

Objetivos de Aprendizado

- 1. Medir tensão com um voltímetro e corrente com um amperímetro em um circuito elétrico.
- 2. Verificar a interferência dos instrumentos na medição.
- 3. Obter a curva característica de um resistor e de um diodo.
- 4. Determinar a resistência de um resistor através de sua curva característica e por medição direta.
- 5. Observar como um diodo conduz corrente.

Introdução

A resistência (R) de um dispositivo eletrônico, medida em Ohms (Ω) , é definida pela relação $R \equiv V/I$, onde V é a amplitude da diferença de potencial entre os terminais (extremidades) do dispositivo e I é a amplitude da corrente passando através dele. Analogamente, a condutância é definida como o inverso da resistência: $G \equiv 1/R$ e é dada pela corrente que atravessa um dispositivo para uma dada tensão aplicada: G = I/V.

Se há uma diferença de potencial Ventre os terminais do dispositivo, então há um campo elétrico *E* entre eles. Sabemos que o campo elétrico é a grandeza causadora de uma força que atua sobre cargas elétricas, mas não sabemos, para um dado dispositivo, como ele afeta as cargas e qual será a corrente observada. A Figura 1 ilustra o efeito de uma diferença de potencial aplicada a um sólido homogêneo contendo cargas livres (como um metal). O campo elétrico resultante causa o movimento dos elétrons do material com certa velocidade média. Esse movimento é observado como a corrente que atravessa o dispositivo. Porém, não é possível saber, a princípio, qual corrente será observada para uma dada tensão aplicada.

Figura 1: Movimento de cargas elétricas dentro de um sólido devido a um campo elétrico entre seus terminais.

A definição de resistência apenas diz que a razão entre tensão aplicada e corrente é chamada de resistência (ou, seu inverso, da condutância). Outra forma de ver isso é pensar que a resistência R é uma função de Ve a corrente I é uma consequência de V; R é a razão entre elas: R(V) = V/I(V). Quando a resistência é **constante**, ou seja, quando ela não varia com a tensão, o dispositivo é chamado Ôhmico, ou seja, R(V) = R, onde R é uma constante (para uma dada **temperatura**, e outras condições fixas e numa faixa de tensão apenas). Dispositivos ditos ôhmicos, ou lineares, obedecem à chamada Lei de Ohm que diz que R é uma constante. Para estes dispositivos, sabemos portanto a relação entre tensão e corrente.

Resistores são dispositivos condutores, de resistência especificada, e portanto, ôhmicos, utilizados em circuitos elétricos para, por exemplo, manipular e controlar tensão e corrente ou para transformar a

Ver. 04/10/2021

energia elétrica em calor. Os tipos de resistores mais usados são os resistores de carvão, resistores de filme metálico e carvão e resistores de fio (níquel-cromo) enrolado, que diferem quanto ao elemento de resistência. Nem todos os dispositivos elétricos são ôhmicos assim como o resistor. Exemplos de dispositivos não ôhmicos são os diodos, LEDs (Diodo Emissor de Luz, do Inglês), entre outros.

A Figura 2 mostra os símbolos do resistor (2a), do diodo (2b), do LED (2c) e do fusível (2d). Para os diodos, o símbolo tem uma forma de seta que indica o sentido da corrente. Note que o símbolo do diodo é um triângulo e um traço. O traço indica o lado "negativo" do diodo que deve ser ligado ao potencial elétrico mais baixo para que o mesmo esteja em polarização direta e assim possa conduzir a corrente. O mesmo vale para o LED, com a diferença que o LED emite luz. No sentido contrário, tanto o diodo como o LED bloqueiam a passagem de corrente. Um outro tipo de dispositivo, neste caso de proteção contra sobrecorrente em circuitos, é o fusível. Este queima quando a corrente que passa pelo componente é maior do que o valor que o componente suporta (máxima corrente nominal), evitando que a corrente elevada danifique os aparelhos no circuito.

Figura 2: (a) Símbolo do resistor, (b) símbolo do diodo, (c) símbolo do LED e (d) fusível.

