

Les dipôles électrostatique et magnétostatique

FIGURE XIV.1 – Champ magnétique terrestre

PLAN DU CHAPITRE

I	Le	dipôle électrostatique	2
	I.1	Définition	2
	I.2	Le potentiel électrostatique dans l'approximation dipolaire	3
	I.3	Le champ électrostatique dipolaire	3
	I.4	Topographie des lignes de champ - isopotentielles	4
	I.5	Actions subies par un dipôle plongé dans un champ électrique	5
	I.6	Energie potentielle d'interaction avec un champ extérieur	7
II	Le	dipôle magnétostatique	8
	II.1	Existence du dipôle magnétique - caractérisation	8
	II.2	Le champ magnétique en approximation dipôlaire	11
	II.3	Actions mécaniques subies par un dipôle magnétique plongé dans un champ magné-	
		tique extérieur	14
	II.4	Energie potentielle d'interaction d'un dipôle dans un champ magnétique	17

I Le dipôle électrostatique

I.1 Définition

a - Le modèle du dipôle électrostatique - moment dipolaire

On appelle dipôle électrostatique, un ensemble de deux charges ponctuelles de signes opposés et de même valeur absolue placées en deux points N et P distants de a=NP (=cste pour un dipôle rigide) :

– **Définition I-1:** Moment dipôlaire –

On appelle $old{moment dipolaire}$ la grandeur $\overrightarrow{p}=q\overrightarrow{NP}$

 $NB : [p] \equiv C.m$

Remarque I-1: -

- ▶ en général, la théorie du dipôle est utile en physicochimie dans l'analyse des liaisons des édifices chimiques \Longrightarrow la distance NP est faible et la charge q est de l'ordre de e \Longrightarrow on utilise une plus unité adaptée : le Debye avec $1D=3,33.10^{-30}~C.m$
- ▶ le moment dipolaire indique le caractère polaire des liaisons dans les édifices chimiques mettant en jeu des atomes différentes présentant une forte différence d'électronégativité; par exemple H_2O : 1,85 D, HCl: 1,07 D, etc.. (schéma à faire)

b - Analyse des symétries et invariances - choix des coordonnées d'analyse

Orientons conventionellement le moment dipôlaire selon l'axe $\left[Oz\right)$;

► ANALYSE DES INVARIANCES :

Le dipôle est invariant par rotation autour de l'axe $\left[Oz\right)$

CONSÉQUENCE : on peut se limiter à une étude dans n'importe quel plan contenant l'axe $[Oz) \Rightarrow le$ problème est à 2D. En outre, φ n'étant pas variable du problème, on adoptera les coordonnées polaires (ρ, θ) donc :

$$V(
ho, heta)$$
 et $\overrightarrow{E}(
ho, heta)$

FIGURE XIV.2 – Eléments de symétrie d'un dipôle électrostatique

► Analyse des symétries :

$$\begin{cases} \text{le plan de symétrie } [O, \overrightarrow{e_z}, \overrightarrow{e_y}) = \Pi^+ \ \Rightarrow \ \overrightarrow{E}(M \in \Pi^+) \in \Pi^+ \Longrightarrow \overrightarrow{E}(\rho, \theta) = E_\rho \cdot \overrightarrow{e_\rho} + E_\theta \cdot \overrightarrow{e_\theta} \\ \text{le plan de d'antisymétrie } [O, \overrightarrow{e_x}, \overrightarrow{e_y}) = \Pi^- \ \Rightarrow \ \overrightarrow{E}(M \in \Pi^-) \perp \Pi^- \Longrightarrow \overrightarrow{E}(\rho, \theta) = \pm \frac{\pi}{2}) = E_\theta \cdot \overrightarrow{e_\theta} \end{cases}$$

I.2 Le potentiel électrostatique dans l'approximation dipolaire

On cherche le potentiel électrostatique engendré en un point M par le dipôle (N(-q);P(+q)) centré en O. Compte tenu des résultats de l'analyse de la topographie du champ, la suite de l'analyse peut être faite dans un tout plan contenant le dipÖle en coordonnées polaires (ρ,θ) .

Par définition, le potentiel résulte de la superposition des potentiels créés par chacune des charges (en raison de la linéarité de l'équation du potentiel i.e. équation de Laplace en dehors des charges) :

FIGURE XIV.3 – Recherche du potentiel dipolaire

$$V(M) = \frac{q}{4\pi\epsilon_0} \frac{1}{PM} - \frac{q}{4\pi\epsilon_0} \frac{1}{NM} = \frac{q}{4\pi\epsilon_0} \left[\frac{1}{PM} - \frac{1}{NM} \right]$$

$$\text{Par ailleurs} : \begin{cases} \overrightarrow{PM} = \overrightarrow{PO} + \overrightarrow{OM} = -\frac{a}{2}\overrightarrow{e_z} + \rho\overrightarrow{e_\rho} \\ \overrightarrow{NM} = \overrightarrow{NO} + \overrightarrow{OM} = \frac{a}{2}\overrightarrow{e_z} + \rho\overrightarrow{e_\rho} \end{cases}$$

On pose l'approximation dipolaire soit : $\rho = OM >> a$ (dipôle petit face aux autres distances du PB).

 $\implies \text{En développant au premier ordre en } a \text{ il vient } : \begin{cases} PM = \sqrt{\rho^2 + \frac{a^2}{4} - a\rho\cos\theta} \simeq \rho - \frac{a}{2}\cos\theta \\ NM = \sqrt{\rho^2 + \frac{a^2}{4} + a\rho\cos\theta} \simeq \rho + \frac{a}{2}\cos\theta \end{cases}$ ainsi :

$$V(\rho,\theta) \simeq \frac{q}{4\pi\epsilon_0 \rho} \left[\frac{1}{1 - \frac{a}{2\rho}\cos\theta} - \frac{1}{1 + \frac{a}{2\rho}\cos\theta} \right] \simeq \frac{q}{4\pi\epsilon_0} \frac{a\cos\theta}{\rho^2}$$

En posant la norme du moment dipolaire p=qa, on obtient finalement :

$$V(\rho, \theta) = \frac{1}{4\pi\epsilon_0} \frac{p\cos\theta}{\rho^2} = \frac{1}{4\pi\epsilon_0} \frac{\overrightarrow{p} \cdot \overrightarrow{e_\rho}}{\rho^2}$$

 $\frac{\text{COMMENTAIRES}}{\rho} : \text{la dépendance du potentiel en } \frac{1}{\rho^2} \text{ est différente de celle de la charge ponctuelle } \frac{1}{\rho} \Longrightarrow \text{décroissance}$ plus rapide du potentiel dipolaire.

