conditional probabilities & bayes' rule

Dr. Mine Çetinkaya-Rundel

2015 Gallup poll on use of online dating sites:

		18-29	30-49 <i>B</i>	50-64	65+	Total
Used online dating site	Yes A	60	86	58	21	225
	No	255	426	450	382	1513
	Total	315	512	508	403	1738

% of 30-49 year olds using online dating sites =
$$86/(512) \approx 0.17$$

Ruse online dating site 1 30-49 year old)

Bayes' rule:

$$P(A \mid B) = \frac{P(A \& B)}{P(B)}$$

Bayes' rule

Thomas Bayes (1702 – 1761)

2015 Gallup poll on use of online dating sites:

		18-29	30-49	50-64	65+	Total
Used online dating site	Yes	60	86	58	21	225
	No	255	426	450	382	1513
	Total	315	512	508	403	1738

Ruse online dating site 1 30-49 year old) =

$$\frac{Ruse \text{ online dating site & 30-49 year old)}}{R(30-49 \text{ year old})}$$

$$= \frac{86 / 1738}{512 / 1738} = \frac{86}{512} \approx 0.17$$

bayes' rule & diagnostic testing

Dr. Mine Çetinkaya-Rundel

early HIV testing in the military

- In first screen with ELISA
- if positive, two more rounds of ELISA
- if either positive, two Western blot assays
- only if both positive, determine HIV infection

data

ELISA

- > sensitivity (true positive): 93%
- > specificity (true negative): 99%

$$A + 1 HIN = 0.93$$

 $A - 1 no HIN = 0.99$

Western blot

- sensitivity: 99.9%
- > specificity: 99.1%

prevalence: 1.48 / 1000 P(HIV) = 0.00148

 $P(has\ HIV\ |\ ELISA\ +)=?$

Sources:

- Petricciani (1985). Licensed tests for antibody to human T-lymphotropic virus type III: sensitivity and specificity. Annals of internal medicine, 103(5), 726-729.
- Burke et. al. (1987). Diagnosis of human immunodeficiency virus infection by immunoassay using a molecularly cloned and expressed virus envelope polypeptide: comparison to Western blot on 2707 consecutive serum samples. Annals of internal medicine, 106(5), 671-676.
- Burke et. al. (1987). Human immunodeficiency virus infections among civilian applicants for United States military service, October 1985 to March 1986. New England Journal of Medicine, 317(3), 131-136.

prior probability

Prior to any testing, what probability should be assigned to a recruit having HIV?

posterior probability

When a recruit goes through HIV screening there are two competing claims: recruit has HIV and recruit doesn't have HIV. If the ELISA yields a positive result, what is the probability this recruit has HIV?

posterior probability

bayesian updating

Dr. Mine Çetinkaya-Rundel

early HIV testing in the military

- In first screen with ELISA
- if positive, two more rounds of ELISA
- if either positive, two Western blot assays
- only if both positive, determine HIV infection

retesting

Since a positive outcome on the ELISA doesn't necessarily mean that the recruit actually has HIV, they are retested. What is the probability of having HIV if this second ELISA also yields a positive result?

retesting

summary

- Individual vs. group diagnostics
- updating only the prior vs. also updating sensitivity and specificity
- Bayesian updating

bayesian & frequentist definitions of probability

Dr. Mine Çetinkaya-Rundel

- the probability of flipping a coin and getting heads is ½
- the probability of rolling snake eyes, that is, two ls on two dice, is 1/36
- the probability of Apple's stock price going up today is 0.75

frequentist definition of probability

$$P(E) = \lim_{n \to \infty} \frac{n_E}{n}$$

Bayesian definition of probability

- Indifferent between winning
 - ▶\$ I if event E occurs, or
 - winning \$1 if you draw a blue chip from a box with 1,000 × p blue chips +1,000 × (1-p) white chips
- equating the probability of event E, P(E), to the probability of drawing a blue chip from this box, p

$$P(E) = p$$

confidence intervals

Example: Based on a 2015 Pew Research poll on 1,500 adults: "We are 95% confident that 60% to 64% of Americans think the federal government does not do enough for middle class people."

