Enumerative Combinatoric Algorithms

Contents

1	Enu	merating vs. Counting	3						
	1.1	Example 1: Spanning Paths	3						
	1.2	Example 2: Blokus	4						
		1.2.1 Fingerprints	6						
	1.3	Example Spanning Trees on Ladders	7						
2	Incl	usion – Exclusion Principle	8						
	2.1	Example: Multipliers	8						
	2.2	Example: Relatively Prime Numbers	8						
	2.3	Example: Number of Words	9						
3	The Pigeon Hole Principle 10								
	3.1	Example: People in Vienna	10						
	3.2	Example: Division of odd numbers	10						
	3.3	Example: Lossless Data Compression	11						
4	Reverse Search								
	4.1	Example: Triangulations	11						
	4.2	Basic Idea	12						
	4.3	Example: Poker Chips Stacking	12						
	4.4	Example: Tic Tac Toe	13						
	4.5	Example: Connect Four (4 Gewinnt)	13						
	4.6	Algorithm	14						
	4.7	Example: Triangulations	14						
		4.7.1	14						
		4.7.2	14						
	4.8	Complexity Analysis	14						
5	Pólya-Redfield Enumeration Theorem 1								
	5.1	Definitions	14						
	5.2	Counting Orbits	15						
	5.3	Algorithm	16						
	5.4	Example: Cyclic Shift	16						

	5.5	Example: Grid Colouring	17
		$5.5.1 2 \times 2$ Grid, 2 Colours	17
		5.5.2 3×3 Grid	17
	5.6	Example: Cube Colouring	18
	5.7	Example: Tic Tac Toe	18
6	Gen	erating Sequences	18
	6.1	Transition	18
	6.2	Cycle Notation	18
	6.3		18
		6.3.1 Example: Strings of Numbers	18
	6.4	Sorting	19
	6.5	<i>n</i> -Queens Problem	19
	6.6	Generating all Permutations	19
		<u> </u>	19
		6.6.2 Steinhaus-Johnson-Trotter Algorithm	19
			20
			20
7	Gra	y Code – a 'reflected binary code'	20
	7.1	,	21
	7.2		21
	7.3	1	21
	7.4		21
8	Con	nbinatorial 2 Player Games	21
			21
		Loyals of Cama Solution	22

1 Enumerating vs. Counting

1.1 Example 1: Spanning Paths

Given: n points in convex position

Question: How many straight line planar (crossing-free) spanning paths (all points are used) are there?

 $\bullet \ n=1$

• n = 2

• n = 3: 4 paths

• n = 4: 8 paths

- n = 5:
 - more possibilites \rightarrow we go towards counting rather than enumerating
 - look at possible types of paths, in CW and CCW direction for each of the five starting points. Divide by 2 for identical paths obtained with different starting points (since paths have 2 ends)

Counting

- # of paths starting at $\circ = \#P_{\circ}$
- $\#P_n = \frac{n \cdot \#p_0}{2} = n \cdot \frac{2^{n-1}}{2} = n \cdot 2^{n-2}$

- set of not yet used points must not be split
- continue: always two options, 1 for the last

1.2 Example 2: Blokus

Definition

- consists of unit squares connected via edges (not just connected through vertices)
- ullet n-polyomino has n unit squares
- Animal: does not contain holes
- free: rotation/mirroring is not taken into account
- fixed: rotated/mirrored polyominoes are regarded as being distinct

Question: How many n-polyominoes are there?

• n = 1:

1

• n = 2:

_ 🗆

- |

• n = 3: _ _ _ _ _ 🗆 fixed: 6, free: 2 • n = 4: - \Box \Box \Box \times 2 - □ ×8 \times 4 (reflection has same effect as rotation) - \square \square $\times 4$ $\times 1$ fixed: 19, free: 5 Enumerate/Construct all polyominoes • construct the (n + 1)-ominoes from the *n*-ominoes. This works because we can show that from each (n + 1)-ominoes you can remove a square and get a valid *n*-omino (idea: construct an arbitrary spanning tree, remove leaf) • find and remove duplicates • how many (n + 1)-ominoes are generated? maximum number: 2n + 2 or 4n - 2|E|Why? □: 4 possibilities to add a square (at each edge) $4n - 2|E| \rightarrow 4n - 2(n-1) = 2(n+2)$ How to find duplicates? compare every pair $\rightarrow O(k^2n)$

fixed: 2, free: 1

1.2.1 Fingerprints

- maps an object (here: polyomino) to a *unique* representation, independent of translation, rotation, reflection
- sort the fingerprints (insertion sort)
- binary search

