

Trường Đại học Nha Trang Khoa Công nghệ Thông tin

CƠ SỞ DỮ LIỆU

Chủ đề 3: Phụ thuộc hàm, Hệ tiên đề Armstrong

TS. Phạm Thị Thu Thúy thuthuy@ntu.edu.vn

Dẫn nhập

Ví dụ dẫn nhập về quản lý đặt hàng

<u>MSKH</u>	TÊNKH	TP	PVC	<u>MSMH</u>	TÊNMH	ÐG	SL	TT
S1	An	HCM	01	P1	Táo	650	300	300
S1	An	HCM	01	P2	Cam	500	200	200
S1	An	HCM	01	P3	Chanh	450	400	400
S2	Hòa	HN	02	P1	Táo	650	100	100
S2	Hoà	HN	02	P3	Chanh	450	300	300
S 3	Thanh	NT	03	P2	Cam	500	200	200
S4	Trang	NT	03	P2	Cam	500	210	210

Dẫn nhập

- ❖ Nhắc lại các vấn đề phát sinh sinh khi:
 - Thêm
 - Xóa
 - Sửa

Dẫn nhập

- ❖ Nguyên nhân?
- *Làm thế nào để thiết kế CSDL cho tốt?
- ❖ Thế nào là CSDL tốt? Chuẩn?

Lý thuyết thiết kế CSDL Quan hệ

- Phụ thuộc hàm (Functional Dependencies)
- Phủ tối thiểu của tập phụ thuộc hàm
- Khóa của quan hệ lược đồ quan hệ
- Phép phân rã bảo toàn thông tin
- ❖ Chuẩn hóa CSDL

Phụ thuộc hàm (pth)

- Quan hệ R được định nghĩa trên tập thuộc tính U = {A1, A2, ..., An}.
- ♣ A, B⊂ U là 2 tập con của tập thuộc tính U.
- Nếu tồn tại một ánh xạ f: A → B thì ta nói rằng A xác định hàm B, hay B phụ thuộc hàm vào A và ký hiệu là A → B.

Phụ thuộc hàm (pth):

Định nghĩa hình thức của phụ thuộc hàm:

- ❖ Quan hệ Q (A, B, C) có PTH A xác định B (ký hiệu là A → B) nếu:
- \forall q, q' \in Q, sao cho q.A = q'.A thì q.B = q'.B
- Nghĩa là: ứng với 1 giá trị của A thì có một giá trị duy nhất của B
- A là vế trái của PTH, B là vế phải của PTH
- ◆ PTH A → A được gọi là PTH hiển nhiên.

Phụ thuộc hàm (pth)

❖Vd: SV(MaSV, HoTen, Phai, NgSinh, Quequan, DiaChi) có các pth:

- MaSV → QueQuan, DiaChi
- MaSV, Hoten → NgSinh, QueQuan

không có pth:

■ HoTen → NgSinh, QueQuan

1. Phụ thuộc hàm (Functional Dependencies)

- ❖ Định nghĩa 1: Cho tập thuộc tính U và X, Y hai tập hợp con của U. Phụ thuộc hàm xác định bởi X, Y là một công thức có dạng: X → Y.
- ❖Ví dụ: U = ABCDE
 - X = CE, Y = BCD
 - CE → BCD là một phụ thuộc hàm (pth)

Phụ thuộc hàm (Functional Dependencies)

❖Định nghĩa 2: Một quan hệ r(U), thỏa mãn pth
X → Y nếu :

$$\forall t1, t2 \in r(U): t_1(X) = t_2(X) \Rightarrow t_1(Y) = t_2(Y)$$

Nghĩa là: ứng với 1 giá trị của X thì có một giá trị duy nhất của Y.

- ❖ Vd1: SV(MaSV, HoTen, Phai, NgSinh, Quequan, DiaChi)
 có các pth:
 - MaSV→ QueQuan, DiaChi
 - MaSV, Hoten → NgSinh, QueQuan

không có pth:

HoTen → NgSinh, QueQuan

Phụ thuộc hàm (pth)

Vd2: Trong quan hệ CHITIẾT_HĐ (Số-hóa_đơn, Mã-hàng, Số-lượng, Đơn-giá, Trị-giá)

có các pth sau:

- f1: Số-hóa-đơn, Mã-hàng → Số-lượng
- f2: Số-hóa-đơn, Mã-hàng → Đơn-giá.
- f3: Số-hóa-đơn, Mã-hàng → Trị-giá.
- f4: Số-lượng, Đơn-giá → Trị-giá.

