الدوران

<u>I- تعريف الدوران</u>

1<u>- تعرىف</u>

لتكُن 0 نقطة من المستوى الموجه P و lpha عددا حقيقيا الدوران الذي مركزه 0 و زاويته lpha هو التطبيق من P نحو P الذي يربط كل نقطة M بنقطة M بحيث:

$$M = O$$
 اذا کانت $M' = O$

$$M \neq O$$
 اذا کان $\begin{cases} OM = OM' \\ (\overline{\overrightarrow{OM}; \overrightarrow{OM}'}) \equiv \alpha & [2\pi] \end{cases}$

rig(Mig) = M ' النقطة M تسمى صورة M بالدوران M نكتبM نقول كذلك أن الدوران M يحول M إلى

 $\dfrac{\pi}{6}$ لتكن O و A و B ثلاث نقط و r الدوران الذي مركزه O و زاويته O أنشئ O و O على التوالي بالدوران O الجواب

<u>2 – استنتاجات</u>

أ) المثلث المتساوي الساقين

- Bيحول Aيحول Aيحول Aيحول Aيعني أن الدوران الذي مركزه A و زاويته Aيحول Aالى C
- الدوران $\left(\widehat{\overrightarrow{AB}}; \widehat{AC}\right) \equiv \frac{\pi}{2} \quad [2\pi]$ الدوران عاد ABC فان الدوران عاد مثلث متساوي الساقين وقائم الزاوية في ABC الدوران عاد مثلث متساوي الساقين وقائم الزاوية في π

C الذي مركزه A و زاويته $rac{\pi}{2}$ يحول

وان الدوران الذي مركزه ABC واذا كان ABC مثلث متساوي الأضلاع بحيث BC إذا كان ABC واذا كان

C زاويته $\frac{\pi}{3}$ يحول

<u> ب) الدوران الذي زاويته منعدمة</u>

لیکن r(O;lpha) دورانا

- المستوى وي المستوى المتطابق في المستوى r في هذه الحالة r هو التطبيق المتطابق في المستوى إذا كان $\alpha\equiv 0$ المستوى صامدة
 - O فان النقطة الوحيد الصامدة بالدوران $lpha
 ot\equiv 0$ هي مركزه إذا كان $lpha
 ot\equiv 0$

<u>ج) الدوران الذي زاويته مستقيمية</u>

O حيث S_O التماثل المركزي الذي مركزه $r(O;\pi) = S_O$

<u>3- الدوران العكسى</u>

لیکن $r(O;\alpha)$ دورانا

$$r(M) = M' \Leftrightarrow \begin{cases} OM = OM' \\ (\overline{OM'}, \overline{OM'}) \equiv \alpha & [2\pi] \end{cases}$$
 $r(M) = M' \Leftrightarrow \begin{cases} OM' = OM \\ (\overline{\overline{OM'}}, \overline{OM}) \equiv -\alpha & [2\pi] \end{cases}$
 $r(M) = M' \Leftrightarrow r'(M') = M / \quad r' = r(O; -\alpha)$
 r^{-1} يسم الدوران العكسي للدوران $r(O; \alpha) = M' \Leftrightarrow r'(M') = M \Leftrightarrow r'(M) = M' \Leftrightarrow r'(O) = M' \Leftrightarrow r'(O) = O$

 $\stackrel{\checkmark}{}$ الدوران r تطبيق تقابلي في المستوى $\frac{r}{\underline{c}}$

كل دوران r(O;lpha) هو تطبيق تقابلي في المستوى

 r^{-1} :نرمز له بr(O; -lpha) الدوران العكسي للدوران العكسي الدوران العكسي الدوران

1- ليكن *ABCD* مربعا

B حدد زاویتي الدوارنیین r_2 و r_2 الذي مركزاهما r_3 و r_4 على التوالي ویحولان معا النقطة

$$\left(\widehat{\overline{CA}};\widehat{\overline{CB}}\right) \equiv \frac{\pi}{3}$$
 [2 π] حيث ABC ليكن -2

C أ- حدد مركز الدوران r الذي يحول B إلى

r ب- حدد الدوران العكسي للدوران r

<u>II- خاصبات الدوران</u>

<u>1- خاصية أساسية</u> (الحفاظ على المسافة)

