Atomic Structure and Molecular Architecture

1.	Provide the electron configuration for the following					
	Ar,	Fe,	Sn,	Pb,	U	

- 2. Predict bonding, shape and polarity of the following: NH_3 PCl_5 CO_3^{-2} SO_4^{-2}
- 3. Arrange the following in order of increasing melting point. H_2O CCl_4 Cl_2 H_2 NaCl C(s) (graphite)
- 4. Explain why metals conduct both heat and electricity and are shiny and malleable.
- 5. Explain why CO_2 is a soft solid with a very low m. p. and SiO_2 is a hard crystal even at high temperatures.

Intermolecular Attraction

- 1. Which is expected to have the higher boiling points: C₅ H₁₂ or C₉ H₂₀? Explain.
- 2. Why does H₂O have a much higher boiling point than H₂S?
- 3. Explain what type of solid columbium forms based on the following properties: shiny, soft, ductile. Melts at 2468° and conducts electricity.
- 4. What kind of attractive forces exist between particles in a) molecular solids b) ionic solids c) covalent crystals?
- 5. Tin (IV) chloride, SnCl₄, has soft crystals with melting point of -30.1°C. The liquid is nonconducting. What type of crystal is formed by SnCl₄?
- 6. What kind of intermolecular attractive forces are present in these substances?
 - a) HF b) CS₂ c) PCl₃ d) SF₆ e) Mg f) C diamond g) BaCl₂

ORGANIC

Draw structures for the following:

a) 3-methylhexane b) 4-chloro-2,3-dimethyloctane, 4-chloro-2,3-dimethyloctane

- c) 3-octene d) 2-pentanol e) 2-chloro-2,4-dimethyl-3-hexanone
- f) 2, 2-diaminobutanoic acid g) 2-methylpropyl pentanoate
- h) 4-chloro-2-methylaminobutanol i) 3-bromopentanol
- j) 1, 2-dinitrobenzene k) p-chlorotoluene l) 2, 4, 6-trinitrotoluene

Write equations, using structural formulas, for the following reactions:

- A) propene + chlorine
- B) 2-butene + hydrogen
- C) octane + oxygen (high temp)
- D) 2-hexyne + one mole of $H_{2(g)}$

E) 2-pentene + HCl

F) benzoic acid + ethanol

G) oxidation of butanal

PROBLEMS

- 1. One mole of NaCN reacts with one mole of bromoethane to form one mole of cyanoethane. Given 8.53 g of NaCN and 10.98 g of bromoethane, find the volume of liquid C_2H_5CN (d = 0.783 g/mL).
- 2. A sample of a liquid consisting of only C, H, and O and having a mass of 0.5438 g was burned in pure oxygen and 1.039 g of CO_2 and 0.6369 g of H_2O were obtained. What is the empirical formula of the compound?
- 3. How many oxygen atoms are there in 3.15 mol of Manganese (IV) oxide?
- 5. How many moles of sodium carbonate are there in 53 g of that substance?
- 7. What is the mass of 2.50 mol of H₂SO₄?
- 8. Calculate the % composition of Ammonium nitrate.
- 10. The composition of barium carbonate is:

Ba - 69.58% C - 6.09% O - 24.32%

What is its empirical formula?

11. Analysis of styrene, showed it contained 7.7% hydrogen and 92.3% carbon. Its molar mass was 104 g/mol. What is its molecular formula?

12. Name the following:

a)
$$CH_3 - CH_2 - CH_3$$
 b) $CH_3 - CH_2 - OH$ c) $CH_3 - CH_3$ d) $CH_3 - CH_2 - CH_3$ e) $CH_3 - CH_2 - CH_3$ f) $CH_3 - CH_2 - CH_2 - CH_3$ d) $CH_3 - CH_2 - CH_3$ e) $CH_3 - CH_2 - CH_3$ d) $CH_3 - CH_3 - CH_3$ d) $CH_3 - CH_3 - CH_3$ d) $CH_3 - CH_3 - CH_3$ d) $CH_3 - CH_3$ d)

