DM549 and DS820

Lecture 13: Primes and Greatest Common Divisors

Kevin Aguyar Brix Email: kabrix@iomada.sdu.dk

University of Southern Denmark

28 October, 2024

Last Time: Introduction to Modular Arithmetic

Definitions: Divisibility, quotient, remainder.

Definition (Definition 4.1.3)

Let $a, b \in \mathbb{Z}$ and $m \in \mathbb{Z}^+$. Then we have the *congruence* (kongruens)

$$a \equiv b \pmod{m}$$

if and only if m divides a-b. We also say that a and b are congruent (kongruente) modulo m.

Theorem (only proof sketch, Theorems 4.1.3 and 4.1.4)

Let $a, b \in \mathbb{Z}$ and $m \in \mathbb{Z}^+$. Then the following statements are equivalent:

- (i) $a \equiv b \pmod{m}$
- (ii) $a \mod m = b \mod m$
- (iii) There exists $k \in \mathbb{Z}$ with a = b + km.

Last Time: Adding and Multiplying Congruences

Theorem (Theorem 4.5.1)

Let $a,b,c,d\in\mathbb{Z}$ and $m\in\mathbb{Z}^+.$ If $a\equiv b\pmod m$ and $c\equiv d\pmod m$, then $a+b\equiv c+d\pmod m \quad \text{and} \quad a\cdot b\equiv c\cdot d\pmod m.$

Remark:

- In particular, that means that we can add the same number to both sides of a congruence or multiply them with the same number.
- The above statements also hold with subtraction:
 - ▶ The theorem shows that $c \equiv d \pmod{m}$ implies $-c \equiv -d \pmod{m}$.
 - ▶ We can hence add $-c \equiv -d \pmod{m}$ to subtract $c \equiv d \pmod{m}$.
- We cannot always divide both sides of a congruence by the same number!

A Trick for Faster Computation

Corollary (proof only for addition, Corollary 4.1.2)

Let $a, b \in \mathbb{Z}$ and $m \in \mathbb{Z}^+$. Then

$$(a+b) \bmod m \equiv (a \bmod m) + (b \bmod m) \pmod m$$

and

$$(a \cdot b) \mod m \equiv (a \mod m) \cdot (b \mod m) \pmod{m}$$
.

A Quiz

Go to pollev.com/kevs

Primes and The Fundamental Theorem of Arithmetic

Definition (Definition 4.3.1)

Let $n \in \mathbb{Z}$ with $n \ge 2$. We call n a prime number (primtal) if the only positive factors of n are 1 and n. If n is not prime, n is called *composite* (sammensat).

The Fundamental Theorem of Arithmetic (no proof, Theorem 4.3.1)

Let $n \in \mathbb{Z}$ with $n \ge 2$. One can write n as a product of prime numbers in exactly one way (up to rearranging factors).

Theorem (Theorem 4.3.3)

There are infinitely many primes.

A Joke

The Greatest Common Divisor

Definition (Definition 4.3.2)

Let $a, b \in \mathbb{Z} \setminus \{0\}$. Then

$$\gcd(a,b) = \max \{d \mid d \mid a \land d \mid b\}$$

is called the greatest common divisor (største fælles divisor) of a and b.

Definition (Definition 4.3.3)

Let $a,b\in\mathbb{Z}\setminus\{0\}$. We call a,b relatively prime (inbyrdes primske) if gcd(a,b)=1.

The Least Common Multiple

Definition (Definition 4.3.2)

Let $a, b \in \mathbb{Z}^+$. Then

$$lcm(a,b) = min \{ m \mid a \mid m \land b \mid m \}$$

is called the *least common multiple* (mindst fælles multiplum) of a and b.

Theorem (Theorem 4.3.5)

Let $a, b \in \mathbb{Z}^+$. Then

$$a \cdot b = \gcd(a, b) \cdot \operatorname{lcm}(a, b).$$

Proof sketch:

- For each prime p, let a_p (b_p) be the number of times that p occurs as a prime factor in a (b).
- In gcd(a, b), p occurs $min(a_p, b_p)$ times; in lcm(a, b), $max(a_p, b_p)$ times.
- So in $gcd(a, b) \cdot lcm(a, b)$, it occurs $min(a_p, a_p) + max(a_p, b_p) = a_p + b_p$ times, just like in $a \cdot b$.

The Euclidean Algorithm

Lemma (Lemma 4.3.1)

Let $a, b, q, r \in \mathbb{Z} \setminus \{0\}$ with a = bq + r. Then gcd(a, b) = gcd(b, r).

Euclidean Algorithm: To compute gcd(a, b) assuming a > b,

- Start with x = a and y = b.
- As long as $y \neq 0$:
 - ▶ Replace (x, y) with $(y, x \mod y)$.
- Return x.

Note: By lemma above, it follows the Euclidean Algorithm is correct.

Theorem (Theorem 4.3.6)

Let $a, b \in \mathbb{Z}^+$. Then there exist $s, t \in \mathbb{Z}$ with gcd(a, b) = sa + tb.

Note: Lemma follows by going through computations in reverse order.