Oscillations

Mads Jensen, PhD

■ mads@cas.au.dk

Contents

- 1. Cognition as brain rhythms
 - Physiological origin of oscillations

- 2. Quantifying brain waves
 - Power spectrum density
 - Wavelets
 - Hilbert transform

3. Gating by inhibition

Cognition as brain rhythms

Cognition as brain rhythms

(Figure from Berger, 1929)

Cognition as brain rhythms

(Figure from Berger, 1929)

(Figure from Buzsáki, 2006)

Sine waves

Sine waves

 $({\sf Figure\ from\ https://github.com/lyndond/Analyzing_Neural_Time_Series/blob/master/chapter}11.ipynb)$

Sampling rate matters

(Figure from

 $https://github.com/lyndond/Analyzing_Neural_Time_Series/blob/master/chapter06.ipynb)$

Sampling rate matters

- Nyquist frequency is half of the temporal sampling rate.
- Rayleigh frequency is the spacing between discrete frequencies

(Figure from

 $https://github.com/lyndond/Analyzing_Neural_Time_Series/blob/master/chapter06.ipynb)$

Information in ERPs & Oscillations

(Figure from Cohen, 2014)

Information in ERPs & Oscillations

(Figure from Cohen, 2014)

(Figure from Cohen, 2014)

Frequency bands

Name	Frequency range ¹
α (Alpha)	8 - 12 Hz
β (Beta)	14 - 30 Hz
γ (Gamma)	30 - 100 Hz
heta (Theta)	4 - 8 Hz
δ (Delta)	1 - 4 Hz

¹As defined in Jensen et al., 2014

Physiological origin of oscillations

(Figure from Jensen et al., 2014)

Quantifying brain waves

Power spectrum density

(Figure from Jensen et al., 2014)

Power spectrum density

Power spectrum density

 $(Figure\ from\ http://www.fieldtriptoolbox.org/tutorial/timefrequencyanalysis/)$

• Band pass filter for the frequency bands of interest

- Band pass filter for the frequency bands of interest
- Apply Hilbert transform

- Band pass filter for the frequency bands of interest
- Apply Hilbert transform
- Extract amplitute/power and/or phase

Frequency bands

Name	Frequency range	Function
		Inhibition
lpha (Alpha)	8-12 Hz	Attention
		Inter-regional communication
β (Beta)	14 - 30	Sensory motor
γ (Gamma)	30 - 100 Hz	Information processing
		Feedforward-drive
θ (Theta) 4 -8 Hz	Error processing	
	4 -0 FIZ	Inter-regional communication
δ (Delta)	1 - 4 Hz	Excitability of a network

Filters

(Figure from Jensen et al., 2014)

Filters


```
epochs_30.filter(0, 30)

Setting up low-pass filter at 30 Hz

FIR filter parameters

Designing a one-pass, zero-phase, non-causal lowpass filter:

- Windowed time-domain design (firwin) method
```

- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation - Upper passband edge: 30.00 Hz - Upper transition bandwidth: 7.50 Hz (-6 dB cutoff frequency: 33.75 Hz) - Filter length: 67 samples (0.446 sec)

(Figure from Jensen et al., 2014)

Gating by inhibition

Gating by inhibition

frontiers in **HUMAN NEUROSCIENCE**

Shaping functional architecture by oscillatory alpha activity: gating by inhibition

Ole Jensen* and Ali Mazaheri

Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, Netherlands

Gating information

(Figure from Jensen & Mazaheri, 2010)

Gating information

(Figure from Jensen & Mazaheri, 2010)

Gating information

(Figure from Jensen & Mazaheri, 2010)

References I

- Berger, H. (1929). Über das Elektrenkephalogramm des Menschen. *Archiv für Psychiatrie und Nervenkrankheiten*, 87(1), 527–570. https://doi.org/10.1007/BF01797193
- Buzsáki, G. (2006). *Rhythms of the Brain*. Oxford University Press. Retrieved July 25, 2020, from http://www.oxfordscholarship.com/view/10.1093/acprof: oso/9780195301069.001.0001/acprof-9780195301069
- Cohen, M. X. (2014). Analyzing neural time series data: Theory and practice. The MIT Press.
- Jensen, O., & Mazaheri, A. (2010). Shaping Functional Architecture by Oscillatory Alpha Activity: Gating by Inhibition. *Frontiers in Human Neuroscience*, 4. https://doi.org/10.3389/fnhum.2010.00186
- Jensen, O., Spaak, E., & Zumer, J. M. (2014). Human brain oscillations: From physiological mechanisms to analysis and cognition. In S. Supek & C. J. Aine (Eds.), *Magnetoencephalography: From signals to dynamic cortical networks* (pp. 359–403). Springer Berlin Heidelberg.