BIMU2004

Olasılık Teorisi ve İstatistik Final Sınavı

İstanbul Üniversitesi - Cerrahpaşa Bilgisayar Mühendisliği Bölümü - Güz 2022

28 Aralık 2022 15:20-16:30

Son güncelleme: 2023-01-04 11:42

LÜTFEN OKUYUN:

- Sınava sizin için belirlenen sınıfta giriniz.
- Bu sınavın süresi 70 dakikadır. Süre bittiğinde cevap kağıdını doldurmaya devam edenler kopya çekmiş sayılır.
- Lütfen soruları kurşun kalemle, TÜRKÇE, kısa ve anlaşılır olarak cevaplayınız. **Anlaşılmayan, muğlak ifadeler kullanmak**, kötü yazı yazmak notunuza negatif olarak etki edecektir.
- Sınavda 1 adet hesap makinasi kullanabilirsiniz. Bunların dışında her türlü defter, kitap, notlar, sözlük ve elektronik sözlük yasaktır.
- Hesap makinası ve silgi paylaşmak kopya sayılacaktır!
- Bilgisayar, PDA, cep telefonu türünden elektronik cihazlar kullanmak yasaktır.
- Soruları çözmeye başlamadan lütfen okuyun.
- Soru ve cevap kağıtlarına isim ve numaranızı yazınız.
- Soru ve cevap kağıtlarınızı çıkarken cevap kağıdınızla beraber teslim ediniz.
- $\bullet\;$ Bu sınavda toplam 100 pu
anlık soru vardır.
- SINAVDA KOPYA ÇEKENLER, KOPYA VERENLER VE BUNLARA TEŞEBBÜS EDENLER SINAVDAN "0" ALACAKTIR VE DEKANLIĞA ŞİKAYET EDİLECEKLERDİR!.
- \bullet Çözümlerinizi ondalık sayı olarak verecekseniz noktadan sonra en az 3 basamak hassasiyet olmalıdır.
- Çözümleriniz kesirli ise sadeleştirin, mesela sonuç $\frac{2}{4}$ ise $\frac{1}{2}$ yapılmalıdır.

Başarılar. (Mustafa Dağtekin)

Birikimli Standard Normal Dağılım Tablosu. $\phi(\mathbf{z})$										
z	+0.00	+0.01	+0.02	+0.03	+0.04	+0.05	+0.06	+0.07	+0.08	+0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7703	0.7734	0.7764	0.7793	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990

$$\int x e^{-\alpha x} dx = \frac{-1}{\alpha^2} (\alpha x + 1) e^{-\alpha x} + c$$

$$\lim_{x \to \infty} x e^{-x} = 0$$

SORULAR

 ${\bf S1:}\;\;X$ ve Ysürekli rastgele değişkenler ve bunların Birleşik Olasılık Yoğunluk Fonksiyonu aşağıdaki gibi verilmiştir.

$$f(x,y) = \begin{cases} \alpha x e^{-x}, & 0 < y < x, x, y \in \mathbb{R}^+ \\ 0, & \text{diğer} \end{cases}$$

(a) (10 puan) α 'nın değerinin $\frac{1}{2}$ olduğunu gösteriniz.

Çözüm (1a):

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) \, dx \, dy = 1$$

olmalı. Burdan:

$$1 = \int_0^\infty \int_0^x \alpha x e^{-x} dy dx$$

$$1 = \alpha \int_0^\infty x^2 e^{-x} dx$$

$$1 = \alpha \Gamma(3)$$

$$1 = \alpha 2!$$

$$\alpha = \frac{1}{2}$$

(b) (10 puan) Y'nin marjinal olasılık yoğunluk fonksiyonunu bulunuz. (Bu fonksiyonun tanımlı olduğu aralığı da belirtmeniz gerekiyor.)

Çözüm (1b):

$$f_Y(y) = \int_{-\infty}^{\infty} f(x, y) dx$$
$$= \int_{y}^{\infty} \alpha x e^{-x} dx$$
$$= \alpha \left[-(x+1) e^{-x} \right]_{y}^{\infty}$$

$$f_Y(y) = \frac{1}{2} (y+1) e^{-y}, \qquad 0 < y < \infty$$

(c) (10 puan) Y = 5 olduğu biliniyorsa X'in 4 ile 7 arasında değer alma ihtimali nedir?

Bize sorulan: P(4 < X < 7|Y = 5)'tir. Bunun için önce Y = y şartı altında X'in OYF'sini bulalım:

$$f(x|y) = \frac{f(x,y)}{f_Y(y)} \qquad (0 < y < x \text{ ve } f_Y(y) > 0 \text{ olan yerlerde})$$

$$= \frac{\alpha x e^{-x}}{\alpha (y+1) e^{-y}}$$

$$= \frac{x}{y+1} e^{y-x} \qquad 0 < y < x$$

X'in Y'den küçük değer aldığı yerlerde yukardaki OYF'nin değeri sıfırdır, yani Y=5 şartı altında X'in 5'ten küçük değerlerde OYF'si sıfırdır. Öyleyse:

$$P(4 < X < 7|Y = 5) = P(5 < X < 7|Y = 5)$$

$$= \int_{5}^{7} f(x|5) dx$$

$$= \int_{5}^{7} \frac{x}{5+1} e^{5-x} dx$$

$$= \frac{e^{5}}{6} [-(x+1) e^{-x}]_{5}^{7}$$

$$= \frac{e^{5}}{6} [6 e^{-5} - 8 e^{-7}]$$

$$= 1 - \frac{4}{3} e^{-2}$$

$$P(4 < X < 7|Y = 5) = 0.8196$$

(d) (10 puan) $g(X,Y)=\frac{Y^3}{X}, X$ ve Y'nin bir fonksiyonu ise g(X,Y)'nin beklenen değeri nedir?

