Time Hybrids A New Generic Theory of Reality Fred Van Oystaeyen

Time Hybrids

Trying to understand the book using Programmatic Notation

Luc Duponcheel

My understanding of the book may not correspond with what Fred had in mind.

Only a small part of the book will be dealt with.

The natural language of this presentation is informal.

but

. . .

The programming language of this presentation is formal.

Do not expect me to go into all details. There is room for questions after the presentation.

Part One

Setting the scene.

• Reality is modeled as being *continuous*.

- Reality is modeled as being continuous.
- The *geometry* of the universe is modeled *analytically* using *differential geometry*.

- Reality is modeled as being continuous.
- The *geometry* of the universe is modeled *analytically* using *differential geometry*.
- Measuring time moments and universe places play a fundamental role.

- Reality is modeled as being continuous.
- The geometry of the universe is modeled analytically using differential geometry.
- Measuring time moments and universe places play a fundamental role.
- Reality evolves from continuous to discrete driven by (measure based) shrinking time intervals.

• Reality is modeled as being *discrete*.

- Reality is modeled as being discrete.
- The geometry of the universe is modeled *algebraically* using *virtual topology and functor geometry*.

- Reality is modeled as being discrete.
- The geometry of the universe is modeled *algebraically* using *virtual topology and functor geometry*.
- Ordering time moments and universe places play a fundamental role.

- Reality is modeled as being discrete.
- The geometry of the universe is modeled *algebraically* using *virtual topology and functor geometry*.
- Ordering time moments and universe places play a fundamental role.
- Reality evolves from discrete to continuous driven by (order based) growing time intervals.

• Structurally:

"something" observed as continuous becomes discrete when place interval sizes go to 0.

- Structurally: "something" observed as continuous becomes discrete when place interval sizes go to 0.
- Functionally: the speed of "something" is defined by letting, in $\Delta s/\Delta t$, the size of the moment interval Δt and the size of the place interval Δs go to 0.

- Structurally: "something" observed as continuous becomes discrete when place interval sizes go to 0.
- Functionally: the speed of "something" is defined by letting, in $\Delta s/\Delta t$, the size of the moment interval Δt and the size of the place interval Δs go to 0.
- Mathematically this approach from (continuous) intervals to (discrete) points is ok.
 But is it ok in reality?

- Structurally: "something" observed as continuous becomes discrete when place interval sizes go to 0.
- Functionally: the speed of "something" is defined by letting, in $\Delta s/\Delta t$, the size of the moment interval Δt and the size of the place interval Δs go to 0.
- Mathematically this approach from (continuous) intervals to (discrete) points is ok.
 But is it ok in reality?
- No: there does not exist "something" at any point.
 "when time goes to 0", reality itself is, eventually, not
 observable any more.

Structurally:

"something" being discrete becomes observed as continuous when moment interval sizes go to ∞ .

- Structurally:
 "something" being discrete becomes observed as continuous when moment interval sizes go to ∞.
- Functionally:
 the geometry of the universe is dynamic:
 place transitions are driven by moment intervals and
 movement can be defined functorially.

- Structurally:
 "something" being discrete becomes observed as continuous when moment interval sizes go to ∞.
- Functionally:
 the geometry of the universe is dynamic:
 place transitions are driven by moment intervals and
 movement can be defined functorially.
- Mathematically this approach from discrete to continuous is ok.

But is it ok in reality?

- Structurally:
 "something" being discrete becomes observed as continuous when moment interval sizes go to ∞.
- Functionally:
 the geometry of the universe is dynamic:
 place transitions are driven by moment intervals and
 movement can be defined functorially.
- Mathematically this approach from discrete to continuous is ok.
 - But is it ok in reality?
- Yes, but: reality will always be discrete for us.
 "when time goes to ∞", reality is, eventually, not observable any more by us.

Part Two Generic Theory

Generic Theory

Generic Theory

I tend to think of a generic theory
 as a
 partially unifying specification theory
 where
 theories are specific implementations of.

• Relativity Theory.

- Relativity Theory.
- Quantum Theory.

- Relativity Theory.
- Quantum Theory.
- Until now no fully unifying theory has been agreed upon.

Theories of Mathematics

Theories of Mathematics

• Group Theory.

Theories of Mathematics

- Group Theory.
- Measure Theory.

Theories of Mathematics

- Group Theory.
- Measure Theory.
- •

Theories of Mathematics

- Group Theory.
- Measure Theory.
- . . .
- I tend to think of Category Theory as a Generic Theory of Mathematics.

• Compositionality is about *components*.

- Compositionality is about components.
- Components can, starting from atomic components, be composed to composite components.

- Compositionality is about components.
- Components can, starting from atomic components, be composed to composite components.
- Components come in two classes.

- Compositionality is about components.
- Components can, starting from atomic components, be composed to composite components.
- Components come in two classes.
 - Funtion-like components.

- Compositionality is about components.
- Components can, starting from atomic components, be composed to composite components.
- Components come in two classes.
 - Funtion-like components.
 - Data-like components.

- Compositionality is about components.
- Components can, starting from atomic components, be composed to composite components.
- Components come in two classes.
 - Funtion-like components.
 - Data-like components.
- Both come with limits.

Correspondences (traditional)

Correspondences (traditional)

```
• In the traditional theory there is a "functorial" correspondence between t \to p(t), the place function of "something", and t \to v(t), the velocity function of "something", as v(t) = d(p(t))/dt, a limit for time interval sizes going to 0.
```


Correspondences (new)

Correspondences (new)

• In the new theory sets of "something"s evolve to a limit for time interval sizes going to ∞ .

