第二节

函数图形的描绘

- 一、主要内容
- 二、典型例题
- 三、同步练习
- 四、同步练习解答

一、主要内容

(一) 渐近线

定义 当曲线 y = f(x) 上的一动点P 沿着曲线移向无穷远时,若点P 到某定直线L的距离趋向于零,则称此直线L为曲线 y = f(x)的一条渐近线.

1. 铅直渐近线

(垂直于x轴的渐近线): $x = x_0$

如果
$$\lim_{x \to x_0^+} f(x) = \infty$$
 或 $\lim_{x \to x_0^-} f(x) = \infty$

那么 $x = x_0$ 就是y = f(x)的一条铅直渐近线

例如
$$y = \frac{1}{(x+2)(x-3)}$$

有铅直渐近线两条: x=-2, x=3.

2. 水平渐近线

(平行于
$$x$$
 轴的渐近线) $y = b$

如果
$$\lim_{x \to +\infty} f(x) = b$$
 或 $\lim_{x \to -\infty} f(x) = b$ (b 为常数)

那么y = b就是y = f(x)的一条水平渐近线

例如: $y = \arctan x$,

有水平渐近线两条:

$$y=\frac{\pi}{2}, \quad y=-\frac{\pi}{2}.$$

3. 斜渐近线 y = ax + b

其中
$$a = \lim_{x \to \infty} \frac{f(x)}{x}$$
 $b = \lim_{x \to \infty} [f(x) - ax].$
(或 $x \to -\infty$,
或 $x \to +\infty$) $($ 或 $x \to -\infty$,
或 $x \to +\infty$)

注 下列三种情形之一,可 断定曲线 y = f(x) 不存在斜渐近线:

(1)
$$\lim_{x \to +\infty} \frac{f(x)}{x}$$
 π \hat{x} $\hat{x$

(3)
$$\lim_{x \to +\infty} \frac{f(x)}{x} = a$$
 存在,但 $\lim_{x \to +\infty} [f(x) - ax]$ 不存在.

(二) 描绘函数图形的步骤

- 1. 确定函数 y = f(x)的定义域,并考察其奇偶性及周期性;
- 2. 求 f'(x), f''(x), 并求出 f'(x)及 f''(x)为 0 和不存在的点;
- 3. 列表判别增减及凹凸区间,求出极值和拐点;
- 4. 讨论函数的图形 有无渐近线;

- 5. 为了把图形描绘得更准确些,有时还需补充求出 曲线上的一些点,如与坐标轴的交点等.
- 6. 根据上面的讨论将曲线描绘出来.

二、典型例题

例1 求
$$y = \frac{x^2}{1+x}$$
的渐近线.

1° 查水平渐近线

$$: \lim_{x \to \infty} f(x) = \infty, : y = \frac{x^2}{1+x}$$
 无水平渐近线.

2°查铅直渐近线

$$: \lim_{x\to -1} f(x) = \infty,$$

$$\therefore x = -1$$
 是曲线 $y = \frac{x^2}{1+x}$ 的铅直渐近线.

3°查斜渐近线

$$\therefore a = \lim_{x \to \infty} \frac{f(x)}{x} = \lim_{x \to \infty} \frac{x}{1+x} = 1,$$

$$b = \lim_{x \to \infty} [f(x) - ax] = \lim_{x \to \infty} [f(x) - x]$$

$$= \lim_{x \to \infty} (\frac{x^2}{1+x} - x) = \lim_{x \to \infty} \frac{-x}{1+x} = -1,$$

 $\therefore y = x - 1$ 是该曲线的一条斜渐近 线.

例2 作函数 $y = \frac{1}{3}x^3 - x^2 + 2$ 的图形.

- \mathbf{m} (1) 定义域为($-\infty$, $+\infty$), 无奇偶性及周期性.
 - (2) 求关键点

$$y'=x^2-2x,$$

$$y''=2x-2,$$

$$\diamond y' = 0$$
, $\forall x = 0, 2$,

令
$$y'' = 0$$
, 得 $x = 1$.

(3) 判别曲线形态

\boldsymbol{x}	$(-\infty,0)$	0	(0,1)	1	(1,2)	2	$(2,+\infty)$
y'	+	0	_		_	0	+
y"	_		_	0	+		+
y		2		$\frac{4}{3}$		$\frac{2}{3}$	
		· (极大) (拐点) (极小)

(4) 求特殊点

$$\begin{array}{c|cc} x & -1 & 3 \\ \hline y & \frac{2}{3} & 2 \end{array}$$

(5) 作图

例3 描绘函数
$$y = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$$
的图形.

