

TETRA-DSV Control Hardware Protocol

CONTENTS

Chapter 1. 제어 하드웨어 프로토콜 (Control Hardware Protocol)	4
1-1. 통신규약(Rules of Communication)	4
1-2. 통신 Packet 운영방법 (Packet Communication Methods of Operation)	4
1-3. 전원/센서모듈프로토콜 (Power Sensor Board Protocol)	5
1-3-1Power Sensor BD status Read	6
1-3-2 TETRA Status Read	7
1-3-3 Analog Port Data Read	8
1-3-4 Power Sensor BD Regulator Power ON/OFF	9
1-3-5 Single Power Sensor BD Regulator Power ON/OFF	10
1-3-6 Wheel Driver BD Power Relay ON/OFF	10
1-3-7 Out Port ON/OFF	10
1-3-8 OUT Port Single Control ON/OFF	11
1-3-9 IN Port & OUT Port status Read	11
1-3-10 Sonar Sensor Loop Enable	11
1-3-11 Sonar Sensor Data Read	12
1-3-12 Power Sensor BD Parameter Data Write	12
1-3-13 Parameter Data Flash Memory Write	14
1-3-14 Parameter Data Read	14
1-3-15 LED Brightness Toggle Data Write	14
1-3-16 Display Toggle LED Select	15
1-3-17 Cumulative current Read	16
1-3-18 Cumulative voltage Read	17
1-3-19 Cumulative buffer erase	18
1-3-20 Cumulative buffer erase	18
1-4. 구동보드프로토콜 (Drive Board Protocol)	18
1-4-1구동보드파라미터일람표 (Drive Board Parameter Chart)	19
1-4-2 Drive status Read	20
1-4-3 Encoder Position Read	22
1-4-4 Coordinates Read	22
1-4-5 Coordinates Change	22
1-4-6Motion	23
1-4-7 Velocity Control (Speed Mode)	24
1-4-8 Velocity Control (Position Mode)	24

1-4-9 Error Reset	24
1-4-10 Servo ON/OFF	24
1-4-11 Control Mode Change	24
1-4-12Parameter Read	25
1-4-13 Parameter Write	25
1-4-14Parameter Save	25
1-5.프로토콜 실행 예제 (Example of Protocol execution)	26
Ex1) 현재위치에서 1[m] 직진후 90도우회전명령내리기	26
Ex2) 위치제어모드에서모터제어하기	28
Ex3) 속도제어모드에서모터제어하기	30
Ex4) 원하는가속도, 밝기, 색상으로 LED 제어하기	32
Ex5) Sonar 제어하기	34
Ex6) Bumper 센서동작상태확인하기	36
Ex7) EMS 스위치동작상태확인하기	38
Ex8) I.O PORT를사용하여 RELAY 제어하기	40
Ex9) Power Senser Board에공급되는전원제어하기	43
Chapter 2. 전송계층 프로토콜 TCP (Transmission Control Protocol)	47
2-1. TCP/IP모듈프로토콜요청값차트 (TCP/IP Module Protocol Request Chart)	47
2-2. TCP/IP모듈프로토콜응답값차트(TCP/IP Module Protocol Response Chart)	48
2-3 TCP/IP모듈프로토콜식해예제/TCP/IP Module Protocol Evample)	50

Chapter 1. 제어 하드웨어 프로토콜 (Control Hardware Protocol)

1-1. 통신규약(Rules of Communication)

대부분의 DATA는 ASCII Code로 통신합니다. (일부 DATA Packet은 Binary 통신) 한 개의 통신 Packet이란 다음과 같이 STX,DATA,ETX,LRC로 이루어진 구조를 말합니다. 한 개의 통신 Packet안에 여러 개의 DATA가 있을 경우 DATA간 ';' (0x3b)로 구분합니다.(일부 명령 제외)

Transmitter	STX	DATA	ETX	LRC

월세 세액공제

ITEMS	CONTENTS
STX	0x02
ETX	0X03
LRC	STX, LRC 를 제외한 exclusive-OR LRC = DATA[0]^DATA[1]^^DATA[N]^ETX

Receiver DATA는 binary(HEX)로 통신합니다.한 개의통신Packet은 다음과같이 STX,NUM,DATA, ETX,LRC로이루어 집니다.NUM은 2byte로 이루어 지며 DATA의 byte수를 알려줍니다. 한 개의 DATA는 2byte로 이루어 집니다.

Receiver STX N	IUM_H NUM_L	DATA[0_H,0~N]	ETX	LRC
----------------	-------------	---------------	-----	-----

ITEMS	CONTENTS
STX	0x02
NUM	Data byte 수
ETX	0X03
LRC	STX, NUM,LRC 를 제외한 exclusive-OR LRC = DATA[0_H]^DATA[0_L]^^DATA[N_H]^ DATA[N_L]

1-2. 통신 Packet 운영 방법 (Packet Communication Methods of Operation)

각각의 제어 보드에서 요구한 기능에 대하여 각 Packet은 다음과 같은 FLAG값을 갖습니다.

FLAG - 0x30 : 기능실행 OK

요구한 프로토콜의 실행이 완료되었음을 의미하며 제어 보드로부터의 응답이 이상없음을 나타냅니다.

FLAG - 0x31: 프로토콜 ERROR

세부프로토콜에서벗어난기능을요구 하였을 때제어 보드로부터받게 되는값입니다. 예로서

- 없는 기능을 요구
- 정의한 값을 벗어난 경우
- 데이터 패킷의 길이가 틀린 경우

등이 있습니다.

FLAG - 0x32 : 기능실행 FAIL

요구한 기능을 실행하다가 실패한 경우 받게 되는 값입니다. 0x32를 받은 측은 ACK 신호를 보내 통신을 종료합니다. 만약, 실행실패원인을 알고 싶은 경우에는 지정 된 프로토콜을 이용하여 에러 정보를 받을 수 있습니다.

1-3. 전원/센서 모듈 프로토콜 (Power Sensor Board Protocol)

Type	COMMAND	CONTENTS
HEX	PD	Power Status
HEX	PV	Battery & Charger Status Read
HEX	PA	Analog Port Data Read
ASCII	PE	Regulator Power ON/OFF
ASCII	PM	Wheel Driver BD Power ON/OFF
ASCII	РО	Out Port ON/OFF Command
HEX	PI	IN Port, OUT Port Status Read
<mark>ASCII</mark>	<mark>PS</mark>	Sonar Sensor Loop Enable Command
HEX	<mark>PN</mark>	Sonar Sensor Data Read
A S C II	DVV	Power Sensor BD Parameter Write
ASCII	PVV	Command
ASCII	PF	Parameter Flash memory Write Command
ASCII	PR	Parameter Data Read
ASCII	LI	LED Module Brightness Control(8EA)
A C C II	10	LED Drightness Tagala Data Write
ASCII	LD	LED Brightness Toggle Data Write
A C C II	1.7	LED Drinktones Toronto Freshle Commond
ASCII	LI	LED Brightness Toggle Enable Command
LIEV	1) /	Cumulative Voltage Data Read (2byte,
HEX	IV	500EA)
LIEV	ıc	Cumulative Current Data Read (2byte,
HEX	IC	500EA)
	HEX HEX ASCII ASCII HEX ASCII HEX ASCII HEX ASCII HEX ASCII	HEX PD HEX PV HEX PA ASCII PE ASCII PM ASCII PO HEX PI ASCII PS HEX PN ASCII PW ASCII PF ASCII PR ASCII LI ASCII LI HEX IV

<亜4-1> Protocol commands summary of Power Sensor Board

1-3-1PowerSensor BD status Read

플랫폼의 배터리 전압, 소모전류, 각 PORT들의 전원 ON/OFF상태등의 정보를 알려줍니다. Data 형식은 HEX이며 1개 Data는 2Byte입니다.