In the dynamic universe *places themselves* change driven by *time intervals* and

the movement of sets of "somethings"s after resp at a time interval

is defined as a "functorial" correspondence without any limits involved.

Category Theory deals with

- Category Theory deals with
 - Data-like objects.

- Category Theory deals with
 - Data-like *objects*.
 - Function-like *morphisms* between objects.

- Category Theory deals with
 - Data-like objects.
 - Function-like *morphisms* between objects.
- Category theory is function-like compositional.

- Category Theory deals with
 - Data-like objects.
 - Function-like morphisms between objects.
- Category theory is function-like compositional.
 - Morphisms can be composed sequentially.

Part Three

Specification and Implementations

• Declares features.

- Declares features.
- Come with laws for those declared features.

- Declares features.
- Come with laws for those declared features.
- Declared features, together with their laws, form the requirements of the specification.

- Declares features.
- Come with laws for those declared features.
- Declared features, together with their laws, form the requirements of the specification.
- Defines features in terms of declared and defined features.

• Satisfy the requirements of the specification.

- Satisfy the requirements of the specification.
- Define declared features.

- Satisfy the requirements of the specification.
- Define declared features.
- Come with proofs of the laws for those defined features.

Part Four

Writing a specification and its implementations programatically


```
trait Composition[Morphism[_, _]]:
  extension [Z, Y, X](ymx: Morphism[Y, X])
  def o(zmy: Morphism[Z, Y]): Morphism[Z, X]
  type Transition = [Z] =>> Morphism[Z, Z]
```


 Morphism is a binary type constructor parameter of Composition.

- Morphism is a binary type constructor parameter of Composition.
- Types Z, Y, X, ... implicitly model (homogeneous) sets.

- Morphism
 is a binary type constructor parameter of
 Composition.
- Types Z, Y, X, ... implicitly model (homogeneous) sets.
- Values z, y, x, ... implicitly model elements.


```
trait Composition[Morphism[_, _]]:
  extension [Z, Y, X](ymx: Morphism[Y, X])
  def o(zmy: Morphism[Z, Y]): Morphism[Z, X]
  type Transition = [Z] =>> Morphism[Z, Z]
```


• o is a sequential composition operator.

- o is a sequential composition operator.
- Values zmy ... are morphisms from Z to Y.


```
trait Composition[Morphism[_, _]]:
  extension [Z, Y, X](ymx: Morphism[Y, X])
  def o(zmy: Morphism[Z, Y]): Morphism[Z, X]
  type Transition = [Z] =>> Morphism[Z, Z]
```


• Transition involves only one type Z.


```
trait Composition[Morphism[_, _]]:
  extension [Z, Y, X](ymx: Morphism[Y, X])
  def o(zmy: Morphism[Z, Y]): Morphism[Z, X]
  type Transition = [Z] =>> Morphism[Z, Z]
```


Associativity

```
def associativity[Z, Y, X, W]
    : Morphism[Z, Y] =>
        Morphism[Y, X] =>
            Morphism[X, W] =>
            L[Morphism[Z, W]] =
  zmy =>
    ymx =>
      xmw =>
            (xmw o ymx) o zmy
        } '=' {
            xmw o (ymx o zmy)
        }
```


Unit

```
trait Identity[Morphism[_, _]]:
   def i[Z]: Morphism[Z, Z]
```


Unit

```
trait Identity[Morphism[_, _]]:
   def i[Z]: Morphism[Z, Z]
```


Category

```
trait Category[Morphism[_, _]]
  extends Composition[Morphism],
        Identity[Morphism]:

def composeAll[Z]
    : List[Transition[Z]] => Transition[Z] =
        _.foldLeft(i)(_ o _)
```


Functor

```
trait Functor[
    FromMorphism[_, _]: Category,
    ToMorphism[_, _]: Category,
    Correspondence[_]
]:

def f[Z, Y]: Function[
    FromMorphism[Z, Y],
    ToMorphism[Correspondence[Z], Correspondence[Y]]
]
```


• We introduce a generic model for space-time where time is just a totally ordered set ordering the states of the universe at moments where over (not in) each state we define potentials or pre-things which are going to evolve via correspondences between the momentary potentials to existing things. Existing takes time. We can define a place function where some set of pre-things is mapped to a place of the topology of the universe.

• Pre-things are artifacts of the non-existing reality.

- Pre-things are artifacts of the non-existing reality.
- Pre-things are momentary.

- *Pre-things* are artifacts of the *non-existing reality*.
- Pre-things are momentary.
- Things are artifacts of the existing reality.

- Pre-things are artifacts of the non-existing reality.
- Pre-things are momentary.
- Things are artifacts of the existing reality.
- Existing takes time.

- Pre-things are artifacts of the non-existing reality.
- Pre-things are momentary.
- Things are artifacts of the existing reality.
- Existing takes time.
- Observing takes even more time.

- Pre-things are artifacts of the non-existing reality.
- Pre-things are momentary.
- Things are artifacts of the existing reality.
- Existing takes time.
- Observing takes even more time.
- What is it that we observe?

Part Five

Code fragments.

• fragment

- fragment
- fragment

- fragment
- fragment
- fragment

- fragment
- fragment
- fragment

- fragment
- fragment
- fragment
- fragment

- fragment
- fragment
- fragment
- fragment
- fragment

More Information

https://github.com/LucDuponcheelAtGitHub/timeHybrids

THANKS FOR ATTENDING

