BACKGROUND

Delayed Visual Feedback

JOURNAL OF NEUROPHYSIOLOGY Vol. 67, No. 3, March 1992. Printed in U.S.A.

Effect of Changing Feedback Delay on Spontaneous Oscillations in Smooth Pursuit Eye Movements of Monkeys

Theory

eye position (EP) target position

eye acceleration (EA)

target acceleration

p(t) = tstationary target

ideal stabilization p(t) = e(t)

lab stabilization

p(t) = e(t) + d(t)

 $p(t) = e(t) - e(t - \delta_2)$ transient stabilization

retinal position error (RPE) retinal velocity error (RVE) retinal acceleration error (RAE)

RPE drives EA

 $\ddot{\mathbf{e}}(t) = k_2 \left| \dot{\mathbf{p}}(t - \delta_1) - \dot{\mathbf{e}}(t - \delta_1) \right|$ RVE drives EA

RAE drives EA

$$\ddot{\mathbf{e}}(t) = k_1 \left[\mathbf{p}(t - \delta_1) - \mathbf{e}(t - \delta_1) \right]$$
 RPE drives E.

$$\ddot{e}(t) = k_1 \left[e(t - \delta_1) - e(t - \delta_1 - \delta_2) - e(t - \delta_1) \right]$$

 $\ddot{\mathbf{e}}(t) = -k_1 \mathbf{e}(t - \delta_1 - \delta_2)$

 $\ddot{\mathbf{e}}(t) = -k_1 \, \mathbf{e}(t - \delta)$

 $e(t) = e^{i\omega t}$

satisfied if $k_1 = \omega^2$ and $\lambda = \delta$,

where $\lambda \equiv \frac{2\pi}{}$.

RPE drives EA

RVE drives EA $\lambda = 4\delta$

 $\lambda = 2\delta$ RAE drives EA

total delay δ

Results

Predictions

 $p(t) = e(t) - e(t - \delta_2)$ transient stabilization

RPE drives EA $\ddot{\mathbf{e}}(t) = k_1 \left| \mathbf{p}(t - \delta_1) - \mathbf{e}(t - \delta_1) \right|$

VOLUNTARY Foveal system (velocity tracking) 1st order motion only?

BIG QUESTION:

Motivation:

inputs,

driven pursuit response for certain classes of stimuli?

Approach:

Delayed Visual Feedback (see Background panel at left)

Smooth pursuit of flicker-defined motion

Jeffrey B. Mulligan NASA Ames Research Center

First-order stimuli

Scott B. Stevenson

University of Houston College of Optometry

Trials

UNIVERSITY of

HOUSTON

RESULES

Previous work suggests pursuit

voluntary and reflexive pathways with

different properties, which respond to

responses combine signals from

different stimuli. The reflexive

first-order (luminance-defined)

system appears to respond only to

motion; here we investigate whether

the voluntary system has a different

weighting of position and velocity

Figure from Mulligan, Stevenson & Cormack (2013), showing proposed architectural model of pursuit control system, with portions relevent to this poster highlighted.

Can we demonstrate a position-

riaid black

Third-order stimuli

Space-time plots showing time (top-to-bottom), and one spatial dimension for the four classes of stimuli studied.

seatic"

CONCLUSION

Can we demonstrate a position-Driven pursuit response for certain Classes of stimuli?

TODAY'S ANSWER: Not yet...

References

oscillations in smooth pursuit eye movements in monkeys." J. Neurophysiol., 67(3), 625-638 movements." in Rogowitz, B.E. Pappas, T.N., and de Ridder, H. (eds.), Human Vision and Electronic Imaging XVIII,