제5강 단일변수 자료의 탐색

Section 01

자료의 종류

1. 자료의 특성에 따른 분류

범주형 자료 (categorical data) 질적 자료 (qualitative data) 연속형 자료 (numerical data) 양적 자료 (quantitative data)

Annual Control

그림 5-1 자료의 특성에 따른 분류

1.1 범주형 자료

 범주형 자료(categorical data)는 질적 자료(qualitative data)라고도 부르며, 성 별과 같이 범주 또는 그룹으로 구분할 수 있는 값으로 구성된 자료

 범주형 자료의 값들은 기본적으로 숫자로 표현할 수 없고, 대소(大小) 비교나 산술 연진적 적용되지 않음

범주형 지료	범주형 자료의 표현		
성별	M, F, F, M, M, M, F		
혈액형	A, B, O, AB, B, A, O		
선호하는 색	빨강, 파랑, 노랑, 빨강, 초록, 검정		
찬성 여부	YES, NO, NO, YES, NO		

표 5-1 범주형 자료의 예

아래와 같이 범주형 자료를 숫자로 표기했다고 해서 계산 가능한 연속형 자료가 되는 것은
 아님

- 성별:0,1
- 혈액형: 1, 2, 3, 4

1.2 연속형 자료

- 연속형 자료(numerical data)는 양적자료(quantitative data)라고도 부르며, 크기가 있는 숫자들로 구성된 자료
- 연속형 자료의 값들은 대소 비교가 가능하고, 평균, 최댓값, 최솟값과 같은 산술 연산이 가능

연속형 자료	연속형 자료의 표현		
몸무게	57.4, 64.1, 71.0, 65.1, 90.1		
7	162, 180, 174, 171, 181, 167		
일평균 온도	19,1, 20,5, 20,5, 21,1, 22,0		
자녀의수	0, 2, 1, 3, 0, 1, 2		

표 5-2 연속형 자료의 예

2. 변수의 개수에 따른 분류

일변량 자료

- 통계학에서 말하는 변수는 우리가 R에서 배운 변수와는 의미상 다소 차이가 있음
- 통계학에서의 변수는 우리가 `연구, 조사, 관찰하고 싶은 대상의 특성'을 말하며, 키, 몸무게, 혈 액형, 매출액, 습도, 미세먼지 농도 등

단일변수 자료 (univariate data) 다중변수 자료 (multivariate data) 다변량 자료

그림 5-2 변수의 개수에 따른 분류

- 단일변수 자료(univariate data): 하나의 변수로만 구성된 자료, '일변량 자료'라고도 부름
- 다중변수 자료(multivariate data): 두 개 이상의 변수로 구성된 자료, 다변량 자료라고 부름. 특별히 두 개의 변수로 구성된 자료를 이변량 자료(bivariate data)라고 함

몸무게	7	몸무게	성별 M	
62.4	168.4	62.4		
65.3	169.5	65.3	F	
59.8	172.1	59.8	F	
46.5	185.2	46.5	M	
49.8	173.7	49.8	М	
58.7	175.2	58.7	F	

(a) 단일변수 자료 (b) 다중변수 자료

그림 5-3 단일변수 자료와 다중변수 자료

- R에서는 단일변수 자료는 벡터에, 다중변수 자료는 매트릭스나 데이터 프레임에 저장하여 분석
- 매트릭스 또는 데이터 프레임 형태의 자료에서 하나의 열(column)이 하나의 변수를 나타냄
- 열(column)의 개수 = 변수의 개수

단일변수 자료

범주형 자료 연속형 자료

다중변수 자료

범주형 자료 연속형 자료

그림 5~4 변수의 개수와 자료의 특성에 따른 분류

- 변수의 개수와 자료의 특성에 따라 세분화된 분류가 가능
- 세분화된 분류에 따라 각각 서로 다른 분석 방법들이 존재

Section 02

단일변수 범주형 자료의 탐색

- 단일변수 범주형 자료(또는 일변량 질적 자료): 특성이 하나이면서 자료의 특성이 범주형
 자료
- 범주형 자료에 대해서 할 수 있는 기본적인 작업은 자료에 포함된 관측값들의 종류별로 개수를 세는 것
 - 개수를 세면 종류별 비율을 알 수 있음
 - 막대그래프나 원그래프의 작성이 가능
- 단일변수 범주형 자료의 예: 학생들이 선호하는 계절

