Written Assignment 9 Math 290, Dr. Walnut

Lucas Bouck

12/11/15

1 Problem 1a

Let $f: A \to B$. Prove that f is injective if and only if for all $D \subseteq A, f^{-1}(f(D)) = D$. **Proof:**

 (\Leftarrow) (By contrapostive)

Let $f:A\to B$. Assume f is not injective. We want to show that there exists a set $D\subseteq A$ such that $f^{-1}(f(D))\neq D$. Since f is not injective, there exists $x,y\in A$ such that f(x)=f(y) and $x\neq y$. Let's call f(x)=z=f(y). Let $D=\{x\}$. Since $x\in A$, $D\subseteq A$. Since f(x)=z, $f(D)=\{z\}$. Since f(x)=z and f(y)=z, $f^{-1}(f(D))=\{x,y\}$. Since $y\notin D$, $f^{-1}(f(D))\neq D$. Thus, there exists a $D\subseteq A$ such that $f^{-1}(f(D))\neq D$. By contrapostive, if for all $D\subseteq A$, $f^{-1}(f(D))=D$, then f is injective. (\Rightarrow)

Let $f: A \to B$. Assume f is injective. We want to show that for all $D \subseteq A$, $f^{-1}(f(D)) = D$. Let $D \subseteq A$. We want to show inclusion both ways. Let $x \in D$. Since f is a function, there exists a $y \in B$ such that f(x) = y. Since there exists an $x \in D$ such that f(x) = y, $y \in f(D)$. Since f(x) = y and f(x) = y and f(x) = y. Thus, f(x) = y and f(x) = y are f(x) = y and f(x) = y and f(x) = y.

We must now show that $f^{-1}(f(D)) \subseteq D$. Let $x \in f^{-1}(f(D))$. Then, there exists a $y \in f(D)$ such that f(x) = y. Since $y \in f(D)$, there exists a $z \in D$ such that f(z) = y. Since f(x) = f(z), and f is injective, x = z. Since $z \in D$, $x \in D$. Therefore, $f^{-1}(f(D)) \subseteq D$. Because $D \subseteq f^{-1}(f(D))$ and $f^{-1}(f(D)) \subseteq D$, $f^{-1}(f(D)) = D$. Thus, if f is injective then for all $D \subseteq A$, $f^{-1}(f(D)) = D$.

2 Problem 1b

Let $f: A \to B$. Prove that f is surjective if and only if for all $E \subseteq B$, $f(f^{-1}(E)) = E$. **Proof:**

 (\Leftarrow) (By contrapositve)

Let $f: A \to B$. Assume f is not surjective. We want to show that there exists a set $E \subseteq B$ such that $E \neq f(f^{-1}(E))$. Since f is not surjective, there exists an $x \in B$ such that

for all $a \in A$, $f(a) \neq x$. Let $E = \{x\}$. Since for all $a \in A$, $f(a) \neq x$, $f^{-1}(E) = \emptyset$. Since $f(f^{-1}(E))$ contains all z such that there exists an element, $y \in f^{-1}(E)$ such that f(y) = z, and $f^{-1}(E) = \emptyset$, then $f(f^{-1}(E)) = \emptyset$. Since $x \notin \emptyset$, $x \notin f(f^{-1}(E))$, and $E \neq f(f^{-1}(E))$. Therefore, by contrapositive, if for all $E \subseteq B$, $f(f^{-1}(E)) = E$, then f is surjective. (\Rightarrow)

Let $f: A \to B$. Assume f is surjective. We want to show that for all $E \subseteq B$, $f(f^{-1}(E)) = E$. We must show inclusion both ways. Let $x \in E$. Because f is surjective, there exists a $z \in A$ such that f(z) = x. Since $x \in E$ and f(z) = x, $z \in f^{-1}(E)$. Since f(z) = x and $z \in f^{-1}(E)$, $x \in f(f^{-1}(E))$. Thus, $E \subseteq f(f^{-1}(E))$.

We will now show that $f(f^{-1}(E)) \subseteq E$. Let $x \in f(f^{-1}(E))$. Then, there exists a $z \in f^{-1}(E)$ such that f(z) = x. Since $z \in f^{-1}(E)$, there exists a $d \in E$ such that f(z) = d. Since f(z) = d, and f(z) = x, f(z) = d. Since f(z) = d since f(z) = d and f(z) = d. Since f(z) = d and f(z) = d and f(z) = d and f(z) = d since f(z) = d since f(z) = d and f(z) = d since f(z) =

3 Problem 2a

Let $p, q \in \mathbb{N}$ be relatively prime. Prove that given $\bar{y}^{pq} \in \mathbb{Z}_{pq}$, there exist unique $\bar{c}^p \in \mathbb{Z}_p$ and $\bar{d}^q \in \mathbb{Z}_q$ such that $\bar{y}^p = \bar{c}^p$ and $\bar{y}^q = \bar{d}^q$.

Proof:

Let $\overline{y}^{pq} \in \mathbb{Z}_{pq}$. We want to show that there exist unique $\overline{c}^p \in \mathbb{Z}_p$ and $\overline{d}^q \in \mathbb{Z}_q$ such that $\overline{y}^p = \overline{c}^p$ and $\overline{y}^q = \overline{d}^q$. Let $c = y \pmod p$ and let $d = y \pmod q$. Then, p|(y-c) and q|(y-d). Since p|(y-c) and q|(y-d), $\overline{y}^p = \overline{c}^p$, and $\overline{y}^q = \overline{d}^q$. We have shown that there exist $\overline{c}^p \in \mathbb{Z}_p$ and $\overline{d}^q \in \mathbb{Z}_q$ such that $\overline{y}^p = \overline{c}^p$ and $\overline{y}^q = \overline{d}^q$. We now must show that \overline{c}^p and \overline{d}^q are unique.

