Contents

1	Physikalische Größen und Einheiten 1.1 Umrechnungen in SI-Einheiten	2 2
	1.2 Messunsicherheit Typ A	2 3
	1.3.1 Ermittlung des kombinierten Unsicherheit	3
2	Verschiebung, Geschwindigkeit und Geschwindigkeitsbetrag	4
3	Gleichförmig beschleunigte Bewegung	4
4	Gleichmäßig beschleunigte Bewegung	5
5	Bewegung in zwei und drei Dimensionen 5.1 Der schräge Wurf	5 6
6	Die Newtonschen Axiome	6
	6.1 Das erste Newtonsche Axiom: Das Trägheitsgesetz	6 7
	6.3 Das dritte Newtonsche Axiom	7
7	Kontaktkräfte und weitere Arten von Kräften 7.1 Trägheits- und Scheinkräfte	8 9
8	Der Massenmittelpunkt	9
9	Arbeit und kinetische Energie	10
10	Verrichtete Arbeit bei geradliniger Bewegung mit ortsabhängiger Kraft	11
11	Leistung	12
12	Energieerhaltung	12
13	Impuls und Impulserhaltung	12
14	Stoßprozesse	13
	14.0.1 Gerader, zentraler, elastischer Stoß, zweite Kugel in Ruhe	13 14
15	Drehbewegungen 15.1 Die Kinetische Energie der Drehbewegung	14 16
16	Massenträgheitsmomente	16
17	Das zweite Newtonsche Axiom für Drehbewegungen	18
	17.1 Statisches Gleichgewicht	19 19
18	Drehimpuls und Drehimpulserhaltung	20
19	Schwingungen	20
-0		
	19.1 Ungedämpfte, freie und harmonische Schwingungen	20
	19.1 Ungedämpfte, freie und harmonische Schwingungen	22
	19.1 Ungedämpfte, freie und harmonische Schwingungen	

len in drei Dimensionen	
erung von Wellen rlagerung von zwei Wellen mit gleicher Wellenzahl und Frequenz rferenzbedingungen rlagerung von zwei Wellen mit geringfügig unterschiedlicher Frequenz und Wellenläng	. 26
n und Transmission an Grenzschichten	27
e Wellen nende Wellen bei beidseitig gleichartigen Enden	
lengleichung	. 29 . 29 . 30

1 Physikalische Größen und Einheiten

1.1 Umrechnungen in SI-Einheiten

$$\operatorname{Kraft} F = kg \cdot \frac{m}{s^2} = N$$

$$\operatorname{Arbeit} W = kg \cdot \frac{m}{s^2} \cdot m = kg \cdot \frac{m^2}{s^2} = J$$

$$\operatorname{Leistung} P = \frac{kg \cdot m^2}{s^3} = W$$

$$\operatorname{Spannung} U = \frac{kg \cdot m^2}{s^2 \cdot As} = \frac{kg \cdot m^2}{A \cdot s^3} = V$$

$$\operatorname{Kapazit} C = \frac{A^2 \cdot s^4}{kg \cdot m^2} = \frac{C}{V} = \frac{As}{V} = F$$

$$\operatorname{Geschwindigkeit} v = \frac{m}{s}$$

$$\operatorname{Beschleunigung} a = \frac{m}{s^2}$$

1.2 Messunsicherheit Typ A

Arithmetischer Mittelwert

$$\bar{x} = \frac{1}{N} \sum_{i=1}^{N} x_i$$

 $\bar{x}\colon$ Mittelwert der Messwerte [Einheit wie $x_i],\,x_i\colon$ Einzelne Messwerte, N: Anzahl der Messungen

Standartabweichung des Messverfahrens

$$\Delta x = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (x_i - \bar{x})}$$

 Δx : Standardabweichung [Einheit wie x_i], x_i : Einzelne Messwerte, \bar{x} : Mittelwert, N: Anzahl der Messwerte

Standartabweichung eines Messwertes

$$\Delta x = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \bar{x})^2$$

 Δx : Standardabweichung [Einheit wie x_i], x_i : Einzelne Messwerte, \bar{x} : Mittelwert, N: Anzahl der Messwerte

Standartabweichung des Mittelwertes

$$\Delta \bar{x} = \frac{\Delta x}{\sqrt{N}}$$

 $\Delta \bar{x}$: Standardabweichung des Mittelwertes, Δx : Standardabweichung [Einheit wie x_i], N: Anzahl der Messwerte

Darstellung der Messgröße x

$$x_p = \bar{x} \pm t_p \cdot \Delta x$$
$$x_p = \bar{x} \pm U_a(x)$$

 x_p : Messgröße, \bar{x} : Mittelwert, t_p : Vertrauensfaktor, Δx : Standardabweichung, $U_a(x)$: erweiterte Unsicherheit

1.3 Messunsicherheit Typ B

Unsicherheiten, welche nicht durch Wiederholungsmessungen ermittelt werden. Die Messunsicherheit ist angegeben

1.3.1 Ermittlung des kombinierten Unsicherheit

Wenn Typ A und Typ B vorliegen

$$U_{\text{mess}} = \sqrt{U_A^2(x) + U_{B_1}^2(x) + U_{B_2}^2(x) + \dots}$$

 U_{mess} : Gesamte kombinierte Unsicherheit, $U_A(x)$: Unsicherheit Typ A, $U_{B_i}(x)$: Unsicherheit Typ B

Bei Abhängigkeit mehrerer Größen (z.B. Volumen = abc)

$$u_{ges} = \sqrt{(\frac{\partial_z}{\partial_a} \cdot \Delta a)^2 + (\frac{\partial_z}{\partial_b} \cdot \Delta b)^2 + (\frac{\partial_z}{\partial_c} \cdot \Delta c)^2}$$

2 Verschiebung, Geschwindigkeit und Geschwindigkeitsbetrag

Verschiebung

$$\Delta x = x_E - x_A$$

 Δx : Verschiebung [m], x_E : Endposition [m], x_A : Anfangsposition [m]

Mittlere Geschwindigkeit

$$\bar{v}_x = \frac{\Delta x}{\Delta t}$$

 $\bar{v_x}$: Mittlere Geschwindigkeit [m/s], Δx : Weg [m], Δt : Zeitintervall [s]

Momentangeschwindigkeit

$$v_x = \frac{x}{t} = \dot{x}(t)$$

 v_x : Momentangeschwindigkeit [m/s], x: Position [m], t: Zeit [s], $\dot{x}(t)$: Ableitung von x(t) nach der Zeit

3 Gleichförmig beschleunigte Bewegung

Der mittlere Geschwindigkeitsbetrag (speed) \bar{v}_x ist definiert als zurückgelegte Strecke s geteilt durch die benötigte Zeit Δt :

$$\bar{v}_x = \frac{s}{\Delta t}$$

 \bar{v}_x : Mittlere Geschwindigkeit [m/s], s: Strecke [m], Δt : Zeitintervall [s]

Die mittlere Beschleunigung \bar{a}_x ist definiert als Änderung der Geschwindigkeit v_x pro Zeiteinheit Δt :

$$\bar{a}_x = \frac{v_{xE} - v_{xA}}{\Delta t} = \frac{\Delta v_x}{\Delta t}$$

 \bar{a}_x : Mittlere Beschleunigung $[m/s^2]$, v_{xE} : Endgeschwindigkeit [m/s], v_{xA} : Anfangsgeschwindigkeit [m/s], Δt : Zeit [s]

4 Gleichmäßig beschleunigte Bewegung

$$x(t) = x_0 + v_{x0}t + \frac{1}{2}a_xt^2$$
$$v_x(t) = v_{x0} + a_xt$$
$$a_x(t) = a_x$$

x(t): Position zur Zeit t [m], x_0 : Anfangsposition [m], v_{x0} : Anfangsgeschwindigkeit [m/s], a_x : konstante Beschleunigung [m/s²], t: Zeit [s]

5 Bewegung in zwei und drei Dimensionen

$$r(t) = x(t)\vec{e_x} + y(t)\vec{e_y}$$
$$= \begin{pmatrix} x(t) \\ y(t) \end{pmatrix}$$

r(t): Ortsvektor [m], x(t), y(t): Komponenten der Position [m], $\vec{e_x}, \vec{e_y}$: Einheitsvektoren

$$\Delta \vec{r}(t) = \vec{r_E}(t) - \vec{r_A}(t)$$
$$= \begin{pmatrix} x_E(t) - x_A(t) \\ y_E(t) - y_A(t) \end{pmatrix}$$

