Meta Learning (Part 1) Hung-yi Lee

Introduction

Task 1: speech recognition

Task 2: image recognition

•

Task 100: text classification

Meta learning = Learn to learn

Learning task 1

Learning task 2

Learning task 100

I can learn task 101 better because I learn some learning skills

Be a better learner

Life-long: one model for all the tasks

Meta: How to learn a new model

$$f^* = F(D_{train})$$

Can machine find *F* from data?

Machine Learning ≈ 根據資料找一個函數 f 的能力

Meta Learning

≈根據資料找一個找一個函數f的函數F的能力

Machine Learning is Simple Meta

Function f Learning algorithm F

就好像把大象放進冰箱

Different decisions in the red boxes lead to different algorithms. What happens in the red boxes is decided by humans until now.

 $L(F) = \sum_{n=1}^{N} \frac{1}{l^n}$ Tosting loss for

ullet Defining the goodness of a function F

Testing loss for task n after training

Widely considered in

few-shot learning

Machine Learning dog cat dog cat Train Test

Task 1

Train

Test

dog

Task 2

Train

orange

Test

orange

Sometimes you need validation tasks

Testing Tasks

Train

Test

Defining the goodness of a function F

$$L(F) = \sum_{n=1}^{N} l^n$$

• Find the best function F^*

$$F^* = \arg\min_F L(F)$$

Omniglot

https://github.com/brendenlake/omniglot

- 1623 characters
- Each has 20 examples

Dasses Ollyndersolfcontaction (CDP/CDP/CDP/CC) 可食安食对砂岗双坡与压止土口,下的一口用于了与市市,让人大人的民民人 全在具的每分分分型的一下下午后的妈妈公主。 出世之 木工 产公子名日 中 との四日ののつしのイルで四日日と日日の日日日日日日日日からのイングツ TO FOR ARY OF THE TEACTEM OF CAMPAGOOD IN A PERSON OF THE PROPERTY OF THE PROP LUYNYGOYSTWSWMSAMUBB:: " : 6 BHP4CAY L o 5 , ∞ / M / N 4 6 6 5 f 回 x 2 L 2 5 7 3 V 1 ¥ 从 d d W 7 7 7 7 べ、 N 1 1 P X N Y N O Z P B y = 2 cm on m T O V P L d む U を J

Omniglot

Few-shot Classification

 N-ways K-shot classification: In each training and test tasks, there are N classes, each has K examples.

20 ways 1 shot

Each character represents a class

ग	ΙΠ	म	万	ব
西	E	B	Ħ	TES S
ぁ	5	ч	II	ъ
ਮ	₹	圩	ম	ξ¢

Testing set (Query set)

Training set (Support set)

- Split your characters into training and testing characters
 - Sample N training characters, sample K examples from each sampled characters → one training task
 - Sample N testing characters, sample K examples from each sampled characters → one testing task

Techniques Today

MAML

 Chelsea Finn, Pieter Abbeel, and Sergey Levine, "Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks", ICML, 2017

Reptile

 Alex Nichol, Joshua Achiam, John Schulman, On First-Order Meta-Learning Algorithms, arXiv, 2018

 $\hat{\theta}^n$: model learned from task n

Loss Function:

$$\hat{\theta}^n$$
 depends on ϕ

$$L(\boldsymbol{\phi}) = \sum_{n=1}^{N} l^n(\hat{\boldsymbol{\theta}}^n)$$

 $l^n(\widehat{\theta}^n)$: loss of task n on the testing set of task n

 $\hat{\theta}^n$: model learned from task n

Loss Function:

 $\hat{\theta}^n$ depends on ϕ

$$L(\phi) = \sum_{n=1}^{N} l^n(\hat{\theta}^n)$$

 $l^n(\widehat{\theta}^n)$: loss of task n on the testing set of task n

How to minimize $L(\phi)$? Gradient Descent

$$\phi \leftarrow \phi - \eta \nabla_{\phi} L(\phi)$$

Model Pre-training

Widely used in transfer learning

Loss Function:

$$L(\mathbf{\phi}) = \sum_{n=1}^{N} l^n(\mathbf{\phi})$$

$$L(\phi) = \sum_{n=1}^{N} l^n(\hat{\theta}^n)$$

我們不在意 ϕ 在 training task 上表現如何

我們在意用 ϕ 訓練出來的 $\hat{\theta}^n$ 表現如何

Model Pre-training

$$L(\mathbf{\phi}) = \sum_{n=1}^{N} l^{n}(\mathbf{\phi})$$

找尋在所有 task 都最好的 ϕ

並不保證拿 ϕ 去訓練以後會 得到好的 $\hat{\theta}^n$

 $\hat{\theta}^n$: model learned from task n

Loss Function:

 $\hat{\theta}^n$ depends on ϕ

$$L(\mathbf{\phi}) = \sum_{n=1}^{N} l^n (\hat{\boldsymbol{\theta}}^n)$$

 $l^n(\widehat{\theta}^n)$: loss of task n on the testing set of task n

How to minimize $L(\phi)$? Gradient Descent

$$\phi \leftarrow \phi - \eta \nabla_{\phi} L(\phi)$$

Find ϕ achieving good performance **after training**

潛力

Model Pre-training

Loss Function:

Widely used in transfer learning

$$L(\mathbf{\phi}) = \sum_{n=1}^{N} l^n(\mathbf{\phi})$$

Find ϕ achieving good performance

現在表現如何

- Fast ... Fast ... Fast ...
- Good to truly train a model with one step. ©
- When using the algorithm, still update many times.
- Few-shot learning has limited data.

$$L(\boldsymbol{\phi}) = \sum_{n=1}^{N} l^n(\hat{\boldsymbol{\theta}}^n)$$

$$\phi \leftarrow \phi - \eta \nabla_{\phi} L(\phi)$$

Considering one-step training:

$$\hat{\boldsymbol{\theta}} = \boldsymbol{\phi} - \varepsilon \nabla_{\boldsymbol{\phi}} l(\boldsymbol{\phi})$$

Toy Example

Source of images https://towardsdatascience.com/paper-repro-deep-metalearning-using-maml-and-reptile-fd1df1cc81b0

Each task:

- Given a target sine function $y = a \sin(x + b)$
- Sample K points from the target function
- Use the samples to estimate the target function

Sample a and b to form a task

Toy Example

Model Pre-training

Omniglot & Mini-ImageNet

	5-way Accuracy		20-way Accuracy	
Omniglot (Lake et al., 2011)	1-shot	5-shot	1-shot	5-shot
MANN, no conv (Santoro et al., 2016)	82.8%	94.9%	_	_
MAML, no conv (ours)	$89.7\pm1.1\%$	$97.5\pm0.6\%$	_	_
Siamese nets (Koch, 2015)	97.3%	98.4%	88.2%	97.0%
matching nets (Vinyals et al., 2016)	98.1%	98.9%	93.8%	98.5%
neural statistician (Edwards & Storkey, 2017)	98.1%	99.5%	93.2%	98.1%
memory mod. (Kaiser et al., 2017)	98.4%	99.6%	95.0%	98.6%
MAML (ours)	$98.7\pm0.4\%$	$99.9\pm0.1\%$	$95.8 \pm 0.3\%$	$98.9 \pm 0.2\%$

	5-way Accuracy	
MiniImagenet (Ravi & Larochelle, 2017)	1-shot	5-shot
fine-tuning baseline	$28.86 \pm 0.54\%$	$49.79 \pm 0.79\%$
nearest neighbor baseline	$41.08 \pm 0.70\%$	$51.04 \pm 0.65\%$
matching nets (Vinyals et al., 2016)	$43.56 \pm 0.84\%$	$55.31 \pm 0.73\%$
meta-learner LSTM (Ravi & Larochelle, 2017)	$43.44 \pm 0.77\%$	$60.60 \pm 0.71\%$
MAML, first order approx. (ours)	$48.07 \pm 1.75\%$	$63.15 \pm 0.91\%$
MAML (ours)	$48.70 \pm 1.84\%$	$63.11 \pm 0.92\%$

