Московский физико-технический институт

Лабораторная работа 4.2.1

Кольца Ньютона.

выполнил студент 924 группы ФОПФ Панферов Андрей **Цель работы**: Познакомиться с явлением интерференции в тонких плёнках (полосы равной толщины) на примере колец Ньютона и с методикой интерференционных измерений кривизны стеклянной поверхности.

В работе используются: Измерительный микроскоп с опак-иллюминатором, плосковыпуклая линза; пластинка из чёрного стекла, ртутная лампа типа ДРШ, щель, линзы, призма прямого зрения, объектная шкала.

Теоретическое введение

Рис. 1: Экспериментальная установка

Этот классический опыт используется для определения радиуса кривизны сферических поверхностей линз. В этом опыте наблюдается интерференция волн, отражённых от границ тонкой воздушной прослойки, образованной сферической поверхностью линзы и плоской стеклянной пластиной. При нормальном падении света (рис. 1) интерференционные полосы локализованы на сферической поверхности и являются полосами равной толщины.

Геометрическая разность хода между интерферирующими лучами равна удвоенной толщине воздушного зазора 2d в данном месте. Для точки на сферической поверхности, находящейся на расстоянии r от оси системы, имеем

$$r^2 = R^2 - (R-d)^2 = 2Rd - d^2$$
, где R — радиус кривизны сферической поверхности (рис. 1).

При $R\gg d$ получим $d=r^2/2R$. С учётом изменения фазы на π при отражении волны от оптически более плотной среды (на границе воздух-стекло) получим оптическую разность хода интерферирующих лучей:

$$\Delta = \frac{\lambda}{2} + 2d = \frac{r^2}{2R} + \frac{\lambda}{2} \tag{1}$$

Из условия интерференционного минимума $\Delta=\frac{(2m+1)\lambda}{2},\ m=0,1,2..$ получим радиусы темных колец r_m , а из аналогичного условия максимума $\Delta=m\lambda$ радиусы светлых r_m' :

$$r_m = \sqrt{m\lambda R}, \qquad r'_m = \sqrt{\frac{(2m-1)\lambda R}{2}}$$
 (2)

1 Экспериментальная установка

Схема экспериментальной установки приведена на рис. 2. Опыт выполняется с помощью измерительного микроскопа. На столик микроскопа помещается держатель с полированной пластинкой из чёрного стекла. На пластинке лежит исследуемая линза.

Источником света служит ртутная лампа, находящаяся в защитном кожухе. Для получения монохроматического света применяется призменный монохроматор, состоящий из конденсора, коллиматора (щель S и объектив) и призмы прямого зрения. Эти устройства с помощью рейтеров располагаются на оптической скамье. Свет от монохроматора попадает на расположенный между объек-

Рис. 2: Экспериментальная установка

тивом и окуляром микроскопа опак-иллюминатор (ОИ) специальное устройство, служащее для освещения объекта при работе в отражённом свете. Внутри опак-иллюминатора находится полупрозрачная стеклянная пластинка P, наклоненная под углом 45° к оптической оси микроскопа. Свет частично отражается от этой пластинки, проходит через объектив микроскопа и попадает на исследуемый объект. Пластинка может поворачиваться вокруг горизонтальной оси X, опак-иллюминатор вокруг вертикальной оси.

Столик микроскопа может перемещаться в двух взаимно перпендикулярных направлениях помощью винтов препаратоводителя. Отсчетный крест окулярной шкалы перемещается перпендикулярно оптической оси с помощью микрометрического винта .

Оптическая схема монохроматора позволяет получить в плоскости входного окна опакиллюминатора достаточно хорошо разделённые линии спектра ртутной лампы. Изображение щели S фокусируется на поверхность линзы объективом микроскопа, т.е. точка источника и точка наблюдения спектра совпадают. Интерференционная картина не зависит от показателя преломления линзы и определяется величиной зазора между линзой и пластинкой (кольца равной толщины).

Сначала микроскоп настраивается на кольца Ньютона в белом свете (свете ртутной лампы), затем при помощи монохроматора выделить из спектра яркую зелёную линию и провести измерения диаметров колец в монохроматическом свете.

Ход работы

После настройки микроскопа проведем измерения диаметров колец Ньютона. Измерения будем проводить в безразмерных единицах окулярной шкалы, переведённых затем в реальную величину с помощью калиброванной объектной шкалы.

Оценим систематическую погрешность измерения величин на окуляре как $\sigma_l=0,02$ (из-за цены деления).

С помощью призмы выделим зеленый свет из спектра лампы ($\lambda_{qreen} = 546$ нм).

Будем последовательно измерять координаты экстремумов l. Результаты занесем в Таблицу ??.

m	l_{dark}	l_{light}	r_{dark}^2	r_{light}^2
center	0.85	0.85	0	0
1	1.34	1.07	0.2401	0.0484
2	1.81	1.62	0.9216	0.5929
3	2.14	1.98	1.6641	1.2769
4	2.52	2.33	2.7889	2.1904
5	2.80	2.66	3.8025	3.2761
6	3.03	2.94	4.7524	4.3681
7	3.28	3.15	5.9049	5.29
8	3.49	3.39	6.9696	6.4516
9	3.68	3.59	8.0089	7.5076
10	3.86	3.78	9.0601	8.5849
11	4.02	3.96	10.0489	9.6721

Таблица 1: Радиусы колец

Линеаризация зависимости r(m)10 r^2

Построим график зависомости r^2 от 2m + (light) (light = 1, если максимум, 0 иначе). Найдем коэффициент наклона:

$$k = \frac{\lambda R}{2\delta x^2} = 0.78 \pm 0.02$$

Отнормировав шкалу с калибровочной объектной шкалы, найдем:

$$\delta x = \frac{0.79 \text{mm}}{8} = 0.099 \pm 0.001 \text{ mm}$$

И, наконец, найдем R:

$$R = \frac{2k\delta x^2}{\lambda} = 2.80 \pm 0.08 \text{ cm}$$

Биения

Наблюдаем биения с периодом k=18 полос. Отсюда находим $\Delta\lambda=\frac{\lambda_{green}}{k}\approx 30$ нм

2 Вывод

Таким образом, мы получили, что их экспериментального периода биений разница длин волн желтого и зеленого света ртутной лампы примерно равна $\Delta \lambda = 30$ нм, в то время как табличный результат — 33 нм. Отклонение может быть объяснено неточностью k в связи со сложностью подсчета в зоне малой видности Δm .

Также мы построили графики зависимости радиусов колец Ньютона от их номеров. Полученный результат позволил нам рассчитать радиус линзы — $R = (2, 80 \pm 0, 08)$ см.