1.3 Le champ électrostatique dipolaire

a - Expression

Le champ s'obtient naturellement à l'aide de la relation champpotentiel avec :

$$\overrightarrow{E} = -\overrightarrow{grad}V(\rho, \theta) = \underbrace{-\frac{\partial V}{\partial \rho}}_{=E_{\rho}} \overrightarrow{e_{\rho}} \underbrace{-\frac{1}{\rho} \frac{\partial V}{\partial \theta}}_{=E_{\theta}} \overrightarrow{e_{\theta}}$$

La calcul donne sans peine les composantes polaires suivantes pour le champ électrique :

 $\label{eq:Figure} {\rm Figure} \ {\sf XIV.4-Composantes} \ {\sf du} \ {\sf champ} \ {\sf dipolaire}$

$$\begin{cases} E_{\rho} = \frac{2}{4\pi\epsilon_{0}} \frac{p \cos \theta}{\rho^{3}} \\ E_{\theta} = \frac{1}{4\pi\epsilon_{0}} \frac{p \sin \theta}{\rho^{3}} \end{cases} \implies \overrightarrow{E} = \frac{p}{4\pi\epsilon_{0}\rho^{3}} \begin{pmatrix} 2\cos \theta \\ \sin \theta \end{pmatrix}_{\vec{e_{\rho}}, \vec{e_{\theta}}}$$

<u>Autre formulation</u>: on montre que l'on peut exprimer de manière plus synthétique le champ électrique dipôlaire par la relation vectorielle :

$$\overrightarrow{E} = \frac{1}{4\pi\epsilon_0} \left[\frac{3(\overrightarrow{p} \cdot \overrightarrow{e_\rho})\overrightarrow{e_\rho} - \overrightarrow{p}}{\rho^3} \right]$$

b - Positions de Gauss

On retiendra les positions particulières (ρ,θ) dites "positions de Gauss" suivantes :

ightharpoonup Première position de Gauss $\theta = 0, \pi$

$$\overrightarrow{E_1}(\rho;0) = \frac{p}{2\pi\epsilon_0} \frac{1}{\rho^3} \overrightarrow{e_\rho}|_{\theta=0} = \frac{p}{2\pi\epsilon_0} \frac{1}{\rho^3} \overrightarrow{e_z}$$

$$\overrightarrow{E_1}(\rho;\pi) = -\frac{p}{2\pi\epsilon_0} \frac{1}{\rho^3} \overrightarrow{e_\rho}|_{\theta=\pi} = \frac{p}{2\pi\epsilon_0} \frac{1}{\rho^3} \overrightarrow{e_z}$$

▶ Seconde position de Gauss $\theta = \pm \frac{\pi}{2}$

$$\overrightarrow{E_2}(\rho; \pm \frac{\pi}{2}) = -\frac{p}{4\pi\epsilon_0} \frac{1}{\rho^3} \overrightarrow{e_z}$$

FIGURE XIV.5 – Positions de Gauss du champ dipôlaire

1.4 Topographie des lignes de champ - isopotentielles

Les lignes de champ s'obtiennent par la méthode déjà exploitée dans le cours sur la loi de Coulomb :

$$\overrightarrow{E} \wedge \overrightarrow{d\rho} = 0 \implies$$

$$\begin{pmatrix} E_{\rho} \\ E_{\theta} \\ 0 \end{pmatrix} \wedge \begin{pmatrix} d\rho \\ \rho \cdot d\theta \\ 0 \end{pmatrix} = 0$$

soit:

$$\rho \cdot E_{\rho} d\theta - E_{\theta} d\rho = 0 \implies \frac{E_{\rho}}{E_{\theta}} \cdot d\theta = \frac{d\rho}{\rho} \implies 2 \frac{\cos \theta}{\sin \theta} = \frac{d\rho}{\rho}$$

donc:

$$\ln\left(\sin^2\theta\right) = \ln\left(\frac{\rho}{\rho_{ch}}\right) \implies$$

 $\rho = \rho_{ch} \cdot \sin^2 \theta$ Equation des lignes de champ

 \mathbf{NB} : chaque valeur de constante K_{ch} identifie une ligne de champ particulière.

L'équation des isopotentielles s'obtient plus rapidement en posant simplement :

 $V(\rho,\theta) = \frac{1}{4\pi\epsilon_0} \frac{p\cos\theta}{\rho^2} = K_p \implies \rho = \sqrt{\frac{p}{4\pi\epsilon_0 K_p}} \sqrt{|\cos\theta|^n} \text{ dipôle \'electrostatique}$

$$\rho = \rho_0 \cdot \sqrt{|\cos \theta|}$$
 Equation des isopotentielles

1.5 Actions subies par un dipôle plongé dans un champ électrique

a - Cas d'un champ électrique extérieur uniforme

Les éléments résultants de la force électrique appliquée au dipôle sont :

FIGURE XIV.7 – Actions d'un champ électrique uniforme sur un dipôle

Ainsi, le dipôle est soumis à un couple de forces.

