GS543 Tutorial-3

Forward Modeling of 2D Inclined Sheet Type Body

An inclined sheet-type structure (Figure 2.1c) in two dimensions can be described by a set of five model parameters, namely, electric dipole density $k = I\rho/2\pi$ (I is the current density of the medium and ρ is the resistivity of the sheet), x coordinate of the center of the sheet x_0 , depth of the center of the sheet h, half-width of the sheet a and inclination angle a.

The general equation of SP anomaly V(x) at any point P on a profile perpendicular to the strike of a 2-D inclined sheet (Murthy and Haricharan, 1985; Sundararajan et al., 1998) is written as:

$$V(x) = k \ln \left[\frac{\{(x - x_0) - a\cos\alpha\}^2 + (h - a\sin\alpha)^2\}}{\{(x - x_0) + a\cos\alpha\}^2 + (h + a\sin\alpha)^2\}} \right].$$
(2.1.2)

The SP anomaly V(x) along a profile above a sheet-like body (Figure 2.1d) can also be given by the equation (Edge and Laby, 1931).

$$V(x) = k \ln \left[\frac{(x - x_b)^2 + z^2}{\{x - (x_b + L\cos\theta)\}^2 + (z + L\sin\theta)^2\}} \right]$$
 (2.1.3)

In the above equation k is the same as in equation (2.1.2), x_b and z define the location of the upper edge of the sheet. L is the extent of the sheet; θ is the angle of the sheet in clockwise direction from positive x-axis. $\rightarrow \theta = \frac{225^{\circ}}{135^{\circ}} = 29$

The SP anomaly V(x) of a sheet-like body (Figure 2.1e) can also be given by the equation.

$$V(x) = k \ln \left[\frac{(x - x_1)^2 + z_1^2}{(x - x_2)^2 + z_2^2} \right]$$

$$X = -5\%; \quad |0:5\%|$$

$$X = -5$$

Write down a Fortran program to compute the SP response using the equations. Create a new file "Yourname.txt" and save all the data in four columns.

Choose the input value according to your choice similar like tutorial-1

Example: anand.txt

X	v(2.1.2)	v(2.1.3)	v(2.1.4)
10	-2	-1.8	-2
20	-5.8	-2.7	-5.8
30	-10.3	-1.5	-10.3
40	-6.5	-1.8	-6.5
50	-9.1	-2.6	-9.1
60	-16.5	-2.8	-16.5
70	-14.1	-1.8	-14.1
80	-8.3	-2.4	-8.3
90	-8.1	-1.8	-8.1
100	-9.8	-1.9	-9.8
110	-7.9	-2.3	-7.9
120	-1.7	-1.7	-1.7
130	-12.4	-2.6	-12.4
140	-7.7	-2.3	-7.7