

Introduction to Information Retrieval

Günther Specht Eva Zangerle

Summer Term 2019

Information Retrieval Definition

• Information retrieval (IR) deals with the representation, storage, organization of, and access to information items.

(Baeza-Yates, Ribeiro-Nieto, 1999)

- Information retrieval (IR) is devoted to finding *relevant* documents, not finding simple match to patterns. (*Grossman Frieder, 2004*)
- Information retrieval (IR) is finding material (usually documents) of an *unstructured nature* (usually text) that satisfy an *information need* within *large collections* (usually stored on computers).

 (Manning et al., 2007)

Typical tasks covered in IR

- Search ('ad hoc' retrieval)
 - Static document collection
 - Dynamic queries
 - Changed dramatically with the rise of the web

Typical tasks covered in IR

Filtering

- Queries are static
- The document collection is constantly changing
 - Example: corporate mails routed on predefined queries to different parts of the organizations

Typical other tasks covered in IR

- Clustering
- Categorization
- Recommendation (also kind of a filtering mechanism)
- Summarization
- Question answering

• ...

Questions to be answered in this lecture

- What is relevance?
- What makes a document relevant?
- How to ensure performance of IR systems?
- How to evaluate the performance of IR systems?

Basic Definitions

Information Retrieval Process

Information Retrieval Process

- 1. Extract document and query to an internal representation: *find fixed amount of qualified features, which discribes document (and query) as good as possible*
- 2. Compare internal representations
- 3. Collect best results
- 4. Evaluate relevance, get feedback from user and modify query automatically -> query iteration

Large Collections

- Digital society
 - Wide and cheap availability of devices for:
 - -Generation,
 - Storage,
 - Processing of digital contents
 - Every N years (N=2 according to given sources, N=5 according to others) the amount of digital information doubles
 - Petabyte --- Exabyte (10¹⁸ byte, 10³ Petabyte) Zetabyte (10³ Exabyte)
 - often you can read: That's more than in the previous 5,000 years.
 True?

Unstructured Documents

Textual IR

- Monolingual multilingual
- Structured or unstructured
- Web pages
- Scientific papers
- E-mails
- Tweets, Blogs, ...
- Newspaper articles
- Image captions
- Audio transcript
- Media annotations (manual or textual)

Multimedia IR

- Images
- Graphics
- Audio (spoken or not spoken)
- Video
 - !!! All stored in stored in digital form

Information Need

- A document is relevant if it addresses the stated information need, <u>not</u> just because it contains all the word in the query
- E.g., Word in the query:
 - Phython
 - -Snake?
 - Programming language?
- E.g., Information need:
 - I'm looking for information on whether drinking red wine is more effective at reducing your risk of heart attacks than white wine.
 - Query: wine red white heart attack effective
 - Answer: most likely useless

Information Need and Gaps

- Characterization of information needs is not a simple problem:
 - Sensory Gap
 - Gap between the object in the world and the information in a (computational) description derived from a recording of that scene
 - Semantic Gap
 - Lack of coincidence between the (computational) description of the information and its meaning
- Useful (Relevant), according to the subjective opinion of the user

Information Retrieval is **NOT** Data Retrieval

- Data Retrieval (RDBMS, XML DB)
 - ... retrieving all objects which **satisfy clearly defined conditions** expressed trough a query language.
 - Data has a well defined structure and semantics
 - Formal query languages
 - Regular expression, relation algebra expression, etc.
 - Results are EXACT matches → errors are not tolerated
 - No ranking w.r.t. the user information need
 - Binary retrieval: does not allow the user to control the magnitude of the output
 - For a given query, the system may return:
 - Under-dimensioned output
 - Over-dimensioned output

A Formal Characterization

• An IR model IRM can be defined as:

$$IRM = \langle D, Q, F, R(q_i, d_j) \rangle$$
 where

- **D** set of logical views (or representations) for the **Documents** in the collection
- Q set of logical views (or representations) for the user's needs. Such representations are called Queries
- **F Framework** (or strategy) for modeling the document and query representation, and their relationship
- $R(q_i, d_j)$ Ranking function, associates a real number to a document representation d_j according to a query q_i . Such ranking defines an ordering among the documents with regard to the query q_i

Measures for IR Systems

Measurable properties

- How fast does it process (index) documents?
 - Number of documents/hour
 - Average document size
- How fast does it search?
 - Latency as a function of index size
 - Expressiveness of query language
 - Speed on complex queries
- However, the key measure is: user happiness
 - How to define user happiness?
 - How do we quantify user happiness?

IR Process

Information Retrieval Process

Information Retrieval process

- Extract document and query to an internal representation: find fixed amount of <u>qualified features</u> which discribes document (query) as good as possible
- Compare internal representations
- Collect best results
- Evaluate relevance get feedback from user and modify query automatically -> query iteration

High-level View of a Textual IR System

Logic View of Documents

- Documents in a collection are usually represented through a set of index terms or keywords
 - Index term: any word which appears in the text of a document in the collection
 - Assumption: the semantics of the documents and of the user information need can be naturally expressed through sets of index terms (this is a considerable oversimplification of the problem)
- Keywords are:
 - Extracted directly from the text of the document
 - Specified by a human subject (e.g., tags, comments etc.)
- They provide a logic view of the document.
 - Retrieval systems representing a document by its full set of words use a full text logical view (or representation) of the documents.
 - With very large collections, the set of representative have to be reduced by means of TEXT OPERATIONS

Indexing Process

- 1. Define the text data source
 - usually done by the DB manager, which specifies:
 - -Documents
 - Operations to be performed on them
 - Content model (i.e., the content structure and what elements can be retrieved)
- 2. The content operations transform the original documents and generate a *logical view* of them
- 3. An *index* of the text is built on logical view
 - The index allows fast searching over large volumes of data. Different index structures might be used, but the most popular one is the inverted file
 - The resources (time and storage space) spent on defining the text database and building the index are amortized by querying the retrieval system many times

Retrieval Process

- 1. The user first specifies a *user need*
 - User-level query (e.g., keywords); might also be done implicitly (RecSys)
- 2. The user need is parsed and transformed by the same content operations applied to the indexed contents.
- 3. Query operations provide a system representation for the user need as a system-level query
- 4. The query is processed to obtain the retrieved documents.
 - Fast query processing is made possible by the index structure previously built.
- 5. The retrieved documents are ranked according to a *likelihood* of relevance.
- 6. The user then examines the set of ranked documents in the search for useful information.
 - he might pinpoint a subset of the documents seen as definitely of interest and initiate a user feedback cycle.

Credits

- Slides partly adapted from
 - Eva Zangerle, DBIS Innsbruck (2014/15)
 - Stefano Ceri, Alessandro Bozzon, Marco Brambilla, Emanuele Della Valle, Piero Fraternali, Silvia Quarteroni: Web Information Retrieval
 - Dietmar Jannach, Markus Zanker, Alexander Felfernig, Gerhard
 Friedrich: Recommender Systems An Introduction
 - Günther Specht, DBIS Innsbruck (former lectures)