Exhibits for Municipality Proliferation

April 13, 2023

Contents

1	County-Level Stacked Tables, Unweighted 1.1 Unusable Area	6
2	County-Level Stacked Tables, 1940 Population Weighted 2.1 Unusable Area 2.2 Incorporated Area 2.3 Desegregation Plan	12
3	School Finance Outcomes 3.1 Unweighted	
4	county-Level Tables, og-sample 4.1 Unweighted	
5	county-Level Tables, Per Capita, og-sample5.1 Unweighted5.2 1940 Population Weighted	
6	county-Level Tables, full-sample6.1 Unweighted6.2 1940 Population Weighted	
7	county-Level Tables, Per Capita, full-sample 7.1 Unweighted	
	ist of Figures ist of Tables	
	Effects of change in Black Migration on Number of Independent School Districts Effects of change in Black Migration on Number of Independent School Districts Effects of change in Black Migration on Number of Independent School Districts Effects of change in Black Migration on Number of Independent School Districts Effects of change in Black Migration on Number of Independent School Districts Effects of change in Black Migration on Number of Independent School Districts Effects of change in Black Migration on Number of Independent School Districts Regressing School Finance Data on Number of New School Districts Regressing School Finance Data on Number of New School Districts, Per Capita (100,000) Regressing School Finance Data on Number of New School Districts, Per Capita (100,000) Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y and division FEs, below median area incorporated. Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y and division FEs, above median area incorporated. Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y and division FEs, above median area incorporated. Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, and black mig share. Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, below median area incorporated.	7 9 11 13 15 16 16 17 17 18 18

```
Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg
  Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg
  Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg
  and black mig share, mean TRI, below median area incorporated.............
  Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg
  20
   Description Table Two with y = Number of Independent School Districts by decade in County 1940-70, with baseline y and division FEs \\ . . . \\
  Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y and division FEs,
  Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y and division FEs,
  23
  Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg
  Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg
  Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg
  26
  Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg
  Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg
  Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg
  Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline
  Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline
  Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline
  Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline
  Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline
  y, division FEs, mfg and black mig share, below median area incorporated.
  Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline
  Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline
  y, division FEs, mfg and black mig share, mean TRI
  Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline
  Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline
  Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline
  Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline
  Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline
  Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline
  Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline
  43
  Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline
  y, division FEs, mfg and black mig share, above median area incorporated.
  Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline
  y, division FEs, mfg and black mig share, mean TRI
  Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline
  Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline
  47
  Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y and division FEs.
  Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y and division FEs,
  Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y and division FEs,
  Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg
  Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg
  Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg
  Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg
  Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg
  Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg
   Description Table Two with y = Number of Independent School Districts by decade in County 1940-70, with baseline y and division FEs \\ . . . \\
```

57	Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y and division FEs,	
F 0	below median area incorporated	48
58	Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y and division FEs, above median area incorporated.	49
59	Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg	49
33	and black mig share	50
60	Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg	50
00	and black mig share, below median area incorporated	50
61	Dererencourt Table Two with v=Number of Independent School Districts by decade in County 1940-70, with baseline v, division FEs, mfg	00
-	and black mig share, above median area incorporated	51
62	Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg	
	and black mig share, mean TRI	52
63	Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg	
	and black mig share, mean TRI, below median area incorporated	52
64	Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg	
	and black mig share, mean TRI, above median area incorporated	53
65	Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline	
	y and division FEs	54
66	Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline	- 1
C7	y and division FEs, below median area incorporated	54
67		
68	y and division FEs, above median area incorporated	55
00	v, division FEs, mfg and black mig share	56
69	Deference Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline	50
00	v, division FEs, mfg and black mig share, below median area incorporated.	56
70	Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline	00
	y, division FEs, mfg and black mig share, above median area incorporated.	57
71	Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline	
	y, division FEs, mfg and black mig share, mean TRI	58
72	Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline	
	y, division FEs, mfg and black mig share, mean TRI, below median area incorporated	58
73	Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline	
	y, division FEs, mfg and black mig share, mean TRI, above median area incorporated	59
74	Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline	00
	y and division FEs	60
75	Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y and division FEs, below median area incorporated.	60
76	Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline	00
70	y and division FEs, above median area incorporated	61
77	Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline	01
	v, division FEs, mfg and black mig share	62
78	Deference Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline	~-
	y, division FEs, mfg and black mig share, below median area incorporated.	62
79	Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline	
	y, division FEs, mfg and black mig share, above median area incorporated.	63
80	Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline	
	y, division FEs, mfg and black mig share, mean TRI	64
81	Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline	
	y, division FEs, mfg and black mig share, mean TRI, below median area incorporated	64
82	Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline	
	y, division FEs, mfg and black mig share, mean TRI, above median area incorporated	65

- 1 County-Level Stacked Tables, Unweighted
- 1.1 Unusable Area

Table 1: Effects of change in Black Migration on Number of Independent School Districts

		R	aw	Per Capita (100,000)				
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Panel A: Dependent Variable GM								
\widehat{GM} (rank)	0.50*** (0.03)	0.50*** (0.03)	0.28*** (0.03)	0.28*** (0.03)	0.50*** (0.03)	0.50*** (0.03)	0.28*** (0.03)	0.28*** (0.03)
F-Stat	212.67	212.67	113.65	113.65	212.67	212.67	113.65	113.65
Panel B: Dependent Variable Number	of Independ	dent School	l Districts					
GM (rank)	0.12* (0.07)	0.12* (0.07)	-0.01 (0.07)	-0.01 (0.07)	-0.38 (1.38)	-0.38 (1.38)	0.51*** (0.16)	0.51*** (0.16)
Panel C: Dependent Variable GM								
\widehat{GM} (rank)	0.44*** (0.04)	0.44*** (0.04)	0.24*** (0.03)	0.24*** (0.03)	0.44*** (0.04)	0.44*** (0.04)	0.24*** (0.03)	0.24*** (0.03)
\hat{GM} X Above Median Area Unusable	0.08** (0.03)	0.08** (0.03)	0.06** (0.02)	0.06** (0.02)	0.08** (0.03)	0.08** (0.03)	0.06** (0.02)	0.06** (0.02)
F-Stat S.W. F-Stat K.P. F-Stat	113.80 143.96 72.41	113.80 143.96 72.41	63.32 80.35 40.57	63.32 80.35 40.57	113.80 143.96 72.41	113.80 143.96 72.41	63.32 80.35 40.57	63.32 80.35 40.57
Panel D: Dependent Variable GM X A	bove media	an land Inc	orp					
\widehat{GM} (rank)	-0.14***	-0.14***		A 4 F 4 4 4 4	0 4 4 24 24 24			
	(0.02)	(0.02)	-0.15*** (0.02)	-0.15*** (0.02)	-0.14*** (0.02)	-0.14*** (0.02)	-0.15*** (0.02)	-0.15*** (0.02)
\hat{GM} X Above Median Area Unusable	-							
GM X Above Median Area Unusable F-Stat S.W. F-Stat K.P. F-Stat	(0.02) 0.91***	(0.02) $0.91***$	(0.02) 0.84***	(0.02) 0.84***	(0.02) 0.91***	(0.02) $0.91***$	(0.02) $0.84***$	0.84***
F-Stat S.W. F-Stat K.P. F-Stat	(0.02) 0.91*** (0.02) 1194.49 629.08 72.41	(0.02) 0.91*** (0.02) 1194.49 629.08 72.41	(0.02) 0.84*** (0.02) 1575.71 333.52 40.57	(0.02) 0.84*** (0.02) 1575.71 333.52	(0.02) 0.91*** (0.02) 1194.49 629.08	(0.02) 0.91*** (0.02) 1194.49 629.08	(0.02) 0.84*** (0.02) 1575.71 333.52	(0.02) 0.84*** (0.02) 1575.71 333.52
F-Stat S.W. F-Stat K.P. F-Stat Panel E: Dependent Variable Number	(0.02) 0.91*** (0.02) 1194.49 629.08 72.41	(0.02) 0.91*** (0.02) 1194.49 629.08 72.41	(0.02) 0.84*** (0.02) 1575.71 333.52 40.57	(0.02) 0.84*** (0.02) 1575.71 333.52	(0.02) 0.91*** (0.02) 1194.49 629.08	(0.02) 0.91*** (0.02) 1194.49 629.08	(0.02) 0.84*** (0.02) 1575.71 333.52	(0.02) 0.84*** (0.02) 1575.71 333.52 40.57
F-Stat S.W. F-Stat K.P. F-Stat Panel E: Dependent Variable Number GM (rank)	(0.02) 0.91*** (0.02) 1194.49 629.08 72.41 of Independ 0.28***	(0.02) 0.91*** (0.02) 1194.49 629.08 72.41 dent School 0.28***	(0.02) 0.84*** (0.02) 1575.71 333.52 40.57 I Districts 0.21***	(0.02) 0.84*** (0.02) 1575.71 333.52 40.57 0.21***	(0.02) 0.91*** (0.02) 1194.49 629.08 72.41 -1.44	(0.02) 0.91*** (0.02) 1194.49 629.08 72.41 -1.44	(0.02) 0.84*** (0.02) 1575.71 333.52 40.57 0.81***	(0.02) 0.84*** (0.02) 1575.71 333.52 40.57 0.81*** (0.19)
F-Stat S.W. F-Stat	(0.02) 0.91*** (0.02) 1194.49 629.08 72.41 of Independ 0.28*** (0.08) -0.15***	(0.02) 0.91*** (0.02) 1194.49 629.08 72.41 dent School 0.28*** (0.08) -0.15***	(0.02) 0.84*** (0.02) 1575.71 333.52 40.57 1 Districts 0.21*** (0.08) -0.17***	(0.02) 0.84*** (0.02) 1575.71 333.52 40.57 0.21*** (0.08) -0.17***	(0.02) 0.91*** (0.02) 1194.49 629.08 72.41 -1.44 (2.71) 1.01	(0.02) 0.91*** (0.02) 1194.49 629.08 72.41 -1.44 (2.71) 1.01	0.02) 0.84*** (0.02) 1575.71 333.52 40.57 0.81*** (0.19) -0.23***	(0.02) 0.84*** (0.02) 1575.71 333.52 40.57 0.81*** (0.19) -0.23***