- \mathbf{p} (1) 定义域为($-\infty$, $+\infty$), 图形对称于 \mathbf{y} 轴.
 - (2) 求关键点

$$y' = -\frac{1}{\sqrt{2\pi}}xe^{-\frac{x^2}{2}}, \quad y'' = -\frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}(1-x^2),$$

(3) 判别曲线形态

只需讨论曲线对应于 $[0,+\infty)$ 部分的图形.

x	0	(0,1)	1	$(1,+\infty)$
<i>y'</i>	0	_		_
<i>y</i> "	0	_	0	+
y	$\frac{1}{\sqrt{2\pi}}$		$\frac{1}{\sqrt{2\pi e}}$	
	(极大)		(拐点)	

(4) 求渐近线

$$\therefore \lim_{x \to \infty} y = 0$$

$$\therefore y = 0$$
为水平渐近线

$$(-1, \frac{1}{\sqrt{2\pi e}}) \xrightarrow{\sqrt{2\pi}} y = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$$

$$(-1, \frac{1}{\sqrt{2\pi e}}) \xrightarrow{(1, \frac{1}{\sqrt{2\pi e}})}$$

$$O \qquad x$$

例4 作函数 $y = \frac{x^2}{1+x}$ 的图形.

 $\mathbf{p}(1) D = (-\infty, -1) \cup (-1 + \infty), y(0) = 0,$ 曲线过原点. 无对称性及周期性.

(2)
$$y' = \frac{2x \cdot (1+x) - x^2}{(1+x)^2} = \frac{x(2+x)}{(1+x)^2} = 1 - \frac{1}{(1+x)^2}$$

 $y'' = \frac{2}{(1+x)^3} \neq 0$

间断点: x = -1;

令 y'=0, 得驻点: x=-2, x=0.

(3) 列表判别

x	$(-\infty,-2)$	-2	(-2,-1)	-1	(-1,0)	0	(0,+∞)
f'(x)	+	0	_		_	0	+
f''(x)	-	_	_		+	+	+
f(x)		极大值 -4		无穷 间 点		极小值)

(4) 渐近线 (见例1)

三、同步练习

1. 曲线
$$y = \frac{1 + e^{x^2}}{1 - e^{x^2}}$$
有()条渐近线?

- 2. 描绘函数 $y = e^{-x^2}$ 的图形.
- 3. 作函数 $y = \frac{x}{x^2 1}$ 的图形.

4. 作函数
$$y = \sqrt{\frac{x-1}{x+1}}$$
的图形.

5. 描绘方程 $(x-3)^2+4y-4xy=0$ 的图形.

四、同步练习解答

1. 曲线
$$y = \frac{1 + e^{x^2}}{1 - e^{x^2}}$$
有()条渐近线?

$$\lim_{x \to \infty} \frac{1 + e^{x^2}}{1 - e^{x^2}} = -1, \quad \lim_{x \to 0} \frac{1 + e^{x^2}}{1 - e^{x^2}} = \infty,$$

∴ 曲线
$$y = \frac{1 + e^{x^2}}{1 - e^{x^2}}$$
有两条渐近线,

分别为水平渐近线 y=-1, 铅直渐近线 x=0.

2. 描绘函数 $y = e^{-x^2}$ 的图形.

解 (1) 定义域为($-\infty$,+ ∞), 图形对称于 y 轴.

(2) 求关键点

$$y' = -2xe^{-x^2}$$
, $y'' = 2(2x^2 - 1)e^{-x^2}$,

(3) 判别曲线形态

只需讨论曲线对应于 $[0,+\infty)$ 部分的图形.

x	0	$\left (0,\frac{1}{\sqrt{2}}) \right $	$\frac{1}{\sqrt{2}}$	$\left(\frac{1}{\sqrt{2}},+\infty\right)$
y'	0	_		_
y"	0	_	0	+
y	1		$e^{-\frac{1}{2}}$	
	(极大)		(拐点)	

(4) 求渐近线

$$\therefore \lim_{x \to \infty} y = 0$$

$$\therefore y = 0$$
为水平渐近线

3. 作函数 $y = \frac{x}{x^2 - 1}$ 的图形.

解 (1) 定义域为 (-∞,-1) ∪ (-1,1) ∪ (1,+∞).

(2) 求关键点

$$y' = -\frac{x^2 + 1}{(x^2 - 1)^2}, y'' = \frac{2x(x^2 + 3)}{(x^2 - 1)^3},$$

 $\Rightarrow y'' = 0 ? ? x = 0.$

(3) 判别曲线形态

(4) 求渐近线

$$\lim_{x\to\infty} y=0$$
, $\therefore y=0$ 为水平渐近线.

