

KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN DIREKTORAT JENDERAL PENDIDIKAN ANAK USIA DINI, PENDIDIKAN DASAR DAN PENDIDIKAN MENENGAH DIREKTORAT SEKOLAH MENENGAH ATAS 2020

Modul Pembelajaran SMA

MEDAN MAGNET FISIKA KELAS XII

PENYUSUN SUJOKO SMAN 32 JAKARTA

DAFTAR ISI

PENYUSUN	2
DAFTAR ISI	3
GLOSARIUM	4
PETA KONSEP	5
PENDAHULUAN	6
A. Identitas Modul	6
B. Kompetensi Dasar	6
C. Deskripsi Singkat Materi	6
D. Petunjuk Penggunaan Modul	6
E. Materi Pembelajaran	7
KEGIATAN PEMBELAJARAN 1	8
MEDAN MAGNET	8
A. Tujuan Pembelajaran	8
B. Uraian Materi	8
C. Rangkuman	15
D. Latihan Soal	16
E. Penilaian Diri	22
KEGIATAN PEMBELAJARAN 2	23
GAYA MAGNET	23
A. Tujuan Pembelajaran	23
B. Uraian Materi	23
C. Rangkuman	28
D. Latihan Soal	29
E. Penilaian Diri	32
EVALUASI	33
DAFTAR PUSTAKA	36

GLOSARIUM

Medan magnet daerah disekitar magnet yang masih terpengaruh oleh gaya magnet.

magnet

Garis-garis gaya : garis lengkung yang keluar dari kutub utara menuju kutub selatan dan garis tersebut tidak pernah berpotongan satu dengan yang

lainnya.

Fluks Magnet : jumlah garis gaya magnet yang menembus permukaan bidang

tertentu.

Induksi Magnet : kuat medan magnet pada satu titik.

Solenoida salah satu jenis kumparan terbuat dari kabel panjang yang dililitkan

secara rapat dan dapat di asumsikan bahwa panjangnya jauh lebih

besar diameternya.

Toroida sebuah solenoida yang di lengkungkan sehingga berbentuk lingkaran

kumparan.

gaya yang timbul akibat kawat penghantar lurus berarus yang Gaya Lorentz

memotong medan magnetik.

: jumlah gaya medan magnet yang menembus suatu permukaan luas Fluks Magnet

dalam arah tegak lurus

Tesla : adalah satuan induksi magnet dalam SI (Sistem Internasional)

PETA KONSEP

PENDAHULUAN

A. Identitas Modul

Mata Pelajaran : Fisika Kelas : XII Alokasi Waktu : 8 IP

Judul Modul : Medan Magnet

B. Kompetensi Dasar

- 3. 1 Menganalisis medan magnetik, induksi magnetik, dan gaya magnetik pada berbagai produk teknologi
- 4.1 Melakukan percobaan tentang induksi magnetik dan gaya magnetik disekitar kawat berarus listrik berikut presentasi hasilnya

C. Deskripsi Singkat Materi

Pernahkah Anda berpikir mengapa dua benda bisa saling tarik menarik atau tolak menolak? Mengapa kompas yang didekatkan pada penghantar berarus jarumnya menyimpang? Apa sajakah yang mempengaruhi medan magnet, gaya magnet dan fluks magnet? Apakah manfaat mempelajari medan magnet? Anda akan dapat menjawab pertanyaan-pertanyaan tersebut dengan mempelajari modul yang Anda pegang ini.

Modul ini terdiri dari dua kegiatan belajar, yaitu:

- 1. Kegiatan belajar pertama akan menguraikan tentang medan magnet;
- 2. Kegiatan Belajar kedua menguraikan tentang Gaya Magnet dan Fluks Magnet. Bagaimana menggunakan modul ini agar memperoleh hasil belajar yang maksimal?

D. Petunjuk Penggunaan Modul

Agar memperoleh hasil belajar yang maksimal, Anda diharapkan mengikuti petunjuk penggunaan modul berikut ini.

- 1. Bacalah dan pahami secara seksama uraian-uraian materi yang ada pada masingmasing kegiatan belajar;
- 2. Pelajari dan pahami contoh soal yang diberikan;
- 3. Isilah penilaian diri dengan jujur;
- 4. Upayakan penilaian diri yang Anda lakukan jawabannya sudah ya semua;
- 5. Kerjakan semua latihan yang ada pada modul;
- 6. Jika nilai latihan Anda sudah di atas 75 lanjutkan pada kegiatan belajar selanjutnya, jika belum, pelajari kembali bagian materi yang Anda belum kuasai.

E. Materi Pembelajaran

Modul ini terbagi menjadi **2** kegiatan pembelajaran dan di dalamnya terdapat uraian materi, contoh soal, soal latihan dan soal evaluasi.

Pertama: Medan Magnet

Kedua : Gaya Magnet

KEGIATAN PEMBELAJARAN 1 MEDAN MAGNET

A. Tujuan Pembelajaran

Setelah mempelajari modul ini Anda diharapkan dapat :

- menjelaskan fluks magnetik;
- 2. menjelaskan karakteristik medan magnet;
- 3. menjelaskan sifat magnetik bahan;
- 4. menjelaskan Percobaan Oersted;
- 5. menjelaskan Hukum Biot Savart;
- 6. menjelaskan Hukum Ampere;
- 7. menentukan induksi magnetik pada kawat lurus berarus;
- 8. menentukan induksi magnetik di sekitar kawat melingkar berarus;
- 9. menentukan induksi magnetik di sekitar solenoida berarus; dan
- 10. menentukan induksi magnetik di sekitar toroida berarus.

B. Uraian Materi

1. Medan Magnet

Ketika serbuk besi ditaburkan di sekitar magnet, serbuk besi tersebut akan membentuk pola tertentu. Pola yang terbentuk tersebut menandakan adanya medan magnet.

Gambar 1. Pola serbuk besi disekitar magnet Sumber: http//www.smartsains.com

Paku-paku besi yang diletakkan dekat magnet akan ditarik oleh magnet. Kutub-kutub jarum kompas kedudukannya dapat berubah jika didekatkan pada magnet.

Gejala terbentuknya pola serbuk besi di sekitar magnet, tertariknya paku besi dan berubahnya kedudukan kutub-kutub jarum kompas disebabkan oleh adanya gaya yang ditimbulkan oleh kutub magnet.

Ruangan tempat paku atau atau jarum kompas berada disebut medan gaya. Gaya yang menyebabkan paku menempel dan berubahnya kedudukan kutubkutub jarum kompas ditimbulkan oleh magnet, maka medan gaya tersebut disebut medan magnet. Jadi, medan magnet adalah ruangan disekitar bendabenda bersifat magnet yang masih dipengaruhi gaya magnet.

Semakin jauh sebuah posisi dari magnet semakin kecil besar medan magnetnya karena semakin sedikit jumlah garis gaya magnetnya. Bagaimana jika posisinya semakin dekat? Semakin dekat sebuah posisi dari magnet maka semakin besar medan magnetnya karena semakin banyak jumlah garis gaya magnetnya.

Arah garis gaya magnet adalah dari kutub utara menuju kutub selatan.

Gambar 2. Arah garis gaya medan magnet Sumber: fisikazone.com

2. Sifat Magnetik Bahan

Bahan magnetik dibedakan menjadi tiga jenis, yaitu bahan ferromagnetik, bahan para magnetik, dan bahan diamagnetik.

Bahan Ferromagnetik

Bahan ferromagnetik adalah bahan yang sangat mudah dipengaruhi oleh medan magnet. Bahan jenis ini dapat dijadikan sebagai magnet permanen. Contoh bahan ferromagnetik adalah: besi, baja, nilel dan kobal.

Bahan Paramagnetik

Bahan paramagnetik adalah bahan yang tidak mudah dipengaruhi oleh medan magnet. Bahan jenis ini tidak dapat dijadikan sebagai magnet permanen. Contoh bahan para magnetik adalah: mangan, platina, aluminium, dan timah.

