## Vertex of the Quadratic

 $p_1 = -\frac{b}{2a}$  namely  $c(p_1) = c - \frac{b^2}{4a}$ Now compute the same quadratic at  $\mathsf{p}_{1^+}\mathsf{h}$ , namely

Given a quadratic  $c(p) = a p^2 + b p + c$  compute its value at

 $c (p_1+h) = -\frac{b^2}{4a} + a h^2 + c$ Compute  $\triangle = c(p_1 + h) - c(p_1) = a h^2$ 

Since  $h^2 > 0$ , therefore if a > 0 then  $\triangle > 0$  or vertex is the

global minimum!

Example 1.  $c(p) = 4p^2 - 32p - 57$ 

1000

Δc<0-



 $\Delta c < 0$ 

Secant

-200

-400

-600

-800