Question 1: Smart Bubble Sort Decision Tree

Question 2: Program to Check if the "else" Branch is Taken

- 1. Assume such a program (C) exists
- 2. Construct Q as follows:

```
def Q():
if P(i) != P(i):
    print('if')
else:
    print('else')
```

Q will execute the else branch if and only if P terminates on i. Therefore, if C can tell whether Q will execute the else branch, C can tell if P terminates on i, and solves the halting problem. However, we know this is impossible, so we have a contradiction – our assumption that C exists must be wrong.

Question 3: Can a sorting algorithm run in log time on $n!^{(1/sqrt(n))}$ of its inputs?

Longest path has to take $\log_2(n!)$ comparisons with n! leaves. If we have k leaves, it will take $\log_2(k)$. Here, this is: $\log(n!^{\hat{}}(1/\operatorname{sqrt}(n)))$. Taking the power to the front, you get: $1/\operatorname{sqrt}(n) * \log(n!)$.

We already know log(n!) [...]

Question 4: Separation

 $[\dots]$

Question 5: Prefix Code Forbidden Numbers

[...]

Question 6

(a) Modularity Inequality

• many people gave size-based version, when output-based was what was wanted

(b) True

 $\bullet\,$ can show this using Gödel encoding

(c) True

• can show this as prime numbers is a subset of N

(d) False

• power set of N is equivalent to set of infinite binary sequences