Çözüm (1d):

$$E[g(X,Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) f(x,y) dx dy$$
$$= \int_{0}^{\infty} \int_{0}^{x} \frac{y^{3}}{x} \frac{1}{2} x e^{-x} dy dx$$
$$= \frac{1}{2} \int_{0}^{\infty} e^{-x} \left\{ \int_{0}^{x} y^{3} dy \right\} dx$$

$$= \frac{1}{2} \int_0^\infty e^{-x} \left[\frac{y^4}{4} \right]_0^x dx$$

$$= \frac{1}{8} \int_0^\infty x^4 e^{-x} dx$$

$$= \frac{1}{8} \Gamma(5)$$

$$= \frac{1}{8} 4!$$

$$E\left[g(X,Y)\right] = 3$$

- **S2:** İki adet torbanın ikisinde de 1 ve 2 yazılmış ikişer top bulunuyor. İki torbadan da rastgele birer top çekilip üzerinde yazan sayılara bakılıyor ve toplar torbaya geri konuyor. X rastgele değişkeni çekilen 2 toptaki sayıların toplamı olsun.
 - (a) (10 puan) X'in Olasılık Kütle Fonksiyonu'nu değer uzayını da belirterek bulunuz. (Tablo halinde olabilir)

Şu şekilde olaylar tanımlayalım:

 $B_i:i^{\text{nci}}$ torbadan BİR gelme olayı. $i=1,2,\,P(B_1)=P(B_2)=\frac{1}{2}$

 $B_i^C:i^{\text{nci}}$ torbadan İKİ gelme olayı. $i=1,2.\ P(B_1^C)=P(B_2^C)=\frac{1}{2}$

Ayrıca ${\cal B}_1$ ve ${\cal B}_2$ olayları birbirinden bağımsızdır. Bu durumda:

- B_1 ile B_2 olayları birbirinden bağımsızdır.
- B_1^C ile B_2 olayları birbirinden bağımsızdır.
- B_1 ile B_2^C olayları birbirinden bağımsızdır.
- B_1^C ile B_2^C olayları birbirinden bağımsızdır.

OKF:

$$P\{X=2\}=\mathsf{p}(2)=P\{B_1B_2\}=P\{B_1\}P\{B_2\}=\frac{1}{2}\cdot\frac{1}{2}$$

$$P\{X=2\} = \mathsf{p}(2) = \frac{1}{4} \qquad \blacksquare$$

$$\begin{split} P\{X=3\} &= \mathsf{p}(3) = P\{B_1B_2^C\} + P\{B_1^CB_2\} \\ &= \frac{1}{2} \cdot \frac{1}{2} + \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4} + \frac{1}{4} = \frac{1}{2} \end{split}$$

$$P\{X=3\}=\mathsf{p}(3)=\frac{1}{2}\qquad \blacksquare$$

$$P\{X=4\} = \mathsf{p}(4) = P\{B_1^C B_2^C\} = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4} \qquad \blacksquare$$

X'in 2,3 ve 4 dışındaki değerlerinde OYF sıfır değerini alır.

(b) (10 puan) X'in ortalama ve varyansı nedir?

Çözüm (2b):

$$\begin{split} E[X] &= \mu_X = \sum_{x \in R_X} \ x \ \mathsf{p}(x) \\ &= 2 \cdot \frac{1}{4} + 3 \cdot \frac{1}{2} + 4 \cdot \frac{1}{4} \\ &= \frac{1}{2} + \frac{3}{2} + 1 \end{split}$$

$$E[X] = 3$$

$$\begin{split} V(X) &= \sigma_X^2 = E[X^2] - \mu_X^2 \\ E[X^2] &= \sum_{x \in R_X} x^2 \; \mathsf{p}(x) \\ &= 2^2 \cdot \frac{1}{4} + 3^2 \cdot \frac{1}{2} + 4^2 \cdot \frac{1}{4} \\ &= 1 + \frac{9}{2} + 4 \\ &= \frac{19}{2} \\ V(X) &= \sigma_X^2 = \frac{19}{2} - 3^2 \\ \hline \sigma_X^2 &= \frac{1}{2} \quad \blacksquare \end{split}$$

(c) (10 puan) Bu deneyin 100 defa tekrar edildiğini varsayalım. X_i : *i*'nci deneyde iki topta görülen sayıların toplamı olsun. $P\{(X_1 + X_2 + ... + X_n) > 250\}$ nedir?