 $\underline{\text{Conséquences "Mécaniques":}} \text{ dans un champ électrique uniforme, un dipôle ne peut subir d'accélération de son centre de masse } O, \text{ mais en revanche peut subir une rotation.}$

b - Cas d'un champ électrique extérieur non uniforme

Cette situation correspond au cas le plus général pour lequel $\overrightarrow{E}(P) \neq \overrightarrow{E}(M)$. On pose les coordonnées suivantes :

$$\begin{cases} C(x, y, z) \\ P\left(x + \frac{\Delta x}{2}, y + \frac{\Delta y}{2}, z + \frac{\Delta z}{2}\right) \\ N\left(x - \frac{\Delta x}{2}, y - \frac{\Delta y}{2}, z - \frac{\Delta z}{2}\right) \end{cases}$$

soit avec :
$$\overrightarrow{NP} = \begin{pmatrix} \Delta x \\ \Delta y \\ \Delta z \end{pmatrix}$$

CAS DE LA RÉSULTANTE :

La composante selon x s'écrit donc :

$$R_x = qE_x(P) - qE_x(N) = qE_x\left(x + \frac{\Delta x}{2}, y + \frac{\Delta y}{2}, z + \frac{\Delta z}{2}\right) - qE_x\left(x - \frac{\Delta x}{2}, y - \frac{\Delta y}{2}, z - \frac{\Delta z}{2}\right)$$

En supposant Δx , Δy , Δz petits face aux autres distances à considérer dans l'analyse i.e. x,y,z, on peut procéder au développements suivants au premier ordre pour la composante du champ :

$$\begin{cases} E_x(P) \simeq E_x(C) + \frac{\partial E_x}{\partial x} \Big|_C \cdot \frac{\Delta x}{2} + \frac{\partial E_x}{\partial y} \Big|_C \cdot \frac{\Delta y}{2} + \frac{\partial E_x}{\partial z} \Big|_C \cdot \frac{\Delta z}{2} \\ E_x(N) \simeq E_x(C) + \frac{\partial E_x}{\partial x} \Big|_C \cdot \frac{-\Delta x}{2} + \frac{\partial E_x}{\partial y} \Big|_C \cdot \frac{-\Delta y}{2} + \frac{\partial E_x}{\partial z} \Big|_C \cdot \frac{-\Delta z}{2} \end{cases}$$

En reportant dans le calcul de R_x il vient :

$$R_{x} = q \left(\frac{\partial E_{x}}{\partial x} \Big|_{C} \Delta x + \frac{\partial E_{x}}{\partial y} \Big|_{C} \Delta y + \frac{\partial E_{x}}{\partial z} \Big|_{C} \Delta z \right) = \underbrace{q \left(\frac{\Delta x}{\Delta y} \right)}_{=\overrightarrow{p}} \cdot \underbrace{\left(\frac{\partial E_{x}}{\partial x} \right)}_{\overrightarrow{\partial E_{x}}} = \left(\overrightarrow{p} \cdot \overrightarrow{grad} \right) E_{x}$$

en exploitant la notation symbolique : $\overrightarrow{p} \cdot \overrightarrow{grad} = \begin{pmatrix} p_x \frac{\partial}{\partial x} \\ p_y \frac{\partial}{\partial y} \\ p_z \frac{\partial}{\partial z} \end{pmatrix}$

La même démarche est évidemment reconduite pour les composantes R_y et R_z de la résultante. On obtient finalement :

$$\overrightarrow{R} = \begin{pmatrix} (\overrightarrow{p} \cdot \overrightarrow{grad}) E_x \\ (\overrightarrow{p} \cdot \overrightarrow{grad}) E_y \\ (\overrightarrow{p} \cdot \overrightarrow{grad}) E_z \end{pmatrix} = (\overrightarrow{p} \cdot \overrightarrow{grad}) \overrightarrow{E}$$

Cas du moment :

Pour le moment résultant, en limitant le développement à l'ordre 1, on retrouve le calcul obtenu dans le cas du champ uniforme, soit :

$$\overrightarrow{M} \simeq \overrightarrow{p} \wedge \overrightarrow{E}(O)$$

Remarque I-2: Déplacement vers les Champs "forts" ————

on constate que contrairement au cas du champ uniforme, le dipôle subit ici une résultante de force non nulle due à l'inhomogénéité du champ. D'après l'expression de la résultante, on observe que le dipôle se dirige vers les zones de champ fort donc vers les sources si ces dernières sont des charges positives. (cf. expérience du filet d'eau attiré par une règle électrisée)

<u>ILLUSTRATION</u>: déviation d'un filet d'eau plongé dans le champ électrique engendré par un objet électrisé. EN LIVE!!!.

I.6 Energie potentielle d'interaction avec un champ extérieur

<u>Hypothèses</u> : on considère ici le dipôle plongé dans un champ quelconque et l'on négligera dans ce dernier la contribution même du champ dipolaire.

L'énergie potentielle du dipôle plongé dans le champ dérivant du potentiel V s'écrit :

$$\epsilon_p = qV(P) - qV(N) \stackrel{\text{1er ordre}}{\simeq} qdV = q \underbrace{\overrightarrow{grad}V}_{=-\overrightarrow{E}} \cdot \underbrace{dl}_{=\overrightarrow{NP} \ ici}$$

soit:

$$\overrightarrow{\epsilon_p} = -q\overrightarrow{E} \cdot \overrightarrow{NP} = -\overrightarrow{p} \cdot \overrightarrow{E} = -pE\cos\theta$$

LIEN FORCE - ÉNERGIE POTENTIELLE

Nous avons vu qu'un dipôle plongé dans un champ était soumis à une force d'expression (non nulle uniquement si le champ est non uniforme) :

$$\overrightarrow{R} = \left(\overrightarrow{p} \cdot \overrightarrow{grad}\right) \overrightarrow{E} \stackrel{\overrightarrow{p} \text{ rigide}}{=} \overrightarrow{grad} \left(\overrightarrow{p} \cdot \overrightarrow{E}\right) = -\overrightarrow{grad}(\epsilon_p) = \overrightarrow{grad}(pE\cos\theta)$$

soit la relation force-énergie potentielle : A RETENIR :

$$\overrightarrow{R} = -\overrightarrow{grad}\epsilon_p$$

 ${f NB}$: cette relation est en fait totalement générale pour tout système dont l'énergie mécanique est conservée; supposons un système soumis à une force dérivant d'une énergie potentielle donc $\overrightarrow{F}=-\overrightarrow{grad}\epsilon_p$. Appliquons le théorème de l'énergie cinétique élémentaire à ce système

$$dE_c = \delta W = \overrightarrow{F} \cdot \overrightarrow{dl} = -\overrightarrow{grad}E_p \cdot \overrightarrow{dl} = -dE_p \implies d(E_c + E_p) = 0$$

soit :

$$E_m = cste$$

- Remarque I-3: Prévision énergétique de l'équilibre du dipôle —

Supposons le dipôle plongé dans un champ permanent :

On peut noter les positions remarquables suivantes :

- $\alpha = 0 \Rightarrow \epsilon_p = -\overrightarrow{p} \cdot \overrightarrow{E} = -pE$ est minimum et correspond donc à une position d'équilibre stable.
- $\alpha = \pi \Rightarrow \epsilon_p = -\overrightarrow{p} \cdot \overrightarrow{E} = +pE$ est maximum et correspond donc à une position d'équilibre instable.

