## Introduction to machine learning

Maksim Kretov

Lecture 3: Examples of methods

### Course information

#### Course

10 lectures + 2 seminars; February-May 2017.

#### Schedule and up-to-date syllabus

https://goo.gl/xExEuL

#### **Contact information and discussion**

Maksim Kretov (<a href="mailto:kretovmk@gmail.com">kretovmk@gmail.com</a>)

Slack group: <a href="https://miptmlcourse.slack.com">https://miptmlcourse.slack.com</a>

to get an invite, send e-mail to <a href="mailto:kretovmk@gmail.com">kretovmk@gmail.com</a>.

## Plan of the course

Math and basics of ML (1-2)Theoretical Some of ML methods **Today** tasks Seminar on ML basics (4)Basics of neural networks (5) **Start playing with** NNs (6)Deep learning overview Training deep networks (7)Practical tasks DL for Computer Vision (8-9)**Solving more** complex ML DL for time series prediction (10-11)tasks using NNs Concluding seminar (12)

## Plan for the lecture

- A. Previous lecture
- B. Discriminative models
  - 1. Linear regression
- C. Generative models
  - 1. Naïve Bayes classifier
- D. Motivation for deep learning
- E. Homework

### Machine learning tasks: Supervised learning

Given:  $D = \{(\mathbf{x}_i, y_i), i = 1,...N\}$ 

Desired output: policy  $\delta: D \to A$ 

### High-level steps:

- 1. Select model M parameterized by  $\theta \Rightarrow p(\mathbf{x}, y | M, \theta)$
- 2. Infer best  $\theta$  that explains given dataset D or calculate posterior distribution
- 3. Specify loss function L(y, a)
- 4. Design decision procedure  $\delta$

#### **Bayesian approach**

Parameters  $\theta$  of  $p(\mathbf{x}, y | \theta)$  are treated as random variables.

#### Frequentist approach

Parameters  $\theta$  of  $p(\mathbf{x}, y|\theta)$  are unknown but fixed values.

### **Bayesian methods**

- 1. Bayesian model selection:  $p(m|D) = \frac{p(D|m)p(m)}{\sum_{m \in M} p(D|m)p(m)}$ Select the simplest possible model
- 2. Infer distribution of  $\theta$  conditioned on given dataset D:

2. Infer distribution of 
$$\theta$$
 conditioned on given dataset  $D$ :
$$p(\theta|D,m) = \frac{p(D|\theta,m)p(\theta|m)}{p(D|m)} = \frac{\text{likelihood} * \text{prior}}{\text{evidence}} \Rightarrow \text{Account for our uncertainty about } \theta$$

$$\Rightarrow \underline{p(\mathbf{x},y|D)} = \int p(\mathbf{x},y|\theta)p(\theta|\mathbf{D})d\theta \quad \text{Hereinafter omit } m \text{ for brevity}$$

$$\Rightarrow p(\mathbf{x}, y|D) = \int p(\mathbf{x}, y|\theta)p(\theta|\mathbf{D})d\theta$$
 Hereinafter omit  $m$  for brevity

$$p(\mathbf{x}, y|D) = p(y|\mathbf{x}, D)p(\mathbf{x}|D) = p(\mathbf{x}|y, D)p(y|D)$$
 Discriminative and Generative models

- $p(\mathbf{x}, y|D) = \underline{p(y|\mathbf{x}, D)}p(\mathbf{x}|D) = p(\mathbf{x}|y, D)p(y|D)$  Discriminative and Generative modes 3. Specify loss function L(y, a). For example, accuracy  $L(y, a) = \begin{cases} 0 & \text{if } y = a \\ 1 & \text{if } y \neq a \end{cases}$
- 4. Design decision procedure:  $\delta(\mathbf{x}) = \operatorname{argmin}_{a \in A} \mathbb{E}_{p(y|\mathbf{x},D)}[L(y,a)]$

### Frequentist / Appr. Bayesian methods

Inferring distribution  $p(\mathbf{x}, y | \theta)$  and using it for designing policy  $\delta(\mathbf{x})$ 

- 1. Select model by cross-validation.
- 2. Summarize posterior distribution: MLE, MAP.

