Linear Regression Models

Paweł Polak

Septmeber 6, 2017

Linear Regression Models - Lecture 1

Course Description

Meetings Time & Location Monday and Wednesday 2:40 PM - 3:55 PM, 501 Northwest Corner Building

- Instructor: Paweł Polak
 - Office Building: 1255 Amsterdam Ave, Room 928 (SSW, 9th floor)
 - Office Hours: 4:30 PM 6:00 PM, Monday (please send me an email if you plan to come)
 - E-mail: pp2501@columbia.edu
 (please start the title of the email with [GU4205] or [GR5205])
- Teaching Assistant: Tong Li
 - Office Hours: 13:00-14:30 on Thursdays at the lounge room of the Stat Department (10th floor in School of Social Work).
 - E-mail: tl2794@columbia.edu
 (please start the title of the email with [GU4205] or [GR5205] and Cc me)

Course Description

Course content:

- Theory and practice of regression analysis.
- Simple and multiple regression: estimation, testing, and confidence procedures.
- Modeling, regression diagnostics and plots.
- Polynomial regression.
- Collinearity and confounding.
- Model selection.
- Geometry of least squares.
- Shrinkage and Selection Methods (Ridge, LASSO, Elastic Net).
- Introduction to GLM, and PCA.

Course Description

Materials:

- Slides from the lecture & homework materials.
- Textbook:
 - Applied Linear Regression Models (ALRM) (4th Ed.) by Kutner, Nachtsheim, and Neter.
- Additional Readings:
 - Statistical Inference by George Casella and Roger L. Berger;
 - The Elements of Statistical Learning: Data Mining, Inference, and Prediction by Trevor Hastie, Robert Tibshirani, and Jerome Friedman (the book is available here: http://statweb.stanford.edu/~tibs/ElemStatLearn/).

Course Outline

- Single variable linear regression:
 - Least squares
 - Maximum likelihood, normal model
 - Tests / inferences
 - ANOVA
 - Diagnostics
 - Remedial Measures

Course Outline

- Multiple linear regression and other related topics:
 - Multiple linear Regression
 - Linear algebra review
 - Matrix approach to linear regression
 - Multiple predictor variables
 - Diagnostics
 - Tests
 - Model selection
 - Shrinkage and Selection Methods for Linear Regression (Ridge, LASSO and Elastic Net)
 - Principle Component Analysis
 - Generalized Linear Models

Requirements

- Calculus
 - Derivatives, gradients, convexity
- Linear Algebra
 - Matrix notation, inversion, eigenvectors, eigenvalues, rank
- Probability and Statistics (Appendix A in ALRM book)
 - Random variable
 - Expectation, variance
 - Estimation
 - Bias/Variance
 - Basic probability distributions
 - Hypothesis Testing
 - Confidence Interval.

Software

- R: The R Project for Statistical Computing.
- MATLAB: The Language of Technical Computing.
- Python: High-level, Interpreted, Dynamic Programming Language
- All the examples in the lectures will be made in R or MATLAB.
- For homework you can use R, MATLAB or Python depending on your preference.

Homeworks

- Homeworks (30%)
 - There will be 4-6 HW assignments.
 - Collaboration is allowed in solving the problems, but each student should hand in her or his own independently written solutions.
 - DUE: one week time
 - Homework must be submitted in class.
 - HW cannot be submitted to your TA by e-mail.
 - Please do not contact the TA or the grader directly concerning your grades.
 - Please write [GU4205] or [GR5205] in the subject heading of all e-mail correspondence with instructor/TA. (This is in general effective in weeding out spam email.)
 - No late homework accepted.
 - Lowest score will be dropped.

Grading: 30/25/45

- 30% Homeworks.
- 25% midterm exam (in class):
 - TBA
- 45% final (in class):
 - TBA, (Consult Student Services Online for Final Exam Schedule).
- Exams are closed-book, closed-notes. One double-sided cheat sheet is allowed for each exam.
- An Important Note: no make-up exams will be given.
- The final letter grade depends on your performance in homeworks, midterm, and final exam.

Simple Linear Regression

Why (Linear) Regression?

- Suppose we observe N values of two quantities (e.g. weights and hights of a group of people):
 - $\mathbf{Y} = (Y_1, \dots, Y_N)$ the **dependent** variable, the **regressand**, the **response** variable, the **output** variable, **predicted** variable, and
 - $X = (X_1, ..., X_N)$ the independent variable, the regressor, the explanatory variable, the input variable, predictor variable, the exogenous variable, the covariate.
- The observed values of the pair (Y, X) are called the sample or the data.
- If we know a function relation between Y, and X, then we can write that

$$\mathbf{Y} = f(\mathbf{X}),$$

e.g., \mathbf{X} is a number of units sold, \mathbf{Y} is dollar sales, and the price of the product is fixed at p, then

$$\mathbf{Y} = p\mathbf{X}$$
 for given $p > 0$.

Why (Linear) Regression?

