Absorción de Partículas Beta

1. Objetivos de la práctica

- 1. Determinar la curva del alcance en función del espesor de absorbente de aluminio para una fuente de $\rm Sr^{90}$.
 - 2. Determinar el alcance a partir de la gráfica.
 - 3. Determinar la energía máxima de las partículas β .
- 4. Comparar los resultados experimentales con los obtenidos a partir de la fórmula de Feather.

2. Resultados

Añadiendo placas de aluminio, medimos para un tiempo de acumulación de 90 segundos, la radiación:

Espesor (mm)	Espesor (g/cm^2)	Cuentas
0	0	20352
0,4	0,11	13581
0,8	0,22	8564
1,2	0,33	5225
1,6	0,44	2839
2	0,55	1480
2,4	0,66	727
2,8	0,77	332
3,2	0,88	145
3,6	0,99	94
4	1,1	62
4,4	1,21	65
5,6	1,54	60

Tabla 1: Medida de radiación para 90s según el espesor

Figura 1: Partículas β en función del espesor absorbente

Podemos el alcance en 1,1 g/cm², ya que se estabiliza en ese punto. Representando la parte lineal:

Figura 2: Ajuste de la región lineal

donde la recta de ajuste, siendo c el número de cuentas y e el espesor, es:

$$\log c = -2,44e + 4,43$$
$$c = 10^{(-2,44e+4,43)}$$

Figura 3: Alcance de las partículas β en función de la energía máxima

Interpolando en la Figura 3, podemos establecer la energía máxima en torno a $2,3~{\rm MeV}.$

La energía máxima para el Sr^{90} que aparece en los esquemas de desintegración es de 2,28 MeV, aplicando las fórmulas de *Feather*:

$$T = 2,28 \text{MeV}$$

$$T = 1,845 \times R + 0,245$$

$$R = \frac{T - 0,245}{1,845} \longrightarrow R = 1,103 (\text{g/cm}^2)$$

Podemos ver que el alcance medido y el calculado son muy similares, presentan una diferencia menor al 0,3 %