Solution to Exam I

1. (a) Let x_i , i = 1, ..., 5, be the ammounts of investments on different types of stocks, then the objective function is

$$\max \qquad f = 0.12x_1 + 0.09x_2 + 0.05x_3 + 0.08x_4 + 0.04x_5$$

and the constraints are

$$\begin{array}{ll} x_1 + x_2 + x_3 + x_4 + x_5 = 1,000,000 & \text{(total ammount)} \\ x_2 \leq 25,000 & \text{(precious metal)} \\ x_1 + x_3 \geq 30,000 & \text{(medicine plus computer harware)} \\ \frac{3.2x_1 + 1.8x_2 + 1.6x_3 + 2.1x_4 + 1.4x_5}{1,000,000} \leq 2.0 & \text{(risk factor)} \\ x_i \geq 0, \ i = 1,\dots,5 & \end{array}$$

Another way to solve the problem is to set x_i to be the percentage of investments. Then the objective function is

max
$$f = 1,000,000 \times (0.12x_1 + 0.09x_2 + 0.05x_3 + 0.08x_4 + 0.04x_5)$$

and the constraints are

$$\begin{array}{ll} x_1+x_2+x_3+x_4+x_5=1 & \text{(total percentage}=100\%) \\ 1,000,000x_2\leq 25,000 & \text{(precious metal)} \\ 1,000,000(x_1+x_3)\geq 30,000 & \text{(medicine plus computer harware)} \\ 3.2x_1+1.8x_2+1.6x_3+2.1x_4+1.4x_5\leq 2.0 & \text{(risk factor)} \\ x_i\geq 0,\ i=1,\ldots,5 & \end{array}$$

(b) In part (b) and (c), we will only show the solution when x_i are set to be the amounts. The solution for x_i to be the percentage of investments is similar.

$$\begin{array}{ll} \min & f = -0.12x_1 - 0.09x_2 - 0.05x_3 - 0.08x_4 - 0.04x_5 \\ \text{subject to} & x_1 + x_2 + x_3 + x_4 + x_5 \geq 1,000,000 \\ & - x_1 - x_2 - x_3 - x_4 - x_5 \geq -1,000,000 \\ & - x_2 \geq -25,000 \\ & x_1 + x_3 \geq 30,000 \\ & - 3.2x_1 - 1.8x_2 - 1.6x_3 - 2.1x_4 - 1.4x_5 \geq -2,000,000 \\ & x_i \geq 0, \ i = 1,\dots,5 \end{array}$$

(c) The dual problem is

$$\begin{array}{ll} \max & g=1,000,000u_1-25,000u_2+30,000u_3-2,000,000u_4\\ \text{subject to} & u_1+u_3-3.2u_4\leq -0.12\\ & u_1-u_2-1.8u_4\leq -0.09\\ & u_1+u_3-1.6u_4\leq -0.05\\ & u_1-2.1u_4\leq -0.08\\ & u_1-1.4u_4\leq -0.04\\ & u_2,\,u_3,\,u_4,\geq 0,\,u_1\text{ free} \end{array}$$

2. Since the problem is given in non-standard form, we will apply scheme II first. The initial tableau is

	x1	x2	x 3	1
y1 = y2 =	2.0000	-1.0000 1.0000	1.0000	-5.0000 -10.0000
f =	2.0000	-1.0000	2.0000	0.0000

Exchange y_1 and x_3 , we have

	x1	x2	y1	1
x3 = y2 =	-2.0000 1.0000	1.0000	1.0000	5.0000 -10.0000
f =	-2.0000	1.0000	2.0000	10.0000

Now $y_1 = 0$, we can delete the y_1 -column. Since x_3 is a free variable, we will move it to the bottom. The new tableau is

	x1	x2	1
y2 =	1.0000	1.0000	-10.0000
f = x3 =	-2.0000 -2.0000	1.0000	10.0000

This tableau is not feasible. Next, we need to apply phase I to get a starting basic feasible solution. Add artificial variable x_0 and objective function f_0 ,

	x1	x2	x0	1
y2 =	1.0000	1.0000	1.0000	-10.0000
f = x3 =	-2.0000 -2.0000	1.0000	0.0000	10.0000
f0 =	0.0000	0.0000	1.0000	0.0000

Apply a special pivoting which exchanges y_2 with x_0 ,

$$x1$$
 $x2$ $y2$ 1 $x0 = | -1.0000 -1.0000 1.0000 10.0000$

f =	-2.0000	1.0000	0.0000	10.0000
x3 =	-2.0000	1.0000	0.0000	5.0000
f0 = 1	-1.0000	-1.0000	1.0000	10.0000

Now try to minimize f_0 . Exchange x_0 with x_1 ,

	x 0	x2	у2	1
x1 =	-1.0000	-1.0000	1.0000	10.0000
f =	2.0000	3.0000	-2.0000	-10.0000
x3 =	2.0000	3.0000	-2.0000	-15.0000
f0 =	1.0000	0.0000	0.0000	0.0000

The minimum of f_0 is reached and $f_0 = 0$. This completes phase I. Delete x_0 -column and f_0 -row,

	x2	y2	1
x1 =	-1.0000	1.0000	10.0000
f = x3 =	3.0000 3.0000	-2.0000 -2.0000	-10.0000 -15.0000

The tableau is now feasible. We can start phase II.

Notice immediately that the tableau is unbounded, since no pivot row can be chosen. Indeed, if we let $y_2 = \lambda \ge 0$, then

$$x_1 = \lambda + 10 \ge 0,$$
 $x_2 = 0,$ $x_3 = -2\lambda - 15$ (free variable)

and

$$f = -2\lambda - 10.$$

As λ goes to $+\infty$, the value of f goes to $-\infty$.