ILLINOIS TECH

College of Computing

CS 450 Operating Systems Hard Disks

Yue Duan

Spindle

- Motor connected to spindle spins platters
- Rate of rotation
 - RPM (rotation per minute)
- 10000 RPM ===>
 - 1 min == 60 sec == 60,000ms
 - single rotation is 6 ms

- Surface is divided into rings:tracks
- Stack of tracks(across platters): cylinder

 Tracks are further divided into numbered sectors

 Heads on a moving arm can read from each surface.

- Operations:
 - seek
 - o read
 - write
- Must specify
 - cylinder # (distance from spindle)
 - o head #
 - sector #
 - transfer size
 - memory address

Physical Disk Structure

- Disk components
 - platters
 - surfaces
 - tracks
 - sectors
 - cylinders
 - o arm
 - heads

Disk Geometry: Multiple-Platter View

Aligned tracks form a cylinder.

Disk Operation: Single-Platter View

Disk Operation: Multi-Platter View

Disk Access

Head in position above a track

Disk Access

Rotation is counter-clockwise

About to read blue sector

After reading blue sector

Red request scheduled next

Disk Access - Seek

Seek to red's track

Disk Access - Rotational Latency

Wait for red sector to rotate around

Complete read of red

Disk Access - Service Time Components

- Average time to access some target sector approximated by :
 - Taccess = Tavg seek + Tavg rotation + Tavg transfer
- Seek time (Tavg seek)
 - Time to position heads over cylinder containing target sector
 - Typical Tavg seek is 3—9 ms
- Rotational latency (Tavg rotation)
 - Time waiting for first bit of target sector to pass under r/w head
 - \circ Tavg rotation = 1/2 x 1/RPMs x 60 sec/1 min
- Transfer time (Tavg transfer)
 - Time to read the bits in the target sector
 - \circ Tavg transfer = 1/RPM x 1/(avg # sectors/track) x 60 secs/1 min

Given:

- Rotational rate = 7,200 RPM
- Average seek time = 9 ms
- Avg # sectors/track = 400.

Derived:

- \circ Tavg rotation = 1/2 x (60 secs/7200 RPM) x 1000 ms/sec = 4 ms
- \circ Tavg transfer = 60/7200 RPM x 1/400 secs/track x 1000 ms/sec = 0.02 ms
- \circ Taccess = 9 ms + 4 ms + 0.02 ms

- Important points:
 - Access time dominated by seek time and rotational latency.
 - First bit in a sector is the most expensive, the rest are free.
 - DRAM access time is about 60 ns / doubleword
 - 2,500 times slower than DRAM

- What is the time for 4KB random read with Cheetah?
- Tseek + Trotation + Ttransfer= 4ms + 2ms + 0.03 ms
- 15000 RPM ⇒ 1 rotation in 4ms
 ⇒ Trotation = 2ms
- Ttransfer = 4KB/125MB/s = 0.032ms

	Cheetah 15K.5	Barracuda
Capacity	300 GB	1 TB
RPM	15,000	7,200
Average Seek	4 ms	9 ms
Max Transfer	$125 \mathrm{MB/s}$	105 MB/s
Platters	4	4
Cache	16 MB	16/32 MB
Connects via	SCSI	SATA

- What is the time for 4KB random read with Barracuda?
- Tseek + Trotation + Ttransfer= 9ms + 4.16ms + 0.038ms
- 7200RPM ⇒ 1 rotation in
 8.33ms ⇒ Trotation = 4.16ms
- Ttransfer = 4KB/105MB/s = 0.038ms

	Cheetah 15K.5	Barracuda
Capacity	300 GB	1 TB
RPM	15,000	7,200
Average Seek	4 ms	9 ms
Max Transfer	125 MB/s	105 MB/s
Platters	4	4
Cache	16 MB	16/32 MB
Connects via	SCSI	SATA

- Seeks are so expensive (milliseconds!)
- OS schedules requests that are queued waiting for the disk
 - o FCFS
 - SSTF
 - o SCAN
 - C-SCAN

- FCFS (do nothing)
 - Schedule disk operations in order they arrive
 - Reasonable when load is low
- SSTF (shortest seek time first)
 - Select request with minimum seek time from current head position
 - A form of Shortest Job First (SJF) scheduling
 - One optimal:
 - suppose cluster of requests at far end of disk → starvation!

- SCAN (Elevator Algorithm)
 - sweep back and forth
 - arm starts at one end of disk
 - moves to other end, servicing requests
 - movement reversed at end of disk
 - o repeat

C-SCAN

Like SCAN, but only go in one direction

- In general, unless there are request queues, disk scheduling does not have much impact
 - Important for servers, less so for PCs
- Modern disks often do the disk scheduling themselves
 - Disks know their layout better than OS, can optimize better
 - Ignores, undoes any scheduling done by OS

THANK YOU!