

EDUC 231D

Advanced Quantitative Methods: Multilevel Analysis
Winter 2025

Application of Multilevel Models

Lecture 7 Presentation Slides
January 28, 2025

Today's Topics

- Use of multilevel models to study organizational effects (introduction)
- Use of centering to study contextual effects

Use of Multilevel Models to Study Organizational Effects

What do we mean by "organizational effects"?

- How do organizations affect the individuals within them?
- Could focus on the effects of specific organizational characteristics or practices
 - Effect of charter school status on student learning
 - Effect of a workplace onboarding program on employee satisfaction
 - Effect of hospital nursing workload on patient health outcomes
- Could focus on the effects of organizational "climate" or "context"
 - Effect of school safety on teacher retention
 - Effect of neighborhood public transit access on resident employment
 - Effect of doctor "bedside manner" on patient trust

What do we mean by "organizational effects"?

- Could focus on the relative effectiveness of specific organizational units
 - School effects or teacher effects
 - Which hospitals are the "best"?
 - Which cities are the "healthiest"?
- Could focus on how disparities in outcomes or opportunities within organizations differs across organizations
 - Effect of school counselor workload on college eligibility disparity between low and high family income students
 - Effect of company size on employee gender salary gap

What do we mean by "organizational effects"?

Image source: Rumberger, R. W., & Palardy, G. J. (2004). Multilevel models for school effectiveness research. In *The SAGE Handbook of Quantitative Methodology for the Social Sciences* (pp. 236-259). SAGE Publications, Inc., https://doi.org/10.4135/9781412986311

Generic model specifications

(Level 1) Person-level model

$$Y_{ij} = \beta_{0j} + \beta_{1j}X_{ij} + r_{ij}, \qquad r_{ij} \sim N(0, \sigma^2)$$

(Level 2) Organization-level model

$$\beta_{0j} = \gamma_{00} + \gamma_{01}W_j + u_{0j}$$
, $u_{0j} \sim N(0, \tau_{00})$

$$\beta_{1j} = \gamma_{10} + \gamma_{11} W_j + u_{1j}, \qquad u_{1j} \sim N(0, \tau_{11})$$

Generic model specifications

(Level 2) Organization-level model

Generic model specifications

(Level 2) Organization-level model

$$\beta_{0j} = \gamma_{00} + \gamma_{01}W_j + u_{0j} \,, \qquad u_{0j} \sim N(0,\tau_{00})$$

$$\beta_{1j} = \gamma_{10} + \gamma_{11}W_j + u_{1j} \,, \qquad u_{1j} \sim N(0,\tau_{11})$$
 True distributive effect of X in organization j effect of organization j conditional on W

Issues with research on organizational effects

- Research questions are frequently posed as causal questions but are mostly observational/descriptive in nature
- Aggregation bias can occur when measures of seemingly the same thing have different meanings at different levels
- Misestimation of standard errors if dependencies are not properly taken into account
- Failure to account for heterogeneity in relationships across organizations can limit the utility of the research

- Let's go back to the ECLS-K grade 1 reading achievement example from previous classes
- But now think about it from the lens of an organizational effects study where we want to investigate whether a student's reading performance in grade 1 is influenced by their school's organizational sector (private vs. public)

- Three modeling approaches:
 - Model 1: student-level analysis

$$\bar{Y}_{.j} = \beta_0 + \beta_1 Sector_j + e_j$$

Model 2: school-level analysis

$$\bar{Y}_{.j} = \gamma_0 + \gamma_1 Sector_j + u_j$$

Model 3: multilevel analysis

$$Y_{ij} = \beta_{0j} + r_{ij}$$
$$\beta_{0j} = \gamma_{00} + \gamma_{01} Sector_j + u_{0j}$$

- Three modeling approaches:
 - Model 1: student-level analysis

$$Y_{.j} = \beta_0 + \beta_1 Sector_j + e_j$$

Model 2: school-level analysis

$$\bar{Y}_{.j} = \gamma_0 + \gamma_1 Sector_j + u_j$$

Model 3: multilevel analysis

$$Y_{ij} = \beta_{0j} + r_{ij}$$

$$\beta_{0j} = \gamma_{00} + \gamma_{01} Sector_j + u_{0j}$$

- Three modeling approaches:
 - Model 1: student-level analysis $\bar{Y}_{.i} = \beta_0 + \beta_1 Sector_i + e_i$
 - Model 2: school-level analysis $\bar{Y}_{.i} = \gamma_0 + \gamma_1 Sector_i + u_i$
 - Model 3: multilevel analysis $Y_{ij} = \beta_{0j} + r_{ij}$ $\beta_{0j} = \gamma_{00} + \gamma_{01} Sector_j + u_{0j}$

