Lecture5-Computing Solution Concepts for Normal Form Games

Motivations

- So far, we have ignored the issues of computation for finding equilibriums
- How hard is it to compute the Nash equilibria of a game?


```
Try to identify some pure strategy that is strictly better than s_i for any pure strategy profile of the others. for all pure strategies a_i \in A_i for player i where a_i \neq s_i do dom \leftarrow true for all pure strategy profiles a_{-i} \in A_{-i} for the players other than i do if u_i(s_i,a_{-i}) \geq u_i(a_i,a_{-i}) then dom \leftarrow false break end if end for if dom = true then return true end for return false
```

- We will discuss the computation methods for:
 - Nash equilibria of two-player, zero-sum game
 - Nash equilibria of two-player, general-sum game
 - Nash equilibria of n-player, general-sum game
 - maximin and minmax strategies for two-player, general-sum games
 - Computing correlated equilibria

Linear Programming (LP)

Mathematical optimization problem can be expressed as

minmize
$$f_o(x)$$

subject to $f_i(x) \le b_i$, $i = 1, ..., m$

- $x = (x_1, ..., x_n)$: optimization variables
- $f_0: \mathbf{R}^n \to \mathbf{R}$: objective function
- $f_i: \mathbb{R}^n \to \mathbb{R}$, i = 1, ..., m: constraint functions
- A linear program is defined by:
 - a set of real-valued variables
 - a linear objective function
 - a weighted sum of the variables
 - a set of linear constraints
 - the requirement that a weighted sum of the variables must be greater than or equal to some constant

minmize
$$c^T x$$

subject to $a_i^T x \leq b_i$, $i = 1, ..., m$

Theorem (Minmax theorem by von Neumann, 1928)

In any finite, two-player, zero-sum game, in any Nash equilibrium each player receives a payoff that is equal to both his maxmin value and his minmax value.

- Consider a two-player, zero-sum game $G = (\{1,2\}, A_1 \times A_2, (u_1, u_2))$.
- Let $U_1^* = -U_2^*$
- By the minmax theorem, U_1^* holds constant in all equilibria and that it is the same as the value that player 1 achieves under a minmax strategy by player 2

$$\overline{u}_1 = \max_{s_1} \min_{s_2} u_1(s_1, s_2) = \underline{u}_1 = \min_{s_2} \max_{s_1} u_1(s_1, s_2)$$

$$= \underline{u}_1 = \min_{s_2} \max_{s_1} u_1(s_1, s_2)$$

$$= \underline{u}_1 = \min_{s_2} \max_{s_1} u_1(s_1, s_2)$$

$$= \min_{s_2} \max_{s_2} u_1(s_1, s_2)$$

$$= \min_{s_2} \max_{s_2} u_1(s_1, s_2)$$

Standard form convex optimization problem can be converted into epigraph form:

Using slack variables

minimize (over
$$x$$
, s) $f_0(x)$ subject to
$$a_i^Tx+s_i=b_i,\quad i=1,\dots,m$$

$$s_i\geq 0,\quad i=1,\dots m$$

Standard convex optimization from

Epigraph form

For player 2's strategy

$$U_1^* = \underline{u}_1 = \min_{s_2} \max_{s_1} u_1(s_1, s_2)$$

minimize
$$U_1^*$$
 subject to
$$\sum_{a_2\in A_2}u_1(a_1,a_2)\times s_2^{a_2}\leq U_1^* \quad \forall a_1\in A_1$$

$$\sum_{a_2\in A_2}s_2^{a_2}=1$$

$$s_2^{a_2}\geq 0 \qquad \forall a_2\in A_2$$

- First, identify the variables:
 - U_1^* is the expected utility for player 1
 - $s_2^{a_2}$ is player 2's probability of playing action a_2 under his mixed strategy
- each $u_1(a_1, a_2)$ is a constant
- Decision variables are U_1^* and $s_2^{a_2}$ for $\forall a_2 \in A_2$
- The LP will choose player 2's mixed strategy in order to minimize U_1^st

