Manual for Package: tide Revision 22:23M

Karl Kästner

May 1, 2021

Contents

1	$@T_T$	ide	1
	1.1	T_Tide	1
	1.2		1
	1.3		1
	1.4	•	1
	1.5	9	1
	1.6		2
	1.7	shift_time_zone	2
2	@Tida	ıl_Envelope	2
	2.1	Tidal_Envelope	2
	2.2	init	2
3	@Tide	e_{-} wft	2
	3.1	Tide_wft	2
	3.2		2
4	@Tide	etable	3
	4.1	Tidetable	3
	4.2	analyze	3
	4.3	· ·	3
	4.4	1	3
	4.5	generate_tpxo_input	3
	4.6	import_tpxo	4
	4.7		4
5	${f tide}$		4
	5.1	constituents	4
	5.2		4
	5.3	envelope_amplitude	4

	5.4	envelope_slack_water
	5.5	interval_extrema
	5.6	interval_extrema2
	5.7	interval_zeros
	5.8	lunar_phase
	5.9	rayleigh_criterion
6	river-t	cide/@Bifurcation 5
	6.1	Bifurcation
	6.2	confluence_rule
	6.3	sediment_division
	6.4	sediment_division_geometric
7	river-t	${ m cide/@River_Tide}$
	7.1	River_Tide
	7.2	check_continuity
	7.3	check_momentum
	7.4	coefficient_frequency_components
	7.5	d2au1_dx2
	7.6	d2az1_dx2
	7.7	decompose
	7.8	derive_lorentz
	7.9	dkq_dx
	7.10	dkz_dx
	7.11	energy
	7.12	even_overtide_analytic
	7.13	fourier_derivative
	7.14	friction_coefficient
	7.15	friction_coefficient_dronkers
	7.16	friction_coefficient_godin
	7.17	friction_coefficient_lorentz
	7.18	friction_dronkers
	7.19	friction_exponential_dronkers
	7.20	friction_godin
	7.21	friction_lorentz
	7.22	friction_quadratic
	7.23	friction_trigonometric_dronkers
	7.24	friction_trigonometric_godin
	7.25	friction_trigonometric_lorentz
	7.26	mwl_offset
	7.27	mwl_offset_2
	7.28	mwl_offset_analytic
	7.29	odefun
	7.30	odefunQ0

	7.31	odefun_advective_acceleration	13
	7.32	odefun_friction	14
	7.33	odefun_ghof	14
	7.34	odefun_swe_jacobian	14
	7.35	$odefun_width \dots \dots$	14
	7.36	$odefunk_1 \ldots \ldots \ldots \ldots \ldots \ldots$	14
	7.37	$odefunk_1_ \ \ldots \ \ldots \ \ldots \ \ldots \ \ldots \ \ldots \ \ldots$	14
	7.38	$odefunk_2 \ldots \ldots \ldots \ldots \ldots$	15
	7.39	odefunk_3	15
	7.40	$odefunz 0 \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	15
	7.41	wave_number_analytic	15
	7.42	$wave_number_approximation \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	15
8	river-t	ide/@River_Tide_BVP	16
	8.1	River_Tide_BVP	16
	8.2	$check_momentum \dots $	16
	8.3	$dzb_dt \dots $	16
	8.4	$evolve_bed_level \dots \dots \dots \dots \dots \dots \dots \dots \dots $	16
	8.5	evolve_bed_level_scenario	16
	8.6	$generate_delft3d \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	16
	8.7	init	17
	8.8	mg_interpolate	17
	8.9	mg_prepare	17
	8.10	mg_restrict	17
	8.11	$\label{eq:mg_step} mg_step \dots \dots$	17
	8.12	${\rm sediment_transport} \dots \dots \dots \dots \dots \dots \dots$	17
	8.13	solve	17
9	river-t	ide/@River_Tide_Cai	17
	9.1	Gamma	17
	9.2	River_Tide_Cai	18
	9.3	$river_tide_cai_ \ \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	18
	9.4	$rt_quantities \ \ldots \ldots \ldots \ldots \ldots \ldots$	18
10	river-t	ide/@River_Tide_Channel	18
	10.1	River_Tide_Channel	18
	10.2	bcfun	18
	10.3	check_continuity	19
	10.4	${\it decompose} \ \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	19
	10.5	$\label{eq:discharge2level} discharge2 level \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	19
	10.6	extract	20
	10.7	initial_value	20
	10.8	odefun	20
	10.9	postprocess	20

	10.10 10.11	sediment_transport	20 20
11	river-t	ide/@River_Tide_Empirical	20
	11.1	River_Tide_Empirical	20
	11.2	fit_amplitude	21
	11.3	fit_mwl	21
	11.4	fit_phase	21
	11.5	fit_range	21
	11.6	predict_amplitude	21
	11.7	predict_mwl	21
	11.8	predict_phase	21
	11.9	predict_range	21
	11.10	rt_model	22
12	river-t	ide/@River_Tide_Hydrodynamics_Map	22
	12.1	River_Tide_Hydrodynamics_Map	22
	12.2	fun	22
	12.3	plot	22
13	river-t	ide/@River_Tide_IVP	22
	13.1	solve	22
14	river-t	$ide/@River_Tide_JK$	22
	14.1	River_Tide_JK	22
	14.2	damping_modulus	23
	14.3	mean_level	23
	14.4	rivertide_predict	23
	14.5	rivertide_regress	23
	14.6	$tidal_discharge \dots \dots$	23
	14.7	tidal_range	23
15		${ m ide/@River_Tide_Morphodynamics_Map}$	24
	15.1	River_Tide_Morphodynamics_Map	24
	15.2	fum	24
16	river-t	$ide/@River_Tide_Network_Simple$	24
	16.1	$River_Tide_Network_Simple \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	24
	16.2	discharge_amplitude	24
	16.3	mean_water_level	24
	16.4	plot_mean_water_level	24
	16.5	$plot_water_level_amplitude $	24
	16.6	solve	25
	16.7	water_level_amplitude	25

