1)

Data	columns (total 12 columns	5):
#	Column	Non-Null Count	Dtype
0	price	506 non-null	int64
1	crime	506 non-null	float64
2	nox	506 non-null	float64
3	rooms	506 non-null	float64
4	dist	506 non-null	float64
5	radial	506 non-null	int64
6	proptax	506 non-null	float64
7	stratio	506 non-null	float64
8	lowstat	506 non-null	float64
9	lprice	506 non-null	float64
10	lnox	506 non-null	float64
11	lproptax	506 non-null	float64
dtvpe	es: float6	4(10), int64(2)	

dtypes: #10at64(10), 10t64(

memory usage: 47.6 KB

	min	q25	q50	q75	max	mean	range	std	skew	kurt
price	5000.000000	16850.0000	21200.0000	24999.000000	50001.000000	22511.509881	45001.000000	9208.856171	1.109568	1.485846
crime	0.006000	0.0820	0.2565	3.677000	88.975998	3.611536	88.969998	8.590247	5.233601	37.305912
nox	3.850000	4.4900	5.3800	6.240000	8.710000	5.549783	4.860000	1.158395	0.724734	-0.069637
rooms	3.560000	5.8825	6.2100	6.620000	8.780000	6.284051	5.220000	0.702594	0.404004	1.889982
dist	1.130000	2.1000	3.2100	5.187500	12.130000	3.795751	11.000000	2.106137	1.012032	0.487790
radial	1.000000	4.0000	5.0000	24.000000	24.000000	9.549407	23.000000	8.707259	1.004815	-0.867232
proptax	18.700001	27.9000	33.0000	66.599998	71.099998	40.823715	52.399997	16.853711	0.669956	-1.142408
stratio	12.600000	17.4000	19.1000	20.200001	22.000000	18.459289	9.400000	2.165820	-0.806780	-0.282833
lowstat	1.730000	6.9225	11.3600	17.057500	39.070000	12.701482	37.340000	7.238066	0.947746	0.640760

A partir de las estadísticas descriptivas del cuadro anterior se puede observar en cada variable que:

- * Price: la media es de \$22511.51 y la desviación respecto a la media es de \$9208.86. Es la variable con mayor dispersión en términos absolutos. En cuanto a la distribución de probabilidad, las observaciones están altamente sesgadas hacia la derecha (asimetría positiva) y es leptocurtica, es decir, hay una alta concentración de datos alrededor de la media. Sumado a lo anterior, es muy probable que haya una gran cantidad de outliers ya que la diferencia porcentual entre el cuarto y tercer cuartil es de casi un % 100.
- * Crime: la media es de 3.611536 y la desviación respecto a la media es de 8.59. En cuanto a la distribución de probabilidad, las observaciones están altamente sesgadas hacia la derecha (asimetría positiva) y es leptocurtica. Con sus valores de asimetría, curtosis y diferencia porcentual entre el cuarto y tercer cuartil de % 2319.79 debería de haber una gran cantidad de outliers.

- * Nox: la media es de 5.549783 y la desviación respecto a la media es de 1.158395. En cuanto a la distribución de probabilidad, las observaciones están altamente sesgadas hacia la derecha (asimetría positiva) y platicurtica. En ésta variable no debería de haber muchos outliers ya que su curtosis es casi igual a 0.
- * Rooms: la media es de 6.284051 y la desviación respecto a la media es de 0.702594. En cuanto a la distribución de probabilidad, si bien las observaciones están levemente sesgadas hacia la derecha tiende a una distribución simétrica y leptocurtica. Debido a la gran cantidad de observaciones concetradas alrededor de la media, quizá haya varios outliers.
- * Dist: la media es de 3.795751 y la desviación respecto a la media es de 2.106137. En cuanto a la distribución de probabilidad, las observaciones están altamente sesgadas hacia la derecha (asimetría positiva) y es leptocurtica. Al ser la curtosis no tan alta no debiera de tener muchos valores anormales.
- * Radial: la media es de 9.549407 y la desviación respecto a la media es de 8.707259. En cuanto a la distribución de probabilidad, las observaciones están altamente sesgadas hacia la derecha (asimetría positiva) y es platicurtica por lo que no debiera de haber outliers.
- * Proptax: la media es de 40.823715 y la desviación respecto a la media es de 16.853711. En cuanto a la distribución de probabilidad, las observaciones están levemente sesgadas hacia la derecha (asimetría positiva) y al ser el valor de la curtosis tan pequeño (platicurtica) no hay outliers.
- * Stratio: la media es de 18.459289 y la desviación respecto a la media es de 2.165820. En cuanto a la distribución de probabilidad, las observaciones están levemente sesgadas hacia la izquierda (asimetría negativa) y al ser el valor de la curtosis negativo y no tan lejano al 0 (platicurtica) no debería de haber muchos outliers.
- * Lowstat: la media es de 12.701482 y la desviación respecto a la media es de 7.238066. En cuanto a la distribución de probabilidad, las observaciones están levemente sesgadas hacia la derecha (asimetría positiva) y es leptocurtica. Quizá nos encontremos con outliers.

