This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

THIS PAGE BLANK (USPTO)

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: C12N 15/19, C07K 14/715, A61K 38/17, C07K 16/18, A01K 67/027 (11) International Publication Number:

WO 98/11225

A2

(43) International Publication Date:

19 March 1998 (19.03.98)

(21) International Application Number:

PCT/GB97/02479

(22) International Filing Date:

11 September 1997 (11.09.97)

(30) Priority Data:

PO 2246

11 September 1996 (11.09.96) AU

(71) Applicant (for all designated States except US): AMRAD OPERATIONS PTY. LTD. [AU/AU]; 576 Swan Street, Richmond, VIC 3121 (AU).

(71) Applicant (for GB only): DZIEGLEWSKA, Hanna, Eva [GB/GB]; Frank B. Dehn & Co., 179 Queen Victoria Street, London EC4V 4EL (GB).

(72) Inventors; and

(75) Inventors/Applicants (for US only): HILTON, Douglas, James [AU/AU]; 244 Research Road, Warrandyte, VIC 3113 (AU). NICOLA, Nicos, Antony [AU/AU]; 56 Churchill Avenue, Mont Albert, VIC 3127 (AU). FARLEY, Alison [AU/AU]; 27/9-19 Miller Street, North Fitzroy, VIC 3068 (AU). WILLSON, Tracy [AU/AU]; 26 Fortuna Avenue, North Balwyn, VIC 3104 (AU). ZHANG, Jian-Guo [CN/AU]; 3 Karri Crescent, Hoppers Crossing, VIC 3029 (AU). ALEXANDER, Warren [AU/AU]; 13 Park Street, Moonee Ponds, VIC 3039 (AU). RAKAR, Steven [AU/AU]; 26 Riverside

Avenue, Avondale Heights, VIC 3034 (AU). FABRI, Louis [AU/AU]; 8 Laver Court, Mill Park, VIC 3082 (AU). KO-JIMA, Tetsuo [JP/JP]; 1-8-1-302 Minami-Rokugou, Ota-ku, Tokyo 144 (JP). MAEDA, Masatsugu [JP/JP]; 1-6-2-606 Kasuga, Tsukuba, Ibaraki 305 (JP). KIKUCHI, Yasufumi [JP/JP]; 1-29-5-110 Komatsu, Tsuchiura, Ibaraki 300 (JP). NASH, Andrew [AU/AU]; 24 Green Street, Northcote, VIC 3070 (AU).

(74) Agents: DZIEGLEWSKA, Hanna, Eva et al.; Frank B. Dehn & Co., 179 Queen Victoria Street, London EC4V 4EL (GB).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

Without international search report and to be republished upon receipt of that report.

(54) Title: A NOVEL HAEMOPOIETIN RECEPTOR AND GENETIC SEQUENCES ENCODING SAME

(57) Abstract

The present invention relates generally to a novel haemopoietin receptor or derivatives thereof and to genetic sequences encoding same. Interaction between the novel receptor of the present invention and a cytokine ligand facilitates proliferation, differentiation and survival of a wide variety of cells. The novel receptor and its derivatives and the genetic sequences encoding same of the present invention are useful in the development of a wide range of agonists, antagonists, therapeutics and diagnostic reagents based on ligand interaction with its receptor.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Amenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	1E	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	15	Iceland	MW	Malawi	US	United States of America
CA.	Canada	ΙΤ	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG.	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM			Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE		LI	Liechtenstein	SD	Sudan		
DK	•	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

A NOVEL HAEMOPOIETIN RECEPTOR AND GENETIC SEQUENCES ENCODING SAME

The present invention relates generally to a novel haemopoietin receptor or derivatives thereof and to genetic sequences encoding same. Interaction between the novel receptor of the present invention and a ligand facilitates proliferation, differentiation and survival of a wide variety of cells. The novel receptor and its derivatives and the genetic sequences encoding same of the present invention are useful in the development of a wide range of agonists, antagonists, therapeutics and diagnostic reagents based on ligand interaction with its receptor.

15

20

25

10

5

Bibliographic details of the publications numerically referred to in this specification are collected at the end of the description. Sequence Identity Numbers (SEQ ID NOs.) for the nucleotide and amino acid sequences referred to in the specification are defined following the bibliography.

Throughout this specification and the claims which follow, unless the context requires otherwise, the word "comprise", or variations such as "comprises" or "comprising", will be understood to imply the inclusion of a stated integer or group of integers but not the exclusion of any other integer or group of integers.

The rapidly increasing sophistication of recombinant DNA techniques is greatly facilitating research into the medical and allied health fields. Cytokine research is of particular importance, especially as these molecules regulate the proliferation, differentiation and function of a wide variety of cells. Administration of recombinant cytokines or regulating cytokine function and/or synthesis is becoming increasingly the focus of

- 1 -

medical research into the treatment of a range of disease conditions.

Despite the discovery of a range of cytokines and other secreted regulators of cell function, comparatively few cytokines are directly used or targeted in therapeutic regimens. One reason for this is the pleiotropic nature of many cytokines. For example, interleukin (IL)-11 is a functionally pleiotropic molecule (1,2), initially characterized by its ability to stimulate proliferation of the IL-6-dependent plasmacytoma cell line, T11 65 (3). Other biological actions of IL-11 include induction of multipotential haemopoietin progenitor cell proliferation (4,5,6), enhancement of megakaryocyte and platelet formation (7,8,9,10), stimulation of acute phase protein synthesis (11) and inhibition of adipocyte lipoprotein lipase activity (12, 13).

Other important cytokines in the IL-11 group include IL-6, leukaemia inhibitory factor (LIF), oncostatin M (OSM) and CNTF. All these cytokines exhibit pleiotropic properties with significant activities in proliferation, differentiation and survival of cells. Members of the haemopoietin receptor family are defined by the presence of a conserved amino acid domain in their extracellular region. However, despite the low level of amino acid sequence conservation between other haemopoietin receptor domains of different receptors, they are all predicted to assume a similar tertiary structure, centred around two fibronectin-type III repeats (18,19).

The size of the haemopoietin receptor family has now become extensive and includes the cell surface receptors for may cytokines including interleukin-2 (IL-2), IL-3, IL-4, IL-5, IL-6, IL-7, IL-9, IL-11, IL-12, IL-13, IL-15, granulocyte colony stimulating factor (G-CSF), granulocyte-macrophage-CSF (GM-CSF), erythropoietin,

- 2 -

5

10

15

20

25

30

thrombopoietin, leptin, leukaemia inhibitory factor, oncostatin-M, ciliary neurotrophic factor, cardiotrophin, growth hormone and prolactin. Although most of the members of the haemopoietin receptor family act as classic cell surface receptors, binding their cognate ligand at the cell surface and initiating intracellular signal transduction, some receptors are also produced in naturally occuuring soluble forms. These soluble receptors can either act as cytokine antagonists, by binding to cytokines and inhibiting productive interactions with cell surface receptors (eq LIF binding protein; (20) or as agonists, binding to cytokine and potentiating interaction with cell surface receptor components (eg soluble interleukin-6 receptor a-chain; (21). Still other members of the family appear to be produced only as secreted proteins, with no evidence of a cell surface form. In this regard, the IL-12 p40 subunit is a useful example. The cytokine IL-12 is secreted as a heterodimer composed of a p35 subunit which shows similarity to cytokines such as IL-6 (22) and a p40 subunit which shares similarity with the IL-6 receptor a-chain (23). In this case the soluble receptor acts as part of the cytokine itself and essential to formation of an active protein. addition to acting as cytokines (eg IL-12p40), cytokine agonists (eg IL-6 receptor a-chain) or cytokine antagonists (LIF binding protein), members of the haemopoietin receptor have been useful in the discovery of small molecule cytokine mimetics. For example, the discovery of peptide mimetics of two commercially valuable cytokines, erythropoietin and thrombopoietin, centred on the selection of peptides capable of binding to soluble versions of the erythropoietin and thrombopoietin receptors (24,25). Due to the importance and multifactorial nature of these cytokines, there is a need to identify receptors, including both cell bound and soluble, for pleiotropic cytokines. Identification

- 3 -

5

10

15

20

25

30

of such receptors permits the identification of pleiotropic cytokines and the development of a range of therapeutic and diagnostic agents.

Accordingly, one aspect of the present invention relates to a nucleic acid molecule comprising a sequence of nucleotides encoding or complementary to a sequence encoding a novel haemopoietin receptor or a derivative thereof.

10

15

More particularly, the present invention provides a nucleic acid molecule comprising a sequence of nucleotides encoding or complementary to a sequence encoding a novel haemopoietin receptor or a derivative thereof having the motif:

Trp Ser Xaa Trp Ser [SEQ ID NO:1], wherein Xaa is any amino acid and is preferably Asp or Glu.

Even more particularly, the present invention is directed to a nucleic acid molecule comprising a sequence of nucleotides encoding or complementary to a sequence encoding a novel haemopoietin receptor or a derivative thereof, said receptor comprising the motif:

25

30

Trp Ser Xaa Trp Ser [SEQ ID NO:1]

wherein Xaa is any amino acid and is preferably Asp or Glu, said nucleic acid molecule is identifiable by hybridisation to said molecule under low stringency conditions at 42EC with 5N (A/G)CTCCA(A/G)TC(A/G)CTCCA 3N [SEQ ID NO:7] and 5N (A/G)CTCCA(C/T)TC(A/G)CTCCA 3N [SEQ ID NO:8].

35

Still more particularly, the present invention provides an isolated nucleic acid molecule comprising a sequence

of nucleotides substantially as set forth in SEQ ID NO:12 or a nucleotide sequence having at least 60% similarity to the nucleotide sequence set forth in SEQ ID NO:12 or a nucleotide sequence capable of hybridising thereto under low stringency conditions at 42EC and wherein said nucleotide sequence encodes a novel haemopoietin receptor or a derivative thereof.

In a related embodiment, the present invention provides
an isolated nucleic acid molecule comprising a sequence
of nucleotides substantially as set forth in SEQ ID
NO:14 or a nucleotide sequence having at least 60%
similarity to the nucleotide sequence set forth in SEQ
ID NO:14 or a nucleotide sequence capable of hybridising
thereto under low stringency conditions at 42EC and
wherein said nucleotide sequence encodes a novel
haemopoietin receptor or a derivative thereof.

In another related embodiment, the present invention
provides an isolated nucleic acid molecule comprising a
sequence of nucleotides substantially as set forth in
SEQ ID NO:16 or a nucleotide sequence having at least
60% similarity to the nucleotide sequence set forth in
SEQ ID NO:16 or a nucleotide sequence capable of
hybridising thereto under low stringency conditions at
42EC and wherein said nucleotide sequence encodes a
novel haemopoietin receptor or a derivative thereof.

In a further related embodiment, the present invention provides an isolated nucleic acid molecule comprising a sequence of nucleotides substantially as set forth in SEQ ID NO:18 or a nucleotide sequence having at least 60% similarity to the nucleotide sequence set forth in SEQ ID NO:18 or a nucleotide sequence capable of hybridising thereto under low stringency conditions at 42EC and wherein said nucleotide sequence encodes a novel haemopoietin receptor or a derivative thereof.

30

35

In yet a further related embodiment, the present invention provides an isolated nucleic acid molecule comprising a sequence of nucleotides substantially as set forth in SEQ ID NO:24 or a nucleotide sequence having at least 60% similarity to the nucleotide sequence set forth in SEQ ID NO:24 or a nucleotide sequence capable of hybridising thereto under low stringency conditions at 42EC and wherein said nucleotide sequence encodes a novel haemopoietin receptor or a derivative thereof.

Still yet a further embodiment of the present invention is directed to a sequence of nucleotides substantially as set forth in SEQ ID NO:28 or a nucleotide sequence having at least 60% similarity to the nucleotide sequence set forth in SEQ ID NO:28 or a nucleotide sequence capable of hybridising thereto under low stringency conditions at 42EC and wherein said nucleotide sequence encodes a novel haemopoietin receptor or a derivative thereof.

In still yet another embodiment, the present invention provides an isolated nucleic acid molecule comprising a sequence of nucleotides substantially set forth in SEQ ID NO:38 or a nucleotide sequence having at least 60% similarity to the nucleotide sequence set forth in SEQ ID NO:38 or a nucleotide sequence capable of hybridising thereto under low stringency conditions at 42EC and wherein said nucleotide sequence encodes a novel haemopoietin receptor or a derivative thereof.

The term "receptor" is used in its broadest sense and includes any molecule capable of binding, associating or otherwise interacting with a ligand. Generally, the interaction will have a signalling effect although the present invention is not necessarily so limited. For example, the "receptor" may be in soluble form, often

5

10

15

20

25

30

referred to as a cytokine binding protein. A receptor may be deemed a receptor notwithstanding that its ligand or ligands has or have not been identified.

preferably, the novel receptor is derived from a mammal or a species of bird. Particularly, preferred mammals include humans, primates, laboratory test animals (e.g. mice, rats, rabbits, guinea pigs), livestock animals (e.g. sheep, horses, pigs, cows), companion animals (e.g. dogs, cats) or captive wild animals (e.g. deer, foxes, kangaroos). Although the present invention is exemplified with respect to mice, the scope of the subject invention extends to all animals and in particular humans.

15

30

35

The present invention is predicated in part on an ability to identify members of the haemopoietin receptor family with limited sequence similarity. Based on this approach, a genetic sequence has been identified in accordance with the present invention which encodes a novel receptor. The expressed genetic sequence is referred to herein as "NR6". Different forms of NR6 are referred to as, for example, NR6.1, NR6.2 and NR6.3. The nucleotide and corresponding amino acid sequences for these molecules are represented in SEQ ID NOS:12, 14 and 16, respectively.

Preferred human and murine nucleic acid sequences for NR6 or its derivatives include sequences from brain, liver, kidney, neonatal, embryonic, cancer or tumour-derived tissues.

Reference herein to a low stringency at 42EC includes and encompasses from at least about 1% v/v to at least about 15% v/v formamide and from at least about 1M to at least about 2M salt for hybridisation, and at least about 1M to at least about 2M salt for washing

- 7 -

conditions. Alternative stringency conditions may be applied where necessary, such as medium stringency, which includes and encompasses from at least about 16% v/v to at least about 30% v/v formamide and from at least about 0.5M to at least about 0.9M salt for hybridisation, and at least about 0.5M to at least about 0.9M salt for washing conditions, or high stringency, which includes and encompasses from at least about 31% v/v to at least about 50% v/v formamide and from at least about 0.01M to at least about 0.15M salt for hybridisation, and at least about 0.01M to at least about 0.15M salt for hybridisation, and at least about 0.01M to at least about 0.15M salt for washing conditions.

The nucleic acid molecules contemplated by the present invention are generally in isolated form and are preferably cDNA or genomic DNA molecules. In a particularly preferred embodiment, the nucleic acid molecules are in vectors and most preferably expression vectors to enable expression in a suitable host cell. Particularly useful host cells include prokaryotic cells, mammalian cells, yeast cells and insect cells. The cells may also be in the form of a cell line.

Accordingly, another aspect of the present invention provides an expression vector comprising a nucleic acid molecule encoding the novel haempoietin receptor or a derivative thereof as hereinbefore described, said expression vector capable of expression in a selected host cell.

30

35

5

10

15

20

25

Another aspect of the present invention contemplates a method for cloning a nucleotide sequence encoding NR6 or a derivative thereof, said method comprising searching a nucleotide data base for a sequence which encodes the amino acid sequence set forth in SEQ ID NO:1, designing one or more oligonucleotide primers based on the nucleotide sequence located in the search, screening a

nucleic acid library with said one or more oligonucleotides and obtaining a clone therefrom which encodes said NR6 or part thereof.

Once a novel nucleotide sequence is obtained as indicated above encoding NR6, oligonucleotides may be designed which bind cDNA clones with high stringency. Direct colony hybridisation may be employed or PCR amplification may be used. The use of oligonucleotide primers which bind under conditions of high stringency ensures rapid cloning of a molecule encoding the novel NR6 and less time is required in screening out cloning artefacts. However, depending on the primers used, low or medium stringency conditions may also be employed.

15

20

35

Alternatively, a library may be screened directly such as using oligonucleotides set forth in SEQ ID NO:7 or SEQ ID NO:8 or a mixture of both oligonucleotides may be used. In addition, one or more of oligonucleotides defined in SEQ ID NO:2 to 11 may also be used.

Preferably, the nucleic acid library is a cDNA, genomic, cDNA expression or mRNA library.

25 Preferably, the nucleic acid library is a cDNA expression library.

Preferably, the nucleotide data base is of human or murine origin and of brain, liver, kidney, neo-natal tissue, embryonic tissue, tumour or cancer tissue origin.

Preferred percentage similarities to the reference nucleotide sequences include at least about 70%, more preferably at least about 80%, still more preferably at least about 90% and even more preferably at least about 95% or above.

Another aspect of the present invention provides an isolated nucleic acid molecule comprising a sequence of nucleotides encoding a novel haempoietin receptor or derivative thereof having an amino acid sequence as set forth in SEQ ID NO:13 or having at least about 50% similarity to all or part thereof.

Still yet another aspect of the present invention provides an isolated nucleic acid molecule comprising a sequence of nucleotides encoding a novel haempoietin receptor or derivative thereof having an amino acid sequence as set forth in SEQ ID NO:15 or having at least about 50% similarity to all or part thereof.

15 Even yet another aspect of the present invention provides an isolated nucleic acid molecule comprising a sequence of nucleotides encoding a novel haempoietin receptor or derivative thereof having an amino acid sequence as set forth in SEQ ID NO:17 or having at least about 50% similarity to all or part thereof.

A further aspect of the present invention provides an isolated nucleic acid molecule comprising a sequence of nucleotides encoding a novel haempoietin receptor or derivative thereof having an amino acid sequence as set forth in SEQ ID NO:19 or having at least about 50% similarity to all or part thereof.

Even yet a another aspect of the present invention provides an isolated nucleic acid molecule comprising a sequence of nucleotides encoding a novel haempoietin receptor or derivative thereof having an amino acid sequence as set forth in SEQ ID NO:25 or having at least about 50% similarity to all or part thereof.

Another aspect of the present invention provides an isolated nucleic acid molecule comprising a sequence of

5

25

30

nucleotides encoding a novel haempoietin receptor or derivative thereof having an amino acid sequence as set forth in one or more of SEQ ID NOs:29 or having at least about 50% similarity to all or part thereof.

5

Preferably, the percentage amino acid similarity is at least about 60%, more preferably at least about 70%, even more preferably at least about 80-85% and still even more preferably at least about 90-95% or greater.

10

15

20

25

The NR6 polypeptide contemplated by the present invention includes, therefore, derivatives which are components, parts, fragments, homologues or analogues of the novel haempoietin receptors which are preferably encoded by all or part of a nucleotide sequences substantially set forth in SEQ ID NO:12 or 14 or 16 or 18 or 25 or 20 or 24 or 28 or 38 or a molecule having at least about 60% nucleotide similarity to all or part thereof or a molecule capable of hybridising to the nucleotide sequence set forth in SEQ ID NO:12 or 14 or 16 or 18 or 20 or 24 or 28 or 38 or a complementary form The NR6 molecule may be glycosylated or nonthereof. glycosylated. When in glycosylated form, the glycosylation may be substantially the same as naturally occurring haempoietin receptor or may be a modified form of glycosylation. Altered or differential glycosylation states may or may not affect binding activity of the

30

novel receptor.

The NR6 haemopoietin receptor may be in soluble form or may be expressed on a cell surface or conjugated or fused to a solid support or another molecule.

35

As stated above, the present invention further contemplates a range of derivatives of NR6. Derivatives include fragments, parts, portions, mutants, homologues and analogues of the NR6 polypeptide and corresponding

genetic sequence. Derivatives also include single or multiple amino acid substitutions, deletions and/or additions to NR6 or single or multiple nucleotide substitutions, deletions and/or additions to the genetic sequence encoding NR6. "Additions" to amino acid sequences or nucleotide sequences include fusions with other peptides, polypeptides or proteins or fusions to nucleotide sequences. Reference herein to ANR6" includes reference to all derivatives thereof including functional derivatives or NR6 immunologically interactive derivatives.

Analogues of NR6 contemplated herein include, but are not limited to, modification to side chains, incorporating of unnatural amino acids and/or their

incorporating of unnatural amino acids and/or their derivatives during peptide, polypeptide or protein synthesis and the use of crosslinkers and other methods which impose conformational constraints on the proteinaceous molecule or their analogues.

20

25

30

5

10

15

Examples of side chain modifications contemplated by the present invention include modifications of amino groups such as by reductive alkylation by reaction with an aldehyde followed by reduction with NaBH4; amidination with methylacetimidate; acylation with acetic anhydride; carbamoylation of amino groups with cyanate; trinitrobenzylation of amino groups with 2, 4, 6-trinitrobenzene sulphonic acid (TNBS); acylation of amino groups with succinic anhydride and tetrahydrophthalic anhydride; and pyridoxylation of lysine with pyridoxal-5-phosphate followed by reduction with NaBH4.

The guanidine group of arginine residues may be modified by the formation of heterocyclic condensation products with reagents such as 2,3-butanedione, phenylglyoxal and glyoxal.

The carboxyl group may be modified by carbodiimide activation via O-acylisourea formation followed by subsequent derivitisation, for example, to a corresponding amide.

5

10

15

20

30

35

Sulphydryl groups may be modified by methods such as carboxymethylation with iodoacetic acid or iodoacetamide; performic acid oxidation to cysteic acid; formation of a mixed disulphides with other thiol compounds; reaction with maleimide, maleic anhydride or other substituted maleimide; formation of mercurial derivatives using 4-chloromercuribenzoate, 4-chloromercuriphenylsulphonic acid, phenylmercury chloride, 2-chloromercuri-4-nitrophenol and other mercurials; carbamoylation with cyanate at alkaline pH.

Tryptophan residues may be modified by, for example, oxidation with N-bromosuccinimide or alkylation of the indole ring with 2-hydroxy-5-nitrobenzyl bromide or sulphenyl halides. Tyrosine residues on the other hand, may be altered by nitration with tetranitromethane to form a 3-nitrotyrosine derivative.

Modification of the imidazole ring of a histidine
residue may be accomplished by alkylation with
iodoacetic acid derivatives or N-carbethoxylation with
diethylpyrocarbonate.

Examples of incorporating unnatural amino acids and derivatives during peptide synthesis include, but are not limited to, use of norleucine, 4-amino butyric acid, 4-amino-3-hydroxy-5-phenylpentanoic acid, 6-aminohexanoic acid, t-butylglycine, norvaline, phenylglycine, ornithine, sarcosine, 4-amino-3-hydroxy-6-methylheptanoic acid, 2-thienyl alanine and/or Disomers of amino acids. A list of unnatural amino acid, contemplated herein is shown in Table 1.

These types of modifications may be important to stabilise NR6 if administered to an individual or for use as a diagnostic reagent.

- Crosslinkers can be used, for example, to stabilise 3D conformations, using homo-bifunctional crosslinkers such as the bifunctional imido esters having $(CH_2)_n$ spacer groups with n=1 to n=6, glutaraldehyde, N-hydroxysuccinimide esters and hetero-bifunctional
- reagents which usually contain an amino-reactive moiety such as N-hydroxysuccinimide and another group specific-reactive moiety such as maleimido or dithio moiety (SH) or carbodiimide (COOH). In addition, peptides can be conformationally constrained by, for example,
- incorporation of C" and N ..-methylamino acids, introduction of double bonds between C. and C5 atoms of amino acids and the formation of cyclic peptides or analogues by introducing covalent bonds such as forming an amide bond between the N and C termini, between two
- 20 side chains or between a side chain and the N or C terminus.

PCT/GB97/02479

TABLE 1

Non-conventional	Code	Non-conventional	Code	
amino acid		amino acid		
iburunia said	Abu	L-N-methylalanine	Nmala	
aminobutyric acid	Mgabu	L-N-methylarginine	Nmar	
Amino-"-methylbutyrate	Cpro	L-N-methylasparagine	Nmas	
aminocyclopropane-	Cpro	L-N-methylaspartic acid	Nmas	
carboxylate	Aib	L-N-methylcysteine	Nmcy	
aminoisobutyric acid	Norb	L-N-methylglutamine	Nmgl	
aminonorbornyl-	NOLD	L-N-methylglutamic acid	Nmgl	
carboxylate		ChexaL-N-methylhistidine	Nmhi	
cyclohexylalanine	Om a n	L-N-methylisolleucine	Nmil	
cyclopentylalanine	Cpen Dal	L-N-methylleucine	Nmle	
D-alanine		L-N-methyllysine	Nmly	
D-arginine	Darg	L-N-methylmethionine	Nmme	
D-aspartic acid	Dasp	L-N-methylnorleucine	Nmr.]	
D-cysteine	Dcys	L-N-methylnorvaline	Nmriv	
D-glutamine	Dgln	-	Nmo	
D-glutamic acid	Dglu	L-N-methylornithine	-	
D-histidine	Dhis	L-N-methylphenylalanine	Nmpl	
D-isoleucine	Dile	L-N-methylproline	Nmp	
D-leucine	Dleu	L-N-methylserine		
D-lysine	Dlys	L-N-methylthreonine	Nmtl	
D-methionine	Dmet	L-N-methyltryptophan	Nmt	
D-ornithine	Dorn	L-N-methyltyrosine	Nmt	
D-phenylalanine	Dphe	L-N-methylvaline	Nmv	
D-proline	Dpro	L-N-methylethylglycine	Nmet	
D-serine	Dser	L-N-methyl-t-butylglycine	Nmt	
D-threonine	Dthr	L-norleucine	Nle	
D-tryptophan	Dtrp	L-norvaline	Nva	
D-tyrosine	Dtyr	"-methyl-aminoisobutyrate	Mai	
D-valine	Dval	"-methyl-(-aminobutyrate	Mga	
D-"-methylalanine	Dmala	"-methylcyclohexylalanine	Mch	
D-"-methylarginine	Dmarg	"-methylcylcopentylalanine		
D-"-methylasparagine	Dmasn	"-methyl-"-napthylalanine	Man	
D-"-methylaspartate	Dmasp	"-methylpenicillamine	Mpe	

	D-"-methylcysteine	Dmcys	N-(4-aminobutyl)glycine	Nglu
	D-"-methylglutamine	Dmgln	N-(2-aminoethyl)glycine	Naeg
	D-"-methylhistidine	Dmhis	N-(3-aminopropyl)glycine	Norn
	D-"-methylisoleucine	Dmile	N-amino-"-methylbutyrate	Nmaabu
5	D-"-methylleucine	Dmleu	"-napthylalanine	Anap
	D-"-methyllysine	Dmlys	N-benzylglycine	Nphe
	D-"-methylmethionine	Dmmet	N-(2-carbamylethyl)glycine	Ngln
	D-"-methylornithine	Dmorn	N-(carbamylmethyl)glycine	Nasn
	D-"-methylphenylalanine	Dmphe	N-(2-carboxyethyl)glycine	Nglu
10	D-"-methylproline	Dmpro	N-(carboxymethyl)glycine	Nasp
	D-"-methylserine	Dmser	N-cyclobutylglycine	Ncbut
	D"-methylthreonine	Dmthr	N-cycloheptylglycine	Nchep
	D-"-methyltryptophan	Dmtrp	N-cyclohexylglycine	Nchex
	D-"-methyltyrosine	Dmty	N-cyclodecylglycine	Ncdec
15	D-"-methylvaline	Dmval	N-cylcododecylglycine	Ncdod
	D-N-methylalanine	Dnmala	N-cyclooctylglycine	Ncoct
	D-N-methylarginine	Dnmarg	N-cyclopropylglycine	Ncpro
	D-N-methylasparagine	Dnmasn	N-cycloundecylglycine	Ncund
	D-N-methylaspartate	Dnmasp	N-(2,2-diphenylethyl)glycir	e Nbhm
20	D-N-methylcysteine	Dnmcys	N-(3,3-diphenylpropyl)glyci	ne Nbhe
	D-N-methylglutamine	Dnmgln	N-(3-guanidinopropyl)glycir	ne Narg
	D-N-methylglutamate	Dnmglu	N-(1-hydroxyethyl)glycine	Nthr
	D-N-methylhistidine	Dnmhis	N-(hydroxyethyl))glycine	Nser
	D-N-methylisoleucine	Dnmile	N-(imidazolylethyl))glycine	Nhis
25	D-N-methylleucine	Dnmleu	N-(3-indolylyethyl)glycine	Nhtrp
	D-N-methyllysine	Dnmlys	N-methyl-(-aminobutyrate	Nmgabu
	N-methylcyclohexylalanine	Nmchexa	D-N-methylmethionine	Dnmmet
	D-N-methylornithine	Dnmorn	N-methylcyclopentylalanine	
	NmcpenN-methylglycine	Nala	D-N-methylphenylalanine	Dnmphe
30	N-methylaminoisobutyrate	Nmaib	D-N-methylproline	Dnmpro
	N-(1-methylpropyl)glycine	Nile	D-N-methylserine	Dnmser
	N-(2-methylpropyl)glycine	Nleu	D-N-methylthreonine	Dnmthr
	D-N-methyltryptophan	Dnmtrp	N-(1-methylethyl)glycine	Nval
	D-N-methyltyrosine	Dnmtyr	N-methyla-napthylalanine	Nmanap
35	D-N-methylvaline	Dnmval	N-methylpenicillamine	Nmpen
	(-aminobutyric acid	Gabu	N-(p-hydroxyphenyl)glycine	Nhtyr
	L-t-butylglycine	Tbug	N-(thiomethyl)glycine	Ncys

	L-ethylglycine	Etg	penicillamine	Pen
	L-homophenylalanine	Hphe	L-"-methylalanine	Mala
	L-"-methylarginine	Marg	L-"-methylasparagine	Masn
	L-"-methylaspartate	Masp	L-"-methyl-t-butylglycine	Mtbug
5	L-"-methylcysteine	Mcys	L-methylethylglycine	Metg
	L-"-methylglutamine	Mgln	L-"-methylglutamate	Mglu
	L-"-methylhistidine	Mhis	L-"-methylhomophenylalanin	e Mhphe
	L-"-methylisoleucine	Mile	N-(2-methylthioethyl)glyci	ne Nmet
	L-"-methylleucine	Mleu	L-"-methyllysine	Mlys
10	L-"-methylmethionine	Mmet	L-"-methylnorleucine	Mnle .
	L-"-methylnorvaline	Mnva	L-"-methylornithine	Morn
	L-"-methylphenylalanine	Mphe	L-"-methylproline	Mpro
	L-"-methylserine	Mser	L-"-methylthreonine	Mthr
	L-"-methyltryptophan	Mtrp	L-"-methyltyrosine	Mtyr
15	L-"-methylvaline	Mval	L-N-methylhomophenylalanin	e Nmhphe
	N-(N-(2,2-diphenylethyl)	Nnbhm	N-(N-(3,3-diphenylpropyl)	Nnbhe
	carbamylmethyl)glycine		carbamylmethyl)glycine	
	1-carboxy-1-(2,2-diphenyl	- Nmbc	ethylamino) cyclopropane	

20

25

30

35

The present invention further contemplates chemical analogues of NR6 capable of acting as antagonists or agonists of NR6 or which can act as functional analogues of NR6. Chemical analogues may not necessarily be derived from NR6 but may share certain conformational similarities. Alternatively, chemical analogues may be specifically designed to mimic certain physiochemical properties of NR6. Chemical analogues may be chemically synthesised or may be detected following, for example, natural product screening.

The identification of NR6 permits the generation of a range of therapeutic molecules capable of modulating expression of NR6 or modulating the activity of NR6. Modulators contemplated by the present invention includes agonists and antagonists of NR6 expression. Antagonists of NR6 expression include antisense

molecules, ribozymes and co-suppression molecules.

Agonists include molecules which increase promoter ability or interfere with negative regulatory mechanisms. Agonists of NR6 include molecules which overcome any negative regulatory mechanism. Antagonists of NR6 include antibodies and inhibitor peptide fragments.

Other derivatives contemplated by the present invention include a range of glycosylation variants from a completely unglycosylated molecule to a modified glycosylated molecule. Altered glycosylation patterns may result from expression of recombinant molecules in different host cells.

15

20

25

30

35

5

Another embodiment of the present invention contemplates a method for modulating expression of NR6 in a subject such as a human or mouse, said method comprising contacting the genetic sequence encoding NR6 with an effective amount of a modulator of NR6 expression for a time and under conditions sufficient to up-regulate or down-regulate or otherwise modulate expression of NR6. Modulating NR6 expression provides a means of modulating NR6-ligand interaction or NR6 stimulation of cell activities.

Another aspect of the present invention contemplates a method of modulating activity of NR6 in a human, said method comprising administering to said mammal a modulating effective amount of a molecule for a time and under conditions sufficient to increase or decrease NR6 activity. The molecule may be a proteinaceous molecule or a chemical entity and may also be a derivative of NR6 or its ligand or a chemical analogue or truncation mutant of NR6 or its ligand.

The present invention, therefore, contemplates a

pharmaceutical composition comprising NR6 or a derivative thereof or a modulator of NR6 expression or NR6 activity and one or more pharmaceutically acceptable carriers and/or diluents. These components are referred to as the Aactive ingredients@.

The pharmaceutical forms suitable for injectable use include sterile aqueous solutions (where water soluble) and sterile powders for the extemporaneous preparation of sterile injectable solutions. It must be stable under the conditions of manufacture and storage and must be preserved against the contaminating action of microorganisms such as bacteria and fungi. The carrier can be a solvent or dilution medium comprising, for example, water, ethanol, polyol (for example, glycerol, propylene glycol and liquid polyethylene glycol, and the like), suitable mixtures thereof, and vegetable oils. The proper fluidity can be maintained, for example, by the use of superfactants. The preventions of the action of microorganisms can be brought about by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, sorbic acid, thirmerosal and the like. In many cases, it will be preferable to include isotonic agents, for example, sugars or sodium chloride. Prolonged absorption of the injectable compositions can be brought about by the use in the compositions of agents delaying absorption, for example, aluminum monostearate and gelatin.

30 Sterile injectable solutions are prepared by incorporating the active compounds in the required amount in the appropriate solvent with various of the other ingredients enumerated above, as required, followed by filtered sterilization. In the case of sterile powders for the preparation of sterile injectable solutions, the preferred methods of preparation are vacuum drying and the freeze-drying

5

10

15

20

technique which yield a powder of the active ingredient plus any additional desired ingredient from previously sterile-filtered solution thereof.

- When the active ingredients are suitably protected they may be orally administered, for example, with an inert diluent or with an assimilable edible carrier, or it may be enclosed in hard or soft shell gelatin capsule, or it may be compressed into tablets, or it may be
- incorporated directly with the food of the diet. For oral therapeutic administration, the active compound may be incorporated with excipients and used in the form of ingestible tablets, buccal tablets, troches, capsules, elixirs, suspensions, syrups, wafers, and the like.
- Such compositions and preparations should contain at least 1% by weight of active compound. The percentage of the compositions and preparations may, of course, be varied and may conveniently be between about 5 to about 80% of the weight of the unit. The amount of active compound in such therapeutically useful compositions in such that a suitable dosage will be obtained. Preferred
- invention are prepared so that an oral dosage unit form contains between about 0.1 ug and 2000 mg of active compound. Alternative dosage amounts include from about 1 Fg to about 1000 mg and from about 10 Fg to about 500 mg.

compositions or preparations according to the present

The tablets, troches, pills, capsules and the like may
also contain the components as listed hereafter: A
binder such as gum, acacia, corn starch or gelatin;
excipients such as dicalcium phosphate; a
disintegrating agent such as corn starch, potato starch,
alginic acid and the like; a lubricant such as
magnesium stearate; and a sweetening agent such a
sucrose, lactose or saccharin may be added or a
flavouring agent such as peppermint, oil of wintergreen,

or cherry flavouring. When the dosage unit form is a capsule, it may contain, in addition to materials of the above type, a liquid carrier. Various other materials may be present as coatings or to otherwise modify the physical form of the dosage unit. For instance, tablets, pills, or capsules may be coated with shellac, sugar or both. A syrup or elixir may contain the active compound, sucrose as a sweetening agent, methyl and propylparabens as preservatives, a dye and flavouring such as cherry or orange flavour. Of course, any material used in preparing any dosage unit form should be pharmaceutically pure and substantially non-toxic in the amounts employed. In addition, the active compound(s) may be incorporated into sustained-release preparations and formulations.

The present invention also extends to forms suitable for topical application such as creams, lotions and gels as well as a range of "paints" which are applied to skin and through which the active ingredients are absorbed.

Pharmaceutically acceptable carriers and/or diluents include any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents and the like. The use of such media and agents for pharmaceutical active substances is well known in the art and except insofar as any conventional media or agent is incompatible with the active ingredient, their use in the therapeutic compositions is contemplated. Supplementary active ingredients can also be incorporated into the compositions.

It is especially advantageous to formulate parenteral compositions in dosage unit form for ease of administration and uniformity of dosage. Dosage unit form as used herein refers to physically discrete units

5

10

15

20

25

30

PCT/GB97/02479 WO 98/11225

suited as unitary dosages for the mammalian subjects to be treated; each unit containing a predetermined quantity of active material calculated to produce the desired therapeutic effect in association with the required pharmaceutical carrier. The specification for the novel dosage unit forms of the invention are dictated by and directly dependent on (a) the unique characteristics of the active material and the particular therapeutic effect to be achieved, and (b) the limitations inherent in the art of compounding such 10 an active material for the treatment of disease in living subjects having a diseased condition in which bodily health is impaired as herein disclosed in detail.

- The principal active ingredient is compounded for 15 convenient and effective administration in effective amounts with a suitable pharmaceutically acceptable carrier in dosage unit form as hereinbefore disclosed. A unit dosage form can, for example, contain the
- principal active compound in amounts ranging from 0.5 :g 20 Expressed in proportions, the active to about 2000 mg. compound is generally present in from about 0.5 :g to about 2000 mg/ml of carrier. In the case of compositions containing supplementary active
- ingredients, the dosages are determined by reference to 25 the usual dose and manner of administration of the said ingredients.
 - Dosages may also be expressed per body weight of the recipient. For example, from about 10 ng to about 1000 mg/kg body weight, from about 100 ng to about 500 mg/kg body weight and for about 1 Fg to above 250 mg/kg body weight may be administered.
- The pharmaceutical composition may also comprise genetic molecules such as a vector capable of transfecting 35 target cells where the vector carries a nucleic acid molecule capable of modulating NR6 expression or NR6

30

activity. The vector may, for example, be a viral vector.

Still another aspect of the present invention is
directed to antibodies to NR6 and its derivatives. Such
antibodies may be monoclonal or polyclonal and may be
selected from naturally occurring antibodies to NR6 or
may be specifically raised to NR6 or derivatives
thereof. In the case of the latter, NR6 or its
derivatives may first need to be associated with a
carrier molecule. The antibodies and/or recombinant NR6
or its derivatives of the present invention are
particularly useful as therapeutic or diagnostic agents.
For example, NR6 antibodies or antibodies to its ligand
may act as antagonists.

For example, NR6 and its derivatives can be used to screen for naturally occurring antibodies to NR6. These may occur, for example in some autoimmune diseases.

Alternatively, specific antibodies can be used to screen for NR6. Techniques for such assays are well known in the art and include, for example, sandwich assays and ELISA. Knowledge of NR6 levels may be important for diagnosis of certain cancers or a predisposition to cancers or for monitoring certain therapeutic protocols.

Antibodies to NR6 of the present invention may be monoclonal or polyclonal. Alternatively, fragments of antibodies may be used such as Fab fragments.

Furthermore, the present invention extends to recombinant and synthetic antibodies and to antibody hybrids. A "synthetic antibody" is considered herein to include fragments and hybrids of antibodies. The antibodies of this aspect of the present invention are particularly useful for immunotherapy and may also be used as a diagnostic tool for assessing apoptosis or monitoring the program of a therapeutic regimen.

30

For example, specific antibodies can be used to screen for NR6 proteins. The latter would be important, for example, as a means for screening for levels of NR6 in a cell extract or other biological fluid or purifying NR6 made by recombinant means from culture supernatant fluid. Techniques for the assays contemplated herein are known in the art and include, for example, sandwich assays and ELISA.

- It is within the scope of this invention to include any second antibodies (monoclonal, polyclonal or fragments of antibodies or synthetic antibodies) directed to the first mentioned antibodies discussed above. Both the first and second antibodies may be used in detection assays or a first antibody may be used with a commercially available anti-immunoglobulin antibody. An antibody as contemplated herein includes any antibody specific to any region of NR6.
- Both polyclonal and monoclonal antibodies are obtainable 20 by immunization with the enzyme or protein and either type is utilizable for immunoassays. The methods of obtaining both types of sera are well known in the art. Polyclonal sera are less preferred but are relatively easily prepared by injection of a suitable laboratory 25 animal with an effective amount of NR6, or antigenic parts thereof, collecting serum from the animal, and isolating specific sera by any of the known immunoadsorbent techniques. Although antibodies produced by this method are utilizable in virtually any 30 type of immunoassay, they are generally less favoured because of the potential heterogeneity of the product.
- The use of monoclonal antibodies in an immunoassay is

 particularly preferred because of the ability to produce
 them in large quantities and the homogeneity of the
 product. The preparation of hybridoma cell lines for

monoclonal antibody production derived by fusing an immortal cell line and lymphocytes sensitized against the immunogenic preparation can be done by techniques which are well known to those who are skilled in the art.

Another aspect of the present invention contemplates a method for detecting NR6 in a biological sample from a subject said method comprising contacting said biological sample with an antibody specific for NR6 or its derivatives or homologues for a time and under conditions sufficient for an antibody-NR6 complex to form, and then detecting said complex. The presence of NR6 may be accomplished in a number of ways such as by Western blotting and ELISA procedures. A wide range of immunoassay techniques are available as can be seen by reference to US Patent Nos. 4,016,043, 4, 424,279 and 4,018,653. These, of course, includes both single-site and two-site or "sandwich" assays of the non-competitive types, as well as in the traditional competitive binding assays. These assays also include direct binding of a labelled antibody to a target.

Sandwich assays are among the most useful and commonly used assays and are favoured for use in the present invention. A number of variations of the sandwich assay technique exist, and all are intended to be encompassed by the present invention. Briefly, in a typical forward assay, an unlabelled antibody is immobilized on a solid substrate and the sample to be tested brought into contact with the bound molecule. After a suitable period of incubation, for a period of time sufficient to allow formation of an antibody-antigen complex, a second antibody specific to the antigen, labelled with a reporter molecule capable of producing a detectable signal is then added and incubated, allowing time sufficient for the formation of another complex of

5

10

15

20

25

30

PCT/GB97/02479 WO 98/11225

antibody-antigen-labelled antibody. Any unreacted material is washed away, and the presence of the antigen is determined by observation of a signal produced by the The results may either be reporter molecule. qualitative, by simple observation of the visible signal, or may be quantitated by comparing with a control sample containing known amounts of hapten. Variations on the forward assay include a simultaneous assay, in which both sample and labelled antibody are added simultaneously to the bound antibody. techniques are well known to those skilled in the art, including any minor variations as will be readily apparent. In accordance with the present invention, the sample is one which might contain NR6 including cell extract, tissue biopsy or possibly serum, saliva, 15 mucosal secretions, lymph, tissue fluid and respiratory fluid. The sample is, therefore, generally a biological sample comprising biological fluid but also extends to fermentation fluid and supernatant fluid such as from a cell culture. 20

In the typical forward sandwich assay, a first antibody having specificity for the NR6 or antigenic parts thereof, is either covalently or passively bound to a The solid surface is typically glass or solid surface. a polymer, the most commonly used polymers being cellulose, polyacrylamide, nylon, polystyrene, polyvinyl chloride or polypropylene. The solid supports may be in the form of tubes, beads, discs of microplates, or any other surface suitable for conducting an immunoassay. The binding processes are well-known in the art and generally consist of cross-linking covalently binding or physically adsorbing, the polymer-antibody complex is washed in preparation for the test sample. An aliquot of the sample to be tested is then added to the solid phase complex and incubated for a period of time sufficient (e.g. 2-40 minutes or overnight if more

5

10

25

30

convenient) and under suitable conditions (e.g. from about room temperature to about 371C) to allow binding of any subunit present in the antibody. Following the incubation period, the antibody subunit solid phase is washed and dried and incubated with a second antibody specific for a portion of the hapten. The second antibody is linked to a reporter molecule which is used to indicate the binding of the second antibody to the hapten.

10

15

20

25

30

35

5

An alternative method involves immobilizing the target molecules in the biological sample and then exposing the immobilized target to specific antibody which may or may not be labelled with a reporter molecule. Depending on the amount of target and the strength of the reporter molecule signal, a bound target may be detectable by direct labelling with the antibody. Alternatively, a second labelled antibody, specific to the first antibody is exposed to the target-first antibody complex to form a target-first antibody-second antibody tertiary complex. The complex is detected by the signal emitted by the reporter molecule.

In another alternative method, the NR6 ligand is immobilised to a solid support and a biological sample containing NR6 brought into contact with its immobilised ligand. Binding between NR5 and its ligand can then be determined using an antibody to NR6 which itself may be labelled with a reporter molecule or a further anti-immunoglobulin antibody labelled with a reporter molecule could be used to detect antibody bound to NR6.

By "reporter molecule" as used in the present specification, is meant a molecule which, by its chemical nature, provides an analytically identifiable signal which allows the detection of antigen-bound antibody. Detection may be either qualitative or

quantitative. The most commonly used reporter molecules in this type of assay are either enzymes, fluorophores or radionuclide containing molecules (i.e. radioisotopes) and chemiluminescent molecules.

- In the case of an enzyme immunoassay, an enzyme is conjugated to the second antibody, generally by means of glutaraldehyde or periodate. As will be readily recognized, however, a wide variety of different conjugation techniques exist, which are readily
- available to the skilled artisan. Commonly used enzymes include horseradish peroxidase, glucose oxidase, betagalactosidase and alkaline phosphatase, amongst others. The substrates to be used with the specific enzymes are generally chosen for the production, upon hydrolysis by the corresponding enzyme, of a detectable colour change.
- the corresponding enzyme, of a detectable colour change.

 Examples of suitable enzymes include alkaline

 phosphatase and peroxidase. It is also possible to

 employ fluorogenic substrates, which yield a fluorescent

 product rather than the chromogenic substrates noted
- above. In all cases, the enzyme-labelled antibody is added to the first antibody hapten complex, allowed to bind, and then the excess reagent is washed away. A solution containing the appropriate substrate is then added to the complex of antibody-antigen-antibody. The
- substrate will react with the enzyme linked to the second antibody, giving a qualitative visual signal, which may be further quantitated, usually spectrophotometrically, to give an indication of the amount of hapten which was present in the sample.
- 30 "Reporter molecule" also extends to use of cell agglutination or inhibition of agglutination such as red blood cells on latex beads, and the like.
- Alternately, fluorescent compounds, such as fluorescein and rhodamine, may be chemically coupled to antibodies without altering their binding capacity. When activated by illumination with light of a particular wavelength,

the fluorochrome-labelled antibody adsorbs the light energy, inducing a state to excitability in the molecule, followed by emission of the light at a characteristic colour visually detectable with a light microscope. As in the EIA, the fluorescent labelled antibody is allowed to bind to the first antibody-hapten complex. After washing off the unbound reagent, the remaining tertiary complex is then exposed to the light of the appropriate wavelength the fluorescence observed indicates the presence of the hapten of interest. Immunofluorescene and EIA techniques are both very well established in the art and are particularly preferred for the present method. However, other reporter molecules, such as radioisotope, chemiluminescent or bioluminescent molecules, may also be employed.

The present invention also contemplates genetic assays such as involving PCR analysis to detect the NR6 gene or its derivatives. Alternative methods or methods used in conjunction include direct nucleotide sequencing or mutation scanning such as single stranded conformational polymorphisms analysis (SSCP) as specific oligonucleotide hybridisation, as methods such as direct protein truncation tests.

25

30

35

5

10

15

20

The nucleic acid molecules of the present invention may be DNA or RNA. When the nucleic acid molecule is in a DNA form, it may be genomic DNA or cDNA. RNA forms of the nucleic acid molecules of the present invention are generally mRNA.

Although the nucleic acid molecules of the present invention are generally in isolated form, they may be integrated into or ligated to or otherwise fused or associated with other genetic molecules such as vector molecules and in particular expression vector molecules. Vectors and expression vectors are generally capable of

replication and, if applicable, expression in one or both of a prokaryotic cell or a eukaryotic cell. Preferably, prokaryotic cells include *E. coli*, *Bacillus sp* and *Pseudomonas sp*. Preferred eukaryotic cells include yeast, fungal, mammalian and insect cells.

Accordingly, another aspect of the present invention contemplates a genetic construct comprising a vector portion and a mammalian and more particularly a human NR6 gene portion, which NR6 gene portion is capable of encoding an NR6 polypeptide or a functional or immunologically interactive derivative thereof.

Preferably, the NR6 gene portion of the genetic

construct is operably linked to a promoter on the vector such that said promoter is capable of directing expression of said NR6 gene portion in an appropriate cell.

In addition, the NR6 gene portion of the genetic construct may comprise all or part of the gene fused to another genetic sequence such as a nucleotide sequence encoding maltose binding protein or glutathione-Stransferase or part thereof.

The present invention extends to such genetic constructs and to prokaryotic or eukaryotic cells comprising same.

The present invention also extends to any or all
derivatives of NR6 including mutants, part, fragments,
portions, homologues and analogues or their encoding
genetic sequence including single or multiple nucleotide
or amino acid substitutions, additions and/or deletions
to the naturally occurring nucleotide or amino acid
sequence.

NR6 may be important for the proliferation,

5

10

differentiation and survival of a diverse array of cell types. Accordingly, it is proposed that NR6 or its functional derivatives be used to regulate development, maintenance or regeneration in an array of different cells and tissues in vitro and in vivo. For example, NR6 is contemplated to be useful in modulating neuronal proliferation, differentation and survival.

Soluble NR6 polypeptides are also contemplated to be useful in the treatment of a range of diseases, injuries or abnormalities.

Membrane bound or soluble NR6 may be used in vitro on nerve cells or tissues to modulate proliferation, differentiation or survival, for example, in grafting procedures or transplantation.

As stated above, the NR6 of the present invention or its functional derivatives may be provided in a

20 pharmaceutical composition comprising the NR6 together with one or more pharmaceutically acceptable carriers and/or diluents. In addition, the present invention contemplates a method of treatment comprising the administration of an effective amount of a NR6 of the present invention. The present invention also extends to antagonists and agonists of NR6s and their use in therapeutic compositions and methodologies.

A further aspect of the present invention contemplates
the use of NR6 or its functional derivatives in the
manufacture of a medicament for the treatment of NR6
mediated conditions defective or deficient.

Still a further aspect of the present invention

contemplates a ligand for NR6 preferably, in isolated or recombinant form or a derivative of said ligand.

The present invention further contemplates knockout animals such as mice or other murine species for the NR6 gene including homozygous and heterozygous knockout animals. Such animals provide a particularly useful live in vivo model for studying the effects of NR6 as well as screening for agents capable of acting as agonists or antagonists of NR6.

According to this embodiment there is provided a

transgenic animal comprising a mutation in at least one
allele of the gene encoding NR6. Additionally, the
present invention provides a transgenic animal
comprising a mutation in two alleles of the gene
encoding NR6. Preferably, the transgenic animal is a

murine animal such as a mouse or rat.

The present invention is further described by the following non-limiting Figures and Examples.

20 In the Figures:

Figure 1 is a diagrammatic representation showing expansion of sequenced region of the mouse NR6 gene indicating splicing patterns seen in the three forms of NR6 cDNA, NR6.1, NR6.2 and NR6.3.

Figure 2 is a representation of the nucleotide sequence of the mouse NR6 gene, containing exons encoding the cDNA from nucleotide 148 encoding D50 of the cDNAs shown in SEQ ID NOs:12 and 14 to the end of the 3N untranslated region shared by both NR6.1, NR6.2 and NR6.3. In this figure, this region encompasses nucleotides g1182 to g6617. This sequence is also defined in SEQ ID NO:28.

35

30

25

5

Figure 3 is a representation of the nucleotide sequence of the mouse genomic NR6 gene with additional 5N

sequences. The coding exons of NR6 span approximately likb of the mouse genome. There are 9 coding exons separated by 8 introns:

	exonl	at least 239nt	intronl	5195nt
5	exon 2	282nt	intron2	214nt
	exon3	130nt	intron3	107nt
	exon4	170nt	intron4	1372nt
	exon5	158nt	intron5	68nt
	exon6	169nt	intron6	2020nt
10	exon6	188nt	intron7	104nt
	exon8	43nt	intron8	181nt
	exon9	252nt		

Exon 1 encoding the signal sequence, exon 2 the Ig-like domain, exons 3 to 6 the hemopoietin domain. Exons 7, 8 and 9 are alternatively spliced.

Figure 4 is a diagrammatic representation showing the genomic structure of murine NR-6.

20

Figure 5 is a diagrammatic representation showing targetting of the NR6 locus by homologous recombination.

Single and three letter abbreviations for amino acid residues used in the specification are summarised in Table 2:

5 TABLE 2

Amino Acid	Three-letter	One-letter
	Abbreviation	Symbol
Alanine	Ala	A
Arginine	Arg	R .
Asparagine	Asn	N
Aspartic acid	Asp	D
Cysteine	Cys	С
Glutamine	Gln	Q
Glutamic acid	Glu	E
Glycine	Gly	G
Histidine	His	Н
Isoleucine	Ile	I
Leucine	Leu	L
Lysine	Lys	K
Methionine	Met	М
Phenylalanine	Phe	F
Proline	Pro	P
Serine	Ser	S
Threonine	Thr	Т
Tryptophan	Trp	W
Tyrosine	Tyr	Y
Valine	Val	V
Any residue	Xaa	X

TABLE 3 SUMMARY OF SEQ ID NO.

	Sequence	SEQ ID NO.
5	Amino acid sequence WSXWS	1
	Oligonucleotide primers and probes listed	
	in Example 1	2-11
	Nucleotide sequence of NR6.11	12
	Amino acid sequence of NR6.1	13
10	Nucleotide sequence of NR6.22	14
	Amino acid sequence of NR6.2	15
	Nucleotide sequence of NR6.33	16
	Amino acid sequence of NR6.3	17
	Nucleotide sequence of products generated	
15	by 5N RACE of brain cDNA using NR6	
	specific primers4	18
	Amino acid sequence of SEQ ID NO:18	19
	Nucleotide sequence unique to 5N RACE of	
	brain cDNA	20
20	Amino acid sequence for SEQ ID NO:20	21
	Unspliced murine NR6 nucleotide sequence	22
	PCR product for human NR6	23
	Nucleotide sequence of clone HFK-66	
	encoding human NR6	24
25	Amino acid sequence of SEQ ID NO:24	25
	Oligonucleotide sequences UP1 and LP1,	
	respectively	26-27
	Genomic nucleotide sequence of murine NR6	28
	Amino acid sequence of SEQ ID NO:28	29
30	Murine NR6.1 oligonucleotide primers	30, 31
	Murine IL-3 signal sequence	32
	Linker sequence for mouse IL-3 signal	
	sequence and FLAG epitope	33-35
	Genomic nucleotide sequence of murine NR6	
35	containing additional 5N sequence	38
	Oligonucleotide 2199 and 2200, respectively	36, 37
	N-terminal region of NR6	39

- 35 -

PCT/GB97/02479 WO 98/11225

¹The polyadenylation signal AATAAATAAA is at nucleotide position 1451 to 1460; NR6.1 (SEQ ID NO:12) and NR6.2 (SEQ ID NO:14) are identical to nucleotide 1223 encoding Q407, the represents the end of an exon. NR6.1 splices out an exon present only in NR6.2 and uses a different reading frame for the final exon which is shared with NR6.2; this corresponds to amino acids VLPAKL at amino acid residue positions 408-413. The region of 3Nuntranslated DNA shared by NR6.1, NR6.2 and NR6.3 is from nucleotide 1240 to 1475. The WSXWS motif is at amino acid residues 330 to 334.

²The polyadenylation signal AATAAA is at nucleotide positions 1494 to 1503. The WSXWS motif is at amino acid residues 330 to 334. NR6.1 and NR6.2 are identical 15 to nucleotide 1223 encoding Q407 which represents the end of an exon. NR6.2 splices in an exon beginning at amino acid residue D408, nucleotide 1224 and ends at residue G422, nucleotide 1264. The region of 3N untranslated DNA shared by NR6.1, NR6.2 and NR6.3 is 20 from nucleotide position 1283 to 1517.

³The nucleotide and amino acid numbering corresponds to SEQ ID NO:12 and 14. The WSXWS motif is at amino acid residues 330 to 334. The polyadenylation signal AATAAATAAA is from nucleotide 1781 to 1780. NR6.2 and NR6.3 are identical to nucleotide 1223 encoding Q407, this represents the end of an exon. NR6.3 fails to splice from this position and, therefore, translation continues through the intron, giving rise to 30 the C-terminal protein region from amino acid residues 408 to 461. The region of 3N untranslated DNA shared by NR6.1, NR6.2 and NR6.3 is from nucleotide 1469 to 1804.

'The nucleotide sequence is identical to NR6.1, NR6.2 35 and NR6.3 from nucleotide C151, the first nucleotide for Pro51. The numbering from this nucleotide is the same

5

10

as for SEQ ID NO:14 and 16. The 5N of this point is unique to the products generated by 5N RACE not being found in NR6.1, NR6.2 and NR6.3 and is represented in SEO ID NOs:20 and 21.

5

⁵Structure of the murine genomic NR6 locus. The coding exons of NR6 span approximately 11kb of the mouse genome. There are 9 coding exons separated by 8 introns:

10

	exon	1	at least 239nt	intronl 5195nt
	exon	2	282nt	intron2 214nt
	exon	3	130nt	intron3 107nt
	exon	4	170nt	intron 4 1372nt
15	exon	5	158nt	intron5 68nt
	exon	6	169nt	intron6 2020nt
,	exon	7	188nt	intron7 104nt
	exon	8	43nt	intron8 181nt
	exon	9	252nt	

20

Exon 1 encodes the signal sequence, exon 2 the Ig-like domain, exons 3 to 6 the hemopoietin domain. Exons 7, 8 and 9 are alternatively spliced.

- The NRG molecules of the present invention have a range of utilities referred to in the subject specification.

 Additional utilities include:
 - 1. Identification of molecules that interact with NR6.
- 30 These may include:
 - a) a corresponding ligand using standard orphan receptor techniques (26),
- 35 b) monoclonal antibodies that act either as receptors antagonists or agonists,

c) mimetic or antagonistic peptides isolated using phage display technology (27,28),

- d) small molecule natural products that act either as antagonists or agonists.
 - 2. Development of diagnostics to detect deletions/rearrangements in the NR6 gene.
- The NR6 knock-out mice studies described herein provide a useful model for this utility. There are also applications in the field of reproduction. For example, people can be tested for their NR6 status. NR6 +/- carriers might be expected to give rise to offspring with developmental problems.

EXAMPLE 1 Oligonucleotides

	M116:	5'	ACTCGCTCCAGATTCCCGCCTTTT 3' [SEQ ID NO:2]
5	M108:	5 '	TCCCGCCTTTTTCGACCCATAGAT 3' [SEQ ID NO:3]
	M159:	5 '	GGTACTTGGCTTGGAAGAGGAAAT 3' [SEQ ID NO:4]
	M242:	5 '	CGGCTCACGTGCACGTCGGGTGGG 3' [SEQ ID NO:5]
	M112:	5 '	AGCTGCTGTTAAAGGGCTTCTC 3' [SEQ ID NO:6]
	WSDWS	5 '	(A/G)CTCCA(A/G)TC(A/G)CTCCA 3' [SEQ ID NO:7]
10	WSEWS	5 '	(A/G)CTCCA(C/T)TC(A/G)CTCCA 3' [SEQ ID NO:8]
	1944	5'	AAGTGTGACCATCATGTGGAC 3' [SEQ ID NO:9]
	2106	5 '	GGAGGTGTTAAGGAGGCG 3' [SEQ ID NO:10]
	2120	5 '	ATGCCCGCGGGTCGCCCG 3' [SEQ ID NO:11]

15 EXAMPLE 2

Isolation of initial NR6 cDNA clones using oligonucleotides designed against the conserved WSXWS motif found in members of the haemopoietin receptor family

20

25

30

35

A commercial adult mouse testis cDNA library cloned into the UNI-ZAP bacteriophage (Stratagene, CA, USA; Catalogue numbers 937 308) was used to infect Escherichia coli of the strain LE392. Infected bacteria were grown on twenty 150 mm agar plates, to give approximately 50,000 plaques per plate. Plaques were then transferred to duplicate 150 mm diameter nylon membranes (Colony/Plaque Screen, NEN Research Products, MA, USA), bacteria were lysed and the DNA was denatured and fixed by autoclaving at 100°C for 1 min with dry exhaust. The filters were rinsed twice in 0.1%(w/v) sodium dodecyl sulfate (SDS), 0.1 x SSC (SSC is 150 mM sodium chloride, 15 mM sodium citrate dihydrate) at room temperature and pre-hybridized overnight at 42°C in 6 x SSC containing 2 mg/ml bovine serum albumin, 2 mg/ml Ficoll, 2 mg/ml polyvinylpyrrolidone, 100 mM ATP, 10 mg/ml tRNA, 2 mM sodium pyrophosphate, 2 mg/ml salmon

sperm DNA, 0.1% (w/v) SDS and 200 mg/ml sodium azide. The pre-hybridisation buffer was removed. 1.2 Fg of the degenerate oligonucleotides for hybridization (WSDWS; Example 1) were phosphorylated with T4 polynucleotide kinase using 960 mCi of $y^{32}P-ATP$ (Bresatec, S.A., 5 Australia). Unincorporated ATP was separated from the labelled oligonucleotide using a pre-packed gel filtration column (NAP-5; Pharmacia, Uppsala, Sweden). Filters were hybridized overnight at 42°C in 80 ml of the prehybridisation buffer containing 0.1%(w/v) SDS, 10 rather than NP40, and $10^6 - 10^7$ cpm/ml of labelled oligonucleotide. Filters were briefly rinsed twice at room temperature in 6 x SSC, 0.1%(v/v) SDS, twice for 30 min at 45°C in a shaking waterbath containing 1.5 l of the same buffer and then briefly in 6 x SSC at room 15 temperature. Filters were then blotted dry and exposed to autoradiographic film at -70°C using intensifying screens, for 7 - 14 days prior to development. Plaques that appeared positive on orientated duplicate filters were picked, eluted in 1 ml of 100 mM NaCl, 10 20 mM MgCl2, 10 mM Tris.HCl pH7.4 containing 0.5%(w/v) gelatin and 0.5% (v/v) chloroform and stored at $4^{\circ}C$. After 2 days LE392 cells were infected with the eluate from the primary plugs and replated for the secondary screen. This process was repeated until hybridizing 25 plaques were pure.

Once purified, positive cDNAs were excised from the ZAP
II bacteriophage according to the manufacturer's
instructions (Stratagene, CA, USA) and cloned into the
plasmid pBluescript. A CsCl purified preparation of the
DNA was made and this was sequenced on both strands.
Sequencing was performed using an Applied Biosystems
automated DNA sequencer, with fluorescent
dideoxynucleotide analogues according to the
manufacturer's instructions. The DNA sequence was
analysed using software supplied by Applied Biosystems.

Two clones isolated from the mouse testis cDNA library shared large regions of nucleotide sequence identity 68-1 and 68-2 and appeared to encode a novel member of the haemopoietin receptor family and the inventors gave the putative receptor the working name "NR6".

(ii) In a parallel series of experiments, a commercial mouse brain cDNA library (STRATAGENE #967319, Balb/c day-20, whole brain cDNA/Uni-ZAP XR Vector) was used to infect E.coli strain XL1-Blue MRF=. Infected bacteria were grown on 90x135mm square agar plates to give about 25,000 plaques per plate. Plaques were then transferred to positively charged nylon membranes, Hybond-N(+) (Amersham RPN 203B), bacteria were lysed and the DNA was denatured with denaturing 0.5 M NaOH, 1.5 M NaCl at room temperature for 7 min. The membranes were neutralized with 0.5 M Tris-HCL pH7.2, 1.5 M NaCl, 1 mM EDTA at room temperature for 10 min before the DNA fixation by UV crosslinking.

20

25

5

10

15

A mixture of WSDWS and WSEWS oligonucleotide probes (SEQ ID NOs: 7 and 8) were labelled with a ["-32P]-ATP (TOYOBO #PNK-104 Kination kit). The membranes from the mouse brain cDNA library were then hybridized with the mixture of WSDWS and WSEWS oligonucleotide probes in the Rapid Hybridization Buffer (Amersham, RPN1636) at 42°C for 16 hours. Filters were washed with 1xSSC/0.1% (w/v) SDS at 42°C before autoradiography. Plaques that appeared positive on orientated duplicate filters were picked and replated on E. coli, XL1-Blue MRFN with the process of immobilisation on nylon membranes, hybridization of membranes with oligonucleotide probes, washing and autoradiography repeated until pure plaques had been obtained.

35

30

The cDNA fragment from pure positively hybridizing plaques was isolated by excision with the helper phage

strain ExAssist according to the manufacturer=s instructions (Stratagene, #967319). Sequencing was performed after the amplification with Ampli-Taq DNA polymerase and Taq dideoxy terminator cycle sequencing kit (Perkin Elmer, #401150) by 25 cycles of 96°C for 10 sec, 50°C for 5 sec, 60°C for 4 min followed by 60°C for 5 min with the sequencing primers on an ABI model 377 DNA sequencer.

- One clone, MBC-8, from the mouse brain library shared large regions of nucleotide sequence identity with both the 68-1 and 68-2 clones isolated from the mouse testis cDNA library.
- (iii) In a third series of experiments, total RNA was prepared from the mouse osteoblastic cell line, KUSA, according to the method of Chirgwin et al. (15), and poly(A)+RNA was further purified by oligo(dT)-cellulose chromatography (Pharmacia Biotech). Complementary DNA was synthesized by oligo(dT) priming, inserted into the UniZAP XR directional cloning vector (Stratagene), and packaged into 8 phage using Gigapack Gold (Stratagene), yielding 1.25 x 10⁷ independent clones.
- 25 Approximately 10⁶ clones were screened essentially as described in (ii) above. Briefly, probes were labeled with ³²P using T4 polynucleotide kinase and prehybridization was performed for 4 hr in the Rapid hybridization buffer (Amersham LIFE SCIENCE) at 42°C.

 30 Filters (Hybond N+, Amersham) were then hybridized for 19 hr under the same condition with the addition of ³²P-labeled WSXWS mix oligonucleotides and washed 3 times. The final wash was for 30 min in 1 x SSPE, 0.1% (w/v) SDS at 42°C. Filters were then exposed with an intensifying screen to Kodak X-OMAT AR film for 5 days.

Isolated clones were subjected to the in vivo excision

of pBluescript SK(-) phagemid (Stratagene), and plasmid DNA was prepared by the standard method. DNA sequences were determined using an ABI PRISM 377 DNA Sequencer (Perkin Elmer) with appropriate synthetic oligonucleotide primers. A clone pKUSA166 shared large regions of nucleotide sequence identity with the MBC-8, 68-1 and 68-2 clones isolated from the mouse brain and

10 EXAMPLE 3

testis cDNA libraries.

5

Isolation of further NR6 cDNA clones using probes specific for NR6

In order to identify other cDNA libraries (i) containing cDNA clones for NR6, the inventors performed 15 PCR upon 1 μ l aliquots of λ -bacteriophage cDNA libraries made from mRNA from various human tissues and using oligonucleotides 2070 and 2057, designed from the sequence of 68-1 and 68-2, as primers. Reactions contained 5 μ l of 10 x concentrated PCR buffer 20 (Boehringer Mannheim GmbH, Mannheim, Germany), 1 μ l of 10 mM dATP, dCTP, dGTP and dTTP, 2.5 μ l of the oligonucleotides HYB2 and either T3 or T7 at a concentration of 100 mg/ml, 0.5 μ l of Taq polymerase (Boehringer Mannheim GmbH) and water to a final volume 25 of 50 μ l. PCR was carried out in a Perkin-Elmer 9600 by heating the reactions to 96°C for 2 min and then for 25 cycles at 96°C for 30 sec, 55°C for 30 sec and 72°C for 2 min. PCR products were resolved on an agarose gel, immobilized on a nylon membrane and hybridized with 32p. 30 labelled oligonucleotide 1943 (SEQ ID NO:42).

In addition to the original library, a mouse brain cDNA library appeared to contain NR6 cDNAs. These were screened using a ³²P-labelled oligonucleotides 1944, 2106, 2120 (Example 1) or with a fragment of the original NR6 cDNA clone from 68-1 (nucleotide 934 to the

end of NR6.1 in Figure 1) labelled with ³²P using a random decanucleotide labelling kit (Bresatec).

Conditions used were similar to those described in (i) above except that for the labelled oligonucleotides, filters were washed at 55°C rather than 45°C, while for the NR6 cDNA fragment prehybridization and hybridization was carried out in 2xSSC and filters were washed at 0.2 x SSC at 65°C. Again, as described in (i) above, positively hybridising plaques were purified, the cDNAs were recovered and cloned into plasmids pBluescript II or pUC19. Independent cDNA clones were sequenced on both strands.

Using this procedure, 6 further clones, 68-5, 68-35, 68-15 41, 68-51, 68-77 and 73-23, contained large regions of sequence identity with 68-1, 68-2, MBC-8 and pKUSA166.

In a parallel series of experiments, further screening was performed with hybridization probes prepared from the 1.7 kbp EcoRI-XhoI fragment excised from pKUSA166. 20 This fragment was excised and labeled with 32p by using T7QuickPrime Kit (Pharmacia Biotech). Approximately 6x10⁵ clones were screened. Hybond N+ filters (Amersham) were first prehybridized for 4hr at 42°C in 50% (v/v) formamide, 5xSSPE, 5xDenhardt's solution, 0.1% 25 SDS, and 0.1mg/ml denatured salmon sperm DNA. Hybridization was for 16 hours under the same conditions with the addition of 32P- labelled NR6- cDNA fragment Finally the filters were washed once for 1hr in 0.2xSSC, 0.1% (w/v) SDS at 68°C. Eight clones were 30 isolated, and phage clones were subjected to the in vivo excision of the pBluescript SK(-) phagemid (Stratagene). The plasmid DNAs were prepared by the standard method. DNA sequences were determined by an ABI PRISM 377 DNA Sequencer using appropriate synthetic oligonucleotide 35 primers.

Using this procedure 8 further clones from the KUSA library contained large regions of sequence identity with 68-1, 68-2, MBC-8, pKUSA166, 68-5, 68-35, 68-41, 68-51, 68-77 and 73-23 were isolated.

5

EXAMPLE 4 Isolation of genomic DNA encoding NR6

DNA encoding the murine NR6 genomic locus was also isolated using the 68-1 cDNA as a probe. Two positive 10 clones, 2-2 and 57-3, were isolated from a mouse 129/Sv strain genomic DNA library cloned into λ FIX. clones were overlapping and the position of the restriction sites, introns and exons were determined in the conventional manner. The region of the genomic 15 clones containing exons and the intervening introns were sequenced on both strands using an Applied Biosystems automated DNA sequencer, with fluorescent dideoxynucleotide analogues according to the manufacturer's instructions. Figure 2 shows the 20 nucleotide sequence and corresponding amino acid sequence of the translation regions. This is also shown in SEQ ID NOs:30 and 31. Figure 3 provides the genomic NR6 gene sequence but with additional 5N sequence. is also represented in SEQ ID NO:38 in relation to this 25 sequence. The coding exons of NR6 span approximately 11kb of the mouse genome. There are 9 coding exons separated by 8 introns:

30	exonl	at least 239nt	intronl	5195nt
	exon2	282nt	intron2	214nt
	exon3	130nt	intron3	107nt
	exon4	170nt	intron4	1372nt
	exon5	158nt	intron5	68nt
35	exon6	169nt	intron6	2020nt
	exon7	188nt	intron7	104nt
	exon8	43nt	intron8	181nt

exon9 252nt

5

15

20

25

30

35

Exon 1 encodes the signal sequence, exon 2 the Ig-like domain, exons 3 to 6 the hemopoietin domain. Exons 7, 8 and 9 are alternatively spliced.

EXAMPLE 5

10 5N RACE analysis of NR6

5'-RACE was used to investigate the nature of the sequence 5' of nucleotide 960, encoding Ile321 of NR6.1, 2 and 3. The nucleotide and corresponding amino acid sequences are shown in SEQ ID NOs:12, 14 and 16, respectively. 5'-RACE was performed using Advantage KlenTag polymerase (CLONTECH, CAT NO. K1905-1) on mouse brain Marathon-ready cDNA (CLONTECH, CAT NO. 7450-1) according to the manufacturer's instructions. Briefly, the first rounds of amplification were performed using $5\mu l$ of cDNA in a total volume of $50\mu l$, with lmM each of the primers AP1&M116 [SEQ ID NO:2] or AP1&M159 [SEQ ID NO:4] by 35 cycles of 94° C x 0.5min, 68° C x 2.0min on GeneAmp 2400 (Perkin-Elmer). An amount of 5µl of 50fold diluted product from the first amplification was then re-amplified; for the products generated with primers AP1 and M116 [SEQ ID NO:2] in the first amplification, 1 mM of the primers AP2&M108 [SEQ ID NO:3] were used in the second amplification. For the products generated with primers AP1 and M116 [SEQ ID NO:2] in the first amplification, two separate secondary reactions were performed, one reaction with 1 mM primers AP2&M242 [SEQ ID NO:5] and the other with 1 mM primers AP2&M112 [SEQ ID NO:6]. Amplification was achieved using 25 cycles of 94°C x 0.5min, 68°C x 2.0min. samples were analyzed by agarose gel electrophoresis. When a single ethidium bromide staining amplification

product was observed, it was purified by QIAquick PCR purification kit according to the manufacturer=s instructions (QIAGEN, CAT NO. DG-0281) and its sequence was directly determined using both primers used in the secondary amplification step, that is AP2 and either M108 [SEQ ID NO:3], M242 [SEQ ID NO:5] or M112 [SEQ ID NO:6].

EXAMPLE 6 Cloning of NR6

From the initial screens of mouse brain and testis cDNA libraries with the degenerate WSXWS oligonucleotides and subsequent screening of cDNA libraries from mouse testis, mouse brain and the KUSA osteoblastic cells line a total of 18 NR6 cDNAs have been isolated. Nucleotide sequence of NR6 was also determined from 5'RACE analysis

of brain cDNA. Additionally, two murine genomic DNA clones encoding NR6 have also been isolated.

