

# Movie Recommendation System using Stacked Autoencoders CS 677 Data Science with Python

Paritosh Shirodkar paritosh@bu.edu

#### The Dataset

- I have used the MovieLens dataset for this project
- The dataset consists of 100000 instances
- The training set consists of 80000 instances
- The test set consists of 20000 instances
- The training set consists of the UserID, MovieID, Rating and Timestamp
- Additionally the data has information about popular genres, IMDb link, occupation, age and gender of the users who gave the ratings.
- Overall, there are 943 users, 1682 movies and 100000 ratings

Source: https://grouplens.org/datasets/movielens/

#### What are Autoencoders?

- It is a directed type of Neural Network
- It comes under the umbrella of unsupervised learning
- The philosophy behind Autoencoders is that it takes some inputs encodes them using the hidden neurons and then decodes them in an attempt to recreate the input
- Then the output is compared to the input and the error is computed
- Based on this error the weights of the network are adjusted to minimize the error

#### Architecture of Autoencoders



# The working on an intuitive level















# Why Stacked Autoencoders?

|         | Movie 1 | Movie 2 | Movie 3 | Movie 4 | Movie 5 | Movie 6 |
|---------|---------|---------|---------|---------|---------|---------|
| User 1  | 1       | 0       |         | 1       | 1       | 1       |
| User 2  | 0       | 1       | 0       | 0       | 1       | 0       |
| User 3  |         | 1       | 1       | 0       | 0       |         |
| User 4  | 1       | 0       | 1       | 1       | 0       | 1       |
| User 5  | 0       |         | 1       | 1       |         | 1       |
| User 6  | 0       | 0       | 0       | 0       | 1       |         |
| User 7  | 1       | 0       | 1       | 1       | 0       | 1       |
| User 8  | 0       | 1       | 1       |         | 0       | 1       |
| User 9  |         | 0       | 1       | 1       | 1       | 1       |
| User 10 | 1       |         | 0       | 0       |         | 0       |
| User 11 | 0       | 1       | 1       | 1       | 0       | 1       |





#### **Architecture of Stacked Autoencoders**



## Challenges

- Rapid training of the neural network
- Choosing the optimal parameters for the neural networks
- Making predictions with the least possible test loss

#### Solutions

- Using the RMSprop Optimizer
- Developing the neural network using the PyTorch Framework
- Selecting the learning rate to be 0.01 and number of training epochs to be
  200

$$egin{aligned} v_{dw} &= eta \cdot v_{dw} + (1-eta) \cdot dw \ & v_{db} &= eta \cdot v_{dw} + (1-eta) \cdot db \end{aligned}$$

$$W = W - lpha \cdot v_{dw}$$

$$b = b - \alpha \cdot v_{db}$$

Gradient descent with momenttum

$$egin{aligned} v_{dw} &= eta \cdot v_{dw} + (1-eta) \cdot dw^2 \ v_{db} &= eta \cdot v_{dw} + (1-eta) \cdot db^2 \ W &= W - lpha \cdot rac{dw}{\sqrt{v_{dw}} + \epsilon} \ b &= b - lpha \cdot rac{db}{\sqrt{v_{db}} + \epsilon} \end{aligned}$$

RMSprop optimizer





#### Conclusion

So the model that I have developed is able to predict the movie ratings for users, where the predicted rating would be different from the actual rating only by one star.

## **Future Improvements**

- Movie lens also has a dataset with 1 million rating
- It would be interesting to fine tune my model to be used with that dataset and see how well it performs

#### References

- https://probablydance.com/2016/04/30/neural-networks-are-impressively-good-at-compression/
- https://www.superdatascience.com/deep-learning/
- https://towardsdatascience.com/a-look-at-gradient-descent-and-rmsprop-optimizers-f77d483ef08b