杰理 AW30N 芯片介绍 V1.0

珠海市杰理科技股份有限公司 Zhuhai Jieli Technology Co.,LTD 版权所有,未经许可,禁止外传

目录

第1章 引言		4
1.1 编写目的		4
1.2 文档修改日志		4
第2音 enu 介绍		5
-		
	1 Not. 11: 14- 217.\	
	断优先级)	
第3章 时钟系统		10
3.1 时钟源	73/3/9	10
3.1.1 原生时钟源		
3.1.2 衍生时钟源	4324/,0	10
第 4 音 循环冗全校验(CRC)		11
NOTE OF THE PROPERTY OF THE PR		
4.1 概述		11
4.2 寄仔器说明		11
カッチ 年 11/1/1	······································	12
5.1 模块说明		12
	/	
		14
6.1 模块说明		14
6.3 基本事务操作		18
第7章 SPI 模块		20
71 模块说明		20
8.2 数字模块控制寄存器		26
第9章 16位定时器(Timer16)		29
ノ・1 (大力) が17月・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		29

7/	杰理科技
<u>UL</u>	JIELI TECHNOLOGY
	S. J. J. S. B. 1999

JIELI TECHNOLOGY	http://www.zh-jieli.com/
9.2 控制寄存器	29
9.3 数字模块控制寄存器	29
第 10 章 红外滤波模块(IRFLT)	32
10.1 模块说明	32
10.2 寄存器 SFR 列表	33
10.3 时基选择	
第 11 章 MCPWM	35
11.1 模块说明	35
11.1.1 概述	35
11.1.2 定时器 MCTIMER	
11.1.3 模块引脚	35
11.1.4 模块特性	36
11.2 数字模块控制寄存器	36
第 12 章 UART	
12.1 UART 模块说明	40
12.2 数字模块控制寄存器	40
第 13 章 IO_Mapping_Control	
13.1 模块说明	43
13.1 模块说明	45
13.1.1 概述	
13 1 2 1() 甲脒	$_{\it \Delta7}$
13.2 数字模块控制寄存器	47
13.2 数字模块控制寄存器	51
14.1 模块说明	51
14.1.1 概述	
第 15 章 USB BRIDGE	
15.1 模块说明	52
15.1.1 概述	52

第1章 引言

1.1 编写目的

此说明书主要对杰理 AW30N 芯片介绍。

AW30N 是一颗具备较强运算能力的 CPU,内部支持 64M 字节 FLASH 的 cache 寻址; 内部有 64K 普通 RAM 空间以及 4*4K 的 CACHE RAM 空间。

1.2 文档修改日志

版本	日期	描述	
1.0	2023 / 12 / 11	AW30N 初始版本	
1.1	2024 / 05 / 09	勘误 usb dp/dm 上下拉电阻	
		修改 MCPWM 个数为 3 个,一共 3 组 (6 路)	

第 2 章 cpu 介绍

2.1 说明

CPU 是一颗具备较强运算能力的 32 位处理器。CPU 有 64 个中断(其中有 8 个软中断);有 8 级中断优先级。

2.2 cpu 内部 sfr

1) icfg: icfg 是中断配置寄存器,包含一些

Bit	名称	读/写	默认值	简介
31-10	-	-	-	-
9-8	GIE[1:0]	RW	0b10	总中断 = GIE[1] & GIE[0];同时打开才能进中 断
7-0	-	-	-	-

2) IDEL: CPU 进入 IDLE

CPP 代码里面写: asm violate("idle");

ASM 代码里面写: idle;

2.3 中断说明

2.3.1 中断源

CPU 中断源可分为系统中断源和外设中断源。

中断号	中断类型	说明			
63-4	外设中断源	优先级可配,外设中断入口,可扩展到250个			
3	系统中断源	内核定时器 tick_timer			
2-0	系统中断源	受 IE, IP 和 GIE 控制			

2.3.2 中断控制寄存器 ICFGx

每个外设中断源都分配 4bit 中断控制位 ICFGx[3:0], bit3-1 对应 IP, bit0 对应 IE。具体见中断表。

优先级 IP 有 3bit, 共 8 级, 0 代表最低, 7 代表最高。进入中断后, 硬件会自动屏蔽比其优先级低的中断入

口,例如当优先级为1的中断产生后,将被屏蔽优先级小于1或等于1的中断,直到中断退出。

中断使能 IE, 只要将相应 IE 的控制位打开即可。:

2.3.3 总中断

CPU 增设了 GIE0 & GIE1。当 GIE0 于 GIE1 同时为 1 时,总中断才打开。

图 2.1 中断示意图

2.3.4 中断入口(中断列表,中断优先级)

中断入口从中断 BASE 地址,每 4 个 byte 对应一个中断,存放相应服务程序的地址。 中断发生时,CPU 会从相应中断入口取中断服务程序的入口地址,跳到该中断服务程序。

中断只会压 PC 入 RETI,中断返回时硬件从 RETI 取出返回地址。

中断号	{IP[2:0], IE}	中断入口地址	中断源
63	ICFG7[31:28]	BASE + 中断号×4	soft[7]
62	ICFG7[27:24]	BASE + 中断号×4	soft[6]
61	ICFG7[23:20]	BASE + 中断号×4	soft[5]
60	ICFG7[19:16]	BASE + 中断号×4	soft[4]
59	ICFG7[15:12]	BASE + 中断号×4	soft[3]
58	ICFG7[11:08]	BASE + 中断号×4	soft[2]
57	ICFG7[07:04]	BASE + 中断号×4	soft[1]
56	ICFG7[03:00]	BASE + 中断号×4	soft[0]
55	ICFG6[31:28]	BASE + 中断号×4	
54	ICFG6[27:24]	BASE + 中断号×4	SRC_SYNC
53	ICFG6[23:20]	BASE + 中断号×4	BT_RXMCH
52	ICFG6[19:16]	BASE + 中断号×4	BT_BREDR
51	ICFG6[15:12]	BASE + 中断号×4	BT_CLKN
50	ICFG6[11:08]	BASE + 中断号×4	BT_EVENT
49	ICFG6[07:04]	BASE + 中断号×4	BT_BLERX
48	ICFG6[03:00]	BASE + 中断号×4	BT_TIMEBASE
47	ICFG5[31:28]	BASE + 中断号×4	
46	ICFG5[27:24]	BASE + 中断号×4	
45	ICFG5[23:20]	BASE + 中断号×4	
44	ICFG5[19:16]	BASE + 中断号×4	ALINK
43	ICFG5[15:12]	BASE + 中断号×4	APA
42	ICFG5[11:08]	BASE + 中断号×4	AUDIO
41	ICFG5[07:04]	BASE + 中断号×4	
40	ICFG5[03:00]	BASE + 中断号×4	
39	ICFG4[31:28]	BASE + 中断号×4	SRC
38	ICFG4[27:24]	BASE + 中断号×4	AES
37	ICFG4[23:20]	BASE + 中断号×4	UDMA_CH3
36	ICFG4[19:16]	BASE + 中断号×4	UDMA_CH2
35	ICFG4[15:12]	BASE + 中断号×4	UDMA_CH1
34	ICFG4[11:08]	BASE + 中断号×4	UDMA_CHO
33	ICFG4[07:04]	BASE + 中断号×4	
32	ICFG4[03:00]	BASE + 中断号×4	
31	ICFG3[31:28]	BASE + 中断号×4	
30	ICFG3[27:24]	BASE + 中断号×4	
29	ICFG3[23:20]	BASE + 中断号×4	CAN
28	ICFG3[19:16]	BASE + 中断号×4	SPI2
27	ICFG3[15:12]	BASE + 中断号×4	MCPWM_CHX
26	ICFG3[11:08]	BASE + 中断号×4	СТМО
25	ICFG3[07:04]	BASE + 中断号×4	SD0
24	ICFG3[03:00]	BASE + 中断号×4	SDO_BRK
23	ICFG2[31:28]	BASE + 中断号×4	PMU_TMR1

22	ICFG2[27:24]	BASE + 中断号×4	PMU_TMRO
21	ICFG2[23:20]	BASE + 中断号×4	PMU_SOFT
20	ICFG2[19:16]	BASE + 中断号×4	MCPWM_TRM
19	ICFG2[15:12]	BASE + 中断号×4	TMR3
18	ICFG2[11:08]	BASE + 中断号×4	USB_SIE
17	ICFG2[07:04]	BASE + 中断号×4	USB_S0F
16	ICFG2[03:00]	BASE + 中断号×4	GPCNT
15	ICFG1[31:28]	BASE + 中断号×4	GPADC
14	ICFG1[27:24]	BASE + 中断号×4	PORT
13	ICFG1[23:20]	BASE + 中断号×4	LRC_TRACE
12	ICFG1[19:16]	BASE + 中断号×4	IIC0
11	ICFG1[15:12]	BASE + 中断号×4	SPI1
10	ICFG1[11:08]	BASE + 中断号×4	SPI0
09	ICFG1[07:04]	BASE + 中断号×4	UART2
08	ICFG1[03:00]	BASE + 中断号×4	UART1
07	ICFG0[31:28]	BASE + 中断号×4	UARTO
06	ICFG0[27:24]	BASE + 中断号×4	TMR2
05	ICFG0[23:20]	BASE + 中断号×4	TMR1
04	ICFG0[19:16]	BASE + 中断号×4	TMRO
03	ICFG0[15:12]	BASE + 中断号×4	tick_tmr

