Instituto Tecnológico de Buenos Aires

22.85 - Sistemas de Control

Trabajo de Laboratorio $N^{\circ}1$: Phase-Locked Loop (PLL) o Lazo de Enganche de Fase

Grupo 1

Máspero, Martina	57120
Mestanza, Joaquín Matías	58288
Nowik, Ariel Santiago	58309
Panaggio Venerandi, Guido Martin	56214
Parra, Rocío	57669
Regueira, Marcelo Daniel	58300

 $\begin{array}{c} Profesor \\ {\rm Nasini,\ V\'ictor\ Gustavo} \end{array}$

Presentado: xx/09/2019

Índice

Ejercicio 1: Prelaboratorio	2
Ejercicio 2: factor de amortiguamiento considerando los filtros	2
Ejercicio 3: Transferencia completa	3

Ejercicio 1: Prelaboratorio

Se pidió analizar distintas transferencias (en la sección Prelaboratorio) del diagrama en bloques del circuito provisto por la cátedra.

Figura 1: Diagrama en bloques del circuito

a) Modulador (VCO)

$$\frac{\theta(s)}{V_{in}(s)} = \frac{K_0}{s} \tag{1}$$

b) Demodulador (PLL)

$$\frac{V_f(s)}{\theta(s)} = \frac{s \cdot K_d \cdot F(s)}{s + K_0 K_d F(s)} \tag{2}$$

c) Filtros pasabajos: $F_1(s)$ y $F_2(s)$

$$F_1(s) = \frac{1}{1 + \frac{s}{\omega_1}} \qquad \text{donde} \qquad \omega_1 = \frac{1}{R_5 \cdot C_6}$$
 (3)

$$F_{1}(s) = \frac{1}{1 + \frac{s}{\omega_{1}}} \quad \text{donde} \quad \omega_{1} = \frac{1}{R_{5} \cdot C_{6}}$$

$$F_{2}(s) = \frac{1 + \frac{s}{\omega_{2}}}{1 + \frac{s}{\omega_{eq}}} \quad \text{donde} \quad \omega_{2} = \frac{1}{R_{6} \cdot C_{6}} \quad \omega_{eq} = \frac{1}{\frac{1}{\omega_{1}} + \frac{1}{\omega_{2}}}$$

$$(4)$$

d) $F_0(s)$

$$F_0(s) = \frac{V_{out}(s)}{V_f(s)} = \frac{1}{1 + \frac{s}{\omega_0}} \quad \text{donde} \quad \omega_0 = \frac{1}{R_9 \cdot C_7}$$
 (5)

Ejercicio 2: factor de amortiguamiento considerando los filtros

Notar que lo que cambia entre los filtros es $R_6 = 0$ así que dejamos las expresiones generales.

$$\frac{V_f(s)}{\theta(s)} = \frac{s}{K_0} \cdot \frac{1 + \frac{s}{\omega_2}}{\left(\frac{s}{\omega_n}\right)^2 + 2\frac{\xi}{\omega_n} + 1} \tag{6}$$

$$\omega_n = \sqrt{\frac{K_d K_0}{C_6 \cdot (R_5 + R_6)}} \tag{7}$$

$$\xi = \frac{R_6 \cdot C_6 \cdot K_d \cdot K_0 + 1}{2 \cdot \sqrt{C_6 \cdot K_d \cdot K_0 \cdot (R_5 + R_6)}}$$
(8)

Ejercicio 3: Transferencia completa

$$\frac{V_{out}(s)}{V_{in}(s)} = \frac{V_{out}(s)}{V_f(s)} \cdot \frac{V_f(s)}{\theta(s)} \cdot \frac{\theta(s)}{V_{in}(s)}$$

$$(9)$$

$$\frac{V_{out}(s)}{V_{in}(s)} = \frac{1}{1 + \frac{s}{\omega_0}} \cdot \frac{1 + \frac{s}{\omega_2}}{\left(\frac{s}{\omega_n}\right)^2 + 2\frac{\xi}{\omega_n} + 1}$$

$$\tag{10}$$

Laboratorio

Para poder simular la transferencia completa se necesitan hallar los valores K_0 y K_d . Se procedió inyectar una entrada de tensión constante a la entrada del VCO. Con eso se obtuvo la siguiente tabla:

Tabla 1: Tabla centrada con datos desde "VCO.csv'				
#	$DC{IN}(V)$	$freq_{out}(KHz)$	$K_0(rad/seg/V)$	
1	1.033	11.52	70069.98	
2	2.0121	254	793165.88	
3	3.011	469	978682.8	
4	3.9964	649	1020365.14	
5	4.9842	800	1008496.5	
6	5.9754	930	977903.1	
7	6.9438	1040	941057.16	
8	7.9499	1149	908109.52	
9	8.9434	1200	843059.95	
10	9.9123	1200	760653.16	

Como en el trabajo práctico se nos pide entrar al VCO con una señal de 0.5 Vpp y además un offset de 5V, se le da un peso mayor a las mediciones 4, 5 y 6. Con este criterio optamos por un valor de:

$$K_0 = 1Mrad/s/V$$

Luego, para determinar la constante K_d se consultó la datasheet del CD4046 de Texas Instruments. En la misma se halló el siguiente gráfico:

Figure 4. Phase Comparator I Characteristics at LPF Output

Figura 2: Características del comparador de fase tipo 1 (XOR)

Por simple inspección nos queda como resultado

$$K_d = \frac{V_{DD}}{\pi}$$

Mediciones: Filtro con F1 (caso RC)

Se realizaron las respectivas simulaciones y mediciones con F1 (caso RC).

Figura 3: Gráfico de las mediciones superpuestas con la curva teórica (caso RC)

Figura 4: Simulaciones con el primer tipo de filtro

Figura 5: Mediciones: Overshoot y rise time

Figura 6: Mediciones: peak y peak time

Figura 7: Mediciones: settling time

Mediciones: Filtro con F2 (caso RRC)

Figura 8: Gráfico de las mediciones superpuestas con la curva teórica (caso RRC)

Figura 9: simulación del circuito

Figura 10: Mediciones del overshoot y risetime

Figura 11: medición de peak y peak time

Figura 12: medición de settling time