8.1 Outer Lebesgue Measure

April 3, 2015

Abstract

Exercices de la secion 8.1 sur la mesure de Lebesgue

Lemme:

- 1. $\{x_i\}_{i=1}^{\infty} \subseteq X$
- 2. $x \in X$ tq $\exists \epsilon$ tq $H_{\epsilon} := |\{n \in \mathbb{N} : x_n \in (x \epsilon, x + \epsilon)\}| = \infty$
- $\diamond \{x_i\}_{i=1}^{\infty}$ possède une sous-suite convergente.

Car de ce que $|H_{\epsilon}| = \infty$, on a que soi $|\{n \in \mathbb{N} : x_n \in (x - \epsilon, x)\}| = \infty$ soi $|\{n \in \mathbb{N} : x_n \in (x, x + \epsilon)\}| = \infty$. SPDG, on suppose $|\{n \in \mathbb{N} : x_n \in (x - \epsilon, x)\}| = \infty$ et on pose $H_1 = \{n \in \mathbb{N} : x_n \in (x - \epsilon, x)\}$.

Pour les mêmes raisons, on a que, si $H_i := \{n \in \mathbb{N} : x_n \in (a_i, b_i)\}$ est infinie dénombrable, alors soit $\{n \in \mathbb{N} : x_n \in (a_i, \frac{a_i + b_i}{2})\}$ ou $\{n \in \mathbb{N} : x_n \in (\frac{a_i + b_i}{2}, b_i)\}$ est infinie dénombrable.

On pose $H_{i+1} := \{n \in \mathbb{N} : x_n \in (a_i, \frac{a_i + b_i}{2})\}$ si cet ensemble est infinie dénombrable et $:= \{n \in \mathbb{N} : x_n \in (\frac{a_i + b_i}{2}, b_i)\}$ sinon.

On définie alors la suite

$$y_1 \in H_1$$

$$y_i \in H_i - \bigcup_{j=1}^{i-1} \{y_j\}$$

où $a_1 := x - \epsilon$, $b_1 := x + \epsilon$ et $H_1 := H_{\epsilon}$.

On a que $\lambda(H_i) = \frac{\epsilon}{2^{i-1}}$. Il est alors aisé de voir que la suite $\{y_i\}_{i=1}^{\infty}$ est cauchy dans \mathbb{R} , donc qu'elle converge. Or, il s'agit d'une sous-suite de $\{x_i\}_{i=1}^{\infty}$.

8-4

 \diamond Utilisez le théorème d'Heine-Borel et les axiomes de $\mathbb R$ sauf Ax 1.19 pour montrer le théorème de Bolzano-Weistrass.

On considère l'interval $[m,M] \supseteq \{x_i\}_{i=1}^{\infty}$. On suppose qu'il n'existe aucune sous-suite convergente de $\{x_i\}_{i=1}^{\infty}$. Alors, pour tout $x \in [m,M]$, pour tout $\epsilon > 0$, l'ensemble $\{n \in \mathbb{N} : x_n \in (x - \epsilon, x + \epsilon)\}$ est fini par le lemme démontré plus haut.

Soit $\{n \in \mathbb{N} : x_n \in (x - \epsilon_x, x + \epsilon_x) =: B_{\epsilon_x}\}$ pour un certain ϵ_x pour chaque $x \in [m, M]$.

Alors $C:=\{B_{\epsilon_x}:x\in[m,M]\}$ est un recouvrement d'ouverts de [m,M]. Or, ce recouvrement ne peut posséder de sous-recouvrement fini, car alors $\{x_i\}_{i=1}^{\infty}\subseteq\bigcup_{j=1}^nB_{\epsilon_j}$. Alors il existe un B_{ϵ_j} tq $\{n\in\mathbb{N}:x_n\in B_{\epsilon_j}\}$ est infinie, ce qui est impossible.

Heine-Borel est donc faux pour [m, M], une contradiction.

IMPORTANT : Je suis convaincu que la preuve ne fonctionne que parce que le lemme que j'ai démontré plus haut est équivalent à Bolzano-Weistrass. De plus, j'y emploie implicitement l'axiome de complétude lorsque j'utilise l'équivalence des suites Cauchy et des suites convergentes.

8-5

- 1. $f:[a,b]\to\mathbb{R}$ continue
- 2. $\lambda(\{x \in [a,b] : f(x) \neq 0\}) = 0$

 $\diamond f(x) = 0$ pour tout $x \in [a, b]$.

Car supposons le contraire. Alors il existe un x tel que $f(x) \neq 0$. Posons L := f(x).

Alors pour $\epsilon := |L| > 0$, il existe $\delta > 0$ tel que $|x - y| < \delta \Rightarrow |L - f(y)| < \epsilon$.

Mais alors $L - \epsilon = 0 < f(y)$ (SPDG, il se pourrait que $L + \epsilon = 0$). Donc $(x - \delta, x + \delta)$ forme un interval I tel que $y \in I \Rightarrow f(y) \neq 0$.

Or, par sous additivité, $I \subseteq \{x \in [a,b] : f(x) \neq 0\} \Rightarrow \lambda(I) = 2\delta < \lambda(\{x \in [a,b] : f(x) \neq 0\}) = 0$, une contradiction.

8-6

1. $f, g: [a, b] \to \mathbb{R}$ continue presque partout

 $\diamond f + g$ continue presque partout.

On pose A, B les ensembles de point où f, g sont continues, respectivement.

Soit f + g discontinues en x. Alors $x \notin A$ ou $x \notin B$, c'est dire $x \in A^c \cup B^c$.

Or
$$\lambda(A^c \cup B^c) \le \lambda(A^c) + \lambda(B^c) = 0$$
.