PATENT- OCH REGISTRERINGSVERKET
Patentavdelningen

CT/SE 0 3 4 0 9 9 7 6 7

REC'D 17 JUL 2003

WIPO

PCT

Intyg Certificate

Härmed intygas att bifogade kopior överensstämmer med de handlingar som ursprungligen ingivits till Patent- och registreringsverket i nedannämnda ansökan.

REGISTANT (72

This is to certify that the annexed is a true copy of the documents as originally filed with the Patent- and Registration Office in connection with the following patent application.

- (71) Sökande Tekniska Verken i Linköping AB, Linköping SE Applicant (s)
- (21) Patentansökningsnummer 0202428-9 Patent application number
- (86) Ingivningsdatum
 Date of filing

2002-08-14

Stockholm, 2003-07-09

För Patent- och registreringsverket For the Patent- and Registration Office

Sonia André

Avgift Fee

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

BEST AVAILABLE COPY

AWAPATENT AB

TEKNISKA VERKEN I LINKÖPING

AB

Ansökningsnr

Kontor/Handläggare Växjö/Erik Simonsson/ESN Vår referens SE-2023121

Ink it Found- (sh coquestat

5

10

25

30

1

- 19 - Cut- 1 4 SÄTT OCH ANORDNING FÖR FRAMSTÄLLNING AV BIOGAS

Huyudiaxen Kassan

Tekniskt område

Föreliggande uppfinning avser ett sätt att framställa biogas genom anaerob rötning av ett organiskt material.

Föreliggande uppfinning avser även en anordning för framställning av biogas genom anaerob rötning av ett organiskt material, vilken anordning innefattar en förslutbar, väsentligen gastät reaktor, som har ett inlopp för organiskt material och utlopp för bildad biogas och bildat rötslam.

Teknisk bakgrund

Rötning av organiskt avfall utnyttjas vid ett

flertal processer för att minska avfallsvolymer och
samtidigt producera biogas. Vid rötningen blandas det
organiska avfallet med en bakteriekultur och rötas sedan
under anaeroba betingelser. Under rötningen bryts det
organiska avfallet ned varvid biogas, som huvudsakligen
består av metan och koldioxid, och rötslam bildas.

US 4,652,374 i namnet Cohen beskriver ett sätt att i två steg röta organiskt avfall. Det fasta organiska avfallet mals på sådant sätt att 80% har en storlek av 0,25-1,5 mm. I ett första steg sker en syrahydrolys. Vätskan från det första steget avskiljs och matas till ett andra steg där den huvudsakliga metanbildningen sker.

US 4,386,159 i namnet Kanai beskriver ett sätt att röta organiskt avfallsmaterial med ett visst förhållande mellan kol och kväve. Det organiska avfallsmaterialet mals till en juiceliknande vätska och blandas sedan med ett bakterieinnehållande slam i en tank. Rötningen får sedan fortgå i tanken utan omrörning under ca 5-7 dagar.

20

25

+46 470 20867

filk t. Palist call requestat

2007 -1-- 14

Huvudlanen Kessan

Det är ett problem vid ovan nämnda processer att framställningen av biogas är ineffektiv och att biogasen därför blir dyr.

5 Sammanfattning av uppfinningen

70 20867

Det är ett ändamål med föreliggande uppfinning att åstadkomma ett sätt att framställa biogas vid vilket sätt de ovan nämnda nackdelarna undanröjes eller väsentligt minskas och säledes åstadkomma ett sätt att framställa biogas på ett effektivare sätt.

Närmare bestämt åstadkommer uppfinningen ett sätt att framställa biogas genom anaerob rötning av ett organiskt material, vilket sätt kännetecknas av

att ett organiskt material mals,

att det organiska materialet blandas med en vätska för att bilda ett slam med en torrsubstanshalt av 15-45 vikt% TS,

att slammet bringas i kontakt med biogasalstrande bakterier för rötning under anaeroba betingelser i en reaktor, och

att slammet rötas under alstring av biogas.

Uppfinningen avser även en anordning för framställning av biogas genom anaerob rötning av ett organiskt material, vilken anordning innefattar en förslutbar, väsentligen gastät reaktor, som har ett inlopp för organiskt material och utlopp för bildad biogas och bildat rötslam, vilken anordning kännetecknas av att den innefattar en förblandningstank för blandning

av ett malt organiskt material med en vätska till ett slam med en torrsubstanshalt av 15-45 vikt% TS och en matningsledning för matning av slammet till reaktorn.

Ytterligare fördelar och kännetecken hos uppfinningen framgår av nedanstående beskrivning och de efterföljande patentkraven.

10

15

20

25

+46 470 20867

3

Kortfattad beskrivning av ritningarna

Uppfinningen kommer nu att beskrivas mer i detalj med hjälp av icke begränsande utföringsexempel och under hänvisning till bifogade ritningar.

Fig 1 visar en anordning för framställning av biogas enligt en första utföringsform av uppfinningen.

Fig 2 visar en anordning för framställning av biogas enligt en andra utföringsform av uppfinningen.

Fig 3 visar en anordning för framställning av biogas enligt en tredje utföringsform av uppfinningen.

Fig 4 visar en anordning för framställning av biogas enligt en fjärde utföringsform uppfinningen.

Fig 5 visar schematiskt en anordning som använts vid exemplifierande rötningsförsök.

Fig 6 visar produktion av biogas per ton VS och dygn i ett första exemplifierande försök.

Fig 7 visar de halter av flyktiga fettsyror som uppmätts vid det första exemplifierande försöket.

Fig 8 visar produktion av biogas per ton VS och dygn i ett andra exemplifierande försök.

Fig 9 visar produktion av biogas per ton VS och dygn i ett tredje exemplifierande försök.

Detaljerad beskrivning av uppfinningen

I föreliggande ansökan avser enheten "vikt% TS" ett materials torrsubstanshalt. Torrsubstansen för ett material mäts enligt svensk standard SS 02 81 13 genom att materialet vägs före mätningen och sedan värms vid 105°C i 20 timmar så att vatten avgår. Materialet vägs sedan åter. Torrsubstanshalten i vikt% TS beräknas sedan genom:

vikt TS = vikt efter varmning till 105°C * 100 % vikt före värmning

35

lik t 28 35 Girman . .

2532 - (.-) 4

Howelows reason

4

Exempelvis avser 90 vikt% TS ett material där 90% av materialets ursprungsvikt återstår efter det att materialet värmts till 105°C under 20 h.

I föreliggande ansökan avser enheten "vikt% VS" ett materials halt av flyktigt organiskt material, nedan kallat VS-halten. För att bestämma VS-halten bestäms först materialets torrsubstans och därefter dess glödgningsrest. Glödgningsresten kan bestämmas i enlighet med avensk standard SS 02 81 13 genom att ett material som indunstats vid 105°C i 20 h enligt ovan glödgas i 2 h vid S50°C. VS-halten, där VS står för Volatile Solids, avser i föreliggande ansökan materialets torra vikt, dvs vikten efter indunstning vid 105°C i 20 h, minskat med glödgningsresten och därefter delat med materialets torra vikt, dvs vikten efter indunstning vid 105°C i 20 h. Materialets VS-halt i vikt% VS beräknas således som:

vikt* VS = vikt efter 105°C - vikt efter 550°C + 100 % vikt efter 105°C

20

25

30

35

5

10

15

B

Exempelvis avser en VS-halt av 85 vikt* VS att 85% av materialets torra vikt, dvs av materialets vikt efter värmning till 105°C i 20 h, utgörs av organiska, flyktiga föreningar medan 15% utgörs av glödgningsrest.

