Chapter 5

Differential Geometry HW

5.1 HW1

Abstract

In this HW, we give precise definition to \mathbb{P}^n and $\mathbb{R}P^n$, and we rigorously show

- (a) $\mathbb{R}P^n$ has a smooth structure.
- (b) \mathbb{P}^n is homeomorphic to $\mathbb{R}P^n$
- (c) \mathbb{P}^n has a smooth structure.

We also solved the other two questions. Note that in this PDF, brown text is always a clickable hyperlink reference.

Define an equivalence relation on $\mathbb{R}^{n+1} \setminus \{\mathbf{0}\}$ by

$$\mathbf{x} \sim \mathbf{y} \iff \mathbf{y} = \lambda \mathbf{x} \text{ for some } \lambda \in \mathbb{R}^*$$

Let $\mathbb{R}P^n \triangleq (\mathbb{R}^{n+1} \setminus \{0\}) \setminus \sim$ be the quotient space and let

$$V_i \triangleq \{\mathbf{x} \in \mathbb{R}^{n+1} : \mathbf{x}^i \neq 0\}$$
 for each $1 \leq i \leq n+1$

By definition, it is clear that

either
$$\pi^{-1}(\pi(\mathbf{x})) \subseteq V_i$$
 or $\pi^{-1}(\pi(\mathbf{x})) \subseteq V_i^c$

Then if we define $\phi_i: V_i \to \mathbb{R}^n$ by

$$\phi_i(\mathbf{x}) \triangleq \left(\frac{\mathbf{x}^1}{\mathbf{x}^i}, \dots, \frac{\mathbf{x}^{i-1}}{\mathbf{x}^i}, \frac{\mathbf{x}^{i+1}}{\mathbf{x}^i}, \dots, \frac{\mathbf{x}^{n+1}}{\mathbf{x}^i}\right)$$

because $\pi(\mathbf{x}) = \pi(\mathbf{y}) \implies \phi_i(\mathbf{x}) = \phi_i(\mathbf{y})$, we can well induce a map

$$\Phi_i: U_i \triangleq \pi(V_i) \subseteq \mathbb{R}P^n \to \mathbb{R}^n; \pi(\mathbf{x}) \mapsto \phi_i(\mathbf{x})$$

Note that one has the equation

 $\Phi_i(\pi(\mathbf{x})) = \phi_i(\mathbf{x}) \text{ for all } \mathbf{x} \in V_i$ has specify

It's the quotient topology you are

usty here.

Theorem 5.1.1. (Real Projective Space with a differentiable atlas) We have

 $\mathbb{R}P^n$ with atlas $\{(U_i, \Phi_i) : 1 \leq i \leq n+1\}$ is a differentiable manifold

Proof. We are required to prove

- (a) (U_i, Φ_i) are all charts.
- (b) $\{(U_i, \Phi_i) : 1 \leq i \leq n+1\}$ form a differentiable atlas.
- (c) $\mathbb{R}P^n$ is Hausdorff.
- (d) $\mathbb{R}P^n$ is second-countable.

Because $\pi^{-1}(U_i) = V_i$ and V_i is clearly open in $\mathbb{R}^{n+1} \setminus \{\mathbf{0}\}$, we know $U_i \subseteq \mathbb{R}P^n$ is open. Note that clearly, $\Phi_i(U_i) = \mathbb{R}^n$. To show (U_i, Φ_i) is a chart, it remains to show that Φ_i is a homeomorphism between U_i and \mathbb{R}^n . It is straightforward to check Φ_i is one-to-one on U_i . This implies Φ_i is a bijective between U_i and \mathbb{R}^n .

Fix open $E \subseteq \mathbb{R}^n$. We see

$$\pi^{-1}(\Phi_i^{-1}(E)) = \phi_i^{-1}(E)$$

Then because $\phi_i: V_i \to \mathbb{R}^n$ is clearly continuous, we see $\phi_i^{-1}(E)$ is open in $\mathbb{R}^{n+1} \setminus \{\mathbf{0}\}$, and it follows from definition of quotient topology $\Phi_i^{-1}(E) \subseteq \mathbb{R}P^n$ is open. Then because U_i is open in $\mathbb{R}P^n$, we see $\Phi_i^{-1}(E)$ is open in U_i . We have proved $\Phi_i: U_i \to \mathbb{R}^n$ is continuous.

