Do you know the number of crops that have been used throughout human history?

Any idea of how many we have lost so far?

Do you know the number of crops that have been used throughout human history?

Any idea of how many we have lost so far?

Do you know the number of crops that have been used throughout human history?

Any idea of how many we have lost so far?

Why it's important?

Cocoa bean prices exceeded \$10,000 per ton for the first time in history

© World 27.03.2024

□ Source: iz.ru ◎ 2418 EN 中文 DE FR حبى

The exchange value of cocoa beans i \$ 10 thousand per 1 ton, having incr

Climate Change and U.S. **Agricultural Exports**

Study links climate change with wheat This was announced on Tuesday, Ma How I blast; warns crop yield could drop by 75% in South America, Africa by 2050

> CIMMYT's study warns that climate change could cause wheat blast to reduce global wheat yields by 13% by 2050.

By CIMMYT

We study Agrobiodiversity

Agrobiodiversity refers to the diverse animals, plants, and microorganisms used in agriculture and food production.

- Genetic level: Varieties and breeds for food, fodder, fiber, energy, and medicine
- Species level: Soil organisms, predators, pollinators
- Habitat level: Organisms in agroecosystems

We study Agrobiodiversity

Agrobiodiversity refers to the diverse animals, plants, and microorganisms used in agriculture and food production.

- Genetic level: Varieties and breeds for food,
 † fodder, fiber, energy, and medicine
- Species level: Soil organisms, predators, pollinators
- Habitat level: Organisms in agroecosystems

Tobias Recha and Geon Kang

Aim: To solve global food security through crop improvement

Exploring Phenotypic and Genotypic Variations Across Sorghum Varieties

Ph.D. Agrobiodiversity Tobias Recha Geon Kang

Introduction

Sorghum (*bicolor. L.*), *Diploid*, 2n = 20: A Resilient Crop for Global Food Security

Resilience: Thrives in drought, heat; crucial in sub-Saharan Africa.

Diversity: Vast phenotypic and genotypic variation.

Breeding Goals: Improved varieties for diverse climates, higher yield, better nutrition, climate resilience.

Introduction

Sorghum (*bicolor. L.*), *Diploid*, 2n = 20: A Resilient Crop for Global Food Security

Resilience: Thrives in drought, heat; crucial in sub-Saharan Africa.

Diversity: Vast phenotypic and genotypic variation.

Breeding Goals: Improved varieties for diverse climates, higher yield, better nutrition, climate resilience.

Many resistance in modern crop is derived from wild relative What is breeding or crop improvement?

Introduction

Aims:

- 1. To explore sorghum phenotypic and genetic traits using statistical and computational analysis
- 2. To promote future multidisciplinary research by conveying information about what we do to non-agronomy major students.

Objective:

- 1. Investigating relationships between phenotypes and genotypes of sorghums
- 2. Comparison results of GWAS and Lasso .regression

Material and methods

Sorghum Field Trials: Western Kenya

•Season: 2023 Long rains

•Design: 350 genotypes, randomized blocks, dual replicates

•Traits Measured:

Growth: Plant Stand, Height, Leaf Size, Tillers

Reproduction: Flowering Days

Yield: Grain, Biomass, Seed Weight

Structure: Lodging, Stem Girth, Panicle Size

Different years phenotype data 350 x traits

Season 1: 2023/03

Season 2: 2023/12

Material and methods

Sorghum Field Trials: Western Kenya

- •Season: 2023 Long rains
- •Design: 350 genotypes, randomized blocks, dual replicates
- •Traits Measured:
 - Growth: Plant Stand, Height, Leaf Size, Tillers
 - Reproduction: Flowering Days
 - Yield: Grain, Biomass, Seed Weight
 - Structure: Lodging, Stem Girth, Panicle Size

Different years phenotype data 350 x traits

Season 1: 2023/03

Season 2: 2023/12

DNA extraction and sequencing

350 X 69K (High feature)

Material and methods

Unsupervised learning

Hierarchical Clustering

Principal Component Analysis (PCA)

Locally Weighted Scatterplot Smoothing (LOWESS)

Linear Discriminant Analysis (LDA)

Supervised learning

Ridge regression

Lasso regression

- 2.To uncover genetic diversity through linked crop traits.
- 3. To visualize trait relationships for better understanding.
- 4.ToExplore how sorghum head type differs from other traits.

Additional statical tool.

Best Linear Unbiased Prediction (BLUP)

Ridge regression BLUP

Genome-Wide Association Study (GWAS)

To compare performance between prediction model between phenotype and genotype.

Results - Unsupervised learning: PCA – Phenotypes

Results - Unsupervised learning: Locally Weighted Scatter Plot Smoothing

Results - Unsupervised learning: Locally Weighted Scatter Plot Smoothing

It seems wise to choose varieties in the orange zone.