Enheten "g VS per dygn" avser i analogi med enheten vikt% VS en mångd flyktigt organiskt material i gram per dygn enligt ovan. Den mångd flyktigt organiskt material som tillförs reaktorn, dvs g VS, bestämmer hur mycket biogas som kan bildas eftersom biogasen bildas ur det flyktiga organiska materialet (och ej ur glödgningsresten eller vatteninnehållet).

Med "utrötningsgrad" avses i föreliggande ansökan den andel av ett till en rötningsreaktor infört material som omvandlas till biogas i rötkammaren. Om exempelvis 10 g VS per dygn tillförs en reaktor i form av rötbart material och det rötslam som avlägsnas från reaktorn

10

15

20

25

30

35

+46 470 20867

20867

lok t. Patent- ech reg.verket

5 eran -(13- 1 4

innehåller motsvarande 2 g VS per dygn är utrötningsgraden 80%. De bakterier som bortföres med avlägsnat
rötslam innehåller en del g VS varför 100% utrötningsgrad
enligt ovanstående definition inte kan uppnås i
praktiken.

Vid uppfinningen bringas ett malt organiskt material, som blandats med en vätska till ett slam med en hög torrsubstanshalt, i kontakt med biogasalstrande bakterier för rötning under anaeroba förhållanden. Den höga torrsubstanshalten i slammet gör att en viss mångd biogas kan framställas i en mindre reaktor än vad som tidigare varit möjligt. Således kan biogas framställas till en lägre kostnad med hjälp av föreliggande uppfinning.

Det har visat sig nödvändigt att det organiska materialet i sig har en hög torrsubstanshalt för att ett slam med mycket hög torrsubstanshalt skall kunna åstadkommas.

Ett exempel på organiskt material som är lämpligt att utnyttja vid föreliggande uppfinning är torkad grönmassa. Med grönmassa avses í föreliggande uppfinning växter, som är av den typ som utnyttjar fotosyntes för uppbyggnad av växtmassan. Grönmassan kan med fördel utgöras av olika lantbruksprodukter såsom ensilage, halm, spannmål, spannmålsrens, ryps, raps, solrosor, majs, sockerbetor, rovor, kal, potatis, melass, artor, bonor, linser, lin samt vallväxter, såsom lusern, gräs och klöver. Lantbruksprodukter är ofta tillgångliga i stora mängder och har ofta stort energiinnehåll. Dessutom har lantbruksprodukterna ofta ett innehåll av spårämnen som gör att det alstrade rötslammet är mycket lämpligt att utnyttja som gödselmedel på åkermark. En ytterligare fördel med de ovan nåmnda lantbruksprodukterna är att de inte innehåller några harmfulla bakterier. Således kan den uppvärmning till åtminstone 70°C under minst 1 h, kallad hygienisering, som är nödvändig vid exempelvis hushållsavfall och slakteriavfall, undvikas med minskade

30

35

2002 -03- 1 4

Huyudlaxen Yostan

6

produktionskostnader som följd. Även produkter, såsom gräsklipp, väghalm, naturslåtter och löv, som normalt uppstår vid kommunal verksamhet kan utnyttjas vid rötningen. För att kunna utnyttja de ovan nämnda exemplen på grönmassa är det i de flesta fall nödvändigt att först torka dem till en hög torrsubstanshalt, eftersom många av nämnda grönmassor har en ursprunglig torrsubstanshalt av endast 15-35 vikt% TS. Torkningen av grönmassan har flera fördelar. Förutom att ett slam med större torrsubstanshalt kan införas i reaktorn blir det även enklare att 10 transportera och lagra grönmassan. Således kan grönmassan skördas och torkas vid en tidpunkt på året när tillgången på grönmassa är god för att sedan rötas under en utsträckt tidsperiod. Den torkade grönmassan är också betydligt billigare att transportera eftersom en stor 15 mängd vatten har avlägsnats. Grönmassan bör torkas till en torrhalt av åtminstone 50 vikt% TS. En torkning till åtminstone 70 vikt% TS, än mer föredraget åtminstone 80 vikt% TS, har visat sig ge en an effektivare rotning i reaktorn och minskar den mängd vatten som tillförs 20 reaktorn.

Rötningen i rötkammaren får störst effektivitet om det organiska materialet mals innan det införs i rötkammaren. Malningen gör materialet mer tillgängligt för de biogasalstrande bakterierna och påskyndar därmed rötningen. Grönmassa kan malas före ovan nämnda torkning. En sådan malning av ett "blött" material är dock ganska svår att utföra och resulterar ofta, i synnerhet vid grönmassor med låg torrsubstanshalt, i en svårhanterlig slurry. Av detta skäl är det ofta föredraget att först torka grönmassan och sedan mala den till önskad storlek. En lämplig storlek på det malda materialet ur rötningssynvinkel har visat sig vara ca 0,5-3 mm, dvs huvuddelen, åtminstone ca 80 vikt%, av materialet bör ha en storlek i detta intervall efter malningen. En malning till mindre storlekar, tex under 0,1 mm, ökar problemen med damning och ökar energiförbrukningen vid malningen utan att

10

15

20

25

30

35

+46 470 20867

Ink. t. Patent- och reg.ve 1.st 2002 = 03 = 1 4

7

Huyudlakon Kassan

rötningen blir våsentligt snabbare. Vid större storlekar på det malda materialet, såsom storlekar större än 5 mm, blir rötningsförloppet långsammare vilket innebår att en större reaktor kråvs. I vissa fall, vid exempelvis kompakta grönmassor som potatis, sockerbetor och kål, är det lämpligt att skåra grönmassan i flingor, exempelvis flingor med en storlek av 10-30 mm, innan grönmassan torkas för åstadkommande av båsta effektivitet i torkningsprocessen. Ett exempel på en typ av tork som år låmplig för torkning av grönmassa är roterugn.

Det har visat sig särskilt lämpligt att pelletera den torkade grönmassan efter torkningen. Pelleteringen överför den torkade grönmassan i en form som är lätt att hantera och transportera. Sålunda kan grönmassa torkas och pelleteras lokalt och transporteras till storskaliga regionala anläggningar för framställning av biogas. En ytterligare fördel är att olika typer av pelleterade grönmassor enkelt kan doseras i önskat inbördes förhållande till reaktorn för åstadkommande av en kemisk sammansättning i reaktorn som ger de biogasalstrande bakterierna goda förutsättningar för tillväxt. Vid användning av pelleterade grönmassor är det föredraget att mala pelleten innan den införs i reaktorn. Vid själva pelleteringen åstadkommes en viss kompaktering av den torkade grönmassan. Malningen gör det pelleterade materialet mer tillgängligt för de biogasalstrande bakterierna och ökar rötningshastigheten. Då det pelleterade materialet ofta har malts redan fore själva pelleteringen kan en kvarn för malning av pellets göras relativt enkel. De ovan angivna storleksintervallen för malning av det torkade organiska materialet gäller även för malning av pellets.

