COMPUTER - SCIENCE -

CLUB

Intro to Competitive Programming (Pt. 2)

Edward

. . .

Status Codes

. . .

https://dmoj.ca/about/codes/

40 / 100 TLE | JAVA8

40 / 100 TLE | JAVA8

10 / 100 TLE | C++17

10 / 100 TLE | C++17 **Batch #3** (0/60 points)

Case #1: TLE [> 1.500s, 58.04 MB]

Case #2: —

Case #3: —

Caso #4.

Subtask 2 [0/5 points] [0/9 tests passed]		
Test 15	Time limit exceeded	2.1 seconds [Terminated]
Test 16	Skipped Test	0.1 seconds
Test 17	Skipped Test	0.1 seconds

Example - how many operations?

```
n = int(input())
 ans = 0
⊨for i in range(n):
     for j in range(n):
         ans += 1
 print(ans)
```

Better optimized code

Big O Notation

How fast/efficient your algorithm is in accordance with the input

...

```
n = int(input())
 ans = 0
dfor i in range(n):
     for j in range(n):
         ans += 1
 print(ans)
```

 $O(n^2)$

...

```
n = int(input())
print(n**2)
```

O(1)

Big O Visualization

Big 0 "Rules"

$$O(2n) = O(n)$$
 $O(99n + 200) = O(n)$
 $O(n! + n^{88}) = O(n!)$
 $O(mn) = O(mn)$
 $O(m+n) = O(max(m, n))$

. . .

```
n = int(input())
ans = 0
for i in range(n):
     for j in range(n):
         ans += 1
for i in range(n):
     print(ans)
```

$$O(n^2+n)$$

= $O(n^2)$

. . .

Dictionary: O(1)

Set: 0(1)

List: O(n)

• • •

Constant Time: $\Theta(1)$

- Does not scale with input
- Examples:
 - Math
 - Taking input/printing
 - Declaring variables
 - If statements
 - Reading numbers or list indices

Linear Time: O(n)

- Increases linearly with input
- Examples:

. . .

- For loops
- Python .count()
- Python x in list
- Looping an array with length n
- Searching lists for an element

```
for i in range(n):
    pass
print(list.count(2))
print(1 in list)
```

list = [1, 2, 3, 45]

Quadratic Time: $\Theta(n^2)$

- Increases exponentially with input
- Examples:

- a for loop insideof a for loop
- O(n) inside a for loop

```
n = int(input())
for i in range(n):
    for j in range(n):
```

Other complexities

- Other polynomial times $(O(n^3), O(n^{15}), O(n^{932}))$
 - More nested for loops
- O(logn): splitting in half each time
 - Binary search

. . .

- Most sort algorithms are O(nlogn)
- $O(2^n)$: doubling each time
 - Brute force/trees
- $O(\sqrt{n})$: certain math situations
 - Checking if prime
- O(n!): brute force combinations

. . .

Time Complexity to Input Chart

Constraints

$$1 \le N \le 10^{12}$$

CCC will run ~10⁷ operations per second

Range	Time Complexity
$n \leq 10$	$\mathcal{O}(n!)$
$n \leq 20$	$\mathcal{O}(2^n)$
$n \leq 50$	$\mathcal{O}(n^5)$
$n \leq 100$	$\mathcal{O}(n^4)$
$n \leq 500$	$\mathcal{O}(n^3)$
$n \leq 3000$	$\mathcal{O}(n^2 \cdot \log n)$
$n \leq 5000$	$\mathcal{O}(n^2)$
$n \leq 10^5$	$\mathcal{O}(n \cdot \log n) \sim \mathcal{O}(n \cdot \sqrt{n})$
$n \leq 10^6$	$\mathcal{O}(n \cdot \log n) \sim \mathcal{O}(n)$
$n \leq 10^{12}$	$\mathcal{O}(\sqrt{n})$
$n \leq 10^{18}$	$\mathcal{O}(\log n)$

Calculating if your code will pass

- 1. Calculate time complexity (e.g. O(n), O(n²))
- 2. Substitute the maximum of the input into your time complexity
 - 3. Is the result over 10 million?

e.g.
$$O(n) = O(1000000) < 10 \text{ million} \rightarrow \text{Pass!}$$

$$O(n^2) = O(1000000^2) = O(1 \text{ trillion}) > 10 \text{ million} \rightarrow TLE!$$

Practice Problems:

Beginner: https://dmoj.ca/problem/dmpg17s1
(try to find an O(nlogn) solution
Intermediate: https://dmoj.ca/problem/ccc22s2
(analyze big 0 - use dictionaries/hashmaps)
Advanced: https://dmoj.ca/problem/dmopc20c2p2
or https://dmoj.ca/problem/ccc21s2