Introduction

- ► This presentation demonstrates using GradCAM for
 - captions
 - regression tasks

MedCLIP Model Initialization

```
model = MedCLIPModel(vision_cls=MedCLIPVisionModelViT)
vision_encoder = model.vision_model
```

HeatMapModel Definition

```
class HeatMapModel(nn.Module):
    def __init__(self, vision_encoder, regression_model):
        super().__init__()
        self.vision_encoder = vision_encoder
        self.regression_model = regression_model
    def forward(self, pixel_values):
        embeddings = self.vision_encoder(pixel_values)
        regression = self.regression_model(embeddings)
        return regression
```

Caption Results: Heart Location

there is some pneumonia near the heart

Caption Results: Lung Location

there is pleural effusion on the lower lung

Phenotyping

Given the image embedding for the same patient i, we can find the top k phenotypes by computing the inner product (a matrix multiplication).

$$\begin{bmatrix} - & w_1 & - \\ & \vdots & \\ - & w_k & - \end{bmatrix} \begin{bmatrix} | \\ i \\ | \end{bmatrix} = \begin{bmatrix} s_1 \\ \vdots \\ s_k \end{bmatrix}$$

- ▶ We find the top *k* similarities and extract those.
- ▶ In our example "There is Pneumonia on the left" if we return for $k=2,\ (2,\ 5) \to (Pneumonia,\ left)$ would be our phenotypes

Matching Embedding Shapes

- ▶ There is one image with one image embedding 512 vector
- ▶ If we select k = 5 phenotypes, then the concatenated text embedding will be of size 512 * 5 = 2560
- ► Thus for the regression models to be of the same architecture, I create a single Embedding by using the form: "The embeddings for the x-ray are: {list_of_embeddings}"

Residual Regression 1

```
We have image embedding {\bf i} and text embedding {\bf w} where {\bf w} is the embedding: "The phenotype are: {List of phenotype}" Residual embedding {\bf r}={\bf i}-{\bf w} Train a regression f:\mathbb{R}^{512}\to [0,1] f({\bf r})=\Pr(\text{diease is present})
```

Residual Regression 1: Full Model

Residual Regression 1: ROC Curve

The Residual regression model outperforms the image embedding only model.

Residual Regression 2

We have image embedding \mathbf{i} and text embedding \mathbf{w} where \mathbf{w} is the embedding: "The phenotype are: {List of phenotype}" Train a model $f: \mathbb{R}^{512} \to \mathbb{R}^{512}$ to predict \mathbf{w} from \mathbf{i} Then, define $\mathbf{r} = \hat{f}(\mathbf{i}) - \mathbf{w}$ Then, train a model $g: \mathbb{R}^{512} \to [0,1]$ to predict disease or no disease.

Residual Regression 2: Full Model

Residual Regression 2: Results

Figure: Accuracy for predicting disease from residuals r

Heatmap Interpretation