Bài tập

❖ Bài 1. Cho quan hệ r(U):

U	A	В	С	D
t ₁	5	4	9	3
t_2	5	2	9	1
t_3	4	6	8	2
t ₄	4	6	8	3
t_{5}	7	2	1	1

Hỏi r thỏa mãn pth nào sau đây:

a)
$$AB \rightarrow CD$$

a)
$$AB \rightarrow CD$$
 b) $A \rightarrow C$ c) $BC \rightarrow D$

Bài tập

❖ Bài 2. Cho quan hệ r(U):

U	A	В	С
t ₁	1	3	6
t_2	2	3	8
t_3	3	4	4
t ₄	4	2	2
t_5	5	1	1

Hỏi quan hệ r(U) đã cho có thỏa pth A \rightarrow BC không ?

♦ Chú ý:

- Nếu ta có phụ thuộc hàm X → Y thì ta gọi X xác định hàm Y hay Y phụ thuộc hàm vào X.
- pth hiển nhiên (pth tầm thường):

$$X \rightarrow Y \text{ mà } Y \subset X.$$

pth là phương tiện biểu diễn những ràng buộc dữ liệu, đây là cơ sở để xác định khoá và chuẩn hóa lượt đồ CSDL.

2. Hệ tiên đề Armstrong

- Năm 1974, Armstrong đã đưa ra hệ tiên đề (gọi là hệ luật dẫn Armstrong): Cho lược đồ quan hệ Q với tập thuộc tính U. X, Y, Z, W ⊆ U. PTH có các tính chất cơ bản sau:
- Luật 1 (Luật phản xạ):
 Nếu Y ⊆ X thì X → Y
- Luật 2 (Luật tăng trưởng):
 Nếu X → Y thì XZ → YZ (Z ⊆ U)
- Luật 3 (Luật bắc cầu): Nếu $X \rightarrow Y$ và $Y \rightarrow Z$ thì $X \rightarrow Z$

Hệ tiên đề Armstrong

❖ Ví dụ 1:

Cho F = {AB \rightarrow C, C \rightarrow A }. CMR: BC \rightarrow ABC

Chứng minh:

Ta có: (1) $C \rightarrow A$ (giả thiết)

- (2) BC \rightarrow AB (tăng trưởng 1)
- (3) AB \rightarrow C (giả thiết)
- (4) AB \rightarrow ABC (tăng trưởng 3)
- (5) BC → ABC (bắc cầu 2 & 4)

Hệ quả của Hệ tiên đề Armstrong

```
Các tính chất bổ sung
```

- Luật 4: (Luật giả bắc cầu):
 Nếu X → Y và YW → Z thì XW → Z.
- Luật 5: (Luật hợp):
 Nếu: X → A và X → B thì X → AB.
- Luật 6: (Luật tách):
 - Nếu: $X \rightarrow YZ$ thì $X \rightarrow Y$ và $X \rightarrow Z$.

Hệ tiên đề Armstrong là đúng

- ❖ Hệ Arms là đúng: nếu FD f:X→Y có thể được suy diễn từ tập các FD F sử dụng các quy tắc suy diễn thì f nằm trong các quan hệ mà thỏa mãn tất cả các FD trong F
- ❖ Ví dụ Cho biết X→Y và X→Z thì
 - X→XY (quy tắc tăng theo X)
 - YX→YZ (quy tắc tăng theo Y)
 - X→YZ (bắc cầu)
 - Vậy X→YZ thỏa mãn tất cả các quan hệ mà thỏa mãn FD X→Y
 và X→Z

Hệ tiên đề Armstrong là đầy đủ

- ❖ Hệ Arms là đầy đủ: Nếu F bao f, thì f có thể suy diễn được từ F sử dụng hệ các quy tắc suy diễn
- Kết quả rút ra được từ tính đầy đủ này là chúng ta có thuật toán để xác định xem F có bao f hay không
 - Bản chất thuật toán là sử dụng hệ suy diễn theo tất cả các cách có thể nhằm tìm F⁺, sau đó kiểm tra xem f có nằm trong F⁺ hay không

