

федеральное государственное бюджетное образовательное учреждение

высшего образования

«Московский государственный технологический университет «СТАНКИН»

(ФГБОУ ВО МГТУ «СТАНКИН»)

МИНОБРНАУКИ РОССИИ

федеральное государственное бюджетное образовательное учреждение

высшего образования

«Московский государственный технологический университет «СТАНКИН»

(ФГБОУ ВО МГТУ «СТАНКИН»)

2020/ 2021 учебный год

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 1

По дисциплине «Физика. Электричество и магнетизм»

1. Электрический заряд. Закон Кулона в вакууме.

Кафедра «Физика»

- 2. Магнитное поле в вакууме. Индукция магнитного поля. Закон Био-Савара-Лапласа.
- 3.Определите силу кулоновского притяжения электрона водородного атома к 3.Вычислить емкость плоского воздушного конденсатора. Площадь ядру, если диаметр атома водорода $d=2.10^{-8}$ см. Сравните ее с силой их поверхности пластины S, расстояние между пластинами d. гравитационного притяжения. Заряд электрона $e = 1.6 \cdot 10^{-19} \, \text{Kz}$, масса электрона $m_{e} = 9.1 \cdot 10^{-31} \kappa z$, масса протона $m_{p} = 1.67 \cdot 10^{-27} \kappa z$, гравитационная постоянная $G = 6.67 \cdot 10^{-11} H \cdot M^2 / \kappa z^2$.

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 2

По дисциплине «Физика. Электричество и магнетизм»

Кафедра «Физика»

- 1. Закон сохранения электрического заряда. Уравнение непрерывности.
- 2.Принцип суперпозиции ДЛЯ поля. Магнитное магнитного поле длинного прямолинейного проводника с током.

Зав. кафедрой		Ошурко В.Б
	полпись	

Зав. кафедрой

Ошурко В.Б.

2020/ 2021 учебный год

федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технологический университет «СТАНКИН»

(ФГБОУ ВО МГТУ «СТАНКИН»)

2020/ 2021 учебный год

Кафедра «Физика»

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 3

По дисциплине «Физика. Электричество и магнетизм»

- 1. Электрическое поле. Напряженность электрического поля. Напряженность поля точечного заряда.
- 2.Силы Лоренца и Ампера.
- 3.Проводящий контур в форме квадрата со стороной **a** находится в однородном магнитном поле, вектор индукции которого \vec{B} образует угол α с плоскостью контура. Величина магнитной индукции изменяется со временем t по закону $B = B_0 + \beta t$, B_0 и β положительные постоянные величины и $\beta > 0$. Определите величину и направление индукционного тока в контуре, если его

Зав. кафедрой _____ Ошурко В.Б.

МИНОБРНАУКИ РОССИИ

федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технологический университет «СТАНКИН»

(ФГБОУ ВО МГТУ «СТАНКИН»)

2020/ 2021 учебный год

Кафедра «Физика»

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 4

По дисциплине «Физика. Электричество и магнетизм»

- 1. Принцип суперпозиции для напряженности электрического поля. Электрический диполь.
- 2. Момент сил, действующих на контур с током в однородном магнитном поле. Магнитный момент плоского кольцевого тока.
- 3.Плоский воздушный конденсатор с площадью пластин S и расстоянием d между ними подключен к батарее, поддерживающей постоянную разность потенциалов U. В конденсатор параллельно его обкладкам вдвигают незаряженную проводящую пластину толщиной L (L<d). Определите величины поверхностных зарядов, индуцированных на пластинке.

