From Documents to Entities: A journey through Natural Language Processing tasks and domains

Pedro Henrique Luz de Araujo

Departamento de Ciência da Computação, Universidade de Brasília, Brasília – DF, Brazil pedro.luz@aluno.unb.br

Banca:

Teófilo E. de Campos (Orientador - UnB) Alexandre Rademaker (IBM Research) Thiago de Paulo Faleiros (UnB) Luís Paulo F. Garcia (Suplente - UnB)

7 de agosto de 2020

Sumário

- 🕕 Introdução
- Classificação de texto
- Modelagem de Tópicos
- Reconhecimento de Entidade Nomeada
- Ligação de Entidade
 - Introdução
 - Trabalhos relacionados
 - Plano de trabalho

Introdução

3/35

Motivação

- Dados textuais estão em constante produção.
 - Posts de redes sociais, livros, notícias, publicações oficiais, processos judiciais.
- Dados precisam ser estruturados para gerar conhecimento.
 - Aprendizado de Máquina e Processamento de Linguagem Natural permitem análise de texto em uma escala inatingível por humanos.

Aprendizado Profundo para Textos

- O uso de redes neurais profundas representou avanços em uma gama de tarefas de processamento de texto.
 - Análise de sentimento;
 - Tradução por máquina;
 - ▶ Inferência em textos naturais.
- Problema: Generalização para diferentes domínios.
 - Transferência de aprendizado ajuda; mas dados rotulados de domínios específicos ainda são necessários—ajuste fino e avaliação.

Exemplos

DODF

O GOVERNADOR DO DISTRITO FEDERAL, no uso das atribuições que lhe confere o artigo 100, incisos XXVI e XXVII, da Lei Orgânica do Distrito Federal, resolve [...]

Acórdão STF

HABEAS CORPUS 110.260 SÃO PAULO RELATOR : MIN. LUIZ FUX PACTE.(S) :LAERCIO BRAZ PEREIRA SALES IMPTE.(S) :DEFENSORIA PÚBLICA DA UNIÃO PROC.(A/S)(ES) :DEFENSOR PÚBLICO-GERAL FEDERAL COATOR(A/S)(ES) :SUPERIOR TRIBUNAL DE JUSTIÇA

Objetivos I

- Explorar tarefas de NLP em diferentes domínios.
- Abordagem documentos \rightarrow entidades.
- Objetivos específicos:
 - propor conjuntos de dados para classificação de textos dos domínios jurídico e de textos oficiais e comparar modelos;
 - treinar modelos de tópicos em textos jurídicos, analisar a semântica dos tópicos obtidos;
 - propor conjunto de dado para reconhecimento de entidades nomeadas (NER) com entidades do domínio jurídico e treinar um modelo com os dados;
 - propor um sistema de ligação de entidade (EL) para domínios com poucos recursos.

Objetivos II

- Items 1 a 3 já desenvolvidos. Publicações:
 - Luz de Araujo, P. H. et al. VICTOR: a dataset for Brazilian legal documents classification. [1]
 - ▶ Luz de Araujo, P. H. et al. Inferring the source of official texts: can SVM beat ULMFiT? [2]
 - ▶ Luz de Araujo, P. H. et al. LeNER-Br: a Dataset for Named Entity Recognition in Brazilian Legal Text. [3]
- Planos para o item 4.

Classificação de texto

VICTOR: a dataset for Brazilian legal documents classification.

- Conjunto de dados com mais de 40.000 Recursos Extraordinários.
- Rótulos a nível de página (tipo de documento) e a nível de processo (tema de repercussão geral).
- Comparação de modelos BoWs, CNNs, LSTMs. Uso de CRF para explorar natureza sequencial das páginas de um processo.

Inferring the source of official texts: can SVM beat ULMFiT?

- Conjunto de dados com textos do DODF rotulados (órgão de origem) e não rotulados.
- Treino e comparação de um método de transferência de aprendizado estado-da-arte (ULMFiT [4]) com modelos BoW.
- BoW + SVM competitivo quando comparado com o ULMFiT.

Modelagem de Tópicos

Topic modelling Brazilian Supreme Court lawsuits

- Usa LDA para modelar Recursos Extraordinários.
- Treino e análise de modelos com 10 e 30 tópicos.
- Vetorização de textos usando tópicos (30, 100, 300 e 1000 dimensões) para classificação de tema.

