Calculation of current-voltage characteristic of a resonant-tunneling diode (RTD) and using the adiabatic approximation for simulation of conductance quantization in quantum point contact (QPC)

Results

A. Mreńca-Kolasińska

January 31, 2025; last update January 31, 2025

1. Transfer matrix method

Figure 1: Transmission and reflection coefficient through potential barrier with constant effective mass as a function of energy. The dashed orange line shows the analytical solution.

Figure 2: Transmission and reflection coefficient through potential barrier with spatially varying effective mass as a function of energy.

$2. \ \ Resonant-tunneling \ diode.$

Figure 3: Transmission and reflection coefficient through a double potential barrier with spatially varying effective mass as a function of energy .

Figure 4: **Test results:** Example potential profile and the integrated function. These result are not obligatory but it is helpful to plot them as a test.

Figure 5: Current-voltage characteristic of a resonant-tunneling diode, assuming temperature 77 K.

3. Conductance quantization in a QPC within the adiabatic approximation

Figure 6: **Test results:** Potential profile of the QPC.

Figure 7: The effective potential $E_n(x)$ for n = 1, 2, 3, 4, 5.

Figure 8: The QPC conductance as a function of incident electron energy.

Figure 9: The QPC conductance as a function of the gate voltage V_g at incident electron energy E=50 meV and 100 meV.