Application Note

用于USB接口的ESD和浪涌保护

Obi Oji

Multiplexers and Protection Devices

摘要

通用串行总线(通常称为 USB)是一种行业标准,用于定义计算机和外设之间的通信、电源和连接器。USB 标准 有多种版本,范围从 1.5Mbps 到 40Gbps 不等,而更常见的标准是 USB 2.0 和 USB 3.x。还有多种连接器类型, 例如 USB Type-A 和 USB Type-C®。随着欧盟最新法规的出台,USB Type-C® 即将成为欧盟电子设备的统一充 电设计,从而提高了连接器的普及度。USB Type-C® 能够支持 DisplayPort、HMDI 等交替模式,还支持 USB 电 力输送 (USB-PD),可通过 USB 增加电力传输。

内容

1 概述	2
2 USB 1.1	
2.1 概述	3
2.2 ESD 保护要求	
2.3 系统级设计	Z
3 USB 2.0 电路保护	
3.1 概述	
3.2 ESD 保护要求	
3.3 系统级设计	
4 USB 5Gbps	
4.1 概述	
4.2 ESD 保护要求	
4.3 系统级设计	
5 USB 10Gbps	
5.1 概述	
5.2 ESD 保护要求	
5.3 系统级设计	
6 USB 20Gbps	11
6.1 概述	11
6.2 ESD 保护要求	11
6.3 系统级设计	12
7 USB Type-C [®] 保护	13
7.1 概述	13
7.2 ESD 保护要求	14
7.3 系统级设计	15
8 USB 电力输送 (USB-PD) 浪涌保护	16
8.1 概述	16
8.2 VBUS 保护	16
8.3 短接至 VBUS	17
9 参考资料	17
10 修订历史记录	17
本に	
商标	
USB Type-C® is a registered trademark of USB Implementers Forum.	
所有商标均为其各自所有者的财产。	

1 概述

通用串行总线 (USB) 是一项行业标准,指定了主机系统和外设之间的连接、通信和供电。多年来,USB 通过一系列专注于提高数据速率的标准不断演变。下表细分了各种标准,包括命名约定、数据线、标称速率和连接器类型。

有两种类型的数据对: 半双工 (HDx) 和全双工 (FDx)。USB 2.0 和早期标准使用单一半双工,它在两个方向上进行通信,但一次只能在一个方向上进行通信。半双工转换为 D+ 和 D- 数据线。USB 3.0 及更高版本实现单一半双工 (D+、D-)以实现 USB 2.0 兼容性,并采用全双工技术实现两对或四对全双工,这允许同时进行双向通信。一对被视为发送线路(TX+、TX-)或接收线路(RX+、RX-)。USB 3.0 及更高版本至少包含两对(TX+、TX-、RX+、RX-),也称为通道。

由于 USB 标准有很多,因此确定数据速率可能会令人困惑,尤其是对于 USB 3.2 和 USB 4 而言。普遍的共识是,如果格式为 *AxB*,则最后一位数字将决定通道数。例如,USB 3.2 Gen 2x2 的标称速率为 20Gbps,但由于最后一位数字为 2,这意味着有 2 个数据通道,每个通道的速率为 10Gbps,总计 20Gbps。

以下各节详细介绍了基于 USB 接口标称速率的 ESD 保护。

表 1-1. USB 标准

AT I. COD WILE						
标准	数据对	标称速率	USB-IF 名称	连接器类型		
USB 1.1	1 HDx	12Mbps	基本速度 USB	Type-A、Type-B		
USB 2.0	1 HDx	480Mbps	高速 USB	Type-A、Type-B、Type-C、 Micro、Mini		
USB 3.0/USB 3.1 Gen 1/USB 3.2 Gen 1x1	2 FDx + 1 HDx	5 Gbps	USB 5Gbps	Type-A、Type-B、Type-C、Micro		
USB 3.1 Gen 2/USB 3.2 Gen 2x1	2 FDx + 1 HDx	10Gbps	USB 10Gbps	Type-A、Type-C		
USB 3.2 Gen 1x2	4 FDx + 1 HDx	10Gbps	USB 10Gbps	Type-C		
USB 3.2 Gen 2x2	4 FDx + 1 HDx	20Gbps	USB 20Gbps	Type-C		
USB 4 Gen 2x1	2 FDx + 1 HDx	10Gbps	USB 10Gbps	Type-C		
USB 4 Gen 2x2	4 FDx + 1 HDx	20Gbps	USB 20Gbps	Type-C		
USB 4 Gen 3x1	2 FDx + 1 HDx	20Gbps	USB 20Gbps	Type-C		

