

BABEŞ-BOLYAI UNIVERSITY Faculty of Computer Science and Mathematics

ARTIFICIAL INTELLIGENCE

Intelligent systems

Machine learning
Support Vector Machines
K-means

- Support Vector Machines (SVMs)
 - Definition
 - Solved problems
 - Advantages
 - Difficulties
 - Tools

Definition

- Developed by Vapnik in 1970
- Popularised after 1992
- Linear classifiers that identify the hyperplane that separates the positive and negative classes
- Have a theoretical foundation
- Work very well for large data (text mining, image analysis)

Remember

- Supervised learning problem a data set:
 - (x^d, t^d), with:

 - $x^d \in \mathbf{R}^m \square x^d = (x^d_1, x^d_2, ..., x^d_m)$ $t^d \in \mathbf{R} \square t^d \in \{1, -1\}, 1 \square$ positive class, $-1 \square$ negative class
 - where d = 1,2,...,n,n+1,n+2,...,N
- First n data (x^d and t^d are known) are used as training data
- Last N-n data (x^d is known, t^d is unknown) are used as testing data

Definition

• SVM finds a linear function $f(\mathbf{x}) = \langle \mathbf{w} \cdot \mathbf{x} \rangle + b$, $(\mathbf{w} - \text{weight vector})$ such as

$$y_i = \begin{cases} 1 & if \langle \mathbf{w} \cdot \mathbf{x}_i \rangle + b \ge 0 \\ -1 & if \langle \mathbf{w} \cdot \mathbf{x}_i \rangle + b < 0 \end{cases}$$

• $\langle \mathbf{w} \cdot \mathbf{x} \rangle + b = 0$ \square decision hyperplane that separates the two classes

- Definition
 - There are more hyper-planes
 - Which is the best hyper-plane?
 - SVM searches the hyper-plane with the largest margin (that minimises the generalisation error)
 - SMO (Sequential minimal optimization) algorithm

- Solved problems
 - Classification problems □ more cases (based on the data type):
 - Linear separable
 - Separable
 - Error = 0

- Non-separable
 - Constraints are relaxed □ some error are allowed
 - C penalisation coefficient

- \square Solved problems \square classification problems \square data cases:
 - Non-linear separable
 - Input space is transformed (mapped) into a space of more dimensions (feature space) by using kernel function in this new space the data becomes linear separable
 - In SVMs the kernel function computes the distance among 2 points
 - □ kernel ~ similarity function

- \square Solved problems \square classification problems \square data cases:
 - Non-linear separable □ possible kernels
 - Classic kernels
 - Polynomial kernel: $K(\mathbf{x}^{d1}, \mathbf{x}^{d2}) = (\mathbf{x}^{d1}, \mathbf{x}^{d2} + 1)^p$
 - RBF kernel: $K(\mathbf{x}^{d1}, \mathbf{x}^{d2}) = exp(-||\mathbf{x}^{d1} \mathbf{x}^{d2}||^2/2\sigma^2)$
 - Multiple Kernels
 - Linear : $K(\mathbf{x}^{d1}, \mathbf{x}^{d2}) = \sum w_i K_i (\mathbf{x}^{d1}, \mathbf{x}^{d2})$
 - Non-linear
 - Without coefficients: $K(\mathbf{x}^{d1}, \mathbf{x}^{d2}) = K_1(\mathbf{x}^{d1}, \mathbf{x}^{d2}) + K_2(\mathbf{x}^{d1}, \mathbf{x}^{d2}) * \exp(K_3(\mathbf{x}^{d1}, \mathbf{x}^{d2}))$
 - With coefficients: $K(\mathbf{x}^{d1}, \mathbf{x}^{d2}) = K_1(\mathbf{x}^{d1}, \mathbf{x}^{d2}) + c_1 * K_2 * (\mathbf{x}^{d1}, \mathbf{x}^{d2}) \exp(c_2 + K_3(\mathbf{x}^{d1}, \mathbf{x}^{d2}))$
 - Kernels for strings
 - Kernels for images
 - Kernels for graphs

SVM parameters setting:

