Brief summary of the function files

- adjusted_rand_index.m Computes the Adjusted Rand Index (ARI).
- spatial_d.m Computes spatial depth.
- rspatial_dp.m Constructs the spatial-depth-based similarity matrix.
- Maha_d.m Computes Mahalanobis depth.
- Maha_dmcreator.m Constructs the Mahalanobis-depth-based similarity matrix.
- if_corr.m Performs a simple test for correlations among variables and determines the covariance matrix strategy for constructing the Mahalanobis-depth-based similarity matrix.
- EM_EEV.m Implements the Expectation-Maximization (EM) algorithm for the EEV model in the Gaussian Parsimonious Clustering Model (GPCM) family.
 - llh_calculator.m Computes the log-likelihood in the EM algorithm.
- getlocalcenter.m Identifies the deepest point for each subset and labels them as local centers.
- DLCC.m Main function implementing the DLCC algorithm.
 - filter_center.m Implements the local centers filtering procedure.
 - sim_mat.m Constructs the similarity matrix for neighborhoods of filtered centers.
 - get_temp_cl.m Groups the filtered centers.
 - $get_temp_cl_WK.m$ Groups filtered centers with a given k value, flexible min strategy.
 - spec_clus_withsim.m Performs spectral clustering given an adjacency matrix.
 - group_adjust.m Examines the initial grouping and makes it satisfy
 the flexible min strategy.
 - get_temp_cluster.m Provides temporary clusters based on the grouping results of filtered centers.
 - left_class.m Classifies remaining observations based on temporary clusters. Built-in classification methods include Maximal Depth Classifier, Random Forest (RF), and K-Nearest Neighbor (KNN). The "maxdepth" procedure is also included in this function.
 - ${\tt KNNdep.m}$ Implements the KNN algorithm based on the depth-based similarity matrix.
 - depth_by_cluster.m Computes data depth with respect to each cluster.

cluster2cv.m Converts clustering labels to a class vector.

 ${\tt loop_rfdlcc.m} \ \, {\rm Executes} \ \, {\rm the} \ \, {\rm Random} \ \, {\rm Forests} \ \, {\rm classification} \ \, 100 \ \, {\rm times} \ \, {\rm with} \ \, {\rm different} \, \, {\rm seeds}.$

DCscore.m Comutes the DC metric for evaluating clustering results.

DBCA.m Performs DBCA algorithm.