

CINCH Systems

RF-ARSHK

Periodic Transmitter

FCC 15.231:2017

Report # CINC0015

NVLAP Lab Code: 200881-0

CERTIFICATE OF TEST

Last Date of Test: November 16, 2017 CINCH Systems Model: RF-ARSHK

Radio Equipment Testing

Standards

Specification	Method
FCC 15.231:2017	ANSI C63.10:2013

Results

Method Clause	Test Description	Applied	Results	Comments
6.2	Powerline Conducted Emissions	No	N/A	Not required for a battery powered EUT.
6.5, 6.6	Field Strength of Fundamental	Yes	Pass	
6.5, 6.6	Spurious Radiated Emissions	Yes	Pass	
6.9.2	Occupied Bandwidth	Yes	Pass	
7.5	Duty Cycle	Yes	Pass	

Deviations From Test Standards

None

Approved By:

Matt Nuernberg, Operations Manager

Product compliance is the responsibility of the client; therefore, the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test. This report reflects only those tests from the referenced standards shown in the certificate of test. It does not include inspection or verification of labels, identification, marking or user information.

Report No. CINC0015 2/23

REVISION HISTORY

Revision Number	Description	Date	Page Number
00	None		

Report No. CINC0015 3/23

ACCREDITATIONS AND AUTHORIZATIONS

United States

FCC - Designated by the FCC as a Telecommunications Certification Body (TCB). Certification chambers, Open Area Test Sites, and conducted measurement facilities are listed with the FCC.

A2LA - Accredited by A2LA to ISO / IEC 17065 as a product certifier. This allows Element to certify transmitters to FCC and IC specifications.

NVLAP - Each laboratory is accredited by NVLAP to ISO 17025

Canada

ISED - Recognized by Innovation, Science and Economic Development Canada as a Certification Body (CB). Certification chambers and Open Area Test Sites are filed with ISED.

European Union

European Commission - Within Element, we have a EU Notified Body validated for the EMCD and RED Directives.

Australia/New Zealand

ACMA - Recognized by ACMA as a CAB for the acceptance of test data.

Korea

MSIP / RRA - Recognized by KCC's RRA as a CAB for the acceptance of test data.

Japan

VCCI - Associate Member of the VCCI. Conducted and radiated measurement facilities are registered.

Taiwan

BSMI – Recognized by BSMI as a CAB for the acceptance of test data.

NCC - Recognized by NCC as a CAB for the acceptance of test data.

Singapore

IDA – Recognized by IDA as a CAB for the acceptance of test data.

Israel

MOC - Recognized by MOC as a CAB for the acceptance of test data.

Hong Kong

OFCA – Recognized by OFCA as a CAB for the acceptance of test data.

Vietnam

MIC – Recognized by MIC as a CAB for the acceptance of test data.

SCOPE

For details on the Scopes of our Accreditations, please visit:

http://portlandcustomer.element.com/ts/scope/scope.htm http://gsi.nist.gov/global/docs/cabs/designations.html

Report No. CINC0015 4/23

FACILITIES

California
Labs OC01-17
41 Tesla
Irvine, CA 92618
(949) 861-8918

Minnesota Labs MN01-08, MN10 9349 W Broadway Ave. Brooklyn Park, MN 55445 (612)-638-5136 New York Labs NY01-04 4939 Jordan Rd. Elbridge, NY 13060 (315) 554-8214 Oregon Labs EV01-12 22975 NW Evergreen Pkwy Hillsboro, OR 97124 (503) 844-4066

TexasLabs TX01-09
3801 E Plano Pkwy
Plano, TX 75074
(469) 304-5255

WashingtonLabs NC01-05
19201 120th Ave NE
Bothell, WA 98011
(425)984-6600

Irvine, CA 92618 (949) 861-8918	Brooklyn Park, MN 55445 (612)-638-5136	Elbridge, NY 13060 (315) 554-8214	Hillsboro, OR 97124 (503) 844-4066	Plano, TX 75074 (469) 304-5255	Bothell, WA 98011 (425)984-6600		
NVLAP							
NVLAP Lab Code: 200676-0	NVLAP Lab Code: 200881-0	NVLAP Lab Code: 200761-0	NVLAP Lab Code: 200630-0	NVLAP Lab Code:201049-0	NVLAP Lab Code: 200629-0		
	Innov	ation, Science and Eco	nomic Development Can	ada			
2834B-1, 2834B-3	2834E-1, 2834E-3	N/A	2834D-1, 2834D-2	2834G-1	2834F-1		
	BSMI						
SL2-IN-E-1154R	SL2-IN-E-1152R	N/A	SL2-IN-E-1017	SL2-IN-E-1158R	SL2-IN-E-1153R		
VCCI							
A-0029	A-0109	N/A	A-0108	A-0201	A-0110		
	Recognized Phase I CAB for ACMA, BSMI, IDA, KCC/RRA, MIC, MOC, NCC, OFCA						
US0158	US0175	N/A	US0017	US0191	US0157		

Report No. CINC0015 5/23

Test Setup Block Diagrams

Antenna Port Conducted Measurements

Near Field Test Fixture Measurements

Spurious Radiated Emissions

Report No. CINC0015 6/23

MEASUREMENT UNCERTAINTY

Measurement Uncertainty

When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. Measurement uncertainty is a statistical expression of measurement error qualified by a probability distribution.

