To move to the next slide

just press

ENTER or RETURN

Nichtlineare Votermodelle: Simulation vs. analytische Resultate

Frank Schweitzer^{1,2}, Laxmidhar Behera¹, Heinz Mühlenbein¹

¹ FhG Institut für Autonome Intelligente Systeme

² Institut für Physik, Humboldt-Universität zu Berlin

schweitzer@ais.fhg.de http://www.ais.fhg.de/~frank/

Non-linear Voter Models

> assumtions: voter's decision depends on neighborhood, only short-term memory

- > assumtions: voter's decision depends on neighborhood, only short-term memory
- > toy model to investigate survival/extinction/coexistence of opinions

- > assumtions: voter's decision depends on neighborhood, only short-term memory
- > toy model to investigate survival/extinction/coexistence of opinions
- interdisciplinary enterprise: linear voter model: domain of mathematical investigations relation to population biology, ecology

Frank Schweitzer

- > assumtions: voter's decision depends on neighborhood, only short-term memory
- > toy model to investigate survival/extinction/coexistence of opinions
- interdisciplinary enterprise: linear voter model: domain of mathematical investigations relation to population biology, ecology
- our interest: investigation of spatial effects derivation of macro-dynamics from microscopic interactions

Cellular Automaton

-
- \bullet \bullet θ_{i7} \bullet \bullet
- \bullet \bullet θ_{i_6} θ_{i_2} θ_{i_8} \bullet \bullet
- ullet θ_{i_5} θ_{i_1} θ_i θ_{i_3} θ_{i_9} ullet
- \bullet \bullet $\theta_{i_{12}}$ θ_{i_4} $\theta_{i_{10}}$ \bullet \bullet
- \bullet \bullet $\theta_{i_{11}}$ \bullet \bullet
- • • •

- \triangleright cell *i* with different states θ_i
- \rightarrow interaction with neighbors j

History: v. Neumann, Ulam (1940s), Conway (1970), Wolfram (1984), ...

Socio/Economy: Sakoda (1949/1971), Schelling (1969), Albin (1975), ...

 \triangleright individual *i* with "opinion" $\theta_i \in \{0, 1\}$

- \triangleright individual i with "opinion" $\theta_i \in \{0, 1\}$
- ► "socio-configuration" $\Theta = \{\theta_1, \theta_2, ..., \theta_N\}$ state space $\Omega \sim 2^N$

- \triangleright individual *i* with "opinion" $\theta_i \in \{0, 1\}$
- ► "socio-configuration" $\Theta = \{\theta_1, \theta_2, ..., \theta_N\}$ state space $\Omega \sim 2^N$
- > macro variable: $x_{\sigma} = \frac{N_{\sigma}}{N}$; $N = \sum_{\sigma} N_{\sigma} = N_0 + N_1 = \text{const.}$ spatial correlation $c_{1|1}$

- \triangleright individual i with "opinion" $\theta_i \in \{0, 1\}$
- ► "socio-configuration" $\Theta = \{\theta_1, \theta_2, ..., \theta_N\}$ state space $\Omega \sim 2^N$
- > macro variable: $x_{\sigma} = \frac{N_{\sigma}}{N}$; $N = \sum_{\sigma} N_{\sigma} = N_0 + N_1 = \text{const.}$ spatial correlation $c_{1|1}$
- > stochastic description: $p_i(\theta_i, t) = \sum_{\underline{\theta}_i'} p(\theta_i, \underline{\theta}_i', t)$, local neighborhood: $\underline{\theta}_i = \{\theta_{i_1}, \theta_{i_2}, ..., \theta_{i_{n-1}}\}$

> one-step memory (Markov Process) transition rates: $w(1-\theta_i|\theta_i,\underline{\theta}_i)$; $w(\theta_i|(1-\theta_i),\underline{\theta}_i)$

> one-step memory (Markov Process) transition rates: $w(1-\theta_i|\theta_i,\underline{\theta}_i)$; $w(\theta_i|(1-\theta_i),\underline{\theta}_i)$

Non-Linear Voter Models

Master equation:

$$\frac{d}{dt}p_i(\theta_i, t) = \sum_{\underline{\theta}_i'} \left[w(\theta_i | (1 - \theta_i), \underline{\theta}_i') \ p(1 - \theta_i, \underline{\theta}_i', t) \right]$$

$$-w(1-\theta_i|\theta_i,\underline{\theta}_i') p(\theta_i,\underline{\theta}_i',t)$$