Зав. кафедрой		Ошурко В.Б.
	ПОЛПИСЬ	

федеральное государственное бюджетное образовательное учреждение

высшего образования

«Московский государственный технологический университет «СТАНКИН»

(ФГБОУ ВО МГТУ «СТАНКИН»)

2020/ 2021 учебный год

МОСКОВСЙИЯ ГОСУДАРСТВЕННЫЯ ТЕХНОЛОГИЧЕСКИЙ ЭНИВЕРСИТЕТ

МИНОБРНАУКИ РОССИИ

федеральное государственное бюджетное образовательное учреждение

высшего образования

«Московский государственный технологический университет «СТАНКИН»

(ФГБОУ ВО МГТУ «СТАНКИН»)

2020/ 2021 учебный год

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 5

По дисциплине «Физика. Электричество и магнетизм»

Для студентов первого курса

Кафедра «Физика»

1. Понятие потока вектора. Теорема Гаусса для электрического поля в вакууме. Силовые линии электрического 2. Магнитное взаимодействие двух параллельных прямолинейных проводников c током. 3. Два параллельных прямолинейных проводника бесконечной длины и ничтожно малого сечения расположены на расстоянии d=1м один от другого в вакууме. По проводникам течет ток одинаковой силы, такой, что сила взаимодействия на один метр длины проводника равна $F=2\cdot 10^{-7} \text{H/m}$. Определите силу тока в проводниках

Зав. кафедрой _____ Ошурко В.Б.

подпись

Кафедра «Физика»

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 6

По дисциплине «Физика. Электричество и магнетизм» Для студентов первого курса

- 1.Потенциальность электростатического поля. Потенциал поля точечного электрического заряда в вакууме. Принцип суперпозиции для потенциала. 2.Теорема Гаусса для магнитного поля в вакууме.
- бесконечных током. 3.По длинному тонкостенному цилиндру радиусом R=10см течет постоянной электрический ток I=10А. Определите индукцию магнитного поля в точках O_1 и O_2 , отстоящих от оси цилиндра на расстояниях $r_1=5$ см и $r_2=7$ см.

Зав.	кафедрой		Ошурко	В.	Б
------	----------	--	--------	----	---

федеральное государственное бюджетное образовательное учреждение

высшего образования

«Московский государственный технологический университет «СТАНКИН»

(ФГБОУ ВО МГТУ «СТАНКИН»)

2020/ 2021 учебный год

Кафедра «Физика»

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 8

По дисциплине «Физика. Электричество и магнетизм»

1.Связь между напряженностью электрического поля и потенциалом. 2.Явление электромагнитной индукции. Закон Фарадея. Правило Ленца. 3.В горизонтальной плоскости расположены параллельные проводящие шины, замкнутые на сопротивление. По шинам скользит с постоянной скоростью \vec{V} проводник длиной l. Определите величину и направление индукционного тока в контуре, если вектор магнитной индукции \vec{B} постоянного однородного магнитного поля направлен перпендикулярно горизонтальной плоскости (см. рис.). Сопротивлением шин и проводника

подпись

Кафедра «Физика»

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 7

По дисциплине «Физика. Электричество и магнетизм»

Для студентов первого курса

- 1. Работа сил электростатического поля при перемещении точечного заряда. Теорема о циркуляции вектора напряженности электростатического поля. Электрический потенциал.
- 2. Теорема о циркуляции вектора магнитной индукции в вакууме.
- 3. Вдоль оси длинного сплошного проводящего цилиндра радиусом R течет электрический ток. Плотность тока в цилиндре постоянна и равна j. Определите индукцию магнитного поля как функцию расстояния от оси цилиндра.

Зав. кафедрой	Ошурко В.Б

подпись

МИНОБРНАУКИ РОССИИ

федеральное государственное бюджетное образовательное учреждение

высшего образования

«Московский государственный технологический университет «СТАНКИН»

(ФГБОУ ВО МГТУ «СТАНКИН»)

2020/ 2021 учебный год

федеральное государственное бюджетное образовательное учреждение

высшего образования

«Московский государственный технологический университет «СТАНКИН»

(ФГБОУ ВО МГТУ «СТАНКИН»)

подпись

МИНОБРНАУКИ РОССИИ

федеральное государственное бюджетное образовательное учреждение

высшего образования

«Московский государственный технологический университет «СТАНКИН»

(ФГБОУ ВО МГТУ «СТАНКИН»)

