Status of Pacific ocean perch (Sebastes alutus) along the US west coast in 2017

Chantel R. Wetzel¹ Kelli Johnson¹ Lee Cronin-Fine²

¹Northwest Fisheries Science Center, U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, 2725 Montlake Boulevard East, Seattle, Washington 98112

8

9

10

11

12

13

14

15

16

³University of Washington, School of Aquatic and Fishery Sciences

DRAFT SAFE

Disclaimer: This information is distributed solely for the purpose of pre-dissemination peer review under applicable information quality guidelines. It has not been formally disseminated by NOAA Fisheries. It does not represent and should not be construed to represent any agency determination or policy.

Status of Pacific ocean perch (Sebastes alutus) along the US west coast in 2017

• Contents

20	Ex	kecut	ive Summary	1
21		Stoc	k	1
22		Land	dings	1
23		Data	a and Assessment	3
24		Stoc	k Biomass	3
25		Recr	ruitment	6
26		Expl	loitation status	8
27		Ecos	system Considerations	11
28		Refe	rence Points	11
29		Man	agement Performance	12
30		Unre	esolved Problems And Major Uncertainties	12
31		Deci	sion Table(s) (groundfish only)	13
32		Rese	earch And Data Needs	18
33		Rebu	uilding Projections	18
34	1	Intr	oduction	19
35		1.1	Basic Information	19
36		1.2	Map	20
37		1.3	Life History and Ecosystem Considerations	21
38		1.4	Fishery Information	21
39		1.5	Summary of Management History	21
40		1.6	Management Performance	21
41		1.7	Fisheries off Canada, Alaska, and/or Mexico	21

42	2	Asse	essmer	ıt	22
43		2.1	Data		22
44			2.1.1	Commercial Fishery Landings	22
45			2.1.2	Abundance Indices	24
46			2.1.3	Fishery-Dependent Data:	24
47			2.1.4	Fishery-Independent Data:	24
48			2.1.5	Biological Parameters and Data	26
49			2.1.6	Environmental Or Ecosystem Data Included In The Assessment $$	28
50		2.2	Histor	y Of Modeling Approaches Used For This Stock	28
51			2.2.1	Previous Assessments	28
52			2.2.2	Previous Assessment Recommendations	28
53		2.3	Model	Description	29
54			2.3.1	Transition To The Current Stock Assessment	29
55			2.3.2	Definition of Fleets and Areas	29
56			2.3.3	Summary of Data for Fleets and Areas	29
57			2.3.4	Modeling Software	29
58			2.3.5	Data Weighting	29
59			2.3.6	Priors	30
60			2.3.7	General Model Specifications	30
61			2.3.8	Estimated And Fixed Parameters	30
62		2.4	Model	Selection and Evaluation	30
63			2.4.1	Key Assumptions and Structural Choices	30
64			2.4.2	Alternate Models Considered	30
65			2.4.3	Convergence	30
66		2.5	Respon	nse To The Current STAR Panel Requests	31
67		2.6	Model	1	31
68			2.6.1	Model 1 Base Case Results	31
69			2.6.2	Model 1 Uncertainty and Sensitivity Analyses	31
70			2.6.3	Model 1 Retrospective Analysis	32
71			2.6.4	Model 1 Likelihood Profiles	32
72			2.6.5	Model 1 Harvest Control Rules (CPS only)	32
73			266	Model 1 Reference Points (groundfish only)	32

74	3	Harvest Projections and Decision Tables	32
75	4	Regional Management Considerations	32
76	5	Research Needs	33
77	6	Acknowledgments	33
78	7	Tables	3 4
79	8	Figures	56
80	$\mathbf{R}_{\mathbf{c}}$	eferences	

81 Executive Summary

executive-summary

82 Stock stock

This assessment reports the status of the Pacific ocean perch (Sebastes alutus) speciess off rockfish off the U.S. West Coast from Northern California to the Canadian Border using data through 2017. Pacific ocean perch are most abundant in the Gulf of Alaska and have observed off of Japan, in the Bering Sea, and south to Baja California, although they are sparse south of Oregon and rare in southern California. Composition data indicate that good recruitment years coincide in Oregon and Washington. To date, no significant genetic differences have been found in the range covered by this assessment.

50 Landings

landings

The first year that harvest of Pacific ocean perch exceeded 1 mt off the U.S. West Coast first occured in 1929. Catches ramped up in the 1940s with large removals in Washington waters. During the 1950s the removals primarly occured in Oregon waters with catches from Washington declining following the 1940s. The largest removals in 1966-1968 were largely a result of harvest by foreing vessels. The fishery proceed with more moderate removals ranging between 1,200 to 2,600 metric tons per year between 1969 to 1980. Removals generally decined from 1981 to 1994 to between 1,000 and 1,700 metric tons per year. Pacific ocean perch was declared overfished in 1999 resulting in large reduction in harvest in recent years since the declaration.

Table a: Landings (mt) for the past 10 years for Pacific ocean perch by fleet.

						tab:Exec_catch
Year	California	Oregon	Washington	At-sea	Research	Total
				Hake		Landings
2007	0.15	83.65	45.12	4.05	0.58	133.55
2008	0.39	58.64	16.61	15.93	0.80	92.37
2009	0.92	58.75	33.22	1.56	2.70	97.15
2010	0.14	58.00	22.29	16.87	1.62	98.92
2011	0.12	30.26	19.66	9.17	1.19	60.39
2012	0.18	30.41	21.79	4.52	1.59	58.49
2013	0.08	34.86	14.83	5.41	1.71	56.89
2014	0.18	33.92	15.82	3.92	0.56	54.40
2015	0.12	38.12	11.41	8.71	1.51	59.87
2016	0.19	34.15	13.12	10.30	0.00	57.75

Figure a: Landings of Pacific ocean perch for California, Oregon, Washington, the Foriegn fishery (1966-1976), At-Sea Hake fishery, and fishery independent surveys.

Data and Assessment

data-and-assessment

This a new full assessment for Pacific ocean perch which was last assessed in 2011. In this assessment, all aspects of the model including catches, data, and modelling assumptions were re-evaluated as much as possible. The assessment was conducted using the length- and age-structured modeling software Stock Synthesis (version 3.30). The coastwide population was modeled assuming separate growth and mortality parameters for each sex (a two-sex model) from 1892 to 2017, and forecasted beyond 2017.

107 Stock Biomass

stock-biomass

Include: trends and current levels relative to virgin or historic levels, description of uncertainty-include table for last 10 years and graph with long term estimates.

Spawning output Figure: Figure b Spawning output Table(s): Table b Relative depletion Figure: Figure c

Example text (remove Models 2 and 3 if not needed - if using, remove the # in-line comments!!!)
The estimated relative depletion level (spawning output relative to unfished spawning output)
of the the base-case model in 2017 is 33.9% (~95% asymptotic interval: $\pm 23.3\%$ -44.6%)
(Figure c).

Table b: Recent trend in estimated spawning output (million eggs) and relative spawning output.

			ta	.b:SpawningDeplete_mod1
Year	Spawning Output	~ 95% confidence	Estimated	~ 95% confidence
	(million eggs)	interval	depletion	interval
2008	8344.00	4420 - 12268	0.15	0.103 - 0.197
2009	8589.00	4525 - 12653	0.15	0.105 - 0.203
2010	8719.00	4563 - 12875	0.16	0.107 - 0.206
2011	8817.00	4585 - 13048	0.16	0.107 - 0.209
2012	9021.00	4691 - 13351	0.16	0.110 - 0.214
2013	10051.00	5241 - 14861	0.18	0.123 - 0.238
2014	11807.00	6177 - 17437	0.21	0.145 - 0.279
2015	14162.00	7428 - 20896	0.25	0.174 - 0.334
2016	16712.00	8769 - 24656	0.30	0.206 - 0.394
2017	18909.00	9916 - 27901	0.34	0.233 - 0.446

Spawning output with ~95% asymptotic intervals

Figure b: Time series of spawning output trajectory (circles and line; median; light broken lines: 95% credibility intervals) for the base case assessment model. fig:Spawnbio_all

Spawning depletion with ~95% asymptotic intervals

Figure c: Estimated relative depletion with approximate 95% asymptotic confidnce intervals (dashed lines) for the base case assessment model. \lceil fig:RelDeplete_all

Recruitment recruitment

Include: trends and current levels relative to virgin or historic levels-include table for last 10 years and graph with long term estimates.

Recruitment Figure: (Figure d)
Recruitment Tables: (Tables c)

Table c: Recent estimated trend in recruitment with approximate 95confidence intervals determined from the base model

				tab:Recruit_mod1
Year	Estimated	$\sim 95\%$ confidence	Estimated	~ 95% confidence
	Recruitment	interval	Recruitment	interval
			Devs.	
2008	48465.00	30145 - 77918	3.16	3.017 - 3.313
2009	9731.00	5203 - 18198	1.54	1.081 - 1.993
2010	3848.00	1697 - 8724	0.60	-0.133 - 1.327
2011	14688.00	8492 - 25404	1.93	1.609 - 2.246
2012	2574.00	965 - 6863	0.10	-0.852 - 1.046
2013	29962.00	16892 - 53146	2.40	2.034 - 2.757
2014	2279.00	748 - 6947	-0.37	-1.509 - 0.762
2015	3756.00	1052 - 13404	-0.00	-1.369 - 1.359
2016	4228.00	1181 - 15135	0.00	-1.372 - 1.372
2017	4583.00	1729 - 12146	0.00	-0.970 - 0.970

Figure d: Time series of estimated Pacific ocean perch recruitments for the base-case model with 95% confidence or credibility intervals. f ig:Recruits_all

2 Exploitation status

exploitation-status

Include: exploitation rates (i.e., total catch divided by exploitable biomass, or the annual SPR harvest rate) include a table with the last 10 years of data and a graph showing the trend in fishing mortality relative to the target (y-axis) plotted against the trend in biomass relative to the target (x-axis).

Exploitation Tables: Table d, Table ??, Table ?? Exploitation Figure: Figure e).

A summary of Pacific ocean perch exploitation histories for base model is provided as Figure f.

Table d: Recent trend in spawning potential ratio (1-SPR) and summary exploitation rate for Pacific ocean perch.

				tab:SPR_Exploit_mod1
Year	Fishing	~ 95% confidence	Exploitation	~ 95% confidence
	intensity	interval	rate	interval
2007	0.377	0.229 - 0.524	0.008	0.005 - 0.012
2008	0.396	0.236 - 0.555	0.009	0.005 - 0.013
2009	0.413	0.245 - 0.580	0.010	0.005 - 0.015
2010	0.396	0.234 - 0.557	0.009	0.005 - 0.014
2011	0.165	0.092 - 0.238	0.003	0.001 - 0.004
2012	0.153	0.085 - 0.221	0.002	0.001 - 0.003
2013	0.138	0.076 - 0.200	0.002	0.001 - 0.003
2014	0.096	0.052 - 0.140	0.001	0.001 - 0.002
2015	0.107	0.058 - 0.155	0.002	0.001 - 0.002
2016	0.088	0.047 - 0.128	0.001	0.001 - 0.002

Figure e: Estimated spawning potential ratio (SPR) for the base-case model. One minus SPR is plotted so that higher exploitation rates occur on the upper portion of the y-axis. The management target is plotted as a red horizontal line and values above this reflect harvests in excess of the overfishing proxy based on the SPR $_{50\%}$ harvest rate. The last year in the time series is 2016.

Figure f: Phase plot of estimated relative (1-SPR) vs. relative spawning biomass for the base case model. The relative (1-SPR) is (1-SPR) divided by 50% (the SPR target). Relative depletion is the annual spawning biomass divided by the unfished spawning biomass.

130 Ecosystem Considerations

ecosystem-considerations

In this assessment, ecosystem considerations were.....

Reference Points

reference-points

Include: management targets and definition of overfishing, including the harvest rate that brings the stock to equilibrium at $B_{40\%}$ (the B_{MSY} proxy) and the equilibrium stock size that results from fishing at the default harvest rate (the F_{MSY} proxy). Include a summary table that compares estimated reference points for SSB, SPR, Exploitation Rate and Yield based on SSBproxy for MSY, SPRproxy for MSY, and estimated MSY values

Write intro paragraph

This stock assessment estimates that Pacific ocean perch in the Base model are below the biomass target, but above the minimum stock size threshold. Add sentence about spawning output trend. The estimated relative depletion level for Model 1 in 2017 is 33.9% (~95% asymptotic interval: \pm 23.3%-44.6%, corresponding to an unfished spawning output of 18909 million eggs (~95% asymptotic interval: 9915.73644901456-27901.4635509854 million eggs) of spawning output in the base model (Table e). Unfished age 3+ biomass was estimated to be 100784 mt in the base case model. The target spawning output based on the biomass target ($SB_{40\%}$) is 22283.9 million eggs, which gives a catch of 908.2 mt. Equilibrium yield at the proxy F_{MSY} harvest rate corresponding to $SPR_{50\%}$ is 745.4 mt.

Table e: Summary of reference points and management quantities for the base case.

		tab:Ref_pts_mod1
Quantity	Estimate	95% Confidence
		Interval
Unfished spawning output (million eggs)	55709.8	44350.8 - 67068.8
Unfished age 3+ biomass (mt)	100784	80592.8 - 120975.2
Unfished recruitment (R0, thousands)	7927.4	6468.7 - 9715
Spawning output (2017 million eggs)	18908.6	9915.7 - 27901.5
Depletion (2017)	0.339	0.233 - 0.446
Reference points based on $\mathrm{SB}_{40\%}$		
Proxy spawning output $(B_{40\%})$	22283.9	17740.3 - 26827.5
SPR resulting in $B_{40\%}$ ($SPR_{B40\%}$)	0.625	0.625 - 0.625
Exploitation rate resulting in $B_{40\%}$	0.021	0.021 - 0.021
Yield with $SPR_{B40\%}$ at $B_{40\%}$ (mt)	908.2	725.9 - 1090.5
Reference points based on SPR proxy for MSY		
Spawning output	11142	8870.2 - 13413.8
SPR_{proxy}	0.5	
Exploitation rate corresponding to SPR_{proxy}	0.033	0.033 - 0.033
Yield with SPR_{proxy} at SB_{SPR} (mt)	745.4	595.7 - 895.1
Reference points based on estimated MSY values		
Spawning output at MSY (SB_{MSY})	21608.4	17209.1 - 26007.7
SPR_{MSY}	0.617	0.617 - 0.618
Exploitation rate at MSY	0.022	0.022 - 0.022
MSY (mt)	908.8	726.4 - 1091.2

148 Management Performance

management-performance

Unresolved Problems And Major Uncertainties

unresolved-problems-and-major-uncertainties

TBD after STAR panel

Include: catches in comparison to OFL, ABC and OY/ACL values for the most recent 10 years (when available), overfishing levels, actual catch and discard. Include OFL(encountered), OFL(retained) and OFL(dead) if different due to discard and discard mortality.

