제2장 단순선형회귀모형

2.1 회귀분석의 기초개념

1. 회귀(regression)

Francis Galton(1885), "Regression Toward Mediocrity in Hereditary Stature"

- 아버지와 아들의 키에 대한 관련성을 연구하면서 '회귀'란 용어를 처음 사용
- 분석결과, 키가 매우 큰(작은) 부모의 아들은 평균보다는 큰(작은) 키를 가지지만 아버지의 키보다는 작은(큰) 경향이 있었다.

2. 회귀분석이란?

- 어떤 현상이 변수들의 인과관계에 의해서 나타날 때 그 관계를 수학적으로 설명하기 위해 사용되는 통계적 방법들 중 하나
- 변수들 간의 관계를 나타내는 타당한 수학적 모형을 이론적 근거나 경험에 바탕하여 설정하고, 변수들의 관측된 값을 이용하여 그 모형을 추정한 다음, 추정한 모형에 의해 변수들 간의 관계를 설명하든지 또는 예측 등의 분석에 응용하게 된다.

3. 회귀분석의 목적

- (1) 변수들 간에 성립하는 정확한 회귀모형의 구축
- (2) 모형에 포함된 모수들의 추정
- (3) 적합된 모형을 이용한 예측
- 4. 기호: x 독립변수, 설명변수, 예측변수, 입력변수, y 종속변수, 반응변수
- 5. 회귀모형: $y = f(x_1, x_2, \dots, x_n) + \epsilon$
- 6. 회귀분석의 순서
- (1) 입력변수 x와 반응변수 y 선택

x (입력변수)	y (반응변수)		
x_1	y_1		
x_2	y_2		
x_3	y_3		
:	÷		
x_n	${y}_n$		

- (2) 산점도(scatter plot) 그리기, 기초통계량/요약통계량 계산하기
- (3) 회귀모형의 유형 결정
- (4) 통계적 추론
- (5) 회귀분석 결과 해석 및 응용분야에서의 함의 도출

[예제]

알레르기에 대한 새로운 약품을 개발하는 단계에서 알레르기 증상이 없어지는 약의 지속효과에 영향을 주는 약의 복용량이 어떻게 다른지 알고 싶다. 10명의 환자를 대상으로 각 환자는 규정량의 약을 복용한 후 약의 효과가 사라지면 곧 돌아와 보고하도록 하였다. 10명의 환자에 대한 약의 복용량(x)과 약의 지속효과 기간(y)이 [표]에 주어져 있다. 표를 보면 y가 x에 따라 대체로 증가하는 것으로 보인다.

| 표 10-1 | 10명의 환자에 대한 약의 복용량(x)과 지속효과(y)

	약의 지속효과 y		
약의 복용 량 <i>x</i>			
3	9		
3	5		
	12		
4	9		
5	14		
6			
6	16		
7	22		
8	18		
8	24		
9	22		

│ 표 10-2 │ 단순회귀에 대한 자료구조

독립변수	반응변수
x_1	\mathcal{Y}_1
x_2	${\cal Y}_2$
x_3	y_3
	The second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a section in the second section in the section is a section in the section in the section in the section is a section in the section in the section in the section is a section in the section in the section in the section in the section is a section in the section in t
χ_n	\mathcal{Y}_n

2.2 단순선형회귀모형

1. 단순선형회귀에 대한 통계적 모형

반응변수(y)는 $y_i=eta_0+eta_1x_i+e_i$ $(i=1,\ \cdots,n)$ 에 의해 입력변수(x)와 관련되어지는 확률변수라고 가정한다. 이때

- (1) y_i 는 설명변수 x가 x_i 일 때의 반응치이다.
- (2) $e_1, \, \cdots, e_n$ 은 실제 직선관계에 부과되는 알 수 없는 오차요소들이다. 이것들은 평균 이 0이고 표준편차가 σ 인 정규분포를 따르는 확률변수이다.

$$\begin{split} E(y_i) &= E(\beta_0 + \beta_1 x_i + e_i) = E(\beta_0 + \beta_1 x_i) + E(e_i) = \beta_0 + \beta_1 x_i \\ Var(y_i) &= Var(\beta_0 + \beta_1 x_i + e_i) = Var(\beta_0 + \beta_1 x_i) + Var(e_i) = \sigma^2 \end{split}$$

(3) β_0 와 β_1 은 미지의 계수이다.