Reconhecimento de Entidade Nomeada

LeNER-Br: a Dataset for Named Entity Recognition in Brazilian Legal Text

- Conjunto de 70 documentos legais (acórdãos, leis e portarias) com anotação de entidades, totalizando 318.073 tokens; destas, 44.513 pertencentes a entidades.
- Entidades de 4 tipos genéricos (pessoa, tempo, organização e local) e 2 específicos ao domínio (legislação e jurisprudência).
- Treino de modelo char-biLSTM-CRF usando os dados.

Ligação de Entidade

Motivação I

 Um passo além de NER: ligar as menções extraídas a entidades específicas de uma base de conhecimento.

Lula?

A lula tem oito braços, para a captura de alimento, e dois tentáculos, com função na reprodução.

Motivação II

Figura: Essa lula...

Figura: ...ou esse Lula?

Três passos:

- Detecção de menção: extração de potenciais menções a entidades—idêntico a NER quando restringe-se menções a entidades nomeadas.
- Que Geração de candidatos: o sistema seleciona um conjunto de possíveis candidatos para cada menção.
- Oesambiguação de entidades: o sistema seleciona a entidade mais provável para cada menção.
- Ligação ponta-a-ponta versus apenas desambiguação.

O desafio

- Potencialmente milhões de entidades.
- Diversidade de menções.
 - ▶ Big blue vs IBM.
- Ambiguidade de menções.
 - ► Paris?

A solução (?)

- Utilizar recursos adicionais:
 - Estatísticas de frequência ligação;
 - Informação estruturada;
 - ► Tabelas de aliases.
- Conjuntos de dados massivos:
 - Wikipedia.

O problema

- Cenários com poucos recursos:
 - Sem quantidade massiva de dados anotados no domínio alvo;
 - Sem estatísticas de frequência;
 - Sem descrições textuais canônicas de entidade;
 - Sem dados estruturados sobre entidades.
- Domínios específicos: médico e legal.

Trabalhos relacionados I

- 12 publicações de 2016 a 2020, analisando:
- Capacidades:
 - ▶ Ponta-a-ponta?
 - ► Global?
- Recursos:
 - Estatísticas?
 - Dados estruturados?
 - Dicionário de entidade?

Trabalhos relacionados II

Tabela: Comparação dos trabalhos lidos.

Autores	Ano	Capacidades		Recursos		
		Ponta-a-ponta	Global	Estatísticas	Dados estr.	Dicionário
Tsai et al. [5]	2016		✓	✓		
Ganea et al. [6]	2017		✓	✓		✓
Pappu et al. [7]	2017	✓	✓	✓		✓
Upadhyay et al. [8]	2018		✓	✓	✓	
Kolitsas et al. [9]	2018	✓	✓	✓		√ *
Gillick et al. [10]	2019				✓	✓
Le et al. [11]	2019				✓	
Logeswaran et al. [12]	2019					✓
Le et al. [13]	2019		✓	✓	✓	√ *
Broscheit [14]	2019	✓				
Wu et al. [15]	2019					✓
Onoe et al. [16]	2020			✓	✓	

^{*}Indiretamente: usa embeddings de entidade treinados com dicionário de entidade.

- Ponta-a-ponta: realiza detecção de menção—caso contrário, assume-se fornecimento das fronteiras de menção.
- Global: informação global.
- Estatísticas: estatísticas de frequências entidade-menção.
- Dados estr.:dados estruturados.
- Dicionário: dicionário de entidade.

Objetivo

- Sistema de ligação de entidades para cenários com poucos recursos:
 - independência de dicionário de entidades;
 - independência de estatísticas de frequência;
 - independência de dados estruturados.
- Um passo além do trabalho em zero-shot.
- Possibilita trabalhar com bases de conhecimento que consistem somente em IDs de entidade sem descrição textual.

Modelagem

- Usar transferência de aprendizado (i.e. modelos pre-treinados com modelagem de linguagem).
- Tratar a tarefa como problema de aprendizado de distância:

$$L = \sum_{i=1}^{n} \max(\|f(x_i^a) - f(x_i^p)\|^2 - \|f(x_i^a) - f(x_i^n)\|^2 + \alpha, 0), \quad (1)$$

- Desafio: como codificar entidades sem dicionário de entidades?
 - Pular codificação de entidade?
 - Agregar codificações de menções?
 - Automatizar descritor de entidade?

Conjuntos de dados

- Wikipedia.
- Wikia zero-shot corpus [12].
- TACKBP-2010 [17].