Transmitter	STX	Р	D	ETX	LRC				
Receiver	STX	Data byte 수 H	Data byte 수 L	D0_H	D0_L	D1_H	D1_L	D2_H	D2_L
				D3_H	D3_L	D4_H	D4_L	D5_H	D5_L
				D6_H	D6_L	D7_H	D7_L	D8_H	D8_L
				D9_H	D9_L	D10_H	D10_L	D11_H	D11_L
				D12_H	D12_L	ETX	LRC		

DATA		CONTENTS							
D0		Battery Voltage (0.1V)							
D1			S	ystem Cu	rent (0.1A	١)			
D2			C	Charge Cui	rent (0.1A	١)			
D3			Cl	narge Sign	nal (0~102	3)			
D4		IN Port Status							
D4	EX_IN7	EX_IN6	EX_IN5	EX_IN4	EX_IN3	EX_IN2	EX_IN1	EX_IN0	
D5				OUT Po	rt Status				
DJ	EX_OUT7	EX_OUT6	EX_OUT5	EX_OUT4	EX_OUT3	EX_OUT2	EX_OUT1	EX_OUT0	
				Power	Status				
D6	Error7	Error6	Error5	Error4	Error3	Error2	Error1	Error0	
	Power7	Power6	Power5	Power4	Power3	Power2	Power1	Power0	
D7	Charge Status(1~12)								
D8	Temperature0 (0.1°C)								
D9		Temperature1 (0.1°C)							

D7	Charge Status
0	자동충전 Mode OFF
1	자동충전 Mode ON
2	Robot 충전단자, 충전스테이션 충전단자 접촉 상태
3	Battery 충전 중
5	Robot 충전단자, 충전스테이션 충전단자 접촉 후 Robot 충전 Relay ON 상태
6	Battery Re-Charge Voltage (Para23) 보다 Battery 전압이 높은 상태
7	Robot 충전단자 불안정 접촉상태
11	Docking Terminal Loading 접촉
12	Docking Terminal Unloading 접촉

예)

Transmitter	STX	Р	D	ETX	LRC				
Receiver	STX	0x00	0x2A	0x01	0x0F	0x00	0x1F	0x00	0x00
				0x00	0x00	0x00	0x01	0x00	0xBB
				0x00	0x58	0x00	0x2E	0x00	0x13
				0x00	0x27	0x00	0xFF	0x00	0x00
				0x00	0x01	ETX	LRC		

DATA				CONT	ENTS				
D0		Battery Voltage : 271 ->27.1V							
D1			S	ystem Curre	nt : 31 ->3.1	A			
D2				Charge Curr	ent:0->0A				
D3		(Charge Signa	ll: 0 -> 충전:	스테이션에 7	접촉되지 않음	2		
D4		IN Port Status -> 19							
D4	OFF	OFF	OFF	ON	OFF	OFF	ON	ON	
D5				OUT Port S	tatus -> 39				
D3	OFF	OFF	ON	OFF	OFF	ON	ON	ON	
				Power Sta	atus -> 63				
D6	NC	NC	Normal	Normal	Normal	Normal	Normal	Normal	
	-	-	ON	ON	ON	ON	ON	ON	
D7	Charge Status: 1 -> 충전대기 상태								
D8	Temperature0 : 252 -> 25.2°C								
D9			Te	mperature1	: 287 ->28.7	°C			

1-3-2 TETRA Status Read

TETRA-DS V에 필요한 Power 및 센서 정보를 알려줍니다. Data 형식은 HEX이며 1개 Data는 2Byte입니다.

Transmitter	STX	Р	Q	ETX	LRC				
Receiver	STX	Data byte 수 H	Data byte 수 L	D0_H	D0_L	D1_H	D1_L		
				D2_H	D2_L	D3_H	D3_L		
				D4_H	D4_L	D5_H	D5_L		
				D6_H	D6_L	D7_H	D7_L		
				D8_H	D8_L	D9_H	D9_L	ETX	

DATA	CONTENTS
D0	Battery Voltage%
D1	Battery Voltage
D2	ROBOT Current
D3	Charger Terminal Status
D4	INPORT DATA FLAG
D5	OUTPORT DATA FLAG

	D6	NC
	D7	NC
	D8	NC
ı	D9	NC

D3	Charge Status
0	자동충전 Mode OFF
1	자동충전 Mode ON
2	Robot 충전단자, 충전스테이션 충전단자 접촉 상태
3	Battery 충전 중
5	Robot 충전단자, 충전스테이션 충전단자 접촉 후 Robot 충전 Relay ON 상태
6	Battery Re-Charge Voltage (Para23) 보다 Battery 전압이 높은 상태
7	Robot 충전단자 불안정 접촉상태
11	Conveyor Loading 접촉
12	Conveyor Unloading 접촉

1-3-3 Analog Port Data Read

8개의 ADC(Analog to Digital Converter) Port 값을 읽어옵니다. Data 형식은 HEX이며 1개 Data는 2Byte입니다.

Transmitter	STX	Р	Α	ETX	LRC				
Receiver	STX	Data byte 수 H	Data byte 수 L	D0_H	D0_L	D1_H	D1_L	D2_H	D2_L
				D3_H	D3_L	D4_H	D4_L	D5_H	D5_L
				D6_H	D6_L	D7_H	D7_L	ETX	LRC

DATA	VALUE	CONTENTS
D0	<mark>0~1023</mark>	ADC0 Data
D1	<mark>0~1023</mark>	ADC1 Data
D2	<mark>0~1023</mark>	ADC2 Data
D3	<mark>0~1023</mark>	ADC3 Data
D4	<mark>0~1023</mark>	ADC4 Data
D5	<mark>0~1023</mark>	ADC5 Data
D6	<mark>0~1023</mark>	ADC6 Data
D7	<mark>0~1023</mark>	ADC7 Data

1-3-4 Power Sensor BD Regulator Power ON/OFF

TETRA-DS5 Power Sensor BD에 내장된 Regulator(8EA) 전원을 ON/OFF 제어할 수 있습니다. Data형식은 ASCII입니다.

10진수의 Data(ASCII)의 Binary값이 Power Enable BIT로 표현됩니다.

Transmitter	STX	P	E	C2	C1	C0	ETX	LRC
Receiver	STX	FLAG	ETX	LRC				

ITEMS	CONTENTS
C0	1 의 자리
C1	10 의 자리
C2	100 의 자리

	Regulator Power									
Data	NC NC Power5 Power4 Power3 Power2 Power1 Power0							Power0		
	-	-	WheelRly	5V(4A)	10V(4A)	12V(4A)	24V(4A)	19V(4A)		

예1)

Transmitter	STX	Р	E	6	3	ETX	LRC
Receiver	STX	0	ETX	LRC			

Data				Regulato	or Power			
	NC	NC	Power5	Power4	Power3	Power2	Power1	Power0
(BIN)	-	-	ON	ON	ON	ON	ON	ON

예2)

Transmitter	STX	Р	E	6	ETX	LRC
Receiver	STX	0	ETX	LRC		

Data		Regulator Power										
(BIN)	NC	NC	Power5	Power4	Power3	Power2	Power1	Power0				
(DIIN)	-	-	OFF	OFF	OFF	ON	ON	OFF				

예3)

Transmitter	STX	Р	E	5	4	ETX	LRC
Receiver	STX	0	ETX	LRC			

Data		Regulator Power										
	NC	NC	Power5	Power4	Power3	Power2	Power1	Power0				
(BIN)	-	-	ON	ON	OFF	ON	ON	OFF				

1-3-5Single PowerSensor BD Regulator Power ON/OFF

해당 ID의 Out Port를 ON/OFF 합니다. (Single 제어 모드에서 사용하는 명령.)

PE 명령과 달리 Pe 명령은 소문자 'e'임을 주의하세요.

(ROS의 Service Name은 'Power_single_enable_cmd' 입니다.)

Transmitter	STX	Р	е	ID	;	DATA	ETX	LRC
Receiver	STX	FLAG	ETX	LRC				

	RANGE	CONTENTS
ID	0~5	POWER ID
ID	0~1	0 : OFF, 1 : ON

1-3-6 Wheel Driver BD Power RelayON/OFF

TETRA-DSV Wheel Driver BD 전원 공급 Relay를 ON/OFF 제어할 수 있습니다. Data형식은 ASCII입니다.

Transmitter	STX	Р	М	DATA	ETX	LRC
Receiver	STX	FLAG	ETX	LRC		

DATA	CONTENTS
1	Wheel Driver BD Relay ON
0	Wheel Driver BD Relay OFF

1-3-7 Out PortON/OFF

TETRA-DSV PowerSensor BD에 Out Port를 ON/OFF 제어할 수 있습니다.Data형식은 ASCII이며 10진수의 Data(ASCII)의 HEX값이 Power Enable BIT로 표현됩니다.

(ROS의 Service Name은 'Power_ output_cmd' 입니다.)