17	river-t	$ide/@River_Tide_SWE$	25
	17.1	solve	25
18	river-t	ide	25
	18.1	$damped_wave_bvp \ \dots \dots \dots \dots \dots \dots \dots \dots$	26
	18.2	$damped_wave_ivp \dots \dots \dots \dots \dots \dots \dots \dots$	26
	18.3	damping_modulus_river	26
	18.4	rdamping_to_cdrag_tide	26
	18.5	river_tide_godin	26
	18.6	river_tide_transport_scale	27
	18.7	river_tide_transport_scale_5	27
	18.8	$rt_celerity \dots \dots \dots \dots \dots$	27
	18.9	rt_quasi_stationary_complex	27
	18.10	rt_quasi_stationary_trigonometric	27
	18.11	rt_reflection_coefficient_gradual	27
	18.12	rt_transport	27
	18.13	rt_wave_equation	27
	18.14	rt_z2q	28
	18.15	tidal_ellipse	28
	18.16	tide_slack_exp	28
	18.17	wave_number_tide	28
	18.18	wavetrainz	29
	18.19	wavetwopassz	29
19	test/ri	ver-tide-hydrodynamics	29
	19.1	$example_river_tide \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	29
	19.2	example_river_tide_map	29
	19.3	hydrodynamic_scenario	29
	19.4	river_tide_test_plot	29
	19.5	test_bvp2c2	30
	19.6	test_bvp2c_sym	30
	19.7	test_celerity	30
	19.8	test_characteristic_rate_of_change	30
	19.9	test_complex_even_overtide	30
	19.10	test_dronkers_compound	30
	19.11	test_fourier_power_exp	30
	19.12	test_friction	30
	19.13	test_friction_dronkers	30
	19.14	test_friction_dronkers2	30
	19.15	test_fv_compare_schemes	31
	19.16	test_fv_convergence	31
	19.17	test_power_series	31
	19.18	test_reflection	31
	19.19	test_reflection_coefficient_gradual	31

	19.20	test_ricatti	1
	19.21	test_river_tide_hydrodynamics_01	1
	19.22	test_river_tide_hydrodynamics_02	1
	19.23	test_river_tide_hydrodynamics_03	1
	19.24	test_river_tide_hydrodynamics_04	1
	19.25	test_river_tide_hydrodynamics_05	2
	19.26	test_river_tide_hydrodynamics_06	2
	19.27	test_river_tide_hydrodynamics_07	2
	19.28	test_river_tide_hydrodynamics_08	2
	19.29	test_river_tide_hydrodynamics_09	2
	19.30	test_river_tide_hydrodynamics_10	2
	19.31	test_river_tide_hydrodynamics_11	2
	19.32	test_river_tide_hydrodynamics_12	2
	19.33	test_river_tide_hydrodynamics_13	2
	19.34	test_river_tide_hydrodynamics_14	3
	19.35	test_river_tide_hydrodynamics_15	3
	19.36	test_river_tide_hydrodynamics_50	3
	19.37	test_river_tide_hydrodynamics_60	3
	19.38	test_river_tide_hydrodynamics_90	3
	19.39	test_river_tide_hydrodynamics_batch	3
	19.40	test_river_tide_metadata	3
	19.41	test_river_tide_models	3
	19.42	test_rt_d3d_evaluate	3
	19.43	test_rt_reflection	3
	19.44	test_rt_wave_number	4
	19.45	test_rt_zs0	4
	19.46	test_swe	4
	19.47	test_tidal_river_network	4
	19.48	test_tidal_river_network_z0 34	4
	19.49	test_tide_slack_exp	4
	19.50	test_wave_number_godin	4
	19.51	test_wave_numer_aproximation	4
	19.52	test_wave_twopass	4
20	,	ver-tide-morphodynamics 38	
	20.1	rtm_plot	
	20.2	test_river_tide_morphodynamics_01	
	20.3	test_river_tide_morphodynamics_02	
	20.4	test_river_tide_morphodynamics_03	
	20.5	test_river_tide_morphodynamics_04	
	20.6	test_river_tide_morphodynamics_16	
	20.7	test_river_tide_morphodynamics_17	5
	20.8	test_river_tide_morphodynamics_18	
	20.9	test_river_tide_transport_scale	5

