

Our Ref.: 620-148
AHB/CP5940192

U.S. PATENT APPLICATION

Inventor(s): Richard J. DAVIS
 Keith J. PAGE

Invention: USE OF SECRETIN-RECEPTOR LIGANDS IN TREATMENT OF CYSTIC FIBROSIS (CF) AND CHRONIC OBSTRUCTIVE PULMONARY DISEASE (COPD)

*NIXON & VANDERHYE P.C.
ATTORNEYS AT LAW
1100 NORTH GLEBE ROAD
8TH FLOOR
ARLINGTON, VIRGINIA 22201-4714
(703) 816-4000
Facsimile (703) 816-4100*

SPECIFICATION

USE OF SECRETIN-RECEPTOR LIGANDS IN TREATMENT OF CYSTIC FIBROSIS (CF) AND CHRONIC OBSTRUCTIVE PULMONARY DISEASE (COPD)

Field of the Invention.

5

The present invention relates to the treatment of cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD) with or by activation of the hormone secretin or other secretin receptor ligands.

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100

Background to the Invention.

Cystic Fibrosis.

Cystic fibrosis (CF) is the most common, fatal, autosomal recessive inherited disease, with over 7000 people currently diagnosed in the UK alone and approximately 30,000 in the United States. The incidence of CF is strongly dependent on ethnic background. Caucasian individuals with Northern European ancestry are most at risk exhibiting a probability of approximately 1 in 2500, based on a heterozygous carrier rate of about 1 in 25.

CF arises as a result of genetic mutation(s) in the gene of the cystic fibrosis transmembrane regulator (CFTR) chloride channel throughout the body. Such mutations in the CFTR lead either to incorrect folding of the protein and/or the lack of migration of the transcribed protein from the Endoplasmic Reticulum to the epithelial plasma membrane and subsequent loss of chloride (Cl-) channel function. This causes a cellular and luminal imbalance in fluid and electrolyte transport and volume within the lower respiratory tract of the CF lung, which reduces the constitution of the mucus which in turn impairs mucociliary clearance and initiates the inevitable and persistent bacterial infections within the lung.

of CF patients. Different mutations give rise to CF symptoms of varying severity and correspondingly lead to variations in patient survival rates.

- 5 Over the last few decades, improved drug and physiotherapy treatments have improved patient survival time significantly, though average life expectancy is still short, currently around 30 years. There is therefore a continuing need to develop better treatment for this condition.

10 COPD.

Clinical features of COPD include breathlessness, cough and sputum, with chronic airway obstruction and lung hyperinflation as a result of chronic bronchitis and emphysema (dilation of the distal lung airspaces). Chronic bronchial hypereactivity which is prominent in bronchial asthma is also found in COPD. Airway remodelling in COPD leads to persistent and irreversible airway narrowing and mucus hypersecretion. The direct cause of airway narrowing and hyperresponsiveness is unknown although it is generally proposed that abnormalities in the airway smooth muscle function results in decreased or impaired relaxation or increased contractility.

A bronchodilator regimen combining a slow release oral theophylline with an inhaled beta 2 agonist (e.g. ipratropium, salbutamol, salmeterol), and high dose inhaled steroids represent current therapies utilised in the treatment of COPD, because even modest improvement in obstruction is beneficial in COPD patients. Beta 2 agonist mediate bronchodilation of the airways via the stimulation of specific receptors which are coupled to the specific G-protein G_s, which in turn leads to an increase in the intracellular levels of the second messenger cAMP.

Recently Cl^- ion movement has been demonstrated to be linked to epithelium-dependent airway relaxation (Fortner et al, 2001), such that blockade of Cl^- ion secretion results in a significant reduction in agonist-induced relaxation.

5 Additionally, compounds such as furosemide, a Cl^- dependent $\text{Na}^+/\text{K}^+/2\text{Cl}^-$ co-transport inhibitor has been demonstrated, in some studies to decrease bronchial hyper-responsiveness in asthmatics (Pendino et al, 1998)). In addition, mucus hypersecretion and non-continuous clearance of tracheobronchial mucus also contribute to persistent airflow obstruction plugs, which can be present simultaneously with airway responsiveness. Mucus plugging can result in small airway (e.g. tertiary bronchus) obstruction producing reduced maximal respiratory flow and slow forced lung emptying.