¹⁵² Management performance table: Table f

Table f: Recent trend in total catch and commercial landings (mt) relative to the management guidelines. Estimated total catch reflect the commercial landings plus the model estimated discarded biomass.

					t	<u>ab:mnmgt_perfor</u> m
	Year	OFL (mt; ABC	ABC (mt)	ACL (mt; OY	Total landings	Estimated total
		prior to 2011)		prior to 2011)	(mt)	catch (mt)
	2007	=	-	150	134	138
	2008	-	-	150	92	151
	2009	-	-	189	97	168
	2010	-	-	200	99	161
	2011	-	-	180	60	60
	2012	-	_	183	58	59
	2013	-	-	150	57	57
	2014	-	_	153	45	46
	2015	-	_	158	60	60
	2016	-	-	164	57	58
_						

Decision Table(s) (groundfish only)

decision-tables-groundfish-only

Include: projected yields (OFL, ABC and ACL), spawning biomass, and stock depletion levels for each year. Not required in draft assessments undergoing review.

158 OFL projection table: Table g

Decision table(s) Table h, Table ??, Table ??

160 Yield curve: Figure \ref{fig:Yield_all}

Figure g: Equilibrium yield curve for the base case model. Values are based on the 2016 fishery selectivity and with steepness fixed at... fig:Yield_all

Table g: Projections of potential OFL (mt) and ACL (mt) and the estimated spawning output and relative biomass.

				tab:OFL_projection
Year	OFL	ACL	Spawning Output (million eggs)	Relative Biomass
2017	1390	1329	18909	0.339
2018	1530	1462	20169	0.362
2019	1651	1579	21186	0.380
2020	1753	1676	22238	0.399
2021	1823	1743	23473	0.421
2022	1856	1774	24463	0.439
2023	1854	1773	24949	0.448
2024	1830	1749	25060	0.450
2025	1794	1715	24883	0.447
2026	1754	1677	24888	0.447
2027	1715	1640	24916	0.447
2028	1679	1605	24850	0.446

Table h: Summary of 10-year projections beginning in 2019 for alternate states of nature based on an axis of uncertainty for the base model. Columns range over low, mid, and high states of nature, and rows range over different assumptions of catch levels. An entry of "—" indicates that the stock is driven to very low abundance under the particular scenario.

 ${\tt tab:Decision_table_mod1}$ States of nature

			Low N	M = 0.05		M 0.07	High I	M 0.09
	Year	Catch	Spawning	Depletion	Spawning	Depletion	Spawning	Depletion
			Output		Output		Output	
	2019	-	-	-	-	-	-	-
	2020	-	-	-	-	-	-	-
	2021	-	-	-	-	-	-	-
40-10 Rule,	2022	-	-	-	-	-	-	-
Low M	2023	-	-	-	-	-	-	-
	2024	-	-	-	-	-	-	-
	2025	-	-	-	-	-	-	-
	2026	-	-	-	-	-	-	-
	2027	-	-	-	-	-	-	-
	2028	-	-	-	-	-	-	-
	2019	-	-	-	-	-	-	-
	2020	-	-	-	-	-	-	-
	2021	-	-	-	-	-	-	-
40-10 Rule	2022	-	-	-	-	-	-	-
	2023	-	-	-	-	-	-	-
	2024	-	-	-	-	-	-	-
	2025	-	-	-	-	-	-	-
	2026	-	-	-	-	-	-	-
	2027	-	-	-	-	-	-	-
	2028	-	-	-	-	-	-	-
	2019	-	-	-	-	-	-	-
	2020	-	-	-	-	-	-	-
	2021	-	-	-	-	-	-	-
40-10 Rule,	2022	-	-	-	-	-	-	-
High M	2023	-	-	-	-	-	-	-
	2024	-	-	-	-	-	-	-
	2025	-	-	-	-	-	-	-
	2026	-	-	-	-	-	-	-
	2027	-	-	-	-	-	-	-
	2028	-	-	-	-	-	-	-
	2019	-	-	-	-	-	-	-
	2020	-	-	-	-	-	-	-
	2021	-	-	-	-	-	-	-
Average	2022	-	-	-	-	-	_	-
Catch	2023	-	-	-	-	-	-	-
	2024	-	-	-	-	-	_	-
	2025	-	-	-	-	-	_	-
	2026	-	-	-	-	-	-	-
	2027	-	-	-	-	-	_	-
	2028	_	_	_	_	_	_	-

Table i: Base model results summary.

1729 - 12146	1181 - 15135	1052 - 13404	748 - 6947	16892 - 53146	965 - 6863	8492 - 25404	1697 - 8724	5203 - 18198	30145 - 77918	95% CI
4583	4228	3756	2279	29962	2574	14688	3848	9731	48465	Recruits
0.233 - 0.446	0.206 - 0.394	0.174 - 0.334	0.145 - 0.279	0.123 - 0.238	0.110 - 0.214	0.107 - 0.209	0.107 - 0.206	0.105 - 0.203	95% CI 0.103 - 0.197	95% CI
0.339	0.300	0.254	0.212	0.180	0.162	0.158	0.157	0.154	0.150	Depletion
9916 - 27901	8769 - 24656	7428 - 20896	6177 - 17437	5241 - 14861	4691 - 13351	4585 - 13048	4563 - 12875	4525 - 12653	4420 - 12268	62% CI
18909	16712	14162	11807	10051	9021	8817	8719	8289	8344	Spawning Output
47331.8	43560.0	37585.2	34321.0	29969.8	26699.3	23065.1	17491.6	17248.1	16925.8	Age 3+ biomass (mt)
	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.01	Exploitation rate
	0.09	0.11	0.10	0.14	0.15	0.16	0.40	0.41	0.40	$(1-SPR)(1-SPR_{50\%})$
	58	09	46	22	59	09	161	168	151	ACL (mt)
	22	09	45	57	28	09	66	26	95	OFL (mt)
281	164	158	153	150	183	180	200	189	150	Potal Est. Catch (mt)
1	1	1	1	1	1	1	1	1	1	Landings (mt)
2018	2017	2016	2015	2014	2013	2012	2011	2010	2009	Quantity

Research And Data Needs

research-and-data-needs

- Include: identify information gaps that seriously impede the stock assessment.
- 163 We recommend the following research be conducted before the next assessment:
- 1. List item No. 1 in the list
- 2. List item No. 2 in the list, etc.

66 Rebuilding Projections

rebuilding-projections

Include: reference to the principal results from rebuilding analysis if the stock is overfished.
This section should be included in the Final/SAFE version assessment document but is not required for draft assessments undergoing review. See Rebuilding Analysis terms of reference for detailed information on rebuilding analysis requirements.

1 Introduction

introduction

1.1 Basic Information

basic-information

Pacific ocean perch (Sebastes alutus) are most abundant in the Gulf of Alaska, and have been 173 observed off of Japan, in the Bering Sea, and south to Baja California, although they are 174 sparse south of Oregon and rare in southern California. While genetic studies have found 175 three populations of Pacific ocean perch off of British Columbia (Seeb and Gunderson 1988, 176 Withler et al. 2001) with, notably, a separate stock off of Vancouver Island, no significant 177 genetic differences have been found in the range covered by this assessment. Pacific ocean 178 perch show dimorphic growth, with females reaching a slightly large size than males. Males 179 and females are equally abundant on rearing grounds at age 1.5. 180

The Pacific ocean perch population has been modeled as a single stock off of the U.S. West
Coast (essentially northern California to the Canadian border, since Pacific ocean perch are
seen extremely rarely in central and southern California). Good recruitments show up in
size-composition data throughout all portions of this area, which supports the single stock
hypothesis. This assessment includes landings and catch data for Pacific ocean perch from
the states of Washington, Oregon and California, along with records from foreign fisheries,
the at-sea hake fleet, and surveys.

Prior to 1966, the Pacific ocean perch resource off of the northern portion of the U.S. West 188 Coast was harvested almost entirely by Canadian and United States vessels. Harvest was 189 negligible prior to 1940, reached 1,300 mt in 1950, 3,200 mt in 1961 and exceeded 7,600 mt in 1965. Catches increased dramatically after 1965, with the introduction of large distant-water 191 fishing fleets from the Soviet Union and Japan. Both nations employed large factory stern trawlers as their primary method for harvesting Pacific ocean perch. Peak removals by all 193 foreign nations combined are estimated at over 15,000 mt in 1966 and remained over 12,000 mt 194 in 1967. These numbers are based upon a re-analysis of the foreign catch data (Rogers 2003), 195 which focused on deriving a more realistic species composition for catches previously identified only as Pacific ocean perch. Catches declined rapidly following these peak years, and Pacific 197 ocean perch stocks were considered to be severely depleted throughout the Oregon-Vancouver Island region by 1969 (Gunderson 1977, Gunderson et al. 1977). Landed harvest averaged 199 1,350 mt over the period 1977-94. Landings have continued to decline since 1994, primarily 200 due to more restrictive management. 201

Prior to 1977, Pacific ocean perch in the northeast Pacific were managed by the Canadian Government in its waters and by the individual states in waters off of the United States. With implementation of the Magnuson Fishery Conservation and Management Act (MFCMA) in 1977, U.S. territorial waters were extended to 200 miles from shore, and primary responsibility for management of the groundfish stocks off Washington, Oregon and California shifted from the states to the Pacific Fishery Management Council (PFMC) and the National Marine Fisheries Service (NMFS). At that time, however, a Fishery Management Plan (FMP) for the

west coast groundfish stocks had not yet been approved. In the interim, the state agencies worked with the PFMC to address conservation issues. In 1981, the PFMC adopted a management strategy to rebuild the depleted Pacific ocean perch stocks to levels that would produce Maximum Sustainable Yield (MSY) within 20 years. On the basis of cohort analysis (Gunderson 1978), the PFMC set Acceptable Biological Catch (ABC) levels at 600 mt for the US portion of the Vancouver INPFC area and 950 mt for the Columbia INPFC area. To implement this strategy, the states of Oregon and Washington each established landing limits for Pacific ocean perch. Trawl trip limits of various forms remained in effect through 2010 (Table 1).

Age estimates for Pacific ocean perch prior to the 1980s were made via surface ageing of otoliths, which misses the very tight annuli at the edge of the otolith once the fish reaches near maximum size. Ages are biased by around age 10-12, and maximum age was estimated to be in the 20s, which lead to an overestimate of the natural mortality rate and the productivity of the stock. Using break and burn methods, Pacific ocean perch have been aged to over 100 years, and we now know that the underlying assumptions of the early models were overly optimistic about productivity. Research surveys have been used to provide fisheryindependent information about the abundance, distribution, and biological characteristics of Pacific ocean perch. A coast-wide survey of the rockfish resource was conducted in 1977 (Gunderson and Sample 1980) and was repeated every three years through 2004 (referred to as the 'Triennial Survey'). The National Marine Fisheries Service (NMFS) coordinated a cooperative research survey of the Pacific ocean perch stocks off Washington and Oregon with the Washington Department of Fisheries (WDFW) and the Oregon Department of Fish and Wildlife (ODFW) in March-May 1979 (Wilkins and Golden 1983). This survey was repeated in 1985 (referred to as the Pacific ocean perch Survey). Two slope surveys have been conducted on the West Coast in recent years, one using the research vessel Miller Freeman, which ended in 2001 (referred to as the 'AFSC Slope Survey'), and another ongoing cooperative survey using commercial fishing vessels which began in 1998 as a DTS (Dover sole, thornyhead and sablefish) survey, was expanded to other groundfish in 1999 (referred to as the 'NWFSC Slope Survey'). In 2003, this survey was expanded spatially to include the shelf. This last survey, conducted by the NWFSC, continues to cover depths from 30-700 fathoms (55-1280 meters) on an annual basis (referred to as the 'NWFSC shelf-slope Survey').

240 **1.2** Map

210

211

212

213

214

215

216

217

218

219

220

221

222

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

230

map

A map showing the scope of the assessment and depicting boundaries for fisheries or data collection strata is provided in Figure 1.

1.3 Life History and Ecosystem Considerations

life-history-and-ecosystem-considerations

Include: Ecosystem considerations (e.g., ecosystem role and trophic relationships of the species, habitat requirements/preferences, relevant data on ecosystem processes that may affect stock or parameters used in the stock assessment, and/or cross-FMP interactions with other fisheries). This section should note if environmental correlations or food web interactions were incorporated into the assessment model. The length and depth of this section would depend on availability of data and reports from the IEA, expertise of the STAT, and whether ecosystem factors are informational to contribute quantitative information to the assessment.

$_{51}$ 1.4 Fishery Information

fishery-information

Include: Important features of current fishery and relevant history of fishery.

53 1.5 Summary of Management History

summary-of-management-history

Include: Summary of management history (e.g., changes in mesh sizes, trip limits, or other management actions that may have significantly altered selection, catch rates, or discards).

256 1.6 Management Performance

management-performance-1

Include: Management performance, including a table or tables comparing Overfishing Limit (OFL), Annual Catch Limit (ACL), Harvest Guideline (HG) [CPS only], landings, and catch (i.e., landings plus discard) for each area and year.

260 Management performance table: (Table f)

A summary of these values as well as other base case summary results can be found in Table i.

1.7 Fisheries off Canada, Alaska, and/or Mexico

fisheries-off-canada-alaska-andor-mexico

²⁶⁴ Include if necessary.

$_{265}$ 2 Assessment

assessment

266 **2.1** Data

data

Data used in the Pacific ocean perch assessment are summarized in Figure 2. A description of each data source is provided below.

