Hausaufgaben zum 3. Juni 2015

Mathematik für Studierende der Informatik II (Analysis und Lineare Algebra)

Louis Kobras 6658699 4kobras@informatik.uni-hamburg.de

Utz Pöhlmann 6663579 4poehlma@informatik.uni-hamburg.de

Jennifer Hartmann 6706472 fwuy089@studium.uni-hamburg.de

3. Juni 2015

Aufgabe 1

(a)

Untersuchen Sie die Menge

$$M = \left\{ \frac{n+1}{m} : n, m \in \mathbb{N} \right\}$$

auf Beschränktheit nach oben und unten und bestimmen Sie gegebenenfalls Supremum und Infimum.

1. Fall: n = m = 1

$$\frac{1+1}{1} = \frac{2}{1} = 2$$

Supremum: 2

Infimum: 2

2. Fall: $n \to +\infty$; m = 1

$$\frac{n+1}{1} \to \frac{\infty}{1} \to +\infty$$

Supremum: $+\infty^{-}$

Infimum: 2

3. Fall: $n=1, m \to +\infty$

$$\frac{1+1}{m} = \frac{2}{m} \to 0$$

Supremum: 2

Infimum: 0+

4. Fall: $n = m \to +\infty$

$$\frac{n+1}{m}\to\infty$$

Supremum: 2

Infimum: $+\infty^{-1}$

Somit ergibt sich, dass die Folge nach unten durch 0 beschränkt ist, wohingegen sie nach oben unbeschränkt ist.

Supremum: $+\infty^{-}$

Infimum: 0+

(b)

Untersuchen Sie die Folge (a_n) mit

$$a_n = \frac{1}{3} - \frac{1}{2n}$$

und bestimmen Sie gegebenenfalls den Grenzwert.

Da $\frac{1}{3}$ konstant ist, ist die Folge allein von $\frac{1}{2n}$ abhängig.

$$\begin{cases} n = 1 : \frac{1}{2n} = \frac{1}{2} \\ n \to +\infty : \frac{1}{2n} \to 0 \end{cases}$$

2

Somit sind die Beschränkungen der Folge

$$\begin{cases} n = 1 : \frac{1}{3} - \frac{1}{2} = -\frac{1}{6} \\ n \to +\infty : \frac{1}{2n} \to \frac{1}{3} \end{cases}$$

und der Grenzwert ist dementsprechend $\frac{1}{3}$.

Aufgabe 2

Untersuchen Sie das Konvergenzverhalten der Folge (a_n) mit

$$a_n = \left(2 + \frac{1}{n}\right)^n$$

und bestimmen Sie gegebenenfalls den Grenzwert.

Es ist offensichtlich, dass $\frac{1}{n}$ gegen 0 geht, je größer n wird. Somit nähert sich der Ausdruck in der Klammer 2^+ an. Da $2^+ > 2$ gilt $a_n > 2^n$. 2^n ist nach oben nicht beschränkt, somit geht auch a_n gegen $+\infty^-$ als Grenzwert. Als Infimum wird 3 festgestellt, da $n \ge 1 \Rightarrow (2 + \frac{1}{n})^n = (2 + \frac{1}{1})^1 = (2 + 1)^1 = 3^1 = 3$.

Aufgabe 3

Untersuchen Sie das Konvergenzverhalten der Folgen (a_n) und (b_n) mit

$$a_n = \frac{3n^2 - 3n}{2n^2 - 1}$$
 und $b_n = \frac{3n^2 - 3n}{2n^3 - 1}$

und bestimmen Sie gegebenenfalls den Grenzwert.

Folge a_n :

BEGRENZUNG: Nach Satz 4.27.(4) im Skript ist der Grenzwert einer Folge, die in Form eines Quotienten vorliegt, eben der Quotient der Grenzwert der einzelnen Folgen im Zähler und im Nenner.

$$\lim_{n \to +\infty} (3n^2 - 3n) = n(3n - 3)$$
$$\lim_{n \to +\infty} (2n^2 - 1) = n\left(2n - \frac{1}{n}\right)$$

Hier kürzt sich n direkt raus, sodass sich als Folgen (3n-3) und $\left(2n-\frac{1}{n}\right)$ ergeben. Da für $n\to +\infty$ der Ausdruck $\frac{1}{n}$ gegen 0 geht, ergibt sich für den Grenzwert von a_n folgende vereinfachte Form:

$$\frac{3n-3}{2n}$$

Diese Form lässt sich weiter vereinfachen:

$$\frac{3n-3}{2n} = \frac{3-\frac{3}{n}}{2}$$

Auch hier wissen wir, dass $\frac{3}{n}$ gegen 0 geht.

