调制波法测量光速

崔雅静 11号

西南交通大学物理实验中心

实验背景

1. 光在真空中的速度是物理学中一个基本常数之一。

$$c_0 = 299792458 \text{ m/s}$$

- 2.1983年10月在巴黎召开的第十七届国际计量大会上通过了"米"的新定义: "米是1/299792458秒的时间间隔内光在真空中行程的长度"。
- 3. 光速的测定最终推动了Einstein相对论的发展。
- 4. 精确测量光速的值具有非常重要的物理意义和应用价值。

真空中光速的精密测量, 沈乃澂, 物理, 45(12), 790 (2016)

实验目的

- 1. 掌握利用调制波测量光速的原理及方法。
- 2. 进一步熟悉逐差法处理实验数据的方法。

1. 光速测量的基本原理:

$$c = \lambda \cdot f$$

技术困难: (1) 可见光频率的量级: 10¹⁴ Hz

(2) 可见光波长的量级: 100 nm

直接测量这两个量不太现实!

2. 频率测量的转移:

调制: 周期性地在被测信号上做特殊、可识别的标记,直接测量对

象是标记,而非被测信号,这种方法叫"调制"。

在高频的光波上叠加一个低频 (~100 MHz) 的信号。

低频信号频率的测量:频率计、示波器。

3. 波长测量的转移:

将波长测量转移到相位差的测量上。

相位差测量:比相计、示波器。

4. 测量相位差:

$$\varphi_{2} - \varphi_{1} = 2\mathbf{D} \bullet \frac{2\pi}{\lambda}$$

$$\varphi_{2}^{\Delta} - \varphi_{1} = 2(\mathbf{D} + \Delta \mathbf{D}) \bullet \frac{2\pi}{\lambda}$$

$$\varphi_{2}^{\Delta} - \varphi_{1} = 2(\mathbf{D} + \Delta \mathbf{D}) \bullet \frac{2\pi}{\lambda}$$

 $\varphi_2^{\Delta} - \varphi_2$: 示波器测量

 ΔD : 标尺测量

5. 100 MHz信号相位差的测量:

100 MHz

测量精度

通常用的相位计开关时间:~40ns

工作速度

测相系统的稳定性

电路分布参量造成的附加相移

如何克服?

差频法

6. 差频法测量相位差:

将两频率不同的正弦波同时作用于一个非线性元件(如光发射器、探测器等)时,其输出端包含有两个信号的差频成分。

三个频 率成分

激光频率: 1014Hz

调制波频率 ω : 约100MHz

仪器的本振频率 ω^{L} : 约100MHz

加入本振信号:

$$U_0^L \cos\left[\omega^L t + \varphi_0^L\right]$$

入射、出射信号相位差不变

入射信号 φ_1 与本振信号混频后所得差频信号为:

$$A_2 U_{10} U_0^L \cos \left[(\omega - \omega^L) t + (\varphi_0 - \varphi_0^L) \right]$$

被测返回信号与本振信号混频后所得差频信号为:

$$A_2 U_{20} U_0^L \cos \left[(\omega - \omega^L)t + (\varphi_0 - \varphi_0^L) + \varphi \right]$$

6. 差频法测量相位差:

将两频率不同的正弦波同时作用于一个非线性元件(如光发射器、探测器等)时,其输出端包含有两个信号的差频成分。

7. 示波器测量相位差:

定标: 20格 2π

$$\boldsymbol{\varphi}_2^{\Delta} - \boldsymbol{\varphi}_2 = 2\Delta \boldsymbol{D} \bullet \frac{2\pi}{\lambda} = 3 \times \frac{2\pi}{20}$$

8. 光速的间接测量:

$$c = \lambda \cdot f$$

f: 频率计测量 (~100MHz)

 λ : 示波器测差频信号 (~400 KHz) 的相位差

实验内容

1. 等距离测量调制波波长法:

棱镜小车在标尺上等距离移动,每隔5cm测量一个位相值,共测量8个数据,用表格形式(注意单位和有效数字)列出所有原始数据。

棱镜小车位置 X _i (cm)₽	测相波形平移量 <i>φ_i</i> (小格数)₽	棱镜小车位置 X _i (cm) ₽	测相波形平移量 <i>φ_{i+4}</i> (小格数)₽	$\Delta \varphi = \varphi_{i+4} - \varphi_i$ (小格数) φ
5.00₽	0.0₽	25.00₽	₽	₽
10.00₽	47	30.00₽	₽	₽
15.00₽	÷	35.00₽	₽	₽
20.00₽	th.	40.00₽	₽	₽

$$\overline{\Delta \varphi}$$
 = ______(单位), $\overline{\lambda}$ = _____(单位) c = _____(单位) φ

逐差法求出相位差的平均值

实验内容

2. 等相位测量调制波波长法:

棱镜小车在标尺上移动,使示波器屏幕上相位移动量相等,每隔两小格测量一个标尺值,用表格形式(注意单位和有效数字)列出所有原始数据。

测相波形平移量	棱镜小车位置	测相波形平移量	棱镜小车位置	Av - v v ():
φ_i (小格数) 🕫	X_i (cm) φ	<i>φ_i</i> (小格数)₽	x_{i+4} (cm) φ	$\Delta x = x_{i+4} - x_i (\text{cm})^{4^{j}}$
0.0₽	÷	8.0₽	₽	4
2.0₽	ţ.	10.0₽	₽	4
4.0₽	¢	12.0₽	4	₽
6.0₽	Đ	14.0₽	₽	₽

 $\overline{\Delta x} =$ ______(单位), $\overline{\lambda} =$ _____(单位) c =_____(单位) $_{c}$

逐差法求出变化相同相位时距离的平均值

实验内容

3. 分别计算两种方法的相对误差:

$$\boldsymbol{E} = \frac{\boldsymbol{c} - \boldsymbol{c}_0}{\boldsymbol{c}_0}$$

$$c_0 = 2.99792458 \times 10^8 \text{ m/s}$$

说明哪种方法的相对误差较小!

思考

1. 为什么不直接选用一个较低的调制波频率?

$$c = \lambda \cdot f$$

2. 光速测量的精度主要受哪些因素的限制?

幅度误差

照准误差

光源噪声

° 12°

实验科学与技术

2007年 12月

差频相位法测光速的数据处理分析。

孙世志**

(大连理工大学物理系, 辽宁 大连 116023)

摘要: 利用调制波测量光速的关键在于测量调制波的波长,实验中采用相位差法测调制波的波长。通过对实验数据的处理分析,可知调制波的频率对测量误差基本上没有影响,测量误差主要是来源于波长的测量误差。 关键词: 差频;相位法:光速:数据处理

注意事项

- 1. 开始实验不盲目, 先整理好思路再开始
- 2. 实验开始后严格按步骤进行实验, 不焦躁
- 3. 实验中遇到问题,认真思考,根据现象排查原因
- 4. 纪录数据时考虑好有效数字的位数
- 5. 不用铅笔、橡皮
- 6. 独立完成实验,允许相互探讨