Университет ИТМО Физико-технический мегафакультет Физический факультет

Группа	ЭМ СУиР 2.1.1	К работе допущен
Студенты <u> </u> <u>П. А., Чеба</u> і	Румянцев А. А., Овчинников ненко Д. А.	Работа выполнена
Преподава	тель <u>Боярский К. К.</u>	Отчет принят

Рабочий протокол и отчет по лабораторной работе №3.10

Изучение свободных затухающих электромагнитных колебаний

Цель работы

Изучение основных характеристик свободных затухающих колебаний

Задачи

- 1. Измерить период колебаний в контуре и значения $2U_i,\ 2U_{i+n}$ удвоенной амплитуды колебаний напряжения на конденсаторе для двух моментов времени, разделенных количеством периодов n=1–5, при разных сопротивлениях магазина $R_{\rm M}$
- 2. Построить график зависимости логарифмического декремента λ от сопротивления магазина $R_{\rm M}$. Найти значение собственного сопротивления контура R_0 и полное сопротивление R. Найти значения индуктивности L при $R_{\rm M} \leq 100~{\rm O}_{\rm M}$, найти среднее значение индуктивности $L_{\rm cp}$ и оценить его погрешность. Вычислить период колебаний в контуре при некоторых значениях $R_{\rm M}$
- 3. Вычислить добротность контура Q при различных сопротивлениях магазина. Построить график зависимости добротности от сопротивления контура. Для двух малых сопротивлений посчитать добротность другим способом
- 4. Найти экспериментально и теоретически критическое сопротивление контура и период колебаний в контуре. Построить графики периодов от емкости конденсатора. Рассмотреть формулу Томсона

Экспериментальная установка

- 1. Блок генератора напряжений ГН1
- 2. Осциллограф ОЦЛ2.
- 3. Стенд с объектом исследования С3-ЭМ01
- 4. Проводники Ш4/Ш2 (4 шт.), Ш2/Ш2 (3 шт.), 2Ш4/BNC (2 шт.)

Метод экспериментального исследования

Многократные измерения

Измерительные приборы

Nº π/π	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора
1	Осциллограф	Электроизмерительный	$2-3\cdot 10^4$ Гц	-

Схема установки

Рис 1. Колебательный контур

Исходные данные

Таблица 1

С ₁ , Ф	C_2 , Φ	С ₃ , Ф	\mathcal{C}_4 , Φ	<i>L</i> , Гн	Δ
$2.20 \cdot 10^{-8}$	$3.30 \cdot 10^{-8}$	$4.70 \cdot 10^{-8}$	$4.70 \cdot 10^{-7}$	$10 \cdot 10^{-3}$	10%

Результаты прямых и косвенных измерений

Таблица 2

Результаты измерения периодов колебаний $T_{\mathfrak{I} \mathsf{KCR}}$ в контуре и значений $2U_i$, $2U_{i+n}$ удвоенной амплитуды колебаний напряжения на конденсаторе для двух моментов времени, разделенных количеством периодов n=1- 3 , при разных сопротивлениях магазина R_{M} . Результаты вычислений логарифмического декремента λ , полного сопротивления R, индуктивности L, добротности контура Q и периода колебаний T_{Teop} в контуре при $R_{\mathsf{M}}=0$, 200, 400~0 м

Примеры вычислений λ и Q:

$$\lambda = \frac{1}{n} \ln \frac{U_i}{U_{i+n}} = \frac{1}{3} \ln \frac{3.12}{1.12} = 0.34, \quad Q = \frac{2\pi}{1 - e^{-2\lambda}} = \frac{2\pi}{1 - e^{-2\cdot0.34}} = 12.70$$

Для нахождения $R=R_{\rm M}+R_0$ необходимо найти R_0 . Построим график 1 $\lambda(R_{\rm M})$ и аппроксимируем с помощью МНК. Имеем линейный график $\lambda=kR+b$, по нему же найдем $k=4.74\cdot 10^{-3}$ и b=0.33. Вычислим R при $\lambda=0$:

$$R = -\frac{b}{k} = -69.88 = -R_0 \Rightarrow R_0 = 69.88 \text{ Om}$$

Примеры вычислений R, L и T_{reon} :

$$R = R_{\rm M} + R_0 = 10 + 69.88 = 79.88, \quad L = \left(\frac{\pi R}{\lambda}\right)^2 \cdot C_1 = \left(\frac{69.88\pi}{0.34}\right)^2 \cdot 2,20 \cdot 10^{-8} = 9.09 \cdot 10^{-3} \text{ } \Gamma\text{H}$$

$$T_{\text{reop}} = \frac{2\pi}{\sqrt{\frac{1}{LC} - \frac{R^2}{4L^2}}} = \frac{2\pi}{\sqrt{\frac{1}{9.09 \cdot 10^{-3} \cdot 2.20 \cdot 10^{-8}} - \frac{69.88^2}{4(9.09 \cdot 10^{-3})^2}}} = 8.90 \cdot 10^{-5} \text{ c}$$