Det har visat sig möjligt att med hjälp av torkade organiska material i allmänhet åstadkomma pumpbara slam med en torrsubstanshalt av upp till ca 35 vikt% TS.

Det har överraskande visat sig möjligt att med hela och rensade korn av spannmål, som malts till ca 1 mm

7097 -60- 1 4

Huvudfaxon Kasaan

8

storlek, åstadkomma pumpbara slam med en torrsubstanshalt av upp till 45 vikt% TS. Med spannmål avses i föreliggande ansökan korn av sädesslagen vete, råg, korn, havre, majs och rågvete. Spannmål i form av hela och rensade korn har redan vid skörden en torrsubstanshalt av ca 80-90 vikt% TS. Således kan korn av spannmål utnyttjas direkt efter skörd och rensning för beredning av ett slam med hög torrsubstanshalt. Någon torkning är således inte nödvändig, vilket minskar kostnaden för att producera biogas. Vid industriell lagring av de rensade spann-10 målskornen krävs en försiktig torkning till en torrsubstanshalt av ca 88-95 vikt% TS. Denna torkning är dock inte särskilt energikrävande och gör att kornen enklare kan transporteras och lagras. Den mycket höga torrsubstanshalten hos torkade spannmålskorn i 15 kombination med det faktum att ett pumpbart slam med mycket hög torrsubstanshalt kan beredas av malda spannmålskorn gör att mycket lite vatten behöver tillföras reaktorn. Korn av spannmål innehåller huvudsakligen stärkelse, som snabbt kan brytas ned av de 20 biogasalstrande bakterierna, vilket ökar utrötningsgraden. Spannmålen gör det möjligt att vid bibehållen uppehållstid öka den tillförda mängden organiskt material. En anordning för rötning av spannmålskorn kan därför göras mycket liten och effektiv. En silo utnyttjas 25 lämpligen för lagring av spannmålskornen. En kvarn eller kross, vilken kan vara av relativt enkel typ eftersom malningsgraden inte är särskilt hög och materialet som mals inte är särskilt slitande, utnyttjas för att mala kornen. De malda kornen blandas i en förblandningstank, 30 som kan likna en industriell degframstållningstank, till ett slam med hôg torrsubstanshalt och pumpas sedan av en pump till en reaktor som innehåller biogasalstrande bakterier.

Det har visat sig att även spannmålsrens gör det möjligt att bereda slam med mycket hög torrsubstanshalt. Spannmålsrens består huvudsakligen av skal och kasserade

10

15

20

35

+46 470 20867

170 20867

lik t Party och poten in 2577 - (3-5- 1 4

9

Hovedforten Karaga

korn från skörd och tröskning av spannmål. Spannmålsrenset har en torrsubstanshalt av 80-90 vikt% TS. Speciellt lämpligt har det visat sig att torka, mala och pelletera spannmålsrens. Dessa spannmålsrenspellet, som har en torrsubstanshalt av ca 85-95 vikt% TS, gör det möjligt att framställa slam med en torrsubstanshalt av upp till 40 vikt% TS.

Det är även möjligt att framställa ett slam med hög torrsubstanshalt av olika blandningar av spannmål och torkat spannmålsrens.

För åstadkommande av ovan nämnda höga torrsubstanshalter i slammet är det lämpligt att åtminstone hälften av slammets totala torrsubstanshalt härrör från korn av spannmål och/eller torkat spannmålsrens. Än mer föredraget bör åtminstone 70 % av slammets totala torrsubstanshalt och mest föredraget åtminstone 85 % av slammets totala torrsubstanshalt härröra från korn av spannmål och/eller torkat spannmålsrens.

Det har visat sig att det beredda slammet lämpligen bör ha en torrsubstanshalt av 15-45 vikt% TS, än mer föredraget 20-40 vikt% TS och mest föredraget 30-40 vikt% TS. Såsom nämnts ovan är det lämpligt att utnyttja pelleterat spannmålsrens och än hellre rensade korn av spannmål då de högsta torrsubstanshalterna skall åstad-25 kommas. Vid jämförelse med rötning av exempelvis kogödsel enligt känd teknik, där torrsubstanshalten i infört slam är endast ca 6-8 vikt% TS, kan vid uppfinningen med samma uppehållstid i reaktorn utvinnas samma mångd biogas ur en reaktor som har endast ca en fjärdedel av den volym som krävs vid rötningen enligt den kända tekniken. 30

Slammet kan beredas på ett flertal olika sätt. Ett föredraget sätt att alstra ett slam är att blanda det organiska materialet, såsom korn av spannmål, med vatten, exempelvis vattenledningsvatten, sjövatten, kondensat, renat avloppsvatten eller någon annan vatteninnehållande vätska som ur biogasproduktionshänseende är lämplig för att tillföras reaktorn. Således kan även vatten-

Himandianan Kensan

10

innehållande vätskor som har lågt vårde, eller är att betrakta som avfall, utnyttjas för framställning av slammet. Enligt detta sätt blandas malt material med vatten i en förblandningstank, som är försedd med en kraftig omrörare med lågt varvtal. Förblandningstanken minskar risken för att luft oavsiktligt införs i reaktorn och gör det enklare att hålla kontroll på den mångd material som införs i reaktorn. Förblandningstanken ger åven en vätning av det organiska materialet, vilket medför att rötningen börjar snabbare i reaktorn. Ett 10 styrsystem utnyttjas för att åstadkomma önskad torrsubstanshalt på slammet i förblandningstanken. Lämpligen utnyttjas ett satsvis förfarande för blandningen av slammet. Uppehållstiden i förblandningstanken år lämpligen relativt kort, ca 5-50 minuter. I vissa fall 15 kan dock även kontinuerliga förfaranden utnyttjas.

Den höga torrsubstanshalten i slammet har flera fördelar. Dels behöver endast lite vatten tillsättas. Vattenförbrukningen blir således låg och uppehållstiden i reaktorn blir lång, vilket ger en god utrötningsgrad. En liten mångd tillfört vatten medför även en låg kostnad för värmning av tillfört vatten till önskad rötningstemperatur. En ytterligare fördel med låg vattentillsats är att det alstrade rötslammet kommer att ha en hög torrsubstanshalt vilket underlättar hantering, minskar kostnader för transport och ökar rötslammets värde som gödselmedel. Den höga torrsubstanshalten minskar också det pumparbete som åtgår för att pumpa in slammet i reaktorn och gör att förblandningstank, pumpar och ledningar kan dimensioneras för mindre flöden. En fördel med att utnyttja väsentligen rent vatten vid tillblandning av slammet är att blandningen av slammet kan utföras i en öppen förblandningstank. Detta gör tanken billig att tillverka och enkel att övervaka.

Ett annat sätt att framställa ett slam är att ta ut rötslam från reaktorn och blanda detta med det malda

35

30

20

10

15

20

25

vatten.

