Universidad Tecnológica Nacional Facultad Regional Reconquista

Ingeniería Electromecánica

Año: 4° Diseño Curricular: 2004 - Ordenanza N°1029

Máquinas eléctricas

Resumen de transformadores

Alumno:

Melani Faulkner

1. Principio de funcionamiento de un transformador ideal

Para el análisis se toma que el transformador está alimentado por el lado de alta (el de + espiras) y trabaja como un reductor. Es decir que:

- 1) El primario trabaja como un recepto respecto a la fuente. (recibe I)
- 2) El secundario se comporta como un generador respecto a la carga conectada a sus bordes. (Entrega I)

Para un transformador ideal no existen pérdidas por Histéresis y corrientes parásitas y no existen flujos de dispersión (todo el flujo magnético enlaza al primario y secundario).

1.1. Transformador ideal sin carga

Realmente e_1 representa una f.c.e.m porque se opone a v_1 y limita la corriente de primario. La polaridad e_2 tiene en cuenta que, al cerrar el circuito, la corriente i_2 debe generar un flujo que se oponga el flujo primario que la originó. Es decir que, la f.m.m del secundario actúa en contra de la f.m.m primaria produciendo un efecto desmagnetizante sobre ésta.

Aplicando la 2° Ley de Kirchhoff al transformador ideal tenemos que:

$$v_1 = e_1 = N_1 \frac{d\Phi}{dt}$$
; $e_2 = v_2 = N_2 \frac{d\Phi}{dt}$

Si se parte de un flujo senoidal de la forma:

$$\Phi = \Phi_m \operatorname{sen} \omega t = \Phi_m \cos (\omega t - 90^\circ)$$

Haciendo la derivada del flujo y reemplazando en ?? tenemos:

$$v_1 = e_1 = N_1 \omega \Phi_m \cos \omega t$$
; $e_2 = v_2 = N_2 \omega \Phi_m \cos \omega t$

Comparando el flujo expresado en coseno y los voltajes podemos ver que los últimos van 90° adelantados respecto al flujo. Si calculamos sus **valores eficaces**:

$$V_{1} = E_{1} = \frac{N_{1}\omega\Phi_{m}}{\sqrt{2}} = 4,44 f N_{1}\Phi_{m}$$

$$V_{2} = E_{2} = \frac{N_{2}\omega\Phi_{m}}{\sqrt{2}} = 4,44 f N_{2}\Phi_{m}$$

Dividiendo entre sí las ecuaciones y simplificando resulta:

Alumno: Melani Faulkner Pág. 1

¹Porque si está abierto, sólo hay V, **no l**

$$\frac{V_1}{V_2} = \frac{E_1}{E_2} = \frac{N_1}{N_2} = m$$

donde el factor *m* se denomina **relación de transformación**.

Si el transformador está en **vacío** o **sin carga**, las pérdidas en el hierro P_{Fe} en el núcleo del transformador será:

$$P_{Fe} = V_1 I_0 \cos \phi_0 \tag{1}$$

donde V_1 y I_0 representa los valores eficaces de la tensión y la corriente. La corriente de vacío I_0 tiene dos componentes: una activa I_{Fe} y una reactiva I_{μ}

Figura 3.11. Diagrama fasorial de tensiones y corrientes en vacío.

1.2. Transformador ideal con carga

Si cerramos el interruptor S, el transformador funciona **en carga** y aparece una corriente i_2 que circula por el secundario.

$$\mathbf{I}_2 = \frac{\mathbf{E}_2}{\mathbf{Z}_L} = \frac{E_2 \ \angle \ 0^{\circ}}{Z_L \ \angle \ \varphi_2} = \frac{E_2}{Z_L} \ \angle \ -\varphi_2$$

La corriente $\mathbf{I_2}$ se retrasa ϕ_2 de la f.e.m $\mathbf{E_2}$

La corriente i_2 en el secundario produce una f.m.m. desmagnetizante N_2i_2 que se opone a la f.m.m primaria N_1i_0 . Para que el flujo no se vea reducido por este efecto , en el primario se genera una corriente adicional primaria i_2' con una f.m.m equivalente:

$$N_1 i_2' = N_2 i_2$$

de donde se deduce el valor de la corriente i_2^\prime adicional primaria:

$$i_2' = \frac{N_2}{N_1} i_2 = \frac{i_2}{m} \; ; \; m = \frac{N_1}{N_2}$$

La corriente total necesaria en el primario i_1 será igual a:

$$i_1 = i_0 + i_2' = i_0 + \frac{i_2}{m}$$

Alumno: Melani Faulkner Pág. 2

La ecuación nos indica que la corriente primaria i_1 tiene dos componentes:

- Una corriente de excitación o de vacío I_0 que produce el flujo en el núcleo magnético y vence las pérdidas en el hierro a través de sus componentes I_{μ} y I_{Fe} .
- Una componente de carga I'₂ que equilibra o contrarresta la acción desmagnetizante de la f.m.m secundaria para que el flujo en el núcleo permanezca constante e independiente de la carga. Esta se denomina corriente secundaria reducida.

A plena carga la corriente I_2' es 20 veces por lo menos mayor que I_0 por lo que puede despreciarse y la ecuación queda:

$$\mathbf{I}_{1} \approx \mathbf{I}_{2}' = \frac{\mathbf{I}_{2}}{m}$$

2. Funcionamiento de un transformador real

En el análisis de un trafo real se tiene en cuenta la resistencias R_1 y R_2 de los arrollamientos y los flujos de dispersión Φ_{d1} y Φ_{d2} que se cierran en el aire.

Si consideramos los flujos de dispersión desaparece la idea del flujo común único que existía en el transformador ideal. Si tomamos que Φ_1 y Φ_2 son los flujos totales que atraviesan los devanados primario y secundario y Φ es el flujo común a ambos se cumplirá:

$$\Phi_1 = \Phi + \Phi_{d1}$$
 ; $\Phi_2 = \Phi + \Phi_{d2}$

Para representar estas pérdidas agregamos las resistencias R_1 y R_2 y dos bobinas adicionales con núcleo de aire que representan los flujos de dispersión Φ_{d1} y Φ_{d2} donde se han indicado con L_{d1} y L_{d2} son los coeficientes de autoinducción, cuyos valores serán:

$$L_{d1} = N_1 \frac{d\Phi_{d1}}{di_1} \ ; \ L_{d2} = N_2 \frac{d\Phi_{d2}}{di_2}$$

y que dan lugar a las reactancias de dispersión X_1 y X_2 de ambos devanados:

$$X_1 = L_{d1}\omega$$
 ; $X_2 = L_{d2}\omega$

Figura 3.13. Transformador real con bobinas ideales en el núcleo.

La aplicación del 2° Ley de Kirchhoff a los circuitos primario y secundario nos da:

$$v_1 = e_1 + R_1 i_1 + L_{d1} \frac{di_1}{dt}$$
; $e_2 = v_2 + R_2 i_2 + L_{d2} \frac{di_2}{dt}$

Alumno: Melani Faulkner Pág. 3