OLG: Steady-state Optimality and Competitive Equilibrium

Timothy Kam

Outline

- Overview
- 2 Competitive equilibrium
 - Log-utility example
- 3 Long-run Optimality
 - Long-run feasibility
 - Golden rule
 - Long-run feasibility

This lecture:

- Restate the recursive competitive equilibrium (RCE) characterization
- Welfare properties of RCE in the OLG model (in a steady state)
- (Steady state) Competitive equilibrium of OLG model may/may not be Pareto optimal

Definition

Given k_0 , a RCE is a price system $\{w_t(k_t), r_t(k_t)\}_{t=0}^{\infty}$ and allocation $\{k_{t+1}(k_t), c_t^t(k_t), c_{t+1}^t(k_t)\}_{t=0}^{\infty}$ that satisfies, for each $t \in \mathbb{N}$:

Consumer's lifetime utility maximization:

$$\beta \frac{U_c(c_{t+1}^t)}{U_c(c_t^t)} = \frac{1}{1 + r_{t+1}}, \quad \text{and,} \quad c_t^t + \frac{c_{t+1}^t}{(1 + r_{t+1})} = w_t \cdot 1.$$

Firm's profit maximization:

$$f'(k_t) = r_t + \delta$$
, and, $f(k_t) - k_t f'(k_t) = w_t$.

Market clearing in the credit/capital market:

$$(1+n)k_{t+1} = (w_t \cdot 1 - c_t^t).$$

Competitive equilibrium

Recursive competitive equilibrium ...

Young-age budget constraint:

$$c_t^t = w_t - s_t$$

= $[f(k_t) - k_t f'(k_t)] - s_t \equiv w(k_t) - s_t$

and old-age budget constraint:

$$c_{t+1}^{t} = (1 + r_{t+1})s_{t}$$
$$= [f_{k}(k_{t+1}) + 1 - \delta]s_{t} \equiv R(k_{t+1}) \cdot s_{t}$$

Recursive competitive equilibrium (cont'd) ...

Let $R_{t+1} := R(k_{t+1})$. From Euler equation, denote for all $t \in \mathbb{N}$:

Competitive equilibrium

$$E(s_t, w_t, R_{t+1}) \equiv -U_c(w_t - s_t) + \beta R_{t+1} U_c(R_{t+1} s_t) = 0,$$

In words, we have:

- a necessary sequence of FOC's (Euler equations) characterizing the optimal savings trajectory $\{s_t\}_{t=0}^{\infty}$ (of all generations);
- Given (i.e. taken as parametric by consumer) market terms of trades (w_t, R_{t+1}) , this Euler equation implicitly defines the solution as some function $s: \mathbb{R}^2_{++} \mapsto \mathbb{R}_+$ such that $s_t = s(w_t, R_{t+1}).$

- U is continuous on \mathbb{R}_+
- For all c>0, $U_c(c)>0$, and, $U_{cc}(c)<0$ exist
- $\lim_{c \searrow 0} U_c(c) = +\infty$

Then the function $(w,R) \mapsto s(w,R)$, such that

$$s_t = s(w_t, R_{t+1}),$$

is well-defined and $s_w(w,R)$, and $s_R(w,R)$ exist for every $(w,R) \in \mathbb{R}^2_{\perp\perp}$.

Given per-period utility function U, the intertemporal elasticity of substitution, evaluated at a point c is

$$\sigma(c) = -\frac{U_c(c)}{U_{cc}(c) \cdot c}$$

Remark: Note similarity to Arrow-Pratt measure of relative risk aversion? How?

Recursive competitive equilibrium (cont'd) ...

