Confusion Matrices

What's your "muddiest point" surrounding confusion matrices? Come off mic!

Solo Exercise:

Confusion Matrices

1. Assume Beatles is "positive" and Queen is "negative". Label this confusion matrix with TP, TN, FP, FN.

	Predicted Queen Predicted Beatle	
Actual Queen	5657	794
Actual Beatles	1116	5452

- 2. Calculate the *specificity*. Interpret it.
- 3. Calculate the sensitivity (recall). Interpret it.
- 4. Calculate the *accuracy*. Interpret it.

Solo Exercise: Confusion Matrices

	Predicted Queen	Predicted Beatles
Actual Queen	5657	794
Actual Beatles	1116	5452

- 1. Which number represents our Type I errors?
- 2. Which number represents our Type II errors?
- 3. Which type of error is worse *in this case*?

^{**}BONUS** Calculate the false positive and false negative rates!

Confusion Matrix and ROC Curve

		Predicted Class	
		No	Yes
Observed Class	No	TN	FP
	Yes	FN	TP

True Negative	
False Positive	
False Negative	
True Positive	

Model Performance

Accuracy =
$$(TN+TP)/(TN+FP+FN+TP)$$

SeNsitivity

When it is actually "yes" how often it predicts "Yes"

TP / All P

TP/(TP + FN)

SPecificity

When it is actually "No", how often it is "No"

TN / All N

TN/(TN + FP)

Type | Error

False Positive Rate

1 - specificity

***the x-axis of ROC-AUC curve! (the y-axis is the sensitivity AKA True Positive Rate!)

Type | Error

False Negative Rate

1 - sensitivity

Hypothesis Testing

Type I Error = incorrectly reject the null hypothesis and accept H_A
***worse, so threshold is .05
generally

Type II Error = incorrectly accept the null hypothesis and reject H_{Δ}

66

"Everything should be as simple as it can be, but not simpler."

-Einstein

