Foundation of Cryptography (0368-4162-01), Lecture 7 MACs and Signatures

Iftach Haitner, Tel Aviv University

December 27, 2011

Section 1

Message Authentication Code (MAC)

Message Authentication Code (MAC)

Goal: message authentication.

Message Authentication Code (MAC)

Goal: message authentication.

Definition 1 (MAC)

A MAC is a tuple of PPT's (Gen, Mac, Vrfy) such that

- Gen(1ⁿ) outputs a key $k \in \{0, 1\}^*$
- Mac(k, m) outputs a "tag" t
- Vrfy(k, m, t) output 1 (YES) or 0 (NO)

Message Authentication Code (MAC)

Goal: message authentication.

Definition 1 (MAC)

A MAC is a tuple of PPT's (Gen, Mac, Vrfy) such that

- Gen(1ⁿ) outputs a key $k \in \{0, 1\}^*$
- Mac(k, m) outputs a "tag" t
- \bigcirc Vrfy(k, m, t) output 1 (YES) or 0 (NO)

We require

Consistency: Vrfy(k, m, t) = 1 for any $k \in \text{Supp}(\text{Gen}(1^n))$, $m \in \{0, 1\}^n$ and t = Mac(k, m)

Unforgability: No PPT wins the MAC game with respect to (Gen, Mac, Vrfy)

$$(m,t) \leftarrow A^{\mathsf{Mac}(K_n,\cdot),\mathsf{Vrfy}(K_n,\cdot,\cdot)}(1^n) \wedge \mathsf{Vrfy}(K_n,m,t) = 1$$

 $\wedge \mathsf{Mac}(K_n,\cdot)$ was not asked on m

Let (Gen, Mac, Vrfy) be a MAC and let $K_n = \text{Gen}(1^n)$. An oracle-aided algorithm A wins the MAC game with respect to (Gen, Mac, Vrfy), if the following is not negligible:

$$(m,t) \leftarrow A^{\mathsf{Mac}(K_n,\cdot),\mathsf{Vrfy}(K_n,\cdot,\cdot)}(1^n) \wedge \mathsf{Vrfy}(K_n,m,t) = 1$$

 $\wedge \mathsf{Mac}(K_n,\cdot)$ was not asked on m

"Private key" definition

$$(m,t) \leftarrow A^{\mathsf{Mac}(K_n,\cdot),\mathsf{Vrfy}(K_n,\cdot,\cdot)}(1^n) \wedge \mathsf{Vrfy}(K_n,m,t) = 1$$

 $\wedge \mathsf{Mac}(K_n,\cdot)$ was not asked on m

- "Private key" definition
- Variable length messages?

$$(m,t) \leftarrow A^{\mathsf{Mac}(K_n,\cdot),\mathsf{Vrfy}(K_n,\cdot,\cdot)}(1^n) \wedge \mathsf{Vrfy}(K_n,m,t) = 1$$

 $\wedge \mathsf{Mac}(K_n,\cdot)$ was not asked on m

- "Private key" definition
- Variable length messages?
- Definition too strong? Any message? Use of Verifier?

$$(m,t) \leftarrow A^{\mathsf{Mac}(K_n,\cdot),\mathsf{Vrfy}(K_n,\cdot,\cdot)}(1^n) \wedge \mathsf{Vrfy}(K_n,m,t) = 1$$

 $\wedge \mathsf{Mac}(K_n,\cdot)$ was not asked on m

- "Private key" definition
- Variable length messages?
- Definition too strong? Any message? Use of Verifier?
- "Reply attacks"

Let (Gen, Mac, Vrfy) be a MAC and let $K_n = \text{Gen}(1^n)$. An oracle-aided algorithm A wins the MAC game with respect to (Gen, Mac, Vrfy), if the following is not negligible:

$$(m,t) \leftarrow A^{\mathsf{Mac}(K_n,\cdot),\mathsf{Vrfy}(K_n,\cdot,\cdot)}(1^n) \wedge \mathsf{Vrfy}(K_n,m,t) = 1$$

 $\wedge \mathsf{Mac}(K_n,\cdot)$ was not asked on m

- "Private key" definition
- Variable length messages?
- Definition too strong? Any message? Use of Verifier?
- "Reply attacks"

Definition 3 (ℓ**-time MAC**)

Same as in Definition 1, but security is only required against ℓ -query adversaries.

constructions

Construction 4 (One-time MAC)

$$\operatorname{Gen}(1^n) = U_n$$
, $\operatorname{Mac}(k, m) = k \oplus m$ and $\operatorname{Vrfy}(k, m, t) = 1$ iff $t = k \oplus m$

constructions

Construction 4 (One-time MAC)

Gen(1ⁿ) =
$$U_n$$
, Mac(k , m) = $k \oplus m$ and Vrfy(k , m , t) = 1 iff $t = k \oplus m$

Construction 5 ($\ell \in \text{poly-time MAC}$, Stateful)

Use ℓ random strings of length n

constructions

Construction 4 (One-time MAC)

 $\operatorname{Gen}(1^n) = U_n$, $\operatorname{Mac}(k, m) = k \oplus m$ and $\operatorname{Vrfy}(k, m, t) = 1$ iff $t = k \oplus m$

Construction 5 ($\ell \in \text{poly-time MAC}$, Stateful)

Use ℓ random strings of length n

Construction 6 ($\ell \in \text{poly-time MAC}$)

Gen(1ⁿ) return a random member in \mathcal{H}_n , where $\mathcal{H} = \{\mathcal{H}_n \colon \{0,1\}^n \mapsto \{0,1\}^n\}$ is an efficient family of ℓ -wise independent hash functions.^a

Let Mac(k, m) = k(m), and Vrfy(k, m, t) = 1 iff t = k(m).

^aFor any distinct $x_1, ..., x_{\ell} \in \{0, 1\}^n$ and $y_1, ..., y_{\ell} \in \{0, 1\}^n$, $Prh \leftarrow \mathcal{H}_n[h(x_1) = y_1 \wedge \cdots \wedge h(x_{\ell}) = y_{\ell}] = 2^{-tn}$.

PRF-based MAC

Construction 7 (PRF-based MAC)

Same as Construction 6, but uses a family of length preserving function \mathcal{F} instead of \mathcal{H} .

Claim 8

Assuming that \mathcal{F} is a PRF, then Construction 7 is a (poly-time) MAC.

Proof:

PRF-based MAC

Construction 7 (PRF-based MAC)

Same as Construction 6, but uses a family of length preserving function \mathcal{F} instead of \mathcal{H} .

Claim 8

Assuming that \mathcal{F} is a PRF, then Construction 7 is a (poly-time) MAC.

Proof: Easy to prove if $\mathcal F$ is a family of random functions. Hence, also holds in case $\mathcal F$ is a PRF.