MA 204 Numerical Methods

Dr. Debopriya Mukherjee Lecture-4

January 17, 2024

Contents

 Solution of a nonlinear equation, bisection and secant methods, Newton's method, rate of convergence.

Contents

- Solution of a nonlinear equation, bisection and secant methods, Newton's method, rate of convergence.
- Interpolation by polynomials, divided differences, error of the interpolating polynomial, piecewise linear and cubic spline interpolation.

Problem Description

Given, (n+1) points, say (x_i, y_i) where $i=0,1,2,\cdots,n$ with distinct x_i , not necessarily sorted, we want to find a polynomial of degree n,

Problem Description

Given, (n+1) points, say (x_i, y_i) where $i = 0, 1, 2, \dots, n$ with distinct x_i , not necessarily sorted, we want to find a polynomial of degree n,

$$P_n(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

such that it interpolates these points, i.e.,

$$P_n(x_i) = y_i, \quad i = 0, 1, 2, \cdots, n.$$

Problem Description

Given, (n+1) points, say (x_i, y_i) where $i = 0, 1, 2, \dots, n$ with distinct x_i , not necessarily sorted, we want to find a polynomial of degree n,

$$P_n(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

such that it interpolates these points, i.e.,

$$P_n(x_i) = y_i, \quad i = 0, 1, 2, \dots, n.$$

Our goal: is to determine the coefficients $a_n, a_{n-1}, \dots, a_1, a_0$.

Problem Description

Given, (n+1) points, say (x_i, y_i) where $i = 0, 1, 2, \dots, n$ with distinct x_i , not necessarily sorted, we want to find a polynomial of degree n,

$$P_n(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

such that it interpolates these points, i.e.,

$$P_n(x_i) = y_i, \quad i = 0, 1, 2, \dots, n.$$

Our goal: is to determine the coefficients $a_n, a_{n-1}, \dots, a_1, a_0$. **Note:** The total number of data points is 1 larger than the degree of the polynomial.

Let the following data represent the values of f:

X	0	0.5	1
f(x)	1.0000	0.5242	-0.9037

Let the following data represent the values of f:

X	0	0.5	1	-The guestions are the
f(x)	1.0000	0.5242	-0.9037	- The questions are the
following:			,	

■ What is the exact expression for the function f?

Let the following data represent the values of f:

X	0	0.5	1	-The questions are the
f(x)	1.0000	0.5242	-0.9037	- The questions are the
following:			'	

- What is the exact expression for the function f?
- What is the value of f(0.75)?

Let the following data represent the values of f:

X	0	0.5	1	-The questions are the
f(x)	1.0000	0.5242	-0.9037	- The questions are the
followir	ng:	'	'	

- What is the exact expression for the function f?
- What is the value of f(0.75)?

Answer:

Let the following data represent the values of f:

X	0	0.5	1	-The questions are the
f(x)	1.0000	0.5242	-0.9037	- The questions are the
following	ng:	'	'	

- What is the exact expression for the function f?
- What is the value of f(0.75)?

Answer:

We cannot get the exact expression for the function f just from the given data: infintely many functions possible

Let the following data represent the values of f:

X	0	0.5	1	-The questions are the
f(x)	1.0000	0.5242	-0.9037	- The questions are the
followin	ng:	'	'	

- What is the exact expression for the function f?
- What is the value of f(0.75)?

Answer:

- We cannot get the exact expression for the function f just from the given data: infintely many functions possible
- On the other hand: look for an interpolating polynomial.

The interpolating polynomial happens to be

$$p_2(x) = -1.9042x^2 + 0.0005x + 1$$

and we have

$$p_2(0.75) = -0.0707375.$$

The interpolating polynomial happens to be

$$p_2(x) = -1.9042x^2 + 0.0005x + 1$$

and we have

$$p_2(0.75) = -0.0707375.$$

The function used to generate the above table of data is

$$f(x) = \sin(\frac{\pi}{2}e^x).$$

The interpolating polynomial happens to be

$$p_2(x) = -1.9042x^2 + 0.0005x + 1$$

and we have

$$p_2(0.75) = -0.0707375.$$

The function used to generate the above table of data is

$$f(x) = \sin(\frac{\pi}{2}e^x).$$

With this expression of f, we have (using seven-digit rounding)

$$f(0.75) \approx -0.1827504$$
.