WINTER	SUMMER	SPRING	SUMMER	SUMMER
FALL	FALL	SUMMER	SPRING	SPRING

1. 도수분포표의 작성

```
코드 5-1
```

```
favorite <-c('WINTER', 'SUMMER', 'SPRING', 'SUMMER', 'SUMMER',
        'FALL', 'FALL', 'SUMMER', 'SPRING', 'SPRING')
favorite
                                    #favorite의 내용 출력
table(favorite)
                                    #도수분포표 계산
table(favorite)/length(favorite)
> favorite <- c('WINTER', 'SUMMER', 'SPRING', 'SUMMER', 'SUMMER',
            'FALL', 'FALL', 'SUMMER', 'SPRING', 'SPRING')
> favorite
[1] "WINTER" "SUMMER" "SPRING" "SUMMER" "FALL" "FALL"
[81 "SUMMER" "SPRING" "SPRING"
> table(favorite)
                              # 도수부포표 계산
favorite
 FALL SPRING SUMMER WINTER
> table(favorite)/length(favorite) # 비율 출력
favorite
 FALL SPRING SUMMER WINTER
   0.2 0.3 0.4 0.1
```

2. 막대그래프의 작성

3. 원그래프의 작성

House and the second se

- 4. 숫자로 표현된 범주형 자료
 - 숫자 형태의 범주형 자료도 문자 형태의 범주형 자료와 마찬가지로 도수분포를 계산한 후 맥대그래프와 원그래프를 그려서 자료의 내용을 확인
 - 학생 15명이 선호하는 색깔을 조사한 자료

```
2, 3, 2, 1, 1, 2, 2, 1, 3, 2, 1, 3, 2, 1, 2
(1=초록, 2=빨강, 3=파랑)
```

코드 5-4

```
favorite.color <-c(2, 3, 2, 1, 1, 2, 2, 1, 3, 2, 1, 3, 2, 1, 2)
ds <-table(favorite.color)
ds
barplot(ds, main='favorite color')
colors <-c(green', 'red', 'blue')
names(ds) <-colors #자료값 1,2,3을 green, red, blue로 변경
ds
barplot(ds, main='favorite color', col=colors) #색 지정 막대그래프
pie(ds, main='favorite color', col=colors) #색 지정 원그래프
```

```
> favorite.color <- c(2, 3, 2, 1, 1, 2, 2, 1, 3, 2, 1, 3, 2, 1, 2)
> ds <- table(favorite.color)
> ds
favorite.color
123
573
> barplot(ds, main='favorite color')
           favorite color
> colors <- c('green', 'red', 'blue')
> names(ds) <- colors # 자료값 1,2,3을 green, red, blue로 변경
> ds
```


그림 5-5 [Zoom] 아이콘의 활용

Section 03

단일변수 연속형 자료의 탐색

1. 평균과 중앙값

평균

- 연속형 자료는 관측값들이 크기를 가지기 때문에 범주형 자료에 비해 다양한 분석 방법이 존재
- 평균, 중앙값: 전체 데이터를 대표할 수 있는 값

$$\bar{x} = \frac{1}{n} \cdot \sum_{i=1}^{n} x_i$$

 $\sum_{i=1}^{n} x_i$ 중앙값과 평균은 일치할 수 도 있지만 대부분 틀리다.

• 중앙값(median): 자료의 값들을 크기순으로 일렬로 줄 세웠을 때, 가장 중앙에 위치하는 값

= =	중앙값(65)				= "~	좌축 그림은 1	과축 그림은 120값 때문에 평균이 우축으로 치우쳐 있다.이런 경우는
30	62	64	65	68	69	120	
					TH 7/-	70.0)	E 8 11 19.

그림 5-6 평균과 중앙값

절사평균(trimmed mean)은 자료의 관측값들 중에서 작은 값들의 하위 n%와 큰 값들의 상위 n%를 제외하고 중간에 있는 나머지 값들만 가지고 평균을 계산

코드 5-5

weight <-c(60, 62, 64, 65, 68, 69) weight.heavy <-c(weight, 120) weight weight.heavy

mean(weight) #평균 mean(weight.heavy) #평균

median(weight) #중앙값 median(weight,heavy) #중앙값

mean(weight, trim=0.2) #절사평군(상하위 20% 제의) mean(weight.heavy,trim=0.2) #절사평군(상하위 20% 제의)

평균, 절사평균, 중앙값은 각각의 특징이 존재하므로 본인이 분석하고자 하는 자료에 어떤 방법을 적용하는 것이 좋을지는 스스로가 판단해서 분석해야 할 것이다.