ITEMS	CONTENTS
C0	1 의 자리
C1	10 의 자리
C2	100 의 자리

Data		Out Port									
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
(BIN)	OUT7	OUT6	OUT5	OUT4	OUT3	OUT2	OUT1	OUT0			

1-3-8 OUT Port Single Control ON/OFF

해당 ID의 Out Port를 ON/OFF 합니다. (Single 제어 모드에서 사용하는 명령.)

PO 명령과 달리 Po 명령은 소문자 'o'임을 주의하세요.

(ROS의 Service Name은 'Power_single_output_cmd' 입니다.)

Transmitter	STX	Р	O	ID	;	DATA	ETX	LRC
Receiver	STX	FLAG	ETX	LRC				

	RANGE	CONTENTS
ID	0~7	Out Port ID
ID	0~1	0 : OFF, 1 : ON

1-3-9IN Port & OUT Port status Read

IN Port, OUT Port 상태를 알려줍니다.

Data 형식은 HEX이며 1개 Data는 2Byte입니다.

(ROS의 Service Name은 'Power_io_status_cmd' 입니다.)

DATA	CONTENTS									
		IN Port Status								
D0	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
	EX_IN7	EX_IN6	EX_IN5	EX_IN4	EX_IN3	EX_IN2	EX_IN1	EX_IN0		
				OUT Po	rt Status					
D1	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
	EX_OUT7	EX_OUT6	EX_OUT5	EX_OUT4	EX_OUT3	EX_OUT2	EX_OUT1	EX_OUT0		

1-3-10 Sonar Sensor Loop Enable

TETRA-DSV의 초음파 센서동작 Loop를 ON/OFF 합니다.

Data형식은 ASCII입니다.

(ROS의 Service Name은 'Power_sonar_start_cmd' 입니다.)

Transmitter	STX	Р	S	DATA	ETX	LRC
Receiver	STX	FLAG	ETX	LRC		

DATA	CONTENTS
1	Sonar Loop Enable
0	Sonar Loop Disable

1-3-11Sonar Sensor Data Read

Para3의 개수로 Sonar sensor Data를 읽어옵니다. 장애물이 없는 경우 Para4 값으로 표현됩니다. Data 형식은 HEX이며 1개 Data는 2Byte입니다.

(ROS의 Service Name은 'Power_sonar_read_cmd' 입니다.)

Transmitter	STX	Р	N	ETX	LRC				
Receiver	STX	Data byte 수 H	Data byte 수 L	D0_H	D0_L	D1_H	D1_L	D2_H	D2_L
				D3_H	D3_L	D4_H	D4_L	ETX	LRC

*참고 – 당사의 TETRA-DS V에 적용된 초음파 센서는 ㈜ 하기소닉의 HG-B40C (5v) 제품입니다.

DATA	RANGE	CONTENTS
D0	0~Para4	NC (No Connect)
D1	0~Para4	Rear Left Top (mm)
D2	0~Para4	Rear Right Top (mm)
D3	0~Para4	Rear Side Right Bottom (mm)
D4	0~Para4	Rear Side Left Bottom (mm)

1-3-12 PowerSensor BD Parameter Data Write

PowerSensor BD의 Parameter ID에 Data를 Write 하며 Data 형식은 ASCII입니다.

(ROS의 Service Name은 'Power_parameter_write_cmd' 입니다.)

Transmitter	STX	Р	W	ID	;	DATA	ETX	LRC
Receiver	STX	FLAG	ETX	LRC				

ID	DEFAULT	RANGE	CONTENTS
0	4	0~10	UART1 Baudrate
U	4		OAKTI bauurate
1	6	0~7	UART2Baudrate
2	1	0~1	초음파 선택 (0:HG-B40, 1:HC-SR04)
3	16	0~500	초음파 수신거리 OFFSET
4	5	1~5	초음파 센서 수량
5	500	40~3000	초음파 최대 감지거리
6	0	0~2000	NC (No Connect)
7	0	0~1	장애물이 없을 때 표시 모드 설정 (0 or 최대감지거리)
8	15	1~100	충전 중 배터리 잔량 OFFSET
9	2	1~100	충전 중 배터리 잔량 GAIN
10	100	0~500	Display LED 최소 밝기
11	200	0~2000	Display LED 최대 밝기
12	100	0~500	Battery 상태 LED 최소 밝기
13	200	0~2000	Battery 상태 LED 최대 밝기
14	0	0~200	Left Green LED OFFSET
15	35	0~200	Left Red LED OFFSET
16	25	0~200	Left Blue LED OFFSET

17	10	0~200	Right Green LED OFFSET
18	25	0~200	Right Red LED OFFSET
19	25	0~200	Right Blue LED OFFSET
20	15	0~200	Battery Green LED OFFSET
21	15	0~200	Battery Red LED OFFSET
22	255	0~255	Power BD 전원 투입 시 Power Enable
23	0	0~255	Power BD 전원 투입 시 OUT PORT
24	279	240~300	Battery Re-Charge Voltage
25	6	1~20	Battery Re-Charge Off Offset Voltage
26	230	200~250	Battery 최소 전압
27	285	260~300	Battery 최대 전압
28	10	1~10000	Battery 누적 전압,전류 Sampling Time (100msec)
29	1	0~1	Conveyor mode select (0:disable, 1:enable)
30	497	400~600	Loading Express OK value
31	7	1~10	Terminal status classification range

	통신속도 (P0)	통신속도 (P1)				
Value	Baudrate	Value	Baudrate			
0	9600bps	0	9600bps			
1	19200bps	1	19200bps			
2	38400bps	2	38400bps			
3	57600bps	3	57600bps			
4	115200bps	4	115200bps			
5	125000bps	5	125000bps			
6	150000bps	6	150000bps			
7	187500bps	-	-			
8	230400bps	-	-			
9	250000bps	-	-			
10	500000bps	-	-			

	Power Enable(P7)								
bit	7	6	5	4	3	2	1	0	
Name	NC	NC	Power5	Power4	Power3	Power2	Power1	Power0	
Volt	-	-	5V	5V	10V	12V	24V	18.5V	
Max I	-	-	1.5A	4A	4A	4A	4A	4A	
Default	-	-	ON	ON	ON	ON	ON	ON	

	Out Port(P8)								
bit	7	6	5	4	3	2	1	0	
Name	OUT7	OUT6	OUT5	OUT4	OUT3	OUT2	OUT1	OUT0	
Default	NC	NC	ON	ON	ON	ON	ON	ON	

1-3-13Parameter Data Flash Memory Write

Parameter를 Flash memory에 Write합니다.

1-3-14Parameter Data Read

Power Sensor BD의 Parameter를 Read합니다.

(ROS의 Service Name은 'Power_parameter_read_cmd' 입니다.)

Transmitter	STX	P	R	ETX	LRC					
Receiver	STX	Data byte 수 H	Data byte 수 L	D0_H	D0_L	D1_H	D1_L	D2_H	D2_L	
				D3_H	D3_L	D4_H	D4_L	D5_H	D5_L	
				D6_H	D6_L	D7_H	D7_L	D8_H	D8_L	
				D9_H	D9_L	D10_H	D10_L	D11_H	D11_L	
				D12_H	D12_L	D13_H	D13_L	D14_H	D14_L	
				D15_H	D15_L	D16_H	D16_L	D17_H	D17_L	
				D18_H	D18_L	D19_H	D19_L	D20_H	D20_L	
				D21_H	D21_L	D22_H	D22_L	D23_H	D23_L	
				D24_H	D24_L	D25_H	D25_L	D26_H	D27_L	

1-3-15LED Brightness Toggle Data Write

Display LED를 DATA1의 가속도로 DATA2밝기로 ON, DATA3의 가속도로 DATA4밝기로 OFF합니다. DATA0으로 Toggle하지 않는 ID의 LED 밝기를 지정합니다. Data 형식은 ASCII입니다.

DATA	DEFAULT	RANGE	CONTENTS
DATA0	50	0~100	Left, Right 중 Toggle 하지 않는 LED 밝기
DATA1	5	0~50	LED ON 가속도
DATA2	100	0~100	LED ON 밝기
DATA3	5	0~50	LED OFF 가속도
DATA4	0	0~100	LED OFF 밝기

1-3-16Display Toggle LED Select

TETRA-DSV는 플랫폼 좌,우 각 3색 LED (GREEN,RED,BLUE)의 밝기를 제어할 수 있습니다. 선택 LED를 LD명령에서 설정한 값으로 Toggle 제어합니다.