لیکن $r(O; \alpha)$ دورانا و A و قطتین

$$r(B) = B'$$
 ; $r(A) = A'$

$$AB = A'B'$$
 لنقارن

حسب علاقة الكاشي في المثلثين
$$OA'B'$$
 و $OA'B'$ لدينا:
$$AB^2 = OA^2 + OB^2 - 2OA \cdot OB.\cos \widehat{AOB}$$

$$AB'^2 = OA'^2 + OB'^2 - 2OA' \cdot OB' \cdot \cos\left[\widehat{A'OB'}\right]$$

$$\begin{cases} OB = OB' \\ \left(\overline{\overrightarrow{OB}}; \overline{\overrightarrow{OB'}}\right) \equiv \alpha \quad [2\pi]^9 \end{cases} \begin{cases} OA = OA' \\ \left(\overline{\overrightarrow{OA}}; \overline{\overrightarrow{OA'}}\right) \equiv \alpha \quad [2\pi] \end{cases}$$
 فان: $r(B) = B'$; $r(A) = A'$ فان:

و لدينا من جهة أخرى

$$\left(\overline{\overrightarrow{OA}; \overrightarrow{OB}}\right) \equiv \left(\overline{\overrightarrow{OA}; \overrightarrow{OA'}}\right) + \left(\overline{\overrightarrow{OA'}; \overrightarrow{OB'}}\right) + \left(\overline{\overrightarrow{OB'}; \overrightarrow{OB}}\right) \quad [2\pi]$$

$$\left(\overline{\overrightarrow{OA}; \overrightarrow{OB}}\right) \equiv \alpha + \left(\overline{\overrightarrow{OA'}; \overrightarrow{OB'}}\right) - \alpha \quad [2\pi]$$

$$\left(\overline{\overrightarrow{OA}; \overrightarrow{OB}}\right) \equiv \left(\overline{\overrightarrow{OA'}; \overrightarrow{OB'}}\right) \quad [2\pi]$$

$$\left[\widehat{AOB}\right] = \left[\widehat{A'OB'}\right]$$
 ومنه

$$A'B'^2 = OA^2 + OB^2 - 2OA \cdot OB \cdot \cos\left[\widehat{AOB}\right]$$
 و بالتالي

$$A'B' = AB$$
 ومنه $A'B'^2 = AB^2$ اذن

ليكن r دورانا و A و B نقطتين من المستوى

$$A'B' = AB$$
 فان $r(B) = B'$; $r(A) = A'$ إذا كان

نعبر عن هذا بقولنا الدوران يحافظ على المسافة

ليكن ABC مثلثاً . نعتبر M و N نقطتين خارج المثلث بحيث M و NAC مثلثان متساويا الأضلاع NB و MC

-III- الدوران و استقامية النقط أ) صورة قطعة

r لتكن [AB] قطعة و 'A و' B و B و الدورات

r لتكن M نقطة من AB و M صرتها بالدوران

$$M' \in [A'B']$$
 بين أن

$$\overrightarrow{A'M'} = \lambda \overrightarrow{A'B'}$$
 فان $0 \le \lambda \le 1$ حيث $1 \ge \lambda \le \overline{AM} = \lambda \overrightarrow{AB}$ -2

AB=A'B'و M=M'B'و M=M'B'و M=M'A' ومنه M=M'A' ومنه M=M'B'

$$MA + MB = AB$$
 تكافئ $M \in [AB]$ -1

$$M' \in [A'B']$$
 تكافئ

$$\overrightarrow{AM} = \lambda \overrightarrow{AB}$$
 و $\lambda \in [0;1]$ -2

$$\frac{AM}{AB} = \lambda$$
 ومنه $M \in [AB]$ و

$$\frac{A'M'}{A'B'} = \lambda$$
 و بالتالي $M' \in [A'B']$

$$\overrightarrow{A'M'} = \lambda \overrightarrow{A'B'}$$
 إذن

$$r$$
 لتكن $\left[AB
ight]$ قطعة و A' و $\left[AB
ight]$ و لتكن

$$igl[A'B'igr]$$
 صورة القطعة $igl[AB]$ بالدوران r هي القطعة

$$r(M)=M$$
' حيث $\overrightarrow{A'M'}=\lambda \overrightarrow{A'B'}$ فان $0 \leq \lambda \leq 1$ حيث $\overrightarrow{AM}=\lambda \overrightarrow{AB}$ اذا كان

$$r$$
لتكن A' و B' صورتي النقطتين المختلفتين A' و B' بدوران

$$r([AB)) = [A'B']$$
 أ- بين أن

$$r((AB)) = (A'B')$$
 ب- بین أن

rلتكن A' و' B صورتى نقطتين مختلفتين A و B على التوالى بدوران

A'B' هو نصف المستقيم AB هو نصف المستقيم - صورة نصف

(A'B') هو المستقيم - صورة المستقيم - صورة المستقيم

r(M)=M' حيث $\overrightarrow{A'M'}=\lambda \overrightarrow{A'B'}$ خان $\lambda \in \mathbb{R}$ حيث $\overrightarrow{AM}=\lambda \overrightarrow{AB}$ خان -