Il Le dipôle magnétostatique

II.1 Existence du dipôle magnétique - caractérisation

a - Le monopole magnétique n'existe pas à l'état naturel (pour l'instant!) - dipôle magnétique

QUESTION: la charge magnétique (monopôle magnétique) existe-t-elle?

EN ÉLECTROSTATIQUE:

Prenons la plus petite entité électrostatique, i.e. la charge élémentaire q=e. Elle produit un champ isotrope radial :

$$\overrightarrow{E}(r) = \frac{1}{4\pi\epsilon_0} \frac{q}{r^2} \cdot \overrightarrow{e_r}$$

Appliquons le théorème de Gauss en choisissant une surface ${\mathcal S}$ fermée englobant cette entité élémentaire, il vient :

$$\oint\limits_{S} \overrightarrow{E} \cdot \overrightarrow{dS} = \frac{e}{\epsilon_0} \neq 0$$

EN MAGNÉTOSTATIQUE:

En revanche, la même démarche en magnétostatique reviendrait à rechercher le flux engendré par un monopôle magnétique, mais le flux magnétique sur une surface fermée est toujours nul quelque soit les sources contenues dans celle-ci :

$$\oint\limits_{S} \overrightarrow{B} \cdot \overrightarrow{dS} \stackrel{\forall \mathcal{S}}{=} 0$$

⇒ Ainsi, la plus petite entité magnétique ne peut être un monopôle magnétique.

A RETENIR:

Définition II-1: Source magnétique élémentaire —

La plus petite entité "source magnétique" est forcément une boucle de courant (donc circuit fermé). On la prendra de très petite dimension.

Petite boucle de courant ≡ dipôle magnétique

 $\overline{ ext{Traduction Locale}}$: comparons les équations locales de divergence des champs \overrightarrow{E} et \overrightarrow{B}

$$\iiint\limits_{\mathcal{V}/S} div \, \overrightarrow{E} \cdot d\tau = \oiint\limits_{S} \overrightarrow{E} \cdot \overrightarrow{dS} = \frac{Q_{int}}{\epsilon_0} = \frac{q}{\epsilon_0} \overset{\text{cas g\'en\'eral}}{\neq} 0 \Longrightarrow div \, \overrightarrow{E} = \frac{\rho}{\epsilon_0} \text{ pr\'evoit l'existence d'un monopôle \'electrique}$$

$$\iiint\limits_{\mathcal{V}/S} div \overrightarrow{B} \cdot d\tau = \oiint\limits_{S} \overrightarrow{B} \cdot \overrightarrow{dS} = 0 \quad \forall S \text{ ferm\'ee} \Longrightarrow div \overrightarrow{B} = 0 \text{ interdit l'existence d'un monopôle magn\'etique}$$

Ceci permet d'illustrer de manière assez imagée la signification de l'opérateur divergence. Celle-ci étant toujours nulle pour le champ magnétique, les lignes de champ se referment systématiquement, ce qui n'est par le cas pour le champ électrique. Dans le cas du champ magnétique, les lignes de champ «ne divergent donc pas».

Remarque II-1: MONOPÔLE MAGNÉTIQUE -

En 1931, Paul Dirac démontre l'existence possible du monopole magnétique, mais il faudra attendre 2009 pour que deux équipes de Grenoble et Berlin (Institut Laue-Langevin de Grenoble et centre Helmholtz de Berlin) observe des quasiparticules (assemblages d'ions) possédant des propriétés de monopôles magnétiques (transition en spins opposés) pour des groupes d'ions.

b - Moment magnétique d'un circuit quelconque (MP2I)- Généralisation microscopique

- ► APPROCHE MACROSCOPIQUE DU MOMENT DIPOLAIRE :
- ► APPROCHE MICROSCOPIQUE DU MOMENT DIPOLAIRE :

Définition II-2: MOMENT MAGNÉTIQUE

Tout circuit de surface orientée \overrightarrow{S} parcouru par un courant I est caractérisé par son moment magnétique $\overrightarrow{\mathcal{M}}$ défini par :

$$\overrightarrow{\mathcal{M}} = I \overrightarrow{S} = I \iint_{S} \overrightarrow{dS}$$

Unité : $[\mathcal{M}] = I \cdot L^2 \longrightarrow A \cdot m^2$

FIGURE XIV.8 – Moment dipolaire d'un circuit élémentaire

<u>IMPORTANT</u>: Le moment magnétique est une caractéristique de la source d'un champ magnétique (cf MP2I)

QUESTION : comment décrire le magnétisme de la matière (aimant permanent, aimant induit dans le fer doux par exemple)?

RÉPONSE : le mouvement des électrons dans la matière constitue des courants sources du magnétisme perceptible à l'échelle macroscopique. On parle de moment magnétique orbital.

HYPOTHÈSE : modèle classique de l'électron subissant la force de Coulomb et en orbite circulaire autour du noyau.

