INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

- The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Information
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines

74HC/HCT73 Dual JK flip-flop with reset; negative-edge trigger

Product specification
File under Integrated Circuits, IC06

December 1990

Dual JK flip-flop with reset; negative-edge trigger

74HC/HCT73

FEATURES

· Output capability: standard

• I_{CC} category: flip-flops

GENERAL DESCRIPTION

The 74HC/HCT73 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A.

The 74HC/HCT73 are dual negative-edge triggered JK-type flip-flops featuring individual J, K, clock (\overline{nCP}) and reset (\overline{nR}) inputs; also complementary Q and \overline{Q} outputs.

The J and K inputs must be stable one set-up time prior to the HIGH-to-LOW clock transition for predictable operation.

The reset $(n\overline{R})$ is an asynchronous active LOW input. When LOW, it overrides the clock and data inputs, forcing the Q output LOW and the \overline{Q} output HIGH.

Schmitt-trigger action in the clock input makes the circuit highly tolerant to slower clock rise and fall times.

QUICK REFERENCE DATA

 $GND = 0 \text{ V}; T_{amb} = 25 \,^{\circ}\text{C}; t_r = t_f = 6 \text{ ns}$

SYMBOL	DADAMETER	CONDITIONS	TYP	LINUT	
	PARAMETER	CONDITIONS	нс	нст	UNIT
t _{PHL} / t _{PLH}	propagation delay	$C_L = 15 \text{ pF}; V_{CC} = 5 \text{ V}$			
	nCP to nQ		16	15	ns
	$n\overline{CP}$ to $n\overline{Q}$		16	18	ns
	$n\overline{R}$ to nQ , $n\overline{Q}$		15	15	ns
f _{max}	maximum clock frequency		77	79	MHz
C _I	input capacitance		3.5	3.5	pF
C _{PD}	power dissipation capacitance per flip-flop	notes 1 and 2	30	30	pF

Notes

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW):

$$P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum (C_1 \times V_{CC}^2 \times f_o)$$
 where:

f_i = input frequency in MHz

fo = output frequency in MHz

 $\sum (C_L \times V_{CC}^2 \times f_0) = \text{sum of outputs}$

C_L = output load capacitance in pF

V_{CC} = supply voltage in V

2. For HC the condition is $V_I = GND$ to V_{CC}

For HCT the condition is $V_I = GND$ to $V_{CC} - 1.5 \text{ V}$

ORDERING INFORMATION

See "74HC/HCT/HCU/HCMOS Logic Package Information".

Dual JK flip-flop with reset; negative-edge trigger

74HC/HCT73

PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION
1, 5	1 CP, 2 CP	clock input (HIGH-to-LOW, edge-triggered)
2, 6	1 R, 2 R	asynchronous reset inputs (active LOW)
4	V _{CC}	positive supply voltage
11	GND	ground (0 V)
12, 9	1Q, 2Q	true flip-flop outputs
13, 8	1\overline{Q}, 2\overline{Q}	complement flip-flop outputs
14, 7, 3, 10	1J, 2J, 1K, 2K	synchronous inputs; flip-flops 1 and 2

Philips Semiconductors Product specification

Dual JK flip-flop with reset; negative-edge trigger

74HC/HCT73

Fig.4 Functional diagram.

FUNCTION TABLE

OPERATING		INPU	OUTPUTS			
MODE	nR̄	nCP	J	K	Q	Q
asynchronous reset	L	Х	Х	Х	L	Н
toggle load "0" (reset) load "1" (set) hold "no change"	H H H	→ → →	h 	h h l	_а L Н	q Н L

Notes

- 1. H = HIGH voltage level
 - h = HIGH voltage level one set-up time prior to the HIGH-to-LOW CP transition
 - L = LOW voltage level
 - I = LOW voltage level one set-up time prior to the HIGH-to-LOW CP transition
 - q = lower case letters indicate the state of the referenced output one set-up time prior to the HIGH-to-LOW CP transition
 - X = don't care
 - ↓ = HIGH-to-LOW CP transition

Philips Semiconductors Product specification

Dual JK flip-flop with reset; negative-edge trigger

74HC/HCT73

DC CHARACTERISTICS FOR 74HC

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: standard I_{CC} category: flip-flops

