

Description

TheVSM70N15uses advanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge. It can be used in a wide variety of applications.

General Features

- $V_{DS} = 150V, I_D = 70A$ $R_{DS(ON)} < 18m\Omega @ V_{GS} = 10V$
- High density cell design for ultra low Rdson
- Fully characterized avalanche voltage and current
- Good stability and uniformity with high E_{AS}
- Excellent package for good heat dissipation
- Special process technology for high ESD capability

Application

- Power switching application
- Hard switched and High frequency circuits
- Uninterruptible power supply

TO-220C

Schematic Diagram

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VSM70N15-TC	VSM70N15	TO-220C	-	-	-

Absolute Maximum Ratings (T_C=25 ℃unless otherwise noted)

Parameter	Symbol	Limit	Unit	
Drain-Source Voltage	V _{DS}	150	V	
Gate-Source Voltage	V _G s	±20	V	
Drain Current-Continuous	I _D	70	А	
Drain Current-Continuous(T _C =100 °C)	I _D (100℃)	49.5	А	
Pulsed Drain Current	I _{DM}	280	А	
Maximum Power Dissipation	P _D	310	W	
Derating factor		2.07	W/℃	
Single pulse avalanche energy (Note 5)	E _{AS}	210	mJ	
Operating Junction and Storage Temperature Range	T_{J} , T_{STG}	-55 To 175	°C	

Thermal Characteristic

Thermal Resistance.Junction-to-Case ^(Note 2)	Raic	0.48	°C/W
Thermal Resistance, sunction-to-Gase	I VAJC	0.70	CIVV

Electrical Characteristics (T_C=25°C unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics	·					
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250μA	150	-	-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =150V,V _{GS} =0V	-	-	1	μΑ
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA
On Characteristics (Note 3)	·					
Gate Threshold Voltage	V _{GS(th)}	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	2	3	4	V
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =10V, I _D =20A	-	14	18	mΩ
Forward Transconductance	g FS	V _{DS} =5V,I _D =20A	50	-	-	S
Dynamic Characteristics (Note4)	·					
Input Capacitance	C _{lss}	.,,	-	6644	-	PF
Output Capacitance	C _{oss}	$V_{DS}=75V, V_{GS}=0V,$	-	243	-	PF
Reverse Transfer Capacitance	C _{rss}	F=1.0MHz	-	178	-	PF
Switching Characteristics (Note 4)			•			
Turn-on Delay Time	t _{d(on)}		-	28	-	nS
Turn-on Rise Time	t _r	V_{DD} =75V, R_L =15 Ω	-	30	-	nS
Turn-Off Delay Time	$t_{d(off)}$	V_{GS} =10V, R_{G} =2.5 Ω	-	95	-	nS
Turn-Off Fall Time	t _f		-	40	-	nS
Total Gate Charge	Qg	\/ 75\/ L 00A	-	148.4		nC
Gate-Source Charge	Q _{gs}	$V_{DS}=75V,I_{D}=20A,$	-	28.4		nC
Gate-Drain Charge	Q_{gd}	V _{GS} =10V	-	49.8		nC
Drain-Source Diode Characteristics	1		•			•
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =20A	-		1.2	V
Diode Forward Current (Note 2)	Is		-	-	70	Α
Reverse Recovery Time	t _{rr}	TJ = 25°C, IF = 20A	-	40		nS
Reverse Recovery Charge	Qrr	di/dt = 100A/µs ^(Note3)	-	66		nC
Forward Turn-On Time	t _{on}	Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)				

Notes:

- $\textbf{1.} \ \textbf{Repetitive Rating: Pulse width limited by maximum junction temperature}.$
- 2. Surface Mounted on FR4 Board, t ≤ 10 sec.
- 3. Pulse Test: Pulse Width ≤ 300µs, Duty Cycle ≤ 2%.
- 4. Guaranteed by design, not subject to production
- **5.** EAS condition: Tj=25 $^{\circ}\text{C}$,VDD=50V,VG=10V,L=0.5mH,Rg=25 Ω

Test Circuit

1) E_{AS} test Circuit

2) Gate charge test Circuit

3) Switch Time Test Circuit

Typical Electrical and Thermal Characteristics (Curves)

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

Figure 3 Rdson-Drain Current

Figure 4 Rdson-JunctionTemperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

Figure 7 Capacitance vs Vds

Figure 9 Power De-rating

Figure 8 Safe Operation Area

Figure 10 Current De-rating

Figure 11 Normalized Maximum Transient Thermal Impedance