- But (i) the real world is noisy, (ii) perhaps there are other unobserved variables which influence \mathbf{Y} , and (iii) the relation between the variables might not be known exactly, i.e., how do you determine f? (e.g., think about the relation between the weight and the hight).
- We have two goals in mind:
 - Estimation: Understanding the relationship between the predictor variable X, and the response variable Y.
 - (2) Prediction: Predicting the future response given the new observed predictors.
- ullet A **model** is a set of restrictions $\mathcal R$ on the joint distribution of the data dependent and independent variables

$$(\mathbf{Y}, \mathbf{X}) \sim f_{(\mathbf{Y}, \mathbf{X})} \in \mathcal{R}.$$

Why (Linear) Regression?

• Linear regression is a model which restricts the joint distribution $f_{(\mathbf{Y},\mathbf{X})}$ by imposing a linear relationship between $\mathbf{Y}=(Y_1,\ldots,Y_N)$ and $\mathbf{X}=(X_1,\ldots,X_N)$, i.e.,

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$$
, for $i = 1, \dots, N$,

where β_0 and β_1 are unknown parameters to be estimated, and ε_i is the *unobserved* random error term.

- It is called a Simple Linear Regression model because there is only one explanatory variable X.
- For more than one explanatory variable, e.g., X_1, \ldots, X_K , the model is called **Multiple Linear Regression**

$$Y_i = \beta_0 + \beta_1 X_{i,1} + \beta_2 X_{i,2} + \dots + \beta_K X_{i,K} + \varepsilon_i$$
, for $i = 1, \dots, N$.

History

- Authors who made substantial contributions are (among others):
 - Adrien-Marie Legendre (1805) and later Carl Friedrich Gauss (1809) developed the least-squares method;
 - The term "regression" was coined by Sir Francis Galton in the late 19th century to describe a biological phenomenon;
 - Cauchy introduced the idea of orthogonality;
 - Chebyshev applied it to polynomial models;
 - Pizzetti found the distribution of the sum of squares of the residuals on the Normal assumption;
 - Karl Pearson (1897), (1903) linked the model with the multivariate Normal thereby broadening the field of applications; and
 - R. A. Fisher (1922) and (1925), extended the orthogonality to qualitative comparisons, and laid the foundations of the modern theory of experimental design; and many others.
- Computational aspect: Before 1970, it sometimes took up to 24 hours to receive the result from one regression.

Example 1: Stock Prices

Example 1: Stock Prices

Example 1: Stock Prices

- mean: 0.0470, 0.0348; median: 0.0344, 0; std. dev.: 1.6813, 1.9755,
- skewness: 0.4763, 0.4708; kurtosis: 9.5307, 10.1892.

Example 2: Education vs. Wage in a Bank

- 474 observations on education (in terms of finished years of education) and salary (in logarithms),
- each point in the scatter plot corresponds to the education and salary of an employee,
- on average salaries are higher for higher educated people,
- however, for fixed level of education there remains much variation in salaries.

Example 3: Coffee Sales

- 12 observations on price and quantity sold of a brand of coffee,
- the data were obtained from a controlled marketing experiment in stores in Paris,
- the price is index with value 1 for a usual price, two price actions are investigated, with reduction 5% or 15% of the usual price,
- the quantity sold is in units of coffee per week,
- clearly, lower prices result in higher sales,
- further for a fixed price there remains variation in sales (different values on the vertical axis).

Example 4: Hight vs. Weight

Figure from Weight-Height Relationship of Young Men and Women by D. W. Sargent, American Journal of Clinical Nutritions (1963).

- example of piecewise regression model, the average relation between height and weight from birth to maturity for men and women.
- in each segment the relation is estimated by a linear regression model.
- each segment has a different constant and relative rate of increase.
- what if we would fit a linear regression model to the whole set of data?

Simple Linear Regression Model

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$$
, for $i = 1, ..., N$,

where

- Y_i value of the dependent variable for i = 1, ..., N,
- X_i value of the explanatory variable for i = 1, ..., N,
- ullet eta_0 and eta_1 are unknown parameters to be estimated, and
- ε_i is the *unobserved* random error term with mean $\mathbb{E}(\varepsilon_i) = 0$ and variance $\text{Var}(\varepsilon_i) = \sigma^2$,
- ε_i and ε_j are uncorrelated, for $i \neq j$, $i, j = 1, \dots, N$.

Properties

The expected value of the predicted variable is

$$\mathbb{E}(Y_i) = \mathbb{E}(\beta_0 + \beta_1 X_i + \varepsilon_i)$$

$$= \beta_0 + \beta_1 X_i + \mathbb{E}(\varepsilon_i)$$

$$= \beta_0 + \beta_1 X_i,$$

since $\mathbb{E}\left(\varepsilon_{i}\right)=0$.

