial Data Input Port 0	I CMOS	1.8V	Runtime	PU 100k	
SER0_RTS#	P131	Request to Send Handshake Line for Port 0	O CMOS	1.8V	Runtime		
SER0_CTS#	P132	Clear to Send Handshake Line for Port 0	I CMOS	1.8V	Runtime	PU 100k	
SER1_TX	P134	Asynchronous Serial Data Output Port 1	O CMOS	1.8V	Runtime		
SER1_RX	P135	Asynchronous Serial Data Input Port 1	I CMOS	1.8V	Runtime	PU 100k	
SER2_TX	P136	Asynchronous Serial Data Output Port 2	O CMOS	1.8V	Runtime		
SER2_RX	P137	Asynchronous Serial Data Input Port 2	I CMOS	1.8V	Runtime	PU 100k	
SER2_RTS#	P138	Request to Send Handshake Line for Port 2	O CMOS	1.8V	Runtime		
SER2_CTS#	P139	Clear to Send Handshake Line for Port 2	I CMOS	1.8V	Runtime	PU 100k	
SER3_TX	P140	Asynchronous Serial Data Output Port 3	O CMOS	1.8V	Runtime		
SER3_RX	P141	Asynchronous Serial Data Input Port 3	I CMOS	1.8V	Runtime	PU 100k	

Table 27: Serial Port Signals

3.13 CAN Bus

Signal Name	Pin#	Description	I/O Type	I/O Level	Power Domain	PU / PD	Comments
CAN0_TX	P143	CAN Port 0 Transmit Output	O CMOS	1.8V	Runtime		
CAN0_RX	P144	CAN Port 0 Receive Input	I CMOS	1.8V	Runtime		
CAN1_TX	P145	CAN Port 1 Transmit Output	O CMOS	1.8V	Runtime		
CAN1_RX	P146	CAN Port1 Receive Input	I CMOS	1.8V	Runtime		

Table 28: CAN Bus Signals

3.14 USB Interfaces

SMARC 2.0 provides six sets of USB 2.0 signals and two sets of USB 3.2 Super Speed signals. USB OTG and USB Client functionalities are also supported.

USB 3.2 is supported for the USB ports 2 and 3. For implementation of an USB 3.2 OTG or USB 3.2 host interface the USB3 port *may* be used. For filling order see also 3.2 'Feature Fill Order'. The order follows the port prefixes USB0 to USB5. For USB 3.2 SuperSpeed signals the filling order is USB2 to USB3.

At least one USB client port **should** be supported. It **may** also be available as an OTG port. There can be one or two USB client ports. If only one USB client port is supported, it can be either port 0 or port 3.

USB 3.2 Gen. 1 with 5 Gbit/s is supported. Support for USB 3.2 Gen 2 with 10 Gbit/s might be supported in the future. Limitation for trace length will apply. USB 3.2 Gen. 2 x 2 is not supported.

3.14.1 USB Signal Assignments

	Presence USB 2.0	Presence USB 3.2	OTG/VBUS	Client Capability
USB0	shall		may	should
USB1	should			
USB2	may	should		
USB3	may	may	may	may
USB4	may			
USB5	may			

Table 29: USB Signal Assignments

3.14.2 USB configurations

For the implementation of one or two USB ports the following configurations are allowed depending on the available USB ports on the module and its desired function, as well as USB revision.

In case of more than two available USB ports the feature fill order from chapter 3.2 and allowed USB signal assignment from chapter 3.14.1 must be followed.

Amount of USB ports	USB Revision	USB Function	USB Port
1	USB2.0	Host	USB0
	USB2.0	Client/OTG	USB0
	USB2.0 , USB2.0	Host, Host	USB0 , USB1
2	USB2.0 , USB2.0	Client/OTG , Host	USB0 , USB1
2	USB2.0 , USB3.2	Host , Host	USB0 , USB2
	USB2.0 , USB3.2	Client/OTG , Host	USB0 , USB2

Table 30: USB configurations

3.14.3 USB Signals

Signal Name	Pin#	Description	I/O Type	I/O Level	Power Domain	PU / PD	Comments
USB0+ USB0-	P60 P61	USB Differential Data Pairs for Port 0	I/O USB	USB	Standby		
USB0_EN_OC#	P62	USB Over-Current Sense for Port 0	I/O OD CMOS	3.3V ¹	Standby	PU 10k	Pulled low by Module OD driver to disable USB0 power. Pulled low by Carrier OD driver to indicate overcurrent situation.
USB0_VBUS_DET	P63	USB Port 0 Host Power Detection	I USB VBUS 5V	USB VBUS 5V	Standby		When this Port is used as a device it can be connected to a USB client port VBUS pin.
USB0_OTG_ID	P64	Input Pin to Announce OTG Device Insertion on USB 2.0 Port	I CMOS	3.3V	Standby		
USB1+ USB1-	P65 P66	USB Differential Data Pairs for Port 1	I/O USB	USB	Standby		
USB1_EN_OC#	P67	USB Over-Current Sense for Port 1	I/O OD CMOS	3.3V ¹	Standby	PU 10k	Pulled low by Module OD driver to disable USB1 power. Pulled low by Carrier OD driver to indicate overcurrent situation.
USB2+ USB2-	P69 P70	USB Differential Data Pairs for Port 2	I/O USB	USB	Standby		
USB2_SSRX+ USB2_SSRX-	S74 S75	Receive Signal Differential Pairs for SuperSpeed on Port 2	I USB SS	USB SS	Standby		DC blocking capacitors 100nF shall be placed on the Carrier
USB2_SSTX+ USB2_SSTX-	S71 S72	Transmit Signal Differential Pairs for SuperSpeed on Port 2	O USB SS	USB SS	Standby		DC blocking capacitors 100nF shall be placed on the Module
USB2_EN_OC#	P71	USB Over-Current Sense for Port 2	I/O OD CMOS	3.3V ¹	Standby	PU 10k	Pulled low by Module OD driver to disable USB2 power. Pulled low by Carrier OD driver to indicate overcurrent situation.
USB3+ USB3-	S68 S69	USB Differential Data Pairs for Port 3	I/O USB	USB	Standby		
USB3_SSRX+ USB3_SSRX-	S65 S66	Receive Signal Differential Pairs for SuperSpeed on Port 3	I USB SS	USB SS	Standby		DC blocking capacitors 100nF shall be placed on the Carrier
USB3_SSTX+ USB3_SSTX-	S62 S63	Transmit Signal Differential Pairs for SuperSpeed on Port 3	O USB SS	USB SS	Standby		DC blocking capacitors 100nF shall be placed on the Module

¹ 3.3V or switched 3.3V: if a USB channel is not used, then the USB[0:5]_EN_OC# pull-up rail may be held at GND to prevent leakage currents.

Signal Name	Pin #	Description	I/O Type	I/O Level	Power Domain	PU / PD	Comments
USB3_EN_OC#	P74	USB Over-Current Sense for Port 3	I/O OD CMOS	3.3V ¹	Standby	PU 10k	Pulled low by Module OD driver to disable USB3 power. Pulled low by Carrier OD driver to indicate overcurrent situation.
USB3_VBUS_DET	S37	USB Port 3 Host Power Detection	I USB VBUS 5V	USB VBUS 5V	Standby		when this Port is used as a Device
USB3_OTG_ID	S104	Input Pin to Announce OTG Device Insertion on USB 3.2 Port	I CMOS	3.3V	Standby		
USB4+ USB4-	S35 S36	USB Differential Data Pairs for Port 4	I/O USB	USB	Standby		
USB4_EN_OC#	P76	USB Over-Current Sense for Port 4	I/O OD CMOS	3.3V ¹	Standby	PU 10k	Pulled low by Module OD driver to disable USB4 power. Pulled low by Carrier OD driver to indicate overcurrent situation.
USB5+ USB5-	S59 S60	USB Differential Data Pairs for Port 5	I/O USB	USB	Standby		
USB5_EN_OC#	S55	USB Over-Current Sense for Port 5	I/O OD CMOS	3.3V ¹	Standby	PU 10k	Pulled low by Module OD driver to disable USB5 power. Pulled low by Carrier OD driver to indicate overcurrent situation.

3.14.4 USB[0:5]_EN_OC# Discussion

The Module USB[0:5]_EN_OC# pins are multi-function Module pins, with a pull-up to a 3.3V rail on the Module, an OD driver on the Module, and, if the OC# (over-current) monitoring function is implemented on the Carrier, an OD driver on the Carrier. The use is as follows:

- 1) On the Carrier Board, for external plug-in USB peripherals (USB memory sticks, cameras, keyboards, mice, etc.) USB power distribution is typically handled by USB power switches such as the Texas Instruments TPS2052B or the Micrel MIC2026-1 or similar devices. The Carrier implementation is more straightforward if the Carrier USB power switches have active—high power enables and active low open drain OC# outputs (as the TI and Micrel devices referenced do). The USB power switch Enable and OC# pins for a given USB channel are tied together on the Carrier. The USB power switch enable pin must function with a low input current. The TI and Micrel devices referenced above require 1 microampere or less, at a 3.3V enable voltage level.
- 2) The Module drives USB[0:5]_EN_OC# low to disable the power delivery to the USB[0:5] device.
- 3) The Module floats USB[0:5]_EN_OC# to enable power delivery. The line is pulled to 3.3V by the Module pull-up, enabling the Carrier Board USB power switch. If there is a USB over-current condition, the Carrier Board USB power switch drives the USB[0:5]_EN_OC# line low. This removes the over-current condition (by disabling the USB switch enable input), and allows Module software to detect the over-current condition. The Module software **should** look for a falling edge interrupt on USB[0:5]_EN_OC#, while the port is enabled, to detect the OC# condition. The OC# condition will not last long, as the USB power switch is disabled when the switch IC detects the OC# condition. If the USB power to the port is disabled (USB[0:5]_EN_OC# is driven low by the Module) then the Module software must be aware that the port is disabled, and the low input value on the port does not indicate an over-current condition (because the port power is disabled). If the USB power to the port is disabled, then the Module **may** remove the 3.3V pull-up voltage to the USB[0:5]_EN_OC# node, to save the current drain through the pull-up resistor. This is optional and Module design dependent.

Carrier Board USB peripherals that are not removable often do **not** make use of USB power switches with current limiting and over-current detection. It is usually deemed un-necessary for non-removable devices. In these cases, the USB[0:5]_EN_OC# pins **may** be left unused, or they **may** be used as USB[0:5] power enables, without making use of the over-current detect Module input feature.

SMARC 2.2 Specification © 2024 SGET e.V. Page 49 of 110

3.15 PCI Express

The Module *may* implement up to four PCIe lanes. The links *may* be PCIe Gen 1, 2, 3 or 4, as the Module chip or chipset allows.

The Module PCIe links are primarily PCIe Root Complexes. If the chipset allows it, the PCIe link(s) *may* alternatively be configured as a PCIe target(s). This is Module vendor specific.

Modules **should** implement the PCIe Link A port. Modules **may** implement the PCIe Links B, C and D ports. Fill order is A, B, C then D. PCIe lanes C and D **may** implement SERDES alternatively.

Signal Name	Pin#	Description	I/O Type	I/O Level	Power Domain	PU / PD	Comments
PCIE_A_TX+ PCIE_A_TX-	P89 P90	Differential PCIe link A transmit data pair	O PCIE		Runtime		Series AC coupled on Module 75-265 nF depending on PCIe generation
PCIE_A_RX+ PCIE_A_RX-	P86 P87	Differential PCIe link A receive data pair	I PCIE		Runtime		Series AC coupled off Module 75-265 nF depending on PCle generation
PCIE_A_REFCK+ PCIE_A_REFCK-	P83 P84	Differential PCIe Link A reference clock output	O PCIE		Runtime		
PCIE_A_RST#	P75	PCIe Port A reset output	O CMOS	3.3V	Runtime		
PCIE_A_CKREQ#	P78	PCIe Port A clock request	IO OD CMOS	3.3V	Runtime	>10k PU	Can be used for power saving mode on PCle - Pulled up or terminated on Module
PCIE_B_TX+ PCIE_B_TX-	S90 S91	Differential PCIe link B transmit data pair	O PCIE		Runtime		Series AC coupled on Module 75-265 nF depending on PCIe generation
PCIE_B_RX+ PCIE_B_RX-	S87 S88	Differential PCIe link B receive data pair	I PCIE		Runtime		Series AC coupled off Module 75-265 nF depending on PCIe generation
PCIE_B_REFCK+ PCIE_B_REFCK-	S84 S85	Differential PCIe Link B reference clock output	O PCIE		Runtime		
PCIE_B_RST#	S76	PCIe Port B reset output	O CMOS	3.3V	Runtime		
PCIE_B_CKREQ#	P77	PCIe Port B clock request	IO OD CMOS	3.3V	Runtime	>10k PU	Can be used for power saving mode on PCIe - Pulled up or terminated on Module
PCIE_C_TX+ PCIE_C_TX-	S81 S82	Differential PCle link C transmit data pair	O PCIE		Runtime		Series AC coupled on Module 75-265 nF depending on PCIe generation
PCIE_C_RX+ PCIE_C_RX-	S78 S79	Differential PCIe link C receive data pair	I PCIE		Runtime		Series AC coupled off Module 75-265 nF depending on PCIe generation
PCIE_C_REFCK+ PCIE_C_REFCK-	P80 P81	Differential PCIe Link C reference clock output	O PCIE		Runtime		
PCIE_C_RST#	S77	PCIe Port C reset output	O CMOS	3.3V	Runtime		
PCIE_D_TX+ PCIE_D_TX-	S29 S30	Differential PCle link D transmit data pair	O PCIE		Runtime		Series AC coupled on Module 75-265 nF depending on PCIe generation
PCIE_D_RX+ PCIE_D_RX-	S32 S33	Differential PCIe link D receive data pair	I PCIE		Runtime		Series AC coupled off Module 75-265 nF depending on PCIe generation
PCIE_WAKE#	S146	PCIe wake up interrupt to host – common to PCIe links A, B, C, D	I OD CMOS	3.3V	Standby	PU 10k	

Table 32: PCI Express Signals

3.15.1 PCI Express Link Width

A connection between any two PCIe devices is known as a link, and is built up from a collection of one or more lanes. All devices **shall** support at least one single lane (x1) link. Devices may optionally support wider links composed of 2 or 4 lanes. Therefore, the root complex **may** support different link width additionally to the x1 configuration.

The SMARC specification allows for multiple PCI Express link configurations. Check with the module vendor which configurations are supported. SMARC 2.1 adds CKREQ# signals for PCIe A and B to allow for enhanced power saving. The clock for PCIe D should be generated from the fixed clock of PCIe C on the carrier.

SMARC PCIe Lane	Possible Link Configuration							
PCIe A	x1	x1	v0	v2				
PCIe B	x1	x1	X2	XZ				
PCIe C	x1	v2	x1	v2	- x4			
PCIe D	x1	x2	x1	- X2				

Table 33: PCIe Link Configurations

SMARC PCIe Lane	REFCK and RST Assignments								
PCIe A	PCIE_A_REFCK PCIE_A_CKREQ# PCIE_A_RST#	PCIE_A_REFCK PCIE_A_CKREQ# PCIE_A_RST#	PCIE_A_REFCK	PCIE_A_REFCK					
PCIe B	PCIE_B_REFCK PCIE_B_CKREQ# PCIE_B_RST#	PCIE_B_REFCK PCIE_B_CKREQ# PCIE_B_RST#	PCIE_A_CKREQ# PCIE_A_RST#	PCIE_A_CKREQ# PCIE_A_RST#	PCIE_A_REFCK PCIE_A_CKREQ# PCIE_A_RST#				
PCIe C	PCIE_C_REFCK PCIE_C_RST#	PCIE_C_REFCK	PCIE_B_REFCK PCIE_B_CKREQ# PCIE_B_RST#	PCIE_B_REFCK PCIE_B_CKREQ#					
PCIe D	to be Generated via Buffer from PCIe C Signals	PCIE_C_RST#	PCIE_C_REFCK PCIE_C_RST#	PCIE_B_RST#					

Table 34: PCIe Clock and Reset Assignments

3.16 SERDES

SERDES is the general term for SERialized and DESerialized signals on a high-speed differential line. Many chip manufacturers use different functions on the same lines as PCIe and therefore we want to bring this surrogate use to be utilized on the module. The most common use case is here for sure (S)XGMII and therefore the implementation of one or more additional LAN ports. Other functions might also be possible. Of course, these different implementations lead to possible incompatibilities between different modules and a system designer needs to ensure, that this different functionality needs to be available on the regarding module as these are optional features.