 $\Delta \vec{r}(t)$: Verschiebungsvektor [m], $\vec{r_E}(t)$: Endposition, $\vec{r_A}(t)$: Anfangsposition

Mittlere Geschwindigkeit

$$\vec{v} = \frac{\Delta \vec{r}}{\Delta t}$$

 \vec{v} : Mittlere Geschwindigkeit [m/s], $\Delta \vec{r}$: Verschiebung [m], Δt : Zeitintervall [s]

$$\vec{r}(t) = x(t)\vec{e_x} + y(t)\vec{e_y} + z(t)\vec{e_z}$$

$$= \begin{pmatrix} x(t) \\ y(t) \\ z(t) \end{pmatrix}$$

z.B.

$$\vec{r}(t) = \begin{pmatrix} x_0 + v_{x0}t + \frac{1}{2}a_xt^2 \\ y_0 + v_{y0}t + \frac{1}{2}a_yt^2 \\ z_0 + v_{z0}t + \frac{1}{2}a_zt^2 \end{pmatrix}$$

 $\vec{r}(t)$: Ortsvektor [m], x_0, y_0, z_0 : Anfangskoordinaten [m], v_{x0}, v_{y0}, v_{z0} : Anfangsgeschwindigkeiten [m/s], a_x, a_y, a_z : Beschleunigungen $[m/s^2]$, t: Zeit [s]

5.1 Der schräge Wurf

$$\vec{r}(t) = \begin{pmatrix} v_0 \cdot \cos \alpha \cdot t \\ y_0 + v_0 \sin \alpha \cdot t - \frac{1}{2} \cdot g \cdot t^2 \end{pmatrix} = \begin{pmatrix} v_{x0}t \\ y_0 + v_{y0}t - \frac{1}{2}gt^2 \end{pmatrix}$$

 $\vec{r}(t)$: Ortsvektor [m], v_0 : Anfangsgeschwindigkeit [m/s], α : Abwurfwinkel, g: Erdbeschleunigung [m/s²], t: Zeit [s], y_0 : Anfangshöhe [m]

Wenn nach der Reichweite und nach der Flugauer gefragt ist:

- Flugdauer: Y-Komponente gleich 0 setzen und t berechnen
- Reichweite: t in X-Komponente einsetzen und X berechnen
- Beim berechnen immer aufpassen, in welche Richtung wir eine Geschwindigkeit haben

Geschwindigkeitskomponenten

$$v_y = v_0 \cdot \sin(\alpha)$$

$$v_x = v_0 \cdot \cos(\alpha)$$

Reichweite D:

$$D = \frac{v_0^2 \cdot \sin(2\alpha)}{g}$$

 v_0 : Anfangsgeschwindigkeit [m/s], α : Winkel, g: Erdbeschleunigung $[m/s^2]$

$$y(x) = y_0 + v_0 \sin \alpha \cdot \frac{x}{v_0 \cos \alpha} - \frac{1}{2}g \left(\frac{x}{v_0 \cos \alpha}\right)^2$$

y(x): Höhe in Abhängigkeit vom horizontalen Ort x [m], y_0 : Anfangshöhe [m], v_0 : Anfangsgeschwindigkeit [m/s], α : Winkel, g: Erdbeschleunigung [m/s²], x: horizontale Entfernung [m]

6 Die Newtonschen Axiome

$$F = m \cdot a$$

F: Kraft [N], m: Masse [kg], a: Beschleunigung $[m/s^2]$

6.1 Das erste Newtonsche Axiom: Das Trägheitsgesetz

Ein Körper bleibt in Ruhe oder bewegt sich geradlinig mit konstanter Geschwindigkeit weiter, wenn keine resultierende Kraft auf ihn wirkt

$$\vec{a} = 0$$
 falls $\vec{F} = 0$

Sie gelten nur in Inertialsystemen (Jedes Bezugssystem, in dem ein Kräftefreier Körper in Ruhe bleibt, ist ein Inertialsystem)

 \vec{a} : Beschleunigung [m/s²], \vec{F} : resultierende Kraft [N]

6.2 Das zweite Newtonsche Axiom

(lex secunda oder Aktionsprinzip). Die zeitliche Änderung des Impulses ist gleich der resultierenden Kraft, die auf einen Körper wirkt.

Impuls

$$\vec{p} = m \cdot \vec{v}$$

 \vec{p} : Impuls [kg·m/s], m: Masse [kg], \vec{v} : Geschwindigkeit [m/s]

$$\vec{F}_{res} = \sum_{i} \vec{F}_{i} = m \cdot \vec{a}$$

 $\sum_{i} \vec{F}_{i}$: Summe der Kräfte auf einen Körper [N], m: Masse [kg], \vec{a} : Beschleunigung [m/s²]

Eine über Zeit veränderliche Masse (z.B. Rakete)

$$m = \frac{m_{\rm Ruhe}}{\sqrt{1 - \frac{v^2}{c^2}}}$$

m: relativistische Masse [kg], m_{Ruhe}: Ruhemasse [kg], v: Geschwindigkeit [m/s], c: Lichtgeschwindigkeit [m/s]

Gravitationskraft

$$F_G = G \cdot \frac{m_1 \cdot m_2}{r^2}$$

 F_G : Gravitationskraft [N], G: Gravitationskonstante $G = 6,67430 \cdot 10^{-11} [m^3/kg \cdot s^2]$, m_1, m_2 : Massen der Körper [kg], r: Abstand [m]

6.3 Das dritte Newtonsche Axiom

$$\vec{F}_{12} = -\vec{F}_{21}$$

 \vec{F}_{12} : Kraft von Körper 1 auf 2 [N], \vec{F}_{21} : Gegenkraft von 2 auf 1 [N]

7 Kontaktkräfte und weitere Arten von Kräften

Gewichtskraft F_G

$$F_G = m \cdot g$$

Greift Immer am Schwerpunkt!!

 F_G : Gewichtskraft [N], m: Masse [kg], g: Erdbeschleunigung [m/s²]

Normalkraft F_N

$$F_N = F_G$$

Immer senkrecht zu einem Untergrund gerichtet. Sie kann entweder in gleiche oder entgegengesetzte Richtung der Gewichtskraft F_G eingezeichnet werden

 F_N : Normalkraft [N], F_G : Gewichtskraft [N]

Reibungskraft F_R

$$F_R = \mu \cdot F_N$$

Wirkt eine Kraft F auf einen Körper mit der Gewichtskraft F_G parallel zum Untergrund, so entsteht entgegen dieser Kraft F eine Reibungskraft.

 F_R : Reibungskraft [N], μ : Reibungskoeffizient, F_N : Normalkraft [N]

Hangabtriebskraft F_H

$$F_H = m \cdot g \cdot \sin \alpha$$

 F_N wird kleiner

$$F_N = m \cdot g \cdot \cos \alpha$$

Diese Aufgaben mit Kräftezerlegung lösen: Wirklinien von F_H und F_N einzeichnen und ein Kräfteparallelogramm bilden. Anschließend über trigonometrische Zusammenhänge lösen. F_G nicht einzeichnen!

 F_H : Hangabtriebskraft [N], F_N : Normalkraft [N], m: Masse [kg], g: Erdbeschleunigung [m/s^2], α : Neigungswinkel

Federkraft

$$F_{\mathrm{Zug}} = K_F \cdot x$$

$$F_{\text{Feder}} = -K_F \cdot x$$

 F_{Zug} : Zugkraft an der Feder [N], F_{Feder} : Rückstellkraft der Feder [N], K_F : Federkonstante [N/m], x: Auslenkung [m]

Zentripetalkraft \vec{F}_{ZP}

$$\vec{F}_{ZP} = -m \cdot \omega^2 \cdot \vec{r} = \frac{m \cdot v^2}{r}$$

 \vec{F}_{ZP} : Zentripetalkraft [N], m: Masse [kg], ω : Winkelgeschwindigkeit [rad/s], \vec{r} : Radiusvektor [m], v: Bahngeschwindigkeit [m/s]

Luftwiderstandskraft

$$F_W = \frac{1}{2}c_W \cdot \rho \cdot A \cdot v^2$$

Vereinfacht

$$F_W = b \cdot v^2$$

 F_W : Luftwiderstand [N], c_W : Widerstandsbeiwert, ρ : Dichte der Luft [kg/m³], A: Querschnittsfläche [m²], v: Geschwindigkeit [m/s], b: Reibungskoeffizient [kg/m]

7.1 Trägheits- und Scheinkräfte

Trägheitskraft

$$\vec{F}_T = -m \cdot \vec{a}_B$$

 \vec{F}_T : Trägheitskraft [N], m: Masse [kg], \vec{a}_B : Beschleunigung des Bezugssystems [m/s²]

