CHEMICKÁ OLYMPIÁDA

61. ročník, školský rok 2024/2025 Kategória C

Domáce kolo

TEORETICKÉ ÚLOHY

ÚLOHY Z ANORGANICKEJ, VŠEOBECNEJ A ORGANICKEJ CHÉMIE

Chemická olympiáda – kategória C – 61. ročník – školský rok 2024/2025

Domáce kolo

Anna Drozdíková, Jarmila Kmeťová, Lenka Šikulíncová

Maximálne 60 bodov

Úvod

V príprave na chemickú olympiádu v kategórii C sa v tomto školskom roku zameriame na oblasti: Základné charakteristiky chemických látok (hmotnosť, relatívna atómová resp. molekulová hmotnosť, molárna hmotnosť). Základy názvoslovia anorganických a organických zlúčenín. Výpočty z chemických vzorcov a rovníc. Štruktúra atómov a iónov. Chemické reakcie a chemické rovnice. Meď a jej zlúčeniny. Oxidačno-redukčné reakcie. Názvoslovie, vlastnosti, použitie, základné reakcie a prípravy uhľovodíkov.

Úloha 1 (20 b.)

Redoxné reakcie, nazývané aj oxidačno-redukčné reakcie, sú chemické reakcie, pri ktorých dochádza k prenosu elektrónov medzi dvomi látkami. Jedna z látok elektróny stráca a druhá látka elektróny získava, čo vedie k zmene oxidačných čísel atómov daných látok. Redoxné reakcie sú základom mnohých procesov, ako v chémii, tak aj biológii. Medzi najznámejšie redoxné reakcie (deje) patria napríklad spaľovacie procesy, horenie, fotosyntéza, dýchanie, korózia, pasivácia, galvanizácia, elektrolýza či reakcie v lítiovo-iónových batériách. História redoxných reakcií súvisí s vývojom chémie ako vedy. Ich chápanie sa vyvíjalo postupne od doby staroveku, ktorý je známy pokusmi alchymistov, až po súčasnú modernú chémiu. Redoxné reakcie majú široké využitie aj v priemysle. Ide napríklad o výrobu železa, hliníka, amoniaku, kyseliny sírovej, elektrolytickú výrobu vodíka, chlóru, hydroxidu sodného, úpravu odpadových vôd, výrobu energie pomocou palivových článkov alebo oxidácie fosílnych palív. Medzi základné pojmy súvisiace s redoxnými reakciami patrí napríklad oxidácia, redukcia, polreakcia, oxidovadlo, redukovadlo, oxidačné číslo, katión, anión.

S redoxnými reakciami tiež úzko súvisí **elektrochemický rad napätia kovov**, v ktorom sú kovové prvky usporiadané podľa ich **štandardných elektródových potenciálov**.

Tie sú merané v porovnaní so štandardnou vodíkovou elektródou s hodnotou potenciálu 0,00 V. Tento rad poskytuje informácie o relatívnej schopnosti jednotlivých kovov uvoľňovať alebo prijímať elektróny, teda o ich schopnosti oxidovať sa alebo redukovať sa. **Kovy** umiestnené **naľavo od vodíka** sú schopné redukovať katión vodíka vo vodnom roztoku a nazývajú sa **neušľachtilé**. **Kovy** umiestnené **napravo od vodíka** nereagujú so zriedenými kyselinami za vzniku vodíka a nazývajú sa **ušľachtilé**. Význam elektrochemického radu napätia kovov súvisí s predpovedaním chemického správania sa kovov v redoxných reakciách. Pomáha tiež pochopiť, ktoré kovy sú náchylné k oxidácii alebo redukcii a ako budú reagovať v rôznych chemických a elektrochemických procesoch.

- 1.1 Zakrúžkujte správne tvrdenia.
 - a) Oxidácia je reakcia, pri ktorej atóm, ión alebo molekula stráca elektróny v dôsledku čoho sa znižuje ich oxidačné číslo.
 - b) Redukcia je reakcia, pri ktorej atóm, ión alebo molekula prijíma elektróny v dôsledku čoho sa znižuje ich oxidačné číslo.
 - c) Oxidovadlo je látka, ktorá spôsobuje redukciu inej látky tým, že sa sama oxiduje.
 - d) Redukovadlo je látka, ktorá spôsobuje redukciu inej látky tým, že sa sama oxiduje.
- **1.2** Určte, ktoré z uvedených chemických reakcií patria medzi redoxné.

