WMAP EVO

- CONTADOR WOLTMANN de esfera seca y mecanismo extraíble
- Aprobación según Directiva 2014/32/UE con Ratio R250
- Pre-equipado con tecnología inductiva y salida de pulsos tipo REED

WMAP EVO

EL **WMAP EVO** es un contador **tipo Woltmann** de hélice axial con mecanismo extraíble. El registro de transmisión magnética opera en un compartimento seco y solo la hélice está sumergida en el agua. El totalizador está alojado en una campana de cobre y vidrio con protección IP68.

Los contadores WMAP EVO están pre-equipados con 2 salidas de pulsos, una salida con tecnología inductiva y contacto tipo REED en su versión estándar. De este modo se puede equipar al contador con un emisor o un módulo de radio sin afectar su funcionalidad y diseño. Disponemos de módulos de radio con distintas tecnologías de comunicación (Wireless M-Bus, LoRa, Sigfox).

El WMAP EVO se puede instalar en posición horizontal o vertical.

Sus características no están afectadas por las condiciones de instalación y las características del agua.

Cumple con la Directiva 2014/32/UE y alcanza un rango de medida máximo Q_3/Q_1 certificado de R250. **Ratios inferiores** están también disponibles (R200, 160, 100, 80, etc.).

El WMAP EVO está certificado para el uso de agua potable de acuerdo las regulaciones internacionales (WRAS, ACS).

CARACTERÍSTICAS

- Los contadores Woltmann WMAP EVO están aprobados bajo la Directiva 2014/32/UE, según ISO 4064-1:2014 y su transposición en el RD 244/2016.
- Campana de cobre y vidrio mineral (Copper Can). Protección IP68.
- El totalizador está construido en un compartimento seco que impide el contacto con el agua asegurando la lectura fácil y continua. Dispone de 7 tambores para la lectura de metros cúbicos y 3 agujas que muestran submúltiplos más pequeños. En DN 150 y DN 200 son 7 tambores negros, una aguja de metros cúbicos y dos agujas para los submúltiplos.
- Las **inscripciones MID** están en una placa metálica solidaria con la brida del contador y el número de serie está grabado en números y código de barras en el dial.
- Tapa con cierre plástica.
- Los emisores de pulsos mantienen su precinto metrológico y están protegidos por una carcasa.
- No es necesario el uso de tramos rectos aguas arriba o abajo del contador (sensibilidad al perfil flujo U0/D0).
- Cuerpo de fundición embridado con recubrimiento epoxi interno y externo.
- Presentan un amplio rango de medida que permiten dar servicio en muy distintas aplicaciones y situaciones extremas (bajos caudales y altos caudales).
- La calidad de los materiales utilizados en su mecanismo interior aseguran su elevada longevidad manteniendo su comportamiento metrológico a lo largo del tiempo: Pivotes en acero inoxidable, cojinetes de zafiros sintéticos, materiales no higroscópicos y plásticos técnicos.
- Mínimo mantenimiento y máxima calidad de servicio debido a su avanzado diseño y a la calidad de los materiales empleados. El mecanismo de medición es extraíble en su totalidad y se puede reemplazar sin desmontar el contador de su emplazamiento.
- Máxima temperatura del agua 50°C y presiones nominales (PN) de 10 o 16 bar.

DATOS TÉCNICOS

Modelo				WMAP EVO							
Diámetro Nominal	DN	mm	50	65	80	100	125	150	200		
Diametro Nominai		"	2"	2 1/2"	3"	4"	5"	6"	8"		
Clase Metrológica MID				H† R≤250 H→; V†; V↓ inclinado R≤160 H→; V† V↓ inclinado R≤160							
Caudal permanente		m³/h	40	63	100	160	160	250	400		
Caudal máximo		m³h	50	78,8	125	200	200	312	500		
Caudales para Q ₃ /Q ₁ R250 alcanzables											
Caudal transición (precisión ± 2%)		m³/h	0,26	0,40	0,64	1,02	1,02	1,60	2,56		
Caudal mínimo (precisión ± 5%)		m³/h	0,16	0,25	0,40	0,64	0,64	1,00	1,60		
Caudales para Q ₂ /Q ₁ R100 estándar											
Caudal transición (precisión ± 2%)		m³/h	0,64	1,01	1,60	2,56	2,56	4,00	6,40		
Caudal mínimo (precisión ± 5%)		m³/h	0,40	0,63	1,00	1,60	1,60	2,50	4,00		
Módulo B				TCM 142/17-5473							
Módulo D				0119-SJ-A010-08							

ESPECIFICACIONES TÉCNICAS

Diámetro Nominal	DN	mm	50	65	80	100	125	150	200		
Clase Temperatura				T50							
Sensibilidad a la perturbación de flujo			U0-D0								
Caudal de arranque		l/h	125	190	320	450	700	1200	1800		
Presión Nominal		bar	10/16	10/16	10/16	10/16	10/16	10/16	10/16		
Perdida de carga (ΔP a Q₃)		bar	ΔP25	ΔP40	ΔP25	∆P40	ΔP40	ΔP16	ΔP40		
Máximo registro de lectura m³					99.999.999						
Mínimo registro de lectura		I		0,2							
Revoluciones/litro de la turbina			1,08	1,02	0,39	0,32	0,40	0,25	0,15		
Peso		Kg	10,0	11,2	15,2	17,2	22,4	29,0	42,6		
Salida de pulsos Contacto tipo REED Vmax. ≤ 24 V; I max ≤ 0,1A		l/imp.	100	100	100	100	100	1.000	1.000		
Salida de pulsos Sensor Inductivo V max. ≤24 V; I max. ≤ 20 mA		l/imp.	10	10	10	10	10	100	100		

DIMENSIONES

DN	(mm)	50	65	80	100	125	150	200
	"	2	2 1/2"	3	4	5	6	8
L	mm	200	200	225	250	250	300	350
Н	mm	209	218	249	258	271	316	345
h	Mm	132	132	154	154	154	183	183
D	mm	165	185	200	220	250	280	340

Conexiones normales ISO 16 (PN16). Opcionalmente ANSI 125

TELELECTURA

La esfera esta preparada para la fácil colocación de un emisor de impulsos con tecnología inductiva bidireccional y emisor de contacto tipo REED.

Si se desea acometer un proyecto de telelectura, se pueden instalar sobre el contador (versión Clip-On próximamente) módulos de radio con distintas tecnologías inalámbricas.

- Modulo MyWater para IoT con tecnología Sigfox.
- Modulo de radio ARROW con tecnología Wireless M-Bus 868 MHz bajo el estándar europeo UNE EN 13757-4
- Módulo de radio ARROW^{WAN} con tecnología LoRaWAN[™] 868 MHz
- Módulo de radio ARROW^{MAN} con tecnología WirelessM-Bus/LoRa[™] 169 MHz

Por la evolución constante de las tecnologías de comunicación, Conthidra está en permanente desarrollo de productos y sistemas por lo que se aconseja consultar las soluciones que se pueden instalar sobre nuestros contadores.

@ConthidraSL

Cohisa-Conthidra

