QEEE DSA05 DATA STRUCTURES AND ALGORITHMS

G VENKATESH AND MADHAVAN MUKUND LECTURE 7, 26 AUGUST 2014

Recall that ...

- * BFS and DFS are two systematic ways to explore a graph
 - * Both take time linear in the size of the graph with adjacency lists
- * Recover paths by keeping parent information
- * BFS can compute shortest paths, in terms of number of edges
- * DFS numbering can reveal many interesting features

* Label each edge with a number—cost

- * Label each edge with a number—cost
 - * Ticket price on a flight sector

- * Label each edge with a number—cost
 - * Ticket price on a flight sector
 - * Tolls on highway segment

- * Label each edge with a number—cost
 - * Ticket price on a flight sector
 - * Tolls on highway segment
 - * Distance travelled between two stations

- * Label each edge with a number—cost
 - * Ticket price on a flight sector
 - * Tolls on highway segment
 - * Distance travelled between two stations
 - * Typical time between two locations during peak hour traffic

* Weighted graph

- * Weighted graph
 - * G=(V,E) together with

- * Weighted graph
 - * G=(V,E) together with
 - * Weight function, w : E→Reals

- * Weighted graph
 - * G=(V,E) together with
 - * Weight function, w : E→Reals
- * Let $e_1=(v_0,v_1)$, $e_2=(v_1,v_2)$, ..., $e_n=(v_{n-1},v_n)$ be a path from v_0 to v_n

- * Weighted graph
 - * G=(V,E) together with
 - * Weight function, w : E→Reals
- * Let $e_1=(v_0,v_1)$, $e_2=(v_1,v_2)$, ..., $e_n=(v_{n-1},v_n)$ be a path from v_0 to v_n
- * Cost of the path is $w(e_1) + w(e_2) + ... + w(e_n)$

- * Weighted graph
 - * G=(V,E) together with
 - * Weight function, w : E→Reals
- * Let $e_1=(v_0,v_1)$, $e_2=(v_1,v_2)$, ..., $e_n=(v_{n-1},v_n)$ be a path from v_0 to v_n
- * Cost of the path is $w(e_1) + w(e_2) + ... + w(e_n)$
- * Shortest path from v₀ to v_n: minimum cost

* BFS finds path with fewest number of edges

- * BFS finds path with fewest number of edges
- * In a weighted graph, need not be the shortest path

- * BFS finds path with fewest number of edges
- * In a weighted graph, need not be the shortest path

- * BFS finds path with fewest number of edges
- * In a weighted graph, need not be the shortest path

* Single source

* Single source

* Find shortest paths from some fixed vertex, say1, to every other vertex

* Single source

- * Find shortest paths from some fixed vertex, say1, to every other vertex
- * Transport finished product from factory (single source) to all retail outlets

* Single source

- * Find shortest paths from some fixed vertex, say1, to every other vertex
- * Transport finished product from factory (single source) to all retail outlets
- Courier company delivers items from distribution centre (single source) to addressees

* All pairs

* All pairs

* Find shortest paths between every pair of vertices i and j

* All pairs

- * Find shortest paths between every pair of vertices i and j
- * Railway routes, shortest way to travel between any pair of cities

Today...

Today...

* Single source shortest paths

Today...

- * Single source shortest paths
- * For instance, shortest paths from 1 to 2,3,...,7

* Imagine vertices are oil depots, edges are pipelines

- * Imagine vertices are oil depots, edges are pipelines
- * Set fire to oil depot at vertex 1

- * Imagine vertices are oil depots, edges are pipelines
- * Set fire to oil depot at vertex 1
 - * Fire travels at uniform speed along each pipeline

- * Imagine vertices are oil depots, edges are pipelines
- * Set fire to oil depot at vertex 1
 - * Fire travels at uniform speed along each pipeline
- * First oil depot to catch fire after 1 is nearest vertex

- * Imagine vertices are oil depots, edges are pipelines
- * Set fire to oil depot at vertex 1
 - * Fire travels at uniform speed along each pipeline
- * First oil depot to catch fire after 1 is nearest vertex
- * Next oil depot is second nearest vertex

- * Imagine vertices are oil depots, edges are pipelines
- * Set fire to oil depot at vertex 1
 - * Fire travels at uniform speed along each pipeline
- * First oil depot to catch fire after 1 is nearest vertex
- * Next oil depot is second nearest vertex

*

- * Compute expected time to burn of each vertex
- * Update this each time a new vertex burns

- * Compute expected time to burn of each vertex
- * Update this each time a new vertex burns

- * Compute expected time to burn of each vertex
- * Update this each time a new vertex burns

