Summary

Discussion: Comovements in Global Markets and the Role of U.S. Treasury

Author: Grace Xing Hu, Zhao Jin, and Jun Pan

Discussant: Junyong Kim (UNC Pembroke)

2023 FMA Annual Meeting

Comment 1 Co

Comment 2

Comment 3

Comment 4

Summary

- Daily safety measure η_t^{UST}
 - Negative intraday correlation (ρ) b/w $r^{US \text{ equity}}$ (SPX) & $r^{US \text{ Treasury}}$ (UST)
 - ► Five-minute returns, January 2004 to June 2022
- ► Top-quintile η_t^{UST} days as flight-to-UST episodes
 - ▶ $r^{\text{SPX}} \downarrow$, $r^{\text{UST}} \uparrow$, $r^{\text{JPY/USD}} \uparrow$, option-implied $\sigma \uparrow$, & SPX-to-UST flows \uparrow
 - η_t^{USD} & η_t^{VIX} , unlike η_t^{UST} , show no flight-to-safety (FTS) pattern
- Cf. Baele, Bekaert, Inghelbrecht, and Wei (2020)
 - Identify FTS days in 23 countries using their daily r^{Stock}/r^{Bond} with model averaging approach
 - Regime switching model + "threshold" model + "ordinal index" model
 - Negative r^{Stock} , positive r^{Bond} , negative $\rho_{\text{Stock,Bond}}$, & elevated σ_{Stock}

Table 2: During Q5 as FTS

	Panel A: Safety Measures							
		Q5	Q1		Non-FOMC	FOMC	Diff	
	$\eta_t^{\rm UST}$	0.64*** [201.95]	-0.07*** [-13.03]		0.32*** [36.74]	0.03 [0.83]	0.28*** [9.89]	
	# Days	926	926		4509	147		
$r^{\text{SPX}} \downarrow \& r^{\text{UST}} \uparrow$	Panel B:							
1 4 00 1		Ret	urn	CAPM α		Alme Val		1: - J - A
		Q5	Q1	Q_5	Q1	Q_5	Q1	mplied $\sigma \uparrow$
	SPX	-36.20***	13.75***			0.51***	-0.16***	
		[-8.04]	[4.76]			[6.48]	[-4.12]	
	UST	13.60***	-6.05***	5.03***	-7.96***	0.79***	-0.11	
		[9.57]	[-3.92]	[4.42]	[-4.92]	[4.68]	[-0.96]	
	DXY	1.20	2.14	-0.89	3.61**	0.07***	-0.03***	
		[0.63]	[1.22]	[-0.49]	[2.06]	[3.75]	[-3.13]	
	EUR/USD	-1.90	-1.87	-0.22	-3.99**	0.07***	-0.03**	
		[-0.82]	[-0.99]	[-0.10]	[-2.06]	[3.42]	[-2.47]	
	YEN/USD	16.48***	-8.43***	10.27***	-9.76***	0.14***	-0.04***	
		[7.07]	[-4.42]	[5.10]	[-5.03]	[4.28]	[-3.04]	
<i>r</i> JPY/USD ↑	Panel C:	Major Ma	rket Liqu	idity				
'		Δ^{χ}	Vol	$\Delta ext{Volume}$		$\Delta Gamma$		
		Q_5	Q1	Q_5	Q1	Q5	Q1	
	SPX	1.11***	-0.25**	0.25***	-0.00	-0.08	0.03	
		[4.22]	[-2.12]	[7.29]	[-0.12]	[-0.61]	[0.43]	
	UST	-0.02	0.28***	0.15***	0.12***	-0.00	0.03***	
		[-0.21]	[3.64]	[5.22]	[3.97]	[-0.72]	[3.09]	

During Q1, UST's liquidity ↑

Question: If UST becomes the source of risk in Q1, wouldn't $b_{\text{UST}}^{\text{Q1}}$ be positive and significant?

- This paper
 - We are mostly related to the recent paper Baele, Bekaert, Inghelbrecht, and Wei (2019), which use the daily returns of international equity and government bonds to infer flight-to-safety episodes based on multiple indicators such as return impact, correlation, and volatility spikes. We differ from their approach by constructing a simple safety measure from the correlation of the U.S. equity and Treasury intraday high-frequency returns, which enables us to identify the flight-to-UST episodes at the *daily* frequency."
- But Baele et al.'s FTS is also daily measure
 - Correlation? Comparative advantage? High-frequency advantages?
 - Baele et al.: "FTS days comprise less than 2% of the sample ..."
 - ▶ This paper: "... flight-to-UST episodes as the top 20% η_t^{UST} days ..."