For player 2's strategy

$$U_1^* = \underline{u}_1 = \min_{s_2} \max_{s_1} u_1(s_1, s_2)$$

minimize

$$U_1^*$$

subject to
$$\sum_{a_2 \in A_2} u_1(a_1, a_2) \times s_2^{a_2} \le U_1^* \quad \forall a_1 \in A_1$$

$$\sum_{a_2 \in A_2} s_2^{a_2} = 1$$

$$s_2^{a_2} \ge 0$$

$$\forall a_2 \in A_2$$

• Player 2's minmax strategy:

$$\underline{s}_2 = \underset{s_2}{\operatorname{argmin}} \max_{s_1} u_1(s_1, s_2) = \left(\frac{1}{2}, \frac{1}{2}\right)$$

$$U_1^* = \underline{u}_1 = \min_{s_2} \max_{s_1} u_1(s_1, s_2)$$

minimize
$$U_1^*$$
 subject to
$$\sum_{a_2\in A_2}u_1(a_1,a_2)\times s_2^{a_2}\leq U_1^* \quad \forall a_1\in A_1$$

$$\sum_{a_2\in A_2}s_2^{a_2}=1$$

$$s_2^{a_2}\geq 0 \qquad \forall a_2\in A_2$$

- For every pure strategy j of player 1, his expected utility for playing any action $j \in A_1$ given player 2's mixed strategy s_2 is at most U_1^*
 - Those pure strategies for which the expected utility is exactly U_1^st will be in player 1's best response set

$$U_1^* = \underline{u}_1 = \min_{s_2} \max_{s_1} u_1(s_1, s_2)$$

minimize
$$U_1^*$$
 subject to
$$\sum_{a_2\in A_2}u_1(a_1,a_2)\times s_2^{a_2}\leq U_1^* \quad \forall a_1\in A_1$$

$$\sum_{a_2\in A_2}s_2^{a_2}=1$$

$$s_2^{a_2}\geq 0 \qquad \forall a_2\in A_2$$

 Player 2 plays the mixed strategy that minimizes the utility player 1 can gain by playing his best response

$$U_1^* = \underline{u}_1 = \min_{s_2} \max_{s_1} u_1(s_1, s_2)$$

minimize
$$U_1^*$$
 subject to $\sum_{a_2\in A_2}u_1(a_1,a_2)\times s_2^{a_2}\leq U_1^* \quad \forall a_1\in A_1$
$$\sum_{a_2\in A_2}s_2^{a_2}=1$$

$$s_2^{a_2}\geq 0 \qquad \forall a_2\in A_2$$

• s_2 is a valid probability distribution

For player 2's strategy

$$U_1^* = \underline{u}_1 = \min_{s_2} \max_{s_1} u_1(s_1, s_2)$$

Introduce slack variables $r_1^{a_1}$ for every $a_1 \in A_1$

minimize
$$U_1^*$$
 subject to
$$\sum_{a_2\in A_2}u_1(a_1,a_2)\times s_2^{a_2}\leq U_1^* \quad \forall a_1\in A_1$$

$$\sum_{a_2\in A_2}s_2^{a_2}=1$$

$$s_2^{a_2}\geq 0 \qquad \forall a_2\in A_2$$

$$\begin{array}{ll} \text{minimize} & U_1^* \\ & \displaystyle \sum_{a_2 \in A_2} u_1(a_1,a_2) \times s_2^{a_2} + r_1^{a_1} = U_1^* \quad \forall a_1 \in A_1 \\ & \displaystyle \sum_{a_2 \in A_2} s_2^{a_2} = 1 \\ & s_2^{a_2} \geq 0 \qquad \qquad \forall a_2 \in A_2 \\ & r_1^{a_1} \geq 0 \qquad \qquad \forall a_1 \in A_1 \end{array}$$

For player 1's strategy

$$U_1^* = \bar{u}_1 = \max_{s_1} \min_{s_2} u_1(s_1, s_2)$$

maximize
$$U_1^*$$
 subject to $\sum_{a_1\in A_1}u_1(a_1,a_2)\times s_1^{a_1}\geq U_1^*$ $\forall a_2\in A_2$
$$\sum_{a_1\in A_1}s_1^{a_1}=1$$
 $s_1^{a_1}\geq 0$ $\forall a_1\in A_1$

