Отчет о выполнении лабораторной работы 3.2.1 Сдвиг фаз в цепи переменного тока.

Фитэль Алёна, Попеску Полина группа Б06-103

15 сентября 2024 г.

Аннотация. В работе исследована зависимость сдвига фаз между током и напряжением от сопротивления в RC- и в RL- цепи; определена добротность колебательного контура путем снятия зависимости сдвига фаз от частоты вблизи резонанса; оценен диапазон работы фазовращателя.

Теоретическое введение

Удобным, хотя и не очень точным прибором для измерения фазовых соотношений служит электронный осциллограф. Пусть нужно измерить сдвиг фаз между двумя напряжениями U_1 и U_2 . Подадим эти напряжения на горизонтальную и вертикальную развёртки осциллографа. Смещение луча по горизонтали и вертикали определяется выражениями

$$x = x_0 \cos \Omega t$$
, $y = y_0 \cos(\Omega t + \alpha)$,

где α — сдвиг фаз между напряжениями U_1 и U_2 , а x_0 и y_0 — амплитуды напряжений, умноженные на коэффициенты усиления соответствующих каналов осциллографа. Исключив время, после несложных преобразований найдём:

$$\left(\frac{x}{x_0}\right)^2 + \left(\frac{y}{y_0}\right)^2 + \frac{2xy}{x_0y_0}\cos\alpha = \sin^2\alpha.$$

Рис. 1: Эллипс на экране осциллографа

Полученное выражение определяет эллипс, описываемый электронным лучом на экране осциллографа (рис. 1). Ориентация эллипса зависит как от искомого угла α , так и от усиления каналов осциллографа. Для расчёта сдвига фаз можно измерить отрезки $2y_{x=0}$ и $2y_0$ (или $2x_{y=0}$ и $2x_0$, на рисунке не указанные) и, подставляя эти значения в уравнение эллипса, найти

$$\alpha = \pm \arcsin\left(\frac{y_{x=0}}{y_0}\right).$$

Для правильного измерения отрезка $2y_{x=0}$ важно, чтобы центр эллипса лежал на оси у.

Рис. 2: Принципиальная схема фазовращателя

Другой способ измерения сдвига фаз изложен в описании экспериментальной установки.

На практике часто используются устройства, позволяющие в широких пределах изменять фазу напряжения $(0 < \psi < \pi)$. Такие устройства называются фазовращателями. Схема простого фазовращателя приведена на рис. 2. Она включает в себя два одинаковых резистора R_1 , ёмкость C и переменное сопротивление R.

Используя метод комплексных амплитуд, найдём зависимость сдвига фаз между входным напряжением $U_{\rm BX} = U_0 \cos \Omega t$ и выходным $U_{\rm BMX}$ от соотношения между импедансами сопротивления R и ёмкости C. Для этого выразим выходное напряжение $U_{\rm BMX}$ через $U_{\rm BX}$, параметры контура и

частоту внешнего источника $\Omega: U_{34} = f(U_{12}, R, C, \Omega).$

Обозначим комплексную амплитуду входного напряжения через \widehat{U}_0 . Тогда напряжение между точками 1 и 3 в силу равенства сопротивлений R_1

$$\widehat{U}_{13} = \frac{\widehat{U}_0}{2}.$$

Если фазу напряжения $\widehat{U}_{\rm Bx}$ положить равной нулю, то \widehat{U}_0 будет действительной величиной: $\widehat{U}_0 = U_0$. Приняв напряжение в точке 1 равным нулю, получим амплитуду напряжения в точке 3:

$$\widehat{U}_{03} = \frac{U_0}{2}.$$

Расчитаем \widehat{U}_{04} – амплитуду напряжения в точке 4. Импеданс Z последовательно соединённых сопротивления R и ёмкости C равен

$$Z = R - \frac{i}{\Omega C}.$$

Для комплексной амплитуды тока

$$\widehat{I}_0 = \frac{U_0}{Z} = \frac{U_0}{R - i/\Omega C},$$

а для комплексной амплитуды напряжения в точке 4 –

$$\widehat{U}_{04} = \widehat{I}_0 R = U_0 \frac{R}{R - i/\Omega C}.$$

Выходное напряжение

$$\widehat{U}_{\text{вых}} = \widehat{U}_{04} - \widehat{U}_{03} = \widehat{U}_{04} - U_0/2 = \frac{U_0}{2} \frac{R + i/\Omega C}{R - i/\Omega C}.$$

В числитель и знаменатель последнего выражения входят комплексно-сопряжённые выличины, модули которых одинаковы, поэтому величина выходного напряжения не меняется при изменении R. Модуль $U_{\text{вых}}$ всегда равен $U_0/2$ – половине $U_{\text{вх}}$. Сдвиг фаз между входным и выходным напряжениями равен $2\arctan(1/\Omega RC)$ и меняется от π (при $R\longrightarrow 0$) до 0 (при $R\longrightarrow \infty$).

Экспериментальная установка

Схема для исследования сдвига фаз между током и напряжением в цепи переменного тока представлена на рис. 3. Эталонная катушка L, магазин емкостей C и магазин сопротивлений R соединены последовательно и через дополнительное сопротивление r подключены к источнику синусоидального напряжения — звуковому генератору.

Рис. 3: Схема установки для исседования сдвига фаз между током и напряжением

Сигнал, пропорциональный току, снимается с сопротивления r, пропорциональный напряжению — с генератора. Оба сигнала подаются на универсальный осциллограф. Этот осциллограф имеет два канала вертикального отклонения, что позволяет одновременно наблюдать на экране два сигнала. В нашей работе это две синусоиды (рис. 3), смещённые друг относительно друга на расстояние x, зависящее от сдвига фаз между током и напряжением в цепи.