- > Penalisation coefficient C
 - $C small \square slowly convergence$
 - $C large \square fast convergence$
- > Kernel parameters
 - If m (# of attributes) is larger than n (# of data)
 - SVM with a linear kernel (SVM without kernel) \square $K(\mathbf{x}^{d1}, \mathbf{x}^{d2}) = \mathbf{x}^{d1} \cdot \mathbf{x}^{d2}$
 - If m (# of attributes) is large and n (# of data) is medium
 - SVM with Gaussian kernel

$$K(\mathbf{x}^{d1}, \mathbf{x}^{d2}) = exp(-|\mathbf{x}^{d1} - \mathbf{x}^{d2}||^2/2\sigma^2)$$

- σ dispersion of training data
- Attributes must be normalised (scaled to (0,1))
- If m (# of attributes) is small and n (# of data) is large
 - Add new attributes and use SVM with linear kernel

- SVM for multi-class classification problems (more than 2 classes)
 - one vs. all

- Structured SVMs
 - Machine Learning
 - Simple SVM f: 𝒯 □
 - Any type of inputs
 - Numerical outputs (natural numbers, integers, real numbers)
 - Structured SVM: 𝒯 □ 𝒯
 - Any type of inputs
 - Any type of outputs (numerical or structured outputs)

- Structured information
 - Texts and hyper-texts
 - Molecules and molecular structures
 - Images

Structured SVMs

- Applications
 - Natural Language Processing
 - Automatic translation (outputs □ sentences)
 - Syntactic and/or morphologic analysis of sentences (outputs □ syntactic and/or morphologic tree)
 - Bioinformatic
 - Prediction of secondary structures (outputs □ bi=partite graphs)
 - Prediction of enzyme function (outputs □ paths in trees)
 - Speech processing
 - Automatic transcriptions (outputs □ sentences)
 - Transformation of texts in voice (outputs □ audio signal)
 - Robotics
 - Planning (outputs □ sequences of actions)

Advantages

- Can work with any type of data (linear or non-linear separable, uniform distributed or not, with known or unknown distribution)
 - Kernel function that creates new attributes (features) □ hidden layers of an ANN
- If the problem is convex SVM finds a unique solution □ global optima
 - ANNs can associates more solutions □ local optima
- Automatic selection of the learnt model (by support vectors)
 - In ANNs hidden layers have to be configured apriori
- Avoid overfitting
 - ANNs have overfitting problems even the cross-validation is involved

Difficulties

- Real attributes only
- Binary classification problems only
- Difficult mathematical background

Tools

- LibSVM □ http://www.csie.ntu.edu.tw/~cjlin/libsvm/
- Weka □ SMO
- SVMLight □ http://svmlight.joachims.org/
- SVMTorch □ http://www.torch.ch/
- http://www.support-vector-machines.org/

Intelligent systems – Machine Learning

Typology

Experience criteria:

- Supervised learning
- Unsupervised learning
- Active learning
- Reinforcement learning

Algorithm criteria

- Decision trees
- Artificial Neural Networks
- Evolutionary Algorithms
- Support Vector Machines
- Hidden Markov Models
- K-means

Unsupervised learning

- Aim
 - to find a model or a structure of data
- Solved problems
 - Identification of groups (clusters)
 - Analysis of genes
 - Image processing
 - Analysis of social networks
 - Market segmentation
 - Analysis of astronomical data
 - Clusters of computers
 - Dimension reduction
 - Identification of causes (explanations) for data
 - Modelling the data densities
- Specific
 - Data are not annotated (labelled)

Separates the un-labelled examples in disjoint subsets (clusters) such as:

- Examples of the same cluster are similar
- Examples of different clusters are different

Definition

- Given
 - A set of data (examples, instances, cases)

```
    Training data
    As atribute_data<sub>i</sub>, where
    i = 1, N (N = # of training data
    atribute_data<sub>i</sub> = (atr<sub>i1</sub>, atr<sub>i2</sub>, ..., atr<sub>im</sub>), m - # of attributes (characteristics, properties) of data
    Testing data
    As (atribute_data<sub>i</sub>), i = 1, n (n = # of testing data)
```