269 2.1.1 Commercial Fishery Landings

commercial-fishery-landings

270 Washington

Historical commercial fishery landigns of Pacific ocean perch from Washington for the years 271 1918-2016 were obtained from Theresa Tsou (WDFW) and Phillip Weyland (WDFW). This 272 assessment is the first Pacific ocean perch assessment to include a state provide historical 273 catch reconstruction and hence, the historical catches for Washington vary markedly from 274 those used in the 2011 assessment. Due to Recent landings (1981-2016) were obtained directly 275 from Washington state rather than from PacFIN (Pacific Fisheries Information Network 276 (PacFIN) due to identified missing catches not available within PacFIN for Pacific ocean 277 perch. 278

Oregon Oregon

Historical commercial fishery landings of Pacific ocean perch from Oregon for the years 1892-1986 were obtained from Alison Dauble (ODFW). A description of the methods can be found in Karnowski et al. (2014). Recent landings (1987-2016) were obtained from PacFIN retrieval dated March 3, 2015, Pacific States Marine Fisheries Commission, Portland, Oregon; www.psmfc.org). The catch data in from the POP and POP2 categories contained within PacFIN for Pacific ocean perch were used for this assessment. Additional cathes from 1987-1999 for Pacific ocean perch under the UROCK category not yet available in PacFIN were received directly from the state and combined with the catch data available for that period within PacFIN.

89 California

Historical commercial fishery landings of Pacific ocean perch were obtained from the online database of the California Cooperative Groundfish Survey, also known as CALCOM
(128.114.3.187) for the years 1916-1980. A description of the methods can be found in (Ralston
et al. 2010). Recent landings (1981-2016) were obtained from PacFIN (Pacific Fisheries
Information Network (PacFIN) retrieval dated March 3, 2015, Pacific States Marine Fisheries
Commission, Portland, Oregon; www.psmfc.org).

66 At-sea fishery

Catches of Pacific ocean perch are monitored aboard the vessel by observers in the At-Sea hake Observer program (ASHOP) and were available for the years of 1975-2016. Observers 298 use a spatial sample design, based on weight, to randomly choose a portion of the haul to 299 sample for species composition. For the last decade, this is typically 30-50\% of the total 300 weight. The total weight of the sample is determined by all catch passing over a flow scale. 301 All species other than hake are removed and weighed, by species, on a motion compensated 302 flatbed scale. Observers record the weights of all non-hake species. Non-hake species total 303 weights are expanded in the database by using the proportion of the haul sampled to the 304 total weight of the haul. The catches of non-hake species in unsampled hauls is determined 305 using bycatch rates determined from sampled hauls. Since 2001, more than 97% of the hauls 306 have been observed and sampled. 307

308 Foreign

From the 1960s through the early 1970s, foreign trawling enterprises harvested considerable amounts of rockfish off Washington and Oregon, and along with the domestic trawling fleet, landed large quantities of Pacific ocean perch. Foreign catches of individual species were estimated by Rogers (2003) and attributed to INPFC areas for the years of 1966-1976 for Pacific ocean perch. The foreign catches were combined across areas for a coastwide removal total.

315 Discards

Data on discards of Pacific ocean perch are available from two different data sources. The 316 earliest source is called the Pikitch data and comes from a study organized by Ellen Pikitch that collected trawl discards from 1985-1987 (Pikitch et al. 1988). The northern and southern 318 boundaries of the study were 48°42′ N latitude and 42°60′ N. latitude respectively, which is 319 primarily within the Columbia INPFC area (Pikitch et al. 1988, Rogers and Pikitch 1992). 320 Participation in the study was voluntary and included vessels using bottom, midwater, and 321 shrimp trawl gears. Observers of normal fishing operations on commercial vessels collected 322 the data, estimated the total weight of the catch by tow and recorded the weight of species 323 retained and discarded in the sample. Results of the Pikitch data were obtained from John 324 Wallace (NWFSC, personal communication) in the form of ratios of discard weight to retained 325 weight of Pacific ocean perch and sex-specific length frequencies. Discard estimates are shown 326 in Table 2. Length compositions for discards show a wide range of sizes being discarded, with 327 a peak are XX cm (Cite figure). 328

The second source is from the West Coast Groundfish Observer Program (WCGOP). This program is part of the NWFSC and has been recording discard observations since 2003. Table ??{tab:Discard} shows the discard ratios of Pacific ocean perch from the WCGOP. Since 2011, when the trawl rationalization proram was implemented, observer coverage rates increased to nearly 100% for all the limited entry trawl vessels in the program and discard rates declined compared to pre-2011 rates. Discard rates were obtained for both the catch-share and the non-catch share sector for Pacific ocean perch. A single discard rate was calculated by weighting discard rates based on the commercial landings by each sector. Discard length

composition for the trawl fleet varied by year, with larger fish being discarded prior to 2011 (Figure 3).

$_{39}$ 2.1.2 Abundance Indices

abundance-indices

40 2.1.3 Fishery-Dependent Data:

fishery-dependent-data

41 Historical Commercial Catch-per-unit effort

Data on catch-per-unit-effort (CPUE) in mt/hr from the domestic fishery were combined for the INPFC Vancouver and Columbia areas (14 from Gunderson (1977)). Although these data reflect catch rates for the US fleet, the highest catch rates coincided with the beginning of removals by the foreign fleet. This suggest that, barring unaccounted changes in fishing efficiency during this period, the level of abundance was high at that time. A CV of 0.40 was used in this assessment to be consistent with the CV observed in the survey data.

348 2.1.4 Fishery-Independent Data:

fishery-independent-data

Northwest Fisheries Science Center (NWFSC) shelf-slope survey

The NWFSC shelf-slope survey is based on a random-grid design; covering the coastal waters from a depth of 55 m to 1,280 m (Bradburn et al. 2011). This design uses four chartered industry vessels in most years, assigned to a roughly equal number of randomly selected grid cells. The survey, which has been conducted from late-May to early-October each year, is divided into two 2-vessel passes of the coast, which are executed from north to south. This design therefore incorporates both vessel-to-vessel differences in catchability as well as variance associated with selecting a relatively small number (~700) of cells from a very large population of possible cells (greater than 11,000) distributed from the Mexican to the Canadian border.

The data from the NWFSC shelf-slope survey was analyzed using a spatial delta-generalized linear mixed model (delta-GLMM) (Thorson and Barnett 2017). Predicted fish biomass density is derived as the product of a "delta" portion for the probability of a non-zero catch and a second portion for the magnitude of the non-zero catches. Further, the geostatistical GLMM framework can accommodate spatial autocorrelation. Additional information about the approach and the software package it is implemented in are available from www.fishstats.org. describe VAST

The estimated index of abundance is shown in Table 15.

Northwest Fisheries Science Center (NWFSC) slope survey

The NWFSC slope survey covered waters throughout the summer from 183 m to 1280 m north of 34°30′ S, which is near Point Conception. The survey strata used to expand the biomass data for this assessment are shown in Table 5.

The estimated index of abundance is shown in Table 15.

372 Alaska Fisheries Science Center (AFSC) slope survey

The AFSC slope survey operated during autumn (October-November) aboard the R/V 373 Miller Freeman. Partial survey coverage of the U.S. west coast occurred during 1988-96 and 374 complete coverage (north of 34°30′ S) during 1997, 1999, 2000, and 2001. Only the four years 375 of consistent and complete surveys plus 1996, which surveyed north of 43° N latitude to the 376 U.S.-Canada border, were used in this assessment. The number of tows with length data 377 ranged from 19 in 2000 to 48 in 1996 6. Because a large number of positive tows occurred 378 in 1996, it was decided to include that year, which surveyed from 43° N latitude to the 379 U.S.-Canada border. Therefore, only tows from 43° N latitude to the U.S.-Canada border 380 were used. 381

The estimated index of abundance is shown in Table 15.

383 Triennial Bottom Trawl Survey

The triennial survey was first conducted by the AFSC in 1977 and spanned the timeframe 384 from 1977-2004. The survey's design and sampling methods are most recently described in (Weinberg et al. 2002). Its basic design was a series of equally-spaced transects from which 386 searches for tows in a specific depth range were initiated (Figure 5). The survey design has 387 changed slightly over the period of time (Table 4, Figure 3). In general, all of the surveys 388 were conducted in the mid-summer through early fall: the 1977 survey was conducted from 389 early July through late September; the surveys from 1980 through 1989 ran from mid-July to 390 late September; the 1992 survey spanned from mid-July through early October; the 1995 391 survey was conducted from early June to late August; the 1998 survey ran from early June 392 through early August; and the 2001 and 2004 surveys were conducted in May-July (Figure 4). 393

Haul depths ranged from 91-457 m during the 1977 survey with no hauls shallower than 91 m.
The surveys in 1980, 1983, and 1986 covered the West Coast south to 36.8° N latitude and a
depth range of 55-366 meters. The surveys in 1989 and 1992 covered the same depth range
but extended the southern range to 34.5° N (near Point Conception). From 1995 through
2004, the surveys covered the depth range 55-500 meters and surveyed south to 34.5° N. In
the final year of the triennial series (2004), the NWFSC's Fishery Resource and Monitoring
division (FRAM) conducted the survey and followed very similar protocols as the AFSC.

Given the different depths surveyed during 1977, the data from that year were not included in this assessment. Water hauls (Zimmermann et al. 2003) and tows located in Canadian waters were also excluded from the analysis of this survey. The survey was analyzed as an early series (1980-1992) and a late series (1995-2004), as has been done in other West Coast rockfish assessments.

- Describe whether the time-series was split or retained as one index
- The estimated index of abundance is shown in Table 15.
- 408 Pacific ocean perch Survey
- A survey targeted designed to sample Pacific ocean perch was conducted in 1979 and again in 1985. The estimated index of abundance is shown in Table 15.

411 2.1.5 Biological Parameters and Data

biological-parameters-and-data

412 Length And Age Compositions

- Include: Sample size information for length and age composition data by area, year, gear, market category, etc., including both the number of trips and fish sampled.
- Length compositions were provided from the following sources, by region, with brief descriptions below:
 - Commercial fishery landed: 1966-2016
 - Commerical fishery discard: 2004-2015
- At-sea hake fishery: 2003-2016
 - Pacific ocean perch Survey: 1979 and 1985
- Trienial Survey: 1980, 1983, 1986, 1989, 1992, 1995, 1998, 2001, 2004
 - AFSC Slope Survey: 1996-2001
- NWFS Slope Survey: 2001-2002
- NWFSC Shelf-Slope Survey: 2003-2016
- 425 Commercial: PacFIN

417

418

420

422

- 426 Research: NWFSC shelf-slope survey
- Research: NWFSC slope survey

428 Age Structures

- Age structure data were available from the following sources:
- 430 Model Region 1
- Source No. 1 (ex. research, commericla dead fish, live fish, etc, date range (ex. 2010-2011)

- Source No. 2 (ex. research, commericla dead fish, live fish, etc, date range (ex. 2010-2011)
- etc...

436

437

438

440

441

- Begin sublist if desired
 - Sublist source No. 1
 - Sublist source No. 2
- etc...
 - Back to main list, next Source
 - Last Source

42 Natural mortality

Historic Pacific ocean perch ages determined using scales and surface reading methods of otoliths, resulted in estimates of natural mortality of between 0.10 and 0.20yr⁻¹ with a 444 longevity less than 30 years (Gunderson 1977). Based on break-and-burn method of age determination using otoliths, the maximum age of Pacific ocean perch was revised to be 90 446 years (Chilton and Beamish 1982). The updated understanding concerning Pacific ocean 447 perch longevity reduced the estimate of natural morality based on Hoenig's (1983) relationship 448 to 0.059yr⁻¹. The previous assessment applied a prior distribution on natural mortality based 449 upon multiple life history correlates (including Hoenig's method, Gunderson gonadosomatic 450 index (1997), and McCoy and Gillooly's (2008) theoretical relationship) developed separately 451 for female and male Pacific ocean perch. This assessment also applied a prior on natural 452 mortality. However, the prior and standard deviation were generated as a non-linear function 453 of maximum age as developed by Then et al. (2015) and modified by Owen Hamel which 454 greatly improved the fit to the underlying age data to create the 'Hamel-Then' prior. A 455 maximum age of 100 was used in the development of the prior where female natural moratility 456 was set equal to 0.05 and male natural mortality estimated as an offset from females at 0.054. 457

458 Sex ratio, maturation, and fecundity

Examining all biological data sources, the sex ratio of young fish are within 5% of 1:1 by either 459 length or age (Figure 12 and 13), and hence this assessment the sex ratio at birth was assumed 460 to be 1:1. This assessment assumed a logistic maturity-at-length curve based on analysis of 461 537 fish maturity samples collected from the NWFSC shelf-slope survey. This is revised from 462 the previous assessment which assumed maturity-at-age based on the work of Hannah and 463 Parker (Hannah and Parker 2007). Additionally, the new maturity-at-length curve is based 464 on the estimate of functional maturity an approach that classifies rockfish maturity with 465 developing oocytes as mature or immature based on the proportion of vitellogenin in the cytoplasm and the measured frequency of atretic cells (M. Head, personal communication). 467 The 50% size-at-maturity was estimated at 32.1 cm with maturity asymptoting to one for larger fish. 469

The fecundity-at-age has also been updated from the previous assessment based on new research. Dick (2017) estimated new fecundity relationships for select West Coast stocks

where fecundity for Pacific ocean perch was esimtated equal to $1.08643L^{1.44}$ in millions of eggs. Spawning output at length is shown in Figure 14.

474 Length-weight relationship

The length-weight relationship for Pacific ocean perch was esimated outside the model using all biological data available from fishery and fishery-independant data sources where the female weight-at-length in grams was estimated at $0.0000106L^{3.08}$ and males at $0.000014L^3$ where L is length in cm.

- 479 Growth (length-at-age)
- Write if estiamted or fixed in the final model
- 481 Aging Precision And Bias
- 2.1.6 Environmental Or Ecosystem Data Included In The Assessment environmental-or-ecosystem-data-included-in-the-assessment
- 483 2.2 History Of Modeling Approaches Used For This Stock
 history-of-modeling-approaches-used-for-this-stock
- 484 2.2.1 Previous Assessments

previous-assessments

2.2.2 Previous Assessment Recommendations previous-assessment-recommendations

Include: Response to STAR panel recommendations from the most recent previous assessment.

- Recommendation 1: blah blah blah.
- STAT response: blah blah blah....
- Recommendation 2: blah blah blah.
- STAT response: blah blah blah....