Expectation Review

• Let X be a random variable with probability density function f(x), if $\int |x| f(x) dx < \infty$, then the expected value of X is defined as

$$\mathbb{E}\left(X\right)=\int xf\left(x\right)\mathrm{d}x.$$

- Expected value is linear, i.e.,
 - (i) $\mathbb{E}(aX) = a\mathbb{E}(X)$ for any $a \in \mathbb{R}$
 - (ii) $\mathbb{E}(aX + bY) = a\mathbb{E}(X) + b\mathbb{E}(Y)$ for any $a, b \in \mathbb{R}$

Example: Expectation Derivation

Suppose p.d.f. of X is $f(x) = 2x, 0 \le x \le 1$, then

$$\mathbb{E}(X) = \int_0^1 xf(x) dx$$
$$= \int_0^1 2x^2 dx$$
$$= \frac{2}{3}x^3 \mid_0^1$$
$$= \frac{2}{3}.$$

Example: Expectation Derivation for Normal Distribution

Suppose $X \sim N(\mu, \sigma^2)$, then

$$\mathbb{E}(X) = \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{\infty} x \mathrm{e}^{-\frac{1}{2}\frac{(x-\mu)^2}{\sigma^2}} \mathrm{d}x \quad (\text{setting } z = x - \mu)$$

$$= \underbrace{\frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{\infty} z \mathrm{e}^{-\frac{z^2}{2\sigma^2}} \mathrm{d}z}_{\text{expected value of N}(0, \sigma^2)} \underbrace{\frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{\infty} \mathrm{e}^{-\frac{z^2}{2\sigma^2}} \mathrm{d}z}_{1}$$

$$= 0 + \mu = \mu.$$

Expectation of a Product of Random Variables

If X, Y are random variables with joint density function f(x, y), then the expectation of the product is given by

$$\mathbb{E}(XY) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xy \ f(x, y) \, dx dy.$$

• If X and Y are independent with density function f_X and f_Y , respectively, then $f(x, y) = f_X(x) f_Y(y)$. Hence,

$$\mathbb{E}(XY) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xy \ f(x, y) \, dx dy$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xy \ f_X(x) \, f_Y(y) \, dx dy$$

$$= \int_{-\infty}^{\infty} y \ f_Y(y) \left\{ \int_{-\infty}^{\infty} x \ f_X(x) \, dx \right\} dy$$

$$= \int_{-\infty}^{\infty} y \ f_Y(y) \mathbb{E}(X) \, dy$$

$$= \mathbb{E}(X) \int_{-\infty}^{\infty} y \ f_Y(y) \, dy = \mathbb{E}(X) \mathbb{E}(Y).$$

Regression Function

Since,

$$\mathbf{Y} = \beta_0 + \beta_1 \mathbf{X} + \boldsymbol{\varepsilon}$$
, and $\mathbb{E}(\boldsymbol{\varepsilon}) = \mathbf{0}$,

then

 \bullet the response Y_i comes from a probability distribution with mean

$$\mathbb{E}(Y_i) = \beta_0 + \beta_1 X_i,$$

 this means that the regression function provides the mean of Y for a given X,

$$\mathbb{E}\left(\mathbf{Y}\right) = \beta_0 + \beta_1 \mathbf{X},$$

• the predicted variable Y_i differs from the value of the regression function by the error term amount ε_i

$$\varepsilon_{i}=Y_{i}-\mathbb{E}\left(Y_{i}\right) .$$

Variance (Second Central Moment) Review

• Discrete distributions: Let X be a random variable with $\mathbb{P}(X = x_i)$, for i = 1, ..., N, if $\sum_{i=1}^{N} x_i^2 \mathbb{P}(X = x_i) < \infty$, then the variance of X is defined as

$$\operatorname{Var}(X) = \mathbb{E}\left(\left(X - \mathbb{E}(X)\right)^{2}\right) = \sum_{i=1}^{N} \left(x_{i} - \mathbb{E}(X)\right)^{2} \mathbb{P}\left(X = x_{i}\right).$$

• Continuous distributions: Let X be a random variable with probability density function f(x), if $\int x^2 f(x) dx < \infty$, then the variance of X is defined as

$$\operatorname{Var}(X) = \mathbb{E}\left(\left(X - \mathbb{E}(X)\right)^2\right) = \int \left(x - \mathbb{E}(X)\right)^2 f(x) dx.$$

Note that

$$Var(X) = \mathbb{E}\left(\left(X - \mathbb{E}(X)\right)^{2}\right)$$
$$= \mathbb{E}\left(X^{2}\right) - 2\mathbb{E}(X)\mathbb{E}(X) + (\mathbb{E}(X))^{2}$$
$$= \mathbb{E}\left(X^{2}\right) - (\mathbb{E}(X))^{2}.$$

Example of Variance Derivation

Suppose p.d.f. of X is $f(x) = 2x, 0 \le x \le 1$, then

$$Var(X) = \mathbb{E}(X^{2}) - (\mathbb{E}(X))^{2}$$

$$= \int_{0}^{1} 2xx^{2} dx - \left(\frac{2}{3}\right)^{2}$$

$$= \frac{2x^{4}}{4} |_{0}^{1} - \frac{4}{9}$$

$$= \frac{1}{2} - \frac{4}{9}$$

$$= \frac{1}{18}.$$

Example Variance of Normal Distribution

Suppose
$$X \sim \mathbb{N}\left(\mu,\sigma^2\right)$$
, we have seen that $\mathbb{E}\left(X\right) = \mu$. Then
$$\operatorname{Var}\left(X\right) = \mathbb{E}\left(X - \mu\right)^2 = \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{\infty} (x - \mu)^2 \, \mathrm{e}^{-\frac{1}{2}\frac{(x - \mu)^2}{\sigma^2}} \, \mathrm{d}x$$
 (setting $z = (x - \mu)/\sigma$)
$$= \sigma^2 \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} z^2 \mathrm{e}^{-\frac{z^2}{2}} \, \mathrm{d}z$$
 variance of $\mathbb{N}\left(0,1\right)$
$$= \sigma^2.$$