Como siguiente paso vamos a verificar con diagramas de caja-bigote para verificar las distribuciones de nuestros datos y corroborar variable por variable los outliers que pueden influir los coeficientes de las regresiones que vayamos a estimar.

2)

Al observar el heatmap, la variable price tiene una correlación negativa con lowstat, stratio, nox y crime tal como esperaba; en cambio proptax, si bien tiene correlación negativa, no esperaba la misma ya que al ser el precio de una vivienda mayor los impuestos abonados debieran de ser mayores. En cuanto a las relaciones positivas con el precio nos encontramos con rooms y dist, dichas relaciones tienen sentido ya que al haber mas cuartos implica que en

promedio hay más metros cuadrados cubiertos, y al haber una mayor distancia con zonas productivas implica que las viviendas se encuentren en zonas residenciales por lo que hace aumentar el precio de las mismas.

En cuanto al resto de las variables se puede observar que hay una alta correlación positiva entre radial y crime, proptax y crime, radial y nox, proptax y nox, lowstat y nox, proptax y radial, proptax y lowstat. Las correlaciones altas negativas que muestran los datos son dist y nox, rooms y lowstat, proptax y dist.

Estás altas correlaciones pueden traer problemas de multicolinearidad en nuestras regresiones.

3)

OLS Regression Results

=======							
Dep. Varia	able:		price		uared:		0.566
Model:			OLS	_	R-squared:		0.563
Method:		Least	t Squares	F-sta	atistic:		124.8
Date:		Sat, 13	Nov 2021	Prob	(F-statistic	:):	8.10e-74
Time:			20:16:53	Log-l	ikelihood:		-5124.8
No. Observ	vations:		506	AIC:			1.026e+04
Df Residua	als:		501	BIC:			1.028e+04
Df Model:			4				
Covariance	e Type:		HC1				
	coef	F std	err	Z	P> z	[0.025	0.975]
const	-2.033e+04	5162	. 718	-3.937	0.000	-3.04e+04	-1.02e+04
nox	-1034.1739	260	. 818	-3.965	0.000	-1545.367	-522.981
rooms	7951.8353	705	.330	11.274	0.000	6569.413	9334.258
crime	-161.0131	1 35	. 327	-4.558	0.000	-230.252	-91.774
radial	-84.8553	59.	.029	-1.438	0.151	-200.550	30.839
Omnibus:			242.604	Durbi	in-Watson:		0.764
Prob(Omni	bus):		0.000	Jarqu	ue-Bera (JB):		1891.585
Skew:			1.933	Prob((JB):		0.00
Kurtosis:			11.647	Cond.	No.		197.

El modelo ajustado a nuestros datos utiliza las variables polución (cada 100m), número de cuartos, crimen per capita y el acceso a carreteras radiales para explicar la variación en el precio de las viviendas.

Para el analísis de cada coeficiente vamos a suponer que el resto de las variables se mantienen constantes (ceteris paribus). De ésta forma encontramos que el precio de una vivienda:

- Ante un cambio unitario en la variable polución disminuye \$1034.17
- Ante un cambio unitario el N° de cuartos aumenta \$7951.83
- Ante un cambio unitario en el crimen per capita disminuye \$161.01
- Ante un cambio unitario en el acceso a carreteras radiales disminuye \$84.85

Todas los Betas estimados son estadísticamente significativos excepto el del acceso a carreteras radiales (p > 0.05), es decir que el valor de éste parámetro puede ser igual a 0 (no influye en nuestra variable dependiente).

El coeficiente de determinación nos indica que el 56.6% de la varianza en el precio de las viviendas es explicado por nuestro modelo.

