

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCIS14050037403

FCC REPORT (WIFI)

Applicant: Canales Electronicos De Ventas SAS

Address of Applicant: Cra 51 # 9C Sur-85 Bodega 403 Medellin, Colombia

Equipment Under Test (EUT)

Product Name: Mobile Phone

Model No.: Kingo T5

FCC ID: 2ACHQ-KINGOT5

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 27 May 2014

Date of Test: 28 May to 11 Jun., 2014

Date of report issued: 11 Jun., 2014

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	11 Jun., 2014	Original

Prepared by: Date: 11 Jun., 2014

Report Clerk

Reviewed by: Date: 11 Jun., 2014

Project Engineer

3 Contents

			Page
1	CO	/ER PAGE	1
2	VER	SION	2
3		NTENTS	
4		T SUMMARY	
5	GEN	NERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T.	
	5.3	TEST ENVIRONMENT AND MODE	7
	5.4	LABORATORY FACILITY	8
	5.5	LABORATORY LOCATION	8
	5.6	TEST INSTRUMENTS LIST	9
6	TES	T RESULTS AND MEASUREMENT DATA	10
	6.1	ANTENNA REQUIREMENT:	10
	6.2	CONDUCTED EMISSION	
	6.3	CONDUCTED OUTPUT POWER	
	6.4	OCCUPY BANDWIDTH	
	6.5	POWER SPECTRAL DENSITY	
	6.6	BAND EDGE	
	6.6.		
	6.6.2 6.7		
	6.7.	Spurious Emission	
	6.7.		
7	• • • • • • • • • • • • • • • • • • • •	T SETUP PHOTO	
-			
8	EUT	CONSTRUCTIONAL DETAILS	69

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Pass: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	Canales Electronicos De Ventas SAS
Address of Applicant:	Cra 51 # 9C Sur-85 Bodega 403 Medellin, Colombia
Manufacturer :	Canales Electronicos De Ventas SAS
Address of Manufacturer:	Cra 51 # 9C Sur-85 Bodega 403 Medellin, Colombia

5.2 General Description of E.U.T.

Product Name:	Mobile Phone
Model No.:	Kingo T5
Operation Frequency:	2412MHz~2462MHz (802.11b/802.11g/802.11n(H20)) 2422MHz~2452MHz (802.11n(H40))
Channel numbers:	11 for 802.11b/802.11g/802.11(H20) 7 for 802.11n(H40)
Channel separation:	5MHz
Modulation technology: (IEEE 802.11b)	Direct Sequence Spread Spectrum (DSSS)
Modulation technology: (IEEE 802.11g/802.11n)	Orthogonal Frequency Division Multiplexing(OFDM)
Data speed (IEEE 802.11b):	1Mbps, 2Mbps, 5.5Mbps, 11Mbps
Data speed (IEEE 802.11g):	6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps,54Mbps
Data speed (IEEE 802.11n):	Up to 150Mbps
Antenna Type:	Internal Antenna
Antenna gain:	2dBi
AC adapter:	Input: AC 100-240V 50/60Hz 0.2A Output: DC 5V, 500mA
Power supply:	Rechargeable Li-ion Battery DC3.7V-1500mAh

Operation Frequency each of channel For 802.11b/g/n(H20)							
Channel Frequency Channel Frequency Channel Frequency Channel Frequency							
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz		

Operation Frequency each of channel For 802.11n(H40)								
Channel Frequency Channel Frequency Channel Frequency								
		4	2427MHz	7	2442MHz			
		5	2432MHz	8	2447MHz			
3	2422MHz	6	2437MHz	9	2452MHz			

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

802.11b/802.11g/802.11n (H20)

Channel	Frequency		
The lowest channel	2412MHz		
The middle channel	2437MHz		
The Highest channel	2462MHz		

802.11n (H40)

Channel	Frequency
The lowest channel	2422MHz
The middle channel	2437MHz
The Highest channel	2452MHz

5.3 Test environment and mode

Operating Environment:				
Temperature:	24.0 °C			
Humidity:	54 % RH			
Atmospheric Pressure:	1010 mbar			
Test mode:				
Operation mode	Keep the EUT in continuous transmitting with modulation			

The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	Data rate
802.11b	1Mbps
802.11g	6Mbps
802.11n(H20)	6.5Mbps
802.11n(H40)	13.5Mbps

Final Test Mode:

According to ANSI C63.4 standards, the test results are both the "worst case" and "worst setup" 1Mbps for 802.11b, 6Mbps for 802.11p, 6.5Mbps for 802.11n(H20) and 13.5 Mbps for 802.11n(H40). Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

● FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

■ IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.5 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

