

THUẬT TOÁN ỨNG DỤNG

Thuật toán và Phân tích Thuật toán

Nội dung

- 1. Thông tin chung về môn học
- 2. Thuật toán
- 3. Ví dụ đầu tiên
 - 1. Duyệt toàn bộ
 - 2. Duyệt toàn bộ nhưng tối ưu hơn
 - 3. Chia để trị
 - 4. Quy hoạch động
- 4. Phân tích thuật toán
 - 1. Độ tăng trưởng
 - Phân tích thực nghiệm
- 5. Bài tập

Phần 1

Thông tin chung về môn học

Giới thiệu môn học

- Tên môn: Thuật toán Ứng dụng
 - Tiếng Anh: Application of Algorithms
- Số tín chỉ: 3 (30 lý thuyết + 15 thực hành)
- Nội dung chính:
 - Giới thiệu cấu trúc dữ liệu và thuật toán
 - Đệ quy, quay lui và nhánh cận
 - Các cách tiếp cận: tham lam, chia để trị, quy hoạch động
 - Đồ thị
 - Xử lý chuỗi
- Giảng viên: Trương Xuân Nam, khoa CNTT
- Email: namtx@wru.vn / truongxuannam@gmail.com

Tài liệu môn học và phần mềm học tập

- Tài liệu chính: bài giảng của giáo viên
- Phần mềm học tập: C/C++/Java/Python
 - Dùng ngôn ngữ lập trình nào cũng được, miễn là minh họa đúng tính chất của bài giải
 - Chấm tự động bằng phần mềm hoặc dịch vụ online
- Bài giảng, bài tập, mã nguồn, điểm số,... sẽ được đưa lên site https://txnam.net mục BÀI GIẢNG
 - Bài giảng và bài tập sẽ được đưa lên trước giờ học
 - Trong giờ thực hành, sinh viên vào website lấy bài tập về để làm, giáo viên sẽ không gửi cho lớp
 - Điểm quá trình cũng sẽ được công bố trên website

Kiến thức yêu cầu

- Lập trình được với C/C++, Java, Python hoặc C#
 - Vì chúng ta sẽ áp dụng kiến thức đó vào môn học
 - Lập trình được tức là có thể viết chương trình với ngôn ngữ đó dựa trên mô tả thuật toán
- Đã học:
 - Ngôn ngữ Lập trình
 - Cấu trúc Dữ liệu và Giải thuật
- Biết sử dụng email
 - Nộp bài tập vào email của thầy giáo: cần ghi rõ tên sinh viên,
 bài nộp là bài nào, của buổi bài tập số mấy
 - Có thể email cho thầy giáo để hỏi thêm các vấn đề về môn học
- Chú ý: copy bài của bạn khác để nộp sẽ bị cấm thi

Đánh giá kết quả

- Điểm môn học:
 - Điểm quá trình: 50%
 - Điểm thi cuối kỳ: 50%
- Điểm quá trình:
 - Chuyên cần
 - Bài làm trên lớp, trong phòng lab
 - Bài tập về nhà (nộp qua email)
 - Bài kiểm tra
- Thi cuối kỳ:
 - Thi trên máy tính
 - Học gì thi nấy, không hỏi ngoài môn học
 - Không có giới hạn nội dung thi

Mục tiêu của môn học này

- Nâng cao kỹ năng thực hành của sinh viên trong việc giải quyết các vấn đề thuật toán
- Nhấn mạnh vào quy trình "phân tích thiết kế cài đặt tối ưu" thuật toán trong quá trình phát triển phần mềm
- Có thể trả lời được các câu hỏi phỏng vấn khi tìm việc làm ở các công ty tốt
 - Tất cả các công ty công nghệ hàng đầu đều phỏng vấn ứng viên lập trình về thuật toán (Google, Facebook, Apple, Microsoft, Grab, Shopee, Zalo, FPT, Viettel,...)
- Làm đẹp hồ sơ xin việc