	1.2	Incorporated	Area
--	-----	--------------	------

Table 2: Effects of change in Black Migration on Number of Independent School Districts

		R	aw	Per Capita (100,000)				
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Panel A: Dependent Variable GM								
\widehat{GM} (rank)	0.50*** (0.03)	0.50*** (0.03)	0.28*** (0.03)	0.28*** (0.03)	0.50*** (0.03)	0.50*** (0.03)	0.28*** (0.03)	0.28*** (0.03)
F-Stat	212.67	212.67	113.65	113.65	212.67	212.67	113.65	113.65
Panel B: Dependent Variable Numb	er of Indep	endent Sch	ool District	S				
GM (rank)	0.12* (0.07)	0.12* (0.07)	-0.01 (0.07)	-0.01 (0.07)	-0.38 (1.38)	-0.38 (1.38)	0.51*** (0.16)	0.51*** (0.16)
Panel C: Dependent Variable GM								
\widehat{GM} (rank)	0.38*** (0.04)	0.38*** (0.04)	0.06** (0.03)	0.06** (0.03)	0.38*** (0.04)	0.38*** (0.04)	0.06** (0.03)	0.06** (0.03)
\hat{GM} X Above Median Land Incorp	0.16*** (0.03)	0.16*** (0.03)	0.32*** (0.02)	0.32*** (0.02)	0.16*** (0.03)	0.16*** (0.03)	0.32*** (0.02)	0.32*** (0.02)
F-Stat S.W. F-Stat K.P. F-Stat	132.26 154.02 78.07	132.26 154.02 78.07	172.98 36.00 17.47	172.98 36.00 17.47	132.26 154.02 78.07	132.26 154.02 78.07	172.98 36.00 17.47	172.98 36.00 17.47
Panel D: Dependent Variable GM X	Above me	dian land I	ncorp					
i airoi io. io portacito variable Civi A		uian ianu i	HCOLD					
\hat{GM} (rank)	-0.24*** (0.03)	-0.24*** (0.03)	-0.26*** (0.02)	-0.26*** (0.02)	-0.24*** (0.03)	-0.24*** (0.03)	-0.26*** (0.02)	-0.26*** (0.02)
	-0.24***	-0.24***	-0.26***					
\hat{GM} (rank)	-0.24*** (0.03) 0.95***	-0.24*** (0.03) 0.95***	-0.26*** (0.02) 0.95***	(0.02) $0.95***$	(0.03) $0.95***$	(0.03) $0.95***$	(0.02) $0.95***$	0.95***
\hat{GM} (rank) \hat{GM} X Above Median Land Incorp F-Stat S.W. F-Stat	-0.24*** (0.03) 0.95*** (0.02) 1193.64 439.94 78.07	-0.24*** (0.03) 0.95*** (0.02) 1193.64 439.94 78.07	-0.26*** (0.02) 0.95*** (0.01) 2123.80 36.72 17.47	(0.02) 0.95*** (0.01) 2123.80 36.72 17.47	(0.03) 0.95*** (0.02) 1193.64 439.94	(0.03) 0.95*** (0.02) 1193.64 439.94	(0.02) 0.95*** (0.01) 2123.80 36.72	(0.02) 0.95*** (0.01) 2123.80 36.72
GM (rank) GM X Above Median Land Incorp F-Stat S.W. F-Stat K.P. F-Stat Panel E: Dependent Variable Number	-0.24*** (0.03) 0.95*** (0.02) 1193.64 439.94 78.07	-0.24*** (0.03) 0.95*** (0.02) 1193.64 439.94 78.07	-0.26*** (0.02) 0.95*** (0.01) 2123.80 36.72 17.47	(0.02) 0.95*** (0.01) 2123.80 36.72 17.47	(0.03) 0.95*** (0.02) 1193.64 439.94	(0.03) 0.95*** (0.02) 1193.64 439.94	(0.02) 0.95*** (0.01) 2123.80 36.72	(0.02) 0.95*** (0.01) 2123.80 36.72
GM (rank) GM X Above Median Land Incorp F-Stat S.W. F-Stat K.P. F-Stat Panel E: Dependent Variable Number	-0.24*** (0.03) 0.95*** (0.02) 1193.64 439.94 78.07 er of Indeper- -0.01	-0.24*** (0.03) 0.95*** (0.02) 1193.64 439.94 78.07 endent Scher- -0.01	-0.26*** (0.02) 0.95*** (0.01) 2123.80 36.72 17.47 cool District	(0.02) 0.95*** (0.01) 2123.80 36.72 17.47	(0.03) 0.95*** (0.02) 1193.64 439.94 78.07	(0.03) 0.95*** (0.02) 1193.64 439.94 78.07	(0.02) 0.95*** (0.01) 2123.80 36.72 17.47	(0.02) 0.95*** (0.01) 2123.80 36.72 17.47
\hat{GM} (rank) \hat{GM} X Above Median Land Incorp F-Stat S.W. F-Stat K.P. F-Stat	-0.24*** (0.03) 0.95*** (0.02) 1193.64 439.94 78.07 er of Indeperson of	-0.24*** (0.03) 0.95*** (0.02) 1193.64 439.94 78.07 endent School -0.01 (0.10) 0.14**	-0.26*** (0.02) 0.95*** (0.01) 2123.80 36.72 17.47 cool District -0.14 (0.15) 0.10	(0.02) 0.95*** (0.01) 2123.80 36.72 17.47 s -0.14 (0.15) 0.10	(0.03) 0.95*** (0.02) 1193.64 439.94 78.07 -0.17 (1.14) -0.21	(0.03) 0.95*** (0.02) 1193.64 439.94 78.07 -0.17 (1.14) -0.21	(0.02) 0.95*** (0.01) 2123.80 36.72 17.47 -0.04 (0.36) 0.39**	(0.02) 0.95*** (0.01) 2123.80 36.72 17.47 -0.04 (0.36) 0.39**

1.3	Desegregation	Plan
-----	---------------	------

Table 3: Effects of change in Black Migration on Number of Independent School Districts

		R	aw		Per Capita (100,000)				
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	
Panel A: Dependent Variable	GM								
\widehat{GM} (rank)	0.50*** (0.03)	0.50*** (0.03)	0.28*** (0.03)	0.28*** (0.03)	0.50*** (0.03)	0.50*** (0.03)	0.28*** (0.03)	0.28*** (0.03)	
F-Stat	212.67	212.67	113.65	113.65	212.67	212.67	113.65	113.65	
Panel B: Dependent Variable	Number of	f Independe	ent School I	Districts					
GM (rank)	0.12* (0.07)	0.12* (0.07)	-0.01 (0.07)	-0.01 (0.07)	-0.38 (1.38)	-0.38 (1.38)	0.51*** (0.16)	0.51*** (0.16)	
Panel C: Dependent Variable	GM								
\widehat{GM} (rank)	0.41*** (0.04)	0.41*** (0.04)	0.15*** (0.03)	0.15*** (0.03)	0.41*** (0.04)	0.41*** (0.04)	0.15*** (0.03)	0.15*** (0.03)	
\hat{GM} X Desegregation Order	0.16*** (0.03)	0.16*** (0.03)	0.35*** (0.02)	0.35*** (0.02)	0.16*** (0.03)	0.16*** (0.03)	0.35*** (0.02)	0.35*** (0.02)	
F-Stat S.W. F-Stat K.P. F-Stat	142.70 168.29 84.89	142.70 168.29 84.89	321.22 56.91 25.93	321.22 56.91 25.93	142.70 168.29 84.89	142.70 168.29 84.89	321.22 56.91 25.93	321.22 56.91 25.93	
Panel D: Dependent Variable	GM X Ab	ove median	land Incor	p					
\widehat{GM} (rank)	-0.19*** (0.03)	-0.19*** (0.03)	-0.12*** (0.02)	-0.12*** (0.02)	-0.19*** (0.03)	-0.19*** (0.03)	-0.12*** (0.02)	-0.12*** (0.02)	
\hat{GM} X Desegregation Order	0.96*** (0.02)	0.96*** (0.02)	1.02*** (0.02)	1.02^{***} (0.02)	0.96*** (0.02)	0.96*** (0.02)	1.02^{***} (0.02)	1.02*** (0.02)	
F-Stat S.W. F-Stat K.P. F-Stat	979.10 1014.28 84.89	979.10 1014.28 84.89	2020.70 83.71 25.93	2020.70 83.71 25.93	979.10 1014.28 84.89	979.10 1014.28 84.89	2020.70 83.71 25.93	2020.70 83.71 25.93	
Panel E: Dependent Variable	Number of	f Independe	ent School I	Districts					
GM (rank)	0.19**	0.19**	0.01	0.01	0.26 (1.04)	0.26 (1.04)	0.45*	0.45*	
on (rom)	(0.08)	(0.08)	(0.10)	(0.10)	(1.04)	(1.04)	(0.24)	(0.24)	
GM X Desegregation Order	(0.08) -0.10** (0.04)	(0.08) $-0.10**$ (0.04)	(0.10) -0.02 (0.05)	(0.10) -0.02 (0.05)	-0.92 (0.65)	-0.92 (0.65)	0.24) 0.07 (0.11)	(0.24) 0.07 (0.11)	

