Interpolating conformal algebra between the instant form and the front form of relativistic dynamics

Light Cone 2021: Contributed talk

Hariprashad Ravikumar* (New Mexico State University, USA) *hari1729@nmsu.edu

Under the supervision of Prof. Chueng Ji (North Carolina State University, USA) Prof. Harleen Dahiya (National Institute of Technology Jalandhar, India)

December 29, 2023

Motivation

- The instant form and the front form of relativistic dynamics introduced by Dirac in 1949 can be interpolated by introducing an interpolation angle parameter δ spanning between the instant form dynamics (IFD) at $\delta=0$ and the front form dynamics, which is now known as the light-front dynamics (LFD) at $\delta=\frac{\pi}{4}$. **K.Hornboste, Phys. Rev. D 45, 3781 (1992)**.
- In C.-R. Ji and C. Mitchell, Phys. Rev. D 64, 085013 (2001), they showed the Boost K^3 is dynamical in the region where $0 \le \delta < \frac{\pi}{4}$ but becomes kinematic in the light-front limit $(\delta = \frac{\pi}{4})$.
- We extend the Poincaré algebra interpolation between instant and light-front time quantizations to the conformal algebra.
- Among the five more generators in the conformal algebra, only one generator known as the dilatation is kinematic for the entire region of the interpolation angle $(0 \le \delta \le \frac{\pi}{4})$.
- We find that one more generator from the Special Conformal Transformation (SCT) becomes kinematic in the light-front limit ($\delta = \frac{\pi}{4}$), i.e. the LFD.

4 D > 4 A > 4 B > 4 B >

Table of Contents

- Motivation
- Interpolation between IFD and LFD
 - Method of Interpolation Angle
 - The Poincaré matrix
 - Generators of Poincaré group
 - Kinematic and dynamic generators of Poincaré group
- Stension to Conformal Group
 - Conformal Transformations
 - Conformal Algebra
 - Special Conformal Transformations
 - Interpolating Conformal algebra

Interpolation between Instant and Front Forms

K. Hornbostel, PRD45, 3781 (1992) – RQFT
C.Ji and S.Rey, PRD53,5815(1996) – Chiral Anomaly
C.Ji and C. Mitchell, PRD64,085013 (2001) – Poincare Algebra
C.Ji and A. Suzuki, PRD87,065015 (2013) – Scattering Amps
C.Ji, Z. Li and A. Suzuki, PRD91, 065020 (2015) – EM Gauges
Z.Li, M. An and C.Ji, PRD92, 105014 (2015) – Spinors
C.Ji, Z.Li, B.Ma and A.Suzuki, in prepartion – Fermion Prop.

Method of Interpolation Angle

The interpolating space-time coordinates may be defined as a transformation from the ordinary space-time coordinates, $x^{\hat{\mu}}=\mathcal{R}^{\hat{\mu}}_{\phantom{\hat{\mu}}\nu}x^{\nu}$, i.e.

$$\begin{pmatrix} x^{\hat{+}} \\ x^{\hat{1}} \\ x^{\hat{2}} \\ x^{\hat{-}} \end{pmatrix} = \begin{pmatrix} \cos \delta & 0 & 0 & \sin \delta \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ \sin \delta & 0 & 0 & -\cos \delta \end{pmatrix} \begin{pmatrix} x^0 \\ x^1 \\ x^2 \\ x^3 \end{pmatrix}, \tag{1}$$

in which the interpolation angle is allowed to run from 0 through 45°, 0 $\leq \delta \leq \frac{\pi}{4}.$

Interpolation between Instant and Front Forms

₽ 99€

Method of Interpolation Angle

In this interpolating basis, the metric becomes

$$g^{\hat{\mu}\hat{\nu}} = g_{\hat{\mu}\hat{\nu}} = \begin{pmatrix} \mathbb{C} & 0 & 0 & \mathbb{S} \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ \mathbb{S} & 0 & 0 & -\mathbb{C} \end{pmatrix},$$
 (2)

where $\mathbb{S} = \sin 2\delta$ and $\mathbb{C} = \cos 2\delta$.

Hariprashad Ravikumar

The Poincaré matrix

$$M^{\mu\nu} = \begin{pmatrix} 0 & K^1 & K^2 & K^3 \\ -K^1 & 0 & J^3 & -J^2 \\ -K^2 & -J^3 & 0 & J^1 \\ -K^3 & J^2 & -J^1 & 0 \end{pmatrix}$$
(3)

transforms as well, so that

$$M^{\hat{\mu}\hat{\nu}} = \begin{pmatrix} 0 & E^{\hat{1}} & E^{\hat{2}} & -K^{3} \\ -E^{\hat{1}} & 0 & J^{3} & -F^{\hat{1}} \\ -E^{\hat{2}} & -J^{3} & 0 & -F^{\hat{2}} \\ K^{3} & F^{\hat{1}} & F^{\hat{2}} & 0 \end{pmatrix}$$
(4)

where

$$E^{\hat{1}} = J^2 \sin \delta + K^1 \cos \delta,$$

$$E^{\hat{2}} = K^2 \cos \delta - J^1 \sin \delta,$$

$$F^{\hat{1}} = K^1 \sin \delta - J^2 \cos \delta,$$

$$F^{\hat{2}} = K^2 \sin \delta + J^1 \cos \delta.$$

(5)

