#linear_algebra

Whenever a linear transformation T arises geometrically or is described in words, we usually want a "formula" for $T(\mathbf{x})$. The discussion that follows shows that every linear transformation from \mathbb{R}^n to \mathbb{R}^m is actually a matrix transformation $\mathbf{x} \mapsto A\mathbf{x}$ and that important properties of T are intimately related to familiar properties of T. The key to finding T is to observe that T is completely determined by what it does to the columns of the T0 identity matrix T1.

Theorem 10:

Let $T:\mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Then there exists a unique matrix A such that

$$T(\mathbf{x}) = A\mathbf{x}$$
 for all \mathbf{x} in \mathbb{R}^n

In fact, A is the $m \times n$ matrix whose j th column is the vector $T(\mathbf{e}_j)$, where \mathbf{e}_j is the j th column of the identity matrix in \mathbb{R}^n :

$$A = [T(\mathbf{e}_1) \quad \cdots \quad T(\mathbf{e}_n)]$$
 (3)

EXAMPLE 2 Find the standard matrix A for the dilation transformation $T(\mathbf{x}) = 3\mathbf{x}$, for \mathbf{x} in \mathbb{R}^2 .

ions in Linear Algebra

SOLUTION Write

$$T(\mathbf{e}_1) = 3\mathbf{e}_1 = \begin{bmatrix} 3 \\ 0 \end{bmatrix}$$
 and $T(\mathbf{e}_2) = 3\mathbf{e}_2 = \begin{bmatrix} 0 \\ 3 \end{bmatrix}$

$$A = \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix}$$

DEFINITION

A mapping $T: \mathbb{R}^n \to \mathbb{R}^m$ is said to be **onto** \mathbb{R}^m if each **b** in \mathbb{R}^m is the image of at least one **x** in \mathbb{R}^n .

Equivalently, T is onto \mathbb{R}^m when the range of T is all of the codomain \mathbb{R}^m . That is, T maps \mathbb{R}^n onto \mathbb{R}^m if, for each \mathbf{b} in the codomain \mathbb{R}^m , there exists at least one solution of $T(\mathbf{x}) = \mathbf{b}$. "Does T map \mathbb{R}^n onto \mathbb{R}^m ?" is an existence question. The mapping T is *not* onto when there is some \mathbf{b} in \mathbb{R}^m for which the equation $T(\mathbf{x}) = \mathbf{b}$ has no solution. See Fig. 3.

FIGURE 3 Is the range of T all of \mathbb{R}^m ?

DEFINITION

A mapping $T: \mathbb{R}^n \to \mathbb{R}^m$ is said to be **one-to-one** if each **b** in \mathbb{R}^m is the image of *at most one* **x** in \mathbb{R}^n .

Equivalently, T is one-to-one if, for each \mathbf{b} in \mathbb{R}^m , the equation $T(\mathbf{x}) = \mathbf{b}$ has either a unique solution or none at all. "Is T one-to-one?" is a uniqueness question. The mapping T is *not* one-to-one when some \mathbf{b} in \mathbb{R}^m is the image of more than one vector in \mathbb{R}^n . If there is no such \mathbf{b} , then T is one-to-one. See Fig. 4.

FIGURE 4 Is every b the image of at most one vector?

EXAMPLE 4 Let T be the linear transformation whose standard matrix is

$$A = \begin{bmatrix} 1 & -4 & 8 & 1 \\ 0 & 2 & -1 & 3 \\ 0 & 0 & 0 & 5 \end{bmatrix}$$

Does T map \mathbb{R}^4 onto \mathbb{R}^3 ? Is T a one-to-one mapping?

SOLUTION Since A happens to be in echelon form, we can see at once that A has a pivot position in each row. By Theorem 4 in Section 1.4, for each \mathbf{b} in \mathbb{R}^3 , the equation $A\mathbf{x} = \mathbf{b}$ is consistent. In other words, the linear transformation T maps \mathbb{R}^4 (its domain) onto \mathbb{R}^3 . However, since the equation $A\mathbf{x} = \mathbf{b}$ has a free variable (because there are four variables and only three basic variables), each \mathbf{b} is the image of more than one \mathbf{x} . That is, T is *not* one-to-one.

THEOREM 11

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Then T is one-to-one if and only if the equation $T(\mathbf{x}) = \mathbf{0}$ has only the trivial solution.

THEOREM 12

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation and let A be the standard matrix for T. Then:

- a. T maps \mathbb{R}^n onto \mathbb{R}^m if and only if the columns of A span \mathbb{R}^m ;
- b. T is one-to-one if and only if the columns of A are linearly independent.