SAT: Modelling and Implementations

Mohamed Siala https://siala.github.io

INSA-Toulouse & LAAS-CNRS

January 7, 2022

https://homepages.laas.fr/ehebrard/rosetta.html

Why this Lecture?

- What I noticed that most graduate students are doing software development.
- We are missing job opportunities in optimisation!
- Start with the online course on optimisation https://www.coursera.org/learn/discrete-optimization by Pascal Van Hentenryck

Solving Methodologies

- Adhoc methods
 - Specific exact algorithm
 - Heuristic method
 - 3 Meta-heuristic (genetic algorithms, ant colony, ..)
- 2 Declarative Approached
 - (Mixed) Integer Programming,
 - 2 Constraint Programming
 - 3 Boolean Satisfiability (SAT)
 - **a** ...

Why Declarative Approaches?

- They are problem independent! The user models the problem in a specific language and the solver do the job!
- Very active community

Travelling Salesman Problem

Exemple

--> Cost: 5+7+8+5+9+11+6=53Km

Example

--> Cost: 5+7+2+5+2+11+6=38Km

What if we check all possibilities?

- 2 Cities $\rightarrow 1$
- 5 Cities $\rightarrow 24$
- 8 Cities $\rightarrow 4032$
- 40 Cities $\rightarrow 2.10^{46}$ (with a modern machine: 3.10^{27} years!)
- 95 Cities, if we use a Plack (the shortest possible time interval that can be measured) processor and fill the universe with a processor per mm^3 , we need $3\times$ the age of the universe

The problem is inherently hard. However, the Concorde algorithm can solve instances up to 86 000 cities!

A step back: Problems, Instances, and Algorithms

- A problem is a question that associates an input of an output
- Many instances (instantiation of the input) for the same problem
- Many algorithms (methodologies) to solve the same problem

Example: The Sorting Integers problem

- Problem: sort a given sequence of n integers.
- Instance: a sequence of n integers
- A simple algorithm:
 - Scan the list to look for the smallest element
 - Swap it with the first position
 - Repeat for the list of remaining elements
- Example with the instance: 9, 3, 8, 7, 2
 - 2, 9, 3, 8, 7
 - 2, 3, 9, 8, 7
 - 2, 3, 7, 9, 8
 - 2, 3, 7, 8, 9
 - 2, 3, 7, 8, 9

Complexity

- Complexity: a measure to analyze/classify algorithms based on the amount of resource required (Time and Memory)
- Time Complexity: number of operations as a function of the size of the input
- Space Complexity: memory occupied by the algorithm as a function of the size of the input
- The evaluation is made usually by reasoning about the worst case.
- The analysis is given with regard with the asymptotic behaviour

Asymptotic behaviour

- If f is a polynomial and g is exponential then $f \in O(g)$. For instance $n^{10000} \in O(2^n)$
- Convention:
 - Easy/Tractable Problem: We know a polynomial time algorithm to solve the problem
 - Hard/Intractable: No known polynomial algorithm
- Example: Th sorting problem is easy because we have an algorithm that runs in the worst case in $O(n^2)$ (and actually the same for memory consumption)
- What if we don't know if a problem has a polynomial time algorithm?

Classes of problems

- **P** is the class of problems that are **solvable** in polynomial time (easy problems)
- NP is the class of problems that are **verifiable** in polynomial time algorithm
- We know that $P \in NP$ (if you can solve then you can verify)
- For many Problems in NP, we don't know if a polynomial time algorithm exists.
- 1 Million \$ question: Is P=NP?

The Boolean Satisfiability Problem (SAT)

Definitions

- Atoms (Boolean variables): x_1, x_2, \ldots
- Literal: $x_1, \neg x_1$
- Clauses: a clause is a disjunction of literals
- Example of clause: $(\neg x_1 \lor \neg x_4 \lor x_7)$
- Propositional formula Φ given in a Conjunctive Normal Form (CNF) $\Phi: c_1 \wedge ... \wedge c_n$

Given a set of Boolean variables $x_1, \ldots x_n$ and a CNF formulae Φ over $x_1, \ldots x_n$, the Boolean Satisfiability problem (SAT) is to find an assignment of the variables that satisfies all the clauses.

Why SAT?

- SAT is the first problem that is shown to be in the class NP-Complete (the hardest problems in NP)
- Many theoretical properties
- Huge practical improvements in the past 2 decades
- Is considered today as a powerful technology to solve computational problems

In this lecture, we focus on the practical side

- How to use it to solve problems (Modelling)
- Discover some efficient implementations

Example

$$x \vee \neg y \vee z$$
$$\neg x \vee \neg z$$
$$y \vee w$$
$$\neg w \vee \neg x$$

A possible solution:

$$x \leftarrow 1; y \leftarrow 1; z \leftarrow 0; w \leftarrow 0$$

Modelling in SAT: The example of Graph Coloring

Graph Coloring is a well know combinatorial problem that has many applications (in particular in scheduling problems).

Let G = (V, E) be an undirected graph where V is the set of vertices and E is the set of edges. Is it possible to colour the graph with k colours such that no two adjacent nodes share the same colour?

Modelling in SAT: The example of Graph Coloring

- Propose a SAT model for this problem (hint $x \to y$ is equivalent to $\neg x \lor y$).
- Propose a method that uses SAT for the minimisation version of the problem? That is, given G = (V, E), we seek to find the minimum value of k to satisfy the colouring requirements.