- Determine
 - An unknown function that groups the training data in more classes
 - # of classes can be pre-defined (k) or unknown
 - Data of the same class are similar
 - The class of a new testing data by using the learnt grouping (on training data)

Other names

Clustering

Supervised vs. unsupervised

- Distance between 2 elements \boldsymbol{p} and $\boldsymbol{q} \in \mathbb{R}^m$
 - **Euclid distance**

$$d(\mathbf{p},\mathbf{q}) = sqrt(\sum_{j=1,2,...,m} (p_j - q_j)^2)$$

Manhattan distance

$$d(\mathbf{p},\mathbf{q}) = \sum_{j=1,2,\dots,m} |p_j - q_j|$$
 Mahalanobis distance

$$d(\mathbf{p},\mathbf{q}) = \operatorname{sqrt}(\mathbf{p}-\mathbf{q})S^{-1}(\mathbf{p}-\mathbf{q}),$$
Where S is the covariance matrix

Where S is the covariance matrix (S = E[(p-E[p])(q-E[q])])

Internal product

$$d(\boldsymbol{p},\boldsymbol{q}) = \sum_{j=1,2,\ldots,m} p_j q_j$$

Cosine distance

$$d(\mathbf{p}, \mathbf{q}) = \sum_{j=1,2,...,m} p_j q_j / (sqrt(\sum_{j=1,2,...,m} p_j^2) * sqrt(\sum_{j=1,2,...,m} q_j^2))$$

- Hamming distance
 - # of differences between p and q
- Levenshtein distance
 - Minimal # of operations required for transforming **p** in **q**
- Distance vs. similarity
 - Distance □ minimisation
 - Similarity

 maximisation

Application

Gene clustering

Market segmentation (for client clustering)

news.google.com

Unsupervised learning – process

Process

- 2 steps:
 - Learning
 - Determine (learn), by using an algorithm, the existing clusters
 - Testing
 - Include a new data in one of the identified (during training) clusters

Learning quality (clustering validation)

- Internal criteria
 - Large similarity inside the cluster and reduce similarity between clusters
- External criteria
 - Using benchmarks composed of apriori grouped data

Performance measures:

- Internal criteria
 - Distance inside the cluster
 - Distance between clusters
 - Davies-Bouldin index
 - Dunn index
- External criteria
 - Comparison with known data impossible in real-world applications
 - Precision
 - Recall
 - F-measure

Internal criteria

- Distance inside cluster c_j that contains n_j instances
 - Average distance (among instances)

$$D_a(c_j) = \sum_{x_{i1}, x_{i2} \in c_j} ||x_{i1} - x_{i2}|| / (n_j(n_j - 1))$$

Nearest neighbour distance

$$D_{nn}(c_j) = \sum_{xilecj} \min_{xi2ecj} ||x_{il} - x_{i2}|| / n_j$$

Distance to centroids

•
$$D_c(c_j) = \sum_{x_i, \epsilon c_j} ||x_i - \mu_j|| / n_j$$
, where $\mu_j = 1 / n_j \sum_{x_i \epsilon c_j} x_i$

Internal criteria

- $\ \, \hbox{\bf Distance between two clusters c_{j1} and c_{j2} }$
 - Simple link

•
$$d_s(c_{j1}, c_{j2}) = min_{xilecjl, xi2ecj2} \{||x_{il} - x_{i2}||\}$$

Complete link

•
$$d_{co}(c_{j1}, c_{j2}) = max_{xi1ecj1, xi2ecj2} \{||x_{i1} - x_{i2}||\}$$

Average link

•
$$d_a(c_{j1}, c_{j2}) = \sum_{xilecjl, xi2ecj2} \{||x_{il} - x_{i2}||\} / (n_{jl} * n_{j2})$$