From Euler equation (dropping t subscripts),

$$E(s, w, R) \equiv -U_c(w - s) + \beta R U_c(Rs) = 0,$$

We can use the implicit function theorem to obtain:

$$E_s ds + E_w dw + E_R dR = 0,$$

where:

• $E_s := \partial E(s, w, R)/\partial s = U_{cc}(w-s) + \beta R^2 U_{cc}(Rs) < 0$

Competitive equilibrium

- $E_w := \partial E(s, w, R)/\partial w = -U_{cc}(w-s) > 0$
- $E_R := \partial E(s, w, R) / \partial R = \beta U_c(Rs) \left[1 \frac{1}{\sigma(Rs)} \right] \leq 0$

$$s_w(w,R) = -\frac{E_w}{E_s} = \left[1 + \frac{\beta R^2 U_{cc}(Rs)}{U_{cc}(w-s)}\right]^{-1} \in (0,1);$$

i.e. the marginal propensity to save out of w (equiv. lifetime income) is

- endogenous, and depends (in general) on aggregate state (relative prices) (w, R),
- is bounded in the set (0,1). Why? Because (c_t^t, c_{t+1}^t) are normal goods!

Hold w constant (i.e. dw = 0), we have

$$s_R(w,R) = -\frac{E_R}{E_s}$$

$$= -\frac{\beta U_c(Rs)[1 - 1/\sigma(Rs)]}{U_{cc}(w - s) + \beta R^2 U_{cc}(Rs)} \stackrel{\leq}{=} 0, \text{ if } \sigma(Rs) \stackrel{\leq}{=} 0.$$

i.e. effect of the rate of return on capital on saving:

- is ambiguous ...
- depends on $\sigma(Rs) \leq 0$, and therefore on, specification of U.

Given an optimal savings rule (equiv. consumption demand functions), $s(w(k_t), R(k_{t+1}))$, a RCE sequence of allocations $\{s_t, c_t^t, c_{t+1}^t, k_{t+1}\}_{t \in \mathbb{N}}$ satisfies for all $t \in \mathbb{N}$:

- $s_t = s(w(k_t), R(k_{t+1})),$
- $(1+n)k_{t+1} = s_t$,
- $c_t^t = w(k_t) s_t, \text{ and }$
- $c_{t+1}^t = R(k_{t+1})s_t,$

for $k_0 > 0$ given.

Specific Example

Exercise

- Derive, and therefore, show that s(w,R) does not depend on R in the case of $U(c) = \ln(c)$.
- 2 Explain why this is the case. Hint: You have learned this in consumer theory from intermediate microeconomics.
- **1** Depict this in the (c_t^t, c_t^{t+1}) -space using the geometric devices of indifference and budget sets.

Optimality: steady states

Focus: long-run steady state.

We'll study this in three successive components:

- Long-run feasibility
- Long-run maximal consumption: the Golden Rule
- Optimal long-run: Diamond's "Golden Age"

Long-run feasibility I

Consider a long run (steady state), where per worker capital is k.

Definition (Long-run feasibility)

A steady-state k > 0 is feasible if net production at k is non-negative:

$$\phi(k) := f(k) - (\delta + n)k \ge 0.$$

Notes:

- f(k): gross output at a steady state k
- $(\delta + n)k$: claims on gross output at k

Recall assumption:

- f continuous on \mathbb{R}_+
- $f_k(k) > 0, f_{kk}(k) < 0$ for all $k \in \mathbb{R}_+$
- f satisfies Inada conditions ... (What are they?!)

Since $f_k(k) > 0$, $f_{kk}(k) < 0$ for all k > 0, then:

- \bullet $\phi_k(k) = f_k(k) (\delta + n) \leq 0$,
- $\phi_{kk}(k) = f_{kk}(k) < 0$:

so that $\phi(k)$ is strictly concave.

Also note that:

- \bullet $\phi(0) = f(0) > 0$.
- $\lim_{k \searrow 0} \phi_k(k) = \lim_{k \searrow 0} f_k(k) (\delta + n)$, and
- $\lim_{k \to \infty} \phi_k(k) = \lim_{k \to \infty} f_k(k) (\delta + n)$.

Long-run feasibility IV

Long-run feasible sets: If ...