2 1	test/ri	ver-tide-network	36
	21.1	$test_river_tide_network_01 \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	36
	21.2	test_river_tide_network_02	36
	21.3	test_river_tide_network_03	36
	21.4	test_river_tide_network_04	36
	21.5	test_river_tide_network_05	36
22	test		36
	22.1	$test_rt_transport \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	36
	22.2	test_stokes_transport	36
	22.3	$test_tidal_harmonic_analysis $	36
23	tide		37
	23.1	tidal_constituents	37
	23.2	$tidal_energy_transport_1d \ \dots \dots \dots \dots \dots \dots$	37
	23.3	$tidal_envelope \dots $	37
	23.4	$tidal_envelope2 \dots \dots$	37
	23.5	tidal_harmonic_analysis	38
	23.6	$tidal_range_exp\ldots\ldots\ldots\ldots\ldots\ldots$	38
	23.7	tidal_range_tri	38
24	tide-sa	venije	38
	24.1	savenije_phase_lag	38
	24.2	savenije_tidal_range	39
	24.3	savenije_tidal_range1	39
	24.4	savenije_timing_hw_lw	39
	24.5	tide-savenije	39
25	tide		39
	25.1	tide_low_high_exp	40
	25.2	$tide_low_high_tri \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	40

1 @T_Tide

${\bf 1.1}\quad {\bf T_-Tide}$

wrapper for TPXO generated tidal time series

1.2 build_index

build a structure whose field names contain the index

1.3 from_tpxo

read TPXO output into tidetable object

1.4 get_constituents

extract constituents of tpxo object

1.5 reorder

order constituents as specified by "name"

1.6 select

select a subsect of constituents

1.7 shift_time_zone

shift phase according to time zone

2 @Tidal_Envelope

2.1 Tidal_Envelope

process tidal data to extrac the tidal envelope

2.2 init

initialize with data

3 @Tide_wft

wavelet analysis of tidal data

3.1 Tide_wft

wavelet transform of tidal time series

3.2 transform

```
wavelet transform tidal time series
input:
     : [1xn] abszissa of input vector, for example time, must be
time
   equally spaced
      : [1xn] signal, input data series (e.g water level or
val
   velocity)
      : [1xm] base frequencies, 1, 1, 2, ... for mean level,
   diurnal, semidirunal ...
             base periods from base frequencies T=1/F
      : [1xm] wavelet window length in multiple of periods
fc, nc : [scalar] low frequency cutoff and window length in periods
winstr : [char] fourier windows (kaiser (recommended), hanning, box
dt_max : [scalar] maximum time to fill gaps in input data series (
   recommended 3/24 for tide)
output:
     : struct with fields
tide
        w\_coeff : [1xn] wavelet coefficients (complex)
        amplitude : amplitude
        phase
               : phase
       range
       h_tide :
       h_low
```

4 @Tidetable

class for generating tidetable data

4.1 Tidetable

Tide table

4.2 analyze

extract tidal envelope from time series

$4.3 \quad export_csv$

export tide table to csv file

4.4 generate

run TPXO to generate time series

4.5 generate_tpxo_input

generate tpxo input table
Note: superseeded by perl script

4.6 import_tpxo

import TPXO data into tidetable object

4.7 plot_neap_spring

plot average neap and spring tide

5 tide

analysis prediction of tides in rivers and estuaries by empirical and theoretical methods $\,$

5.1 constituents

5.2 doodson

frequency of tidal constituents method of doodson source: wikipedia

5.3 envelope_amplitude

compute envelopes of hw and low water

5.4 envelope_slack_water

slack water envelope of the tide

5.5 interval_extrema

times and evelations for high and low water

5.6 interval_extrema2

mimimum and maximum within intervals of constant length, intended for periodic functions

5.7 interval_zeros

times of slack water determined frim velocity \boldsymbol{u}

5.8 lunar_phase

lunar phase

5.9 rayleigh_criterion

raleigh criterion for resolving tidal constituents T > 1/|f1-f2|

- 6 river-tide/@Bifurcation
- 6.1 Bifurcation
- 6.2 confluence_rule
- 6.3 sediment_division
- 6.4 sediment_division_geometric

7 river-tide/@River_Tide

predict tide in a backwater affected river with a sloping/varying

Assumptions and capabilities:

- tidal dynamics follow the 1D-Shallow-Water-Equation (depth and cross-sectionally averaged Navier-Stokes-Equation)
- rectangular cross section
- width can vary along the channel
- friction coefficient (cd) constant along channel and over time (Chezy)
- advective accelleration term is considered, but can be deactivated
- vertical profile of streamwise velocity is constant (Boussinesq coefficient is unity (1))

Limitations / TODO list:

- single channel dynamics only (no tidal networks)
- no wind-shear stress (no storm surges)
- no tidal flats / intertidal areas (width constant in time)
- no flood-plain during high-river flow
- no stratification or along-channel salinty gradient
- negligible head loss in channel bends
- negligible feed-back of the sediment concentration on the propagation of the tide
- low Froude Number (no hydraulic jumps due to cataracts or tidal bores)
- At present, only two tidal components are supported (either D1 with D2 or D2 with D4, in addition to the mean water level z0),
 - for mixed diurnal-semidiurnal cases with dominant semidiurnal component,
 - the class has to be extended to support three components (D1, D2 and D4) $\,$
- At present, the tripel overtide is not computed (D3 for diurnal, D6 for semindiurnal tide), note that this is the main overtide for the case of low river flow
- At present, the 1/h non-linearity is only included in the approximations of
 - the backwater curve, but not it's influence on the tidal frequency components

