

Parametric Distributions

Basic building blocks: $p(\mathbf{x}|\boldsymbol{\theta})$

Need to determine $\boldsymbol{\theta}$ given $\{\mathbf{x}_1,\ldots,\mathbf{x}_N\}$

Representation: θ^* or $p(\theta)$?

Recall Curve Fitting

$$p(t|x, \mathbf{x}, \mathbf{t}) = \int p(t|x, \mathbf{w}) p(\mathbf{w}|\mathbf{x}, \mathbf{t}) d\mathbf{w}$$

Binary Variables (1)

Coin flipping: heads=1, tails=0

$$p(x=1|\mu) = \mu$$

Bernoulli Distribution

$$\operatorname{Bern}(x|\mu) = \mu^{x} (1-\mu)^{1-x}$$

$$\mathbb{E}[x] = \mu$$

$$\operatorname{var}[x] = \mu(1-\mu)$$

Binary Variables (2)

N coin flips:

$$p(m \text{ heads}|N,\mu)$$

Binomial Distribution

$$\operatorname{Bin}(m|N,\mu) = \binom{N}{m} \mu^m (1-\mu)^{N-m}$$

$$\mathbb{E}[m] \equiv \sum_{m=0}^{N} m \operatorname{Bin}(m|N,\mu) = N\mu$$

$$\operatorname{var}[m] \equiv \sum_{m=0}^{N} (m - \mathbb{E}[m])^2 \operatorname{Bin}(m|N,\mu) = N\mu (1-\mu)$$

Binomial Distribution

Parameter Estimation (1)

ML for Bernoulli

Given: $\mathcal{D} = \{x_1, \dots, x_N\}, m \text{ heads } (1), N-m \text{ tails } (0)$

$$p(\mathcal{D}|\mu) = \prod_{n=1}^{N} p(x_n|\mu) = \prod_{n=1}^{N} \mu^{x_n} (1-\mu)^{1-x_n}$$

$$\ln p(\mathcal{D}|\mu) = \sum_{n=1}^{N} \ln p(x_n|\mu) = \sum_{n=1}^{N} \{x_n \ln \mu + (1 - x_n) \ln(1 - \mu)\}$$

$$\mu_{\rm ML} = \frac{1}{N} \sum_{n=1}^{N} x_n = \frac{m}{N}$$

Parameter Estimation (2)

Example:
$$\mathcal{D} = \{1, 1, 1\} \rightarrow \mu_{\text{ML}} = \frac{3}{3} = 1$$

Prediction: all future tosses will land heads up

Overfitting to \mathcal{D}

Beta Distribution

Distribution over $\mu \in [0, 1]$.

Beta
$$(\mu|a,b)$$
 = $\frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)}\mu^{a-1}(1-\mu)^{b-1}$
 $\mathbb{E}[\mu]$ = $\frac{a}{a+b}$
 $\operatorname{var}[\mu]$ = $\frac{ab}{(a+b)^2(a+b+1)}$

Bayesian Bernoulli

$$p(\mu|a_0, b_0, \mathcal{D}) \propto p(\mathcal{D}|\mu)p(\mu|a_0, b_0)$$

$$= \left(\prod_{n=1}^N \mu^{x_n} (1-\mu)^{1-x_n}\right) \operatorname{Beta}(\mu|a_0, b_0)$$

$$\propto \mu^{m+a_0-1} (1-\mu)^{(N-m)+b_0-1}$$

$$\propto \operatorname{Beta}(\mu|a_N, b_N)$$

$$a_N = a_0 + m \qquad b_N = b_0 + (N-m)$$

The Beta distribution provides the *conjugate* prior for the Bernoulli distribution.

Beta Distribution

Prior · Likelihood = Posterior

Properties of the Posterior

As the size of the data set, N, increase

$$a_N \rightarrow m$$
 $b_N \rightarrow N-m$

$$\mathbb{E}[\mu] = \frac{a_N}{a_N + b_N} \rightarrow \frac{m}{N} = \mu_{\text{ML}}$$

$$\text{var}[\mu] = \frac{a_N b_N}{(a_N + b_N)^2 (a_N + b_N + 1)} \rightarrow 0$$

Prediction under the Posterior

What is the probability that the next coin toss will land heads up?

$$p(x = 1|a_0, b_0, \mathcal{D}) = \int_0^1 p(x = 1|\mu) p(\mu|a_0, b_0, \mathcal{D}) d\mu$$
$$= \int_0^1 \mu p(\mu|a_0, b_0, \mathcal{D}) d\mu$$
$$= \mathbb{E}[\mu|a_0, b_0, \mathcal{D}] = \frac{a_N}{b_N}$$

The Gaussian Distribution

$$\mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{D/2}} \frac{1}{|\boldsymbol{\Sigma}|^{1/2}} \exp\left\{-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^{\mathrm{T}} \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right\}$$

Central Limit Theorem

The distribution of the sum of N i.i.d. random variables becomes increasingly Gaussian as N grows.

