

Cavity BPM System for DCLS

leng@sinap.ac.cn

Spectrum Analyzer

IF: 500 MHz 12dBm

Authors: Jian Chen, Luyang Yu, Yongbin Leng*, Jie Chen, Longwei Lai, Yingbin Yan, Renxian Yuan Shanghai Institute of Applied Physics, CAS, Jiading, Shanghai 201800, P.R. China

Introduction

Dalian Coherent Light Source (DCLS) is a new FEL facility under construction in China. The entire facility consists of the following parts:

- ◆ A photo-injector will produce electron pluses of 500 pC with normalized emittance below 1 mm·mrad
- ◆ The linear accelerator will accelerate the electrons to 300 Mev which consists of 6 S-band accelerator structures and a movable chicane for electron bunch compression
- ◆ The undulator complex where to generate the FEL radiation with wavelength of 50 ~ 150 nm
- ◆ The photo beam line and diagnostic line

Cavity BPM system comprised of cavity pick-up, dedicated RF front end and DAQ system is employed to measure the transverse position with a micron level resolution requirement in the undulator section.

Diagram of the CBPM system

Schematic layout of CBPMs in the undulator section

4689 MHz -5dBn

Lo signal

generator

Signal generate

·Design and Fabricate of the cavity pick-up

Cavity Design Design parameters of the CBPM TM110 TM010 Parameters Resonant frequency 4.70 GHz | 4.70 GHz ~ 8000 ~ 8000 Q factory

521 parameter of the CBPM2 measured by network analyzer

Specification of the cavity processing

	Working	Q factor
	frequency	
Reference cavity	$4693 \pm 3 \text{ MHz}$	$ 2230 \pm 10\% $
Position cavity(X)	4680±3 MHz	$4250 \pm 10\%$
Position cavity(Y)	4688±3 MHz	$4250 \pm 10\%$

Three sets of cavity prototype was processed and tested by network analyzer, Combine with the designed parameters and processing technology, the specification of the cavity processing are determined.

·RF Front end

Tested in laboratory

- ♦ The results are consistent with the design
- ◆ Considering the 12 dB attenuation of the cable between the two parts of the RF front end, the input power should be less than -7 dBm
- ◆ Good linearity in the effective working range

•DAQ system

Simplified diagram of the DBPM processor

Gain line test result of the DBPM prototype

Mapping of the signal intensity and the gain setting of the DBPM prototype

- ◆ The DBPM prototype a better linear gain response
- The SNR is better than 75 dB when the intensity of the IF signal lager than 25 mVpp
- ◆ Can meet the requirement of the cavity BPM processor

Beam test at SDUV

Noise assessment of the CBPM system ---Beam on, STD = 34.4—Beam off, STD = 6.3sample index

The level of the noise when beam on and off

 \circ STD of X - Y = 11.2 ch2 ADC 0 -100 -50 ch1 ADC

The linear dependence of the noise picked up by different channels

- ♦ The frewaves and spectrum are quency with consistent
- expections ◆ The results with beam are agree with the cold test very well
- results parameter can be acceptance standard for cavity batch process
- ◆ The amplitude of the interference signals with beam on is lager than the condition of beam off about 6 times
- ◆ The noise coupling to the system in the part of the RF front end

Conclusion

DCLS is under the commission stage, And the CBPM system in undulator section has been designed and preliminary test with beam also completed:

- Test results with beam in cavity pick-up evaluation are consistent with S21 with the cold test parameter, which can be acceptance standard of the batch processing to meet the requirement of the project.
- The output signal amplitude of the RF front end should be optimized within 100~200 mV to get the best SNR.
- The electromagnetic shielding, grounded of the electronics and the test of the background noise should be considered in the scene of installation.