

Previsão de Popularidade de Músicas em Plataformas de Streaming

Carlos Vicente Soares Araujo vicente@icomp.ufam.edu.br

Spotify for Developers

Playlists

```
"available markets": [],
        "disc number": 1,
        "duration ms": 730066,
        "episode": false,
        "explicit": false,
        "external ids": {
          "isrc": "FR2X41475057"
        "external urls": {
          "spotify":
"https://open.spotify.com/track/5o3jMYOSbaVz3tkgwhELSV"
        },
        "href":
"https://api.spotify.com/v1/tracks/5o3jMYOSbaVz3tkgwhELSV",
        "id": "5o3jMYOSbaVz3tkgwhELSV",
        "is local": false,
        "name": "Is",
        "popularity": 0,
        "preview url": null,
        "track": true,
        "track number": 21,
        "type": "track",
        "uri": "spotify:track:5o3jMYOSbaVz3tkgwhELSV"
```

developer.spotify.com/console/get-playlist-tracks/

Audio Features

```
"danceability": 0.696,
  "energy": 0.905,
  "key": 2,
  "loudness": -2.743.
  "mode": 1,
  "speechiness": 0.103,
  "acousticness": 0.011,
  "instrumentalness": 0.000905,
  "liveness": 0.302,
  "valence": 0.625,
  "tempo": 114.944,
  "type": "audio features",
  "id": "11dFghVXANMlKmJXsNCbNl",
  "uri": "spotify:track:11dFghVXANMlKmJXsNCbNl",
  "track href":
"https://api.spotify.com/v1/tracks/11dFghVXANMlKmJXsNCbNl",
  "analysis_url": "https://api.spotify.com/v1/audio-
analysis/11dFghVXANMlKmJXsNCbNl",
  "duration ms": 207960,
  "time signature": 4
```

developer.spotify.com/console/get-audio-features-several-tracks/

Campos das Playlists

- Posição no Ranking
- Artistas Participantes
- Duração da Música
- Nome da Faixa
- Link para MP3

- Data do Ranking
- Data de Lançamento
- Explicitude
- Popularidade

Audio Features

- Danceability
- Key
- Mode
- Acousticness
- Liveness
- Tempo

- Energy
- Loudness
- Speechiness
- Instrumentalness
- Valence
- Time Signature


```
dtop = dtop.drop('Artistas', axis = 1)
dtop = dtop.drop('Nome da Faixa', axis = 1)
dtop = dtop.drop('Data do Ranking', axis = 1)
dtop = dtop.drop('Data da Música', axis = 1)
dtop = dtop.drop('Duração', axis = 1)
dtop = dtop.drop('key', axis = 1)
dtop = dtop.drop('loudness', axis = 1)
dtop = dtop.drop('tempo', axis = 1)
dtop = dtop.drop('time', axis = 1)
dtop = dtop.drop('mode', axis = 1)
dtop['Posição'] = np.where(dtop['Posição']>0, 1, 0)
colunastop = list(dtop.columns.values)
colunastop.remove('Posição')
dtop['danceability'] = np.where(dtop['danceability']>0.5, 1, 0)
dtop['energy'] = np.where(dtop['energy']>0.5, 1, 0)
dtop['speechiness'] = np.where(dtop['speechiness']>0.33, 1, 0)
```

dtop['acousticness'] = np.where(dtop['acousticness']>0.5, 1, 0)

dtop['liveness'] = np.where(dtop['liveness']>0.8, 1, 0)
dtop['valence'] = np.where(dtop['valence']>0.5, 1, 0)

dtop['instrumentalness'] = np.where(dtop['instrumentalness']>0.5, 1, 0)

dtop.head(5)

	Posição	Explicitude	Popularidade	danceability	energy	speechiness	acousticness	instrumentalness	liveness	valence
0	1	1	100	1	1	0	0	0	0	1
1	1	0	97	1	1	0	0	0	0	0
2	1	0	99	1	1	0	0	0	0	1
3	1	0	92	1	0	0	1	0	0	1
4	1	1	84	1	1	0	0	0	0	0

Previsão com Repetição de Músicas Usando SVM c/ kernel RBF

Previsão sem Repetição de Músicas Usando SVM c/ kernel RBF

Usando Reiman e Örnell

Previsão com Repetição de Músicas
Usando KNN

Previsão sem Repetição de Músicas Usando SVM c/ kernel RBF

Uma acurácia melhor pode não significar um resultado melhor.

Araujo, Carlos
III PyData Manaus

Linked in

Carlos Vicente Soares Araujo

Master's Student of Computer Science with emphasis on Data Science at UFAM

Manaus, Amazonas, Brasil

Pesquisa

inFlux English School

Universidade Federal do Amazonas

179 conexões

Obrigado!

vicente@icomp.ufam.edu.br bit.ly/carlos-artigos