Example: N uniform [0,1] random variables.

Bayes' Theorem for Gaussian Variables

Given

$$p(\mathbf{x}) = \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Lambda}^{-1})$$

 $p(\mathbf{y}|\mathbf{x}) = \mathcal{N}(\mathbf{y}|\mathbf{A}\mathbf{x} + \mathbf{b}, \mathbf{L}^{-1})$

we have

$$p(\mathbf{y}) = \mathcal{N}(\mathbf{y}|\mathbf{A}\boldsymbol{\mu} + \mathbf{b}, \mathbf{L}^{-1} + \mathbf{A}\boldsymbol{\Lambda}^{-1}\mathbf{A}^{\mathrm{T}})$$
$$p(\mathbf{x}|\mathbf{y}) = \mathcal{N}(\mathbf{x}|\mathbf{\Sigma}\{\mathbf{A}^{\mathrm{T}}\mathbf{L}(\mathbf{y} - \mathbf{b}) + \boldsymbol{\Lambda}\boldsymbol{\mu}\}, \boldsymbol{\Sigma})$$

where

$$\Sigma = (\mathbf{\Lambda} + \mathbf{A}^{\mathrm{T}} \mathbf{L} \mathbf{A})^{-1}$$

Maximum Likelihood for the Gaussian (1)

Given i.i.d. data $\mathbf{X} = (\mathbf{x}_1, \dots, \mathbf{x}_N)^T$, the log likelihood function is given by

$$\ln p(\mathbf{X}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) = -\frac{ND}{2} \ln(2\pi) - \frac{N}{2} \ln|\boldsymbol{\Sigma}| - \frac{1}{2} \sum_{n=1}^{N} (\mathbf{x}_n - \boldsymbol{\mu})^{\mathrm{T}} \boldsymbol{\Sigma}^{-1} (\mathbf{x}_n - \boldsymbol{\mu})$$

Sufficient statistics

$$\sum_{n=1}^{N} \mathbf{x}_n \qquad \qquad \sum_{n=1}^{N} \mathbf{x}_n \mathbf{x}_n^{\mathrm{T}}$$

Maximum Likelihood for the Gaussian (2)

Set the derivative of the log likelihood function to zero,

$$\frac{\partial}{\partial \boldsymbol{\mu}} \ln p(\mathbf{X}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \sum_{n=1}^{N} \boldsymbol{\Sigma}^{-1} (\mathbf{x}_n - \boldsymbol{\mu}) = 0$$

and solve to obtain

$$\mu_{\mathrm{ML}} = rac{1}{N} \sum_{n=1}^{N} \mathbf{x}_n.$$

Similarly

$$\mathbf{\Sigma}_{\mathrm{ML}} = rac{1}{N} \sum_{n=1}^{N} (\mathbf{x}_n - \boldsymbol{\mu}_{\mathrm{ML}}) (\mathbf{x}_n - \boldsymbol{\mu}_{\mathrm{ML}})^{\mathrm{T}}.$$

Maximum Likelihood for the Gaussian (3)

Under the true distribution

$$egin{array}{lll} \mathbb{E}[oldsymbol{\mu}_{ ext{ML}}] &=& oldsymbol{\mu} \ \mathbb{E}[oldsymbol{\Sigma}_{ ext{ML}}] &=& rac{N-1}{N}oldsymbol{\Sigma}. \end{array}$$

Hence define

$$\widetilde{\Sigma} = \frac{1}{N-1} \sum_{n=1}^{N} (\mathbf{x}_n - \boldsymbol{\mu}_{\mathrm{ML}}) (\mathbf{x}_n - \boldsymbol{\mu}_{\mathrm{ML}})^{\mathrm{T}}.$$