2.3.5 其他

- 2、置软中断: 写 ILAT_SET[7:0]或使用 asm("swi #u3")分别对应软中断 7-0

2.4 MEMORY

Memory 主要有对 FLASH 的管理、内部 RAM 的管理:

从 0x4000000 开始映射系统 FLASH, 一共有 64M 的地址空间;

从 0x3f00000 到 0x3f10000 是系统普通 RAM 的区域。

0x8000000	FLASH 64M Byte
0x4000000	
0x3F44000	Reserved
0x3F40000	ROM
0x3F30000	Cache RAM 16K
0x3F10000	Reserved
0x3F00000	RAMO 64K
0x0	Reserved

AW30N

第3章 时钟系统

3.1 时钟源

3.1.1 原生时钟源

BD49 具备如下原生时钟源:

时钟	概述
rc_250K	内置 RC 振荡器,用于复位系统和 watch dog 功能时钟
rc_16m	内置 RC 振荡器,用于系统启动的初始时钟
lrc_200k	内置低温度电压漂移 RC 振荡器,用于低功耗技术和 PLL 参考时钟
xosc_32k	外挂 32.768KHz 晶振,用于 RTC 走时和 LRC trimming,不支持 PLL
xosc_24m	外挂 12-26MHz 晶振,可用于系统时钟和 PLL 参考时钟

3.1.2 衍生时钟源

来自片内的 SYSPLL0, SYSPLL 工作频率范围为 240MHz~480MHz。

如果 PLL0 配置为 480MHz, 则能输出 480MHz、320MHz、240MHz、192MHz 和 137.84MHz。

每个时钟都有独立的使能端。在不使用该时钟时,软件应关闭其使能端以防止额外电源消耗。

BD49 最大系统时钟 HSB 不超过 240MHz, LSB 时钟不超过 120MHz, SFC 时钟最大不超过 96M。

第4章 循环冗余校验(CRC)

4.1 概述

CRC 计算器,每次运算 8bits,多项式为: $X^{16} + X^{12} + X^5 + X^1$

CRC 运算不能直接使用寄存器操作,需要用 SDK 中提供的接口实现。

4.2 寄存器说明

1. JL_CRC->REG: CRC16 校验码

Bit	Name	RW	Default	RV	Dexcription
31-16	RESERVED	-	-	-	预留
15-0	CRC_REG	rw	X	-	写入初始值,CRC 计算完毕,读取校验码

2. JL_CRC->FIFO: 运算数据输入

Bit	Name	RW	Default	RV	Description
31:8	RESERVED	-	-	-	预留
7:0	CRC_FIFO	W	X	-	运算数据输入,HSB 先运算,LSB 后运算

第5章 看门狗

5.1 模块说明

WDT(watch dog timer)看门狗定时器用于防止系统软件进入死循环等不正确的状态。它设定了一个时间间隔,软件必须每在此时间间隔内进行进行一次"清看门狗"的操作,否则看门狗将溢出,并导致系统复位(或引发中断,主要用于程序的调试)。

每次系统复位之后,看门狗默认处于关闭的状态。软件可以随时将其打开。当发生系统 复位时看门狗也会被关闭。

WDT 设计在 P33 系统里,读写 WDT_CON 需要用 P33 接口,写 CON 前无需再写 CRC REG 打 key,并且支持低功耗模式下运行。

低功耗模式下, WDT 支持:

- 1. 直接复位芯片
- 2. 唤醒芯片,进入异常
- 3. 唤醒芯片,进入 RTC 中断 (需关闭看门狗异常使能)

5.2 数字模块控制寄存器

1. P3 WDT CON: Watchdog control register(8 bit addressing)

Bit	Name	RW	Default	RV	Description
7	PND	r	0	-	wdt 中断请求标志,当 WDRMD 设置为 1 时, WDT 溢出硬件会将此位置 1
6	CPND	w	-	-	写 1 清除中断标记位
5	WDRMD	rw	х	-	看门狗模式选择: 0: 看门狗溢出将导致系统复位,这是看门狗的主要工作模式 1: 看门狗溢出将 WINT 置 1,可产生中断或异常,这种模式主要用于调试
4	WDTEN	rw	0	-	看门狗定时器使能。 0:看门狗定时器关闭 1:看门狗定时器打开
3~0	TSEL3-0	rw	x		看门狗溢出时间选择 0000: 1mS 0001: 2mS 0010: 4mS 0011: 8mS 0100: 16mS 0101: 32mS 0110: 64mS 0111: 128mS 1000: 256mS

JIELI TECHNOLOGY		http://www.zh-jieli.com/
	1	001: 512mS
	1	1010: 1S
	1	1011: 2S
	1	1100: 4S
	1	1101: 8S
	1	1110: 16S
	1	1111: 32S
	N	Note: 上述溢出时间只是参考值。实际上, wdt
	E	由不准确的片内 RC 振荡器驱动,其实际溢出时间
	Ī	可能会有高达 100%的偏差,且不同芯片之间也无
	ž	去保证一致性。所以在选择溢出时间时必须留有
	Ţ	足够余量

2. P3_VLD_KEEP : wdt exception register (8 bit addressing)

Bit	Name	RW	Default	RV	Description
7	RESERVED	-	-	-	预留
6	WDT EXPT EN	rw	0	0	看门狗异常使能 0: 看门狗异常关闭 1: 看门狗异常打开
5~0	RESERVED	-	-	-	预留

第6章 IIC模块

6.1 模块说明

IIC 通讯模块。该芯片只有一个 IIC 模块,仅可做主机使用。IIC 有 4 组 IO: (请参考另外一章: IO_MAPPING_CONTROL)

6.2 数字模块控制寄存器

1. IIC_CON0 : IIC control register 0

Bit	Name	RW	Default	RV	Description
31-11	RESERVED	-	-	-	预留
10	BADDR_RESP_EN	rw	0	-	广播地址响应使能: 1:响应总线上的广播地址; 0:不响应总线上的广播地址;
9	AUTO_SLV_TX	rw	0	-	从机自动发送数据事务使能(主机模式下无效): 0: 不使能 1: 使能 从机接收匹配的地址且为从机接收数据时,接下来硬件会自动填充 SEND_DATA 事务操作,使得硬件能不间断的发送数据; (作为从机与不支持时钟延展的主机通信时必填使能,其他工作场景依据需求使能)
8	AUTO_SLV_RX	rw	0	-	从机自动接收数据事务使能(主机模式下无效): 0: 不使能 1: 使能 从机接收匹配的地址且为从机接收数据时,接下来硬件会自动填充 RECV_DATA 事务操作,使得在软件读取数据时,硬件接口能继续不间断接收数据; (作为从机与不支持时钟延展的主机通信时必填使能,其他工作场景依据需求使能)
7	AUTO_ADR_RESP	rw	0	-	从机接收地址硬件自动响应使能: 作为从机时,在接收到地址数据后(接收的第一字节数据) 0:不自动进行响应,即不对接收到的地址数据进行 NACK/ACK 事务; 1:自动进行响应,接收到匹配的地址(含广播地址)自动响应 ACK;接收到不匹配的地址,自动响

	JIELI TECHNOLOGY				http://www.zh-jieli.com/
					应 NACK (从机与不支持时钟延展的主机通信时必须使能, 其他工作场景依据需求使能)
6	IGNORE_NACK	rw	0	-	NACK 调试模式使能 0: 在发送数据中遇到 NACK 后会停止接收发送 1: 在发送数据中遇到 NACK 后不会中断接收发送 事务(仅用于调试)
5	NO_STRETCH	rw	0		IIC 主从时钟延展功能选择 0:支持时钟延展 1:不支持时钟延展
4-3	FLT_SEL	r	0	-	IIC 接口数字滤波器选择 11: 滤除 3*T _{iic_baud_clk} 以下尖峰脉宽; 10: 滤除 2*T _{iic_baud_clk} 以下尖峰脉宽; 01: 滤除 T _{iic_baud_clk} 以下尖峰脉宽; 00: 关闭数字滤波器;
2	SLAVE_MODE	w	0		IIC 接口主从机模式: 0: 主机模式 1: 从机模式
1	I2C_RST	rw	0		IIC 接口复位(使能后再释放复位) 0: IIC 接口复位 1: IIC 接口释放
0	EN	rw	0		IIC 接口使能 0: 关闭 IIC 接口 1: 打开 IIC 接口

2. IIC_TASK: IIC task register

Bit	Name	RW	Default	RV	Description
31-13	RESERVED	-	-	-	预留
12	SLAVE_CALL	r	-		从机地址匹配: (仅 debug,用户正常流程不可使用)
11	BC_CALL	r	-	-	广播地址匹配: (仅 debug,用户正常流程不可使用)
10	SLAVE_RW	r	-		从机读写匹配: (仅 debug,用户正常流程不可使用)
9-6	RUNNING_TASK	r	-	-	正在运行匹配:(仅 debug,用户正常流程不可使 用)
5	TASK_RUN_RDY	r	-		事务运行状态: (仅 debug,用户正常流程不可使用)
4	TASK_LOAD_RDY	r	-	-	事务加载状态: (仅 debug,用户正常流程不可使用)
3-0	RUN_TASK	W	0x0	-	事务操作:以下9种事务操作涵盖了主从机接收发