	Est.	SE	Est.	CE	-	
			LSt.	SE	Est.	SE
Intercept	94.847	0.175	94.586	0.318	94.657	0.317
sector	6.553	0.566	6.513	1.036	6.512	1.030

5.1%

Biased because of level 1 dependency (i.e., clustering)

Biased because of unreliability of observed group means

6.7%

1.2%

Use of Centering to Study Organizational Effects

- If we're studying organizational effects, we might be interested in the following types of questions:
 - What is the organizational effect, independent of any person-level effect?
 - How much between-organization variation exists?
 - What is the compositional/contextual effect of an organizational characteristic?
- Centering level-1 predictors affects which question the model can address

- What is the organizational effect, independent of any person-level effect?
 - We want to estimate level-2 effects while adjusting for level-1 covariates
 - Grand-mean centering is appropriate

$$Y_{ij} = \beta_{0j} + \beta_{1j} (X_{ij} - \bar{X}_{..}) + r_{ij}$$

$$\beta_{0j} = \gamma_{00} + \gamma_{01} W_j + u_{0j}$$

$$\beta_{1j} = \gamma_{10}$$

- How much between-organization variation exists?
 - We want to estimate the variance of level-1 coefficients
 - Group-mean centering is appropriate

$$Y_{ij} = \beta_{0j} + \beta_{1j} (X_{ij} - \bar{X}_{.j}) + r_{ij}$$

$$\beta_{0j} = \gamma_{00} + u_{0j}, \qquad u_{0j} \sim N(0, \tau_{00})$$

$$\beta_{1j} = \gamma_{10}$$

- What is the compositional/contextual effect of an organizational characteristic?
- Compositional (or contextual) effects exist when there's a difference between the effect of a person-level characteristic and the organizational-level aggregate of that characteristic
 - We want to disentangle the level-1 and level-2 effects
 - Group-mean or grand-mean centering can work

$$Y_{ij} = \beta_{0j} + \beta_{1j} (X_{ij} - \bar{X}_{.j}) + r_{ij}$$

$$\beta_{0j} = \gamma_{00} + \gamma_{01} \bar{X}_{.j} + u_{0j}$$
$$\beta_{1j} = \gamma_{10}$$

Interpreting parameters under different types of centering

• (Level 1) Person-level model, no centering

How do you interpret the circled parameters?

$$Y_{ij} = \beta_{0j} + \beta_{1j} X_{ij} + r_{ij}$$
, $r_{ij} \sim N(0, \sigma^2)$

■ (Level 2) Organization-level model

Intercept for group j, controlling for X; or Expected Y value in group j for a level-1 unit with X = 0

$$\beta_{0j} = \gamma_{00} + \gamma_{01} \overline{X}_{.j} + u_{0j}, \qquad u_{0j} \sim N(0, \tau_{00})$$

Relationship between X and Y, controlling for the group-mean of X

$$\beta_{1j} = \gamma_{10}$$

Relationship between group j mean of X and the intercept for group j, controlling for X at level-1; or level-2 relationship between mean of X and Y, controlling for X at level-1

Interpreting parameters under different types

of centering

and Y, controlling for the

group-mean of X

How do you interpret the circled parameters?

• (Level 1) Person-level model, grand-mean centering

$$Y_{ij} = \beta_{0j} + \beta_{1j} (X_{ij} - \bar{X}_{..}) + r_{ij}, \qquad r_{ij} \sim N(0, \sigma^2)$$

(Level 2) Organization-level model

$$r_{ij} \sim N(0, \sigma^2)$$

Intercept for group j, controlling for X; or Expected Y value in group j for an average level-1 unit in the sample

$$\beta_{0j} = \gamma_{00} + \gamma_{01} \overline{X}_{.j} + u_{0j} \; , \label{eq:between X}$$
 Relationship between X

$$\beta_{1j} = \gamma_{10}$$

$$u_{0j} \sim N(0, \tau_{00})$$

Relationship between group j mean of X and the intercept for group j, controlling for X at level-1; or level-2 relationship between mean of X and Y, controlling for X at level-1

Interpreting parameters under different types of centering How do you interpreting

How do you interpret the circled parameters?