Sequential Estimation

Contribution of the $N^{ m th}$ data point, ${f x}_N$

$$\begin{array}{lll} \boldsymbol{\mu}_{\mathrm{ML}}^{(N)} & = & \frac{1}{N} \sum_{n=1}^{N} \mathbf{x}_{n} \\ & = & \frac{1}{N} \mathbf{x}_{N} + \frac{1}{N} \sum_{n=1}^{N-1} \mathbf{x}_{n} \\ & = & \frac{1}{N} \mathbf{x}_{N} + \frac{N-1}{N} \boldsymbol{\mu}_{\mathrm{ML}}^{(N-1)} \\ & = & \boldsymbol{\mu}_{\mathrm{ML}}^{(N-1)} + \frac{1}{N} (\mathbf{x}_{N} - \boldsymbol{\mu}_{\mathrm{ML}}^{(N-1)}) \\ & & \stackrel{>}{\longrightarrow} \text{correction given } \mathbf{x}_{N} \\ & & \stackrel{>}{\longrightarrow} \text{old estimate} \end{array}$$

Bayesian Inference for the Gaussian (1)

Assume σ^2 is known. Given i.i.d. data $\mathbf{x} = \{x_1, \dots, x_N\}$, the likelihood function for μ is given by

$$p(\mathbf{x}|\mu) = \prod_{n=1}^{N} p(x_n|\mu) = \frac{1}{(2\pi\sigma^2)^{N/2}} \exp\left\{-\frac{1}{2\sigma^2} \sum_{n=1}^{N} (x_n - \mu)^2\right\}.$$

This has a Gaussian shape as a function of μ (but it is *not* a distribution over μ).

Bayesian Inference for the Gaussian (2)

Combined with a Gaussian prior over μ ,

$$p(\mu) = \mathcal{N}\left(\mu|\mu_0, \sigma_0^2\right).$$

this gives the posterior

$$p(\mu|\mathbf{x}) \propto p(\mathbf{x}|\mu)p(\mu).$$

Completing the square over μ , we see that

$$p(\mu|\mathbf{x}) = \mathcal{N}\left(\mu|\mu_N, \sigma_N^2\right)$$

Bayesian Inference for the Gaussian (3)

Example: $p(\mu|\mathbf{x}) = \mathcal{N}\left(\mu|\mu_N, \sigma_N^2\right)$ for $N=0,\ 1,\ 2$ and 10.

Bayesian Inference for the Gaussian (7)

The Gamma distribution

$$\operatorname{Gam}(\lambda|a,b) = \frac{1}{\Gamma(a)} b^a \lambda^{a-1} \exp(-b\lambda)$$

$$\mathbb{E}[\lambda] = \frac{a}{b}$$

$$\operatorname{var}[\lambda] = \frac{a}{b^2}$$

$$p(x|\mu, a, b) = \int_0^\infty \mathcal{N}(x|\mu, \tau^{-1}) \operatorname{Gam}(\tau|a, b) d\tau$$

$$= \int_0^\infty \mathcal{N}(x|\mu, (\eta\lambda)^{-1}) \operatorname{Gam}(\eta|\nu/2, \nu/2) d\eta$$

$$= \frac{\Gamma(\nu/2 + 1/2)}{\Gamma(\nu/2)} \left(\frac{\lambda}{\pi\nu}\right)^{1/2} \left[1 + \frac{\lambda(x - \mu)^2}{\nu}\right]^{-\nu/2 - 1/2}$$

$$= \operatorname{St}(x|\mu, \lambda, \nu)$$

where

$$\lambda = a/b$$
 $\eta = \tau b/a$ $\nu = 2a$.

Infinite mixture of Gaussians. -----

Robustness to outliers: Gaussian vs t-distribution.

The *D*-variate case:

$$\operatorname{St}(\mathbf{x}|\boldsymbol{\mu},\boldsymbol{\Lambda},\nu) = \int_0^\infty \mathcal{N}(\mathbf{x}|\boldsymbol{\mu},(\eta\boldsymbol{\Lambda})^{-1})\operatorname{Gam}(\eta|\nu/2,\nu/2)\,\mathrm{d}\eta$$
$$= \frac{\Gamma(D/2+\nu/2)}{\Gamma(\nu/2)} \frac{|\boldsymbol{\Lambda}|^{1/2}}{(\pi\nu)^{D/2}} \left[1 + \frac{\Delta^2}{\nu}\right]^{-D/2-\nu/2}$$

where $\Delta^2 = (\mathbf{x} - \boldsymbol{\mu})^T \boldsymbol{\Lambda} (\mathbf{x} - \boldsymbol{\mu})$.

