AP20 Rec'd PCT/PTO 14 FEB 2006

Claims as enclosed to IPRP

- 1. An in vitro method for inhibiting the propagation of an undesired cell population, the method comprising
 - (i) introducing an antagonist of a polypeptide having (i) an amino acid sequence as shown in SEQ ID No: 1 or (ii) an amino acid sequence being at least 65 % identical thereto into at least one cell of said cell population, and
 - (ii) cultivating said cell population for a time period sufficient to allow said SGT antagonist to be effective, thereby inactivating and/or depleting the aforementioned polypeptide in said cell population.
- 2. The method according to claim 1, wherein the cell population is in the mitotic stage.
- 15 3. The method according to claim 1, wherein the cell population is in a resting stage.
 - 4. The method according to any of claims 1 to 3, wherein the cell population is a population of human cells.
- 20 The method according to any of claims 1 to 4, wherein the antagonist of a 5. polypeptide having (i) an amino acid sequence as shown in SEQ ID No: 1 or (ii) an amino acid sequence being at least 65 % identical thereto is selected from the group consisting of a specific siRNA for a polypeptide having (i) an amino acid sequence as shown in SEQ ID No: 1 or (ii) an amino acid sequence being at least 65 % 25 identical thereto, a transcriptional regulator or an antisense molecule for the gene encoding a polypeptide having (i) an amino acid sequence as shown in SEQ ID No: 1 or (ii) an amino acid sequence being at least 65 % identical thereto, a specific ribozyme for the mRNA of a polypeptide having (i) an amino acid sequence as shown in SEQ ID No: 1 or (ii) an amino acid sequence being at least 65 % identical thereto, an antibody against a polypeptide having (i) an amino acid sequence as 30 shown in SEQ ID No: 1 or (ii) an amino acid sequence being at least 65 % identical thereto, a specific aptamer and a specific mutein.
- 6. The method according to claim 5, wherein the antagonist is a polypeptide having (i) an amino acid sequence as shown in SEQ ID No: 1 or (ii) an amino acid sequence being at least 65 % identical thereto is a specific siRNA for a polypeptide having an

5

10

- (i) amino acid sequence as shown in SEQ ID No: 1 or (ii) an amino acid sequence being at least 65 % identical thereto.
- 7. The method according to claim 6, wherein the siRNA comprises a sequence as defined by SEQ ID NOs:3 and/or 4.
 - 8. Use of an antagonist for a polypeptide having (i) an amino acid sequence as shown in SEQ ID No: 1 or (ii) an amino acid sequence being at least 65 % identical thereto for the manufacture of a medicament for the treatment of a disease which is caused by the propagation of an undesired cell population.

10

- 9. The use according to claim 8, wherein the disease which is caused by the propagation of an undesired cell population is a cancer disease.
- 15 The use according to claim 9, wherein the cancer disease is selected from the group 10. consisting of neuroblastoma, intestine carcinoma, rectum carcinoma, colon carcinoma, familiary adenomatous polyposis carcinoma and hereditary nonpolyposis colorectal cancer, esophageal carcinoma, labial carcinoma, larynx carcinoma, hypopharynx carcinoma, tong carcinoma, salivary gland carcinoma, gastric carcinoma, adenocarcinoma, medullary thyroid carcinoma, papillary thyroid 20 carcinoma, follicular thyroid carcinoma, anaplastic thyroid carcinoma, renal carcinoma, kidney parenchym carcinoma, ovarian carcinoma, cervix carcinoma, uterine corpus carcinoma, endometrium carcinoma, chorion carcinoma, pancreatic carcinoma, prostate carcinoma, testis carcinoma, breast carcinoma, urinary 25 carcinoma, melanoma, brain tumors, glioblastoma, astrocytoma, meningioma, medulloblastoma and peripheral neuroectodermal tumors, Hodgkin lymphoma, non-Hodgkin lymphoma, Burkitt lymphoma, acute lymphatic leukemia (ALL), chronic lymphatic leukemia (CLL), acute myeolid leukemia (AML), chronic myeloid leukemia (CML), adult T-cell leukemia lymphoma, hepatocellular carcinoma, gall 30 bladder carcinoma, bronchial carcinoma, multiple myeloma, basalioma, teratoma, retinoblastoma. choroidea melanoma, seminoma, rhabdomyosarcoma, craniopharyngeoma, osteosarcoma, chondrosarcoma, myosarcoma, liposarcoma, fibrosarcoma, Ewing sarcoma and plasmocytoma.
- The use according to claim 10, wherein the cancer disease is cervical carcinoma, neuroblastoma, glioblastoma and/or breast carcinoma.