Bahan Diamagnetik

Bahan diamagnetik adalah bahan yang tidak dapat dipengaruhi oleh medan magnet. Contoh bahan diamagnetik adalah: bismuth, timbal, perak, emas, dan tembaga.

3. Medan Magnet dan Arus Listrik

Hans Cristian Oersted (1777 – 1851) seorang fisikawan berasal dari Denmark, melakukan percobaan pada tahun 1819. Dalam percobaan tersebut Oersted meletakkan jarum di dekat kawat yang tidak dialiri arus listrik dan meletakkan jarum kompas di dekat kawat yang dialiri arus listrik. Oersted melihat bahwa jarum kompas tidak menimpang atau berubah posisi ketika diletakkan di dekat kawat yang tidak dialiri arus listrik, tetapi ketika jarum kompas diletakkan di dekat kawat yang dialiri arus listrik maka jarum kompasnya menyimpang dari posisi semula.

Dari percobaan tersebut Oersted membuat kesimpulan sebagai berikut:

Di sekitar kawat (penghantar) yang dialiri arus listrik terdapat atau timbul medan magnet;

Arah gaya magnet yang menyimpangkan jarum kompas bergantung pada arah arus listrik yang mengalir pada kawat;

Besarnya medan magnet disekitar kawat berarus listrik bergantung pada kuat arus listrik dan jaraknya terhadap kawat.

Berdasarkan percobaan Oersted dapat diketahui bahwa arus di dalam sebuah kawatakan menghasilkan efek-efekmagnetik. Efek magnetik ini terlihat saat jarum kompas didekatkan dengan kawat berarus listrik. Jarum kompas akan menyimpang atau dibelokkan dari arah semula. Keadaan tersebut dapat diperlihatkan dari gambar di bawah ini:

Gambar 3. Arah jarum kompas disekitar kawat berarus listrik Sumber: http://www.smartsains.com

4. Hukum Biot - Savart

Pada saat Hans Christian Oersted melakukan percobaan untuk mengamati hubungan kelistrikan dan kemagnetan, Oersted belum sampai pada tahap menghitung besar kuat medan magnet di suatu titik di sekitar kawat berarus. Perhitungan secara matematis baru dikemukakan oleh ilmuwan dari Prancis yaitu Jean Bastiste Biot dan Felix Savart.

Berdasarkan hasil percobaannya mengenai medan magnet disuatu titik P yang dipengaruhi oleh suatu kawat penghantar dl yang dialiri arus listrik I diperoleh kesimpulan bahwa besarnya kuat medan magnet (yang kemudian disebut induksi magnet yang diberi lambang B) dititik P

Gambar 4. Hukum Biot-Savart Sumber: BSE, Siswanto, Sukaryadi. 2009

- 1. Berbanding lurus dengan kuat arus listrik (I)
- 2. Berbanding lurus dengan panjang kawat (dl)
- 3. Berbanding terbalik dengan kuadrat jarak antara titik P ke elemen kawat penghantar (r)
- 4. Sebanding dengan sinus sudut apit θ antara arah arus dengan garis hubung antara titik P ke elemen kawat penghantar.
 - Pernyataan tersebut dikenal dengan hokum Biot-Savart yang secara matematis dapat dinyatakan dalam bentuk persamaan:

$$dB = k \frac{i.dl.sin\theta}{r^2}$$

Atau
$$dB = \frac{\mu_0}{2\pi} \frac{i.dl.sin\theta}{r^2}$$

5. Hukum Ampere

Hukum Biot-Savart merupakan hukum yang umum yang digunakan untuk menghitung kuat medan magnet yang dihasilkan oleh arus listrik. Apapun bentuk konduktor yang dialiri arus, dan berapa pun arus yang mengalir, maka kuat medan magnet di sekitar arus tersebut selalu memenuhi hukum Biot-Savart. Namun, kita tidak selalu mudah menentukan kuat medan magnet di sekitar arus dengan menggunakan hukum Biot-Savart. Untuk bentuk kawat yang rumit, maka integral pada hukum Biot-Savart tidak selalu dapat diselesaikan.

Oleh karena itu, perlu dikaji metode alternatif untuk menentukan kuat medan magnet di sekitar arus listrik. Salah satu metode yang cukup sederhana yang akan dibahas di sini adalah hukum Hukum Biot-Savart merupakan hukum yang umum yang digunakan untuk menghitung kuat medan magnet yang dihasilkan oleh arus listrik. Apapun bentuk konduktor yang dialiri arus, dan berapa pun arus yang mengalir, maka kuat medan magnet di sekitar arus tersebut selalu memenuhi hukum Biot-Savart. Namun, kita tidak selalu mudah menentukan kuat medan magnet di sekitar arus dengan menggunakan hukum Biot-Savart. Untuk bentuk kawat yang rumit, maka integral pada hukum Biot-Savart tidak selalu dapat diselesaikan.

Pada beberapa peralatan listrik, kita sering melihat sebuah kawat yang dililitkan pada sebuah logam yang dikenal sebagai kumparan. Ketika peralatan tersebut dialiri arus listrik maka kumparannya akan menimbulkan magnet disekitarnya. Untuk mencari besar medan magnet di sekitar kumparan kita akan menemukan kesulitan jika menggunakan hukum Biot-Savart. Hal yang mudah untuk menentukannya adalah dengan menggunakan hukum Ampere. Secara matematis dapat dituliskan sebagai berikut:

$$\oint B \ dl \ cos\theta = \ \mu_0$$

Persamaan di atas nantinya akan disederhanakan pada saat diaplikasikan pada bentuk penghantar yang berbeda-beda.

6. Induksi Magnet Pada Kawat Lurus Berarus Listrik

Sebuah kawat lurus yang dialiri arus listrik akan menimbulkan induksi magnet dengan arah sesuai dengan kaidah tangan kanan.

Untuk menunjukkan arah induksi magnet di sekitar kawat lurus berarus listrik, genggamlah kawat dengan tangan kanan dengan ibu jari terbuka. Sesuai dengan kaidah tangan kanan, arah ibu jari menunjukkan arah arus listrik,sedangkan arah keempat jari yang lain menunjukkan arah medan magnet, seperti terlihat pada gambar berikut:

Gambar 5. Kaidah tangan kanan kawat lurus berarus listrik Sumber: idschool.net

Tanda X adalah masuk . adalah keluar

Bagaimana dengan besar induksi magnetnya?

Sebuah kawat yang dialiri arus sebesar i akan menimbulkan induksi magnet sebesar B, lebih jelasnya terlihat pada gambar berikut ini:

Gambar 6. Kawat lurus berarus listrik Sumber: fisikakontektual.com

$$B = \frac{\mu_0 i}{2\pi a}$$

Keterangan:

B = besar induksi magnet (T)

i = besar arus listrik (A)

a = jarak titik ke kawat (m)

 μ_0 = permeabilitas magnet (4 π . 10⁻⁷Wb/Am)

Bagaimana kalau kawatnya lebih dari satu misalnya N buah kawat, maka persamaannya menjadi:

$$B = \frac{\mu_0 i N}{2\pi a}$$

7. Induksi Magnet Pada Kawat Melingkar Berarus Listrik

Sebuah kawat melingkar yang dialiri arus listrik akan menimbulkan induksi magnet dengan arah sesuai dengan kaidah tangan kanan.

