

Ministério da Educação Universidade Federal do Pará Faculdade de Engenharia Florestal

D	isciplina:	Experimentação	Florestal –	Delineamento	Inteiramente	Casualizado

Docente: Deivison Venicio Souza

Discouter	Matricalla
Discente:	Matrícula:

Delineamento Inteiramente Casualizado (DIC)

1 - Estudo de Caso I - Competição de progênies (Pimentel-Gomes; Garcia, 2002): Um experimento de competição de 10 progênies de *Eucalyptus saligna* foi conduzido sob o delineamento inteiramente casualizado (DIC), com 4 repetições. Os dados apresentados na tabela a seguir correspondem aos valores médios de diâmetro a 1,30m do solo, em centímetros, nas parcelas experimentais. Assim, pede-se:

Progênie	Repetição	$Y_{ij} = d$	m	ti	e _{ij}	t _i ²	e _{ij} ²
P1	R1	16			- "		,
P1	R2	16.4					
P1	R3	14.1					
P1	R4	11.7					
P2	R1	14.3					
P2	R2	14.5					
P2	R3	13.8					
P2	R4	14.6					
P3	R1	14.7					
P3	R2	15.6					
P3	R3	11.6					
P3	R4	15					
P4	R1	13.6					
P4	R2	13.1					
P4	R3	14.7					
P4	R4	15.1					
P5	R1	11.6					
P5	R2	10.5					
P5	R3	15.9					
P5	R4	14					
P6	R1	11					
P6	R2	15					
P6	R3	10.7					
P6	R4	13					
P7	R1	13.1					
P7	R2	10.3					
P7	R3	14.3					
P7	R4	10.5					
P8	R1	10.3					
P8	R2	13.2					
P8	R3	10.2					
P8	R4	13					
P9	R1	8.5					
P9	R2	8.6					
P9	R3	9.5					
P9	R4	9.4					
P10	R1	8.2					
P10	R2	8.4					
P10	R3	9.3					
P10	R4	9.2					

- a) Faça um diagnóstico visual (elabore gráficos!) dos dados experimentais.
- b) Elaborar as hipóteses da estatística F da ANOVA.
- c) Realizar a ANOVA do experimento em DIC e concluir sobre a estatística F (Obs.: Use a solução 2!).

Fonte de Variação	Graus de Liberdade	Soma de Quadrados	Quadrado Médio	F-Snedecor	F-Crítico
Tratamentos (Entre Tratamentos)	I-1	$SQ_{Trat.}$	$SQ_{Trat.}/I-1$	$\frac{QM_{Trat.}}{QMR}$	$\mathbf{F}_{[(I-1);\;I(J-1)];\alpha}$
Resíduos (Dentro Tratamentos)	I(J-1)	SQR	SQR/I(J-1)		
Total	IJ-1	SQ_{Tot} .			

$$SQ_{Tot.} = \sum_{i=1}^{I} \sum_{j=1}^{J} y_{ij}^2 - \frac{1}{IJ} \left(\sum_{i=1}^{I} \sum_{j=1}^{J} y_{ij} \right)^2$$

$$SQ_{Trat.} = rac{1}{J} \sum_{i=1}^{I} \left(\sum_{j=1}^{J} y_{ij}
ight)^2 - rac{1}{IJ} \left(\sum_{i=1}^{I} \sum_{j=1}^{J} y_{ij}
ight)^2$$