JIELI TECHNOLOGY	http://www.zh-jieli.com/
	送时的总线行为序列(具体解析见下节)
	0x0: SEND_RESET
	0x1: SEND_ADDR
	0x2: SEND_DATA
	0x3: SEND_ACK
	0x4: SEND_NACK
	0x5: SEND_STOP
	0x6: SEND_NACK_STOP
	0x7: RECV_DATA
	0x8: RECV_DATA_WITH_ACK
	0x8: RECV_DATA_WITH_NACK

3. IIC_PND: IIC baud register

Bit	Name	RW	Default	RV	Description
31-29	RESERVED	-	-	-	预留
28	RXTASK_LOAD_PND	r	0	-	硬件将当前的接收相关的 task 事务加载完成
27	TXTASK_LOAD_PND	r	0	-	硬件将当前的发送相关的 task 事务加载完成
26	RXBYTE_DONE_PND	r	0	-	接收 1byte 的数据
25	ADR_MATCH_PND	r	0		作为从机接收到与 ADDR 相符的地址(开始广播 地址响应使能后,匹配广播地址也会起该 PND)
24	RXNACK_PND	r	0	-	发送地址/数据后接收到 NACK
23	RXACK_PND	r	0	-	发送地址/数据后接收到 ACK
22	STOP_PND	r	0	-	接收到总线 STOP 信号序列
21	RESTART_PND	r	0	-	接收到总线 RESTART 信号序列
20	TASK_PND	r	0	-	事务执行完成 PND
19	RESERVED	-	-	-	预留
18	RXTASK_LOAD_CLR	W	-	-	写"1"清除对应的 PND
17	TXTASK_LOAD_CLR	w	-		写"1"清除对应的 PND
16	RXDATA_DONE_CLK	w	-		写"1"清除对应的 PND
15	ADR_MATCH_CLR	w	-		写"1"清除对应的 PND
14	RXNACK_CLR	W	-		写"1"清除对应的 PND
13	RXACK_CLR	w	-		写"1"清除对应的 PND
12	STOP_CLR	W	-		写"1"清除对应的 PND
11	RESTART_CLR	w	-		写"1"清除对应的 PND
10	TASK_CLR	w	-		写"1"清除对应的 PND
9	RESERVED	-	-	-	预留
8	RXTASK_LOAD_IE	rw	0		对应 PND 的中断使能
7	TXTASK_LOAD_IE	rw	0		对应 PND 的中断使能
6	RXTASK_DONE_IE	rw	0		对应 PND 的中断使能

5	ADR_MATCH_IE	rw	0		对应 PND 的中断使能
4	RXNACK_IE	rw	0		对应 PND 的中断使能
3	RXACK_IE	rw	0	-	对应 PND 的中断使能
2	STOP_IE	rw	0	-	对应 PND 的中断使能
1	RESTART_IE	rw	0	-	对应 PND 的中断使能
0	TASK_IE	rw	0	-	对应 PND 的中断使能

4. IIC_TXBUF:IIC buf register

Bit	Name	RW Default RV			Description
31-8	RESERVED	-	-	-	预留
7-0	TX_BUFF	rw	-	-	待发送数据

5. IIC_RXBUF: IIC rx buff register

Bit	Name	RW	Default	RV	Description
31-8	RESERVED	-	-	-	预留
7-0	RX_BUFF	r	-	-	己接收数据

6. IIC_ADDR: IIC device address register

Bit	Name	RW	Default	RV	Description
31-8	RESERVED	-	-	-	预留
7-1	IIC DEVICE ADDR	rw	0x00	-	IIC 设备地址(仅支持 7bit 模式)
0	W/R OPTION	rw	0x0	-	作为主机发送地址时的读写标志: 0:发送数据的从机; 1:读取从机的数据;

7. IIC_BAUD: IIC baud clk register

Bit	Name	RW	Default	RV	Description
31-12	RESERVED	-	-	-	预留
11-0	BAUD_CNT	rw	-	-	IIC 总线传输时钟 SCL 速率配置: F _{IIC_BUS_SCL} = F _{IIC_CLK} / BUAD_CNT 注意:不可设置为 0

8. IIC_TSU: IIC setup time register

Bit	Name	RW	Default	RV	Description
31-7	RESERVED	-	-	-	预留
6-0	SETUP_CNT	rw	-	-	IIC 总线 SDA 信号更新后到 SCL 时钟上升的最少时间配置: T _{setup} = T _{IIC_CLK} * SETUP_CNT 无特殊情况软件配置为 2;

9. IIC THD: IIC hold time register

Bit	Name	RW	Default	RV	Description
31-8	RESERVED	-	-	-	预留
7-0	TX_BUFF	rw	-	-	IIC 总线 SCL 时钟下降到 SDA 信号更新去前的最少时间配置: Thold = T _{IIC_CLK} * HOLD_CNT 无特殊情况软件配置为 2;

10. IIC DBG: IIC debug register

Bit	Name	RW	Default	RV	Description
31-16	SDA_DBG	r	-	-	SDA 相关调试信号
15-0	SCL_DBG	r	-	-	SCL 相关调试信号

6.3 基本事务操作

IIC_TASK 事务寄存器允许写入以下 9 种事务操作值来驱动 IIC 接口做出相应总线行为序列:

1.0x0: SEND RESET

工作在主机模式下,向 IIC 总线发送 START 和 STOP;

2.0x1: SEND_ADDR

工作在主机模式下,向 IIC 总线发送 START 和 ADDR 的数据,并接收从机回复的 ACK/NACK;

3.0x2: SEND_DATA

工作在主机模式下,向 IIC 总线发送 TX BUFF 的数据,并接收从机回复的 ACK/NACK;

4.0x3: SEND ACK

工作在主机/从机模式下,向 IIC 总线发送 ACK;

5.0x4: SEND_NACK

工作在主机/从机模式下,向 IIC 总线发送 NACK;

6.0x5: SEND_STOP

工作在主机/从机模式下,向 IIC 总线发送 STOP;

7.0x6: SEND_NACK_STOP

工作在主机/从机模式下,向 IIC 总线发送 NACK 和 STOP;

8.0x7: RECV_DATA

工作在主机/从机模式下,从 IIC 总线上接收一个字节数据,但不进行 ACK/NACK(持续拉低 SCL 线,总线上的设备需支持时钟延展),知道 SEND_ACK/SEND_NACK 的事务被填充 SCL 才会撤销拉低;

9.0x8: RECV_DATA_WITH_ACK

工作在主机/从机模式下,从 IIC 总线上接收一个字节数据,且随后向 IIC 总线发送 ACK; 10.0x9: RECV_DATA_WITH_NACK

工作在主机/从机模式下,从 IIC 总线上接收一个字节数据,且随后向 IIC 总线发送 NACK;

第7章 SPI 模块

7.1 模块说明

SPI 接口是一个标准的遵守 SPI 协议的串行通讯接口,在上面传输的数据以 Byte (8bit) 为最小单位,且永远是 MSB 在前。SPI 接口可独立地选择在 SPI 时钟的上升沿或下降沿更新数据,在 SPI 时钟的上升沿或下降沿采样数据。该芯片有 3 个 SPI: SPI0、SPI1 和 SPI2

SPI 接口支持主机和从机两种模式:

主机: SPI 接口时钟由本机产生,提供给片外 SPI 设备使用。

从机: SPI 接口时钟由片外 SPI 设备产生,提供给本机使用。

工作于主机模式时, SPI接口的驱动时钟可配置, 范围为 系统时钟~系统时钟/256。

工作于从机模式时,SPI接口的驱动时钟频率无特殊要求,但数据速率需要进行限制, 否则易出现接收缓冲覆盖错误,在系统不繁忙情况下可以接近系统时钟速率。

SPI 接口支持单向(Unidirection)和双向(Bidirection)模式。

单向模式:使用 SPICK 和 SPIDAT 两组连线,其中 SPIDAT 为双向信号线,同一时刻数据只能单方向传输。

双向模式:使用 SPICK,SPIDI 和 SPIDO 三组连线,同一时刻数据双向传输。但 DMA 不支持双向数据传输,当在本模式下使能 DMA 时,也只有一个方向的数据能通过 DMA 和系统进行传输。

SPI 单向模式支持 1bit data、2bit data 和 4bit data 模式,即:

1bit data 模式: 串行数据通过一根 DAT 线传输,一个字节数据需 8 个 SPI 时钟。

2bit data 模式: 串行数据通过两根 DAT 线传输,一个字节数据需 4 个 SPI 时钟。

4bit data 模式: 串行数据通过四根 DAT 线传输,一个字节数据需 2 个 SPI 时钟。

SPI 双向模式只支持 1bit data 模式,即:

1bit data 模式: 串行数据通过一根 DAT 线传输,一个字节数据需 8 个 SPI 时钟。

SPI 接口在发送方向上为单缓冲,在上一次传输未完成之前,不可开始下一次传输。在接收方向上为双缓冲,如果在下一次传输完成时 CPU 还未取走本次的接收数据,那么本次的接收数据将会丢失。

SPI 接口的发送寄存器和接收寄存器在物理上是分开的,但在逻辑上它们一起称为 SPIBUF 寄存器,使用相同的 SFR 地址。当写这个 SFR 地址时,写入至发送寄存器。当读 这个 SFR 地址时,从接收寄存器读出。