Variance Properties

- $Var(aX) = a^2 Var(X)$,
- $Var(aX + bY) = a^2Var(X) + b^2Var(Y)$, if X and Y are independent,
- $Var(aX + b) = a^2Var(X)$, if a and b are constant,
- More generally

$$\operatorname{Var}\left(\sum_{i}a_{i}X_{i}\right)=\sum_{i}\sum_{j}a_{i}a_{j}\operatorname{Cov}\left(X_{i},X_{j}\right).$$

Covariance

The covariance between two real-valued random variables X an Y, with expected values $\mathbb{E}(X) = \mu$ and $\mathbb{E}(Y) = \nu$, is defined as

$$Cov(X, Y) = \mathbb{E}((X - \mu)(Y - \nu))$$
$$\mathbb{E}(XY) - \mu\nu.$$

If X is independent of Y, then $\mathbb{E}(XY) = \mathbb{E}(X)\mathbb{E}(Y) = \mu\nu$. Hence,

$$\mathsf{Cov}\left(X,\,Y\right) =0,$$

for independent random variables.

Response Variance

Since,

$$\mathbf{Y} = \beta_0 + \beta_1 \mathbf{X} + \boldsymbol{\varepsilon}$$
, and $\mathbb{E}(\boldsymbol{\varepsilon}) = \mathbf{0}$,

then

$$\operatorname{Var}(Y_i) = \operatorname{Var}\left(\underbrace{\beta_0 + \beta_1 X_i}_{\text{constant}} + \varepsilon_i\right)$$

$$= \operatorname{Var}(\varepsilon_i)$$

$$= \sigma^2.$$

Simple Linear Regression Model

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$$
, for $i = 1, \dots, N$,

where

- Y_i value of the dependent variable for i = 1, ..., N,
- X_i value of the explanatory variable for i = 1, ..., N,
- ullet eta_0 and eta_1 are unknown parameters to be estimated, and
- ε_i is an unobserved, random error term with mean $\mathbb{E}(\varepsilon_i) = 0$ and variance $\text{Var}(\varepsilon_i) = \sigma^2$,
- ε_i and ε_j are uncorrelated, for $i \neq j$, $i, j = 1, \dots, N$.

Properties of Simple Linear Regression Model

The expected value of the predicted variable is

$$\mathbb{E}(Y_i) = \mathbb{E}(\beta_0 + \beta_1 X_i + \varepsilon_i) = \beta_0 + \beta_1 X_i + \mathbb{E}(\varepsilon_i) = \beta_0 + \beta_1 X_i,$$

since $\mathbb{E}\left(\varepsilon_{i}\right)=0$

• This means that the regression function provides the mean of Y for a given X,

$$\mathbb{E}\left(\mathsf{Y}\right) = \beta_{\mathsf{0}} + \beta_{\mathsf{1}} \mathsf{X}.$$

The variance of the predicted variable is given by

$$\operatorname{Var}(Y_i) = \operatorname{Var}\left(\underbrace{\beta_0 + \beta_1 X_i}_{\text{constant}} + \varepsilon_i\right) = \operatorname{Var}(\varepsilon_i) = \sigma^2.$$

• The predicted variable Y_i differs from the value of the regression function by the error term amount ε_i

$$\varepsilon_i = Y_i - \mathbb{E}(Y_i)$$
.

• The error terms are assumed to be uncorrelated, $Cov(\varepsilon_i, \varepsilon_j) = 0$. So the predicted variables are uncorrelated, $Cov(Y_i, Y_j) = 0$.

Meaning of Regression Parameters

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$$
, for $i = 1, \dots, N$,

- β_0 and β_1 are called **regression coefficients**:
 - β_1 is the *slope* of the regression line. It indicates the change in the mean of the predicted variable Y per unit increase in X.
 - β_0 is the *intercept* of the regression line. When it is possible that X=0, then β_0 gives the mean of Y at X=0. If it is not possible that X=0, then β_0 has no interpretation.
- We do not know the values of the regression coefficients, and we need to estimate them from the data.

Density of Y_i & Interpretation of Regression Parameters

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$$
, for $i = 1, \dots, N$,

- β₀ and β₁ are called regression coefficients:
 - β_1 is the slope of the regression line. It indicates the change in the mean of the predicted variable Y per unit increase in X.
 - β_0 is the intercept of the regression line. When it is possible that X=0, then β_0 gives the mean of Y at X=0. If it is not possible that X=0, then β_0 has no interpretation.
- We do not know the values of the regression coefficients, and we need to estimate them from the data (Y, X).

