QUESTÃO A:

1. Camadas:

- Aplicação: É a camada onde temos acesso. Esta camada faz a comunicação entre os programas e os protocolos de transporte. Essa camada comunica com a camada de transporte através de uma porta, há uma porta específica para cada protocolo.
- 2. Transporte: Coordenar o envio de mensagem de um computador para o outro, nesta camada existem dois grandes protocolos TCP e UDP.
- Inter-rede: Transporta segmentos do hospedeiro transmissor para o receptor. No lado do transmissor encapsula os segmentos em datagramas e no lado do receptor, entrega os segmentos a camada de transporte.
- 4. Enlace: Tem a responsabilidade de transferir um datagrama de um nó para o nó adjacente sobre um enlace.
- 5. Físico: Tem por função principal a transmissão e recepção de dados digitais (bits) entre um dispositivo e um meio de transmissão físico. Responde a requisição de serviço da camada de enlace e emite/recebe sinais de e para o meio físico.

2.

Frames: Os frames Ethernet são "envelopes" para os pacotes TCP/IP.

Bit Sequence 1010101010			Inter Frame Gap				
Preamble	SFD	Dest. Addr.	Source Addr.	Туре	Data	FCS	
8 Bytes		6 Bytes	6 Bytes	2 Bytes	46 - 1500 Bytes	4 Bytes	9.6 µs

Frame Ethernet

Datagrama: Se trata do cabeçalho de um pacote na camada de rede. Serve de envelope para transmitir os dados em rede. Esse datagrama não se preocupa com os erros.

VERS	HLEN	TIPO SERVIÇO	TAMANHO TOTAL					
IDENTIFICAÇÃO			FLAGS	0	FFSET DO FRAGMENTO			
ТЕМРО	DE VIDA	PROTOCOLO	СНЕ	CKSU	JM DO CABEÇALHO			
ENDEREÇO IP ORIGEM								
ENDEREÇO IP DESTINO								
OPÇÕES IP					PREENCHIMENTO			
DADOS								
DADOS								

Legenda:

VERS - Versão do protocolo IP HLEN - Tamanho do cabeçalho

Datagrama IP

FONTE: Formato de datagrama Internet TCP/IP | Download Scientific Diagram

- 3. O IP estabelece endereços "virtuais", pois são os IPs privados, se trata de um IP reservado para o uso exclusivo em redes locais, esse IP não é roteável.
- 4. Endereços "reais", são os IPs públicos da rede, é por esse IP que as redes são identificadas para que ocorra a transferência de dados entre redes diferentes é esse IP que é roteável.

5. ARP(Address Resolution Protocol): Descobre o MAC Address de um equipamento na mesma rede. Existe uma ARP Table, que armazena com qual endereço MAC cada IP está relacionado.

Questão B

7.

A divisão dos endereços em três classes, onde cada classe reserva um número diferente de octetos para o endereçamento da rede.

Classe A: apenas o primeiro octeto identifica a rede

Classe B: são usados os dois primeiros octetos

Classe C: (a mais comum) temos os três primeiros octetos reservados para a rede e apenas o último reservado para a identificação dos hosts.

O que diferencia uma classe de endereços da outra é o valor do primeiro octeto. Se for um número entre 1 e 126 (como em 113.221.34.57), temos um endereço de classe A. Se o valor do primeiro octeto for um número entre 128 e 191, então temos um endereço de classe B (como em 167.27.135.203) e, finalmente, caso o primeiro octeto seja um número entre 192 e 223, teremos um endereço de classe C, como em 212.23.187.98.

8.

DHCP: Chamado de Protocolo de Configuração Dinâmica de Host, fornece informações de configurações (IP, Máscara, Gateway e DNS) para dispositivos que solicitem conexão na rede.

CIDR: É uma técnica utilizada para evitar o desperdício de endereço. Significa notação de roteamento entre domínios sem classes. Esta é a notação que usamos para identificar redes e hosts nas redes.

A notação CIDR consiste em um endereço IP, um caractere de barra ('/') e um número decimal de 0 a 32. Usando essa notação, pegamos o endereço IP e o dividimos em dois blocos de bits: os bits mais significativos, os o prefixo de rede representa a rede e o segundo bloco identifica o host nessa rede. O número após o caractere de barra (as máscaras de sub-rede) nos informa quantos bits precisamos para o prefixo de rede.

NAT: O NAT "altera" o endereço de origem do pacote, antes de enviá-lo, para um endereço válido na rede, um endereço roteável, e não o endereço privado da máquina. E quando recebe um pacote de dados "altera" o endereço de destino, para um endereço privado da rede. Ou seja, cuida da tradução de endereços.