$R_{ m M}$, Ом	$T_{\mathfrak{I}_{KC\Pi}}$, c	$2U_i$, дел	$2U_{i+n}$, дел	n	λ	Q	<i>R</i> ,Ом	<i>L</i> , Гн	T_{reop} , c
0	$9.20 \cdot 10^{-5}$	3.12	1.12	3	0.34	12.70	69.88	$9.09 \cdot 10^{-3}$	$8.90 \cdot 10^{-5}$
10	$9.20 \cdot 10^{-5}$	2.96	0.96	3	0.38	11.90	79.88	$9.83 \cdot 10^{-3}$	_
20	$9.20 \cdot 10^{-5}$	2.92	0.80	3	0.43	10.87	89.88	$9.41 \cdot 10^{-3}$	_
30	$9.40 \cdot 10^{-5}$	2.84	0.68	3	0.48	10.23	99.88	$9.54 \cdot 10^{-3}$	_
40	$9.30 \cdot 10^{-5}$	2.72	0.96	2	0.52	9.71	109.88	$9.67 \cdot 10^{-3}$	_
50	$9.30 \cdot 10^{-5}$	2.64	0.88	2	0.55	9.42	119.88	$10.34 \cdot 10^{-3}$	_
60	$9.20 \cdot 10^{-5}$	2.56	0.76	2	0.61	8.94	129.88	$9.93 \cdot 10^{-3}$	_
70	$9.30 \cdot 10^{-5}$	2.48	0.68	2	0.65	8.66	139.88	$10.15 \cdot 10^{-3}$	_
80	$9.20 \cdot 10^{-5}$	2.40	0.56	2	0.73	8.20	149.88	$9.21 \cdot 10^{-3}$	_
90	$9.20 \cdot 10^{-5}$	2.28	0.52	2	0.74	8.14	159.88	$10.16 \cdot 10^{-3}$	_
100	$9.20 \cdot 10^{-5}$	2.20	0.96	1	0.83	7.76	169.88	$9.11 \cdot 10^{-3}$	_
200	$9.30 \cdot 10^{-5}$	1.60	0.48	1	1.20	6.90	269.88	$10.91 \cdot 10^{-3}$	$9.92 \cdot 10^{-5}$
300	$9.20 \cdot 10^{-5}$	1.12	0.20	1	1.72	6.49	369.88	$10.01 \cdot 10^{-3}$	_
400	$9.20 \cdot 10^{-5}$	0.78	0.10	1	2.05	6.39	469.88	$11.36 \cdot 10^{-3}$	$10.51 \cdot 10^{-5}$

Усредним полученные значения L при $R_{\rm M} \leq 100~{\rm OM},~L_{\rm cp}=9.68\cdot 10^{-3}~{\rm \Gamma H}.$ Оценим абсолютную погрешность ΔL среднего значения индуктивности $L_{\rm cp}$, где коэффициент Стьюдента $\alpha=0.95$, погрешность прибора $\Delta_{\rm H} L=0.1,~n=11$:

$$\Delta \bar{L} = \alpha \sqrt{\frac{\sum_{i=1}^{n} (L_i - L_{\rm cp})^2}{n(n-1)}}, \ \Delta L = \sqrt{\Delta \bar{L}^2 + \left(\frac{2}{3}\Delta_{\scriptscriptstyle H}L\right)^2} = 6.67 \cdot 10^{-2} \ \Gamma_{\rm H}$$

Для R = 69.88,79.88~0м рассчитаем добротность контура, используя следующую формулу:

$$Q_1 = \frac{1}{R_1} \sqrt{\frac{L_1}{C_1}} = \frac{1}{69.88} \sqrt{\frac{9.09 \cdot 10^{-3}}{2.20 \cdot 10^{-8}}} = 9.20, \quad Q_2 = \frac{1}{79.88} \sqrt{\frac{9.83 \cdot 10^{-3}}{2.20 \cdot 10^{-8}}} = 8.37,$$