Signal Name	Pin #	Description	I/O Type	I/O Level	Power Domain	PU / PD	Comments
SERDES_1_TX+ SERDES_1_TX-	S81 S82	Differential SERDES 1 Transmit Data Pair	O PCIE		Runtime		Series AC coupled on Module ²
SERDES_1_RX+ SERDES_1_RX-	S78 S79	Differential SERDES 1 Receive Data Pair	I PCIE		Runtime		Series AC coupled on Carrier
SERDES_0_TX+ SERDES_0_TX-	S29 S30	Differential SERDES 0 Transmit Data Pair	O PCIE		Runtime		Series AC coupled on Module
SERDES_0_RX+ SERDES_0_RX-	S32 S33	Differential SERDES 0 Receive Data Pair	I PCIE		Runtime		Series AC coupled on Carrier
MDIO_CLK	S45	MDIO Signals to Configure Possible PHYs	O CMOS	1.8V	Runtime		Signal for communication to a PHY
MDIO_DAT	S46	MDIO Signals to Configure Possible PHYs	I/O OD CMOS	1.8V	Runtime	PU 1k5	Signal for communication to a PHY
SERDES_RST#	S77	SERDES Ports 0/1 reset output	O CMOS	3.3V	Runtime		Signal for resetting the PHYs

Table 35: SERDES Signals

² Capacitor values are depending on the module implementation

3.16.1 PCI Express SERDES Pin Sharing

Pin#	PCIE Signal Name	SERDES Signal Name
S81	PCIE_C_TX+	SERDES_1_TX+
S82	PCIE_C_TX-	SERDES_1_TX-
S78	PCIE_C_RX+	SERDES_1_RX+
S79	PCIE_C_RX-	SERDES_1_RX-
P80 P81	PCIE_C_REFCK+ PCIE_C_REFCK-	-
S77	PCIE_C_RST#	SERDES_RST#1
S29	PCIE_D_TX+	SERDES_0_TX+
S30	PCIE_D_TX-	SERDES_0_TX-
S32	PCIE_D_RX+	SERDES_0_RX+
S33	PCIE_D_RX-	SERDES_0_RX-
S45 S46	-	MDIO_CLK MDIO_DAT

Table 36: PCIe Lane C&D / SERDES Pin Sharing

¹ This signal is only to be implemented, if there is no PCIE_C available on the module. It acts as the reset signal for both SERDES0 and SERDES1.

3.17 SATA

The Module definition allows for one SATA port. The port *may* be SATA Gen 1, 2 or 3 as the Modules SOC allows.

The Carrier SATA device *may* be selected as the Boot Device – see section Table 45 'Control of Boot Sources' on page 64

Signal Name	Pin #	Description	I/O Type	I/O Level	Power Domain	PU / PD	Comments
SATA0_TX+ SATA0_TX-	P48 P49	Serial ATA Channel 0 Transmit Output Differential Pair	O SATA		Runtime		Series AC coupled on Module 10 nF
SATA0_RX+ SATA0_RX-	P51 P52	Serial ATA Channel 0 Receive Input Differential Pair	I SATA		Runtime		Series AC coupled on Module 10 nF
SATA_ACT#	S54	SATA Activity Indicator	O OD CMOS	3.3V	Runtime		Shall be able to sink 24mA or more Carrier LED current

Table 37: SATA Signals

3.18 Ethernet

The SMARC pin-out supports two multi-gigabit Ethernet capable ports. If only one is implemented, it **should** be GBE0. Additional Ethernet capabilities **may** be added by utilizing the optional SERDES (See section 3.16 'SERDES' on page 53 and section 3.16.1 'PCI Express SERDES Pin Sharing' on page 54).

Signal Name	Pin#	Description	I/O Type	I/O Level	Power Domain	PU / PD	Comments
GBE0_MDI0+ GBE0_MDI0- GBE0_MDI1+ GBE0_MDI2+ GBE0_MDI2- GBE0_MDI3+ GBE0_MDI3-	P30 P29 P27 P26 P24 P23 P20 P19	Differential Pair Signals for External Transformer Carrier Series Termination: Magnetics Module appropriate for 10M/100M/(≥)1G transceivers Carrier Parallel Termination: Secondary side center tap terminations appropriate for Gigabit Ethernet implementations	I/O GBE MDI		Standby		Gigabit Ethernet Controller 0: Media Dependent Interface Differential Pairs 0, 1, 2, 3. The MDI can operate in (≥)1G ⁵ , 100M, and 10M bit/sec modes. Some pairs are unused in some modes according to the following: (≥)1G 100M 10M MDI0+/- B1_DA+/- TX+/- TX+/- MDI1+/- B1_DB+/- RX+/- RX+/- MDI2+/- B1_DC+/- MDI3+/- B1_DD+/-
GBE0_LINK_MID#	P21	Link Speed Indication LED for GBE0 lower link speed Previously: GBE0_LINK100# ⁵	O OD CMOS	3.3V	Standby		Shall be able to sink 24mA or more Carrier LED current. ³
GBE0_LINK_MAX#	P22	Link Speed Indication LED for GBE0 maximum link speed Previously: GBE0_LINK1000# ⁵	O OD CMOS	3.3V	Standby		Shall be able to sink 24mA or more Carrier LED current. ³
GBE0_LINK_ACT#	P25	Link / Activity Indication LED Driven Low on Link (10M, 100M or (≥)1Gbps) Blinks on Activity	O OD CMOS	3.3V	Standby		Shall be able to sink 24mA or more Carrier LED current. ³
GBE0_CTREF	P28	Center-Tap Reference Voltage for Carrier Board Ethernet Magnetic (if required by the Module GBE PHY)	Analog	0 to 3.3V max	Standby		
GBE0_SDP	P6	IEEE 1588 Trigger Signal for Hardware Implementation of PTP (Precision Time Protocol)	I/O CMOS	3.3V	Standby		

³

³ Needs Carrier based current limiting resistors and LEDs if used. The LED **may** be integrated into a Carrier RJ45 jack. A resistor of 68 ohms and a LED with the anode tied to Carrier 3.3V is typical

⁵ The operational modes are extended to allow (but not require) multi-gigabit Ethernet operations. The name of the Link Speed indication LED signals have been altered for this purpose. Further information to restrictions and implementation details will be added to the SMARC Design Guide.

GBE1_MDI0+ GBE1_MDI0- GBE1_MDI1+ GBE1_MDI1- GBE1_MDI2+ GBE1_MDI2- GBE1_MDI3+ GBE1_MDI3-	\$17 \$18 \$20 \$21 \$23 \$24 \$26 \$27	Differential Pair Signals for External Transformer Carrier Series Termination: Magnetics Module appropriate for 10M/100M/(≥)1G transceivers Carrier Parallel Termination: Secondary side center tap terminations appropriate for Gigabit Ethernet implementations	I/O GBE MDI		Standby	Gigabit Ethernet Controller 1: Media Dependent Interface Differential Pairs 0, 1, 2, 3. The MDI can operate in (≥)1G ⁶ , 100M, and 10M bit/sec modes. Some pairs are unused in some modes according to the following: (≥)1G/ 100M 10M MDI0+/- B1_DA+/- TX+/- TX+/- MDI1+/- B1_DB+/- RX+/- RX+/- MDI2+/- B1_DC+/- MDI3+/- B1_DD+/-
GBE1_LINK_MID#	S19	Link Speed Indication LED for GBE1 lower link speed Previously: GBE1_LINK100# ⁶	O OD CMOS	3.3V	Standby	Shall be able to sink 24mA or more Carrier LED current. ³
GBE1_LINK_MAX#	S22	Link Speed Indication LED for GBE1 maximum link speed Previously: GBE1_LINK1000# ⁶	O OD CMOS	3.3V	Standby	Shall be able to sink 24mA or more Carrier LED current. ³
GBE1_LINK_ACT#	S31	Link / Activity Indication LED Driven Low on Link (10M, 100M or (≥)1Gbps) Blinks on Activity	O OD CMOS	3.3V	Standby	Shall be able to sink 24mA or more Carrier LED current. ³
GBE1_CTREF	S28	Center-Tap Reference Voltage for Carrier Board Ethernet Magnetic (if required by the Module GBE PHY)	Analog	0 to 3.3V max	Standby	
GBE1_SDP	P5	IEEE 1588 Trigger Signal for Hardware Implementation of PTP (Precision Time Protocol)	I/O CMOS	3.3V	Standby	

Table 38: Ethernet Signals GBE0 and GBE1

⁶ The operational modes are extended to allow (but not require) multi-gigabit Ethernet operations. The name of the Link Speed indication LED signals have been altered for this purpose. Further information to restrictions and implementation details will be added to the SMARC Design Guide.

3.19 Watchdog

Signal Name	Pin#	Description	I/O Type	I/O Level	Power Domain	PU / PD	Comments
WDT_TIME_OUT#	S145	Watch-Dog-Timer Output, low active	O CMOS	1.8V	Runtime		

Table 39: Watchdog Signals

3.20 GPIO

14 Module pins are allocated for GPIO (general purpose input / output) use. All pins should be capable of bi-directional operation.

At Module power-up, the state of the GPIO pins **may not** be defined, and **may** briefly be configured in the "wrong" state, before boot loader code corrects them. Carrier designers **should** be aware of this and plan accordingly. Module designers **should** generally choose pins that are tri-stated or are inputs during power up and reset, but this **may not** always be the case.

All GPIO pins **should** be weakly pulled up to 1.8V. If the pull-ups are implemented as discrete resistors, or resistor packs, a value of 470k **should** be used. SOC internal pull-up / current source features **may** be used instead of external resistors.

All GPIO pins **shall** be capable of generating interrupts. The interrupt characteristics (edge or level sensitivity, polarity) are generally configurable in the SOC register set. Inputs with lowest latency interrupts **should** be mapped from GPIO6 to GPIO13, where GPIO6 has the lowest latency. GPIO0 to GPIO5 **may** have the highest latency. This is important in systems with high time-critical interrupts. Typically, GPI directly connected to SoC have a lower latency than GPIO connected to an I/O expander or some other circuitry that leads to extra latency. If a low latency input signal is needed, like a touch controller interrupt, it is recommended to use GPIO6 and for a 2nd one GPIO7.

Signal Name	Pin#	Description	I/O Type	I/O Level	Power Domain	PU / PD	Comments
GPIO0	P108	GPIO Pin 0 Preferred Output	I/O CMOS	1.8V	Runtime	PU 470k ⁴	Alternative use: CAM0_PWR#
GPIO1	P109	GPIO Pin 1 Preferred Output	I/O CMOS	1.8V	Runtime	PU 470k ⁴	Alternative use: CAM1_PWR#
GPIO2	P110	GPIO Pin 2 Preferred Output	I/O CMOS	1.8V	Runtime	PU 470k ⁴	Alternative use: CAM0_RST#
GPIO3	P111	GPIO Pin 3 Preferred Output	I/O CMOS	1.8V	Runtime	PU 470k ⁴	Alternative use: CAM1_RST#
GPIO4	P112	GPIO Pin 4 Preferred Output	I/O CMOS	1.8V	Runtime	PU 470k ⁴	Alternative use: HDA_RST#
GPIO5	P113	GPIO Pin 5 Preferred Output	I/O CMOS	1.8V	Runtime	PU 470k ⁴	Alternative use: PWM_OUT
GPIO6	P114	GPIO Pin 6 Preferred Input	I/O CMOS	1.8V	Runtime	PU 470k ⁴	Alternative use: TACHIN Lowest interrupt latency GPI
GPIO7	P115	GPIO Pin 7 Preferred Input	I/O CMOS	1.8V	Runtime	PU 470k ⁴	
GPIO8	P116	GPIO Pin 8 Preferred Input	I/O CMOS	1.8V	Runtime	PU 470k ⁴	
GPIO9	P117	GPIO Pin 9 Preferred Input	I/O CMOS	1.8V	Runtime	PU 470k ⁴	
GPIO10	P118	GPIO Pin 10 Preferred Input	I/O CMOS	1.8V	Runtime	PU 470k ⁴	
GPIO11	P119	GPIO Pin 11 Preferred Input	I/O CMOS	1.8V	Runtime	PU 470k ⁴	
GPIO12	S142	GPIO Pin 12 Preferred Input	I/O CMOS	1.8V	Runtime	PU 470k ⁴	
GPIO13	S123	GPIO Pin 13 Preferred Input	I/O CMOS	1.8V	Runtime	PU 470k ⁴	

Table 40: GPIO Signals

SMARC 2.2 Specification © 2024 SGET e.V. Page 59 of 110

⁴ SMARC Spec also allows for SoC integrated Pull-Ups, these can be ≥ 20k. Max 2.2k PD should be implemented on Carrier if a low level needs to be ensured.

3.20.1 Alternative GPIO Pin Usage

Signal Name	Pin#	Description	I/O Type	I/O Level	Power Domain	PU / PD	Comments
CAM0_PWR#	P108	Camera 0 Power Enable, Active Low Output	O CMOS	1.8V	Runtime	PU 470k ⁶	
CAM1_PWR#	P109	Camera 1 Power Enable, Active Low Output	O CMOS	1.8V	Runtime	PU 470k ⁶	
CAM0_RST#	P110	Camera 0 Reset, Active Low Output	O CMOS	1.8V	Runtime	PU 470k ⁶	
CAM1_RST#	P111	Camera 1 Reset, Active Low Output	O CMOS	1.8V	Runtime	PU 470k ⁶	
HDA_RST#	P112	HD Audio Reset, Active Low Output	O CMOS	1.8V	Runtime	PU 470k ⁶	
PWM_OUT	P113	Fan Speed Control	O CMOS	1.8V	Runtime	PU 470k ⁶	Uses the Pulse Width Modulation (PWM) technique to control the fan's RPM.
TACHIN	P114	Fan Tachometer Input	I CMOS	1.8V	Runtime	PU 470k ⁶	
SERDES0_INT#	P115	SERDES 0 Interrupt, Activ Low Input	I CMOS	1.8V	Runtime	PU 470k ⁶	
SERDES1_INT#	P116	SERDES 1 Interrupt, Activ Low Input	I CMOS	1.8V	Runtime	PU 470k ⁶	

Table 41: Alternative Use of GPIO Signals

3.20.2 GPIO Pin Sharing

Pin #	GPIO Signal Name	Alternative Use
P108	GPIO0	CAM0_PWR#
P109	GPIO1	CAM1_PWR#
P110	GPIO2	CAM0_RST#
P111	GPIO3	CAM1_RST#
P112	GPIO4	HDA_RST#
P113	GPIO5	PWM_OUT
P114	GPIO6	TACHIN
P115	GPIO7	SERDES0_INT#
P116	GPIO8	SERDES1_INT#

Table 42: GPIO Pin Sharing

⁶ SMARC Spec also allows for SoC integrated Pull-Ups, these can be ≥ 20k. Max 2.2k PD should be implemented on Carrier if a low level needs to be ensured.

