W1 – 6.3 Transformations of Exponential and Logarithmic Functions MHF4U

SOLUTION S

1) Write the letter of the equation under the corresponding graph

$$A) y = \log(x - 3)$$

$$\mathbf{B}) \ y = \log x - 3$$

$$\mathbf{C}) \ y = \log(x+3)$$

$$D) y = \log x + 3$$

2) Sketch a graph of each of the following logarithmic functions by applying transformations to the parent function. Make sure to identify key points such as asymptotes and x-intercepts.

$$a) f(x) = -2\log_2 x - 1$$

y= log, x

3=0-5 -1

2 1

VA: X = 0

f(x)= -2 log2(x)-1

 $\frac{\chi}{0.5} = \frac{1}{1}$

2 |-3

VA: X=0.

b)
$$g(x) = \log_4(x-1) + 4$$

c)
$$h(x) = 4 \log_3 \left[\frac{1}{2} (x+2) \right] - 3$$

3) Sketch a graph of each of the following exponential functions by applying transformations to the parent function. Make sure to identify key points such as asymptotes and y-intercepts.

$$f(x) = -3(3)_x + 1$$

FLAC)

b)
$$g(x) = 3^{x-3} - 4$$

c) $h(x) = 2(4)^{\frac{1}{2}(x+1)} - 3$ $y = y^{x}$ $h(x) = \lambda(y)^{\lambda(x+1)} - 3$ $\frac{\lambda}{y} + \frac{y}{y} = 0$ $\frac{\lambda}{y} + \frac{\lambda}{y} = 0$

),