Çözüm (2c):

Merkezi limit teoremine göre, $X_1,X_2,...,X_n$ ortalaması μ , varyansı σ^2 olan aynı dağılıma sahip bağımsız rastgele değişklenler ise n sonsuza giderken

$$Z = \frac{X_1 + X_2 + ... + X_n - n \ \mu}{\sqrt{\sigma^2 n}}$$

rastgele değişkeni standart normal dağılıma yakınsar. Bu durumda n=100 için yukardaki dönüşümü uygulayarak yaklaşık değeri bulabiliriz. $Y=X_1+X_2+\ldots+X_{100}$ diyelim.

$$P\{Y > 250\} = P\left(Z > \frac{250 - 100 \cdot 3}{\sqrt{100 \cdot \frac{1}{2}}}\right)$$

$$P(Z > -7) = 1 - \phi(-7) \approx 1$$

-7 çok küçük bir değer olduğundan sonuç yaklaşık olarak 1 çıktı.

S3: (10 puan) X, ortalaması 0.5, varyansı 4 olan olan normal dağılımlı bir rastgele değişken olsun. $P(-\beta < X < \beta) = 0.25$ olmasını sağlayan β değerini bulunuz.

Çözüm (3):

OYF grafiğine bakalım:

Standardize edersek:

$$Z = \frac{X - \mu}{\sigma}$$

Burdan:

$$\begin{split} P\left(\frac{-\beta-\mu}{\sigma}<\frac{X-\mu}{\sigma}<\frac{\beta-\mu}{\sigma}\right) &= 0.25\\ 0.25 &= P\left(-\frac{\beta+0.5}{2}< Z < \frac{\beta-0.5}{2}\right)\\ 0.25 &= P\left(Z < \frac{\beta-0.5}{2}\right) - P\left(-\frac{\beta+0.5}{2} < Z\right) \end{split}$$

Kolay görünmesi için $\theta = \frac{\beta - 0.5}{2}$ dersek

$$\theta = \frac{\beta - 0.5}{2}$$
$$\beta = 2 \ \theta + 0.5$$
$$\frac{\beta + 0.5}{2} = \theta + \frac{1}{2}$$

O zaman:

$$0.25 = \phi(\theta) - \phi(-\theta - 0.5)$$

$$0.25 = \phi(\theta) - [1 - \phi(\theta + 0.5)]$$

$$1.25 = \phi(\theta) + \phi(\theta + 0.5)$$

Tablodan bunu seğlayan en iyi θ değerinin yaklaşık olarak 0.08 olduğunu görebiliriz, yani:

$$\phi(\theta + 0.5) = \phi(0.58) = 0.7190$$
$$\phi(\theta) = \phi(0.08) = 0.5319$$
$$\phi(0.08) + \phi(0.58) \approx 1.25$$

O zaman:

- S4: Bir bilgisayar tamir şirketinde Ahmet, Mehmet veya Nazlı adında 3 personel vardır. Gelen işler rastgele Ahmet, Mehmet veya Nazlı'ya verilmektedir. Gelen bir işin Ahmet'e verilme olasılığı %40, Mehmet'e verilme olasılığı %50, Nazlı'ya verilme olasılığı %10'dur. Ahmet'in bir işi başarılı bitirme olasılığı 0.9, Mehmet'in bir işi başarılı bitirme olasılığı 0.8 ve Nazlı'nın bir işi başarılı bitirme olasılığı 0.99'dur.
 - (a) (10 puan) Gelen bir işin başarılı bitirilme ihtimali nedir?

Olaylarımızı yazalım:

- A: Bir işin Ahmet'e verilme olayı
- ullet M: Bir işin Mehmet'e verilme olayı
- \bullet N: Bir işin Nazlı'ya verilme olayı
- B: İşin başarılı bitirilme olayı

Bildiğimiz değerleri yazalım:

$$P(A) = 0.4$$

 $P(M) = 0.5$
 $P(N) = 0.1$
 $P(B|A) = 0.9$
 $P(B|M) = 0.8$
 $P(B|N) = 0.99$

Bize sorulan P(B)'dir, bunu da toplu olasılık formülünden bulabiliriz.

$$P(B) = P(B|A) \cdot P(A) + P(B|M) \cdot P(M) + P(B|N) \cdot P(N)$$

= 0.9 × 0.4 + 0.8 × 0.5 + 0.99 × 0.1
= 0.36 + 0.4 + 0.099

$$P(B) = 0.858 \qquad \blacksquare$$

(b) (10 puan) Başarılı bitirilmiş bir işi Nazlı'nın yapmış olma ihtimali nedir?

Çözüm $\overline{\left(\mathbf{4b} \right)}$

Bize sorulan P(N|B). Bayes metodu ile:

$$P(N|B) = \frac{P(B|N) \cdot P(N)}{P(B)}$$
$$= \frac{0.099}{0.858}$$
$$P(N|B) = 0.1154$$

LÜTFEN SINAV KAĞITLARINIZA İSİM YAZARAK CEVAP KAĞIDIYLA BERABER TESLİM EDİNİZ.