Comparison of the NR6 cDNA clones revealed a common region of nucleotide sequence which included a 123 base pairs 5'-untranslated region and 1221 base pairs open reading frame, stretching from the putative initiation methionine, Metl to Gln407 (SEQ ID NOs:12, 14 and 16, respectively). Within this common open reading frame, a haemopoietin receptor domain was observed which contained the four conserved cysteine residues and the five amino acid motif WSXWS typical of members of the haemopoietin receptor family, was observed.

Further analyses revealed that after nucleotide 1221, three different classes of NR6 cDNAs could be found, these were termed NR6.1, NR6.2 and NR6.3 (SEQ ID NOs:12, 14 and 16, respectively). Each encoded a receptor that appeared to lack a classical transmembrane domain and, would, therefore be likely to be secreted into the

- 47 -

10

15

20

25

30

extracellular environment. Although the putative C-terminal region of the three classes of NR6 proteins appear to be different, the cDNAs encoding them also had a common region of 3'-untranslated region.

5

10

15

20

With regard to SEQ ID NOs:12, 14 and 16, the number of both nucleotides and amino acids begins at the putative NR6.1 and NR6.2 are identical to initiation methione. nucleotide 1223 encoding Q407, this represents the end of an exon. NR6.1 splices out an exon present only in NR6.2 and uses a different reading frame for the final exon which is shared with NR6.2. The 3N-untranslated region is shared by NR6.1, NR6.2 and NR6.3, NR6.2 splices in an exon starting with nucleotide 1224 encoding D408 and ending with nucleotide 1264 encoding the first nucleotide in the codon for G422 and uses a different reading frame for the final exon which is shared with NR6.2 (see Figure 1). NR6.3 fails to splice from position nucleotide 1224, therefore, translation continues through the intron, giving rise to the Cterminal protein region.

The sequence of NR6 cDNA products generated by 5'-RACE amplification from mouse brain cDNA preparation is shown in SEQ ID NO:18. The nucleotide sequence identified using 5'-RACE appeared to be identical to the sequence of cDNAs encoding NR6.1, NR6.2, and NR6.3 from nucleotide C151, the first nucleotide for the codon for Pro51. 5' of this nucleotide, the sequences diverged and the sequence is unique not being found in NR6.1, NR6.2 or NR6.3. Additionally, there is a single nucleotide difference, with the sequence from the RACE containing an G rather than an A at nucleotide 475, resulting in Thr159 becoming Ala.

35

Analysis of the genomic clones, revealed that they were overlapping and contained exons encoding the majority of

the coding region of the three forms of NR6 (Figures 1, 2 and 3). These genomic clones, contained exons encoding from Asp50 (nucleotide 148) of the NR6 cDNAs. Sequence 5' of this in the cDNAs, including the 5'-untranslated region and the region encoding Met1 to Gln49 (SEQ ID NOs:12, 14 and 16), and the 5' end predicted from analysis of 5' RACE products (SEQ ID NO:18) were not present in the two genomic clones isolated.

10

15

20

25

30

5

Analysis of the NR6 genomic DNA clones also provided an explanation of the three classes of NR6 cDNAs found. is likely that NR6.1, NR6.2 and NR6.3 arise through alternative splicing of NR6 mRNA (Figure 1). The last amino acid residue that these different NR6 proteins are predicted to share is Gln407. SEQ ID NO:18 shows that Gln407 is the last amino acid encoded by the exon that covers nucleotides g5850 to g6037 (see Figure 2). Alternative splicing from the end of this exon (Figure 1) accounts for the generation of cDNAs encoding NR6.1 (SEQ ID NO:12), NR6.2 (SEQ ID NO:14) and NR6.3 (SEQ ID In the case of NR6.1, the region from g6038 to g6425 is spliced out, leading to juxtaposition of g6037 and g6426. In the case of NR6.2, the region from g6038 to 6141 is spliced out, an exon from 6142 to g6183 is retained and then this is followed by splicing out of the region from g6183 to g6425. NR6.3 appears to arise when there is no splicing from nucleotide g6038. all three forms, a secreted rather then transmembrane form is generated, these differ however in their predicted C-terminal region. The genomic NR6 sequence with additional 5N sequence is shown in Figure 3.

EXAMPLE 7

35

ESTs

Databases were searched with the murine NR6

- 49 -

corresponding to the unspliced version shown in SEQ ID NO:16. The murine NR6 sequence used is shown in SEQ ID NO:22.

The databases searched were:

- (i) dbEST Database of Expressed Sequence Tags
 National Center for Biotechnology Information National
 Library of Medicine, 38A, 8N8058600 Rockville Pike,
 Bethesda, MD 20894 Phone: 0011-1-301-496-2475 Fax:
- 10 0015-1-301-480-9241 USA.
 - (ii) DNA Data Bank of Japan DNA Database Release 3689. Prepared by: Sanzo Miyazawa Manager/Database Administrator HidenoriHayashida Scientific Reviewer
- Yukiko Yamazaki/Eriko Hatada/Hiroaki Serizawa
 Annotators/reviewers Motono Horie/Shigeko Suzuki/Yumiko
 SataoSecretaries/typists DNA Data Bank of JapanNational
 Institute of Genetics Center for Genetic Information
 research Laboratory of Genetic Information Analyses 1111
 YataMishima, Shizuoka 411 Japan.
- 20 YataMishima, Shizuoka 411 Bapan.
 - (iii) EMBL Nucleic Acid Sequence Data Bank Release 47.0.
- 25 (iv) EMBL Nucleic Acid Sequence Data Bank Weekly Updates Since Release 44.
- (v) Genetic Sequence Data Bank NCBI-GenBank Release 94
 National Center for Biotechnology Information National
 Library of Medicine, 38A, 8N805 8600 Rockville Pike,
 Bethesda, MD 20894 Phone: 0011-1-301-495-2475 Fax:
 0015-1-301-480-9241 USA.
- (vi) Cumulative Updates since NCBI-GenBank Release 88
 National Center for Biotechnology Information National
 Library of Medicine, 38A, 8N805 8600 Rockville Pike,
 Bethesda, MD 20894 USA.

The search of the databases with the murine probe identified several EST's having sequence similarity to the probe. The EST's were:

5 W66776 (murine sequence)
MM5839 (murine sequence)
AA014965 (murine sequence)
W46604 (human sequence)
W46603 (human sequence)
10 H14009 (human sequence)
N78873 (human sequence)
R87407 (human sequence)

EXAMPLE 8

Isolation of 3N cDNA clones encoding human NR6

PCR products encoding human NR6 were generated using oligonucleotides UP1 and LP1 (see below) based on human ESTs (Genbank Acc: H14009, Genbank Acc: AA042914) that were identified from databases searched with murine NR6 sequence (SEQ ID NO:22). PCR was performed on a human fetal liver cDNA library (Marathon ready cDNA CLONTECH #7403-1) using Advantage Klen Taq Polymerase mix (CLONTECH #8417-1) in the buffer supplied at 941C fro 30s and 681C for 3 min for 35 cycles followed by 681C for 4 min and then stopping at 151C. A standard PCR programme for the Perkin-Elmer GeneAmp PCT system 2400 thermal cycle was used. The PCR yielded a prominent product of approximately 560 base pairs (bp; SEQ ID NO:18), which was radiolabelled with ["-32P] dCTP using a random priming method (Amersham, RPN, 1607, Mega prime kit) and used to screen a human fetal kidney 5N-STRETCH PLUS cDNA library (CLONTECH #HL1150x). Library screens were performed using Rapid Hybridisation Buffer (Amersham, RPn 1636) according to manufacturer's instructions and membranes washed at 651C for 30 min in 0.1xSSC/0.1% (w/v) SDS. Two independent cDNA clones

15

20

25

30

were obtained as lambda phage and subsequently subcloned and sequenced. Both clones (HFK-63 and HFK-66) contained 1.4 kilobase (kb) inserts that showed sequence similarity with murine NR6. The sequence and corresponding amino acid translation of HFK-66 is shown in SEQ ID NO:24.

The translation protein sequences of clone HFK-66 shows a high degree of sequence similarity with the mouse NR6.

10

5

OLIGONUCLEOTIDES

UP1: 5NTCC AGG CAG CGG TCG GGG GAC AAC 3N [SEQ ID NO:26]
LP1: 5N TTG CTC ACA TCG TCC ACC ACC TTC 3N [SEQ ID NO:27]

15

EXAMPLE 9

Genomic Structure of Human NR6

Human genomic DNA clones encoding human NR6 was isoloated by screening a human genomic library (Lambda 20 FIXJII Stratagene 946203) with radiolabelled oligonucleotides, 2199 and 2200 (see below). oligonucleotides were designed based on human ESTs (Genbank Acc: R87407, Genbank Acc: H14009) that were identified from databases searched with murine NR6. 25 Filters were hybridised overnight at 371C in 6xSSC containing 2 mg/ml bovine serum albumin, 2 mg/ml Ficoll, 2mg/ml polyvinylpyrrolidone, 100 mM ATP, 10 mg/ml tRNA, 2 mM sodium pyrophosphate, 2 mg/ml salmon sperm DNA, 0.1% (w/v) SDS and 200 mg/ml sodium azide and washed at 30 651C in 6 x SSC/0.1% SDS. Five independent genomic clones were obtained and sequenced. The extend of sequence obtained has determined that the clones overlap and exhibit a similar genomic structure to murine NR6. Exon coding regions are almost identical over the region 35 covered by the genomic clones while intron coding regions differ, although the size of the introns are

comparable. The extent of known overlap is shown in Fig. 5.

OLIGONUCLEOTIDES:

5

2199: 5N CCC ACG CTT CTC ATC GGA TTC TCC CTG 3N [SEQ ID NO:36]

2200: 5N CAG TCC ACA CTG TCC TCC ACT CGG TAG 3N [SEQ ID NO:37]

10

30

35

EXAMPLE 10

Northern Blot Analysis of Human NR6 mRNA Expression

Clontech Multiple Tissue Northern Blots (Human MTN Blot, CLONTECH #7760-1, Human MTN Blot IV, CLONTECH #7766-I, Human Brain MTN Blot II, CLONTECH #7755-1, Human Brain MTN Blot III, CLONTECH #7750) were probed with a radiolabelled 3N human NR6 cDNA clone, HFK-66 (SEQ ID NO:24). The clone was labelled with ["-32P] dCTP using a random priming method (Amersham, RPN 1607, Mega prime kit). Hybridisation was performed in Express Hybridisation Solution (CLONTECH H50910) for 3 hours at 671C and membranes were washed in 0.1xSSC/0.1% w/v SDS at 501C.

A 1.8 kb transcript was detected in a variety of human tissues encompassing reproductive, digestive and neural tissues. High levels were observed in the heart, placenta, skeletal muscle, prostate and various areas of the brain, lower levels were observed in the testis, uterus, small intestine and colon. Photographs showing these Northern blots are available upon request. This expression pattern differs from the expression pattern observed with murine NR6.

EXAMPLE 11

- 53 -

Mouse NR6 Expression Vectors

pEF-FLAG/mNR6.1

The mature coding region of mouse NR6.1 was amplified using the PCR to introduce an in-frame Asc I restriction enzyme site at the 5' end of the mature coding region and an Mlu I site at the 3' end, using the following oligonucleotides:-

10

5N oligo 5N-AGCTGGCGCGCCTCCCGGGCGGATCGGGAGCCCAC-3N [SEQ ID NO:30]

3N oligo 5N-AGCTACGCGTTTAGAGTTTAGCCGGCAG-3N [SEQ ID NO:31]

15

20

25

30

The resulting PCR derived DNA fragment was then digested with Asc~I and Mlu~I and cloned into the Mlu~I site of pEF-FLAG. Expression of NR6 is under the control of the polypeptide chain elongation factor 1α promoter as described (16) and results in the secretion, using the

described (16) and results in the secretion, using the IL3 signal sequence from pEF-FLAG, of N-terminal FLAG-tagged NR6 protein.

pEF-FLAG was generated by modifying the expression vector pEF-BOS as follows:-

pEF-BOS (16) was digested with Xba I and a linker was synthesized that encoded the mouse IL3 signal sequence (MVLASSTTSIHTMLLLLLMLFHLGLQASIS) and the FLAG epitope (DYKDDDDK). Asc I and Mlu I restriction enzyme sites were also introduced as cloning sites. The sequence of the linker is as follows:-

MVLASSTTSIHT

35 M

CTAGACTAGTGCTGACACAATGGTTCTTGCCAGCTCTACCACCAGCATCCACCACCA
TG

TGATCACGACTGTGTTACCAAGAACGGTCGAGATGGTGGTCGTAGGTGTGGTAC

L L L L M L F H L G L Q A S I S ASC

I

CTGCTCCTGCTCCTGATGCTCTTCCACCTGGGACTCCAAGCTTCAATCTCGGCGCG

CC

GACGAGGACGAGGACTAGCAGAAGGTGGACCCTGAGGTTCGAAGTTAGAGCCGCGC

GG

10

D Y K D D D K Mlu I AGGACTACAAGGACGACGATGACAAGACGCGTGCTAGCACTAGT

TCCTGATGTTCCTGCTGCTACTGTTCTGCGCACGATCGTGATCAGATC

15

The two oligonucleotides were annealed together and ligated into the Xba I site of pEF-BOS to give pEF-FLAG.

pCOS1/FLAG/mNR6 & pCHO1/FLAG/mNR6

20

25

30

35

A DNA fragment containing the sequences encoding IL3 signal sequence/Flag/mNR6 and the poly(A) adenylation signal from human G-CSF cDNA, was excised from pEF-FLAG/mNR6 using the restriction enzyme EcoR I. This DNA fragment was then inserted into the EcoR I cloning site of pCOS1 and pCHO1

The pCOSI and pCHO1 vectors were constructed as follows. pCHO1 is also described in reference (17) but with a different selectable marker.

pCOS1 was prepared by digesting HEF-12h-g"1 (see Figure 24 of International Patent Publication No. WO 92/19759) with EcoRI and SmaI and ligating the digesting product iwht an EcoRI-NotI-BamHI adaptor (Takara 4510). The resulting plasmid comprises an EFI" promoter/enhancer, Ncor marker gene, SV40E, ori and an Ampr marker gene.

pCH01 was constructed by digesting DHFR-PMh-grl (see Figure 25 of International Patent Publication No. WO 92/19759) with PvuI and Eco47III and ligating same with pCOSI digested with PvuI and Eco47III. The resulting vector, pCH01, comprises an EFI" promoter/enhancer, an DHFR marker gene, SV40E, Ori and a Amp gene.

EXAMPLE 12

10

15

5

mRN6 has been expressed as an NN Flag tagged protein following transfection of CHO cells and as a CN Flag tagged protein following transfection of KUSA cells in both cases varying levels of dimeric and aggregated NR6 were secreted.

EXAMPLE 13 Murine NR6 expression

20

25

NR6 expression studies were conducted in murine Northern Blots. At the level of sensitivity used in the adult mouse, NR6 expression was detected in salivary gland, lung and testis. During embryonic development, NR6 is expressed in fetal tissues from day 10 of gestation through to birth. In cell lines, NR6 expression has been observed in the T-lymphoid line CTLL-2 as well as in FD-PyMT (FDC-P1 myeloid cells expressing polyoma midle T gene), and fibroblastoid cells including bone marrow and fetal liver stromal lines.

EXAMPLE 14

Expression, purification and characterisation of CHO and KUSA mNR6

35

30

The methods provide for the production of a dimeric form of CHO derived NN FLAG-mNR6 without refolding. All

other methods are capable of producing NR6 and are encompassed by the present invention.

A. Production of CHO derived N' FLAG-mNR6 (dimeric form)

(i) Protein Production

To analyse structure and functional activity, a cDNA fragment containing the entire coding sequence of murine NR6 with an N-terminal FLAG (NN FLAG) sequence was cloned into the EcoR1 site of the expression vector pCHO1. For stable production of N-terminal FLAG-tagged NR6 the vector contains the DHFR (dihydrofolate reductase) gene as a selective marker with the NR6 gene under the control of an EFla promoter. CHO cells were transfected with the construct using a polycationic liposome transfection reagent (Lipofectamine, GibcoBRL).

(ii) Lipofectamine transfection method

20

25

30

35

5

10

15

Using six well tissue culture plates either 2 x 10^5 KUSA cells in 2ml IMDM + 10% (v/v) FCS or 2 x 10^5 CHO cells were cultured in 2ml "-MEM + 10% (v/v) FCS until 70% confluent. 2Fg DNA diluted in 100Fl OPTI-MEM I (Gibco BRL, USA) was mixed gently with 12Fl lipofectamine diluted in 100Fl OPTI-MEM I and incubated at room temperature for 30min to allow DNA complex formation. DNA complexes were gently diluted in a total volume of 1ml of OPTI-MEM I and overlaid onto washed KUSA or CHO cell monolayers. A further 1ml IMDM + 20% (v/v) FCS (KUSA cells) or 1ml "-MEM + 20% (v/v) FCS (CHO cells) was added to transfected cells after 5 hours. At 24 hours, the culture medium was replaced with fresh complete growth medium. At 48 hours after transfection, selection was applied. A methotrexate resistant clone secreting comparatively high levels of NR6 was selected and expanded for further analysis.

- 57 -

(iii) Protein expression

CHO cells were grown to confluence in roller bottles in nucleoside free "-MEM + 10% (v/v) FCS. Selection was maintained by using 100 ng/ml Methotrexate in the conditioned media according to manufacturer instructions. Expression was monitored by Biosensor and harvesting found to be optimal at 3 to 4 days.

10 B. Protein Analysis

5

(i) Biosensor analysis

Expression and purification was monitored by Biosensor analysis (BiaCoreTM, Sweden) where anti FLAG peptide M2 antibody (Kodak Eastman, USA), specific for the FLAG peptide sequence was bound to the sensorchip. Fractions were analysed for binding to the sensor surface (resonance units) and the sample then removed from the surface using 50 mM Diethylamine pH 12.0 prior to analysis of the next fraction. Immobilisation and running conditions of the Biosensor follow the manufacturer's instructions.

25 (ii) Protein Production

In order to generate and characterise NR6, conditioned media (2 L) produced by CHO cells was harvested after day 3, post confluence. Conditioned media was concentrated using diafiltration with a 10,000 molecular weight cut-off. (Easy flow, Sartorius, Aus). At a volume of 200 ml (i.e. 10 x concentrated) the sample was buffer exchanged into 20 mM Tris, 0.15M NaCl, 0.02% (v/v) Tween 20 pH 7.5 (Buffer A).

(iii) Immunoprecipitation and Western Blot analysis of mNR6

30

Concentrated conditioned media (1ml) was immunoprecipitated with M2 affinity resin (20Fl, Kodak Eastman). To examine the structural characterisation of mNR6 SDS PAGE was performed under reducing and non-reducing conditions. Separation was performed on NOVEX 4-20% (v/v) Tris/glycine gradient gels and protein transfered on PVDF membrane. Western blots were probed with biotinylated M2 antibody (primary, 1:500) and then streptavidin peroxidase (secondary, 1:3000). Samples were visualised by autoradiography using electrochemiluminescence (ECL, Dupont, USA).

By regressional analysis of prestained standards
(BIORAD, Aus.) the molecular weight of the monomeric
unit was calculated to be 65,000 daltons. Under nonreducing conditions the molecular weight was calculated
to be 127,000 indicating that NR6 is a disulphide linked
dimer. A tetrameric complex running at approximately
250,000 daltons was also observed. Although a band
running at approximately 50,000 daltons was observed, no
monomeric NR6 was detected under non-reducing conditions
indicating that the majority of NR6 expressed in this
system is disulphide linked.

25 (iv) Affinity Chromatography of mNR6

Concentrated conditioned media (200 ml) was applied to M2 affinity resin (5ml) under gravity. To enhance recovery the unbound fraction was reapplied to the column four times prior to extensive washing of the column with 200 volumes of Buffer A. Biosensor analysis indicates that approximately 20% of the M2 binding originally present in the concentrate remains in the unbound fraction. The bound fraction was eluted from the column using an immunodesorbant (50 ml); actisep (Sterogene Labs, USA).

5

10

30

(v) Ion exchange and Desalting of mNR6

In order to buffer exchange mNR6 prior to anion chromatography, 10 ml batches of the eluted fraction (50 ml) were applied to an XK column (400 x 26 mm I.D.) containing G25 sepharose (Pharmacia, Sweden).

Chromatography was developed at 4 ml/min using an FPLC (Pharmacia, Sweden) equipped with an online UV280 and conductivity monitor. The mobile phase was 10 mM Tris,

0.1M NaCl, 0.02% v/v Tween, pH 8.0. 10 ml fractions were collected between 12.5 min and 25 min to optimise recovery and removal of salt. Fractions were analysed by Biosensor analysis and pooled according to binding.

15 All pooled active fractions were diluted with an equal volume of 20 mM Tris, 0.02% (v/v) Tween, pH 8.5 (Buffer B) and then loaded onto a Mono Q 5/5 (Pharmacia, Sweden) at a flow rate of 2 ml/min. The column was washed with buffer B. Elution was performed using a linear gradient between buffer B and buffer B containing 0.6M NaCl over 30 min at a flow rate of 1 ml/min. Fractions (1 minute) were collected and analysed on the Biosensor and also by SDS PAGE and Western blot analysis. Fractions 15 to 26 (approximately 0.4M NaCl) appear to contain the majority of mNR6 as indicated by the Biosensor.

C. Production of CHO derived N' FLAG-mNR6 (monomeric form)

30 (i) Protein Production

A cDNA fragment containing the entire coding sequence of murine NR6 with an N-terminal FLAGJ sequence was cloned into the expression vector pCHO1 for production of N-terminal FLAG-tagged protein. This vector contains a neomycin resistance gene with expression of the NR6 gene under the control of an EF1" promoter. This expression

construct was transfected into CHO cells using Lipofectamine (Gibco BRL, USA) according to the manufacturer instructions. Transfected cells were cultured in IMDM + 10% (v/v) FCS with resistant cells selected in geneticin (600Fg/ml, Gibco BRL, USA). A neomycin resistant clone, secreting comparatively high levels of NR6 was selected and expanded for further analysis.

10 (ii) Protein expression

5

N' FLAG-NR6 expressed in serum free conditioned media (10 litre) was harvested from transfected CHO and cells. Collected media was concentrated using a CH2 ultrafiltration system equipped with a S1Y10 cartridge 15 (Amicion molecular weight cut-off 10,000). Preliminary examination of the expressed product under reducing and non-reducing SDS PAGE followed by western blot analysis was performed. Visualisation of the protein on Westerns was specific to the primary antibody anti FLAG M2. Under 20 reducing conditions a band approximately at 65,000 daltons was observed. Under non-reducing conditions, dimer and larger molecular weight aggregates were observed. These are disulphide linked monomers as they are not present in the reducing gel. Small amounts of 25 monomer appear to be present in non-reducing gels. Affinity Chromatography of NR6 (iii)

Concentrated conditioned media was applied to an anti FLAG M2 affinity resin (100 x 16 mm I.D.). After washing the unbound proteins off the column, the bound proteins were eluted using FLAG peptide (60Fg/ml) in PBS.

(iv) Ion Exchange Chromatography of NR6

Eluted fractions from affinity column were dialysed overnight against 20 mM Tris-HCl pH 8.5 (buffer C)

containing 50 mM Dithiothretol (DTT) using 25,000 cutoff dialysis tubing (Spectra/Por7, Spectrum). The
dialysed fractions were loaded onto Mono Q 5/5
(Pharmacia, Sweden) previously equilibrated with buffer
C containing 5 mM DTT. Chromatography was developed
using a linear gradient between buffer C and buffer C
containing 1.0 M NaCl at a flow rate of 0.5 ml / min.

(v) Refolding of NR6

10

15

25

35

5

Fractions containing NR6 from the Mono Q were adjusted to 50 mM DTT and left overnight at 41C. To initiated refolding the sample was then dialysed against 50 mM Tris-HCl (pH 8.5), 2 M Urea, 0.1% (v/v) Tween 20, 10 mM Glutathione (reduced) and 2 mM Glutathione (oxidised) at a final protein concentration of 100 Fg / ml. Folding was carried out at ambient temperature with one change of the buffer over 24 hours.

20 (v) Reversed Phase High Performance Liquid Chromatography (RP-HPLC)

The folded product was further purified by RP-HPLC using a Vydac C4 resin (250 x 4.6 mm I.D.) previously equilibrated with 0.1% (v/v) Trifluoroacetic acid (TFA). Elution was carried out using a linear gradient from 0 to 80% (v/v) acetonitrile / 0.1% (v/v) TFA at a flow rate of 1 ml per minute.

30 D. pCHO1/NR6/FLAG

In order to determine the native N termini of NR6, a C terminal FLAG NR6 CHO cell line was established.

The plasmid pKUSA166 (murine NR6 cDNA cloned into the EcoR I site of pBLUESCRIPT) was digested with BamH I to remove the sequences encoding the last 15 amino acids of murine NR6. Synthetic oligonucleotides which encode the

3' end of mouse NR6 followed by the FLAG peptide tag were annealed and ligated into the BamH I site of pKUSA166. The sequence of the oligonucleotides was as follows:-

5

25

I L P S G R R G A A R G P A G D Y K D D D K * [SEQ ID NO:34]

GATCTTGCCCTCGGGCAGACGGGGTGCGGCGAGAGGTCCTGCCGGCGACTACAAGG

ACGACGATGACAAGTA G [SEQ ID NO:33]

AACGGGAGCCCGTCTGCCCCACGCCGCTCTCCAGGACGGCCGCTGATGTTCCTGCT

GCTACTGTTCATCCTAG [SEQ ID NO:35]

The 5' end of the linker introduces a silent mutation

(CTG > TTG), to destroy the 5' BamH I site upon insertion of the linker. The NR6 cDNA (with native signal sequence) with the C-terminal FLAG was cut out of pKUSA166 with EcoR I and BamH I and cloned into the EcoR I - BamH I cloning sites of pCHO-1. This vector results in the secretion of NR6 protein with a C-terminal flag tag (CN FLAG-mRN6).

This vector results in the secretion of NR6 protein from KUSA cells. The vector pCHO1 has been previously described in (17) although with a different secretable marker.

- (i) Production of polyclonal NR6 antiserum
- The following peptide from the N terminal area of NR6 was chosen for production of polyclonal antiserum to NR6

VISPODPTLLIGSSLOATCSIHGDTP [SEQ ID NO:39]

The peptide was conjugated to KLH and injected into rabbits. Production and purification of the polyclonal antibody specific to the NR6 peptide sequence follows

PCT/GB97/02479 WO 98/11225

standard methods.

(ii) Protein expression

- KUSA cells transfected with cDNA of C terminal tagged 5 mNR6 were grown to confluence in flasks (800ml) using IMDM media containing 10% (v/v) FBS. Conditioned media (100 ml) was harvested 3 -4 days post confluence.
- Characterisation of NR6 by Immunoprecipitation 10 (iii)and Western blotting
- In order to establish that NR6 with the predicted sequence is produced in KUSA cells transfected with the cDNA, western blot analysis using both M2 antibody and 15 purified NR6 specific rabbit antibody were performed. Conditioned media (1 to 5 ml) was immunoprecipitated with M2 affinity resin (10-20 Fl). Then after sufficient time for binding, the beads were washed with MT-PBS and subsequently NR6 eluted with 100 Fg/ml FLAG peptide (40 20 Fl, (1, 5 minute incubation). The sample was then subjected to reducing and non reducing SDS PAGE followed by western blot analysis. Both purified NR6 polyclonal antibody (purified by protein G) and M2 antibody recognise a band under reducing conditions of a 25 molecular weight size approximately 65,000 daltons. Since the two antibodies reconising resides at the N terminus and C terminus it is reasonable to assume that full length NR6 is produced. Biotinylation of the respective antibodies by standard methods reduces the 30 background. Under non-reducing conditions polyclonal NR6 bind antibodies to a band of a molecular weight of approximately 127,000, consistent with a dimeric NR6 disulphide linked form. Minor components of tetrameric NR6 are present, no monomeric NR6 is evident using

polyclonal NR6 antibodies.

EXAMPLE 15 Generation of NR6 knockout mice

To construct the NR6 targeting vector, 4.1kb of genomic NR6 DNA containing exons 2 through to 6 was deleted and 5 replaced with G418-resistance cassette, leaving 5N and 3N NR6 arms of 2.9 and 4.5 kb respectively. A 4.5 kb Xhol fragment of the murine genomic NR6 clone 2.2 (Figure 3) containing exons 7, 8 and 3N flanking sequence was subcloned into the XhoI site of pBluescript 10 generating pBSNR6Xho4.5. A 2.9kb NotI-Stul fragment within NR6 intron 1 from the same genomic clone was inserted into NotI and EcoRV digested pBSNR6Xho4.5 creating pNR6-Ex2-6. This plasmid was digested with ClaI, which was situated between the two NR6 fragments, 15 and following blunt ending, ligated with a blunted 6kb HindIII fragment from placZneo, which contains the lacZgene and a PGKneo cassette, to generate the final targeting vector, pNR6lacZneo. pNR6lacZneo was linearised with NotI and electroporated into W9.5 20 embryonic stem cells. After 48 hours, transfected cells were selected in 175 Fg/ml G418 and resistant clones picked and expanded after a further 8 days.

Clones in which the targetting vector had recombined with the endogenous NR6 gene were identified by hybridising SpeI-digested genomic DNA with a 0.6 kb XhoI-StuI fragment from genomic NR6 clone 2.2. This probe (probe A, Figure 4), which is located 3N to the NR6 sequences in the targeting vector, distinguished between the endogenous (9.9 kb) and targeted (7.1 kb) NR6 loci (Figure 5).

Genomic DNA was digested with SpeI for 16hrs at 371C, electrophoresed through 0.8% (w/v) agarose, transferred to nylon membranes and hybridised to ³²P-labelled probe in a solution containing 0.5M sodium phosphate, 7% (w/v)

SDS, 1mM EDTA and washed in a solution containing 40mM sodium posphate, 1% (w/v) SDS at 651C. Hybridising bands were visualised by autoradiography for 16 hours at -701C using Kodak XAR-5 film and intensifying screens.

- Two targeted ES cell clones, W9.5NR6-2-44 and W9.5NR6-4-2, were injected into C57B1/6 blastocysts to generate chimeric mice. Male chimeras were mated with C57B1/6 females to yield NR6 heterozygotes which were subsequently interbred to produce wild-type (NR6*/*),
- heterozygous (NR6^{+/-}) and mutant (NR6^{-/-}) mice. The genotypes of offspring were determined by Southern Blot analysis of genomic DNA extracted from tail biopsies.

Genotyping of mice at weaning from matings between NR*/
heterozygous mice derived from both targated ES cell

clones revealed an absence of homozygous NR6-/- mutants.

As no unusual loss of mice was observed between birth

and weaning, this suggest that lack of NR6 is lethal

during embryonic development or immediately after birth.

Genotyping of embryonic tissues at various stages of

development suggests that death occurs late in gestation

EXAMPLE 16

25 Oligonucleotides

(beyond day 16) or at birth.

1943:

5' GTC CAA GTG CGT TGT AAC CCA 3' 2070:

5' GCT GAG TGT GCG CTG GGT CTC ACC 3'

30 2057:

5' GGC TCC ACT CGC TCC AGA 3'

Those skilled in the art will appreciate that the invention described herein is susceptible to variations and modifications other than those specifically described. It is to be understood that the invention includes all such variations and modifications. The

invention also includes all of the steps, features, compositions and compounds referred to or indicated in this specification, individually or collectively, and any and all combinations of any two or more of said steps or features.

BIBLIOGRAPHY:

10

 Du, X.X. and Williams, D.A. (1994) Blood 83: 2023-2030.

- 5 2. Yang, Y.C. and Yin, T. (1992) Biofactors 4: 15-21.
 - 3. Paul, S.R., Bennett, F., Calvetti, J.A., Kelleher, K., Wood, C.R., O'Hara, R.J.J., Leary, A.C., Sibley, B., Clark, S.C., Williams, D.A. and Yang, Y.-C. (1990) Proc. Natl. Acad. Sci. USA 87: 7512.
- 4. Musashi, M., Clark, S.C., Sudo, T., Urdal, D.L., and Ogawa, M. (1991) Blood 78: 1448-1451.
 - 5. Schibler, K.R., Yang, Y.C. and Christensen, R.D. (1992) Blood 80: 900-3.
- 15 6. Tsuji, K., Lyman, S.D., Sudo, T., Clark, S.C., and Ogawa, M. (1992) Blood 79: 2855-60.
 - 7. Burstein, S.A., Mei, R.L., Henthorn, J., Friese, P. and turner, K. (1992) J. Cell. Physiol. 153: 305-12.
- 20 8. Hangoc, G., Yin, T., Cooper, S., Schendel, P., Yang, Y.C. and Broxmeyer, H.E. (1993) Blood 81: 965-72.
 - 9. Teramura, M., Kobayashi, S., Hoshino, S., Oshimi, K. and Mizoguchi, H. (1992) Blood 79: 327-31.
- 10. Yonemura, Y., Kawakita, M., Masuda, T., Fujimoto, K., Kato, K. and Takatsuki, K. (1992) Exp. Hematol. 20: 1011-6.
 - 11. Baumann, H. and Schendel, P. (1991) J. Biol. Chem. 266: 20424-7.
- 12. Kawashima, I., Ohsumi, J., Mita-Honjo, K., Shimoda-Takano, K., Ishikawa, H., Sakakibara, S., Miyadai, K. and Takiguchi, Y. (1991) Febs. Lett. 283: 199-202.
- 13. Keller, D.C., Du, X.X., Srour, E.f., Hoffman, R. and Williams, D.A. (1993) Blood 82: 1428-35.
 - 14. Sambrook et al (1989) Cloning: A Laboratory Manual. Cold Spring Harbour Laboratory, Cold Spring

Harbour, NY.

- 15. Chirgwin et al (1979) Biochemistry 18: 5294-5299.
- 16. Mizushima and Nagata (1990) Nucl. Acids Res., 18: 5322.
- 5 17. FEBS Lett (1994) 356: 244-248.
 - 18. Bazan, J.F. (1990) Proc Natl Acad Sci USA, 87, 6934-8
- 10 19. de Vos, A.M., Ultsch, M. and Kossiakoff, A.A. (1992) Science, 255, 306-12
- 20. Layton, M.J., Cross, B.A., Metcalf, D., Ward, L.D., Simpson, R.J. and Nicola, N.A. (1992) Proceedings of the National Academy of Sciences of the United States of America 89: 8616-8620
- 21. Taga, T., Hibi, M., Hirata, T., Tamasaki, K., Tasukawa, K., Matsuda, T., Hirano, T. and

 20 . Kishimoto, T. (1989) Cell 58: 573-581
 - 22. Merberg, D.M., Wolf, S.F. and Clark, S.C. (1992)
 Sequence similarity between NKSF and the IL-6/G-CSF
 family (1992) Immunology Today 13: 77-78
 - 23. Cearing, D.P. and Cosman, D. (1991) Cell 66:9-10
- Wrighton, N.C., Farrell, F.X., Chang, R., Kashyap, A.K., Barbone, F.P., Mulcahy, L.S., Johnson, D.L.,
 Barrett, R.W., Jolliffe, L.K. and Dower, W.J.
 (1996) Science 273: 458-464.
- Cwirla, S.E., Balasubramanian, P., Duffin, D.J., Wagstrom, C.R., Gates, C.M., Singer, S.C., Davis,
 A.M., Tansik, R.L., Mattheakis, L.C., Boytos, C.M., Schatz, P.J., Baccanari, D.P., Wrighton, N.C.,
 Barret, R.W. and Dower, W.J. (1997) Science 276:

- 69 -

SUBSTITUTE SHEET (RULE 26)

25

1696--9, 1997

- 26. Samuel Davis et al (1996) Cell 87:1161-1169.
- 5 27. Chitra Suri et al (1996) Cell 87: 1171-1180.
 - 28. Nicholas C. Wrighton et al (1996) Science 273: 458-463.
- 10 29. Oded Livnah et al (1996) Science 273: 464-471.
 - 30. Cwirla, Steven E. et al (1997) Science 276: 1696-1699.

PCT/GB97/02479

SEQUENCE LISTING

5	(1) GENERAL I	NFORMATION:
5	(i) APPL	ICANT: (Other than US) AMRAD OPERATIONS PTY
	/110	only) Douglas James HILTON, Nicos Antony
	·	n FARLEY, Tracey WILLSON, Jian-Guo ZHANG,
• 0	•	DER, Steven RAKAR, Louis FABRI, Tetsuo
10		sugu MAEDA, Yasumfumi KIKUCHI, Andrew NASH
	KOJIMA, Masaci	Sugu MASA, Tasumitumi Kikochi, Andrew NASA
	(ii) TITL	E OF INVENTION: A NOVEL HAEMPOIETIN
		RECEPTOR AND GENETIC
15		SEQUENCES ENCODING SAME
	(iii) NUMB	ER OF SEQUENCES: 39
	(iv) CORR	ESPONDENCE ADDRESS:
20	(A)	ADDRESSEE: DAVIES COLLISON CAVE
	(B)	STREET: 1 LITTLE COLLINS STREET
	(C)	CITY: MELBOURNE
	(D)	STATE: VICTORIA
	(E)	COUNTRY: AUSTRALIA
25	(F)	ZIP: 3000
	•	
	(v) COMP	UTER READABLE FORM:
	(A)	MEDIUM TYPE: Floppy disk
	(B)	COMPUTER: IBM PC compatible
30	(C)	OPERATING SYSTEM: PC-DOS/MS-DOS
	(D)	SOFTWARE: PatentIn Release #1.0, Version
	#1.25	

(vi) CURRENT APPLICATION DATA:

(A) APPLICATION NUMBER:
PCT INTERNATIONAL APPLICATION

- 71 -

35

(B)	FILING	DATE:	11-SEP-1997
-----	--------	-------	-------------

(vi) PRIOR APPLICATION DATA:

- (A) APPLICATION NUMBER: PO2246/96
- 5 (B) FILING DATE: 11-SEP-1996

(viii) ATTORNEY/AGENT INFORMATION:

- (A) NAME: HUGHES DR, E JOHN L
- (C) REFERENCE/DOCKET NUMBER: EJH/AF

10

- (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: +61 3 9254 2777
 - (B) TELEFAX: +61 3 9254 2770
- 15 (2) INFORMATION FOR SEQ ID NO:1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 5 amino acids
 - (B) TYPE: amino acid
- 20 (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

25

35

Trp Ser Xaa Trp Ser

- 30 (2) INFORMATION FOR SEQ ID NO:2:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

- 72 -

	(ii) MOLECULE TYPE: DNA	
5	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:	
	ACTCGCTCCA GATTCCCGCC TTTT	24
10	(2) INFORMATION FOR SEQ ID NO:3:	
15	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 24 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: DNA	
20		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:	
25	TCCCGCCTTT TTCGACCCAT AGAT	24
	(2) INFORMATION FOR SEQ ID NO:4:	
30	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 24 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
35	(ii) MOLECULE TYPE: DNA	

- 73 -

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:	
	GGTACTTGGC TTGGAAGAGG AAAT	24
	(2) INFORMATION FOR SEQ ID NO:5:	
5		
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 24 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
10	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:	
	CGGCTCACGT GCACGTCGGG TGGG	24
	·	
	(2) INFORMATION FOR SEQ ID NO:6:	
20	() CHOWNER CHARACTER CONT. CO.	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 22 base pairs(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
25	(D) TOPOLOGY: linear	
25	(b) Toronogi. Timeat	
	(ii) MOLECULE TYPE: DNA	
30	()	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:	
	NORTH AND COCCUTTO TO	22
	AGCTGCTGTT AAAGGGCTTC TC	4.4

- 74 -

35

(2) INFORMATION FOR SEQ ID NO: /:	
5	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 15 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
10	<pre>(ii) MOLECULE TYPE: Oligonucleotide (xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:</pre>	
15	A/G)CTCCA(A/G)TC(A/G)CTCCA	. 5
20	2) INFORMATION FOR SEQ ID NO:8: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 15 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
25	<pre>(ii) MOLECULE TYPE: Oligonucleotide (xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:</pre>	
30 ((A/G)CTCCA(C/T)TC(A/G) CTCCA	15
35	(2) INFORMATION FOR SEQ ID NO:9: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 21 base pairs	

- 75 -

	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
5	(ii) MOLECULE TYPE: DNA	
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:	
	AAGTGTGACC ATCATGTGGA C	21
15	(2) INFORMATION FOR SEQ ID NO:10:	
20	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 18 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:	
30	GGAGGTGTTA AGGAGGCG	18
	(2) INFORMATION FOR SEQ ID NO:11:	
35	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 18 base pairs(B) TYPE: nucleic acid	

- 76 -

	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
5	(ii) MOLECULE TYPE: DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:	
10	ATGCCCGCGG GTCGCCCG	.8
15	(2) INFORMATION FOR SEQ ID NO:12:	
	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 1506 base pairs(B) TYPE: nucleic acid	
20	(C) STRANDEDNESS: single (D) TOPOLOGY: linear	
25	(ii) MOLECULE TYPE: DNA	
	(ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 11242	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:	
35	GGCACGAGCT TCGCTGTCCG CGCCCAGTGA CGCGCGTGCG GACCCGAGCC CCAATCTGCA CCCCGCAGAC TCGCCCCCGC CCCATACCGG CGTTGCAGTC ACCGCCCGTT GCGCGCCACC CCC ATG CCC GCG GGT CGC CCG GGC CCC GTC GCC CAA TCC GCG CGG CGG CCG	-64 -4 -3

- 77 -

	Met	Pro	Ala	Gly	Arg	Pro	Gly	Pro	Val	Ala	Gln	Ser	Ala	Arg	Arg	Pro	
	1				5					10					15		
	CCG	CGG	CCG	CTG	TCC	TCG	CTG	TGG	TCG	CCT	CTG	TTG	CTC	TGT	GTC	CTC	96
5	Pro	Arg	Pro	Leu	Ser	Ser	Leu	Trp	ser	Pro	Leu	Leu	Leu	Cys	Val	Leu	
				20					25					30			
											ACA						144
	Gly	Val		Arg	Gly	Gly	Ser		Ala	His	Thr	Ala		IIe	Ser	Pro	
10			35					40					45				
	CAC	CNC	ccc	אככ	CTT	CTC	ΔΤС	GGC	TCC	TCC	CTG	AAC	GCT	ACC.	TGC	тст	192
											Leu						
		50					55	,				60			-		
15																	
	ATA	CAT	GGA	GAC	ACA	CCT	GGG	GCC	ACC	GCT	GAG	GGG	CTC	TAC	TGG	ACC	240
	Ile	His	Gly	Авр	Thr	Pro	Gly	Ala	Thr	Ala	Glu	Gly	Leu	Tyr	Trp	Thr	
	65					70					75					80	
20	CTC	AAT	GGT	CGC	CGC	CTG	CCC	TCT	GAG	CTG	TCC	CGC	CTC	CTT	AAC	ACC	288
	Leu	Asn	Gly	Arg	Arg	Leu	Pro	Ser	Glu	Leu	Ser	Arg	Leu	Leu	Asn	Thr	
					85					90					95		-
0.5											AAT						336
25	Ser	Thr	Leu		Leu	Ala	Leu	Ala		ьeu	Asn	GIY	ser	110	GIN	Gin	
				100					105					110			
	тса	GGA	GAC	ТАА	CTG	GTG	TGT	CAC	GCC	CGA	GAC	GGC	AGC	ATT	CTG	GCT	384
											Asp						
30			115				•	120		•	-	-	125				
	GGC	TCC	TGC	CTC	TAT	GTT	GGC	TTG	CCC	CCT	GAG	AAG	ccc	TTT	AAC	ATC	432
	Gly	Ser	Cys	Leu	Tyr	Val	Gly	Leu	Pro	Pro	Glu	Lys	Pro	Phe	Asn	Ile	
		130					135					140					
35																	

	AGC	TGC	TGG	TCC	CGG	AAC	ATG	AAG	GAT	CTC	ACG	TGC	CGC	TGG	ACA	CCG	480
	Ser	Cys	Trp	Ser	Arg	Asn	Met	Lys	Asp	Leu	Thr	Cys	Arg	Trp	Thr	Pro	
	145					150					155					160	
5	GGT	GCA	CAC	GGG	GAG	ACA	TTC	TTA	CAT	ACC	AAC	TAC	TCC	CTC	AAG	TAC	528
	Gly	Ala	His	Gly	Glu	Thr	Phe	Leu	His	Thr	Asn	Tyr	ser	Leu	Lys	Tyr	
					165					170					175		
	AAG	CTG	AGG	TGG	TAC	GGT	CAG	GAT	AAC	ACA	TGT	GAG	GAG	TAC	CAC	ACT	576
10	Lys	Leu	Arg	Trp	Tyr	Gly	Gln	Asp	Asn	Thr	Cys	Glu	Glu	Tyr	His	Thr	
				180					185					190			
	G TG	GGC	CCT	CAC	TCA	TGC	CAT	ATC	CCC	AAG	GAC	CTG	GCC	CTC	TTC	ACT	624
	Val	Gly	Pro	His	Ser	Cys	His	Ile	Pro	rya	qaA	Leu	Ala	Leu	Phe	Thr	
15			195					200					205				
	CCC	TAT	GAG	ATC	TGG	GTG	GAA	GCC	ACC	AAT	CGC	CTA	GGC	TCA	GCA	AGA	672
	Pro	Tyr	Glu	Ile	Trp	Val	Glu	Ala	Thr	naA	Arg	Leu	Gly	Ser	Ala	Arg	
		210					215					220					
20	•															:	
			GTC														720
	Ser	qaA	Val	Leu	Thr	Leu	Asp	Val	Leu	Asp	Val	Val	Thr	Thr	qaA	Pro	
	225					230					235					240	
																*-	
25			GAC														768
	Pro	Pro	Asp	Val	His	Val	Ser	Arg	Val	Gly	Gly	Leu	Glu	Asp	Gln	Leu	
					245					250					255		
			CGC														816
30	Ser	Val	Arg	Trp	Val	Ser	Pro	Pro	Ala	Leu	Lys	Asp	Phe		Phe	Gln	
				260					265					270			
			TAC														864
	Ala	Lys	Tyr	Gln	Ile	Arg	Tyr		Val	Glu	Asp	Ser		qaA	Trp	Ĺys	
35			275					280					285				

	GTG	GTG	GAT	GAC	GTC	AGC	AAC	CAG	ACC	TCC	TGC	CGT	CTC	GCG	GGC	CTG	912
						Ser											
		290	-	_			295					300					
5	AAG	CCC	GGC	ACC	GTT	TAC	TTC	GTC	CAA	GTG	CGT	TGT	AAC	CCA	TTC	GGG	960
	Lys	Pro	Gly	Thr	Val	Tyr	Phe	Val	Gln	Val	Arg	Cys	Asn	Pro	Phe	Gly	
	305					310					315					320	
	ATC	TAT	GGG	TCG	AAA	AAG	GCG	GGA	ATC	TGG	AGC	GAG	TGG	AGC	CAC	CCC	1008
10	Ile	Tyr	Gly	Ser	Lys	Lys	Ala	Gly	Ile	Trp	Ser	Glu	Trp	Ser	His	Pro	
					325					330					335		
						CCT											1056
	Thr	Ala	Ala	Ser	Thr	Pro	Arg	Ser	Glu	Arg	Pro	Gly	Pro	Gly	Gly	Gly	
15				340					345					350			
															•		
						GGC											1104
	Val	Cys	Glu	Pro	Arg	Gly	Gly		Pro	Ser	Ser	Gly		Vai	Arg	Arg	
			355					360					365				
20												ana	CCN	T. N. C.	TCC	TCC	1152
						CTC											1132
	Glu		-	Gln	Phe	Leu			Leu	Lys	гуя	380	Ald	ıyı	Cys	261	
		370					3 7 5					360					
25	220	بلسلات	አርጥ	עידר.	CGC	CTG	TAC	GAC	CAG	TGG	CGT	GCT	TGG	ATG	CAG	AAG	1200
25																Lys	
	385		JCI	1	5	390				•	395		-			400	
	,,,																
	TCA	CAC	AAG	ACC	CGA	AAC	CAG	GTC	CTG	CCG	GCT	' AAA	CTC	TAA	.GGAT	'AGG	1249
30						Asn											
			-		405					410							
	CCA	TCCI	CCT	GCTG	GGTC	CAG A	CCTC	GAGO	C TO	ACCI	GAAT	TGG	AGCC	CCT	CTGI	CACCATO	1309
35	TGG	GCA	ACAA	AGA	ACCI	rac c	AGA	GCT	G GC	CACA	ATG	A GC1	CCCF	CAA	CCAC	CAGCTTI	1369
	GGT	CCA	CATG	ATG	STCA	CAC 1	TGG	ATAT	AC CO	CAG	rgtg	G GTA	AAGGT	TGG	GGT	ATTGCAC	1429

	GGCCTCCCAA	CAATCTCTTT	AAATAAATAA	AGGAGTTGTT	CAGGTAAAAA	AAAAAAAAA	1407
	AAAAAAAA	АААААА					1506
5	(2) INFOR	MATION FO	OR SEQ ID	NO:13:			

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 413 amino acids
- 10 (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
- 15 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:
 - Met Pro Ala Gly Arg Pro Gly Pro Val Ala Gln Ser Ala Arg Arg Pro

 1 5 10 15
- 20 Pro Arg Pro Leu Ser Ser Leu Trp Ser Pro Leu Leu Leu Cys Val Leu 20 25 30
 - Gly Val Pro Arg Gly Gly Ser Gly Ala His Thr Ala Val Ile Ser Pro
- 25

 Gln Asp Pro Thr Leu Leu Ile Gly Ser Ser Leu Gln Ala Thr Cys Ser

 50

 55

 60
- Ile His Gly Asp Thr Pro Gly Ala Thr Ala Glu Gly Leu Tyr Trp Thr

 30 65 70 75 80
 - Leu Asn Gly Arg Arg Leu Pro Ser Glu Leu Ser Arg Leu Leu Asn Thr
- Ser Thr Leu Ala Leu Ala Leu Ala Leu Asn Leu Asn Gly Ser Arg Gln Gln
 100 105 110

	Ser	Gly	Asp	Asn	Leu	Val	Cys	His	Ala	Arg	Asp	Gly	Ser	Ile	Leu	Ala
			115					120					125			
	Gly	Ser	Cys	Leu	Tyr	Val	Gly	Leu	Pro	Pro	Glu	Lys	Pro	Phe	Asn	Ile
5		130					135					140				
	Ser	Cys	Trp	Ser	Arg	Asn	Met	Lys	Asp	Leu		Cys	Arg	Trp	Thr	Pro
	145					150					155					160
10	Gly	Ala	His	Gly	Glu	Thr	Phe	Leu	His	Thr	Asn	Tyr	Ser	Leu		Tyr
					165					170					175	
	Lys	Leu	Arg	Trp	Tyr	Gly	Gln	Asp	Asn	Thr	Cys	Glu	Glu	Tyr	His	Thr
15				180					185					190		
	Val	Gly	Pro	His	Ser	Cys	His		Pro	Lys	Asp	Leu		Leu	Phe	Thr
			195					200					205			
	Pro	-	Glu	Ile	Trp	Val		Ala	Thr	Asn	Arg		Gly	Ser	Ala	Arg
20		210					215					220				
		Asp	Val	Leu	Thr	Leu	Asp	Val	Leu	Asp		Val	Thr	Thr	Asp	
	225					230					235					240
25	Pro	Pro	Asp	Val		Val	Ser	Arg	Val		Gly	Leu	Glu	Asp		Leu
					245					250					255	
	Ser	Val	Arg	_	Val	Ser	Pro	Pro		Leu	Lys	Asp	Phe		Phe	Gln
30				260					265					270		
30	Ala	Lvs	Tyr	Gln	Ile	Arg	Tyr	Arg	Val	Glu	Asp	Ser	Val	Asp	Trp	Lys
	·-, -	, -	275			J	-	280					285			
	Val	Val	Asp	Asp	Val	Ser	Asn	Gln	Thr	Ser	Cys	Arg	Leu	Ala	Gly	Leu
35		200					295					300				

Lys Pro Gly Thr Val Tyr Phe Val Gln Val Arg Cys Asn Pro Phe Gly 320 315 310 305 Ile Tyr Gly Ser Lys Lys Ala Gly Ile Trp Ser Glu Trp Ser His Pro 335 330 325 5 Thr Ala Ala Ser Thr Pro Arg Ser Glu Arg Pro Gly Pro Gly Gly Gly 350 340 Val Cys Glu Pro Arg Gly Gly Glu Pro Ser Ser Gly Pro Val Arg Arg 10 365 360 355 Glu Leu Lys Gln Phe Leu Gly Trp Leu Lys Lys His Ala Tyr Cys Ser 380 375 370 15 Asn Leu Ser Phe Arg Leu Tyr Asp Gln Trp Arg Ala Trp Met Gln Lys 395 400 390 385 Ser His Lys Thr Arg Asn Gln Val Leu Pro Ala Lys Leu 410 405 20 (2) INFORMATION FOR SEQ ID NO:14: 25 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1549 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 30 (ii) MOLECULE TYPE: DNA (ix) FEATURE: 35 (A) NAME/KEY: CDS (B) LOCATION: 1..1278

- 83 -

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:

_	GGCA	CGAG	CT T	CGCT	GTCC	G CG	CCCA	.GTGA	CGC	GCGT	'GCG	GACC	CGAG	cc c	CAAT	CTGCA	-65
5	cccc	GCAG	BAC T	cgcc	CCCG	c cc	CATA	.CCGG	CGT	TGCA	GTC	ACCG	CCCG	TT G	CGCG	CCACC	- 5
	CCCA																-1
10																	
	ATG	CCC	GCG	GGT	CGC	CCG	GGC	ccc	GTC	GCC	CAA	TCC	GCG	CGG	CGG	CCG	48
	Met	Pro	Ala	Gly	Arg	Pro	Gly	Pro	Val	Ala	Gln	Ser	Ala	Arg	Arg	Pro	
	1				5					10					15		
15	CCG	CGG	CCG	CTG	TCC	TCG	CTG	TGG	TCG	CCT	CTG	TTG	CTC	TGT	GTC	CTC	96
	Pro	Arg	Pro	Leu	Ser	Ser	Leu	Trp	Ser	Pro	Leu	Leu	Leu	Сув	Val	Leu	
				20					25					30		•	
	GGG	GTG	CCT	CGG	GGC	GGA	TCG.	GGA	GCC	CAC	ACA	GCT	GTA	ATC	AGC	ccc	144
20	Gly	Val	Pro	Arg	Gly	Gly	Ser	Gly	Ala	His	Thr	Ala	Val	Ile	Ser	Pro	
	GGG GTG CCT CGG GGC GGA TCG GGA GCC CAC ACA GCT GTA ATC AGC CCC Gly Val Pro Arg Gly Gly Ser Gly Ala His Thr Ala Val Ile Ser Pro 35 40 45																
	CAG	GAC	CCC	ACC	CTT	CTC	ATC	GGC	TCC	TCC	CTG	CAA	GCT	ACC	TGC	TCT	192
	Gln	Asp	Pro	Thr	Leu	Leu	Ile	Gly	Ser	Ser	Leu	Gln	Ala	Thr	Cys	Ser	
25		50					55					60					
	እጥለ	CAT	GGA	GAC	ACA	ССТ	GGG	GCC	ACC	GCT	GAG	GGG	CTC	TAC	TGG	ACC	240
			Gly														
	65			•		70	•				75					80	
30																	
	CTC	TAA	GGT	CGC	CGC	CTG	ccc	TCT	GAG	CTG	TCC	CGC	CTC	CTT	AAC	ACC	288
	Leu	Asn	Gly	Arg	Arg	Leu	Pro	Ser	Glu	Leu	Ser	Arg	Leu	Leu	Asn	Thr	
					85					90	•				95		
35	TCC	. ACC	CTC	GCC	CTG	GCC	CTG	GCI	r aac	CTI	TAA 1	GGG	TCC	AGG	CAG	CAG	336
	Sei	Thi	r Leu	ı Ala	Lev	Ala	Let	a Ala	а Авл	Lev	ı Asr	Gly	ser Ser	Arg	Glr	Gln	
				100)				105	,				110)		

- 84 -

SUBSTITUTE SHEET (RULE 26)

TCA GGA GAC AAT CTG GTG TGT CAC GCC CGA GAC GGC AGC ATT CTG GCT Ser Gly Asp Asn Leu Val Cys His Ala Arg Asp Gly Ser Ile Leu Ala 115 120 125	
125	

5 GGC TCC TGC CTC TAT GTT GGC TTG CCC CCT GAG AAG CCC TTT AAC ATC	432
Gly Ser Cys Leu Tyr Val Gly Leu Pro Pro Glu Lys Pro Phe Asn Ile	
130 135 140	
AGC TGC TGG TCC CGG AAC ATG AAG GAT CTC ACG TGC CGC TGG ACA CCG	480
10 Ser Cys Trp Ser Arg Asn Met Lys Asp Leu Thr Cys Arg Trp Thr Pro	
145 150 155 160	
GGT GCA CAC GGG GAG ACA TTC TTA CAT ACC AAC TAC TCC CTC AAG TAC	528
Gly Ala His Gly Glu Thr Phe Leu His Thr Asn Tyr Ser Leu Lys Tyr	
15 165 170 175	
AAG CTG AGG TGG TAC GGT CAG GAT AAC ACA TGT GAG GAG TAC CAC ACT	576
Lys Leu Arg Trp Tyr Gly Gln Asp Asn Thr Cys Glu Glu Tyr His Thr	
180 185 190	
20	
GTG GGC CCT CAC TCA TGC CAT ATC CCC AAG GAC CTG GCC CTC TTC ACT	624
Val Gly Pro His Ser Cys His Ile Pro Lys Asp Leu Ala Leu Phe Thr	
195 200 205	
and the second s	672
25 CCC TAT GAG ATC TGG GTG GAA GCC ACC AAT CGC CTA GGC TCA GCA AGA	672
Pro Tyr Glu Ile Trp Val Glu Ala Thr Asn Arg Leu Gly Ser Ala Arg	
210 215 220	
TOT GAT GTC CTC ACA CTG GAT GTC CTG GAC GTG GTG ACC ACG GAC CCC	720
30 Ser Asp Val Leu Thr Leu Asp Val Leu Asp Val Val Thr Thr Asp Pro	
225 230 235 240	
CCA CCC GAC GTG CAC GTG AGC CGC GTT GGG GGC CTG GAG GAC CAG CTG	768
Pro Pro Asp Val His Val Ser Arg Val Gly Gly Leu Glu Asp Gln Leu	
35 245 250 255	

	AGT	GTG	CGC	TGG	GTC	TCA	CCA	CCA	GCT	CTC	AAG	GAT	TTC	CTC	TTC	CAA	816
	Ser	Val	Arg	Trp	Val	Ser	Pro	Pro	Ala	Leu	Lys	Asp	Phe	Leu	Phe	Gln	
				260					265					270			
5	GCC	AAG	TAC	CAG	ATC	CGC	TAC	CGC	GTG	GAG	GAC	AGC	GTG	GAC	TGG	AAG	864
	Ala	Lys	Tyr	Gln	Ile	Arg	Tyr	Arg	Val	Glu	Asp	Ser	Val	Asp	Trp	Lys	
			275					280					285				
					GTC												912
10	Val	Val	Asp	Asp	Val	Ser	Asn	Gln	Thr	Ser	Cys	Arg	Leu	Ala	Gly	Leu	
		290					295					300					
					GTT												960
	Lys	Pro	Gly	Thr	Val	Tyr	Phe	Val	Gln	Val		Cys	Asn	Pro	Phe	Gly	
15	305					310					315					320	
					AAA												1008
	Ile	Tyr	Gly	Ser	Lys	Lys	Ala	Gly	Ile		ser	Glu	Trp	Ser		Pro	
					325					330					335		
20							223	» am	ana	ccc	ccc	ccc	ccc	ccc	GGC	GGG	1056
					ACC												1030
	Thr	Ala	Ala		Thr	Pro	Arg	Sei	345	AIG	PIO	Gry	FLO	350	Gly	Gly	
				340					343					330			
25	GTG	ጥርረር	GAG	CCG	CGG	GGC	GGC	GAG	ccc	AGC	TCG	GGC	CCG	GTG	CGG	CGC	1104
2.3					Arg												
		-1-	355		3	•	•	360				_	365				
	GAG	CTC	AAG	CAG	TTC	CTC	GGC	TGG	CTC	AAG	AAG	CAC	GCA	TAC	TGC	TCG	1152
30	Glu	Leu	Lys	Gln	Phe	Leu	Gly	Trp	Leu	Lys	Lys	His	Ala	Tyr	Cys	Ser	
		370					375					380					
	AAC	CTI	AGI	TTC	CGC	CTG	TAC	GAC	CAG	TGG	CGT	GCT	TGG	ATG	CAG	AAG	1200
	Asn	Lev	Ser	Phe	arg	Leu	Туг	Asp	Gln	Trp	Arg	Ala	Trp	Met	Gln	Lys	
35	385	,				390)				395					400	

	TCA CAC AAG ACC CGA AAC CAG GAC GAG GGG ATC CTG CCT TCG GGC AGA	1248
	Ser His Lys Thr Arg Asn Gln Asp Glu Gly Ile Leu Pro Ser Gly Arg	
	405 410 415	
5	CGG GGT GCG GCG AGA GGT CCT GCC GGT TAAACTCTAA GGATAGGCCA	1295
	Arg Gly Ala Ala Arg Gly Pro Ala Gly	
	420 425	
	TCCTCCTGCT GGGTCAGACC TGGAGGCTCA CCTGAATTGG AGCCCCTCTG TACCATCTGG	1355
10		
	GCAACAAAGA AACCTACCAG AGGCTGGGGC ACAATGAGCT CCCACAACCA CAGCTTTGGT	1415
	1,000m0000m_1,0000	1 4 7 5
	CCACATGATG GTCACACTTG GATATACCCC AGTGTGGGTA AGGTTGGGGT ATTGCAGGGC	14/5
		1525
15	CTCCCAACAA TCTCTTTAAA TAAATAAAGG AGTTGTTCAG GTAAAAAAAA AAAAAAAAAA	1333
		1549
	AAAAAAAAAAAA .	1343
20	(2) INFORMATION FOR SEQ ID NO:15:	
	(2) INFORMATION FOR SEQ 15 No.13.	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 425 amino acids	
25	(B) TYPE: amino acid	
د ع	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: protein	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:	•
	· · · -	
	Met Pro Ala Gly Arg Pro Gly Pro Val Ala Gln Ser Ala Arg Arg Pro	
	1 5 10 15	
35	Pro Arg Pro Leu Ser Ser Leu Trp Ser Pro Leu Leu Cys Val Leu	
	20 25 30	

- 87 -

	Gly	Val	Pro	Arg	Gly	Gly	Ser	Gly	Ala	His	Thr	Ala	Val	Ile	Ser	Pro
			35					40					45			
	G1-	200	D-0	Thr	Low	Len	Tle	Gly	Ser	Ser	Len	Gln	Δla	Thr	Cys	Ser
5	GIN	ABP	PIO	IIII	ren	beu	55	GIY	361	361	Dea	60	AIG	1111	СуБ	361
ر		20					33									
	Ile	His	Gly	Asp	Thr	Pro	Gly	Ala	Thr	Ala	Glu	Gly	Leu	Tyr	Trp	Thr
	65					70					75					80
10	Leu	Asn	Gly	Arg	Arg	Leu	Pro	Ser	Glu	Leu	Ser	Arg	Leu	Leu	Asn	Thr
					85					90					95	
	0	Œb.∽	T 033	1 15	T av	۸1.5	Len	λla) en	T.A.II	Δen	Gly	Ser	Ara	Gln	Gln
•	ser	THE	Leu	100	ьeu	AIG	neu	AIG	105	пеп	nsu.	Gry	561	110	0111	J111
15				100												
	Ser	Gly	Asp	Asn	Leu	Val	Cys	His	Ala	Arg	Asp	Gly	Ser	Ile	Leu	Ala
			115					120					125			
	Gly	Ser	Cys	Leu	Tyr	Val	Gly	Leu	Pro	Pro	Glu		Pro	Phe	Asn	Ile
20		130					135					140				
	2	0		Ca=	7 = 0	Nan	Mat	Lve	y e.p.	Len	Thr	Cvs	Ara	Trn	Thr	Pro
	145	Cys	Trp	Ser	Arg	150	Mec	БуБ	Asp	nea	155	Cys	n-9	115	****	160
	143															
25	Gly	Ala	His	Gly	Glu	Thr	Phe	Leu	His	Thr	Asn	Tyr	Ser	Leu	Ļys	Tyr
					165					170					175	
	Lys	Leu	Arg	Trp	Tyr	Gly	Gln	Asp	Asn	Thr	Cys	Glu	Glu		His	Thr
				180					185					190		
30	Val	G) v	Pro	Uic	Sar	Cve	Hic	Tle	Pro	1.vs	Asn	Leu	Δla	Leu	Phe	Thr
	vai	GIY	195	nis	561	Cys		200		2,5			205			
								• •								
	Pro	Tyr	Glu	Ile	Trp	Val	Glu	Ala	Thr	Asn	Arg	Leu	Gly	Ser	Ala	Arg
35		210					215					220				

	Ser	Asp	Val	Leu	Thr	Leu	Asp	Val	Leu	Asp	Val	Val	Thr	Thr	Asp	Pro
	225					230					235					240
	Pro	Pro	Asp	Val	His	Val	Ser	Arg	Val	Glÿ	Gly	Leu	Glu	Asp	Gln	Leu
5					245					250					255	
	Ser	Va 1	Ara	Tro	Val	Ser	Pro	Pro	Ala	Leu	Lvs	Asp	Phe	Leu	Phe	Gln
	501	V 42	9	260		-			265		-,-			270		J 2
10	Ala	Lys	Tyr 275	Gln	Ile	Arg	Tyr	Arg 280	Val	Glu	Asp	Ser	Val 285	Asp	Trp	Lys
			213					200					203	•		
	Val	Val	Asp	Asp	Val	Ser	naA	Gln	Thr	Ser	Cys	Arg	Leu	Ala	Gly	Leu
15		290					295					300				
13	Lys	Pro	Gly	Thr	Val	Tyr	Phe	Val	Gln	Val	Arg	Cys	Asn	Pro	Phe	Gly
	305					310					315					320
	-1-		a 1	0	T	T 1.50	אות	G114	T10	Trp	Sar	Clu	Trn	Car	u i c	Pro
20	ile.	Tyr	GIY	Ser	325	гуз	AIG	GIY	116	330	361	GIU	110	Jer	335	FIO
	Thr	Ala	Ala		Thr	Pro	Arg	Ser	Glu 345	Arg	Pro	Gly	Pro	Gly 350	Gly	Gly
				340					343					330		
25	Val	Сув	Glu	Pro	Arg	Gly	Gly	Glu	Pro	Ser	Ser	Gly	Pro	Val	Arg	Arg
			355					360					365			
	Glu	Leu	Lys	Gln	Phe	Leu	Gly	Trp	Leu	Lys	Lys	His	Ala	Tyr	Cys	Ser
		370					375					380				
30) e =	ī.e.:	9	Dhe	Ara	I.e.ı	TV) en	Gla	Trp	Ara	Δla	Trn	Met	Gln	Lve
	385	Dea	361	FIIC	Arg	390	TYL	дар	GIII	111	395	ALU	110	1,00	J111	400
35	Ser	His	Lys	Thr		Asn	Gln	Asp	Glu	Gly	Ile	Leu	Pro	Ser	Gly	Arg
33					405					410					412	

48

144

Arg Gly Ala Ala Arg Gly Pro Ala Gly
420 425

5

(2) INFORMATION FOR SEQ ID NO:16:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 938 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA

15

10

(ix) FEATURE:

(A) NAME/KEY: CDS

(B) LOCATION: 1..468

20

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:

25 GGC ACC GTT TAC TTC GTC CAA GTG CGT TGT AAC CCA TTC GGG ATC TAT

Gly Thr Val Tyr Phe Val Gln Val Arg Cys Asn Pro Phe Gly Ile Tyr

1 5 10 15

GGG TCG AAA AAG GCG GGA ATC TGG AGC GAG TGG AGC CAC CCC ACC GCT 96

30 Gly Ser Lys Lys Ala Gly Ile Trp Ser Glu Trp Ser His Pro Thr Ala

20 25 30

GCC TCC ACC CCT CGA AGT GAG CGC CCG GGC CCG GGC GGC GGG GTG TGC
Ala Ser Thr Pro Arg Ser Glu Arg Pro Gly Pro Gly Gly Gly Val Cys

35 35 40 45

- 90 -

	GAG	CCG	CGG	GGC	GGC	GAG	CCC	AGC	TCG	GGC	CCG	GTG	CGG	CGC	GAG	CTC	192
	Glu	Pro	Arg	Gly	Gly	Glu	Pro	Ser	Ser	Gly	Pro	Val	Arg	Arg	Glu	Leu	
		50					55					60					
_			TTC	omc.	200	TCC.	CTC	አአር	D D C	CAC	GCA	TAC	TGC	TCG	AAC	CTT	240
5			Phe														
	£y5 65	Gin	PIIC	БСИ	O1,	70		-1-	-, -		75	•	•			80	
	0.5																
	AGT	TTC	CGC	CTG	TAC	GAC	CAG	TGG	CGT	GCT	TGG	ATG	CAG	AAG	TCA	CAC	288
10	Ser	Phe	Arg	Leu	Tyr	Asp	Gln	Trp	Arg	Ala	Trp	Met	Gln	Lys	Ser	His	
					85					90					95		
			CGA														336
	Lys	Thr	Arg		Gln	Val	Gly	Lys		Gly	Glu	Ala	Cys		Gly	Gly	
15				100					105					110			
		CCX	GCA	GNG	GAA	GAG	AGA	GAC	CCG	GGT	GAG	CAG	CCT	CCA	CAA	CAC	384
			Ala														
	БуЗ	UL,	115				3	120					125				
20																	
	CGC	ACT	CTT	CTT	TCC	AAG	CAC	AGG	ACG	AGG	GGA	TCC	TGC	CCT	CGG	GCA	432
	Arg	Thr	Leu	Leu	Ser	Lys	His	Arg	Thr	Arg	Gly	Ser	Cys	Pro	Arg	Ala	
		130					135					140					
												503	3 7 00	000	OM NO	N C C N C TT	405
25													o I GG	المال	CIAC	AGCAGT	485
		Gly	Val	Arg	Arg	150		Arg	Gly	sei	155						
	145					150											
	CTA	GATG.	AGG	CCCT	TTCC	CC T	CCTT	CGGT	G TT	GCTC.	AAAG	GGA'	TCTC	TTA	GTGC'	TCATTT	545
30							•										
	CAC	CCAC	TGC	AAAG	AGCC	CC A	GGTT	TTAC	T GC	ATCA	TCAA	GTT	GCTG	AAG	GGTC	CAGGCT	605
	TAA	TGTG	GCC	TCTT	TTCT	GC C	CTCA	GGTC	C TG	CCGG	CTAA	ACT	CTAA	.GGA	TAGG	CCATCC	665
															am > m		77
35	TCC	TGCT	GGG	TCAG	ACCT	GG A	GGCT	CACC	T GA	ATTG	GAGC	CCC	TCTG	TAC	CTAT	CTGGGC	729
	አአሮ	מממי	מממ	ССТЯ	רכאת	GA G	GCTG	GGGC	A CA	ATGA	GCTC	CCA	CAAC	CAC	AGCT	TTGGTC	789
	MAC	~~~~		-CIM		 u				 •							

845

905

938

	CACATGATGG TCACACTTGG ATATACCCCA GTGTGGGTAA GGTTGGGGTA TTGCAG	GGCC
	TCCCAACAAT CTCTTTAAAT AAATAAAGGA GTTGTTCAGG TAAAAAAAAA AAAAAA	AAA
5	AAAAAAAAA AAAAAAAAA AAAAAAAAA	
	(2) INFORMATION FOR SEQ ID NO:17:	
10	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 155 amino acids(B) TYPE: amino acid(D) TOPOLOGY: linear	
15	(ii) MOLECULE TYPE: protein	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:	
20	Gly Thr Val Tyr Phe Val Gln Val Arg Cys Asn Pro Phe Gly Ile T	yr
	Gly Ser Lys Lys Ala Gly Ile Trp Ser Glu Trp Ser His Pro Thr A	ıla
25	Ala Ser Thr Pro Arg Ser Glu Arg Pro Gly Pro Gly Gly Gly Val G]ys
	Glu Pro Arg Gly Gly Glu Pro Ser Ser Gly Pro Val Arg Arg Glu I 50 55 60	Leu
30	Lys Gln Phe Leu Gly Trp Leu Lys Lys His Ala Tyr Cys Ser Asn :	Leu 80
35	Ser Phe Arg Leu Tyr Asp Gln Trp Arg Ala Trp Met Gln Lys Ser	His

Lys Thr Arg Asn Gln Val Gly Lys Leu Gly Glu Ala Cys Val Gly Gly 110 105 100 Lys Gly Ala Glu Glu Glu Arg Asp Pro Gly Glu Gln Pro Pro Gln His 125 120 5 115 Arg Thr Leu Leu Ser Lys His Arg Thr Arg Gly Ser Cys Pro Arg Ala 140 135 130 Asp Gly Val Arg Arg Glu Val Arg Gly Ser Gly 10 155 150 145 (2) INFORMATION FOR SEQ ID NO:18: 15 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 834 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single 20 (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA 25 (ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 1..834 30 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:18: CCC ACC CTT CTC ATC GGC TCC TCC CTG CAA GCT ACC TGC TCT ATA CAT 98 Pro Thr Leu Leu Ile Gly Ser Ser Leu Gln Ala Thr Cys Ser Ile His 65 60 35 51 55