For example, MLE:  $\theta_{opt} = \operatorname{argmax}_{\theta} p(\boldsymbol{D}|\theta)$ 

$$\Rightarrow p(\mathbf{x}, y | \theta_{opt})$$

- 3. Specify loss function L(y, a). For example, accuracy  $L(y, a) = \begin{cases} 0 & \text{if } y = a \\ 1 & \text{if } y \neq a \end{cases}$
- 4. Design decision procedure:  $\delta(\mathbf{x}) = \operatorname{argmin}_{a \in A} \mathbb{E}_{p(y|\mathbf{x},D)}[L(y,a)]$

### Frequentist method: Empirical Risk Minimization

- 1. Select model by cross-validation.
- 2. Select parametric function  $f(\mathbf{x}|\theta)$  to be used for prediction.
- 3. Specify loss function L(y, a). For example: MSE.
- 4. Select optimal parameters  $\theta$  by minimizing empirical risk w.r.t.  $\theta$ :

$$\theta_{opt} = \operatorname{argmin}_{\theta} \frac{1}{N} \sum_{n=1}^{N} L(y_n, f(\mathbf{x}_n | \theta)) + \lambda P(\theta)$$

Coefficient  $\lambda$  is selected by cross-validation.

### **Example: Linear Regression (bias ignored for simplicity)**

$$p(\mathbf{x}, y | \tilde{\theta}) = p(y | \mathbf{x}, \theta') p(\mathbf{x} | \pi)$$
$$\tilde{\theta} = \pi \cup \theta' = \pi \cup \theta \cup \sigma^2$$

Discriminative model, not interested in inputs' distribution

### **Model specification**

$$p(y|\mathbf{x},\theta') = N(y|\theta^T\mathbf{x},\sigma^2)$$

basic model

$$p(y|\mathbf{x},\theta') = N(y|\theta^T \varphi(\mathbf{x}), \sigma^2)$$

basis function expansion

$$N(y|\theta^T \mathbf{x}, \sigma^2) = \left(\frac{1}{2\pi\sigma^2}\right)^{1/2} \exp\left(-\frac{1}{2\sigma^2}(y - \theta^T \mathbf{x})^T(y - \theta^T \mathbf{x})\right)$$

For example, polynomial basis functions:  $\varphi(x) = (1, x, x^2, ... x^d)$ 

#### **Model selection**

Cross-validation for models of different complexity





#### MLE estimate of parameters of LR

Maximize likelihood of given dataset  $D: \tilde{\theta}_{opt} = \operatorname{argmax}_{\tilde{\theta}} p(D|\tilde{\theta})$ 

$$\log p(D|\tilde{\theta}) = \sum_{i} \log p(y_i|\mathbf{x}_i,\theta') + \left[\sum_{i} \log p(\mathbf{x}_i|\pi)\right] \quad \text{Will not model input distribution}$$
 for discriminative model

$$NLL(\theta) \triangleq -\sum_{i} \log p(y_i | \mathbf{x}_i, \theta')$$
 => task is to minimize  $NLL(\theta)$ 

$$\begin{aligned} & \text{NLL}(\theta) \triangleq -\sum_{i} \log p(y_{i} | \mathbf{x}_{i}, \theta') & => \text{task is to minimize NLL}(\theta) \\ & \text{NLL}(\theta) = C + \frac{1}{2\sigma^{2}} \sum_{i} (y_{i} - \theta^{T} \mathbf{x}_{i})^{T} (y_{i} - \theta^{T} \mathbf{x}_{i}) = C + \frac{1}{2\sigma^{2}} (\mathbf{y} - \mathbf{X}\theta)^{T} (\mathbf{y} - \mathbf{X}\theta) = \\ & = C' + \frac{1}{2\sigma^{2}} \theta^{T} (\mathbf{X}^{T} \mathbf{X}) \theta - \frac{1}{\sigma^{2}} \theta^{T} (\mathbf{X}^{T} \mathbf{y}) \Rightarrow \frac{\partial \text{NLL}(\theta)}{\partial \theta} = \frac{1}{\sigma^{2}} (\mathbf{X}^{T} \mathbf{X}) \theta - \frac{1}{\sigma^{2}} \mathbf{X}^{T} \mathbf{y} \end{aligned}$$

$$= C' + \frac{1}{2\sigma^2} \theta^T (\mathbf{X}^T \mathbf{X}) \theta - \frac{1}{\sigma^2} \theta^T (\mathbf{X}^T \mathbf{y}) \Rightarrow \frac{\partial \text{NLL}(\theta)}{\partial \theta} = \frac{1}{\sigma^2} (\mathbf{X}^T \mathbf{X}) \theta - \frac{1}{\sigma^2} \mathbf{X}^T \mathbf{y}$$

