第5章 触发器 Flip-Flop (FF)

• 组合逻辑电路:

基本单元 — 逻辑门 — 无记忆功能

数字系统中,信息 → 处理

也需要存储 — 记忆器件或电路

• 时序逻辑电路:

基本单元 — FF — 记忆

触发器定义:

能储存一位二进制信息的基本单元。记忆元件 它可以存储一位二进制信息,也称为锁存器 (Latch)

 FF
 a) 双稳态: 1 and 0

 b) 置 1, 置 0

 c) 原信号消失后,保持新状态

§ 5.1 基本 RS-触发器 Basic RS-FF

5.1.1 与非门构成的基本RS-FF

1. 电路

Note:
$$\begin{cases} \overline{S} \square Q \\ \overline{R} \square \overline{Q} \end{cases}$$

两个与非门交叉耦合

 $rac{\hat{m}}{R}$ Set 置位端 \overline{R} Reset 复位端

输出:
$$Q=1,\overline{Q}=0$$
 "1" 态 $Q=0,\overline{Q}=1$ "0" 态

定义: 触发器的状态为 Q

符号

- 2. 工作原理 (state ~ input)
- 1) $\overline{S} = 0$, $\overline{R} = 1$ G_1 锁住 Q=1, $\overline{Q}=0$ Set (置1)

如果 \overline{S} 转成 1, 因为 $\overline{Q} = 0$, G_1 锁住, Q = 1

S = R = 1 保持原状态: No-change (NC)

触发器保持其目前的状态 (记忆功能)

$$2) \quad \overline{S} = 1, \overline{R} = 0$$

G₂ 锁住

$$\bar{Q}=1$$
, $Q=0$ Reset (置0)

如果R 转换成 1,

$$Q = 0$$
, G_2 锁住

$$\bar{S} = \bar{R} = 1$$

保持 Q=0

真值表

\overline{S}	_ R	$Q \bar{Q}$	2	FF 状态
0	O			
0	1	1 0		Set (1)
1	0	0 1	_	Reset (0)
1	1	NC N	[C	Set (1) Reset (0) 保持

3)
$$\stackrel{\overline{}}{=} \overline{S} = \overline{R} = 0, \qquad Q = \overline{Q} = 1,$$

强制为逻辑高电平

当 $\overline{R}, \overline{S}$ 同时从 0变到1

此时要看逻辑门的延迟时间 t_{pd} :

都是稳定状态,但不知是哪种. 在 \overline{SR} 同时从0变到1时,状态不定

5.1.2 RS-FF的功能描述

状态和变量

 Q^{n+1} 下一时刻稳定状态 Q^n 目前的稳定状态 输入变量 (对RS-FF为 \overline{S} \overline{R})

描述逻辑关系的方法包括:

状态转移真值表(状态表) 状态方程(特征方程)

状态转移图和激励表 波形图(时序图)

基本 RS-FF功能描述

1. 功能表

真值表

\overline{R}	\overline{S}	Q^n	Q^{n+1}	
0	0	0	Φ	
0	0	1	Φ	
0	1	0	0	
0	1	1	0	
1	0	0	1	
1	0	1	1	
1	1	0	0	
1	1	1	1	

\overline{R}	\overline{S}	Q^{n+1}
0	0	Φ
0	1	0
1	0	1
1	1	Q^n

2. 状态方程 (特征方程)

\overline{R}	\overline{S}	Q^{n}	Q^{n+1}	
0	0	0	Φ	
0	0	1	Φ	
0	1	0	0	
0	1	1	0	
1	0	0	1	
1	0	1	1	
1	1	0	0	
1	1	1	1	

状态方程(特征方程)

$$\begin{cases} Q^{n+1} = \overline{\overline{S}} + \overline{R}Q^n \\ \overline{\overline{S}} + \overline{R} = 1 \end{cases}$$

注意:将 Ā Ā Ā 春作整体输入信号符号上面的横线表示低电平有效

不同时为0

3. 状态图与状态表

组合电路:真值表-输入与输出关系

时序电路: 状态图 - 状态转换及转换条件

状态图 用图形表示输出状态转换的条件和规律

激励表

列出已知状态转换和所需要的输入条件的表称为激励表。激励表是以现态 Q^n 和次态 Q^{n+1} 为变量,以对应的输入 \overline{R} \overline{S} 为函数的关系表.