Data형식은 ASCII입니다. 10진수의 Data(ASCII)의 HEX값이 LED BIT로 표현됩니다.

ITEMS	CONTENTS
C0	1 의 자리
C1	10 의 자리

	LED Port										
Data	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
(BIN)	(BIN) NC	NC	RIGHT	RIGHT	RIGHT	LEFT	LEFT	LEFT			
		INC	BLUE	RED	GREEN	BLUE	RED	GREEN			

예)

Transmitter	STX	L	Т	32	ETX	LRC								
Receiver	STX	FLAG	ETX	LRC										
Transmitter	STX	L	D	100	;	30	;	100	;	5	;	10	ETX	LR
Receiver	STX	FLAG	ETX	LRC								·		

DATA	CONTENTS
DATA0	Left LED R,G,B 100% ON(WHITE)
DATA1	LED ON 가속도 30
DATA2	LED ON 밝기 100%
DATA3	LED OFF 가속도 5
DATA4	LED OFF 밝기 10%

RIGHT BLUE LED 30의 가속도로 100% ON, 5의 가속도로 10%까지 OFF LEFT LED 100% GREEN,RED,BLUE ON (WHITE)

1-3-17 Cumulative current Read

플랫폼은 설정되어있는 시간마다 현재의 소모전류를 저장합니다. Power ON 시 초기 Sampling ti me은 1sec이며, Para27에 의해 변경할 수 있습니다. 한 개의 DATA당 2Byte가 할당되어 있으며, 총 500개의 DATA를 저장합니다. DATA의 저장은 FIFO(First In First Out) 방식으로 저장됩니다. 그림 4-1과 같이 플랫폼의 소모전류 변화를 모니터링할 때에 활용하면 유용합니다. Data 형식은 HEX이며 1개 Data는 2Byte입니다.

<그림4-1> Current consumption graph

Transmitter	STX	1	С	ETX	LRC					
Receiver	STX	Data byte 수 H	Data byte 수 L	D0_H	D0_L	D1_H	D1_L	D2_H	D2_L	
				D3_H	D3_L	D4_H	D4_L	D5_H	D5_L	
				D6_H	D6_L	D7_H	D7_L	D8_H	D8_L	
				D9_H	D9_L	D10_H	D10_L	D11_H	D11_L	
				D488_H	D488_L	D489_H	D489_L	D490_H	D490_L	
				D491_H	D491_L	D492_H	D492_L	D493_H	D493_L	
				D494_H	D494_L	D495_H	D495_L	D496_H	D496_L	
				D497_H	D497_L	D498_H	D498_L	D499_H	D499_L	

DATA	CONTENTS
N0	Data 갯수의 하위 바이트(HEX)
N1	Data 갯수의 상위 바이트(HEX)
D0~D499	누적 전류 DATA (HEX), 단위 : mA,

1-3-18 Cumulative voltage Read

플랫폼은 설정되어있는 시간마다 현재의 전압을 저장합니다. Power ON 시 초기 Sampling time 은 500msec이며, 해당 명령에 의해 변경할 수 있습니다. 한 개의 DATA당 1Byte가 할당되어 있으며, 총 1000개의 DATA를 저장합니다. DATA의 저장은 FIFO(First In First Out) 방식으로 저장됩니다. 그림 4-2와 같이 내장된 배터리의 전압변화를 모니터링할 때에 활용하면 유용합니다. Data 형식은 HEX이며 1개 Data는 2Byte입니다.

<그림4-2> Voltage consumption graph

Transmitter	STX	I	V	ETX	LRC					
Receiver	STX	Data byte 수 H	Data byte 수 L	D0_H	D0_L	D1_H	D1_L	D2_H	D2_L	
				D3_H	D3_L	D4_H	D4_L	D5_H	D5_L	
				D6_H	D6_L	D7_H	D7_L	D8_H	D8_L	
				D9_H	D9_L	D10_H	D10_L	D11_H	D11_L	
				D488_H	D488_L	D489_H	D489_L	D490_H	D490_L	
				D491_H	D491_L	D492_H	D492_L	D493_H	D493_L	
				D494_H	D494_L	D495_H	D495_L	D496_H	D496_L	
				D497_H	D497_L	D498_H	D498_L	D499_H	D499_L	

DATA	CONTENTS
N0	Data 갯수의 하위 바이트(HEX)
N1	Data 갯수의 상위 바이트(HEX)
D0~D499	누적 전류 DATA (HEX), 단위 : mA,

1-3-19 Cumulative buffer erase

Power Sensor Board의 누적 전압과 전류 Data Buffer를 초기화합니다.

1-3-20 Cumulative buffer erase

IN Port, OUT Port 상태를 알려줍니다.

Data 형식은 HEX이며 1개는 Data는 2Byte입니다. (Single 제어 모드에서 사용하는 명령.) PI 명령과 달리 Pi명령은 소문자 'i'임을 주의하세요.

DATA	UNIT	CONTENTS
DATA0	BIT	INPORT DATA FLAG
DATA1	BIT	OUTPORT DATA FLAG

1-4. 구동 보드 프로토콜 (Drive Board Protocol)

ITEMS	DATA Type	COMMAND	CONTENTS
Drive Status Read	ASCII	AA	Error Exist, Motor Power On/Off, In Position 모션 Patten Run State, Servo On/Off
Encoder Position Read	ASCII	AC0	Read current encoder data (Encoder)
Coordinates Read	ASCII	AC1	Read coordinates data (X, Y, θ)
Coordinates Change	ASCII	CX	Change coordinates data
Velocity Control(speed)	ASCII	BE	Command velocity for velocity control loop
Velocity Control(position)	ASCII	ВН	Command velocity for position control loop
Error Reset	ASCII	CG	Clear error
Servo On/Off	ASCII	DB	Servo ON/OFF (Motor On/Off)
Control Mode change	ASCII	CZ	Select control loop (Velocity/Position)

<班4-2> Protocol commands summary of Drive Board

1-4-1구동 보드 파라미터 일람표 (Drive Board Parameter Chart)

No	초기값	단 위	범 위	내 용
0	0		0~20	모터 Type (0: 24V, 100Watt)
1	120	%	0~500	최대 Overload
2	10000	Pulse	1~20000	Encoder pulse (4 체배)
3	20		1~200	감속비 (15 : 15/1, 20 : 20/1)
4	203	mm	1~1000	바퀴직경
5	438	mm	1~1000	바퀴간 거리
6	50	10msc	8~1000	가감속 시간(RUN Speed 까지 도달하는 시간)
7	3	%	0~100	EMG 감속도(작을수록 감속 기울기가 큼)
8	1500	mm/sec	0~1000	최대속도
9	0		0~1	왼쪽바퀴 엔코더 회전방향 0 : cw, 1:ccw
10	0		0~1	오른쪽바퀴 엔코더 회전방향 0:cw, 1:ccw
11	0		0~1	왼쪽바퀴 모터 회전방향 0:cw, 1:ccw
12	1		0~1	오른쪽바퀴 모터 회전방향 0:cw, 1:ccw
13	3000		-10000~10000	왼쪽바퀴 Temporary Valuable(I BANDWIDTH)
14	3000		-10000~10000	오른쪽바퀴 Temporary Valuable(I BANDWIDTH)
15	50	mm/sec	-500~500	왼쪽바퀴 RUN 속도
16	50	mm/sec	-500~500	오른쪽바퀴 RUN 속도
17	20		0~1000	왼쪽바퀴 위치 비례게인
18	20		0~1000	오른쪽바퀴 위치 비례게인
19	100		0~10000	왼쪽바퀴 위치 적분게인
20	100		0~10000	오른쪽바퀴 위치 적분게인
21	300	mm	0~10000	왼쪽바퀴 follow error range
22	300	mm	0~10000	오른쪽바퀴 follow error range
23	5	mm	0~10000	왼쪽바퀴 inpos range
24	5	mm	0~10000	오른쪽바퀴 inpos range
25	300		0~1000	왼쪽바퀴 속도 비례게인
26	300		0~1000	오른쪽바퀴 속도 비례게인
27	100		0~10000	왼쪽바퀴 속도 적분게인
28	100		0~10000	오른쪽바퀴 속도 적분게인
29	1		1~10	Baudrate 설정 (1 : 115200bps)
30	2000	ms	35~20000	상위제어기와 통신 두절 시 좌우모터 정지시간

<표4-3> 파라미터 일람표

1-4-2 Drive status Read

구동 보드의 상태정보를 알려줍니다. Error Code는 표4-4을 참고하시기 바랍니다.

