

CURSO DE ESPECTROSCOPIA VIBRACIONAL PROF. OSWALDO SALA 2025

Cálculos teóricos e espectros

Vitor H. Paschoal São Paulo, 23 de julho de 2025

Programa de hoje

- Visão geral de programas utilizados em cálculos de química quântica
- Escolha de métodos/base para modelar sistemas moleculares
- Frequências imaginárias: o que fazer?
- Melhorando a concordância com a realidade:
 - Fatores de *scaling*
 - Primeira aproximação para efeitos de fase condensada

Os slides/exemplos de inputs/resultados estão disponíveis em:

https://github.com/vhpaschoal/Vibros-2025

Alguns programas utilizados em cálculos de química quântica

Algumas considerações

- Disponibilidade de recursos
- Preço
- Funcionalidades do código
- Curva de aprendizagem
- Capacidade computacional necessária

Modelling and Simulation in Materials Science and Engineerin

Modelling Simul. Mater. Sci. Eng. 31 (2023) 063301 (86pp)

https://doi.org/10.1088/1361-651X/acdf0/

Roadmap

Roadmap on electronic structure codes in the exascale era

```
Vikram Gavini<sup>1,37,*</sup>

, Stefano Baroni<sup>2,3,*</sup>

, Volker Blum<sup>4,*</sup>

,
 David R Bowler ... 0, Alexander Buccheri 0,
 James R Chelikowsky 8,9,10, 0, Sambit Das 0,
 William Dawson<sup>11</sup>, Pietro Delugas<sup>2</sup>0, Mehmet Dogan<sup>9</sup>0,
 Claudia Draxl<sup>7,*</sup> , Giulia Galli 2,13,* , Luigi Genovese 4,* ,
 Paolo Giannozzi3,15 @, Matteo Giantomassi16,
 Xavier Gonze 16, 0, Marco Govoni 12, 13, 37, 0,
 François Gygi<sup>17,*</sup>

, Andris Gulans<sup>18</sup>
 io w M Heskert - Solastian Kokott
Thomas II Kühng 1820 👀 Kai-Halm Cidu 🦮
Ryan M Richard Managa Rossi 🕰
Pranis i Survanarava ta 🔭 Marc Tomen 🐿
Change International for the International Winds as $2.50 to Change $4.50
Victor W-Z=Number and D Perez
```

Algumas consideraçõ

- Disponibilidade de recursos
- Preço
- Funcionalidades do código
- Curva de aprendizagem
- Capacidade computacional necessária

O SDumont possui capacidade instalada de processamento na ordem de 20 Petaflop/s (20 x 10¹⁵ n c r p r t c p r t e pf):

Fonte: https://sdumont.lncc.br/machine.php?pg=machine#

Algumas considerações

- Disponibilidade de recursos
- Preço
- Funcionalidades do código
- Curva de aprendizagem
- Capacidade computacional necessária

E. Epifanovsky; A. T. B. Gilbert; X. Feng; *et al.* **J. Chem. Phys.** 155, 8, 084801; *2021.* DOI:10.1063/5.0055522

A Sadro + Orca V

Topologia Análise dos (estrutura da cálculos molécula)

Calculadora

An ab initio, DFT and semiempirical SCF-MO package

Orca6.1.0.Win64_autoci.zip

x86_64

x86_64

orca_6_1_0_macosx_intel_openmpi411.tar.bz2

windows

macos

ORCA 6.1.0-f.0 Orca6.1.0.Win64.zip Released: 2025-06-16 SHA256 ℃ windows x86_64 6 GiB orca_6_1_0_macosx_arm64_openmpi411.tar.bz2 macos arm64 687.5 MiB SHA256 ₺ Orca6.1.0.Win64_autoci_msmpi10.zip windows x86_64 8 GiB SHA256 ₺ orca-6.1.0-f.0_linux_x86-64_openmpi41.tar.xz linux x86_64 415.6 MiB SHA256 ₺

7 GiB

793.5 MiB

SHA256 ₺

SHA256 ₺

MANUAL

TUTORIALS

https://www.faccts.de/customer

3 ingredientes para realizar um cálculo (mínimo)

- A estrutura/coordenadas da molécula
- Método
- Base

Método

Como vamos calcular?