Zentrifugalkraft

$$\vec{F}_{ZF} = m \cdot \omega^2 \cdot \vec{r} = -\vec{F}_{ZP}$$

 \vec{F}_{ZF} : Zentrifugalkraft [N], m: Masse [kg], ω : Winkelgeschwindigkeit [rad/s], \vec{r} : Radiusvektor [m]

Corioliskraft

$$\vec{F}_{\mathrm{Cor}} = 2m\,\vec{v}\times\vec{\omega} = 2m\,|\vec{v}||\vec{\omega}|\sin(\vec{v};\vec{\omega})$$

$$\vec{a}_{\text{Cor}} = 2 \cdot \vec{v}_0 \times \vec{\omega}$$

Rechte Hand Regel: Daumen: \vec{a}_{cor} Zeigefinger: \vec{v} Mittelfinger: $\vec{\omega}$

 \vec{F}_{Cor} : Corioliskraft [N], m: Masse [kg], \vec{v} : Geschwindigkeit [m/s], $\vec{\omega}$: Winkelgeschwindigkeit [rad/s]

8 Der Massenmittelpunkt

Drehmoment \vec{M}

$$\vec{M} = r \cdot \vec{F}$$

 \vec{M} : Drehmoment [Nm], r: Hebelarm [m], \vec{F} : angreifende Kraft [N]

Statisches Problem

$$\sum F_i = 0$$

$$\sum M_i = 0$$

 $\sum F_i$: Summe aller Kräfte [N], $\sum M_i$: Summe aller Momente [Nm]

Massenmittelpunkt X_s bei 2 Teilchen

$$X_s = \frac{X_1 \cdot m_1 + X_2 \cdot m_2}{m_1 + m_2}$$

 X_s : Schwerpunkt [m], X_1, X_2 : Positionen der Massen [m], m_1, m_2 : Massen [kg]

Für n Teilchen gilt

$$X_S = \frac{1}{m_{\rm ges}} \sum m_i \cdot \vec{r_i}$$

 X_S : Massenmittelpunkt [m], m_i : Masse des Teilchens [kg], \vec{r}_i : Ort des Teilchens [m], m_{ges} : Gesamtmasse [kg]

Für ∞ Teilchen gilt

$$X_S = \frac{1}{m_{\rm ges}} \int \vec{r} \, dm$$

 X_S : Massenmittelpunkt [m], \vec{r} : Ortselement [m], m_{ges} : Gesamtmasse [kg]

9 Arbeit und kinetische Energie

$$W = \vec{F} \cdot \vec{s} = |\vec{F}| \cdot |\vec{s}| \cdot \cos(\vec{F}; \vec{s})$$

 $W: Arbeit [J], \vec{F}: Kraft [N], \vec{s}: Weg [m], \cos(\vec{F}; \vec{s}): Winkel zwischen Kraft und Weg$

Reibungsarbeit W_r -> Wärme
engergie

$$W_r = F_r \cdot \Delta x = \mu F_N \cdot \Delta x$$

 $W_r\colon \textit{Reibungsarbeit [J], } F_r\colon \textit{Reibungskraft [N], } \mu\colon \textit{Reibungskoeffizient, } F_N\colon \textit{Normalkraft [N], } \Delta x\colon \textit{Weg [m]}$

Hubarbeit W_H -> Potentielle Energie

$$W_H = m \cdot g \cdot h$$

$$E_{\rm Pot} = W_{\rm Pot} = mgh$$

 W_H : Hubarbeit [J], E_{Pot} : Potentielle Energie [J], m: Masse [kg], g: Erdbeschleunigung [m/s^2], h: Höhe [m]

Beschleunigungsarbeit $W_B ->$ kinetische Energie

$$W_B = F_B \cdot \Delta x = m \cdot a \cdot \Delta x = \frac{1}{2}mv^2$$

Für Δ x kann $x_0 + vt + \frac{1}{2}at^2$ verwendet werden $a = \frac{F}{2}$

 W_B : Beschleunigungsarbeit [J], F_B : Beschleunigende Kraft [N], Δx : Weg [m], m: Masse [kg], a: Beschleunigung [m/s²], v: Geschwindigkeit [m/s]

Gesamtenergie bei geschlossenen Wegen (konservative Kräfte)

$$W_{\rm ges} = 0 = \oint \vec{F} \cdot d\vec{s}$$

Konservative Kräfte sind Kräfte, die längs eines beliebeigen, geschlossenen Weges keine Arbeit verrichten. An Teilstrecken aufgewendete Energie wird an anderen Strecken wieder zurückgewonnen.

 W_{ges} : Gesamtarbeit über geschlossene Bahn [J], \vec{F} : Kraft [N], $d\vec{s}$: Wegdifferenzial [m]

10 Verrichtete Arbeit bei geradliniger Bewegung mit ortsabhängiger Kraft

Einzelne Teilmengen

$$dW_i = F_i \cdot ds_i$$

dW_i: Infinitesimale Arbeit [J], F_i: Kraft entlang des Wegs [N], ds_i: Wegdifferenzial [m]

Gesamte Arbeit zwischen S_1 und S_2

$$W = \int_{S_1}^{S_2} F(s) \, ds$$

W: Arbeit [J], F(s): ortsabhängige Kraft [N], s: Weg [m]

11 Leistung

Die Energieänderung eines Körpers pro Zeiteinheit heißt Leistung P

$$P = \frac{\text{Verrichtete Arbeit}}{\text{Zeit}} = \vec{F} \cdot \vec{v}$$

$$dW = \vec{F} \cdot d\vec{s} = \vec{F} \cdot \vec{v} \cdot dt$$

$$\frac{dW}{dt} = \vec{F} \cdot \vec{v} = P$$

P: Leistung [W], \vec{F} : Kraft [N], \vec{v} : Geschwindigkeit [m/s], t: Zeit [s]

12 Energieerhaltung

Allgemeiner Energieerhaltungssatz:

$$E_{\text{ges}} = E_{\text{mech}} + E_{\text{wärme}} + E_{\text{chem}} + E_{\text{andere}} = \text{konstant}$$

Mechanischer Energieerhaltungssatz:

$$E_{\text{ges}} = \sum_{i=1}^{n} E_{\text{Pot},i} + \sum_{i=1}^{n} E_{\text{Kin},i} = \text{konstant}, \text{ wenn } \vec{F}_{\text{ext}} = 0$$

$$E_{\text{Pot}} = m \cdot g \cdot h$$

$$E_{\text{Kin}} = \frac{1}{2} \cdot m \cdot v^{2}$$

Wenn an einem System keine äußeren Kräfte Arbeit verrichten und alle inneren Kräfte, die Arbeit verrichten, konstant sind, bleibt die mechanische Gesamtenergie eines abgeschlossenen Systems konstant.

 E_{ges} : Gesamte mechanische Energie [J], E_{Pot} : Potentielle Energie [J], E_{Kin} : Kinetische Energie [J], m: Masse [kg], g: Erdbeschleunigung [m/s^2], h: Höhe [m], v: Geschwindigkeit [m/s]

13 Impuls und Impulserhaltung

Der Impuls \vec{p} einer Masse ist definiert als das Produkt aus der Masse m und ihrer Geschwindigkeit \vec{v} :

$$\vec{p} = m \cdot \vec{v}$$

 \vec{p} : Impuls [kg·m/s], m: Masse [kg], \vec{v} : Geschwindigkeit [m/s]

Impulserhaltungssatz:

$$\sum_{i} m_{i} \cdot \vec{v}_{i} = \sum_{i} m_{i} \cdot \vec{v}'_{i} \quad \text{wenn } \vec{F}_{\text{ext}} = 0$$

Wenn die Summe aller äußeren Kräfte auf ein System null ist, bleibt der Gesamtimpuls des Systems konstant

 \vec{p}_{ges} : Gesamtimpuls [kg·m/s], m_i : Massen [kg], \vec{v}_i : Geschwindigkeiten [m/s], \vec{F}_{ext} : äußere Kraft [N]

14 Stoßprozesse

Elastischer Stoß:

$$\sum_{i} \frac{1}{2} m_{i} v_{i,\text{vor}}^{2} = \sum_{i} \frac{1}{2} m_{i} v_{i,\text{nach}}^{2}$$

Gesamte kinetische Energie ist nach dem Stoß gleich groß, wie die gesamte kinetische Energie vor dem Stoß.

 m_i : Masse [kg], $v_{i,vor}$: Geschwindigkeit vor dem Stoß [m/s], $v_{i,nach}$: Geschwindigkeit nach dem Stoß [m/s]

Inelastischer Stoß:

$$\sum_{i} \frac{1}{2} m_i v_{i,\text{vor}}^2 = \sum_{i} \frac{1}{2} m_i v_{i,\text{nach}}^2 + \Delta W$$

Ein Teil der kinetischen Energie geht vor dem Stoß in eine andere Energieform über.