Le moment cinétique électronique s'écrit :

$$\overrightarrow{L} = \overrightarrow{r} \wedge \overrightarrow{p} = m_e \overrightarrow{r} \wedge \overrightarrow{v} = m_e r^2 \Omega \cdot \overrightarrow{n}$$

avec \overrightarrow{n} vecteur normal au plan du mouvement, r son rayon, et Ω la vitesse angulaire $\frac{v}{r}$

On peut interpréter ce mouvement comme un courant local dans la matière d'intensité : $I_e=\frac{-e}{T}=\frac{-e\Omega}{2\pi}$ Ainsi, l'électron "classique" peut être caractérisé par un moment dipolaire microscopique "classique" :

$$\overrightarrow{M_e} = I_e \overrightarrow{S} = I_e \pi r^2 \overrightarrow{n} = -\frac{e\Omega}{2\pi} \cdot \pi r^2 \overrightarrow{n} = -\frac{e\Omega r^2}{2} \overrightarrow{n} = -\frac{e}{2} \overrightarrow{r} \wedge \overrightarrow{v} = -\frac{e}{2m_e} \overrightarrow{L}$$

On constate que :

$$\overrightarrow{M_e}=\gamma_e\overrightarrow{L}$$
 avec $\gamma_e=-rac{e}{2m_e}$ rapport gyromagnétique de l'électron

Pour un atome complet comportant Z électrons, le moment magnétique $\operatorname{\mathbf{dit}}$ $\operatorname{\mathbf{orbital}}$ est obtenu par sommation :

$$\overrightarrow{M_Z} = -\sum_{i=1}^Z \frac{e}{2} \overrightarrow{r_i} \wedge \overrightarrow{v_i} = \gamma_e \overrightarrow{L_Z} \qquad \text{avec } \overrightarrow{L_Z} \text{ moment cinétique total de l'atome}.$$

Remarque II-2: Moment de spin –

Même en l'absence de mouvement de rotation autour du noyau engendrant un moment magnétique orbital, l'électron possède un moment cinétique intrinsèque, où moment cinétique de spin. L'appellation "spin" fut choisie par les physiciens de l'époque Goudsmit et Uhlenbeck (1925) qui pensaient initialement que ce moment cinétique était lié à la rotation propre de la particule. Cette propriété se révéla en réalité purement quantique, c'est à dire sans équivalent classique.

La projection de ce moment cinétique suivant [Oz) ne peut prendre que deux valeurs qui sont quantifiés :

$$S_z = m_s \hbar = \pm \frac{\hbar}{2}$$

Le rapport gyromagnétique de spin vaut $\gamma_s \simeq g\gamma_e$, avec $g \simeq 2$ facteur de Landé (1921), et permet de dégager le moment magnétique de spin de l'électron, appelé également Magnéton de Bohr μ_b :

$$\mu_{s_z} = \gamma_s S_z = \mp \frac{e}{m} \frac{\hbar}{2} = \mp \mu_b = \mp 9,26.10^{-24} \simeq \pm 10^{-23} A.m^2$$

Cette propriété magnétique intrinsèque de l'électron fut mise en évidence en 1922 par Stern et Gerlach dans l'expérience qui porte leur nom.

En outre, l'étude quantique de l'atome donne le même ordre de grandeur pour les moments cinétiques électroniques qu'ils soient de nature orbitalaire ou intrinsèque (spin), soit :

$$L_z \sim S_z \sim \hbar = \frac{h}{2\pi}$$

donc:

$$M_z \sim \mu_b = \frac{e\hbar}{2m}$$

Ainsi, le moment magnétique d'un aimant permanent résulte des contributions de tous les moments magnétiques microscopiques. Pour un solide le nombre d'atomes par unité de volume est de l'ordre de $n\sim 10^{29}~m^{-3}$, ainsi le moment magnétique total par unité de volume est de l'ordre de :

$$M_{macro} \sim n\mu_b \sim 10^6 \ A.m^2$$

c - Ordres de grandeur

- Moment magnétique de la Terre (aimant terrestre) : $M=7,5.10^{22}~A.m^2$
- Moment magnétique d'une spire de rayon R=5~cm parcouru par un courant $I=1A: M\simeq 8.10^{-3}~A.m^2$
- \bullet Moment magnétique intrinsèque de l'électron : $M_e=\mu_b=9.10^{-24}~A.m^2$
- Moment magnétique intrinsèque du proton : $M_p = 5.10^{-27}~A.m^2 << \mu_b$

II.2 Le champ magnétique en approximation dipôlaire

a - Construction par analogie - expressions du champ magnétique dipolaire

Observons et comparons les spectres d'un dipôle électrique et d'une boucle de courant, ainsi que leur éléments de symétrie :

FIGURE XIV.10 – Lignes de champ électrique d'un ensemble de deux charges opposées

FIGURE XIV.9 – Lignes de champ magnétique d'une spire de courant

- On constate que les lignes de champ magnétique d'une boucle de courant présentent une topographie ressemblant à celle du champ électrique d'un ensemble de deux charges, dès lors que l'on n'est pas trop près du dipôle et de la spire.
- ullet Par ailleurs, on constate l'analogie complète des symétries, en veillant à inverser les rôles de Π^+ et Π^-

	Champ \overrightarrow{E}	Champ \overrightarrow{B}
Π^+	$\overrightarrow{E} \equiv sym/\Pi^+$	$\overrightarrow{B} \equiv antisym/\Pi^+$
П-	$\overrightarrow{E} \equiv antisym/\Pi^-$	$\overrightarrow{B} \equiv sym/\Pi^-$

• Enfin, la spire de courant présente une invariance par rotation selon φ comme le système de deux charges $\Longrightarrow \varphi$ n'est pas variable du champ magnétique et l'on peut décrire le champ magnétique de la spire dans un plan en adoptant les coordonnées polaires (ρ, θ) .

 $\underline{ ext{ID\'eE}}$: on prolonge l'analogie en posant que le champ magnétique engendré par la boucle de courant à grande distance est totalement analogue au champ électrique engendré par un dipôle électrostatique \Rightarrow on parlera de champ magnétique dipolaire de moment dipolaire \overrightarrow{M} (le moment magnétique).

