Convolutional Neural Nets

Al604 Deep Learning for Computer Vision Prof. Hyunjung Shim

Slide credit: Justin Johnson, Fei-Fei Li, Ehsan Adeli

Recap: Backpropagation

Represent complex expressions as **computational graphs**

Forward pass computes outputs

Backward pass computes gradients

During the backward pass, each node in the graph receives **upstream gradients** and multiplies them by **local gradients** to compute **downstream gradients**

$$f(x,W) = Wx$$

$$f=W_2\max(0,W_1x)$$

Stretch pixels into column

Problem: So far our classifiers don't respect the spatial

structure of images!

Input image (2, 2)

231

56

24

2

(4,)

Solution: Define new computational nodes that operate on images!

Components of a Full-Connected Network

Fully-Connected Layers

Activation Function

Components of a Full-Connected Network

Fully-Connected Layers

Convolution Layers

Pooling Layers

Activation Function

Normalization

$$\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}}$$

Components of a Full-Connected Network

Fully-Connected Layers

Convolution Layers

Pooling Layers

Activation Function

Normalization

$$\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}}$$

Fully-Connected Layer

32x32x3 image -> stretch to 3072 x 1

Fully-Connected Layer

32x32x3 image -> stretch to 3072 x 1

3x32x32 image: preserve spatial structure

3x32x32 image: preserve spatial structure

3x32x32 image

point a 6-dim vector Also 6-dim bias vector: 3x32x32 image Convolution Layer 32 6x3x5x5 32 Stack activations to get a filters 6x28x28 output image!

28x28 grid, at each

Stacking Convolutions

Stacking Convolutions

Q: What happens if we stack two convolution layers?

Stacking Convolutions

MLP: Bank of whole-image templates

First-layer conv filters: local image templates (Often learns oriented edges, opposing colors)

AlexNet: 64 filters, each 3x11x11

Input: 7x7

Input: 7x7

Input: 7x7

Input: 7x7

Input: 7x7

Filter: 3x3

7

Input: 7x7

Filter: 3x3

Output: 5x5

In general: Problem: Feature

with each layer!

Input: W maps "shrink"

Filter: K

Output: W - K + 1

7

0	0	0	0	0	0	0	0	0
0								0
0								0
0								0
0								0
0								0
0								0
0								0
0	0	0	0	0	0	0	0	0

Input: 7x7

Filter: 3x3

Output: 5x5

In general: Problem: Feature

with each layer!

Input: W maps "shrink"

Filter: K

Output: W - K + 1

Solution: padding

Add zeros around the input

0	0	0	0	0	0	0	0	0
0								0
0								0
0								0
0								0
0								0
0								0
0								0
0	0	0	0	0	0	0	0	0

Input: 7x7

Filter: 3x3

Output: 5x5

In general: Very common:

Input: W Set P = (K - 1) / 2 to

Filter: K make output have

same size as input!

Padding: P

Output: W - K + 1 + 2P

Receptive Fields

For convolution with kernel size K, each element in the output depends on a K x K **receptive field** in the input

Receptive Fields

Each successive convolution adds K-1 to the receptive field size With L layers the receptive field size is 1 + L * (K-1)

Be careful – "receptive field in the input" vs "receptive field in the previous layer" Hopefully clear from context!

Receptive Fields

Each successive convolution adds K-1 to the receptive field size With L layers the receptive field size is 1 + L * (K - 1)

Problem: For large images we need many layers for each output to "see" the whole image image

Receptive Fields

Each successive convolution adds K-1 to the receptive field size With L layers the receptive field size is 1 + L * (K - 1)

Input

Problem: For large images we need many layers for each output to "see" the whole image image

Solution: Downsample inside the network

Input: 7x7

Filter: 3x3

Stride: 2

Input: 7x7

Filter: 3x3

Stride: 2

Input: 7x7

Filter: 3x3

Stride: 2

Input: 7x7

Filter: 3x3 Output: 3x3

Stride: 2

In general:

Input: W

Filter: K

Padding: P

Stride: S

Output: (W - K + 2P) / S + 1

Input volume: 3 x 32 x 32

10 5x5 filters with stride 1, pad 2

Output volume size: ?

Input volume: 3 x 32 x 32

10 5x5 filters with stride 1, pad 2

Output volume size:

$$(32+2*2-5)/1+1 = 32$$
 spatially, so $10 \times 32 \times 32$

Input volume: 3 x 32 x 32

10 5x5 filters with stride 1, pad 2

Output volume size: 10 x 32 x 32

Number of learnable parameters: ?

