Analiza matematyczna 1 Wykład 13.5, punkty przegięcia wykresu funkcji (dodatek)

1 Punkty przegięcia wykresu funkcji

Twierdzenie 1. (warunek konieczny istnienia punktu przegięcia) Jeżeli funkcja f spełnia warunki

- 1. $(x_0, f(x_0))$ jest jej punktem przegięcia;
- 2. istnieje $f''(x_0)$,

to
$$f''(x_0) = 0$$
.

Implikacja w drugą stronę nie jest prawdziwa, bo np. funkcja $f(x) = x^4$ spełnia warunek f''(0) = 0, ale punkt (0,0) nie jest punktem przegięcia jej wykresu.

UWAGA! Funkcja może mieć punkty przegięcia tylko w punktach, w których jej druga pochodna równa się zero lub w punktach, w których ta pochodna nie istnieje.

Twierdzenie 2.(I warunek wystarczający istnienia punktu przegięcia - zmiana znaku drugiej pochodnej wokół punktu, w którym druga pochodna się zeruje)

Jeżeli funkcja f spełnia warunki

- 1. w punkcie x_0 ma pochodną właściwą lub niewłaściwą;
- 2. istnieje $\delta > 0$:
 - f''(x) < 0 dla każdego $x \in S(x_0^-, \delta)$ (lewostronne otoczenie punktu x_0),
 - f''(x) > 0 dla każdego $x \in S(x_0^+, \delta)$ (prawostronne otoczenie punktu x_0),

to $(x_0, f(x_0))$ jest punktem przegięcia jej wykresu.

Powyższe twierdzenie jest prawdziwe także wtedy, gdy nierówności dla drugiej pochodnej są odwrotne w sąsiedztwach jednostronnych punktu x_0 .

Zatem warunek $f''(x_0) = 0$ staje się wystarczający do istnienia punktu przegięcia, gdy druga pochodna funkcji f jest dodatnia z jednej i ujemna z drugiej strony punktu x_0 . Jest tak, ponieważ gdy na lewo od punktu x_0 jest f''(x) > 0, a na prawo f''(x) < 0, to funkcja f jest na lewo wypukła, a na prawo wklęsła, więc w punkcie x_0 istnieje punkt przegięcia, lub odwrotnie.

Ilustracja graficzna: poniżej przedstawiono a) wykres drugiej pochodnej oraz b) wykres funkcji.

Przykład 1. Korzystając z powyższego faktu znaleźć wszystkie punkty przegięcia podanych funkcji.

a)
$$f(x) = x^4 - 12x^3 + 48x^2$$
; b) $f(x) = 4x^2 + \frac{1}{x}$; c) $f(x) = x^2 \ln x$.

Twierdzenie 3. (I warunek wystarczający istnienia punktu przegięcia)

Jeżeli funkcja f spełnia warunki

1.
$$f''(x_0) = f'''(x_0) = \dots = f^{(n-1)}(x_0) = 0$$
,

- 2. $f^{(n)}(x_0) \neq 0$,
- 3. n jest liczbą nieparzystą, gdzie $n \geq 3$,

to $(x_0, f(x_0))$ jest punktem przegięcia jej wykresu.

Jeżeli założenie 3. w powyższym twierdzeniu ma postać "n jest liczbą parzystą", to $(x_0, f(x_0))$ nie jest punktem przegięcia jej wykresu.

Przykład 2. Korzystając z powyższego twierdzenia znaleźć wszystkie punkty przegięcia podanych funkcji.

a)
$$f(x) = x^{99} + x^3$$
; b) $f(x) = \cos^4 x$; c) $f(x) = x^2 + 2\sin x$.