ECON 703 - ANSWER KEY TO HOMEWORK 5

- 1. (1)A metric on vector space X is a function $d: X \times X \to \Re$ that satisfies the following conditions for all x, y z in X:
 - 1) Posistivity: $d(x,y) \ge 0$, with equality iff x=y.
 - 2) Summetry: d(x,y)=d(y,x).
 - 3) Triangle: Inequality: $d(x, z) \le d(x, y) + d(y, z)$.

We need to check these conditions.

For 1), we know $d(x,y) = max|x_i - y_i| \ge |x_i - y_i| \ge 0$. And $d(x,y) = 0 \Leftrightarrow max|x_i - y_i| = 0 \Leftrightarrow |x_i - y_i| = 0 \Leftrightarrow i$ (because $|x_i - y_i| \ge 0 \ \forall i$) $\Leftrightarrow x_i = y_i \ \forall i \Leftrightarrow x = y$.

For 2), we know that $d(x, y) = \max |x_i - y_i| = \max |y_i - x_i| = d(y, x)$.

For 3), $d(x,y) = \max |x_i - y_i| = \max |x_i - z_i + z_i - y_i| \le \max (|x_i - z_i| + |z_i - y_i|) \le \max |x_i - z_i| + \max |z_i - y_i|$.

(Another way to state: Observe that $|x_i - y_i| + |y_i - z_i| \ge |x_i - z_i| \ \forall i$, where $x = (x_1, ..., x_n), y, z \in \mathbb{R}^n$. Taking maxima on both side implies $\max_i (|x_i - y_i| + |y_i - z_i|) \ge \max_i |x_i - z_i|$. So $\max_i |x_i - y_i| + \max_i |y_i - z_i| \ge \max_i (|x_i - y_i| + |y_i - z_i|) \ge \max_i |x_i - z_i|$.

- (2) The basic open set B(x,r) of x is $\{y \in \mathbb{R}^n : \max_i |y_i x_i| < r\}$. Draw a graph in \mathbb{R}^2 , it is an $2r \times 2r$ open square centered at x.
- (3)" \Rightarrow ": A is open in (\Re^n, d_2) means for all $x \in A$, $\exists B_{d_2}(x, r) \subset A$. So, for any $y \in B_{d_2}(x, r)$, we have $\max |x_i y_i| < r$. If we can show that there exists a $B_{d_1}(x, r') \subset B_{d_2}(x, r)$, then $x \in A$, $\exists B_{d_1}(x, r') \subset A$, that is, A is open in (\Re^n, d_1) .

Now we show that there exists a $B_{d_1}(x,r') \subset B_{d_2}(x,r)$. For any $y \in B_{d_1}(x,r')$, we have $d_1(x,y) = \sqrt{\sum (x_i - y_i)^2} < r'$, $\Longrightarrow (x_i - y_i)^2 < r'$, $\Longrightarrow |x_i - y_i| < r'$ for all i, $\Longrightarrow \max |x_i - y_i| < r'$ for all i, i.e. $d_1(x,y) < r'$, $\Longrightarrow y \in B_{d_1}(x,r')$. Now just let r'=r, we have $B_{d_1}(x,r) \subset B_{d_2}(x,r)$.

"\(\infty\)": Similarly, we need to prove that there exist a $B_{d_2}(x,r') \subset B_{d_1}(x,r)$. For any $y \in B_{d_2}(x,r')$, we have $d_2(x,y) = \max|(x_i - y_i| < r'$. Then $d_1(x,y) = \sqrt{\sum (x_i - y_i)^2} \le \sqrt{\sum (\max |x_i - y_i|)^2} < \sqrt{\sum r'^2} = \sqrt{nr'}$. So $y \in B(x,\sqrt(n)r')$. Now just let $r' = \frac{1}{\sqrt{n}}r$, we have $B_{d_2}(x,r') \subset B_{d_1}(x,r)$.

Note: This statement is equivalent to the statement "metric d_2 is equivalent to metric d_1 in the sense that they lead to the same topology". It is sufficient to show that for every basic open set $B_2(x,r)$ of x in (X,d_2) there exists a basic open set $B_1(x,s)$ of x in (X,d_1) s.t. $B_1(x,s) \subset B_2(x,r)$ and vice versa.

2. Way1: f(x,y) is continuous, so f(x,y) is continuous at (x_0,y) . So $\forall \epsilon$, there is a δ s.t. if $d((x_0,y),(x,y')) < \delta$, then $d(f(x_0,y),f(x',y')) < \epsilon$, especially, if $d((x_0,y),(x_0,y')) < \delta$, then $d(f(x_0,y),f(x_0,y')) < \epsilon$. Under product metric, $d((x_0,y),(x_0,y')) = maxd(x_0,x_0),d(y,y') = d(y,y')$. So, $ifd(y,y') < \delta$, then $d(h(y),h(y')) = d(f(x_0,y),f(x_0,y')) < \epsilon$. So h(y) is continuous. Similarly, we can prove g(x) is continuous.

Way2: Given a neighborhood $V = B(f(x_0, y), r)$ of $f(x_0, y)$ in Z, since f is continuous, there exists a neighborhood $U = B((x_0, y), s)$ of (x_0, y) in $X \times Y$ s.t. $f(U) \subset V$. Projecting U to the Y coordinate will induce a neighborhood B(y, s) of y, and then $h(B(y, s)) = f(x_0, B(y, s)) \subset f(B(x_0, y), s) = f(U) \subset V$. So h(y) is continuous. A similar argument applies for g(x).

Note: If U_y is the projection of U to Y coordinate, then under product metric, "U open in $X \times Y$ " implies U_y open in Y.

