

Aprendizado Supervisionado Redes Neurais Artificiais

Breve resumo histórico...

As primeiras propostas de um modelo computacional inspirado no cérebro humano surgiram na década de 1940, sendo que em 1960 surgiu a estrutura conhecida como **Single Layer Perceptron**, capaz de reconhecer **padrões linearmente separáveis**.

Apenas em 1970 foi proposta a estrutura de Redes Neurais Artificiais (RNA) que é uma das mais utilizadas até hoje: **Multi Layer Perceptron** ou MLP, capaz de reconhecer **padrões não-lineares**.

Redes Neurais Artificiais Playgrounds

Demonstração

Exemplos de utilização de uma Rede Neural Artificial

https://playground.tensorflow.org/

Resultados importantes

Um dos resultados mais importantes que utilizaremos nas RNA é o **Teorema da Aproximação Universal** de George Cybenko (1989) que demonstra que:

Uma MLP com uma **única camada oculta**, um **número finito de neurônios artificiais** nessa camada e qualquer **função continua sigmoidal** como função de ativação pode **aproximar qualquer função contínua**.

Este teorema demonstra o **poder de captura de padrões** inerente as RNA do tipo MLP, porém não é apresentada qualquer forma de cálculo desse número finito de neurônios.

Além disso, existem diversos outros hiperparâmetros que afetam o desempenho de uma RNA MLP.

$$n_1(x) = Relu(-5x - 7.7)$$

$$n_2(x) = Relu(-1.2x - 1.3)$$

$$n_3(x) = Relu(1.2x + 1)$$

$$n_4(x) = Relu(1.2x - .2)$$

$$n_5(x) = Relu(2x - 1.1)$$

$$n_6(x) = Relu(5x - 5)$$

$$Z(x) = -n_1(x) - n_2(x) - n_3(x)$$

$$+ n_4(x) + n_5(x) + n_6(x)$$

Fonte: https://opendatascience.com/can-neural-networks-solve-any-problem/

Hiperparâmetros

As RNA MLP possuem diversos hiperparâmetros que afetam seu desempenho e podemos organizá-los em 3 principais grupos:

1. Topologia

Define a estrutura da RNA MLP e ajusta sua capacidade de reconhecimento de padrões, mais ou menos complexos.

- Nº camadas
- Nº neurônios por camada
- Função de ativação

2. Aprendizagem

Define como a RNA MLP reconhecerá os padrões utilizando diferentes métodos de otimização dos pesos sinápticos.

- Otimizador
- Learning Rate
- Batch Size

Fonte: https://towardsdatascience.com/coding-deep-learning-for-beginners-linear-regression-gradient-descent-fcd5e0fc077d

3. Regularização

Aplica restrições no treinamento e nos valores dos pesos sinápticos visando melhor capacidade de generalização.

- Dropout
- L1
- L2

Fonte: https://laptrinhx.com/machine-learning-model-regularization-in-practice-an-example-with-keras-and-tensorflow-2-0-2844625608/

Hiperparâmetros

As RNA MLP possuem diversos hiperparâmetros que afetam seu desempenho e podemos organizá-los em 3 principais grupos:

1. Topologia

Define a estrutura da RNA MLP e ajusta sua capacidade de reconhecimento de padrões, mais ou menos complexos.

- Nº camadas
- Nº neurônios por camada
- Função de ativação

Hiperparâmetros

As RNA MLP possuem diversos hiperparâmetros que afetam seu desempenho e podemos organizá-los em 3 principais grupos:

2. Aprendizagem

Define como a RNA MLP reconhecerá os padrões utilizando diferentes métodos de otimização dos pesos sinápticos.

- Otimizador
- Learning Rate
- Batch Size

Fonte: https://machinelearningmastery.com/adam-optimization-algorithm-for-deep-learning/

Mini-Batch / Stochastic

Mais iterações por época Treinamento lento Gradiente mais instável

Batch

Menos iterações por época Treinamento rápido Gradiente mais estável

Fonte: https://stats.stackexchange.com/questions/153531/what-is-batch-size-in-neural-network

Hiperparâmetros

As RNA MLP possuem diversos hiperparâmetros que afetam seu desempenho e podemos organizá-los em 3 principais grupos:

3. Regularização

Aplica restrições no treinamento e nos valores dos pesos sinápticos visando melhor capacidade de generalização.

- Dropout
- L1
- L2

L1: Encolhimento da RNA

L2: Penalização maiores pesos

Processo de Treinamento

Uma das formas mais utilizadas para avaliar o desempenho de uma RNA MLP é utilizar o histórico da **função loss** (perda/erro) ao longo das épocas.

Demonstração

Demonstração

Redes Neurais Artificiais

Arquivo: 7_RNA_Classificacao_Demo.ipynb

Redes Neurais Artificiais Base Cleveland Clinic Foundation

Hands on

Aumente o desempenho da RNA MLP apresentada na demonstração, mantendo a capacidade de generalização

Roteiro:

- 1. Avalie a possibilidade de criar novas variáveis usando *feature engineering*.
- 2. Ajuste os hiperparametros aprendidos para controlar:
 - **1. Generalização**: overfit vs. underfit
 - 2. Desempenho na aprendizagem
- 3. Estime a probabilidade de doença cardíaca em um paciente com as seguintes características:

age	sex	ср	trestbps	chol	fbs	restecg
35	0	1	123	280	0	1

thalach	exang	oldpeak	slope	са	tal
162	1	1.8	2	2	normal

Backpropagation

O método **Backpropagation (BP)** é a base dos diversos métodos de aprendizagem, ou otimização dos pesos sinápticos, utilizados.

A ideia principal por trás do **BP** é de calcular o erro entre o **Output Real** e o **Output Estimado** e utilizando os gradientes, **propagar o ajuste dos pesos sinápticos** desde a camada de Output até a camada Input.

$$\hat{y} = f_{Ativ}(w_3 f_{Ativ}(w_1 x_1 + w_2 x_2 + b_1) + b_2)$$

Existem diversas funções erro:

$$f_{Erro} = f(y, \hat{y}) = (\hat{y} - y)^2$$

Backpropagation

$$\hat{y} = f_{Ativ}(\mathbf{w_3} f_{Ativ}(\mathbf{w_1} x_1 + \mathbf{w_2} x_2 + b_1) + b_2)$$

$$\frac{\partial \hat{y}}{\partial w_3} = f_{Ativ}(\mathbf{w_3}n1 + b_2)' \cdot n1$$

Se
$$f_{Ativ} = sigmoid$$

$$\frac{\partial \hat{y}}{\partial w_3} = sigm(w_3n1 + b_2) \cdot \left(1 - sigm(w_3n1 + b_2)\right) \cdot n1$$

$$\frac{\partial \hat{y}}{\partial w_3} = n2 \cdot (1 - n2) \cdot n1$$

Funções de Ativação, Erro e Métricas

As Funções de Ativação na camada de saída, as Funções Erro e as Métricas de Desempenho das RNA MLP devem ser escolhidas de acordo com o tipo de Target:

Target	Funções Ativação (Camada Saída)	Funções Loss	Métricas de Desempenho
Categórico Binário	Sigmoid	Binary Cross Entropy	AUC Accuracy Binary Accuracy Binary Cross Entropy
Categórico Multiclasse	Sigmoid	Categorical Cross Entropy	Categorical Cross Entropy
Numérico	Relu	Mean Absolute Error Mean Squared Error	Mean Absolute Error Mean Squared Error

Demonstração

Demonstração

Redes Neurais Artificiais

Arquivo: 7_RNA_Regressao_Demo.ipynb

