Theorem 3.3: The Completeness Axiom

Recall the Fundamental Theorem of Arithmetic:

if $n \in \mathbb{N}$ with $n \geq 2$, then n may be expressed as the product of prime numbers (the prime factorization (PF)).

The PF is unique with respect to (WRT) order.

Ex: 12 = 2 * 2 * 2 * 3

Theorem 3.3.1

Let: p be a prime number

Then $\sqrt{p} \in \mathbb{R} \setminus \mathbb{Q}$

Proof.

Assume: $\sqrt{p} \in \mathbb{Q}$

Then $\sqrt{p} = \frac{a}{b}$, where a, b $\in \mathbb{N}$ and gcd(a, b) = 1

So,

 $p = \frac{a^2}{b^2}$

 $a^2 = pb^2$

therefore,

$$p|a^2 \tag{1}$$

 $p|a^2 \Rightarrow \exists k \in \mathbb{Z} \text{ st } a^2 = pk$

Since the PF of a^2 and a contain exactly the same distinct primes,

(i.e.
$$a = p_1 \times p_2 \times \dots p_n \Rightarrow a^2 = p_1^2 \times p_2^2 \times \dots p_n^2$$
)

and since p is prime (i.e. p is a component of a^2 but can't be, say, p_2^2 because that would mean it has an integer square root and therefore isn't prime), it has to be one of the p_n 's,

 $p \mid a$.

Thus, $\exists k \in \mathbb{Z} \text{ st. } a = pk.$

Then $a^2 = p^2k^2 = pb^2$ from (1).

Thus, $b^2 = pk^2$, and we see that $p \mid b^2$.

However, we obtain the contradiction that $p \mid b$ and $p \mid a$.

Hence, $\sqrt{p} \in \mathbb{R} \setminus \mathbb{Q}$.

Definition 3.3.7

Let $S \subset \mathbb{R}$.

If $\exists m \in \mathbb{R} \text{ st } s \leq m \ \forall s \in S$,

then m is an upper bound of S and we say that S is **bounded above**.

Similarly, we can define **bounded below**.

If S is bounded above and below, then S is said to be **bounded**.

S can be open or closed. The example below is closed.

If an upper bound m of S is a member of S, then m is called the maximum (or largest element) of S, and we say that $m = \max S$.

$$-n-[-S-m-$$

Similarly, we may decline **minimum of S (min S)**.

Theorem 1

If a set $S \subset \mathbb{R}$ possesses a max element, then it is unique. A similar result holds for a minimum element.

Proof.

Suppose: $\exists m_1, m_2 \in \mathbb{R} \text{ st } m_1 = \max S, m_2 = \max S$

Thus, $m_1, m_2 \in S$ and, $\forall s \in S$

$$s \le m_1 \tag{1}$$

$$s \le m_2 \tag{2}$$

Let $\max = m_1$ in (1) and $\max = m_2$ in (2) to obtain that $m_2 \le m_1$ and $m_1 \le m_2$, Hence, $m_1 = m_2$.

Definition 3.3.5 (supremum defined)

Let $\emptyset \neq S \subset \mathbb{R}$ if S is bounded above,

then the **least upper bound** of S is called the **supremum** of S, denoted by sup $S \in \mathbb{R}$ iff:

a.
$$s \leq \sup S \ \forall \ s \in S$$

b.
$$\exists s' \in S \text{ st sup } S - \epsilon < s' \ \forall \ \epsilon > 0$$

Axiom of Completeness of the set of Real Numbers: \mathbb{R}

Every $\emptyset \neq S \subset \mathbb{R}$ that is bounded above has a least upper bound (i.e. $S \in \mathbb{R}$ exists).

A similar statement can be made about inf S.

Remark: In practice 3.3.4, the set $T = \{q \in \mathbb{Q} : 0 \le q \le \sqrt{2}\}$ is bounded.

But $\sqrt{2}$ is not rational, so the set wouldn't have a least upper bound. We need to fill in the gaps to make analysis work.

Examples (#3, page 132):

a.
$$S=\{1,3\}$$

$$\sup S=3 \longrightarrow \text{since } s\leq 3 \; \forall \; s\in S \text{ and } 3-\epsilon<3$$
b. similar to a.

c.
$$S = (0, 4]$$

 $\sup S = 4, \max S = 4$

d.
$$S = (0, 4)$$

$$\sup S = 4 \longrightarrow \text{since } s \le 4 \ \forall \ s \in S \ \text{and} \ 4 - \epsilon < s' \in S$$

$$\max S = \text{undefined. There is no max.}$$

e.
$$S=\{\frac{1}{2n}:n\in\mathbb{N}\}$$

$$\sup S=\frac{1}{2}$$

$$\max S=\frac{1}{2} \text{ (if the supremum is in the set, then } \max=\sup)$$

f.
$$S = \{ 1 - \frac{1}{2n} : n \in \mathbb{N} \}$$

 $\sup S = 1$
 $\max S = \text{undefined } (1 \not\in \mathbb{R})$