DLD Boolean Algebra, Operation and Expression

Department of Computer Science & IT Hazara University Mansehra

Instructor: Muneeba Darwaish

Boolean Operations and Expressions

- Boolean algebra is the mathematics of digital logic.
- Boolean Addition: Boolean addition is equivalent to the OR operation.
- The basic rules are illustrated below:

- In logic circuits, a sum term is produced by an OR operation.
- Some examples of sum terms are A + B, A + B + C, and A + B + C + D.

Boolean Operations and Expressions

- Boolean multiplication is equivalent to the AND operation.
- The basic rules are illustrated with their relation to the AND gate:

- Examples are: AB, AB, ABC, and ABCD.
- A product term is equal to 1 only if each of the literals in the term is 1.
- A product term is equal to 0 when one or more of the literals are 0.

Boolean Operations and Expressions

- A sum term is equal to 1 when one or more of the literals in the term are 1.
- A sum term is equal to 0 only if each of the literals is 0.

EXAMPLE 4-1

Determine the values of A, B, C, and D that make the sum term $A + \overline{B} + C + \overline{D}$ equal to 0.

Solution

For the sum term to be 0, each of the literals in the term must be 0. Therefore, A = 0, B = 1 so that $\overline{B} = 0$, C = 0, and D = 1 so that $\overline{D} = 0$.

$$A + \overline{B} + C + \overline{D} = 0 + \overline{1} + 0 + \overline{1} = 0 + 0 + 0 + 0 = 0$$

EXAMPLE 4-2

Determine the values of A, B, C, and D that make the product term $A\overline{B}C\overline{D}$ equal to 1.

Solution

For the product term to be 1, each of the literals in the term must be 1. Therefore, A = 1, B = 0 so that $\overline{B} = 1$, C = 1, and D = 0 so that $\overline{D} = 1$.

$$A\overline{B}C\overline{D} = 1 \cdot \overline{0} \cdot 1 \cdot \overline{0} = 1 \cdot 1 \cdot 1 \cdot 1 = 1$$

Related Problem

Determine the values of A and B that make the product term \overline{AB} equal to 1.

DIY

- 1. If A = 0, what does \overline{A} equal?
- 2. Determine the values of A, B, and C that make the sum term $\overline{A} + \overline{B} + C$ equal to 0.
- 3. Determine the values of A, B, and C that make the product term $A\overline{B}C$ equal to 1.

Commutative Laws

The commutative law of addition for two variables is written as

$$A + B = B + A$$

$$\begin{array}{c|c}
A & \longrightarrow & B \\
B & \longrightarrow & B + A
\end{array}$$

The commutative law of multiplication for two variables is

$$AB = BA$$

Associative Laws

The associative law of addition is written as follows for three variables:

$$A + (B + C) = (A + B) + C$$

Associative Laws

The associative law of addition is written as follows for three variables:

$$A + (B + C) = (A + B) + C$$

The associative law of multiplication is written as follows for three variables:

$$A(BC) = (AB)C$$

$$A(BC) = ABC$$

$$A(BC) = ABC$$

$$A(BC) = ABC$$

$$ABC = ABC$$

$$ABC = ABC$$

$$ABC = ABC$$

$$ABC = ABC$$

Distributive Law

The distributive law is written for three variables as follows:

Basic rules of Boolean algebra.

1.
$$A + 0 = A$$

2.
$$A + 1 = 1$$

3.
$$A \cdot 0 = 0$$

4.
$$A \cdot 1 = A$$

5.
$$A + A = A$$

6.
$$A + \overline{A} = 1$$

7.
$$A \cdot A = A$$

8.
$$A \cdot \overline{A} = 0$$

9.
$$\overline{\overline{A}} = A$$

10.
$$A + AB = A$$

11.
$$A + \overline{A}B = A + B$$

12.
$$(A + B)(A + C) = A + BC$$

Rule 1. A + 0 = A

Rule 2.
$$A + 1 = 1$$

$$A = 1$$

$$1$$

$$X = 1$$

$$X = A + 1 = 1$$

Rule 3. $A \cdot 0 = 0$

$$A = 1$$

$$0$$

$$X = 0$$

$$0$$

$$X = 0$$

$$X = 0$$

Rule 4. $A \cdot 1 = A$

$$A = 0$$

$$1$$

$$X = 0$$

$$1$$

$$X = A \cdot 1 = A$$

Rule 5. A + A = A

$$A = 0$$

$$A = 0$$

$$X = 0$$

$$X = A + A = A$$

Rule 6. $A + \overline{A} = 1$

$$A = 0$$

$$\overline{A} = 1$$

$$X = 1$$

$$X = A + \overline{A} = 1$$

$$X = A + \overline{A} = 1$$

Rule 7. $A \cdot A = A$

Rule 8. $A \cdot \overline{A} = 0$

Rule 10. A + AB = A This rule can be proved by applying the distributive law, rule 2, and rule 4 as follows:

$$A + AB = A(1 + B)$$
 Factoring (distributive law)
= $A \cdot 1$ Rule 2: $(1 + B) = 1$
= A Rule 4: $A \cdot 1 = A$

A	В	AB	A + AB	A T
0	0	0	0	
0	1	0	0	$B \longrightarrow$
1	0	0	1	
1	1	1	1	A straight connection
+		and the same	1	