 ΔW : Energieverlust [J], Rest wie oben

Vollständig inelastischer Stoß:

$$\sum_{i} \frac{1}{2} m_i v_{i,\text{vor}}^2 = \Delta W$$

Die Gesamtenergie geht vor dem Stoß in eine andere Energieform über

Alle kinetische Energie geht in andere Energieformen über (z. B. Wärme, Verformung)

14.0.1 Gerader, zentraler, elastischer Stoß, zweite Kugel in Ruhe

Impulserhaltung:

$$m_1\vec{v}_1 + m_2\vec{v}_2 = m_1\vec{v}_1' + m_2\vec{v}_2'$$

 m_1, m_2 : Massen [kg], \vec{v}_1, \vec{v}_2 : Geschwindigkeiten vor dem Sto β [m/s], \vec{v}_1' , \vec{v}_2' : Geschwindigkeiten danach [m/s]

Energieerhaltung:

$$\frac{1}{2}m_1v_1^2 + \frac{1}{2}m_2v_2^2 = \frac{1}{2}m_1{v_1'}^2 + \frac{1}{2}m_2{v_2'}^2$$

Kinetische Energie vor und nach dem Stoß ist gleich (elastischer Stoß)

Geschwindigkeiten nach dem Stoß:

$$v_1' = \frac{(m_1 - m_2)v_1 + 2m_2v_2}{m_1 + m_2}$$

$$v_2' = \frac{(m_2 - m_1)v_2 + 2m_1v_1}{m_1 + m_2}$$

 v_1', v_2' : Endgeschwindigkeiten nach dem Stoß [m/s], m_1, m_2 : Massen [kg], v_1, v_2 : Anfangsgeschwindigkeiten [m/s]

14.1 Schiefer, zentraler, elastischer Stoß, die zweite Kugel ist in Ruhe

Impulserhaltung in x- und y-Richtung aufteilen:

X-Richtung

$$m_1 v_{1x} = m_1 v'_{1x} + m_2 v'_{2x}$$
$$m_1 v_{1x} = m_1 v'_1 \cos \Theta_1 + m_2 v'_2 \cos \Theta_2$$

Y-Richtung:

$$0 = m_1 v'_{1y} + m_2 v'_{2y}$$
$$0 = m_1 v'_1 \sin \Theta_1 - m_2 v'_2 \sin \Theta_2$$

Auf Vorzeichen achten (Welcher Winkel zeigt wohin) Nur in Y-Richtung Da wir einen elastischen Stoß haben gilt der Energieerhaltungssatz:

$$m_1 v_1^2 = m_1 v_1^{\prime 2} + m_2 v_2^{\prime 2}$$

Nun haben wir 4 unbekannte aber 3 Gleichungen -> Es wird eine weitere Information benötigt (z.B. $m_1 = m_2$)

15 Drehbewegungen

Die Länge eines Kreisbogens s ergibt sich aus dem Zusammenhang:

$$s = r \cdot \varphi$$

Bogenlänge Δs : Entspricht der zurückgelegten Strecke einer Bewegung auf einer gekrümmten Ortskurve -> Bei einer Kreisförmigen Bewegung errechnet sich die Bogenlänge in Abhängigkeit vom überstrichenen Winkel $\Delta \varphi = \varphi - \varphi_0$ zwischen zwei Punkten auf der Kreisbahn mit Radius r (Winkel im Bogenmaß)

s: Kreisbogenlänge [m], r: Radius [m], φ : Winkel im Bogenmaß [rad]

Winkelgeschwindigkeit (Änderung des Drehwinkels pro Zeit)

$$\omega = \frac{d\varphi(t)}{dt}$$
 mit $[\omega] = \text{rad/s}$

Die Winkelgeschwindigkeit ist unabhängig vom Radius -> Auf einer rotierenden Scheibe besitzen alle Punkte dieselbe Winkelgeschwindigkeit.

 ω : Winkelgeschwindigkeit [rad/s], $\varphi(t)$: Winkel [rad], t: Zeit [s]

Winkelbeschleunigung (Änderung der Winkelgeschwindigkeit pro Zeit)

$$\alpha = \frac{d^2 \varphi(t)}{dt^2} = \frac{d\omega(t)}{dt}$$
 mit $[\alpha] = \text{rad/s}^2$

Wenn die Frequenz und Zeit gegeben ist, kann hiermit alpha berechnet werden, wenn im Zähler $2\pi f$ und im Nenner die Zeit eingesetzt wird

 α : Winkelbeschleunigung [rad/s²], $\omega(t)$: Winkelgeschwindigkeit [rad/s], $\varphi(t)$: Winkel [rad]

Bahngeschwindigkeit (Tangentialgeschwindigkeit)

$$v_t = \frac{\Delta s}{\Delta t}$$

Bei einer ganzen Umdrehung mit Bogenlänge $\Delta s = r \cdot 2\pi$ erhält man

$$v_t = r \cdot \omega$$

Bei einer Kreisbewegung mit konstanter Winkelgeschwindigkeit ω ist auch der Betrag der Tangentialbeschleunigung konstant

Eine Änderung von v_t kann nur stattfinden, wenn eine Beschleunigung a_{zp} dafür ursächlich ist

 v_t : Bahngeschwindigkeit [m/s], r: Radius [m], ω : Winkelgeschwindigkeit [rad/s]

Tangentialbeschleunigung (Bahnbeschleunigung)

$$a_t = r \cdot \alpha$$

 a_t : Tangentialbeschleunigung $[m/s^2]$, r: Radius [m], α : Winkelbeschleunigung $[rad/s^2]$

Zentripetalbeschleunigung

$$a_{zp} = -r \cdot \omega^2 = -\frac{v_t^2}{r}$$

 a_{zp} : Zentripetalbeschleunigung [m/s²], r: Radius [m], ω : Winkelgeschwindigkeit [rad/s], v_t : Bahngeschwindigkeit [m/s]

Grundformeln

$$\varphi(t) = \varphi_0 + \omega t + \frac{1}{2}\alpha t^2$$
$$\omega(t) = \omega_0 + \alpha t$$
$$\alpha(t) = \alpha$$

 $\varphi(t)$: Winkel [rad], φ_0 : Anfangswinkel [rad], ω : Anfangswinkelgeschwindigkeit [rad/s], α : konstante Winkelbeschleunigung [rad/s²], t: Zeit [s]

$$\omega^{2} = \omega_{0}^{2} + 2\alpha\Delta\varphi$$
$$\omega = 2\pi f = \frac{2\pi}{T}$$
$$P = M \cdot \omega$$

 ω : Winkelgeschwindigkeit [rad/s], ω_0 : Anfangswinkelgeschwindigkeit [rad/s], α : Winkelbeschleunigung [rad/s²], $\Delta\varphi$: Winkeländerung [rad], f: Frequenz [Hz], T: Periodendauer [s], P: Leistung [W], M: Drehmoment [Nm]

15.1 Die Kinetische Energie der Drehbewegung

$$E_{\rm kin} = \sum_{i} \frac{1}{2} m_i r_i^2 \cdot \omega^2 = \frac{1}{2} I \omega^2$$

 E_{kin} : Rotationsenergie [J], m_i : Masse [kg], r_i : Abstand zur Drehachse [m], ω : Winkelgeschwindigkeit [rad/s], I: Trägheitsmoment [kg· m^2]

16 Massenträgheitsmomente

Massenträgheitsmoment

$$I = \sum \frac{1}{2} m_i r_i^2$$

$$I_{\mathrm{ges}} = \sum_{i} I_{i}$$

I: Trägheitsmoment eines Körpers $[kg \cdot m^2]$, m_i : Masse [kg], r_i : Abstand zur Drehachse [m]

Kontinuierliche Masseverteilungen

$$I = \int r^2 \, dm$$

 $I: \ Tr\"{a}gheitsmoment \ [kg\cdot m^2], \ r: \ Abstand \ zur \ Drehachse \ [m], \ dm: \ infinitesimale \ Masse \ [kg]$

Punktförmige Masse bei länge l

$$I = m \cdot l^2$$

L bezieht sich auf die Drehachse - Es muss nicht mit Steiner gearbeitet werden sondern $\mathbf{l}=\mathbf{A}\mathbf{b}\mathbf{s}$ tand zum Drehpunkt

