Lemma 1: We claim that $C \setminus A \subseteq (B \setminus A) \cup (C \setminus B)$. Suppose $x \in C \setminus A$, $x \notin B \setminus A$. We must show $x \in C \setminus B$. Since $x \notin B \setminus A$ by the definition of set difference $x \notin B$ or $x \in A$. Since $x \in C \setminus A$ then $x \in C$ and $x \notin A$. Since $x \notin A$, then $x \notin B$. Therefore since $x \in C$ and $x \notin B$ then by the definition of set difference $x \in C \setminus B$.

Lemma 2: We claim that for all $M, N \in \mathcal{F}$, if $M \neq N, MRN$, then there exists an element $m_* \in M$ such that for all $x \in N \backslash M, m_* < x$. Suppose $M, N \in \mathcal{F}, M \neq N, MRN$. Since MRN, then $min(M \triangle N) \in M$. Let $m_* = min(M \triangle N)$. Therefore by definition of $M \triangle N$ and the minimum of a set, for all $y \in (M \backslash N) \cup (N \backslash M), m_* \leq y$. Since $N \backslash M \subset (M \backslash N) \cup (N \backslash M)$, then for all $z \in N \backslash M, m_* \leq z$. By definition of $N \backslash M$, for all $z \in N \backslash M$, $z \notin M$. Since $m_* \in M$, then $m_* \neq z$. Since $m_* \neq z, m_* \leq z$, then by definition of <, for all $z \in M \backslash N, m_* < z$.

Let \mathcal{F} be the set of all finite subsets of \mathbb{Z} . We define a relation R on \mathcal{F} as follows: For $A, B \in \mathcal{F}$ we say ARB if either A = B, or if the smallest member of $A \triangle B$ belongs to A. Prove that R is a total order on \mathcal{F} . (Recall $A \triangle B = (A \setminus B) \cup (B \setminus A)$.)

We must show that R is a total order on \mathcal{F} . Therefore we must show that R is antisymmetric, full, transitive, and reflexive.

- We must show that R is anti-symmetric. There we must show for all $A, B \in \mathcal{F}$ if $A \neq B, ARB$ then $B\not\!RA$. Suppose $A, B \in \mathcal{F}, A \neq B, ARB$. We must show that $B\not\!RA$. By definition of R, we must show that $\min(B\triangle A) \notin B$. Since \triangle is symmetric then we must show $\min(A\triangle B) \notin B$. By definition of R we have $\min(A\triangle B) \in A$. Since $\min(A\triangle B) \notin B$ then it must be in the other set, thus $\min(A\triangle B) \in A$.
- We must show that R is full. Therefore we must show for all $A, B \in \mathcal{F}$, ARB or BRA. Suppose BRA. We must show ARB. By definition of R, $min(B\triangle A) \notin B$. Since no other set can contain the minimum except A, then $min(A\triangle B) \in A$. Therefore ARB.
- We must show that R is reflexive. We must show for all $A \in \mathcal{F}$ ARA. Since A = A, then ARA.
- We must show that R is transitive. We must show for all $A, B, C \in \mathcal{F}$ if ARB, BRC then ARC. Suppose $A, B, C \in \mathcal{F}$, ARB, BRC. Note that if A = B or B = C, then it is vacuously transitive, therefore we assume $A \neq B, B \neq C$, which from here forward in the proof we assume lemma 2. Then by definition of R, $min(A\triangle B) \in A, min(B\triangle C) \in B$. let $a_* = min(A\triangle B), b_* = min(B\triangle C)$. Since $a_* \in A, b_* \in B$, then $a_* \in A \setminus B, b_* \in B \setminus C$. However we don't know if $a_* \in C, b_* \in A$. Therefore we have four cases.
 - Assume $a_* \notin C, b_* \notin A$. Since $b_* \notin A$, then $a_* < b_*$ as $a_*, b_* \in A \triangle B$. Since $a_* \notin C$, then by definition of set difference $a_* \in A \backslash C$. By lemma 2, $b_* < x$, for all $x \in C \backslash B$, and $a_* < y$ for all $y \in B \backslash A$. Since $a_* < b_*$ we may have for all $x \in C \backslash B, a_* < x$. By the definition of set union we may have for all $z \in C \backslash B \cup B \backslash A, a_* < z$. Since by the lemma 1 $C \backslash A \subset C \backslash B \cup B \backslash A$, then for all $w \in C \backslash A, a_* < w$. Therefore since $a_* \in A \backslash C$, and a_* is less than all of the

- elements in $C \setminus A$, then the minimum can't exists in $C \setminus A$. Therefore $C \not R A$. Since R is anti-symmetric, then ARC.
- Assume $a_* \notin C, b_* \in A$. Since $a_*, b_* \in A$, and $a_* \notin B$, then $a_* \neq b_*$. Since $a_*, b_* \in \mathbb{Z}$, then either $a_* < b_*$ or $b_* > a_*$. Therefore we have two cases:
 - * Assume $a_* < b_*$. Since BRC, then $b_* < c$, for all $c \in C \setminus B$. Since ARB, then $a_* < b$ for all $b \in B \setminus A$. Since $a_* < b_* < c$, and for all $c \in C \setminus B$, $a_* < b$ for all $b \in B \setminus A$, then by the definition of union for all $x \in (B \setminus A) \cup (C \setminus B)$, $a_* < x$. Since $C \setminus A \subseteq (B \setminus A) \cup (C \setminus B)$, then for all $y \in C \setminus A$, $a_* < y$. Therefore ARC.
 - * Assume $b_* < a_*$. Since ARB, then $a_* < b$ for all $b \in B \setminus A$. Since BRC then for all $b_* < c$ for all $c \in C \setminus B$. Since $b_* < a_*$ then for all $b \in B \setminus A, b_* < b$. Therefore by the definition of set union for all $x \in (B \setminus A) \cup (C \setminus B), b_* < x$. Since $C \setminus A \subset (B \setminus A) \cup (C \setminus B)$, then for all $y \in C \setminus A, b_* < y$. Since $b_* \in A, ARC$.
- Assume $a_* \in C$, $b_* \notin A$. By definition of set difference, since $a_* \in C$, $a_* \notin B$, $b_* \in B$, $b_* \notin A$, then $a_* \in C \setminus B$, $b_* \in B \setminus A$. By lemma 2 and ARB, for all $x \in B \setminus A$, $a_* < b$. Since $b_* \in B \setminus A$, then $a_* < b_*$. By lemma 2 and BRC, for all $y \in C \setminus B$, $b_* < y$. Since $a_* \in C \setminus B$, then $b_* < a_*$. Therefore we have a contradiction, so this case can never occur.
- Assume $a_* \in C, b_* \in A$. Since $a_* \in C$, as shown before $a_* \in C \setminus B$. Since BRC and lemma 2, then as shown before $b_* < a_*$. By the definition of R and lemma 2 we have for all $x \in B \setminus A, a_* < x$, and for all $y \in C \setminus B, b_* < y$. Since $b_* < a_*$ then we have for all $x \in B \setminus A, b_* < x$. By the definition of set union, for all $z \in (B \setminus A) \cup (C \setminus B), b_* < z$. By lemma 1, for all $z \in C \setminus A, b_* < z$. As shown before $b_* \in A \setminus C$, since it is less than all the elements in $C \setminus A$, then the minimum can't exists in $C \setminus A$, therefore $C \not R A$. Since R is antisymmetric, then we have ARC.