5.6 Test Instruments list

Radia	Radiated Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
1	3m Semi- Anechoic Chamber	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	July 09 2013	July 08 2014	
2	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	CCIS0005	Jun., 25 2013	Jun., 24 2014	
3	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA9120D	CCIS0006	Jun., 25 2013	Jun., 24 2014	
4	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	
5	Coaxial Cable	CCIS	N/A	CCIS0016	Apr. 01 2014	Mar. 31 2015	
6	Coaxial Cable	CCIS	N/A	CCIS0017	Apr. 01 2014	Mar. 31 2015	
7	Coaxial cable	CCIS	N/A	CCIS0018	Apr. 01 2014	Mar. 31 2015	
8	Coaxial Cable	CCIS	N/A	CCIS0019	Apr. 01 2014	Mar. 31 2015	
9	Coaxial Cable	CCIS	N/A	CCIS0087	Apr. 01 2014	Mar. 31 2015	
10	Amplifier(10kHz- 1.3GHz)	HP	8447D	CCIS0003	Apr. 01 2014	Mar. 31 2015	
11	Amplifier(1GHz- 18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	July 09 2013	July 08 2014	
12	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	Apr. 01 2014	Mar. 31 2015	
13	Horn Antenna	ETS-LINDGREN	3160	GTS217	Mar. 30 2014	Mar. 29 2015	
14	Printer	HP	HP LaserJet P1007	N/A	N/A	N/A	
15	Positioning Controller	UC	UC3000	CCIS0015	N/A	N/A	
16	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP	CCIS0023	Jun., 25 2013	Jun., 24 2014	
17	EMI Test Receiver	Rohde & Schwarz	ESPI	CCIS0022	Apr 01 2014	Mar. 31 2015	
18	Loop antenna	Laplace instrument	RF300	EMC0701	Aug. 12 2013	Aug. 11 2014	
19	Universal radio communication tester	Rhode & Schwarz	CMU200	CCIS0069	Jun., 25 2013	Jun., 24 2014	
20	Signal Analyzer	Rohde & Schwarz	FSIQ3	CCIS0088	Jun., 25 2013	Jun., 24 2014	

Cond	Conducted Emission:					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	July 09 2013	July 08 2014
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	Jun., 25 2013	Jun., 24 2014
3	LISN	CHASE	MN2050D	CCIS0074	Apr 01 2014	Mar. 31 2015
4	Coaxial Cable	CCIS	N/A	CCIS0086	Apr. 01 2014	Mar. 31 2015
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The antenna is an internal antenna which cannot replace by end-user, the best case gain of the antenna is 2dBi.

6.2 Conducted Emission

Test Requirement:	FCC Part15 C Section 15.207				
Test Method:	ANSI C63.4: 2003				
Test Frequency Range:	150 kHz to 30 MHz				
Class / Severity:	Class B				
Receiver setup:	RBW=9 kHz, VBW=30 kHz				
Limit:	Francisco de la companya (NALLE)	Limit (c	dBuV)		
	Frequency range (MHz)	Quasi-peak	Average		
	0.15-0.5	66 to 56*	56 to 46*		
	0.5-5	56	46		
	5-30	60	50		
Test procedure	* Decreases with the logarithm1. The E.U.T and simulators				
	 a line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2003 on conducted measurement. 				
Test setup:		ence Plane			
	AUX Equipment E.I Test table/Insulation pla	U.T EMI Receiver	er — AC power		
	E.U.T: Equipment Under Test				
	E.U.T: Equipment Under Test LISN: Line Impedence Stabilizatio Test table height=0.8m				
Test Instruments:	E.U.T. Equipment Under Test LISN: Line Impedence Stabilizatio Test table height=0.8m Refer to section 5.6 for details	s			
Test Instruments: Test mode: Test results:	E.U.T: Equipment Under Test LISN: Line Impedence Stabilizatio Test table height=0.8m	s			

Measurement Data

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Project No.: CCIS140500374RF

Page 11 of 69

Neutral:

Trace: 15

Site

: CCIS Shielding Room : FCC PART15 B QP LISN NEUTRAL : 374RF Condition

Job. no

: Mobile Phone EUT Model : Kingo T5 Test Mode : wifi mode
Power Rating : AC 120V/60Hz
Environment : Temp: 23 °C Huni:56% Atmos:101KPa
Test Engineer: Carey

Remark	:							
		Read	LISN	Cable		Limit	Over	
	Freq	Level	Factor	Loss	Level	Line	Limit	Remark
	MHz	dBu∀	₫B	₫B	dBu₹	dBu∜	₫B	
1	0.454	39.65	0.27	10.74	50.66	56.80	-6.14	QP
2	0.454	30.07	0.27	10.74	41.08	46.80	-5.72	Average
3	0.538	31.98	0.27	10.76	43.01	46.00	-2.99	Average
4	0.555	40.95	0.26	10.77	51.98	56.00	-4.02	QP
1 2 3 4 5 6 7 8 9	0.731	36.47	0.18	10.78	47.43	56.00	-8.57	QP
6	0.731	28.62	0.18	10.78	39.58	46.00	-6.42	Average
7	0.848	36.08	0.20	10.82	47.10	56.00	-8.90	QP
8	1.255	36.99	0.24	10.90	48.13	56.00	-7.87	QP
9	1.255	27.69	0.24	10.90	38.83	46.00	-7.17	Average
10	1.878	35.35	0.28	10.95	46.58	56.00	-9.42	QP
11	2.012	25.20	0.29	10.96	36.45	46.00	-9.55	Average
12	26.001	22.98	0.59	10.87	34.44	50.00	-15.56	Average

Line:

Site

: CCIS Shielding Room : FCC PART15 B QP LISN LINE Condition

Job. no : 374RF EUT : Mobile Phone : Kingo T5 Model Test Mode : wifi mode Power Rating : AC 120V/60Hz Test Mode

Environment: Temp: 23 °C Huni: 56% Atmos: 101KPa

Test Engineer: Carey

Remark

nark
erage
erage
erage
erage
95
erage
erage
6 6

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss

6.3 Conducted Output Power

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)		
Test Method:	ANSI C63.4:2003 and KDB558074		
Limit:	30dBm		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Toot Instruments:	Defends continue 5 C for details		
Test Instruments:	Refer to section 5.6 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		
Remark:	Test method refer to KDB558074 (DTS Measure Guidance) section 8.2, option 1.		