Método	Rápido?	Preciso?	
Hartree-Fock	Sim	Não/Aumenta com a base	
Density Functional Theory (DFT)	Sim	Depende	
Métodos baseados em função de onda	Não/Aumenta com a base	Sim/Aumenta com a base	MPn, C

Funcionais Disponí (Lersão 6.1.0)

• Pelo menos 90 funcionais diferentes estão disponíveis, com possiblidade de customização/modificação

Funcional	Tipo	Característica	
BLYP	GGA	Boa primeira aproximação/Empírico	
PBE	GGA	Boa primeira aproximação/Não-empírico	
B3LYP	Híbrido	Normalmente mostra bons resultados/empírico	
TPSSh/TPSS0	Híbrido meta-GGA	Melhoria do PBE0	
ωB97M-V	Híbrido meta-GGA	Feito para ser transferível/Usado no Omol25	
B2PLYP	Duplo híbrido	Primeiro funcional duplo híbrido	

Simplicidade

Raco

Basis Set Exchange Download GitHub Feedback About Help * Request a Basis set

- Em outras palavras, como calcularemos *E* e suas derivadas
- Opção 1: testar
- Opção 2: literatura

al

How To Arrive at Accurate Benchmark Values for Transition Meta Compounds: Computation or Experiment?

Yuri A. Aoto,[†] Ana Paula de Lima Batista,[‡] Andreas Köhn,*,[†] and Antonio G. S. de Oliveira-Filho

Supporting Information

[†]Institut für Theoretische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany

[‡]Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, 05508-000 São Paulo, SP, Brazil

SDepartamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901 Ribeirão Preto, SP, Brazil

- Em outras palavras, como calcularemos *E* e suas derivadas
- Opção 1: testar
- Opção 2: literatura

pubs.acs.org/JPCA Article

VIBFREQ1295: A New Database for Vibrational Frequency Calculations

Published as part of The Journal of Physical Chemistry virtual special issue "10 Years of the ACS PHYS Astrochemistry Subdivision".

Juan C. Zapata Trujillo and Laura K. McKemmish*

- Em outras palavras, como calcularemos *E* e suas derivadas
- Opção 1: testar
- Opção 2: literatura

The Journal of Physical Chemistry A

Cite this: J. Phys. Chem. A 2024, 128, 20, 3947–3956

https://doi.org/10.1021/acs.jpca.4c0040

Published May 10, 2024 ∨

Copyright © 2024 UChicago Argonne, LLC, Operator of Argonne National Laboratory. Published by American Chemical Society

Request reuse permissions

- Em outras palavras, como calcularemos *E* e suas derivadas
- Opção 1: testar
- Opção 2: literatura

Original Article | 🙃 Full Access

Harmonic vibrational frequencies: Scale factors for pure, hybrid, hybrid meta, and double-hybrid functionals in conjunction with correlation consistent basis sets

Marie L. Laury, Scott E. Boesch, Ian Haken, Pankaj Sinha, Ralph A. Wheeler, Angela K. Wilson 🔀

First published: 19 May 2011 | https://doi.org/10.1002/jcc.21811 | Citations: 56

- Em outras palavras, como calcularemos *E* e suas derivadas
- Opção 1: testar
- Opção 2: literatura

Computational Chemistry Comparison and Benchmark DataBase Release 22 (May 2022) Standard Reference Database 101 National Institute of Standards and Technology.

Home Experimental Calculated Comparisons Resources FAQ Help

You are here: Home

The CCCBDB contains:

Experimental and computed (quantum mechanics) thermochemical data for a selected set of 2186 gas-phase atoms and small molecules. Tools for comparing experimental and computational ideal-gas thermochemical properties.

Vibrational Frequencies, Rotational Constants, Electric Dipole, Electric Quadrupole, Polarizabilities

Molecules in the CCCRDR mostly have the following constraints:

- · Well-established experimental heat of formation.
- . Atoms with atomic number less than 36 (Krypton) with only a few transition metals. We have added a few molecules containing Te, I, and Xe
- Less than 15 heavy atoms and less than 30 atoms total. Except for a few larger molecules: tetracene, triphenylmethane, coronene, and C60.

NIST Computational Chemistry Comparison and Benchmark Database
NIST Standard Reference Database Number 101
Release 22, May 2022, Editor: Russell D. Johnson III
http://cccbdb.nist.gov/
DOI:10.18434/T47C7Z

Fatores de *scaling*

- Tentativa de melhorar a concordância de frequências vibracionais e parâmetros associados a valores experimentais/referência:
 - Tentativa de compensar um nível de cálculo mais baixo

• Tentativa de compensar a anarmonicidade do sistema (em contraposição ao seu cálculo explicito, e.g. VPT2)

P Pernot and F. Cailliez. **J. Chem. Phys.** 134, 167101, 2011 DOI:10.1063/1.3581022