- 2 County-Level Stacked Tables, 1940 Population Weighted
- 2.1 Unusable Area

Table 4: Effects of change in Black Migration on Number of Independent School Districts

		R	aw		Per Capita (100,000)			
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Panel A: Dependent Variable GM								
\widehat{GM} (rank)	0.54*** (0.09)	0.54*** (0.09)	0.34*** (0.11)	0.34*** (0.11)	0.54*** (0.09)	0.54*** (0.09)	0.34*** (0.11)	0.34*** (0.11)
F-Stat	39.10	39.10	10.43	10.43	39.10	39.10	10.43	10.43
Panel B: Dependent Variable Number	of Independ	dent School	l Districts					
GM (rank)	0.21***	0.21***	0.25*	0.25*	0.48***	0.48***	0.61***	0.61***
	(0.08)	(0.08)	(0.14)	(0.14)	(0.07)	(0.07)	(0.19)	(0.19)
Panel C: Dependent Variable GM								
\widehat{GM} (rank)	0.50***	0.50***	0.22	0.22	0.50***	0.50***	0.22	0.22
	(0.10)	(0.10)	(0.16)	(0.16)	(0.10)	(0.10)	(0.16)	(0.16)
\hat{GM} X Above Median Area Unusable	0.05	0.05	0.20*	0.20*	0.05	0.05	0.20*	0.20*
	(0.04)	(0.04)	(0.11)	(0.11)	(0.04)	(0.04)	(0.11)	(0.11)
F-Stat	25.14	25.14	38.82	38.82	25.14	25.14	38.82	38.82
S.W. F-Stat K.P. F-Stat	30.83 15.33	30.83 15.33	$10.02 \\ 1.69$	$10.02 \\ 1.69$	30.83 15.33	30.83 15.33	10.02 1.69	10.02 1.69
Panel D: Dependent Variable GM X A $ \hat{GM} $ (rank)	-0.18*** (0.05)	-0.18*** (0.05)	-0.16*** (0.03)	-0.16*** (0.03)	-0.18*** (0.05)	-0.18*** (0.05)	-0.16*** (0.03)	-0.16*** (0.03)
\hat{GM} X Above Median Area Unusable	0.99*** (0.01)	0.99*** (0.01)	0.98*** (0.01)	0.98*** (0.01)	0.99*** (0.01)	0.99*** (0.01)	0.98*** (0.01)	0.98*** (0.01)
F-Stat	2885.32	2885.32	2288.73	2288.73	2885.32	2885.32	2288.73	2288.73
S.W. F-Stat	451.22	451.22	3.24	3.24	451.22	451.22	3.24	3.24
K.P. F-Stat	15.33	15.33	1.69	1.69	15.33	15.33	1.69	1.69
Panel E: Dependent Variable Number	of Indepen	dent School	Districts					
GM (rank)						0 = = de de de	0.00*	
GW (rank)	0.28*** (0.09)	0.28*** (0.09)	0.54 (0.33)	0.54 (0.33)	0.57*** (0.08)	0.57*** (0.08)	0.92* (0.51)	0.92* (0.51)
GM X Above Median Area Unusable	(0.09) -0.06	(0.09) -0.06	(0.33) $-0.22*$	(0.33) $-0.22*$	(0.08) -0.09***	(0.08) -0.09***	(0.51) -0.23	(0.51) -0.23
GM X Above Median Area Unusable	(0.09) -0.06 (0.04)	(0.09) -0.06 (0.04)	(0.33) -0.22* (0.13)	(0.33) -0.22* (0.13)	(0.08) -0.09*** (0.03)	(0.08) -0.09*** (0.03)	(0.51) -0.23 (0.20)	(0.51) -0.23 (0.20)
GM X Above Median Area Unusable Combined Coeff	(0.09) -0.06 (0.04) 0.21***	(0.09) -0.06 (0.04) 0.21***	(0.33) -0.22* (0.13) 0.32	(0.33) -0.22* (0.13) 0.32	(0.08) -0.09*** (0.03) 0.48***	(0.08) -0.09*** (0.03) 0.48***	(0.51) -0.23 (0.20) 0.69**	(0.51) -0.23 (0.20) 0.69**
GM X Above Median Area Unusable	(0.09) -0.06 (0.04)	(0.09) -0.06 (0.04)	(0.33) -0.22* (0.13)	(0.33) -0.22* (0.13)	(0.08) -0.09*** (0.03)	(0.08) -0.09*** (0.03)	(0.51) -0.23 (0.20)	(0.51) -0.23 (0.20)
GM X Above Median Area Unusable Combined Coeff Combined SE Dep var mean Sample	(0.09) -0.06 (0.04) 0.21*** (0.08) -9.91 Original	(0.09) -0.06 (0.04) 0.21*** (0.08) -9.91 Original	(0.33) -0.22* (0.13) 0.32 (0.21) -12.02 Full	(0.33) -0.22* (0.13) 0.32 (0.21) -12.02 Full	(0.08) -0.09*** (0.03) 0.48*** (0.07) -8.77 Original	(0.08) -0.09*** (0.03) 0.48*** (0.07) -8.77 Original	(0.51) -0.23 (0.20) 0.69** (0.30) -11.11 Full	(0.51) -0.23 (0.20) 0.69** (0.30) -11.11 Full
GM X Above Median Area Unusable Combined Coeff Combined SE Dep var mean	(0.09) -0.06 (0.04) 0.21*** (0.08) -9.91	(0.09) -0.06 (0.04) 0.21*** (0.08) -9.91	(0.33) -0.22* (0.13) 0.32 (0.21) -12.02	(0.33) -0.22* (0.13) 0.32 (0.21) -12.02	(0.08) -0.09*** (0.03) 0.48*** (0.07) -8.77	(0.08) -0.09*** (0.03) 0.48*** (0.07) -8.77	(0.51) -0.23 (0.20) 0.69** (0.30) -11.11	(0.51) -0.23 (0.20) 0.69** (0.30) -11.11

2.2	Incorporated	Area
-----	--------------	------

Table 5: Effects of change in Black Migration on Number of Independent School Districts