Untuk menunjukkan arah induksi magnet di sekitar kawat lurus berarus listrik, genggamlah kawat dengan tangan kanan dengan ibu jari terbuka. Sesui dengan kaidah tangan kanan, arah ibu jari menunjukkan arah induksi magnet, sedangkan arah keempat jari yang lain menunjukkan arah arus listrik, seperti terlihat pada gambar berikut:

Gambar 7. Kaidah tangan kanan kawat melingkar berarus listrik Sumber: blok.ruangguru.com

Besar induksi magnet pada kawat melingkar berarus adalah:

$$B = \frac{\mu_0 i}{2a}$$

Keterangan:

B = besar induksi magnet (T)

i = besar arus listrik (A)

a = jarak titik ke kawat (m)

 μ_0 = permeabilitas magnet (4π . 10^{-7} Wb/Am)

Bagaimana kalau kawatnya lebih dari satu lingkaran misalnya N buah lingkaran, maka persamaannya menjadi:

$$B = \frac{\mu_0 iN}{2a}$$

8. Induksi Magnet Pada Solenoida

Medan magnet yang kuat di sekitar arus listrik, dapat dibuat dengan lilitan kawat membentuk kumparan. Kumparan seperti ini disebut solenoida. Solenoida memiliki sifat yang sama dengan magnet batang,yaitu mempunyai kutub utara dan kutub selatan. Arahnya dapat ditentukan dengan kaidah tangan kanan. Jika kita menggenggam solenoid dengan tangan kanan dengan ibu jari terbuka, arah ibu jari menunjukkan arah induksi magnet (arah utara) dan arah keempat jari lainnya merupakan arah arus listriknya.

Gambar 8. Kaidah tangan kanan pada solenoida Sumber: http://mabelaka.blogspot.com

Besar induksi magnet pada solenoida dapat ditentukan pada pusat dan ujung solenoid. Pada gambar berikut titik o adalah titik pusat solenoid dan titik p adalah titik ujung solenoida

Gambar 9. Solenoida
Sumber: http://mabelaka.blogspot.com

a. Besar Induksi Magnet Pada Pusat Solenoida

Besar induksi magnet pada pusat solenoida dapat dihitung dengan menggunakan persamaan

$$B = \mu_0 in$$
 atau

$$B = \frac{\mu_0 i N}{l}$$

b. Besar Induksi Magnet Pada Ujung Solenoida

Besar induksi magnet pada ujung solenoida dapat dihitung dengan menggunakan persamaan

$$B = \frac{\mu_0 in}{2}$$
 atau

$$B = \frac{\mu_0 i N}{2l}$$

Keterangan:

B = besar induksi magnet (T)

i = besar arus listrik (A)

N = banyak lilitan kawat (lilitan)

l = panjang solenoida (m)

n = banyak lilitan per panjang solenoida (lilitan/m)

 μ_0 = permeabilitas magnet (4 π . 10⁻⁷Wb/Am)

9. Induksi Magnet Pada Toroida

Toroida adalah kumparan yang dilekuk sehingga membentuk lingkaran. Jika toroida dialiri arus listrik, maka akan timbul garis-garis medan magnet berbentuk lingkaran di dalam toroida.

Gambar 10. Toroida
Sumber: http://www.smartsains.com

Besar induksi magnet pada toroida dapat ditentukan dengan persamaan

$$B = \frac{\mu_0 i N}{2\pi a}$$

Keterangan:

B = besar induksi magnet (T)

i = besar arus listrik (A)

N = banyak lilitan kawat (lilitan)

a = jari-jari toroida (m)

 μ_0 = permeabilitas magnet (4π . 10^{-7} Wb/Am)

C. Rangkuman

- 1. Medan magnet adalah ruangan disekitar benda-benda bersifat magnet yang masih dipengaruhi gaya magnet.
- 2. Bahan magnetik dibedakan menjadi tiga jenis, yaitu bahan ferromagnetik, bahan para magnetik, dan bahan diamagnetik.
- 3. Kesimpulan percobaan Oersted adalah:
 - Di sekitar kawat (penghantar) yang dialiri arus listrik terdapat atau timbul medan magnet;
 - Arah gaya magnet yang menyimpangkan jarum kompas bergantung pada arah arus listrik yang mengalir pada kawat;
 - Besarnya medan magnet disekitar kawat berarus listrik bergantung pada kuat arus listrik dan jaraknya terhadap kawat.
- 4. Kesimpulan Hukum Biot Savart, besarnya kuat medan magnet:
 - Berbanding lurus dengan kuat arus listrik (I)
 - Berbanding lurus dengan panjang kawat (dl)
 - Berbanding terbalik dengan kuadrat jarak antara titik P ke elemen kawat penghantar (r)
 - Sebanding dengan sinus sudut apit θ antara arah arus dengan garis hubung antara titik P ke elemen kawat penghantar.
- 5. Induksi Magnet Pada Kawat Lurus Berarus Listrik

$$B = \frac{\mu_0 i N}{2\pi a}$$

6. Induksi Magnet Pada Kawat Melingkar Berarus Listrik

$$B = \frac{\mu_0 i N}{2a}$$

7. Besar Induksi Magnet Pada Pusat Solenoida

$$B = \frac{\mu_0 i N}{l}$$

8. Besar Induksi Magnet Pada Ujung Solenoida

$$B = \frac{\mu_0 i N}{2l}$$

9. Besar induksi magnet pada toroida

$$B = \frac{\mu_0 i N}{2\pi a}$$

D. Latihan Soal

Jawablah pertanyaan berikut ini dengan singkat dan jelas!

- 1. Sebuah kawat lurus panjang yang dialiri arus listrik sebesar 10 A dari arah timur ke barat. Besar dan arah induksi magnetik di titik P yang berada tepat di bawah kawat tersebut pada jarak 10 cm adalah
- 2. Dua buah kawat lurus sejajar berjarak 2 cm dialiri arus sebesar 2 A dan 3 A berlawanan arah, kawat pertama memiliki arah ke atas. Dimanakah letak titik dari kawat pertama yang induksi magnetnya = 0?
- 3. Seutas kawat panjang berarus listrik I mengakibatkan induksi magnetik B ketika berjarak a dari kawat. Besar induksi magnetik disuatu titik berjarak 3a dari kawat tersebut adalah
- 4. Dua buah kawat panjang a dan b diletakkan sejajar pada jarak 8 cm satu sama lain dialiri arus sama arahnya. Tiap kawat dialiri arus listrik sebesar 20 A. Besar dan arah Induksi magnet di titik P yang terletak diantara kawat yang berjarak 2 cm dari kawat a adalah....
- 5. Kawat melingkar berjari-jari 2π cm memiliki 10 lilitan dialiri arus listrik sebesar sebesar 2 A, besar induksi magnet di pusat lingkaran adalah
- 6. Sebuah kawat berarus listrik dilengkungkan tampak seperti pada gambar

Jika jari-jari kelengkungan sebesar 50 cm, maka besarnya induksi magnetik di pusat lengkungan adalah....

7. Kawat lurus hampir bersinggungan dengan kawat melingkar. Kedua kawat terletak pada bidang gambar. Jika kuat arus yang mengalir di kedua kawat tersebut sama besar, induksi magnet di titik pusat lingkaran arahnya

- 8. Sebuah solenoida panjangnya 50 cm terdiri atas 1.500 lilitan. Jika solenoida tersebut dialiri arus sebesar 10 A, induksi magnetik di pusat solenoida tersebut adalah
- 9. Sebuah toroida memiliki 60 lilitan dan berjari-jari 10 cm, dialiri kuat arus listrik sebesar 2 A. Induksi magnetik di dalam toroida tersebut adalah
- 10. Sebuah toroida memiliki lilitan N buah dan jari-jari a cm memiliki Induksi magnetik B ketika dialiri arus listrik sebesar i. Agar induksi magnetnya menjadi 4B dengan jari-jari dijadikan 2a cm dan arus yang dialirkan sama maka lilitannya dibuat menjadi....