AC CHARACTERISTICS FOR 74HC

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

	PARAMETER	T _{amb} (°C)								TEST CONDITIONS	
CYMPOL		74HC									
SYMBOL		+25			-40 to +85		-40 to +125		UNIT	V _{CC}	WAVEFORMS
		min.	typ.	max.	min.	max.	min.	max.		(')	
t _{PHL} / t _{PLH}	propagation delay nCP to nQ		52 19 15	160 32 27		200 40 34		240 48 41	ns	2.0 4.5 6.0	Fig.6
t _{PHL} / t _{PLH}	propagation delay nCP to nQ		52 19 15	160 32 27		200 40 34		240 48 41	ns	2.0 4.5 6.0	Fig.6
t _{PHL} / t _{PLH}	propagation delay nR to nQ, nQ		50 18 14	145 29 25		180 36 31		220 44 38	ns	2.0 4.5 6.0	Fig.7
t _{THL} / t _{TLH}	output transition time		19 7 6	75 15 13		95 19 16		110 22 19	ns	2.0 4.5 6.0	Fig.6
t _W	clock pulse width HIGH or LOW	80 16 14	22 8 6		100 20 17		120 24 20		ns	2.0 4.5 6.0	Fig.6
t _W	reset pulse width HIGH or LOW	80 16 14	22 8 6		100 20 17		120 24 20		ns	2.0 4.5 6.0	Fig.7
t _{rem}	removal time nR to nCP	80 16 14	22 8 6		100 20 17		120 24 20		ns	2.0 4.5 6.0	Fig.7
t _{su}	set-up time_ nJ, nK to nCP	80 16 14	22 8 6		100 20 17		120 24 20		ns	2.0 4.5 6.0	Fig.6
t _h	hold time nJ, nK to nCP	3 3 3	-8 -3 -2		3 3 3		3 3 3		ns	2.0 4.5 6.0	Fig.6
f _{max}	maximum clock pulse frequency	6.0 30 35	23 70 83		4.8 24 28		4.0 20 24		MHz	2.0 4.5 6.0	Fig.6

Philips Semiconductors Product specification

Dual JK flip-flop with reset; negative-edge trigger

74HC/HCT73

DC CHARACTERISTICS FOR 74HCT

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: standard I_{CC} category: flip-flops

Note to HCT types

The value of additional quiescent supply current (ΔI_{CC}) for a unit load of 1 is given in the family specifications. To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table below.

INPUT	UNIT LOAD COEFFICIENT
nK	0.60
nR	0.65
n CP , nJ	1.00

AC CHARACTERISTICS FOR 74HCT

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

	PARAMETER	T _{amb} (°C)								TEST CONDITIONS	
SYMBOL			74 HCT								WAVEFORMS
		+25			-40 to +85		-40 to +125		UNIT	V _{CC}	WAVEFORMS
		min.	typ.	max.	min.	max.	min.	max.		(',	
t _{PHL} / t _{PLH}	propagation delay nCP to nQ		18	38		48		57	ns	4.5	Fig.6
t _{PHL} / t _{PLH}	propagation delay nCP to nQ		21	36		45		54	ns	4.5	Fig.6
t _{PHL} / t _{PLH}	propagation delay nR to nQ, nQ		20	34		43		51	ns	4.5	Fig.7
t _{THL} / t _{TLH}	output transition time		7	15		19		22	ns	4.5	Fig.6
t _W	clock pulse width HIGH or LOW	16	8		20		24		ns	4.5	Fig.6
t _W	reset pulse width HIGH or LOW	18	9		23		27		ns	4.5	Fig.7
t _{rem}	removal time nR to nCP	14	8		18		21		ns	4.5	Fig.7
t _{su}	set-up time nJ, nK to nCP	12	6		15		18		ns	4.5	Fig.6
t _h	hold time nJ, nK to nCP	3	-2		3		3		ns	4.5	Fig.6
f _{max}	maximum clock pulse frequency	30	72		24		20		MHz	4.5	Fig.6

Dual JK flip-flop with reset; negative-edge trigger

74HC/HCT73

AC WAVEFORMS

Fig.6 Waveforms showing the clock (\overline{nCP}) to output (\overline{nQ} , \overline{nQ}) propagation delays, the clock pulse width, the J and K to \overline{nCP} set-up and hold times, the output transition times and the maximum clock pulse frequency.

PACKAGE OUTLINES

See "74HC/HCT/HCU/HCMOS Logic Package Outlines".

and the $n\overline{R}$ to $n\overline{CP}$ removal time.