DEPARTAMENTO DE TECNOLOGÍA INFORMATICA Y COMPUTACIÓN

Examen

MATEMÁTICA DISCRETA

8-6-1996

1.- (a) Resolver el siguiente sistema de ecuaciones lineales en \mathbb{Z}_7 .

Expresar el resultado mediante representantes de clase entre 0 y 6.&Existe alguna solución en \mathbb{Z}_5 ?

(b) Usar el Teorema de Fermat para calcular el resto de dividir 3⁴⁷ entre 23.

2.- Determinar la cantidad de ordenadores que se pueda comprar de cada uno de los precios 290.00pts y 170.000pts si se dispone de un presupuesto de 7.800.000pts.

3.- La tabla siguiente es una lista de las actividades $a_1, a_2, ..., a_{11}$ de un proyecto y para cada una de ellas, el

tiempo en días necesario y las actividades que deben completarse antes de poder iniciarse.

Actividad	a_1	a_2	a_3	a_4	a_5	a_6	a_7	a_8	a_9	a_{10}	a_{11}
Tiempo Necesario	6	2	10	1	4	2	4	7	9	2	4
Prerrequisitos	-	-	a_1	a_1	a_1	a_5	a_2	a_3	a_2	$\overline{a_7}$	a_8
						a_{10}	a_4	a_6	a_4		a_{10}

Calcular el mínimo número de días en que puede completarse el proyecto. Identifica el camino crítico, explicando su significado. Explica razonadamente cuantos días se puede retrasar la actividad a_{10} sin afectar la duración total del proyecto.

4.- Consideramos un grafo ponderado con conjunto de vértices V={A,B,C,D,E,F}, y cuya matriz de pesos es:

-	∞	2	∞	5	8	∞	
	00	00	1	2	6	∞	
	1	00	∞	3	$\tilde{\infty}$	∞	
	∞	00	00	00	3	∞	
	1	∞	7	∞	∞	4	
	3	∞	∞	∞	∞	∞	

Calculamos el camino más corto de A a E y su peso, con la condición de que no contenga los vértices C y F como internos. El algoritmo que utilicéis debe aplicarse sobre la totalidad del grafo, es decir, no se permite eliminar vértices.

5.- (a) Dada la expresión en notación polaca directa:

$$\backslash -a \uparrow b 2 + c * 3 d$$

Calcular la expresión original y escribir también en notación polaca inversa.

(b) Hallar el número de formas de repartir 15 ordenadores entre tres departamentos debiendo asignarse al menos tres a cada departamento.

Nota: Todos los problemas puntúan por igual. No olvidéis detallar y justificar correctamente cada pregunta. Una respuesta no justificada se considerará incorrecta.

