Computer Science & Information Technology Theory Of Computation

DPP: 1

Regular Language and Grammar

Q1 Consider alphabet $\Sigma = \{a, b\}$, the empty string \in and the set of strings S, P, Q and R generated by the corresponding non-terminals of a regular grammar. S, P, Q and R related as follows (S is a start symbol):

 $S \rightarrow aP|bQ| \in$

 $P \rightarrow bR \mid aS$

 $Q \rightarrow aR \mid bS$

 $R \rightarrow aQ lbP$

- (A) L = {w: $n_a(w)$ and $n_b(w)$ both are even}.
- (B) L = {w: $n_a(w)$ and $n_b(w)$ both are odd}.
- (C) $L = \{w: n_a(w) \text{ or } n_b(w) \text{ are even} \}$.
- (D) None of these.
- Q2 Consider the following language L on alphabet eod re Σ = {a, b}

 $L = \{wxw^{R} \mid w, x \in \{a, b\}^{+}\}\$

The correct regular grammar of above language is/are possible?

(A) $S \rightarrow aAa \mid bAb$

 $A \rightarrow aA \mid bA \mid a \mid b$

 $B \rightarrow aA \mid bA \mid a \mid b$

(B) $S \rightarrow aAa \mid bAb \mid \in$

 $A \rightarrow ab$

(C) $S \rightarrow aA \mid bB$

 $A \rightarrow aA \mid bA \mid a$

 $B \rightarrow bB \mid aB \mid b$

(D) $S \rightarrow Aa \mid Bb$

 $A \rightarrow Aa \mid Ab \mid a$

 $B \rightarrow Bb \mid Ba \mid b$

Q3 Consider the following grammar G:

G:

 $S \rightarrow ABC$

 $A \rightarrow aA \mid a$

 $B \rightarrow bc$

 $C \rightarrow cC \mid \in$

The language generated by above grammar is?

(A) $L = \{a^* bc c^*\}$

(B) $L = \{a^+ b c^+\}$

(C) $L = \{a^* b c^*\}$

(D) None of these

Q4 Consider the following two language L_1 and L_2 .

 $L_1 = \{www \mid w \in \{a\}^*\}$

$$L_2 = \{\{a^{n^n}\}^* | n \geq 1\}$$

Which of the following is correct?

- (A) L_1 is regular.
- (B) L_2 is regular.
- (C) Both L_1 and L_2 are regular.
- (D) None of these.
- Q5 Which of the following language is nonregular?
 - (A) $L = \{w \times w^R \mid x, w \in \{a, b\}^*\}.$
 - (B) $L = \{wxw \mid w, x \in \{a, b\}^*\}.$
 - (C) L = $\{wxwx \mid w, x \in \{a, b\}^*\}$.
 - (D) None of these
- **Q6** Consider the following grammars G_1 and G_2 :

G₁:

 $S \rightarrow aAb$

 $A \rightarrow aB \mid \in$

 $B \rightarrow Ab$

 G_2 :

 $S \rightarrow aABb$

 $A \rightarrow aA \in$

 $B \rightarrow bB \mid \in$

Which of the following grammar is/are regular?

- (A) G_1 only
- (B) G_2 only
- (C) Both G₁ only G₂
- (D) None of these
- **Q7** Consider the following three languages:
 - (1) $L = \{a^{n^n} | n \geq 1\}$
 - (2) $L = \{a^{m^n} | m = n^2, n \geq 1\}$
 - (3) $L = \{a^{m^n} | n \geq 1, m > n\}$

Total number of regular languages is/are____.

- Q8 Which of the following language is nonregular?
 - (A) $L = \{a^{2m} b^n b^n | m, n \ge 1\}$
 - (B) L = $\{a^m b^n X \mid m, n \ge 1, X \in \{a,b\}^*\}$
 - $\text{(C)}\,L\ =\ \left\{\left\{a^{n^2}\right\}^* \middle| n\ \geq\ 0\right\}$
 - (D) None of these
- **Q9** Consider following statements:

Kleene Closure (*)of infinite set is always S₁: finite.

Kleene Closure (*) of finite set is always S_2 : infinite.

Which of the following is correct?

- (A) S_1 only
- (B) S_2 only
- (C) Both S_1 and S_2
- (D) None of these
- **Q10** Consider the following statements:
 - [I] If L is regular, then \overline{L} is regular.
 - [II] If \overline{L} is regular, then L is regular.
 - [III] Union of L and its complement is Σ^*

Number of correct statement is/are____.

- Q11 Consider a regular language L, which of the following statements are true regarding L.
 - (A) Prefix(L) = {w | $ww_1 \in L$, $w_1 \in \Sigma^*$ } is regular.
 - (B) Suffix(L) = {w | $w_1 w \in L$, $w_1 \in \Sigma^*$ } is regular.
 - (C) Quotient(L) is regular.
 - (D) L is closed under infinite intersection.

Q12 Consider a regular language L over the alphabet

 $\Sigma = \{a, b\}$. L is defined as L= $(a + b^*)$ (bab*).