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty (K=2) for each test is on each data sheet. Our measurement data meets or exceeds the measurement uncertainty requirements of the applicable specification; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for estimating measurement uncertainty are based upon ETSI TR 100 028 (or CISPR 16-4-2 as applicable), and are available upon request.

The following table represents the Measurement Uncertainty (MU) budgets for each of the tests that may be contained in this report.

Test	+ MU	<u>- MU</u>
Frequency Accuracy (Hz)	0.0007%	-0.0007%
Amplitude Accuracy (dB)	1.2 dB	-1.2 dB
Conducted Power (dB)	0.3 dB	-0.3 dB
Radiated Power via Substitution (dB)	0.7 dB	-0.7 dB
Temperature (degrees C)	0.7°C	-0.7°C
Humidity (% RH)	2.5% RH	-2.5% RH
Voltage (AC)	1.0%	-1.0%
Voltage (DC)	0.7%	-0.7%
Field Strength (dB)	5.2 dB	-5.2 dB
AC Powerline Conducted Emissions (dB)	2.4 dB	-2.4 dB

Report No. CINC0015 7/23

PRODUCT DESCRIPTION

Client and Equipment Under Test (EUT) Information

Company Name:	CINCH Systems
Address:	Suite 300 12075 43rd Street NE
City, State, Zip:	St. Michael, MN 55376
Test Requested By:	Jibril Aga
Model:	RF-ARSHK
First Date of Test:	November 16, 2017
Last Date of Test:	November 16, 2017
Receipt Date of Samples:	November 16, 2017
Equipment Design Stage:	Production
Equipment Condition:	No Damage
Purchase Authorization:	Verified

Information Provided by the Party Requesting the Test

Functional Description of the EUT:

Shock sensor for window vibration / breakage detection containing a low power transmitter which operates at 319.5 MHz utilizing AM modulation (OOK).

Testing Objective:

To demonstrate compliance of the periodic radio to FCC 15.231(b) requirements.

Report No. CINC0015 8/23

CONFIGURATIONS

Configuration CINC0015-1

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
RF-ARSHK	CINCH Systems	RF-ARSHK	1741

Configuration CINC0015-2

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
RF-ARSHK	CINCH Systems	RF-ARSHK	1745

Configuration CINC0015-3

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
RF-ARSHK	CINCH Systems	RF-ARSHK	1743

Report No. CINC0015 9/23

MODIFICATIONS

Equipment Modifications

Item	Date	Test	Modification	Note	Disposition of EUT
			Tested as	No EMI suppression	EUT remained at
1	11/16/2017	Duty Cycle	delivered to	devices were added or	Element following the
			Test Station.	modified during this test.	test.
		Occupied	Tested as	No EMI suppression	EUT remained at
2	11/16/2017	Bandwidth	delivered to	devices were added or	Element following the
		Dandwidth	Test Station.	modified during this test.	test.
		Field Strength	Tested as	No EMI suppression	EUT remained at
3	11/16/2017	of	delivered to	devices were added or	Element following the
		Fundamental	Test Station.	modified during this test.	test.
		Spurious	Tested as	No EMI suppression	Scheduled testing
4	11/16/2017	Radiated	delivered to	devices were added or	was completed.
		Emissions	Test Station.	modified during this test.	was completed.

Report No. CINC0015 10/23

FIELD STRENGTH OF FUNDAMENTAL

PSA-ESCI 2017.06.01

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

Tx unmodulated at 319.5 MHz

POWER SETTINGS INVESTIGATED

Battery

CONFIGURATIONS INVESTIGATED

CINC0015 - 3

FREQUENCY RANGE INVESTIGATED

	Start Freq	ency 319 MHz	Stop Frequency	320 MHz
--	------------	--------------	----------------	---------

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
Cable	ESM Cable Corp.	Bilog Cables	MNH	11/9/2017	12 mo
Antenna - Biconilog	Teseq	CBL 6141B	AYD	1/6/2016	24 mo
Analyzer - Spectrum Analyzer	Agilent	N9010A	AFI	1/6/2017	12 mo

MEASUREMENT BANDWIDTHS

Frequency Range	Peak Data	Quasi-Peak Data	Average Data
(MHz)	(kHz)	(kHz)	(kHz)
0.01 - 0.15	1.0	0.2	0.2
 0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0

TEST DESCRIPTION

The antennas to be used with the EUT were tested. The EUT was configured for continuous un-modulated CW operation at its single transmit frequency. The field strength of the transmit frequency was maximized by rotating the EUT, adjusting the measurement antenna height and polarization, and manipulating the EUT in 3 orthogonal planes (per ANSI C63.10:2013).