www.ti.com.cn USB 1.1

2 USB 1.1

2.1 概述

USB 1.0 是发布的第一个 USB 标准,不久之后又发布了修订版 USB 1.1。USB 1.0/1.1 有一个 4 线接口: V_{BUS} 用于电源,D+ 和 D - 用于差分数据信号,还有一个接地引脚。USB 1.0/1.1 能够支持低速 (1.5Mbps) 和全速 (12Mbps)。图 2-1 详细说明了 Type-A 连接器中用于 USB 1.0/1.1 的引脚配置。

图 2-1. USB 1.0/1.1 引脚配置

USB 1.0/1.1 这一标准在当今的新系统中使用相当罕见,但仍存在因外部连接器而引发的高压冲击风险。ESD 冲击可能会通过连接器进入,并会导致系统中的下游元件损坏。以下各节讨论了 USB 1.0/1.1 的 ESD 保护要求和系统级设计。

2.2 ESD 保护要求

为了保护 USB 1.0/1.1,请遵循与每个引脚相关的参数列表:

• D+和D-

- 工作电压:建议保护二极管的反向工作电压 (V_{RWM}) 大于或等于受保护系统的工作电压。对于 USB 1.0/1.1 数据线,工作电压典型值为 3.3V。建议工作电压大于或等于 3.3V。
- 钳位电压:可能有许多系统使用 USB。这导致 ESD 二极管的钳位电压取决于 USB 连接器的下游电路。建议钳位电压低于下游元件的绝对最大额定值。
- 电容:对于 USB 1.0/1/1,信号速度最高可达 12Mbps。建议使用小于 20pF 的电容来支持信号速度。
- IEC 61000-4-2 等级: IEC 61000-4-2 测试标准定义了实际的 ESD 冲击。该标准包含两项测量:接触放电和空气间隙放电。接触和空气间隙等级越高,器件能够承受的电压就越高。对于 USB 1.0/1.1,建议触点的 IEC 61000-4-2 最低额定值为 8kV,空气间隙的最低额定值为 15kV。

V_{BUS}

- 工作电压:对于 V_{BUS},工作电压为 5V。建议使用工作电压大于或等于 5V 的 ESD 二极管。

表 2-1 列出了支持这些规格的器件。

表 2-1. USB 1.0/1.1 器件建议

器件	V _{RWM} (V)	IEC 61000-4-2 (kV) (接触/空气间隙)	电容 (pF)	通道计数	封装尺寸 (mm)	推荐用于
ESD321	3.6	30/30	0.9	1	DFN1006 (1.00 x 0.60) , SOD523 (1.60 x 0.80)	D+、D-
ESD441	5.5	30/30	1	1	DFN0603 (0.60 x 0.30)	VBUS
TPD4E05U06	5.5	12/15	0.5	4	USON (2.50 x 1.00)	D+、D-、VBUS

USB 1.1 www.ti.com.cn

2.3 系统级设计

TI 提供 ESD 保护二极管,并提供用于保护 USB 1.0/1.1 的选项。图 2-2 显示了实现三个 ESD 保护二极管的方框 图。这些二极管连接到连接器与电池充电器或 USB 控制器之间的每条数据和电力线。为了正确保护系统,请在设 计规则允许的情况下,将二极管放置在尽可能靠近 ESD 源(在本例中为连接器)的位置。

图 2-2. USB 1.0/1.1 ESD 保护

对于图 2-2, ESD321 用于保护 D+ 和 D- 线路, ESD441 用于保护 VBUS 线路。还可以选择使用一个 ESD 二极 管来保护数据和电力线。为此,建议二极管的工作电压大于或等于 5V。TPD4E05U06 是一款可同时处理数据线 和电力线的器件。

www.ti.com.cn USB 2.0 电路保护

3 USB 2.0 电路保护

3.1 概述

USB 2.0 也称为高速 USB,是 USB 1.0/1.1 的更新版本,具有改进的功能和更高的数据速度。USB 2.0 有一个 4 线接口: V_{BUS} 用于电源, D+ 和 D - 用于差分数据信号,还有一个接地引脚。图 3-1 中显示了 Type-A 连接器的 USB 2.0 引脚配置。USB 2.0 能够支持低速 (1.5Mbps)、全速 (12Mbps) 和高速 (480Mbps)。

