

II.1 A mathematical note

- Vectors and tensors
- Algebra and calculus

Lecture Notes: 2.1

Chap 2 By E. Amani

II.2 The continuity equation

Assuming continuum:

$$\frac{\partial \rho}{\partial t} + \vec{V}. \left(\rho \vec{U}\right) = 0 \qquad (2.1)$$

$$\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x_i} (\rho U_j) = 0 \qquad (2.2)$$

+ For incompressible flows (solenoidal or divergence-free velocity field)

$$\vec{\nabla}.\,\vec{U} = 0 \qquad (2.3)$$

Chap 2

By E. Amani

II.3 The momentum equation

Assuming continuum and in an inertial frame:

$$\rho \frac{D\vec{U}}{Dt} = -\vec{\nabla}P + \vec{\nabla}.\underline{\tau} + \rho\vec{g} \quad (2.8)$$

Pressure Viscous stress tensor

Conservative advection term (using continuity):

$$\rho \frac{D\vec{U}}{Dt} = \frac{\partial}{\partial t} (\rho \vec{U}) + \vec{\nabla} \cdot (\rho \vec{U} \vec{U}) \qquad (2.9)$$

+ For a Newtonian fluid (Stokes law):

$$\underline{\tau} = 2\mu \underline{S} - \frac{2}{3}\mu(\vec{\nabla}.\vec{U})\underline{I} \qquad (2.10)$$

$$\underline{\tau} = 2\mu \underline{S} - \frac{2}{3}\mu(\vec{\nabla}.\vec{U})\underline{I} \quad (2.10)$$

$$\underline{S} = \frac{1}{2}\Big[(\vec{\nabla}\vec{U})^T + \vec{\nabla}\vec{U} \Big] \quad (2.11) \quad \underline{\Omega} = \frac{1}{2}\Big[(\vec{\nabla}\vec{U})^T - \vec{\nabla}\vec{U} \Big] \quad (2.12)$$
Symmetric part of $\vec{\nabla}\vec{U}$ or $(\vec{\nabla}\vec{U})^T$ Antisymmetric part of $(\vec{\nabla}\vec{U})^T$
Chap 2 : Rate-of-strain tensor : Rate-of-rotation tensor By E. Amani

II.3 The momentum equation

• Exercise:

$$(\vec{\nabla}\vec{U})^T = \underline{S} + \underline{\Omega}$$
 (2.13) : Pope's definition of grad (\vec{U})
 $\vec{\nabla}\vec{U} = \underline{S} - \underline{\Omega}$ (2.14) : Present definition of grad (\vec{U})

• Exercise: For incompressible, Newtonian flows with constant properties ($\nu = \mu/\rho = \text{cte}$):

$$\frac{D\vec{U}}{Dt} = -\frac{1}{\rho} \vec{\nabla} p + \nu \vec{\nabla}^2 \vec{U} \qquad (2.15)$$
Modified Pressure: $p = P + \rho \psi$, $\vec{g} = \vec{V} \psi$

Chap 2 By E. Amani

II.4 The mechanical energy equation

Lecture Notes: 2.4

Chap 2 By E. Amani

II.5 Pressure Poisson's equation

• Exercise: For incompressible, Newtonian flows with constant properties ($\nu = \mu/\rho = \text{cte}$):

$$\vec{\nabla}^2 p = -\rho \vec{\nabla} \vec{U} : \vec{\nabla} \vec{U} = -\rho \vec{\nabla} . (\vec{\nabla} . \vec{U} \vec{U})$$

$$\frac{\partial^2 p}{\partial x_j \partial x_j} = -\rho \frac{\partial U_j}{\partial x_i} \frac{\partial U_i}{\partial x_j}$$
(2.21)

Chap 2

• The Taylor - Benard experiment

By E. Amani

Chap 2 By E. Amani

II.6 The non-linearity and chaos

- Chaos:
 - Acute sensitivity of a system to initial condition, boundary condition, or state
 - ✓ Cause: non-liner terms in governing equations

Chap 2 By E. Amani

II.6 The non-linearity and chaos

- Turbulence:
 - ✓ A minute unpredictable perturbation in initial condition, boundary condition, or state produces a large change in the subsequent motion.
 - ✓ Fully chaotic and unpredictable

Chap 2 By E. Amani

II.6 The non-linearity and chaos

• The Taylor - Benard experiment

Chap 2

By E. Amani

II.6 The non-linearity and chaos

- Chaos:
 - Acute sensitivity of a system to initial condition, boundary condition, or state
 - ✓ Cause: non-liner terms in governing equations
- Turbulence:
 - ✓ A minute unpredictable perturbation in initial condition, boundary condition, or state produces a large change in the subsequent motion.
 - ✓ Fully chaotic and unpredictable

Chap 2

By E. Amani

Examples of chaotic behavior

Lorenz equation

• Exercise, see section 1.3 [1]

Logistic equation

· Exercise, search Wikipedia: Logistic map

Chap 2

Chap 2

By E. Amani

The statistical approach

- Realizations and mean
 - Stationary

The statistical approach

- Averaging types
 - > Mathematical expectation

$$\langle U(\vec{x},t)\rangle = \lim_{N\to\infty} \frac{1}{N} \sum_{n=1}^{N} U^{(n)}(\vec{x},t)$$
 (2.24)

Number of experiments

Chap 2

By E. Amani

The statistical approach

Averaging types

Average	Definition	Relation to $\langle U \rangle$
Ensemble average	$\langle U(\vec{x},t)\rangle_N = \frac{1}{N} \sum_{n=1}^N U^{(n)}(\vec{x},t)$	$\lim_{N\to\infty}\langle U\rangle_N=\langle U\rangle$
Time average	$\overline{U} = \langle U(\vec{x},t) \rangle_T = \frac{1}{T} \int_t^{t+T} U(\vec{x},t') dt'$	For stationary flows: $\lim_{T \to \infty} \langle U \rangle_T = \langle U \rangle$
Spatial average	$\langle U(\vec{x},t)\rangle_L = \frac{1}{L^3} \iiint U(\vec{x}',t) dx_1' dx_2' dx_3'$	For homogeneous flows: $\lim_{L\to\infty} \langle U \rangle_L = \langle U \rangle$
p 2		By E. A

Hands-on practice

- HW#1:
 - ✓ Fluent installation and preliminary practice

Chap 2 By E. Amani