- 93 -

WO 98/11225	PC1/GB97/02479

	GGA	GAC	ACA	CCT	GGG	GCC	ACC	GCT	GAG	GGG	CTC	TAC	TGG	ACC	CTC	AAT	146
	Gly	Asp	Thr	Pro	Gly	Ala	Thr	Ala	Glu	Gly	Leu	Tyr	Trp	Thr	Leu	Asn	
				70					75					80			
5											CTC						194
	Gly	Arg	Arg	Leu	Pro	Ser	Glu	Leu	Ser	Arg	Leu	Leu	Asn	Thr	Ser	Thr	
			85					90					95				
											TCC						242
10	Leu	Ala	Leu	Ala	Leu	Ala	Asn	Leu	Asn	Gly	Ser		Gln	Gln	Ser	Gly	
		100					105					110					
																maa	200
											AGC						. 290
	Asp	Asn	Leu	Val	Cys		Ala	Arg	Asp	Gly	Ser	IIe	Leu	Ala	GIÀ		
15	115					120					125					130	
											222	mmm	7 7 C	አጥር	אככ	TCC	338
											CCC						330
	Cys	Leu	Tyr	Val		Leu	Pro	Pro	GIU	Lys 140	Pro	Pne	ASII	116	145	Cys	
					135					140					113		
20					 .	7 7 C	C A T	CTC	אכם	TGC	CGC	TGG	ACA	CCG	GGT	GCA	386
																Ala	
	Trp	ser	Arg	150		пуз	App	пси	155	Cyz	=			200			
				130													
25	CAC	GGG	GAG	ACA	TTC	ATT	CAT	ACC	AAC	TAC	TCC	CTC	AAG	TAC	AAG	CTG	434
20																Leu	
		1	205										215				
	AGG	TGC	TAC	GG1	CAG	GAT	' AAC	: ACA	TGI	GAG	GAG	TAC	CAC	ACT	GTG	GGG	482
30																Gly	
		220)				225	5				230)				
	cco	CAC	TCA	A TG	CAT	OTA 7	cc	C AAC	GAC	CTO	GCC	CTC	TTC	AC:	ר ככנ	TAT	530
	Pro	Hi:	s Se	c Cy:	s His	s Ile	Pro	o Lys	s Asp) Lev	ı Ala	Let	ı Phe	Th	rPro	Tyr	
35	23	5				240)				245	5				250	

94 -

	GAG	ATC	TGG	GTG	GAA	GCC	ACC	AAT	CGC	CTA	GGC	TCA	GCA	AGA	TCT	GAT	578
	Glu	Ile	Trp	Val	Glu	Ala	Thr	Asn	Arg	Leu	Gly	Ser	Ala	Arg	Ser	Asp	
					255					260					265		
5	GTC	CTC	ACA	CTG	GAT	GTC	CTG	GAC	GTG	GTG	ACC	ACG	GAC	CCC	CCA	CCC	626
	Val	Leu	Thr	Leu	Asp	Val	Leu	Asp	Val	Val	Thr	Thr	Asp	Pro	Pro	Pro	
				270					275					280			
	GAC	GTG	CAC	GTG	AGC	CGC	GTT	GGG	GGC	CTG	GAG	GAC	CAG	CTG	AGT	GTG	674
10	Asp	Val	His	Val	Ser	Arg	Val	Gly	Gly	Leu	Glu	Asp	Gln	Leu	Ser	Val	•
			285					290					295				
	CGC	TGG	GTC	TCA	CCA	CCA	GCT	CTC	AAG	GAT	TTC	CTC	TTC	CAA	GCC	AAG	722
	Arg	Trp	Val	Ser	Pro	Pro	Ala	Leu	Lys	Asp	Phe	Leu	Phe	Gln	Ala	Lys	
15		300					305					310					
	TAC	CAG	ATC	CGC	TAC	CGC	GTG	GAG	GAC	AGC	GTG	GAC	TGG	AAG	GTG	GTG	770
	Tyr	Gln	Ile	Arg	Tyr	Arg	Val	Glu	Asp	ser	Val	Asp	Trp	Lys	Val	Val	
	315					320					325					330	
20																	
	GAT	GAC	GTC	AGC	AAC	CAG	ACC	TCC	TGC	CGT	CTC	GCG	GGC	CTG	AAG	CCC	818
	Asp	Asp	Val	Ser	Asn	Gln	Thr	Ser	Cys	Arg	Leu	Ala	Gly	Leu	Lys	Pro	
					335					340					345		
25	GGC	ACC	GTT	TAC	TTC	GTC	CAA	GTG	CGT	TGT	AAC	CCA	TTC	GGG	ATC	TAT	866
	Gly	Thr	Val	Tyr	Phe	Val	Gln	Val	Arg	Cys	Asn	Pro	Phe	Gly	Ile	Tyr	
				350					355					360			
	GGG	TCG	AAA	AAG	GCG	GGA											894
30	Gly	Ser	Lys	Lys	Ala	Gly											
			365														
																•	

(2) INFORMATION FOR SEQ ID NO:19:

35

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 278 amino acids

- 95 -

- (B) TYPE: amino acid
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein

5

- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:
- Pro Thr Leu Leu Ile Gly Ser Ser Leu Gln Ala Thr Cys Ser Ile His

 55 60 65
 - Gly Asp Thr Pro Gly Ala Thr Ala Glu Gly Leu Tyr Trp Thr Leu Asn
 70 75 80
- 15 Gly Arg Arg Leu Pro Ser Glu Leu Ser Arg Leu Leu Asn Thr Ser Thr
 85 90 95
 - Leu Ala Leu Ala Leu Ala Asn Leu Asn Gly Ser Arg Gln Gln Ser Gly
 100 105 110

20

- Asp Asn Leu Val Cys His Ala Arg Asp Gly Ser Ile Leu Ala Gly Ser 115 120 125 130
- Cys Leu Tyr Val Gly Leu Pro Pro Glu Lys Pro Phe Asn Ile Ser Cys
 25 135 140 145
 - Trp Ser Arg Asn Met Lys Asp Leu Thr Cys Arg Trp Thr Pro Gly Ala
 150 155 200
- 30 His Gly Glu Thr Phe Leu His Thr Asn Tyr Ser Leu Lys Tyr Lys Leu 205 210 215
 - Arg Trp Tyr Gly Gln Asp Asn Thr Cys Glu Glu Tyr His Thr Val Gly
 220 225 230

35

Pro His Ser Cys His Ile Pro Lys Asp Leu Ala Leu Phe Thr Pro Tyr 235

- 96 -

	Glu	Ile	Trp	Val	Glu 255	Ala	Thr	Asn	Arg	Leu 260	Gly	Ser	Ala	Arg	Ser 265	Asp
5	Val	Leu	Thr	Leu 270	Asp	Val	Leu	Asp	Val 275	Val	Thr	Thr	Asp	Pro 280	Pro	Pro
	Asp	Val	His 285	Val	Ser	Arg	Val	Gly 290	Gly	Leu	Glu	Asp	Gln 295	Leu	Ser	Val
10	Arg	Trp 300	Val	Ser	Pro	Pro	Ala 305	Leu	Lys	Asp	Phe	Leu 310	Phe	Gln	Ala	Lys
15	Tyr 315	Gln	Ile	Arg	Tyr	Arg 320	Val	Glu	Asp	Ser	Val 325	Asp	Trp	Lys	Val	Val 330
1.7	Asp	Asp	Val	Ser	Asn 335	Gln	Thr	Ser	Суѕ	Arg 340	Leu	Ala	Gly	Leu	Lys 345	Pro
20	Gly	Thr	Val	Tyr 350	Phe	Val	Gln	Val	Arg 355	Cys	Asn	Pro	Phe	Gly 360	Ile	Tyr
	Gly	Ser	Lys 365	Lys	Ala	Gly										
25	(2)	IN	iFORÌ	ITAN	ON	FOR	SEC) ID	ио	:20:						
30			(i)) SE		LE	CHA NGTH PE:	H: 1	43 ì	base	pa					
30			(ii) M C		TO	POLC	GY:	li	near	•					
35					EQUE							ID	NO:	:20:		

- 97 -

	GGCATGAAGG CTTAGGGTGG GGATCGGTAG GACCCATGCA CCCAGAGAAA GGGACTGGTG	60
	GCAACTTTCA AACTCTCTGG GGAAGGAAGA AGGGCTGAAA GAGG	104
5	ATG AAC GGG CTC AGA CAC AGC TGT AAT CAG CCC CCA GGA	143
	Met Asn Gly Leu Arg His Ser Cys Asn Gln Pro Pro Gly 5 10	
10	(2) INFORMATION FOR SEQ ID NO:21:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 13 amino acids	
	(B) TYPE: amino acids	
15	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: protein	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:	
20		
	Met Asn Gly Leu Arg His Ser Cys Asn Gln Pro Pro Gly	
	5 10	
25		
	(2) INFORMATION FOR SEQ ID NO:22:	
	(i) SEQUENCE CHARACTERISTICS:	
30	(A) LENGTH: 1930 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
35	(ii) MOLECULE TYPE: DNA	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:

	GGCACGAGCT	TCGCTGTCCG	CGCCCAGTGA	CGCGCGTGCG	GACCCGAGCC	CCAATCTGCA	6
5	CCCCGCAGAC	TCGCCCCCGC	CCCATACCGG	CGTTGCAGTC	ACCGCCCGTT	GCGCGCCACC	12
	CCCAATGCCC	GCGGGTCGCC	CGGGCCCCGT	CGCCCAATCC	GCGCGGCGGC	CGCCGCGGCC	18
1.0	GCTGTCCTCG	CTGTGGTCGC	CTCTGTTGCT	CTGTGTCCTC	GGGGTGCCTC	GGGGCGGATC	240
10	GGGAGCCCAC	ACAGCTGTAA	TCAGCCCCCA	GGACCCCACC	CTTCTCATCG	GCTCCTCCCT	300
	GCAAGCTACC	TGCTCTATAC	ATGGAGACAC	ACCTGGGGCC	ACCGCTGAGG	GGCTCTACTG	360
15	GACCCTCAAT	GGTCGCCGCC	TGCCCTCTGA	GCTGTCCCGC	CTCCTTAACA	CCTCCACCCT	420
	GGCCCTGGCC	CTGGCTAACC	TTAATGGGTC	CAGGCAGCAG	TCAGGAGACA	ATCTGGTGTG	480
	TCACGCCCGA	GACGGCAGCA	TTCTGGCTGG	CTCCTGCCTC	TATGTTGGCT	TGCCCCCTGA	540
20	GAAGCCCTTT	AACATCAGCT	GCTGGTCCCG	GAACATGAAG	GATCTCACGT	GCCGCTGGAC	600
	ACCGGGTGCA	CACGGGGAGA	CATTCTTACA	TACCAACTAC	TCCCTCAAGT	ACAAGCTGAG	660
25	GTGGTACGGT	CAGGATAACA	CATGTGAGGA	GTACCACACT	GTGGGCCCTC	ACTCATGCCA	720
	TATCCCCAAG	GACCTGGCCC	TCTTCACTCC	CTATGAGATC	TGGGTGGAAG	CCACCAATCG	780
30	CCTAGGCTCA	GCAAGATCTG	ATGTCCTCAC	ACTGGATGTC	CTGGACGTGG	TGACCACGGA	840
	CCCCCACCC	GACGTGCACG	TGAGCCGCGT	TGGGGGCCTG	GAGGACCAGC	TGAGTGTGCG	900
	CTGGGTCTCA	CCACCAGCTC	TCAAGGATTT	CCTCTTCCAA	GCCAAGTACC	AGATCCGCTA	96
35	CCGCGTGGAG	GACAGCGTGG	ACTGGAAGGT	GGTGGATGAC	GTCAGCAACC	AGACCTCCTG	102
	CCGTCTCGCG	GGCCTGAAGC	CCGGCACCGT	TTACTTCGTC	CAAGTGCGTT	GTAACCCATT	108

	CGGGATCTAT	GGGTCGAAAA	AGGCGGGAAT	CTGGAGCGAG	TGGAGCCACC	CCACCGCTGC	1140
	CTCCACCCCT	CGAAGTGAGC	GCCCGGGCCC	GGGCGGCGGG	GTGTGCGAGC	ceceeecee	1200
5	CGAGCCCAGC	TCGGGCCCGG	TGCGGCGCGA	GCTCAAGCAG	TTCCTCGGCT	GGCTCAAGAA	1260
	GCACGCATAC	TGCTCGAACC	TTAGTTTCCG	CCTGTACGAC	CAGTGGCGTG	CTTGGATGCA	1320
1.0	GAAGTCACAC	AAGACCCGAA	ACCAGGTAGG	AAAGTTGGGG	GAGGCTTGCG	TGGGGGTAA	1380
10	AGGAGCAGAG	GAAGAGAGAG	ACCCGGGTGA	GCAGCCTCCA	CAACACCGCA	CTCTTCTTTC	1440
	CAAGCACAGG	ACGAGGGGAT	CCTGCCCTCG	GGCAGACGGG	GTGCGGCGAG	AGGTAAGGGG	1500
15	GTCTGGGTGA	GTGGGGCCTA	CAGCAGTCTA	GATGAGGCCC	TTTCCCCTCC	TTCGGTGTTG	1560
	CTCAAAGGGA	TCTCTTAGTG	CTCATTTCAC	CCACTGCAAA	GAGCCCCAGG	TTTTACTGCA	1620
	TCATCAAGTT	GCTGAAGGGT	CCAGGCTTAA	TGTGGCCTCT	TTTCTGCCCT	CAGGTCCTGC	1680
20	CGGCTAAACT	CTAAGGATAG	GCCATCCTCC	TGCTGGGTCA	GACCTGGAGG	CTCACCTGAA	1740
	TTGGAGCCCC	TCTGTACCTA	TCTGGGCAAC	AAAGAAACCT	ACCATGAGGC	TGGGGCACAA	1800
25	TGAGCTCCCA	CAACCACAGC	TTTGGTCCAC	ATGATGGTCA	CACTTGGATA	TACCCCAGTG	1860
	TGGGTAAGGT	TGGGGTATTG	CAGGGCCTCC	CAACAATCTC	TTTAAATAAA	TAAAGGAGTT	1920
	GTTCAGGTAA						1930

30

(2) INFORMATION FOR SEQ ID NO:23:

35

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 560 base pairs
- (B) TYPE: nucleic acid

- 100 -

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA

5

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:

10	TCCAGGCAGC	GGTCGGGGGA	CAACCTCGTG	TGCCACGCCC	GTGACGGCAG	CATCCTGGCT	60
	GGCTCCTGCC	TCTATGTTGG	CCTGCCCCCA	GAGAAACCCG	TCAACATCAG	CTGCTGGTCC	120
	AAGAACATGA	AGGACTTGAC	CTGCCGCTGG	ACGCCAGGGG	CCCACGGGGA	GACCTTCCTC	180
15	CACACCAACT	ACTCCCTCAA	GTACAAGCTT	AGGTGGTATG	GCCAGGACAA	CACATGTGAG	240
•	GAGTACCACA	CAGTGGGGCC	CCACTCCTGC	CACATCCCCA	AGGACCTGGC	TCTCTTTACG	300
20	CCCTATGAGA	TCTGGGTGGA	GGCCACCAAC	CGCCTGGGCT	CTGCCCGCTC	CGATGTACTC	360
	ACGCTGGATA	TCCTGGATGT	GGTGACCACG	GACCCCCCGC	CCGACGTGCA	CGTGAGCCGC	420
25	GTCGGGGGCC	TGGAGGACCA	GCTGAGCGTG	CGCTGGGTGT	CGCCACCCGC	CCTCAAGGAT	480
	TTCCTTTTTC	AAGCCAAATA	CCAGATCCGC	TACCGAGTGG	AGGACAGTGT	GGAATGGAAG	540
	GTGGTGGACG	ATGTGAGCAA					560

30

35

(2) INFORMATION FOR SEQ ID NO:24:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1391 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA

(ix) FEATURE:

5 (A) NAME/KEY: CDS

(B) LOCATION: 1..1053

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:

ACC CTC AAC GGG CGC CGC CTG CCC CCT GAG CTC TCC CGT GTA CTC AAC 48

Thr Leu Asn Gly Arg Arg Leu Pro Pro Glu Leu Ser Arg Val Leu Asn

1 5 10 15

GCC TCC ACC TTG GCT CTG GCC CTG GCC AAC CTC AAT GGG TCC AGG CAG

Ala Ser Thr Leu Ala Leu Ala Leu Ala Asn Leu Asn Gly Ser Arg Gln

20 25 30

CGG TCG GGG GAC AAC CTC GTG TGC CAC GCC CGT GAC GGC AGC ATC CTG

144

20 Arg Ser Gly Asp Asn Leu Val Cys His Ala Arg Asp Gly Ser Ile Leu

35 40 45

GCT GGC TCC TGC CTC TAT GTT GGC CTG CCC CCA GAG AAA CCC GTC AAC

Ala Gly Ser Cys Leu Tyr Val Gly Leu Pro Pro Glu Lys Pro Val Asn

50 55 60

ATC AGC TGC TGG TCC AAG AAC ATG AAG GAC TTG ACC TGC CGC TGG ACG

1le Ser Cys Trp Ser Lys Asn Met Lys Asp Leu Thr Cys Arg Trp Thr

65 70 75 80

CCA GGG GCC CAC GGG GAG ACC TTC CTC CAC ACC AAC TAC TCC CTC AAG

Pro Gly Ala His Gly Glu Thr Phe Leu His Thr Asn Tyr Ser Leu Lys

85

90
95

TAC AAG CTT AGG TGG TAT GGC CAG GAC AAC ACA TGT GAG GAG TAC CAC

Tyr Lys Leu Arg Trp Tyr Gly Gln Asp Asn Thr Cys Glu Glu Tyr His

100

105

110

- 102 -

30

	ACA	GTG	GGG	CCC	CAC	TCC	TGC	CAC	ATC	CCC	AAG	GAC	CTG	GCT	CTC	TTT	384
	Thr	Val	Gly	Pro	His	Ser	Cys	His	Ile	Pro	Lys	Asp	Leu	Ala	Leu	Phe	
			115					120					125				
5			TAT														432
	Thr	Pro	Tyr	Glu	Ile	Trp	Val	Glu	Ala	Thr	Asn	Arg	Leu	Gly	Ser	Ala	
		130					135					140					
			GAT														480
10	Arg	ser	Asp	Val	Leu	Thr	Leu	Asp	Ile	Leu		Val	Val	Thr	Thr		
	145					150					155					160	
															a. a	ar a	536
			CCC														528
	Pro	Pro	Pro	Asp		His	Val	Ser	Arg		GIY	GIY	Leu	GIU		GIN	
15					165					170					175		
			GTG		m ac	ara.	TCC	CCA	ccc	acc	CTC	AAC	G አ T	ጥ ጥር	CTC	TTT	576
			GTG Val														• • •
	Leu	Ser	Val		Trp	vai	Ser	PIO	185	AIG	Deu	Буб	лэр	190	204	2	
2.2				180					103								
20	<i>a</i>	000	AAA	ምአ <i>ር</i>	CNG	מייר	CGC	ТАС	CGA	GTG	GAG	GAC	AGT	GTG	GAC	TGG	624
			Lys														
	GIN	Ala	195	171	0111		•••	200	5			•	205		_	-	
			173														
25	AAG	GTG	GTG	GAC	GAT	GTG	AGC	AAC	CAG	ACC	TCC	TGC	CGC	CTG	GCC	GGC	672
	Lys	Val	Val	Asp	Asp	Val	Ser	Asn	Gln	Thr	Ser	Cys	Arg	Leu	Ala	Gly	
	-	210					215					220					
	CTG	AAA	CCC	GGC	ACC	GTG	TAC	TTC	GTG	CAA	GTG	CGC	TGC	AAC	CCC	TTT	720
30	Leu	Lys	Pro	Gly	Thr	Val	Tyr	Phe	Val	Gln	Val	Arg	Cys	Asn	Pro	Phe	
	225					230					235					240	
			TAT														768
	Gly	Ile	Tyr	Gly	Ser	Lys	ГÀв	Ala	Gly		Trp	Ser	Glu	Trp			
35					245					250					255		

