모션인식 영상처리와 딥러닝을 활용한 스마트 말벌퇴치 양봉 시스템

21311898김 종 현21411926김 다 현



# WASP DETECTION SYSTEM

01

02

03

04

05

목적 및 필요성

종합설계 목표

구성요소 및 제한요소

기<del>능블</del>록설계

프로젝트 운영 계획

CJB 반기웅 기자 작성 2013.09.09 21:22

#### ■ 프로젝트의 필요성

#### 꿀생산 급감, 벌쏘임 위협···외래종 등검은말벌 대책은 無 꿀벌 습격하는 말벌떼...양봉 농가 '비상'

송고시간 | 2018/09/26 08:00









말벌이 말썽입니다. 별조하러 간 사람들 괴통히고 꿀벌까지 공격하고 나서서 양봉 농가에도 비상이 걸렸습니다. CJB 반기용 기자입니다.

(의정부=연합뉴스) 최재훈 기자 = "하루에 제가 설치한 포획 망에만 말벌이 1천 게 잡히는 날도 많습니다."

경남 마산에서 양봉업에 종사하는 A씨는 몇 년 전부터 급증한 말벌 떼에 몸살을다.

수시로 꿀벌들을 습격하는 말벌 때문에 꿀 생산이 눈에 띄게 줄었다. 말벌을 끌 트랩과 자체적으로 쓰던 포획 망에는 매일 죽은 말벌들이 수북이 쌓이지만 벌들 공세'를 이기기에는 역부족이다.



^/^// 채집망에 갇힌 말벌이 출구를 찾아다닙니다.

중간 크기의 말벌부터 손가락 두 마디만 한 장수말벌도 보입니다.

먹잇감을 찾는 말벌떼가 시도 때도 없이 벌통을 습격하자 농가에서 말벌 잡기에 나선 것입니다.

꿀벌을 습격한 말벌입니다

한나절 동안 잡은 건데 100마리가 넘습니다.

장수말벌 10여 마리가 꿀벌 한 통을 쑥대밭으로 만드는 데 걸리는 시간은 불과 한 시간 남짓.

자스마바이 보ば에 꼬바이 조그 이층이 데이카이 된다.

[김금순/양봉농민 : 별 한통이 순식간에 다 없어져요. 그래서 그냥 없는 시간 쪼개서 이렇게 와서 항상 지켜야 돼요.]

장수말벌을 퇴치하는 방법은 꿀 통 옆에서 공격하는 말벌을 한 마리씩 잡아내는 방법뿐 입니다.

게다가 최근에는 외래종인 동검은 말벌이 골칫거리로 떠오르고 있습니다

등검은 말법은 법통을 공격하는 장수말법과는 달리 날아다니는 토종벌을 직접 사냥하는 특징이 있습니다

[류근호/충북 청원군 농업기술센터 특작 담당 : 검은 동무늬 말벌이 많은 피해를 주고 있는데 특별한 천적이 없기 때문에 기하급수적으로 많이 높어나서 지금 양분 농가들한테 큰 피해를 주고 있습니다.]

가뜩이나 짧은 개화기로 꿀 수확량이 줄어든 양봉 농가는 외래중까지 합세한 말벌의 공격으로 궁지에 내몰리고 있습니다.



<mark>꿀 생산량의 35%</mark>가 말벌 에 의해 감소한다고 추정



■ 프로젝트의 필요성 - 기존 양봉농가에서의 말벌 퇴치 및 자동화의 필요성

#### 말벌은 꼭 잡아야 돼

2018/10/10 18:08 송고



정지 🕨 ॥

기존의 말벌 퇴치법

#### 문제점

사람이 항상 벌통 근처에 대기해 주시하며 말벌을 잡아냄

#### 해결방안

항시 대기하며 말벌을 잡아낼 수 있는 자동화 기계를 배치

#### 기대효과

양봉 농가의 인적 자원의 수고를 덜어주고 꿀벌의 피해를 최소화함으로써 <mark>인건비의</mark> 감소와 꿀 생산량의 증가

자동화의 필요성



#### ■ How?







- 핵심 필수 기능
- 1) Object detection using <u>Caffe Deep-Learning Framework & OpenCV</u>





