Cryptography and Network Security

Third Edition by William Stallings

Lecture slides by Lawrie Brown

Chapter 20 – Firewalls

The function of a strong position is to make the forces holding it practically unassailable

—On War, Carl Von Clausewitz

Introduction

- seen evolution of information systems
- now everyone want to be on the Internet
- and to interconnect networks
- has persistent security concerns
 - can't easily secure every system in org
- need "harm minimisation"
- a Firewall usually part of this

What is a Firewall?

- a choke point of control and monitoring
- interconnects networks with differing trust
- imposes restrictions on network services
 - only authorized traffic is allowed
- auditing and controlling access
 - can implement alarms for abnormal behavior
- is itself immune to penetration
- provides perimeter defence

Firewall Limitations

- cannot protect from attacks bypassing it
 - eg sneaker net, utility modems, trusted organisations, trusted services (eg SSL/SSH)
- cannot protect against internal threats
 - eg disgruntled employee
- cannot protect against transfer of all virus infected programs or files
 - because of huge range of O/S & file types

Firewalls – Packet Filters

(a) Packet-filtering router

Firewalls – Packet Filters

- simplest of components
- foundation of any firewall system
- examine each IP packet (no context) and permit or deny according to rules
- hence restrict access to services (ports)
- possible default policies
 - that not expressly permitted is prohibited
 - that not expressly prohibited is permitted

Firewalls – Packet Filters

Table 20.1 Packet-Filtering Examples

	action	ourhost	port	theirhost	port	comment
A	block	*	*	SPIGOT	8	we don't trust these people
	allow	OUR-GW	25	*	8	connection to our SMTP port

	action	ourhost	port	theirhost	port	comment
В	block	*	本	本	8	default

	action	ourhost	port	theirhost	port	comment
C	allow	*	冷	本	25	connection to their SMTP port

 \mathbf{E}

	action	src	port	dest	port	flags	comment
D	allow	{our hosts}	*	*	25		our packets to their SMTP port
	allow	*	25	*	8	ACK	their replies

	action	src	port	dest	port	flags	comment
	allow	{our hosts}	淖	淖	8		our outgoing calls
	allow	*	淖	淖	8	ACK	replies to our calls
[allow	*	本	*	>1024		traffic to nonservers

Attacks on Packet Filters

- IP address spoofing
 - fake source address to be trusted
 - add filters on router to block
- source routing attacks
 - attacker sets a route other than default
 - block source routed packets
- tiny fragment attacks
 - split header info over several tiny packets
 - either discard or reassemble before check

Firewalls – Stateful Packet Filters

- examine each IP packet in context
 - keeps tracks of client-server sessions
 - checks each packet validly belongs to one
- better able to detect bogus packets out of context

Firewalls - Application Level Gateway (or Proxy)

(b) Application-level gateway

Firewalls - Application Level Gateway (or Proxy)

- use an application specific gateway / proxy
- has full access to protocol
 - user requests service from proxy
 - proxy validates request as legal
 - then actions request and returns result to user
- need separate proxies for each service
 - some services naturally support proxying
 - others are more problematic
 - custom services generally not supported

Firewalls - Circuit Level Gateway

(c) Circuit-level gateway

Firewalls - Circuit Level Gateway

- relays two TCP connections
- imposes security by limiting which such connections are allowed
- once created usually relays traffic without examining contents
- typically used when trust internal users by allowing general outbound connections
- SOCKS commonly used for this

Bastion Host

- highly secure host system
- potentially exposed to "hostile" elements
- hence is secured to withstand this
- may support 2 or more net connections
- may be trusted to enforce trusted separation between network connections
- runs circuit / application level gateways
- or provides externally accessible services

Firewall Configurations

(a) Screened host firewall system (single-homed bastion host)

Firewall Configurations

(b) Screened host firewall system (dual-homed bastion host)

Firewall Configurations

(c) Screened-subnet firewall system

Access Control

- given system has identified a user
- determine what resources they can access
- general model is that of access matrix with
 - subject active entity (user, process)
 - object passive entity (file or resource)
 - access right way object can be accessed
- can decompose by
 - columns as access control lists
 - rows as capability tickets

Access Control Matrix

	Program1	•••	SegmentA	SegmentB
Process1	Read		Read	
	Execute		Write	
Process2				Read
•				
•				
•				

Trusted Computer Systems

- information security is increasingly important
- have varying degrees of sensitivity of information
 - cf military info classifications: confidential, secret etc
- subjects (people or programs) have varying rights of access to objects (information)
- want to consider ways of increasing confidence in systems to enforce these rights
- known as multilevel security
 - subjects have maximum & current security level
 - objects have a fixed security level classification

Bell LaPadula (BLP) Model

- one of the most famous security models
- implemented as mandatory policies on system
- has two key policies:
- no read up (simple security property)
 - a subject can only read/write an object if the current security level of the subject dominates (>=) the classification of the object
- no write down (*-property)
 - a subject can only append/write to an object if the current security level of the subject is dominated by (<=) the classification of the object

Reference Monitor

Evaluated Computer Systems

- governments can evaluate IT systems
- against a range of standards:
 - TCSEC, IPSEC and now Common Criteria
- define a number of "levels" of evaluation with increasingly stringent checking
- have published lists of evaluated products
 - though aimed at government/defense use
 - can be useful in industry also

Summary

- have considered:
 - firewalls
 - types of firewalls
 - configurations
 - access control
 - trusted systems