12. The use according to any of claims 8 to 11, wherein the antagonist for a polypeptide having (i) an amino acid sequence as shown in SEQ ID No: 1 or (ii) an amino acid sequence being at least 65 % identical thereto is a specific siRNA for a polypeptide having (i) an amino acid sequence as shown in SEQ ID No: 1 or (ii) an amino acid sequence being at least 65 % identical thereto.

5

10

20

25

30

35

- 13. A medicament containing an antagonist for a polypeptide having (i) an amino acid sequence as shown in SEQ ID No: 1 or (ii) an amino acid sequence being at least 65 % identical thereto, optionally together with a pharmaceutically acceptable carrier, for the treatment of a disease caused by the propagation of an undesired cell population.
- 14. The medicament according to claim 13, wherein the disease is a cancer disease.
- 15. A method for screening candidate compounds for at least one antagonist for a polypeptide having (i) an amino acid sequence as shown in SEQ ID No: 1 or (ii) an amino acid sequence being at least 65 % identical thereto with the ability to inhibit the propagation of a cell population, the method comprising the following steps:
 - (i) contacting a cell population with a candidate compound, thereby enabling the introduction of said candidate compound into the cells of said cell population,
 - (ii) cultivating said cell population for a time period sufficient to allow the candidate compound to be effective, and parallel cultivating a control cell population which has not been contacted with the candidate compound, and
 - (iii) monitoring cell growth and/or cell properties in said cell population and in the control cell population,

wherein a reduced growth and/or altered cell properties as compared to the control cell population is indicative that the candidate compound is an antagonist for the aforementioned polypeptide.

- 16. The method according to claim 15, the method comprising the additional steps:
- (iv) qualitatively and/or quantitatively detecting expression levels of a polypeptide having (i) an amino acid sequence as shown in SEQ ID No: 1 or (ii) an amino acid sequence being at least 65 % identical thereto in said cell population and in the control cell population, wherein a lower level of expression is indicative of a compound that is an antagonist, and

- (v) determining whether a lower level of expression correlates with a reduced growth and/or altered cell properties of the cell population being contacted with the candidate compound.
- 5 17. The method according to claim 15 or 16, wherein the cell population is in the mitotic stage.
 - 18. The method according to any of claims 15 to 17, wherein the cell population is a population of human cells.
 - 19. A method for the preparation of a pharmaceutical composition wherein an antagonist for a polypeptide having (i) an amino acid sequence as shown in SEQ ID No: 1 or (ii) an amino acid sequence being at least 65 % identical thereto inhibiting the propagation of an undesired cell population is identified according to any of claims 14 to 17, synthesized in adequate amounts, and formulated into a pharmaceutical composition.
 - 20. An in vitro method for inhibiting the propagation of an undesired cell population, the method comprising
 - (i) introducing an antagonist of a polypeptide having an (i) amino acid sequence as shown in SEQ ID No: 1 or (ii) an amino acid sequence being at least 65 % identical thereto into at least one cell of said cell population,

and

10

15

20

25

30

35

(ii) cultivating said cell population for a time period sufficient to allow said SGT antagonist to be effective, thereby inactivating and/or depleting SGT in said cell population,

wherein the antagonist for the aforementioned polypeptide is selected from the group consisting of a specific siRNA for a polypeptide having (i) an amino acid sequence as shown in SEQ ID No: 1 or (ii) an amino acid sequence being at least 65 % identical thereto, an antisense molecule for the gene encoding a polypeptide having (i) an amino acid sequence as shown in SEQ ID No: 1 or (ii) an amino acid sequence being at least 65 % identical thereto, a specific ribozyme for the mRNA of a polypeptide having (i) an amino acid sequence as shown in SEQ ID No: 1 or (ii) an amino acid sequence being at least 65 % identical thereto, an antibody against a polypeptide having (i) an amino acid sequence as shown in SEQ ID No: 1 or (ii) an amino acid sequence being at least 65 % identical thereto, a specific

aptamer for a polypeptide having (i) an amino acid sequence as shown in SEQ ID No: 1 or (ii) an amino acid sequence being at least 65 % identical thereto.