The Poincaré matrix

$$M_{\hat{\mu}\hat{\nu}} = g_{\hat{\mu}\hat{\alpha}} M^{\hat{\alpha}\hat{\beta}} g_{\hat{\beta}\hat{\nu}} = \begin{pmatrix} 0 & \mathcal{D}^{\hat{1}} & \mathcal{D}^{\hat{2}} & \mathcal{K}^{3} \\ -\mathcal{D}^{\hat{1}} & 0 & J^{3} & -\mathcal{K}^{\hat{1}} \\ -\mathcal{D}^{\hat{2}} & -J^{3} & 0 & -\mathcal{K}^{\hat{2}} \\ -\mathcal{K}^{3} & \mathcal{K}^{\hat{1}} & \mathcal{K}^{\hat{2}} & 0 \end{pmatrix}, \tag{6}$$

where

$$\mathcal{K}^{\hat{1}} = -K^{1} \sin \delta - J^{2} \cos \delta,$$

$$\mathcal{K}^{\hat{2}} = J^{1} \cos \delta - K^{2} \sin \delta,$$

$$\mathcal{D}^{\hat{1}} = -K^{1} \cos \delta + J^{2} \sin \delta,$$

$$\mathcal{D}^{\hat{2}} = -J^{1} \sin \delta - K^{2} \cos \delta.$$
(7)

4□ > 4同 > 4 = > 4 = > = 900

Generators of Poincaré group

(translation)
$$P^{\hat{\mu}} = -i\partial^{\hat{\mu}},$$
 (8)

(rotation)
$$L^{\hat{\mu}\hat{\nu}} = i \left(x^{\hat{\mu}} \partial^{\hat{\nu}} - x^{\hat{\nu}} \partial^{\hat{\mu}} \right).$$
 (9)

In the interpolating basis, the metric becomes

$$g^{\hat{\mu}\hat{\nu}} = g_{\hat{\mu}\hat{\nu}} = \begin{pmatrix} \mathbb{C} & 0 & 0 & \mathbb{S} \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ \mathbb{S} & 0 & 0 & -\mathbb{C} \end{pmatrix}, \tag{10}$$

The Poincaré algebra (Contra-variant form) in this interpolating basis is given by

$$\left[P^{\hat{\mu}}, P^{\hat{\nu}}\right] = 0,\tag{11a}$$

$$\left[P^{\hat{\rho}}, L^{\hat{\mu}\hat{\nu}}\right] = i \left(g^{\hat{\rho}\hat{\mu}}P^{\hat{\nu}} - g^{\hat{\rho}\hat{\nu}}P^{\hat{\mu}}\right), \tag{11b}$$

$$\left[L^{\hat{\alpha}\hat{\beta}},L^{\hat{\rho}\hat{\sigma}}\right]=-i\left(g^{\hat{\beta}\hat{\sigma}}L^{\hat{\alpha}\hat{\rho}}-g^{\hat{\beta}\hat{\rho}}L^{\hat{\alpha}\hat{\sigma}}+g^{\hat{\alpha}\hat{\rho}}L^{\hat{\beta}\hat{\sigma}}-g^{\hat{\alpha}\hat{\sigma}}L^{\hat{\beta}\hat{\rho}}\right). \tag{11c}$$

4□ > 4団 > 4 量 > 4 量 > ■ のQで

10/20

A comprehensive table of the 45 commutation relations among the co-variant components of the Poincare´ generators is presented below:

	P _∓	Pî	P ₂	Κ ³	$\mathcal{D}^{\hat{1}}$	$\mathcal{D}^{\hat{2}}$	J ³	$\mathcal{K}^{\hat{1}}$	$\mathcal{K}^{\hat{2}}$	P≙
P ₊	0	0	0	$i\left(\mathbb{C}P_{\hat{-}}-\mathbb{S}P_{\hat{+}}\right)$	$i\mathbb{C}P_{\hat{1}}$	iℂP₂̂	0	iSP₁̂	iSP₂̂	0
Pî	0	0	0	0	iP _∓	0	−iP ₂ ̂	iP∴	0	0
P ₂	0	0	0	0	0	iP _∓	iP _î	0	iP≟	0
Κ ³	$-i\left(\mathbb{C}P_{\hat{-}}-\mathbb{S}P_{\hat{+}}\right)$	0	0	0	$iSD^{\hat{1}} - iCK^{\hat{1}}$	$iSD^2 - iCK^2$	0	$-iSK^{\hat{1}} - iCD^{\hat{1}}$	$-iSK^2 - iCD^2$	$-i\left(\mathbb{S}P_{\hat{-}}+\mathbb{C}P_{\hat{+}}\right)$
$\mathcal{D}^{\hat{1}}$	$-i\mathbb{C}P_{\hat{1}}$	$-iP_{\hat{+}}$	0	$-iSD^{\hat{1}} + iCK^{\hat{1}}$	0	$-i\mathbb{C}J^{\hat{3}}$	$-i\mathcal{D}^{\hat{2}}$	−iK ³	$-iSJ^{\hat{3}}$	$-i\mathbb{S}P_{\hat{1}}$
$\mathcal{D}^{\hat{2}}$	$-i\mathbb{C}P_{\hat{2}}$	0	$-iP_{\hat{+}}$	$-iSD^{2} + iCK^{2}$	iℂJ ^ŝ	0	iD ¹	iSJ ³	−iK ^{3̂}	$-iSP_{\hat{2}}$
J ³	0	iP ₂	$-iP_{\hat{1}}$	0	$i\mathcal{D}^{\hat{2}}$	$-i\mathcal{D}^{\hat{1}}$	0	iK ²	$-i\mathcal{K}^{\hat{1}}$	0
$\mathcal{K}^{\hat{1}}$	$-iSP_{\hat{1}}$	−iP ₋	0	$iSK^{\hat{1}} + iCD^{\hat{1}}$	iK ³	$-iSJ^{\hat{3}}$	$-i\mathcal{K}^2$	0	iℂJ ³	$i\mathbb{C}P_{\hat{1}}$
$\mathcal{K}^{\hat{2}}$	$-iSP_2$	0	−iP _⊥	$iSK^2 + iCD^2$	iSJ ³	iK ³	iΚ ¹	−iCJ ³	0	$i\mathbb{C}P_2$
P ₋	0	0	0	$i\left(\mathbb{S}P_{\hat{-}} + \mathbb{C}P_{\hat{+}}\right)$	iSP ₁ ̂	iSP₂̂	0	$-i\mathbb{C}P_{\hat{1}}$	$-i\mathbb{C}P_{\hat{2}}$	0

Interpolation angle	Kinematic	Dynamic
$\delta = 0$	$\mathcal{K}^{\hat{1}} = -J^2, \mathcal{K}^{\hat{2}} = J^1, J^3, P^1, P^2, P^3$	$\mathcal{D}^{\hat{1}} = -K^1, \mathcal{D}^{\hat{2}} = -K^2, K^3, P^0$
$0 \le \delta < \pi/4$	$\mathcal{K}^{\hat{1}},\mathcal{K}^{\hat{2}},J^3,P^1,P^2,P_{\hat{-}}$	$\mathcal{D}^{\hat{1}},\mathcal{D}^{\hat{2}},\mathcal{K}^{3},P_{\hat{+}}$
$\delta = \pi/4$	$\mathcal{K}^{\hat{1}} = -E^1, \mathcal{K}^{\hat{2}} = -E^2, J^3, K^3, P^1, P^2, P$	$\mathcal{D}^{\hat{1}} = -F^1, \mathcal{D}^{\hat{2}} = -F^2, P_+$

Chueng-Ryong Ji and Chad Mitchell, Phys. Rev. **D 64**, 085013 (2001). Chueng-Ryong Ji, Ziyue Li, and Alfredo Takashi Suzuki, Phys. Rev. **D 91**, 065020 (2015).

Kinematic and dynamic generators for different interpolation angles (Phys. Rev. **D 64**, 085013 (2001); Phys. Rev. **D 91**, 065020 (2015))

	, ,	//
Interpolation angle	Kinematic	Dynamic
$\delta = 0$	$\mathcal{K}^{\hat{1}} = -J^2, \mathcal{K}^{\hat{2}} = J^1, J^3, P^1, P^2, P^3$	$\mathcal{D}^{\hat{1}} = -K^1, \mathcal{D}^{\hat{2}} = -K^2, K^3, P^0$
$0 \le \delta < \pi/4$	$\mathcal{K}^{\hat{1}},\mathcal{K}^{\hat{2}},\mathcal{J}^3,\mathcal{P}^1,\mathcal{P}^2,\mathcal{P}_{\hat{-}}$	$\mathcal{D}^{\hat{1}},\mathcal{D}^{\hat{2}},\mathcal{K}^3,P_{\hat{+}}$
$\delta = \pi/4$	$\mathcal{K}^{\hat{1}} = -E^1, \mathcal{K}^{\hat{2}} = -E^2, J^3, K^3, P^1, P^2, P$	$\mathcal{D}^{\hat{1}}=-\mathcal{F}^1,\mathcal{D}^{\hat{2}}=-\mathcal{F}^2,P_+$