One possibility for polyominoes: use vector representations on a coordinate system

Examples:

This is lexicographically smaller than the first one

Generally:

- 1. generate all 8 transformations (4 rotations, 2 reflections)
- 2. take the lexicographically smallest one $\rightarrow O(1) \cdot O(n)$ for an n-omino

f'(n) fingerprints generated in total $\rightarrow f'(n) (O(n) + \log(f'(n) \cdot O(n))$

$$\lim_{n \to \infty} \frac{f(n+1)}{f(n)} = \lambda, 3.98 < \lambda < 4.65$$

f(n) is known up to n = 56.

1.3 Example Spanning Trees on Ladders

with n rungs

Question: Number of spanning trees on a ladder with n rungs

- n = 1 $\bigcirc -\bigcirc -\bigcirc -\bigcirc$ # = 1
- n = 2 $\bigcirc -\bigcirc \bigcirc \bigcirc -\bigcirc$ $\bigcirc -\bigcirc \bigcirc \bigcirc -\bigcirc$

Answer: Counting spanning trees on a ladder (with n rangs) \Leftrightarrow counting spanning trees on a 2n grid

$$n \rightarrow n+1$$

- 1. The 2 rightmost vertices for n share a connected component $\rightarrow A(n)$
- 2. The 2 rightmost vertices for n are in different connected components $\rightarrow B(n)$

Consider case 1

$$A(n+1) = 3A(n) + 1B(n)$$

Consider case 2

$$A(1) = \frac{1}{2\sqrt{3}} \left((2 + \sqrt{3})^1 - (2 - \sqrt{3})^1 \right) = \frac{2\sqrt{3}}{2\sqrt{3}}$$
$$A(2) = \dots = \frac{8\sqrt{3}}{2\sqrt{3}} = 4$$

$$A(n) = 4A(n-1) - A(n-2)$$

$$= \frac{4}{2\sqrt{3}} \left((2+\sqrt{3})^{n-1} - (2-\sqrt{3})^{n-1} \right) - \frac{1}{2\sqrt{3}} \left((2+\sqrt{3})^{n-2} - (2-\sqrt{3})^{n-2} \right)$$

2 Inclusion – Exclusion Principle

2.1 Example: Multipliers

$$S = \{1, \dots, 100\}$$

Question: How many numbers in *S* are multipliers of 6 or 7?

$$|S_6| = \lfloor \frac{100}{6} \rfloor = 16, |S_6| = 14$$

$$|S_{6,7}| \neq |S_6| + |S_6|$$
:

$$|S_{6,7}| = |S_6| + |S_6| - |S_{6\&7}| = 16 + 14 - 2 = 28$$

2.2 Example: Relatively Prime Numbers

$$S = \{1, \dots, 180\}$$

Question: How many numbers in *S* are relatively prime to 180?

Idea: Count all numbers *not* relatively prime to $180 \rightarrow T$. |T| = ?

$$|T_2| = 90$$

$$|T_2| = 60$$

$$|T_2| = 36$$

$$|T| = |T_2| + |T_3| + |T_5| - (|T_2 \cap T_3| + |T_2 \cap T_5| + |T_3 \cap T_5|) + |T_2 \cap T_3 \cap T_5|$$

$$|T| = 90 + 60 + 36 - (30 + 18 + 12) + 6 = 132$$

$$|S| - |T| = 48$$

In general:

$$\mathcal{A} = \{A_i\}_{i=1}^n, I = \{1, \dots, n\}$$
$$|_{i \in I} A_i| = \sum_{i=1}^n \left((-1)^{i-1} \sum_{J \subseteq I, |J| = i} |\bigcap_{j \in J} A_j| \right)$$

Proof: $x \in A_1 \cup \cdots \cup A_n$, x is contained in m sets A_i .