Deep Learning Framework



Google Mobilenet v1 CNN



- 핵심 필수 기능
  - 2) Kill wasp trap using <u>electric shock circuit & Servo Motor</u>







90°



- 핵심 필수 기능
  - 3) Duplex communication using Thread





■ 핵심 필수 기능 및 성능 목표

| 핵심 필수 기능                                             | 성능 목표                                                                                               | 고려사항                                                                                                                            |
|------------------------------------------------------|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| 말벌 인식 및 검출                                           | <ul><li>인식률 90% 이상</li><li>인식시간 30초 이내<br/>(Raspberry Pi 환경)</li></ul>                              | • 최적의 CNN 및 Framework 사용                                                                                                        |
| 말벌 퇴치 및 온도 측정                                        | <ul> <li>말벌 검출 시 각 Servo Motor 및 전기<br/>충격 회로 동작률 100%</li> <li>온도 오차범위 ±1°C 내외</li> </ul>          | <ul> <li>적절한 Servo Motor와 온도 센서 사용</li> <li>각 센서들을 Thread로 동시에 동작이가능하도록 할 것</li> </ul>                                          |
| 영상정보 및 온도 정보 App으<br>로 전송 & App에서<br>Raspberry Pi 제어 | <ul> <li>패킷 전송률 100%</li> <li>Thread를 이용한 양방향 통신</li> <li>실제 영상과 전송된 영상의 시간차이<br/>10초 이내</li> </ul> | <ul> <li>TCP/IP Protocol 사용</li> <li>Raspberry Pi와 Android App 두<br/>Client 사이에서 정보 전달 역할을 하<br/>는 Gateway Server 필요</li> </ul> |
| 말벌 트랩 작동                                             | <ul><li>서보모터 작동시간 0.5초 이내</li><li>300V 이상의 고전압 저전류 송출</li></ul>                                     |                                                                                                                                 |



# ■ 구성 요소

| 요소 설계 기술                                    | 관련 교과목                                                      | 비고(참고사항) |
|---------------------------------------------|-------------------------------------------------------------|----------|
| 모션인식 객체 추출 영상처리                             | • 멀티미디어 신호처리<br>• 디지털 신호처리(DSP)                             | 신호처리 트랙  |
| 딥러닝 객체 분류                                   | • 인공지능과 머신러닝                                                |          |
| 영상정보 압축 및 전송                                | <ul><li>멀티미디어 신호처리</li><li>데이터통신</li><li>컴퓨터 네트워크</li></ul> | 신호처리 트랙  |
| 라즈베리파이 GPIO 통제(Servo<br>Motor, Temp Sensor) | <ul><li>논리회로</li><li>전자회로</li><li>회로이론</li></ul>            | 임베디드 트랙  |
| 양방향 Thread 통신                               | <ul><li>데이터통신</li><li>컴퓨터네트워크</li></ul>                     | 네트워크 트랙  |
| Android App 개발                              | • 자바 프로그래밍 및 실습                                             |          |



