

Rasters

Licence GNU FDL - Version 1.0

Plan

- Présentation
- Chargement
- Fonctions
- Exemples/TP

Rasters: Présentation

- Un seul type: RASTER = matrice de valeurs en 2D
- Une table RASTER = une couverture
- Une ligne RASTER = une tuile ou un raster
- Represente une image, des valeurs physiques (altitude par ex), des données scientifiques...
- Stockage interne (WKB) ou externe (image)
- Pas de pyramides (nouvelle table pour cela)
- Nouveau:
 - Type: RASTER (cf.GEOMETRY/GEOGRAPHY)
 - Fonctions
 - tables de catalogue
 - outils de chargement (basés sur GDAL)

Rasters: Présentation

- Conversion entre geometry et raster
 - ST_DumpToPolygons(raster)
 - => geometry set
- Fonctions gérant les deux types:
 - ST_Intersection(raster|geometry, raster|geometry, "raster"|"geometry")
 - => raster/geometry
- Opérateurs « intelligents »:
 - raster | geometry && raster | geometry
 - => boolean
 - ST_Intersects(raster|geometry, raster|geometry)
 - => boolean

PostGIS

Rasters: Chargement dans PostGIS

- raster2pgsql (\(\Lip \) shp2pgsql)
- Aide: raster2pgsql -? ou raster2pgsql
- Formats supportés: raster2pgsql -G (ceux de GDAL)
- Paramètres importants:
 - c a d p: create, append, drop, prépare (comme shp2pgsql)
 - C: création des contraintes
 - I: création index spatial
 - s: srid
 - b: band
 - t: taille des tuiles (tiles)
 - R: stockage externe: seuls les métadonnées et le chemin sont stockés
 - 1: création des overviews
 - N: valeur nodata

Rasters: Chargement dans PostGIS

- Chargement d'une couverture raster du monde
- Données: tp/raster/TrueMarble.8km.5400x2700.tif
- Table monde raster
- Commande:
 - raster2pgsql -M -I -C -Y -s 4326 -t 100x100 -l 2,4,8
 TrueMarble.8km.5400x2700.tif monde_raster | psql
- Les tables suivantes sont crées:
 - monde_raster, o_2_monde_raster, o_4_monde_raster, o_8_monde_raster
- Enregistrement dans le catalogue:
 - select * from raster_colums;

Rasters: Contraintes

\d monde_raster

```
Indexes:
    "monde raster pkey" PRIMARY KEY, btree (rid)
    "monde raster rast gist" gist (st convexhull(rast))
Check constraints:
    "enforce height rast" CHECK (st height(rast) = 100)
    "enforce max extent rast" CHECK (st coveredby(st convexhull(rast), '0...0'::geometry))
    "enforce_nodata_values_rast" CHECK
(_raster_constraint_nodata_values(rast)::numeric(16,10)[] =
'{NULL,NULL,NULL}'::numeric(16,10)[])
    "enforce num bands rast" CHECK (st numbands(rast) = 3)
    "enforce_out_db_rast" CHECK (_raster_constraint_out_db(rast) = '{f,f,f}'::boolean[])
    "enforce pixel types rast" CHECK ( raster constraint pixel types(rast) = '{8BUI,
8BUI,8BUI}'::text[])
    "enforce same alignment rast" CHECK (st samealignment(rast, '01...00'::raster))
    "enforce scalex rast" CHECK (st scalex(rast)::numeric(16,10) =
0.0666666666666667::numeric(16,10))
    "enforce scaley rast" CHECK (st scaley(rast)::numeric(16,10) =
"enforce srid rast" CHECK (st srid(rast) = 4326)
    "enforce width rast" CHECK (st width(rast) = 100)
```


Rasters: Catalogue

- r_table_catalog: non usité: nom de la base par défaut
- r_table_schema: le schéma contenant la table raster
- r_table_name: le nom de la table raster
- r_raster_column : colonne contenant le raster (plusieurs colonnes de type RASTER possibles)
- Srid: le SRID
- scale_x : facteur X entre pixel et coordonnées terrain
- scale_y: facteur X entre pixel et coordonnées terrain
- blocksize_x: largeur d'un bloc en pixel
- blocksize_y: hauteur d'un bloc en pixel