ج- المرجح و الدوران

(B;eta) و (A;lpha) مرجح G و B و A و B و A بدوران A على التوالي و B مرجح A'

(B';eta) بين أن G' مرجح (A';lpha) و

الحواب

$$\overrightarrow{AG} = \frac{\beta}{\alpha + \beta} \overrightarrow{AB}$$
 مرجح $(B; \beta)$ و $(A; \alpha)$ مرجح G

 $\overrightarrow{A'G'} = \frac{\beta}{\alpha + \beta} \overrightarrow{A'B'}$ و حيث الدوران يحافظ على معامل استقامية فان

 $(B';\beta)$ و $(A';\alpha)$ مرجح G'

و B و G صورالنقط A و B و G بدوران r على التوالي A'

 $(B';\beta)$ و $(A;\alpha)$ فان G مرجح $(A;\alpha)$ و $(B;\beta)$ فان $(A;\alpha)$

الدوران يحافظ على مرجح نقطتين

<u>ملاحظَّة</u>: الخاصية تبقى صحيحة لمرجح أكثر من نقطتين

و B و I' صور النقط A و B و I بدوران r على التوالي A'

[A'B']فان I' منتصف [AB] فان ا

الدوران يحافظ على المنتصف <u>د) الحفاظ على معامل الاستقامية</u>

 $\lambda \in \mathbb{R}$ و C' و C'

$$\overrightarrow{CD} = \lambda \overrightarrow{AB}$$
 حيث

$$\overrightarrow{C'D'} = \lambda \overrightarrow{A'B'}$$
 لنبين أن

r لنعتبر النقطة E حيث $\overrightarrow{CD} = \overrightarrow{AE}$ و E' صورة

و منه $\overrightarrow{AE} = \lambda \overrightarrow{AB}$ و بالتالي $\overrightarrow{A'B'} = \lambda \overrightarrow{A'B'}$ لان المرجح يحافظ على معامل استقامية النقط تكافئ [AE] و [AE] لهما نفس المنتصف $\overrightarrow{CD} = \overrightarrow{AE}$

و حيث أن الدوران يحافظ على المنتصف فان igl[A'D'igr] و igl[A'E'igr] لهما نفس المنتصف

$$\overrightarrow{C'D'} = \overrightarrow{A'E'}$$
 ومنه $\overrightarrow{C'D'} = \lambda \overrightarrow{A'B'}$ اذن

 $\lambda\in\mathbb{R}$ لتكن A و' B و C و D صور أربع نقط A و B و C و D بدوران r على التوالي و

 $\overrightarrow{C'D'} = \lambda \overrightarrow{A'B'}$ فان $\overrightarrow{CD} = \lambda \overrightarrow{AB}$ إذا كان

نعبر عن هذا بقولنا الدوران يحافظ على معامل استقامية متجهتين

ABCD ليكن

ننشئ خارجه المثلث CBF المتساوي الأضلاع و داخله المثلث ABE متساوي الأضلاع

$$r(G) = D$$
 نعتبر الدورن $r = r\left(B; \frac{\pi}{3}\right)$ نعتبر الدورن

بين أن النقط D و E و مستقيمية F

<u>3- الدوران و الزوايا</u>

. التوالي α و B و B بدوران r زاويته B على التوالي

 $\overrightarrow{OC} = \overrightarrow{AB}$ لتكن C نقطة حيث

$$\overrightarrow{OC}$$
' = $\overrightarrow{A'B'}$ ومنه $r(C)$ = C'

$$\left(\widehat{\overrightarrow{OC}},\widehat{\overrightarrow{OC}}\right) \equiv \left(\widehat{\overrightarrow{AB}},\widehat{\overrightarrow{A'B'}}\right)$$
 [2 π] و بالتالي

$$\left(\widehat{\overrightarrow{AB}}; \widehat{A'B'}\right) \equiv \alpha$$
 [2π] فان $\left(\widehat{\overrightarrow{OC}}; \widehat{\overrightarrow{OC'}}\right) \equiv \alpha$ [2π] وحيث أن