A RETENIR:

	Dipôle électrique	Dipôle magnétique
constante	$\frac{1}{\epsilon_0}$	μ_0
Grandeur caractéristique	\overrightarrow{p}	\overrightarrow{M}
Champ à grande distance forme 1	$\begin{cases} E_{\rho} = \frac{2}{4\pi\epsilon_0} \frac{p\cos\theta}{\rho^3} \\ E_{\theta} = \frac{1}{4\pi\epsilon_0} \frac{p\sin\theta}{\rho^3} \end{cases}$	$\begin{cases} B_{\rho} = \frac{\mu_0}{4\pi} \frac{2\mathcal{M}\cos\theta}{\rho^3} \\ B_{\theta} = \frac{\mu_0}{4\pi} \frac{\mathcal{M}\sin\theta}{\rho^3} \end{cases}$
Champ à grande distance forme 2		$\overrightarrow{B} = \frac{\mu_0}{4\pi} \left[\frac{3(\overrightarrow{\mathcal{M}} \cdot \overrightarrow{e_r})\overrightarrow{e_r} - \overrightarrow{\mathcal{M}}}{\rho^3} \right]$

b - Equations des lignes de champ

Par définition, une ligne de champ est un tracé colinéaire en tout point au champ de vecteur, soit pour un élément \overrightarrow{dl} d'une ligne de champ :

$$\overrightarrow{B} \wedge \overrightarrow{dl} = 0$$

En coordonnées sphériques réduites au plan $\varphi = 0$, cette relation donne :

$$\rho B_{\rho} d\theta - B_{\theta} d\rho = 0$$

soit:

$$\frac{d\rho}{B_{\rho}} = \frac{\rho d\theta}{B_{\theta}}$$

qui donne :

$$\frac{d\rho}{2\cos\theta} = \frac{\rho d\theta}{\sin\theta}$$

et après séparation de variables :

$$\frac{d\rho}{\rho} = \frac{2\cos\theta}{\sin\theta}d\theta$$

La résolution est immédiate :

$$\ln \rho = \ln \sin^2 \theta + \ln K$$

soit finalement l'équation sphérique de la ligne de champ caractérisée par la constante K :

$$\rho = K_{ch} \sin^2 \theta$$

La représentation graphique des lignes de champ du dipôle magnétique porte le nom de diagramme magnétique dipolaire (cf. figure ci-dessous).

FIGURE XIV.11 – Topographie des lignes de champ d'un dipôle magnétique

II.3 Actions mécaniques subies par un dipôle magnétique plongé dans un champ magnétique extérieur.

a - Cas d'un champ magnétique extérieur uniforme

On considère un circuit filiforme C, parcouru par un courant I; ce circuit est plongé dans un champ magnétique uniforme constant \overrightarrow{B} :

FIGURE XIV.12 -

La force de Laplace élémentaire s'exerçant sur un élément de contour \overrightarrow{dl} s'écrit :

$$d\overrightarrow{F_L} = I\overrightarrow{dl} \wedge \overrightarrow{B}$$

d'où la résultante intégrée sur le circuit :

$$\overrightarrow{F_L} = I \underbrace{\left(\oint_{\mathcal{C}} \overrightarrow{dl} \right)}_{\overrightarrow{0}} \wedge \overrightarrow{B} = \overrightarrow{0}$$

De la même manière, on peut évaluer le moment des forces de Laplace par rapport à un point O :

$$\overrightarrow{dM}_O = \overrightarrow{r} \wedge \overrightarrow{dF}_L = \overrightarrow{r} \wedge \left(I \overrightarrow{dl} \wedge \overrightarrow{B} \right)$$

soit en intégrant sur le circuit :

$$\overrightarrow{M}_O = I \oint_{\mathcal{C}} \overrightarrow{r} \wedge \left(\overrightarrow{dl} \wedge \overrightarrow{B} \right)$$

$$\underline{\text{Formulaire}}: \quad \vec{A} \wedge \left(\vec{B} \wedge \vec{C} \right) = \left(\vec{A} \cdot \vec{C} \right) \cdot \vec{B} - \vec{C} \cdot \left(\vec{A} \cdot \vec{B} \right)$$

On obtient donc pour le moment de force de Laplace :

$$\overrightarrow{M}_O = I \oint\limits_{\mathcal{C}} \left(\overrightarrow{r} \cdot \overrightarrow{B} \right) \cdot \overrightarrow{dl} - I \overrightarrow{B} \cdot \oint\limits_{\mathcal{C}} \overrightarrow{r} \cdot \underbrace{\overrightarrow{dl}}_{=\overrightarrow{dr}}$$

or $\overrightarrow{r}\cdot\overrightarrow{dl}=\frac{1}{2}\;d\left(r^{2}\right)$ qui entraı̂ne : $\oint d\left(r^{2}\right)=0$

$$\overrightarrow{M}_O = I \cdot \oint\limits_{\mathcal{C}} \left(\overrightarrow{r'} \cdot \overrightarrow{B} \right) \cdot \overrightarrow{dl}$$

$$\begin{array}{ll} \underline{\text{FORMULAIRE}}: & \oint\limits_{\mathcal{C}} \varphi \cdot \overrightarrow{dl} = \iint\limits_{S/\mathcal{C}} \overrightarrow{dS} \wedge \overrightarrow{grad} \varphi \\ \text{soit ici en posant}: \varphi = \overrightarrow{r} \cdot \overrightarrow{B} \end{array}$$

on obtient :

$$\overrightarrow{M}_{O} = I \iint \overrightarrow{dS} \wedge \overrightarrow{grad} \left(\overrightarrow{r} \cdot \overrightarrow{B} \right)$$

Or si \overrightarrow{B} uniforme, on a la relation : $\overrightarrow{grad}\left(\overrightarrow{r}\cdot\overrightarrow{B}\right)=\overrightarrow{B}$ d'où:

$$\overrightarrow{M}_O = I \underbrace{\left(\iint \overrightarrow{dS} \right)}_{\overrightarrow{S}} \wedge \overrightarrow{B}$$

soit:

$$\underbrace{\overrightarrow{M}}_{\text{indépendant du point de calcul}} = I \overrightarrow{S} \wedge \overrightarrow{B} = \overrightarrow{\mathcal{M}} \wedge \overrightarrow{B}$$

