

DL3 data model beyond the IACT community?

Jaime Rosado and José Luis Contreras

Motivation

- Event lists [ID, energy, direction, time] are suitable for event-based, neutrino and cosmic-ray observatories.
- Applicable to large aperture γ -ray observatories (e.g., HAWC).
- Common formats (and tools) ease multi-messenger analyses.
- Openness (data, standards, software, mind...) also brings returns to experiments: larger impact of results, externally developed software, crosscheck analyses ...
- Already happening: many astroparticle observatories are making available event sets (web, electronic journals).

Who are we and why are we proposing this?

H2020 project ASTERICS (Astronomy ESFRI and Research Infrastructure Cluster)

"Implementation and operation of cross-cutting services and solutions for clusters of ESFRI and other relevant research infrastructure initiatives".

Work package OBELICS (Observatory E-environments Linked by common ChallengeS):

- To enable interoperability and software re-use for the data generation, integration and analysis of ESFRI and pathfinder facilities.
- To create an open innovation environment for establishing open standards and software libraries for multi-wavelength/multi-messenger data.
- To develop common solutions for streaming data processing and extremely large databases, as well as studying advanced analysis algorithms and software frameworks for data processing and quality control.

Who are we and why are we proposing this?

• Within ASTERICS, we are in charge of surveying and testing existing data formats (all levels) and making proposals for standards.

Project	Field	Data	
CTA	Gamma	Events	
H.E.S.S.	Gamma	Events	
MAGIC	Gamma	Events	
KM3NeT	Neutrino	Events	
IceCube	Neutrino	Events	
ANTARES	Neutrino	Events	
E-ELT	VNIR	Images	

Project	Field	Data
LSST	Visible	Images
Euclid	Visible	Images
SKA	Radio	Signals
e-VLBI	Radio	Signals
LOFAR	Radio	Signals
LIGO	GW	Signals
Virgo	GW	Signals

• In CTA, we are in the Data Model sub-work package within the Data Management work package.

Strategy to make DL3 standards more general

- Keeping in mind other experiments/particles to name and define generic enough parameters.
- Making some parameters only related to IACTs optional (or allowing null values).
- Defining and grouping parameters and IRFs that cover the needs of a given type of experiment.
- Enriching this initiative of DL3 standards with contributions from the wide astroparticle community.

Some identified difficulties

- DL3-equivalent data level not necessarily defined in every experiment.
- Some essential variables not always given, e.g., energy is sometimes replaced by a related observable (proxy).
- Different concepts of operation, e.g., all-sky observation instead of source pointing. This even applies to IACTs (extended sources?).
- IRFs will be different, e.g., exposure (km²·sr·yr) instead of effective area. The very term "IRF" is not used in some experiments, but still applicable (at least for many high-level analyses?).
- "Runs" make no sense for continuous observation.

 May "observation periods" (months, years) be equivalent to "runs"?

Simple use cases

One can think of many simple use cases involving data from one or more astroparticle observatories to test the approach:

- Making a skymap.
- Building a spectrum.
- Crosschecking a time series.
- Correlating events with GRBs, BL Lacs....

To be developed during the meeting?

Complex use case

"Search for correlations between the arrival directions of IceCube neutrino events and ultrahigh-energy cosmic rays detected by the Pierre Auger Observatory and Telescope Array".

- HE event lists for selected observation periods.
- Angular resolutions: average values for Auger and TA, while eventdependent for IceCube.
- Model for an energy dependent Gaussian deflection of cosmic rays.
- Average relative exposures of Auger and TA as a function of declination.

Complex use case

Auger Document Center: https://www.auger.org/index.php/document-centre

Complex use case

IceCube Public Data Access: https://icecube.wisc.edu/science/data

2015 Jan 27

Livetimes and effective areas also provided in HDF5 for different detector configurations and particle types.

1. IceCube Event ID

Contact Us

University of Wisconsin-Madison

Search Enter Topic or Name GO!

- 2. Right Ascension, degrees
- 3. Declination, degrees
- 4. Modified Julian Day, days
- 5. Energy Proxy, arbitrary units
- 6. Most probable muon energy for best-fit, TeV

7. Most probable muon energy for best-fit, TeV 8. Signal Probability for best-fit									
116357,6324295	254 16	3 55421.5	289916	755	1693	0.96			
116807,9493609	88.5 0.2	55497.3	199981	604	880	0.83			
119136,66932419	37.1 18	6 55911.3	157871	397	713	0.88			
116883,17395151	285.7 3.3	L 55513.6	147002	422	709	0.8			
116701,6581938	331 11	55478.4	140113	317	466	0.81			
116026,44241207	346.8 24	55355.5	139728	339	442	0.86			
116574,20123342	267.5 13	8 55464.9	131950	302	400	0.82			
119739,41603205	238.3 18	9 55987.8	130382	326	394	0.85			
118210,47538807	235.2 19	.3 55702.8	106898	252	393	0.77			
118719,53077538	277.5 52	7 55829.3	91292	156	198	0.66			
116269,59516168	323.3 2.0	55405.5	66558	134	193	0.41			
116876,63208734	110.5 0	55512.6	64650	147	206	0.45			
118631,36844560	9.4 7.8	55806.1	63994	139	179	0.5			
117927,15766169	207.2 6.	7 55642	60582	125	185	0.45			
118475,52691508	152.2 6.8	55768.5	56734	124	156	0.45			
116147,14170716	310.5 21	9 55387.5	53805	112	178	0.55			
117639,30571557	307.9 1	55589.6	53542	116	184	0.33			
118741,43101116	267.6 -4	4 55834.4	51756	116	191	0.56			
119037,60175569	221.9 3.2	55896.9	51631	109	158	0.58			
116082,62251639	138.9 47	6 55370.7	51112	109	189	0.37			
118615,37865356	31.2 11	.8 55803	50376	109	190	0.49			

THANK YOU!

This project has received funding from the *European Union's Horizon 2020 research and innovation programme* under grant agreement No 653477.