The interpolating polynomial happens to be

$$p_2(x) = -1.9042x^2 + 0.0005x + 1$$

and we have

$$p_2(0.75) = -0.0707375.$$

The function used to generate the above table of data is

$$f(x) = \sin(\frac{\pi}{2}e^x).$$

With this expression of f, we have (using seven-digit rounding)

$$f(0.75) \approx -0.1827504$$
.

The relative error is given by

$$E_r(p_2(0.75) = \frac{f(0.75) - p_2(0.75)}{f(0.75)} \approx 0.6129283.$$

Why should we do this? Here are some reasons:

• Find the values between the points for discrete data set;

Why should we do this? Here are some reasons:

- Find the values between the points for discrete data set;
- To approximate a (probably complicated) function by a polynomial;

Why should we do this? Here are some reasons:

- Find the values between the points for discrete data set;
- To approximate a (probably complicated) function by a polynomial;
- Then, it is easier to do computations such as derivative, integration etc.

Example 1
$$\frac{x_i \mid 0 \mid 1 \mid 2/3}{y_i \mid 1 \mid 0 \mid 0.5}$$
 Let

$$P_2(x) = a_2x^2 + a_1x + a_0.$$

$$P_2(x) = a_2 x^2 + a_1 x + a_0.$$

We need to find the coefficients a_2 , a_1 , a_0 . By the interpolating properties, we have 3 questions:

Example 1
$$\frac{x_i}{y_i} \begin{vmatrix} 0 & 1 & 2/3 \\ 1 & 0 & 0.5 \end{vmatrix}$$
 Let

$$P_2(x) = a_2 x^2 + a_1 x + a_0.$$

We need to find the coefficients a_2 , a_1 , a_0 . By the interpolating properties, we have 3 questions:

i.
$$x = 0, y = 1$$
 : $P_2(0) = a_0 = 1$

ii.
$$x = 1, y = 0$$
 : $P_2(1) = a_2 + a_1 + a_0 = 0$

iii.
$$x = \frac{2}{3}, y = 0.5$$
: $P_2(\frac{2}{3}) = (\frac{4}{9})a_2 + (\frac{2}{3})a_1 + a_0 = 0.5$

Example 1
$$\frac{x_i}{y_i} \begin{vmatrix} 0 & 1 & 2/3 \\ 1 & 0 & 0.5 \end{vmatrix}$$
 Let

$$P_2(x) = a_2 x^2 + a_1 x + a_0.$$

We need to find the coefficients a_2 , a_1 , a_0 . By the interpolating properties, we have 3 questions:

i.
$$x = 0, y = 1$$
 : $P_2(0) = a_0 = 1$

ii.
$$x = 1, y = 0$$
 : $P_2(1) = a_2 + a_1 + a_0 = 0$

iii.
$$x = \frac{2}{3}, y = 0.5$$
: $P_2(\frac{2}{3}) = (\frac{4}{9})a_2 + (\frac{2}{3})a_1 + a_0 = 0.5$

We have 3 linear equations and 3 unknowns (a_2, a_1, a_0) .

$$a_0 = 1$$

$$a_2 + a_1 + a_0 = 0$$

$$\frac{4}{9}a_2 + \frac{2}{3}a_1 + a_0 = 0.5$$

$$a_0 = 1$$

$$a_2 + a_1 + a_0 = 0$$

$$\frac{4}{9}a_2 + \frac{2}{3}a_1 + a_0 = 0.5$$

In matrix-vector form

$$\begin{pmatrix} 0 & 0 & 1 \\ 1 & 1 & 1 \\ \frac{4}{9} & \frac{2}{3} & 1 \end{pmatrix} \begin{pmatrix} a_2 \\ a_1 \\ a_0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0.5 \end{pmatrix}$$

$$a_0 = 1$$

$$a_2 + a_1 + a_0 = 0$$

$$\frac{4}{9}a_2 + \frac{2}{3}a_1 + a_0 = 0.5$$

In matrix-vector form

$$\begin{pmatrix} 0 & 0 & 1 \\ 1 & 1 & 1 \\ \frac{4}{0} & \frac{2}{3} & 1 \end{pmatrix} \begin{pmatrix} a_2 \\ a_1 \\ a_0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0.5 \end{pmatrix}$$