		R	aw		Per Capita (100,000)			
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Panel A: Dependent Variable GM								
\hat{GM} (rank)	0.54*** (0.09)	0.54*** (0.09)	0.34*** (0.11)	0.34*** (0.11)	0.54*** (0.09)	0.54*** (0.09)	0.34*** (0.11)	0.34*** (0.11)
F-Stat	39.10	39.10	10.43	10.43	39.10	39.10	10.43	10.43
Panel B: Dependent Variable Numb	er of Indep	endent Sch	ool District	s				
GM (rank)	0.21*** (0.08)	0.21*** (0.08)	0.25* (0.14)	0.25* (0.14)	0.48*** (0.07)	0.48*** (0.07)	0.61*** (0.19)	0.61*** (0.19)
Panel C: Dependent Variable GM								
\widehat{GM} (rank)	0.32*** (0.12)	0.32*** (0.12)	-0.06 (0.08)	-0.06 (0.08)	0.32*** (0.12)	0.32*** (0.12)	-0.06 (0.08)	-0.06 (0.08)
\hat{GM} X Above Median Land Incorp	0.19*** (0.05)	0.19*** (0.05)	0.38*** (0.06)	0.38*** (0.06)	0.19*** (0.05)	0.19*** (0.05)	0.38*** (0.06)	0.38*** (0.06)
F-Stat S.W. F-Stat K.P. F-Stat	56.28 72.12 19.06	56.28 72.12 19.06	24.93 25.77 4.04	24.93 25.77 4.04	56.28 72.12 19.06	56.28 72.12 19.06	24.93 25.77 4.04	24.93 25.77 4.04
Panel D: Dependent Variable GM X	Above me	dian land I	ncorp					
 _								
\hat{GM} (rank)	-0.51*** (0.13)	-0.51*** (0.13)	-0.60*** (0.09)	-0.60*** (0.09)	-0.51*** (0.13)	-0.51*** (0.13)	-0.60*** (0.09)	-0.60*** (0.09)
\widehat{GM} (rank) \widehat{GM} X Above Median Land Incorp								
	(0.13) 1.11***	(0.13) 1.11***	(0.09) 1.06***	(0.09) 1.06***	(0.13) 1.11***	(0.13) 1.11***	(0.09) 1.06***	(0.09) 1.06***
\hat{GM} X Above Median Land Incorp F-Stat S.W. F-Stat	(0.13) 1.11*** (0.04) 1066.79 265.99 19.06	(0.13) 1.11*** (0.04) 1066.79 265.99 19.06	(0.09) 1.06*** (0.05) 266.42 41.65 4.04	(0.09) 1.06*** (0.05) 266.42 41.65 4.04	(0.13) 1.11*** (0.04) 1066.79 265.99	(0.13) 1.11*** (0.04) 1066.79 265.99	(0.09) 1.06*** (0.05) 266.42 41.65	(0.09) 1.06*** (0.05) 266.42 41.65
GM X Above Median Land Incorp F-Stat S.W. F-Stat K.P. F-Stat	(0.13) 1.11*** (0.04) 1066.79 265.99 19.06	(0.13) 1.11*** (0.04) 1066.79 265.99 19.06	(0.09) 1.06*** (0.05) 266.42 41.65 4.04	(0.09) 1.06*** (0.05) 266.42 41.65 4.04	(0.13) 1.11*** (0.04) 1066.79 265.99	(0.13) 1.11*** (0.04) 1066.79 265.99	(0.09) 1.06*** (0.05) 266.42 41.65	(0.09) 1.06*** (0.05) 266.42 41.65
GM X Above Median Land Incorp F-Stat S.W. F-Stat K.P. F-Stat	(0.13) 1.11*** (0.04) 1066.79 265.99 19.06 er of Indeper-	(0.13) 1.11*** (0.04) 1066.79 265.99 19.06 endent Scher-	(0.09) 1.06*** (0.05) 266.42 41.65 4.04 pool District 0.21	(0.09) 1.06*** (0.05) 266.42 41.65 4.04	(0.13) 1.11*** (0.04) 1066.79 265.99 19.06	(0.13) 1.11*** (0.04) 1066.79 265.99 19.06	(0.09) 1.06*** (0.05) 266.42 41.65 4.04	(0.09) 1.06*** (0.05) 266.42 41.65 4.04
GM X Above Median Land Incorp F-Stat S.W. F-Stat K.P. F-Stat Panel E: Dependent Variable Number GM (rank)	(0.13) 1.11*** (0.04) 1066.79 265.99 19.06 er of Independent of In	(0.13) 1.11*** (0.04) 1066.79 265.99 19.06 endent School -0.20 (0.16) 0.32***	(0.09) 1.06*** (0.05) 266.42 41.65 4.04 col District 0.21 (0.26) 0.03	(0.09) 1.06*** (0.05) 266.42 41.65 4.04 8 0.21 (0.26) 0.03	(0.13) 1.11*** (0.04) 1066.79 265.99 19.06 0.05 (0.13) 0.33***	(0.13) 1.11*** (0.04) 1066.79 265.99 19.06 0.05 (0.13) 0.33***	(0.09) 1.06*** (0.05) 266.42 41.65 4.04 0.15 (0.29) 0.31***	(0.09) 1.06*** (0.05) 266.42 41.65 4.04 0.15 (0.29) 0.31***

2.3	Desegregation	Plan
-----	---------------	------

Table 6: Effects of change in Black Migration on Number of Independent School Districts

		R	aw		Per Capita (100,000)				
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	
Panel A: Dependent Variable	GM								
\widehat{GM} (rank)	0.54*** (0.09)	0.54*** (0.09)	0.34*** (0.11)	0.34*** (0.11)	0.54*** (0.09)	0.54*** (0.09)	0.34*** (0.11)	0.34*** (0.11)	
F-Stat	39.10	39.10	10.43	10.43	39.10	39.10	10.43	10.43	
Panel B: Dependent Variable	Number of	f Independe	ent School l	Districts					
GM (rank)	0.21*** (0.08)	0.21*** (0.08)	0.25* (0.14)	0.25* (0.14)	0.48*** (0.07)	0.48*** (0.07)	0.61*** (0.19)	0.61*** (0.19)	
Panel C: Dependent Variable	GM								
\widehat{GM} (rank)	0.53*** (0.09)	0.53*** (0.09)	0.23* (0.13)	0.23* (0.13)	0.53*** (0.09)	0.53*** (0.09)	0.23* (0.13)	0.23* (0.13)	
\hat{GM} X Desegregation Order	$0.00 \\ (0.03)$	$0.00 \\ (0.03)$	0.23*** (0.08)	0.23*** (0.08)	$0.00 \\ (0.03)$	$0.00 \\ (0.03)$	0.23*** (0.08)	0.23*** (0.08)	
F-Stat S.W. F-Stat K.P. F-Stat	20.08 41.06 19.02	20.08 41.06 19.02	66.93 41.66 3.90	66.93 41.66 3.90	20.08 41.06 19.02	20.08 41.06 19.02	66.93 41.66 3.90	66.93 41.66 3.90	
Panel D: Dependent Variable	GM X Ab	ove median	land Incor	<u> </u>					
\widehat{GM} (rank)	-0.31*** (0.09)	-0.31*** (0.09)	-0.26*** (0.07)	-0.26*** (0.07)	-0.31*** (0.09)	-0.31*** (0.09)	-0.26*** (0.07)	-0.26*** (0.07)	
\hat{GM} X Desegregation Order	0.97*** (0.02)	0.97*** (0.02)	1.03*** (0.02)	1.03*** (0.02)	0.97*** (0.02)	0.97*** (0.02)	1.03*** (0.02)	1.03*** (0.02)	
F-Stat S.W. F-Stat K.P. F-Stat	1242.02 3439.67 19.02	1242.02 3439.67 19.02	1837.10 8.52 3.90	1837.10 8.52 3.90	1242.02 3439.67 19.02	1242.02 3439.67 19.02	1837.10 8.52 3.90	1837.10 8.52 3.90	
Panel E: Dependent Variable	Number of	f Independe	ent School I	Districts					
GM (rank)	0.23*** (0.07)	0.23*** (0.07)	0.35* (0.18)	0.35* (0.18)	0.48*** (0.07)	0.48*** (0.07)	0.67** (0.27)	0.67** (0.27)	
GM X Desegregation Order	-0.11** (0.04)	-0.11** (0.04)	-0.14* (0.08)	-0.14* (0.08)	-0.01 (0.02)	-0.01 (0.02)	-0.09 (0.12)	-0.09 (0.12)	
Combined Coeff Combined SE Dep var mean	0.13 (0.08) -9.91	0.13 (0.08) -9.91	0.21* (0.12) -12.02	0.21* (0.12) -12.02	0.47*** (0.07) -8.77	0.47*** (0.07) -8.77	0.58*** (0.15) -11.11	0.58*** (0.15) -11.11	

3 School Finance Outcomes

3.1 Unweighted

Table 7: Regressing School Finance Data on Number of New School Districts

	Expend	Expenditure Per Student			Local Revenue Per Student		
Number of Local Govts	1.458 (2.304)	1.462 (2.255)	2.121 (2.125)	14.55*** (2.807)	14.94*** (2.822)	15.28*** (2.801)	
R-Squared	.626	.626	.658	.42	.422	.432	
Dep Var Mean	11000	11000	11000	5010.815	5010.815	5010.815	
Mfg/Black Mig Controls	No	Yes	Yes	No	Yes	Yes	
TRI Controls	No	No	Yes	No	No	Yes	
Observations	1608	1608	1608	1608	1608	1608	

Standard errors in parentheses

Standard errors clustered at county level.

Table 8: Regressing School Finance Data on Number of New School Districts, Per Capita (100,000)

	Expenditure Per Student			Local Revenue Per Student		
Number of Local Govts	-156.8*** (25.65)	-127.8*** (26.50)	-129.8*** (27.03)	-52.64*** (10.64)	-39.37*** (11.04)	-41.04*** (11.58)
R-Squared	.147	.264	.271	.102	.21	.225
Dep Var Mean	24000	24000	24000	10000	10000	10000
Mfg/Black Mig Controls	No	Yes	Yes	No	Yes	Yes
TRI Controls	No	No	Yes	No	No	Yes
Observations	1608	1608	1608	1608	1608	1608

Standard errors in parentheses

Standard errors clustered at county level.

X variable is number of new school districts per county by decade for 1940-50, 1950-60, and 1960-70.

Y variable is county-level average Local Revenue per student from 1994-2018. Controls include base decade number of independent school districts and region and (X variable) decade fixed effects.

^{*} p;0.10, ** p;0.05, *** p;0.01

X variable is number of new school districts per county by decade for 1940-50, 1950-60, and 1960-70.

Y variable is county-level average Local Revenue per student from 1994-2018. Controls include base decade number of independent school districts and region and (X variable) decade fixed effects.

^{*} pi0.10, ** pi0.05, *** pi0.01

Table 9: Regressing School Finance Data on Number of New School Districts

	Expenditure Per Student			Local Revenue Per Student		
Number of Local Govts	8.740 (8.026)	3.630 (4.911)	2.885* (1.572)	19.06*** (4.896)	17.92*** (3.568)	17.21*** (2.565)
R-Squared	.454	.662	.874	.452	.564999999999999	.679
Dep Var Mean	14000	14000	14000	6566.868	6566.868	6566.868
Mfg/Black Mig Controls	No	Yes	Yes	No	Yes	Yes
TRI Controls	No	No	Yes	No	No	Yes
Observations	1608	1608	1608	1608	1608	1608

Standard errors clustered at county level.

