

Computer Networks

Guilherme lecker Ricardo guilherme.iecker-ricardo@dauphine.psl.eu guilhermeir.github.io/L3Networks.html

Class 5: Link Layer

[K] Chapter 6[T] Chapters 3 and 4

Roadmap

- Introduction
 - Goals
 - Terminology
 - The Trip Analogy
 - Services
 - Implementation
 - Communication
- Error Control
- Medium Access Control
- LANs

Introduction – Goals

- Understand principles behind link layer services:
 - 1. <u>Error detection, correction</u>
 - 2. Sharing a broadcast channel: multiple access
 - 3. Link layer addressing
- Practice: implementation of various link layer technologies:
 - Ethernet
 - VLANs
 - MPLS
 - Data center networks

Introduction – Terminology

- Nodes: Hosts, routers, switches, etc.
- <u>Links</u>: Logical communication channels that connect adjacent nodes along a communication path
- <u>Frame</u>: Layer-2 packet that encapsuates datagrams

<u>Definition</u>: **Link layer** is a bundle of hardware, algorithms, and protocols in charge of transferring datagrams from one node to a physically adjacent node over a link.

Introduction – Context: The Trip Analogy

Introduction – Context: The Trip Analogy

Communication links

Introduction – Context: Overview

The "Trip" Analogy

- <u>Datagram</u> = Tourist
- Routing algorithm = Travel Agent
- Communication link = Transport segment
 - E.g.: Wireless, Copper, Fiber Optics, etc.
- <u>Link-layer protocol</u> = Transportation mean
 - E.g.: Ethernet, Wi-Fi, 5G, ARP, etc.

Characteristics

- Datagram is transferred by different linklayer protocols over different links:
 - E.g.: Wi-Fi on first link, Ethernet on next link, etc.
- Each link-layer protocol provides <u>one or</u> <u>more</u> among the following services:
 - Reliable data transfer over link
 - Flow control
 - Fragmentation and sequence integrity
 - Duplex transmissions
 - Error detection and correction
 - Multiple access control
 - Framing and addressing

Introduction – Link Layer Primary Services

Framing and Link Access

- <u>Definition</u>: Encapsulates datagrams (layer-3 packets) in a frame by adding header and trailer.
- Q: Why is it important?
- A: It adds pieces of information used by a given link-layer protocol.
- Examples of added information:
 - Channel access instructions if the physical medium is shared (Physical layer)
 - Headers contain MAC addresses identifying source and destination nodes
 - Trailers may contain information helping bit error detection and correction

Introduction – Link Layer Primary Services

Error Detection

- <u>Definition</u>: Identify bits that were swaped during the transmission process due to bad channel conditions.
- Q: Why is it important?
- A: It helps the receiver to make a decision based on the frame error status.
- Examples of decisions:
 - If frame is OK, then accept frame and
 - forward to next network node (e.g.: L2 switches)
 - send datagram to layer 3 (e.g.: hosts and routers)
 - If frame contains errors, then
 - correct bit errors without retransmissions
 - drop frame and signal retransmission

Error Correction

- <u>Definition</u>: Correct bits that were misidentified due to bad channel conditions without requiring frame's retransmission.
- Q: Why is it important?
- A: For an efficient channel usage, retransmissions must be avoided.
- Suitability of Error Correction:
 - OK for guided and other low-error physical media
 - In high-error physical media, such as wireless, correction becomes an unfeasbile service (we discuss wireless link layer services later in the course)

Introduction – Link Layer Primary Services

Medium Access Control (MAC) Sublayer

- <u>Definition</u>: Enable simultaneous multiple transmissions in a shared-medium network.
- Q: Why is it important?
- A: It allows media reuse for multiple transmissions
 - Allow scalable deployment of guided media
 - Enable deployment of wireless media
- Q: Haven't we discussed this in L1?
- A: Multiplexing techniques are examples of MAC service implementation in L1.
 - FDM, TDM, CDMA

Introduction – Link Layer Secondary Services

Sequence Integrity:

Guarantee that frames arrive in order at the receiver.

Services usually delegated to Layer 4 (e.g.,TCP)

Flow Control:

Bound throughput by receiver's service rate.

Reception Acknowledgement:

Signal transmitter that frame was successfuly received.

Virtual Connection:

Ensure that sender and receiver have a dedicated, synchronized logical channel

Used in ATM networks
Not used in the Internet

Duplex Transmissions:

Allow channel with two-way transmissions.

Advanced Telecom.
Courses

Introduction - Where is the link layer implemented?

Introduction – End-to-End Interface Communication

Host 1 Sender

Host 2 Receiver

Sender:

- encapsulates datagram in frame
- adds error checking bits, flow control, etc.

