Определение. Оператор A действующий из преднормированного пространства E в преднормированное пространство F называется ограничнным, если $\exists C>0: \ \forall x\in E\Rightarrow \|Ax\|_F\leq C\|x\|_E$

Определение. Оператор A действующий из преднормированного пространства E в преднормированное пространство F называется непрерывным в точке $x_0 \in E$, если \forall последовательности $\{x_n\}_{n=1}^{\infty} \subset E$, сходящейся к некоторому x_0 следует, что $Ax_n \to Ax_0$ при $n \to \infty$ по норме.

Теорема. Следующие свойства оператора $T: E \to F$ между преднормированными пространствами эквиваленты:

- 1. onepamop T orpanuven;
- 2. onepamop T непрерывен в нуле;
- 3. onepamop T непрерывен;
- 4. оператор Т равномерно непрерывен;

Доказательство.

Докажем, что из $1\Rightarrow 4$. $\forall \varepsilon>0$ выберем $\delta=\frac{\varepsilon}{C}$, где C - норма оператора. Тогда $\forall x,y\in E$ из неравенства $d(x,y)=\|x-y\|<\delta$ следует, что $d(T(x),T(y))=\|T(x)-T(y)\|<\varepsilon$.

 $4 \Rightarrow 3 \Rightarrow 2$ очевидно.

 $2\Rightarrow 1.$ Отображение Т предметрических пространств непрерывно в $0\in E$ и $T(0)=0\in F$, зафиксируем $\varepsilon=1$, и выберем δ такое, что из неравенства $\|x'\|<\delta$ будет следовать $\|T(x')\|<\varepsilon$. Если $\|x\|>0$, то положим $x'=\frac{\delta x}{2\|x\|}$, тогда $\|x'\|<\delta$, откуда следует, что $\|T(x)\|<\frac{2}{\delta}\|x\|$. Если же $\|x\|=0$, то $\forall t>0$ выполнено неравнество $\|tx\|<\delta$, следовательно $t\|T(x)\|=\|T(tx)\|<1$, а значит, $\|T(x)\|=0$. Таким образом $\forall x\in E$ выполнено $\|T(x)\|<A\|x\|$, где $A=\frac{2}{\delta}$, следовательно оператор ограничен. Теорема доказана.