Setting gradient w.r.t.  $\theta$  to zero:  $\theta = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$ 

#### Bayesian decision theory for continuous parameters

Quadratic loss:  $L(y, a) = (y - a)^2$ 

$$\rho(a|\mathbf{x}) \triangleq \mathrm{E}_{p(y|\mathbf{x},\theta')}[L(y,a)] = \mathrm{E}_{p(y|\mathbf{x},\theta')}[y^2] - 2a\mathrm{E}_{p(y|\mathbf{x},\theta')}[y] + a^2$$

Let's find optimal action:

$$\frac{\partial \rho(a|\mathbf{x})}{\partial a} = -2\mathbf{E}_{p(y|\mathbf{x},\theta')}[y] + 2a \Rightarrow a = \mathbf{E}_{p(y|\mathbf{x},\theta')}[y] = \overline{y} \qquad \frac{\text{Optimal}}{\text{mean of}}$$

Optimal actions is to take mean of prediction variable

#### MLE solution for linear regression:

$$p(y|\mathbf{x}, \theta') = N(y|\theta^T\mathbf{x}, \sigma^2) \Rightarrow \text{mean is the best prediction}$$

$$\theta = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$
 **Exercise:** find formula for variance

#### **Next steps**

MAP estimate for  $\theta$ : add prior  $p(\theta) = N(\theta|0, E * \sigma_0^2) =>$  Ridge regression E – unit matrix,  $\sigma_0^2$ - strength of prior.

**Exercise:** Find MAP solution for simplified linear regression.

### Bayesian simplified linear regression

 $y=C+\varepsilon$  => task is to estimate the constant using noisy measurements Model specification:  $p(y|\theta)=N(y|\theta,\sigma_{\varepsilon}^2)$ 

=> Now need to calculate posterior distribution for the mean:  $p(\theta|D)$ 

### Bayesian simplified linear regression: posterior

Prior for parameter  $\theta$ :  $p(\theta) = N(\theta_0, \sigma_0^2)$ 

Calculating posterior:

$$p(\theta|D) = \frac{p(\theta)}{p(\mathbf{D})} \prod_{n=1}^{N} \frac{1}{\sqrt{2\pi}\sigma_{\varepsilon}} \exp\left(-\frac{(y_n - \theta)^2}{2\sigma_{\varepsilon}^2}\right) =$$

$$= \frac{p(\theta)}{p(D)} \prod_{n=1}^{N} \frac{1}{\sqrt{2\pi}\sigma_{\varepsilon}} \exp\left(-\frac{(y_n - \theta)^2}{2\sigma_{\varepsilon}^2}\right) = \frac{1}{\sqrt{2\pi}\sigma_N} \exp\left(-\frac{(\theta - \overline{\theta}_N)^2}{2\sigma_N^2}\right)$$

$$\bar{\theta}_N = \frac{N\sigma_0^2 \bar{y}_N + \sigma_\varepsilon^2 \theta_0}{N\sigma_0^2 + \sigma_\varepsilon^2} \xrightarrow{N \to \infty} \bar{y}_N \qquad \qquad \sigma_N^2 = \frac{\sigma_\varepsilon^2 \sigma_0^2}{N\sigma_0^2 + \sigma_\varepsilon^2} \xrightarrow{N \to \infty} 0 \qquad \qquad \bar{y}_N = \frac{1}{N} \sum_n y_n$$

### Bayesian simplified linear regression: prediction

Joint distribution:

$$p(y|D) = \int p(y|\theta)p(\theta|D)d\theta =$$

$$= \frac{1}{2\pi\sigma_N\sigma_{\varepsilon}} \int \exp\left(-\frac{(y-\theta)^2}{2\sigma_{\varepsilon}^2} - \frac{(\theta-\overline{\theta}_N)^2}{2\sigma_N^2}\right)d\theta =$$

$$= N(y|\overline{\theta}_N, \sigma_{\varepsilon}^2 + \sigma_N^2)$$

Selecting an optimal action can be done using the same reasoning as we used above for MLE.