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105
110
115
120
125
130
135
140
145
150
155
160
165
170
175
180
185
190
195
200
205
210
215
220
225
230
235
240
245
250
255
260
265
270
275
280
285
290
295
300
305
310
315
320
325
330
335
340
345
350
355
360
365
370
375
380
385
390
395
400
405
410
415
420
425
430
435
440
445
450
455
460
465
470
475
480
485
490
495
500
505
510
515
520
525
530
535
540
545
550
555
560
565
570
575
580
585
590
595
600
605
610
615
620
625
630
635
640
645
650
655
660
665
670
675
680
685
690
695
700
705
710
715
720
725
730
735
740
745
750
755
760
765
770
775
780
785
790
795
800
805
810
815
820
825
830
835
840
845
850
855
860
865
870
875
880
885
890
895
900
905
910
915
920
925
930
935
940
945
950
955
960
965
970
975
980
985
990
995
1000
1005
1010
1015
1020
1025
1030
1035
1040
1045
1050
1055
1060
1065
1070
1075
1080
1085
1090
1095
1100
1105
1110
1115
1120
1125
1130
1135
1140
1145
1150
1155
1160
1165
1170
1175
1180
1185
1190
1195
1200
1205
1210
1215
1220
1225
1230
1235
1240
1245
1250
1255
1260
1265
1270
1275
1280
1285
1290
1295
1300
1305
1310
1315
1320
1325
1330
1335
1340
1345
1350
1355
1360
1365
1370
1375
1380
1385
1390
1395
1400
1405
1410
1415
1420
1425
1430
1435
1440
1445
1450
1455
1460
1465
1470
1475
1480
1485
1490
1495
1500
1505
1510
1515
1520
1525
1530
1535
1540
1545
1550
1555
1560
1565
1570
1575
1580
1585
1590
1595
1600
1605
1610
1615
1620
1625
1630
1635
1640
1645
1650
1655
1660
1665
1670
1675
1680
1685
1690
1695
1700
1705
1710
1715
1720
1725
1730
1735
1740
1745
1750
1755
1760
1765
1770
1775
1780
1785
1790
1795
1800
1805
1810
1815
1820
1825
1830
1835
1840
1845
1850
1855
1860
1865
1870
1875
1880
1885
1890
1895
1900
1905
1910
1915
1920
1925
1930
1935
1940
1945
1950
1955
1960
1965
1970
1975
1980
1985
1990
1995
2000
2005
2010
2015
2020
2025
2030
2035
2040
2045
2050
2055
2060
2065
2070
2075
2080
2085
2090
2095
2100
2105
2110
2115
2120
2125
2130
2135
2140
2145
2150
2155
2160
2165
2170
2175
2180
2185
2190
2195
2200
2205
2210
2215
2220
2225
2230
2235
2240
2245
2250
2255
2260
2265
2270
2275
2280
2285
2290
2295
2300
2305
2310
2315
2320
2325
2330
2335
2340
2345
2350
2355
2360
2365
2370
2375
2380
2385
2390
2395
2400
2405
2410
2415
2420
2425
2430
2435
2440
2445
2450
2455
2460
2465
2470
2475
2480
2485
2490
2495
2500
2505
2510
2515
2520
2525
2530
2535
2540
2545
2550
2555
2560
2565
2570
2575
2580
2585
2590
2595
2600
2605
2610
2615
2620
2625
2630
2635
2640
2645
2650
2655
2660
2665
2670
2675
2680
2685
2690
2695
2700
2705
2710
2715
2720
2725
2730
2735
2740
2745
2750
2755
2760
2765
2770
2775
2780
2785
2790
2795
2800
2805
2810
2815
2820
2825
2830
2835
2840
2845
2850
2855
2860
2865
2870
2875
2880
2885
2890
2895
2900
2905
2910
2915
2920
2925
2930
2935
2940
2945
2950
2955
2960
2965
2970
2975
2980
2985
2990
2995
3000
3005
3010
3015
3020
3025
3030
3035
3040
3045
3050
3055
3060
3065
3070
3075
3080
3085
3090
3095
3100
3105
3110
3115
3120
3125
3130
3135
3140
3145
3150
3155
3160
3165
3170
3175
3180
3185
3190
3195
3200
3205
3210
3215
3220
3225
3230
3235
3240
3245
3250
3255
3260
3265
3270
3275
3280
3285
3290
3295
3300
3305
3310
3315
3320
3325
3330
3335
3340
3345
3350
3355
3360
3365
3370
3375
3380
3385
3390
3395
3400
3405
3410
3415
3420
3425
3430
3435
3440
3445
3450
3455
3460
3465
3470
3475
3480
3485
3490
3495
3500
3505
3510
3515
3520
3525
3530
3535
3540
3545
3550
3555
3560
3565
3570
3575
3580
3585
3590
3595
3600
3605
3610
3615
3620
3625
3630
3635
3640
3645
3650
3655
3660
3665
3670
3675
3680
3685
3690
3695
3700
3705
3710
3715
3720
3725
3730
3735
3740
3745
3750
3755
3760
3765
3770
3775
3780
3785
3790
3795
3800
3805
3810
3815
3820
3825
3830
3835
3840
3845
3850
3855
3860
3865
3870
3875
3880
3885
3890
3895
3900
3905
3910
3915
3920
3925
3930
3935
3940
3945
3950
3955
3960
3965
3970
3975
3980
3985
3990
3995
4000
4005
4010
4015
4020
4025
4030
4035
4040
4045
4050
4055
4060
4065
4070
4075
4080
4085
4090
4095
4100
4105
4110
4115
4120
4125
4130
4135
4140
4145
4150
4155
4160
4165
4170
4175
4180
4185
4190
4195
4200
4205
4210
4215
4220
4225
4230
4235
4240
4245
4250
4255
4260
4265
4270
4275
4280
4285
4290
4295
4300
4305
4310
4315
4320
4325
4330
4335
4340
4345
4350
4355
4360
4365
4370
4375
4380
4385
4390
4395
4400
4405
4410
4415
4420
4425
4430
4435
4440
4445
4450
4455
4460
4465
4470
4475
4480
4485
4490
4495
4500
4505
4510
4515
4520
4525
4530
4535
4540
4545
4550
4555
4560
4565
4570
4575
4580
4585
4590
4595
4600
4605
4610
4615
4620
4625
4630
4635
4640
4645
4650
4655
4660
4665
4670
4675
4680
4685
4690
4695
4700
4705
4710
4715
4720
4725
4730
4735
4740
4745
4750
4755
4760
4765
4770
4775
4780
4785
4790
4795
4800
4805
4810
4815
4820
4825
4830
4835
4840
4845
4850
4855
4860
4865
4870
4875
4880
4885
4890
4895
4900
4905
4910
4915
4920
4925
4930
4935
4940
4945
4950
4955
4960
4965
4970
4975
4980
4985
4990
4995
5000
5005
5010
5015
5020
5025
5030
5035
5040
5045
5050
5055
5060
5065
5070
5075
5080
5085
5090
5095
5100
5105
5110
5115
5120
5125
5130
5135
5140
5145
5150
5155
5160
5165
5170
5175
5180
5185
5190
5195
5200
5205
5210
5215
5220
5225
5230
5235
5240
5245
5250
5255
5260
5265
5270
5275
5280
5285
5290
5295
5300
5305
5310
5315
5320
5325
5330
5335
5340
5345
5350
5355
5360
5365
5370
5375
5380
5385
5390
5395
5400
5405
5410
5415
5420
5425
5430
5435
5440
5445
5450
5455
5460
5465
5470
5475
5480
5485
5490
5495
5500
5505
5510
5515
5520
5525
5530
5535
5540
5545
5550
5555
5560
5565
5570
5575
5580
5585
5590
5595
5600
5605
5610
5615
5620
5625
5630
5635
5640
5645
5650
5655
5660
5665
5670
5675
5680
5685
5690
5695
5700
5705
5710
5715
5720
5725
5730
5735
5740
5745
5750
5755
5760
5765
5770
5775
5780
5785
5790
5795
5800
5805
5810
5815
5820
5825
5830
5835
5840
5845
5850
5855
5860
5865
5870
5875
5880
5885
5890
5895
5900
5905
5910
5915
5920
5925
5930
5935
5940
5945
5950
5955
5960
5965
5970
5975
5980
5985
5990
5995
6000
6005
6010
6015
6020
6025
6030
6035
6040
6045
6050
6055
6060
6065
6070
6075
6080
6085
6090
6095
6100
6105
6110
6115
6120
6125
6130
6135
6140
6145
6150
6155
6160
6165
6170
6175
6180
6185
6190
6195
6200
6205
6210
6215
6220
6225
6230
6235
6240
6245
6250
6255
6260
6265
6270
6275
6280
6285
6290
6295
6300
6305
6310
6315
6320
6325
6330
6335
6340
6345
6350
6355
6360
6365
6370
6375
6380
6385
6390
6395
6400
6405
6410
6415
6420
6425
6430
6435
6440
6445
6450
6455
6460
6465
6470
6475
6480
6485
6490
6495
6500
6505
6510
6515
6520
6525
6530
6535
6540
6545
6550
6555
6560
6565
6570
6575
6580
6585
6590
6595
6600
6605
6610
6615
6620
6625
6630
6635
6640
6645
6650
6655
6660
6665
6670
6675
6680
6685
6690
6695
6700
6705
6710
6715
6720
6725
6730
6735
6740
6745
6750
6755
6760
6765
6770
6775
6780
6785
6790
6795
6800
6805
6810
6815
6820
6825
6830
6835
6840
6845
6850
6855
6860
6865
6870
6875
6880
6885
6890
6895
6900
6905
6910
6915
6920
6925
6930
6935
6940
6945
6950
6955
6960
6965
6970
6975
6980
6985
6990
6995
7000
7005
7010
7015
7020
7025
7030
7035
7040
7045
7050
7055
7060
7065
7070
7075
7080
7085
7090
7095
7100
7105
7110
7115
7120
7125
7130
7135
7140
7145
7150
7155
7160
7165
7170
7175
7180
7185
7190
7195
7200
7205
7210
7215
7220
7225
7230
7235
7240
7245
7250
7255
7260
7265
7270
7275
7280
7285
7290
7295
7300
7305
7310
7315
7320
7325
7330
7335
7340
7345
7350
7355
7360
7365
7370
7375
7380
7385
7390
7395
7400
7405
7410
7415
7420
7425
7430
7435
7440
7445
7450
7455
7460
7465
7470
7475
7480
7485
7490
7495
7500
7505
7510
7515
7520
7525
7530
7535
7540
7545
7550
7555
7560
7565
7570
7575
7580
7585
7590
7595
7600
7605
7610
7615
7620
7625
7630
7635
7640
7645
7650
7655
7660
7665
7670
7675
7680
7685
7690
7695
7700
7705
7710
7715
7720
7725
7730
7735
7740
7745
7750
7755
7760
7765
7770
7775
7780
7785
7790
7795
7800
7805
7810
7815
7820
7825
7830
7835
7840
7845
7850
7855
7860
7865
7870
7875
7880
7885
7890
7895
7900
7905
7910
7915
7920
7925
7930
7935
7940
7945
7950
7955
7960
7965
7970
7975
7980
7985
7990
7995
8000
8005
8010
8015
8020
8025
8030
8035
8040
8045
8050
8055
8060
8065
8070
8075
8080
8085
8090
8095
8100
8105
8110
8115
8120
8125
8130
8135
8140
8145
8150
8155
8160
8165
8170
8175
8180
8185
8190
8195
8200
8205
8210
8215
8220
8225
8230
8235
8240
8245
8250
8255
8260
8265
8270
8275
8280
8285
8290
8295
8300
8305
8310
8315
8320
8325
8330
8335
8340
8345
8350
8355
8360
8365
8370
8375
8380
8385
8390
8395
8400
8405
8410
8415
8420
8425
8430
8435
8440
8445
8450
8455
8460
8465
8470
8475
8480
8485
8490
8495
8500
8505
8510
8515
8520
8525
8530
8535
8540
8545
8550
8555
8560
8565
8570
8575
8580
8585
8590
8595
8600
8605
8610
8615
8620
8625
8630
8635
8640
8645
8650
8655
8660
8665
8670
8675
8680
8685
8690
8695
8700
8705
8710
8715
8720
8725
8730
8735
8740
8745
8750
8755
8760
8765
8770
8775
8780
8785
8790
8795
8800
8805
8810
8815
8820
8825
8830
8835
8840
8845
8850
8855
8860
8865
8870
8875
8880
8885
8890
8895
8900
8905
8910
8915
8920
8925
8930
8935
8940
8945
8950
8955
8960
8965
8970
8975
8980
8985
8990
8995
9000
9005
9010
9015
9020
9025
9030
9035
9040
9045
9050
9055
9060
9065
9070
9075
9080
9085
9090
9095
9100
9105
9110
9115
9120
9125
9130
9135
9140
9145
9150
9155
9160
9165
9170
9175
9180
9185
9190
9195
9200
9205
9210
9215
9220
9225
9230
9235
9240
9245
9250
9255
9260
9265
9270
9275
9280
9285
9290
9295
9300
9305
9310
9315
9320
9325
9330
9335
9340
9345
9350
9355
9360
9365
9370
9375
9380
9385
93

neutralisation of acidic chyme. Its actions are mediated via a seven transmembrane domain, G protein coupled receptor (GPCR), a member of the glucagon-secretin-vasoactive intestinal peptide structurally related superfamily of GPCRs (IUPHAR

5 Receptor Compendium, 1998), for which the peptide exhibits nanomolar affinity. Secretin receptor stimulation mediates increases in intracellular cAMP, and the activation of protein kinase A (PKA).