3.21 Management Pins

The input pins listed in this table are all active low and are meant to be driven by OD (open drain) devices on the Carrier. The Carrier either floats the line or drives it to GND. No Carrier pull-ups are needed. The pull-up functions are performed on the Module. The voltage rail that these lines are pulled to on the Module varies, depending on the design, and **may** be anywhere from 1.8V to 5V.

Switches to GND *may* be used instead of OD drivers for lines such as PWR_BTN# and RESET_IN#.

Signal Name	Pin#	Description	I/O Type	I/O Level	Power Domain	PU / PD	Comments
BATLOW#	S156	Battery low indication to Module. Carrier to float the line in inactive state.	I OD CMOS	1.8 to 5 V	Standby/Sleep	PU 10k	Driven by OD on Carrier.
CARRIER_PWR_ON	S154	Carrier Board circuits (apart from power management and power path circuits) should not be powered up until the Module asserts the CARRIER_PWR_ON signal.	O CMOS	1.8V	Standby/Sleep		On x86 designs this pin should utilize a standby related power signal i.e. RSM_RST# or SLP_A# signal.
CARRIER_STBY#	S153	The Module shall drive this signal low when the system is in a standby power state.	O CMOS	1.8V	Standby/Sleep		On x86 designs this pin should utilize the SUS_S3# signal.
CHARGER_PRSNT#	S152	Held low by Carrier if DC input for battery charger is present.	I OD CMOS	1.8 to 5 V	Standby/Sleep	PU 10k	Driven by OD on Carrier.
CHARGING#	S151	Held low by Carrier during battery charging. Carrier to float the line when charge is complete.	I OD CMOS	1.8 to 5 V	Standby/Sleep	PU 10k	Driven by OD on Carrier.
VIN_PWR_BAD#	S150	Power bad indication from Carrier Board. Module and Carrier power supplies (other than Module and Carrier power supervisory circuits) shall not be enabled while this signal is held low by the Carrier.	I OD CMOS	VDD_IN		PU 10k	Module must implement PU but actual value is depended on particular Module design. Driven by OD on Carrier
SLEEP#	S149	Sleep indicator from Carrier Board. May be sourced from user Sleep button or Carrier logic. Carrier to float the line in in-active state. Active low, level sensitive. Should be debounced on the Module.	I OD CMOS	1.8 to 5V	Standby	PU 10k	Driven by OD on Carrier.

SMARC 2.2 Specification © 2024 SGET e.V. Page 61 of 110

Signal Name	Pin#	Description	I/O Type	I/O Level	Power Domain	PU / PD	Comments
LID#	S148	Lid open/close indication to Module. Low indicates lid closure (which system may use to initiate a sleep state). Carrier to float the line in in- active state. Active low, level sensitive. Should be de-bounced on the Module.	I OD CMOS	1.8 to 5 V	Standby	PU 10k	Driven by OD on Carrier.
POWER_BTN#	P128	Power-button input from Carrier Board. Carrier to float the line in in-active state. Active low, level sensitive. Should be debounced on the Module.	I OD CMOS	1.8 to 5 V	Standby/Sleep	PU 10k	Driven by OD on Carrier.
RESET_OUT#	P126	General purpose reset output to Carrier Board.	O CMOS	1.8V	Standby		
RESET_IN#	P127	Reset input from Carrier Board. Carrier drives low to force a Module reset, floats the line otherwise.	I OD CMOS	1.8 to 5 V	Standby	PU 10k	Driven by OD on Carrier.
		This signal Shall be level triggered during bootup to allow to stop booting of the module.					
		After bootup it May act as an edge triggered signal.					
I2C_PM_DAT	P122	Power management I2C bus DATA	I/O OD CMOS	1.8V	Standby/Sleep	PU 2k2	On x86 systems these serve as SMB DATA.
I2C_PM_CK	P121	Power management I2C bus CLK	I/O OD CMOS	1.8V	Standby/Sleep	PU 2k2	On x86 systems these serve as SMB CLK.
SMB_ALERT#	P1	SMBus Alert# (Interrupt) Signal	I OD CMOS	1.8 to 5 V	Standby/Sleep	PU 2k2	
TEST#	S157	Held Low by Carrier to Invoke Module Vendor Specific Test Functions	I OD CMOS	1.8 to 5 V	Standby/Sleep	PU vendor specific value	Module must implement PU but actual value is depended on particular Module design. Carrier Board should leave this pin floating for normal operation. Driven by OD on Carrier

Table 43: Management Signals

3.22 Boot Select

Three Module pins allow the Carrier Board user to select from eight possible boot devices. Three are Module devices, and four are Carrier devices, and one is a remote device. The pins **shall** be weakly pulled up on the Module and the pin states decoded by Module logic. The Carrier **shall** either leave the Module pin Not Connected ("Float" in the table below) or **shall** pull the pin to GND, per the second table below.

A "Force Recovery" provision exists, per the pin description below.

Signal Name	Pin #	Description	I/O Type	I/O Level	Power Domain	PU / PD	Comments
BOOT_SEL0# BOOT_SEL1# BOOT_SEL2#	P123 P124 P125	Input straps determine the Module boot device.	I OD CMOS	1.8V	Standby	PU 10k	Driven by OD on Carrier.
FORCE_RECOV#	S155	Low on this pin allows non-protected segments of Module boot device to be rewritten / restored from an external USB Host on Module USB0. The Module USB0 operates in Client Mode when in the Force Recovery function is invoked. Pulled high on the Module. For SOCs that do not implement a USB based Force Recovery functions, then a low on the Module FORCE_RECOV# pin may invoke the SOC native Force Recovery mode – such as over a Serial Port. For x86 systems this signal may be used to load BIOS defaults. Pulled up on Module. Driven by OD part on Carrier.	I OD CMOS	1.8V	Standby	PU 10k	Driven by OD on Carrier.

Table 44: Boot Select Signals

	Carrier Connection			Boot Source	
	BOOT_SEL2#	BOOT_SEL1#	BOOT_SEL0#		
0	GND	GND	GND	Carrier SATA	
1	GND	GND	Float	Carrier SD Card	
2	GND	Float	GND	Carrier eSPI (CS0#)	
3	GND	Float	Float	Carrier SPI (CS0#)	
4	Float	GND	GND	Module device (NAND, NOR) – vendor specific	
5	Float	GND	Float	Remote boot (GBE, serial) – vendor specific	
6	Float	Float	GND	Module eMMC Flash	
7	Float	Float	Float	Module SPI	

Table 45: Control of Boot Sources

Note: The boot sources shown above are Module options, and may not be available on all Module designs.

The definition of "boot" is left to the Module designer. Some designs **may** literally implement some or all of the table above, such that the first off-SOC code fetches come from the devices listed above. Alternatively, some designs **may** always fetch the first few off-SOC instructions from a fixed device, likely a SPI Flash EEPROM, and then re-direct the execution to another device per the table above.

3.23 Power and GND

See section 6 'Module Power' on page 86 for details on input voltages and power sequencing.

Signal Name	Pin #	Description	I/O Type	I/O Level	Power Domain	PU / PD	Comments
VDD_IN	P147, P148, P149, P150, P151, P152, P153, P154, P155, P156	Module power input voltage - 3.0V min to 5.25V max	Analog	3.0V to 5.25V			
GND	P2, P9, P12, P15, P18, P32, P38, P47, P50, P53, P59, P68, P79, P82, P85, P88, P91, P94, P97, P100, P103, P120, P133, P142, S3, S10, S16, S25, S34, S47, S61, S64, S67, S70, S73, S80, S83, S86, S89, S92, S101, S110, S119, S124, S130, S136, S143, S158	Module signal and power return, and GND reference	Analog	Ground			
VDD_RTC	S147	Low current RTC circuit backup power – 3.0V nominal. May be sourced from a Carrier based lithium cell or super cap.	Analog	2.0V to 3.25V			

Table 46: Power Signals

3.24 JTAG

A CPU JTAG interface **may** be implemented on the Module, using a small form factor R/A SMT connector. The JTAG pins are used to allow test equipment and circuit emulators to have access to the Module CPU. The pin-out shown below **may** be used:

Signal Name	Pin#	Description	I/O Type	I/O Level	Comments
VDD_JTAG	1	JTAG I/O Voltage (sourced by Module)		1.8 to 3.3V	Voltage level depends on the used SOC. Check implementation details with module vendor. A JTAG adapter might use this voltage to adapt the required JTAG signal levels.
JTAG_TRST#	2	JTAG reset, active low	I CMOS	VDD_JTAG	
JTAG_TMS	3	JTAG mode select	I CMOS	VDD_JTAG	
JTAG_TDO	4	JTAG data out	O CMOS	VDD_JTAG	
JTAG_TDI	5	JTAG data in	I CMOS	VDD_JTAG	
JTAG_TCK	6	JTAG clock	I CMOS	VDD_JTAG	
JTAG_RTCK	7	JTAG return clock	I CMOS	VDD_JTAG	
JTAG_RESET_IN#	8	Pulled high at module	I OD CMOS	VDD_JTAG	
MFG_MODE#	9	Pulled low to allow in-circuit SPI ROM update	I CMOS	VDD_JTAG	Pulled low to allow in-circuit SPI ROM update
GND	10				

Table 47: JTAG Signals

The Module JTAG connector *may* be implemented with a JST SH series 1mm pitch R/A wire mount header (JST SM10B-SRSS-TB). FCI 10051922-1010EHLF, SUNFUN Technology LTDFDS0520-10-11Z, Most Well Technology Corp. MWAFC07-S10-FBA-HFSMARC 2.1JTAG

Figure 3: JTAG Connector

3.25 Module Terminations

3.25.1 General

The required Carrier and Module terminations and the component values are described in the signal tables above, although the final decision on specific component values and types is left to the Module designer.

SMARC Module pins of unused features *may* be left un-connected.

4 MODULE PIN-OUT MAP

4.1 Module Pin-Out

P-PIN	Primary (Top) Side
P1	SMB_ALERT#
P2	GND
P3	CSI1_CK+
P4	CSI1_CK-
P5	GBE1_SDP
P6	GBE0_SDP
P7	CSI1_RX0+
P8	CSI1_RX0-
P9	GND
P10	CSI1_RX1+
P11	CSI1_RX1-
P12	GND
P13	CSI1_RX2+
P14	CSI1_RX2-
P15	GND
P16	CSI1_RX3+
P17	CSI1_RX3-
P18	GND
P19	GBE0_MDI3-
P20	GBE0_MDI3+
P21	GBE0_LINK_MID#
P22	GBE0_LINK_MAX#
P23	GBE0_MDI2-
P24	GBE0_MDI2+
P25	GBE0_LINK_ACT#
P26	GBE0_MDI1-
P27	GBE0_MDI1+
P28	GBE0_CTREF

S-Pin	Secondary (Bottom) Side
	5
S1	CSI1_TX+ / I2C_CAM1_CK
S2	CSI1_TX- / I2C_CAM1_DAT
S3	GND
S4	RSVD
S5	CSI0_TX+ / I2C_CAM0_CK
S6	CAM_MCK
S7	CSI0_TX- / I2C_CAM0_DAT
S8	CSI0_CK+
S9	CSI0_CK-
S10	GND
S11	CSI0_RX0+
S12	CSI0_RX0-
S13	GND
S14	CSI0_RX1+
S15	CSI0_RX1-
S16	GND
S17	GBE1_MDI0+
S18	GBE1_MDI0-
S19	GBE1_LINK_MID#
S20	GBE1_MDI1+
S21	GBE1_MDI1-
S22	GBE1_LINK1_MAX#
S23	GBE1_MDI2+
S24	GBE1_MDI2-
S25	GND
S26	GBE1_MDI3+
S27	GBE1_MDI3-
S28	GBE1_CTREF
S29	PCIE_D_TX+ / SERDES_0_TX+

⁵ Shielding should be provided on the Carrier Board close to the Pins S1 and S75 as differential pairs need ground or static signals right and left.

P-PIN	Primary (Top) Side
P29	GBE0_MDI0-
P30	GBE0_MDI0+
P31	SPI0_CS1#
P32	GND
P33	SDIO_WP
P34	SDIO_CMD
P35	SDIO_CD#
P36	SDIO_CK
P37	SDIO_PWR_EN
P38	GND
P39	SDIO_D0
P40	SDIO_D1
P41	SDIO_D2
P42	SDIO_D3
P43	SPI0_CS0#
P44	SPI0_CK
P45	SPI0_DIN
P46	SPI0_DO
P47	GND
P48	SATA_TX+
P49	SATA_TX-
P50	GND
P51	SATA_RX+
P52	SATA_RX-
P53	GND
P54	ESPI_CS0# / SPI1_CS0# / QSPI_CS0#
P55	ESPI_CS1# / SPI1_CS1# / QSPI_CS1#
P56	ESPI_CK / SPI1_CK / QSPI_CK
P57	ESPI_IO_1 / SPI1_DIN / QSPI_IO_1
P58	ESPI_IO_0 / SPI1_DO / QSPI_IO_0
P59	GND
P60	USB0+
P61	USB0-
P62	USB0_EN_OC#
P63	USB0_VBUS_DET
P64	USB0_OTG_ID

S-Pin	Secondary (Bottom) Side
S30	PCIE_D_TX- / SERDES_0_TX-
S31	GBE1_LINK_ACT#
S32	PCIE_D_RX+ / SERDES_0_RX+
S33	PCIE_D_RX- / SERDES_0_RX-
S34	GND
S35	USB4+
S36	USB4-
S37	USB3_VBUS_DET
S38	AUDIO_MCK
S39	I2S0_LRCK
S40	I2S0_SDOUT
S41	12S0_SDIN
S42	12S0_CK
S43	ESPI_ALERT0#
S44	ESPI_ALERT1#
S45	MDIO_CLK
S46	MDIO_DAT
S47	GND
S48	I2C_GP_CK
S49	I2C_GP_DAT
S50	HDA_SYNC / I2S2_LRCK / SNDW_CLK1
S51	HDA_SDO / I2S2_SDOUT / SNDW_DAT1
S52	HDA_SDI / I2S2_SDIN / SNDW_DAT0
S53	HDA_CK / I2S2_CK / SNDW_CLK0
S54	SATA_ACT#
S55	USB5_EN_OC#
S56	ESPI_IO_2 / QSPI_IO_2
S57	ESPI_IO_3 / QSPI_IO_3
S58	ESPI_RESET#
S59	USB5+
S60	USB5-
S61	GND
S62	USB3_SSTX+
S63	USB3_SSTX-
S64	GND
S65	USB3_SSRX+

P-PIN	Primary (Top) Side
P65	USB1+
P66	USB1-
P67	USB1_EN_OC#
P68	GND
P69	USB2+
P70	USB2-
P71	USB2_EN_OC#
P72	RSVD
P73	RSVD
P74	USB3_EN_OC#
	Vov
	Key
P75	PCIE_A_RST#
P76	USB4_EN_OC#
P77	PCIE_B_CKREQ#
P78	PCIE_A_CKREQ#
P79	GND
P80	PCIE_C_REFCK+
P81	PCIE_C_REFCK-
P82	GND
P83	PCIE_A_REFCK+
P84	PCIE_A_REFCK-
P85	GND
P86	PCIE_A_RX+
P87	PCIE_A_RX-
P88	GND
P89	PCIE_A_TX+
P90	PCIE_A_TX-
P91	GND
P92	HDMI_D2+ / DP1_LANE0+
P93	HDMI_D2- / DP1_LANE0-
P94	GND
P95	HDMI_D1+ / DP1_LANE1+

S-Pin	Secondary (Bottom) Side
S66	USB3_SSRX-
S67	GND
S68	USB3+
S69	USB3-
S70	GND
S71	USB2_SSTX+
S72	USB2_SSTX-
S73	GND
S74	USB2_SSRX+
S75	USB2_SSRX-
	Key ⁶
S76	PCIE B RST#
S77	PCIE C RST#
S78	PCIE_C_RX+ / SERDES_1_RX+
S79	PCIE C RX-/SERDES 1 RX-
S80	GND
S81	PCIE_C_TX+ / SERDES_1_TX+
S82	PCIE_C_TX- / SERDES_1_TX-
S83	GND
S84	PCIE_B_REFCK+
S85	PCIE_B_REFCK-
S86	GND
S87	PCIE_B_RX+
S88	PCIE_B_RX-
S89	GND
S90	PCIE_B_TX+
S91	PCIE_B_TX-
S92	GND
S93	DP0_LANE0+
S94	DP0_LANE0-
S95	DP0_AUX_SEL
S96	DP0_LANE1+

⁶ Shielding should be provided on the Carrier Board close to the Pins S1 and S75 as differential pairs need ground or static signals right and left.