表示在什么样的激励下,才能使现态 Q^n 转换到次态 Q^{n+1} .

$$Q^n \longrightarrow Q^{n+1}$$

\overline{R}	\overline{S}	Q^{n}	Q^{n+1}
0	0	0	Ф
0	0	1	Φ
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

基本 RS-FF转换表

输出转换	FF 输入
$Q^n \rightarrow Q^{n+1}$	\overline{R} \overline{S}
0 0	Ф 1
0 1	1 0
1 0	0 1
1 1	1 Ф

4. 时序图 (波形图)

输出波形要对应输入波形.

对应输入画出基本RS-FF输出波形 (初始状态 Q = 0)

不确定

5.1.3 或非门构成的RS-FF

或非门 RS-FF真值表

S	R	Q^{n+1}
0	0	Q^n
0	1	0
1	0	1
1	1	0 (1→0 Ф)

输入S,R: 高有效

$$S = 1$$
, $R = 0$, $Q = 1$, S : set 1

$$R = 1, S = 0, Q = 0, R$$
: reset 0

§ 5.2 时钟 FF (同步 FF)

Gated FF (Synchronous FF)

在数字系统中,为协调各部分动作,需要某些FF 在同一时刻动作。引入一同步信号,使这些FF 只 有在同步信号到达时才按输入信号改变状态。同步 信号被称时钟脉冲信号。

CLK 信号: Clock

CLK为周期性矩形脉冲波形

5.2.1 时钟 RS-FF (Gated RS-FF)

在基本RS-FF加 G₃、G₄,只 有当 CLK=1, G3和 G4开门。 当CLK=0, G,和 G。锁住.

讨论 CLK=1时情况

上升沿有效

定义:

 Q^n CLK 到来之前 --- 原状态 Q^{n+1} CLK 到来之后 --- 新状态,次态

对每一个CLK,都有 Q^n , Q^{n+1}

时钟 RS-FF 真值表

$\bar{S} \bar{R}$	$Q \ ar{Q}$	FF state
0 0	1 1	 SR0→1不定
0 1	$\begin{vmatrix} 1 & 0 \end{vmatrix}$	Set (1)
1 0	0 1	Reset (0)
1 1	NC NC	保持

SRQ^{n}	Q^{n+1}	描述
0 0 0	0	S=R=0
0 0 1	1	$Q^{n+1}=Q^n$
0 1 0	0	
0 1 1	0	<i>R≠S</i>
1 0 0	1	$Q^{n+1}=S$
1 0 1	1	J
1 1 0	ϕ	R=S=1,
1 1 1	ϕ	$Q=Q=1$ $S R 1 \rightarrow 0 \phi$

$$S=0, R=1$$
 $G_3=1, G_4=0$
 $Q^{n+1}=0$

$$\bullet S=1, R=0$$
 $G_3=0, G_4=1$
 $Q^{n+1}=1$

输出与输入之间关系

同步RS-FF特征方程

$$\begin{cases} Q^{n+1} = S + \overline{R}Q^n \\ S \cdot R = 0 \qquad (不同时为1) \end{cases}$$

符号

缺点:

不确定状态

5.2.2 同步D-FF (Gated D-FF)

在S和R之间加一个非门,使 $S \neq R$

 $S=D, R=\bar{D}$ 无状态不定

工作原理:

CLK =0, FF 保持

CLK =1, FF 工作

$$D=1, (S=1, R=0) Q^{n+1}=1$$
 $D=0, (S=0, R=1) Q^{n+1}=0$

同步 D-FF 状态方程:

$$Q^{n+1} = D$$

5.2.3 同步 JK-FF

加两条反馈线到输入端

$$S = J\overline{Q}^n$$
, $R = KQ^n$

 Q, \overline{Q} 不同时为1,RS不同时 $1\rightarrow 0$,无状态不定

(Gated JK-FF)