10 Secretin is currently approved by the FDA to diagnose gastrinoma and assess pancreatic function. Anecdotal reports from "off-label" use of secretin in paediatric autism suggest that it may improve both physiological and behavioural symptoms associated with autism, a disorder characterized by severely impaired communication, social skills and development (see for example WO98/52593, US-A-6,020,310 or US-A-
20 6,020,314). In March 2000 Repligen Corporation (USA) announced it had initiated a Phase II clinical trial with secretin in children with autism, with the Phase II trial sites including the Mayo Clinic, the University of Rochester Medical Center and the Southwest Autism Research Center in collaboration with Phoenix Children's Hospital. Initial results of these trials suggest that secretin infusion may be beneficial in discrete groups of severely autistic children.

25 Secretin has also been proposed for the prophylaxis of the aspiration pneumonia syndrome (e.g. in EP0150760; AU3806485).

30 There are a wide number of reported synthetic and/or naturally occurring secretin peptide analogues and fragments (referred to herein as "secretin receptor ligands") which exhibit a wide range of potencies, efficacies and selectivity for the secretin receptor. These include, but are not limited to mono / poly substituted secretin analogues, secretin fragments,

substituted secretin fragments, reduced peptide bond analogues (Gardner et al, 1976; Gardner et al, 1979; Waelbroeck et al, 1981; Konig et al, 1984; Staun-Olsen et al, 1986; Robbertecht et al, 1988; Haffer et al, 1991), and naturally occurring and synthetic analogues, fragment and chimeric peptides of the VIP/secretin family (including VIP (vasoactive intestinal peptide), gastric inhibitory peptide (GIP), PACAP (pituitary adenylate cyclase-activating polypeptide), adrenomedullin, calcitonin, CGRP (alpha, beta and skin calcitonin gene related peptides), glucagon, glucagon-like peptide (GLP), growth hormone-releasing factor, parathyroid hormone (PTH) and its related protein (PTHrP), corticotrophin-releasing hormone (CRH) and amylin. Many of these peptides (including glucagon, GLP, PACAP and VIP share significant amino acid homology, particularly in the amino terminus with secretin. All these peptides are thought to adopt similar secondary structural characteristics, including one or two regions of amphipathic α -helical secondary structure, and appear to interact with their receptors in a well conserved manner (Sexton, 1999).

Also known are secretin-related receptor peptides, and associated analogues and fragments which exhibit affinity for the secretin receptor.

25 Disclosure of the Invention.

We have studied the expression levels of secretin receptor in tissue from patients with CF and COPD. We have found that in both normal individuals and patients with these disease conditions, secretin receptor is expressed in the distal regions of the lung, particularly the tertiary bronchus and parenchyma, with little or no measurable mRNA expression in more proximal regions of the lung. The expression of secretin receptor in these tissues has not previously been reported.

We have moreover surprisingly found that levels of secretin receptor mRNA in tertiary bronchus of CF patients are significantly elevated. This elevation is specific to CF, and not shared by patients with other lung disorders. The 5 elevation was specific to tissue of the tertiary bronchus.

While not wishing to be bound by any one particular theory, we believe the action of secretin on ion movements in cells (see below) will counteract the effect of the CTFR deficiency associated with CF. Further, although the operation of the present invention does not rely upon any one particular theory, an explanation of the elevated levels of secretin receptor mRNA in tertiary bronchial tissue is that this is in response to the ion imbalance experienced in these cells.

Moreover, in patients with COPD there is increasing recognition that the role of ion efflux in the lungs of patients may be a critical target for therapeutic intervention. The secretin receptor is coupled to the G-protein, G_s, and therefore it can be envisaged that activation of the functional secretin receptor that has been identified herein on epithelial cells lining the distal human bronchus will result in the accumulation of intracellular cAMP, and subsequent bronchodilation (see also Ng et al, 1999).

Moreover in other mucus hypersecretory lung diseases, such as cystic fibrosis and COPD, reduction of predominantly Cl⁻ efflux alters the aqueous and ionic composition and subsequent viscosity of mucus and mucus secretions, leading to thick insipid mucus which impairs mucociliary clearance from the lung. Thus the stimulation of ion movement in such patients may thus be beneficial in the treatment of their disease.

Accordingly, the present invention provides a method of treatment of cystic fibrosis in a patient suffering from CF,

the method comprising administering to said patient an effective amount of an agent which triggers anion efflux in respiratory tissue via the activation of a secretin receptor.

- 5 The invention further provides a method of treatment of COPD in a patient suffering from COPD, the method comprising administering to said patient an effective amount of an agent which triggers anion efflux in respiratory tissue via the activation of a secretin receptor.

10 The present invention is in one part based on the surprising finding by the inventors of elevated levels of secretin receptor mRNA in the tertiary bronchus of CF patients, and relates to the novel use of secretin in the treatment of cystic fibrosis. A preferred aspect of the invention is directed to the treatment of CF by the administration to the patient of a secretin receptor ligand. However, it has been contemplated by the inventors that secretin may be delivered to the patient in an effective amount by means other than directly administering the secretin receptor ligand itself. An alternative method of administering secretin is by the use of agents which stimulate the up-regulation of the production and or release of endogenous secretin in pulmonary cells, or secretin related peptides.

15
20
25 The invention also provides the use of an agent which triggers anion efflux in respiratory tissue via the activation of a secretin receptor for the manufacture of a medicament for the treatment of cystic fibrosis.

30 The invention additionally provides the use of an agent which triggers anion efflux in respiratory tissue via the activation of a secretin receptor for the manufacture of a medicament for the treatment of COPD.

Preferably, the agent is a secretin receptor ligand, more particularly secretin, particularly human secretin.

5 Brief Description of the Drawings.

Figure 1 shows an alignment of human, porcine and canine secretin.

10 Figure 2 shows differential expression of mRNA of the secretin receptor in control and CF lung regions.

15 Figure 3 shows mRNA expression of GAPDH in control and lung CF regions.

20 Figure 4 shows differential expression of mRNA of the secretin receptor in control and CF lung regions from a sample of 16 control and 25 CF tissue donors.

25 Figure 5 shows that secretin stimulates ionic movement in the non-CF tertiary bronchus.

Figure 6 shows that secretin stimulates non-CTFR dependent ionic movement in confluent monolayers of primary human tertiary bronchial epithelial cells derived from non-CF donors.

30 Figure 7 shows that secretin stimulates ionic movement in the human CF tertiary bronchus.

Figure 8 shows the effect of secretin on chloride ion efflux in primary human tertiary bronchial epithelial cells derived from non CF donors.

Figure 9 shows the levels of NeuroD mRNA in tertiary bronchus and lung parenchyma of CF patients.

Detailed Description of the Invention.

5

Agent which triggers anion efflux in respiratory tissue via the activation of a secretin receptor.

There are a number of mechanisms by which secretin receptors may be activated. For example, expression of secretin is widely reported to be restricted to S-type enteroendocrine cells in the small intestine and colonic enteroendocrine cells and insulin producing β cells of the developing pancreas. Both enteroendocrine cells and pancreatic islets arise from the primitive embryonic gut endoderm. In addition, the primary airways are formed through a process termed branching morphogenesis, whereby 2 ventral lung buds sprout from the epithelium lining the floor of the embryonic foregut endoderm. Patterning of the airways is then accomplished by the outgrowth and repetitive branching of the two long buds.

Pulmonary neuroendocrine (PNE) cells are amongst the first cells to differentiate from the primitive lung epithelium, and are generally most abundant in the airways of fetal and neonatal lungs. These cells are known to express a number of peptides including calcitonin, calcitonin gene related peptide, serotonin and endothelin, and can be visualized by their immunoreactivity to these peptides or to general endocrine markers such synaptophysin, chromogranin and protein gene product 9.5. In the CF bronchus, increased calcitonin immunoreactivity within endocrine cells has been demonstrated (Wolf et al., 1986).

We have found that there is increased chromogranin A immunoreactivity in CF tertiary bronchial sections compared to non CF lung, suggestive of an increased number of solitary

endocrine cells in CF lung. Increased expression of endocrine cells within the tertiary bronchus of the CF lung would be expected to correlate with the increased presence of endocrine peptides including secretin. As such, direct or indirect

5 stimulation of endocrine cells to locally release secretin (and/or secretin releasing peptides or peptides which exhibit affinity for the secretin receptor) within the lung would represent an alternative approach to stimulating the secretin receptor with exogenous secretin, or a mimetic and providing a therapeutic benefit in CF.