P-PIN	Primary (Top) Side
P96	HDMI_D1- / DP1_LANE1-
P97	GND
P98	HDMI_D0+ / DP1_LANE2+
P99	HDMI_D0- / DP1_LANE2-
P100	GND
P101	HDMI_CK+ / DP1_LANE3+
P102	HDMI_CK- / DP1_LANE3-
P103	GND
P104	HDMI_HPD / DP1_HPD
P105	HDMI_CTRL_CK / DP1_AUX+
P106	HDMI_CTRL_DAT / DP1_AUX-
P107	DP1_AUX_SEL
P108	GPIO0 / CAM0_PWR#
P109	GPIO1 / CAM1_PWR#
P110	GPIO2 / CAM0_RST#
P111	GPIO3 / CAM1_RST#
P112	GPIO4 / HDA_RST#
P113	GPIO5 / PWM_OUT
P114	GPIO6 / TACHIN
P115	GPIO7
P116	GPIO8
P117	GPIO9
P118	GPIO10
P119	GPIO11
P120	GND
P121	I2C_PM_CK
P122	I2C_PM_DAT
P123	BOOT_SEL0#
P124	BOOT_SEL1#
P125	BOOT_SEL2#
P126	RESET_OUT#
P127	RESET_IN#
P128	POWER_BTN#
P129	SER0_TX
P130	SER0_RX
P131	SER0_RTS#

S-Pin	Secondary (Bottom) Side
S97	DP0_LANE1-
S98	DP0_HPD
S99	DP0_LANE2+
S100	DP0_LANE2-
S101	GND
S102	DP0_LANE3+
S103	DP0_LANE3-
S104	USB3_OTG_ID
S105	DP0_AUX+
S106	DP0_AUX-
S107	LCD1_BKLT_EN
S108	LVDS1_CK+ / eDP1_AUX+ / DSI1_CLK+
S109	LVDS1_CK- / eDP1_AUX- / DSI1_CLK-
S110	GND
S111	LVDS1_0+ / eDP1_TX0+ / DSI1_D0+
S112	LVDS1_0- / eDP1_TX0- / DSI1_D0-
S113	eDP1_HPD / DSI1_TE
S114	LVDS1_1+ / eDP1_TX1+ / DSI1_D1+
S115	LVDS1_1- / eDP1_TX1- / DSI1_D1-
S116	LCD1_VDD_EN
S117	LVDS1_2+ / eDP1_TX2+ / DSI1_D2+
S118	LVDS1_2- / eDP1_TX2- / DSI1_D2-
S119	GND
S120	LVDS1_3+ / eDP1_TX3+ / DSI1_D3+
S121	LVDS1_3- / eDP1_TX3- / DSI1_D3-
S122	LCD1_BKLT_PWM
S123	GPIO13
S124	GND
S125	LVDS0_0+ / eDP0_TX0+ / DSI0_D0+
S126	LVDS0_0- / eDP0_TX0- / DSI0_D0-
S127	LCD0_BKLT_EN
S128	LVDS0_1+ / eDP0_TX1+ / DSI0_D1+
S129	LVDS0_1- / eDP0_TX1- / DSI0_D1-
S130	GND
S131	LVDS0_2+ / eDP0_TX2+ / DSI0_D2+
S132	LVDS0_2- / eDP0_TX2- / DSI0_D2-

P-PIN	Primary (Top) Side
P132	SER0_CTS#
P133	GND
P134	SER1_TX
P135	SER1_RX
P136	SER2_TX
P137	SER2_RX
P138	SER2_RTS#
P139	SER2_CTS#
P140	SER3_TX
P141	SER3_RX
P142	GND
P143	CAN0_TX
P144	CAN0_RX
P145	CAN1_TX
P146	CAN1_RX
P147	VDD_IN
P148	VDD_IN
P149	VDD_IN
P150	VDD_IN
P151	VDD_IN
P152	VDD_IN
P153	VDD_IN
P154	VDD_IN
P155	VDD_IN
P156	VDD_IN

S-Pin	Secondary (Bottom) Side
S133	LCD0_VDD_EN
S134	LVDS0_CK+ / eDP0_AUX+ / DSI0_CLK+
S135	LVDS0_CK- / eDP0_AUX- / DSI0_CLK-
S136	GND
S137	LVDS0_3+ / eDP0_TX3+ / DSI0_D3+
S138	LVDS0_3- / eDP0_TX3- / DSI0_D3-
S139	I2C_LCD_CK
S140	I2C_LCD_DAT
S141	LCD0_BKLT_PWM
S142	GPIO12
S143	GND
S144	eDP0_HPD / DSI0_TE
S145	WDT_TIME_OUT#
S146	PCIE_WAKE#
S147	VDD_RTC
S148	LID#
S149	SLEEP#
S150	VIN_PWR_BAD#
S151	CHARGING#
S152	CHARGER_PRSNT#
S153	CARRIER_STBY#
S154	CARRIER_PWR_ON
S155	FORCE_RECOV#
S156	BATLOW#
S157	TEST#
S158	GND

Table 48: Module Pin-Out

5 MECHANICAL DEFINITIONS

5.1 Carrier Connector

The Carrier Board connector is a 314 pin 0.5mm pitch right angle part designed for use with 1.2mm thick mating PCBs with the appropriate edge finger pattern. The connector is commonly used for MXM3 graphics cards. The SMARC Module uses the connector in a way quite different from the MXM3 usage.

Vendor	Vendor P/N	Stack Height	Body Height	Contact Plating	Pin Style	Body Color	Notes
Foxconn	AS0B821-S43B - 7H	1.5mm	4.3mm	Flash	Std	Black	
Foxconn	AS0B826-S43B - 7H	1.5mm	4.3mm	10 u-in	Std	Black	
JAE	MM70-314B2-1-R500	1.5mm	4.3mm	0.1 u-meter	Std	Black	
Aces	91781-314 2 8-001	2.7mm	5.2mm	3 u-in	Std	Black	THT Options available ¹
Foxconn	AS0B821-S55B - 7H	2.7mm	5.5mm	Flash	Std	Black	
Foxconn	AS0B826-S55B - 7H	2.7mm	5.5mm	10 u-in	Std	Black	
JAE	MM70-314B1-2-R300	4.4mm	6.7mm	0.3 u-meter	Std	Black	
Aces	91781-314 0 M-001	5.0mm	7.5mm	3 u-in	Std	Black	THT Options available ¹
Amphenol	10151114-001TLF	5.0mm	7.8mm	30 u-in	Std	Black	
Foxconn	AS0B821-S78B - 7H	5.0mm	7.8mm	Flash	Std	Black	
Foxconn	AS0B826-S78B - 7H	5.0mm	7.8mm	10 u-in	Std	Black	
Yamaichi	CN113-314-2001-VE-TR	5.0mm	7.8mm	0.3 u-meter	Std	Black	Automotive Grade

Table 49: Carrier Connectors

Other, taller stack heights *may* be available from these and other vendors. Stack heights as tall as 11mm are shown on the Aces web site.

Note: Many of the vendor drawings for the connectors listed above show a PCB footprint pattern for use with an MXM3 graphics card. This footprint, and the associated pin numbering, is not suitable for SMARC use. The MXM3 standard gangs large groups of pins together to provide ~80W capable power paths needed for X86 graphics cards. The SMARC Module "ungangs" these pins to allow more signal pins. Footprint and pin numbering information for application of this 314 pin connector to SMARC is given in the sections below.

¹ For improved mechanical strength and security there are connector variations available with two additional THT soldering pins. Please check the datasheet of the connectors for specifics and possible deviations.

5.2 Connector Pin Numbering Convention

The Module pins are designated as P1 – P156 on the Module Primary (Top) side, and S1 – S158 on the Module Secondary (Bottom) side. There is a total of 314 pins on the Module. The connector is sometimes identified as a 321 pin connector, but 7 pins are lost to the key (4 on the primary side and 3 on secondary side).

The Secondary (Bottom) side faces the Carrier Board when a normal or standard Carrier connector is used. Some connector vendors offer "reverse" pin-out connectors, which effectively flip the Module over such that the Module Primary side would face the Carrier Board.

The SMARC Module pins are deliberately numbered as P1 – P156 and S1 – S158 for clarity and to differentiate the SMARC Module from MXM3 graphics Modules, which use the same connector but use the pins for very different functions. MXM3 cards and MXM3 baseboard connectors use a different pin numbering scheme.

5.3 Module Outline - 82x50mm Module

Figure 4 details the 82mm x 50mm Module mechanical attributes, including the pin numbering and edge finger pattern.

Figure 4: 82x50mm Module Outline

It is recommended that Module components be kept away from the edge fingers, on the top and bottom sides, per the following figure:

Figure 5: Module Edge Finger Keep Out Area (82x50mm Module)

5.4 Module Outline - 82x80mm Module

The PCB edge finger pattern and spacing details relative to the board edges and lower mounting holes are the same as for the 82mm x 50mm case (see section 5.3 'Module Outline – 82x50mm Module' above), and are not repeated here.

Figure 6: 82x80mm Module Outline

Figure 7: Module Edge Finger Keep Out Area (82x80mm Module)

5.4.1 RF Connector Placement

If onboard wireless technologies are provided the required high frequency antenna connectors **shall** be placed at the described positions on the top side of the Modules. If no wireless technologies are provided this position **may** be used for other components.

u.FL male connectors **should** be used on the Modules. These are miniature RF connectors with an impedance of 50 ohm for antenna applications. U.FL connectors are commonly used for Wi-Fi or GPS in space critical applications. The mated connection is only 2.5 mm high and only requires 3 mm² of board space. u.FL connectors are patented by Hirose but there are many other suppliers offering this connectors.

Figure 8: u.FL connector

Figure 9: RF connector placement (82x80mm Module)

Figure 10: RF connector placement (82x50mm Module)

5.5 Module 'Z' Height Considerations

Note from above that the component height on the Module is restricted to a maximum component height of 3mm on the Module Primary (Top) side and to 1.3mm on the Module Secondary (Bottom) side.

The 1.3mm Secondary side component height restriction allows the Module to be used with 1.5mm stack-height Carrier connectors. When used with 1.5mm stack height connectors, the 'Z' height profile from Carrier Board Top side to tallest Module component is 5.7mm.

When a 1.5mm stack height Carrier Board connector is used, there **shall not** be components on the Carrier Board Top side in the Module region. Additionally, when 1.5mm stack height connectors are used, there **should not** be PCB traces on the Carrier top side in the Module shadow. This is to prevent possible problems with metallic Module heat sink attachment hardware that **may** protrude through the Module.

If Carrier Board components are required in this region, then the Carrier components must be on the Carrier Bottom side, or a taller Module – to – Carrier connector **may** be used. Stack heights of 2.7mm, 3mm, 5mm and up are available.

Not shown in the Figure 11 below are any thermal dissipation components (heat sinks, heat spreaders, etc) nor is fastening hardware (standoffs, spacers, screws, washers, etc) shown. The dimensions of those components must of course be considered in a system design.

Figure 11: Module Minimum 'Z' Height

Note: There is no clearance defined between heatspreader height and component height. The heatspreader designer, which is usually the module designer has to handle that, e.g. by pockets in the heatspreader.

SMARC 2.2 Specification © 2024 SGET e.V. Page 78 of 110

5.6 Carrier Board Connector PCB Footprint

Figure 12: Carrier Board Connector PCB Footprint

Note: The pin numbering shown here is different from the pin numbering used in an MXM3 application. In an SMARC application, all 314 pins of the connector are used individually. The MXM3 power ganging is not used.

Note: The hole diameter for the 4 holes (82mm x 50mm Module) or 7 holes (82mm x 80mm Module) depends on the spacer hardware selection. See the section 5.7 'GND Connection' below for more information.

5.7 GND Connection Mounting Holes

It **shall** be possible to tie all Module and Carrier Board mounting holes to GND. The holes **should** be tied directly to the GND planes, although Module and Carrier designers **may** optionally make the mounting hole GND connections through passive parts, allowing the mounting holes to be isolated from GND if they feel it necessary.

5.8 Carrier Board Standoffs

Standoffs secured to the Carrier Board are expected. The standoffs are to be used with M2.5 hardware. Most implementations will use Carrier Board standoffs that have M2.5 threads (as opposed to clearance holes). A short M2.5 screw and washer, inserted from the Module top side, secures the Module to the Carrier Board threaded standoff.

5.9 Thermal Attachment Points

Attachment points for thermal heat sinks and thermal dissipaters, if needed, are Module design dependent. Thermal hardware **should** be attached to the Module using attachment points other than the Module mounting holes (4 mounting holes for the 82mm x 50mm and 7 mounting holes for the 82mm x 80mm Module). The Module mounting holes **should** be clear for securing the Module to the Carrier.

Having thermal attachment points separate from the Module mounting holes allows the thermal solution to be shipped with the Module, attached to the Module with thermal interface materials applied, and avoids the disassembly of the thermal interface materials when the end-users places the Module their system. The Module mounting holes *may* be used as supplemental thermal attachment points.

5.10 Heat Spreader – 82mm x 50mm Module

A standard heat-spreader plate for use with the SMARC 82mm x 50mm form factor is described below. A standard heat spreader plate definition allows the customer to use a Module from multiple vendors, and the details of the thermal interface to the Module ICs – which can be tricky - becomes the Module designer's problem.

The heat spreader plate is sized at 82mm x 42mm x 3mm, and sits 3mm above the SMARC Module. The heat spreader plate 'Y' dimension is deliberately set at 42mm and not 50mm, to allow the plate to clear the SMARC MXM3 connector. The plate is shown in the Figure 13 below.

Figure 13: Heat Spreader Isometric View

The internal square in the Figure 13 above is a thermally conductive and mechanically compliant Thermal Interface Material (or "TIM"). The exact X-Y position and Z thickness details of the TIM vary from design to design.

The two holes immediately adjacent to the TIM serve to secure the PCB in the SOC area and compress the TIM.

The four interior holes that are further from the center allow a heat sink to be attached to the heat spreader plate, or they can be used to secure the heat spreader plate to a chassis wall that serves as a heat sink.

Dimensions and further details *may* be found in the Figure 14 'Heat Spreader Plan View' on the following page.

Figure 14: Heat Spreader Plan View

Dimensions in the figure above are in millimeters. "TIM" stands for "Thermal Interface Material". The TIM takes up the small gap between the SOC top and the Module - facing side of the heat spreader.

