1. Project Overview & Implementation

This project implements an advanced AI-based surveillance system combining two key components:

- 1. Smart parking space monitoring with 97.47% accuracy
- 2. Human fall detection for enhanced safety surveillance

Project Objectives:

- Accurate detection of parking space occupancy
- Real-time monitoring and statistics
- Fall incident detection using custom YOLO model
- Interactive visualization through Streamlit UI

Project Architecture Overview

2. Task 1: Vehicle Detection

Hybrid Detection Approach

Our solution combines multiple techniques for robust detection:

- 1. Traditional Computer Vision:
 - Parking space masking using contour detection
 - Perspective transformation for accurate space mapping
 - Color and gradient analysis for initial detection
- 2. YOLO Vehicle Detection:
 - Pre-trained YOLOv8n model
 - Vehicle class detection with confidence thresholds
 - Spatial overlap calculation with marked spaces
- 3. Machine Learning Classification:
 - Binary classifier for space occupancy
 - Feature extraction from space patches
 - Confidence score integration

Vehicle Detection Pipeline

Parking Space Management:

```
def
process_parking_spa
 ces(frame, mask):
 spaces
 detect parking spac
 es(mask) occupied =
 []
 for space in spaces:
     occupancy
         hybrid detector.check o
         ccupancy( frame, space,
         confidence threshold=0.7
     if occupancy
         threshold
         occupied.
         append (sp
 return len(occupied), len(spaces) - len(occupied)
```

[Space Detection Visualization - Insert Image]

Accuracy Analysis:

Performance metrics

achieved:

- Overall Accuracy: 97.47%

- Precision: 92.42%

- Recall: 100.00%

- Processing Speed: 0.61 FPS

Validation methodology:

- 1. Manual ground truth annotation
- 2. Cross-validation across different times
- 3. Edge case testing

For more detail visualization visit my drive file: https://drive.google.com/drive/folders/1EXkNzdfJpM2mFk2JoD7Krep6T-KE2gLO?usp=sharing

4. Task 3: Fall Detection Implementation

Custom YOLO Model:

- 1. Model Architecture:
- YOLOv8 backbone
- Custom layers for action detection
- Temporal feature integration

2. Training Process:

- Custom dataset preparation
- Transfer learning approach
- Hyperparameter optimization

Demonstration Results:

- Real-time detection capability
- Low false positive rate
- Robust to different angles

4. User Interface & Visualization

Parking Detection UI:

- 1. Main Dashboard
- Real-time occupancy count
- Space status visualization
- Historical statistics
- 2. Control Panel
- Parameter adjustment
- View customization
- Export capabilities

6. Project Organization & Documentation

Setup Guide:

python -m venv venv

source venv/bin/activate # Linux/Mac

pip install -r requirements.txt

Configuration:

PARKING DETECTOR FRAME SKIP = 2

PARKING_DETECTOR_CONFIDENCE_THRESHOLD = 0.7

PARKING_DETECTOR_IOU_THRESHOLD = 0.5

Deployment Instructions:

Local Development

python src/main.py --video path/to/video --mask path/to/mask

Production Setup

streamlit run src/app.py

Additional Resources

- GitHub Repository: https://github.com/bhau23/Smart-Parking-Surveillance-Al-Model-
- Demo Videos:
- * Parking Detection: validation_results/streamlit-app-2025-04-10-04-04-64.webm
- * Fall Detection:

FALL_DETECTION/fall_detection_assignment/demo_videos/videoplay back.mp4

- Performance Reports: validation_results/analysis.md

Results and additional visualization files:

https://drive.google.com/drive/folders/1EXkNzdfJpM2mFk2JoD7Krep6T-KE2qLO?usp=sharing