Input volume: 3 x 32 x 32

10 5x5 filters with stride 1, pad 2

Output volume size: 10 x 32 x 32

Number of learnable parameters: 760

Parameters per filter: 3*5*5 + 1 (for bias) = 76

10 filters, so total is **10** * **76** = **760**

Input volume: 3 x 32 x 32

10 5x5 filters with stride 1, pad 2

Number of learnable parameters: 760

Number of multiply-add operations: ?

Input volume: 3 x 32 x 32

10 5x5 filters with stride 1, pad 2

Output volume size: 10 x 32 x 32

Number of learnable parameters: 760

Number of multiply-add operations: 768,000

10*32*32 = 10,240 outputs; each output is the inner product

of two 3x5x5 tensors (75 elems); total = 75*10240 = 768K

Example: 1x1 Convolution

Example: 1x1 Convolution

each input position

Lin et al, "Network in Network", ICLR 2014

Convolution Summary

Input: C_{in} x H x W

Hyperparameters:

Kernel size: K_H x K_W

- Number filters: C_{out}

- Padding: P

Stride: S

Weight matrix: $C_{out} \times C_{in} \times K_H \times K_W$

giving C_{out} filters of size C_{in} x K_H x K_W

Bias vector: C_{out}

Output size: C_{out} x H' x W' where:

- H' = (H K + 2P) / S + 1
- W' = (W K + 2P) / S + 1

Convolution Summary

Input: C_{in} x H x W

Hyperparameters:

Kernel size: K_H x K_W

Number filters: C_{out}

Padding: P

- **Stride**: S

Weight matrix: $C_{out} \times C_{in} \times K_H \times K_W$ giving C_{out} filters of size $C_{in} \times K_H \times K_W$

Bias vector: C_{out}

Output size: $C_{out} \times H' \times W'$ where:

- H' = (H - K + 2P) / S + 1

- W' = (W - K + 2P) / S + 1

Common settings:

 $K_H = K_W$ (Small square filters)

P = (K - 1) / 2 ("Same" padding)

 C_{in} , C_{out} = 32, 64, 128, 256 (powers of 2)

K = 3, P = 1, S = 1 (3x3 conv)

K = 5, P = 2, S = 1 (5x5 conv)

K = 1, P = 0, S = 1 (1x1 conv)

K = 3, P = 1, S = 2 (Downsample by 2)

Other types of convolution

So far: 2D Convolution

Other types of convolution

So far: 2D Convolution

1D Convolution

Input: C_{in} x W

Weights: C_{out} x C_{in} x K

Other types of convolution

So far: 2D Convolution

3D Convolution

Н

PyTorch Convolution Layer

Conv2d

CLASS torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros')

[SOURCE]

Applies a 2D convolution over an input signal composed of several input planes.

In the simplest case, the output value of the layer with input size $(N, C_{\rm in}, H, W)$ and output $(N, C_{\rm out}, H_{\rm out}, W_{\rm out})$ can be precisely described as:

$$\operatorname{out}(N_i, C_{\operatorname{out}_j}) = \operatorname{bias}(C_{\operatorname{out}_j}) + \sum_{k=0}^{C_{\operatorname{in}}-1} \operatorname{weight}(C_{\operatorname{out}_j}, k) \star \operatorname{input}(N_i, k)$$

PyTorch Convolution Layer

Conv2d

```
CLASS torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros') [SOURCE]
```

Conv1d

```
CLASS torch.nn.Conv1d(in_channels, out_channels, kernel_size, stride=1, padding=0,
dilation=1, groups=1, bias=True, padding_mode='zeros')

[SOURCE] &
```

Conv3d

```
CLASS torch.nn.Conv3d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros') [SOURCE]
```

Components of a Convolutional Network

Fully-Connected Layers

Activation Function

Convolution Layers

Pooling Layers

Normalization

$$\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}}$$

Pooling Layers: Another way to downsample

Hyperparameters:

Kernel Size Stride Pooling function

Max Pooling

Single depth slice

1	1	2	4
5	6	7	8
3	2	1	0
1	2	3	4

У

224x224x64

Max pooling with 2x2 kernel size and stride 2

6	8
3	4

Introduces **invariance** to small spatial shifts
No learnable parameters!