$$|A_1 \cup \cdots \cup A_n| = \sum_{n} (A_n) - \sum_{n} (A_n \cap A_n) - \sum_{n} (A_n \cap$$

- 1. for (single) sets *not* containing $x \to +0$
- 2. if in any $A_i \cap \cdots \cap A_j$ at least one of the sets does *not* contain $x \to \pm 0$
- 3. \rightarrow only consider intersections of sets where all sets contain x

 $\binom{m}{k}$ intersections of k sets, all sets containing $x \to \pm 1$

$$\Rightarrow + \binom{m}{1} - \binom{m}{2} + \dots + (-1)^{m-1} \binom{m}{m} = 1$$
$$\binom{m}{0} + \binom{m}{1} - \binom{m}{2} + \dots + (-1)^m \binom{m}{m} = 0$$

Pascal's triangle

2.3 Example: Number of Words

Given: Language L with alphabet $\Sigma = \{A, B, C\}$ and every word of L consists of 10 characters.

Question: How many words of *L* contain each character at least once?

$$|G| = |L| - |X| = 3^{10} - (3 \cdot 2^{10} - 3 + 0) = 55980$$

$$|S_A| = |S_B| = |S_C| = 2^{10}$$

$$|S_A \cap S_B| = |S_A \cap S_C| = |S_B \cap S_C| = 1$$

$$|S_A \cap S_B \cap S_C| = 0$$

$$|X| = |S_A| + |S_B| + |S_C| - |S_A \cap S_B| - |S_A \cap S_C| - |S_B \cap S_C| + |S_A \cap S_B \cap S_C|$$

3 The Pigeon Hole Principle

If n elements are distributed to k sets, then there exists at least one set containing at least $\lceil \frac{n}{k} \rceil$ elements.

3.1 Example: People in Vienna

Claim: In Vienna there exist at least two persons with the exact same number of hairs on their head.

• human: at most $\approx 500,000$ hairs

• Vienna: $\geq 1.7 \cdot 10^6$ citizens

Idea: Take 500,000 people. If 2 of them have the same amount of hair, then we are done. If not, add one more person, whose amount of hair must then already be present.

3.2 Example: Division of odd numbers

Given: $1, 3, 7, 15, 31, \dots; a_i := 2^i - 1, i \ge 1$ and q > 0 arbitrary odd number.

Claim: At least one of the a_i 's is (integer) divisible by q.

Proof: Consider all a_i , $1 \le i \le q$

- If one of these a_i is divisible by q, then we are done
- otherwise: $a_i = d_i \cdot q + r_i$, $0 < r_i < q$; $q \ge n > m > 0$ $\Rightarrow (q-1) \text{ remainders} \stackrel{\text{p.h.p.}}{\Rightarrow} \exists r_m, r_n \text{ such that } r_m = r_n$ Then $(a_n a_m) = (d_n d_m)q + \underbrace{(r_n r_m)}_{0}$ $(2^n 1) (2^m 1) = 2^n 2^m = 2^m \underbrace{(2^{n-m} 1)}_{=a_{n-m}}.$

 2^m is even and thus not divisible by q.

In general: if $A_1, ..., A_k$ are finite (pairwise disjoint) sets and $|A_1 \cup ... \cup A_k| > kr$, then $\exists i$ such that $|A_i| > r$.

Proof: Assume for the sake of contradiction that all $|A_i| \le r$

$$k \cdot r \ge \sum_{i=1}^{k} |A_i| \ge |A_1 \cup \dots \cup A_k| > k \cdot r$$

Example: Lossless Data Compression

... cannot guarantee compression for all input data!

- file \rightarrow string of bits
- assume that each file is transformed into a distinct file that is not larger
- let F be the file with the least number of bits (M) that compresses $\rightarrow N$ bits
- $N < M : 2^N + 1$ cannot be all distinct

Reverse Search

- Avis, Fukuda 1992
- enumerating data/objects/elements with almost no structure
- algorithmic
- count all objects exactly once, no overcounting

Example: Triangulations

Given: set S of labelled points in convex position

Question: # of triangulations on S.