a)
$$CH_4 + 2 O_2 \rightarrow CO_2 + 2 H_2O$$

d)
$$Fe_2O_3 + 3C \rightarrow 2Fe + 3CO$$

1.3 Doplňte počet prijatých alebo odovzdaných elektrónov v nasledujúcich polreakciách.

a)
$$Zn^0$$
 $\rightarrow Zn^{2+}$

b)
$$Cu^{2+}$$
 $\rightarrow Cu^{0}$

c)
$$Cl_2^0$$
 $\rightarrow 2Cl^-$

d)
$$Fe^0$$
 $\rightarrow Fe^{3+}$

	a) $AI^0 - 3e^- \rightarrow AI^{III}$					
	b) $S^0 + 2 e^- \rightarrow S^{-11}$					
	c) $N^{-III} - 5 e^- \rightarrow N^{II}$					
	d) $Pb^{IV} + 2 e^{-} \rightarrow Pb^{II}$					
1.5	V nasledujúcich možnostiach a – d zakrúžkujte látku, ktorá do daného radu					
	nepatrí.					
	a) H ₂ O ₂ , KMnO ₄ , NH ₃ , SO ₂					
	b) NO, CO, H ₂ SO ₄ , HNO ₃					
	c) H ₂ S, FeCl ₂ , ClO ₂ , Na ₂ SO ₃					
	d) H ₂ , HI, Na ₂ S ₂ O ₃ , O ₃					
	5 17					
1.6	Doplňte nasledujúcu t	·				
	Zlúčenina	Oxidačné číslo prvku síry	Názov zlúčeniny			
	SO ₂	<i></i>				
	H₂S					
	<u>H₂</u> SO₄ SO₃					
	 Na₂SO₃					
	$Na_2S_2O_3$					
1.7	Na medených predmetoch, napríklad miskách alebo táckach sa vytvárajú					
	použitím koncentrovanej kyseliny dusičnej rôzne ozdobné vzory. Chemická					
	rovnica danej reakcie je nasledovná:					
	C	$u + 4HNO_3 \rightarrow Cu(NO_3)_2 + 2N_3$	1O ₂ + 2H ₂ O			
a)	Určte oxidačné číslo medi:					
	pred chemickou reakciou:					
	po chemickej reakcii:					
b)	Určte oxidačné číslo dusíka:					
	pred chemickou reakciou:					
	po chemickej reakcii:					
c)	Určte, ktorá z látok v chemickej reakcii pôsobí ako:					
	oxidovadlo:					
	redukovadlo:					
d)	Zapíšte chemickú rov	nicu polreakcií:				

Určte, ktoré z uvedených polreakcií znázorňujú oxidáciu a ktoré redukciu.

1.4

redukcie:						
Na základe uvedeného elektrochemického radu napätia kovov riešte nasledujúcu úlohu.						
neušľachtilé kovyušľachtilé kovyK Na Mg Al Mn Zn Fe Cd Sn Pb H Cu Hg Ag Au						
K Na Mg Al Mn Zn Fe Cd Sn Pb H Cu Hg Ag Au						
Chemik Adam vložil neznámy kov do dvoch roztokov: roztoku dusičnanu						
hlinitého a síranu železnatého. Po určitom čase pozoroval, že daný kov						
reagoval len s roztokom síranu železnatého. Uveďte o aký kov/kovy by mohlo						
ísť.						
Neznámy kov/y:						
Súbor redoxných reakcií, ktoré prebiehajú pri prechode jednosmerného						
elektrického prúdu roztokom alebo taveninou, sa nazývajú elektrolýza .						
Prechod elektrického prúdu zabezpečujú dve elektródy – záporná katóda						
a kladná anóda. Na katóde je nadbytok elektrónov, preto priťahuje katióny						
(kladné ióny). Katióny priťahujú z katódy elektróny čím sa redukujú. Na anóde						
je nedostatok elektrónov , preto priťahuje anióny (záporné ióny). Anióny						
odovzdávajú elektróny anóde a teda dochádza k ich oxidácii.						
Jedným z typických príkladov elektrolýzy je elektrolýza vodného roztoku síranu						
meďnatého, pri ktorej sa využívajú medené elektródy napojené na zdroj						
jednosmerného napätia.						
a) Doplňte.						
Vodný roztok síranu meďnatého obsahuje ióny: Cu ²⁺ ,, H ⁺ ,						
b) Napíšte chemickú rovnicu polreakcie redoxného deja prebiehajúceho na						
katóde.						
Katóda:						
c) Napíšte chemickú rovnicu polreakcie redoxného deja prebiehajúceho na						
anóde.						
Anóda:						

oxidácie:

1.8

1.9

Úloha 2 (20b)

Meď je jedným z najdôležitejších prechodných kovov v prírode. Je to neušľachtilý nealotropický kov oranžovočervenej farby. Vyznačuje sa vysokou tepelnou vodivosťou, tvárnosťou za tepla aj studena a dobrou odolnosťou proti korózii. Podstata tejto odolnosti je predovšetkým v kladnom elektrochemickom potenciáli (+0,34 V) a v účinku oxidov a ďalších látok, ktoré sa vytvárajú na povrchu medi. Proti atmosférickej korózii chráni meď tzv. medenka – vrstva hydratovaných uhličitanov medi. Meď má tiež dobrú odolnosť voči roztokom kyselín bez oxidačných účinkov. Nepriaznivo pôsobia na meď chlór, amoniak a zlúčeniny síry. Chemická značka medi pochádza z latinského názvu cuprum, odvodeného z latinského Cyprium, čo je latinský názov ostrova Cyprus, na ktorom v období Rímskej ríše vznikli prvé bane na ťažbu medi.

Meď plní významnú úlohu v mnohých biologických procesoch, priemyselných aplikáciách a chemických reakciách. V prírode sa nachádza hlavne v mineráloch ako chalkopyrit, kuprit či malachit. V laboratóriu a priemysle sa meď využíva napríklad na výrobu elektrických vodičov, mincí a rôznych zliatin.

Medzi najbežnejšie zlúčeniny medi patria meďnaté zlúčeniny, veľmi dobre sú preskúmané aj zlúčeniny meďné. Medité zlúčeniny sú veľmi zriedkavé. Z meďných zlúčenín v tuhom skupenstve je známych množstvo zlúčenín, napríklad oxid, sulfid, nitrid, hydrid, halogenidy (s výnimkou fluóru). Síran meďnatý sa používa pri galvanickom pokovovaní, v lekárstve ako antiseptikum, na prípravu Fehlingovho činidla na dôkaz a stanovenie redukujúcich sacharidov a tiež na ničenie rastlinných škodcov (postrek viniča).

2.1 Určite názvy zlúčenín a iónov:

- a) Cu(OH)₂
- b) [Cu(CN)₄]³⁻
- c) Cu₂Cl(OH)₃
- d) $[Cu(H_2O)(NH_3)_4]SO_4$

2.2 Určite vzorce zlúčenín:

- a) kyanid meďný
- b) difluorid-bis(uhličitan) meďnatý
- c) tetrachloridomeďnatan sodný
- d) tetrachloridomeďnatan tetraamminplatnatý

2.3 Vytvorte správne dvojice:

1	chalkopyrit	Α	Cu ₃ (CO ₃) ₂ (OH) ₂
2	malachit	В	Cu ₂ S
3	kuprit	С	Cu ₃ FeS ₃
4	chalkantit	D	CuS
5	azurit	E	Cu ₂ (CO ₃)(OH) ₂
6	kovelín	F	Cu ₂ O
7	chalkozín	G	CuSO ₄ · 5H ₂ O
8	bornit	Н	CuFeS ₂

- **2.4** Napíšte chemické rovnice prípravy elementárnej medi:
 - a) z oxidu meďnatého redukciou vodíkom,
 - b) zo síranu meďnatého redukciou zinkom (cementácia medi).
- **2.5** V zlúčenine K₂[CuCl₄] určite:
 - a) centrálny atóm,
 - b) koordinačné číslo centrálneho atómu,
 - c) oxidačné číslo centrálneho atómu,
 - d) elektrický náboj ligandu.
- **2.6** Určte pravdivé tvrdenia. "O medi platí, že ...":
 - a) patrí medzi biogénne prvky,
 - b) je dobrý vodič tepla a elektriny,
 - c) nachádza sa naľavo od vodíka v elektrochemickom rade napätia kovov,
 - d) reaguje iba s kyselinami, ktoré majú oxidačné účinky.
- **2.7** Reakčné schémy doplňte a upravte na chemické rovnice.
 - a) Cu + H_2SO_4 (konc.) \rightarrow
 - b) Cu + NaCN + H₂O (I) \rightarrow
 - c) CuCl (s) + NaCl (aq) \rightarrow
 - d) $Cu(NO_3)_2 + Na_2S \rightarrow$
- **2.8** Konštanty rozpustnosti sulfidu meďnatého a sulfidu meďného sú $K_s(CuS) = 6.3 \cdot 10^{-36}$ a $K_s(Cu_2S) = 2.5 \cdot 10^{-48}$. Ktorý z uvedených sulfidov je rozpustnejší?
- 2.9 Produkty reakcie medi s kyselinou dusičnou sú rôzne, závisia od koncentrácie kyseliny. Napíšte chemické rovnice reakcie medi s a) koncentrovanou, b) zriedenou kyselinou dusičnou.