Tabelle 10.2: Vergleich der Zusammenhänge von Rotation und Translation, am Beispiel von zwei Dimensionen

21110110101	1011		
Rotation		Translation	
Ortsvektor	$\vec{r} = r(\theta)$	Ortsvektor	$\vec{r} = x\vec{e_x} + y\vec{e_y}$
Drehwinkel	$\Delta heta = heta_{ m Ende} - heta_{ m Anfang}$	Verschiebung	$\Delta \vec{r} = \Delta x \vec{e_x} + \Delta y \vec{e_y}$
Bogenlänge	$s = r \cdot \Delta \theta$	Strecke	$\mathrm{s}=\sqrt{\left(\Delta x\right)^2+\left(\Delta y\right)^2}$
Winkelgeschwindigkeit	$\omega = \dot{\theta}(t) = \frac{\mathrm{d}\theta(t)}{\mathrm{d}t}$	Geschwindigkeit	$\vec{v} = \dot{\vec{r}} = rac{\mathrm{d} \vec{r}(t)}{\mathrm{d} t}$
Winkelbeschleunigung	$\alpha = \frac{\mathrm{d}\omega(t)}{\mathrm{d}t} = \frac{\mathrm{d}^2\theta(t)}{\mathrm{d}t^2}$	Beschleunigung	$\vec{a} = \frac{\mathrm{d}\vec{v}(t)}{\mathrm{d}t} = \frac{\mathrm{d}^2\vec{r}(t)}{\mathrm{d}t^2}$
Gleichungen für den Fall konstanter Winkelbeschleunigung	$\theta(t) = \theta_0 + \omega_0 t + \frac{1}{2}\alpha t^2$ $\omega^2(t) = \omega_0^2 + 2\alpha\Delta\theta$	Gleichungen für den Fall konstanter Winkelbeschleunigung	$ec{r} = ec{r}_0 + ec{v}_0 t + rac{1}{2} ec{a} t^2$ $ec{v}^2(t) = ec{v}_0^2 + 2 ec{a} \Delta ec{r}$
Drehmoment	$\vec{M} = \vec{r} \times \vec{F}$	Kraft	$ec{F}$
Trägheitsmoment	I	Masse	m
Zweites Newtonsches Axiom	$\vec{M}_{\mathrm{res}} = I\vec{\alpha} = \frac{\mathrm{d}\vec{L}}{\mathrm{d}t}$	Zweites Newtonsches Axiom	$ec{F}_{ m res} = m ec{a} = rac{{ m d} ec{p}}{{ m d} t}$
Arbeit	$\mathrm{d}W = \vec{M} \mathrm{d}\vec{\theta}$	Arbeit	$\mathrm{d}W = \vec{F}\mathrm{d}\vec{s}$
Kinetische Energie	$E_{ m kin}=rac{1}{2}I\omega^2$	Kinetische Energie	$E_{ m kin}=rac{1}{2}mv^2$
Leistung	$P = \vec{M} \vec{\omega}$	Leistung	$P = \vec{F} \vec{v}$
Drehimpuls	$\vec{L} = I\vec{\omega} = \vec{r} \times \vec{p}$	Impuls	$ec{p}=mec{v}$

Massiver, homogener Zylinder (Masse m; Radius r_a)

$$I = \frac{1}{2}m \cdot r_a^2$$

 $I\colon \operatorname{Tr\"{a}gheitsmoment}\ [kg\cdot m^2],\ m\colon \operatorname{Masse}\ [kg],\ r_a\colon \operatorname{Au}\beta enradius\ [m]$

Hohlzylinder (Masse m; Innenradius r_i ; Außenradius r_a)

$$I = \frac{1}{2}m \cdot (r_a^2 + r_i^2)$$

I: Trägheitsmoment [$kg \cdot m^2$], m: Masse [kg], r_a : Außenradius [m], r_i : Innenradius [m]

Dünnwandiger, hohler Zylinder (Radius r_a)

$$I = m \cdot r_a^2$$

I: Trägheitsmoment [kg· m^2], m: Masse [kg], r_a : Radius [m]

Dünner Stab (Länge *l*; durch die Mitte gedreht)

$$I = \frac{1}{12}m \cdot l^2$$

I: Trägheitsmoment $\lceil kg \cdot m^2 \rceil$, m: Masse $\lceil kg \rceil$, l: Länge $\lceil m \rceil$

Dünner Stab (Drehachse durch das Ende)

$$I = \frac{1}{3}m \cdot l^2$$

I: Trägheitsmoment [kg·m²], m: Masse [kg], l: Länge [m]

Bei versetzter Drehachse

$$E_{\text{kin}} = \frac{1}{2}I_s\omega^2 + \frac{1}{2}mr^2\omega^2 = \frac{1}{2}(I_s + mr^2)\omega^2$$

Steiner

$$I_p = I_s + mr^2$$

Der steinersche Satz wird nicht angewendet, wenn in der Formel schon die Drehachse nicht in der Mitte ist

 E_{kin} : Kinetische Energie der Rotation [J], I_s : Trägheitsmoment um Schwerpunktachse [kg·m²], I_p : Trägheitsmoment um Parallelachse [kg·m²], m: Masse [kg], r: Abstand der Achsen [m], ω : Winkelgeschwindigkeit [rad/s]

17 Das zweite Newtonsche Axiom für Drehbewegungen

$$\vec{M} = I \cdot \vec{\alpha}$$

Falls Masse etc. fehlen, kann auch auf diese Weise das Trägheitsmoment bestimmt werden

 \vec{M} : Drehmoment [Nm], I: Trägheitsmoment [kg·m²], $\vec{\alpha}$: Winkelbeschleunigung [rad/s²]

Drehmoment über Kreuzprodukt

$$\vec{M} = \vec{r} \times \vec{F}$$

Betrag von M->r und F können multipliziert werden

 \vec{M} : Drehmoment [Nm], \vec{r} : Hebelarm [m], \vec{F} : Kraft [N]

Tangentialbeschleunigung

$$a_t = \vec{\alpha} \cdot \vec{r} \quad \Rightarrow \quad \vec{F} = m \cdot \vec{\alpha} \times \vec{r}$$

 a_t : Tangentialbeschleunigung $[m/s^2]$, $\vec{\alpha}$: Winkelbeschleunigung $[rad/s^2]$, \vec{r} : Radiusvektor [m], \vec{F} : Kraft [N], m: Masse [kq]

17.1 Statisches Gleichgewicht

$$\vec{F} = m \cdot \vec{a} = 0$$

$$\vec{M} = I \cdot \vec{\alpha} = 0$$

Statische Bedingungen: keine Beschleunigung, keine Winkelbeschleunigung. Kräfte- und Momentengleichgewicht. \vec{F} : resultierende Kraft [N], \vec{a} : Beschleunigung [m/s²], \vec{M} : Drehmoment [Nm], $\vec{\alpha}$: Winkelbeschleunigung [rad/s²]

17.2 Die kinetische Energie rollender Körper

Ein rollender Körper besitzt sowohl kinetische Energie durch die Rotation, als auch kinetische Energie durch die Bewegung seines Schwerpunkts in Folge des Abrollens. Gesamtenergie:

$$E_{\rm kin} = \frac{1}{2}I_S\omega^2 + \frac{1}{2}mv_S^2$$

 E_{kin} : Gesamtenergie [J], I_S : Trägheitsmoment um Schwerpunkt [$kg \cdot m^2$], ω : Winkelgeschwindigkeit [rad/s], m: Masse [kg], v_S : Schwerpunktsgeschwindigkeit [m/s]

Vollzylinder auf schiefer Ebene (Neigung β):

$$E_{\rm pot} = E_{\rm kin}$$

Geschwindigkeit nach Strecke x:

$$v_x^2 = \frac{4}{3}g \cdot x \cdot \sin \beta$$

Beschleunigung:

$$a = \frac{2}{3}g \cdot \sin \beta$$

 E_{pot} : Potentielle Energie [J], v_x : Geschwindigkeit [m/s], g: Erdbeschleunigung [m/s²], x: zurückgelegte Strecke [m], β : Neigungswinkel [rad], a: Beschleunigung [m/s²]

18 Drehimpuls und Drehimpulserhaltung

Drehimpuls

$$\begin{split} L = I \cdot \omega = \vec{r} \times \vec{p} \\ \vec{L}_{\text{ges}} = \vec{L}_{\text{Bahn}} + \vec{L}_{\text{Spin}} = m \cdot \vec{r}_S \times \vec{v}_S + \vec{L}_{\text{Spin}} \end{split}$$