SPI 传输支持由 CPU 直接驱动,写 SPIBUF 的动作将启动一次 Byte 传输。

SPI 传输也支持 DMA 操作,但 DMA 操作永远是单方向的,即一次 DMA 要么是发送一包数据,要么是接收一包数据,不能同时发送并且接收一包数据,即使在双向模式下也是这样。每次 DMA 操作支持的数据量为 1-(2^32 - 1)Byte。写 SPI_CNT 的动作将启动一次 DMA 传输。

[注意]:

该模块所有说明及配置仅作为 SPIx 模块使用,不适用到 SFC 中

7.2 数字模块控制寄存器

1. SPIx_CON : SPIx control register0 (32 bit addressing)

Bit	Name	RW	Default	RV	Description
31-22	RESERVED	-	0	-	预留
21	OF_PND	r	0	-	Dma fifo overflow 中断,当 spi 做从机 dma 接收时,fifo 满且 dma 响应慢,而新接收的数据到来时导致 fifo 发出溢出就会产生 of_pnd [注意]仅做 debug 使用!!!
20	OF_PND_CLR	w	0	-	清除 of_pnd,写 1 清零
19	OF_IE	rw	0	1	of_pnd 使能位
18	UF_PND	r	0	-	dma fifo underflow 中断,当 spi 做从机 dma 发送时,fifo 空且 dma 响应慢,而主机端请求新数据时导致 fifo 读空就会产生 uf_pnd [注意]仅做 debug 使用
17	UF_PND_CLR	w	0	-	清除 uf_pnd,写 1 清零
16	UF_IE	rw	0	1	uf_pnd 使能位
15	PND	r	0	0	中断请求标志,当 1Byte 传输完成或 DMA 传输完成时会被硬件置 1.有 3 种方法清除此标志位向 PCLR 写入'1'写 SPIBUF 寄存器来启动一次传输写 SPICNT 寄存器来启动一次 DMA
14	CPND	W	0	1	软件在此位写入'1'将清除 PND 中断请求标志
13	ΙE	rw	0	1	SPI 中断使能 0 : 禁止 SPI 中断 1 : 允许 SPI 中断
12	DIR	rw	0	0	在单向模式或 DMA 操作时设置传输的方向 0 : 发送数据 1 : 接收数据
11-10	DATW RESERVED	r	0	0	SPI 数据宽度设置 00 : 1bit 数据宽度 01 : 2bit 数据宽度 10 : 4bit 数据宽度 11 : NA,不可设置位此项 预留

UL JI	ELI TECHNOLOGY				http://www.zh-jieli.com/
7	CSID	rw	0	0	SPICS 信号极性选择 0 : SPICS 空闲时为 0 电平 1 : SPICS 空闲时为 1 电平
6	CKID	rw	0	0	SPICK 信号极性选择 0 : SPICK 空闲时为 0 电平 1 : SPICK 空闲时为 1 电平
5	UE	rw	0	0	更新数据边沿选择 0 : 在 SPICK 的上升沿更新数据 1 : 在 SPICK 的下降沿更新数据
4	SE	rw	0	0	采样数据边沿选择 0 : 在 SPICK 的上升沿采样数据 1 : 在 SPICK 的下降沿采样数据
3	BDIR	rw	0	0	单向/双向模式选择 0 : 单向模式,数据单向传输,同一时刻只能发送或者接收数据。数据传输方向因收发而改变,所以由硬件控制,不受写 IO 口 DIR 影响。 1 : 双向模式 数据双向传输,同时收发数据,但 DMA 只支持一个方向的数据传输,数据传输方向设置后不改变,所以由软件控制,通过写 IO 口 DIR 控制。
2	CSE	rw	0	1	SPICS 信号使能,always set 为 1
1	SLAVE	rw	0	0	从机模式
0	SPIR	rw	0	0	SPI 接口使能 0 : 关闭 SPI 接口 1 : 打开 SPI 接口

2. SPI x BAUD : SPI baudrate setting register (8 bit addressing)

Bit	Name	RW	Default	RV	Description
7~0	SPI_BAUD	rw	0x0	()v()	SPI 主机时钟设置寄存器 SPICK = system clock / (SPIBAUD + 1)

3. SPIx_BUF : SPI buffer register (8 bit addressing)

Bit	Name	RW	Default	RV	Description
7~0	SPIx_BUF	rw	0x0	0x0	发送寄存器和接收寄存器共用此 SFR 地址。吸入至发送寄存器,从接收寄存器读出。

4. SPIx_ADR : SPIx DMA address register (32 bit addressing)

Bit	Name	RW	Default	RV	Description
31~0	SPI_ADR	rw	0x0	0710	SPI DMA 起始地址寄存器,只写,读出为不确定值。

5. SPIx_CNT : SPIx DMA counter register (32 bit addressing)

Bit	Name	RW	Default	RV	Description
31~0	SPI_CNT	rw	0x0	0x0	SPI DMA 计数寄存器,读出为当下剩余读写数量。 此寄存器用于设置 DMA 操作的数目(按 Byte 计)并启动 DMA 传输。如:需启动一次 512Byte 的 DMA 传输,写入 0x0200,此写入动作将启 动本次传输。

6. SPIx_CON1 : SPIx control1 register

Bit	Name	RW	Default	RV	Description
31~5	RESERVED	-	-	-	预留
4	SPI_9B_DATA	rw	0	-	在 9bit 模式下,发送命令是,为 0;发送参数/数据时,为 1
3	SPI_9B_MODE	rw	0	-	0:关闭 9bit 模式 1:打开 9bit 模式
2	MIX_MODE	rw	0	-	3wire 模式混合接线
1-0	SPI_BIT_MODE	rw	0	0	设置 spi 输入输出位流模式,默认 0 为标准格式 0: [7,6,5,4,3,2,1,0] 1: [0,1,2,3,4,5,6,7] 2: [3,2,1,0,7,6,5,4] 3: [4,5,6,7,0,1,2,3]

传输波形图:

图 1-1 传输波形 1

图 1-2 传输波形 2

第8章 数模转换器(ADC)

8.1 模块说明

12Bit ADC(A/D 转换器),支持 6bit/8bit/10bit/12bit 数据位宽采样,其时钟最大不可超过12MHz。可通过 CPU 访问,逐次读取各个通道电压值;也可通过配置固定的采样率和通道数,使用 DMA 模式自动读取通道电压值;使用 DMA 模式的同时 CPU 也可以同时操作读取不同通道电压值,但需要做好采样时间分配。

注:选择 DP_ADC/DM_ADC 端口时,需要打开 USBDP/DM 到 SARADC 的开关,默 认是关的,具体寄存器是 JLPORTUSB->CON 的 BIT(1)和 BIT(3)分别控制 DP/DM

8.2 数字模块控制寄存器

1. ADC_CON: ADC configuration register

Bit	Name	RW	Default	RV	Description
31	ADC_CTL_EN	rw	0x0	1	ADC 控制逻辑使能,正常工作需要设置为 1 注:配置 DMA 模式时需先打开该位
30	RESERVED	-	-	-	预留
29	CPU_PND	r	0	-	CPU 采样中断标识
28	CLR_PND	w	0	-	清除触发标志,写"1"清除
27	TRI_IE	rw	0	-	UDMA 触发使能位,用于 udma 联动场景
26	RD_PRIORITY	rw	0	0	读取优先权,用于调整 CPU 和 DMA 读ADC 的优先权,当 CPU 和 DMA 同时访问ADC 时生效 0: DMA 优先级高于 CPU 1: CPU 优先级高于 DMA
25	ADC_AEN	rw	0	0	ADC 模拟使能,置 1 保持模拟功能常开
24-23	BIT_SEL	rw	0	-	ADC 采样数据位宽选择 0: 6bit 1: 8bit 2: 10bit 3: 12bit
22-16	BAUD	rw	x	-	ADC 时钟波特率设置 BAUD = 0: ADC_CLK = LSB_CLK BAUD != 0: ADC_CLK = LSB_CLK/(ADC_BAUD * 2)
15	CPND	r	0	-	CPU 采样中断标识
14	CLR_KST	rw	0	-	清除 CPU 采样中断标识,写"1"清除
13	IE	rw	0	-	CPU 采样模式中断使能
12-10	ANA_SEL	rw	0	-	CPU 选择内部信号通道
9-6	IO_SEL[0]	rw	0	-	CPU 选择 IO 测试信号通道
5	DIFF_EN	rw	0	-	CPU 访问模式下选择差分测试信号通路
4	DMUX_EN	rw	0	-	CPU 访问模式下选择 IO 测试信号
3	AMUX_EN	rw	0	-	CPU 访问模式下选择内部测试信号
2	CAL_KST	w	0	1	ADC 模拟校准 kick_start,写 1 执行一次ADC 模拟内部校准,默认初始化进行校准,需先打开 ADC_CTL_EN
1	ADC_ARST	rw	1	1	ADC 模拟复位 1: ADC 模拟复位使能,硬件根据需要自 动关闭复位

					neeps, www.zn jien.com,
					0: ADC 模拟复位常关,关闭复位,硬件 无法自动复位
0	ADC_AEN	rw	0	0	1: ADC 模拟使能常开 0: ADC 模拟使能有硬件根据需要自动开 关 通常设置 0

