Formulácia úloh lineárneho programovania

Úloha

Nájsť koeficienty β_0 , β_1 , ..., β_k tak, aby predikovaný vektor

$$\hat{y} = \beta_0 + \beta_1 x_1 + \ldots + \beta_k x_k \tag{1}$$

bol čo najbližšie k výstupu y, kde y označuje závislú premennú a $x_1, x_2, \ldots, x_k \in \mathbb{R}^n$ označujú nezávislé premenné. Túto vzdialenosť $|y - \hat{y}|$ sme minimalizovali I_1 a I_∞ normami

Minimalizovanie l₁ normy

Chceme minimalizovať normu $||y - \hat{y}||_1$ označíme:

$$A := (1_n, x_1, \dots, x_k)$$

$$\beta := (\beta_0, \beta_1, \dots, \beta_k)^T$$
(2)

Problém prevedieme do tvaru:

$$\min c^T x$$
$$Ax \ge b$$

Zavedieme nový vektor $t \in \mathbb{R}^n$, ktorým ohraničíme $y - \mathsf{A}\beta$ Minimalizovanie I_1 normy ako úloha lineárneho programovania:

$$\min \left(0_{k+1}^{T} \middle| 1_{n}^{T}\right) \left(\frac{\beta}{t}\right)$$

$$\left(\frac{A}{-A} \middle| \mathbb{I}_{n}\right) \left(\frac{\beta}{t}\right) \ge \left(\frac{y}{-y}\right)$$

$$\beta \in \mathbb{R}^{k+1}, \ t \ge 0_{n}$$

Minimalizovanie I_{∞} normy

Chceme minimalizovať normu $||y - \hat{y}||_{\infty}$

Zavedieme skalárnu premennú $\gamma \in \mathbb{R}$, prevedieme na úlohu LP

$$-\gamma \mathbf{1}_{n} \leq y - \mathsf{A}\beta \leq \gamma \mathbf{1}_{n}$$

Pomocou značenia z (2), výsledná úloha:

$$\min \left(0_{k+1}^{T} \middle| 1\right) \left(\frac{\beta}{\gamma}\right)$$

$$\left(\frac{A}{-A} \middle| 1_{n}\right) \left(\frac{\beta}{\gamma}\right) \ge \left(\frac{y}{-y}\right)$$

$$\beta \in \mathbb{R}^{k+1}, \ \gamma > 0$$