Funciones básicas

Cálculo

Curso 2021-22

Ecuación de la recta

Las funciones de la forma y = ax + b, donde a, $b \in R$ se llaman funciones lineales.

$$f(x) = ax + b, a > 0$$

$$\lim_{x \to \infty} (ax + b) = \infty$$

$$\lim_{x \to -\infty} (ax + b) = -\infty$$

$$f(x) = ax + b, a < 0$$

$$\lim_{x \to \infty} (ax + b) = -\infty$$

$$\lim_{x \to -\infty} (ax + b) = \infty$$

Funciones cuadráticas

Son funciones de la forma $y = ax^2 + bx + c$, donde $a \ne 0$, b, $c \in R$

Funciones $y = ax^2$ para diferentes valores de a

- Son parábolas
- Dominio: R
- Si a > 0: Recorrido = $[0, \infty)$
- Si a < 0: Recorrido = $(-\infty, 0]$

Funciones cuadráticas

 $f(x) = ax^2 + bx + c$, a $\neq 0$ es una parábola

• Como
$$f(x) = \left(x^2 + \frac{b}{a}x + \frac{c}{a}\right) = a\left[\left(x + \frac{b}{2a}\right)^2 - \frac{b^2}{4a^2} + \frac{c}{a}\right] = a\left(x + \frac{b}{2a}\right)^2 + \left(c - \frac{b^2}{4a}\right)$$

• El vértice está en
$$V = \left(-\frac{b}{2a}, c - \frac{b^2}{4a}\right)$$
. Además $\begin{cases} Si \ a > 0 \text{ abierta hacia arriba} \\ Si \ a < 0 \text{ abierta hacia abajo} \end{cases}$

$$\lim_{x\to\infty} (ax^2 + bx + c) = -\infty$$

$$\lim_{x \to -\infty} (ax^2 + bx + c) = -\infty$$

$$\lim_{x \to \infty} (ax^2 + bx + c) = \infty$$

$$\lim_{x \to -\infty} (ax^2 + bx + c) = \infty$$

Funciones polinómicas

Se llama función polinómica a las funciones $f(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0$ donde a_n , a_{n-1} , ..., a_o son números reales, n es un número natural, y $a_n \ne 0$. En este caso se dice que tenemos una función polinómica de grado n

Las funciones $f(x) = x^n$ para n = 1, 2, 3,

Funciones polinómicas

n par $\overline{\lim_{x\to\pm\infty}} \ f(x) = \infty \text{ si } a_n > 0$

$$\lim_{x \to \pm \infty} f(x) = \pm \infty \text{ si } a_n > 0$$

$$\lim_{x \to +\infty} f(x) = -\infty \text{ si } a_n < 0$$

$$\lim_{x \to \pm \infty} f(x) = -\infty \text{ si } a_n < 0 \lim_{x \to \pm \infty} f(x) = -\infty \text{ si } a_n < 0$$

Funciones racionales

Una función racional es una función cociente de dos funciones polinómicas; es decir, f(x) = P(x)/Q(x), donde P(x) y Q(x) son dos polinomios

- **Dominio:** conjunto de todos los números reales excepto los que anulan al denominador. Por tanto para hallar el dominio hay que resolver la ecuación Q(x) = 0
- Continuidad: son funciones continuas en su dominio
- **Asíntotas:** pueden tener asíntotas verticales, horizontales u oblicuas

Las asíntotas de la función $f(x) = 1/(x^2 - 1)$ y los cambios de signo en su dominio

Pág. 7

Funciones básicas

Funciones con radicales

Las funciones
$$f(x) = \sqrt[n]{x^m}$$
, $m = 1, 2, 3, 4, ..., n = 2, 3, 4,$

Dom (f) =
$$\{x \in R : x \ge 0\}$$

$$\lim_{x \to \infty} \sqrt[n]{x^m} = \infty$$

Si m es impar y n es impar

Dom (f) = R

$$\lim_{x \to \infty} \sqrt[n]{x^m} = \infty; \lim_{x \to -\infty} \sqrt[n]{x^m} = -\infty$$