Estimation of Regression Function

- Given the data (Y_i, X_i) , for i = 1, ..., N, we want to find "good" estimators of the regression parameters β_0 and β_1 .
- We could search for β_0 and β_1 which minimize:
 - (1) Least Absolute Deviations

$$Q_1(\beta_0, \beta_1) = \sum_{i=1}^{N} |Y_i - \beta_0 - \beta_1 X_i|$$

(2) Least Squares

$$Q_2(\beta_0, \beta_1) = \sum_{i=1}^{N} (Y_i - \beta_0 - \beta_1 X_i)^2$$

What is the difference between these two criteria?

Illustration of Least Squares Criterion Q_2

Figure 1.9 in ALRM book.

- ullet The regression line in Figure (a) uses regression coefficients $eta_0=9$ and $eta_1=0$
- Clearly the regression line in Figure (a) is not a good fit. It has very large deviations for two of the observations.
- The regression line in Figure (b) has much better fit, as indicated by the least squares criterion Q_2 .

Least Squares Minimization

$$\{b_0, b_1\} = \arg\min_{\beta_0, \beta_1} Q_2(\beta_0, \beta_1),$$

where
$$Q_2(\beta_0, \beta_1) = \sum_{i=1}^{N} (Y_i - \beta_0 - \beta_1 X_i)^2$$
.

• Find partial derivatives and set both equal to zero:

$$rac{\partial Q_2}{\partial eta_0} = 0, ext{ and } rac{\partial Q_2}{\partial eta_1} = 0.$$

In result we obtain the normal equations.

$$\sum_{i=1}^{N} Y_i = Nb_0 + b_1 \sum_{i=1}^{N} X_i$$

$$\sum_{i=1}^{N} X_i Y_i = b_0 \sum_{i=1}^{N} X_i + b_1 \sum_{i=1}^{N} X_{i}^2.$$

• b_0 and b_1 are called the estimators of β_0 and β_1 , respectively.

Deriving Normal Equations

$$\frac{\partial Q_2}{\partial \beta_0} = -2 \sum_{i=1}^{N} (Y_i - \beta_0 - \beta_1 X_i) \qquad \frac{\partial Q_2}{\partial \beta_1} = -2 \sum_{i=1}^{N} X_i (Y_i - \beta_0 - \beta_1 X_i)$$

$$\frac{\partial Q_2}{\partial \beta_0} = 0 \qquad \frac{\partial Q_2}{\partial \beta_1} = 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\sum_{i=1}^{N} (Y_i - b_0 - b_1 X_i) = 0 \qquad \sum_{i=1}^{N} X_i (Y_i - b_0 - b_1 X_i) = 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\sum_{i=1}^{N} Y_i - Nb_0 - b_1 \sum_{i=1}^{N} X_i = 0 \qquad \sum_{i=1}^{N} X_i Y_i - b_0 \sum_{i=1}^{N} X_i - b_1 \sum_{i=1}^{N} X_i^2 = 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\sum_{i=1}^{N} Y_i = Nb_0 + b_1 \sum_{i=1}^{N} X_i \qquad \sum_{i=1}^{N} X_i Y_i = b_0 \sum_{i=1}^{N} X_i + b_1 \sum_{i=1}^{N} X_i^2$$

Using the second partial derivatives we can show that a minimum is obtained with the least squares estimators b_0 and b_1 .

Solution to Normal Equations

The normal equations can be solved simultaneously for b_0 and b_1 to get

$$b_1 = \frac{\sum_{i=1}^{N} (X_i - \bar{X}) (Y_i - \bar{Y})}{\sum_{i=1}^{N} (X_i - \bar{X})^2} \quad \text{and} \quad b_0 = \bar{Y} - b_1 \bar{X}$$

where
$$\bar{Y} = \frac{1}{N} \sum_{i=1}^{N} Y_i$$
 and $\bar{X} = \frac{1}{N} \sum_{i=1}^{N} X_i$.

Model Error Term vs. the Residuals

• The model error term is the difference between the observed value of the predicted variable Y_i and unknown regression line

$$\varepsilon_i = Y_i - \mathbb{E}(Y_i) = Y_i - \beta_0 - \beta_1 X_i$$
.

• The residual is the difference between the observed value of the predicted variable Y_i and the corresponding fitted value \widehat{Y}_i

$$e_i = Y_i - \widehat{Y}_i = Y_i - b_0 - b_1 X_i.$$

- Model error is unknown/unobserved.
- The residual can be computed from the estimated model.

Properties of Fitted Regression Line

(1) The sum of the residuals is zero:

$$\sum_{i=1}^{N} e_i = 0.$$

- (2) The sum of the square residuals $\sum_{i=1}^{N} e_i^2$ is minimized.
- (3) The sum of the observed values Y_i equals the sum of the fitted values \hat{Y}_i

$$\sum_{i=1}^{N} Y_i = \sum_{i=1}^{N} \widehat{Y}_i.$$

(4) The sum of the residuals weighted by the predictors X_i is zero

$$\sum_{i=1}^{N} X_i e_i = 0.$$

(5) The sum of the residuals weighted by the fitted value of the response variables Y_i is zero

$$\sum_{i=1}^{N} \widehat{Y}_i e_i = 0.$$

(6) The regression line always goes through the point (\bar{X}, \bar{Y}) , where $\bar{X} = \frac{1}{N} \sum_{i=1}^{N} X_i$ and $\bar{Y} = \frac{1}{N} \sum_{i=1}^{N} Y_i$.

