An invitation for transdisciplinary collaboration

The OSE team

November 10, 2020

Computational modeling in economics

Motivation

- Facilitate academic rigor
- Study mechanisms
- Predict public policies

Computational modeling in economics

Motivation

- Facilitate academic rigor
- Study mechanisms
- Predict public policies

Transdisciplinary in nature

- Economic model
- Mathematical framework
- Computational implementation

Understanding individual decisions

- Human capital investment
- Consumption—savings decision

Understanding individual decisions

- Human capital investment
- Consumption—savings decision

Predicting effects of policies

- Welfare programs
- Tax schedules

Understanding individual decisions

- Human capital investment
- Consumption—savings decision

Predicting effects of policies

- Welfare programs
- Tax schedules

- Finite-horizon discrete Markov decision problem
- Backward induction algorithm

Understanding individual decisions

- Human capital investment
- Consumption—savings decision

Predicting effects of policies

- Welfare programs
- Tax schedules

- Finite-horizon discrete Markov decision problem
- Backward induction algorithm
- \Rightarrow Transdisciplinary research on their **economics**, data, and computation

Understanding individual decisions

- Human capital investment
- Consumption—savings decision

Predicting effects of policies

- Welfare programs
- Tax schedules

- Finite-horizon discrete Markov decision problem
- Backward induction algorithm
- ⇒ Transdisciplinary research on their economics, data, and computation

Understanding individual decisions

- Human capital investment
- Consumption—savings decision

Predicting effects of policies

- Welfare programs
- Tax schedules

- Finite-horizon discrete Markov decision problem
- Backward induction algorithm
- \Rightarrow Transdisciplinary research on their economics, data, and computation

Partners

Institute for **Numerical Simulation**

UNIL | Université de Lausanne

Roadmap

- Economic model
- Mathematical formulation
- Calibration

Roadmap

- Economic model
- · Mathematical formulation
- Calibration

- Example
- Pipeline
- Projects

Economic model

Decision Problem

t = 1, ..., T decision period

 $s_t \in S$ state

 $a_t \in A$ action

 $a_t(s_t)$ decision rule

 $u_t(s_t, a_t)$ immediate utility

Timing of events

$$\pi = (\alpha_1^\pi(s_1), \dots, \alpha_T^\pi(s_T))$$
 policy δ discount factor $p_t(s_t, a_t)$ conditional distribution

Individual's objective

$$\max_{\pi \in \Pi} \mathsf{E}_{\mathsf{s}_1}^{\pi} \left[\left. \sum_{t=1}^{T} \delta^{t-1} u_t(\mathsf{s}_t, a_t^{\pi}(\mathsf{s}_t)) \right| I_1 \right]$$

Core economics

- Rational expectations
- Exponential discounting
- Time-separability

Mathematical formulation

Policy evaluation

$$v_t^{\pi}(s_t) = \mathsf{E}_{s_t}^{\pi} \left[\sum_{j=0}^{T-t} \delta^j \, u_{t+j}(s_{t+j}, \alpha_{t+j}^{\pi}(s_{t+j})) \, \middle| \, \mathcal{I}_t \right]$$

Inductive scheme

$$v_t^{\pi}(s_t) = u_t(s_t, \alpha_t^{\pi}(s_t)) + \delta E_{s_t}^{\pi} \left[v_{t+1}^{\pi}(s_{t+1}) \mid \mathcal{I}_t \right]$$

Optimality equations

$$v_t^{\pi^*}(s_t) = \max_{\alpha_t \in A} \left\{ u_t(s_t, \alpha_t) + \delta \, \mathsf{E}_{s_t}^{\pi^*} \left[v_{t+1}^{\pi^*}(s_{t+1}) \mid \mathcal{I}_t \, \right] \right\}$$

Backward induction algorithm

```
for t = T, \dots, 1 do
        if t == T then
               v_T^{\pi^*}(s_T) = \max_{\alpha_T \in A} \left\{ u_T(s_T, \alpha_T) \right\} \quad \forall s_T \in S
        else
                 Compute v_t^{\pi^*}(s_t) for each s_t \in S by
                           v_t^{\pi^*}(s_t) = \max_{\alpha_t \in A} \left\{ u_t(s_t, \alpha_t) + \delta E_{s_t}^{\pi} \left[ v_{t+1}^{\pi^*}(s_{t+1}) \mid I_t \right] \right\}
                 and set
                           \alpha_t^{\pi^*}(\mathbf{s}_t) = \underset{\alpha_t \in A}{\operatorname{arg\,max}} \left\{ u_t(\mathbf{s}_t, \alpha_t) + \delta \, \mathsf{E}_{\mathbf{s}_t}^{\pi} \big[ v_{t+1}^{\pi^*}(\mathbf{s}_{t+1}) \mid \mathcal{I}_t \, \big] \, \right\}
        end if
end for
```