Method:

This class calls numerical solvers for second order ordinary differential

equation boundary value problems

Tides is represented as exponential series in form of total discharge $Q = \sup Q_i = Q_0 + Q_1 + Q_2$,

as discharge is conserved (balanced), the equations are simpler than for level z and velocity u,

and the frequency components of \boldsymbol{z} are straight forward determined by differentiation of \boldsymbol{Q}

Class and function structure:

River_Tide :

computes river tide, provides the ode coefficients to the boundary value solver

bvp2c, bvp2fdm :

solve the underlying second order boundary value $\ensuremath{\operatorname{problem}}$

```
provides convenient batch runs and processing of
                  River_Tide instances
Minimum working example, c.f. example_rive_tide.m and
   example_river_tide_map.m
       input:
       QO
            : scalar, river discharge (m^3/s)
       omega: scalar, angular frequency main tidal species in (1/
           seconds)
            : 2x1 vector, left and right end of computational
           domain of the river (m)
       w(x): function of width along the river (m)
       cd(x): function of drag coefficient along the river (1)
       zb(x) : function of bed level along the river (m)
       opt : structure with options
       opt.model_str = 'wave' (other solver are not supported at the
            moment)
       opt.solver = @bvp2c or @bvp2fdm
       opt.nx : number of grid points along channel
       opt.ns : base for logarithmic spacing of grid points, 1 :
           linear spacing
       bc : structure array of boundary conditions
              r, row 1..2 : left and right end, respectively
              c, column 1 : mean (river) component
                       2..n : condition form column-1 frequency
                           component
                     q(1)*(p(1) y^-(x0) + p(2) dy^-/dx(x0) ...
              (
                   + q(2)*(p(1) y^+(x0) + p(2) dy^+/dx(x0)) = bc(c
                       ,r).val
                        = val(0)
       bc(c,r).var : Quantity, either 'z' or 'Q'
       bc(c,r).val: complex amplitude of chosen variable
                    (c.f. (1 + 0i) [m] for surface elevation
                        amplitude of 1m)
                    (value has to be real for mean component)
                   mean component requires z and Q to be specified
                       at opposit ends
       bc(c,r).p : factor for Dirichlet p(1) or Neumann p(2)
           condition
                   p = [1,0] : pure Dirichlet
                   p = [0,1] : pure Neumann
                   sum of abs(p) must be nonzero for each end and
```

River_Tide_Map :

each frequency component bc(c,r).q : factor for left and right going wave, only available for bvp2c q = [1,1] : total water level / discharge q = [1,0] : only left going wave q = [0,1] : only right going wave q has no meaning for the mean component and is ignored q is only supported by bvp2c, bvpfdm uses default q = [1,1]

sum of abs(q) for each frequency component must

7.1 River_Tide

physical functions for computation of river tides in a single 1D
 channel
combined with BVP-solver in child-classes to determine the
 hydrodynamics

be zero

7.2 check_continuity

7.3 check_momentum

7.4 coefficient_frequency_components

$7.5 d2au1_dx2$

second derivative of the tidal velocity magnitude note: this is for finding zeros, $\qquad \qquad \text{the true derivative has to be scaled up by z}$

$7.6 d2az1_dx2$

second derivative of the tidal surface elevation

note: this is for finding zeros, the true derivative has to be scaled up by \boldsymbol{z}

7.7 decompose

decompose the tide into a right and left travelling wave, i.e. into incoming and reflected wave
TODO subtract forcing term

7.8 derive_lorentz

$7.9 dkq_dx$

along-channel derivative of the wave number of the discharge neglects width variation $% \left(1\right) =\left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left(1\right) +\left(1\right) \left(1\right)$

TODO, rederive with g as variable

$7.10 dkz_dx$

along channel derivative of the wave number of the tidal surface elevation ignores width variation dh/dx and second order depth variation (d^2 h/dx^2) TODO rederive with g symbolic

7.11 energy

7.12 even_overtide_analytic

7.13 fourier_derivative

7.14 friction_coefficient

```
function cf = friction_coefficient(obj,Qmid,Qhr)
```

7.15 friction_coefficient_dronkers

```
friction coefficient according to Dronkers

the coefficients are semi-autogenerated

c.f. dronkers 1964
c.f. Cai 2016

p = [p0,p1,p2,p3];
alpha = Ur/Ut = river velocity / tidal velocity amplitude = (umax+ umin)/(umax-umin)

function p = friction_coefficient_dronkers(alpha,order)
```

7.16 friction_coefficient_godin

```
friction coefficient according to Godin
these coefficients are identical to Dronker's for U_R = phi = 0
function G = friction_coefficient_godin(obj,phi)
```

7.17 friction_coefficient_lorentz

```
coefficients of the Fourier expansion of the signed square of the | Q|Q of the friction term

Lorent'z used this first for the case of no river flow identical to Dronker's coefficient for zero river flow and a single frequency component c.f. Cai
```

```
c.f. Dronkers (gamma = alpha)

note difference in coefficients due to different definitions:
definition used here:
    Q = Q0 + 1/2*(sum_k Q_k e(k iwt) + conj(Q_k e(k iwt)))
but Dronkers defines
    Q = Q + sum_k Q_k e(k iwt)

function L = friction_coefficient_lorentz(obj,phi)
```

