

Application Note for LPDDR2 Boundary Scan

Table of Contents

1.	Preface	2
2.	package BALL out	2
2.1	134 ball VFBGA	2
2.2	168 ball VFBGA	3
3.	BALL out DESCRIPTION	4
4.	Block Diagram of Boundary Scan Chain	5
5.	Control signals of Boundary Scan	5
6.	Boundary Scan Output Order	6
6.1	Sequence of scan data output (32 IOs mode)	6
6.2	Sequence of scan data output (16 IOs mode)	6
7.	Boundary Scan operation	7
7.1	Scan Initialization for Stand-Alone Mode	7
7.2	Scan Initialization in regular LPDDR2 operation	
7.3	Scan Capture Timing	
7.4	Exit Sequence	
7.5	Scan Shift Timing	10
8.	DC Electrical Characteristics Condition	10
9.	AC Electrical Characteristics Condition	10
10.	Revision History	11

Application Note for LPDDR2 Boundary Scan

1. PREFACE

Winbond LPDDR2 device is built with boundary scan chain for users to test the connectivity between memory controller and memory device itself.

The boundary scan chain provide a simply way to check status of connection between memory controller and memory device itself. The boundary scan chain is able to be enabled by a SEN input. All the connection status of each IO between memory controller and memory device will be latched by the scan chain in parallel and be read out from a dedicated output pin serially.

2. PACKAGE BALL OUT

2.1 134 ball VFBGA

	1	2	3	4	5	6	7	8	9	10	
A	DNU	DNU							DNU	DNU	A
В	DNU	NC	NC		VDD2	VDD1	DQ31 NC	DQ29 NC	DQ26 NC	DNU	В
С	VDD1	VSS	NC		VSS	VSSQ	VDDQ	DQ25 NC	VSSQ	VDDQ	С
D	VSS	VDD2	ZQ0		VDDQ	DQ30 NC	DQ27 NC	DQS3_t NC	DQS3_c NC	VSSQ	D
E	VSSCA	CA9	CA8		DQ28 NC	DQ24 NC	DM3 NC	DQ15	VDDQ	VSSQ	E
P	VDDCA	CA6	CA7		VSSQ	DQ11	DQ13	DQ14	DQ12	VDDQ	F
G	VDD2	CA5	vref(CA)		DQS1_c	DQS1_t	DQ10	DQ9	DQ8	VSSQ	G
н	VDDCA	VSS	CK_c		DM1	VDDQ					н
1	VSSCA	NC	CK_t		VSSQ	VDDQ	VDD2	VSS	Vref(DQ)		1
K	CKE0	NC	NC		DM0	VDDQ					K
L	CS0_n	NC	NC		DQS0_c	DQS0_t	DQ5	DQ6	DQ7	VSSQ	L
M	CA4	CA3	CA2		VSSQ	DQ4	DQ2	DQI	DQ3	VDDQ	M
N	VSSCA	VDDCA	CA1		DQ19 NC	DQ23 NC	DM2 NC	DQ0	VDDQ	VSSQ	N
P	VSS	VDD2	CA0		VDDQ	DQ17 NC	DQ20 NC	DQS2_t NC	DQS2_c NC	VSSQ	P
R	VDD1	VSS	NC		VSS	VSSQ	VDDQ	DQ22 NC	VSSQ	VDDQ	R
T	DNU	NC	SEN		VDD2	VDD1	DQ16 NC	DQ18 NC	DQ21 NC	DNU	T
U	DNU	DNU							DNU	DNU	U

Note: The SEN input is assigned at ball T3.

massa winbond sassa

2.2 168 ball VFBGA

Note: The SEN input is assigned at ball M1.