Folglich können wir schreiben:

$$\lim_{n \to +\infty} (a_n) = \lim_{n \to +\infty} \frac{3n^2 - 3n}{2n^2 - 1} = \frac{3}{2}$$

Dies war der Fall $n \to +\infty$. Es gilt noch den Fall n=1 zu beachten. Hier können wir einfach einsetzen:

$$\frac{3n^2 - 3n}{2n^2 - 1} | n = 1 \Rightarrow \frac{3 \cdot 1^2 - 3 \cdot 1}{2 \cdot 1^2 - 1} = \frac{3 - 3}{2 - 1} = \frac{0}{1} = 0$$

KONVERGENZ: Nach Begrenzung geht a_n gegen 1.5⁺

Folge b_n :

BEGRENZUNG: Verfahren wie bei a_n nach Satz 4.27.(4) im Skript.

$$\lim_{n \to +\infty} b_n = \lim_{n \to +\infty} \frac{3n^2 - 3n}{2n^3 - 1} = \lim_{n \to +\infty} \frac{n(3n - 3)}{n\left(2n^2 - \frac{1}{n}\right)} = \lim_{n \to +\infty} \frac{3n - 3}{2n^2} = \lim_{n \to +\infty} \frac{n\left(3 - \frac{3}{n}\right)}{n(2n)}$$

$$= \lim_{n \to +\infty} \frac{3 - \frac{3}{n}}{2n} = \lim_{n \to +\infty} \frac{3}{2n} - \frac{\frac{3}{n}}{2n} = \lim_{n \to +\infty} 0 - \frac{3}{2n^2} = 0$$

Für n = 1 ergibt sich wiederum 0.

KONVERGENZ: Nach Begrenzung konvergiert b_n gegen 0.

Aufgabe 4

Es sei (a_n) eine konvergente Folge reeller Zahlen mit $\lim_{n\to\infty}a_n=2$. Bestimmen Sie den Grenzwert der Folge (b_n) mit

$$b_n = (a_n^2 - 2)^2 - 3.$$

Da $a_n \to 2$, können wir diesen Wert einfach in b_n einsetzen und erhalten dann folgende Gleichung für den Grenzwert b der Folge b_n :

$$b = (2^2 - 2)^2 - 3 = (4 - 2)^2 - 3 = 4 - 3 = 1$$

Aufgabe 5

(a)

Sei (a_n) eine beschränkte Folge. Für jedes $n \in \mathbb{N}$ sei $b_n = \sup\{a_m : m \ge n\}$. Zeigen Sie, dass (b_n) konvergiert.

Hinweis: Ist die Folge (b_n) monoton? Ist sie beschränkt?

 (a_n) ist beschränkt \Rightarrow Sie hat ein Supremum und ein Infimum.

Für b_n sei nun das Supremum $\sup(b_n) = \sup\{(a_m)|m \ge n\}$ (Für genügend hohe n muuss auch das m genügend groß gewählt werden).

Somit kann man sagen: $\sup(b_n) = \sup(a_n) |\sup(a_n)| \operatorname{liegt}$ nicht in (b_n) .

 \Rightarrow (b_n) ist nicht beschränkt.

Beweis. (b_n) ist monoton:

$$\sup(b_n) = \sup\{(a_m)|m \ge n\} \Rightarrow \sup(b_n) = \sup\left(\bigcup_{m \ge n} a_m\right)$$

Daraus folgt, dass der minimale Wert der Menge immer kleiner wird.

$$\sup(b_n) = \sup\{(a_m) | m \ge n\} := A \quad \land \quad \sup(b_{n+1}) = \sup\{(a_m) | m \ge n+1\} := B$$
$$\Rightarrow B \subset A$$

Folglich muss b_n monoton steigend sein, da $b_n \leq b_{n+1}$ wegen $B \subseteq A$. Laut Satz 4.23 ist b_n somit beschränkt und monoton $\Rightarrow b_n$ konvergiert auch.

(b)

Zeigen Sie, dass jede Cauchy-Folge reeller Zahlen konvergiert.

Hinweis: Benutzen Sie (a), um einen Kandidaten für den Grenzwert der Cauchy-Folge zu finden.

Cauchy-Folge:

$$a_n | \forall \epsilon > 0 : \exists n_0 \in \mathbb{N} : \forall n, m \ge n_0 : |a_n - a_m| < \epsilon | a_m := a_n \text{ für den Wert } n$$

KONVERGENZ:

$$a_n|\forall \epsilon>0: \exists n_0\in\mathbb{N}: n\geq n_0: |a_n-a|<\epsilon|a:=\ {\bf Zahl,}$$
 gegen die a konvergiert

Jede Folge, die sowohl monoton als auch beschränkt ist, konvergiert.

Sei c_n eine Cauchy-Folge.

Sei
$$\epsilon=1 \land n_0 \in \mathbb{N} \land |c_n-c_| < 1 \ \forall n,m \geq n_0.$$

Sei $m=n_0 \Rightarrow |c_n-c_m| < 1 \Rightarrow |c_n| < |c_{n_0}+1 \ \forall n \geq n_0.$

$$\Rightarrow |c_n| \le \sup\{|c_1|, |c_2|, \cdots, |c_n|, 1 + |c_n|\}$$

Daraus folgt, dass sie beschränkt ist, da sie auch endlich ist.

Wenn (c_n) nun auch monoton wachsend ist, konvergiert (c_n) .