Project Development Phase Model Performance Test

Date	10 NOvember 2022			
Team ID	PNT2022TMID591582			
Project Name	Project - Understanding Audience: A Machine			
	Learning Approach to Customer Segmentation			
Maximum Marks	10 Marks			

Model Performance Testing:

Project team shall fill the following information in model performance testing template.

S.No	Parameter	Values			Screenshot					
1.	Metrics	Classification Model:		Confusion Matrix						
		Confusio	n Matrix –						- 160	
		[[164 0 0]			0 - 1	164	0	0	- 140	
	[0 120 0]						- 120			
	[0 71 37]] Accuracy Score-								- 100	
		Accuracy Score			abels	0	120	0		
	Classification Report –				True Labels	0	120		- 80	
			precision						- 60	
		recall	f1-score	support					- 40	
			0	1.00	- 2	0	71	37	- 20	
		1.00	1.00	164						
		1.00	1 0.77	0.63 120		ó	1 Predicted Labels	2	- 0	
		1.00	2	1.00	Te		Validation Accura			
		0.34	0.51	108	0	0.787356	0.8188	378		
		accuracy								
		0.82	392				precision	recall	f1-score	support
		macr 0.78	o avg 0.76	0.88 392		0	1.00	1.00	1.00	164
		weighte		0.89		1	0.63	1.00		120
		_	0.80	392		2	1.00	0.34	0.51	108
						accuracy			0.82	392
						macro avg	0.88	0.78	0.76	392
					we:	ighted avg	0.89	0.82	0.80	392

```
Tune the
                    Hyperparameter Tuning -
                                                                        param_grid = {
Model
                    'n_estimators': [3, 4, 5,
                                                                            'n_estimators': [3, 4, 5, 6, 7, 8, 9, 10],
'learning_rate': [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0],
                   6, 7, 8, 9, 10],
                                                                            'estimator': [None, DecisionTreeClassifier(max_depth=1)],
                          'learning_rate': [0.1,
                   0.2, 0.3, 0.4, 0.5, 0.6,
                                                                        # Use GridSearchCV for hyperparameter tuning
grid_search = GridSearchCV(adb_model, param_grid, cv=5, scoring='accuracy')
                   0.7, 0.8, 0.9 ,1.0],
                                                                        grid_search.fit(X_train, y_train)
                          'estimator': [None,
                   DecisionTreeClassifier(max_
                                                                        best_params = grid_search.best_params_
                                                                        best_adaboost = AdaBoostClassifier(**best_params)
                   depth=1)],
                                                                        best_adaboost.fit(X_train, y_train)
                                                                        y_pred = best_adaboost.predict(X_test)
                                                                        accuracy = accuracy_score(y_test, y_pred)
                                                                        print("Best Hyperparameters:", best_params)
print("Accuracy on Test Set:", accuracy)
```