979-00-14

Hayudlason Kastan

11

organiska materialet i en förblandningstank till ett slam som sedan införs i reaktorn. En fördel med att utnyttja rötslam är att inget vatten utöver den lilla mängd restfukt som finns i det organiska materialet behöver tillsättas. Uppehållstiden i reaktorn blir därför lång. Eftersom rötslammet innehåller bakterier kommer en viss alstring av biogas att ske redan i förblandningstanken, som lämpligen har en uppehållstid av 5-50 min. Förblandningstanken bör vara en väsentligen gastät behållare som kontinuerligt avluftas för att undvika att explosiva gasblandningar alstras då bildad biogas och luft, som följer med det malda materialet, blandas. Det är önskvärt att minimera den mängd energi som förbrukas för att pumpa rötslam till förblandningstanken och för att pumpa det av organiskt material och rötslam beredda slammet till reaktorn. Av torrsubstanshalten i det sålunda beredda slammet härrör ca 3-6 vikt% TS från

rötslammet varför den mängd slam som, vid given torrsubstanshalt i det bildade slammet och given mängd

större jämfört med ovan beskrivna blandning med rent

organiskt material, måste pumpas till reaktorn blir något

Det har visat sig att ett slam med hög torrsubstanshalt, som beretts av malda lantbruksprodukter, som har hög torrsubstanshalt, är mycket lämpligt för ökning av biogasproduktionen i befintliga rötningsanläggningar. I synnerhet spannmålsrens och hela, rensade korn av spannmål år mycket lämpade för detta ändamål. Det finns ett stort antal befintliga rötningsanläggningar som 30 rötar exempelvis kogödsel, slakteriavfall, källsorterat hushållsavfall (komposterbara delen), livsmedelsavfall och slam från avloppsreningsanläggningar. Syftet med dessa befintliga anläggningar är vanligen att undanskaffa ett svårhanterligt avfall. Dessa anläggningar rötar ofta 35 ett material med låg torrhalt och lågt energiinnehåll per ton avfall. Följden blir att produktionen av biogas blir

12 Hoggi Yarson Kansan

liten. Det bildade rötslammet har en låg torrsubstanshalt och är därför svårhanterligt. Enligt en aspekt av uppfinningen beredes ett slam med hög torrsubstanshalt av ett organiskt material, företrädesvis ett material som i sig har hög torrsubstanshalt, och tillföres en reaktor dår ett organiskt material av annan typ, exempelvis kogödsel, rötas. Slammet med hög torrsubstanshalt tillför mycket lite vätska till den befintliga anläggningen. Detta har den fördelen att uppehållstiden i den 10 befintliga reaktorn inte minskar nämnvärt. Således kommer utrötningsgraden, dvs den andel av det införda materialet som omvandlas under rötningsprocessen, inte att minska. Det tillförda slammet, som har en hög torrsubstanshalt, har ett högt energiinnehåll per kg och kommer att öka 15 biogasproduktionen väsentligt i anläggningen. Torrhalten i det bortförda rötslammet ökar tack vare att mer material införs i reaktorn. Detta gör rötslammet enklare att hantera. Det införda organiska materialet kommer även att öka nåringsvärdet i rötslammet så att detta får ett 20 större värde som gödselmedel. Den extra näring som tack vare det organiska materialet tillförs de biogasalstrande bakterierna kan göra bakterierna aktivare genom samrötning, dvs att de rötade materialens nåringsämnen kompletterar varandra, vilket kan leda till en ökad 25 utrötningsgrad. Den extra utrustning som krävs för att på ovan nämnda sätt effektivisera en befintlig rötningsprocess ar enkel, i synnerhet om ett material som i sig har hög torrsubstanshalt, exempelvis rensade korn av spannmål, utnyttjas. Sålunda kan med hjälp av upp-30 finningen biogasproduktionen ökas och rötslammets hanterbarhet förenklas och dess värde ökas i en befintlig rötningsanläggning. Det inses att ett slam med hög torrsubstanshalt även kan utnyttjas vid anläggningar som från början byggs för att röta ett sådant slam till-35 sammans med ett annat organiskt material, som exempelvis kan vara vattenreningsslam, kogödsel eller något annat avfall, som önskas bortskaffas.

lakut. Patook ook regwolich

2002 -68- 1 4

13

Huyudfaken Kasson

Vid den typ av anläggningar där det torkade organiska avfallet utnyttjas för att öka effektiviteten i en befintlig anläggning blandas det malda organiska materialet med en vätska till ett slam som har hög torrsubstanshalt och som sedan införes i reaktorn. Det är 5 föredraget att åtminstone 10 vikt% av den totalt tillförda torrsubstansen i slammet härrör från rensade korn av spannmål, torkat och lämpligen pelleterat spannmålsrens eller blandningar av torkat spannmålsrens och spannmål, dvs vid 1 ton TS som införs till reaktorn 10 bör åtminstone 100 kg vara TS som härrör från spannmål eller pelleterat spannmålsrens. Än mer föredraget bör åtminstone 30 vikt% av den totalt tillförda torrsubstansen härröra från spannmål eller pelleterat spannmålsrens. Det är önskvärt att undvika att stora 15 mängder slam pumpas runt i anläggningen. Ett cirkulerande av stora mängder slam leder till ökad energiförbrukning och kan också orsaka störningar i rötningsprocessen. Således år det lämpligt att åstadkomma ett slam som har relativt hög torrsubstanshalt. Slammet kan alstras på ett 20 flertal olika sätt. Ett föredraget sätt är att ta ut rötslam från reaktorn och blanda detta med det malda organiska materialet i en förblandningstank. Det i förblandningstanken bildade slammet införs sedan i reaktorn. Detta har den fördelen att inget extra vatten 25 utöver den mindre mångd restfukt som finns i spannmålen eller spannmålsrenset tillförs reaktorn. Ett annat föredraget sätt är att blanda spannmålen eller det torkade spannmålsrenset med det organiska materialet av annan typ, dvs kogödseln, vattenreningsslammet etc, som 30 också rötas i reaktorn. Detta sätt är ofta mycket kostnadseffektivt i det att en befintlig tank kan utnyttjas som förblandningstank. Inte heller vid detta sätt tillsätts något extra vatten utöver den mindre mångd restfukt som finns i spannmålen eller spannmålsrenset 35 till reaktorn. Ett ytterligare sätt är att i en separat förblandningstank blanda spannmålen eller spannmålsrenset

15

20

25

30

35

Ink & Relation assistance in a construction of the construction of

14

med rent vatten. Detta ökar den mängd vätten som tillförs den reaktor där spannmålen eller spannmålsrenset rötas samman med ett organiskt material av annan typ, såsom kogödsel, vattenreningsslam. Spannmål och torkat och pelleterat spannmål har dock den fördelen att ett slam med mycket hög torrsubstanshalt kan beredas. Den lilla mångd vatten som då krävs kan ofta accepteras. I de fall rent vatten av något skäl ändå måste tillföras reaktorn kan detta vatten lämpligen utnyttjas för beredning av slammet med hög torrsubstanshalt.

Rötningen genomförs lämpligen som en kontinuerlig eller semi-kontinuerlig process, med hjälp av en tankreaktor, vilken nedan skall beskrivas mer i detalj, eller med hjälp av en tubreaktor, även kallad plugg-flödesreaktor. I en första ände av tubreaktorn införs till exempel spannmål och en bakteriekultur, som exempelvis kan föreligga i form av återfört rötslam, varvid rötslam och biogas tas ut i en andra ände av tubreaktorn, vilken andra ände är belägen nedströms tubreaktorns första ände. Förfarandet kan även genomföras i en satsreaktor.