где R_i , L_i – значения из таблицы 1, соответствующие конкретному индексу i

Периодичность процесса разряда конденсатора исчезает при $R=1000~{\rm Om}$, оценим критическое сопротивление контура по формуле:

$$R_{\text{KDHT}} = R_{\text{M}} + R_0 = 1000 + 69.88 = 1069.88 \,\text{Om}$$

Вычислим критическое сопротивление по следующей формуле:

$$R_{ ext{крит}} = 2\sqrt{rac{L_{ ext{cp}}}{C_1}} = 2\sqrt{rac{9.68 \cdot 10^{-3}}{2.20 \cdot 10^{-8}}} = 1326.57 \; ext{Ом}$$

Таблица 3

Результаты измерений периода $T_{\mbox{\tiny ЭКСП}}$ при нулевом сопротивлении магазина при различной емкости конденсатора C_i . Результаты вычислений периодов $T_{\mbox{\tiny Teop}}$ и погрешностей δT

Примеры вычислений T_{reop} и δT :

$$T_{\text{Teop}} = \frac{2\pi}{\sqrt{\frac{1}{L_{\text{cp}}C_2} - \frac{{R_0}^2}{4{L_{\text{cp}}}^2}}} = \frac{2\pi}{\sqrt{\frac{1}{9.68 \cdot 10^{-3} \cdot 3.30 \cdot 10^{-8}} - \frac{69.88^2}{4(9.68 \cdot 10^{-3})^2}}} = 1.13 \cdot 10^{-4} \text{ c}$$

$$\delta T = \frac{\left| T_{\text{эксп}} - T_{\text{теор}} \right|}{T_{\text{теор}}} \cdot 100 \%$$

С, Ф	$T_{\mathfrak{I}_{KC\Pi}}$, c	$T_{ m reop}$, c	δT , %
$2.20 \cdot 10^{-8}$	$9.20 \cdot 10^{-5}$	$9.18 \cdot 10^{-5}$	0.20
$3.30 \cdot 10^{-8}$	$1.12 \cdot 10^{-4}$	$1.13 \cdot 10^{-4}$	0.47
$4.70 \cdot 10^{-8}$	$1.32 \cdot 10^{-4}$	$1.34 \cdot 10^{-4}$	1.79
$4.70 \cdot 10^{-7}$	$4.30 \cdot 10^{-4}$	$4.37 \cdot 10^{-4}$	1.59

Таблица 4

Результаты вычисления периода по формуле Томсона

Так как при малом затухании величина заряда меняется по времени по закону

$$q(t) = q_0 e^{-\beta t} \cos(\omega t + \varphi_0),$$

то период можно вычислять по формуле Томсона. Выразим эту формулу:

$$\omega = \sqrt{\omega_0^2 - \beta^2}, \quad T = \frac{2\pi}{\omega} \Rightarrow T = \frac{2\pi}{\sqrt{\omega_0^2 - \beta^2}}$$

При $\beta \ll \omega_0$:

$$T = \frac{2\pi}{\omega_0}$$
, $\omega_0 = \frac{1}{\sqrt{LC}} \Rightarrow T = 2\pi\sqrt{LC}$

Пример вычисления T:

$$T = 2\pi\sqrt{9.68 \cdot 10^{-3} \cdot 4.70 \cdot 10^{-8}} = 1.34 \cdot 10^{-4} \text{ c}$$

С, Ф	$L=L_{ m cp}$, Гн	<i>T</i> , c
$2.20 \cdot 10^{-8}$		$9.17 \cdot 10^{-5}$
$3.30 \cdot 10^{-8}$	$9.68 \cdot 10^{-3}$	$1.12 \cdot 10^{-4}$
$4.70 \cdot 10^{-8}$	9.00 · 10	$1.34 \cdot 10^{-4}$
$4.70 \cdot 10^{-7}$		$4.24 \cdot 10^{-4}$

Графики

1. График зависимости логарифмического декремента λ от сопротивления магазина R_{M}

2. График зависимости добротности ${\it Q}$ от сопротивления контура ${\it R}$

3. График зависимости измеренного периода $T_{\scriptscriptstyle \mathfrak{RKCII}}$ от емкости конденсатора $\mathcal C$

4. График зависимости вычисленного периода $T_{ m reop}$ от емкости конденсатора ${\cal C}$

Выводы и анализ результатов работы

В ходе выполнения лабораторной работы были получены графики зависимости логарифмического декремента λ от сопротивления магазина $R_{\rm M}$, зависимости добротности Q от сопротивления контура R, зависимости измеренного периода $T_{\rm эксп}$ от емкости конденсатора C и зависимости вычисленного периода $T_{\rm reop}$ от емкости конденсатора C. Была выяснена возможность применения формулы Томсона для расчета периода