- Among the ten Poincaré generators, the six generators $(\mathcal{K}^{\hat{1}},\mathcal{K}^{\hat{2}},J^3,P_1,P_2,P_{\hat{-}})$ are always kinematic in the sense that the $x^{\hat{+}}=0$ plane is intact under the transformations generated by them. The operator $K^3=M_{\hat{+}\hat{-}}$ is dynamical in the region where $0\leq\delta<\pi/4$ but becomes kinematic in the light-front limit $(\delta=\pi/4)$.
- To understand this, note that $[P^{\hat{+}}, K^{\hat{3}}] = i(\mathbb{S}P^{\hat{+}} \mathbb{C}P^{\hat{-}}) \rightarrow iP^{\hat{+}}$ as $\delta \rightarrow \pi/4$. Similarly we have $[x^{\hat{+}}, L^{\hat{-}\hat{+}}] = i(\mathbb{S}x^{\hat{+}} \mathbb{C}x^{\hat{-}}) \rightarrow ix^{\hat{+}}$ as $\delta \rightarrow \pi/4$. Therefore the instant defined by $x^+ = 0$ becomes invariant under longitudinal boosts as we move to the light front.

4 D F 4 B F 4 B F B 9 Q C

Conformal Transformations

The Conformal transformation $x \longmapsto x'$ can be defined by, (1996 CFT Book by Francesco)

$$\frac{\partial x'^{\alpha}}{\partial x^{\mu}} \frac{\partial x'^{\beta}}{\partial x^{\nu}} g'_{\alpha\beta} = F(x) g_{\mu\nu} \tag{12}$$

Consider an infinitesimal translation.

$$x'^{\mu} = x^{\mu} + \epsilon^{\mu}(x) . \tag{13}$$

The metric changes by,

$$\delta g_{\mu\nu} = \frac{\partial \epsilon_{\mu}}{\partial x^{\nu}} + \frac{\partial \epsilon_{\nu}}{\partial x^{\mu}} = \partial_{\mu} \epsilon_{\nu}(x) + \partial_{\nu} \epsilon_{\mu}(x) \tag{14}$$

Conformality then requires,

$$\partial_{\mu}\epsilon_{\nu}(x) + \partial_{\nu}\epsilon_{\mu}(x) = F(x)\delta_{\mu\nu} \quad \text{Conformal Killing Equation}$$
 (15)

contraction with $\delta^{\mu\nu}$ yields

$$2 \partial^{\mu} \epsilon_{\mu} = F(x) d \tag{16}$$

December 29, 2023 Hariprashad Ravikumar

Conformal Transformations

For $d \geq 3$, there are ONLY 4 calsses of solutions for $\epsilon_{\mu}(x)$

(Infinitesimal Translation)
$$\epsilon^{\mu}(x) = a^{\mu}$$
 (constant) (18)

(Infinitesimal Rotation)
$$\epsilon^{\mu}(x) = L^{\mu}_{\nu}x^{\nu}$$
 (19)

(Infinitesimal Scaling)
$$\epsilon^{\mu}(x) = \lambda x^{\mu}$$
 (20)

(Infinitesimal SCT)
$$\epsilon^{\mu}(x) = 2(b.x)x^{\mu} - x^2b^{\mu}$$
 (21)

The generators of conformal transformations are:

$$\begin{array}{ll} \mbox{(translation)} & P^{\mu} = -i\partial^{\mu} \; , \\ \mbox{(dilation)} & D = -ix_{\mu}\partial^{\mu} \; , \\ \mbox{(rotation)} & L^{\mu\nu} = i\left(x^{\mu}\partial^{\nu} - x^{\nu}\partial^{\mu}\right) \; , \\ \mbox{(SCT)} & \mathfrak{K}^{\mu} = -i\left(2x^{\mu}x_{\nu}\partial^{\nu} - x^{2}\partial^{\mu}\right) \; . \end{array}$$

Finite conformal transformations

$$\begin{aligned} &(\text{translation}) & \quad x'^{\mu} = x^{\mu} + a^{\mu} \\ &(\text{dilatation}) & \quad x'^{\mu} = \alpha x^{\mu} \\ &(\text{rotation}) & \quad x'^{\mu} = M^{\mu}_{\nu} x^{\nu} \\ &(\text{SCT}) & \quad x'^{\mu} = \frac{x^{\mu} - b^{\mu} x^2}{1 - 2b \cdot x + b^2 x^2} \end{aligned}$$

Let us also note that for finite Special Conformal Transformations, we can re-write the expression as follows

$$x'^{\mu} = \frac{x^{\mu} - b^{\mu}x^{2}}{1 - 2b \cdot x + b^{2}x^{2}} = \frac{x^{2}}{|x - bx^{2}|^{2}} (x^{\mu} - b^{\mu}x^{2}),$$

$$\implies \frac{1}{x'^{\mu}} = \frac{x^{\mu} - b^{\mu}x^{2}}{x^{2}},$$

$$\implies \frac{x'^{\mu}}{x'^{2}} = \frac{x^{\mu}}{x^{2}} - b^{\mu}$$

4 D > 4 D > 4 D > 4 D > 3 P 9 Q P

SCT

From $\left|\frac{x'^{\mu}}{x'^{2}} = \frac{x^{\mu}}{x^{2}} - b^{\mu}\right|$, we see that the SCT can be understood as an inversion of x^{μ} , followed by a translation b^{μ} , and followed again by an inversion.