7.18 friction_dronkers

friction determined by Dronker's method

input :

u : velocity time series

Umid : arithmetic mean of mininmum and maximum velocity (not the mean of the velocity, usually non-zero even without river flow)

Uhr : half-range of the velocity, less than the sum of the frequency amplitudes, except at perigean spring tides

function [uau_sum uau p] = friction_dronkers(u,Umid,Uhr,order)

7.19 friction_exponential_dronkers

```
friction coefficicients for the frequency components computed by
    Dronkers method
c.f. Dronker's 1964 eq 8.2 and 8.4
Note: Cai dennominates alpha as phi

function [c uau uau_ p] = friction_trigonometric_dronkers(u,dp,Umid,Uhr,order,psym)
```

7.20 friction_godin

compute friction with the method of Godin

7.21 friction lorentz

7.22 friction_quadratic

friction determined by Dronker's method

7.23 friction_trigonometric_dronkers

friction computed by the method of Dronkers expressed as coefficients for the frequency components c.f. dronkers 1964 eq 8.2 and 8.4 Note: Cai dennominates alpha as phi

7.24 friction_trigonometric_godin

```
friction computed by the method of Godin
expressed as coefficients of the frequency components (
    trigonometric form)

Chebycheff coeffcients for zero river flow
(albeit applied by Godin to cases with river flow)
c.f. godin 1990, table 1, column Ch
Note: the coefficients do indeed not (exactly) sum up to 1
Note: Godin tries several slightly different sets of coefficients,
    of which the Chebysheff set is best
```

7.25 friction_trigonometric_lorentz

```
friction computed by the method of Lorent'z
expressed as coefficients of the frequency components (
    trigonometric form)
```

7.26 mwl_offset

```
offset of the tidally averaged surface elevation caused by tidal friction

Linear estimate of the mean water level offset (ignoring feed-back of tide)
```

$7.27 \quad mwl_offset_2$

7.28 mwl_offset_analytic

7.29 odefun

coefficients of the wave equation for river-tides decomposed in
 frequency components
zero frequency component corresponds to backwater equation with
 tidal influence

7.30 odefunQ0

7.31 odefun_advective_acceleration

7.32 odefun_friction

7.33 odefun_ghof

7.34 odefun_swe_jacobian

```
Jacobian matrix of the Shallow-Water Equation d(A,Q)/dt + J(A,Q) \ d(A,Q)/dx = forcing terms dA/dt + \begin{bmatrix} 0, & 1 \end{bmatrix} [dA/dx] = \begin{bmatrix} f_c \end{bmatrix} \quad (c) \\ dQ/dt & \begin{bmatrix} -Q^2/A^2, & 2 & Q/A \end{bmatrix} [dQ/dx] \begin{bmatrix} f_m \end{bmatrix} \quad (m)
```

7.35 odefun_width

forcing by along-channel width-variation

7.36 odefunk_1

7.37 odefunk_1_

```
coefficients of the ordinary differential equation of the k-th
   frequency
component of the tide

f1 Q'' + f2 Q' + f3 Q + f4 = 0

function [f, F3] = odefunk(obj, k, Q, QQ, Qhr, h0, dh0_dx, dz0_dx,
   w0, dw0_dx, Cd, c, D1_dx)
```

7.38 odefunk_2

7.39 odefunk_3

7.40 odefunz0

coefficients of the backwater equation for the river tide TODO merge with backwater class

7.41 wave_number_analytic

analytic expression of the wave number of river tides

valid for both tidally, river dominated and low friction conditions and converging channels

 $\mbox{k10}\mbox{ : complex wave number for } \mbox{k and } \mbox{z in a reach with constant}$ width and bed slope

im(k) : damping modulus (rate of amplitude change)
re(k) : actual wave number (rate of phase change)

kq : wave number for $\mathbb Q$ for a reach with changing width and depth kz : wave number for z for a reach with changing width and depth

c.f. derive_wave_number

7.42 wave_number_approximation

approximate wave number of the left and right traveling wave for variable coefficients

TODO merge with wave_number_analytic

function [k, k0, dk0_dx_rel, obj] = wave_numer_aproximation(obj)

$8 \quad { m river-tide/@River_Tide_BVP}$

8.1 River_Tide_BVP

hydrodynamics and morphodynamics of 1D tidal channel networks

8.2 check_momentum

```
compute residual for the momentum equation dQ/dt + d/dx (Q^2/A) = - g A dz/dx - g A dw/dx - cd w Q|Q|/A^2
```

8.3 dzb_dt

change of bed level over time, when width constant over time $dzb/dt + 1/(p \ rho \ w) \ dQs/dx = 0$

8.4 evolve_bed_level

evolve the bed level of the tidal river network over time

8.5 evolve_bed_level_scenario

shortcut function for batch simulation runs

8.6 generate_delft3d

generate a Delft3D 4 model for the channel network

8.7 init

initial condition
function obj = init(obj)

$8.8 mg_interpolate$

8.9 mg_prepare

$8.10 mg_restrict$

$8.11 \quad mg_step$

8.12 sediment_transport

compute sediment transport for the channel network, including
 routing at
junctions