Pembahasan Latihan Soal Kegiatan Pembelajaran I

1. Informasi

$$i = 10 \text{ A ke Barat}$$

$$a = 10 \text{ cm} = 10^{-1} \text{ m}$$

Masalah

A. Besar
$$B = ?$$

B. Arah
$$B = ?$$

Solusi

a.
$$B = \frac{\mu_0 i}{2\pi a}$$

 $B = \frac{4\pi \cdot 10^{-7} \cdot 2}{2\pi 10^{-1}}$, coret π dan 2 pembilang dengan 2 π yang penyebut
$$B = \frac{4\pi \cdot 10^{-7} \cdot 2}{2\pi 10^{-1}}$$

$$B=\frac{4.10^{-7}}{10^{-1}}$$
, lihat 10^{-1} di penyebut, bias kita pindah ke atas jadi 10^1 $B=4.10^{-7}$. 10^1 , dan ketika diselesaikan akan menghasilkan $B=4.10^{-6}$ T

b. Informasi

Arah i ke Barat

Masalah

Arah B di bawah kawat

Solusi

Perjanjian arah masuk bidang adalah arah utara

B ke luar bidang (ke Selatan)

Penjelasan Gunakan aturan tangan kanan untuk kawat lurus berarus listrik, jika kita genggam arus listrik ke kiri atau ke Barat dengan ibu jari terbuka maka arah ibu jari adalah arah arus listrik dan arah empat jari yang lain adalah arah induksi magnetnya, karena arah arus listrik dan induksi magnet saling tegak lurus maka arah induksi magnetnya ke Selatan atau keluar bidang.

2. Informasi

 $i_1 = 2 \text{ A (ke atas)}$ $i_1 = 3 \text{ A (ke bawah)}$ $a_{12} = 2 \text{ cm}$

Masalah

Letak titik yang B = 0

Solusi

Agar suatu titik B=0, maka arah B_1 dan B_2 dititik tersebut harus berlawanan arah dan besarnya sama serta tempatnya dekat dengan yang i kecil yaitu dekat dengan i_1 , mari kita analisis

Tempatnya adalah berada di kiri i_1 , karena ditempat tersebut B_1 keluar bidang dan B_2 masuk bidang, sehingga B mungkin 0 ditempat tersebut, kalau tempatnya diantara i_1 dan i_1 maka B nya sama-sama masuk bidang jadi tidak mungkin 0 B nya.

Agar di titik P, B = 0 Maka $B_1 = B_2$, mari kita jabarkan

$$\frac{\mu_{\theta}i_1}{2\pi a_1}=\frac{\mu_{\theta}i_2}{2\pi a_2}$$
 , kita coret μ_0 dan 2π , sehingga menjadi

$$rac{i_1}{a_1} = rac{i_2}{a_2}$$
, kita masukkan nilai yang diketahui, jadi

$$\frac{2}{x} = \frac{3}{x+2}$$
, kalikan silang

2(x + 2) = 3x, kalikan 2 dengan (x + 2), maka

2x + 4 = 3x, jadikan satu yang ada x nya

4 = 3x - 2x

4 = x, jadi

x = 4 cm dikiri i_1 atau 6 cm di kiri i_2 (lihat gambar)

3. Informasi

$$i_1 = I$$

$$B_1 = B$$

$$a_1 = a$$

$$i_2 = I$$

$$a_2 = 3a$$

Masalah

$$B_2 = ?$$

Solusi

Kita tulis perbandingan B_2 dengan B_1 , diperoleh

$$\begin{split} \frac{B_2}{B_1} &= \frac{\frac{\mu_0 i_2}{2\pi a_2}}{\frac{\mu_0 i_1}{2\pi a_1}} \\ \frac{B_2}{B_1} &= \frac{\frac{\mu_0 i_2}{2\pi a_2}}{\frac{2\pi a_2}{2\pi a_2}} \frac{2\pi a_1}{\frac{\mu_0 i_1}{\mu_0 i_1}} \\ \frac{B_2}{B_1} &= \frac{i_2}{a_2} \frac{a_1}{i_1} \\ \frac{B_2}{B} &= \frac{I}{3a} \frac{a}{I} \\ \frac{B_2}{B} &= \frac{a}{3a} \\ \frac{B_2}{B} &= \frac{a}{3a} \\ \text{Jadi} \\ B_2 &= \frac{1}{3} B \end{split}$$

4. Informasi

$$a = 1$$

 $b = 2$
 $i_1 = 20 \text{ A}$
 $i_2 = 20 \text{ A}$
 $a_{12} = 8 \text{ cm} = 0.08 \text{ m}$
 $a_1 = 2 \text{ cm} = 0.02 \text{ m}$
Masalah
 $B_P = ?$
Solusi

Dari gambar dengan menggunakan aturan tangan kanan di titik P, B_1 arahnya masuk bidang sedang B_2 arahnya keluar bidang, jadi secara vektor B_P hasilnya merupakan pengurangan Antara B_1 dengan B_2 , arahnya sesuai dengan yang besar.

$$B_{1} = \frac{\mu_{0}i_{1}}{2\pi a_{1}}$$

$$B_{2} = \frac{\mu_{0}i_{2}}{2\pi a_{2}}$$

$$B_{3} = \frac{4\pi.10^{-7}.20}{2\pi.0,02}$$

$$B_{4} = \frac{2.10^{-7}.20}{0,02}$$

$$B_{5} = \frac{2.10^{-7}.20}{0,06}$$

$$B_{7} = \frac{2.10^{-7}.20}{0,06}$$

$$B_{8} = \frac{2.10^{-7}.20}{0,06}$$

$$B_{9} = \frac{2.10^{-7}.20}{0,06}$$

Jadi

$$B_P=B_1-B_2$$
, karena B_1 lebih besar dari B_2 , arahnya sesuai dengan arah B_1 $B_P=20.10^{-5}-6,67.10^{-5}$

$$B_P = 13,33.10^{-5} \text{ T}$$

5. Informasi

Kawat melingkar berarus listrik

$$a = 2\pi \text{ cm} = 2\pi \cdot 10^{-2} \text{ m}$$

$$N = 10$$
 buah

$$i = 2 A$$

Masalah

$$B = ?$$

Solusi

$$B = \frac{\mu_0 i N}{2a}$$

$$B = \frac{4\pi \cdot 10^{-7} \cdot 2.10}{\frac{2 \cdot 2\pi}{10^{-6}} \cdot 10^{-2}}$$

$$B = \frac{2 \cdot 10^{-6}}{10^{-2}}$$

$$B = 2 \cdot 10^{-4} \text{ T}$$

6. Informasi

Kawat melingkar berarus listrik

$$i = 1,5 A$$

$$\theta = 120^{\circ}$$
, dari gambar N dapat dihitung = $\frac{120^{\circ}}{360^{\circ}} = \frac{1}{3}$

$$a = 50 \text{ cm} = 0.5 \text{ m}$$

Masalah

$$B = ?$$

Solusi

$$B = \frac{\mu_0 i N}{2a}$$

$$B = \frac{4\pi \cdot 10^{-7} \cdot 1,5 \cdot \frac{1}{3}}{2 \cdot 0,5}$$

$$B = \frac{2\pi \cdot 10^{-7}}{1}$$

$$B = 2 \cdot 10^{-7} \text{ T}$$

7. Informasi

Kuat arus keduanya dan jarak kepusat lingkaran titik P sama

Masalah

Arah
$$B_p = ?$$

Solusi

Kawat lurus B di titik P mempunyai arah keluar bidang, untuk kawat melingkar B di titik P arahnya masuk bidang, maka kita harus cek mana yang lebih besar antara B oleh kawat lurus atau B oleh kawat melingkar.

Kawat lurus

$$B_P = rac{\mu_0 i}{2\pi a}$$

Kawat melingkar

$$B_P = \frac{\mu_0 i}{2a}$$

Karena kedua persamaan memiliki pembilang yang besarnya sama tapi penyebut kawat lurus lebih besar dari penyebut kawat melingkar maka hasilnya kawat melingkar memiliki B yang lebih besar dibanding B oleh kawat lurus. Hal ini dapat disimpulkan arah B di titik P searah B kawat melingkar yaitu masuk bidang.

