PROVA FINAL DE TERMODINÂMICA

Prof. Frederico W. Tavares

- 1) (30 pontos) Uma mistura de 40 mols/min, de n-butano (1), 30 mols/min de n-hexano(2), 20 mols/min de n-octano(3) e 40 mols/min de água escoa em uma tubulação a 50 °C. Sabendo-se que as pressões de vapor dos componentes são, respectivamente iguais a 5,2 atm; 0,55 atm e 0.078 atm, calcule **as composições das fases presentes** para as duas condições: a) **Tubulação a 2 atm**; b) **Tubulação a 4 atm**.
- 2) (20 Pontos) Dois líquidos (**A** e **B**), em quantidades e temperaturas diferentes, são misturados em um tanque. Colocam-se 100 mols de **A** ($T_A = 300K$) e 50 mols de **B** ($T_B = 500K$). Os líquidos são completamente miscíveis e a mistura se comporta como *mistura ideal*. Sabendo-se que as capacidades caloríficas dos líquidos puros, em cal/(gmol K), são: $\left(C_P^L\right)_A = 10$ e $\left(C_P^L\right)_B = 5 + 0.02T(K)$, calcule:
- a) A temperatura final e a variação de entropia total do sistema considerando o processo adiabático.
- b) O calor envolvido para que a temperatura final seja de 600K.
- 3) (20 pontos) Metanol pode ser manufaturado através da seguinte reação: nCO (g) + 2n H₂ (g) = nCH₃OH (g). Sabe-se que a 400 K e 1 atm e n=1, a constante de reação e o calor são: K = 1,52; $\Delta H^0 = -22600cal$. Para n=4 e sabendo-se que na saída do reator (em equilíbrio) as condições são de 5 atm e 500 K e que a composição de hidrogênio é de 40% (em mols), calcule K e as composições dos outros componentes.
- 4) (30 pontos) O ciclo de Rankine é usado para produzir 50000 Btu/min de taxa de trabalho útil.

Dados: Corrente 1: 400 °F e 20 psia; Corrente 2 (saída da turbina): 5 psia; Corrente 3 (saída do condensador): 132 °F.

Sabendo-se que a turbina trabalha com 70% de eficiência, calcular:

- a) As propriedades termodinâmicas das correntes.
- b) A taxa de calor envolvida na caldeira.

ABS PRESS		CAT	SAT	TEMPERATURE,	DEG F					
PSIA		SAT WATER	STEAM	200	250	300	350	400	450	500
(SAT TEMP)			202 64	202 E	422.4	452 3	482 1	511.9	541.7	571.5
(101.74)	Y H S	0.0161 69.73 69.73 0.1326	333.60 1044.1 1105.8 1.9781	392.5 1077.5 1150.2 2.0509	1094.7 1172.9 2.0841	452.3 1112.0 1195.7 2.1152	482.1 1129.5 1218.7 2.1445	1147.1 1241.8 2.1722	1164.9 1265.1 2.1985	571.5 1182.8 1288.6 2.2237
(162.24)	V U H S	0.0164 130.18 130.20 0.2349	73.532 1063.1 1131.1 1.8443	78.14 1076.3 1148.6 1.8716	84.21 1093.8 1171.7 1.9054	90.24 1111.3 1194.8 1.9369	96.25 1128.9 1218.0 1.9664	102.2 1146.7 1241.3 1.9943	108.2 1164.5 1264.7 2.0208	114.2 1182.6 1288.2 2.0460
10 (193.21)	V H S	0.0166 161.23 161.26 0.2836	38.420 1072.3 1143.3 1.7879	38.84 1074.7 1146.6 1.7928	41.93 1092.6 1170.2 1.8273	44.98 1110.4 1193.7 1.8593	48.02 1128.3 1217.1 1.8892	51.03 1146.1 1240.6 1.9173	54.04 1164.1 1264.1 1.9439	57.04 1182.2 1287.8 1.9692
14.696 (212.00)	V H S	0.0167 180.12 180.17 0.3121	26.799 1077.6 1150.5 1.7568		28.42 1091.5 1168.8 1.7833	30.52 1109.6 1192.6 1.8158	32.60 1127.6 1216.3 1.8460	34.67 1145.7 1239.9 1.8743	36.72 1163.7 1263.6 1.9010	38.77 1181.9 1287.4 1.9255
15 (213.03)	V H S	0.0167 181.16 181.21 0.3137	26.290 1077.9 1150.9 1.7552		27.84 1091.4 1168.7 1.7809	29.90 1109.5 1192.5 1.8134	31.94 1127.6 1216.2 1.8436	33.96 1145.6 1239.9 1.8720	35.98 1163.7 1263.6 1.8988	37.98 1181.9 1287.3 1.9242
20 (227.96)	V H S	0.0168 196.21 196.27 0.3358	20.087 1082.0 1156.3 1.7320		20.79 1090.2 1167.1 1.7475	22.36 1108.6 1191.4 1.7806	23.90 1126.9 1215.4 1.8111	25.43 1145.1 1239.2 1.8397	26.95 1163.3 1263.0 1.8666	28.46 1181.6 1286.9 1.8921

$K = \exp\left(\frac{-\Delta G^{0}}{RT}\right) = \prod_{i} \hat{a}_{i}^{v_{i}}$ $\left(\frac{\partial G/T}{\partial T}\right)_{P} = -\frac{H}{T^{2}}$	$R = 1,987 \frac{cal}{gmolK} $ e 144 Btu = 778 psia ft ³ $\Delta(H + \frac{v^2}{2} + gz) = Q + W_s$	$\begin{aligned} \hat{f}_i &= x_i \oint_i P = x_i \gamma_i f_i^0 \\ y_i P &= x_i \gamma_i P_i^{SAT} \qquad \hat{a}_i = \frac{\hat{f}_i}{f_i^0} \end{aligned}$
---	--	---