Derivare numerică. Metode de integrare Newton-Cotes

Noțiuni teoretice

Ne propunem să calculăm, în mod aproximativ, valorile $I[f] = \int_a^b f(x)dx$ şi $D[f] = f^{(p)}(x_0)$, în condițiile în care:

- funcția f este continuă pe intervalul [a, b];
- \bullet primitiva F nu este cunoscută;
- funcția f este cunoscută numai prin valorile $f(x_i)$, într-un număr restrâns de puncte x_i , i = 0 : N.

Derivare numerică

Întrucât derivata funcției f în punctul x_0 este definită ca

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h},$$

un mod evident de a aproxima $f'(x_0)$ este calculul

$$\frac{f(x_0+h)-f(x_0)}{h},$$

pentru valori mici ale lui h.

Vom analiza eroarea obținută prin această metodă, cu ajutorul polinomului de interpolare Lagrange de grad 1, cunoscând valorile funcției în punctele x_0 și $x_1 = x_0 + h$. Considerăm $f \in C^2[a,b]$ și $x_0, x_1 \in [a,b]$.

$$f(x) = P_1(x) + \frac{(x - x_0)(x - x_1)}{2!} f''(\xi(x))$$

$$f(x) = \frac{f(x_0)(x - x_0 - h)}{-h} + \frac{f(x_0 + h)(x - x_0)}{h} + \frac{(x - x_0)(x - x_1)}{2} f''(\xi(x)),$$

$$\xi(x) \in [a, b]$$

Derivând, se ajunge la

$$f'(x) = \frac{f(x_0 + h) - f(x_0)}{h} + D_x \left[\frac{(x - x_0)(x - x_0 - h)}{2} f''(\xi(x)) \right]$$
$$= \frac{f(x_0 + h) - f(x_0)}{h} + \frac{2(x - x_0) - h}{2} f''(\xi(x)) + \frac{(x - x_0)(x - x_0 - h)}{2} D_x(f''(\xi(x))).$$

Astfel,

$$f'(x) \approx \frac{f(x_0 + h) - f(x_0)}{h},$$

cu eroarea

$$\frac{2(x-x_0)-h}{2}f''(\xi(x)) + \frac{(x-x_0)(x-x_0-h)}{2}D_x(f''(\xi(x))).$$

Pentru $x = x_0$, formula se simplifică astfel (two-point formula):

$$f'(x_0) = \frac{f(x_0 + h) - f(x_0)}{h} - \frac{h}{2}f''(\xi), \xi \in [x_0, x_0 + h].$$

Figure 1: Interpretare geometrică pentru formula de derivare two-point.

Aplicând o tehnică similară, dar folosind polinomul Lagrange de grad 2, cunoscând valorile funcției în punctele x_0, x_0+h, x_0+2h și considerând că există f''' pe un interval ce conține aceste abscise, obținem (three-point endpoint formula):

$$f'(x_0) = \frac{1}{2h} [-3f(x_0) + 4f(x_0 + h) - f(x_0 + 2h)] + \frac{h^2}{3} f'''(\xi), \xi \in [x_0, x_0 + 2h].$$

Această formulă este utilă pentru aproximarea derivatei la capătul unui interval (ex: x_0), situație ce apare, spre exemplu, la interpolările cu spline-uri cubice tensionate.

Pentru aproximarea derivatei unei funcții într-un punct interior unui interval, este recomandată folosirea următoarei formule (obținută cu ajutorul polinomului de interpolare Lagrange de grad 2, în punctele $x_0 - h$, x_0 , $x_0 + h$ (three-point midpoint formula):

$$f'(x_0) = \frac{1}{2h} \left[f(x_0 + h) - f(x_0 - h) \right] - \frac{h^2}{6} f'''(\xi), \xi \in [x_0 - h, x_0 + h].$$

Figure 2: Interpretare geometrică pentru formula de derivare three-point midpoint.

Observație

În tehnicile de derivare numerică, reducerea pasului h duce la reducerea erorii teoretice, însă cu costul creșterii erorilor de rotunjire. Pentru a ilustra acest comportament, vom examina formula:

$$f'(x_0) = \frac{1}{2h} \left[f(x_0 + h) - f(x_0 - h) \right] - \frac{h^2}{6} f'''(\xi), \xi \in [x_0 - h, x_0 + h].$$

Dacă în evaluările $f(x_0+h)$ și $f(x_0-h)$ apar erorile ϵ_+ și ϵ_- , notând cu $\tilde{f}(x_0+h)$ și $\tilde{f}(x_0-h)$ valorile calculate efectiv, avem relațiile:

$$f(x_0 + h) = \tilde{f}(x_0 + h) + \epsilon_+$$

$$f(x_0 - h) = \tilde{f}(x_0 - h) + \epsilon_-$$

Astfel, presupunând că erorile ϵ_+ şi ϵ_- sunt mărginite de $\epsilon > 0$ şi că f''' este marginită de M > 0, eroarea totală a aproximării devine:

$$\left| f'(x_0) - \frac{\tilde{f}(x_0 + h) - \tilde{f}(x_0 - h)}{2h} \right| \le \frac{\epsilon}{h} + \frac{h^2}{6}M.$$

Pentru a reduce termenul $\frac{h^2}{6}M$ este necesară reducerea lui h, care duce însă la creșterea termenului $\frac{\epsilon}{h}$ (specific erorii de rotunjire), acest termen ajungând să domine calculele.

