Compiler Assignment 6 Attribute Grammars and Top-Down Translator

403410033 資工三 曾俊宏

May 24, 2017

1 Question 1

a) S-attributed attribute grammar

production	semantic rules
$S \to L R$	S. val = L. val + R. val / R. base;
$R \rightarrow . L$	R. val = L. val R. base = L. base;
$R \to \epsilon$	R. val = 0; R. base = 0;
$L \to B L_s$	L. base = Ls. base; L. val = B. val * L. base + Ls. val; L. base *= 2;
$L_s \to B \ L_{s1}$	Ls.base = Ls1.base; Ls.val = B.val * Ls.base + Ls1.val; Ls.base *= 2;
$L_s \to \epsilon$	Ls.base = 1; Ls.val = 0;
$B \to 0$	B. val = 0;
$B \rightarrow 1$	B. val = 1;

b) S-attributed attribute grammar \rightarrow top-down translator

c) L-attributed attribute grammar

Assume $\mathtt{side} = 1$ means left-hand side, and $\mathtt{side} = 0$ means right-hand side

Assume 2^x in the code means 2 to the power of x

production	semantic rules
$S \to L R$	L. side = 1; R. side = 0; S. val = L. val + R. val;
$R \rightarrow . L$	R. val = L. val L. side = R. side ;
$R \to \epsilon$	R.val = 0;
$L \to B \ L_s$	L.len = 1 + Ls.len; Ls.side = L.side; L.val = (L.side == 1) ?
	B. val * (2^(L.len - 1)) + Ls. val : B. val / 2 + Ls. val / 2;}
$L_s \to B \ L_{s1}$	Ls.len = 1 + Ls1.len; Ls1.side = Ls.side;
	Ls.val = (Ls.side == 1) ? B.val * (2^(Ls.len - 1)) + Ls1.val : B.val / 2 + Ls1.val / 2;}
$L_s \to \epsilon$	Ls.len = 0; Ls.val = 0;
$B \rightarrow 0$	B. val = 0;
$B \rightarrow 1$	B. val = 1;

d) L-attributed attribute grammar \rightarrow top-down translator