Easy to solve:

$$a_2 = -\frac{3}{4}, \ a_1 = -\frac{1}{4}, \ a_0 = 1.$$

Then,

$$P_2(x) = -\frac{3}{4}x^2 - \frac{1}{4}x + 1.$$

The general Case

The general Case

For the general case with (n+1) points, we have

$$P_n(x_i) = y_i, \quad i = 0, 1, 2, \cdots, n.$$

The general Case

For the general case with (n+1) points, we have

$$P_n(x_i) = y_i, \quad i = 0, 1, 2, \cdots, n.$$

We will have (n+1) equations and (n+1) unknowns:

$$P_n(x_0) = y_0$$
 : $x_0^n a_n + x_0^{n-1} a_{n-1} + \dots + x_0 a_1 + a_0 = y_0$
 $P_n(x_1) = y_1$: $x_1^n a_n + x_1^{n-1} a_{n-1} + \dots + x_1 a_1 + a_0 = y_1$

$$S_n(x_1) = y_1$$
 : $x_1 a_n + x_1 a_{n-1} + \cdots + x_1 a_1 + a_0 = y_1$

÷

$$P_n(x_n) = y_n$$
 : $x_n^n a_n + x_n^{n-1} a_n + \cdots + x_n a_1 + a_0 = y_n$.

The general Case

For the general case with (n+1) points, we have

$$P_n(x_i) = y_i, \quad i = 0, 1, 2, \dots, n.$$

We will have (n+1) equations and (n+1) unknowns:

$$P_n(x_0) = y_0$$
 : $x_0^n a_n + x_0^{n-1} a_{n-1} + \dots + x_0 a_1 + a_0 = y_0$
 $P_n(x_1) = y_1$: $x_1^n a_n + x_1^{n-1} a_{n-1} + \dots + x_1 a_1 + a_0 = y_1$
:

$$P_n(x_n) = y_n$$
 : $x_n^n a_n + x_n^{n-1} a_n + \cdots + x_n a_1 + a_0 = y_n$.

Putting this in matrix-vector form

$$\begin{pmatrix} x_0^n & x_0^{n-1} & \cdots & x_0 & 1 \\ x_1^n & x_1^{n-1} & \cdots & x_1 & 1 \\ \vdots & \vdots & & \vdots & \\ x_n^n & x_n^{n-1} & \cdots & x_n & 1 \end{pmatrix} \begin{pmatrix} a_n \\ a_{n-1} \\ \vdots \\ a_0 \end{pmatrix} = \begin{pmatrix} y_0 \\ y_1 \\ \vdots \\ y_n \end{pmatrix}$$

$$\mathbf{X}\vec{a} = \vec{y}$$

■ X : $(n+1) \times (n+1)$ matrix, given (Van der Monde matrix)

$$\mathbf{X}\vec{a} = \vec{y}$$

- **X** : $(n+1) \times (n+1)$ matrix, given (Van der Monde matrix)
- \vec{a} : unknown vector, with length (n+1)

$$\mathbf{X}\vec{a} = \vec{y}$$

- **X** : $(n+1) \times (n+1)$ matrix, given (Van der Monde matrix)
- \vec{a} : unknown vector, with length (n+1)
- \vec{y} : given vector, with length (n+1)

$$\mathbf{X}\vec{a} = \vec{y}$$

- **X** : $(n+1) \times (n+1)$ matrix, given (Van der Monde matrix)
- \vec{a} : unknown vector, with length (n+1)
- \vec{y} : given vector, with length (n+1)

Theorem 1

If x_i 's are distinct, then **X** is invertible, therefore \vec{a} has a unique solution.

$$\mathbf{X}\vec{a} = \vec{y}$$

- X : $(n+1) \times (n+1)$ matrix, given (Van der Monde matrix)
- \vec{a} : unknown vector, with length (n+1)
- \vec{y} : given vector, with length (n+1)

Theorem 1

If x_i 's are distinct, then **X** is invertible, therefore \vec{a} has a unique solution.

In other words.