Hole Reference	Description	Size	
	SMARC Module corner mounting holes	Hole size depends on standoffs used. Standoff diameter must be	
	Spacing determined by SMARC specification for 82mm x 50mm Modules.	compatible with SMARC Module mounting hole pad and hole size (6.0mm	
Α	Typically, these holes have 3mm length press fit or swaged clearance standoffs on the Module side.	pads, 2.7mm holes on the Module). The holes and standoffs are for use with M2.5 screw hardware.	
	These holes are typically countersunk on the far side of the plate, to allow the heat spreader plate to be flush with a secondary heat sink.	The far side of these holes are counter-sunk to allow the attachment scre to be flush with the far side heat spreader surface.	
В	Design – specific attachment points. The X-Y position, size and finish details of these holes <i>may</i> vary between designs.	Varies, design dependent The far side of these holes are counter-sunk to allow the attachment screw to be flush with the far side heat spreader surface.	
С	Fixed location holes to allow the attachment of a heat sink to the heat spreader, or to allow the heat spreader to be secured to a chassis wall that can serve as a heat sink.	M3 threaded holes	

Table 50: Heat Spreader Hole Reference

Figure 15: Heat Sink Attachment Option

This figure shows an optional heat sink that can be added on to the heat spreader plate. Some situations *may* require a taller heat sink and / or one with an embedded fan. The four holes in the heat sink above are used with M3 flat head screws. The screws engage the 'C' holes in the heat spreader plate in Figure 14 'Heat Spreader Plan View' on the previous page. A relatively large, thin TIM is required between the heat spreader plate "Far Side" and the flat surface of the heat sink.

The heat sink Y dimension matches the 42mm Y dimension of the heat spreader plate. The X dimension of the heat sink is less, at 63.2 mm, than the 82 mm length of the heat spreader plate. This is to allow the heat sink to clear the four Module corner holes (the 'A' holes in Figure 14 'Heat Spreader Plan View'). The heat sink Z dimension can vary according to the thermal situation at hand.

Alternatively, the system enclosure wall *may* be used as the heat sink. In this case, the heat spreader plate is secured to the enclosure wall via the four 'C' holes shown in Figure 14 'Heat Spreader Plan View' on the previous page. A large, thin TIM is then required between the heat spreader plate "Far Side" and the enclosure wall.

5.11 Heat Spreader – 82mm x 80mm Module

The heat spreader for an 82mm x 80mm Module is similar to the heat spreader for the 82mm x 50mm Module, but is extended upward by 30mm and appropriate additional holes are provided. The 'A' and 'C' hole drill details are the same as the 'A' and 'C' holes on the heat spreader for the 82mm x 50mm Module.

The TIM and the B holes are not fixed, and **may** be in locations other than what is shown in Figure 16.

Figure 16: Heat Spreader - 82mm x 80mm Module

SMARC 2.2 Specification © 2024 SGET e.V. Page 84 of 110

5.12 Mechanical Tolerances

The mechanical tolerances of the module have been based on the MXM specification and the tolerances of the MXM 3.0 connector, which is also used for SMARC modules™. The module dimensions and mounting holes of SMARC differ from the MXM specification and the allowed tolerances are defined separately.

For all dimensions which are not defined by the MXM specification, which is mainly applicable for the board contact area of SMARC modules, the ISO 2768-1 shall be applied (e.g. board outline, mounting hole position, cooling solution...). The allowed tolerance class defined in the ISO 2768-1 shall be *f* (=fine).

6 MODULE POWER

6.1 Input Voltage / Main Power Rail

The Module input power voltage is brought in on the ten VDD_IN pins and returned through the numerous GND pins on the connector.

A Module **shall** withstand an indefinite exposure to an applied VDD_IN that **may** vary over the 3.0V to 5.25V range, without damage.

A Module **should** operate over the entire VDD_IN range of 3.0V to 5.25V.

Modules that use higher wattage SOCs **may** be designed to operate with a fixed 5V supply (4.75V to 5.25V).

Modules that are designed for rock-bottom cost and that use low power SOCs **may** be designed to operate with a fixed 3.3V supply (3.1V to 3.4V). They **shall not** be damaged in any way by exposure to the allowable VDD IN range of 3.0 to 5.25V.

Ten pins are allocated to VDD_IN. The connector pin current rating is 0.5A per pin. This works out to 5A total for the 10 pins. At the lowest allowed Module input voltage of 3.0V, this would allow up to 15W of electrical power to be brought in (with no de-rating on the connector current capability). With a 40% connector current de-rating, up to 9W **may** be brought in at 3.0V.

If the fixed 5V input option is used, then 25W *may* be brought in over the 10 power pins (no de-rating). With a 40% connector de-rating, 15W are allowed to be brought in at 5V.

As a practical matter, ARM most Module designs are expected to be 6W or less. X86 designs are expected to be in the 5W to 12W range, depending on the CPU SKU.

6.2 No Separate Standby Voltage

There is no separate voltage rail for standby power, other than the very low current (optional) RTC voltage rail. All Module operating and standby power comes from the single set of VDD_IN pins. This suits battery power sources well, and is also easy to use with non-battery sources.

6.3 RTC Voltage Rail

RTC backup power *may* brought in on the VDD_RTC rail. The RTC consumption is typically 15 µA or less. The allowable VDD_RTC voltage range *shall* be 2.0V to 3.25V. The VDD_RTC rail *may* be sourced from a Carrier based Lithium cell or Super Cap, or it *may* be left open if the RTC backup functions are not required. The Module *shall* be able to boot without an external VDD_RTC voltage source.

Important: Lithium cells must be protected against charging by reverse currents, with a series Schottky diode and resistor. It is impractical to have the series diode on the Module, as this complicates the use of Super Caps (they need to be charged, over the Module VDD_RTC pin).

Lithium cells, if used, **shall** be protected against charging by a Carrier Schottky diode. The diode is placed in series with the positive battery terminal. The diode anode is on the battery side, and the cathode on the Module VDD_RTC side.

Note that if a Super cap is used, current **may** flow out of the Module VDD_RTC rail to charge the Super Cap.

The supply voltage rail used for the Module is VDD_IN. There are no timing relations between this Module supply rail and the optional VDD_RTC.

6.4 Power Rail Definition

The intention of mapping the SMARC Module connector signals to separate power domains is to enable a compatible implementation of power saving sleep state called **standby state** between different Module vendors and CPU technologies. At **runtime state**, all supported IO signals are powered and driven. At **standby state**, dedicated wake sources **shall** be enabled with active interfaces and signals.

Standby state and runtime state are corresponding to the in the x86 world well known ACPI system states Standby and Full On.

If a power saving **standby state** is implemented at the Carrier Board and supported by the Module, the IO voltage rails of the Carrier Board are controlled by the Module using the two signals CARRIER_PWR_ON and CARRIER_STBY#. The signal CARRIER_PWR_ON enables the IO supply rails that are powered in **standby mode**. The signal CARRIER_STBY# enables the additional IO supply rails that are powered in **runtime mode**.

Comparing to previous releases of SMARC standard, a new low power consumption domain is defined as "Sleep". This is an optional domain which can be used to support DeepSleep states of modern CPU architectures. Typical wake event is the power button only. Optionally the battery management can be used. If the state is not used, Sleep power domain can be tied to Standby domain.

SMARC domain name	ACPI domain name	ACPI System-State	VIN_PWR_BAD#	CARRIER_PWR_ON	CARRIER_STB#	Corresponding Signal for x86 Designs (only for Module designer)
Off			0	0	0	
Sleep	Deep sleep	Pseudo G3 (after Mechanical OFF G3; before Standby)	1	0	0	SLP_SUS# asserted Note: VIN_PWR_BAD# is not tied to SLP_SUS#
Standby	Standby	S5-S3	1	1	0	Standby related power signal i.e. RSMRST# or SLP_SUS# deasserted
Runtime	Full-On	S0	1	1	1	i.e. SLP_S3# deasserted

Table 51: Power Rail Definitions

In order to avoid back driving between module and carrier by high active signals in standby state the signal power domains in the pin description in chapter 3 shall be observed. In general, it is recommended to adapt the Carrier Board power rails to the Module power rails. In some cases, you *may* drive signals low or to use weak pull up resistors to minimize back driving. The Carrier Board shall avoid back driving from Module into unpowered circuit at *standby mode*. The Carrier Board *shall not* drive any runtime signals high during *standby mode*.

Special attention has to be spent at runtime powered output signals in **standby mode**. SMARC 2.0 modules may have used different signal to power domain assertion. The module datasheet has to be checked for standby mode implementation details to prevent backdriving and to define wakeup sources.

6.5 Power Sequencing

Basically, VDD_IN is the first power domain to be turned on by the carrier circuit during power-up. Other circuit components on the carrier, which are galvanically coupled to the module, shall not be supplied to avoid feedback. From the moment VDD_IN is stable - recognizable by VIN_PWR_BAD# deasserted - the module takes over control of the power sequencing. As soon as the module reaches the next system state standby, CARRIER_PWR_ON signals the carrier to switch on all its standby voltages. No feedback is provided to allow the carrier to signal Power OK to the modules power state machine. When the state Runtime is reached, the module deasserts CARRIER_STBY#. The carrier then switches on the remaining rails.

The following sections 6.5.1 to 6.5.4 show power sequence scenarios with/without sleep power domain and with/without power button.

6.5.1 Power up sequence scenario 1

6.5.2 Power up sequence scenario 2

Power up sequence with sleep power domain without PWR_BTN#

Figure 18: Power sequence diagram sleep, no power button

6.5.3 Power up sequence scenario 3

Figure 19: Power sequence diagram power button

6.5.4 Power up sequence scenario 4

1 igure 20. Fower sequence diagram, no power button

7 MODULE AND CARRIER SERIAL EEPROMS

SMARC Modules **should** include an I2C serial EEPROM on the Module I2C_GP bus. The device used **should** be an Atmel 24C32 or equivalent. The device **shall** operate at 1.8V. The Module serial EEPROM **should** be placed at I2C slave addresses A2 A1 A0 set to 0 (I2C slave address 50 hex, 7 bit address format or A0 / A1 hex, 8 bit format) (recall that for I2C EEPROMs, address bits A6 A5 A4 A3 are set to binary 1010 convention).

The Module serial EEPROM is intended to retain Module parameter information, including a Module serial number. The Module serial EEPROM data structure **should** conform to the **PICMG**® **EEEP Embedded EEPROM Specification**.

SMARC Carriers *may* include an I2C serial EEPROM on the I2C_PM bus, in the Module power domain. The device used *should* be an Atmel 24C32 or equivalent. The device *shall* operate at 1.8V. The Carrier serial EEPROM *should* be placed with I2C slave addresses A2 A1 A0 set to binary 111 (I2C slave address 57 hex, 7 bit address format or AE / AF hex, 8 bit format).

The Carrier serial EEPROM is intended to retain Carrier parameter information. The Carrier serial EEPROM data structure **should** conform to the **PICMG**® **EEEP Embedded EEPROM Specification**.

SMARC 2.2 Specification © 2024 SGET e.V. Page 92 of 110

8 APPENDIX A: LVDS LCD COLOR MAPPINGS

8.1 LVDS LCD Color Mappings

For flat panel use, parallel LCD data and control information (Red, green and blue color data; Display Enable, Vertical Synch, Horizontal Synch) are commonly serialized onto a set of LVDS differential pairs. The information is packed into frames that are 7 bits long. For 18 bit color depths, the data and control information utilize three LVDS channels (18 data bits + 3 control bits = 21 bits; hence 3 channels with 7 bit frames) plus a clock pair. For 24 bit color depths, four LVDS channels are used (24 data bits + 3 control bits + 1 unused bit = 28 bits, or 4 x 7) plus a clock pair.

The LVDS clock is transmitted as a separate LVDS pair. The LVDS clock period is 7 times longer than the pixel clock period. The LVDS clock edges are off from the 7 bit frame boundaries by 2 pixel periods.

Unfortunately, there are two different 24 bit color mappings in use. The more common one, sometimes referred to as "24 bit standard color mapping", is not compatible with 18 bit panels, as it places the most significant RGB color data on the 4th LVDS data pair – the pair that is not used on 18 bit panels. There is a less common "24 bit / 18 bit compatible" mapping that puts the least significant color bits of the 24 bit set onto the 4th LVDS pair.

Some panels have pin straps that allow the user to select which color mapping is to be used.

SMARC 2.2 Specification © 2024 SGET e.V. Page 93 of 110

8.1.1 Single Channel Color Mapping

8.1.1.1 General Information

LVDS Channel	Transmit Bit Order	18 Bit Standard	24 Bit / 18 Bit Compatible	24 Bit Standard
	1	G0	G0	G2
	2	R5	R5	R7
	3	R4	R4	R6
0	4	R3	R3	R5
	5	R2	R2	R4
	6	R1	R1	R3
	7	R0	R0	R2
	1	B1	B1	В3
	2	В0	B0	B2
	3	G5	G5	G7
1	4	G4	G4	G6
	5	G3	G3	G5
	6	G2	G2	G4
	7	G1	G1	G3
	1	DE	DE	DE
	2	VS	VS	VS
	3	HS	HS	HS
2	4	B5	B5	B7
	5	B4	B4	B6
	6	В3	B3	B5
	7	B2	B2	B4
	1	<not used=""></not>	<not used=""></not>	<not used=""></not>
	2	<not used=""></not>	B7	B1
	3	<not used=""></not>	B6	В0
3	4	<not used=""></not>	G7	G1
	5	<not used=""></not>	G6	G0
	6	<not used=""></not>	R7	R1
	7	<not used=""></not>	R6	R0

Table 52: LVDS Color Mapping

9 APPENDIX B: DOCUMENT CHANGES

9.1 Changes V1.1 to V2.0

Removed Interfaces

- Parallel camera interface
- Parallel Display interface
- PCI Express presence and clock request signals
- Alternate function block
- SPDIF
- eMMC
- 1 of 3 I2S

Added Interfaces

- 2nd channel LVDS
- 2nd Ethernet
- IEEE1588 trigger signals (software definable pins)
- 4th PCI Express lane
- Extra USB ports (6x USB 2.0 + 2x USB SS signals now)
- x86 power management signals
- eSPI
- DP++

Total Video Interfaces now

- 2x 24 Bit LVDS / eDP 4 channel / MIPI DSI 4 channel
- HDMI / DP++
- DP++

Other Changes

- Added RF connector option
- Changed Module EEPROM from I2C_PM to I2C_GP
- Added power sequencing details
- See detailed pinout changes is section □ 'Corrected power-domain for PWR_BTN#, CARRIER_PWR_ON, CARRIER_STBY# signals
- Pinout Comparison' below
- Some mandatory and optional features changed, see section 3.1 'Required and Optional Feature Table' on page 14

9.2 Changes V2.0 to V2.1

- Incorporated Errata 1.1 Rev. 2 (2/9/2017)
- Updated signal tables
 - o Added pin number
 - o Added power domain
 - o Updated content
 - Added termination information
- Added details for eDP[0:1]_HPD
- Added SERDES as alternative function for PCIeC and PCIeD
- Added MDIO Interface
- Updated power domains and power sequencing
- Added two extra GPIOs
- PCIe Clock Request signals for PCIeA and PCIeB at previous locations
- Changed fill order for MIPI CSI (CSI1 first, then CSI0)
- Added CSI 2 and 3 on extra optional connector
- USB client mode defined more clearly
- Added sleep power domain
- Redefined JTAG connector

9.3 Changes V2.1 to V2.1.1

Removed wrong AC coupling comment in section 3.5.1 HDMI

9.4 Changes V2.1.1 to V2.2

- Added Soundwire as alternative function for I2S2
- Added SERDES reset signal as alternative function of PCIe reset signal
- Added SERDES interrupt signals as dual-function on GPIO[7:8]
- Updated supported Ethernet speed and renamed the LINK signals accordingly
- Added details for mechanical tolerances
- Updated filling-order for USB and further specified allowed configurations
- Updated GPIOs with filling-order for interrupt latency
- Updated overview of Carrier connectors
- Added filling-order for SPI Chip-Select signals
- Updated support of PCIe up-to Gen 4
- Corrected power-domain for PWR_BTN#, CARRIER_PWR_ON, CARRIER_STBY# signals

