Kontekstfri grammatikker

Eksempel:

```
sentence \rightarrow subject \ verb \ object \ subject \rightarrow person \ person \rightarrow Morten \ | \ Ole \ | \ Henrik \ verb \rightarrow spurgte \ | \ sparkede \ object \rightarrow thing \ | \ person \ thing \rightarrow fodbolden \ | \ computeren
```

[Chomsky, 1956]

- Nonterminal-symboler: sentence, subject, person, verb, object, thing
- Terminal-symboler: Morten, Ole, Henrik, spurgte, sparkede, fodbolden, computeren
- Start-symbol: sentence
- Eksempel på derivation:

 $sentence \Rightarrow subject \ verb \ object \Rightarrow ... \Rightarrow 01e \ spurgte \ computeren$

Formel definition af CFG'er

En kontekstfri grammatik (CFG) er et 4-tupel $G = (V, \Sigma, S, P)$ hvor

- Ver en endelig mængde af nonterminal-symboler
- Σ er et alfabet af **terminal**-symboler og $V \cap \Sigma = \emptyset$
- S∈ V er et start-symbol
- P er en endelig mængde af **produktioner** på form $A \rightarrow \alpha$ hvor $A \in V$ og $\alpha \in (V \cup \Sigma)^*$

Derivationer

- "⇒" repræsenterer ét derivations-trin, hvor en nonterminal erstattes ifølge en produktion
- dvs. " \Rightarrow " er en relation over mængden $(V \cup \Sigma)^*$
- Hvis $\alpha_1, \alpha_2 \in (V \cup \Sigma)^*$ og $(A \to \gamma) \in P$ (dvs. grammatikken indeholder produktionen $A \to \gamma$) så gælder

$$\alpha_1 A \alpha_2 \Rightarrow \alpha_1 \gamma \alpha_2$$

("⇒" er i denne sammenhæng **ikke** et "logisk medfører" tegn)

Sproget af en kontekstfri grammatik

■ Definer relationen " \Rightarrow *" som den *refleksive transitive lukning* af " \Rightarrow ", dvs.

$$\alpha \Rightarrow^* \beta$$
 hvis og kun hvis $\alpha \Rightarrow ... \Rightarrow ... \Rightarrow \beta$
0 eller flere derivationstrin

- Sproget af *G* defineres som $L(G) = \{ x \in \Sigma^* \mid S \Rightarrow^* x \}$
- Et sprog $L\subseteq\Sigma^*$ er **kontekstfrit** hvis og kun hvis der findes en CFG G hvor L(G)=L

Eksempel 1

Sproget $A = \{ a^n b^n \mid n \ge 0 \}$ kan beskrives af en CFG $G = (V, \Sigma, S, P)$ hvor

•
$$V = \{S\}$$

•
$$\Sigma = \{a,b\}$$

•
$$P = \{S \rightarrow aSb, S \rightarrow \Lambda\}$$

alternativ notation: $S \rightarrow aSb \mid \Lambda$

dvs. L(G) = A (bevis følger...)

Bevis for korrekthed

Påstand: L(G) = A

Bevisskitse: (udnyt at $x \in L(G) \Leftrightarrow S \Rightarrow^* x$)

- $L(G) \subseteq A$: givet x hvor $x \in L(G)$, lav induktion i antal derivationsskridt i $S \Rightarrow^* x$
- $A \subseteq L(G)$: givet x hvor $x \in A$, laving induktion i længden af x

Eksempel 2

Sproget $pal = \{ x \in \{0,1\}^* \mid x = reverse(x) \}$ kan beskrives af en CFG $G = (V, \Sigma, S, P)$ hvor

•
$$V = \{S\}$$

 $\forall \Sigma = \{0,1\}$
• $P = \{S \to \Lambda$,
 $S \to 0$,
 $S \to 1$,
 $S \to 0S0$,
 $S \to 1S1$ }
alternativ notation:
 $S \to \Lambda \mid 0 \mid 1 \mid 0S0 \mid 1S1$

Hvorfor navnet "kontekstfri"?

• $\alpha_1 A \alpha_2 \Rightarrow \alpha_1 \gamma \alpha_2$ hvis grammatikken indeholder produktionen $A \rightarrow \gamma$

• dvs. γ kan substituere A uafhængigt af konteksten (α_1 og α_2)

Anvendelser af kontekstfri grammatikker

 Praktisk: til beskrivelse af syntaks for programmeringssprog (ofte med BNF-notationen)

Teoretisk: som karakteristik af en vigtig klasse af formelle sprog

En kontekstiri grammatik for Java

http://www.daimi.au.dk/dRegAut/JavaBNF.html

En tekst er et **syntaktisk korrekt Java-program** hvis den kan deriveres af denne grammatik

Klasser af formelle sprog

Øvelser

- [Martin] 6.1 (a+b+e)
- [Martin] 6.9 (a-c)

Resume

- Regulære sprog:
 - lukkethed under ∪, ∩, ', ·, *, homomorfi og invers homomorfi
 - "pumping"-lemmaet
 - beslutningsproblemer: membership, emptiness, finiteness, subset, equality
- Kontekstfri grammatikker:
 - definition af kontekstfri grammatikker og sprog