8. Informasi

Solenoida Induksi maknet di pusat

$$l = 50 \text{ cm} = 0.5 \text{ m}$$

$$N = 1500$$
 lilitan

$$i = 10 A$$

Masalah

$$B_P = ?$$

Solusi

$$B_P = \frac{\mu_0 iN}{l}$$

$$B_P = \frac{4\pi \cdot 10^{-7} \cdot 10.1500}{0.5}$$

$$B_P = \frac{60\pi \cdot 10^{-4}}{0.5}$$

$$B_P = 120\pi. \, 10^{-4} \text{T}$$

9. Informasi

Toroida

$$N = 60$$

$$a = 10 \text{ cm} = 0.1 \text{ m}$$

$$i = 2 A$$

Masalah

$$B = ?$$

Solusi

$$B = \frac{\mu_0 i N}{2\pi a}$$

$$B = \frac{4\pi \cdot 10^{-7} \cdot 2.60}{2\pi \cdot 0.1}$$

$$B = \frac{240 \cdot 10^{-7}}{2\pi \cdot 0.1}$$

$$B = 2400 \cdot 10^{-7}$$

$$B = 2.4 \cdot 10^{-4} \text{T}$$

$$\begin{array}{lll} N_1 &= N \\ a_1 &= a \\ i_1 &= i \\ B_1 &= B \\ B_2 &= 4B \\ i_2 &= i \\ a_2 &= 2a \\ \text{Masalah} \\ N_2 &= ? \\ \text{Solusi} \\ & & & & & & \\ \frac{B_2}{B_1} &= & & & & & \\ \frac{\mu_0 i_2 N_2}{2\pi a_2} \\ & & & & & \\ \frac{\mu_0 i_1 N_1}{2\pi a_1} \\ & & & & & \\ \frac{B_2}{B_1} &= & & & & & \\ \frac{\mu_0 i_2 N_2}{2\pi a_2} & & & & \\ \frac{2\pi a_1}{\mu_0 i_1 N_1} \\ & & & & & \\ \frac{B_2}{B_1} &= & & & & \\ \frac{\mu_0 i_2 N_2}{2\pi a_2} & & & & \\ \frac{\mu_0 i_1 N_1}{2\pi a_1} \\ & & & & & \\ \frac{B_2}{B_1} &= & & & & \\ \frac{i_2 N_2}{a_2} & & & & \\ \frac{a_1}{i_1 N_1} \\ & & & & \\ \frac{4B}{B} &= & & & \\ \frac{N_2}{2N} & & & \\ N_2 &= & 8 N \end{array}$$

E. Penilaian Diri

Jawablah pertanyaan-pertanyaan berikut dengan jujur dan bertanggungjawab!

No.	Pertanyaan	Jawaban	
01.	Apakah Anda dapat menjelaskan konsep induksi magnet?	Ya	Tidak
02.	Apakah Anda dapat menyelesaikan permasalahan tentang induksi magnet pada kawat lurus berarus listrik?	Ya	Tidak
03.	Apakah Anda dapat menyelesaikan permasalahan tentang induksi magnet pada kawat melingkar berarus listrik?	Ya	Tidak
04.	Apakah Anda dapat menyelesaikan permasalahan tentang induksi magnet pada solenoid?	Ya	Tidak
05.	Apakah Anda dapat menyelesaikan permasalahan tentang induksi magnet pada toroida?	Ya	Tidak

Bila ada jawaban "Tidak", maka segera lakukan review pembelajaran, terutama pada bagian yang masih "Tidak". Bila semua jawaban "Ya", maka Anda dapat melanjutkan ke pembelajaran berikutnya.

KEGIATAN PEMBELAJARAN 2 GAYA MAGNET

A. Tujuan Pembelajaran

Setelah kegiatan pembelajaran 2 ini diharapkan

- 1. Dapat menganalisis terjadinya gaya magnet akibat kawat berarus listrik yang memotong medan magnet
- 2. Dapat menganalisis terjadinya gaya magnet pada kawat lurus sejajar yang dialiri arus listrik
- 3. Dapat menganalisis terjadinya gaya magnet akibat muatan listrik yang bergerak memotong medan magnet
- 4. Dapat menganalisis fluks magnet
- Dapat menganalisis berbagai manfaat medan magnet dalam kehidupan seharihari

B. Uraian Materi

1. Gaya Magnetik (Gaya Lorentz)

Bagaimana konsep gaya magnet pada partikel bermuatan? Hari ini, magnet banyak sekali digunakan dalam kehidupan manusia. Magnet dapat kita temui salah satu contohnya dalam motor, loudspeaker, memori komputer, dan lain-lain. Pada bagian ini tentunya kita akan memfokuskan diri pada gaya yang diakibatkan oleh medan magnet, baik terhadap kawat berarus maupun terhadap partikel yang bergerak dalam medan magnet.

Salah satu alat yang memanfaatkan prinsip gaya magnetik adalah alat listrik. Alat listrik mengubah energi listrik menjadi energi mekanik adalah motor listrik. Motor listrik jika kita hubungkan dengan sumber tegangan akan berputar. Bagaimana prinsip motor listrik tersebut bekerja, dapatkah kalian menjelaskannya? Apabila kita perhatikan di dalam motor listrik terdapat sebuah kumparan kawat dan magnet tetap. Motor listrik tersebut dapat berputar karena timbulnya gaya Lorentz atau gaya magnetik yang terjadi pada kumparan kawat penghantar beraliran arus listrik yang berada dalam medan magnet.

Marilah sekarang kita mempelajari timbulnya gaya magnet yang dialami oleh sebuah kawat penghantar berarus listrik yang berada di dalam medan magnet.

2. Gaya Magnetik pada Kawat Berarus dalam Medan Magnetik

Pada kegiatan pembelajaran I,Anda telah mempelajari bahwa jika sebuah kawat penghantar dialiri arus listrik, akan timbul medan magnet disekitar kawat tersebut. bagaimana jika kawat berarus listrik listrik ditempatkan dalam medan magnet. Untuk memahami hal tersebut, perhatikan uraian materi berikut ini!

Gambar 1: Gaya Lorentz Pada Kawat Sumber :BSE.Siswanto, Sukaryadi. 2009

Perhatikan Gambar di atas, sebuah kawat penghantar AB yang dibentangkan melalui medan magnet yang ditimbulkan oleh magnet tetap. Apabila pada ujung kawat A kita hubungkan dengan kutub positif baterai dan ujung B kita hubungkan dengan kutub negatif baterai, maka pada kawat AB mengalir arus dari A ke B. Pada saat itu kawat AB akan bergerak ke atas. Sebaliknya jika arus listrik diputus (dihentikan), kawat kembali ke posisi semula. Sebaliknya jika ujung A dihubungkan dengan kutub negatif dan ujung B dihubungkan dengan kutub positif baterai, kembali kawat bergerak ke bawah (berlawanan dengan gerak semula). Gerakan kawat ini menunjukkan adanya suatu gaya yang bekerja pada kawat tersebut saat kawat tersebut dialiri arus listrik. Gaya yang bekerja pada tersebut disebut gaya magnetik atau gaya Lorentz.

Berdasarkan hasil percobaan yang lebih teliti menunjukkan bahwa besarnya gaya magnetik gaya Lorentz yang dialami oleh kawat yang beraliran arus lisrik :

- a. Berbanding lurus dengan kuat medan magnet atau induksi magnet (**B**).
- b. Berbanding lurus dengan kuat arus listrik yang mengalir dalam kawat (i).
- c. Berbanding lurus dengan panjang kawat penghantar (l).
- d. Berbanding lurus dengan sudut (θ) yang dibentuk arah arus (i) dengan arah induksi magnet (B).

Bagaimana Anda dapat menentukan arah Gaya Lorentz yang terjadi ketika kawat berarus listrik memotong medan magnet?

Arah gaya Lorentz dapat dijelaskan dengan gambar berikut:

Gambar 2. Aturan tangan kanan Gaya Lorentz pada kawat Sumber: id.wikipedia.org

Gambar di atas menjelaskan bahwa ketika kita buka telapak tangan kita dengan empat jari rapat dan ibu jari terbuka, maka arah ibu jari merupakan arah arus listrik, arah empat jari merupakan arah induksi magnet dan arah telapak tangan adalah arah Gaya Lorentz. Mudah bukan? Silahkan Anda melakukan simulasi sendiri dengan menentukan arah kedua variabel untuk menentukan arah variabel satunya.

