En injectant ceci dans (4.4), on arrive à l'estimation recherchée.

4.4.3 Exemple 3

On pose $\boldsymbol{p}_k := A\boldsymbol{x}^{(k)} - \boldsymbol{b}$, et on prend $\boldsymbol{v}_k = A^{\top}\boldsymbol{p}_k$, ainsi que $\boldsymbol{w}_k = A\boldsymbol{v}_k = AA^{\top}\boldsymbol{p}_k$. La méthode de projection 1D correspondante s'écrit alors

$$\left\{egin{aligned} oldsymbol{p}_k &= \mathrm{A}oldsymbol{x}^{(k)} - oldsymbol{b} \ oldsymbol{v}_k &= \mathrm{A}^ op oldsymbol{p}_k \ lpha_k &= |oldsymbol{v}_k|_2^2/|\mathrm{A}oldsymbol{v}_k|_2^2 \ oldsymbol{x}^{(k+1)} &= oldsymbol{x}^{(k)} - lpha_k oldsymbol{v}_k. \end{aligned}
ight.$$

Ici on ne suppose rien sur la matrice A sinon qu'elle est inversible.

4.5 Méthodes de Krylov

Rappelons que si $A \in \mathbb{R}^{n \times n}$ alors d'après le théorème de Cayley-Hamilton, il existe $c_j \in \mathbb{R}$, $j = 1 \dots n$ tel que $A^n + c_1 A^{n-1} + \dots + c_{n-1} A + c_n Id = 0$. Si A est inversible, on a $c_n \neq 0$ de sorte que $-(A^n + \dots + c_{n-1}A)/c_n = Id$. Dans le membre de gauche de cette dernière égalité on peut factoriser A, et on obtient

$$A \cdot Q(A) = Id$$

avec $Q(X) := -\frac{1}{c_n} X^{n-1} - \frac{c_1}{c_n} X^{n-2} - \dots - \frac{c_{n-2}}{c_n} X - \frac{c_{n-1}}{c_n}$

c'est-à-dire $A^{-1} = Q(A)$ où $Q(X) \in \mathbb{P}_{n-1}[X]$ est un polynôme de degré au plus n-1. A présent si l'on s'intéresse à résoudre $A\boldsymbol{x}_{\star} = \boldsymbol{b}$, en considérant un $\boldsymbol{x}^{(0)} \in \mathbb{R}^n$ quelconque, et en posant $\boldsymbol{r}_0 := A\boldsymbol{x}^{(0)} - \boldsymbol{b}$, on a

$$\begin{cases} A(\boldsymbol{x}_{\star} - \boldsymbol{x}^{(0)}) = -(A\boldsymbol{x}^{(0)} - \boldsymbol{b}) = -\boldsymbol{r}_{0} \\ \boldsymbol{x}_{\star} = \boldsymbol{x}^{(0)} - A^{-1}\boldsymbol{r}_{0} = \boldsymbol{x}^{(0)} - Q(A)\boldsymbol{r}_{0} \end{cases}$$

Il est alors naturel de rechercher une approximation de \boldsymbol{x}_{\star} dans l'espace $\boldsymbol{x}_0 + \mathfrak{K}_k$, pour un certain $k \geq 1$, où $\mathfrak{K}_k \subset \mathbb{R}^n$, appelé espace de Krylov d'ordre k, est défini par

$$\mathfrak{K}_k = \text{vect}\{\boldsymbol{r}_0, \mathbf{A}\boldsymbol{r}_0, \dots, \mathbf{A}^{k-1}\boldsymbol{r}_0\}$$

Lemme 4.5.1.

Il existe un entier $k_0 \leq n$ critique tel que $\mathfrak{K}_0 \subset \mathfrak{K}_1 \subset \cdots \subset \mathfrak{K}_{k_0} = \mathfrak{K}_{k_0+1} = \cdots = \mathfrak{K}_n$ avec $\mathfrak{K}_j \neq \mathfrak{K}_{j+1}$ pour $j < k_0$.

Démo:

Tout d'abord, on sait d'après le théorème de Cayley-Hamilton, que $A^n \mathbf{r}_0 \in \mathfrak{K}_n$ de sorte que $\mathfrak{K}_n = \mathfrak{K}_{n+1}$. Nous allons montrer que pour k satisfaisant $\mathfrak{K}_k = \mathfrak{K}_{k+1}$, on a $\mathfrak{K}_k = \mathfrak{K}_{k+p} \forall p \geq 0$. On aura alors montré qu'un k_0 tel que mentionné dans l'énoncé existe et que forcément $k_0 \leq n$. Il restera alors à prendre le plus petit de tels k_0 .

