Search for Flavor Changing Neutral Currents in Top Quark Decays

B-Tagging Working Point and $e \rightarrow \gamma$ Fakes

Jason Barkeloo

September 12, 2019

Top Quark Decays in the SM

- ► $t \rightarrow bW \approx 99.83\%$
- ► $t \rightarrow sW \approx 0.16\%$
- ► $t \rightarrow dW \approx 0.01\%$

- $t \to q_{u,c} X \approx 10^{-17} 10^{-12}$
- Limits on $t \rightarrow \gamma q$ processes: [JHEP 04 (2016) 035]
 - ► $t \to \gamma u < 1.3 \times 10^{-4}$
 - $t \rightarrow \gamma c < 1.7 \times 10^{-3}$

FCNC: What are we looking for? $t\bar{t} \to W(\to l\nu)b + q\gamma$

Will further investigate BJets here.

- ► Final state topology
 - One Neutrino, from W
 - ► One Lepton, from W
 - ► One B-jet, SM Top
 - ► One Photon, FCNC Top
 - ► One Jet, FCNC Top

B-tagging

- ▶ B Hadrons travel a measureable distance before decay
- Tracks originate from outside of interaction point (Seconday Vertex)
- Backtracking tracks in displaced vertex gives an impact parameter
- ▶ Decay chain MVA attempts to reconstruct decay of the jet
- Outputs of these algorithms used in a BDT to determine if a Jet is from a b-quark

My2c10

MV2c10 is used to tag b-jets. The c10 implies a 10% c-jet fraction in the background training sample. Can use various fixed-cut working points for b-jet identification.

Using a different working point can change which jets are identified as originating from b-quarks in the analysis.

Neural Network Reminder

Branching ratio with Significance = 2: 1.18e-5

Fake Rate Studies

Want to be able to correct the number of fake photons predicted in \mbox{MC} to those present in \mbox{Data}

Fake Rate Object Selection

- ► Want to calculate fake rate in events which could enter the signal region.
- ► Create 2 control regions: $Z \rightarrow ee$ and $Z \rightarrow e\gamma$
- ► Require:
 - ► Common Object Selection (MET, Jets, Triggers, etc.)
 - ► Exactly 1Bjet
 - lacktriangle Z
 ightarrow ee : 2 Opposite Sign Electrons, 86.1 GeV $< m_{e^+e^-} <$ 96.1 GeV
 - $ightharpoonup Z
 ightarrow e \gamma$:1 Electron, \geq 1 Photon, 86.1 GeV $< m_{e\gamma} <$ 96.1 GeV
- ► Tag and Probe Method used

Truth Study / Scale Factor

Catagories: Simple mis-match, mis-match to truth photon (Reco pt $\geq 10\%$ higher than truth), non prompt photon, prompt photons

$m_{ee}, m_{e\gamma}$

Data and MC

► Monte Carlo

Scale Factor

$$\mathsf{FR}^{\mathsf{e} ext{-}\mathsf{fake}} = rac{N_{e,\gamma}}{N_{e,e} + N_{e,\gamma}}$$
 $\mathsf{SF}^{\mathsf{e} ext{-}\mathsf{fake}}_{\mathsf{FR}} = rac{\mathsf{FR}^{\mathsf{e} ext{-}\mathsf{fake}}_{\mathsf{data}}}{\mathsf{FR}^{\mathsf{e} ext{-}\mathsf{fake}}_{\mathit{MC}}}$

Basic Scale Factor can be calculated for the entire spectrum:

 $\begin{array}{l} \mathsf{FR}^{\text{e-fake}}_{\text{data}} = 0.201 \\ \mathsf{FR}^{\text{e-fake}}_{\text{MC}} = 0.212 \\ \mathsf{SF}^{\text{e-fake}}_{\text{FR}} = 0.953 \end{array}$

Scale Factors As Functions of Probe pt and eta

Good to check but in practice these are done using 2D Scale Factors

Data and MC Distributions

Next Steps - 2D Fake Rate

Outlook

- ► As always, still lots to be done
- Fake Rate: $e \to \gamma$ has been investigated, further systematic investigations will continue
- ▶ Fake Rate: $j \rightarrow \gamma$ to be investigated soon
- Was able to squeak an extra factor of 2 out of Neural Network since I had to redo it for working points anyway
- ▶ Questions?

Backup

FCNC Diagrams

NN Input Variable Correlations

Neural Network Model Inputs

Separation = $\sum_{i}^{bins} \frac{n_{si} - n_{bi}}{n_{si} + n_{bi}}$

mu+jets channel

Variable	Separation
photon0iso	41.18
mqgam	28.27
photon0pt	24.07
mtSM	11.60
mlgam	7.56
deltaRjgam	5.64
deltaRbl	4.42
MWT	3.34
ST	3.30
nuchi2	3.12
jet0pt	2.81
njets	2.07
smchi2	1.89
wchi2	1.87
jet0e	1.52
deltaRlgam	1.17
leptone	0.87
deltaRjb	0.86
met	0.68
bjet0pt	0.52
leptoniso	0.27

e+jets channel

C	Jets	Chamile
V	ariable	Separation
pho	oton0pt	23.14
m	ıqgam	22.73
pho	ton0iso	18.70
n	ntSM	11.02
n	nlgam	9.53
de	ltaRbl	5.00
delt	aRjgam	4.60
	ST	3.83
N	ЛWТ	3.16
j	et0pt	2.47
1	njets	1.70
n	uchi2	1.59
delt	aRlgam	1.40
٧	vchi2	1.33
SI	mchi2	1.09
de	ltaRjb	0.88
le	ptone	0.85
lep	otoniso	0.56
b	jet0pt	0.50
	met	0.47

Input Variables

```
['photon0iso','photon0pt','mqgam','mlgam','mtSM','deltaRjgam','deltaRbl', 'MWT','ST','njets','wchi2','jet0pt','deltaRlgam','leptone','met','bjet0pt']
```

Integrated Luminosity

A Couple BSM Diagrams

 R-parity-violating supersymmetric models [arXiv:hep-ph/9705341]

 Top-color-assisted technicolor models [arXiv:hep-ph/0303122]

Jets/AntiKT

$$d_{ij} = min(rac{1}{p_{ti}^2}, rac{1}{p_{tj}^2})rac{\Delta_{ij}^2}{R^2}$$
 $d_{iB} = rac{1}{p_{ti}^2}$ $\Delta_{ij}^2 = (\eta_i - \eta_j)^2 + (\phi_i - \phi_j)^2$

- ▶ Find minimum of entire set of $\{d_{ij}, d_{iB}\}$
- ▶ If d_{ij} is the minimum particles i,j are combined into one particle and removed from the list of particles
- ▶ If d_{iB} is the minimum i is labelled as a final jet and removed from the list of particles
- ▶ Repeat until all particles are part of a jet with distance between jet axes Δ_{ij} is greater than R

$$\mathcal{L}_{tq\gamma}^{eff} = -e\bar{c}\frac{i\sigma^{\mu\nu}q_{\nu}}{m_{t}}(\lambda_{ct}^{L}P_{L} + \lambda_{ct}^{R}P_{R})tA_{\mu} + H.c.$$