- **2.10** Ako sa zmení rovnovážne zloženie sústavy v prípade rovnováhy: $[Cu(H_2O)_x]^{2+} (aq) + H_2O (I) \leftrightarrow [Cu(H_2O)_{x-1}(OH)]^+ (aq) + H_3O^+ (aq)$ ak sa v sústave zvýši koncentrácia oxióniových katiónov.
- **2.11** Rovnicami polreakcií zapíšte deje, ktoré prebiehajú počas elektrolýzy vodného roztoku CuCl₂.

Úloha 3 (20 b.)

Uhľovodíky sú organické zlúčeniny zložené výhradne z atómov uhlíka (C) a vodíka (H). Sú základnými stavebnými jednotkami mnohých látok, ktoré používame každý deň. Uhľovodíky môžeme rozdeliť do dvoch hlavných skupín: alifatické a aromatické. Alifatické uhľovodíky sa ďalej delia podľa typu väzieb medzi uhlíkovými atómami na alkány, alkény a alkíny.

Uhľovodíky sa získavajú prevažne z fosílnych palív, ako sú ropa a zemný plyn.

- Ropa je zmes kvapalných uhľovodíkov, ktorá sa nachádza v podzemných ložiskách. Jej ťažba prebieha pomocou vrtov, ktoré prenikajú do ropných ložísk. Po vytiahnutí na povrch sa ropa spracováva v rafinériách, kde sa rozdeľuje na rôzne frakcie pomocou destilácie. Medzi najdôležitejšie produkty patria benzín, nafta, kerosín a mazivá.
- Zemný plyn pozostáva hlavne z metánu (CH₄) a menších množstiev ďalších uhľovodíkov. Taktiež sa ťaží pomocou vrtov. Po vyťažení sa čistí od nečistôt a potom sa dopravuje potrubím alebo vo forme skvapalneného zemného plynu (LNG).

Frakčná destilácia ropy je základným procesom v rafinérii, kde sa surová ropa rozdeľuje na rôzne zložky alebo frakcie na základe ich bodu varu. Tento proces prebieha v destilačnej kolóne, ktorá je vysokým vertikálnym zariadením umožňujúcim separáciu zložiek. Destilačná kolóna je rozdelená na rôzne sekcie s perforovanými podlahami alebo platňami, ktoré umožňujú prechod pary a kondenzátov.

Každá frakcia je odoberaná z kolóny v rôznych výškach cez odberné potrubia. Tieto frakcie sa potom ďalej spracovávajú alebo používajú priamo:

- 1. frakcia (30 °C) Plyny (C₁ C₄) sa získavajú na vrchole kolóny a používajú sa ako palivá alebo suroviny pre chemický priemysel (LPG)
- 2. frakcia (30 200 °C) Benzín (C₅ C₁₂) sa získava z hornej a strednej časti kolóny a používa sa ako palivo pre automobily.

- 3. frakcia (150 240 °C) Kerosín (C₁₀ C₁₅) sa získava zo strednej časti kolóny a používa sa ako palivo pre lietadlá a petrolej.
- 4. frakcia (200 350 °C) Nafta (C₁₅ C₂₀) sa získava zo strednej až spodnej časti kolóny a používa sa ako dieselové palivo.
- 5. frakcia (300 °C a viac) Mazacie oleje a ťažké zvyšky (C₂₀ a viac) sa získavajú zo spodnej časti kolóny a používajú sa na mazanie strojov, výrobu asfaltu a iných ťažkých produktov.

Používanie fosílnych palív má významný dopad na životné prostredie. Spaľovanie uhľovodíkov prispieva k emisiám skleníkových plynov, ktoré spôsobujú globálne otepľovanie a klimatické zmeny. Ropné havárie a úniky môžu spôsobiť vážne znečistenie vodných a suchozemských ekosystémov.