2. ANA_CON: analog control register

Bit	Name	RW	Default	RV	Description
31-23	RESERVED	-	-	-	预留
22-21	PWER_SEL	rw	0	0	参考电压、电源切换控制位,高电平有效
20-19	DYPWR_SEL	rw	0	3	动态功耗控制位,低电平标识高功耗状态
18-17	CMP_IS	rw	0	2	比较器前级放大电流档位
16-15	DAC_IS	rw	0	2	DAC 校准电流档位
14	ADC_IBIAS_EN	rw	0	0	ADC 模拟电路电流控制使能
13	SENSE_VCM_EN	rw	0	0	差分放大器 VCM 使能位
12-11	SENSE_GAIN	rw	0	1	差分放大器增益档位
10-9	SENSE_IS	rw	0	2	差分放大器校准电流位
8	SENSE_EN	rw	0	-	差分放大器使能,使用差分/VB 通道采样时,需将位置 1
7	CPU_VN_EN	rw	0	-	CPU VB 通道采样,N 通道使能 注:该位不能与 CPU_SP/SN_EN 同时使 能,须与 CPU_VP_EN 同时使能
6	CPU_VP_EN	rw	0	-	CPU VB 通道采样,P 通道使能 注:该位不能与 CPU_SP/SN_EN 同时使 能,须与 CPU_VN_EN 同时使能
5-4	CPU_SN_SEL	rw	0	-	N 通道输入信号选择 注:不能和 CPU_SN_SEL 同时选择同一 通道
3-2	CPU_SP_SEL	rw	0	-	P 通道输入信号选择 注:不能和 CPU_SN_SEL 同时选择同一 通道
1	CPU_SN_EN	rw	0	-	CPU 差分通道采样,N 通道使能
0	CPU_SP_EN	rw	0	-	CPU 差分通道采样,P 通道使能

3. ADC_RES: ADC result register

Bit	Name	RW	Default	RV	Description
31-12	RESERVED	-	-	-	预留
11-0	RES	r	0	-	CPU 访问 ADC 结果,有效位如下 6bit 模式: 高 6 位数据有效,低 6 位数据

第9章 16 **位定时器** (Timer16)

9.1 模块说明

Timer16 是一个集合了定时/计数/捕获/PWM 功能于一体的多动能 16 位定时器。它的驱动源可以选择片内时钟或片外信号。它带有一个可配置的最高达 64 的异步预分频器,用于扩展定时时间或片外信号的最高频率。它还具有上升沿/下降沿捕获功能,可以方便的对片外信号的高电平/低电平宽度进行测量。

图 1 TIMER 时钟源选择示意图

9.2 控制寄存器

寄存器列表	TIMER0	TIMER1	TIMER2	TIMER3
Tx_CON	T0_CON	T1_CON	T2_CON	T3_CON
Tx_CNT	T0_CNT	T1_CNT	T2_CNT	T3_CNT
Tx_PRD	T0_PRD	T1_PRD	T2_PRD	T3_PRD
Tx_PWM	T0_PWM	T1_PWM	T2_PWM	T3_PWM

9.3 数字模块控制寄存器

1. Tx->CON: timer x control register

Bit	x->CON: timer x co		Default		Description
31-17		_	_	_	预留
16	DUAL_EDGE_EN	rw	0	-	DUAL_EDGE_EN:双边沿捕获模式,当 MODE = 2 或 3 时,使能该位即变成双边沿捕获模式,在上沿和下沿会将 TxCNT 的值写入 TxPR。
15	PND	r	0	-	中断请求标志,当 timer 溢出或产生捕获动作时会被硬件置 1,需要由软件清 0。
14	PCLR	w	X	-	软件在此位写入'1'将清除 PND 中断请求标志。
13-10	SSEL	rw	0x0	-	SSEL3-0: timer 驱动源选择见图 1 【注意】: 选中的时钟需要使用上面 PSET 分频到 (lsb_clk/2) 以下
9	PWM_INV	rw	0	-	PWM0_INV: PWM 信号输出反向。
8	PWM_EN	rw	0	-	PWM0_EN: PWM 信号输出使能。此位置 1 后,相应 IO 口的功能将会被 PWM 信号输出替代。
7-4	PSET	rw	0x0	-	PSET1-0: 预分频选择位 0000: 预分频 1 0001: 预分频 4 0010: 预分频 16 0011: 预分频 64 0100: 预分频 1*2 0101: 预分频 4*2 0110: 预分频 64*2 1000: 预分频 1*256 1001: 预分频 4*256 1010: 预分频 16*256 1101: 预分频 64*256 1110: 预分频 1*2*256 1111: 预分频 4*2*256 1111: 预分频 64*2*256
3-2	CSEL	rw	0x0	-	捕获模式端口选择: 0:IO mux in (crossbar) 1:IRFLT_OUT
1-0	MODE	rw	0x0	-	MODE1-0: 工作模式选择 00: timer 关闭; 01: 定时/计数模式; 10: IO 口上升沿捕获模式(当 IO 上升沿到来时, 把 CNT 的值捕捉到 Tx_PR 中); 11: IO 口下降沿捕获模式(当 IO 下降沿到来时, 把 CNT 的值捕捉到 Tx_PR 中)。

2. Tx->CNT: timer x counter register

Bit	Name	RW	Default	RV	Description
15-0	Tx_CNT	rw	X	-	Time16 的计数寄存器

3. $Tx \rightarrow PR$: timer x period register

Bit	Name	RW	Default	RV	Description
15-0	Tx_PR	rw	X	-	Timer16 的计数周期寄存器

在定时/计数模式下,当 TxCNT == TxPR 时,Tx CNT 会被清 0。

在上升沿/下降沿捕获模式下, Tx_PRD 是作为捕获寄存器使用的,当捕获发生时, Tx_CNT 的值会被复制到 Tx_PRD 中。而此时 Tx_CNT 自由的由 0-4294967295-0 计数,不会和 Tx_PR 进行比较清 0。

4. Tx->PWM: timer x PWM register

Bit	Name	RW	Default	RV	Description
31-0	Tx_PWM	rw	X	-	timer32的 PWM 设置寄存器

在 PWM 模式下,此寄存器的值决定 PWM 输出的占空比。占空比 N 的计算公式如下: $N = (Tx_PWM \ / \ Tx_PR) * 100\%$

此寄存器不带有缓冲,写此寄存器的动作将可能导致不同步状态产生的 PWM 波形占空比瞬间过大或过小的问题。

第 10 章 红外滤波模块(IRFLT)

10.1 模块说明

IRFLT 是一个专用的硬件模块,用于去除掉红外接收头信号上的窄脉冲信号,提升红外接收解码的质量。

IRFLT 使用一个固定的时基对红外信号进行采样,必须连续 4 次采样均为'1'时,输出信号才会变为'1',必须连续 4 次采样均为'0'时,输出信号才会变为'0'。换言之,脉宽小于 3 倍时基的窄脉冲将被滤除。改变该时基的产生可兼容不同的系统工作状态,也可在一定范围内调整对红外信号的过滤效果。通过对 IOMC(IO re-mapping)寄存器的配置,可以将 IRFLT 插入到系统 6 个 timer 中某一个的捕获引脚之前。

例如通过 IOMC 寄存器选择了 IRFLT 对 timerl 有效,并且 IRFLT_EN 被使能之后,则 IO 口的信号会先经过 IRFLT 进行滤波,然后再送至 timerl 中进行边沿捕获。

图 1 IRFLT 模块示意图

图 2 输入时钟源 irflt_clk 时钟结构

10.2 寄存器 SFR 列表

1. JL_IRFLT->CON: irda filter configuration register

Bit	Name	RW	Default	Rrv	Description
7-4	PSEL	rw	X	-	时基发生器分频选择 0000: 分频倍数为 1 0001: 分频倍数为 2 0010: 分频倍数为 4 0011: 分频倍数为 8 0100: 分频倍数为 16 0101: 分频倍数为 32 0110: 分频倍数为 64 0111: 分频倍数为 128 1000: 分频倍数为 256 1001: 分频倍数为 512 1010: 分频倍数为 1024 1011: 分频倍数为 2048 1100: 分频倍数为 4096 1101: 分频倍数为 8192 1110: 分频倍数为 16384 1111: 分频倍数为 32768
3-2	TSRC	rw	X	-	时基发生器驱动源选择, 见图 1
1	RESERVED	-	-	-	预留
0	IRFLT_EN	rw	0	-	IRFLT 使能 0: 关闭 IRFLT 1: 打开 IRFLT

10.3 时基选择

PSEL 选定的分频倍数 N 和 TSRC 选定的驱动时钟的周期 Tc 共同决定了 IRFLT 用于采样红外接收信号的时基 Ts

Ts = Tc * N

例如,当选择 24MHz 的系统时钟,并且分频倍数为 512 时,Ts=21.3uS。根据 IRFLT 的工作规则,所有小于(21.3*3=63.9uS)的窄脉冲信号,均会被滤除。

第11章 MCPWM

11.1 模块说明

11.1.1 概述

MCPWM 功能模块包括: 3 个 MCTimer0 时基模块, 3 对独立的 PWM 通道, 3 路故障保护输入。框图如下:

图 1 MCPWM 模块示意图

11.1.2 定时器 MCTIMER

1.概述

MCTimer 是 16 位定时器,可作为 PWMx 的时基控制

2.模块特性

- (1) 16 位定时功能
- (2) 带缓冲的周期寄存器
- (3) 支持多种工作模式: 递增、递增-递减、外部引脚控制递增递减
- (4) 多种中断模式:上溢出中断、下溢出中断、上下溢出中断

3.注意: MCPWM 增加了一 BIT (MCPWM_CON BIT(16))用于开关 MCPWM 时钟,防止 MCPWM 模块不用时还有漏电;使用 MCPWM 之前需要打开这一 BIT

11.1.3 模块引脚

PWM0: PWMCHXH、PWMCHXL PWM1: PWMCHXH、PWMCH1L PWM2: PWMCHXH、PWMCH2L

.