两输入: J, K

CLK =0, FF 停; *CLK* =1, FF 工作

JKQ ⁿ	Q^{n+1}	描述
0 0 0	0	<i>J=K</i> =0
0 0 1	1	$\int Q^{\mathrm{n+1}} = Q^{\mathrm{n}}$
0 1 0	0	
0 1 1	0	<i>J≠K</i>
1 0 0	1	$Q^{n+1} = J$
1 0 1	1	
1 1 0	1	<i>J=K</i> =1
1 1 1	0	$\int Q^{n+1} = \overline{Q}^n$

JK-FF 特征方程

从 RS-FF:

$$Q^{n+1} = S + \overline{R}Q^{n}$$

$$= J\overline{Q}^{n} + \overline{K}Q^{n}Q^{n}$$

$$= J\overline{Q}^{n} + \overline{K}Q^{n}$$

$$Q^{\mathbf{n}+1} = J\overline{Q}^{\mathbf{n}} + \overline{K}Q^{\mathbf{n}}$$

符号:

CLK 正边沿触发

状态表

J	K	Q^{n}	Q^{n+1}
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

JK-FF 激励表

输出转换	FF 输入	
$Q^n ightarrow Q^{n+1}$	$oldsymbol{J}$	K
0 0	0	Φ
0 1	1	Φ
1 0	Φ	1
1 1	Φ	0

JK-FF状态图

5.2.4 同步T-FF

T-FF状态方程:

$$Q^{n+1} = T\overline{Q}^n + \overline{T}Q^n = T \oplus Q^n$$

$$\begin{cases} T = 0, \ Q^{n+1} = Q^n \ \text{保持} \\ T = 1, \ Q^{n+1} = \overline{Q}^n \ \text{翻转} \end{cases}$$

5.2.5 同步触发器的缺点

在 CLK=1期间,FF处于触发状态, Q^{n+1} 随着输入信号 R, S, D, J, K, T 的变化而变化,出现空翻现象。

一个CLK周期内,Q端只能变化一次,变化一次以上称为触发器的空翻。

$$Q^{n+1} = D$$

同步 FF 都存在空翻问 题要克服,用新结构

§ 5.3 主从-FF (Master-Slave FF)

为了克服 FF 的空翻,出现了几种结构的 FF 原理都是边沿触发:

FF 在触发脉冲边沿处改变状态

正边沿 (上升沿) ___负边沿 (下降沿) ___

边沿到来的瞬间触发,缩短触发时间

Master-Slave FF 是其中一种

5.3.1 主从 RS-FF

两个相同的同步RS-FF 相连,两个CLK之间加一 个非门(一个FF工作,另 一个停止)。

从触发器的状态 Q 为整个触发器的状态。

主触发器的状态为Q'

CLK=0, 主-FF 停, Q'保持 $\overline{CLK}=1$, 从FF开门,

∵ Q'保持 ∴ Q 保持

CLK=1, 主- FF 开门, $S,R \rightarrow Q'$ \overline{CLK} =0, 从 FF 关门

∴*Q* 保持

∴在 CLK=0 和 CLK=1期间, Q 保持

在 CLK 从 1 到 0 (CLK 下降沿)的时刻, 主FF内的信息传送到 Q

∴主从结构 RS-FF 是在CLK 下降沿触发的FF

Q是CLK有效边沿到达之前的最后信息

5.3.2 主从 JK-FF

在主从RS-FF上引出两条反馈 线构成主从JK-FF。

$$Q^{\mathbf{n}+1} = J\overline{Q}^{\mathbf{n}} + \overline{K}Q^{\mathbf{n}}$$

主从 JK-FF 是合格产品,无空翻,无状态不定

功能描述

主从 JK-FF 在 CLK 下降沿触发. 在 $\overline{S}_D = \overline{R}_D = 1$ 条件下, CLK 下降沿到来之前,

不用考虑 Q' Q^n 为有效边沿前的最后信息

练习

5.3.3 触发器的直接输入

直接置位输入 \overline{S}_D 强制 \overline{S}_D 低有效 \overline{R}_D

$$\overline{R}_D = 0$$
, $\overline{S}_D = 1$, $Q = 0$
 $\overline{S}_D = 0$, $\overline{R}_D = 1$, $Q = 1$