Phần 2

Thuật toán

Khái niệm thuật toán

- Thuật toán = Các bước để giải quyết vấn đề
- Thuật toán = Phương thức tính toán được cài đặt trên máy tính
- Đặc trưng:
 - Có đầu vào: một tập giá trị
 - Có đầu ra: kết quả tính toán, là một tập giá trị khác
 - Tính rõ ràng: xác định, không hiểu sai
 - *Tính tổng quát: giải một lớp các bài toán
 - *Tính dừng: kết thúc sau một số bước hữu hạn
 - *Tính đúng: đưa ra kết quả đúng

Khái niệm thuật toán

Cơ bản

- Giới thiệu về Thuật toán
- Tìm kiếm & Sắp xếp
- Cấu trúc dữ liệu cơ bản
- Đệ quy, Quay lui và Nhánh cận
- Thuật toán tham lam
- Chia để trị
- Quy hoạch động
- Thuật toán về đồ thị và ứng dụng

Nâng cao

- Cấu trúc dữ liệu nâng cao và ứng dụng
- Thuật toán với chuỗi ký tự và ứng dụng

Phần 3

Ví dụ đầu tiên

Đoạn con có tổng lớn nhất

- Tìm đoạn con có tổng lớn nhất của một dãy số cho trước
- Cho một dãy số $s = (a_1, ..., a_n)$
- Đoạn con: $s(i, j) = (a_i, ..., a_i), 1 \le i \le j \le n$
- Tổng đoạn con: $w(i, j) = w(s(i, j)) = a_i + a_{i+1} + ... + a_j$
- Tìm đoạn con có tổng lớn nhất: X = max(w(i, j))
 - Tìm cặp (p, q) để s(p, q) có tổng lớn nhất
 - (p, q) = argmax(w(i, j))
- Ví dụ:
 - Dãy số: -2, 11, -4, 13, -5, 2
 - Dãy con có tổng lớn nhất là: s(2, 4) = (11, -4, 13)
 - Tổng của dãy con này là 20

Các cách tiếp cận

- 1. Duyệt toàn bộ các cặp (i, j)
- 2. Duyệt toàn bộ nhưng tính tối ưu hơn
- 3. Chia để trị
- 4. Quy hoạch động

3.1 Duyệt toàn bộ các cặp (i, j)

- Duyệt tất cả các đoạn = duyệt mọi cặp (i, j)
- Tính tổng của các cặp và lưu lại đoạn lớn nhất

```
// Phương pháp 1: duyệt toàn bộ cặp (i,j)
int tong_max(vector<int> & a, int n) {
    int m = a[1];
    for (int i = 1; i <= n; i++)
        for (int j = i; j <= n; j++) {
        int s = 0;
        for (int k = i; k <= j; k++) s += a[k];
        if (s > m) m = s;
    }
    return m;
}
```

3.2 Duyệt toàn bộ nhưng tính tối ưu hơn

- Duyệt tất cả các đoạn = duyệt mọi cặp (i, j)
- Tính tổng của các cặp và lưu lại đoạn lớn nhất
- Tận dụng tính chất: w(i, j) = w(i, j-1) + a[j]

```
// Phương pháp 2: duyệt nhưng tận dụng lại tổng cũ
int tong_max2(vector<int> & a, int n) {
    int m = a[1];
    for (int i = 1; i <= n; i++) {
        int s = 0;
        for (int j = i; j <= n; j++) {</pre>
            s += a[j];
            if (s > m) m = s;
    return m;
```

3.3 Chia để trị

- Định nghĩa đệ quy
- Đoạn con tổng lớn nhất của S, từ vị trí đầu đến vị trí cuối
- Tìm đoạn con tổng lớn nhất của S:
 - Nếu S chỉ có 1 phần tử: đoạn cần tìm chính là toàn bộ S
 - Nếu S nhiều hơn 1 phần tử, ta chia đôi S = S1 + S2
 - Đoạn con cần tìm sẽ rơi vào một trong ba tình huống
 - Trái: đoạn nằm trong S1
 - Phải: đoạn nằm trong S2
 - Giữa: đầu đoạn nằm trong S1, cuối đoạn nằm trong S2
 - Tính giá trị của ba tình huống và trả về giá trị lớn nhất