sses winbond sesses

3. BALL OUT DESCRIPTION

Name	Туре	Description					
CK_t, CK_c	Input	Clock: CK_t and CK_c are differential clock inputs. All Double Data Rate (DDR) CA inputs are sampled on both positive and negative edge of CK_t. Single Data Rate (SDR) inputs, CS_n and CKE, are sampled at the positive Clock edge. Clock is defined as the differential pair, CK_t and CK_c. The positive Clock edge is defined by the crosspoint of a rising CK_t and a falling CK_c. The negative Clock edge is defined by the crosspoint of a falling CK_t and a rising CK_c.					
CKE	Input	ck Enable: CKE HIGH activates and CKE LOW deactivates internal clock signals and therefore device input ers and output drivers. Power savings modes are entered and exited through CKE transitions. E is considered part of the command code. CKE is sampled at the positive Clock edge.					
CS_n	Input	Chip Select: CS_n is considered part of the command code. CS_n is sampled at the positive Clock edge.					
CA[n:0]	Input	DDR Command/Address Inputs: Uni-directional command/address bus inputs. CA is considered part of the command code.					
DQ[n:0]	I/O	Data Inputs/Output: Bi-directional data bus. n=15 for 16 bits DQ; n=31 for 32 bits DQ.					
DQSn_t, DQSn_c	I/O	Data Strobe (Bi-directional, Differential): The data strobe is bi-directional (used for read and write data) and differential (DQS_t and DQS_c). It is output with read data and input with write data. DQS_t is edge-aligned to read data and centered with write data. For x16, DQS0_t and DQS0_c correspond to the data on DQ0-7; DQS1_t and DQS1_c to the data on DQ8-15. For x32 DQS0_t and DQS0_c correspond to the data on DQ0-7; DQS1_t and DQS1_c to the data on DQ8-15; DQS2_t and DQS2_c to the data on DQ16-23; DQS3_t and DQS3_c to the data on DQ24-31.					
DMn	Input	Input Data Mask: DM is the input mask signal for write data. Input data is masked when DM is sampled HIGH coincident with that input data during a Write access. DM is sampled on both edges of DQS_t. Although DM is for input only, the DM loading shall match the DQ and DQS (or DQS_c). DM0 is the input data mask signal for the data on DQ0-7. For x16 and x32 devices, DM1 is the input data mask signal for the data on DQ8-15. For x32 devices, DM2 is the input data mask signal for the data on DQ16-23 and DM3 is the input data mask signal for the data on DQ24-31.					
SEN	Input	Scan Enable: SEN must be asserted HIGH for enabling boundary scan ifunction. Must be tied to Ground when not in use.					
VDD1	Supply	Core Power Supply 1: Power supply for core.					
VDD2	Supply	Core Power Supply 2: Power supply for core.					
VDDCA	Supply	Input Receiver Power Supply: Power supply for CA[n:0], CKE, CS_n, CK_t, and CK_c input buffers.					
VDDQ	Supply	I/O Power Supply: Power supply for Data input/output buffers.					
VREF(CA)	Supply	Reference Voltage for CA Command and Control Input Receiver: Reference voltage for all CA[n:0], CKE, CS_n, CK_t, and CK_c input buffers.					
VREF(DQ)	Supply	Reference Voltage for DQ Input Receiver: Reference voltage for all Data input buffers.					
Vss	Supply	Ground					
VSSCA	Supply	Ground for CA Input Receivers					
Vssq	Supply	I/O Ground					
ZQ	I/O	Reference Pin for Output Drive Strength Calibration					

Basas winbond sassa

4. BLOCK DIAGRAM OF BOUNDARY SCAN CHAIN

5. CONTROL SIGNALS OF BOUNDARY SCAN

Pin Name	Туре	Function	Description
SEN	Input	SEN	Scan Enable: H: Scan enable L: Scan disable
CSB	Input	SCK	Scan Clock: For latching scan data in front of the can register. All scan inputs will be referred to rising edge of CSB.
CA0	Input	SSH	Scan Shift: H: For shifting data on the chain L: For latching data on the chip pad
CA1	Input	SOEB	Scan Output Enable: H: Scan output disabled L: Scan output enabled
DM0	Output	SOUT	Scan Output: All latched scan data will serially output from DM0 referred to rising edge of CSB.

Notes:

- 1. When SEN is asserted, no commands are to be executed by the LPDDR2 device. This applies both to user commands and manufacturing commands which may exist while CA0 is deasserted.
- The Scan Function can be used right after bringing up V_{DD} / V_{DDQ} of the device. No initialization sequence of the device is required. After leaving the Scan Function it is required to run through the complete initialization sequence.
- 3. In Scan Mode all terminations for CMD/ADD and DQ, DM, DQSn_t and DQSn_c are switched off.

massa winbond sassa

6. BOUNDARY SCAN OUTPUT ORDER

6.1 Sequence of scan data output (32 IOs mode)

BIT#	PAD	BIT#	PAD	BIT#	PAD	BIT#	PAD	BIT#	PAD
1	DQS0_c	13	DQS2_t	25	CKE	37	DQ28	49	DQ11
2	DQS0_t	14	DQ23	26	CK_t	38	DQ27	50	DQ10
3	DQ7	15	DQ22	27	CK_c	39	DQ26	51	DQ9
4	DQ6	16	DQ21	28	CA5	40	DQ25	52	DQ8
5	DQ5	17	DQ20	29	CA6	41	DQ24	53	DQS1_t
6	DQ4	18	DQ19	30	CA7	42	DQS_t	54	DQS1_c
7	DQ3	19	DQ18	31	CA8	43	DQS_c	55	DM1
8	DQ2	20	DQ17	32	CA9	44	DM3		
9	DQ1	21	DQ16	33	ZQ	45	DQ15		
10	DQ0	22	CA2	34	DQ31	46	DQ14		
11	DM2	23	CA3	35	DQ30	47	DQ13		
12	DQS2_c	24	CA4	36	DQ29	48	DQ12		

6.2 Sequence of scan data output (16 IOs mode)

BIT#	PAD	BIT#	PAD	BIT#	PAD
1	DQS0_c	13	CA4	25	DQ13
2	DQS0_t	14	CKE	26	DQ12
3	DQ7	15	CK_t	27	DQ11
4	DQ6	16	CK_c	28	DQ10
5	DQ5	17	CA5	29	DQ9
6	DQ4	18	CA6	30	DQ8
7	DQ3	19	CA7	31	DQS1_t
8	DQ2	20	CA8	32	DQS1_c
9	DQ1	21	CA9	33	DM1
10	DQ0	22	ZQ	34	
11	CA2	23	DQ15	35	
12	CA3	24	DQ14	36	

