following (s) cannot be enabled when its enable input is at logic 1. The gate is:-

3) The output of logic gale à 1, When all its computs ale
at logic 1. The gate is either
@ a NAND or a NOR , Dan AND or an XNOR
Can OR or a NAND, Dan XOR or an XNOR
Ans: BarAND or an XNOR
(3) The no. of rouls in the touth table of a 4-cinpat
gate is
@4 B8 @12 D16
gate is @ 4
6 For the gate shown in the fourse the outret will be
(5) For the gate shown in the figure, the output will be
ALGH B 2 X
@ if both impats are HIGH
Dif one of the inputs is HIGH
© if one of the impuls is LOW
B if and only if both the computs are LOW,
Ans's D if one of the inputs is HIGH.
6 Consider the expression Z = A ⊕ B ⊕ C swhere AB, C
de imput consiables and I is the output consiable
Z will be logic I if
@ an even no, of input variables are I
Dan odd no. of input carriables are 1
@ an even no, of Emput variables are o
Dan odd no of input variables are o
An: 6 an odd no. of Exput variables are 1
1 your are I

(7) The X-OR and X-NOR gates on have how many The logic expression AB + AB N-NOR gate