Besarnya gaya magnetik atau Gaya Lorentz dapat dinyatakan dalam persamaan:

$F_L = B. i. l. sin\theta$

Keterangan:

= gaya Lorentz (N) = induksi magnet (T) i = kuat arus listrik (A) l = panjang kawat (m)

θ = sudut antara arah arus listrik dengan kuat medan magnet (0)

3. Gaya Magnetik di Antara Dua Kawat Sejajar Berarus

Gaya magnet juga dialami oleh dua buah kawat sejajar yang saling berdekatan yang beraliran arus listrik. Timbulnya gaya pada masing-masing kawat dapat dianggap bahwa kawat pertama berada dalam medan magnetik yang ditimbulkan oleh kawat kedua dan sebaliknya kawat kedua berada dalam medan magnetik yang ditimbulkan oleh kawat pertama

Gambar 2: Gava Magnetik dua Kawat Sejajar Sumber: myrightspot.com

Berdasarkan gambar, dapat disimpulkan bahwa pada dua penghantar lurus sejajar yang dialiri arus listrik akan terjadi gaya Tarik menarik jika arusnya memiliki arah yang sama dan gaya tolak menolak jika kedua arus yang mengalir berlawanan arah.

Bagaimana menjelaskan kesimpulan di atas?

Penjelasan untuk kawat sejajar yang dialiri arus searah adalah sebagai berikut: Ketika kawat pertama dialiri arus ke atas maka akan menimbulkan induksi magnet di kawat kedua yang arahnya masuk bidang, sehingga dikawat kedua ada variabel kuat arus ke atas dan induksi magnet masuk bidang, dengan menggunakan aturan tangan kanan Gaya Lorentz pada kawat, Gaya Lorentz pada kawat kedua akan berarah ke kiri. Ketika kawat kedua dialiri arus ke atas maka akan menimbulkan induksi magnet di kawat pertama yang arahnya keluar bidang, sehingga dikawat kedua ada variabel kuat arus ke atas dan induksi magnet masuk bidang, dengan menggunakan aturan tangan kanan Gaya Lorentz pada kawat, Gaya Lorentz pada kawat kedua akan berarah ke kanan. Silahkan Anda coba untuk menentukan arah Gaya Lorentz pada kawat sejajar yang dialiri arus yang berlawanan arah.

Besarnya gaya yang terjadi adalah:

Di kawat dua berdasarkan analisis di atas maka dapat ditulis

$$F_L=~B_1i_2l,~~B_1$$
 dapat ditulis sebagai $B_1=rac{\mu_0i_1}{2\pi a}$, sehingga persamaannya dapat ditulis

$$F_L = rac{\mu_0 i_1}{2\pi a} i_2 l$$
, sehingga dapat ditulis $F_L = rac{\mu_0 i_1 i_2 l}{2\pi a}$

$$F_L = \frac{\mu_0 i_1 i_2 l}{2\pi a}$$

Ketika di kawat pertama maka Gaya Lorentznya dapat ditulis

 $F_L=B_2i_1l$, B_1 dapat ditulis sebagai $B_2=\frac{\mu_0i_2}{2\pi a}$, sehingga persamaannya dapat ditulis

 $F_L=rac{\mu_0 i_2}{2\pi a}i_1 l$, sehingga dapat ditulis $F_L=rac{\mu_0 i_1 i_2 l}{2\pi a}$, terlihat persamaannya sama

Pada keadaan tertentu biasanya yang dibicarakan tidak hanya Gaya Lorentz F_L tetapi gaya persatuan panjang kawat $\frac{F_L}{I}$, maka persamaannya dapat diturunkan sebagai berikut:

 $F_L = \frac{\mu_0 i_1 i_2 l}{2\pi a}$, dengan memindahkan , diruas kanan ke kiri maka dihasilkan $\frac{F_L}{l}$,

$$\frac{F_L}{l} = \frac{\mu_0 i_1 i_2}{2\pi a}$$
Keterangan:

= gaya magnet (N) F_I

= besar arus listrik di kawat pertama (A) i_1 = besar arus listrik di kawat kedua (A)

= panjang kawat (m)

= jarak antara kedua kawat (m) а

= permeabilitas magnet = $4\pi \times 10^{-7}$ Wb/Am μ_0

Gaya Magnetik pada Muatan Listrik

Sebuah benda bermuatan listrik yang bergerak dalam medan magnetik juga akan mengalami gaya magnetik. Gaya magnetik disebut juga Gaya Lorentz, perhatikan gambar berikut:

Gambar 3. Gaya Lorent pada muatan Sumber: BSE. Siswanto, Sukaryadi. 2009

Berdasarkan gambar 3, dapat dituliskan persamaan gaya magnetik atau Gaya Lorentz sebagai berikut:

 $F_L = q.v.B.sin\alpha$

Keterangan:

= gaya magnetik atau Gaya Lorentz (N)

= muatan (C)

= kecepatan muatan (m/s) υ

= Induksi magnet (T) В

= Sudut Antara induksi magnet dengan arah muatan (0)

Gambar 4. Arah Gaya Lorentz pada muatan positif Sumber: jtpedia.com

Gambar di atas menjelaskan bahwa ketika kita buka telapak tangan kita dengan empat jari rapat dan ibu jari terbuka, maka arah ibu jari merupakan arah muatan positif, arah empat jari merupakan arah induksi magnet dan arah telapak tangan adalah arah Gaya Lorentz. Bagaimana jika yang bergerak adalah muatan negatif? Penjelasannya adalah sebagai berikut: ketika kita buka telapak tangan kita dengan empat jari rapat dan ibu jari terbuka, maka arah ibu jari merupakan arah muatan negatif, arah empat jari merupakan arah induksi magnet dan arah punggung tangan adalah arah Gaya Lorentz.

Mudah bukan? Silahkan Anda melakukan simulasi sendiri dengan menentukan arah kedua variabel untuk menentukan arah variabel satunya.

5. Fluks Magnet

Dalam medan listrik atau medan magnet kita telah mengenal yang dinamakan magnetik. Sekarang kita akan mulai belajar fluks magnetik.

Secara sederhana fluks magnetik merupakan perubahan medan magnet di suatu posisi tertentu.

Fluks magnetik dapat didefinisikan sebagai ukuran total atau jumlah total medan magnet yang melewati suatu penampang tertentu. Fluks magnetik juga sering diartikan sebagai kerapatan medan magnet.

Fluks magnetik yang melewati suatu bidang tertentu nilainya sebanding dengan nilai jumlah medan magnet yang melewati bidang tersebut dan jumlah tersebut sudah masuk pada pengurangan atas medan yang memiliki arah yang berlawanan.

Fluks magnetik memiliki satuan yang disebut weber (Wb) yaitu satuan turunan dari volt detik. Sebuah bidang yang memiliki luas A ditembus oleh medan magnetik B yang membentuk sudut θ terhadap garis normal, terlihat pada gambar berikut:

Gambar 5. Fluks magnet Sumber: myrightspot.com

Besarnya fluks magnetik dapat ditentukan dengan persamaan: $\emptyset = B.A.\cos\theta$

Keterangan

Ø = Fluks magnet (Wb)
 B = induksi magnet (T)
 A = luas bidang (m²)

 θ = sudut antara induksi magnet dan garis normal (0)

6. Penerapan Konsep Gaya Magnet dalam Kehidupan Sehari-Hari

Beberapa penerapan konsep gaya magnet dalam kehidupan sehari-hari dapat kita temui pada bel listrik, saklar listrik, telepon kabel, motor listrik, galvanometer, relai, speaker, kereta Maglev, generator, dan transformator.

Bel Listrik a.