Define $\Psi_i: \mathbb{R}^n \to V_i$ by

$$\Psi(\mathbf{x}^1,\ldots,\mathbf{x}^n) = (\mathbf{x}^1,\ldots,\mathbf{x}^{i-1},1,\mathbf{x}^i,\ldots,\mathbf{x}^n)$$

Observe that for all $\mathbf{x} \in \Phi_i(U_i)$, we have

$$\Phi_i^{-1}(\mathbf{x}) = \pi(\Psi_i(\mathbf{x}))$$

It then follows from $\Psi_i: \mathbb{R}^n \to V_i$ and $\pi: \mathbb{R}^{n+1} \setminus \{\mathbf{0}\} \to \mathbb{R}P^n$ are continuous that $\Phi_i^{-1}: \mathbb{R}^n \to \mathbb{R}P^n$ is continuous.

We have proved that (Ψ_i, U_i) are all charts. Now, because V_i clearly cover \mathbb{R}^{n+1} , we know U_i also cover $\mathbb{R}P^n$. We have proved $\{(U_i, \Phi) : 1 \leq i \leq n+1\}$ form an atlas. The fact $\mathbb{R}P^n$ is second-countable follows.

Fix $(\mathbf{x}_1, \dots, \mathbf{x}_n) \in \Phi_i(U_i \cap U_j)$. We compute

$$\begin{split} \Phi_j \circ \Phi_i^{-1}(\mathbf{x}^1, \dots, \mathbf{x}^n) &= \Phi_j \Big([(\mathbf{x}^1, \dots, \mathbf{x}^{i-1}, 1, \mathbf{x}^i, \mathbf{x}^{i+1}, \dots, \mathbf{x}^n)] \Big) \\ &= \begin{cases} \left(\frac{\mathbf{x}^1}{\mathbf{x}^j}, \dots, \frac{\mathbf{x}^{j-1}}{\mathbf{x}^j}, \frac{\mathbf{x}^{j+1}}{\mathbf{x}^j}, \dots, \frac{\mathbf{x}^{i-1}}{\mathbf{x}^j}, \frac{1}{\mathbf{x}^j}, \frac{\mathbf{x}^i}{\mathbf{x}^j}, \dots, \frac{\mathbf{x}^n}{\mathbf{x}^j} \right) & \text{if } j < i \\ \left(\frac{\mathbf{x}^1}{\mathbf{x}^{j-1}}, \dots, \frac{\mathbf{x}^{i-1}}{\mathbf{x}^{j-1}}, \frac{1}{\mathbf{x}^{j-1}}, \frac{\mathbf{x}^i}{\mathbf{x}^{j-1}}, \dots, \frac{\mathbf{x}^{j-2}}{\mathbf{x}^{j-1}}, \frac{\mathbf{x}^n}{\mathbf{x}^{j-1}}, \dots, \frac{\mathbf{x}^n}{\mathbf{x}^{j-1}} \right) & \text{if } j > i \end{cases} \end{split}$$

This implies our atlas is indeed differentiable.

Before we prove $\mathbb{R}P^n$ is Hausdorff, we first prove that $\pi: \mathbb{R}^{n+1} \setminus \{\mathbf{0}\} \to \mathbb{R}P^n$ is an open mapping. Let $U \subseteq \mathbb{R}^{n+1} \setminus \{\mathbf{0}\}$ be open. Observe that

$$\pi^{-1}(\pi(U)) = \{ t\mathbf{x} \in \mathbb{R}^{n+1} : t \neq 0 \text{ and } \mathbf{x} \in U \}$$

Fix $t_0 \mathbf{x} \in \pi^{-1}(\pi(U))$. Let $B_{\epsilon}(\mathbf{x}) \subseteq U$. Observe that

$$B_{|t_0|\epsilon}(t_0\mathbf{x}) \subseteq t_0B_{\epsilon}(\mathbf{x}) \subseteq t_0U \subseteq \pi^{-1}(\pi(U))$$

This implies $\pi^{-1}(\pi(U))$ is open. (done)

Now, because π is open, to show $\mathbb{R}P^n$ is Hausdorff, we only have to show

$$R_{\pi} \triangleq \{(\mathbf{x}, \mathbf{y}) \in (\mathbb{R}^{n+1} \setminus \{\mathbf{0}\})^2 : \pi(\mathbf{x}) = \pi(\mathbf{y})\}$$
 is closed

Define $f: (\mathbb{R}^{n+1} \setminus \{\mathbf{0}\})^2 \to \mathbb{R}$ by

$$f(\mathbf{x}, \mathbf{y}) \triangleq \sum_{i \neq j} (\mathbf{x}^i \mathbf{y}^j - \mathbf{x}^j \mathbf{y}^i)^2$$

Note that f is clearly continuous and $f^{-1}(0) = R_{\pi}$, which finish the proof.