- ▶ 95% of random samples of 1,500 adults will produce confidence intervals that contain the true proportion of Americans who think the federal government does not do enough for middle class people
- common misconceptions:
 - there is a 95% chance that this confidence interval includes the true population proportion
 - the true population proportion is in this interval 95% of the time

credible intervals

- It allow us to describe the unknown true parameter not as a fixed value but with a probability distribution
- this will let us construct something like a confidence interval, except we can make probabilistic statements about the parameter falling within that range
 - **Example**: "The posterior distribution yields a 95% credible interval of 60% to 64% for the proportion of Americans who think the federal government does not do enough for middle class people."
- these are called credible intervals

inference for a proportion - frequentist approach

Dr. Mine Çetinkaya-Rundel

morning after

- research question: Is RU-486 an effective "morning after" contraceptive?
- participants: 40 women who came to a health clinic asking for emergency contraception
- design: Random assignment to RU-486 or standard therapy (20 in each group)

data:

- ▶ 4 out of 20 in RU-486 (treatment) became pregnant
- ▶ 16 out of 20 in standard therapy (control) pregnant
- question: How strongly do these data indicate that the treatment is more effective than the control?

framework

- simplification: one proportion
 - consider the 20 total pregnancies
 - question: How likely is it that 4 pregnancies occur in the treatment group?
- if treatment and control are equally effective + sample sizes for the two groups are the same

P(pregnancy comes from treatment group) = p = 0.5

hypotheses

- p= probability that a given pregnancy comes from the treatment group
- $H_0: p=0.5$ no difference, a pregnancy is equally likely to come from the treatment or control group
- $H_A: p < 0.5$ treatment is more effective, a pregnancy is less likely to come from the treatment group

p-value

- k = 4 and n = 20 since there are 20 pregnancies total, and 4 occur in the treatment group
- p = 0.5 assuming H_0 is true
- \triangleright p-value = $P(k \le 4)$

```
sum(dbinom(0:4, size = 20, p = 0.5))
## [1] 0.005908966
```

inference for a proportion - Bayesian approach

Dr. Mine Çetinkaya-Rundel

framework

- consider the 20 total pregnancies
 - question: how likely is it that 4 pregnancies occur in the treatment group?
- if treatment and control are equally effective + sample sizes for the two groups are the same
- P(pregnancy comes from treatment group) = p = 0.5

hypotheses, i.e. models

- delineate plausible models:
 - assume p could be
 - 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, or 90%
- consider 9 models, instead of I as in the frequentist paradigm
 - p = 20%: given a pregnancy occurs, there is a 2:8 or 1:4 chance that it will occur in the treatment group

specifying the prior

- prior probabilities reflect state of belief prior to the current experiment
- Incorporate information learned from all relevant research up to the current point in time, but not incorporate information from the current experiment
- > suppose my prior probability for each of the 9 models is as presented below:

Model (p)	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	Total
Prior	0.06	0.06	0.06	0.06	0.52	0.06	0.06	0.06	0.06	

- benefit of treatment is symmetric equally likely to be better or worse than the standard treatment
- > 52% chance that there is no difference between the treatments

likelihood

- calculate $P(data \mid model)$ for each model considered.
- this probability is called the likelihood:

$$P(data \mid model) = P(k = 4 \mid n = 20, p)$$

calculating the likelihood

```
p <- seq(from = 0.1, to = 0.9, by = 0.1)
prior <- c(rep(0.06, 4), 0.52, rep(0.06, 4))
likelihood <- dbinom(4, size = 20, prob = p)</pre>
```

Model (p)	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	Total
Prior, P(model)	0.06	0.06	0.06	0.06	0.52	0.06	0.06	0.06	0.06	
Likelihood, P(data model)	0.0898	0.2182	0.1304	0.035	0.0046	0.0003	0	0	0	

posterior

use Bayes' rule to calculate the posterior probability, i.e. $P(model \mid data)$

$$P(model \mid data) = \frac{P(model \& data)}{P(data)}$$

$$= \frac{P(data \mid model) \times P(model)}{P(data)}$$

calculating the posterior

```
numerator <- prior * likelihood
denominator <- sum(numerator)
posterior <- numerator / denominator
sum(posterior)</pre>
```