Hệ tiên đề Armstrong là chính xác

- + Hệ Ams là chính xác: Khái niệm đúng và đầy đủ đã liên kết thành một chuỗi ý nghĩa đầy đủ về tính chính xác của hệ suy diễn Armstrong (định nghĩa này chỉ đúng trong các thể hiện của quan hệ)
- Điều này đồng thời cho biết một cách chính xác rằng thuật toán tìm bao dựa trên hệ suy diễn là chính xác

Hệ tiên đề Armstrong

- ❖ Ví dụ: Cho R(A,B,C,D,E,G,H) và tập pth: F = {AB→C, B→D, CD→E, CE→GH, G→A }. CMR: AB→E.
- Ta có:
 - (1) $AB \rightarrow C$ (cho trước)
 - (2) AB→AB (phản xạ)
 - (3) AB→B (luật tách)
 - (4) $B\rightarrow D$ (cho trước)
 - (5) AB→D (bắc cầu 3 & 4)
 - (6) AB→CD (hợp 1 & 5)
 - (7) CD \rightarrow E (cho trước)
 - (8) AB→E (bắc cầu 6 & 7) (đpcm).

Hệ tiên đề Armstrong

```
Ví dụ: Cho R(A,B,C,D,E,G,H,I,J).
 F = \{AB \rightarrow E, AG \rightarrow J, BE \rightarrow I, E \rightarrow G, GI \rightarrow H \}
 CMR: AB→GH
 1) AB→E (chotrước – f1)
2) AB→AB (phản xạ)
3) AB→B (tách)
4) AB→BE (hợp của 1 & 3)
5) BE→I (chotrước - f3)
6) AB→I (bắc cầu 4 & 5)
7) E→G (chotrước - f4)
8) AB→G (bắc cầu 1 & 7)
9) AB→GI (hợp 6 & 8)
10) GI→H (chotrước - f5)
11) AB→H (bắc cầu 9 & 10)
```

12) AB→GH (hợp 8 & 11) (đpcm).

3. Bao đóng tập phụ thuộc hàm

• Định nghĩa: Cho tập thuộc tính U, F là tập pth định nghĩa trên U. Bao đóng của tập pth F, ký hiệu F+ là tập pth bé nhất chứa F thỏa mãn Hệ tiên đề Armstrong.

Bao đóng tập phụ thuộc hàm

```
*Vd: R(A, B, C)

F = {A → B, B → C}

F<sup>+</sup> = {A → B, B → C, A → C

A → A, B → B, C → C, AB → A, AB → B, AB → C, BC

→ B, BC → C, ABC → A, ABC → B, ABC → C...}

!!! Chú ý: Cho đến nay, chưa có thuật toán thời gian đa thức để xác định F<sup>+</sup>.
```


4. Suy dẫn logic (suy dẫn theo tiên đề Armstrong)

❖ Định nghĩa: Cho tập thuộc tính U, F là tập pth xác định trên U, f là một pth xác định trên U. Người ta nói rằng f được suy dẫn theo tiên đề (hoặc suy dẫn logic) từ tập pth F và ký hiệu là F ⊨f nếu từ các pth của F ta có thể biến đổi thành f bởi hệ tiên đề Armstrong.

Vậy:
$$F^+ = \{f / F \models f\}$$

5. Bao đóng tập thuộc tính

Dịnh nghĩa: Cho tập thuộc tính U, F là tập pth xác định trên U, $X \subseteq U$. Bao đóng tập thuộc tính X ứng với tập pth F, ký hiệu X^+_F được định nghĩa như sau:

$$X^{+}_{F} = \{A \in U/X \rightarrow A \in F^{+}\}$$

- Trường hợp không nhầm lẫn, ta chỉ viết X+
- ❖ Nhận xét: Ta không xác định được tất cả các phần tử của X+_F vì chưa biết F+. Tuy nhiên các nhà toán học đã tìm được thuật toán xác định F.

Bao đóng tập thuộc tính

```
❖ Vi\ d\mu: R(ABCDE)

F = {A → BC, C → DE}

Dùng hệ tiên đề Armstrong ta có:

(BC)+<sub>F</sub> = BCDE

(A)+<sub>F</sub> = ABCDE
```

??? Khi ta có: $(BC)^+_F = BCDE$ thì $BC \rightarrow$?