	ccc	ACA	GCC	GCC	TCC	ACT	CCC	CGC	AGT	GAG	CGC	CCG	GGC	CCG	GGC	GGC	816
	Pro	Thr	Ala	Ala	Ser	Thr	Pro	Arg	Ser	Glu	Arg	Pro	Gly	Pro	Gly	Gly	•
				260					265					270			
5	GGG	GCG	TGC	GAA	CCG	CGG	GGC	GGA	GAG	CCG	AGC	TCG	GGG	CCG	GTĠ	CGG	864
	Gly	Ala	Cys	Glu	Pro	Arg	Gly	Gly	Glu	Pro	Ser	Ser		Pro	Val	Arg	
			275	•				280					285				
		~~~	<b>am a</b>		a. a	mma	oma.	999	TCC.	CTC.	220	7 2 C	CNC	000	TT 8 C	TGC.	
0								GGC									912
. 0	Arg	290	Leu	гур	GTII	PHE	295	Gly	irp	neu	ъşъ	300	ura	MIG	lyr	Cys	
		290					2,5					300					•
	TCC	AAC	CTC	AGC	TTC	CGC	CTC	TAC	GAC	CAG	TGG	CGA	GCC	TGG	ATG	CAG	960
	Ser	Asn	Leu	Ser	Phe	Arg	Leu	Tyr	Asp	Gln	Trp	Arg	Ala	Trp	Met	Gln	
ō	305					310					315					320	
	AAG	TCG	CAC	AAG	ACC	CGC	AAC	CAG	CAC	AGG	ACG	AGG	GGA	TCC	TGC	CCT	1008
	Lys	Ser	His	Lys	Thr	Arg	naA	Gln	His	Arg	Thr	Arg	Gly	Ser	Cys	Pro	
					325					330					335		
0																	
															TAGG	GGCTCA	1060
	Arg	Ala	Asp		Ala	Arg	Arg	Glu		Leu	Pro	Asp	Lys				
				340					345					350			
5	GGCC	ጉልሮሮር	TTC (	ירידני.	יר <i>א</i> רנ	ድሞ GC	ADAE	TGCAC	DDA F	sccg.	AACC	CAAZ	ACTGO	agg (	CAC	CTCTGT	1120
_	3300				- Cric	J. U.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,										
	ACC	CTCA	TTT (	CAGG	GCAC	CT G	AGCC(	CTC	A GC	AGGA	GCTG	GGGT	rggco	CC 1	rgago	CTCCAA	1180
	CGG	CCAT	AAC 2	AGCT	CTGA	CT C	CAC	STGAC	G GCC	CACC	TTTG	GGT	GCAC	CCC 1	AGTG	GTGTG	1240
0																	
	TGT	STGT	GTG 1	rgag	GGTT(	GG T	rgag:	rtgc	CATA	GAAC	CCCT	GCC	AGGG	CTG (	GGGT	rgagaa	1300
	GGG	SAGT	CAT '	ract(	cccc	AT T	ACCT	AGGG	C CC(	CTCC	AAAA	GAG'	rcct'	TTT A	AAAT	AAATGA	1360
_	0.55		<b>.</b>	<b></b>													1201
5	GCT	ATTT.	AGG '	rgca	AAAA	AA A	AAAA	AAAA	A A								1391

(2) INFORMATION FOR SEQ ID NO:25:

5

20

35

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 350 amino acids

(B) TYPE: amino acid

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

10 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:25:

Thr Leu Asn Gly Arg Arg Leu Pro Pro Glu Leu Ser Arg Val Leu Asn
1 5 10 15

Ala Ser Thr Leu Ala Leu Ala Leu Ala Asn Leu Asn Gly Ser Arg Gln
20 25 30

Arg Ser Gly Asp Asn Leu Val Cys His Ala Arg Asp Gly Ser Ile Leu
35 40 45

Ala Gly Ser Cys Leu Tyr Val Gly Leu Pro Pro Glu Lys Pro Val Asn
50 55 60

Ile Ser Cys Trp Ser Lys Asn Met Lys Asp Leu Thr Cys Arg Trp Thr

25 65 70 75 80

Pro Gly Ala His Gly Glu Thr Phe Leu His Thr Asn Tyr Ser Leu Lys
85 90 95

30 Tyr Lys Leu Arg Trp Tyr Gly Gln Asp Asn Thr Cys Glu Glu Tyr His 100 105 110

> Thr Val Gly Pro His Ser Cys His Ile Pro Lys Asp Leu Ala Leu Phe 115 120 125

> Thr Pro Tyr Glu Ile Trp Val Glu Ala Thr Asn Arg Leu Gly Ser Ala
> 130 135 140

- 105 -

	Arg	Ser	Asp	Val	Leu	Thr	Leu	qzA	Ile	Leu	Asp	Val	Val	Thr	Thr	Asp
	145					150					155					160
	Pro	Pro	Pro	Asp	Val	His	Val	Ser	Arg		Gly	Gly	Leu	Glu		Gln
5					165					170					175	
				•		_			_		•	•		Dh.a	·	Dh a
	Leu	Ser	Val		Trp	Val	Ser	Pro		Ala	Leu	гуs	Asp	190	Leu	Pne
				180					185					190		
	-1.		Lys	~~··	Cln	110	7 ~~	ጥህም	) ra	V=1	Glu	asa.	Ser	Val	Asp	Trp
10	GIN	Ala	195	TYL	GIII	116	AIG	200	719	• • • • • • • • • • • • • • • • • • • •			205			
			193													
	Lvs	Val	Val	Asp	Asp	Val	Ser	Asn	Gln	Thr	Ser	Cys	Arg	Leu	Ala	Gly
	-1-	210		-	•		215					220				
15																
	Leu	Lys	Pro	Gly	Thr	Val	Tyr	Phe	Val	Gln	Val	Arg	Cys	Asn	Pro	Phe
	225					230					235					240
	Gly	Ile	Tyr	Gly	Ser	Lys	Lys	Ala	Gly	Ile	Trp	Ser	Glu	Trp	Ser	His
20					245					250					255	
												_		_		<b>-1</b>
	Pro	Thr	Ala	Ala	Ser	Thr	Pro	Arg		Glu	Arg	Pro	GIY		GIÀ	GIA
				260					265					270		
25			Cys	<b>01.</b>	Dwo	۸	Clv	Gly	Glu	Pro	Ser	Ser	Glv	Pro	Val	Arg
25	GIY	Ala	275		PIO	ALG	GIY	280	Olu		002	-	285			
			2/3					200								
	Ara	Glu	. Leu	Lvs	Gln	Phe	Leu	Gly	Trp	Leu	Lys	Lys	His	Ala	Tyr	Сув
		290		•			295					300				
30																
	Ser	Asn	. Leu	Ser	Phe	Arg	Leu	Tyr	Asp	Gln	Trp	Arg	Ala	Trp	Met	Gln
	305	5				310	ı				315					320
					•											
	Lys	s Sex	c His	Lys	Thr	Arg	Asn	Glr	h His	Arg	Thr	Arg	g Gly	/ Ser	Cys	Pro
35					325	5				330	)				335	i

Arg Ala Asp Gly Ala Arg Arg Glu Val Leu Pro Asp Lys Leu 340 345 350

- 5 (2) INFORMATION FOR SEQ ID NO:26:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 24 base pairs
    - (B) TYPE: nucleic acid
    - (C) STRANDEDNESS: single
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:26:

TCCAGGCAGC GGTCGGGGGA CAAC 24

(2) INFORMATION FOR SEQ ID NO:27:

- 25 (A) LENGTH: 24 base pairs
  - (B) TYPE: nucleic acid
    - (C) STRANDEDNESS: single
    - (D) TOPOLOGY: linear

(i) SEQUENCE CHARACTERISTICS:

- 30 (ii) MOLECULE TYPE: DNA
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:27:
- 35 TTGCTCACAT CGTCCACCAC CTTC 24

- 107 -

PCT/GB97/02479

## WO 98/11225

## (2) INFORMATION FOR SEQ ID NO:28:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 6663 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA

10

5

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:28:

15	CCCAGAACTC	TTGGACGCTG	AGGCAGGAGG	ATTCCCAAGT	TTCAAGACAG	TGTGTTTCTA	60
	GGTAATGAGA	CCCTGTCAAG	AAAAGAAAAG	AAATAAAGAG	ACAAGAAAAT	GTTTATAGGC	120
	TGTGAGACAG	CTTGGTGGGT	AAGGGGCACT	TGCCTCCAAT	CAAGATGACC	TCAGCCCCAT	180
20	CCCTAGGAAT	CCATGGTAGA	AGGAGAAAGC	AAACTCGCAG	CTGCTGACCT	CCATACATGT	240
	GCTCCAATGT	GCACACACAC	AGGGAGACAT	AATCAATTAA	TAGGATGTAT	TTGCTTAGAT	300
25	TTGAGTAGGC	ATTTATGACT	GATGTTTTAA	AATTTTTATT	TGATTTTATG	AAAATATACC	360
	TGTTTGTATT	TGGTTTGGTT	TGGTTTGAGT	TTTGTTTATT	TGAGACAGGG	CTTCTCTGTG	420
20	TAGTCCTGGC	TGTCCTTGGA	ACTCACTCTG	TAGACCAGGC	TGGCCTTGAA	CTCAGAAATC	480
30	CGCCTGCTTG	TGCTTCCCAA	GTGCTTAGAT	TAAAGGTGTG	CACTGCCATT	CAGCAAAATT	540
	GCATACTTTA	ACCCCAGTAT	TTGGGAGGCA	GAGGCAGACT	· AATGTGTGAA	TTCCAGGCTA	600
35	GCCAAGGATA	CAGAGTGAGA	CCCTATTCTT	ACCCTCCCC	CCCAAAACCC	CAAAATGTAT	66
	TTTGTGCTT	G TGTATGTACA	TGTGTGTTG	AGCACGTAAA	TGTCCAAGG	A CAACTTGTAG	72

	AAGTTCTCTC	CGTTCACAGT	CTAAGTCCTG	AATTCAAACT	AAGGTCCTCA	GGCTTAGCCA	780
	CAGTCTTCTT	TATGTACTGA	GCCATTTCAC	TGGCCCTGGA	TTGACTGATG	AATTAATTTT	840
5	TGAGATAAGG	TCTCTTGTAG	CTCTAGCTAG	GCTCAAACTA	TGAACTCCCA	AGGTCATCTT	900
	GAGCTGCTGG	TACTCTTGCT	TCCACCCCAA	GTGGTGGAAT	GATACTCAGG	CAGCACTTCT	960
10	CTGGGGAAGG	GGCTGGCCTT	GGCCTTGATT	TTGTTGCCTC	AGCTTCAATG	AGTGCTTGGG	1020
10	TCTCGTTGTT	TCTTTTCTTT	ATCTGTGAAA	TGGGTGAACA	CCTGTTCAAG	ACTTCCTGAC	1080
	TCTTGAAACA	TCCAGGCAGG	GTGAGGGACT	TGAAGTGGGC	TCATCCCATG	CCTAACAAAG	1140
15	TGTCGTCTTT	GACCCCAGAC	ACAGCTGTAA	TCAGCCCCCA	GGACCCCACC	CTTCTCATCG	1200
	GCTCCTCCCT	GCAAGCTACC	TGCTCTATAC	ATGGAGACAC	ACCTGGGGCC	ACCGCTGAGG	1260
20	GGCTCTACTG	GACCTTCAAT	GGTCGCCGCC	TGCCCTCTGA	GCTGTCCCGC	CTCCTTAACA	1320
20	CCTCCACCCT	GGCCCTGGCC	CTGGCTAACC	TTAATGGGTC	CAGGCAGCAG	TCAGGAGACA	1380
	ATCTGGTGTG	TCACGCCCGA	GACGGCAGCA	TTCTGGCTGG	CTCCTGCCTC	TATGTTGGCT	1440
25	GTAAGTGGGG	CCCCAGACAC	TCAGAGATAG	ATGGGGGTTG	GCAATGACAG	ATTTAGAGCC	1500
	TGGGTCTTCT	GTCCTGGGGC	AGAGCCATGG	GCTCTCACTT	GCATGCAGGC	ATGGTCATAC	1560
30	CCAGCACAGG	CATTGCAACT	CTAGGGACAG	CTGTGGCTGC	ACTGTCCCCT	GTGTACCCCA	1620
	CAGCTTTAGA	AAAGCTGTCA	TGTTTTCCTT	GTAGTGCCCC	CTGAGAAGCC	CTTTAACATC	1680
	AGCTGCTGGT	CCCGGAACAT	GAAGGATCTC	ACGTGCCGCT	GGACACCGGG	TGCACACGGG	1740
35	GAGACATTCT	TACATACCAA	CTACTCCCTC	AAGTACAAGC	TGAGGTTGGT	ACCCAGCCAA	1800
	GCCTTGCTGT	GTGACTTCTG	GCAATACTTA	CCTTCTCTGA	TCAAATATGT	TCCTGTTTAT	1860

	GAACTCAAAA	GGGACTCTCG	CACCTCCACA	GGTGGTACGG	TCAGGATAAC	ACATGTGAGG	1920
	AGTACCACAC	TGTGGGCCCT	CACTCATGCC	ATATCCCCAA	GGACCTGGCC	CTCTTCACTC	1980
5	CCTATGAGAT	CTGGGTGGAA	GCCACCAATC	GCCTAGGCTC	AGCAAGATCT	GATGTCCTCA	2040
	CACTGGATGT	CCTGGACGTG	GGTGAGCCCC	CAGTGTCCAC	CTGTGTTCTG	CCCTAGACCT	2100
	TATAGGGCGC	CTCCCCCCA	TCCCCCAGA	CTTTTTGGTT	CTTCTAGAGG	TCTTAGCCAC	2160
10	AGCCACGGTG	GTTGCAGGAC	AGTGGTTGTT	CATAACTTAA	TGCAAAGACT	TTCCCCCAAG	2220
	ACAGTCAAGA	TTTTTCCCCT	CCCCACCCC	AACACACACA	TACACACACA	CTCTGCAGAG	2280
15	AACACCTGGC	CTGACCACCC	TCCCTCTCTA	CAGCCCAGGT	GTTCAGAAGG	GAGTCCTAGG	2340
	GGACTGAGAG	GAGGCGCCCA	GGTCTGAAGG	CGCCCCAGGA	AGCCGAGGCC	TTGAGCTGGG	2400
	GGGGGGGCG	AGGGTTGGAG	GCACGAACTG	GATGATCCCT	GAGCACAACT	GGGCCTAATC	2460
20	TAATTAGGGT	GTTCCCAGCC	CAAAGCAGCC	TGGGCCATTT	AACCCTTCAA	GTGCCTCACT	2520
	GAAGACTCAG	GGGAGAGATC	AGCTTGTACT	CTCTCCATGG	TCCCCCAGGA	GGGTTCCTGG	2580
25	GTGCCCCTGG	CTCATTCCCA	CATCCAGAGG	TTTTGTGTCT	TCCTGGCATC	TAACCCTCAG	2640
	TTGTGCTCTG	G TGGCTGGCAC	AGCTGCCCCG	; TGGAGGCTCT	: TGGTAATGTA	CAAGGCATCA	2700
	GAGGTGGACA	A TGGGATGGGG	ATACATAGGG	: ATGGAGCCAA	ATAGCACCTC	AAGGTGGGT	2760
30	GATATACAA	r AAAGCTTGTC	: ACCCTGACGO	TCAGAAAGCC	TACTCATGAT	GATCACAATT	2820
	GTTGACATC	A CTCTGGGACA	TGTAGTGAGA	A CCCTAGCTCA	A AAACACAGAG	C AGTAGCTTTA	2880
35	AGAGTCAGC	r TGTGACTTA	A TACTGGAAC	I CAGGGCCTA	A TAGGTGCTG	G GTGATGCTCG	2940
٠	CCTCACTCC	C TGTTTAGTG	A GATCTCTGC	G CTAATCTCC	a CCCCAGCTG	G GTGGGCTGCT	3000

	CTGTCCCCTT	GAGGGCAGGA	ATGTGTGTCT	TCCATCAGAG	ATAGGACCCG	TGGTAGCAGC	3060
	AACTGCTGCT	GGCTGTTTCT	GGAATATTAA	ATGACAGTAA	TCTATCAGGC	CTGGGTGAGT	3120
5	AGCTAACAGG	GGTGGGGGCG	TGGTCTGGAA	AACGCAGATA	GGGTCATAGG	AGCCACTGCA	3180
	GCCTAGATTA	CACCACTGGG	TGTTCTGTCA	CTAGGCCATT	CTCACCAAGC	AGTCCTCAGA	3240
	ACTGGGAGCA	CTGTTGCCAG	CATTTAATGC	CAGCATTTAA	TGCCAGCATT	AGGGGAGGCA	3300
10	GAGGCAGAAG	GATCTCTCTG	AGTTCAAGGC	CATCCTGAAT	TTACATAAAG	AGCTCCAGGC	3360
	CAGCCAGGGT	GCGCAGTAAA	ACCTTGTCTC	AAAAAACAAA	GCATCTTTAG	TGACCAGGCT	3420
15	TGCTCCACCC	CCAGTGACCA	CGGACCCCC	ACCCGACGTG	CACGTGAGCC	GCGTTGGGG	3480
	CCTGGAGGAC	CAGCTGAGTG	TGCGCTGGGT	CTCACCACCA	GCTCTCAAGG	ATTTCCTCTT	3540
	CCAAGCCAAG	TACCAGATCC	GCTACCGCGT	GGAGGACAGC	GTGGACTGGA	AGGTGCCCGT	3600
20	cccccccc	ACCCCCCCT	GACCCCGCCC	CCCGCATCTG	ACTCCTCCCT	CACCGTGCAG	3660
	GTGGTGGATG	ACGTCAGCAA	CCAGACCTCC	TGCCGTCTCG	CGGGCCTGAA	GCCCGGCACC	3720
25	GTTTACTTCG	TCCAAGTGCG	TTGTAACCCA	TTCGGGATCT	ATGGGTCGAA	AAAGGCGGGA:	3780
	ATCTGGAGCG	AGTGGAGCCA	CCCCACCGCT	GCCTCCACCC	CTCGAAGTGG	TGAGCACCTC	3840
	TCCAGGGCTG	GCTGGCCCAT	GGAATCCCCA	ATCCATCCTG	TTCCTTCCCC	CCCACCCTTT	3900
30	TTTTGAGACA	GCGTCTTCAG	GTAGCGCATG	CTGGCCTTAA	ATTCAGTATG	TAGTCAAGGA	3960
	TGACCTCGAG	CTCCTGGTCT	TTTTGTCTCC	ACTTAGAGAC	AATGGCCAGT	GGCCATCACC	4020
35	ACCTTTGGGA	GACTAGCCAT	GGAGTCTATT	TAGCCTGTCA	TTTGGTGACA	GATGGAGTAC	4080
	AACAGTGTG#	CCTCTTGTAA	GAGAACTGAA	GACAGGCTGT	TTTTAACCCC	AATATCCTAG	4140

	GCTCTCTAGA GGTTAACTTT ATATAAAATA GAGACTATTA CAGCCAGTTA TCACATGGTC	4200
	CCACAGAACC TTTTGTCACA CAACCTATAG ACCACAGTGC CTGTGCCTAC CACATAAGGG	4260
	CCACAGAACC TTTTGTCACA CAACCTATAG ACCACAGTGC CTGTGGCTMC GMCMT1000	
5	TCTCTACTGC TGGCCCACCC CTCCAACCCT TAAAAGGTAA CCTAGGCAGC CTTAATATTT	4320
	GCAATCCTCC TACCTCAGCC TCTTGAATGC TCAGAAACCA GGCATTAACC CAAGTTTCTC	4380
	TTCTCTGGGT CCCTTTCTTA AGGTGGGAGG GCCTAAAGAT GACTTCCTTT GTCCTGAAGA	4440
10	CTCTCCGAGC CCATGGATCT GCACTCTCTA ATATGAAATA TATTGCATAA AATGTCTGGC	4500
	CTCAGTTTCC CCACCTGTCA GGTTTAGGCA GCACAGTCGG TCCAAGACAC TTCATTATTT	4560
15	GCAGGCAGTA TAAGAAGAAG CTCCCATCCC CCACCCGCTT CCTCCGGTCC CTAAGACAGA	4620
	ATACTTCTAC ACTGAAACTG AACTCTCGCA GACGCATATG CTCACTTTAA TGATGATGAA	4680
	ATAATGGGGA AACTGAGGCT CCGAGAGATT CCTGGAGGAA GAGGGTCAAA ACCAGCTCCA	4740
20	GGAAGCTCTC CAGCCCCCAT CCGGGCCTCT CCAGGTTCTG GGCTTGGCGG GAGTGAACAC	4800
	AGCTGGGAGG GGCTGGAGCC TGGGAGCTTT GGCCCTTGCT CGTGCCCAGC ACCTGCGATT	4860
25	CTTGCACGGG AGCCAGCAGG CGGCTGCGTC CGCCCGAGAG ACTGAAGAAG CCGGGGGTAG	4920
	GGTTGGAGGG AGGTAAGCAG GGGCTGTGGG GGCCGAAGCT TGTGCCAGGG CCTGTCAGCG	4980
:	AGTCCCCAGT TTTATTTATG GCGTGAGGCC GATGTCCTTA TCCGCTGGCC TGCTGGGGGA	5040
30	TGGCTGCGGC TGGGGATTGG ACCCAAGGGC TGGCTTCCCA CTCAGTCCTC CAGCCCACTC	5100
	CATGTCACAC CCGTGCATTC TCTGAGGCTT ATCTTGGGAA CCCGCCCTTG TTCTGTGCTG	5160
35	TCTGTCTCTA TTTCTGTCAT TCACTTTCCC AGAGCCTTTT TTTTATGCTT TTAATATAAC	5220
	TACGTTTTAA AAATTGCTTT TGTATAATGT GTGTGCCTTC GTGAGCGTGC GTGCCACAAC	5280

	ACACACGTGA	AGGTTAGAGA	ACTTTGTTGA	GTAGGCTCCT	TCCACCATGT	GGGACTAGGG	5340
	CTGGCGACAA	GAGCAATTAC	TGAGTCATCT	CGCCAGCCCC	TCACCCCTCA	CTTCCCATCC	5400
5	TGTTTGGATA	GTCATAGGTA	ATCGAAGGTA	AATCGCTGGC	TTTAATTTCG	TAGCTATCCT	5460
	GCCTCAGCCT	ACCAAGTGCT	GTGCTACCAC	GTTTGTGGGA	GGGGCTCTCC	TCCCAGTGTC	5520
	TGGGGGTGAC	ACAGTCCCAA	GATCTCTGCT	TTCTAGGTCT	TTGTCTTAGT	TTGCCCCTTG	5580
10	CTTTGTCCGT	GTCCCTAGAG	TCTCCGGCCC	CACTTATCCA	TTGACTGGTC	TTTCCTTTAC	5640
·	CGAATACTCG	GTTTTACCTC	CCACTGATTT	GACTCCCTCC	TTTGCTTGTC	TCCATCGCCG	5700
15	TGGCATTGCC	ATTCCTCTGG	GTGACTCTGG	GTCCACACCT	GACACCTTTC	CCAACTTTCC	5760
	CCAGCCGAAG	CTGGTCTGGT	ATGGGAGGCC	GCCGTCCCGC	GCGCGCCTCC	TGCTGGCCGC	5820
	GCCCCAACAC	TGCCGCTCCA	TTCTCTTTAG	AGCGCCCGGG	CCCGGGCGGC	GGGGTGTGCG	5880
20	AGCCGCGGGG	CGGCGAGCCC	AGCTCGGGCC	CGGTGCGGCG	CGAGCTCAAG	CAGTTCCTCG	5940
	GCTGGCTCAA	GAAGCACGCA	TACTGCTCGA	ACCTTAGTTT	CCGCCTGTAC	GACCAGTGGC	6000
25	GTGCTTGGAT	GCAGAAGTCA	CACAAGACCC	GAAACCAGGT	AGGAAAGTTG	GGGGAGGCTT	6060
	GCGTGGGGG	TAAAGGAGCA	GAGGAAGAGA	. GAGACCCGGG	TGAGCAGCCT	CCACAACACC	6120
	GCACTCTTC	TTCCAAGCAC	: AGGACGAGGG	GATCCTGCCC	TCGGGCAGAC	GGGGTGCGGC	6180
30	GAGAGGTAA	GGGGTCTGGG	; TGAGTGGGG	CTACAGCAGI	CTAGATGAGG	CCCTTTCCCC	6240
	TCCTTCGGT	G TTGCTCAAAC	GGATCTCTT	A GTGCTCATT	CACCCACTGO	AAAGAGCCCC	6300
35	AGGTTTTAC'	T GCATCATCAJ	A GTTGCTGAAG	GGTCCAGGC	TAATGTGGC	TCTTTTCTGC	6360
	CCTCAGGTC	C TGCCGGCTA	A ACTCTAAGG	A TAGGCCATC	C TCCTGCTGG	TCAGACCTGG	6420

	WO 98/11225 PCT/GB97/0247	9
	AGGCTCACCT GAATTGGAGC CCCTCTGTAC CATCTGGGCA ACAAAGAAAC CTACCAGAGG	6480
	CTGGGCACAA TGAGCTCCCA CAACCACAGC TTTGGTCCAC ATGATGGTCA CACTTGGATA	6540
5	TACCCCAGTG TGGGTAGGGT TGGGGTATTG CAGGGCCTCC CAAGAGTCTC TTTAAATAAA	6 <b>60</b> 0
	TAAAGGAGTT GTTCAGGTCC CGATGGCCAG TGTGTTTGGG GCCTATGTGC TGGGGTGGGG	6660
	GGA	6663
10		
15	(2) INFORMATION FOR SEQ ID NO:29:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 186 amino acids	
	(B) TYPE: amino acid	
	(D) TOPOLOGY: linear	
20	\-\frac{1}{2}\tau = \frac{1}{2}	
	(ii) MOLECULE TYPE: protein	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:29:	
25	Asp Pro Thr Leu Leu Ile Gly Ser Ser Leu Gln Ala Thr Cys Ser Ile	
	1 5 10 15	
	His Gly Asp Thr Pro Gly Ala Thr Ala Glu Gly Leu Tyr Trp Thr Phe	
	20 25 30	
30		
	Asn Gly Arg Arg Leu Pro Ser Glu Leu Ser Arg Leu Leu Asn Thr Ser	
	35 40 45	

60

Thr Leu Ala Leu Ala Leu Ala Asn Leu Asn Gly Ser Arg Gln Gln Ser

55

35

Gly Asp Asn Leu Val Cys His Ala Arg Asp Gly Ser Ile Leu Ala Gly 70 75 80 Ser Cys Leu Tyr Val Gly Leu Pro Pro Glu Lys Pro Phe Asn Ile Ser 90 85 5 Cys Trp Ser Arg Asn Met Lys Asp Leu Thr Cys Arg Trp Thr Pro Gly 105 100 Ala His Gly Glu Thr Phe Leu His Thr Asn Tyr Ser Leu Lys Tyr Lys 10 120 125 115 Leu Arg Leu Val Arg Ser Gly * His Met * Gly Val Pro His Cys 135 140 130 15 Gly Pro Ser Leu Met Pro Tyr Pro Gln Gly Pro Gly Pro Leu His Ser 155 150 Leu * Asp Leu Gly Gly Ser His Gln Ser Pro Arg Leu Ser Lys Ile 175 170 165 20 * Cys Pro His Thr Gly Cys Pro Gly Arg 180 185 25 (2) INFORMATION FOR SEQ ID NO:30: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 35 base pairs (B) TYPE: nucleic acid 30 (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA 35 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:30:

- 115 -

15

5	(2) INFORMATION FOR SEQ ID NO:31:	
10	<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 28 base pairs</li> <li>(B) TYPE: nucleic acid</li> <li>(C) STRANDEDNESS: single</li> <li>(D) TOPOLOGY: linear</li> </ul>	
	(ii) MOLECULE TYPE: DNA	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:31:	
20	AGCTACGCGT TTAGAGTTTA GCCGGCAG	28
	(2) INFORMATION FOR SEQ ID NO:32:	
25	<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 30 amino acids</li> <li>(B) TYPE: amino acid</li> <li>(C) STRANDEDNESS: single</li> <li>(D) TOPOLOGY: linear</li> </ul>	
30	(ii) MOLECULE TYPE: DNA	

- 116 -

Met Val Leu Ala Ser Ser Thr Thr Ser Ile His Thr Met Leu Leu Leu

10

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:32:

5

Leu Leu Met Leu Phe His Leu Gly Leu Gln Ala Ser Ile Ser
20 25 30

5

(2) INFORMATION FOR SEQ ID NO:33:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 30 amino acids

(B) TYPE: amino acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA

15

10

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:33:

20

Ile Lye Pro Ser Gly Arg Gly Ala Ala Arg Gly Pro Ala Gly Asp Tyr Lys Asp Asp

5 10 15 20

Asp Asp Lys

25

30

(2) INFORMATION FOR SEQ ID NO:34:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 73 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA

35

- 117 -

(xi)	SEQUENCE	DESCRIPTION:	SEQ	ID	NO:34:
------	----------	--------------	-----	----	--------

5	GATCTTGCCC TCGGGCAGAC GGGGTGCGGC GAGAGGTCCT GCCGGCGACT ACAAGGACGA	60
	CGATGACAAG TAG	73
10	(2) INFORMATION FOR SEQ ID NO:35:	
	<ul><li>(i) SEQUENCE CHARACTERISTICS:</li><li>(A) LENGTH: 73 base pairs</li><li>(B) TYPE: nucleic acid</li></ul>	
15	<pre>(C) STRANDEDNESS: single (D) TOPOLOGY: linear</pre>	
	(ii) MOLECULE TYPE: DNA	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:35:	
25	AACGGGAGCC CGTCTGCCCC ACGCCGCTCT CCAGGACGGC CGCTGATGTT CCTGCTGCTA	60
	CTGTTCATCC TAG	73
30	(2) INFORMATION FOR SEQ ID NO:36:	
35	<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 27 base pairs</li> <li>(B) TYPE: nucleic acid</li> <li>(C) STRANDEDNESS: single</li> <li>(D) TOPOLOGY: linear</li> </ul>	

- 118 -

(ii)	MOLECULE	TYPE:	DNA
------	----------	-------	-----

5 .	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:36:	
	CCCACGCTTC TCATCGGATT CTCCCTG	27
10	(2) INFORMATION FOR SEQ ID NO:37:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 27 base pairs	
	(B) TYPE: nucleic acid	
15	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA	
20		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:37:	
25		
	CAGTCCACAC TGTCCTCCAC TCGGTAG	27
30	(2) INFORMATION FOR SEQ ID NO:38:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 11832 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
35	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA	

- 119 -

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:38:

	GCGGCCGCTG	CAGTGATTAC	TCACCGCGTG	GCGCACCCCA	CCCGCGGGCC	GCTGAGTGGA	60
5	TTTTTCCGTG	GGGGGATGTG	AAGAAGTTTA	GGGAGAACTC	TTCTGCACCG	ATGGGAACTA	120
	GGAATGCAGG	GTTCGGTCCC	GTTCCCCAAA	GGACACACCT	CTCCCCATAA	GCCCACTCAT	180
10	AAGGGCTCCC	TGCACGCGCT	CCGGGACATC	CCCATATCCA	ATACCCGCAG	ATATGATAGT	240
10	TGAGAAGGGA	CCAGAGGCCG	GAGACTCCCT	CCCTGCCTTC	TGGCTTTCCC	CCCCCCTGC	300
	ACGAAACGAG	ACTACAGCGA	TGGGAGAGGT	GGCATGAAGG	CTTAGGGTGG	GGATCGGTAG	360
15	GACCCATGCA	CCCAGAGAAA	GGGACTGGTG	GCAACTTTCA	AACTCTCTGG	GGAAGGAAGA	420
	AGGGCTGAAA	GAGGATGAAC	GGGCTCAGGT	ACTGCTCAAT	GTGTGTGTGG	CGGACCAAAG	480
20	TGGGTATGGG	GGCCCCGTAA	GAGGGCGGG	GAAGGTGGAT	AGGAAGGATC	CCGGTAGACT	540
20	GGAGGGGATC	CTGGAAAAGC	ACCAGGGCTG	CGAGCTAGGA	ACCCATTCGG	AGTTAAGGGT	600
	ACAGGATCCC	AGATGAGGG	GTGGGAAGCC	TGGGACGGGC	GGGACCAGAG	AGGGAGGTCC	660
25	CACGGGCTGG	TGGGGAAAGA	GTGGGGGCT	TCGCGCAGGA	GGATGGGACG	TTCAGGAGTG	720
	GTAACTGGGC	GGAGGCCGGC	CGGGCGGGGC	GCGCGGTGCC	CGCGGGCGGT	GGGAAGGCCG	780
30	GTGCGGGGCC	CACGATCAAC	CCCCCCCAG	GGGCCGGGCC	GGGCCGGGGG	CGGGGCCGGG	840
30	CGGGGCGAGC	GGCGCATTAG	CGCCTTGTCA	ATTTCGGCTG	CTCAGACTTG	CTCCGGCCTT	900
	CGCTGTCCGC	GCCCAGTGAC	GCGCGTGAGG	ACCCGAGCCC	CAATCTGCAC	CCCGCAGACT	96
35	CGCCCCCGCC	CCATACCGGC	GTTGCAGTCA	. CCGCCCGTTG	CGCGCCACCC	CCATGCCCGC	102
	GGGTCGCCC	GGCCCCGTCG	CCCAATCCGC	: GCGGCGGCCG	ccgcggccgc	TGTCCTCGCT	108

	GTGGTCGCCT	стсттсстст	GTGTCCTCGG	GGTGCCTCGG	GGCGGATCGG	GAGCCCGTGA	1140
	GTACCGTGCG	CCCTGCTCCC	CACCTCCCCA	GGGAAGCCGG	GATCCGGCGC	CCCGGGGGGT	1200
5	AGTCGCGGGG	GATGGAAGAA	GGGGCGCGAG	CGCCACCTGG	ACGTCCCGGG	AACAAAGGAA	1260
	GGCGGCCCTC	GGGGCGCCCT	CACCTGTGGG	GCTCATGGCA	CCACCACCCA	GCCTCCCAAG	1320
10	AGTACCCCGT	TATACATCAG	AGGCCTCTTA	TCTGTATCCC	CTTTGCGAGG	CTGTCTGGCC	1380
	AGGCTCAGTT	TGAAGGACAT	CGCAGTGTCC	TGGGACCCCC	CTCCTTCAGG	GTGCTGGGAC	1440
	GCTTCGGGGC	GCACGCCTGT	GTCTTGGATA	TCAGAGCGGA	AGGGAAGCCT	CCCTGGCCGG	1500
15	GGGCGCACGC	TTGGGTGCGT	TGGGTTGGGT	GCTGGCGCAA	AGTGGGGTCC	CCTCCCCAT	1560
	GAAGTGATGA	TCCCCGGGG	GAGGGTGGGG	CGTTATCGTG	AGCCCTCCTG	TCCGCCTGGC	1620
2.0	ATGCGGCCCG	GCGTCCCTCG	GGACTTGCCT	CTCCGTGGGG	TCGGCGCCGC	сссстсссс	1680
20	CTATAGCAGA	CTCCATGCTT	TGGTATCCTC	GAAGTCCTCT	CCACTGGTGG	GGCTCACAAC	1740
	CGGTCTCATT	CAGGCTGCGC	TGGGTTGAGA	GCCTCTAGCG	ACTGAAATTT	CGGTGAGGAG .	1800
25	CGAGAGCAAG	CGTGTCCGGG	CACCGCGAGC	CCAGACTTCA	TTGTCTAAGG	GGCACCCAGT	1860
	GGGGGTCAGC	TGCCGAGAGA	ATCCCACTGT	CCCAGGAGGA	ACTCCTGGCC	TTGAGCCCCC	1920
2.0	ATCACCCAAC	GCACACATCC	CCGCCAGGAT	GCGGTCTCCA	CATCCAGACC	CTCTCTGGGA	1980
30	CACACCCAAA	GACACACAAA	AGAGCCCCAC	TGGCTTATGT	CCCGTCACCC	TGCCCTCCGA	2040
	CGCGCGCTGC	AGCCCAGATG	CGTATTCGCA	CACCATCGCG	GCGCTCGCAT	TCCATCCTCT	2100
35	ACACACACAC	ACACACACAC	ACACACACAC	ACACACACAC	ACACACAGAC	ACGCACACAC	2160
	ACACGCACGC	ACACACACGC	ACGCCCGCAC	TCGTGGTCCC	ACATTTATTT	CACAGGGGAG	2220

	GCAACACCGG	GGTACGCATA	TGGTTGAGTG	CACTGGAGAT	CTTTCCCCAC	CACTCTCAGG	2280
	ACCCCATCCG	GAGACACAGG	CCACACCGCA	GGGGCACCAC	GCTGCGCTGC	TGCTCTGGGC	2340
5	TAGTAGTCTT	GTGCAGTTTG	TCCGCGGTGT	CTGTGGACGC	CCTCCCGCTC	TTGTCAGGGG	2400
	ACAGGAACCT	ACACTCCTGC	TTGCCCAAGG	CGGCTGGGCA	GGTGATGTGG	TGACACCCGG	2460
10	GACCTTTCCG	GGGAGTTGGT	GTTGCTGCCA	AGCCTGGGTA	GTTTTTGAAT	GCCACCAATA	2520
10	GCGCTAAGCT	TTGTTTCCGG	GCGGGCTGCA	GAGCAACAGG	CGAAGGTGGC	GGAGTGGGG	2580
	TGGCGCGTGT	GTTTTTCTT	TTAAGGGGGA	GAGAAATTAA	ATAAGAGGTT	CTCACACCTC	2640
15	TGCAATCTGT	TTGTACTTAC	CGTGTGTCTT	AACACCTGAC	CAGCCAGCCG	GTGGGTCGTA	2700
	AAAGTGTATG	CAGGTACCAG	CGGGACAGGA	GATGGGGGCC	CCTGGGGTAT	GGCTGGGATG	2760
20	GAGGCCACCT	TCCCGTTGGC	CTTTCAGGGA	ATCTCACACT	TTTCCCTTTT	AAAACACATG	2820
20	GTGTTCTTTT	TAATAACGGC	AGCAACTCCG	CATTGGGAAA	GGGGGAAATA	AGCTTGTATA	2880
	GGCCCCGGCT	TTGTGGAAAG	GAGGGGAAGA	GGGAAGAAAA	AAGGAGGGT	GTCTCCTCCA	2940
25	GGCTTAGGGG	GCTGTCAGCT	GCTGCTCTGT	CTAGCTTGGC	ATGTGTGTGC	CCCAGTCCCC	3000
	AGTGGCTTTG	GCCCATTGTT	TGTGGAAGCC	: AAGAGGGAGA	CTGGAGTCCT	CTATCTCTGG	3060
30	TACTCCAGAG	TCAGGCTTCT	CAGTCCGAGC	: CCAGAGAACG	TCTTCCCTG1	TTTATGGAGG	3120
30	GAATCAGGG	A AGGGGGTGCC	: AGGTGGACTA	CGTTCTGCTC	G AGGACTGTAC	CAGTCGCTCG	3180
	AAGGAGAAA	G CTTGGGCTTC	CCCCCTCC	CCCTCAAGC	C ACGAAGGGC	GCTGCTAGGC	3240
35	TAGTGTGGT	A AAAGGGCATT	C ACTCCCCAG	C CAGGACCCC	CAGAGAGTC	C CCTTCCTGGC	330
	CAGACAAAT	G CTGGGGAGG	G ACAGAGGGG	T GTGATCATT	G CCCAGGAGT	G CAGACAGTGG	336

	GGTCCCGGGT	CGGGCAGTGC	CTCCCACCCT	GCTGAGGGG	GCGCCCAGGC	AGGAAGCGGT	3420
	GGGTGGGCCG	GGGTAGAGAC	GCTGGCACGT	CCCAGTTCAT	GCCGAAGGAA	TTCTGAATTA	3480
5	GCGGGCGGCT	GGCTGCCTGG	GACCTCCGGG	GCGGCCCCCT	GGCCCCGCC	GCTCCGTCTG	3540
	GCCTGCTCCT	CCTGCTCCTT	CGCACGGACG	CTGAGACCTC	CGCTGAGCCC	TGGGACAAGC	3600
	CCCAAATGCA	ACTGCGATTG	CAGGCTTCGC	AAGACCCGCC	TCCTCCCAAG	GCCAAATTTG	3660
10	CCTGGGAGAA	GTCATTCAGG	GCCCAGACTA	GAACCATGTT	GGTGCCACCT	CATCCATCTG	3720
	GGGCATGAAG	GACCGTCCAG	GGCTGCAGTT	TAGCTTCTTA	ATAGGAACCT	GGGGGTGGGT	3780
15	GCAGCCTCTG	TTCTCCGAGC	CTCTTTGGAA	ATCGGTTTTG	TTTTTGTTTT	TGTTTTTTCC	3840
	AATACTCTTT	TCCTCTCATC	CCATCCCGGG	ACTGTTTTCC	TCCCTAAGGG	TTGAGAGCCC	3900
	TGCAGTCTTC	CCTAACCTTT	TCTTTGCTTC	TACCCCAGGG	CCTTTGCACA	TGGAGTCCCA	3960
20	CCTCTCCCCT	TGCCCAACTG	GGGCTCCAGC	CTTACTGCAT	TTGGCTCTTG	GTAACTGTCC	4020
	CAGGGCCTCT	CTGACACACA	GGGTTGTAGC	CCCAGCTCCC	TCTCTTCTCC	TCCCCCCTTT	4080
25	CTCTTTTGCT	TCTGAGACTT	AATTTTTTC	TTTTTCTTTT	TGGCTTTTTG	ag <b>acagggt</b> t	4140
	TCTCTGTACA	GCCCTGGCTG	CCCTGGCACT	CATTCTGTAG	ACCAGGCTAG	CCTCAAACTC	4200
7.0	ACAAACCTAC	CTGCCTCTGC	CTTTCCAGTG	CTGGCACTAA	AGATGTGGGC	CACCACAACT	4260
30	AGTAGTTAAG	TGTTTTGCTG	TGTCTTTATT	CCTATAGTGA	CCTCAGTTCC	TGGCATATTG	4320
	TAGGCGATGG	ATGGATGAAT	GGATGGATGG	ATGGATGGAT	GGATGGTTGG	ATGGAGCAAG	4380
35	CTTGAATCGT	CCTGAGTGAA	AAAAGAGACC	TCAGAGAACT	GAATGGAGTT	AGGTTCCCAG	4440
	GGCAGCCTGG	CCTGCTGGTC	TCATGGGAGC	TCCCTGTGAA	ACTTCCCCCA	CACCTCCCAC	4500

	CACCCTGCCA	TCCTGTGTGG	CTGACAAGAA	AGGCCAATGG	CCAGATGGGG	ACACAGACTC	4560
	AGGGAAGCTT	GGAATATGTT	CCCCTCCTCA	TATCCTAGGC	CTTGTTGTCC	CCCTGAGGGC	4620
5	CCAGCCTATG	AGTAGGGCAG	CTGTGGGCTG	CCCTAAGGTT	GGGTAGGCAA	GAAGGGGGTG	4680
	GTCCCTCAGG	GTGGGTCACA	GGATTGAGGT	CATTTCCAAA	GTGGCCATCA	CAGTGGCCCT	4740
	AGGAAATGAT	TGTGGAGAGT	CAGAACTCCT	GTTGGGAGTT	GTAGAGGGCC	TTGCATGTGG	4800
10	GCTTCTGTGG	CTGTCCCTTC	TCTTGTGGTC	CTTTGCACAG	TCCCCTCGTG	TGTGCTGGGA	4860
	TGTGAGGAGG	GCACGGGGAA	AATGAAGGCT	CAGCCCCTCA	GCTTGCCCTT	CACGGTTCAC	4920
15	CCAACAGGGC	TCACCTCTCC	TCTGGACAGG	CTCTCACTGT	ATGCACAGAT	TGGCCTCACA	4980
	TTTGATTCCC	TTCCTTTGGT	CTCCTGGGAT	GACAAACATT	TACCAGGGTA	GGATTTTACA	5040
	TTTTAGATAT	GTCCATTCTC	CAGAAACACA	CTTGTGAGGT	TAGGGTATCA	GTGAAAGG <b>A</b> C	5100
20	ACCACCAGGA	. CAGACAAAGA	ATTGGAGAGG	AAGGAAATTG	GTAAGCCAGG	CCATGCTTGA	5160
	TGGCTTATGT	· GTAATCCCAG	AACTCTGGAC	GCTGAGGCAG	GAGGATTCCA	AGTTTCAAGA	5220
25	CAGTGTGTTC	TAGGTAATGA	GACCCTGTCA	AGAAAAGAAA	AGAAATAAAG	AGACAAGAAA	5280
	ATGTTTATAG	GCTGTGAGAC	AGCTTGGTGG	GTAAGGGGCA	CTTGCCTCCA	ATCAAGATGA	5340
2.0	CCTCAGCCCC	C ATCCCTAGGA	ATCCATGGTA	A GAAGGAGAAA	A GCAAACTCC#	GCTGCTGACC	5400
30	TCCATACATO	TGCTCCAAT	G TGCACACAC	A CAGGGAGACA	A TAATCAATTA	A ATAGGATGTA	5460
	TTTGCTTAG	A TTTGAGTAG	G CATTTATGA	C TGATGTTTT	A AAATTTTAA	TTGATTTAT	5520
35	GAAAATATA	C CTGTTTGTA	TTGGTTTGG	T TTGGTTTGA	G TTTTGTTTA	r TTGAGACAGG	5580
	GCTTCTCTG	T GTAGTCCTG	G CTGTCCTTG	G AACTCACTC	T GTAGACCAG	G CTGGCCTTGA	5640

	ACTCAGAAAT	CCGCCTGCTT	GTGCTTCCCA	AGTGCTTAGA	TTAAAGGTGT	GCACTGCCAT	5700
	TCAGCAAAAT	TGCATACTTT	AACCCCAGTA	TTTGGGAGGC	AGAGGCAGAC	TAATGTGTGA	57 <b>6</b> 0
5	ATTCCAGGCT	AGCCAAGGAT	ACAGAGTGAG	ACCCTATTCT	TACCCTCCCC	CCCCAAAACC	5820
	CCAAAATGTA	TTTTGTGCTT	GTGTATGTAC	ATGTGTGTTG	CAGCACGTAA	ATGTCC <b>AAG</b> G	5880
	ACAACTTGTA	GAAGTTCTCT	CCGTTCACAG	TCTAAGTCCT	GAATTCAAAC	TAAGGTCCTC	5940
L 0	AGGCTTAGCC	ACAGTCTTCT	TTATGTACTG	AGCCATTTCA	CTGGCCCTGG	ATTGACTGAT	6000
	GAATTAATTT	TTGAGATAAG	GTCTCTTGTA	GCTCTAGCTA	GGCTCAAACT	ATGAACTCCC	6060
15	AAGGTCATCT	TGAGCTGCTG	GTACTCTTGC	TTCCACCCCA	AGTGGTGGAA	TGATACTCAG	6120
	GCAGCACTTC	TCTGGGGAAG	GGGCTGGCCT	TGGCCTTGAT	TTTGTTGCCT	CAGCTTCAAT	6180
2.0	GAGTGCTTGG	GTCTCGTTGT	TTCTTTTCTT	TATCTGTGAA	ATGGGTGAAC	ACCTGTTCAA	6240
20	GACTTCCTGA	CTCTTGAAAC	ATCCAGGCAG	GGTGAGGGAC	TTGAAGTGGG	CTCATCCCAT	6300
	GCCTAACAAA	GTGTCGTCTT	TGACCCCAGA	CACAGCTGTA	ATCAGCCCCC	AGGACCCCAC	63 <b>6</b> 0
25	CCTTCTCATC	GGCTCCTCCC	TGCAAGCTAC	CTGCTCTATA	CATGGAGACA	CACCTGGGGC .	6420
	CACCGCTGAG	GGGCTCTACT	GGACCTTCAA	TGGTCGCCGC	CTGCCCTCTG	AGCTGTCCCG	6480
30	CCTCCTTAAC	ACCTCCACCC	TGGCCCTGGC	CCTGGCTAAC	CTTAATGGGT	CCAGGCAGCA	6540
30	GTCAGGAGAC	AATCTGGTGT	GTCACGCCCG	AGACGGCAGC	ATTCTGGCTG	GCTCCTGCCT	6600
	CTATGTTGGC	TGTAAGTGGG	GCCCCAGACA	CTCAGAGATA	GATGGGGGTT	GGCAATGACA	6660
35 .	GATTTAGAGC	CTGGGTCTTC	TGTCCTGGGG	CAGAGCCATG	GGCTCTCACT	TGCATGCAGG	6720
	CATGGTCATA	CCCAGCACAG	GCATTGCAAC	TCTAGGGACA	GCTGTGGCTG	CACTGTCCCC	6780

	TGTGTACCCC ACAGCTTTAG	AAAAGCTGTC	ATGTTTTCCT	TGTAGTGCCC	CCTGAGAAGC	6840
	CCTTTAACAT CAGCTGCTGG	TCCCGGAACA	TGAAGGATCT	CACGTGCCGC	TGGACACCGG	6900
5	GTGCACACGG GGAGACATTC	TTACATACCA	ACTACTCCCT	CAAGTACAAG	CTGAGGTTGG	6960
	TACCCAGCCA AGCCTTGCTG	TGTGACTTCT	GGCAATACTT	ACCTTCTCTG	ATCAAATATG	7020
	TTCCTGTTTA TGAACTCAAA	AGGGACTCTC	GCACCTCCAC	AGGTGGTACG	GTCAGGATAA	7080
10	CACATGTGAG GAGTACCACA	CTGTGGGCCC	TCACTCATGC	CATATCCCCA	AGGACCTGGC	7140
	CCTCTTCACT CCCTATGAGA	TCTGGGTGGA	AGCCACCAAT	CGCCTAGGCT	CAGCAAGATC	7200
15	TGATGTCCTC ACACTGGATG	TCCTGGACGT	GGGTGAGCCC	CCAGTGTCCA	CCTGTGTTCT	7260
	GCCCTAGACC TTATAGGGCG	CCTCCCCCCC	ATCCCCCCAG	ACTTTTTGGT	TCTTCTAGAG	7320
	GTCTTAGCCA CAGCCACGGT	GGTTGCAGGA	CAGTGGTTGT	TCATAACTTA	ATGCAAAGAC	7380
20	TTTCCCCCAA GACAGTCAAG	ATTTTCCCCT	CCCCACCCCC	AACACACACA	TACACACACA	7440
	CTCTGCAGAG AACACCTGGC	CTGACCACCC	TCCCTCTCTA	CAGCCCAGGT	GTTCAGAAGG	7500
25	GAGTCCTAGG GGACTGAGAG	GAGGCGCCCA	GGTCTGAAGG	CGCCCCAGGA	AGCCGAGGCC	7560
	TTGAGCTGGG GGGGGGGCG	AGGGTTGGAG	GCACGAACTG	GATGATCCCT	GAGCACAACT	7620
	GGGCCTAATC TAATTAGGGT	GTTCCCAGCC	CAAAGCAGCC	TGGGCCATTT	AACCCTTCAA	7680
30	GTGCCTCACT GAAGACTCAG	GGGAGAGATC	AGCTTGTACT	CTCTCCATGG	TCCCCAGGA	7740
	GGGTTCCTGG GTGCCCCTGG	CTCATTCCCA	CATCCAGAGG	TTTTGTGTCT	TCCTGGCATC	7800
35	TAACCCTCAG TTGTGCTCTG	TGGCTGGCAC	AGCTGCCCCG	TGGAGGCTCT	TGGTAATGTA	7860
	CAAGGCATCA GAGGTGGACA	TGGGATGGG	ATACATAGGG	ATGGAGCCA	ATAGCACCTC	7920

	AAGGTGGGGT	GATATACAAT	AAAGCTTGTC	ACCCTGACGC	TCAGAAAGCC	TACTCATGAT	7980
	GATCACAATT	GTTGACATCA	CTCTGGGACA	TGTAGTGAGA	CCCTAGCTCA	AAACACAGAC	8040
5	AGTAGCTTTA	AGAGTCAGCT	TGTGACTTAA	TACTGGAACT	CAGGGCCTAA	TAGGTGCTGG	8100
	GTGATGCTCG	CCTCACTCCC	TGTTTAGTGA	GATCTCTGCG	CTAATCTCCA	CCCCAGCTGG	8160
	GTGGGCTGCT	CTGTCCCCTT	GAGGGCAGGA	ATGTGTGTCT	TCCATCAGAG	ATAGGACCCG	8220
10	TGGTAGCAGC	AACTGCTGCT	GGCTGTTTCT	GGAATATTAA	ATGACAGTAA	TCTATCAGGC	8280
	CTGGGTGAGT	AGCTAACAGG	GGTGGGGGCG	TGGTCTGGAA	AACGCAGATA	GGGTCATAGG	8340
15	AGCCACTGCA	GCCTAGATTA	CACCACTGGG	TGTTCTGTCA	CTAGGCCATT	CTCACCAAGC	8400
	AGTCCTCAGA	ACTGGGAGCA	CTGTTGCCAG	CATTTAATGC	CAGCATTTAA	TGCCAGCATT	8460
20	AGGGGAGGCA	GAGGCAGAAG	GATCTCTCTG	AGTTCAAGGC	CATCCTGAAT	TTACATAAAG	8520
20	AGCTCCAGGC	CAGCCAGGGT	GCGCAGTAAA	ACCTTGTCTC	AAAAAACAAA	GCATCTTTAG	8580
	TGACCAGGCT	TGCTCCACCC	CCAGTGACCA	CGGACCCCCC	ACCCGACGTG	CACGTGAGCC	8640
25	GCGTTGGGG	CCTGGAGGAC	CAGCTGAGTG	TGCGCTGGGT	CTCACCACCA	GCTCTCAAGG	8700
	ATTTCCTCTT	CCAAGCCAAG	TACCAGATCC	GCTACCGCGT	GGAGGACAGC	GTGGACTGGA	8760
30	AGGTGCCCGT	cccccccc	ACCCGCCCCT	GACCCCGCCC	CCCGCATCTG	ACTCCTCCCT	8820
30	CACCGTGCAG	GTGGTGGATG	ACGTCAGCAA	CCAGACCTCC	TGCCGTCTCG	CGGGCCTGAA	8880
	GCCCGGCACC	GTTTACTTCG	TCCAAGTGCG	TTGTAACCCA	TTCGGGATCT	ATGGGTCGAA	8940
35	AAAGGCGGGA	ATCTGGAGCG	AGTGGAGCCA	CCCCACCGCT	GCCTCCACCC	CTCGAAGTGG	9000
	TGAGCACCTO	TCCAGGGCTG	GCTGGCCCAT	GGAATCCCCA	ATCCATCCTC	TTCCTTCCCC	9060

- 127 -

•	CCCACCCTTT	TTTTGAGACA	GCGTCTTCAG	GTAGCGCATG	CTGGCCTTAA	ATTCAGTATG	9120
	TAGTCAAGGA	TGACCTCGAG	CTCCTGGTCT	TTTTGTCTCC	ACTTAGAGAC	AATGGCCAGT	9180
5	GGCCATCACC	ACCTTTGGGA	GACTAGCCAT	GGAGTCTATT	TAGCCTGTCA	TTTGGTGACA	9240
	GATGGAGTAC	AACAGTGTGA	CCTCTTGTAA	GAGAACTGAA	GACAGGCTGT	TTTTAACCCC	9300
10	AATATCCTAG	GCTCTCTAGA	GGTTAACTTT	ATAAAATA	GAGACTATTA	CAGCCAGTTA	9360
10	TCACATGGTC	CCACAGAACC	TTTTGTCACA	CAACCTATAG	ACCACAGTGC	CTGTGCCTAC	9420
	CACATAAGGG	TCTCTACTGC	TGGCCCACCC	CTCCAACCCT	TAAAAGGTAA	CCTAGGCAGC	<b>948</b> 0
15	CTTAATATTT	GCAATCCTCC	TACCTCAGCC	TCTTGAATGC	TCAGAAACCA	GGCATTAACC	9540
	CAAGTTTCTC	TTCTCTGGGT	CCCTTTCTTA	AGGTGGGAGG	GCCTAAAGAT	GACTTCCTTT	9600
20	GTCCTGAAGA	CTCTCCGAGC	CCATGGATCT	GCACTCTCTA	ATATGAAATA	TATTGCATAA	<b>966</b> 0
	AATGTCTGGC	CTCAGTTTCC	CCACCTGTCA	GGTTTAGGCA	GCACAGTCGG	TCCAAGACAC	9720
	TTCATTATTT	GCAGGCAGTA	TAAGAAGAAG	CTCCCATCCC	CCACCCGCTT	CCTCCGGTCC	9780
25	CTAAGACAGA	ATACTTCTAC	ACTGAAACTG	AACTCTCGCA	GACGCATATG	CTCACTTTAA	9840
	TGATGATGAA	ATAATGGGGA	AACTGAGGCT	CCGAGAGATT	CCTGGAGGAA	GAGGGTCAAA	9900
30	ACCAGCTCCA	GGAAGCTCTC	CAGCCCCCAT	CCGGGCCTCT	CCAGGTTCTG	GGCTTGGCGG	9960
	GAGTGAACAC	AGCTGGGAGG	GGCTGGAGCC	TGGGAGCTTT	GGCCCTTGCT	CGTGCCCAGC	10020
	ACCTGCGATT	CTTGCACGGG	AGCCAGCAGG	CGGCTGCGTC	CGCCCGAGAG	ACTGAAGAAG	10080
35	CCGGGGGTAG	GGTTGGAGGG	AGGTAAGCAG	GGGCTGTG	G GGCCGAAGCT	TGTGCCAGGG	10140
	CCTGTCAGC	AGTCCCCAGI	TTTATTTATO	GCGTGAGGC	GATGTCCTTA	TCCGCTGGCC	10200

	TGCTGGGGGA	TGGCTGCGGC	TGGGGATTGG	ACCCAAGGGC	TGGCTTCCCA	CTCAGTCCTC	10260
	CAGCCCACTC	CATGTCACAC	CCGTGCATTC	TCTGAGGCTT	ATCTTGGGAA	CCCGCCCTTG	10320
5	TTCTGTGCTG	TCTGTCTCTA	TTTCTGTCAT	TCACTTTCCC	AGAGCCTTTT	TTTTATGCTT	10380
	ТТААТАТААС	TACGTTTTAA	AAATTGCTTT	TGTATAATGT	GTGTGCCTTC	GTGAGCGTGC	10440
10	GTGCCACAAC	ACACACGTGA	AGGTTAGAGA	ACTTTGTTGA	GTAGGCTCCT	TCCACCATGT	10500
10	GGGACTAGGG	CTGGCGACAA	GAGCAATTAC	TGAGTCATCT	CGCCAGCCCC	TCACCCCTCA	10560
	CTTCCCATCC	TGTTTGGATA	GTCATAGGTA	ATCGAAGGTA	AATCGCTGGC	TTTAATTTCG	10620
15	TAGCTATCCT	GCCTCAGCCT	ACCAAGTGCT	GTGCTACCAC	GTTTGTGGGA	GGGGCTCTCC	10680
	TCCCAGTGTC	TGGGGGTACA	CAGTCCCAAG	ATCTCTGCTT	TCTAGGTCTT	TGTCTTAGTT	10740
20	TGCCCCTTGC	TTTGTCCGTG	TCCCTAGAGT	CTCCGGCCCC	ACTTAGTCTC	CATTGATTTC	10800
20	CTTTCTGACC	GAATACTCGG	TTTTACCTCC	CACTGATTTG	ACTCCCTCCT	TTGCTTGTCT	10860
	CCATCGCCGT	GGCATTGCCA	TTCCTCTGGG	TGACTCTGGG	TCCACACCTG	ACACCTTTCC	10920
25	CAACTTTCCC	CAGCCGAAGC	TGGTCTGGTA	TGGGAGGCCG	CCGTCCCGCG	CGCGCCTCCT	10980
	GCTGGCCGCG	CCCCAACACT	GCCGCTCCAT	TCTCTTTAGA	GCGCCCGGGC	CCGGGCGGCG	11040
30	GGGTGTGCGA	GCCGCGGGC	GGCGAGCCCA	GCTCGGGCCC	GGTGCGGCGC	GAGCTCAAGC	11100
30	AGTTCCTCGG	CTGGCTCAAG	AAGCACGCAT	ACTGCTCGAA	CCTTAGTTTC	CGCCTGTACG	11160
	ACCAGTGGCG	TGCTTGGATG	CAGAAGTCAC	ACAAGACCCG	AAACCAGGTA	<b>GGAAAGTTG</b> G	11220
35	GGGAGGCTTG	CGTGGGGGGT	AAAGGAGCAG	AGGAAGAGAG	AGACCCGGGT	GAGCAGCCTC	11280
	CACAACACCG	CACTCTTCTT	TCCAAGCACA	GGACGAGGGG	ATCCTGCCCT	CGGGCAGACG	11340

	GGGTGCGGCG	AGAGGTAAGG	GGGTCTGGGT	GAGTGGGGCC	TACAGCAGTC	TAGATGAGGC	11400
	CCTTTCCCCT	CCTTCGGTGT	TGCTCAAAGG	GATCTCTTAG	TGCTCATTTC	ACCCACTGCA	11460
5	AAGAGCCCCA	GGTTTTACTG	CATCATCAAG	TTGCTGAAGG	GTCCAGGCTT	AATGTGGCCT	11520
	CTTTTCTGCC	CTCAGGTCCT	GCCGGCTAAA	CTCTAAGGAT	AGGCCATCCT	CCTGCTGGGT	11580
10	CAGACCTGGA	GGCTCACCTG	AATTGGAGCC	CCTCTGTACC	ATCTGGGCAA	CAAAGAAACC	11640
10	TACCAGAGGC	TGGGCACAAT	GAGCTCCCAC	AACCACAGCT	TTGGTCCACA	TGATGGTCAC	11700
	ACTTGGATAT	ACCCCAGTGT	GGGTAGGGTT	GGGGTATTGC	AGGGCCTCCC	AAGAGTCTCT	11760
15	TTAAATAAAT	AAAGGAGTTG	TTCAGGTCCC	GATGGCCAGT	GTGTTTGGGG	CCTATGTGCT	11820
	GGGGTGGGGG	GA					11832

20 (2) INFORMATION FOR SEQ ID NO:39:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 26 amino acids

(B) TYPE: amino acids

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Protein

30

25

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:39:

Val Ile Ser Pro Gln Asp Pro Thr Leu Leu Ile Gly Ser Ser Leu Gln Ala Thr Cys Ser

5 10 15 20

Ile His Gly Asp Thr Pro

CLAIMS:

 A nucleic acid molecule comprising a sequence of nucleotides encoding or complementary to a sequence encoding a novel haemopoietin receptor or derivative thereof having the motif:

Trp Ser Xaa Trp Ser [SEQ ID NO:1],

- wherein Xaa is any amino acid.
  - 2. A nucleic acid molecule according to claim 1 wherein Xaa is Asp or Glu.
- 3. A nucleic acid molecule according to claim 1 or 2 wherein said nucleic acid molecule is capable of hybridisation under low stringency conditions at 421C to:

5N (A/G)CTCCA(A/G)TC(A/G)CTCCA 3N [SEQ ID NO:7]; and 5N (A/G)CTCCA(C/T)TC(A/G)CTCCA 3N [SEQ ID NO:8].

- 4. A nucleic acid molecule according to claim 3 comprising a sequence of nucleotides substantially as set forth in SEQ ID NO:12 or a nucleotide sequence having at least 60% similarity to the nucleotide sequence set forth in SEQ ID NO:12 or a nucleotide sequence capable of hybridising thereto under low stringency conditions at 421C.
- 5. A nucleic acid molecule according to claim 3 comprising a sequence of nucleotides substantially as set forth in SEQ ID NO:14 or a nucleotide sequence having at least 60% similarity to the nucleotide sequence set forth in SEQ ID NO:14 or a nucleotide sequence capable of hybridising thereto under low stringency conditions at 421C.
  - 6. A nucleic acid molecule according to claim 3 comprising a sequence of nucleotides substantially as set forth in SEQ ID

35

NO:16 or a nucleotide sequence having at least 60% similarity to the nucleotide sequence set forth in SEQ ID NO:16 or a nucleotide sequence capable of hybridising thereto under low stringency conditions at 421C.

5

10

- 7. A nucleic acid molecule according to claim 3 comprising a sequence of nucleotides substantially as set forth in SEQ ID NO:18 or 24 or a nucleotide sequence having at least 60% similarity to the nucleotide sequence set forth in SEQ ID NO:18 or 24 or a nucleotide sequence capable of hybridising thereto under low stringency conditions at 421C.
- 8. A nucleic acid molecule according to claim 3 comprising a sequence of nucleotides substantially as set forth in SEQ ID NO:28 or a nucleotide sequence having at least 60% similarity to the nucleotide sequence set forth in SEQ ID NO:28 or a nucleotide sequence capable of hybridising thereto under low stringency conditions at 421C.
- 9. A nucleic acid molecule according to claim 3 comprising a sequence of nucleotides substantially as set forth in SEQ ID NO:38 or a nucleotide sequence having at least 60% similarity to the nucleotide sequence set forth in SEQ ID NO:38 or a nucleotide sequence capable of hybridising thereto under low stringency conditions at 421C.
  - 10. A nucleic acid molecule according to claim 4 or 5 or 6 or 7 or 8 or 9 wherein said haemopoietin receptor is of murine origin.

- 11. A nucleic acid molecule according to claim 9 wherein said haemopoietin receptor is of human origin.
- 12. An expression vector comprising a nucleic acid molecule selected from the list consisting of:
  - (i) a nucleotide sequence as set forth in SEQ ID NO:12;
  - (ii) a nucleotide sequence as set forth in SEQ ID NO:14;

(iii) a nucleotide sequence as set forth in SEQ ID NO:16;

- (iv) a nucleotide sequence as set forth in SEQ ID NO:18;
- (v) a nucleotide sequence as set forth in SEQ ID NO:24;
- (vi) a nucleotide sequence as set forth in SEQ ID NO:28; and
- (vii) a nucleotide sequence as set forth in SEQ ID NO:38.
- 13. A method for cloning a nucleotide sequence encoding a haemopoietin receptor having the characteristics of NR6 or a derivative thereof, said method comprising searching a nucleotide database for a sequence which encodes an amino acid sequence as set forth in one or more of SEQ ID NO:1, SEQ ID NO:7 and/or SEQ ID NO:8, designing one or more oligonucleotide primers based on the nucleotide sequence located in said search, screening a nucleic acid library with said one or more oligonucleotides and obtaining a clone therefore which encodes NR6 or a part or derivative thereof.
  - 14. An isolated nucleic acid molecule comprising a sequence of nucleotides encoding a haemopoietin receptor or derivative thereof having an amino acid sequence substantially as set forth in SEQ ID NO:13 or having at least about 50% similarity thereto.
- 15. An isolated nucleic acid molecule comprising a sequence of nucleotides encoding a haemopoietin receptor or derivative thereof having an amino acid sequence substantially as set forth in SEQ ID NO:15 or having at least about 50% similarity thereto.
- 16. An isolated nucleic acid molecule comprising a sequence of nucleotides encoding a haemopoietin receptor or derivative thereof having an amino acid sequence substantially as set forth in SEQ ID NO:17 or having at least about 50% similarity thereto.
  - 17. An isolated nucleic acid molecule comprising a sequence of nucleotides encoding a haemopoietin receptor or derivative

35

5

thereof having an amino acid sequence substantially as set forth in SEQ ID NO:19 or having at least about 50% similarity thereto.

18. An isolated nucleic acid molecule comprising a sequence of nucleotides encoding a haemopoietin receptor or derivative thereof having an amino acid sequence substantially as set forth in SEQ ID NO:25 or having at least about 50% similarity thereto.

10

- 19. An isolated nucleic acid molecule comprising a sequence of nucleotides encoding a haemopoietin receptor or derivative thereof having an amino acid sequence substantially as set forth in SEQ ID NO:29 or having at least about 50% similarity
- 15 thereto.
  - 20. An isolated novel haemopoietin receptor comprising the amino acid motif:
- 20 Trp Ser Xaa Trp Ser [SEQ ID NO:1]

wherein Xaa is any amino acid.

- 21. An isolated haemopoietin receptor according to claim 20 wherein Xaa is Asp or Glu.
  - 22. An isolated haemopoietin receptor according to claim 21 comprising the amino acid sequence substantially as set forth in SEO ID NO:13.

- 23. An isolated haemopoietin receptor according to claim 21 comprising the amino acid sequence substantially as set forth in SEQ ID NO:15.
- 24. An isolated haemopoietin receptor according to claim 21 comprising the amino acid sequence substantially as set forth in SEQ ID NO:17.

25. An isolated haemopoietin receptor according to claim 21 comprising the amino acid sequence substantially as set forth in SEQ ID NO:19.

- 26. An isolated haemopoietin receptor according to claim 21 comprising the amino acid sequence substantially as set forth in SEQ ID NO:25.
- 27. An isolated haemopoietin receptor according to claim 21 comprising the amino acid sequence substantially as set forth in SEQ ID NO:29.
- 28. A method for modulating expression of NR6 in a mammal, said method comprising contacting a genetic sequence encoding said NR6 with an effective amount of a modulator of NR6 expression for a time and under conditions sufficient to upregulate or down-regulate or otherwise modulate expression of NR6, wherein the genetic sequence encoding said NR6 is selected from the nucleotide sequence set forth in SEQ ID NO:12 or 14 or 16 or 18 or 24 or 28 or 38 or is a sequence having at least about 60% similarity to at least one of SEQ ID NO:12 or 14 or 16 or 18 or 24 or 28 or 38 and is capable of hybridising thereto under low stringency conditions at 421C.
- 29. A method of modulating activity of NR6 in a mammal, said method comprising administering to said mammal, a modulating effective amount of a molecule for a time and under conditions sufficient to increase or decrease NR6 activity wherein said NR6 comprises an amino acid sequence:
  - (i) encoded by a nucleotide sequence selected from the nucleotide sequence set forth in SEQ ID NO:12 or 14 or 16 or 18 or 24 or 28 or 38 or a nucleotide sequence having at least 60% similarity to the nucleotide sequence set forth in SEQ ID NO:12 or 14 or 16 or 18 or 24 or 28 or 38 and which is capable of hybridising thereto under low stringency conditions at 421C; and

30

(ii) substantially as set forth in SEQ ID NO:12 or 14 or 16 or 18 or 32 or 30 or a sequence having at least 50% similarity thereto.

- 30. A pharmaceutical composition comprising an NR6 receptor in soluble form and one or more pharmaceutically acceptable carriers and/or diluents wherein said NR6 comprises the amino acid sequence:
- 10 (i) encoded by a nucleotide sequence selected from the nucleotide sequence set forth in SEQ ID NO:12 or 14 or 16 or 18 or 24 or 28 or 38 or a nucleotide sequence having at least 60% similarity to the nucleotide sequence set forth in SEQ ID NO:12 or 14 or 16 or 18 or 24 or 28 or 38 and which is capable of hybridising thereto under low stringency conditions at 421C; and
  - (ii) substantially as set forth in SEQ ID NO:12 or 14 or 16 or 18 or 32 or 30 or a sequence having at least 50% similarity thereto.
- 31. An isolated antibody or a preparation of antibodies to an NR6 receptor, said NR6 receptor comprising the amino acid sequence:
- 25 (i) encoded by a nucleotide sequence selected from the nucleotide sequence set forth in SEQ ID NO:12 or 14 or 16 or 18 or 24 or 28 or 38 or a nucleotide sequence having at least 60% similarity to the nucleotide sequence set forth in SEQ ID NO:12 or 14 or 16 or 18 or 24 or 28 or 38 and which is capable of hybridising thereto under low stringency conditions at 421C; and
  - (ii) substantially as set forth in SEQ ID NO:12 or 14 or 16 or 18 or 24 or 28 or 38 or a sequence having at least 50% similarity thereto.
  - 32. A trangenic animal comprising a mutation in at least one allele of the gene encoding NR6.

33. A transgenic animal according to claim 33 comprising a mutation in two alleles of the gene encoding NR6.

34. A transgenic animal according to claim 33 or 34 wherein said animal is a murine animal.

1/43



2/43

3/43	4/43
5/43	6/43
7/43	8/43
9/43	10/43
11/43	12/43
13/43	14/43
15/43	16/43
17/43	18/43

Fig.2

gl	cccagaactct
g38	agtttcaagacagtgtgtt
g 8 3	aagaaagaataaagaga
g128	cagcttggtgggtaagggg
g173	agccccatccctaggaatc
g218	cagctgctgacctccatac
g263	ggagacataatcaattaat
g308	ggcatttatgactgatgtt
g353	aatatacctgtttgtattt
g398	atttgagacagggcttctc
g443	tcactctgtagaccaggct
g488	ttgtgcttcccaagtgctt
g533	gcaaaattgcatactttaa
g578	actaatgtgtgaattccag
g623	ctattcttaccctccccc
g668	ttgtgtatgtacatgtgtg
g713	acttgtagaagttctctcc
g758	actaaggtcctcaggctta
g803	catttcactggccctggat
g848	aggtctcttgtagctctag
g893	gtcatcttgagctgctggt
g938	aatgatactcaggcagcac
g983	ccttgattttgttgcctca
g1028	gtttcttttctttatctgt
g1073	ttcctgactcttgaaacat

Fig.2(i)

tggacgctgaggcaggaggattccca tctaggtaatgagaccctgtcaagaa caagaaaatgtttataggctgtgaga cacttgcctccaatcaagatgacctc catggtagaaggaaagcaaactcg atgtgctccaatgtgcacacacacag aggatgtatttgcttagatttgagta ttaaaatttttatttgattttatgaa ggtttggtttggttttagttt tgtgtagtcctggctgtccttggaac ggccttgaactcagaaatccgcctgc agattaaaggtgtgcactgccattca ccccagtatttgggaggcagaggcag gctagccaaggatacagagtgagacc ccaaaaccccaaaatgtattttgtgc ttgcagcacgtaaatgtccaaggaca gttcacagtctaagtcctgaattcaa gccacagtcttctttatgtactgagc tgactgatgaattaatttttgagata ctaggctcaaactatgaactcccaag actcttgcttccaccccaagtggtgg ttctctggggaaggggctggccttgg gcttcaatgagtgcttgggtctcgtt gaaatgggtgaacacctgttcaagac ccaggcagggtgagggacttgaagtg

Fig.2(ii)

g1118	ggctcatcccatgcctaac
g1163	agctgtaatcagcccccag
g1208	L Q A T C S CCTGCAAGCTACCTGCTCT
g1253	A E G L Y W CGCTGAGGGGCTCTACTGG
g1298	E L S R L L TGAGCTGTCCCGCCTCCTT
g1343	A N L N G S GGCTAACCTTAATGGGTCC
g1388	C H A R D G GTGTCACGCCCGAGACGGC V G
g1433	TGTTGGCTgtaagtggggc
g1478 g1523 g1568	ttggcaatgacagatttag agccatgggctctcacttg aggcattgcaactctaggg
g1613	gtaccccacagctttagaa

Fiq.2(iii)

1

#### 6/43

aaagtgtcgtctttgaccccagacac G S L I T L P GACCCCACCCTTCTCATCGGCTCCTC T  $\mathbf{P}$ G Α T G  $\mathbf{D}$ I H ATACATGGAGACACACCTGGGGCCAC L P R G R N T ACCTTCAATGGTCGCCGCCTGCCCTC L A L L Α N T S T AACACCTCCACCCTGGCCCTGGCCCT V L N S G D Q 0  $\mathbf{R}$ AGGCAGCAGTCAGGAGACAATCTGGT C L S A G L S AGCATTCTGGCTGGCTCCTGCCTCTA cccagacactcagagatagatggggg agcctgggtcttctgtcctggggcag catgcaggcatggtcatacccagcac acagctgtggctgcactgtcccctgt aagctgtcatgttttccttgtag<u>TG</u>C

Fig.2(iv)

							_	· -									. 7
	P		P		E	}		K		•	P			F		]	N
g1658	CC	C	C	$\mathbf{T}$	3 A	G	A	A	G	$\mathbb{C}^{(}$	C	C	Т	T	Τ.	A	A
3-00-																	_
	K		D		Т	j		т			C			R		1	W
				<b></b>								~			~		
g1703	AG	<u>.</u>	A	1. (	_ 1		A	_	G	T (		_	_	<u></u>	<u>_</u>	T (	<del>ح</del>
	F		L		F	I		T		]	N			Y			S
g1748	TC	<u>: T</u>	T.	<b>A</b> (	$\mathbb{C}P$	T	Α	C	C	A.	A	C	T	A	C	T	C
g1793	CC	a	q	C	c a	ιa	g	C	C	t ·	t	g	C	t	g	t	3
g1838	tg																
91030	- 5	-		_						_						٦	
									τ	N		•	Y		7	3	
								~			~			~			~
g1883	CC	: t	C	C	a c	: a	g	<u>G</u>	.T. (	) نی	<del>ن</del>	Τ.	<u>A</u>	<u>C</u>	<u>.</u>	<u>G</u>	Ī.
		T		1	V		G			P			H			S	
g1928	CP	C	T	G	$\Gamma$	3 G	G	C	C	C'	T	C	A	C	T	C.	A
				_													
		F		•	Γ		Р			Y			Ε			I	
~1072	~ ~													C	7\		~
g1973	CI	<u> </u>	_	<u> </u>				_			_	<u> </u>	<u> </u>	<u> </u>	<u> </u>	_	_
		_			_		_			_			_			<b>.</b> .	
		S			A								D			V	
g2018	CI	<u>. C</u>	<u>A</u>	G	<u> </u>	1 A	<u>G</u>	A	T	<u>C</u>	T	G	<u>A</u>	T	G	T	$\subseteq$
g2063	to	_{ra}	q	C	C	<b>C</b> C	C	a	g	t	g	t	C	С	a	C	C
g2108	CG		_														
g2153	tt																
_			_														
g2198	t a	ı a	T	9	C č	i ĉ	ιd	g	a	Ċ	L	L	L	C	C	C	C

Fig.2(v)

R N CW S M S Τ CATCAGCTGCTGGTCCCGGAACATGA E Α H G T P G T GACACCGGGTGCACACGGGGAGACAT  $\mathbf{L}$ K R K Y L CCTCAAGTACAAGCTGAGgttggtac tgacttctggcaatacttaccttctc ttatqaactcaaaagggactctcgca E Y H  $\mathbf{E}$ N T C 0 D CAGGATAACACATGTGAGGAGTACCA L A Ι P K D C H TGCCATATCCCCAAGGACCTGGCCCT R L G W V  $\mathbf{E}$ A T N TGGGTGGAAGCCACCAATCGCCTAGG V V L D D  $\mathbf{L}$ T L CTCACACTGGATGTCCTGGACGTGG tgtgttctgccctagaccttataggg cagactttttggttcttctagaggtc ttgcaggacagtggttgttcataact caagacagtcaagatttttcccctcc

Fig.2(vi)

g2243	ccaccccaacacacacat
g2288	ggcctgaccaccctccctc
g2333	gtcctaggggactgagagg
g2378	ggaagccgaggccttgagc
g2423	acgaactggatgatccctg
g2468	ggtgttcccagcccaaagc
g2513	gcctcactgaagactcagg
g2558	tggtcccccaggagggttc
g2603	tccagaggttttgtgtctt
g2648	ctgtggctggcacagctgc
g2693	aggcatcagaggtggacat
g2738	caaatagcacctcaaggtg
g2783	cctgacgctcagaaagcct
g2828	tcactctgggacatgtagt
g2873	tagctttaagagtcagctt
g2918	taataggtgctgggtgatg
g2963	tctctgcgctaatctccac
g3008	cttgagggcaggaatgtgt
g3053	gtagcagcaactgctgctg
g3098	taatctatcaggcctgggt
g3143	gtctggaaaacgcagatag
g3188	ttacaccactgggtgttct
g3233	tcctcagaactgggagcac
g3278	taatgccagcattagggga
g3323	ttcaaggccatcctgaatt
g3368	ggtgcgcagtaaaaccttg

Fig.2(vii)

acacacactctgcagagaacacct tctacagcccaggtgttcagaaggga aggcgcccaggtctgaaggcgcccca tgggggggggggggttggaggc agcacaactgggcctaatctaattag agcctgggccatttaacccttcaagt ggagagatcagcttgtactctcca ctgggtgcccctggctcattcccaca cctggcatctaaccctcagttgtgct cccgtggaggctcttggtaatgtaca gggatgggatacatagggatggagc gggtgatatacaataaagcttgtcac actcatgatgatcacaattgttgaca gagaccctagctcaaaacacagacag gtgacttaatactggaactcagggcc ctcgcctcactccctgtttagtgaga cccagctgggtgggctgctctgtccc gtcttccatcagagataggacccgtg gctgtttctggaatattaaatgacag gagtagctaacaggggtgggggcgtg ggtcataggagccactgcagcctaga gtcactaggccattctcaccaagcag tgttgccagcatttaatgccagcatt ggcagaggcagaaggatctctctgag tacataaagagctccaggccagccag tctcaaaaacaaagcatctttagtg

Fig.2(viii)

g3413	accaggcttgctccacccc
g 3 4 5 8	V H V S R V G GTGCACGTGAGCCGCGTTG
g 3 5 0 3	R W V S P P CGCTGGGTCTCACCACAG
g 3 5 4 8 g 3 5 9 3	K Y Q I R Y  AAGTACCAGATCCGCTACC  gtgcccgtcccggcccgga
g3638	ctgactcctccctcaccgt
g3683	Q T S C R L A AGACCTCCTGCCTCTCGC
g3728	F V Q V R C N TCGTCCAAGTGCGTTGTAA
g 3 7 7 3	K A G I W S E AGGCGGGAATCTGGAGCGA
g3818 g3863	T P R S  CCCCTCGAAGTGgtgagca  aatccccaatccatcctgt

Fig.2(ix)

V T T D P P D CagTGACCACGGACCCCCACCCGAC

G L E D Q L S V
GGGGCCTGGAGGACCAGCTGAGTGTG

A L K D F L F Q A CTCTCAAGGATTTCCTCTTCCAAGCC

R V E D S V D W K
GCGTGGAGGACAGCGTGGACTGGAAG
cccgccctgaccccgcccccgcat

V V D D V S N gcagGTGGTGGATGACGTCAGCAACC

G L K P G T V Y

GGGCCTGAAGCCCGGCACCGTTTACT

P F G I Y G S K CCCATTCGGGATCTATGGGTCGAAAA

W S H P T A A S GTGGAGCCACCCACCGCTGCCTCCA

cctctccagggctggctggcccatgg tccttcccccccacccttttttgag

Fig.2(x)

g3908	acagcgtcttcaggtagcg
g3953	gtcaaggatgacctcgagc
g3998	gacaatggccagtggccat
g4043	agtctatttagcctgtcat
g4088	tgacctcttgtaagagaac
g4133	tatcctaggctctctagag
g4178	ttacagccagttatcacat
g4223	acctatagaccacagtgcc
g4268	tgctggcccacccctccaa
g4313	taatatttgcaatcctcct
g4358	ccaggcattaacccaagtt
g4403	gtgggagggcctaaagatg
g4448	agcccatggatctgcactc
g4493	tgtctggcctcagtttccc
g4538	cggtccaagacacttcatt
g4583	cccatccccacccgcttc
g4628	tacactgaaactgaactct
g4673	atgatgaaataatggggaa
g4718	gaagaggtcaaaaccagc
g4763	gggcctctccaggttctgg
g4808	aggggctggagcctgggag
g4853	ctgcgattcttgcacggga
g4898	gagactgaagaagccgggg
g 4 9 4 3	gctgtgggggccgaagctt
g 4 9 8 8	agttttatttatggcgtga
g5033	ctgggggatggctgcggct

Fig.2(xi)

catgctggccttaaattcagtatgta tcctggtctttttgtctccacttaga caccacctttgggagactagccatgg ttggtgacagatggagtacaacagtg tgaagacaggctgtttttaaccccaa gttaactttatataaaatagagacta ggtcccacagaaccttttgtcacaca tgtgcctaccacataagggtctctac cccttaaaaggtaacctaggcagcct acctcagcctcttgaatgctcagaaa tctcttctgggtccctttcttaag acttcctttgtcctgaagactctccg tctaatatgaaatatattgcataaaa cacctgtcaggtttaggcagcacagt atttgcaggcagtataagaagaagct ctccggtccctaagacagaatacttc cgcagacgcatatgctcactttaatg actgaggctccgagagattcctggag tccaggaagctctccagcccccatcc gcttggcgggagtgaacacagctggg ctttggcccttgctcgtgcccagcac gccagcaggcggctgcgtccgcccga gtagggttggagggaggtaagcaggg gtgccagggcctgtcagcgagtcccc ggccgatgtccttatccgctggcctg ggggattggacccaagggctggcttc

Fig.2(xii)

ccactcagtcctccagccc
tgaggcttatcttgggaac
ctatttctgtcattcactt
aatataactacgttttaaa
ttcgtgagcgtgcgtgcca
tttgttgagtaggctcctt
caagagcaattactgagtc
tcccatcctgtttggatag
ggctttaatttcgtagcta
gctaccacgtttgtgggag
gacacagtcccaagatctc
gccccttgctttgtccgtgt
cattgactggtctttcctt
ctgatttgactccctcctt
ccattcctctgggtgactc
actttccccagccgaagct
gcgcgcctcctgctggc
E R P G
tctttagAGCGCCCGGGCC
G G E P S S
GGCGGCGAGCCCAGCTCGG
F L G W L K
TTCCTCGGCTGGCTCAAGA
F R L Y D Q
TTCCGCCTGTACGACCAGT

Fig.2(xiii)

actccatgtcacacccgtgcattctc ccgcccttgttctgtgctgtctgtct tcccagagcctttttttttttttttt aattgcttttgtataatgtgtgtcc caacacacgtgaaggttagagaac ccaccatgtgggactagggctggcga atctcgccagcccctcacccctcact tcataggtaatcgaaggtaaatcgct tcctgcctcagcctaccaagtgctgt gggctctcctcccagtgtctgggggt tgctttctaggtctttgtcttagttt ccctagagtctccggccccacttatc taccgaatactcggttttacctccca tgcttgtctccatcgccgtggcattg tgggtccacacctgacacctttccca ggtctggtatgggaggccgccgtccc cgcgccccaacactgccgctccattc

G P V R R E L K Q

GCCCGGTGCGGCGCGAGCTCAAGCAG

K H A Y C S N L S

AGCACGCATACTGCTCGAACCTTAGT

W R A W M Q K S H
GGCGTGCTTGGATGCAGAAGTCACAC

Fig.2(xiv)

	K T R N Q V
g6023	AAGACCCGAAACCAGGTAG
	G K G A E E
g6068	GGTAAAGGAGCAGAGGAAG
	Q H R T L L
g6113	CAACACCGCACTCTTTT
	P R A D G V
	P S G R R G A
g6158	CCTCGGGCAGACGGGGTGC
g6203	GTGGGGCCTACAGCAGTCT
g6248	TGTTGCTCAAAGGGATCTC
g6293	GAGCCCCAGGTTTTACTGC
g6338	CTTAATGTGGCCTCTTTTC
	*
g6383	CTAAGGATAGGCCATCCTC
g 6 4 2 8	CTGAATTGGAGCCCCTCTG
g6473	CCAGAGGCTGGGCACAATG
g6518	ACATGATGGTCACACTTGG
g6563	GGTATTGCAGGGCCTCCCA
g6608	TTGTTCAGGTcccgatggc
g6653	ggtggggga
_	

Fig.2(xv)

C E А L G K GAAAGTTGGGGGAGGCTTGCGTGGGG P G E O R  $\mathbf{D}$ F. AGAGAGACCCGGGTGAGCAGCCTCCA R R K Η Τ E G  $\mathbf{L}$ CCAAGCACAGGACGAGGGATCCTGC G G R E V R R Α GGCGAGAGGTAAGGGGGTCTGGGTGA AGATGAGGCCCTTTCCCCTCCTTCGG TTAGTGCTCATTTCACCCACTGCAAA ATCATCAAGTTGCTGAAGGGTCCAGG L Α P Α G TGCCCTCAGGTCCTGCCGGCTAAACT CTGCTGGGTCAGACCTGGAGGCTCAC TACCATCTGGGCAACAAAGAAACCTA AGCTCCCACAACCACAGCTTTGGTCC ATATACCCCAGTGTGGGTAGGGTTGG AGAGTCTCTTTAAATAAATAAAGGAG cagtgtgtttggggcctatgtgctgg

Fig.2(xvi)

20/43	21/43
22/43	23/43
24/43	25/43
26/43	27/43
28/43	2943
30/43	31/43
32/43	33/43
34/43	35/43
36/43	37/43
38/43	39/43
40/43	41/43

Fig.3

GCGGCCGCTG	CAGTGATTAC	TCACCGCGTG
TTTTTCCGTG	GGGGGATGTG	AAGAAGTTTA
GGAATGCAGG	GTTCGGTCCC	GTTCCCCAAA
AAGGGCTCCC	TGCACGCGCT	CCGGGACATC
TGAGAAGGGA	CCAGAGGCCG	GAGACTCCCT
ACGAAACGAG	ACTACAGCGA	TGGGAGAGGT
GACCCATGCA	CCCAGAGAAA	GGGACTGGTG
AGGGCTGAAA	GAGGATGAAC	GGGCTCAGGT
TGGGTATGGG	GGCCCCGTAA	GAGGGGCGGG
GGAGGGGATC	CTGGAAAAGC	ACCAGGGCTG
ACAGGATCCC	AGATGAGGGG	GTGGGAAGCC
CACGGGCTGG	TGGGGAAAGA	GTGGGGGGCT
GTAACTGGGC	GGAGGCCGGC	CGGGCGGGC
GTGCGGGGCC	CACGATCAAC	CCCCCCCAG
CGGGGCGAGC	GGCGCATTAG	CGCCTTGTCA
CGCTGTCCGC	GCCCAGTGAC	GCGCGTGAGG
CGCCCCCGCC	CCATACCGGC	GTTGCAGTCA
GGGTCGCCCG	GGCCCCGTCG	CCCAATCCGC

Fig. 3(i)
SUBSTITUTE SHEET (RULE 26)

	GCGCACCCCA	CCCGCGGGCC	GCTGAGTGGA	60
	GGGAGAACTC	TTCTGCACCG	ATGGGAACTA	120
	GGACACACCT	CTCCCCATAA	GCCCACTCAT	180
	CCCATATCCA	ATACCCGCAG	ATATGATAGT	240
	CCCTGCCTTC	TGGCTTTCCC	CCCCCCTGC	300
	GGCATGAAGG	CTTAGGGTGG	GGATCGGTAG	360
	GCAACTTTCA	AACTCTCTGG	GGAAGGAAGA	420
	ACTGCTCAAT	GTGTGTGTGG	CGGACCAAAG	480
1	GAAGGTGGAT	AGGAAGGATC	CCGGTAGACT	540
	CGAGCTAGGA	ACCCATTCGG	AGTTAAGGGT	600
	TGGGACGGGC	GGGACCAGAG	AGGGAGGTCC	660
	TCGCGCAGGA	GGATGGGACG	TTCAGGAGTG	720
	GCGCGGTGCC	CGCGGGCGGT	GGGAAGGCCG	780
	GGGCCGGGCC	GGGCCGGGG	CGGGGCCGGG	840
	ATTTCGGCTG	CTCAGACTTG	CTCCGGCCTT	900
	ACCCGAGCCC	CAATCTGCAC	CCCGCAGACT	960
	CCGCCCGTTG	CGCGCCACCC	CCATGCCCGC	1020
	GCGGCGGCCG	CCGCGGCCGC	TGTCCTCGCT	1080

Fig.3(ii)

GTGGTCGCCT	CTGTTGCTCT	GTGTCCTCGG
GTACCGTGCG	CCCTGCTCCC	CACCTCCCCA
AGTCGCGGGG	GATGGAAGAA	GGGCGCGAG
GGCGGCCCTC	GGGGCGCCCT	CACCTGTGGG
AGTACCCCGT	TATACATCAG	AGGCCTCTTA
AGGCTCAGTT	TGAAGGACAT	CGCAGTGTCC
GCTTCGGGGC	GCACGCCTGT	GTCTTGGATA
GGGCGCACGC	TTGGGTGCGT	TGGGTTGGGT
GAAGTGATGA	TCCCCGGGGG	GAGGGTGGGG
ATGCGGCCCG	GCGTCCCTCG	GGACTTGCCT
CTATAGCAGA	CTCCATGCTT	TGGTATCCTC
CGGTCTCATT	CAGGCTGCGC	TGGGTTGAGA
CGAGAGCAAG	CGTGTCCGGG	CACCGCGAGC
GGGGGTCAGC	TGCCGAGAGA	ATCCCACTGT
ATCACCCAAC	GCACACATCC	CCGCCAGGAT
CACACCCAAA	GACACACAAA	AGAGCCCCAC
CGCGCGCTGC	AGCCCAGATG	CGTATTCGCA
ACACACACAC	ACACACACAC	ACACACACAC

Fig.3(iii)

	GGTGCCTCGG	GGCGGATCGG	GAGCCCGTGA	1140
	GGGAAGCCGG	GATCCGGCGC	CCCGGGGGGT	1200
-	CGCCACCTGG	ACGTCCCGGG	AACAAAGGAA	1260
1	GCTCATGGCA	CCACCACCCA	GCCTCCCAAG	1320
	TCTGTATCCC	CTTTGCGAGG	CTGTCTGGCC	1380
	TGGGACCCCC	CTCCTTCAGG	GTGCTGGGAC	1440
	TCAGAGCGGA	AGGGAAGCCT	CCCTGGCCGG	1500
	GCTGGCGCAA	AGTGGGGTCC	CCTCCCCAT	1560
	CGTTATCGTG	AGCCCTCCTG	TCCGCCTGGC	1620
	CTCCGTGGGG	TCGGCGCCGC	CCCCTCCCCC	1680
	GAAGTCCTCT	CCACTGGTGG	GGCTCACAAC	1740
	GCCTCTAGCG	ACTGAAATTT	CGGTGAGGAG	1800
	CCAGACTTCA	TTGTCTAAGG	GGCACCCAGT	1860
	CCCAGGAGGA	ACTCCTGGCC	TTGAGCCCCC	1920
	GCGGTCTCCA	CATCCAGACC	CTCTCTGGGA	1980
	TGGCTTATGT	CCCGTCACCC	TGCCCTCCGA	2040
	CACCATCGCG	GCGCTCGCAT	TCCATCCTCT	2100
	ACACACACAC	ACACACAGAC	ACGCACACAC	2160
	IU)			

Fig.3(iv)

ACACGCACGC	ACACACACGC	ACGCCCGCAC	
GCAACACCGG	GGTACGCATA	TGGTTGAGTG	
ACCCCATCCG	GAGACACAGG	CCACACCGCA	
TAGTAGTCTT	GTGCAGTTTG	TCCGCGGTGT	
ACAGGAACCT	ACACTCCTGC	TTGCCCAAGG	
GACCTTTCCG	GGGAGTTGGT	GTTGCTGCCA	l
GCGCTAAGCT	TTGTTTCCGG	GCGGGCTGCA	
TGGCGCGTGT	GTTTTTTCTT	TTAAGGGGGA	
TGCAATCTGT	TTGTACTTAC	CGTGTGTCTT	
AAAGTGTATG	CAGGTACCAG	CGGGACAGGA	
GAGGCCACCT	TCCCGTTGGC	CTTTCAGGGA	
GTGTTCTTTT	TAATAACGGC	AGCAACTCCG	
GGCCCCGGCT	TTGTGGAAAG	GAGGGGAAGA	
GGCTTAGGGG	GCTGTCAGCT	GCTGCTCTGT	
AGTGGCTTTG	GCCCATTGTT	TGTGGAAGCC	
TACTCCAGAG	TCAGGCTTCT	CAGTCCGAGC	
GAATCAGGGA	AGGGGGTGCC	AGGTGGACTA	
AAGGAGAAAG	CTTGGGCTTG	CCCCCTCCC	
			-

*Fig.3(v)* 

_				
	TCGTGGTCCC	ACATTTATTT	CACAGGGGAG	2220
	CACTGGAGAT	CTTTCCCCAC	CACTCTCAGG	2280
	GGGGCACCAC	GCTGCGCTGC	TGCTCTGGGC	2340
	CTGTGGACGC	CCTCCCGCTC	TTGTCAGGGG	2400
	CGGCTGGGCA	GGTGATGTGG	TGACACCCGG	2460
	AGCCTGGGTA	GTTTTTGAAT	GCCACCAATA	2520
	GAGCAACAGG	CGAAGGTGGC	GGAGTGGGGG	2580
	GAGAAATTAA	ATAAGAGGTT	CTCACACCTC	2640
	AACACCTGAC	CAGCCAGCCG	GTGGGTCGTA	2700
	GATGGGGGCC	CCTGGGGTAT	GGCTGGGATG	2760
	ATCTCACACT	TTTCCCTTTT	AAAACACATG	2820
	CATTGGGAAA	GGGGGAAATA	AGCTTGTATA	2880
	GGGAAGAAAA	AAGGAGGGGT	GTCTCCTCCA	2940
	CTAGCTTGGC	ATGTGTGTGC	CCCAGTCCCC	3000
	AAGAGGGAGA	CTGGAGTCCT	CTATCTCTGG	3060
	CCAGAGAACG	TCTTCCCTGT	TTTATGGAGG	3120
	CGTTCTGCTG	AGGACTGTAC	CAGTCGCTCG	3180
	CCCTCAAGCC	ACGAAGGGCA	GCTGCTAGGC	3240
	<u> </u>			

Fig.3(VI)
SUBSTITUTE SHEET (RULE 26)

TAGTGTGGTA	AAAGGGCATT	ACTCCCCAGC
CAGACAAATG	CTGGGGAGGG	ACAGAGGGGT
GGTCCCGGGT	CGGGCAGTGC	CTCCCACCCT
GGGTGGGCCG	GGGTAGAGAC	GCTGGCACGT
GCGGGCGGCT	GGCTGCCTGG	GACCTCCGGG
GCCTGCTCCT	CCTGCTCCTT	CGCACGGACG
CCCAAATGCA	ACTGCGATTG	CAGGCTTCGC
CCTGGGAGAA	GTCATTCAGG	GCCCAGACTA
GGGCATGAAG	GACCGTCCAG	GGCTGCAGTT
GCAGCCTCTG	TTCTCCGAGC	CTCTTTGGAA
AATACTCTTT	TCCTCTCATC	CCATCCCGGG
TGCAGTCTTC	CCTAACCTTT	TCTTTGCTTC
CCTCTCCCCT	TGCCCAACTG	GGGCTCCAGC
CAGGGCCTCT	CTGACACACA	GGGTTGTAGC
CTCTTTTGCT	TCTGAGACTT	AATTTTTTC
TCTCTGTACA	GCCCTGGCTG	CCCTGGCACT
ACAAACCTAC	CTGCCTCTGC	CTTTCCAGTG
AGTAGTTAAG	TGTTTTGCTG	TGTCTTTATT

Fig.3(VII)
SUBSTITUTE SHEET (RULE 26)

_		<del></del>		
	CAGGACCCCC	CAGAGAGTCC	CCTTCCTGGC	3300
	GTGATCATTG	CCCAGGAGTG	CAGACAGTGG	3360
	GCTGAGGGG	GCGCCCAGGC	AGGAAGCGGT	3420
	CCCAGTTCAT	GCCGAAGGAA	TTCTGAATTA	3480
	GCGGCCCCT	GGCCCCCGCC	GCTCCGTCTG	3540
	CTGAGACCTC	CGCTGAGCCC	TGGGACAAGC	3600
	AAGACCCGCC	TCCTCCCAAG	GCCAAATTTG	3660
	GAACCATGTT	GGTGCCACCT	CATCCATCTG	3720
	TAGCTTCTTA	ATAGGAACCT	GGGGGTGGGT	3780
	ATCGGTTTTG	TTTTTGTTTT	TGTTTTTTCC	3840
	ACTGTTTTCC	TCCCTAAGGG	TTGAGAGCCC	3900
	TACCCCAGGG	CCTTTGCACA	TGGAGTCCCA	3960
	CTTACTGCAT	TTGGCTCTTG	GTAACTGTCC	4020
	CCCAGCTCCC	TCTCTTCTCC	TCCCCCCTTT	4080
	TTTTTCTTTT	TGGCTTTTTG	AGACAGGGTT	4140
	CATTCTGTAG	ACCAGGCTAG	CCTCAAACTC	4200
	CTGGCACTAA	AGATGTGGGC	CACCACAACT	4260
	CCTATAGTGA	CCTCAGTTCC	TGGCATATTG	4320
	<u> </u>			

Fig. 3(VIII)
SUBSTITUTE SHEET (RULE 26)

TAGGCGATGG	ATGGATGAAT	GGATGGATGG
CTTGAATCGT	CCTGAGTGAA	AAAAGAGACC
GGCAGCCTGG	CCTGCTGGTC	TCATGGGAGC
CACCCTGCCA	TCCTGTGTGG	CTGACAAGAA
AGGGAAGCTT	GGAATATGTT	CCCCTCCTCA
CCAGCCTATG	AGTAGGGCAG	CTGTGGGCTG
GTCCCTCAGG	GTGGGTCACA	GGATTGAGGT
AGGAAATGAT	TGTGGAGAGT	CAGAACTCCT
GCTTCTGTGG	CTGTCCCTTC	TCTTGTGGTC
TGTGAGGAGG	GCACGGGGAA	AATGAAGGCT
CCAACAGGGC	TCACCTCTCC	TCTGGACAGG
TTTGATTCCC	TTCCTTTGGT	CTCCTGGGAT
TTTTAGATAT	GTCCATTCTC	CAGAAACACA
ACCACCAGGA	CAGACAAAGA	ATTGGAGAGG
TGGCTTATGT	GTAATCCCAG	AACTCTGGAC
CAGTGTGTTC	TAGGTAATGA	GACCCTGTCA
ATGTTTATAG	GCTGTGAGAC	AGCTTGGTGG
CCTCAGCCCC	ATCCCTAGGA	ATCCATGGTA

Fig.3(ix)

ATGGATGGAT	GGATGGTTGG	ATGGAGCAAG	4380
TCAGAGAACT	GAATGGAGTT	AGGTTCCCAG	4440
TCCCTGTGAA	ACTTCCCCCA	CACCTCCCAC	4500
AGGCCAATGG	CCAGATGGGG	ACACAGACTC	4560
TATCCTAGGC	CTTGTTGTCC	CCCTGAGGGC	4620
CCCTAAGGTT	GGGTAGGCAA	GAAGGGGGTG	4680
CATTTCCAAA	GTGGCCATCA	CAGTGGCCCT	4740
GTTGGGAGTT	GTAGAGGGCC	TTGCATGTGG	4800
CTTTGCACAG	TCCCCTCGTG	TGTGCTGGGA	4860
CAGCCCCTGA	GCTTGCCCTT	CACGGTTCAC	4920
CTCTCACTGT	ATGCACAGAT	TGGCCTCACA	4980
GACAAACATT	TACCAGGGTA	GGATTTTACA	5040
CTTGTGAGGT	TAGGGTATCA	GTGAAAGGAC	5100
AAGGAAATTG	GTAAGCCAGG	CCATGCTTGA	5160
GCTGAGGCAG	GAGGATTCCA	AGTTTCAAGA	5220
AGAAAAGAAA	AGAAATAAAG	AGACAAGAAA	5280
GTAAGGGGCA	CTTGCCTCCA	ATCAAGATGA	5340
GAAGGAGAAA	GCAAACTCCA	GCTGCTGACC	5400

Fig.3(x)

-	CCATACATG	TGCTCCAATG	TGCACACACA
-	TTTGCTTAGA	TTTGAGTAGG	CATTTATGAC
(	GAAAATATAC	CTGTTTGTAT	TTGGTTTGGT
(	GCTTCTCTGT	GTAGTCCTGG	CTGTCCTTGG
7	ACTCAGAAAT	CCGCCTGCTT	GTGCTTCCCA
,	TCAGCAAAAT	TGCATACTTT	AACCCCAGTA
1	ATTCCAGGCT	AGCCAAGGAT	ACAGAGTGAG
(	CCAAAATGTA	TTTTGTGCTT	GTGTATGTAC
_	ACAACTTGTA	GAAGTTCTCT	CCGTTCACAG
	AGGCTTAGCC	ACAGTCTTCT	TTATGTACTG
(	GAATTAATTT	TTGAGATAAG	GTCTCTTGTA
	AAGGTCATCT	TGAGCTGCTG	GTACTCTTGC
1	GCAGCACTTC	TCTGGGGAAG	GGGCTGGCCT
1	GAGTGCTTGG	GTCTCGTTGT	TTCTTTTCTT