图 3-1. USB 2.0 引脚配置

USB 2.0 是一种通用接口,至今仍用于各种器件和应用。由于连接器与外界接触,系统存在高压冲击风险。这种 瞬态事件可能会导致系统的下游元件损坏。以下各节讨论了 USB 2.0 的 ESD 保护要求和系统级设计。

3.2 ESD 保护要求

为了保护 USB 2.0,请遵循与每个引脚相关的参数列表:

• D+和D-

- 工作电压:建议保护二极管的反向工作电压 (V_{RWM}) 大于或等于受保护系统的工作电压。对于 USB 2.0 数据线,工作电压典型值为 3.3V。这意味着工作电压大于或等于 3.3V。
- 钳位电压:可能有许多系统使用 USB。这导致 ESD 二极管的钳位电压取决于 USB 连接器的下游电路。建议钳位电压低于下游元件的绝对最大额定值。
- 电容:由于 USB 2.0 的信号速度最高可达 480Mbps, 因此建议使用小于 4pF 的低电容 ESD 二极管来支持该信号速度。
- IEC 61000-4-2 等级:IEC 61000-4-2 测试标准定义了实际的 ESD 冲击。该标准包含两项测量:接触放电和空气间隙放电。接触和空气间隙等级越高,器件能够承受的电压就越高。对于 USB 2.0,建议触点的 IEC 61000-4-2 最低额定值为 8kV,空气间隙的最低额定值为 15kV。

V_{BUS}

- 工作电压:对于 V_{BUS},工作电压为 5V。建议使用工作电压大于或等于 5V 的 ESD 二极管。

表 3-1 列出了支持这些规格的器件。

表 3-1. USB 2.0 器件建议

器件	V _{RWM} (V)	IEC 61000-4-2 (kV) (接触/空气间隙)	电容 (pF)	通道计数	封装尺寸 (mm)	推荐用于
ESD321	3.6	30/30	0.9	1	DFN1006 (1.00 x 0.60)、SOD523(1.60 x 0.80)	D+、D-
ESD122	3.6	17/17	0.2	2	DFN1006、3 引脚 (1.00 x 0.60)	D+、D-
ESD441	5.5	30/30	1	1	DFN0603 (0.60 x 0.30)	VBUS
TPD4E05U06	5.5	12/15	0.5	4	USON (2.50 x 1.00)	D+、D-、VBUS

3.3 系统级设计

TI 提供大量 ESD 二极管,并提供了保护 USB 2.0 的选项。图 3-2 显示了实现三个 ESD 保护二极管的方框图。这些二极管连接到连接器与电池充电器或 USB 控制器之间的每条数据和电力线。为了正确保护系统,请在设计规则允许的情况下,将二极管放置在尽可能靠近 ESD 源(在本例中为连接器)的位置。

图 3-2. USB 2.0 ESD 保护

上图中, ESD321 用于保护 D+ 和 D- 线路, ESD441 用于保护 VBUS 线路。还可以选择使用一个 ESD 二极管来保护数据和电力线。为此,建议二极管的工作电压大于或等于 5V。TPD4E05U06 是一款可同时处理数据线和电力线的器件。

www.ti.com.cn USB 5Gbps

4 USB 5Gbps

4.1 概述

标称速率达到 5Gbps 的 USB 标准包括: USB 3.0、USB 3.1 Gen 1 和 USB 3.2 Gen 1x1。这些标准使用以下引脚: V_{BUS} 用于电源, D+ 和 D- 用于差分数据信号, TX+、TX-、RX+ 和 RX- 用于发送和接收信号, 以及接地。

USB 5Gbps 用于各种器件和应用。有一个外部连接器,使系统面临高压雷击的风险。如果系统未得到适当保护,这种瞬态事件可能会导致系统的下游元件损坏。以下各节将讨论 ESD 保护要求和用于保护高达 5Gbps 的速度的系统级设计。

4.2 ESD 保护要求

为了保护 USB 5Gbps,请遵循与每个引脚相关的参数列表:

D+、D-、TX+、TX-、RX+、RX-

- 工作电压:建议保护二极管的反向工作电压 (V_{RWM}) 大于或等于受保护系统的工作电压。对于 USB 5Gbps 数据线,工作电压典型值为 3.3V。建议使用工作电压大于或等于 3.3V 的保护二极管。
- 钳位电压:可能有许多系统使用 USB。这导致 ESD 二极管的钳位电压取决于 USB 连接器的下游电路。建议钳位电压低于下游元件的绝对最大额定值。
- 电容 (D+、D-) : 由于 D+ 和 D- 专用于 USB 2.0 数据传输,因此信号速度可高达 480Mbps。建议使用电容小于 4pF 的 ESD 二极管。
- 电容(TX+、TX-、RX+、RX-):信号速度最高可达 5Gbps,建议使用小于 0.5pF 的低电容 ESD 二极管 来支持信号速度。
- IEC 61000-4-2 等级: IEC 61000-4-2 测试标准定义了实际的 ESD 冲击。该标准包含两项测量:接触放电和空气间隙放电。接触和空气间隙等级越高,器件能够承受的电压就越高。对于 USB 5Gbps,建议触点的 IEC 61000-4-2 最低额定值为 8kV,空气间隙的最低额定值为 15kV。

Veris

- 工作电压:对于 V_{RUS},工作电压为 5V。建议使用工作电压大于或等于 5V 的 ESD 二极管。

表 4-1 列出了支持这些规格的器件。

表 4-1. USB 5Gbps 器件建议

器件	V _{RWM} (V)	IEC 61000-4-2 (kV) (接触/空气间隙)	电容 (pF)	通道计数	封装尺寸 (mm)	推荐用于
ESD321	3.6	30/30	0.9	1	DFN1006 (1.00 x 0.60)、SOD523(1.60 x 0.80)	D+、D-
ESD122	3.6	17/17	0.2	2	DFN1006、3 引脚 (1.00 x 0.60)	D+、D-、TX+、TX-、 RX+、RX-
TPD4E02B04	3.6	12/15	0.25	4	USON (2.50 x 1.00)	D+、D-、TX+、TX-、 RX+、RX-
TPD6E05U06	5.5	12/15	0.47	6	USON (3.50 x 1.35)	D+、D-、TX+、TX-、 RX+、RX-
ESD441	5.5	30/30	1	1	DFN0603 (0.60 x 0.30)	VBUS

USB 5Gbps www.ti.com.cn

4.3 系统级设计

TI 提供了一系列 ESD 二极管,并提供了保护 USB 5Gbps 的选项。图 4-1 显示了实现四个 ESD 保护二极管的方 框图。这些二极管连接到连接器与电池充电器或 USB 控制器之间的每条数据和电力线。为了正确保护系统,请在 设计规则允许的情况下,将二极管放置在尽可能靠近 ESD 源(在本例中为连接器)的位置。

图 4-1. USB 5Gbps ESD 保护

对于图 4-1, ESD321 用于保护 D+ 和 D-。TPD4E02B04 用于 TX/RX 线路。还有一些其他选项可以保护 D/TX/RX 线路,例如使用 6 通道器件,使用多个 2 通道器件,甚至使用单通道器件。ESD441 用于保护 VBUS 线 路。

www.ti.com.cn USB 10Gbps

5 USB 10Gbps

5.1 概述

标称速率高达 10Gbps 的 USB 标准包括: USB 3.1 Gen 2、USB 3.2 Gen 2x1、USB 3.2 Gen 1x2 和 USB 4 Gen 2x1。这些标准使用以下引脚: V_{BUS} 用于电源,D+ 和 D- 用于差分数据信号,一条通道(USB 3.1 Gen 2、USB 3.2 Gen 2x1 和 USB 4 Gen 2x1)或两条通道 (USB 3.2 Gen 1x2) 用于发送和接收信号(TX1/RX1、TX2/RX2),以及接地。

当前普遍使用的是 USB 10Gbps,而且由于具有外部连接,系统存在高压冲击的风险。如果系统未得到适当保护,ESD 冲击可能会通过连接器进入,并导致下游元件损坏。以下各节将讨论 ESD 保护要求以及用于保护 USB 10Gbps 信号的系统级设计。

5.2 ESD 保护要求

为了保护 USB 10Gbps,请遵循与每个引脚相关的参数列表:

- D+、D-、TX1+、TX1-、RX1+、RX1-、TX2+、TX2-、RX2+、RX2-
 - 工作电压:建议保护二极管的反向工作电压 (V_{RWM}) 大于或等于受保护系统的工作电压。对于 USB 10Gbps 数据线,典型工作电压范围为 3.3V。这意味着工作电压大于或等于 3.3V。
 - 钳位电压:可能有许多系统使用 USB。这导致 ESD 二极管的钳位电压取决于 USB 连接器的下游电路。建议钳位电压低于下游元件的绝对最大额定值。
 - 电容 (D+、D-) : 由于 D+ 和 D- 专用于 USB 2.0 数据传输,因此信号速度可高达 480Mbps。建议使用电容小于 4pF 的 ESD 二极管。
 - 电容(TX+、TX-、RX+、RX-):由于信号速度最高可达 10Gbps,建议使用小于 0.3pF 的低电容 ESD 二极管来支持信号速度。对于 USB 3.2 Gen 1x2,有两个通道,每个通道的速率为 5Gbps,建议使用小于 0.5pF 的电容来支持每个通道。
 - IEC 61000-4-2 等级: IEC 61000-4-2 测试标准定义了实际的 ESD 冲击。该标准包含两项测量:接触放电和空气间隙放电。接触和空气间隙等级越高,器件能够承受的电压就越高。对于 USB 10Gbps,建议触点的 IEC 61000-4-2 最低额定值为 8kV,空气间隙的最低额定值为 15kV。

· V_{DUC}

- 工作电压:对于 V_{BUS},工作电压为 5V。建议使用工作电压大于或等于 5V 的 ESD 二极管。

表 5-1 列出了支持这些规格的器件。

表 5-1. USB 10Gbps 器件建议

*** *** *** *** *** *** *** *** *** **							
器件	V _{RWM} (V)	IEC 61000-4-2 (kV) (接触/空气间隙)	电容 (pF)	通道计数	封装尺寸 (mm)	推荐用于	
ESD321	3.6	30/30	0.9	1	DFN1006 (1.00 x 0.60)、SOD523(1.60 x 0.80)	D+、D-	
TPD1E01B04	3.6	15/17	0.18	1	DFN0603 (0.60 x 0.30)、DFN1006 (1.00 x 0.60)	D+、D-、TX+、TX-、 RX+、RX-	
ESD122	3.6	17/17	0.2	2	DFN1006、3 引脚 (1.00 x 0.60)	D+、D-、TX+、TX-、 RX+、RX-	
TPD4E02B04	3.6	12/15	0.25	4	USON (2.5 x 1.0)	D+、D-、TX+、TX-、 RX+、RX-	
ESD441	5.5	30/30	1	1	DFN0603 (0.60 x 0.30)	VBUS	

USB 10Gbps www.ti.com.cn

5.3 系统级设计

TI 提供各种能够保护 USB 10Gbps 的 ESD 二极管。图 5-1 显示了实现四个 ESD 保护二极管的方框图。这些二极 管连接到连接器与电池充电器或 USB 控制器之间的每条数据和电力线。为了正确保护系统,请在设计规则允许的 情况下,将二极管放置在尽可能靠近 ESD源(在本例中为连接器)的位置。

图 5-1. USB 10Gbps ESD 保护

对于图 5-1, ESD321 用于保护 D+ 和 D-。TPD4E02B04 用于 TX/RX 线路。还有一些其他选项可以保护 D/TX/RX 线路,例如使用 6 通道器件,使用多个 2 通道器件,甚至使用单通道器件。ESD441 用于保护 VBUS 线 路。

www.ti.com.cn USB 20Gbps

6 USB 20Gbps

6.1 概述

标称速率达到 20Gbps 的 USB 标准有: USB 3.2 Gen 2x2、USB 4 Gen 2x2 和 USB 4 Gen 3x1。这些标准使用以下引脚: V_{BUS} 用于电源,D+ 和 D- 用于差分数据信号,一条通道 (USB 4 Gen 3x1) 或两条通道 (USB 3.2 Gen 2x2 和 USB 4 Gen 2x2) 用于发送和接收信号(TX1/RX1、TX2/RX2),以及接地。

USB 20Gbps 用于各种器件和应用。由于有一个连接暴露在外部环境中,因此存在发生高压冲击的风险。瞬态事件可能会导致系统的下游元件损坏。以下各节将讨论 ESD 保护要求和用于保护高达 20Gbps 的速度的系统级设计。

