EXP2
Code [HARDWARE]:
MOV AX,0000H
MOV DS, AX
MOV SI,2000H
XOR AX, AX
MOV CL,05H
ADD AX, [SI]
INC SI
LOOP 100F
MOV [3000], AX
HLT

EXP 3
Code:
MOV AX, 0000H
MOV DS, AX
MOV CH, 05H
MOV CL, 05H
MOV SI,2000H
MOV AL, [SI]
MOV BL, [SI+1]
CMP AL, BL
JLE 1021

XCHG [SI], DL MOV [SI+1], DL INC SI DEC CL JNZ 1010 DEC CH JNZ 1009

MOV DL, [SI+1]

EXP 4

HLT

1. BCD to HEX Conversion:

Code:

MOV SI, 2000H MOV DI, 3000H MOV BL, [SI]

AND BL, OF MOV AL, [SI] AND AL, 0FO MOV CL, 04 ROR AL, CL MOV DL, OA

ADD AL, BL MOV [DI], AL

MUL DL

HLT

2. BCD to ACSII Conversion

Code:

MOV AL, [2000] MOV AH, AL AND AL,0F MOV CL, 04 SHR AH, CL OR AX, 3030 MOV [3000], AX

HLT

EXP 5

1. Factorial of a number MOV CX, [2000] MOV AX, 0001 MUL CX DEC CX JNZ 1008

MOV [3000], AX

HLT

3. Combination

MOV DX, [2000]
MOV CX, [2002]
SUB DX, CX
MOV CX, DX
MOV AX, 0001
MUL CX
DEC CX
JNZ 1010
MOV BX, AX
MOV CX, [2002]
MOV AX, 0001
MUL CX

DEC CX JNZ 101F MUL BX MOV BX, AX MOV CX, [2000] MOV AX, 0001 MUL CX DEC CX JNZ 1030

DIV BX MOV [3000], AX

HLT

To find sum without carry:

ORG 0000H MOV A,#21H ADD A,#02H MOV 03H,A END

To find sum with carry:

ORG 0000H SETB C MOV A,#21H ADD A,#42H MOV 03H,A

END

EXP 7

Subtraction: ORG 0000H CLR C MOV A,#5FH

SUBB A,#8AH JNC NEXT CPL A INC A

NEXT: MOV R1,A

END

Subtraction:

ORG 0000H CLR C MOV A,#56H SUBB A,#78H MOV R7,A MOV A,#27H SUBB A,#12H MOV R6,A END

Multiplication:

ORG 0000H MOV A,#30H MOV B,#69H MUL AB END

Division:

ORG 0000H MOV A,#95 MOV B,#05 DIV AB

END

- Write a program to clear accumulator [A] then add 5, 5 times to the accumulator
- Write an 8051 ASM program to read a temperature value (T) from RAM onto the location 55H. According to the test results place the temperature value into the register located below
- 3. Write a program to move a block of 5 data starting from RAM memory 40H to external ROM memory 3000H onwards and perform complement operation before storing into the ROM.

	PROGRAM 1:	MHz Consider Mode 2
PROGRAM 1:	DELAY: MOV R2,#04H	operation for Timer 1.
	HERE3: MOV R1,#0FFH	
ORG 0000H	HERE2 : MOV R0,#0FFH	
MOV A, #00	HERE1 : DJNZ R0,HERE1	Task 1.
MOV R0, #5	DJNZ R1,HERE2	MOV TMOD, #20H; TIMER1,
LOOP: ADD A, #5	DJNZ R2,HERE3	MODE 2(AUTO
		RELOAD)
DJNZ R0, LOOP	RET	MOV TH1, #0FDH; 9600 BAUD
MOV R5, A		RATE
END		MOV SCON, #50H; 8 BIT, 1 STOP,
	PROGRAM 2:	REN ENABLED
PROGRAM 2:		SETB TR1; START TIMER 1
	ORG 0000H	AGAIN: MOV A, #'V'
ORG 0000H	MOV	ACALL TRANS
MOV A, 55H	TMOD,#01H	MOV A, #'I'
CJNE A, #50, OVER	BACK : MOV	ACALL TRANS
SJMP EXIT	TL0,#01AH	MOV A, #'T'
OVER: JNC NEXT	MOV TH0,#0Fl	ACALL TRANS
MOV R1, A	SETB TRO	MOV A, #' '
SJMP EXIT	AGAIN : JNB	ACALL TRANS
NEXT: MOV R2, A	TF0,AGAIN	SJMP AGAIN ; KEEP REPEATING
EXIT: NOP	CLR TR0	IT ; SERIAL DATA TRANSFER
END	CPL P2.7	SUBROUTINE
END	CLR TF0	TRANS: MOV SBUF, A ; LOAD
DDOCD AM 2		SBUF
PROGRAM 3:	SJMP BACK	HERE: JNB TI, HERE ; WAIT FOR
OR C ASSOLI	DD 0 CD 1114	THE LAST BIT
ORG 0000H	PROGRAM 3:	CLR TI; GET READY FOR THE
MOV R0, #40H		NEXT BYTE
MOV DPTR, #3000H	ORG 0000H	RET
MOV R2, #05H	REPEAT : MOV TMOD,#20H	END
LOOP: MOV A,@R0	MOV TH1,#0	Task 2)
CPL A	SETB P3.5	ORG 0000H
MOVX @DPTR, A	AGAIN : SETB TR1	LJMP MAIN
INC R0	BACK: MOV A,TL1	ORG 0100H
INC DPTR	MOV P1,A	MAIN:
DJNZ R2, LOOP	CLR P3.5	MOV TMOD, #20H
END	SETB P3.5	MOV TH1, #0FAH
	JNB TF1,BACK	MOV SCON, #50H
1. Write an 8051 assembly	CLR TR1	SETB TR1
language program to togg	CLR TF1	HERE: JNB RI, HERE
the bits of P1 for every	SJMP REPEAT	MOV A, SBUF MOV P1, A
500ms. Assume the crysta	END	CLR RI
	END	CJNE A, #'\$', HERE
frequency as 11.0592MHz	1 F 9051 4- 4	END
2. Write an 8051 assembly	1. For 8051 to transfer "VIT	Task 3)
language program using	serially at 9600 baud, 8-bi	ORG 0000H
timers to generate a	data, 1 stop-bit, do this	MOV TMOD, #20H
frequency of 2KHz on pin	continuously.	MOV TH1, #0E8H
port P2.7. Assume the cry	2. For 8051 to receive bytes	MOV SCON, #50H
frequency as 11.0592MHz	data serially, and put them	MOV P2, #00H
3. Assume that the clock pul	P1, set the baud rate at 48	SETB TR1
are fed into pin T1(P3.5),	8-bit data, 1 start and 1 sto	RPT: JNB RI, RPT
Write an 8051 assembly	bit.	MOV A, SBUF
language program for	3. To receive a number	CLR C
counter 1 in mode 2 to co	(between 1-9) continuousl	SUBB A, #30H
the pulses and display the	from the serial port and se	MOV B, A
state of the TL1 count on	the square of the received	MUL AB
which connects to 8 LEDs	number continuously to P	MOV P2, A
	2. Assume the baud rate for	CLR RI
	serial communication to b	SJMP RPT
	1200 and XTAL = 11.059	END
	1200 and ATAL = 11.039.	