Exercise: Check formulas for prediction.

### **Empirical risk minimization for usual linear regression**

Without regularization penalty.

Prediction function:  $y = \theta^T \mathbf{x}$ 

Loss function:  $L(y, a_N) = (y - a)^2$ 

$$\theta_{opt} = \operatorname{argmin}_{\theta} \frac{1}{N} \sum_{n=1}^{N} L(y_n, f(\mathbf{x}_n | \theta)) = \operatorname{argmin}_{\theta} (\mathbf{y} - \mathbf{X}\theta)^T (\mathbf{y} - \mathbf{X}\theta) \Rightarrow$$

=> Same solution as MLE estimate:  $\theta = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$ 

**Exercise:** Check that regularization results in the same solution as MAP estimate with Gaussian prior.

# 10 minute break..

#### Naïve Bayes classifier example

"Naïve" because key assumption is conditional independence of features.

Consider supervised learning setting:

 $\mathbf{x}$  – binary feature vector (index j), y – classification label (index c)

$$p(\mathbf{x}, y | \tilde{\theta}) = p(y | \pi) p(\mathbf{x} | y, \theta) = p(y | \pi) \prod_{j} p(x_j | y, \theta_j) =$$
Generative classifier

$$= \prod_{c} \pi_{c}^{\mathrm{I}(y=c)} \prod_{j} \prod_{c} p(x_{j}|\theta_{jc})^{\mathrm{I}(y=c)}$$

Parameters:  $\pi = \{\pi_c\}, \theta = \{\theta_{jc}\}, \tilde{\theta} = \pi \cup \theta$ 

#### Naïve Bayes classifier example

$$p(\mathbf{x}, y | \tilde{\theta}) = \prod_{c} \pi_{c}^{I(y=c)} \prod_{j} \prod_{c} p(x_{j} | \theta_{jc})^{I(y=c)} \Rightarrow$$

$$\Rightarrow \log p(D | \tilde{\theta}) = \sum_{c} N_{c} \log \pi_{c} + \sum_{j} \sum_{c} \sum_{i:y_{i}=c} \log p(x_{ij} | \theta_{jc})$$
 likelihood

Now we can use maximum likelihood estimator to obtain  $\tilde{\theta}_{opt}$  and get joint distribution  $p(\mathbf{x}, y | \tilde{\theta})$ . After that for any new example:

$$p(y|\mathbf{x}^*, \widetilde{\theta}_{opt}) = \frac{p(\mathbf{x}^*|y, \widetilde{\theta}_{opt})p(y|\widetilde{\theta}_{opt})}{p(\mathbf{x}^*)} = \frac{p(\mathbf{x}^*|y, \widetilde{\theta}_{opt})p(y|\widetilde{\theta}_{opt})}{\sum_{v} p(\mathbf{x}^*|y, \widetilde{\theta}_{opt})p(y|\widetilde{\theta}_{opt})} \qquad \text{new example}$$

#### MLE estimate for parameters of NBC

Maximize likelihood of given dataset  $D: \tilde{\theta}_{opt} = \operatorname{argmax}_{\tilde{\theta}} p(D|\tilde{\theta})$ 

$$\log p(D|\tilde{\theta}) = \sum_{c} N_c \log \pi_c + \sum_{j} \sum_{c} \sum_{i:y_i=c} \log p(x_{ij}|\theta_{jc})$$

**Constraints:**  $\sum_c \pi_c = 1$ ,  $\sum_c \theta_{jc} = 1 \ \forall j \Rightarrow$  two independent maximization tasks Using Lagrange multipliers:

$$\hat{\pi}_c = N_c/N$$
 (prior on classes)  $\hat{\theta}_{jc} = N_{jc}/N_c$  (conditional prob. of feature)

Problem with MLE estimation: overfitting, especially if dataset is small

Exercise: prove formulas.