(11200 20 111110 110 111111		(11200 20 1:21 10 ::e	
	2020/ 2021 учебный год		2020/ 2021 учебный год
Кафедра «Физика»		Кафедра «Физика»	
ЭКЗАМЕНАЦИОННЫЙ БИЛ	ET № 9	ЭКЗАМЕНАЦИОННЫЙ	БИЛЕТ № 10
По дисциплине «Физика. Электричество и магнети	3M>>	По дисциплине «Физика. Электричество и ма	гнетизм»
Для студентов первого курса		Для студентов первого курса	
1. Энергия взаимодействия точечных зарядов в вакууме.		1.Свойства проводников во внешнем электростатическом поле.	
2. Явление самоиндукции. Индуктивность.		2.Индуктивность соленоида.	
3.Определите энергию взаимодействия трех точечных зарядов, представленных на рисунке. Заряды находятся в вакууме.		ов, 3.Прямой соленоид радиусом R и длиной l ($R << l$) имеет N витков обмотки По обмотке течет переменный ток $I = I_0 \cos \omega t$. Определите наибольше мгновенное значение Э.Д.С. самоиндукции.	
		Зав. кафедрой	_ Ошурко В.Б.
Зав. кафедройОшу	рко В.Б.	подпись	

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ

МИНОБРНАУКИ РОССИИ

федеральное государственное бюджетное образовательное учреждение

высшего образования

«Московский государственный технологический университет «СТАНКИН»

(ФГБОУ ВО МГТУ «СТАНКИН»)

МИНОБРНАУКИ РОССИИ

федеральное государственное бюджетное образовательное учреждение

высшего образования

«Московский государственный технологический университет «СТАНКИН»

(ФГБОУ ВО МГТУ «СТАНКИН»)

2020/ 2021 учебный год

Кафедра «Физика»

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 12

По дисциплине «Физика. Электричество и магнетизм»

Для студентов первого курса

- 1. Энергия и плотность энергии электрического поля в вакууме.
- 2. Энергия магнитного поля катушки с током.
- 3.По обмотке воздушного соленоида, имеющего n=50

витков на 1 см длины, течет постоянный ток I=0,1A. Площадь поперечного сечения соленоида 5см 2 , длина соленоида l=25см. Определите плотность энергию магнитного поля соленоида.

Зав. кафедрой		Ошурко В.Б.
	полпись	

2020/ 2021 учебный год

Кафедра «Физика»

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 11

По дисциплине «Физика. Электричество и магнетизм»

Для студентов первого курса

- 1. Емкость уединенных проводников и конденсаторов. Емкость плоского конденсатора.
- 2. Энергия и плотность энергии магнитного поля.
- 3.К пластинам плоского воздушного конденсатора площадью S=100см² каждая приложена разность потенциалов V=300В. Напряженность поля внутри конденсатора E=600В/см. Определите поверхностную плотность заряда и энергию электрического поля конденсатора.

Зав. кафедрой ______ Ошурко В.Б.

СТАНКИН МОСКОВСКИЙ ГОСУДАРСТВЕННЫЯ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ

МИНОБРНАУКИ РОССИИ

федеральное государственное бюджетное образовательное учреждение

высшего образования

«Московский государственный технологический университет «СТАНКИН»

(ФГБОУ ВО МГТУ «СТАНКИН»)

МИНОБРНАУКИ РОССИИ

федеральное государственное бюджетное образовательное учреждение

высшего образования

«Московский государственный технологический университет «СТАНКИН»

(ФГБОУ ВО МГТУ «СТАНКИН»)

2020/ 2021 учебный год

Кафедра «Физика»

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 14

По дисциплине «Физика. Электричество и магнетизм»

Для студентов первого курса

- 1. Закон Ома для проводника в дифференциальной и интегральной формах.
- 2.Собственные электромагнитные колебания в электрическом RLC колебательном контуре.
- 3.Определите скорость дрейфового движения электронов в проводе сечением S=5 мм 2 при силе тока I=10A, если концентрация электронов проводимости $n=5\cdot 10^{28}$ м $^{-3}$.