- **F1.** $\phi_k(k) > 0$, for all $k \ge 0$, any $k \in \mathbb{R}_+$ is long-run feasible.
- **F2.** $\phi_k(k) < 0$, for all $k \ge 0$, and,
 - (a) if f(0) > 0, then $[0, \hat{k}]$ is long-run feasible, for some $\hat{k} \in (0, \infty)$.
 - **(b)** if f(0) = 0, then only k = 0 is long-run feasible.
- **F3.** $\phi(k)$ non-monotonic. ...
 - ... And $\exists \overline{k} \in (0,\infty)$ s.t. $f(\tilde{k})-(\delta+n)\tilde{k}=0$, then any $k\in (0,\overline{k})$, is long-run feasible.

Long-run feasibility V

Exercise (Long-run-feasible sets of k)

Given assumptions about $f_k > 0$, $f_{kk} < 0$, and $f(0) \ge 0$, illustrate (in two respective diagrams) the graphs of:

- **1** $k \mapsto f(k)$ and $k \mapsto (\delta + n)k$, and therefore,
- $\mathbf{Q} \ k \mapsto \phi(k)$:

and show the corresponding long-run feasible sets, if F1, F2, or F3 were to hold.

Exercise (Long-run-feasible sets of k (cont'd))

The golden rule I

Consider cases:

- **F1.** Iff $\lim_{k \to \infty} f_k(k) \ge (\delta + n) \Rightarrow \lim_{k \to \infty} \phi_k(k) > 0$, then ϕ is strictly increasing on \mathbb{R}_{+} .
- **F2.** If $\phi_k(k) < 0$, then ϕ is strictly decreasing. Not interesting largest net production is at k=0: $\phi(0)>0$.
- **F3.** If $\lim_{k \to \infty} f_k(k) < (\delta + n) < f_k(0)$ then ϕ is non-monotonic:
 - There exists a unique $k_{GR} \in (0, \infty)$ such that $\phi_k(k_{GR}) = 0$: i.e. net production is maximized, and
 - ϕ is increasing on $(0, k_{GR})$ and decreasing on (k_{GR}, ∞) .

Proposition (Golden rule)

Assume production function f such that $\lim_{k \nearrow \infty} f_k(k) < (\delta + n) < f_k(0)$.

Then there exists a unique $k_{GR} \in (0,\infty)$ such that $\phi_k(k_{GR}) = f_k(k_{GR}) - (\delta + n) = 0$: i.e. net production is maximized.

The golden rule III

Exercise

Illustrate the last proposition using appropriate diagrams.

The golden rule IV

Exercise

Show that the regularity condition $\lim_{k o \infty} f_k(k) < (\delta + n) < f_k(0)$ does not apply to the Cobb-Douglas family of functions $f(\cdot; \alpha)$, $\alpha \in (0, 1)$.

Remark: However, in Cobb-Douglas $f(k; \alpha) = k^{\alpha}$ case with $\alpha \in (0, 1), k_{GR} \in (0, \infty)$ still exists.

The golden rule V

Remarks: In any steady state k,

... given regularity conditions on U and f,

... we know from the RCE conditions, (s_t, c_t^t, c_{t+1}^t) must converge to a well-defined limit (s, c^y, c^o) :

- savings function, s = s(w(k), R(k)),
- consumption (young), $c^y = w(k) s$, and
- consumption (old), $c^o = R(k)s$.

Therefore, the golden-rule proposition implies that there is a steady state golden-rule consumption level for each young and old agent, (c_{GR}^y, c_{GR}^o) .

... The Solow-Swan golden-rule, per-se, says nothing about Pareto optimality in the long run! Why?

... What of *steady state optimality* in this model? Relation to the golden rule in this model?