Warning of Math

$$\phi \leftarrow \phi - \eta \nabla_{\phi} L(\phi)$$

$$L(\boldsymbol{\phi}) = \sum_{n=1}^{N} l^n (\hat{\boldsymbol{\theta}}^n)$$

$$\widehat{\boldsymbol{\theta}} = \boldsymbol{\phi} - \varepsilon \nabla_{\boldsymbol{\phi}} l(\boldsymbol{\phi})$$

$$\nabla_{\boldsymbol{\phi}} L(\boldsymbol{\phi}) = \nabla_{\boldsymbol{\phi}} \sum_{n=1}^{N} l^{n} (\hat{\boldsymbol{\theta}}^{n}) = \sum_{n=1}^{N} \underline{\nabla_{\boldsymbol{\phi}} l^{n} (\hat{\boldsymbol{\theta}}^{n})}$$

$$\frac{\partial l(\hat{\theta})}{\partial \phi_i} = \sum_{i} \frac{\partial l(\hat{\theta})}{\partial \hat{\theta}_j} \frac{\partial \hat{\theta}_j}{\partial \phi_i}$$

$$\nabla_{\boldsymbol{\phi}} l(\hat{\boldsymbol{\theta}}) = \begin{bmatrix} \partial l(\hat{\boldsymbol{\theta}}) / \partial \boldsymbol{\phi}_{1} \\ \partial l(\hat{\boldsymbol{\theta}}) / \partial \boldsymbol{\phi}_{2} \\ \vdots \\ \partial l(\hat{\boldsymbol{\theta}}) / \partial \boldsymbol{\phi}_{i} \\ \vdots \end{bmatrix}$$

$$\phi \leftarrow \phi - \eta \nabla_{\phi} L(\phi)$$

$$L(\boldsymbol{\phi}) = \sum_{n=1}^{N} l^n (\hat{\boldsymbol{\theta}}^n)$$

$$\hat{\boldsymbol{\theta}} = \boldsymbol{\phi} - \varepsilon \nabla_{\boldsymbol{\phi}} l(\boldsymbol{\phi})$$

$$\nabla_{\boldsymbol{\phi}} L(\boldsymbol{\phi}) = \nabla_{\boldsymbol{\phi}} \sum_{n=1}^{N} l^{n} (\hat{\boldsymbol{\theta}}^{n}) = \sum_{n=1}^{N} \nabla_{\boldsymbol{\phi}} l^{n} (\hat{\boldsymbol{\theta}}^{n})$$

$$\frac{\partial l(\hat{\theta})}{\partial \phi_i} = \sum_{i} \frac{\partial l(\hat{\theta})}{\partial \hat{\theta}_j} \frac{\partial \hat{\theta}_j}{\partial \phi_i} \approx \frac{\partial l(\hat{\theta})}{\partial \hat{\theta}_i}$$

$$\hat{\theta}_{j} = \phi_{j} - \varepsilon \frac{\partial l(\phi)}{\partial \phi_{j}}$$

$$i \neq j$$
:

$$\frac{\partial \hat{\theta}_{j}}{\partial \phi_{i}} = -\varepsilon \frac{\partial l(\phi)}{\partial \phi_{i} \partial \phi_{i}} \approx 0$$

$$i = j$$
:

$$\frac{\partial \theta_j}{\partial \phi_i} = 1 - \varepsilon \frac{\partial l(\phi)}{\partial \phi_i \partial \phi_j} \approx 1$$

