题目名称	ckr 与平方数	单位根	病毒	
题目类型	传统型	传统型	传统型	
目录	sqr	math	viru	
可执行文件名	sqr	math	viru	
输入文件名	sqr.in	math.in	viru.in	
输出文件名	sqr.out	math.out	viru.out	
每个测试点时限	1秒	1 秒	4秒	
内存限制	512 MiB	1024 MiB	512 MiB	
子任务数目	10	25	9	
测试点是否等分	是	是	否	
提交源程序文件名				
对于 C++ 语言	sqr.cpp	math.cpp	viru.cpp	
编译选项				

-02 -std=c++14

对于 C++ 语言

ckr 与平方数 (sqr)

【题目描述】

众所周知,ckr 的微积分水平很不怎么样,就像现在他就不会求一个很水的积分: $\int (x+1)^n dx$ 的封闭形式而只会暴力展开一项项积分。

不过同样众所周知,ckr 很擅长枚举和找规律,于是他发现 $\int (x+1)^n dx = \frac{(x+1)^{n+1}}{n+1} + C$ 。

更进一步,他发现 $\int (x+t)^n dx = \frac{(x+t)^{n+1}}{n+1} + C$,解决了这一整类的积分。

于是他想要寻找更一般的规律,开始研究 $\int (x+s)^n (x+t)^m dx$,由于 ckr 很喜欢平方数,所以他决定先研究 n,m 是平方数的情况。

当然,由于不定积分比较麻烦,所以你只需要输出定积分: $\int_0^{x_0} (x+s)^n (x+t)^m dx$,同时 n,m 也不可能太大,所以 ckr 要求 1 < n,m < N。

由于 ckr 现在还处于探索阶段,每一个数据都是很重要的,所以你需要对每个 $1 \le n, m \le N$ 且 n, m 是完全平方数求出答案。

由于答案可能很大, 你只需要求出答案关于 2147483647 取模后的值。

【输入格式】

从文件 sqr.in 中读入数据。 输入一行四个整数 N,s,t,x_0 。

【输出格式】

输出到文件 sqr.out 中。

输出 $|\sqrt{N}|$ 行,每行 $|\sqrt{N}|$ 个整数,其中第 i 行第 j 个整数表示 $n=i^2, m=j^2$ 的答案。

【样例 1 输入】

4 3 7 1

【样例 1 输出】

1431655791 1932746596 930577433 1950302041

【样例 1 解释】

分数形式的答案为: $\begin{bmatrix} \frac{79}{3} & \frac{113137}{10} \\ \frac{35579}{30} & \frac{164819873}{315} \end{bmatrix}$ 。

第2页 共9页

【样例 2 输入】

9 432626436 222345443 0

【样例 2 输出】

- 0 0 0
- 0 0 0
- 0 0 0

【样例 3 输入】

9 233333 233333 666666

【样例 3 输出】

1703229151 2113117123 1350295746 2113117123 1384164355 1123817829 1350295746 1123817829 456733368

【数据范围】

对于 10% 的测试点, 保证 $1 \le N \le 10$ 。

对于 30% 的测试点,保证 $1 \le N \le 100$ 。

对于 60% 的测试点,保证 $1 \le N \le 3000$ 。

另有 10% 的测试点, 保证 s=t。

对于 100% 的测试点,保证 $0 \le s, t, x_0 < 2147483647, 1 \le N \le 10^5$ 。

【Ckr 教你学数学】

你可能会用到以下公式:

1. 多项式定积分的计算方法

对多项式 $f(x) = \sum_{i=0}^{n} c_i x^i$, 定积分 $\int_a^b f(x) dx$ 可以用如下公式计算:

$$\int_{a}^{b} f(x) dx = \sum_{i=0}^{n} \frac{(b^{i+1} - a^{i+1})c_{i}}{i+1}$$

2. 换元积分法

设 $I \subseteq \mathbb{R}$ 为一个区间, $\varphi : [a,b] \to I$ 是一个导数可积的函数。设 $f : I \to \mathbb{R}$ 是一个连续函数,则:

$$\int_{\varphi(a)}^{\varphi(b)} f(u) du = \int_a^b f(\varphi(x)) \varphi'(x) dx.$$

