Course code: EEE-453
Course title: Numerical Method
Lecture on
Numerical Integration

Numerical Integration

Numerical Integration According to the dictionary definition, to integrate means "to bring together, into a whole; to unite; to indicate the total amount area. . . ." Mathematically, integration is represented by

$$I = \int_a^b f(x) dx$$
 or $I = \int_c^d f(y) dy$

which stands for the integral of the function f(x) with respect to the independent variable x, evaluated between the limits x=a to x=b. The function f(x) is referred to as the integrand.

Numerical Integration

Different rule/scheme in Numerical Integration

- 1. Trapezoidal Rule
- 2. Simpson's 1/3 Rule
- 3. Simpson's 3/8 Rule etc.

Feature of single segment Trapezoid rule

- 1. In this method complete area is considered as trapezium.
- 2. Then determine the area of trapezium to evaluate the integration

$$I = \int_a^b f(x) dx$$

- 3. Here n= trapezoid/segment number h= trapezoid/segment length
- 4. The formula for the process single Segment Trapezoid rule is I=h/2[f(a)+f(a+h)]

Note

Area of trapezoid=
$$\int_a^b f(x)dx$$

=1/2*(b-a)(f(a)+f(b))

Problems of single segment Trapezoid rule There are more error in single segment Trapezoid rule than the multi segment Trapezoid rule

Trapezoidal Rule Feature of multi segment Trapezoid rule

1. In this method complete area is considered as multiple

trapeziums.

2. Then determine the area of trapezium to evaluate the integration

$$\mathbf{I} = \int_{a}^{b} f(x) d\mathbf{x}$$

- 3. Here n= trapezoid number=4(for figure)
- 4. The formula for the process single

Segment Trapezoid rule is

Problem 01 Evaluate $\int_{3\Pi/2}^{\Pi/4} \frac{\sin x}{x} dx$ using Trapezoidal rule where the function is segmented in three part.

Solution Here

```
f(x) = \frac{\sin x}{x}
a = 3\Pi/4 = 4.7124
b = \Pi/4 = 0.7854
n = 3
h = (b-a)/n = -1.309
I = 1*h/2[f(a)+f(a+h)]
```

Notes

1. Calculator should be in radian mode

 $2.f(x) = \sin(x)/x$

	a	a+h	a+2h	a+3h
X	4.7124	3.4034	2.0944	0.7854
f(X)	-0.2122	-0.0760	0.4135	0.9003

I1=1*h/2[f(a)+f(a+h)] =1*h/2[-0.2122+-0.0760] = 0.1886 Similarly I2= -0.2209 and I3= -0.8599 So, I=I1+I2+I3= -0.8922

Assignment

Simpson's 1/3 Rule

Feature of Simpson's 1/3 rule

- 1. It use three points on the function and determine a quadratic Interpolation like $Y=f(x)=a_0+a_1x+a_2x^2$
- 2. Then determine the area to evaluate the integration

$$I = \int_a^b f(x) dx$$

- 3. It requires even no. of segment (n=2,4,6...) and minimum is 2.
- 4. The formula for the process Simpson's 1/3 rule is

$$I=h/3[f(x1)+4f(x2)+f(x3)]$$

5. For two segment x1=a, x3=b and

$$\times 2 = \frac{a+b}{2}$$

Simpson's 1/3 Rule

Problem 02

Evaluate $\int_{3\Pi/2}^{\Pi/4} \frac{\sin x}{x} dx$ using Simpson's 1/3 rule where the function is segmented in four part.

