

Hypergraph exploration via vectorization

Valérie Poulin

vpoulin@gmail.com

Leland McInnes, John Healy, Colin Wear, Benoit Hamelin

- Quickly: text vectorization
- Vertex/hyperedge vectorization
- Demo

What this is based of:

WARNINGS

- All 2-D vectors are obtained via UMAP
- We use * to indicate that some details are missing
- More details can be found here:

https://github.com/vpoulin/Hypergraph-Vectorization-recipes/blob/master/notebooks/recipes-O3-joint-annotated.ipvnb

Text vectorization via... counting!

Simple Document Vectors

The "bag-of-words" approach: Discard order and count how often each word occurs

Bag of Words

	а	bear	big	can	eat	frog		<i>Z</i> 00
d_1	3	1	1	1	1	1		1
d_2	2	0	0	0	1	1		0
:	•	•	:	•	•	•	•	•
d_n	1	0	2	0	0	0		1

Not all words are created equal!

Perform word weighting with an information gain measure

Information Weight

Info(t) =
$$\sum_{d \in D} P_t(d) \log \left(\frac{P_t(d)}{Q_t(d)} \right)$$

where

$$P_t(d) = rac{f_{t,d}}{\sum_{d \in D} f_{t,d}}$$
 $Q_t(d) = rac{|d|}{\sum_{d'} |d'|}$

Weighted Bag of Words

w(t) =	0.001	0.15	0.05	0.02	0.1	0.17		0.2
	а	bear	big	can	eat	frog		<i>z</i> 00
d_1	.003	.15	.05	.02	.1	.17		.2
d_2	.002	0	0	0	.1	.17		0
:	•	•	•	:	:	:	:	:
d_n	.001	0	.1	0	0	0		.2

20 Newsgroup Dataset (NNTP Newsgroup posts from 1990s)

http://qwone.com/~jason/2ONewsgroups/

alt.atheism	comp.windows.x
talk.religion.misc	sci.crypt
soc.religion.christian	sci.electronics
talk.politics.misc	sci.med
talk.politics.mideast	sci.space
talk.politics.guns	rec.sport.baseball
comp.graphics	rec.sport.hockey
comp.os.ms-windows.misc	misc.forsale
comp.sys.ibm.pc.hardware	rec.autos
comp.sys.mac.hardware	rec.motorcycles

Information Weight

- comp.os.ms-windows.misc
- comp.sys.ibm.pc.hardware
- comp.sys.mac.hardware
- comp.windows.x
- misc.forsale
- rec.autos
- rec.motorcycles
- rec.sport.baseball
- rec.sport.hockey
- sci.crypt
- sci.electronics
- sci.med
- sci.space
- soc.religion.christian
- talk.politics.guns
- talk.politics.mideast
- talk.politics.misc
- talk.politics.misc
- talk.religion.misc

Downside: all words are equidistant

	а	bear	big	can	eat	frog		<i>z</i> 00
d_1	3	1	1	1	1	1		1
d_2	2	0	0	0	1	1		0
• •	•	•	:	•	•	•	•	•
d_n	1	0	2	0	0	0		1
frog	0	0	0	0	0	1		0

d(frog, toad) = d(frog, car)

Better word vectors

Window radius three

Words not equidistant

	а	bear	big	can	eat	frog	•••	Z00
frog	150	2	1	25	20	0		2
toad	125	1	5	20	17	19		0
•	•	:	:	•	•	•	•	•
car	306	2	129	67	11	0		3

d(frog, toad) < d(frog, car)

Apply SVD* dimension reduction to the matrix of co-occurrence counts to get word vectors

Documents are (info-weighted) bags* of word vectors

*Distributions over the word space

Documents are finite distributions over word vectors

Documents are finite distributions over word vectors

Vectorize so to approximate Wasserstein distance

Wasserstein: **earth** mover distance

Vectorize* documents so that distances between their respective vectors approximate the Wasserstein distances between distributions

Vectorizing via counting...

...compared against big NNs.

Evaluate on classification task

Vertex and hyperedge embedding

Vectorizing vertices in hypergraphs vs. words in documents

Vectorizing hyperedges vs. documents

adipiscing amet consectetur do dolor ipsum ip m lorem sed sitelit

Hypergraph: What's cooking?