4)

OLS Regression Results

		Negres:				
		OLS east Squares 13 Nov 2021 20:17:08	R-squared: Adj. R-squared: F-statistic: Prob (F-statistic): Log-Likelihood: AIC: BIC:		0.663 0.660 174.7 3.02e-107 -5061.0 1.013e+04 1.016e+04	
		std err	Z	P> z	[0.025	0.975]
rooms squared_rooms crime	-1417.1975 -3.181e+04 3074.0133 -197.2100		-6.480 -5.892	0.000 0.000 0.000	-1845.825 -4.24e+04 2219.552 -270.203 -181.344	-124.217 33.158
Omnibus: Prob(Omnibus): Skew: Kurtosis:		0.000	Durbin-Wa Jarque-Be Prob(JB): Cond. No.	ra (JB):		0.888 4069.286 0.00 2.09e+03

En ésta regresión podemos observar que el coeficiente de rooms es negativo y el de squared_rooms es positivo. Esto implica que, para valores bajos de rooms, una habitación más tiene un efecto negativo sobre el precio. En algún punto el efecto se vuelve positivo, y la forma cuadrática significa que la semielasticidad de price respecto a rooms aumenta a medida que rooms aumenta.

OLS Regression Results

Dep. Variable: lprice			R-squared:			0.527			
Model: OLS			Adj. R-squared:			0.523			
Method:	Least Squ	iares	F-statistic	:		87.29			
Date:	Sat, 13 Nov	2021	Prob (F-statistic):			3.05e-56			
Time:	20:1	7:20	Log-Likelih	ood:		-75.960			
No. Observations:			AIC:			161.9			
Df Residuals:		501	BIC:			183.1			
Df Model:		4							
Covariance Type:		HC1							
co	ef std err		z P>	lz	[0.025	0.9751			
const 7.00	39 0.428	16.	382 0.	000	6.166	7.842			
lnox -0.16			745 0.			0.021			
lrooms 1.71	71 0.219	7.	833 0.	000	1.287	2.147			
lcrime -0.06	94 0.015	-4.	485 0.	000	-0.100	-0.039			
lradial 0.01	15 0.026	0.	433 0.	665	-0.040	0.063			
Omnibus:	89	9.947	Durbin-Wats	on:		0.644			
Prob(Omnibus):	6		Jarque-Bera			509.557			
Skew:			Prob(JB):	(/-		2.24e-111			
Kurtosis:			Cond. No.			88.7			
=======================================	_								

La interpretación de éste modelo log-log es que a partir de un cambio del 1% de la variable que estemos analizando, suponiendo que el resto de las variables independientes se mantienen constantes, el precio de la vivienda variará en la misma proporción que el Beta de la variable en cuestión. Ejemplo: Un cambio unitario en *Irooms* genera, en promedio, un incremento de 1,71 en *Iprice*. Por propiedades del logaritmo natural, esto es equivalente a decir que un cambio porcentual unitario en *rooms* genera, en promedio, un incremento de 1,71% en *price*.

6) El modelo que mejor ajusta a nuestros datos es el log-log ya que el AIC ajustado es menor que el AIC del modelo lineal.

AIC log-log transformado = Σ (log y) * 2 + AIC modelo log-log = 10222.2692

AIC modelo lineal = 10259.6311

AIC log-log transformado < AIC modelo lineal.

7)

La disponibilidad marginal a pagar por vivir en un vecindario más seguro es del % 0.0694. Es decir, ante un incremento del 1 % del crimen en un vecindario dado, los individuos de la muestra están dispuesto a pagar % -0.0694 menos por la vivienda.

OLS Regression Results

Dep. Variable:		price R-squared:			0.557		
Model:			Adj. R-squ		0.554		
Method:	L	east Squares	F-statisti	ic:		86.66	
Date:	Fri,	01 Apr 2022	Prob (F-st	tatistic):		6.42e-56	
Time:		10:21:59	Log-Likeli	ihood:		-5130.1	
No. Observatio	ns:	506	AIC:		1.027e+04		
Df Residuals:		501	BIC:		1	l.029e+04	
Df Model:		4					
Covariance Typ	e:	HC1					
		std err			_	_	
		4055 000					
Intercept							
C(nox_2)[T.1]							
rooms						9554.603	
crime						-88.557	
radial							
Omnibus:			Durbin-Wat				
						0.774	
Prob(Omnibus):			Jarque-Ber	ra (JB):			
Skew:			Prob(JB):			0.00	
Kurtosis:		11.926	Cond. No.			149.	
=========							
Mannå nær i							
Warnings:	nnone one b	otopossodosti.	citu nabuct	(1104.)			
[1] Standard E	errors are n	eteroscedasti	city robust	(HCI)			

Para poder captar que ocurre con el precio de los inmuebles ubicados en zonas con $6\,$ o más partes de óxido nitroso vamos crear una variable dummy con un valor igual a 1. El coeficiente de dicha variable ($C(nox_2[T.1])$) es negativa con un valor de -758.13, siendo estadísticamente no significativa. Es decir, que cuando nox cambia de 5 a 6, éste suceso afecta negativamente al precio de un inmueble.