Finding the Optimal Coefficient Forms

Caleb Leedy

13 February 2024

Summary

In this document, we do the following:

- 1. Vary the functional forms of the coefficients,
- 2. Check to ensure that our estimated variance is still accurate.

Idea

In 20240202-estcovmat.qmd, we tested an estimated covariance matrix. The results suggest that estimating the covariance matrix suffers little penalty. In this report, we want to see if choosing different functional forms of f_1 and f_2 (that depend on the data) cause the covariance estimation to be biased.

Instead of using $f_1(X_1) = X_1$ and $f_2(X_2) = X_2$ as we did in 20240202-estcovmat.qmd we want to use $f_1(X_1) = E[Y \mid X_1]$ and $f_2(X_2) = E[Y \mid X_2]$, and we need to also test them with estimated versions of these functions.

Simulation

Table 1: Results from simulations study with independent equally sized segments A_{11} , A_{10} , A_{01} , and A_{00} all of size n=250. In this simulation we have the true mean of Y_2 equal to $\mu=5$ and the covariance between e_1 and e_2 is $\rho=0.5$. The goal is to estimate $E[Y_2]=\mu$. For the GLS estimation, we use the estimated covariance matrix \hat{V} with f-functions $f_1=X_1,\ f_2=X_2$ and $f_3=Y$. For the GLS optimal estimation we are trying $f_1=E[Y\mid X_1],\ f_2=E[Y\mid X_2]$ and $f_3=Y$. Each of these expectations are estimated with using linear regression. So $E[Y\mid X_i]$ is implemented as a regression estimator

Algorithm	Bias	SD	Tstat	Pval
Oracle	0.002	0.044	2.533	0.006
CC	0.003	0.090	1.350	0.089
IPW	0.003	0.090	1.350	0.089
GLS	0.003	0.052	2.281	0.011
$\operatorname{GLSEstVar}$	0.003	0.052	2.286	0.011
GLSOpt	0.003	0.053	2.170	0.015

Conclusion

Is the covariance estimation still working? (By working we mean causing the estimator to be unbiased.)

- It looks like estimating the variance is not causing additional bias in the estimator. This is great.
- We may, however, need to check more complicated simulation setups because the simpleity of the current setup might make it look better than it actually is.
- One suprising thing is that the ``optimal'' estimator is not better than the other estimators. This could be because of the simplicity of the setup, but we may need to check it out.