ENEL 469: Analog Electronic Circuits Quiz-1, Fall 2023

Total marks: 28; Time: 11:00 am - 12:30 pm

ID (Optional)	First Name (PRINT)	Last Name (PRINT)
y.		

- 1. [Total 10] Circle True or False for the following statements.
 - a) [2] The following temperature relationship satisfies the given IV characteristic curves.

$$T_2 > T_1 > T_0$$

Answer: True

b) [2] The direction of the electric field due to the depletion region changes when the biasing across the diode junction changes from forward to reverse or vice versa.

Answer: True

c) [2] For the transistor biasing shown below, the E-B junction is forward-biased, and the C-B junction is reverse-biased.

Answer: True

d) [2] For an npn transistor, the holes in the base region can easily cross the collector-base (C-B) junction despite the reverse bias applied to the C-B junction.

Answer: True

e) [2] For a pnp transistor, the collector current is slightly higher than the emitter current.

Answer: True

2. [3] The base-emitter junction of a pnp transistor is reversed biased by 2.0 V, and the common-emitter current gain β of the transistor is 80. Determine the collector current I_C of the transistor in mA. Ignore all leakage currents in your calculation.

[Total 5] Consider the following circuit, where V_{CC} = 12 V, V_{CE} = 6 V, R_C = 1.5 k Ω , β = 110, $V_{BE(on)}$ = 0.7 V, $V_{SE(Sat)}$ = 0.2 V and I_2 = 80 μ A. Determine the value of the resistor R_1 in $k\Omega$.

Soln:

Soln:
$$I_{c} = \frac{V_{cc} - V_{cE}}{R_{c}}$$

$$I_{c} = 4 \text{ m/A}$$

$$I_{B} = \frac{I_{c}}{P} = 36.4 \text{ M/A}$$
Thus,
$$I_{1} = I_{B} + I_{2} = 116.4 \text{ M/A}$$

$$R_{1} = \frac{V_{cc} - 0.7}{I_{1}}$$

+ Vcc

\$RC

₹R2

- 4. [Total 10] Consider the given circuit. Given, $V_{BE(on)} = 0.7V$, $\beta = 52$, $V_{CC} = 14V$, $R_C = 2 k\Omega$, and $R_{12} = 175 k\Omega$.
 - a) [4] Determine the collector current I_C in mA for the given circuit. Do not consider $I_C = I_E$

≷RC

RB

b) [3] The collector-emitter voltage V_{CE} .

c) [2] The collector-base voltage V_{CB} .