Pooling Summary

Input: C x H x W

Hyperparameters:

- Kernel size: K
- Stride: S
- Pooling function (max, avg)

Output: C x H' x W' where

- H' = (H K) / S + 1
- W' = (W K) / S + 1

Learnable parameters: None!

Common settings:

max, K = 2, S = 2

max, K = 3, S = 2 (AlexNet)

Components of a Convolutional Network

Fully-Connected Layers

Activation Function

Convolution Layers

Pooling Layers

Normalization

$$\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}}$$

Convolutional Networks

Classic architecture: [Conv, ReLU, Pool] x N, flatten, [FC, ReLU] x N, FC

Example: LeNet-5

Layer	Output Size	Weight Size
Input	1 x 28 x 28	

Layer	Output Size	Weight Size
Input	1 x 28 x 28	
Conv (C _{out} =20, K=5, P=2, S=1)	20 x 28 x 28	20 x 1 x 5 x 5
ReLU	20 x 28 x 28	

Layer	Output Size	Weight Size
Input	1 x 28 x 28	
Conv (C _{out} =20, K=5, P=2, S=1)	20 x 28 x 28	20 x 1 x 5 x 5
ReLU	20 x 28 x 28	
MaxPool(K=2, S=2)	20 x 14 x 14	

Layer	Output Size	Weight Size
Input	1 x 28 x 28	
Conv (C _{out} =20, K=5, P=2, S=1)	20 x 28 x 28	20 x 1 x 5 x 5
ReLU	20 x 28 x 28	
MaxPool(K=2, S=2)	20 x 14 x 14	
Conv (C _{out} =50, K=5, P=2, S=1)	50 x 14 x 14	50 x 20 x 5 x 5
ReLU	50 x 14 x 14	

Layer	Output Size	Weight Size
Input	1 x 28 x 28	
Conv (C _{out} =20, K=5, P=2, S=1)	20 x 28 x 28	20 x 1 x 5 x 5
ReLU	20 x 28 x 28	
MaxPool(K=2, S=2)	20 x 14 x 14	
Conv (C _{out} =50, K=5, P=2, S=1)	50 x 14 x 14	50 x 20 x 5 x 5
ReLU	50 x 14 x 14	
MaxPool(K=2, S=2)	50 x 7 x 7	

Layer	Output Size	Weight Size
Input	1 x 28 x 28	
Conv (C _{out} =20, K=5, P=2, S=1)	20 x 28 x 28	20 x 1 x 5 x 5
ReLU	20 x 28 x 28	
MaxPool(K=2, S=2)	20 x 14 x 14	
Conv (C _{out} =50, K=5, P=2, S=1)	50 x 14 x 14	50 x 20 x 5 x 5
ReLU	50 x 14 x 14	
MaxPool(K=2, S=2)	50 x 7 x 7	
Flatten	2450	

Layer	Output Size	Weight Size
Input	1 x 28 x 28	
Conv (C _{out} =20, K=5, P=2, S=1)	20 x 28 x 28	20 x 1 x 5 x 5
ReLU	20 x 28 x 28	
MaxPool(K=2, S=2)	20 x 14 x 14	
Conv (C _{out} =50, K=5, P=2, S=1)	50 x 14 x 14	50 x 20 x 5 x 5
ReLU	50 x 14 x 14	
MaxPool(K=2, S=2)	50 x 7 x 7	
Flatten	2450	
Linear (2450 -> 500)	500	2450 x 500
ReLU	500	

Layer	Output Size	Weight Size
Input	1 x 28 x 28	
Conv (C _{out} =20, K=5, P=2, S=1)	20 x 28 x 28	20 x 1 x 5 x 5
ReLU	20 x 28 x 28	
MaxPool(K=2, S=2)	20 x 14 x 14	
Conv (C _{out} =50, K=5, P=2, S=1)	50 x 14 x 14	50 x 20 x 5 x 5
ReLU	50 x 14 x 14	
MaxPool(K=2, S=2)	50 x 7 x 7	
Flatten	2450	
Linear (2450 -> 500)	500	2450 x 500
ReLU	500	
Linear (500 -> 10)	10	500 x 10

Example: LeNet-5

Layer	Output Size	Weight Size
Input	1 x 28 x 28	
Conv (C _{out} =20, K=5, P=2, S=1)	20 x 28 x 28	20 x 1 x 5 x 5
ReLU	20 x 28 x 28	
MaxPool(K=2, S=2)	20 x 14 x 14	
Conv (C _{out} =50, K=5, P=2, S=1)	50 x 14 x 14	50 x 20 x 5 x 5
ReLU	50 x 14 x 14	
MaxPool(K=2, S=2)	50 x 7 x 7	
Flatten	2450	
Linear (2450 -> 500)	500	2450 x 500
ReLU	500	
Linear (500 -> 10)	10	500 x 10

As we go through the network:

Spatial size **decreases** (using pooling or strided conv)

Number of channels **increases** (total "volume" is preserved!)