Table 10: Regressing School Finance Data on Number of New School Districts, Per Capita (100,000)

	Expenditure Per Student			Local Revenue Per Student		
Number of Local Govts	-121.0*** (32.04)	-50.47 (31.53)	-48.89 (35.05)	-44.21*** (11.96)	-11.56 (12.56)	-9.779 (14.75)
R-Squared Dep Var Mean	.053 17000	.128 17000	.139 17000	.043 7233.094	.133 7233.094	.145 7233.094
Mfg/Black Mig Controls	No	Yes	Yes	No	Yes	Yes
TRI Controls	No	No	Yes	No	No	Yes
Observations	1608	1608	1608	1608	1608	1608

Standard errors in parentheses

Standard errors clustered at county level.

X variable is number of new school districts per county by decade for 1940-50, 1950-60, and 1960-70.

Y variable is county-level average Local Revenue per student from 1994-2018. Controls include base decade number of independent school districts and region and (X variable) decade fixed effects.

^{*} pj0.10, ** pj0.05, *** pj0.01

X variable is number of new school districts per county by decade for 1940-50, 1950-60, and 1960-70.

Y variable is county-level average Local Revenue per student from 1994-2018. Controls include base decade number of independent school districts and region and (X variable) decade fixed effects.

^{*} pi0.10, ** pi0.05, *** pi0.01

4 county-Level Tables, og-sample

4.1 Unweighted

Table 11: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y and division FEs

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y.L0	2SLS (4) y_L0
\hat{GM} (rank)	0.534*** (0.0336)		0.0673*** (0.0235)	
GM (rank)		0.0681*** (0.0229)		0.126*** (0.0439)
F-Stat R-squared Dep Var Mean Observations	38.517 50.286 714	.594 -9.77399999999999 714	.594 -9.77399999999999 714	-9.773999999999999 714

Standard errors in parentheses

Table 12: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y and division FEs, below median area incorporated.

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\widehat{GM} (rank)	0.480*** (0.0508)		0.0388 (0.0332)	
GM (rank)		0.0563 (0.0374)		0.0808 (0.0681)
F-Stat	18.436			
R-squared		.68200000000000001	.681	
Dep Var Mean	41.804	-9.77	-9.77	-9.77
Observations	357	357	357	357

Standard errors in parentheses

^{*} p;0.10, ** p;0.05, *** p;0.01

^{*} p;0.10, ** p;0.05, *** p;0.01

Table 13: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y and division FEs, above median area incorporated.

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\widehat{GM} (rank)	0.485*** (0.0477)		0.0823** (0.0326)	
GM (rank)		0.0855*** (0.0299)		0.170** (0.0670)
F-Stat	125.285			
R-squared		.511	.511	
Dep Var Mean	59.053	-9.77	-9.77	-9.77
Observations	357	357	357	357

^{*} pj0.10, ** pj0.05, *** pj0.01

Table 14: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share

	First Stage	OLS	Reduced Form	2SLS
	(1)	(2)	(3)	(4)
	GM (rank)	y_L0	y_L0	y_L0
\widehat{GM} (rank)	0.350***		0.0539**	
, ,	(0.0415)		(0.0238)	
GM (rank)		0.0564**		0.154**
		(0.0246)		(0.0683)
F-Stat	61.35			
R-squared		.594	.594	
Dep Var Mean	50.286	-9.773999999999999	-9.773999999999999	-9.773999999999999
Observations	714	714	714	714

Table 15: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, below median area incorporated.

	First Stage	OLS	Reduced Form	2SLS
	(1)	(2)	(3)	(4)
	GM (rank)	y_L0	y_L0	y_L0
\widehat{GM} (rank)	0.322***		0.0442	
, ,	(0.0544)		(0.0317)	
GM (rank)		0.0759*		0.137
		(0.0407)		(0.0951)
F-Stat	25.797			
R-squared		.68300000000000001	.681	
Dep Var Mean	41.804	-9.77	-9.77	-9.77
Observations	357	357	357	357

^{*} pi0.10, ** pi0.05, *** pi0.01

^{*} p;0.10, ** p;0.05, *** p;0.01

Table 16: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, above median area incorporated.

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\widehat{GM} (rank)	0.329*** (0.0587)		0.0518 (0.0328)	
GM (rank)		0.0563** (0.0280)		0.157 (0.0991)
F-Stat	32.359			
R-squared		.515	.515	
Dep Var Mean	59.053	-9.77	-9.77	-9.77
Observations	357	357	357	357

^{*} p
i0.10, ** p
i0.05, *** p
i0.01

Table 17: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, mean TRI

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\hat{GM} (rank)	0.338*** (0.0419)		0.0571** (0.0239)	
GM (rank)		0.0623** (0.0253)		0.169** (0.0712)
F-Stat	54.161			
R-squared		.595	.595	
Dep Var Mean	50.429	-9.77	-9.77	-9.77
Observations	714	714	714	714

Table 18: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, mean TRI, below median area incorporated.

	First Stage (1)	OLS (2)	Reduced Form (3)	2SLS (4)
	GM (rank)	y_L0	y_L0	y_L0
\hat{GM} (rank)	0.320**** (0.0547)		0.0448 (0.0317)	
GM (rank)		0.0769* (0.0409)		0.140 (0.0954)
F-Stat	23.381			
R-squared		.68300000000000001	.681	
Dep Var Mean	41.804	-9.77	-9.77	-9.77
Observations	357	357	357	357

^{*} pj0.10, ** pj0.05, *** pj0.01

^{*} pi0.10, ** pi0.05, *** pi0.01

Table 19: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, mean TRI, above median area incorporated.

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\hat{GM} (rank)	0.315*** (0.0599)		0.0568* (0.0329)	
GM (rank)		0.0657** (0.0287)		$0.180* \\ (0.104)$
F-Stat	29.289			
R-squared		.518	.517	
Dep Var Mean	59.053	-9.77	-9.77	-9.77
Observations	357	357	357	357

^{*} pi0.10, ** pi0.05, *** pi0.01

4.2 1940 Population Weighted

Table 20: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y and division FEs

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\hat{GM} (rank)	0.599*** (0.0609)	J == \$	0.182*** (0.0377)	J == 0
GM (rank)		0.174*** (0.0360)		0.304*** (0.0627)
F-Stat	42.579			
R-squared		.406	.412	
Dep Var Mean	50.429	-9.77	-9.77	-9.77
Observations	714	714	714	714

Table 21: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y and division FEs, below median area incorporated.

	First Stage (1)	OLS (2)	Reduced Form (3)	2SLS
	GM (rank)	y_L0	y_L0	(4) y_L0
\widehat{GM} (rank)	0.541***	<i>y</i>	0.0367	<i>y</i> =220
GW (Tank)	(0.0557)		(0.0439)	
GM (rank)		0.0740 (0.0466)		0.0678 (0.0799)
F-Stat	25.352			
R-squared		.768	.765	
Dep Var Mean	41.804	-9.77	-9.77	-9.77
Observations	357	357	357	357

Standard errors in parentheses

^{*} p;0.10, ** p;0.05, *** p;0.01

^{*} p;0.10, ** p;0.05, *** p;0.01

Table 22: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y and division FEs, above median area incorporated.

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) v_L0
\hat{GM} (rank)	0.533*** (0.0781)	J == 0	0.140*** (0.0343)	J == 0
GM (rank)		0.139*** (0.0435)		0.263*** (0.0670)
F-Stat	26.221			
R-squared		.38	.386	
Dep Var Mean	59.053	-9.77	-9.77	-9.77
Observations	357	357	357	357

^{*} pi0.10, ** pi0.05, *** pi0.01

Table 23: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\hat{GM} (rank)	0.437*** (0.0672)		0.150*** (0.0458)	
GM (rank)		0.136*** (0.0426)		0.342*** (0.0967)
F-Stat	33.446			
R-squared		.411	.417	
Dep Var Mean	50.429	-9.77	-9.77	-9.77
Observations	714	714	714	714

Table 24: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, below median area incorporated.

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\hat{GM} (rank)	0.339*** (0.0582)		0.0245 (0.0416)	
GM (rank)		0.0817 (0.0539)		0.0722 (0.120)
F-Stat	42.976			
R-squared		.768	.766	
Dep Var Mean	41.804	-9.77	-9.77	-9.77
Observations	357	357	357	357

^{*} pi0.10, ** pi0.05, *** pi0.01

^{*} p;0.10, ** p;0.05, *** p;0.01

Table 25: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, above median area incorporated.

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\widehat{GM} (rank)	0.405*** (0.0763)		0.125*** (0.0370)	
GM (rank)		0.124** (0.0530)		0.308*** (0.0902)
F-Stat	16.412			
R-squared		.386	.392	
Dep Var Mean	59.053	-9.77	-9.77	-9.77
Observations	357	357	357	357

^{*} p
i0.10, ** p
i0.05, *** p
i0.01

Table 26: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, mean TRI

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\widehat{GM} (rank)	0.358*** (0.0691)		0.156*** (0.0472)	
GM (rank)		0.136*** (0.0393)		0.435*** (0.125)
F-Stat	41.944			
R-squared		.411	.418	
Dep Var Mean	50.429	-9.77	-9.77	-9.77
Observations	714	714	714	714

Table 27: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, mean TRI, below median area incorporated.

