

CLASSIFIERS

Why

We name a predictor whose set of postcepts is finite.

Definition

A *classifer* is a predictor whose codomain is a finite set. In the case that we call the predictor a classifier, we call the postcepts *classes* or *labels*. We call the prediction of a classifer on a precept the *classification* of the precept.

We call the classifier a binary classifier (some authors: two- $class\ classifier$) if the set of labels has two elements. In the case
that there are k labels, we call the classifier a k-way classifier, k-class classifier or multi-class classifier. This second term
is used, illogically but conventionally, in contrast to binary
classification.

Let A be a set of precepts (inputs) and let B be a set of labels (postcepts, outputs). Suppose $B = \{0, 1\}$, so that, in particular B is finite. Then $f: A \to B$ is a binary classifier with labels 0 and 1. Suppose instead that $B = \{\text{YES}, \text{NO}, \text{MAYBE}\}$ In this case, we would call $f: A \to B$ a three-way classifier.

Other terminology

Following our terminology, but speaking of processes, some authors refer to the application of inductors for these special cases as binary classification and multi-class classification. Or they speak of a classification problem.

Some authors refer to a classifier as a *discriminator* and reference *discrimination problems*. Some authors refer to a classifier as a *point classifier* since it makes one guess.¹

¹Future editions may remove this. This term is used in contrast with list predictors, mentioned in subsequent sheets.

