Three.js fundamentals

Beuren F. Bechlin @bfbechlin

Summary

- Prerequisites
 - OpenGL 2+ knowledge
 - Visual Studio Code (preferable)
 - Live Server Plugin <u>ritwickdey.liveserver</u>
 - Chrome (preferable)
 - Three.js Developer Tools <u>isantell</u>
- Examples
- Background
- WebGL
 - Example
- Three.js
 - Tutorial
 - Developer Tools
 - Caveats

Examples

- Explorable Videos
- Interland Game
- Google Cloud Infrastructure
- Harp API Maps
- Google experiment
- Three.js:
 - Teapot
 - Bumpmap
 - Envmaps
 - Ocean

Background

- HTML
 - Basics
 - Metadata
 - Vector images: optional.
- Javascript
 - Overview
 - First Code
 - Prototypes: optional.
 - Events
 - Asynchronous
 - <u>Event Queue</u>: event-queue.html
- Web-API
 - Introduction
 - Drawing graphics

WebGL

- Around 2006–2007, Mozilla started work on an experimental 3D canvas implementation.
- This became <u>WebGL</u>, which gained traction among browser vendors, and was standardized around 2009–2010.
- Development of the WebGL 2 specification started in 2013 with final in January 2017.
 - Based on OpenGL ES 3.0.
 - Implementation of newer OpenGL specifications such as <u>3D</u> textures, <u>Multi-Sampled render buffers</u>, and so on...
- Limitations:
 - No tessellation shaders.
 - No geometry shaders.
- Example
 - webgl.html

Three.js

- <u>Three.js</u> is a 3D library that tries to make it as easy as possible to get 3D content on a webpage.
- Three.js is often confused with WebGL since more often than not, but not always, three.js uses WebGL to draw 3D.
 - ASCII
- Middleware between an engine and raw WebGL*.
- Useful links:
 - Documentation
 - Examples
 - Repository

Following slide shows about Three.js basic entities.

Three.js

Three.js – Tutorial

The tutorial is incremental, so in order to follow these steps, please look at files threejs-X.html, on which X is the step's number.

- 1.Scene setup with one cube.
- 2.Cube's animation.
- 3. Lights to the scene and using a material that is affected by lights.
- 4. More objects to the scene.
- 5. Camera controls.
- 6.Grid and axes helpers.
- 7.Box highlights.
- 8.Crate texture.
- 9.Box selection.
- 10. Transforming tools.

A diff tool between the files is highly recommended for comprehension.

Three.js – Caveats

- How to update parameters (position/texture)
 - Some parameters are uniforms/inputs to shaders under the hood, but other such as presence of texture in a material requires a shader program compilation which will lead to a completely different time of execution.
- How to manage GPU memory
 - When adding objects to scene they are automatically transferred to GPU memory.
 - When deleting objects from scene they're NOT automatically delete from GPU memory.
 - We must use .dispose method available in all entities that send data to GPU.
 - Tracking GPU memory in Chrome:
 - More Tools -> Task manager
- Example
 - threejs-caveats.html

References:

https://developer.mozilla.org/en-US/docs/Learn

https://threejs.org/

https://threejsfundamentals.org/

