第二章 地震波

第一节 波的性质简述

- 1. 波动是振动的传播过程
- 2. 机械波产生的条件
 - 波源
 - 弹性介质——介质的质点不随波前进
- 3. 横波与纵波
 - 纵波(P波,Primary Wave)
 - 横波(S波,Secondary Wave)
 - 横波与纵波的概念比较

	横波	纵波
质点振动方向和波的传播方向	垂直	平行
介质类型	固体(液体、气体无剪切效应)	固体、液体、气体

4. 简谐波

- 波源做简谐振动时介质中各个质点也做简谐振动
- 正弦波/余弦波
- 5. 波阵面、波阵线、波前
 - 平面波、球面波、柱面波
 - 在各向同性介质中,波线与波阵面垂直
- 6. 波长与频率

$$v = \frac{\lambda}{T} = \lambda f$$
$$f = \frac{1}{T}$$

弹性波在介质中的传播存在一个**频率上限**(当波长小于分子尺度时)

第二节 地震波

- 1. 介质的弹性性质、脆性性质、塑性性质
 - •

概念	解释
弹性性质	卸载后可复原
脆性性质	加载破碎后卸载无法复原
塑性性质	卸载后不能完全恢复原状

- 从长时间尺度看,任何刚体都可视作流体
- 2. 应力、应变、胡克定律
 - 应力:可理解为压强

$$\sigma = \frac{F}{A}$$

• 应变: 可理解为变化率

$$\epsilon = \frac{\Delta h}{h}$$

• 胡克定律: 可理解为 $F = k\Delta x$

$$\sigma = E \cdot \epsilon$$

3. 弹性常量

● 杨氏模量(E):

$$\sigma = \frac{F}{S} = E \frac{\Delta L}{L} = E \epsilon$$

● 泊松比(v):

$$v = -\frac{\Delta d/d}{\Delta L/L}$$

- 负号保证v为正(横向变化率与纵向变化率恒异号)
- 地幔 $v = \frac{1}{4}$, 外核 (液态) $v = \frac{1}{2}$
- 体变模量(K)

$$\sigma = -K \frac{\Delta V}{V}$$

- 负号是由于默认体积变化由静压力引起(默认体积变小)
- 切变模量(μ)

$$\mu = \frac{F/S}{\varphi}$$

• 以上四个量只有两个是独立的,自由度为2

4. 波动方程

• 横波与纵波的性质比较

	横波(S波)	纵波(P波)
速度	$v_s = \sqrt{\frac{\mu}{\rho}}$	$v_p = \sqrt{\frac{E}{\rho}}$
性质	有旋度无散度(不改变体积)	有散度无旋度(无剪切作用)

- 横波不能在 $\mu = 0$ 的介质(气体、液体.etc)中传播⇒地球外核为液态
- $v_p \approx \sqrt{3}v_s$ (泊松介质中 $v \approx \frac{1}{4} \Rightarrow \lambda = \mu$) , 纵波比横波快

第三节 地震波的类型

- 1. 体波(P波, S波)
 - S波的分解->SH,SV波
 - P波和S波的主要差异

内容

1	P波的传播速度比S波快,地震图上先出现P波		
2	P波和S波的质点振动方向相互垂直 一般情况下,三分量地震图上P波的垂直分量相对较强,S波的水平分量相对较强		
3			
4	S波的低频成分比P波丰富		
5	天然地震的震源破裂通常剪切破裂和剪切错动为主,震源向外辐射的S波的能量比P波的强		
6	P波通过时,质元无转动运动,而有体积变化,P波是一种无旋波。S波通过时,质元有转动,而无体积变化, S波一种无散的等容波		

2. 面波

• 面波的性质

能量分布——随深度增加迅速衰减(表面波,)回音壁

频散特征——可反演

面波振幅一般比体波大

周期越大,面波渗透深度越大

半无限均匀介质中不产生勒夫波,产生的瑞利波没有频散⇒地下介质不均匀

• 面波的分类

Love面波, Rayleigh面波

3. 自由振荡

- 环形震荡、球形震荡
- 与地球自转有关

4. 脉动

第四节 地震波的波序

P波->S波->勒夫面波->瑞利面波->地震尾波(脉动)