8.13 solve

determine hydrodynamics

9 river-tide/@River_Tide_Cai

Prediction of river tide by the method of Cai c.f. Cai 2013, Cai 2015

9.1 Gamma

 $\begin{array}{ll} \text{Gamma parameter for tidal propagation} \\ \text{c.f. Cai } 2014 \end{array}$

9.2 River_Tide_Cai

prediction of river tide by the method of Cai (2014)

9.3 river_tide_cai_

determine the surface amplitude of the river-tide ${\tt c.f.}$ Cai

9.4 rt_quantities

determine the quantities that determine the tidal propagation $\ensuremath{\text{c.f.}}$ Cai

Note: this computes 4 unknowns following Cai, however, lambda, mu and epsilon can be substituted making it an equation in one unknown (delta) only

10 river-tide/@River_Tide_Channel

10.1 River_Tide_Channel

10.2 bcfun

```
Robin (mixed) boundary conditions for the river tide,
supplied for each frequency component,
wrapper that copies values are from the member struct "bc"
     q*(p*Q_1^- + (1-p)*dQ_1^-/dx
input :
      cid : channel index
      bif : 1,2 : index for letft/right end of channel
      fid : frequency component index
             (1 = 0 omega (mean), 2 : 1 omega, 3 : 2 omega, ...)
columns of bc : frequency
rows of bc, left, right boundary
output :
      p : [2x1] linear combination of Dirichlet and Neumann
          boundary condition
        p(1) -> weight Dirichlet boundary condition
          p(2) -> weight Neumann boundary condition
    q linear combination of left and right travelling (incoming and
         outgoing) wave
         q(1) weight left going wave
        q(2) weight right going wave
      rhs = 0 -> homogeneous boundary condition
function [rhs, p, q, obj] = bcfun(obj,cid,bid,fid)
```

10.3 check_continuity

```
compute residual for the continuity equation dA/dt + dQ/dx = Q_in
```

10.4 decompose

```
decompose the tide into a right and left travelling wave, i.e. into incoming and reflected wave TODO subtract forcing term
```

10.5 discharge2level

```
determines tidal water surface amplitude (non-zero frequency
   components of surface elevation)
from tidal discharge (non-zero frequency components of the
   discharge)
```

by continuity:

```
dz/dt + dq/dx = 0
=> i o z = - dq/dx
=> z = -1/(io) dq/dx
=> z = 1i/o dq/dx
```

10.6 extract

extract values of individual variables from $\ensuremath{\mathsf{BVP}}\textsc{-solver}$ result vector

10.7 initial_value

10.8 odefun

coefficients of the backwater and wave equation for river-tides

10.9 postprocess

postprocess hydrodynamic solver output

10.10 sediment_transport

compute sediment transport for a single channel

10.11 transform_bc

transform arbitrary to cs-integrated discharge boundary condition

$11 \quad river-tide/@River_Tide_Empirical$

Empirical fit to measurement and prediction (from tide at sea and river discharge) of the river tide

11.1 River_Tide_Empirical

class for fitting models to at-a-station time series of tidal elevation $% \left(1\right) =\left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left(1\right) +\left(1\right) \left(1\right)$

11.2 fit_amplitude

fit the oscillatory components

11.3 fit_mwl

fit the tidally averaged water level

11.4 fit_phase

fit the phase of the oscillatory components

11.5 fit_range

fit the tidal range

11.6 predict_amplitude

predict the oscillatory components

11.7 predict_mwl

predict the mean water level

11.8 predict_phase

predict tidal phase

11.9 predict_range

predict the tidal range

11.10 rt_model

select the model for fitting

$12 \quad river-tide/@River_Tide_Hydrodynamics_Map$

hash container for a set of River_Tide predictions for different boundary conditions

12.1 River_Tide_Hydrodynamics_Map

container class to store multiple river-tide scenarios

12.2 fun

compute river tide for a scenario with specific boundary conditions
 and store it in the hash,
or retrive the scenario, if it was already computed

12.3 plot

quick plot of scenario result
function obj = plot(obj,Xi,Q0,W0,S0,z1_downstream,cd,zb_downstream,
 omega,q,opt)

13 river-tide/@River_Tide_IVP

13.1 solve

14 river-tide/@River_Tide_JK

empirical analysis and prediction of river tides by the method of $\mbox{\tt Jay}$ and $\mbox{\tt Kukulka}$

14.1 River_Tide_JK

14.2 damping_modulus

damping modulus of the river tide
c.f. Jay and Kukula
function r = damping_modulus(obj,h0,b,Qr)

14.3 mean_level

tidally averaged surface elevation c.f. Jay and Kukulka

14.4 rivertide_predict

predict river tide by the method of jay and kukulka $\ensuremath{\mathsf{TODO}}$ rename

14.5 rivertide_regress

Regression of tidal coefficients according to Jay & Kulkulka

coefficients of the r-regression factor 2 apart for specis (jay C7) this can be repeated for each tidal species (diurnal, semidiurnal)

14.6 tidal_discharge

tidal discharge
c.f. Jay and Kukulka
function Qt = tidal_discharge(obj,x,R0,h0,b,Qr)

14.7 tidal_range

predict tidal range

$15 \quad river-tide/@River_Tide_Morphodynamics_Map$

15.1 River_Tide_Morphodynamics_Map

container class to store multiple river-tide morphodyanics scenarios

15.2 fun

morphodynamics of a tidal river
either retrive a precomputed scenario or compute and store a new
scenario