• n = 5

Flip on triangulations: 4 points, remove the diagonal and add the other diagonal

4.2 Basic Idea

- abstract graph G(V, E)
- ullet vertices V: elements to be enumerated, |V| is very large
- edges $e \in E : e = v_1, v_2; v_1, v_2 \in V$
- \Rightarrow *G* is an undirected graph
- G must be connected
- task: enumerate all vertices of *G*
- idea: breadth-first or depth-first search: O(|V| + |E|) which is ok, but too much space necessary

4.3 Example: Poker Chips Stacking

Given: four colours (red, green, blue, white) of poker chips

Task: build stacks of height ≤ 30 such that at most 3 chips of equal colour appear directly after another

- v_{Φ} : empty stack
- neighbours:
 - 'successors': add a chip on top of the stack
 - 'predecessors': remove the topmost chip from the stack
- depth-first search

store current stack.

Nodes that have already been visited can be deduced from the stack composition.

Requirements:

- unique root
- successors and predecessors in arbitrary but fixed order neighbour relation $\gamma(v,k)\in\Gamma(v)$ (kth neighbour)
- a unique predecessor function $f(v), f: v \to v$ in G(V, E)
 - 1. $\exists v_0 \in V : f(v_0) = v_0$: root
 - 2. $\forall v \in V \setminus \{v_0\} : f(v) \in \Gamma(v)$: exactly one root
 - 3. $\forall v \in V \setminus \{v_0\} \forall x \in \mathbb{N} : f^x(v) \neq v$: cycle-free ($f^x = f(f \dots f(v) \dots)$) x times \rightarrow reaching the root in finite time $f^{|V|}(v) = v_0$

4.4 Example: Tic Tac Toe

Given:

Task: Enumerate all valid game positions (not considering symmetries)

- *V*: game positions
- labelled board cells
- neighbours $\gamma(v,k)$: legally add k-th mark or remove one
- predecessor function: empty board as root, otherwise remove highest legal mark
- when iterating over the possible positions, check each node's predecessor to see if it has been visited before

4.5 Example: Connect Four (4 Gewinnt)

:	:	:	:	:	:
			X		
			O		

too complex for reverse search, NP-hard

- 4.6 Algorithm
- 4.7 Example: Triangulations
- 4.7.1
- 4.7.2
- 4.8 Complexity Analysis
- I. While loop (amortised analysis)
- (r1) look at each neighbour of $v \Leftrightarrow \text{each edge incident to } v \colon 2 \cdot |E|$
 - $t(\gamma)$: the time needed for $\gamma(v,j)$
 - $\Rightarrow \approx t(\gamma) \cdot |E|$
- (r2) -t(f): the time needed for f(w) (predecessor) $\Rightarrow \approx t(f)\cdot |E|$

II. If Block

- (f1) once per vertex $\Rightarrow t(f) \cdot |V|$
- (f2) as often as (f1)

Let $\delta_{\max} \geq \delta(v) \ \forall_{v \in V}$ be the max. vertex degree of G(V, E). Repeat-until has at most δ_{\max} loops.

$$\Rightarrow \approx t(\gamma) \cdot |V| \cdot \delta_{\max}$$

5 Pólya-Redfield Enumeration Theorem

5.1 Definitions

Main question: how many different objects exist?

Objects

- set of objects *X*
- e.g. Strings, coloured grids, Tic Tac Toe board,...

Operations

- set of n operations $R = \{R_i, 0 \le i \le n-1\}$
- R forms a group (operation \circ)

Axioms $(\forall R_i, R_j, R_k)$:

- Closure: $\exists R_k : R_i \circ R_j = R_k$
- Associativity: $(R_i \circ R_j) \circ R_k = R_i \circ (R_j \circ R_k)$
- Inverse element $\exists R_k : R_i \circ R_k = R_k \circ R_i = R_0$
- Identity element R_0 : $R_i \circ R_0 = R_0 \circ R_i = R_i$

Commutativity is in general not given.

• e.g. rotations, reflections

Orbits

- set of objects X which can be transformed into one another with an operation R_i .
- length: number of items within

Main question reformulated: how many orbits exist?