Further, the secretin gene may be upregulated by the provision of agents which increase the level of transcription of the gene, e.g. via promoter or enhancer regulation. The enhancer region of the secretin gene contains a *cis*-acting DNA consensus sequence (CAGCTG) known as an E box, which bind proteins belonging to the basic helix-loop-helix (bHLH) family of transcription factors. A bHLH protein known as BETA2/NeuroD has been demonstrated to lead to the tissue-specific regulation of secretin gene transcription (Mutoh et al., 1997). In knock out mice, BETA2/NeuroD deficient mice fail to develop enteroendocrine cells or pancreatic β cells, demonstrating the critical role of this transcription factor in the normal development of several specialized cell types that arise from the gut endoderm. Beta2/NeuroD expression has been demonstrated to locate only to endocrine cells in transgenic mice (Rhindi et al., 1999).

In addition, up regulation of endogenous secretin production 30 may also be achieved by a variety of other methods known in the art (e.g. see Jiang et al., 2001; Yang et al., 1998; Morse et al., 2001; Lewis et al., 1997; West & Rodman, 2001; Alton & Kitson, 2000) including but not limited to gene therapy (delivery of DNA or RNA in a viral or non viral vector

encoding a peptide capable of directly or indirectly stimulating the secretin receptor or its cell signalling pathway), or gene targeting (delivery of agents which target regulatory sequences or transcription factor binding sites on the promoter region of the gene encoding secretin or a related peptide, thereby switching on production of secretin or a related peptide capable of directly or indirectly stimulating the secretin receptor).

A number of mechanisms are known to stimulate secretin release, including the following:

Agents such as dibutyryl cyclic-3',5'-adenosine monophosphate, forskolin, 4 beta-12-O-tetradecanoylphorbol-13-acetate, the synthetic serine protease inhibitor, camostat, and the calcium ionophore, A2318, which stimulate Ca^{2+} and cyclic-3',5'-adenosine monophosphate-dependent secretin release (Xue et al., 1993);

Pancreatic phospholipase A₂ (PLA₂) which has been demonstrated to intrinsically possess secretin-releasing activity, which is independent of its digestive enzymatic activity (Chang et al., 1999);

The neuropeptides bombesin, gastrin releasing peptide, VIP and galanin have also been shown to modulate secretin release in secretin-producing cells (Chang et al., 1998); and

Long chain fatty acids, such as sodium oleate are potent stimulators of secretin release from endocrine cells. Their stimulatory effect is potentiated by endogenous protein kinase A and mediated by activation of Ca^{2+} influx through the L-type channels and of protein kinase C and Ca^{2+} /calmodulin-dependent protein kinase II (Chang et al., 2000).

Further, receptor activity modifying proteins, or RAMP are novel single transmembrane domain proteins that can modulate the expression and/or activity of at least two members of the

secretin receptor GPCR family. To date there are 3 RAMP isoforms, 1-3, whose interactions are suggested to potentially result in trafficking of the receptor to the cell surface, modifying the degree of receptor glycosylation, and/or 5 contributing to the ligand binding site through association with the receptor at the cell surface (Sexton, 1999).

RAMPS may indirectly alter a peptide selectivity for a specific receptor of the secretin GPCR family. For example, 10 studies in which a single point mutation of the PTH1 receptor confers secretin responsiveness to this receptor, while the reverse mutation confers PTH responsiveness to the secretin receptor (Turner et al. 1996) has been suggested could be due to alterations in specific RAMP interactions with the 15 receptor. (Sexton, 1999).

As such, agonism of the secretin receptor could be mediated via the simultaneous or sequential application of a peptide analogue or fragment of the secretin receptor family and a 20 specific RAMP.

Respiratory tissue in which secretin receptors are activated particularly includes tissue within the distal regions of the lung selected from tertiary bronchus and lung parenchyma.

25

Secretin Receptor Ligand.

As indicated above, the preferred secretin receptor ligand is human secretin (hSN). However other mammalian secretins, such as the closely related bovine, porcine or pig secretin, or 30 canine, rodent, chicken and rabbit secretin (which exhibit various degrees of homology to human secretin), may be used, as well other naturally occurring or synthetic fragments or analogues of secretin, such as those identified herein.

Various other secretin receptor ligands are well known in the art. Many such ligands are based on the sequence of a natural secretin (e.g. human or porcine secretin) but contain from 1 to 7 (more usually from 1 to 5, and often 1, 2 or 3) amino acid substitutions or deletions, particularly but not exclusively in the N-terminal region.

For example, Gespach et al (1986) describe four synthetic secretin analogues including one corresponding to porcine secretin substituted at the N-terminus by sequence portions of vasoactive intestinal peptide (VIP), i.e. Ala₄-Val₅-pSN, together with Tyr₁-Ala₂-Glu₃-pSN, Gln₃-pSN, Phe₁-Phe₂-Trp₃-Lys₄-pSN. Konig et al (1977) describe Ala₄-pSN. Gardener et al (1976) describe the secretin fragment SN5-27 and three variants thereof, (9Gln-SN5-27, 15Asn-SN5-27 and 9Gln-15Asn-SN5-27). 15-Lys-SN has also been described in the art (Gardener et al, 1979). Haffer et al (1991) describe eight secretin variants with reduced peptide bonds (the -CONH- bond being replaced by -CH₂-HN-) between one of the eight N-terminal peptide bonds. Robberecht et al (1988) describe secretin fragments 2-27, 3-27, 5-27 and 7-27 and observed activity for secreting receptors. Konig et al (1986) exchanged the N-terminal 5 amino acids of a secretin for the N-terminal pentapeptide sequence of human somatotropin releasing factor to provide 1-Tyr-2,4-diAla-5-Ile-SN, which showed secretin activity. Other active variants made were 3-L-Cystic acid-SN, 6-D-Phe-SN, 5-Allo-Thr-SN, and 1-Cys-6-Cys-SN.

Further examples of secretin analogues which exhibit affinity for the secretin receptor include, [Ala₄, Val₅] and [D-Ala₄, Val₅]secretin, (D-Ala₄) secretin; (D-Phe₆) secretin; secretin 5-27, secretin 14-27 [Val₅]secretin, [D-Ala₄, Val₅]secretin (Waelbroeck et al, 1981); substituted fragments

such as [Gln⁹,Asn¹⁵]secretin (5-27) (Staun-Olsen et al, 1986); phenolic group containing analogues of porcine secretin including Nalpha-tyrosylsecretin, [Tyr¹]secretin, and Nalpha-beta-(4-hydroxyphenyl) propionylsecretin (Yanaihara et al, 1977); carboxyl-terminal tricosapeptide analogues of secretin (S5-27) (9-Gln-S5-27, 15-Asn-S5-27), and 9-Gln-15-Asn-S5-27) (Gardner et al, 1976).

Vasoactive intestinal peptide (VIP), PACAP, glucagon, glucagon-like peptide and naturally occurring and synthetic analogues and fragments thereof, exhibit considerable homology to that of secretin. Examples of these include but are not limited, to (D-Ala⁴) VIP; (D-Phe⁴) VIP; (D-Phe²)VIP, fatty acyl derivatives of VIP, including myristyl-, palmityl- and stearyl-[Nle¹⁷]VIP (Gourlet et al, 1998), VIP 2-28; VIP 1-14; VIP 2-14; VIP 14-28; VIP 15-28; VIP 20-28; VIP 21-28, two sequences where the N-terminal VIP 1-6 or VIP 1-9 have been joined covalently with the C-terminal VIP 20-28 or VIP 21-28 (Couvineau et al, 1984); VIP 7-27, VIP 11-28, VIP 1-22-NH₂, VIP 16-28 (Staun-Olsen et al, 1986), VIP[10-28] and VIP[16-28]. Analogues of secretin and VIP, referred to as the vasectrins, have also been described by Beyerman et al, 1981. PACAP (1-27; 1-38) and analogue examples include PACAP(1-23, VIP-24-28), PACAP(1-24,Cys-25), PACAP(1-23), PACAP(3-27), PACAP(1-19), PACAP(3-19), PACAP(1-12), and PACAP(18-38) (Schmidt et al, 1993). Glucagon, and GLP-1, and their related analogues and fragments include GLP-1 (7-37) GLP-1-(1-37) amide, -(6-37) amide, -(8-37) amide, -(7-36) amide (Suzuki et al, 1989), those with alterations in the N-terminal position 1 including N-methylated- (N-me-GLP-1), alpha-methylated (alpha-me-GLP-1), desamidated- (desamino-GLP-1) and imidazole-lactic-acid substituted GLP-1 (imi-GLP-1). (Gallwitz et al, 2000).

The secretin receptor ligands described in the above

literature, which is incorporated herein by reference, may all be used in the present invention, though those of skill in the art will appreciate that the above-cited references are not exhaustive and other secretin receptor ligands may be used.