To derive average emission measurements, a duty cycle correction factor was utilized:

Duty Cycle = On time/100 milliseconds (or the period, whichever is less)

Where "On time" = N1L1 +N2L2 +....

Where N1 is the number of type 1 pulses, L1 is length of type 1 pulses, N2 is the number of type 2 pulses, L2 is the length of type 2 pulses, etc.

Therefore, Duty Cycle = (N1L1 +N2L2 +...)/100mS or T, whichever is less. (Where T is the period of the pulse train.)

The measured values for the EUT's pulse train are as follows:

Period = 100 mSec

Pulsewidth of Type 1 Pulse = 0.138 mSec Pulsewidth of Type 2 Pulse = 0.502 mSec

Number of Type 1 Pulses = 79

Number of Type 2 Pulses = 1

Duty Cycle = $20 \log [((0.138)(79) + (0.502)(1))/100] = -18.9 dB$

11/23 Report No. CINC0015

FIELD STRENGTH OF FUNDAMENTAL

										EmiR5 2017.07.1	1	PSA-ESCI 2017.06.01	
Wo	ork Order:		C0015		Date:	11/1			1022				1
	Project:		one	Ter	nperature:	21.8		K	yla	Ma	Mule	m	
Coulo	Job Site:		N05 743	Davama	Humidity:	25.5%]
Seria	I Number:	RF-ARSH		Barome	etric Pres.:	1026	mbar		Tested by:	Kyle IVICIVI	lulian		_
Conf	iguration:		IX.										=
		CINCH Sy	/stems										=
	ttendees:												_
El	JT Power:												= -
Operat	ing Mode:	Tx unmod	ulated at 31	9.5 MHz									_
D	eviations:	None											_
C	omments:	None											
Test Spec	ifications	1					Test Meth	od					
FCC 15.23		ļ					ANSI C63.						_
100 15.25	1.2017						AINOI 000.	10.2013					
													_
Run #	1	Test Di	stance (m)	3	Antenna	Height(s)		1 to 4(m)		Results	P:	ass	_
110 _T													
100													
90 -													
30													
80													
70 -													
						•							
60 -													
50 													
319	0.0 3	19.1	319.2	319.3	319.4	319.5	319.6	319	9.7 3	19.8	319.9	320.0	
						MHz				■ PK	◆ AV	• QP	
											* AV		
					Duty Cycle Correction	External	Polarity/ Transducer		Distance			Compared to	
Freq	Amplitude	Factor	Antenna Height	Azimuth	Factor	Attenuation	Type	Detector	Adjustment	Adjusted	Spec. Limit	Spec.	
(MHz)	(dBuV)	(dB)	(meters)	(degrees)	(dB)	(dB)			(dB)	(dBuV/m)	(dBuV/m)	(dB)	
319.505	72.3	20.2	1.0	340.0	-18.9	0.0	Horz	AV	0.0	73.6	75.9	-2.3	Comments EUT Horizontal
319.505	72.3	20.2	1.0	340.0	-10.5	0.0	Horz	PK	0.0	92.5	95.9	-2.3 -3.4	EUT Horizontal
319.505	69.8	20.2	1.1	324.0	-18.9	0.0	Horz	AV	0.0	71.1	75.9	-4.8	EUT On Side
319.505	69.0	20.2	1.6	261.0	-18.9	0.0	Vert	AV	0.0	70.3	75.9	-5.6 5.0	EUT On Side EUT On Side
319.505 319.505	69.8 68.3	20.2 20.2	1.1 1.8	324.0 240.9	-18.9	0.0 0.0	Horz Vert	PK AV	0.0 0.0	90.0 69.6	95.9 75.9	-5.9 -6.3	EUT Vertical
319.505	69.0	20.2	1.6	261.0		0.0	Vert	PK	0.0	89.2	95.9	-6.7	EUT On Side
319.505	67.2	20.2	1.0	35.0	-18.9	0.0	Horz	AV	0.0	68.5	75.9	-7.4	EUT Vertical
319.505	68.3	20.2	1.8	240.9		0.0	Vert	PK	0.0	88.5	95.9	-7.4 9.5	EUT Vertical
319.505 319.505	67.2 62.5	20.2 20.2	1.0 1.4	35.0 229.9	-18.9	0.0 0.0	Horz Vert	PK AV	0.0 0.0	87.4 63.8	95.9 75.9	-8.5 -12.1	EUT Vertical EUT Horizontal
319.505	62.5	20.2	1.4	229.9	10.3	0.0	Vert	PK	0.0	82.7	95.9	-13.2	EUT Horizontal

