Foundations of Data Science

Hashing

Lecture 13

Hyung-Sin Kim

A Magic in Sets and Dictionaries

- As we've seen, searching an element in a list takes
 - O(N) for linear search
 - O(logN) for binary search, which requires the list to be **sorted**

- But somehow, searching an element in a set or a dictionary takes
 - O(1)
- We know that this is due to **hashing** which we don't know yet

Let's dive into its implementation to see how O(1) is possible!

• A regular list: [2, 5, 9, 10]

index	0	1	2	3
values	2	5	9	10

• What if we represent the data in a data-indexed array?

index	0	1	2	3	4	5	6	7	8	9	10	11
values	F	F	Т	F	F	Т	F	F	F	Т	Т	F

- A data-indexed array has all possible data as its indices
- Initially, all values of the array are **False** (i.e., di_array[x] = False for all x in di_array), meaning the array is empty
 - Let's assume that Python Sets are implemented based on data-indexed array
 - di_array = set() # assuming that the array can have only 0 to 11 as its data

index	0	1	2	3	4	5	6	7	8	9	10	11
values	F	F	F	F	F	F	F	F	F	F	F	F

- A data-indexed array has all possible data as its indices
- Initially, all values of the array are **False** (i.e., di_array[x] = False for all x in di_array), meaning the array is empty
 - Let's assume that Python Sets are implemented based on data-indexed array
 - di_array = set() # assuming that the array can have only 0 to 11 as its data
- When data x is added to the array, x-th element (di_array[x]) becomes **True**
 - di array.add(2)
 - di_array.add(9)

index	0	1	2	3	4	5	6	7	8	9	10	11
values	F	F	Т	F	F	F	F	F	F	Т	F	F

- Now, in operation (x in di_array) simply checks if x-th element is True
 - It can just return the value of di_array[x]: O(1)!

index	0	1	2	3	4	5	6	7	8	9	10	11
values	F	F	Т	F	F	F	F	F	F	Т	F	F

Ok... but indices are all integers...
Can we also store **string data** in data-indexed arrays?

English (lower case) in Data-Indexed Arrays

- We want to add English words to a data-indexed array
 - di_array.add("gsds")
 - di array.add("snu")
- What and where are "gsds"-th and "snu"-th elements?
 - Map each of 26 English alphabets to an integer (a=1, b=2, ..., z=26)
 - "gsds" becomes $\mathbf{gsds_{27}} = (7 \times 27^3) + (19 \times 27^2) + (4 \times 27^1) + (19 \times 27^0) = 151,759$
 - "snu" becomes $\mathbf{snu_{27}} = (19 \times 27^2) + (14 \times 27^1) + (19 \times 27^0) = 14,248$
 - Every lower-case word can be represented as a unique integer!

index	0	1	2	3	4	5	6	7	8	9	10	11
values	F	F	F	F	F	F	F	F	F	F	F	F

"gsds"?

"snu"?

String in Data-Indexed Arrays

- Recall that each character can be represented as an ASCII code value (1~255)
- "8a!"
 - 8: 56
 - a: 97
 - !: 33
- $8a!_{256} = (56 \times 256^2) + (97 \times 256^1) + (33 \times 256^0)$
- A string can be represented as a **unique integer** again!

Data-indexed arrays we've seen so far are great and represent all strings,

if a computer can represent infinite number of integers and have infinite memory

Integer Overflow

- Python 3 does not have a maximum integer but C/C++/Java does have maximum (unsigned) integer: 4,294,967,295 (2³²-1)
 - That means an integer **n** larger than the maximum value **M** is represented as **n** % **M**, instead of n itself
- snu_gsds₂₅₆
 - $115 \times 256^7 + 110 \times 256^6 + 117 \times 256^5 + 95 \times 256^4 + 103 \times 256^3 + 115 \times 256^2 + 100 \times 256^1 + 115 \times 256^0$
 - 8,317,714,614,417,843,315 >> 4,294,967,295
- A data index can easily be larger than the maximum integer
- We should represent an information as one of 4,294,967,296 integers!

Hash Function

- Wikipedia
 - "A hash function is any function that can be used to map data of arbitrary size to fixed-size values."

- When we have more than 4,294,967,296 data, **collisions** are inevitable!
 - Ex.) Our hash values for "ace!" and "pace!" are both 1,633,903,905

- Two questions
 - How can we handle when hash values are collided?
 - How can we compute a hash function?

Collision Handling

- di array[x] should contain a list of data whose hash value is x
 - Ex.) di array[1,633,903,905] should contain "pace!" and "ace"

index	0	1	2
values	F	F	F

1,633,903,	1,633,903,	1,633,903,
905	906	907
F	F	F

4,294,967, 294 295 F F

- To this end, we can make di_array[x] as a **linked list** instead of one value
 - Using an array or a set is also possible

index	0	1	2
values			

- Each element is initially **None** but becomes a linked list when an item is added
 - def __init__(self) -> None:self.array = [None]*4294967296
 - \bullet def add(self, x) -> None:
 - $i = hash_value(x)$
 - if self.array[i] == None:
 - self.array[i] = SLList()
 - self.array[i].addFirst(x)

• Each element is initially **None** but becomes a linked list when an item is added

```
def __init__(self) -> None:self.array = [None]*4294967296
```

- $def add(self, x) \rightarrow None:$
- i = hash value(x)
- if self.array[i] == None:
- self.array[i] = SLList()
- self.array[i].addFirst(x)

index	0	1	2
values			

1,633,903,	1,633,903,	1,633,903,
905	906	907

A = di array()

- Each element is initially **None** but becomes a linked list when an item is added
 - def **init** (self) -> None:
 - self.array = [None]*4294967296

- A = di array()
- A.add("©")

- $def add(self, x) \rightarrow None$:
- i = hash value(x)
- if self.array[i] == None:
- self.array[i] = SLList()
- self.array[i].addFirst(x)

1,633,903,	1,633,903,	1,633,903,
905	906	907

- Each element is initially **None** but becomes a linked list when an item is added
 - def __init__(self) -> None:
 - self.array = [None]*4294967296
 - $def add(self, x) \rightarrow None:$
 - i = hash value(x)
 - if self.array[i] == None:
 - self.array[i] = SLList()
 - self.array[i].addFirst(x)

A =	d1	array()	
	_	_ • •	

- A.add("©")
- A.add("pace!")