Curvas características

Neste experimento, pretende-se estudar as "curvas características" de um resistor e de um diodo. Curvas características são gráficos que indicam como um dispositivo conduz corrente quando tensão é aplicada em seus terminais, ou seja, qual é a corrente que passa em função da tensão. Deve-se notar que o agente causador (tensão) é colocado no eixo horizontal e o efeito (corrente) é colocado no eixo vertical e ambas as grandezas são medidas simultaneamente. Como exemplo, apresentamos na Figura 3 a curva característica de uma lâmpada incandescente. Note que neste exemplo a relação entre corrente e tensão é linear apenas para valores muito baixos de tensão (até ≈ 0,1V). Para tensões e correntes mais altas, a lâmpada aquece e o valor de sua resistência muda, causando o comportamento não-linear. A lâmpada incandescente é exemplo de um dispositivo não-ôhmico.

Figura 3: Curva característica de uma lâmpada incandescente. As barras de incerteza são menores que os símbolos utilizados para indicar os dados no gráfico. A curva em vermelho representa um ajuste linear feito aos dados. No detalhe são mostrados os dados na região linear do gráfico usados para o ajuste.

Usando o voltímetro e amperímetro para obtenção de curvas características

Utilizamos um voltímetro para medir a diferença de potencial entre os terminais de um dispositivo. Isso está de acordo com o entendimento de que o efeito relevante é o campo elétrico e que a grandeza relevante é a diferença de potencial entre os terminais e não o potencial de um destes terminais com relação a um potencial de referência. A Figura 4 ilustra a forma de ligar os terminais de um voltímetro com o componente. Esta ligação é usualmente chamada 'em paralelo'. Assim, os terminais do voltímetro estão nos mesmos potenciais das extremidades do dispositivo.

Figura 4: Ligação em paralelo de um voltímetro a um componente.

Para medir a corrente que atravessa um componente é preciso utilizar um amperímetro que é sempre ligado 'em série'. Dessa forma, a corrente que atravessa o medidor (amperímetro) é a mesma que atravessa o componente.

Figura 5: Ligação em série de um amperímetro a um componente.

Medidas de curvas características envolvem, por exemplo, a utilização de uma fonte de tensão DC ajustável (e não fixa ou alternada) e dois multímetros (um na função voltímetro e outro na função amperímetro). As medidas de corrente e tensão devem ser feitas de forma simultânea para uma mesma tensão aplicada. Uma boa prática é incluir no circuito uma resistência dita de proteção (R_p) e/ou um fusível (F) para evitar que montagens incorretas coloquem os equipamentos em risco. O resistor de proteção (R_p) é necessário apenas se o dispositivo que será testado tiver uma resistência baixa ($\approx 50 \ \Omega$).

Dois circuitos típicos para medidas de curvas características são apresentados abaixo, cada um com suas vantagens e desvantagens.

Figura 6: Circuitos para medição de tensão e corrente em um dispositivo. Em (a), o amperímetro mede a corrente atravessando o DUT. Em (b), o amperímetro mede a corrente total no circuito. O circuito em (b) é mais comumente utilizado. DUT – Dispositivo a ser testado (*Device Under Test*)

O circuito da Figura 6 (a) (circuito da esquerda) mede a corrente que passa pelo dispositivo sem interferência, entretanto mede a tensão somando a queda de potencial no dispositivo e no amperímetro. Esse circuito só é adequado quando a resistência do dispositivo que será medido é muito maior que a resistência interna do amperímetro (pesquise para saber qual é o valor típico e/ou pelo manual). Ele é apenas útil quando o componente que será testado tem resistência comparável com a resistência interna do voltímetro, mas isso não é usual. Assim, esse circuito é pouco utilizado. Nesse experimento em particular, este circuito se torna necessário apenas no caso em que o dispositivo é um diodo em polarização reversa.

Já o circuito da Figura 6 (b) (circuito da direita) mede a tensão aplicada no dispositivo que será testado sem interferência, entretanto mede a corrente somando a corrente que passa pelo dispositivo (i_2) com a corrente que passa pelo voltímetro (i_1) . Esse circuito é adequado quando a resistência do dispositivo é pequena com relação à resistência interna do voltímetro (pesquise para saber o valor típico e/ou pelo manual). Essa montagem é utilizada na vasta maioria das situações.

Simulações TinkerCad (Atividade Opcional)

Utilize o *software* TinkerCad para simular a medida da corrente em função da tensão em 4 situações distintas: tensão positiva e negativa tanto para o diodo quanto para o resistor. Verifique qual circuito é o mais adequado em cada uma destas situações, assim como quais escalas de tensão e corrente devem ser utilizadas.