	GACTTCCTGA	CTCTTGAAAC	ATCCAGGCAG
	GCCTAACAAA	GTGTCGTCTT	TGACCCCAGA
	CCTTCTCATC	GGCTCCTCCC	TGCAAGCTAC
	CACCGCTGAG	GGGCTCTACT	GGACCTTCAA

Fig.3(xi)

Г				
	CAGGGAGACA	TAATCAATTA	ATAGGATGTA	5460
	TGATGTTTTA	AAATTTTTAT	TTGATTTTAT	5520
	TTGGTTTGAG	TTTTGTTTAT	TTGAGACAGG	5580
	AACTCACTCT	GTAGACCAGG	CTGGCCTTGA	5640
	AGTGCTTAGA	TTAAAGGTGT	GCACTGCCAT	5700
	TTTGGGAGGC	AGAGGCAGAC	TAATGTGTGA	5760
	ACCCTATTCT	TACCCTCCCC	CCCCAAAACC	5820
	ATGTGTGTTG	CAGCACGTAA	ATGTCCAAGG	5880
	TCTAAGTCCT	GAATTCAAAC	TAAGGTCCTC	5940
	AGCCATTTCA	CTGGCCCTGG	ATTGACTGAT	6000
	GCTCTAGCTA	GGCTCAAACT	ATGAACTCCC	6060
	TTCCACCCCA	AGTGGTGGAA	TGATACTCAG	6120
	TGGCCTTGAT	TTTGTTGCCT	CAGCTTCAAT	6180
	TATCTGTGAA	ATGGGTGAAC	ACCTGTTCAA	6240
	GGTGAGGGAC	TTGAAGTGGG	CTCATCCCAT	6300
	CACAGCTGTA	ATCAGCCCCC	AGGACCCCAC	6360
	CTGCTCTATA	CATGGAGACA	CACCTGGGGC	6420
	TGGTCGCCGC	CTGCCCTCTG	AGCTGTCCCG	6480

Fig. 3(XII)
SUBSTITUTE SHEET (RULE 26)

CCTCCTTAAC	ACCTCCACCC	TGGCCCTGGC
GTCAGGAGAC	AATCTGGTGT	GTCACGCCCG
CTATGTTGGC	TGTAAGTGGG	GCCCCAGACA
GATTTAGAGC	CTGGGTCTTC	TGTCCTGGGG
CATGGTCATA	CCCAGCACAG	GCATTGCAAC
TGTGTACCCC	ACAGCTTTAG	AAAAGCTGTC
CCTTTAACAT	CAGCTGCTGG	TCCCGGAACA
GTGCACACGG	GGAGACATTC	TTACATACCA
TACCCAGCCA	AGCCTTGCTG	TGTGACTTCT
TTCCTGTTTA	TGAACTCAAA	AGGGACTCTC
CACATGTGAG	GAGTACCACA	CTGTGGGCCC
CCTCTTCACT	CCCTATGAGA	TCTGGGTGGA
TGATGTCCTC	ACACTGGATG	TCCTGGACGT
GCCCTAGACC	TTATAGGGCG	CCTCCCCCC
GTCTTAGCCA	CAGCCACGGT	GGTTGCAGGA
TTTCCCCCAA	GACAGTCAAG	ATTTTCCCCT
CTCTGCAGAG	AACACCTGGC	CTGACCACCC
GAGTCCTAGG	GGACTGAGAG	GAGGCGCCCA

Fig.3(xiii)

_				·
	CCTGGCTAAC	CTTAATGGGT	CCAGGCAGCA	6540
	AGACGGCAGC	ATTCTGGCTG	GCTCCTGCCT	6600
	CTCAGAGATA	GATGGGGGTT	GGCAATGACA	6660
1	CAGAGCCATG	GGCTCTCACT	TGCATGCAGG	6720
	TCTAGGGACA	GCTGTGGCTG	CACTGTCCCC	6780
	ATGTTTTCCT	TGTAGTGCCC	CCTGAGAAGC	6840
	TGAAGGATCT	CACGTGCCGC	TGGACACCGG	6900
-	ACTACTCCCT	CAAGTACAAG	CTGAGGTTGG	6960
	GGCAATACTT	ACCTTCTCTG	ATCAAATATG	7020
	GCACCTCCAC	AGGTGGTACG	GTCAGGATAA	7080
	TCACTCATGC	CATATCCCCA	AGGACCTGGC	7140
	AGCCACCAAT	CGCCTAGGCT	CAGCAAGATC	7200
	GGGTGAGCCC	CCAGTGTCCA	CCTGTGTTCT	7260
	ATCCCCCCAG	ACTTTTTGGT	TCTTCTAGAG	7320
	CAGTGGTTGT	TCATAACTTA	ATGCAAAGAC	7380
	CCCCACCCC	AACACACACA	TACACACACA	7440
	TCCCTCTCTA	CAGCCCAGGT	GTTCAGAAGG	7500
	GGTCTGAAGG	CGCCCAGGA	AGCCGAGGCC	7560

Fig. 3(XIV)
SUBSTITUTE SHEET (RULE 26)

TTGAGCTGGG	GGGGGGGCG	AGGGTTGGAG
GGGCCTAATC	TAATTAGGGT	GTTCCCAGCC
GTGCCTCACT	GAAGACTCAG	GGGAGAGATC
GGGTTCCTGG	GTGCCCCTGG	CTCATTCCCA
TAACCCTCAG	TTGTGCTCTG	TGGCTGGCAC
CAAGGCATCA	GAGGTGGACA	TGGGATGGGG
AAGGTGGGGT	GATATACAAT	AAAGCTTGTC
GATCACAATT	GTTGACATCA	CTCTGGGACA
AGTAGCTTTA	AGAGTCAGCT	TGTGACTTAA
GTGATGCTCG	CCTCACTCCC	TGTTTAGTGA
GTGGGCTGCT	CTGTCCCCTT	GAGGGCAGGA
TGGTAGCAGC	AACTGCTGCT	GGCTGTTTCT
CTGGGTGAGT	AGCTAACAGG	GGTGGGGGCG
AGCCACTGCA	GCCTAGATTA	CACCACTGGG
AGTCCTCAGA	ACTGGGAGCA	CTGTTGCCAG
AGGGGAGGCA	GAGGCAGAAG	GATCTCTCTG
AGCTCCAGGC	CAGCCAGGGT	GCGCAGTAAA
TGACCAGGCT	TGCTCCACCC	CCAGTGACCA

Fig.3(xv)

-				
	GCACGAACTG	GATGATCCCT	GAGCACAACT	7620
	CAAAGCAGCC	TGGGCCATTT	AACCCTTCAA	7680
	AGCTTGTACT	CTCTCCATGG	TCCCCCAGGA	7740
1	CATCCAGAGG	TTTTGTGTCT	TCCTGGCATC	7800
	AGCTGCCCCG	TGGAGGCTCT	TGGTAATGTA	7860
	ATACATAGGG	ATGGAGCCAA	ATAGCACCTC	7920
	ACCCTGACGC	TCAGAAAGCC	TACTCATGAT	7980
1	TGTAGTGAGA	CCCTAGCTCA	AAACACAGAC	8040
	TACTGGAACT	CAGGGCCTAA	TAGGTGCTGG	8100
	GATCTCTGCG	CTAATCTCCA	CCCCAGCTGG	8160
	ATGTGTGTCT	TCCATCAGAG	ATAGGACCCG	8220
	GGAATATTAA	ATGACAGTAA	TCTATCAGGC	8280
	TGGTCTGGAA	AACGCAGATA	GGGTCATAGG	8340
	TGTTCTGTCA	CTAGGCCATT	CTCACCAAGC	8400
	CATTTAATGC	CAGCATTTAA	TGCCAGCATT	8460
	AGTTCAAGGC	CATCCTGAAT	TTACATAAAG	8520
	ACCTTGTCTC	AAAAAACAAA	GCATCTTTAG	8580
	CGGACCCCC	ACCCGACGTG	CACGTGAGCC	8640
	<u> </u>	<del></del>	<del></del>	

Fig.3(xvi)

GCGTTGGGGG	CCTGGAGGAC	CAGCTGAGTG
ATTTCCTCTT	CCAAGCCAAG	TACCAGATCC
AGGTGCCCGT	CCCGCCCCGG	ACCCGCCCCT
CACCGTGCAG	GTGGTGGATG	ACGTCAGCAA
GCCCGGCACC	GTTTACTTCG	TCCAAGTGCG
AAAGGCGGGA	ATCTGGAGCG	AGTGGAGCCA
TGAGCACCTC	TCCAGGGCTG	GCTGGCCCAT
CCCACCCTTT	TTTTGAGACA	GCGTCTTCAG
TAGTCAAGGA	TGACCTCGAG	CTCCTGGTCT
GGCCATCACC	ACCTTTGGGA	GACTAGCCAT
GATGGAGTAC	AACAGTGTGA	CCTCTTGTAA
AATATCCTAG	GCTCTCTAGA	GGTTAACTTT
TCACATGGTC	CCACAGAACC	TTTTGTCACA
CACATAAGGG	TCTCTACTGC	TGGCCCACCC
CTTAATATTT	GCAATCCTCC	TACCTCAGCC
CAAGTTTCTC	TTCTCTGGGT	CCCTTTCTTA
GTCCTGAAGA	CTCTCCGAGC	CCATGGATCT
AATGTCTGGC	CTCAGTTTCC	CCACCTGTCA

Fig.3(xvii)

_				
	TGCGCTGGGT	CTCACCACCA	GCTCTCAAGG	8700
	GCTACCGCGT	GGAGGACAGC	GTGGACTGGA	8760
	GACCCCGCCC	CCCGCATCTG	ACTCCTCCCT	8820
! !	CCAGACCTCC	TGCCGTCTCG	CGGGCCTGAA	8880
	TTGTAACCCA	TTCGGGATCT	ATGGGTCGAA	8940
	CCCCACCGCT	GCCTCCACCC	CTCGAAGTGG	9000
	GGAATCCCCA	ATCCATCCTG	TTCCTTCCCC	9060
	GTAGCGCATG	CTGGCCTTAA	ATTCAGTATG	9120
	TTTTGTCTCC	ACTTAGAGAC	AATGGCCAGT	9180
	GGAGTCTATT	TAGCCTGTCA	TTTGGTGACA	9240
	GAGAACTGAA	GACAGGCTGT	TTTTAACCCC	9300
	ATATAAAATA	GAGACTATTA	CAGCCAGTTA	9360
	CAACCTATAG	ACCACAGTGC	CTGTGCCTAC	9420
	CTCCAACCCT	TAAAAGGTAA	CCTAGGCAGC	9480
	TCTTGAATGC	TCAGAAACCA	GGCATTAACC	9540
	AGGTGGGAGG	GCCTAAAGAT	GACTTCCTTT	9600
1	GCACTCTCTA	ATATGAAATA	TATTGCATAA	9660
	GGTTTAGGCA	GCACAGTCGG	TCCAAGACAC	9720
	<u> </u>			

Fig.3(xviii)

TTCATTATTT	GCAGGCAGTA	TAAGAAGAAG
CTAAGACAGA	ATACTTCTAC	ACTGAAACTG
TGATGATGAA	ATAATGGGGA	AACTGAGGCT
ACCAGCTCCA	GGAAGCTCTC	CAGCCCCCAT
GAGTGAACAC	AGCTGGGAGG	GGCTGGAGCC
ACCTGCGATT	CTTGCACGGG	AGCCAGCAGG
CCGGGGGTAG	GGTTGGAGGG	AGGTAAGCAG
CCTGTCAGCG	AGTCCCCAGT	TTTATTTATG
TGCTGGGGGA	TGGCTGCGGC	TGGGGATTGG
CAGCCCACTC	CATGTCACAC	CCGTGCATTC
TTCTGTGCTG	TCTGTCTCTA	TTTCTGTCAT
TTAATATAAC	TACGTTTTAA	AAATTGCTTT
GTGCCACAAC	ACACACGTGA	AGGTTAGAGA
GGGACTAGGG	CTGGCGACAA	GAGCAATTAC
CTTCCCATCC	TGTTTGGATA	GTCATAGGTA
TAGCTATCCT	GCCTCAGCCT	ACCAAGTGCT
TCCCAGTGTC	TGGGGGTACA	CAGTCCCAAG
TGCCCCTTGC	TTTGTCCGTG	TCCCTAGAGT

Fig.3(xix)

# 39/43

	CTCCCATCCC	CCACCCGCTT	CCTCCGGTCC	9780
	AACTCTCGCA	GACGCATATG	CTCACTTTAA	9840
-	CCGAGAGATT	CCTGGAGGAA	GAGGGTCAAA	9900
	CCGGGCCTCT	CCAGGTTCTG	GGCTTGGCGG	9960
	TGGGAGCTTT	GGCCCTTGCT	CGTGCCCAGC	10020
	CGGCTGCGTC	CGCCCGAGAG	ACTGAAGAAG	10080
	GGGCTGTGGG	GGCCGAAGCT	TGTGCCAGGG	10140
	GCGTGAGGCC	GATGTCCTTA	TCCGCTGGCC	10200
	ACCCAAGGGC	TGGCTTCCCA	CTCAGTCCTC	10260
	TCTGAGGCTT	ATCTTGGGAA	CCCGCCCTTG	10320
	TCACTTTCCC	AGAGCCTTTT	TTTTATGCTT	10380
	TGTATAATGT	GTGTGCCTTC	GTGAGCGTGC	10440
	ACTTTGTTGA	GTAGGCTCCT	TCCACCATGT	10500
	TGAGTCATCT	CGCCAGCCCC	TCACCCCTCA	10560
1	ATCGAAGGTA	AATCGCTGGC	TTTAATTTCG	10620
	GTGCTACCAC	GTTTGTGGGA	GGGGCTCTCC	10680
	ATCTCTGCTT	TCTAGGTCTT	TGTCTTAGTT	10740
	CTCCGGCCCC	ACTTAGTCTC	CATTGATTTC	10800

Fig.3(XX)
SUBSTITUTE SHEET (RULE 26)

# 40/43

CTTTCTGACC	GAATACTCGG	TTTTACCTCC
CCATCGCCGT	GGCATTGCCA	TTCCTCTGGG
CAACTTTCCC	CAGCCGAAGC	TGGTCTGGTA
GCTGGCCGCG	CCCCAACACT	GCCGCTCCAT
GGGTGTGCGA	GCCGCGGGGC	GGCGAGCCCA
AGTTCCTCGG	CTGGCTCAAG	AAGCACGCAT
ACCAGTGGCG	TGCTTGGATG	CAGAAGTCAC
GGGAGGCTTG	CGTGGGGGGT	AAAGGAGCAG
CACAACACCG	CACTCTTCTT	TCCAAGCACA
GGGTGCGGCG	AGAGGTAAGG	GGGTCTGGGT
CCTTTCCCCT	CCTTCGGTGT	TGCTCAAAGG
AAGAGCCCCA	GGTTTTACTG	CATCATCAAG
CTTTTCTGCC	CTCAGGTCCT	GCCGGCTAAA
CAGACCTGGA	GGCTCACCTG	AATTGGAGCC
TACCAGAGGC	TGGGCACAAT	GAGCTCCCAC
ACTTGGATAT	ACCCCAGTGT	GGGTAGGGTT
TTAAATAAAT	AAAGGAGTTG	TTCAGGTCCC
GGGGTGGGGG	GA	

Fig.3(xxi)

SUBSTITUTE SHEET (RULE 26)

# 41/43

	CACTGATTTG	ACTCCCTCCT	TTGCTTGTCT	10860
	TGACTCTGGG	TCCACACCTG	ACACCTTTCC	10920
	TGGGAGGCCG	CCGTCCCGCG	CGCGCCTCCT	10980
	TCTCTTTAGA	GCGCCCGGGC	CCGGGCGGCG	11040
	GCTCGGGCCC	GGTGCGGCGC	GAGCTCAAGC	11100
	ACTGCTCGAA	CCTTAGTTTC	CGCCTGTACG	11160
	ACAAGACCCG	AAACCAGGTA	GGAAAGTTGG	11220
	AGGAAGAGAG	AGACCCGGGT	GAGCAGCCTC	11280
	GGACGAGGGG	ATCCTGCCCT	CGGGCAGACG	11340
	GAGTGGGGCC	TACAGCAGTC	TAGATGAGGC	11400
-	GATCTCTTAG	TGCTCATTTC	ACCCACTGCA	11460
	TTGCTGAAGG	GTCCAGGCTT	AATGTGGCCT	11520
	CTCTAAGGAT	AGGCCATCCT	CCTGCTGGGT	11580
	CCTCTGTACC	ATCTGGGCAA	CAAAGAAACC	11640
	AACCACAGCT	TTGGTCCACA	TGATGGTCAC	11700
-	GGGGTATTGC	AGGGCCTCCC	AAGAGTCTCT	11760
	GATGGCCAGT	GTGTTTGGGG	CCTATGTGCT	11820
				11832

Fig.3(xxii)

SUBSTITUTE SHEET (RULE 26)

42/43





SUBSTITUTE SHEET (RULE 26)

# THIS PAGE BLANK (USPTO)

### **PCT**

## WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau



## INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

C12N 15/19, C07K 14/715, A61K 38/17, C07K 16/18, A01K 67/027

A3

(11) International Publication Number:

WO 98/11225

(43) International Publication Date:

19 March 1998 (19.03.98)

(21) International Application Number:

PCT/GB97/02479

(22) International Filing Date:

11 September 1997 (11.09.97)

(30) Priority Data: PO 2246

11 September 1996 (11.09.96) AU

(71) Applicant (for all designated States except US): AMRAD OPERATIONS PTY. LTD. [AU/AU]; 576 Swan Street, Richmond, VIC 3121 (AU).

(71) Applicant (for GB only): DZIEGLEWSKA, Hanna, Eva [GB/GB]; Frank B. Dehn & Co., 179 Queen Victoria Street, London EC4V 4EL (GB).

(72) Inventors; and

(75) Inventors, Applicants (for US only): HILTON, Douglas, James [AU/AU]; 244 Research Road, Warrandyte, VIC 3113 (AU). NICOLA, Nicos, Antony [AU/AU]; 56 Churchill Avenue, Mont Albert, VIC 3127 (AU). FARLEY, Alison [AU/AU]; 27/9-19 Miller Street, North Fitzroy, VIC 3068 (AU). WILLSON, Tracy [AU/AU]; 26 Fortuna Avenue, North Balwyn, VIC 3104 (AU). ZHANG, Jian-Guo [CN/AU]; 3 Karri Crescent, Hoppers Crossing, VIC 3029 (AU). ALEXAN-DER, Warren [AU/AU]; 13 Park Street, Moonee Ponds, VIC 3039 (AU). RAKAR, Steven [AU/AU]; 26 Riverside Avenue, Avondale Heights, VIC 3034 (AU). FABRI, Louis [AU/AU]; 8 Laver Court, Mill Park, VIC 3082 (AU). KO-JIMA, Tetsuo [JP/JP]; 1-8-1-302 Minami-Rokugou, Ota-ku, Tokyo 144 (JP). MAEDA, Masatsugu [JP/JP]; 1-6-2-606

Kasuga, Tsukuba, Ibaraki 305 (JP). KIKUCHI, Yasufumi [IP/JP]; 1-29-5-110 Komatsu, Tsuchiura, Ibaraki 300 (JP). NASH, Andrew [AU/AU]; 24 Green Street, Northcote, VIC 3070 (AU).

(74) Agents: DZIEGLEWSKA, Hanna, Eva et al.; Frank B. Dehn & Co., 179 Queen Victoria Street, London EC4V 4EL (GB).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

#### Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(88) Date of publication of the international search report: 30 April 1998 (30.04.98)

(54) Title: A NOVEL HAEMOPOIETIN RECEPTOR AND GENETIC SEQUENCES ENCODING SAME

#### (57) Abstract

The present invention relates generally to a novel haemopoietin receptor or derivatives thereof and to genetic sequences encoding same. Interaction between the novel receptor of the present invention and a cytokine ligand facilitates proliferation, differentiation and survival of a wide variety of cells. The novel receptor and its derivatives and the genetic sequences encoding same of the present invention are useful in the development of a wide range of agonists, antagonists, therapeutics and diagnostic reagents based on ligand interaction with its receptor.

#### FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

	A Managia	ES	Spain	LS	Lesotho	SI	Slovenia
AL	Albania	FI FI	Finland	LT	Lithuania	SK	Slovakia
AM	Armenia			LU	Luxembourg	SN	Senegai
AT	Austria	FR	France	LV	Latvia	SZ	Swaziland
ΑU	Australia	GA	Gabon	MC	Monaco	TD	Chad
ΑZ	Azerbaijan	GB	United Kingdom		Republic of Moldova	TG	Togo
BA	Bosnia and Herzegovina	GE	Georgia	MD	•	TJ	Tajikistan
BB	Barbados	GH	Ghana	MG	Madagascar	TM	Turkmenistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav		
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	ΙE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	ΙT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI .	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	ΚZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
	Denmark	LK	Sri Lanka	SE	Sweden		
DK		LR	Liberia	SG	Singapore		
EE	Estonia	LK	LIUCHA	30	56-P		

Internatic Application No PCT/GB 97/02479

CLASSIFICATION OF SUBJECT MATTER PC 6 C12N15/19 C07 A. CLASS A01K67/027 C07K16/18 A61K38/17 CO7K14/715 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) C12N C07K A61K Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Relevant to claim No. Citation of document, with indication, where appropriate, of the relevant passages Category ' 1-10. DATABASE EMEST12 X 14-19 emb1 SEQ ID MM77631 Acc.No:W66776, 15 June 1996 "Mus musculus cDNA mel7bll.rl similar to PIR:B38252 granulocyte colony-stimulating factor receptor precursor" XP002055540 cited in the application & MARRA ET AL.: "The WahU-HHMI mouse EST project" -/--Patent family members are listed in annex. lx l Further documents are listed in the continuation of box C. Х T later document published after the international filing date or priority date and not in conflict with the application but Special categories of cited documents: *A* document defining the general state of the art which is not considered to be of particular relevance cited to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention *E* earlier document but published on or after the international cannot be considered novel or cannot be considered to filing date involve an inventive step when the document is taken alone "L" document which may throw doubts on priority claim(s) or "Y" document of particular relevance; the claimed invention which is cited to establish the publication date of another citation or other special reason (as specified) cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled *O* document referring to an oral disclosure, use, exhibition or other means *P* document published prior to the international filing date but later than the priority date claimed *&* document member of the same patent family Date of mailing of the international search report Date of the actual completion of the international search 0 6. 03. 98 12 February 1998 Authorized officer Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo ni, Fax: (+31-70) 340-3016 Cupido, M

Form PCT/ISA/210 (second sheet) (July 1992)

1

Internati Application No
PCT/GB 97/02479

		PC1/4B 37/02 173
	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	Relevant to claim No.
Category ^a	Citation of document, with indication, where appropriate, of the relevant passages	
x	ROBB ET AL.: "Structural analysis of the gene encoding the murine Interleukin-11 receptor alpha-chain and a related locus" JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 271, no. 23, 7 June 1996, MD US, pages 13754-13761, XP002055539 see figure 3	1-3,20, 21
X	WO 96 08510 A (PROGENITOR, INC.) 21 March 1996 see figure 2c nucleotides 1053-1068 on sheet 4/11	1-3,20,
X	WO 96 07737 A (AMRAD OPERATIONS PTY.LTD.) 14 March 1996 see figure 8 nucleotides 1040-1055 on sheet 14/21 see claims 1,13	1,3,13,
P,X	WO 97 15663 A (AMRAD OPERATIONS PTY. LTD.)  1 May 1997 see figure 7 (vii) on sheet 20/24	1-3,20,
P,X	WO 97 12037 A (AMRAD OPERATIONS PTY. LTD.) 3 April 1997 see claims 1-3	1-3,20,
P,X	WO 97 25425 A (GENENTECH, INC.) 17 July 1997 see figure 2b on sheet 12/85	1-3,20,

pcT/GB 97/02479

Box I	Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This Inte	emational Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. 🗓	Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:  see FURTHER INFORMATION sheet PCT/ISA/210
2.	Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
з. 🗀	Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II	Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This Inte	emational Searching Authority found multiple inventions in this international application, as follows:
1.	As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2.	As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3.	As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4.	No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remari	The additional search fees were accompanied by the applicant's protest.  No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet (1)) (July 1992)

International Application No. PCT/GB 97/02479

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210							
Remark: Although claims 28 and 29 are directed to a method of treatment of the human/animal body, the search has been carried out and based on the alleged effects of the composition.							
,							

Invermation on patent family members

Internat' Application No
PCT/GB 97/02479

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
WO 9608510 A	21-03-96	US 5643748 A AU 3419495 A CA 2176463 A EP 0730606 A	01-07-97 29-03-96 21-03-96 11-09-96
WO 9607737 A	14-03-96	AU 3465295 A CA 2197873 A EP 0804576 A	27-03-96 14-03-96 05-11-97
WO 9715663 A	01-05-97	AU 7266896 A	15-05-97
WO 9712037 A	03-04-97	AU 6980596 A	17-04-97
WO 9725425 A	17-07-97	AU 1574797 A	01-08-97

THIS PAGE BLANK (USPTO)



#### WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau



## INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

C12N 15/19, C07K 14/715, A61K 38/17, C07K 16/18, A01K 67/027

**A3** 

(11) International Publication Number:

WO 98/11225

(43) International Publication Date:

19 March 1998 (19.03.98)

(21) International Application Number:

PCT/GB97/02479

(22) International Filing Date:

11 September 1997 (11.09.97)

(30) Priority Data:

PO 2246

11 September 1996 (11.09.96)

- (71) Applicant (for all designated States except US): AMRAD OPERATIONS PTY. LTD. [AU/AU]; 576 Swan Street, Richmond, VIC 3121 (AU).
- (71) Applicant (for GB only): DZIEGLEWSKA, Hanna, Eva [GB/GB]; Frank B. Dehn & Co., 179 Queen Victoria Street, London EC4V 4EL (GB).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): HILTON, Douglas, James [AU/AU], 244 Research Road, Warrandyte, VIC 3113 (AU). NICOLA, Nicos, Antony [AU/AU]; 56 Churchill Avenue, Mont Albert, VIC 3127 (AU). FARLEY, Alison [AU/AU]; 27/9-19 Miller Street, North Fitzroy, VIC 3068 (AU). WILLSON, Tracy [AU/AU]; 26 Fortuna Avenue, North Balwyn, VIC 3104 (AU). ZHANG, Jian-Guo [CN/AU]; 3 Karri Crescent, Hoppers Crossing, VIC 3029 (AU). ALEXAN-DER, Warren [AU/AU]; 13 Park Street, Moonee Ponds, VIC 3039 (AU). RAKAR, Steven [AU/AU]; 26 Riverside Avenue, Avondale Heights, VIC 3034 (AU). FABRI, Louis [AU/AU]; 8 Laver Court, Mill Park, VIC 3082 (AU). KO-JIMA, Tetsuo [JP/JP]; 1-8-1-302 Minami-Rokugou, Ota-ku, Tokyo 144 (JP). MAEDA, Masatsugu [JP/JP]; 1-6-2-606

Kasuga, Tsukuba, Ibaraki 305 (JP). KIKUCHI, Yasufumi [JP/JP]; 1-29-5-110 Komatsu, Tsuchiura, Ibaraki 300 (JP). NASH, Andrew [AU/AU]; 24 Green Street, Northcote, VIC 3070 (AU).

- (74) Agents: DZIEGLEWSKA, Hanna, Eva et al.; Frank B. Dehn & Co., 179 Queen Victoria Street, London EC4V 4EL (GB).
- (81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

#### Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(88) Date of publication of the international search report:

30 April 1998 (30.04.98)

### (54) Title: A NOVEL HAEMOPOIETIN RECEPTOR AND GENETIC SEQUENCES ENCODING SAME

#### (57) Abstract

The present invention relates generally to a novel haemopoietin receptor or derivatives thereof and to genetic sequences encoding same. Interaction between the novel receptor of the present invention and a cytokine ligand facilitates proliferation, differentiation and survival of a wide variety of cells. The novel receptor and its derivatives and the genetic sequences encoding same of the present invention are useful in the development of a wide range of agonists, antagonists, therapeutics and diagnostic reagents based on ligand interaction with its receptor.

### FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Кепуа	NL	Netherlands	YU	Yugoslavia
СН	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
СМ	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
cz	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

# A NOVEL HAEMOPOIETIN RECEPTOR AND GENETIC SEQUENCES ENCODING SAME

The present invention relates generally to a novel haemopoietin receptor or derivatives thereof and to genetic sequences encoding same. Interaction between the novel receptor of the present invention and a ligand facilitates proliferation, differentiation and survival of a wide variety of cells. The novel receptor and its derivatives and the genetic sequences encoding same of the present invention are useful in the development of a wide range of agonists, antagonists, therapeutics and diagnostic reagents based on ligand interaction with its receptor.

15

20

25

10

5

Bibliographic details of the publications numerically referred to in this specification are collected at the end of the description. Sequence Identity Numbers (SEQ ID NOs.) for the nucleotide and amino acid sequences referred to in the specification are defined following the bibliography.

Throughout this specification and the claims which follow, unless the context requires otherwise, the word "comprise", or variations such as "comprises" or "comprising", will be understood to imply the inclusion of a stated integer or group of integers but not the exclusion of any other integer or group of integers.

The rapidly increasing sophistication of recombinant DNA techniques is greatly facilitating research into the medical and allied health fields. Cytokine research is of particular importance, especially as these molecules regulate the proliferation, differentiation and function of a wide variety of cells. Administration of recombinant cytokines or regulating cytokine function and/or synthesis is becoming increasingly the focus of

medical research into the treatment of a range of disease conditions.

Despite the discovery of a range of cytokines and other secreted regulators of cell function, comparatively few 5 cytokines are directly used or targeted in therapeutic One reason for this is the pleiotropic nature of many cytokines. For example, interleukin (IL)-11 is a functionally pleiotropic molecule (1,2), initially characterized by its ability to stimulate proliferation 10 of the IL-6-dependent plasmacytoma cell line, T11 65 (3). Other biological actions of IL-11 include induction of multipotential haemopoietin progenitor cell proliferation (4,5,6), enhancement of megakaryocyte and platelet formation (7,8,9,10), stimulation of acute 15 phase protein synthesis (11) and inhibition of adipocyte lipoprotein lipase activity (12, 13).

Other important cytokines in the IL-11 group include IL6, leukaemia inhibitory factor (LIF), oncostatin M (OSM)
and CNTF. All these cytokines exhibit pleiotropic
properties with significant activities in proliferation,
differentiation and survival of cells. Members of the
haemopoietin receptor family are defined by the presence
of a conserved amino acid domain in their extracellular
region. However, despite the low level of amino acid
sequence conservation between other haemopoietin
receptor domains of different receptors, they are all
predicted to assume a similar tertiary structure,
centred around two fibronectin-type III repeats (18,19).

The size of the haemopoietin receptor family has now become extensive and includes the cell surface receptors for may cytokines including interleukin-2 (IL-2), IL-3, IL-4, IL-5, IL-6, IL-7, IL-9, IL-11, IL-12, IL-13, IL-15, granulocyte colony stimulating factor (G-CSF), granulocyte-macrophage-CSF (GM-CSF), erythropoietin,

35

thrombopoietin, leptin, leukaemia inhibitory factor, oncostatin-M, ciliary neurotrophic factor, cardiotrophin, growth hormone and prolactin. Although most of the members of the haemopoietin receptor family act as classic cell surface receptors, binding their 5 cognate ligand at the cell surface and initiating intracellular signal transduction, some receptors are also produced in naturally occurring soluble forms. These soluble receptors can either act as cytokine 10 antagonists, by binding to cytokines and inhibiting productive interactions with cell surface receptors (eq LIF binding protein; (20) or as agonists, binding to cytokine and potentiating interaction with cell surface receptor components (eg soluble interleukin-6 receptor a-chain; (21). Still other members of the family appear 15 to be produced only as secreted proteins, with no evidence of a cell surface form. In this regard, the IL-12 p40 subunit is a useful example. The cytokine IL-12 is secreted as a heterodimer composed of a p35 subunit which shows similarity to cytokines such as IL-6 20 (22) and a p40 subunit which shares similarity with the IL-6 receptor a-chain (23). In this case the soluble receptor acts as part of the cytokine itself and essential to formation of an active protein. 25 addition to acting as cytokines (eq IL-12p40), cytokine agonists (eg IL-6 receptor a-chain) or cytokine antagonists (LIF binding protein), members of the haemopoietin receptor have been useful in the discovery of small molecule cytokine mimetics. For example, the 30 discovery of peptide mimetics of two commercially valuable cytokines, erythropoietin and thrombopoietin, centred on the selection of peptides capable of binding to soluble versions of the erythropoietin and thrombopoietin receptors (24,25). Due to the importance 35 and multifactorial nature of these cytokines, there is a need to identify receptors, including both cell bound and soluble, for pleiotropic cytokines. Identification

of such receptors permits the identification of pleiotropic cytokines and the development of a range of therapeutic and diagnostic agents.

Accordingly, one aspect of the present invention relates to a nucleic acid molecule comprising a sequence of nucleotides encoding or complementary to a sequence encoding a novel haemopoietin receptor or a derivative thereof.

10

15

More particularly, the present invention provides a nucleic acid molecule comprising a sequence of nucleotides encoding or complementary to a sequence encoding a novel haemopoietin receptor or a derivative thereof having the motif:

Trp Ser Xaa Trp Ser [SEQ ID NO:1], wherein Xaa is any amino acid and is preferably Asp or Glu.

Even more particularly, the present invention is directed to a nucleic acid molecule comprising a sequence of nucleotides encoding or complementary to a sequence encoding a novel haemopoietin receptor or a derivative thereof, said receptor comprising the motif:

25

30

Trp Ser Xaa Trp Ser [SEQ ID NO:1]

35

Still more particularly, the present invention provides an isolated nucleic acid molecule comprising a sequence

of nucleotides substantially as set forth in SEQ ID NO:12 or a nucleotide sequence having at least 60% similarity to the nucleotide sequence set forth in SEQ ID NO:12 or a nucleotide sequence capable of hybridising thereto under low stringency conditions at 42EC and wherein said nucleotide sequence encodes a novel haemopoietin receptor or a derivative thereof.

In a related embodiment, the present invention provides
an isolated nucleic acid molecule comprising a sequence
of nucleotides substantially as set forth in SEQ ID
NO:14 or a nucleotide sequence having at least 60%
similarity to the nucleotide sequence set forth in SEQ
ID NO:14 or a nucleotide sequence capable of hybridising
thereto under low stringency conditions at 42EC and
wherein said nucleotide sequence encodes a novel
haemopoietin receptor or a derivative thereof.

In another related embodiment, the present invention provides an isolated nucleic acid molecule comprising a sequence of nucleotides substantially as set forth in SEQ ID NO:16 or a nucleotide sequence having at least 60% similarity to the nucleotide sequence set forth in SEQ ID NO:16 or a nucleotide sequence capable of hybridising thereto under low stringency conditions at 42EC and wherein said nucleotide sequence encodes a novel haemopoietin receptor or a derivative thereof.

In a further related embodiment, the present invention provides an isolated nucleic acid molecule comprising a sequence of nucleotides substantially as set forth in SEQ ID NO:18 or a nucleotide sequence having at least 60% similarity to the nucleotide sequence set forth in SEQ ID NO:18 or a nucleotide sequence capable of hybridising thereto under low stringency conditions at 42EC and wherein said nucleotide sequence encodes a novel haemopoietin receptor or a derivative thereof.

5

20

25

30

35

In yet a further related embodiment, the present invention provides an isolated nucleic acid molecule comprising a sequence of nucleotides substantially as set forth in SEQ ID NO:24 or a nucleotide sequence having at least 60% similarity to the nucleotide sequence set forth in SEQ ID NO:24 or a nucleotide sequence capable of hybridising thereto under low stringency conditions at 42EC and wherein said nucleotide sequence encodes a novel haemopoietin receptor or a derivative thereof.

Still yet a further embodiment of the present invention is directed to a sequence of nucleotides substantially as set forth in SEQ ID NO:28 or a nucleotide sequence having at least 60% similarity to the nucleotide sequence set forth in SEQ ID NO:28 or a nucleotide sequence capable of hybridising thereto under low stringency conditions at 42EC and wherein said nucleotide sequence encodes a novel haemopoietin receptor or a derivative thereof.

In still yet another embodiment, the present invention provides an isolated nucleic acid molecule comprising a sequence of nucleotides substantially set forth in SEQ ID NO:38 or a nucleotide sequence having at least 60% similarity to the nucleotide sequence set forth in SEQ ID NO:38 or a nucleotide sequence capable of hybridising thereto under low stringency conditions at 42EC and wherein said nucleotide sequence encodes a novel haemopoietin receptor or a derivative thereof.

The term "receptor" is used in its broadest sense and includes any molecule capable of binding, associating or otherwise interacting with a ligand. Generally, the interaction will have a signalling effect although the present invention is not necessarily so limited. For example, the "receptor" may be in soluble form, often

5

10

15

20

25

30

35

referred to as a cytokine binding protein. A receptor may be deemed a receptor notwithstanding that its ligand or ligands has or have not been identified.

preferably, the novel receptor is derived from a mammal or a species of bird. Particularly, preferred mammals include humans, primates, laboratory test animals (e.g. mice, rats, rabbits, guinea pigs), livestock animals (e.g. sheep, horses, pigs, cows), companion animals (e.g. dogs, cats) or captive wild animals (e.g. deer, foxes, kangaroos). Although the present invention is exemplified with respect to mice, the scope of the subject invention extends to all animals and in particular humans.

15

20

25

30

35

The present invention is predicated in part on an ability to identify members of the haemopoietin receptor family with limited sequence similarity. Based on this approach, a genetic sequence has been identified in accordance with the present invention which encodes a novel receptor. The expressed genetic sequence is referred to herein as "NR6". Different forms of NR6 are referred to as, for example, NR6.1, NR6.2 and NR6.3. The nucleotide and corresponding amino acid sequences for these molecules are represented in SEQ ID NOS:12, 14 and 16, respectively.

Preferred human and murine nucleic acid sequences for NR6 or its derivatives include sequences from brain, liver, kidney, neonatal, embryonic, cancer or tumourderived tissues.

Reference herein to a low stringency at 42EC includes and encompasses from at least about 1% v/v to at least about 15% v/v formamide and from at least about 1M to at least about 2M salt for hybridisation, and at least about 1M to at least about 1M to at least about 2M salt for washing

conditions. Alternative stringency conditions may be applied where necessary, such as medium stringency, which includes and encompasses from at least about 16% v/v to at least about 30% v/v formamide and from at least about 0.5M to at least about 0.9M salt for hybridisation, and at least about 0.5M to at least about 0.9M salt for washing conditions, or high stringency, which includes and encompasses from at least about 31% v/v to at least about 50% v/v formamide and from at least about 0.01M to at least about 0.15M salt for hybridisation, and at least about 0.01M to at least about 0.01M to at least about 0.01M to at least about 0.15M salt for hybridisation, and at least about 0.01M to at least about 0.15M salt for washing conditions.

The nucleic acid molecules contemplated by the present
invention are generally in isolated form and are
preferably cDNA or genomic DNA molecules. In a
particularly preferred embodiment, the nucleic acid
molecules are in vectors and most preferably expression
vectors to enable expression in a suitable host cell.

Particularly useful host cells include prokaryotic
cells, mammalian cells, yeast cells and insect cells.
The cells may also be in the form of a cell line.

Accordingly, another aspect of the present invention provides an expression vector comprising a nucleic acid molecule encoding the novel haempoietin receptor or a derivative thereof as hereinbefore described, said expression vector capable of expression in a selected host cell.

30

35

25

Another aspect of the present invention contemplates a method for cloning a nucleotide sequence encoding NR6 or a derivative thereof, said method comprising searching a nucleotide data base for a sequence which encodes the amino acid sequence set forth in SEQ ID NO:1, designing one or more oligonucleotide primers based on the nucleotide sequence located in the search, screening a

nucleic acid library with said one or more oligonucleotides and obtaining a clone therefrom which encodes said NR6 or part thereof.

Once a novel nucleotide sequence is obtained as indicated above encoding NR6, oligonucleotides may be designed which bind cDNA clones with high stringency. Direct colony hybridisation may be employed or PCR amplification may be used. The use of oligonucleotide primers which bind under conditions of high stringency ensures rapid cloning of a molecule encoding the novel NR6 and less time is required in screening out cloning artefacts. However, depending on the primers used, low or medium stringency conditions may also be employed.

15

20

30

35

Alternatively, a library may be screened directly such as using oligonucleotides set forth in SEQ ID NO:7 or SEQ ID NO:8 or a mixture of both oligonucleotides may be used. In addition, one or more of oligonucleotides defined in SEQ ID NO:2 to 11 may also be used.

Preferably, the nucleic acid library is a cDNA, genomic, cDNA expression or mRNA library.

25 Preferably, the nucleic acid library is a cDNA expression library.

Preferably, the nucleotide data base is of human or murine origin and of brain, liver, kidney, neo-natal tissue, embryonic tissue, tumour or cancer tissue origin.

Preferred percentage similarities to the reference nucleotide sequences include at least about 70%, more preferably at least about 80%, still more preferably at least about 90% and even more preferably at least about 95% or above.

Another aspect of the present invention provides an isolated nucleic acid molecule comprising a sequence of nucleotides encoding a novel haempoietin receptor or derivative thereof having an amino acid sequence as set forth in SEQ ID NO:13 or having at least about 50% similarity to all or part thereof.

Still yet another aspect of the present invention provides an isolated nucleic acid molecule comprising a sequence of nucleotides encoding a novel haempoietin receptor or derivative thereof having an amino acid sequence as set forth in SEQ ID NO:15 or having at least about 50% similarity to all or part thereof.

Even yet another aspect of the present invention provides an isolated nucleic acid molecule comprising a sequence of nucleotides encoding a novel haempoietin receptor or derivative thereof having an amino acid sequence as set forth in SEQ ID NO:17 or having at least about 50% similarity to all or part thereof.

A further aspect of the present invention provides an isolated nucleic acid molecule comprising a sequence of nucleotides encoding a novel haempoietin receptor or derivative thereof having an amino acid sequence as set forth in SEQ ID NO:19 or having at least about 50% similarity to all or part thereof.

Even yet a another aspect of the present invention
provides an isolated nucleic acid molecule comprising a
sequence of nucleotides encoding a novel haempoietin
receptor or derivative thereof having an amino acid
sequence as set forth in SEQ ID NO:25 or having at least
about 50% similarity to all or part thereof.

Another aspect of the present invention provides an isolated nucleic acid molecule comprising a sequence of

- 10 -

5

25

35

nucleotides encoding a novel haempoietin receptor or derivative thereof having an amino acid sequence as set forth in one or more of SEQ ID NOs:29 or having at least about 50% similarity to all or part thereof.

5

Preferably, the percentage amino acid similarity is at least about 60%, more preferably at least about 70%, even more preferably at least about 80-85% and still even more preferably at least about 90-95% or greater.

10

15

20

25

The NR6 polypeptide contemplated by the present invention includes, therefore, derivatives which are components, parts, fragments, homologues or analogues of the novel haempoietin receptors which are preferably encoded by all or part of a nucleotide sequences substantially set forth in SEQ ID NO:12 or 14 or 16 or 18 or 25 or 20 or 24 or 28 or 38 or a molecule having at least about 60% nucleotide similarity to all or part thereof or a molecule capable of hybridising to the nucleotide sequence set forth in SEQ ID NO:12 or 14 or 16 or 18 or 20 or 24 or 28 or 38 or a complementary form The NR6 molecule may be glycosylated or nonglycosylated. When in glycosylated form, the glycosylation may be substantially the same as naturally occurring haempoietin receptor or may be a modified form of glycosylation. Altered or differential glycosylation states may or may not affect binding activity of the novel receptor.

30

The NR6 haemopoietin receptor may be in soluble form or may be expressed on a cell surface or conjugated or fused to a solid support or another molecule.

As stated above, the present invention further

contemplates a range of derivatives of NR6. Derivatives include fragments, parts, portions, mutants, homologues and analogues of the NR6 polypeptide and corresponding

genetic sequence. Derivatives also include single or multiple amino acid substitutions, deletions and/or additions to NR6 or single or multiple nucleotide substitutions, deletions and/or additions to the genetic sequence encoding NR6. "Additions" to amino acid sequences or nucleotide sequences include fusions with other peptides, polypeptides or proteins or fusions to nucleotide sequences. Reference herein to ANR6" includes reference to all derivatives thereof including functional derivatives or NR6 immunologically interactive derivatives.

Analogues of NR6 contemplated herein include, but are not limited to, modification to side chains, incorporating of unnatural amino acids and/or their derivatives during peptide, polypeptide or protein synthesis and the use of crosslinkers and other methods which impose conformational constraints on the proteinaceous molecule or their analogues.

20

5

10

15

Examples of side chain modifications contemplated by the present invention include modifications of amino groups such as by reductive alkylation by reaction with an aldehyde followed by reduction with NaBH4; amidination with methylacetimidate; acylation with acetic anhydride; carbamoylation of amino groups with cyanate; trinitrobenzylation of amino groups with 2, 4, 6-trinitrobenzene sulphonic acid (TNBS); acylation of amino groups with succinic anhydride and tetrahydrophthalic anhydride; and pyridoxylation of lysine with pyridoxal-5-phosphate followed by reduction with NaBH4.

The guanidine group of arginine residues may be modified by the formation of heterocyclic condensation products with reagents such as 2,3-butanedione, phenylglyoxal and glyoxal.

The carboxyl group may be modified by carbodiimide activation via O-acylisourea formation followed by subsequent derivitisation, for example, to a corresponding amide.

5

10

15

20

25

Sulphydryl groups may be modified by methods such as carboxymethylation with iodoacetic acid or iodoacetamide; performic acid oxidation to cysteic acid; formation of a mixed disulphides with other thiol compounds; reaction with maleimide, maleic anhydride or other substituted maleimide; formation of mercurial derivatives using 4-chloromercuribenzoate, 4-chloromercuriphenylsulphonic acid, phenylmercury chloride, 2-chloromercuri-4-nitrophenol and other mercurials; carbamoylation with cyanate at alkaline pH.

Tryptophan residues may be modified by, for example, oxidation with N-bromosuccinimide or alkylation of the indole ring with 2-hydroxy-5-nitrobenzyl bromide or sulphenyl halides. Tyrosine residues on the other hand, may be altered by nitration with tetranitromethane to form a 3-nitrotyrosine derivative.

Modification of the imidazole ring of a histidine residue may be accomplished by alkylation with iodoacetic acid derivatives or N-carbethoxylation with diethylpyrocarbonate.

Examples of incorporating unnatural amino acids and
derivatives during peptide synthesis include, but are
not limited to, use of norleucine, 4-amino butyric acid,
4-amino-3-hydroxy-5-phenylpentanoic acid, 6aminohexanoic acid, t-butylglycine, norvaline,
phenylglycine, ornithine, sarcosine, 4-amino-3-hydroxy6-methylheptanoic acid, 2-thienyl alanine and/or Disomers of amino acids. A list of unnatural amino acid,
contemplated herein is shown in Table 1.

These types of modifications may be important to stabilise NR6 if administered to an individual or for use as a diagnostic reagent.

- Crosslinkers can be used, for example, to stabilise 3D conformations, using homo-bifunctional crosslinkers such as the bifunctional imido esters having  $(CH_2)_n$  spacer groups with n=1 to n=6, glutaraldehyde, N-hydroxysuccinimide esters and hetero-bifunctional
- reagents which usually contain an amino-reactive moiety such as N-hydroxysuccinimide and another group specific-reactive moiety such as maleimido or dithio moiety (SH) or carbodiimide (COOH). In addition, peptides can be conformationally constrained by, for example,
- incorporation of C" and N "-methylamino acids, introduction of double bonds between C" and  $C_{\varsigma}$  atoms of amino acids and the formation of cyclic peptides or analogues by introducing covalent bonds such as forming an amide bond between the N and C termini, between two
- 20 side chains or between a side chain and the N or C terminus.

PCT/GB97/02479

TABLE 1

Non-conventional amino acid	Code	Non-conventional	Code
aminobutyric acid	Abu	L-N-methylalanine	Nmal
Amino-"-methylbutyrate	Mgabu	L-N-methylarginine	Nmar
aminocyclopropane-	Cpro	L-N-methylasparagine	Nmas
carboxylate		L-N-methylaspartic acid	Nmas
aminoisobutyric acid	Aib	L-N-methylcysteine	Nmcy
aminonorbornyl-	Norb	L-N-methylglutamine	Nmg]
carboxylate		L-N-methylglutamic acid	Nmg]
cyclohexylalanine		ChexaL-N-methylhistidine	Nmh:
cyclopentylalanine	Cpen	L-N-methylisolleucine	Nmi
D-alanine	Dal	L-N-methylleucine	Nml
D-arginine	Darg	L-N-methyllysine	Nml
D-aspartic acid	Dasp	L-N-methylmethionine	Nmm
D-cysteine	Dcys	L-N-methylnorleucine	Nmn
D-glutamine	Dgln	L-N-methylnorvaline	Nmn
D-glutamic acid	Dglu	L-N-methylornithine	Nmo
D-histidine	Dhis	L-N-methylphenylalanine	Nmp
D-isoleucine	Dile	L-N-methylproline	Nmp
D-leucine	Dleu	L-N-methylserine	Nms
D-lysine	Dlys	L-N-methylthreonine	Nmt
D-methionine	Dmet	L-N-methyltryptophan	Nmt
D-ornithine	Dorn	L-N-methyltyrosine	Nmt
D-phenylalanine	Dphe	L-N-methylvaline	Nmv
D-proline	Dpro	L-N-methylethylglycine	Nme
D-serine	Dser	L-N-methyl-t-butylglycine	Nmt
D-threonine	Dthr	L-norleucine	Nle
D-tryptophan	Dtrp	L-norvaline	Nva
D-tyrosine	Dtyr	"-methyl-aminoisobutyrate	Mai
D-valine	Dval	"-methyl-(-aminobutyrate	Mga
D-"-methylalanine	Dmala	"-methylcyclohexylalanine	Mch
D-"-methylarginine	Dmarg	"-methylcylcopentylalanine	Mcr
D-"-methylasparagine	Dmasn	"-methyl-"-napthylalanine	Mai
D-"-methylaspartate	Dmasp	"-methylpenicillamine	Mpe

	D-"-methylcysteine	Dmcys	N-(4-aminobutyl)glycine	Nglu
	D-"-methylglutamine	Dmgln	N-(2-aminoethyl)glycine	Naeg
	D-"-methylhistidine	Dmhis	N-(3-aminopropyl)glycine	Norn
	D-"-methylisoleucine	Dmile	N-amino-"-methylbutyrate	Nmaabu
5	D-"-methylleucine	Dmleu	"-napthylalanine	Anap
	D-"-methyllysine	Dmlys	N-benzylglycine	Nphe
	D-"-methylmethionine	Dmmet	N-(2-carbamylethyl)glycine	Ngln
	D-"-methylornithine	Dmorn	N-(carbamylmethyl)glycine	Nasn
	D-"-methylphenylalanine	Dmphe	N-(2-carboxyethyl)glycine	Nglu
10	D-"-methylproline	Dmpro	N-(carboxymethyl)glycine	Nasp
	D-"-methylserine	Dmser	N-cyclobutylglycine	Ncbut
	D"-methylthreonine	Dmthr	N-cycloheptylglycine	Nchep
	D-"-methyltryptophan	Dmtrp	N-cyclohexylglycine	Nchex
	D-"-methyltyrosine	Dmty	N-cyclodecylglycine	Ncdec
15	D-"-methylvaline	Dmval	N-cylcododecylglycine	Ncdod
	D-N-methylalanine	Dnmala	N-cyclooctylglycine	Ncoct
	D-N-methylarginine	Dnmarg	N-cyclopropylglycine	Ncpro
	D-N-methylasparagine	Dnmasn	N-cycloundecylglycine	Ncund
	D-N-methylaspartate	Dnmasp	N-(2,2-diphenylethyl)glycir	ne Nbhm
20	D-N-methylcysteine	Dnmcys	N-(3,3-diphenylpropyl)glyc	ine Nbhe
	D-N-methylglutamine	Dnmgln	N-(3-guanidinopropyl)glycin	ne Narg
	D-N-methylglutamate	Dnmglu	N-(1-hydroxyethyl)glycine	Nthr
	D-N-methylhistidine	Dnmhis	N-(hydroxyethyl))glycine	Nser
	D-N-methylisoleucine	Dnmile	N-(imidazolylethyl))glycin	e Nhis
25	D-N-methylleucine	Dnmleu	N-(3-indolylyethyl)glycine	Nhtrp
	D-N-methyllysine	Dnmlys	N-methyl-(-aminobutyrate	Nmgabu
	N-methylcyclohexylalanine	Nmchexa	D-N-methylmethionine	Dnmmet
	D-N-methylornithine	Dnmorn	N-methylcyclopentylalanine	
	NmcpenN-methylglycine	Nala	D-N-methylphenylalanine	Dnmphe
30	N-methylaminoisobutyrate	Nmaib	D-N-methylproline	Dnmpro
	N-(1-methylpropyl)glycine	Nile	D-N-methylserine	Dnmser
	N-(2-methylpropyl)glycine	e Nleu	D-N-methylthreonine	Dnmthr
	D-N-methyltryptophan	Dnmtrp	N-(1-methylethyl)glycine	Nval
	D-N-methyltyrosine	Dnmtyr	N-methyla-napthylalanine	Nmanap
35	D-N-methylvaline	Dnmval	N-methylpenicillamine	Nmpen
	(-aminobutyric acid	Gabu	N-(p-hydroxyphenyl)glycine	Nhtyr
	L-t-butylglycine	Tbug	N-(thiomethyl)glycine	Ncys

	L-ethylglycine	Etg	penicillamine	Pen
	L-homophenylalanine	Hphe	L-"-methylalanine	Mala
	L-"-methylarginine	Marg	L-"-methylasparagine	Masn
	L-"-methylaspartate	Masp	L-"-methyl-t-butylglycine	Mtbug
5	L-"-methylcysteine	Mcys	L-methylethylglycine	Metg
	L-"-methylglutamine	Mgln	L-"-methylglutamate	Mglu
	L-"-methylhistidine	Mhis	L-"-methylhomophenylalanin	e Mhphe
	L-"-methylisoleucine	Mile	N-(2-methylthioethyl)glyci	ne Nmet
	L-"-methylleucine	Mleu	L-"-methyllysine	Mlys
10	L-"-methylmethionine	Mmet	L-"-methylnorleucine	Mnle
	L-"-methylnorvaline	Mnva	L-"-methylornithine	Morn
	L-"-methylphenylalanine	Mphe	L-"-methylproline	Mpro
	L-"-methylserine	Mser	L-"-methylthreonine	Mthr
	L-"-methyltryptophan	Mtrp	L-"-methyltyrosine	Mtyr
15	L-"-methylvaline	Mval	L-N-methylhomophenylalanin	e Nmhphe
	N-(N-(2,2-diphenylethyl)	Nnbhm	N-(N-(3,3-diphenylpropyl)	Nnbhe
•	carbamylmethyl)glycine	* *	carbamylmethyl)glycine	
	1-carboxy-1-(2,2-diphenyl	- Nmbc	ethylamino)cyclopropane	

20

25

30

. 35

The present invention further contemplates chemical analogues of NR6 capable of acting as antagonists or agonists of NR6 or which can act as functional analogues of NR6. Chemical analogues may not necessarily be derived from NR6 but may share certain conformational similarities. Alternatively, chemical analogues may be specifically designed to mimic certain physiochemical properties of NR6. Chemical analogues may be chemically synthesised or may be detected following, for example, natural product screening.

The identification of NR6 permits the generation of a range of therapeutic molecules capable of modulating expression of NR6 or modulating the activity of NR6. Modulators contemplated by the present invention includes agonists and antagonists of NR6 expression. Antagonists of NR6 expression include antisense

molecules, ribozymes and co-suppression molecules. Agonists include molecules which increase promoter ability or interfere with negative regulatory mechanisms. Agonists of NR6 include molecules which overcome any negative regulatory mechanism. Antagonists of NR6 include antibodies and inhibitor peptide fragments.

Other derivatives contemplated by the present invention include a range of glycosylation variants from a completely unglycosylated molecule to a modified glycosylated molecule. Altered glycosylation patterns may result from expression of recombinant molecules in different host cells.

15

20

25

30

35

5

Another embodiment of the present invention contemplates a method for modulating expression of NR6 in a subject such as a human or mouse, said method comprising contacting the genetic sequence encoding NR6 with an effective amount of a modulator of NR6 expression for a time and under conditions sufficient to up-regulate or down-regulate or otherwise modulate expression of NR6. Modulating NR6 expression provides a means of modulating NR6-ligand interaction or NR6 stimulation of cell activities.

Another aspect of the present invention contemplates a method of modulating activity of NR6 in a human, said method comprising administering to said mammal a modulating effective amount of a molecule for a time and under conditions sufficient to increase or decrease NR6 activity. The molecule may be a proteinaceous molecule or a chemical entity and may also be a derivative of NR6 or its ligand or a chemical analogue or truncation mutant of NR6 or its ligand.

The present invention, therefore, contemplates a

pharmaceutical composition comprising NR6 or a derivative thereof or a modulator of NR6 expression or NR6 activity and one or more pharmaceutically acceptable carriers and/or diluents. These components are referred to as the active ingredients.

The pharmaceutical forms suitable for injectable use include sterile aqueous solutions (where water soluble) and sterile powders for the extemporaneous preparation of sterile injectable solutions. It must be stable 10 under the conditions of manufacture and storage and must be preserved against the contaminating action of microorganisms such as bacteria and fungi. The carrier can be a solvent or dilution medium comprising, for example, water, ethanol, polyol (for example, glycerol, 15 propylene glycol and liquid polyethylene glycol, and the like), suitable mixtures thereof, and vegetable oils. The proper fluidity can be maintained, for example, by the use of superfactants. The preventions of the action of microorganisms can be brought about by various 20 antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, sorbic acid, thirmerosal and the like. In many cases, it will be preferable to include isotonic agents, for example, sugars or sodium chloride. Prolonged absorption of the 25 injectable compositions can be brought about by the use in the compositions of agents delaying absorption, for example, aluminum monostearate and gelatin.

30 Sterile injectable solutions are prepared by incorporating the active compounds in the required amount in the appropriate solvent with various of the other ingredients enumerated above, as required, followed by filtered sterilization. In the case of sterile powders for the preparation of sterile injectable solutions, the preferred methods of preparation are vacuum drying and the freeze-drying

- 19 -

5

technique which yield a powder of the active ingredient plus any additional desired ingredient from previously sterile-filtered solution thereof.

- When the active ingredients are suitably protected they may be orally administered, for example, with an inert diluent or with an assimilable edible carrier, or it may be enclosed in hard or soft shell gelatin capsule, or it may be compressed into tablets, or it may be
- incorporated directly with the food of the diet. For oral therapeutic administration, the active compound may be incorporated with excipients and used in the form of ingestible tablets, buccal tablets, troches, capsules, elixirs, suspensions, syrups, wafers, and the like.
- Such compositions and preparations should contain at least 1% by weight of active compound. The percentage of the compositions and preparations may, of course, be varied and may conveniently be between about 5 to about 80% of the weight of the unit. The amount of active
- compound in such therapeutically useful compositions in such that a suitable dosage will be obtained. Preferred compositions or preparations according to the present invention are prepared so that an oral dosage unit form contains between about 0.1 ug and 2000 mg of active
- compound. Alternative dosage amounts include from about 1 Fg to about 1000 mg and from about 10 Fg to about 500 mg.
- The tablets, troches, pills, capsules and the like may
  also contain the components as listed hereafter: A
  binder such as gum, acacia, corn starch or gelatin;
  excipients such as dicalcium phosphate; a
  disintegrating agent such as corn starch, potato starch,
  alginic acid and the like; a lubricant such as
  magnesium stearate; and a sweetening agent such a
  sucrose, lactose or saccharin may be added or a
  flavouring agent such as peppermint, oil of wintergreen,

or cherry flavouring. When the dosage unit form is a capsule, it may contain, in addition to materials of the above type, a liquid carrier. Various other materials may be present as coatings or to otherwise modify the physical form of the dosage unit. For instance, tablets, pills, or capsules may be coated with shellac, sugar or both. A syrup or elixir may contain the active compound, sucrose as a sweetening agent, methyl and propylparabens as preservatives, a dye and flavouring such as cherry or orange flavour. Of course, any material used in preparing any dosage unit form should be pharmaceutically pure and substantially non-toxic in the amounts employed. In addition, the active compound(s) may be incorporated into sustained-release preparations and formulations.

The present invention also extends to forms suitable for topical application such as creams, lotions and gels as well as a range of "paints" which are applied to skin and through which the active ingredients are absorbed.

Pharmaceutically acceptable carriers and/or diluents include any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents and the like. The use of such media and agents for pharmaceutical active substances is well known in the art and except insofar as any conventional media or agent is incompatible with the active ingredient, their use in the therapeutic compositions is contemplated. Supplementary active ingredients can also be incorporated into the compositions.

It is especially advantageous to formulate parenteral compositions in dosage unit form for ease of administration and uniformity of dosage. Dosage unit form as used herein refers to physically discrete units

5

10

15

20

25

30

suited as unitary dosages for the mammalian subjects to be treated; each unit containing a predetermined quantity of active material calculated to produce the desired therapeutic effect in association with the required pharmaceutical carrier. The specification for the novel dosage unit forms of the invention are dictated by and directly dependent on (a) the unique characteristics of the active material and the particular therapeutic effect to be achieved, and (b) the limitations inherent in the art of compounding such an active material for the treatment of disease in living subjects having a diseased condition in which bodily health is impaired as herein disclosed in detail.

- The principal active ingredient is compounded for 15 convenient and effective administration in effective amounts with a suitable pharmaceutically acceptable carrier in dosage unit form as hereinbefore disclosed. A unit dosage form can, for example, contain the principal active compound in amounts ranging from 0.5 :g 20 to about 2000 mg. Expressed in proportions, the active compound is generally present in from about 0.5 :g to about 2000 mg/ml of carrier. In the case of compositions containing supplementary active ingredients, the dosages are determined by reference to 25 the usual dose and manner of administration of the said ingredients.
- Dosages may also be expressed per body weight of the recipient. For example, from about 10 ng to about 1000 mg/kg body weight, from about 100 ng to about 500 mg/kg body weight and for about 1 Fg to above 250 mg/kg body weight may be administered.

The pharmaceutical composition may also comprise genetic
molecules such as a vector capable of transfecting
target cells where the vector carries a nucleic acid
molecule capable of modulating NR6 expression or NR6

activity. The vector may, for example, be a viral vector.

Still another aspect of the present invention is
directed to antibodies to NR6 and its derivatives. Such
antibodies may be monoclonal or polyclonal and may be
selected from naturally occurring antibodies to NR6 or
may be specifically raised to NR6 or derivatives
thereof. In the case of the latter, NR6 or its
derivatives may first need to be associated with a
carrier molecule. The antibodies and/or recombinant NR6
or its derivatives of the present invention are
particularly useful as therapeutic or diagnostic agents.
For example, NR6 antibodies or antibodies to its ligand
may act as antagonists.

For example, NR6 and its derivatives can be used to screen for naturally occurring antibodies to NR6. These may occur, for example in some autoimmune diseases. Alternatively, specific antibodies can be used to screen for NR6. Techniques for such assays are well known in the art and include, for example, sandwich assays and ELISA. Knowledge of NR6 levels may be important for

diagnosis of certain cancers or a predisposition to
cancers or for monitoring certain therapeutic protocols.

Antibodies to NR6 of the present invention may be monoclonal or polyclonal. Alternatively, fragments of antibodies may be used such as Fab fragments. Furthermore, the present invention extends to recombinant and synthetic antibodies and to antibody hybrids. A "synthetic antibody" is considered herein to include fragments and hybrids of antibodies. The antibodies of this aspect of the present invention are particularly useful for immunotherapy and may also be used as a diagnostic tool for assessing apoptosis or monitoring the program of a therapeutic regimen.

20

30

For example, specific antibodies can be used to screen for NR6 proteins. The latter would be important, for example, as a means for screening for levels of NR6 in a cell extract or other biological fluid or purifying NR6 made by recombinant means from culture supernatant fluid. Techniques for the assays contemplated herein are known in the art and include, for example, sandwich assays and ELISA.

- It is within the scope of this invention to include any second antibodies (monoclonal, polyclonal or fragments of antibodies or synthetic antibodies) directed to the first mentioned antibodies discussed above. Both the first and second antibodies may be used in detection assays or a first antibody may be used with a commercially available anti-immunoglobulin antibody. An antibody as contemplated herein includes any antibody specific to any region of NR6.
