Rapport du projet de Simulation :

Schérer Robin Tondeur Pierre

Année académique : 2017-2018 Simulation Université de Mons

19 mai 2018

Table des matières

1	Introduction	3
2	Analyse des décimales de π	3
	2.1 Test du χ^2	3
	2.2 Test du Gap	
	2.3 Conclusion	5
3	Générateur de nombre pseudo-aléatoire avec les décimales de π	6
	3.1 Principe de notre générateur	6

1 Introduction

Ce projet à été réalisé dans le cadre du cours dispensé par Alain Buys, "Simulation sur ordinateur".

Le but de ce projet est de premièrement étudier le caractère pseudo-aléatoire des décimales de π (1.000.000 de décimales ont été étudiées) via des tests vue au cours. Nous devions ensuite utilisé ces décimales pour implémenter un générateur de loi uniforme [0,1[et ensuite le comparer avec le générateur par défaut de Python via les tests implémentés

2 Analyse des décimales de π

Tentons de déterminer si les décimales de π suivent bien une loi uniforme via les tests suivant.

2.1 Test du χ^2

Ce test statistique permet de tester l'adéquation d'une série de données à une famille de lois de probabilités. Pour ce test nous avons besoin d'un certain nombre d'intervalle, et nous comptons le nombre de valeurs qu'on a générées dans chaque intervalles, ceci est notre hypothèse. Nous avons aussi besoin une hypothèse nulle notée H_0 qui considèrent que les données suivent une lois de probabilité donnée et nous avons notre hypothèse qui sont nos données obtenu expérimentalement. Nous comparons ensuite ces 2 échantillons de données via la formule suivante :

$$K_n = \sum_{i=1}^r \left(\frac{n_i - Np_i}{\sqrt{Np_i}}\right)^2$$

on a que r est le nombre d'intervalle, Np_i est l'effectif théorique pour la classe i, et n_i est l'effectif qu'on à obtenu expérimentalement dans la classe i. Et nous avons un degrés de libertés égale à r - 1. Puis on se donne une probabilité α qui est le risque d'erreur, avec α et le degré de liberté, on obtient une valeur critique, C_i . Et si $K_n < C_i$, alors on rejette notre hypothèse.

Pour les décimales de π on choisit 10 intervalles chaque intervalle contient 1 chiffre. On a que pour H_0 , les décimales de π suivent une loi uniforme, donc la probabilité que chacun des chiffres apparaissent le même nombre de fois.

Voici nos résultats pour notre hypothèse :

	R	ésulats	
Chiffre	Théorique	Expérimentaux	Erreur relative(%)
0	100 000	2.3	
1	100 000	2.3	
2	100 000	2.3	
3	100 000	2.3	
4	100 000	2.3	
5	100 000	2.3	
6	100 000	2.3	
7	100 000	2.3	
8	100 000	2.3	
9	100 000	2.3	

Histogramme des occurrences des chiffres dans les décimales de π

Maintenant effectuons le test du χ^2 sur nos 2 hypothèse :

α	K	C_i	On garde notre hypothèse
0,01	100 000	2.3	Oui
0.025	100 000	2.3	Oui
0.05	100 000	2.3	Oui

On a donc que les décimales de π passe bien le test du χ^2 pour nos alpha et que donc elles suivent bien une lois uniformes.

2.2 Test du Gap

Pour ce test on a une suite de nombre u_1,u_2,\ldots,u_n . On choisit $1\leq a\leq b\leq 9etonmarque ceux quitombent dans [a,b], qui pour chau <math>\frac{(b+1)-a}{10}$ deseproduire. Et ons' intresse en suite la distance entre 2nombres d'affiler marques. On sedonne nombre de classe, dans la L'hypothèse nulle est que pour chaque classe <math>i on a : $p(1-p)^i$

On compare ensuite ces 2 hypothèses avec le test du χ^2 pour savoir si le test est réussi ou non.

Dans notre cas, on choisit de faire 10 fois ce test pour chacun des 10 chiffre, et que a chaque fois a = b. On a donc à chaque fois que p = 0.1.

Voici ce qu'on obtient pour le nombre d'occurrence de certaines longueurs de trou pour le chiffre 5.

Longueurs du trou	Nombre d'occurrences théorique	Nombre d'occurrences obtenu	Erreur relative (%)
1			
2			
3			
4			
5			
6			
21			
22			
23			
24			
25			
24			
57			
58			
59			
60			

Pour le test de χ^2 on a les résultats suivant :

/ C			
α	K	C_i	On garde notre hypothèse
0,01	100 000	2.3	Oui
0.025	100 000	2.3	Oui
0.05	100 000	2.3	Oui

On a que pour les 10 chiffres tout les tests passe bien. On a donc que les décimales de π réussissent le test du Gap.

2.3 Conclusion

On a donc que les 1.000.000 de premières décimales de π suivent bien une loi uniforme.

3 Générateur de nombre pseudo-aléatoire avec les décimales de π

3.1 Principe de notre générateur

Pour notre générateur de nombre pseudo-aléatoire nous avons choisit d'utiliser la congruence linéaire, et le caractère pseudo-aléatoire sera le temps actuelle sur la machine. Nous avons donc une valeur pour a, c, et m utilisé pour la congruence linéaire, un index compris entre 0 et 1.000.000, et bien sûr les 1.000.000 de première décimales de π dans un string.

Les valeurs choisies pour la congruence linéaire sont a=41, c=11, et m=1.000.000. Ces valeurs respectent le Théorème de Hull et Dobel pour maximiser la période pour revenir à notre index de départ. On a que m=1.000.000 car les index pour π vont de 0 à 999.999, on doit aussi avoir que c est premier avec c, donc c est premier avec c. On doit aussi avoir que c est un multiple de c si c est un diviseur de c, ce qui est le cas. On a que c est un multiple de c p diviseur premier de c. On a donc que c et c sont les diviseurs premier de c, et donc c est un multiple de c, c et c. On a choisit c est un cap c est un multiple de c0, c1 est c2. On a choisit c3 est donc c4 est c5. On a choisit c5 est donc c6 est c7 est c8 est c9.

Quand on initialise le générateur, il initialise l'index de base avec le temps actuelle avec la méthode time.time(). À chaque fois qu'on demandera un nombre à notre générateur, il assignera (((a*index)+c)%m) à l'index et retournera les n (16 par défaut) chiffres à partir de cet index dans les décimales de π .