Com a simulação, você poderá ver o comportamento da curva característica e o intervalo de corrente e tensão que deverão ser utilizados. A partir dessa análise determine para qual intervalo de tensão/corrente as medidas deverão ser realizadas. Note que se o comportamento não é linear (a curva $I \times V$ não é linear), não faz sentido utilizar pontos igualmente espaçados em tensão. Note que queremos determinar 'toda' a curva da

corrente em função da tensão, ou seja, a curva não deve exibir 'buracos' (regiões em que não sabemos os valores de corrente e tensão).

<u>Dica:</u> No TinkerCad a menor variação de tensão obtida no componente "Fonte de Tensão" é de 0,2V, o que pode não ser suficiente para verificar as não linearidades dos circuitos (em especial nos diodos de silício). Uma maneira de diminuir essa variação de tensão é usar um divisor de tensão resistivo (dois resistores em série com a fonte, sendo um deles aquele em que se deseja obter medida de tensão com variação menor que 0,2V). Pense e explore essa possibilidade!

Faça um circuito que simule um amperímetro e um voltímetro reais, ou seja, um circuito que contenha além dos equipamentos de medição as resistências internas. No caso do amperímetro, a resistência interna muda (muito) com a escala. Com base nesse circuito verifique quais das duas estratégias apresentadas na Fig. 6 seria a melhor para medir a resistência interna dos equipamentos.

Apesar de ser opcional e poder bonificar o relatório em até 1,0 ponto, recomendamos que os grupos explorem essa rota para um melhor entendimento do experimento.

Material Utilizado

Multímetro (dois), placa de ensaio ("protoboard"), fonte de tensão variável, resistor de 100 Ω e diodo de silício, resistor de proteção (220 Ω nominal).

Vídeo-Experimento

O objetivo geral do experimento é determinar a curva caraterística de dois dispositivos: um resistor e um diodo de silício. A partir da curva característica será encontrada a resistência dos dois dispositivos. Os vídeos-experimentos mostram as montagens de ambos os circuitos, para resistor e para diodo. Para cada tipo de circuito e componente, a tensão de saída da fonte é variada, e para cada valor de tensão aplicada podemos obter a leitura dos valores de corrente e tensão no amperímetro e voltímetro, respectivamente. As medições são realizadas para tensão positiva e negativa. Notem que os fundos de escala dos equipamentos podem mudar durante o experimento.

[EA]: Determinação da resistência de um resistor.1

Determine a curva característica de um resistor de valor nominal $R_x = 100 \ \Omega \ (\pm 5\%)^2$ e sua resistência. Os dados para análise deverão ser obtidos a partir do vídeo-experimento. Defina uma estratégia de coleta de dados (a cada 0,5 V; 1 V; etc.). Compare com o valor nominal do resistor e com o valor medido

¹ EA: Experimento de Aplicação.

² Note que ±5% corresponde aos limites do intervalo de incerteza nominal. Para encontrar a incerteza é necessário atribuir a esse intervalo uma função de distribuição de probabilidade retangular.

com o ohmímetro. Considere tensão positiva e negativa. Escolha o circuito mais adequado para cada uma destas situações.

No seu relatório:

- 1. Descreva o procedimento experimental adotado no vídeo, justificando a escolha do circuito.
- 2. Qual é a variável independente (grandeza física que é propositadamente alterada) e a dependente (grandeza física alterada em decorrência de alteração imposta à variável independente)?
- 3. Discuta como é possível determinar a resistência interna do voltímetro e do amperímetro e os circuitos adequados para realizar essa medida.
- 4. Monte uma tabela de tensão, corrente e resistência, com o fundo de escala utilizado em cada medida (consulte o manual do multímetro). Para essa última, calcule a resistência a partir de *V* e *I* medidos. Inclua as incertezas de cada valor.
- 5. Faça um gráfico de $I \times Ve$ $R \times Vcom$ os dados do item anterior

Observação: Em geral, ao fazer um gráfico, colocamos a variável independente na abscissa e a dependente na ordenada do gráfico. Aqui em particular, a tensão causa o efeito de corrente e, portanto, iremos fazer o gráfico dessa forma: corrente em função da tensão.