- looks for errors, flow control, etc.
- extracts datagram, passes to upper layer at receiving side

Roadmap

- Introduction
- Error Control
 - Parity Checking
 - Cyclic Redundancy Checking
 - Examples and Exercises
- Medium Access Control
- LANs

Error Control – Introduction

- <u>Definition</u>: The error control service provides mechanisms for bit errors detection and, if possible, their correction.
- Error Detection and Correction (EDC) bits are added to the trailler
 - independent of the L2 header.
- The decision on what to do if error is detected depends on the L2 protocol.
- Detection is not fully reliable!
 - Error control techniques with better performance may require larger EDC fields.

Error Control - Parity Checking

Single Bit Parity

Adds a single bit to the trailer of a frame to obtain a total number of 1s of a parity agreed by all communicating nodes.

Even parity: set parity bit so there is an even number of 1's

Two-Dimensional (2D) Bit Parity

No	errors
----	--------

1	0	1	0		l
1	1	1	1	0	0
0	1	1	1		
0	0	1	0	1	0

error

Error Control – 2D Parity Examples

Can you detect and correct error bit(s) in the following sequences of frames?

What are the parity bits and the parity frame for the following 4 frames?

```
Frame 1: 10100110
Frame 2: 00011000
Frame 3: 00000011
Frame 4: 11100101
```

Frame 1: 10100110 0
Frame 2: 00011000 0
Frame 3: 00010011 0
Frame 4: 11100101 1
Parity Frame: 01011000 1

Yes! Detect and correct.

```
Frame 1: 10100110 0
Frame 2: 00011000 0
Frame 3: 00010001 0
Frame 4: 11100101 1
Parity Frame: 01011000 1
```

We can detect, but not correct.

```
Frame 1: 10100110 0
Frame 2: 00011000 0
Frame 3: 10010001 0
Frame 4: 11100101 1
Parity Frame: 01011000 1
```

We can detect, but not correct.

Error Control – Cyclic Redundancy Checking (CRC)

Description

CRC adds redundancy bits to the trailler of the frame in order to provide a more efficient error control service.

How the frame is built in CRC?

Example

Input:

$$D = 10100101$$
 $d = 8$ $R = 011$ $r = 3$

CRC Frame Computation:

$$D = 00010100101$$

 $D \cdot 2^{r} = 10100101000$
 $(D \cdot 2^{r}) XOR R = 10100101011$

Result:

$$<$$
D,R $>$ = 10100101011

Error Control - Cyclic Redundancy Checking (CRC)

How does CRC work?

- Let G be a bit pattern of r+1 bits called generator.
- Sender and receiver define a shared G.
- When receiver gets a frame <D,R>, it checks:
 - If <D,R> is exactly divisible by G (mod 2), then frame is OK.
 - Otherwise, error detected.
- Division operation does not consider carry!

Efficiency and Applicability

- CRC can detect error bursts no longer than r+1
- Widely used in practice (e.g., Ethernet, Wi-Fi)

How are the redundancy bits R computed?

- "<D,R> is exactly divisible by G (mod 2)" means:
 - <D,R> = n G, for some integer n>1
- By the def. of the CDC frame, we have:
 - D. 2^r XOR R = n G
- By applying XOR on both sides, we have:
 - D . 2^r = n G XOR R
- By applying division operation, we have:
 - $R = D \cdot 2^r \% G$

Error Control – CRC Example

The transmitter node wants to send bits D=101110.

It was agreed among all network nodes that the generator is G=1001.

For data bits D and generator G, how the transmitter can calculate the redundancy bits R?

EXERCISE: Error Control – CRC

A network node received the following CRC frame: <D,R> = 10011100101

Receiver and sender agreed on the following generator: G = 1001

Question 1: What are the data bits D and the redundancy bits R?

Since |G| = r+1, we have that r = 3 and, consequently, d = 8.

Therefore, D = 10011100 and R = 101.

10001101

1001 | 10011100101

1001

Question 2: Is there an error with the CRC frame?

1001

01011

No! The frame is OK because <D,R> is divisible by G, i.e.,

the remainder between <D,R> and G is zero.

1001 001001

1001

0000

Roadmap

- Introduction
- Error Control
- Medium Access Control (MAC)
 - Introduction
 - Channel Partitioning Protocols
 - TDMA, FDMA, CDMA
 - "Taking Turns" Protocols
 - Polling, Token Passing
 - Random Access Protocols
 - ALOHA, Slotted ALOHA
 - CSMA, CSMA/CD
 - Examples
- LANs

MAC – Introduction

two types of "links":

- point-to-point
 - point-to-point link between Ethernet switch, host
 - PPP for dial-up access
- broadcast (shared wire or medium)
 - old-fashioned Ethernet
 - upstream HFC in cable-based access network
 - 802.11 wireless LAN, 4G/4G. satellite

shared wire (e.g., cabled Ethernet)

shared radio: 4G/5G

shared radio: WiFi

shared radio: satellite

humans at a cocktail party (shared air, acoustical)

MAC – Definition

- single shared broadcast channel
- two or more simultaneous transmissions by nodes: interference
 - collision if node receives two or more signals at the same time