Measurement Data

T O	Max	kimum Conduct	1 ' · ' ' (1D · ·)	D		
Test CH	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(dBm)	Result
Lowest	16.95	12.51	12.53	10.80		
Middle	16.58	14.55	14.65	12.87	30.00	Pass
Highest	16.59	12.71	12.66	10.82		

Test plot as follows:

Highest channel

Highest channel

Highest channel

Highest channel

6.4 Occupy Bandwidth

Test Requirement:	FCC Part15 C Section 15.247 (a)(2)	
Test Method:	ANSI C63.4:2003 and KDB558074	
Limit:	>500kHz	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 5.6 for details	
Test mode:	Refer to section 5.3 for details	
Test results:	Passed	

Measurement Data

T	6dB Emission Bandwidth (MHz)					5 1
Test CH	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(kHz)	Result
Lowest	10.24	16.24	17.52	36.16		
Middle	10.24	16.40	17.36	36.16	>500	Pass
Highest	10.24	16.24	16.72	36.00		

T . (01)		99% Occupy	11. 2/111.	D 1		
Test CH	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(kHz)	Result
Lowest	12.88	16.48	17.60	35.84		
Middle	12.80	16.48	17.60	35.84	N/A	N/A
Highest	12.80	16.48	17.60	35.84		

Test plot as follows:

Test mode:6dB OBW 802.11b

Date: 31.MAY.2014 18:50:07

Lowest channel

Date: 31.MAY.2014 18:54:15

Middle channel

Date: 31.MAY.2014 18:56:52

Highest channel

Test mode:6dB OBW 802.11g

Date: 31.MAY.2014 19:00:01

Lowest channel

Date: 31.MAY.2014 19:01:51

Middle channel

Date: 31.MAY.2014 19:03:25

Highest channel

Test mode:6dB OBW

802.11n(H20)

Date: 31.MAY.2014 19:06:08

Lowest channel

Date: 31.MAY.2014 19:07:16

Middle channel

Date: 31.MAY.2014 19:08:53

Highest channel

Test mode:6dB OBW

802.11n(H40)

Date: 31.MAY.2014 19:11:19

Lowest channel

Date: 31.MAY.2014 19:12:40

Middle channel

Date: 31.MAY.2014 19:14:24

Highest channel

Test mode:99% OBW 802.11b

Date: 31.MAY.2014 19:16:56

Lowest channel

Date: 31.MAY.2014 19:17:37

Middle channel

Date: 31.MAY.2014 19:18:33

Highest channel

Test mode: 99% OBW 802.11g

Date: 31.MAY.2014 19:19:21

Lowest channel

Date: 31.MAY.2014 19:20:17

Middle channel

Date: 31.MAY.2014 19:21:38

Highest channel

Test mode: 99% OBW 802.11n(H20)

Date: 31.MAY.2014 19:22:46

Lowest channel

Date: 31.MAY.2014 19:23:26

Middle channel

Date: 31.MAY.2014 19:24:07

Highest channel

Test mode: 99% OBW 802.11n(H40)

Date: 31.MAY.2014 19:25:12

Lowest channel

Date: 31.MAY.2014 19:26:06

Middle channel

Date: 31.MAY.2014 19:26:50

Highest channel

6.5 Power Spectral Density

Test Requirement:	FCC Part15 C Section 15.247 (e)		
Test Method:	ANSI C63.4:2003 and KDB558074		
Limit:	8dBm		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.6 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Measurement Data

	Power Spectral Density (dBm)					
Test CH	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(dBm)	Result
Lowest	4.81	1.09	1.17	-3.51		
Middle	7.56	3.07	3.19	-1.28	8.00	Pass
Highest	7.52	1.30	1.35	-3.38		

Test plot as follows:

Test mode: 802.11b

Date: 11..TIIN.2014 21:21:12

Lowest channel

Date: 31.MAY.2014 19:30:21

Middle channel

Date: 31.MAY.2014 19:30:45

Highest channel

Test mode: 802.11g

Date: 31.MAY.2014 19:31:39

Lowest channel

Date: 31.MAY.2014 19:32:16

Middle channel

Date: 31.MAY.2014 19:33:38

Highest channel

Test mode: 802.11n(H20)

Date: 31.MAY.2014 19:34:23

Lowest channel

Date: 31.MAY.2014 19:35:06

Middle channel

Date: 31.MAY.2014 19:36:22

Highest channel

Test mode: 802.11n(H40)

Date: 31.MAY.2014 19:37:14

Lowest channel

Date: 31.MAY.2014 19:37:50

Middle channel

Date: 31.MAY.2014 19:38:31

Highest channel

6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)		
Test Method:	ANSI C63.4:2003 and KDB558074		
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table		
Test Instruments:	Ground Reference Plane		
	Refer to section 5.6 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Test plot as follows:

Lowest channel

Highest channel

Lowest channel

Highest channel

Lowest channel

Highest channel

Lowest channel

Highest channel

6.6.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Section 15.209 and 15.205				
Test Method:	ANSI C63.4: 2003				
Test Frequency Range:	2.3GHz to 2.5GHz				
Test site:	Measurement Distance: 3m				
Receiver setup:					
	Frequency	Detector	RBW	VBW	Remark
	Above 1GHz	Peak	1MHz	3MHz	Peak Value
I inche.	Peak		1MHz	10Hz	Average Value
Limit:	Freque	encv	Limit (dBuV/m @3m)		Remark
		•	54.00		Average Value
	Above 1GHz 1. The EUT was placed o		74.00		Peak Value
Test setup:	 The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data sheet. 				
	Spectrum Analyzer Turn Table A A A A A A A A A A A A A A A A A A				
Test Instruments:	Refer to section 5.6 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

802.11b

Test channel: Lowest

Horizontal:

Trace: 43

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

: 374RF Pro

EUT : Mobile Phone Model : Kingo T5
Test mode : Wifi B-L MODE
Power Rating : AC120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: Carey REMARK :

MAK	-		Antenna Factor					Remark
	MHz	dBm	<u>dB</u> /m	<u>d</u> B	 -dBm/m	-dBm/m	<u>d</u> B	
1 2	2390.000 2390.000							

Vertical:

Trace: 57

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : 374RF Condition

Pro

: Mobile Phone

Model : Kingo T5

Test mode : Wifi B-L MODE

Power Rating : AC120V/60Hz

Environment : Temp:25.5°C Huni:55%

Test Engineer: Carey

REMARK :

		Antenna Factor						Remark	
MHz	dBm	dB/m	dB	dB	dBm/m	dBm/m	<u>dB</u>		-
2390.000 2390.000									

Page 38 of 69

Test channel: Highest

Horizontal:

Trace: 73

Frequency (MHz)

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

: 374RF Pro EUT

: Mobile Phone Model : Kingo T5
Test mode : Wifi B-H MODE
Power Rating : AC120V/60Hz
Environment : Temp: 25.5°C Huni: 55%
Test Engineer : Correct

Test Engineer: Carey REMARK :

1 2

Freq			Cable Preamp Loss Factor					Remark
MHz	dBm	dB/m	dB	dB	dBm/m	dBm/m	dB	
2483.500 2483.500								

Vertical:

Trace: 59

Frequency (MHz)

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

: 374RF
EUT : Mobile Phone
Model : Kingo T5
Test mode : Wifi B-H MODE
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: Carey
REMARK :

 					Level			
MHz	dBm	dB/m	dB	dB	dBm/m	dBm/m	dB	
2483.500 2483.500								

802.11g

Test channel: Lowest

Horizontal:

Trace: 45

Frequency (MHz)

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : 374RF Condition

Pro

EUT : Mobile Phone Model : Kingo T5
Test mode : Wifi G-L MODE
Power Rating : AC120V/60Hz
Environment : Temp: 25.5°C Huni: 55%

Test Engineer: Carey

REMARK

Freq				Cable Preamp Loss Factor				
MHz	dBm	— <u>dB</u> /m	<u>dB</u>	<u>dB</u>	_dBm/m	_dBm/m		
2390.000 2390.000								

Vertical:

Trace: 55

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

: 374RF Pro

: Mobile Phone

Model : Kingo T5

Test mode : Wifi G-L MODE

Power Rating : AC120V/60Hz

Environment : Temp:25.5°C Huni:55%

Test Engineer: Carey

REMARK :

Freq	ReadAntenna Level Factor							Remark	
MHz	dBm	dB/m	<u>dB</u>	<u>dB</u>	_dBm/m	_dBm/m	<u>ab</u>		
2390.000 2390.000									

Test channel: Highest

Horizontal:

Trace: 71

Frequency (MHz)

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

Pro : 374RF

EUT : Mobile Phone Model : Kingo T5
Test mode : Wifi G-H MODE
Power Rating : AC120V/60Hz
Environment : Temp: 25.5°C Huni: 55%

Test Engineer: Carey

REMARK

	Freq	ReadAntenna Level Factor							Remark
	MHz	dBm	dB/m	<u>dB</u>	<u>dB</u>	_dBm/m	_dBm/m	<u>dB</u>	
1 2	2483.500 2483.500								

Vertical:

Trace: 61

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : 374RF Condition

Pro

EUT : Mobile Phone

Model : Kingo T5

Test mode : Wifi G-H MODE

Power Rating : AC120V/60Hz

Environment : Temp: 25.5°C H

Huni:55%

Test Engineer: Carey

REMARK

	Freq				Preamp Factor				Remark
	MHz	dBm	<u>dB</u> /m	<u>dB</u>	<u>dB</u>	_dBm/m	_dBm/m	<u>dB</u>	
1 2	2483.500 2483.500								

802.11n (H20) Test channel: Lowest

Horizontal:

Trace: 79

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

Pro : 383RF EUT : Mobile Phone

Model : Kingo T4

Test mode : Wifi N20-L MODE

Power Rating : AC120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: Carey

REMARK

1 2

 Freq		Antenna Factor						Remark	
 MHz	dBu∜	dB/m	<u>dB</u>	<u>dB</u>	dBuV/m	dBuV/m	<u>ab</u>		
 		27.58 27.58						Peak Average	

Vertical:

Trace: 85

Frequency (MHz)

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

Pro

: 383RF : Mobile Phone : Mobile Phone

Model : Kingo T4

Test mode : Wifi N20-L MODE

Power Rating : AC120V/60Hz

Environment : Temp:25.5°C Huni:55%

Test Engineer: Carey

REMARK :