Estimation Review

- An estimator is a random variable which summarizes the rule for calculating an estimate of a given quantity based on observed sample.
- Point estimator $\widehat{\theta} = \phi(X_1, Y_1, \dots, X_N, Y_N)$ of unknown quantity/paramter θ , e.g., the sample mean $\overline{Y} = \frac{1}{N} \sum_{i=1}^{N} Y_i$.
- Interval estimator is a set of possible (or probable) values of an unknown quantity/paramter θ , e.g., confidence intervals.
- Definition: Bias of an estimator

$$\mathsf{Bias}(\widehat{ heta}) = \mathbb{E}(\widehat{ heta}) - heta.$$

Example: Sample mean vs. Population Mean

Let Y_1, \ldots, Y_N be independent observations drawn from a population with unknown finite mean θ , then the sample mean $\widehat{\theta} = \frac{1}{N} \sum_{i=1}^{N} Y_i$ is an unbiased estimator of θ :

$$\mathbb{E}\left(\widehat{\theta}\right) = \mathbb{E}\left(\frac{1}{N}\sum_{i=1}^{N}Y_{i}\right)$$
$$= \frac{1}{N}\sum_{i=1}^{N}\mathbb{E}\left(Y_{i}\right) = \frac{N\theta}{N} = \theta.$$

Hence,

$$\mathbb{E}\left(\widehat{\theta}\right) - \theta = 0.$$

Variance of an Estimator

- ullet Definition: Variance of an estimator $\mathsf{Var}\left(\widehat{ heta}
 ight) = \mathbb{E}\left(\left(\widehat{ heta} \mathbb{E}\left(\widehat{ heta}
 ight)
 ight)^2
 ight)$
- Example: sample mean

$$\frac{\operatorname{Var}\left(\widehat{\theta}\right)}{\operatorname{Var}\left(\widehat{\frac{1}{N}}\sum_{i=1}^{N}Y_{i}\right)}$$

$$=\frac{1}{N^{2}}\sum_{i=1}^{N}\operatorname{Var}\left(Y_{i}\right)$$

$$=\frac{N\sigma^{2}}{N^{2}}$$

$$=\frac{\sigma^{2}}{N}.$$

Estimation of the Variance σ^2 of the Error Terms ε_i

- ullet The variance σ^2 of the error terms $arepsilon_i$ needs to be estimated to obtain an indicator of the variability of the probability distributions of Y.
- Intuitively, inference regarding the regression function and the prediction of Y require an estimate of σ^2 .
- Single Population: Let Y_1, \ldots, Y_N be independent observations drawn from a population with unknown variance σ^2 , then an unbiased estimator of σ^2 is given by

$$s^{2} = \frac{\sum_{i=1}^{N} (Y_{i} - \bar{Y})^{2}}{N-1}$$

• Regression Model: $Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$, for $i = 1, \dots, N$. We need to compute the deviations of each observation Y_i around its own mean. Therefore, in regression model we use the <u>Sum of Square Errors</u> (SSE)

$$SSE = \sum_{i=1}^{N} \left(Y_i - \widehat{Y}_i \right)^2.$$

Now two degrees of freedom are lost because both β_0 and β_1 have to be estimated to obtain the estimates of \widehat{Y}_i . Hence, the appropriate Mean Square Error (MSE) or s^2 , is

$$s^{2} = MSE = \frac{SSE}{N-2} = \frac{\sum_{i=1}^{N} (Y_{i} - \hat{Y}_{i})^{2}}{N-2}$$

• It can be shown that MSE is an unbiased estimator of σ^2 and $\mathbb{E}(s^2) = \sigma^2$.

MSE & the Bias vs. Variance Trade-Off

ullet Definition The mean squared error (MSE) of an estimator $\widehat{ heta}$ is given by

$$\mathsf{MSE}\left(\widehat{\theta}\right) = \mathbb{E}\left(\left(\widehat{\theta} - \theta\right)^2\right)$$

Can be rewritten as

$$\mathsf{MSE}\left(\widehat{\theta}\right) = \mathsf{Var}\left(\widehat{\theta}\right) + \left(\mathsf{Bias}\left(\widehat{\theta}\right)\right)^2$$

