Introduction
Description
Architectures
Points techniques
Exemples
Bilan

Android au pays des liseuses

Proposé et encadré par : Ollinger Nicolas

Fontorbe Jordan, Guillaume Arthur, Monediere Tristan, Rubagotti Joris

Université d'Orléans

23 Mai 2013

- Introduction au domaine
- 2 Description générale du logiciel
- 3 Architectures
- Points techniques
- 5 Exemples de fonctionnement
- 6 Bilan du projet

- 1 Introduction au domaine
 - Technologie E-Ink
 - Liseuse Sony PRS-T1
- 2 Description générale du logicie
- Architectures
- 4 Points techniques
- 5 Exemples de fonctionnement
- 6 Bilan du projet

Technologie E-Ink

Intérêts

- Faible consommation en énergie
- Idéal pour la lecture

Inconvénient

• Long temps de mise à jour de l'affichage (environ 1s)

Écrans électrophorétiques

Cross-Section of Electronic-Ink Microcapsules

Sony PRS-T1

Caractéristiques principales

- Processeur iMX508
- Écran E-Ink 6 pouces
- Résolution jusqu'à 16 niveaux de gris
- Interface USB
- WiFi
- Mémoire : 2Go (extensible par microSD)

Processeur iMX508

iMX508

- Développé par Freescale
- Architecture ARM Cortex A8
- Faible consommation d'énergie
- Bonnes performances
- Contrôleur d'écran intégré

Architecture du processeur iMX508

Modules

EPDC (Electrophoretic Display Controller)

- Dirige les signaux (waveform)
- Mise à jour partielle ou totale
- Gestion de mises à jour concurrentes

ePXP (enhanced Pixel Pipeline)

- Transparence
- Rotation d'image
- Agrandissement / Réduction d'image

Hack de la liseuse

Mise à jour du firmware

- Nécessite les clés privés de Sony
- Accès total à la liseuse
- Risque d'endommager la liseuse

Mode Recovery

- Nécessite la recompilation du noyau
- Modifications sans risques

- Introduction au domaine
- 2 Description générale du logiciel
- 3 Architectures
- Points techniques
- 5 Exemples de fonctionnement
- 6 Bilan du projet

Introduction
Description
Architectures
Points techniques
Exemples
Bilan

Cahier des charges

Documentation

Lecture de la documentation Compréhension des différentes couches matérielles et logicielles Production d'un document de synthèse (**Mémoire intermédiaire**)

Client RFB+

Ajout du gadget USB au noyau de la liseuse Connexion via SSH Ajout du support E-ink à DirectFB

Introduction
Description
Architectures
Points techniques
Exemples
Bilan

Cahier des charges (suite)

VNC

Création d'un client et d'un serveur VNC Ajout de VNC à l'émulateur QEMU

QEMU

Utilisation de VNC avec QEMU Écriture d'applications pour la liseuse

Simulation d'écran

Écriture d'un simulateur d'écran E-Ink

- Introduction au domaine
- 2 Description générale du logicie
- Architectures
 - Le système de fichiers
 - Driver EPDC, ioctl et DirectFB
- 4 Points techniques
- 5 Exemples de fonctionnement
- 6 Bilan du projet

Le système de fichiers

Image initial

- Busybox
- Un serveur DHCP
- Un deamon telnet
- Un accès au port USB en mode série

Le système de fichiers

Image final

- Un accès au port USB par connexion Ethernet
- Le support du protocole SSH
- La librairie DirectFB

Driver EPDC et ioctl

Définition ioctl

- Appel système pour des opérations d'entrée/sortie
- Prend en paramètre un code requête

Les fonctions ioctl du driver permettent :

- Mettre à jour l'affichage de l'écran
- Récupérer des informations relatives au driver
- Modifier des paramètres du driver

DirectFB

Intérêts

- Ensemble d'API graphiques
- Interaction directe avec le framebuffer
- Aucune modification du kernel
- Aucune dépendance (sauf libc mais déjà présent)

Schéma fonctionnement DirectFB

- 1 Introduction au domaine
- 2 Description générale du logicie
- 3 Architectures
- Points techniques
 - La cross-compilation
 - Le driver et les ioctl
- **(5)** Exemples de fonctionnement
- 6 Bilan du projet

Multiple plateformes

- Développement sur plusieurs systèmes d'exploitation
- Choix du compilateur difficile

Scratchbox

- Environnement de cross-compilation
- Machine virtuelle reproduisant une plate-forme ARM
- Simplification des commandes de compilation

Les ioctl

Les commandes ioctl

- MXCFB_SEND_UPDATE
 - la structure mxcfb_update_data
 - update_region
 - waveform_mode
 - update_mode
 - update_marker
 - temp
 - flags
 - alt_buffer_data

Les ioctl

Les commandes ioctl

- MXCFB_WAIT_FOR_UPDATE_COMPLETE
 - synchronisation de la mise à jour définie par l'update marker
- MXCFB SET AUTO UPDATE MODE
 - active les deferred_io
 - dépend de l'option CONFIG_FB_MXC_EINK_AUTO_UPDATE_MODE

DirectFB

Les primitives

- Traçage d'éléments géométriques (rectangle, triangle)
- Chargement d'image

Interaction avec le framebuffer

- Sauvegarde des modifications
- Appel a Flip()

Introduction Description Architectures Points techniques Exemples Bilan

- Introduction au domaine
- 2 Description générale du logiciel
- 3 Architectures
- 4 Points techniques
- 5 Exemples de fonctionnement
- 6 Bilan du projet

Affichage via DirectFB

Différence d'affichage entre les waveformes

- DU ou A2
 - seulement 2 niveaux de gris
 - temps de rafraîchissement :
 - mesuré : 126ms (A2) 280ms (DU)
 - annoncé : 300ms

Affichage via DirectFB

Différence d'affichage entre les waveformes

- GC4
 - 4 niveaux de gris
 - temps de rafraîchissement :
 - mesuré : 610ms
 - annoncé : 600ms

Affichage via DirectFB

Différence d'affichage entre les waveformes

- GC8 ou GC16
 - 16 niveaux de gris
 - temps de rafraîchissement :
 - mesuré : 610ms
 - annoncé : 900ms

- 1 Introduction au domaine
- 2 Description générale du logicie
- 3 Architectures
- 4 Points techniques
- **(5)** Exemples de fonctionnement
- 6 Bilan du projet
 - État actuel du projet
 - Suite du projet

État actuel du projet

État d'avancement

- Connexion SSH sur la liseuse depuis un PC hôte :
 - via le port USB
 - émulation d'une connexion Ethernet
- Modification de l'affichage de l'écran
 - programme utilisant DirectFB
 - mise à jour de l'affichage via ioctl

Suite du projet

VNC

- Client sur le PC hôte
- Serveur sur la liseuse
- Traitements côté client
- Modification du protocole RFB

QEMU

Ajouter l'option VNC à QEMU