Calibration procedure

Data

Dataset

$$\mathcal{D} = \{a_{it}, \bar{s}_{it}, \bar{u}_{it} : i = 1, ..., N; t = 1, ..., T_i\}$$

State variables

- $s_t = (\bar{s}_t, \varepsilon_t)$
 - \bar{s}_t observed
 - ε_t unobserved

Procedures

Likelihood-based

$$\hat{\theta} = \arg \max_{\theta \in \Theta} \prod_{i=1}^{N} \prod_{t=1}^{T_i} p_{it}(\alpha_{it}, \bar{u}_{it} \mid \bar{s}_{it}, \theta)$$

· Simulation-based

$$\hat{\vartheta} = \arg\min_{\vartheta \in \Theta} \left(M_D - M_S(\vartheta) \right)' W \left(M_D - M_S(\vartheta) \right)$$

Example

Seminal paper

Michael P Keane and Kenneth I Wolpin. 1997. "The Career Decisions of Young Men." *Journal of Political Economy* 105 (3): 473–522.

• They follow individuals over their working life from young adulthood at age 16 to retirement at age 65 where the decision period $t = 16, \ldots, 65$ is a school year. Individuals decide $\alpha \in \mathcal{A}$ whether to work in a blue-collar or white-collar occupation $(\alpha = 1, 2)$, to serve in the military $(\alpha = 3)$, to attend school $(\alpha = 4)$, or to stay at home $(\alpha = 5)$.

Decision tree

Immediate utility

$$u_t(s_t) = \begin{cases} \zeta_{\alpha}(s_t) + w_{\alpha}(s_t) & \text{if } \alpha \in \{1, 2, 3\} \\ \zeta_{\alpha}(s_t) & \text{if } \alpha \in \{4, 5\} \end{cases}$$

Informed by reduced-form evidence

- Mincer equation
- Sheepskin effects
- Skill depreciation
- Mobility and search costs
- Monetary and psychic cost of schooling

Transitions

Work experience k_t and years of completed schooling h_t evolve deterministically.

$$k_{a,t+1} = k_{a,t} + 1[a_t = a]$$
 if $a \in \{1, 2, 3\}$
 $h_{t+1} = h_t + 1[a_t = 4]$

Productivity shocks e_t are uncorrelated across time and follow a multivariate normal distribution with mean $\mathbf{0}$ and covariance matrix $\mathbf{\Sigma}$.

Given the structure of the utility functions and the distribution of the shocks, the state at time t is $s_t = \{k_t, h_t, t, \alpha_{t-1}, e, \varepsilon_t\}$.

Utility of blue-collar occupation

Non-pecuniary

$$\begin{aligned} \zeta_1(\cdot) &= \alpha_1 + c_{1,1} \cdot 1[\alpha_{t-1} \neq 1] + c_{1,2} \cdot 1[k_{1,t} = 0] \\ &+ \vartheta_1 \cdot 1[h_t \geq 12] + \vartheta_2 \cdot 1[h_t \geq 16] + \vartheta_3 \cdot 1[k_{3,t} = 1] \end{aligned}$$

Wage component

$$w_1(\cdot)=r_1\,x_1(\cdot),$$

where $x_1(\cdot)$ is the occupation-specific skill level.

