课程编号: HO172101 北京理工大学 2016-2017 学年第一学期

2016 级微积分 A(上)期末试题(A卷)

形纫	学 早	性夕
54.纵	すり	红石

(试卷共6页,十一个大题,解答题必须有过程,试卷后面空白纸撕下做草稿纸,试卷不得拆散,)

题号	_	1.1	11	四	五.	六	七	八	九	+	+ -	总分
得分												
签名												

一、填空(每小题4分,共20分)

1. 已知
$$\lim_{x \to \infty} (\frac{x+a}{x-a})^x = 9$$
 ,则 $a =$ ______.

3.
$$\int_{1}^{e^{2}} \frac{1}{x\sqrt{1+\ln x}} dx = \underline{\qquad}.$$

$$4. \int x \sin x dx = \underline{\qquad}.$$

5. 设
$$y' + 2xy = xe^{-x^2}$$
, 则 $y =$ ______

二、计算题(每小题5分,共20分)

1. 求极限
$$\lim_{x\to 0} \frac{x-\sin x}{x^3\cos x}$$
.

2. 设
$$e^y = \sin(x+y)$$
, 求 dy .

3. 计算
$$\int_0^2 |x^2 - x| dx$$
.

4. 求
$$\frac{dy}{dx} = (x+y)^2$$
 通解.

三、(6分) 已知
$$\lim_{x\to\infty} \left(\frac{2x^2-x}{x+1}-ax-b\right)=0$$
,试确定常数 a 和 b 的值.

四、(6分)(1)证明: 当 x>0时, $x>\sin x$; (2) 设 $0< x_1<\pi$, $x_{n+1}=\sin x_n (n=1.2.\cdots)$ 证明: $\{x_n\}$ 极限存在,并求此极限.

五、(6分) 求函数 $y = \frac{4(x+1)}{x^2} - 2$ 的单调区间和极值,凹凸区间和拐点,渐近线。

六、(6分) 求心形线 $\rho = 2(1 + \cos \theta)$ 的全长及所围成图形的面积。

七、(8分) 设星形线方程为:
$$\begin{cases} x = \cos^3 t \\ y = \sin^3 t \end{cases} (0 \le t \le 2\pi)$$

- (1) 求星形线所围图形绕x轴旋转一周所成的旋转体的体积;
- (2) 求当 $t = \frac{\pi}{4}$ 时,对应星形线上的点的曲率.

- 八、(8分)设一容器是由曲线 $y = x^3 (0 \le x \le 1)$ 绕 y 轴旋转一周所成,y 轴垂直地面.
 - (1) 以每秒3的速度向容器中注水,求容器中水高为h(0 < h < 1)时,水面上升速度
 - (2) 容器中注满水后,全部把水抽出至少需要做多少功。

九、(8分)设 f(x) 在 R 上连续,二阶可导,且对任意 x 有: $f(x) + \int_0^x t f(x-t) dt + \sin x = 0$

- (1) 求证: 对任意 x 有: $\int_0^x tf(x-t)dt = x \int_0^x f(t)dt \int_0^x tf(t)dt$
- (2) 试求出f(x)的表达式。

十、(6分) 已知 f(x) 是连续函数,且 $\lim_{x\to 1} \frac{f(x)}{(x-1)^2} = 5$ 。求 f''(1)。

十一、(6分) 已知 f(x) 在闭区间 [0,1] 上连续, 在开区间 (0,1) 内可导, 且 $f(1) = 2\int_0^{\frac{1}{2}} x f(x) dx$

证明:存在 $\xi \in (0,1)$,使 $\xi f'(\xi) + f(\xi) = 0$ 成立。