Soit donc $k \leq n$ tel que $\mathfrak{K}_k = \mathfrak{K}_{k+1}$. Procédons par récurrence sur p pour démontrer la

propriété souhaitée. Pour p=1 on sait que $\mathfrak{K}_k=\mathfrak{K}_{k+p}$. Supposons maintenant que pour $p\geq 0$ on ait $\mathfrak{K}_k=\mathfrak{K}_{k+1}=\cdots=\mathfrak{K}_{k+p}$ et montrons que $\mathfrak{K}_k=\mathfrak{K}_{k+p+1}$. Soit $\boldsymbol{x}\in\mathfrak{K}_{k+p+1}$. Ce vecteur se décompose sous la forme $\boldsymbol{x}=\boldsymbol{y}+\alpha A^{k+p}\boldsymbol{r}_0$ pour $\boldsymbol{y}\in\mathfrak{K}_{k+p}=\mathfrak{K}_k, \alpha\in\mathbb{R}$. Il suffit donc de démontrer que $A^{k+p}\boldsymbol{r}_0\in\mathfrak{K}_k$ pour conclure que $\boldsymbol{x}\in\mathfrak{K}_k$, et donc que $\mathfrak{K}_{k+p+1}\subset\mathfrak{K}_k$. Comme $A^{k+p-1}\boldsymbol{r}_0\in\mathfrak{K}_{k+p}=\mathfrak{K}_k$, il existe des coefficients $c_j\in\mathbb{R}, j=0\ldots k-1$ tels que $A^{k+p-1}\boldsymbol{r}_0=c_0\boldsymbol{r}_0+c_1A\boldsymbol{r}_0+\cdots+c_kA^k\boldsymbol{r}_0$. On a alors

$$A^{k+p} \boldsymbol{r}_0 = A(A^{k+p-1} \boldsymbol{r}_0)
 = A(\sum_{j=0}^{k-1} c_j A^j \boldsymbol{r}_0) = \sum_{j=0}^{k-1} c_j A^{j+1} \boldsymbol{r}_0 = \sum_{j=1}^{k} c_{j-1} A^j \boldsymbol{r}_0 \in \mathfrak{K}_{k+1} = \mathfrak{K}_k$$

Ce qui conclue la preuve.

4.5.1 La méthode du gradient conjugué

La méthode du gradient conjugué s'applique dans le cas où la matrice A est symétrique définie positive, ce que nous supposerons jusqu'à la fin de ce paragraphe. Elle consiste à calculer la suite $(x_k)_{k>0}$ définie par :

$$\begin{cases} \boldsymbol{x}^{(k)} \in \boldsymbol{x}^{(0)} + \mathfrak{K}_k \\ \boldsymbol{y}^{\top} (\mathbf{A} \boldsymbol{x}^{(k)} - \boldsymbol{b}) = 0 & \forall \boldsymbol{y} \in \mathfrak{K}_k. \end{cases}$$

$$(4.5)$$

D'après ce qui précède, ces équations définissent $\boldsymbol{x}^{(k)}$ de manière unique pour chaque k. Montrons que pour k suffisament grand, on obtient la solution du système linéaire de départ.

Lemme 4.5.2.

Soit k_0 l'entier critique du lemme 4.5.1 pour lequel $\mathfrak{K}_{k_0} = \mathfrak{K}_{k_0+1}$. Alors on a $A\mathbf{x}^{(k_0)} = \mathbf{b}$ de sorte que $\mathbf{x}^{(k_0)} = \mathbf{x}_{\star}$.

Démo:

On a

$$\mathbf{A}\boldsymbol{x}^{(k_0)} - \boldsymbol{b} = \mathbf{A}\underbrace{(\boldsymbol{x}^{(k_0)} - \boldsymbol{x}^{(0)})}_{\in \mathfrak{K}_{k_0}} + \underbrace{\mathbf{A}\boldsymbol{x}^{(0)} - \boldsymbol{b}}_{\in \mathfrak{K}_{k_0}}$$

Comme par ailleurs on a $\mathbf{A}(\mathfrak{K}_{k_0}) \subset \mathfrak{K}_{k_0+1} = \mathfrak{K}_{k_0}$, on en déduit que $\mathbf{A}\boldsymbol{x}^{(k_0)} - \boldsymbol{b} \in \mathfrak{K}_{k_0}$. On impose aussi par ailleurs $\boldsymbol{y}^{\top}(\mathbf{A}\boldsymbol{x}^{(k_0)} - \boldsymbol{b}) = 0$ pour tout $\boldsymbol{y} \in \mathfrak{K}_{k_0}$. En prenant $\boldsymbol{y} = \mathbf{A}\boldsymbol{x}^{(k_0)} - \boldsymbol{b}$, on en tire $|\mathbf{A}\boldsymbol{x}^{(k_0)} - \boldsymbol{b}|_2^2 = 0 \Rightarrow \mathbf{A}\boldsymbol{x}^{(k_0)} - \boldsymbol{b} = 0$.

Théorème 4.5.1.