Transmitter	STX	Α	Α	ETX	LRC							
Receiver	STX	FLAG	DATA0	DATA1	DATA2	DATA3	DATA4	DATA5	DATA6	DATA7	ETX	LRC

DATA					CONTENTS			
DATA	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
DATA0	0	0	1	Left Servo ON/OFF	Left Error	Left In Position	Left RUN	Left Power ON/OFF
DATA1	Left motor Error Code							
DATA2	0	0	1	Right Servo ON/OFF	Right Error	Right In Position	Right RUN	Left Power ON/OFF
DATA3				Rig	ht motor Erro	r Code		
DATA4	0	0	0	0	Bumper7	Bumper6	Bumper5	Bumper4
DATA5	0	0	0	0	Bumper4	Bumper3	Bumper2	Bumper1
DATA6	0	0	0	0	0	0	0	EMG
DATA7	0	0	0	0	0	0	DIR1	DIR0

DIR1	DIR0	Direction of movement
0	0	Rotate Left, Stop
0	1	Advance
1	0	Reverse
1	1	Rotate Right

CODE	CONTENTS	CAUSE	MEASURES
0x30 ('0')	Normal state	-	-
0x31 ('1')	Emergency Stop	1) 비상정지 스위치를 눌렀을 때	비상정지 스위치 해제
0x32 ('2')	Motor hall sensor error	1) Hall 소자 수신부 이상 2) 모터라인 단선	모터점검/모터라인 점검
0x33 ('3')	Encoder error	1) 엔코더 라인 이상 2) 모터라인 단선 및 오배선 3) 구동장치 Gain 설정 오류 4) Power Module 파손 5) 엔코더 수신부 이상	엔코더 배선 점검 모터 라인 계통 이상 Gain Tuning
0x34 ('4')	Detect Over Voltage	1) 전원전압 정격 초과 2) Power Module 파손 3) 가감속 설정 불량	전원 전압 점검 구동장치 B/D 점검 Parameter 설정 변경
0x35 ('5')	Detect Under Voltage	1) 전원전압 정격 이하	전원 전압 점검
0x36 ('6')	Detect Over Load	1)모터의 정격 토크가 구동장치의 최대 출력 초과 2) 토크 Limit 설정 이상 3) 동작속도/가감속 설정 불량 4) 동작영역에 장애물	모터의 정격토크 검사 토크 Limit 설정 변경 속도/가감속 설정 변경 장애물 제거
0x37 ('7')	Detect Over Speed	1) 속도지령이 정격속도를 초과	구동장치의 Max 속도 설정 변경
0x38 ('8')	Detect Following Error	1) Following Parameter 설정 오류 2) 구동장치 Gain 설정 오류 3) 엔코더/모터 라인 이상	Parameter 설정 변경 엔코더/모터 라인 점검

<∄4-4> Error Code

1-4-3 Encoder Position Read

구동 보드의 Left motor Encoder, Right motor Encoder 위치정보를 알려줍니다. Encoder Data는 좌, 우 모터 각각 10bytes로 할당되어 있습니다.

1-4-4Coordinates Read

좌, 우 Encoder정보를 바탕으로 플랫폼의 현재 좌표정보를 알려줍니다. 전원 투입 시 초기 좌표는 X = 0(mm), Y = 0(mm), $\theta = 900(0.1°)$ 입니다. X, Y, θ 각각 10bytes로 할당되어 있습니다.

1-4-5 Coordinates Change

플랫폼의 현재 좌표(X, Y, θ)를 변경합니다. 좌표 변경 명령은 Servo OFF에서만 변경이 가능합니다.

1-4-6Motion

로봇이 움직일 위치를 구동장치에 제공하여 모션을 수행하는 명령입니다. 현재 위치에서 지정한 데이터만큼을 더하여 로봇을 움직입니다. 모션동작이 완료되기 이전에도 연속해서 다음 모션지령을 보낼 수 있습니다. (그러나 연속된 모션지령을 보낼 때 하나의 프레임이 끝나기 전에는 실행할 수 없습니다.)

구동장치의 모션에 관계됩니다. 구동장치는 받은 데이터가 타당한지 검사한 후 FLAG에 결과 값을 실어서 응답합니다. 통신 종료 후 구동장치는 모션을 수행하며 모션 중 최소한의 기능은 동작하여 야 합니다.

모션동작의 예)

1) 현재 위치에서 1[m] 직진

2) 현재 위치에서 90도 우회전

현재 위치에서 1[m] 직진 후 회전 동작을 수행합니다. 회전 동작을 수행할 시점은 파라미터에서 결정합니다. 예를 들어 파라미터가 10이라면 직진 동작에서 9000[mm]에 도달 후 반경이 300[mm]이고 회전 각이 90도인 회전 모션을 수행합니다.

1-4-7 Velocity Control (Speed Mode)

구동 보드 내부 속도 LOOP의 속도지령 명령입니다. 속도 LOOP의 속도지령 명령은 상위제어기와 의 통신 두절 시, 오 동작 방지를 위해 설정된 시간 내에 명령을 받지 못하면 좌, 우 모터 속도를 0 (mm/sec)으로 보냅니다. 초기 설정 값은 2000msec입니다.

1-4-8 Velocity Control (Position Mode)

구동 보드 내부 위치 LOOP의 속도지령 명령입니다.

1-4-9 Error Reset

구동 보드에 발생한 모든 Error를 초기화 합니다.

1-4-10 Servo ON/OFF

구동 보드의 좌, 우 Servo ON/OFF 명령입니다.

1-4-11 Control Mode Change

구동 보드의 위치제어 모드와 속도제어 모드 변환 명령입니다.

속도제어모드

Transmitter	STX	С	Z	1	1	ETX	LRC
Receiver	STX	FLAG	ETX	LRC			

위치제어모드

Transmitter	STX	С	Z	0	0	ETX	LRC
Receiver	STX	FLAG	ETX	LRC			

1-4-12Parameter Read

해당 ID의 파라미터 값을 Read 합니다.

Transmitter	STX	X	L	Parameter ID	ETX	LRC
Receiver	STX	FLAG	ETX	LRC		

1-4-13 Parameter Write

해당 ID의 파라미터 값을 Write 합니다.

Transmitter	STX	X	В	Parameter ID	Data	ETX	LRC
Receiver	STX	FLAG	ETX	LRC			

1-4-14Parameter Save

현재 버퍼의 저장되어 있는 모든 파라미터 값을 Flash Memory에 Save 합니다.

Transmitter	STX	X	D	ETX	LRC	
Receiver	STX	FLAG	ETX	LRC		

^{*}SERVO ON 시에는 수행되지 않습니다.

1-5.프로토콜 실행 예제 (Example of Protocol execution)

Ex1) 현재 위치에서 1[m] 직진 후 90도 우회전 명령 내리기

0. dswim 실행, PORT, Baudrate 확인 및 Wheel Driver Board 와 Motor Connecting

- 1) 위의 <u>그림 3-16</u>을 참고하여 모터의 Encoder 케이블과 상 신호 케이블을 Back Link Board의 CN1(Left Encoder), CN5(Right Encoder), CN3(Left Phase), CN6(Right Phase)에 연결합니다.
- 2) Back Link Board의 CN20에 RS-232 케이블을 연결한 후 dswim을 실행합니다.

(PC의 PORT 번호를 모를 때에는 제어판 -> 장치관리자 -> 포트(COM & LPT)에서 확인)

* Auto Complete Robot Protocol 체크, ASCII 체크 해제 후 사용하시면 편리합니다. (다만, ASCII 코드를 사용하는 통신 방식에서는 ASCII 체크박스에 체크하지 않으면 원하는 결과 값이 안나올 수도 있습니다.)

1. 구동보드에 발생한 모든 Error 초기화. (선택사항)

EMG, 범퍼센서 등 구동보드에 발생되었던 모든 Error을 초기화 시켜줍니다. (필수적인 명령은 아니지만 범퍼나 EMG 등에 의한 ERROR를 해제함으로써 명령 실행이 가능한 상태로 만들어 줍니다.)

2. 위치 제어 모드 변경

속도 제어 모드에서 위치 제어 명령을 내리게 되면 명령을 수행하지 못하기 때문에 위치 제어 모 드로 변경해주어야 합니다.

