Results about Euler's path and circuits

MATH 450 Seminar in Proof

Definition 1.1: *Graph:* A simple graph G = (V, E) consists of a non-empty finite set V(G) of elements called vertices (or nodes), and a finite set E(G) of distinct unordered pairs of distinct elements of V(G) called edges. We call V(G) the vertex set and E(G) the edge set of G. An edge v, w is said to join the vertices v and w, and is usually abbreviated to vw.

Note: The vertex on G are referred to as V(G) and the edges on G are referred to E(G). This is independent of the way we define a graph. Meaning, if we define a graph H = (W, Q) the set of vertices in H is referred as V(H) and the set of edges in H is referred as E(H) and not E(H) and E(H) respectively.

Definition 1.2: Adjacency: We say that two vertices v and w of a graph G are adjacent if there is an edge vw joining them, and the vertices v and w are then incident with such an edge. Similarly, two distinct edges e and f are adjacent if they have a vertex in common.

Definition 1.3: Degree of a Vertex: The degree of a vertex v of G is the number of edges incident with v, and is written deg(v); in calculating the degree of v, we usually make the convention that a loop at v contributes 2 (rather than 1) to the degree of v. A vertex of degree 0 is an isolated vertex and a vertex of degree 1 is an end-vertex.

Note: A graph is *connected* if it cannot be expressed as the union of two graphs, and disconnected otherwise. Or, in simpler words, if a graph does not have any isolated or end-vertex, then the graph is *connected*.

Definition 1.4: Subgraph: A subgraph of a graph G is a graph, each of whose vertices belongs to V(G) and each of whose edges belongs to E(G).

Definition 1.5: Walk: Given a graph G, a walk in G is a finite sequence of distinct edges of the form $v_0v_1, v_1v_2,...,v_{m-1}v_m$, also denoted by $v_0 \to v_1 \to v_2 \to \to v_m$, in which any two consecutive edges are adjacent or identical. If $v_0 = v_m$ then we call the walk a cycle.

Definition 1.6: Euler Path: An Euler Path on a graph G is a special walk that uses each edge exactly once.

Definition 1.7: Euler Circuit/Cycle: An Euler circuit on a graph G is a Euler Path which starts and ends on the same vertex.

Definition 1.8: Traversing: The process of passing through each vertex using the edges joining them in a walk or a path or a cycle or a trail.

Lemma: Nilay's Lemma (Not really): If a connected finite graph has every vertex of degree of at least two, then G has a cycle.

Proof. Let G be a connected finite graph. Let v be a vertex in G such that v has at least degree two. Let us construct a walk $v_0 \to v_1 \to v_2 \to \dots$ such that v_1 be any adjacent vertex to v_0 , and for each v_i i > 1, we choose v_{i+1} to be any adjacent vertex to v_i , except v_{i-1} (already chosen). We know that such a vertex exists because of our hypothesis that every vertex is of at least degree two. Since G is finite graph, the

Results to be proven:

1. (EULER (1736), HIERHOLZER (1873)) Any connected graph where the degree of every vertex is even iff it has an Euler circuit.

Proof. \Longrightarrow Let G be a connected graph which has Euler circuit E. When traversing E, when we come across any vertex v through an edge $e_v(1)$, we know by definition there is another edge $e_v(2)$ that is connected to v. Thus making every vertex in G at least degree two. Thus making every vertex in G of even degree.

 \Leftarrow Let every vertex in a connected graph G have an even degree. Let there be only two vertices in G and each vertex is of degree two (making them even degree). Then since G is connected, there are no isolated vertex in G. Furthermore, those two vertices share the two edges between them. Therefore, if we construct a walk at either of the vertex we will end at the same vertex where we started, and not repeating the edge that we passed through. Thus making the walk a Euler Circuit.

Now, let G be connected graph with more than two vertices. From the lemma we know that there exists a cycle in G. If a cycle includes all the edges in G then we are done. Let's say it does not. Then there exists a cycle G in G which does not include all the vertices. Now, let us remove all the edges from G that are in G and obtain newly made sub-graph G, made by the remaining edges in G, by our hypothesis all the vertices in G are still even. We know that because the common the vertices in G are also of even degree. Thus, by the G contains a cycle. Let us choose a common vertex G and G and G. We know this is possible because connectedness of G.

Now since v still has an even degree we produce a cycle C' in H that starts and ends at v. Now the cycle formed by combining C' in H and C in G forms a new cycle in G, that starts and ends at v and containing more edges than in C.

We continue the above process recursively for each sub-graph in G until all the vertices in G are traversed. The final cycle starting from such a vertex v will include all the edges in G and will be the union of all the cycles that we created recursively in G and it's sub-graphs, thus making an Euler circuit in G.

They say a picture speaks a thousand words, below we try to illustrate what an Euler Circuit will look like on a graph where all the vertex have an even degree. \Box

Figure 1: A Euler Circuit.

2. If there are exactly two vertices a and b of odd degree, there is an Euler path on the graph from a to b. (Existence Proof)

Proof. Let G be a graph with Euler circuit. Thus, we know that every vertex in G has an even degree from the theorem stated above. Now let us add one vertex say $b \notin V(G)$ and an edge $e_{ba} \notin E(G)$ to a vertex $a \in V(G)$. Note that before adding the edge from e_{ba} to a, $a \in V(G)$ had an even degree. We start our path from b, and since it has only one edge e_{ba} connecting to a. We know that $a \in V(G)$ and since G has a Euler Circuit, we know that we can construct a cycle that starts and ends at $a \in G$. We cannot use the edge e_{ba} to go back to b as we have already included in our path. Therefore, the path will end at a. Thus, we know have a graph $G' = (V(G) + b, E(G) + e_{ba})$, where a and b are two vertices in G' that are of odd degree and an Euler Path from b to a.