Some summary statistics of the network are:

- number of nodes: 6,714 (ingredients)
- number of hyperedges: 39,774 (recipes)
- number of edge label categories: 20 (cuisine type)
- maximum hyperedge size: 65

Task: predict cuisine type of recipes - hyperedge classification

What's cooking? - the data

```
"id": 24717,
"cuisine": "indian",
"ingredients": [
    "tumeric",
    "vegetable stock",
    "tomatoes",
    "garam masala",
    "naan",
    "red lentils",
    "red chili peppers",
    "onions",
    "spinach",
    "sweet potatoes"
```


Hyperedge: bad of ingredients

*Remove recipes of size less than 3

What's cooking? - the data

What's cooking? - the data

asian.chinese
asian.filipino
asian.japanese
asian.korean
asian.thai
asian.vietnamese
american.brazilian
american.mexican
american.southern_us
others.greek

Vectorizing hyperedges

Hyperedge: bag of vertices

H^T	v_1	v_2	v_3	v_4	v_5	v_6		v_n
e_1	1	1	0	0	1	0		1
e_2	0	0	0	1	0	0		0
:	:	•	•	:	:	:	:	:
e_m	0	0	1	0	1	1		1

This is really just using rows of the incidence matrix.


```
from vectorizers.transformers import InformationWeightTransformer
```

```
incidence_matrix = vectorizers.NgramVectorizer(
    ).fit_transform(recipes)
```


Hyperedge: information

:

 e_2

 e_m

w_1	$ig w_2$	0	0	$igg w_5$	0		$igg w_n$
0	0	0	w_4	0	0		0
:	:	•	•	:	:	:	•
0	0	w_3	0	w_5	w_6		w_n

 v_n

This is rows of the column-weighted incidence matrix.

$$w_i = C - rac{1}{\deg\left(v_i
ight)} \sum_{e:\,v_i \in e} \log\left(|e| \cdot \deg\left(v_i
ight)
ight)$$


```
from vectorizers.transformers import InformationWeightTransformer
info_incidence = InformationWeightTransformer().fit_transform(
    incidence_matrix
)
```


Downside: vertices are all equidistant

d(milk, cream) = d(milk, wasabi)

Steps for vectorizing hyperedges

- Vectorize vertices using cooccurrences
- Vectorize hyperedges
 - Hyperedges are bags/distributions of vertex vectors
 - Vectorize so as to approximate Wasserstein distance between distributions


```
from vectorizers import WassersteinVectorizer  \begin{array}{lll} \text{vertex\_vectors} &= * & HH^T - D_e \\ \\ \text{hyperedge\_vectors} &= \text{WassersteinVectorizer().fit\_transform()} \\ & \text{info\_incidence ,} \\ & \text{vectors} &= \text{vertex\_vectors} \\ \end{array}
```



```
from vectorizers import WassersteinVectorizer  \begin{array}{lll} \text{vertex\_vectors} &=& HH^T - D_e \\ \\ \text{hyperedge\_vectors} &=& \text{WassersteinVectorizer().fit\_transform()} \\ & & \text{info\_incidence ,} \\ & & \text{vectors} &=& \text{vertex\_vectors} \\ \end{array}
```


Hypergraph: What's cooking?

Hypergraph: What's cooking?

Vectorizing hyperedges and vertices: Joint embedding

Hyperedges are distributions of vertex vectors

Vertices are Dirac distributions on single vertex vector


```
from vectorizers import WassersteinVectorizer

hyperedge_vertex_vectors = WassersteinVectorizer().fit_transform(
    vstack([info_incidence , identity_on_vertices]),
    vectors = vertex_vectors
}
```


Explore the results with

Nothing to summarize

Nothing to summarize

value 1535

distances

0.301840

0.306907

0.351924

0.364556

0.370222

0.374322

0.379578

0.392770

0.405768

0.412965

Automatic annotation:

- 1. Hierarchical clustering of hyperedges
- 2. Identify vertices closest to cluster centroid
- 3. Display on plot at the right resolution

Final words

Joint embedding based on the dual?

Hypergraph

Joint embedding of vertices and hyperedges

Dual hypergraph

Joint embedding of vertices and hyperedges

Hypergraph

Joint embedding of vertices and hyperedges

Select* the version (dual or not) that has a **non exponential** edge size distribution.

Dual hypergraph

Joint embedding of vertices and hyperedges

*From experiments, more to come.

What is this representation good/not good for?

Not good for pure hypergraph questions

- Paths: shortest, number of, centralities,...
- Hyperedge counting
- Motif finding

Good for hypergraph mining

- Clustering, community finding, data partitioning
- Classifying
- Exploring

We have dropped edge ordering, vertex repetition but...

Hypergraphs are **chosen** abstractions for problem solving.

Hypergraphs are **chosen** abstractions for problem solving. Often, we have:

- Timestamped events (vertices/edges)
- Edge-dependent vertex weights

Hypergraphs are chosen abstractions for problem solving. Often, we have:

- Timestamped events (vertices/edges)
- Edge-dependent vertex weights

Vectorizers: Vectorizers.readthedocs.io

Vectorizers on hypergraphs https://github.com/vpoulin/Hypergraph-Vectorization-recipes

Hypergraph datasets https://www.cs.cornell.edu/~arb/data/