Algebra und Diskrete Mathematik Übungsblatt 5

Beispiele 19, 22, 34, 37, 50, 52

Aufgabe 19. Seien $(a_n)_{n\in\mathbb{N}}$ und $(b_n)_{n\in\mathbb{N}}$ konvergente Folgen. Zeigen Sie, dass aus $a_n < b_n$ für alle $n \in \mathbb{N}$ immer $\lim_{n\to\infty} a_n \leq \lim_{n\to\infty} b_n$ folgt. Lässt sich hier \leq durch < ersetzen?

Lösung.

Aufgabe 22. Man untersuche die Folge a_n (mit Hilfe vollständiger Induktion) auf Monotonie und Beschränktheit und bestimme gegebenenfalls mit Hilfe der bekannten Rechenregeln für Grenzwerte den Grenzwert $\lim_{n\to\infty} a_n$. Überlegen Sie sich auch, warum die Folge wohldefiniert für alle $n\geq 0$ ist.

$$a_0 = 4, a_{n+1} = \sqrt{6a_n - 9}$$
 für alle $n \ge 0$

Lösung.

Aufgabe 34. Man untersuche die Folge $(a_n)_{n\in\mathbb{N}}$ auf Wohldefiniertheit und Konvergenz und bestimme gegebenenfalls den Grenzwert. (Die a_n sind für fast alle $n\in\mathbb{N}$ definiert.)

$$a_n = \frac{2n^3 - 5n^2 + 7}{2n^3 - 5n + 7}$$

Lösung.

Aufgabe 37. Man untersuche die Folge $(a_n)_{n\in\mathbb{N}}$ auf Wohldefiniertheit und Konvergenz und bestimme gegebenenfalls den Grenzwert. (Die a_n sind für fast alle $n\in\mathbb{N}$ definiert.)

$$a_n = \sqrt{n+1} - \sqrt{n}$$

Lösung.

Aufgabe 50. Man untersuche die Folge $(a_n)_{n\geq 1}$ auf Konvergenz und bestimme gegebenenfalls den Grenzwert, indem man zwei geeignete Folgen $(b_n)_{n\geq 1}$, $(c_n)_{n\geq 1}$ mit $b_n\leq a_n\leq c_n$ finde.

$$a_n = \frac{n^2 + 1}{n^3 + 1} + \frac{n^2 + 2}{n^3 + 2} + \dots + \frac{n^2 + n}{n^3 + n}$$

Lösung.

Aufgabe 52. Sei die Folge $(a_n)_{n\in\mathbb{N}}$ rekursiv gegeben durch $a_0=0$ und

$$a_n = a_{n-1} + \frac{1}{n(n+1)} \quad (n \ge 1).$$

Man zeige (mit Hilfe vollständiger Induktion) $a_n = 1 - \frac{1}{n+1}$ und bestimme den Grenzwert.

Lösung.