Nuclear and Radiation Physics (PHY2005) Lecture 9

D. Margarone

2021-2022

Recap & Learning Goals

Summary of Lecture 8 (Chap.4)

- Beta Decay
 - ✓ Properties
 - ✓ Energetics
- Gamma Decay
 - ✓ Properties
 - ✓ Energetics

$$T = \frac{1}{R_t} = \frac{1}{R(1 + \alpha_t)}$$

$$Q_{\beta^{-}} = \left[m(^{A}X) - m(^{A}X')\right]c^{2}$$

$$(T_e)_{max} = (E_{\overline{\nu}})_{max} = Q_{\beta^-}$$

$$Q_{\varepsilon} = \left[m(^{A}X) - m(^{A}X') \right] c^{2} - B_{n}$$

Learning goals of Lecture 9 (Chap.4)

- Knowing the basic theory of nuclear fission
- Understanding physical reasoning behind nuclear fission

4. Nuclear Reactions 4.5 Nuclear Fission I

Nuclear fission (general properties)

- 1939 (Meitner&Frisch): uranium nuclei splitting in half (after neutron capture) → nuclear fission
- competition between nuclear (~A) and Coulomb (~Z²) forces
- mainly in heavy nuclei (thorium and beyond)
- spontaneous reaction or triggered by low energy neutrons/photons
- releasing a large total energy ("climbing" the binding energy curve)
- ... also due to "chain reactions" induced by produced neutrons
 - rapidly and without control (fission-based explosives)
 - slowly and under control (fission reactors)

4. Nuclear Reactions 4.5 Nuclear Fission II

EXAMPLE

 238 **U** (B = 7.6 MeV/nucleon) → 2x 119 Pd (B = 8.5 MeV/nucleon)

- ✓ more tightly bound system → energy release! ②
- \checkmark neutrons, β and γ , but mainly fast heavy fragments
- ✓ 238 U: $T_{1/2} = 4.5 \times 10^9 \text{ y } (\alpha \text{ decay}), ~10^{16} \text{ y (fission}) \rightarrow \text{Coulomb barrier inhibition } \Theta$

Nuclear fission (basic theory)

- 238U → 2x ¹¹⁹Pd (touching at their surfaces)
- Coulomb barrier is ~250 MeV → no fission
- ²³⁸U splits in different fragments → high penetration probability (just below Coulomb barrier) → spontaneous fission
- absorption of low energy (neutron/photon) → state at (or above) the barrier → induced fission
 - √ thermal/fast neutrons → activation energy
 - dependence on mass number

4. Nuclear Reactions 4.5 Nuclear Fission III

Nuclear fission (basic theory) cont.

- absorption of low energy (neutron/photon) → state at (or above) the barrier → induced fission
 - thermal/fast neutrons → activation energy
 - dependence on mass number

fission of ²³⁸U

opposing the spontaneous

variation of fission activation energy with mass number

4. Nuclear Reactions 4.5 Nuclear Fission IV

Nuclear fission (characteristics)

- typical neutron induced fission \rightarrow ²³⁵U + n \rightarrow ⁹³Rb + ¹⁴¹Cs + 2n (thermal neutrons)
- <u>mass distribution</u> of products (not unique for low-energy fission)
- fission induced by high-energy particles → equal-mass fragments
- fission fragments (share 92 protons) $\rightarrow {}^{95}_{37}Rb_{58}$ and ${}^{140}_{55}Cs_{85}$
- nuclei rich in neutrons → Z/A ≈ 0.39 (instead of 0.41)
- compensation of <u>excess neutrons</u> through emission of:
 - √ prompt neutrons (instantaneous)
 - ✓ delayed neutrons (~ s) from fission fragment β decay

mass distribution of fission fragments from thermal fission of ²³⁵U

4. Nuclear Reactions 4.5 Nuclear Fission V

Nuclear fission (characteristics) cont.

- <u>cross sections</u> for neutron-induced fission of ²³⁵U and ²³⁸U
 - ✓ thermal region for ^{235}U → $^{1/v}$ dependence $(v = neutron \ velocity)$
 - ✓ thermal cross section → 1000 larger than fast neutron one
 - ✓ no fission occurring in the thermal region for ²³⁸U →only fast neutron induced fission (activation energy)

Cross-section for neutron-induced fission of ²³⁵U and ²³⁸U

4. Nuclear Reactions 4.5 Nuclear Fission VI

Nuclear fission (additional considerations)

- steps of nuclear fission
 - √ elongation of fissioning nucleus
 - ✓ separation of fission fragments
- fragments with neutrons in excess
 - ✓ succession of β decays
 - ✓ neutron evaporation

controlled fission

- ✓ infinite mass of uranium \rightarrow 2.5 n in single fission
- "second-generation" n → new fission event → more n →
 and so on → chain reaction
- ✓ neutron reproduction factor k_{∞} (≥ 1 for a chain reaction to continue)
- ✓ fast neutrons (small fission cross-section) → neutron moderation (2.5 fast neutrons per fission can become < 1 thermal neutron)
- ✓ chain-reacting pile (uranium alternating with graphite)
- \checkmark k = 1 (pile is *critical*); k < 1 (subcritical), k > 1 (supercritical)

schematic representation of the nuclear fission process

fission fragments showing an excess of neutrons

4. Nuclear Reactions 4.5 Fission Reactors

Fission reactors

- fission proceeds at carefully controlled rate
- continuous source of power obtained out of thermal energy ->
 fission fragments come to rest in the material of the reactor
- essential elements of a reactor.
 - \checkmark moderator \rightarrow to thermalize neutrons
 - ✓ reflector around the core → to reduce neutron leakage
 - ✓ containment vessel → to prevent escape of radioactive products
 - ✓ shielding → to prevent biological harms to personnel
 - \checkmark coolant \rightarrow to remove heat from the core
 - \checkmark control system \rightarrow to allow operators to control the power level
 - √ emergency systems

Extra material on Canvas!

4. Nuclear Reactions

Example 4.8

Nuclear fission (energetics)
$${}^{235}U + n \rightarrow {}^{93}Rb + {}^{141}Cs + 2n$$

$${}^{236}U + n \rightarrow {}^{93}Rb + {}^{141}Cs + 2n$$

$${}^{236}U + n \rightarrow {}^{93}Rb + {}^{141}Cs + 2n$$

$${}^{236}U + n \rightarrow {}^{93}Rb + {}^{141}Cs + 2n$$

$${}^{236}U + n \rightarrow {}^{93}Rb + {}^{141}Cs + 2n$$

$${}^{236}U + n \rightarrow {}^{93}Rb + {}^{141}Cs + 2n$$

$${}^{236}U + n \rightarrow {}^{93}Rb + {}^{141}Cs + 2n$$

$${}^{236}U + n \rightarrow {}^{236}U + n$$

4. Nuclear Reactions Example 4.9

Calculate the total energy released in one fission event of ²³⁹Pu that can be ideally converted into electricity neglecting subsequent chain reaction effects (see the table below)

radiation source (thermal fission of ²³⁹ Pu)	average energy released [MeV][3]
Kinetic energy of fission fragments	175.8
Kinetic energy of prompt neutrons	5.9
Energy carried by prompt γ-rays	7.8
Energy of β- particles	5.3
Energy of antineutrinos	7.1
Energy of delayed v-rays	5.2