21. Use of an antagonist for a polypeptide having (i) an amino acid sequence as shown in SEQ ID No: 1 or (ii) an amino acid sequence being at least 65 % identical thereto for the manufacture of a medicament for the treatment of a cancer or an autoimmune disease, wherein the antagonist is selected from the group consisting of a specific siRNA for a polypeptide having (i) an amino acid sequence as shown in SEQ ID No: 1 or (ii) an amino acid sequence being at least 65 % identical thereto, a gene antisense molecule for the gene encoding a polypeptide having (i) an amino acid sequence as shown in SEQ ID No: 1 or (ii) an amino acid sequence being at least 65 % identical thereto, a specific ribozyme for the mRNA of for a polypeptide having (i) an amino acid sequence as shown in SEO ID No: 1 or (ii) an amino acid sequence being at least 65 % identical thereto, an antibody against a polypeptide having (i) an amino acid sequence as shown in SEQ ID No: 1 or (ii) an amino acid sequence being at least 65 % identical thereto, a specific aptamer for a polypeptide having (i) an amino acid sequence as shown in SEQ ID No: 1 or (ii) an amino acid sequence being at least 65 % identical thereto.

5

10

15

22. 20 A medicament containing an antagonist for a polypeptide having (i) an amino acid sequence as shown in SEQ ID No: 1 or (ii) an amino acid sequence being at least 65 % identical thereto, optionally together with a pharmaceutically acceptable carrier, for the treatment of a cancer or an autoimmune disease, wherein the antagonist is selected from the group consisting of a specific siRNA for a 25 polypeptide having (i) an amino acid sequence as shown in SEQ ID No: 1 or (ii) an amino acid sequence being at least 65 % identical thereto, an antisense molecule for the gene encoding a polypeptide having (i) an amino acid sequence as shown in SEQ ID No: 1 or (ii) an amino acid sequence being at least 65 % identical thereto, a specific ribozyme for the mRNA of a polypeptide having (i) an amino acid 30 sequence as shown in SEQ ID No: 1 or (ii) an amino acid sequence being at least 65 % identical thereto, an antibody against a polypeptide having (i) an amino acid sequence as shown in SEQ ID No: 1 or (ii) an amino acid sequence being at least 65 % identical thereto, a specific aptamer for a polypeptide having (i) an amino acid sequence as shown in SEQ ID No: 1 or (ii) an amino acid sequence being at 35 least 65 % identical thereto.

- 23. A method for screening candidate compounds for at least one antagonist for a polypeptide having (i) an amino acid sequence as shown in SEQ ID No: 1 or (ii) an amino acid sequence being at least 65 % identical thereto with the ability to inhibit the propagation of a cell population, the method comprising the following steps:
 - (i) contacting a cell population with a candidate compound, thereby enabling the introduction of said candidate compound into the cells of said cell population,
 - (ii) cultivating said cell population for a time period sufficient to allow the candidate compound to be effective, and parallel cultivating a control cell population which has not been contacted with the candidate compound,

and

5

10

15

20

30

(iii) monitoring cell growth and/or cell properties in said cell population and in the control cell population,

wherein a reduced growth and/or altered cell properties as compared to the control cell population is indicative that the candidate compound is an antagonist for the aforementioned polypeptide which inhibits the propagation of a cell population.

- 24. A method for the preparation of a pharmaceutical composition, wherein an antagonist for a polypeptide having (i) an amino acid sequence as shown in SEQ ID No: 1 or (ii) an amino acid sequence being at least 65 % identical thereto inhibiting the propagation of an undesired cell population is identified according to claim 23, synthesized in adequate amounts, and formulated into a pharmaceutical composition.
- 25. A method for inhibiting the propagation of an undesired cell population, the method comprising
 - (i) introducing an antagonist of a polypeptide having (i) an amino acid sequence as shown in SEQ ID No: 1 or (ii) an amino acid sequence being at least 65 % identical thereto into at least one cell of said cell population,

and

- (ii) cultivating said cell population for a time period sufficient to allow said antagonist to be effective, thereby inactivating and/or depleting the aforementioned polypeptide in said cell population.
- A method of treating a patient having a disease, which is caused by the propagation of an undesired cell population, the method comprising introducing an antagonist of a polypeptide having an (i) amino acid sequence as shown in SEQ ID No: 1 or (ii) an amino acid sequence being at least 65 % identical thereto into said patient.

- 27. The method according to claim 26, wherein the disease is a cancer or an autoimmune disease.
- 5 28. The method according to claim 26 or 27, wherein the antagonist of a polypeptide having (i) an amino acid sequence as shown in SEQ ID No: 1 or (ii) an amino acid sequence being at least 65 % identical thereto is a specific siRNA for said polypeptide.
- The method according to any of claims 26 to 28, wherein the antagonist of a polypeptide having (i) an amino acid sequence as shown in SEQ ID No: 1 or (ii) an amino acid sequence being at least 65 % identical thereto is introduced into said patient by using a vector, preferably a retroviral vector.