又: $\lim_{x\to\pm 1} y = \infty$, $\therefore x = -1$, x = 1都为铅直渐近线.

$$y = \frac{x}{x^2 - 1}, y' = -\frac{x^2 + 1}{(x^2 - 1)^2}, y'' = \frac{2x(x^2 + 3)}{(x^2 - 1)^3},$$

(5) 作图

水平渐近线: y = 0,

铅直渐近线:

$$x = -1, x = 1.$$

4. 作函数
$$y = \sqrt{\frac{x-1}{x+1}}$$
的图形.

- m (1) 定义域为 $x \ge 1, x < -1$.
 - (2) 求关键点

$$y' = \sqrt{\frac{x-1}{x+1}} \cdot \frac{1}{x^2-1} = \frac{1}{\sqrt{(x+1)^3(x-1)}},$$

求得函数的不可微点 x = 1(x = -1) 间断点).

$$y'' = \frac{-(2x-1)}{\sqrt{(x+1)^5(x-1)^3}}.$$

在函数定义域内没有使 y''=0的点.

(3) 判别曲线形态

x	$(-\infty,-1)$	-1	(-1,1)	1	$(1,+\infty)$
y'	+				+
<i>y</i> "	+				_
y				0	

(4) 求渐近线

$$\therefore$$
 lim $y=1$, $\therefore y=1$ 为水平渐近线 $x\to\infty$

又:
$$\lim_{x\to -1} y = \infty$$
,: $x = -1$ 为铅直渐近线.

(5) 作图

x	$(-\infty,-1)$	-1	(-1,1)	1	$(1,+\infty)$
y				0	

水平渐近线: y = 1,

铅直渐近线: x = -1.

5. 描绘方程 $(x-3)^2+4y-4xy=0$ 的图形.

解 (1)
$$y = \frac{(x-3)^2}{4(x-1)}$$
, 定义域为($-\infty$,1) \cup (1,+ ∞).

(2) 求关键点

$$\therefore 2(x-3) + 4y' - 4y - 4xy' = 0$$

$$\therefore y' = \frac{x-3-2y}{2(x-1)} = \frac{(x-3)(x+1)}{4(x-1)^2}$$

令
$$y' = 0$$
 得 $x = -1, 3$.

$$\therefore 2+4y''-8y'-4xy''=0$$

$$\therefore y'' = \frac{1-4y'}{2(x-1)} = \frac{2}{(x-1)^3}$$

(3) 判别曲线形态

$$x$$
 $(-\infty,-1)$
 -1
 $(-1,1)$
 1
 $(1,3)$
 3
 $(3,+\infty)$
 y''
 $+$
 0
 \mathcal{E}
 0
 $+$
 y''
 \mathcal{E}
 $+$
 $+$
 y
 2
 2
 2
 y
 y

(4) 求渐近线 $\therefore \lim_{x\to 1} y = \infty$, $\therefore x = 1$ 为铅直渐近线

$$y = \frac{(x-3)^2}{4(x-1)}, y' = \frac{(x-3)(x+1)}{4(x-1)^2}, y'' = \frac{2}{(x-1)^3}$$

又因
$$\lim_{x\to\infty}\frac{y}{x}=\frac{1}{4}$$
,即 $a=\frac{1}{4}$,

$$b = \lim_{x \to \infty} (y - \frac{1}{4}x) = \lim_{x \to \infty} \left[\frac{(x - 3)^2}{4(x - 1)} - \frac{1}{4}x \right]$$

$$= \lim_{x\to\infty} \frac{-5x+9}{4(x-1)} = -\frac{5}{4},$$

$$\therefore y = \frac{1}{4}x - \frac{5}{4}$$
 为斜渐近线.

(5) 求特殊点
$$x$$
 0 2 y $-\frac{9}{4}$ $\frac{1}{4}$

$$y = \frac{(x-3)^2}{4(x-1)}$$

$$y' = \frac{(x-3)(x+1)}{4(x-1)^2}$$

$$y'' = \frac{2}{(x-1)^3}$$

(6) 作图

$$x$$
 $(-\infty,-1)$
 -1
 $(-1,1)$
 1
 $(1,3)$
 3
 $(3,+\infty)$
 y
 -2
 无
 0
 $($ 极大 $)$
 χ
 χ

铅直渐近线x=1,

斜渐近线
$$y = \frac{1}{4}x - \frac{5}{4}$$
.

特殊点

$$\begin{array}{c|cccc} x & 0 & 2 \\ \hline y & -\frac{9}{4} & \frac{1}{4} \end{array}$$