Lecun et al, "Gradient-based learning applied to document recognition", 1998

Problem: Deep Networks very hard to train!

Components of a Convolutional Network

Fully-Connected Layers

Activation Function

Convolution Layers

Pooling Layers

$$\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}}$$

Idea: "Normalize" the outputs of a layer so they have zero mean and unit variance

Why? Helps reduce "internal covariate shift", improves optimization

We can normalize a batch of activations like this:

$$\widehat{x}^{(k)} = \frac{x^{(k)} - E[x^{(k)}]}{\sqrt{\text{Var}[x^{(k)}]}}$$

This is a **differentiable function**, so we can use it as an operator in our networks and backprop through it!

loffe and Szegedy, "Batch normalization: Accelerating deep network training by reducing internal covariate shift", ICML 2015

Input: $x: N \times D$

$$\mu_j = \frac{1}{N} \sum_{i=1}^N x_{i,j} \quad \text{Per-channel mean, shape is D}$$

$$\sigma_j^2 = \frac{1}{N} \sum_{i=1}^N (x_{i,j} - \mu_j)^2 \quad \text{Per-channel std, shape is D}$$

$$\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}} \quad \text{Normalized x, Shape is N x D}$$

loffe and Szegedy, "Batch normalization: Accelerating deep network training by reducing internal covariate shift", ICML 2015

Input: $x: N \times D$

$$\mu_j = \frac{1}{N} \sum_{i=1}^N x_{i,j} \quad \text{Per-channel mean, shape is D}$$

$$\sigma_j^2 = \frac{1}{N} \sum_{i=1}^N (x_{i,j} - \mu_j)^2 \quad \text{Per-channel std, shape is D}$$

$$\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}} \quad \text{Normalized x, Shape is N x D}$$

Problem: What if zero-mean, unit variance is too hard of a constraint?

Ioffe and Szegedy, "Batch normalization: Accelerating deep network training by reducing internal covariate shift", ICML 2015

Input: $x: N \times D$

Learnable scale and shift parameters:

$$\gamma, \beta: D$$

Learning $\gamma = \sigma$, $\beta = \mu$ will recover the identity function!

$$\mu_j = \frac{1}{N} \sum_{i=1}^N x_{i,j} \quad \text{Per-channel mean, shape is D}$$

$$\sigma_j^2 = rac{1}{N} \sum_{i=1}^N (x_{i,j} - \mu_j)^2 \; { ext{Per-channel}} \; { ext{std, shape is D}}$$

$$\hat{x}_{i,j} = rac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + arepsilon}}$$
 Normalized x, Shape is N x D

$$y_{i,j} = \gamma_j \hat{x}_{i,j} + \beta_j$$
 Output, Shape is N x D

Problem: Estimates depend on minibatch; can't do this at test-time!

Input: $x: N \times D$

Learnable scale and shift parameters:

$$\gamma, \beta: D$$

Learning $\gamma = \sigma$, $\beta = \mu$ will recover the identity function!

$$\mu_j = rac{1}{N} \sum_{i=1}^N x_{i,j}$$
 Per-channel mean, shape is D

$$\sigma_j^2 = rac{1}{N} \sum_{i=1}^N (x_{i,j} - \mu_j)^2$$
 Per-channel std, shape is D

$$\hat{x}_{i,j} = rac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + arepsilon}}$$
 Normalized x, Shape is N x D

$$y_{i,j} = \gamma_j \hat{x}_{i,j} + \beta_j$$
 Output, Shape is N x D

Batch Normalization: Test-Time

Input: $x: N \times D$

Learnable scale and shift parameters:

$$\gamma, \beta: D$$

Learning $\gamma = \sigma$, $\beta = \mu$ will recover the identity function!

$$\mu_j = \begin{array}{l} \text{(Running) average of} \\ \text{values seen during} \\ \text{training} \end{array}$$

$$\sigma_j^2 = \begin{array}{l} \text{(Running) average of} \\ \text{values seen during} \\ \text{training} \end{array} \begin{array}{l} \text{Per-channel} \\ \text{std, shape is D} \end{array}$$