3. 分部积分法

设
$$u = u(x)$$
, $du = u'(x)dx$, 与 $v = v(x)$, $dv = v'(x)dx$, 则:

$$\int_{a}^{b} u(x)v'(x) \, \mathrm{d}x = [u(x)v(x)]_{a}^{b} - \int_{a}^{b} u'(x)v(x) \, \mathrm{d}x = u(b)v(b) - u(a)v(a) - \int_{a}^{b} u'(x)v(x) \, \mathrm{d}x$$

【温馨提示】

在本题中,如果你希望获得全部的分数,你可能考虑由于常数的影响。只使用加法、减法和乘法 运算不会有太大的常数,但请谨慎使用除法。

- 1. 跨越比较大的 2 的幂的数组寻址会产生较大的常数。
- 2. 过多的分支可以带来相当大的常数。

当然,如果你的算法在数学上是正确的,但没有考虑常数的影响,可能仍然可以获得一部分的分数。

无标题 单位根(math)

单位根 (math)

【题目描述】

S 省 Θ 中学的高 e (i) 班正在上数学课。

在数学课上,老师介绍了复数和单位根,并介绍了单位根的一个性质:

多项式 x^n-1 在复数域 $\mathbb C$ 上共有 n 个根,它们可以表示成 $\omega_n^k=\cos\frac{2\pi k}{n}+\sin\frac{2\pi k}{n}$ i, $k=0,1,\cdots,n-1$,其中 $\omega_n=\cos\frac{2\pi}{n}+\sin\frac{2\pi}{n}$ i。

对于正整数 n 和整数 k, 这些单位根满足:

$$1 + \omega_n^k + \omega_n^{2k} + \dots + \omega_n^{(n-1)k} = \begin{cases} 0 & n \nmid k \\ n & n \mid k \end{cases}$$

那天晚上的数学作业中, fy 遇到了这样一道题目:

给定 K 次多项式 $f(x) = a_0 + a_1x + a_2x^2 + \cdots + a_Kx^K$, 设 $x^n = 1$ 的 n 个根为 r_1, r_2, \cdots, r_n , 求表达式 $\sum_{i=1}^n f(r_i)$ 的值。

scx 看了一眼, 就秒掉了这个问题:

将 f(x) 的表达式代入,有

$$\sum_{i=1}^{n} f(r_i) = \sum_{i=0}^{n-1} f(\omega_n^i) = \sum_{i=0}^{n-1} \sum_{j=0}^{K} a_j \omega_n^{ij} = \sum_{j=0}^{K} a_j \sum_{i=0}^{n-1} \omega_n^{ij} = \sum_{j=0}^{K} a_j \cdot \begin{cases} 0 & n \nmid j \\ n & n \mid j \end{cases} = n \cdot \sum_{i=0}^{\lfloor K/n \rfloor} a_{i \cdot n}$$

 scx 想,只有 n 个根,显得有些单调。于是,她把所有**不超过** n 次的单位根都列在了一起,设为 r_1, r_2, \cdots, r_m 。

她想求表达式 $\sum_{i=1}^{m} f(r_i)$ 的值。

scx 注意到,对于一个复数,它可能会是多个 n 的 n 次单位根——比如 i 既是 4 次单位根,又是 8 次单位根。而重复计算同一个函数值,正是她不想要的。

于是,她将这些根去重后,写在了一起,设为 r_1', r_2', \cdots, r_k' ,需要求表达式 $\sum_{i=1}^k f(r_i')$ 的值。

然而根太多了,她并不能做出这道题。因此,她带着这个问题向班上的数学老师询问,不料数学 老师外出有事,于是她带着草稿纸找到了在机房中的 fy,想让她帮忙算一下这个表达式的值。

【输入格式】

从文件 math.in 中读入数据。

第一行包含两个非负整数 n, K,表示单位根的最高次数和多项式的次数。

第二行包含 K+1 个整数 a_0,a_1,\cdots,a_K , 依次表示这些多项式的系数。

第5页 共9页

无标题 单位根 (math)

【输出格式】

输出到文件 math.out 中。

输出一行一个整数,表示表达式的值。可以证明,答案一定是一个整数,且在给定数据规模下, 答案在带符号 128 位整数范围内。

【样例 1 输入】

4 1

-1 2

【样例 1 输出】

-8

【样例 1 解释】

不超过 4 次的互不相同的单位根有 6 个,分别是 $1,-1,i,-i,\frac{-1+\sqrt{3}i}{2},\frac{-1-\sqrt{3}i}{2}$ 。 将它们代入 f(x)=2x-1,得

$$f\left(1\right) + f\left(-1\right) + f\left(i\right) + f\left(-i\right) + f\left(\frac{-1 + \sqrt{3}i}{2}\right) + f\left(\frac{-1 - \sqrt{3}i}{2}\right) = 1 + (-3) + (-1 + 2i) + (-1 - 2i) + \left(-2 + \sqrt{3}i\right) + \left(-2 - \sqrt{3}i\right) + \left($$

