Lecture 11 Quantitative Political Science

Prof. Bisbee

Vanderbilt University

Lecture Date: 2023/10/05

Slides Updated: 2023-10-04

Agenda

- 1. Type 1 and Type II Error
- 2. Calculating Power
- 3. p-values

Type I Error

- Type I error: reject H_0 when it is actually true
 - What does this look like?

Type I error

- We will (purely by chance):
 - \circ Observe an estimated $\hat{\theta}$ in the RR $100*\alpha\%$ of the time
 - Thus falsely reject the null even though it's true
- This is Type I error!

Type II error

Type II error

- Suppose that the alternative hypothesis is true
- But we always conduct our hypothesis test under the assumption that the null is true
- If the sampling distribution of our estimator $\hat{\theta} \sim N(\theta_A, \sigma_{\hat{\theta}})$, we will mistakenly accept the null $100 * \beta\%$ of the time
- Define **power** as 1β

Power =
$$1 - \beta$$

= $1 - \Pr(Accept H_0|H_A true)$
= $1 - \Pr(\hat{\theta} < \theta_0 + z_{\alpha/2}\sigma_{\hat{\theta}}|\theta = \theta_A)$

Power

• We can do this!

$$\begin{split} \beta &= Pr(\hat{\theta} < \theta_0 + z_\alpha \sigma_{\hat{\theta}} | \theta = \theta_A) \\ &= Pr(\frac{\hat{\theta} - \theta_A}{\sigma_{\hat{\theta}}} < \frac{\theta_0 + z_\alpha \sigma_{\hat{\theta}}}{\sigma_{\hat{\theta}}} | \theta = \theta_A) \\ &= \Phi(\frac{\theta_0 + z_\alpha \sigma_{\hat{\theta}} - \theta_A}{\sigma_{\hat{\theta}}}) \\ &= \Phi(\frac{\theta_0 - \theta_A}{\sigma_{\hat{\theta}}} + z_\alpha) \end{split}$$

Power

- We know θ_0 and θ_A (or we can specify them)
- We have also specified α and therefore z_{α}

Power =
$$1 - \Phi(\frac{\theta_0 - \theta_A}{\frac{\sigma}{\sqrt{n}}} + z_{\alpha})$$

• Stare at this for a second: can you figure out the following signs?

$$\frac{\partial Power}{\partial \alpha} \\
\frac{\partial Power}{\partial \sigma} \\
\frac{\partial Power}{\partial n} \\
\frac{\partial Power}{\partial (|\theta_0 - \theta_A|)}$$