3. Servo ON

연결된 모터에 SERVO를 ON 시켜줍니다. SERVO ON 상태에서만 모터가 구동됩니다.

4. 현재 위치에서1[m] 직진 명령

현재 위치에서부터 1[m]간 직진합니다.

5. 현재 위치에서 90도 우회전

현재 위치에서부터 90도 우회전 합니다.

*Ex1의 모든 명령이 정상적으로 실행되었을 때의 dswim 화면입니다.

Ex2) 위치 제어 모드에서 모터 제어하기

0. dswim 실행, PORT, Baudrate 확인 및 Wheel Driver Board 와 Motor Connecting

- 1) 위의 <u>그림 3-16</u>을 참고하여 모터의 Encoder 케이블과 상 신호 케이블을 Back Link Board의 CN1(Left Encoder), CN5(Right Encoder), CN3(Left Phase), CN6(Right Phase)에 연결합니다.
- 2) Back Link Board의 CN20에 RS-232 케이블을 연결한 후 dswim을 실행합니다.

(PC의 PORT 번호를 모를 때에는 제어판 -> 장치관리자 -> 포트(COM & LPT)에서 확인)

* Auto Complete Robot Protocol 체크, ASCII 체크 해제 후 사용하시면 편리합니다. (다만, ASCII 코드를 사용하는 통신 방식에서는 ASCII 체크박스에 체크하지 않으면 원하는 결과 값이 안나올 수도 있습니다.)

1. 구동보드에 발생한 모든 Error 초기화. (선택사항)

Transmitter	STX	С	G	ETX	LRC
Receiver	STX	FLAG	ETX	LRC	

EMG, 범퍼센서 등 구동보드에 발생되었던 모든 Error을 초기화 시켜줍니다. (필수적인 명령은 아니지만 범퍼나 EMG 등에 의한 ERROR를 해제함으로써 명령 실행이 가능한 상태로 만들어 줍니다.)

2. 위치 제어 모드 변경

Transmitter	STX	С	Z	0	0	ETX	LRC
Receiver	STX	FLAG	ETX	LRC			

속도 제어 모드에서 위치 제어 명령을 내리게 되면 명령을 수행하지 못하기 때문에 위치 제어 모 드로 변경해주어야 합니다.

3. Servo ON

연결된 모터에 SERVO를 ON 시켜줍니다. SERVO ON 상태에서만 모터가 구동됩니다.

4. 위치 제어 모드에서 200(mm/sec)의 속도로 모터 제어하기

200(mm/sec)의 속도로 직진합니다.

5. 위치 제어 모드에서 모터 정지시키기

모터가 정지합니다.

*Ex2의 모든 명령이 정상적으로 실행되었을 때의 dswim 화면입니다.

Ex3) 속도 제어 모드에서 모터 제어하기

0. dswim 실행, PORT, Baudrate 확인 및 Wheel Driver Board 와 Motor Connecting

- 1) 위의 <u>그림 3-16</u>을 참고하여 모터의 Encoder 케이블과 상 신호 케이블을 Back Link Board의 CN1(Left Encoder), CN5(Right Encoder), CN3(Left Phase), CN6(Right Phase)에 연결합니다.
- 2) Back Link Board의 CN20에 RS-232 케이블을 연결한 후 dswim을 실행합니다.

(PC의 PORT 번호를 모를 때에는 제어판 -> 장치관리자 -> 포트(COM & LPT)에서 확인)

* Auto Complete Robot Protocol 체크, ASCII 체크 해제 후 사용하시면 편리합니다. (다만, ASCII 코드를 사용하는 통신 방식에서는 ASCII 체크박스에 체크하지 않으면 원하는 결과 값이 안나올 수도 있습니다.)

1. 구동보드에 발생한 모든 Error 초기화. (선택사항)

Transmitter	STX	С	G	ETX	LRC
Receiver	STX	FLAG	ETX	LRC	

EMG, 범퍼센서 등 구동보드에 발생되었던 모든 Error을 초기화 시켜줍니다. (필수적인 명령은 아니지만 범퍼나 EMG 등에 의한 ERROR를 해제함으로써 명령 실행이 가능한 상태로 만들어 줍니다.)

2. 속도 제어 모드 변경

Transmitter	STX	С	Z	1	1	ETX	LRC
Receiver	STX	FLAG	ETX	LRC			

위치 제어 모드에서 속도 제어 명령을 내리게 되면 명령을 수행하지 못하기 때문에 속도 제어 모 드로 변경해주어야 합니다.

3. Servo ON

연결된 모터에 SERVO를 ON 시켜줍니다. SERVO ON 상태에서만 모터가 구동됩니다.

4. 속도 제어 모드에서 320(mm/sec)로 모터 제어하기

320(mm/sec)의 속도로 직진합니다.

5. 속도 제어 모드에서 모터 정지시키기

모터가 정지합니다.

*Ex3의 모든 명령이 정상적으로 실행되었을 때의 dswim 화면입니다.

Ex4) 원하는 가속도, 밝기, 색상으로 LED 제어하기

0. dswim 실행, PORT, Baudrate 확인 및 Power Senser Board와 LED Connecting

- 1) 위의 그림 3-16을 참고하여 LED와 Back Link Board의 CN9(Left), CN8(Right)을 연결합니다.
- 2) Back Link Board의 CN24에 RS-232 케이블을 연결한 후 dswim을 실행합니다 (PC의 PORT 번호를 모를 때에는 제어판 -> 장치관리자 -> 포트(COM & LPT)에서 확인)

^{*} Auto Complete Robot Protocol 체크, ASCII 체크 해제 후 사용하시면 편리합니다. (다만, ASCII 코드를 사용하는 통신 방식에서는 ASCII 체크박스에 체크하지 않으면 원하는 결과 값이 안나올 수도 있습니다.)

1. LED 색상 정의 (흰색) 및 LED ON

	LED Port (Binary)										
Data	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
	NC	NC	RIGHT	RIGHT	RIGHT	LEFT	LEFT	LEFT			
			BLUE	RED	GREEN	BLUE	RED	GREEN			

^{*}Data 형식은 ASCII입니다. 위의 표를 참고하여 binary (2진수) 값을 ASCII (10진수) 값으로 변환해서 입력 해주면 HEX(16진수)값으로 자동 변환되어 LED bit로 표현됩니다.

ASCII(10진수) 값 63은 Binary (2진수) 값으로 0011 1111 입니다. 따라서 LEFT, RIGHT의 RED, GREEN, BLUE를 전부 ON합니다. (빛의 삼원색이 혼합된 색인 흰색이 표출되나 LED 각각의 오차로 인해 완벽한 흰색의 빛이 나오지는 않을 수도 있습니다.)

2. 흰색의 LED가 5의 속도로 100% 밝기까지 켜졌다가 3의 속도로 20% 밝기까지 꺼지는 반복 명령 내리기

*자세한 내용은 페이지 20 을 참고하세요

흰색의 LED가 50으로 Left, Right중 Toggle하지 않는 LED 밝기를 지정 후 5의 속도로 100%까지 켜졌다 3의 속도로 20%까지 꺼지는 상태가 반복됩니다.

*Ex4의 모든 명령이 정상적으로 실행되었을 때의 dswim 화면입니다.

Ex5) Sonar 제어하기

0. dswim 실행, PORT, Baudrate 확인 및 Power Senser Board와 Sonar Senser Connecting

- 1) 위의 그림 3-16을 참고하여 Sonar 케이블과 Back Link Board의 CN34를 연결합니다.
- 2) Back Link Board의 CN24에 RS-232 케이블을 연결한 후 dswim을 실행합니다 (PC의 PORT 번호를 모를 때에는 제어판 -> 장치관리자 -> 포트(COM & LPT)에서 확인) *참고 당사의 TETRA-DS V 에 적용된 초음파 센서는 ㈜ 하기소닉의 HG-B40C (5v) 제품입니다.

^{*} Auto Complete Robot Protocol 체크, ASCII 체크 해제 후 사용하시면 편리합니다. (다만, ASCII 코드를 사용하는 통신 방식에서는 ASCII 체크박스에 체크하지 않으면 원하는 결과 값이 안나올 수도 있습니다.)

1. 초음파 센서 LOOP 동작 ON 시키기

PS1 명령을 사용하게 되면 Power Senser Board에 내장된 초음파 센서 LOOP를 동작 시킵니다. 동작을 멈추려면 PS0 명령을 내리면 됩니다.