 $rac{oldsymbol{arphi} - oldsymbol{arphi}}{oldsymbol{\omega}}$ لیکن r دوارانا زاویته

$$\left(\widehat{\overrightarrow{AB}}; \widehat{A'B'}\right) \equiv \alpha \quad \left[2\pi\right]$$
 إذا كان' A و B صورتي A و B بالدوران r فان

ب- نتيجة

$$\left(\widehat{\overrightarrow{AB},\overrightarrow{CD}}\right) = \left(\widehat{\overrightarrow{AB},\overrightarrow{AB}}\right) + \left(\widehat{\overrightarrow{AB},\overrightarrow{CD}}\right) + \left(\widehat{\overrightarrow{CD},\overrightarrow{CD}}\right) = \left(\widehat{\overrightarrow{AB},\overrightarrow{CD}}\right) = \alpha + \left(\widehat{\overrightarrow{AB},\overrightarrow{CD}}\right) - \alpha \quad [2\pi]$$

$$\left(\widehat{\overrightarrow{AB};\overrightarrow{CD}}\right) \equiv \left(\widehat{\overrightarrow{A'B'};\overrightarrow{C'D'}}\right) \quad [2\pi]$$

C
eq D و A
eq B و A
eq B و A و A و A و A و A و A و Aنعبر عن هذا بقولنا الدوران يحافظ على قيا س الزوايا $\left(\overrightarrow{AB};\overrightarrow{CD}\right) \equiv \left(\overrightarrow{\overrightarrow{A'B'}};\overrightarrow{C'D'}\right)$ $[2\pi]$

 $oxed{AB}$ ليكن ABC مثلثا متساوي الساقين رأسه A و C دائرة محيطة به . نعتبر M نقطة من القوس $(\overrightarrow{AB};\overrightarrow{AC})$ و زاويته A و الدوران الذي لا يحتوي على C . ليكن C الدوران الذي لا يحتوي

r(M) = M' بين أن M و M و M نقط مستقيمية حيث

<u>4- صورة دائرة بدوران</u>

$$r(\Omega) = \Omega'$$
 حيث $C(\Omega;R)$ صورة دائرة $C(\Omega;R)$ حيث $C(\Omega;R)$

(CD) و (BC) مربعا و (C) دائرة مارة من A و C . لتكن Q و R نقطتا تقاطع (C) مع على التوالي

(
$$\frac{\pi}{2}$$
 بين أن $P = DR$ و زاويته R و زاويته R و زاويته R

$$\left(\overline{\overrightarrow{AB}};\overline{AC}\right) = \frac{\pi}{2}$$
 وفي مستوى موجه نعتبر ABC مثلثا متساوي الساقين في ABC في مستوى موجه نعتبر

$$rac{\pi}{2}$$
و A نقطة داخل المثلث ABC . ليكن r الدوران الذي مركزه

r انشىئ D' صورة D بالدوران -1

$$(BD) \perp (CD')$$
 ; $BD = CD'$ بین أن -2

r الحل D' انشD' الدوران -1

$$(BD) \perp (CD')$$
 ; $BD = CD'$ نبین أن -2

$$r(B)=C$$
 و منه ABC و مثلث متساوي الساقين في $\left(\overline{\overrightarrow{AB};\overrightarrow{AC}}\right)=\frac{\pi}{2}$ لدينا

و حيث 'r(D) = D' فان D = CD' فان الدوران يحافظ على المسافة

في مستوى موجه نعتبر ABC مثلثا متساوي الساقين وقائم لزاوية في B حيث $(\widehat{BA}; \widehat{BC})$ زاوية . $\overrightarrow{BF} = \frac{3}{4}\overrightarrow{BC}$ و $\overrightarrow{AE} = \frac{3}{4}\overrightarrow{AB}$ عير مباشرة. لتكن O منتصف AC و BF و BF و BF و BF

$$\frac{\pi}{2}$$
ليكن r الدوران الذي مركزه O و زاويته

1- أنشئ الشكل

r عدد صورتي A و B بالدوران -2

<mark>الحل</mark> 1- الشكل

r نحدد صورتي A و B بالدوران -2

 $(OB) \perp (AC)$ ومنه [AC] ومنه B و B ومنه الزاوية في B ومنه الراوية في الساقين و قائم الزاوية في المنا

$$OA = OB = OC$$
 9

$$r(A)=B$$
 و منه $OA=OB$ و $\left(\overline{\overrightarrow{OA}};\overline{OB}\right)\equiv \frac{\pi}{2}$ [2 π] لدينا

$$r(B) = C$$
 و منه $OC = OB$ و $\left(\overline{\overrightarrow{OB}; \overrightarrow{OC}}\right) \equiv \frac{\pi}{2}$ [2 π] لدينا