9.5 Pinout Comparison

Pin	SMARC 1.1	SMARC 2.0	SMARC 2.1	SMARC 2.2
P1	PCAM_PXL_CK1	SMB_ALERT_1V8#	SMB_ALERT#	SMB_ALERT#
P2	GND	GND	GND	GND
P3	CSI1_CK+ / PCAM_D0	CSI1_CK+	CSI1_CK+	CSI1_CK+
P4	CSI1_CK- / PCAM_D1	CSI1_CK-	CSI1_CK-	CSI1_CK-
P5	PCAM_DE	GBE1 SDP	GBE1_SDP	GBE1_SDP
P6	PCAM_MCK	GBE0 SDP	GBE0_SDP	GBE0_SDP
P7	CSI1_D0+ / PCAM_D2	CSI1_RX0+	CSI1_RX0+	CSI1_RX0+
P8	CSI1_D0- / PCAM_D3	CSI1_RX0-	CSI1_RX0-	CSI1_RX0-
P9	GND	GND	GND	GND
P10	CSI1_D1+ / PCAM_D4	CSI1_RX1+	CSI1_RX1+	CSI1_RX1+
P11	CSI1_D1- / PCAM_D5	CSI1_RX1-	CSI1_RX1-	CSI1_RX1-
P12	GND	GND	GND	GND
P13	CSI1_D2+ / PCAM_D6	CSI1_RX2+	CSI1_RX2+	CSI1_RX2+
P14	CSI1_D2-/PCAM_D7	CSI1_RX2-	CSI1_RX2-	CSI1_RX2-
P15	GND	GND	GND	GND
P16	CSI1_D3+ / PCAM_D8	CSI1_RX3+	CSI1_RX3+	CSI1_RX3+
P17	CSI1_D3- / PCAM_D9	CSI1_RX3-	CSI1_RX3-	CSI1_RX3-
P18	GND	GND	GND	GND
P19	GBE_MDI3-	GBE0_MDI3-	GBE0_MDI3-	GBE0_MDI3-
P20	GBE_MDI3+	GBE0_MDI3+	GBE0_MDI3+	GBE0_MDI3+
P21	GBE_LINK100#	GBE0_LINK100#	GBE0_LINK100#	GBE0_LINK_MID#
P22	GBE_LINK1000#	GBE0_LINK1000#	GBE0_LINK1000#	GBE0_LINK_MAX#
P23	GBE_MDI2-	GBE0_MDI2-	GBE0_MDI2-	GBE0_MDI2-
P24	GBE_MDI2+	GBE0_MDI2+	GBE0_MDI2+	GBE0_MDI2+
P25	GBE_LINK_ACT#	GBE0_LINK_ACT#	GBE0_LINK_ACT#	GBE0_LINK_ACT#
P26	GBE_MDI1-	GBE0_MDI1-	GBE0_MDI1-	GBE0_MDI1-
P27	GBE_MDI1+	GBE0_MDI1+	GBE0_MDI1+	GBE0_MDI1+
P28	GBE_CTREF	GBE0_CTREF	GBE0_CTREF	GBE0_CTREF
P29	GBE_MDI0-	GBE0_MDI0-	GBE0_MDI0-	GBE0_MDI0-
P30	GBE_MDI0+	GBE0_MDI0+	GBE0_MDI0+	GBE0_MDI0+
P31	SPI0_CS1#	SPI0_CS1#	SPI0_CS1#	SPI0_CS1#
P32	GND	GND	GND	GND
P33	SDIO_WP	SDIO_WP	SDIO_WP	SDIO_WP
P34	SDIO_CMD	SDIO_CMD	SDIO_CMD	SDIO_CMD
P35	SDIO_CD#	SDIO_CD#	SDIO_CD#	SDIO_CD#
P36	SDIO_CK	SDIO_CK	SDIO_CK	SDIO_CK
P37	SDIO_PWR_EN	SDIO_PWR_EN	SDIO_PWR_EN	SDIO_PWR_EN
P38	GND	GND	GND	GND

Pin	SMARC 1.1	SMARC 2.0	SMARC 2.1	SMARC 2.2
P39	SDIO_D0	SDIO_D0	SDIO_D0	SDIO_D0
P40	SDIO_D1	SDIO_D1	SDIO_D1	SDIO_D1
P41	SDIO_D2	SDIO_D2	SDIO_D2	SDIO_D2
P42	SDIO_D3	SDIO_D3	SDIO_D3	SDIO_D3
P43	SPI0_CS0#	SPI0_CS0#	SPI0_CS0#	SPI0_CS0#
P44	SPI0_CK	SPI0_CK	SPI0_CK	SPI0_CK
P45	SPI0_DIN	SPI0_DIN	SPI0_DIN	SPI0_DIN
P46	SPI0_DO	SPI0_DO	SPI0_DO	SPI0_DO
P47	GND	GND	GND	GND
P48	SATA_TX+	SATA_TX+	SATA_TX+	SATA_TX+
P49	SATA_TX-	SATA_TX-	SATA_TX-	SATA_TX-
P50	GND	GND	GND	GND
P51	SATA_RX+	SATA_RX+	SATA_RX+	SATA_RX+
P52	SATA_RX-	SATA_RX-	SATA_RX-	SATA_RX-
P53	GND	GND	GND	GND
P54	SPI1_CS0#	SPI1_CS0# / ESPI CS0#	SPI1_CS0# / ESPI_CS0# / QSPI_CS0#	SPI1_CS0# / ESPI_CS0# / QSPI_CS0#
P55	SPI1_CS1#	SPI1_CS1# / ESPI_CS1#	SPI1_CS1# / ESPI_CS1# / QSPI_CS1#	SPI1_CS1# / ESPI_CS1# / QSPI_CS1#
P56	SPI1_CK	SPI1_CK/ESPI_CK	SPI1_CK / ESPI_CK / QSPI_CK	SPI1_CK / ESPI_CK / QSPI_CK
P57	SPI1_DIN	SPI1_DIN / ESPI IO 1	SPI1_DIN / ESPI_IO_1 / QSPI_IO_1	SPI1_DIN / ESPI_IO_1 / QSPI_IO_1
P58	SPI1_DO	SPI1_DO / ESPI IO 0	SPI1_DO / ESPI_IO_0 / QSPI_IO_0	SPI1_DO / ESPI_IO_0 / QSPI_IO_0
P59	GND	GND	GND	GND
P60	USB0+	USB0+	USB0+	USB0+
P61	USB0-	USB0-	USB0-	USB0-
P62	USB0_EN_OC#	USB0_EN_OC#	USB0_EN_OC#	USB0_EN_OC#
P63	USB0_VBUS_DET	USB0_VBUS_DET	USB0_VBUS_DET	USB0_VBUS_DET
P64	USB0_OTG_ID	USB0_OTG_ID	USB0_OTG_ID	USB0_OTG_ID
P65	USB1+	USB1+	USB1+	USB1+
P66	USB1-	USB1-	USB1-	USB1-
P67	USB1_EN_OC#	USB1_EN_OC#	USB1_EN_OC#	USB1_EN_OC#
P68	GND	GND	GND	GND
P69	USB2+	USB2+	USB2+	USB2+
P70	USB2-	USB2-	USB2-	USB2-
P71	USB2_EN_OC#	USB2_EN_OC#	USB2_EN_OC#	USB2_EN_OC#
P72	PCIE_C_PRSNT#	RSVD	RSVD	RSVD
P73	PCIE_B_PRSNT#	RSVD	RSVD	RSVD
P74	PCIE_A_PRSNT#	USB3_EN_OC#	USB3_EN_OC#	USB3_EN_OC#
P75	PCIE_A_RST#	PCIE_A_RST#	PCIE_A_RST#	PCIE_A_RST#
P76	PCIE_C_CKREQ#	USB4_EN_OC#	USB4_EN_OC#	USB4_EN_OC#
P77	PCIE_B_CKREQ#	RSVD	PCIE_B_CKREQ#	PCIE_B_CKREQ#
P78	PCIE_A_CKREQ#	RSVD	PCIE A CKREQ#	PCIE_A_CKREQ#

Pin	SMARC 1.1	SMARC 2.0	SMARC 2.1	SMARC 2.2
P79	GND	GND	GND	GND
P80	PCIE_C_REFCK+	PCIE_C_REFCK+	PCIE_C_REFCK+	PCIE_C_REFCK+
P81	PCIE_C_REFCK-	PCIE_C_REFCK-	PCIE_C_REFCK-	PCIE_C_REFCK-
P82	GND	GND	GND	GND
P83	PCIE_A_REFCK+	PCIE_A_REFCK+	PCIE_A_REFCK+	PCIE_A_REFCK+
P84	PCIE_A_REFCK-	PCIE_A_REFCK-	PCIE_A_REFCK-	PCIE_A_REFCK-
P85	GND	GND	GND	GND
P86	PCIE_A_RX+	PCIE_A_RX+	PCIE_A_RX+	PCIE_A_RX+
P87	PCIE_A_RX-	PCIE_A_RX-	PCIE_A_RX-	PCIE_A_RX-
P88	GND	GND	GND	GND
P89	PCIE_A_TX+	PCIE_A_TX+	PCIE_A_TX+	PCIE_A_TX+
P90	PCIE_A_TX-	PCIE_A_TX-	PCIE_A_TX-	PCIE_A_TX-
P91	GND	GND	GND	GND
P92	HDMI_D2+	HDMI_D2+ / DP1_LANE0+	HDMI_D2+ / DP1_LANE0+	HDMI_D2+ / DP1_LANE0+
P93	HDMI_D2-	HDMI_D2-/DP1_LANE0-	HDMI_D2- / DP1_LANE0-	HDMI_D2- / DP1_LANE0-
P94	GND	GND	GND	GND
P95	HDMI_D1+	HDMI_D1+ / DP1_LANE1+	HDMI_D1+ / DP1_LANE1+	HDMI_D1+ / DP1_LANE1+
P96	HDMI_D1-	HDMI_D1-/DP1_LANE1-	HDMI_D1- / DP1_LANE1-	HDMI_D1- / DP1_LANE1-
P97	GND	GND	GND	GND
P98	HDMI_D0+	HDMI_D0+ / DP1 LANE2+	HDMI_D0+ / DP1_LANE2+	HDMI_D0+ / DP1_LANE2+
P99	HDMI_D0-	HDMI_D0-/DP1_LANE2-	HDMI_D0- / DP1_LANE2-	HDMI_D0- / DP1_LANE2-
	GND	GND	GND	GND
P101	HDMI_CK+	HDMI_CK+/DP1_LANE3+	HDMI_CK+ / DP1_LANE3+	HDMI_CK+ / DP1_LANE3+
P102	HDMI_CK-	HDMI_CK-/DP1_LANE3-	HDMI_CK- / DP1_LANE3-	HDMI_CK- / DP1_LANE3-
	GND	GND	GND	GND
	HDMI_HPD	HDMI_HPD / DP1 HPD	HDMI_HPD / DP1_HPD	HDMI_HPD / DP1_HPD
	HDMI_CTRL_CK	HDMI_CTRL_CK / DP1_AUX+	HDMI_CTRL_CK / DP1_AUX+	HDMI_CTRL_CK / DP1_AUX+
P106	HDMI_CTRL_DAT	HDMI_CTRL_DAT / DP1 AUX-	HDMI_CTRL_DAT / DP1_AUX-	HDMI_CTRL_DAT / DP1_AUX-
	HDMI_CEC	DP1 AUX SEL	DP1_AUX_SEL	DP1_AUX_SEL
	GPIO0 / CAM0_PWR#	GPIO0 / CAM0_PWR#	GPIO0 / CAM0_PWR#	GPIO0 / CAM0_PWR#
	GPIO1 / CAM1_PWR#	GPIO1 / CAM1_PWR#	GPIO1 / CAM1_PWR#	GPIO1 / CAM1_PWR#
	GPIO2 / CAM0_RST#	GPIO2 / CAM0_RST#	GPIO2 / CAM0_RST#	GPIO2 / CAM0_RST#
	GPIO3 / CAM1_RST#	GPIO3 / CAM1_RST#	GPIO3 / CAM1_RST#	GPIO3 / CAM1_RST#
	GPIO4 / HDA_RST#	GPIO4 / HDA_RST#	GPIO4 / HDA_RST#	GPIO4 / HDA_RST#
	GPIO5 / PWM_OUT	GPIO5 / PWM_OUT	GPIO5 / PWM_OUT	GPIO5 / PWM_OUT
	GPIO6 / TACHIN	GPIO6 / TACHIN	GPIO6 / TACHIN	GPIO6 / TACHIN
P115	GPIO7 / PCAM_FLD	GPIO7	GPIO7	GPIO7
	GPIO8 / CANO_ERR#	GPIO8	GPIO8	GPIO8
	GPIO9 / CAN1_ERR#	GPIO9	GPIO9	GPIO9
P118	GPIO10	GPIO10	GPIO10	GPIO10

P120		GPIO11	GPIO11	
			011011	GPIO11
D404		GND	GND	GND
PIZI	I2C_PM_CK	I2C_PM_CK	I2C_PM_CK	I2C_PM_CK
P122	I2C_PM_DAT	I2C_PM_DAT	I2C_PM_DAT	I2C_PM_DAT
P123	BOOT_SEL0#	BOOT_SEL0#	BOOT_SEL0#	BOOT_SEL0#
P124	BOOT_SEL1#	BOOT_SEL1#	BOOT_SEL1#	BOOT_SEL1#
P125	BOOT_SEL2#	BOOT_SEL2#	BOOT_SEL2#	BOOT_SEL2#
P126	RESET_OUT#	RESET_OUT#	RESET_OUT#	RESET_OUT#
P127	RESET_IN#	RESET_IN#	RESET_IN#	RESET_IN#
P128	POWER_BTN#	POWER_BTN#	POWER_BTN#	POWER_BTN#
P129	SER0_TX	SER0_TX	SER0_TX	SER0_TX
P130	SER0_RX	SER0_RX	SER0_RX	SER0_RX
P131	SER0_RTS#	SER0_RTS#	SER0_RTS#	SER0_RTS#
P132	SER0_CTS#	SER0_CTS#	SER0_CTS#	SER0_CTS#
P133	GND	GND	GND	GND
P134	SER1_TX	SER1_TX	SER1_TX	SER1_TX
P135	SER1_RX	SER1_RX	SER1_RX	SER1_RX
P136	SER2_TX	SER2_TX	SER2_TX	SER2_TX
P137	SER2_RX	SER2_RX	SER2_RX	SER2_RX
P138	SER2_RTS#	SER2_RTS#	SER2_RTS#	SER2_RTS#
P139	SER2_CTS#	SER2_CTS#	SER2_CTS#	SER2_CTS#
P140	SER3_TX	SER3_TX	SER3_TX	SER3_TX
P141	SER3_RX	SER3_RX	SER3_RX	SER3_RX
P142	GND	GND	GND	GND
P143	CAN0_TX	CAN0_TX	CAN0_TX	CAN0_TX
P144	CAN0_RX	CAN0_RX	CAN0_RX	CAN0_RX
P145	CAN1_TX	CAN1_TX	CAN1_TX	CAN1_TX
P146	CAN1_RX	CAN1_RX	CAN1_RX	CAN1_RX
P147	VDD_IN	VDD_IN	VDD_IN	VDD_IN
P148	VDD_IN	VDD_IN	VDD_IN	VDD_IN
P149	VDD_IN	VDD_IN	VDD_IN	VDD_IN
P150	VDD_IN	VDD_IN	VDD_IN	VDD_IN
P151	VDD_IN	VDD_IN	VDD_IN	VDD_IN
P152	VDD_IN	VDD_IN	VDD_IN	VDD_IN
P153	VDD_IN	VDD_IN	VDD_IN	VDD_IN
P154	VDD_IN	VDD_IN	VDD_IN	VDD_IN
P155	VDD_IN	VDD_IN	VDD_IN	VDD_IN
	VDD_IN	VDD_IN	VDD_IN	VDD_IN