Report No. CINC0015 12/23

SPURIOUS RADIATED EMISSIONS

PSA-ESCI 2017.06.01

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

Tx unmodulated at 319.5 MHz

POWER SETTINGS INVESTIGATED

Battery

CONFIGURATIONS INVESTIGATED

CINC0015 - 3

FREQUENCY RANGE INVESTIGATED

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
Attenuator	Fairview Microwave	SA18E-10	TYA	9/20/2017	12 mo
Attenuator	Fairview Microwave	SA18E-20	TWZ	9/20/2017	12 mo
Filter - High Pass	Micro-Tronics	HPM50108	LFM	9/20/2017	12 mo
Filter - Low Pass	Micro-Tronics	LPM50004	LFK	9/20/2017	12 mo
Amplifier - Pre-Amplifier	Miteq	AM-1616-1000	AVO	11/9/2017	12 mo
Cable	ESM Cable Corp.	Bilog Cables	MNH	11/9/2017	12 mo
Antenna - Biconilog	Teseq	CBL 6141B	AYD	1/6/2016	24 mo
Amplifier - Pre-Amplifier	Miteq	AMF-3D-00100800-32-13P	AVT	2/14/2017	12 mo
Cable	ESM Cable Corp.	Double Ridge Guide Horn Cables	MNI	12/1/2016	12 mo
Antenna - Double Ridge	ETS Lindgren	3115	AJA	6/23/2016	24 mo
Analyzer - Spectrum Analyzer	Agilent	N9010A	AFI	1/6/2017	12 mo

MEASUREMENT BANDWIDTHS

Frequency Range	Peak Data	Quasi-Peak Data	Average Data
(MHz)	(kHz)	(kHz)	(kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0

Report No. CINC0015 13/23

TEST DESCRIPTION

The highest gain antenna of each type to be used with the EUT was tested. The EUT was configured for the required transmit frequency in each operational band and the modes as showed in the data sheets.

For each configuration, the spectrum was scanned throughout the specified range as part of the exploratory investigation of the emissions. These "pre-scans" are not included in the report. Final measurements on individual emissions were then made and included in this test report.

The individual emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and EUT antenna in three orthogonal axis, and adjusting the measurement antenna height and polarization (per ANSI C63.10). A preamp and high pass filter (and notch filter) were used for this test in order to provide sufficient measurement sensitivity.

Measurements were made with the required detectors and annotated on the data for each individual point using the following annotation:

QP = Quasi-Peak Detector PK = Peak Detector AV = RMS Detector

To derive average emission measurements, a duty cycle correction factor was utilized:

Duty Cycle = On time/100 milliseconds (or the period, whichever is less)

Where "On time" = N1L1 +N2L2 +....

Where N1 is the number of type 1 pulses, L1 is length of type 1 pulses, N2 is the number of type 2 pulses, L2 is the length of type 2 pulses, etc.

Therefore, Duty Cycle = (N1L1 +N2L2 +...)/100mS or T, whichever is less. Where T is the period of the pulse train.

The measured values for the EUT's pulse train are as follows:

Period = 100 mSec Pulsewidth of Type 1 Pulse = 0.138 mSec Pulsewidth of Type 2 Pulse = 0.502 mSec Number of Type 1 Pulses = 79 Number of Type 2 Pulses = 1

Duty Cycle = $20 \log [((0.138)(79) + (0.502)(1))/100] = -18.9 dB$

The duty cycle correction factor of -18.9 dB was added to the peak readings to mathematically derive the average levels. Peak measurements were made with a resolution bandwidth of 100kHz and a video bandwidth of 300kHz for measurements at or below 1GHz. Above 1GHz, a resolution bandwidth of 1MHz and a video bandwidth of 3MHz was used.