On considère une matrice symétrique définie positive $A \in \mathbb{R}^{n \times n}$. On considère $\mathbf{x}^{(0)}, \mathbf{b} \in \mathbb{R}^n$ fixés, et on pose $\mathbf{r}_0 := \mathbf{A}\mathbf{x}^{(0)} - \mathbf{b}$. On définit alors les trois suites $(\mathbf{x}^{(k)})_{k \geq 0}, (\mathbf{r}_k)_{k \geq 0}, (\mathbf{p}_k)_{k \geq 0}$ par :

$$\boldsymbol{x}^{(k+1)} = \boldsymbol{x}^{(k)} - \alpha_k \boldsymbol{p}_k \tag{4.6a}$$

$$\boldsymbol{r}_{k+1} = \boldsymbol{r}_k - \alpha_k \mathbf{A} \boldsymbol{p}_k \tag{4.6b}$$

$$\boldsymbol{p}_{k+1} = \boldsymbol{r}_{k+1} + \beta_k \boldsymbol{p}_k \tag{4.6c}$$

$$avec \quad lpha_k = rac{|oldsymbol{r}_k|_2^2}{|oldsymbol{p}_k|_{
m A}^2} \quad et \quad eta_k = rac{|oldsymbol{r}_{k+1}|_2^2}{|oldsymbol{r}_k|_2^2}$$

Alors la suite $x^{(k)}$ construite selon la récurrence (4.6) coincide avec la suite des itérés de la méthode du gradient conjugué (4.5).

Démo:

D'après les relations de récurrence (4.6a) et (4.6b) ci-dessus, on a $\mathbf{A}\boldsymbol{x}^{(k+1)} - \boldsymbol{b} - \boldsymbol{r}_{k+1} = \mathbf{A}\boldsymbol{x}^{(k)} - \boldsymbol{b} - \boldsymbol{r}_k = \mathbf{A}\boldsymbol{x}^{(k-1)} - \boldsymbol{b} - \boldsymbol{r}_{k-1} = \cdots = \mathbf{A}\boldsymbol{x}^{(0)} - \boldsymbol{b} - \boldsymbol{r}_0 = 0$. On en déduit donc simplement

$$r^{(k)} = Ax^{(k)} - b \quad \forall k \ge 0.$$

D'après (4.6b) et (4.6c), on a aussi $r_k, p_k \in \mathfrak{K}_{k+1} \Rightarrow r_k, Ap_k \in \mathfrak{K}_{k+2} \Rightarrow r_{k+1} \in \mathfrak{K}_{k+2} \Rightarrow p_{k+1} \in \mathfrak{K}_{k+2}$. Par récurrence on en déduit alors

$$r_k, p_k \in \mathfrak{K}_{k+1} \quad \forall k \geq 0.$$

On en tire également $\boldsymbol{x}^{(k)} \in \boldsymbol{x}^{(0)} + \mathfrak{K}_k \Rightarrow \boldsymbol{x}^{(k+1)} \in \boldsymbol{x}^{(0)} + \mathfrak{K}_{k+1}$. En raisonnant à nouveau par récurrence, on en déduit de même

$$\boldsymbol{x}^k \in \boldsymbol{x}^{(0)} + \mathfrak{K}_k \quad \forall k > 0.$$

Nous venons d'établir que la suite des $\boldsymbol{x}^{(k)}$ construits selon (4.6) vérifient la première équation de (4.5). Pour conclure, d'après il reste donc à démontrer qu'on a par ailleurs $\boldsymbol{y}^{\top}(\mathbf{A}\boldsymbol{x}^{(k)}-\boldsymbol{b})=0 \ \forall \boldsymbol{y} \in \mathfrak{K}_k$, c'est-à-dire $\boldsymbol{y}^{\top}\boldsymbol{r}_k=0 \ \forall \boldsymbol{y} \in \mathfrak{K}_k$. Pour ceci nous allons démontrer par récurrence sur k qu'on a, lorsque $k \geq 1$,

$$\begin{cases} \mathbf{r}_{j}^{\top} \mathbf{r}_{k} = 0 \\ \mathbf{p}_{j}^{\top} \mathbf{A} \mathbf{p}_{k} = 0 \quad \forall j = 0 \dots k - 1. \end{cases}$$

$$(4.7)$$

Il n'y a rien à démontrer pour k=0. Supposons donc que ce soit vrai pour k, et démontrons que c'est encore vrai pour k+1. En utilisant (4.6b), puis en écrivant que $\mathbf{r}_j = \mathbf{p}_j - \beta_{j-1}\mathbf{p}_{j-1}$ d'après (4.6c), on trouve

$$\begin{aligned} \boldsymbol{r}_{k+1}^{\top} \boldsymbol{r}_{j} &= (\boldsymbol{r}_{k} - \alpha_{k} \mathbf{A} \boldsymbol{p}_{k})^{\top} \boldsymbol{r}_{j} \\ &= \boldsymbol{r}_{j}^{\top} \boldsymbol{r}_{k} - \alpha_{k} \boldsymbol{r}_{j}^{\top} \mathbf{A} \boldsymbol{p}_{k} \\ &= \boldsymbol{r}_{j}^{\top} \boldsymbol{r}_{k} - \alpha_{k} \boldsymbol{p}_{j}^{\top} \mathbf{A} \boldsymbol{p}_{k} + \alpha_{k} \beta_{j-1} \boldsymbol{p}_{j-1}^{\top} \mathbf{A} \boldsymbol{p}_{k} \end{aligned}$$

