

ISTA 421 + INFO 521 Introduction to Machine Learning

Lecture 5: Basis Functions, Cross Validation (CV), Model Selection (by CV), Regularization

Clayton T. Morrison

claytonm@email.arizona.edu Harvill 437A Phone 621-6609

5 September 2018

Next Topics

- Non-linear response:
 - Basis Functions
- Assessing Generalization
 - Problems: Under or Overfitting
 - Assessment framework: Cross validation
- Model selection
 - Method 1: Using Cross Validation
- · Regularized Least Squares
- Probability Review
 - Definitions and Probability Calculus
 - Expectation
 - Continuous probability
 - Distributions
 - Likelihood

The Normal Equations

For model:
$$t=f(x_1,...,x_k;w_0,...,w_k)=\sum_{i=0}^k x_iw_i$$

$$v_0 = \bar{t} - w_1 x$$

$$w_0 = \overline{t} - w_1 x$$

$$w_1 = \frac{\overline{xt} - \overline{x}\overline{t}}{\overline{x^2} - (\overline{x})^2}$$

$$\mathbf{\hat{w}} = \left(\mathbf{X}^{\top}\mathbf{X}\right)^{-1}\mathbf{X}^{\top}\mathbf{t}$$

$$\mathbf{w} = \begin{bmatrix} w_0 \\ w_1 \end{bmatrix}, \quad \mathbf{x}_n = \begin{bmatrix} 1 \\ x_n \end{bmatrix}$$
$$\mathbf{X} = \begin{bmatrix} \mathbf{x}_1^{\mathsf{T}} \\ \mathbf{x}_2^{\mathsf{T}} \\ \vdots \\ \mathbf{x}_1^{\mathsf{T}} \end{bmatrix} = \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots \\ 1 & x_N \end{bmatrix}, \quad \mathbf{t} = \begin{bmatrix} t_1 \\ t_2 \\ \vdots \\ t_N \end{bmatrix}$$

Linear (in response) has its limit!

Nonlinear Response

• We can extend the power of linear LMS best fit to models that have a *non-linear* **response**.

$$f(x; \mathbf{w}) = \mathbf{w}^\mathsf{T} \mathbf{x} = w_0 + w_1 x + w_2 x^2$$

$$\mathbf{x}_{n} = \begin{bmatrix} 1 \\ x_{n} \\ x_{n}^{2} \end{bmatrix}, \quad \mathbf{X} = \begin{bmatrix} 1 & x_{1} & x_{1}^{2} \\ 1 & x_{2} & x_{2}^{2} \\ \vdots & \vdots & \vdots \\ 1 & x_{N} & x_{N}^{2} \end{bmatrix}$$

Fitting the parameters w still works the same! The only difference is that we square the x values at the input phase (for each of the elements of the third column vector)

Generalize to Models of kth-order Polynomials

$$f(x; \mathbf{w}) = \sum_{k=0}^{K} w_k x^k \quad \mathbf{X} = \begin{bmatrix} x_1^0 & x_1^1 & x_1^2 & \cdots & x_1^K \\ x_2^0 & x_2^1 & x_2^2 & \cdots & x_2^K \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x_N^0 & x_N^1 & x_N^2 & \cdots & x_N^K \end{bmatrix}$$

Note: this is **not** creating more **independent** sources of information about individuals, but it **IS** giving the model the capacity to consider **non-linear components** of what original inputs there are.