#### **Example: Are they Scottish?**

Features = (shortbread, lager, whiskey, football). Dataset (examples X features):

English:

| 0 | 0 | 1 | 1 |
|---|---|---|---|
| 1 | 0 | 1 | 0 |
| 1 | 1 | 0 | 1 |

Scottish:

| 1 | 0 | 1 | 1 |
|---|---|---|---|
| 1 | 1 | 0 | 0 |
| 1 | 1 | 1 | 0 |

=> Following parameters:

$$p(x_1 = 1|english) = 2/3$$
  $p(x_1 = 1|scottish) = 1$   
 $p(x_2 = 1|english) = 1/3$   $p(x_2 = 1|scottish) = 2/3$   
 $p(x_3 = 1|english) = 2/3$   $p(x_3 = 1|scottish) = 2/3$   
 $p(x_4 = 1|english) = 2/3$   $p(x_4 = 1|scottish) = 1/3$ 

### **Example: Are they Scottish?**

New input:  $\mathbf{x}^* = (1,1,1,0)$ : like shortbread, lager, whiskey and doesn't watch football

$$p(s|\mathbf{x}^*) = \frac{p(\mathbf{x}^*|s)p(s)}{p(\mathbf{x}^*)} = \frac{p(\mathbf{x}^*|s)p(s)}{p(\mathbf{x}^*|s)p(s) + p(\mathbf{x}^*|e)p(e)} =$$

$$= \frac{\left[1*2/3*2/3*(1-1/3)\right]*1/2}{\left[1*2/3*2/3*(1-1/3)\right]*1/2 + \left[2/3*1/3*2/3*(1-2/3)\right]*1/2} = \frac{6}{7}$$

We calculated  $p(y|\mathbf{x}^*)$ , now need to find decision function  $\delta(\mathbf{x}^*)$ 

\* Example from [4], simplified 22

#### **Example: Are they Scottish?**

$$\mathbf{x}^* = (1,1,1,0)$$

$$p(s|\mathbf{x}^*) = \frac{6}{7} \quad p(e|\mathbf{x}^*) = \frac{1}{7}$$

Select loss function: accuracy 
$$L(y, a) = \begin{cases} 0 & \text{if } y = a \\ 1 & \text{if } y \neq a \end{cases}$$

$$\delta(\mathbf{x}) = \operatorname{argmin}_{a \in A} \mathbb{E}_{p(y|\mathbf{x})} [L(y, a)] = \operatorname{argmin}_{a \in A} [0 * p(y = a|\mathbf{x}) + 1 * p(y \neq a|\mathbf{x})]$$
$$= \operatorname{argmin}_{a \in A} [1 - p(y = a|\mathbf{x})] = \operatorname{argmax}_{a \in A} [p(y = a|\mathbf{x})]$$

**Nation** = 
$$\operatorname{argmax}_a p(y = a | \mathbf{x}) = Scottish$$

\* Example from [4], simplified

### **Bayesian NBC: motivation**

#### Why need Bayes?

if some feature is active in all training examples, any new example  $\mathbf{x}^*$  where this feature is not active does not belong to any class.

#### What's new in comparison with MLE?

Point estimate is replaced with full posterior distribution  $p(\tilde{\theta}|D)$ .

=> To be Bayesian, we need to specify prior on parameters  $\tilde{\theta}$ .

### **Bayesian NBC: prior for parameters**

$$p(\tilde{\theta}) = p(\pi) \prod_{j} \prod_{c} p(\theta_{jc}) = Dir(\alpha = 1) \prod_{j} \prod_{c} Beta(\beta_0 = 1, \beta_1 = 1)$$
 (uniform priors)





\* Pictures from [3]

### **Bayesian NBC: calculating posterior**

For NBC can be factorized:

$$p(\tilde{\theta}|D) = p(\pi|D)p(\theta|D)$$

Prior is **conjugate** prior for the likelihood, if prior and posterior have the same form

$$p(\pi|D) \sim \text{Dir}(\boldsymbol{\alpha} = 1) \prod_{c} \pi_{c}^{I(y=c)} \sim \text{Dir}(N_1 + \alpha_1, ... N_C + \alpha_C)$$

$$p(\theta_{jc}|D) \sim \text{Beta}(\beta_0 = 1, \beta_1 = 1)\theta_{jc}^{N_{jc}} \sim \text{Beta}(\beta_0 = N_C - N_{jc} + 1, \beta_1 = N_{jc} + 1)$$

