Government College of Engineering, Amravati (An Autonomous Institute of Government of Maharashtra)

Sixth Semester B. Tech. (Computer Science and Engineering)

Summer - 2016

Course Code: Switching Theory and Logic Design

Course Name: CSU601

Time: 2 Hrs. 30 Min. Max. Marks: 60

Instructions to Candidate

1) All questions are compulsory.

- 2) Assume suitable data wherever necessary and clearly state the assumptions made.
- 3) Diagrams/sketches should be given wherever necessary.
- 4) Use of logarithmic table, drawing instruments and non-programmable calculators is permitted.
- 5) Figures to the right indicate full marks.

1. Solve any two:

- (a) Show type classification available in VHDL and 6m explain scalar data type in brief.
 - (b) Explain case, wait and loop sequential statements 6m in detail with example.
 - (c) Design VHDL code for 9 bit parity generator 6m circuit

2. Solve:

(a) Write short note on:

i) Explicit visibility with clauses

ii) Operator overloading

4m

(b)	Write VHDL code for: i) 1bit full adder using dataflow modeling ii) synchronous D-type flip-flop triggered on the rising edge of the clock signal using behavioural modelling	8m
(a)	Solve: Simplify the following Boolean function: $F(A,B,C,D) = \Sigma_m(1,2,4,7,8,11,13,14)$	4m
(b)	Find all the prime implicants for the Boolean functions given and determine which are essential PI $F(A,B,C,D) = \Sigma m(0,1,3,4,5,7,13,15)$, using Tabulation method	6m
(c)	Prove that the compliment of a function is equal to complementing a function using dual method.	2m
(a)	Solve any one: Design BCD to 7 segment LED code convertor.	12m
(b)	(i) Design BCD to Excess-3 code convertor	6m
	(ii) Design VHDL code for 3:8 decoder using Data flow modeling and logic circuit along with its truth table	6m
(a)	Solve Design 3 bit synchronous up counter using J-K flip flop.	
(b)	What are shift register? Explain bi-directional	6 m

3.

5.

Government College of Engineering, Amravati (An Autonomous Institute of Government of Maharashtra)

Sixth Semester B. Tech. (Computer Science & Engg.)

Summer-2017

Course Code: Switching Theory & Logic Design

Course Name: CSU601

Time: 2 Hrs. 30 Min.

Max. Marks: 60

Instructions to Candidate

1) All questions are compulsory.

2) Assume suitable data wherever necessary and clearly state the assumptions made.

3) Diagrams/sketches should be given wherever necessary.

4) Use of logarithmic table, drawing instruments and non-programmable calculators is permitted.

5) Figures to the right indicate full marks.

1. Solve any two:

- (a) Explain the following sequential statements: if, 6m case, null and exit.
- (b) Design VHDL code for 9 bit parity generator 6m circuit
- (c) What are signal assignment statements? Elaborate 6m them in detail.

2. Solve:

- (a) Write down VHDL code for given circuits: 6m
 - i) 1 bit full adder using mixed modeling.
 - ii) 2:4 decoder using behavioural modeling.

Contd..

	(b)	Write short note on: i) Functions ii) Overloading & Visibility iii) Use clause & Generic constants.	6m			А — В — С —
3.	(a)	Solve: Simplify the following Boolean function: i) $F(w,x,y,z) = \Sigma_m(0,1,2,4,5,8,10,12,14)$ ii) $F(a,b,c,d) = \Sigma_m(0,2,6,8,12,13,15) + d_m(3,4,9)$	6m	5.	(a)	SOIV
	(b)	Minimize the given logic functionusing Tabulation method and determine Prime implicants& essential PI, $F(A,B,C,D) = \Sigma_m(0,1,2,3,5,7,8,10,12,13,15)$	6m		(b)	Desi flip Expl as its
4.	(a) (b)	Solve any two: Design BCD to Excess-3 code convertor Explain Adders in detail with its types and implementation.	6m 6m		(c)	Wha brief
	(c)	Consider the combinational circuit shown below: i) Derive the Boolean expressions for T ₁ through T ₄ . Evaluate the outputs of F ₁ and F ₂ as a function of the four inputs. ii) List the truth table with 16 binary combinations of the four inputs variables. Then list the binary values for T ₁ through T ₄ and outputs F ₁ and F ₂ in the table. iii) Plot the output Boolean functions obtained in part on maps and show that the simplified Boolean expressions are equivalent to the ones obtained in part (a).	6m			

5. (a) Solve any two:
Design 3 bit synchronous down counter using T flip flop.

(b) Explain synchronous counters with BCD counter as its type.

(c) 6m What are shift register? Explain serial transfer in brief with example.