> weight <- c(60, 62, 64, 65, 68, 69)

```
> weight.heavy <- c(weight, 120)
> weight
[1] 60 62 64 65 68 69
> weight.heavy
[1] 60 62 64 65 68 69 120
> mean(weight)
                               # 평균
[1] 64.66667
> mean(weight.heavy)
                               # 평균
Γ17 72.57143
> median(weight)
                               # 중앙값
[1] 64.5
> median(weight.heavy)
                               # 중앙값
Γ11 65
> mean(weight, trim=0.2)
                              # 절사평균(상하위 20% 제외)매개변수 trim은 상하위 몇 %정도 제외 후
Γ17 64.75
                                                   평균을 구할 것인지를 지정한다.
> mean(weight.heavv.trim=0.2) # 절사평균(상하위 20% 제외)
[1] 65.6
         평균은 120라는 데이터로 차이가 많이 나지만, 중앙값은 특이값 즉 120에 영향
         을 상대적으로 덜 받는 것을 알 수가 있다.
```

2. 사분위수

- 사분위수(quatile)란 주어진 자료에 있는 값들을 크기순으로 나열했을 때 이것을 4등분하는 지점에 있는 값들을 의미
 - 자료에 있는 값들을 4등분하면 등분점이 3개 생기는데, 앞에서부터 '제1사분위수(Q1)', '제2사분위수(Q2)', '제3사분위수(Q3)'라고 부르며, 제2사분위수(Q2)는 중앙값과 동일
 - 전체 자료를 4개로 나누었기 때문에 4개의 구간에는 각각 25%의 자료가 존재

그림 5-7 사분위수의 예

평균이나 중앙값이 하나의 값으로 전체의 특성을 추정해 볼 수 있는 도구인 것처럼 사분위수는 세 개의 값으로 전체의 특성을 추정하는데 사용되며 하나의 값보다는 세 개의 값으로 전체의 특성을 추정하므로 보다 많은 정보를 줄 수 있다.

• 100명의 학생을 대상으로 영어시험을 본 결과에 대해 사분위수를 구하였더니 Q1=60, Q2=80, Q3=90이라고 가정하면 \rightarrow

25명의 학생은 성적이 60점 미만이다.

25명의 학생은 성적이 60점~80점 사이이다.

25명의 학생은 성적이 **80**점~**90**점 사이이다.

25명의 학생은 성적이 90점 이상이다.

90점 이상인 학생이 25명이나 되기 때문에 이번 영어시험은 매우 쉬웠다.

전체 50%의 학생이 80점 이상의 성적을 받았다.

```
코드 5-6
mydata <-c(60, 62, 64, 65, 68, 69, 120)
quantile(mydata)
                              #25% 단위로 구간을 나누어 계산
quantile(mydata, (0:10)/10)
                              #10% 단위로 구간을 나누어 계산
summary(mydata)
                               몇 개의 구간으로 나눔지 결정하는 인자값
> mydata <- c(60, 62, 64, 65, 68, 69, 120)
> quantile(mydata)
  0% 25% 50% 75% 100% 0%는 최소값, 100%는 최대값을 나타냄.
 60.0 63.0 65.0 68.5 120.0
> quantile(mydata, (0:10)/10) # 10% 단위로 구간을 나누어 계산
  0% 10% 20% 30% 40% 50%
                           60% 70% 80% 90% 100%
 60.0 61.2 62.4 63.6 64.4 65.0 66.8 68.2 68.8 89.4 120.0
> summary(mydata)
  Min. 1st Ou. Median
                   Mean 3rd Ou.
                                  Max.
 60.00 63.00
              65.00
                    72.57 68.50 120.00
통상, 사분위수를 구할 때, 가장 일반적으로 많이 사용하는 함수가
summary()이다. 최소값, 최대값, 중앙값, 평균이 함께 출력되어
편리하다.
```

3. 산포

- 산포(distribution)란 주어진 자료에 있는 값들이 퍼져 있는 정도(흩어져 있는 정도)
- 산포는 수학시간에 배운 분산(variance)과 표준편차(standard deviation)를 가지고 파악
- 분산 : 주어진 자료의 각각의 값들이 평균으로부터 떨어져 있는 정도를 계산 후 합산한 후, 값들의 개수로 나누어 계산함. $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i \overline{X})^2$
- 표준편차 : 분산의 제곱근으로 계산함.

$$s = \sqrt{s^2}$$

자료의 분산과 표준편차가 작다는 의미는 자료의 관측값들이 평균값 부근에 모여 있다는 뜻이며, 반대라면 관측값들이 평균값에서 멀리 흩어져서 분포함을 의미한다.

```
코드 5-7
```

```
mydata <-c(60, 62, 64, 65, 68, 69, 120)
var(mydata) #분산
sd(mydata) #포준핀차
range(mydata) #삶의 범위
diff(range(mydata)) #최댓값 최솟값의 차이
```

> var(mydata) [1] 447.2857 > sd(mydata)

[1] 21.14913

> range(mydata) [1] 60 120

> diff(range(mydata)) # 최댓값, 최솟값의 차이

Γ17 60

diff()함수는 두 값의 차이를 알려주는 용도이다. 여기선 매개변수값이 최소값과 최대값이 므로 그 차이가 60인 것이다. 이 값이 의미가 있는 이유는 최대값과 최소값의 차이가 크면 관측값들이 넓게 퍼져있다는 의미이고 반대라면 관측값이 좁게 모여있다는 뜻인 것이다.

분산

표준편차

값의 범위

감사합니다.