6.2 ESD 保护要求

为了保护 USB 20Gbps,请遵循与每个引脚相关的参数列表:

- D+、D-、TX1+、TX1-、RX1+、RX1-、TX2+、TX2-、RX2+、RX2-
 - 工作电压:建议保护二极管的反向工作电压 (V_{RWM}) 大于或等于受保护系统的工作电压。对于 USB 20Gbps 数据线,工作电压典型值为 3.3V。这意味着工作电压大于或等于 3.3V。
 - 钳位电压:可能有许多系统使用 USB。这导致 ESD 二极管的钳位电压取决于 USB 连接器的下游电路。建议钳位电压低于下游元件的绝对最大额定值。
 - 电容 (D+、D-) : 由于 D+ 和 D- 专用于 USB 2.0 数据传输,因此信号速度可高达 480Mbps。建议使用电容小于 4pF 的 ESD 二极管。
 - 电容(TX+、TX-、RX+、RX-):对于 USB 4 Gen 3x1,信号速度可达 20Gbps,这意味着建议使用小于 0.25pF 的超低电容 ESD 二极管。对于每通道高达 10Gbps 的双通道标准,建议使用电容小于 0.3pF 的超低电容 ESD 二极管。
 - IEC 61000-4-2 等级: IEC 61000-4-2 测试标准定义了实际的 ESD 冲击。该标准包含两项测量:接触放电和空气间隙放电。接触和空气间隙等级越高,器件能够承受的电压就越高。对于 USB 20Gbps,建议触点的 IEC 61000-4-2 最低额定值为 8kV,空气间隙的最低额定值为 15kV。

V_{BUS}

- 工作电压:对于 V_{BUS},工作电压为 5V。建议使用工作电压大于或等于 5V 的 ESD 二极管。

表 6-1 列出了支持这些规格的器件。

表 6-1. USB 20Gbps 器件建议

器件	V _{RWM} (V)	IEC 61000-4-2 (kV) (接触/空气间隙)	电容 (pF)	通道计数	封装尺寸 (mm)	推荐用于
ESD321	3.6	30/30	0.9	1	DFN1006 (1.00 x 0.60)、SOD523(1.60 x 0.80)	D+、D-
TPD1E01B04	3.6	15/17	0.18	1	DFN0603 (0.60 x 0.30)、DFN1006 (1.00 x 0.60)	D+、D-、TX+、TX-、 RX+、RX-
ESD122	3.6	17/17	0.2	2	DFN1006、3 引脚 (1.00 x 0.60)	D+、D-、TX+、TX-、 RX+、RX-
TPD4E02B04	3.6	12/15	0.25	4	USON (2.5 x 1.0)	D+、D-、TX/RX,每通 道 10Gbps
ESD441	5.5	30/30	1	1	DFN0603 (0.60 x 0.30)	VBUS

USB 20Gbps www.ti.com.cn

6.3 系统级设计

TI 有一系列能够保护 USB 20Gbps 的 ESD 二极管。图 6-1 显示了实现多个 ESD 保护二极管的方框图。这些二极 管连接到连接器与电池充电器或 USB 控制器之间的每条数据和电力线。为了正确保护系统,请在设计规则允许的 情况下,将二极管放置在尽可能靠近 ESD源(在本例中为连接器)的位置。

图 6-1. USB 20Gbps ESD 保护

对于图 6-1, ESD321 用于保护 D+ 和 D- 线路, 8 个 TPD1E01B04 用于保护 TX/RX 线路, ESD441 用于保护 VBUS 线路。保护 USB 线路的可能性是无限的,可以使用多通道或单通道保护二极管。

www.ti.com.cn USB Type-C® 保护

7 USB Type-C® 保护

7.1 概述

USB Type-C® 是一个 24 引脚连接器,可通过一根电缆传输大量功率和数据。USB Type-C® 能够支持 USB 2.0 和之后的所有标准以及 HDMI 和 DisplayPort 等替代模式。该标准还支持 USB-PD 标准(主要在 USB Type-C 连接器上实现)。图 7-1 详细说明了 USB Type-C® 连接器的引脚配置。

