PMTH212 ASSIGNMENT 7

MARK VILLAR

(1)
$$f(x,y) = x^2 + xy - 2y - 2x + 1$$

 $f_x(x,y) = 2x + y - 2 = 0 \implies y = 2 - 2x$
 $f_y(x,y) = x - 2 = 0 \implies x = 2$

We obtain only one solution when x = 2, y = -2. Hence there is a critical point at (2, -2).

$$f_{xx}(x,y) = 0$$
, $f_{yy}(x,y) = 0$, $f_{xy}(x,y) = 1$
 $D = f_{xx}f_{yy} - f_{xy}^2 = 2(0) - 1^2 = -1$

Since D < 0 at (2, -2), this critical point is a saddle point.

(2) f(x,y) = xy - 2x on the triangular region R with vertices (0,0), (0,4), (4,0)

$$f_x = y - 2 = 0 \implies y = 2$$

$$f_y = x = 0 \implies x = 0$$

We obtain only one solution when x = 0, y = 2, with f(0,2) = 0. Hence there is a critical point at (0,2). A sketch of the region R divided into three line segments L_1, L_2, L_3 , reveals (0,2) is a boundary point of R, lying on L_1 .

$$L_1$$
: $x=0$ and $f(x,y)=f(0,y)=0,\ 0\leq y\leq 4$ (monotone)
 L_2 : $y=0$ and $f(x,y)=f(x,0)=-2x,\ 0\leq x\leq 4$ (monotone)
 L_3 : $y=4-x$ and $f(x,y)=f(x,4-x)=2x-x^2,\ 0\leq x\leq 4$

On L_1 , f has no critical points and the value of f is 0, regardless of y. In fact, f is simply the y-axis on the closed interval [0,4]. Hence, the minimum and maximum are both 0, attained along the entire boundary line.

On L_2 , f has no critical points and the maximum is clearly 0 attained at (0,0) while the minimum is -8 attained at (4,0).

On
$$L_3$$
, $g(x) = 2x - x^2$, $g'(x) = 2 - 2x = 0 \Rightarrow x = 1$, $y = 3$, $g''(x) < 0$, $f(1,3) = 1$. Hence, we obtain a maximum of 1 at $(1,3)$.

Combining results from the three line segements, we find the maximum on the boundary is 1 and the minimum is -8.

Therefore the absolute maximum of f over R is 1 attained at (1,3) while the absolute minimum is -8 attained at (4,0).

(3)
$$f(x,y) = x^2 - y$$
, $g(x,y) = x^2 + y^2 - 25 = 0$, $\nabla f(x,y) = \lambda \nabla g(x,y)$
 $\nabla f(x,y) = 2x\vec{i} - \vec{j}$ $\nabla g(x,y) = 2x\vec{i} + 2y\vec{j}$
 $2x = \lambda 2x \implies \lambda = 1, \ x \neq 0$ $-1 = \lambda 2y \implies y = -\frac{1}{2}$
 $x^2 + \left(-\frac{1}{2}\right)^2 = 25$ $x^2 = \frac{99}{4} \implies x = \pm \frac{3\sqrt{11}}{2}$

Hence
$$\left(-\frac{3\sqrt{11}}{2}, -\frac{1}{2}\right)$$
 and $\left(\frac{3\sqrt{11}}{2}, -\frac{1}{2}\right)$ are critical points when $x \neq 0$.

When x = 0, we compute y from the constraint and obtain the corresponding λ -values as follows.

$$y = \pm \sqrt{25 - x^2} = \pm \sqrt{25 - 0^2} = \pm 5$$
$$-1 = \lambda 2y = \lambda 2(5) \implies \lambda = -\frac{1}{10}$$
$$-1 = \lambda 2y = \lambda 2(-5) \implies \lambda = \frac{1}{10}$$

Substituting the λ -values back into $y = -\frac{1}{2\lambda}$, we obtain two more critical points at (0, -5) and (0, 5).

(x,y)	(0, -5)	(0,5)	$\left(-\frac{3\sqrt{11}}{2}, -\frac{1}{2}\right)$	$\left(\frac{3\sqrt{11}}{2}, -\frac{1}{2}\right)$
f(x,y)	5	-5	$25\frac{1}{4}$	$25\frac{1}{4}$

We conclude from the table above that the maximum is $25\frac{1}{4}$ attained at $\left(\pm\frac{3\sqrt{11}}{2}, -\frac{1}{2}\right)$ while the minimum is -5 attained at (0,5).

$$(4) \ D(x,y) = x^2 + y^2, \ g(x,y) = 2x - 4y - 3 = 0, \ \nabla D(x,y) = \lambda \nabla g(x,y)$$

$$\nabla D(x,y) = 2x\vec{i} + 2y\vec{j} \qquad \nabla g(x,y) = 2\vec{i} - 4\vec{j}$$

$$2x = 2\lambda \Rightarrow x = \lambda \qquad 2y = -4\lambda \Rightarrow y = -2\lambda = -2x$$

$$2x - 4(-2x) - 3 = 0 \Rightarrow 10x - 3 = 0 \qquad x = \frac{3}{10}, \ y = -2\left(\frac{3}{10}\right) = -\frac{3}{5}$$

$$d(x,y) = \sqrt{x^2 + y^2} \qquad d\left(\frac{3}{10}, -\frac{3}{5}\right) = \sqrt{\frac{9}{100} + \frac{36}{100}} = \frac{3\sqrt{5}}{10}$$

We use the second derivative test to confirm that the critical point is a minimum.

$$D_x = 2x$$
, $D_y = 2y$, $D_{xx} = 2$, $D_{yy} = 2$, $D_{xy} = 0$
 $T = D_{xx}D_{yy} - D_{xy}^2 = 2(2) - 0^2 = 4 > 0$

Since $D_{xx} > 0$ and T > 0, the critical point is a minimum. Hence the point on the line closest to the origin is $\left(\frac{3}{10}, -\frac{3}{5}\right)$ with a distance of $\frac{3\sqrt{5}}{10}$.