491

494

⁴⁹³ Recommendation 3: blah blah blah., etc.

STAT response: Continue recommendations as needed

2.3 Model Description

model-description

Transition To The Current Stock Assessment transition-to-the-current-stock-assessment 2.3.1

- Include: Complete description of any new modeling approaches
- Below, we describe the most important changes made since the last full assessment and explain rationale for each change.:
- 1. Change No. 1. Rationale: blah blah blah. 501
- 2. Change No. 2. Rationale: blah blah blah. 502
- 3. Change No. 3. Rationale: Continue list as needed. 503

2.3.2Definition of Fleets and Areas

definition-of-fleets-and-areas

- We generated data sources for each of the models. Fleets by model include:
- Commercial: The commercial fleets include...
- Recreational: The recreational fleets include...
- Research: Research derived-data include...

2.3.3 Summary of Data for Fleets and Areas

summary-of-data-for-fleets-and-areas

2.3.4 Modeling Software

modeling-software

- The STAT team used Stock Synthesis version 3.30.01.13 by Dr. Richard Methot at the NWFSC (Methot and Wetzel 2013). This most recent version was used, since it included
- improvements and corrections to older versions.

2.3.5**Data Weighting**

data-weighting

- Citation for Francis method (Francis and Hilborn 2011)
- Citation for Ianelli-McAllister harmonic mean method (McAllister and Ianelli 1997)

 $_{ extstyle 517}$ 2.3.6 extstyle extsty

518 Citation for Hamel prior on natural mortality (Hamel 2015)

519 2.3.7 General Model Specifications

general-model-specifications

- 520 Citation for posterior predictive fecundity relationship from Dick (2009) and (2017)
- Model data, control, starter, and forecast files can be found in Appendices A-D.

522 2.3.8 Estimated And Fixed Parameters

estimated-and-fixed-parameters

A full list of all estimated and fixed parameters is provided in Tables.... Estimated and fixed parameters tables currently read in from .csv file, EXAMPLE: Table ??

⁵²⁵ 2.4 Model Selection and Evaluation

model-selection-and-evaluation

26 2.4.1 Key Assumptions and Structural Choices

key-assumptions-and-structural-choices

- Include: Evidence of search for balance between model realism and parsimony.
- 528 Comparison of key model assumptions, include comparisons based on nested models (e.g.,
- asymptotic vs. domed selectivities, constant vs. time-varying selectivities).

530 2.4.2 Alternate Models Considered

alternate-models-considered

531 Include: Summary of alternate model configurations that were tried but rejected.

532 2.4.3 Convergence

convergence

- Include: Randomization run results or other evidence of search for global best estimates.
- Convergence testing through use of dispersed starting values often requires extreme values to
- ⁵³⁵ actually explore new areas of the multivariate likelihood surface. Jitter is a SS option that
- generates random starting values from a normal distribution logistically transformed into
- each parameter's range (Methot and Wetzel 2013). Table 17 shows the results of running 100
- jitters for each pre-STAR base model....

2.5Response To The Current STAR Panel Requests response-to-the-current-star-panel-requests Request No. 1: Add after STAR panel. Rationale: Add after STAR panel. 542 STAT Response: Add after STAR panel. Request No. 2: Add after STAR panel. 544 545 Rationale: Add after STAR panel. 546 **STAT Response:** Add after STAR panel. 547 Request No. 3: Add after STAR panel. 549 Rationale: Add after STAR panel. 550 STAT Response: Add after STAR panel. 551 Request No. 4: Example of a request that may have a list: 552 553 • Item No. 1 554 • Item No. 2 555 • Item No. 3, etc. 556 Rationale: Add after STAR panel. 557 **STAT Response:** Continue requests as needed. 558 2.6 Model 1 model-1 Model 1 Base Case Results 2.6.1model-1-base-case-results

2.6.2 Model 1 Uncertainty and Sensitivity Analyses model-1-uncertainty-and-sensitivity-analyses

563 Table 18

Table ??

- 564 2.6.3 Model 1 Retrospective Analysis
- model-1-retrospective-analysis

565 2.6.4 Model 1 Likelihood Profiles

model-1-likelihood-profiles

⁵⁶⁶ 2.6.5 Model 1 Harvest Control Rules (CPS only)

model-1-harvest-control-rules-cps-only

⁵⁶⁷ 2.6.6 Model 1 Reference Points (groundfish only)

model-1-reference-points-groundfish-only

- Intro sentence or two....(Table 19).
- Equilibrium yield at the proxy F_{MSY} harvest rate corresponding to $SPR_{50\%}$ is 745.4 mt.
- Table e shows the full suite of estimated reference points for the northern area model and
- ⁵⁷¹ Figure g shows the equilibrium yield curve.

3 Harvest Projections and Decision Tables

harvest-projections-and-decision-tables

- 573 Table f
- Model 1 Projections and Decision Table (groundfish only) (Table 20
- 575 Table h

579

580

581

582

583

585

586

- 576 Model 2 Projections and Decision Table (groundfish only)
- Model 3 Projections and Decision Table (groundfish only)

4 Regional Management Considerations

regional-management-considerations

- 1. For stocks where current practice is to allocate harvests by management area, a recommended method of allocating harvests based on the distribution of biomass should be provided. The MT advisor should be consulted on the appropriate management areas for each stock.
- 2. Discuss whether a regional management approach makes sense for the species from a biological perspective.
 - 3. If there are insufficient data to analyze a regional management approach, what are the research and data needs to answer this question?

587 **Sesearch Needs**

research-needs

- 1. Research need No. 1
- 2. Research need No. 2
- 3. Research need No. 3
- 4. etc.

$_{592}$ 6 Acknowledgments

acknowledgments

Include: STAR panel members and affiliations as well as names and affiliations of persons who contributed data, advice or information but were not part of the assessment team. Not required in draft assessment undergoing review.

⁵⁹⁶ 7 Tables

tables

Table 1: Landings for each state (all gears combined), the At-Sea Hake fishery, the Foreign fleet, and research.

Year	California	Oregon	Washington	At-Sea Hake	Foreign	ab:Comm_Cato Research
1892	0.0	0.1	0.0	0.0	0	0.0
1893	0.0	0.1	0.0	0.0	0	0.0
1894	0.0	0.1	0.0	0.0	0	0.0
1895	0.0	0.0	0.0	0.0	0	0.0
1896	0.0	0.0	0.0	0.0	0	0.0
1897	0.0	0.0	0.0	0.0	0	0.0
1898	0.0	0.0	0.0	0.0	0	0.0
1899	0.0	0.0	0.0	0.0	0	0.0
1900	0.0	0.0	0.0	0.0	0	0.0
1901	0.0	0.0	0.0	0.0	0	0.0
1902	0.0	0.0	0.0	0.0	0	0.0
1903	0.0	0.0	0.0	0.0	0	0.0
1904	0.0	0.0	0.0	0.0	0	0.0
1905	0.0	0.0	0.0	0.0	0	0.0
1906	0.0	0.0	0.0	0.0	0	0.0
1907	0.0	0.0	0.0	0.0	0	0.0
1908	0.0	0.0	0.1	0.0	0	0.0
1909	0.0	0.0	0.1	0.0	0	0.0
1910	0.0	0.0	0.1	0.0	0	0.0
1911	0.0	0.0	0.1	0.0	0	0.0
1912	0.0	0.0	0.0	0.0	0	0.0
1913	0.0	0.0	0.0	0.0	0	0.0
1914	0.0	0.0	0.0	0.0	0	0.0
1915	0.0	0.0	0.0	0.0	0	0.0
1916	0.1	0.0	0.4	0.0	0	0.0
1917	0.1	0.0	0.8	0.0	0	0.0
1918	0.1	0.0	1.1	0.0	0	0.0
1919	0.1	0.0	0.4	0.0	0	0.0
1920	0.1	0.0	0.3	0.0	0	0.0
1921	0.1	0.0	0.3	0.0	0	0.0
1922	0.1	0.0	0.1	0.0	0	0.0
1923	0.1	0.0	0.2	0.0	0	0.0
1924	0.1	0.0	0.5	0.0	0	0.0
1925	0.1	0.0	0.6	0.0	0	0.0
1926	0.2	0.0	1.0	0.0	0	0.0
1927	0.1	0.0	1.4	0.0	0	0.0
1928	0.1	0.0	1.2	0.0	0	0.0
1929	0.5	0.1	0.7	0.0	0	0.0
1930	$0.3 \\ 0.4$	0.1	0.9	0.0	0	0.0
1931	0.4	0.1	$0.9 \\ 0.4$	0.0	0	0.0

Year	California	Oregon	Washington	At-Sea Hake	Foreign	Research
1932	0.6	0.1	0.4	0.0	0	0.0
1933	1.1	0.1	0.5	0.0	0	0.0
1934	0.8	0.0	2.3	0.0	0	0.0
1935	0.7	0.1	7.7	0.0	0	0.0
1936	0.4	0.2	1.6	0.0	0	0.0
1937	0.9	0.4	2.0	0.0	0	0.0
1938	1.2	0.1	5.1	0.0	0	0.0
1939	1.9	0.4	8.7	0.0	0	0.0
1940	1.7	9.1	12.2	0.0	0	0.0
1941	2.6	14.0	13.6	0.0	0	0.0
1942	0.9	26.6	18.6	0.0	0	0.0
1943	2.0	94.3	453.6	0.0	0	0.0
1944	5.6	164.5	739.3	0.0	0	0.0
1945	13.4	247.1	1887.1	0.0	0	0.0
1946	14.6	193.2	845.9	0.0	0	0.0
1947	5.1	167.2	385.3	0.0	0	0.0
1948	7.9	177.8	491.1	0.0	0	0.0
1949	4.0	472.9	409.5	0.0	0	0.0
1950	3.0	690.1	675.7	0.0	0	0.0
1951	4.3	840.1	735.1	0.0	0	0.0
1952	2.9	2030.5	305.6	0.0	0	0.0
1953	145.6	1223.5	361.6	0.0	0	0.0
1954	123.2	1837.5	538.8	0.0	0	0.0
1955	48.8	1346.4	555.6	0.0	0	0.0
1956	3.8	2563.8	548.2	0.0	0	0.0
1957	1.6	2128.1	538.5	0.0	0	0.0
1958	2.9	1564.9	530.4	0.0	0	0.0
1959	1.5	892.6	337.0	0.0	0	0.0
1960	19.6	1358.8	928.1	0.0	0	0.0
1961	1.1	2061.9	1179.8	0.0	0	0.0
1962	0.6	2584.9	1725.2	0.0	0	0.0
1963	32.5	3693.9	2006.0	0.0	0	0.0
1964	46.1	4261.6	1770.7	0.0	0	0.0
1965	34.9	5627.8	1972.1	0.0	0	0.0
1966	5.2	1591.2	1725.5	0.0	15561	0.0
1967	17.8	354.7	1861.0	0.0	12357	0.0
1968	21.9	466.4	2501.2	0.0	6639	0.0
1969	8.4	422.3	1236.0	0.0	469	0.0
1970	8.7	507.4	1293.3	0.0	441	0.0
1971	12.2	290.4	673.6	0.0	902	0.0
1972	11.4	105.3	796.5	0.0	950	0.0
1973	11.9	121.2	713.1	0.0	1773	0.0
1974	15.7	136.7	641.8	0.0	1457	0.0
1975	11.4	181.3	413.9	62.3	496	0.0
1976	17.1	663.7	521.1_{36}	31.9	239	0.0

Year	California	Oregon	Washington	At-Sea Hake	Foreign	Research
1977	16.7	457.1	752.0	3.8	0	11.9
1978	42.5	498.7	1391.5	15.4	0	0.0
1979	136.7	735.9	581.4	15.1	0	34.5
1980	19.2	948.6	666.2	47.0	0	4.6
1981	10.8	929.7	390.3	15.4	0	0.0
1982	145.9	584.0	273.0	28.3	0	0.0
1983	102.0	1032.7	437.7	10.9	0	4.4
1984	47.6	750.4	815.7	2.3	0	0.9
1985	70.9	789.5	503.2	11.4	0	13.6
1986	52.8	676.5	588.9	19.8	0	1.4
1987	120.9	550.0	399.4	5.4	0	0.0
1988	75.4	749.8	509.8	4.5	0	0.5
1989	29.5	927.8	466.2	4.3	0	4.2
1990	18.3	567.8	427.2	80.9	0	0.0
1991	8.4	853.2	530.1	46.1	0	0.0
1992	15.3	623.8	435.2	373.3	0	4.9
1993	11.0	797.8	464.7	0.9	0	0.2
1994	6.7	626.4	352.0	83.8	0	0.0
1995	9.2	515.0	289.8	46.6	0	2.8
1996	18.4	531.1	236.7	6.3	0	1.2
1997	15.8	439.1	184.9	6.4	0	0.1
1998	21.6	436.6	172.4	22.3	0	3.8
1999	19.8	326.8	145.8	16.5	0	1.4
2000	6.8	95.1	33.0	10.1	0	0.6
2001	0.5	193.4	51.8	21.0	0	2.8
2002	0.8	107.1	39.5	3.9	0	0.3
2003	0.2	94.6	30.2	6.3	0	3.6
2004	2.1	97.7	22.3	1.1	0	2.5
2005	0.1	51.2	10.4	1.7	0	1.3
2006	0.2	52.2	15.8	3.1	0	1.2
2007	0.2	83.6	45.1	4.0	0	0.6
2008	0.4	58.6	16.6	15.9	0	0.8
2009	0.9	58.7	33.2	1.6	0	2.7
2010	0.1	58.0	22.3	16.9	0	1.6
2011	0.1	30.3	19.7	9.2	0	1.2
2012	0.2	30.4	21.8	4.5	0	1.6
2013	0.1	34.9	14.8	5.4	0	1.7
2014	0.2	33.9	15.8	3.9	0	0.6
2015	0.1	38.1	11.4	8.7	0	1.5
2016	0.2	34.1	13.1	10.3	0	0.0

Table 2: Summary of discard rates used in the model by each data source.

tab:Discard

Year	Source	Discard	Standard Error
1986	Pikitch	0.050	0.300
1992	Pikitch	0.100	0.300
2002	WCGOP	0.150	0.164
2003	WCGOP	0.183	0.268
2004	WCGOP	0.203	0.206
2005	WCGOP	0.175	0.346
2006	WCGOP	0.148	0.243
2007	WCGOP	0.171	0.261
2008	WCGOP	0.362	0.172
2009	WCGOP	0.504	0.153
2010	WCGOP	0.487	0.195
2011	WCGOP	0.015	0.053
2012	WCGOP	0.028	0.054
2013	WCGOP	0.027	0.054
2014	WCGOP	0.035	0.050
2015	WCGOP	0.010	0.053

Table 3: Summary of commercial fishery length samples used in the stock assessment.