- Both polyclonal and monoclonal antibodies are obtainable 20 by immunization with the enzyme or protein and either type is utilizable for immunoassays. The methods of obtaining both types of sera are well known in the art. Polyclonal sera are less preferred but are relatively 25 easily prepared by injection of a suitable laboratory animal with an effective amount of NR6, or antigenic parts thereof, collecting serum from the animal, and isolating specific sera by any of the known immunoadsorbent techniques. Although antibodies produced by this method are utilizable in virtually any 30 type of immunoassay, they are generally less favoured because of the potential heterogeneity of the product.
- The use of monoclonal antibodies in an immunoassay is particularly preferred because of the ability to produce them in large quantities and the homogeneity of the product. The preparation of hybridoma cell lines for

monoclonal antibody production derived by fusing an immortal cell line and lymphocytes sensitized against the immunogenic preparation can be done by techniques which are well known to those who are skilled in the art.

Another aspect of the present invention contemplates a method for detecting NR6 in a biological sample from a subject said method comprising contacting said biological sample with an antibody specific for NR6 or its derivatives or homologues for a time and under conditions sufficient for an antibody-NR6 complex to form, and then detecting said complex.

The presence of NR6 may be accomplished in a number of ways such as by Western blotting and ELISA procedures. A wide range of immunoassay techniques are available as can be seen by reference to US Patent Nos. 4,016,043, 4,424,279 and 4,018,653. These, of course, includes both single-site and two-site or "sandwich" assays of the non-competitive types, as well as in the traditional competitive binding assays. These assays also include

direct binding of a labelled antibody to a target.

Sandwich assays are among the most useful and commonly used assays and are favoured for use in the present invention. A number of variations of the sandwich assay technique exist, and all are intended to be encompassed by the present invention. Briefly, in a typical forward assay, an unlabelled antibody is immobilized on a solid substrate and the sample to be tested brought into contact with the bound molecule. After a suitable period of incubation, for a period of time sufficient to allow formation of an antibody-antigen complex, a second antibody specific to the antigen, labelled with a reporter molecule capable of producing a detectable signal is then added and incubated, allowing time sufficient for the formation of another complex of

5

10

15

20

25

30

antibody-antigen-labelled antibody. Any unreacted material is washed away, and the presence of the antigen is determined by observation of a signal produced by the reporter molecule. The results may either be qualitative, by simple observation of the visible 5 signal, or may be quantitated by comparing with a control sample containing known amounts of hapten. Variations on the forward assay include a simultaneous assay, in which both sample and labelled antibody are added simultaneously to the bound antibody. 10 techniques are well known to those skilled in the art, including any minor variations as will be readily In accordance with the present invention, the apparent. sample is one which might contain NR6 including cell extract, tissue biopsy or possibly serum, saliva, 15 mucosal secretions, lymph, tissue fluid and respiratory fluid. The sample is, therefore, generally a biological sample comprising biological fluid but also extends to fermentation fluid and supernatant fluid such as from a cell culture. 20

In the typical forward sandwich assay, a first antibody having specificity for the NR6 or antigenic parts thereof, is either covalently or passively bound to a solid surface. The solid surface is typically glass or 25 a polymer, the most commonly used polymers being cellulose, polyacrylamide, nylon, polystyrene, polyvinyl chloride or polypropylene. The solid supports may be in the form of tubes, beads, discs of microplates, or any other surface suitable for conducting an immunoassay. 30 The binding processes are well-known in the art and generally consist of cross-linking covalently binding or physically adsorbing, the polymer-antibody complex is washed in preparation for the test sample. An aliquot of the sample to be tested is then added to the solid 35 phase complex and incubated for a period of time sufficient (e.g. 2-40 minutes or overnight if more

convenient) and under suitable conditions (e.g. from about room temperature to about 371C) to allow binding of any subunit present in the antibody. Following the incubation period, the antibody subunit solid phase is washed and dried and incubated with a second antibody specific for a portion of the hapten. The second antibody is linked to a reporter molecule which is used to indicate the binding of the second antibody to the hapten.

10

15

20

25

30

35

5

An alternative method involves immobilizing the target molecules in the biological sample and then exposing the immobilized target to specific antibody which may or may not be labelled with a reporter molecule. Depending on the amount of target and the strength of the reporter molecule signal, a bound target may be detectable by direct labelling with the antibody. Alternatively, a second labelled antibody, specific to the first antibody is exposed to the target-first antibody complex to form a target-first antibody-second antibody tertiary complex. The complex is detected by the signal emitted by the reporter molecule.

In another alternative method, the NR6 ligand is immobilised to a solid support and a biological sample containing NR6 brought into contact with its immobilised ligand. Binding between NR5 and its ligand can then be determined using an antibody to NR6 which itself may be labelled with a reporter molecule or a further antiimmunoglobulin antibody labelled with a reporter molecule could be used to detect antibody bound to NR6.

By "reporter molecule" as used in the present specification, is meant a molecule which, by its chemical nature, provides an analytically identifiable signal which allows the detection of antigen-bound antibody. Detection may be either qualitative or

quantitative. The most commonly used reporter molecules in this type of assay are either enzymes, fluorophores or radionuclide containing molecules (i.e. radioisotopes) and chemiluminescent molecules.

- In the case of an enzyme immunoassay, an enzyme is conjugated to the second antibody, generally by means of glutaraldehyde or periodate. As will be readily recognized, however, a wide variety of different conjugation techniques exist, which are readily
- available to the skilled artisan. Commonly used enzymes include horseradish peroxidase, glucose oxidase, betagalactosidase and alkaline phosphatase, amongst others. The substrates to be used with the specific enzymes are generally chosen for the production, upon hydrolysis by
- the corresponding enzyme, of a detectable colour change.

  Examples of suitable enzymes include alkaline
  phosphatase and peroxidase. It is also possible to
  employ fluorogenic substrates, which yield a fluorescent
  product rather than the chromogenic substrates noted
- above. In all cases, the enzyme-labelled antibody is added to the first antibody hapten complex, allowed to bind, and then the excess reagent is washed away. A solution containing the appropriate substrate is then added to the complex of antibody-antigen-antibody. The substrate will react with the enzyme linked to the
- substrate will react with the enzyme linked to the second antibody, giving a qualitative visual signal, which may be further quantitated, usually spectrophotometrically, to give an indication of the amount of hapten which was present in the sample.
- "Reporter molecule" also extends to use of cell agglutination or inhibition of agglutination such as red blood cells on latex beads, and the like.
- Alternately, fluorescent compounds, such as fluorescein and rhodamine, may be chemically coupled to antibodies without altering their binding capacity. When activated by illumination with light of a particular wavelength,

the fluorochrome-labelled antibody adsorbs the light energy, inducing a state to excitability in the molecule, followed by emission of the light at a characteristic colour visually detectable with a light microscope. As in the EIA, the fluorescent labelled antibody is allowed to bind to the first antibody-hapten complex. After washing off the unbound reagent, the remaining tertiary complex is then exposed to the light of the appropriate wavelength the fluorescence observed indicates the presence of the hapten of interest. Immunofluorescene and EIA techniques are both very well established in the art and are particularly preferred for the present method. However, other reporter molecules, such as radioisotope, chemiluminescent or bioluminescent molecules, may also be employed.

The present invention also contemplates genetic assays such as involving PCR analysis to detect the NR6 gene or its derivatives. Alternative methods or methods used in conjunction include direct nucleotide sequencing or mutation scanning such as single stranded conformational polymorphisms analysis (SSCP) as specific oligonucleotide hybridisation, as methods such as direct protein truncation tests.

25

30

35

20

5

10

15

The nucleic acid molecules of the present invention may be DNA or RNA. When the nucleic acid molecule is in a DNA form, it may be genomic DNA or cDNA. RNA forms of the nucleic acid molecules of the present invention are generally mRNA.

Although the nucleic acid molecules of the present invention are generally in isolated form, they may be integrated into or ligated to or otherwise fused or associated with other genetic molecules such as vector molecules and in particular expression vector molecules. Vectors and expression vectors are generally capable of

replication and, if applicable, expression in one or both of a prokaryotic cell or a eukaryotic cell. Preferably, prokaryotic cells include *E. coli, Bacillus sp* and *Pseudomonas sp*. Preferred eukaryotic cells include yeast, fungal, mammalian and insect cells.

Accordingly, another aspect of the present invention contemplates a genetic construct comprising a vector portion and a mammalian and more particularly a human NR6 gene portion, which NR6 gene portion is capable of encoding an NR6 polypeptide or a functional or immunologically interactive derivative thereof.

Preferably, the NR6 gene portion of the genetic

construct is operably linked to a promoter on the vector such that said promoter is capable of directing expression of said NR6 gene portion in an appropriate cell.

In addition, the NR6 gene portion of the genetic construct may comprise all or part of the gene fused to another genetic sequence such as a nucleotide sequence encoding maltose binding protein or glutathione-Stransferase or part thereof.

The present invention extends to such genetic constructs and to prokaryotic or eukaryotic cells comprising same.

The present invention also extends to any or all derivatives of NR6 including mutants, part, fragments, portions, homologues and analogues or their encoding genetic sequence including single or multiple nucleotide or amino acid substitutions, additions and/or deletions to the naturally occurring nucleotide or amino acid sequence.

NR6 may be important for the proliferation,

5

10

25

30

differentiation and survival of a diverse array of cell types. Accordingly, it is proposed that NR6 or its functional derivatives be used to regulate development, maintenance or regeneration in an array of different cells and tissues in vitro and in vivo. For example, NR6 is contemplated to be useful in modulating neuronal proliferation, differentation and survival.

Soluble NR6 polypeptides are also contemplated to be useful in the treatment of a range of diseases, injuries or abnormalities.

Membrane bound or soluble NR6 may be used *in vitro* on nerve cells or tissues to modulate proliferation, differentiation or survival, for example, in grafting procedures or transplantation.

As stated above, the NR6 of the present invention or its functional derivatives may be provided in a

20 pharmaceutical composition comprising the NR6 together with one or more pharmaceutically acceptable carriers and/or diluents. In addition, the present invention contemplates a method of treatment comprising the administration of an effective amount of a NR6 of the present invention. The present invention also extends to antagonists and agonists of NR6s and their use in therapeutic compositions and methodologies.

A further aspect of the present invention contemplates
the use of NR6 or its functional derivatives in the
manufacture of a medicament for the treatment of NR6
mediated conditions defective or deficient.

Still a further aspect of the present invention

contemplates a ligand for NR6 preferably, in isolated or recombinant form or a derivative of said ligand.

5

The present invention further contemplates knockout animals such as mice or other murine species for the NR6 gene including homozygous and heterozygous knockout animals. Such animals provide a particularly useful live in vivo model for studying the effects of NR6 as well as screening for agents capable of acting as agonists or antagonists of NR6.

According to this embodiment there is provided a

transgenic animal comprising a mutation in at least one
allele of the gene encoding NR6. Additionally, the
present invention provides a transgenic animal
comprising a mutation in two alleles of the gene
encoding NR6. Preferably, the transgenic animal is a

murine animal such as a mouse or rat.

The present invention is further described by the following non-limiting Figures and Examples.

20 In the Figures:

Figure 1 is a diagrammatic representation showing expansion of sequenced region of the mouse NR6 gene indicating splicing patterns seen in the three forms of NR6 cDNA, NR6.1, NR6.2 and NR6.3.

Figure 2 is a representation of the nucleotide sequence of the mouse NR6 gene, containing exons encoding the cDNA from nucleotide 148 encoding D50 of the cDNAs shown in SEQ ID NOs:12 and 14 to the end of the 3N untranslated region shared by both NR6.1, NR6.2 and NR6.3. In this figure, this region encompasses nucleotides g1182 to g6617. This sequence is also defined in SEQ ID NO:28.

35

30

25

5

Figure 3 is a representation of the nucleotide sequence of the mouse genomic NR6 gene with additional 5N

sequences. The coding exons of NR6 span approximately 11kb of the mouse genome. There are 9 coding exons separated by 8 introns:

	exonl	at least 239nt	intronl	5195nt
5	exon 2	282nt	intron2	214nt
	exon3	130nt	intron3	107nt
	exon4	170nt	intron4	1372nt
	exon5	158nt	intron5	68nt
	exon6	169nt	intron6	2020nt
10	exon6	188nt	intron7	104nt
	exon8	43nt	intron8	181nt
	exon9	252nt		

Exon 1 encoding the signal sequence, exon 2 the Ig-like domain, exons 3 to 6 the hemopoietin domain. Exons 7, 8 and 9 are alternatively spliced.

Figure 4 is a diagrammatic representation showing the genomic structure of murine NR-6.

20

Figure 5 is a diagrammatic representation showing targetting of the NR6 locus by homologous recombination.

Single and three letter abbreviations for amino acid residues used in the specification are summarised in Table 2:

5 TABLE 2

Amino Acid	Three-letter	One-letter	
	Abbreviation	Symbol	
Alanine	Ala	A	
Arginine	Arg	R	
Asparagine	Asn	N	
Aspartic acid	Asp	D	
Cysteine	Cys	С	
Glutamine	Gln	Q	
Glutamic acid	Glu	E	
Glycine	Gly	G	
Histidine	His	Н	
Isoleucine	Ile	I	
Leucine	Leu	L	
Lysine	Lys	K	
Methionine	Met	М	
Phenylalanine	Phe	F	
Proline	Pro	P	
Serine	Ser	S	
Threonine	Thr	Т	
Tryptophan	Trp	W	
Tyrosine	Tyr	Y	
Valine	Val	V ·	
Any residue	Xaa	X	

# TABLE 3 SUMMARY OF SEQ ID NO.

	Sequence	SEQ ID NO
5	Amino acid sequence WSXWS	1
	Oligonucleotide primers and probes listed	
	in Example 1	2-11
	Nucleotide sequence of NR6.11	12
	Amino acid sequence of NR6.1	13
10	Nucleotide sequence of NR6.22	14
	Amino acid sequence of NR6.2	15
	Nucleotide sequence of NR6.33	16
	Amino acid sequence of NR6.3	17
	Nucleotide sequence of products generated	
15	by 5N RACE of brain cDNA using NR6	
	specific primers4	18
	Amino acid sequence of SEQ ID NO:18	19
	Nucleotide sequence unique to 5N RACE of	
	brain cDNA	20
20	Amino acid sequence for SEQ ID NO:20	21
	Unspliced murine NR6 nucleotide sequence	22
	PCR product for human NR6	23
	Nucleotide sequence of clone HFK-66	
	encoding human NR6	24
25	Amino acid sequence of SEQ ID NO:24	25
	Oligonucleotide sequences UP1 and LP1,	
	respectively	26-27
	Genomic nucleotide sequence of murine NR6	28
	Amino acid sequence of SEQ ID NO:28	29
30	Murine NR6.1 oligonucleotide primers	30, 31
	Murine IL-3 signal sequence	32
	Linker sequence for mouse IL-3 signal	
	sequence and FLAG epitope	33-35
	Genomic nucleotide sequence of murine NR6	
35	containing additional 5N sequence	38
	Oligonucleotide 2199 and 2200, respectively	36, 37
	N-terminal region of NR6	39

The polyadenylation signal AATAAATAAA is at nucleotide position 1451 to 1460; NR6.1 (SEQ ID NO:12) and NR6.2 (SEQ ID NO:14) are identical to nucleotide 1223 encoding Q407, the represents the end of an exon. NR6.1 splices out an exon present only in NR6.2 and uses a different reading frame for the final exon which is shared with NR6.2; this corresponds to amino acids VLPAKL at amino acid residue positions 408-413. The region of 3N-untranslated DNA shared by NR6.1, NR6.2 and NR6.3 is from nucleotide 1240 to 1475. The WSXWS motif is at amino acid residues 330 to 334.

The polyadenylation signal AATAAA is at nucleotide positions 1494 to 1503. The WSXWS motif is at amino acid residues 330 to 334. NR6.1 and NR6.2 are identical to nucleotide 1223 encoding Q407 which represents the end of an exon. NR6.2 splices in an exon beginning at amino acid residue D408, nucleotide 1224 and ends at residue G422, nucleotide 1264. The region of 3N untranslated DNA shared by NR6.1, NR6.2 and NR6.3 is from nucleotide position 1283 to 1517.

The nucleotide and amino acid numbering corresponds to SEQ ID NO:12 and 14. The WSXWS motif is at amino acid residues 330 to 334. The polyadenylation signal AATAAATAAA is from nucleotide 1781 to 1780. NR6.1, NR6.2 and NR6.3 are identical to nucleotide 1223 encoding Q407, this represents the end of an exon. NR6.3 fails to splice from this position and, therefore, translation continues through the intron, giving rise to the C-terminal protein region from amino acid residues 408 to 461. The region of 3N untranslated DNA shared by NR6.1, NR6.2 and NR6.3 is from nucleotide 1469 to 1804.

The nucleotide sequence is identical to NR6.1, NR6.2 and NR6.3 from nucleotide C151, the first nucleotide for Pro51. The numbering from this nucleotide is the same

5

10

15

20

25

as for SEQ ID NO:14 and 16. The 5N of this point is unique to the products generated by 5N RACE not being found in NR6.1, NR6.2 and NR6.3 and is represented in SEO ID NOs:20 and 21.

5

⁵Structure of the murine genomic NR6 locus. The coding exons of NR6 span approximately 11kb of the mouse genome. There are 9 coding exons separated by 8 introns:

10

	exon I	l	at least	239nt	intronl	5195nt
	exon 2	2	282nt		intron2	214nt
	exon 3	3	130nt		intron3	107nt
	exon 4	4	170nt		intron 4	1372nt
15	exon 5	5	158nt		intron5	68nt
	exon (	6	169nt		intron6	2020nt
	exon '	7	188nt		intron7	104nt
	exon 8	8	43nt		intron8	181nt
	exon.	9	252nt			

20

Exon 1 encodes the signal sequence, exon 2 the Ig-like domain, exons 3 to 6 the hemopoietin domain. Exons 7, 8 and 9 are alternatively spliced.

- The NRG molecules of the present invention have a range of utilities referred to in the subject specification.

  Additional utilities include:
  - 1. Identification of molecules that interact with NR6.
- 30 These may include:
  - a) a corresponding ligand using standard orphan receptor techniques (26),
- 35 b) monoclonal antibodies that act either as receptors antagonists or agonists,

c) mimetic or antagonistic peptides isolated using phage display technology (27,28),

- d) small molecule natural products that act either as antagonists or agonists.
- Development of diagnostics to detect
  deletions/rearrangements in the NR6 gene.
  The NR6 knock-out mice studies described herein provide a
  useful model for this utility. There are also applications
  in the field of reproduction. For example, people can be
  tested for their NR6 status. NR6 +/- carriers might be
  expected to give rise to offspring with developmental

problems.

# EXAMPLE 1 Oligonucleotides

	M116:	5 '	ACTCGCTCCAGATTCCCGCCTTTT 3' [SEQ ID NO:2]
5	M108:	5 '	TCCCGCCTTTTTCGACCCATAGAT 3' [SEQ ID NO:3]
	M159:	5 '	GGTACTTGGCTTGGAAGAGGAAAT 3' [SEQ ID NO:4]
	M242:	5 <b>'</b>	CGGCTCACGTGCACGTCGGGTGGG 3' [SEQ ID NO:5]
	M112:	5 '	AGCTGCTGTTAAAGGGCTTCTC 3' [SEQ ID NO:6]
	WSDWS	5 '	(A/G)CTCCA(A/G)TC(A/G)CTCCA 3' [SEQ ID NO:7]
10	WSEWS	5 '	(A/G)CTCCA(C/T)TC(A/G)CTCCA 3' [SEQ ID NO:8]
	1944	5 '	AAGTGTGACCATCATGTGGAC 3' [SEQ ID NO:9]
	2106	5 '	GGAGGTGTTAAGGAGGCG 3' [SEQ ID NO:10]
	2120	5 '	ATGCCCGCGGGTCGCCCG 3' [SEQ ID NO:11]

15 EXAMPLE 2

Isolation of initial NR6 cDNA clones using oligonucleotides designed against the conserved WSXWS motif found in members of the haemopoietin receptor family

20

25

30

35

(i) A commercial adult mouse testis cDNA library cloned into the UNI-ZAP bacteriophage (Stratagene, CA, USA; Catalogue numbers 937 308) was used to infect Escherichia coli of the strain LE392. Infected bacteria were grown on twenty 150 mm agar plates, to give approximately 50,000 plaques per plate. Plaques were then transferred to duplicate 150 mm diameter nylon membranes (Colony/Plaque Screen, NEN Research Products, MA, USA), bacteria were lysed and the DNA was denatured and fixed by autoclaving at 100°C for 1 min with dry exhaust. The filters were rinsed twice in 0.1%(w/v)sodium dodecyl sulfate (SDS), 0.1 x SSC (SSC is 150 mM sodium chloride, 15 mM sodium citrate dihydrate) at room temperature and pre-hybridized overnight at  $42^{\circ}\text{C}$  in 6 x SSC containing 2 mg/ml bovine serum albumin, 2 mg/ml Ficoll, 2 mg/ml polyvinylpyrrolidone, 100 mM ATP, 10 mg/ml tRNA, 2 mM sodium pyrophosphate, 2 mg/ml salmon

sperm DNA, 0.1% (w/v) SDS and 200 mg/ml sodium azide. The pre-hybridisation buffer was removed. 1.2 Fg of the degenerate oligonucleotides for hybridization (WSDWS; Example 1) were phosphorylated with T4 polynucleotide kinase using 960 mCi of  $y^{32}P-ATP$  (Bresatec, S.A., 5 Australia). Unincorporated ATP was separated from the labelled oligonucleotide using a pre-packed gel filtration column (NAP-5; Pharmacia, Uppsala, Sweden). Filters were hybridized overnight at 42°C in 80 ml of the prehybridisation buffer containing 0.1%(w/v) SDS, 10 rather than NP40, and  $10^6 - 10^7$  cpm/ml of labelled oligonucleotide. Filters were briefly rinsed twice at room temperature in 6 x SSC, 0.1%(v/v) SDS, twice for 30 min at 45°C in a shaking waterbath containing 1.5 l of the same buffer and then briefly in 6 x SSC at room 15 temperature. Filters were then blotted dry and exposed to autoradiographic film at -70°C using intensifying screens, for 7 - 14 days prior to development. Plaques that appeared positive on orientated duplicate filters were picked, eluted in 1 ml of 100 mM NaCl, 10 20 mM MgCl2, 10 mM Tris.HCl pH7.4 containing 0.5%(w/v)gelatin and 0.5% (v/v) chloroform and stored at  $4^{\circ}C$ . After 2 days LE392 cells were infected with the eluate from the primary plugs and replated for the secondary This process was repeated until hybridizing 25 plaques were pure.

Once purified, positive cDNAs were excised from the ZAP II bacteriophage according to the manufacturer's instructions (Stratagene, CA, USA) and cloned into the plasmid pBluescript. A CsCl purified preparation of the DNA was made and this was sequenced on both strands. Sequencing was performed using an Applied Biosystems automated DNA sequencer, with fluorescent dideoxynucleotide analogues according to the manufacturer's instructions. The DNA sequence was analysed using software supplied by Applied Biosystems.

30

Two clones isolated from the mouse testis cDNA library shared large regions of nucleotide sequence identity 68-1 and 68-2 and appeared to encode a novel member of the haemopoietin receptor family and the inventors gave the putative receptor the working name "NR6".

(ii) In a parallel series of experiments, a commercial mouse brain cDNA library (STRATAGENE #967319, Balb/c day-20, whole brain cDNA/Uni-ZAP XR Vector) was used to infect E.coli strain XL1-Blue MRF=. Infected bacteria were grown on 90x135mm square agar plates to give about 25,000 plaques per plate. Plaques were then transferred to positively charged nylon membranes, Hybond-N(+) (Amersham RPN 203B), bacteria were lysed and the DNA was denatured with denaturing 0.5 M NaOH, 1.5 M NaCl at room temperature for 7 min. The membranes were neutralized with 0.5 M Tris-HCL pH7.2, 1.5 M NaCl, 1 mM EDTA at room temperature for 10 min before the DNA fixation by UV crosslinking.

20

25

30

5

10

15

A mixture of WSDWS and WSEWS oligonucleotide probes (SEQ ID NOs: 7 and 8) were labelled with a ["-32p]-ATP (TOYOBO #PNK-104 Kination kit). The membranes from the mouse brain cDNA library were then hybridized with the mixture of WSDWS and WSEWS oligonucleotide probes in the Rapid Hybridization Buffer (Amersham, RPN1636) at 42°C for 16 hours. Filters were washed with 1xSSC/0.1% (w/v) SDS at 42°C before autoradiography. Plaques that appeared positive on orientated duplicate filters were picked and replated on E. coli, XL1-Blue MRFN with the process of immobilisation on nylon membranes, hybridization of membranes with oligonucleotide probes, washing and autoradiography repeated until pure plaques had been obtained.

35

The cDNA fragment from pure positively hybridizing plaques was isolated by excision with the helper phage

strain ExAssist according to the manufacturer=s instructions (Stratagene, #967319). Sequencing was performed after the amplification with Ampli-Taq DNA polymerase and Taq dideoxy terminator cycle sequencing kit (Perkin Elmer, #401150) by 25 cycles of 96°C for 10 sec, 50°C for 5 sec, 60°C for 4 min followed by 60°C for 5 min with the sequencing primers on an ABI model 377 DNA sequencer.

- One clone, MBC-8, from the mouse brain library shared large regions of nucleotide sequence identity with both the 68-1 and 68-2 clones isolated from the mouse testis cDNA library.
- (iii) In a third series of experiments, total RNA was prepared from the mouse osteoblastic cell line, KUSA, according to the method of Chirgwin et al. (15), and poly(A)+RNA was further purified by oligo(dT)-cellulose chromatography (Pharmacia Biotech). Complementary DNA was synthesized by oligo(dT) priming, inserted into the UniZAP XR directional cloning vector (Stratagene), and packaged into 8 phage using Gigapack Gold (Stratagene), yielding 1.25 x 10⁷ independent clones.
- Approximately 10⁶ clones were screened essentially as described in (ii) above. Briefly, probes were labeled with ³²P using T4 polynucleotide kinase and prehybridization was performed for 4 hr in the Rapid hybridization buffer (Amersham LIFE SCIENCE) at 42°C.

  Filters (Hybond N+, Amersham) were then hybridized for 19 hr under the same condition with the addition of ³²P-labeled WSXWS mix oligonucleotides and washed 3 times. The final wash was for 30 min in 1 x SSPE, 0.1% (w/v) SDS at 42°C. Filters were then exposed with an intensifying screen to Kodak X-OMAT AR film for 5 days.

Isolated clones were subjected to the in vivo excision

of pBluescript SK(-) phagemid (Stratagene), and plasmid DNA was prepared by the standard method. DNA sequences were determined using an ABI PRISM 377 DNA Sequencer (Perkin Elmer) with appropriate synthetic oligonucleotide primers. A clone pKUSA166 shared large regions of nucleotide sequence identity with the MBC-8, 68-1 and 68-2 clones isolated from the mouse brain and testis cDNA libraries.

10 EXAMPLE 3

Isolation of further NR6 cDNA clones using probes specific for NR6

In order to identify other cDNA libraries containing cDNA clones for NR6, the inventors performed 15 PCR upon 1  $\mu$ l aliquots of  $\lambda$ -bacteriophage cDNA libraries made from mRNA from various human tissues and using oligonucleotides 2070 and 2057, designed from the sequence of 68-1 and 68-2, as primers. Reactions contained 5  $\mu$ l of 10 x concentrated PCR buffer 20 (Boehringer Mannheim GmbH, Mannheim, Germany), 1  $\mu$ l of 10 mM dATP, dCTP, dGTP and dTTP, 2.5  $\mu$ l of the oligonucleotides HYB2 and either T3 or T7 at a concentration of 100 mg/ml, 0.5  $\mu$ l of Taq polymerase (Boehringer Mannheim GmbH) and water to a final volume 25 of 50 µl. PCR was carried out in a Perkin-Elmer 9600 by heating the reactions to 96°C for 2 min and then for 25 cycles at 96°C for 30 sec, 55°C for 30 sec and 72°C for 2 min. PCR products were resolved on an agarose gel, immobilized on a nylon membrane and hybridized with 32p-30 labelled oligonucleotide 1943 (SEQ ID NO:42).

In addition to the original library, a mouse brain cDNA library appeared to contain NR6 cDNAs. These were screened using a ³²P-labelled oligonucleotides 1944, 2106, 2120 (Example 1) or with a fragment of the original NR6 cDNA clone from 68-1 (nucleotide 934 to the

35

end of NR6.1 in Figure 1) labelled with ³²P using a random decanucleotide labelling kit (Bresatec).

Conditions used were similar to those described in (i) above except that for the labelled oligonucleotides,

filters were washed at 55°C rather than 45°C, while for the NR6 cDNA fragment prehybridization and hybridization was carried out in 2xSSC and filters were washed at 0.2 x SSC at 65°C. Again, as described in (i) above, positively hybridising plaques were purified, the cDNAs were recovered and cloned into plasmids pBluescript II or pUC19. Independent cDNA clones were sequenced on both strands.

Using this procedure, 6 further clones, 68-5, 68-35, 68-15 41, 68-51, 68-77 and 73-23, contained large regions of sequence identity with 68-1, 68-2, MBC-8 and pKUSA166.

In a parallel series of experiments, further screening was performed with hybridization probes prepared from the 1.7 kbp EcoRI-XhoI fragment excised from pKUSA166. This fragment was excised and labeled with 32p by using T7OuickPrime Kit (Pharmacia Biotech). Approximately 6x10⁵ clones were screened. Hybond N+ filters (Amersham) were first prehybridized for 4hr at 42°C in 50% (v/v) formamide, 5xSSPE, 5xDenhardt's solution, 0.1% (w/v) SDS, and 0.1mg/ml denatured salmon sperm DNA. Hybridization was for 16 hours under the same conditions with the addition of 32P- labelled NR6- cDNA fragment probes. Finally the filters were washed once for 1hr in 0.2xSSC, 0.1% (w/v) SDS at 68°C. Eight clones were isolated, and phage clones were subjected to the in vivo excision of the pBluescript SK(-) phagemid (Stratagene). The plasmid DNAs were prepared by the standard method. DNA sequences were determined by an ABI PRISM 377 DNA Sequencer using appropriate synthetic oligonucleotide primers.

20

25

30

Using this procedure 8 further clones from the KUSA library contained large regions of sequence identity with 68-1, 68-2, MBC-8, pKUSA166, 68-5, 68-35, 68-41, 68-51, 68-77 and 73-23 were isolated.

5

# EXAMPLE 4 Isolation of genomic DNA encoding NR6

DNA encoding the murine NR6 genomic locus was also isolated using the 68-1 cDNA as a probe. Two positive 10 clones, 2-2 and 57-3, were isolated from a mouse 129/Sv strain genomic DNA library cloned into  $\lambda$  FIX. clones were overlapping and the position of the restriction sites, introns and exons were determined in the conventional manner. The region of the genomic 15 clones containing exons and the intervening introns were sequenced on both strands using an Applied Biosystems automated DNA sequencer, with fluorescent dideoxynucleotide analogues according to the manufacturer's instructions. Figure 2 shows the 20 nucleotide sequence and corresponding amino acid sequence of the translation regions. This is also shown in SEQ ID NOs:30 and 31. Figure 3 provides the genomic NR6 gene sequence but with additional 5N sequence. is also represented in SEQ ID NO:38 in relation to this 25 sequence. The coding exons of NR6 span approximately 11kb of the mouse genome. There are 9 coding exons separated by 8 introns:

30	exonl	at least 239nt	intronl	5195nt
	exon2	282nt	intron2	214nt
	exon3	130nt	intron3	107nt
	exon4	170nt	intron4	1372nt
	exon5	158nt	intron5	68nt
35	exon6	169nt	intron6	2020nt
	exon7	188nt	intron7	104nt
	exon8	43nt	intron8	181nt

exon9 252nt

5

15

20

25

30

35

Exon 1 encodes the signal sequence, exon 2 the Ig-like domain, exons 3 to 6 the hemopoietin domain. Exons 7, 8 and 9 are alternatively spliced.

### EXAMPLE 5

## 10 5N RACE analysis of NR6

5'-RACE was used to investigate the nature of the sequence 5' of nucleotide 960, encoding Ile321 of NR6.1, 2 and 3. The nucleotide and corresponding amino acid sequences are shown in SEQ ID NOs:12, 14 and 16, respectively. 5'-RACE was performed using Advantage KlenTag polymerase (CLONTECH, CAT NO. K1905-1) on mouse brain Marathon-ready cDNA (CLONTECH, CAT NO. 7450-1) according to the manufacturer's instructions. Briefly, the first rounds of amplification were performed using  $5\mu$ l of cDNA in a total volume of  $50\mu$ l, with 1mM each of the primers AP1&M116 [SEQ ID NO:2] or AP1&M159 [SEQ ID NO:4] by 35 cycles of  $94^{\circ}$ C x 0.5min,  $68^{\circ}$ C x 2.0min on GeneAmp 2400 (Perkin-Elmer). An amount of 5µl of 50fold diluted product from the first amplification was then re-amplified; for the products generated with primers AP1 and M116 [SEQ ID NO:2] in the first amplification, 1 mM of the primers AP2&M108 [SEQ ID NO:3] were used in the second amplification. products generated with primers AP1 and M116 [SEQ ID NO:2] in the first amplification, two separate secondary reactions were performed, one reaction with 1 mM primers AP2&M242 [SEQ ID NO:5] and the other with 1 mM primers AP2&M112 [SEQ ID NO:6]. Amplification was achieved using 25 cycles of  $94^{\circ}$ C x 0.5min,  $68^{\circ}$ C x 2.0min. samples were analyzed by agarose gel electrophoresis. When a single ethidium bromide staining amplification

product was observed, it was purified by QIAquick PCR purification kit according to the manufacturer=s instructions (QIAGEN, CAT NO. DG-0281) and its sequence was directly determined using both primers used in the secondary amplification step, that is AP2 and either M108 [SEQ ID NO:3], M242 [SEQ ID NO:5] or M112 [SEQ ID NO:6].

## EXAMPLE 6 Cloning of NR6

10

15

5

From the initial screens of mouse brain and testis cDNA libraries with the degenerate WSXWS oligonucleotides and subsequent screening of cDNA libraries from mouse testis, mouse brain and the KUSA osteoblastic cells line a total of 18 NR6 cDNAs have been isolated. Nucleotide sequence of NR6 was also determined from 5'RACE analysis of brain cDNA. Additionally, two murine genomic DNA clones encoding NR6 have also been isolated.

20

25

30

35

Comparison of the NR6 cDNA clones revealed a common region of nucleotide sequence which included a 123 base pairs 5'-untranslated region and 1221 base pairs open reading frame, stretching from the putative initiation methionine, Metl to Gln407 (SEQ ID NOs:12, 14 and 16, respectively). Within this common open reading frame, a haemopoietin receptor domain was observed which contained the four conserved cysteine residues and the five amino acid motif WSXWS typical of members of the haemopoietin receptor family, was observed.

Further analyses revealed that after nucleotide 1221, three different classes of NR6 cDNAs could be found, these were termed NR6.1, NR6.2 and NR6.3 (SEQ ID NOs:12, 14 and 16, respectively). Each encoded a receptor that appeared to lack a classical transmembrane domain and, would, therefore be likely to be secreted into the

extracellular environment. Although the putative C-terminal region of the three classes of NR6 proteins appear to be different, the cDNAs encoding them also had a common region of 3'-untranslated region.

5

10

15

20

25

30

With regard to SEQ ID NOs:12, 14 and 16, the number of both nucleotides and amino acids begins at the putative NR6.1 and NR6.2 are identical to initiation methione. nucleotide 1223 encoding Q407, this represents the end of an exon. NR6.1 splices out an exon present only in NR6.2 and uses a different reading frame for the final exon which is shared with NR6.2. The 3N-untranslated region is shared by NR6.1, NR6.2 and NR6.3, NR6.2 splices in an exon starting with nucleotide 1224 encoding D408 and ending with nucleotide 1264 encoding the first nucleotide in the codon for G422 and uses a different reading frame for the final exon which is shared with NR6.2 (see Figure 1). NR6.3 fails to splice from position nucleotide 1224, therefore, translation continues through the intron, giving rise to the Cterminal protein region.

The sequence of NR6 cDNA products generated by 5'-RACE amplification from mouse brain cDNA preparation is shown in SEQ ID NO:18. The nucleotide sequence identified using 5'-RACE appeared to be identical to the sequence of cDNAs encoding NR6.1, NR6.2, and NR6.3 from nucleotide C151, the first nucleotide for the codon for Pro51. 5' of this nucleotide, the sequences diverged and the sequence is unique not being found in NR6.1, NR6.2 or NR6.3. Additionally, there is a single nucleotide difference, with the sequence from the RACE containing an G rather than an A at nucleotide 475, resulting in Thr159 becoming Ala.

35

Analysis of the genomic clones, revealed that they were overlapping and contained exons encoding the majority of

the coding region of the three forms of NR6 (Figures 1, 2 and 3). These genomic clones, contained exons encoding from Asp50 (nucleotide 148) of the NR6 cDNAs. Sequence 5' of this in the cDNAs, including the 5'-untranslated region and the region encoding Met1 to Gln49 (SEQ ID NOs:12, 14 and 16), and the 5' end predicted from analysis of 5' RACE products (SEQ ID NO:18) were not present in the two genomic clones isolated.

10

15

20

25

5

Analysis of the NR6 genomic DNA clones also provided an explanation of the three classes of NR6 cDNAs found. is likely that NR6.1, NR6.2 and NR6.3 arise through alternative splicing of NR6 mRNA (Figure 1). amino acid residue that these different NR6 proteins are predicted to share is Gln407. SEQ ID NO:18 shows that Gln407 is the last amino acid encoded by the exon that covers nucleotides g5850 to g6037 (see Figure 2). Alternative splicing from the end of this exon (Figure 1) accounts for the generation of cDNAs encoding NR6.1 (SEQ ID NO:12), NR6.2 (SEQ ID NO:14) and NR6.3 (SEQ ID In the case of NR6.1, the region from g6038 to g6425 is spliced out, leading to juxtaposition of g6037 In the case of NR6.2, the region from g6038 to 6141 is spliced out, an exon from 6142 to g6183 is retained and then this is followed by splicing out of the region from g6183 to g6425. NR6.3 appears to arise when there is no splicing from nucleotide g6038. all three forms, a secreted rather then transmembrane form is generated, these differ however in their predicted C-terminal region. The genomic NR6 sequence with additional 5N sequence is shown in Figure 3.

#### EXAMPLE 7

35

30

**ESTs** 

Databases were searched with the murine NR6

corresponding to the unspliced version shown in SEQ ID NO:16. The murine NR6 sequence used is shown in SEQ ID NO:22.

The databases searched were:

5

- (i) dbEST Database of Expressed Sequence Tags
  National Center for Biotechnology Information National
  Library of Medicine, 38A, 8N8058600 Rockville Pike,
  Bethesda, MD 20894 Phone: 0011-1-301-496-2475 Fax:
- 10 0015-1-301-480-9241 USA.

47.0.

- (ii) DNA Data Bank of Japan DNA Database Release 3689.

  Prepared by: Sanzo Miyazawa Manager/Database

  Administrator HidenoriHayashida Scientific Reviewer
- Yukiko Yamazaki/Eriko Hatada/Hiroaki Serizawa
  Annotators/reviewers Motono Horie/Shigeko Suzuki/Yumiko
  SataoSecretaries/typists DNA Data Bank of JapanNational
  Institute of Genetics Center for Genetic Information
  research Laboratory of Genetic Information Analyses 1111
  YataMishima, Shizuoka 411 Japan.
  - (iii) EMBL Nucleic Acid Sequence Data Bank Release
- 25 (iv) EMBL Nucleic Acid Sequence Data Bank Weekly Updates
  Since Release 44.
- (v) Genetic Sequence Data Bank NCBI-GenBank Release 94
  National Center for Biotechnology Information National
  Library of Medicine, 38A, 8N805 8600 Rockville Pike,
  Bethesda, MD 20894 Phone: 0011-1-301-495-2475 Fax:
  0015-1-301-480-9241 USA.
- (vi) Cumulative Updates since NCBI-GenBank Release 88
  National Center for Biotechnology Information National Library of Medicine, 38A, 8N805 8600 Rockville Pike,
  Bethesda, MD 20894 USA.

The search of the databases with the murine probe identified several EST's having sequence similarity to the probe. The EST's were:

5 W66776 (murine sequence)
MM5839 (murine sequence)
AA014965 (murine sequence)
W46604 (human sequence)
W46603 (human sequence)
H14009 (human sequence)
N78873 (human sequence)
R87407 (human sequence).

#### EXAMPLE 8

### 15 Isolation of 3N cDNA clones encoding human NR6

PCR products encoding human NR6 were generated using oligonucleotides UP1 and LP1 (see below) based on human ESTs (Genbank Acc: H14009, Genbank Acc: AA042914) that were identified from databases searched with murine NR6 sequence (SEQ ID NO:22). PCR was performed on a human fetal liver cDNA library (Marathon ready cDNA CLONTECH #7403-1) using Advantage Klen Tag Polymerase mix (CLONTECH #8417-1) in the buffer supplied at 941C fro 30s and 681C for 3 min for 35 cycles followed by 681C for 4 min and then stopping at 151C. A standard PCR programme for the Perkin-Elmer GeneAmp PCT system 2400 thermal cycle was used. The PCR yielded a prominent product of approximately 560 base pairs (bp; SEQ ID NO:18), which was radiolabelled with ["-32P] dCTP using a random priming method (Amersham, RPN, 1607, Mega prime kit) and used to screen a human fetal kidney 5N-STRETCH PLUS cDNA library (CLONTECH #HL1150x). Library screens were performed using Rapid Hybridisation Buffer (Amersham, RPn 1636) according to manufacturer's instructions and membranes washed at 651C for 30 min in 0.1xSSC/0.1% (w/v) SDS. Two independent cDNA clones

20

25

30

were obtained as lambda phage and subsequently subcloned and sequenced. Both clones (HFK-63 and HFK-66) contained 1.4 kilobase (kb) inserts that showed sequence similarity with murine NR6. The sequence and corresponding amino acid translation of HFK-66 is shown in SEQ ID NO:24.

The translation protein sequences of clone HFK-66 shows a high degree of sequence similarity with the mouse NR6.

10

5

#### OLIGONUCLEOTIDES

UP1: 5NTCC AGG CAG CGG TCG GGG GAC AAC 3N [SEQ ID NO:26] LP1: 5N TTG CTC ACA TCG TCC ACC ACC TTC 3N [SEQ ID NO:27]

15

#### EXAMPLE 9

#### Genomic Structure of Human NR6

Human genomic DNA clones encoding human NR6 was isoloated by screening a human genomic library (Lambda 20 FIXJII Stratagene 946203) with radiolabelled oligonucleotides, 2199 and 2200 (see below). oligonucleotides were designed based on human ESTs (Genbank Acc: R87407, Genbank Acc: H14009) that were identified from databases searched with murine NR6. 25 Filters were hybridised overnight at 371C in 6xSSC containing 2 mg/ml bovine serum albumin, 2 mg/ml Ficoll, 2mg/ml polyvinylpyrrolidone, 100 mM ATP, 10 mg/ml tRNA, 2 mM sodium pyrophosphate, 2 mg/ml salmon sperm DNA, 0.1% (w/v) SDS and 200 mg/ml sodium azide and washed at 30 651C in 6 x SSC/0.1% SDS. Five independent genomic clones were obtained and sequenced. The extend of sequence obtained has determined that the clones overlap and exhibit a similar genomic structure to murine NR6. Exon coding regions are almost identical over the region 35 covered by the genomic clones while intron coding regions differ, although the size of the introns are

comparable. The extent of known overlap is shown in Fig. 5.

#### OLIGONUCLEOTIDES:

5

2199: 5N CCC ACG CTT CTC ATC GGA TTC TCC CTG 3N [SEQ ID NO:36]

2200: 5N CAG TCC ACA CTG TCC TCC ACT CGG TAG 3N [SEQ ID NO:37]

10

#### EXAMPLE 10

#### Northern Blot Analysis of Human NR6 mRNA Expression

- Clontech Multiple Tissue Northern Blots (Human MTN Blot, CLONTECH #7760-1, Human MTN Blot IV, CLONTECH #7766-I, Human Brain MTN Blot II, CLONTECH #7755-1, Human Brain MTN Blot III, CLONTECH #7750) were probed with a radiolabelled 3N human NR6 cDNA clone, HFK-66 (SEQ ID
- NO:24). The clone was labelled with ["-32P] dCTP using a random priming method (Amersham, RPN 1607, Mega prime kit). Hybridisation was performed in Express Hybridisation Solution (CLONTECH H50910) for 3 hours at 671C and membranes were washed in 0.1xSSC/0.1% w/v SDS
- 25 at 501C.
  - A 1.8 kb transcript was detected in a variety of human tissues encompassing reproductive, digestive and neural tissues. High levels were observed in the heart,
- placenta, skeletal muscle, prostate and various areas of the brain, lower levels were observed in the testis, uterus, small intestine and colon. Photographs showing these Northern blots are available upon request. This expression pattern differs from the expression pattern
- 35 observed with murine NR6.

#### EXAMPLE 11

- 53 -

#### Mouse NR6 Expression Vectors

#### per-flag/mNR6.1

tagged NR6 protein.

The mature coding region of mouse NR6.1 was amplified using the PCR to introduce an in-frame Asc I restriction enzyme site at the 5' end of the mature coding region and an Mlu I site at the 3' end, using the following oligonucleotides:-

10

5N oligo 5N-AGCTGGCGCGCCTCCCGGGCGGATCGGGAGCCCAC-3N [SEQ ID NO:30]

3N oligo 5N-AGCTACGCGTTTAGAGTTTAGCCGGCAG-3N[SEQ ID NO:31]

15

20

25

30

The resulting PCR derived DNA fragment was then digested with Asc I and Mlu I and cloned into the Mlu I site of pEF-FLAG. Expression of NR6 is under the control of the polypeptide chain elongation factor  $1\alpha$  promoter as described (16) and results in the secretion, using the IL3 signal sequence from pEF-FLAG, of N-terminal FLAG-

pEF-FLAG was generated by modifying the expression vector pEF-BOS as follows:-

pEF-BOS (16) was digested with Xba I and a linker was synthesized that encoded the mouse IL3 signal sequence (MVLASSTTSIHTMLLLLLMLFHLGLQASIS) and the FLAG epitope (DYKDDDDK). Asc I and Mlu I restriction enzyme sites were also introduced as cloning sites. The sequence of the linker is as follows:-

M V L A S S T T S I H T

35 M
CTAGACTAGTGCTGACACAATGGTTCTTGCCAGCTCTACCACCAGCATCCACACCA
TG

## TGATCACGACTGTGTTACCAAGAACGGTCGAGATGGTGGTCGTAGGTGTGGTAC

L L L L M L F H L G L Q A S I S Asc

I
CTGCTCCTGCTCCTGATGCTCTTCCACCTGGGACTCCAAGCTTCAATCTCGGCGCG

CC
GACGAGGACGAGGACTAGCAGAAGGTGGACCCTGAGGTTCGAAGTTAGAGCCGCGC

GG

10

D Y K D D D D K Mlu I AGGACTACAAGGACGACGATGACAAGACGCGTGCTAGCACTAGT

TCCTGATGTTCCTGCTGCTACTGTTCTGCGCACGATCGTGATCAGATC

15

The two oligonucleotides were annealed together and ligated into the Xba I site of pEF-BOS to give pEF-FLAG.

## pCOS1/FLAG/mNR6 & pCHO1/FLAG/mNR6

20

25

30

35

A DNA fragment containing the sequences encoding IL3 signal sequence/Flag/mNR6 and the poly(A) adenylation signal from human G-CSF cDNA, was excised from pEF-FLAG/mNR6 using the restriction enzyme EcoR I. This DNA fragment was then inserted into the EcoR I cloning site of pCOS1 and pCHO1

The pCOSI and pCHO1 vectors were constructed as follows. pCHO1 is also described in reference (17) but with a different selectable marker.

pCOS1 was prepared by digesting HEF-12h-g"1 (see Figure 24 of International Patent Publication No. WO 92/19759) with EcoRI and SmaI and ligating the digesting product iwht an EcoRI-NotI-BamHI adaptor (Takara 4510). The resulting plasmid comprises an EFI" promoter/enhancer, Ncor marker gene, SV40E, ori and an Ampr marker gene.

pCH01 was constructed by digesting DHFR-PMh-grl (see Figure 25 of International Patent Publication No. WO 92/19759) with PvuI and Eco47III and ligating same with pCOSI digested with PvuI and Eco47III. The resulting vector, pCH01, comprises an EFI" promoter/enhancer, an DHFR marker gene, SV40E, Ori and a Ampr gene.

#### EXAMPLE 12

10

15

5

mRN6 has been expressed as an NN Flag tagged protein following transfection of CHO cells and as a CN Flag tagged protein following transfection of KUSA cells in both cases varying levels of dimeric and aggregated NR6 were secreted.

# EXAMPLE 13 Murine NR6 expression

20

25

30

NR6 expression studies were conducted in murine Northern Blots. At the level of sensitivity used in the adult mouse, NR6 expression was detected in salivary gland, lung and testis. During embryonic development, NR6 is expressed in fetal tissues from day 10 of gestation through to birth. In cell lines, NR6 expression has been observed in the T-lymphoid line CTLL-2 as well as in FD-PyMT (FDC-P1 myeloid cells expressing polyoma midle T gene), and fibroblastoid cells including bone marrow and fetal liver stromal lines.

#### EXAMPLE 14

Expression, purification and characterisation of CHO and KUSA mNR6

35

The methods provide for the production of a dimeric form of CHO derived NN FLAG-mNR6 without refolding. All

other methods are capable of producing NR6 and are encompassed by the present invention.

# A. Production of CHO derived N' FLAG-mNR6 (dimeric form)

(i) Protein Production

To analyse structure and functional activity, a cDNA fragment containing the entire coding sequence of murine NR6 with an N-terminal FLAG (NN FLAG) sequence was cloned into the EcoR1 site of the expression vector pCHO1. For stable production of N-terminal FLAG-tagged NR6 the vector contains the DHFR (dihydrofolate reductase) gene as a selective marker with the NR6 gene under the control of an EFla promoter. CHO cells were transfected with the construct using a polycationic liposome transfection reagent (Lipofectamine, GibcoBRL).

(ii) . Lipofectamine transfection method

20

25

30

35

5

10

15

Using six well tissue culture plates either 2 x 105 KUSA cells in 2ml IMDM + 10% (v/v) FCS or 2 x 10⁵ CHO cells were cultured in 2ml "-MEM + 10% (v/v) FCS until 70% confluent. 2Fq DNA diluted in 100Fl OPTI-MEM I (Gibco BRL, USA) was mixed gently with 12Fl lipofectamine diluted in 100Fl OPTI-MEM I and incubated at room temperature for 30min to allow DNA complex formation. DNA complexes were gently diluted in a total volume of 1ml of OPTI-MEM I and overlaid onto washed KUSA or CHO cell monolayers. A further 1ml IMDM + 20% (v/v) FCS (KUSA cells) or 1ml "-MEM + 20% (v/v) FCS (CHO cells) was added to transfected cells after 5 hours. At 24 hours, the culture medium was replaced with fresh complete growth medium. At 48 hours after transfection, selection was applied. A methotrexate resistant clone secreting comparatively high levels of NR6 was selected and expanded for further analysis.

(iii) Protein expression

CHO cells were grown to confluence in roller bottles in nucleoside free "-MEM + 10% (v/v) FCS. Selection was maintained by using 100 ng/ml Methotrexate in the conditioned media according to manufacturer instructions. Expression was monitored by Biosensor and harvesting found to be optimal at 3 to 4 days.

### 10 B. Protein Analysis

5

(i) Biosensor analysis

Expression and purification was monitored by Biosensor analysis (BiaCoreTM, Sweden) where anti FLAG peptide M2 antibody (Kodak Eastman, USA), specific for the FLAG peptide sequence was bound to the sensorchip. Fractions were analysed for binding to the sensor surface (resonance units) and the sample then removed from the surface using 50 mM Diethylamine pH 12.0 prior to analysis of the next fraction. Immobilisation and running conditions of the Biosensor follow the manufacturer's instructions.

25 (ii) Protein Production

In order to generate and characterise NR6, conditioned media (2 L) produced by CHO cells was harvested after day 3, post confluence. Conditioned media was concentrated using diafiltration with a 10,000 molecular weight cut-off. (Easy flow, Sartorius, Aus). At a volume of 200 ml (i.e. 10 x concentrated) the sample was buffer exchanged into 20 mM Tris, 0.15M NaCl, 0.02% (v/v) Tween 20 pH 7.5 (Buffer A).

(iii) Immunoprecipitation and Western Blot analysis of mNR6

30

Concentrated conditioned media (1ml) was immunoprecipitated with M2 affinity resin (20Fl, Kodak Eastman). To examine the structural characterisation of mNR6 SDS PAGE was performed under reducing and non-reducing conditions. Separation was performed on NOVEX 4-20% (v/v) Tris/glycine gradient gels and protein transfered on PVDF membrane. Western blots were probed with biotinylated M2 antibody (primary, 1:500) and then streptavidin peroxidase (secondary, 1:3000). Samples were visualised by autoradiography using electrochemiluminescence (ECL, Dupont, USA).

By regressional analysis of prestained standards
(BIORAD, Aus.) the molecular weight of the monomeric
unit was calculated to be 65,000 daltons. Under nonreducing conditions the molecular weight was calculated
to be 127,000 indicating that NR6 is a disulphide linked
dimer. A tetrameric complex running at approximately
250,000 daltons was also observed. Although a band
running at approximately 50,000 daltons was observed, no
monomeric NR6 was detected under non-reducing conditions
indicating that the majority of NR6 expressed in this
system is disulphide linked.

25 (iv) Affinity Chromatography of mNR6

Concentrated conditioned media (200 ml) was applied to M2 affinity resin (5ml) under gravity. To enhance recovery the unbound fraction was reapplied to the column four times prior to extensive washing of the column with 200 volumes of Buffer A. Biosensor analysis indicates that approximately 20% of the M2 binding originally present in the concentrate remains in the unbound fraction. The bound fraction was eluted from the column using an immunodesorbant (50 ml); actisep (Sterogene Labs, USA).

30

35

5

(v) Ion exchange and Desalting of mNR6

In order to buffer exchange mNR6 prior to anion chromatography, 10 ml batches of the eluted fraction (50 ml) were applied to an XK column (400 x 26 mm I.D.) containing G25 sepharose (Pharmacia, Sweden). Chromatography was developed at 4 ml/min using an FPLC (Pharmacia, Sweden) equipped with an online UV280 and conductivity monitor. The mobile phase was 10 mM Tris, 0.1M NaCl, 0.02% v/v Tween, pH 8.0. 10 ml fractions were collected between 12.5 min and 25 min to optimise recovery and removal of salt. Fractions were analysed by Biosensor analysis and pooled according to binding.

All pooled active fractions were diluted with an equal volume of 20 mM Tris, 0.02% (v/v) Tween, pH 8.5 (Buffer B) and then loaded onto a Mono Q 5/5 (Pharmacia, Sweden) at a flow rate of 2 ml/min. The column was washed with buffer B. Elution was performed using a linear gradient between buffer B and buffer B containing 0.6M NaCl over 30 min at a flow rate of 1 ml/min. Fractions (1 minute) were collected and analysed on the Biosensor and also by SDS PAGE and Western blot analysis. Fractions 15 to 26 (approximately 0.4M NaCl) appear to contain the majority of mNR6 as indicated by the Biosensor.

# C. Production of CHO derived N' FLAG-mNR6 (monomeric form)

#### 30 (i) Protein Production

A cDNA fragment containing the entire coding sequence of murine NR6 with an N-terminal FLAGJ sequence was cloned into the expression vector pCHO1 for production of N-terminal FLAG-tagged protein. This vector contains a neomycin resistance gene with expression of the NR6 gene under the control of an EF1" promoter. This expression

construct was transfected into CHO cells using Lipofectamine (Gibco BRL, USA) according to the manufacturer instructions. Transfected cells were cultured in IMDM + 10% (v/v) FCS with resistant cells selected in geneticin (600Fg/ml, Gibco BRL, USA). A neomycin resistant clone, secreting comparatively high levels of NR6 was selected and expanded for further analysis.

### 10 (ii) Protein expression

5

15

20

25

35

N' FLAG-NR6 expressed in serum free conditioned media (10 litre) was harvested from transfected CHO and cells. Collected media was concentrated using a CH2 ultrafiltration system equipped with a S1Y10 cartridge (Amicion molecular weight cut-off 10,000). Preliminary examination of the expressed product under reducing and non-reducing SDS PAGE followed by western blot analysis was performed. Visualisation of the protein on Westerns was specific to the primary antibody anti FLAG M2. Under reducing conditions a band approximately at 65,000 daltons was observed. Under non-reducing conditions, dimer and larger molecular weight aggregates were observed. These are disulphide linked monomers as they are not present in the reducing gel. Small amounts of monomer appear to be present in non-reducing gels. Affinity Chromatography of NR6 (iii)

Concentrated conditioned media was applied to an anti FLAG M2 affinity resin (100 x 16 mm I.D.). After washing the unbound proteins off the column, the bound proteins were eluted using FLAG peptide (60Fg/ml) in PBS.

(iv) Ion Exchange Chromatography of NR6

Eluted fractions from affinity column were dialysed overnight against 20 mM Tris-HCl pH 8.5 (buffer C)

containing 50 mM Dithiothretol (DTT) using 25,000 cutoff dialysis tubing (Spectra/Por7, Spectrum). The
dialysed fractions were loaded onto Mono Q 5/5
(Pharmacia, Sweden) previously equilibrated with buffer
C containing 5 mM DTT. Chromatography was developed
using a linear gradient between buffer C and buffer C
containing 1.0 M NaCl at a flow rate of 0.5 ml / min.

(v) Refolding of NR6

10

15

25

5

Fractions containing NR6 from the Mono Q were adjusted to 50 mM DTT and left overnight at 41C. To initiated refolding the sample was then dialysed against 50 mM Tris-HCl (pH 8.5), 2 M Urea, 0.1% (v/v) Tween 20, 10 mM Glutathione (reduced) and 2 mM Glutathione (oxidised) at a final protein concentration of 100 Fg / ml. Folding was carried out at ambient temperature with one change of the buffer over 24 hours.

20 (v) Reversed Phase High Performance Liquid Chromatography (RP-HPLC)

The folded product was further purified by RP-HPLC using a Vydac C4 resin (250 x 4.6 mm I.D.) previously equilibrated with 0.1% (v/v) Trifluoroacetic acid (TFA). Elution was carried out using a linear gradient from 0 to 80% (v/v) acetonitrile / 0.1% (v/v) TFA at a flow rate of 1 ml per minute.

#### 30 D. pCHO1/NR6/FLAG

In order to determine the native N termini of NR6, a C terminal FLAG NR6 CHO cell line was established.

The plasmid pKUSA166 (murine NR6 cDNA cloned into the EcoR I site of pBLUESCRIPT) was digested with BamH I to remove the sequences encoding the last 15 amino acids of murine NR6. Synthetic oligonucleotides which encode the

