ADVANCED DATA SCIENCE

Lecture 3: Data Preprocessing, Bias-Variance Trade off

By

Dr. Sumit Kumar Singh

Associate Professor

SR University

WHAT IS DATA PREPROCESSING?

➤ Data preprocessing prepares raw data for analysis.

Key steps:

- > Handling missing data
- > Noise removal
- > Normalization
- > Encoding categorical data
- Data splitting

NOISE IN DATA

Noise = random variation in data caused by:

- Sensor or measurement errors
- Transmission faults
- Human entry errors

Impact: reduces model accuracy and reliability.

Noise = Random, meaningless variation in data that hides the true pattern.

It's not an error in the data structure — it's unwanted fluctuations that reduce model accuracy.

Example:

Student	Age	Marks	Attendance
A	20	80	0.9
В	21	?	0.85
C	19	85	0.8
D	25	105	0.95

- ➤ Missing value ("?")
- ➤ Wrong data (Marks = 105)

NOISE REMOVAL TECHNIQUES

Common approaches:

- Binning or smoothing
- >Moving averages
- Regression-based filtering
- >Outlier detection

We'll use one common dataset for explanation:

Hour	Temperature (°C)	
1	30	
2	31	
3	32	
4	31	
5	29	
6	28	
7	32	
8	33	
9	34	
10	35	

Binning (Smoothing by Mean/Median)

> Group data into bins and replace values with bin mean.

> Example:

```
Bins of size 3 \rightarrow
[30, 31, 32] \rightarrow \text{mean} = 31
[31, 29, 28] \rightarrow \text{mean} = 29.3
[32, 33, 34] \rightarrow \text{mean} = 33
[35] \rightarrow \text{mean} = 35
```

- > Smoothed data: [31,31,31,29.3,29.3,29.3,33,33,33,35]
- Binning reduces random variation and reveals general trends.

Moving Average (Time Series Smoothing)

Formula:

$$Y_i' = \frac{Y_{i-1} + Y_i + Y_{i+1}}{3}$$

Example:

At hour 4:

$$Y_4' = \frac{32 + 31 + 29}{3} = 30.7$$

Smooths the curve by averaging neighbors.

NORMALIZATION

> Normalization ensures features are on the same scale.

1. Min–Max Scaling:
$$X' = \frac{(X - X_{min})}{(X_{max} - X_{min})}$$

2. Z-score Scaling: $Z = (X - \mu) / \sigma$

Outlier Detection (Z-Score Method)

Outliers = extreme values far from the mean.

Z-score formula:

$$Z = \frac{X - \mu}{\sigma}$$

If $|Z| > 3 \rightarrow$ outlier.

Example:

Mean = 31.5, SD = 2.0

For X = 36: $Z = (36 - 31.5)/2 = 2.25 \rightarrow borderline high.$

EXAMPLE: BEFORE AND AFTER NORMALIZATION

Person	Age (years)	Salary (₹)	Experience (years)
A	22	25,000	1
В	35	60,000	8
C	47	85,000	12
D	52	120,000	20

- Notice how the **Salary** column is much larger in scale (thousands), while **Age** and **Experience** are small.
- Machine learning models using distance will give more weight to Salary.

Apply Min-Max Normalization

$$X' = \frac{X - X_{min}}{X_{max} - X_{min}}$$

This scales all values between 0 and 1

Person	Age	Salary	Experience	Age'	Salary'	Experience'
A	22	25,000	1	0.00	0.00	0.00
В	35	60,000	8	0.43	0.35	0.37
С	47	85,000	12	0.83	0.60	0.58
D	52	120,000	20	1.00	1.00	1.00

All features are now on the same scale (0–1).

BIAS-VARIANCE TRADEOFF

- When we train a machine learning model (like Linear Regression, Decision Tree, etc.), we want the model to:
- Fit the training data well work accurately on new (unseen) data
- But achieving both is *hard* because models can make **two types of** errors:
- **1.Bias error** → comes from wrong assumptions (model too simple)
- **1.Variance error** → comes from **too much sensitivity** to training data (model too complex)
- Together, they form the Bias-Variance Trade-off.
 - ➤ Bias: Error from overly simple model (underfitting)
 - ➤ Variance: Error from overly complex model (overfitting)
- Goal: Find balance to minimize total error.

Input (X)	True Y	Predicted Y
1	2	1.2
2	4	2.3
3	9	3.4
4	16	4.2

The model's predictions are always lower than the true values.

That's **high bias** — the model is **too simple**.

TOTAL ERROR FORMULA

- $\triangleright E[(y \hat{y})^2] = Bias^2 + Variance + Irreducible Error$
- ► High Bias → underfitting
- ► High Variance → overfitting
- ► Irreducible Error → inherent randomness

Fig. 1 Graphical illustration of bias and variance.