3.3 Chia để trị


```
// Phương pháp 3: chia để trị
int tong max3(vector<int> & a, int dau, int cuoi) {
    // xét trường hợp độ dài là 1
    if (dau == cuoi) return a[dau];
    // chia đôi dãy: (dau, mid) + (mid+1, cuoi)
    int mid = (dau + cuoi) / 2;
    // tính max trong 3 trường hợp
    int m_trai = tong_max3(a, dau, mid);
    int m_phai = tong_max3(a, mid + 1, cuoi);
    int m giua = trai(a, dau, mid) + phai(a, mid + 1, cuoi);
    // trả về max của 3 trường hợp
    return max(m giua, max(m trai, m phai));
```

3.3 Chia để trị


```
// tìm đoạn max phía trái (kết thúc ở cuoi)
int trai(vector<int> & a, int dau, int cuoi) {
    int m = a[cuoi], s = 0;
    for (int i = cuoi; i >= dau; i--) {
        s += a[i];
        if (s > m) m = s;
    return m;
// tìm đoạn max phía phải (bắt đầu từ dau)
int phai(vector<int> & a, int dau, int cuoi) {
    int m = a[dau], s = 0;
    for (int i = dau; i <= cuoi; i++) {</pre>
        s += a[i];
        if (s > m) m = s;
    return m;
```

3.4 Quy hoạch động

- Xét các dãy con kết thúc tại k, đặt w(k) là tổng lớn nhất
 - w(k) = max(w(i, k))
- Dễ thấy X = max(w(i, j)) = max(w(k))
- Nếu ta tính được mọi w(k) thì dễ dàng tính X
- Ta có thể tính nhanh w(k) dựa trên w(k-1):
 - $w(1) = a_1$
 - w(k) = a_k hoặc w(k-1)+a_k, ứng với hai tình huống
 - Dãy chỉ gồm ak
 - Dãy gồm a_k và nối với phần tử phía trước a_{k-1}

3.4 Quy hoạch động


```
// Phương pháp 4: quy hoạch động
int tong_max4(vector<int> & a, int n) {
    vector<int> w(n+1);
    w[1] = a[1];
    for (int k = 2; k <= n; k++)
        w[k] = max(a[k], w[k-1] + a[k]);
    int m = w[1];
    for (int i = 2; i <= n; i++)
        if (m < w[i]) m = w[i];
    return m;
```

3.4 Quy hoạch động


```
// Phương pháp 4.1: quy hoạch động tối ưu hơn
int tong_max4_1(vector<int> & a, int n) {
    int w = a[1], m = a[1];
    for (int k = 2; k <= n; k++) {
        if (w > 0) w = w + a[k];
        else w = a[k];
        if (w > m) m = w;
    return m;
```


Phần 4

- Giúp hiểu được sơ bộ "chi phí" khi thực hiện thuật toán
- Các khía cạnh quan tâm:
 - Kích thước đầu vào
 - Kích thước đầu ra
 - Tài nguyên để chạy thuật toán
 - Bộ nhớ
 - Số lượng phép toán cần thực hiện
- Số lượng phép toán ≈ thời gian tính toán
 - Phép so sánh: 1 (CPU cycle)
 - Phép công/trừ: 1 (CPU cycle)
 - Phép nhân: 10 (CPU cycles)
 - Phép chia: 66-80 (CPU cycles)

Operation Cost in CPU Cycles	10°	10¹	10 ²	10³
"Simple" register-register op (ADD,OR,etc.)	<1			
Memory write	~1			
Bypass delay: switch between				
integer and floating-point units	0-3			
"Right" branch of "if"	1-2			
Floating-point/vector addition	1-3			
Multiplication (integer/float/vector)	1-7			
Return error and check	1-7			
L1 read		3-4		
TLB miss		7-21		
L2 read		10-12		
"Wrong" branch of "if" (branch misprediction)		10-20		
Floating-point division		10-40		
128-bit vector division		10-70		
Atomics/CAS		15-30		
C function direct call		15-30		
Integer division		15-40		
C function indirect call		20-50		
C++ virtual function call		30	-60	

Phân tích thuật toán: bài tập ví dụ

- Thuật toán 1:
 - Bộ ba (i, k, j) sắp thứ tự ≈ n³/6
 - $O(n^3)$
- Thuật toán 2:
 - Cặp (i, j) sắp thứ tự ≈ n²/2
 - $O(n^2)$
- Thuật toán 3:
 - Dãy độ dài n, chia đôi cho đến khi còn 1 phần tử
 - Độ sâu k thỏa mãn n/2^k ≈ 1
 - Nên k ≈ log₂n
 - O(n log₂n)
- Thuật toán 4: O(n)

