Option Simplification

Put-Call Parity

Forward Contract: is a contract with a delivery price K that obligates its holder to buy one share of the stock at expiration time T in exchange for payment K. At expiration the value of the forward contract is S(T)-K. Let f(t,x) denote the value of the forward contract at earlier times $t\in [0,T]$ if the stock price at time τ is S(t)=x, the value of the forward contract at time τ is :

$$f(\tau, x) = x - e^{-r(T - \tau)}K\tag{1}$$

• Using no arbitrage pricing the payoff of the forward contract agrees with the payoff of a portfolio that is *long one call* and *short one put*, which can be summarized using this mathematical notation:

$$f(t,x) = c(\tau,x) - p(\tau,x) \tag{2}$$

$$x - e^{-r(T-\tau)}K = c(\tau, x) - p(\tau, x)$$

$$\tag{3}$$

Parity Relationships

• short put +short stock = short call

$$-P_0 - S_0 = -C_0 (4)$$

• long put + long stock = long call

$$P_0 + S_0 = C_0 (5)$$

long call - short put = long stock

$$C_0 - P_0 = S_0 (6)$$

• short call + long put = short stock

$$-C_0 + P_0 = -S_0 (7)$$

• long call + short stock = long put

$$C_0 - S_0 = P_0 (8)$$

• short call + long stock = short put

$$-C_0 + S_0 = -P_0 (9)$$

Protective Put

• Suppose you own 500 shares of Well Fargo, and buy 5 puts with a strike of 50 for a premium of \$1.85. The current stock price is \$48.92.

Protective Put

- Notice the *green* line and how your losses are protected if the stock price drops below \$50.00, however, your breakeven point is actually at \$48.15 because you paid \$1.85 for the put premium.
- The *green* line is also known as a synthetic **long call with strike equal to 50**. This syntetic long call is priced at \$0.77. Why?
 - Because:

$$C_o = P_o + S_o - K \tag{10}$$

Profit change Long Stock + Long Put

• This is the payoff graph of the portfolio.

Long Call

Buy-Write

- A portfolio with a short call option and long stock position
- This is equivalent to a short put option

<u>Example</u>

 $S_0=\$82.40$ and the number of shares bought is $\Delta=500$. Additionally, you sold 5C(K=82.5)=\$2.20

Buy-Write Total Payoff

- ullet In order to simulate this exact payoff we need to sell a put for a price of \$2.30
- $P_0 = C_0 S_0 + K$

Short Put Payoff

- This chart provides the same payoff of selling 5 puts.
- Thus buying 500 shares of stock and selling 500 calls is equivalent to selling 5 puts with the same strike price.

Short Puts Plus Short Stock

short put plus short stock equals short call

Suppose you sell 500 deltas of at $S_0 = \$96.25$ and simultaneoulsy short 5P(K=95) = \$1.45

- Since this put is all *time value* the price of the corresponding call is equal to the put's time value plus the differential between the strike price and spot price. This equals (96.25 95) + 1.45 = \$2.70.
- Similarly, if you know the price of the ITM call is priced at 2.7, the price of the put with the same strike is equal to the call's **time value** of \$1.45.
- This portfolio payoff is exactly equal to -5C(K=95)=-\$2.7

Synthetic Short Call

- For $S\in[0,25]$: $Vp=5(\Delta_s)$ where $\Delta_s=(S-\$13.012)$. I am long 500 shares for a price of 13.
- ullet For $S\in[25,\inf]$: $Vp=-12(\Delta_s)$ where $\Delta_s=(S-\$29.995)$. I am short 1200 shares for a selling price of nearly 30 dollars.

Bull Call Spread Example

- Remember short the lower strike call option and simultaneoulsy sell the lower call strike
- Consider:

$$V_{p,\tau_0} = C(170) - C(172.5) - 1.20 (11)$$

Where
$$C(170) = \$4.55$$
 and $C(172.5) = \$3.35$ (12)

C(170)-C(172.5) Call Spread

Short Bull Call Spread

•
$$C(K=172.5)=\$3.35$$
 and $C(K=175)=\$2.50$.
$$V_{p,\tau_0}=-C(K=172.5)+C(K=175)+\$0.85 \eqno(13)$$

When you buy the Sep 170-172.5 call spreads for \$1.20 and sell an equal number of Sep 175-172.5 call spreads for \$0.85 you have created a **long call butterfly spread.**

• Let's visualize our payoffs.

Long Call Butterfly Spread

Put-Spread (Bearish Put Vertical Spread)

- The overall delta is negative for Bearish Put Vertical Spreads
- ullet Consider P(135) = \$1.83 and P(132) = \$1.06

Consider the portfolio:

$$V_{p,\tau_0} = P(135) - P(132) - \$0.77 \tag{14}$$

Bull Put-Spread

- ullet Essentially, think of creating a portfolio that is $+\Delta$ with two puts.
- ullet Consider P(129) = \$0.63 and P(132) = \$1.06

Consider the portfolio:

$$V_{p,\tau_0} = P(129) - P(132) + \$0.43 \tag{15}$$

- When you buy the September 135-132 put spread for \$0.77 and sell the September 129 -132 put spread for \$0.43 you have created a **long put butterfly spread**.
- $\bullet~$ The net premium is a \$0.34 debit.