Report No. CINC0015 14/23

SPURIOUS RADIATED EMISSIONS

958.516

1597.533

1917.008

1917.000

1597.508

958.512

47.0

74.3

75.4

74.9

46.2

14.0

-3.5

-3.5

-5.1

14.0

2.2

1.0

1.0

1.0

4.0

179.0

77.1

136.0

226.0

7.0

215.0

-18.9

-18.9

10.0

0.0

0.0

10.0

Mork Orde										17.07.11			01
Work Orde	r: CINC	C0015		Date:		16/17				7		-	
Projec		one	Ter	mperature:	21.	8 °C	1/2	yla	1	ma	me	Con	
Job Sit		N05		Humidity:		% RH		1					
Serial Number		743	Barome	etric Pres.:		mbar		Tested by:	Kylo N	1cN/ul	llan		
			Daronik	etile i les	1020	ilibai		resieu by.	I tyle it	/iciviui	iiaii		_
	T: RF-ARSH	IX											_
Configuration													_
	r: CINCH Sy	/stems											_
Attendee	s: Jibril Aba												
EUT Powe	r: Battery												
	T	ulated at 31	9.5 MHz										_
Operating Mod	e: ' A dillilou	diated at 01.	J.O 1VII 12										
	None												_
Deviation	s: None												
													_
	None												
Commen	s:												
Test Specification	S					Test Meth							_
FCC 15.231:2017						ANSI C63.	10:2013						
-													_
Run # 2	Test Di	stance (m)	3	Antenna	Height(s)		1 to 4(m)		Res	ults		Pass	
_													_
80 +													
— <u>—</u>			_					- 					
							і ші		—/∟	╨╴			
					Ц								
70													
		1 1 11											
					Ц	_							
		1 1 11			🔻								
_													
€ 60 +													
>													
M//Mgb		_											
ш							-				_		
-		1 1 11						┸┸	╧	╜╴			
ס							* Ш			√			
					*								
ت 50					*								
					*						П		
					•								
					 								