1 2

Freq		ReadAntenna Level Factor				Limit Level Line		Remark
MHz	dBu∜	<u>dB</u> /m	<u>dB</u>	dB	dBuV/m	dBuV/m		
2390.000 2390.000								

Test channel: Highest

Horizontal:

Trace: 69

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : 374RF Condition

Pro EUT : Mobile Phone

Model : Kingo T5
Test mode : Wifi N20-H MODE
Power Rating : AC120V/60Hz
Environment : Temper 25.5°C Huni:55%

Test Engineer: Carey

REMARK

	Freq	ReadAntenna Level Factor							Remark	
	MHz	dBu∜	<u>dB</u> /m	<u>ab</u>	<u>dB</u>	dBuV/m	dBuV/m	<u>ab</u>		
_	2483.500 2483.500									

Vertical:

Trace: 63

Frequency (MHz)

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

: 374RF
EUT : Mobile Phone
Model : Kingo T5
Test mode : Wifi N20-H MODE
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: Carey
REMARK :

1 2

nai	Freq		intenna Factor						Remark	
	MHz	dBu∀	dB/m	<u>dB</u>	<u>ab</u>	dBuV/m	dBuV/m	<u>ab</u>		
			27.52 27.52						Peak Average	

802.11n (H40) Test channel: Lowest Horizontal:

Trace: 49

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

: 374RF Pro

EUT : Mobile Phone Model : Kingo T5
Test mode : Wifi N40-L MODE
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C Hur

Huni:55%

Test Engineer: Carey

REMARK

	Freq		Antenna Factor						Remark
	MHz	dBu∜	— <u>dB</u> /m	dB	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
1 2	2390.000 2390.000								

Vertical:

Trace: 51

Frequency (MHz)

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : 374RF Condition

Pro

EUT : Mobile Phone Model : Kingo T5
Test mode : Wifi N40-L MODE
Power Rating : AC120V/60Hz
Environment : Temp: 25.5°C Huni: 55%

Test Engineer: Carey REMARK :

1

Freq		Antenna Factor						
MHz	dBm	dB/m	<u>dB</u>	<u>dB</u>	_dBm/m	_dBm/m	<u>ab</u>	
2390.000 2390.000								

Test channel: Highest

Horizontal:

Trace: 67

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

Pro EUT 374RF

: Mobile Phone Model : Kingo T5
Test mode : Wifi N40-H MODE
Power Rating : AC120V/60Hz
Environment : Temp: 25.5°C Hur

Huni:55%

Test Engineer: Carey

REMARK

	Freq	ReadAntenna Level Factor							Remark	
	MHz	dBm	dB/m	<u>dB</u>	<u>dB</u>	_dBm/m	_dBm/m	<u>ab</u>		
1 2	2483.500 2483.500									

Vertical:

Trace: 65

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

: 374RF Pro

EUT : Mobile Phone : Kingo T5 : Wifi N40-H MODE Model Test mode Power Rating : AC120V/60Hz Environment : Temp:25.5°C

Huni:55%

Test Engineer: Carey

REMARK

יומונים					Preamp Factor				Remark	
	MHz	dBm	<u>dB</u> /m	dB		_dBm/m	_dBm/m	dB		-
1 2	2483.500 2483.500									

Remark:

- Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

6.7 Spurious Emission

6.7.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)								
Test Method:	ANSI C63.4:2003 and KDB558074								
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.								
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table								
Test Instruments:	Refer to section 5.6 for details								
Test mode:	Refer to section 5.3 for details								
Test results:	Passed								

Test plot as follows:

Test mode: 802.11b

Lowest channel

Date: 5.JUN.2014 15:18:49

30MHz~25GHz

Middle channel

Date: 5.JUN.2014 15:19:27

30MHz~25GHz

Highest channel

Date: 5.JUN.2014 15:20:05

30MHz~25GHz

Test mode: 802.11g

Lowest channel

Date: 5.JUN.2014 15:21:19

30MHz~25GHz

Middle channel

Date: 5.JUN.2014 15:22:02

30MHz~25GHz

Highest channel

Date: 5.JUN.2014 15:22:30

30MHz~25GHz

Test mode: 802.11n(H20)

Lowest channel

Date: 5.JUN.2014 15:23:46

30MHz~25GHz

Middle channel

Date: 5.JUN.2014 15:24:27

30MHz~25GHz

Highest channel

Date: 5.JUN.2014 15:25:15

30MHz~25GHz

Test mode: 802.11n(H40)

