Реконструкция нежёстких моделей людей в реальном времени по RGB-D видео

Пономарева Наталья Александровна

научный руководитель: к. т. н., доц. Литвинов Ю. В.

консультант: Корчёмкин Д. А.

группа 16.Б09-мм СП6ГV

11 июня 2020 г.

Введение

Постановка задачи

Целью данной дипломной работы является разработка и реализация алгоритма, который восстанавливает физическую модель человека по RGB-D видеопотоку из любой начальной позы человека и эффективно хранит промежуточные состояния сцены. Для достижения этой цели были поставлены следующие задачи:

- произвести обзор существующих алгоритмов реконструкции людей по видеоизображениям,
- разработать алгоритм восстановления модели человека по видеоизображениям с эффективным хранением промежуточных состояний сцены,
- разработать архитектуру и выполнить реализацию алгоритма,
- выполнить тестирование решения на эталонных данных.

Обзор существующих методов

DynamicFusion

- вокселе-подобное представление мира
- не учитывается модель человека

-0.9								
-1	-0.9	-0.2	0.0	0.2	1	1	1	1
-1	-0.9	-0.3	0.)	0.1	0.9	1	1	1
			0.0					
-1	-0.9	-0.4	-0.1	0.1	0.8	0.9	1	1
-1	-0.7	-0.3	0,8	0.3	0.6	1	1	1
			οĮο					
-0.9	-0.7	-0.2	G O	0.2	0.8	0.9	1	1
-0.1	0.0	0.0	0.1	0.3	1	1	1	1
0.5	0.3	0.2	0.4	0.8	1	1	1	1

SurfelWarp

- сёрфеле-подобное представление мира
- не учитывается модель человека

DoubleFusion

- вокселе-подобное представление мира
- SMPL-модель
- только из А-позы

Предлагаемый алгоритм

Архитектура

SMPL модель

$$M(\beta,\theta) = W(T + B_s(\beta) + B_p(\theta), J(\beta), \theta, w)$$

Функция	Среднее время (мс)	σ (MC)	
lbs	1.04866	0.098197	
knn	8.1845	0.876185	
appended_knn	0.3283	0.361386	

Таблица: Сравнение производительности

Оптимизация параметров SMPL-модели

Реализация итерационного процесса по методу Гаусса-Ньютона:

$$\sum f_i^2(X_t) o min$$

$$X_t^{(k+1)} = X_t^{(k)} - \alpha^{(k)} (\mathbf{J}^{\mathrm{T}} \mathbf{J})^{-1} \mathbf{J}^{\mathrm{T}} f(X_t^{(k)})$$

	Среднее время (мс)	σ (MC)
Вычисление якобиана	1.137	0.144848
1 итерация	4.3015	0.130088
6 итераций	25.9985	0.560912

Таблица: Время оптимизации для k-ого кадра

Тестирование

Тестирование

Рис.: Сравнение производительности по памяти

Алгоритм	Время (мс)	
SurfelWarp	16	
DoubleSurfelFusion	41	
DoubleFusion	31	

Таблица: Сравнение производительности по времени

Результаты

- Произведен обзор следующих алгоритмов реконструкции людей по видео: DoubleFusion, SurfelWarp, DynamicFusion
- Разработан алгоритм, объединяющий идеи представления тела человека SMPL-моделью и эффективного хранения информации об окружающем мире при помощи сёрфелей
- Реализована модель человеческого тела с использованием технологий C++ и CUDA
- SMPL-модель внедрена в реализацию SurfelWarp
- Решение протестировано на датасете BodyFusionVicon