Wednesday 16 March

1. Let A, B, and C be sets. If $A \times C = B \times C$, then A = B.

Proof: Let A, B, and C be sets and assume $A \times C = B \times C$.

Let $a \in A$ and let $c \in C$. Thus, by definition $(a, c) \in A \times C$. Since by assumption $A \times C = B \times C$ and $(a, c) \in A \times C$, it follows that $(a, c) \in B \times C$. Since $(a, c) \in B \times C$, it follows that $a \in B$. Thus, we have shown that if $a \in A$, then $a \in B$. Thus, $A \subseteq B$.

If we switch A and B in the previous paragraph, we prove that $B \subseteq A$.

Since $A \subseteq B$ and $B \subseteq A$, it follows that A = B.

2. If $x, y \in \mathbb{R}$ and $x^3 < y^3$, then x < y.

Proof: Let $x, y \in \mathbb{R}$ and $x^3 < y^3$. Proceed by contradiction and assume that $x \geq y$. Using algebra, we obtain:

$$0 < y^3 - x^3 = (y - x)(x^2 + xy + y^2).$$
(1)

Since $x \ge y$, we know that $y - x \le 0$. If y - x = 0, then expression 1 gives:

$$0 < y^3 - x^3 = (y - x)(x^2 + xy + y^2) = 0 \cdot (x^2 + xy + y^2) = 0,$$
 (2)

a contradiction. On the other hand, if x-y < 0, then expression 1 implies that $x^2 + xy + y^2 < 0$ in order for the product to be positive. Thus, xy < 0. So y < 0 and x > 0. But this implies $y^3 < 0$ and $x^3 > 0$. But this contradicts the assumption that $y^3 < x^3$.

Since a contradiction is obtained in both cases, we can conclude that x < y.

3. For every $n \in \mathbb{N}$, $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$.

Proof: (by induction)

Base Case: If n = 1, then $\sum_{i=1}^{1} i = 1 = \frac{1(1+1)}{2}$. Thus, the proposition holds for n = 1.

Inductive Case: Let $k \in \mathbb{N}$. (So $k \geq 1$.) Suppose that $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$. We must show that

$$\sum_{i=1}^{k+1} i = \frac{(k+1)(k+2)}{2}.$$
 Observe

$$\sum_{i=1}^{k+1} i = 1 + 2 + 3 + \dots + (k-1) + k + (k+1)$$
 expanding summation notation
$$= (1 + 2 + 3 + \dots + (k-1) + k) + (k+1)$$
 associativity of addition
$$= \left(\sum_{i=1}^{k} i\right) + (k+1)$$
 contracting summation notation
$$= \left(\frac{k(k+1)}{2}\right) + (k+1)$$
 contracting summation notation
$$= \left(\frac{k(k+1)}{2}\right) + \frac{2(k+1)}{2}$$
 algebra
$$= \left(\frac{(k+2)(k+1)}{2}\right),$$

which is what we wanted to show.

If follows by induction that for every $n \in \mathbb{N}$, $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$.