Autgabe 36 Die Zahliafen der einzelnen Bins sind Poisson verteilt: a) zaveites Hisotogram elstes Histogramm $P_{\lambda}(k) = \frac{\lambda}{k!} e^{-\lambda}$ $P_{\lambda}(k) = A^{k} e^{-\lambda}$ PDF: $\lambda = M_{p_i}, k = m_i$ $\lambda = N_{P_i}$, $k = h_i$ $P_{\nu_{p_i}}(h_i) = e^{-Np_i} (Np_i)^{h_i}$ $P_{np}(m_i) = e^{-Mp_i} (Mp_i)^{m_i}$ $W_i!$ Like Lihood fanktion e) $\mathcal{L}(p_i, m_i, h_i) = \underbrace{e - Np_i}_{p_i} (Np_i)^{h_i}, \underbrace{e - Mp_i}_{p_i} (Mp_i)^{m_i}$ Schaffer der die Like Lihood maximier (p; = h; + m; 0 $\chi^{2} = \sum_{i=7}^{4} (\gamma_{i} - f(\chi_{i}))^{2}$ $(0, Modell)^{2}$ Vi = gemessene Daten f(x;) = Verteilang des Modells $= \frac{1}{2} \times \frac{2}{2} = \frac{1}{2} \frac{(h_i - Np_i)^2}{Np_i} + \frac{1}{2} \frac{(h_i - Np_i)^2}{Np_i}$ BRUNNEN IN

d) Die X2- Verfeilung hat (4-7) Freiheitsgrade, du ein p; durch die Normierung schon testgelegt E p = 7 Die Test-Statis tik tolet fait kleine Binibalte Kriner 2º - Verteilung, da. $N = 632 \qquad M = 87$ $\chi^{2} = \frac{2}{632.87} \left[\frac{632m}{4i + mi} - 87ni \right]^{2}$ $= \frac{7}{632.87} \left(\frac{26569}{74} + \frac{56670576}{224} + \frac{64208769}{363} \right)$ ≈ 8,429 X2- weste aus Tabelle (Freiheits quart f=2) 2 | 0,7 | 0,05 | 0,07 | Ab einem Signifikonz niveau von a = 0,09 wird die Nullhypothere ongenommen X referling > X Hichprobe