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\hat{GM} (rank)	0.322*** (0.0595)		0.0297 (0.0416)	
GM (rank)		$0.0904* \\ (0.0547)$		0.0921 (0.125)
F-Stat	38.756			
R-squared		.769	.766	
Dep Var Mean	41.804	-9.77	-9.77	-9.77
Observations	357	357	357	357

^{*} p;0.10, ** p;0.05, *** p;0.01

^{*} pi0.10, ** pi0.05, *** pi0.01

Table 28: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, mean TRI, above median area incorporated.

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y.L0
\hat{GM} (rank)	0.336*** (0.0797)		0.134*** (0.0383)	
GM (rank)		0.127** (0.0507)		0.400*** (0.122)
F-Stat	18.223			
R-squared		.389	.395	
Dep Var Mean	59.053	-9.77	-9.77	-9.77
Observations	357	357	357	357

^{*} p;0.10, ** p;0.05, *** p;0.01

5 county-Level Tables, Per Capita, og-sample

5.1 Unweighted

Table 29: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y and division FEs

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\hat{GM} (rank)	0.534*** (0.0336)		-0.0921 (0.680)	
GM (rank)		0.0102 (0.753)		-0.172 (1.265)
F-Stat	38.517	020	020	
R-squared Dep Var Mean	50.286	.032 -55.725	.032 -55.725	-55.725
Observations	714	714	714	714

Standard errors in parentheses

Table 30: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y and division FEs, below median area incorporated.

	First Stage (1) GM (rank)	OLS (2) y.L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\hat{GM} (rank)	0.480*** (0.0508)		0.334** (0.141)	
GM (rank)		0.504*** (0.142)		0.696** (0.285)
F-Stat	18.436			
R-squared		.475	.464	
Dep Var Mean	41.804	-55.754	-55.754	-55.754
Observations	357	357	357	357

^{*} pi0.10, ** pi0.05, *** pi0.01

^{*} pj0.10, ** pj0.05, *** pj0.01

Table 31: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y and division FEs, above median area incorporated.

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\hat{GM} (rank)	0.485*** (0.0477)		-0.410 (1.336)	
GM (rank)		-0.313 (1.533)		-0.845 (2.721)
F-Stat	125.285			
R-squared		.019	.019	
Dep Var Mean	59.053	-55.754	-55.754	-55.754
Observations	357	357	357	357

^{*} pi0.10, ** pi0.05, *** pi0.01

Table 32: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share

	First Stage (1) GM (rank)	OLS (2) y.L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\widehat{GM} (rank)	0.350*** (0.0415)		0.0780 (0.383)	
GM (rank)		0.212 (0.501)		0.223 (1.087)
F-Stat	61.35			
R-squared		.034	.034	
Dep Var Mean	50.286	-55.725	-55.725	-55.725
Observations	714	714	714	714

Table 33: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, below median area incorporated.

	First Stage (1) GM (rank)	OLS (2) y.L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\hat{GM} (rank)	0.322*** (0.0544)		0.305** (0.118)	
GM (rank)		0.554*** (0.153)		0.946** (0.368)
F-Stat	25.797			
R-squared		.491	.48	
Dep Var Mean Observations	$\frac{41.804}{357}$	-55.754 357	-55.754 357	-55.754 357

^{*} p;0.10, ** p;0.05, *** p;0.01

^{*} pj0.10, ** pj0.05, *** pj0.01

Table 34: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, above median area incorporated.

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\hat{GM} (rank)	0.329*** (0.0587)		-0.227 (0.950)	
GM (rank)		-0.135 (1.240)		-0.688 (2.842)
F-Stat	32.359			
R-squared		.021	.021	
Dep Var Mean	59.053	-55.754	-55.754	-55.754
Observations	357	357	357	357

^{*} pi0.10, ** pi0.05, *** pi0.01

Table 35: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, mean TRI

	First Stage (1) GM (rank)	OLS (2) y.L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\widehat{GM} (rank)	0.338*** (0.0419)		0.0600 (0.406)	
GM (rank)		0.179 (0.549)		0.178 (1.194)
F-Stat	54.161			
R-squared		.035	.034	
Dep Var Mean	50.429	-55.754	-55.754	-55.754
Observations	714	714	714	714

Table 36: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, mean TRI, below median area incorporated.

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\hat{GM} (rank)	0.320*** (0.0547)		0.301** (0.120)	
GM (rank)		0.550*** (0.154)		0.940** (0.372)
F-Stat	23.381			
R-squared		.491	.48	
Dep Var Mean Observations	$\frac{41.804}{357}$	-55.754 357	-55.754 357	-55.754 357

^{*} p;0.10, ** p;0.05, *** p;0.01

^{*} pj0.10, ** pj0.05, *** pj0.01

Table 37: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, mean TRI, above median area incorporated.

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\hat{GM} (rank)	0.315*** (0.0599)		-0.253 (0.988)	
GM (rank)		-0.192 (1.328)		-0.804 (3.085)
F-Stat	29.289			
R-squared		.022	.022	
Dep Var Mean	59.053	-55.754	-55.754	-55.754
Observations	357	357	357	357

^{*} p;0.10, ** p;0.05, *** p;0.01

5.2 1940 Population Weighted

Table 38: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y and division FEs

	First Stage (1) GM (rank)	OLS (2) v_L0	Reduced Form (3) v_L0	2SLS (4) y_L0
\widehat{GM} (rank)	0.599*** (0.0609)		0.368*** (0.0576)	
GM (rank)		0.420*** (0.0550)		0.615*** (0.0887)
F-Stat R-squared	42.579	.125	.112	
Dep Var Mean Observations	50.429 714	-55.754 714	-55.754 714	-55.754 714

Standard errors in parentheses

Table 39: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y and division FEs, below median area incorporated.

	First Stage	OLS	Reduced Form	2SLS
	(1)	(2)	(3)	(4)
	GM (rank)	y_L0	y_L0	y_L0
\widehat{GM} (rank)	0.541***		0.458***	
, ,	(0.0557)		(0.126)	
GM (rank)		0.520***		0.846***
, ,		(0.111)		(0.223)
F-Stat	25.352			
R-squared		.321	.308	
Dep Var Mean	41.804	-55.754	-55.754	-55.754
Observations	357	357	357	357

^{*} p;0.10, ** p;0.05, *** p;0.01

^{*} pi0.10, ** pi0.05, *** pi0.01

Table 40: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y and division FEs, above median area incorporated.

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\hat{GM} (rank)	0.533*** (0.0781)		0.215*** (0.0454)	
GM (rank)		0.258*** (0.0478)		0.404*** (0.0796)
F-Stat	26.221			
R-squared		.064	.056	
Dep Var Mean	59.053	-55.754	-55.754	-55.754
Observations	357	357	357	357

^{*} pi0.10, ** pi0.05, *** pi0.01

Table 41: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\widehat{GM} (rank)	0.437*** (0.0672)		0.274*** (0.0661)	
GM (rank)		0.332*** (0.0561)		0.627*** (0.120)
F-Stat	33.446			
R-squared		.144	.138	
Dep Var Mean	50.429	-55.754	-55.754	-55.754
Observations	714	714	714	714

Table 42: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, below median area incorporated.

	First Stage (1) GM (rank)	OLS (2) v_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\widehat{GM} (rank)	0.339*** (0.0582)	y =120	0.469*** (0.116)	y =110
GM (rank)		0.536*** (0.130)		1.386*** (0.383)
F-Stat R-squared	42.976	.329	.321	
Dep Var Mean Observations	$41.804 \\ 357$	-55.754 357	-55.754 357	-55.754 357

^{*} pi0.10, ** pi0.05, *** pi0.01

^{*} p;0.10, ** p;0.05, *** p;0.01

Table 43: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, above median area incorporated.

	First Stage (1)	OLS (2)	Reduced Form (3)	2SLS (4)
	GM (rank)	y_L0	y_L0	y_L0
\hat{GM} (rank)	0.405*** (0.0763)		0.154*** (0.0437)	
GM (rank)		0.202*** (0.0440)		0.380*** (0.0916)
F-Stat	16.412			
R-squared		.08	.075	
Dep Var Mean	59.053	-55.754	-55.754	-55.754
Observations	357	357	357	357

^{*} pi0.10, ** pi0.05, *** pi0.01

Table 44: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, mean TRI

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\hat{GM} (rank)	0.358*** (0.0691)		0.269*** (0.0689)	
GM (rank)		0.328*** (0.0570)		0.752*** (0.162)
F-Stat	41.944			
R-squared		.144	.138	
Dep Var Mean	50.429	-55.754	-55.754	-55.754
Observations	714	714	714	714

Table 45: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, mean TRI, below median area incorporated.

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\hat{GM} (rank)	0.322*** (0.0595)	·	0.471*** (0.117)	·
GM (rank)		0.544*** (0.132)		1.461*** (0.411)
F-Stat	38.756			
R-squared		.329	.321	
Dep Var Mean	41.804	-55.754	-55.754	-55.754
Observations	357	357	357	357

^{*} p;0.10, ** p;0.05, *** p;0.01

^{*} p;0.10, ** p;0.05, *** p;0.01

Table 46: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, mean TRI, above median area incorporated.