Results - Unsupervised learning: Linear Discriminant Analysis (LDA) - Sorghum head

Sorghum head type

Very loose drooping primary branches

Compact elliptic

Half broomcorn

Semi-loose drooping primary branches
Loose erect primary branches
Very lax panicle typical of wild sorghums
Loose drooping primary branches
Compact oval
Semi-loose erect primary branches
Very lax panicle typical of wild sorghums
Semi-compact elliptic
Very loose erect primary branches

L

LDA formula: head.shape~ X100.seedweight+plot.yield

Accuracy test

Training (80%) and test (20%)

Sensitivity: 0.50

Specificity: 0.25

Results - Unsupervised learning: : Hierarchical Clustering and PCA – Genetic level

Compact elliptic: "SB020" "SB023" "SB059" "SB060" "SB067" "SB069" "SB072" "SB141" "SB159" "SB184" "SB234" "SB269" "SB270" "SB398"

Half_broomcorn:"SB005" "SB025" "SB034" "SB071" "SB076" "SB082"
"SB093" "SB107" "SB131" "SB148" "SB160" "SB162" "SB189"
"SB205" "SB292" "SB303" "SB341" "SB342" "SB370" "SB372"
"SB375" "SB382" "SB388" "SB418" "SB442"

Phylogeny of sorghum genotypes

Results – Genome-Wide Association Study (GWAS)

Genome-Wide Association Study (GWAS):

A method that allows scientists to find genes that have an association with observable traits

- Logistic regression in GWAS for binary phenotypes.
- It elucidates the logarithm of trait odds based on genotype.

$$\log\left(\frac{\Pr(Y=1\,|\,X=x)}{\Pr(Y=0\,|\,X=x)}\right) = \mu + x\beta.$$

 μ is the logarithm of odds ('log-odds') for genotype 0 and β is the log of odds) ratio between genotype 1 and 0 (and exp(β) is the corresponding odds ratio).

Results – Genome-Wide Association Study (GWAS)

$$\log\left(\frac{\Pr(Y=1\,|\,X=x)}{\Pr(Y=0\,|\,X=x)}\right) = \mu + x\beta.$$

Compact elliptic

SNP 9933:5:+, CHROM1, position 10319147 SNP 124195:45:+, CHROM2, position 75185962 SNP 124229:353:-, CHROM2, position 75221846 SNP 168618:68:+, CHROM3, position 53254930

SNP 191353:132:-, CHROM4 position 2076595 SNP 191353:117:-, CHROM4, position 2076610 SNP 191353:94:-, CHROM4, position 2076633

Results – Genome-Wide Association Study (GWAS)

What about ridge and lasso regression?

$$\log\left(\frac{\Pr(Y=1\,|\,X=x)}{\Pr(Y=0\,|\,X=x)}\right) = \mu + x\beta.$$

SNP 9933:5:+, CHROM1, position 10319147 SNP 124195:45:+, CHROM2, position 75185962 SNP 124229:353:-, CHROM2, position 75221846 SNP 168618:68:+, CHROM3, position 53254930

Results - Supervised learning: Ridge and LASSO

Half broomcorn

Change in size of coefficients depending on Lambda

Coefficients -0.5 0. Log Lambda

Lasso regression

CV result: Lambda.min 94.104, log: 4.544

Lambda.min 0.089 , log: -2.409

Results – GWAS, Rige and Lasso....

Variable and coefficient plot

Rige		Lasso		GWAS		
SNP	Coef		SNP	Coef	SNP	
30521:33:-		0.087	402529:102:-	0.337	191353:132:-	
157423:245:-		0.072	350017:27:-	0.013	191353:117:-	
255086:115:+		0.069	202300:19:+	0.262	191353:94:-	,
499907:7:-		0.065	191353:94:-	0.392		
255086:127:+		0.064	191353:117:-	0.113		
375622:123:-		0.064	191272:62:+	0.178		
354300:398:-		0.061				
159639:64:-		0.061				
255086:23:+		0.058				
255086:75:+		0.058				
306530:101:-		0.054				
354300:30:-		0.051				
3331:118:+		0.050				
197732:68:+		-0.064				
197732:41:+		-0.068				
430039:59:+		-0.098				

Half broomcorn

SNP 402529:102:- Chromosome 8 ------ Lasso

Results – GWAS, Rige and Lasso....

Diag		Lasso		GWAS		
Rige			Lasso		GWAS	_
	SNP	Coef	SNP	Coef	SNP	
	30521:33:-	0.087	402529:102:-	0.337	191353:132:-	
	157423:245:-	0.072	350017:27:-	0.013	191353:117:-	
	255086:115:+	0.069	202300:19:+	0.262	191353:94:-	
	499907:7:-	0.065	191353:94:-	0.392		
	255086:127:+	0.064	191353:117:-	0.113		
	375622:123:-	0.064	191272:62:+	0.178		
	354300:398:-	0.061				
	159639:64:-	0.061				
	255086:23:+	0.058				
	255086:75:+	0.058				
	306530:101:-	0.054				
	354300:30:-	0.051				
	3331:118:+	0.050				
	197732:68:+	-0.064				
	197732:41:+	-0.068				
	430039:59:+	-0.098				

Half broomcorn

What next?

- More sorghum genetic and phenotypic characteristics need to be explored.
- Increase results reliability by using bootstrap or...
- Calculate Genetic prediction model: ridge regression BLUP.
- Analyzing environment and social effect for variety selection

Via Santa Maria, 36, 56126 Pisa P

Email

tobias.recha@santannapisa.it geon.kang@santannapisa.it Adress

Via L. Alamanni, 20, 56010 Ghezzano PI