Data Mining

ASSOCIATION RULE MINING

RULE GENERATION

Prof. Dr. Hikmat Ullah Khan Department of Information Technology

UNIVERSITY OF SARGODHA, SARGODHA

Lesson from Holy Quran

The Apriori Algorithm (Pseudo-Code)


```
C_k: Candidate itemset of size k
L_k: frequent itemset of size k
L_1 = \{ frequent items \};
for (k = 1; L_k != \emptyset; k++) do begin
  C_{k+1} = candidates generated from L_k;
  for each transaction t in database do
    increment the count of all candidates in C_{k+1} that are contained in t
  L_{k+1} = candidates in C_{k+1} with min_support
  end
return \bigcup_k L_k;
```

Apriori

- ☐ Steps (Revision)
 - Items identification
 - Support Count calculation
 - Applying min sup threshold

Steps in Simple Flowchart

Exercise

□ Find the Frequent Pattern where Min Support =2

Transactional Data for an *AllElectronics* Branch

TID	List of item_IDs
T100	I1, I2, I5
T200	I2, I4
T300	12, 13
T400	I1, I2, I4
T500	I1, I3
T600	12, 13
T700	I1, I3
T800	11, 12, 13, 15
T900	I1, I2, I3

Scan D for count of each candidate

 C_1

Itemset	Sup. count
{I1}	6
{I2}	7
{I3}	6
${I4}$	2
{I5}	2

Compare candidate support count with minimum support count

 Itemset
 Sup. count

 {I1}
 6

 {I2}
 7

 {I3}
 6

 {I4}
 2

 {I5}
 2

Rule Generation using Confidence

$$confidence(A \Rightarrow B) = P(B|A) = \frac{support_count(A \cup B)}{support_count(A)}.$$

Generated Rules

For Frequent Itemset [I1, I2, I5]

```
\{I1,I2\} \Rightarrow I5, confidence = 2/4 = 50\%

\{I1,I5\} \Rightarrow I2, confidence = 2/2 = 100\%

\{I2,I5\} \Rightarrow I1, confidence = 2/2 = 100\%

I1 \Rightarrow \{I2,I5\}, confidence = 2/6 = 33\%

I2 \Rightarrow \{I1,I5\}, confidence = 2/7 = 29\%

I5 \Rightarrow \{I1,I2\}, confidence = 2/2 = 100\%
```

Two More Measures for Rule Generation

Lift

Signifies the likelihood of the itemset Y being purchased when item X is purchased while taking into account the popularity of Y.

$$lift(X \longrightarrow Y) = \frac{supp(X \cup Y)}{supp(X) * supp(Y)}$$

Two More Measures for Rule Generation

Conviction

- considers Support and Confidence together for Rule Generation
- Conviction is calculated

$$conv(X \longrightarrow Y) = \frac{1 - supp(Y)}{1 - conf(X \longrightarrow Y)}$$

Exercise for Confidence, Lift and Conviction,

Transaction ID	Onion	Potato	Burger	Milk	Beer
t_1	1	1	1	0	0
t_2	0	1	1	1	0
t_3	0	0	0	1	1
t_4	1	1	0	1	0
t_5	1	1	1	0	1
t_6	1	1	1	1	1

EXERCISE

- □ So, for the rule {Onion, Potato} => {Burger},
- Compute
- Confidence

□ Lift

Conviction

Measures for Rule Generation

Confidence

$$conf(\{Onion, Potato\}) \implies \{Burger\}) = \frac{supp(\{Onion, Potato, Burger\})}{supp(\{Onion, Potato\})} = \frac{3}{6} * \frac{6}{4} = 0.75$$

Measures for Rule Generation

□ Lift

$$lift(X \longrightarrow Y) = \frac{supp(X \cup Y)}{supp(X) * supp(Y)}$$

$$lift(\{Onion, Potato\} \implies \{Burger\}) = \frac{supp(\{Onion, Potato, Burger\})}{supp(\{Onion, Potato\}) * supp(Burger)} = \frac{3}{6} * \frac{6 * 6}{4 * 4} = 1.125$$

Measures for Rule Generation

Conviction

$$conv(X \longrightarrow Y) = \frac{1 - supp(Y)}{1 - conf(X \longrightarrow Y)}$$

$$conv(\{onion, potato\} \implies \{burger\}) = \frac{1 - supp(burger)}{1 - conf(\{onion, potato\} \implies \{burger\})} = \frac{1 - 0.67}{1 - 0.75} = 1.32$$

19

- □ R:
- Python

Implementation in R

arules

The package which is used to implement the Apriori algorithm in R is called

Aprioria ()

- function used for mining association rules
- Parameters
 - Data
 - Parameter
 - **■** 3

Implementation in R


```
> library(arules)
    > data("Adult")
     > rules <- apriori(Adult,parameter = list(supp = 0.5, conf = 0.9, target = "rules"))
     > summary(rules)
     #set of 52 rules
 1
     #rule length distribution (lhs + rhs):sizes
     #1234
10
     # 2 13 24 13
11
     # Min. 1st Qu. Median Mean 3rd Qu. Max.
12
13
     # 1.000 2.000 3.000 2.923 3.250 4.000
14
15
     # summary of quality measures:
16
     # support
                    confidence
                                   lift
     # Min. :0.5084 Min. :0.9031 Min. :0.9844
17
     # 1st Qu.:0.5415 1st Qu.:0.9155 1st Qu.:0.9937
18
19
     # Median :0.5974 Median :0.9229 Median :0.9997
     # Mean :0.6436 Mean :0.9308 Mean :1.0036
20
21
     # 3rd Qu.:0.7426 3rd Qu.:0.9494 3rd Qu.:1.0057
     # Max. :0.9533 Max. :0.9583 Max. :1.0586
```

Implementation in R

28	> inspect(rules) #ltgives	s the list of all significant a	ssociation rules. Some of them are shown below
29			
30			
31	# Ihs rh	s suppor	t confidence lift
32	#[1] {} =>	{capital-gain=None}	0.9173867 0.9173867 1.0000000
33	#[2] {} =>	{capital-loss=None}	0.9532779 0.9532779 1.0000000
34	#[3] {hours-per-week=Full	l-time} => {capital-gain=	None} 0.5435895 0.9290688 1.0127342
35	# [4] {hours-per-week=Full	l-time} => {capital-loss=	None} 0.5606650 0.9582531 1.0052191
36	# [5] {sex=Male}	=> {capital-gain=None}	0.6050735 0.9051455 0.9866565
37	# [6] {sex=Male}	=> {capital-loss=None}	0.6331027 0.9470750 0.9934931
38	#[7] {workclass=Private}	=> {capital-gain=Nor	ne} 0.6413742 0.9239073 1.0071078
39	#[8] {workclass=Private}	=> {capital-loss=Non	e} 0.6639982 0.9564974 1.0033773
40	# [9] {race=White}	=> {native-country=Uni	ted-States} 0.7881127 0.9217231 1.0270761
41	# [10] {race=White}	=> {capital-gain=None	0.7817862 0.9143240 0.9966616

EXCEPTION is **NOT VIOLATION** OF RULE sometime, it is the **BEAUTY** of the RULE

