CLAIMS

- 1. An optically active compound having an unsaturated bond at an optically active binding site, wherein the unsaturated bond and a fluorescent substituent or a substituent capable of imparting fluorescence are united in a conjugated manner.
- 2. The optically active compound according to claim 1, wherein the compound is represented by the formula (I):

$$\begin{array}{c|c}
R^4 & R^5 \\
\hline
R^6 & \\
\hline
R^1 & \\
\hline
R^1 & \\
\hline
R^2 & \\
\hline
R^7 & \\
\hline
R^8 & R^9
\end{array}$$
(1)

10

15

5

wherein R^1 is an aromatic group or an aromatic ethynyl group; R^2 is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms; each of R^3 , R^4 , R^5 , R^6 , R^7 , R^8 , R^9 and R^{10} is independently a hydrogen atom, or an alkyl group having 1 to 30 carbon atoms, a cyclic alkyl group having 3 to 30 carbon atoms or an aryl group having 6 to 30 carbon atoms, each of which may have a substituent, with proviso that each of R^4 and R^5 , and R^8 and R^9 may be bonded to form an

alkylene group having 2 to 60 carbon atoms; and each of R¹¹ and R¹² is independently a hydrogen atom or an alkyl group having 1 to 15 carbon atoms which may have a hetero-atom, with proviso that R¹¹ and R¹² may be bonded to form an alkylene group having 2 to 30 carbon atoms which may have a heteroatom.

5

3. A chiral sensor comprising the optically active compound as defined in claim 1 or 2.