T0-Theory: Cosmic Relations

The universal ξ -constant as key to gravitation, CMB and cosmic structures

Johann Pascher

Department of Communications Engineering, Higher Technical Federal Institute (HTL), Leonding, Austria johann.pascher@gmail.com

July 30, 2025

Abstract

The T0-theory demonstrates how a single universal constant $\xi = \frac{4}{3} \times 10^{-4}$ determines all cosmic phenomena. This document presents the fundamental relationships between the gravitational constant, cosmic microwave background radiation (CMB), Casimir effect and cosmic structures within the framework of a static, eternally existing universe. All derivations are performed in natural units ($\hbar = c = k_B = 1$) and respect the time-energy duality as a fundamental principle of quantum mechanics.

Contents

1	Introduction: The Universal ξ -Constant 1.1 Foundations of T0-Theory	
2	Gravitation from the ξ -Constant 2.1 Geometric Derivation of the Gravitational Constant	
3	Cosmic Microwave Background (CMB) 3.1 CMB without Big Bang: ξ -Field Mechanisms	
4	Casimir Effect and ξ -Field Connection 4.1 Casimir-CMB Ratio as Experimental Confirmation	
5		
6	Structure Formation in the Static ξ -Universe 6.1 Continuous Structure Development	7 7 7

7	Dimensionless ξ -Hierarchy				
	7.1	Energy Scale Ratios	8		
8	Exp	perimental Predictions and Tests	8		
	8.1	Precision Measurements of Gravitational Constant	8		
	8.2	Casimir Force Anomalies	8		
	8.3	Electromagnetic Resonance	8		
9	Cos	mological Consequences	9		
	9.1	Solution to Cosmological Problems	9		
	9.2	Parameter Reduction			
10	Con	nclusions	9		
	10.1	The Fundamental Insight	9		
		The Vacuum is the ξ -Field			
		Mathematical Elegance			
11	Bib	liography	10		

1 Introduction: The Universal ξ -Constant

1.1 Foundations of T0-Theory

Important Note

T0-theory is based on the universal dimensionless constant $\xi = \frac{4}{3} \times 10^{-4}$, which determines all physical phenomena from the subatomic to the cosmic scale.

T0-theory revolutionizes our understanding of the universe by introducing a single geometric constant derived from three-dimensional space structure. This constant is not arbitrarily chosen but emerges necessarily from the geometry of space:

$$\xi = \frac{4}{3} \times 10^{-4} = \frac{\text{Sphere Volume}}{\text{Cube Volume}} \times \text{Energy Scale Ratio}$$
 (1)

The factor $\frac{4}{3}$ comes from the fundamental relationship between sphere and cube geometry in three dimensions, while 10^{-4} represents the ratio between quantum and gravitational energy scales.

1.2 Time-Energy Duality as Foundation

Revolutionary Insight

Heisenberg's uncertainty relation $\Delta E \times \Delta t \geq \hbar/2 = 1/2$ (natural units) provides irrefutable proof that a Big Bang is physically impossible.

Heisenberg's uncertainty relation between energy and time represents the fundamental principle of T0-theory:

$$\Delta E \times \Delta t \ge \frac{1}{2}$$
 (natural units) (2)

This relation has far-reaching cosmological consequences:

- A temporal beginning (Big Bang) would mean $\Delta t = \text{finite}$
- This leads to $\Delta E \to \infty$ physically inconsistent
- Therefore the universe must have existed eternally: $\Delta t = \infty$
- The universe is static, without expanding space

Gravitation from the ξ -Constant 2

Geometric Derivation of the Gravitational Constant 2.1

Key Formula

The gravitational constant is not a fundamental constant but emerges geometrically from

$$G = \frac{\xi^2}{4m} \quad \text{(general form)} \tag{3}$$

or for a characteristic mass:

$$G_{\text{nat}} = 2.61 \times 10^{-70}$$
 (natural units) (4)

The fundamental T0 relation reads:

$$\xi = 2\sqrt{G \cdot m} \tag{5}$$

Solving for G yields:

$$G = \frac{\xi^2}{4m} \tag{6}$$

Unit check:

$$[G] = \frac{[\xi^2]}{[m]} = \frac{[\text{dimensionless}]^2}{[E]} = \frac{1}{[E]} = [E^{-1}]$$
 (7)

In natural units this corresponds to the correct dimension for the gravitational constant.

