EXAMEN FINAL ANÁLISIS MATEMÁTICO II (95-0703) - 26 DE MAYO DE 2022

Condición mínima para aprobar: 3 (tres) ítems bien, uno de "T1) o T2)" y dos de "P1), P2), P3) oP4)".

T1) a. Indique si la siguiente proposición es verdadera o falsa demostrándola o bien exhibiendo un contraejemplo según corresponda:

"Si ϕ un campo escalar de clase $C^2(R^3)$ armónico y Ω es un conjunto contenido en R^3 cuya frontera es una superficie Σ orientada con la normal entrante a Ω , entonces el flujo del gradiente de ϕ a través de Σ es nulo"

- **b.** Dada la superficie Σ de ecuación $z=8-x^2$ con $z\geq x^2+2y^2$, $x,y,z\in R_0^+$, y el campo vectorial $\vec{f}(x,y,z)=\left(\frac{x}{2},y,z\right)$, calcule el flujo de \vec{f} a través de la superficie Σ orientada hacia z^+ .
- **T2**) **a.** Indique si la siguiente proposición es verdadera o falsa demostrándola o bien exhibiendo un contraejemplo según corresponda:

"Si $f: A \subseteq \mathbb{R}^2 \to \mathbb{R}$ / z = f(x, y) alcanza un valor máximo local en el punto (x_0, y_0) , entonces f admite derivada en toda dirección en (x_0, y_0) "

- **b.** Determine, si existen, máximos y mínimos locales y/o globales de la función definida por $f(x,y) = 1 \sqrt[3]{x^2 + y^2}$.
- **P1**) Calcule la circulación del campo $\vec{h}(x,y,z) = (y-1,z^2,y)$ a lo largo de la curva $C = \begin{cases} 2x^2 + 2y^2 = z^2 \\ z = y + 1 \end{cases} \text{ con orientación } \left(\frac{1}{\sqrt{2}},0,1\right) \to \left(0,1+\sqrt{2},2+\sqrt{2}\right) \to \cdots \to \left(\frac{1}{\sqrt{2}},0,1\right).$
- **P2**) Se considera la función z = g(x, y) definida implícitamente por la ecuación $x^3 + y^2 + xyz + e^{xz^2} = 3$ en un entorno del punto $(1,1,z_0)$. Determine la matriz Jacobiana $D\vec{G}(1,1)$ correspondiente al campo $\vec{G}: R^2 \to R^2$ definido por $\vec{G}(x,y) = (y^2 f(x,y), 2xf(x,y))$.
- **P3**) Calcule $\int_{\Gamma} \vec{g} d\vec{s}$ con $\vec{g}(x,y) = (2x^2y, \frac{2}{3}x^3 + 3x + 2)$ siendo Γ el arco de la curva ortogonal a la familia y = mx + 1 que pasa por el punto (1,1) y está recorrida desde (0,0) hasta (0,2) en el primer cuadrante.
- **P4**) Dada la superficie Σ : $x^2 + y^2 = z^2$ ($z \ge 0$) de densidad superficial homogénea y sea el punto (x_M, y_M, z_M) el centro de masa de la porción de superficie Σ interior a la superficie de ecuación $x^2 + y^2 + z^2 = 2by$ (b > 0). Calcule la coordenada z_M