- > one-step memory (Markov Process) transition rates: $w(1-\theta_i|\theta_i,\underline{\theta}_i)$; $w(\theta_i|(1-\theta_i),\underline{\theta}_i)$
- Master equation:

$$\frac{d}{dt}p_i(\theta_i, t) = \sum_{\underline{\theta}_i'} \left[w(\theta_i | (1 - \theta_i), \underline{\theta}_i') \ p(1 - \theta_i, \underline{\theta}_i', t) - w(1 - \theta_i | \theta_i, \underline{\theta}_i') \ p(\theta_i, \underline{\theta}_i', t) \right]$$

- > solution:
 - (1) stochastic computer simulations
 - (2) analytical methods

Non-Linear Voter Models

 \rightarrow "frequency dependent process": $\underline{\theta}_i \Rightarrow$ local frequency:

$$z_i^{\sigma} = \frac{1}{n} \sum_{j=0}^{n-1} \delta_{\sigma \theta_{i_j}} \; ; \quad z_i^{(1-\sigma)} = 1 - z_i^{\sigma} \; ; \quad \sigma \in \{0, 1\}$$

 \rightarrow "frequency dependent process": $\underline{\theta}_i \Rightarrow$ local frequency:

$$z_i^{\sigma} = \frac{1}{n} \sum_{j=0}^{n-1} \delta_{\sigma \theta_{i_j}}; \quad z_i^{(1-\sigma)} = 1 - z_i^{\sigma}; \quad \sigma \in \{0, 1\}$$

asymmetric rules: ("Game of Life", n=9)

"alive": $\theta_i = 1 \Rightarrow$ rule set 1: "alive" if 2 or 3 neighbors alive

"dead": $\theta_i = 0 \Rightarrow$ rule set 2: "reborn" if 3 neighbors alive

 \rightarrow "frequency dependent process": $\underline{\theta}_i \Rightarrow$ local frequency:

$$z_i^{\sigma} = \frac{1}{n} \sum_{j=0}^{n-1} \delta_{\sigma \theta_{i_j}}; \quad z_i^{(1-\sigma)} = 1 - z_i^{\sigma}; \quad \sigma \in \{0, 1\}$$

- asymmetric rules: ("Game of Life", n=9)
 - "alive": $\theta_i = 1 \Rightarrow$ rule set 1: "alive" if 2 or 3 neighbors alive
 - "dead": $\theta_i = 0 \Rightarrow$ rule set 2: "reborn" if 3 neighbors alive
- > symmetric rules: same for $\theta_i \in \{0, 1\}$

AKSOE Regensburg · 12 March 2002

z_i^σ	$z_i^{(1-\sigma)}$	$w(1-\theta_i \theta_i\!=\!\sigma,z_i^\sigma)$
1	0	arepsilon
4/5	1/5	$lpha_1$
3/5	2/5	$lpha_2$
2/5	3/5	$\alpha_3 = 1 - \alpha_2$
1/5	4/5	$\alpha_4 = 1 - \alpha_1$

z_i^σ	$z_i^{(1-\sigma)}$	$w(1-\theta_i \theta_i\!=\!\sigma,z_i^\sigma)$
1	0	arepsilon
4/5	1/5	$lpha_1$
3/5	2/5	$lpha_2$
2/5	3/5	$\alpha_3 = 1 - \alpha_2$
1/5	4/5	$\alpha_4 = 1 - \alpha_1$

- > positive dependence: $0 \le \alpha_1 \le \alpha_2 \le \alpha_3 \le \alpha_4 \le 1$ "majority voting" (frequent opinions survive)
- > symmetry between opinions: $\alpha_3 = 1 \alpha_2$ and $\alpha_4 = 1 \alpha_1$
- > linear voter model: $\alpha \propto z_i^{(1-\sigma)}$ i.e. $\varepsilon = 0$, $\alpha_1 = 0.2$, $\alpha_2 = 0.4$

> negative dependence: $1 \ge \alpha_1 \ge \alpha_2 \ge \alpha_3 \ge \alpha_4 \ge 0$ "minority voting" (rare opinions survive)

AKSOE Regensburg · 12 March 2002

- > negative dependence: $1 \ge \alpha_1 \ge \alpha_2 \ge \alpha_3 \ge \alpha_4 \ge 0$ "minority voting" (rare opinions survive)
- ightharpoonup "allee effects": $\alpha_1 \leq \alpha_2$, $\alpha_2 \geq \alpha_3$, $\alpha_3 \leq \alpha_4$, etc. voting against the trend

