

Outils Numériques pour l' Ingénieur.e en Photonique

Outils Numériques / Semestre 5 Bloc Intro

https://lense.institutoptique.fr/ONIP/

Ressources / ONIP

https://lense.institutoptique.fr/ONIP/

github.com/IOGS-Digital-Methods

Semestre 5

Ce module s'intéresse aux méthodes numériques utiles à tout ingénieur.e. L'idée est de construire une **boite** à **outils de méthodes numériques** pour les étudiant.es en physique, en se basant sur le **langage Python** et les **bibliothèques standards en science**.

Une série de tutoriels pour Python en suivant le lien ci-après.

Python For Science / LEnsE.tech

Ce module est décomposé en 3 thèmes de 4 séances chacun :

- Bloc Intro Python scientifique
- Bloc AM Traitement de données 1D
- Bloc Laser Traitement de données 2D

Déroulement / ONIP

 $I_0(z)$

3 séances introductives (2h/séance)

2 blocs de 4 et 5 séances (2h/séance)

- Sur machine
- En binôme
- 2 encadrant.es par séance

Bloc AM: Traitement de données 1D

Problème 1 : signal modulé en amplitude / acquisition numérique

Bloc Laser: Traitement de données 2D

Problème 2: images d'un faisceau LASER en différents points d'un chemin optique

Acquis d'Apprentissage Visés / ONIP

UC dans l'UE Traitement de l'Information

12 séances de TD Machine

- Acquis d'Apprentissage Visés
 - Être capable de **valider un modèle physique simple et fourni** à l'aide d'un outil de calcul scientifique
 - Être capable de **générer des graphiques scientifiques** légendés
 - Être capable de d'écrire un script réutilisable dans un langage de haut niveau (à but scientifique)

Outils et méthode de travail

Outils Numériques / Semestre 5 Bloc Intro

Outils de développement

- Utilisation de Python
 - Python 3.9 (ou supérieur) via Anaconda 3

• **PyCharm** Community Edition

LEnsE.tech

• https://iogs-lense-training.github.io/python-for-science/

Méthode de travail

- Travail seul ou en binôme
- Exercices prévus par séance
 - Chacun son rythme
 - Correction « magistrale » pour certains exercices

• « Au secours! », je suis perdu·e

Sujets / Ressources

Merci de rendre les supports imprimés et plastifiés des sujets aux encadrant·es

https://lense.institutoptique.fr/ONIP/

Exercice type

Merci de rendre les supports imprimés et plastifiés des sujets aux encadrant·es

Exercice 4 / Génération de signaux et affichage

Notions: Functions | Numpy Basics - Using Vectors | Matplotlib Basics - Scientist figure

- 1. Créer un vecteur *temps* de 101 points régulièrement répartis entre 0 et 1 s. Quelle est la période d'échantillonnage ?
- 2. Importer la bibliothèque matplotlib.pyplot.
- 3. Tracer une sinusoïde de période 50 ms en rouge. Ajouter un titre, des axes et une légende au graphique.
- 4. Que pensez-vous du résultat? Améliorer le résultat.
- 5. Tracer sur le même graphique une sinusoïde de période 20 ms en bleu.
- 6. Faire un zoom pour n'afficher que quelques périodes des deux sinusoïdes.
- 7. Faire une fonction qui prend comme argument la période de la sinusoïde, tester-la avec une période de 30 ms.

Bloc Intro Séance 1 PyCharm

Outils Numériques / Semestre 5 Bloc Intro

PyCharm et le débugage

Séance 1 / first_try.py


```
import numpy as nu
def fonctionA(a, b, c):
    return a * nu.sin(2*3.14 * b * c)
if
   name == ' main ':
    a1=20
    b1=850
    c1=nu.linspace (0,50,101)
    r1 = fonctionA(a1, b1, c1)
   print(r1)
    plt.figure()
    plt.plot(c1, r1)
    plt.show()
```


Bloc Intro Séances 2/3 Python Basics

Outils Numériques / Semestre 5 Bloc Intro