



# Soutenance Stage Recherche Ingénieur



Sujet: FPGA Red Pitaya

Encadrant: Fabrice Wiotte Frédéric Du Burck

PAEZ Edward

Stage: Avril-Juin 2021 (2 mois)





### PLAN





- Présentation de l'entreprise
- Contexte du stage
- Le projet
- La carte Red Pitaya
- Travail réalisé
- Bilan d'expérience







## Présentation de l'entreprise



## LPL - Laboratoire de Physique des Lasers

• Les interactions entre la lumière et la matière



#### Axes d'études:

- > Atomes aux interfaces
- > Lasers pour le vivant
- > Gaz quantiques
- Métrologie, Molécules et Tests Fondamentaux (MMT)
- > Photonique organique et nanostructures (PON)







### Contexte du stage



## Département Électronique du LPL

- Team (F. Wiotte (IE), H. Mouhamad (AI) et L. Malinge (TCN))
- Possibilité de discuter avec l'équipe
- Matériel disponible
- Lieu adéquate pour effectuer des tests

Mission: Génération de signaux haute fréquence avec la carte Red Pitaya (FPGA+CPU)

Mots-clefs: Modernité + Organisation + Savoir-faire





## Le Projet



#### Interface graphique



#### Red Pitaya 125-10



**800 KHZ** 







## La carte Red Pitaya



|                    | STEMlab 125-10                    |
|--------------------|-----------------------------------|
| Processor          | Processor DUAL CORE ARM CORTEX A9 |
| FPGA               | FPGA Xilinx Zynq 7010 SOC         |
| RAM                | 256MB (2Gb)                       |
| System memory      | Micro SD up to 32GB               |
| Console connection | USB to serial converter required  |
| Power connector    | Micro USB                         |
| Power consumption  | 5V, 1,5A max                      |
|                    | STEMlab 125-10                    |
| RF input channels  | 2                                 |
| Sample rate        | 125 MS/s                          |
| ADC resolution     | 10 bit                            |
| Input impedance    | 1MOhm/10pF                        |
|                    | STEMlab 125-10                    |
| RF output channels | 2                                 |
| Sample rate        | 125 MS/s                          |
| DAC resolution     | 10 bit                            |
| Load impedance     | 50 Ohm                            |
| Voltage range      | ±1V                               |



|                          | STEMlab 125-10 |
|--------------------------|----------------|
| Digital IOs              | 16             |
| Analog inputs            | 4              |
| Analog inputs voltage ra | 0-3,5V         |
| Sample rate              | 100kS/s        |
| Resolution               | 12bit          |
| Analog outputs           | 4              |
| Analog outputs voltage r | 0-1,8V         |
| Communication interfac   | I2C, SPI, UART |
| Available voltages       | +5V,+3,3V,-4V  |
| external ADC clock       | N/A            |







### La carte Red Pitaya



Le Zynq-7000 SoC est composé des deux principaux blocs fonctionnels suivants :

#### 1. Système de traitement (PS)

- ✓ Unité de processeur d'application (APU)
- ✓ Interfaces mémoire
- ✓ Périphériques d'E/S (IOP)
- ✓ Interconnexion

#### 2. Logique programmable (PL)

- ✓ Bascules/portes logiques et LUT's
- ✓ Traitement numérique du signal (DSP)
- ✓ Périphériques d'E/S (IOP)
- ✓ Interconnexion











Programmation de la carte Red Pitaya

Interface graphique avec Visual Studio C#







#### Programmation avec VIVADO 2018.2

La définition de tout la partie matérielle et fonctionnel avec VIVADO pour faire « Export Hardware » en VHDL ou Verilog et aussi des IP's (Intellectual Property) de la bibliothèque Xilinx.



Diagramme général









### Programmation avec VIVADO 2018.2



Diagramme de Génération de signal







Instrumentation

### Travail réalisé



#### Programmation avec SDK 2018.2

2. Le développement de la partie logicielle pour la liaison série en C.







#### Programmation avec SDK 2018.2

3. Création d'image bootable de notre système dans la carte SD.









#### Interface graphique avec Visual Studio C#

- 1. Config. du port
- TrackBarScroll control via liaison série.
- 3. Codification utilisé:
  Pour AM #a0 à #a9
  Pour FM #f0 à #ff
  Pour PH #p0 à #p9









## Bilan d'expérience



#### 1. Bilan technique

- ✓ Travail de conception
- ✓ Projet à mener
- ✓ Consolidation de connaissance (électronique, FPGA, C#)
- ✓ Maitrise de 4 logiciels (Vivado, SDK, Matlab, Visual Studio)
- ✓ Créativité

#### 2. Bilan organisationnel et humain

- ✓ Mise à jour des tache et système de priorités
- √ S'intégrer à un service
- √ Échanges