Rasters: Catalogue

- same_alignment: vrai si toutes les tuiles ont le même alignement (TODO)
- regular_blocking: information indicative: pas de recouvrement, alignement identique, taille des pixel, srid.
- num_bands: nombre de bandes
- AddRasterConstraints : tableau des types de pixel pour chaque bande
- AddRasterConstraints : tableau des valeurs de NODATA pour chaque bande
- extent: l'extension spatiale de la table. (en cas d'ajout de données dans la table, utiliser DropRasterConstraints puis AddRasterConstraints!). Cela permet la visu des données

Rasters: overviews

- Version dégradée du raster pour affichage à des résolutions moins grandes
- Créé automatiquement lors du chargement (option –I)
- Enregistrés dans un catalogue: raster_overviews:
- o_table_catalog : catalogue de la table (= nom de la BD)
- o_table_schema: schéma de la table
- o table name: nom de la table overview
- o_raster_column: nom de la colonne
- r_*: les informations relatives à la table source
- overview_factor: le facteur de réduction, en puissance de 2

Rasters: Fonctions

- Gestion (AddRasterConstraint, dropRasterConstraint...)
- Constructeurs (st_AddBand,st_asRaster, st_makeEmptyRaster...)
- Accesseurs (st_height, st_numBands, st_rotation)
- Accesseurs par bande (st_bandMetaData, st_bandPixelType, ...)
- Accesseurs par pixel (st_pixelAsPolygon, st_value, ...)
- Editeurs (st_setRotation, st_setSRID, st_resample, st_snapToGrid, ...)
- Editeurs de bandes (ST_SetBandNoDataValue, ST_SetBandIsNoData)
- Analyse et stats (st_count, st_histogram, st_quantile, ...)
- Sorties (st_asBinary, st_asGDALRaster, st_asTIFF, ...)
- Processing (st_clip, st_hillShade, st_slope, st_mapAlgebraExpr, ...)

Rasters: Fonctions

geomval

histogram

raster

reclassarg

summarystats

PostGIS Raster Lib Bui ST Rotation

ld Date

PostGIS_Raster_Lib_Ver ST_SkewY

sion

ST GDALDrivers

ST AddBand

ST AsRaster

ST Band

ST MakeEmptyRaster

ST GeoReference

ST Height

ST MetaData

ST NumBands

ST PixelHeight

ST PixelWidth

ST ScaleX

ST ScaleY

AddRasterConstraints ST Raster2WorldCoordX ST PixelAsPolygons

DropRasterConstraints ST Raster2WorldCoordY

ST SkewX

ST SRID

ST UpperLeftX

ST UpperLeftY

ST Width

ST World2RasterCoordX

ST World2RasterCoordY

ST_IsEmpty

ST BandMetaData

ST BandNoDataValue

ST BandIsNoData

ST BandPath

ST BandPixelType

ST HasNoBand

ST PixelAsPolygon

ST Value

ST SetValue

ST SetGeoReference

ST SetRotation

ST SetScale

ST SetSkew

ST SetSRID

ST SetUpperLeft

Rasters: Fonctions

ST_Resample

ST Rescale

ST_Reskew

ST_SnapToGrid

ST Transform

ST_SetBandNoDataValuST_Envelope

ST_SetBandIsNoData

ST Count

ST Histogram

ST Quantile

ST_SummaryStats

ST_ValueCount

ST_AsBinary

ST_AsGDALRaster

ST_AsJPEG

ST_AsPNG

ST_AsTIFF

Box3D

ST_Clip

ST_ConvexHull

ST_DumpAsPolygons

ST HillShade

ST_Aspect

ST Slope

ST Intersection

ST_MapAlgebraExpr

ST_MapAlgebraExpr

ST_MapAlgebraFct

ST_MapAlgebraFct

ST_MapAlgebraFctNgb

ST_Polygon

ST Reclass

ST_Union

ST Min4ma

ST_Max4ma

ST_Sum4ma

ST_Mean4ma

ST_Range4ma

ST Distinct4ma

ST StdDev4ma

&&

&<

&>

ST Intersects

ST_SameAlignment

Exemples

- TP R1: introduction aux rasters
 - chargement d'une image dans PostGIS
 - vérification des données (contraintes, catalogue)
 - Affichage dans Qgis
- TP R2: extraction et sortie locale
 - extraction spatiale d'une partie du raster
 - reconstruction d'un raster complet (3 bandes)
 - écriture d'une partie du raster en PNG sur le disque
- TP R3: croisements spatiaux: profil altimétrique à partir d'un MNT (également TP webmapping)