- Thuật toán ổn định: thời gian chạy không đổi, chỉ phụ thuộc vào số lượng dữ liệu đầu vào
- Thuật toán thích ứng: thời gian chạy thay đổi tùy thuộc vào giá trị của dữ liệu đầu vào
 - Thời gian chạy tốt nhất: thời gian thực thi ngắn nhất với dữ liệu đầu vào cỡ n
 - Thời gian chạy tồi nhất: thời gian thực thi dài nhất với dữ liệu đầu vào cỡ n
 - Thời gian chạy trung bình: thời gian thực thi trung bình của mọi lần chạy
 - Rất khó tính toán thực tế (vì phải thử mọi trường hợp)
 - Tính toán ước lượng dựa trên số lượng phép toán phải thực hiện
 - Dựa trên giải thiết xác suất của dữ liệu đầu vào

Phân tích độ tăng trưởng

- Độ tăng trưởng cho ta ước lượng những tình huống chưa thử nghiệm thực tế
- Chặn trên của g(n): O(g(n))

```
f(n) = O(g(n))

khi và chỉ khi \exists c > 0 và n_0 > 0 sao cho f(n) \le cg(n) \forall n \ge n_0
```


Phân tích độ tăng trưởng

- Chặn dưới của g(n): Ω(g(n))
- Ô-mê-ga của hàm có thể không cùng bậc với hàm đó

```
\begin{split} f(n) &= \Omega(g(n)) \\ &\quad \text{khi và chỉ khi } \exists \ c > 0 \ \text{và } n_0 > 0 \ \text{sao cho cg}(n) \leq \\ &\quad f(n) \ \forall n \geq n_0 \end{split}
```


f(n) bị chặn dưới bởi g(n) theo nghĩa tiệm cận

Phân tích độ tăng trưởng

- Tiệm cận của g(n): θ(g(n))
- Thê-ta của hàm thường là cùng bậc với hàm đó

$$f(n) = \Theta(g(n))$$

 $khi \ va \ chi' \ khi \ \exists \ c_1 > 0, \ c_2 > 0 \ va \ n_0 > 0 \ sao \ cho$
 $c_1g(n) \le f(n) \le c_2g(n) \ \forall n \ge n_0$

f(n) có cùng tốc độ tăng với g(n) theo nghĩa tiệm cận

Phân tích thực nghiệm

- Cài đặt thuật toán
- Chạy chương trình rất nhiều lần
 - Trên cùng một máy tính
 - Dữ liệu đầu vào có kích thước khác nhau
 - Dữ liệu đầu vào có phân bổ giá trị khác nhau
- Đo thời gian chạy thực tế
- Biểu diễn, so sánh kết quả

Phân tích thực nghiệm

Điểm yếu:

- Cài đặt thuật toán đôi khi dựa vào năng lực của người viết mã
- Phải thử rất nhiều tình huống thì kết quả mới ổn định và có tính đại diện cao
- Không thể ngoại suy ra kết quả trong các tình huống mới

• Điểm mạnh:

- Trực quan, rõ ràng
- Tin cậy

Phần 5

Bài tập

Viết mã và phân tích độ phức tạp tính toán Mago

- 1.Nhập 2 số nguyên a và b, hãy tính a^b. In ra 9 chữ số cuối cùng nếu giá trị tìm được quá lớn.
- 2. Dãy số Fibonacci được định nghĩa như sau:

$$\begin{split} F_0 &= 0 \\ F_1 &= 1 \\ F_n &= F_{n-1} + F_{n-2} \text{ n\'eu n} > 1 \\ \text{Vi\'et hàm F(n) trả về giá trị của số Fibonacci thứ n.} \end{split}$$

3. Cho dãy $A = (a_0, a_1, ..., a_{N-1})$, nhập số $K (0 \le K < N)$. Tìm phần tử nhỏ thứ K trong dãy A, in ra giá trị phần tử đó.