Lowest channel

Date: 5.JUN.2014 15:26:01

30MHz~25GHz

Middle channel

Date: 5.JUN.2014 15:26:35

30MHz~25GHz

Highest channel

Date: 5.JUN.2014 15:26:56

30MHz~25GHz

6.7.2 Radiated Emission Method

Test Requirement: FCC Part15 C Section 15.209 and 15.205									
Test Method:	ANSI C63.4:200)3							
Test Frequency Range:	9KHz to 25GHz								
Test site:	Measurement D	istance: 3m							
Receiver setup:									
'	Frequency	Detector	RBW	VBW	Remark				
	30MHz-1GHz	Quasi-peak	120KHz	300KHz	Quasi-peak Value				
	Above 1GHz	Peak	1MHz	3MHz	Peak Value				
	7.0010 101.1	Peak	1MHz	10Hz	Average Value				
Limit:	F		Limit (dD.A/)	/ @0\	Damada				
	Freque		Limit (dBuV/		Remark				
	30MHz-8 88MHz-21		40.0 43.5		Quasi-peak Value Quasi-peak Value				
	216MHz-9		46.0		Quasi-peak Value				
	960MHz-		54.0		Quasi-peak Value				
			54.0		Average Value				
	Above 1	GHZ	74.0)	Peak Value				
Test Procedure:	the ground to determin 2. The EUT wantenna, watower. 3. The antenrathe ground Both horizon make the numbers and to find the rust of the emission of the EUT have 10dB	at a 3 meter come the position ras set 3 meter with hich was mount to determine to the antender and vertical	amber. The toof the highests away from the on the too the maximum all polarizations was turned to the maximum Hamber of the maximum Hamber of the could be the co	table was rost radiation. The interfer op of a variation and the interfer op of a variation of the analysis of the analysis arranged to heights of the east Detect old Mode. It is mode was the stopped arise the eminone by one	rence-receiving able-height antenna our meters above the field strength. Intenna are set to anged to its worst from 1 meter to 4 the ees to 360 degrees				

Below 1GHz

Horizontal:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) HORIZONTAL : 374RF Condition

Pro EUT : Mobile Phone
Model : Kingo T5
Test mode : Wifi MODE
Power Rating : Allow/60Hz

Environment : Temp:25.5°C Test Engineer: Carey Huni:55%

REMARK

	Freq		Antenna Factor						Remark
-	MHz	dBu∀	dB/m	dB	dB	$\overline{dB} \overline{uV} / \overline{m}$	dBuV/m	dB	
3 4 5	30.317 34.276 92.462 160.346 264.746 465.599	38.34 32.77 36.63 33.30	12.41 8.67 12.22	0.47 0.92 1.33 1.67	29.95 29.56 29.13 28.51	21.16 16.54 17.50 18.68	40.00 43.50 43.50 46.00	-18.84 -26.96 -26.00 -27.32	QP QP QP QP

Vertical:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) VERTICAL Condition

: 374RF
EUT : Mobile Phone
Model : Kingo T5
Test mode : Wifi MODE
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: Carey
REMARK :

	Freq		Antenna Factor					Over Limit	Remark
	MHz	dBu∜	dB/m	dB	<u>ab</u>	$\overline{dBuV/m}$	dBuV/m	dB	
1 2 3 4 5	37.812 44.901 58.613 136.939 230.099 465.599	41.49 37.80 37.89 34.18	13.55 12.79 8.40 11.62	0.68 1.24 1.53	29.86 29.78 29.29 28.65	21.49 18.24 18.68	40.00 40.00 43.50 46.00	-14.26 -18.51 -25.26 -27.32	QP QP QP QP

Above 1GHz

Test mod	de:	3	302.11b	Test chan	nel:		Lowest	Rema	rk:	Peak	
Frequency (MHz)	Le	ad vel uV)	Antenna Factor (dB/m)	Factor Cable Loss		amp ctor B)	Level (dBuV/m)	Limit Line (dBuV/m)		· Limit IB)	Pol.
4824.00	60.	.14	31.53	8.90	40.	24	60.33	74.00	-13	3.67	Vertical
4824.00	59.	.74	31.53	8.90	40.	24	59.93	74.00	-14	1.07	Horizontal

Test mod	de:	802.11b		Test channel:		Lowest		Rem	ark:	Average	
Frequency (MHz)	Le	ad vel uV)	Antenna Factor (dB/m)	Factor Cable Loss		amp ctor B)	Level (dBuV/m)	Limit Lin (dBuV/m		r Limit dB)	Pol.
4824.00	39.	.41	31.53	8.90	40.	24	39.60	54.00	-14	4.40	Vertical
4824.00	38.	.45	31.53	8.90	40.	24	38.64	54.00	-19	5.36	Horizontal

Test mod	de:	3	302.11b	Test channel:			Middle	Rem	ark:	Peak	
Frequency (MHz)	1 1 0 1/2		Antenna Factor (dB/m)	Cable Loss (dB)		amp ctor B)	Level (dBuV/m)	Limit Lin (dBuV/m		r Limit dB)	Pol.
4874.00	59.	58	31.58	8.98	40.	.15	59.99	74.00	-14	4.01	Vertical
4874.00	59.	90	31.58	8.98	40.	.15	60.31	74.00	-13	3.69	Horizontal

Test mod	Test mode:		302.11b	Test channel:			Middle	Rema	rk:	Average	
Frequency (MHz)	' '		Antenna Factor (dB/m)	Cable Loss (dB)	Fac	amp ctor B)	Level (dBuV/m)	Limit Line (dBuV/m)		· Limit IB)	Pol.
4874.00	38	.46	31.58	8.98	40	.15	38.87	54.00	-15	5.13	Vertical
4874.00	39	.81	31.58	8.98	40	.15	40.22	54.00	-13	3.78	Horizontal

Test mod	de:	8	302.11b	Test chan	nel:	ŀ	Highest	Rema	ark:		Peak
Frequency (MHz)	Read (dBu		Antenna Factor (dB/m)	Cable Loss (dB)			Level (dBuV/m)	Limit Line (dBuV/m)		Limit B)	Pol.
4924.00	60.	18	31.69	9.08	40.03		60.92	74.00	-13	3.08	Vertical
4924.00	58.	86	31.69	9.08	40.	03	59.60	74.00	-14	1.40	Horizontal