$$\begin{aligned} & \textit{MSE}(\hat{\theta}) \\ &= & \mathbb{E}((\hat{\theta} - \theta)^2) \\ &= & \mathbb{E}(([\hat{\theta} - \mathbb{E}(\hat{\theta})] + [\mathbb{E}(\hat{\theta}) - \theta])^2) \\ &= & \mathbb{E}([[\hat{\theta} - \mathbb{E}(\hat{\theta})]^2) + 2\mathbb{E}([\mathbb{E}(\hat{\theta}) - \theta][[\hat{\theta} - \mathbb{E}(\hat{\theta})]]) + \mathbb{E}([\mathbb{E}(\hat{\theta}) - \theta]^2) \\ &= & \mathsf{Var}(\hat{\theta}) + 2\mathbb{E}(\ \mathbb{E}(\hat{\theta})[[\hat{\theta} - \mathbb{E}(\hat{\theta})]] - \theta[[\hat{\theta} - \mathbb{E}(\hat{\theta})]]) + (\mathsf{Bias}(\hat{\theta}))^2 \\ &= & \mathsf{Var}(\hat{\theta}) + 2(0 + 0) + (\mathsf{Bias}(\hat{\theta}))^2 \\ &= & \mathsf{Var}(\hat{\theta}) + (\mathsf{Bias}(\hat{\theta}))^2 \end{aligned}$$

 Sometimes choosing a biased estimator can result in an overall lower MSE, if it has much lower variance than the unbiased one.

Gauss-Markov Thm: Least Squares Estimator is a BLUE

BLUE = Best Linear Unbiased Estimator

Recall the Simple Linear Regression Model

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$$
, for $i = 1, \dots, N$,

where

- ε_i is an *unobserved*, random error term with mean $\mathbb{E}(\varepsilon_i) = 0$ and variance $\text{Var}(\varepsilon_i) = \sigma^2$,
- ε_i and ε_i are uncorrelated, for $i \neq j$, $i, j = 1, \dots, N$.

Gauss-Markov Theorem:

Theorem

Under the conditions of Simple Linear Regression Model given above, the least squares estimators b_0 and b_1 are unbiased and have minimum variance among all unbiased linear estimators.

Distribution of the Error Term ε

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$$
, for $i = 1, \dots, N$,

where

- ε_i is an *unobserved*, random error term with mean $\mathbb{E}(\varepsilon_i) = 0$ and variance $\text{Var}(\varepsilon_i) = \sigma^2$,
- ε_i and ε_j are uncorrelated, for $i \neq j$, $i, j = 1, \ldots, N$.

Normal Error Regression Model

- Gauss-Markov theorem implies that no matter what is the form of the distribution of the error terms ε_i (and hence of Y_i), the least squares estimator is a BLUE among all unbiased linear estimators.
- However, to set up interval estimates, and make tests, we need to impose some assumption about the form of the distribution of the ε_i .
- The most standard assumption is that $\varepsilon_i \overset{\text{i.i.d.}}{\sim} N\left(0,\sigma^2\right)$, i.e., the error terms ε_i are independent and identically distributed (i.i.d.) with the normal distribution with mean 0 and variance σ^2 .

Normal Error Regression Model

In result, we get the Normal Regression Model

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$$
, for $i = 1, \dots, N$,

where

- Y_i is a known value of the dependent variable for i = 1, ..., N,
- X_i is a known value of the explanatory variable for $i = 1, \dots, N$,
- ullet eta_0 and eta_1 are unknown parameters to be estimated, and
- $\varepsilon_i \stackrel{\text{i.i.d.}}{\sim} N(0, \sigma^2)$ is an unobserved error term for i = 1, ..., N.

Comments:

- The Normal Regression Model is the same as Simple Regression Model with unspecified error distribution, except that it assumes that the errors ε_i are normally distributed.
- Since the Normal Regression Model assumes that the errors are i.i.d., then they have to be also uncorrelated like in the Simple Regression Model.
- By Gauss-Markov Theorem, under the conditions of Normal Regression Model, the Least Squares Estimator is still a BLUE.
- The value of ε_i has no effect on the value of any other ε_j , nor on any other Y_j , for $j \neq i$.
- $Y_i \sim N\left(\beta_0 + \beta_1 X_i, \sigma^2\right)$, and Y_i are independent (they are not i.i.d. because they have different means).

Normal Error Regression Model

Least Squares Minimization

$$\{b_0, b_1\} = \arg\min_{\beta_0, \beta_1} Q_2(\beta_0, \beta_1),$$

where $Q_2(\beta_0, \beta_1) = \sum_{i=1}^{N} (Y_i - \beta_0 - \beta_1 X_i)^2$, and σ^2 is estimated, from the model residuals $e_i = Y_i - \hat{Y}_i$, by

$$s^{2} = MSE = \frac{SSE}{N-2} = \frac{\sum_{i=1}^{N} \left(Y_{i} - \widehat{Y}_{i}\right)^{2}}{N-2}$$

• Maximum Likelihood estimation We know the distribution of ε_i , hence we also know the distribution of Y_i , $Y_i \sim N\left(\beta_0 + \beta_1 X_i, \sigma^2\right)$, for $i=1,\ldots,N$. Therefore, we can find parameters which maximize the log-likelihood function

$$\left\{\widehat{\beta}_{0},\widehat{\beta}_{1},\widehat{\sigma}^{2}\right\} = \arg\max_{\beta_{0},\beta_{1},\sigma^{2}} \log L\left(\beta_{0},\beta_{1},\sigma^{2}\right).$$

