T.D. 1 Systèmes de numération entière

Exercice 1

Représentez le nombre 248₁₀ dans les bases 2, 3, 8, 9 et 16.

(Utilisez la technique des divisions successives pour les bases 2, 3 et 16.)

Exercice 2

Représentez les nombres 1312₅, 1312₈, 2FA8₁₆ en base 10.

Exercice 3

Représentez les nombres 28₁₀, 129₁₀, 147₁₀, 255₁₀ sous leur forme binaire par une autre méthode que les divisions successives.

Exercice_4

- 1. Les nombres 11000010₂, 10010100₂, 11101111₂, 10000011₂, 10101000₂ sont-ils pairs ou impairs ?
- 2. Lesquels sont divisibles par 4, 8 ou 16?
- 3. Donnez le quotient et le reste d'une division entière par 2, 4 et 8 de ces nombres.
- 4. En généralisant, que suffit-il de faire pour obtenir le quotient et le reste d'une division entière d'un nombre binaire par 2ⁿ ?

Exercice 5

- 1. Si l'on désire multiplier un nombre binaire quelconque par 2 ou une puissance de 2, quelle autre opération peut-on réaliser pour éviter la multiplication ?
- 2. Multipliez le nombre binaire 10001001₂ par 3 et par 10 en utilisant la technique traditionnelle de la multiplication.
- 3. Si l'on désire multiplier un nombre binaire quelconque par 3 ou par 10, quelle méthode peut-on utiliser pour éviter la multiplication ?

Exercice 6

Donnez les valeurs décimales, minimales et maximales, que peuvent prendre des nombres signés et non signés codés sur 4, 8, 16, 32 et n bits.

Exercice 7

- 1. Combien faut-il de bits, au minimum, pour coder les nombres non signés 48965₁₀ et 9965245₁₀ ?
- 2. Combien faut-il de bits, au minimum, pour coder les nombres signés -5_{10} et 28_{10} ?

T.D. 1

Exercice 8

- 1. Représentez sous forme décimale le nombre 11111111₂ codé sur 8 bits signés.
- 2. Représentez sous forme décimale le nombre 11111111₂ codé sur 16 bits signés.
- 3. Représentez les opposés binaires et hexadécimaux, sur 8 bits signés, du nombre 80₁₀.
- 4. Représentez les opposés binaires et hexadécimaux, sur 16 bits signés, du nombre 80₁₀.

T.D. 1 2/2