Skill production for blue-collar occupation

$$x_1(\cdot) = \exp\left(\Gamma_1(\mathbf{k}_t, h_t, t, \alpha_{t-1}, e_{j,1}) \cdot \varepsilon_{1,t}\right)$$

Parameterization of the deterministic component of the skill production function:

$$\begin{split} \Gamma_{1}(\cdot) &= e_{j,1} + \beta_{1,1} \cdot h_{t} + \beta_{1,2} \cdot 1[h_{t} \geq 12] + \beta_{1,3} \cdot 1[h_{t} \geq 16] \\ &+ \gamma_{1,1} \cdot k_{1,t} + \gamma_{1,2} \cdot (k_{1,t})^{2} + \gamma_{1,3} \cdot 1[k_{1,t} > 0] \\ &+ \gamma_{1,4} \cdot t + \gamma_{1,5} \cdot 1[t < 18] \\ &+ \gamma_{1,6} \cdot 1[a_{t-1} = 1] + \gamma_{1,7} \cdot k_{2,t} + \gamma_{1,8} \cdot k_{3,t} \end{split}$$

National Longitudinal Survey of Youth 1979

- 1,373 individuals starting at age 16
- · Life cycle histories
 - School attendance
 - Occupation-specific work status
 - Wages

Sample size

Choices

Average wages

Economic mechanism and policy forecast

Pipeline

Tooling

respy

GitHub OpenSourceEconomics/respy

Docs respy.readthedocs.io

estimagic

GitHub OpenSourceEconomics/estimagic

Docs estimagic.readthedocs.io

Workflow

```
import respy as rp
from estimagic import maximize
# obtain model input
params, options, df = rp.get example model("kw 97 extended respy")
# process model specification
log_like = rp.get_log_like_func(params, options, df)
simulate = rp.get simulate func(params, options)
# perform calibration
results, params rslt = maximize(log like, params, "nlopt bobyga")
# conduct analysis
df rslt = simulate(params rslt)
```

Model parameterization

		value	name
category	name		
delta	delta	9.370735e-01	delta_delta
wage_white_collar	constant	8.741888e+00	wage_white_collar_constant
	exp_school	6.548940e-02	wage_white_collar_exp_school
	exp_white_collar	1.763655e-02	wage_white_collar_exp_white_collar
	exp_white_collar_square	-4.215936e-02	wage_white_collar_exp_white_collar_square
	exp_blue_collar	3.431936e-02	wage_white_collar_exp_blue_collar
	exp_military	1.406945e-02	wage_white_collar_exp_military
	hs_graduate	-3.599855e-03	wage_white_collar_hs_graduate
	co_graduate	2.301313e-03	wage_white_collar_co_graduate
	period	9.577717e-03	wage_white_collar_period
	is_minor	-1.509984e-01	wage_white_collar_is_minor

Model options

	value
estimation_draws	200
estimation_seed	500
estimation_tau	500
interpolation_points	-1
n_periods	50
simulation_agents	5000
simulation_seed	132
solution_draws	500
solution_seed	456
monte_carlo_sequence	random
covariates {'hs_graduate': 'exp_school >= 12', 'co_gradua	

Projects

Projects

Improvements

- · Numerical integration
- · Global optimization
- Function approximation
- High-performance computing

Projects

Improvements

- Numerical integration
- Global optimization
- Function approximation
- High-performance computing

Extensions

- · Robust decision making
- Uncertainty quantification
- Model validation
- Non-standard expectations

Conclusion

Join us!

http://bit.ly/ose-github

http://bit.ly/ose-zulip

https://twitter.com/open_econ

https://open-econ.org

Open Source Economics

respy

References

References

- Aguirregabiria, Victor, and Pedro Mira. 2010. "Dynamic Discrete Choice Structural Models: A survey." *Journal of Econometrics* 156 (1): 38–67.
- Becker, Gary S. 1964. Human Capital. New York City, NY: Columbia University Press.
- **Bellman, Richard E.** 1954. "The theory of dynamic programming." *Bulletin of the American Mathematical Society* 60 (6): 503–15.
- Keane, Michael P, and Kenneth I Wolpin. 1997. "The Career Decisions of Young Men." *Journal of Political Economy* 105 (3): 473–522. [PDF p. 26]
- Keane, Micheal P, and Kenneth I Wolpin. 1994. "The Solution and Estimation of Discrete Choice Dynamic Programming Models by Simulation and Interpolation: Monte Carlo Evidence." Review of Economics and Statistics 76 (4): 648–72.
- Puterman, Martin L. 1994. Markov Decision Processes: Discrete Stochastic Dynamic Programming. New York City, NY: John Wiley & Sons.
- White, D. J. 1993. Markov Decision Processes. New York City, NY: John Wiley & Sons.
- Wolpin, Kenneth I. 2013. The Limits to Inference without Theory. Cambridge, MA: MIT University Press.