För att den anaeroba rötningen skall fungera är det nödvändigt att ingen luft kommer i kontakt med slammet under rötning. En reaktor för användning vid sättet enligt uppfinningen måste således vara lufttät. Reaktorn förses med inlopp för slam med hög torrsubstanshalt och utlopp för rötslam och biogas vilka in- och utlopp är så utformade att ingen luft kan komma in i reaktorn.

Spannmål och torkat spannmålsrens rötas lämpligen under en genomsnittlig uppehållstid av ca 5-100 dygn, företrädesvis ca 40-60 dygn. Vid längre uppehållstid förbättras utrötningsgraden, men samtidigt minskar den mängd av slammet med hög torrsubstanshalt som kan behandlas.

Rötningen sker vid en temperatur av 30-65°C. En högre temperatur innebär vanligen en snabbare rötning.

15

20

25

30

+46 470 20867

link it Pointle askingus (c) google-80-14

15 Here-Motion Kesson

Samtidigt ökar uppvärmningskostnaderna och den tid som man har till sitt förfogande för att hinna rätta till eventuella problem i processen minskar. Vissa bakterie-kulturer har även ett produktionsmaxima som ligger lägre än ovan nämnda övre temperaturintervall. Det har därför visat sig att en temperatur i intervallet 36-40°C är speciellt föredragen vid föreliggande uppfinning. Det är lämpligt att göra en avvägning mellan uppehållstid, temperatur och rötningsgrad och använda den mest ekonomiska kombinationen av dessa faktorer.

Vid rötning i en tankreaktor är torrsubstanshalten för det i reaktorn befintliga rötslammet lämpligen ca 4-30 vikt% TS, företrädesvis ca 5-10 vikt% TS. Vid en omrörd och kontinuerligt arbetande tankreaktor kommer det från reaktorn avlägsnade rötslammet att ha väsentligen samma torrsubstanshalt som det i reaktorn befintliga rötslammet.

Vid igångsättning av förfarandet införes vanligen en aktiv bakteriekultur i reaktorn. Denna bakteriekultur kan till exempel utgöras av rötslam från en parallell rötningsanläggning, rötslam från ett kommunalt avloppsreningsverk eller kogödsel. Då bakteriekulturen tillväxer kan en allt större mångd av slammet med hög torrsubstanshalt tillföras reaktorn. En alltför snabb ökning av mångden tillfört slam undviks genom att man med korta intervall måter halten av flyktiga fettsyror i rötslammet och tillser att halten flyktiga fettsyror hålls på en önskvärt låg nivå genom reglering av tillförseln av torkat material.

Sättet enligt uppfinningen kan utföras i flera seriekopplade reaktorer. Speciellt fördelaktigt är dock att genomföra den anaeroba rötningen i ett enda steg, eftersom detta sparar apparat- och underhållskostnader.

35 Beskrivning av föredragna utföringsformer

Fig 1 visar en första utföringsform av en anordning 1 för framställning av biogas. Anordningen 1 har en

10

15

20

25

30

35

+46 470 20867

20867

lisk to Polente earth y votate 1507 -63- 1 4

Huvudfaren Kossan

16

behållare i form av en väsentligen gastät reaktor 2. Reaktorn 2 har ett inlopp 4 för organiskt material, ett utlopp 6 för bildad biogas och ett utlopp 8 för bildat rötslam. En omrörare 10 håller det i reaktorn befintliga materialet omrört.

Spannmål, som torkats till en torrsubstanshalt av 92 vikt% TS, förs från en ej visad förvaringssilo via en matningsledning 12 till en kvarn 14. I kvarnen 14 mals spannmålen till en genomsnittlig storlek av cirka 1 mm. Den malda spannmålen matas via en matningsledning 16, som exempelvis kan utgöras av en skruvtransportör, till en förblandningstank 18. Förblandningstanken 18, som är en öppen tank, har en långsamgående omrörare 20. Omröraren 20 år av typen roterande skrapa och kan lämpligen likna de omrörare som utnyttjas i bageriindustrin för beredning av bakdeg. En vattentillförselledning 22 är anordnad att mata väsentligen rent processvatten till förblandningstanken 18. Ett styrsystem 24 är anordnat att satsvis mata vatten via ledningen 22 och mald spannmål via ledningen 16 till förblandningstanken 18 i ett sådant förhållande att en torrsubstanshalt av 35 vikt% TS erhålles i förblandningstanken 18. Lämpligen utnyttjas en (ej visad) vågcell, som anordnas under förblandningstanken 18, för att styra tillsättningen av vatten och spannmål till förblandningstanken 18. Då ett slam av spannmål och vatten har blandats till jämn konsistens i förblandningstanken 18 pumpas slammet via en ledning 26 av en pump 28 till reaktorns 2 inlopp 4 och in i reaktorn 2. För att åstadkomma en jämn vätskevolym i reaktorn 2 pumpas en motsvarande mängd rötslam ut via utloppet 8.

Fig 2 visar en annan utföringsform av uppfinningen i form av en anordning 100. Anordningen 100 har en väsentligen gastät behållare i form av en reaktor 102 som har inlopp 104 för organiskt material, utlopp 106 för bildad biogas, utlopp 108 för bildat rötslam och omrörare 110 av väsentligen samma utförande som de i fig 1 visade.

20867

Hangelinen try ...

17

Torkat och pelleterat spannmålsrens leds från en ej visad förvaringssilo via en matningsledning 112 till en kvarn 114. I kvarnen 114 mals pelletten till en genomsnittlig storlek av cirka 1 mm. Den malda pelletten matas via en matningsledning 116 till en förblandningstank 118. Förblandningstanken 118, som är en väsentligen gastät behållare, har en långsamgående omrörare 120. En våtsketillförselledning 122 är anordnad att med hjälp av en ledning 123 och en pump 125 mata rötslam från reaktorn 102 till förblandningstanken 118. Ett styrsystem 124 år 10 anordnat att satsvis mata rötslam via ledningen 122 och mald pellet via ledningen 116 till förblandningstanken 118 i ett sådant förhållande att en torrsubstanshalt av 35 vikt% TS erhålles i förblandningstanken 118. Då ett slam berett av pellet och rötslam har blandats till jämn 15 konsistens i förblandningstanken 118 pumpas slammet via en ledning 126 av en pump 128 till reaktorns 102 inlopp 104 och in i reaktorn 102. För att åstadkomma en jämn vätskevolym i reaktorn 102 pumpas en motsvarande mängd rötslam ut via utloppet 108. I förblandningstanken 118 20 kommer en viss mångd biogas att utvecklas under blandningsförfarandet. En gasledning 130 bortför denna gas, som består av en blandning av bildad biogas och den luft som oavsiktligt tillförts via matningsledningen 116, till ett biofilter (ej visat) som bryter ned metan och 25 luktande gaser. I den mån det är nödvändigt för att kunna hålla TS-halten i reaktorn 102 på önskad nivå kan rent processvatten tillföras för att späda ut slammet i reaktorn. Detta processvatten kan antingen tillföras förblandningstanken 118 via en ledning 132 eller direkt 30 till reaktorn 102 via en ledning 134.