Suppose $\overline{x}^p = \overline{y}^p$ and $\overline{z}^q = \overline{y}^q$. Then, p|(y-x), and q|(y-z), which means pm = y-x and qk = y-z for $m, k \in \mathbb{Z}$. Rearranging these gets us x = y-pm and z = y-qk. Since $\overline{y}^p = \overline{c}^p$ and $\overline{y}^q = \overline{d}^q$, p|(y-c), and q|(y-d), which means pa = y-c and qb = y-d for $a, b \in \mathbb{Z}$. Rearranging these gets us c = y-pa and d = y-qb. Then, x-c = (y-pm)-(y-pa) = (pa-pm) = p(a-m), and z-d = (y-qk)-(y-qb) = (qb-qk) = q(b-k). Since $a, m, b, k \in \mathbb{Z}$, $(a-m) \in \mathbb{Z}$ and $(b-k) \in \mathbb{Z}$. Then, p|(x-c), and q|(z-d). Therefore, $\overline{x}^p = \overline{c}^p$, $\overline{z}^q = \overline{d}^q$, and \overline{c}^p and \overline{d}^q are unique. Therefore, given $\overline{y}^{pq} \in \mathbb{Z}_{pq}$, there exist unique $\overline{c}^p \in \mathbb{Z}_p$ and $\overline{d}^q \in \mathbb{Z}_q$ such that $\overline{y}^p = \overline{c}^p$ and $\overline{y}^q = \overline{d}^q$.

4 Problem 2b

Let $p, q \in \mathbb{N}$ be relatively prime. Prove that there is a bijection $f : \mathbb{Z}_{pq} \to \mathbb{Z}_p \times \mathbb{Z}_q$. **Proof:**

Let $p, q \in \mathbb{N}$ be relatively prime. We want to show that there exists a bijection $f : \mathbb{Z}_{pq} \to \mathbb{Z}_p \times \mathbb{Z}_q$. Let $f : \mathbb{Z}_{pq} \to \mathbb{Z}_p \times \mathbb{Z}_q$, and define $f(\overline{y}^{pq}) = (\overline{c}^p, \overline{d}^q)$ such that $\overline{y}^p = \overline{c}^p$ and

 $\bar{y}^q = \bar{d}^q$. We will show that f is well-defined, f is surjective, and f is injective.

Let $\overline{y}^{pq} \in \mathbb{Z}_{pq}$. By the Chinese Remainder Theorem, there exist $\overline{c}^p \in \mathbb{Z}_p$ and $\overline{d}^q \in \mathbb{Z}_q$ such that $\overline{y}^p = \overline{c}^p$ and $\overline{y}^q = \overline{d}^q$. Therefore, $(\overline{y}^{pq}, (\overline{c}^p, \overline{d}^q)) \in f$, and $dom(f) = \mathbb{Z}_{pq}$. Suppose that $f(\overline{y}^{pq}) = (\overline{x}^p, \overline{z}^q)$. By the Chinese Remainder Theorem, \overline{c}^p and \overline{d}^q are unique solutions such that $\overline{y}^p = \overline{c}^p$ and $\overline{y}^q = \overline{d}^q$. Therefore, $(\overline{x}^p, \overline{z}^q) = (\overline{c}^p, \overline{d}^q)$, and f is well-defined in that there is one $f(\overline{y}^{pq})$ for all \overline{y}^{pq} .

We now want to show that f is surjective. Let $(\bar{c}^p, \bar{d}^q) \in \mathbb{Z}_p \times \mathbb{Z}_q$. Based on the first part of the Chinese Remainder Theorem proved in class, there exists an unique $\bar{y}^{pq} \in \mathbb{Z}_{pq}$ such that $\bar{y}^p = \bar{c}^p$ and $\bar{y}^q = \bar{d}^q$. Therefore, there exists a $\bar{y}^{pq} \in \mathbb{Z}_{pq}$ such that $f(\bar{y}^{pq}) = (\bar{c}^p, \bar{d}^q)$. Therefore, f is surjective.

We finally want to prove that f is injective. Let $\overline{x}^{pq}, \overline{y}^{pq} \in \mathbb{Z}_{pq}$. Assume that $f(\overline{x}^{pq}) = f(\overline{y}^{pq}) = (\overline{c}^p, \overline{d}^q)$. Using the definition of f, $\overline{x}^p = \overline{c}^p$, $\overline{y}^p = \overline{c}^p$, $\overline{x}^q = \overline{d}^q$, and $\overline{y}^q = \overline{d}^q$. This means p|x-c, p|y-c, q|x-d, and q|y-d, which means pm = x-c, pn = y-c, qk = x-d, and ql = y-d for $m, n, k, l \in \mathbb{Z}$. Then, we get p(m-n) = x-c-y+c = x-y and q(k-l) = x-d-y+d = x-y. Let m-n = a and k-l = b. Since $m, n, k, l \in \mathbb{Z}$, $a, b \in \mathbb{Z}$, and p|x-y and q|x-y. Since p and q are relatively prime, gcd(p,q) = 1, and pq|x-y. Therefore, $\overline{x}^{pq} = \overline{y}^{pq}$, and f is injective.

Since we have shown that there exists a $f: \mathbb{Z}_{pq} \to \mathbb{Z}_p \times \mathbb{Z}_q$ that surjective and injective, we have shown that there exists a bijection $f: \mathbb{Z}_{pq} \to \mathbb{Z}_p \times \mathbb{Z}_q$.