2. Sonar Senser Data 읽어오기 (2-3-9 참고)

Transmitter	STX	Р	N	ETX	LRC				
Receiver	STX	Data byte 수 H	Data byte 수 L	D0_H	D0_L	D1_H	D1_L	D2_H	D2_L
				D3_H	D3_L	D4_H	D4_L	ETX	LRC

이런 식으로 PN 명령을 내리면 Sonar Senser Data를 읽어옵니다. 정상적인 명령 수행 시 아래의 그림처럼 왼쪽 화살표부터 Sonar1~4의 값이 출력되는 것을 확인할 수 있습니다.

*Ex5의 모든 명령이 정상적으로 실행되었을 때의 dswim 화면입니다.

Ex6) Bumper 센서 동작 상태 확인하기

0. dswim 실행, PORT, Baudrate 확인 및 Power Senser Board와 Bumper Senser Connecting

- 1) 위의 그림 3-16을 참고하여 BUMPER 케이블과 Back Link Board의 CN39를 연결합니다.
- 2) Back Link Board의 CN20에 RS-232 케이블을 연결한 후 dswim을 실행합니다 (PC의 PORT 번호를 모를 때에는 제어판 -> 장치관리자 -> 포트(COM & LPT)에서 확인)

^{*} Auto Complete Robot Protocol 체크, ASCII 체크 해제 후 사용하시면 편리합니다. (다만, ASCII 코드를 사용하는 통신 방식에서는 ASCII 체크박스에 체크하지 않으면 원하는 결과 값이 안나올 수도 있습니다.)

1. 범퍼 센서 동작 ON 시키기

범퍼 센서는 대상이 접촉되었을 경우, True 값을 발생시키고 접촉 상태가 해제되었을 경우에는 False 값을 발생시킵니다.

따라서, AA 프로토콜 명령을 통해 범퍼 센서의 동작 상태를 확인할 수 있습니다. (2-4-1 참고)

*Ex6의 모든 명령이 정상적으로 실행되었을 때의 dswim 화면입니다.

위의 그림과 같이 범퍼센서가 작동 시 AA 명령을 내리면 31이 출력되는 것을 확인할 수 있습니다. 참고로 범퍼센서가 작동되면 C-BOX에 연결된 모터는 자동으로 비상 정지 상태가 됩니다.

*위 사진은 예시를 위한 당사의 TETRA-DS V 사진으로 위와 같이 BUMPER 센서를 활용할 수 있습니다.

Ex7) EMS 스위치 동작 상태 확인하기

0. dswim 실행, PORT, Baudrate 확인 및 Power Senser Board와 EMS SWITCH Connecting

- 1) 위의 그림 3-18을 참고하여 EMS 케이블과 Back Link Board의 CN4를 연결합니다.
- 2) Back Link Board의 CN20에 RS-232 케이블을 연결한 후 dswim을 실행합니다 (PC의 PORT 번호를 모를 때에는 제어판 -> 장치관리자 -> 포트(COM & LPT)에서 확인)

^{*} Auto Complete Robot Protocol 체크, ASCII 체크 해제 후 사용하시면 편리합니다. (다만, ASCII 코드를 사용하는 통신 방식에서는 ASCII 체크박스에 체크하지 않으면 원하는 결과 값이 안나올 수도 있습니다.)

1. EMS 스위치 동작 ON 시키기

EMS 스위치는 스위치가 눌러졌을 때,True 값을 발생시키고 접촉 상태가 해제되었을 경우에는 False 값을 발생시킵니다.

따라서, AA 프로토콜 명령을 통해 범퍼 센서의 동작 상태를 확인할 수 있습니다. (2-4-1 참고)

*Ex7의 모든 명령이 정상적으로 실행되었을 때의 dswim 화면입니다.

위의 그림과 같이 EMS 스위치 ON 시 AA 명령을 내리면 31이 출력되는 것을 확인할 수 있습니다. 참고로 EMS 스위치가 ON 되면 C-BOX에 연결된 모터는 자동으로 비상 정지 상태가 됩니다.

*위 사진은 예시를 위한 당사의 TETRA-DS V 사진으로 위와 같이 EMS 스위치를 활용할 수 있습니다.

Ex8) I.O PORT를 사용하여 RELAY 제어하기

0. dswim 실행, PORT, Baudrate 확인 및 Power Senser Board와 I.O PORT Connecting

- 1) 위의 그림 3-13을 참고하여 I.O 케이블과 Power Senser Board 전면의 CN15를 연결합니다.
- 2) Back Link Board의 CN24에 RS-232 케이블을 연결한 후 dswim을 실행합니다 (PC의 PORT 번호를 모를 때에는 제어판 -> 장치관리자 -> 포트(COM & LPT)에서 확인)

* Auto Complete Robot Protocol 체크, ASCII 체크 해제 후 사용하시면 편리합니다. (다만, ASCII 코드를 사용하는 통신 방식에서는 ASCII 체크박스에 체크하지 않으면 원하는 결과 값이 안나올 수도 있습니다.)

1. JUMPER 연결하기

Power Senser Board에서 J11을 찾아 검은색 커버를 사용하는 I.O의 전압의 위치에 꽂습니다. Ex8) 예제에 사용되는 I.O 포트는 24V (24V동작 RELAY)로 연결하였습니다.

2. PO 명령으로 2,4,6,8 RELAY만 ON하기

Transmitter	STX	Р	0	1	7	0	ETX	LRC
Receiver	STX	FLAG	ETX	LRC				

2,4,6,8 RELAY만 ON 해야 하므로 Hex 값으로 1010 1010 이고 10진수로 170입니다. PO170을 수 행합니다.

정상적으로 명령 수행 시 앞의 사진과 같이 LED가 ON됩니다.

3. OUT PORT OFF하기

Transmitter	STX	Р	0	0	ETX	LRC
Receiver	STX	FLAG	ETX	LRC		

포트의 상태까지 확인을 마쳤으면 OUT PORT를 OFF합니다. OUT PORT를 ON할 때와 같은 방식이며 POO 명령을 내리면 RELAY가 OFF됩니다.

4. Po 명령으로 RELAY ON하기

이번엔 Po명령을 통해 RELAY 하나만 ON해보겠습니다.

Transmitter	STX	P	0	7	;	1	ETX	LRC
Receiver	STX	FLAG	ETX	LRC				

정상적으로 명령 수행 시 앞의 사진과 같이 LED가 ON됩니다.

5. Po 명령으로 OUT PORT OFF하기

Transmitter	STX	Р	0	7	;	0	ETX	LRC
Receiver	STX	FLAG	ETX	LRC				

포트의 상태까지 확인을 마쳤으면 OUT PORT를 OFF합니다. OUT PORT를 ON할 때와 같은 방식이며 Po7;0 명령을 통해 RELAY를 OFF 합니다.

위와 같이 PO 명령을 통해 여러 가지의 RELAY를 한 번에 같이 제어할 수 있고, PO 명령을 통해 RELAY를 하나씩 제어할 수도 있습니다.

Ex9) Power Senser Board에 공급되는 전원 제어하기

- 0. dswim 실행, PORT, Baudrate 확인 및 Power Senser Board와 I.O PORT Connecting
- 1) Back Link Board의 CN24에 RS-232 케이블을 연결합니다.
- 2) dswim을 실행합니다

(PC의 PORT 번호를 모를 때에는 제어판 -> 장치관리자 -> 포트(COM & LPT)에서 확인)

* Auto Complete Robot Protocol 체크, ASCII 체크 해제 후 사용하시면 편리합니다. (다만, ASCII 코드를 사용하는 통신 방식에서는 ASCII 체크박스에 체크하지 않으면 원하는 결과 값이 안 나올 수도 있습니다.)

1. JUMPER 연결하기

Power Senser Board에서 J11을 찾아 검은색 커버를 사용하는 I.O의 전압의 위치에 꽂습니다. Ex9) 예제에 사용되는 I.O 포트는 24V (24V동작 RELAY)로 연결하였습니다.

2. PE 명령으로 TETRA-DSV Power Sensor Board 모듈에 공급되는 전원 모두 ON하기

Transmitter	STX	Р	E	6	3	ETX	LRC
Receiver	STX	FLAG	ETX	LRC			

2-3-5를 참고하여 TETRA-DSV Power Senser Board 모듈에 공급되는 모든 전원을 ON 합니다.