2020/2021	учебный год

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 13

По дисциплине «Физика. Электричество и магнетизм»

Для студентов первого курса

Кафедра «Физика»

- 1.Постоянный электрический ток. Сила и плотность тока. Закон Ома для проводника.
- 2. Собственные электромагнитные колебания в электрическом LC колебательном контуре.
- 3. Разность потенциалов на концах железной проволоки длиной l=5м равна V=4,2В. Определите плотность тока в проволоке при температуре t=120°С. Температурный коэффициент сопротивления железа равен $\alpha_T=6\cdot10^{-3}$ град $^{-1}$, удельное сопротивление железа при t=0°С равно $\rho=1,2\cdot10^{-5}$ Ом·см.

подпись

Зав. кафедрой ______ Ошурко В.Б. Зав. кафед

Зав. кафедрой _____ Ошурко В.Б.

федеральное государственное бюджетное образовательное учреждение

высшего образования

«Московский государственный технологический университет «СТАНКИН»

(ФГБОУ ВО МГТУ «СТАНКИН»)

Кафедра «Физика»

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 16

По дисциплине «Физика. Электричество и магнетизм» Для студентов первого курса

- 1. Закон Джоуля-Ленца в дифференциальной и интегральной формах.
- 2. Фарадеевская и максвелловская трактовки явления электромагнитной индукции. Вихревое электрическое поле.
- 3.В электрической цепи, показанной на рисунке, Э.Д.С. источников и их внутренние сопротивления равны соответственно $\epsilon_1 = 10 \text{B}, \, \epsilon_2 = 4 \text{B}, \, r_1 = 2 \, \text{Om},$ $r_2 = 4$ Ом, сопротивление резистора R = 4 Ом. Какое количество теплоты выделится на резисторе за время $\Delta t = 10$ с.

МИНОБРНАУКИ РОССИИ

федеральное государственное бюджетное образовательное учреждение

высшего образования

«Московский государственный технологический университет «СТАНКИН»

(ФГБОУ ВО МГТУ «СТАНКИН»)

2020/2021 учебный год

Зав. кафедрой Ошурко В.Б.

2020/ 2021 учебный год

Кафедра «Физика»

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 15

По дисциплине «Физика. Электричество и магнетизм» Для студентов первого курса

- 1. Закон Ома для замкнутой цепи. Сторонние силы. Электродвижущая сила источника тока.
- 2.Вынужденные электрические колебания в колебательном контуре. Резонанс и резонансные кривые.
- 3. Определите заряд конденсатора в цепи, приведенной на рисунке, для случая стационарного режима.

Зав. кафедрой Ошурко В.Б.

федеральное государственное бюджетное образовательное учреждение

высшего образования

«Московский государственный технологический университет «СТАНКИН»

(ФГБОУ ВО МГТУ «СТАНКИН»)

2020/ 2021 учебный год

МИНОБРНАУКИ РОССИИ

федеральное государственное бюджетное образовательное учреждение

высшего образования

«Московский государственный технологический университет «СТАНКИН»

(ФГБОУ ВО МГТУ «СТАНКИН»)

2020/ 2021 учебный год

Кафедра «Физика»

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 18

По дисциплине «Физика. Электричество и магнетизм»

Для студентов первого курса

1. Электрическое поле в диэлектриках. Поляризация диэлектриков. Поляризованность (вектор поляризации) и вектор электрического смещения. Поляризуемость и диэлектрическая проницаемость. 2.Обобщение теоремы о циркуляции вектора напряженности электрического поля с учетом переменного во времени магнитного поля. 3. Молекула воды H_2O имеет постоянный электрический дипольный момент $p = 6.2 \cdot 10^{-30} \, \mathrm{Kn} \cdot \mathrm{m}$, направленный от центра иона O^{-2} к середине отрезка, соединяющего центры ионов Н⁺. Определите напряженность электрического поля в вакууме на расстоянии r=10нм от молекулы, если точка лежит на прямой, задаваемой вектором \bar{p} .

