Titanic - Machine Learning from Disaster

組員:10946012 李姗珊

10946013 趙晴

10946025 高培芮

成績:

Titanic - Machine Learning from Disaster

摘要

本組選擇鐵達尼號生存預測為對這件事故有初略的了解,且是歷史上重要的事件之一。因此想透過乘客 資訊像是性別、年齡...等去預估乘客是否會在鐵達尼號沉沒意外中生存下來。

介紹(研究背景及研究目的)

鐵達尼號沉沒事故是當時北大西洋發生的最大著名船難,當時與冰山擦撞前,已收到6次海冰警告,船行駛的速度快速,看到冰山已經為時已晚,無法及時轉向,16個水密隔艙中的5個進水,而鐵達尼號的設計只能承受4個水密隔艙進水因此沉沒,此次災難造成1514人死亡。因此我們想藉由此事件,透過訓練數據分析生還人數,且能預防未來相似的事件發生。

資料集介紹(含資料特徵)及資料集來源

此競賽共有 2 份資料集,分別為 train(用來訓練模型)及 test(要求預測結果),還有一份 data(合併 train 與 test 的資料),以利接下來的處理。

特徵名稱	特徵定義	Key
Passengerld	乘客編號	
Survived	是否倖存	1:是 / 0:否
Pclass	船票等級	1:最高 / 2:中等 / 3:最低
Name	姓名	
Sex	性別	
Age	年龄	
SibSp	同為兄弟姐妹	
	或配偶的數目	
Parch	同為家族父母	
Faicii	及小孩的數目	
Ticket	船票編號	
Fare	船票價格	
Cabin	船艙號碼	
	登船點	C = Cherbourg
Embarked		Q = Queenstown
		S = Southampton

資料預處理

由以上合併資料結果來看,得知:

Age 缺 1309 - 1046 = 263 筆資料

Fare 缺 1309 - 1308 = 1 筆資料

Cabin 缺 1309 - 295 = 1014 筆資料

Embarked 缺 1309 - 1307 = 2 筆資料

填補缺漏值:

●Age:我們以乘客稱呼(Miss.、Ms.等...)來區分,並分別填上平均年齡。

● Fare: 因只有缺 1 筆資料,所以直接用平均值填入。

• Cabin: 因缺值太多,目前選擇先不作為特徵使用。

●Embarked:從分析上,發現 C 港口的乘客大多是 P1 等級的票,因此選擇填入 C 值。

檢視非數值欄位:

Name 欄有 2 筆是重複的,而 Sex 欄只有 Male/Female 這 2 種值,其中以 Male 最多,有 843 位。

	Name	Sex	Ticket	Cabin	Embarked
count	1309	1309	1309	295	1307
unique	1307	2	929	186	3
top	Connolly, Miss. Kate	male	CA. 2343	C23 C25 C27	S
freq	2	843	11	6	914

船上的乘客各年龄層的男女比例:

由下圖可得知小於 20 歲的男女人數比例接近,但若超過 20 歲(含 20)的乘客,則男性比例則比女性多。

從下圖可得知,以人數來看不同性別的存活率,發現男性的存活率只有19%,而女性則高達74%。

船票等級與存活的關係:

從人數來看不同船票等級的存活率:可以看出等級3的乘客最多,死亡者也大多為等級3的乘客。

不同年齡層與倖存的關係:

從下圖可看出不同年齡層與倖存的關係,其中年齡越小存活率越高。

不同票價與存活的關係:

由下方結果可發現,票價愈高存活率愈大。

上岸港口與船票等級的關係:

從以下統計結果可看出不同港口的乘客有不同的經濟狀況,C港口的乘客大多購買等級最高的票,Q港口的乘客則是購買最低等級的票。

機器學習或深度學習方式(使用何種方式)

填補完缺漏值,確認資料無缺漏後,使用多種演算法來測試模型,並測試使用自己增加的 Feature 與使用原始 Feature 兩者的差異。最後根據測試結果,我們評估後決定使用隨機森林來訓練模型。

使用隨機森林來訓練模型:

將結果輸出至 gender_submission.csv 檔:

研究結果及討論(含模型評估與改善)

使用多種演算法測試與評估:

```
X_all = data.iloc[:891,:].drop(["PassengerId","Survived"], axis=1)
Y_all = data.iloc[:891,:]["Survived"]
X_test = data.iloc[891:,:].drop(["PassengerId","Survived"], axis=1)

logisticRegression = LogisticRegression()
svc = SVC()
kNeighborsClassifier = KNeighborsClassifier(n_neighbors = 3)
decisionTreeClassifier = DecisionTreeClassifier()
randomForestClassifier = RandomForestClassifier(
    n_estimators=300,min_samples_leaf=4,class_weight={0:0.745,1:0.255})
gradientBoostingClassifier = GradientBoostingClassifier(
    n_estimators=500,learning_rate=0.03,max_depth=3)
xGBClassifier = XGBClassifier(max_depth=3, n_estimators=300, learning_rate=0.03)
lGBMClassifier = LGBMClassifier(max_depth=3, n_estimators=500, learning_rate=0.02)
all = [logisticRegression, svc, kNeighborsClassifier, decisionTreeClassifier,
    randomForestClassifier, gradientBoostingClassifier, xGBClassifier, lGBMClassifier]
```

```
邏輯斯回歸(LogisticRegression): 0.8832584269662922
支援向量機(SVC): 0.6386267166042447
K-近鄰演算法(KNN): 0.7991385767790261
決策樹(DecisionTreeClassifier): 0.8417727840199751
隨機森林(RandomForestClassifier): 0.8664794007490636
GradientBoostingClassifier: 0.8956429463171037
XGBClassifier: 0.8900124843945069
LGBMClassifier: 0.8978651685393257
```

根據以上測試結果,發現 XGB、GBDT、LGBM、邏輯斯回歸、隨機森林等都有蠻高的分數,因此我們分別將分數超過 0.85 的演算法上傳至 Kaggle 評分,得出以下分數:

\odot	XGBClassifier.zip Complete · ShanShanLi-33 · 6h ago	0.78468
⊘	LGBMClassifier.zip Complete · ShanShanLi-33 · 7h ago	0.77751
0	RandomForestClassifier.zip Complete · ShanShanLi-33 · 7h ago	0.80382
⊘	LogisticRegression.zip Complete · ShanShanLi-33 · 7h ago	0.78947
⊘	GradientBoostingClassifier.zip Complete · ShanShanLi-33 · 7h ago	0.78468

結論

一開始在測試階段時,我們有嘗試自己額外添加 Feature,但實際上傳評分時效果並不佳,後來使用原始 Feature 與測試多個演算法過程中,我們得出 LightGBM 是最好的,但上傳至 Kaggle 卻是 RandomForest 最好,我們目前推測可能是因為資料的過度擬和才會造成此問題,必須再對資料進行更好的處理,從而來解決問題並獲得更好的分數。

参考文獻

- 1. Kaggle Learn
- 2. 輕量化的梯度提升機
- 3. 機器學習中的參數調整
- 4. Python 資料視覺化筆記
- 5. 隨機森林 (Random forest)