3' end of mouse NR6 followed by the FLAG peptide tag were annealed and ligated into the BamH I site of pKUSA166. The sequence of the oligonucleotides was as follows:-

5

- I L P S G R R G A A R G P A G D Y K D D D K * [SEO ID NO:34]
- GATCTTGCCCTCGGGCAGACGGGGTGCGGCGAGAGGTCCTGCCGGCGACTACAAGG

  10 ACGACGATGACAAGTA G [SEQ ID NO:33]

  AACGGGAGCCCGTCTGCCCCACGCCGCTCTCCAGGACGGCCGCTGATGTTCCTGCT

  GCTACTGTTCATCCTAG [SEQ ID NO:35]
- The 5' end of the linker introduces a silent mutation

  (CTG > TTG), to destroy the 5' BamH I site upon insertion of the linker. The NR6 cDNA (with native signal sequence) with the C-terminal FLAG was cut out of pKUSA166 with EcoR I and BamH I and cloned into the EcoR I BamH I cloning sites of pCHO-1. This vector results in the secretion of NR6 protein with a C-terminal flag tag (CN FLAG-mRN6).
- This vector results in the secretion of NR6 protein from KUSA cells. The vector pCHO1 has been previously described in (17) although with a different secretable marker.
  - (i) Production of polyclonal NR6 antiserum
- The following peptide from the N terminal area of NR6 was chosen for production of polyclonal antiserum to NR6

VISPQDPTLLIGSSLQATCSIHGDTP [SEQ ID NO:39]

35 The peptide was conjugated to KLH and injected into rabbits. Production and purification of the polyclonal antibody specific to the NR6 peptide sequence follows

standard methods.

- (ii) Protein expression
- 5 KUSA cells transfected with cDNA of C terminal tagged mNR6 were grown to confluence in flasks (800ml) using IMDM media containing 10% (v/v) FBS. Conditioned media (100 ml) was harvested 3 -4 days post confluence.
- 10 (iii) Characterisation of NR6 by Immunoprecipitation and Western blotting
- In order to establish that NR6 with the predicted sequence is produced in KUSA cells transfected with the cDNA, western blot analysis using both M2 antibody and 15 purified NR6 specific rabbit antibody were performed. Conditioned media (1 to 5 ml) was immunoprecipitated with M2 affinity resin (10-20 Fl). Then after sufficient time for binding, the beads were washed with MT-PBS and subsequently NR6 eluted with 100 Fg/ml FLAG peptide (40 20 Fl, (1, 5 minute incubation). The sample was then subjected to reducing and non reducing SDS PAGE followed by western blot analysis. Both purified NR6 polyclonal antibody (purified by protein G) and M2 antibody recognise a band under reducing conditions of a 25 molecular weight size approximately 65,000 daltons. Since the two antibodies reconising resides at the N terminus and C terminus it is reasonable to assume that full length NR6 is produced. Biotinylation of the respective antibodies by standard methods reduces the 30 background. Under non-reducing conditions polyclonal NR6 bind antibodies to a band of a molecular weight of approximately 127,000, consistent with a dimeric NR6 disulphide linked form. Minor components of tetrameric NR6 are present, no monomeric NR6 is evident using 35 polyclonal NR6 antibodies.

# EXAMPLE 15 Generation of NR6 knockout mice

To construct the NR6 targeting vector, 4.1kb of genomic NR6 DNA containing exons 2 through to 6 was deleted and 5 replaced with G418-resistance cassette, leaving 5N and 3N NR6 arms of 2.9 and 4.5 kb respectively. A 4.5 kb Xhol fragment of the murine genomic NR6 clone 2.2 (Figure 3) containing exons 7, 8 and 3N flanking sequence was subcloned into the XhoI site of pBluescript 10 generating pBSNR6Xho4.5. A 2.9kb NotI-Stul fragment within NR6 intron 1 from the same genomic clone was inserted into NotI and EcoRV digested pBSNR6Xho4.5 creating pNR6-Ex2-6. This plasmid was digested with ClaI, which was situated between the two NR6 fragments, 15 and following blunt ending, ligated with a blunted 6kb HindIII fragment from placZneo, which contains the lacZgene and a PGKneo cassette, to generate the final targeting vector, pNR61acZneo. pNR61acZneo was linearised with NotI and electroporated into W9.5 20 embryonic stem cells. After 48 hours, transfected cells were selected in 175 Fg/ml G418 and resistant clones picked and expanded after a further 8 days.

Clones in which the targetting vector had recombined with the endogenous NR6 gene were identified by hybridising SpeI-digested genomic DNA with a 0.6 kb XhoI-StuI fragment from genomic NR6 clone 2.2. This probe (probe A, Figure 4), which is located 3N to the NR6 sequences in the targeting vector, distinguished between the endogenous (9.9 kb) and targeted (7.1 kb) NR6 loci (Figure 5).

Genomic DNA was digested with SpeI for 16hrs at 371C, electrophoresed through 0.8% (w/v) agarose, transferred to nylon membranes and hybridised to ³²P-labelled probe in a solution containing 0.5M sodium phosphate, 7% (w/v)

SDS, 1mM EDTA and washed in a solution containing 40mM sodium posphate, 1% (w/v) SDS at 651C. Hybridising bands were visualised by autoradiography for 16 hours at -701C using Kodak XAR-5 film and intensifying screens.

- Two targeted ES cell clones, W9.5NR6-2-44 and W9.5NR6-4-2, were injected into C57B1/6 blastocysts to generate chimeric mice. Male chimeras were mated with C57B1/6 females to yield NR6 heterozygotes which were subsequently interbred to produce wild-type (NR6^{+/+}),
- heterozygous (NR6^{+/-}) and mutant (NR6^{-/-}) mice. The genotypes of offspring were determined by Southern Blot analysis of genomic DNA extracted from tail biopsies.

Genotyping of mice at weaning from matings between NR^{+/-}

heterozygous mice derived from both targated ES cell
clones revealed an absence of homozygous NR6^{-/-} mutants.

As no unusual loss of mice was observed between birth
and weaning, this suggest that lack of NR6 is lethal
during embryonic development or immediately after birth.

Genotyping of embryonic tissues at various stages of
development suggests that death occurs late in gestation
(beyond day 16) or at birth.

#### EXAMPLE 16

25 Oligonucleotides

1943:

5' GTC CAA GTG CGT TGT AAC CCA 3'

5' GCT GAG TGT GCG CTG GGT CTC ACC 3'

30 2057:

5' GGC TCC ACT CGC TCC AGA 3'

Those skilled in the art will appreciate that the invention described herein is susceptible to variations and modifications other than those specifically described. It is to be understood that the invention includes all such variations and modifications. The

invention also includes all of the steps, features, compositions and compounds referred to or indicated in this specification, individually or collectively, and any and all combinations of any two or more of said steps or features.

#### **BIBLIOGRAPHY:**

10

 Du, X.X. and Williams, D.A. (1994) Blood 83: 2023-2030.

- 5 2. Yang, Y.C. and Yin, T. (1992) Biofactors 4: 15-21.
  - 3. Paul, S.R., Bennett, F., Calvetti, J.A., Kelleher, K., Wood, C.R., O'Hara, R.J.J., Leary, A.C., Sibley, B., Clark, S.C., Williams, D.A. and Yang, Y.-C. (1990) Proc. Natl. Acad. Sci. USA 87: 7512.
- 4. Musashi, M., Clark, S.C., Sudo, T., Urdal, D.L., and Ogawa, M. (1991) Blood 78: 1448-1451.
  - 5. Schibler, K.R., Yang, Y.C. and Christensen, R.D. (1992) Blood 80: 900-3.
- 15 6. Tsuji, K., Lyman, S.D., Sudo, T., Clark, S.C., and Ogawa, M. (1992) *Blood* 79: 2855-60.
  - 7. Burstein, S.A., Mei, R.L., Henthorn, J., Friese, P. and turner, K. (1992) J. Cell. Physiol. 153: 305-12.
- 20 8. Hangoc, G., Yin, T., Cooper, S., Schendel, P., Yang, Y.C. and Broxmeyer, H.E. (1993) Blood 81: 965-72.
  - 9. Teramura, M., Kobayashi, S., Hoshino, S., Oshimi, K. and Mizoguchi, H. (1992) Blood 79: 327-31.
- 25 10. Yonemura, Y., Kawakita, M., Masuda, T., Fujimoto, K., Kato, K. and Takatsuki, K. (1992) Exp. Hematol. 20: 1011-6.
  - 11. Baumann, H. and Schendel, P. (1991) J. Biol. Chem. 266: 20424-7.
- 12. Kawashima, I., Ohsumi, J., Mita-Honjo, K., Shimoda-Takano, K., Ishikawa, H., Sakakibara, S., Miyadai, K. and Takiguchi, Y. (1991) Febs. Lett. 283: 199-202.
- 13. Keller, D.C., Du, X.X., Srour, E.f., Hoffman, R. and Williams, D.A. (1993) *Blood 82:* 1428-35.
  - 14. Sambrook et al (1989) Cloning: A Laboratory Manual.
    Cold Spring Harbour Laboratory, Cold Spring

Harbour, NY.

- 15. Chirqwin et al (1979) Biochemistry 18: 5294-5299.
- 16. Mizushima and Nagata (1990 ) Nucl. Acids Res., <u>18</u>: 5322.
- 5 17. FEBS Lett (1994) 356: 244-248.
  - 18. Bazan, J.F. (1990) *Proc Natl Acad Sci* USA, 87, 6934-8
- 10 19. de Vos, A.M., Ultsch, M. and Kossiakoff, A.A. (1992) Science, 255, 306-12
- 20. Layton, M.J., Cross, B.A., Metcalf, D., Ward, L.D., Simpson, R.J. and Nicola, N.A. (1992) Proceedings of the National Academy of Sciences of the United States of America 89: 8616-8620
  - 21. Taga, T., Hibi, M., Hirata, T., Tamasaki, K., Tasukawa, K., Matsuda, T., Hirano, T. and Kishimoto, T. (1989) Cell 58: 573-581
    - 22. Merberg, D.M., Wolf, S.F. and Clark, S.C. (1992)

      Sequence similarity between NKSF and the IL-6/G-CSF family (1992) Immunology Today 13: 77-78
  - 23. Cearing, D.P. and Cosman, D. (1991) Cell 66:9-10
- 24. Wrighton, N.C., Farrell, F.X., Chang, R., Kashyap, A.K., Barbone, F.P., Mulcahy, L.S., Johnson, D.L., Barrett, R.W., Jolliffe, L.K. and Dower, W.J. (1996) Science 273: 458-464.
- Cwirla, S.E., Balasubramanian, P., Duffin, D.J., Wagstrom, C.R., Gates, C.M., Singer, S.C., Davis,
  A.M., Tansik, R.L., Mattheakis, L.C., Boytos, C.M., Schatz, P.J., Baccanari, D.P., Wrighton, N.C., Barret, R.W. and Dower, W.J. (1997) Science 276:

يني الله والمعال المانية المانية المناسبة

- 69 -

## **SUBSTITUTE SHEET (RULE 26)**

20

1696--9, 1997

- 26. Samuel Davis et al (1996) Cell 87:1161-1169.
- 5 27. Chitra Suri et al (1996) Cell 87: 1171-1180.
  - 28. Nicholas C. Wrighton et al (1996) Science 273: 458-463.
- 10 29. Oded Livnah et al (1996) Science 273: 464-471.
  - 30. Cwirla, Steven E. et al (1997) Science 276: 1696-1699.

### SEQUENCE LISTING

_	(1) GENERAL INFORMATION:
5	(i) APPLICANT: (Other than US) AMRAD OPERATIONS PTY
	(US only) Douglas James HILTON, Nicos Antony
	NICOLA, Alison FARLEY, Tracey WILLSON, Jian-Guo ZHANG,
LO	Warren ALEXANDER, Steven RAKAR, Louis FABRI, Tetsuo
	KOJIMA, Masatsugu MAEDA, Yasumfumi KIKUCHI, Andrew NASH
	(ii) TITLE OF INVENTION: A NOVEL HAEMPOIETIN
	RECEPTOR AND GENETIC
15	SEQUENCES ENCODING SAME
	(iii) NUMBER OF SEQUENCES: 39
	(iv) CORRESPONDENCE ADDRESS:
20	(A) ADDRESSEE: DAVIES COLLISON CAVE
	(B) STREET: 1 LITTLE COLLINS STREET
	(C) CITY: MELBOURNE
	(D) STATE: VICTORIA
	(E) COUNTRY: AUSTRALIA
25	(F) ZIP: 3000
	(v) COMPUTER READABLE FORM:
	(A) MEDIUM TYPE: Floppy disk
	(B) COMPUTER: IBM PC compatible
30	(C) OPERATING SYSTEM: PC-DOS/MS-DOS
	(D) SOFTWARE: PatentIn Release #1.0, Version
	#1.25
	(vi) CURRENT APPLICATION DATA:
35	(A) APPLICATION NUMBER:

- 71 -

PCT INTERNATIONAL APPLICATION

	(B) FILING DATE: 11-SEP-1997
	(vi) PRIOR APPLICATION DATA:
	(A) APPLICATION NUMBER: PO2246/96
5	(B) FILING DATE: 11-SEP-1996
	(viii) ATTORNEY/AGENT INFORMATION:
	(A) NAME: HUGHES DR, E JOHN L
	(C) REFERENCE/DOCKET NUMBER: EJH/AF
10	
	(ix) TELECOMMUNICATION INFORMATION:
	(A) TELEPHONE: +61 3 9254 2777
	(B) TELEFAX: +61 3 9254 2770
15	(2) INFORMATION FOR SEQ ID NO:1:
	(i) SEQUENCE CHARACTERISTICS:
	(A) LENGTH: 5 amino acids
	(B) TYPE: amino acid
20	(D) TOPOLOGY: linear
	(ii) MOLECULE TYPE: protein
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:
25	
	Trp Ser Xaa Trp Ser
30	(2) INFORMATION FOR SEQ ID NO:2:
	(i) SEQUENCE CHARACTERISTICS:
	(A) LENGTH: base pairs
	(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

	(ii) MOLECULE TYPE: DNA	
5	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:	
	ACTCGCTCCA GATTCCCGCC TTTT	24
10	(2) INFORMATION FOR SEQ ID NO:3:	
15	<ul><li>(i) SEQUENCE CHARACTERISTICS:</li><li>(A) LENGTH: 24 base pairs</li><li>(B) TYPE: nucleic acid</li><li>(C) STRANDEDNESS: single</li><li>(D) TOPOLOGY: linear</li></ul>	
	(ii) MOLECULE TYPE: DNA	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:	
	(AI) SEQUENCE PROCEED TO NO. 3.	
25	TCCCGCCTTT TTCGACCCAT AGAT	24
	(2) INFORMATION FOR SEQ ID NO:4:	
30	<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 24 base pairs</li> <li>(B) TYPE: nucleic acid</li> <li>(C) STRANDEDNESS: single</li> <li>(D) TOPOLOGY: linear</li> </ul>	
35		

- 73 -

(ii) MOLECULE TYPE: DNA

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:	
	GGTACTTGGC TTGGAAGAGG AAAT (2) INFORMATION FOR SEQ ID NO:5:	24
5	<ul><li>(i) SEQUENCE CHARACTERISTICS:</li><li>(A) LENGTH: 24 base pairs</li><li>(B) TYPE: nucleic acid</li><li>(C) STRANDEDNESS: single</li></ul>	
10	(D) TOPOLOGY: linear  (ii) MOLECULE TYPE: DNA	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:	
	CGGCTCACGT GCACGTCGGG TGGG	24
20	(2) INFORMATION FOR SEQ ID NO:6:	
_ ·	<ul><li>(i) SEQUENCE CHARACTERISTICS:</li><li>(A) LENGTH: 22 base pairs</li><li>(B) TYPE: nucleic acid</li><li>(C) STRANDEDNESS: single</li></ul>	
25	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA	
30		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:	
	AGCTGCTGTT AAAGGGCTTC TC	22
35		

	(2) INFORMATION FOR SEQ ID NO:7:	
5	<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 15 base pairs</li> <li>(B) TYPE: nucleic acid</li> <li>(C) STRANDEDNESS: single</li> <li>(D) TOPOLOGY: linear</li> </ul>	·
	(ii) MOLECULE TYPE: Oligonucleotide	
LO	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:	
15	(A/G)CTCCA(A/G)TC(A/G)CTCCA	15
	(2) INFORMATION FOR SEQ ID NO:8:	
20	<ul><li>(i) SEQUENCE CHARACTERISTICS:</li><li>(A) LENGTH: 15 base pairs</li><li>(B) TYPE: nucleic acid</li><li>(C) STRANDEDNESS: single</li><li>(D) TOPOLOGY: linear</li></ul>	
25	(ii) MOLECULE TYPE: Oligonucleotide	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:	
30	(A/G)CTCCA(C/T)TC(A/G) CTCCA	15
35	(2) INFORMATION FOR SEQ ID NO:9:	,
_	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 21 base pairs	

- 75 -

	(B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear	
5	(ii) MOLECULE TYPE: DNA	
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:	
	AAGTGTGACC ATCATGTGGA C	21
15	(2) INFORMATION FOR SEQ ID NO:10:	
20	<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 18 base pairs</li> <li>(B) TYPE: nucleic acid</li> <li>(C) STRANDEDNESS: single</li> <li>(D) TOPOLOGY: linear</li> </ul>	
	(ii) MOLECULE TYPE: DNA	
25		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:	
30	GGAGGTGTTA AGGAGGCG	18
	(2) INFORMATION FOR SEQ ID NO:11:	
35	<ul><li>(i) SEQUENCE CHARACTERISTICS:</li><li>(A) LENGTH: 18 base pairs</li><li>(B) TYPE: nucleic acid</li></ul>	

	(C) STRANDEDNESS: single (D) TOPOLOGY: linear	
5	(ii) MOLECULE TYPE: DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:	
10	ATGCCCGCGG GTCGCCCG	18
15	(2) INFORMATION FOR SEQ ID NO:12:	
	<ul><li>(i) SEQUENCE CHARACTERISTICS:</li><li>(A) LENGTH: 1506 base pairs</li><li>(B) TYPE: nucleic acid</li></ul>	
20	<pre>(C) STRANDEDNESS: single (D) TOPOLOGY: linear</pre>	
	(ii) MOLECULE TYPE: DNA	
25	(ix) FEATURE:  (A) NAME/KEY: CDS  (B) LOCATION: 11242	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:	
35	GGCACGAGCT TCGCTGTCCG CGCCCAGTGA CGCGCGTGCG GACCCGAGCC CCAATCTGCA CCCCGCAGAC TCGCCCCGC CCCATACCGG CGTTGCAGTC ACCGCCCGTT GCGCGCCACC CCC ATG CCC GCG GGT CGC CCG GGC CCC GTC GCC CAA TCC GCG CGG CCG	- 4 - 3

	Met	Pro	Ala	Gly	Arg	Pro	Gly	Pro	Val	Ala	Gln	Ser	Ala	Arg	Arg	Pro	
	1				5					10					15		
	CCG	CGG	CCG	CTG	TCC	TCG	CTG	TGG	TCG	CCT	CTG	TTG	CTC	TGT	GTC	CTC	96
5	Pro	Arg	Pro	Leu	Ser	Ser	Leu	Trp	Ser	Pro.	Leu	Leu	Leu	Cys	Val	Leu	
				20					25					30			
			CCT														144
	Gly	Val	Pro	Arg	Gly	Gly	Ser		Ala	His	Thr	Ala		Ile	Ser	Pro	
10			35					40					45				
							* T.C	aaa	maa	maa	CTC	C 2 2	ccm	א ככ	TCC	THO THE	100
			CCC Pro														192
	GIn	_	Pro	Thr	Leu	ьeu	55	GIY	ser	261	beu	60	AIa	1111	Cys	361	
15		50					,,,					00					
13	מדמ	СУТ	GGA	GAC	ACA	ССТ	GGG	GCC	ACC	GCT	GAG	GGG	CTC	TAC	TGG	ACC	240
			Gly														
	65		1	<u>-</u> -		70	-				75					80	
20	CTC	AAT	GGT	CGC	CGC	CTG	ccc	TCT	GAG	CTG	TCC	CGC	CTC	CTT	AAC	ACC	288
	Leu	Asn	Gly	Arg	Arg	Leu	Pro	Ser	Glu	Leu	ser	Arg	Leu	Leu	Asn	Thr	
					85					90					95		
	TCC	ACC	CTG	GCC	CTG	GCC	CTG	GCT	AAC	CTT	AAT	GGG	TCC	AGG	CAG	CAG	336
25	Ser	Thr	Leu	Ala	Leu	Ala	Leu	Ala	Asn	Leu	Asn	Gly	Ser	Arg	Gln	Gln	
				100					105					110			
																GCT	384
	Ser	Gly	_		Leu	Val				Arg	, Asp	GIY			Leu	Ala	
30			115	i			•	120					125				
	000	maa	, maa	, OTO	• ጥአጥ	י בידים	GGC	י ייידרי	. ככר	י כריז	ר פאס	ממ:	: ככר	י יייי	י אאר	ATC	432
																lle	
	GIÀ	130	_	, <u>n</u> eu	y <u>.</u>	441	135					140			<b></b>		
35		-50	-														

	AGC	TGC	TGG	TCC	CGG	AAC	ATG	AAG	GAT	CTC	ACG	TGC	CGC	TGG	ACA	CCG	480
	ser	Cys	Trp	Ser	Arg	Asn	Met	Lys	Asp	Leu	Thr	Cys	Arg	Trp	Thr	Pro	
	145					150					155					160	
5	GGT	GCA	CAC	GGG	GAG	ACA	TTC	TTA	CAT	ACC	AAC	TAC	TCC	CTC	AAG	TAC	528
	Gly	Ala	His	Gly	Glu	Thr	Phe	Leu	His	Thr	Asn	Tyr	Ser	Leu	Lys	Tyr	
					165					170					175		
			AGG														576
10	Lys	Leu	Arg	Trp	Tyr	Gly	Gln	Asp	Asn	Thr	Cys	Glu	Glu	Tyr	His	Thr	
				180					185					190			
			CCT														624
	Val	Gly	Pro	His	Ser	Cys	His		Pro	Lys	Asp	Leu		Leu	Phe	Thr	
15			195					200					205				
			GAG		maa	ama	<i></i>	aca	200	אאת	ccc	CTIA	ccc	TCA	CCA	ח פי ח	672
																	672
	Pro	_	Glu	IIe	Trp	vai		Ата	1111	ASII	Arg	220	GIY	261	MIG	Arg .	
2.0		210					215					220					
20	mam	C N TT	GTC	CTC.	א <i>כי</i> א	CTG	CAT	GTC.	רידופ	GAC	GTG	GTG	ACC	ACG	GAC	CCC	720
			Val														, 20
	225	-	vai	neu	1111	230	пор	V 4.1	200	7.00	235					240	
	223																• •
25	CCA	CCC	GAC	GTG	CAC	GTG	AGC	CGC	GTT	GGG	GGC	CTG	GAG	GAC	CAG	CTG	768
			Asp														
					245					250	_				255		
	AGT	GTG	CGC	TGG	GTC	TCA	CCA	CCA	GCT	CTC	AAG	GAT	TTC	CTC	TTC	CAA	816
30	Ser	Val	Arg	Trp	Val	Ser	Pro	Pro	Ala	Leu	Lys	Asp	Phe	Leu	Phe	Gln	
				260					265					270			
	GCC	AAG	TAC	CAG	ATC	CGC	TAC	CGC	GTG	GAG	GAC	AGC	GTG	GAC	TGG	AAG	864
	Ala	Lys	Tyr	Gln	Ile	Arg	Tyr	Arg	Val	Glu	Asp	Ser	Val	Asp	Trp	Lys	
35			275	i				280					285				

	GTG	GTG	GAT	GAC	GTC	AGC	AAC	CAG	ACC	TCC	TGC	CGT	CTC	GCG	GGC	CTG	912
	Val																
		290	•	-			295					300					
5	AAG	CCC	GGC	ACC	GTT	TAC	TTC	GTC	CAA	GTG	CGT	TGT	AAC	CCA	TTC	GGG	960
	Lys	Pro	Gly	Thr	Val	Tyr	Phe	Val	Gln	Val	Arg	Cys	Asn	Pro	Phe	Gly	
	305					310					315					320	
	ATC	TAT	GGG	TCG	AAA	AAG	GCG	GGA	ATC	TGG	AGC	GAG	TGG	AGC	CAC	CCC	1008
10	Ile	Tyr	Gly	Ser	Lys	Lys	Ala	Gly	Ile	Trp	Ser	Glu	Trp	Ser	His	Pro	
					325					330					335		
						CCT											1056
	Thr	Ala	Ala	Ser	Thr	Pro	Arg	Ser	Glu	Arg	Pro	Gly	Pro	Gly	Gly	Gly	
15				340					345					350			
																CGC	1104
	Val	Cys	Glu	Pro	Arg	Gly	Gly	Glu	Pro	Ser	Ser	Gly		Val	Arg	Arg	
			355					360					365				
20												<i>-</i> 23.2	221		ma a	maa	1152
																TCG	1152
	Glu	Lev	. Lys	Gln	Phe	. Leu			Leu	гуs	гÀг			TYL	Cys	Ser	
		370	)				375	5				380					
						a cmc	ייי איי	י כאכ	י כאכ	тсс	. cer	י ככיו	TGG	: ATG	CAC	AAG	1200
25																Lys	
			ı sei	Pile	: ALG	390		LASE	, 011		395					400	
	385	•				350	•										
	TCI	\ C\(\)	ממ ־	a ACC	c cg/	A AAC	CA	G GT	CTO	s cc	GCT	LAA 1	A CTO	TAF	AGGA?	CAGG	1249
30						g Ası											
30	50.	- ***	<i>.</i> 27.		40					410							
	CC	ATCC	TCCT	GCT	GGGT	CAG A	ACCT	GGAG	GC T	CACC'	rgaa'	T TG	GAGC	CCCT	CTG	TACCAT	C 1309
35	TG	GGCA	ACAA	AGA	AACC	TAC	CAGA	.GGCT	GG G	GCAC.	AATG.	A GC	TCCC.	ACAA	CCA	CAGCTT	T 1369
	GG	TCCA	CATG	ATG	GTCA	CAC	TTGG	ATAT	AC C	CCAG	TGTG	G GT	AAGG	TTGG	GGT	ATTGCA	G 1429

GGCCTCCCAA CAATCTCTTT AAATAAATA	AGGAGTTGTT	CAGGTAAAAA	AAAAAAAAA	1489
---------------------------------	------------	------------	-----------	------

## AAAAAAAA AAAAAAA 1506

5

25

- (2) INFORMATION FOR SEQ ID NO:13:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 413 amino acids
- 10 (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: protein
- 15 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:

Met Pro Ala Gly Arg Pro Gly Pro Val Ala Gln Ser Ala Arg Arg Pro

1 5 10 15

- 20 Pro Arg Pro Leu Ser Ser Leu Trp Ser Pro Leu Leu Cys Val Leu 20 25 30
  - Gly Val Pro Arg Gly Gly Ser Gly Ala His Thr Ala Val Ile Ser Pro 35 40 45

Gln Asp Pro Thr Leu Leu Ile Gly Ser Ser Leu Gln Ala Thr Cys Ser

Ile His Gly Asp Thr Pro Gly Ala Thr Ala Glu Gly Leu Tyr Trp Thr

30 65 70 75 80

Leu Asn Gly Arg Arg Leu Pro Ser Glu Leu Ser Arg Leu Leu Asn Thr 85 90 95

35 Ser Thr Leu Ala Leu Ala Leu Ala Asn Leu Asn Gly Ser Arg Gln Gln
100 105 110

Ser Gly Asp Asn Leu Val Cys His Ala Arg Asp Gly Ser Ile Leu Ala Gly Ser Cys Leu Tyr Val Gly Leu Pro Pro Glu Lys Pro Phe Asn Ile Ser Cys Trp Ser Arg Asn Met Lys Asp Leu Thr Cys Arg Trp Thr Pro Gly Ala His Gly Glu Thr Phe Leu His Thr Asn Tyr Ser Leu Lys Tyr Lys Leu Arg Trp Tyr Gly Gln Asp Asn Thr Cys Glu Glu Tyr His Thr Val Gly Pro His Ser Cys His Ile Pro Lys Asp Leu Ala Leu Phe Thr Pro Tyr Glu Ile Trp Val Glu Ala Thr Asn Arg Leu Gly Ser Ala Arg Ser Asp Val Leu Thr Leu Asp Val Leu Asp Val Val Thr Thr Asp Pro Pro Pro Asp Val His Val Ser Arg Val Gly Gly Leu Glu Asp Gln Leu Ser Val Arg Trp Val Ser Pro Pro Ala Leu Lys Asp Phe Leu Phe Gln Ala Lys Tyr Gln Ile Arg Tyr Arg Val Glu Asp Ser Val Asp Trp Lys Val Val Asp Asp Val Ser Asn Gln Thr Ser Cys Arg Leu Ala Gly Leu 300 -

PCT/GB97/02479 WO 98/11225

Lys Pro Gly Thr Val Tyr Phe Val Gln Val Arg Cys Asn Pro Phe Gly 310 315 305 Ile Tyr Gly Ser Lys Lys Ala Gly Ile Trp Ser Glu Trp Ser His Pro 5 325 330 Thr Ala Ala Ser Thr Pro Arg Ser Glu Arg Pro Gly Pro Gly Gly Gly 345 350 340 Val Cys Glu Pro Arg Gly Glu Pro Ser Ser Gly Pro Val Arg Arg 10 360 365 355 Glu Leu Lys Gln Phe Leu Gly Trp Leu Lys Lys His Ala Tyr Cys Ser 375 380 370 15 Asn Leu Ser Phe Arg Leu Tyr Asp Gln Trp Arg Ala Trp Met Gln Lys 395 400 385 390 Ser His Lys Thr Arg Asn Gln Val Leu Pro Ala Lys Leu 405 410 20 (2) INFORMATION FOR SEQ ID NO:14: 25 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1549 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA

35 (ix) FEATURE:

(A) NAME/KEY: CDS

(B) LOCATION: 1..1278

- 83 -

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:

_	GGCA	.CGAG	CT T	CGCT	GTCC	G CG	CCCA	GTGA	CGC	GCGT	GCG (	GACC	CGAG	cc c	CAAT	CTGCA	-65
5	cccc	GCAG	AC T	CGCC	CCCG	C CC	CATA	CCGG	CGT	IGCA	GTC .	ACCG	cccg	TT G	CGCG	CCACC	-5
	CCCA																-1
10							٠										
	ATG	CCC	GCG	GGT	CGC	CCG	GGC	ccc	GTC	GCC	CAA	TCC	GCG	CGG	CGG	CCG	48
	Met	Pro	Ala	Gly	Arg	Pro	Gly	Pro	Val	Ala	Gln	Ser	Ala	Arg	Arg	Pro	
	1				5					10					15		
15	CCG	CGG	CCG	CTG	TCC	TCG	CTG	TGG	TCG	CCT	CTG	TTG	CTC	TGT	GTC	CTC	96
	Pro	Arg	Pro	Leu	Ser	Ser	Leu	Trp	Ser	Pro	Leu	Leu	Leu	Cys	Val	Leu	
				20					25					30			
	GGG	GTG	CCT	CGG	GGC	GGA	TCG	GGA	GCC	CAC	ACA	GCT	GTA	ATC	AGC	CCC	144
20	Gly	Val	Pro	Arg	Gly	Gly	Ser	Gly	Ala	His	Thr	Ala	Val	Ile	Ser	Pro	
			35					40					45				
	CAG	GAC	CCC	ACC	CTT	CTC	ATC	GGC	TCC	TCC	CTG	CAA	GCT	ACC	TGC	TCT	192
									Ser								
25		50					55					60					
	ATA	CAT	GGA	GAC	ACA	CCT	GGG	GCC	ACC	GCT	GAG	GGG	CTC	TAC	TGG	ACC	240
	Ile	His	Gly	Asp	Thr	Pro	Gly	Ala	Thr	Ala	Glu	Gly	Leu	Tyr	Trp	Thr	
	65	•				70					75					80	
30																	
																ACC	288
	Lev	ı Ası	ı Gly	/ Arg	Arg	J Leu	Pro	Sei	c Glu			Arg	g Lei	ı Lev		Thr	
					85	5				90	)				95	•	
35	TC	C AC	CTC	G GCC	CTC	G GCC	CTC	GC'	AA T	CT	r AA:	r GG	J TC	C AGO	G CAC	CAG	336
																n Gln	
				100	0				109	5				11	0		

- 84 -

## SUBSTITUTE SHEET (RULE 26)

. . .

	TCA	GGA	GAC	AAT	CTG	GTG	TGT	CAC	GCC	CGA	GAC	GGC	AGC	TTA	CTG	GCT	384
					Leu												
			115					120					125				
5	GGC	TCC	TGC	CTC	TAT	GTT	GGC	TTG	CCC	CCT	GAG	AAG	CCC	TTT	AAC	ATC	432
	Gly	Ser	Cys	Leu	Tyr	Val	Gly	Leu	Pro	Pro	Glu	Lys	Pro	Phe	Asn	Ile	
		130					135					140					
					CGG												480
10	Ser	Cys	Trp	Ser	Arg	Asn	Met	Lys	Asp	Leu	Thr	Cys	Arg	Trp	Thr		
	145					150					155					160	
									~~~			<b></b>		ama.		m> a	500
					GAG												528
1.5	Gly	Ala	Hls	GIY	Glu	Thr	Pne	Leu	HIS	170	ASII	TAT	261	Бец	175	TYL	
15					165					170					175		
	AAG	ርተር	ΔGG	TGG	TAC	GGT	CAG	GAT	AAC	ACA	TGT	GAG	GAG	TAC	CAC	ACT	576
					Tyr												
	-1-		J	180	-				185					190			
20																	
	GTG	GGC	CCT	CAC	TCA	TGC	CAT	ATC	CCC	AAG	GAC	CTG	GCC	CTC	TTC	ACT	624
	Val	Gly	Pro	His	Ser	Cys	His	Ile	Pro	Lys	Asp	Leu	Ala	Leu	Phe	Thr	
			195					200					205				
25					TGG												672
	Pro	Tyr	Glu	Ile	Trp	Val	Glu	Ala	Thr	Asn	Arg	Leu	Gly	Ser	Ala	Arg	
		210					215					220					
															a. a	666	720
					ACA												720
30		_	Val	Leu	Thr			vai	Leu	Asp	235		Inr	Int	Asp	240	
	225					230	•				د ع		•			270	
	ככי	. ררי	ነ ርአር	ነ ርጥር	CAC	י פידר	, AGC	ב בפר	GTT	. GGG	GGC	CTG	GAG	GAC	CAG	CTG	768
																Leu	-
35					245			_		250				•	255		

	AGT	GTG	CGC	TGG	GTC	TCA	CCA	CCA	GCT	CTC	AAG	GAT,	TTC	CTC	TTC	CAA	816
	Ser	Val	Arg	Trp	Val	Ser	Pro	Pro	Ala	Leu	Lys	Asp	Phe	Leu	Phe	Gln	
				260					265					270			
5	GCC	AAG	TAC	CAG	ATC	CGC	TAC	CGC	GTG	GAG	GAC	AGC	GTG	GAC	TGG	AAG	864
	Ala	Lys	Tyr	Gln	Ile	Arg	Tyr	Arg	Val	Glu	Asp	Ser	Val	Asp	Trp	Lys	
			275					280					285				
									ACC								912
10	Val	Val	Asp	Asp	Val	Ser	Asn	Gln	Thr	Ser	Cys		Leu	Ala	Gly	Leu	
		290					295					300					
														GG N	mma	000	060
									CAA								960
	-	Pro	Gly	Thr	Val	•	Pne	vaı	Gln	vai	315	Cys	ASII	FIO	FILE	320	
15	305					310					317					320	
	Aፕሮ	тат	GGG	TCG	AAA	AAG	GCG	GGA	ATC	TGG	AGC	GAG	TGG	AGC	CAC	ccc	1008
									Ile								
			•		325					330					335		
20																	
	ACC	GCT	GCC	TCC	ACC	CCT	CGA	AGT	GAG	CGC	CCG	GGC	CCG	GGC	GGC	GGG	1056
	Thr	Ala	Ala	Ser	Thr	Pro	Arg	Ser	Glu	Arg	Pro	Gly	Pro	Gly	Gly	Gly	
				340					345					350			
												•					
25																CGC	1104
	Val	Cys	Glu	Pro	Arg	Gly	Gly	Glu	Pro	Ser	Ser	Gly			Arg	Arg	
			355	5				360)				365				
														ma c	тсс	TCC	1152
																TCG	1152
30	Glu		_	s Gir	n Pne	. Leu			Leu	гра	р гуз	380		. lyı	Сув	Ser	
		370)				375	,				300	,				
	* * * *	י ביתוחים	ר אכי	ייייי יו	ר רפי	י כידים	: ፓልር	GA(CAC	TGC	G CG1	GC1	TGG	ATC	CAC	AAG	1200
																ı Lys	
35	385		. 50	- E11		390				r	395		&			400	
J J	30:	•															

	TCA CAC AAG ACC CGA AAC CAG GAC GAG GGG ATC CTG CCT TCG GGC AGA	1248
	Ser His Lys Thr Arg Asn Gln Asp Glu Gly Ile Leu Pro Ser Gly Arg	
	405 410 415	
_	THE SECOND CONTROL OF	1205
5	CGG GGT GCG GCG AGA GGT CCT GCC GGT TAAACTCTAA GGATAGGCCA Arg Gly Ala Ala Arg Gly Pro Ala Gly	1295
	420 425	
	TCCTCCTGCT GGGTCAGACC TGGAGGCTCA CCTGAATTGG AGCCCCTCTG TACCATCTGG	1355
10		
	GCAACAAAGA AACCTACCAG AGGCTGGGGC ACAATGAGCT CCCACAACCA CAGCTTTGGT	1415
	CCACATGATG GTCACACTTG GATATACCCC AGTGTGGGTA AGGTTGGGGT ATTGCAGGGC	1475
1.5	CTCCCAACAA TCTCTTTAAA TAAATAAAGG AGTTGTTCAG GTAAAAAAAA AAAAAAAAAA	1535
15	CTCCCAACAA TCTCTTTAAA TAAATAAAGG AGTTGTTCAG GTAAAAAAAA AAAAAAAAAA	1935
	AAAAAAAAA AAAA	1549
	AND	
20		
	(2) INFORMATION FOR SEQ ID NO:15:	
	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 425 amino acids	
25	(B) TYPE: amino acid	
25	(D) TOPOLOGY: linear	
	\ - /	
	(ii) MOLECULE TYPE: protein	
	·	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:	
	Met Pro Ala Gly Arg Pro Gly Pro Val Ala Gln Ser Ala Arg Arg Pro	
	1 5 10 15	
35	Pro Arg Pro Leu Ser Ser Leu Trp Ser Pro Leu Leu Cys Val Leu	
J J	20 25 30	

	Gly	Val	Pro	Arg	Gly	Gly	Ser	Gly	Ala	His	Thr	Ala	Val	Ile	Ser	Pro
			35					40					45			
	Gln	Asp	Pro	Thr	Leu	Leu	Ile	Gly	Ser	Ser	Leu	Gln	Ala	Thr	Cys	Ser
5		50					55					60				
	Ile	His	Gly	Asp	Thr	Pro	Gly	Ala	Thr	Ala	Glu	Gly	Leu	Tyr	Trp	Thr
	65					70					75					80
10	Leu	Asn	Gly	Arg	Arg	Leu	Pro	Ser	Glu	Leu	Ser	Arg	Leu	Leu	Asn	Thr
					85					90					95	
	Ser	Thr	Leu	Ala	Leu	Ala	Leu	Ala	Asn	Leu	Asn	Gly	Ser	Arg	Gln	Gln
15				100					105					110		
	Ser	Gly	Asp	Asn	Leu	Val	Cys		Ala	Arg	Asp	Gly		Ile	Leu	Ala
			115					120					125			
	Gly	Ser	Cys	Leu	Tyr	Val		Leu	Pro	Pro	Glu		Pro	Phe	Asn	Ile
20		130					135					140				
		_	Trp	Ser	Arg		Met	Lys	Asp	Leu		Cys	Arg	Trp	Thr	Pro 160
	145					150					155					100
25	Gly	Ala	His	Gly	Glu	Thr	Phe	Leu	His	Thr	Asn	Tyr	Ser	Leu	Lys	Tyr
					165					170					175	
	Lys	Leu	Arg	Trp	Tyr	Gly	Gln	Asp	Asn	Thr	Cys	Glu	Glu	Tyr	His	Thr
.30				180	•				185					190		
	Val	Gly	Pro	His	Ser	Cys	His	Ile	Pro	Lys	Asp	Leu	Ala	Leu	Phe	Thr
			195	;				200	1				205			
	Pro	туг	Glu	ı Ile	e Trp	Val	Glu	ı Ala	Thi	. Asr	a Arg	, Leu	Gly	Ser	Ala	Arg
35		210)				215	;				220)			

		Asp	Val	Leu	Thr		Asp	Val	Leu	Asp		Val	Thr	Thr	Asp	
	225					230					235					240
-	Pro	Pro	Asp	Val		Val	Ser	Arg	Val	_	Gly	Leu	Glu	Asp		Leu
5					245					250					255	
	Ser	Val	Arg	_	Val	Ser	Pro	Pro		Leu	Lys	Asp	Phe	Leu	Phe	Gln
				260					265					270		
10	Ala	Lys	Tyr	Gln	Ile	Arg	Tyr	Arg	Val	Glu	Asp	Ser	Val	Asp	Trp	Lys
			275					280					285		•	
	Val	Val	Asp	Asp	Val	Ser	Asn	Gln	Thr	Ser	Cys	Arg	Leu	Ala	Gly	Leu
15		290					295					300				
	Lys	Pro	Gly	Thr	Val	Tyr	Phe	Val	Gln	Val	Arg	Cys	Asn	Pro	Phe	Gly
	305					310	*				315					320
	Ile	Tyr	Gly	Ser	Lys	Lys	Ala	Gly	Ile	Trp	Ser	Glu	Trp	Ser	His	Pro
20					325					330					335	
	Thr	Ala	Ala	Ser	Thr	Pro	Arg	Ser	Glu	Arg	Pro	Gly	Pro	Gly	Gly	Gly
				340					345					350		
25	Val	Cys	Glu	Pro	Arg	Gly	Gly	Glu	Pro	Ser	Ser	Gly	Pro	Val	Arg	Arg
			355					360					365			
	Glu	Leu	Lys	Gln	Phe	Leu	Gly	Trp	Leu	Lys	Lys	His	Ala	Tyr	Cys	Ser
30		370				·	375					380				
3 0	Asn	Leu	Ser	Phe	Arg	Leu	Tyr	Asp	Gln	Trp	Arg	Ala	Trp	Met	Gln	Lys
	385				•	390					395					400
	Ser	His	Lys	Thr	Arg	Asn	Gln	Asp	Glu	Gly	Ile	Leu	Pro	Ser	Gly	Arg
35					405					410					415	_

wo	02/1	1225

Arg Gly Ala Ala Arg Gly Pro Ala Gly
420 425

5

- (2) INFORMATION FOR SEQ ID NO:16:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 938 base pairs
- 10 (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA

15

- (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 1..468

20

- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:
- 25 GGC ACC GTT TAC TTC GTC CAA GTG CGT TGT AAC CCA TTC GGG ATC TAT

 48
 Gly Thr Val Tyr Phe Val Gln Val Arg Cys Asn Pro Phe Gly Ile Tyr

GGG TCG AAA AAG GCG GGA ATC TGG AGC GAG TGG AGC CAC CCC ACC GCT 96

10

30 Gly Ser Lys Lys Ala Gly Ile Trp Ser Glu Trp Ser His Pro Thr Ala
20 25 30

GCC TCC ACC CCT CGA AGT GAG CGC CCG GGC CCG GGC GGC GGG GTG TGC 144

Ala Ser Thr Pro Arg Ser Glu Arg Pro Gly Pro Gly Gly Gly Val Cys

35 35 40 45

	GAG	CCG	CGG	GGC	GGC	GAG	CCC	AGC	TCG	GGC	CCG	GTG	CGG	CGC	GAG	CTC	192
	Glu	Pro	Arg	Gly	Gly	Glu	Pro	Ser	Ser	Gly	Pro	Val	Arg	Arg	Glu	Leu	
		50					55					60					
5				CTC													240
	Lys	Gln	Phe	Leu	Gly		Leu	Lys	Lys	His		Tyr	Cys	Ser	Asn		
	65					70					75					80	
	» CIT	mmc.	ccc	CTG	ምአ <i>ር</i> ፣	CNC	CNG	таа	CGT	CCT	TGG	אייני	CAG	AAG	ΤሮΔ	CAC	288
10				Leu													250
LO	SEI	Pile	Arg	пец	85	rap	0111	115	9	90			0	~ <i>,</i> ~	95		
					03												
	AAG	ACC	CGA	AAC	CAG	GTA	GGA	AAG	TTG	GGG	GAG	GCT	TGC	GTG	GGG	GGT	336
				Asn													
15	-		_	100					105					110			
	AAA	GGA	GCA	GAG	GAA	GAG	AGA	GAC	CCG	GGT	GAG	CAG	CCT	CCA	CAA	CAC	384
	Lys	Gly	Ala	Glu	Glu	Glu	Arg	Asp	Pro	Gly	Glu	Gln	Pro	Pro	Gln	His	
			115					120					125				
20																	
																GCA	432
	Arg	Thr	Leu	Leu	Ser	Lys	His	Arg	Thr	Arg	Gly	Ser	Cys	Pro	Arg	Ala	
		130					135					140					
o =									999	mam	000	ma a	amaa	222	CEN C	N C C N C TT	405
25											_		GTGG	GGC	CIAC	AGCAGT	485
	-	-	val	Arg	Arg			Arg	GIY	261	155						
	145					150					133						
	СТА	GATG	AGG	CCCT	TTCC	CC T	CCTT	· 'CGGT	G TT	GCTC	AAAG	GGA	TCTC	TTA	GTGC	TCATTT	545
30	0111																
	CAC	CCAC	TGC	AAAG	AGCC	CC A	.G GT T	TTAC	T GC	ATCA	TCAA	GTI	GCTG	AAG	GGTC	CAGGCT	605
	TAA	TGTG	GCC	TCTT	TTCI	GC C	CTCA	GGTC	C TO	CCGC	CTA	ACT	CTAA	GGA	TAGG	CCATCC	665
35	TCC	TGCT	CGGG	TCAG	SACCI	GG A	GGCI	CAC	T GA	ATTO	GAGO	ccc	CTCTC	STAC	CTAT	CTGGGC	725
				COM	0000	C 2 C		20000	אר מי	አጥሮ፣		7 007	(C) X X C	יכאכי	ACCT	יתיתכוביתית	780

845

905

	CACA'	TGAT	GG T	CACA	CTTG	G AT	ATAC	CCCA	GTG'	TGGG'	TAA (GGTT	GGGG	TA T	TGCA	GGGCC
	TCCC	AACA	AT C	rctt'	TAAA'	T AA	ATAA.	AGGA	GTT	GTTC	AGG '	ГААА	AAAA	AA A	AAAA.	AAAA
5	AAAA.	AAAA	AA A	AAAA	AAAA.	A AA	AAAA.	AAAA	AAA							
	(2)	INF	FORM	ATIO	ON F	OR	SEQ	ID	NO:	17:						
10			(i)		(A) (B)	ICE LEN TYP TOP	GTH E:	: 15 amir	55 a 10 a	mino cid	o ac	cids				
15			(ii)	MO	LECU	JLE	TYP	E: p	prot	ein						
			(xi)	SE	QUE1	1CE	DES	CRII	TIO	N: :	SEQ	ID	NO:	17:		
20	Gly 1	Thr	Val	Tyr	Phe 5	Val	Gln	Val	Arg	Cys 10	Asn	Pro	Phe	Gly	Ile 15	Tyr
	Gly	Ser	Lys	Lys 20	Ala	Gly	Ile	Trp	Ser 25	Glu	Trp	Ser	His	Pro 30	Thr	Ala
25	Ala	Ser	Thr 35	Pro	Arg	Ser	Glu	Arg 40	Pro	Gly	Pro	Gly	Gly 45	Gly	Val	Cys
30	Glu	Pro 50	Arg	Gly	Gly	Glu	Pro 55	Ser	Ser	Gly	Pro	Val 60	Arg	Arg	Glu	Leu
30	Lys 65	Gln	Phe	Leu	Gly	Trp	Leu	Lys	Lys	His	Ala 75	туг	Cys	Ser	· Asn	Leu 80
35	Ser	Phe	Arg	Leu	Tyr 85		Gln	Trp	Arg	Ala 90		Met	Gln	Lys	Ser 95	

PCT/GB97/02479 WO 98/11225

Lys Thr Arg Asn Gln Val Gly Lys Leu Gly Glu Ala Cys Val Gly Gly 105 110 100 Lys Gly Ala Glu Glu Glu Arg Asp Pro Gly Glu Gln Pro Pro Gln His 120 125 5 115 Arg Thr Leu Leu Ser Lys His Arg Thr Arg Gly Ser Cys Pro Arg Ala 135 140 130 10 Asp Gly Val Arg Arg Glu Val Arg Gly Ser Gly 150 145 15 (2) INFORMATION FOR SEQ ID NO:18: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 834 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single 20 (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA 25 (ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 1..834 30 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:

CCC ACC CTT CTC ATC GGC TCC TCC CTG CAA GCT ACC TGC TCT ATA CAT 98 Pro Thr Leu Leu Ile Gly Ser Ser Leu Gln Ala Thr Cys Ser Ile His 65 55 60 35 51

	GGA	GAC	ACA	CCT	GGG	GCC	ACC	GCT	GAG	GGG	CTC	TAC	TGG	ACC	CTC	TAA	146
	Gly	Asp	Thr	Pro	Gly	Ala	Thr	Ala	Glu	Gly	Leu	Tyr	Trp	Thr	Leu	Asn	
				70					75					80			
5	GGT	CGC	CGC	CTG	CCC	TCT	GAG	CTG	TCC	CGC	CTC	CTT	AAC	ACC	TCC	ACC	194
	Gly	Arg	Arg	Leu	Pro	Ser	Glu	Leu	Ser	Arg	Leu	Leu	Asn	Thr	Ser	Thr	
			85					90					95				
					CTG												242
10	Leu	Ala	Leu	Ala	Leu	Ala	Asn	Leu	Asn	Gly	Ser	Arg	Gln	Gln	Ser	Gly	
		100					105					110					
					TGT												290
	Asp	Asn	Leu	Val	Cys	His	Ala	Arg	Asp	Gly		Ile	Leu	Ala	Gly		
15	115					120					125					130	
																	220
					GGC												338
	Cys	Leu	Tyr	Val	Gly	Leu	Pro	Pro	Glu		Pro	Phe	Asn	шe		Cys	
					135					140					145		
20							0 h m	O.T.O.	7.00	TICC.	CCC	TCC	אריא	CCG	CCT	GCA	386
																GCA Ala	300
	Trp	Ser	Arg		Met	ьуs	Asp	beu	155		Arg	пр	1111	200			
				150					133					200			
25	CAC	ccc	. GNG	מים י	י ייייר	מידים	רבי	` ACC	. AAC	TAC	TCC	CTC	AAG	TAC	AAG	CTG	434
25																Leu	
	mis	Gry	205					210		- 1			215		-		
			200														
	AGG	TGO	TAC	GGT	CAC	GAT	· AAC	ACA	TGT	GAG	GAG	TAC	CAC	ACT	GTG	GGG	482
30																Gly	
	3	220				•	225					230					
	ccc	CAC	C TC	A TG	C CAT	TATO	2 000	C AAG	G GAC	CTO	GCC	CTO	TTC	AC:	r cco	TAT	530
																o Tyr	
35	235			•		240					245					250	

- 94 -

SUBSTITUTE SHEET (RULE 26)

	GAG	ATC	TGG	GTG	GAA	GCC	ACC	AAT	CGC	CTA	GGC	TCA	GCA	AGA	TCT	GAT	578
	Glu	Ile	Trp	Val	Glu	Ala	Thr	Asn	Arg	Leu	Gly	Ser	Ala	Arg	Ser	Asp	
					255					260					265		
5	GTC	CTC	ACA	CTG	GAT	GTC	CTG	GAC	GTG	GTG	ACC	ACG	GAC	CCC	CCA	CCC	626
	Val	Leu	Thr	Leu	Asp	Val	Leu	Asp	Val	Val	Thr	Thr	Asp	Pro	Pro	Pro	
				270					275					280			
	GAC	GTG	CAC	GTG	AGC	CGC	GTT	GGG	GGC	CTG	GAG	GAC	CAG	CTG	AGT	GTG	674
10	Asp	Val	His	Val	Ser	Arg	Val	Gly	Gly	Leu	Glu	Asp	Gln	Leu	Ser	Val	
			285					290					295				
	CGC	TGG	GTC	TCA	CCA	CCA	GCT	CTC	AAG	GAT	TTC	CTC	TTC	CAA	GCC	AAG	722
	Arg	Trp	Val	Ser	Pro	Pro	Ala	Leu	Lys	Asp	Phe	Leu	Phe	Gln	Ala	Lys	
15		300					305					310					
	TAC	CAG	ATC	CGC	TAC	CGC	GTG	GAG	GAC	AGC	GTG	GAC	TGG	AAG	GTG	GTG	770
	Tyr	Gln	Ile	Arg	Tyr	Arg	Val	Glu	Asp	Ser	Val	Asp	Trp	Lys	Val	Val	
	315					320					325					330	
20																	
	GAT	GAC	GTC	AGC	AAC	CAG	ACC	TCC	TGC	CGT	CTC	GCG	GGC	CTG	AAG	CCC	818
	Asp	Asp	Val	Ser	Asn	Gln	Thr	Ser	Cys	Arg	Leu	Ala	Gly	Leu	Lys	Pro	
					335					340					345		
25	GGC	ACC	GTT	TAC	TTC	GTC	CAA	GTG	CGT	TGT	AAC	CCA	TTC	GGG	ATC	TAT	866
	Gly	Thr	Val	Tyr	Phe	Val	Gln	Val	Arg	Cys	Asn	Pro	Phe	Gly	Ile	Tyr	
				350					355					360			
	GGG	TCG	AAA	AAG	GCG	GGA					•						894
30	Gly	Ser	Lys	Lys	Ala	Gly											
			365				•										

(2) INFORMATION FOR SEQ ID NO:19:

35

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 278 amino acids

- 95 -

(B) TYPE: amino acid
(D) TOPOLOGY: linear

(-)

(ii) MOLECULE TYPE: protein

5

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:

Pro Thr Leu Leu Ile Gly Ser Ser Leu Gln Ala Thr Cys Ser Ile His
10 51 55 60 65

Gly Asp Thr Pro Gly Ala Thr Ala Glu Gly Leu Tyr Trp Thr Leu Asn 70 75 80

Gly Arg Arg Leu Pro Ser Glu Leu Ser Arg Leu Leu Asn Thr Ser Thr
85 90 95

Leu Ala Leu Ala Leu Ala Asn Leu Asn Gly Ser Arg Gln Gln Ser Gly
100 105 110

20

Asp Asn Leu Val Cys His Ala Arg Asp Gly Ser Ile Leu Ala Gly Ser 115 20 120 125 130

Cys Leu Tyr Val Gly Leu Pro Pro Glu Lys Pro Phe Asn Ile Ser Cys
135 140 145

Trp Ser Arg Asn Met Lys Asp Leu Thr Cys Arg Trp Thr Pro Gly Ala 150 155 200

30 His Gly Glu Thr Phe Leu His Thr Asn Tyr Ser Leu Lys Tyr Lys Leu 205 210 215

Arg Trp Tyr Gly Gln Asp Asn Thr Cys Glu Glu Tyr His Thr Val Gly
220 225 230

35

Pro His Ser Cys His Ile Pro Lys Asp Leu Ala Leu Phe Thr Pro Tyr 235 240 245 250

- 96 -

	Glu	Ile	Trp	Val	Glu 255	Ala	Thr	Asn	Arg	Leu 260	Gly	Ser	Ala	Arg	Ser 265	Asp
					233					200						
5	Val	Leu	Thr	Leu 270	Asp	Val	Leu	Asp	Val 275	Val	Thr	Thr	Asp	Pro 280	Pro	Pro
5																
	Asp	Val	His 285	Val	Ser	Arg	Val	Gly 290	Gly	Leu	Glu	Asp	Gln 295	Leu	Ser	Val
10	Arg	Trp	Val	Ser	Pro	Pro	Ala 305	Leu	Lys	Asp	Phe	Leu 310	Phe	Gln	Ala	Lys
															•	
	Tyr 315	Gln	Ile	Arg	Tyr	Arg	Val	Glu	Asp	Ser	Val	Asp	Trp	Lys	Val	Val
15																
	Asp	Asp	Val	Ser	Asn	Gln	Thr	Ser	Cys	Arg	Leu	Ala	Gly	Leu	Lys 345	Pro
20	Gly	Thr	Val	Tyr 350	Phe	Val	Gln	Val	Arg		Asn	Pro	Phe	Gly 360	Ile	Tyr
20				330												
	Gly	Ser	Lys		Ala	Gly										
25	(2) II	IFOR	MAT:	ION	FOR	SE	Q II	NO NO	:20	:					
										T 0 m						
			(i) S:	EQUE (A)		NGT						ı			
30							PE:					3				
					(D)	TC	POL	OGY:	: 11	.nea	r					
			(ii	.) M	OLE	CULE	TY	PE:	pro	tei	n					
35			(xi	.) S	EQUI	ENCE	E DE	SCR:	IPTI	ON:	SE	O II	OM O	:20	:	

- 97 -

	GGCATGAAGG CTTAGGGTGG GGATCGGTAG GACCCATGCA CCCAGAGAAA GGGACTGGTG	60
	GCAACTTTCA AACTCTCTGG GGAAGGAAGA AGGGCTGAAA GAGG	104
5	ATG AAC GGG CTC AGA CAC AGC TGT AAT CAG CCC CCA GGA	143
	Met Asn Gly Leu Arg His Ser Cys Asn Gln Pro Pro Gly	
	5 10	
10	(2) INFORMATION FOR SEQ ID NO:21:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 13 amino acids	
	(B) TYPE: amino acids	
15	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: protein	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:	
20		
	Met Asn Gly Leu Arg His Ser Cys Asn Gln Pro Pro Gly	
	5 10	
25		
	(2) INFORMATION FOR SEQ ID NO:22:	
	(i) SEQUENCE CHARACTERISTICS:	
30	(A) LENGTH: 1930 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
35	(ii) MOLECULE TYPE: DNA	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:

	GGCACGAGCT	TCGCTGTCCG	CGCCCAGTGA	CGCGCGTGCG	GACCCGAGCC	CCAATCTGCA	60
5	CCCCGCAGAC	TCGCCCCCGC	CCCATACCGG	CGTTGCAGTC	ACCGCCCGTT	GCGCGCCACC	120
	CCCAATGCCC	GCGGGTCGCC	CGGGCCCCGT	CGCCCAATCC	GCGCGGCGGC	CGCCGCGGCC	180
1.0	GCTGTCCTCG	CTGTGGTCGC	CTCTGTTGCT	CTGTGTCCTC	GGGGTGCCTC	GGGGCGGATC	240
10	GGGAGCCCAC	ACAGCTGTAA	TCAGCCCCCA	GGACCCCACC	CTTCTCATCG	GCTCCTCCCT	300
	GCAAGCTACC	TGCTCTATAC	ATGGAGACAC	ACCTGGGGCC	ACCGCTGAGG	GGCTCTACTG	360
15	GACCCTCAAT	GGTCGCCGCC	TGCCCTCTGA	GCTGTCCCGC	CTCCTTAACA	CCTCCACCCT	420
	GGCCCTGGCC	CTGGCTAACC	TTAATGGGTC	CAGGCAGCAG	TCAGGAGACA	ATCTGGTGTG	480
2.0	TCACGCCCGA	GACGGCAGCA	TTCTGGCTGG	CTCCTGCCTC	TATGTTGGCT	TGCCCCCTGA	540
20	GAAGCCCTTT	AACATCAGCT	GCTGGTCCCG	GAACATGAAG	GATCTCACGT	GCCGCTGGAC	600
	ACCGGGTGCA	CACGGGGAGA	CATTCTTACA	TACCAACTAC	TCCCTCAAGT	ACAAGCTGAG	660
25	GTGGTACGGT	CAGGATAACA	CATGTGAGGA	GTACCACACT	GTGGGCCCTC	ACTCATGCCA	720
	TATCCCCAAG	GACCTGGCCC	TCTTCACTCC	CTATGAGATC	TGGGTGGAAG	CCACCAATCG	780
30	CCTAGGCTCA	GCAAGATCTG	ATGTCCTCAC	ACTGGATGTC	CTGGACGTGG	TGACCACGGA	840
30	CCCCCCACCC	: GACGTGCACG	TGAGCCGCGT	TGGGGGCCTG	GAGGACCAGC	TGAGTGTGCG	900
	CTGGGTCTCA	CCACCAGCTC	TCAAGGATTT	CCTCTTCCAA	GCCAAGTACC	AGATCCGCTA	960
35	CCGCGTGGAG	GACAGCGTGG	ACTGGAAGGT	GGTGGATGAC	GTCAGCAACC	AGACCTCCTG	102
	CCGTCTCGCG	GGCCTGAAGC	CCGGCACCGT	TTACTTCGTC	CAAGTGCGTT	GTAACCCATT	108

	CGGGATCTAT	GGGTCGAAAA	AGGCGGGAAT	CTGGAGCGAG	TGGAGCCACC	CCACCGCTGC	1140
	CTCCACCCCT	CGAAGTGAGC	GCCCGGGCCC	GGGCGGCGGG	GTGTGCGAGC	CGCGGGGCGG	1200
5	CGAGCCCAGC	TCGGGCCCGG	TGCGGCGCGA	GCTCAAGCAG	TTCCTCGGCT	GGCTCAAGAA	1260
	GCACGCATAC	TGCTCGAACC	TTAGTTTCCG	CCTGTACGAC	CAGTGGCGTG	CTTGGATGCA	1320
10	GAAGTCACAC	AAGACCCGAA	ACCAGGTAGG	AAAGTTGGGG	GAGGCTTGCG	TGGGGGGTAA	1380
10	AGGAGCAGAG	GAAGAGAGAG	ACCCGGGTGA	GCAGCCTCCA	CAACACCGCA	CTCTTCTTTC	1440
	CAAGCACAGG	ACGAGGGGAT	CCTGCCCTCG	GGCAGACGGG	GTGCGGCGAG	AGGTAAGGGG	1500
15	GTCTGGGTGA	GTGGGGCCTA	CAGCAGTCTA	GATGAGGCCC	TTTCCCCTCC	TTCGGTGTTG	1560
	CTCAAAGGGA	TCTCTTAGTG	CTCATTTCAC	CCACTGCAAA	GAGCCCCAGG	TTTTACTGCA	1620
20	TCATCAAGTT	GCTGAAGGGT	CCAGGCTTAA	TGTGGCCTCT	TTTCTGCCCT	CAGGTCCTGC	1680
20	CGGCTAAACT	CTAAGGATAG	GCCATCCTCC	TGCTGGGTCA	GACCTGGAGG	CTCACCTGAA	1740
	TTGGAGCCCC	TCTGTACCTA	TCTGGGCAAC	AAAGAAACCT	ACCATGAGGC	TGGGGCACAA	1800
25	TGAGCTCCCA	CAACCACAGC	TTTGGTCCAC	ATGATGGTCA	CACTTGGATA	TACCCCAGTG	1860
	TGGGTAAGGT	TGGGGTATTG	CAGGGCCTCC	CAACAATCTC	TTTAAATAAA	TAAAGGAGTT	1920
	GTTCAGGTAA						1930

30

(2) INFORMATION FOR SEQ ID NO:23:

35 (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 560 base pairs

(B) TYPE: nucleic acid

- 100 -

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA

5

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:

10	TCCAGGCAGC	GGTCGGGGGA	CAACCTCGTG	TGCCACGCCC	GTGACGGCAG	CATCCTGGCT	60
	GGCTCCTGCC	TCTATGTTGG	CCTGCCCCCA	GAGAAACCCG	TCAACATCAG	CTGCTGGTCC	120
	AAGAACATGA	AGGACTTGAC	CTGCCGCTGG	ACGCCAGGGG	CCCACGGGGA	GACCTTCCTC	180
15	CACACCAACT	ACTCCCTCAA	GTACAAGCTT	AGGTGGTATG	GCCAGGACAA	CACATGTGAG	240
	GAGTACCACA	CAGTGGGGCC	CCACTCCTGC	CACATCCCCA	AGGACCTGGC	TCTCTTTACG	300
20	CCCTATGAGA	TCTGGGTGGA	GGCCACCAAC	CGCCTGGGCT	CTGCCCGCTC	CGATGTACTC	360
	ACGCTGGATA	TCCTGGATGT	GGTGACCACG	GACCCCCGC	CCGACGTGCA	CGTGAGCCGC	420
	GTCGGGGGCC	TGGAGGACCA	GCTGAGCGTG	CGCTGGGTGT	CGCCACCCGC	CCTCAAGGAT	480
25	TTCCTTTTTC	AAGCCAAATA	CCAGATCCGC	TACCGAGTGG	AGGACAGTGT	GGAATGGAAG	540
	GTGGTGGACG	ATGTGAGCAA					560

30

35

(2) INFORMATION FOR SEQ ID NO:24:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1391 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

- 101 -

(ii) MOLECULE TYPE: DNA

(ix) FEATURE:

5 (A) NAME/KEY: CDS

(B) LOCATION: 1..1053

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:

10

ACC CTC AAC GGG CGC CGC CTG CCC CCT GAG CTC TCC CGT GTA CTC AAC

48

Thr Leu Asn Gly Arg Arg Leu Pro Pro Glu Leu Ser Arg Val Leu Asn

1 5 10 15

GCC TCC ACC TTG GCT CTG GCC CTG GCC AAC CTC AAT GGG TCC AGG CAG 96

Ala Ser Thr Leu Ala Leu Ala Leu Ala Asn Leu Asn Gly Ser Arg Gln

20 25 30

CGG TCG GGG GAC AAC CTC GTG TGC CAC GCC CGT GAC GGC AGC ATC CTG

144

20 Arg Ser Gly Asp Asn Leu Val Cys His Ala Arg Asp Gly Ser Ile Leu

35 40 45

GCT GGC TCC TGC CTC TAT GTT GGC CTG CCC CCA GAG AAA CCC GTC AAC

Ala Gly Ser Cys Leu Tyr Val Gly Leu Pro Pro Glu Lys Pro Val Asn

50 55 60

ATC AGC TGC TGG TCC AAG AAC ATG AAG GAC TTG ACC TGC CGC TGG ACG

1le Ser Cys Trp Ser Lys Asn Met Lys Asp Leu Thr Cys Arg Trp Thr

65 70 75 80

CCA GGG GCC CAC GGG GAG ACC TTC CTC CAC ACC AAC TAC TCC CTC AAG

Pro Gly Ala His Gly Glu Thr Phe Leu His Thr Asn Tyr Ser Leu Lys

85 90 95

TAC AAG CTT AGG TGG TAT GGC CAG GAC AAC ACA TGT GAG GAG TAC CAC

Tyr Lys Leu Arg Trp Tyr Gly Gln Asp Asn Thr Cys Glu Glu Tyr His

100 105 110

- 102 -

30

	ACA	GTG	GGG	CCC	CAC	TCC	TGC	CAC	ATC	CCC	AAG	GAC	CTG	GCT	CTC	TTT	384
	Thr	Val	Gly	Pro	His	Ser	Cys	His	Ile	Pro	Lys	Asp	Leu	Ala	Leu	Phe	
			115					120					125				
5	ACG	CCC	TAT	GAG	ATC	TGG	GTG	GAG	GCC	ACC	AAC	CGC	CTG	GGC	TCT	GCC	432
	Thr	Pro	Tyr	Glu	Ile	Trp	Val	Glu	Ala	Thr	Asn	Arg	Leu	Gly	Ser	Ala	
		130					135					140					
	CGC	ŤCC	GAT	GTA	CTC	ACG	CTG	GAT	ATC	CTG	GAT	GTG	GTG	ACC	ACG	GAC	480
10	Arg	Ser	Asp	Val	Leu	Thr	Leu	Asp	Ile	Leu	Asp	Val	Val	Thr	Thr	Asp	
	145					150					155				•	160	
												-					
	CCC	CCG	CCC	GAC	GTG	CAC	GTG	AGC	CGC	GTC	GGG	GGC	CTG	GAG	GAC	CAG	528
	Pro	Pro	Pro	Asp	Val	His	Val	Ser	Arg	Val	Gly	Gly	Leu	Glu	Asp	Gln	
15					165					170					175		
													GAT				576
	Leu	Ser	Val	Arg	Trp	Val	Ser	Pro	Pro	Ala	Leu	Lys	Asp		Leu	Phe	
				180					185					190			
20																	
																TGG	624
	Gln	Ala		Tyr	Gln	Ile	Arg		Arg	Val	Glu	Asp	Ser	Val	Asp	Trp	
			195					200					205				
2.5						ama	200	220	G N G	N.C.C	TCC	TCC	CGC	CTC	ccc	CCC	672
25													Arg				072
	гÀв			Asp	Asp	Val	215	ASII	GIII	TILL	361	220	AT 9	Deu	AIG	Gry	
		210					213					220					
	CTG	מממ	ccc	GGC	ACC	GTG	TAC	TTC	GTG	CAA	GTG	CGC	TGC	AAC	ccc	TTT	720
30													Cys				
	225	_		,		230					235	_	-			240	
	GGC	ATC	TAT	' GGC	TCC	AAG	AAA	GCC	GGG	ATC	TGG	AGT	' GAG	TGG	AGC	CAC	768
													Glu				
35	•		-		245		_			250					255		

	CCC	ACA	GCC	GCC	TCC	ACT	CCC	CGC	AGT	GAG	CGC	CCG	GGC	CCG	GGC	GGC	816
	Pro	Thr	Ala	Ala	Ser	Thr	Pro	Arg	Ser	Glu	Arg	Pro	Gly	Pro	Gly	Gly	
				260					265					270			
5	GGG	GCG	TGC	GAA	CCG	CGG	GGC	GGA	GAG	CCG	AGC	TCG	GGG	CCG	GTG	CGG	864
	Gly	Ala	Cys	Glu	Pro	Arg	Gly	Gly	Glu	Pro	Ser	Ser	Gly	Pro	Val	Arg	
			275					280					285				
	CGC	GAG	CTC	AAG	CAG	TTC	CTG	GGC	TGG	CTC	AAG	AAG	CAC	GCG	TAC	TGC	912
. 0	Arg	Glu	Leu	Lys	Gln	Phe	Leu	Gly	Trp	Leu	Lys	Lys	His	Ala	Tyr	Cys	
		290					295					300					
	TCC	AAC	CTC	AGC	TTC	CGC	CTC	TAC	GAC	CAG	TGG	CGA	GCC	TGG	ATG	CAG	960
	Ser	Asn	Leu	Ser	Phe	Arg	Leu	Tyr	Asp	Gln	Trp	Arg	Ala	Trp	Met	Gln	
5	305					310					315					320	
	AAG	TCG	CAC	AAG	ACC	CGC	AAC	CAG	CAC	AGG	ACG	AGG	GGA	TCC	TGC	CCT	1008
	Lys	Ser	His	Lys	Thr	Arg	Asn	Gln	His	Arg	Thr	Arg	Gly	Ser	Сув	Pro	
					325					330					335		
O																	
	CGG	GCA	GAC	GGG	GCA	CGG	CGA	GAG	GTC	CTG	CCA	GAT	AAG	CTG	TAGO	GGCTCA	1060
	Arg	Ala	Asp	Gly	Ala	Arg	Arg	Glu	Val	Leu	Pro	Asp	Lys	Leu			
				340					345					350			
5	GGC	CACC	CTC (CCTG	CCAC	GT G	GAGA	CGCA	G AGO	3CCG2	AACC	CAA	ACTG	GG (CCAC	CTCTGT	1120
	ACC	CTCA	CTT (CAGG	GCAC	CT G	AGCC	CTC	A GC	AGGA	GCTG	GGG'	rggc	ccc '	rgago	CTCCAA	1180
	CGG	CCAT	AAC	AGCT	CTGA	CT C	CCAC	GTGA(G GC	CACC'	TTTG	GGT	GCAC	ccc .	AGTG	GGTGTG	1240
0																	
	TGT	GTGT	GTG '	TGAG	GGTT	GG T	TGAG'	rtgc(C TA	GAAC	CCCT	GCC	AGGG	CTG	GGGG'	TGAGAA	1300
	GGG	GAGT	CAT	TACT	CCCC.	AT T.	ACCT	AGGG	C CC	CTCC.	AAAA	GAG'	TCCT'	TTT	AAAT.	AAATGA	1360
_																	
5	GCT	ATTT.	AGG	TGCA	AAAA	AA A	AAAA	AAAA	A A								1391

(2) I	NFORMAT	'ION	FOR	SEQ	ID	NO:25	5:
-------	---------	------	-----	-----	----	-------	----

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 350 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- 10 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:25:

Thr Leu Asn Gly Arg Arg Leu Pro Pro Glu Leu Ser Arg Val Leu Asn
1 5 10 15

- Ala Ser Thr Leu Ala Leu Ala Leu Ala Asn Leu Asn Gly Ser Arg Gln
 20 25 30
 - Arg Ser Gly Asp Asn Leu Val Cys His Ala Arg Asp Gly Ser Ile Leu
 35 40 45

Ala Gly Ser Cys Leu Tyr Val Gly Leu Pro Pro Glu Lys Pro Val Asn
50 55 60

- Ile Ser Cys Trp Ser Lys Asn Met Lys Asp Leu Thr Cys Arg Trp Thr

 25 65 70 75 80
 - Pro Gly Ala His Gly Glu Thr Phe Leu His Thr Asn Tyr Ser Leu Lys
 85 90 95
- 30 Tyr Lys Leu Arg Trp Tyr Gly Gln Asp Asn Thr Cys Glu Glu Tyr His 100 105 110
 - Thr Val Gly Pro His Ser Cys His Ile Pro Lys Asp Leu Ala Leu Phe 115 120 125

Thr Pro Tyr Glu Ile Trp Val Glu Ala Thr Asn Arg Leu Gly Ser Ala

35

5

20

	Arg	Ser	Asp	Val	Leu	Thr	Leu	Asp	Ile	Leu	Asp	Val	Val	Thr	Thr	Asp
	145					150					155					160
	Pro	Pro	Pro	Asp	Val	His	Val	Ser	Arg	Val	Gly	Gly	Leu	Glu	Asp	Gln
5					165					170					175	
	Leu	Ser	Val	Arg	Trp	Val	Ser	Pro	Pro	Ala	Leu	Lys	Asp	Phe	Leu	Phe
				180					185					190		•
LO	Gln	Ala	Lys	Tyr	Gln	Ile	Arg	Tyr	Arg	Val	Glu	Asp	Ser	Val	qaA	Trp
			195					200					205			
	Lys	Val	Val	Asp	Asp	Val	Ser	Asn	Gln	Thr	Ser	Cys	Arg	Leu	Ala	Gly
15		210					215					220				
	Leu	Lys	Pro	Gly	Thr	Val	Tyr	Phe	Val	Gln		.Arg	Cys	Asn	Pro	
	225					230					235					240
	Gly	Ile	Tyr	Gly	Ser	Lys	Lys	Ala	Gly			Ser	Glu	Trp		His
20					245					250				•	255	
	Pro	Thi	Ala	Ala	Ser	Thr	Pro	Arg	Ser	Glu	Arg	Pro	Gly		Gly	Gly
				260					265					270		
25	Gly	/ Ala	a Cys	Glu	ı Pro	Arg	Gly			Pro	Ser	Ser			Val	Arg
			279					280					285			
	Arg	g Gl	u Lei	ı Lys	s Glr	. Phe			Trp	Le.	ı Lys			Ala	Tyr	Cys
30		29	0				295	5				300)			
	Se:	r As	n Le	u Se:	r Phe	e Arç	j Lei	ı Tyr	. Ası	Gl:	n Trị	Arg	g Ala	Tr	Met	Gln
	30	5				310					319	5				320
	Ly	s Se	r Hi	s Ly	s Th	r Arg	g Ası	n Glı	n Hi	s Ar	g Th	r Ar	g Gly	y Se	c Cys	Pro
35					32	5				33	0	•			335	5

Arg	Ala	Asp	Gly	Ala	Arg	Arg	Glu	Val	Leu	Pro	Asp	Lys	Leu
			340					345					350

- 5 (2) INFORMATION FOR SEQ ID NO:26:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 24 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA
- 15 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:26:
- TCCAGGCAGC GGTCGGGGGA CAAC 24
 - (2) INFORMATION FOR SEQ ID NO:27:
 - (i) SEQUENCE CHARACTERISTICS:
- 25 (A) LENGTH: 24 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- 30 (ii) MOLECULE TYPE: DNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:27:
- 35 TTGCTCACAT CGTCCACCAC CTTC 24

10

(2) INFORMATION FOR SEQ ID NO:28:

(i)	SEOUENCE	CHARACTERISTICS
-----	----------	-----------------

(A) LENGTH: 6663 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA

10

5

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:28:

15	CCCAGAACTC	TTGGACGCTG	AGGCAGGAGG	ATTCCCAAGT	TTCAAGACAG	TGTGTTTCTA	60
	GGTAATGAGA	CCCTGTCAAG	AAAAGAAAAG	AAATAAAGAG	ACAAGAAAAT	GTTTATAGGC	120
	TGTGAGACAG	CTTGGTGGGT	AAGGGGCACT	TGCCTCCAAT	CAAGATGACC	TCAGCCCCAT	180
20	CCCTAGGAAT	CCATGGTAGA	AGGAGAAAGC	AAACTCGCAG	CTGCTGACCT	CCATACATGT	240
	GCTCCAATGT	GCACACACAC	AGGGAGACAT	AATCAATTAA	TAGGATGTAT	TTGCTTAGAT	300
25	TTGAGTAGGC	ATTTATGACT	GATGTTTTAA	AATTTTTATT	TGATTTTATG	AAAATATACC	360
	TGTTTGTATT	TGGTTTGGTT	TGGTTTGAGT	TTTGTTTATT	TGAGACAGGG	CTTCTCTGTG	420
	TAGTCCTGGC	TGTCCTTGGA	ACTCACTCTG	TAGACCAGGC	TGGCCTTGAA	CTCAGAAATC	480
30	CGCCTGCTTG	TGCTTCCCAA	GTGCTTAGAT	TAAAGGTGTG	CACTGCCATT	CAGCAAAATT	540
	GCATACTTTA	ACCCCAGTAT	TTGGGAGGCA	GAGGCAGACT	: AATGTGTGA/	A TŢCCAGGCTA	60
35	GCCAAGGATA	A CAGAGTGAGA	CCCTATTCTT	ACCCTCCCC	CCCAAAACC	CAAAATGTAT	66
	TTTGTGCTT	TGTATGTAC	TGTGTGTTG	E AGCACGTAA	A TGTCCAAGG	A CAACTTGTAG	72

	AAGTTCTCTC	CGTTCACAGT	CTAAGTCCTG	AATTCAAACT	AAGGTCCTCA	GGCTTAGCCA	780
	CAGTCTTCTT	TATGTACTGA	GCCATTTCAC	TGGCCCTGGA	TTGACTGATG	AATTAATTTT	840
5	TGAGATAAGG	TCTCTTGTAG	CTCTAGCTAG	GCTCAAACTA	TGAACTCCCA	AGGTCATCTT	900
	GAGCTGCTGG	TACTCTTGCT	TCCACCCCAA	GTGGTGGAAT	GATACTCAGG	CAGCACTTCT	960
10	CTGGGGAAGG	GGCTGGCCTT	GGCCTTGATT	TTGTTGCCTC	AGCTTCAATG	AGTGCTTGGG	1020
10	TCTCGTTGTT	TCTTTTCTTT	ATCTGTGAAA	TGGGTGAACA	CCTGTTCAAG	ACTTCCTGAC	1080
	TCTTGAAACA	TCCAGGCAGG	GTGAGGGACT	TGAAGTGGGC	TCATCCCATG	CCTAACAAAG	1140
15	TGTCGTCTTT	GACCCCAGAC	ACAGCTGTAA	TCAGCCCCCA	GGACCCCACC	CTTCTCATCG	1200
	GCTCCTCCCT	GCAAGCTACC	TGCTCTATAC	ATGGAGACAC	ACCTGGGGCC	ACCGCTGAGG	1260
20	GGCTCTACTG	GACCTTCAAT	GGTCGCCGCC	TGCCCTCTGA	GCTGTCCCGC	CTCCTTAACA	1320
20	CCTCCACCCT	GGCCCTGGCC	CTGGCTAACC	TTAATGGGTC	CAGGCAGCAG	TCAGGAGACA	1380
	ATCTGGTGTG	TCACGCCCGA	GACGGCAGCA	TTCTGGCTGG	CTCCTGCCTC	TATGTTGGCT	<u>.</u> 1440
25	GTAAGTGGGG	CCCCAGACAC	TCAGAGATAG	ATGGGGGTTG	GCAATGACAG	ATTTAGAGCC	1500
	TGGGTCTTCT	GTCCTGGGGC	AGAGCCATGG	GCTCTCACTT	GCATGCAGGC	ATGGTCATAC	1560
30	CCAGCACAGG	CATTGCAACT	CTAGGGACAG	CTGTGGCTGC	ACTGTCCCCT	GTGTACCCCA	1620
30	CAGCTTTAGA	A AAAGCTGTCA	. TGTTTTCCTT	GTAGTGCCCC	CTGAGAAGCC	CTTTAACATC	1680
	AGCTGCTGGT	CCCGGAACA1	GAAGGATCTC	ACGTGCCGCT	GGACACCGG	G TGCACACGGG	1740
35	GAGACATTC	TACATACCA	CTACTCCCTC	C AAGTACAAGO	TGAGGTTGG	r ACCCAGCCAA	1800
	CCCTTCCTC	T	: CCAATACTT	›	יייים אמייים ביי	r TCCTGTTTAT	1860

	GAACTCAAAA	GGGACTCTCG	CACCTCCACA	GGTGGTACGG	TCAGGATAAC	ACATGTGAGG	1920
	AGTACCACAC	TGTGGGCCCT	CACTCATGCC	ATATCCCCAA	GGACCTGGCC	CTCTTCACTC	1980
5	CCTATGAGAT	CTGGGTGGAA	GCCACCAATC	GCCTAGGCTC	AGCAAGATCT	GATGTCCTCA	2040
	CACTGGATGT	CCTGGACGTG	GGTGAGCCCC	CAGTGTCCAC	CTGTGTTCTG	CCCTAGACCT	2100
10	TATAGGGCGC	CTCCCCCCA	TCCCCCAGA	CTTTTTGGTT	CTTCTAGAGG	TCTTAGCCAC	2160
10	AGCCACGGTG	GTŤGCAGGAC	AGTGGTTGTT	CATAACTTAA	TGCAAAGACT	TTCCCCCÁAG	2220
	ACAGTCAAGA	TTTTTCCCCT	CCCCACCCC	AACACACACA	TACACACACA	CTCTGCAGAG	2280
15	AACACCTGGC	CTGACCACCC	TCCCTCTCTA	CAGCCCAGGT	GTTCAGAAGG	GAGTCCTAGG	2340
	GGACTGAGAG	GAGGCGCCCA	GGTCTGAAGG	CGCCCCAGGA	ĄGCCGAGGCC	TTGAGCTGGG	2400
•	GGGGGGGCG	AGGGTTGGAG	GCACGAACTG	GATGATCCCT	GAGCACAACT	GGGCCTAATC	2460
20	TAATTAGGGT	GTTCCCAGCC	CAAAGCAGCC	TGGGCCATTT	AACCCTTCAA	GTGCCTCACT	2520
	GAAGACTCAG	GGGAGAGATC	AGCTTGTACT	CTCTCCATGG	TCCCCCAGGA	GGGTTCCTGG	2580
25	GTGCCCCTGG	CTCATTCCCA	CATCCAGAGG	TTTTGTGTCT	TCCTGGCATC	TAACCCTCAG	2640
	TTGTGCTCTG	: TGGCTGGCAC	AGCTGCCCCG	TGGAGGCTCT	TGGTAATGTA	CAAGGCATCA	2700
30	GAGGTGGACA	TGGGATGGG	ATACATAGGG	: ATGGAGCCAA	ATAGCACCTO	AAGGTGGGGT	2760
30	GATATACAAT	AAAGCTTGTC	: ACCCTGACGO	TCAGAAAGCC	TACTCATGAT	GATCACAATT	2820
	GTTGACATC	A · CTCTGGGACA	A TGTAGTGAG!	A CCCTAGCTCA	A AAACACAGAG	CAGTAGCTTTA	2880
35	AGAGTCAGCT	r tgtgactta	A TACTGGAAC	r cagggcctai	A TAGGTGCTG	G GTGATGCTCG	2940
	CCTCACTCC	TGTTTAGTG	A GATCTCTGC	G CTAATCTCC	A CCCCAGCTG	G GTGGGCTGCT	3000

	CTGTCCCCTT	GAGGGCAGGA	ATGTGTGTCT	TCCATCAGAG	ATAGGACCCG	TGGTAGCAGC	3060
	AACTGCTGCT	GGCTGTTTCT	GGAATATTAA	ATGACAGTAA	TCTATCAGGC	CTGGGTGAGT	3120
5	AGCTAACAGG	GGTGGGGGCG	TGGTCTGGAA	AACGCAGATA	GGGTCATAGG	AGCCACTGCA	3180
	GCCTAGATTA	CACCACTGGG	TGTTCTGTCA	CTAGGCCATT	CTCACCAAGC	AGTCCTCAGA	3240
10	ACTGGGAGCA	CTGTTGCCAG	CATTTAATGC	CAGCATTTAA	TGCCAGCATT	AGGGGAGGCA	3300
10	GAGGCAGAAG	GATCTCTCTG	AGTTCAAGGC	CATCCTGAAT	TTACATAAAG	AGCTCCAGGC	3360
	CAGCCAGGGT	GCGCAGTAAA	ACCTTGTCTC	AAAAAACAAA	GCATCTTTAG	TGACCAGGCT	3420
15	TGCTCCACCC	CCAGTGACCA	CGGACCCCCC	ACCCGACGTG	CACGTGAGCC	GCGTTGGGG	3480
	CCTGGAGGAC	CAGCTGAGTG	TGCGCTGGGT	CTCACCACCA	GCTCTCAAGG	ATTTCCTCTT	3540
20	CCAAGCCAAG	TACCAGATCC	GCTACCGCGT	GGAGGACAGC	GTGGACTGGA	AGGTGCCCGT	3600
20	cccccccg	ACCCGCCCCT	GACCCCGCCC	CCCGCATCTG	ACTCCTCCCT	CACCGTGCAG	3660
	GTGGTGGATG	ACGTCAGCAA	CCAGACCTCC	TGCCGTCTCG	CGGGCCTGAA	GCCCGGCACC	. 3720
25	GTTTACTTCG	TCCAAGTGCG	TTGTAACCCA	TTCGGGATCT	ATGGGTCGAA	AAAGGCGGGA	_. 3780
	ATCTGGAGCC	G AGTGGAGCCA	CCCCACCGCT	GCCTCCACCC	CTCGAAGTGG	TGAGCACCTC	3840
30	TCCAGGGCT	GCTGGCCCAT	GGAATCCCCA	ATCCATCCTG	TTCCTTCCCC	CCCACCCTTT	3900
30	TTTTGAGACA	A GCGTCTTCAC	GTAGCGCATC	G CTGGCCTTA	ATTCAGTATO	TAGTCAAGGA	3960
	TGACCTCGA	G CTCCTGGTC	TTTTGTCTC	C ACTTAGAGAC	AATGGCCAGT	GGCCATCACC	4020
35	ACCTTTGGG.	A GACTAGCCA	r ggagtctat	TAGCCTGTC	A TTTGGTGAC	A GATGGAGTAC	4080
	AACAGTGTG	A CCTCTTGTA	a gagaactga	A GACAGGCTG	r TTTTAACCC	C AATATCCTAG	4140

	GCTCTCTAGA	GGTTAACTTT	АТААААТА	GAGACTATTA	CAGCCAGTTA	TCACATGGTC	4200
	CCACAGAACC	TTTTGTCACA	CAACCTATAG	ACCACAGTGC	CTGTGCCTAC	CACATAAGGG	4260
5	TCTCTACTGC	TGGCCCACCC	CTCCAACCCT	TAAAAGGTAA	CCTAGGCAGC	CTTAATATTT	4320
	GCAATCCTCC	TACCTCAGCC	TCTTGAATGC	TCAGAAACCA	GGCATTAACC	CAAGTTTCTC	4380
	TTCTCTGGGT	CCCTTTCTTA	AGGTGGGAGG	GCCTAAAGAT	GACTTCCTTT	GTCCTGAAGA	4440
10	CTCTCCGAGC	CCATGGATCT	GCACTCTCTA	ATATGAAATA	TATTGCATAA	AATGTCTGGC	4500
	CTCAGTTTCC	CCACCTGTCA	GGTTTAGGCA	GCACAGTCGG	TCCAAGACAC	TTCATTATTT	4560
15	GCAGGCAGTA	. TAAGAAGAAG	CTCCCATCCC	CCACCCGCTT	CCTCCGGTCC	CTAAGACAGA	4620
	ATACTTCTAC	ACTGAAACTG	AACTCTCGCA	GACGCATATG	CTCACTTTAA	TGATGATGAA	4680
2.0	ATAATGGGGA	AACTGAGGCT	CCGAGAGATT	CCTGGAGGAA	GAGGGTCAAA	ACCAGCTCCA	4740
20	GGAAGCTCTC	CAGCCCCCAT	CCGGGCCTCT	CCAGGTTCTG	GGCTTGGCGG	G GAGTGAACAC	4800
	AGCTGGGAGG	G GGCTGGAGCC	TGGGAGCTTT	GGCCCTTGCT	CGTGCCCAG	CACCTGCGATT	4860
25	CTTGCACGGG	G AGCCAGCAGG	CGGCTGCGTC	CGCCCGAGAC	ACTGAAGAA	G CCGGGGGTAG	4920
	GGTTGGAGG	G AGGTAAGCA	GGGCTGTGG	GGCCGAAGCT	TGTGCCAGG	G CCTGTCAGCG	4980
2.0	AGTCCCCAG	T TTTATTTATC	GCGTGAGGC	GATGTCCTT	A TCCGCTGGC	C TGCTGGGGGA	5040
30	TGGCTGCGG	C TGGGGATTG	ACCCAAGGG	TGGCTTCCC	A CTCAGTCCT	C CAGCCCACTC	5100
	CATGTCACA	C CCGTGCATT	TCTGAGGCT	T ATCTTGGGA	A CCCGCCCTT	G TTCTGTGCTG	5160
35	TCTGTCTCT	'A TTTCTGTCA	T TCACTTTCC	C AGAGCCTTT	T TTTTATGCT	T TTAATATAAC	5220
	TACGTTTTA	A AAATTGCTT	T TGTATAATG	T GTGTGCCTT	C GTGAGCGTC	GC GTGCCACAAC	5280

	ACACACGTGA	AGGTTAGAGA	ACTTTGTTGA	GTAGGCTCCT	TCCACCATGT	GGGACTAGGG	5340
	CTGGCGACAA	GAGCAATTAC	TGAGTCATCT	CGCCAGCCCC	TCACCCCTCA	CTTCCCATCC	5400
5	TGTTTGGATA	GTCATAGGTA	ATCGAAGGTA	AATCGCTGGC	TTTAATTTCG	TAGCTATCCT	5460
•	GCCTCAGCCT	ACCAAGTGCT	GTGCTACCAC	GTTTGTGGGA	GGGGCTCTCC	TCCCAGTGTC	5520
10	TGGGGGTGAC	ACAGTCCCAA	GATCTCTGCT	TTCTAGGTCT	TTGTCTTAGT	TTGCCCCTTG	5580
10	CTTTGTCCGT	GTCCCTAGAG	TCTCCGGCCC	CACTTATCCA	TTGACTGGTC	TTTCCTTTAC	5640
	CGAATACTCG	GTTTTACCTC	CCACTGATTT	GACTCCCTCC	TTTGCTTGTC	TCCATCGCCG	5700
15	TGGCÄTTGCC	ATTCCTCTGG	GTGACTCTGG	GTCCACACCT	GACACCTTTC	CCAACTTTCC	5760
	CCAGCCGAAG	CTGGTCTGGT	ATGGGAGGCC	GCCGTCCCGC	GCGCGCCTCC	TGCTGGCCGC	5820
20	GCCCCAACAC	TGCCGCTCCA	TTCTCTTTAG	AGCGCCCGGG	CCCGGGCGGC	GGGGTGTGCG	5880
20	AGCCGCGGGG	CGGCGAGCCC	AGCTCGGGCC	CGGTGCGGCG	CGAGCTCAAG	CAGTTCCTCG	5940
	GCTGGCTCAA	GAAGCACGCA	TACTGCTCGA	ACCTTAGTTT	CCGCCTGTAC	GACCAGTGGC	6000
25	GTGCTTGGAT	GCAGAAGTCA	. CACAAGACCC	GAAACCAGGT	AGGAAAGTTG	GGGGAGGCTT	.6060
	GCGTGGGGG	TAAAGGAGCA	GAGGAAGAGA	. GAGACCCGGG	TGAGCAGCCT	CCACAACACC	6120
30	GCACTCTTCT	TTCCAAGCAC	: AGGACGAGGG	GATCCTGCCC	TCGGGCAGAC	GGGGTGCGGC	6180
30	GAGAGGTAAC	GGGGTCTGGG	TGAGTGGGG	CTACAGCAGT	CTAGATGAGO	G CCCTTTCCCC	6240
	TCCTTCGGT	TTGCTCAAA	GGATCTCTT	A GTGCTCATT	CACCCACTG	AAAGAGCCCC	6300
35	AGGTTTTAC	r gcatcatca	A GTTGCTGAAG	GGTCCAGGC1	TAATGTGGC	TCTTTTCTGC	6360
	CCTCAGGTC	C TGCCGGCTA	A ACTCTAAGG	A TAGGCCATC	C TCCTGCTGG	G TCAGACCTGG	6420

	WO 98/11225 PCT/GB97	02479
	AGGCTCACCT GAATTGGAGC CCCTCTGTAC CATCTGGGCA ACAAAGAAAC CTACCAGAGG	6480
	CTGGGCACAA TGAGCTCCCA CAACCACAGC TTTGGTCCAC ATGATGGTCA CACTTGGATA	6540
5	TACCCCAGTG TGGGTAGGGT TGGGGTATTG CAGGGCCTCC CAAGAGTCTC TTTAAATAAA	6600
	TAAAGGAGTT GTTCAGGTCC CGATGGCCAG TGTGTTTGGG GCCTATGTGC TGGGGTGGGG	6660
10	GGA	6663
10		
15	(2) INFORMATION FOR SEQ ID NO:29:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 186 amino acids	
	(B) TYPE: amino acid	
	(D) TOPOLOGY: linear	
20	(ii) MOLECULE TYPE: protein	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:29:	
		÷
25	Asp Pro Thr Leu Leu Ile Gly Ser Ser Leu Gln Ala Thr Cys Ser Ile	
	1 5 10 15	
	His Gly Asp Thr Pro Gly Ala Thr Ala Glu Gly Leu Tyr Trp Thr Phe	
	20 25 30	
30		
	Asn Gly Arg Arg Leu Pro Ser Glu Leu Ser Arg Leu Leu Asn Thr Ser	
	35 40 45	

60

Thr Leu Ala Leu Ala Leu Ala Asn Leu Asn Gly Ser Arg Gln Gln Ser

55

35

50

Gly Asp Asn Leu Val Cys His Ala Arg Asp Gly Ser Ile Leu Ala Gly Ser Cys Leu Tyr Val Gly Leu Pro Pro Glu Lys Pro Phe Asn Ile Ser Cys Trp Ser Arg Asn Met Lys Asp Leu Thr Cys Arg Trp Thr Pro Gly Ala His Gly Glu Thr Phe Leu His Thr Asn Tyr Ser Leu Lys Tyr Lys Leu Arg Leu Val Arg Ser Gly * His Met * Gly Val Pro His Cys Gly Pro Ser Leu Met Pro Tyr Pro Gln Gly Pro Gly Pro Leu His Ser Leu * Asp Leu Gly Gly Ser His Gln Ser Pro Arg Leu Ser Lys Ile * Cys Pro His Thr Gly Cys Pro Gly Arg (2) INFORMATION FOR SEQ ID NO:30: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 35 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO:30:

10

5 (2)	INFORMATION	FOR SEQ	ID NO:31:
-------	-------------	---------	-----------

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 28 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA

15 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:31:

20 AGCTACGCGT TTAGAGTTTA GCCGGCAG

28

- (2) INFORMATION FOR SEQ ID NO:32:
- 25 (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 30 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

30

- (ii) MOLECULE TYPE: DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:32:

35

Met Val Leu Ala Ser Ser Thr Thr Ser Ile His Thr Met Leu Leu Leu 1 5 10 15

- 116 -

Leu Leu Met Leu Phe His Leu Gly Leu Gln Ala Ser Ile Ser

25

30

5 (2) INFORMATION FOR SEQ ID NO:33: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 amino acids (B) TYPE: amino acid 10 (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA 15 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:33: 20 Ile Lys Pro Ser Gly Arg Arg Gly Ala Ala Arg Gly Pro Ala Gly Asp Tyr Lys Asp Asp 15 20 10 Asp Asp Lys 25 (2) INFORMATION FOR SEQ ID NO:34:

(i) SEQUENCE CHARACTERISTICS:

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA

(A) LENGTH: 73 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single

35

30

(xi)	SEQUENCE	DESCRIPTION:	SEQ	ID	NO:34:

5	GATCTTGCCC TCGGGCAGAC GGGGTGCGGC GAGAGGTCCT GCCGGCGACT ACAAGGACGA	60
	CGATGACAAG TAG	73
10	(2) INFORMATION FOR SEQ ID NO:35:	
	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 73 base pairs(B) TYPE: nucleic acid	
15	(C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA	
20		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:35:	
25	AACGGGAGCC CGTCTGCCCC ACGCCGCTCT CCAGGACGGC CGCTGATGTT CCTGCTGCTA	60
	CTGTTCATCC TAG	73
30	(2) INFORMATION FOR SEQ ID NO:36:	
35	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 27 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	

- 118 -

W O 98/11223		101/02///
	(ii) MOLECULE TYPE: DNA	
5	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:36	:
CCCAC	CGCTTC TCATCGGATT CTCCCTG	27
10 (2)	INFORMATION FOR SEQ ID NO:37:	
	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 27 base pairs(B) TYPE: nucleic acid	
15	(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA	
20		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:37	:
25 CAGT	CCACAC TGTCCTCCAC TCGGTAG	27

30 (2) INFORMATION FOR SEQ ID NO:38:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 11832 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- 35 (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA

- 119 - .

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:38:

	GCGGCCGCTG	CAGTGATTAC	TCACCGCGTG	GCGCACCCCA	cccccccccc	GCTGAGTGGA	60
5	TTTTTCCGTG	GGGGGATGTG	AAGAAGTTTA	GGGAGAACTC	TTCTGCACCG	ATGGGAACTA	120
	GGAATGCAGG	GTTCGGTCCC	GTTCCCCAAA	GGACACACCT	CTCCCCATAA	GCCCACTCAT	180
10	AAGGGCTCCC	TGCACGCGCT	CCGGGACATC	CCCATATCCA	ATACCCGCAG	ATATGATAGT	240
10	TGAGAAGGGA	CCAGAGGCCG	GAGACTCCCT	CCCTGCCTTC	TGGCTTTCCC	CCCCCCTGC	300
	ACGAAACGAG	ACTACAGCGA	TGGGAGAGGT	GGCATGAAGG	CTTAGGGTGG	GGATCGGTAG	360
15	GACCCATGCA	CCCAGAGAAA	GGGACTGGTG	GCAACTTTCA	AACTCTCTGG	GGAAGGAAGA	420
	AGGGCTGAAA	GAGGATGAAC	GGGCTCAGGT	ACTGCTCAAT	GTGTGTGTGG	CGGACCAAAG	480
20	TGGGTATGGG	GGCCCCGTAA	GAGGGGCGGG	GAAGGTGGAT	AGGAAGGATC	CCGGTAGACT	540
20	GGAGGGGATC	CTGGAAAAGC	ACCAGGGCTG	CGAGCTAGGA	ACCCATTCGG	AGTTAAGGGT	600
	ACAGGATCCC	AGATGAGGG	GTGGGAAGCC	TGGGACGGGC	GGGACCAGAG	AGGGAGGTCC	660
25	CACGGGCTGG	TGGGGAAAGA	GTGGGGGGCT	TCGCGCAGGA	GGATGGGACG	TTCAGGAGTG	720
	GTAACTGGGC	GGAGGCCGGC	CGGGCGGGC	GCGCGGTGCC	CGCGGGCGGT	GGGAAGGCCG	780
30	GTGCGGGGCC	CACGATCAAC	CCCCCCCAG	GGGCCGGGCC	GGGCCGGGGG	CGGGGCCGGG	840
	CGGGGCGAGC	GGCGCATTAG	CGCCTTGTCA	ATTTCGGCTG	CTCAGACTTG	CTCCGGCCTT	900
	CGCTGTCCGC	GCCCAGTGAC	GCGCGTGAGG	ACCCGAGCCC	CAATCTGCAC	CCCGCAGACT	960
35	CGCCCCGCC	CCATACCGGC	GTTGCAGTCA	CCGCCCGTTG	CGCGCCACCC	CCATGCCCGC	1020
	GGGTCGCCC	GGCCCCGTCG	CCCAATCCGC	: GCGGCGGCCG	ccececcc	TGTCCTCGCT	1080

	GTGGTCGCCT	CTGTTGCTCT	GTGTCCTCGG	GGTGCCTCGG	GGCGGATCGG	GAGCCCGTGA	1140
	GTACCGTGCG	CCCTGCTCCC	CACCTCCCCA	GGGAAGCCGG	GATCCGGCGC	CCCGGGGGGT	1200
5	AGTCGCGGGG	GATGGAAGAA	GGGGCGCGAG	CGCCACCTGG	ACGTCCCGGG	AACAAAGGAA	1260
	GGCGGCCCTC	GGGGCGCCCT	CACCTGTGGG	GCTCATGGCA	CCACCACCCA	GCCTCCCAAG	1320
10	AGTACCCCGT	TATACATCAG	AGGCCTCTTA	TCTGTATCCC	CTTTGCGAGG	CTGTCTGGCC	1380
	AGGCTCAGTT	TGAAGGACAT	CGCAGTGTCC	TGGGACCCCC	CTCCTTCAGG	GTGCTGGGAC	1440
	GCTTCGGGGC	GCACGCCTGT	GTCTTGGATA	TCAGAGCGGA	AGGGAAGCCT	CCCTGGCCGG	1500
15	GGGCGCACGC	TTGGGTGCGT	TGGGTTGGGT	GCTGGCGCAA	AGTGGGGTCC	CCTCCCCCAT	1560
	GAAGTGATGA	TCCCCGGGGG	GAGGGTGGGG	CGTTATCGTG	AGCCCTCCTG	TCCGCCTGGC	1620
20	ATGCGGCCCG	GCGTCCCTCG	GGACTTGCCT	CTCCGTGGGG	TCGGCGCCGC	CCCCTCCCC	1680
20	CTATAGCAGA	CTCCATGCTT	TGGTATCCTC	GAAGTCCTCT	CCACTGGTGG	GGCTCACAAC	1740
	CGGTCTCATT	CAGGCTGCGC	TGGGTTGAGA	GCCTCTAGCG	ACTGAAATTT	CGGTGAGGAG	1800
25	CGAGAGCAAG	CGTGTCCGGG	CACCGCGAGC	CCAGACTTCA	TTGTCTAAGG	GGCACCCAGT	1860
	GGGGGTCAGC	TGCCGAGAGA	ATCCCACTGT	CCCAGGAGGA	ACTCCTGGCC	TTGAGCCCCC	1920
30	ATCACCCAAC	GCACACATCC	CCGCCAGGAT	GCGGTCTCCA	CATCCAGACC	CTCTCTGGGA	1980
J 0	CACACCCAAA	GACACACAAA	AGAGCCCCAC	TGGCTTATGT	CCCGTCACCC	TGCCCTCCGA	2040
	CGCGCGCTGC	AGCCCAGATG	CGTATTCGCA	CACCATCGCG	GCGCTCGCAT	TCCATCCTCT	2100
35	ACACACACAC	ACACACACAC	ACACACACA	: ACACACACAC	: ACACACAGAC	ACGCACACAC	2160
	ACACGCACGC	ACACACACGO	: ACGCCCGCAC	TCGTGGTCCC	ACATTTATT	CACAGGGGAG	2220

	GCAACACCGG	GGTACGCATA	TGGTTGAGTG	CACTGGAGAT	CTTTCCCCAC	CACTCTCAGG	2280
	ACCCCATCCG	GAGACACAGG	CCACACCGCA	GGGGCACCAC	GCTGCGCTGC	TGCTCTGGGC	2340
5	TAGTAGTCTT	GTGCAGTTTG	TCCGCGGTGT	CTGTGGACGC	CCTCCCGCTC	TTGTCAGGGG	2400
	ACAGGAACCT	ACACTCCTGC	TTGCCCAAGG	CGGCTGGGCA	GGTGATGTGG	TGACACCCGG	2460
10	GACCTTTCCG	GGGAGTTGGT	GTTGCTGCCA	AGCCTGGGTA	GTTTTTGAAT	GCCACCAATA	2520
10	GCGCTAAGCT	TTGTTTCCGG	GCGGGCTGCA	GAGCAACAGG	CGAAGGTGGC	GGAGTGGGG	2580
	TGGCGCGTGT	GTTTTTCTT	TTAAGGGGGA	GAGAAATTAA	ATAAGAGGTT	CTCACACCTC	2640
15	TGCAATCTGT	TTGTACTTAC	CGTGTGTCTT	AACACCTGAC	CAGCCAGCCG	GTGGGTCGTA	2700
	AAAGTGTATG	CAGGTACCAG	CGGGACAGGA	GATGGGGGCC	CCTGGGGTAT	GGCTGGGATG	2760
20	GAGGCCACCT	TCCCGTTGGC	CTTTCAGGGA	ATCTCACACT	TTTCCCTTTT	AAAACACATG	2820
20	GTGTTCTTTT	TAATAACGGC	AGCAACTCCG	CATTGGGAAA	GGGGGAAATA	AGCTTGTATA	2880
	GGCCCCGGCT	TTGTGGAAAG	GAGGGGAAGA	GGGAAGAAA	AAGGAGGGGT	GTCTCCTCCA	2940
25	GGCTTAGGGG	GCTGTCAGCT	GCTGCTCTGT	CTAGCTTGGC	ATGTGTGTGC	CCCAGTCCCC	3000
	AGTGGCTTTG	GCCCATTGTT	TGTGGAAGCC	AAGAGGGAGA	CTGGAGTCCT	CTATCTCTGG	3060
30	TACTCCAGAG	TCAGGCTTCT	CAGTCCGAGC	CCAGAGAACG	TCTTCCCTGT	TTTATGGAGG	3120
	GAATCAGGG	A AGGGGGTGCC	AGGTGGACTA	. CGTTCTGCTG	AGGACTGTAC	CAGTCGCTCG	3180
	AAGGAGAAA	G CTTGGGCTTG	ссссстссс	CCCTCAAGCC	: ACGAAGGGC	GCTGCTAGGC	3240
35	TAGTGTGGT	A AAAGGGCATT	ACTCCCCAGG	CAGGACCCC	CAGAGAGTC	CCTTCCTGGC	3300
	CAGACAAAT	G CTGGGGAGG	ACAGAGGGG	r GTGATCATTO	CCCAGGAGT	G CAGACAGTGG	3360

	GGTCCCGGGT	CGGGCAGTGC	CTCCCACCCT	GCTGAGGGGG	GCGCCCAGGC	AGGAAGCGGT	3420
	GGGTGGGCCG	GGGTAGAGAC	GCTGGCACGT	CCCAGTTCAT	GCCGAAGGAA	TTCTGAATTA	3480
5	GCGGGCGGCT	GGCTGCCTGG	GACCTCCGGG	GCGGCCCCCT	GGCCCCCGCC	GCTCCGTCTG	3540
	GCCTGCTCCT	CCTGCTCCTT	CGCACGGACG	CTGAGACCTC	CGCTGAGCCC	TGGGACAAGC	3600
10	CCCAAATGCA	ACTGCGATTG	CAGGCTTCGC	AAGACCCGCC	TCCTCCCAAG	GCCAAATTTG	3660
10	CCTGGGAGAA	GTCATTCAGG	GCCCAGACTA	.GAACCATGTT	GGTGCCACCT	CATCCATCTG	3720
	GGGCATGAAG	GACCGTCCAG	GGCTGCAGTT	TAGCTTCTTA	ATAGGAACCT	GGGGGTGGGT	3780
15	GCAGCCTCTG	TTCTCCGAGC	CTCTTTGGAA	ATCGGTTTTG	TTTTTGTTTT	TGTTTTTCC	3840
	AATACTCTTT	TCCTCTCATC	CCATCCCGGG	ACTGTTTTCC	TCCCTAAGGG	TTGAGAGCCC	3900
20	TGCAGTCTTC	CCTAACCTTT	TCTTTGCTTC	TACCCCAGGG	CCTTTGCACA	TGGAGTCCCA	3960
20	CCTCTCCCCT	TGCCCAACTG	GGGCTCCAGC	CTTACTGCAT	TTGGCTCTTG	GTAACTGTCC	4020
	CAGGGCCTCT	CTGACACACA	GGGTTGTAGC	CCCAGCTCCC	TCTCTTCTCC	TCCCCCTTT	4080
25	CTCTTTTGCT	TCTGAGACTT	AATTTTTTC	TTTTTCTTTT	TGGCTTTTTG	AGACAGGGTT	4140
	TCTCTGTACA	GCCCTGGCTG	CCCTGGCACT	CATTCTGTAG	ACCAGGCTAG	CCTCAAACTC	4200
30	ACAAACCTAC	CTGCCTCTGC	CTTTCCAGTG	CTGGCACTAA	AGATGTGGGC	CACCACAACT	4260
30	AGTAGTTAAG	TGTTTTGCTG	TGTCTTTATT	CCTATAGTGA	CCTCAGTTCC	TGGCATATTG	4320
	TAGGCGATGG	aTGGATGAAT	GGATGGATGG	ATGGATGGAT	GGATGGTTGG	ATGGAGCAAG	4380
35	CTTGAATCGT	CCTGAGTGAA	AAAAGAGACC	TCAGAGAACT	GAATGGAGTT	AGGTTCCCAG	4440
	GGCAGCCTGG	CCTGCTGGTC	TCATGGGAGC	TCCCTGTGAA	ACTTCCCCA	CACCTCCCAC	4500

	CACCCTGCCA	TCCTGTGTGG	CTGACAAGAA	AGGCCAATGG	CCAGATGGGG	ACACAGACTC	4560
	AGGGAAGCTT	GGAATATGTT	CCCCTCCTCA	TATCCTAGGC	CTTGTTGTCC	CCCTGAGGGC	4620
5	CCAGCCTATG	AGTAGGGCAG	CTGTGGGCTG	CCCTAAGGTT	GGGTAGGCAA	GAAGGGGGTG	4680
	GTCCCTCAGG	GTGGGTCACA	GGATTGAGGT	CATTTCCAAA	GTGGCCATCA	CAGTGGCCCT	4740
	AGGAAATGAT	TGTGGAGAGT	CAGAACTCCT	GTTGGGAGTT	GTAGAGGCC	TTGCATGTGG	4800
LO	GCTTCTGTGG	CTGTCCCTTC	TCTTGTGGTC	CTTTGCACAG	TCCCCTCGTG	TGTGCTGGGA	4860
	TGTGAGGAGG	GCACGGGGAA	AATGAAGGCT	CAGCCCCTCA	GCTTGCCCTT	CACGGTTCAC	4920
15	CCAACAGGGC	TCACCTCTCC	TCTGGACAGG	CTCTCACTGT	ATGCACAGAT	TGGCCTCACA	4980
	TTTGATTCCC	TTCCTTTGGT	CTCCTGGGAT	GACAAACATT	TACCAGGGTA	GGATTTTACA	5040
20	TTTTAGATAT	GTCCATTCTC	CAGAAACACA	CTTGTGAGGT	TAGGGTATCA	GTGAAAGGAC	5100
20	ACCACCAGGA	CAGACAAAGA	ATTGGAGAGG	AAGGAAATTG	GTAAGCCAGG	CCATGCTTGA	5160
	TGGCTTATGI	GTAATCCCAG	AACTCTGGAC	: GCTGAGGCAG	GAGGATTCCA	A AGTTTCAAGA	5220
25	CAGTGTGTT	TAGGTAATGA	GACCCTGTCA	. AGAAAGAAA	AGAAATAAA	G AGACAAGAAA	5280
	ATGTTTATA	GCTGTGAGAC	AGCTTGGTGC	GTAAGGGGCA	CTTGCCTCCA	A ATCAAGATGA	5340
3.0	CCTCAGCCC	C ATCCCTAGGA	A ATCCATGGT	A GAAGGAGAA	A GCAAA.CTCC	A GCTGCTGACC	5400
30	TCCATACAT	G TGCTCCAAT	G TGCACACAC	A CAGGGAGAC	A TAATCAATT.	A ATAGGATGTA	5460
	TTTGCTTAG.	A TTTGAGTAG	G CATTTATGA	C TGATGTTTT	ATTTTAAA A	T TTGATTTTAT	5520
35	GAAAATATA	C CTGTTTGTA	T TTGGTTTGG	T TTGGTTTGA	G TTTTGTTTA	T TTGAGACAGG	5586
	GCTTCTCTG	T GTAGTCCTG	G CTGTCCTTG	G AACTCACTC	T GTAGACCAG	G CTGGCCTTGA	564

	ACTCAGAAAT	CCGCCTGCTT	GTGCTTCCCA	AGTGCTTAGA	TTAAAGGTGT	GCACTGCCAT	5700
	TCAGCAAAAT	TGCATACTTT	AACCCCAGTA	TTTGGGAGGC	AGAGGCAGAC	TAATGTGTGA	5760
5	ATTCCAGGCT	AGCCAAGGAT	ACAGAGTGAG	ACCCTATTCT	TACCCTCCCC	CCCCAAAACC	5820
	CCAAAATGTA	TTTTGTGCTT	GTGTATGTAC	ATGTGTGTTG	CAGCACGTAA	ATGTCCAAGG	5880
10	ACAACTTGTA	GAAGTTCTCT	CCGTTCACAG	TCTAAGTCCT	GAATTCAAAC	TAAGGTCCTC	5940
10	AGGCTTAGCC	ACAGTCTTCT	TTATGTACTG	AGCCATTTCA	CTGGCCCTGG	ATTGACTGAT	6000
	GAATTAATTT	TTGAGATAAG	GTCTCTTGTA	GCTCTAGCTA	GGCTCAAACT	ATGAACTCCC	6060
15	AAGGTCATCT	TGAGCTGCTG	GTACTCTTGC	TTCCACCCCA	AGTGGTGGAA	TGATACTCAG	6120
	GCAGCACTTC	TCTGGGGAAG	GGGCTGGCCT	TGGCCTTGAT	TTTGTTGCCT	CAGCTTCAAT	6180
20	GAGTGCTTGG	GTCTCGTTGT	TTCTTTTCTT	TATCTGTGAA	ATGGGTGAAC	ACCTGTTCAA	6240
	GACTTCCTGA	CTCTTGAAAC	ATCCAGGCAG	GGTGAGGGAC	TTGAAGTGGG	CTCATCCCAT	6300
	GCCTAACAAA	GTGTCGTCTT	TGACCCCAGA	CACAGCTGTA	ATCAGCCCCC	AGGACCCCAC	. 6 36 0
25	CCTTCTCATC	GGCTCCTCCC	TGCAAGCTAC	CTGCTCTATA	CATGGAGACA	CACCTGGGGC	6420
	CACCGCTGAG	GGGCTCTACT	GGACCTTCAA	TGGTCGCCGC	CTGCCCTCTG	AGCTGTCCCG	6480
30	CCTCCTTAAC	ACCTCCACCC	TGGCCCTGGC	CCTGGCTAAC	CTTAATGGGT	CCAGGCAGCA	6540
30	GTCAGGAGAC	: AATCTGGTGT	GTCACGCCCG	AGACGGCAGC	ATTCTGGCTG	GCTCCTGCCT	6 60 0
	CTATGTTGGC	: TGTAAGTGGG	GCCCCAGACA	CTCAGAGATA	GATGGGGGTT	GGCAATGACA	6660
35	GATTTAGAGO	CTGGGTCTTC	TGTCCTGGGC	G CAGAGCCATO	GGCTCTCACT	TGCATGCAGG	6720
	CATGGTCAT	CCCAGCACAC	GCATTGCAA	TCTAGGGAC	A GCTGTGGCT	G CACTGTCCCC	6780

	TGTGTACCCC ACAGCTTTAG AAAAGCTGTC ATGTTTTCCT TGTAGTGCCC CCTGAGAAGC	6840
	CCTTTAACAT CAGCTGCTGG TCCCGGAACA TGAAGGATCT CACGTGCCGC TGGACACCGG	6900
5	GTGCACACGG GGAGACATTC TTACATACCA ACTACTCCCT CAAGTACAAG CTGAGGTTGG	6960
	TACCCAGCCA AGCCTTGCTG TGTGACTTCT GGCAATACTT ACCTTCTCTG ATCAAATATG	7020
	TTCCTGTTTA TGAACTCAAA AGGGACTCTC GCACCTCCAC AGGTGGTACG GTCAGGATAA	7080
10	CACATGTGAG GAGTACCACA CTGTGGGCCC TCACTCATGC CATATCCCCA AGGACCTGGC	7140
	CCTCTTCACT CCCTATGAGA TCTGGGTGGA AGCCACCAAT CGCCTAGGCT CAGCAAGATC	7200
15	TGATGTCCTC ACACTGGATG TCCTGGACGT GGGTGAGCCC CCAGTGTCCA CCTGTGTTCT	7260
	GCCCTAGACC TTATAGGGCG CCTCCCCCC ATCCCCCCAG ACTTTTTGGT TCTTCTAGAG	7320
	GTCTTAGCCA CAGCCACGGT GGTTGCAGGA CAGTGGTTGT TCATAACTTA ATGCAAAGAC	7380
20	TTTCCCCCAA GACAGTCAAG ATTTTCCCCT CCCCACCCCC AACACACACA TACACACAC	7440
	CTCTGCAGAG AACACCTGGC CTGACCACCC TCCCTCTCTA CAGCCCAGGT GTTCAGAAGG	7500
25	GAGTCCTAGG GGACTGAGAG GAGGCGCCCA GGTCTGAAGG CGCCCCAGGA AGCCGAGGCC	7560
	TTGAGCTGGG GGGGGGGGCG AGGGTTGGAG GCACGAACTG GATGATCCCT GAGCACAACT	7620
2.0	GGGCCTAATC TAATTAGGGT GTTCCCAGCC CAAAGCAGCC TGGGCCATTT AACCCTTCAA	7680
30	GTGCCTCACT GAAGACTCAG GGGAGAGATC AGCTTGTACT CTCTCCATGG TCCCCCAGGA	7740
	GGGTTCCTGG GTGCCCCTGG CTCATTCCCA CATCCAGAGG TTTTGTGTCT TCCTGGCATC	7800
35	TAACCCTCAG TTGTGCTCTG TGGCTGCCAC AGCTGCCCCG TGGAGGCTCT TGGTAATGTA	7860
	CAAGGCATCA GAGGTGGACA TGGGATGGGG ATACATAGGG ATGGAGCCAA ATAGCACCTC	7920

	AAGGTGGGGT	GATATACAAT	AAAGCTTGTC	ACCCTGACGC	TCAGAAAGCC	TACTCATGAT	7980
	GATCACAATT	GTTGACATCA	CTCTGGGACA	TGTAGTGAGA	CCCTAGCTCA	AAACACAGAC	8040
5	AGTAGCTTTA	AGAGTCAGCT	TGTGACTTAA	TACTGGAACT	CAGGGCCTAA	TAGGTGCTGG	8100
	GTGATGCTCG	CCTCACTCCC	TGTTTAGTGA	GATCTCTGCG	СТААТСТССА	CCCCAGCTGG	8160
10	GTGGGCTGCT	CTGTCCCCTT	GAGGGCAGGA	ATGTGTGTCT	TCCATCAGAG	ATAGGACCCG	8220
10	TGGTAGCAGC	AACTGCTGCT	GGCTGTTTCT	GGAATATTAA	ATGACAGTAA	TCTATCAGGC	8280
	CTGGGTGAGT	AGCTAACAGG	GGTGGGGGCG	TGGTCTGGAA	AACGCAGATA	GGGTCATAGG	8340
15	AGCCACTGCA	GCCTAGATTA	CACCACTGGG	TGTTCTGTCA	CTAGGCCATT	CTCACCAAGC	8400
	AGTCCTCAGA	ACTGGGAGCA	CTGTTGCCAG	CATTTAATGC	CAGCATTTAA	TGCCAGCATT	8460
20	AGGGGAGGCA	GAGGCAGAAG	GATCTCTCTG	AGTTCAAGGC	CATCCTGAAT	TTACATAAAG	.8520
	AGCTCCAGGC	CAGCCAGGGT	GCGCAGTAAA	ACCTTGTCTC	AAAAAACAAA	GCATCTTTAG	. 8580
	TGACCAGGCT	TGCTCCACCC	CCAGTGACCA	CGGACCCCC	ACCCGACGTG	CACGTGAGCC	8640
25	GCGTTGGGGG	CCTGGAGGAC	CAGCTGAGTG	TGCGCTGGGT	CTCACCACCA	GCTCTCAAGG	8700
	ATTTCCTCTT	CCAAGCCAAG	TACCAGATCC	GCTACCGCGT	GGAGGACAGC	GTGGACTGGA	8760
30	AGGTGCCCGT	cccccccc	ACCCGCCCCT	GACCCCGCCC	CCCGCATCTG	ACTCCTCCCT	8820
30	CACCGTGCAG	GTGGTGGATG	ACGTCAGCAA	CCAGACCTCC	TGCCGTCTCG	CGGGCCTGAA	8880
	GCCCGGCACC	GTTTACTTCG	TCCAAGTGCG	TTGTAACCCA	TTCGGGATCT	ATGGGTCGAA	8940
35	AAAGGCGGGI	A ATCTGGAGCG	AGTGGAGCCA	CCCCACCGCT	GCCTCCACCC	CTCGAAGTGG	9000
	TGAGCACCT	C TCCAGGGCTG	GCTGGCCCAT	GGAATCCCC	A ATCCATCCTG	TTCCTTCCCC	9060

	CCCACCCTTT	TTTTGAGACA	GCGTCTTCAG	GTAGCGCATG	CTGGCCTTAA	ATTCAGTATG	9120
	TAGTCAAGGA	TGACCTCGAG	CTCCTGGTCT	TTTTGTCTCC	ACTTAGAGAC	AATGGCCAGT	9180
5	GGCCATCACC	ACCTTTGGGA	GACTAGCCAT	GGAGTCTATT	TAGCCTGTCA	TTTGGTGACA	9240
	GATGGAGTAC	AACAGTGTGA	CCTCTTGTAA	GAGAACTGAA	GACAGGCTGT	TTTTAACCCC	9300
10	AATATCCTAG	GCTCTCTAGA	GGTTAACTTT	АТАТАААТА	GAGACTATTA	CAGCCAGTTA	9360
10	TCACATGGTC	CCACAGAACC	TTTTGTCACA	CAACCTATAG	ACCACAGTGC	CTGTGCCTAC	9420
	CACATAAGGG	TCTCTACTGC	TGGCCCACCC	CTCCAACCCT	TAAAAGGTAA	CCTAGGCAGC	9480
15	CTTAATATTT	GCAATCCTCC	TACCTCAGCC	TCTTGAATGC	TCAGAAACCA	GGCATTAACC	9540
	CAAGTTTCTC	TTCTCTGGGT	CCCTTTCTTA	AGGTGGGAGG	GCCTAAAGAT	GACTTCCTTT	9600
2.0	GTCCTGAAGA	CTCTCCGAGC	CCATGGATCT	GCACTCTCTA	ATATGAAATA	TATTGCATAA	9660
20	AATGTCTGGC	CTCAGTTTCC	CCACCTGTCA	GGTTTAGGCA	GCACAGTCGG	TCCAAGACAC	9720
	TTCATTATTT	GCAGGCAGTA	TAAGAAGAAG	CTCCCATCCC	CCACCCGCTT	CCTCCGGTCC	9780
25	CTAAGACAGA	ATACTTCTAC	ACTGAAACTG	AACTCTCGCA	GACGCATATO	CTCACTTTAA	9840
	TGATGATGA	A ATAATGGGGA	AACTGAGGCT	CCGAGAGATI	CCTGGAGGAA	GAGGGTCAAA	9900
3.0	ACCAGCTCC	A GGAAGCTCTC	CAGCCCCAT	CCGGGCCTCI	CCAGGTTCT	GGCTTGGCGG	9960
30	GAGTGAACA	C AGCTGGGAGG	GGCTGGAGC	TGGGAGCTT	GGCCCTTGC	CGTGCCCAGC	10020
	ACCTGCGAT	r cttgcacgg	AGCCAGCAG	G CGGCTGCGT	CGCCCGAGA	G ACTGAAGAAG	10080
35	CCGGGGGTA	G GGTTGGAGG	G AGGTAAGCA	GGGCTGTGG	G GGCCGAAGC	r .TGTGCCAGGG	10140
	CCTGTCAGC	G AGTCCCCAG	TTTATTAT	G GCGTGAGGC	C GATGTCCTT	A TCCGCTGGCC	10200

	TGCTGGGGGA	TGGCTGCGGC	TGGGGATTGG	ACCCAAGGGC	TGGCTTCCCA	CTCAGTCCTC	10260
	CAGCCCACTC	CATGTCACAC	CCGTGCATTC	TCTGAGGCTT	ATCTTGGGAA	CCCGCCCTTG	10320
5	TTCTGTGCTG	TCTGTCTCTA	TTTCTGTCAT	TCACTTTCCC	AGAGCCTTTT	TTTTATGCTT	10380
	TTAATATAAC	TACGTTTTAA	AAATTGCTTT	TGTATAATGT	GTGTGCCTTC	GTGAGCGTGC	10440
10	GTGCCACAAC	ACACACGTGA	AGGTTAGAGA	ACTTTGTTGA	GTAGGCTCCT	TCCACCATGT	10500
10	GGGACTAGGG	CTGGCGACAA	GAGCAATTAC	TGAGTCATCT	CGCCAGCCCC	TCACCCTCA	10560
	CTTCCCATCC	TGTTTGGATA	GTCATAGGTA	ATCGAAGGTA	AATCGCTGGC	TTTAATTTCG	10620
15	TAGCTATCCT	GCCTCAGCCT	ACCAAGTGCT	GTGCTACCAC	GTTTGTGGGA	GGGGCTCTCC	10680
	TCCCAGTGTC	TGGGGGTACA	CAGTCCCAAG	ATCTCTGCTT	TCTAGGTCTT	TGTCTTAGTT ·	10740
20	TGCCCCTTGC	TTTGTCCGTG	TCCCTAGAGT	CTCCGGCCCC	ACTTAGTCTC	CATTGATTTC	10800
20	CTTTCTGACC	GAATACTCGG	TTTTACCTCC	CACTGATTTG	ACTCCCTCCT	TTGCTTGTCT	10860
	CCATCGCCGT	GGCATTGCCA	TTCCTCTGGG	TGACTCTGGG	TCCACACCTG	ACACCTTTCC	10920
25	CAACTTTCCC	CAGCCGAAGC	TGGTCTGGTA	TGGGAGGCCG	CCGTCCCGCG	CGCGCCTCCT .	10980
	GCTGGCCGCG	CCCCAACACT	GCCGCTCCAT	TCTCTTTAGA	GCGCCCGGGC	ccgggcggcg	11040
30	GGGTGTGCGA	GCCGCGGGC	GGCGAGCCCA	GCTCGGGCCC	GGTGCGGCGC	GAGCTCAAGC	11100
30	AGTTCCTCGG	CTGGCTCAAG	AAGCACGCAT	ACTGCTCGAA	CCTTAGTTTC	CGCCTGTACG	11160
	ACCAGTGGCG	TGCTTGGATG	CAGAAGTCAC	ACAAGACCCG	AAACCAGGTA	GGAAAGTTGG	11220
35	GGGAGGCTTG	CGTGGGGGGT	AAAGGAGCAG	AGGAAGAGAG	AGACCCGGGT	GAGCAGCCTC	11280
	CACAACACCG	CACTCTTCTT	TCCAAGCACA	GGACGAGGGG	ATCCTGCCCT	CGGGCAGACG	11340

	GGGTGCGGCG	AGAGGTAAGG	GGGTCTGGGT	GAGTGGGGCC	TACAGCAGTC	TAGATGAGGC	11400
	CCTTTCCCCT	CCTTCGGTGT	TGCTCAAAGG	GATCTCTTAG	TGCTCATTTC	ACCCACTGCA	11460
5	AAGAGCCCCA	GGTTTTACTG	CATCATCAAG	TTGCTGAAGG	GTCCAGGCTT	AATGTGGCCT	11520
	CTTTTCTGCC	CTCAGGTCCT	GCCGGCTAAA	CTCTAAGGAT	AGGCCATCCT	CCTGCTGGGT	11580
10	CAGACCTGGA	GGCTCACCTG	AATTGGAGCC	CCTCTGTACC	ATCTGGGCAA	CAAAGAAACC	11640
10	TACCAGAGGC	TGGGCACAAT	GAGCTCCCAC	AACCACAGCT	TTGGTCCACA	TGATGGTCAC	11700
	ACTTGGATAT	ACCCCAGTGT	GGGTAGGGTT	GGGGTATTGC	AGGGCCTCCC	AAGAGTCTCT	11760
15	TTAAATAAAT	AAAGGAGTTG	TTCAGGTCCC	GATGGCCAGT	GTGTTTGGGG	CCTATGTGCT	11820
	GGGGTGGGGG	GA					11832

20 (2) INFORMATION FOR SEQ ID NO:39:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 26 amino acids

(B) TYPE: amino acids

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Protein

30

25

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:39:

Val Ile Ser Pro Gln Asp Pro Thr Leu Leu Ile Gly Ser Ser Leu Gln Ala Thr Cys Ser

5 10 15 20

Ile His Gly Asp Thr Pro

CLAIMS:

5

25

1. A nucleic acid molecule comprising a sequence of nucleotides encoding or complementary to a sequence encoding a novel haemopoietin receptor or derivative thereof having the motif:

Trp Ser Xaa Trp Ser [SEQ ID NO:1],

- 10 wherein Xaa is any amino acid.
 - 2. A nucleic acid molecule according to claim 1 wherein Xaa is Asp or Glu.
- 3. A nucleic acid molecule according to claim 1 or 2 wherein said nucleic acid molecule is capable of hybridisation under low stringency conditions at 421C to:

5N (A/G)CTCCA(A/G)TC(A/G)CTCCA 3N [SEQ ID NO:7]; and 5N (A/G)CTCCA(C/T)TC(A/G)CTCCA 3N [SEQ ID NO:8].

- 4. A nucleic acid molecule according to claim 3 comprising a sequence of nucleotides substantially as set forth in SEQ ID NO:12 or a nucleotide sequence having at least 60% similarity to the nucleotide sequence set forth in SEQ ID NO:12 or a nucleotide sequence capable of hybridising thereto under low stringency conditions at 421C.
- 5. A nucleic acid molecule according to claim 3 comprising a sequence of nucleotides substantially as set forth in SEQ ID NO:14 or a nucleotide sequence having at least 60% similarity to the nucleotide sequence set forth in SEQ ID NO:14 or a nucleotide sequence capable of hybridising thereto under low stringency conditions at 421C.
 - 6. A nucleic acid molecule according to claim 3 comprising a sequence of nucleotides substantially as set forth in SEQ ID

NO:16 or a nucleotide sequence having at least 60% similarity to the nucleotide sequence set forth in SEQ ID NO:16 or a nucleotide sequence capable of hybridising thereto under low stringency conditions at 421C.

5

10

- 7. A nucleic acid molecule according to claim 3 comprising a sequence of nucleotides substantially as set forth in SEQ ID NO:18 or 24 or a nucleotide sequence having at least 60% similarity to the nucleotide sequence set forth in SEQ ID NO:18 or 24 or a nucleotide sequence capable of hybridising thereto under low stringency conditions at 421C.
- 8. A nucleic acid molecule according to claim 3 comprising a sequence of nucleotides substantially as set forth in SEQ ID NO:28 or a nucleotide sequence having at least 60% similarity to the nucleotide sequence set forth in SEQ ID NO:28 or a nucleotide sequence capable of hybridising thereto under low stringency conditions at 421C.
- 9. A nucleic acid molecule according to claim 3 comprising a sequence of nucleotides substantially as set forth in SEQ ID NO:38 or a nucleotide sequence having at least 60% similarity to the nucleotide sequence set forth in SEQ ID NO:38 or a nucleotide sequence capable of hybridising thereto under low stringency conditions at 421C.
 - 10. A nucleic acid molecule according to claim 4 or 5 or 6 or 7 or 8 or 9 wherein said haemopoietin receptor is of murine origin.

- 11. A nucleic acid molecule according to claim 9 wherein said haemopoietin receptor is of human origin.
- 12. An expression vector comprising a nucleic acid molecule 35 selected from the list consisting of:
 - (i) a nucleotide sequence as set forth in SEQ ID NO:12;
 - (ii) a nucleotide sequence as set forth in SEQ ID NO:14;

PCT/GB97/02479 WO 98/11225

a nucleotide sequence as set forth in SEQ ID NO:16; (iii)

- (iv) a nucleotide sequence as set forth in SEQ ID NO:18;
- a nucleotide sequence as set forth in SEQ ID NO:24;
- (vi) a nucleotide sequence as set forth in SEQ ID NO:28; and
- a nucleotide sequence as set forth in SEQ ID NO:38. 5
- A method for cloning a nucleotide sequence encoding a haemopoietin receptor having the characteristics of NR6 or a derivative thereof, said method comprising searching a nucleotide database for a sequence which encodes an amino acid sequence as set forth in one or more of SEQ ID NO:1, SEO ID NO:7 and/or SEQ ID NO:8, designing one or more oligonucleotide primers based on the nucleotide sequence located in said search, screening a nucleic acid library with said one or more oligonucleotides and obtaining a clone therefore which encodes 15 NR6 or a part or derivative thereof.
 - An isolated nucleic acid molecule comprising a sequence of nucleotides encoding a haemopoietin receptor or derivative thereof having an amino acid sequence substantially as set forth in SEQ ID NO:13 or having at least about 50% similarity thereto.
- An isolated nucleic acid molecule comprising a sequence of nucleotides encoding a haemopoietin receptor or derivative 25 thereof having an amino acid sequence substantially as set forth in SEQ ID NO:15 or having at least about 50% similarity thereto.
- 16. An isolated nucleic acid molecule comprising a sequence of 30 nucleotides encoding a haemopoietin receptor or derivative thereof having an amino acid sequence substantially as set forth in SEQ ID NO:17 or having at least about 50% similarity thereto.
- 35 An isolated nucleic acid molecule comprising a sequence of nucleotides encoding a haemopoietin receptor or derivative

10

thereof having an amino acid sequence substantially as set forth in SEQ ID NO:19 or having at least about 50% similarity thereto.

18. An isolated nucleic acid molecule comprising a sequence of nucleotides encoding a haemopoietin receptor or derivative thereof having an amino acid sequence substantially as set forth in SEQ ID NO:25 or having at least about 50% similarity thereto.

10

15

- 19. An isolated nucleic acid molecule comprising a sequence of nucleotides encoding a haemopoietin receptor or derivative thereof having an amino acid sequence substantially as set forth in SEQ ID NO:29 or having at least about 50% similarity thereto.
- 20. An isolated novel haemopoietin receptor comprising the amino acid motif:
- 20 Trp Ser Xaa Trp Ser [SEQ ID NO:1]

wherein Xaa is any amino acid.

- 21. An isolated haemopoietin receptor according to claim 2025 wherein Xaa is Asp or Glu.
 - 22. An isolated haemopoietin receptor according to claim 21 comprising the amino acid sequence substantially as set forth in SEO ID NO:13.

- 23. An isolated haemopoietin receptor according to claim 21 comprising the amino acid sequence substantially as set forth in SEQ ID NO:15.
- 35 24. An isolated haemopoietin receptor according to claim 21 comprising the amino acid sequence substantially as set forth in SEO ID NO:17.

25. An isolated haemopoietin receptor according to claim 21 comprising the amino acid sequence substantially as set forth in SEQ ID NO:19.

- 5 26. An isolated haemopoietin receptor according to claim 21 comprising the amino acid sequence substantially as set forth in SEO ID NO:25.
- 27. An isolated haemopoietin receptor according to claim 21 comprising the amino acid sequence substantially as set forth in SEO ID NO:29.
- 28. A method for modulating expression of NR6 in a mammal, said method comprising contacting a genetic sequence encoding said NR6 with an effective amount of a modulator of NR6 expression for a time and under conditions sufficient to upregulate or down-regulate or otherwise modulate expression of NR6, wherein the genetic sequence encoding said NR6 is selected from the nucleotide sequence set forth in SEQ ID NO:12 or 14 or 16 or 18 or 24 or 28 or 38 or is a sequence having at least about 60% similarity to at least one of SEQ ID NO:12 or 14 or 16 or 18 or 24 or 28 or 38 and is capable of hybridising thereto under low stringency conditions at 421C.
- 29. A method of modulating activity of NR6 in a mammal, said method comprising administering to said mammal, a modulating effective amount of a molecule for a time and under conditions sufficient to increase or decrease NR6 activity wherein said NR6 comprises an amino acid sequence:

(i) encoded by a nucleotide sequence selected from the nucleotide sequence set forth in SEQ ID NO:12 or 14 or 16 or 18 or 24 or 28 or 38 or a nucleotide sequence having at least 60% similarity to the nucleotide sequence set forth in SEQ ID NO:12 or 14 or 16 or 18 or 24 or 28 or 38 and which is capable of hybridising thereto under low stringency conditions at 421C; and

30

(ii) substantially as set forth in SEQ ID NO:12 or 14 or 16 or 18 or 32 or 30 or a sequence having at least 50% similarity thereto.

- 5 30. A pharmaceutical composition comprising an NR6 receptor in soluble form and one or more pharmaceutically acceptable carriers and/or diluents wherein said NR6 comprises the amino acid sequence:
- 10 (i) encoded by a nucleotide sequence selected from the nucleotide sequence set forth in SEQ ID NO:12 or 14 or 16 or 18 or 24 or 28 or 38 or a nucleotide sequence having at least 60% similarity to the nucleotide sequence set forth in SEQ ID NO:12 or 14 or 16 or 18 or 24 or 28 or 38 and which is capable of hybridising thereto under low stringency conditions at 421C; and
 - (ii) substantially as set forth in SEQ ID NO:12 or 14 or 16 or 18 or 32 or 30 or a sequence having at least 50% similarity thereto.
- 31. An isolated antibody or a preparation of antibodies to an NR6 receptor, said NR6 receptor comprising the amino acid sequence:
- 25 (i) encoded by a nucleotide sequence selected from the nucleotide sequence set forth in SEQ ID NO:12 or 14 or 16 or 18 or 24 or 28 or 38 or a nucleotide sequence having at least 60% similarity to the nucleotide sequence set forth in SEQ ID NO:12 or 14 or 16 or 18 or 24 or 28 or 38 and which is capable of hybridising thereto under low stringency conditions at 421C; and
 - (ii) substantially as set forth in SEQ ID NO:12 or 14 or 16 or 18 or 24 or 28 or 38 or a sequence having at least 50% similarity thereto.
 - 32. A trangenic animal comprising a mutation in at least one allele of the gene encoding NR6.

35

33. A transgenic animal according to claim 33 comprising a mutation in two alleles of the gene encoding NR6.

34. A transgenic animal according to claim 33 or 34 wherein said animal is a murine animal.

4/43
6/43
8/43
10/43
12/43
14/43
16/43
18/43

Fig.2

g1	cccagaactct
g 3 8	agtttcaagacagtgtgtt
g 8 3	aagaaagaataaagaga
g128	cagcttggtgggtaagggg
g173	agccccatccctaggaatc
g218	cagctgctgacctccatac
g263	ggagacataatcaattaat
g308	ggcatttatgactgatgtt
g353	aatatacctgtttgtattt
g398	atttgagacagggcttctc
g443	tcactctgtagaccaggct
g488	ttgtgcttcccaagtgctt
g533	gcaaaattgcatactttaa
g 5 7 8	actaatgtgtgaattccag
g623	ctattcttaccctccccc
g668	ttgtgtatgtacatgtgtg
g713	acttgtagaagttctctcc
g758	actaaggtcctcaggctta
g803	catttcactggccctggat
g 8 4 8	aggtctcttgtagctctag
g893	gtcatcttgagctgctggt
g938	aatgatactcaggcagcac
g983	ccttgattttgttgcctca
g1028	gtttcttttctttatctgt
g1073	ttcctgactcttgaaacat

Fig.2(i)

tggacgctgaggcaggaggattccca tctaggtaatgagaccctgtcaagaa caagaaaatgtttataggctgtgaga cacttgcctccaatcaagatgacctc catggtagaaggagaaagcaaactcg atqtgctccaatgtgcacacacacag aggatgtatttgcttagatttgagta ttaaaatttttatttgattttatgaa ggtttggtttggttttagttt tgtgtagtcctggctgtccttggaac ggccttgaactcagaaatccgcctgc agattaaaggtgtgcactgccattca ccccagtatttgggaggcagaggcag gctagccaaggatacagagtgagacc ccaaaaccccaaaatgtattttgtgc ttgcagcacgtaaatgtccaaggaca gttcacagtctaagtcctgaattcaa gccacagtcttctttatgtactgagc tgactgatgaattaatttttgagata ctaggctcaaactatgaactcccaag actcttgcttccaccccaagtggtgg ttctctggggaaggggctggccttgg gcttcaatgagtgcttgggtctcgtt gaaatgggtgaacacctgttcaagac ccaggcagggtgagggacttgaagtg

Fig.2(ii)

g1118	ggctcatcccatgcctaac
g1163	agctgtaatcagcccccag
g1208	L Q A T C S CCTGCAAGCTACCTGCTCT
g1253	A E G L Y W CGCTGAGGGGCTCTACTGG
g1298	E L S R L L TGAGCTGTCCCGCCTCCTT
g1343	A N L N G S GGCTAACCTTAATGGGTCC
g1388	C H A R D G GTGTCACGCCCGAGACGGC V G
g1433	TGTTGGCTgtaagtggggc
g1478 g1523 g1568	ttggcaatgacagatttag agccatgggctctcacttg aggcattgcaactctaggg
g1613	gtacccacagctttagaa

Fig.2(iii)

aaagtgtcgtctttgaccccagacac L \mathbf{L} Ι G D P T GACCCCACCCTTCTCATCGGCTCCTC T G G T P Α Ι H \mathbf{D} ATACATGGAGACACACCTGGGGCCAC N G R R L P Т ACCTTCAATGGTCGCCGCCTGCCCTC T \mathbf{L} A L Α S N AACACCTCCACCCTGGCCCTGGCCCT V S G D N L O R AGGCAGCAGTCAGGAGACAATCTGGT S C L Y L A G S I AGCATTCTGGCTGGCTCCTGCCTCTA cccagacactcagagatagatggggg agcctgggtcttctgtcctggggcag catgcaggcatggtcatacccagcac acagctgtggctgcactgtcccctgt L aagctgtcatgttttccttgtag<u>TGC</u>

Fig.2(iv)

	P]	Đ.		•	E			K			P			F			1
g1658	<u>C</u>	C	<u> </u>	<u> </u>	<u>r</u> (G.	A	G.	<u>A</u> .	A	<u>G</u>	<u>C</u>	C	C	<u>T</u>	T'	Τ.	A.	7
	K		1	D			т.			Т			~			R		. 7	A7
g1703		G (T (رح			\sim		1
91703					_	_	_	_			<u> </u>	_	_	_	_	<u> </u>			-
	F		-	L			H			Т			N			Y		5	3
g1748	$\underline{\underline{T}}$	C'	<u> </u>	Γ.	A	<u>C</u>	A	T	A	C	C	<u>A</u>	A	C	T.	<u>A</u>	$\underline{\mathbb{C}}$	T]
g1793		C																	. 1
g1838	t	g	a '	t	C	a	a	a	t	a	t	g	t	t	С	C	t	g t	=
											,	W			Y			G	
g1883	C	C	+	C	C	a	C	а	a	G			G			C		-	r 1
91000	_	Ŭ	_		Ŭ	_		_)	=		_	<u>~</u>	_		_	_		=
		. (Т			V			G			P			Н			S	
g1928	<u>C</u>	A	<u>C</u>	T	G	T	G	G	G	C	C	C	T	C	A	C	T	C	A
			_						_						_				
1073	~		F			T			P			Y		~	E	~	~	I	<u>.</u>
g1973		T	<u>T</u>	<u></u>	A	<u></u>	1.	<u> </u>	C	<u>C</u>	1	A	<u>. T</u>	ی	A	G	A	.1.	
			s			A			R	• ,		S	:		D			v	
g2018	C	T		A				A									G	T	C
_																			
g2063	t	g	a	g	C	C	C	C	C	a	g	t	g	t	C	C	a	C	C
g2108	C	g	C	C	t	C	С	C	: C	C	C	C	: a	t	C	C	C	C	C
g2153		: t		_															_
g2198	t	a	a	t	g	C	a	а	ı a	g	·a	. C	:t	. t	t	С	С	C	C
									_									_	· -

Fig.2(v)

S N M W R S C CATCAGCTGCTGGTCCCGGAACATGA G E T P G Α H T GACACCGGGTGCACACGGGGAGACAT Y K \mathbf{L} R K L CCTCAAGTACAAGCTGAGgttggtac tgacttctggcaatacttaccttctc ttatgaactcaaaagggactctcgca \mathbf{T} C E E Y Η N D 0 CAGGATAACACATGTGAGGAGTACCA K \mathbf{L} A L D Η P C TGCCATATCCCCAAGGACCTGGCCCT T N R L V \mathbf{E} A W TGGGTGGAAGCCACCAATCGCCTAGG L \mathbf{D} V L D V T L CTCACACTGGATGTCCTGGACGTGGG

Fig.2(vi)

tgtgttctgccctagaccttataggg cagactttttggttcttctagaggtc ttgcaggacagtggttgttcataact caagacagtcaagatttttcccctcc

g2243	ccaccccaacacacacat
g2288	ggcctgaccaccctccctc
g2333	gtcctaggggactgagagg
g2378	ggaagccgaggccttgagc
g2423	acgaactggatgatccctg
g2468	ggtgttcccagcccaaagc
g2513	gcctcactgaagactcagg
g2558	tggtcccccaggagggttc
g2603	tccagaggttttgtgtctt
g2648	ctgtggctggcacagctgc
g 2 6 9 3	aggcatcagaggtggacat
g2738	caaatagcacctcaaggtg
g2783	cctgacgctcagaaagcct
g2828	tcactctgggacatgtagt
g2873	tagctttaagagtcagctt
g2918	taataggtgctgggtgatg
g2963	tctctgcgctaatctccac
g3008	cttgagggcaggaatgtgt
g3053	gtagcagcaactgctgctg
g3098	taatctatcaggcctgggt
g3143	gtctggaaaacgcagatag
g3188	ttacaccactgggtgttct
g3233	tcctcagaactgggagcac
g3278	taatgccagcattagggga
g3323	ttcaaggccatcctgaatt
g3368	ggtgcgcagtaaaaccttg

Fig.2(vii)

acacacactctgcagagaacacct tctacagcccaggtgttcagaaggga aggcgcccaggtctgaaggcgcccca tggggggggggggggttggaggc agcacaactgggcctaatctaattag aqcctgggccatttaacccttcaagt ggagagatcagcttgtactctcca ctgggtgcccctggctcattcccaca cctggcatctaaccctcagttgtgct cccgtggaggctcttggtaatgtaca gggatggggatacatagggatggagc gggtgatatacaataaagcttgtcac actcatgatgatcacaattgttgaca gagaccctagctcaaaacacagacag gtgacttaatactggaactcagggcc ctcqcctcactccctgtttagtgaga cccagctgggtgggctgctctgtccc gtcttccatcagagataggacccgtg gctgtttctggaatattaaatgacag gagtagctaacaggggtgggggggtg ggtcataggagccactgcagcctaga gtcactaggccattctcaccaagcag tgttgccagcatttaatgccagcatt ggcagaggcagaaggatctctctgag tacataaagagctccaggccagccag tctcaaaaacaaagcatctttagtg

Fig.2(viii)

g3413	accaggettgetecaccc
g3458	V H V S R V G GTGCACGTGAGCCGCGTTG
g 3 5 0 3	R W V S P P CGCTGGGTCTCACCAC
g3548 g3593	K Y Q I R Y AAGTACCAGATCCGCTACC gtgcccgtcccgcccgga
g3638	ctgactcctccctcaccgt
g3683	Q T S C R L A AGACCTCCTGCCGTCTCGC
g3728	F V Q V R C N TCGTCCAAGTGCGTTGTAA
g3773	K A G I W S E AGGCGGGAATCTGGAGCGA
g3818 g3863	T P R S CCCCTCGAAGTGgtgagca aatccccaatccatcctgt

Fig.2(ix)

V T T D P P D CagTGACCACGGACCCCCACCGAC

G L E D Q L S V GGGGCCTGGAGGACCAGCTGAGTGTG

A L K D F L F Q A CTCTCAAGGATTTCCTCTTCCAAGCC

R V E D S V D W K GCGTGGAGGACAGCGTGGACTGGAAG cccgccctgaccccgccccgcat

V V D D V S N gcagGTGGTGGATGACGTCAGCAACC

G L K P G T V Y

GGGCCTGAAGCCCGGCACCGTTTACT

P F G I Y G S K
CCCATTCGGGATCTATGGGTCGAAAA

W S H P T A A S GTGGAGCCACCCCACCGCTGCCTCCA

cctctccagggctggctggcccatgg tccttcccccccacctttttttgag

Fig.2(x)

	•
g3908	acagcgtcttcaggtagcg
g3953	gtcaaggatgacctcgagc
g3998	gacaatggccagtggccat
g4043	agtctatttagcctgtcat
g4088	tgacctcttgtaagagaac
g4133	tatcctaggctctctagag
g4178	ttacagccagttatcacat
g4223	acctatagaccacagtgcc
g4268	tgctggcccacccctccaa
g4313	taatatttgcaatcctcct
g4358	ccaggcattaacccaagtt
g4403	gtgggagggcctaaagatg
g4448	agcccatggatctgcactc
g4493	tgtctggcctcagtttccc
g4538	cggtccaagacacttcatt
g4583	cccatccccacccgcttc
g4628	tacactgaactgaactct
g4673	atgatgaaataatggggaa
g4718	gaagaggtcaaaccagc
g4763	gggcctctccaggttctgg
g4808	aggggctggagcctgggag
g4853	ctgcgattcttgcacggga
g4898	gagactgaagaagccgggg
g4943	gctgtgggggccgaagctt
g4988	agttttatttatggcgtga
g5033	ctgggggatggctgcggct

Fig.2(xi)

catgctggccttaaattcagtatgta tcctggtctttttgtctccacttaga caccacctttgggagactagccatgg ttggtgacagatggagtacaacagtg tgaagacaggctgtttttaaccccaa gttaactttatataaaatagagacta ggtcccacagaaccttttgtcacaca tgtgcctaccacataagggtctctac cccttaaaaggtaacctaggcagcct acctcagcctcttgaatgctcagaaa tctcttctctgggtccctttcttaag acttcctttgtcctgaagactctccg tctaatatgaaatatattgcataaaa cacctgtcaggtttaggcagcacagt atttgcaggcagtataagaagaagct ctccggtccctaagacagaatacttc cgcagacgcatatgctcactttaatg actgaggctccgagagattcctggag tccaggaagctctccagcccccatcc gcttggcgggagtgaacacagctggg ctttggcccttgctcgtgcccagcac gccagcaggcggctgcgtccgcccga gtagggttggagggaggtaagcaggg gtgccagggcctgtcagcgagtcccc ggccgatgtccttatccgctggcctg ggggattggacccaagggctggcttc

Fig.2(xii)

g5078 g5123 tgaggcttatcttggga g5168 ctatttctgtcattcac g5213 aatataactacgtttta g5258 ttcgtgagcgtgcgtgc g5303 tttgttgagtaggctcc g5348 caagagcaattactgag g5438 g5438 gctttaatttcgtagc g5528 gcacacgtttgtggg g5528 gcacacgtttgtggg g5528 gcacacgtttgtggg g5573 g5618 cattgactggtcttcc g5663 cattgactggtctttcc g5708 ccattcctctgggtgac g5778 gcgccttgctttgccctc g5708 ccattcctctgggtgac g5778 gcgcgcctcctgctg g5788 gcgcgcgcctcctgctg g5788 gGGGGGGGGGCCCGGGG g5888	ccl
g5168 g5213 aatataactacgtttta g5258 ttcgtgagcgtgcgtgc g5303 tttgttgagtaggctcc g5348 caagagcaattactgag g5393 tcccatcctgtttggat g5438 ggctttaatttcgtagc g5483 gctaccacgtttgtggg g5528 gacacagtcccaagatc g5573 gcccttgctttgtccgt g5618 cattgactggtcttcc g5663 ctgatttgactccctcc g5708 ccattcctctgggtgac g5753 gcgcgcgcctcctgctg g5798 gcgcgcgcctcctgctg E R P G g5843 G G E P S S GGCGGCGAGCCCAGCTC F L G W L	- 1
aatataactacgtttta g5258 ttcgtgagcgtgcgtgc g5303 tttgttgagtaggctcc g5348 caagagcaattactgag g5393 tcccatcctgtttggat g5438 ggctttaatttcgtagc g5483 gctaccacgtttgtggg g5528 gacacagtcccaagatc g5573 gccccttgctttgtccgt g5618 cattgactggtctttcc g5708 ccattcctctgggtgac g5753 acttccccagccgaag g5798 gcgcgcctcctgctg E R P G g5843 tctttagAGCGCCCGGG G G E P S S GGCGGCGAGCCCAGCTC F L G W L	a c
ttcgtgagcgtgcgtgcgtgcgtgcg5303 tttgttgagtaggctccgg5348 g5348 g5393 tcccatcctgtttggat g5438 ggctttaatttcgtagc g5483 gctaccacgtttgtggg g5528 gacacagtcccaagatc g5573 gcccttgctttgtccgt g5618 cattgactggtctttcc g5708 ccattcctctgggtgac g5753 actttccccagccgaag g5798 gcgcgcctcctgctg E R P G g5843 GG E P S S GGCGGCGAGCCCAGCTC F L G W L	tt
g5303 tttgttgagtaggctcc g5348 caagagcaattactgag g5393 tcccatcctgtttggat g5438 ggctttaatttcgtagc g5483 gctaccacgtttgtggg g5528 gacacagtcccaagatc g5573 gcccttgctttgtccgt g5618 cattgactggtctttcc g5663 ctgatttgactccctcc g5708 ccattcctctgggtgac g5753 actttcccagccgaag g5798 gcgcgcgcctcctgctg E R P G g5843 tctttagAGCGCCCGGG GGCGCGAGCCCCAGCTC F L G W L	aa
g5348 caagagcaattactgag g5393 tcccatcctgtttggat g5438 ggctttaatttcgtagc g5483 gctaccacgtttgtggg g5528 gacacagtcccaagatc g5573 gcccttgctttgtccgt g5618 cattgactggtctttcc g5663 ctgatttgactccctcc g5708 ccattcctctgggtgac g5753 actttccccagccgaag g5798 gcgcgcgcctcctgctg E R P G g5843 CGCGGGGGGGGCCCGGGGGGGGGGGGGGGGGGGGGGG	cal
g5393 tcccatcctgtttggat g5438 gctttaatttcgtage g5483 gctaccacgtttgtggg g5528 gacacagtcccaagatc g5573 gcccttgctttgtccgt g5618 cattgactggtctttcc g5663 ctgatttgactccctcc g5708 ccattcctctgggtgac g5753 actttccccagccgaag g5798 gcgcgcgcctcctgctg E R P G G g5843 tctttagAGCGCCCGGG G G E P S S GGCGGCGAGCCCAGCTC G F L G W L	tti
g5438 ggctttaatttcgtagc g5483 gctaccacgtttgtggg g5528 gacacagtcccaagatc g5573 gcccttgctttgtccgt g5618 cattgactggtctttcc g5663 ctgatttgactccctcc g5708 ccattcctctgggtgac g5753 actttccccagccgaag g5798 gcgcgcctcctgctg E R P G g5843 CGCGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	tc
g5483 gctaccacgtttgtggg g5528 gacacagtcccaagatc g5573 gcccttgctttgtccgt g5618 cattgactggtctttcc g5663 ctgatttgactccctcc g5708 ccattcctctgggtgac g5753 actttccccagccgaag g5798 gcgcgcgcctcctgctg E R P G g5843 tctttagAGCGCCCGGG G G E P S S GGCGGCGAGCCCAGCTC F L G W L	ag
g5528 gacacagtcccaagatc g5573 gcccttgctttgtccgt g5618 cattgactggtctttcc g5663 ctgatttgactccctcc g5708 ccattcctctgggtgac g5753 actttccccagccgaag g5798 gcgcgcctcctgctg E R P G g5843 tctttagAGCGCCCGGG G G E P S S GGCGGCGAGCCCAGCTC F L G W L	ta
g5573 gcccttgctttgtccgt g5618 cattgactggtctttcc g5663 ctgatttgactccctcc g5708 ccattcctctgggtgac g5753 actttccccagccgaag g5798 gcgcgcctcctgctg E R P G g5843 tctttagAGCGCCCGGG G G E P S S GGCGGCGAGCCCAGCTC F L G W L	ag
cattgactggtctttcc g5663 ctgatttgactccctcc g5708 ccattcctctgggtgac g5753 actttcccagccgaag g5798 gcgcgcctcctgctg E R P G g5843 tctttagAGCGCCCGGG G G E P S G GGCGGCGAGCCCAGCTC F L G W L	tc!
g5663 ctgatttgactccctcc g5708 ccattcctctgggtgac g5753 actttccccagccgaag g5798 gcgcgcgcctcctgctg E R P G g5843 tctttagAGCGCCCGGG G G E P S S GGCGGCGAGCCCAGCTC F L G W L	gt
g5708 ccattcctctgggtgac g5753 actttccccagccgaag g5798 gcgcgcgcctcctgctg E R P G g5843 tctttagAGCGCCCGGG G G E P S S GGCGGCGAGCCCAGCTC F L G W L	tt
g5753 actttcccagccgaag g5798 gcgcgcctcctgctg E R P G g5843 tctttagAGCGCCCGGG G G E P S S GGCGGCGAGCCCAGCTC F L G W L	tt
g5798 gcgcgcctcctgctg E R P G g5843 tctttagAGCGCCCGGG G G E P S S GGCGGCGAGCCCAGCTC F L G W L	tc
E R P G g5843 tctttagAGCGCCCGGG G G E P S S g5888 GGCGGCGAGCCCAGCTC F L G W L	ct
g5843 tctttagAGCGCCCGGG G G E P S S GGCGGCGAGCCCAGCTC F L G W L	gc
g5843 tctttagAGCGCCCGGG G G E P S S GGCGGCGAGCCCAGCTC F L G W L	
G G E P S S GSGGGGGGGCCAGCTC F L G W L	~ ~
g5888 GGCGGCGAGCCCAGCTC F L G W L	<u></u>
g5888 GGCGGCGAGCCCAGCTC F L G W L	
F L G W L	
	K
g5933 TTCCTCGGCTGGCTCAA	GA
· · · · · · · · · · · · · · · · · · ·	
F R L Y D Q q5978 TTCCGCCTGTACGACCA	!
g5978 TTCCGCCTGTACGACCA	CT

Fig.2(xiii)

actccatgtcacacccgtgcattctc ccgcccttgttctgtgctgtctgtct tcccagagcctttttttttatgctttt aattgcttttgtataatgtgtgtgcc caacacacgtgaaggttagagaac ccaccatgtgggactaggctggcga atctcgccagcccctcacccctcact tcataggtaatcgaaggtaaatcgct tcctgcctcagcctaccaagtgctgt gggctctcctcccagtgtctgggggt tgctttctaggtctttgtcttagttt ccctagagtctccggccccacttatc taccgaatactcggttttacctccca tgcttgtctccatcgccgtggcattg tgggtccacacctgacacctttccca ggtctggtatgggaggccgccgtccc cgcgccccaacactgccgctccattc

P G G V C E P R CGGGCGGCGGGTGTGCGAGCCGCGG

G P V R R E L K Q

GCCCGGTGCGGCGCGAGCTCAAGCAG

K H A Y C S N L S

AGCACGCATACTGCTCGAACCTTAGT

W R A W M Q K S H GGCGTGCTTGGATGCAGAAGTCACAC

Fig.2(xiv)

	K T R N Q V
g6023	AAGACCCGAAACCAGGTAG
	G K G A E E
g6068	GGTAAAGGAGCAGAGGAAG
5 +	
	Q H R T L L
~6112	CAACACCGCACTCTTCTTT
g6113	CARCITECGCITETETT
	P R A D G V
	P S G R R G A
g6158	CCTCGGGCAGACGGGGTGC
g6203	GTGGGGCCTACAGCAGTCT TGTTGCTCAAAGGGATCTC
g6248	GAGCCCCAGGTTTTACTGC
g6293	GAGCCCCAGGIIIIACIGC
g6338	CTTAATGTGGCCTCTTTTC
	*
g 6 3 8 3.	CTAAGGATAGGCCATCCTC
90000	_
g6428	CTGAATTGGAGCCCCTCTG
g6473	CCAGAGGCTGGGCACAATG
g6518	ACATGATGGTCACACTTGG
g6563	GGTATTGCAGGGCCTCCCA
g6608	TTGTTCAGGTcccgatggc
g6653	ggtggggga

Fig.2(xv)

L G E C V G K Α GAAAGTTGGGGGAGGCTTGCGTGGGG E E R D P G 0 AGAGAGACCCGGGTGAGCAGCCTCCA T R G K H R S Ι L D E G CCAAGCACAGGACGAGGGATCCTGC G S G V R E R R R Α GGCGAGAGGTAAGGGGGTCTGGGTGA AGATGAGGCCCTTTCCCCTCCTTCGG TTAGTGCTCATTTCACCCACTGCAAA ATCATCAAGTTGCTGAAGGGTCCAGG L \mathbf{A} P G A TGCCCTCAGGTCCTGCCGGCTAAACT CTGCTGGGTCAGACCTGGAGGCTCAC

TACCATCTGGGCAACAAAGAAACCTA
AGCTCCCACAACCACAGCTTTGGTCC
ATATACCCCAGTGTGGGTAGGGTTGG
AGAGTCTCTTTAAATAAATAAAGGAG
cagtgtgtttggggcctatgtgctgg

Fig.2(xvi)

20/43	21/43
22/43	23/43
24/43	25/43
26/43	27/43
28/43	2943
30/43	31/43
32/43	33/43
34/43	35/43
36/43	37/43
38/43	39/43
40/43	41/43
UTE CU	EET /DI

Fig.3

GCGGCCGCTG	CAGTGATTAC	TCACCGCGTG
TTTTTCCGTG	GGGGGATGTG	AAGAAGTTTA
GGAATGCAGG	GTTCGGTCCC	GTTCCCCAAA
AAGGGCTCCC	TGCACGCGCT	CCGGGACATC
TGAGAAGGGA	CCAGAGGCCG	GAGACTCCCT
ACGAAACGAG	ACTACAGCGA	TGGGAGAGGT
GACCCATGCA	CCCAGAGAAA	GGGACTGGTG
AGGGCTGAAA	GAGGATGAAC	GGGCTCAGGT
TGGGTATGGG	GGCCCCGTAA	GAGGGGCGGG
GGAGGGGATC	CTGGAAAAGC	ACCAGGGCTG
ACAGGATCCC	AGATGAGGGG	GTGGGAAGCC
CACGGGCTGG	TGGGGAAAGA	GTGGGGGGCT
GTAACTGGGC	GGAGGCCGGC	CGGGCGGGC
GTGCGGGGCC	CACGATCAAC	CCCCCCCAG
CGGGGCGAGC	GGCGCATTAG	CGCCTTGTCA
CGCTGTCCGC	GCCCAGTGAC	GCGCGTGAGG
CGCCCCGCC	CCATACCGGC	GTTGCAGTCA
GGGTCGCCCG	GGCCCCGTCG	CCCAATCCGC

Fig.3(i)
SUBSTITUTE SHEET (RULE 26)

	GCGCACCCCA	CCCGCGGGCC	GCTGAGTGGA	60
	GGGAGAACTC	TTCTGCACCG	ATGGGAACTA	120
	GGACACACCT	CTCCCCATAA	GCCCACTCAT	180
	CCCATATCCA	ATACCCGCAG	ATATGATAGT	240
	CCCTGCCTTC	TGGCTTTCCC	CCCCCCTGC	300
	GGCATGAAGG	CTTAGGGTGG	GGATCGGTAG	360
	GCAACTTTCA	AACTCTCTGG	GGAAGGAAGA	420
	ACTGCTCAAT	GTGTGTGTGG	CGGACCAAAG	480
	GAAGGTGGAT	AGGAAGGATC	CCGGTAGACT	540
	CGAGCTAGGA	ACCCATTCGG	AGTTAAGGGT	600
-	TGGGACGGGC	GGGACCAGAG	AGGGAGGTCC	660
	TCGCGCAGGA	GGATGGGACG	TTCAGGAGTG	720
	GCGCGGTGCC	CGCGGGCGGT	GGGAAGGCCG	780
	GGGCCGGGCC	GGGCCGGGGG	CGGGGCCGGG	840
	ATTTCGGCTG	CTCAGACTTG	CTCCGGCCTT	900
	ACCCGAGCCC	CAATCTGCAC	CCCGCAGACT	960
	CCGCCCGTTG	CGCGCCACCC	CCATGCCCGC	1020
	GCGGCGGCCG	CCGCGGCCGC	TGTCCTCGCT	1080
	1			

Fig.3(ii)

GTGGTCGCCT	CTGTTGCTCT	GTGTCCTCGG
GTACCGTGCG	CCCTGCTCCC	CACCTCCCCA
AGTCGCGGGG	GATGGAAGAA	GGGGCGCGAG
GGCGGCCCTC	GGGCCCCT	CACCTGTGGG
AGTACCCCGT	TATACATCAG	AGGCCTCTTA
AGGCTCAGTT	TGAAGGACAT	CGCAGTGTCC
GCTTCGGGGC	GCACGCCTGT	GTCTTGGATA
GGGCGCACGC	TTGGGTGCGT	TGGGTTGGGT
GAAGTGATGA	TCCCCGGGGG	GAGGGTGGGG
ATGCGGCCCG	GCGTCCCTCG	GGACTTGCCT
CTATAGCAGA	CTCCATGCTT	TGGTATCCTC
CGGTCTCATT	CAGGCTGCGC	TGGGTTGAGA
CGAGAGCAAG	CGTGTCCGGG	CACCGCGAGC
GGGGGTCAGC	TGCCGAGAGA	ATCCCACTGT
ATCACCCAAC	GCACACATCC	CCGCCAGGAT
CACACCCAAA	GACACACAAA	AGAGCCCCAC
CGCGCGCTGC	AGCCCAGATG	CGTATTCGCA
ACACACACAC	ACACACACAC	ACACACACAC

Fig.3(iii)

1				
	GGTGCCTCGG	GGCGGATCGG	GAGCCCGTGA	1140
	GGGAAGCCGG	GATCCGGCGC	CCCGGGGGGT	1200
	CGCCACCTGG	ACGTCCCGGG	AACAAAGGAA	1260
1	GCTCATGGCA	CCACCACCCA	GCCTCCCAAG	1320
	TCTGTATCCC	CTTTGCGAGG	CTGTCTGGCC	1380
	TGGGACCCCC	CTCCTTCAGG	GTGCTGGGAC	1440
	TCAGAGCGGA	AGGGAAGCCT	CCCTGGCCGG	1500
	GCTGGCGCAA	AGTGGGGTCC	CCTCCCCAT	1560
	CGTTATCGTG	AGCCCTCCTG	TCCGCCTGGC	1620
	CTCCGTGGGG	TCGGCGCCGC	CCCCTCCCC	1680
	GAAGTCCTCT	CCACTGGTGG	GGCTCACAAC	<u>.</u> 1740
	GCCTCTAGCG	ACTGAAATTT	CGGTGAGGAG	1800
	CCAGACTTCA	TTGTCTAAGG	GGCACCCAGT	1860
	CCCAGGAGGA	ACTCCTGGCC	TTGAGCCCCC	1920
	GCGGTCTCCA	CATCCAGACC	CTCTCTGGGA	1980
	TGGCTTATGT	CCCGTCACCC	TGCCCTCCGA	2040
	CACCATCGCG	GCGCTCGCAT	TCCATCCTCT	2100
	ACACACACAC	ACACACAGAC	ACGCACACAC	2160
		· 		

Fig.3(iv)

ACACGCACGC	ACACACACGC	ACGCCCGCAC
GCAACACCGG	GGTACGCATA	TGGTTGAGTG
ACCCCATCCG	GAGACACAGG	CCACACCGCA
TAGTAGTCTT	GTGCAGTTTG	TCCGCGGTGT
ACAGGAACCT	ACACTCCTGC	TTGCCCAAGG
GACCTTTCCG	GGGAGTTGGT	GTTGCTGCCA
GCGCTAAGCT	TTGTTTCCGG	GCGGGCTGCA
TGGCGCGTGT	GTTTTTTCTT	TTAAGGGGGA
TGCAATCTGT	TTGTACTTAC	CGTGTGTCTT
AAAGTGTATG	CAGGTACCAG	CGGGACAGGA
GAGGCCACCT	TCCCGTTGGC	CTTTCAGGGA
GTGTTCTTTT	TAATAACGGC	AGCAACTCCG
GGCCCCGGCT	TTGTGGAAAG	GAGGGGAAGA
GGCTTAGGGG	GCTGTCAGCT	GCTGCTCTGT
AGTGGCTTTG	GCCCATTGTT	TGTGGAAGCC
TACTCCAGAG	TCAGGCTTCT	CAGTCCGAGC
GAATCAGGGA	AGGGGGTGCC	AGGTGGACTA
AAGGAGAAAG	CTTGGGCTTG	CCCCCTCCC
		

Fig.3(v)

_				
	TCGTGGTCCC	ACATTTATTT	CACAGGGGAG	2220
	CACTGGAGAT	CTTTCCCCAC	CACTCTCAGG	2280
	GGGGCACCAC	GCTGCGCTGC	TGCTCTGGGC	2340
	CTGTGGACGC	CCTCCCGCTC	TTGTCAGGGG	2400
	CGGCTGGGCA	GGTGATGTGG	TGACACCCGG	2460
	AGCCTGGGTA	GTTTTTGAAT	GCCACCAATA	2520
	GAGCAACAGG	CGAAGGTGGC	GGAGTGGGGG	2580
	GAGAAATTAA	ATAAGAGGTT	CTCACACCTC	2640
	AACACCTGAC	CAGCCAGCCG	GTGGGTCGTA	2700
	GATGGGGGCC	CCTGGGGTAT	GGCTGGGATG	2760
	ATCTCACACT	TTTCCCTTTT	AAAACACATG	2820
	CATTGGGAAA	GGGGGAAATA	AGCTTGTATA	2880
	GGGAAGAAAA	AAGGAGGGGT	GTCTCCTCCA	2940
	CTAGCTTGGC	ATGTGTGTGC	CCCAGTCCCC	3000
	AAGAGGGAGA	CTGGAGTCCT	CTATCTCTGG	3060
	CCAGAGAACG	TCTTCCCTGT	TTTATGGAGG	3120
	CGTTCTGCTG	AGGACTGTAC	CAGTCGCTCG	3180
	CCCTCAAGCC	ACGAAGGGCA	GCTGCTAGGC	3240
				_

Fig.3(vi)
SUBSTITUTE SHEET (RULE 26)

TAGTGTGGTA	AAAGGGCATT	ACTCCCCAGC
CAGACAAATG	CTGGGGAGGG	ACAGAGGGGT
GGTCCCGGGT	CGGGCAGTGC	CTCCCACCCT
GGGTGGGCCG	GGGTAGAGAC	GCTGGCACGT
GCGGGCGGCT	GGCTGCCTGG	GACCTCCGGG
GCCTGCTCCT	CCTGCTCCTT	CGCACGGACG
CCCAAATGCA	ACTGCGATTG	CAGGCTTCGC
CCTGGGAGAA	GTCATTCAGG	GCCCAGACTA
GGGCATGAAG	GACCGTCCAG	GGCTGCAGTT
GCAGCCTCTG	TTCTCCGAGC	CTCTTTGGAA
AATACTCTTT	TCCTCTCATC	CCATCCCGGG
TGCAGTCTTC	CCTAACCTTT	TCTTTGCTTC
CCTCTCCCCT	TGCCCAACTG	GGGCTCCAGC
CAGGGCCTCT	CTGACACACA	GGGTTGTAGC
CTCTTTTGCT	TCTGAGACTT	AATTTTTTC
TCTCTGTACA	GCCCTGGCTG	CCCTGGCACT
ACAAACCTAC	CTGCCTCTGC	CTTTCCAGTG
AGTAGTTAAG	TGTTTTGCTG	TGTCTTTATT

Fig.3(vii)

- 1				
	CAGGACCCCC	CAGAGAGTCC	CCTTCCTGGC	3300
	GTGATCATTG	CCCAGGAGTG	CAGACAGTGG	3360
	GCTGAGGGGG	GCGCCCAGGC	AGGAAGCGGT	3420
	CCCAGTTCAT	GCCGAAGGAA	TTCTGAATTA	3480
	GCGGCCCCT	GGCCCCCGCC	GCTCCGTCTG	3540
	CTGAGACCTC	CGCTGAGCCC	TGGGACAAGC	3600
	AAGACCCGCC	TCCTCCCAAG	GCCAAATTTG	3660
	GAACCATGTT	GGTGCCACCT	CATCCATCTG	3720
	TAGCTTCTTA	ATAGGAACCT	GGGGGTGGGT	3780
	ATCGGTTTTG	TTTTTGTTTT	TGTTTTTTCC	3840
	ACTGTTTTCC	TCCCTAAGGG	TTGAGAGCCC	3900
	TACCCCAGGG	CCTTTGCACA	TGGAGTCCCA	3960
	CTTACTGCAT	TTGGCTCTTG	GTAACTGTCC	4020
	CCCAGCTCCC	TCTCTTCTCC	TCCCCCCTTT	4080
	TTTTTCTTTT	TGGCTTTTTG	AGACAGGGTT	4140
	CATTCTGTAG	ACCAGGCTAG	CCTCAAACTC	4200
	CTGGCACTAA	AGATGTGGGC	CACCACAACT	4260
	CCTATAGTGA	CCTCAGTTCC	TGGCATATTG	4320
			·	

Fig. 3(VIII)
SUBSTITUTE SHEET (RULE 26)

TAGGCGATGG	ATGGATGAAT	GGATGGATGG
CTTGAATCGT	CCTGAGTGAA	AAAAGAGACC
GGCAGCCTGG	CCTGCTGGTC	TCATGGGAGC
CACCCTGCCA	TCCTGTGTGG	CTGACAAGAA
AGGGAAGCTT	GGAATATGTT	CCCCTCCTCA
CCAGCCTATG	AGTAGGGCAG	CTGTGGGCTG
GTCCCTCAGG	GTGGGTCACA	GGATTGAGGT
AGGAAATGAT	TGTGGAGAGT	CAGAACTCCT
GCTTCTGTGG	CTGTCCCTTC	TCTTGTGGTC
TGTGAGGAGG	GCACGGGGAA	AATGAAGGCT
CCAACAGGGC	TCACCTCTCC	TCTGGACAGG
TTTGATTCCC	TTCCTTTGGT	CTCCTGGGAT
TTTTAGATAT	GTCCATTCTC	CAGAAACACA
ACCACCAGGA	CAGACAAAGA	ATTGGAGAGG
TGGCTTATGT	GTAATCCCAG	AACTCTGGAC
CAGTGTGTTC	TAGGTAATGA	GACCCTGTCA
ATGTTTATAG	GCTGTGAGAC	AGCTTGGTGG
CCTCAGCCCC	ATCCCTAGGA	ATCCATGGTA
	•	

Fig.3(ix)

SUBSTITUTE SHEET (RULE 26)

۲				
	ATGGATGGAT	GGATGGTTGG	ATGGAGCAAG	4380
	TCAGAGAACT	GAATGGAGTT	AGGTTCCCAG	4440
	TCCCTGTGAA	ACTTCCCCCA	CACCTCCCAC	4500
	AGGCCAATGG	CCAGATGGGG	ACACAGACTC	4560
	TATCCTAGGC	CTTGTTGTCC	CCCTGAGGGC	4620
	CCCTAAGGTT	GGGTAGGCAA	GAAGGGGGTG	4680
	CATTTCCAAA	GTGGCCATCA	CAGTGGCCCT	4740
	GTTGGGAGTT	GTAGAGGGCC	TTGCATGTGG	4800
	CTTTGCACAG	TCCCCTCGTG	TGTGCTGGGA	4860
	CAGCCCCTCA	GCTTGCCCTT	CACGGTTCAC	4920
	CTCTCACTGT	ATGCACAGAT	TGGCCTCACA	4980
	GACAAACATT	TACCAGGGTA	GGATTTTACA	5040
	CTTGTGAGGT	TAGGGTATCA	GTGAAAGGAC	5100
	AAGGAAATTG	GTAAGCCAGG	CCATGCTTGA	5160
	GCTGAGGCAG	GAGGATTCCA	AGTTTCAAGA	5220
	AGAAAAGAAA	AGAAATAAAG	AGACAAGAAA	5280
	GTAAGGGGCA	CTTGCCTCCA	ATCAAGATGA	5340
	GAAGGAGAAA	GCAAACTCCA	GCTGCTGACC	5400

Fig.3(x)

TCCATACATG	TGCTCCAATG	TGCACACACA
TTTGCTTAGA	TTTGAGTAGG	CATTTATGAC
GAAAATATAC	CTGTTTGTAT	TTGGTTTGGT
GCTTCTCTGT	GTAGTCCTGG	CTGTCCTTGG
ACTCAGAAAT	CCGCCTGCTT	GTGCTTCCCA
TCAGCAAAAT	TGCATACTTT	AACCCCAGTA
ATTCCAGGCT	AGCCAAGGAT	ACAGAGTGAG
CCAAAATGTA	TTTTGTGCTT	GTGTATGTAC
ACAACTTGTA	GAAGTTCTCT	CCGTTCACAG
AGGCTTAGCC	ACAGTCTTCT	TTATGTACTG
GAATTAATTT	TTGAGATAAG	GTCTCTTGTA
AAGGTCATCT	TGAGCTGCTG	GTACTCTTGC
GCAGCACTTC	TCTGGGGAAG	GGGCTGGCCT
GAGTGCTTGG	GTCTCGTTGT	TTCTTTTCTT
GACTTCCTGA	CTCTTGAAAC	ATCCAGGCAG
GCCTAACAAA	GTGTCGTCTT	TGACCCCAGA
CCTTCTCATC	GGCTCCTCCC	TGCAAGCTAC
CACCGCTGAG	GGGCTCTACT	GGACCTTCAA

Fig.3(xi)

SUBSTITUTE SHEET (RULE 26)

٢				
	CAGGGAGACA	TAATCAATTA	ATAGGATGTA	5460
	TGATGTTTTA	AAATTTTTAT	TTGATTTTAT	5520
	TTGGTTTGAG	TTTTGTTTAT	TTGAGACAGG	5580
	AACTCACTCT	GTAGACCAGG	CTGGCCTTGA	5640
	AGTGCTTAGA	TTAAAGGTGT	GCACTGCCAT	5700
	TTTGGGAGGC	AGAGGCAGAC	TAATGTGTGA	5760
	ACCCTATTCT	TACCCTCCCC	CCCCAAAACC	5820
	ATGTGTGTTG	CAGCACGTAA	ATGTCCAAGG	5880
	TCTAAGTCCT	GAATTCAAAC	TAAGGTCCTC	5940
	AGCCATTTCA	CTGGCCCTGG	ATTGACTGAT	6000
	GCTCTAGCTA	GGCTCAAACT	ATGAACTCCC	6060
	TTCCACCCCA	AGTGGTGGAA	TGATACTCAG	6120
	TGGCCTTGAT	TTTGTTGCCT	CAGCTTCAAT	6180
	TATCTGTGAA	ATGGGTGAAC	ACCTGTTCAA	6240
	GGTGAGGGAC	TTGAAGTGGG	CTCATCCCAT	6300
	CACAGCTGTA	ATCAGCCCCC	AGGACCCCAC	6360
	CTGCTCTATA	CATGGAGACA	CACCTGGGGC	6420
	TGGTCGCCGC	CTGCCCTCTG	AGCTGTCCCG	6480

Fig.3(xii)

CCTCCTTAAC	ACCTCCACCC	TGGCCCTGGC
GTCAGGAGAC	AATCTGGTGT	GTCACGCCCG
CTATGTTGGC	TGTAAGTGGG	GCCCCAGACA
GATTTAGAGC	CTGGGTCTTC	TGTCCTGGGG
CATGGTCATA	CCCAGCACAG	GCATTGCAAC
TGTGTACCCC	ACAGCTTTAG	AAAAGCTGTC
CCTTTAACAT	CAGCTGCTGG	TCCCGGAACA
GTGCACACGG	GGAGACATTC	TTACATACCA
TACCCAGCCA	AGCCTTGCTG	TGTGACTTCT
TTCCTGTTTA	TGAACTCAAA	AGGGACTCTC
CACATGTGAG	GAGTACCACA	CTGTGGGCCC
CCTCTTCACT	CCCTATGAGA	TCTGGGTGGA
TGATGTCCTC	ACACTGGATG	TCCTGGACGT
GCCCTAGACC	TTATAGGGCG	CCTCCCCCC
GTCTTAGCCA	CAGCCACGGT	GGTTGCAGGA
TTTCCCCCAA	GACAGTCAAG	ATTTTCCCCT
CTCTGCAGAG	AACACCTGGC	CTGACCACCC
GAGTCCTAGG	GGACTGAGAG	GAGGCGCCCA
•		

Fig.3(xiii)

ŧ				
	CCTGGCTAAC	CTTAATGGGT	CCAGGCAGCA	6540
	AGACGGCAGC	ATTCTGGCTG	GCTCCTGCCT	6600
	CTCAGAGATA	GATGGGGGTT	GGCAATGACA	6660
	CAGAGCCATG	GGCTCTCACT	TGCATGCAGG	6720
	TCTAGGGACA	GCTGTGGCTG	CACTGTCCCC	6780
	ATGTTTTCCT	TGTAGTGCCC	CCTGAGAAGC	6840
	TGAAGGATCT	CACGTGCCGC	TGGACACCGG	6900
	ACTACTCCCT	CAAGTACAAG	CTGAGGTTGG	6960
	GGCAATACTT	ACCTTCTCTG	ATCAAATATG	7020
	GCACCTCCAC	AGGTGGTACG	GTCAGGATAA	7080
	TCACTCATGC	CATATCCCCA	AGGACCTGGC	7140
	AGCCACCAAT	CGCCTAGGCT	CAGCAAGATC	7200
	GGGTGAGCCC	CCAGTGTCCA	CCTGTGTTCT	7260
	ATCCCCCCAG	ACTTTTTGGT	TCTTCTAGAG	7320
	CAGTGGTTGT	TCATAACTTA	ATGCAAAGAC	7380
	CCCCACCCC	AACACACACA	TACACACACA	7440
	TCCCTCTCTA	CAGCCCAGGT	GTTCAGAAGG	7500
	GGTCTGAAGG	CGCCCCAGGA	AGCCGAGGCC	7560

Fig. 3(XIV)
SUBSTITUTE SHEET (RULE 26)

TTGAGCTGGG	GGGGGGGCG	AGGGTTGGAG
GGGCCTAATC	TAATTAGGGT	GTTCCCAGCC
GTGCCTCACT	GAAGACTCAG	GGGAGAGATC
GGGTTCCTGG	GTGCCCCTGG	CTCATTCCCA
TAACCCTCAG	TTGTGCTCTG	TGGCTGGCAC
CAAGGCATCA	GAGGTGGACA	TGGGATGGGG
AAGGTGGGGT	GATATACAAT	AAAGCTTGTC
GATCACAATT	GTTGACATCA	CTCTGGGACA
AGTAGCTTTA	AGAGTCAGCT	TGTGACTTAA
GTGATGCTCG	CCTCACTCCC	TGTTTAGTGA
GTGGGCTGCT	CTGTCCCCTT	GAGGGCAGGA
TGGTAGCAGC	AACTGCTGCT	GGCTGTTTCT
CTGGGTGAGT	AGCTAACAGG	GGTGGGGGCG
AGCCACTGCA	GCCTAGATTA	CACCACTGGG
AGTCCTCAGA	ACTGGGAGCA	CTGTTGCCAG
AGGGGAGGCA	GAGGCAGAAG	GATCTCTCTG
AGCTCCAGGC	CAGCCAGGGT	GCGCAGTAAA
TGACCAGGCT	TGCTCCACCC	CCAGTGACCA

Fig.3(xv)

	GCACGAACTG	GATGATCCCT	GAGCACAACT	7620
	CAAAGCAGCC	TGGGCCATTT	AACCCTTCAA	7680
	AGCTTGTACT	CTCTCCATGG	TCCCCCAGGA	7740
	CATCCAGAGG	TTTTGTGTCT	TCCTGGCATC	7800
	AGCTGCCCCG	TGGAGGCTCT	TGGTAATGTA	7860
	ATACATAGGG	ATGGAGCCAA	ATAGCACCTC	7920
	ACCCTGACGC	TCAGAAAGCC	TACTCATGAT	7980
: 	TGTAGTGAGA	CCCTAGCTCA	AAACACAGAC	8040
	TACTGGAACT	CAGGGCCTAA	TAGGTGCTGG	8100
	GATCTCTGCG	CTAATCTCCA	CCCCAGCTGG	8160
	ATGTGTGTCT	TCCATCAGAG	ATAGGACCCG	8220
	GGAATATTAA	ATGACAGTAA	TCTATCAGGC	8280
	TGGTCTGGAA	AACGCAGATA	GGGTCATAGG	8340
	TGTTCTGTCA	CTAGGCCATT	CTCACCAAGC	8400
	CATTTAATGC	CAGCATTTAA	TGCCAGCATT	8460
	AGTTCAAGGC	CATCCTGAAT	TTACATAAAG	8520
	ACCTTGTCTC	AAAAAACAAA	GCATCTTTAG	8580
	CGGACCCCC	ACCCGACGTG	CACGTGAGCC	8640

Fig.3(xvi)

GCGTTGGGGG	CCTGGAGGAC	CAGCTGAGTG
ATTTCCTCTT	CCAAGCCAAG	TACCAGATCC
AGGTGCCCGT	CCCGCCCGG	ACCCGCCCCT
CACCGTGCAG	GTGGTGGATG	ACGTCAGCAA
GCCCGGCACC	GTTTACTTCG	TCCAAGTGCG
AAAGGCGGGA	ATCTGGAGCG	AGTGGAGCCA
TGAGCACCTC	TCCAGGGCTG	GCTGGCCCAT
CCCACCCTTT	TTTTGAGACA	GCGTCTTCAG
TAGTCAAGGA	TGACCTCGAG	CTCCTGGTCT
GGCCATCACC	ACCTTTGGGA	GACTAGCCAT
GATGGAGTAC	AACAGTGTGA	CCTCTTGTAA
AATATCCTAG	GCTCTCTAGA	GGTTAACTTT
TCACATGGTC	CCACAGAACC	TTTTGTCACA
CACATAAGGG	TCTCTACTGC	TGGCCCACCC
CTTAATATTT	GCAATCCTCC	TACCTCAGCC
CAAGTTTCTC	TTCTCTGGGT	CCCTTTCTTA
GTCCTGAAGA	CTCTCCGAGC	CCATGGATCT
AATGTCTGGC	CTCAGTTTCC	CCACCTGTCA

Fig.3(xvii)

	TGCGCTGGGT	CTCACCACCA	GCTCTCAAGG	8700
	GCTACCGCGT	GGAGGACAGC	GTGGACTGGA	8760
	GACCCCGCCC	CCCGCATCTG	ACTCCTCCCT	8820
	CCAGACCTCC	TGCCGTCTCG	CGGGCCTGAA	8880
	TTGTAACCCA	TTCGGGATCT	ATGGGTCGAA	8940
	CCCCACCGCT	GCCTCCACCC	CTCGAAGTGG	. 9000
	GGAATCCCCA	ATCCATCCTG	TTCCTTCCCC	9060
	GTAGCGCATG	CTGGCCTTAA	ATTCAGTATG	9120
	TTTTGTCTCC	ACTTAGAGAC	AATGGCCAGT	9180
-	GGAGTCTATT	TAGCCTGTCA	TTTGGTGACA	9240
-	GAGAACTGAA	GACAGGCTGT	TTTTAACCCC	9300
-	АТАТААААТА	GAGACTATTA	CAGCCAGTTA	9360
	CAACCTATAG	ACCACAGTGC	CTGTGCCTAC	9420
	CTCCAACCCT	TAAAAGGTAA	CCTAGGCAGC	9480
	TCTTGAATGC	TCAGAAACCA	GGCATTAACC	9540
	AGGTGGGAGG	GCCTAAAGAT	GACTTCCTTT	9600
	GCACTCTCTA	ATATGAAATA	TATTGCATAA	9660
	GGTTTAGGCA	GCACAGTCGG	TCCAAGACAC	9720

Fig.3(xviii)

SUBSTITUTE SHEET (RULE 26)

TTCATTATTT	GCAGGCAGTA	TAAGAAGAAG
CTAAGACAGA	ATACTTCTAC	ACTGAAACTG
TGATGATGAA	ATAATGGGGA	AACTGAGGCT
ACCAGCTCCA	GGAAGCTCTC	CAGCCCCCAT
GAGTGAACAC	AGCTGGGAGG	GGCTGGAGCC
ACCTGCGATT	CTTGCACGGG	AGCCAGCAGG
CCGGGGGTAG	GGTTGGAGGG	AGGTAAGCAG
CCTGTCAGCG	AGTCCCCAGT	TTTATTTATG
TGCTGGGGGA	TGGCTGCGGC	TGGGGATTGG
CAGCCCACTC	CATGTCACAC	CCGTGCATTC
TTCTGTGCTG	TCTGTCTCTA	TTTCTGTCAT
TTAATATAAC	TACGTTTTAA	AAATTGCTTT
GTGCCACAAC	ACACACGTGA	AGGTTAGAGA
GGGACTAGGG	CTGGCGACAA	GAGCAATTAC
CTTCCCATCC	TGTTTGGATA	GTCATAGGTA
TAGCTATCCT	GCCTCAGCCT	ACCAAGTGCT
TCCCAGTGTC	TGGGGGTACA	CAGTCCCAAG
TGCCCCTTGC	TTTGTCCGTG	TCCCTAGAGT

Fig. 3(XIX)
SUBSTITUTE SHEET (RULE 26)

	CTCCCATCCC	CCACCCGCTT	CCTCCGGTCC	9780
	AACTCTCGCA	GACGCATATG	CTCACTTTAA	9840
-	CCGAGAGATT	CCTGGAGGAA	GAGGGTCAAA	9900
	CCGGGCCTCT	CCAGGTTCTG	GGCTTGGCGG	9960
	TGGGAGCTTT	GGCCCTTGCT	CGTGCCCAGC	10020
	CGGCTGCGTC	CGCCCGAGAG	ACTGAAGAAG	10080
	GGGCTGTGGG	GGCCGAAGCT	TGTGCCAGGG	10140
-	GCGTGAGGCC	GATGTCCTTA	TCCGCTGGCC	10200
	ACCCAAGGGC	TGGCTTCCCA	CTCAGTCCTC	10260
	TCTGAGGCTT	ATCTTGGGAA	CCCGCCCTTG	10320
	TCACTTTCCC	AGAGCCTTTT	TTTTATGCTT	10380
-	TGTATAATGT	GTGTGCCTTC	GTGAGCGTGC	10440
	ACTTTGTTGA	GTAGGCTCCT	TCCACCATGT	10500
	TGAGTCATCT	CGCCAGCCCC	TCACCCCTCA	10560
	ATCGAAGGTA	AATCGCTGGC	TTTAATTTCG	10620
	GTGCTACCAC	GTTTGTGGGA	GGGGCTCTCC	10680
	ATCTCTGCTT	TCTAGGTCTT	TGTCTTAGTT	10740
	CTCCGGCCCC	ACTTAGTCTC	CATTGATTTC	10800

Fig.3(XX)
SUBSTITUTE SHEET (RULE 26)

CTTTCTGACC GAATACTCGG TTTTACCTCC CCATCGCCGT GGCATTGCCA TTCCTCTGGG CAACTTTCCC CAGCCGAAGC TGGTCTGGTA GCTGGCCGCG CCCCAACACT GCCGCTCCAT GGGTGTGCGA GCCGCGGGC GGCGAGCCCA AGTTCCTCGG CTGGCTCAAG AAGCACGCAT ACCAGTGGCG TGCTTGGATG CAGAAGTCAC GGGAGGCTTG CGTGGGGGGT AAAGGAGCAG CACAACACCG CACTCTTCTT TCCAAGCACA GGGTGCGGCG AGAGGTAAGG GGGTCTGGGT CCTTTCCCCT CCTTCGGTGT TGCTCAAAGG AAGAGCCCCA GGTTTTACTG CATCATCAAG CTTTTCTGCC CTCAGGTCCT GCCGGCTAAA CAGACCTGGA GGCTCACCTG AATTGGAGCC TACCAGAGGC TGGGCACAAT GAGCTCCCAC ACTTGGATAT ACCCCAGTGT GGGTAGGGTT TTAAATAAAT AAAGGAGTTG TTCAGGTCCC GGGGTGGGGG GA

Fig.3(xxi)

	 			
	CACTGATTTG	ACTCCCTCCT	TTGCTTGTCT	10860
	TGACTCTGGG	TCCACACCTG	ACACCTTTCC	10920
	TGGGAGGCCG	CCGTCCCGCG	CGCGCCTCCT	10980
 - 	TCTCTTTAGA	GCGCCCGGGC	CCGGGCGGCG	11040
	GCTCGGGCCC	GGTGCGGCGC	GAGCTCAAGC	11100
	ACTGCTCGAA	CCTTAGTTTC	CGCCTGTACG	11160
	ACAAGACCCG	AAACCAGGTA	GGAAAGTTGG	11220
: -	AGGAAGAGAG	AGACCCGGGT	GAGCAGCCTC	11280
	GGACGAGGGG	ATCCTGCCCT	CGGGCAGACG	11340
	GAGTGGGGCC	TACAGCAGTC	TAGATGAGGC	11400
	GATCTCTTAG	TGCTCATTTC	ACCCACTGCA	11460
-	TTGCTGAAGG	GTCCAGGCTT	AATGTGGCCT	11520
	CTCTAAGGAT	AGGCCATCCT	CCTGCTGGGT	11580
	CCTCTGTACC	ATCTGGGCAA	CAAAGAAACC	11640
-	AACCACAGCT	TTGGTCCACA	TGATGGTCAC	11700
	GGGGTATTGC	AGGGCCTCCC	AAGAGTCTCT	11760
	GATGGCCAGT	GTGTTTGGGG	CCTATGTGCT	11820
				11832

Fig.3(xxii)

42/43

Internatic Application No PCT/GB 97/02479

a. classifi IPC 6	CATION OF SUBJECT MATTER C12N15/19 C07K14/715 A61K38,	/17 C07K16/18 A01K	67/027
B. FIELDS S	International Patent Classification (IPC) or to both national classification		
Minimum doc IPC 6	tumentation searched (classification system followed by classifica C12N C07K A61K	uion symbols)	
Documentati	on searched other than minimum documentation to the extent that	such documents are included in the fields sea	arched
Electronic da	ata base consulted during the international search (name of data t	pase and, where practical, search terms used	·
C. DOCUME	ENTS CONSIDERED TO BE RELEVANT		
Category °	Citation of document, with indication, where appropriate, of the	relevant passages	Relevant to claim No.
X	DATABASE EMEST12 embl SEQ ID MM77631 Acc.No:W66776, 1 "Mus musculus cDNA mel7b11.rl PIR:B38252 granulocyte colony-s factor receptor precursor" XP002055540 cited in the application & MARRA ET AL.: "The WahU-HHM project" .,	stimulating	1-10, 14-19
X Fu	rther documents are listed in the continuation of box C.	Patent family members are liste	od in annex.
which is cited to establish the publication date of another citation or other special reason (as specified)			ith the application of the theory underlying the sectaimed invention not be considered to document is taken alone to claimed invention inventive step when the more other such docurvious to a person skilled ent family
1	ne actual completion of the international search	Date of mailing of the international	search report
	12 February 1998	0 6. 03. 98	
Name an	nd mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Authorized officer Cupido, M	

1

Internati Application No
PCT/GB 97/02479

C.(Continu	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	
ategory °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
(ROBB ET AL.: "Structural analysis of the gene encoding the murine Interleukin-11 receptor alpha-chain and a related locus" JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 271, no. 23, 7 June 1996, MD US, pages 13754-13761, XP002055539 see figure 3	1-3,20, 21
X	WO 96 08510 A (PROGENITOR, INC.) 21 March 1996 see figure 2c nucleotides 1053-1068 on sheet 4/11	1-3,20, 21
x	WO 96 07737 A (AMRAD OPERATIONS PTY.LTD.) 14 March 1996 see figure 8 nucleotides 1040-1055 on sheet 14/21 see claims 1,13	1,3,13, 20
Ρ,Χ	WO 97 15663 A (AMRAD OPERATIONS PTY. LTD.) 1 May 1997 see figure 7 (vii) on sheet 20/24	1-3,20,
P,X	WO 97 12037 A (AMRAD OPERATIONS PTY. LTD.) 3 April 1997 see claims 1-3	1-3,20, 21
P,X	WO 97 25425 A (GENENTECH, INC.) 17 July 1997 see figure 2b on sheet 12/85	1-3,20,

Inter anal application No. PCT/GB 97/02479

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. X Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely: see FURTHER INFORMATION sheet PCT/ISA/210
2. Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows:
As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet (1)) (July 1992)

International Application No. PCT/GB 97 /02479

FURTHER INFORMATION CONTINUED FROM	T/ISA/ 210	
Remark: Although claims 28 and of the human/animal body, the the alleged effects of the comp	9 are directed to a meth arch has been carried ou ition.	od of treatment t and based on
		·
-		

Insermation on patent family members

Internat' \ Application No
PCT/GB 97/02479

				,				
	Patent document cited in search report		Publication date		Patent family member(s)		Publication date	
	WO 9608510	A	21-03-96	US AU CA EP	5643748 3419495 2176463 0730606	A A	01-07-97 29-03-96 21-03-96 11-09-96	
	WO 9607737	Α	14-03-96	AU CA EP	3465295 2197873 0804576	Α	27-03-96 14-03-96 05-11-97	
	WO 9715663	Α	01-05-97	AU	7266896	Α	15-05-97	
	WO 9712037	Α	03-04-97	AU	6980596	A	17-04-97	
	WO 9725425	Α	17-07-97	AU	1574797	Α	01-08-97	
1								