고림 10-3 x값이 주어졌을 때 직선 상에 평균을 갖는 정규분포들의 형태

2.3 회귀계수의 추정

2.3.1 최소제곱법

1. 최소제곱법의 원리

①
$$D = \sum_{i=1}^{n} d_i^2 = \sum_{i=1}^{n} (y_i - b_0 - b_1 x_i)^2$$
가 최소가 되는 모수값을 결정하는 것

② 최소제곱추정량(least squares estimator: LSE): $\hat{\beta}_0$, $\hat{\beta}_1$

③ 적합된 직선:
$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$$

2. 기본적인 기호

①
$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

②
$$\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$$

$$(3) S_{yy} = \sum_{i=1}^{n} (y_i - \overline{y})^2 = \sum_{i=1}^{n} y_i^2 - \frac{\left(\sum_{i=1}^{n} y_i\right)^2}{n}$$

3. 최소제곱추정량에 대한 공식

(1)
$$\beta_0$$
의 최소제곱추정량: $\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$

(2)
$$\beta_1$$
의 최소제곱추정량: $\hat{\beta}_1 = \frac{S_{xy}}{S_{rx}}$

$$D = \sum_{i=1}^{n} d_i^2 = \sum_{i=1}^{n} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i)^2$$

$$\frac{\partial D}{\partial \hat{\beta}_1} = -2\sum_{i=1}^n x_i \! \left(y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i\right) = 0 \ \rightarrow \ \sum_{i=1}^n x_i y_i = \hat{\beta}_0 \sum_{i=1}^n x_i + \hat{\beta}_1 \sum_{i=1}^n x_i^2 \qquad \mbox{정규방정식}$$

$$\hat{\beta}_0 = \frac{1}{n} \left(\sum_{i=1}^n y_i - \hat{\beta}_1 \sum_{i=1}^n x_i \right) = \bar{y} - \hat{\beta}_1 \bar{x}$$

$$\begin{split} \sum_{i=1}^n x_i y_i = & (\overline{y} - \widehat{\beta}_1 \overline{x}) n \overline{x} + \widehat{\beta}_1 \sum_{i=1}^n x_i^2 \\ = & \left(\sum_{i=1}^n x_i^2 - n \overline{x}^2 \right) \widehat{\beta}_1 + n \overline{x} \overline{y} \end{split}$$

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n x_i y_i - n\overline{x}\overline{y}}{\sum_{i=1}^n x_i^2 - n\overline{x}^2} = \frac{\sum_{i=1}^n \left(x_i - \overline{x}\right) \! \left(y_i - \overline{y}\right)}{\sum_{i=1}^n \left(x_i - \overline{x}\right)^2} = \frac{S_{xy}}{S_{xx}}$$

4. 잔차:
$$\hat{e}_i = y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i$$
 $(i = 1, \dots, n)$

- (1) 잔차: 0, 양수, 음수
- (2) 잔차의 합은 언제나 0이다.
- (3) 잔차제곱합(residual sum of squares)

[오차제곱합(sum of squares due to error)] → SSE

$$SSE = \sum_{i=1}^{n} \hat{e}_{i}^{2} = S_{yy} - \frac{S_{xy}^{2}}{S_{xx}}$$

(4) 모형검토에서 잔차의 역할이 중요하다.

5. 분산의 추정: 분산
$$\sigma^2$$
은 $s^2 = \frac{SSE}{n-2}$ 에 의해 추정된다.

6. 예제

	x	y	x^2	y^2	xy	$\hat{\beta}_0 + \hat{\beta}_1 x$	\hat{e}
	3	9	9	81	27	7.15	1.85
	3	5	9	25	15	7.15	-2.15
	4	12	16	144	48	9.89	2.11
	5	9	25	81	45	12.63	-3.63
	6	14	36	196	84	15.37	-1.37
	6	16	36	256	96	15.37	0.63
	7	22	49	484	154	18.11	3.89
	8	18	64	324	144	20.85	-2.85
	8	24	64	576	192	20.85	3.15
	9	22	81	484	198	23.59	-1.59
합계	59	151	389	2,651	1,003		0.04

$$\begin{aligned}
\overline{x} &= 5.9, \ \overline{y} &= 15.1 \\
S_{xx} &= 389 - \frac{59^2}{10} &= 40.9 \\
S_{yy} &= 2651 - \frac{151^2}{10} &= 370.9 \\
S_{xy} &= 1003 - \frac{59 \times 151}{10} &= 112.1
\end{aligned}$$

$$\begin{aligned}
\hat{\beta}_1 &= \frac{112.1}{40.9} = 2.74 \\
\hat{\beta}_0 &= 15.1 - 2.74 \times 5.9 = -1.07 \\
SSE &= 370.9 - \frac{112.1^2}{40.9} = 63.6528 \\
S^2 &= \frac{SSE}{n-2} = \frac{63.6528}{8} = 7.96
\end{aligned}$$

$$\hat{y} &= -1.07 + 2.74x$$

2.3.2 최소제곱추정량의 성질

1. 불편성

$$\begin{split} \hat{\beta}_1 &= \frac{\sum_{i=1}^n \left(x_i - \overline{x}\right) \! \left(y_i - \overline{y}\right)}{S_{xx}} = \frac{\sum_{i=1}^n \! \left(x_i - \overline{x}\right) \! y_i - \sum_{i=1}^n \! \left(x_i - \overline{x}\right) \! \overline{y}}{S_{xx}} = \frac{\sum_{i=1}^n \! \left(x_i - \overline{x}\right) \! y_i}{S_{xx}} = \sum_{i=1}^n \! w_i y_i \\ & \text{ of 71kH}, \ \ w_i = \frac{x_i - \overline{x}}{S_{xx}} \end{split}$$