Fig 3 visar schematiskt en tredje utföringsform av uppfinningen i form av en anordning 200. Pumpar och omrörare visas inte i fig 3, men det inses att sådana utnyttjas på väsentligen motsvarande sätt som visats i fig 1 och 2. Anordningen 200 rötar en blandning av kogödsel, som tillförs en blandningstank 240 via en

+46 470 20867

20867

18

ledning 242 och slakteriavfall som tillförs blandningstanken 240 via en ledning 244. Blandningstanken 240 är en sluten tank som via en gasledning 243 avluftas till ett (ej visat) biofilter, som bryter ned metan och luktande gaser. Den blandning som åstadkommits i blandningstanken 240 leds via en ledning 246 till en hygieniseringstank 248 där blandningen upphettas till minst 70°C i åtminstone 1 h i syfte att döda harmfulla bakterier. Den hygieniserade blandningen, som har en torrsubstanshalt av ca 4-12 vikt% TS leds via en ledning 250 från hygieniseringstanken 248 till en reaktor 202, som är av liknande slag som den reaktor 102 som beskrivits ovan och således bland annat har ett utlopp 206 för bildad biogas och ett utlopp 208 för bildat rötslam.

I syfte att förbåttra biogasproduktionen i an-15 ordningen 200 matas torkad spannmål via en matningsledning 212 till en kvarn 214 där spannmålen mals till en genomsnittlig storlek av cirka 1 mm. Via en matningsledning 216 matas den malda spannmålen till en förblandningstank 218, som är av väsentligen samma typ som 20 beskrivits ovan avseende förblandningstanken 118. En vätsketillförselledning 222 är anordnad att mata rötslam från reaktorn 202 till förblandningstanken 218. Ett styrsystem 224 är anordnat att satsvis mata rötslam via ledningen 222 och mald spannmål via ledningen 216 till 25 förblandningstanken 218 i ett sådant förhållande att en torrsubstanshalt av 35 vikt% TS erhålles i förblandningstanken 218. Då ett slam berett av spannmål och rötslam har blandats till jämn konsistens i förblandningstanken 218 pumpas slammet från förblandningstanken 218 till 30 reaktorn 202 via ett inlopp 204. En gasledning 230 bortför gas, som alstras vid blandningen i förblandningstanken 218, till ett biofilter (ej visat) som bryter ned metan och luktande gaser.

Fig 4 visar schematiskt en fjärde utföringsform av uppfinningen i form av en anordning 300. Pumpar och omrörare visas inte i fig 4, men det inses att sådana

10

15

20

25

30

35

19

Have here Entrope

utnyttjas på väsentligen motsvarande sätt som visats i fig 1 och 2. Anordningen 300 rötar kogödsel och köttavfall. Kogödseln och köttavfallet matas via ledning 322 respektive ledning 323 till en väsentligen gastät tank 318 och blandas.

I syfte att förbättra biogasproduktionen i anordningen 300 matas torkat och pelleterat spannmålsrens via en matningsledning 312 till en kvarn 314 där pelleten mals till en genomsnittlig storlek av cirka 1 mm. Via en matningsledning 316 matas den malda pelleten till tanken 318, som i anordningen 300 således utnyttjas som förblandningstank och år av väsentligen samma typ som beskrivits ovan avseende förblandningstanken 118. I förblandningstanken 318 kommer en viss mångd biogas att utvecklas under blandningsförfarandet. En gasledning 330 bortför gas, som består av en blandning av bildad biogas, luft, som oavsiktligt tillförts via matningsledningen 316, samt gaser alstrade av kogödseln och köttavfallet, från tanken 318 till ett biofilter (ej visat) som bryter ned metan och luktande gaser. Ett styrsystem 324 är anordnat att satsvis mata kogödsel och köttavfall via ledningarna 322, 323 och mald pellets via ledningen 316 till förblandningstanken 318 i ett sådant förhållande att en torrsubstanshalt av 35 vikt% TS erhålles i förblandningstanken 318. Då mald pellet, gödsel och köttavfall har blandats till ett slam med jämn konsistens i förblandningstanken 318 pumpas detta slam från förblandningstanken 318 via en ledning 326 till en hygieniseringstank 348 där slammet upphettas till minst 70°C i âtminstone 1 h i syfte att doda de harmfulla bakterier som eventuellt kan förekomma i slakteriavfallet. Det hygieniserade slammet pumpas från hygieniseringstanken 348 via ett inlopp 304 in i en reaktor 302, som år av liknande slag som den reaktor 2 som beskrivits ovan och således bland annat har ett utlopp 306 för bildad biogas och ett utlopp 308 för bildat rotslam.

+46 470 2086?

20867

bita Direction of a second of

20

Paratreson Kasson

Det inses att en mångd variationer av de ovan beskrivna utföringsformerna år möjliga inom uppfinningens ram, såsom den definieras av de efterföljande patent-kraven.

Exempel 1.

Vid ett försök med rötning av spannmål utnyttjades en försöksanordning 400, som visas i fig 5, vilken anordning 400 hade en gastät glasreaktor 402 med en volym 10 av 5 liter. Vätskevolymen i reaktorn 402 hölls konstant på 3 liter. En propelleromrörare 410 (med ett varvtal av 300 rpm) utnyttjades för att åstadkomma fullständig . omrörning i reaktorn 402. En ledning 406 ledde bildad gas från reaktorn 402 till en gasmätare 412, som mätte 15 volymen bildad gas. En tät glasgenomföring 404 utnyttjades för satsvis tillförsel av spannmål och intermittent bortförande av bildat rötslam. Ett ej visat tempererat rum utnyttjades för att hålla temperaturen i glasreaktorn 402 konstant vid 37°C. 20

Vid starten av försöket infördes 3 liter rötslam från en fullskalig rötningsanläggning i reaktorn 402. Det slam som rötades i den fullskaliga anläggningen hade det ursprung som framgår av tabell 1.

25

Tillförd produkt	Volymsandel	
	%vol	
Gödsel	5,4	
Slakteriavfall	72,7	
Övrigt*	21,9	
Summa:	100	

*i "Övrigt" ingår framförallt avfall från livsmedelsproduktion och avfall från storkök Tabell 1. Ursprung för material i fullstor anläggning.

Vid starten av försöket fanns således i reaktorn 402 ett aktivt rötslam innehållande en aktiv kultur av biogasalstrande bakterier.

2002-60-14

21

Blands on Person

Varje dygn satsades 10 g spannmål i reaktorn 402. Spannmålen bestod av 50% råg och 50% vete och förelåg i form av hela och rensade korn. Spannmålen maldes i en laboratoriekvarn av typen Retsch Mühl typ SR2 från Retsch 5 GmbH, DE, till en storlek av ca 1 mm. Torrsubstanshalten på den malda spannmålen var 91,6 vikt% TS och VS-halten var 96,7 vikt% VS. Således satsades varje dygn 8,68 g VS vilket motsvarade ca 3 g VS per liter reaktorvätska och dygn. Den malda spannmålen blandades med 18 ml vatten till en substratblandning med en torrsubstanshalt av 35 10 vikt% TS och en volym av 25 ml. Av praktiska skäl var det nödvändigt att späda ut substratblandningen med rötslam för att med hjälp av en spruta kunna införa den i reaktorn 402 via den täta glasgenomföringen 404. Av detta skål uttogs 100 ml rötslam per dygn. 75 ml av detta 15 rötslam blandades med substratblandningen och infördes samman med substratblandningen i reaktorn 402. De återstående 25 ml av rötslammet kastades för att hålla volymen i reaktorn 402 konstant. Uppehållstiden i 20 reaktorn blev med ovan beskrivna satsning 120 dygn.

