Devoir à la maison n° 1 : corrigé

Problème 1 — D'après Baccalauréat S 1996 Japon

Partie I – Position relative de C_f et C_g

1. Pour tout $x \in \mathbb{R}_+^*$, $\varphi(x) = \ln x - \sqrt{x} + \frac{1}{\sqrt{x}}$. φ est dérivable sur \mathbb{R}_+^* en tant que somme de fonctions dérivables sur cet intervalle.

De plus, pour tout $x \in \mathbb{R}_+^*$

$$\varphi'(x) = \frac{1}{x} - \frac{1}{2\sqrt{x}} - \frac{1}{2x\sqrt{x}} = \frac{2\sqrt{x} - x - 1}{2x\sqrt{x}} = -\frac{(\sqrt{x} - 1)^2}{2x\sqrt{x}}$$

2. On trouve sans difficulté $\varphi(1)=0$. La question précédente montre que $\varphi'(x)\leqslant 0$ pour tout $x\in\mathbb{R}_+^*$ donc que φ est décroissante sur cet intervalle. On en déduit que φ est positive sur]0,1] et négative sur $[1,+\infty[$ autrement dit que $f\geqslant g$ sur]0,1] et que $f\leqslant g$ sur $[1,+\infty[$. Ainsi \mathcal{C}_f est au-dessus de \mathcal{C}_g sur]0,1] et en-dessous sur $[1,+\infty[$.

Partie II - Calcul d'intégrales

1. Puisque $f(x) = x^{\frac{1}{2}} - x^{\frac{3}{2}}$ pour tout $x \in \mathbb{R}_+^*$, une primitive de f sur \mathbb{R}_+^* est $x \mapsto \frac{2}{3}x^{\frac{3}{2}} - \frac{2}{5}x^{\frac{5}{2}}$. On en déduit que pour tout $\alpha \in \mathbb{R}_+^*$,

$$I(\alpha) = \frac{2}{3} - \frac{2}{5} - \frac{2}{3}\alpha^{\frac{3}{2}} + \frac{2}{5}\alpha^{\frac{5}{2}} = \frac{4}{15} - \frac{2}{3}\alpha^{\frac{3}{2}} + \frac{2}{5}\alpha^{\frac{5}{2}}$$

2. ψ est dérivable sur \mathbb{R}_+^* comme produit de fonctions dérivables sur cet intervalle et pour tout $x \in \mathbb{R}_+^*$,

$$\psi'(x) = 2x \ln x + x = -2g(x) + x$$

On en déduit qu'une primitive de g sur \mathbb{R}_+^* est $x\mapsto \frac{x^2}{4}-\frac{1}{2}\psi(x)$. Finalement, pour tout $a\in\mathbb{R}_+^*$,

$$J(\alpha) = \frac{1}{4} - \frac{\alpha^2}{4} + \frac{1}{2}\psi(\alpha)$$

3. Posons $\mathfrak{u}=\frac{1}{\kappa}$ de sorte que $\mathfrak{u}\underset{\kappa\to+\infty}{\longrightarrow}\mathfrak{0}^+.$ Alors

$$\psi(x) = \frac{1}{u^2} \ln \frac{1}{u} = -\frac{1}{u} \frac{\ln u}{u}$$

On sait que $\lim_{u\to +\infty} \frac{\ln u}{u} = 0$ et $\lim_{u\to +\infty} \frac{1}{u} = 0$ donc $\lim_{x\to 0^+} \psi(x) = 0$.

4. Pour tout $a \in \mathbb{R}_+^*$,

$$I(a) - J(a) = \frac{4}{15} - \frac{2}{3}a^{\frac{3}{2}} + \frac{2}{5}a^{\frac{5}{2}} - \frac{1}{4} + \frac{a^2}{2} - \frac{1}{2}\psi(a)$$

On déduit de la question précédente que

$$\lim_{\alpha \to 0^+} I(\alpha) - J(\alpha) = \frac{4}{15} - \frac{1}{4} = \frac{1}{60}$$

Partie III – Résolution approchée d'une équation

1. Pour tout $x \in \mathbb{R}_+^*$, $g'(x) = -\ln x - 1$ donc g est strictement croissante sur $\left[0, \frac{1}{e}\right]$ puis strictement décroissante sur $\left[\frac{1}{e}, +\infty\right[$.

D'une part, $\lim_{x\to 0^+} g(x) = 0$ (en effectuant le changement de variable $u = \frac{1}{x}$), donc la croissance de g sur $\left[0, \frac{1}{e}\right]$ implique que g est positive sur $\left[0, \frac{1}{e}\right]$. Ainsi l'équation g(x) = -24 n'admet pas de solution sur $\left[0, \frac{1}{e}\right]$.