- First, identify the variables:
 - U_1^* is the expected utility for player 1
 - $s_1^{a_1}$ is player 1's probability of playing action a_1 under his mixed strategy
- each $u_1(a_1, a_2)$ is a constant
- Decision variables are U_1^* and $s_1^{a_1}$ for $\forall a_1 \in A_1$
- The LP will choose player 1's mixed strategy in order to maximize U_1^st

- The problem of finding a Nash equilibrium of a two-player, general-sum game cannot be formulated as a linear programming
 - The two players' interests are no longer directly opposed
 - We cannot state our problem as an optimization problem: one player is not trying to minimize the other's utility

Let's define (s_1, s_2) is NE with $u_1(s_1, s_2) = U_1^*$

If
$$a_1 \in \text{support for } s_1$$

$$u_1(a_1,s_2) = U_1^*$$
 Otherwise
$$u_1(a_1,s_2) \leq U_1^*$$

Let's define (s_1, s_2) is NE with $u_2(s_1, s_2) = U_2^*$

If
$$a_2 \in \text{support for } s_2$$

$$u_2(s_1, a_2) = U_2^*$$
 Otherwise
$$u_1(s_1, a_2) \leq U_2^*$$

Let's define (s_1, s_2) is NE with $u_1(s_1, s_2) = U_1^*$

$$\begin{cases} \text{If } a_1 \in \text{support for } s_1 \\ u_1(a_1,s_2) = U_1^* \\ \text{Otherwise} \\ u_1(a_1,s_2) \leq U_1^* \end{cases} \sum_{a_2 \in A_2} u_1(a_1,a_2) \times s_2^{a_2} \leq U_1^* \quad \forall a_1 \in A_1$$

Let's define (s_1, s_2) is NE with $u_2(s_1, s_2) = U_2^*$

$$\begin{cases} \text{If } a_2 \in \text{support for } s_2 \\ u_2(s_1,a_2) = U_2^* \\ \text{Otherwise} \\ u_1(s_1,a_2) \leq U_2^* \end{cases} \sum_{a_1 \in A_1} u_2(a_1,a_2) \times s_1^{a_1} \leq U_2^* \quad \forall a_2 \in A_2$$

Let's define (s_1, s_2) is NE with $u_1(s_1, s_2) = U_1^*$

$$\begin{cases} \text{If } a_1 \in \text{support for } s_1 \\ u_1(a_1,s_2) = U_1^* \\ \text{Otherwise} \\ u_1(a_1,s_2) \leq U_1^* \end{cases} \sum_{a_2 \in A_2} u_1(a_1,a_2) \times s_2^{a_2} \leq U_1^* \quad \forall a_1 \in A_1 \\ \sum_{a_2 \in A_2} u_1(a_1,a_2) \times s_2^{a_2} + r_1^{a_1} = U_1^*, \forall a_1 \in A_1, r_1^{a_1} \geq 0 \end{cases}$$

Let's define
$$(s_1, s_2)$$
 is NE with $u_2(s_1, s_2) = U_2^*$

$$\begin{cases} \text{If } a_2 \in \text{support for } s_2 \\ u_2(s_1, a_2) = U_2^* \\ \text{Otherwise} \\ u_1(s_1, a_2) \leq U_2^* \end{cases} \sum_{a_1 \in A_1} u_2(a_1, a_2) \times s_1^{a_1} \leq U_2^* \quad \forall a_2 \in A_2 \\ \sum_{a_1 \in A_1} u_1(a_1, a_2) \times s_1^{a_1} + r_2^{a_2} = U_1^*, \ \forall a_2 \in A_2, r_2^{a_2} \geq 0 \end{cases}$$

Let's define (s_1, s_2) is NE with $u_1(s_1, s_2) = U_1^*$

$$\begin{cases} \text{If } a_1 \in \text{support for } s_1 \\ u_1(a_1,s_2) = U_1^* \\ \sum_{a_2 \in A_2} u_1(a_1,a_2) \times s_2^{a_2} \leq U_1^* \quad \forall a_1 \in A_1 \\ \sum_{a_2 \in A_2} u_1(a_1,a_2) \times s_2^{a_2} + r_1^{a_1} = U_1^* \text{ , } \forall a_2 \in A_2, r_1^{a_1} \geq 0 \\ s_1^{a_1} > 0 \rightarrow r_1^{a_1} = 0 \text{ ; } s_1^{a_1} \times r_1^{a_1} = 0 \end{cases}$$