Figure: Illustration of a finite SCT

Hariprashad Ravikumar December 29, 2023 15/20

The generators of conformal transformations:

$$(translation) P^{\hat{\mu}} = -i\partial^{\hat{\mu}} (22)$$

(dilation)
$$D = -ix_{\hat{\mu}}\partial^{\hat{\mu}}$$
 (23)

(rotation)
$$L^{\hat{\mu}\hat{\nu}} = i \left(x^{\hat{\mu}} \partial^{\hat{\nu}} - x^{\hat{\nu}} \partial^{\hat{\mu}} \right)$$
 (24)

(SCT)
$$\mathfrak{K}^{\hat{\mu}} = -i \left(2x^{\hat{\mu}} x_{\hat{\nu}} \partial^{\hat{\nu}} - x^2 \partial^{\hat{\mu}} \right)$$
 (25)

Therefore the full Conformal algebra is given by

$$\begin{split} \left[P^{\hat{\mu}},P^{\hat{\nu}}\right] &= 0, \\ \left[\mathfrak{K}^{\hat{\mu}},\mathfrak{K}^{\hat{\nu}}\right] &= 0, \\ \left[D,P^{\hat{\mu}}\right] &= iP^{\hat{\mu}}, \\ \left[D,\mathfrak{K}^{\hat{\mu}}\right] &= -i\mathfrak{K}^{\hat{\mu}}, \\ \left[P^{\hat{\rho}},L^{\mu\hat{\nu}}\right] &= i\left(g^{\hat{\rho}\hat{\mu}}P^{\hat{\nu}} - g^{\hat{\rho}\hat{\nu}}P^{\hat{\mu}}\right), \\ \left[\mathfrak{K}^{\hat{\rho}},L^{\hat{\mu}\hat{\nu}}\right] &= i\left(g^{\hat{\rho}\hat{\mu}}\mathfrak{K}^{\hat{\nu}} - g^{\hat{\rho}\hat{\nu}}\mathfrak{K}^{\hat{\mu}}\right), \\ \left[L^{\hat{\alpha}\hat{\beta}},L^{\hat{\rho}\hat{\sigma}}\right] &= -i\left(g^{\hat{\beta}\hat{\sigma}}L^{\hat{\alpha}\hat{\rho}} - g^{\hat{\beta}\hat{\rho}}L^{\hat{\alpha}\hat{\sigma}} + g^{\hat{\alpha}\hat{\rho}}L^{\hat{\beta}\hat{\sigma}} - g^{\hat{\alpha}\hat{\sigma}}L^{\hat{\beta}\hat{\rho}}\right), \\ \left[\mathfrak{K}^{\hat{\mu}},P^{\hat{\nu}}\right] &= 2i\left(g^{\hat{\mu}\hat{\nu}}D - L^{\hat{\mu}\hat{\nu}}\right), \end{split}$$

Full conformal algebra

A comprehensive table of the 105 commutation relations among the co-variant components of the Conformal generators is presented below:

	P⊥	$P_{\hat{1}}$	$P_{\hat{2}}$	K ³	\mathcal{D}^{i}	\mathcal{D}^2	jŝ	\mathcal{K}^{i}	K^2	P.	я	Яį	\mathfrak{K}_{2}	R_	D
P₁	0	0	0	$i(\mathbb{C}P_{\perp} - \mathbb{S}P_{\perp})$	iCP_1	iCP₂	0	iSP ₁	iSP ₂	0	−2iCD	$-2i\mathcal{D}^{\hat{1}}$	−2 <i>iK</i> ²	$-2i(\mathbb{S}D - K^3)$	$-iP_{\perp}$
$P_{\hat{1}}$	0	0	0	0	iP↓	0	$-iP_{\hat{2}}$	iP∴	0	0	$2iD^{i}$	2iD	$-2iJ^3$	$2iK^{\hat{1}}$	-iP ₁
P_2	0	0	0	0	0	iP _↓	iPi	0	iP∴	0	$2iD^2$	$2iJ^3$	2iD	$2iK^2$	-iP ₂
Κŝ	$-i\left(\mathbb{C}P_{\hat{-}}-\mathbb{S}P_{\hat{+}}\right)$	0	0	0	$i\mathbb{S}\mathcal{D}^{\hat{1}}-i\mathbb{C}\mathcal{K}^{\hat{1}}$	$i\mathbb{S}\mathcal{D}^{\hat{2}}-i\mathbb{C}\mathcal{K}^{\hat{2}}$	0	$-iSK^{\hat{1}} - iCD^{\hat{1}}$	$-iSK^2 - iCD^2$	$-i\left(\mathbb{S}P_{\hat{-}}+\mathbb{C}P_{\hat{+}}\right)$	$i (SR_{+} - CR_{-})$	0	0	$-i\left(\mathbb{C}\mathfrak{K}_{\downarrow}+\mathbb{S}\mathfrak{K}_{\dot{-}}\right)$	0
\mathcal{D}^{1}	$-i\mathbb{C}P_1$	-iP _↓	0	$-iSD^{\hat{1}} + iCK^{\hat{1}}$	0	$-i\mathbb{C}J^3$	$-i\mathcal{D}^2$	$-iK^3$	$-iSJ^3$	$-iSP_1$	$-i\mathbb{C}R_1$	-iℜ _‡	0	$-iSR_1$	0
\mathcal{D}^2	$-i\mathbb{C}P_2$	0	$-iP_{\downarrow}$	$-iSD^2 + iCK^2$	iCJ ³	0	$i\mathcal{D}^{\hat{1}}$	iSJ ³	-iK ³	$-iSP_2$	$-i\mathbb{C}R_2$	0	$-i\mathfrak{K}_{\downarrow}$	$-iSR_2$	0
Jŝ	0	iP ₂	$-iP_{\hat{1}}$	0	iD^2	$-iD^{\hat{1}}$	0	iK^2	$-iK^{\hat{1}}$	0	0	$i\Re_2$	$-i\Re_{\hat{1}}$	0	0
\mathcal{K}^{i}	$-iSP_1$	−iP_	0	$iSK^{\hat{1}} + iCD^{\hat{1}}$	iK ³	$-iSJ^3$	$-i\mathcal{K}^2$	0	iCJ ³	iCP ₁	$-iSR_1$	-iℜ <u>^</u>	0	iCR ₁	0
$\mathcal{K}^{\hat{2}}$	$-iSP_2$	0	-iP	$iSK^2 + iCD^2$	iSJ ^ŝ	iΚ ³	iK¹	$-iCJ^{\hat{3}}$	0	iCP₂	$-iSR_2$	0	-iR_	iCR ₂	0
P.	0	0	0	$i(SP_{\perp} + CP_{\downarrow})$	iSP ₁	iSP_2	0	$-i\mathbb{C}P_1$	$-i\mathbb{C}P_2$	0	$-2i(SD + K^3)$	$-2i\mathcal{K}^{\hat{1}}$	$-2iK^2$	2iCD	-iP _⊥
я	2iCD	$-2i\mathcal{D}^{\hat{1}}$	$-2i\mathcal{D}^2$	$-i\left(\mathbb{S}\mathfrak{K}_{\perp}-\mathbb{C}\mathfrak{K}_{\perp}\right)$	iCR_1	iCR_2	0	iSRi	iSR_2	$2i(SD + K^3)$	0	0	0	0	ist _‡
яį	$2iD^{\hat{1}}$	-2iD	$-2iJ^{\hat{3}}$	0	iR‡	0	$-i\mathfrak{K}_2$	iR_	0	$2iK^{\hat{1}}$	0	0	0	0	isti
\mathfrak{K}_2	$2iK^2$	$2iJ^3$	-2iD	0	0	iR↓	iR_1	0	ist_	$2iK^2$	0	0	0	0	$i\mathfrak{K}_2$
R	$2i(SD - K^{\frac{1}{3}})$	$-2i\mathcal{K}^{\hat{1}}$	$-2i\mathcal{K}^{\frac{1}{2}}$	$i\left(\mathbb{C}\mathfrak{K}_{\downarrow}+\mathbb{S}\mathfrak{K}_{\dot{-}}\right)$	<i>i</i> SR _i	iSR ₂	0	$-i\mathbb{C}\mathfrak{K}_{\hat{1}}$	$-i\mathbb{C}\mathfrak{K}_{\underline{b}}$	−2iCD	0	0	0	0	iR_
D	iP↓	iPi	iP_2	0	0	0	0	0	0	iP∴	-iℜ _↓	$-i\Re_1$	$-i\mathfrak{K}_2$	-iR	0

<ロ > → □ > → □ > → □ > → □ = → の Q (~)

