- 1.3.2 (a) A real number s is a greatest lower bound for a set $A \subseteq \mathbb{R}$ if
 - i. s is a lower bound for A
 - ii. if for every lower bound $b, b \leq s$
 - (b) Lemma 1.3.7 for infimums:
 - Suppose $s \in \mathbb{R}$, $A \subseteq \mathbb{R}$ where s is a lower bound for A, then inf(A) = s if and only if for all $\epsilon > 0$ there exists $a \in A$ such that $a < s + \epsilon$.
 - i. (\Rightarrow) Suppose $s = inf(A), \epsilon > 0$. Then the number $s + \epsilon$ is not a lower bound as that would contradict being less than or equal to s. Since it is not a lower bound on A, then there is a smaller element a of A. Therefore $a < s + \epsilon$
 - ii. (\Leftarrow) Suppose for all $\epsilon > 0$ there exists $a \in A$ such that $a < \epsilon + s$. We must show that s = inf(A). Since s is already a lower bound, we simply need to show that any lower bound is less than or equal to s. Suppose b is a lower bound on A. Since we have already shown that for any number greater than s, it can't be a lower bound, then conversely for b, since b is a lower bound then $b \leq s$.
- 1.3.3 Suppose $A, B \subseteq \mathbb{R}$, sup(A) < sup(B). We must show that there exists $b \in B$ such that b is an upper bound of A. By theorem 1.3.7 for all $\epsilon > 0$ there exists $b \in B$ such that $sup(b) \epsilon < b$. Since sup(A) < sup(B) then 0 < sup(B) sup(A). Therefore let $\epsilon = sup(B) sup(A)$. Therefore there exists $b \in B$ such that sup(A) < b. By definition of supremum b is an upper bound on A.
- 1.3.9 (a) A finite, non-empty set always contains its supremum True
 - (b) If a < L for every element a in A then sup(A) < L. False, if L = sup(A) and A does not contain it's supremum then we satisfy the preposition, however sup(A) < sup(A) is clearly false.
 - (c) If A and B are sets with the property that a < b for every $a \in A$ and $b \in B$, then it follows that sup(A) < inf(B). False, if A = [0,1), B = (1,2] then it is true for all $a \in A, b \in B$ that a < b. However sup(A) = 1, inf(B) = 1 as by theorem 1.3.7 subtracting any $\epsilon > 0$, there exists $a \in A$ such that $1 - \epsilon < a$ and similarly for the result proved in exercise 1.3.2. Therefore sup(A) = inf(A).
 - (d) True
 - (e) True, proved in the previous exercise above.