I fig 6 visas produktionen av biogas i enheten Nm3 gas per tillsatt ton VS och dygn som funktion av antalet dygn efter start. Såsom framgår av fig 6 år produktionen till en början något ojämn. Från och med dygn 50 har systemet kommit i jämvikt. Såsom framgår av fig 6 är den genomsnittliga produktionen av biogas från dag 50 till dag 70 ca 700 Nm3 biogas per ton VS och dygn, varvid "Nm3" avser m3 gas vid 0°C och 1,013*105 Pa, och "ton VS per dygn" avser den mångd VS som satsas per dag. Råknat på den satsade spannmålen var den genomsnittliga produktionen 616 Nm3 biogas per ton spannmål och dygn. Räknat på torrsubstanshalten för satsad spannmål blev den genomanittliga produktionen 673 Nm3 biogas per ton TS och dygn. Den producerade biogasen samlades upp med jämna mellanrum och analyserades med avseende på metanhalt. Vid stabil produktion var metanhalten 49-51 %. I fig 6 visas även pH i reaktorvätskan under försöket. Med undantag för

25

30

15

20

25

30

35

+46 470 20867

2010 -03- 1 4

22

Heredforen Karvan

vissa störningar låg pH relativt stabilt i intervallet pH 7.3-7.5. Det uttagna rötslammet hade en torrsubstanshalt av 6,6 vikt% TS och en VS-halt av 89,4 vikt% VS, vilket motsvarade en utrötningsgrad av 83%.

Fig 7 visar halten av flyktiga fettsyror i rötslammet som funktion av antalet dagar från start. Såsom framgår varierar halterna av de olika fettsyrorna mycket under försökets första 50 dygn. Under dygn 50-70 stabiliseras halterna. En förklaring till detta är att det tar tid för bakteriekulturen, som härrör från rötning av huvudsakligen animaliskt avfall, att anpassa sig till spannmålen. Det förekom även vissa försöksrelaterade problem under försökets inledning. Kring dygn 70 är halterna av samtliga fettsyror låga, vilket tyder på att rötningsprocessen är effektiv och fungerar stabilt.

Exempel 2

En anordning 400 av den typ som beskrivits ovan utnyttjades för försöket. Vid försökets start satsades 3 liter rötslam från den ovan nämnda fullskaliga anläggningen. Rötslammets ursprung framgår således av tabell 1 ovan.

Det substrat som tillfördes reaktorn 402 utgjordes av spannmål och vall. Spannmålen bestod av 50% råg och 50% vete och förelåg i form av hela och rensade korn. Spannmålen maldes i ovan nämnda laboratoriekvarn till en storlek av ca 1 mm. Torrsubstanshalten på den malda spannmålen var 91,6 vikt% TS och VS-halten var 96,7 vikt% VS. Vallen bestod av en blandning av klöver och gräs och hade en torrsubstanshalt av 30,8 vikt% TS och en VS-halt av 92,2 vikt% VS.

Fyra dagar per vecka tillsattes endast mald spannmål till reaktorn 402. Tillsatsen av spannmål var då 11,1 gram, vilket motsvarade 10 g VS. Tillsatsen av spannmål gjordes medelst blandning av spannmål och vatten till en torrsubstanshalt av 35 vikt% TS på liknande sätt som beskrivs i exempel 1.

15

20

25

30

+46 470 20867

20867

Ed. 1. Points of improviol

25-7-68-14

23

Have d'atton Kassion

Övriga tre dagar per vecka tillsattes både spannmål och vall enligt följande: 300 ml rötslam togs ut ur reaktorn 402 och blandades under ca 1 minut med 25 g vall, vilket motsvarade 7 g VS, i en matmixer. 3,3 g mald spannmål, vilket motsvarande ca 3 g VS, blandades med 6 ml vatten till en blandning med 35 vikt% TS. Denna spannmålsblandning sattes till vallblandningen i matmixern varefter den samlade blandningen infördes i reaktorn 402 via glasgenomföringen 404. En viss mångd rötslam, ca 20 ml, togs ut och kastades varje dygn för att hålla volymen i reaktorn konstant. Räknat som ett genomsnitt under hela försöket tillsattes således 10 g VS per dygn, vilket motsvarade 3,3 g VS per liter reaktorvätska och dygn, varav 7 g VS per dygn var spannmål och 3 g VS per dygn var vall. Uppehållstiden i reaktorn 402 var ca 150 dygn.

I fig 8 visas produktionen av biogas per dygn i enheten Nm3 biogas per tillsatt ton VS och dygn som funktion av antalet dygn efter start. Såsom framgår av fig 8 har systemet annu efter 40 dygn inte stabiliserats. Det kan dock utläsas av fig 8 att den genomsnittliga produktionen av biogas från dag 32 till dag 39 var ca 561 Nm³ biogas per ton VS och dygn. Räknat på satsad spannmål och vall var den genomsnittliga produktionen 505 Nm3 biogas per ton spannmål+vall och dygn. Räknat på torrsubstanshalten för satsad spannmål och vall blev den genomsnittliga produktionen 541 Nm3 biogas per ton TS och dygn. Den producerade biogasen samlades upp med jämna mellanrum och analyserades med avseende på metanhalt. Vid försökets slut var metanhalten 50-51 %. I fig 8 visas även pH i reaktorvätskan under försöket. Med undantag för vissa störningar låg pH relativt stabilt i intervallet pH 7.5-7.8. Det uttagna rötslammet hade en torrsubstanshalt av 6,3 vikt% TS och en VS-halt av 83,9 vikt% VS. Halterna av flyktiga fettsyror var ungefär de samma som vid 35 exempel 1, även om stabilitet ännu inte hade nåtts efter 40 dygn.

+46 470 20867

Plant Wood Person 24

Av resultaten i exempel 2 framgår att även en så pass måttlig inblandning som 30% (räknat på satsad mängd VS per dygn) av ej torkad vall kraftigt försämrar gasproduktionen i reaktorn jämfört med om enbart spannmål rötas, som vid exempel 1. En orsak till detta kan vara att uttaget av så mycket som 300 ml rötslam för blandning med vall i matmixern har stört processen i reaktorn.

Exempel 3

En anordning 400 av den typ som beskrivits ovan 10 utnyttjades för försöket. Vid försökets start satsades 3 liter rötslam från den ovan nåmnda fullskaliga anläggningen. Rötslammets ursprung framgår således av tabell 1 ovan.

Varje dygn satsades 10 g pelleterat spannmålsrens i 15 reaktorn 402. Spannmålsrenset bestod huvudsakligen av skal, strån och kasserade korn. Spannmålsrenset hade först torkats i ugn och sedan pelleterats i en pelleteringsmaskin. Pelleten maldes i ovan nämnda laboratoriekvarn till en storlek av ca 1 mm. 20 Torrsubstanshalten på den malda pelleten var 88,6 vikt% TS och VS-halten var 96,5 vikt% VS. Således satsades varje dygn 8,55 g VS vilket motsvarade knappt 3 g VS per liter reaktorvätska och dygn. Den malda pelleten blandades med 18 ml vatten till en substratblandning med 25 en torrsubstanshalt av 35 vikt% TS och en volym av 25 ml. Av praktiska skäl var det nödvändigt att späda ut substratblandningen för att med spruta kunna införa den i den tāta glasgenomföringen 404. Av detta skāl uttogs 100 ml rötslam per dygn. 75 ml av detta rötslam blandades med 30 substratblandningen och infördes samman med substratblandningen i reaktorn 402. De återstående 25 ml av rötslammet kastades för att hålla volymen i reaktorn 402 konstant. Uppehållstiden i reaktorn blev med ovan

I fig 9 visas produktionen av biogas per dygn i enheten Nm3 biogas per tillsatt ton VS som funktion av

beskrivna satsning 120 dygn.