 $\rightarrow \hat{\beta}_1$ 은 y_i 들의 선형결합

$$\begin{split} &\sum_{i=1}^n w_i = \sum_{i=1}^n \frac{x_i - \overline{x}}{S_{xx}} = \frac{1}{S_{xx}} \sum_{i=1}^n \left(x_i - \overline{x} \right) = 0 \\ &\sum_{i=1}^n w_i^2 = \sum_{i=1}^n \left(\frac{x_i - \overline{x}}{S_{xx}} \right)^2 = \frac{1}{S_{xx}^2} \sum_{i=1}^n \left(x_i - \overline{x} \right)^2 = \frac{1}{S_{xx}} \\ &\Rightarrow E(\hat{\beta}_1) = E \bigg(\sum_{i=1}^n w_i y_i \bigg) = \sum_{i=1}^n w_i E(y_i) = \sum_{i=1}^n w_i \left(\beta_0 + \beta_1 x_i \right) = \beta_0 \sum_{i=1}^n w_i + \beta_1 \sum_{i=1}^n w_i x_i = \beta_1 \\ &\Rightarrow E(\hat{\beta}_1) = E \bigg(\sum_{i=1}^n w_i y_i \bigg) = \sum_{i=1}^n w_i E(y_i) = \sum_{i=1}^n w_i \left(\beta_0 + \beta_1 x_i \right) = \beta_0 \sum_{i=1}^n w_i + \beta_1 \sum_{i=1}^n w_i x_i = \beta_1 \\ &\Rightarrow E(\hat{\beta}_1) = E \bigg(\sum_{i=1}^n w_i y_i \bigg) = \sum_{i=1}^n w_i E(y_i) = \sum_{i=1}^n w_i \left(\beta_0 + \beta_1 x_i \right) = \beta_0 \sum_{i=1}^n w_i + \beta_1 \sum_{i=1}^n w_i x_i = \beta_1 \\ &\Rightarrow E(\hat{\beta}_1) = E \bigg(\sum_{i=1}^n w_i y_i \bigg) = \sum_{i=1}^n w_i E(y_i) = \sum_{i=1}^n w_i \left(\beta_0 + \beta_1 x_i \right) = \beta_0 \sum_{i=1}^n w_i + \beta_1 \sum_{i=1}^n w_i x_i = \beta_1 \\ &\Rightarrow E(\hat{\beta}_1) = E \bigg(\sum_{i=1}^n w_i y_i \bigg) = \sum_{i=1}^n w_i E(y_i) = \sum_{i=1}^n w_i \left(\beta_0 + \beta_1 x_i \right) = \beta_0 \sum_{i=1}^n w_i \left(\beta_0 + \beta_1 x_$$

$$\begin{split} E(\hat{\boldsymbol{\beta}}_0) &= E(\overline{\boldsymbol{y}} - \hat{\boldsymbol{\beta}}_1 \overline{\boldsymbol{x}}) = E(\overline{\boldsymbol{y}}) - \overline{\boldsymbol{x}} E(\hat{\boldsymbol{\beta}}_1) = \boldsymbol{\beta}_0 + \boldsymbol{\beta}_1 \overline{\boldsymbol{x}} - \boldsymbol{\beta}_1 \overline{\boldsymbol{x}} = \boldsymbol{\beta}_0 \\ & \Leftrightarrow |\mathcal{I}| \, \lambda , \ \, \overline{\boldsymbol{y}} = \frac{1}{n} \sum_{i=1}^n y_i = \frac{1}{n} \sum_{i=1}^n \left(\beta_0 + \beta_1 x_i + \epsilon_i \right) = \beta_0 + \beta_1 \overline{\boldsymbol{x}} + \overline{\boldsymbol{\epsilon}} \\ & E(\overline{\boldsymbol{y}}) = E(\beta_0 + \beta_1 \overline{\boldsymbol{x}} + \overline{\boldsymbol{\epsilon}}) = \beta_0 + \beta_1 \overline{\boldsymbol{x}} + E(\overline{\boldsymbol{\epsilon}}) = \beta_0 + \beta_1 \overline{\boldsymbol{x}} \end{split}$$

$$:: E(\hat{\beta}_0) = \beta_0 : \hat{\beta}_0$$
은 β_0 의불편 추정량

 $:: E(\hat{\beta}_1) = \beta_1 : \hat{\beta}_1 \in \beta_1$ 의불편 추정량