_tab:Comm_Lengths

Year Trips Fish Sample Size 1966 1 238 7 1967 5 1020 35 1968 3 912 21 1969 4 1213 28 1970 13 1830 92 1971 22 4698 155 1972 23 4561 162 1973 17 4134 120 1974 20 4806 141 1975 19 3637 134 1976 21 3677 148 1977 32 4846 226 1978 52 7715 367 1979 34 3414 240 1980 55 5426 388 1981 40 3921 282 1982 48 4824 339 1983 39 3944 275 1984 31 3103 </th <th></th> <th></th> <th></th> <th>~</th>				~
1967 5 1020 35 1968 3 912 21 1969 4 1213 28 1970 13 1830 92 1971 22 4698 155 1972 23 4561 162 1973 17 4134 120 1974 20 4806 141 1975 19 3637 134 1976 21 3677 148 1977 32 4846 226 1978 52 7715 367 1979 34 3414 240 1980 55 5426 388 1981 40 3921 282 1982 48 4824 339 1983 39 3944 275 1984 31 3103 219 1985 45 4509 318 1986 40 4005 282 1987 43 3056 304 1988 <td></td> <td></td> <td></td> <td></td>				
1968 3 912 21 1969 4 1213 28 1970 13 1830 92 1971 22 4698 155 1972 23 4561 162 1973 17 4134 120 1974 20 4806 141 1975 19 3637 134 1976 21 3677 148 1977 32 4846 226 1978 52 7715 367 1979 34 3414 240 1980 55 5426 388 1981 40 3921 282 1982 48 4824 339 1983 39 3944 275 1984 31 3103 219 1985 45 4509 318 1986 40 4005 282 1987 43 3056 304 1988 9 602 64 1989 <td></td> <td></td> <td></td> <td></td>				
1969 4 1213 28 1970 13 1830 92 1971 22 4698 155 1972 23 4561 162 1973 17 4134 120 1974 20 4806 141 1975 19 3637 134 1976 21 3677 148 1977 32 4846 226 1978 52 7715 367 1979 34 3414 240 1980 55 5426 388 1981 40 3921 282 1982 48 4824 339 1983 39 3944 275 1984 31 3103 219 1985 45 4509 318 1986 40 4005 282 1987 43 3056 304 1988 9 602 64 1989 16 798 113 1990 </td <td></td> <td></td> <td></td> <td></td>				
1970 13 1830 92 1971 22 4698 155 1972 23 4561 162 1973 17 4134 120 1974 20 4806 141 1975 19 3637 134 1976 21 3677 148 1977 32 4846 226 1978 52 7715 367 1979 34 3414 240 1980 55 5426 388 1981 40 3921 282 1982 48 4824 339 1983 39 3944 275 1984 31 3103 219 1985 45 4509 318 1986 40 4005 282 1987 43 3056 304 1988 9 602 64 1989 16 798 113 1990 12 599 85 1991 </td <td>1968</td> <td></td> <td>912</td> <td></td>	1968		912	
1971 22 4698 155 1972 23 4561 162 1973 17 4134 120 1974 20 4806 141 1975 19 3637 134 1976 21 3677 148 1977 32 4846 226 1978 52 7715 367 1979 34 3414 240 1980 55 5426 388 1981 40 3921 282 1982 48 4824 339 1983 39 3944 275 1984 31 3103 219 1985 45 4509 318 1986 40 4005 282 1987 43 3056 304 1988 9 602 64 1989 16 798 113 1990 12 599 85 1991 8 216 38 1994 <td>1969</td> <td>4</td> <td>1213</td> <td>28</td>	1969	4	1213	28
1972 23 4561 162 1973 17 4134 120 1974 20 4806 141 1975 19 3637 134 1976 21 3677 148 1977 32 4846 226 1978 52 7715 367 1979 34 3414 240 1980 55 5426 388 1981 40 3921 282 1982 48 4824 339 1983 39 3944 275 1984 31 3103 219 1985 45 4509 318 1986 40 4005 282 1987 43 3056 304 1988 9 602 64 1989 16 798 113 1990 12 599 85 1991 8 216 38 1994 43 2608 304 1995 <td></td> <td>13</td> <td>1830</td> <td>92</td>		13	1830	92
1973 17 4134 120 1974 20 4806 141 1975 19 3637 134 1976 21 3677 148 1977 32 4846 226 1978 52 7715 367 1979 34 3414 240 1980 55 5426 388 1981 40 3921 282 1982 48 4824 339 1983 39 3944 275 1984 31 3103 219 1985 45 4509 318 1986 40 4005 282 1987 43 3056 304 1988 9 602 64 1989 16 798 113 1990 12 599 85 1991 8 216 38 1994 43 2608 304 1995 49 3161 346 1996 <td>1971</td> <td>22</td> <td>4698</td> <td>155</td>	1971	22	4698	155
1974 20 4806 141 1975 19 3637 134 1976 21 3677 148 1977 32 4846 226 1978 52 7715 367 1979 34 3414 240 1980 55 5426 388 1981 40 3921 282 1982 48 4824 339 1983 39 3944 275 1984 31 3103 219 1985 45 4509 318 1986 40 4005 282 1987 43 3056 304 1988 9 602 64 1989 16 798 113 1990 12 599 85 1991 8 216 38 1994 43 2608 304 1995 49 3161 346 1996 64 3085 452 1997 <td>1972</td> <td>23</td> <td>4561</td> <td>162</td>	1972	23	4561	162
1975 19 3637 134 1976 21 3677 148 1977 32 4846 226 1978 52 7715 367 1979 34 3414 240 1980 55 5426 388 1981 40 3921 282 1982 48 4824 339 1983 39 3944 275 1984 31 3103 219 1985 45 4509 318 1986 40 4005 282 1987 43 3056 304 1988 9 602 64 1989 16 798 113 1990 12 599 85 1991 8 216 38 1994 43 2608 304 1995 49 3161 346 1996 64 3085 452 1997 76 3570 537 1998 <td>1973</td> <td>17</td> <td>4134</td> <td>120</td>	1973	17	4134	120
1976 21 3677 148 1977 32 4846 226 1978 52 7715 367 1979 34 3414 240 1980 55 5426 388 1981 40 3921 282 1982 48 4824 339 1983 39 3944 275 1984 31 3103 219 1985 45 4509 318 1986 40 4005 282 1987 43 3056 304 1988 9 602 64 1989 16 798 113 1990 12 599 85 1991 8 216 38 1994 43 2608 304 1995 49 3161 346 1996 64 3085 452 1997 76 3570 537 1998 56 3450 395 1999 <td>1974</td> <td>20</td> <td>4806</td> <td>141</td>	1974	20	4806	141
1977 32 4846 226 1978 52 7715 367 1979 34 3414 240 1980 55 5426 388 1981 40 3921 282 1982 48 4824 339 1983 39 3944 275 1984 31 3103 219 1985 45 4509 318 1986 40 4005 282 1987 43 3056 304 1988 9 602 64 1989 16 798 113 1990 12 599 85 1991 8 216 38 1994 43 2608 304 1995 49 3161 346 1996 64 3085 452 1997 76 3570 537 1998 56 3450 395 1999 58 2812 409	1975	19	3637	134
1978 52 7715 367 1979 34 3414 240 1980 55 5426 388 1981 40 3921 282 1982 48 4824 339 1983 39 3944 275 1984 31 3103 219 1985 45 4509 318 1986 40 4005 282 1987 43 3056 304 1988 9 602 64 1989 16 798 113 1990 12 599 85 1991 8 216 38 1994 43 2608 304 1995 49 3161 346 1996 64 3085 452 1997 76 3570 537 1998 56 3450 395 1999 58 2812 409	1976	21	3677	148
1979 34 3414 240 1980 55 5426 388 1981 40 3921 282 1982 48 4824 339 1983 39 3944 275 1984 31 3103 219 1985 45 4509 318 1986 40 4005 282 1987 43 3056 304 1988 9 602 64 1989 16 798 113 1990 12 599 85 1991 8 216 38 1994 43 2608 304 1995 49 3161 346 1996 64 3085 452 1997 76 3570 537 1998 56 3450 395 1999 58 2812 409	1977	32	4846	226
1980 55 5426 388 1981 40 3921 282 1982 48 4824 339 1983 39 3944 275 1984 31 3103 219 1985 45 4509 318 1986 40 4005 282 1987 43 3056 304 1988 9 602 64 1989 16 798 113 1990 12 599 85 1991 8 216 38 1994 43 2608 304 1995 49 3161 346 1996 64 3085 452 1997 76 3570 537 1998 56 3450 395 1999 58 2812 409	1978	52	7715	367
1981 40 3921 282 1982 48 4824 339 1983 39 3944 275 1984 31 3103 219 1985 45 4509 318 1986 40 4005 282 1987 43 3056 304 1988 9 602 64 1989 16 798 113 1990 12 599 85 1991 8 216 38 1994 43 2608 304 1995 49 3161 346 1996 64 3085 452 1997 76 3570 537 1998 56 3450 395 1999 58 2812 409	1979	34	3414	240
1982 48 4824 339 1983 39 3944 275 1984 31 3103 219 1985 45 4509 318 1986 40 4005 282 1987 43 3056 304 1988 9 602 64 1989 16 798 113 1990 12 599 85 1991 8 216 38 1994 43 2608 304 1995 49 3161 346 1996 64 3085 452 1997 76 3570 537 1998 56 3450 395 1999 58 2812 409	1980	55	5426	388
1983 39 3944 275 1984 31 3103 219 1985 45 4509 318 1986 40 4005 282 1987 43 3056 304 1988 9 602 64 1989 16 798 113 1990 12 599 85 1991 8 216 38 1994 43 2608 304 1995 49 3161 346 1996 64 3085 452 1997 76 3570 537 1998 56 3450 395 1999 58 2812 409	1981	40	3921	282
1984 31 3103 219 1985 45 4509 318 1986 40 4005 282 1987 43 3056 304 1988 9 602 64 1989 16 798 113 1990 12 599 85 1991 8 216 38 1994 43 2608 304 1995 49 3161 346 1996 64 3085 452 1997 76 3570 537 1998 56 3450 395 1999 58 2812 409	1982	48	4824	339
1985 45 4509 318 1986 40 4005 282 1987 43 3056 304 1988 9 602 64 1989 16 798 113 1990 12 599 85 1991 8 216 38 1994 43 2608 304 1995 49 3161 346 1996 64 3085 452 1997 76 3570 537 1998 56 3450 395 1999 58 2812 409	1983	39	3944	275
1986 40 4005 282 1987 43 3056 304 1988 9 602 64 1989 16 798 113 1990 12 599 85 1991 8 216 38 1994 43 2608 304 1995 49 3161 346 1996 64 3085 452 1997 76 3570 537 1998 56 3450 395 1999 58 2812 409	1984	31	3103	219
1987 43 3056 304 1988 9 602 64 1989 16 798 113 1990 12 599 85 1991 8 216 38 1994 43 2608 304 1995 49 3161 346 1996 64 3085 452 1997 76 3570 537 1998 56 3450 395 1999 58 2812 409	1985	45	4509	318
1988 9 602 64 1989 16 798 113 1990 12 599 85 1991 8 216 38 1994 43 2608 304 1995 49 3161 346 1996 64 3085 452 1997 76 3570 537 1998 56 3450 395 1999 58 2812 409	1986	40	4005	282
1989 16 798 113 1990 12 599 85 1991 8 216 38 1994 43 2608 304 1995 49 3161 346 1996 64 3085 452 1997 76 3570 537 1998 56 3450 395 1999 58 2812 409	1987	43	3056	304
1990 12 599 85 1991 8 216 38 1994 43 2608 304 1995 49 3161 346 1996 64 3085 452 1997 76 3570 537 1998 56 3450 395 1999 58 2812 409	1988	9	602	64
1991 8 216 38 1994 43 2608 304 1995 49 3161 346 1996 64 3085 452 1997 76 3570 537 1998 56 3450 395 1999 58 2812 409	1989	16	798	113
1994 43 2608 304 1995 49 3161 346 1996 64 3085 452 1997 76 3570 537 1998 56 3450 395 1999 58 2812 409	1990	12	599	85
1995 49 3161 346 1996 64 3085 452 1997 76 3570 537 1998 56 3450 395 1999 58 2812 409	1991	8	216	38
1996 64 3085 452 1997 76 3570 537 1998 56 3450 395 1999 58 2812 409	1994	43	2608	304
1997 76 3570 537 1998 56 3450 395 1999 58 2812 409	1995	49	3161	346
1998 56 3450 395 1999 58 2812 409	1996	64	3085	452
1999 58 2812 409	1997	76	3570	537
	1998	56	3450	395
2000 49 2004 326	1999	58	2812	409
2000 40 2004 920	2000	49	2004	326
2001 59 1696 293	2001	59	1696	293
2002 50 1666 280	2002	50	1666	280

Year	Trips	Fish	Sample Size
2003	68	1685	301
2004	53	1202	219
2005	50	1270	225
2006	59	1486	264
2007	81	2248	391
2008	101	3058	523
2009	108	3208	551
2010	131	2829	521
2011	100	1944	368
2012	97	1873	355
2013	117	2168	416
2014	140	2850	533
2015	107	2459	446
2016	92	1271	267

Table 4: Summary of Pacific ocean perch survey length samples used in the stock assessment.

tab:POP_Lengths

Year	Tows	Fish	Sample Size
1979	125	2375	303
1985	126	2558	306

Table 5: Summary of Triennial survey length samples used in the stock assessment.

tab:TriennialLengths

			tab:
Year	Tows	Fish	Sample Size
1980	18	1315	43
1983	40	2820	97
1986	17	877	41
1989	42	1851	102
1992	33	1182	80
1995	71	1136	172
1998	81	1482	196
2001	74	669	179
2004	63	1240	153