If homomorphism h is defined over T = {c, d, e} and

h(a) = cd

h(b) = cddec

Then the regular language h(L) is given as

- (A) (cd + cddec) (cddec cd cddec)
- (B) (cddec) (cd + cddec*)
- (C) $(cd + (cddec)^*)$ $((cddec) (cd) (cddec)^*)$
- (D) None of these

Answer Key

Q1	(A)
----	-----

(A) Q2

Q3 (B)

(C) Q4

Q5 (D)

(B) Q6

Q7 1

(D) Q8

(D) Q9

Q10 3

Q11 (A, B, C)

(C) Q12

Hints & Solutions

Q1 Text Solution:

DFA for grammar:

 $L = (aa + ab + ba + bb)^{\hat{}}$

Hence, option (a) is correct.

Q2 Text Solution:

 $L = \{wxw^{R} \mid w, x \in \{a, b\}^{+}\}$ $a(a + b)^{+} a | b(a + b)^{+} b$

 \downarrow

 $ab(a+b)^+ba$ $ba(a+b)^+ba$

 $aa(a + b)^{+}aa bb(a + b)^{+}bb$

L = Regular

Regular expression = $a(a + b)^+ a + b(a + b)^+ b$

 $S \rightarrow aAa \mid bAb$

 $A \rightarrow aA \mid bA \mid a \mid b$

 $B \rightarrow aA \mid bA \mid a \mid b$

Regular expression for above grammar is a(a +

b) $^{+}$ a + b(a + b) $^{+}$ b

Hence, only (a) is correct.

Q3 Text Solution:

 $S \rightarrow ABC = aa^*bcc^*$

 $A \rightarrow aA \mid a = aa^*$

 $B \rightarrow bc = bc$

 $C \rightarrow cC \mid \in = c^*$

Regular expression = aa*bcc*

 $= a^+ bc^+$

Hence, option (b) is correct.

Q4 Text Solution:

 $L_1 = \{wxw \mid w \in \{a\}^*\}$

$$L_1 = (aaa)^*$$

Regular language

$$\begin{split} L_2 &= \left\{ \left\{ a^{n^n} \right\}^* \middle| n \geq 1 \right\} \\ L_2 &= \left\{ a^{1} \right\}^* \\ &= a^* \\ &= \text{Regular}. \end{split}$$

Q5 Text Solution:

(a) $L = \{wxw^R \mid x, w \in \{a, b\}^*\}$ Minimal string = \in (a + b)* \in $= (a + b)^*$ Regular

(b) $L = \{wx \ w \mid w, x \{a, b\}^*\}$ $L = \in (a + b)^* \in$ $= (a + b)^*$ Regular

(c) $L = \{wxwx \mid w, x \in \{a, b\}^*\}$ regular

Hence option (d) is correct.

Q6 Text Solution:

Only G2 is regular.

Q7 Text Solution:

(1)
$$L=\left\{a^{n^n}\middle|n\geq 1\right\}$$

 $L=\left\{a,\,a^4,\,a^{27},\,....\right\}$ Non-regular

$$\begin{array}{lll} \text{(2) } L &=& \left\{ a^{m^n} \middle| m \;=\; n^2, \; n \; \geq \; 1 \right\} \\ L &=& \left\{ a^{1^1}, \; a^{4^2}, \; a^{9^3}.... \right\} \\ &=& \left\{ a, \; a^{16}, \; a^{43}.... \right\} \end{array}$$

Non-regular

$$\begin{array}{lll} \text{(3) } L &=& \left\{a^{m^n}\big|n \ \geq \ 1, \ m \ > \ n\right\} \\ L &=& \left\{a^{2^1}, \ a^{3^1}, \ a^{4^1}....\right\} \\ &=& \left\{a^2, \ a^3, \ a^4 \\right\} \\ &=& \text{aa(a)}^* \\ &\text{Regular} \end{array}$$

Q8 Text Solution:

(a) $L = \{a^{2m} b^n b^n \mid m, n \ge 1\}$

$$= (aa)^+ b^{2n}$$

= (aa)+ (bb)+ Regular

(b)
$$L = \{a^m b^n X \mid X \in \{a, b\}^* m, n \ge 1\}$$

$$= (a)^{+} (b)^{+} (a + b)^{*}$$

= Regular

(c)
$$L = \left\{ \left\{ a^{n^2} \right\}^* \middle| n \geq 0 \right\}$$

= Regular

Hence, option (d) is correct.

Q9 Text Solution:

S₁: False

Set =
$$\{\in\}$$
 = $\{\in\}^*$ = \in only (Finite)

S₂: Set = {a} ={a}* =
$$\in$$
,a,aa, aaa,... = (a*) (Infinite)

So, both statements are false.

Hence, option (d) is correct.

Q10 Text Solution:

- · L is regular if and only if Complement of L is regular.
- L∪ □ = Σ*

Hence, all are correct statements.

Q11 Text Solution:

Regular language is closed under Prefix, Suffix and quotient of the language. But regular language are not closed under infinite intersection.

So, a, b, c are correct.

Q12 Text Solution:

Homomorphism is a function from strings to string which is based on concatenation.

for any a and b

L is defined as

$$x = (a + b)^{*} (bab^{*})$$

then,

$$h(L) = (h(a) + h(b)^{*}(h(b)h(a)h(b)^{*})$$

 $= (cd + (cddec)^*)((cddec)(cd)(cddec)^*).$