16 river-tide/@River_Tide_Network_Simple

16.1 River_Tide_Network_Simple

tide in a fluvial delta channel network, extension of 1D river tide the network is a directed graph TODO convert from trig-to exponential form

16.2 discharge_amplitude

discharge amplitude

16.3 mean_water_level

predict the mean water level

$16.4 \quad plot_mean_water_level$

plot tidally averaged water level

16.5 plot_water_level_amplitude

plot surface elevation amplitude

16.6 solve

```
solve for the tide in a fluvial chanel network

boundary condition at end points not connected to junctions
    [ channel 1 id, endpoint id (1 or 2), s0, c0
    ...
        channel n id, endpoint id (1 or 2), s0, c0]

conditions at junctions are specified as cells
        each cell contains an nx2 array
    n : number of connecting channels
    [channel id1, endpoint id (1 or 2), ...
```

channel idn, endpoint id (1 or 2)]

every tidal species for each channel has 4 unknowns these are 2x2 unknowns for the sin + cos of left and right going wave

16.7 water_level_amplitude

predict the surface elevation amplitude

17 river-tide/@River_Tide_SWE

17.1 solve

determine river tide by the fully non-stationary FVM and then
 extract the tide
 this is experimental and not yet fully working

18 river-tide

analysis and prediction of river tides

Sub-Classes:

@River_Tide

- prediction of river tide in a backwater affected river with a sloping bed

@River_Tide_Cai

- prediction of river tide, method of Cai

 ${\tt @River_Tide_Empirical}$

- prediction of river tide, empirical

@River_Tide_JK

- prediction of river tide, empirical after Jay and Kukulka

@River_Tide_Map

- mulitple-scenaria container for River_Tide

@River_Tide_Network

- extension of River_Tide to networks

18.1 damped_wave_bvp

solved damped wave equation z'' + a z = 0z(0) = z0, z(L) = 0

18.2 damped_wave_ivp

linearly damped wave in rectangular channel solve tide as initial value problem damped wave approximation

$$z'' + a z = 0$$

$$x_t = Ax + b$$

18.3 damping_modulus_river

damping modulus of the tidal wave for river flow only

18.4 rdamping_to_cdrag_tide

converts damping rate to drag coefficient c.f. friedrichs, ippen harleman

18.5 river_tide_godin

analytic solution to the river tide formulated as boundary value problem

in a river with finite length

c.f. Godin 1986

18.6 river_tide_transport_scale

18.7 river_tide_transport_scale_5

18.8 rt_celerity

celerity of the tidal wave

18.9 rt_quasi_stationary_complex

```
quasi-stationary solution of the SWE TODO staggered grid does not help: q1' needed
```

18.10 rt_quasi_stationary_trigonometric

quasi statinary form of the SWE

18.11 rt_reflection_coefficient_gradual

reflection coefficient for gradual varying cross section geometry without damping

18.12 rt_transport

18.13 rt_wave_equation

nr : nurmber or reaches

```
solve river tide as boundary value problem
input:
omega : [nfx1] angluar frequency of tidal component, zero for mean
   flow
reach : [nrx1] struct
    : [1x1] length of reaches
       .width(x,h) width
       .bed(x,h)
                   bed level
       .surface(x,h) surface elevation
       .Cd(x,h)
                   drag coefficient
   : [nd,nf] boundary/junction conditions
       bc(id,if).type : {surface, velocity, discharge} (dirichlet)
        bc(id,if).val : value
opt : [1x1] struct
      - constant surface elevation
      - deactivative advective acceleration
      .dx : spatial resolution
dimensions:
```

nd : upstream/downstream index

 ${\tt nf} \; : \; {\tt frequency} \; {\tt index} \;$

18.14 rt_{z2q}

determine tidal discharge from water level for tidal wave in contrast to the inverse, discharge to level, this is not unique, due to the integration constant

18.15 tidal_ellipse

tidal ellipse, numerical ode solution

18.16 tide_slack_exp

18.17 wave_number_tide

18.18 wavetrainz

determine river tide by iterated integration of the surface elevation $% \left(1\right) =\left(1\right) \left(1\right)$

18.19 wavetwopassz

two pass solution for the linearised wave equation, for surface elevation $% \left(1\right) =\left(1\right) +\left(1\right) +$

- test/river-tide-hydrodynamics
 19.1 example_river_tide
 19.2 example_river_tide_map
 19.3 hydrodynamic_scenario
 19.4 river_tide_test_plot
 19.5 test_bvp2c2
 19.6 test_bvp2c_sym
- $19.8 \quad test_characteristic_rate_of_change$
- 19.9 test_complex_even_overtide

19.7 test_celerity

19.10	$test_dronkers_compound$
19.11	$test_fourier_power_exp$
19.12	${\it test_friction}$
19.13	$test_friction_dronkers$
19.14	$test_friction_dronkers2$
19.15	$test_fv_compare_schemes$
19.16	$test_fv_convergence$
19.17	$test_power_series$
19.18	test_reflection

