

Universidad Autónoma del Estado de México

Ingenieria en Computación

Materia: Graficación

Axel Valenzuela Juárez 31 de Mayo del 2019

Índice

Li	Lista de figuras	
1.	Clase de 15 de febrero	4
2.	Clase de 22 de febrero	4
3.	Clase de 1 de Marzo	4
4.	clase del 8 de marzo	5
5 .	clase del 15 de marzo	6
6.	clase del 22 de marzo	6
7.	Clase del 5 de abril	9
8.	Clase del 17 de Mayo	9
9.	Clase del 24 de Mayo	10
10	Referencias	10

Índice de figuras

1.	Imagen binarizada a negros y blancos puros	4
2.	Imagen binarizada	5
3.	Imagen binarizada	6
4.	estructura de una 8 vecindad y el como se debe manejar la estructura de ella	6
5.	Codigo para aplicar los filtros	7
6.	Resultado de aplicar el algoritmo para el filtro con una 8 vecindad	8
7.	Programacion filtro paso alto	9
8.	Programacion filtro paso bajo	10
9.	Programacion del filtro de paso alto con el bajo.	11
10.	Resultado de aplicar el filtro de paso alto	11
11.	Resultado de aplicar el filtro de paso bajo	12
12.	Codigo para aplicar el filtro gaussiano	12
13.	Codigo del filtro maximo.	13
14.	Codigo del filtro minimo.	13
15.	Codigo del filtro de media	14
16.	Resultado del filtro maximo	14
17.	Resultado del filtro minimo	15
18.	Resultado del filtro de media	15
19.	Codigo del filtro de Sobel	16
20.	Filtro de sobel aplicado a la imagen del fotografo	16
21.	Codigo del filtro de Laplace	17
22.	A la izquierda la imagen original de una mujer sin filtros aplicados , a la derecha se puede	
	observar la misma imagen con el filtro de Laplace.	17
23.	A la izquierda la imagen original , a la derecha la imagen nueva una vez combinada con	
	las 3 capas de color	18
24.	Se puede observar los distintos tonos de grises o negros que se le puede dar a una imagen	
	a color gracias a la binarizacion.	18
25.	En la imagen de le dieron valores de rojo =0.4, verde=0.1, azul =0.5	19

1. Clase de 15 de febrero

Se definió la escala así como los criterios a evaluar, el profesor nos mostró la herramienta a utilizar todo el semestre y nos ayudó a instalar octave, una vez pasamos por todo el proceso de descarga y descargamos octave desde la página oficial.

Una vez instalado octave el profesor procedió a explicarnos la sintaxis de Octave así como la manera de compilar y revisar los errores.

Cada imagen esta compuesta de un numero finito de elementos, son referidos como elementos de imagen o pixel.

2. Clase de 22 de febrero

Binarización: es el proceso de volver todos los números a unos y ceros esto en una imagen provoca pasarla a blancos y negros puros, realizamos en octave el proceso de binarización, esto se realizó con dos ciclos for y poniendo como condiciones que si el color era mayor que 126 se pasaba a negro y si era menor a 126 se pasaba a blancos de esa manera a la imagen se le borraron los grises claros y oscuros.

Figura 1: Imagen binarizada a negros y blancos puros

Después de realizar la binarizacion experimentamos con distintas gráficas y a las imágenes les dimos distintos tipos de grises de esa manera empezamos a aplicar filtros a las imágenes los resultados pueden ser observados en las imagenes 1 ,2,3.

3. Referencias

 $http://minisconlatex.blogspot.com/2011/04/como-escribir-una-tesis-con-latex.html~{\bf Recuperado~el~28~de~mayo~del~2019}$

 $Digital Image Processing, Rafael C. Gonzalez, 1977 \ {\bf Recuperado\ el\ 1\ de\ mayo\ del\ 2019}$