Properties:
$$\mathbb{E}[\mathbf{x}] = \boldsymbol{\mu}$$
, if $\nu > 1$ $\operatorname{cov}[\mathbf{x}] = \frac{\nu}{(\nu - 2)} \boldsymbol{\Lambda}^{-1}$, if $\nu > 2$ $\operatorname{mode}[\mathbf{x}] = \boldsymbol{\mu}$

Mixtures of Gaussians (1)

Old Faithful data set

Mixtures of Gaussians (2)

Combine simple models into a complex model:

$$p(\mathbf{x}) = \sum_{k=1}^K \pi_k \mathcal{N}(\mathbf{x}|oldsymbol{\mu}_k, oldsymbol{\Sigma}_k)$$
 Component Mixing coefficient

$$\forall k : \pi_k \geqslant 0 \qquad \sum_{k=1}^K \pi_k = 1$$

Mixtures of Gaussians (3)

Nonparametric Methods (1)

Parametric distribution models are restricted to specific forms, which may not always be suitable; for example, consider modelling a multimodal distribution with a single, unimodal model.

Nonparametric approaches make few assumptions about the overall shape of the distribution being modelled.

Nonparametric Methods (2)

Histogram methods partition the data space into distinct bins with widths Δ_i and count the number of observations, n_i , in each bin.

$$p_i = \frac{n_i}{N\Delta_i}$$

- Often, the same width is used for all bins, $\Delta_i = \Delta$.
- Δ acts as a smoothing parameter.

•In a D-dimensional space, using M bins in each dimension will require M^D bins!

Nonparametric Methods (3)

Assume observations drawn from a density $p(\mathbf{x})$ and consider a small region \mathcal{R} containing \mathbf{x} such that

$$P = \int_{\mathcal{R}} p(\mathbf{x}) \, \mathrm{d}\mathbf{x}.$$

The probability that K out of N observations lie inside \mathcal{R} is $\mathrm{Bin}(K|N,P)$ and if N is large

If the volume of \mathcal{R} , V, is sufficiently small, $p(\mathbf{x})$ is approximately constant over \mathcal{R} and

$$P \simeq p(\mathbf{x})V$$

Thus

$$p(\mathbf{x}) = \frac{K}{NV}.$$

V small, yet K>0, therefore N large?

Nonparametric Methods (4)

Kernel Density Estimation: fix V, estimate K from the data. Let \mathcal{R} be a hypercube centred on \mathbf{x} and define the kernel function (Parzen window)

$$k((\mathbf{x} - \mathbf{x}_n)/h) = \begin{cases} 1, & |(x_i - x_{ni})/h| \leq 1/2, & i = 1, \dots, D, \\ 0, & \text{otherwise.} \end{cases}$$

It follows that

$$K = \sum_{n=1}^{N} k\left(\frac{\mathbf{x} - \mathbf{x}_n}{h}\right) \text{ and hence } p(\mathbf{x}) = \frac{1}{N} \sum_{n=1}^{N} \frac{1}{h^D} k\left(\frac{\mathbf{x} - \mathbf{x}_n}{h}\right).$$

Nonparametric Methods (5)

To avoid discontinuities in p(x), use a smooth kernel, e.g. a Gaussian

$$p(\mathbf{x}) = \frac{1}{N} \sum_{n=1}^{N} \frac{1}{(2\pi h^2)^{D/2}}$$
$$\exp\left\{-\frac{\|\mathbf{x} - \mathbf{x}_n\|^2}{2h^2}\right\}$$

Any kernel such that

$$k(\mathbf{u}) \geqslant 0,$$

$$\int k(\mathbf{u}) \, d\mathbf{u} = 1$$

will work.

Nonparametric Methods (6)

Nearest Neighbour Density Estimation: fix K, estimate V from the data. Consider a hypersphere centred on $\mathbf x$ and let it grow to a volume, V^* , that includes K of the given N data points. Then

$$p(\mathbf{x}) \simeq \frac{K}{NV^{\star}}.$$

Nonparametric Methods (7)

Nonparametric models (not histograms) requires storing and computing with the entire data set.

Parametric models, once fitted, are much more efficient in terms of storage and computation.

K-Nearest-Neighbours for Classification (1)

Given a data set with N_k data points from class \mathcal{C}_k and $\sum_k N_k = N$, we have

$$p(\mathbf{x}) = \frac{K}{NV}$$

and correspondingly

$$p(\mathbf{x}|\mathcal{C}_k) = \frac{K_k}{N_k V}.$$

Since $p(C_k) = N_k / N$ Bayes' theorem gives

$$p(C_k|\mathbf{x}) = \frac{p(\mathbf{x}|C_k)p(C_k)}{p(\mathbf{x})} = \frac{K_k}{K}.$$

K-Nearest-Neighbours for Classification (2)

K-Nearest-Neighbours for Classification (3)

- K acts as a smother
- For $N \to \infty$, the error rate of the 1-nearest-neighbour classifier is never more than twice the optimal error (obtained from the true conditional class distributions).