Remarque II-3: ANALOGIE -

Ce dernier résultat est en tout point analogue à celui dégagé dans le cas du dipôle électrostatique :

$$\overrightarrow{\Gamma} = \overrightarrow{p} \wedge \overrightarrow{E} \leftrightarrow \overrightarrow{\Gamma} = \overrightarrow{\mathcal{M}} \wedge \overrightarrow{B}$$

On retiendra les résultats suivants :

Propriété II-1: -

Un circuit de moment magnétique $\overrightarrow{\mathcal{M}}$ plongé dans un champ magnétique uniforme \overrightarrow{B} subit les actions de Laplace suivantes :

• Une résultante de force nulle :

$$\overrightarrow{F_L} = \overrightarrow{0}$$
 (XIV.1)

• Un moment de force d'expression :

$$\overrightarrow{\Gamma_L} = \overrightarrow{\mathcal{M}} \wedge \overrightarrow{B}$$
 (XIV.2)

Ces deux résultats sont évidemment reconductibles dans le cas d'un circuit de petite dimension i.e. un dipôle!!!

b - Cas d'un champ magnétique extérieur non uniforme : par analogie avec l'électrostatique.

FIGURE XIV.13 – Actions de Laplace en champ non uniforme

• Cas du moment :

En première approximation, on peut supposer que le champ magnétique varie peu à l'échelle du circuit centré en $O \Rightarrow$ le circuit est donc un dipôle (i.e. "petit").

dans ces conditions, on peut reconduire le résultat obtenu dans le cadre du champ uniforme, soit :

$$\overrightarrow{\Gamma_L} = \overrightarrow{\mathcal{M}} \wedge \overrightarrow{B}(O)$$

• Cas de la force :

La démonstration de la résultante de force subie par un dipôle dans un champ non uniforme étant hors programme, on peut établir son expression par analogie avec les résultats connus de l'électrostatique (comme pour l'expression du champ dipolaire) :

A RETENIR:

Propriété II-2: Torseur des actions sur un dipôle magnétique -

Un circuit de petite dimension i.e. un dipôle plongé dans un champ magnétique non uniforme \overrightarrow{B} subit des actions de Laplace dont le torseur a pour composantes :

• le moment résultant $\overrightarrow{\Gamma_L}$:

$$\overrightarrow{\Gamma_L} = \overrightarrow{\mathcal{M}} \wedge \overrightarrow{B}$$

ullet la résultante de force \overrightarrow{F}_L :

$$\overrightarrow{F_L} = \left(\overrightarrow{\mathcal{M}} \cdot \overrightarrow{grad}\right) \overrightarrow{B} \Longrightarrow$$
 dirigée vers les fortes valeurs du champ \overrightarrow{B}

II.4 Energie potentielle d'interaction d'un dipôle dans un champ magnétique

a - Préliminaire : travail des forces de Laplace sur un circuit - notion de flux coupé/balayé (HP)

Prenons maintenant le cas d'une spire de constitution constante, c'est à dire indéformable, de forme quelconque, parcourue par un courant d'intensité I et que l'on déplace globalement d'un vecteur élémentaire \overrightarrow{dr} dans un champ magnétique \overrightarrow{B} :

FIGURE XIV.14 – Flux coupé ou balayé

Au cours de ce déplacement, le travail élémentaire des forces de Laplace qui s'exercent sur l'élément \overrightarrow{dl} de circuit s'écrit :

$$\delta^2 W = \overrightarrow{dF}_L \cdot \overrightarrow{dr} = I \left(\overrightarrow{dl} \wedge \overrightarrow{B} \right) \cdot \overrightarrow{dr} = I \left(\overrightarrow{dr} \wedge \overrightarrow{dl} \right) \cdot \overrightarrow{B}$$

En remarquant que le terme entre parenthèses $\overrightarrow{dr} \wedge \overrightarrow{dl}$ est simplement la surface latérale balayée par la portion de circuit \overrightarrow{dl} (cf figure ci-contre), on peut écrire en posant $\overrightarrow{d^2S} = \overrightarrow{dr} \wedge \overrightarrow{dl}$:

$$\delta^2 W = I \overrightarrow{B} \cdot \overrightarrow{d^2 S}$$

expression dans laquelle $\overrightarrow{B} \cdot \overrightarrow{d^2S} = d^2\Phi_c$ représente le flux élémentaire (ordre 2) latéral balayé par le circuit; on l'appelle aussi flux coupé; le travail élémentaire des actions de Laplace devient alors :

$$\delta^2 W = I \cdot \underbrace{d^2 \Phi_c}_{ ext{flux balayé/coupé ordre 2}}$$

En intégrant sur le contour complet du circuit, le flux balayé est alors du premier ordre :

$$\underbrace{d\Phi_c}_{\text{flux balayé/coupé ordre 1}} = \oint\limits_{circuit} d^2\Phi_c = \oint\limits_{circuit} \overrightarrow{B} \cdot \overrightarrow{d^2S}$$

Le travail élémentaire des forces de Laplace sur le circuit lors du déplacement \overrightarrow{dr} s'écrit donc :

$$\delta W = I \cdot d\Phi_c$$

b - Lien entre le flux coupé et le flux à travers un cicuit filiforme

Supposons maintenant que le circuit précédent soit plongé dans un champ magnétique <u>stationnaire</u>. Nous avons identifié le flux coupé, ou flux balayé comme la quantité :

FIGURE XIV.15 – Théorème de Maxwell

En outre, on peut écrire le flux du champ magnétique à travers le circuit aux instants t et t+dt, soit :

A l'instant t:

$$\Phi(t) = \iint\limits_{S(t)} \overrightarrow{B} \left(\overrightarrow{r}, t \right) \cdot \overrightarrow{dS}$$

A l'instant t + dt:

$$\Phi(t+dt) = \iint\limits_{S(t+dt)} \overrightarrow{B}\left(\overrightarrow{r} + \overrightarrow{dr}, t+dt\right) \cdot \overrightarrow{dS}$$

QUESTION : lien s'il existe, entre $d\Phi_c$, $\Phi(t)$, $\Phi(t+dt)$? Comment évaluer plus simplement le travail des forces de Laplace lorsque le calcul du flux balayé/coupé est délicat?

