Practical 3 IPv4 Addressing and Subnetting

Aim:

- a) Given an IP address and network mask, determine other information about the IP address such as
 - i) Network address
 - ii) Network broadcast address
 - iii) Total number of host bits
 - iv) Number of hosts
- b) Given an IP address and network mask, determine other information about the IP address such as:
 - i) The subnet address of this subnet
 - ii) The broadcast address of this subnet
 - iii) The range of host addresses for this subnet
 - iv) The maximum number of subnets for this subnet mask
 - v) The number of hosts for each subnet
 - vi) The number of subnet bits
 - vii) The number of this subnet

Part a) An address in a block is given as 180.8.17.9. Find the number of addresses in the block, the first address, and the last address

Solution:

The given address is a Class B address therefore n= 16

1) No of addresses:

$$N = 2^{32-10}$$

$$= 2^{32-16}$$

$$= 2^{16}$$

Therefore, the number of addresses are = 65536 addresses

2) First address:

For class B address netid = 16 Therefore network mask is 255.255.0.0

To find the first address we logically AND the given address with thenetwork mask

Given	180	8	17	9
address				
Network	255	255	0	0
mask				
AND	180	8	0	0
operation				

Therefore, the first address is 180.8.0.0

3) Last address:

To find the last address we logically OR the given address with the COMPLEMENT of the network mask

Network mask = 255.255.0.0

Network mask	255	255	0	0
Complementof	0	0	255	255
mask				

Given address	180	8	17	9
Complement ofmask	0	0	255	255
OR operation	180	8	255	255

Therefore, the last address is 180.8.255.255

Hence, we conclude that

- a) Network address: The first address is the Network Address 180.8.0.0
- b) Network broadcast address: The last address is the Network broadcast address 180.8.255.255
- c) Total number of host bits: 16
- d) Number of hosts: 65534 (65536 2)

Part b) An organization is granted the block 130.34.12.64/26. The organization needs four sub networks, each with an equal number of hosts. Design the sub networks and find the information about each network.

Solution:

The given address is address of type classless addressing with n= 26

1) No of addresses:

Therefore, the number of addresses is = 64 addresses

2) First address:

For the given case n = 26

Therefore, network mask is 255.255.255.192

To find the first address we logically AND the given address with the network mask

Given	130	34	12	64
address				
Network	255	255	255	192
mask				
AND	130	34	12	64
operation				

Therefore the first address is 130.34.12.64

3) Last address:

Network mask is 255.255.255.192

Network mask	255	255	255	192
Complement of mask	0	0	0	63

To find the last address we logically OR the given address with the Complement of the network mask

Given	130	34	12	64
address				
Network	0	0	0	63
mask				
OR	130	34	12	127
operation				

Therefore the last address is 130.34.12.127

4) Creating sub-networks:

In this case we need to create 4 sub-networks with equal number ofhosts

Total number of hosts N = 64

Therefore, number of hosts in each sub-network NSUB = 16

We calculate the sub-netid for each network as follows

$$n_{SUB} = n + log_2(N/N_{SUB})$$

= 26 + log_2(64/16)
= 28

Therefore, the given sub-networks are

Sub-network	First address	Last address
1	130.34.12.64	130.34.12.79
2	130.34.12.80	130.34.12.95
3	130.34.12.96	130.34.12.111
4	130.34.12.112	130.34.12.127

- a. The subnet address of this subnet: The First address of each subnet
- b. The broadcast address of this subnet: The Last address of each subnet
- c. The range of host addresses for this subnet: Shown in the above table
- d. The maximum number of subnets for this subnet mask: 4
- e. The number of hosts for each subnet: 14
- f. The number of subnet bits: 28
- g. The number of this subnet: Mentioned in the above table

For the video demonstration of the above practical scan the QR code