Зав. кафедрой		Ошурко В.Б
	ПОДПИСЬ	

Кафедра «Физика» ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 17

По дисциплине «Физика. Электричество и магнетизм»

Для студентов первого курса

- 1.Правила Кирхгофа.
- 2. Расчет магнитного поля длинного прямолинейного проводника с током в вакууме с помощью теоремы о циркуляции вектора магнитной индукции.
- 3. Определите показания идеальных вольтметра и амперметра для электрической цепи, приведенной на рисунке. Э.Д.С. источников и их внутренние сопротивления равны соответственно $\varepsilon_1 = 18$ B, $\varepsilon_2 = 24$ В, $r_1 = 3$ Ом, $r_2 = 4$ Ом, сопротивление резистора R = 5 Ом.

Зав. кафедрой Ошурко В.Б.

федеральное государственное бюджетное образовательное учреждение

высшего образования

«Московский государственный технологический университет «СТАНКИН»

(ФГБОУ ВО МГТУ «СТАНКИН»)

2020/ 2021 учебный год

Кафедра «Физика» ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 19

По дисциплине «Физика. Электричество и магнетизм»

Для студентов первого курса

- 1. Энергия электрического поля в диэлектриках.
- 2. Ток смещения. Обобщение теоремы о циркуляции магнитного поля.
- 3.Электрическая цепь состоит из источника с постоянной Э.Д.С. ε и внутренним сопротивлением r, внешнего резистора сопротивлением R и конденсатора емкости C. В начальный момент времени ключ K разомкнут и конденсатор не заряжен. Определите зависимость заряда конденсатора от

времени после замыкания ключа K.

Зав. кафедрой _____ Ошурко В.Б.

МИНОБРНАУКИ РОССИИ

федеральное государственное бюджетное образовательное учреждение

высшего образования

«Московский государственный технологический университет «СТАНКИН»

(ФГБОУ ВО МГТУ «СТАНКИН»)

2020/ 2021 учебный год

Кафедра «Физика» ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 20

По дисциплине «Физика. Электричество и магнетизм» Для студентов первого курса

- 1. Граничные условия для электрического поля на границе раздела двух диэлектриков.
- 2. Магнитное поле в веществе. Намагниченность (вектор намагничивания) и напряженность магнитного поля. Магнитная восприимчивость и магнитная проницаемость.
- 3.Вблизи т. А границы «стекло воздух» напряженность электрического поля в воздухе $E_e=10\,B/m$, причём угол между вектором \vec{E}_e и нормалью \vec{n} к границе раздела $\alpha=30^\circ$. Определите напряженность \vec{E}_c поля в стекле вблизи т. А. Относительная диэлектрическая проницаемость стекла $\varepsilon_c=6$

20	O	рг
Зав. кафедрой	Ошурко	D.D.

федеральное государственное бюджетное образовательное учреждение

высшего образования

«Московский государственный технологический университет «СТАНКИН»

(ФГБОУ ВО МГТУ «СТАНКИН»)

2020/ 2021 учебный год

Кафедра «Физика»

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 22

МИНОБРНАУКИ РОССИИ

федеральное государственное бюджетное образовательное учреждение

высшего образования

«Московский государственный технологический университет

«СТАНКИН»

(ФГБОУ ВО МГТУ «СТАНКИН»)

2020/2021 учебный год

По дисциплине «Физика. Электричество и магнетизм»

Для студентов первого курса

- 1. Экспериментальное изучение процесса разрядки конденсатора в RC-цепи (по материалам лабораторной работы).
- 2. Движение заряженных частиц в постоянных электрических и магнитных полях.
- 3.Напряженность электрического поля равна E=1кB/м, а индукция магнитного поля B=1мTл. При какой скорости \vec{V} движение электрона в таком однородном и постоянном электромагнитном поле является прямолинейным, если векторы \vec{E} и \vec{B} взаимно перпендикулярны?

Зав. кафедрой	Ошурко	В.Б
	 J F	

Кафедра «Физика» ЭКЗАМ

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 21

По дисциплине «Физика. Электричество и магнетизм» Для студентов первого курса

- 1. Квазистационарные процессы в электрических цепях содержащих резистор и конденсатор.
- 2. Граничные условия для магнитного поля на поверхности раздела двух магнетиков.
- 3.Вблизи т.A границы раздела «магнетик вакуум» вектор магнитной индукции в вакууме равен \vec{B}_1 и составляет угол α с нормалью \vec{n} к поверхности раздела «магнетик вакуум» в т.A. Относительная магнитная проницаемость магнетика μ . Определите вектор магнитной индукции \vec{B}_2 в магнетике вблизи т. A.