Le champ \overrightarrow{B} est stationnaire, donc $\overrightarrow{B}(\overrightarrow{r},t)=\overrightarrow{B}(\overrightarrow{r})\neq fct(t)$ et négligeons le flux propre du circuit (flux du champ crée par le circuit à travers lui-même).

<u>IDÉE</u>: utiliser la conservation du flux magnétique.

Considérons la surface fermée Σ fictive constituée par S(t) , $S^-(t+dt)$ (inversée) et dS_c :

$$\Sigma = S^+(t) \cup dS_c \cup S^-(t+dt)$$

on a par conservation du flux de \overrightarrow{B} :

$$\phi_{\Sigma}(\overrightarrow{B}) = \bigoplus_{\Sigma} \overrightarrow{B}(\overrightarrow{r}) \cdot \overrightarrow{dS} = \iint_{S^{+}(t)} \overrightarrow{B}(\overrightarrow{r}) \cdot \overrightarrow{dS^{+}} + d\phi_{c} + \iint_{S^{-}(t+dt)} \overrightarrow{B}(\overrightarrow{r} + \overrightarrow{dr}) \cdot \overrightarrow{dS^{-}} = 0$$

$$= - \iint_{S^{+}(t+dt)} \overrightarrow{B}(\overrightarrow{r} + \overrightarrow{dr}) \cdot \overrightarrow{dS^{+}}$$

soit : $\Phi(t) + d\Phi_c - \Phi(t + dt) = 0$

En outre, on a la variation de flux du champ à travers le circuit entre les instants t et t+dt est :

$$d\Phi = \Phi(t + dt) - \Phi(t)$$

ce qui conduit finalement à : $d\Phi_c = +d\Phi$ Ce résultat porte le nom de Théorème de Maxwell; on le retiendra sous la forme de la propriété suivante :

Propriété II-3: Théorème de Maxwell —

Lors d'un mouvement de circuit indéformable, soumis à un champ magnétique \overrightarrow{B} permanent, le flux coupé, souvent difficile à calculer, s'identifie à la variation de flux du champ magnétique à travers le circuit, ce qui permet un calcul très général et aisé du travail des forces de Laplace :

$$\delta W_{L_{t\to t+dt}} = I \cdot d\phi_c = I \cdot d\phi_{t\to t+dt}$$
 (XIV.3)

Energie potentielle d'interaction d'un dipôle plongé dans un champ magnétique- règle du flux maximum

La force de Laplace découlant de la force de Lorentz connue conservative, est donc conservative 1. Ce paragraphe vise à établir l'expression de l'énergie potentielle ϵ_p dont découle la force de Laplace.

 $\underline{\text{HYPOTHÈSE}}$: On suppose un déplacement élémentaire \overrightarrow{dr} du circuit (rigide!) de moment dipolaire $\overrightarrow{\mathcal{M}} = I\overrightarrow{S}$ dans un champ permanent.

Le travail élémentaire des forces de Laplace lors de ce déplacement \overrightarrow{dr} peut s'écrire :

$$\delta W_L = I \cdot d\Phi = d(I \cdot \Phi) = d\left(I \iint_{S} \overrightarrow{B} \cdot \overrightarrow{dS}\right)$$

Par ailleurs, si le circuit est un dipôle magnétique donc de faible dimension par rapport aux distances à considérer pour enregistrer une variation significative du champ , le champ \overrightarrow{B} est homogène à l'échelle de ce circuit (approximation dipolaire) donc :

$$\delta W_L = d \left(\overrightarrow{B} \cdot \iint_{\mathcal{S}} I \overrightarrow{dS} \right) = +d \left(\overrightarrow{\mathcal{M}} \cdot \overrightarrow{B} \right) = -d\epsilon_p$$

en posant ϵ_p l'énergie potentielle d'interaction du dipôle avec le champ magnétique extérieur.

^{1.} cf cours MPSI

Soit

$$d\epsilon_p = -d\left(\overrightarrow{\mathcal{M}} \cdot \overrightarrow{B}\right)$$

et par intégration en prenant l'énergie potentielle nulle à courant nul i.e. $\overrightarrow{\mathcal{M}}=\overrightarrow{0}$:

$$\epsilon_p = -I\Phi = -\overrightarrow{\mathcal{M}} \cdot \overrightarrow{B} = -M \cdot B \cdot \cos \theta$$
 (XIV.4)

Conséquences:

- Le $\begin{cases} \text{circuit} \\ \text{ou dipôle} \end{cases}$ est à l'équilibre mécanique si ϵ_p est extrêmale, soit Φ extrêmal, soit \overrightarrow{M} et \overrightarrow{B} alignés.
- L'équilibre mécanique du circuit est stable si ϵ_p est minimale, soit Φ maximal donc \overrightarrow{M} et \overrightarrow{B} alignés dans le même sens et inversement. Plus précisément :

FIGURE XIV.16 -

On peut noter les positions remarquables suivantes :

- $\theta = 0 \Rightarrow \epsilon_p = -\mathcal{M}B$ est minimum et correspond donc à une position d'équilibre stable.
- $\theta = \pi \Rightarrow \epsilon_p = \mathcal{M}B$ est maximum et correspond donc à une position d'équilibre instable.

Propriété II-4: Règle du flux maximal -

Les circuits plongés dans un champ magnétique extérieur s'orientent de telle façon que le flux magnétique qui les traversent soit extrêmal. La position stable correspond à un flux maximal (énergie minimale).

A partir de ce résultat, il est facile de retrouver l'expression de la force de Laplace sur le dipôle avec le lien force conservative-énergie potentielle :

$$\overrightarrow{F}_L = -\overrightarrow{grad}(\epsilon_p) = +\overrightarrow{grad}(\overrightarrow{\mathcal{M}} \cdot \overrightarrow{B}) \overset{\text{on montre}}{=} (\overrightarrow{\mathcal{M}} \cdot \overrightarrow{grad}) \overrightarrow{B}$$