- 6. Descreva o padrão observado nos gráficos. A corrente/resistência é constante ou cresce/decresce com a tensão? A relação entre as grandezas é de fato linear ou exibe algum outro tipo de dependência? Caso essa relação seja linear, discuta a linearidade do gráfico de *I*×*V*em conexão com a lei de Ohm. Discuta também o gráfico *R*×*V*em conexão com a lei de Ohm.
- 7. Usando um software de tratamento de dados (como Python, Origin, SciDavis ou qualquer outro) faça um ajuste linear aos dados e encontre os coeficientes angular e linear com suas incertezas calculadas por MMQ.

Atenção: Você coletou dados suficientes que lhe permitam fazer um ajuste linear adequado aos dados? O gráfico dos dados experimentais deve ter vários pontos de modo a minimizar a incerteza dos coeficientes angular e linear. Considere a necessidade de coletar e adicionar mais pontos ao seu gráfico.

- 8. Utilizando o coeficiente angular do ajuste, determine o valor de R_x . Note que o coeficiente angular é a condutância, medida em Siemens cujo símbolo é [S] e é equivalente à $[\Omega^{-1}]$. É preciso tomar o inverso (e propagar a incerteza) para se obter a resistência do resistor.
- 9. Compare o valor obtido no item anterior para a resistência com o valor nominal e o valor medido com o ohmímetro (multímetro). Leve em conta as incertezas para fazer a comparação.
- 10. Discuta o significado do coeficiente linear do gráfico $I \times V$.
- 11. Qual é a função do fusível e como sua presença interfere no experimento?

[EO]: Observação do comportamento de um diodo ao conduzir corrente elétrica.

Ver. 04/10/2021 6

-

³ EO: Experimento Observacional.

Determine a curva característica de um diodo de silício. Os dados para análise deverão ser obtidos a partir do vídeo-experimento. Defina uma estratégia de coleta de dados (a cada 0,5 V; 1 V; etc.). Considere a tensão aplicada positiva e negativa. Escolha o circuito mais adequado para cada uma destas situações.

No seu relatório:

- 1. Descreva o procedimento experimental adotado no vídeo, justificando a escolha do circuito.
- 2. Monte uma tabela com os valores de tensão, corrente e resistência e o fundo de escala utilizado em cada medida. Calcule a resistência a partir de *V* e *I* medidos. Inclua as incertezas de cada valor.
- 3. Monte um gráfico de corrente versus tensão ($I \times V$) com os dados obtidos para o diodo (novamente, o agente causador está no eixo horizontal).
- 4. Monte um gráfico de resistência versus tensão $(R \times V)$ para o diodo. Dica: Pode ser útil utilizar escala logarítmica nesse gráfico!
- 5. Descreva o padrão observado nos gráficos. A corrente/resistência é constante ou cresce/decresce com a tensão?
- 6. A partir dos gráficos de *I*×*V*e *R*×*V*obtidos, descreva o comportamento da resistência do diodo em função da tensão aplicada. Discuta se este componente é um elemento ôhmico.
- 7. Discuta se é possível utilizarmos o mesmo circuito para medir a corrente e tensão no diodo quando mudamos a sua polarização.
- 8. Faça um gráfico do logaritmo neperiano da corrente, ln(I), em função da diferença de potencial aplicada entre os terminais do diodo, observe e discuta a relação obtida.
- 9. Analise comparativamente os gráficos $I \times Ve$ $R \times Vencontrados nas duas partes do experimento (resistor e diodo) e descreva em 1 ou 2 frases as diferenças entre eles.$
- 10. Qual é a função do resistor de proteção e como a sua presença e valor interferem no experimento?

Fontes de Incertezas

Discuta em seu relatório as possíveis fontes de incertezas e como elas afetam os valores experimentais obtidos. Neste experimentos, as principais fontes de incerteza a serem consideradas são:

- Corrente: leitura e calibração do multímetro
- Tensão: leitura e calibração do multímetro

Para cada uma das fontes citadas acima, avaliar a incerteza associada e combinar as incertezas pertinentes.

Bibliografia

- 1. Halliday D.; Renick R.; Walker, J. Fundamentos de Física vol. 3.
- 2. Burian Jr., Y; Lyra, A.C.C. Circuitos Elétricos.
- 3. Gussow M., Eletricidade Básica.
- 4. Lima Jr., A.W., Eletricidade e Eletrônica Básica.

