1. Mengenlehre und Formale Sprachen

Definition Menge:

Eine Menge fasst eine beliebige Menge an Elementen zusammen

Mögliche Schreibweisen:

- Aufzählung: {a1, a2, a3} oder {1, 2, ..., 99}
- Mit Bedingung: $\{x \mid x \text{ ist ein Wort, welches mit "a" anfängt} \}$ oder $\{x \in \mathbb{N}_0 \mid x > 2 \text{ und } x <= 100\}$
- Textuell (Vorsicht! Nicht überall zugelassen): x ist eine gerade, natürliche Zahl

Aufgabe 1

- a) Beschreiben Sie die Menge aller natürlichen Zahlen, die Restlos durch drei teilbar sind
- b) Sei X die Menge {"Affe", "Aal", "Biene", "Tiger", "Elefant"}. Geben Sie die Menge der Wörter an, die mindestens ein "a" enthalten und in X enthalten sind
- c) $X = \{9, "a", 11, -2, "Zebra", 13, 0\}$. Geben Sie die Menge der Elemente an, welche in \mathbb{N} und X enthalten sind.
- d) $X = \{1, 2, 3, ..., 99\}$. Geben Sie die Menge aller geraden Zahlen in X an.

Aufgabe 2

Beschreiben Sie die folgenden Mengen Textuell:

- a) {1, 2, 4, 8, 16, 32, ..., 1024}
- b) $\{x \in \mathbb{N} \mid x = y^2, y \in \mathbb{N}\}$
- c) {"Anna", "Otto", "Level", "Tat", "nennen"}

Alexander Bleicher Tutorium

Definition Alphabet:

Eine endliche nicht leere Menge aus Symbolen.

Definition Wort:

Eine Folge von Symbolen eines Alphabets S heißt Wort über S. Es existiert ein leeres Wort ϵ . Ist w ein Wort über S so ist |w| die Länge dieses Wortes und $|w|_s$ die Anzahl des Symbols s im Wort w.

Aufgabe 3

Sei S = {1, 2, 3, a, b, c} ein Alphabet und w ein Wort über diesem Alphabet. Bestimmen Sie den Wert der nachfolgenden Operationen

- a) |11a| =
- b) w = abc123. |w| =
- c) w = 212ac1. $|w|_2 =$
- d) $|\epsilon| =$

Definition Konkatenation von Wörtern:

Man kann zwei Wörter w und v über einem Alphabet S miteinander "verbinden". Konkateniert man das Wort w (mehrfach) mit sich selbst, so kann man dies auch wie folgt schreiben: $(w)^x$, $x \in \mathbb{N}$.

Definition Wortmengen:

Sei S ein Alphabet. So ist S^n , $n \in \mathbb{N}_0$ die Menge aller Wörter über S mit der Länge n, S^* die Menge aller Wörter beliebiger Länge über S und S^+ die Menge aller nicht leeren Wörter über S.

Definition Formale Sprache:

Sei S ein Alphabet. Eine Teilmenge L von S* heißt (formale) Sprache über S.

Alexander Bleicher Tutorium

Aufgabe 4

Sei $X = \{a, b, c, ..., y, z\}$ ein Alphabet. Beschreiben Sie nachfolgende Formale Sprachen L textuell

a)
$$L = \{x \in X^* | |x| > 2\}$$

b)
$$L = \{x \in X^5 \mid |x|_e >= 1\}$$

c)
$$L = \{x \in X^+ \mid |x| = 0\}$$

d)
$$L = \{x \in X^* \mid |x| < 5\}$$

e) L =
$$\{x \in X^* \mid |x|_a = 2, das Wort ist ein Palindrom\}$$

Aufgabe 5

Sei $X = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 0\}$ ein Alphabet. Beschreiben Sie nachfolgende Formale Sprachen in Mengenschreibweise

- a) Die Menge aller natürlichen Zahlen inklusive Null, kleiner Hundert.
- b) Die Menge aller natürlichen Zahlen zwischen Zehn und Zwanzig.
- c) Die Menge aller geraden natürlichen Zahlen.