D'après l'hypothèse de récurrence on a forcément $\boldsymbol{p}_{j-1}^{\top} \mathbf{A} \boldsymbol{p}_k = 0$. Par ailleurs si j < k, encore d'après l'hypothèse de récurrence, on a $\boldsymbol{r}_j^{\top} \boldsymbol{r}_k = \boldsymbol{p}_j^{\top} \mathbf{A} \boldsymbol{p}_k = 0$. On vient donc de montrer que $\boldsymbol{r}_{k+1}^{\top} \boldsymbol{r}_j = 0$ pour j < k. Dans le cas j = k, on trouve $\boldsymbol{r}_{k+1}^{\top} \boldsymbol{r}_k = |\boldsymbol{r}_k|_2^2 - \alpha_k |\boldsymbol{p}|_A^2$, et alors l'expression de α_k donnée par (4.6) nous permet de conclure que $\boldsymbol{r}_{k+1}^{\top} \boldsymbol{r}_k = 0$. En conclusion on a établit que

$$\boldsymbol{r}_{k+1}^{\top} \boldsymbol{r}_j = 0 \quad \forall j = 0 \dots k. \tag{4.8}$$

Démontrons maintenant qu'on a également $\boldsymbol{p}_{k+1}^{\top} \mathbf{A} \boldsymbol{p}_j = 0$ pour $j = 0 \dots k$. D'après (4.6c), et puisque $\mathbf{A} \boldsymbol{p}_j = (\boldsymbol{r}_j - \boldsymbol{r}_{j+1})/\alpha_j$ selon (4.6b), on obtient

$$\mathbf{p}_{k+1}^{\top} \mathbf{A} \mathbf{p}_{j} = (\mathbf{r}_{k+1} + \beta_{k} \mathbf{p}_{k})^{\top} \mathbf{A} \mathbf{p}_{j}$$

$$= \mathbf{r}_{k+1}^{\top} \mathbf{A} \mathbf{p}_{j} + \beta_{k} \mathbf{p}_{k}^{\top} \mathbf{A} \mathbf{p}_{j}$$

$$= \mathbf{r}_{k+1}^{\top} (\mathbf{r}_{j} - \mathbf{r}_{j+1}) / \alpha_{j} + \beta_{k} \mathbf{p}_{k}^{\top} \mathbf{A} \mathbf{p}_{j}$$

$$(4.9)$$

Le premier terme du membre de droite ci-dessus est nul puisque dans tous les cas on a $\boldsymbol{r}_{k+1}^{\top}\boldsymbol{r}_{j}=0$. Par ailleurs si j < k, on a d'une part $\boldsymbol{r}_{k+1}^{\top}\boldsymbol{r}_{j+1}=0$ d'après (4.8), et d'autre part $\boldsymbol{p}_{k}^{\top}\mathbf{A}\boldsymbol{p}_{j}=0$ d'après l'hypothèse de récurrence. On en tire $\boldsymbol{p}_{k+1}^{\top}\mathbf{A}\boldsymbol{p}_{j}=0$ si j < k.

Enfin, dans le cas où j = k, en combinant (4.9) avec les expressions de α_k, β_k provenant de (4.6), on déduit

$$\begin{aligned} \boldsymbol{p}_{k+1}^{\top} \mathbf{A} \boldsymbol{p}_{k} &= -\frac{1}{\alpha_{k}} |\boldsymbol{r}_{k+1}|_{2}^{2} + \beta_{k} |\boldsymbol{p}_{k}|_{\mathbf{A}}^{2} \\ &= -\frac{|\boldsymbol{p}_{k}|_{\mathbf{A}}^{2}}{|\boldsymbol{r}_{k}|_{2}^{2}} |\boldsymbol{r}_{k+1}|_{2}^{2} + \frac{|\boldsymbol{r}_{k+1}|_{2}^{2}}{|\boldsymbol{r}_{k}|_{2}^{2}} |\boldsymbol{p}_{k}|_{\mathbf{A}}^{2} = 0. \end{aligned}$$

Ceci clôt notre raisonnement par récurrence, et démontre que (4.7) est vrai pour tout $k \geq 0$. Notons que $\dim(\mathfrak{K}_{k+1}) \leq 1 + \dim(\mathfrak{K}_k)$ et $\dim(\mathfrak{K}_1) = 1$, de sorte que $\dim(\mathfrak{K}_k) \leq k$. Comme la première propriété de (4.7) montre que $\boldsymbol{r}_j, j = 0...k-1$ est une famille de k vecteurs linéairement indépendants appartenant à \mathfrak{K}_k , c'est donc une base de \mathfrak{K}_k . On voit donc que la propriété $\boldsymbol{r}_k^{\top}\boldsymbol{r}_j = 0 \forall j = 0...k-1$ revient à écrire $\boldsymbol{r}_k^{\top}\boldsymbol{y} = 0$ pour tout $\boldsymbol{y} \in \mathfrak{K}_k$. C'est précisément ce qui restait à démontrer pour conclure définitivement la preuve.

