ASSIGNMENT - 2

Data Visualization and Pre - processing

Assignment Date	27 September 2022
Student Name	Manimaran.P
Student Roll Number	420619104023
Maximum marks	2 Mark

1.Download the dataset : Dataset

https://drive.google.com/file/d/160K6XcuYDyRBPGj-JsqThkyFoJhCvOWy/view?usp=sharing

2.Load the dataset.

In [2]:	impor	et numpy as et pandas as et matplotli et seaborn a	pd b.pyplot a	s plt											
In [3]:	df =	<pre>f = pd.read_csv(r"E:\SB\Dataset\Churn_Modelling.csv")</pre>													
In [4]:	df														
Out[4]:		RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	Estimated 9	
	0	1	15634602	Hargrave	619	France	Female	42	2	0.00	1	1	1	1013	
	1	2	15647311	Hill	608	Spain	Female	41	1	83807.86	1	0	1	1125	
	2	3	15619304	Onio	502	France	Female	42	8	159660.80	3	1	0	1139	
	3	4	15701354	Boni	699	France	Female	39	1	0.00	2	0	0	938	
	4	5	15737888	Mitchell	850	Spain	Female	43	2	125510.82	1	1	1	790	
	9995	9996	15606229	Obijiaku	771	France	Male	39	5	0.00	2	1	0	962	
	9996	9997	15569892	Johnstone	516	France	Male	35	10	57369.61	1	1	1	1016	
	9997	9998	15584532	Liu	709	France	Female	36	7	0.00	1	0	1	420	
	9998	9999	15682355	Sabbatini	772	Germany	Male	42	3	75075.31	2	1	0	928	
	9999	10000	15628319	Walker	792	France	Female	28	4	130142.79	1	1	0	381	
	10000) rows × 14 co	olumns												
	<)	

3. Perform Below Visualizations:

* Univariate Analysis

* Bi - Variate Analysis

•

* Multi - Variate Analysis

```
In [25]: plt.hist([chrun_yes,chrun_no],color=["green","red"])
    plt.xlabel("Tenure")
    plt.ylabel(" no of customers")
```

Out[25]: Text(0, 0.5, ' no of customers')

4. Perform descriptive statistics on the dataset

	RowNumber	CustomerId	CreditScore	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	Estimated Salar
count	10000.00000	1.000000e+04	10000.000000	10000.000000	10000.000000	10000.000000	10000.000000	10000.00000	10000.000000	10000.00000
mean	5000.50000	1.569094e+07	650.528800	38.921800	5.012800	76485.889288	1.530200	0.70550	0.515100	100090.23988
std	2886.89568	7.193619e+04	96.653299	10.487806	2.892174	62397.405202	0.581654	0.45584	0.499797	57510.49281
min	1.00000	1.556570e+07	350.000000	18.000000	0.000000	0.000000	1.000000	0.00000	0.000000	11.58000
25%	2500.75000	1.562853e+07	584.000000	32.000000	3.000000	0.000000	1.000000	0.00000	0.000000	51002.11000
50%	5000.50000	1.569074e+07	652.000000	37.000000	5.000000	97198.540000	1.000000	1.00000	1.000000	100193.91500
75%	7500.25000	1.575323e+07	718.000000	44.000000	7.000000	127644.240000	2.000000	1.00000	1.000000	149388.24750
max	10000.00000	1.581569e+07	850.000000	92.000000	10.000000	250898.090000	4.000000	1.00000	1.000000	199992.48000

```
In [13]: df["RowNumber"].mean()
Out[13]: 5000.5

In [14]: df["EstimatedSalary"].median()
Out[14]: 100193.915

In [15]: df["Exited"].mode()
Out[15]: 0 0
Name: Exited, dtype: int64
```

5. Handle the Missing values.

```
In [13]: df.isnull().any()
  Out[13]: RowNumber
           CustomerId
                             False
                             False
           Surname
           CreditScore
           Geography
                             False
           Gender
                             False
                             False
           Age
            Tenure
                             False
           Balance
                             False
           NumOfProducts
                             False
           HasCrCard
           IsActiveMember
                             False
           EstimatedSalary
                             False
           Exited
           dtype: bool
In [14]: df.isnull().sum()
Out[14]: RowNumber
         CustomerId
         Surname
         CreditScore
         Geography
         Gender
         Age
         Tenure
         Balance
         NumOfProducts
HasCrCard
         IsActiveMember
         EstimatedSalary
         Exited
         dtype: int64
```

6. Find the outliers and replace the outliers

7. Check for Categorical columns and perform encoding.

```
In [22]: df.dtypes
  Out[22]: RowNumber
                                 int64
int64
            Surname
CreditScore
                                 object
int64
             Geography
                                 object
             Gender
                                 object
             Age
Tenure
                                   int64
             Balance
                                float64
             NumOfProducts
                                   int64
                                 int64
             HasCrCard
             IsActiveMember
            EstimatedSalary float64
Exited int64
             dtype: object
   In [23]: df["Geography"].unique()
  Out[23]: array(['France', 'Spain', 'Germany'], dtype=object)
   In [24]: df["Gender"].unique()
  Out[24]: array(['Female', 'Male'], dtype=object)
In [20]: from sklearn.compose import ColumnTransformer
In [21]: from sklearn.preprocessing import OneHotEncoder
In [22]: ct = ColumnTransformer([("oh",OneHotEncoder(),[1,2])],remainder ="passthrough")
In [24]: x = ct.fit_transform(x)
In [25]: x.shape
Out[25]: (10000, 15)
```

8. Split the data into dependent and independent variables

```
In [17]: # dependent and indenpendent variables
In [18]: x = df.iloc[:,3:13].values
y = df.iloc[:,13:14].values
In [19]: x.shape
Out[19]: (10000, 10)
In [20]: y.shape
Out[20]: (10000, 1)
```

9. Scale the independent variables

```
In [16]: y = df.iloc[:,13:14].values
In [19]: y.shape
Out[19]: (10000, 1)
```

10. Split the data into training and testing

```
In [27]: from sklearn.model_selection import train_test_split

In [28]: x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.2,random_state=0)

In [29]: x_test.shape

Out[29]: (2000, 15)

In [30]: x_train.shape
Out[30]: (8000, 15)
```