[1] 1

Model (p)	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	Total
Prior, P(model)	0.06	0.06	0.06	0.06	0.52	0.06	0.06	0.06	0.06	
Likelihood, P(data model)	0.0898	0.2182	0.1304	0.035	0.0046	0.0003	0	0	0	
P(data model) x P(model)	0.0054	0.0131	0.0078	0.0021	0.0024	0	0	0	0	0.0308
Posterior, P(model data)	0.1748	0.4248	0.2539	0.0681	0.0780	0.0005	0	0	0	

decision making

- posterior probability that p = 0.2 is 42.48%
 - this model has the highest posterior probability
- calculation of the posterior incorporated prior information and likelihood of data observed
 - data "at least as extreme as observed" plays no part in the Bayesian paradigm
- Note that probability that p=0.5 dropped from 52% in the prior to about 7.8% in the posterior
 - this demonstrates how we update our beliefs based on observed data

prior, likelihood, and posterior, visualized

synthesis

- Bayesian paradigm allows us to make direct probability statements about our models
- we can also calculate the probability that RU-486 (the treatment) is more effective than the control
 - this is the sum of the posteriors of the models where p < 0.5

Model (p)	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	Total
Posterior, P(model data)	0.1748	0.4248	0.2539	0.0681	0.0780	0.0005	0	0	0	

effect of sample size on the posterior

Dr. Mine Çetinkaya-Rundel

$$n = 20, k = 4$$

$$n = 20, k = 4$$

$$n = 20, k = 4$$

$$n = 20, k = 4$$

what if we had more data

$$n = 40, k = 8$$

what if we had more data

$$n = 40, k = 8$$

what if we had more data

$$n = 40, k = 8$$

what if we had even more data

$$n=200, k=40$$

frequentist vs. bayesian inference

Dr. Mine Çetinkaya-Rundel

M&Ms

- we have a population of M&Ms
- percentage of yellow M&Ms is either 10% or 20%
- you have been hired as a statistical consultant to decide whether the true percentage of yellow M&Ms is 10%
- you are being asked to make a decision, and there are associated payoff/losses that you should consider

payoffs / losses

	TRUE STATE OF THE POPULATION					
DECISION	% yellow = 10%	%yellow = 20%				
% yellow = 10%	Your boss gives you a bonus :)	You lose your job :(
%yellow = 20%	You lose your job :(Your boss gives you a bonus :)				

data

- you can "buy" a random sample from the population
- you pay \$200 for each M&M, and you must buy in \$1,000 increments (5 M&Ms at a time)
- you have a total of \$4,000 to spend (you may buy 5, 10, 15, or 20 M&Ms)

frequentist inference

hypotheses

Ho: 10% yellow M&Ms

H_A: >10% yellow M&Ms

sig. level

$$\alpha = 0.05$$

sample

RGYBO

obs. data

$$k = 1, n = 5$$

p-value

$$P(K \ge 1 \mid n = 5, p = 0.10)$$

= $1 - P(k = 0 \mid n = 5, p = 0.10)$
= $1 - 0.90^5 \approx 0.41 \rightarrow \text{Fail to reject H}_0$

bayesian inference

hypotheses

H_I: 10% yellow M&Ms

H₂: 20% yellow M&Ms

prior

 $P(H_1) = 0.5$

 $P(H_2) = 0.5$

sample

RGYBO

obs. data

k = 1, n = 5

likelihood

$$P(k=1 \mid H_1) = {5 \choose 1} 0.10 \times 0.90^4 \approx 0.33$$

$$P(k=1 \mid H_2) = {5 \choose 1} 0.20 \times 0.80^4 \approx 0.41$$

posterior

$$P(H_1 \mid k = 1) = \frac{P(H_1) \times P(k = 1 \mid H_1)}{P(k = 1)}$$
$$= \frac{0.5 \times 0.33}{0.5 \times 0.33 + 0.5 \times 0.41}$$
$$\approx 0.45$$

$$P(H_2 \mid k = 1)$$

= 1 - 0.45 = 0.55

bayesian vs. frequentist inference

	FREQUENTIST	BAYESIAN			
obs. data	P(k or more 10% yellow)	P(10% yellow n,k)	P(20% yellow n,k)		
n = 5, k = 1	0.41	0.45	0.55		
n = 10, k = 2	0.26	0.39	0.61		
n = 15, k = 3	0.18	0.34	0.66		
n = 20, k = 4	0.13	0.29	0.71		