Summary Comment 1

Comment 2

- Section 2.5/Figure 4 are describing/displaying the difference between high- & low-frequency safety measures
- Correlation/overlapping b/w their top-20% η_t^{UST} days?
- "... its construction method limits its ability to capture flight-to-safety at the daily basis."

- ► Table 6/Figure 4 in Baele *et al.* (2020)
- "During the FTS days, equities drop, on average, 2.29% ... whereas Treasury bonds increase, on average, 0.43% ..."
- "... we note that the 2.79% return impact on the first day of an FTS represents a 2.3 standard deviation move above its daily average of 0.013% ..."

- ▶ Baele *et al.* classify 222/10,794 days as FTS days in the US
- Likewise, how many FTS days in these papers are overlapping?
 - Q5-, D10-, P100- η_t^{UST}
- What if η_t^{USD} or η_t^{VIX} ?
- Orthogonal information b/w them would be interesting

Summary Comment 1

t 1 Comment 2

Comment 2: Exceptions in Figure 3 (a)

- Top-20% η_t^{UST} days constitute more than 20% of worst-20% SPX days
- 6/19 years are deviating from this pattern and stated as exceptions
- A little more explanations about their difference would be helpful

Comment 3: Comparing η_t^{UST} & η_t^{Others} ?

Panel A: Summary Statistics									
	Q_5	Q1			Q_5	Q1			
η_t^{USD}	0.45***	-0.30***	•	η_t^{VIX}	0.91***	0.43***			
	[92.72]	[-55.92]			[617.79]	[73.15]			
# Days	642	626		# Days	680	826			
Panel B: Market Performance on Q5 Ex. Q5-UST Days									
		Q5-USD		Q5-VIX					
	Return	CAPM α	$\Delta {\rm Imp.~Vol}$	Return	CAPM α	$\Delta {\rm Imp.~Vol}$			
SPX	14.81***		-0.18***	-7.24*		0.05			
	[2.98]		[-2.78]	[-1.74]		[0.71]			
UST	-2.23	-1.13	-0.30*	-1.00	-2.52	0.17			
	[-1.12]	[-0.52]	[-1.71]	[-1.07]	[-1.48]	[1.25]			
DXY	-0.97	2.04	-0.05***	3.41**	2.59	0.00			
	[-0.45]	[1.07]	[-3.87]	[2.00]	[1.57]	[0.29]			
EUR/USD	0.63	-2.21	-0.06***	-4.20**	-4.28**	-0.00			
	[0.27]	[-1.00]	[-3.65]	[-2.19]	[-2.25]	[-0.19]			
YEN/USD	-4.69**	-3.63	-0.06***	-3.41*	-4.23**	0.01			
	[-1.98]	[-1.49]	[-2.76]	[-1.71]	[-2.11]	[0.57]			

Days = 680 for Q5 & 826 for Q1?

- (Table 5) $\hat{E}[r^{SPX}]$ in bp is
 - -36 on Q5- η_t^{UST}
 - +15 on Q5- $\eta_t^{\text{USD}} \setminus \text{Q5-} \eta_t^{\text{UST}}$
 - -7 on Q5- $\eta_t^{VIX} \setminus Q5-\eta_t^{UST}$
- "... its clear that the U.S. equity market is much less stressed on the Q5 days captured by η_t^{USD} and η_t^{VIX} ."
- $\hat{E}[r^{SPX}]$ for Q5- η_t^{USD} & - η_t^{VIX} would be fairer
 - Or for both Q5- η_t^{UST} \Q5- η_t^{USD} & $05-n_t^{\text{UST}} \setminus 05-n_t^{\text{VIX}}$

Summary

Comment 3: Comparing η_t^{UST} & η_t^{Others} ?