图 7-1. USB Type-C® 引脚配置

虽然 USB Type-C® 包含应用手册中提到的相同引脚(例如 D+ 和 D- 以及 TX/RX 线),但还有特定于 USB Type-C® 的其他引脚: CC1/CC2 和 SBU1/SBU2。CC 引脚是通道配置引脚。这些引脚能够检测电缆的连接、电缆方向和电流广播。SBU 引脚为边带使用。这些引脚用于音频适配器附件模式和交替模式。交替模式包括 DisplayPort、HDMI 和 Thunderbolt。以下部分介绍了正确保护 USB Type-C® 连接器的 ESD 保护要求。

7.2 ESD 保护要求

为了保护 USB Type-C®,请遵循与每个引脚相关的参数列表:

D+、D-、TX1+、TX1-、RX1+、RX1-、TX2+、TX2-、RX2+、RX2-

- 工作电压:建议保护二极管的反向工作电压 (V_{RWM}) 大于或等于受保护系统的工作电压。对于数据线,典型的工作电压范围是 3.3V。这意味着工作电压大于或等于 3.3V。
- 钳位电压:可以有许多系统使用 USB。这导致 ESD 二极管的钳位电压取决于 USB 连接器的下游电路。建议钳位电压低于下游元件的绝对最大额定值。
- 电容 (D+、D-) : 由于 D+ 和 D- 专用于 USB 2.0 数据传输,因此信号速度可高达 480Mbps。建议使用电容小于 4pF 的 ESD 二极管。
- 电容 (TX+、TX-、RX+、RX-): 对于每通道高达 5Gbps 的速度,建议电容小于 0.5pF。对于每通道 10Gbps,建议电容小于 0.3pF,对于每通道 20Gbps,建议电容小于 0.25pF。
- IEC 61000-4-2 等级: IEC 61000-4-2 测试标准定义了实际的 ESD 冲击。该标准包含两项测量:接触放电和空气间隙放电。接触和空气间隙等级越高,器件能够承受的电压就越高。建议触点的 IEC 61000-4-2 最低额定值为 8kV,空气间隙的最低额定值为 15kV。

· cc

- 工作电压:建议保护二极管的反向工作电压 (V_{RWM}) 大于或等于受保护系统的工作电压。CC 引脚的典型工作电压可达 5V。这意味着工作电压大于或等于 5V。

SBU

- 工作电压:建议保护二极管的反向工作电压 (V_{RWM}) 大于或等于受保护系统的工作电压。SBU 引脚的典型工作电压高达 3.6V。这意味着工作电压大于或等于 3.6V。
- 电容:由于 SBU 线上的数据速度较高,因此需要低电容二极管。根据信号速度,电容可能会有所不同。对于高达 5Gbps 的速度,建议使用小于 0.5pF 的电容。

VBUS

- 工作电压:对于 V_{BUS},工作电压为 5V。建议使用工作电压大于或等于 5V 的 ESD 二极管。

表 7-1. USB Type-C® 器件建议

			<i>7</i> 1			
器件	V _{RWM} (V)	IEC 61000-4-2 (kV) (接触/空气间隙)	电容 (pF)	通道计数	封装尺寸 (mm)	推荐用于
ESD321	3.6	30/30	0.9	1	DFN1006 (1.00 x 0.60)、SOD523(1.60 x 0.80)	D+、D-
TPD1E01B04	3.6	15/17	0.18	1	DFN0603 (0.60 x 0.30)、DFN1006 (1.00 x 0.60)	D+、D-、TX+、TX-、 RX+、RX-
TPD4E02B04	3.6	12/15	0.25	4	USON (2.5 x 1.0)	D+、D-、TX+、TX-、 RX+、RX-
ESD341	3.6	30/30	0.66	1	DFN0603 (0.60 x 0.30)	SBU
ESD441	5.5	30/30	1	1	DFN0603 (0.60 x 0.30)	CC. VBUS

www.ti.com.cn USB Type-C® 保护

7.3 系统级设计

TI 拥有各种 ESD 保护二极管,能够保护 USB Type-C® 连接器的每个引脚。图 7-2 显示了实现单通道 ESD 保护二极管的方框图。这些二极管连接到连接器和 USB 控制器之间的每条数据线和电力线。为了正确保护系统,请在设计规则允许的情况下,将二极管放置在尽可能靠近 ESD 源(在本例中为连接器)的位置。

图 7-2. USB Type-C® ESD 保护

对于图 7-2, TPD1E04B04 用于保护 TX/RX 线路, ESD321 用于 D+ 和 D- 线路, ESD441 用于保护 CC 引脚和 VBUS, ESD341 用于保护 SBU 引脚。有许多选项可以保护 USB Type-C®, 包括使用多通道器件。