Conformal algebra in IFD

	P ₀	P ₁	P ₂	K ³	$-K^1$	$-K^2$	J ³	$-J^2$	J^1	P ₃	\Re_0	\Re_1	\Re_2	\Re_3	D
P ₀	0	0	0	iP ₃	iP ₁	iP ₂	0	0	0	0	-2iD	2iK ¹	$-2iJ^1$	-2 <i>i</i> K ³	$-iP_0$
P_1	0	0	0	0	iP ₀	0	-iP ₂	iP ₃	0	0	-2 <i>iK</i> ¹	2iD	$-2iJ^3$	$-2iJ^2$	$-iP_1$
P ₂	0	0	0	0	0	iP ₀	iP ₁	0	iP ₃	0	-2 <i>i</i> K ²	$2iJ^3$	2iD	$2iJ^1$	$-iP_2$
K ³	$-iP_3$	0	0	0	iJ ²	$-iJ^1$	0	iK ¹	iK ²	$-iP_0$	− <i>i</i> ℜ ₃	0	0	$-i\mathfrak{K}_0$	0
$-K^1$	$-iP_1$	$-iP_0$	0	$-iJ^2$	0	$-iJ^3$	iK ²	−iK³	0	0	$-i\mathfrak{K}_1$	$-i\mathfrak{K}_0$	0	0	0
$-K^2$	$-iP_2$	0	$-iP_0$	iJ^1	iJ ³	0	$-iK^1$	0	−iK³	0	$-i\mathfrak{K}_2$	0	$-i\mathfrak{K}_0$	0	0
J^3	0	iP ₂	$-iP_1$	0	−iK²	iK ¹	0	iJ^1	iJ ²	0	0	iℜ2	$-i\mathfrak{K}_1$	0	0
$-J^2$	0	-iP ₃	0	$-iK^1$	iK³	0	$-iJ^1$	0	iJ ³	iP ₁	0	$-i\mathfrak{K}_3$	0	$i\mathfrak{K}_1$	0
J^1	0	0	$-iP_3$	−iK²	0	iK³	$-iJ^2$	$-iJ^3$	0	iP ₂	0	0	− <i>i</i> ℜ₃	iℜ2	0
P ₃	0	0	0	iP ₀	i0	i0	0	$-iP_1$	$-iP_2$	0	-2 <i>iK</i> ³	2iJ ²	$-2iJ^1$	2iD	−iP ₃
\mathfrak{K}_0	2iD	2iK ¹	2iK ²	iR3	$i\mathfrak{K}_1$	iR2	0	0	0	2iK³	0	0	0	0	iℜ0
\mathfrak{K}_1	-2 <i>iK</i> ¹	-2iD	$-2iJ^3$	0	iR ₀	0	$-i\Re_2$	iR3	0	$-2iJ^2$	0	0	0	0	iR ₁
\mathfrak{K}_2	$2iJ^1$	2iJ ³	-2iD	0	0	iR ₀	$i\mathfrak{K}_1$	0	iR3	$2iJ^1$	0	0	0	0	$i\mathfrak{K}_2$
\Re_3	2iK³	2iJ ²	$-2iJ^1$	iR ₀	0	0	0	$-i\mathfrak{K}_1$	$-i\mathfrak{K}_2$	-2iD	0	0	0	0	iR ₃
D	iP ₀	iP ₁	iP ₂	0	0	0	0	0	0	iP ₃	$-i\Re_0$	$-i\mathfrak{K}_1$	-iR ₂	$-i\Re_3$	0

Conformal algebra in LFD

	P_{+}	P ₁	P ₂	K ³	$-F^1$	-F ²	<i>J</i> ³	$-E^1$	-E ²	P_	\mathfrak{K}_+	\Re_1	\Re_2	R_	D
P_{+}	0	0	0	$-iP_+$	0	0	0	iP ₁	iP ₂	0	0	2iF ¹	2iE ²	$-2i(D-K^{3})$	$-iP_+$
P_1	0	0	0	0	iP ₊	0	-iP ₂	iP_	0	0	-2 <i>iF</i> ¹	2iD	$-2iJ^3$	-2 <i>iE</i> ¹	$-iP_1$
P_2	0	0	0	0	0	iP ₊	iP ₁	0	iP_	0	-2 <i>iF</i> ²	$2iJ^3$	2iD	$-2iE^2$	$-iP_2$
K ³	iP ₊	0	0	0	$-iF^1$	$-iF^2$	0	iE ¹	iE ²	-iP_	iR ₊	0	0	− <i>i</i> ℜ_	0
$-F^1$	0	$-iP_+$	0	iF ¹	0	0	iF ²	−iK³	$-iJ^3$	$-iP_1$	0	-iℜ ₊	0	$-i\mathfrak{K}_1$	0
$-F^2$	0	0	$-iP_+$	iF ²	0	0	$-iF^1$	iJ ³	−iK³	$-iP_2$	0	0	-iR+	$-i\mathfrak{K}_2$	0
J^3	0	iP ₂	$-iP_1$	0	-iF ²	iF ¹	0	$-iE^2$	iE ¹	0	0	$i\Re_2$	$-i\Re_1$	0	0
$-E^1$	$-iP_1$	-iP_	0	$-iE^1$	iK³	$-iJ^3$	iE ²	0	0	0	$-i\mathfrak{K}_1$	− <i>i</i> ℜ_	0	0	0
$-E^2$	$-iP_2$	0	-iP_	-iE ²	iJ ³	iK³	-iE1	0	0	0	$-i\Re_2$	0	-iR_	0	0
P_	0	0	0	iP_	iP ₁	iP ₂	0	0	0	0	$-2i(D + K^3)$	2iE ¹	2iE ²	0	-iP_
\mathfrak{K}_+	0	2iF1	2iF ²	-iR+	0	0	0	$i\Re_1$	iℜ2	2i(D + K3)	0	0	0	0	iR+
\Re_1	$-2iF^1$	-2iD	$-2iJ^3$	0	iR+	0	$-i\mathfrak{K}_2$	iR_	0	$-2iE^1$	0	0	0	0	$i\Re_1$
\Re_2	-2 <i>iE</i> ²	2iJ ³	-2iD	0	0	ist+	$i\Re_1$	0	iR_	-2 <i>iE</i> ²	0	0	0	0	iℜ2
R_	2i(D - K ³)	2iE ¹	2iE ²	iR_	$i\Re_1$	$i\Re_2$	0	0	0	0	0	0	0	0	iR_
D	iP⊥	iP ₁	iP₂	0	0	0	0	0	0	iP_	-iℜ±	-iR ₁	-iR2	-iR_	0

