Detailed Explanation of Diffusion Process and Corresponding Code

1 Method

We start by summarizing the diffusion models in section 1.1.1 and guidance to control the generation process in section 1.1.2. In ?? we describe our framework to incorporate control from two unpaired datasets.

1.1 Background

1.1.1 Diffusion models

Diffusion Models (DMs) [?] are generative models that generate data samples by gradually adding noise to data through a forward diffusion process, followed by a reverse denoising process that reconstructs the original sample. The forward process corrupts data sample x_0 through iterative noise addition controlled by a schedule $\alpha = \{\alpha_t\}_{t=1}^T$:

$$q(x_t|x_{t-1}) = \mathcal{N}(x_t; \sqrt{1 - \alpha_t} \, x_{t-1}, \alpha_t I) \tag{1}$$

With $\bar{\alpha}_t = \prod_{i=1}^t (1 - \alpha_i)$ noised x_t can be computed from x_0 with marginal distribution given by,

$$q(x_t \mid x_0) = \mathcal{N}(x_t; \sqrt{\bar{\alpha}_t} x_0, (1 - \bar{\alpha}_t)I)$$
(2)

The reverse process, parameterized by a neural network p_{θ} , learns to reconstruct the data sample by predicting the denoised mean and variance at each step:

$$p_{\theta}(x_{t-1}|x_t) = \mathcal{N}(x_{t-1}; \mu_{\theta}(x_t, t), \Sigma_{\theta}(x_t, t))$$
(3)

Latent Diffusion Models (LDMs) work in a compressed latent space z_t rather than the high-dimensional data space, improving efficiency[?]. The data x_0 is encoded as z_0 through an autoencoder, and the diffusion process is then applied in this latent representation. LDM models learn to minimize the objective,

$$L = \mathbb{E}_{z_0, t, \epsilon \sim \mathcal{N}(0, 1)} \left[\|\epsilon - \epsilon_{\theta}(z_t, t)\|_2^2 \right]$$
(4)

where, ϵ is random Gaussian noise sampled from $\mathcal{N}(0, I)$, and ϵ_{θ} is the model's predicted noise at time t. Owing to the relevance to score-based generation models, the model estimates the log density of the distribution z_t i.e. $\epsilon_{\theta}(z_t, t) \approx -\nabla_{z_t} \log p(z_t)$.

1.1.2 Guidance

In the denoising process different conditional inputs c (text, image, depth, mask, etc.) can be added to control the generation; so the denoising model predicts $\epsilon_{\theta}(z_t, t, c)$. At the time of sampling, diffusion score $\epsilon_{\theta}(z_t, t, c)$ is modified to include the adversarial gradient of the classifier[?]:

$$\tilde{\epsilon}_{\theta}(z_t, t, c) = \epsilon_{\theta}(z_t, t) - w \nabla_{z_t} \log p_{\phi}(c|z_t)$$
(5)

where w is a guidance strength parameter that controls the influence of the classifier. In classifier-free guidance [?] single neural network is used to parameterize both the unconditional denoising diffusion model $p_{\theta}(z)$ and conditional denoising diffusion model $p_{\theta}(z|c)$. While training unconditional model receives a null token, Φ as c randomly with some probability $p_u n cond$, set as a hyperparameter. While sampling linear combination of conditional and unconditional score estimates is used:

$$\tilde{\epsilon}_{\theta}(z_t, t, c) = (1 + w)\epsilon_{\theta}(z_t, t, c) - w\epsilon_{\theta}(z_t, t) \tag{6}$$

2 Forward Diffusion (Noising Process)

2.1 Step 1: Noise Addition

The forward diffusion process incrementally adds Gaussian noise to the data:

$$q(x_t|x_{t-1}) = \mathcal{N}(x_t; \sqrt{1 - \alpha_t} \cdot x_{t-1}, \alpha_t \cdot I)$$

2.2 Direct Sampling of x_t

The noise is accumulated across timesteps, allowing x_t to be sampled directly from x_0 :

$$q(x_t|x_0) = \mathcal{N}(x_t; \sqrt{\bar{\alpha}_t} \cdot x_0, (1 - \bar{\alpha}_t) \cdot I)$$