Test mod	de:	8	02.11b	Test chan	nel:	ŀ	Highest	Rema	rk:	P	Average
Frequency (MHz)		Read Level (dBuV) Antenna Factor (dB/m)		Cable Loss (dB)	Prea Factor		Level (dBuV/m)	Limit Line (dBuV/m)		· Limit IB)	Pol.
4924.00	40.4	\'- ' /		40.	.03	41.20	54.00	-12	2.80	Vertical	
4924.00	39.9	98	31.69	9.08 40.		.03	40.72	54.00	-13	3.28	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mod	de:	802.11g	Test chan	nel:		Lowest	Remark	C:		Peak
Frequency (MHz)	Read Level (dBuV	Factor	Cable Loss (dB)	Prea Fac (d	•	Level (dBuV/m)	Limit Line (dBuV/m)		Limit B)	Pol.
4824.00	58.53	31.53	8.90	40.	24	58.72	74.00	-15	.28	Vertical
4824.00	57.78	31.53	8.90	40.	24	57.97	74.00	-16	.03	Horizontal

Test mod	de:	æ	302.11g	Test chan	nel:		Lowest	Remai	k:	F	Average
Frequency (MHz)	Le	ad vel uV)	Antenna Factor (dB/m)	Cable Loss (dB)	Prea Fac (dl	tor	Level (dBuV/m)	Limit Line (dBuV/m)		Limit IB)	Pol.
4824.00	39.	42	31.53	8.90	40.	24	39.61	54.00	-14	.39	Vertical
4824.00	38.	.89	31.53	8.90	40.	24	39.08	54.00	-14	.92	Horizontal

Test mod	de:	8	302.11g	Test chan	nel:		Middle	Rema	rk:		Peak
Frequency (MHz)	Read Level (dBuV)		Antenna Factor (dB/m)	Cable Loss (dB)	Fac	amp ctor B)	Level (dBuV/m)	Limit Line (dBuV/m)		· Limit IB)	Pol.
4874.00	60.	.48	31.58	8.98	40	.15	60.89	74.00	-13	3.11	Vertical
4874.00	58.	.71	31.58	8.98	40	.15	59.12	74.00	-14	1.88	Horizontal

Test mod	de:	3	302.11g	Test chan	nel:		Middle	Re	mark	(:	Д	verage
Frequency (MHz)	Le	ead vel suV)	Antenna Factor (dB/m)	Cable Loss (dB)	Fac	amp ctor B)	Level (dBuV/m)	Limit L (dBuV/	-		Limit B)	Pol.
4874.00	43	.05	31.58	8.98	40	.15	43.46	54.0	0	-10	.54	Vertical
4874.00	41	.89	31.58	8.98	40	.15	42.30	54.0	0	-11	.70	Horizontal

	Test mod	de:	8	02.11g	Test chan	nel:	H	Highest	R	emarl	< :		Peak
	Frequency (MHz)	Read Level (dBuV)		Antenna Factor (dB/m)	Cable Loss (dB)	Prea Facto	amp r (dB)	Level (dBuV/m)	Limit (dBu			· Limit IB)	Pol.
Ī	4924.00	61.	.84	31.69	9.08	40	.03	62.58	74.	00	-11	.42	Vertical
Ī	4924.00	58.	49	31.69	9.08	40	.03	59.23	74.	00	-14	1.77	Horizontal

	Test mod	de:	8	02.11g	Test chan	nel:	ŀ	Highest	Re	mark	(:	A	verage
	Frequency (MHz)	Read Level (dBuV)		Antenna Factor (dB/m)	Cable Loss (dB)	Prea Facto		Level (dBuV/m)	Limit L (dBuV			Limit B)	Pol.
Ī	4924.00	40.	.46	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		40.	.03	41.20	54.0	0	-12	.80	Vertical
Γ	4924.00	39.	.99	31.69	9.08	40.	.03	40.73	54.0	0	-13	3.27	Horizontal

Remark:

- 1.Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mod	le:	802	2.11(n20)	Test chan	nel:		Lowest	Rer	nark:		Peak
Frequency (MHz)	Read Level (dBuV)		Antenna Factor (dB/m)	Cable Loss (dB)	Prea Fac (d	tor	Level (dBuV/m)	Limit Li (dBuV/		er Limit (dB)	Pol.
4824.00	59.89		31.53	8.90	40.	24	60.08	74.00) -1	3.92	Vertical
4824.00	57	.11	31.53	8.90	40.	24	57.30	74.00) -1	6.70	Horizontal

Test mod	le:	80	2.11(n20)	Test chan	nel:		Lowest	Remarl	k:	F	Average
Frequency (MHz)	Read Level (dBuV)		Antenna Factor (dB/m)	Cable Loss (dB)	Prea Fac (d	ctor	Level (dBuV/m)	Limit Line (dBuV/m)	Over (dl	Limit B)	Pol.
4824.00	0 38.98 31.53		31.53	8.90	40.	24	39.17	54.00	-14	.83	Vertical
4824.00	38	.21	31.53	8.90	40.	24	38.40	54.00	-15	.60	Horizontal