Given n+1 distinct points x_0, x_1, \dots, x_n and n+1 ordinates y_0, \dots, y_n , there is a polynomial p(x) of degree $\leq n$ that interpolates y_i at x_i , $i=0,1,\dots,n$. This polynomial p(x) is unique among the set of all polynomials of degree at most n.

Proofs

Recall the Vandermonde matrix **X** is given by

$$V_n(x) = \det \begin{pmatrix} 1 & x_0 & x_0^2 & \cdots & x_0^n \\ \vdots & & & & \\ 1 & x_{n-1} & x_{n-1}^2 & \cdots & x_{n-1}^n \\ 1 & x & x^2 & \cdots & x^n \end{pmatrix}$$
 (1

Proofs

Recall the Vandermonde matrix **X** is given by

$$V_n(x) = \det \begin{pmatrix} 1 & x_0 & x_0^2 & \cdots & x_0^n \\ \vdots & & & & \\ 1 & x_{n-1} & x_{n-1}^2 & \cdots & x_{n-1}^n \\ 1 & x & x^2 & \cdots & x^n \end{pmatrix}$$
 (1)

• One can show that $V_n(x)$ is a polynomial of degree n, and that its roots are x_0, \dots, x_{n-1} . We can obtain the formula

$$V_n(x) = (x - x_0) \cdots (x - x_{n-1}) V_{n-1}(x_{n-1}).$$

Proofs

Recall the Vandermonde matrix **X** is given by

$$V_n(x) = \det \begin{pmatrix} 1 & x_0 & x_0^2 & \cdots & x_0^n \\ \vdots & & & & \\ 1 & x_{n-1} & x_{n-1}^2 & \cdots & x_{n-1}^n \\ 1 & x & x^2 & \cdots & x^n \end{pmatrix}$$
(1)

• One can show that $V_n(x)$ is a polynomial of degree n, and that its roots are x_0, \dots, x_{n-1} . We can obtain the formula

$$V_n(x) = (x - x_0) \cdots (x - x_{n-1}) V_{n-1}(x_{n-1}).$$

- Expand the last row of $V_n(x)$ by minors to show that $V_n(x)$ is a polynomial of degree n and to find the coefficient of the term x^n .
- One can show that

$$\det(X) = V_n(x_n) = \prod (x_i - x_j)$$

Bad news: \mathbf{X} has a very large condition number for large n ,
therefore, not effective to solve if n is large.

Bad news: X has a very large condition number for large n, therefore, not effective to solve if n is large. Other more efficient and elegant methods include

- Lagrange polynomials
- Newton's divided differences

Given points: x_0, x_1, \dots, x_n

Given points: x_0, x_1, \cdots, x_n Define the cardinal functions $l_0, l_1, \cdots, l_n :\in \mathcal{P}^n$, satisfying the properties

Given points: x_0, x_1, \dots, x_n Define the cardinal functions $l_0, l_1, \dots, l_n :\in \mathcal{P}^n$, satisfying the properties

$$I_i(x_j) = \delta_{ij} = \begin{cases} 1, i = j \\ 0, i \neq i, \end{cases}$$
 $i = 0, 1, \dots, n.$

Given points: x_0, x_1, \dots, x_n Define the cardinal functions $l_0, l_1, \dots, l_n :\in \mathcal{P}^n$, satisfying the properties

$$I_i(x_j) = \delta_{ij} = \begin{cases} 1, i = j \\ 0, i \neq i, \end{cases}$$
 $i = 0, 1, \dots, n.$

Here, δ_{ij} is called the Kronecker's delta.

Given points: x_0, x_1, \dots, x_n Define the cardinal functions $l_0, l_1, \dots, l_n :\in \mathcal{P}^n$, satisfying the properties

$$I_i(x_j) = \delta_{ij} = \begin{cases} 1, i = j \\ 0, i \neq i, \end{cases}$$
 $i = 0, 1, \dots, n.$

Here, δ_{ij} is called the Kronecker's delta.