5

The suitability of candidate ligands may be determined experimentally. For example, Charlton et al (1983) report that secretin injected intracerebroventricularly significantly increased defecation and decreased novel-object approaches in rats, but showed no significant effects on stereotypic behaviour. Such a test may be performed in rats with a secretin receptor ligand to determine its suitability for the present invention (i.e. those ligands which show similar effects via agonism of the secretin receptor may be selected).

15

Secretin is available from commercial sources (e.g. Peninsula Laboratories Inc, USA) or it and the above-described ligands may be obtained by reference to readily available published literature.

20

Compositions of the Invention.

The novel findings reported herein give rise to novel compositions which comprise a secretin receptor ligand together with at least one other compound active against CF or COPD.

25

In the case of CF, such compounds include mucolytic agents such as acetylcysteine, deoxyribonuclease I (dornase) or erdosteine, as well as other anti-CF agents such as nedocromil or ibuprofen.

30

In the case of COPD, such compounds include bronchodilators such as theophylline, ipratropium, beta 2 agonists such as salbutamol or salmeterol or anti-inflammatory agents such as

steroids.

The amount of secretin receptor ligand in such a composition may be, for example, from 1% to 99% by weight of the total 5 amount of active ingredients (i.e. excluding carriers or diluents), for example from 10% to 90% by weight.

In a related aspect, the present invention provides a combination of a secretin receptor ligand and a second compound active against CF or COPD for simultaneous or sequential use in the treatment of CF or COPD respectively. By "simultaneous" it is meant that the two compounds are administered at the same time, though not necessarily in the same composition. By "sequential" it is meant that the two compounds are administered within a time period such that the first of the two compounds is still active in the patient when administration of the second of the two compounds occurs. Preferably, "sequential" means within the same 24 hour, preferably within the same 12 hour, such as within the same 6, 3, 1, half or quarter hour time period.

Formulation and Administration.

Treatment of patients in accordance with the present invention may be performed by administering to a patient a secretin 25 receptor ligand in the form of a pharmaceutical composition, either with or without a further active ingredient present (reference below to compositions will be understood to include both types, though for brevity only the secretin receptor ligand is specifically mentioned). The composition may be in 30 combination with a non-toxic, pharmaceutically acceptable carrier. In this context the invention also covers a method of treating CF comprising administering a therapeutically effective amount of the secretin receptor ligand of this invention or a composition of this invention on a patient to

be treated.

In clinical practice the compositions of the present invention may be administered parenterally due to the fact that being a peptide the hormone is sensitive to biologically active environments. Oral or rectal administration may, however, be conceivable, for example using compositions of the slow release type making it possible for the active ingredient to reach the site of primary interest, namely the tertiary bronchus.

Secretin receptor ligands may be formulated in a suitable form for administration by inhalation (e.g. via an aerosol) or insufflation (either through the mouth or nose), or by parenteral administration (introduced by routes other than intestinal routes).

Delivery of proteins or peptides via inhalation may be accomplished using liquid or solid preparations of the secretin receptor ligand. Thus the invention contemplates formulations comprising secretin receptor ligand for use in a wide variety of devices that are designed for the delivery of pharmaceutical compositions and therapeutic formulations to the respiratory tract. In one aspect of the present invention, secretin receptor ligand is administered in aerosolized or inhaled form. The secretin receptor ligand, combined with a dispersing agent, or dispersant, can be administered in an aerosol formulation as a dry powder or in a solution or suspension with a diluent.

Suitable dispersing agents are well known in the art, and include but are not limited to surfactants and the like. Surfactants are generally used in the art to reduce surface induced aggregation of protein caused by atomization of the

solution forming the liquid aerosol. Examples of such surfactants include polyoxyethylene fatty acid esters and alcohols, and polyoxyethylene sorbitan fatty acid esters. Amounts of surfactants used will vary, being generally within 5 the range of about 0.001 to 4% by weight of the formulation. In a specific aspect, the surfactant is polyoxyethylene sorbitan monooleate or sorbitan trioleate.

The liquid aerosol formulations contain the secretin receptor ligand and a dispersing agent in a physiologically acceptable diluent. The dry powder aerosol formulations of the present invention consist of a finely divided solid form of the secretin receptor ligand and a dispersing agent, and optionally a bulking agent, such as lactose, sorbitol, sucrose, or mannitol, and the like, to facilitate dispersal of the powder. With either the liquid or dry powder aerosol formulation, the formulation must be aerosolized. That is, it must be broken down into liquid or solid particles in order to ensure that the aerosolized dose actually reaches the bronchii and/or alveoli, as desired. In general the mass median dynamic diameter will be 5 micrometers (μm) or less in order to ensure that the drug particles reach the lung bronchii or alveoli (Wearley et al 1991).

With regard to construction of the delivery device, any form of aerosolization known in the art, including but not limited to nebulization, atomization or pump aerosolization of a liquid formulation, and aerosolization of a dry powder formulation, can be used in the practice of the invention. A delivery device that is uniquely designed for administration of solid formulations is envisioned. Often, the aerosolization of a liquid or a dry powder formulation will require a propellant. The propellant can be any propellant generally used in the art. Examples of useful propellents

include chlorofluorocarbons, hydrofluorocarbons, hydrochlorofluorocarbons, and hydrocarbons, including trifluoromethane, dichlorodifluoromethane, dichlorotetrafluoroethanol, and 1,1,1,2-tetrafluoroethane, and combinations thereof.

In a preferred aspect of the invention, the device for aerosolization is a metered dose inhaler. A metered dose inhaler provides a specific dosage when administered, rather than a variable dose depending on administration. Such a metered dose inhaler can be used with either a liquid or a dry powder aerosol formulation.

Systems of aerosol delivery, such as the pressurized metered dose inhaler and the dry powder inhaler are disclosed in Newman, Aerosols and the Lung, Clarke, S.W. and Davia, D. editors, pp 197-22 and can be used in connection with the present invention.

Additional pharmaceutical methods may be employed to control the duration of action of the antagonists of this invention. The antagonists also may be entrapped in microcapsules prepared, for example, by coacervation techniques by interfacial polymerization (for example,

hydroxymethylcellulose or gelatin-microcapsules and poly-(methylmethacrylate)microcapsules, respectively), in colloidal drug delivery systems (for example, liposomes, albumin microspheres, microemulsions, nano-particles and nanocapsules), or in macroemulsions. Such techniques are disclosed in Remington's Pharmaceutical Sciences, 16th edition, Osol, A., ed (1980).

For intranasal administration, the secretin receptor ligands may be formulated as solutions for administration via a

suitable metered or unit device or alternatively as a powder mix with a suitable carrier for the administration using a suitable delivery device. Alternatively, secretin receptor ligands could be delivered transnasally in a similar fashion.

5 For example, preparation of secretin for transnasal administration has been described in JP60123426.

Preparations for parenteral administration includes sterile aqueous or non-aqueous solutions, suspensions or emulsions. Examples of non-aqueous solvents or suspending media are propylene glycol, vegetable oils, such as olive oil, and injectible organic esters, such as ethyl oleate. These compositions may also contain adjuvants, such as preserving, wetting, emulsifying and dispersing agents. They may be sterilized, for example, by filtration through a bacteria-retaining filter, by incorporation of sterilizing agents in the composition, by irradiation or by heating. They may be also be manufactured in the form of sterile solid compositions, which can be dissolved in a sterile injectible medium immediately before use. As well as the more customary intravenous and intramuscular routes the compositions may also be administered by intraarticular injection.

The percentages of active ingredient in the compositions of the invention may be varied as long as they constitute a proportion such that a suitable dosage for the desired stimulatory effect on the pancreas is obtained. Obviously several unit dosage forms may be administered at about the same time. Generally, the compositions should contain from about 0.1% to about 80% by weight of active ingredient.

The dose employed depends upon the desired stimulatory effect, the route of administration and the duration of the treatment. Typical doses may be in the range of from 10^{-8} to 10^{-3} mg per

day, preferably from 10^{-6} to 10^{-4} mg per day for a human patient. The secretin receptor ligand may be administered each day or, according to the wishes of the medical practitioner, less often, e.g. weekly, or until the desired therapeutic effect is achieved.

The following examples illustrate the invention.

Example 1: RNA Expression Profiles.

Messenger RNA expression profiles of the secretin receptor (protein accession P47872; nucleotide accession U28281) was examined. Total RNA was isolated from tertiary / quaternary bronchus and lung parenchyma from 5 control and 5 CF donors using Trizol™ a commercially available solution of phenol and guanidine isothiocyanate, according to the protocol described by the manufacturer (Life Technologies). Samples of RNA were used only if intact 18s and 28s ribosomal RNA were detected by gel electrophoresis and if genomic DNA formed less than 10% of the total nucleic acid sample. Total RNA samples were annealed to the primer probe sequence plus a glyceraldehyde-3-phosphate dehydrogenase (GAPDH; accession no. P04406) primer and reverse transcribed using MuLV reverse transcriptase. Quantitative sequence detection was carried out on the resulting cDNA.

