CS663 Assignment 4

Yash Shah, 160050002 Utkarsh Gupta, 160050032

October 15, 2018

Question 5

C is $d \times d$ symmetric matrix and hence by spectral theorem it has d orthogonal eigenvectors with real eigenvalues. Let the eigen decomposition of C equal UDU^T where $U = [u_1|u_2|u_3|...|u_d]$ where u_i is the $d \times 1$ eigenvector corresponding to the i^{th} largest eigen value and and D is the diagonal matrix whose $D(i,i) = e_i$ where e_i is the i^{th} largest eigen value and rest entries are zero. Since all u_i are orthonormal and there are dof them it implies any vector in \mathbb{R}^d can be written as a linear combination of them i.e. $f = \sum_{i=1}^d c_i u_i$ where $c_i \in R$. Thus

$$f^T C f = f^T U D U^T f = f^T U D (f^T U)^T$$

and using $f = \sum_{i=1}^{d} c_i u_i$ we know that

$$f^T U = [f^T u_1 | f^T u_2 | \dots | f^T u_d] = [c_1 | c_2 | c_3 | \dots | c_d]$$

thus combining both equations we have

$$f^T C f = [c_1 | c_2 | c_3 | \dots | c_d] D[c_1 | c_2 | c_3 | \dots | c_d]^T = \sum_{i=1}^d e_i c_i^2$$

Since $f \perp u_1$ as given in question, $c_1 = 0$ and hence $f^T C f = 0 + \sum_{i=1}^{d} e_i c_i^2$. Without loss of generality we can assume f to be a unit vector, which implies $\sum_{i=2}^{d} c_i^2 = 1$ and hence to maximize $\sum_{i=2}^{d} e_i c_i^2$ we choose $c_i = 1$ for that value of i for which e_i is maximum, and zero on rest.

This is because $\sum_{i=2}^{d} e_i c_i^2$ is a linear combination of $\{e_i\}_{i=1}^{d}$ with non-negative weights $(c_i^2 \geq 0 \ \forall i)$ that sum up to one, and hence it is also a convex combination of $\{e_i\}_{i=1}^{d}$. Thus, it will always lie within the range

 $[\min e_i, \max e_i].$

Thus we get $c_2 = 1$, and rest $c_i = 0$ (since it is given that all eigen values are distinct and rank(C) > 2, only c_2 should be 1). Hence $f = u_2$ or the eigenvector with the second largest eigenvalue, which we set out to prove.