Discrette math

28 жовтня 2022 р.

Зміст

1	Вве	дення в дискретну математику	3
	1.1	Метод математичної індукції.	3
	1.2	Теорія множин	4
	1.3	Алгебраїчні властивості операцій над множинами	Ę

Розділ 1

Введення в дискретну математику

1.1 Метод математичної індукції.

Аксіоматика Парно:

- 1) $1 \in \mathbb{N}$
- 2) $a \in \mathbb{N} \Rightarrow S(a) \in \mathbb{N}$
- 3) $\nexists a \in \mathbb{N} : S(a) = 1$
- 4) $S(a) = C \wedge S(b) = c \Leftrightarrow a = b$
- 5) $P(1) \land P(k) \Rightarrow P(S(k)) \Rightarrow \forall n \in \mathbb{N} : P(n)$

де S — функція наступного числа (S(x) = x + 1), Р — предикат, P(1) — база індукції, P(S(k)) — перехід.

Метод математичної індукції:

1) Перевірии, що тверждення виконується для 1. 2) Припустити, що твердження виконується для деякого k, довести, що воно виконується для k+1.

Приклад 1.1.

- 1. $n^3 + 5n : 6$ для будь якгого n.
 - (a) $n = 1, 1^3 + 5 = 6 \vdots 6$.
 - (б) Нехай вірно для k, тоді k^3+5k і 6. Доведемо, що $(k+1)^3+5(k+1)$ і 6. • $k^3+3k^2+3k+1+5k+5=(k^3+5k)+(1+5)+3k(k+1)$, де (k^3+5k) і 6, (1+5) і 6, 3k(k+1) і 6
- 2. Довести, що $1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$.
 - (a) $n = 1, 1^2 = \frac{1(1+1)(2\cdot 1+1)}{6}$.
 - (б) Нехай вірно для k, тоді $1^2+2^2+3^2+\ldots+k^2=\frac{k(k+1)(2k+1)}{6}$. Доведемо, для (k+1). \blacktriangleright $1^2+2^2+3^2+\ldots+(k+1)^2=\frac{(k+1)((k+1)+1)(2(k+1)+1)}{6}=\frac{(k+1)(k+2)(2k+3)}{6}$ $\frac{k(k+1)(2k+1)}{6}+(k+1)=\frac{(k+1)(k+2)(2k+3)}{6}$

$$(k+1)(k+2)(2k+3) + 6k^2 + 12k + 6 = (k^2 + 3k + 2)(2k+3) = (k^2 + k)(2k+1) + 6k^2 + 12k + 6 = 2k^3 + 3k^2 + 6k^2 + 9k + 4k + 6 = 2k^3 + k^2 + 2k^2 + k + 6k^2 + 12k + 6$$

- 3. Довести, що для довільного $n \geqslant 32^n > 2n + 1$.
 - (a) $n = 3, 2^3 > 7$.
 - (б) Нехай вірно для k, тоді $2^k>2k+1$. Доведемо, що $2^{k+1}>2(k+1)+1$. $\blacktriangleright 2^{k+1}+1=2k+3=(2k+1)+2$ $2^k+2>(2k+1)+2, 2^{k+1}>2^k+2, 2^k>2, k\geqslant 3$

1.2 Теорія множин

Означення 1.1. Множина (set) — це певна сукупність об'єктів, які ми можемо розрізнити між собою, які не повторюються, та об'єднані в одне ціле нашим бажанням.

Способи подання множин:

- 1. Явний, $A = \{a, b, ..., z\}$.
- 2. Не явний, нехай P(x) певна властивість (предикат), $X=\{x:P(x)\}=\{x\mid P(x)\}.$
- 3. Графічний (діаграма Ойлера Венна)

Стандартні множини:

- \varnothing порожня множина.
- U універсум (всі об'єкти).
- $\mathbb{N} = \{1, 2, 3, ...\}$ —натуральні числа (не 0).
- $\mathbb{N}_0 = \{0, 1, 2, 3, ...\}$ усі невід'ємні цілі числа.
- $\mathbb{Z} = \{0, \pm 1, \pm 2, ...\}$ усі цілі числа.
- $\mathbb{Q}=\{\frac{m}{n}\mid m\in\mathbb{Z},n\in\mathbb{N}\}$ раціональні числа.
- \bullet \mathbb{R} дійсні числа.
- \mathbb{C} комплексні числа.

Деякі позначення:

- Належність $a \in A$.
- Не належність $a \notin A$.
- Включення $A \subseteq B$ (всі елементи A належать B). $(A \subseteq B) \Leftrightarrow (\forall a \quad a \in A \Rightarrow a \in B).$
- Строге включення $A \subset B$ (всі елементи A належать B). $(A \subset B) \Leftrightarrow (A \subseteq B) \& (\exists b \in B : b \notin A).$
- Рівність A = B, якщо A і B складається з однакових елементів. $(A = B) \Leftrightarrow (A \subseteq B) \& (B \subseteq A)$.

Операції над множинами:

1. Об'єднання:

$$C = A \cup B = \{x : (x \in A) \lor (x \in B)\}.$$

2. Перетин:

$$D = A \cap B = \{x : (x \in A) \land (x \in B)\}.$$

3. Різниця:

$$E = A \setminus B = \{x : (x \in A) \land (x \notin B)\}.$$

4. Симетрична різниця:

$$F = A\delta B = (A \setminus B) \cup (B \setminus A) = (A \cup B) \setminus (B \cap A).$$

5. Доповнення (до універсуму U):

$$\overline{A} = \{x : x \notin A\}.$$

Парадокс Бертрана:

Нехай $Y = \{X : X \notin X\}$, де X — це множина множин і/чи елементів, що не належить собі. Тоді, з'являється питання $Y \in Y$?

1.3 Алгебраїчні властивості операцій над множинами

- 1. Інволютивність
- 2. Комутативність
- 3. Асоціативність
- 4. Дистрибутивність
- 5. Правило поглинання
- 6. Закон Деморгана
- 7. Інші