• (Level 1) Person-level model, group-mean centering

$$Y_{ij} = \beta_{0j} + \beta_{1j} (X_{ij} - \bar{X}_{.j}) + r_{ij}, \qquad r_{ij} \sim N(0, \sigma^2)$$

(Level 2) Organization-level model

Expected Y value in group j for an average level-1 unit in group j; or Mean Y for group j

$$\beta_{0j} = \gamma_{00} + \gamma_{01} \bar{X}_{.j} + u_{0j}, \qquad u_{0j} \sim N(0, \tau_{00})$$

Within-group relationship between X and Y

$$\beta_{1j} = \gamma_{10}$$

Level-2 relationship between group j mean of X and the Mean Y value for group j

The contextual effect with group-mean centering

(Level 1) Person-level model

$$Y_{ij} = \beta_{0j} + \beta_{1j} (X_{ij} - \bar{X}_{.j}) + r_{ij}$$

(Level 2) Organization-level model

$$\beta_{0j} = \gamma_{00} + \gamma_{01} \bar{X}_{.j} + u_{0j}$$

$$\beta_{1j} = \gamma_{10}$$

Contextual effect

$$\beta_b = \gamma_{01}$$

$$\beta_w = \gamma_{10}$$

$$\beta_c = \gamma_{01} - \gamma_{10}$$

The contextual effect with grand-mean centering

(Level 1) Person-level model

$$Y_{ij} = \beta_{0j} + \beta_{1j} (X_{ij} - \bar{X}_{..}) + r_{ij}$$

(Level 2) Organization-level model

$$\beta_{0j} = \gamma_{00} + \gamma_{01} \bar{X}_{.j} + u_{0j}$$

$$\beta_{1j} = \gamma_{10}$$

Contextual effect

$$\beta_b = \gamma_{01} + \gamma_{10}$$

$$\beta_w = \gamma_{10}$$

$$\beta_c = \gamma_{01}$$

Contextual effects illustration

- Back to the ECLS-K data
- What is the relationship between SES and Grade 1 reading achievement?

variable	mean	sd	p0	p25	p50	p75	p100
g1rscore	95.40	17.72	32.77	82.54	96.69	107.77	139.21
famses	-0.03	0.81	-2.33	-0.65	-0.10	0.56	2.60
famses.gpc	0.00	0.61	-2.64	-0.42	-0.03	0.40	2.84
famses.gdc	0.00	0.81	-2.30	-0.62	-0.07	0.59	2.62
schses	-0.03	0.53	-1.28	-0.44	-0.03	0.37	1.32

Contextual effects illustration

What is the relationship between SES and Grade 1 reading achievement?

Contextual effects illustration

Grand-mean centering (M2)

$$Y_{ij} = \beta_{0j} + \beta_{1j} (X_{ij} - \bar{X}_{..}) + r_{ij}$$

$$\beta_{0j} = \gamma_{00} + \gamma_{01} \bar{X}_{.j} + u_{0j}$$

$$\beta_{1j} = \gamma_{10}$$

Contextual effect

$$\beta_c = \gamma_{01} = 4.28$$
 $\beta_w = \gamma_{10} = 7.35$
 $\beta_b = \gamma_{01} + \gamma_{10}$
 $= 11.64$

	(N	12)	(M3)		
	Grand	d-mean	Group-mean		
Coef.	Est.	SE	Est.	SE	
γ_{00}	95.52	0.21	95.73	0.21	
γ_{10}	7.35	0.24	7.35	0.24	
γ ₀₁	4.28	0.46	11.64	0.39	

Group-mean centering (M3)

$$Y_{ij} = \beta_{0j} + \beta_{1j} (X_{ij} - \bar{X}_{.j}) + r_{ij}$$

$$\beta_{0j} = \gamma_{00} + \gamma_{01} \bar{X}_{.j} + u_{0j}$$

$$\beta_{1j} = \gamma_{10}$$

Contextual effect

$$\beta_b = \gamma_{01} = 11.64$$

$$\beta_w = \gamma_{10} = 7.35$$

$$\beta_c = \gamma_{01} - \gamma_{10} = 4.28$$