Test mod	de:	802.11(n20)	Test chan	nel:		Middle	Remarl	< :		Peak
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Prea Fac (dl	tor	Level (dBuV/m)	Limit Line (dBuV/m)		Limit IB)	Pol.
4874.00	58.96	31.58	8.98	40.	15	59.37	74.00	-14	.63	Vertical
4874.00	56.54	31.58	8.98	40.	15	56.95	74.00	-17	'.05	Horizontal

Test mod	de:	802	2.11(n20)	Test chan	nel:		Middle	Rem	nark:		А	verage
Frequency (MHz)	Read Level (dBuV)		Antenna Factor (dB/m)	Cable Loss (dB)		amp ctor B)	Level (dBuV/m)	Limit Lin (dBuV/n	_	Over (dl		Pol.
4874.00	40	.17	31.58	8.98	40	15	40.58	54.00		-13	.42	Vertical
4874.00	39	.55	31.58	8.98	40	15	39.96	54.00		-14	.04	Horizontal

Test mod	de:	802	2.11(n20)	Test chan	nel:	ŀ	Highest	Remark:		Peak	
Frequency (MHz)	Read (dB	Level uV)	Antenna Factor (dB/m)	Cable Loss (dB)	Prea Facto		Level (dBuV/m)	Limit Line (dBuV/m)		r Limit IB)	Pol.
4924.00	57.	36	31.69	9.08	40.	.03	58.10	74.00	-15	5.90	Vertical
4924.00	56.	64	31.69	9.08	40.	.03	57.38	74.00	-16	6.62	Horizontal

	Test mod	est mode: 802.11(n20)		Test chan	Test channel:		Highest		Remark:			Average	
	Frequency (MHz)	Read (dB		Antenna Factor (dB/m)	Cable Loss (dB)			Level (dBuV/m)		Limit Line (dBuV/m)		Limit B)	Pol.
Ī	4924.00	39.	.55	31.69	9.08	40.	03	40.29	54.0	0	-13	3.71	Vertical
Ī	4924.00	37.	.46	31.69	9.08	40.	03	38.20	54.0	0	-15	.80	Horizontal

Remark

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mod	Test mode: 8		2.11(n40)	Test channel:			Lowest	Rema	ark:		Peak	
Frequency (MHz)	I AVAI Factor		Cable Loss (dB)	Prea Fac (d		Level (dBuV/m)	Limit Line		r Limit dB)	Pol.		
4844.00	58	.65	31.53	8.90	40.	24	58.84	74.00	-15	5.16	Vertical	
4844.00	56	.52	31.53	8.90	40.	24	56.71	74.00	-17	7.29	Horizontal	

Test mod	Test mode:		2.11(n40)	Test channel:			Lowest	Remark	C:	Average		
Frequency (MHz)	Le	ead vel BuV)	Antenna Factor (dB/m)	Cable Loss (dB)	oss Prea Fac (dE		Level (dBuV/m)	Limit Line (dBuV/m)	Over (dl	Limit B)	Pol.	
4844.00	38	.65	31.53	8.90	40.	24	38.84	54.00	-15	.16	Vertical	
4844.00	38	.68	31.53	8.90	40.	24	38.87	54.00	-15	.13	Horizontal	

Test mod	Test mode: 80		2.11(n40)	Test chan	nel:		Middle	Ren	nark:		Peak	
Frequency (MHz)	Rea Leve (dBu	el	Antenna Factor (dB/m)	(dB) Fa		amp ctor B)	Level (dBuV/m)	Limit Lir (dBuV/r		r Limit dB)	Pol.	
4874.00	55.8	37	31.58	8.98	40	.15	56.28	74.00	-1	7.72	Vertical	
4874.00	53.4	19	31.58	8.98	40	.15	53.90	74.00	-2	0.10	Horizontal	

Test mod	Test mode: 80		2.11(n40)	Test chan	nel:		Middle	Remark:			Average
Frequency (MHz)	. , 6//6		Antenna Factor (dB/m)	Cable Loss (dB)	Fac	amp ctor B)	Level (dBuV/m)	Limit Lir (dBuV/r	_	ver Limit (dB)	Pol.
4874.00	41	.13	31.58	8.98	40	.15	41.54	54.00		12.46	Vertical
4874.00	40	.46	31.58	8.98	40	.15	40.87	54.00		13.13	Horizontal

	Test mod	est mode: 802.11(n40)		Test chan	Test channel:		Highest		Remark:		Peak		
	Frequency (MHz)	Read (dB		Antenna Factor (dB/m)	Cable Loss (dB)			Level (dBuV/m)				Limit B)	Pol.
Ī	4904.00	58.	45	31.69	9.08	40	.03	59.19	74.0	0	-14	.81	Vertical
Ī	4904.00	56.	29	31.69	9.08	40	.03	57.03	74.0	0	-16	5.97	Horizontal

	Test mod	st mode: 802.11(n40)		Test chan	Test channel:		Highest		Remark:			Average	
	Frequency (MHz)	Read (dB	Level uV)	Antenna Factor (dB/m)	Cable Loss (dB)	Prea Facto	•	•		ine /m)		Limit B)	Pol.
Ī	4904.00	38.	.45	31.69	9.08	40.	.03	39.19	54.0	0	-14	.81	Vertical
Ī	4904.00	38.	.72	31.69	9.08	40.	.03	39.46	54.0	0	-14	.54	Horizontal

Remark

- 1.Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.