Link between centroids

•
$$d_{ce}(c_{j1}, c_{j2}) = ||\mu_{j1} - \mu_{j2}||$$

Internal criteria

- Davies-Bouldin index □ min □ compact clusters
 - $DB = 1/nc*\sum_{i=1,2,...,nc} max_{i=1,2,...,nc,j\neq i} ((\sigma_i + \sigma_j)/d(\mu_i, \mu_j))$
 - where:
 - nc # of clusters
 - μ_i centroid of cluster i
 - $\sigma_{\rm i}$ average of distances between elements form cluster i and the centroid μ_i
 - $d(\mu_i, \mu_j)$ distance between centroid μ_i and centroid μ_j

Dunn index

- Identifies the dense clusters and well separated
- $D=d_{min}/d_{max}$
- where:
 - d_{min} minimal distance between 2 elements from different clusters intra-cluster distance
 - d_{max} maximal distance between 2 elements from the same cluster inter-cluster distance

- How the clusters are forming
 - Hierarchic clustering
 - Non-hierarchical (partitioned) clustering
 - Clustering based on data density
 - Clustering based on a grid

- How the clusters are forming
 - Hierarchic clustering
 - Creates a dendogram (taxonomic tree)
 - Creates the clusters (recursively)
 - k (# of clusters) is unknown
 - Agglomerative clustering (bottom-up) □ small clusters to large clusters
 - □ Divisive clustering (top-down) □ large clusters to small clusters
 - Eg.
 - Clustering ierarhic agglomerative

How the clusters are formed

- Non-hierarchical
 - Partitional □ determine a data separation □ all the clusters in the same time
 - Optimises an objective function defined
 - Locally by using some features only
 - Globally by using all attributes

that can be:

- squared error sum of squared distances between data and the cluster's centroid □ min
 - Ex. K-means
- Graph-based
 - Ex. Clustering based in minimum spanning tree
- Based on probabilistic models
 - Ex. Identify the data distribution

 expectation maximisation
- Based on the nearest neighbour
- Required to fix k apriori □ fix the initial clusters
 - Algorithm is run more times with different parameters and the most efficient version is selected
- Ex. K-means, ACO

How the clusters are forming

- Based on data densities
 - Data density and data connectivity
 - Cluster formation is based on data density from a given region
 - Cluster formation is based on data connectivity from a given region
 - Function of data density
 - Tries to model the data distribution
 - Advantage:
 - Modeling of clusters of any shape

- How the cluster are forming
 - Based on a grid
 - Is not a distinct approach
 - Can be hierarchic, partitional or density-based
 - Involves data space segmentation in regular areas
 - Objects are placed on a multi-dimensional grid
 - Eg. ACO

- How the algorithms work
 - Agglomerative clustering
 - Initially, each instance form a cluster
 - 2. Compute the distance between any 2 clusters
 - Reunion the closest 2 clusters
 - Repeat steps 3 and 4 until a single cluster is obtained or other stop criterion is satisfied
 - Divisive clustering
 - Establish the number of clusters (k)
 - Initialise the centre of each cluster
 - 3. Determine a data separation
 - 4. Re-compute the centre of each cluster
 - Repeat steps 3 and 4 until the partition is unchanged (algorithm converges)
- How the algorithm takes into account the attributes (features)
 - Monotonic attributes are taken into account one-by-one
 - Polytonic attributes are simultaneous taken into

- How the data belong to clusters
 - Exact clustering (hard clustering)
 - \Box Each instance x_i has associated a label (class) c_j
 - Fuzzy clustering
 - Associates to each input $\mathbf{x_i}$ a degree (probability) of membership f_{ij} to a certain class $c_j \square$ an instance $\mathbf{x_i}$ that can belong to several clusters

- Agglomerative hierarchical clustering
- K-means
- AMA
- Probabilistic models
- Nearest neighbour
- Fuzzy
- Artificial Neural Network
- Evolutionary algorithms
- ACO

Agglomerative hierarchical clustering

- a. Consider a distance between 2 instances $d(x_{i1}, x_{i2})$
- b. Form *N* clusters, each of them containing an instance

- c. Repeat
 - Determine the closest 2 clusters
 - Reunion the 2 clusters □ a cluster

Agglomerative hierarchical clustering

Distance between 2 clusters c_i and c_j :

