Information Theory Practice Set 6

Lakshmi Prasad Natarajan

Solutions are not to be returned

Practice Set

See the last page for hints for hints to selected questions.

- 1. Exercise Problems from Cover and Thomas: 8.1, 8.3(a), 8.4, 8.10
- 2. Is it possible that a continuous random variable with a well-defined probability density function f(x) has $h(X) = +\infty$?
- 3. Suppose X is discrete with P(X = +1) = P(X = -1) = 0.5, and Z is Gaussian with mean 0 and variance σ^2 . Let Y = X + Z. Note that Y is continuous and X is discrete. What is I(X;Y) in this case (there is no closed form expression)?
- 4. Reading exercise from Cover and Thomas:
 - (a) Section 8.3
 - (b) (Not part of the course syllabus) From the paragraph immediately after equation (8.49) till the paragraph immediately before Example 8.5.1.
- 5. Let X be a real valued random variable, and $a \in \mathbb{R}$. Explain why the following steps are correct.

$$\mathbb{E}((X-a)^2) = (a - \mathbb{E}X)^2 + \mathbb{E}(X^2) - (\mathbb{E}(X))^2$$

 $\geq \text{Var}(X)$, with equality if and only if $a = \mathbb{E}X$.

Remark: If we have to "estimate" or "approximate" a random variable X with a constant a, then the estimate $\hat{X} = a$ that minimizes the mean square error $\mathbb{E}(X - \hat{X})^2$ is the expected value of X. This estimate $\hat{X} = \mathbb{E}X$ is called the minimum mean square error (MMSE) estimate of X. We will discuss more about this in future lectures.

6. Suppose $X = (X_1, X_2)$ is Gaussian with zero mean and covariance

$$m{K} = egin{bmatrix} 1 &
ho \
ho & 1 \end{bmatrix}.$$

Assume $-1 < \rho < +1$.

- (a) What is $\det \mathbf{K}$? Is \mathbf{K} invertible?
- (b) Find K^{-1} .
- (c) From the last step in Lecture 17 we know that

$$h(X) = \frac{1}{2} \log ((2\pi)^2 \det \mathbf{K}) + \frac{1}{2} \log e \sum_{i=1}^{2} \sum_{j=1}^{2} (\mathbf{K}^{-1})_{i,j} (\mathbf{K})_{i,j}.$$

Find h(X) as a function of ρ .

- (d) What are the values of $h(X_1)$ and $h(X_2)$?
- (e) Find $I(X_1; X_2)$ as a function of ρ . Plot this as a function of ρ , and try to interpret it.

- 7. Definition of Gaussian random vector. We say that a collection of random variables X_1, \ldots, X_n forms a Gaussian random vector if any linear combination of X_1, \ldots, X_n is Gaussian distributed, i.e., for any choice of constants a_1, \ldots, a_n , the sum $\sum_i a_i X_i$ has a Gaussian distribution.
 - Fact. If X_1, \ldots, X_n are independent Gaussian random variables, then their sum is Gaussian distributed. Now answer the following questions.
 - (a) Suppose X_1, \ldots, X_n are independent with $X_i \sim \mathcal{N}(\mu_i, \sigma_i^2)$. Argue that (X_1, \ldots, X_n) is a Gaussian random vector, and find its covariance matrix and density function.
 - (b) With X as in part (a), and assuming \boldsymbol{A} is any $m \times n$ matrix (this is not necessarily square or invertible), argue that $Y = \boldsymbol{A}X$ is a Gaussian random vector. What is the mean and covariance matrix of Y?
- 8. Suppose $X = (X_1, \dots, X_n)$ contains iid components $X_i \sim \mathcal{N}(0, \sigma^2)$.
 - (a) Find the covariance matrix K for X.
 - (b) What is the probability density function of X?
 - (c) Suppose \boldsymbol{A} is an invertible $n \times n$ matrix, and $Y = \boldsymbol{A}X$. Then what is the mean vector and the covariance matrix of Y?
 - (d) Y is also a Gaussian random vector. What is its density function?

Hints for selected questions in the next page

Hints

• Q.1

8.4: The median of the exponential density $\lambda e^{-\lambda x}$ is $\frac{1}{\lambda \log e}$. For three digit accuracy we need $\Delta = 10^{-3}$. Find h(X) and the approximate value of $H(X_{\Delta})$.

• Q.2

Yes, it is possible. We have seen a discrete random variable, call it Y, with $\mathcal{Y} = \{2, 3, 4, ...\}$ and $H(X) = +\infty$ (see previous Practice Sets). Now define a continuous random variable X as follows:

$$f_X(x) = P[Y = k] \text{ if } k \le x < k + 1$$

where $x \ge 2$, and k is an integer. Define $f_X(x) = 0$ for x < 2. Find h(X) and relate this to H(Y).

• Q.3

Here, use the fact I(X;Y) = P[X = -1]h(Y|X = -1) + P[X = +1]h(Y|X = +1). You will not be able to get a closed form solution for h(Y). But you can plot h(Y) - h(Y|X) in a computer algebra software as a function of σ^2 .

• Q.7

(b): mean is $\mathbf{A}\mu$ where $\mu = (\mu_1, \dots, \mu_n)$ is a column vector. Covariance is $\mathbf{A}\mathbf{A}^t$.