### **Bayesian NBC: prior vs. posterior**

Posterior for  $p(\theta_{jc}|D)$ 



#### **Bayesian NBC: prediction**

$$p(y = c|\mathbf{x}^*, D) = \frac{p(\mathbf{x}^*|y, D)p(y|D)}{p(\mathbf{x}^*|D)} \sim p(\mathbf{x}^*|y, D)p(y|D)$$

$$p(\mathbf{x}^*|y, D) = \int p(\mathbf{x}^*|y, \theta)p(\theta|D)d\theta$$

$$p(y|D) = \int p(y|\pi)p(\pi|D)d\pi$$

$$p(y = c|\mathbf{x}^*, D) \sim \left(\int \text{Cat}(y|\pi)p(\pi|D)d\pi\right) \left(\prod_j \int \text{Ber}(x_j^*|y, \theta_{jc})p(\theta|D)d\theta_{jc}\right)$$

#### **Answer:**

$$p(y=c|\mathbf{x}^*,D) \sim \bar{\pi}_c \prod_j (\bar{\theta}_{jc})^{\mathrm{I}(x_j=1)} (1-\bar{\theta}_{jc})^{\mathrm{I}(x_j=0)}$$
 same as MLE estimate for  $p(y|\mathbf{x},\tilde{\theta})$ , 
$$\bar{\theta}_{jc} = \frac{N_{jc} + \beta_1}{N_c + \beta_0 + \beta_1} \qquad \bar{\pi}_c = \frac{N_c + \alpha_c}{N + \alpha_0}$$
 except for effect from the prior.

\* Pictures from [3]

# D. Motivation for deep learning

**Deep Learning:** machine learning algorithms based on learning multiple levels of representation / abstraction.\*

Traditional methods: local smoothness assumption

Deep learning methods: complement with "compositionality" prior.

### => Just one core idea of deep learning:

Beat curse of dimensionality. Learning distributed representation can be exponentially more efficient than learning set of features that are mutually exclusive.

\* Definition from NIPS 2015 Deep Learning tutorial

### Next week

### Concluding seminar on introduction to ML

#### Questions? Options:

More examples: Logistic regression, SVM

Estimators (examples of bias-variance tradeoff and regularization)

Bayesian model selection

Other?

### E. Homework

#### For all:

- 1. ML: [3] ch. 3, 7 or [4] ch. 10, 13, 18 or [5] ch. 3, 7.
- 2. Exercises from presentation.

### Refs

1. Thorough review of relevant math topics:

http://info.usherbrooke.ca/hlarochelle/ift725/review.pdf

- 2. Ian Goodfellow, Yoshua Bengio and Aaron Courville, Deep Learning.
- 3. Kevin P. Murphy, Machine Learning: A probabilistic perspective.
- 4. David Barber, Bayesian Reasoning and Machine Learning.
- 5. Sergios Theodoridis, Machine Learning: A Bayesian and optimization perspective.

# Auxiliary slide #1

### Bayesian linear regression: non-simplified

Joint distribution:

$$p(y|D) = \int p(y|\theta)p(\theta|D)d\theta$$

$$p(\mathbf{x}, y|D) = p(y|\mathbf{x}, D)p(\mathbf{x}|D)$$

$$\int p(\mathbf{x}, y|\theta)p(\theta|D)d\theta = \int p(y|\mathbf{x}, \theta)p(\mathbf{x}|\pi)p(\pi|D)p(\theta|D)d\pi d\theta =$$

$$= \int p(y|\mathbf{x}, \theta)p(\theta|D)d\theta \int p(\mathbf{x}|\pi)p(\pi|D)d\pi = p(\mathbf{x}|D) \int p(y|\mathbf{x}, \theta)p(\theta|D)d\theta$$
=> Distribution for output variable:
$$p(y|\mathbf{x}, D) = \int p(y|\mathbf{x}, \theta)p(\theta|D)d\theta$$