 $19.19 \quad test_reflection_coefficient_gradual$

- 19.20 test_ricatti
- 19.21 test_river_tide_hydrodynamics_01
- 19.22 test_river_tide_hydrodynamics_02
- 19.23 test_river_tide_hydrodynamics_03
- 19.24 test_river_tide_hydrodynamics_04
- 19.25 test_river_tide_hydrodynamics_05
- 19.26 test_river_tide_hydrodynamics_06
- 19.27 test_river_tide_hydrodynamics_07
- 19.28 test_river_tide_hydrodynamics_08

```
hold on;
plot(x,abs(z),'--');
hold on;
plot(x,angle(z),'--');
```

- $19.29 \quad test_river_tide_hydrodynamics_09$
- 19.30 test_river_tide_hydrodynamics_10
- $19.31 \quad test_river_tide_hydrodynamics_11$
- 19.32 test_river_tide_hydrodynamics_12
- 19.33 test_river_tide_hydrodynamics_13
- $19.34 \quad test_river_tide_hydrodynamics_14$
- $19.35 \quad test_river_tide_hydrodynamics_15$
- 19.36 test_river_tide_hydrodynamics_50
- $19.37 \quad test_river_tide_hydrodynamics_60$
- 19.38 test_river_tide_hydrodynamics_90

$19.39 \quad test_river_tide_hydrodynamics_batch$

river tide test case batch run

- 19.40 test_river_tide_metadata
- 19.41 test_river_tide_models
- $19.42 \quad test_rt_d3d_evaluate$
- 19.43 test_rt_reflection
- 19.44 test_rt_wave_number
- $19.45 \quad test_rt_zs0$
- 19.46 test_swe
- 19.47 test_tidal_river_network
- 19.48 test_tidal_river_network_z0

19.49	${ m test_tide_slack_exp}$
19.50	$test_wave_number_godin$
19.51	$test_wave_numer_aproximation$
19.52	$test_wave_twopass$
20	4 4 / - 1 4 · 1 1 · · · · ·
	${ m test/river ext{-}tide ext{-}morphodynamics} \ { m rtm_plot}$
20.1	rem_prot
20.2	$test_river_tide_morphodynamics_01$
20.3	$test_river_tide_morphodynamics_02$
20.4	$test_river_tide_morphodynamics_03$
	·

 $20.5 \quad test_river_tide_morphodynamics_04$

- $20.6 \quad test_river_tide_morphodynamics_16$
- 20.7 test_river_tide_morphodynamics_17
- $20.8 \quad test_river_tide_morphodynamics_18$
- $20.9 \quad test_river_tide_transport_scale$
- ${\bf 21} \quad {\bf test/river-tide-network}$
- 21.1 test_river_tide_network_01
- 21.2 test_river_tide_network_02
- 21.3 test_river_tide_network_03
- 21.4 test_river_tide_network_04
- 21.5 test_river_tide_network_05

22 test

${\bf 22.1} \quad test_rt_transport$

22.2 test_stokes_transport

${\bf 22.3} \quad test_tidal_harmonic_analysis$

23 tide

analysis prediction of tides in rivers and estuaries by empirical and theoretical methods

23.1 tidal_constituents

23.2 tidal_energy_transport_1d

energy transport of a tidal wave

23.3 tidal_envelope

envelope of the tide

input : t time in days

f surface elevation ouput : tl time of low water

vl surface elevation at low water

ldx index of low water
th time of high water

vh surface elevation at high water

hdx index of high water

ndx neap index
sdx spring index

dmax:

drange: range per day

23.4 tidal_envelope2

```
surface levelation envelope of the tide
low water, high water and tidal range for lunar each day
input:
      time :
           : surface elevation
      order: interpolation order (default 2)
ouput:
      timei : vector eqispaced
      lmini : minimum level
      lmaxi : maximum level
      rangei : range
      midrangei : (min + max)/2, usually different from mean
      phii : pseudo phase
Note: the pseudo phase phi jumps, this is because if the tide is
    semidiurnal,
     sometimes the lower hw becomes the next day higher then than
      current high water, e.g. there is no smooth transition by
     51min but a jump by 12h
```

23.5 tidal_harmonic_analysis

```
tidal_harmonic analysis
```

$23.6 \quad tidal_range_exp$

23.7 tidal_range_tri

24 tide-savenije

24.1 savenije_phase_lag

```
phase lag of high and low water
phi : u_river/u_tide < 1

delta_eps_hw = omega*(t_hws - t_hw)
delta_eps_hw = omega*(t_lws - t_lw)
c.f. savenije</pre>
```

24.2 savenije_tidal_range

```
tidal range
based on Savenije 2012
```

x : distance to river mouth

eta : range

eta0 : range at river mouth
hbar : mean water depth

phi : velocity ratio u_tide/u_river

note: this varies in strongly convergent estuaries

K : mannings coefficient
I : residual surface slope I

24.3 savenije_tidal_range1

```
tidal range
```

based on Horrevoets/Savenije, 2004

HO : tidal range at river mouth

h0 : initial water depth
v : velocity scale
b : convergence length

sine : phase lag

K : Mannings coefficient \mathbb{Q}_{-} r : river discharge

${\bf 24.4} \quad savenije_timing_hw_lw$

time of high water and low water c.f. savenije 2012

24.5 tide-savenije

25 tide

analysis prediction of tides in rivers and estuaries by empirical and theoretical methods $\,$

 $25.1 \quad tide_low_high_exp$

 $25.2 \quad tide_low_high_tri$