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\hat{GM} (rank)	0.336*** (0.0797)		0.147*** (0.0455)	
GM (rank)		0.196*** (0.0446)		0.437*** (0.123)
F-Stat	18.223			
R-squared		.08	.075	
Dep Var Mean	59.053	-55.754	-55.754	-55.754
Observations	357	357	357	357

^{*} pj0.10, ** pj0.05, *** pj0.01

6 county-Level Tables, full-sample

6.1 Unweighted

Table 47: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y and division FEs

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\hat{GM} (rank)	0.318*** (0.0257)		0.0433*** (0.0125)	
GM (rank)		0.0586*** (0.0136)		0.136*** (0.0397)
F-Stat	34.863			
R-squared		.676	.675	
Dep Var Mean	50.124	-15.412	-15.412	-15.412
Observations	1608	1608	1608	1608

Standard errors in parentheses

Table 48: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y and division FEs, below median area incorporated.

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\hat{GM} (rank)	0.109*** (0.0350)		0.0285* (0.0167)	
GM (rank)		0.0265 (0.0207)		$0.262 \\ (0.173)$
F-Stat	15.824			
R-squared		.724	.724	
Dep Var Mean	40.238	-15.412	-15.412	-15.412
Observations	804	804	804	804

^{*} p;0.10, ** p;0.05, *** p;0.01

^{*} pi0.10, ** pi0.05, *** pi0.01

Table 49: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y and division FEs, above median area incorporated.

	First Stage (1) GM (rank)	OLS (2) v_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\hat{GM} (rank)	0.407*** (0.0335)	y ±10	0.0459** (0.0199)	y_110
GM (rank)		0.0654*** (0.0204)		0.113** (0.0486)
F-Stat	31.109			
R-squared		.631	.629	
Dep Var Mean	60.01	-15.412	-15.412	-15.412
Observations	804	804	804	804

^{*} pi0.10, ** pi0.05, *** pi0.01

Table 50: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\hat{GM} (rank)	0.282*** (0.0262)		0.0413*** (0.0127)	
GM (rank)		0.0583*** (0.0134)		0.146*** (0.0455)
F-Stat	39.467			
R-squared		.676	.675	
Dep Var Mean	50.124	-15.412	-15.412	-15.412
Observations	1608	1608	1608	1608

Table 51: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, below median area incorporated.

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\hat{GM} (rank)	0.100*** (0.0362)		0.0293* (0.0174)	
GM (rank)		0.0271 (0.0206)		0.292 (0.198)
F-Stat	12.398			
R-squared		.724	.724	
Dep Var Mean Observations	$40.238 \\ 804$	-15.412 804	-15.412 804	-15.412 804

^{*} pi0.10, ** pi0.05, *** pi0.01

^{*} pi0.10, ** pi0.05, *** pi0.01

Table 52: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, above median area incorporated.

	First Stage (1) GM (rank)	OLS (2) v_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\hat{GM} (rank)	0.352*** (0.0397)	<i>y</i> === 0	0.0348* (0.0206)	<i>y</i> ====
GM (rank)		0.0599*** (0.0205)		0.0990* (0.0575)
F-Stat	36.135			
R-squared		.632	.63	
Dep Var Mean	60.01	-15.412	-15.412	-15.412
Observations	804	804	804	804

^{*} pi0.10, ** pi0.05, *** pi0.01

Table 53: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, mean TRI

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\widehat{GM} (rank)	0.277*** (0.0257)	y ±10	0.0431*** (0.0127)	y_E0
GM (rank)		0.0657*** (0.0139)		0.156*** (0.0463)
F-Stat R-squared	38.702	.678	.676	
Dep Var Mean Observations	50.124 1608	-15.412 1608	-15.412 1608	-15.412 1608

Table 54: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, mean TRI, below median area incorporated.

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\hat{GM} (rank)	0.104*** (0.0357)		0.0280 (0.0173)	
GM (rank)		0.0383* (0.0216)		0.268 (0.183)
F-Stat	13.324			
R-squared		.727	.727	
Dep Var Mean Observations	$40.238 \\ 804$	-15.412 804	-15.412 804	-15.412 804

^{*} pi0.10, ** pi0.05, *** pi0.01

^{*} pi0.10, ** pi0.05, *** pi0.01

Table 55: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, mean TRI, above median area incorporated.

	First Stage (1) GM (rank)	OLS (2) y.L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\hat{GM} (rank)	0.343*** (0.0391)		0.0373* (0.0206)	
GM (rank)		0.0625*** (0.0207)		$0.109* \\ (0.0590)$
F-Stat	32.314			
R-squared		.633	.63	
Dep Var Mean	60.01	-15.412	-15.412	-15.412
Observations	804	804	804	804

^{*} pj0.10, ** pj0.05, *** pj0.01

6.2 1940 Population Weighted

Table 56: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y and division FEs

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\widehat{GM} (rank)	0.397*** (0.0894)	y =110	0.138*** (0.0339)	y -120
GM (rank)		0.140*** (0.0337)		0.347*** (0.101)
F-Stat	41.192			
R-squared		.426	.426	
Dep Var Mean	50.124	-15.412	-15.412	-15.412
Observations	1608	1608	1608	1608

Standard errors in parentheses

Table 57: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y and division FEs, below median area incorporated.

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\widehat{GM} (rank)	0.139*** (0.0486)		0.0594** (0.0262)	
GM (rank)		0.0776** (0.0330)		0.427^* (0.219)
F-Stat	10.483			
R-squared		.715	.714	
Dep Var Mean	40.238	-15.412	-15.412	-15.412
Observations	804	804	804	804

^{*} p;0.10, ** p;0.05, *** p;0.01

^{*} pj0.10, ** pj0.05, *** pj0.01

Table 58: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y and division FEs, above median area incorporated.

	First Stage (1)	OLS (2)	Reduced Form (3)	2SLS (4)
	GM (rank)	y_L0	y_L0	y_L0
\widehat{GM} (rank)	0.336*** (0.105)		0.129*** (0.0351)	
GM (rank)		0.119*** (0.0356)		0.383*** (0.139)
F-Stat	33.529			
R-squared		.389	.394	
Dep Var Mean	60.01	-15.412	-15.412	-15.412
Observations	804	804	804	804

^{*} pi0.10, ** pi0.05, *** pi0.01

Table 59: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\widehat{GM} (rank)	0.377*** (0.0527)		0.115*** (0.0363)	
GM (rank)		0.117*** (0.0299)		0.304*** (0.0912)
F-Stat R-squared	43.48	.434	.431	15 410
Dep Var Mean Observations	50.124 1608	-15.412 1608	-15.412 1608	-15.412 1608

Table 60: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, below median area incorporated.

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\hat{GM} (rank)	0.133*** (0.0488)		0.0605** (0.0272)	
GM (rank)		0.0786** (0.0317)		0.453* (0.236)
F-Stat	10.37			
R-squared		.715	.714	
Dep Var Mean Observations	40.238 804	-15.412 804	-15.412 804	-15.412 804

^{*} pi0.10, ** pi0.05, *** pi0.01

^{*} pj0.10, ** pj0.05, *** pj0.01

Table 61: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, above median area incorporated.

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\widehat{GM} (rank)	0.362*** (0.0706)		0.0932** (0.0432)	
GM (rank)		0.0983*** (0.0291)		0.258** (0.113)
F-Stat	24.409			
R-squared		.402	.399	
Dep Var Mean	60.01	-15.412	-15.412	-15.412
Observations	804	804	804	804

^{*} pi0.10, ** pi0.05, *** pi0.01

Table 62: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, mean TRI

	First Stage	OLS	Reduced Form	2SLS
	(1) $GM (rank)$	(2) y_L0	(3) y_L0	(4) y_L0
\widehat{GM} (rank)	0.411***		0.129***	
,	(0.0506)		(0.0355)	
GM (rank)		0.120*** (0.0308)		0.313*** (0.0777)
F-Stat	47.508			
R-squared		.436	.436	
Dep Var Mean	50.124	-15.412	-15.412	-15.412
Observations	1608	1608	1608	1608

Table 63: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, mean TRI, below median area incorporated.

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\hat{GM} (rank)	0.135*** (0.0485)		0.0600** (0.0268)	
GM (rank)		0.0916*** (0.0329)		0.445** (0.226)
F-Stat	10.376			
R-squared		.72	.718	
Dep Var Mean Observations	$40.238 \\ 804$	-15.412 804	-15.412 804	-15.412 804

^{*} pi0.10, ** pi0.05, *** pi0.01

^{*} p;0.10, ** p;0.05, *** p;0.01

Table 64: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, mean TRI, above median area incorporated.

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\widehat{GM} (rank)	0.363*** (0.0623)		0.0970** (0.0405)	
GM (rank)		0.0804** (0.0313)		0.267** (0.107)
F-Stat	33.906			
R-squared		.407	.409	
Dep Var Mean Observations	60.01 804	-15.412 804	-15.412 804	-15.412 804

^{*} p;0.10, ** p;0.05, *** p;0.01

7 county-Level Tables, Per Capita, full-sample

7.1 Unweighted

Table 65: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y and division FEs

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\hat{GM} (rank)	0.318*** (0.0257)		0.235*** (0.0365)	
GM (rank)		0.393*** (0.0393)		0.741*** (0.117)
F-Stat	34.863			
R-squared		.449	.427	
Dep Var Mean	50.124	-31.35	-31.35	-31.35
Observations	1608	1608	1608	1608

Standard errors in parentheses

Table 66: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y and division FEs, below median area incorporated.