Gambar 5. Bel listrik Sumber: bukalapak.com

Bel listrik merupakan alat yang digunakan sebagai pertanda mulai atau berakhirnya suatu kegiatan. Prinsip kerjanya yaitu, ketika aliran arus listrik mengalir pada kumparan maka besi di dalamnya menjadi elektromagnet yang mampu mengggerakkan lengan pemukul untuk memukul bel sehingga berbunyi.

Kereta Maglev b.

Gambar 10. Kereta Maglev Sumber: https://materikimia.com

Prinsip kerja Kereta Maglev yaitu mengubah energi listrik menjadi energi gerak menggunakan induksi magnet. Kereta ini dipasangi magnet listrik di bawahnya yang bergerak pada jalur bermagnet listrik. Magnet tolak-menolak sehingga kereta api melayang tepat di atas jalur lintasan. Gesekan kereta api dengan jalur lintasan berkurang sehingga kereta api bergerak lebih cepat.

C. Rangkuman

- Gaya Magnetik pada Kawat Berarus dalam Medan Magnetik $F_L = B. i. l. sin\theta$
- Gaya Magnetik di Antara Dua Kawat Sejajar Berarus

$$F_L = \frac{\mu_0 i_1 i_2 l}{2\pi a}$$

 $F_L = \frac{\mu_0 i_1 i_2 l}{2\pi a}$ 3. Gaya magnetik persatuan panjang kawat $\frac{F_L}{l} = \frac{\mu_0 i_1 i_2}{2\pi a}$

$$\frac{F_L}{l} = \frac{\mu_0 i_1 i_2}{2\pi a}$$

4. Gaya Magnetik yang Dialami oleh Muatan Listrik yang Bergerak dalam Medan Magnetik

$$F_L = q.v.B.sin\alpha$$

5. Penerapan Konsep Gaya Magnet dalam Kehidupan Sehari-hari misalnya pada bel listrik dan kereta maglev

D. Latihan Soal

- Jawablah pertanyaan berikut ini dengan singkat dan jelas!
- 1. Sebuah kawat lurus dialiri arus listrik dari barat ke timur memotong medan magnetik yang berarah ke selatan. Arah gaya Lorentznya adalah
- 2. Sebuah kawat lurus panjangnya 20 cm dialiri arus listrik 4 A, memotong medan magnet yang besarnya 100 T secara tegak lurus. Gaya magnetik yang dihasilkan adalah....
- 3. Sebuah kawat lurus panjangnya 20 cm dialiri arus listrik 2 A, memotong medan magnet yang besarnya 200 T dan membentuk sudut sudut 30^o terhadap garis medan magnet. Gaya magnetik yang dihasilkan adalah....
- 4. Dua buah kawat sejajar berjarak 4 cm dialiri arus listrik berlawanan arah masing-masing 2 A dan 4 A. Gaya magnetik persatuan panjang kawat yang terjadi adalah....
- 5. Sebuah partikel bermuatan listrik positip, bergerak dengan kecepatan tertentu kearah Selatan, didalam medan magnet homogen ke arah Timur. Arah gaya magnet pada muatan adalah
- 6. Sebuah muatan listrik negatip, bergerak dengan kecepatan tertentu kearah Barat, di dalam medan magnet homogen ke arah Selatan. Arah gaya magnet pada muatan tersebut adalah
- 7. Sebuah partikel bermuatan 2 C bergerak dengan kecepatan 2. 10⁴ m/s memotong medan magnetik yang besarnya 10⁵ T secara tegak lurus. Besar gaya maknetik yang dialami muatan tersebut adalah....
- 8. Sebuah bidang berbentuk lingkaran dengan luas penampang 20 cm² ditembus oleh medan magnetik yang besarnya 400 T secara tegak lurus. Fluks magnetik yang ditimbulkannya adalah
- 9. Sebuah bidang berbentuk persegi dengan luas 40 cm² ditembus oleh medan magnetik 200 T yang membentuk sudut 30° terhadap bidang. Besar fluks magnetik yang dihasilkan adalah
- 10. Sebutkan paling sedikit 5 penerapan gaya magnet dalam kehidupan sehari-

Pembahasan Latihan Soal Kegiatan Pembelajaran II

1. Informasi

Arah arus listrik ke Timur

Arah medan magnetik ke Selatan

Masalah

Arah gaya Lorentz =?

Solusi

Sesuai dengan aturan tangan kanan ketika kuat arus listrik keTimur dan arah medan magnetik ke Selatan maka arah gaya Lorentz ke bawah

2. Informasi

$$l = 20 \text{ cm} = 20.10^{-2} \text{ m}$$

$$i = 4 A$$

$$B = 100 \text{ T}$$

Masalah

$$F_L = ?$$

Solusi

$$F_L = B.i.l$$

$$F_L = 100.4.20.10^{-2}$$

$$F_L = 80 \text{ N}$$

3. Informasi

$$l = 20 \text{ cm} = 2.10^{-1} \text{ m}$$

$$i = 2 A$$

$$\theta = 30^{\circ}$$

$$B = 200 \text{ T}$$

Masalah

$$F_L = ?$$

Solusi

$$F_L = B. i. l. \sin \theta$$

$$F_L = 200.2.2.10^{-1}.\sin 30^0$$

$$F_L = 200.2.2.10^{-1}.\sin 30^0$$

$$F_L = 80.0,5$$

$$F_L = 40 \text{ N}$$

4. Informasi

$$a_{12}$$
= 4 cm = 4.10⁻² m

$$i_1 = 2 A$$

$$i_2 = 4 \text{ A}$$

Masalah

$$\frac{F_L}{l} = ?$$

Solusi

$$F_{L} = B_{1}i_{2}l$$

$$F_{L} = \frac{\mu_{0}i_{1}}{2\pi a_{12}}i_{2}l$$

$$F_L = \frac{4\pi \cdot 10^{-7} \cdot 2.4 \cdot 6}{2\pi \cdot 4 \cdot 10^{-2}}$$

$$\frac{F_L}{l} = \frac{4.10^{-7}}{10^{-2}}$$

$$\frac{F_L}{l} = 4.10^{-5} \frac{N}{m}$$

5. Informasi

Muatan positip

Arah muatan ke selatan

Arah medan magnet ke timur

Masalah

Arah gaya Lorentz =?

Solusi

Menurut aturan tangan kanan jika muatan + ke selatan, medan magnet ke timur, maka arah gaya Lorentz ke atas

6. Informasi

Muatan negatip

Arah muatan negatip ke barat

Arah medan magnet ke selatan

Masalah

Arah gava Lorentz =?

Solusi

Menurut aturan tangan kanan jika muatan - ke barat, medan magnet ke selatan, maka arah gaya Lorentz ke bawah

7. Informasi

$$q = 2 C$$

$$v = 2.10^4 \,\text{m/s}$$

$$B = 10^5 \, \text{T}$$

Masalah

$$F_L = ?$$

Solusi

$$F_L = q. v. B$$

$$F_L = 2.2.10^4.10^5$$

 $F_L = 4.10^9 \text{ N}$

$$F_L = 4.10^9 \text{ N}$$

8. Informasi

$$A = 20 \text{ cm}^2 = 20.10^{-4} \text{ m}^2$$

$$B = 400 \text{ T}$$

Masalah

$$\emptyset = ?$$

Solusi

$$\emptyset = B.A$$

$$\emptyset = 400.20.10^{-4}$$

$$\emptyset = 8000 \cdot 10^{-4}$$

$$\emptyset = 0.8 \text{ Wb}$$

9. Informasi

$$A = 40 \text{ cm}^2 = 40.10^{-4} \text{ m}^2$$

$$B = 200 \text{ T}$$

 $\theta = 60^{\circ}$ di soal diberitahu B membentuk 30° terhadap bidang, θ adalah B terhadap normal, jadi $\theta = 60^{\circ}$

Masalah

 $\emptyset = ?$

Solusi

 $\emptyset = B.A.\cos\theta$

 $\emptyset = 200.40.10^{-4}.\cos 60^{0}$

 $\emptyset = 8000.10^{-4}.0,5$

 $\emptyset = 4000.10^{-4}$

 $\emptyset = 0.4 \text{ Wb}$

10. Penerapan Konsep Gaya Magnet dalam Kehidupan Sehari-hari misalnya pada Bel Listrik, Saklar Listrik, Telepon Kabel, Motor Listrik, Galvanometer, Relay, Speaker, kereta maglev, Generator, dan Transformator.