3 ingredientes para realizar um cálculo

- A estrutura/coordenadas da molécula
- Método
- Base

• Primeiro cálculo: Água

```
!B3LYP OPT FREQ def2-TZVP
                                                           !B3LYP OPT FREQ def2-TZVP PAL4
                                                           * xyz 0 1
* xyz 0 1
           -4.00000
                            0.00000
                                             0.00000
                                                                      -4.00000
                                                                                       0.00000
                                                                                                      0.00000
                                                              0
           -2.97365
                             0.00000
                                             0.00000
                                                              Н
                                                                      -2.97365
                                                                                       0.00000
                                                                                                      0.00000
           -3.99650
                            -0.97855
                                             0.31165
                                                              Н
                                                                      -3.99650
                                                                                      -0.97855
                                                                                                      0.31165
```

O que estamos calculando?

Podemos diminuir o esforço computacional

- Devemos calcular 3N-6 (ou 3N-5) modos normais
- A hessiana tem 3N x 3N elementos
- Solução:
 - Encontrar os eixos de inércia da molécula
 - Gerar as coordenadas da molécula nos referências de translação e rotação
 - Reescrever a hessiana em coordenadas internas

(3N)² cálculos 3N


```
Windows PowerShell
  => XC-Hessian
                                                        ... done ( 0.3 sec)
  => Explicit contributions done
Dipole derivatives
                                                        ... done ( 0.0 sec)
Mass weighting the Hessian
                                        ... done
Calculating normal modes
                                        ... done
Scaling frequencies
                                        ... done
VIBRATIONAL FREQUENCIES
Scaling factor for frequencies = 1.000000000 (already applied!)
               0.00 \text{ cm**-1}
     0:
               0.00 \text{ cm**-1}
     1:
     2:
               0.00 \text{ cm**-1}
               0.00 \text{ cm**-1}
     3:
     4:
               0.00 \text{ cm**-1}
     5:
               0.00 \text{ cm**-1}
     6:
           1616.04 cm**-1
           3781.35 cm**-1
            3886.04 cm**-1
     8:
NORMAL MODES
```

o

These modes are the Cartesian displacements weighted by the diagonal matrix M(i,i)=1/sqrt(m[i]) where m[i] is the mass of the displaced atom Thus, these vectors are normalized but *not* orthogonal

	Θ	1	2	3	4	5
0	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
1	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000

3 ingredientes para realizar um cálculo

- A estrutura/coordenadas da molécula
- Método
- Base

• Primeiro cálculo: Água

ORCA NUMERICAL FREQUENCIES

(4-process run)

Number of atoms ... 3
Central differences ... used
Translation invariance ... used
Number of displacements ... 18 - 6
Numerical increment ... 5.000e-03 bohr

IR-spectrum generation ... on Raman-spectrum generation ... off Surface Crossing Hessian ... off

The output will be reduced. Please look at the following files:

SCF program output ... >.\H2O_opt_B3LYP.lastscf
Integral program output ... >.\H2O_opt_B3LYP.lastint
Gradient program output ... >.\H2O_opt_B3LYP.lastgrad
Dipole moment program output ... >.\H2O_opt_B3LYP.lastmom

List of participating nodes\H2O_opt_B3LYP.hostnames

```
<< Calculating gradient on displaced geometry
                                              3 (of 12) >>
                                              1 (of 12) >>
<< Calculating gradient on displaced geometry
<< Calculating gradient on displaced geometry
                                              2 (of 12) >>
<< Calculating gradient on displaced geometry
                                              4 (of 12) >>
<< Calculating gradient on displaced geometry
                                              5 (of 12) >>
<< Calculating gradient on displaced geometry
                                              6 (of 12) >>
<< Calculating gradient on displaced geometry
                                              7 (of 12) >>
<< Calculating gradient on displaced geometry
                                              8 (of 12) >>
<< Calculating gradient on displaced geometry 10 (of 12) >>
<< Calculating gradient on displaced geometry
                                              9 (of 12) >>
<< Calculating gradient on displaced geometry 12 (of 12) >>
<< Calculating gradient on displaced geometry 11 (of 12) >>
```


Cálculos analíticos - Traméricos V

- Quanto mais rápida e mais precisa é feita a avaliação de derivadas, melhor?
- Aproximadamente:
 - Uma propriedade que pode ser calculada analiticamente (por exemplo, uma derivada da energia em relação a coordenadas nucleares) leva o tempo necessário para o cálculo da energia
 - Uma propriedade calculada numericamente, e.g., $\frac{dE}{dx} \cong \frac{E_2 E_1}{x_2 x_1}$, tende a levar mais tempo pela próprio número de pontos que deve ser calcualdo