SMARC 2.2 Specification © 2024 SGET e.V. Page 101 of 110

Pin	SMARC 1.1	SMARC 2.0	SMARC 2.1	SMARC 2.2
S1	PCAM_VSYNC	CSI1_TX+ / I2C_CAM1_CK	CSI1_TX+ / I2C_CAM1_CK	CSI1_TX+ / I2C_CAM1_CK
S2	PCAM_HSYNC	CSI1_TX-/I2C_CAM1_DAT	CSI1_TX- / I2C_CAM1_DAT	CSI1_TX- / I2C_CAM1_DAT
S3	GND	GND	GND	GND
S4	PCAM_PXL_CK0	RSVD	RSVD	RSVD
S5	I2C_CAM_CK	I2C_CAM0_CK / CSI0_TX+	I2C_CAM0_CK / CSI0_TX+	I2C_CAM0_CK / CSI0_TX+
S6	CAM_MCK	CAM_MCK	CAM_MCK	CAM_MCK
S7	I2C_CAM_DAT	I2C_CAM0_DAT / CSI0_TX-	I2C_CAM0_DAT / CSI0_TX-	I2C_CAM0_DAT / CSI0_TX-
S8	CSI0_CK+ / PCAM_D10	CSI0_CK+	CSI0_CK+	CSI0_CK+
S9	CSI0_CK- / PCAM_D11	CSI0_CK-	CSI0_CK-	CSI0_CK-
S10	GND	GND	GND	GND
S11	CSI0_D0+ / PCAM_D12	CSI0_RX0+	CSI0_RX0+	CSI0_RX0+
S12	CSI0_D0- / PCAM_D13	CSI0_RX0-	CSI0_RX0-	CSI0_RX0-
S13	GND	GND	GND	GND
S14	CSI0_D1+	CSI0_RX1+	CSI0_RX1+	CSI0_RX1+
S15	CSI0_D1- / PCAM_D15	CSI0_RX1-	CSI0_RX1-	CSI0_RX1-
S16	GND	GND	GND	GND
S17	AFB0_OUT	GBE1_MDI0+	GBE1_MDI0+	GBE1_MDI0+
S18	AFB1_OUT	GBE1_MDI0-	GBE1_MDI0-	GBE1_MDI0-
S19	AFB2_OUT	GBE1 LINK100#	GBE1_LINK100#	GBE1 LINK MID#
S20	AFB3_IN	GBE1 MDI1+	GBE1_MDI1+	GBE1_MDI1+
S21	AFB4_IN	GBE1 MDI1-	GBE1_MDI1-	GBE1_MDI1-
S22	AFB5_IN	GBE1_LINK1000#	GBE1_LINK1000#	GBE1_LINK_MAX#
S23	AFB6_PTIO	GBE1_MDI2+	GBE1_MDI2+	GBE1_MDI2+
S24	AFB7_PTIO	GBE1 MDI2-	GBE1_MDI2-	GBE1_MDI2-
S25	GND	GND	GND	GND
S26	SDMMC_D0	GBE1 MDI3+	GBE1_MDI3+	GBE1_MDI3+
S27	SDMMC_D1	GBE1 MDI3-	GBE1_MDI3-	GBE1_MDI3-
S28	SDMMC_D2	GBE1 CTREF	GBE1_CTREF	GBE1_CTREF
S29	SDMMC_D3	PCIE D TX+	PCIE_D_TX+/SERDES 0 TX+	PCIE_D_TX+ / SERDES_0_TX+
S30	SDMMC_D4	PCIE_D_TX-	PCIE_D_TX-/SERDES_0_TX-	PCIE_D_TX- / SERDES_0_TX-
S31	SDMMC_D5	GBE1_LINK_ACT#	GBE1_LINK_ACT#	GBE1_LINK_ACT#
S32	SDMMC_D6	PCIE D RX+	PCIE_D_RX+/SERDES 0 RX+	PCIE_D_RX+ / SERDES_0_RX+
S33	SDMMC_D7	PCIE D RX-	PCIE_D_RX-/SERDES 0 RX-	PCIE_D_RX- / SERDES_0_RX-
S34	GND	GND	GND	GND
S35	SDMMC_CK	USB4+	USB4+	USB4+
S36	SDMMC_CMD	USB4-	USB4-	USB4-
S37	SDMMC_RST#	USB3 VBUS DET	USB3_VBUS_DET	USB3_VBUS_DET
S38	AUDIO_MCK	AUDIO_MCK	AUDIO_MCK	AUDIO_MCK
S39	I2S0_LRCK	I2S0_LRCK	I2S0_LRCK	I2S0_LRCK
S40	I2S0_SDOUT	I2S0_SDOUT	I2S0_SDOUT	I2S0_SDOUT

Pin	SMARC 1.1	SMARC 2.0	SMARC 2.1	SMARC 2.2
S41	I2S0_SDIN	I2S0_SDIN	I2S0_SDIN	I2S0_SDIN
S42	12S0_CK	I2S0_CK	I2S0_CK	I2S0_CK
S43	I2S1_LRCK	ESPI ALERTO#	ESPI_ALERT0#	ESPI_ALERT0#
S44	I2S1_SDOUT	ESPI ALERT1#	ESPI_ALERT1#	ESPI_ALERT1#
S45	I2S1_SDIN	RSVD	MDIO CLK	MDIO_CLK
S46	I2S1_CK	RSVD	MDIO_DAT	MDIO_DAT
S47	GND	GND	GND	GND
S48	I2C_GP_CK	I2C_GP_CK	I2C_GP_CK	I2C_GP_CK
S49	I2C_GP_DAT	I2C_GP_DAT	I2C_GP_DAT	I2C_GP_DAT
S50	I2S2_LRCK	I2S2_LRCK / HDA_SYNC	I2S2_LRCK / HDA_SYNC	I2S2_LRCK / HDA_SYNC / SNDW_CLK1
S51	I2S2_SDOUT	I2S2_SDOUT / HDA SDO	I2S2_SDOUT / HDA_SDO	I2S2_SDOUT / HDA_SDO / SNDW_DAT1
S52	I2S2_SDIN	I2S2_SDIN / HDA SDI	I2S2_SDIN / HDA_SDI	I2S2_SDIN / HDA_SDI / SNDW_DAT0
S53	12S2_CK	I2S2_CK/HDA_CK	I2S2_CK / HDA_CK	I2S2_CK / HDA_CK / SNDW_CLK0
S54	SATA_ACT#	SATA_ACT#	SATA_ACT#	SATA_ACT#
S55	AFB8_PTIO	USB5_EN_OC#	USB5_EN_OC#	USB5_EN_OC#
S56	AFB9_PTIO	ESPI IO 2	ESPI_IO_2/QSPI_IO_2	ESPI_IO_2 / QSPI_IO_2
S57	PCAM_ON_CSI0#	ESPI_IO_3	ESPI_IO_3/QSPI_IO_3	ESPI_IO_3 / QSPI_IO_3
S58	PCAM_ON_CSI1#	ESPI_RESET#	ESPI_RESET#	ESPI_RESET#
S59	SPDIF_OUT	USB5+	USB5+	USB5+
S60	SPDIF_IN	USB5-	USB5-	USB5-
S61	GND	GND	GND	GND
S62	AFB_DIFF0+	USB3_SSTX+	USB3_SSTX+	USB3_SSTX+
S63	AFB_DIFF0-	USB3_SSTX-	USB3_SSTX-	USB3_SSTX-
S64	GND	GND	GND	GND
S65	AFB_DIFF1+	USB3 SSRX+	USB3_SSRX+	USB3_SSRX+
S66	AFB_DIFF1-	USB3 SSRX-	USB3_SSRX-	USB3_SSRX-
S67	GND	GND	GND	GND
S68	AFB_DIFF2+	USB3+	USB3+	USB3+
S69	AFB_DIFF2-	USB3-	USB3-	USB3-
S70	GND	GND	GND	GND
S71	AFB_DIFF3+	USB2_SSTX+	USB2_SSTX+	USB2_SSTX+
S72	AFB_DIFF3-	USB2 SSTX-	USB2_SSTX-	USB2_SSTX-
S73	GND	GND	GND	GND
S74	AFB_DIFF4+	USB2 SSRX+	USB2_SSRX+	USB2_SSRX+
S75	AFB_DIFF4-	USB2_SSRX-	USB2_SSRX-	USB2_SSRX-
S76	PCIE_B_RST#	PCIE_B_RST#	PCIE_B_RST#	PCIE_B_RST#
S77	PCIE_C_RST#	PCIE_C_RST#	PCIE_C_RST#	PCIE_C_RST#
S78	PCIE_C_RX+	PCIE_C_RX+	PCIE_C_RX+/SERDES_1_RX+	PCIE_C_RX+ / SERDES_1_RX+
S79	PCIE_C_RX-	PCIE_C_RX-	PCIE_C_RX-/SERDES_1_RX-	PCIE_C_RX- / SERDES_1_RX-
S80	GND	GND	GND	GND

Pin	SMARC 1.1	SMARC 2.0	SMARC 2.1	SMARC 2.2
S81	PCIE_C_TX+	PCIE_C_TX+	PCIE_C_TX+/SERDES_1_TX+	PCIE_C_TX+ / SERDES_1_TX+
S82	PCIE_C_TX-	PCIE_C_TX-	PCIE_C_TX-/SERDES_1_TX-	PCIE_C_TX- / SERDES_1_TX-
S83	GND	GND	GND	GND
S84	PCIE_B_REFCK+	PCIE_B_REFCK+	PCIE_B_REFCK+	PCIE_B_REFCK+
S85	PCIE_B_REFCK-	PCIE_B_REFCK-	PCIE_B_REFCK-	PCIE_B_REFCK-
S86	GND	GND	GND	GND
S87	PCIE_B_RX+	PCIE_B_RX+	PCIE_B_RX+	PCIE_B_RX+
S88	PCIE_B_RX-	PCIE_B_RX-	PCIE_B_RX-	PCIE_B_RX-
S89	GND	GND	GND	GND
S90	PCIE_B_TX+	PCIE_B_TX+	PCIE_B_TX+	PCIE_B_TX+
S91	PCIE_B_TX-	PCIE_B_TX-	PCIE_B_TX-	PCIE_B_TX-
S92	GND	GND	GND	GND
S93	LCD_D0	DP0 LANE0+	DP0_LANE0+	DP0_LANE0+
S94	LCD_D1	DP0_LANE0-	DP0_LANE0-	DP0_LANE0-
S95	LCD_D2	DP0_AUX_SEL	DP0_AUX_SEL	DP0_AUX_SEL
S96	LCD_D3	DP0 LANE1+	DP0_LANE1+	DP0_LANE1+
S97	LCD_D4	DP0_LANE1-	DP0_LANE1-	DP0_LANE1-
S98	LCD_D5	DP0_HPD	DP0_HPD	DP0_HPD
S99	LCD_D6	DP0 LANE2+	DP0_LANE2+	DP0_LANE2+
S100	LCD_D7	DP0 LANE2-	DP0_LANE2-	DP0_LANE2-
	GND	GND	GND	GND
	LCD_D8	DP0_LANE3+	DP0_LANE3+	DP0_LANE3+
	LCD_D9	DP0_LANE3-	DP0_LANE3-	DP0_LANE3-
	LCD_D10	USB3 OTG ID	USB3_OTG_ID	USB3_OTG_ID
	LCD_D11	DP0_AUX+	DP0_AUX+	DP0_AUX+
S106	LCD_D12	DP0 AUX-	DP0_AUX-	DP0_AUX-
S107	LCD_D13	LCD1 BKLT EN	LCD1_BKLT_EN	LCD1_BKLT_EN
S108	LCD_D14	LVDS1_CK+/eDP1_AUX+/ DSI1_CLK+	LVDS1_CK+ / eDP1_AUX+ / DSI1_CLK+	LVDS1_CK+ / eDP1_AUX+ / DSI1_CLK+
S109	LCD_D15	LVDS1 CK-/eDP1 AUX-/DSI1 CLK-	LVDS1_CK- / eDP1_AUX- / DSI1_CLK-	LVDS1_CK- / eDP1_AUX- / DSI1_CLK-
S110	GND	GND	GND	GND
S111	LCD_D16	LVDS1_0+ / eDP1_TX0+ / DSI1_D0+	LVDS1_0+ / eDP1_TX0+ / DSI1_D0+	LVDS1_0+ / eDP1_TX0+ / DSI1_D0+
S112	LCD_D17	LVDS1 0-/eDP1 TX0-/DSI1 D0-	LVDS1_0- / eDP1_TX0- / DSI1_D0-	LVDS1_0- / eDP1_TX0- / DSI1_D0-
S113	LCD_D18	eDP1_HPD	eDP1_HPD <u>/ DSI1_TE</u>	eDP1_HPD / DSI1_TE
S114	LCD_D19	LVDS1 1+/eDP1 TX1+/DSI1 D1+	LVDS1_1+ / eDP1_TX1+ / DSI1_D1+	LVDS1_1+ / eDP1_TX1+ / DSI1_D1+
	LCD_D20	LVDS1_1- / eDP1_TX1- / DSI1_D1-	LVDS1_1- / eDP1_TX1- / DSI1_D1-	LVDS1_1- / eDP1_TX1- / DSI1_D1-
S116	LCD_D21	LCD1_VDD_EN	LCD1_VDD_EN	LCD1_VDD_EN
	LCD_D22	LVDS1 2+ / eDP1 TX2+ / DSI1 D2+	LVDS1_2+ / eDP1_TX2+ / DSI1_D2+	LVDS1_2+ / eDP1_TX2+ / DSI1_D2+
S118	LCD_D23	LVDS1 2- / eDP1 TX2- / DSI1 D2-	LVDS1_2- / eDP1_TX2- / DSI1_D2-	LVDS1_2- / eDP1_TX2- / DSI1_D2-
S119	GND	GND	GND	GND

