

Венера-9

18: Алгоритм эффективной обработки спутниковых снимков российской орбитальной группировки

Венера - 9

Мария Смирнова

- Аналитик, геолог, любитель спутниковых снимков
- **+**79163244404

Денис Калганов

- Pythonразработчик
- @LastTherapy
- **+**79252005854

Структура презентации

<u>Решения не было найдено</u>, в материале собраны проверенные командой гипотезы

Стр. 4	Базовые положения и особенности данных	Стр. 9	Приблизительный поиск
			Второй этап – приблизительно найти район кропа
Стр. 7	Этапы поиска изображения	Стр. 15	Локальный поиск
	Предлагаем 3 этапа работы со снимками		Третий этап – точно совместить кроп и подложку
Стр. 8	Предобработка	Стр. 16	Не успели проверить идеи
	Первый этап – предобработать снимки и подложку		Как ещё мы бы попробовали решить задачу, но не успели

Базовые положения

Работая над задачей мы придерживались положений:

- Цвет имеет значение набор r, g, b, nir достаточно точно определяет класс
- Единственный инвариант классы Угол, масштаб, разрешение всё это может меняться от снимка к снимку. Неизменным остаются только наблюдаемые объекты: лес, реки, города.
- Параметры изменений нам не известны

Особенности данных - 1

- Кропы имеют разный, но существенно худшие разрешение
- На изображениях кропов геометрия объектов не сохраняется
- Данные кропов имеют существенные вылеты (особенно по каналу nir)
- Гистограммы одинаковых областей разнятся у одинаковых локаций могут быть чуть разные «цвета»

Особенности данных - 2

Данные представлены изображениями с 4 каналами

- Nir позволяет рассчитать основные вегетационные индексы
- На основании индексов получаются качественные маски
- Наиболее пригодные для поиск маски с редкими классами EVI & RVI

Этапы поиска изображения

Исходя из анализа данные задача была разбита на 3 подзадачи:

- Подготовка изображений работа с выбросами, расчёт масок, классификация, работа с каналами
- Глобальный поиск поиск части изображения, на котором вероятно находится кроп
- Локальный поиск утонение положения кропа на «кусочке» полученном при глобальном поиске

Предобработка

- Обработка выбросов
- Выделение классов/масок
- Расчёт данных по подложке

Приблизительный поиск

- Расчёт графа соседствующих классов
- Поиск ближайших классов по треугольнику
- Выделение границ и их сопоставление / маскирование городов
- Поиск ближайших соседей по:
 - Macкaм (NDVI, EVI, RVI & ...) / Macкaм (города, реки)
 - ML-выделенным классам
 - Процентному содержанию классов на снимке
 - Поиска минимума разностей изображений

Локальный поиск

• Точное позиционирование снимка на части подложки (ORB)

Сделать эту часть не получилось

1. Предобработка

1. Работа с выбросами Поиск «выбивающихся» по значению пикселей (больше или меньше граничного значения) Замена значения пикселя средним матрицей 3X3

2. Предобработка гистограммы Нормализация Эквилайзинг

2. Приблизительный поиск Графы соседствующих классов

Одной из идей глобального поиска – было построение графов соседствующих классов. Если два класса соседствовали где-либо, то между ними строилось ребро. Таким образом, можно проверять подходит и изображение – где нет пересечения классов.

Минусы

Очень долгий обсчет графа

Разный масштаб сильно влияет на соотношение классов

2. Приблизительный поиск Поиск ближайших классов по треугольнику

Выбор точек из редких классов на кропе, чтобы соотнести имеющиеся классы между точками с подложкой.

Ищём на подложке точки, между которыми имеются такой же набор классов (по нескольким слоям данных, например, NDVI, RVI, EVI, GNDVI)

Минусы:

Большое количество точек для поиска получается в суммативной маске

2. Приблизительный поиск Выделение границ и их сопоставление

Из-за разницы геометрии и масштаба просто сопоставлять контуры получалось плохо. Но кучность границ могла дать дополнительную информацию – например, города или другого сильно разнородного объекта

Выделение границ объектов: Canny

Минусы простого сопоставления границ

Из-за разных масштабов границы объектов не сходятся

Минусы:

Параметры «толщины» границ и итераций сглаживания приходится подбирать вручную

Низкая точность

Подложку нужно «ухудшать»

2. Приблизительный поиск Поиск ближайших соседей

Поиск ближайших соседей – алгоритм кластеризации. Для применения требуется нарезать подложку, поскольку мы не знаем соотношение масштабов подложки и кропа качество обнаружения существенно снижается.

В него подавались:

- Изображения, в том числе с «расчётными» новыми каналами
- Маски
- Процентное содержание классов
- Классы по маскам, где каждый класс это различная комбинация классов с масок

Минусы:

Недостаточная точность во всех случаях

2. Приблизительный поиск Поиск ближайших соседей - 2

Пример создания «очертаний» и кластеров по изображению – уменьшение различий между разномасштабными и трансформированными снимками. Для более успешного поиска применяется зумирование (для которого нужно предполагать разницу разрешения снимков)

2. Приблизительный поиск ML-маскирование

Был размечен датасет на классы: города, реки, леса Была написана свёрточная нейронная сеть для предсказания позиции классов

Минусы

Трудоёмкость разметки
Потребуется дообучать на других типах местности

3. Локальный поиск

С задачей локального поиска отлично справляется алгоритм ORB

Минусы:

Требуется найти кусочек на подложке, который большей частью перекрывается искомым изображением

Возможно, потребуется досчитывайте всех углов искомого изображения

Не успели проверить

Возможно, применение пары моделей ResNet + K-means и PCA может дать хороший результат по сравнению совсем другими методами. Однако, спутниковые снимки отливаются от обычных картинок именно интерпретируемостью значений каналов – лес не может быть красным, а здоровые растения отражают nir, не так как увядающие.

Более вероятно, итеративная проверка соседствующих классов на горизонтали/вертикали даст точные совпадения. Этот метод позволит сохранить интерпретируемость алгоритма на каждом шаге.

Общая логика, кажется, должна быть сохранена – сначала поиск приблизительного места, а после уточнение координат углов.

Предобработка

- Обработка выбросов
- Выделение классов/масок
- Расчёт данных по подложке

Приблизительный поиск

- Расчёт графа соседствующих классов
- Поиск ближайших классов по треугольнику
- Выделение границ и их сопоставление / маскирование городов
- Поиск ближайших соседей по:
 - Macкам (NDVI, EVI, RVI & ...) / Маскам (города, реки)
 - ML-выделенным классам
 - Процентному содержанию классов на снимке
 - Поиска минимума разностей изображений

Локальный поиск

• Точное позиционирование снимка на части подложки (ORB)