Mikel Egaña Aranguren

mikel-egana-aranguren.github.io

mikel.egana@ehu.eus

BILBOKO INGENIARITZA ESKOLA ESCUELA DE INGENIERÍA DE BILBAO

https://github.com/mikel-egana-aranguren/ABD

OWL: Web Ontology Language

W3C-ren estandar ofiziala web-ean ontologiak sortzeko, semantika zehatz eta

formal batekin

Logika Deskriptiboan (DL) oinarritzen da ezagutza-arlo baten adierazpen konputazionala sortzeko:

- Arrazonamendu automatikoa: "berria" (*) den ezagutza ondorioztatu, kontsultak, koherentzia, ontologiaren arabera entitateak sailkatu, ...
- Informazio sakabanatua integratu hiztegi amankomun bat erabiliz

Ez da murrizketak ezartzen dituen eskema-lengoaia, inferentzian oinarritzen dena baino (Horretarako SHACL dago)

RDF hizkuntza bera datuak eta bere hiztegia definitzeko* (NoSQL!RDF!)

RDF/XML sintaxia

Manchester OWL Syntax sintaxia

Manchester OWL Syntax: arm subClassOf art_of some body

OWL semantika

Entitateak: ezagutza-arloko entitateak, URIekin identifikatuta, garatzaileak sartutakoak ("Mikel", "parte_hartzen_du", ...)

Axiomak: entitateak logika-hiztegiaren bidez lotzen dituzte, OWLek eskaintzen duena (OWL Namespace)

Ontologia batek beste bat inportatu dezake (owl:import) eta bere entitateei erreferentzia egin axiomak erabiliz

OWL semantika

OWL semantika

Banakoak

Klaseak

Klaseak

Klasea azpiklase

Klase baliokideak

Klaseen hierarkia (Taxonomia)

Beharrezko baldintzak

Beharrezkoak eta nahikoak diren baldintzak

Murrizketa existentziala

Murrizketa unibertsala

Banako bateko murrizketa (value)

Murrizketa kardinalak

disjointFrom, not, or, and

Adierazpen konplexuak

Banakoak

Klase bateko edo gehiagoko kidea (Type)

Berdin (SameAs) edo desberdin (DifferentFrom) beste norbaitengandik

Beste norbait edo datuekin dituen erlazio binarioak (hirukoitza), positiboak edo negatiboak

Arrazonamendu automatikoa

Arrazonatzaile batek ontologian sartu ditugun axiomak dakartzaten "berriak" diren axiomak ondorioztatzen ditu

Arrazonatzaileak axiomak guztiak ondorioztatzen ditu; ezagutza konplexuarekin lan egiteko baliagarria da

Open World Assumption

No Unique Name Assumption

Arrazonamendu automatikoa: taxonomia mantendu

Arrazonamendu automatikoa: konsistentzia

Arrazonamendu automatikoa: klasifikatu

Entitateak sailkatu: entitate berri bat emanda, nola erlazionatzen den beste entitateekin (mota, equivalentTo, subClassOf, hirukoitza)

Kontsulta entitate anonimo bat da, ontologiaren kontra sailkatzen duguna, entitate bat balitz bezala

Knowledge Graphs

Knowledge Graphs

WikiData: https://www.wikidata.org/

DBPedia: https://www.dbpedia.org/about/

Uniprot: https://sparql.uniprot.org/

• • •