L: Drehimpuls [kg·m²/s], I: Trägheitsmoment [kg·m²], ω : Winkelgeschwindigkeit [rad/s], \vec{r} : Ort [m], \vec{p} : Impuls [kg·m/s], \vec{v}_s : Geschwindigkeit Schwerpunkt [m/s]

Drehimpulserhaltung

$$\vec{L}_{\mathrm{ges}} = \sum_{i} I_{i} \cdot \omega_{i} = \mathrm{konstant}, \quad \mathrm{wenn} \ \vec{M}_{\mathrm{ges}} = 0$$

 \vec{L}_{ges} : Gesamtdrehimpuls [kg·m²/s], \vec{M}_{ges} : Summe der äußeren Drehmomente [Nm]

19 Schwingungen

19.1 Ungedämpfte, freie und harmonische Schwingungen

Auslenkung, Geschwindigkeit, Beschleunigung

$$y(t) = A \cdot \cos(\omega_0 t + \delta)$$

$$v(t) = -\omega_0 A \cdot \sin(\omega_0 t + \delta)$$

$$a(t) = -\omega_0^2 A \cdot \cos(\omega_0 t + \delta)$$

Wenn bei einer aufgabe die Funktion nach der Zeit gefragt wird, nachdem man A und ω berechnet hat, kann die Phasenverschiebung ignoriert werden (falls keine gegeben ist)

y(t): Auslenkung [m], v(t): Geschwindigkeit [m/s], a(t): Beschleunigung [m/s²], A: Amplitude [m], ω_0 : Kreisfrequenz [rad/s], δ : Phasenverschiebung [rad], t: Zeit [s]

Kreisfrequenz

$$\omega_0 = 2\pi f_0 = \frac{2\pi}{T_0} = \sqrt{\frac{k_F}{m}}$$

Diese Formeln können auch benutzt werden, wenn die feder abgelenkt ist

 ω_0 : Kreisfrequenz [rad/s], f_0 : Frequenz [Hz], T_0 : Periodendauer [s], k_F : Federkonstante [N/m], m: Masse [kg]

Energie des harmonischen Oszillators

$$E_{\rm mech} = \frac{1}{2}k_F \cdot A^2$$

 E_{mech} : Mechanische Energie [J], k_F : Federkonstante [N/m], A: Amplitude [m]

Federkonstante

$$-k_F \cdot x = m \cdot a$$
$$k_F = -\frac{m \cdot a}{x}$$

Die Formel folgt aus dem Hookschen Gesetzt und dem zweiten Newtonschen Axiom. Hooksches Gesetz:

$$F = -k_F \cdot x$$

Die Formel gilt bei idelaen Betrachtungen, bei denen die Feder nur in einer Achse wirkt $\mathbf x$ ist die Auslenkung der Feder

Vertikaler Federschwinger

$$\omega_0 = \sqrt{\frac{k_F}{m}}$$

 ω_0 : Kreisfrequenz [rad/s], k_F : Federkonstante [N/m], m: Masse [kg]

Mathematisches Pendel

$$\ddot{\theta}(t) + \frac{g}{l}\sin\theta(t) = 0$$

Linearisiert:

$$\ddot{\theta}(t) + \frac{g}{l}\theta(t) = 0$$

$$\omega_0 = \sqrt{\frac{g}{l}}$$

 $\theta(t)$: Winkel [rad], g: Erdbeschleunigung [m/s²], l: Pendellänge [m], ω_0 : Kreisfrequenz [rad/s]

Drehpendel / Torsionspendel

$$\ddot{\theta}(t) + \frac{\kappa}{I}\theta(t) = 0 \quad \Rightarrow \quad \omega_0 = \sqrt{\frac{\kappa}{I}}$$

 $\theta(t) \colon \textit{Auslenkwinkel [rad]}, \; \kappa \colon \textit{Drehfederkonstante [Nm]}, \; I \colon \textit{Tr\"{a}gheitsmoment [kg \cdot m^2]}$

Physikalisches Pendel

$$\ddot{\theta}(t) + \frac{smg}{I_p} \sin \theta(t) = 0 \quad \Rightarrow \quad \omega_0 = \sqrt{\frac{smg}{I_p}}$$

s ist der Abstand vom Aufhängepunkt zum Schwerpunkt - bei einem homogenen stab ist der Schwerpunkt in der Mitte also wäre s=l/2

 $\theta(t)$: Winkel [rad], s: Abstand zur Drehachse [m], m: Masse [kg], g: Erdbeschleunigung [m/s²], I_p : Trägheitsmoment bezogen auf Drehachse [kg·m²]

Elastischer Schwingkreis

$$\ddot{Q}(t) + \frac{1}{LC}Q(t) = 0 \quad \Rightarrow \quad \omega_0 = \sqrt{\frac{1}{LC}}$$

Q(t): Ladung [C], L: Induktivität [H], C: Kapazität [F], ω_0 : Kreisfrequenz [rad/s]

19.2 Gedämpfte Schwingungen

DGL für Feder-Masse-Dämpfungssystem:

$$\ddot{y}(t) + 2\delta \dot{y}(t) + \omega_0^2 y(t) = 0 \quad \text{mit } 2\delta = \frac{b}{m}$$

y(t): Auslenkung [m], δ : Abklingkonstante [1/s], b: Dämpfungskonstante [kg/s], m: Masse [kg], ω_0 : ungedämpfte Kreisfrequenz [rad/s]

Dämpfungsgrad

$$D = \frac{\delta}{\omega_0}$$

D: $D\ddot{a}mpfungsgrad$, δ : Abklingkonstante [1/s], ω_0 : Kreisfrequenz [rad/s]

Lösung der charakteristischen Gleichung

$$\lambda_{1,2} = -\delta \pm \sqrt{\delta^2 - \omega_0^2}$$

 λ : Eigenwerte, δ : Abklingkonstante [1/s], ω_0 : Kreisfrequenz [rad/s]

19.3 Energie des gedämpften Oszillators

Schwach gedämpft (Näherung $\omega_d \approx \omega_0$):

$$E_{\rm mech} = \frac{1}{2}m \cdot \omega_0^2 \cdot A^2$$

 E_{mech} : Energie [J], m: Masse [kg], ω_0 : Kreisfrequenz [rad/s], A: Amplitude [m]

Stärker gedämpft:

$$E_{\text{mech}} = \frac{1}{2}m \cdot \omega_d^2 \cdot A^2$$

 ω_d : gedämpfte Eigenfrequenz [rad/s]

Abbildung 11.4: Kriechfall, aperiodischer Grenzfall und Schwingfall eines gedämpften Systems mit den Anfangsbedingungen $y(0) = y_0 = 1$ und $\dot{y}(0) = 0$.

19.4 Güte

Gütefaktor $Q = \frac{1}{2D} = \omega_0 \cdot \frac{m}{b}$

Q: Gütefaktor, D: Dämpfungsgrad, $\omega_0:$ Kreisfrequenz [rad/s], m: Masse [kg], b: Dämpfungskonstante [kg/s]

20 Wellen

Eindimensionale Wellengleichung

$$\frac{\partial^2 y(z,t)}{\partial t^2} = \frac{F_s}{A\rho} \cdot \frac{\partial^2 y(z,t)}{\partial z^2}$$

y(z,t): Auslenkung [m], F_s : Zugkraft [N], A: Querschnittsfläche [m²], ρ : Dichte [kg/m³]

Lösung der harmonischen Wellenfunktion

$$y(z,t) = A \cdot \cos(\omega t - kz + \delta)$$

$$k = \frac{2\pi}{\lambda}, \quad c = \frac{\lambda}{T} = \frac{\omega}{k} = \nu \cdot \lambda$$

y(z,t): Auslenkung [m], A: Amplitude [m], ω : Kreisfrequenz [rad/s], k: Wellenzahl [rad/m], δ : Phase [rad], λ : Wellenlänge [m], T: Periodendauer [s], ν : Frequenz [Hz], c: Ausbreitungsgeschwindigkeit [m/s]

Phasengeschwindigkeit verschiedener Wellen Seilwellen

$$c = \sqrt{\frac{F_s}{\mu}}$$

$$\mu = \frac{m}{l}$$

Elektromagnetische Wellen im Vakuum

$$c = \frac{1}{\sqrt{\epsilon_0 \mu_0}}$$

Elektromagnetische Wellen in Materie

$$c = \frac{1}{\sqrt{\epsilon_r \epsilon_0 \mu_r \mu_0}}$$

c: Phasengeschwindigkeit [m/s], F_s : Spannkraft im Seil [N], μ : lineare Massendichte [kg/m], ϵ_0 : elektrische Feldkonstante (Permittivität des Vakuums) [F/m], μ_0 : magnetische Feldkonstante (Permeabilität des Vakuums) [H/m], ϵ_r : relative Permittivität, μ_r : relative Permeabilität, m: masse [kg], l: länge [l] }