故障输入引脚: FPIN

11.1.4 模块特性

- 1.边沿对齐和中心对齐输出模式
- 2.可运行过程中更改 PWM 频率、占空比
- 3.多种更新频率/占空比模式:上溢出重载、下溢出重载
- 4.灵活配置每对通道的有效电平状态
- 5.可编程死区控制
- 6.硬件故障输入引脚

11.2 数字模块控制寄存器

1. TMRx CON: Timer control register

	MRX_CON: I				David.
Bit	Name	RW	Default	RV	Description
31-16	RESERVED	-	-	-	预留
1.5	n.ce				递增递减标志位
15	INCF	rw	0	-	0: 递减 1: 递增
					递减借位标志
13	UFPND	r	0	-	0: 没借位
					1: 已发生借位
12	OEDNID		0		计数溢出(TMRXCNT==TMRXPR)标志
12	OFPND	r	0	-	0: 没溢出 1: 已发生溢出
					清除 UFPND 标志位
11	UFCLR	w	-	1	0: 无效
					1:清除 UFPND
					清除 OFPND 标志位
10	OFCLR	W	-	1	0: 无效 1: 清除 OFPND
9	UFIE	407.7	0	1	定时递减借位中断使能 0:禁止
9	OFIL	rw	U	1	0: 京 丘 1: 允许
					计数溢出中断使能
8	OFIE	rw	0	1	0: 禁止
					1: 允许
					定时器时钟源
7	CKSRC	rw	0	-	0: 内部时钟1: 外部引脚时钟
6-3	CKPS	rw	0	_	时钟预分频设置,TCK/(2^TCKPS)
2	RESERVED	1 W			新留
	KESEKVED	-	-	-	J. (八) 由

	JIEET TECHNOLOG				nttp://www.zn-jien.com/
					定时器工作模式
					00: 保持计数值
1-0	MODE	rw	0	-	01: 递增模式
					10: 递增-递减循环模式
					11: 递减模式

2. TMRx_CNT: counter initial value register

Bit	Name	RW	Default	RV	Description
15-0	TMR_CNT	rw	X	-	计数/定时初值

3. TMRx_PR: counter target value register

Bit	Name	RW	Default	RV	Description
15-0	TMR_PR	rw	X	-	计数/定时目标值

4. CHx_CON0: pwm configuration register0

Bit	Name	RW	Default	RV	Description
15-12	DTCKPS	rw	0	-	死区时钟预分频,Tsys/(2^DTCKPS)
11-7	DTPR	rw	0	-	死区时间控制 死区时间: Tsys/(2^DTCKPS)×(DTPR+1)
6	DTEN	rw	0	-	死区允许控制,对应 PWMCHxH、PWMCHxL 0: 禁止 1: 允许
5	L_INV	rw	0	-	对应 PWMCHxL 输出反向控制 0: 反向禁止 1: 反向允许
4	H_INV	rw	0	-	对应 PWMCHxH 输出反向控制 0: 反向禁止 1: 反向允许
3	L_EN	rw	0	-	对应 PWMCHxL 输出允许控制 0:禁止 PWMCHxH 1:允许 PWMCHxH
2	H_EN	rw	0	-	对应 PWMCHxH 输出允许控制 0:禁止 PWMCHxH 1:允许 PWMCHxH
1-0	CMP_LD	rw	0	-	CHx_CMP 重新载入控制 00: 时基 TMRX_CNT 等于"0"载入 01: 时基 TMRX_CNT 等于"0"或者等于 TMRX_PR 的时候载入 10: 时基 TMRX_CNT 等于 TMRX_PR 时载入

11: 立即载入

5. CHX_CON1: pwm control register1

Bit	Name	RW	Default	RV	Description
15	FPND	r	0	-	故障保护输入标志,只读,写无效读 0:未发生保护读 1:已发生保护,模块的 PWM 引脚会变成高阻态
14	FCLR	W	-	-	清除 FPND 标志位,只写,读为"0" 写 0: 无效 写 1: 清除 FPND
13-12	RESERVD	-	-	-	预留
11	INTEN	rw	0	1	FPND 中断允许 0: 禁止 1: 允许
10-8	TMRSEL	rw	0	-	选择 TMR0-7 作为 PWM 时基 0-7: 选择时基
7-5	RESERVED	-	-	-	预留
4	FPINEN	rw	0	1	故障保护输入允许控制 0: 禁止保护 1: 允许保护
3	FPINAUTO	rw	0	1	故障自动保护控制 0: 禁止自动保护 1: 允许自动保护 当检测到故障引脚有效信号时,自动把 PWM 引脚设成高阻态,直到软件清除 FPND。
2-0	FPINSEL	rw	0	-	故障保护输入引脚选择 0-7:选择 FPIN 作为保障输入(0-5 为 io 输入, 6-7 固定为 0)

6. CHX_CMPH: pwm high port compare register

Bit	Name	RW	Default	RV	Description
15-0	MMRX_PRH	rw	-	l -	带缓冲的 16 位比较寄存器,对应 PWMCHxH 引脚的占空比控制

7. CHX_CMPL: pwm low port compare register

Bit	Name	RW	Default	RV	Description
15-0	TMRX_PRL	rw	-	-	带缓冲的 16 位比较寄存器,对应 PWMCHxL 引脚的占空比控制

8. FPIN_CON: input filter control register

Bit	Name	RW	Default	RV	Description
23-16	EDGE	rw	0		FPINx 边沿选择 0: 下降沿 1: 上升沿
15-8	FLT_EN	rw	0	-	FLT_EN: FPINx 滤波使能开关 0: 滤波关闭 1: 滤波开启
7-6	RESERVED	-	-	-	预留
5-0	FLT_PR	rw	0	_	FLT_PR:滤波宽度选择 滤波宽度=16×FLT_PR×lsb_clk

9. MCPWM_CON: mcpwm control register

Bit	Name	RW	Default	RV	Description
16	CLK_EN	rw	0	-	mcpwm 模块时钟使能,配置 mcpwm 模块之前 先配该位为 1
15-8	TMR_EN	rw	0	-	定时器计数开关控制(tmr7-0) 0: 定时器计数关闭 1: 定时器计数打开
7-0	PWM_EN	rw	0	-	模块开关控制(pwm7-0) 0: 模块关闭 1: 模块开启

第 12 章 UART

12.1 UART 模块说明

UART 支持接收带循环 Buffer 的 DMA 模式和普通模式。

UART 在 DMA 接收的时候有一个循环 Buffer, UTx_RXSADR 表示它的起始, UTx_RXEADR 表示它的结束。同时,在接收过程中,会有一个超时计数器(UTx_OTCNT), 如果在指定的时间里没有收到任何数据,则超时中断就会产生。超时计数器是在收到数据的同时自动清空。

[注意]:

- 1. OT PND 触发流程,满足以下步骤,则可产生 OT PND:
 - (1) 写 UTx OTCNT,数值不为 0 启动 OT 功能;
 - (2) 收到 n 个 byte 数据;
- (3) 从最后一个下降沿开始,等待 OT 超时(每来一个下降沿都会重新计时,时钟与接收 baud clk 一致);
 - (4) 当 OTCNT 与超时时间相等, OT PND 置 1 (只能通过 CLR OTPND);
- 2. 读接收的数据数量时,先将 RDC 该 bit 写 1,接着 asm("csync")清空流水线,然后软件查询 RDC_OVER 置 1,置 1 后即可读取 HRXCNT 数值,RDC_OVER 只在 RDC 写 1 之后生效,平常为无效状态(不管 0 或 1);

12.2 数字模块控制寄存器

1. UTx CON0: uart x confrol register 0

Bit	Name	RW	Default	RV	Description
31-16	RESERVED	-	0	-	预留
15	TPND	r	1	-	The TX pending: 0: without pending 1: with pending
14	RPND	r	0	_	The RX pending & Dma_Wr_Buf_Empty:(数据接收不完 Pending 不会为 1) 0: without pending 1: with pending
13	CLRTPND	w	0	-	Clear TX pending: 0: useless 1: clear pending
12	CLRRPND	W	0	-	Clear RX pending: 0: useless 1: clear pending

_	JIELI TECHNOLOGY nttp://www.zn-jieli.com/									
	11	OTPND	r	0	-	OTPND: Over Time Pending				
	10	CLR_OTPND	w	0	-	CLR_OTPND: 清空 OTPND				
	9	RESERVED	-	0	-	预留				
	8	RDC_OVER	r	0	-	用于判断写RDC后数据是否已存入内存标志, RDC写1时会清零,当数据存入内存后置1				
	7	RDC	W	0	-	RDC:写1时,将已经收到的数目写到 UTx_HRXCNT,已收到的数目清零写0无效				
	6	RX_MODE	rw	0	-	RXMODE(*): 读模式选择 0: 普通模式,不用 DMA 1: DMA 模式				
	5	OT_IE	rw	0	-	OTIE:OT 中断允许 0: 不允许 1: 允许				
	4	DIVS	rw	0	-	DIVS: 前 3 分频选择, 0 为 4 分频, 1 为 3 分频				
	3	RXIE	rw	0	1	RXIE: RX 中断允许 当 RX Pending 为 1, 而且 RX 中断允许为 1, 则会产生中断				
	2	TXIE	rw	0	1	TXIE: TX 中断允许 当 TX Pending 为 1,而且 TX 中断允许为 1, 则会产生中断				
	1	UTRXEN	rw	0	1	UTRXEN:UART 模块接收使能				
	0	UTTXEN	rw	0	1	UTTXEN: UART 模块发送使能				

