```
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score
```

In [3]: import os
 os.getcwd()
 credit_card_data = pd.read_csv('creditcard.csv')
 credit_card_data

Out[3]:		Time	V1	V2	V3	V4	V 5	V6	
	0	0.0	-1.359807	-0.072781	2.536347	1.378155	-0.338321	0.462388	0.239!
	1	0.0	1.191857	0.266151	0.166480	0.448154	0.060018	-0.082361	-0.078
	2	1.0	-1.358354	-1.340163	1.773209	0.379780	-0.503198	1.800499	0.791
	3	1.0	-0.966272	-0.185226	1.792993	-0.863291	-0.010309	1.247203	0.2370
	4	2.0	-1.158233	0.877737	1.548718	0.403034	-0.407193	0.095921	0.592
	•••								
	284802	172786.0	-11.881118	10.071785	-9.834783	-2.066656	-5.364473	-2.606837	-4.918
	284803	172787.0	-0.732789	-0.055080	2.035030	-0.738589	0.868229	1.058415	0.024
	284804	172788.0	1.919565	-0.301254	-3.249640	-0.557828	2.630515	3.031260	-0.296
	284805	172788.0	-0.240440	0.530483	0.702510	0.689799	-0.377961	0.623708	-0.686
	284806	172792.0	-0.533413	-0.189733	0.703337	-0.506271	-0.012546	-0.649617	1.577(

284807 rows × 31 columns

```
In [4]: credit_card_data.head()
```

Out[4]:		Time	V1	V2	V3	V4	V 5	V6	V7	1
	0	0.0	-1.359807	-0.072781	2.536347	1.378155	-0.338321	0.462388	0.239599	0.0986
	1	0.0	1.191857	0.266151	0.166480	0.448154	0.060018	-0.082361	-0.078803	0.0851
	2	1.0	-1.358354	-1.340163	1.773209	0.379780	-0.503198	1.800499	0.791461	0.2476
	3	1.0	-0.966272	-0.185226	1.792993	-0.863291	-0.010309	1.247203	0.237609	0.3774
	4	2.0	-1.158233	0.877737	1.548718	0.403034	-0.407193	0.095921	0.592941	-0.2705

5 rows × 31 columns

3

V3

V4

In [5]: # information about data set
 credit_card_data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 284807 entries, 0 to 284806
Data columns (total 31 columns):
Column Non-Null Count Dtype
--- 0 Time 284807 non-null float64
1 V1 284807 non-null float64
2 V2 284807 non-null float64

284807 non-null float64

284807 non-null float64

```
5
             V5
                      284807 non-null float64
         6
             V6
                      284807 non-null float64
         7
             V7
                      284807 non-null float64
         8
             V8
                      284807 non-null float64
         9
             V9
                      284807 non-null float64
         10
             V10
                      284807 non-null float64
         11
             V11
                     284807 non-null float64
         12
             V12
                     284807 non-null float64
         13
             V13
                     284807 non-null float64
         14
             V14
                     284807 non-null float64
         15
             V15
                     284807 non-null float64
         16
             V16
                     284807 non-null float64
         17
             V17
                     284807 non-null float64
         18
             V18
                     284807 non-null float64
         19
             V19
                     284807 non-null float64
         2.0
             V2.0
                     284807 non-null float64
         2.1
             V21
                     284807 non-null float64
         2.2
             V22
                     284807 non-null float64
         2.3
             V23
                     284807 non-null float64
         2.4
             V24
                     284807 non-null float64
         25
            V25
                     284807 non-null float64
         26 V26
                     284807 non-null float64
         27
                     284807 non-null float64
             V27
         28 V28
                     284807 non-null float64
         29 Amount 284807 non-null float64
         30 Class
                     284807 non-null
                                      int64
        dtypes: float64(30), int64(1)
        memory usage: 67.4 MB
         #another way to check missing value in data set
In [6]:
         credit card data.isnull().sum()
        Time
                  0
Out[6]:
        V1
                  0
        V2
                  0
        V3
                  0
        V4
                  0
        V5
                  0
        V6
                  0
        V7
                  0
        V8
                  0
        V9
                  0
        V10
                  0
        V11
                  0
        V12
                  0
        V13
                  0
        V14
                  0
        V15
                  0
        V16
                  0
        V17
                  0
        V18
                  0
        V19
                  0
        V20
                  0
        V21
                  0
        V22
                  0
        V23
                  0
        V24
                  0
        V25
                  0
        V26
                  0
        V27
                  0
        V28
                  0
        Amount
        Class
        dtype: int64
In [7]:
         # check the distribution of legit and fraudulent function
         credit card data['Class'].value counts()
```

```
Out[7]: 0 284315
```