Bao đóng tập thuộc tính

❖ Bổ đề 1. Cho tập thuộc tính U, F là tập pth xác định trên U.

$$X \rightarrow A \in F^+ \Leftrightarrow Y \subseteq X^+_F$$

6. Bài toán thành viên

- ❖ Cho Idqh s = (U, F), một pth f: X → Y xác định trên U. Hỏi X → Y có thuộc F+ hay không?
- ❖ Nhận xét: Bài toán thành viên (Cho ldqh s = (U, F), một pth f: X → Y xác định trên U. Hỏi X → Y có thuộc F+ hay không) đã được giải quyết nhờ vào Bổ đề 1 (X → Y ∈ F+ \Leftrightarrow Y \subseteq X+_F)

Vấn đề: Đến nay, chưa có thuật toán thời gian đa thức để xác định F⁺. Nên thay vì tìm F⁺, người ta xác định một pth có thuộc F⁺ hay không? → Bài toán thành viên: Tìm bao đóng của tập thuộc tính.

Suy dẫn theo quan hệ

❖Định nghĩa: Cho tập pth F xác định trên tập thuộc tính U, f là một pth trên U. Ta nói f được suy dẫn theo quan hệ từ F, ký hiệu: F ← f nếu bất kỳ quan hệ r nào xác định trên U thỏa F thì r cũng thỏa f.

 \forall r(U), r thỏa F \Rightarrow r thỏa f

❖ Vd: Trên lược đồ quan hệ SINHVIEN(CMND, MSSV, TENSV) định nghĩa tập pth:

 $F = \{CMND \rightarrow MSSV, MSSV \rightarrow TENSV\}$

⇒ CMND → TENSV là pth được suy dẫn từ F.

Suy dẫn theo quan hệ

❖Định nghĩa: Bao đóng tập pth F theo quan hệ Cho tập thuộc tính U và tập pth xác định trên U, ta định nghĩa bao đóng tập pth F theo quan hệ ký hiệu F*là tập toàn bộ các pth f được suy dẫn theo quan hệ từ tập pth F:

$$F^* = \{f / F \mid -f \}$$

Suy dẫn theo quan hệ

*Định lý. Tính đúng và đây đủ của hệ tiên đề Armstrong: Hệ tiên đề Armstrong là đúng và đầy đủ (những gì suy dẫn được trên quan hệ thì chắc chắn suy dẫn được bằng Armstrong và ngược lại)

$$F^+ = F^*$$

❖ Nhập:

Cho tập hữu hạn các thuộc tính U, F là tập các phụ thuộc hàm xác định trên U, $X \subseteq U$.

- ❖ Xuất: X+_F
- Thuật toán:
 - Bước 1. X₀ = X
 - Bước 2. $X_{i+1} = X_i \cup A$ sao cho:
 - $\exists (Y \rightarrow Z) \in F \text{ mà: } Y \subseteq X_i \text{ và } A \subseteq Z.$
 - Do: $X = X_0 \subseteq X1 \subseteq ... \subseteq U$, U hữu hạn nên $\exists i, X_i = X_{i+1}$ khi

- ❖ d1: Xét s(U, F), R = ABCDEG và tập phụ thuộc hàm F như sau: F = {AB→C, C →A, BC →D, ACD→B, D→EG, BE→C, CG→BĐCLĐH, CE→AG}
 - X = BD, Tính X^+
 - $X_0 = BD$,
 - Để tìm X₁ ta tìm những phụ thuộc hàm trong F có vế trái nằm trong BD, ta có pth D→EG thỏa mãn điều kiện đó: X1 = BDEG,
 - Tiếp tục tìm X₂, pth có vế trái nằm trong BDEG, ta có BE→C, vậy:
 X₂ = BDEGC.
 - Tương tự như vậy ta có X₃ = ABCDEG đây là tập X⁺ = (BD)⁺ = R.

