Assignment 3 2023-April Session-04-10-2023-shift:2-1-15

1

(2023-Apr)

d) 69

EE24BTECH11049 Patnam Shariq Faraz Muhammed

MCQ 1) If the coefficients of x and x^2 in $(1 + x)^p$ $(1 - x)^q$ are 4 and -5 respectively, then

2) let $A = \{2, 3, 4\}$ and $B = \{8, 9, 12\}$. Then the number of elements in the relation $R = \{((a_1, b_1), (a_2, b_2)) \in (A \times B, A \times B) : a_1 \text{ divides } b_2 \text{ and } a_2 \text{ divides } b_1\}$ is

c) 66

2p + 3q is equal to

a) 60

b) 63

			(2023	-Apr)
a) 18	b) 24	c) 12	d) 36	
	ge of the point $P(1, 1, 4, 1)$ and $C(0, 5, 1)$		$\alpha^2 + \beta^2 + \gamma^2$ is equal	
a) 70	b) 76	c) 62	d) 65	
4) The statement	$a \sim [p \lor (\sim (p \land q))]$ is	s equivalent to	(2023	S-Apr)
a) $(\sim (p \land q))$	$\land q$ b) $\sim (p \lor q)$	c) $\sim (p \wedge q)$	d) $(p \wedge q) \wedge (\sim)$)
	$\left(\frac{\pi}{2}, \frac{\pi}{2}\right) : 9^{1-\tan^2 x} + 9^{\tan^2 x}$	$a^{x} = 10$ and $b = \sum_{x \in S} t^{x}$	$\tan^2\left(\frac{x}{3}\right)$, then $\frac{1}{6}(\beta -$	14) ²
is equal to			(2023	S-Apr)

- a) 16
- b) 32

c) 8

- d) 64
- 6) If the points **P** and **Q** are respectively the circumcenter and the orthocentre of a $\triangle ABC$, the $\overline{PA} + \overline{PB} + \overline{PC}$ is equal to

(2023-Apr)

a) $2\overline{\mathbf{OP}}$

b) $\overline{\mathbf{QP}}$

c) $2\overline{PQ}$

 $d) \overline{PQ}$

7) Let **A** be the point (1,2) and **B** be any point on the curve $x^2 + y^2 = 16$. **f** the centre of the locus of the point P, which divides the line segment AB in the ratio 3:2 is the point $C(\alpha, \beta)$ then the length of the line segment AC is

(2023-Apr)

a) $\frac{6\sqrt{5}}{5}$

b) $\frac{2\sqrt{5}}{5}$ c) $\frac{3\sqrt{5}}{5}$

d) $\frac{4\sqrt{5}}{5}$

8) Let m be the mean and σ be the standard deviation of the distribution

x_i	0	1	2	3	4	5
f_i	k + 2	2 <i>k</i>	$k^2 - 1$	$k^2 - 1$	$k^2 + 1$	k-3

where $\sum f_i = 62$. If [x] denotes the greatest integer $\leq x$, then $\left[\mu^2 + \sigma^2\right]$ is equal to (2023-Apr)

(2023-Apr)

d) 9

d) 223

10)	If each car can ac	Eight persons are to be transported from city A to city B in three cars different makes. If each car can accommodate at most three persons, then the number of ways, in which they can be transported, is (2023-Apr)						
	a) 1120	b) 560	c) 3360	d) 1680				
11)	If							
		$A = \frac{1}{5!6!7!} \begin{pmatrix} 5! & 6! \\ 6! & 7! \\ 7! & 8! \end{pmatrix}$	7! 8! 9!), then adj (adj (2	$A))\Big $				
	is equal to				(2023-Apr)			
	a) 2 ¹⁶	b) 2 ⁸	c) 2 ¹²	d) 2 ²⁰				
12) Let the number $(22)^{2022} + (2022)^{22}$ leave the remainder α when divided when divided by 7. Then $(\alpha^2 + \beta^2)$ is equal to								
	when divided by /	1. Then $(\alpha^2 + \beta^2)$ is e	quai to		(2023-Apr)			
	a) 13	b) 20	c) 10	d) 5				
13)	let							
$g(x) = f(x) + f(1 - x)$ and $f''(x) > 0, x \in (0, 1)$.								
	If g is decreasing in the interval $(0, \alpha)$ and increasing in the interval $(\alpha, 1)$, then							
	$\tan^{-1}(2\alpha) + \tan^{-1}\left(\frac{\alpha+1}{\alpha}\right)$							
	is equal to				(2023-Apr)			
	a) $\frac{5\pi}{4}$	b) π	c) $\frac{3\pi}{4}$	d) $\frac{3\pi}{2}$				
14)	For $\alpha, \beta, \gamma, \delta \in \mathbb{N}$,	if						
$\int \left(\left(\frac{x}{e} \right)^{2x} + \left(\frac{e}{x} \right)^{2x} \right) \log_e x dx = \frac{1}{\alpha} \left(\frac{x}{e} \right)^{\beta x} - \frac{1}{\gamma} \left(\frac{e}{x} \right)^{\delta x} + C, \text{ where } e = \sum_{n=0}^{\infty} \frac{1}{n!}$								

c) 6

c) 226

b) 7

b) 227

9) If $S_n = 4 + 11 + 21 + 34 + 50 + \dots$ to *n* terms, then $\frac{1}{60}(S_{29} - S_9)$

a) 8

a) 220

and C is constant of integration, then $\alpha + 2\beta + 3\gamma - 4\delta$ is equal to

(2023-Apr)

a) 4

- b) -4
- c) -8
- d) 1

15) Let f be a continuous function satisfying

$$\int_0^{t^2} \left(f(x) + x^2 \right) dx = \frac{4}{3} t^3, \forall t > 0. \text{ Then } f\left(\frac{\pi^2}{4}\right)$$

is equal to

(2023-Apr)

- a) $-\pi^2 \left(1 + \frac{\pi^2}{16}\right)$ b) $\pi \left(1 \frac{\pi^3}{16}\right)$ c) $-\pi \left(1 + \frac{\pi^3}{16}\right)$ d) $\pi^2 \left(1 \frac{\pi^3}{16}\right)$