- * Compute expected time to burn of each vertex
- * Update this each time a new vertex burns

- * Compute expected time to burn of each vertex
- * Update this each time a new vertex burns

- * Compute expected time to burn of each vertex
- * Update this each time a new vertex burns

- * Compute expected time to burn of each vertex
- * Update this each time a new vertex burns

- * Compute expected time to burn of each vertex
- * Update this each time a new vertex burns

- * Compute expected time to burn of each vertex
- * Update this each time a new vertex burns

- * Compute expected time to burn of each vertex
- * Update this each time a new vertex burns

- * Compute expected time to burn of each vertex
- * Update this each time a new vertex burns

- * Compute expected time to burn of each vertex
- * Update this each time a new vertex burns

- * Compute expected time to burn of each vertex
- * Update this each time a new vertex burns

- * Compute expected time to burn of each vertex
- * Update this each time a new vertex burns

- * Maintain two arrays
 - * BurntVertices[], initially False for all i
 - * ExpectedBurnTime[], initially ∞ for all i
 - * For ∞, use sum of all edge weights + 1

- * Maintain two arrays
 - * BurntVertices[], initially False for all i
 - * ExpectedBurnTime[], initially ∞ for all i
 - * For ∞, use sum of all edge weights + 1
- * Set ExpectedBurnTime[1] = 0

- * Maintain two arrays
 - * BurntVertices[], initially False for all i
 - * ExpectedBurnTime[], initially ∞ for all i
 - * For ∞, use sum of all edge weights + 1
- * Set ExpectedBurnTime[1] = 0
- * Repeat, until all vertices are burnt
 - * Find j with minimum ExpectedBurnTime
 - * Set BurntVertices[j] = True
 - * Recompute ExpectedBurnTime[k] for each neighbour k of j

Dijkstra's algorithm

```
function ShortestPaths(s){ // assume source is s
for i = 1 to n
  BV[i] = False; EBT[i] = infinity
EBT[s] = 0
for i = 1 to n
  Choose u such that BV[u] == False
                     and EBT[u] is minimum
  BV[u] = True
  for each edge (u,v) with BV[v] == False
   if EBT[v] > EBT[u] + weight(u,v)
     EBT[v] = EBT[u] + weight(u,v)
```

Dijkstra's algorithm

```
function ShortestPaths(s){ // assume source is s
for i = 1 to n
 Visited[i] = False; Distance[i] = infinity
Distance[s] = 0
for i = 1 to n
  Choose u such that Visited[u] == False
                   and Distance[u] is minimum
  Visited[u] = True
  for each edge (u,v) with Visited[v] == False
   if Distance[v] > Distance[u] + weight(u,v)
     Distance [v] = Distance [u] + weight (u,v)
```

- * Each new shortest path we discover extends an earlier one
- * By induction, assume we have identified shortest paths to all vertices already burnt

- * Each new shortest path we discover extends an earlier one
- * By induction, assume we have identified shortest paths to all vertices already burnt

- * Each new shortest path we discover extends an earlier one
- * By induction, assume we have identified shortest paths to all vertices already burnt

* Next vertex to burn is v, via x

- * Each new shortest path we discover extends an earlier one
- * By induction, assume we have identified shortest paths to all vertices already burnt

- * Next vertex to burn is v, via x
- * Cannot later find a shorter path from y to w to v

Complexity

* Outer loop runs n times

- * Outer loop runs n times
 - * In each iteration, we burn one vertex

- * Outer loop runs n times
 - * In each iteration, we burn one vertex
 - * O(n) scan to find minimum burn time vertex

- * Outer loop runs n times
 - * In each iteration, we burn one vertex
 - * O(n) scan to find minimum burn time vertex
- * Each time we burn a vertex v, we have to scan all its neighbours to update burn times

- * Outer loop runs n times
 - * In each iteration, we burn one vertex
 - * O(n) scan to find minimum burn time vertex
- * Each time we burn a vertex v, we have to scan all its neighbours to update burn times
 - * O(n) scan of adjacency matrix to find all neighbours

- * Outer loop runs n times
 - * In each iteration, we burn one vertex
 - * O(n) scan to find minimum burn time vertex
- * Each time we burn a vertex v, we have to scan all its neighbours to update burn times
 - * O(n) scan of adjacency matrix to find all neighbours
- * Overall O(n²)

* Does adjacency list help?