Table 6: Summary of AFSC slope survey length samples used in the stock assessment.

tab:AFSC_Lengths

Year	Tows	Fish	Sample Size
1996	48	1396	116
1997	21	347	51
1999	21	562	51
2000	19	353	46
2001	23	390	55

Table 7: Summary of NWFSC slope survey length samples used in the stock assessment.

tab: NWslope_Lengths

			<u>tab</u> .
Year	Tows	Fish	Sample Size
2001	18	27	43
2002	24	54	58

 ${\it Table~8:~Summary~of~NWFSC~shelf-slope~survey~length~samples~used~in~the~stock~assessment.}$

tab:NWcombo_Lengths

Year	Tows	Fish	Sample Size
2003	46	80	111
2004	34	56	82
2005	38	81	92
2006	33	73	80
2007	50	74	121
2008	39	75	94
2009	46	61	111
2010	53	73	128
2011	53	72	128
2012	50	79	121
2013	45	76	109
2014	52	77	126
2015	69	67	167

Table 9: Summary of commercial fishery age samples used in the stock assessment.

tab:Comm_Ages

Year	Trips	Fish	Sample Size
1981	11	1027	78
1982	40	2776	282
1983	33	3320	233
1984	27	2625	191
1985	21	2097	148
1986	17	1696	120
1987	24	1196	169
1988	4	200	28
1994	8	238	41
1999	18	863	127
2000	14	677	99
2001	40	1349	226
2002	38	1414	233
2003	41	1333	225
2004	30	854	148
2005	37	1018	177
2006	49	1259	223
2007	63	1825	315
2008	44	1129	200
2009	76	1549	290
2010	53	1258	227
2011	86	1251	259
2012	7	331	49

Table 10: Summary of Pacific ocean perch survey age samples used in the stock assessment.

tab:POP_Ages

Year	Tows	Fish	Sample Size
1985	29	1635	70

Table 11: Summary of Triennial survey age samples used in the stock assessment.

tab:Triennial_Ages

			- u
Year	Tows	Fish	Sample Size
1989	15	577	36
1992	10	373	24
1995	12	275	29
1998	28	352	68
2001	43	342	104
2004	57	416	138

Table 12: Summary of NWFSC slope survey age samples used in the stock assessment.

_tab:NWslope_Ages

				_ cab.i
Year	Tows	Fish	Sample Size	_
2001	17	125	41	_
2002	24	216	58	
	2001	2001 17	2001 17 125	2001 17 125 41

Table 13: Summary of NWFSC shelf-slope survey age samples used in the stock assessment.

_tab:NWFcombo_Ages

			L L
Year	Tows	Fish	Sample Size
2003	45	265	109
2004	34	149	82
2005	38	192	92
2006	33	170	80
2007	50	228	121
2008	39	218	94
2009	45	190	109
2010	53	292	128
2011	53	258	128

Table 14: Summary of the commercial catch-per-unit effort time-series used in the stock assessment.

tab:CPUE_Summary

Year	Obs	SE
1956	0.40	0.40
1957	0.30	0.40
1958	0.32	0.40
1959	0.29	0.40
1960	0.28	0.40
1961	0.31	0.40
1962	0.29	0.40
1963	0.34	0.40
1964	0.35	0.40
1965	0.55	0.40
1966	0.47	0.40
1967	0.30	0.40
1968	0.17	0.40
1969	0.18	0.40
1970	0.17	0.40
1971	0.20	0.40
1972	0.20	0.40
1973	0.11	0.40

Table 15: Summary of the fishery-independant biomass/abundance time-series used in the stock assessment.

	PO	D.	Trien	nial	AFSC	Slope	NWFS	T Slope		x_Summary C Shelf-Slope
Year	Obs	SE	Obs	SE	Obs	SE	Obs	SE	Obs	SE Silen-Slope
1979	36977	0.47	- 7624	0.52	-	-	-	_	-	-
1980	-	-			_	-	-	-	-	-
1983	- 0.4500	-	6561	0.48	=	-	-	=	-	-
1985	24522	0.65	-	-	-	-	-	-	-	-
1986	-	-	2922	0.54	-	-	-	-	-	-
1989	-	-	3690	0.55	-	-	-	-	-	-
1992	-	-	2836	0.53	-	-	-	-	-	-
1995	-	-	1994	0.54	-	-	-	-	-	-
1996	-	-	-	-	6346	0.51	-	-	-	-
1997	-	-	-	-	3156	0.51	-	-	-	-
1998	-	-	2690	0.52	-	-	-	-	-	-
1999	-	-	-	-	3935	0.50	1425	0.97	-	-
2000	-	-	-	-	3557	0.53	1151	0.90	-	-
2001	-	-	1047	0.54	3492	0.48	1959	0.91	-	-
2002	-	-	-	-	-	-	1615	1.08	-	-
2003	-	-	-	-	-	-	-	-	8575	0.65
2004	-	-	1989	0.55	-	-	-	-	4226	0.68
2005	-	-	-	-	-	-	-	-	6835	0.67
2006	-	-	-	-	-	-	-	-	4987	0.70
2007	-	_	-	_	_	-	-	_	5143	0.64
2008	-	_	-	_	_	-	-	_	3334	0.67
2009	-	-	-	-	-	-	-	-	2501	0.64
2010	-	-	-	-	-	-	-	-	4563	0.63
2011	-	-	-	-	-	-	-	_	6642	0.63
2012	-	-	-	-	-	-	-	-	6985	0.64
2013	-	-	-	-	-	-	-	-	6537	0.63
2014	-	-	-	-	-	-	-	-	3997	0.63
2015	_	_	_	_	_	_	_	_	4523	0.60

Table 16: List of parameters used in the base model, including estimated values and standard deviations (SD), bounds (minimum and maximum), estimation phase (negative values indicate not estimated), status (indicates if parameters are near bounds, and prior type information (mean, SD).

No. Parameter	Value	Phase	Bounds	Status	SD	Prior (Exp.Val, SD)
1 NatM_p_1_Fem_GP_1	0.050	-2	(0.02, 0.1)			None
2 L-at_Amin_Fem_GP_1	21.211	-3	(15, 25)			None
3 L-at_Amax_Fem_GP_1	41.983	-2	(35, 45)			None
4 VonBert_K-Fem_GP_1	0.159	-3	(0.1, 0.4)			None
5 CV_young_Fem_GP_1	0.072	-5	(0.03, 0.16)			None
6 CV_old_Fem_GP_1	0.064	5-	(0.03, 0.16)			None
7 Wtlen_1_Fem	0.000	-50	(0,3)			None
8 Wtlen_2_Fem	3.080	-50	(2, 4)			None
9 Mat 50%-Fem	8.000	-50	(2, 12)			None
10 Mat_slope_Fem	-2.000	-50	(-2, 4)			None
11 Eggs_scalar_Fem	1.086	-50	(0, 6)			None
12 Eggs-exp-wt-Fem	1.440	-50	(-3, 3)			None
13 NatM_p_1_Mal_GP_1	0.053	2	(0, 0.3)	OK	0.014	Normal $(0.05, 0.1)$
14 L-at_Amin_Mal_GP_1	21.211	-2	(6, 68)			None
15 L_at_Amax_Mal_GP_1	39.578	-2	(13, 122)			None
16 VonBert_K-Mal_GP_1	0.193	-2	(0.04, 1.09)			None
17 CV_young_Mal_GP_1	0.076	-2	(0.01, 0.43)			None
18 CV_old_Mal_GP_1	0.053	-2	(0.01, 0.43)			None
19 Wtlen_1_Mal	0.000	-20	(0,3)			None
20 Wtlen_2_Mal	3.000	-20	(2,4)			None
24 CohortGrowDev	1.000	-20	(0, 2)			None
25 FracFemale_GP_1	0.500	-99	(0.000001, 0.999999)			None
26 SR_LN(R0)	8.978	Н	(5, 20)	OK	0.104	None
27 SR_BH_steep	0.400	-3	(0.2, 1)			None
28 SR_sigmaR	0.700	9-	(0.5, 1.2)			None
29 SR_regime	0.000	-20	(-5, 5)			None
Continued on next reaco						

Continued on next page

Table 16: List of parameters used in the base model, including estimated values and standard deviations (SD), bounds (minimum and maximum), estimation phase (negative values indicate not estimated), status (indicates if parameters are near bounds, and prior type information (mean, SD).

N	Demonster	Velue	Dhaga	Derived	C+0+110	CD.	Duica (Erm Vol CD)
NO.	ı alalıletel	value	1 Hase	Doullds	Orarus	JC	1 1101 (Exp. vai, 3D)
30	${ m SR}$ -autocorr	0.000	-50	(0, 2)			None
140	$LnQ_base_Fishery(1)$	-12.034	-1	(-15, 15)			None
141	$\operatorname{LnQ-base-POP}(4)$	0.198	<u>-</u>	(-15, 15)			None
142	LnQ_base_Triennial(5)	-1.753	-	(-15, 15)			None
143	LnQ_base_AFSCSlope(6)	-1.183	<u>-</u>	(-15, 15)			None
144	$LnQ_base_NWFSCSlope(7)$	-1.865		(-15, 15)			None
145	LnQ_base_NWFSCcombo(8)	-0.994		(-15, 15)			None
146	LnQ_base_Triennial(5)_BLK3add_1995	0.000	က	(0.0001, 2)	ГО	0.000	Normal $(0.5, 0.5)$
147	LnQ_base_Triennial(5)_dev_se	99.000	rç.	(0.0001, 2)			Normal (99, 0.5)
148	LnQ_base_Triennial(5)_dev_autocorr	0.000	9-	(-0.99, 0.99)			Normal $(0, 0.5)$
149	$SizeSel_P1_Fishery(1)$	37.542	2	(20, 45)	OK	0.152	None
150	$SizeSel_P2$ -Fishery(1)	-4.887	-2	(-6, 4)			None
151	$SizeSel_P3_Fishery(1)$	3.361	က	(-1, 9)	OK	0.046	None
152	$SizeSel_P4_Fishery(1)$	-0.367	က	(-1, 9)	OK	0.446	None
153	$SizeSel_{-}P5_{-}Fishery(1)$	-4.951	4	(-5, 9)	Γ O	0.126	None
154	$SizeSel_P6_Fishery(1)$	0.740	2	(-5, 9)	OK	0.092	None
155	Retain_P1_Fishery (1)	28.233	\vdash	(15, 45)	OK	0.189	None
156	Retain_P2_Fishery (1)	1.110	\vdash	(0.1, 10)	OK	0.070	None
157	Retain $P3$ Fishery (1)	9.855		(-10, 10)	HI	581.149	None
158	$Retain_P4$ Fishery(1)	0.000	. -	(0,0)			None
159	$SizeSel_P1_ASHOP(2)$	52.134	2	(20, 55)	OK	1.266	None
160	$SizeSel_P2_ASHOP(2)$	-5.000	-2	(-6, 4)			None
161	$SizeSel_{-}P3_ASHOP(2)$	5.028	က	(-1, 9)	OK	0.098	None
162	$SizeSel_P4_ASHOP(2)$	7.584	က	(-1, 9)	OK	5434.810	None
163	$SizeSel_{-}P5_ASHOP(2)$	-5.000	4	(-5, 9)	Γ O	0.000	None
164	$SizeSel_P6_ASHOP(2)$	7.674	2	(-5, 9)	OK	6352.230	None
Conti	Continued on next page						

Continued on next page

Table 16: List of parameters used in the base model, including estimated values and standard deviations (SD), bounds (minimum and maximum), estimation phase (negative values indicate not estimated), status (indicates if parameters are near bounds, and prior type information (mean, SD).

No.	Parameter	Value	Phase	Bounds	Status	SD	Prior (Exp.Val, SD)
165	SizeSel_P1_POP(4)	22.242	2	(20, 70)	OK	1.523	None
166	SizeSelP2POP(4)	11.010	3	(0.001, 50)	OK	2.763	None
167	SizeSel_P1_Triennial(5)	20.326	2	(18, 70)	OK	0.811	None
168	SizeSel_P2_Triennial(5)	5.516	3	(0.001, 50)	OK	1.493	None
169	SizeSel_P1_AFSCSlope(6)	20.663	2	(18, 70)	OK	0.759	None
170	$SizeSel_P2_AFSCSlope(6)$	3.608	3	(0.001, 50)	OK	2.781	None
171	SizeSel_P1_NWFSCSlope(7)	32.804	2	(18, 70)	OK	1.318	None
172	SizeSel_P2_NWFSCSlope(7)	9.326	3	(0.001, 50)	OK	2.095	None
173	SizeSel_P1_NWFSCcombo(8)	31.863	2	(20, 70)	OK	1.790	None
174	SizeSel_P2_NWFSCcombo(8)	18.772	3	(0.001, 50)	OK	1.669	None
175	Retain_P3_Fishery(1)_BLK1repl_1940		-	(-10, 10)			None
176	Retain_P3_Fishery(1)_BLK1repl_1982		-	(-10, 10)			None
177	7 Retain_P3_Fishery(1)_BLK1repl_1989		П	(-10, 10)	OK	0.356	None
178	Retain_P3_Fishery(1)_BLK1repl_1995	3.638	\vdash	(-10, 10)	OK	0.192	None
179	Retain_P3_Fishery (1) _BLK1repl_2008		\vdash	(-10, 10)	OK	0.168	None
180	Retain $P3$ Fishery (1) BLK 1 repl 2011		\vdash	(-10, 10)	OK	0.163	None
181	LnQ_base_Triennial(5)_DEVmult_1980	0.000		(NA, NA)			(NA, NA)
182	LnQ_base_Triennial(5)_DEVmult_1981			(NA, NA)			(NA, NA)
183	LnQ_base_Triennial(5)_DEVmult_1982			(NA, NA)			(NA, NA)
184	LnQ_base_Triennial(5)_DEVmult_1983			(NA, NA)			(NA, NA)
185	LnQ_base_Triennial(5)_DEVmult_1984			(NA, NA)			(NA, NA)
186	LnQ_base_Triennial(5)_DEVmult_1985			(NA, NA)			(NA, NA)
187	LnQ_base_Triennial(5)_DEVmult_1986			(NA, NA)			(NA, NA)
188	LnQ_base_Triennial(5)_DEVmult_1987			(NA, NA)			(NA, NA)
189	LnQ_base_Triennial(5)_DEVmult_1988			(NA, NA)			(NA, NA)
190	LnQ_base_Triennial(5)_DEVmult_1989	0.000		(NA, NA)			(NA, NA)
Conti	Continued on next nage						

Continued on next page

Table 16: List of parameters used in the base model, including estimated values and standard deviations (SD), bounds (minimum and maximum), estimation phase (negative values indicate not estimated), status (indicates if parameters are near bounds, and prior type information (mean, SD).