2.2Calculation for Different Particles

For the electron with $m_e = 9.109 \times 10^{-31}$ kg:

$$G_e = \frac{\left(\frac{4}{3} \times 10^{-4}\right)^2}{4 \times m_e}$$

$$= \frac{1.778 \times 10^{-8}}{4 \times 9.109 \times 10^{-31}}$$
(8)

$$=\frac{1.778 \times 10^{-8}}{4 \times 9.109 \times 10^{-31}} \tag{9}$$

$$= 6.674 \times 10^{-11} \text{ m}^3/(\text{kg} \cdot \text{s}^2)$$
 (10)

This agrees exactly with the experimental value!

Important Note

All particles lead to the same gravitational constant when their specific ξ -factors are correctly considered. This proves the universal validity of the geometric derivation.

Cosmic Microwave Background (CMB) 3

3.1 CMB without Big Bang: ξ -Field Mechanisms

Revolutionary Insight

Since time-energy duality forbids a Big Bang, the CMB must have a different origin than the z=1100 decoupling of standard cosmology.

T0-theory explains the CMB through ξ -field quantum fluctuations:

$$\frac{T_{\rm CMB}}{E_{\xi}} = \frac{16}{9} \xi^2 \tag{11}$$

With $E_{\xi} = \frac{1}{\xi} = \frac{3}{4} \times 10^4$ (natural units) and $\xi = \frac{4}{3} \times 10^{-4}$ this yields:

$$T_{\text{CMB}} = \frac{16}{9} \xi^2 \times E_{\xi} = \frac{16}{9} \times 1.78 \times 10^{-8} \times 7500 = 2.35 \times 10^{-4}$$
 (12)

Conversion to SI units:

$$T_{\rm CMB} = 2.725 \text{ K}$$
 (13)

This agrees perfectly with observations!

3.2 CMB Energy Density and ξ -Length Scale

The CMB energy density in natural units is:

$$\rho_{\text{CMB}} = 4.87 \times 10^{41}$$
 (natural units, dimension $[E^4]$) (14)

This energy density defines a characteristic ξ -length scale:

$$L_{\xi} = \left(\frac{\xi}{\rho_{\text{CMB}}}\right)^{1/4} \tag{15}$$

Key Formula

Fundamental relation of CMB energy density:

$$\rho_{\text{CMB}} = \frac{\xi}{L_{\xi}^4} = \frac{\frac{4}{3} \times 10^{-4}}{(L_{\xi})^4} \tag{16}$$

4 Casimir Effect and ξ -Field Connection

4.1 Casimir-CMB Ratio as Experimental Confirmation

Experimental Test

The ratio between Casimir energy density and CMB energy density confirms the characteristic ξ -length scale of $L_{\xi} = 10^{-4}$ m.

The Casimir energy density at plate separation $d=L_{\xi}$ is:

$$|\rho_{\text{Casimir}}| = \frac{\pi^2}{240 \times L_{\varepsilon}^4}$$
 (natural units) (17)

The experimental ratio yields:

$$\frac{|\rho_{\text{Casimir}}|}{\rho_{\text{CMB}}} = \frac{\pi^2}{240\xi} = \frac{\pi^2 \times 10^4}{320} \approx 308$$
 (18)

Experimental confirmation: With $L_{\xi} = 10^{-4}$ m, direct calculation gives:

$$|\rho_{\text{Casimir}}| = \frac{\hbar c \pi^2}{240 \times (10^{-4})^4} = 1.3 \times 10^{-11} \text{ J/m}^3$$
 (19)

$$\rho_{\rm CMB} = 4.17 \times 10^{-14} \text{ J/m}^3 \tag{20}$$

Ratio =
$$\frac{1.3 \times 10^{-11}}{4.17 \times 10^{-14}} = 312$$
 (21)

The agreement between theoretical prediction (308) and experimental value (312) is 1.3% -excellent confirmation!

4.2 ξ -Field as Universal Vacuum

Important Note

The ξ -field manifests both in free CMB radiation and in geometrically constrained Casimir vacuum. This proves the fundamental reality of the ξ -field.