Let's define (s_1, s_2) is NE with $u_2(s_1, s_2) = U_2^*$

$$\begin{cases} \text{If } a_2 \in \text{support for } s_2 \\ u_2(s_1, a_2) = U_2^* \\ \text{Otherwise} \\ u_1(s_1, a_2) \leq U_2^* \end{cases} \sum_{\substack{a_1 \in A_1 \\ u_1(a_1, a_2) \times s_1^{a_1} \leq U_2^* \\ \sum_{a_1 \in A_1} u_1(a_1, a_2) \times s_1^{a_1} + r_2^{a_2} = U_1^*, \ \forall a_2 \in A_2, r_2^{a_2} \geq 0 \end{cases}$$

$$s_2^{a_2} > 0 \rightarrow r_2^{a_2} = 0; s_2^{a_2} \times r_2^{a_2} = 0$$

Linear complementarity problem (LCP) formulation for two-player, general-sum game

$$\begin{aligned} u_1(a_1, s_2) &\leq u_1(a_1^*, s_2) \ \forall a_1 \in A_1 \\ u_2(s_1, a_2) &\leq u_2(s_1, a_2^*) \ \forall a_2 \in A_2 \\ \\ \sum_{a_1 \in A_1} s_1^{a_1} &= 1, \sum_{a_2 \in A_2} s_2^{a_2} &= 1 \\ \\ s_1^{a_1} &\geq 0, \ s_2^{a_2} \geq 0 \quad \forall a_1 \in A_1, \forall a_2 \in A_2 \end{aligned}$$

$$\begin{aligned} u_1(a_1,s_2) &\leq u_1(a_1^*,s_2) \ \forall a_1 \in A_1 \\ u_2(s_1,a_2) &\leq u_2(s_1,a_2^*) \ \forall a_2 \in A_2 \\ \sum_{a_1 \in A_1} s_1^{a_1} &= 1, \sum_{a_2 \in A_2} s_2^{a_2} &= 1 \\ s_1^{a_1} &\geq 0, \ s_2^{a_2} &\geq 0 \quad \forall a_1 \in A_1, \forall a_2 \in A_2 \end{aligned} \end{aligned} \qquad \begin{aligned} \sum_{a_2 \in A_2} u_1(a_1,a_2) \times s_2^{a_2} &\leq U_1^* \qquad \forall a_1 \in A_1 \\ \sum_{a_1 \in A_1} u_2(a_1,a_2) \times s_1^{a_1} &\leq U_2^* \qquad \forall a_2 \in A_2 \\ \sum_{a_1 \in A_1} s_1^{a_1} &= 1, \sum_{a_2 \in A_2} s_2^{a_2} &= 1 \\ s_1^{a_1} &\geq 0, \ s_2^{a_2} &\geq 0 \qquad \forall a_1 \in A_1, \forall a_2 \in A_2 \end{aligned}$$

Linear complementarity problem (LCP) formulation for two-player, general-sum game

$$\begin{aligned} u_1(a_1, s_2) &\leq u_1(a_1^*, s_2) \ \forall a_1 \in A_1 \\ u_2(s_1, a_2) &\leq u_2(s_1, a_2^*) \ \forall a_2 \in A_2 \\ \sum_{a_1 \in A_1} s_1^{a_1} &= 1, \sum_{a_2 \in A_2} s_2^{a_2} &= 1 \\ s_1^{a_1} &\geq 0, \ s_2^{a_2} \geq 0 \quad \forall a_1 \in A_1, \forall a_2 \in A_2 \end{aligned} \qquad \begin{aligned} \sum_{a_2 \in A_2} u_1(a_1, a_2) &\geq 0 \\ \sum_{a_1 \in A_1} u_2(a_1, a_2) &\geq 0 \end{aligned}$$