50					•						U		
				*	•								
50				*	•						U		
50				*	•					-	U		
50				*	•					-1			
40				*	•								
40				*	•								
40				*	1000							10000	
40				*	•							10000	
40				*	1000					PK	◆ AV	10000	
40				Duty Cycle	1000 MHz	Polarity/						10000 • QP	
50 40 30 100				Duty Cycle Correction	1000 MHz	Transducer	*	Distance		PK	◆ AV	10000 • QP Compared to	
50 40 30 100 Freq Amplitud		Antenna Height	Azimuth	Duty Cycle Correction Factor	1000 MHz			Distance Adjustment	Adjus	PK ted	◆ AV Spec. Lim	10000 QP Compared to Spec.	0
50 40 30 100	e Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Duty Cycle Correction	1000 MHz	Transducer	*	Distance		PK ted	◆ AV	10000 QP Compared to Spec.	
30 100 Amplitud (dBuV)	(dB)	(meters)	(degrees)	Duty Cycle Correction Factor (dB)	1000 MHz External Attenuation (dB)	Transducer Type	Detector	Distance Adjustment (dB)	Adjus (dBuV	PK tted //m)	◆ AV Spec. Lim (dBuV/m)	10000 QP Compared to Spec. (dB)	Comments
30 100 Freq (MHz) Amplitud (dBuV) 1597.517 77.7	(dB) -5.1	(meters)	(degrees)	Duty Cycle Correction Factor	1000 MHz External Attenuation (dB)	Transducer Type Horz	Detector	Distance Adjustment (dB)	Adjussi (dBuV)	PK tted //m) 7	AV Spec. Lim (dBuV/m) 54.0	10000 • QP Compared to Spec. (dB) -0.3	Comments EUT Horizon
50 40 30 100 Freq (MHz) Amplitud (dBuV) 1597.517 77.7 1597.517 77.7	(dB) -5.1 -5.1	(meters) 1.0 1.0	(degrees) 83.1 83.1	Duty Cycle Correction Factor (dB)	1000 MHz External Attenuation (dB) 0.0 0.0	Transducer Type Horz Horz	Detector AV PK	Distance Adjustment (dB)	Adjus (dBuV	PK tted //m) 7 6	◆ AV Spec. Lim (dBuV/m) 54.0 74.0	10000 • QP Compared to Spec. (dB) -0.3 -1.4	Comments EUT Horizon EUT Horizon
50 40 30 100 Freq (MHz) (dBuV) 1597.517 77.7 1597.517 77.6.5	-5.1 -5.1 -5.1	1.0 1.0 1.0	83.1 83.1 169.0	Duty Cycle Correction Factor (dB) -18.9	1000 MHz External Attenuation (dB) 0.0 0.0 0.0	Transducer Type Horz Horz Vert	Detector AV PK AV	Distance Adjustment (dB) 0.0 0.0	Adjus (dBuV) 53. 72. 52.	PK tted //m) 7 6 5 5	◆ AV Spec. Lim (dBuV/m) 54.0 74.0 54.0	10000 • QP Compared to Spec. (dB) -0.3 -1.4 -1.5	Comments EUT Horizon EUT Horizon EUT Vertical
50 40 30 100 Amplitud (dBuV) 1597.517 77.7 1597.517 77.7 1597.525 76.2	(dB) -5.1 -5.1	(meters) 1.0 1.0	83.1 83.1 169.0 144.0	Duty Cycle Correction Factor (dB)	1000 MHz External Attenuation (dB) 0.0 0.0	Transducer Type Horz Horz	Detector AV PK AV AV	Distance Adjustment (dB) 0.0 0.0 0.0 0.0	Adjus (dBuV	PK tted //m) 7 6 5 5	◆ AV Spec. Lim (dBuV/m) 54.0 74.0	10000 • QP Compared to Spec. (dB) -0.3 -1.4 -1.5 -1.8	Comments EUT Horizon EUT Horizon EUT Vertical EUT On Side
50 40 30 100 Amplitud (dBuV) 1597.517 77.7 1597.492 76.5 1597.492 76.5 1597.492 76.5 1597.492 76.5	-5.1 -5.1 -5.1	1.0 1.0 1.0	83.1 83.1 169.0 144.0 169.0	Duty Cycle Correction Factor (dB) -18.9 -18.9	1000 MHz External Attenuation (dB) 0.0 0.0 0.0 0.0 0.0 0.0	Transducer Type Horz Horz Vert Horz Vert	Detector AV PK AV AV PK	Distance Adjustment (dB) 0.0 0.0	Adjussi (dBuV) 53. 72. 52. 52. 71.	PK 7 6 5 2 4	◆ AV Spec. Lim (dBuV/m) 54.0 74.0 54.0 74.0 74.0	10000 • QP Compared to Spec. (dB) -0.3 -1.4 -1.5 -1.8 -2.6	Comments EUT Horizon EUT Horizon EUT Vertical EUT On Side EUT Vertical
50 40 40 40 40 40 40 40 40 40 40 40 40 40	-5.1 -5.1 -5.1 -5.1	1.0 1.0 1.0 1.0 1.0 1.0	83.1 83.1 169.0 144.0	Duty Cycle Correction Factor (dB) -18.9	1000 MHz External Attenuation (dB) 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Horz Horz Vert Horz Vert Vert Vert	Detector AV PK AV PK AV AV AV	Distance Adjustment (dB) 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Adjus (dBuV 53. 72. 52. 52. 71. 53.	PK ted //m 7 6 5 2 4 0	◆ AV Spec. Lim (dBuV/m) 54.0 74.0 54.0 74.0 55.9	10000 • QP Compared to Spec. (dB) -0.3 -1.4 -1.5 -1.8 -2.6 -2.9	Comments EUT Horizon EUT Horizon EUT Vertical EUT On Side EUT Vertical EUT Vertical
50 40 30 100 Freq (MHz) 1597.517 77.7 1597.517 77.7 1597.492 76.5 1597.492 76.5 1597.492 76.5 1597.492 76.5 1597.525 76.2 1597.525 76.2	-5.1 -5.1 -5.1 -5.1 -5.1 -5.1 -5.1 -5.5 -5.1	1.0 1.0 1.0 1.0 1.0 1.0 1.0	83.1 83.1 169.0 144.0 169.0 226.0 144.0	Duty Cycle Correction Factor (dB) -18.9 -18.9 -18.9	1000 MHz External Attenuation (dB) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Transducer Type Horz Horz Vert Horz Vert	Detector AV PK AV AV PK	Distance Adjustment (dB) 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Adjus (dBuV) 53. 72. 52. 52. 71. 53. 71.	PK tted //m) 7 6 5 2 4 0 1	\$\int AV\$ Spec. Lim (dBu//m) 54.0 74.0 54.0 74.0 55.9 74.0	10000 • QP Compared to Spec. (dB) -0.3 -1.4 -1.5 -1.8 -2.6 -2.9 -2.9	Comments EUT Horizon EUT Horizon EUT Vertical EUT On Side EUT Vertical EUT Vertical EUT On Side
50 40 30 100 Freq (MHz) 1597.517 77.7 1597.517 77.7 1597.492 76.5 1597.492 76.5 1597.492 76.5 1517.000 75.4	-5.1 -5.1 -5.1 -5.1 -5.1 -3.5	1.0 1.0 1.0 1.0 1.0 1.0	83.1 83.1 169.0 144.0 169.0 226.0	Duty Cycle Correction Factor (dB) -18.9 -18.9	1000 MHz External Attenuation (dB) 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Horz Horz Vert Horz Vert Vert Vert	Detector AV PK AV PK AV AV AV	Distance Adjustment (dB) 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Adjus (dBuV 53. 72. 52. 52. 71. 53.	PK tted //m) 7 6 5 2 4 0 1	◆ AV Spec. Lim (dBuV/m) 54.0 74.0 54.0 74.0 55.9	10000 • QP Compared to Spec. (dB) -0.3 -1.4 -1.5 -1.8 -2.6 -2.9	Comments EUT Horizon EUT Horizon EUT Vertical EUT On Side EUT Vertical EUT Vertical