$$\nabla_{\phi} l(\hat{\theta}) = \begin{bmatrix} \frac{\partial l(\hat{\theta})}{\partial \phi_{1}} \\ \frac{\partial l(\hat{\theta})}{\partial \phi_{2}} \\ \vdots \\ \frac{\partial l(\hat{\theta})}{\partial \phi_{i}} \end{bmatrix} \qquad i \neq j:$$

$$i \neq j:$$

$$i = j:$$

$$\vdots$$

$$\frac{\partial \hat{\theta}_{j}}{\partial \phi_{i}} = -\varepsilon \frac{\partial l(\phi)}{\partial \phi_{i} \partial \phi_{j}} \approx 0$$

$$i = j:$$

$$\frac{\partial \hat{\theta}_{j}}{\partial \phi_{i}} = 1 - \varepsilon \frac{\partial l(\phi)}{\partial \phi_{i} \partial \phi_{j}} \approx 1$$

$$\phi \leftarrow \phi - \eta \nabla_{\phi} L(\phi)$$

$$L(\phi) = \sum_{n=1}^{N} l^{n} (\hat{\theta}^{n})$$

$$\hat{\theta} = \phi - \varepsilon \nabla_{\phi} l(\phi)$$

$$\nabla_{\boldsymbol{\phi}} L(\boldsymbol{\phi}) = \nabla_{\boldsymbol{\phi}} \sum_{n=1}^{N} l^{n} (\hat{\boldsymbol{\theta}}^{n}) = \sum_{n=1}^{N} \nabla_{\boldsymbol{\phi}} l^{n} (\hat{\boldsymbol{\theta}}^{n})$$

$$\frac{\partial l(\hat{\theta})}{\partial \phi_i} = \sum_{j} \frac{\partial l(\hat{\theta})}{\partial \hat{\theta}_j} \frac{\partial \hat{\theta}_j}{\partial \phi_i} \approx \frac{\partial l(\hat{\theta})}{\partial \hat{\theta}_i}$$

products, which is supported by standard deep learning libraries such as TensorFlow (Abadi et al., 2016). In our experiments, we also include a comparison to dropping this backward pass and using a first-order approximation, which we discuss in Section 5.2.

$$\nabla_{\boldsymbol{\phi}} l(\hat{\boldsymbol{\theta}}) = \begin{bmatrix} \partial l(\hat{\boldsymbol{\theta}}) / \partial \boldsymbol{\phi}_{1} \\ \partial l(\hat{\boldsymbol{\theta}}) / \partial \boldsymbol{\phi}_{2} \\ \vdots \\ \partial l(\hat{\boldsymbol{\theta}}) / \partial \boldsymbol{\phi}_{i} \\ \vdots \end{bmatrix} = \begin{bmatrix} \partial l(\hat{\boldsymbol{\theta}}) / \partial \hat{\boldsymbol{\theta}}_{1} \\ \partial l(\hat{\boldsymbol{\theta}}) / \partial \hat{\boldsymbol{\theta}}_{2} \\ \vdots \\ \partial l(\hat{\boldsymbol{\theta}}) / \partial \hat{\boldsymbol{\theta}}_{i} \\ \vdots \end{bmatrix} = \nabla_{\hat{\boldsymbol{\theta}}} l(\hat{\boldsymbol{\theta}})$$

End of Warning

MAML – Real Implementation

Translation

4K

18 training tasks: 18 different languages translating to English 2 validation tasks: 2 different languages translating to English

160K

40K

16K

Techniques Today

MAML

 Chelsea Finn, Pieter Abbeel, and Sergey Levine, "Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks", ICML, 2017

Reptile

 Alex Nichol, Joshua Achiam, John Schulman, On First-Order Meta-Learning Algorithms, arXiv, 2018

https://openai.com/blog/reptile/

You might be thinking "isn't this the same as training on the expected loss $\mathbb{E}_{\tau}[L_{\tau}]$?" and then checking if the date is April 1st. Indeed, if the partial minimization consists of a single gradient step, then this algorithm corresponds to minimizing the expected loss:

(this sentence is removed in the updated version)

More ...

