

Cours:

STRUCTURES,

POLYNÔMES ET FRACTIONS RATIONNELLES

LICENCE: MATHÉMATIQUES,

SEMESTRE I

A B Prof. Hicham Yamoul

ABCDE

Chapitre 2

Groupes

2.1 Groupes, premières notions

2.1.1 Définitions et Propriétés

Définition 2.1.1 Soit G un ensemble non vide muni d'une loi de composition interne : une application $g: G \times G \to G$, pour laquelle on note $\forall x, y \in G, g(x, y) = x.y$ ou $x * y, x \top y$, . . . ou simplement xy. On dit que (G, .), ou simplement G, est un **groupe** si :

```
(i) la loi . est associative, i.e., \forall x, y, z \in G, x.(y.z) = (x.y).z,
```

- (ii) la loi . possède un élément neutre, i.e., $\exists e \in G : \forall x \in G, x.e = e.x = x$,
- (iii) tout élément x de G possède un symétrique x', i.e., $\forall x \in G, \exists x' \in G : x.x' = x'.x = e$. On désigne ce symétrique par x^{-1} et on l'appelle inverse de x.

Si de plus la loi . est commutative, i.e., $\forall x, y \in Gx.y = y.x$, on dit que le groupe G est **commutatif** ou **abélien**. On note souvent dans ce cas la loi +, le neutre 0, le symétrique -x et on l'appelle opposé de x.

```
Exemple 2.1.1 1) (\mathbb{R}, +), (\mathbb{Q}, +), (\mathbb{Z}, +) sont des groupes abéliens.
2) (\mathbb{R}^*, .), (\mathbb{Q}^*, .), ainsi que (\mathbb{R}^*_+, .), (\mathbb{Q}^*_+, .) sont des groupes abéliens.
```

3) L'ensemble $\mathcal{B}(E)$ des bijections d'un ensemble E non vide muni de la composition des applications : $f \circ g : E \to E, x \mapsto f \circ g(x) = f(g(x))$ est un groupe d'élément neutre $Id_E : E \to E, x \mapsto x$ appelée identité de E. Ce groupe n'est pas commutatif dès que $Card(E) \geq 3$. En effet, soient x, y, z trois éléments de E deux à deux différents et soient f et g les deux applications définies par : f(x) = y, f(y) = z, f(z) = x, f(t) = t si t = x, t = y, t = z et g(x) = x, g(y) = z, g(z) = y et g(t) = t si t = x, t = y, t = z. Alors, f et g sont des bijections et $f \circ g(x) = f(g(x)) = f(x) = y$ et $g \circ f(x) = g(f(x)) = g(y) = z$. Ainsi $f \circ g = g \circ f$.

Proposition 2.1.1 Soit G un groupe noté multiplicativement. Alors,

- (i) L'élément neutre de G est unique, aussi le symétrique de tout élément a de G est unique.
 - (ii) $\forall a \in G, \forall m, n \in Z : a^m a^n = a^{m+n}$.
- (iii) tout élément a de G est régulier, plus précisément : $\forall a, b \in G$, l'équation ax = b (resp. xa = b) possède une unique solution qui est $x = a^{-1}b$ (resp. $x = ba^{-1}$).
- (iv) Si(G,*) et (G',\top) sont deux groupes, $G\times G'$ est muni d'une structure de groupe en posant : $\forall (a,b), (c,d) \in G\times G'$: $(a,b)\bullet (c,d)=(a*c,b\top d)$. $G\times G'$ muni de cette loi est appelé groupe produit (des groupes G et G').

Preuve : Montrons par exemple la propriété (i) : Si e et e' sont neutres, e' = ee' = e. De même, si x' et x'' sont des symétriques de x, alors x' = x'e = x'(xx'') = (x'x)x'' = ex'' = x''

2.1.2 Sous-groupes

Définition 2.1.2 Soit (G, .) un groupe et H une partie de G. On dit que H est un sousgroupe de G si :

- (i) H est stable, i.e., $\forall x, y \in H$, $x.y \in H$, autrement dit la restriction de la loi . à H est une loi de composition interne.
 - (ii) (H, .) est un groupe.

Proposition 2.1.2 Soit G un groupe et H une partie de G. Alors, on a l'équivalence des trois propositions suivantes :

- (i) H est un sous-groupe de G.
- (ii) $H \neq \emptyset, \forall x, y \in H, x.y \in H \text{ et } \forall x \in H, x^{-1} \in H.$
- (iii) $H \neq \emptyset$, et $\forall x, y \in H$, $x.y^{-1} \in H$

Preuve:

Par définition (i) entraine (ii) et (ii) implique aussi (iii) car $\forall x,y\in H,$ on a $y^{-1}\in H$ et $xy^{-1}\in H.$

Montrons que (iii) entraine (i) : considérons $x \in H$ $(H = \varnothing)$, alors $e = xx^{-1} \in H$. De même, $\forall x \in H : x^{-1} = ex^{-1} \in H$ et on a $\forall x, y \in H : xy = x((y)^{-1})^{-1} \in H$. L'associativité de . dans H découle de l'associativité de . dans G

Exemple 2.1.2 *I)* $(\mathbb{Z}, +)$ *est un sous-groupe de* $(\mathbb{Q}, +)$ *et* $(\mathbb{Q}, +)$ *est un sous-groupe de* $(\mathbb{R}, +)$.