The applicants have developed protocols for quantitative analysis of mRNA expression using the ABI prism 7700 Sequence Detection System (Perkin Elmer). Details of the system are set out in WO00/05409. In brief, the system uses fluorogenic probes to generate sequence specific fluorescent signals during PCR. The probes are oligonucleotides with fluorescent reporter and quencher dyes attached. While a probe is intact, the intensity of reporter fluorescence is suppressed by a quencher. When a probe forms part of a replication complex during the PCR process, the quencher is separated from the

reporter dye resulting in a increase in fluorescence which is then detected by the ABI 7700 sequence detector. The ABI 7700 has a built in thermal cycler, and a laser directed at each of the 96 sample wells via bi-directional fibre optic cables.

5 Emitted fluorescence through the cables to a detector where emissions which fall between 520nm and 660nm are collected every few seconds. The system software analyses the contribution of each component dye to the experiment spectrum, and normalises the signal to an internal reference dye. The peaks of these normalised 'reporter' values (R_n) are then plotted against thermal cycle number to produce an amplification plot - to allow visualisation of the extent of PCR product generation.

10
15
20
25
30
The starting copy number of a target sequence (C_n) is established by determining the fractional PCR cycle number (C_t) at which a PCR product is first detected - the point at which the fluorescence signal exceeds a threshold baseline. Therefore the lower a C_t value the greater the C_n . Quantification of the amount of target mRNA in each sample is established through comparison of the experimental C_t values with standard curves for the target sequence which are constructed during each experiment.

25 Primer probe sets were specifically designed for the detection of secretin receptor mRNA. Off-line homology searches revealed no significant matches with gene sequences logged at Genbank. Forward and reverse primer and probe sequences for the secretin receptor were as follows :

30

Forward GACCAGCATCATCTGAGAGGGCT (SEQ ID NO:1)
Reverse CCTTCGCAGGACCTCTTTG (SEQ ID NO:2)
Probe TCTCTGTCCGTGGGTGACCCTGCT (SEQ ID NO:3)

GAPDH primer probe sets were as follows

Forward GAAGGTGAAGGTCGGAGTCAAC (SEQ ID NO:4)

Reverse CAGAGTTAAAAGCAGCCCTGGT (SEQ ID NO:5)

5 Probe TTTGGTCGTATTGGGCCCT (SEQ ID NO:6)

Reaction conditions were optimised using genomic DNA as a template and a primer probe concentration grid followed by a probe concentration gradient experiment. Primer concentrations were selected to give the most efficient amplification of gene product, i.e. those which generate a low threshold cycle and a relatively high accumulation of fluorescence. These optimal primer concentrations were then used to select the optimum probe concentration.

A respiratory disease association of the secretin receptor was demonstrated by profiling secretin receptor mRNA expression in the tertiary bronchus and parenchyma from up to 5 fully consented donors pathologically and histologically diagnosed with the following respiratory disorders: non-smoker control, smoker, asthmatic, cystic fibrosis, pneumonia, emphysema, chronic obstructive pulmonary disease (COPD). CF lung tissue was obtained by full consent from 5 patients undergoing heart and lung transplants.

Figure 2 shows the differential mRNA expression of the secretin receptor in control and CF lung regions, illustrating increased expression of the secretin receptor in CF tertiary bronchus. Data are representative of the mean \pm s.e.m QRT-PCR threshold cycle from 5 control and 5 cystic fibrosis tissue donors in each lung region. * p=0.0246 denotes statistical significance derived from an unpaired Students T-test. As a control, Figure 3 shows mRNA expression of GAPDH in control and CF lung regions. Data are representative of the means \pm s.e.m

QRT-PCR threshold cycle from 5 control and 5 cystic fibrosis tissue donors in each lung region. No statistical differences were observed within or between groups.

- 5 Decreased secretin receptor expression was demonstrated in the lung parenchyma of 5 COPD donors in comparison to 5 control donors ($p=0.0465$). However no other donor groups exhibited differences in the expression of secretin receptor mRNA.

10 In all cases, however, the observation of secretin receptor expression at any level in tissues of the distal regions of the lung is novel and provides the underlying basis for the present invention.

15 Figure 4 shows the results of a subsequent expression study carried out with tissue derived from 25 CF donors and 16 non-smoking control donors. Data are representative of the mean \pm s.e.mean QRT-PCR threshold cycle from 25 CF donors and 16 non-smoking control donors in each lung regions. ** $p=0.009$
20 denotes statistical significance derived from two-way analysis of variance. The results obtained were similar to those obtained in Figure 2, i.e. significantly increased expression of the secretin receptor in CF tertiary bronchus compared to control, with both groups having similar levels of expression
25 in the parenchyma.

The data provided by Example 1 provides the underlying basis for the present invention. That is, impaired Cl^- efflux from cells in the respiratory tract into the airway lumen
30 represents the etiological problem in CF. However, this loss of the Cl^- channel and ion movement also impairs bicarbonate (HCO_3^-) secretion from cells and enhances sodium ion (Na^+) reabsorption into cells, via epithelial, amiloride-sensitive Na^+ channels.

The lavage of the healthy lung consists primarily of H₂O (approx. 95%), with luminal HCO₃⁻ maintaining secreted proteins such as mucus and digestive enzymes in a soluble, inactive state. However, CF airway epithelia exhibit abnormally high rates of surface liquid absorption due to the high intracellular concentrations of Na⁺ and Cl⁻ and therefore patients have a very low moisture content within their airways. Together this leads to significant thickening of the mucus, and subsequent impairment of the mucociliary clearance from the CF lung.

Movement of HCO₃⁻ across apical membrane of lung epithelial cells occurs predominantly via an electrogenic Cl⁻/HCO₃⁻ exchanger, with water crossing hydrophobic plasma membranes either by simple osmotic diffusion or through a facilitative transport mechanism mediated by members of a family of aquaporin (AQP) water channel proteins. Currently it is thought that HCO₃⁻ and Cl⁻ are predominantly involved in the osmotic movement of H₂O.

Based on the physiological role of secretin and its receptor in ionic regulation in the duodenum and pancreas, the applicants suggest, based on the present findings, that increased mRNA and functional expression of the secretin receptor may represent the human body's evolutionary, pathophysiological response in order to compensate for the defect in the CFTR. As secretin peptide synthesis occurs in the duodenum, secretin receptors within the lung will not be exposed to the secretin peptide. While not being bound by any one particular theory, it is proposed that agonism of the secretin receptor by pharmacological intervention will treat the underlying biochemical respiratory problems associated with CF by all or some of the following:

(a) Stimulating Cl⁻ efflux via cAMP-dependent activation of Cl⁻ channels from respiratory cells of the tertiary bronchus.

Secretin receptor stimulation or forskolin-mediated increases in cAMP have been shown to stimulate a small, single channel Cl⁻ selective conductance, of about 4pS across the apical membrane of rat pancreatic duct cells (Gray et al, 1988).

Although secretin has been demonstrated to stimulate the CFTR and Cl⁻ efflux across the apical membranes of non-CF human epithelial cells (e.g. gallbladder; Dray-Charier et al, 1995), this Cl⁻ conductance is reported to be 6-12pS. Therefore this Cl⁻ represents an alternative cAMP-dependent Cl⁻ conductance.

(b) Stimulated increases in cAMP, activating protein kinases, and leading to the phosphorylation and subsequent regulation of epithelial Na⁺ channels or Na⁺-K⁺-ATPases in respiratory cells, thereby reducing Na⁺ reabsorption and stimulation of lung liquid movement. Such a mechanism has been demonstrated in the rat alveolar epithelial cells with cAMP coupled beta-adrenergic receptor stimulation (Minakata et al, 1998).

(c) Subsequently increased luminal levels of Cl⁻ will act as a substrate for the secretin activated Cl⁻/HCO₃⁻ exchanger, allowing the electrogenic movement of HCO₃⁻ into the airway lumen. Secretin has been widely demonstrated to stimulate the activity of Cl⁻/HCO₃⁻ exchanger which is functionally coupled with a cAMP-dependent Cl⁻ channel (CFTR) on the apical epithelium (for example in bile duct epithelial cells, Alvaro et al, 1993; 1997). This ionic movement mediated by secretin has been demonstrated to stimulate electrogenic Na⁺/HCO₃⁻ cotransport, leading to correction of intracellular pH (Ishiguro et al, 1993).

(d) Additionally, increased HCO₃⁻ levels are known to maintain

secreted proteins in mucus in a soluble, inactive state (Lee et al, 1999).

(e) Induce the translocation and insertion of AQP_s into the plasma membrane, allowing the movement of water into the lumen of the airways. In rat cholangiocytes, secretin has been demonstrated to cause a 60 % concentration dependent increase in osmotic H₂O permeability by inducing the translocation of AQP-1 water channels (Marinelli et al, 1997). This process will also be assisted by the osmotic diffusion of H₂O across the plasma membrane, due to the correction of Na⁺, Cl⁻, HCO₃⁻ and pH via the previously described mechanisms, in bronchial cells and the airway lumen.