异步输入强制触发器的状态,绝对优先,与J,K, CLK 等信号无关。

$\bar{S}_D \bar{R}_D$	$CLK J K Q^n$	Q^{n+1}		
0 0		不允许		
0 1	φφφφ	1 SD直接置1	_	化士米
1 0	φφφφ	0 \overline{R}_D 直接置 0 (清 0)	5	低有效
1 1		FF工作		

$$\begin{cases} \underline{Q}^{n+1} = J\overline{Q}^n + \overline{K}Q^n \\ \overline{S}_D = \overline{R}_D = 1 \end{cases}$$

$$Q, J, \overline{S}_{D} \rightarrow$$
同一侧 $\overline{Q}, K, \overline{R}_{D} \rightarrow$ 同一侧

无 \bar{S}_{D} , \bar{R}_{D} 波形时, $\bar{S}_{D} = \bar{R}_{D} = 1$

5.3.4 主从 D-FF

主从 JK-FF 加一个非门:

特征方程
$$\begin{cases} Q^{n+1} = D \\ \overline{S}_D = \overline{R}_D = 1 \end{cases}$$

D-FF 是 JK-FF 中 $J \neq K$ 的部分,是JK-FF 的特例

在 CLK 下降沿到达之前, 若D=0 (D=1), 当CLK 下降沿到达时, $Q^{n+1}=0$ ($Q^{n+1}=1$).

 Q^{n+1} delays one period of $CLK \implies Delay FF$

练习

5.3.5 主从 T-FF

T-FF特征方程:

$$Q^{n+1} = T\overline{Q}^n + \overline{T}Q^n = T \oplus Q^n$$

$$T = 0, Q^{n+1} = Q^n$$

$$T = 1, Q^{n+1} = \overline{Q}^n$$

$$T = 1, Q^{n+1} = \overline{Q}^n$$

CLK下降沿触发

Toggle - FF

T-FF 是 JK-FF 中J=K 的部分,是JK-FF 的特例

5.3.6 主从结构 FF的问题

主从 FF:

CLK=1期间,输入信号数据(J、K、D、T)不允许变化,否则会出现"一次变化"现象,使FF输出状态不能反映 CLK 在从 1 到 0 前瞬间 J、K端的状态,破坏了逻辑关系。主从式FF只适用于具有窄时钟脉冲的场合。

主从FF 只能用在CLK 信号很窄的场合

§ 5.4 正边沿触发触发器 Positive Edge Triggered FF

主从FF为负边沿触发工作,正常工作时要求主从JK-FF 在CLK=1期间J,K 信号不变,但干扰信号仍能进入。

5.4.1 正边沿触发 D-FF

$$Q^{n+1} = D$$

工作原理: $(\overline{S}_D = \overline{R}_D = 1)$

CLK=0, $G_3=G_4=1$, Q 保持

D过 G_6 、 G_5 等在 G_3 、 G_4 入口

当CLK上升沿到达

若
$$D=0$$
, $G_6=1$, $G_5=0$, $G_3=1$, $G_4=0$, $Q=0$

若
$$D=1$$
, $G_6=0$, $G_5=1$, $G_3=0$, $G_4=1$, $Q=1$

维持一阻塞式FF在CLK上升沿触发

CLK上升沿前D的数据为CLK上升沿到时 Q^{n+1} 的状态

$$\mathbf{FF}$$
 正边沿触发 $\mathbf{Q}^{\mathbf{n+1}} = \mathbf{D}$

画波形步骤:

- ① 直接输入 \overline{R}_D \overline{S}_D
- ② CLK 有效边沿 「

- 特征方程 $\begin{cases} Q^{n+1} = D \\ Q^{n+1} = J\overline{Q}^n + \overline{K}Q^n \\ Q^{n+1} = T \oplus Q^n \end{cases}$

例: 画出上升边沿触发的D-FF波形

5.4.2 正边沿触发 JK-FF

符号:

$$\begin{cases} Q^{n+1} = J\overline{Q}^n + \overline{K}Q^n \\ \overline{S}_D = \overline{R}_D = 1 \end{cases}$$

除了上升沿触发外, 与主从JK-FF相同。

5.4.3 正边沿触发 T-FF

符号:

$$\begin{cases} Q^{n+1} = T \oplus Q^n \\ \overline{S}_D = \overline{R}_D = 1 \end{cases}$$

CLK 正边沿触发

6 种合格产品:

负边沿触发 JK-FF, D-FF, T-FF

正边沿触发 JK-FF, D-FF, T-FF

练习:

分别画出正边沿和负边沿触发的JK-FF的输出波形.