Integrare numerică

Definim o metodă aproximativă de integrare astfel:

$$I_N[f] = \sum_{i=0}^{N} A_i f(x_i).$$

O astfel de metodă este convergentă dacă:

$$\lim_{N \to \infty} |I[f] - I_N[f]| = 0.$$

Metode Newton-Cotes

Pentru o formulă de integrare aproximativă putem scrie

$$\int_{a}^{b} f(x)w(x)dx = \sum_{i=0}^{N} A_{i}f(x_{i}) + R_{N}.$$

În metodele de tip Newton-Cotes, abscisele x_i se aleg echidistante în intervalul [a,b]

$$x_i = a + i\frac{(b-a)}{N}, i = 0:N.$$

Coeficienții A_i se determină impunând ca formula aproximativă să fie exactă $(R_N = 0)$ dacă f aparține unei anumite clase de funcții (de exemplu, polinoame de grad $\leq N$). Astfel, vom aproxima funcția prin polinomul ei de interpolare Lagrange

$$P_N(x) = \sum_{i=0}^N f(x_i)l_i(x), \quad l_i(x) = \prod_{j=0, j \neq i}^N \frac{(x-x_j)}{(x_i-x_j)}.$$

În acest fel, obținem $A_i = \int_a^b l_i(x)w(x)dx$.

Deoarece eroarea polinomului de interpolare respectă

$$|f(x) - P_N(x)| \le \frac{|f^{(N+1)}(\xi)|}{(N+1)!} |(x-x_0)...(x-x_N)|,$$

cu $\xi \in [a, b]$, prin integrare obținem expresia erorii în metodele Newton-Cotes:

$$R_N \le \frac{\left|f^{(N+1)}(\xi)\right|}{(N+1)!} \int\limits_a^b \left|(x-x_0)...(x-x_N)\right| w(x) dx.$$

Datorită instabilității interpolării polinomiale se folosesc polinoame de interpolare de grad mic.

Astfel, pentru N=1 se obține formula trapezelor:

$$\int_{a}^{b} f(x)dx = \frac{h}{2} [f(a) + f(b)] - \frac{h^{3}f''(\xi)}{12}, \quad h = b - a.$$

Figure 3: Interpretare geometrică pentru formula trapezelor.

Pentru N=2, se obține formula Simpson (Figure 2):

$$\int_{a}^{b} f(x)dx = \frac{h}{3} \left[f(a) + 4f\left(\frac{a+b}{2}\right) + f(b) \right] - \frac{h^5 f^{(4)}(\xi)}{90}, \quad h = \frac{b-a}{2}$$

Figure 4: Interpretare geometrică pentru formula Simpson.

Aceste formule folosesc puține puncte, ceea ce ne determină să aproximăm inte-

grala ca o sumă de integrale calculate pe intervale mai mici

$$\int_{x_0}^{x_N} f(x)dx = \int_{x_0}^{x_1} f(x)dx + \dots + \int_{x_{N-1}}^{x_N} f(x)dx.$$

Astfel, obţinem:

• formula compusă a trapezelor

$$\int_{a}^{b} f(x)dx \approx \frac{h}{2} \left[f(a) + f(b) + 2 \sum_{i=1}^{N-1} f(a+ih) \right], \quad h = \frac{(b-a)}{N}$$

Figure 5: Interpretare geometrică pentru formula compusă a trapezelor.

• formula compusă Simpson

$$\int_{a}^{b} f(x)dx \approx \frac{h}{3} \left[f(a) + f(b) + 4 \sum_{i=1}^{N/2} f(x_{2i-1}) + 2 \sum_{i=1}^{N/2-1} f(x_{2i}) \right],$$

$$h = \frac{(b-a)}{N}, x_i = a + ih$$

Probleme propuse

Problema 1

Folosind formula de derivare two-point, aproximați derivata funcției $f(x)=\sin(x)$ în punctele $x_0=0.2,\,x_1=0.5,\,x_2=0.9.$

Figure 6: Interpretare geometrică pentru formula compusă Simpson.

Problema 2

- a) Scrieți două funcții OCTAVE care calculează derivata unei funcții într-un punct x_0 dat, folosind formulele three-point midpoint, respectiv three-point endpoint. fx este un vector ce conține valorile funcției în punctele necesare fiecărei metode.
 - b) Folosiți aceste funcții pentru a completa tabelul $(f(x) = e^{3x})$:

X	f(x)	f'(x)
2.3	992.27	
2.5	1808.04	
2.7	3294.47	

Problema 3

a) Folosind formula compusă Simpson pentru N=4, aproximați integrala

$$\int_{3}^{5} x log(x) dx.$$

b) Folosind formula compusă a trapezelor pentru N=4, aproximați integrala

$$\int_{1}^{3} e^{3x} dx.$$

Problema 4

a) Aproximați integrala $I=\int\limits_0^{\frac{\pi}{2}}\frac{\sin(x)}{x}dx$ prin metoda Simpson folos
ind 3 puncte.

b) Se dă
$$f:[a,b]\times [c,d]\to \mathbb{R}.$$
 Calculați $I=\int\limits_a^b\int\limits_c^df(x,y)dxdy.$

Problema 5

Calculați aproximativ integrala

$$\int_{0}^{1} \ln(1+x^2)dx,$$

folosind formula compusă a trapezelor pentru N=4.

Problema 6

Pentru formula de integrare de tip Newton-Cotes, $\int\limits_a^b f(x)w(x)dx \approx \sum\limits_{i=0}^N A_i f(x_i)$, să se arate că $a_i = \int\limits_a^b w(x)l_i(x)dx$, în care l_i reprezintă multiplicatorii din formula de interpolare Lagrange.