20.1 Wellen in drei Dimensionen

Intensität:

$$I(z) = \frac{\text{zeitlich gemittelte Lieistung}}{\text{senkrecht zur Ausbreitung stehende Fläche}} = \frac{P_t}{A} = \text{const.}$$

Kreiswellen

$$I(r) = \frac{I_0 r_0}{r}$$

Kugelwellen

$$I(r) = \frac{I_0 r_0^2}{r^2} = \frac{P_t}{4\pi r^2}$$

I(z), I(r): Intensität $[W/m^2], P_t$: zeitlich gemittelte Leistung [W], A: Fläche senkrecht zur Ausbreitungsrichtung $[m^2], I_0$: Referenzintensität in Abstand r_0 $[W/m^2], r, r_0$: Abstand zur Quelle bzw. Referenzabstand [m]

Messung der Schallintensität

$$I_p = 10 \log \frac{I}{I_0} dB$$

20.2 Der Doppler-Effekt

Fall 1: Empfänger bewegt sich relativ zu einer still stehenden Quelle

$$\nu_E = \nu_0 (1 + / - \frac{V_E}{c})$$

Hinbewegung Wegbewegung

Fall 2: Quelle bewegt sich relativ zu einem still stehenden Empfänger

$$\nu_E = \nu_0 \frac{1}{1 - / + \frac{V_Q}{c}}$$

Hinbewegung Wegbewegung

Fall 3: Quelle und Empfänger bewegen sich relativ zueinander

$$\nu_E = \frac{1 + / - \frac{V_E}{c}}{1 - / + \frac{V_Q}{c}}$$

Hinbewegung Wegbewegung

 ν_E : Frequenz beim Empfänger [Hz], ν_0 : Frequenz der Quelle [Hz], V_E : Geschwindigkeit des Empfängers relativ zum Medium [m/s], V_C : Geschwindigkeit der Quelle relativ zum Medium [m/s], v_C : Ausbreitungsgeschwindigkeit der Welle im Medium [m/s],

Fall 4: Entstehung von Stoßwellen

$$\sin \theta = \frac{c}{V_Q} = \frac{1}{\text{Ma}}$$

21 Überlagerung von Wellen

21.1 Überlagerung von zwei Wellen mit gleicher Wellenzahl und Frequenz

$$y_1 = A\cos(kz - \omega t)$$

$$y_2 = A\cos(kz - \omega t + \delta)$$

$$y = y_1 + y_2$$

$$y = 2A\cos(\frac{1}{2}\delta)\cos(kz - \omega t + \frac{1}{2}\delta)$$

Der erste Teil der Formel $(2A\cos(\frac{1}{2}\delta)$ stellt die resultierende Amplitude A_{res} dar. Der Zweite Teil der Formel $(\cos(kz - \omega t + \frac{1}{2}\delta))$ beschreibt die, sich in Z-Richtung ausbreitende Welle

Gangunterschied

$$\Delta z = \frac{\delta}{2\pi} \lambda$$

$$\Delta z = z_2 - z_1$$

Der Gangunterschied stellt anschaulich den räumlichen Versatz der beiden Wellen in Bezug auf die Wellenlänge λ dar

 y_1, y_2 : Einzelne Wellenfunktionen, y: resultierende Welle, A: Amplitude der Einzelsignale, $A_{res} = 2A\cos(\frac{1}{2}\delta)$: resultierende Amplitude, k: Wellenzahl, $k = \frac{2\pi}{\lambda}$ [rad/m], ω : Kreisfrequenz, $\omega = 2\pi f$ [rad/s], f: Frequenz [Hz], δ : Phasendifferenz [rad], λ : Wellenlänge [m], Δz : Gangunterschied [m], z_1, z_2 : Orte der beiden Wellenfronten

21.2 Interferenzbedingungen

Konstruktive Interferenz

- Phasenkonstante: $\delta = 0, \pm 2\pi, \pm 4\pi, \dots$
- Gangunterschied: $\Delta z = 0, \pm \lambda, \pm 2\lambda, \dots$
- Ergebnis: Verstärkung der Wellen (Maxima überlagern sich)

Destruktive Interferenz

- Phasenkonstante: $\delta = \pm \pi, \pm 3\pi, \pm 5\pi, \dots$
- Gangunterschied: $\Delta z = \pm \frac{\lambda}{2}, \ \pm \frac{3\lambda}{2}, \ \pm \frac{5\lambda}{2}, \dots$
- Ergebnis: Auslöschung der Wellen (Maxima und Minima überlagern sich)

21.3 Uberlagerung von zwei Wellen mit geringfügig unterschiedlicher Frequenz und Wellenlänge

$$y_1 = A\cos(k_1 z - \omega_1 t)$$

$$y_2 = A\cos(k_2 z - \omega_2 t)$$

$$y = y_1 + y_2$$

$$y = 2A\cos(\frac{1}{2}\Delta kz - \frac{1}{2}\Delta \omega t)\cos(\frac{(k_1 + k_2)}{2}z - \frac{(\omega_1 + \omega_2)}{2}t)$$

Der erste Teil der Formel $(2A\cos(\frac{1}{2}\Delta kz - \frac{1}{2}\Delta\omega t))$ stellt die resultierende Amplitude A_{res} dar. Der Zweite Teil der Formel $(\cos(\frac{(k_1+k_2)}{2}z - \frac{(\omega_1+\omega_2)}{2}t))$ beschreibt die, sich in Z-Richtung ausbreitende Welle

Wenn die Differenz 1Hz beträgt, hat man jede Sekunde ein Auf- und Abklingen ($\frac{1}{1Hz}=1s$). Bei 3 Hz hat man schon 3 Auf- und Abklingen pro Sekunde

 y_1, y_2 : Einzelne Wellenfunktionen, y: resultierende Welle, A: Amplitude der Einzelsignale, A_{res} : resultierende Amplitude, k: Wellenzahl, $k = \frac{2\pi}{\lambda}$ [rad/m], ω : Kreisfrequenz, $\omega = 2\pi f$ [rad/s], f: Frequenz [Hz], δ : Phasendifferenz [rad], λ : Wellenlänge [m], Δz : Gangunterschied [m], z_1, z_2 : Orte der beiden Wellenfronten

Ausbreitungsgeschwindigkeit des Wellenpakets (Gruppengeschwindigkeit):

$$v_{gr} = \frac{\Delta\omega}{\Delta k} = \frac{c}{n_{gr}}$$

 v_{gr} : Gruppengeschwindigkeit [m/s], $\Delta\omega$: Änderung der Kreisfrequenz [rad/s], Δk : Änderung der Wellenzahl [1/m], c: Lichtgeschwindigkeit im Vakuum [m/s], n_{gr} : Gruppengeschwindigkeitsbrechungsindex [-]

Phasengeschwindigkeit

$$v_{ph} = \frac{\bar{\omega}}{\bar{k}} = \frac{c}{\bar{n}}$$

 v_{ph} : Phasengeschwindigkeit [m/s], $\bar{\omega}$: mittlere Kreisfrequenz [rad/s], \bar{k} : mittlere Wellenzahl [1/m], c: Lichtgeschwindigkeit im Vakuum [m/s], \bar{n} : Brechzahl

22 Reflexion und Transmission an Grenzschichten

Bei Seilkraft gilt:

$$c = \sqrt{\frac{F_s}{\mu}}$$

$$\mu = \frac{m}{l}$$

c: Wellengeschwindigkeit auf dem Seil [m/s], F_s : Seilkraft (Zugspannung) [N], μ : lineare Massendichte [kg/m], m: Masse des Seils [kg], l: Länge des Seils [m]

Die Amplituden der reflektierten und transmittierten Welle ergeben sich mit Hilfe des Reflektionskoeffizienten R

$$y_R = R \cdot y_0 = \frac{c_2 - c_1}{c_2 + c_1} \cdot y_0 = \frac{n_1 - n_2}{n_1 + n_2} \cdot y_0$$

Und dem Transmissionskoeffizienten T

$$y_T = T \cdot y_0 = \frac{2c_2}{c_2 + c_1} \cdot y_0 = \frac{2n_1}{n_1 + n_2} \cdot y_0$$

 y_R : Amplitude der reflektierten Welle [m], y_T : Amplitude der transmittierten Welle [m], y_0 : Amplitude der einfallenden Welle [m], R: Reflektionskoeffizient [-], T: Transmissionskoeffizient [-], c_1 , c_2 : Wellengeschwindigkeiten in Medium 1 bzw. 2 [m/s], n_1 , n_2 : Brechungsindizes der beiden Medien [-]

Durch R wird die Amplitude der reflektierten Welle berechnet. Ist diese negativ, startet die Amplitude am Reflexionspunkt beim negativen Wert des berechneten R.