Proof: Suppose $B_y((x,y),r)$ is the projection of B((x,y),r). $y' \in B_y((x,y),r) \iff (x,y') \in B((x,y),r) \iff d((x,y),(x,y')) < r \iff d(y,y') < r \ (because \ d(y,y') = max(d(x,x),d(y,y')) = d((x,y),(x,y'))) \iff y' \in B(y,r)$. Therefore $B(y,r) = B_y((x,y),r)$.

Given $x \in U_x$, for any $y \in U_y$, we have $(x,y) \in U$. Because U is open, then $\exists B((x,y),r) \subset U$. So $B_y((x,y),r) \subset U_y$, $so B(y,r) \subset U_y$, so U_y is open.

3. (a) First, consider that f is separately continuous in x.

For fixed $y_0 \neq 0$, $f(x, y_0)$ is a function of x. It is continuous since the nominator is continuous and its denominator is continuous and not equal to 0 for all $x \in \mathbb{R}$.

For $y_0 = 0$, $f(x, y_0) = 0$ for x=0, and $f(x, y_0) = \frac{0}{x^2} = 0$ for all $x \neq 0$, so it $f(x, y_0) = 0$ for all $x \in \mathbb{R}$. It is a constant function, so it is continuous, too.

Since f is symmetric, the above arguments also hold for any fixed x_0 .

- (b) $f(x,x) = \frac{1}{2}$ when $x \neq 0$; f(x,x) = 0 when x = 0.
- (c) Let $(x_n, y_n) = (\frac{1}{n}, \frac{1}{n})$, then

$$f(\lim_{n\to\infty} (x_n, y_n)) = f(0, 0) = 0 \neq \frac{1}{2} = \lim f(x_n, y_n).$$

So f is not continuous.

4. "⇒":

Suppose that f is continuous, we want to show that G(f) is closed in $X \times Y$.

Consider any sequence $\{(x_n, y_n)\}\subset G(f)$ s.t. $(x_n, y_n)\to (x, y)$ as $n\to\infty$. Since we are using the product metric in $X\times Y$, $\{x_n\}$ and $\{y_n\}$ converge to x and y respectively. Since $y_n=f(x_n)$ and f is continuous, $y=\lim_{n\to\infty}y_n=\lim_{n\to\infty}f(x_n)=f(x)$. So $(x,y)\in G(f)$, hence G(f) is closed. " \Leftarrow ":

Suppose that G(f) is closed in $X \times Y$, we want to show that f is continuous.

Suppose to the contrary, i.e. f is not continuous, so there must exist a sequence $\{x_n\}$ which converges to x, but $f(x_n)$ does not converge to f(x) (there are two possibilities: either 1) $y = \lim_{n \to \infty} f(x_n) \neq f(x)$ or 2) $\{f(x_n)\}$ does not converge.).

Since $\{f(x_n)\}$ does not converge to f(x), there must exist $\varepsilon > 0$ such that for any N, there is a $n \ge N$ s.t. $d_Y(f(x_n), f(x)) > \varepsilon$. Now since Y is compact, $\{f(x_n)\}$ must have a convergent subsequence $\{f(x_{n_k})\}$. Suppose it converges to y, then we have $\forall \epsilon, \exists N, s.t, \forall n \ge N$, we have $d(f(x_{n_k}), y) < \epsilon$. But as $\{f(x_{n_k})\}$ is a subsequence of $\{f(x_n)\}$, so $d(f(x_{n_k}), f(x)) > \epsilon$ for some $n \ge N$. Therefore $y \ne f(x)$. Since we are using the product metric, the sequence $\{(x_{n_k}, f(x_{n_k}))\} \subset G(f)$ converges to $(x, y) \notin G(f)$. Thus G(f) is not closed.

5. Way1: Let $A_x = \{y | y = \lambda x, \lambda \in [0,1]\}$. If $x \in A$, then $A_x \subset A$. Then $A = \bigcup_{x \in A} A_x$. Because $0 \in A_x$, then $\bigcap_{x \in A} A_x \neq \phi$. We know that A_x is connected (we need to prove this statement, as we proved in the discussion section), So A is connected too.

Way2: Suppose to the contrary that $A_1 \neq \emptyset$, $A_2 \neq \emptyset$ are a separation of A. Since $0 \in A$, then 0 belongs to either A_1 or A_2 , but not both. Without loss of generality suppose $0 \in A_1$. Let x be any point in A_2 ,

 $\Lambda = \{\lambda \in [0,1] : \lambda x \in A_2\}, \text{ and } \lambda_0 = \inf \{\Lambda\}.$

Claim: $\lambda_0 = 0$.

Suppose $\lambda_0 > 0$ instead. First $\lambda_0 x \in A_2$. This is because either Λ is finite or $\lambda_0 x$ is a limit point of A_2 . In the first case $\lambda_0 x \in A_2$. In the second case, since A_1 and A_2 are a separation of A, $\lambda_0 x \notin A_1$, so $\lambda_0 x \in A_2$ (since $\lambda_0 x \in A_1$). Now since $\lambda_0 x \in A_2$, it should not be a limit point of A_1 . Thus there must exist $\varepsilon > 0$ such that $\lambda \in (\lambda_0 - \varepsilon, \lambda_0 + \varepsilon)$ implies $\lambda x \notin A_1$, hence $\lambda x \in A_2$. But this contradicts $\lambda_0 = \inf \{\Lambda\}$. The claim is proved.

Now we can see 0 is a limit point of A_2 , contradicting A_1 and A_2 being a separation of A.