Aus : Given: T(n) = n2 + 3. T(n-1) 7(0) = 1 Prof: - T(m) = m2 + 3. T(m-1) T(n) = n2 + 3. [(m-1)2 + 3. T(m-2)] $T(n) = n^2 + 3! (n-2)^2 + 3! [(n-2)^2 + 3 \cdot T(n-3)]$ T(m) = [3' (m-i) + 3". Ito) 1 $3^n + \frac{m}{5} 3^i (n-i)^2$ $= 3^{n} + \sum_{j=1}^{n} 3^{j} \cdot \left[n^{2} + i^{2} - 2ni \right]$ $3^{n} + 6 n^{2} \left[\frac{3^{m+1}-1}{2} \right] - 2n \left[\frac{3^{3}}{2} \right] + \frac{n}{2} \frac{3^{3}}{3^{3}}$ Due obdating the upper dounde lap formations It implies (1/2) as

$$T(n) = 3^{n} + \sum_{i=0}^{n} 3^{i} (m-i)^{i}$$

$$\leq 3^{n} + \sum_{i=0}^{n} 3^{i}$$

$$T(n) \leq 3^{n} + n^{n} \sum_{i=0}^{n} 3^{i}$$

$$T(m) \leq 3^{n} + n^{n} \cdot (3n-1)$$

$$T(n) = 0 \cdot (3^{n})$$

Substituting in above ogn:

COMBO ECED

1000 QQ QUOD 65

(Master's Theorem:
$$T(n) = a \cdot T(\frac{n}{b}) + n^d$$
). -3

$$\frac{T(2^{k})}{2^{k}} = T(2^{k/2}) + \frac{5}{2^{k/2}} - 2$$

One extraction contains

$$det \frac{T(2^{k})}{2^{k}} = y(k)$$

Ans 2. (b). $T(n) = 3 + (\frac{n}{4}) + T(\frac{n}{6}) + \underline{n}$. $T(1) = T(2) = \overline{5}.$ Using recurrence rel n we can see that the depth is lagon logn = O(logn). We can also see that total work at each Yerd is 11/2 of upper level. The recursion method free implies the upper $T(n) \leq n \leq \left(\frac{11}{n}\right)^2$ T(m) < 12.n T(n) = o(n)

Ans 3. By Induction!
Base case: T(0) = O(1) = 1 \le C.1 (True
(onlider: T(n) & c. 3 ⁿ . (Inductive step)
To prove ! T(n+1) < c. 3^+1
Prof! - T(n) < c.32
3. T(n) ≤ c. 3 ⁿ⁺¹
$T(n+1)-(n+1)^2 \leq c \cdot 3^{n+1}$
\Rightarrow $T(m+1) \leq c \cdot 3^{m+1} + (m+1)^2$
oo (n+1) 70. So it is clearly shown that
c'3 ⁿ⁺¹ + (n+1) > c'3 ⁿ⁺¹) - + c,
··· T(n+1) <e'3<sup>m+1 ··· 包 子 c > 0.</e'3<sup>
Such that $T(n+1) \leq c' 3(n+1)$
and hence proved that
$\mathbb{C}(n) \text{ is of order } 3^n$ $\mathbb{C}(n) = O(3^n) \text{ as}$
be T(n)= 0(3 ⁿ) as