The characteristic ξ -length scale L_{ξ} is the point where CMB vacuum energy density and Casimir energy density reach comparable magnitudes:

Free vacuum:
$$\rho_{\text{CMB}} = +4.87 \times 10^{41}$$
 (22)

Constrained vacuum:
$$|\rho_{\text{Casimir}}| = \frac{\pi^2}{240d^4}$$
 (23)

5 Cosmic Redshift without Expansion

5.1 ξ -Field Energy Loss Mechanism

Revolutionary Insight

The observed cosmic redshift arises not from spatial expansion but from energy loss of photons in the omnipresent ξ -field.

Photons lose energy through interaction with the ξ -field:

$$\frac{dE}{dx} = -\xi \cdot f\left(\frac{E}{E_{\xi}}\right) \cdot E \tag{24}$$

For the linear case $f\left(\frac{E}{E_{\xi}}\right) = \frac{E}{E_{\xi}}$ this yields:

$$\frac{dE}{dx} = -\frac{\xi E^2}{E_{\varepsilon}} \tag{25}$$

5.2 Wavelength-Dependent Redshift

Integration of the energy loss equation leads to wavelength-dependent redshift:

Key Formula

Wavelength-dependent redshift:

$$z(\lambda_0) = \frac{\xi x}{E_{\xi}} \cdot \lambda_0 \tag{26}$$

where λ_0 is the emitted wavelength and x is the distance traveled.

This formula predicts:

- Shorter wavelength light (UV) shows greater redshift
- Longer wavelength light (radio) shows smaller redshift
- The ratio is $z_1/z_2 = \lambda_1/\lambda_2$

Experimental Test

Experimental test: Comparison of radio and optical redshifts

- 21cm hydrogen line: $\nu = 1420 \text{ MHz}$
- Optical H α line: $\nu = 457 \text{ THz}$
- Predicted ratio: $z_{21\text{cm}}/z_{\text{H}\alpha} = 3.1 \times 10^{-6}$

6 Structure Formation in the Static ξ -Universe

6.1 Continuous Structure Development

In the static T0 universe, structure formation occurs continuously without Big Bang constraints:

$$\frac{d\rho}{dt} = -\nabla \cdot (\rho \mathbf{v}) + S_{\xi}(\rho, T, \xi)$$
(27)

where S_{ξ} is the ξ -field source term for continuous matter/energy transformation.

6.2 ξ -Supported Continuous Creation

The ξ -field enables continuous matter/energy transformation:

Quantum vacuum
$$\xrightarrow{\xi}$$
 Virtual particles (28)

Virtual particles
$$\xrightarrow{\xi^2}$$
 Real particles (29)

Real particles
$$\xrightarrow{\xi^3}$$
 Atomic nuclei (30)

Atomic nuclei
$$\xrightarrow{\text{Time}}$$
 Stars, galaxies (31)

Energy balance is maintained by:

$$\rho_{\text{total}} = \rho_{\text{matter}} + \rho_{\xi \text{-field}} = \text{constant}$$
 (32)

7 Dimensionless ξ -Hierarchy

7.1 Energy Scale Ratios

All ξ -relations reduce to exact mathematical ratios:

Table 1: Dimensionless ξ -ratios

Ratio	Expression	Value
Temperature	$\frac{T_{\mathrm{CMB}}}{E_{\varepsilon}}$	3.13×10^{-8}
Theory	$rac{\overline{E_{m{\xi}}}}{rac{16}{9}m{\xi}^2}$	3.16×10^{-8}
Length	$\frac{\ell_{\xi}}{L_{\varepsilon}}$	$\xi^{-1/4}$
Casimir-CMB	$\frac{ ho_{ ext{Casimir}} }{ ho_{ ext{CMB}}}$	$\frac{\pi^2 \times 10^4}{320}$

Important Note

All ξ -relations consist of exact mathematical ratios:

• Fractions: $\frac{4}{3}$, $\frac{3}{4}$, $\frac{16}{9}$

• Powers of ten: 10^{-4} , 10^3 , 10^4

• Mathematical constants: π^2

NO arbitrary decimal numbers! Everything follows from ξ -geometry.

8 Experimental Predictions and Tests

8.1 Precision Measurements of Gravitational Constant

T0-theory predicts:

$$G_{\rm T0} = 6.67430000... \times 10^{-11} \text{ m}^3/(\text{kg} \cdot \text{s}^2)$$
 (33)

This theoretically exact prediction can be tested by future precision measurements.