Pin	SMARC 1.1	SMARC 2.0	SMARC 2.1	SMARC 2.2
S120	LCD_DE	LVDS1_3+ / eDP1_TX3+ / DSI1_D3+	LVDS1_3+ / eDP1_TX3+ / DSI1_D3+	LVDS1_3+ / eDP1_TX3+ / DSI1_D3+
S121	LCD_VS	LVDS1_3- / eDP1_TX3- / DSI1_D3-	LVDS1_3- / eDP1_TX3- / DSI1_D3-	LVDS1_3- / eDP1_TX3- / DSI1_D3-
S122	LCD_HS	LCD1 BKLT PWM	LCD1_BKLT_PWM	LCD1_BKLT_PWM
S123	LCD_PCK	RSVD	GPIO13	GPIO13
S124	GND	GND	GND	GND
S125	LVDS0+	LVDS0_0+ / eDP0_TX0+ / DSI0_D0+	LVDS0_0+ / eDP0_TX0+ / DSI0_D0+	LVDS0_0+ / eDP0_TX0+ / DSI0_D0+
S126	LVDS0-	LVDS0_0- / eDP0_TX0- / DSI0_D0-	LVDS0_0- / eDP0_TX0- / DSI0_D0-	LVDS0_0- / eDP0_TX0- / DSI0_D0-
S127	LCD_BKLT_EN	LCD0_BKLT_EN	LCD0_BKLT_EN	LCD0_BKLT_EN
S128	LVDS1+	LVDS0_1+ / eDP0_TX1+ / DSI0_D1+	LVDS0_1+ / eDP0_TX1+ / DSI0_D1+	LVDS0_1+ / eDP0_TX1+ / DSI0_D1+
S129	LVDS1-	LVDS0_1-/eDP0_TX1-/DSI0_D1-	LVDS0_1- / eDP0_TX1- / DSI0_D1-	LVDS0_1- / eDP0_TX1- / DSI0_D1-
S130	GND	GND	GND	GND
S131	LVDS2+	LVDS0_2+ / eDP0 TX2+ / DSI0 D2+	LVDS0_2+ / eDP0_TX2+ / DSI0_D2+	LVDS0_2+ / eDP0_TX2+ / DSI0_D2+
S132	LVDS2-	LVDS0_2-/eDP0 TX2-/DSI0 D2-	LVDS0_2- / eDP0_TX2- / DSI0_D2-	LVDS0_2- / eDP0_TX2- / DSI0_D2-
S133	LCD_VDD_EN	LCD0_VDD_EN	LCD0_VDD_EN	LCD0_VDD_EN
S134	LVDS_CK+	LVDS0_CK+ / eDP0_AUX+ / DSI0_CLK+	LVDS0_CK+ / eDP0_AUX+ / DSI0_CLK+	LVDS0_CK+ / eDP0_AUX+ / DSI0_CLK+
S135	LVDS_CK-	LVDS0_CK-/eDP0_AUX-/DSI0_CLK-	LVDS0_CK- / eDP0_AUX- / DSI0_CLK-	LVDS0_CK- / eDP0_AUX- / DSI0_CLK-
S136	GND	GND	GND	GND
S137	LVDS3+	LVDS0_3+ / eDP0 TX3+ / DSI0 D3+	LVDS0_3+ / eDP0_TX3+ / DSI0_D3+	LVDS0_3+ / eDP0_TX3+ / DSI0_D3+
S138	LVDS3-	LVDS0_3-/eDP0 TX3-/DSI0 D3-	LVDS0_3- / eDP0_TX3- / DSI0_D3-	LVDS0_3- / eDP0_TX3- / DSI0_D3-
S139	I2C_LCD_CK	I2C_LCD_CK	I2C_LCD_CK	I2C_LCD_CK
S140	I2C_LCD_DAT	I2C_LCD_DAT	I2C_LCD_DAT	I2C_LCD_DAT
S141	LCD_BKLT_PWM	LCD0_BKLT_PWM	LCD0_BKLT_PWM	LCD0_BKLT_PWM
S142	RSVD	RSVD	GPIO12	GPIO12
S143	GND	GND	GND	GND
S144	RSVD / EDP_HPD	eDP0_HPD	eDP0_HPD <u>/ DSI0_TE</u>	eDP0_HPD / DSI0_TE
S145	WDT_TIME_OUT#	WDT_TIME_OUT#	WDT_TIME_OUT#	WDT_TIME_OUT#
S146	PCIE_WAKE#	PCIE_WAKE#	PCIE_WAKE#	PCIE_WAKE#
S147	VDD_RTC	VDD_RTC	VDD_RTC	VDD_RTC
S148	LID#	LID#	LID#	LID#
S149	SLEEP#	SLEEP#	SLEEP#	SLEEP#
S150	VIN_PWR_BAD#	VIN_PWR_BAD#	VIN_PWR_BAD#	VIN_PWR_BAD#
S151	CHARGING#	CHARGING#	CHARGING#	CHARGING#
S152	CHARGER_PRSNT#	CHARGER_PRSNT#	CHARGER_PRSNT#	CHARGER_PRSNT#
S153	CARRIER_STBY#	CARRIER_STBY#	CARRIER_STBY#	CARRIER_STBY#
S154	CARRIER_PWR_ON	CARRIER_PWR_ON	CARRIER_PWR_ON	CARRIER_PWR_ON
S155	FORCE_RECOV#	FORCE_RECOV#	FORCE_RECOV#	FORCE_RECOV#
S156	BATLOW#	BATLOW#	BATLOW#	BATLOW#
S157	TEST#	TEST#	TEST#	TEST#
S158	GND	GND	GND	GND

9.6 Signal Name Index

		CSI1 RX2+	29, 69, 99
Audio		CSI1 RX3	
AUDIO_MCK			29, 69, 99
HDA_CK	40, 41, 70, 104		30, 31, 32, 69, 103
HDA_RST#40, 41, 59,	60, 61, 72, 101		
HDA_SDI	40, 41, 70, 104		31
HDA_SDO	40, 41, 70, 104		31
HDA SYNC			31
12SO CK	39, 70, 104		31
12SO_LRCK	39, 70, 103		31
12SO_SDIN			31
12SO_SDOUT			31
12S2 CK			31
12S2_LRCK		CS12_NA2+	31
12\$2 SDIN		CI2_RX3	31
I2S2 SDOUT			
SNDW CLKO			31
SNDW_CLK1			31
SNDW DATO	41 70 104		32
SNDW_DATO			32
3NDW_DAT1	41, 70, 104		32
Camera			32
	20 22 60 102		32
CAM MCK	30, 32, 69, 103		32
CAMO_PWR#			32
CAMO_RST#	60, 61, 72, 101		32
CAM1_PWR#	60, 61, 72, 101		32
CAM1_RST#			32
CAM2_MCK			32
CAM2_PWR#			32
CAM2_RST#			29, 69, 103
CAM2_VCC		I2C_CAM0_DAT	29, 69, 103
CAM3_MCK		I2C CAM1 CK	30, 31, 32, 69, 103
CAM3_PWR#		I2C_CAM1_DAT	30, 31, 32, 69, 103
CAM3_RST#		I2C CAM2 CK	31
CAM3_VCC		I2C CAM2 DAT	31
CSIO_CK		I2C CAM3 CK	32
CSIO_CK+		I2C CAM3 DAT	32
CSI0_RX0			
CSIO_RXO+		CAN	
CSIO_RX1		CANO RX	44, 73, 102
CSIO_RX1+		CANO_TX	44, 73, 102
CSI0_TX	29, 69, 103	CAN1 RX	
CSIO_TX+	29, 69, 103	CAN1_TX	44, 73, 102
CSI1_CK	30, 69, 99	<u> </u>	
CSI1_CK+		Display	
CSI1_RX0			21, 24, 28, 72, 73, 105, 106
CSI1_RX0+			21, 24, 28, 72, 73, 103, 100
CSI1_RX1	29, 69, 99		28, 72, 73, 105, 106
CSI1_RX1+	29, 69, 99		
CSI1_RX2		DDO I ANEO-	28, 72, 103
-	• •		20, /1, 103

BB0 144150	00 74 405	554 714	24 24 72 425
DP0_LANE0+			
DP0_LANE1	28, 72, 105	eDP1 TX1	
DPO_LANE1+			
DPO LANE2			
DPO_LANE2+			
DPO_LANE3			
DP0_LANE3+	28, 72, 105	eDP1 TX3+	
DP1 AUX21	l. 24. 26. 27. 72. 101. 105		
DP1 AUX SEL			
DP1_AUX+			25, 26, 27, 72, 101
		LIDIAL CTPL DAT	25, 20, 27, 72, 101
DP1_HPD			25, 26, 27, 72, 101
DP1_LANE0			
DP1 LANE0+	26, 27, 71, 101	HDMI D0+	
DP1 LANE1	26 27 72 101	HDMI D1-	
DP1 LANE1+			
DP1_LANE2			
DP1_LANE2+			25, 27, 71, 101
DP1 LANE3	26, 27, 72, 101	HDMI HPD	
DP1_LANE3+	26. 27. 72. 101	LCD0 BKLT EN	
DSIO_CLK			
DSIO_CLK+			
DSI0_D0			20, 21, 23, 24, 72, 105
DSI0_D0+	23, 24, 72, 106	LCD1_BKLT_PWM	
DSI0 D1	23. 24. 72. 106	LCD1 VDD EN	
DSI0_D1+	23 24 72 106	LVDS0 0-	
DSI0 D2		1./DSU_0+	
DSI0_D2+	-, , ,		
DSI0_D3			
DSIO_D3+	23, 24, 73, 106	LVDS0 2	
DSIO_TE		LVDS0 2+	
DSI1 CLK-			
DSI1_CLK			
DSI1_D0			
DSI1_D0+			
DSI1 D1	23, 24, 72, 105	LVDS1 0	
DSI1 D1+		LVDS1_0+	
DSI1 D2			20, 72, 105
	-, , ,		-, ,
DSI1_D2+			
DSI1_D3			
DSI1_D3+	23, 24, 72, 106	LVDS1_2+	
DSI1 TE	23, 24, 72, 105	LVDS1 ⁻ 3	
eDPO_AUX			
eDPO AUX+			
eDPO_HPD		LVD31_CK+	
eDP0_TX0			
eDP0 TX0+	21, 24, 72, 106	ESPI	
eDP0 TX1		FSPL ALFRTO#	38, 70, 104
eDP0 TX1+			
eDPO TX2-			
eDP0_TX2+			
eDP0_TX3		ESPI_CS1#	
eDP0_TX3+	21, 24, 73, 106	ESPI IO 0	
eDP1 ⁻ AUX			
eDP1 AUX+			
eDP1_HPD			
	, , ,	E3PI_IU_3	
eDP1_TX0	21, 24, /2, 105		

ESPI_RESET#	38, 70, 104		63, 72, 102 63, 72, 102
Ethernet		12C_PWI_DAT	03, 72, 102
	56, 69, 99	Misc	
GDEO_CINIK_ACT#	56, 69, 99		
	56		64, 65, 72, 102
	69, 99		64, 73, 106
	56		63, 73, 106
	56, 70, 99		59, 60, 61, 72, 101
GBE0_MDI0+	56, 70, 99		62, 63, 67, 72, 102
GBE0 MDI1	56, 69, 99	RESET OUT#	63, 72, 102
GBE0 MDI1+	56, 69, 99	RSVD	69, 71, 100, 103, 104, 106
GBE0 MDI2	56, 69, 99	SLEEP#	62, 73, 106
	56, 69, 99		63, 69, 99
	56, 69, 99		59, 60, 61, 72, 101
	56, 69, 99		
_		WDT_TIME_OUT#	
	57, 69, 103	D.C.I	
	57, 70, 103	PCle	
	69, 103	PCIE_A_CKREQ#	51, 52, 71, 100
GBE1 LINK MAX#	57	PCIE A REFCK	51, 71, 101
GBE1_LINK_MID#	69, 103		51, 71, 101
	57	PCIF A RST#	51, 52, 71, 100
	57, 69, 103		51, 71, 101
			51, 71, 101
			51, 71, 101
	57, 69, 103		51, 71, 101
	57, 69, 103		51, 52, 71, 100
GBE1_MDI2+	57, 69, 103	PCIE_B_REFCK	51, 71, 105
GBE1 MDI3	57, 69, 103	PCIE B REFCK+	51, 71, 105
GBE1 MDI3+	57, 69, 103		51, 52, 71, 104
GBE1 SDP	57, 69, 99		51, 71, 105
<u>-</u>			51, 71, 105
GPIO			51, 71, 105
	29, 59, 61, 72, 101		
			51, 71, 105
	30, 59, 61, 72, 101	PCIE_C_REFCK	51, 54, 71, 101
	59, 72, 101		51, 54, 71, 101
	59, 72, 102		51, 52, 54, 71, 104
GPIO12	59, 73, 106		51, 54, 71, 104
GPIO13	59, 72, 106	PCIE C RX+	51, 54, 71, 104
GPIO2	29, 59, 61, 72, 101	PCIE C TX	51, 54, 71, 105
GPIO3	30, 59, 61, 72, 101		51, 54, 71, 105
			51, 54, 70, 103
	16, 59, 61, 72, 101	DCIE D DV+	51, 54, 70, 103
	16, 59, 61, 72, 101		
	59, 72, 101		
	59, 72, 101	PCIE_WAKE#	
GPIO9	59, 72, 101		
		Power	
12C		BATLOW#	62, 73, 106
	42, 70, 104		
			62, 73, 88, 89, 100
		CHARCING#	
IZC LCD DAT	20, 22, 23, 24, 73, 106	CHAKGING#	62, 73, 106

	GND26, 28, 31, 32, 47, 62, 64, 65, 66, 67, 69, 70, 71, 72, 73, 80, 81, 87, 99	9, 10	00, 1	L01,
	102, 103, 104, 105, 106 POWER_BTN#	62	72	102
	VDD IN 17 62 66 72	05,	/ Z,	102
	VDD_IN	72	07,	102
	VIN PWR BAD#			
	VIN_PVVK_BAD#10, 02, 73,	00,	٥٦,	100
Q	SPI			
	QSPI_CK	38,	70,	100
	QSPI_CS0#	38,	70,	100
	QSPI_CS1#			
	QSPI_IO_0			
	QSPI_IO_1	38,	70,	100
	QSPI_IO_2	38,	70,	104
	QSPI_IO_3	38,	70,	104
S/	ATA			
	SATA ACT#	55,	70,	104
	SATA_RX		70,	100
	SATA_RX+		70,	100
	SATA_TX		70,	100
	SATA_TX+		70,	100
SI	010			
_	SDIO_CD#	34	. 70	. 99
	SDIO CK			
	SDIO CMD	34	. 70	, 99
	SDIO_D0	34.	70.	100
	SDIO D1	34.	70.	100
	SDIO_D2	34,	70,	100
	SDIO_D3			
	SDIO_PWR_EN	34	, 7C	, 99
	SDIO_WP	34	, 70	, 99
SE	ERDES			
	MDIO CLK	54.	70.	104
	MDIO DAT53,	54.	70.	104
	SERDES 0 RX			
	SERDES 0 RX+	54.	70.	103
	SERDES 0 TX53.	54.	70.	103
	SERDES_0_TX+53,	54,	69,	103
	SERDES 1 RX	54,	71,	104
	SERDES 1 RX+			
	SERDES 1 TX			
	SERDES_1_TX+53,	54,	71,	105
S	erial			
_	SERO_CTS#	43.	73.	102
	SERO RTS#	43	72	102
	SERO RX	43	72	102
	SERO TX	43.	72.	102
	SER1_RX			

	SER1 TX	.43.	73.	102
	SER2 CTS#			
	SER2 RTS#			
	SER2 RX			
	SER2 TX			
	SER3 RX			
	SER3 TX			
	SER3_1X	.43,	73,	102
iΡ	NI			
	SPIO_CK			
	SPIO_CSO#			
	SPIO_CS1#			
	SPIO_DIN	. 35,	70,	100
	SPI0_DO			
	SPI1_CK35,	38,	70,	100
	SPI1 CS0#	38,	70,	100
	SPI1 CS1#			
	SPI1 DIN			
	SPI1_DO			
		,	,	
JS	SB			
	USB0	47	70	100
	USBO_EN_OC#	Δ7	70	100
	USBO_OTG_ID	. 47, 17	70,	100
	USBO_VBUS_DET			
	USB0+			
	USB1			
	UDD1	.47,	71,	100
	USB1_EN_OC#	.47,	/1,	100
	USB1+	.47,	/1,	100
	USB2	.47,	71,	100
	USB2_EN_OC#	.47,	/1,	100
	USB2_SSRX-	.47,	/1,	104
	USB2_SSRX+	.47,	/1,	104
	USB2_SSTX	.47,	71,	104
	USB2_SSTX+	.47,	71,	104
	USB2+			
	USB3			
	USB3_EN_OC#	. 48,	71,	100
	USB3_OTG_ID			
	USB3_SSRX	.47,	71,	104
	USB3_SSRX+	.47,	70,	104
	USB3 SSTX	.47,	70,	104
	USB3 ⁻ SSTX+			
	USB3 VBUS DET			
	USB3+			
	USB4			
	USB4_EN_OC#			
	USB4+	.48	70.	103
	USB5-			
	USB5 EN OC#			
		. 70,	-0,	104

© Copyright 2024, SGET Standardization Group for Embedded Technology e.V.