OEF نبين أن E' = F نستنتج طبيعة المثلث -1

$$\overrightarrow{BE'} = \frac{3}{4}\overrightarrow{BC}$$
 و $\overrightarrow{AE} = \frac{3}{4}\overrightarrow{AB}$ و $r(B) = C$ و $r(A) = B$ و $r(E) = E'$

$$E' = F$$
 وحيث $\overrightarrow{BF} = \overrightarrow{BE'}$ فان $\overrightarrow{BF} = \frac{3}{4} \overrightarrow{BC}$ وحيث

O و حيث r دوران زاويته $rac{\pi}{2}$ فان OEF مثلث متساوي الساقين و قائم الزاوية في ومنه r(E)=F

و r الدوران الذي $\left(\overline{\overrightarrow{BA}},\overline{\overrightarrow{BC}}\right) \equiv \alpha$ [2
ho] في مستوى موجه نعتبر ABC مثلثا قائم الزاوية في

 α مرکزه B و زاویته

$$r(A) = E$$
 ; $r(C) = F$ حيث $F = E$ أنشئ -1

$$\left(\mathit{EF}\right) \perp \left(\mathit{BC}\right)$$
 بين أن -2

$$(AB) \cap (IJ) = \{K\}$$
 و $r(I) = J$ و $(AC) \cap (EF) = \{I\}$ لتكن

أ- بين أن النقط E و F مستقيمية أ

 $igl[I_jigr]$ بين أن E منتصف

.
$$(AB) \cap (IJ) = \{K\}$$
 لتكن -4

$$r(K) = C$$
 بين أن

الحل

$$r(A) = E$$
 ; $r(C) = F$ حيث $F \in E$ ننشئ -1

 $(EF) \perp (BC)$ بين أن -2

$$\left(\overline{AB};\overline{AC}\right)$$
 $\equiv \left(\overline{EF};\overline{EB}\right)$ فان $r(B)=B$ و $r(A)=E$; $r(C)=F$ فان $(EF) \perp (EB)$ ومنه $\left(\overline{EF};\overline{EB}\right) \equiv \frac{\pi}{2}$ $\left[2\pi\right]$ فان $\left(\overline{AB};\overline{AC}\right) \equiv \frac{\pi}{2}$ $\left[2\pi\right]$ ومنه $\left(BC\right) = \left(BE\right)$ ومنه $\left(\overline{BA};\overline{BE}\right) \equiv \alpha \equiv \left(\overline{BA};\overline{BC}\right)$ $\left[2\pi\right]$ ومنه $\left(EF\right) \perp \left(BC\right)$ و بالتالي $\left(EF\right) \perp \left(BC\right)$

و r(I)=J و r(A)=E ; r(C)=F و مستقيمية و r(I)=J و r(A)=E ; r(C)=F

ومنه النقط J و E و مستقيمية [IJ] و نبين أن

Bلدينا r(I)=J و منه BIJ مثلث متساوي الساقين في الرأس F(I)=J لدينا EIJ ومنه EIJ لأن EIJ لأن EIJ لأن EIJ لأن EIJ متوسط للمثلث EIJ إذن EIJ متوسط للمثلث EIJ

r(K) = C نبين أن -4 $(AB) \cap (IJ) = \{K\}$

 $(EF) \perp (BC)$ وحيث أن $(\overline{BK}; \overline{BC}) \equiv \alpha \equiv (\overline{BC}; \overline{BF})$ وحيث أن (BC) وحيث أن $(BC) \equiv \alpha \equiv (\overline{BC}; \overline{BF})$ وحيث أن $(BC) \equiv \alpha \equiv (\overline{BC}; \overline{BF})$ وحيث أن $(BC) \equiv \alpha \equiv (\overline{BC}; \overline{BF})$

BF=BK فان المثلث KBF مثلث متساوي الساقين في الرأس BC=BK فان BC=BK و بالتالي BC=BF فان BC=BF

r(K)=C ومنه BC=BK و $\left(\overline{\overrightarrow{BK};\overrightarrow{BC}}\right)\equiv \alpha$ [2 π] إذن لدينا