

Этикетка

Микросхема 1564ТМ2ТЭП

КСНЛ.431253.002 ЭТ Микросхема интегральная 1564ТМ2ТЭП Функциональное назначение:

Два триггера «D»

Таблица назначения выводов

№	Обозначение	Назначение	№	Обозначение	Назначение
вывода	вывода	вывода	вывода	вывода	вывода
1	CLR1	Вход установ- ки «0» первого триггера	8	Q2	Выход инверсный второго триггера
2	D1	Вход первого триггера	9	Q2	Выход второго триггера
3	CLK1	Вход тактовый первого триг- гера	10	S2	Вход установки «1» второго триггера
4	S1	Вход установ- ки «1» первого триггера	11	CLK2	Вход тактовый второго триггера
5	Q1	Выход первого триггера	12	D2	Вход второго триггера
6	Q1	Выход инверс- ный первого триггера	13	CLR2	Вход установки «0» второго триггера
7	0V	Общий	14	V_{CC}	Питание

1 ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ

1.1 Основные электрические параметры (при $t = 25\pm10$ °C)

Наименование параметра, единица измерения, режим измерения	Буквенное	Норма	
	обозначение	не менее	не более
1	2	3	4
1. Максимальное выходное напряжение низкого уровня, В, при:			
U_{CC} =2,0 B, U_{IL} =0,3 B, I_{O} = 20 мкА	$U_{OL\;max}$	-	0,10
U_{CC} =4,5 B, U_{IL} =0,9 B, I_{O} = 20 мкА		-	0,10
U_{CC} =6,0 B, U_{IL} =1,2 B, I_0 = 20 мкА		-	0,10
при:			
U_{CC} =4,5 B, U_{IL} =0,9 B, I_{O} =4,0 mA		-	0,26
$U_{CC}=6.0 \text{ B}, U_{IL}=1.2 \text{ B}, I_{O}=5.2 \text{ mA}$		-	0,26
2. Минимальное выходное напряжение высокого уровня, В, при:			
U_{CC} =2,0 B, U_{IH} =1,5 B, I_{O} = 20 мкА	$\mathrm{U}_{\mathrm{OHmin}}$	1,9	-
U_{CC} =4,5 B, U_{IH} =3,15, I_{O} = 20 mkA		4,4	-
U_{CC} =6,0 B, U_{IH} =4,2 B, I_{O} = 20 мкА		5,9	-
при:			
U_{CC} =4,5 B, U_{IH} =3,15 B, I_{O} = 4,0 mA		3,98	-
U_{CC} =6,0 B, U_{IH} =4,2 B, I_{O} = 5,2 mA		5,48	-
3. Входной ток низкого уровня, мкА, при:			
$U_{CC} = 6.0 \text{ B}, U_{IL} = 0 \text{ B}, U_{IH} = U_{CC}$	$I_{ m IL}$	-	/-0,1/

4. Входной ток высокого уровня, мкА, при:			
$U_{CC} = 6.0 \text{ B}, U_{IL} = 0 \text{ B}, U_{IH} = U_{CC}$	I_{IH}	-	0,1
5.Ток потребления, мкА, при:			
$U_{CC} = 6.0 \text{ B}, U_{IL} = 0 \text{ B}, U_{IH} = U_{CC}$	I_{CC}	-	4,0
6. Динамический ток потребления, мА, при:			
$U_{CC} = 6.0 \text{ B, } f = 10.0 \text{ M} \Gamma \text{ц}$	I_{OCC}	-	12
7. Максимальная частота следования импульсов тактовых сигналов, МГц,			
при:	$f_{C max}$		
$U_{CC} = 2.0 \text{ B}, C_L = 50 \text{ m}\Phi$		5	-
$U_{CC} = 4.5 \text{ B}, C_L = 50 \text{ m}\Phi$		27	-
$U_{CC} = 6.0 \text{ B}, C_L = 50 \Pi\Phi$		32	-
8. Время задержки распространения при включении и выключении, нс,			
- от тактового входа к выходам Q и $\mathrm{\overline{Q}}$ при:	$t_{\mathrm{PHL},}$		
$U_{CC} = 2.0 \text{ B}, C_1 = 50 \text{ п}\Phi$	t_{PLH}		175
$U_{CC} = 4.5 \text{ B, } C_1 = 50 \text{ n}\Phi$		-	35
$U_{CC} = 6.0 \text{ B. } C_1 = 50 \text{ п}\Phi$		_	30
_			30
- от входа S и CLR к выходам Q и Q при:			
$U_{CC} = 2.0 \text{ B}, C_L = 50 \text{ m}\Phi$		-	230
$U_{CC} = 4.5 \text{ B}, C_L = 50 \text{ п}\Phi$		-	46
$U_{CC} = 6.0 \text{ B}, C_L = 50 \Pi\Phi$		-	39
9. Входная емкость, пФ	C_{I}	-	10

1.2 Содержание драгоценных металлов в 1000 шт. микросхем:

золото г. серебро г. в том числе: г/мм на 14 выводах длиной мм.

Цветных металлов не содержится

2 НАДЕЖНОСТЬ

2.1 Наработка микросхем до отказа Тн в режимах и условиях эксплуатации, допускаемых

ТУ исполнения, при температуре окружающей среды (температуре эксплуатации) не более (65+5) $^{\circ}$ C не менее 100000ч., а в облегченном режиме: при $U_{CC} = 5B \pm 10\%$ - не менее 120000ч.

2.2 Гамма – процентный срок сохраняемости ($T_{C\gamma}$) при γ = 99% при хранении в упаковке изготовителя в отапливаемом хранилище или хранилище с регулируемыми влажностью и температурой, или в местах хранения микросхем, вмонтированных в защищенную аппаратуру или находящихся в защищенном комплекте ЗИП, должен быть 25 лет.

Гамма – процентный срок сохраняемости в условиях, отличающихся от указанных,- в соответствии с разделом 4 ОСТ В 11 0998.

3 ГАРАНТИИ ИЗГОТОВИТЕЛЯ

Изготовитель гарантирует соответствие качества данного изделия требованиям AEЯР.431200.424-02ТУ при соблюдении потребителем условий и правил хранения, монтажа и эксплуатации, приведенных в ТУ на изделие. Срок гарантии исчисляется с даты изготовления, нанесенной на микросхему.

4 СВЕДЕНИЯ О ПРИЕМКЕ

Микросхемы 1564ТМ2 ТЭП соответствуют техническим условиям АЕЯР.431200.424-02ТУ и признаны годными для эксплуатации.

Приняты по от (извещение, акт и др.) (дата)	
Место для штампа ОТК	Место для штампа ПЗ
Место для штампа « Перепроверка произведена	» (дата)
Приняты по от от дата)	-
Место для штампа ОТК	Место для штампа ПЗ
Цена договорная	

5. УКАЗАНИЯ ПО ЭКСПЛУАТАЦИИ

При работе с микросхемами и монтаже их в аппаратуре должны быть приняты меры по защите их от воздействия электростатических зарядов. Допустимое значение статического потенциала не более 200 В.

Наиболее чувствительные к статическому электричеству последовательности (пары выводов): вход – общий, вход-питание.