

rules of modular arithmetic

Addition (and subtraction)

If
$$a \equiv b \mod m$$
 and

 $c \equiv d \mod m$ then $a + c \equiv b + d \mod m$

Multiplication

If
$$a \equiv b$$

$$a \equiv b \mod m$$

$$c \equiv a \mod m$$

 $a \times c \equiv b \times d \mod m$

$$c \equiv d \mod m$$

Division

The remainder after division is always congruent to the number we are dividing.

Example.

Example.

rules of modular arithmetic

Addition (and subtraction)

```
If a \equiv b \mod m and c \equiv d \mod m then a + c \equiv b + d \mod m
```

Example.

```
87 \equiv 2 \mod 17 and 222 \equiv 1 \mod 17 \implies 87 + 222 \mod 17 \equiv 2 + 1 \mod 17 \equiv 3 \mod 17
```

Multiplication

```
If a \equiv b \mod m and c \equiv d \mod m then a \times c \equiv b \times d \mod m
```

Example.

 $9876 \equiv 6 \mod 10$ and $17642 \equiv 2 \mod 10$ $\implies 9876 \times 17642 \mod 10 \equiv 6 \times 2 \mod 10 \equiv 2 \mod 10$

Division

The remainder after division is always congruent to the number we are dividing.

Example.

What is the remainder of 17×18 when it is divided by 19? We know that $17 \equiv -2 \mod 19$ and $18 \equiv -1 \mod 19$ $\implies 17 \times 18 \equiv (-2) \times (-1) = 2 \mod 19$

Boolean algeora