Production of long lived particles with charged leptons

Hao-Lin Li, Jiang-Hao Yu, Michael Ramsey-Musolf February 23, 2018

1 Description of the Simplified Model

In this simplified model we introduce three heavy neutrinos N_1, N_2, N_3 (N_1 lightest) and a right handed charged gauge boson W_R . The Lagrangian contain following new interactions:

$$\Delta \mathcal{L} = \frac{g}{\sqrt{2}} W_L^{\mu} \left(\frac{M_{W_L}^2}{M_{W_R}^2} (\sin 2\beta) k_q \ \bar{u}_{iR} V_{ij}^{CKMR} \gamma^{\mu} d_{jR} + \frac{M_{W_L}^2}{M_{W_R}^2} (\sin 2\beta) k_l \ \bar{N}_{iR} (Y_{lN})_{ij} \gamma^{\mu} l_{jR} \right)$$

$$+ \sqrt{\epsilon - \frac{M_{\nu}}{M_{N_1}}} k_l \ \bar{N}_{iR}^c (Y_{lN})_{ij} \gamma^{\mu} l_{jL}$$

$$+ \frac{g}{\sqrt{2}} W_R^{\mu} \left(k_{Rq} \ \bar{u}_{iR} V_{ij}^{CKMR} \gamma^{\mu} d_{jR} + k_{Rl} \ \bar{N}_{iR} (Y_{lN})_{ij} \gamma^{\mu} l_{jR} \right)$$

$$(1)$$

where g is the weak coupling constant, the ratio $M_{W_L}^2/M_{W_R}^2$ represents the scale of the mixing between W_L and W_R , $\tan\beta = v_2/v_1$ is the ratio of the vacuum expectation value (vev) of two neutral scalar in the bi-doublet. $\epsilon = v_L/v_R$ is the ratio of the vev of left handed triplet and right handed triplet, the ratio M_{ν}/M_{N1} represents scale of the mixing between the left and right handed neutrino. The dimensionless parameters k_q , k_l , k_{Rq} , k_{Rl} are set to 1 by default, the 3 matrix V^{CKMR} and Y_{lN} are set to be identity by default, M_{ν} represents the scale of the mass of light neutrinos and set to be 0.1 eV by default.

2 Production and Decay Processes

We provide the following production and decay processes with corresponding proc_card and madspin_card:

production of N_1	$pp \to \ell^{\pm} N_1$	proc_card_N1l.dat	
${}$ decay of N_1	$N_1 \to \ell^{\pm} j j$	madspin_card_ljj.dat	
	$N_1 \to \ell^{\pm} \ell^{\mp} \nu$	${\tt madspin_card_31_MET.dat}$	
production of N_1	$pp \to e^+ N_1$	proc_card_Nep.dat	
	$N_1 \rightarrow e^+ \mu^- \nu$	madspin_card_epmu.dat	
decay of N_1	$N_1 \rightarrow e^+e^-\nu$	${\tt madspin_card_epe.dat}$	
	$N_1 \to e^- \mu^+ \nu$	${\tt madspin_card_emup.dat}$	

3 Description of the Parameters

Parameter	Default Value	Description
mN1, mN2, mN3	$40, 10^{12}, 10^{14} \text{GeV}$	The mass of heavy neutrinos, only the lightest one is active
MWR, WWR	15000, 100 GeV	The mass and width of the right handed W boson
kq, kl	1.0, 1.0	scaling factor of the W_L couplings for quark and lepton
kRq, kRl	1.0, 1.0	scaling factor of the W_R couplings for quark and lepton
Mnu	0.1 eV	The mass scale of light neutrino
tanb	0.1	ratio of v_2 and v_1
epsi	0.0	ratio of v_L and v_R
VCKMR	Idendity	Right handed quark CKM matrix
YlN	Idendity	Right handed lepton mixing matrix

We also provide a plot to illustrate the length of the displaced vertex produced by the lightest heavy neutrino N_1 in the M_{W_R} vs M_{N_1} plane, all the other parameters are set to their default values.

Figure 1: The contour of the length of the displaced vertex.

4 User Guide

One should first copy the model file ChargeWN_UFO to the models folder in the Madgraph. Then one can use ./bin/mg5_aMC proc_card_N11.dat to produce the process folder LLP_N11. Go into the process folder LLP_N11 and copy the madspin card into the Cards folder and

rename as madspin_card.dat for different process. One can use the proc_card_Nep.dat in the similar way to specify the flavor of the leptons in the decay chains.

For the simplest use, one only need to change the mass of right handed W_R boson, MWR and the mass of the lightest heavy neutrino N_1 , "mN1" to obtain different travel length of the long-lived particle. Every time the user changes the parameters in the param_card.dat, one should set the width "WN1" of the longlived particle to Auto such that Madgraph will calculate the Width of N_1 automatically.

We also provide a python script "mgrun" to help to do the parameter scan. people needs to first generate a table of parameters by themselves in the following format:

```
mN1 WN1 MWR ...
100 Auto 6000 ...
200 Auto 6000 ...
```

where the first line are the names of the parameters you want to scan, and the following lines are the value of the parameters. To scan this table one only need to copy the script "mgrun" and the "table" to the process folder like LLP_N11 you generated, and run the following line in the terminal:

The first argument is the path of your process folder, if one use this script on a cluster one can replace "./" to the global path of your process folder.