Proposition 4.5.1.

Soit $A \in \mathbb{R}^{n \times n}$ une matrice symétrique définie positive. On note $|\mathbf{x}|_A^2 := \mathbf{x}^\top A \mathbf{x}$. Étant donné $\mathbf{x}^{(0)}, \mathbf{b} \in \mathbb{R}^n$, si $(\mathbf{x}^{(k)})_{k \geq 0}$ est la suite construite par la méthode du gradient conjugué (4.6),

$$|\boldsymbol{x}^{(k)} - \boldsymbol{x}_{\star}|_{\mathrm{A}} \leq 2 \Big(\frac{\sqrt{\mathrm{cond}_2(\mathrm{A})} - 1}{\sqrt{\mathrm{cond}_2(\mathrm{A})} + 1} \Big)^k |\boldsymbol{x}^{(0)} - \boldsymbol{x}_{\star}|_{\mathrm{A}} \qquad \forall k \geq 0.$$

Démo:

On a vu que la méthode du gradient conjugué est une méthode de projection orthogonale. A chaque itération, $\boldsymbol{x}^{(k)}$ peut donc être caractérisé comme la solution d'un problème de minimisation. En notant $\boldsymbol{d}_0 = \boldsymbol{x}^{(0)} - \boldsymbol{x}_{\star}$ on a

$$\begin{aligned} |\boldsymbol{x}^{(k)} - \boldsymbol{x}_{\star}|_{\mathrm{A}}^{2} &= \min_{\boldsymbol{x} \in \boldsymbol{x}^{(0)} + \mathfrak{K}_{k}} |\boldsymbol{x} - \boldsymbol{x}_{\star}|_{\mathrm{A}}^{2} \\ &= \min_{\mathrm{Q} \in \mathbb{P}_{k-1}[X]} |\boldsymbol{x}^{(0)} - \boldsymbol{x}_{\star} - \mathrm{Q}(\mathrm{A})\boldsymbol{r}_{0}|_{\mathrm{A}}^{2} \\ &= \min_{\mathrm{Q} \in \mathbb{P}_{k-1}[X]} |(\boldsymbol{x}^{(0)} - \boldsymbol{x}_{\star}) - \mathrm{Q}(\mathrm{A})\mathrm{A}(\boldsymbol{x}^{(0)} - \boldsymbol{x}_{\star})|_{\mathrm{A}}^{2} \\ &= \min_{\mathrm{Q} \in \mathbb{P}_{k-1}[X]} |(\mathrm{Q}(\mathrm{A})\mathrm{A} + \mathrm{Id})\boldsymbol{d}_{0}|_{\mathrm{A}}^{2} \\ &= \min_{\mathrm{Q} \in \mathbb{P}_{k}[X]} |\mathrm{Q}(\mathrm{A})\boldsymbol{d}_{0}|_{\mathrm{A}}^{2} \\ &= \min_{\mathrm{Q} \in \mathbb{P}_{k}[X]} |\mathrm{Q}(\mathrm{A})\boldsymbol{d}_{0}|_{\mathrm{A}}^{2} \end{aligned}$$

Remarquons maintenant que $|\mathbf{Q}(\mathbf{A})\boldsymbol{d}_0|_{\mathbf{A}}^2 = (\mathbf{Q}(\mathbf{A})\boldsymbol{d}_0)^{\top}\mathbf{A}(\mathbf{Q}(\mathbf{A})\boldsymbol{d}_0) = \boldsymbol{d}_0^{\top}\mathbf{Q}(\mathbf{A})\mathbf{A}\mathbf{Q}(\mathbf{A})\boldsymbol{d}_0$. Comme A est symétrique définie positive, elle est diagonalisable en base orthonormée. Il existe donc une matrice diagonale $\Lambda = \mathrm{diag}_{j=\dots n}(\lambda_j)$ et une matrice orthogonale $\mathbf{O} \in \mathbb{R}^{n \times n}, \mathbf{O}^{\top} = \mathbf{O}^{-1},$ telle que $\mathbf{A} = \mathbf{O}^{-1}\mathbf{A}\mathbf{O}$. On en déduit $|\mathbf{Q}(\mathbf{A})\boldsymbol{d}_0|_{\mathbf{A}}^2 = (\mathbf{O}\boldsymbol{d}_0)^{\top}\mathbf{Q}(\mathbf{A})\mathbf{A}\mathbf{Q}(\mathbf{A})(\mathbf{O}\boldsymbol{d}_0)$. Notons $\boldsymbol{y} = \mathbf{O}\boldsymbol{d}_0 = (y_j)_{j=1\dots n}$. On a donc

$$\begin{split} |\mathbf{Q}(\mathbf{A})\boldsymbol{d}_{0}|_{\mathbf{A}}^{2} &= \sum_{j=1}^{n} |\mathbf{Q}(\lambda_{j})|^{2} \lambda_{j} |y_{j}|^{2} \\ &\leq (\max_{j=1...n} |\mathbf{Q}(\lambda_{j})|)^{2} \sum_{j=1}^{n} \lambda_{j} |y_{j}|^{2} \\ &\leq (\max_{\lambda \in \mathfrak{S}(\mathbf{A})} |\mathbf{Q}(\lambda)|)^{2} |\boldsymbol{d}_{0}|_{\mathbf{A}}^{2} \end{split}$$

