TM Homework 4

Timur Islamov

Feb 2024

Link back to GitHub

1 Task 1

1.1 Task description

Determine the reaction forces and the forces in the interim pins of the composite stud. The studs and acting forces are shown.

Needed variables:

$$P_1 = 6, P_2 = 10, M_1 = 30, q = 1.5.$$

1.2 Solution

Using our minds we got such a picture:

So, the research objects are rods OC, CD and DF.

Force analysis:

We are already given with some variables, and we can find some more:

$$F_1 = 2q = 3$$
 $F_2 = 3q = 4.5$ $F_3 = 1.5q = 2.25$

And here are the unknown parameters we need to find: $R_x^A,\,R_y^A,\,\vec{R}^B,\,\vec{R}^E,\,\vec{R}^F,\,R_x^C,\,R_y^C,\,R_x^D,\,R_y^D$

$$\text{Rod 1:} \quad \begin{cases} X - axis : -P_1 \cos(\beta) + R_x^A + r_x^C \\ Y - axis : -P_1 \sin(\beta) + R_y^A + R^B - F_1 + R_y^C \\ M_A : OA * P_1 \sin(\beta) + M_1 + AB * R^B - (AB + \frac{BC}{2})F_1 + (AB + BC) * R_y^C = 0 \end{cases}$$

$$\text{Rod 2:} \quad \begin{cases} X - axis : -R_x^C + R_x^D \\ Y - axis : -R_y^C + R_y^D - F_2 = 0 \\ M_C : -\frac{CD}{2}F_2 + CD * R_y^D = 0 \end{cases}$$

$$\text{Rod 3:} \quad \begin{cases} X - axis : -R_x^D - R^F \cos(\alpha) \\ Y - axis : -R_y^D - F_3 + R^E - P_2 + R^F \sin(\alpha) \\ M_D : -\frac{DE}{2}F_3 + DE * R^E - (DE + EP_2) * P_2 + (DE + EF) * R^F \sin(\alpha) = 0 \end{cases}$$

Then we solve it using paper and pen or like smart guys - using python. Then we code it and get the answer. You may see the code in the folder HW4. Here is what we get as a result:

So, we got the answer.

1.3 Answers

HIGHLIGHTED ANSWERS ARE HERE

$$R_x^A = 4.64$$

$$R_y^A = 13.42$$

$$R^B = -2.97$$

$$R_x^C = -1.64$$

$$R_y^C = -2.25$$

$$R_x^D = -1.64$$

$$R_y^D = 2.25$$

$$R^E = 11.66$$

$$R^F = 3.28$$

2 Task 2

2.1 Task description

Determine the reaction forces in rods supporting a thin horizontal rectangular plate of weight G under action of force P applied along the side AB. The constructions and the acting forces are shown.

Needed variables:

$$G = 10, P = 20, a = 8.5, b = 2.5, c = 3.5, d = 2$$

2.2 Solution

We have 5 fixed pin supports for 6 rods (1 - 6). So, we have 6 research objects = 6 rods.

Force analysis:

From the task we have \vec{G} , \vec{P} , and \vec{S}_1 , \vec{S}_2 , \vec{S}_3 , \vec{S}_4 , \vec{S}_5 , \vec{S}_6 - parameters we have to find.

Then we create a system of equations:

$$\begin{cases} X - axis : S_3 \cos(\alpha_3) &= 0 \\ Y - axis : S_2 \cos(\alpha_2) + S_4 \cos(\alpha_4) - S_6 \cos(\alpha_6) + P &= 0 \\ Z - axis : -S_1 - S_2 \sin(\alpha_2) - S_3 \sin(\alpha_3) - S_4 \sin(\alpha_4) - S_5 + S_6 \sin(\alpha_6) - G &= 0 \\ M_x^A : -G_{\frac{b}{2}} - S_3 \sin(\alpha_3)b + S_6 \sin(\alpha_6)b &= 0 \\ M_y^A : S_1a + S_2 \sin(\alpha_2)a - S_6 \sin(\alpha_6)a + G_{\frac{a}{2}} &= 0 \\ M_z^A : S_2 \cos(\alpha_2)a - S_3 \cos(\alpha_3)b - S_6 \cos(\alpha_6)a &= 0 \end{cases}$$

Then we code the function to solve the system (see the .ipynb file in HW4 folder).

After running several times we get the correct solution:

```
\begin{array}{lll} [\{\,s1\colon -8.7500000000000,\ s2\colon 10.7529065838033,\ s3\colon\ 0.0\,,\\ s4\colon\ -34.4093010681705,\ s5\colon\ 23.0000000000000,\ s6\colon\ 8.00390529679106\}] \\ \text{So, we got the answer.} \end{array}
```

2.3 Answers

HIGHLIGHTED ANSWERS ARE HERE

 $S_1 = -8.75$ $S_2 = 10.75$ $S_3 = 0$ $S_4 = -34.41$ $S_5 = 23$ $S_6 = 8$

3 MEME

No comments...

