1	In the claims:			
2	1. A flex circuit for use in a fuel cell, the flex circuit, comprising:			
3	a fuel-side flexible circuit, comprising:			
4	a first flex substrate, wherein the first flex substrate comprises			
5	openings through which pass liquid fuel,			
6	a first porous layer adjacent the first flex substrate, the first porous			
7	layer including a first catalyst layer,			
8	an anode electrode between the first flex substrate and the first			
9	porous layer, and			
10	a boundary layer disposed adjacent the first porous layer, the			
11	boundary layer preventing cross-over of the liquid fuel;			
12	an air/water-side flexible circuit, disposed in parallel with the fuel-side			
13	flexible circuit, comprising:			
14	a second flex substrate, wherein the second flex substrate comprises			
15	openings through which pass water,			
16	a second porous layer adjacent the second flex substrate, the second			
17	porous layer including a second catalyst layer, and			
18	a cathode electrode between the second flex substrate and the			
19	second porous layer; and			
20	a center section disposed between the first and the second flex circuits,			
21	wherein the first and the second flex substrates are conformable to non-planar			
22	shapes.			
23	2. The flex circuit of claim 1, wherein the center section is a proton exchange			
24	membrane.			
25	3. The flex circuit of claim 1, wherein the center section is a channel carrying			
26	dionized water, the center section further comprising spacers to maintain a			
27	separation between the fuel-side flexible circuit and the air/water-side flexible			
28	circuit.			
29	4. The flex circuit of claim 1, wherein the flex circuit is formed in a shape of a			
30	cylinder.			

HP 10006771-1 10

1	The flex circuit of claim 4, wherein the liquid fuel is contained within an			
2	interior of			
3	the cylindrical flex circuit.			
4	The flex circuit of claim 4, wherein the liquid fuel is contained exterior to			
5	the			
6	cylindrical flex circuit.			
7	7. The flex circuit of claim 1, wherein the flex circuit is formed in a shape of			
8	polygon, and wherein the liquid fuel is contained within an interior of the polygon.			
9	3. The flex circuit of claim 1, wherein the flex circuit is in a shape of a star			
10	having N			
11	points, and wherein the liquid fuel is contained within an interior of the star-shaped			
12	flex circuit.			
13	7. The flex circuit of claim 1, wherein the first porous layer comprises a			
14	plurality			
15	of pores oriented in a vertical direction and approximately parallel to a local plane			
16	defined by the first porous layer, wherein a size one or more of the plurality of the			
17	pores is chosen such that the liquid fuel is transported to near a top vertical limit of			
18	the one or more pores by capillary action.			
19	10. The flex circuit of claim 1, wherein the first and the second porous layers			
20	comprise porous metal.			
21	11. The flex circuit of claim 10, wherein the metal is chosen from the group			
22	consisting of zinc and silver.			
23	12. A flex-based fuel cell, comprising:			
24	a first flexible circuit; comprising:			
25	a first flexible substrate, and			
26	a porous metal/catalyst layer, wherein the porous metal/catalyst			
27	layer comprises a plurality of pores oriented to distribute fuel to substantially all of			
28	the first flexible circuit using a capillary action;			
29	a separation section adjacent the first flexible circuit; and			

a separation section adjacent the first flexible circuit; and

11 HP 10006771-1

1		a second flexible circuit adjacent the separation circuit, wherein the first		
2	and t	and the second flexible circuits are conformable to a substantially non-planar		
3	shape.			
4	13.	The flex-based fuel cell of claim 12, wherein the separation section is a		
5		proton		
6	exchange membrane.			
7	14.	The flex-based fuel cell of claim 12, wherein the separation section is a		
8		channel		
9	comprising dionized water.			
10	15.	The flex-based fuel cell of claim 12, wherein the substantially non-planar		
11		shape		
12	comprises a cylinder.			
13	16.	The flex-based fuel cell of claim 15, wherein an interior of the cylindrical		
14		flex-		
15	based	based fuel cell comprises liquid fuel.		
16	17.	The flex-based fuel cell of claim 16, wherein the liquid fuel is methanol.		
17	18.	The flex-based fuel cell of claim 12, further comprising a dry film adhesive		
18	disposed between the first flexible substrate and the second flexible substrate.			
19	19.	A flex-based fuel cell, comprising:		
20		means for converting liquid fuel to protons, comprising:		
21		means for transporting liquid fuel through the liquid fuel converting		
22	mean	s, and		
23		first means for flexibly supporting the liquid fuel converting means;		
24		means for receiving the protons, comprising:		
25		means for converting the protons to water vapor, and		
26		second means for flexibly supporting the proton converting means;		
27	and			
28		means for exchanging the protons from the liquid fuel converting means to		
29	the proton converting means.			
30	20.	The flex-based fuel cell of claim 19, wherein the liquid fuel transporting		
31		means		

HP 10006771-1 12

2	liquio	liquid fuel within the porous metal layer.				
3	21.	The flex-based fuel cell of claim 19, wherein the proton exchanging means				
4	comp	comprises a proton exchange membrane.				
5	22.	The flex-based fuel cell of claim 19, wherein the proton exchanging means				
6	comp	comprises a dionized water channel.				
7	23.	A method of preparing a flex circuit for a fuel cell, comprising:				
8		patterning a conductive material on flex supporting means having a front				
9	surfa	surface and a back surface, wherein the conductive material is patterned on the				
10	front	front surface;				
11		attaching a layer of porous material to the conductive material;				
12		depositing a layer of catalytic coating on the surface of the porous material				
13	and					
14		ablating the supporting means from the back surface to make openings so				
15	that t	that the porous material is exposed.				
16	24.	The method of claim 23, further comprising the step of coating the catalyst				
17		layer				
18	with	a thin layer of proton transfer membrane.				

comprises a porous metal layer having means for causing capillary transport of the

1

HP 10006771-1 13