7. BOUNDARY SCAN OPERATION

There are two modes of boundary scan operations

- ☐ The first mode is the Stand-Alone mode. In the Stand-Alone mode the LPDDR2 device is supposed to support the Boundary Scan functionality only, the user does not intend to operate the DRAM in its ordinary functionality after or prior to the entering of the Boundary Scan functionality. The purpose of the Stand-Alone mode could be a connectivity test at the manufacturing site.
- ☐ The second mode is the regular LPDDR2 device functionality. With this common mode the boundary scan functionality can be enabled after the LPDDR2 device has been initialized by the regular power-up and LPDDR2 device Initialization sequence. When the boundary scan functionality is left, the regular LPDDR2 device initialization sequence has to be re-iterated.

7.1 Scan Initialization for Stand-Alone Mode

The LPDDR2 device needs to follow the given sequence below to support the boundary scan functionality in the Stand-Alone mode. There is no external clock for the whole sequence needed.

- 1. External Voltages (VDD/VDDQ/VREF) need to be stable for 200µs, SEN has to be kept low.
- 2. Bring SEN up to high state to enter boundary scan functionality.
- 3. Operate boundary scan functionality.
- 4. Boundary scan can be exited by bringing SEN to LOW or simply by switching power off.

7.2 Scan Initialization in regular LPDDR2 operation

The Initialization sequence of the boundary scan functionality in regular LPDDR2 operation has to follow the given sequence below:

- 1. External Voltages (VDD/VDDQ/VREF) need to be stable for 200 μ s, SSH has to be kept low, external clock has to be stable prior to SSH goes high
- 2. Bring SSH high and keep clock stable for 700tcks, CKE will be latched by rising SSH edge, keep tATH/tATS
- 3. Bring SEN up to high state to enter boundary scan functionality
- 4. Operate boundary scan functionality
- 5. Boundary scan can be exited by bringing SEN low
- 6. Wait tSN for bringing up SSH, prior to bringing SSH to high state, external clock has to be stable.
- 7. After SSH is at high state wait 700tck
- 8. Continue with regular Initialization sequence

The steps 1 and 2 are necessary to enable the termination for the command/address pins. They are part of the regular LPDDR2 Initialization. They are required if the user wants to issue commands between entering of the boundary scan functionality and the power-up sequence. The entering of the boundary scan mode is resetting the command/address termination values and all MRS settings. Therefore, they have to be initialized again after the boundary scan functionary has been left.

Scan Initialization Sequence within regular LPDDR2 device

ssess winbond ssess

7.3 Scan Capture Timing

Don't care

Note:

For complementary pins (CLK/CLKB and DQS<i>DQSB<i>) during BSC test, complementary pin must have different level of input for scan capture. For example, CLK=H / CLKB=L or CLK=L / CLKB=H. Condition of CLK=H / CLKB=H or CLK=L / CLKB=L is not allowed.

7.4 Exit Sequence

The figure below shows the Scan exit Sequence. This figure show the exiting of the boundary scan functionality in conjugation with the regular LPDDR2 initialization sequence to bring the LPDDR2 again in a well defined state.

sees winbond seese

7.5 Scan Shift Timing

8. DC ELECTRICAL CHARACTERISTICS CONDITION

PARAMETER/CONDITION	Symbol	Min.	Max.	Units	Note
Input High (Logic 1) Voltage	V _{IH} (DC)	V _{REF} +0.15	_		1,2
Input Low (Logic 0) Voltage -	V _{IL} (DC)	_	VREF-0.15	_	1,2

Notes:

1. The parameter applies only when SEN is asserted.

2. All voltages referenced to GND

9. AC ELECTRICAL CHARACTERISTICS CONDITION

Parameter/Condition	Symbol	Min.	Max.	Units	Note
Clock	•				
Clock cycle time	t _{SCK}	40		ns	1
Scan Command Time					
Scan enable setup time	t _{SES}	20		ns	1,2
Scan enable hold time	^t SEH	20	_	ns	2
Scan command setup time for SSH, SOE# and SOUT	tscs	14		ns	1
Scan command hold time for SSH, SOE# and SOUT	tSCH	14	_	ns	1
Scan Capture Time					
Scan capture setup time	tSDS	10	_	ns	1
Scan capture hold time	^t SDH	10	_	ns	1
Scan Shift Time	•				
Scan clock to valid scan output	tSAC	_	10	ns	1
Scan clock to scan output hold	tSOH	1.5	_	ns	1
Scan Exit Time		•		•	
SEN low time	tSN	20		ns	

Notes:

1. The parameter applies only when SEN is asserted.

2. Scan Enable should be issued earlier than other Scan Commands by 6 ns.

Bases winbond

10. REVISION HISTORY

VERSION	DATE	PAGE	DESCRIPTION
P01	Sep. 6, 2017	All	Initiate the first version