Измерение сдвига фаз удобно проводить следующим образом:

- 1) подобрать частоту развертки, при которой на экране осциллографа укладывается чуть больше половины периода синусоиды;
 - 2) отцентрировать горизонтальную ось;
- 3) измерить расстояние x_0 между нулевыми значениями одного из сигналов, что соответствует смещению по фазе на π ;
- 4) измерить расстояние x между нулевыми значениями двух синусоид и пересчитать в сдвиг по фазе: $\psi = \pi \cdot x/x_0$.

На рис. 1 синусоиды на экране 90 сдвинуты по фазе на $\pi/2$.

Схема фазовращателя, изображённая на рис. 4, содержит два одинаковых резистора R_1 , смонтированных на отдельной плате, магазин сопротивлений R и магазин емкостей C.

Рис. 4: Схема установки для исследования фазовращателя

Рис. 5: Векторная диаграмма фазовращателя

Разность фаз равна $\pi/2$, когда медиана 34 является и высотой, т.е. когда $\triangle 124$ — равнобедренный.

Результаты измерений и обработка данных

После сборки схемы (рис. 4) установим на катушке индуктивности максимальное значение L=50 мГн, а в магазине емкостей C=0.5 мк Φ , сопротивление R занулим. На генераторе установим частоту $\nu=1$ кГц и нагрузку 5 Ом.

Пересоберем схему по рис. 3 и закоротим катушку (RC-цепь).

В такой цепи зависимость разности фаз можно вычислить по простой формуле

$$\psi = \arctan\left(\frac{x}{R_{\Sigma}}\right),\tag{1}$$

где $x=X_L-X_C$ - разность реактивных сопротивлений катушки и конденсантора, R_Σ - суммарное активное сопротивление цепи.

Реактивное сопротивление в цепи $X_1 = \frac{1}{\omega C} = 31.83$ Ом.

Будем увеличивать сопротивление R от 0 до $10X_1$ и проведем измерения (табл. 1), подбирая R так, чтобы приращения разности фаз были примерно одинаковы.

R, Om	0	40	80	120	190	240	300
ψ , $2\pi/50$	12.5	11.5	10.5	9.5	8.5	7.5	6.5

Таблица 1: RC-цепь

Изобразим полученные данные на графике (рис. 5) и сравним с теоретическим значением (1).

Из графика видно, что измеренные величины довольно хорошо кореллируют с теоретической зависимостью. По МНК коэффициент наклона $k_c=0.95\pm0.11$, что в пределах погрешности совпадает с теоретическим k=1.

Рис. 6: Зависимость разности фаз от сопротивления в RC-цепи

Теперь в схеме на рис. 3 закоротим магазин емкостей (RL-цепь). Реактивное сопротивление $X_2 = \omega L = 314.16$ Ом.

Измерим зависимость сдвига фаз от сопротивления (табл. 2), меняя его от 0 до $10X_2$.

$R, O_{\rm M}$	0	380	700	1100	1500	2000	3000
ψ , $2\pi/50$	11.5	5.5	3	2.5	2	1.5	1

Таблица 2: *RL*-цепь

Рис. 7: Зависимость разности фаз от сопротивления в RL-цепи

По МНК $k=0.89\pm0.13$, что в пределах погрешности совпадает с теоретическим k=1.

Теперь проведем измерения в RLC—цепи. Резонансная частота $\nu_0=\frac{2}{2\pi\sqrt{LC}}=1006.58$ Гц. Теоретически полученное значение: $\nu_0 \approx 990 \, \Gamma$ ц.

Снимем зависимость сдвига фаз (от $-\pi/3$ до $\pi/3$) от частоты (табл. 3) при R=0 и при R=100 Ом.

R = 0							
ν , Om	890	930	970	990	1040	1080	1120
x/x_0	-1/3	-9/35	-4/33	0	1/5	8/29	1/3
R = 100 Om							
ν , Om	700	800	900	990	1100	1200	1400
x/x_0	-7/22	-5/19	-5/34	0	1/12	3/13	7/22

Таблица 3: *RCL*-цепь

Изобразим данные на одном графике (рис. 7)

Рис. 8: Зависимость разности фаз от частоты

При сдвиге фаз $\psi=\pi/4$ ширины графиков равны соответственно 0.128 и 0.434 Тогда добротности схем равны $Q_{\text{прак}}(0)=7.8,\,Q_{\text{прак}}(100)=2.3.$

Также запишем параметры установки: сопротивление r=12.4 Ом, индуктивность L=50 мГн и активное сопротивление $R_L=31.5$ Ом.

Теоретически добротность контура равна

$$Q = \frac{1}{R_{\Sigma}} \sqrt{\frac{L}{C}}.$$

Тогда при R=0 $Q_{\rm reop}=7.2$, при R=100 Ом $Q_{\rm reop}=2.2$, что примерно совпадает с экспериментальными значениями.

Соберем установку по рис. 4 и оценим диапазон изменения сдвига фаз при $\nu=1$ к Γ ц и C=0.5 мк Φ : он меняется от $\psi(0)=0$ до $\psi(10$ кOм $)=\pi/2$.

Подведение итогов

В ходе работы исследована зависимость сдвига фаз между током и напряжением от сопротивления. В RC- и RL- цепях экспериментальные значения в пределах погрешности

совпадают с теоретическими.

Также определена добротность колебательного контура путем снятия зависимости сдвига фаз от частоты вблизи резонанса: для R=0 значение Q=7.8, что примерно совпадает с теоретическим Q=7.2 ($\varepsilon\approx9\%$), для R=100 Ом добротность контура Q=2.3, что также хорошо кореллирует с теоретическим значением Q=2.2 ($\varepsilon\approx5\%$).