Rapport – Travaux Pratique 8

Sommaire

	. 1
F. a.u.'a. 2	
Exercice 2	. 1
Exercice 3	. 1
Exercice 4	_

Exercice 1

J'ai choisi une approche en deux dimensions pour cet exercice. En effet, on travaille avec des images qui pour chaque pixel, peuvent être représenter comme 2 valeurs : la position selon la largeur et la position selon la hauteur.

Exercice 2

Rien à ajouter pour cet exercice.

Exercice 3

Rien à ajouter non plus pour cet exercice.

Exercice 4

Taille des tableaux / Nombre de threads	Moyenne du temps d'exécution du patron REDUCE sur GPU (μs)
189 216 / 32	57
189 216 / 64	44
189 216 / 128	43
189 216 / 256	44
189 216 / 512	43
189 216 / 1024	44
562 000 / 32	170
562 000 / 64	94
562 000 / 128	71
562 000 / 256	71
562 000 / 512	74
562 000 / 1024	74
701 441 / 32	207
701 441 / 64	116
701 441 / 128	110
701 441 / 256	109
701 441 / 512	110
701 441 / 1024	109
852 082 / 32	248
852 082 / 64	139
852 082 / 128	110
852 082 / 256	110
852 082 / 512	112
852 082 / 1024	111
1 764 000 / 32	508
1 764 000 / 64	290
1 764 000 / 128	236
1 764 000 / 256	235
1 764 000 / 512	238
1 764 000 / 1024	242
2 132 800 / 32	608

APR - TP8

2 132 800 / 64	331
2 132 800 / 128	297
2 132 800 / 256	297
2 132 800 / 512	298
2 132 800 / 1024	300
21 026 304 / 32	5 827
21 026 304 / 64	3 049
21 026 304 / 128	1 880
21 026 304 / 256	1 912
21 026 304 / 512	1 954
21 026 304 / 1024	2 043

Pour les petites images, à partir de 128 threads le temps d'exécution se stabilise.

Pour les grandes images, c'est le découpage à 128 threads qui est le plus rapide, car plus on augmente le nombre de threads, plus le temps d'exécution augmente lui aussi.

Prenons l'image des tournesols qui possède 21 millions de pixels, le découpage à 128 threads est plus rapide de 163 µs par rapport au découpage à 1 024 threads. Dit comme ça, la différence de temps d'exécution ne parait pas impressionnante mais on peut imaginer cette différence augmenter considérablement avec un tableau plus grand contenant plusieurs centaines de millions de valeurs par exemple.