Funciones con radicales

Las funciones
$$f(x) = \sqrt[n]{x^m}$$
, $m = 1, 2, 3, 4, ..., n = 2, 3, 4,$

Si m es par y n es par

$$Dom (f) = R$$

$$\lim_{x\to\infty} \sqrt[n]{x^m} = \infty; \lim_{x\to-\infty} \sqrt[n]{x^m} = -\infty$$

Si m es impar y n es impar

Dom
$$(f) = R$$

$$\lim_{x\to\infty} \sqrt[n]{x^m} = \infty; \lim_{x\to-\infty} \sqrt[n]{x^m} = \infty$$

Funciones potenciales

Una función potencial es una función de la forma $f(x) = x^a$, siendo x la variable y a un número real

- **Dominio:** en general definidas sólo en $[0, \infty)$. En algunos casos también está definidas para los reales negativos
- Continuidad: son funciones continuas en su dominio

a < 0

0 < a < 1

a > 1

Funciones exponenciales

Una función exponencial es una función de la forma $f(x) = a^x$, siendo x la variable y a un número real

- **Dominio:** R. **Recorrido:** $(0, \infty)$
- Continuidad: son funciones continuas en su dominio
- Las gráficas de todas las funciones exponenciales pasan por el punto (0, 1)

0 < a < 1

a > 1

Funciones exponenciales

$$f(x) = a^x \text{ para } 0 < a < 1$$

$$f(x) = a^x \text{ para } a > 1$$

Funciones logarítmicas

Una función logarítmica es una función de la forma $f(x) = \log_a x$, siendo x la variable y a un número real mayor que 0 y distinto de 1

- **Dominio:** $(0, \infty)$. **Recorrido:** R
- Continuidad: son funciones continuas en su dominio $(0, \infty)$
- Las gráficas de todas las funciones logarítmicas pasan por el punto (1, 0)
- Es inversa de la exponencial: sus gráficas son simétrica respecto y = x

0 < a < 1

a > 1

Funciones básicas

Funciones logarítmicas

$$f(x) = \log_a x \text{ para } 0 \le a \le 1$$

- Decreciente en su dominio
- $\log_{a} x < 0 \text{ si } x > 1$
- $\log_a x > 0$ si 0 < x < 1

$$f(x) = \log_a x \text{ para } a > 1$$

- Creciente en su dominio
- $\log_a x > 0 \text{ si } x > 1$
- $\log_a x < 0 \text{ si } 0 < x < 1$

Función seno

Propiedades de la función seno

- En continua en su dominio que es R.
- Su recorrido es el intervalo [-1, 1].
- Es periódica de período 2π .
- No existe el límite de sen x cuando x tiende a $\pm \infty$.
- Es una función impar: sen (-x) = sen x

Función coseno

Propiedades de la función coseno

- En continua en su dominio que es R.
- Su recorrido es el intervalo [-1, 1].
- Es periódica de período 2π .
- No existe el límite de cos x cuando x tiende a $\pm \infty$.

Funciones básicas

• Es una función par: cos(-x) = cos x

Función tangente

Propiedades de la función tangente

- En continua en su dominio que es R $\{\pi/2 + k\pi: k \in Z\}$
- Su recorrido es toda la recta real.
- Es periódica de período π .
- Las recta $x = \pi/2 + k\pi$, $k \in \mathbb{Z}$ son asíntotas verticales
- No existe el límite de cos x cuando x tiende a $\pm \infty$.
- Es una función impar: tan(-x) = -tan x

Funciones básicas Pág. 17

Traslaciones y dilataciones

Gráfica de la función $y = 3 + 2 \cos(2x + \pi/2)$

$$y = \cos(x + \pi/2)$$

$$y = \cos (2x + \pi/2)$$

$$y = 2 \cos (2x + \pi/2)$$

$$y = 3 + 2 \cos (2x + \pi/2)$$