- Figure 5 shows the crosssection of asset returns and the assets' *ρ* against US market
- ► Q5- η_t^{USD} \Q5- η_t^{UST} & Q5- η_t^{VIX} \Q5- η_t^{UST} in panels (c-d)
- Instead, Q5- $\eta_t^{\text{UST}} \setminus \text{Q5-}\eta_t^{\text{USD}} \& \text{Q5-}\eta_t^{\text{UST}} \setminus \text{Q5-}\eta_t^{\text{VIX}} \text{ would be more informative as } \eta_t^{\text{UST}} \text{ is the main variable in this paper}$
- Or more directly, ρ /overlapping among η_t s

Summary

Comment 4: $\eta_t^{JPY/USD}$ as Safe Haven?

- Both Tables 2 & 5 are suggesting JPY/USD rather than DXY & EUR/USD as safe haven
- What if $\eta_t^{JPY} = -corr(r_t^{SPX}, r_t^{JPY/USD})$ then?
- Section 3.3/Figure 7 show the importance of η_t^{USD} during the 2011 European debt crisis & the most recent inflation surge
- It would be further interesting if $\eta_t^{JPY} \& \eta_t^{EUR}$ have distinct contents
 - \triangleright ρ /overlapping

Comment 4: $\eta_t^{JPY/USD}$ as Safe Haven?

Foreign/USD The Dollar Index USD/Foreign yvar= (3)(4) 1.79*** $\Delta y^{\text{UST}} \times \Omega_5$ -1.33*** -1.45*** $\Delta y^{\text{Local Bond}} \times Q5$ [2.75][-2.67][-2.84] $\Delta v^{\text{Local Bond}} \times \Omega 1$ $\Delta y^{\text{UST}} \times Q1$ 1.95*** [4.47] $\Delta y^{\text{Local Bond}}$ Δu^{UST} 1.49*** 1.10*** 1.58*** 1.25** 1.57***[4.14][6.80] $_{r}^{\text{Local Equity}} \times O5$ $r^{SPX} \times Q5$ -0.04*[1.69] $r^{\text{Local Equity}} \times O1$ $r^{\text{SPX}} \times \text{Q1}$ -0.02 -0.04-0.01[-1.56][-0.85][-0.34] $_r$ SPX "Local Equity -0.09*** -0.08*** -0.18*** -0.17***0.05 0.06*[-7.66][-5.28][-3.98][-3.70][1.55][1.79] Q_5 -0.25-1.10 Q_5 -0.440.10[-0.58][-0.15][0.04][-0.12][-0.45][-1.09]Q11.59 0.67 1.25 0.05Q1-2.81-1.76[0.83][0.34][0.74][-1.48][-0.92][0.03]0.35 Intercept Intercept 0.44[0.40][0.51]Currency FE No No Yes Yes Currency FE Yes Yes NOBS 4622 46220 46220 46220 46220 4622 R2 (%) 4.90 6.41 8.51 9.27R2 (%) 2.43

- ► Table 7 regresses *r*^{FX} on Q5, Δy^{UST} , & their interactions
- Likewise, panel regressions (3, 6) based on equation (7) might contain the distinct effects of JPY (CHF) & other currencies
 - $b^{Q5} \& d^{UST}$ for IPY (CHF)

Summary Comment 1 Comment 2 Comment 3 Comment 4 Comment 5 Comment 6 Conclusion

Comment 5: Denmark/Norway/Sweden

 $r^{\mathrm{DNK/USD}}$, $r^{\mathrm{NOK/USD}}$, & $r^{\mathrm{SEK/USD}}$ often exhibit reasonable ρ s (0.7–0.8 at daily/monthly levels) & insignificantly different $\hat{\mathrm{E}}[r]$ s

Comment 5: Denmark/Norway/Sweden

Panel C.Other G10 currencies (ex. YEN, CHF)									
	NZD	AUD	NOK	GBP	CAD	SEK	EUR	DKK	
Q5	-10.08*** [-2.59]	-13.05*** [-3.16]	-8.03** [-2.17]	-5.69* [-1.93]	-11.92*** [-4.05]	-4.65 [-1.35]	-1.47 [-0.53]	-1.38 [-0.50]	
Q1	-4.22 [-1.45]	-3.99 [-1.49]	-5.33° [-1.68]	-0.09 [-0.04]	-1.15 [-0.60]	-4.44 [-1.59]	-3.35 [-1.45]	-3.35 [-1.44]	
VIX	-0.74*** [-2.94]	-0.61** [-2.29]	-0.69** [-2.07]	-0.51** [-2.34]	-0.49*** [-3.02]	-0.54*** [-2.60]	-0.28* [-1.76]	-0.28* [-1.74]	
Ted	0.03	-0.00 [-0.01]	0.03 [0.51]	0.01	0.02	0.02	0.01	0.01 [0.37]	
Intercept	15.34*** [3.34]	14.76*** [2.81]	13.78** [2.50]	9.83*** [2.69]	11.24*** [3.23]	10.72*** [2.98]	5.33* [1.76]	5.25* [1.74]	
NOBS R2 (%)	$4621 \\ 0.91$	4621 1.06	$\frac{4621}{0.75}$	$4621 \\ 0.82$	$\frac{4621}{1.40}$	4621 0.47	$\frac{4621}{0.19}$	4621 0.18	