• Quanto mais rápida e mais precisa é feita a avaliação de derivadas,

```
VIBRATIONAL FREQUENCIES
VIBRATIONAL FREQUENCIES
                                                                                    Scaling factor for frequencies = 1.000000000 (already applied!)
Scaling factor for frequencies = 1.000000000 (already applied!)
                                                                                                     0.00 \text{ cm**-1}
     0:
                0.00 \text{ cm**-1}
                                                                                                     0.00 \text{ cm**-1}
     1:
                0.00 cm**-1
                                                                                                     0.00 \text{ cm**-1}
     2:
                0.00 \text{ cm**-1}
                                                                                                     0.00 \text{ cm**-1}
     3:
                0.00 \text{ cm**-1}
                                                                                                     0.00 \text{ cm**-1}
     4:
                0.00 \text{ cm**-1}
                                                                                                     0.00 \text{ cm**-1}
     5:
                0.00 \text{ cm**-1}
                                                                                                 1615.81 cm**-1
     6:
             1616.04 cm**-1
                                                                                                 3778.74 cm**-1
     7:
             3781.35 cm**-1
                                                                                                 3885.20 cm**-1
     8:
             3886.04 cm**-1
```

deve ser calcualdo

Frequências imaginárias: o que são?

 Mostra que a estrutura está fora de um mínimo de energia ⇔ não está estável

Pode estar associada a uma falha na descrição da estrutura da

molécula

Frequências imaginárias: o que são?

- Mostra que a estrutura está fora de um mínimo de energia ⇔ não está estável
- Pode estar associada a uma falha na descrição da estrutura da molécula
- Convergência da geometria otimizada

-85.78 cm⁻¹

Frequências imaginárias: o que fazer?

- Seguir a coordenada normal na direção
- Melhorar as condições de convergência na etapa de otimização de geometria:
 - Maior número de ciclos
 - Critério de convergência menor (caso do AcOH)
 - Mudança de algoritmo (e.g. GOAT)

https://www.faccts.de/docs/orca/6.0/manual/contents/typical/GOAT.html

Primeira aproximação para efeitos de fase condensada

- Os cálculos realizados até agora consideraram uma única molécula em fase gasosa
- Poderíamos gerar configurações da molécula interagindo (solvatação explícita) com o solvente (e.g., SOLVATOR), porém o custo computacional aumenta
- Métodos como PCM (CPCM,DPCM) e SMD, podem ser utilizados como uma primeira aproximação para solvatação
- O solvente será reduzido a uma constante dielétrica/índice de refração

Primeira aproximação para efeitos de fase condensada

gasosa+polariazação eletrônica

Jacopo Tomasi, Benedetta Mennucci, Roberto Cammi *Chem. Rev.* 2005, 105, 8, 2999–3094 10.1021/cr9904009

- Geralmente o efeito da solvatação implícita será mais relevante em compostos iônicos (cátions, ânions, zwitterions), o que pode ser utilizado para a especiação destas espécies em solução
- Entretanto, nestas condições é difícil dissociar efeitos da interação específica do solvente (solvatação explícita) de efeitos de solvatação

6290

J. Phys. Chem. B 1998, 102, 6290-6298

Amino Acid Chemistry in Solution: Structural Study and Vibrational Dynamics of

Cluterine in Solutine-11 teach Acitic Prestion Fields Model and uses a

F. J. Ramírez,*,† I. Tuñón,‡ and E. Silla‡

Departamento de Química Física, Facultad de Ciencias, Universidad de Málaga, 29071-Málaga, Spain, ar Departamento de Química Física, Universidad de Valencia, 46100-Burjassot (Valencia), Spain

Received: 1

J. Phys. Chem. B 1997, 101, 10923-10938

10923

Molecular Vibrations of Solvated Uracil. Ab Initio Reaction Field Calculations and Experiment

Predrag Ilich, Craig F. Hemann, and Russ Hille*

Department of Medical Biochemistry, The Ohio State University, Columbus, Ohio 43210 Received: February 20, 1997; In Final Form: August 12, 1997®

d

Em resumo

- A escolha do par método/base depende do sistema: (idealmente) devem ser testadas ou (no mínimo) baseadas na literatura disponível
- Frequências imaginárias devem ser exploradas para poderem ser resolvidas
- Fatores de escala podem ser utilizados para reconciliar resultados de cálculos e resultados experimentais
- Métodos de solvatação implícita podem ser utilizados como uma primeira aproximação para descrição de fases condensadas

Slides/Exemplos/... Vibros-IV

https://github.com/vhpaschoal/Vibros-2023

Slides/Exemplos/... Vibros-V

https://github.com/vhpaschoal/Vibros-2025