2. UTx_CON1: uart x control register 1

Bit	Name	RW	Default	RV	Description
15	CTSPND	r	0	0	CTSPND: CTS 中断 pending
14	RTSPND	r	0	0	RTSPND: RST 中断 pending
13	CLR_CTSPND	w	0	-	CLR_CTSPND: 清除 CTS pending
12	CLR_RTSPND	w	0	-	CLRRTS: 清除 RTS 0: N/A 1: 清空 RTS
11-10	预留	-	0	-	预留
9	TX_INV	rw	0	0	Tx 发送数据电平取反 0: 不取反 1: 取反
8	RX_INV	rw	0	0	Rx 发送数据电平取反 0: 不取反 1: 取反
7	CTS_INV	rw	0	-	CTS 流控有效电平选择 (对方允许我方发送数

J J	IELI TECHNOLOGY				http://www.zh-jieli.com/
					据) 0: 高电平有效 1: 低电平有效
6	RTS_INV	rw	0		RTS 流控有效电平选择(允许对方发送数据) 0: 高电平有效 1: 低电平有效
5	RX_BYPASS	rw	1	1	Rx 接收数据通路直通使能 0: 滤波输入 1: 直通输入
4	RX_DISABLE	r	1	0	关闭数据接收 0: 开启输入(正常模式) 1: 关闭输入(输入固定为 1)
3	CTSIE	rw	0	-	CTSIE: CTS 中断使能 0: 禁止中断; 1: 允许中断;
2	CTSE	rw	0	-	CTSE: CTS 使能 0: 禁止 CTS 硬件流控制; 1: 允许 CTS 硬件流控制;
1	RESERVED	-	0	-	预留
0	RTSE	rw	0		RTSE: RTS 使能 0:禁止 RTS 硬件流控制 1:允许 RTS 硬件流控制

3. UTx_CON2: uart x control register 2

Bit	Name	RW	Default	RV	Description
15-9	RESERVED	-	0	-	预留
8	CHK_PND	r	0	-	校验中断标志
7	CLR_CHKPND	w	0	-	校验中断 CHK_PND 清除,置 1 清除
6	CHK_IE	rw	0	1	校验中断使能,置1使能
5-4	CHECK_MODE	rw	0		校验模式选择 0: 常 0 1: 常 1 2: 偶校验 3: 奇校验
3	CHECK_EN	rw	0	0	校验功能使能位,置1使能
2	RB9	r	0	0	RB8: 9bit 模式时,RX 接收的第 9 位
1	RESERVED	-	0	-	预留
0	M9EN	rw	0	0	M9EN:9bit 模式使能

4. UTx_BAUD: uart x baudrate register

Bit Name RW Default RV	Description
------------------------	-------------

15-0 UTx_BAUD w 0x0 0x0 注释如下所示

uart 的 UTx DIV 的整数部分

串口频率分配器因子(UTx DIV)的整数部分

当 DIVS=0 时,

Baudrate = Freq sys / ((UTx BAUD+1) *4+BAUD FRAC)

当 DIVS=1 时,

Baudrate = Freq_sys / ((UTx_BAUD+1) *3+BAUD_FRAC)

(其中, Freq_sys 是 apb_clk, 指慢速设备总线的时钟, 非系统时钟)

5. UTx BUF: uart x data buffer register

Bit	Name	RW	Default	RV	Description
31-0	RESERVED	-	0	-	预留
7-0	UT_BUF	W	0x0	0x0	uart 的收发数据寄存器 写 UTx_BUF 可启动一次发送 读 UTx_BUF 可获得已接收到的数据

6. UTx TXADR: uart x TX DMA buffer register

Bi	t	Name	RW	Default	RV	Description
31-2	25	RESERVED	-	0	-	预留
24-	-0	UT_BUF	w	0x0	0x0	DMA 发送数据的起始地址

7. UTx_TXCNT: uart x TX DMA buffer register

Bit	Name	RW	Default	RV	Description
31-0	UTx_TXCNT	w	0x0	0x0	写 UTx_TXCNT,控制器产生一次 DMA 的操作,同时清空中断,当 uart 需要发送的数据达到 UTx_TXCNT 的值,控制器会停止发送数据的操作,同时产生中断(UTx_CON[15]).

8. UTx_RXCNT: uart x RX DMA counter register

Bit	Name	RW	Default	RV	Description
31-0	UTx_RXCNT	W	0x0	0x0	写 UTx_RXCNT,控制器产生一次 DMA 的操作,同时清空中断,当 uart 需要接收的数据达到 UTx_RXCNT 的值,控制器会停止接收数据的操作,同时产生中断(UTx_CON[14]).

9. UTx RXSADR: uart x RX DMA start address register

Bit	Name	RW	Default	RV	Description
31-25	RESERVED	-	0	-	预留

	24-0	UTx_RXSADR	w	0x0	0x0	DMA 接收数据时,循环 buffer 的结束地址,需 4byte 地址对齐
--	------	------------	---	-----	-----	--

10. UTx_RXEADR: uart x RX DMA end address register

Bit	Name	RW	Default	RV	Description
31-25	RESERVED	-	0	-	预留
24-0	UTx_RXEADR	W	0x0		DMA 接收数据时,循环 buffer 的结束地址, 需 4byte 地址对齐

11. UTx_HRXCNT: uart x have RX DMA counter register

Bit	Name	RW	Default	RV	Description
31-0	UTx_HRXCNT	r	0x0	0x0	当设这 RDC(UTx_CON[7])=1 时,串口设备会 将 当 前 总 共 收 到 的 字 节 数 记 录 到 UTx_HRXCNT 里。

12. UTx_OTCNT: uart x Over Timer counter register

Bit	Name	RW	Default	RV	Description
31-0	UTx_OTCNT	w	0x0	0x0	设置串口设备在等待 RX 下降沿的时间,在设置的时间内没收到 RX 下降沿,则产生OT_PND Time(ot) = Time(rx_baud_clk)*UTx_OTCNT;例如: 接收波特率时间为 100ns, UTx_OTCNT=10 那么 OT 的时间即为 1000ns

13. UTx_ERR_CNT: uart x error byte counter register

Bit	Name	RW	Default	RV	Description
31-0	UTx_ERR-CNT	r	0x0	-	校验错误数量计数,当打开 CHECK_EN 后,当第一次校验出错时,该寄存器会记录当前 byte 对应的数量。 [注意]:只记录第一次出错的数量,清除 CHK_PND 会重新记录。

第 13 章 IO_Mapping_Control

13.1 模块说明

13.1.1 概述

IOMC(IO remapping control)控制寄存器主要用于控制 IO 除 crossbar 之外的一些拓展功能的配置

1、芯片 IO 功能以及参数如下:

10 1	10 米刑	A 1	固定 IOmapping							
IO pad	I0 类型	Analog	Reset	SFC	SPI0	TMR&MCPWM	MIC, DAC	others		
PA0 (升级) (rom下拉)	HVT					TMRO				
PA1	SDR					TMR1		LVD		
PA2 (上拉) (注1)	SDR		PINR (注 2)			TMR2				
PA3	SDR					TMR3				
PA4	SDR	ADC0				IRFLT	AIN_AP1			
PA5	SDR	ADC1					AIN_AP2/DAC			
PA6	SDR					CAP0	AIN_AP3/ AIN_AN			
PA7	SDR					CAP1	AIN_AP4/MIC _BIAS			
PA8	SDR	ADC2					AIN_APO			
PA9	SDR			SFC_DAT (2)	spiO_DATA(2					
PA10	SDR			SFC_DAT (3)	spiO_DATA(3					
PA11	SDR	AINP			spiO_DATB(2					
PA12	SDR	AINN			spi0_DATB(3	MCPWM_PPI NO				
PA13	SDR	ADC3			spi0_CLKB					
PA14	SDR	ADC4			spi0_DOB(0)					

<u> </u>	CHNOLOGI					 nttp.//v	vww.zn-jien.co
PA15	SDR	ADC5			spi0_D0B(1)		
PB0							
(上拉)	SDR		MCLR				
(注3)							
PB1	SDR						32KOSCI
PB2	SDR						32KOSCO
PB3	SDR						
PB4	SDR						
PB5	HVT						
PB6	HVT						
PF0	SDR			SFC_CLK	spiO_CLKA		
(注3)	אעכ			SFC_CLK	Spio_clka		
PF1	SDR			SFC_D0(0)	spi0_DOA(0)		
PF2	SDR			SFC_DI(1)	spiO_DIA(1)		
PF3	SDR			SFC_CS	spiO_CSA		
SFPG							
(ROM 驱动)	模拟			FLASH POWER			
(注5)							
USBDP							
(下拉)	模拟	ADC6					
(注 5)							
USBDM							
(下拉)	模拟	ADC7					
(注5)							
APAP	模拟						
APAN	模拟						