- Each element is initially **None** but becomes a linked list when an item is added
 - def init (self) -> None:
 - self.array = [None]*4294967296
 - $def add(self, x) \rightarrow None:$
 - i = hash value(x)
 - if self.array[i] == None:
 - self.array[i] = SLList()
 - self.array[i].addFirst(x)

•	A = di	array()
	11 01	α_{1}

- A.add("◎")
- A.add("pace!")
- A.add("ace!")

- Each element is initially **None** but becomes a linked list when an item is added
 - def init (self) -> None:
 - self.array = [None]*4294967296
 - $def add(self, x) \rightarrow None:$
 - i = hash value(x)
 - if self.array[i] == None:
 - self.array[i] = SLList()
 - self.array[i].addFirst(x)

•	A = di	array()

- A.add("☺")
- A.add("pace!")
- A.add("ace!")
- A.add("ace#")

- Each element is initially **None** but becomes a linked list when an item is added
 - def __init__(self) -> None:
 - self.array = [None]*4294967296
 - $def add(self, x) \rightarrow None:$
 - $i = hash_value(x)$
 - if self.array[i] == None:
 - self.array[i] = SLList()
 - self.array[i].addFirst(x)

- $A = di \ array()$
- A.add("◎")
- A.add("pace!")
- A.add("ace!")
- A.add("ace#")
- "ace!" in A
 - Check all items in A.array[1633903905]

Finally... Hash Table

- Now that we can handle collisions, we don't actually need all 4,294,967,296 indices
- What if we have only 12 indices?
 - When adding item x, compute its hashValue i
 - Add x to di_array[i%12] instead of di_array[i]

Hash table

- A table that stores data by using a valid index that is computed as follows:
- Data \implies hash function \implies hash value \implies reduction (e.g., modulo) \implies valid index

Hash Table Performance

- With a few indices, now we don't waste memory
- On the flip side, time cost is proportional to length of the longest chain
 - K: length of the longest chain
 - What is **K**? Given M and N, how can we reduce **K**?

Case	Add	in
SLList	O(1)	O(N)
List	O(1)	O(N)
Data-indexed Array	O(1)	O(1)
Data-indexed Array with Chains	O(1)	O(K)

Hash Table Performance – Problems

- Assume that our hash table has M indices and N items
 - K is between N/M (best case, evenly spread) and N (worst case, a long single chain)

- But the real problem is...
 - When M is **fixed** (e.g., 5), O(K) = O(N/5) = O(N)
 - Even in the base case, time cost increases with N!

How can we improve our hash table to achieve O(1)?

- Instead of using a fixed M, we can increase M as N increases
 - If we increase M proportional to N,
 O(N/M) becomes O(1)!
- For example, we can double M when $N/M \ge 1.5$

• Then, the hash table's chains now have less than 1.5 items on average

- With resizing, searching operation takes only **O(1)**!
 - If resizing operation is free... which is not true
- Resizing a hash table with N items requires O(N) time to redistribute all N items
 - But a good news is that we **don't always resize** since one resizing operation **doubles** the number of indices
- The number of redistributing items while adding N items
 - $1 + 2 + 4 + 8 + \dots + N = 2N-1$
 - When adding one item, redistributing cost becomes O((2N-1)/N) = O(1) on average!

Hash Table Performance

- Data-indexed array + chaining + resizing
 - Collisions are properly handled
 - Time complexity is independent from N
 - If items are **evenly spread** through the whole array ... ©

Case	Add	in
SLList	O(1)	O(N)
List	O(1)	O(N)
Data-indexed Array	O(1)	O(1)
Data-indexed Array with Chains (no resizing)	O(1)	O(N)
Data-indexed Array with Chains (with resizing)	O(1)	O(1)

Data becomes a hash value after passing through a hash function.

How can make a hash function that distributes items evenly?

Hash Function

- Bad examples
 - def hashfunction(x: str):
 - return 1 # same index for all strings
 - def hashfunction(x: str):
 - return ord(x[0]) # same index for all strings that have the same first character
 - def hashfunction(x: str):
 - ans = 0
 - for ch in x:
 - ans += ord(ch) # same index for all strings that consist of same characters
 - return ans

Hash Function

- Converting a string into a base B number would be good (as we already did)
 - def hashfunction(x: str):
 - ans = 0
 - for ch in x:
 - ans = ans * \mathbf{B} + ord(ch)
 - return ans

• What is a good base **B**?

Hash Function – Good Base

- Using 256 as a base seems clear since it can give a **unique number** for each string
- But now that we allow collision anyway (due to the limited maximum integer), we don't have to stick to "uniqueness"
- Moreover, base 256 causes all strings that share the last four characters collide with each other since the maximum number is $2^{32} = 256^4$
 - "I love you." / "I hate you." / "He likes you." / "It's you."
- Using a small prime number as a base is typical

Enough! More details are out of scope of this course

Enjoy sets and dictionaries with a bit more familiarity ©

Practice for Hashing

Practice 11

Hyung-Sin Kim

Thanks!