❖ Vd2: Xét s(U, F), R = ABCDEGH và tập phụ thuộc hàm F như sau:

$$F = \{AB \rightarrow E, GH \rightarrow A, G \rightarrow C, D \rightarrow G, CDE \rightarrow HA\}$$

- a. Tìm (DH)+
- b. Tim (BCD)+

- ♦ Vd3: Xét s(U, F), U = ABCDEGH F = {AB → EH, C → D, GH → AC, E → BG, B → E}
 - a) Tìm (BH)+_F
 - b) Tim (EC)⁺_F

❖Nhận xét:

- Các pth đã sử dụng để ghép vào vế phải cho X ở bước i thì không cần xét ở bước i+1.
- Thuật toán dừng khi duyệt tập pth F mà không còn bố sung thêm thuộc tính vào cho X.

Bài tập

```
    * BT1: Xét s(U, F), U = ABCDEGH
        F = {AB → EH, C → D, GH → AC, E → BG, B → E}
        a) Tìm (BH)<sup>+</sup><sub>F</sub> b) Tìm (EC)<sup>+</sup><sub>F</sub>

    * BT2: Xét s(U, F), U = ABCDE
        F = {BC → D, D → B, E → A, A → C}
        a) Tìm (AB)<sup>+</sup><sub>F</sub> b) Tìm (E)<sup>+</sup><sub>F</sub>

    * BT3: Xét s(U, F), U = ABCDEG
        F = {C → G, BG → CD, AEG → BC, CG → AE, B→CG}
        a) Tìm (BC)<sup>+</sup><sub>F</sub> b) Tìm (C)<sup>+</sup><sub>F</sub>

    * BT4: Xét s(U, F), U = ABCDEG
        F = {B → C, AC → D, D → G, AG → E}
        a) Tìm (AB)<sup>+</sup><sub>F</sub> b) Tìm (AC)<sup>+</sup><sub>F</sub>
```


- ❖ Sách Phương pháp giải bài tập Cơ sở dữ liệu quan hệ, Nguyễn Đức Thuần, Trương Ngọc Châu trang 34 − 37 (LT), Bài 6, 7, 9 trang73 đến 76 (Bài tập có lời giải),...
- * Dạng 1. Chỉ ra vết suy dẫn theo hệ tiên đề Armstrong
 - Phương pháp giải: Sử dụng hệ tiên đề Armstrong và các hệ quả của nó.
 - Ví dụ 1. Chứng minh rằng:
 F = {AB → E, AG → I, BE → I, E → G, GI → H} |= AB → GH
- ❖ Dạng 2. Chứng minh hệ tiên đề tương đương với hệ tiên đề Armstrong

* Dạng 3. Kiểm tra quan hệ thỏa phụ thuộc hàm

Phương pháp giải: Sử dụng định nghĩa Quan hệ r thỏa pth f và viết r(f), nếu:

$$r(X \rightarrow Y) \Leftrightarrow \forall t1, t2 \in r: t_1(X) = t_2(X) \Rightarrow t_1(Y) = t_2(Y)$$

❖ Ví dụ : Kiểm tra xem quan hệ r :

	R	Α	В	С	D	Е
r	h_1	1	1	0	1	0
	h ₂	0	0	1	0	1
	h ₃	1	0	1	0	0
	h ₄	0	1	0	1	1
	h ₅	1	1	1	1	1

thỏa pth nào sau đây:

a)
$$AB \rightarrow DE$$
 b) $B \rightarrow D$ c) $CE \rightarrow BD$ d) $CDE \rightarrow A$

- Dạng 4. Tìm bao đóng tập thuộc tính dựa vào tập pth
 - Phương pháp giải : Sử dụng thuật toán tìm bao đóng tập thuộc tính.
 - Ví dụ. Cho lđqh s =(U, F) với U = {ABCDE}
 F = {BC → D, D → B, E → A, A → C}.
 Tìm (AB)⁺_F

Dạng 5. Bài toán thành viên

- Phương pháp giải: Sử dụng Bổ đề 1.
- Ví dụ: Cho lđqh s = (U, F), U = ABCDEG
 F = {B → C, AC → D, D → G, AG → E}.
 Cho biết AB → G ∈ F⁺?
- Chú ý: $X \rightarrow Y \in F^+ \Leftrightarrow F \models X \rightarrow Y$ nên:
 - Cho biết $X \rightarrow Y \in F^+ \Leftrightarrow$ Cho biết $F \models X \rightarrow Y$?
 - Chứng minh $X \rightarrow Y \in F^+ \Leftrightarrow$ Chứng minh $F \models X \rightarrow Y$