Multiple Access Protocol

- distributed algorithm that determines how nodes share channel, i.e., determine when node can transmit
- communication about channel sharing must use channel itself!
 - no out-of-band channel for coordination

MAC - Ideal Protocol

given: multiple access channel of rate R bps desired characteristics:

- 1. when one node wants to transmit, it can send at rate *R*.
- 2. when M nodes want to transmit, each can send at average rate *R/M*
- 3. fully decentralized:
 - no special node to coordinate transmissions
 - no synchronization of clocks, slots
- 4. simple

MAC – Taxonomy

three broad classes:

- channel partitioning
 - divide channel into smaller "pieces" (time slots, frequency, code)
 - allocate piece to node for exclusive use
- random access
 - channel not divided, allow collisions
 - "recover" from collisions
- "taking turns"
 - nodes take turns, but nodes with more to send can take longer turns

MAC - "Taking Turns" Protocols: Polling

polling:

- controller node "invites" other nodes (clients) to transmit in turn
- typically used with "dumb" devices
- concerns:
 - polling overhead
 - latency
 - single point of failure (controller)

MAC - "Taking Turns" Protocols: Token Passing

token passing:

- control token passed from one node to next sequentially.
- token message
- concerns:
 - token overhead
 - latency
 - single point of failure (token)

MAC - Random Access Protocols: Introduction

- when node has packet to send
 - transmit at full channel data rate R.
 - no a priori coordination among nodes
- two or more transmitting nodes: "collision"
- random access MAC protocol specifies:
 - how to detect collisions
 - how to recover from collisions (e.g., via delayed retransmissions)
- examples of random access MAC protocols:
 - ALOHA, slotted ALOHA
 - CSMA, CSMA/CD, CSMA/CA

MAC - Random Access Protocols: Slotted ALOHA

assumptions:

- all frames same size
- time divided into equal size slots (time to transmit 1 frame)
- nodes start to transmit only slot beginning
- nodes are synchronized
- if 2 or more nodes transmit in slot, all nodes detect collision

operation:

- when node obtains fresh frame, transmits in next slot
 - if no collision: node can send new frame in next slot
 - if collision: node
 retransmits frame in each
 subsequent slot with
 probability p until success
 randomization why?

MAC - Random Access Protocols: Slotted ALOHA

Pros:

- single active node can continuously transmit at full rate of channel
- highly decentralized: only slots in nodes need to be in sync
- simple

Cons:

- collisions, wasting slots
- idle slots
- nodes may be able to detect collision in less than time to transmit packet
- clock synchronization

MAC – Random Access Protocols: Slotted ALOHA (S-ALOHA)

Efficiency: long-run fraction of successful slots (many nodes, all with many frames to send)

- suppose: N nodes with many frames to send, each transmits in slot with probability p
 - prob that given node has success in a slot = $p(1-p)^{N-1}$
 - prob that any node has a success = $Np(1-p)^{N-1}$
 - max efficiency: find p^* that maximizes $Np(1-p)^{N-1}$
 - for many nodes, take limit of $Np^*(1-p^*)^{N-1}$ as N goes to infinity, gives:

Maximum Efficiency = 1/e = .37

• at best: channel used for useful transmissions 37% of time!

MAC - Random Access Protocols: Pure ALOHA

- unslotted Aloha: simpler, no synchronization
 - when frame first arrives: transmit immediately
- collision probability increases with no synchronization:
 - frame sent at t₀ collides with other frames sent in [t₀-1,t₀+1]

pure Aloha efficiency: 18%!

EXERCISE: MAC – Random Access Protocols: ALOHA

Consider the figure below, which shows the arrival of 7 messages for transmission at different multiple access wireless nodes at times t = <0.3, 0.4, 1.4, 2.3, 2.7, 3.2, 4.3> and each transmission requires exactly one time unit.

Question 1: Suppose all nodes are implementing the Aloha protocol. For each message, indicate the time at which each transmission begins.

Question 2: Which messages transmit successfully?

Answer: Message 7

Answer:

- 1. t=0.3
- 2. t=0.4
- 3. t=1.4
- 4. t=2.3
- 5. t=2.7
- 6. t=3.2
- 7. t=4.3

EXERCISE: MAC – Random Access Protocols: S-ALOHA

Consider the figure below, which shows the arrival of 7 messages for transmission at different multiple access wireless nodes at times t = <0.3, 0.4, 1.4, 2.3, 2.7, 3.2, 4.3> and each transmission requires exactly one time unit.

Question 1: Suppose all nodes are implementing the Slotted Aloha protocol. For each message, indicate the time at which each transmission begins.

Question 2: Which messages transmit successfully?

Answer: Messages 3, 6, and 7

Answer:

- 1. t=1.0
- 2. t=1.0
- 3. t=2.0
- 4. t=3.0
- 5. t=3.0
- 6. t=4.0
- 7. t=5.0

UNIVERSITÉ PARIS DAUPHINE - PSL

Place du Maréchal de Lattre de Tassigny – 75775 Paris cedex 16