Uhľovodíky majú široké využitie v rôznych oblastiach nášho života. Najviac sa využívajú ako palivá, v energetike a v chemickom priemysle na výrobu rôznych chemikálií, vrátane rozpúšťadiel, farieb, detergentov, plastov a syntetických materiálov, hnojív a pesticídov a liekov.

Vyriešte nasledujúce úlohy týkajúce sa uhľovodíkov:

- **3.1** Napíš vzorce a systémové názvy všetkých nasýtených necyklických uhľovodíkov, ktoré sú súčasťou plynnej frakcie pri destilácii ropy.
- **3.2** Pri benzíne, ktorý sa používa do motorových vozidiel, sa stretávame s pojmom oktánové číslo.
- a) Vysvetlite pojem oktánové číslo.
- b) Napíšte vzorec a systémový názov uhľovodíka, ktorý má oktánové číslo 100.
- c) Napíšte vzorec a systémový názov uhľovodíka, ktorý má oktánové číslo 0.
- **3.3** Nasledujúcu zlúčeninu pomenujte systémovým názvom a zaraďte označené uhlíky medzi primárne, sekundárne, terciárne a kvartérne.

- 3.4 Doplň do textu chýbajúce časti a odpovedz na nasledujúce otázky.
- b) Vysvetlite pojem skleníkový efekt a uveďte aspoň 3 dôsledky zvyšovania skleníkového efektu na Zemi.
- c) Ktorý plyn vznikajúci pri horení uhľovodíkov významnou mierou prispieva k zvyšovaniu skleníkového efektu?
- d) Vypočítajte, aký objem a koľko molekúl plynu z časti c) sa uvoľní do atmosféry, ak zhorí 1 dm³ etánu v nadbytku kyslíka za normálnych podmienok.

3.5

Doplňte chýbajúce časti v nasledujúcej schéme radikálovej substitúcie.

celková reakcia: CH₄ + H₃C—CI +

iniciácia
$$CI_2$$
 UV ,+ CI .

......+ CI .

......+ CI .

 CH_3 + HCI

terminácia CH_3 + HCI

hlavný produkt

 CH_3 +

 CI + CI -

Odporúčaná literatúra

- 1. G. I. Brown: Úvod do anorganické chemie, 1. vyd., SNTL, Praha, 1982
- 2. J. Gažo a kol.: Všeobecná a anorganická chémia, 3. vyd., Alfa, Bratislava, 1981
- 3. J. Heger, I. Hnát, M. Putala: Názvoslovie organických zlúčenín. 1. vyd., SPN, Bratislava, 2004
- 4. J. Kandráč, A. Sirota: Výpočty v stredoškolskej chémii, 2. vyd., SPN, Bratislava, 1995
- J. Kmeťová a kol.: Chémia pre 1. ročník gymnázia so štvorročným štúdiom a 5. ročník gymnázia s osemročným štúdiom, 1. vyd., EXPOL PEDAGOGIKA, Bratislava, 2010
- 6. G. Ondrejovič a kol.: Anorganická chémia, Alfa, Bratislava, 1993
- 7. M. Prokša, J. Tatiersky, A. Drozdíková: Anorganická chémia, 1. vyd., SPN, Bratislava, 2009
- 8. J. Reguli, M. Linkešová, J. Slanicay: Pôvod názvov chemických prvkov, 1. vyd., FCHPT STU, Bratislava, 2001.
- 9. P. Silný, M. Prokša: Chemické reakcie a ich zákonitosti, 1. vyd., SPN, Bratislava, 2006
- A. Sirota, E. Adamkovič: Názvoslovie anorganických látok, 1. vyd., SPN,
 Bratislava, 2003
- 11. J. Vacík a kol.: Chémia pre 1. ročník gymnázií, 5. vyd., SPN, Bratislava, 1994
- H. Vicenová, M. Ganajová: Chémia pre 9. ročník základnej školy a 4. ročník gymnázia s osemročným štúdiom, 1. vyd., EXPOL PEDAGOGIKA, Bratislava, 2012

Autori: Doc. PaedDr. Anna Drozdíková, PhD. (vedúca autorského kolektívu), doc.

RNDr. Jarmila Kmeťová, PhD., Mgr. Lenka Šikulíncová, PhD.

Recenzenti: PaedDr. Dana Kucharová, PhD., RNDr. Beata Vranovičová, PhD.

Redakčná úprava: Doc. PaedDr. Anna Drozdíková, PhD.

Slovenská komisia Chemickej olympiády

Vydal: NIVAM – Národný inštitút vzdelávania a mládeže, Bratislava 2024