Learning and Memorization

Bernhard Gstrein

Motivation

- ► [Zhang et al. 2017]: neural networks have the capacity to memorize their training set
 - ► Train AlexNet on CIFAR-10 with randomly permuted labels
 - ► Training error goes to 0
- ► What is the link between **memorization** and **generalization**?
 - ► Why don't NNs just memorize their training set?
- ► [Chatterjee 2018]: Is it possible to generalize by memorizing alone?

Basic idea of paper

ightharpoonup What is a simple form of memorization? ightharpoonup a table

Lives in water	Has eyes	Has limbs	
0	1	1	
1	1	0	
1	0	0	

Vertebrate		
1	1	
1	1	
0		

Model for classification of animals into vertebrates/invertebrates

- ► We must binarize the dataset
- We must limit the complexity
 - ▶ 28x28 images $\rightarrow 28 \cdot 28 = 784 \rightarrow 2^{784} \propto 10^{236}$

Single lookup table ("lut")

Network of lookup tables ("luts")

How to go from there

Recap

Preprocessing data

- ► MNIST dataset: 28x28 images of handwritten digits (0-9)
- ▶ We unroll the images: $28 \cdot 28 = 784$
- \blacktriangleright We scale the numerical values to the range [0,1]
- lacktriangle We binarize the data using the operator >0.5
- ► Labels (to be predicted): class 0-4 vs. 5-9
- ▶ We end up with
 - Features: matrix of shape (N, 784), boolean entries
 - Labels: matrix of shape (N, 1), boolean entries

A single lut

- Reminder: every example is an instance of a "bit pattern" (e.g. $x^i = 010$) and has a label (e.g. $y^i = 1$)
- For each bit pattern, we cound how many times y=0 and y=1

$$\hat{f}(\text{bit pattern}) = \begin{cases} 0 & \text{if} \quad \sum\limits_{y=0} > \sum\limits_{y=1} \\ 1 & \text{if} \quad \sum\limits_{y=0} < \sum\limits_{y=1} \\ \text{rand}(0,1) & \text{if} \quad \sum\limits_{y=0} = \sum\limits_{y=1} \end{cases}$$

A single lut: example

\boldsymbol{x}	y
000	0
000	1
000	1
001	1
100	0
110	0
110	1

bit pattern	$\sum_{y=0}$	$\sum_{y=1}$
000	1	2
001	0	1
010	0	0
011	0	0
100	1	0
101	0	0
110	1	1
111	0	0

bit pattern	\hat{f}
000	1
001	1
010	0*
011	1*
100	0
101	1*
110	1*
111	0*

A single lut applied on MNIST

- ▶ MNIST features: matrix of shape (N,784)
- ▶ We perform PCA and obtain a matrix of shape (N, k), varying k from 2 to 20
- ► A single lut is able to handle this dataset

A single lut applied on MNIST

Performance of a single lut on 0-4 vs. 5-9 MNIST classification (PCA used to reduce dimensions to corresponding bit size)

Single lookup table ("lut")

Network of lookup tables ("luts")

How to go from there

Recap

Network

► As we've seen, a single lut is not very powerful

Single lookup table ("lut")

Network of lookup tables ("luts")

How to go from there

Recap

How to go from there

Single lookup table ("lut")

Network of lookup tables ("luts")

How to go from there

Recap

Recap

Hello there, this is empty:)

Any Questions?

Single lookup table ("lut")

Network of lookup tables ("luts")

How to go from there

Recap

References Iala

- Chatterjee, Satrajit (2018). "Learning and memorization". In: International Conference on Machine Learning. PMLR, pp. 755–763.
 - Zhang, Chiyuan et al. (2017). *Understanding deep learning requires* rethinking generalization. arXiv: 1611.03530 [cs.LG].