No.	No. Parameter	Value Phase	Bounds	Status SD	Prior (Exp.Val, SD)
191	191 LnQ_base_Triennial(5)_DEVmult_1990	0.000	(NA, NA)		(NA, NA)
192	LnQ_base_Triennial(5)_DEVmult_1991	0.000	(NA, NA)		(NA, NA)
193	LnQ_base_Triennial(5)_DEVmult_1992	0.000	(NA, NA)		(NA, NA)
194	LnQ_base_Triennial(5)_DEVmult_1993	0.000	(NA, NA)		(NA, NA)
195	LnQ_base_Triennial(5)_DEVmult_1994	0.000	(NA, NA)		(NA, NA)
196		0.000	(NA, NA)		(NA, NA)
197	LnQ_base_Triennial(5)_DEVmult_1996	0.000	(NA, NA)		
198	LnQ_base_Triennial(5)_DEVmult_1997	0.000	(NA, NA)		(NA, NA)
199	LnQ_base_Triennial(5)_DEVmult_1998	0.000	(NA, NA)		
200	LnQ_base_Triennial(5)_DEVmult_1999	0.000	(NA, NA)		(NA, NA)
201	LnQ_base_Triennial(5)_DEVmult_2000	0.000	(NA, NA)		(NA, NA)
202	$LnQ_base_Triennial(5)_DEVmult_2001$	0.000	(NA, NA)		(NA, NA)
203	LnQ_base_Triennial(5)_DEVmult_2002	0.000	(NA, NA)		(NA, NA)
204	LnQ_base_Triennial(5)_DEVmult_2003	0.000	(NA, NA)		(NA, NA)
205	205 LnQ_base_Triennial(5)_DEVmult_2004	0.000	(NA, NA)		(NA, NA)
Ţ-	cao:model_params				

Table 17: Results from 100 jitters from the base model.

tab:jitter

Status	Base.Model
Returned to base case	-
Found local minimum	-
Found better solution	-
Error in likelihood	-
Total	100

Table 19: Time-series of population estimates from the base model.

Year	Total	Spawning	Summary	Relative	Age-0	Estimated	1-SPR	Exp. rate
	biomass	output	biomass	biomass	re-	total		_
	(mt)	(million	3+		cruits	catch		
		eggs)				(mt)		
		(mt)						
1892	100784	55710	100260	1.00	7927	0.0	0.00	0
1893	100784	55710	100260	1.00	7927	0.1	0.00	0
1894	100784	55710	100260	1.00	7927	0.1	0.00	0
1895	100784	55710	100260	1.00	7927	0.1	0.00	0
1896	100784	55710	100260	1.00	7927	0.0	0.00	0
1897	100784	55710	100260	1.00	7927	0.0	0.00	0
1898	100784	55710	100260	1.00	7927	0.0	0.00	0
1899	100784	55710	100260	1.00	7927	0.0	0.00	0
1900	100784	55710	100260	1.00	7927	0.0	0.00	0
1901	100784	55710	100260	1.00	7927	0.0	0.00	0
1902	100784	55710	100260	1.00	7927	0.0	0.00	0
1903	100784	55710	100260	1.00	7927	0.0	0.00	0
1904	100784	55710	100260	1.00	7927	0.0	0.00	0
1905	100784	55710	100260	1.00	7927	0.0	0.00	0
1906	100784	55710	100260	1.00	7927	0.0	0.00	0
1907	100784	55710	100260	1.00	7927	0.0	0.00	0
1908	100784	55710	100260	1.00	7927	0.0	0.00	0
1909	100784	55710	100260	1.00	7927	0.0	0.00	0
1910	100784	55710	100260	1.00	7927	0.0	0.00	0
1911	100784	55710	100260	1.00	7927	0.0	0.00	0
1912	100784	55710	100260	1.00	7927	0.0	0.00	0
1913	100784	55710	100260	1.00	7927	0.0	0.00	0
1914	100784	55710	100260	1.00	7927	0.0	0.00	0
1915	100784	55710	100260	1.00	7927	0.0	0.00	0
1916	100784	55710	100260	1.00	7927	0.0	0.00	0
1917	100784	55710	100259	1.00	7927	0.1	0.00	0
1918	100784	55710	100259	1.00	7927	0.2	0.00	0
1919	100784	55709	100259	1.00	7927	0.2	0.00	0
1920	100784	55709	100259	1.00	7927	0.1	0.00	0
1921	100783	55709	100259	1.00	7927	0.1	0.00	0
1922	100783	55709	100259	1.00	7927	0.1	0.00	0
1923	100783	55709	100259	1.00	7927	0.1	0.00	0
1924	100783	55709	100259	1.00	7927	0.1	0.00	0
1925	100783	55709	100258	1.00	7927	0.2	0.00	0
1926	100783	55709	100258	1.00	7927	0.2	0.00	0
1927	100783	55709	100258	1.00	7927	0.3	0.00	0
1928	100782	55709	100258	1.00	7927	0.3	0.00	0

Table 19: Time-series of population estimates from the base model.

Year	Total	Spawning	Summary	Relative	Age-0	Estimated	1-SPR	Exp. rate
	biomass	output	biomass	biomass	re-	total		
	(mt)	(million	3+		cruits	catch		
		eggs)				(mt)		
		(mt)						
1929	100782	55709	100258	1.00	7927	0.3	0.01	0
1930	100781	55708	100256	1.00	7927	1.4	0.00	0
1931	100780	55707	100255	1.00	7927	1.4	0.00	0
1932	100781	55706	100254	1.00	9343	1.4	0.00	0
1933	100801	55706	100253	1.00	9366	1.1	0.01	0
1934	100864	55701	100245	1.00	9396	7.6	0.02	0
1935	101019	55696	100398	1.00	9444	10.0	0.03	0
1936	101256	55694	100634	1.00	9515	4.5	0.04	0
1937	101570	55714	100944	1.00	9611	6.1	0.06	0
1938	101956	55774	101324	1.00	9713	9.4	0.39	0
1939	102396	55884	101759	1.00	9786	24.4	0.57	0
1940	102882	56041	102238	1.01	9822	44.2	1.08	0
1941	103400	56229	102752	1.01	9801	70.0	0.73	0
1942	103955	56431	103306	1.01	9745	81.3	0.48	0
1943	104512	56627	103865	1.02	9707	117.5	0.60	0
1944	104281	56379	103637	1.01	9701	938.7	0.64	0.01
1945	103543	55863	102900	1.00	9856	1487.0	0.51	0.01
1946	100396	54010	99751	0.97	10094	3962.7	0.56	0.04
1947	99267	53290	98610	0.96	10671	2043.1	0.81	0.02
1948	99127	53116	98448	0.95	11430	1129.5	0.64	0.01
1949	98688	52744	97969	0.95	11792	1514.7	0.83	0.02
1950	98246	52320	97484	0.94	11437	1640.7	0.68	0.02
1951	98368	52164	97595	0.94	10865	1212.2	0.95	0.01
1952	98452	51958	97687	0.93	19335	1379.5	0.86	0.01
1953	97805	51314	96954	0.92	14609	2290.4	0.73	0.02
1954	98119	51127	96926	0.92	11544	1624.3	0.48	0.02
1955	98110	50630	97199	0.91	9520	2349.1	0.73	0.02
1956	98748	50530	98021	0.91	8156	1749.6	0.91	0.02
1957	98141	49947	97536	0.90	7033	2927.8	1.06	0.03
1958	97826	49791	97308	0.89	6051	2470.3	1.24	0.03
1959	97815	50099	97367	0.90	5707	1906.5	1.31	0.02
1960	98257	50870	97859	0.91	6975	1120.6	1.47	0.01
1961	97517	51055	97109	0.92	11246	1969.7	1.82	0.02
1962	95725	50517	95193	0.91	10739	2794.1	1.82	0.03
1963	93027	49243	92300	0.88	6541	3646.3	1.77	0.04
1964	89078	47051	88442	0.84	4695	4964.2	1.13	0.06
1965	84664	44581	84264	0.80	3786	5386.5	1.30	0.06

Table 19: Time-series of population estimates from the base model.

		~ P ~ ~ ~	bummary	Relative	Age-0	Estimated	1-5PR	Exp. rate
	biomass	output	biomass	biomass	re-	total		
	(mt)	(million	3+		cruits	catch		
		eggs)				(mt)		
		(mt)						
1966	78617	41350	78323	0.74	3211	6868.4	1.21	0.09
1967	61184	31953	60945	0.57	2821	18204.4	1.22	0.3
1968	48240	25027	48034	0.45	3048	13853.2	1.41	0.29
1969	40559	21045	40365	0.38	4659	8638.5	1.37	0.21
1970	39794	20878	39557	0.37	8530	1650.9	1.04	0.04
1971	38402	20200	38037	0.36	4462	2258.5	1.17	0.06
1972	37460	19544	36969	0.35	2259	1882.1	0.87	0.05
1973	36612	18804	36355	0.34	1641	1866.5	1.28	0.05
1974	34887	17681	34747	0.32	1927	2622.5	1.12	0.08
1975	33397	16921	33283	0.30	2448	2253.9	1.22	0.07
1976	32876	16880	32740	0.30	1938	1167.5	1.21	0.04
1977	31935	16706	31780	0.30	2613	1478.8	1.10	0.05
1978	31533	16784	31393	0.30	2678	844.8	1.34	0.03
1979	30123	16168	29949	0.29	2780	1770.4	1.38	0.06
1980	29170	15641	28993	0.28	2076	1277.5	1.37	0.04
1981	27968	14899	27791	0.27	4098	1504.8	1.37	0.05
1982	26870	14237	26701	0.26	2945	1399.4	1.29	0.05
1983	26106	13829	25855	0.25	2352	1089.6	1.43	0.04
1984	24866	13174	24681	0.24	2598	1636.2	1.52	0.07
1985	23634	12506	23473	0.22	3272	1647.0	1.39	0.07
1986	22565	11889	22386	0.21	1379	1511.5	1.53	0.07
1987	21605	11293	21418	0.20	2154	1440.7	1.55	0.07
1988	20911	10860	20806	0.19	2496	1187.5	1.55	0.06
1989	19873	10276	19724	0.18	2899	1499.6	1.50	0.08
1990	18655	9600	18484	0.17	2561	1709.4	1.41	0.09
1991	17939	9162	17752	0.16	2890	1246.5	1.37	0.07
1992	16895	8524	16724	0.15	778	1608.6	1.28	0.1
1993	15854	7844	15698	0.14	994	1639.2	1.30	0.1
1994	14972	7326	14913	0.13	3068	1447.3	1.17	0.1
1995	14260	6937	14162	0.12	2024	1223.1	0.50	0.09
1996	13809	6735	13626	0.12	1006	962.6	0.76	0.07
1997	13467	6581	13350	0.12	1029	877.9	0.49	0.07
1998	13225	6475	13156	0.12	1988	726.7	0.44	0.06
1999	12918	6320	12827	0.11	5212	747.2	0.41	0.06
2000	12802	6239	12616	0.11	5099	577.6	0.22	0.05
2001	13226	6382	12889	0.11	2402	149.5	0.23	0.01
2002	13697	6470	13407	0.12	1448	276.2	0.38	0.02

Table 19: Time-series of population estimates from the base model.

Year	Total	Spawning	Summary	Relative	Age-0	Estimated	1-SPR	Exp. rate
	biomass	output	biomass	biomass	re-	total		_
	(mt)	(million	3+		cruits	catch		
	, ,	eggs)				(mt)		
		(mt)				,		
2003	14344	6623	14203	0.12	544	156.1	0.40	0.01
2004	14955	6828	14870	0.12	2382	137.7	0.41	0.01
2005	15509	7115	15442	0.13	2514	128.8	0.40	0.01
2006	16065	7521	15908	0.14	1451	66.5	0.16	0
2007	16603	7974	16454	0.14	1505	74.5	0.15	0
2008	17125	8344	16926	0.15	48465	137.5	0.14	0.01
2009	18052	8589	17248	0.15	9731	150.8	0.10	0.01
2010	20036	8719	17492	0.16	3848	168.4	0.11	0.01
2011	23634	8817	23065	0.16	14688	160.9	0.09	0.01
2012	27110	9021	26699	0.16	2574	60.4	0.97	0
2013	30798	10051	29970	0.18	29963	58.8	0.97	0
2014	34891	11807	34321	0.21	2279	57.2	0.97	0
2015	39107	14162	37585	0.25	3756	45.6	0.97	0
2016	43737	16713	43560	0.30	4228	60.2	0.97	0
2017	47589	18909	47332	0.34	4583	57.6	0.97	0
2018	49797	20169	49511	0.36	4773	_	-	-
2019	51393	21186	51087	0.38	4921	-	-	-
2020	52413	22238	52094	0.40	5067	-	-	-
2021	52921	23473	52593	0.42	5233	-	-	-
2022	53010	24463	52671	0.44	5360	-	-	-
2023	52785	24949	52437	0.45	5421	-	-	-
2024	52349	25060	51993	0.45	5435	-	-	-
2025	51781	24883	51422	0.45	5413	-	-	-
2026	51140	24888	50781	0.45	5413	-	-	-
2027	50467	24916	50109	0.45	5417	-	-	-
2028	49786	24850	49428	0.45	5409	-	-	-
tab	:Timeseri	es mod1						

53

Table 18: Sensitivity of the base model to dropping or down-weighting data sources and alternative assumptions about growth.