D'autre part, $g\left(\frac{1}{e}\right) = \frac{1}{e} \geqslant -24$ et $\lim_{x\to +\infty} g(x) = -\infty$. Comme g est continue et strictement décroissante sur $\left[\frac{1}{e}, +\infty\right[$, l'équation g(x) = -24 admet une unique solution sur $\left[\frac{1}{e}, +\infty\right[$.

Finalement, l'équation g(x) = -24 admet une unique solution α sur \mathbb{R}_+^* .

Enfin, $g(9) = -9 \ln 9 \ge -24$ et $g(11) = -11 \ln 11 \le -24$ donc $\alpha \in [9, 11]$.

2. a. h est clairement décroissante sur [9,11] donc pour tout $x \in [9,11]$

$$10 \leqslant h(11) \leqslant h(x) \leqslant h(9) \leqslant 11$$

donc $h(x) \in [9, 11]$.

b. h est dérivable sur $\mathbb{R}_+^* \setminus \{1\}$ et pour tout $x \in \mathbb{R}_+^* \setminus \{1\}$,

$$h'(x) = -\frac{24}{x(\ln x)^2}$$

Pour tout $t \in [9, 11]$,

$$0 < 9 \leqslant t$$
 et $0 < \ln 9 \leqslant \ln t$

donc

$$0 < \frac{24}{t(\ln t)^2} \leqslant \frac{24}{9(\ln 9)}^2 = K$$

On en déduit que $|h'(t)| \leq K$ pour tout $t \in [0, 9]$.

- **c.** Soit $x \in [9, 11]$.
 - ▶ Supposons $x \ge \alpha$. Pour tout $t \in [\alpha, x]$

$$-K \leqslant h'(t) \leqslant K$$

donc en intégrant

$$-\int_{\alpha}^{x} K dt \leqslant \int_{\alpha}^{x} h'(t) dt \leqslant \int_{\alpha}^{x} K dt$$

puis

$$-K(x-\alpha) \le h(x) - h(\alpha) \le K(x-\alpha)$$

d'où

$$|h(x) - h(\alpha)| \le K|x - \alpha|$$

▶ Supposons $x \leq \alpha$. Pour tout $t \in [\alpha, x]$

$$-K \leqslant h'(t) \leqslant K$$

donc en intégrant

$$- \int_{-\pi}^{\alpha} K \, dt \leqslant \int_{-\pi}^{\alpha} h'(t) \, dt \leqslant \int_{-\pi}^{\alpha} K \, dt$$

puis

$$-K(\alpha - x) \le h(\alpha) - h(x) \le K(\alpha - x)$$

d'où

$$|h(x) - h(\alpha)| \le K|x - \alpha|$$

3. a. Tout d'abord, $u_0 \in [9,11]$. Supposons que $u_n \in [9,11]$ pour un certain $n \in \mathbb{N}$. D'après la question III.2.a, $u_{n+1} = h(u_n) \in [9,11]$. Par récurrence, $u_n \in [9,11]$ pour tout $n \in \mathbb{N}$. Soit $n \in \mathbb{N}$. D'après la question III.2.c,

$$|h(u_n) - h(\alpha)| \le K|u_n - \alpha|$$

On en déduit le résultat voulu puisque $h(u_n) = u_{n+1}$ et $h(\alpha) = \alpha$.

b. Puisque u_0 et α appartiennent à l'intervalle [9,11], $|u_0-\alpha|\leqslant 2=2K^0$. Supposons que $|u_n-\alpha|\leqslant 2K^n$ pour un certain $n\in\mathbb{N}$. D'après la question précédente,

$$|u_{n+1} - \alpha| \leq K|u_n - \alpha| \leq 2K^n.K = 2K^{n+1}$$

Par récurrence, $|u_n - \alpha| \le 2K^n$ pour tout $n \in \mathbb{N}$.

On vérifie que $K \in [0, 1[$ donc $\lim_{n \to +\infty} 2K^n = 0$ puis $\lim_{n \to +\infty} u_n = \alpha$.

 ${f c.}$ On peut proposer l'algorithme suivant.

```
\begin{array}{l} u \leftarrow 9 \\ K \leftarrow \frac{2}{3(\ln 3)^2} \\ p \leftarrow 2 \\ \text{Tant que } p > \epsilon \text{ Faire} \\ p \leftarrow K \times p \\ u \leftarrow \frac{24}{\ln u} \\ \text{Fin Tant que} \\ \text{Renvoyer } u \end{array}
```

On peut également proposer la fonction Python suivante prenant la précision en argument.

```
from math import log

def suite(eps):
    u=9
    p=2
    K=2/(3*log(3)**2)
    while p>eps:
        p=p*K
        u=24/log(u)
    return u
```

On a alors accès à l'approximation demandée en arrondissant à 10^{-2} près le résultat de suite(0.005). On trouve $\alpha \approx 10,29$.