(:	1)	①~③ 各 2 点	1	$159\mathrm{cm}$
	2)	$160\mathrm{cm}$	3	$162\mathrm{cm}$

(2) $20\,\mathrm{cm}$

(3)

 $\mathbf{2}$

身	身長 (cm) 度数 以上 未満 —		相対度数	累積度数	累積相対度数		
以			_	_	_		
14	$5 \sim 150$	1	0.05	1	0.05		
15	$0 \sim 155$	3	0.15	4	0.20		
15	$5 \sim 160$	5	0.25	9	0.45		
16	$0 \sim 165$	8	0.40	17	0.85		
16	$5 \sim 170$	3	0.15	20	1.00		
	計	20	1.00	_			

(4) ① 1 点, ② 2 点

 $5\,\mathrm{cm}$

2 160 cm 以上 165 cm 未満の階級 (人) 10 9 8 7 (5)5 3 2 1 $\begin{array}{c|c}
0 & \hline
140 & 145
\end{array}$ 150 155 160 165 170 175 (cm)

1

調べる桁数を増やすにつれて数字ごとの出現 頻度のばらつきが小さくなり、各数字の出現す る割合が 0.1 に近づいていくと考えられる。

3	(1)	2	(2)	5	(3)	4
	(4)	1	(5)	3		

	(1)	-4a + 6b + 7	(2)	-2x + 2y + 8
	(3)	-3x - 9y + 6	(4)	$-\frac{4}{3}a + \frac{2}{3}b - \frac{10}{3}$
4	(5)	$\frac{4x+4y}{15}$	(6)	$-6a^2b$
	(7)	$\frac{4}{5}x$	(8)	$-2xy^2$
	(9)	$9a^2$	(10)	$-8a^{3}b^{6}$

5	(1)	3	(2)	$\frac{5}{6}$
] :			

6	(1)	$h = \frac{2S}{a}$	(2)	$T = \frac{PV}{nR}$
0	(3)	$x = \frac{CM}{1000d}$	(4)	$x = \frac{9z - 4y}{5}$

(2) 7 (1) 2n2n - 1

8 (1) (2) 5m5m + 3

> 連続する3つの偶数は、整数nを用いて 2n-2, 2n, 2n+2 と表せる。これらの和は (2n-2)+2n+(2n+2)=6n であり、n が整数 なので、6nは6の倍数である。

9

したがって、連続する3つの偶数の和は6の 倍数になる。

$oxed{10}$ (1) 12 個 (2) $(2n+2)$ 個	10	(1) 12	個	(2)	(2n+2)	個
------------------------------------	----	--------	---	-----	--------	---

	(1)	⑦~ 完答	Ţ	1	3	-1	9	-3	Ŧ	-5
11	(2)	オ~②完答	A	6	3	0	#	0	Ø	4
	(2)	$\int x =$	= 4							

x = 2x = 3x = 3(1) (2) (3) y = -1y = -1y = 2**12** x = -36x = 5(5)(4) y=3y = 38

13 (1)	$\begin{cases} x = 3 \\ y = 1 \end{cases}$		2 -1
---------------	--	--	---------

y = -3

まさしの情報はここから check! (FANME)

[補足]

- 1. (1), (2), (4) 単位忘れに注意
 - (5) 度数分布折れ線は、度数 0 のところを端にする
- 3. 次数をきかれたら数だけで答える(~次と答えない)
- 4. (4), (5) はそれぞれ $\frac{-4a+2b-10}{3}$, $\frac{4}{15}x+\frac{4}{15}y$ でもよい
- 6. (4) は $\frac{9}{5}z \frac{4}{5}y$ でもよい
- 7. (2) n は自然数であり、2n+1 だと 1 が表せないので注意
- 8. (2) 5n-2 などでもよいが、あまりを加える表現が一般的
- 9. 真ん中の偶数を 2n とすると計算が楽になる

もっとも小さい偶数を 2n とおいても同様に説明はできる

10. (2) () のつけ忘れに注意

$[a \div bc \ \texttt{L} \ a \div b \times c \ \texttt{ts}]$

文字式において、 \times を省略したり、 \div を分数で表したりするが、省略する前後で表すものは異なる。 $a\times b$ 、 $a\div b$ はそれぞれ掛け算、割り算を表し、これらは演算(計算式)である。一方で、ab、 $\frac{a}{b}$ はそれぞれ積、商を表し、これらは計算結果、すなわち、ひとまとまりの数である。以上のことを踏まえると、 $a\div bc=\frac{a}{bc}$ 、 $a\div b\times c=\frac{ac}{b}$ となる。

[文字を使って表した量に()をつける,つけないの判断]

量は (大きさ) × (単位) の形で表される。つまり、大きさの部分が 1つのかたまり(積や分数の形)なら ()をつけなくてもよく、大きさの部分がバラバラ(和や差の形)なら () をつけなくてはならない。(たとえば、 $5n \, \mathrm{cm} \, や \, (30m + 200) \, \mathrm{g} \,$ のように表す。)

計算結果ではなく、式(ここでは途中式などを指す)に単位をつけておきたい場合には、単位に () をつければよい。(たとえば、 $120 \times t$ (m) や $x \div 5$ (円) のように表す。)

[配点]

- 1. 17点((1) 各 2 点, (2) 1 点, (3) 完答 4 点, (4) ① 1 点, ② 2 点, (5) 3 点)
- 2 3 占
- 3. 5点(各1点)
- 4. 20点(各2点)
- 5. 4点(各2点)
- 6.8点(各2点)
- 7. 3点((1)1点,(2)2点)
- 8. 3点((1)1点,(2)2点)
- 9. 5点
- 10.4点(各2点)
- 11. 7点((1) 完答 2点, (2) 完答 2点, (3) 3点),
- 12. 15点(各3点)
- 13.6点(各3点)

まさしの情報はここから check! (FANME)

