Copy Right Material By Charles P. Pfleeger and authors or the course text book: Security in Computing published by Prentice Hall – Please do not distributed this to anyone outside CSCI 631 Course (Fall 2019)

CSCI/CSIS 631

Fall 2019

Homework 3

Solution

First, we test to be sure this is a Vigenère cipher. We compute the frequency counts of each letter, and from that get the index of coincidence (IC), which is 0.040. Using Figure 9–4, this indicates a polyalphabetic cipher, so we are justified in assuming a Vigenère cipher. We next look for repetitions. The following table summarizes them:

Repetition	Begins at	Ends at	Interval Length	Factorization of Interval Length
ts	0	40	40	2225
ts	0	59	59	59
sm	1	105	104	2 2 2 13
рр	6	30	24	2223
рс	7	38	31	31
hp	15	120	105	357
fa	21	79	58	2 29
fa	21	118	97	97
ue	23	83	60	2235
pi	31	109	78	2 3 13
ms	33	104	71	71
sf	34	74	40	2225
ip	37	92	55	5 11
ts	40	59	19	19
pk	43	57	14	2 7
lvf	61	116	55	5 11
krg	68	88	20	225
fa	79	118	39	3 13
iyo	110	135	25	5 5

Of these, the interval lengths have the factor 2 appear 9 times, 3 appears 5 times, 4 appears 6 times, 5 appears 7 times, 6 appears 3 times, 7 appears 2 times, and 8 and 10 appear 4 times each. Given the IC indicates a key length of greater than 2, we will first try a key of length 5, as that is the most frequent factor greater than 2.

Splitting the ciphertext into 5 parts, we compute the IC for each alphabet. They are:

alphabet #1: 0.042 alphabet #3: 0.050 alphabet #5: 0.48

alphabet #2: 0.066 alphabet #4: 0.066

Of these, alphabets 2 and 4 have an IC indicating a key length of 1, alphabets 3 and 5 have an IC indicating a key length of between 2 and 3, and alphabet 1 has an IC indicating a key length of between

Copy Right Material By Charles P. Pfleeger and authors or the course text book: Security in Computing published by Prentice Hall – Please do not distributed this to anyone outside CSCI 631 Course (Fall 2019)

5 and 10. Given the short ciphertext, we will accept that our hypothesis of a key length of 5 is worth pursuing, and proceed accordingly.

We next lay out the frequencies for each alphabet:

abc defgh i jk lmnopqrs t uvwxyz

alphabet #1: 10112223300011110233001000

alphabet #2: 10030101000411250130000122

alphabet #3: 22011010500031222011121000

alphabet #4: 00410220124010031000420001

alphabet #5: 20102101101220020331004200

First consider the second alphabet. The frequencies in the middle (4 1 1 2 5 0 1 3), representing counts for the letters I through s, are similar to the frequency counts expected at the beginning of the unshifted alphabet. So, let us assume that the second alphabet maps A into L. In the fourth alphabet, the frequencies from w to z, and a and b, are 0 0 0 1 0 0, and are similar to the frequency counts expected at the end of the unshifted alphabet. So, let us assume the fourth alphabet maps A into C. For the first alphabet, the frequencies from the letter on match the frequency counts expected at the end of the unshifted alphabet, so let us assume the first alphabet maps A into A.

We now substitute back into the ciphertext. As in the book, the bold letters are plaintext and the unbolded letters are the ciphertext:

THMTM	MEPAW	COUEX	HE E A P	RUASE	ID B O W	PEIKS	FMIN C	THQNK	SONSL
OE A A R	DS PIT	SAVDW	EA TIR	GWIX S	FCIBF	AG MSE	NDSIR	GSINH	WHGTL
ESMAM	SBWIP	INOHS	TAVDA	HE B H I	RPQGW	HADEA	INOSX		

The first word is either "THE" or "THAT". But if it's "THAT", then the third alphabet is unshifted, and the frequency counts do not match those of the unshifted alphabet. If it's "THE", on the other hand, then E maps into M, meaning A maps into I, and the frequency counts are closer to those of the unshifted alphabet than if the first word were "THAT". Adopting as a working hypothesis that the third alphabet maps A into I, and updating the text as before, we have:

THETM	MEHAW	COMEX	HEWA P	RUSSE	IDTOW	PEAKS	FMAN C	THINK	SOFSL
OESAR	DSHIT	SANDW	EALIR	GWAXS	FCABF	AGESE	NDKIR	GSANH	WHYTL
ESEAM	SBOIP	INGHS	TANDA	HETHI	RPIGW	HAVEA	INGSX		

At this point, the cipher falls apart. The "W" at the end of the second block is obviously "S", so the fifth alphabet maps A into E. The plaintext is:

THETI ME	HAS COMET	HEWAL	RUSSA	IDTOS	PEAKO	FMANY	THING	SOFSH
----------	-----------	-------	-------	-------	-------	--------------	-------	-------

Copy Right Material By Charles P. Pfleeger and authors or the course text book: Security in Computing published by Prentice Hall – Please do not distributed this to anyone outside CSCI 631 Course (Fall 2019)

OESAN	DSHIP	SANDS	EALIN	GWAXO	FCABB	AGESA	NDKIG	GSANN	WHYTH
ESEAI	SBOIL	INGHO	TANDW	HETHE	RPIGS	HAVEW	INGST		

So, the key is ALICE, and the plaintext is:

'The time has come,' the Walrus said,

'To speak of many things:

Of shoes—and ships—and sealing wax—

Of cabbages—and kings—

And why the sea is boiling hot—

And whether pigs have wings.'

This is a part of a poem from Through the Looking Glass (and yes, I know it should be "talk", not "speak", in the second line!)