And we're still just learning LINEAR COMBINATIONS of those components

Linear Combination of *Basis Functions*Projecting the Data (not just polynomials)

$$\mathbf{X} = \begin{bmatrix} h_1(x_1) & h_2(x_1) & \cdots & h_K(x_1) \\ h_1(x_2) & h_2(x_2) & \cdots & h_K(x_2) \\ \vdots & \vdots & \ddots & \vdots \\ h_1(x_N) & h_2(x_N) & \cdots & h_K(x_N) \end{bmatrix}$$

$$h_1(x) = 1$$

$$h_2(x) = x$$

$$h_3(x) = \sin\left(\frac{x-a}{b}\right)$$

$$f(x; \mathbf{w}) = w_0 + w_1 x + w_2 \sin\left(\frac{x-a}{b}\right).$$

Careful!! a and b must be constants

All parameters (as variables being adjusted) must be **linearly** combined

Cross-Validation Randomly partition data into k chunks of (approx.) equal size; "hold out" one chunk as the Test Set; Training Test train on everything but that chunk; set test with the chunk. Repeat this for all chunks. Fold 1 All data What this does: Fold 2 Estimates the error of a number of possible models trained on data subsets. Leave-one-out-CV (LOOCV) Fold K ... same thing, but chunk = 1 datum

Validation Set

- In some cases, you need to select additional parameters based on trained model.
 - E.g., feature set selection
- In this case, need an additional, independent validation set.
- Logic is the same:
 - Training must be independent of validation
 - Validation must be independent of Test
- This could be "embedded" in a crossvalidation framework

Regularization

 Penalize large coefficient values: add magnitude of all of the weights (e.g., their sum) to the loss.

$$\begin{split} \sum_{i} w_{i}^{2} &= \mathbf{w}^{\top} \mathbf{w} \qquad \mathcal{L}' = \mathcal{L} + \lambda \mathbf{w}^{\top} \mathbf{w} \\ \mathcal{L}' &= \mathcal{L} + \lambda \mathbf{w}^{\top} \mathbf{w} \\ &= \frac{1}{N} \mathbf{w}^{\top} \mathbf{X}^{\top} \mathbf{X} \mathbf{w} - \frac{2}{N} \mathbf{w}^{\top} \mathbf{X}^{\top} \mathbf{t} + \lambda \mathbf{w}^{\top} \mathbf{w} \end{split}$$
 Note: We've already removed $\mathbf{t}^{\top} \mathbf{t}$ from \mathcal{L} because we'll be taking the derivative with respect to \mathbf{w} .
$$\frac{\partial \mathcal{L}'}{\partial \mathbf{w}} = \frac{2}{N} \mathbf{X}^{\top} \mathbf{X} \mathbf{w} - \frac{2}{N} \mathbf{X}^{\top} \mathbf{t} + 2\lambda \mathbf{w} \\ \frac{2}{N} \mathbf{X}^{\top} \mathbf{X} \mathbf{w} - \frac{2}{N} \mathbf{X}^{\top} \mathbf{t} + 2\lambda \mathbf{w} = 0 \\ (\mathbf{X}^{\top} \mathbf{X} + N\lambda \mathbf{I}) \mathbf{w} = \mathbf{X}^{\top} \mathbf{t} \\ \hat{\mathbf{w}} = (\mathbf{X}^{\top} \mathbf{X} + N\lambda \mathbf{I})^{-1} \mathbf{X}^{\top} \mathbf{t} \end{split}$$

Including a regularization term also ensures the inverse matrix is non-singular (which happens when X^TX has some columns that are colinear, or nearly so (leading to very large magnitude \mathbf{w} values); near colinearity is not uncommon in real data).

	λ = 0	λ = very small	λ = 1
	$\ln \lambda = -\infty$	$\ln \lambda = -18$	$\ln \lambda = 0$
w_0^{\star}	0.35	0.35	0.13
w_1^{\star}	232.37	4.74	-0.05
	-5321.83	-0.77	-0.06
w_3^{\star}	48568.31	-31.97	-0.05
w_2^{\star} w_3^{\star} w_4^{\star} w_5^{\star} w_6^{\star}	-231639.30	-3.89	-0.03
w_5^{\star}	640042.26	55.28	-0.02
w_6^{\star}	-1061800.52	41.32	-0.01
w_7^{\star}	1042400.18	-45.95	-0.00
w_8^{\star}	-557682.99	-91.53	0.00
$\widetilde{w_9^\star}$	125201.43	72.68	0.01

