Monte Carlo Control Algorithm

Input:

- Policy π
- \bullet Number of episodes N

Initialization:

- Initialize empty arrays Returns(s,a) and Visits(s,a) for each state s and action a
- ullet Initialize action-value function Q(s,a) for each state s and action a with arbitrary values

Algorithm:

- 1. For each episode $i = 1, 2, \dots, N$ do:
 - Generate an episode following policy π : $(s_0, a_0, r_1, s_1, a_1, r_2, \dots, s_T)$
 - $G \leftarrow 0$
 - For each step t = T 1, T 2, ..., 0 do:
 - $-G \leftarrow \gamma G + r_{t+1}$ (where γ is the discount factor)
 - If (s_t, a_t) is not in the episode history from time step 0 to t-1 then:
 - * Append G to $Returns(s_t, a_t)$
 - * Increment $Visits(s_t, a_t)$ by 1
 - * Update action-value function $Q(s_t, a_t)$ based on $Returns(s_t, a_t)$ and $Visits(s_t, a_t)$:

$$Q(s_t, a_t) = \frac{1}{Visits(s_t, a_t)} \sum_{i=1}^{Visits(s_t, a_t)} Returns(s_t, a_t)[i]$$

Output: Estimated action-value function Q(s,a) and optimal policy π^*