ике волизи 1. A. \vec{n} $\vec{\beta}$ $\vec{\beta}$ $\vec{\beta}$

Зав. кафедрой _____ Ошурко В.Б.

федеральное государственное бюджетное образовательное учреждение

высшего образования

«Московский государственный технологический университет «СТАНКИН»

(ФГБОУ ВО МГТУ «СТАНКИН»)

2020/ 2021 учебный год

СТАНКИН МОСКОВСИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕКИЙ УНИВЕРСИТЕТ

МИНОБРНАУКИ РОССИИ

федеральное государственное бюджетное образовательное учреждение

высшего образования

«Московский государственный технологический университет «СТАНКИН»

(ФГБОУ ВО МГТУ «СТАНКИН»)

2020/2021 учебный год

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 23

По дисциплине «Физика. Электричество и магнетизм» Для студентов первого курса

- 1. Экспериментальное определение удельного сопротивления проводника (по материалам лабораторной работы).
- 2. Диа-, пара- и ферромагнетики.

Кафедра «Физика»

3. Электрическая цепь, изображенная на рисунке, подключена к источнику постоянного тока. Сопротивления резисторов $R_1 = 10$ Ом, $R_2 = 20$ Ом, R = 15 Ом, показания вольтметра U = 45 В. Определите показания амперметров A_1 и A_2 . Вольтметр и амперметры идеальные.

Зав. кафедрой _____ Ошурко В.Б.

Кафедра «Физика»

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 24

По дисциплине «Физика. Электричество и магнетизм»

Для студентов первого курса

- 1.Вынужденные колебания в электрическом колебательном контуре.
- 2. Экспериментальное изучение резонансных явлений в электрическом колебательном контуре (по материалам лабораторной работы).
- 3.В электрическом колебательном контуре резонанс наступает при частоте колебаний v_p =4000 Γ ц. При какой частоте колебаний наступит резонанс, если в этом контуре параллельно конденсатору подключить точно такой же конденсатор?

Зав. кафедрой		Ошурко В.Б
	подпись	

федеральное государственное бюджетное образовательное учреждение

высшего образования

«Московский государственный технологический университет «СТАНКИН»

(ФГБОУ ВО МГТУ «СТАНКИН»)

2020/ 2021 учебный год _____

МИНОБРНАУКИ РОССИИ

федеральное государственное бюджетное образовательное учреждение

высшего образования

«Московский государственный технологический университет «СТАНКИН»

(ФГБОУ ВО МГТУ «СТАНКИН»)

2020/2021 учебный год

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 25

По дисциплине «Физика. Электричество и магнетизм»

Для студентов первого курса

Кафедра «Физика»

- 1.Собственные колебания в электрическом колебательном контуре.
- 2. Экспериментальное изучение затухающих собственных колебаний в электрическом колебательном контуре (по материалам лабораторной работы).
- 3.В идеальном электрическом колебательном контуре происходят свободные незатухающие колебания тока с периодом T. Определите максимальное значение заряда конденсатора, если максимальное значение тока в контуре I.

Кафедра «Физика»

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 26

По дисциплине «Физика. Электричество и магнетизм»

Для студентов первого курса

- 1.Полная система уравнений Максвелла в вакууме и среде. Материальные уравнения. Граничные условия.
- 2.Закон сохранения энергии для электромагнитного поля в вакууме.
- 3. Три одинаковых частицы с массой m и зарядом q удерживаются в вершинах правильного треугольника с длиной стороны a. Определите скорость этих частиц после того, как их отпустили и они разлетаются на очень большое расстояние друг от друга.

		Зав. кафедрой		Ошурко В.Б.
Зав. кафедрой	Ошурко В.Б.		подпись	

полпись