МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

ветвящихся процессов

по лабораторной работе №3 по дисциплине по дисциплине «Организация ЭВМ и систем» Тема: Представление и обработка целых чисел. Организация

Студентка гр. 1383	Федорова О.В
Преподаватель	Ефремов М.А

Санкт-Петербург 2022

Цель работы.

Научиться обрабатывать целые числа, создавать ветвления на языке ассемблера Залание.

Разработать на языке Ассемблера программу, которая по заданным целочисленным значениям параметров a, b, i, k вычисляет:

- а) значения функций i1 = f1(a,b,i) и i2 = f2(a,b,i);
- b) значения результирующей функции res = f3(i1,i2,k), где вид функций f1 и f2 определяется из табл. 2, а функции f3 из табл.3 по цифрам шифра индивидуального задания (n1,n2,n3), приведенным в табл.4. Значения a, b, i, k являются исходными данными, которые должны выбираться студентом самостоятельно и задаваться в процессе исполнения программы в режиме отладки. При этом следует рассмотреть всевозможные комбинации параметров a, b и k, позволяющие проверить различные маршруты выполнения программы, а также различные знаки параметров a и b.

Вариант 1.

Выполнение работы.

Разработанный программный код см. в приложении А.

Листинг см. в приложении Б.

Тестирование см. Таблица 1.

В коде программы для подсчета результата использовались следущие метки:

f1: - сравнение а и b, переход на метку f1_b, если а меньше b

f1_a: - соответствующие вычисления и переход на f2_a

f1_b: - соответствующие вычисления и переход на f2_b

f2_a: - соответствующие f2 вычисления и переход на f3

f2_b: - соответствующие вычисления и переход на f3

f3: - Сравнение k с 0. Если k 0, то переход на f3_null. Иначе сравнение i1 i2 и запись в результат максимального

f3_null: - сравнение i1 и i2 и запись в результат минимального

res_sec: если в ответ идет i2

Тестирование.

Результаты тестирования представлены в табл. 1.

Таблица 1 – Результаты тестирования

№ п/п	ца 1 – Результаты тестир Входные данные	Выходные данные
1.	a = -3	I1 = 7 = 0007
	b = 2	i2 = -4 = FFFC
	i = 1	res = -4 = FFFC
	k = 0	
2.	a = 2	I1 = 17 = 0011
	b = -2	i2 = 1 = 0001
	i = -1	res = 17 = 0011
	k = 1	
3.	a = 2	I1 = -5 = FFFB
	b = 2	i2 = -28 = FFE4
	i = -3	res = -5 = FFFB
	k = 1	
4.	a = 2	I1 = 10 = 000A
	b = 2	i2 = 2 = 0002
	i=2	res = 10 = 000A
	k = 1	
.5.	a = 2	I1 = 10 = 000A
	b = 2	i2 = 2 = 0002
	i = 2	res = 2 = 0002
	k = 0	
6.	a = 2	I1 = -5 = FFFB
	b = 2	i2 = -28 = FFE4

1	ı	1
	i = -3	res = -28 = FFE4
	k = 0	
7.	a = 0	I1 = 13 = 000D
	b = 1	i2 = 8 = 0008
	i = 3	res = 8 = 0008
	k = 0	
8.	a = 2	I1 = 14 = 000D
	b = 1	i2 = -7 = FFF9
	i = 1	res = 14 = 000D
	k = 1	
9.	a = 2	I1 = 14 = 000D
	b = 1	i2 = -7 = FFF9
	i = 1	res = -7 = FFF9
	k = 0	
10.	a = 2	I1 = 17 = 0011
	b = 1	i2 = 1 = 0001
	i = -1	res = 1 = 0001
	k = 0	
11.	a = 2	I1 = -5 = FFFB
	b = 2	i2 = -28 = FFE4
	i = -3	res = -5 = FFFB
	k = 1	

Выводы.

Было исследовано, изучено ...

Были изучены основные управляющие конструкции языка...

