Прямая кинематика

Нахождение положения выходного звена, например, зная только углы, на которые повернуты шарниры

Прямая кинематика на плоскости

$$A_1 = \begin{bmatrix} R_0^1 & d_0^1 \\ 0 & 1 \end{bmatrix}, \ A_2 = \begin{bmatrix} R_1^2 & d_1^2 \\ 0 & 1 \end{bmatrix}$$

Прямая кинематика на плоскости

$$A_1 = \begin{bmatrix} \cos\theta_1 & -\sin\theta_1 & 0 & a_1\cos\theta_1 \\ \sin\theta_1 & \cos\theta_1 & 0 & a_1\cos\theta_1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \qquad A_2 = \begin{bmatrix} \cos\theta_2 & -\sin\theta_2 & 0 & a_2\cos\theta_2 \\ \sin\theta_2 & \cos\theta_2 & 0 & a_2\cos\theta_2 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Прямая кинематика на плоскости

$$T_{02} = A_1 A_2 = \begin{bmatrix} R_0^2 & d_0^2 \\ 0 & 1 \end{bmatrix}$$

Шестистепенной манипулятор RRPRRR или 2RP3R

- a_i длина звена i
- $lpha_i$ скручивание звена i
- d_i смещение вдоль шарнира i
- $heta_i$ угол, на который повернут шарнир i

Преобразование координат по Денавиту-Хартенбергу

$$A_i = \text{Rot}_{z,\theta_i} \cdot \text{Trans}_{z,d_i} \cdot \text{Trans}_{x,a_i} \cdot \text{Rot}_{x,\alpha_i}$$

$$A_i = \begin{bmatrix} c_{\theta_i} & -s_{\theta_i} & 0 & 0 \\ s_{\theta_i} & c_{\theta_i} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_i \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & a_i \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_i = egin{bmatrix} c_{ heta_i} & -s_{ heta_i} c_{lpha_i} & s_{ heta_i} s_{lpha_i} & a_i c_{ heta_i} \ s_{ heta_i} & c_{ heta_i} c_{lpha_i} & -c_{ heta_i} s_{lpha_i} & a_i s_{ heta_i} \ 0 & s_{lpha_i} & c_{lpha_i} & d_i \ 0 & 0 & 1 \end{bmatrix}$$

Правила смещения координат по Денавиту-Хартенбергу

- 1. Оси z_i шарнирные оси соответствующих шарниров i
 - Оси вращения для вращательных шарниров
 - Оси смещения для поступательных шарниров
- 2. Оси x_i перпендикулярны осям z_{i-1}
- 3. Оси x_i пересекают оси z_{i-1}

- a_i расстояние между z_i и z_{i-1} вдоль x_i длина общей нормали
- $lpha_i$ угол между z_i и z_{i-1} вокруг x_i угол вокруг общей нормали
- d_i расстояние между x_i и x_{i-1} вдоль z_{i-1}
- $heta_i$ угол между x_i и x_{i-1} вокруг z_{i-1}

Процесс Денавита-Хартенберга

- 1. Отметьте оси z_i
- 2. Произвольно выберите координаты x_0 и y_0 основания и выходного звена
- 3. Для i = 1: n 1
 - Найдите общую нормаль для z_i и z_{i-1}
 - Установите x_i вдоль этой нормали
 - Установите y_i перпендикулярно x_i и z_i
- 4. Составьте таблицу всех параметров a_i , α_i , d_i , θ_i
- 5. Сформируйте матрицу перехода A_i для каждого звена
- 6. Сформируйте $T_{0n} = A_1 ... A_n$