Per-channel

mean, shape is D

$$\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}} \quad \text{Normalized x,} \\ \text{Shape is N x D}$$

$$y_{i,j} = \gamma_j \hat{x}_{i,j} + \beta_j$$
 Output, Shape is N x D

Batch Normalization: Test-Time

Input: $x: N \times D$

Learnable scale and shift parameters:

$$\gamma, \beta: D$$

During testing batchnorm becomes a linear operator! Can be fused with the previous fully-connected or conv layer

$$\mu_j = egin{array}{ll} (ext{Running}) & ext{average of values seen during training} & ext{Per-channel mean, shape is D} \\ & (ext{Running}) & ext{average of shape of training} & ext{Running} & ext{R$$

$$\sigma_j^2 = { \ \, ext{(Running) average of} \ \, ext{values seen during} \ \, ext{training}}$$

$$\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}} \quad \text{Normalized x,} \\ \text{Shape is N x D}$$

$$y_{i,j} = \gamma_j \hat{x}_{i,j} + \beta_j$$
 Output, Shape is N x D

Batch Normalization for ConvNets

Batch Normalization for **fully-connected** networks

$$x: N \times D$$

Normalize

 $\mu, \sigma: 1 \times D$
 $y, \beta: 1 \times D$
 $y = y(x-\mu)/\sigma + \beta$

Batch Normalization for **convolutional** networks (Spatial Batchnorm, BatchNorm2D)

Normalize
$$\mathbf{x}: \mathbf{N} \times \mathbf{C} \times \mathbf{H} \times \mathbf{W}$$
 $\mu, \sigma: \mathbf{1} \times \mathbf{C} \times \mathbf{1} \times \mathbf{1}$
 $\mathbf{y}, \beta: \mathbf{1} \times \mathbf{C} \times \mathbf{1} \times \mathbf{1}$
 $\mathbf{y} = \mathbf{y}(\mathbf{x} - \boldsymbol{\mu}) / \sigma + \beta$

Usually inserted after Fully Connected or Convolutional layers, and before nonlinearity.

$$\widehat{x}^{(k)} = \frac{x^{(k)} - E[x^{(k)}]}{\sqrt{\text{Var}[x^{(k)}]}}$$

Ioffe and Szegedy, "Batch normalization: Accelerating deep network training by reducing internal covariate shift", ICML 2015

loffe and Szegedy, "Batch normalization: Accelerating deep network training by reducing internal covariate shift", ICML 2015

- Makes deep networks much easier to train!
- Allows higher learning rates, faster convergence
- Networks become more robust to initialization
- Acts as regularization during training
- Zero overhead at test-time: can be fused with conv!

- Makes deep networks much easier to train!
- Allows higher learning rates, faster convergence
- Networks become more robust to initialization
- Acts as regularization during training
- Zero overhead at test-time: can be fused with conv!
- Not well-understood theoretically (yet)
- Behaves differently during training and testing: this is a very common source of bugs!

Ioffe and Szegedy, "Batch normalization: Accelerating deep network training by reducing internal covariate shift", ICML 2015

Layer Normalization

Batch Normalization for fully-connected networks

Normalize
$$\mu, \sigma: 1 \times D$$

$$y, \beta: 1 \times D$$

$$y = y(x-\mu)/\sigma + \beta$$

Layer Normalization for fullyconnected networks Same behavior at train and test! Used in RNNs, Transformers

$$x: N \times D$$

Normalize
$$\mu, \sigma: N \times 1$$

$$y, \beta: 1 \times D$$

$$y = y(x-\mu)/\sigma + \beta$$

Layer Normalization

Batch Normalization for convolutional networks

Instance Normalization for convolutional networks
Same behavior at train / test!

Comparison of Normalization Layers

Wu and He, "Group Normalization", ECCV 2018

Group Normalization

Wu and He, "Group Normalization", ECCV 2018

Components of a Convolutional Network

Convolution Layers

Pooling Layers

Fully-Connected Layers

Activation Function

$$\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}}$$

Components of a Convolutional Network

Pooling Layers

Fully-Connected Layers

Activation Function

$$\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}}$$

Summary: Components of a Convolutional Network

Convolution Layers

Pooling Layers

Fully-Connected Layers

Activation Function

$$\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}}$$

Summary: Components of a Convolutional Network

Problem: What is the right way to combine all these components?

Next time: CNN Architectures