Non-Linear Voter Models

 \triangleright initially x = 0.5, random distribution

- \triangleright initially x = 0.5, random distribution
- > deterministic CA: (quasi)stationary patterns

$$\varepsilon = 0$$
, $\alpha_1 = 0$, $\alpha_2 = 0$

$$\varepsilon = 0$$
, $\alpha_1 = 1$, $\alpha_2 = 1$

$$t = 10^2$$

- \triangleright initially x = 0.5, random distribution
- > deterministic CA: (quasi)stationary patterns

$$\varepsilon = 0$$
, $\alpha_1 = 0$, $\alpha_2 = 0$

$$\varepsilon = 0$$
, $\alpha_1 = 1$, $\alpha_2 = 1$

$$t = 10^2$$

> spatial coexistence of both opinions: $x^{\text{stat}} = 0.5$, "aggregation" of opinions

Stochastic CA

$$\varepsilon = 10^{-4}, \, \alpha_1 = 0.1, \, \alpha_2 = 0.3$$
 $t = 10^1, \, 10^2, \, 10^3, \, 10^4$

$$t = 10^1, 10^2, 10^3, 10^4$$

Coexistence?

Coexistence?

$$\varepsilon = 10^{-4}, \, \alpha_1 = 0.25, \, \alpha_2 = 0.25$$
 $t = 10^1, \, 10^2, \, 10^3, \, 10^4$

$$t = 10^1, 10^2, 10^3, 10^4$$

- (a) $a_1 = 0.2$, $\alpha_2 = 0.4$ (voter model)
- **(b)** $\alpha_1 = 0.25, \alpha_2 = 0.25$

Non-Linear Voter Models

1d CA:

long-term nonstationarity; temporal domination of one opinion

Two tasks:

- > 1. define range of parameters for coexistence
- > 2. describe spatial correlations between opinions

Macroscopic Equations

Macroscopic Equations

> macroscopic variable: $\langle x(t) \rangle = \frac{1}{N} \sum_{i=1}^{N} p_i(\theta_i = 1, t)$

Non-Linear Voter Models

$$\frac{d}{dt} \left\langle x(t) \right\rangle = \sum_{\underline{\sigma}'} \left[w(1|0,\underline{\sigma}') \ \left\langle x_{0,\underline{\sigma}'}(t) \right\rangle - w(0|1,\underline{\sigma}') \ \left\langle x_{1,\underline{\sigma}'}(t) \right\rangle \right]$$

calculation of $\langle x_{\sigma,\underline{\sigma'}}(t) \rangle$: consideration of *all* possible $\underline{\sigma'}$ (!)

Macroscopic Equations

> macroscopic variable: $\langle x(t) \rangle = \frac{1}{N} \sum_{i=1}^{N} p_i(\theta_i = 1, t)$

Non-Linear Voter Models

$$\frac{d}{dt} \left\langle x(t) \right\rangle = \sum_{\underline{\sigma}'} \left[w(1|0,\underline{\sigma}') \ \left\langle x_{0,\underline{\sigma}'}(t) \right\rangle - w(0|1,\underline{\sigma}') \ \left\langle x_{1,\underline{\sigma}'}(t) \right\rangle \right]$$

calculation of $\langle x_{\sigma,\underline{\sigma'}}(t) \rangle$: consideration of *all* possible $\underline{\sigma'}$ (!)

> mean-field limit: no spatial correlations

$$\langle x_{\underline{\sigma}^0} \rangle = \langle x_{\sigma} \rangle \prod_{j=1}^m \langle x_{\sigma_j} \rangle$$

> mean-field dynamics:

$$\frac{dx}{dt} = \varepsilon \left[(1-x)^5 - x^5 \right] + x^5 - x + x(1-x)^4 (5\alpha_1)$$

$$+ x^2 (1-x)^3 (10\alpha_2) + x^3 (1-x)^2 \left[10 (1-\alpha_2) \right]$$

$$+ x^4 (1-x) \left[5 (1-\alpha_1) \right]$$

mean-field dynamics:

$$\frac{dx}{dt} = \varepsilon \left[(1-x)^5 - x^5 \right] + x^5 - x + x(1-x)^4 (5\alpha_1)$$

$$+ x^2 (1-x)^3 (10\alpha_2) + x^3 (1-x)^2 [10 (1-\alpha_2)]$$

$$+ x^4 (1-x) [5 (1-\alpha_1)]$$

stationary solutions: $\dot{x} = 0$, $\varepsilon = 0$

$$x^{(1)} = 0$$
; $x^{(2)} = 1$; $x^{(3)} = 0.5$

$$x^{(4,5)} = 0.5 \pm \sqrt{\frac{10\alpha_2 + 15\alpha_1 - 7}{40\alpha_2 - 20\alpha_1 - 12}}$$

mean-field dynamics:

$$\frac{dx}{dt} = \varepsilon \left[(1-x)^5 - x^5 \right] + x^5 - x + x(1-x)^4 (5\alpha_1)$$

$$+ x^2 (1-x)^3 (10\alpha_2) + x^3 (1-x)^2 [10 (1-\alpha_2)]$$

$$+ x^4 (1-x) [5 (1-\alpha_1)]$$

stationary solutions: $\dot{x} = 0$, $\varepsilon = 0$

Non-Linear Voter Models

$$x^{(1)} = 0$$
; $x^{(2)} = 1$; $x^{(3)} = 0.5$
 $x^{(4,5)} = 0.5 \pm \sqrt{\frac{10\alpha_2 + 15\alpha_1 - 7}{40\alpha_2 - 20\alpha_1 - 12}}$

stability analysis ...

yellow: $x^{(4,5)}$ imaginary

gray: $x^{(4,5)}$ outside (0,1)

(c): $x^{(4,5)}$ unstable

Estimation of Spatial Effects

Estimation of Spatial Effects

Non-Linear Voter Models

► 1. pair approximation: pairs of nearest neighbor cells σ , σ' doublet frequency: $\langle x_{\sigma,\sigma'} \rangle$ spatial correlation: $c_{\sigma|\sigma'} := \langle x_{\sigma,\sigma'} \rangle / \langle x_{\sigma'} \rangle$

Estimation of Spatial Effects

- ► 1. pair approximation: pairs of nearest neighbor cells σ, σ' doublet frequency: $\langle x_{\sigma,\sigma'} \rangle$
 - spatial correlation: $c_{\sigma|\sigma'} := \langle x_{\sigma,\sigma'} \rangle / \langle x_{\sigma'} \rangle$
 - ⇒ closed macroscopic dynamics

$$\frac{d}{dt} \langle x(t) \rangle = \sum_{\underline{\sigma}'} \left[w(1|0,\underline{\sigma}') (1 - \langle x \rangle) \prod_{j=1}^{m} c_{\sigma_j|\sigma} \right]$$

$$-w(0|1,\underline{\sigma'}) \langle x \rangle \prod_{j=1}^{m} c_{\sigma_j|(1-\sigma)}$$

$$\frac{dc_{1|1}}{dt} = -\frac{c_{1|1}}{\langle x \rangle} \frac{d}{dt} \langle x \rangle + \frac{1}{\langle x \rangle} \frac{d}{dt} \langle x_{1,1} \rangle$$

Non-Linear Voter Models

Result:

 $ightharpoonup \langle x(t) \rangle$ well described for positive/negative feedback

 \rightarrow $\langle x(t) \rangle$ well described for positive/negative feedback

Non-Linear Voter Models

 \triangleright vector field plots $c_{1|1}(x)$

 \rightarrow $\langle x(t) \rangle$ well described for positive/negative feedback

- \triangleright vector field plots $c_{1|1}(x)$
- $ightharpoonup c_{1|1}(t)$ well described for positive, but not for negative feedback

 \rightarrow $\langle x(t) \rangle$ well described for positive/negative feedback

- \triangleright vector field plots $c_{1|1}(x)$
- $ightharpoonup c_{1|1}(t)$ well described for positive, but not for negative feedback
- 2. local neighborhood approximation: 2nd nearest neighbors

 \rightarrow $\langle x(t) \rangle$ well described for positive/negative feedback

- \triangleright vector field plots $c_{1|1}(x)$
- $ightharpoonup c_{1|1}(t)$ well described for positive, but not for negative feedback
- 2. local neighborhood approximation: 2nd nearest neighbors
- ➤ decompose neighborhood n = 13 of cell i into 5 overlapping blocks of size 5 centered around i or its 4 nearest neighbors $i_1, ..., i_4$ \Rightarrow reduction of the stochastic dynamics

> non-linear voter model: toy model to consider

- (1) various dependencies: majority v., minority v., ...
- (2) local effects: influence of neighborhood ...

> non-linear voter model: toy model to consider

- (1) various dependencies: majority v., minority v., ...
- (2) *local effects*: influence of neighborhood ...
- > stable *coexistence* of opinions possible but mostly for *negative* dependence!

- > non-linear voter model: toy model to consider
 - (1) various dependencies: majority v., minority v., ...
 - (2) local effects: influence of neighborhood ...
- > stable *coexistence* of opinions possible but mostly for *negative* dependence!
- > micro-macro link: microscopic stochastic description (CA) \Rightarrow derivation of macroscopic dynamics different approximation levels allow to predict x(t), $c_{1|1}(t)$