

ABES Engineering College, Ghaziabad

Department of Applied Sciences & Humanities

Session: 2023-24 Semester: II Section: All

Course Name: Engineering Mathematics II Code: BAS 203

Assignment 4

Date of Assignment:

Date of submission:

S.N o.	KL, CO		Question	Mar ks
1	K ₃ ,CO4	1.3.1,2.1.3 2.4.4,4.3.4	Given that $(x, y) = x^2 - y^2 \& v(x, y) = -\left(\frac{y}{x^2 + y^2}\right)$. Prove that both u and v are harmonic functions but u+iv is not an analytic function of z.	5
2	K ₃ ,CO4	2.1.3,2.4.1 2.4.4,4.3.4	Find the constants a,b,c such that the function $f(z)$ where $f(z) = -x^2 + xy + y^2 + i(ax^2 + bxy + cy^2)$ is analytic. Express $f(z)$ in terms of z.	5
3/	K ₃ ,CO4	2.1.3 2.4.1	Using the Cauchy-Reimann equations , show that $f(z) = z ^2$ is not analytic at any point.	5
3	K ₃ ,CO4	4.3.4	Show that $v(x,y) = e^{-x}(x\cos y + y\sin y)$ is harmonic. Find its harmonic conjugate.	5
5	K ₃ ,CO4	2.4.1,2.4.4	Determine the analytic function $f(z)$ in terms of z whose real part is (i) $\frac{1}{2}log(x^2 + y^2)$ (ii) $(x - y)(x^2 + 4xy + y^2)$	5
6/	K ₃ ,CO4	1.3.1,2.1.3 2.4.1,4.3.4	11 /(2) = u + iv is an analytic function, find $ 1 /(2)$ in terms of z if $u = v = v$	5
2/	K ₃ ,CO4	2.1.3,2.4.1 2.4.4	Find the image of $ z - 2i = 2$ under the mapping $= \frac{1}{z}$	5
8	K ₃ ,CO4	4.3.4	Find the invariant points of transformation $w = \frac{1+z}{1-z}$	5
9	K ₃ ,CO4	2.4.1	Find the bilinear transformation which maps the points $z = 1, i, -1$ into the points $w = i, 0, -i$. Hence find the image of $ z < 1$.	5
10	K ₃ ,CO4	2.1.3,2.4.1 2.4.4	Show that the transformation $w = i\left(\frac{1-z}{1+z}\right)$ transforms the circle $ z = 1$ onto the real axis of the w plane and the interior of the circle into the upper half of the w-plane	5

Answers

2.
$$a = \frac{-1}{2}$$
; $b = -2$; $c = \frac{1}{2}$; $f(z) = \frac{-1}{2}(2+i)z^2$ 4. $u(x,y) = e^{-x}(x\sin y - y\cos y) + c$

4.
$$u(x,y) = e^{-x}(x\sin y - y\cos y) + c$$

5. (i)
$$logz + c$$

5. (i)
$$log z + c$$
 (ii) $(1-i)z^3 + c$ **6.** $e^z + c$ **7.** $4v + 1 = 0$

$$e^z + c$$

7.
$$4v + 1 = 0$$

9.
$$\mathbf{w} = \frac{\mathbf{i} - \mathbf{z}}{\mathbf{i} + \mathbf{z}}$$
; u>0