Golden Age: optimal steady state I

Optimal steady state: "The Golden Age" (Diamond, 1965)

- Suppose we have the condition: $\lim_{k \nearrow \infty} f_k(k) < (\delta + n) < f_k(0)$. This is guaranteed by the Inada conditions on f.
- ullet On a steady state path, $k_t=k$, $c_t^t=c^y$ and $c_{t+1}^t=c^o$ for all t.
- The resource constraint is then: $f(k) = (\delta + n)k + c^y + (1+n)^{-1}c^o.$

 A Pareto allocation of consumption across periods of life along the steady state trajectory solves:

$$\max_{(k,c^y,c^o)\in\mathbb{R}^3_+} \left\{ U(c^y) + \beta U(c^o) : f(k) = (\delta+n)k + c^y + (1+n)^{-1}c^o \right\}$$

 This is still an intertemporal allocation problem, albeit stationary.

Characterization of Pareto-optimal steady state

• The maximum feasible net production is attained when:

$$\phi_k(k) := f_k(k) - (\delta + n) = 0 \Rightarrow k = k_{GR}.$$

(i.e. this is just the same condition characterizing the golden-rule per-worker capital stock, at steady state!)

② Given assumption on f such that case F3 prevails, we then know $k_{GR} \in (0, \infty)$.

Golden Age: optimal steady state IV

 3 Also, the maximum of $U(c)+\beta U(c^o)$ s.t. $\phi(k)=c^y+(1+n)^{-1}c^o \text{ is characterized by:}$

$$\phi(k_{GR}) = c_{GR}^y + \frac{c_{GR}^o}{1+n},$$

and,

$$U_c(c_{GR}^y) = \beta(1+n)U_c(c_{GR}^o).$$

Proposition (Optimal steady state)

Given assumptions above, a unique Pareto-optimal steady state exists: k_{GR} satisfying

$$f_k(k_{GR}) - (\delta + n) = 0;$$
 (Golden rule)

and c_{GR}^{y} and c_{GR}^{o} , respectively, satisfy

$$\phi(k_{GR}) = c_{GR}^y + \frac{c_{GR}^o}{1+n},$$
 (Resource constraint)

and,

$$U_c(c_{GR}^y) = \beta(1+n)U_c(c_{GR}^o). \tag{Euler equation}$$

Optimal vs. CE arbitrage I

If we decentralized previous Pareto planning problem ...

ullet Given relative price (btw. young-vs-old consumption) R_{t+1} , each consumer's optimal decisions (c_t^t,c_{t+1}^t) satisfy

$$U_c(c_t^t) = \beta R_{t+1} U_c(c_{t+1}^t).$$
 (Euler eqn: at CE)

Optimal vs. CE arbitrage II

• Optimal arbitrage: If $R_{t+1}=(1+n)$ for all t, i.e. Samuelson's (1958) "biological return" equals market terms of trade btw (c_t^t,c_{t+1}^t) , so there is a triple (c^y,c^o,k) such that

$$U_c(c^y) = \beta(1+n)U_c(c^o),$$

and the actual value of lifetime expenditure on consumption (for each agent) is

$$c^{y} + \frac{c^{o}}{1+n} = w(k) = f(k) - f_{k}(k)k$$

= $f(k) - (\delta + n)k$.

• But ... at R = 1 + n, market clearing at steady state requires

$$(1+n)k = s[w(k), 1+n] = w(k) - c^{y}.$$

• If we impose the optimal allocation, setting $k=k_{GR}$, then $c^y=c^y_{GR}$ and $c^o=c^o_{GR}$, in general,

$$(1+n)k_{GR} \neq s[w(k_{GR}), 1+n].$$

Optimal steady-state path, in general, not equivalent to the competitive equilibrium steady-state path.

Proposition (Optimal allocation and life-cycle no-arbitrage)

The optimal steady state path $(k_{GR}, c_{GR}^y, c_{GR}^o)$ satisfies:

- the decentralized no-arbitrage condition of each consumer where the return on saving is $R=f_k(k_{GR})+(1-\delta)=1+n;$ and
- her life-cycle income is $w(k_{GR}) = f(k_{GR}) f_k(k_{GR})k_{GR}$.

But her choice of saving is generally not equal to the level of Pareto-optimal invest: $s[w(k_{GR}), 1+n] \neq (1+n)k_{GR}$.

