CS127 Homework 4

Due: October 17th, 2014 3:00PM

Warmup 1 (Textbook Problem 8.6)

Compute the closure of the following set F of functional dependencies for relation schema R (A, B, C, D, E).

$$\begin{array}{c} A \rightarrow BC \\ CD \rightarrow E \\ B \rightarrow D \\ E \rightarrow A \end{array}$$

List the candidate keys for R.

Warmup 2 (Textbook Problem 8.9)

Given the database schema R(a, b, c), and a relation r on the schema R, write an SQL query to test whether the functional dependency $b \to c$ hods on relation r. Also write an SQL assertion that enforces the functional dependency; assume that no null values are present. (Although part of the SQL standard, such assertions are not supported by any database implementation currently.)

Warmup 3 (Textbook Problem 8.21 (modified))

Normalize the following schema, with given constraints, to BCNF.

```
books(accessionno, isbn, title, author, publisher) \\ users(userid, name, deptid, deptname) \\ accessionno \rightarrow isbn \\ isbn \rightarrow title \\ isbn \rightarrow publisher \\ isbn \rightarrow author \\ userid \rightarrow name \\ userid \rightarrow deptid \\ deptid \rightarrow deptname
```

Warmup 4 (Textbook Problem 8.29 (e))

Consider the following set F of functional dependencies on the relation schema r(A, B, C, D, E, F):

$$\begin{array}{c} A \rightarrow BCD \\ BC \rightarrow DE \\ B \rightarrow D \\ D \rightarrow A \end{array}$$

Give a BCNF decomposition of r using the original set of functional dependencies.

Problem 5 (To Be Graded)

Consider again the simplified university registrar database from the previous homeworks:

Student				
name	${f gradyear}$	gpa		
Amy	2016	3.95		
Ben	2015	3.87		
Carl	2016	3.29		
Dan	2017	3.43		
Eliza	2015	4.0		

	\mathbf{Course})
title	$\mathbf{semester}$	instructor
CS33	2014F	Doeppner
CS127	2014F	Zdonik
CS195	2013F	Kraska
CS127	2012F	Zdonik
CS136	2012S	Fonseca

Enrollment						
name	${f title}$	$\mathbf{semester}$	\mathbf{grade}			
Eliza	CS33	2014F	A			
Eliza	CS127	2014F	A			
Ben	CS127	2012F	A			
Carl	CS195	2013F	$^{\mathrm{C}}$			
Carl	CS127	2014F	В			

The keys for each relation are as follows:

• Student: name (all student names are assumed to be unique)

• Course: title and semester

• Enrollment: name, title, and semester

Answer the following questions:

- 1. Is the database a lossless deomposition of a universal relation $Student \bowtie Enrollment \bowtie Course$? Why or why not?
- 2. List all of the functional dependencies that cen be inferred from keys.
- 3. Now assume that each student can be enrolled in only 1 course per semester. Does this new constraint change the keys for any of the relations? If not, explain why. Otherwise, give the new keys.
- 4. Suppose that students can now have advisors. Given each of the following constraints, describe how you would modify the database to preserve BCNF and list any new functional dependencies.
 - a. Each student can have only 1 advisor.
 - b. Each advisor can have only 1 student.
 - c. Each student can have multiple advisors, and each advisor can have multiple students.