- **c.** $2x\cos(2x) (x-2)^2 = 0$, [2, 3] and [3, 4]
- **d.** $x (\ln x)^x = 0$, [4, 5]
- 2. Find intervals containing solutions to the following equations.
 - **a.** $x 3^{-x} = 0$
 - **b.** $4x^2 e^x = 0$
 - **c.** $x^3 2x^2 4x + 2 = 0$
 - **d.** $x^3 + 4.001x^2 + 4.002x + 1.101 = 0$
- 3. Show that f'(x) is 0 at least once in the given intervals.
 - **a.** $f(x) = 1 e^x + (e 1)\sin((\pi/2)x), [0, 1]$
 - **b.** $f(x) = (x-1)\tan x + x\sin \pi x$, [0, 1]
 - **c.** $f(x) = x \sin \pi x (x 2) \ln x$, [1,2]
 - **d.** $f(x) = (x-2)\sin x \ln(x+2)$, [-1,3]
- **4.** Find $\max_{a \le x \le b} |f(x)|$ for the following functions and intervals.
 - **a.** $f(x) = (2 e^x + 2x)/3$, [0, 1]
 - **b.** $f(x) = (4x 3)/(x^2 2x), [0.5, 1]$
 - **c.** $f(x) = 2x\cos(2x) (x-2)^2$, [2,4]
 - **d.** $f(x) = 1 + e^{-\cos(x-1)}$, [1, 2]
- 5. Use the Intermediate Value Theorem 1.11 and Rolle's Theorem 1.7 to show that the graph of $f(x) = x^3 + 2x + k$ crosses the x-axis exactly once, regardless of the value of the constant k.
- **6.** Suppose $f \in C[a, b]$ and f'(x) exists on (a, b). Show that if $f'(x) \neq 0$ for all x in (a, b), then there can exist at most one number p in [a, b] with f(p) = 0.
- 7. Let $f(x) = x^3$.
 - **a.** Find the second Taylor polynomial $P_2(x)$ about $x_0 = 0$.
 - **b.** Find $R_2(0.5)$ and the actual error in using $P_2(0.5)$ to approximate f(0.5).
 - **c.** Repeat part (a) using $x_0 = 1$.
 - **d.** Repeat part (b) using the polynomial from part (c).
- **8.** Find the third Taylor polynomial $P_3(x)$ for the function $f(x) = \sqrt{x+1}$ about $x_0 = 0$. Approximate $\sqrt{0.5}$, $\sqrt{0.75}$, $\sqrt{1.25}$, and $\sqrt{1.5}$ using $P_3(x)$, and find the actual errors.
- **9.** Find the second Taylor polynomial $P_2(x)$ for the function $f(x) = e^x \cos x$ about $x_0 = 0$.
 - use $P_2(0.5)$ to approximate f(0.5). Find an upper bound for error $|f(0.5) P_2(0.5)|$ using the error formula, and compare it to the actual error.
 - **b.** Find a bound for the error $|f(x) P_2(x)|$ in using $P_2(x)$ to approximate f(x) on the interval [0, 1].
 - **c.** Approximate $\int_0^1 f(x) dx$ using $\int_0^1 P_2(x) dx$.
 - **d.** Find an upper bound for the error in (c) using $\int_0^1 |R_2(x)| dx$, and compare the bound to the actual error.
- **10.** Repeat Exercise 9 using $x_0 = \pi/6$.
- 11. Find the third Taylor polynomial $P_3(x)$ for the function $f(x) = (x-1) \ln x$ about $x_0 = 1$.
 - **a.** Use $P_3(0.5)$ to approximate f(0.5). Find an upper bound for error $|f(0.5) P_3(0.5)|$ using the error formula, and compare it to the actual error.
 - **b.** Find a bound for the error $|f(x) P_3(x)|$ in using $P_3(x)$ to approximate f(x) on the interval [0.5, 1.5].
 - **c.** Approximate $\int_{0.5}^{1.5} f(x) dx$ using $\int_{0.5}^{1.5} P_3(x) dx$.
 - **d.** Find an upper bound for the error in (c) using $\int_{0.5}^{1.5} |R_3(x)| dx$, and compare the bound to the actual error
- **12.** Let $f(x) = 2x \cos(2x) (x-2)^2$ and $x_0 = 0$.
 - **a.** Find the third Taylor polynomial $P_3(x)$, and use it to approximate f(0.4).
 - **b.** Use the error formula in Taylor's Theorem to find an upper bound for the error $|f(0.4) P_3(0.4)|$. Compute the actual error.