Rule 11. $A + \overline{A}B = A + B$ This rule can be proved as follows:

$$A + \overline{A}B = (A + AB) + \overline{A}B$$
 Rule 10: $A = A + AB$
 $= (AA + AB) + \overline{A}B$ Rule 7: $A = AA$
 $= AA + AB + A\overline{A} + \overline{A}B$ Rule 8: adding $A\overline{A} = 0$
 $= (A + \overline{A})(A + B)$ Factoring Rule 6: $A + \overline{A} = 1$
 $= A + B$ Rule 4: drop the 1

A	В	AB	A + AB	A + B	
0	0	0	0	0	
0	1	1	1	1	
1	0	0	1	1	
1	1	0	1 1	1	
			t equ	nal	

Rule 12. (A + B)(A + C) = A + BC This rule can be proved as follows:

$$(A + B)(A + C) = AA + AC + AB + BC$$
 Distributive law
 $= A + AC + AB + BC$ Rule 7: $AA = A$
 $= A(1 + C) + AB + BC$ Factoring (distributive law)
 $= A \cdot 1 + AB + BC$ Rule 2: $1 + C = 1$
 $= A(1 + B) + BC$ Factoring (distributive law)
 $= A \cdot 1 + BC$ Rule 2: $1 + B = 1$
 $= A + BC$ Rule 4: $A \cdot 1 = A$

A	В	C	A + B	A+C	(A+B)(A+C)	BC	A + BC	1+1
0	:0	0	0	0	0	0	0	B 1
0	0	1	0	1.	0	0	0	
0	1	0	1	0	0	0	0	c-L
0	1	1	1	1	1	1	1	
1	0	0	1	1	1	0	1	1
1	.0	1	1	1	1	0	-1	Α
1	1	0	1	1	1	0	1	B
1	1	1 1	1	1	1	1	1	c—
					*			121
						equal		17

Expression Simplification

EXAMPLE 4-9

Using Boolean algebra techniques, simplify this expression:

$$AB + \underline{A(B + C)} + \underline{B(B + C)}$$

1.
$$A + 0 = A$$

2. $A + 1 = 1$
3. $A \cdot 0 = 0$
4. $A \cdot 1 = A$
5. $A + A = A$
6. $A + \overline{A} = 1$
7. $A \cdot A = A$
8. $A \cdot \overline{A} = 0$
9. $\overline{A} = A$
10. $A + AB = A$
11. $A + \overline{AB} = A + B$
12. $(A + B)(A + C) = A + BC$

A. B. or C can represent a single variable or a combination of variables

Step 1: Apply the distributive law to the second and third terms in the expression, as follows:

$$AB + AB + AC + BB + BC$$

Step 2: Apply rule 7 (BB = B) to the fourth term.

$$AB + AB + AC + B + BC$$

Step 3: Apply rule 5 (AB + AB = AB) to the first two terms.

$$AB + AC + B + BC \longrightarrow$$

$$AB + AC + B + BC \rightarrow B \rightarrow C \rightarrow C$$

Step 4: Apply rule 10 (B + BC = B) to the last two terms.

$$AB + AC + B$$
.

EXAMPLE 4-9

Using Boolean algebra techniques, simplify this expression:

$$AB + A(B + C) + B(B + C)$$

$$1.A + 0 = A$$

$$7.A \cdot A = A$$

$$2.A + 1 = 1$$

$$8.A \cdot \overline{A} = 0$$

3,
$$A \cdot 0 = 0$$
 9. $A = A$

$$4. A \cdot 1 = A$$

$$10. A + AB = A$$

$$5.A + A = A$$

5.
$$A + A = A$$
 11. $A + \overline{AB} = A + B$

$$6.A + \overline{A} = 1$$

12.
$$(A + B)(A + C) = A + BC$$

Step 4: Apply rule 10 (B + BC = B) to the last two terms.

$$AB + AC + B$$

A. B. or C can represent a single variable or a combination of variables.

Step 5: Apply rule 10 (AB + B = B) to the first and third terms.

$$B + AC$$

At this point the expression is simplified as much as possible. Once you gain experience in applying Boolean algebra, you can often combine many individual steps.

EXAMPLE 4-9

Using Boolean algebra techniques, simplify this expression:

$$AB + A(B + C) + B(B + C)$$

$$1.A + 0 = A$$

$$7.A \cdot A = A$$

$$2.A + 1 = 1$$

$$8.A \cdot \overline{A} = 0$$

$$3. A \cdot 0 = 0$$

$$9.\overline{A} = A$$

A, B, or C can represent a single variable or a combination of variables.

$$4.A \cdot 1 = A$$

$$10. A + AB = A$$

$$5.A + A = A$$

$$11. A + \overline{AB} = A + B$$

$$6. A + A = 1$$

12.
$$(A + B)(A + C) = A + BC$$

Step 4: Apply rule 10 (B + BC = B) to the last two terms.

$$AB + AC + B$$

Λ . .

B+AB

Step 5: Apply rule 10 (AB + B = B) to the first and third terms.

$$B + AC$$

At this point the expression is simplified as much as possible. Once you gain experience in applying Boolean algebra, you can often combine many individual steps.