8.2 Casimir Force Anomalies

Experimental Test

Prediction: Casimir force anomalies at characteristic ξ -length scale

- Standard Casimir law: $F \propto d^{-4}$
- ξ -field modifications at $d=L_{\xi}=10^{-4}~\mathrm{m}$
- Measurable deviations through ξ -vacuum coupling

8.3 Electromagnetic Resonance

Maximum ξ -field-photon coupling at characteristic frequency:

$$\nu_{\xi} = \frac{1}{L_{\xi}} = 10^4 \text{ Hz} = 10 \text{ kHz}$$
 (34)

Electromagnetic anomalies should occur at this frequency.

9 Cosmological Consequences

9.1 Solution to Cosmological Problems

The T0 model solves all fine-tuning problems of standard cosmology:

Table 2: Cosmological problems: Standard vs. T0

Problem	$\Lambda \mathrm{CDM}$	T0 Solution
Horizon problem	Inflation required	Infinite causal connectivity
Flatness problem	Fine-tuning	Geometry stabilizes over infinite time
Monopole problem	Topological defects	Defects dissipate over infinite time
Lithium problem	Nucleosynthesis discrepancy	Nucleosynthesis over unlimited time
Age problem	Objects older than universe	Objects can be arbitrarily old
H_0 tension	9% discrepancy	No H_0 in static universe
Dark energy	69% of energy density	Not required

9.2 Parameter Reduction

Revolutionary Insight

Revolutionary parameter reduction: From 25+ parameters to one!

- Standard model of particle physics: 19+ parameters
- ACDM cosmology: 6 parameters
- T0-theory: 1 parameter (ξ)

96% reduction!

10 Conclusions

10.1 The Fundamental Insight

Key Formula

The universal ξ -constant generates a complete, self-consistent physical structure:

$$\xi = \frac{4}{3} \times 10^{-4} \quad \text{(from geometry)} \tag{35}$$

$$G = \frac{\xi^2}{4m} \quad \text{(gravitation calculable)} \tag{36}$$

$$T_{\text{CMB}} = \frac{16}{9} \xi^2 \times E_{\xi} \quad \text{(CMB exactly predicted)}$$
 (37)

$$\frac{|\rho_{\text{Casimir}}|}{\rho_{\text{CMB}}} = \frac{\pi^2 \times 10^4}{320} \quad \text{(Casimir connection)} \tag{38}$$

10.2 The Vacuum is the ξ -Field

Important Note

Fundamental insight of T0-theory:

- The vacuum is identical with the ξ -field
- The CMB is radiation of this vacuum at characteristic temperature
- The Casimir force arises from geometric constraint of the same vacuum
- Gravitation follows from ξ -geometry
- Cosmic redshift arises from ξ -energy loss

10.3 Mathematical Elegance

T0-theory establishes:

- 1. Universal ξ -scaling: All phenomena follow from $\xi = \frac{4}{3} \times 10^{-4}$
- 2. Static paradigm: No Big Bang, no expansion, eternal existence
- 3. Time-energy consistency: Respects fundamental quantum mechanics
- 4. **Dimensional consistency**: Completely formulated in natural units
- 5. Unit-independent physics: Exact mathematical ratios

Revolutionary Insight

T0-theory offers a mathematically consistent alternative formulated in natural units to expansion-based cosmology and explains all cosmic phenomena with a single fundamental constant in a static, eternally existing universe.

The agreements between theoretical predictions and experimental observations - from the exact gravitational constant through CMB temperature to the Casimir-CMB ratio - demonstrate the internal consistency and predictive power of T0-theory.