ПРИЛОЖЕНИЕ А ИСХОДНЫЙ КОД ПРОГРАММЫ

Lab3.asm ind EQU 2 n1 EQU 500 n2 EQU -50 AStack SEGMENT STACK DW 12 DUP(?) **AStack ENDS DATA SEGMENT** a DW 2 b DW 1 i DW -1 kDW0 i1 DW? i2 DW? res DW? **DATA ENDS CODE SEGMENT** ASSUME CS:CODE, DS:DATA, SS:AStack ;/ 15-2*i , $\dot{\text{D}}\dot{\text{z}}\dot{\text{N}}\Box\dot{\text{D}}\check{\text{z}}$ a>b :f1 = <;\3*i+4, $Ð\dot{z}N$ \square Đ \dot{z} a<=b ;/ - (4*i+3) , ĐżŃ□Đž a>b

;f2 = <

```
;f3 = < ; \setminus \max(i1,i2), \, \exists \dot{N} \, \Box \, \exists \dot{k} \not= 0
```

```
Main PROC FAR
  push DS
  sub\;AX,\!AX
  push AX
  mov AX,DATA
  mov DS,AX
  mov cx,a
f1:
  cmp cx,b
  jle f1_b
f1_a:
  mov ax, i
  ;add ax, i
  shl ax,1
  mov dx,ax
  mov ax, 15
  sub ax, dx
  mov i1, ax
  push i1
  jmp f2_a
f1_b:
  mov ax, i
  shl ax,1
  add ax, i
  ;add ax, i
  ;add ax, i
```

```
add ax, 4
  mov i1, ax
  push i1
  jmp f2_b
f2_a:
  mov ax, i
  add ax, i
  ;add ax, i
  ;add ax,i
  shl ax, 1
  add ax, 3
  mov dx,ax
  mov ax, 0
  sub ax, dx
  mov i2, ax
  push i2
  jmp f3
f2_b:
  mov ax, i
  ;add ax, i
  shl ax, 1
  add ax, i
  shl ax, 1
  sub ax, 10
  mov i2, ax
  push i2
```

```
f3:
 pop ax;i2
  pop dx;i1
  mov cx, k
  cmp cx,0
  jcxz f3_null
  cmp ax,dx
  jl res_sec
  mov res, ax
  jmp print
f3_null:
  cmp ax,dx
  jg res_sec
  mov res, ax
  jmp print
res_sec:
  mov res, dx
print:
  push res
  pop dx
  add dl,10h
  int 21h
  ret
Main ENDP
CODE ENDS
END Main
```

ПРИЛОЖЕНИЕ Б ЛИСТИНГ ПРОГРАММЫ

Lab3.1st

#Microsoft (R) Macro Assembler Version 5.10

11/13/22 17:48:3

Page 1-1

ind EQU 2

	LAB3.ASM(1):	warning	A^2	1001:	Extra	characters	on	line
--	------------	----	---------	-------	-------	-------	------------	----	------

= 01F4 n1 EQU 500

=-0032 n2 EQU -50

0000 AStack SEGMENT STACK

0000 000C[DW 12 DUP(?)

????

]

0018 AStack ENDS

0000 DATA SEGMENT

0000 0002 a DW 2

0002 0001 b DW 1

0004 FFFF i DW -1

0006 0000 k DW 0

0008 0000 i1 DW?

000A 0000 i2 DW?

000C 0000 res DW?

000E DATA ENDS

0000 CODE SEGMENT

ASSUME CS:CODE, DS:DATA, SS:AStack

;/ 15-2*i , ĐżŃ□Đž a>b

;f1 = <

;\ 3*i+4 , $Ð\dot{z}N$ \square $Đ\check{z}$ a<=b

;/ - (4*i+3) , ĐżŃ□Đž a>b

;f2 = <
;\ 6*i -10 ,
$$\exists \hat{N} \Box \exists \hat{z} \ a \le b$$
;\ min(i1,i2), $\exists \hat{N} \Box \exists \hat{z} \ k = 0$
;f3 = <
;\ max(i1,i2), $\exists \hat{N} \Box \exists \hat{z} \ k = 0$

0000 Main PROC FAR

0000 1E push DS

0001 2B C0 sub AX,AX

0003 50 push AX

0004 B8 ---- R mov AX,DATA

0007 8E D8 mov DS,AX

0009 8B 0E 0000 R mov cx,a

000D f1:

000D 3B 0E 0002 R cmp cx,b

0011 7E 16 jle f1_b

0013 f1_a:

0013 A1 0004 R mov ax, i

;add ax, i

0016 D1 E0 shl ax,1

0018 8B D0 mov dx,ax

001A B8 000F mov ax, 15

001D 2B C2 sub ax, dx

001F A3 0008 R mov i1, ax

0022 FF 36 0008 R push i1

#Microsoft (R) Macro Assembler Version 5.10 11/13/22 17:48:3

Page 1-2

0026 EB 17 90 jmp f2_a 0029 f1_b: 0029 A1 0004 R mov ax, i 002C D1 E0 shl ax,1 002E 03 06 0004 R add ax, i ;add ax, i ;add ax, i 0032 05 0004 add ax, 4 0035 A3 0008 R mov i1, ax 0038 FF 36 0008 R push i1 003C EB 1E 90 jmp f2_b 003F f2_a: 003F A1 0004 R mov ax, i 0042 03 06 0004 R add ax, i ;add ax, i ;add ax,i 0046 D1 E0 shl ax, 1 0048 05 0003 add ax, 3 004B 8B D0 mov dx,ax mov ax, 0 004D B8 0000 0050 2B C2 sub ax, dx 0052 A3 000A R mov i2, ax 0055 FF 36 000A R push i2 0059 EB 16 90 jmp f3 005C f2_b:

mov ax, i

;add ax, i

;add ax, i

005C A1 0004 R

;add ax, i

;add ax, i

;add ax, i

005F D1 E0 shl ax, 1

0061 03 06 0004 R add ax, i

0065 D1 E0 shl ax, 1

0067 2D 000A sub ax, 10

006A A3 000A R mov i2, ax

006D FF 36 000A R push i2

0071 f3:

0071 58 pop ax;i2

0072 5A pop dx;i1

0073 8B 0E 0006 R mov cx, k

0077 83 F9 00 cmp cx,0

007A E3 0A jcxz f3_null

007C 3B C2 cmp ax,dx

007E 7C 10 jl res_sec

0080 A3 000C R mov res, ax

0083 EB 0F 90 jmp print

0086 f3_null:

0086 3B C2 cmp ax,dx

0088 7F 06 jg res_sec

008A A3 000C R mov res, ax

008D EB 05 90 jmp print

0090 res_sec:

0090 89 16 000C R mov res, dx

#Microsoft (R) Macro Assembler Version 5.10 11/13/22 17:48:3

Page 1-3

0094 print:

0094 FF 36 000C R push res

0098 5A pop dx

0099 80 C2 10 add dl,10h

009C CD 21 int 21h

009E CB ret

009F Main ENDP

009F CODE ENDS

END Main

#Microsoft (R) Macro Assembler Version 5.10 11/13/22 17:48:3

Symbols-1

Segments and Groups:

N a m e Length AlignCombine Class

ASTACK 0018 PARA STACK

DATA...... 000E PARA NONE

Symbols:

N a m e Type Value Attr

A L WORD 0000 DATA

B L WORD 0002 DATA

F1..... L NEAR 000D CODE

F1_A	L NEAR	0013	CODE			
F1_B	L NEAR	0029	CODE			
F2_A	L NEAR	003F	CODE			
F2_B	L NEAR	005C	CODE			
F3	L NEAR	0071	CODE			
F3_NULL	L NE	EAR	0086 CODE			
I	L WORD	0004	DATA			
I1	L WORD	0008	DATA			
I2	L WORD	000A	DATA			
K	L WORD	0006	DATA			
MAIN	F PR	OC	0000 CODE	Length = 009F		
N1	NUMBER	01F4				
N2	NUMBER	-0032	2			
PRINT	L NE	EAR	0094 CODE			
RES	L WORD	000C	DATA			
RES_SEC	L NE	EAR	0090 CODE			
@CPU	. TEX	T 010	1h			
@FILENAME	TEX	T LAI	33			
@VERSION TEXT 510						
#Microsoft (R) Macro Assembler Version 5.10 11/13/22 17:48:3						
		Syml	ools-2			
114 Source Lines						

114 Total Lines

27 Symbols

48008 + 459252 Bytes symbol space free

- 1 Warning Errors
- 0 Severe Errors