Stabilisers

- R_i stabiliser for object $x \Leftrightarrow R_i(x) = x$
- m_x : number of stabilisers for x
- r_i : number of objects for which R_i is a stabiliser (invariance number)
- $\bullet \ \ \text{it holds that} \ \sum\limits_{i=0}^{n-1} r_i = \sum\limits_{x \in X} m_x$

5.2 Counting Orbits

- Idea: specific case where $\sum_{x \in \text{orbit}} m_x = n$
 - go through graph of possible objects unify those, that are one operation apart
 - in this case $\sum_{x \in X} m_x = \sum_{\text{all orbits } x \in \text{orbit}} m_x$
- then number of orbits = $\frac{\sum\limits_{x \in X} m_x}{n}$

• invariance numbers r_i usually easier to obtain than all m_x

• therefore use number of orbits
$$=$$
 $\frac{\sum\limits_{i=0}^{n-1}r_i}{n}$

5.3 Algorithm

1. identify all operations R_0 to R_{n-1} . Check for group properties.

2. compute all invariance numbers r_i , $0 \le i \le n-1$

3. compute the number of orbits as $\frac{\sum\limits_{i=0}^{n-1}r_i}{n}$

5.4 Example: Cyclic Shift

Strings of length 4 with characters $\{A, B, C\}$. Cyclic shift by i positions $(0 \le i \le 3)$. How many different strings exist?

Invariance numbers

• $R_0: r_0 = 3^4 = 81$

• $R_1: r_1=3$, since a shift by 1 position means that all characters need to be the same if the result must be the same.

• $R_2: r_2 = 3^2 = 9$

• $R_3: r_3 = 3$

#orbits =
$$\frac{81+3+9+3}{4} = \frac{96}{4} = 24$$

Variation: every character has to be used at least once

$$|X| = 3 \cdot \binom{2}{2} \cdot 2 = 3 \cdot 6 \cdot 2 = 36$$

Invariance numbers

• $r_0 = 3^4 = 36$

• $r_1 = r_3 = 0$

• $r_2 = 0$

#orbits =
$$\frac{36+0+0+0}{4}$$
 = 9

5.5 Example: Grid Colouring

5.5.1 2×2 Grid, 2 Colours

$$|X| = 2^4 = 16$$

Example for rotation (90°) invariance:

Number of orbits when..

1. only rotation is allowed

Invariance numbers

• $R_0: r_0 = 16 \ (0^{\circ} \ \text{rotation})$

• $R_1: r_1 = 2$ (90° rotation)

• $R_2: r_2 = 4$ (180° rotation)

• $R_3: r_3 = 2$ (270° rotation)

#orbits =
$$\frac{16+2+4+2}{4} = \frac{24}{4} = 6$$

2. rotation and reflection are allowed

The grid can be reflected horizontally, vertically and diagonally

• r_0 to r_3 as above

• $R_4: r_0 = 4$ (vertical reflection)

• $R_5: r_1 = 4$ (horizontal reflection)

• $R_6: r_2 = 8$ (top left to bottom right diagonal reflection)

• $R_7: r_3 = 8$ (top right to bottom left diagonal reflection)

$$\# orbits = \frac{16+2+4+2+4+4+8+8}{8} = 6$$

Note that with more operations, the number of orbits never increases.

5.5.2 3×3 Grid

 3×3 grid: how many different colourings exist, if we allow rotation/rotation and reflection?

17

5.6 Example: Cube Colouring

6 sides, k colours. How many different colourings exist if you can rotate the cube?

5.7 Example: Tic Tac Toe

How many different positions can we get after *k* half-moves, considering symmetries?

6 Generating Sequences

Example: $\{1,2,3\},\{1,3,2\},\{2,1,3\},\{2,3,1\},\{3,1,2\},\{3,2,1\} \rightarrow 6 = 3!$ permutations

6.1 Transition

Exchange two elements $\{1, 2, 3, 4\} \longrightarrow \{4, 2, 3, 1\}$

6.2 Cycle Notation

$$\{4,2,1,3\} \longrightarrow (1,4,3)(2) \stackrel{\text{can. rep.}}{\longrightarrow} (2), (1,4,3) \ 1 \rightarrow 4 \rightarrow 3 \rightarrow 1$$

6.3 Derangements

Derangement: permutation where every object ends up in a new position.