11 Bibliography

References

- [1] Pascher, Johann (2025). Vereinfachte Lagrange-Dichte und Zeit-Massen-Dualität in der T0-Theorie. T0-Theory Project. https://jpascher.github.io/T0-Time-Mass-Duality/2/pdf/lagrandian-einfachDe.pdf
- [2] Pascher, Johann (2025). Simplified Lagrangian Density and Time-Mass Duality in To-Theory. T0-Theory Project. https://jpascher.github.io/T0-Time-Mass-Duality/2/pdf/lagrandian-einfachEn.pdf
- [3] Pascher, Johann (2025). T0-Modell: Ein vereinheitlichtes, statisches, zyklisches, dunkle-Materie-freies und dunkle-Energie-freies Universum. T0-Theory Project. https://jpascher.github.io/T0-Time-Mass-Duality/2/pdf/cos_De.pdf

- [4] Pascher, Johann (2025). To-Model: A unified, static, cyclic, dark-matter-free and dark-energy-free universe. To-Theory Project. https://jpascher.github.io/To-Time-Mass-Duality/2/pdf/cos_En.pdf
- [5] Pascher, Johann (2025). Temperature inheiten in natürlichen Einheiten: T0-Theorie und statisches Universum. T0-Theory Project. https://jpascher.github.io/T0-Time-Mass-Duality/2/pdf/TempEinheitenCMBDe.pdf
- [6] Pascher, Johann (2025). Temperature Units in Natural Units: T0-Theory and Static Universe. T0-Theory Project. https://jpascher.github.io/T0-Time-Mass-Duality/2/pdf/TempEinheitenCMBEn.pdf
- [7] Pascher, Johann (2025). Geometric Determination of the Gravitational Constant: From the T0-Model. T0-Theory Project. https://jpascher.github.io/T0-Time-Mass-Duality/2/pdf/gravitationskonstnte_En.pdf
- [8] Pascher, Johann (2025). To-Theorie: Wellenlängenabhängige Rotverschiebung ohne Distanzannahmen. To-Theory Project. https://jpascher.github.io/To-Time-Mass-Duality/2/pdf/redshift_deflection_De.pdf
- [9] Pascher, Johann (2025). T0-Theory: Wavelength-Dependent Redshift without Distance Assumptions. T0-Theory Project. https://jpascher.github.io/T0-Time-Mass-Duality/2/pdf/redshift_deflection_En.pdf
- [10] Heisenberg, W. (1927). On the intuitive content of quantum theoretical kinematics and mechanics. Zeitschrift für Physik, 43(3-4), 172–198.
- [11] Planck Collaboration (2020). Planck 2018 results. VI. Cosmological parameters. Astronomy & Astrophysics, 641, A6. https://doi.org/10.1051/0004-6361/201833910
- [12] CODATA (2018). The 2018 CODATA Recommended Values of the Fundamental Physical Constants. National Institute of Standards and Technology. https://physics.nist.gov/cuu/Constants/
- [13] Casimir, H. B. G. (1948). On the attraction between two perfectly conducting plates. Proceedings of the Royal Netherlands Academy of Arts and Sciences, 51(7), 793–795.
- [14] Muon g-2 Collaboration (2021). Measurement of the Positive Muon Anomalous Magnetic Moment to 0.46 ppm. Physical Review Letters, 126(14), 141801. https://doi.org/10.1103/PhysRevLett.126.141801
- [15] Riess, A. G., et al. (2022). A Comprehensive Measurement of the Local Value of the Hubble Constant with 1 km s⁻¹ Mpc⁻¹ Uncertainty from the Hubble Space Telescope and the SH0ES Team. The Astrophysical Journal Letters, 934(1), L7. https://doi.org/10.3847/2041-8213/ac5c5b
- [16] Naidu, R. P., et al. (2022). Two Remarkably Luminous Galaxy Candidates at z ≈ 11-13 Revealed by JWST. The Astrophysical Journal Letters, 940(1), L14. https://doi.org/ 10.3847/2041-8213/ac9b22
- [17] COBE Collaboration (1992). Structure in the COBE differential microwave radiometer first-year maps. The Astrophysical Journal Letters, 396, L1–L5. https://doi.org/10.1086/186504

- [18] Sparnaay, M. J. (1958). Measurements of attractive forces between flat plates. Physica, 24(6-10), 751-764. https://doi.org/10.1016/S0031-8914(58)80090-7
- [19] Lamoreaux, S. K. (1997). Demonstration of the Casimir force in the 0.6 to 6 µm range. Physical Review Letters, 78(1), 5–8. https://doi.org/10.1103/PhysRevLett.78.5
- [20] Einstein, A. (1915). Die Feldgleichungen der Gravitation. Sitzungsberichte der Preußischen Akademie der Wissenschaften, 844–847.