Alternatively, we can characterize $\mathbb{R}P^n$ by identifying the antipodal pints on $S^n \triangleq \{\mathbf{x} \in \mathbb{R}^{n+1} : |\mathbf{x}| = 1\}$ as one point

$$\mathbf{x} \sim \mathbf{y} \iff \mathbf{x} = \mathbf{y} \text{ or } \mathbf{x} = -\mathbf{y}$$

and let $\mathbb{P}^n \triangleq S^n \setminus \infty$ be the quotient space.

Theorem 5.1.2. (Equivalent Definitions of Real Projective Space)

 $\mathbb{R}P^n$ and \mathbb{P}^n are homeomorphic

Proof. Define $F: \mathbb{P}^n \to \mathbb{R}P^n$ by

$$\{\mathbf{x}, -\mathbf{x}\} \mapsto \{\lambda \mathbf{x} : \lambda \in \mathbb{R}^*\}$$

It is straightforward to check that F is well-defined and bijective. Define $f: S^n \to \mathbb{R}P^n$ by

$$f = \pi \circ \mathbf{id}$$

where $id: S^n \to \mathbb{R}^{n+1} \setminus \{0\}$ and $\pi: \mathbb{R}^{n+1} \setminus \{0\} \to \mathbb{R}P^n$ are continuous. Check that

$$f = F \circ p$$

where $p: S^n \to \mathbb{P}^n$ is the quotient mapping. It now follows from the universal property that F is continuous, and since \mathbb{P}^n is compact and $\mathbb{R}P^n$ is Hausdorff, it also follows that F is a homeomorphism between $\mathbb{R}P^n$ and \mathbb{P}^n .

Knowing that $F: \mathbb{P}^n \to \mathbb{R}P^n$ is a homeomorphism and $\mathbb{R}P^n$ is a smooth manifold, we see that \mathbb{P}^n is Hausdorff and second-countable, and if we define the atlas

$$\{(F^{-1}(U_i), \Phi_i \circ F) : 1 \le i \le n+1\}$$

We see this atlas is indeed smooth, since

$$(\Phi_i \circ F) \circ (\Phi_j \circ F)^{-1} = \Phi_i \circ \Phi_i^{-1}$$

Question 73

Let X be a set equipped with

- (a) a collection $(U_{\alpha})_{{\alpha}\in I}$ of subsets that covers X.
- (b) a collection of bijection $\phi_{\alpha}: U_{\alpha} \to \phi_{\alpha}(U_{\alpha})$ that maps U_{α} to an open subset $\phi_{\alpha}(U_{\alpha})$ of \mathbb{R}^n .
- (c) For each $\alpha, \beta \in I$, the set $\phi_{\alpha}(U_{\alpha} \cap U_{\beta})$ is open.
- (d) For each $\alpha, \beta \in I$, $\phi_{\beta} \circ \phi_{\alpha}^{-1} : \phi_{\alpha}(U_{\beta} \cap U_{\alpha}) \to \phi_{\beta}(U_{\alpha}, U_{\beta})$ is smooth.

Give X a topology so that X is a smooth manifold.

Proof. If we define $E \subseteq X$ is open if and only if

$$\phi_{\alpha}(U_{\alpha}\cap E)$$
 is open for all α_{r}

see that given arbitrary collection of open sets $(E_j)_{j\in J}$, we have

$$\phi_{\alpha}(U_{\alpha} \cap \bigcup_{j \in J} E_j) = \bigcup_{j \in J} \phi_{\alpha}(U_{\alpha} \cap E_j) \text{ for all } \alpha \in I$$

thus open sets are closed under union, and given two open sets E_1, E_2 , we have

$$\phi_{\alpha}(U_{\alpha} \cap E_1 \cap E_2) \subseteq \phi_{\alpha}(U_{\alpha} \cap E_1) \cap \phi_{\alpha}(U_{\alpha} \cap E_2)$$
 for all $\alpha \in I$

Note that if $\mathbf{x} \in \phi_{\alpha}(U_{\alpha} \cap E_1) \cap \phi_{\alpha}(U_{\alpha} \cap E_2)$, then there exists $p_1 \in U_{\alpha} \cap E_1$ and $p_2 \in U_{\alpha} \cap E_2$ such that $\phi_{\alpha}(p_1) = \phi_{\alpha}(p_2) = \mathbf{x}$. Because ϕ_{α} is one-to-one, we can deduce $p_1 = p_2 \in E_2$, it then follows

$$\mathbf{x} = \phi(p_1) \in \phi_{\alpha}(U_{\alpha} \cap E_1 \cap E_2)$$

We now see

$$\mathbf{x} = \phi(p_1) \in \phi_{\alpha}(U_{\alpha} \cap E_1 \cap E_2)$$

$$\phi_{\alpha}(U_{\alpha} \cap E_1) \cap \phi_{\alpha}(U_{\alpha} \cap E_2) \subseteq \phi_{\alpha}(U_{\alpha} \cap E_1 \cap E_2) \text{ for all } \alpha \in I$$

We have proved that our topology on X is well-defined.