$$\begin{split} \sum_{a_2 \in A_2} u_1(a_1, a_2) \times s_2^{a_2} + r_1^{a_1} &= U_1^* \qquad \forall a_1 \in A_1 \\ \sum_{a_1 \in A_1} u_2(a_1, a_2) \times s_1^{a_1} + r_2^{a_2} &= U_2^* \qquad \forall a_2 \in A_2 \\ \sum_{a_1 \in A_1} s_1^{a_1} &= 1, \sum_{a_2 \in A_2} s_2^{a_2} &= 1 \\ s_1^{a_1} &\geq 0, \ s_2^{a_2} \geq 0 \qquad \forall a_1 \in A_1, \forall a_2 \in A_2 \\ r_1^{a_1} &\geq 0, \ r_2^{a_2} \geq 0 \qquad \forall a_1 \in A_1, \forall a_2 \in A_2 \end{split}$$

The slack variables are introduced to convert inequality constraints to equality constrains

Issues

- The variables U_1^* and U_2^* would be insufficiently constrained
 - We want these values to express the expected utility that each player would achieve by playing his best responses to the other player's chosen mixed strategy

Linear complementarity problem (LCP) formulation for two-player, general-sum game

$$\begin{aligned} u_1(a_1, s_2) &\leq u_1(a_1^*, s_2) \ \forall a_1 \in A_1 \\ u_2(s_1, a_2) &\leq u_2(s_1, a_2^*) \ \forall a_2 \in A_2 \\ \sum_{a_1 \in A_1} s_1^{a_1} &= 1, \sum_{a_2 \in A_2} s_2^{a_2} &= 1 \\ s_1^{a_1} &\geq 0, \ s_2^{a_2} \geq 0 \quad \forall a_1 \in A_1, \forall a_2 \in A_2 \end{aligned} \qquad \begin{aligned} \sum_{a_2 \in A_2} u_1(a_1, a_2) &\geq 0 \\ \sum_{a_1 \in A_1} u_2(a_1, a_2) &\geq 0 \end{aligned}$$

$$\begin{split} \sum_{a_2 \in A_2} u_1(a_1, a_2) \times s_2^{a_2} + r_1^{a_1} &= U_1^* \qquad \forall a_1 \in A_1 \\ \sum_{a_1 \in A_1} u_2(a_1, a_2) \times s_1^{a_1} + r_2^{a_2} &= U_2^* \qquad \forall a_2 \in A_2 \\ \sum_{a_1 \in A_1} s_1^{a_1} &= 1, \sum_{a_2 \in A_2} s_2^{a_2} &= 1 \\ s_1^{a_1} &\geq 0, \ s_2^{a_2} \geq 0 \qquad \forall a_1 \in A_1, \forall a_2 \in A_2 \\ r_1^{a_1} &\geq 0, \ r_2^{a_2} \geq 0 \qquad \forall a_1 \in A_1, \forall a_2 \in A_2 \\ r_1^{a_1} \cdot s_1^{a_1} &= 0, \ r_2^{a_2} \cdot s_2^{a_2} &= 0 \qquad \forall a_1 \in A_1, \forall a_2 \in A_2 \end{split}$$

- Add the nonlinear constraints, called the complementarity condition (non-linear programing)
- This constraint requires that whenever an action is played by a given player with positive probability (supports for a strategy) then the corresponding slack variable must be zero
 - It capture the fact that, in equilibrium, all strategies that are played with positive probability must yield the same expected payoff
 - all strategies that lead to lower expected payoffs are not played

- LCP problem can be formulated in a Quadratic programming that can be solved using an optimization solver (for this class, we can use a library for LCP solver)
- Classical algorithm to solve LCP is Lemke-Howson algorithm, which is similar to simplex method for Linear Programming (LP)

- For n-player games where $n \ge 3$, the problem of finding a Nash equilibrium can no longer be represented even as an LCP
 - Hopelessly impractical to solve exactly
- Textbook discusses how to formulate the problem to find NEs using heuristic methods

