Implementation and evaluation of Otsu's thresholding

Final presentation

Elizaveta Chernova, Veronika Schuler, Laura Wächter, Hannah L. Winter

21.07.2021

Cell nuclei segmentation

Outline

Outline

DSC vs. MSD vs. HD

Original Image

Ground truth

Original Image

Gaussian filter

Median filter

Original Image

Histogram stretching

Dice Score MSD

Dice Score MSD

N2DL-HeLa

Best strategy:

Median filter and histogram stretching (0.76)

N2DL-HeLa

Original image

Gaussian filter

Segmentation

NIH3T3

Original image

Ground truth

NIH3T3: One-level Otsu

Histogram stretching (0.533)

Best strategy: Median filter (0.577)

Original image

Ground truth

One-level Segmentation

Two-level Segmentation

False negatives False positives

Original image

Histogram stretching

Ground truth

$$d=1$$


```
edge_pixels = []

for index in np.ndindex(img.shape):
    if workimg[index[0]][index[1]] == 1:
        if 0 in workimg[(index[0] - 1):(index[0] + 2), (index[1] - 1):(index[1] + 2)]:
        edge_pixels.append(index)

return edge_pixels
```

$$d = 1$$

$$d = 1$$

$$d = \sqrt{2}$$


```
for other_pixel in border_pixels:
    if math.dist(pixel, other_pixel) < 2:</pre>
        new_group.append(other_pixel)
        border_pixels.remove(other_pixel)
    border_pixels.remove(pixel)
```


Evaluation cell nuclei counting

349

Evaluation cell nuclei counting

Conclusion

Laura Wächter, Veronika Schuler, Elizaveta Chernova, Hannah L. Winter

Thank you for your attention!

Additional slide – MSD code

```
# calculate minimum distances for each point in seg to the sets of points in gt
tree_seg_gt = spatial.cKDTree(gt_array)
mindist_seg_gt, minid_seg_gt = tree_seg_gt.query(seg_array)
# calculate sum and length of arrays with minimal distances
sum_seg_gt = np.sum(mindist_seg_gt)
size_seg_gt = len(mindist_seg_gt)
mean_surface_distance = (1/(size_gt_seg+size_seg_gt))*(sum_gt_seg + sum_seg_gt)
return mean_surface_distance
```

Additional slide – HD code

```
# calculate minimum distances for each point in seg to the sets of points in gt
 tree_seg_gt = spatial.cKDTree(gt_array)
 mindist_seg_gt, minid_seg_gt = tree_seg_gt.query(seg_array)
 # calculate sum and length of arrays with minimal distances
 sum_seg_gt = np.sum(mindist_seg_gt)
 size_seq_qt = len(mindist_seq_qt)
hausdorff_distance = max(max_gt_seg_max_seg_gt)
return hausdorff_distance
```

Additional slide - cell counting dataset 1

Table 1: Results of the cell counting on the N2DH-GOWT1 dataset.

	Calculated number	Ground truth number	Absolute difference	Relative difference
man_seg01.tif	24	23	1	0.043478
man_seg21.tif	23	24	-1	-0.041667
man_seg31.tif	24	22	2	0.090909
man_seg39.tif	23	25	-2	-0.080000
man_seg52.tif	30	30	0	0.000000
man_seg72.tif	28	28	0	0.000000

Additional slide – cell counting dataset 2

	Calculated number	Ground truth number	Absolute difference	Relative difference
man_seg13.tif	58	59	-1	-0.016949
man_seg52.tif	107	109	-2	-0.018349
man_seg75.tif	365	349	16	0.045845
man_seg79.tif	329	342	-13	-0.038012

Cell Counting

```
all_groups.append(new_group)
```


N2DL-HeLa: Outlier

Overlay of ground truth and test image

- False negatives
- False positives

Additional slide – Histogram stretching