- 注1: 上拉和长按复位使能一起,可以通过1 bit efuse 控制可以默认关闭
- 注 2: 长按复位引脚单独定义一种 lat 类型,一旦软件操作锁住后只有等 LV0 级复位后才能
- 解锁,增加安全性
- 注 3: 上拉和 MCLR 复位使能一起,可以通过 1 bit efuse 控制可以默认关闭
- 注:4: FLASH CS 管脚由 MASKROM 设置上拉
- 注 5: maskrom 里面如啊关机唤醒时软件通过 soft flag 恢复 IO 状态
- 2、所有 IO 上下拉电阻、驱动电流等参数说明:

	上拉	下拉	IE=0	IEH=0	Input schmitt VH	Input schmitt VL
所有 IO	10K	10K	1.1V	3.0V	1.7V	1.3V
	100K	100K	Input = 0	Input=0		
	1M	1M				
For VDDIO	HD, HD0=00	HD, HD0=01	HD, HD0=10	HD, HD0=11	输出驱动力为	IR DROP 10%的
3.0V					值;不区分驱动	动高、低电平
SDR IO	3mA	8mA	20mA	40-50mA		

HVT IO 8mA 8mA 8mA 8mA

	驱动电流	Input schmitt VH	Input schmitt VL	上拉	下拉	差分输入共 模电压
USBDP	30mA	1.85V	1.45V	1.5K	15K	VCM=1.65v
USBDM	30mA	1.85V	1.45V	180K	15K	

13.1.2 I0 中断

IO Wakeup 是一个异步事件唤醒模块。它可以将处于 standby/sleep(不同于 PMU 休眠)状态下的系统唤醒,进入正常工作模式。当系统处于正常模式时,则 Wakeup 源作为中断源, Wakeup 模块有 25 个唤醒事件来源,分别对应 25 个 IO 电平变化。

IO 中断源有以下 25 个:

事件 0: PA0

事件 1: PA1

事件 2: PA2

事件 3: PA3

事件 4: PA4

事件 5: PA5

事件 6: PA6

事件 7: PA7

事件 8: PA8

事件 9: PA9

事件 10: PA10

事件 11: PA11

事件 12: PA12

事件 13: PA13

事件 14: PA14

事件 15: PA15

事件 16: PB0

事件 17: PB1

事件 18: PB2 事件 19: PB3

事件 20: PB4

事件 21: PB5

事件 22: PB6

事件 23: USBDP

事件 24: USBDM

13.2 数字模块控制寄存器

1. IOMC0: IO Mapping Control register0

Bit	Name	RW	Default	RV	Description
31-28	RESERVED	-	-	-	预留
27	TMR3_IO_EN	rw	0	-	TMR3_PWM 固定 IO 输出使能
26	TMR2_IO_EN	rw	0	-	TMR2_PWM 固定 IO 输出使能
25	TMR1_IO_EN	rw	0	-	TMR1_PWM 固定 IO 输出使能
24	TMR0_IO_EN	rw	0	-	TMR0_PWM 固定 IO 输出使能
13-11	MCPWM_CROSS BAR	-	-	-	MCPWM_CROSSBAR 输出使能 0:固定 IO 模式 1:crossbar 模式
10-8	SPI_ICK_SEL	rw	0	-	SPI 输入时钟延迟级数选择
7	SPI_DUPLEX	rw	0	-	SPI 从机输入时钟选择 0: spi1_clki 1: spi0_clko
6	SPI0_IOS	-	-	-	SPI 固定端口组选择 0: A组 1: B组
5-4	RESERVED	-	-	-	预留
3	CAP_MUX_EDGE	rw	0	-	CAP0_ICH 输出极性选择 0: 不变 1: 取反
2-0	RESERVED	-	-	-	预留

2. OCH_CON0: output channel control register0

Bit	Name	RW	Default	RV	Description
23-1	OCH3_SEL	rw	0	-	通用输出通道选择 0: tmr0_pwm 1: tmr1_pwm 2: tmr2_pwm 3; tmr3_pwm 4: mc_pwm0_h 5: mc_pwm0_l 6: mc_pwm1_h 7: mc_pwm1_l 8: mc_pwm2_h 9: mc_pwm2_l 10: uart2_rts 11: clk_out0 12: clk_out1 13: clk_out2 14: gp_ich0 15: gp_ich1

17-1 2	OCH2_SEL	rw	0x0	-	同 OCH3_SEL
11-6	OCH4_SEL	rw	0x0	-	同 OCH3_SEL
5-0	OCH3_SEL	rw	0x0	-	同 OCH3_SEL

3. ICH_CON0: input channel control register0

Bit	Name	RW	Default	RV	Description
31-28	ICH7_SEL (TMR3_CAP)	rw	0	-	功能输入通道选择 0-3: gp_ich0-gp_ich3 4: tmr2_pwm 5: tmr3_pwm
27-24	ICH6_SEL (TMR2_CAP)	rw	0	-	同 ICH7 选项
23-20	ICH5_SEL (TMR1_CAP)	rw	0	-	同 ICH7 选项
19-16	ICH4_SEL (TMR0_CAP)	rw	0		同 ICH7 选项
15-12	ICH3_SEL (TM3_CIN)	rw	0		同 ICH7 选项
11-8	ICH2_SEL (TMR2_CIN)	rw	0		同 ICH7 选项
7-4	ICH1_SEL (TMR1_CIN)	rw	0		同 ICH7 选项
3-0	ICH0_SEL (TMR0_CIN)	rw	0		同 ICH7 选项

4. ICH_CON1: input channel control register1

Bit	Name	RW	Default	RV	Description
31-28	ICH15_SEL (UART1_CTS)	rw	0	-	同 ICH7 选项
27-24	ICH14_SEL (ICH_IRFLT)	rw	0	-	同 ICH7 选项
23-20	ICH13_SEL (mcpwm2_fp)	rw	0	-	同 ICH7 选项
19-16	ICH12_SEL (mcpwm1_fp)	rw	0		同 ICH7 选项
15-12	ICH11_SEL (mcpwm0_fp)	rw	0		同 ICH7 选项
11-8	ICH10_SEL (mcpwm2_ck)	rw	0		同 ICH7 选项
7-4	ICH9_SEL	rw	0		同 ICH7 选项

				ite 5077 W William Tellicollin	_
	(mcpwm1_ck)				Ī
3-0	ICH0_SEL (mcpwm0_ck)	rw	0	同 ICH7 选项	

5. ICH_CON2:input channel control register2

Bit	Name	RW	Default	RV	Description
23-20	RESERVED	-	-	-	预留
19-16	ICH20_SEL (ass_bdg_dati)	rw	0	-	同 ICH7 选项
15-12	ICH19_SEL (ext_clk)	rw	0	-	同 ICH7 选项
11-8	ICH18_SEL (clk_pin)	rw	0	-	同 ICH7 选项
7-4	ICH17_SEL (ich_cap)	rw	0	-	同 ICH7 选项
3-0	ICH16_SEL (wlc_ext_act)	rw	0	-	同 ICH7 选项

6. WKUP_CON0: wakeup enable control register

Bit	Name	RW	Default	RV	Description
31-0	WKUP_EN	rw	0x0	-	对应唤醒源使能 0: 关闭唤醒功能 1: 打开唤醒功能

7. WKUP_CON1: wakeup edge control register

Bit	Name	RW	Default	RV	Description
31-0	WKUP_EDGE	rw	0x0		对应唤醒源边沿选择 0: 上升沿唤醒 1: 下降沿唤醒

8. WKUP_CON2: wakeup clear pending control register

Bit	Name	RW	Default	RV	Description
31-0	WKUP_CPND	w	0x0	-	对应唤醒源中断清除,写1清零

9. WKUP_CON3: wakeup pending control register

Bit	Name	RW	Default	RV	Description
31-0	WKUP_PND	r	0x0	-	对应唤醒源中断标记

第 14 章 SDC

14.1 模块说明

14.1.1 概述

SD 接口是一个标准的遵守 SD 协议的串行通讯接口,在上面传输的数据 1Byte(8bit)为最小单位。

- ◆ SD 接口只支持主机模式;
- ◆ SD 接口支持 1bit data 和 4bit data 模式;
- ◆ 1bit data 模式: 串行数据通过一根 DAT 线传输, 一个字节需要 8 个 SD 时钟;
- ◆ 4bit data 模式: 串行数据通过四根 DAT 线传输, 一个字节需要 2 个 SD 时钟;
- ◆ SD 接口支持高速模式和低速模式,最高始终速度可以达到 50MHz;
- ◆ SD 接口支持命令 DMA 和数据 DMA,两个 DMA 是相互独立的;

第 15章 USB BRIDGE

15.1 模块说明

15.1.1 概述

- 1、负责控制系统与 USB 模块之间的通讯,包括:
 - (1) 接收 CPU 的命令,控制 SIE;
 - (2) 管理 endpoint mapping;
 - (3) 负责 SIE 和 memory 通讯;
 - (4) 控制 USB PHY

USB I/O 可以做普通 I/O 使用,其中:

	PU 上拉电阻 (单位: 欧姆)	PD 下拉电阻 (单位: 欧姆)
USB DM	180K	15K
USB DP	1.5K	15K