Computing maximin and minmax strategies for two-player, general-sum games

- Let's say we want to compute a maxmin strategy for player 1 in an arbitrary 2-player game ${\it G}$
 - Create a new game G' where player 2's payoffs are just the negatives of player 1's payoffs.
 - The maxmin strategy for player 1 in G does not depend on player 2's payoffs
 - Thus, the maxmin strategy for player 1 in G is the same as the maxmin strategy for player 1 in G'
 - By the minmax theorem, equilibrium strategies for player 1 in G^\prime are equivalent to a maxmin strategies
 - Thus, to find a maxmin strategy for G, find an Nash equilibrium strategy for G'

$$G = (\{1,2\}, A_1 \times A_2, (u_1, u_2)) \longrightarrow G' = (\{1,2\}, A_1 \times A_2, (u_1, -u_1))$$

Computing correlated equilibria

- A sample correlated equilibrium can be found in polynomial time using a linear programming formulation
- Every game has at least one correlated equilibrium in which the value of the random variable can be interpreted as a recommendation to each agent of what action to play, and in equilibrium the agents all follow these recommendations.
- Thus, we can find a sample correlated equilibrium if we can find a probability distribution over pure action profiles satisfying

$$\sum_{a_{-i} \in A_{-i}} \pi(a) u_i(a_i, a_{-i}) \ge \sum_{a_{-i} \in A_{-i}} \pi(a) u_i(a_i', a_{-i}) \quad \forall i \in N, \forall a_i, a_i' \in A_i \quad (1)$$

$$\pi(a) > 0 \qquad \qquad \forall a \in A \qquad (2)$$

$$\sum_{a \in A} \pi(a) = 1 \qquad (3)$$

$$\pi(a) > 0 \qquad \forall a \in A \tag{2}$$

$$\sum \pi(a) = 1 \tag{3}$$

- Variables: $\pi(a)$, constants: $u_i(a)$
- Constraint (1) requires player i must be better off playing action a_i when he is told to do so than playing any other action a'_i , given that other players play their prescribed action
- Constraint (2) and (3) requires p is a valid probability distribution

Computing correlated equilibria

- One can select a desired correlated equilibrium by adding an objective function to the linear program.
 - For example, the problem maximizes the sum of the agents' expected utilities by adding the objective function (social-welfare maximizing CE)

maximize
$$\sum_{a \in A} \pi(a) \sum_{i \in N} u_i(a)$$
subject to
$$\sum_{a_{-i} \in A_{-i}} \pi(a) u_i(a_i, a_{-i}) \ge \sum_{a_{-i} \in A_{-i}} \pi(a) u_i(a_i', a_{-i}) \quad \forall i \in N, \forall a_i, a_i' \in A_i \quad (1)$$

$$\pi(a) > 0 \qquad \forall a \in A \qquad (2)$$

$$\sum_{a \in A} \pi(a) = 1 \qquad (3)$$

- Utilitarian equilibrium: an equilibrium which maximizes the sum of the expected payoffs of the players
- Libertarian i equilibrium: an equilibrium which maximizes the expected payoff of Player i
- Egalitarian equilibrium: an equilibrium which maximizes the minimum expected payoff of a player is called an.

Computing correlated equilibria: Example

	С	F
С	2,5	0,0
F	0,0	5, 2

• Formulate LP to find the Libertarian 1 equilibrium (do it by your self):

Difference between Nash and Correlated equilibrium?

Why are CE easier to compute than NE?

- Intuitively, correlated equilibrium has only a single randomization over outcomes, whereas in NE this is constructed as a product of independent probabilities.
- To change this program so that it finds NE, the first constraint would be

$$\sum_{a_{-i} \in A_{-i}} \pi(a) u_i(a_i, a_{-i}) \ge \sum_{a_{-i} \in A_{-i}} \pi(a) u_i(a_i', a_{-i}) \quad \forall i \in N, \forall a_i, a_i' \in A_i$$

$$\sum_{a \in A} \left(\prod_{j \in N} s_j(a_j) \right) u_i(a_i, a_{-i}) \ge \sum_{a \in A} \left(\prod_{j \in N} s_j(a_j) \right) u_i(a_i', a_{-i}) \quad \forall i \in N, a_i' \in A_i$$

The constrain is non-linear!