0.1 Пункт 1

Для проведения эксперемента фиксировалась выборка размером 100, k равное 5 и d равное 0.2. α варьировалась от 0.5 до 10 с делением на 60 значений. Усреднение шло по 10 различным значениям, так как такое уже позволило понять форму большенства распределений.

 $Pисунок 1 - Зависимость числа компонент связности от <math>\alpha$ при распределении weibull

В случае анализа числа компонент связности в knn при обоих распределениях (рис. 1 и рис. 2) их распределение судя по всему независимо от α и имеет при наших условиях среднее около 12.5 в случае weibull и 11 в случае с exp.

Pисунок 2 – 3ависимость числа компонент связности от α npu распределении exp

 $Pucyнок 3 - 3 aвисимость максимальной клики от <math>\alpha$ npu pacnpedenehuu weibull

Pucyнok 4 — $Зависимость максимальной клики от <math>\alpha$ npu pacnpedenenuu exp

В случае же с максимальной кликой видно (рис. 3 и рис. 4), что распределение напоминает степенну функцию, но с совершенно разными степенями. По моим рассчетам при наших условиях степень составляет около в случае weibull и 2/5 в случае с \exp .

0.2 Пункт 2

Для проведения эксперемента фиксировалась данное в задании α и значения k проходили от 2 до 20 с шагом 1, значения d проходили от 0.05 до 10 с делением на 60 участков и значения d проходили от 50 до 100 с шагом 2. Усреднение шло по 10 различным значениям аналогично первому пункту.

Тут можно отметить, что от k зависимость степенная с отрицательным коэффициентом в обоих случаях, от d зависимость степенная с коэффициентом меньше 0, а от п зависимость линейная положительная во всех случаях, при том с меньшей дисперсией при подсчете кликового числа.

$0.3 \, \Pi$ ункт 3

После запуска функции мощность полученного A на выборке размером 300 и с количеством итераций 1000 составило power = 0.9919999999999, error = 0.99999999999999999 для knn и power = 0.578000000000001, error = 1.0 для dist. Это говорит о том, что в случае с числом компонент связности принимаемые значения похожи друг на друга и обоих плотностей, а вот кликовое число достаточно разнится, но все равно вероятность ошибится можно оценить примерно как 50 на 50.

0.4 Анализ функций по их параметрам

Для проведения экспериментов фиксировалась выборка размера размера 100, k равное 5 и d равное 0.2:

1)stud распеределение(рис 15)

Максимальная степень графа не влияет на числовую характеристику при изменении параметра

2) Іар распеределение (рис 16)

Размер максимального независимого множества к числовой характеристике стремиться к прямой зависимости, то есть чем больше параметр тем больше размер максимального независимого множества

0.5 Анализ функций по k и d

Для проведения экспериментов фиксировалась выборка размера размера 100:

1)stud распеределение(рис 17)

Максимальная степень графа имеет линейную зависимость при изменении параметра к при создании дк

2) Іар распеределение (рис 18)

Размер максимального независимого множества к d проявляет примерно обратную зависимость

0.6 Анализ функций по выборке п

Для проведения экспериментов фиксировалась k равное 5 и d равное 0.2:

1)stud распеределение(рис 19)

Максимальная степень графа не влияет на числовую характеристику при изменении выборки

2) Іар распеределение (рис 20)

Размер максимального независимого множества к размеру выборки п стремиться к прямой зависимости, то есть чем больше d тем больше размер максимального независимого множества

0.7 Пункт 3

Для Лапласа и Стьюденса:

После запуска функции при выборке 300 и количества итераций 1000 мощность А вышла 0.13, а ошибка 1.0. Вероятность неправильно принять Н1 составляет не более 13 процентов.

0.8 Часть 2. Исследование важность характеристик

Важность признаков у stud и lap при постоянном выбранном нами n:

 $max_degree: 0.6129$

size_max_independent_set: 0.3871

Важность признаков у ехр и weib при постоянном выбранном нами n:

number_of_connectivity_components: 0.4483

 $size_max_clique: 0.5517$

Посмотрим как выглядит график при различных п(рисунки 21 и 22):

Для stud и lap - синяя линия - max_degree, а желтая - size_max_independent_set. Из этого можно сделать вывод, что для определения большую роль играет макси-

мальная степень

Для exp и weib - синяя линия - number_of_connectivity_components, а желтая size_max_clique. Из этого можно сделать вывод, что для определения большую роль

играет число компонент связности.

0.9 Часть 2. Исследование метрики

Для stud и lap - при минимальном n - лучшим алгоритмом будет K-ближайших соседей, при остальных n, чем больше n тем лучше результат, a при максимльном n

точность будет равна 1 для всех алгоритмов.

Также для каждого n мы вывели Confusion matrix(рисунки 23-25)

Ошибка первого рода: 0.5

Мощность: 0.5

Точность: 1.0

Для exp и weib - при минимальном n - лучшим алгоритмом будет Логистическая регрессия и K-ближайших соседей, при остальных n, чем больше n тем лучше результат, а при максимльном n Дерево и Логистическая регрессия будут лучшими алгоритмами.

Также для каждого n мы вывели Confusion matrix(рисунки 26-28)

Ошибка первого рода: 0.02

Мошность: 0.23

Точность: 0.71

0.10 Реализация

В 1 части - каждый реализовывал свои функции

Создание gd - Лев, создание gk - Илья. Первый пункт - Лев и Илья, второй пункт

- Лев и Илья, третий пункт - Илья.

Во 2 части - первый и второй пункт - Лев, третий - Илья.

6

 $Pucyhok\ 5$ — $Зависимость максимальной клики от <math>\alpha$ npu pacnpedenehuu weibull nocne выравнивание возведением в cmenehb

Pисунок 6 — Зависимость максимальной клики от α при распределении ехр после выравнивание возведением в степень

Pисунок 7 — 3ависимость числа компонент связности от k npu pacpeделении weibull

Pисунок 8 – 3ависимость числа компонент связности от k npu pасnpedелении exp

Pисунок 9 — Зависимость размера максимальной клики от d npu распределении weibull

Рисунок 10 – Зависимость размера максимальной клики от d при распределении exp

 $Pucyнok\ 11-3 aвисимость\ числа\ компонент\ связности\ n\ npu\ pacnpedeлeнии\ weibull$

Рисунок 12 – Зависимость числа компонент связности п при распределении ехр

 $Pucyнok\ 13-3$ ависимость размера максимальной клики от n npu pacnpedeлении weibull

Pисунок 14 — Зависимость размера максимальной клики от <math>n npu pacnpedenehuu exp

 $Pисунок\ 15$ — $Анализ\ no\ napamempam$ - $stud\ pacnepedeлeниe$

Рисунок 16 – Анализ по параметрам - lap распеределение

 $Pucyнo\kappa$ 17 — Aнализ по k - stud pacпеределение

 $Pисунок\ 18$ – Aнализ по d - lap распеределение

Pисунок 19 - Анализ по n - stud распеределение

Pисунок 20 - Анализ по <math>n - lap распеределение

 $Pисунок\ 21$ — Важность признаков $y\ stud\ u\ lap$

Рисунок 22 – Важность признаков у ехр и weib

 $Pucyнo\kappa 23$ — Confusion matrix lap and stud n=25

Рисунок 24 – Confusion matrix lap and stud n=100

 $Pucyнox\ 25$ — Confusion matrix lap and stud $n{=}500$

 $Pucyнo\kappa\ 26$ — Confusion matrix weib and exp $n{=}25$

Рисунок 27 – Confusion matrix weib and exp n=100

Рисунок 28 – Confusion matrix weib and exp n=500