Likelihood Function

• If $Y_i \stackrel{\text{i.i.d.}}{\sim} F(\theta)$, for i = 1, ..., N, where $\theta \in \Theta$, then the likelihood function is given by

$$L(\theta; Y_1, \ldots, Y_N) = \prod_{n=1}^N f_{Y_i}(Y_i; \theta).$$

- It is the product of p.d.f.'s evaluated at the observations.
- ullet It is a function of the parameter vector heta.
- The Log-Likelihood Function is given by

$$\log L(\theta; Y_1, \ldots, Y_N) = \sum_{n=1}^N \log f_{Y_i}(Y_i; \theta).$$

Maximum Likelihood Estimator

• If you maximize $\log L(\theta; Y_1, ..., Y_N)$ with respect to parameters θ (and if a maximum exists), you get the maximum-likelihood estimator (MLE) of θ :

$$\widehat{\theta}_{\mathsf{mle}} = \operatorname{arg} \max_{\theta \in \Theta} \log L(\theta; Y_1, \dots, Y_N).$$

Comments:

 An MLE estimate is the same regardless of whether we maximize the likelihood or the log-likelihood function, since log is a strictly monotonically increasing function:

$$\widehat{\theta}_{\mathsf{mle}} = \arg\max_{\theta \in \Theta} \log L\left(\theta; Y_1, \dots, Y_N\right) = \arg\max_{\theta \in \Theta} L\left(\theta; Y_1, \dots, Y_N\right).$$

- For many models, a maximum likelihood estimator can be found as an explicit function of the observed data Y_1, \ldots, Y_N .
- For many other models, however, no closed-form solution to the maximization problem is known or available, and an MLE has to be found numerically using optimization methods.

Maximum Likelihood Estimator for Normal Error Regression Model

• The joint density function for all the observations Y_1, \ldots, Y_N , by the independence property, is given by

$$f(y_1,...,y_N \mid X_1,...,X_N; \beta_0, \beta_1, \sigma^2) = \prod_{n=1}^N f_{Y_i}(y_i \mid X_i; \beta_0, \beta_1, \sigma^2).$$

• $arepsilon_i \sim \mathsf{N}\left(0,\sigma^2
ight)$ implies that $Y_i \sim \mathsf{N}\left(eta_0 + eta_1 X_i,\sigma^2
ight)$, and

$$f_{Y_i}\left(y_i \mid X_i; \beta_0, \beta_1, \sigma^2\right) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}\left(\frac{y_i - \beta_0 - \beta_1 X_i}{\sigma}\right)^2}.$$

 Once we have the joint density function for all the observations, we can build the likelihood function.

Maximum Likelihood Estimator for Normal Error Regression Model

 In the Normal Regression Model the Log-Likelihood Function is given by

$$\log L(\theta; \mathbf{Y}, \mathbf{X}) = \sum_{n=1}^{N} \log f_{Y_i}(Y_i; \theta)$$

$$= \sum_{n=1}^{N} \log \left\{ \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2} \left(\frac{Y_i - \beta_0 - \beta_1 X_i}{\sigma}\right)^2} \right\}$$

$$= -\frac{N}{2} \log \left(2\pi\sigma^2\right) - \frac{1}{2\sigma^2} \sum_{n=1}^{N} (Y_i - \beta_0 - \beta_1 X_i)^2.$$

• If you maximize it with respect to the parameters β_0 , β_1 , and σ^2 , you get...

Maximum Likelihood Estimators for Normal Error Regression Model

- $\widehat{\beta}_0 = b_0$
- $\bullet \ \widehat{\beta}_1 = b_1$
- $\bullet \ \widehat{\sigma}^2 = \frac{\sum_{i=1}^{N} \left(Y_i \widehat{Y}_i \right)^2}{N}$
- The ML estimator of σ^2 is biased, as s^2 is unbiased and $\widehat{\sigma}^2 = \frac{N-2}{N} s^2$.
- But $\lim_{N\to\infty}\frac{N-2}{N}=1$, hence for large N the difference between s^2 and $\hat{\sigma}^2$ is small.

Maximum Likelihood Estimators for Normal Error Regression Model

Comments:

- $\widehat{\beta}_0$ and $\widehat{\beta}_1$ are unbiased.
- $\widehat{\beta}_0$ and $\widehat{\beta}_1$ have minimum variance among all unbiased linear estimators.
- In addition, the maximum likelihood estimators, $\widehat{\beta}_0$ and $\widehat{\beta}_1$, and hence also least square estimators b_0 and b_1 , for the normal error regression model are
 - consistent,
 - sufficient,
 - minimum variance unbiased, i.e., they have minimum variance in the class of all unbiased estimators (linear or otherwise).

Summary of Lecture 1 (Chapter 1 in ALRM book)

- Simple Linear Regression Model
- Normal Equations
- Bias vs. Variance Trade-off
- Gauss-Markov Theorem
- Normal Error Regression Model
- Maximum Likelihood Estimator

Next Lecture: ALRM Book Chap. 2

- Inference concerning β_1 .
- Inference concerning β_0 .
- Interval estimation of $\mathbb{E}(Y_h)$.
- Prediction of new observation.
- Confidence Bands for regression line.