8 USB 电力输送 (USB-PD) 浪涌保护

8.1 概述

经过几年的发展,USB 标准接口不仅支持传输数据,还支持传输电力。在 USB 2.0 和 USB 3.x 标准中,可提供的最大功率为 15W,V_{BUS} 上的最大电压为 5V。USB 电力输送 (USB-PD) 标准支持通过兼容的 USB 电缆向系统提供更高功率(高达 240W)。V_{BUS} 引脚的电压可根据需要提供的功率而变。常用电压为 5V、9V、15V 和 20V,最近还增加了 28V、36V 和 48V。

8.2 VBUS 保护

就像所有电力线一样,必须考虑如何针对瞬态过压事件提供保护。例如,在有电流流经电缆时发生插拔事件,电感振铃会使 20V 线路临时增加到 50V,从而损坏下游电路。一种保护系统的建议是使用保护二极管,其中钳位电压是要考虑的一项关键规格,以确保系统中的电压低于系统的最大电压。TVS2200 是使用非常低的钳位电压保护 20V 线路的器件。这会导致系统在瞬态事件期间出现 28V 的最大电压。图 8-1 和图 8-2 展示了使用 TVS 器件的结果和好处。另外,表 8-1 展示了建议用于 USB-PD 电压电平的 TVS 二极管。

₹ 6 1. 665 1 5 4 2 6 6 1 							
USB-PD 电压	建议的 TVS	浪涌钳位电压	封装 尺寸				
5V	TVS0500	9V	DRV 2mm × 2mm				
9V	TVS1400	18V	DRV 2mm × 2mm				
15V	TVS1800	23V	DRV 2mm × 2mm				
20V	TVS2200	28V	DRV 2mm × 2mm				
28V	TVS3300	38V	DRV 2mm × 2mm				
			YZF 1.1mm × 1.1mm				

表 8-1. USB-PD VBUS 浪涌保护建议

图 8-1. USB-PD VBUS 过压事件,无 TVS

图 8-2. USB-PD VBUS 过压,由 TVS2200 钳位

8.3 短接至 VBUS

防止短接至 V_{BUS} 是另一个要考虑的问题。在短接至 V_{BUS} 的情况下,由于接近 V_{BUS} ,CC 和 SBU 引脚可能会暴露在 V_{BUS} 上的电压下。图 8-3 表示发生短接至 V_{BUS} 事件的原因,例如以不当方式移除了连接器。

图 8-3. 短接至 VBUS

如前所述,USB-PD 的电压范围可以是 5V 到 48V。这需要在 CC、SBU 和 VBUS 引脚上为保护二极管提供相同的工作电压,以验证系统是否具备 ESD 保护功能。表 8-2 中显示了针对这些条件的器件建议。有关 V_{BUS} 短接保护的更多器件,请咨询 TI 的 USB-PD 团队。

表 8-2. VBUS 短接器件建议

器件	V _{RWM} (V)	IEC 61000-4-2 (kV) (接触/空气间隙)	电容 (pF)	通道计数	封装尺寸 (mm)	推荐用于
ESD2CAN24-Q1/ ESD752	24	30/30	3	2	SOT023 (2.92 x 2.37) , SOT-SC70 (2.0 x 2.1)	VBUS, CC, SBU

9参考资料

- 德州仪器 (TI), USB Type-C® 和 USB 电力输送应用和要求初探营销白皮书。
- 德州仪器 (TI), *系统级 ESD 保护指南*。
- 德州仪器 (TI), 阅读并了解 ESD 保护数据表 用户指南。
- 德州仪器 (TI), ESD 封装和布局指南应用手册。

10 修订历史记录

Changes from Revision A (August 2022) to Revision B (January 2024)	Page
• 添加并更新了有关 USB 的信息以包含大多数协议,并为每个协议添加了器件建议	1
	_
Changes from Revision * (November 2021) to Revision A (August 2022)	Page
• 更新了整个文档中的表格、图和交叉参考的编号格式	1
• 在 USB 2.0 数据线保护建议表中添加了 ESD341	

重要声明和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。

TI 提供的产品受 TI 的销售条款或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

邮寄地址: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2024,德州仪器 (TI) 公司