Advanced Microeconomics II Strictly Competitive Games

Brett Graham

Wang Yanan Institute for Studies in Economics Xiamen University, China

April 1, 2015

Strictly Competitive Games

Definition

A strategic game $\{\{1,2\},(A_i),(\succeq_i)\}$ is strictly competitive if for any $a \in A$ and $b \in A$ we have $a \succeq_1 b$ if and only if $b \succeq_2 a$.

Example:

Player 2
$$\frac{L}{R}$$
 Player 1 $\frac{U}{D}$ $\frac{3,4}{5,2}$ $\frac{6,1}{4,3}$

Maxminimizing Strategies

Definition

Let $\{\{1,2\},(A_i),(\succeq_i)\}$ be a strictly competitive strategic game. The action $x^* \in A_1$ is a maxminimizer for player 1 if

$$\min_{y \in A_2} u_1(x^*, y) \ge \min_{y \in A_2} u_1(x, y) \text{ for all } x \in A_1.$$

The action $y^* \in A_2$ is a maxminimizer for player 2 if

$$\min_{x \in A_1} u_2(x, y^*) \ge \min_{x \in A_1} u_2(x, y) \text{ for all } y \in A_2.$$

Example:

Zero-sum Games

Definition

A strategic game $\{\{1,2\},(A_i),(u_i)\}$ is zero-sum if for any $a\in A$ we have $u_2(a)=-u_1(a)$.

Example:

Player 2
$$L R$$

Player 1 $U 3,-3 6,-6 5,-5 4,-4$

Zero-sum Games and Strictly Competitive Games

Lemma

Any strategic game can be translated into a zero-sum game that preserves player preference ordering over outcomes.

Lemma

Let $\{\{1,2\},(A_i),(u_i)\}$ be a zero-sum strategic game. Then $\max_{y \in A_2} \min_{x \in A_1} u_2(x, y) = -\min_{y \in A_2} \max_{x \in A_1} u_1(x, y)$. Further, $y \in A_2$ solves the problem $\max_{y \in A_2} \min_{x \in A_1} u_2(x, y)$ if and only if it solves the problem $\min_{y \in A_2} \max_{x \in A_1} u_1(x, y)$.

- For any function $f_1 \min_z f(z) = \max_z -f(z)$ and $arg min_z f(z) = arg max_z - f(z)$.
- $-\min_{x \in A_1} u_2(x, y) = \max_{x \in A_1} -u_2(x, y) = \max_{x \in A_1} u_1(x, y).$
- $\max_{v \in A_2} \min_{x \in A_1} u_2(x, y) = -\min_{v \in A_2} \max_{x \in A_1} u_1(x, y).$

Proposition

Let $G = \{\{1,2\}, (A_i), (u_i)\}$ be a zero-sum strategic game.

- If (x^*, y^*) is a Nash equilibrium of G then x^* is a maxminimizer for player 1 and y^* is a maxminimizer for player 2.
- ② If (x^*, y^*) is a Nash equilibrium of G then $\max_x \min_y u_1(x, y) = \min_y \max_x u_1(x, y)$, and thus all Nash equilibria of G yield the same payoffs.
- If $\max_x \min_y u_1(x,y) = \min_y \max_x u_1(x,y)$, x^* is a maxminimizer for player 1, and y^* is a maxminimizer for player 2, then (x^*,y^*) is a Nash equilibrium of G.

- (x^*, y^*) is a NE $\Rightarrow u_2(x^*, y^*) \ge u_2(x^*, y)$ for all $y \in A_2$ $\Rightarrow u_1(x^*, y^*) \le u_1(x^*, y)$ for all $y \in A_2$ $\Rightarrow u_1(x^*, y^*) = \min_y u_1(x^*, y) \le \max_x \min_y u_1(x, y)$.
- (x^*, y^*) is a NE $\Rightarrow u_1(x^*, y^*) \ge u_1(x, y^*)$ for all $x \in A_1$ $\Rightarrow u_1(x^*, y^*) \ge \min_y u_1(x, y)$ for all $x \in A_1$ $\Rightarrow u_1(x^*, y^*) \ge \max_x \min_y u_1(x, y)$.
- Repeat for player 2.
- What have we proven?

- Let $v^* = \max_x \min_y u_1(x, y) = \min_y \max_x u_1(x, y)$.
- Since x^* is a maxminimizer for player 1, $u_1(x^*, y) \ge v^*$ for all $y \in A_2$. In particular, $u_1(x^*, y^*) \ge v^*$.
- From the lemma, $\max_y \min_x u_2(x,y) = -v^*$. y^* is a maxminimizer for player $2 \Rightarrow u_2(x,y^*) \ge -v^*$ for all $x \in A_1$ $\Rightarrow u_1(x,y^*) \le v^*$ for all $x \in A_1$. In particular, $u_2(x^*,y^*) \ge -v^* \Rightarrow u_1(x^*,y^*) \le v^*$.
- $v^* = u_1(x^*, y^*) \ge u_1(x, y^*)$ for all $x \in A_1$.
- Repeat for player 2.

Notes:

- A way to find Nash equilibria in strictly competitive games.
- Equilibria are interchangeable.
- $u_1(x^*, y^*)$ is the value of the game for player 1.