Routing

An Engineering Approach to Computer Networking

What is it?

- Process of finding a path from a source to every destination in the network
- Suppose you want to connect to Antarctica from your desktop
 - what route should you take?
 - does a shorter route exist?
 - what if a link along the route goes down?
 - what if you're on a mobile wireless link?
- Routing deals with these types of issues

Basics

 A routing protocol sets up a routing table in routers and switch controllers

ROUTING TABLE AT 1

Destination	Next hop	Destination	Next hop
1	_	7	2
2	2□	8□	20
3	3□	9□	20
4	3□	10□	2□
5	2□	11□	3□
6	2.	12	3

A node makes a *local* choice depending on *global* topology: this is the fundamental problem

Key problem

- How to make correct local decisions?
 - each router must know something about global state
- Global state
 - inherently large
 - dynamic
 - hard to collect
- A routing protocol must intelligently summarize relevant information

Outline

- Distance-vector routing
- Link-state routing
- Choosing link costs
- Hierarchical routing
- Internet routing protocols
- Routing within a broadcast LAN
- Multicast routing
- Routing with policy constraints
- Routing for mobile hosts

Distance vector routing

- Environment
 - links and routers unreliable
 - alternative paths scarce
 - traffic patterns can change rapidly
- Two key algorithms
 - distance vector
 - link-state
- Both assume router knows
 - address of each neighbor
 - cost of reaching each neighbor
- Both allow a router to determine global routing information by talking to its neighbors

Basic idea

- Node tells its neighbors its best idea of distance to every other node in the network
- Node receives these distance vectors from its neighbors
- Updates its notion of best path to each destination, and the next hop for this destination
- Features
 - distributed
 - adapts to traffic changes and link failures
 - suitable for networks with multiple administrative entities

Example

Why does it work

- Each node knows its true cost to its neighbors
- This information is spread to its neighbors the first time it sends out its distance vector
- Each subsequent dissemination spreads the truth one hop
- Eventually, it is incorporated into routing table everywhere in the network
- Proof: Bellman and Ford, 1957

Problems with distance vector

Count to infinity

Dealing with the problem

- Path vector
 - DV carries path to reach each destination
- Split horizon
 - never tell neighbor cost to X if neighbor is next hop to X
 - doesn't work for 3-way count to infinity (see exercise)
- Triggered updates
 - exchange routes on change, instead of on timer
 - faster count up to infinity
- More complicated
 - source tracing
 - DUAL