THERMOCHEMISTRY

- 1. The fundamental reaction for photosynthesis is: $6CO_2(g) + 6H_2O(I) \longrightarrow C_6H_{12}O_6(s) + 6O_2(g)$ If $\Delta H_{f^\circ} C_6H_{12}O_6(s) = -1265.4$ kJ/mol, calculate the ΔH for the reaction.
- 2. $CH_2O(g) \rightarrow H_2(g) + CO(g)$ $\Delta H = 5.4 \text{ kJ/mol.}$ What is ΔH_{f° for formaldehyde?
- 3. The "fuel value" of a fuel is defined as the heat released in combustion per gram of fuel. Compare the fuel value of CH₄(g) [Δ H_f° = -74.9 kJ/mol] , CH₃OH(I) [Δ H_f° = -238.5 kJ/mol] and C₇H₁₆(I) [Δ H_f° = -224.2 kJ/mol]. Assume the products of combustion are CO₂(g) , H₂O(I).
- 4. The standard heat of combustion of nitromethane in the reaction CH₃NO₂ (I) + 3 4 O₂(g) \rightarrow CO₂(g) + 1 2 Na(g) + 1.5 H₂ (g) is -710 kJ/mol. Calculate Δ H_f0 for nitromethane.

Answers: 1. 2811.6 kJ 2. -115.0 kJ/ mol 3. $CH_4 \rightarrow 55.7$ kJ/g $C_7H_{15} \rightarrow 48.2$ kJ/g $CH_3OH \rightarrow 22.7$ kJ/g 4. -316.9 kJ/mol

RATES REVIEW

1. The following mechanism has been proposed for the reaction of NO with Br_2 to form NOBr.

$$NO(g) + Br(g) \rightarrow NOBr_2(g)$$

 $NOBr_2(g) + NO(g) \rightarrow 2NOBr(g)$

- a) Identify the intermediate.
- b) Write the rate law for each step.
- c) What is the overall rate law if the first step is slow, and the second step is fast?
- d) The observed rate law is actually $R = k [NO]^2 [Br_2]$. If the proposed mechanism is correct, what can be concluded about the relative speeds of steps one and two?
- 2. For the reaction A + 2B \rightarrow C, whose rate law is R = k [A]² [B], by what factor would the reaction rate increase if
 - a) [A] and [B] were both doubled
 - b) [A] was doubled and [B] was held constant.
 - c) [A] was doubled and [B] was halved.
- 3. An exothermic reaction has the following mechanism in the gas phase:

$$2NO \rightarrow N_2O_2$$
 fast $N_2O_2 + H_2 \rightarrow N_2O + H_2O$ slow $N_2O + H_2 \rightarrow N_2 + H_2O$ fast

- a) What is the overall equation for this reaction?
- b) Sketch a potential energy diagram. Identify the intermediates.
- c) Write the rate law for the overall reaction.

EQUILIBRIUM

- 1. Write the eq'm expression for the following reactions:
- a) $N_2(g) + 3H_2(g) \leftarrow \rightarrow 2NH_3(g)$
- b) $2HCl(aq) + Mg(s) \leftarrow \rightarrow MgCl_2(aq) + H_2(g)$
- c) $Ag^{+3} + 3Cl^{-}(aq) \leftarrow \rightarrow AgCl_3(aq)$
- 2. State what will happen to the following reaction when the stated changes are carried out:

$$H_2(g) + I_2(g) \leftarrow \rightarrow 2HI(g) \Delta H = -52 \text{ kJ}$$

- a) an increase in pressure b) an increase in temperature
 - c) volume decreased d) $[H_2(g)]$ is increased
- e) catalyst added
- 3. When 0.750 mol/L of CO and 0.275 mol/L of H_2O (g) are placed in a container, the following occurs:

CO (g) +
$$H_2O$$
 (g) $\leftarrow \rightarrow CO_2$ (g) + H_2 (g)

After equilibrium is reached, 0.25 moles/L of CO_2 was formed. Calculate the Keq.

