année scolaire 2023-2024 Professeur : Zakaria Haouzan

Établissement : Lycée SKHOR qualifiant

Devoir Surveillé N°1 - semestre 02 2ème année baccalauréat Sciences Mathématiques Durée 2h30

Chimie 7pts/42min _

Toutes les solutions sont prises à $25^{\circ}c$, et $K_e = 10^{-14}$.

Les amines sont des composés organiques qui se caractérisent par des solutions aqueuses basique. On s'intéresse à l'étude d'une solution aqueuse d'une amine A de formule $C_2H_5NH_2$.

On prépare une solution S0 de cette amine de concentration $C_0=2.10^{-2}mol/L$ et de $pH_0=11,55$ à 25°c.

- 1 **1.1.** Ecrire l'équation de réaction de l'amine A avec l'eau, et dresser le tableau d'avancement pour un volume V.
- 0.5 1.2. Calculer le taux d'avancement final de la réaction. Conclure.
- 1 **1.3.** Calculer la valeur de pK_A du couple acide/base de l'amine A.
- 1.5 **1.4.** On dilue la solution S_0 , pour obtenir une solution S_1 de concentration $C_1 = 10^{-2} mol/L$. En négligeant la dissolution de la base avec l'eau, montrer que le pH de la solution S_1 peut s'écrire sous la forme : $pH = 7 + \frac{1}{2} \cdot (pK_A + log(C_1))$. Calculer pH_1 .
- 2. On prend $V_1 = 10mL$ de la solution S_1 , et on procède au dosage avec une solution aqueuse d'acide chlorhydrique $(H_3O^+_{(eq)} + Cl^-)$ de concentration $C_2 = 10^{-2}mol/L$. L'évolution de la valeur de pH du mélange au cours du dosage, est représentée par la courbe de la figure .

- 0.75 **2.1.** Ecrire l'équation de réaction du dosage, et calculer sa constante d'équilibre. Que peut-on dire de la nature de cette réaction ?
- 0.75 **2.2.** Déterminer les coordonnées du point d'équivalence, puis vérifier la valeur de la C_1 .
- 1.5 **2.3.** Calculer les concentrations de l'amine A et de son acide conjugué lorsqu'on a versé un volume $V_2 = 16ml$ de la solution titrante. En déduire le pourcentage de chacun.

Les deux parties sont indépendantes

Partie 1:Electricité (1)(7pts)

On réalise le circuit électrique représenté dans la figure-1- comportant :

- Un générateur de force électromotrice E.
- Une bobine d'inductance L_1 et de résistance interne r_1 .
- Une bobine d'inductance L_2 et de résistance interne r_2 .
- \bullet Un ampèremètre et un interrupteur K. On ferme K à t=0.

- 0.5 **1.** Montrer que l'équation différentielle vérifié par l'intensité du courant i(t) s'écrit sous la forme : $i + \tau \cdot \frac{di}{dt} = \alpha$ Avec τ et α , des constantes dont on déterminera les expressions.
- 2. La solution de cette équation s'écrit sous la forme : $i(t) = A.e^{-\lambda .t} + B$. En utilisant les conditions initiales et les caractéristiques du régime permanant, trouver les expressions des constantes A et B.
- II. La courbe de la figure -2 montre les variations de l'intensité du courant i(t), et la figure -3-, celles des tensions $u_{B1}(t)$ et $u_{B2}(t)$ aux bornes des bobines.

- 0.5 **3.** Montrer que E=12V.
- 0.5 | 4. Trouver l'expression de $\frac{di}{dt}(t=0)$, à t=0 en fonction de E, L_1 , et L_2 .
- 5. La droite T dans la figure-2, représente la tangente à la courbe i(t) à t=0. Trouver graphiquement la valeur $\frac{di}{dt}(t=0)$, et en déduire la valeur de $L_1 + L_2$.
- 0.75 **6.** Montrer que $u_{B1}(t=0) = \frac{L_1}{L_1+L_2}.E$ et $u_{B2}(t=0) = \frac{L_2}{L_1+L_2}.E$ En utilisant les courbes de la figures -3, trouver les valeurs de L_1 et L_2 .
- 0.75 **7.** Montrer qu'en régime permanant, les tensions $u_{B1}(\infty) = \frac{r_1}{r_1 + r_2} E$ et $u_{B2}(\infty) = \frac{r_2}{r_1 + r_2} E$.
- 0.5 \mid 8. En régime permanant, l'ampèremètre affiche la valeur 2A. Calculer les valeurs de r_1 et r_2 .
- 1.5 **9.** L'expression de la tensions $uB_1(t)$ s'écrit sous la forme : $u_{B_1} = C + D.e^{\frac{-t}{\tau}}$ Trouver les expressions des deux constante C et D.

Partie 2 : Electricité(2)(6pts)

Cet exercice vise l'étude de la charge d'un condensateur et sa décharge dans une bobine.

I- Charge d'un condensateur et sa décharge dans une bobine : (3pts) On réalise le montage représenté sur le schéma de la figure 1.

Ce montage comprend:

- -un générateur idéal de courant.
- -un condensateur de capacité C variable, initialement non chargé.
- -une bobine(b) d'inductance L=8,6mH et de résistancer $r=12\Omega$
- -un microampèremètre
- –un interrupteurK.

On ajuste la capacité du condensateur sur une valeur C_0 . On place l'interrupteur K en position (1) à un instant de date t=0. Le microampèremètre indique $I_0=10\mu A$. Un système de saisie informatique convenable permet d'avoir le graphe de la figure 2 représentant $\sqrt{E}=f(t)$ avec E_e étant l'énergie électrique emmagasinée dans le condensateur à un instant t.

- 0.25 **I.1.** Donner l'expression de l'énergie emmagasinée dans le condensateur en fonction de sa charge q et de sa capacité C_0
- 0.75 | **I.2.** Montrer que $C_0 = 2\mu F$
- I.3. Lorsque la tension aux bornes du condensateur prend la valeur $U_{AB} = 40V$, on place l'interrupteur K en position (2) à un instant choisi comme une nouvelle origine des dates t = 0. Un dispositif approprié permet de visualiser la courbe donnant les variations au cours du temps de l'intensité du courant i(t) dans le circuit (figure 3)
 - 1 i I.3.1. Calculer l'énergie dissipée par effet joule dans le circuit entre les instants t=0 et $t=t_1$.
 - 1 : I.3.2. Indiquer, en justifiant, si le condensateur se charge ou se décharge entre les instants t_2 et t_3 .

II-Oscillations forcées dans un circuit RLC série (3pts)

Le circuit représenté sur la figure 5 contient : un générateur, GBF délivrant au circuit une tension sinusoïdale $U_{AB}=3.\sqrt{2}.cos(2.\pi.N.t)$ Le coefficient de qualité de ce circuit est Q=7, la largeur de la bande passante à -3dB est 14,3Hz. A la résonance, l'ampèremètre indique la valeur $I=1,85.10^2mA$.

- 1 II.1. Déterminer la fréquence des oscillations électriques à la résonance.
- 1 II.2. Trouver la valeur de R_1 et celle de C_1
- 1 II.3. 3-3- Calculer la puissance électrique moyenne, consommée par effet joule, dans le circuit quand la fréquence prend l'une des valeurs limitant la bande passante.