Count using Inclusion-Exclusion Principle

 $|\text{derangements}| := !n = |\text{all perms.}| - |\#\text{perms. with } \ge 1 \text{ fixed number}| = \lfloor \frac{n!}{e} + \frac{1}{2} \rfloor$

6.3.1 Example: Strings of Numbers

- 1. $\{1,2,3\}$, (1)(2)(3)
- 2. $\{1,3,2\}$, (1)(2,3)
- 3. $\{2,1,3\}, (1,2)(3)$
- 4. $\{2,3,1\}$, (1,2,3)
- 5. $\{3,1,2\}, (2,3,1)$
- 6. $\{3, 2, 1\}, (2)(3, 1)$

4. and 5. are derangements.

6.4 Sorting

Comparison-based sorting is not possible any faster than $O(n \log n)$:

$$O(\log(n!)) = O(\log \underbrace{\frac{n^n}{e}}) = O(n\log n)$$
 Sterling's Approximation

6.5 *n*-Queens Problem

Given: $n \times n$ chess board, n queens

Task: Position queens such that none threatens any other.

- Option 1: backtracking
- Option 2: permutation generator π
 - $\pi[i]$ specifies the column of the queen in the *i*-th row.
 - from one permutation to next: exchange 2 queens, check 4 diagonals

6.6 Generating all Permutations

How to generate permutations for problems as the *n*-queens problem?

6.6.1 Heap's Algorithm

c from 1 to n, two different steps:

- recursive computation of permutations n-1
- oracle call to exchange two elements with a given oracle function

In Heap's algorithm, the oracle function is defined as i = 1 for current n odd, i = c else.

Advantage: slightly more efficient than Steinhaus-Johnson-Trotter

6.6.2 Steinhaus-Johnson-Trotter Algorithm

Idea: from n-1 to n by inserting the new element into all possible positions

Advantage: circular, only neighbouring elements are exchanged

6.6.3 Lexicographic Algorithms

None of the two algorithms produces permutations in lexicographic order. (Reverse) lexicographic algorithms: loop

- 1. invert the order of $\pi[1], \ldots, \pi[i]$
- 2. recursively generate permutations in reverse lexicographic order

6.6.4 Random permutations

as the name suggests:)

7 Gray Code – a 'reflected binary code'

- subsequent sequences only differ in one bit
- circular
- can also be used for puzzle solving, e.g. Towers of Hanoi

For n bits:

- n = 1
 - 0
 - 1
- n = 2
 - 00
 - 01
 - 11
 - 10
- n = 3
 - 000
 - 001
 - 011
 - 010
 - 110
 - 111
 - 101100

7.1 Conversion

$$b_{n-1}b_{n-2}\dots b_1b_0 \iff g_{n-1}g_{n-2}\dots g_1g_0$$

$$b_{n-1}=g_{n-1}$$

for $i \neq n-1$:

- $b_i = b_{i+1} XOR g_i$
- $g_i = b_{i+1} XOR b_i$

Examples Conversion:

- $1010_b \to 1111_g$
- $0100_q \to 01110_b$

7.2 Example: Towers of Hanoi

Given: three poles, n disks of different sizes. Stacked by size, largest at the bottom

Task: reverse the order of the disks. No disk must be placed on top of a smaller one. Use a Gray code with as many bits as rings. Move the disk i when bit i changes. Start CW or CCW depending on the pole you want the rings to be on in the end and whether n is even or odd.

- 7.3 Example: Chinese Rings
- 7.4 Example: Subset Generation

8 Combinatorial 2 Player Games

Components

- state storage
- move generator
- identification of lose/win/draw states
- possibly backwards move generator

8.1 Game-Tree vs. State-Space Complexity

Game-Tree: consider all possible boards.

Complexity: number of nodes of the complete game's decision tree

State-Space: consider all different boards

Complexity: number of states which can be reached from the start by valid moves

Equivalence of Game States: they allow the same moves, result in the same successor. Typically rotation, reflection, colour inversion possible. Storing one of these states is sufficient.

8.2 Levels of Game Solution

- ultra-weakly solved: it is known who can win, but not how
- weakly solved: a winning strategy from the starting position is known
- strongly solved: a strategy from all positions is known
- **ultra-strongly solved:** for any position it is known what the final result will be and after how many half-moves this will happen

8.3 Enumerate all States

22