

Mohsen Jamali & Martin Ester, Simon Fraser University, Canada, KDD-09

Present by: Menghong Han, Xiaofan Sun, Jie Tang

Outline

- 1. Problem Definition
- 2. Challenge
- 3. TrustWalker Model
- 4. Results & Evaluation
- 5. Comments & Improvement

Problem Definition

Problem Definition

Recommendation Problem:

Given user u and target item i, Predict the rating $r_{u,i}$

Collaborative Filtering (Item-based CF)

- Considers Users with Similar Rating Patterns
- Aggregates the ratings of Similar Users

Problems with CF

- Requires Enough Ratings (Cold Start Users)
- Vulnerable to Attack Profiles

Trust-based Recommendation System

- Explores the trust network to find Raters
- Aggregate the ratings from raters
- Different weights for users

Motivations

- Social Networks : Independent source of information
- Motivations of Trust-based Social Influence:
 Users adopt the behavior of their friends

Problem Definition

☐ Trust-based Recommendation System (Cont.)

Tidal Trust

BFS to find raters at the closest distance

- Mole Trust

BFS to find raters up to depth *max-depth*

Advantages

- Improving the coverage, percentage of < user, item > pairs in the test set
- Sovle cold start problems
- Attack resistance

Problems in Trust-based Recommendation

- Noisy data in far distances
- Low probability of finding rater at close distances

Challenge

Challenge

How Far to Go into Network?

Tradeoff between Precision and Recall (Coverage)

Far neighbors on the exact target item?

TrustWalker Model

- □ Random Walk Model
- ☐ Combines Item-based and Trust-based Recommendation

Trustwalker Model Explained

Model Explained— a single random walk

- \diamond starts from Source user u_0 .
- at step k, at node u:
 - if u has rated item i, return $r_{u,j}$.
 - With probability $\phi_{u,i,k}$, we don't continue the random walk. We stay at node u and randomly select one of the items (j) similar to i rated by u and return $r_{u,j}$.
 - With probability $1 \phi_{u,i,k}$, we continue our random walk and walk to another user v who is one of u's direct trusted neighbors $(v \in TU_u)$.

$$\phi_{u,i,k} = \max_{j \in RI_u} sim(i,j) \times \frac{1}{1 + e^{-\frac{k}{2}}}$$

Key Idea:

Based on the trust network, to find a rating on the exact item or a similar item and return the rating as our prediction

Model Explained -- equation sum up

prediction = Expected value of rating returned by random walk

Model Explained -- equation sum up

prediction = Expected value of rating returned by random walk

With probability $\phi_{u,i,k}$, stay at node U3 and randomly choose one item(j) similar to item i rated by U3 and return r(u3,j)

And

With probability $1 - \phi_{u,i,k}$, continue to walk

set max-depth = 6.

Model Explained -equation sum up

prediction = Expected value of rating returned by random walk

$$\widehat{r}_{u,i} = \sum_{\{(v,j)|R_{v,j}\}} P(XY_{u,i} = (v,j)) \ r_{v,j}$$

$$P(XY_{u,i} = (v,j)) =$$

$$\begin{cases}
P(X_{u,i} = v)\phi_{u,i}P(Y_{v,i} = j) & v \neq u; i \neq j \\
P(X_{u,i} = v) & v \neq u; i = j \\
\phi_{v,i,1}P(Y_{v,i} = j), & v = u; i \neq j
\end{cases}$$

Model Explained — item similarity

Using Pearson Correlation

Item Similarity---
$$sim(i,j) = \frac{1}{1 + e^{-\frac{|UC_{i,j}|}{2}}} \times corr(i,j)$$

set of common users who have rated items i and j;

Probability of having high correlation for pairs of items with few users in common is high.

Experiments

Experiments

Epinions.com Data Set

- 49K total users, 24K cold start users (users with less than 5 ratings)
- -104K items, 575K ratings, 508K trust expressions
- Binary trust, ratings in [1,5]

Evaluation Metrics

- RMSE
- Coverage (percentage of pairs that we can predict)
- Precision = 1- RMSE/4
- FMeasure

$$RMSE = \sqrt{\frac{\sum_{(u,i)|R_{u,i}} (r_{u,i} - \hat{r}_{u,i})^2}{|\{(u,i)|R_{u,i}\}|}}$$

$$FMeasure = \frac{2 \times Precision \times Coverage}{Precision + Coverage}$$

Experiments - Cold Start Users

Experiments - All Users

Experiments - Confidence

variance =
$$\sigma^2 = \frac{\sum_{i=1}^T (r_i - \overline{r})^2}{T}$$

More confident Predictions have lower error

$$confidence = 1 - \frac{\sigma^2}{max\sigma^2}$$

Percentile of Predictions (%)

Optimization

Paper's Proposal

- Top-N recommendation [RecSys'09]
- Distributed Recommender
- Context dependent trust

Our Proposal`

- Item similarity measurement (Pearson Correlation might not be the best)
- With $\Phi_{u,i,k}$, the random walk stops, randomly select item j rated by u and return $r_{u,j}$
 - 1) select item *j* based on similarity scores
 - 2) if 2 more items are highly similar, set up a threshold, take average all the highly similar ones
 - 3) if all items have low similarity scores, exclude this random walk result (threshold, ex < 0.3)

Thank You