Locally supported in discrete sense. The cardinal functions $l_i(x)$ can be written as

$$l_{i}(x) = \prod_{j=0, j\neq i}^{n} \left(\frac{x - x_{j}}{x_{i} - x_{j}}\right)$$

$$= \frac{x - x_{0}}{x_{i} - x_{0}} \frac{x - x_{1}}{x_{i} - x_{1}} \cdots \frac{x - x_{i+1}}{x_{i} - x_{i+1}} \cdots \frac{x - x_{n}}{x_{i} - x_{n}}.$$

Verify:

$$l_i(x_i) = 1$$
 and for $i \neq k$ $l_i(x_k) = 0$.

Verify:

$$l_i(x_i) = 1$$
 and for $i \neq k$ $l_i(x_k) = 0$.

Lagrange form of the interpolation polynomial

Lagrange form of the interpolation polynomial can be simply expressed as

$$P_n(x) = \sum_{i=0}^n I_i(x) y_i.$$

It is easy to check the interpolating property:

$$P_n(x_j) = \sum_{i=0}^n I_i(x)y_i = y_j$$
, for every j .

Example

Example 2. Write the Lagrange polynomial for the given data

Xį	0	2/3	1
Уi	1	0.5	0

Example

Example 2. Write the Lagrange polynomial for the given data $\begin{array}{c|cccc} x_i & 0 & 2/3 & 1 \\ \hline v_i & 1 & 0.5 & 0 \end{array}$ **Answer.** The data set corresponds to

$$x_0 = 0$$
, $x_1 = \frac{2}{3}$, $x_2 = 1$, $y_0 = 1$ $y_1 = 0.5$, $y_2 = 0$.

We first compute the cardinal functions

$$I_0(x) = \frac{3}{2}(x - \frac{2}{3})(x - 1)$$
$$I_1(x) = -\frac{9}{2}x(x - 1)$$
$$I_2(x) = 3x(x - \frac{2}{3}).$$

Thus,

$$P_2(x) = \frac{3}{2}(x - \frac{2}{3})(x - 1) - \frac{9}{2}x(x - 1)(0.5) + 0.$$

Pros and cons of Lagrange polynomial:

■ Elegant formula

Pros and cons of Lagrange polynomial:

- Elegant formula
- Slow to compute, each $I_i(x)$ is different,

Pros and cons of Lagrange polynomial:

- Elegant formula
- Slow to compute, each $l_i(x)$ is different,
- Not flexible: if one changes a points x_j , or add on an additional point x_{n+1} , one must re-compute all l_i 's.

Newton's Divided Differences

Given (n+1) data set, we will describe an algorithm in a recursive form.

Main idea: Given $P_k(x)$ that interpolates k+1 data points $\{x_i,y_i\}$, $i=0,1,2,\cdots,k$, compute $P_{k+1}(x)$ that interpolates one extra point, $\{x_{k+1},y_{k+1}\}$, by using P_k and adding an extra term.

- For n = 0, we set $P_0(x) = y_0$. Then, $P_0(x) = y_0$.
- For n = 1, we set

$$P_1(x) = P_0(x) + a_1(x - x_0)$$

where a_1 is to be determined.

- For n = 0, we set $P_0(x) = y_0$. Then, $P_0(x) = y_0$.
- For n = 1, we set

$$P_1(x) = P_0(x) + a_1(x - x_0)$$

where a_1 is to be determined.

Then, find a_1 by the interpolation property $y_1 = P_1(x_1)$, we have

$$y_1 = P_0(x_1) + a_1(x_1 - x_0)$$

= $y_0 + a_1(x_1 - x_0)$.

This gives us

$$a_1 = \frac{y_1 - y_0}{x_1 - x_0}$$
.

For n = 2: we set

$$P_2(x) = P_1(x) + a_2(x - x_0)(x - x_1).$$

Then,

$$P_2(x_0) = P_1(x_0) = y_0, P_2(x_1) = P_1(x_1) = y_1.$$

Determine a_2 by the interpolating property $y_2 = P_2(x_2)$.

$$y_2 = P_1(x_2) + a_2(x_2 - x_0)(x_2 - x_1),$$

$$a_2 = \frac{y_2 - y_1}{x_2 - x_1} - \frac{y_1 - y_0}{x_1 - x_0}.$$

Newton's form for the interpolation polynomial:

$$P_n(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_1) + \cdots + a_n(x - x_0)(x - x_1) \cdots (x - x_{n-1}).$$