- 2) $(\{-1,1\},.)$ est un sous-groupe de $(\mathbb{Q}^*,.)$ qui lui même est un sous-groupe de $(\mathbb{R}^*,.)$.
- 3) Si G est un groupe, alors $\{e\}$ et G sont des sous-groupes de G appelés sous-groupes triviaux de G.
- 4) Si H et K sont des sous groupes de G, alors $H \cap K$ est un sous-groupe de G. En général si I est un ensemble d'indices et $(H_i)_{i\in I}$ une famille de sous-groupes de G, alors $\bigcap_{i\in I} H_i$ est un sous-groupe de G.

- 5) Les sous-groupes de $\mathbb Z$ sont tous de la forme $n\mathbb Z$, avec $n\in\mathbb N$.
- 6) L'ensemble R(P) des rotations du plan P muni de la composition des applications est un sous-groupe de S(P). En effet, si r_{θ} (resp. $r_{\theta'}$) est une rotation d'angle θ (resp. θ'), alors $r_{\theta} \circ r_{\theta'} = r_{\theta+\theta'}$ et ainsi $r_{\theta} \circ r_{\theta}^{-1} = r_{\theta-\theta'} \in R(P)$...

Remarque 2.1.1 Si H et K sont deux sous-groupes de G, alors, en général, $H \cup K$ n'est pas un sous-groupe de G. Soient, par exemple, $H = \{(x,y) \in \mathbb{R}^2; x = 0\}$ et $K = \{(x,y) \in \mathbb{R}^2; y = 0\}$. Il est évident que H et K sont deux sous-groupes du groupe additif \mathbb{R}^2 . Cependant, $H \cup K$ n'est pas un sous-groupe de \mathbb{R}^2 car on a par exemple $(0,1)+(1,0)=(1,1) \notin H \cup K$.

Exercice 2.1.1 Soient H et K deux sous-groupes d'un groupe G. Montrer que $H \cup K$ est un sous-groupe de G si, et seulement si, $H \subseteq K$ ou $K \subseteq H$.

Exercice 2.1.2 Soient G un groupe noté multiplicativement, H et K deux sous-groupes de G. Montrer que $HK = \{x \in G; \exists h \in H, \exists k \in K; x = hk\}$ est un sous-groupe de G si, et seulement si, HK = KH.

2.1.3 Homomorphismes de groupes

Soient G et G' deux groupes et $f: G \to G$ une application de G vers G'.

Définition 2.1.3 On dit que f est un homomorphisme de groupes, ou morphisme de groupes, si pour tous x, y éléments de G: f(xy) = f(x)f(y). Si de plus f est bijective, f est appelé un isomorphisme de groupes. Si G = G', on dit que f est un endomorphisme de G et si en outre f est une bijection, on dit alors que f est un automorphisme de G.

Exemple 2.1.3 1) Soient G, G' deux groupes et e' l'élément neutre de G'. L'application $f: G \to G'$, $x \mapsto e'$ est un homomorphisme de groupes.

- 2) Soit G un groupe, $a \in G$. Alors l'application $\tau_a : G \to G$, $x \mapsto axa^{-1}$ est un automorphisme de G appelé automorphisme intérieur. On a $\tau_e = Id_G$ et si G est commutatif, $\tau_a = Id_G$, $\forall a \in G$.
- 3) Soit G un groupe noté multiplicativement. L'application $\varphi: \mathbb{Z} \to G, \ n \to a^n$ est un homomorphisme de groupes.
- 4) Soit $f: \mathbb{R} \to R(P)$, $\theta \mapsto r_{\theta}$. f est bien un homomorphisme de groupes puisque $r_{\theta} \circ r_{\theta'} = r_{\theta + \theta'}$.

Proposition 2.1.3 Soient G, G' deux groupes d'éléments neutres respectifs e et e' et f: $G \to G'$ un homomorphisme de groupes. Alors,

- i) $f(e) = e' \text{ et } \forall x \in G, \ f(x^{-1}) = (f(x))^{-1}.$
- ii) Pour tout sous-groupe H de G, l'ensemble $f(H) = \{f(x) \mid x \in H\}$ est un sous-groupe de G'. En particulier, Imf = f(G) est un sous-groupe de G'.

- iii) Pour tout sous-groupe H de G, $f^{-1}(H') = \{x \in G/f(x) \in H'\}$ est un sous-groupe de G. En particulier, $f^{-1}(\{e'\}) = \{x \in G \mid f(x) = e'\}$ est un sous-groupe de G noté ker f est appelé **noyau** de f.
 - iv) f est injective si, et seulement si, $\ker f = \{e\}$.
- v) Soient G, G', G'' trois groupes, $f: G \to G'$ et $g: G' \to G''$ deux homomorphismes de groupes. Alors $g \circ f$ est un homomorphisme de groupes.
- vi) Si f est un isomorphisme alors f^{-1} est aussi un isomorphisme de groupes. De sorte que si on note Aut(G) l'ensemble de tous les automorphismes de G, alors $(Aut(G), \circ)$ est un groupe.

Preuve. En exercice.