En conclusion, on vient d'obtenir

$$|oldsymbol{x}^{(k)} - oldsymbol{x}_{\star}|_{ ext{A}} = |oldsymbol{x}^{(0)} - oldsymbol{x}_{\star}|_{ ext{A}} \min_{egin{subarray}{c} ext{Q} \in \mathbb{P}_k[X] \ ext{Q}(0) = 1 \ \end{array}} \max_{\lambda \in \mathfrak{S}(ext{A})} | ext{Q}(\lambda)|$$

Il reste donc à estimer le dernier terme danx le membre de droite ci-dessus. Il s'agit d'un problème classique d'interpolation. Notons $\lambda_1 = \max \mathfrak{S}(A)$ la plus grande valeur propre de A, et $\lambda_n = \min \mathfrak{S}(A)$ la plus petite. Une borne est fournie par la solution d'un problème classique de théorie d'interpolation (voir par exemple Appendice B, p.639 de [1])

$$\min_{\substack{Q \in \mathbb{P}_k[X] \\ Q(0)=1}} \max_{\lambda \in \mathfrak{S}(A)} |Q(\lambda)| \le \min_{\substack{Q \in \mathbb{P}_k[X] \\ Q(0)=1}} \max_{\lambda_n \le \lambda \le \lambda_1} |Q(\lambda)| = \frac{1}{C_k \left(\frac{\lambda_1 + \lambda_n}{\lambda_1 - \lambda_n}\right)}.$$
(4.10)

Ici $C_k(t)$ désigne le k-ième polynôme de Chebyschev. Il s'agit de l'unique polynôme de degré k vérifiant l'identité $C_k(\cos \theta) = \cos(k\theta)$ pour $\theta \in \mathbb{R}$. Une expression explicite est donnée par la formule

$$C_k(t) = \frac{1}{2} [(t + \sqrt{t^2 - 1})^k + (t + \sqrt{t^2 - 1})^{-k}] \ge \frac{1}{2} (t + \sqrt{t^2 - 1})^k$$
(4.11)

Posons $\eta = \lambda_n/(\lambda_1 - \lambda_n)$ de sorte que $(\lambda_1 + \lambda_n)/(\lambda_1 - \lambda_n) = 1 + 2\eta$. On peut alors encore re-écrire $t + \sqrt{t^2 - 1}$ comme

$$t + \sqrt{t^2 - 1} = 1 + 2\eta + \sqrt{4\eta + 4\eta^2} = \eta + (1 + \eta) + 2\sqrt{\eta}\sqrt{1 + \eta}$$

$$= (\sqrt{\eta} + \sqrt{1 + \eta})^2 = \frac{(\sqrt{\lambda_1} + \sqrt{\lambda_n})^2}{\lambda_1 - \lambda_n} = \frac{\sqrt{\lambda_1} + \sqrt{\lambda_n}}{\sqrt{\lambda_1} - \sqrt{\lambda_n}}$$

$$= \frac{\sqrt{\lambda_1/\lambda_n} + 1}{\sqrt{\lambda_1/\lambda_n} - 1} = \frac{\sqrt{\text{cond}_2(A)} + 1}{\sqrt{\text{cond}_2(A)} - 1}$$

$$(4.12)$$

En combinant (4.11) avec (4.12), et en injectant cette borne dans (4.10), on arrive au résultat annoncé.

4.5.2 Gradient conjugué préconditionné

Rappelons que dans le cas où l'on cherche à résoudre l'équation $A\mathbf{x} = \mathbf{b}$, préconditionner consiste à multiplier l'équation à gauche par une matrice M^{-1} , ce qui conduit à $M^{-1}A\mathbf{x} = M^{-1}\mathbf{b}$, en choisissant M de manière à ce que $\operatorname{cond}_2(M^{-1}A)$ soit plus proche de 1 que $\operatorname{cond}_2(A)$.