3. PI 명령으로 TETRA-DSV Power Sensor Board에 공급되는 전원 모두 ON 되었는지 확인하기

정상적으로 명령 수행 시 앞의 사진과 같이 출력됩니다.

4. TETRA-DSV Power Sensor Board 모듈에 공급되는 전원 모두 OFF하기

Start

명령이 내려졌는지 확인을 마쳤으면 Power Sensor Board 모듈에 공급되는 모든 전원을 OFF합니다. 전원을 ON할 때와 같은 방식이며 PIO 명령을 내리면 모든 전원이 OFF됩니다.

Stop

Clear

* 참고로 전원이 OFF 된 상태에서는 C-BOX의 Fan이 돌지 않게 됩니다. 이는 전원이 차단되었다는 뜻을 의미합니다.

5. Pe 명령으로 Power Senser Board 모듈에 공급되는 전원 ON하기

이번엔 Pe 명령을 통해 Power Sensor Board 모듈에 공급되는 전원을 하나만 ON 해보겠습니다.

Pe2;1 명령이 정상적으로 내려지면 다시 Fan이 돌기 시작하는 것을 볼 수 있습니다.

Pe2;1 명령은 메인 전원인 24V POWER1을 ON 하는 명령이기 때문입니다.

6. PI 명령으로 TETRA-DSV Power Sensor Board에 공급되는 24V 전원이 ON 되었는지 확인하기

정상적으로 명령 수행 시 앞에 사진과 같이 출력됩니다.

위의 밑줄을 보면 POWER1만 ON된 것을 확인할 수 있습니다. 위와 같이 <u>PE 명령을 통해TETRA-DSV Power Sensor Board 모듈에 공급되는 전원을 한 번에 모두 제어</u>할 수 있고, <u>Pe 명령을 통해 TETRA-DSV Power Sensor Board 모듈에 공급되는 전원을 하나씩 제어할 수도 있습니다.</u>

Chapter 2. 전송계층 프로토콜 TCP (Transmission Control Protocol)

* 해당 TCP 프로토콜은 관제 소프트웨어와 별개로 동작하며 테트라 ROS 패키지를 설치해야 동작합니다. 더 많은 기능을 원하시면 테트라 Back-End 매뉴얼을 참고해주세요.

2-1. TCP/IP 모듈 프로토콜요청 값 차트 (TCP/IP Module Protocol Request Chart)

수신 내용	Packet 시작	데이터개수	모드	명령어	파라미터	Packet 끝
Odometry 요청	DS	3	1	ODOM	1 (odom수신) 2 (선,각 속도수신)	xx
Robot Pose 요청	DS	2	1	AMCL	-	XX
Status 정보 요청	DS	2	1	STATUS	-	XX
저장된 Map List 요청	DS	2	1	MAPLIST	-	XX
저장된 위치 List 요청	DS	2	1	LOCLIST	-	XX
위치/상태정보 요청	DS	2	1	DATA	-	XX
충전스테이션 도킹	DS	4	2	DOC	MarkerID, Mode	XX
지도작성 모드	DS	2	2	SLAM	-	XX
지도저장	DS	3	2	MSV	Map_name	XX
지도작성/자율주행 모드 종료	DS	2	2	KILL	-	хх
자율주행모드	DS	3	2	NAV	Map_name	XX
좌표이동	DS	8	2	GO2	position.x position.y orientation.x orientation.y orientation.z orientation.w	хх
저장위치 이동	DS	3	2	GO1	location_name	XX
이동 취소	DS	2	2	GOCXL	-	XX
위치저장	DS	3	2	LSV	location_name	XX
최대속도 설정	DS	3	2	SPEED	Max Speed(m/sec)	XX
GPIO_Output 설정	DS	10	2	OUT	out_put0 out_put1 out_put2 out_put3 out_put4 out_put5 out_put6 out_put7	xx
GPIO_Sigle_Output 설정	DS	4	2	SOUT	out_put_id value	хх
GPIO 상태 확인	DS	2	1	GPIO	-	XX

2-2. TCP/IP 모듈 프로토콜 응답 값 차트(TCP/IP Module ProtocolResponse Chart)

발신 내용	Packet 시작	데이터개수	명령어	Response Data	Packet 끝
Odometry 수신 (PARAM 이 0 인 경우)	DS 8 ODOM orientation.x orientation.z orientation.x		xx		
Odometry 수신 (PARAM 이 1 인 경우)	DS	3	ODOM	linear.x angular.z	xx
Robot Pose 수신	DS	7	AMCL	position.x position.y orientation.x orientation.y orientation.z orientation.w	xx
Robot 상태정보 수신	DS	6 STATUS		Battery EMG Bumper Charging_status running_status	xx
저장된 Map List 요청 수신	DS	n + 1	MAPLIST	map_name[n] 저장된 map의 개수대로 배열개수가 정해짐	хх
저장된 위치 List 요청 수신	DS	n + 1	LOCLIST	location_name[n]	хх

IT TULIM NETWORKS		1	1			
				저장된 loaction의 개수		
				대로 배열개수가 정해짐		
				position.x		
				position.y		
				orientation.x		
				orientation.y		
				orientation.z		
위치/상태정보 수신	DS	12	DATA	orientation.w	XX	
				Battery		
				EMG		
				Bumper		
				Charging_status		
				running_status		
자율주행모드 수신	DS	1	NAV	-	XX	
좌표이동 수신	DS	1	GO2	-	XX	
				goal_positionX		
저장위치 이동 수신	DS	7	GO1	goal_positionY		
				goal_quarterX	ХХ	
				goal_quarterY	XX	
				goal_quarterZ		
				goal_quarterW		
이동 취소 수신	DS	1	GOCXL	-	XX	
위치저장 수신	DS	2	LSV	Location name	XX	
최대속도 설정	DS	2	SPEED	speed data	XX	
GPIO_Output 설정	DS	1	OUT	-	XX	
				in0		
				in1		
				in2		
				in3		
GPIO 상태 확인				in4 in5		
				in6		
	DS	17	GPIO	in7	XX	
				out0		
				out1		
				out2		
				out3		
				out4		
				out5		

		out6	
		out7	

2-3. TCP/IP 모듈 프로토콜 실행 예제(TCP/IP Module Protocol Example)

Ex1) Robot 상태정보 수신 예시

*명령어창에[DS,2,1,STATUS,XX] 입력.

PLC -> TETRA	DS,2,1,STATUS,XX	Message size: 16
PLC->TETRA	DS,6,STATUS,100,0,0,2,0,XX	Message size: 25

100: 배터리잔량이100% 임을표현

0: EMG 버튼이눌리지않은상태. (눌리면 1)

0: 범퍼가눌리지않은상태. (눌리면1)

2 : 로봇의단자의상태가충전스테이션에도킹되어있음

(주행중에는1, 컨베이어도킹단자에붙으면11 또는12)

0: 주행동작상태

(주행이완료된경우에만3)

Ex2) Robot 최대속도설정

*명령어창에[DS,3,2,SPEED,0.8,XX] 입력.

PLC -> TETRA	DS,3,2,SPEED,0.8,XX	Message size: 16
PLC->TETRA	DS,2,SPEED,0.800,XX	Message size: 25

0.800: 0.8m/s의속도를로봇의최대속도로설정 (항상소수점3자리까지출력)

Ex3)GPIO상태확인

*명령어창에[DS,2,1,GPIO,XX] 입력.

PLC -> TETRA	DS,2,1,GPIO,XX	Message size: 16
PLC->TETRA	DS,17,GPIO,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,XX	Message size: 25

입력0~7번까지모두OFF상태&출력0~7번까지모두OFF상태 (ON 상태일경우각각1로출력)

```
uint8 t PENDING
                            // The goal has yet to be processed by the action server
                     = 0;
uint8 t ACTIVE
                            // The goal is currently being processed by the action server
uint8 t PREEMPTED = 2;
uint8 t SUCCEEDED = 3;
uint8_t ABORTED
uint8 t REJECTED
                    = 5:
uint8 t PREEMPTING = 6;
uint8 t RECALLING = 7;
                            // The goal received a cancel request before it started executing
// and was successfully cancelled (Terminal State)
uint8 t RECALLED
                    = 8;
uint8 t LOST
                     = 9;
                             // An action client can determine that a goal is LOST. This should not be
```