Label	Base	Harmonic	Drop	Drop	Down-	Free size	Free CV	$\operatorname{External}$
	$\begin{array}{c} \text{(Francis} \\ \text{weights)} \end{array}$	mean weights	index	ages	$\begin{array}{c} \text{weight} \\ \text{lengths} \end{array}$	Age0	Amin	growth
TOTAL_like		1	1					ı
Catch_like		ı	ı	1	ı	ı	ı	ı
Equil_catch_like	1	ı	,	ı	1	ı	1	ı
Survey_like	1	1	1	1	1	ı	ı	ı
Length_comp_like	1	ı	ı	1	ı	ı	ı	ı
Age_comp_like	,	ı	ı	1	ı	1	ı	ı
Parm_priors_like	1	1	ı	1	1	ı	1	ı
SSB_Unfished_thousand_mt	1	ı	ı	1	ı	1	ı	1
TotBio_Unfished	ı	ı	ı	1	1	ı	ı	1
SmryBio_Unfished	1	ı	ı	1	ı	1	ı	1
Recr_Unfished_billions	ı	ı	ı	ı	ı	1	ı	1
SSB_Btgt_thousand_mt	1	ı	ı	1	ı	ı	ı	ı
${ m SPR_Btgt}$	1	ı	ı	1	1	1	1	1
Fstd_Btgt	1	ı	1	1	1	ı	1	1
TotYield_Btgt_thousand_mt	1	ı	1	ı	1	ı	ı	1
SSB_SPRtgt_thousand_mt	1	ı	ı	1	ı	1	ı	1
Fstd_SPRtgt	,	ı	ı	1	ı	1	ı	1
TotYield_SPRtgt_thousand_mt	,	ı	ı	1	ı	ı	ı	ı
SSB_MSY_thousand_mt	1	1	ı	1	1	ı	1	ı
SPR_MSY	1	ı	1	1	1	1	1	1
Fstd_MSY	ı	ı	ı	ı	ı	1	ı	1
TotYield_MSY_thousand_mt	ı	ı	ı	ı	ı	1	ı	1
Ret Yield_MSY	1	ı	ı	1	ı	1	ı	1
Bratio_2015	1	ı	ı	1	ı	1	ı	1
$F_{-}2015$	1	ı	ı	1	1	1	ı	1
SPRratio_2015	1	ı	ı	1	ı	1	ı	1
Recr_2015	ı	1	ı	ı	ı	1	ı	1
Recr_Virgin_billions	1	ı	ı	,	,	ı	,	1
L_at_Amin_Fem_GP_1	1	1	1	1	1	1	ı	1
L_at_Amax_Fem_GP_1	1	ı	ı	1	ı	1	ı	1
VonBert_K_Fem_GP_1	,	ı	ı		ı		ı	ı
CV_young_Fem_GP_1	1	ı	ı	1	ı	1	ı	1
))								

Table 20: Projection of potential OFL, spawning biomass, and depletion for the base case model.

					tab:Forecast_mod1
Year	OFL	ACL landings	Age $5+$	Spawning	Depletion
	contriubtion	(mt)	biomass (mt)	Output	
	(mt)				
2017	1390	1316	47332	18909	0.34
2018	1530	1450	49511	20169	0.36
2019	1651	1568	51087	21186	0.38
2020	1753	1667	52094	22238	0.40
2021	1823	1736	52593	23473	0.42
2022	1856	1768	52671	24463	0.44
2023	1854	1767	52437	24949	0.45
2024	1830	1744	51993	25060	0.45
2025	1794	1709	51422	24883	0.45
2026	1754	1671	50781	24888	0.45
2027	1715	1634	50109	24916	0.45
2028	1679	1599	49428	24850	0.45

597 8 Figures

figures

Figure 1: Map showing the state boundary lines for management of the recreational fishing fleets. CRFS Districts 1-6 in California are presented as well as the WDFW Recreational Management Areas in Washington. Florence, OR is shown as a potential location of model stratification.

Data by type and year

Figure 2: Summary of data sources used in the Base model. fig:data_plot

Figure 3: Discard length frequency distributions from the WCGOP for Pacific ocean perch. |fig:WCGOP_dis

length comps, whole catch, Fishery

598

599

Figure continued from previous page

length comps, discard, Fishery

Length (cm)

Figure 4: length comps, discard, Fishery fig:mod1_1_comp_lenfit_flt1mkt1

Pearson residuals, discard, Fishery (max=11.41)

Figure 5: Pearson residuals, discard, Fishery (max=11.41)
Closed bubbles are positive residuals (observed > expected) and open bubbles are negative residuals (observed < expected). | fig:mod1_2_comp_lenfit_residsflt1mkt1

N-EffN comparison, length comps, discard, Fishery

Figure 6: N_EffN comparison, length comps, discard, Fishery fig:mod1_3_comp_lenfit_same

Figure 7: Francis data weighting method TA1.8 Fishery Suggested sample size adjustment (with 95% interval) for len data from Fishery: 0.146 (0.0961_0.2603) fig:mod1_4_comp_lenfit_data_weighting for len data from Fishery: 0.146 (0.0961_0.2603)

length comps, whole catch, Fishery

Figure 8: length comps, whole catch, Fishery (plot 1 of 2) fig:mod1_5_comp_lenfit_flt1

Pearson residuals, whole catch, Fishery (max=10.86)

600

601

Figure continued from previous page

N-EffN comparison, length comps, whole catch, Fishery

Figure 9: N_EffN comparison, length comps, whole catch, Fishery | fig:mod1_8_comp_lenfit_s

Figure 10: Francis data weighting method TA1.8 Fishery Suggested sample size adjustment (with 95% interval) for len data from Fishery: 0.146 (0.0944_0.2631) fig:mod1_9_comp_lenfit_data_weighting figure 10: Francis data weighting method TA1.8 Fishery Suggested sample size adjustment (with 95% interval) for len data from Fishery: 0.146 (0.0944_0.2631)

length comps, whole catch, ASHOP

Length (cm)

Figure 11: length comps, whole catch, ASHOP \lceil fig:mod1_10_comp_lenfit_flt2mkt0

Figure 12: The estimated sex ratio of Pacific ocean perch at length from all biological data sources.

Figure 13: The estimated sex ratio of Pacific ocean perch at age from all biological data sources.

Figure 14: Fecundity at length of Pacific ocean perch in the Base model. fig:fecundity

620

references

- Bradburn, M., Keller, A., and Horness, B. 2011. The 2003 to 2008 US West Coast bottom trawl surveys of groundfish resources off Washington, Oregon, and California: Estimates of distribution, abundance, length, and age composition. US Department of Commerce, National Oceanic; Atmospheric Administration, National Marine Fisheries Service.
- Chilton, D.E., and Beamish, R.J. 1982. Age determination methods for fishes studied by the
 Groundfish Program at the Pacific Biological Station. [Ottawa:] Minister of Supply; Services
 Canada.
- Dick, E., Beyer, S., Mangel, M., and Ralston, S. 2017. A meta-analysis of fecundity in rockfishes (genus *Sebastes*). Fisheries Research **187**: 73–85. doi: 10.1016/j.fishres.2016.11.009.
- Dick, E.J. 2009. Modeling the Reproductive Potential of Rockfishes (Sebastes Spp.). ProQuest. Available from http://books.google.com/books?hl=en&lr=&id=0d6-3rhfynkC&oi=fnd&pg=PR7&dq=%22Synthesis+of+findings+regarding+the+reproductive%22+%22C:
 +Linear+interpolation+algorithms%22+%22for+yellowtail+rockfish+(S.+flavidus)
 %22+%22greater+than+zero,+based+on+the+2-level+relative+fecundity%22+%22A:
 +Methods+for+data+recovery+from+published%22+&ots=NR0UylgymD&sig=

58IaN_a3pJeYTPYVmJ1NYMABmvE [accessed 27 February 2017].

- Francis, R.C., and Hilborn, R. 2011. Data weighting in statistical fisheries stock assessment models. Canadian Journal of Fisheries and Aquatic Sciences **68**(6): 1124–1138. doi: 10.1139/f2011-025.
- Gunderson, D.R. 1977. Population biology of Pacific ocean perch, *Sebastes alutus*, stocks in the WashingtonQueen Charlotte Sound region and their response to fishing. Fishery Bulletin **75**: 369–403. Available from http://fishbull.noaa.gov/75-2/gunderson.pdf [accessed 27 February 2017].
- Gunderson, D.R. 1978. Results of cohort analysis for Pacific ocean perch stocks off British
 Columbia, Washington, and Oregon and an evaluation of alternative rebuilding strategies for
 these stocks. Pacific Fishery Management Council, 7700 Ambassador Place NE, Suite 200,
 Portland, OR 97220.
- Gunderson, D.R. 1997. Trade-off between reproductive effort and adult survival in oviparous and viviparous fishes. Canadian Journal of Fisheries and Aquatic Sciences **54**(5): 990–998. Available from http://www.nrcresearchpress.com/doi/abs/10.1139/f97-019 [accessed 27 February 2017].
- Gunderson, D.R., and Sample, T.M. 1980. Distribution and abundance of rockfish off
 Washington, Oregon and California during 1977. Northwest; Alaska Fisheries Center, National

- Marine Fisheries Service. Available from http://spo.nmfs.noaa.gov/mfr423-4/mfr423-42.pdf [accessed 28 February 2017].
- Gunderson, D.R., Westrheim, S., Demory, R., and Fraidenburg, M. 1977. The status of
 Pacific ocean perch (*Sebastes alutus*) stocks off British Columbia, Washington, and Oregon
 in 1974.
- Hamel, O.S. 2015. A method for calculating a meta-analytical prior for the natural mortality rate using multiple life history correlates. ICES Journal of Marine Science: Journal du Conseil **72**(1): 62–69. doi: 10.1093/icesjms/fsu131.
- Hannah, R., and Parker, S. 2007. Age-modulated variation in reproductive development of female Pacific Ocean perch (*Sebastes alutus*) in waters off Oregon. Alaska Sea Grant, University of Alaska Fairbanks. pp. 1–20. doi: 10.4027/bamnpr.2007.01.
- Hoenig, J.M. 1983. Empirical use of longevity data to estimate mortality rates. Fishery
 Bulletin 82: 898–903. Available from http://fishbull.noaa.gov/81-4/hoenig.pdf [accessed 28
 February 2017].
- Karnowski, M., Gertseva, V., and Stephens, A. 2014. Historical Reconstruction of Oregon's
 Commercial Fisheries Landings. Oregon Department of Fish; Wildlife, Salem, OR.
- McAllister, M.K., and Ianelli, J.N. 1997. Bayesian stock assessment using catch-age data and the sampling importance resampling algorithm. Canadian Journal of Fisheries and Aquatic Sciences **54**: 284–300. Available from http://www.nrcresearchpress.com/doi/pdf/10.1139/ f96-285 [accessed 10 March 2017].
- 658 McCoy, M.W., and Gillooly, J.F. 2008. Predicting natural mortality rates of plants and 659 animals. Ecology Letters **11**(7): 710–716. doi: 10.1111/j.1461-0248.2008.01190.x.
- Methot, R.D., and Wetzel, C.R. 2013. Stock synthesis: A biological and statistical framework for fish stock assessment and fishery management. Fisheries Research **142**: 86–99. doi: 10.1016/j.fishres.2012.10.012.
- Pikitch, E.K., Erickson, D.L., and Wallace, J.R. 1988. An evaluation of the effectiveness of trip limits as a management tool. Northwest; Alaska Fisheries Center, National Marine Fisheries Service NWAFC Processed Report. Available from https://www.afsc.noaa.gov/Publications/ProcRpt/PR1988-27.pdf [accessed 28 February 2017].
- Ralston, S., Pearson, D.E., Field, J.C., and Key, M. 2010. Documentation of the California catch reconstruction project. US Department of Commerce, National Oceanic; Atmospheric Adminstration, National Marine.
- Rogers, J. 2003. Species allocation of *Sebastes* and *Sebastolobus* species caught by foreign countries off Washington, Oregon, and California, U.S.A. in 1965-1976. Unpublished

- 672 document.
- Rogers, J.B., and Pikitch, E.K. 1992. Numerical definition of groundfish assemblages caught
- off the coasts of Oregon and Washington using commercial fishing strategies. Canadian
- Journal of Fisheries and Aquatic Sciences 49(12): 2648–2656. Available from http://www.
- 676 nrcresearchpress.com/doi/abs/10.1139/f92-293 [accessed 9 March 2017].
- 677 Seeb, L.W., and Gunderson, D.R. 1988. Genetic variation and population structure of Pacific
- ocean perch (Sebastes alutus). Canadian Journal of Fisheries and Aquatic Sciences 45(1):
- $78-88. \ \ Available \ from \ http://www.nrcresearchpress.com/doi/abs/10.1139/f88-010 \ [accessed]$
- 680 28 February 2017].
- Then, A.Y., Hoenig, J.M., Hall, N.G., and Hewitt, D.A. 2015. Evaluating the predictive
- performance of empirical estimators of natural mortality rate using information on over 200
- fish species. ICES Journal of Marine Science 72(1): 82–92. doi: 10.1093/icesjms/fsu136.
- Thorson, J.T., and Barnett, L.A.K. 2017. Comparing estimates of abundance trends and
- distribution shifts using single- and multispecies models of fishes and biogenic habitat. ICES
- Journal of Marine Science: Journal du Conseil: fsw193. doi: 10.1093/icesjms/fsw193.
- Weinberg, J.R., Rago, P.J., Wakefield, W.W., and Keith, C. 2002. Estimation of tow distance
- and spatial heterogeneity using data from inclinometer sensors: An example using a clam
- survey dredge. Fisheries Research **55**(1–3): 49–61. doi: 10.1016/S0165-7836(01)00292-2.
- 690 Wilkins, M., and Golden, J. 1983. Condition of the Pacific ocean perch resource off Washington
- and Oregon during 1979: Results of a cooperative trawl survey. North American Journal of
- ⁶⁹² Fisheries Management **3**: 103–122.
- Withler, R., Beacham, T., Schulze, A., Richards, L., and Miller, K. 2001. Co-existing
- populations of Pacific ocean perch, Sebastes alutus, in Queen Charlotte Sound, British
- 695 Columbia. Marine Biology **139**(1): 1–12. doi: 10.1007/s002270100560.
- ⁶⁹⁶ Zimmermann, M., Wilkins, M., Weinberg, K., Lauth, R., and Shaw, F. 2003. Influence of
- improved performance monitoring on the consistency of a bottom trawl survey. ICES Journal
- of Marine Science **60**(4): 818–826. doi: 10.1016/S1054-3139(03)00043-2.