15

20

25

30

+46 470 20867

20867

the bit of the second

my -10-14

25

הביים לו מפיניליים לו

antalet dygn efter start. Såsom framgår av fig 9 är produktionen till en början något ojämn. Från och med dygn 50 blev produktionen stabil. Såsom framgår av fig 9 är den genomsnittliga produktionen av biogas från dag 50 till dag 70 ca 722 Nm3 biogas per ton VS och dygn. Råknat på den satsade pelleten var den genomsnittliga produktionen 616 Nm3 biogas per ton pellet och dygn. Rāknat på torrsubstanshalten för satsad pellet blev den genomsnittliga produktionen 697 Nm3 biogas per ton TS och dygn. Den framställda biogasen samlades upp med jämna mellanrum och analyserades med avseende på metanhalt. Vid stabil gasproduktion var metanhalten 51-53 %. I fig 9 visas även pH i reaktorvätskan under försöket. Med undantag för vissa störningar låg pH relativt stabilt i intervallet pH 7.5-7.7. Det uttagna rötslammet hade en torrsubstanshalt av 6,8 vikt% TS och en VS-halt av 85,9 vikt% VS. Halterna av fettsyror var generellt lägre än vid exempel 1, vilket understryker att driften vid försöket var mycket stabil.

Av fig 9 framgår således att produktionen av biogas var väsentligen lika stor som vid exempel 1. I tabell 2 nedan har produktionen av biogas vid de tre försöken sammanställts. Så som framgår åstadkoms vid försöket i exempel 2, där vall tillsattes, en betydligt lägre gasproduktion än vid försöken i exempel 1 och 3.

Exempel	Substrat	Biogasproduktion
		Nm3 biogas/(ton VS, dygn)
1	Spannmål	700
2	Spannmål+vall	561
3	Pelleterat spannmålsrens	722

Tabell 2. Sammanställning av försöksresultat

Det visade sig under försöken att de av mald spannmål respektive pelleterat spannmålsrens framställda substratblandningarna med en torrsubstanshalt av 35 vikt% TS var klart pumpbara även om de inte kunde injiceras i

470 20867

PART WATER 1777 - 17-14 Harmettene (Progen

26

glasreaktorn 402 med hjälp av en spruta. Med hjälp av mald spannmål kunde pumpbara substratblandningar med en torrsubstanshalt av upp till 42 vikt% TS åstadkommas.

25

+46 470 20867

20867

Editor cherria

27

1 13 -13 - 3 4

Bern Myzan Kossan

PATENTKRAV

Sått att framställa biogas genom anaerob rötning
 av ett organiskt material, kånnetecknat av att ett organiskt material mals,

att det organiska materialet blandas med en vätska för att bilda ett slam med en torrsubstanshalt av 15-45 vikt% TS,

att slammet bringas i kontakt med biogasalstrande bakterier för rötning under anaeroba betingelser i en reaktor (2; 102; 202; 302), och

att slammet rötas under alstring av biogas.

- 2. Sätt enligt krav 1, vid vilket slammets 15 torrsubstanshalt är 30-45 vikt% TS.
 - 3. Sätt enligt något av krav 1 och 2, vid vilket åtminstone hälften av slammets totala torrsubstanshalt härrör från spannmål och/eller torkat spannmålsrens och/eller blandningar därav.
 - 4. Sätt enligt krav 3, vid vilket spannmålen huvudsakligen föreligger i form av hela och rensade korn.
 - 5. Sätt enligt något av föregående krav, vid vilket ett organiskt material av annan typ än förstnämnda organiska material också rötas i reaktorn (202; 302), varvid åtminstone 10 vikt% av den totala torrsubstans som införs i reaktorn härrör från i förstnämnda organiska material ingående spannmål och/eller torkat spannmålsrens.
- 6. Sätt enligt något av föregående krav, vid vilket
 den vätska med vilken det organiska materialet blandas år väsentligen rent vatten.
 - 7. Sätt enligt något av krav 1-5, vid vilket den vätska med vilken det organiska materialet blandas åtminstone delvis tas ut ur reaktorn (2; 102; 202; 302).
- 8. Anordning för framställning av biogas genom anaerob rötning av ett organiskt material, vilken anordning innefattar en förslutbar, väsentligen gastät

20867

Phonostering Program

28

reaktor (2; 102; 202; 302), som har ett inlopp (4; 104; 204; 304) för organiskt material och utlopp (6, 8; 106; 108; 206, 208; 306, 308) för bildad biogas och bildat rötslam, kännet ecknad av att anordningen (1; 100; 200; 300) innefattar en förblandningstank (18; 118; 218; 318) för blandning av ett malt organiskt material med en vätska till ett slam med en torrsubstanshalt av 15-45 vikt% TS och en matningsledning (26, 4; 126, 104; 204; 304) för matning av slammet till reaktorn (2; 102;

- 9. Anordning enligt krav 8, vid vilken en kvarn (14; 114; 214; 314) är anordnad för malning av det organiska materialet innan detta införes i förblandningstanken (18; 118; 218; 318).
- 10. Anordning enligt något av krav 8-9, vid vilken en tillförselledning (122; 222) är anordnad för matning av vätska från reaktorn (102, 202) till förblandningstanken (118; 218).

10

202; 302).

this to the configurated 700-05-14

29

Photo Provid Konson

SAMMANDRAG

Ett sätt att framställa biogas genom anaerob rötning av ett organiskt material innefattar stegen 5

att ett organiskt material mals,

att det organiska materialet blandas med en vätska för att bilda ett slam med en torrsubstanshalt av 15-45 vikt% TS,

att slammet bringas i kontakt med biogasalstrande 10 bakterier för rötning under anaeroba betingelser i en reaktor (2), och att slammet rötas under alstring av biogas.

En anordning (1) för framställning av biogas genom anaerob rötning av ett organiskt material innefattar en 15 förslutbar, väsentligen gastät reaktor (2), som har ett inlopp (4) för organiskt material och utlopp (6, 8) för bildad biogas och bildat rötslam. Anordningen (1) har en förblandningstank (18) för blandning av ett malt

organiskt material med en vätska till ett slam med en 20 torrsubstanshalt av 15-45 vikt% TS och en matningsledning (26, 4) för matning av slammet till reaktorn (2).

25

30

35

Publiceringsbild: Fig 1

Inch Print of High 1th

9 ma -03- **1 4**

1/5

Heyerd organ Kosson

Fig. 1

Fig. 2

+46 479 20867

hat Printer of the control

9002-03-14

3/5

Howelforen Korren

Fig. 5

Fig. 6

Fig. 7

Fig. 8

20867

Interest out regions

7777-68-14

5/5

Roman Commence

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.