2.3 Code Implementation:

```
alphas = 1.0 - betas
  self.alphas_cumprod = np.cumprod(alphas, axis=0) # \(\bar{\alpha}_t\)
  self.sqrt_alphas_cumprod = np.sqrt(self.alphas_cumprod) # \(\\sqrt{\bar})
      {\langle alpha \}_t \rangle}
  self.sqrt_one_minus_alphas_cumprod = np.sqrt(1.0 - self.alphas_cumprod)
        # \(\sqrt{1 - \bar{\alpha}_t}\)
5
  def q_sample(self, x_start, t, noise=None):
6
       if noise is None:
7
           noise = th.randn_like(x_start) # \(\epsilon \sim \mathcal{N}
       return (
9
           _extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape
10
              ) * x_start
           + _extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t,
11
              x_start.shape) * noise
       )
12
```

3 Reverse Diffusion (Denoising Process)

3.1 Step 1: Reverse Distribution

The reverse process learns:

$$p_{\theta}(x_{t-1}|x_t) = \mathcal{N}(x_{t-1}; \mu_{\theta}(x_t, t), \Sigma_{\theta}(x_t, t))$$

3.2 Code for Sampling x_{t-1} :

```
def p_sample(self, model, x, t, clip_denoised=True, denoised_fn=None,
      cond_fn=None, model_kwargs=None):
       out = self.p_mean_variance(
2
          model,
3
          х,
           clip_denoised=clip_denoised,
           denoised_fn=denoised_fn,
           model_kwargs=model_kwargs,
      noise = th.randn_like(x)
10
       nonzero_mask = (t != 0).float().view(-1, *([1] * (len(x.shape) - 1))
11
          )) # no noise when t == 0
       sample = out["mean"] + nonzero_mask * th.exp(0.5 * out["
12
          log_variance"]) * noise
       return {"sample": sample, "pred_xstart": out["pred_xstart"]}
13
```

3.3 Step 2: Predicted Noise $\epsilon_{\theta}(x_t, t)$

The model directly predicts the noise added to x_t :

$$\epsilon_{\theta}(x_t, t) = f_{\theta}(x_t, t)$$

3.4 Code:

3.5 Step 3: Predicted x_0

Using the predicted noise $\epsilon_{\theta}(x_t, t)$, the noiseless image x_{pred_0} is reconstructed:

$$x_{\text{pred}_0} = \frac{x_t - \sqrt{1 - \bar{\alpha}_t} \cdot \epsilon_{\theta}(x_t, t)}{\sqrt{\bar{\alpha}_t}}$$

3.6 Code:

3.7 Step 4: Predicted Mean $\mu_{\theta}(x_t, t)$

The mean of the reverse process is computed as:

$$\mu_{\theta}(x_t, t) = \frac{1}{\sqrt{\alpha_t}} \cdot \left(x_t - \frac{1 - \alpha_t}{\sqrt{1 - \bar{\alpha}_t}} \cdot x_{\text{pred}_0} \right)$$

3.8 Code:

3.9 Step 5: Adding Stochastic Noise

Finally, noise is added to the reverse mean to sample x_{t-1} :

$$x_{t-1} = \mu_{\theta}(x_t, t) + \sqrt{\Sigma_{\theta}(x_t, t)} \cdot \epsilon, \quad \epsilon \sim \mathcal{N}(0, I)$$

3.10 Code:

4 Summary Table of Code and Equations

Mathematical Equation	Code Implementation
$q(x_t x_0) = \mathcal{N}(x_t; \sqrt{\bar{\alpha}_t} \cdot x_0, (1 - \bar{\alpha}_t) \cdot I)$	q_sample function.
$x_{\text{pred}_0} = \frac{x_t - \sqrt{1 - \bar{\alpha}_t \cdot \epsilon_\theta(x_t, t)}}{\sqrt{\bar{\alpha}_t}}$	$_predict_xstart_from_eps.$
$\mu_{\theta}(x_t, t) = \frac{1}{\sqrt{\alpha_t}} \cdot \left(x_t - \frac{1 - \alpha_t}{\sqrt{1 - \bar{\alpha}_t}} \cdot x_{\text{pred}_0} \right)$	q_posterior_mean_variance function.
$x_{t-1} = \mu_{\theta}(x_t, t) + \sqrt{\Sigma_{\theta}(x_t, t) \cdot \epsilon}$	Final sampling step in p_sample.