Mastering the Query Features of Power BI Desktop

Agenda

- Deciding What To Measure
- Managing Queries, Datasources and Credentials
- Working with the Query Editor Window
- Designing Queries to Generate a Star Schema

Data Discovery

- Data can live in a variety of sources
 - Files (e.g. CSV file, Excel workbook)
 - OLTP Databases
 - OLAP Databases
 - SharePoint Lists and Document Libraries
 - Azure-based services
 - Online services & SaaS applications

Deciding What To Measure

- You Must Determine Measurable Objectives
 - Financial (revenue, expenses, profit margin, etc.)
 - Business processes efficiency
 - Customer Satisfaction Levels

Defining Grain Statements

- Grain statements should be defined in initial design phase
 - Grain statements helps determine requirements for BI queries
 - Grain statements can be created & understood by business users
- Example grain statements for BI project at Wingtip Toys
 - What was the total sales revenue over the last 4 years?
 - What was the sales revenue by year, quarter and month?
 - What was the sales revenue by region, state, city and zip code?
 - What was the sales revenue by category, subcategory and product?
 - What was the growth in sales revenue from month to month in 2013?
 - What was profit margin for each product by year, quarter and month?
 - Have their been any products with significantly decreasing profit margin?

Sample OLTP Database: WingtipSalesDB

- Online Transaction Processing (OLTP) System
 - Used for real-time data access and transaction-based data entry
 - Optimized for faster transactions (e.g. inserts, updates & deletes)
 - Tables normalized to reduce/eliminate redundancies
 - Table schemas can be hard for business users to understand

Agenda

- Deciding What To Measure
- Managing Queries, Datasources and Credentials
- Working with the Query Editor Window
- Designing Queries to Generate a Star Schema

File-based Data Sources

Power BI Desktop supports common file types

Working with Web Data Sources

- Many public websites publish data using HTML tables
 - Power BI desktop can scrape data from tables in HTML pages

Supported Databases

Power BI Desktop supports many database systems

Azure Data Sources

Power BI Desktop supports many Azure data sources

Selecting Tables from a SQL Database

- Power BI Desktop provides Navigator dialog
 - Allows you to select tables
 - Navigator understands existing table relationships
 - Clicking Load will run query and import data
 - Clicking Edit will open queries in Query Editor window

Managing Datasources and Credentials

Agenda

- Deciding What To Measure
- Managing Queries, Datasources and Credentials
- Working with the Query Editor Window
- Designing Queries to Generate a Star Schema

Query Steps

- A query is created as a sequence of steps
 - Each step is a parameterized operation on the data
 - Each step has formula which can be viewed/edited in formula bar
 - Query starts with Source step to extract data from a data source
 - Additional steps added to perform transform operations on data
 - You can replay query operations one by one by clicking on steps

Query Editor Ribbon Tabs

Home tab

Transform tab

Add Column tab

View tab

Examples of Basic Power BI Desktop Steps

- Rename column
- Convert column type
- Format column values
- Reorder columns
- Replace column values
- Expanding related column
- Merging columns
- Splitting columns

Replacing Values

Used to substitute values during import

Converting Column Types

- Transform data to make it more reliable
 - Convert date-time column to date column
- Transform data to make it more efficient
 - Convert decimal to fixed decimal number for currency

## PurchaseDate	1 ² ₃ Quantity	\$ SalesAmount	\$	ProductCost
1/28/2012	1	2.95	1.2	Decimal Number
1/28/2012	6		\$	Fixed Decimal Number
1/28/2012	1	19.95	1 ² 3	Whole Number
1/28/2012	5	249.75	<u></u>	Date/Time
1/28/2012	1		.	Date

Beware: Conversion can have destructive effect on data

Expanding Related Columns

- Used to pull data from related tables
 - Saves you from performing SQL joins or VLOOKUP

Merging Columns

Merge two columns into a single column

	CustomerId 🔻	Customer		
1	1	Santiago Hubbard		
2	2	Nicky Rios		
3	3	Cirk Sexton		
4	4	Regina Mayer		
5	5	Cyril Mathews		
6	6	Kris Booker		
7	7 Tracy Christensen			
8	8	Reed Glover		

Splitting Columns

Split a single column up into two columns

Ⅲ ▼	ProductId =	Product	Category	Subcategory
1	1	Batman Action Figure	Action Figures	Tough Guys
2	2	Captain America Action Figure	Action Figures	Tough Guys
3	3	GI Joe Action Figure	Action Figures	Tough Guys
4	4	Green Hulk Action Figure	Action Figures	Tough Guys
5	5	Red Hulk Alter Ego Action Figure	Action Figures	Tough Guys
6	6	Godzilla Action Figure	Action Figures	Tough Guys
7	7	Perry the Platypus Action Figure	Action Figures	Cute and Huggable
8	8	Green Angry Bird Action Figure	Action Figures	Cute and Huggable

Adding a Custom Column

- Custom column provide custom logic
 - Logic must be written in M programming language

FirstPurchaseDate 🔻	LastPurchaseDate 🔻	CustomerType ~
1/28/2012	1/28/2012	One-time Customer
1/29/2012	11/22/2015	Repeat Customer
1/29/2012	10/2/2015	Repeat Customer
1/29/2012	1/29/2012	One-time Customer
1/29/2012	5/6/2015	Repeat Customer
1/29/2012	1/29/2012	One-time Customer

Adding a Conditional Column

Abstracts away need to write M code

Agenda

- Deciding What To Measure
- ✓ Managing Queries, Datasources and Credentials
- ✓ Working with the Query Editor Window
- Designing Queries to Generate a Star Schema

Data Modeling using a Star Schema

- OLAP Modeling often based on Star Schema
 - Tables defined as fact tables or dimension tables
 - Fact tables related to dimension table using 1-to-many relationships

Designing Queries to Build a Star Schema

- Converts OLTP Data Model to OLAP Data Model
 - Sales table is modeled as a OLAP Fact Table
 - Other tables are modeled as OLAP Dimension tables
 - Requires pulling CustomerId column into Sales table
 - All dimension tables should be directly related to fact table

Summary

- Deciding What To Measure
- ✓ Working with the Query Editor Window
- Managing Queries, Datasources and Credentials
- Designing Queries to Generate a Star Schema