Optimal vs. CE arbitrage V

To prove this, all we need is a counter-example.

Example ($\delta = 1$)

Let $U(c) = \ln(c)$ and $f(k) = k^{\alpha}$. Then

- $k_{GR} = [\alpha/(1+n)]^{1/(1-\alpha)}$
- $\phi(k_{GR}) = w(k_{GR}) = (1 \alpha)k_{GR}^{\alpha}$
- $c_{CR}^y = (1+\beta)^{-1}\phi(k_{GR})$
- $c_{CR}^o = (1+\beta)^{-1}[(1+n)\beta]\phi(k_{GR})$
- $s[w(k_{GR}), 1+n] = \beta(1+\beta)^{-1}\phi(k_{GR}).$

Show that at a steady state $k = k_{GR}$ it is possible that it is not consistent with a RCE.

Optimal vs. CE arbitrage VI

Example (cont'd)

Observe that:

$$s[w(k_{GR}), 1+n] \leq (1+n)k_{GR},$$

if and only if:

$$\frac{\beta}{(1+\beta)}(1-\alpha)k_{GR}^{\alpha} \leq \alpha k_{GR}^{\alpha} \Leftrightarrow \frac{\beta}{1+\beta} \leq \frac{\alpha}{1-\alpha}.$$

Given α , if β too large (agent's too patient), then savings exceeds golden rule capital stock. Only in special case where $\beta/(1+\beta) = \alpha/(1-\alpha)$, do the two equal.

What is the reasoning behind RCE allocation not necessarily being an optimal one?

- FWT states that a competitive equilibrium is also Pareto optimal, as long as there exist complete markets, agents are price-takers and preferences are locally non-satiated.
- This steady state analysis showed a breakdown of what is known as the First Welfare Theorem (FWT).

- The problem here is that in a CE each generation's old agents do not care about the next generation's young.
- The former eats up the total dividend from and the remainder of their capital stock.
- Competitive agents do not internalize the need of moving resources intertemporally across infinitely far generations.
- They only move private resources across time (through savings) insofar as it maximizes their own lifetime utilities.

- A planner in an optimal steady state cares about every generation and maximizes the net production subject to that being feasible; and
- Planner allocates consumption intertemporally for each generation according to the biological rate of exchange.
- Pareto planner internalizes the effect of shifting resources across infinite sequences of generations; and
- planner's optimal allocation is feasible w.r.t. resource constraint that holds over all $t \in \mathbb{N}$.

Over/under accumulation of capital I

At a steady state \bar{k} of an RCE:

- ullet If $f_k(ar k) > \delta + n$, then $ar k < k_{GR}$ (under-accumulation).
- If $f_k(\bar{k}) < \delta + n$, then $\bar{k} > k_{GR}$ (over-accumulation).

Over/under accumulation of capital II

Note in both cases, for a given \bar{k} ,

• the maximum life-cycle utility satisfies: $U_c(c^y) + \beta(1+n)U_c(c^o)$, given net production fixed at $\phi(\bar{k})$,

... but ...

• the life-cycle utility at the competitive steady state satisfies: $U_c(\bar{c}^y) = \beta [f_k(\bar{k}) + 1 - \delta] U_c(\bar{c}^o).$

Over/under accumulation of capital III

Implications:

- Competitive equilibrium over- or under-accumulation of \bar{k} on a steady state path is not Pareto optimal.
- E.g. if $\bar{k} > k_{GR}$ (over-accumulation):
 - possible to increase total consumption by reducing k to yield total resources per period $\phi(k)$ forever.
 - If k reduces discretionarily to k_{GR} at some period, total consumption will be $\phi(k) + (k k_{GR})(1 + n) > \phi(k)$. Total consumption in that period rises.
 - For continuation periods, the surplus is now $\phi(k_{GR})$ forever. But by definition of golden rule, $\phi(k_{GR}) > \phi(k)$. So total consumption forever is maximized.
 - Therefore total consumption for every generation can be increased at all dates by moving k towards k_{GR} .