Notas técnicas

Quando estamos num laboratório manipulando osciloscópios, fontes de tensão, dispositivos diversos, é bom estarmos atentos a alguns detalhes técnicos mínimos a respeito das especificidades dos mesmos. Como caráter informativo, listamos abaixo 2 notas técnicas úteis para este experimento:

Nota 1: Sempre obtenha os dados com a melhor precisão possível, de acordo com os equipamentos disponíveis, ou seja, faça uso das diferentes escalas.

Nota 2: Observe que em todos os casos a potência máxima dissipada no resistor não ultrapassa 1,5W, valor compatível com a capacidade de dissipação de calor (2W) dos resistores utilizados na montagem. No caso do diodo esse limite reflete-se na corrente que não pode ultrapassar 300 mA.

Ver. 04/10/2021

Rubricas de Avaliação do Relatório

[R] Sobre o Resistor, [D] sobre o diodo, [A] ambos.

peso	rubrica	Habilidade	Ausente	Inadequada	Precisa melhorar	Adequada
1-1	G2	[A] Capacidade de avaliar como as incertezas afetam os resultados	Incertezas experimentais não são avaliadas	Há uma avaliação das incertezas, mas na maior parte a avaliação está ausente, vaga ou incorreta.	A avaliação de incertezas não é feita corretamente até o resultado final.	As incertezas são avaliadas adequadamente até o resultado final.
1-1	G4	[A] Capacidade de registrar e representar os resultados	Dados ou gráficos ausentes ou incompreensíveis.	Alguns dados e gráficos estão ausentes ou dificeis de se compreender.	Todos os gráficos e dados pedidos estão presentes, mas alguns não estão claros.	Todos os dados e gráficos estão presentes e claros.
1-1	G5	[A] Capacidade de analisar os gráficos	Os gráficos não são analisados	Há uma tentativa de análise dos gráficos, mas tem sérias falhas.	A análise é adequada, mas contém alguns erros ou omissões, como a falta de incertezas.	A análise está completa e correta. Coeficientes com incertezas são apresentados.
1	В7	[A] Capacidade de identificar um comportamento nos dados	Não há tentativa de observar um padrão.	O padrão descrito é incorreto, irrelevante ou não é consistente com os dados	O padrão discutido tem pequenos erros ou omissões ou falta de clareza.	O padrão descrito é muito relevante com relação aos dados
1	F2	[A] Capacidade de comunicar o tema e descobertas do experimento de forma clara e completa.	Nenhuma discussão sobre o tema e as descobertas do experimento estão presentes.	O experimento e as descobertas são discutidos, mas vagamente. Não há reflexão e conclusão sobre a qualidade dos achados.	O experimento e as descobertas são comunicados, mas a reflexão e conclusão final são inadequadas ou incoerentes.	O experimento e as descobertas são discutidos com clareza. Há uma reflexão sobre a qualidade e conclusão final dos achados.
1	B1	[D] Capacidade de identificar o fenômeno a ser investigado.	O efeito não é mencionado.	A descrição do efeito é confusa ou foge dos pontos de interesse.	O fenômeno é descrito de forma vaga ou incompleta.	O fenômeno a ser investigado é descrito de forma clara.
1	D4	[R] Capacidade de fazer um julgamento sobre os resultados do experimento	Nenhuma discussão é apresentada sobre os resultados do experimento	Um julgamento é feito sobre os resultados, mas não é razoável ou coerente.	levadas em consideração. Ou suposições não são	Um julgamento aceitável é feito sobre o resultado, com raciocínio claro. Os efeitos das suposições e incertezas experimentais são considerados. O resultado é escrito como um intervalo.

A nota poderá ser alterada posteriormente (sempre limitada entre 0 e 10 pontos) segundo os fatores indicados na tabela abaixo

a.	Discussões solicitadas não foram realizadas	Reduzir a nota em até 1,0 ponto.	
b.	Uso incorreto de algarismos significativos Incertezas têm mais de dois algarismos significativos.	Reduzir a nota em até 1,0 ponto.	
c.	Relatório com mais de 5 páginas	Reduzir a nota em até 1,0 ponto.	
d.	Tarefas e simulações online	Bonificação de até 1,0 ponto na nota.	