492

1

```
Name: Class, dtype: int64
          #seperating data for analysis
 In [9]:
           legit = credit card data[credit card data.Class == 0]
           fraud = credit card data[credit card data.Class == 1]
In [10]:
          print(legit.shape)
           print(fraud.shape)
          (284315, 31)
          (492, 31)
          #statistical measure of data
In [11]:
           legit.Amount.describe()
Out[11]: count
                     492.000000
          mean
                     122.211321
          std
                     256.683288
          min
                       0.000000
          25%
                       1.000000
          50%
                       9.250000
          75%
                    105.890000
                    2125.870000
          max
          Name: Amount, dtype: float64
          fraud.Amount.describe()
In [12]:
                     492.000000
Out[12]: count
                    122.211321
          mean
                     256.683288
          std
          min
                       0.00000
          25%
                       1.000000
          50%
                       9.250000
          75%
                     105.890000
                    2125.870000
          max
          Name: Amount, dtype: float64
           #comparing the mean value of each transaction column wise
In [13]:
           credit card data.groupby('Class').mean()
                        Time
                                    V1
                                             V2
                                                       ٧3
                                                                 V4
                                                                           V5
                                                                                    V6
Out[13]:
          Class
             0 94838.202258
                             0.008258 -0.006271
                                                   0.012171 -0.007860
                                                                     0.005453
                                                                               0.002419
                                                                                         0.0096
                 80746.806911 -4.771948
                                        3.623778 -7.033281
                                                            4.542029 -3.151225 -1.397737
                                                                                        -5.5687
         2 rows × 30 columns
           #sampling from population
In [14]:
           legit sample = legit.sample(n=492)
           #now concating two random sample of fraud and legit
In [16]:
           new dataset = pd.concat([legit sample, fraud], axis=0)
           new dataset
                      Time
                                  V1
                                           V2
                                                     ٧3
                                                               V4
                                                                         V5
                                                                                    V6
Out[16]:
           179127
                  123933.0 -1.226099
                                      1.263841
                                                1.592882 -0.732320 -0.009359
                                                                               0.618837
                                                                                        -0.1503
          277998 167982.0
                            0.017972 0.066563
                                                -1.474137 -2.069225
                                                                    0.987035
                                                                                         0.8827
                                                                              -1.342736
          162320
                   115013.0 -0.673372 0.884540 -0.039556
                                                          -1.128214
                                                                    1.689072
                                                                              1.605549
                                                                                        0.4835
```

	Time	V1	V2	V3	V4	V 5	V6	
256276	157617.0	-1.746942	0.268513	-0.819984	0.899060	2.062543	-0.477698	1.3732
80635	58580.0	-0.925514	1.023498	1.485087	-0.787077	0.508082	-0.016270	0.6986
•••								
279863	169142.0	-1.927883	1.125653	-4.518331	1.749293	-1.566487	-2.010494	-0.8828
280143	169347.0	1.378559	1.289381	-5.004247	1.411850	0.442581	-1.326536	-1.4131
280149	169351.0	-0.676143	1.126366	-2.213700	0.468308	-1.120541	-0.003346	-2.2347
281144	169966.0	-3.113832	0.585864	-5.399730	1.817092	-0.840618	-2.943548	-2.2080
281674	170348.0	1.991976	0.158476	-2.583441	0.408670	1.151147	-0.096695	0.2230

984 rows × 31 columns

In [17]:	new_dataset.head()								
Out[17]:		Time	V1	V2	V3	V4	V 5	V6	١
	179127	123933.0	-1.226099	1.263841	1.592882	-0.732320	-0.009359	0.618837	-0.1503(
	277998	167982.0	0.017972	0.066563	-1.474137	-2.069225	0.987035	-1.342736	0.8827
	162320	115013.0	-0.673372	0.884540	-0.039556	-1.128214	1.689072	1.605549	0.48353
	256276	157617.0	-1.746942	0.268513	-0.819984	0.899060	2.062543	-0.477698	1.37320
	80635	58580.0	-0.925514	1.023498	1.485087	-0.787077	0.508082	-0.016270	0.69864

5 rows × 31 columns

```
new_dataset['Class'].value_counts()
In [19]:
               492
Out[19]:
               492
          Name: Class, dtype: int64
          #again comparing mean of each column wise
In [20]:
          new dataset.groupby('Class').mean()
                       Time
                                   V1
                                            V2
                                                      ٧3
                                                               V4
                                                                         V5
                                                                                   V6
Out[20]:
          Class
             0 93238.636179 -0.012739 -0.051224
                                                 0.081062
                                                          0.067771 -0.034524 0.046348 -0.0486
              1 80746.806911 -4.771948 3.623778 -7.033281 4.542029 -3.151225 -1.397737 -5.5687
```