【样例 2 输入】

6 7

20030731

【样例 2 输出】

57

【样例 3】

见选手目录下的 math/math3.in 与 math/math3.ans。

【数据范围】

对于所有的测试点,均满足 $1 \le n \le 2^{31} - 1$; $0 \le K \le 10^7$; $-9999 \le a_i \le 9999$.

无标题 单位根(math)

测试点编号	n	K	其它性质
1	= 2		
2	= 4	≤ 10 ⁵	无
3	= 6		
4	≤ 24		
5	≤ 250	≤ 1000	
6	≤ 1000		
7	≤ 10 ⁵	=0	f(x) = 1
8	$\leq 10^{6}$		
9	$\leq 10^{7}$		
10	$\leq 10^{8}$		
11	$\leq 10^{9}$		
12	$\leq 2^{31} - 1$		
13	≤ 1000		无
14	≤ 10 ⁵	$\leq 10^{5}$	$a_0 = 0$
15	≥ 10		无
16	$\leq 5 imes 10^6$		$a_0 = 0$
17	≥ 3 × 10		无
18		$\leq 10^{7}$	$f(x) = x^K$
19	≤ 10 ⁸	≤ 10 ⁵	$a_0 = 0$
20			无
21		$\leq 10^{7}$	$f(x) = x^K$
22	$\leq 2^{31} - 1$	≤ 10 ⁵	$a_0 = 0$
23			
24		≤ 10 ⁷	无
25		≥ 10	

无标题 病毒 (viru)

病毒(viru)

【题目背景】

经过了一次病毒的袭击, ω 国拥有了丰富的经验。

而经过大发展的 ω 国的城市布局重新改变了,变为了 $n \times n$ 的一个大网格。

而现在,出现了新的紧急状况,经过小 ω 的调查,居然每个城市内都有病毒,由于其传播能力不强,所以没有大范围传播而被发现,第i行第j列的城市中含有病毒 $a_{i,j}$ 。

小 ω 决定彻底在 ω 国内消灭所有病毒,作为小 ω 的顶级秘书,你自然要帮助小 ω 做一些工作。 具体的,小 ω 将会先随机一个矩形(随机方式为在所有左上角是城市,右下角也是城市的矩形 中等概率随机选取一个,边长可以是 0,边平行于网格的边),求出里面的病毒种数,然后让医生制 造疫苗,你,要帮助小 ω 计算这个病毒的期望种数。

由于一些奇怪原因,你只要输出这个期望种数乘上 $\frac{n\times(n+1)\times n\times(n+1)}{4}$ 的值就好。

【输入格式】

从文件 viru.in 中读入数据。

第一行一个正整数 n 表示网格的范围。

下面 n 行,每行 n 个正整数 $a_{i,j}$ 表示坐标位于 (i,j) 的城市中所含有的病毒。

【输出格式】

输出到文件 viru.out 中。

一行一个数表示期望种数乘上 $\frac{n\times(n+1)\times n\times(n+1)}{4}$ 的值,由于得便的力量,它总是一个整数。

【样例 1 输入】

5

2 4 2 2 4

5 5 3 2 3

3 3 4 2 1

4 2 3 2 3

3 3 5 5 2

【样例 1 输出】

644

无标题 病毒 (viru)

【样例 2 输入】

【样例 2 输出】

112292

【数据范围】

对于所有数据,保证 $1 \le n \le 1500$ 。

数据全部随机生成: 随机方式为手动选取一个正整数 W 满足 $1 \le W \le n \times n$,每个 $a_{i,j}$ 都在 [1,W] 中随机生成。

【子任务】

Subtask 1(23): $1 \le n \le 50$. Subtask 2(19): $1 \le n \le 100$. Subtask 3(17): $1 \le n \le 150$. Subtask 4(13): $1 \le n \le 300$. Subtask 5(11): $1 \le n \le 600$. Subtask 6(7): $1 \le n \le 800$. Subtask 7(5): $1 \le n \le 1000$. Subtask 8(3): $1 \le n \le 1300$. Subtask 9(2): \mathbb{R} .

第9页 共9页