# ■ 제한 요소

| 핵심 구성요소          | 제한요소                                                                   | 비고(참고사항)                                                                                                     |
|------------------|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| 딥러닝 객체 분류        | Raspberry Pi 성능의 제한으로 아주 빠른 인<br>식 속도를 기대하기는 힘듦                        | Mobilenet CNN 사용시 일반 CNN 에 비해 훨<br>씬 빠른 속도를 기대할 수 있음                                                         |
| 딥러닝 학습           | Raspberry Pi GPU 성능으로는 딥러닝 학습에<br>사용하기 부적절                             | PC에서 학습시킨 후 Raspberry Pi로 학습된<br>CNN 을 이식하여 사용                                                               |
| 모션인식 영상처리        | 영상 누적 평균기법으로는 배경 추출에 한계가 존재                                            | GMM(Gaussian Mixture Model)<br>background 차감법을 사용하면 해결되지만<br>구현 난이도가 급격히 올라가는 이유로 프로<br>토타입은 영상 누적 평균기법으로 구현 |
| GPIO Servo Motor | Raspberry Pi GPIO 포트의 전압은 5V 전류는 0.3mA 미만으로 강력한 Servo Motor를 제어하기에는 부족 | MOSFET 소자를 이용하여 외부 전원을 인가<br>해 사용할 순 있지만 외부전원을 끌어와야 한<br>다는점이 야외에서 이루어지는 양봉 시스템에<br>는 적절치 못할 것으로 판단          |



#### ■ 기능 블록도





종합설계 과제 및 운용 WASP DETECTION SYSTEM

#### ■ 기능 흐름도





 1. 목적 및 필요성
 2. 종합 설계 목표
 3. 구성요소 및 제한요소
 4. 기능블록설계
 5. 프로젝트 운영계획
 STECTION SYSTEM

## ■ Gantt Chart

| 항목 | 내용                     | 수행자      | 기간㈜ |   |   |   |   |   |   |   |   |    |    |    |
|----|------------------------|----------|-----|---|---|---|---|---|---|---|---|----|----|----|
|    |                        |          | 1   | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| 1  | 학습 데이터 수집              | 김종현, 김다현 |     |   |   |   |   |   |   |   |   |    |    |    |
| 2  | 학습 데이터 Augmentation    | 김다현, 김종현 |     |   |   |   |   |   |   |   |   |    |    |    |
| 3  | 데이터 학습시키기              | 김다현      |     |   |   |   |   |   |   |   |   |    |    |    |
| 4  | 학습된 CNN 라즈베리 파이에 이식    | 김다현      |     |   |   |   |   |   |   |   |   |    |    |    |
| 5  | 제안 발표                  | 김다현      |     |   |   |   |   |   |   |   |   |    |    |    |
| 6  | 영상 누적 평균 모션 인식         | 김종현, 김다현 |     |   |   |   |   |   |   |   |   |    |    |    |
| 7  | 중간발표                   | 김종현      |     |   |   |   |   |   |   |   |   |    |    |    |
| 8  | Gateway Server 개발      | 김종현      |     |   |   |   |   |   |   |   |   |    |    |    |
| 9  | Android App 개발         | 김종현      |     |   |   |   |   |   |   |   |   |    |    |    |
| 10 | Raspberry Pi Client 개발 | 김다현      |     |   |   |   |   |   |   |   |   |    |    |    |
| 11 | Project 평가 및 최종발표      | 김다현      |     |   |   |   |   |   |   |   |   |    |    |    |



### 참고 문헌

- [1] 정석용, 정석용의 TCP/IP 소켓 프로그래밍, 프리렉, 2009
- [2] 김동근, *C++ API OpenCV 프로그래밍,* 가메출판사, 2015
- [3] 오일석, *기계 학습*, 한빛 아카데미, 2017
- [4] 바라스 람순다르, 레자 자데, 한권으로 끝내는 딥러닝 텐서플로, 한빛미디어, 2018
- [5] 조르디 토레스, 텐서플로 첫걸음, 한빛 미디어, 2018
- [6] K. Tan, S. E. Radloff, J. J. Li, H. R. Hepburn, M. X. Yang, L. J. Zhang and P. Neumann, "Bee-hawking by the wasp, *Vespa velutina*, on the honeybees *Apis cerana* and *A. mellifera*"
- [7] 장웅익, 이홍재 "PTC 세라믹 히터를 이용한 꿀벌 산란 촉진 방법에 관한 연구", 제 44회 전국과학전람회 농수산부문
- [8] 최문보, 권오석 "양봉장에서 등검은 말벌의 사냥시간, 공격횟수 및 성공률 분석", 한국응용곤충학회, 48-48쪽, 2016년