Kinematic and dynamic generators of the Conformal group

The generators of conformal transformations:

(translation)
$$P^{\hat{\mu}} = -i\partial^{\hat{\mu}}$$
 (26)

(dilation)
$$D = -ix_{\hat{\mu}}\partial^{\hat{\mu}}$$
 (27)

(rotation)
$$L^{\hat{\mu}\hat{\nu}} = i \left(x^{\hat{\mu}} \partial^{\hat{\nu}} - x^{\hat{\nu}} \partial^{\hat{\mu}} \right)$$
 (28)

$$(SCT) \quad \mathfrak{K}^{\hat{\mu}} = -i \left(2x^{\hat{\mu}} x_{\hat{\nu}} \partial^{\hat{\nu}} - x^2 \partial^{\hat{\mu}} \right) \tag{29}$$

Since
$$\left[\mathfrak{K}^{\hat{+}},x^{\hat{+}}\right]=-i\left(2x^{\hat{+}}x^{\hat{+}}-(x^{\hat{\alpha}}.x_{\hat{\alpha}})\mathbb{C}\right)\to -i(x^{0}.x^{0}+\vec{x}.\vec{x})$$
 as $\delta\to 0$, and $\left[\mathfrak{K}^{\hat{+}},x^{\hat{+}}\right]=-i\left(2x^{\hat{+}}x^{\hat{+}}-(x^{\hat{\alpha}}.x_{\hat{\alpha}})\mathbb{C}\right)\to -i(2x^{+}.x^{+})$ as $\delta\to\pi/4$, the conformal generator (LF time component) \mathfrak{K}_{-} is Kinematic in LFD, but Dynamic in IFD. And $\left[D,x^{\hat{+}}\right]=-ix^{\hat{+}}$, so D is always Kinematic in both IFD and LFD.

Interpolation angle Kinematic Dynamic $\mathcal{K}^{\hat{1}} = -J^2, \ \mathcal{K}^{\hat{2}} = J^1, \ J^3, P^1, P^2, P^3, \ D$ $\mathcal{D}^{\hat{1}} = -K^1$, $\mathcal{D}^{\hat{2}} = -K^2$, K^3 , P^0 , \mathfrak{K}_0 , \mathfrak{K}_1 , \mathfrak{K}_2 , \mathfrak{K}_3 $\delta = 0$ $K^{\hat{1}}$, $K^{\hat{2}}$, J^{3} , P^{1} , P^{2} , $P_{\hat{-}}$, D $\mathcal{D}^{\hat{1}}, \mathcal{D}^{\hat{2}}, K^3, P_{\hat{+}}, \mathfrak{K}_{\hat{+}}, \mathfrak{K}_{\hat{1}}, \mathfrak{K}_{\hat{2}}, \mathfrak{K}_{\hat{-}}$ $0 < \delta < \pi/4$ $\mathcal{D}^{\hat{1}} = -F^1$, $\mathcal{D}^{\hat{2}} = -F^2$, P_+ , \mathfrak{K}_+ , \mathfrak{K}_1 , \mathfrak{K}_2 $\mathcal{K}^{\hat{1}} = -E^1, \ \mathcal{K}^{\hat{2}} = -E^2, \ J^3, K^3, P^1, P^2, P_-, D, \Re_ \delta = \pi/4$

Hariprashad Ravikumar