P(135)-2P(132)+P(129)-Long_Put_Butterfly

When you buy the gold 142-145 call spread for \$1.15 and sell an equal amount of the the 150-145 call spread for \$0.88 you have created a **long split strike call butterfly.**

Long_Gold_Butterfly

Strangles

• The simultaneous purchase of OTM Call and OTM Put is a strangle.

Short Strangle

- ullet Consider P(175) = \$1.60 and C(250) = \$0.68
- $S_0 = \$212.5$

Consider the portfolio:

$$V_{p,\tau_0} = -P(175) - C(250) + \$2.28 \tag{16}$$

Breakeven is at $S_T=\$252.28$ and $S_T=\$172.72$

• Your position benefits with decreasing volatility and decreasing demand for options.

Long Strangle

- ullet Consider P(180) = \$1.55 and C(200) = \$1.16
- $S_0 = \$212.5$

Consider the portfolio:

$$V_{p,\tau_0} = P(180) + C(200) - \$2.71 \tag{17}$$

Breakeven is at $S_T=\$202.71$ and $S_T=\$177.29$

Long Iron Butterfly

• A long iron butterfly = short straddle + long strangle

A short straddle as unlimited potential upside losses and massive potential downside losses. When you buy a strangle, you are defining your maximum potential upside and downside losses.

Consider the portfolio:

$$V_{p,\tau_0} = P(180) + C(200) - C(190) - P(190) + \$6.74$$
 (18)

What would the greeks be of this position?

• You establish a credit.

Well since they are all at the same expiration cycle, and if $S_0 = \$190$. You would be **short** *delta*, **short** *gamma*, **short** *vega*, and **long** *theta*.

	Price	Delta	Gamma	Vega	Theta
CALL(K = 190)	-5.644750	-54.097849	-3.044645	-25.861577	10.265074
PUT(K = 190)	-4.752733	45.902151	-3.044645	-25.861577	7.263360
CALL(K = 200)	2.405142	28.107388	2.352242	21.978241	-8.964131
PUT(K = 180)	2.118135	-22.508713	1.917938	19.549426	-7.200408
Net_Position	-5.874207	-2.597024	-1.819111	-10.195487	1.363895

Long Iron Butterfly

Iron Condor

<u>Example</u>

$$V_{p_1,\tau_0} = P(165) + C(260) - \$1.33 \tag{19}$$

$$V_{p_1,\tau_0} = P(165) + C(260) - \$1.33$$
 (19)
 $V_{p_2,\tau_0} = -P(175) - C(250) + \2.28 (20)

$$V_{p,\tau_0} = V_{p_1,\tau_0} + V_{p_2,\tau_0} + \$0.95$$
 (21)

• Iron Condor = Long 165-260 strangle + short 175-250 call strangle

The iron condor is equivalent to a short OTM vertical put spread and and short OTM vertical call spread.

These spreads have a very high probability of success, but all it takes is one big move in the market and several months of profits can be wiped away.

Overall, this initial position is **short** *delta*, **short** *gamma*, **short** *vega*, and **long** *theta*.

Iron Condor

Long Butterfly Spreads

• They can be created in two ways with $K_1 < K_2 < K_3$

$$V_{p,\tau_0} = C(K_1) - 2C(K_2) + C(K_3)$$

$$V_{p,\tau_0} = P(K_1) - 2P(K_2) + P(K_3)$$
(22)
(23)

$$V_{p,\tau_0} = P(K_1) - 2P(K_2) + P(K_3)$$
(23)

1. Long call butterfly layer a higher strike bear spread on top of a lower strike bull spread. The strike price for the short call of the bear spread is the same as the strike price as the short call in the bull spread.

- 2. Long put butterfly layer a lwoer strike bull spread on top of a higher strike bear spread. The strike price for the short put of the bull spread is the same as the short put in the bear spread.
- 3. The differential in the strike prices is the same for both vertical spreads.
- 4. Established for a debit.
- 5. Debit is maximum possible loss.
- 6. Maximum value for long call butterfly and long put butterfly is at the middle strike price
- 7. Maximum profit is the maximum value less the debit accrued.
- 8. ATM long butterfly wants minimual volatility.
- 9. OTM call butterfly is bullish.
- 10. OTM put butterfly is bearish.

Calendar Spreads

Long Time Value Spreads:

- 1. Sell option closer to expiration cycle.
- 2. Buy option in more nearby expiration cycle.
- 3. Benefit most when stock is near the strike price when nearby option expires.
- 4. Hurt the most when the stock is far above or below the strike price when nearby option expires.
- 5. Position morphs into *long call* or *synthetic long call (put spread)* when stock is below strike at the expiration of nearby option.
- 6. Postion morphs into a *long put* or *synthetic long put (call spread)* when stock is above strike at the expiration of nearby option.
- 7. Buying OTM call spread is bullish.
- 8. Buying OTM put spread is bearish.

	Price	Delta	Gamma	Vega	Theta
CALL(K = 315)	-8.638790	-46.243023	-1.547196	-42.481574	19.130956
CALL(K = 315)	20.791532	52.992962	0.753456	73.700131	-13.946753
Position	12.152741	6.749939	-0.793739	31.218557	5.184203

• Initially, we establish a debit for \$1,215.27. We expect the spot price to increase but not by much in 3 months.

1215.2741289706541

500.3481610664976

• If at the end of the first expiration cycle, the spot price is close to \$315.00, then our theoretical profits would be about: \$500.34 per calendar spread bought.