On pourrait penser qu'un tel procédé pose problème pour appliquer la méthode du gradient conjugué car même si M et A sont symétrique définie positives (SDP), il n'y pas de raison que $M^{-1}A$. Cependant la propéiété "être symétrique définie positive" doit s'entendre relativement à un produit scalaire, et ici il s'agit implicitement du produit scalaire canonique (celui associé à $| \ |_2$). Si l'on pose $(\boldsymbol{x}, \boldsymbol{y})_{\mathrm{M}} := \boldsymbol{y}^{\top} \mathbf{M} \boldsymbol{x}$ alors on a

$$\begin{aligned} (\mathbf{M}^{-1}\mathbf{A}\boldsymbol{x}, \boldsymbol{y})_{\mathbf{M}} &&= \boldsymbol{y}^{\top}\mathbf{M}\mathbf{M}^{-1}\mathbf{A}\boldsymbol{x} = \boldsymbol{y}^{\top}\mathbf{A}\boldsymbol{x} = (\mathbf{A}\boldsymbol{y})^{\top}\boldsymbol{x} \\ &&= (\mathbf{M}\mathbf{M}^{-1}\mathbf{A}\boldsymbol{y})^{\top}\boldsymbol{x} = (\mathbf{M}^{-1}\mathbf{A}\boldsymbol{y})^{\top}\mathbf{M}^{\top}\boldsymbol{x} \\ &&= (\mathbf{M}^{-1}\mathbf{A}\boldsymbol{y})^{\top}\mathbf{M}\boldsymbol{x} = (\boldsymbol{x}, \mathbf{M}^{-1}\mathbf{A}\boldsymbol{y})_{\mathbf{M}} \end{aligned}$$

En résumé on a $(M^{-1}A\boldsymbol{x},\boldsymbol{y})_M = (\boldsymbol{x},M^{-1}A\boldsymbol{y})_M$ c'est-à-dire que $M^{-1}A$ est symétrique définie positive vi-à-vis du produit scalaire $(\ ,\)_M$. En se basant sur cette remarque, on peut proposer une version préconditionnée de l'algorithme du gradient conjugué qui s'écrit alors

$$egin{aligned} oldsymbol{r}_0 &= \mathbf{A} oldsymbol{x}^{(0)} - oldsymbol{b}, \quad oldsymbol{z}_0 &= \mathbf{M}^{-1} oldsymbol{r}_0, \quad oldsymbol{p}_0 &= oldsymbol{z}_0 \ oldsymbol{x}^{(k+1)} &= oldsymbol{x}^{(k)} - lpha_k oldsymbol{p}_k \ oldsymbol{r}_{k+1} &= oldsymbol{r}_k - lpha_k oldsymbol{A} oldsymbol{p}_k \ oldsymbol{z}_{k+1} &= oldsymbol{M}^{-1} oldsymbol{r}_{k+1} \ oldsymbol{p}_{k+1} &= oldsymbol{z}_{k+1} + eta_k oldsymbol{p}_k \ oldsymbol{a}_k \ oldsymbol{q}_k &= oldsymbol{T}_{k+1}^{\top} oldsymbol{z}_{k+1} \ oldsymbol{z}_$$

4.5.3 Generalised Minimal Residual (GMRes)

La méthode GMRes est une méthode de projection oblique sur l'espace de Krylov. Elle construit ue suite de vecteurs $\boldsymbol{x}^{(k)}$ à partir d'un $\boldsymbol{x}^{(0)} \in \mathbb{R}^n$ et de $\boldsymbol{r}_0 = A\boldsymbol{x}^{(0)} - \boldsymbol{b}$ suivant l'algorithme

$$\begin{cases} \boldsymbol{x}^{(k)} \in \boldsymbol{x}^{(0)} + \mathfrak{K}_k \\ (\mathbf{A}\boldsymbol{y})^{\top} (\mathbf{A}\boldsymbol{x}^{(k)} - \boldsymbol{b}) = 0 \quad \forall \boldsymbol{y} \in \mathfrak{K}_k. \end{cases}$$

$$(4.13)$$

D'après le lemme 4.3.1 on a

$$|\mathbf{A}\boldsymbol{x}^{(k)} - \boldsymbol{b}|_2 = \min_{\boldsymbol{x} \in \boldsymbol{x}^{(0)} + \mathfrak{K}_{k}} |\mathbf{A}\boldsymbol{x} - \boldsymbol{b}|_2$$

On sait que $r_0, Ar_0, A^2r_0, \ldots, A^{k-1}r_0$ est une base de \mathfrak{K}_k . On considère la base v_1, v_2, \ldots, v_k de veteurs orthonormaux construits de la manière suivante

$$\left\{egin{aligned} oldsymbol{v}_1 &= oldsymbol{r}_0/|oldsymbol{r}_0|_2 \ oldsymbol{w}_{j+1} &= \mathrm{A}oldsymbol{v}_j - \sum_{p=1}^j oldsymbol{v}_p oldsymbol{v}_p^ op \mathrm{A}oldsymbol{v}_j \ oldsymbol{v}_{j+1} &= oldsymbol{w}_{j+1}/|oldsymbol{w}_{j+1}|_2 \end{aligned}
ight.$$