Report No. CINC0015 15/23

Horz

Vert

Vert

Vert

Vert

ΑV

 AV

 AV

PK

PΚ

ΑV

0.0

0.0

0.0

0.0

0.0

52.1

50.2

51.9

71.9

69.8

51.3

55.9

54.0

55.9

75.9

55.9

-3.8

-4.0

-4.0

-4.2

-4.6

EUT Vertical

EUT On Side

EUT Vertical

EUT On Side

EUT Horizontal

EUT Horizontal

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Duty Cycle Correction Factor (dB)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	
, ,													Comments
1597.583	73.1	-5.1	1.0	94.1	-18.9	0.0	Horz	AV	0.0	49.1	54.0	-4.9	EUT Vertical
958.516	47.0	14.0	2.2	179.0		10.0	Horz	PK	0.0	71.0	75.9	-4.9	EUT Vertical
1597.533	74.2	-5.1	1.0	77.1		0.0	Vert	PK	0.0	69.1	74.0	-4.9	EUT On Side
1917.008	74.3	-3.5	1.0	136.0		0.0	Horz	PK	0.0	70.8	75.9	-5.1	EUT Horizontal
958.512	46.2	14.0	1.2	215.0		10.0	Vert	PK	0.0	70.2	75.9	-5.7	EUT On Side
1597.583	73.1	-5.1	1.0	94.1		0.0	Horz	PK	0.0	68.0	74.0	-6.0	EUT Vertical
958.509	44.7	14.0	1.0	265.9	-18.9	10.0	Horz	AV	0.0	49.8	55.9	-6.1	EUT Horizontal
958.511	44.7	14.0	1.3	275.9	-18.9	10.0	Vert	AV	0.0	49.8	55.9	-6.1	EUT Vertical
958.509	44.7	14.0	1.0	265.9		10.0	Horz	PK	0.0	68.7	75.9	-7.2	EUT Horizontal
958.511	44.7	14.0	1.3	275.9		10.0	Vert	PK	0.0	68.7	75.9	-7.2	EUT Vertical
958.514	41.2	14.0	2.8	180.0	-18.9	10.0	Vert	AV	0.0	46.3	55.9	-9.6	EUT Horizontal
958.514	41.2	14.0	2.8	180.0		10.0	Vert	PK	0.0	65.2	75.9	-10.7	EUT Horizontal
958.507	38.7	14.0	2.7	41.1	-18.9	10.0	Horz	AV	0.0	43.8	55.9	-12.1	EUT On Side
958.507	38.7	14.0	2.7	41.1		10.0	Horz	PK	0.0	62.7	75.9	-13.2	EUT On Side
639.010	40.6	7.4	1.0	117.0	-18.9	10.0	Vert	AV	0.0	39.1	55.9	-16.8	EUT On Side
639.005	39.7	7.4	1.2	6.0	-18.9	10.0	Horz	AV	0.0	38.2	55.9	-17.7	EUT Vertical
639.010	40.6	7.4	1.0	117.0		10.0	Vert	PK	0.0	58.0	75.9	-17.9	EUT On Side
639.005	39.7	7.4	1.2	6.0		10.0	Horz	PK	0.0	57.1	75.9	-18.8	EUT Vertical

Report No. CINC0015 16/23

OCCUPIED BANDWIDTH

XMit 2017.02.08

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Cable	Element	Biconilog Cable	MNH	11/9/2017	11/9/2018
Antenna - Biconilog	ETS Lindgren	CBL 6141B	AYD	1/6/2016	1/6/2018
Analyzer - Spectrum Analyzer	Keysight	N9010A (EXA)	AFI	1/6/2017	1/6/2018

TEST DESCRIPTION

The measurement was made in a radiated configuration of the fundamental with the carrier fully maximized for its highest radiated power. The EUT was transmitting at its maximum data rate.

The 20 dB occupied bandwidth is required to be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz.

