Continuous Evaluation: 70%, Viva: 30%

Assignment 4:

- i. Download and install TensorFlow from https://www.tensorflow.org/install/install_sources or using command sudo pip install tensorflow (Alternatively the Keras library can be used).
- ii. Download the MNIST dataset (contains class labels for digits 0 9), using the command:

```
import tensorflow as tf
data = tf.contrib.learn.datasets.mnist.load_mnist()
or
from keras.datasets import mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
```

iii. Reduce the training size by 1/10 if computation resources are limited. Define Radial Basis Function (RBF) as

```
def RBF(x, c, s):
return np.exp(-np.sum(x - c) ** 2, axis = 1)/(2 * s ** 2))
```

where x is the actual value, c is center (assumed as mean) and s is the standard deviation.

Converted 28×28 image into 32×32 using rbf and store the new dataset with the labels. Split the dataset as 80% training and 10% validation and 10% test.

- iv. Now run the fully connected network after flattening the data by changing the number of hyper-parameters:
 - a. Use Gradient Descent Optimizer (learning rate = 0.001) and Squared Error Loss
 - b. Use Adam Optimizer (learning rate = 0.001) and Categorical Cross Entropy Loss

Hidden Layers	Activation Function	Hidden Neurons
1	Sigmoid	[16]
2	Sigmoid	[16, 32]
3	Sigmoid	[16, 32, 64]

Try all the possible combinations.

v. For the following few tasks, use Adam optimizer (learning rate = 0.001) and Categorical Cross Entropy Loss. Run the network by changing the activation function hyper-parameter:

Hidden Layers	Activation Function	Hidden Neurons
3	Sigmoid	[16, 32, 64]
3	Tanh	[16, 32, 64]
3	ReLU	[16, 32, 64]

vi. Run the network by changing the number of Dropout hyper-parameters:

Hidden Layers	Activation	Hidden Neurons	Dropout
	Function		
3	ReLU	[16, 32, 64]	0.9
3	ReLU	[16, 32, 64]	0.75
3	ReLU	[16, 32, 64]	0.5
3	ReLU	[16, 32, 64]	0.25
3	ReLU	[16, 32, 64]	0.10

- vii. Plot the graph for loss vs epoch and accuracy (train and validation accuracy) vs epoch for all the above cases. Point out the logic in the report.
- viii. With the best set hyper-parameters from above run vary the Adam Optimizer learning rate {0.01, 0.001, 0.005, 0.0001, 0.0005}. Print the time to achieve the best validation accuracy (as reported before from all runs) from all these five run.
- ix. Create five images (of size 28×28) containing a digit of your own handwriting and test whether your trained classifier can predict it or not.

Submit a report with the result.