5.5 设具有异步端的主从JK触发器的初始状态Q=0,输入波形如题图5.5所示,试画出输出端Q的波形。

解:

下降沿

44

§ 5.5 触发器之间的转换

Conversion Between FFs

1. JK-FF 转成 D-FF

已知 FF:
$$Q^{n+1} = J\overline{Q}^n + \overline{K}Q^n$$
 } 目标 FF: $Q^{n+1} = D$

目标 FF:
$$Q^{n+1} = D$$

$$J\overline{Q}^{n} + \overline{K}Q^{n} = D\left(\overline{Q}^{n} + Q^{n}\right)$$
$$= D\overline{Q}^{n} + DQ^{n}$$

$$\therefore J = D, \quad K = D$$
加一个非门

2. JK-FF 转成 T-FF

已知 FF:
$$Q^{n+1} = J\overline{Q}^n + \overline{K}Q^n$$

$$\exists \overline{K} \text{ FF: } Q^{n+1} = T \oplus Q^n = T\overline{Q}^n + \overline{T}Q^n$$

$$\exists \overline{K} \text{ FF: } Q^{n+1} = T \oplus Q^n = T\overline{Q}^n + \overline{T}Q^n$$

3. T-FF 转成 D-FF

已知 FF:
$$Q^{n+1} = T \oplus Q^n$$
 目标 FF: $Q^{n+1} = D$

目标 FF:
$$Q^{n+1} = D$$

$$T \oplus Q^{n} = D$$

$$T = D \oplus Q^{n}$$

4. T-FF 转成 JK-FF

Given FF:
$$Q^{n+1} = T \oplus Q^n$$

Target FF:
$$Q^{n+1} = J\overline{Q}^n + \overline{K}Q^n$$

$$T \oplus Q^n = J\overline{Q}^n + \overline{K}Q^n$$

$$T = (J\overline{Q}^{n} + \overline{K}Q^{n}) \oplus Q^{n}$$
$$= J\overline{Q}^{n} + KQ^{n}$$

6. D-FF 转成 T-FF

§ 5.6 触发器应用 Applications of FF

例1: 根据下图中触发器及 CLK, R_D , T 波形,对应 画出 Q 波形.

$$Q^{n+1} = T \oplus Q^n$$

$$T=1, \quad Q^{n+1}=\overline{Q}^n$$

$$T_O=2T_{CLK}$$

二分频电路

$$f_Q = \frac{1}{2} f_{CLK}$$

Toggle FF 翻转

例 2:

触发器如图所示,对应输入波形画出输出波形Q.

例 3:对应下图电路的输入CLK和 K_1 波形画出输出 Q_1 和 Q_2 的波形。初始 Q_1 和 Q_2 为高电平.

例 4. 根据下图电路及CLK和 K_1 输入波形,画出输出 Q_1 和 Q_2 波形。初始状态 $Q_1=Q_2=0$.

$$Q_1^{n+1} = J_1 \overline{Q}_1^n + \overline{K}_1 Q_1^n \qquad \Box$$

$$Q_2^{n+1} = D_2 = Q_1^n \qquad \Box$$

$$\stackrel{\text{def}}{=} Q_2 = 1, \ \overline{R}_D = 0, \ Q_1 = 0$$

消除(接触跳动)噪声电路: 当一个开关闭合时, 在开关完全闭合之前几毫秒时间内,有时会发生金 属接触点之间的碰撞和跳动,这样置位端将产生不 正确的结果,导致机器的误动作。(图(a))

(a) Switch contact bounce

(b) Contact-bounce eliminator circuit

用基本RS-FF:

当开关第一次与2点相接时, $\overline{S}=0,\overline{R}=1$,输出Q为高电平,当开关跳开时, $\overline{S}=1,\overline{R}=1$,输出Q不变。(图(b))

作业:

5.9

5.10 (
$$Q_{10}$$
中 J =1)

5.14

5.17

5.18

5.13

 \overline{Q}^n