In support of these proposals, we investigated the action of secretin on tertiary bronchus tissue samples.

Example 2: Functional activity of secretin receptor in tertiary bronchus.

Functional activity of the secretin receptor was examined in the tertiary bronchus and in epithelial cells derived from the tertiary bronchus of normal tissue.

In brief, non-branching regions of the human tertiary bronchus from non-CF donors were dissected, cut longitudinally and mounted in between the two compartments of a modified Ussing chamber to measure the short circuit current across the bronchial wall. Both luminal (airway) and basolateral membranes were bathed in oxygenated Krebs extracellular solution and the tissue voltage clamped to zero to allow changes in short circuit current in response to secretin to be measured. Amiloride at a concentration of 10 μM was initially added to the luminal membrane (Figure 5, point a) (as described by those in the art) to partially block the

predominant sodium ion current and unmask underlying ionic currents. On attainment of a stable base line, 3 μ M human secretin (supplied by Sigma, catalogue number S714) was added to the luminal membrane (Figure 5, point b).

5

Secretin was found to stimulate ionic movement in a manner consistent with the movement of a negatively charged ion (Cl^- and/or HCO_3^-) (Figure 5). Like secretin, addition of 10 μ M ATP or UTP to the apical membrane of the lung epithelium (Figure 5, point c) was demonstrated to stimulate a similar ionic movement of similar magnitude. These ATP and UTP mediated effects are widely reported in the literature to be due to the stimulation of a Ca^{2+} -activated Cl^- current via the P2Y2 purinoceptor. Both described agonists, at high concentrations produced responses of a similar magnitude.

10
15
20
25

Functional effects of the secretin receptor were probed in epithelial cells derived from the human tertiary bronchus. In brief, tertiary bronchial epithelial were isolated by overnight protease digestion and then cultured until confluence on Snapwell (Costar) permeable supports. The supports were mounted in a modified Ussing chamber, and both luminal and basolateral membranes were bathed in oxygenated Krebs extracellular solution. The cells were voltage clamped to zero to allow changes in short circuit current in response to secretin to be measured. As previously described, 10 μ M amiloride was initially added to the luminal membrane (Figure 6, point a) followed by the addition of 100 nM secretin to the luminal membrane (Figure 6, point b). Consistent with observations in the tertiary bronchus, secretin stimulated ionic movement in a manner consistent with the movement of a negatively charged ion (Cl^- and / or HCO_3^-). Furthermore, addition of 500 μ M glibenclamide, a recognised inhibitor of the CFTR failed to suppress secretin mediated ionic movement,

30

suggestive that a similar ionic movement would be observed in CF tertiary bronchial epithelial cells.

Example 3: Stimulation of ionic movement in CF bronchus.

5 The experiment described above was repeated using human CF tertiary bronchus, using 1 μ M secretin. The result obtained is shown in Figure 7. At point (a), addition of amiloride blocks the underlying sodium current. Addition of 1 μ M secretin at point (b) stimulates ionic movement of a
10 negatively charged ion, confirming the experimental observations in the non-CF bronchus.

Example 4: Stimulation of chloride ion efflux by secretin in tertiary bronchus.

15 Ionic movement in tertiary bronchial epithelial cells was further characterised with the use of the Cl⁻ specific fluorescent probe MQAE (n-(ethoxycarbonylmethyl)-6-methoxyquinolinium bromide; Molecular Probes). In brief, primary human, tertiary bronchial epithelial cells were isolated as previously described and cultured in a 96 well plate. On reaching confluence, cells were loaded overnight with 4 mM MQAE. Cells were washed in a chloride containing HEPES buffer, before passive Cl⁻ efflux was initiated by the addition of a Cl⁻ free buffer. Addition of nanomolar
20 concentrations of secretin stimulated Cl⁻ efflux, as determined by changes in MQAE fluorescence. Secretin mediated changes in fluorescence were abolished by the addition of the non-selective Cl⁻ channel blocker NPPB (5-nitro-2-(3-phenylpropyl-amino)benzoic acid; 100 μ M). The results are shown in Figure 8
25 which shows the effect of secretin at two concentrations (open diamonds 12.5 nM; closed circles 100 nM). 100nM Secretin mediated Cl⁻ efflux was inhibited by the non-selective Cl⁻ blocker NPPB (open circles). Unstimulated Cl⁻ efflux is demonstrated by the closed squares.

Example 5: Chromogranin A immunoreactivity in CF tertiary bronchus.

Cryostat section (5-7 μm) were cut from paraformaldehyde fixed, paraffin embedded sections of 5 CF and 3 non-CF tertiary bronchus, and stained with a mouse monoclonal chromogranin A antibody (Vector Laboratories Ltd; cat. No. NCL-CHROM), followed by IgG secondary antibody. The Vector Universal Elite ABC kit was used to detect antibody binding.

Adjacent sections were incubated with a no primary negative control and appeared free of non specific binding. In CF tissue stained with the chromogranin A antibody, a number of solitary endocrine cells were observed, compared to little or no staining the normal tissue and controls. This indicates the presence of S-type enteroendocrine cells which are a target for modulators of secretin expression. Thus agents which stimulate secretin production in such cells may be used in the treatment of CF.

Example 6: Endogenous regulation of secretin production.

The mRNA expression of NeuroD in the tertiary bronchus and lung parenchyma in 17 normal and 25 CF lung donors was examined. Primer probe sets were specifically designed for the detection of NeuroD (accession number BAA76603). Off line homology searches revealed no significant matches with gene sequences logged at Genbank. Forward and reverse primer and probe sequences for the transcription factor BETA2/NeuroD were as follows:

forward primer GAACGGCGCTAGACA (SEQ ID NO:7)
reverse primer GTCTCGATTTGGACAGCTTCTG (SEQ ID NO:8)
probe AGCAAAGGCACCACCTTGCGCA (SEQ ID NO:9)

Data (Figure 9) are expressed as mean \pm s.e. mean of the QRT-PCR threshold cycle, whereby the higher the threshold cycle,

the lower the copy number of the gene per 100ng tRNA.

A significant reduction in NeuroD mRNA expression was observed in the CF parenchyma, with similar low abundance levels present in the tertiary bronchus of both control and CF donors. Functionally, this reduction in NeuroD in the CF parenchyma may correlate with a decreased regulation and synthesis of endogenous secretin. Enhancement of the functional expression of NeuroD may therefore lead to an enhancement in the endogenous levels of secretin within the lung, and therefore an indirect mechanism for the treatment of cystic fibrosis using agonism of the secretin receptor.

In summary, stimulation of the secretin receptor may be used to correct the ionic and H₂O problems of CF, reducing the thickness of the mucus layer, and allowing mucociliary clearance from the lung.

References

- Alton E, Kitson C. (2000) Gene therapy for cystic fibrosis. Expert Opin Investig Drugs. 9; 1523-35. Review
- Alvaro, D., Cho, W.K., Mennone, A. & Boyer, J.L. (1993) Effects of secretin on intracellular pH regulation in isolated rat bile duct epithelial cells. J. Clin. Invest. 92; 1314-1325.
- Alvaro, D., Gigliozi, A., Fraioli, F., Romeo, R., Papa, E., Delle, Monache, M & Capocaccia, L. (1997) Hormonal regulation of bicarbonate secretion in the biliary epithelium. Yale J. Biol. 70; 417-426.
- Beyerman, H.C., Buijen van Weelderden, A.W., Chang, T.M., Chey, W.Y., Grossman, M.I., Kranenburg, P., Scratcherd, T., Solomon, T.E., Voskamp, D. (1981) Synthesis, biological and immunochemical properties of analogues of secretin and

vasoactive intestinal peptide (VIP): the vasectrins. *Life Sci.* **29**:895-902

Chang, C.H., Chey, W.Y., Chang, T.M. (2000). Cellular mechanism of sodium oleate-stimulated secretion of
5 cholecystokinin and secretin. *Am. J. Physiol. Gastrointest. Liver. Physiol.* **279**:G295-303

Chang, C.H., Chey, W.Y., Erway, B., Coy, DH, Chang TM (1998). Modulation of secretin release by neuropeptides in secretin-producing cells. *Am J Physiol* **275**; G192-202

10 Chang, T., Chang, C.H., Wagner, D.R. & Chey, W. (1999) Porcine Pancreatic Phospholipase A₂ Stimulates Secretin Release from Secretin-producing Cells. *J. Biol. Chem.* **274**; 10758-10764

15 Charlton, C. G., et al (1983) Secretin modulation of behavioural and physiological functions in the rat. *Peptides*, **4**; 73942.

