aula 4: BARRAMENTO

disciplina: Organização e Arquitetura

de Computadores

professora: Sara Guimarães Negreiros

VISÃO GERAL

Barramentos no computador

Comunicação entre os dispositivos do computador.

- Caminho de comunicação entre dois os mais dispositivos.
- Meio de transmissão compartilhado.
- Transmissão simultânea de dois sinais vai gerar sobreposição e adulteração.

ESTRUTURA DE BARRAMENTOS

- Barramento de sistema: conexão dos componentes principais.
- DADOS: bits dos dados.
- CONTROLE: bits de controle.
- ENDEREÇO: bits de endereço.

Endereço

- Designar fonte ou destino dos dados transferidos pelo barramento de dados.
- Quantidade máxima de endereços endereçados = 2^L, L sendo a quantidade de bits.

Dados

- Taxa de transferência = Largura * Velocidade.
- 8, 16 ou 32 linhas (um bit por vez).
- Se o barramento de dados tem largura de 8 bits e cada instrução tem tamanho de 16 bits, o processador tem de acessar duas vezes o módulo de memória em cada ciclo de instrução

Controle

- Linhas de dados e endereço utilizadas por todos os componentes.
- Controlar o acesso das linhas de dados e de endereço.
- Comandos e temporização.
- Leitura, escrita, conceção e requisição do barramento, reset.

AFINAL, ESSE MODELO É EFICIENTE?

- Quantidade de dispositivos que estariam conectados a uma mesma via, onde somente dois dispositivos falam de cada vez;
- Diferentes velocidades de transferência dos diversos dispositivos de um sistema de computação.

HIERARQUIA

Tradicional

Pontes

ELEMENTOS DE PROJETO DE BARRAMENTO

Tipo

Função desempenhada

FIXA

Função fixa (dado, endereço, controle) ou subconjunto de componentes;

MULTIPLEXADA

- Endereço e dado na mesma linha (multiplexação de tempo)
 - Linha (Endereço Válido) adicional
 - Diminui custo e espaço
 - Circuitos mais complexos
 - Diminui eficiência (mais concorrência)

Método de arbitração

Concorrência no barramento.

CENTRALIZADO

- Controlador de barramento (hardware) define o tempo de uso para cada módulo
- Separado ou parte do processador

DISTRIBUÍDO

Cada módulo tem uma lógica e agem de forma conjunta

Temporização

Coodenação de eventos.

SÍNCRONA

ASSÍNCRONA

Largura do barramento

- Tamanho (32, 64 bits)
 - Dados maiores;
 - Mais posições da memória endereçadas.

EXERCÍCIOS

- 1. Descreva a arquitetura de barramento tradicional e com pontes.
- 2. Quais operações justificam um dispositivo solicitar requisição do barramento?
- 3. Associe a mudança de computadores de 32 bits para 64 com o gargalo de barramento.
- 4. Como a Lei de Biot-Savart influencia a forma como o barramento é estruturado? Há um limite para a distância entre os fios?

sara.negreiros@ufersa.edu.br