2 rows × 30 columns

```
In [22]:
         #spliting the data into feature and targets
          x = new dataset.drop(columns = 'Class', axis=1)
          y = new_dataset['Class']
In [23]:
         print(x)
          print(y)
                     Time
                                 V1
                                           V2
                                                     V3
                                                               V4
                                                                         V5
                                                                                   V6
                                    1.263841 1.592882 -0.732320 -0.009359 0.618837
         179127
                 123933.0 -1.226099
                 167982.0 0.017972 0.066563 -1.474137 -2.069225 0.987035 -1.342736
```

```
162320 \quad 115013.0 \quad -0.673372 \quad 0.884540 \quad -0.039556 \quad -1.128214 \quad 1.689072 \quad 1.605549
         256276 \quad 157617.0 \quad -1.746942 \quad 0.268513 \quad -0.819984 \quad 0.8999060 \quad 2.062543 \quad -0.477698
                  58580.0 -0.925514 1.023498 1.485087 -0.787077 0.508082 -0.016270
         80635
         . . .
                      . . .
                                . . .
                                          . . .
                                                    . . .
                                                              . . .
                                                                        . . .
         279863 169142.0 -1.927883 1.125653 -4.518331
                                                         1.749293 -1.566487 -2.010494
         280143 \quad 169347.0 \quad 1.378559 \quad 1.289381 \quad -5.004247 \quad 1.411850 \quad 0.442581 \quad -1.326536
         280149
                169351.0 -0.676143 1.126366 -2.213700 0.468308 -1.120541 -0.003346
         281144 169966.0 -3.113832 0.585864 -5.399730 1.817092 -0.840618 -2.943548
         281674 170348.0 1.991976 0.158476 -2.583441 0.408670 1.151147 -0.096695
                       V7
                                 V8
                                           V9
                                                         V20
                                                                   V21
                                                                             V2.2
                                               . . .
                                              ... -0.293957
         179127 -0.150303 -1.385052 0.152878
                                                             1.464472 -0.628600
         162320 0.483538 -0.487899 0.218933 ... -0.219425
                                                             1.100461 1.031925
         256276 1.373207 0.194511 -2.035495 ... 0.563382 0.554844 0.944406
         . . .
                                . . .
                                          ... ...
                                                         . . .
                                                                   . . .
         279863 -0.882850 0.697211 -2.064945 ... 1.252967
                                                             0.778584 -0.319189
         280143 -1.413170 0.248525 -1.127396 ... 0.226138 0.370612 0.028234
         280149 -2.234739 1.210158 -0.652250 ... 0.247968 0.751826 0.834108
         281144 -2.208002 1.058733 -1.632333 ... 0.306271 0.583276 -0.269209
         281674 0.223050 -0.068384 0.577829 ... -0.017652 -0.164350 -0.295135
                                                                        V28 Amount
                      W23
                                V2.4
                                          V25
                                                    V2.6
                                                              V2.7
         179127 -0.231586 0.525292 0.270160 0.465720 0.152674 0.097235
                                                                             60.00
         277998 \ -0.070283 \quad 0.667252 \ -0.117175 \ -0.171167 \quad 0.278003 \quad 0.170028
                                                                             47.90
         162320 \ -0.302046 \ -0.975122 \ \ 0.000803 \ -0.308771 \ \ \ 0.182194 \ -0.025066
                                                                              1.00
         256276 - 0.539891 \quad 0.297941 \quad 1.643287 \quad 0.073394 - 0.146000 - 0.198981 \quad 131.76
         80635 -0.234127 -0.832464 0.250941 0.106850 0.101328 0.104278
                                                                               4.99
                                . . .
                                                    . . .
                                                              . . .
                      . . .
                                          . . .
                                                                        . . .
         279863 0.639419 -0.294885 0.537503 0.788395 0.292680 0.147968 390.00
         280143 -0.145640 -0.081049 0.521875 0.739467 0.389152 0.186637
                                                                              0.76
         280149 0.190944 0.032070 -0.739695 0.471111 0.385107 0.194361
                                                                              77.89
         281144 -0.456108 -0.183659 -0.328168 0.606116 0.884876 -0.253700 245.00
         281674 -0.072173 -0.450261 0.313267 -0.289617 0.002988 -0.015309 42.53
         [984 rows x 30 columns]
         179127
                   0
         277998
                   0
         162320
                   0
         256276
                   0
         80635
                   0
         279863
                  1
         280143
                   1
         280149
                   1
         281144
                   1
         281674
                   1
         Name: Class, Length: 984, dtype: int64
In [25]: | x_train, x_test, y_train, y_test = train_test_split(x, y, test size=0.2, strain)
          print(x.shape, x_train.shape, x_test.shape)
         (984, 30) (787, 30) (197, 30)
In [26]:
         #model training
          model = LogisticRegression()
         #training logistic regression model with training data
In [27]:
          model.fit(x train, y train)
```

/Applications/anaconda3/lib/python3.8/site-packages/sklearn/linear_model/_logistic.py:762: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.

Increase the number of iterations (max_iter) or scale the data as shown in:
 https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:

```
https://scikit-learn.org/stable/modules/linear model.html#logistic-regress
         ion
           n_iter_i = _check_optimize_result(
Out[27]: LogisticRegression()
In [31]: | #accuracy on training data
          # accuracy on training data
          x train prediction = model.predict(x train)
          training data accuracy = accuracy score(x train prediction, y train)
In [32]: print('Accuracy on Training data : ', training_data_accuracy)
         Accuracy on Training data: 0.9491740787801779
In [33]: #accuracy of test data
          # accuracy on test data
          x test prediction = model.predict(x test)
          test data accuracy = accuracy score(x test prediction, y test)
In [34]: print('Accuracy score on Test Data: ', test data accuracy)
         Accuracy score on Test Data: 0.934010152284264
          # so test data accuracy and trainning data accuracy is close to each other so
```