Durch T wird die Amplitude der transmittierten Welle berechnet. Selbe Logik wie bei R. Zwei Wellen können sich auch gegenseitig auslöschen, wenn die Amplituden gleich groß w

Zwei Wellen können sich auch gegenseitig auslöschen, wenn die Amplituden gleich groß und entgegengesetzt sind.

Bei Energieübertragung, der Wellen
intensität (elektromagnetische Wellen, Licht): Reflexionsgrad
 $\rho=R^2$

$$I_R = \rho \cdot I_0 = (\frac{c_2 - c_1}{c_2 + c_1})^2 \cdot I_0 = (\frac{n_1 - n_2}{n_1 + n_2})^2 \cdot I_0$$

Und dem Transmissionsgrad $\tau = 1 - \rho$

$$I_T = \tau \cdot I_0 = \frac{4n_1n_2}{(n_1 + n_2)^2} \cdot I_0$$

 I_R : Intensität der reflektierten Welle $[W/m^2]$, I_T : Intensität der transmittierten Welle $[W/m^2]$, I_0 : Intensität der einfallenden Welle $[W/m^2]$, ρ : Reflexionsgrad [-], τ : Transmissionsgrad [-], R: Reflektionskoeffizient [-], c_1 , c_2 : Wellengeschwind in Medium 1 bzw. 2 [m/s], n_1 , n_2 : Brechungsindizes der beiden Medien [-]

23 Stehende Wellen

23.1 Stehende Wellen bei beidseitig gleichartigen Enden

Die Bedingung für eine stehende Welle bei beidseitig gleichartiger Begrenzung lautet:

$$L = n \frac{\lambda_n}{2}$$
 mit n = 1, 2, 3, ...

Dadurch ergeben sich die Resonanzfrequenzen

$$\nu_n = \frac{n}{2} \cdot \frac{c}{L} = n \cdot \nu_1 \text{mit n} = 1, 2, 3, \dots$$

Der Abstand benachbarter Resonanzfrequenzen entspricht der Grundresonanzfrequenz

$$\Delta_{\nu} = \nu_1$$

23.2 Stehende Wellen bei unterschiedlicher (z.B.) einseitiger Begrenzung

Die Bedingung für eine stehende Welle bei unterschiedlicher Begrenzung lautet:

$$L = n \frac{\lambda_n}{4} \text{mit n} = 1, 3, 5, \dots$$

Dadurch ergeben sich die Resonanzfrequenzen

$$\nu_n = \frac{n}{4} \cdot \frac{c}{L} = n \cdot \nu_1 \text{mit n} = 1, 3, 5, \dots$$

Der Abstand benachbarter Resonanzfrequenzen entspricht dem doppelten der Grundresonanzfrequenz

$$\Delta_{\nu} = 2\nu_1$$

L: Länge des schwingenden Mediums [m], λ_n : Wellenlänge der n-ten stehenden Welle [m], n: Ordnung, ν_n : Frequenz der n-ten Resonanz [Hz], ν_1 : Grundresonanzfrequenz [Hz], Δ_{ν} : Frequenzabstand benachbarter Resonanzen [Hz], c: Ausbreitungsgeschwindigkeit der Welle [m/s]

24 Optik

24.1 Wellengleichung

Ausbreitungsgeschwindigkeit von elektromagnetischen Wellen:

$$C = \frac{1}{\sqrt{\mu_0 \epsilon_0} \cdot \sqrt{\mu_r \epsilon_r}} = \frac{C_0}{n}$$
$$C_0 \approx 3 \cdot 10^8 \frac{m}{s}$$
$$n = \sqrt{\mu_r \epsilon_r}$$

C: Ausbreitungsgeschwindigkeit der elektromagnetischen Welle im Medium [m/s], C_0 : Lichtgeschwindigkeit im Vakuum [m/s], μ_0 : magnetische Feldkonstante (Permeabilität des Vakuums) [H/m], ϵ_0 : elektrische Feldkonstante (Permittivität des Vakuums) [F/m], μ_r : relative Permeabilität des Mediums [-], ϵ_r : relative Permittivität des Mediums [-], n: Brechzahl

24.2 Eigenschaften des Lichts

Trifft Licht auf ein Medium, so ändert sich nicht die Frequenz des Lichts, sondern die Wellenlänge und beträgt:

 $\lambda_{Med} = \frac{C}{\mu} = \frac{\frac{C_0}{n}}{\mu} = \frac{\lambda}{n}$

Fall a) Bei Abmessungen $\leq \lambda$:

- Ausbreitung von Licht muss mit Maxwellschen Wellengleichungen betrachtet werden
- Licht erfährt beim Auftrefen auf Grenzschichten und Gegenständen Effekte wie Interferenz und Beugung

Fall b) Geometrische Optik bei Abmessungen $> \lambda$:

- Verwendung des Strahlenmodells: Licht breitet sich in der geometrischen Optik im homogenen Medium geradlinig aus
- Huygensches Prinzip: Jeder Punkt einer Wellenfront ist Ausgangspunkt einer neuen Elementarwelle
- Fermatsches Prinzip: Die Ausbreitung des Lichts erfolgt zwischen zwei Punkten im Medium auf dem Weg, füür den die benötigte Zeit ein Minimum ist.

 λ_{Med} : Wellenlänge des Lichts im Medium [m], C: Lichtgeschwindigkeit im Medium [m/s], C₀: Lichtgeschwindigkeit im Vakuum [m/s], μ : Frequenz des Lichts [Hz], μ : Brechzahl, λ : Wellenlänge des Lichts im Vakuum [m]

24.3 Brechung und Reflexion

- Die Ausbreitungsgeschwindigkeit elektromagnetischer Wellen ändert sich, wenn sie in ein Medium mit anderer Brechzahl übergehen
- Die Änderung der Ausbreitungsgeschwindigkeit spielt eine wesentliche Rolle, wenn Licht nicht senkrecht auf eine Grenzfläche trifft

Für den transmittierten Strahl gilt (Snelliusches Brechungsgesetz):

$$n_1 \sin \theta_1 = n_2 \sin \theta_2$$

 n_1 : Brechungsindex des Mediums 1 [—], n_2 : Brechungsindex des Mediums 2 [—], θ_1 : Einfallswinkel des Lichtstrahls im Medium 1 [rad], θ_2 : Brechungswinkel des Lichtstrahls im Medium 2 [rad]

Für die Reflexion von Licht gilt (Einfallswinkel = Ausgangswinkel):

$$\sin \theta_1' = \sin \theta_1$$

 θ_1 : Einfallswinkel des Lichtstrahls relativ zur Lotrechten [rad], θ_1' : Reflexionswinkel des Lichtstrahls relativ zur Lotrechten [rad]

Beim Übergang von optisch dichtem zu optisch dünnem Medium kann es vorkommen, dass keine Transmission stattfinden kann, da der Sinus des Winkels θ_2 höchstens 1 betragen kann. Die Bedingung für Totalreflexion lautet:

$$\sin \theta_2 = 1$$

Der kleinste Einfallswinkel, bei welchem die sogenannte Totalreflexion stattfindet:

$$\sin \theta_1 = \frac{n_2}{n_1} \sin \theta_2 = \frac{n_2}{n_1} (\text{da } \theta_2 = 1)$$

 θ_1 : Grenzwinkel für Totalreflexion (Einfallswinkel im optisch dichteren Medium) [rad], θ_2 : Brechungswinkel im optisch dünneren Medium (bei Totalreflexion: $\theta_2 = 90^{\circ}$) [rad], n_1 : Brechungsindex des optisch dichteren Mediums [—], n_2 : Brechungsindex des optisch dünneren Mediums [—]

24.4 Optische Abbildungen

24.4.1 Spiegel

Einfallswinkel = Ausfallswinkel

$$\theta = \theta'$$

 θ : Einfallswinkel des Lichtstrahls relativ zur Lotrechten [rad], θ' : Reflexionswinkel des Lichtstrahls relativ zur Lotrechten [rad]