- Simple link □ minimal distance between the objects of 2 clusters
 - $d(c_i, c_j) = \min_{xi1 \in ci, xi2 \in cj} sim(\mathbf{x_{i1}}, \mathbf{x_{i2}})$
- Complete link

 maximal distance between the objects of 2 clusters
 - $d(c_{i'}, c_{j}) = \max_{xi1\epsilon ci, xi2\epsilon cj} sim(\mathbf{x_{i1'}}, \mathbf{x_{i2}})$
- Average link

 mean of distances between the objects of 2 clusters
 - $d(c_{i'} c_j) = 1 / (n_i * n_j) \sum_{xi1 \in ci} \sum_{xi2 \in cj} d(\mathbf{x}_{i1'} \mathbf{x}_{i2})$
- Average link over group □ distance between the means (centroids) of 2 clusters
 - $d(c_i, c_j) = \rho(\boldsymbol{\mu}_i, \boldsymbol{\mu}_j), \rho distance, \boldsymbol{\mu}_j = 1/n_j \sum_{x_i \in c_j} x_i$

K-means (Lloyd algorithm / Voronoi iteration)

- Suppose that k clusters will form
- Initialise k centroids $\mu_1, \mu_2, ..., \mu_k$
 - A centroid μ_j (i=1,2,...,k) is a vector of m values (m-#) of features
- Repeat until convergence
 - Associated to each instance the nearest centroid \square for each instance $\boldsymbol{x_i}$, i=1,2,...,N $c_i = arg \min_{j=1,2,...,k} ||\boldsymbol{x_i} \boldsymbol{\mu_j}||^2$
 - Re-compute the centroids by moving them in the mean of instances associated to it \square for each cluster c_j , $j=1,2,\ldots,k$

$$\boldsymbol{\mu}_{j} = \sum_{i=1,2,...N} 1_{ci=j} \boldsymbol{x}_{i} / \sum_{i=1,2,...N} 1_{ci=j}$$

K-means

K-means

- \succ Initialisation of k centroids $\mu_1, \mu_2, ..., \mu_k$
 - With random values (in the definition domain of the problem)
 - With k instances of N (randomly selected)
- Does the algorithm always converge?
 - Yes, because of distortion function J

$$J(c, \mu) = \sum_{i=1,2,...,N} || \mathbf{x}_i - \boldsymbol{\mu}_{cj} ||^2$$

which is decreasing

- Converges in a local optima
- Finding the global optima □ NP-difficult problem

Unsupervised learning – algorithms Clustering based on minimum spanning tree (AMA)

Construct the minimum spanning tree of data

Eliminate from the tree the longest edges

and form clusters

Unsupervised learning - algorithms Probabilistic models

- http://www.gatsby.ucl.ac.uk/~zoubin/cours e04/ul.pdf
- http://learning.eng.cam.ac.uk/zoubin/nipstu t.pdf

Unsupervised learning - algorithms Nearest neighbor

Some of the instances are labeled

- It is repeated until all instances are labeled
 - An unlabeled instance will be included in the closest instance cluster
 - if the distance between the unlabeled instance and the labeled one is less than a threshold

Unsupervised learning - algorithms Fuzzy clustering

- An initial fuzzy partitioning is established
 - The membership degrees matrix U, is constructed, where u_{ij} the degree of membership of instance $\boldsymbol{x_i}$ (i=1,2,...,N) to the cluster c_i (j=1,2,...,k) ($u_{ij} \in [0,1]$)
 - The higher u_{ij} is, the higher the confidence that instance x_i is part of cluster c_j
- An objective function is established
 - $E^{2}(U) = \sum_{i=1,2,...,N} \sum_{j=1,2,...,k} u_{ij} || \mathbf{x}_{i} \boldsymbol{\mu}_{j} ||^{2},$
 - where $\mu_j = \sum_{i=1,2,...,N} u_{ij} \mathbf{x}_i$ the center of the jth fuzzy cluster
 - which is optimized (min) by re-assigning instances (in new clusters)
- Fuzzy Clustering

 Hard Clustering
 - $_{\circ}$ imposing a threshold on the membership function u_{ij}

Thank you for your attention!