- 4. The above reaction has a Keq = 4.06 at 500° C. If 0.1 mol of CO and 0.1 mol of H₂O were placed in a 1L reaction vessel at this temperature, what were the concentrations of the reactants and products when the system reached equilibrium?
- 5. a) Give an example of a macroscopic property.
- b) Give an example of a microscopic property.

SOLUBILITY PRODUCT (Eq'm Applications)

- 6. For each of the following, write
 - a) a balanced chemical equation
 - b) an full ionic chemical equation
 - c) a net ionic chemical equation
 - i) sodium chloride sol'n mixed with a silver nitrate sol'n
 - ii) phosphoric acid mixed with sodium hydroxide sol'n
 - iii) magnesium chloride sol'n with sodium nitrate sol'n
 - iv) barium nitrate sol'n with aluminum sulphate sol'ns

- 7. If 25.0 g of MnS are mixed into 1L of water and allowed to settle out, what is the concentration of Mn⁺² ion in the solution.(Ksp_{MnS}) = $5.6*10^{-16}$
- 8. a) Will a ppt form if 10 mL of $1*10^{-5}$ M BaCl₂ and 10 mL of $1.0*10^{-5}$ M H₂SO₄ are mixed?
- b) What if 10 mL of 1.0*10-9 M CaCl₂ and 30 mL of 2.0*10-3 M NaF are mixed?
- 9. Explain what happens to the CO₂ content in a sealed pop bottle as you gradually increase the temperature.
- 10. The molar solubility of Cu (OH)₂ is $3.42*10^{-7}$ mol/L. What s the Ksp for Cu (OH)₂.
- 11. Calculate the solubility of Ag₂CO₃ at 25°C in
 - a) pure water
 - b) $0.1 \text{ mol/L Na}_2\text{CO}_3$ (Ksp Ag₂CO₃ = $8.4*10^{-12}$)

ACIDS and BASES

- 12. Define Acid and Base according to Arrehnius and Bronsted/Lowry.
- 13. Given HCN + H₂O ← → H₃O + CN-Identify the acid of the forward reaction Identify the base of the forward reaction Identify the conjugate acid-base pairs.
- 14. In a titration of 50 mL of 0.1 M HCl with 0.15 M NaOH, calculate the pH at i) 0 mL NaOH added ii) 20 mL NaOH added iii) 40 mL NaOH added.
- 15. A 0.1 M sol'n of acetic acid has a pH of 2.87. Calculate Ka.
- 16. What is the pH of 0.2 M sodium acetate?
- 17. Calculate the pH of 0.15 M NH₄Cl. $K_{bNH3} = 1.8*10^{-5}$
- 18. How many grams of ammonium chloride must be added to 300 mL of 0.250 M NH_3 to make a buffer sol'n with pH = 9.00?
- 19. Find the dissociaton constant of an acid if a 0.1 M sol'n of the acid has a pOH of 10.59.

OXIDATION - REDUCTION

- 20. a) balance using oxidation numbers
 - i) $MnO_{4^{-}} + H_{2}SO_{3} \rightarrow Mn+^{2} + H_{3}O_{4^{-}} + H_{2}O$ (acid)
 - ii) $ClO_{3}^{-} + I_{2} + H_{2}O \rightarrow IO_{3}^{-} + Cl^{-}$ (acid)
 - b) balance using half cell
 - i) $Cu_{(s)} + HNO_3 \rightarrow Cu^{+2} + NO_2$ (acid)
 - ii) $NO_{3^{-}} + Zn \rightarrow NH_{3} + Zn (OH)_{4^{-2}}$ (basic)
- 21) What do the positive and negative signs of reduction potentials tell us?
- 22) a) What is the voltage of the cell shown?

- b) What direction does the current flow?
- b) Label the anode and cathode.
- c) Indicate the positive and negative electrode.
- 22) Redo assignments and problems out of the back of the book.
- 23) Get a good night's sleep before the exam.

GOOD LUCK !!!!