Video: https://www.youtube.com/watch?v=c10nxBcSH14

Turtles all the way down?

- We learn the initialization parameter ϕ by gradient descent
- What is the initialization parameter ϕ^0 for initialization parameter ϕ ?

Learn

Learn to learn

Learn to learn to learn

Crazy Idea?

下回分解◎

How about learning algorithm beyond gradient descent?

Meta Learning (Part 2): Gradient Descent as LSTM

Hung-yi Lee

OPTIMIZATION AS A MODEL FOR FEW-SHOT LEARNING

Learning to learn by gradient descent by gradient descent

Sachin Ravi* and Hugo Larochelle

Twitter, Cambridge, USA {sachinr, hugo}@twitter.com

Marcin Andrychowicz¹, Misha Denil¹, Sergio Gómez Colmenarejo¹, Matthew W. Hoffman¹, David Pfau¹, Tom Schaul¹, Brendan Shillingford^{1,2}, Nando de Freitas^{1,2,3}

¹Google DeepMind ²University of Oxford ³Canadian Institute for Advanced Research

Recurrent Neural Network

• Given function f: h', y = f(h, x)

h and h' are vectors with the same dimension

No matter how long the input/output sequence is, we only need one function f

c change slowly c^t is c^{t-1} added by something

h change faster h^t and h^{t-1} can be very different

Review: LSTM

$$z = tanh(W) \frac{x^{t}}{h^{t-1}})$$

$$c^{t-1}$$

$$z^{i} = \sigma(W^{i})$$
input

$$z^{f} = \sigma(W^{f})$$
forget

$$z^{\circ} = \sigma(W^{\circ})$$
output

Review: LSTM

Review: LSTM

Similar to gradient descent based algorithm

Similar to gradient descent based algorithm

Typical LSTM

LSTM for Gradient Descent

$$\theta^t = z^f \odot \theta^{t-1} + z^i \odot -\nabla_\theta l$$

Learn to minimize

Real Implementation

The LSTM used only has one cell. Share across all parameters

- Reasonable model size
- In typical gradient descent, all the parameters use the same update rule
- Training and testing model architectures can be different.

Experimental Results

$$\theta^t = z^f \odot \theta^{t-1} + z^i \odot -\nabla_{\theta} l$$

(a) Forget gate values for 1-shot meta-learner

(b) Input gate values for 1-shot meta-learner

Parameter update depends on not only current gradient, but *previous gradients*.

LSTM for Gradient Descent (v2)

3 training steps

Experimental Results

Meta Learning (Part 3) Hung-yi Lee

Even more crazy idea ...

- Input:
 - Training data and their labels
 - Testing data
- Output:
 - Predicted label of testing data

Face Verification

In each task:

Training

Few-shot Learning

Registration (Collecting Training data)

Unlock your phone by Face

Meta Learning

Same approach for Speaker Verification

Test

Yes

Training Tasks

Test

No

Test

No

Testing Tasks

Test

Yes or No

No

No

Siamese Network

- Intuitive Explanation

Binary classification problem: "Are they the same?"

Siamese Network

- Intuitive Explanation

To learn more ...

- What kind of distance should we use?
 - SphereFace: Deep Hypersphere Embedding for Face Recognition
 - Additive Margin Softmax for Face Verification
 - ArcFace: Additive Angular Margin Loss for Deep Face Recognition
- Triplet loss
 - Deep Metric Learning using Triplet Network
 - FaceNet: A Unified Embedding for Face Recognition and Clustering

N-way Few/One-shot Learning

Prototypical Network

Matching Network

Considering the relationship among the training examples

Relation Network

Few-shot learning for imaginary data

blue heron

https://arxiv.org/abs/1801.05401

Few-shot learning for imaginary data