Report No. CINC0015 17/23

OCCUPIED BANDWIDTH

								XMit 2017.02.08
EUT: F	RF-ARSHK					Work Order:	CINC0015	
Serial Number: 1						Date:	11/16/17	
	CINCH Systems				Т	emperature:		
Attendees:							26.5% RH	
Project:					Baron		1024.7 mbar	
	(yle McMullan		Po	wer: Battery		Job Site:	MN05	
TEST SPECIFICATION	NS			Test Method				
FCC 15.231:2017				ANSI C63.10:2013				
COMMENTS								
None								
DEVIATIONS FROM	TEST STANDARD							
None								
Configuration #	1	Signature 72	ryli	mathella				
						-20 dB)B (kHz)	Limit (kHz)	Result
319.5 MHz	-	<u> </u>		<u> </u>		42.65	798	Pass

Report No. CINC0015 18/23

OCCUPIED BANDWIDTH

319.5 MHz

-20 dB

OB (kHz) Limit (kHz) Result

42.65 798 Pass

Report No. CINC0015 19/23

XMit 2017.02.08

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Cable	Element	Biconilog Cable	MNH	11/9/2017	11/9/2018
Antenna - Biconilog	ETS Lindgren	CBL 6141B	AYD	1/6/2016	1/6/2018
Analyzer - Spectrum Analyzer	Keysight	N9010A (EXA)	AFI	1/6/2017	1/6/2018

TEST DESCRIPTION

The measurement was made in a radiated configuration of the fundamental with the carrier fully maximized for its highest radiated power. For software controlled or pre-programmed devices, the manufacturer shall declare the duty cycle class or classes for the equipment under test. For manually operated or event dependant devices, with or without software controlled functions, the manufacturer shall declare whether the device once triggered, follows a pre-programmed cycle, or whether the transmission is constant until the trigger is released or manually reset. The manufacturer shall also give a description of the application for the device and include a typical usage pattern. The typical usage pattern as declared by the manufacturer shall be used to determine the duty cycle and hence the duty class.

Where an acknowledgement is required, the additional transmitter on-time shall be included and declared by the manufacturer.

To derive average emission measurements, a duty cycle correction factor was utilized:

Duty Cycle = On time/100 milliseconds (or the period, whichever is less)

Where "On time" = N1L1 +N2L2 +....

Where N1 is the number of type 1 pulses, L1 is length of type 1 pulses, N2 is the number of type 2 pulses, L2 is the length of type 2 pulses, etc.

Therefore, Duty Cycle = (N1L1 +N2L2 +...)/100mS or T, whichever is less. (Where T is the period of the pulse train.)

The measured values for the EUT's pulse train are as follows:

Period = 100 mSec Pulsewidth of Type 1 Pulse = 0.138 mSec Pulsewidth of Type 2 Pulse = 0.502 mSec Number of Type 1 Pulses = 79 Number of Type 2 Pulses = 1

Duty Cycle = $20 \log [((0.138)(79) + (0.502)(1))/100] = -18.9 dB$

The duty cycle correction factor of -18.9 dB was added to the peak readings to mathematically derive the average levels. Peak measurements were made with a resolution bandwidth of 120kHz and a video bandwidth of 300kHz.

Report No. CINC0015 20/23

									XMit 2017.02.08
EUT:	RF-ARSHK						Work Order:	CINC0015	
Serial Number:	1745						Date:	11/16/17	
Customer:	CINCH Systems						Temperature:	22.1 °C	
Attendees:	Jibril Aba							26.5% RH	
Project:							Barometric Pres.:	1024.7 mbar	
	Kyle McMullan		Power:	Battery			Job Site:	MN05	
TEST SPECIFICAT	ONS			Test Method					
FCC 15.231:2017				ANSI C63.10:2013					
		_							
COMMENTS									
None									
DEVIATIONS FROM	I TEST STANDARD								
None									
Configuration #	2	K	zyla "	Malla Can					
		Signature	0						
			Number of	Type 1 Pulse	Number of	Type 2 Pulse			
			Type 1 Pulses	Length (ms)	Type 2 Pulses	Length (ms)	DCCF	Limit	Result
25 milliseconds			79	0.138	1	0.502	-18.9	N/A	N/A
5 seconds			N/A	N/A	N/A	N/A	N/A	N/A	N/A
10 seconds			N/A	N/A	N/A	N/A	N/A	N/A	N/A

Report No. CINC0015 21/23

25 milliseconds Number of Type 1 Pulse Number of Type 2 Pulse Type 1 Pulses Length (ms) Type 2 Pulses Length (ms) DCCF Limit Result 79 0.138 -18.9 N/A N/A

				5 seconds			
	Number of	Type 1 Pulse	Number of	Type 2 Pulse			
_	Type 1 Pulses	Length (ms)	Type 2 Pulses	Length (ms)	DCCF	Limit	Result
	N/A	N/A	N/A	N/A	N/A	N/A	N/A

Report No. CINC0015 22/23

YM9 2017 02 0

			10 seconds			
Number of	Type 1 Pulse	Number of	Type 2 Pulse			
Type 1 Pulses	Length (ms)	Type 2 Pulses	Length (ms)	DCCF	Limit	Result
N/A	N/A	N/A	N/A	N/A	N/A	N/A

Report No. CINC0015 23/23