	First Stage (1) GM (rank)	OLS (2) y.L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\hat{GM} (rank)	0.109*** (0.0350)		0.120** (0.0535)	
GM (rank)		0.125* (0.0681)		1.101* (0.586)
F-Stat	15.824			
R-squared		.555	.555	
Dep Var Mean	40.238	-31.35	-31.35	-31.35
Observations	804	804	804	804

Standard errors in parentheses

^{*} pi0.10, ** pi0.05, *** pi0.01

^{*} pi0.10, ** pi0.05, *** pi0.01

Table 67: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y and division FEs, above median area incorporated.

	First Stage (1)	OLS (2)	Reduced Form (3)	2SLS (4)
	GM (rank)	y_L0	y_L0	y_L0
\hat{GM} (rank)	0.407*** (0.0335)		0.172*** (0.0449)	
GM (rank)		0.382*** (0.0497)		0.423*** (0.106)
F-Stat	31.109			
R-squared		.404	.356	
Dep Var Mean	60.01	-31.35	-31.35	-31.35
Observations	804	804	804	804

^{*} pi0.10, ** pi0.05, *** pi0.01

Table 68: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\hat{GM} (rank)	0.282*** (0.0262)		0.184*** (0.0360)	
GM (rank)		0.315*** (0.0373)		0.653*** (0.131)
F-Stat	39.467			
R-squared		.466	.452	
Dep Var Mean	50.124	-31.35	-31.35	-31.35
Observations	1608	1608	1608	1608

Table 69: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, below median area incorporated.

	First Stage	OLS	Reduced Form	2SLS
	(1)	(2)	(3)	(4)
	GM (rank)	$y_L L0$	$y_L L0$	$y_L = L0$
\widehat{GM} (rank)	0.100***		0.109**	
, ,	(0.0362)		(0.0548)	
GM (rank)		0.114*		1.092*
, ,		(0.0667)		(0.650)
F-Stat	12.398			
R-squared		.56200000000000001	.562000000000000001	
Dep Var Mean	40.238	-31.35	-31.35	-31.35
Observations	804	804	804	804

^{*} pi0.10, ** pi0.05, *** pi0.01

^{*} pj
0.10, ** pj
0.05, *** pj
0.01

Table 70: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, above median area incorporated.

	First Stage (1)	OLS (2)	Reduced Form (3)	2SLS (4)
	GM (rank)	y_L0	y_L0	y_L0
\hat{GM} (rank)	0.352*** (0.0397)		0.125*** (0.0445)	
GM (rank)		0.324*** (0.0467)		0.355*** (0.120)
F-Stat	36.135			
R-squared		.416	.384	
Dep Var Mean	60.01	-31.35	-31.35	-31.35
Observations	804	804	804	804

^{*} pi0.10, ** pi0.05, *** pi0.01

Table 71: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, mean TRI

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\widehat{GM} (rank)	0.277*** (0.0257)		0.187*** (0.0361)	
GM (rank)		0.330*** (0.0388)		0.676*** (0.133)
F-Stat	38.702			
R-squared		.467	.452	
Dep Var Mean	50.124	-31.35	-31.35	-31.35
Observations	1608	1608	1608	1608

Table 72: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, mean TRI, below median area incorporated.

	First Stage	OLS	Reduced Form	2SLS
	(1)	(2)	(3)	(4)
	GM (rank)	y_L0	y_L0	$y_L L0$
\widehat{GM} (rank)	0.104***		0.107*	
	(0.0357)		(0.0549)	
GM (rank)		0.136*		1.026*
, ,		(0.0696)		(0.605)
F-Stat	13.324			
R-squared		.56399999999999999	.56299999999999999	
Dep Var Mean	40.238	-31.35	-31.35	-31.35
Observations	804	804	804	804

^{*} p;0.10, ** p;0.05, *** p;0.01

^{*} p;0.10, ** p;0.05, *** p;0.01

Table 73: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, mean TRI, above median area incorporated.

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\widehat{GM} (rank)	0.343*** (0.0391)	y_L0	0.128*** (0.0448)	y_11.0
GM (rank)		0.333*** (0.0469)		0.373*** (0.123)
F-Stat	32.314			
R-squared		.418	.384	
Dep Var Mean	60.01	-31.35	-31.35	-31.35
Observations	804	804	804	804

^{*} p;0.10, ** p;0.05, *** p;0.01

7.2 1940 Population Weighted

Table 74: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y and division FEs

	First Stage (1) GM (rank)	OLS (2) v_L0	Reduced Form (3) y_L0	2SLS (4)
\hat{GM} (rank)	0.397*** (0.0894)	y_L0	0.272*** (0.0439)	y_L0
GM (rank)		0.380*** (0.0578)		0.686*** (0.155)
F-Stat R-squared	41.192	.221	.173	
Dep Var Mean Observations	50.124 1608	-31.35 1608	-31.35 1608	-31.35 1608

Standard errors in parentheses

Table 75: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y and division FEs, below median area incorporated.

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\widehat{GM} (rank)	0.139*** (0.0486)		0.177*** (0.0596)	
GM (rank)		0.273*** (0.0699)		1.274** (0.518)
F-Stat	10.483			
R-squared		.524	.518	
Dep Var Mean	40.238	-31.35	-31.35	-31.35
Observations	804	804	804	804

^{*} p;0.10, ** p;0.05, *** p;0.01

^{*} pi0.10, ** pi0.05, *** pi0.01

Table 76: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y and division FEs, above median area incorporated.

	First Stage (1)	OLS (2)	Reduced Form (3)	2SLS (4)
	GM (rank)	y_L0	y_L0	y_L0
\hat{GM} (rank)	0.336*** (0.105)		0.158*** (0.0305)	
GM (rank)		0.228*** (0.0505)		0.472*** (0.146)
F-Stat	33.529			
R-squared		.179	.142	
Dep Var Mean	60.01	-31.35	-31.35	-31.35
Observations	804	804	804	804

^{*} pi0.10, ** pi0.05, *** pi0.01

Table 77: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\hat{GM} (rank)	0.377*** (0.0527)		0.202*** (0.0448)	
GM (rank)		0.288*** (0.0458)		0.536*** (0.103)
F-Stat	43.48			
R-squared		.26	.232	
Dep Var Mean	50.124	-31.35	-31.35	-31.35
Observations	1608	1608	1608	1608

Table 78: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, below median area incorporated.

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y.L0	2SLS (4) y_L0
\hat{GM} (rank)	0.133*** (0.0488)		0.166*** (0.0610)	
GM (rank)		0.236*** (0.0658)		1.243** (0.551)
F-Stat	10.37			
R-squared		.534	.531	
Dep Var Mean	40.238	-31.35	-31.35	-31.35
Observations	804	804	804	804

^{*} pi0.10, ** pi0.05, *** pi0.01

^{*} pj0.10, ** pj0.05, *** pj0.01

Table 79: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, above median area incorporated.

	First Stage (1) GM (rank)	OLS (2) v_L0	Reduced Form (3) y_L0	2SLS (4) v_L0
\widehat{GM} (rank)	0.362*** (0.0706)		0.0920*** (0.0323)	
GM (rank)		0.175*** (0.0314)		0.254*** (0.0746)
F-Stat	24.409			
R-squared		.224	.192	
Dep Var Mean	60.01	-31.35	-31.35	-31.35
Observations	804	804	804	804

^{*} pi0.10, ** pi0.05, *** pi0.01

Table 80: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, mean TRI

	First Stage	OLS	Reduced Form	2SLS
	(1) $GM (rank)$	(2) y_L0	(3) y_L0	(4) y_L0
	, ,	у_ДО		ушо
\widehat{GM} (rank)	0.411***		0.216***	
	(0.0506)		(0.0440)	
GM (rank)		0.299***		0.525***
		(0.0463)		(0.0859)
F-Stat	47.508			
R-squared		.262	.234	
Dep Var Mean	50.124	-31.35	-31.35	-31.35
Observations	1608	1608	1608	1608

Table 81: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, mean TRI, below median area incorporated.

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\widehat{GM} (rank)	0.135*** (0.0485)		0.165*** (0.0597)	
GM (rank)		0.269*** (0.0680)		1.222** (0.517)
F-Stat	10.376			
R-squared		.542	.536	
Dep Var Mean	40.238	-31.35	-31.35	-31.35
Observations	804	804	804	804

^{*} p;0.10, ** p;0.05, *** p;0.01

^{*} p;0.10, ** p;0.05, *** p;0.01

Table 82: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, mean TRI, above median area incorporated.

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y.L0
\widehat{GM} (rank)	0.363*** (0.0623)		0.0956*** (0.0297)	
GM (rank)		0.167*** (0.0339)		0.263*** (0.0709)
F-Stat	33.906			
R-squared		.227	.203	
Dep Var Mean	60.01	-31.35	-31.35	-31.35
Observations	804	804	804	804

^{*} pi0.10, ** pi0.05, *** pi0.01