Solution Here

```
f(x) = \frac{\sin x}{x}
a = 3\Pi/2 = 4.7124
b = \Pi/4 = 0.7854
n = 4
h = (b-a)/n = -0.9818
I = h/3[f(x1) + 4f(x2) + f(x3)]
```

Simpson's 1/3 Rule

Notes

- 1. Calculator should be in radian mode
- $2.f(x) = \sin(x)/x$

	a	a+h	a+2h	a+3h	a+4h
X	4.7124	3.7306	2.7488	1.767	0.7852
f(X)	-0.2122	-0.1489	0:1392	0.5551	0.9003

$$I1=h/3[f(x1)+4f(x2)+f(x3)]$$
 and $I2=h/3[f(x1)+4f(x2)+f(x3)]$
=0.2188 = -1.0669
 $I=I1+I2=-0.8481(approx.)$

Assignment

Feature of Simpson's 3/8 rule

1. It use multiple points on the function and determine a cubic Interpolation.

2. Then determine the area to evaluate the integration

$$I = \int_a^b f(x) dx$$

- 3. It requires odd no. of segment (n=3,6,9...) minimum segment=3.
- 4. The formula for the process Simpson's 3/8 rule is

$$I=3h/8[f(x1)+3f(x2)+4f(x3)+f(x4)]$$

Problem 03

Evaluate $\int_{3\Pi/2}^{\Pi/4} \frac{\sin x}{x} dx$ using Simpson's 3/8 rule where the function is segmented in six part.

Solution Here

```
f(x) = \frac{\sin x}{x}
a = 3\Pi/2 = 4.7124
b = \Pi/4 = 0.7854
n = 6
h = (b-a)/n = -0.6545
I = 3h/8[f(x1) + 3f(x2) + 4f(x3) + f(x4)]
```

Notes

1. Calculator should be in radian mode

$$2.f(x) = \sin(x)/x$$

	a	a+h	a+2h	a+3h	a+4h	a+5h	a+6h
X	4.7124	4.0579	3.4034	2.7489	2.0944	1.4399	0.7854
f(X)	-0.2122	-0.1955	-0.0760	0.1392	0.4135	0.6886	0.9003

I1=
$$3h/8[f(x1)+3f(x2)+4f(x3)+f(x4)] = 0.2365$$

and I2= $3h/8[f(x1)+3f(x2)+4f(x3)+f(x4)] = -1.2356$

Problem 04

Evaluate $\lim_{y=0}^{1/4} e^{x} \sin y \, dy \, dx$ using Simpson's 3/8 rule with nx=3 and ny=6.

Solution

```
f(x)=e^{x} \sin y

nx=3, ax=0, bx=1 and

hx=(bx-ax)/nx=0.3333

ny=6, ay=0, by=\Pi/4 and

hy=(by-ay)/ny=0.1309
```

```
I= 3h/8[f(x1)+3f(x2)+4f(x3)+f(x4)]
So IX1= 3hx/8[f(x1)+3f(x2)+4f(x3)+f(x4)]
Iy1= 3hy/8[f(x1)+3f(x2)+4f(x3)+f(x4)]
```

18

- 1. Calculator should be in radian mode
- $2.f(x) = e^x \sin y$ and the table stars from the end

ay+6h=0.7854	0.7071	0.9868	1.3777	1.9221	IX7=1.3874
ay+5h=0.6545	0.6087	0.8496	1.1861	1.6548	IX6=1.1945
ay+4h=0.5236	0.5000	0.6978	0.9742	1.3591	ĮX5=0.9801
ay+3h=0.3927	0.3827	0.5341	0.7456	1.0402	IX4=0.7508
ay+2h=0.2618	0.2588	0.3612	0.5042	0.7035	IX3=0.5078
ay+h=0.1309	0.1305	0.1822	0.2543	0.3548	IX2=0.2561 Iy
ay=0	0.0000	0.0000	0.0000	0.0000	IX1=0.0000
	ax=0	ax+h=0.3333	ax+2h=0.66	ax+3h=1	

```
IX1 = 3hx/8[0+3*0+4*0+0] = 0
IX2= 3hx/8[0.1305+3*0.2588+4*0.3827+0.5000] =0.2243
Similarly
IX3 =0.4447
IX4=0.6576
IX5=0.8592
IX6=1.0461
IX7=1,2151
```

$$I=Iy1+Iy2=0.6581$$

Assignment