Couvineau, A., Rouyer-Fessard, C., Fournier, A., St Pierre, S., Pipkorn, R., Laburthe, M. (1984) Structural requirements for VIP interaction with specific receptors in human and rat intestinal membranes: effect of nine partial sequences.

20 *Biochem Biophys Res Commun.* **121**:493-8

Dray-Charier, N., Paul, A., Veissiere, D., Mergy, M., Scoazec, J.Y., Capeau, J., Brahimi-Horn, C. & Housset, C. (1995) Expression of cystic fibrosis transmembrane conductance regulator in human gallbladder epithelial cells. *Lab Invest* **73**; 828-836.

25 Fortner, C.N., Lorenz, J.N. & Paul, R.J. (2001) Chloride channel function is linked to epithelium-dependent airway relaxation. *Am. J. Physiol. Lung Cell Mol Physiol.* **280**; L334-L341

30 Gallwitz, B., Ropeter, T., Morys-Wortmann, C., Mentlein, R., Siegel, E.G., Schmidt, W.E. (2000) GLP-1-analogues resistant

- to degradation by dipeptidyl-peptidase IV in vitro. *Regul Pept* 86; 103-11
- Gardner, J.D., Conlon, T.P., Fink, M.L., Bodanszky, M. (1976) Interaction of peptides related to secretin with hormone receptors on pancreatic acinar cells. *Gastroenterology* 71:965-70
- Gardner, J.D., Rottman, A.J., Natarajan, S. & Bodansky, M. (1979) Interaction of secretin 5-27 and its analogues with hormone receptors on pancreatic acini. *Biochim Biophys Acta.* 583; 491-503.
- Gespach, C., Bataille, D., Vauclin, N., Moroder, L., Wonsch, E., Rosselin, G. (1986) Secretin receptor activity in rat gastric glands. Binding studies, cAMP generation and pharmacology. *Peptides* 7; 155-163
- Gourlet, P., Rathé, J., De Neef, P., Cnudde, J., Vandermeers-Piret, M.C., Waelbroeck, M., Robberecht, P. (1998) Interaction of lipophilic VIP derivatives with recombinant VIP₁/PACAP and VIP₂/PACAP receptors. *Eur J Pharmacol.* 354; 105-11
- Gray, M.A., Greenwell, J.R. & Argent, B.E. (1988) Secretin-regulated chloride channel on the apical membrane of pancreatic duct cells. *J Membr Biol.* 105; 131-142.
- Haffer, B.M., Hocart, S.J., Coy, D.H., Mantey, S., Chiang, H.C. & Jensen, R.T. (1991) Reduced peptide bond pseudopeptide analogues of secretin. A new class of secretin receptor antagonists. *J. Biol. Chem.* 266; 316-322.
- Ishiguro, H., Steward, M.C., Lindsay, A.R. & Case, R.M. (1996) Accumulation of intracellular HCO₃⁻ by Na⁺/HCO₃⁻ cotransport in interlobular ducts from guinea-pig pancreas. *J. Physiol.* 495; 169-178.
- Jiang JG, Johnson C, Zarnegar R. (2001) PPAR gamma-mediated transcriptional upregulation of the hepatocyte growth factor

gene promoter via a novel composite cis-acting element. *J Biol Chem.* Apr 5.

Konig, W., Bickel, M., Karch, K., Teetz, V. & Uhmann. (1984) Analogues and fragments of secretin. *Peptides* 5; 189-193.

5 Konig, W., Bickel, Wissmann, H., Sandeur, J. (1986) New analogues of secretin. *Peptides* 7; 61-67

Konig et al (Gastroenterology, 1977, 72;797-800)

□
10 Lee, M.G., Wigley, W.C., Zeng, W., Noel, L.E., Marino, C.R., Thomas, P.J. & Muallem, S. (1999) Regulation of Cl⁻/HCO₃⁻ exchange by cystic fibrosis transmembrane conductance regulator expressed in NIH3T3 and HEK293 cells. *J. Biol. Chem.* 274; 3414-3421.

15 Lewis BS, Flugelman MY, Weisz A, Keren-Tal I, Schaper W. (1997) Angiogenesis by gene therapy: a new horizon for myocardial revascularization? *Cardiovasc Res.* 35: 490-7.

Marinelli, R.A., Pham, L., Agre, P. & LaRusso, N.F (1997) Secretin promotes osmotic water transport in rat cholangiocytes by increased aquaporin-1 water channels in plasma membrane. *J. Biol. Chem.* 272; 12984-12988.

20 Minakata, Y., Suzuki, S., Grygorczyk, C., Dagenais, A & Berthiaume, Y. (1998) Impact of beta-adrenergic agonist on Na⁺ channel and Na⁺-K⁺-ATPase expression in avleolar type II cells. *Am. J. Physiol.* 275; 414-422.

25 Morse MA. (2001) Technology evaluation: VEGF165 gene therapy. Valentis Inc. *Curr Opin Mol Ther.* 3; 97-101. Review.

Mutoh, H., Fung, B.P., Naya, F.J., Tsai, M.J., Nishitani, J. & Leiter, A.B (1997) The basic helix-loop-helix transcription factor BETA/NeuroD is expressed in mammalian enterendocrine cells and activates secretin gene expression. *Proc. Natl. Acad. Sci.* 94; 3560-3564.

Mutt, V., Jorpes, J.E. Magnusson, S. (1970) Structure of porcine secretin. The amino acid sequence. *Eur. J. Biochem.* 15; 513-519

- 5 Ng, S.S., Pong, R.T., Chow, B.K., Cheng, C.H. (1999) Real time evaluation of human secretin receptor activity using cytosensor microphysiometry. *J. Cell. Biochem.* 72; 517-527
- Pendino, J.C., Nannini L.J., Chapman, K.R., Slutsky, A. & Molfino, N.A. (1998). Effect of inhaled furosemide in acute asthma. *J. Asthma* 35; 89-93
- Robberecht, P., De Neef, P., Waelbroeck, M., Conius, J.C., Scemama, J.L., Fourmy, D., Pradayrol, L., Vaysse, N., Christophe, J. (1988) Secretin receptors in human pancreatic membrnaes. *Pancreas* 3; 529-535
- 15 Schmidt WE, Seebeck J, Höcker M, Schwarzhoff R, Schäfer H, Fornefeld H, Morys-Wortmann C, Fölsch UR, Creutzfeldt W. (1993) PACAP and VIP stimulate enzyme secretion in rat pancreatic acini via interaction with VIP/PACAP-2 receptors: additive augmentation of CCK/carbachol-induced enzyme release.
- 20 *Pancreas* 8; 476-87
- Sexton, P.M. (1999) Recent advances in our understanding of peptide hormone receptors and RAMPS. *Curr. Opin. Drug Disc. Dev.* 2; 440-448
- Staun-Olsen, P., Ottesen, B., Gammeltoft, S. & Fahrenkrug, J. 25 (1986) VIP binding sites on synaptosomes from rat cerebral cortex: structure-binding relationship. *Peptides* 7 Suppl 1; 181-186.
- 30 Suzuki S, Kawai K, Ohashi S, Mukai H, Yamashita K (1989) Comparison of the effects of various C-terminal and N-terminal fragment peptides of glucagon-like peptide-1 on insulin and glucagon release from the isolated perfused rat pancreas. *Endocrinology* 125; 3109-14

Turner, P.R., Bambino, T. & Nissenson, R.A. (1996) A putative selectivity filter in the G-protein-coupled receptors for parathyroid hormone and secretin. *J.Biol. Chem.* 271; 9205-9208

Waelbroeck, M., Robberecht, P., De Neef, P., Chatelain, P. & Christophe, J. (1981) Binding of vasoactive intestinal peptide and its stimulation of adenylyl cyclase through two classes of receptors in rat liver membranes. Effect of 12 secretin analogues and 12 secretin fragments. *Biochim Biophys Acta* 678; 83-90.

10 Wearly, L.L (1991) Recent progress in protein and peptide delivery by non-invasive methods. *Crit. Rev. Ther. Drug. Carrier System.* 8; 333

West J, Rodman DM. (2001) Gene therapy for pulmonary diseases. *Chest.* 119; 613-7.

15 Xue, W., Chey, W.Y., Sun, Q., Chang, T.M. (1993) Characterisation of secretin release in secretin cell-enriched preparation isolated from canine duodenal mucosa. *Dig Dis Sci.* 38; 344-52

Yanaihara, N., Kubota, M., Sakagami, M., Sato, H., Mochizuki, T. (1977) Synthesis of phenolic group containing analogues of porcine secretin and their immunological properties. *J Med Chem* 20; 648-55

20 Yang Y, Quitschke WW, Brewer GJ. (1998) Upregulation of amyloid precursor protein gene promoter in rat primary hippocampal neurons by phorbol ester, IL-1 and retinoic acid, but not by reactive oxygen species. *Brain Res Mol Brain Res.* 60; 40-9.