AN INTERESTING ITERATIVE MAP

Kyle Fridberg

8 April 2021

Figure 1: Result of running a crude algorithm to calculate $\{c \mid \Lambda_c^+(0) = 2\}$ shown in crimson (see Definition 2).

Figure 2: Result of running a crude algorithm to calculate $\{c \mid \Lambda_c^-(0) = 2\}$ shown in crimson (see Definition 2).

We are interested in the following iterative map:

Definition 1. $\forall z, c \in \mathbb{C}$

$$\lambda_c(z) := \left(\frac{1}{c \pm z}\right)^z$$

When it is necessary to resolve the sign +/- in the denominator of the above quotient, $\lambda_c^+(z)$ and $\lambda_c^-(z)$ are used, respectively.

Lemma 1. $\forall n \in \mathbb{N}_0, \ \lambda_{\overline{c}}(n) = \overline{\lambda_c(n)}$. In words, under λ the orbit of the conjugate of c is equal to the conjugate of the orbit of c.

Proof. We seek an inductive proof of Lemma 1.

For n = 0: $\lambda_{\overline{c}}(0) = \overline{\lambda_c(0)} = 0$ by Definition 1.

Assume $\lambda_{\overline{c}}(k) = \overline{\lambda_c(k)}$ (*).

For n = k + 1:

$$\lambda_{\overline{c}}(k+1) = \left(\frac{1}{\overline{c} \pm \lambda_{\overline{c}}(k)}\right)^{\lambda_{\overline{c}}(k)}$$

Using (*) and that $\overline{a} + \overline{b} = \overline{a+b} \ \ \forall \ a,b \in \mathbb{C}$,

$$\lambda_{\overline{c}}(k+1) = \left(\frac{1}{c \pm \lambda_c(k)}\right)^{\overline{\lambda_c(k)}}$$

Now, we want to show the following equality:

WTS:
$$\left(\frac{1}{c \pm \lambda_c(k)}\right)^{\overline{\lambda_c(k)}} = \overline{\left(\frac{1}{c \pm \lambda_c(k)}\right)^{\lambda_c(k)}}$$

Define: $c \pm \lambda_c(k) = e^{\ln(r) + i\theta}$ and $\lambda_c(k) = x + iy$ for $r, \theta, x, y \in \mathbb{R}$.

LHS:
$$\left(\frac{1}{e^{\ln(r)-i\theta}}\right)^{x-iy} = e^{-x\ln(r)+y\theta+i(y\ln(r)+x\theta)}$$

$$\overline{\text{RHS:}} \left(\frac{1}{e^{\ln(r) + i\theta}} \right)^{x + iy} = e^{-x \ln(r) + y\theta - i(y \ln(r) + x\theta)}$$

Then LHS = RHS = $e^{-x \ln(r) + y\theta + i(y \ln(r) + x\theta)}$.

Hence, if Lemma 1 is true for n = k, then it is true for n = k + 1. Since Lemma 1 is true for n = 0, it is true for all $n \in \mathbb{N}_0$.

Definition 2.

 $\Lambda_c(z) := \#$ of limit points of $\lambda_c(z)$ as it is iterated to infinity.

When it is necessary to resolve the sign +/- in the denominator of the expression for $\lambda_c(z)$, $\Lambda_c^+(z)$ and $\Lambda_c^-(z)$ are used, respectively.

Lemma 2. By Lemma 1, $\Lambda_c(0)$ is symmetric over the real axis.

Conjectures about the orbit of 0 under λ :

- 1) The set $S = \{c \mid \Lambda_c(0) \neq 2\}$ is bounded.
- 2) The set $T = \{c \mid \Lambda_c(0) = 1\}$ is simply connected.
- 3) Range $(\Lambda_c(0)) = \mathbb{N} \cup \{\infty\}$
- 4) It is possible to obtain series expansions for $\lambda_c(0)$ at $c = \infty$. Moreover, repeated functional iteration changes only the tail of these expansions, hence the leading terms are valid as $\lambda_c(0)$ is iterated to infinity (see expansions (1) (4) computed using Mathematica). These series imply $\Lambda_c(0) = 2$ when |c| is sufficiently large.

$$\lim_{n \to \infty} \lambda_c^+(2n+1) = 1 - \frac{\log(c)}{c} + \frac{1}{2c^2} \Big(2\log(c) + \log(c)^2 - 2\log(c)^3 \Big) + \frac{1}{6c^3} \Big(-6 - 6\log(c) - 18\log(c)^2 + 11\log(c)^3 + 9\log(c)^4 - 9\log(c)^5 \Big) + \frac{1}{24c^4} \Big(48 + 48\log(c) + 96\log(c)^2 + 36\log(c)^3 - 251\log(c)^4 + 80\log(c)^5 + 96\log(c)^6 - 64\log(c)^7 \Big) + \mathcal{O}\Big(\frac{1}{c^5} \Big)$$

$$(1)$$

$$\lim_{n \to \infty} \lambda_c^+(2n) = \frac{1}{c} + \frac{1}{c^2} \left(-1 + \log(c)^2 \right) + \frac{1}{2c^3} \left(2 + 4\log(c) - 4\log(c)^2 - \log(c)^3 + 3\log(c)^4 \right) + \frac{1}{6c^4} \left(-6 - 27\log(c) + 6\log(c)^2 + 45\log(c)^3 - 26\log(c)^4 - 12\log(c)^5 + 16\log(c)^6 \right) + \mathcal{O}\left(\frac{1}{c^5}\right)$$
(2)

$$\lim_{n \to \infty} \lambda_c^-(2n+1) = 1 - \frac{\log(c)}{c} + \frac{1}{2c^2} \left(-2\log(c) + \log(c)^2 - 2\log(c)^3 \right) + \frac{1}{6c^3} \left(6 - 6\log(c) + 18\log(c)^2 - 13\log(c)^3 + 9\log(c)^4 - 9\log(c)^5 \right) + \frac{1}{24c^4} \left(48 - 48\log(c) + 240\log(c)^2 - 180\log(c)^3 + 253\log(c)^4 - 136\log(c)^5 + 96\log(c)^6 - 64\log(c)^7 \right) + \mathcal{O}\left(\frac{1}{c^5}\right)$$
(3)

$$\lim_{n \to \infty} \lambda_c^-(2n) = \frac{1}{c} + \frac{1}{c^2} \left(1 + \log(c)^2 \right) + \frac{1}{2c^3} \left(2 - 4\log(c) + 4\log(c)^2 - \log(c)^3 + 3\log(c)^4 \right) + \frac{1}{6c^4} \left(6 - 39\log(c) + 30\log(c)^2 - 45\log(c)^3 + 28\log(c)^4 - 12\log(c)^5 + 16\log(c)^6 \right) + \mathcal{O}\left(\frac{1}{c^5}\right)$$
(4)