E. Penilaian Diri

Jawablah pertanyaan-pertanyaan berikut dengan jujur dan bertanggungjawab!

No.	Pertanyaan	Jawaban	
01.	Apakah Anda dapat menjelaskan konsep gaya magnet?	Ya	Tidak
02.	Apakah Anda dapat menganalisis gaya magnet pada kawat lurus?	Ya	Tidak
03.	Apakah Anda dapat menganalisis gaya magnet pada dua kawat lurus sejajar?	Ya	Tidak
04.	Apakah Anda dapat menganalisis gaya magnet pada muatan listrik dalam medan magnetik?	Ya	Tidak
05.	Apakah Anda dapat menentukan manfaat gaya magnet dalam kehidupan sehari-hari?	Ya	Tidak

Bila ada jawaban "Tidak", maka segera lakukan review pembelajaran, terutama pada bagian yang masih "Tidak".

Bila semua jawaban "Ya", maka Anda dapat melanjutkan ke pembelajaran berikutnya.

EVALUASI

- 1. Sebuah kawat lurus panjang yang dialiri arus listrik sebesar 20 A dari arah barat ke timur. Besar dan arah induksi magnetik di titik P yang berada tepat di bawah kawat tersebut pada jarak 10 cm adalah
 - A. 2×10^{-5} T ke utara
 - B. 2×10^{-5} T ke selatan
 - C. 4×10^{-5} T ke utara
 - D. 4×10^{-5} T ke selatan
 - E. 6×10^{-5} T ke utara
- 2. Dua buah kawat panjang a dan b diletakkan sejajar pada jarak 4 cm satu sama lain dialiri arus sama arahnya. Tiap kawat dialiri arus listrik sebesar 2 A. Besar dan arah Induksi magnet di titik P yang berjarak 2 cm di sebelah kiri kawat a adalah....
 - A. $1,33 \times 10^{-5}$ T masuk bidang
 - B. $1,33 \times 10^{-5}$ T keluar bidang
 - C. 2,67 x 10⁻⁵ T masuk bidang
 - D. $2,67 \times 10^{-5}$ T keluar bidang
 - E. $1,33 \times 10^{-5}$ T masuk bidang
- 3. Kawat melingkar berjari-jari 4π cm memiliki 30 lilitan dialiri arus listrik sebesar sebesar 2 A, besar induksi magnet di pusat lingkaran adalah
 - A. $0.3 \times 10^{-3} \text{ T}$
 - B. $0.4 \times 10^{-3} \text{ T}$
 - C. 0,3 x 10⁻² T
 - D. $0.4 \times 10^{-2} \text{ T}$
 - E. $0.3 \times 10^{-1} \text{ T}$
- 4. Sebuah solenoida panjangnya 20 cm terdiri atas 1.000 lilitan. Jika solenoida tersebut dialiri arus sebesar 4 A, induksi magnetik di pusat solenoida tersebut adalah
 - A. $0.4 \pi \times 10^{-2} \text{ T}$
 - B. $0.8 \pi \times 10^{-2} \text{ T}$
 - C. $0.4 \pi \times 10^{-1} \text{ T}$
 - D. $0.8 \pi \times 10^{-1} \text{ T}$
 - E. $0.9 \pi \times 10^{-1} \text{ T}$
- 5. Sebuah toroida memiliki 100 lilitan dan berjari-jari 10 cm, dialiri kuat arus listrik sebesar 3 A. Induksi magnetik di dalam toroida tersebut adalah
 - A. 2 x 10-4 T
 - B. 3 x 10-4 T
 - C. 4 x 10-4 T
 - D. 5 x 10-4 T
 - E. 6 x 10⁻⁴ T
- 7. Sebuah kawat lurus panjangnya 20 cm dialiri arus listrik 4 A ke Barat, memotong medan magnet yang besarnya 100 T yang menuju ke selatan. Besar dan arah gaya magnetik yang dihasilkan adalah....
 - A. 80 N ke atas
 - B. 60 N ke atas
 - C. 50 N ke atas
 - D. 40 N ke bawah
 - E. 30 N ke bawah

- 8. Dua buah kawat sejajar berjarak 2 cm dialiri arus listrik berlawanan arah masingmasing 3 A dan 4 A. Gaya magnetik persatuan panjang kawat yang terjadi adalah....
 - A. $1,2 \times 10^{-5} \text{ N/m}$
 - B. $1.8 \times 10^{-5} \text{ N/m}$
 - C. 1,2 x 10⁻⁴ N/m
 - D. $1,4 \times 10^{-4} \text{ N/m}$
 - E. $1,6 \times 10^{-3} \text{ N/m}$
- 9. Sebuah partikel bermuatan 2 C bergerak dengan kecepatan 200 m/s ke utara memotong medan magnetik yang besarnya 10⁵ T yang menuju ke barat. Besar dan arah gaya maknetik yang dialami muatan tersebut adalah....
 - A. 2×10^7 N ke atas
 - B. 2×10^7 N ke bawah
 - C. 4×10^7 N ke atas
 - D. 4×10^7 N ke bawah
 - E. 6×10^7 N ke atas
- 10. Sebuah bidang berbentuk lingkaran dengan luas penampang 40 cm² ditembus oleh medan magnetik yang besarnya 200 T secara tegak lurus. Fluks magnetik yang ditimbulkannya adalah
 - A. 2 x 10⁻³ Wb
 - B. 4 x 10⁻³ Wb
 - C. 4 x 10-2 Wb
 - D. 6 x 10⁻² Wb
 - E. 8 x 10-1 Wb
- 11. Sebuah bidang berbentuk persegi dengan luas 20 cm² ditembus oleh medan magnetik $40\sqrt{3}$ T yang membentuk sudut 60° terhadap bidang. Besar fluks magnetik yang dihasilkan adalah
 - A. 1,2 x 10⁻² Wb
 - B. 1,4 x 10⁻² Wb
 - C. 1,6 x 10⁻² Wb
 - D. 1,2 x 10⁻¹ Wb
 - E. 1,4 x 10⁻¹ Wb

Kunci Soal Evaluasi

- 1. C
- 2. D
- 3. A
- 4. B
- 5. E
- 6. A 7. C
- 8. C
- 9. E
- 10. D

DAFTAR PUSTAKA

Foster, Bob. 2004. Terpadu Fisika SMA Kelas XII Jilid 3A, Jakarta: Erlangga

Handayani, Sri dan Ari Damari. 2009. Fisika untuk SMA/MA Kelas XII (BSE). Jakarta: PusatPerbukuan, Departemen Pendidikan Nasional.

Kanginaan, Marten. 2006. Fisika untuk SMA Kelas XII. Jakarta: Erlangga.

Nurachmandani, Setya. 2009. Fisika 2 untuk SMA/MA Kelas XI (BSE). Jakarta: Pusat Perbukuan, Departemen Pendidikan Nasional.

Pujianto, dkk. 2016. Fisika untuk SMA/MA kelas XII. Pt. Intan Pariwara. Klaten

Saripudin Aip. 2009. Praktis Belajar Fisika 3. Fisika untuk Kelas XII Sekolah Menengah Atas / Madrasah Aliyah Program Ilmu Pengetahuan Alam. Departemen Pendidikan Nasional, Jakarta.

Siswanto, Sukaryadi. 2009. Fisika Untuk SMA/MA Kelas X. Departemen Pendidikan Nasional, Jakarta.

http://encarta.2005

http://mabelaka.blogspot.com

https://materikimia.com

http://www.smartsains.com