- * Does adjacency list help?
 - * Scan neighbours to update burn times

- * Does adjacency list help?
 - * Scan neighbours to update burn times
 - * O(m) across all iterations

- * Does adjacency list help?
 - * Scan neighbours to update burn times
 - * O(m) across all iterations
- * However, identifying minimum burn time vertex still takes O(n) in each iteration

- * Does adjacency list help?
 - * Scan neighbours to update burn times
 - * O(m) across all iterations
- * However, identifying minimum burn time vertex still takes O(n) in each iteration
- * Still O(n²)

* Can maintain ExpectedBurnTime in a more sophisticated data structure

- * Can maintain ExpectedBurnTime in a more sophisticated data structure
 - * Different types of trees (heaps, red-black trees) allow both of the following in O(log n) time

- * Can maintain ExpectedBurnTime in a more sophisticated data structure
 - * Different types of trees (heaps, red-black trees) allow both of the following in O(log n) time
 - * find and delete minimum

- * Can maintain ExpectedBurnTime in a more sophisticated data structure
 - * Different types of trees (heaps, red-black trees) allow both of the following in O(log n) time
 - * find and delete minimum
 - * insert or update a value

* With such a tree

- * With such a tree
 - * Finding minimum burn time vertex takes O(log n)

- * With such a tree
 - * Finding minimum burn time vertex takes O(log n)
 - * With adjacency list, updating burn times take O(log n) each, total O(m) edges

- * With such a tree
 - * Finding minimum burn time vertex takes O(log n)
 - * With adjacency list, updating burn times take O(log n) each, total O(m) edges
- * Overall $O(n \log n + m \log n) = O((n+m) \log n)$

- * What if edge weights can be negative?
- * Our correctness argument is no longer valid

- * What if edge weights can be negative?
- * Our correctness argument is no longer valid

- * What if edge weights can be negative?
- * Our correctness argument is no longer valid

* Next vertex to burn is v, via x

- * What if edge weights can be negative?
- Our correctness argument is no longer valid

- * Next vertex to burn is v, via x
- * Might find a shorter path later with negative weights from y to w to v

* Negative cycle: loop with a negative total weight

- * Negative cycle: loop with a negative total weight
 - * Problem is not well defined with negative cycles

- * Negative cycle: loop with a negative total weight
 - * Problem is not well defined with negative cycles
 - * Repeatedly traversing cycle pushes down cost without a bound

- * Negative cycle: loop with a negative total weight
 - * Problem is not well defined with negative cycles
 - * Repeatedly traversing cycle pushes down cost without a bound
- * With negative edges, but no negative cycles, other algorithms exist

- * Negative cycle: loop with a negative total weight
 - * Problem is not well defined with negative cycles
 - * Repeatedly traversing cycle pushes down cost without a bound
- * With negative edges, but no negative cycles, other algorithms exist
 - * Bellman-Ford

- * Negative cycle: loop with a negative total weight
 - * Problem is not well defined with negative cycles
 - * Repeatedly traversing cycle pushes down cost without a bound
- * With negative edges, but no negative cycles, other algorithms exist
 - * Bellman-Ford
 - * Floyd-Warshall all pairs shortest path (will see later)

Summary

- * Dijkstra's algorithm solves the single source shortest path problem, assuming no negative weights
 - * Simple implementation is O(n²)
 - * Using clever trees, reduce to O((n+m) log n)
- * With negative edges, but without negative cycles, need to use other strategies

* Algorithm makes a sequence of choices

- * Algorithm makes a sequence of choices
- * Next choice is based on "current best value"

- * Algorithm makes a sequence of choices
- * Next choice is based on "current best value"
 - * Never go back and change a choice

- * Algorithm makes a sequence of choices
- * Next choice is based on "current best value"
 - * Never go back and change a choice
- * Dijkstra's algorithm is greedy

- * Algorithm makes a sequence of choices
- * Next choice is based on "current best value"
 - * Never go back and change a choice
- * Dijkstra's algorithm is greedy
 - * Select vertex with minimum expected burn time

- * Algorithm makes a sequence of choices
- * Next choice is based on "current best value"
 - * Never go back and change a choice
- * Dijkstra's algorithm is greedy
 - * Select vertex with minimum expected burn time
- * Need to prove that greedy strategy is optimal

- * Algorithm makes a sequence of choices
- * Next choice is based on "current best value"
 - * Never go back and change a choice
- * Dijkstra's algorithm is greedy
 - * Select vertex with minimum expected burn time
- * Need to prove that greedy strategy is optimal
- * Most times, greedy approach fails

- * Algorithm makes a sequence of choices
- * Next choice is based on "current best value"
 - * Never go back and change a choice
- * Dijkstra's algorithm is greedy
 - * Select vertex with minimum expected burn time
- * Need to prove that greedy strategy is optimal
- * Most times, greedy approach fails
 - Current best choice may not be globally optimal