Il s'agit du procédé d'orthonormalisation de Gram-Schmidt. Par construction v_1, \ldots, v_k sont orthonormaux et forment une base de \mathfrak{K}_k . Notons alors

$$\mathbf{Q}_m := [\boldsymbol{v}_1, \boldsymbol{v}_2, \dots, \boldsymbol{v}_m]$$
$$\boldsymbol{h}_j = (\mathbf{Q}_j^\top \mathbf{A} \boldsymbol{v}_j, |\boldsymbol{w}_{j+1}|_2, 0, \dots, 0)^\top \in \mathbb{R}^{k+1}$$
$$\mathbf{H}_k := [\boldsymbol{h}_1, \boldsymbol{h}_2, \dots, \boldsymbol{h}_k] \in \mathbb{R}^{(k+1) \times k}$$

Selon ces définitions, si on écrit le vecteur $\mathbf{h}_j \in \mathbb{R}^{k+1}$ composante par composante $\mathbf{h}_j = (h_{p,j})_{p=1...k+1}$, on a $h_{p,j} = \mathbf{v}_p^{\top} \mathbf{A} \mathbf{v}_j$ pour $p \leq j$, ainsi que $h_{j+1,j} = |\mathbf{w}_{j+1}|_2$ et $h_{p,j} = 0$ pour $p \geq j+2$. Soulignons également que \mathbf{H}_k n'est pas une matrice carré, mais bien une matrice rectangulaire avec une ligne de plus que de colonnes. En re-écrivant l'algorithme de Gram-Schmidt ci-dessus avec ces nouvelles notations, pour $j \leq k$ on obtient donc :

$$Av_{j} = h_{j+1,j}v_{j+1} + \sum_{p=1}^{j} h_{p,j}v_{p} = \sum_{p=1}^{k+1} h_{p,j}v_{p} = Q_{k+1}h_{j}$$

$$AQ_{k} = A[v_{1}, \dots, v_{k}] = [Av_{1}, \dots, Av_{k}]$$

$$= [Q_{k+1}h_{1}, \dots, Q_{k+1}h_{k}] = Q_{k+1}[h_{1}, \dots, h_{k}] = Q_{k+1}H_{k}$$

En résumé on a donc $AQ_k = Q_{k+1}H_k$. Remarquons à présent que par définition de l'espace de Krylov, on recherche $\boldsymbol{x}^{(k)}$ sous la forme $\boldsymbol{x}^{(k)} = \boldsymbol{x}^{(0)} - Q_k \boldsymbol{y}_k$ pour un certain $\boldsymbol{y}_k \in \mathbb{R}^k$, et que $\boldsymbol{r}_0 = |\boldsymbol{r}_0|_2 \boldsymbol{v}_1 = \beta Q_{k+1} \boldsymbol{e}_1$ où l'on a posé $\beta = |A\boldsymbol{x}^{(0)} - \boldsymbol{b}|_2 = |\boldsymbol{r}_0|_2$ et $\boldsymbol{e}_1 = (1, 0 \dots, 0)^{\top} \in \mathbb{R}^{k+1}$ est le premier vecteur de la base canonique de \mathbb{R}^{k+1} .

Par ailleurs, observons que $|Q_{k+1}y|_2 = |y|_2$ pour tout $y \in \mathbb{R}^{k+1}$ car les colonnes Q_{k+1} sont orthonormées. En reprenant les notations que nous venons d'introduire, on a alors

$$|A\mathbf{x}^{(k)} - \mathbf{b}|_2 = |A\mathbf{x}^{(0)} - \mathbf{b} - AQ_k\mathbf{y}_k|_2 = |\mathbf{r}_0 - AQ_k\mathbf{y}_k|_2$$

= $|\beta Q_{k+1}\mathbf{e}_1 - Q_{k+1}H_k\mathbf{y}_k|_2 = |Q_{k+1}(\beta \mathbf{e}_1 - H_k\mathbf{y}_k)|_2$
= $|\beta \mathbf{e}_1 - H_k\mathbf{y}_k|_2$

En reprenant la caractérisation de $\boldsymbol{x}^{(k)}$ comme solution d'un problème de minimisation dans l'espace de Krylov, le calcul ci-dessus nous ramène à un problème de minimisation dans \mathbb{R}^k qui s'écrit

$$|\mathbf{A}\boldsymbol{x}^{(k)} - \boldsymbol{b}|_2 = \min_{\boldsymbol{x} \in \boldsymbol{x}^{(0)} + \mathfrak{K}_k} |\mathbf{A}\boldsymbol{x} - \boldsymbol{b}|_2$$
 $\iff |\mathbf{H}_k \boldsymbol{y}_k - \beta \boldsymbol{e}_1|_2 = \min_{\boldsymbol{y} \in \mathbb{R}^k} |\mathbf{H}_k \boldsymbol{y} - \beta \boldsymbol{e}_1|_2$

Pour résumer, ceci nous amène finalement à considérer l'algorithme suivant pour le calcul de chaque $x^{(k)}$.

Bibliographie

- [1] O. Axelsson. *Iterative Solution Methods*. Cambridge University Press, New York, NY, USA, 1994.
- [2] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. *Introduction to algorithms*. MIT Press, Cambridge, MA, third edition, 2009.
- [3] N. M. Josuttis. The C++ Standard Library: A Tutorial and Reference. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1999.