Note that U_{α} is open in X follows from premise (c). Thus, if some $E \subseteq U_{\alpha}$ is open in U_{α} , then E is open in X and $\phi_{\alpha}(E) = \phi_{\alpha}(U_{\alpha} \cap E)$ is open. We have proved that $\phi_{\alpha}: U_{\alpha} \to \phi_{\alpha}(U_{\alpha})$ is an open mapping. The fact that $\phi_{\alpha}: U_{\alpha} \to \phi_{\alpha}(U_{\alpha})$ is continuous trivially follows from

- (a) U_{α} is open in X.
- (b) our definition of topology on X.
- (c) $\phi_{\alpha}: U_{\alpha} \to \phi_{\alpha}(U_{\alpha})$ is a bijection.

We have proved that $(U_{\alpha}, \phi_{\alpha})$ are indeed charts. The fact that they form a smooth atlas follows from premise (a) and (d).

Question 74

Let \mathbb{R} be the real line with the differentiable structure given by the maximal atlas of the chart $(\mathbb{R}, \varphi = id : \mathbb{R} \to \mathbb{R})$, where id is the identity map, and let \mathbb{R}' be the real line with the differentiable structure given by the maximal atlas of the chart $(\mathbb{R}', \psi : \mathbb{R}' \to \mathbb{R})$, where $\psi(x) = x^{1/3}$.

- (a) Show that these two differentiable structures are distinct.
- (b) Show that there is a diffeomorphism between \mathbb{R} and \mathbb{R}' . (Hint: The identity map $\mathbb{R} \to \mathbb{R}$ is not the desired diffeomorphism.)

Proof. To see these two smooth structure are distinct. Observe

$$\mathbf{id}^{-1} \circ \psi : \mathbb{R} \to \mathbb{R}; x \mapsto x^{\frac{1}{3}} \text{ is not smooth at } 0$$

We claim $\phi: \mathbb{R} \to \mathbb{R}'$ defined by

$$\phi(x) \triangleq x^3$$
 is a diffeomorphism

It is clear that ϕ is a homeomorphism. To see ϕ is a smooth mapping from \mathbb{R} to \mathbb{R}' , observe that

$$\psi \circ \phi \circ \mathbf{id}^{-1}(x) = x$$

To see ϕ^{-1} is a smooth mapping from \mathbb{R}' to \mathbb{R} , observe that

$$\mathbf{id} \circ \phi \circ \psi^{-1}(x) = x$$

We have proved that ϕ is a diffeomorphism between \mathbb{R} and \mathbb{R}' .

5.2 Appendix

Theorem 5.2.1. (Homeomorphism between Compact Space and Hausdorff Space) Suppose

- (a) X is compact.
- (b) Y is Hausdorff.
- (c) $f: X \to Y$ is a continuous bijective function.

Then

f is a homeomorphism between X and Y

Proof. Because closed subset of compact set is compact and continuous function send compact set to compact set, we see for each closed $E \subseteq X$, $f(E) \subseteq Y$ is compact. The result then follows from $f(E) \subseteq Y$ being closed since Y is Hausdorff.

Theorem 5.2.2. (Hausdorff and Quotient) If $\pi: X \to Y$ is an open mapping, and we define

$$R_{\pi} \triangleq \{(x,y) \in X^2 : \pi(x) = \pi(y)\}$$

Then

 R_{π} is closed $\iff Y$ is Hausdorff

Proof. Suppose R_{π} is closed. Fix some x, y such that $\pi(x) \neq \pi(y)$. Because R_{π} is closed, we know there exists open neighborhood U_x, U_y such that $U_x \times U_y \subseteq (R_{\pi})^c$. It is clear that $\pi(U_x), \pi(U_y)$ are respectively open neighborhood of $\pi(x)$ and $\pi(y)$. To see $\pi(U_x)$ and $\pi(U_y)$ are disjoint, assume that $\pi(a) \in \pi(U_x) \cap \pi(U_y)$. Let $a_x \in U_x$ and $a_y \in U_y$ satisfy $\pi(a_x) = \pi(a) = \pi(a_y)$, which is impossible because $(a_x, a_y) \in (R_{\pi})^c$. CaC

Suppose Y is Hausdorff. Fix some x, y such that $\pi(x) \neq \pi(y)$. Let U_x, U_y be open neighborhoods of $\pi(x), \pi(y)$ separating them. Observe that $(x, y) \in \pi^{-1}(U_x) \times \pi^{-1}(U_y) \subseteq (R_\pi)^c$