Avaliação

Recall@k =
$$\frac{n}{m}$$
. (2)

Unnormalised accuracy =
$$\frac{c}{m}$$
. (3)

Normalised accuracy =
$$\frac{d}{n}$$
 (4)

Cronograma

Figura: Plano de ataque mensal.

Referências I

Pedro H. Luz de Araujo, T. E. de Campos, F. Ataides Braz, and N. Correia da Silva, "VICTOR: a dataset for Brazilian legal documents classification," in *Proceedings of The 12th Language Resources and Evaluation Conference*, (Marseille, France), pp. 1449–1458, European Language Resources Association, May 2020.

Pedro H. Luz de Araujo, T. E. de Campos, and M. Magalhaes Silva de Sousa, "Inferring the source official texts: can SVM beat ULMFiT?," in International Conference on the Computational Processing of Portuguese (PROPOR), Lecture Notes on Computer Science (LNCS), (Evora, Portugal), Springer, March 2-4 2020. Code and data available from https://cic.unb.br/~teodecampos/KnEDLe/.

Referências II

- Pedro H. Luz de Araujo, T. E. de Campos, R. R. R. de Oliveira, M. Stauffer, S. Couto, and P. Bermejo, "Lener-br: a dataset for named entity recognition in brazilian legal text," in *International Conference on the Computational Processing of Portuguese (PROPOR)*, (Canela, RS, Brazil), September 24-26 2018.
- J. Howard and S. Ruder, "Fine-tuned language models for text classification," *CoRR*, vol. abs/1801.06146, 2018.
 - C.-T. Tsai and D. Roth, "Cross-lingual wikification using multilingual embeddings," in *Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies*, (San Diego, California), pp. 589–598, Association for Computational Linguistics, June 2016.

Referências III

- - O.-E. Ganea and T. Hofmann, "Deep joint entity disambiguation with local neural attention," in *Proceedings of the Conference on Empirical Methods in Natural Language Processing*, (Copenhagen, Denmark), pp. 2619–2629, Association for Computational Linguistics, Sept. 2017.
 - A. Pappu, R. Blanco, Y. Mehdad, A. Stent, and K. Thadani, "Lightweight multilingual entity extraction and linking," in *Proceedings of the Tenth ACM International Conference on Web Search and Data Mining*, WSDM, (New York, NY, USA), p. 365–374, Association for Computing Machinery, 2017.
 - S. Upadhyay, N. Gupta, and D. Roth, "Joint multilingual supervision for cross-lingual entity linking," in *Proceedings of the Conference on Empirical Methods in Natural Language Processing*, (Brussels, Belgium), pp. 2486–2495, Association for Computational Linguistics, Oct.-Nov. 2018.

Referências IV

- N. Kolitsas, O.-E. Ganea, and T. Hofmann, "End-to-end neural entity linking," in *Proceedings of the 22nd Conference on Computational Natural Language Learning*, (Brussels, Belgium), pp. 519–529, Association for Computational Linguistics, Oct. 2018.
- D. Gillick, S. Kulkarni, L. Lansing, A. Presta, J. Baldridge, E. le, and D. Garcia-Olano, "Learning dense representations for entity retrieval," 2019.
- P. Le and I. Titov, "Distant learning for entity linking with automatic noise detection," in *Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics*, (Florence, Italy), pp. 4081–4090, Association for Computational Linguistics, July 2019.

Referências V

L. Logeswaran, M.-W. Chang, K. Lee, K. Toutanova, J. Devlin, and H. Lee, "Zero-shot entity linking by reading entity descriptions," in *Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics*, (Florence, Italy), pp. 3449–3460, Association for Computational Linguistics, July 2019.

P. Le and I. Titov, "Boosting entity linking performance by leveraging unlabeled documents," in *Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics*, (Florence, Italy), pp. 1935–1945, Association for Computational Linguistics, July 2019.

S. Broscheit, "Investigating entity knowledge in BERT with simple neural end-to-end entity linking," in *Proceedings of the 23rd Conference on Computational Natural Language Learning (CoNLL)*, (Hong Kong, China), pp. 677–685, Association for Computational Linguistics, Nov. 2019.

Referências VI

- Y. Onoe and G. Durrett, "Fine-Grained Entity Typing for Domain Independent Entity Linking," *arXiv e-prints*, p. arXiv:1909.05780, Sept. 2019.
- H. Ji, R. Grishman, H. T. Dang, K. Griffitt, and J. Ellis, "Overview of the TAC 2010 knowledge base population track," in *Text Analysis Conference*, vol. 3, 2010.