Their intercept, b^{Q5} , & R^2 in Table 6 seem significantly different from each other

⇒ Are their roles as safe haven different?

Comment 6: BAB Returns During Q5?

	Excess	CAPM	CAPM α			
Portfolio	Return	β	Full	Q_5	Q1	Normal
1 (low beta)	3.38***	0.61***	0.68	7.66***	-3.08**	-0.47
,	[3.14]		[1.02]	[4.95]	[-2.18]	[-0.55]
2	3.90***	0.75***	0.61	6.29***	-0.25	-1.03
	[3.14]		[1.09]	[4.94]	[-0.22]	[-1.52]
3	5.15***	0.92***	1.10**	2.44**	0.83	0.74
	[3.50]		[2.35]	[1.98]	[0.75]	[1.20]
4	5.44***	0.98***	1.13**	-1.27	1.13	1.94***
	[3.36]		[2.12]	[-1.10]	[0.95]	[2.84]
5	5.91***	1.06***	1.24**	0.67	0.65	1.62**
	[3.34]		[2.22]	[0.47]	[0.55]	[2.28]
6	5.54***	1.12***	0.62	-0.85	-0.18	1.38*
	[2.95]		[1.04]	[-0.56]	[-0.15]	[1.76]
7	5.86***	1.17***	0.75	-2.35	-0.14	2.08**
	[2.91]		[0.98]	[-1.38]	[-0.09]	[2.24]
8	5.65**	1.27***	0.06	-4.41**	2.24	0.88
	[2.45]		[0.07]	[-2.33]	[1.19]	[0.71]
9	5.49**	1.36***	-0.50	-7.39***	1.77	1.10
	[2.15]		[-0.47]	[-3.11]	[0.88]	[0.78]
10 (high beta)	5.71*	1.53***	-0.99	-8.72***	1.02	0.96
	[1.90]		[-0.73]	[-3.15]	[0.36]	[0.53]
BAB	1.75		1.75	18.16***	-5.69	-1.40
	[1.02]		[1.02]	[4.86]	[-1.59]	[-0.61]

- As Q5- η_t^{UST} is a safety measure, the behavior of bettingagainst-beta (BAB, long low- β short high- β) is examined
 - $r^{\text{Low-}\beta} \uparrow r^{\text{High-}\beta} \downarrow \Rightarrow BAB \uparrow$
- "... clear that the information captured by $\eta_t^{\rm UST}$ is not identical to those reflected by the equity returns."
- Quality-minus-junk (Asness et al.), illiquid-minus-liquid (Pastor and Stambaugh)

ummary Comment 1 Comment 2 Comment 3 Comment 4 Comment 5

Conclusion

- Extensive empirical findings timely & interesting
 - Stocks, bonds, currencies, commodities, derivatives, etc.
- A lot of upside potential
 - Time-varying multi-dimensionality
 - High- versus low-frequency correlation
 - Future research: Asset pricing, international finance, macro-finance

Comment 6

Conclusion

- Gorton (2017): "... safe assets play a critical and fundamental role in any economy and yet are associated with financial crises when the safety attribute of short-term debt comes into question."
- Thanks for this opportunity to discuss this impressive paper!

Summary

- PCA in Figure 1: 3-month or -year rolling window?
- Figure 2: Additional 20% cutoff for η_t^{USD} is suggested
 - So that one can visually detect major FTS periods
- Page 8
 - "... falls sharply after the the (?) Fed announced ..."
 - "... statistics of the the (?) daily safety measures ..."
- ▶ Page 16: "... is the short term 3- (?) Treasuries, which ..."
- Format: Equation (3) versus Equations (2) & (4)
- Baele et al. (2019): 2020?
- Jiang et al. (2020): 2023 in RES?