Projeto Final

Ademir Camillo Junior

Mestrado em Computação Aplicada

UDESC - Joinville

Disciplina: ASC

Professor: Rafael R. Obelheiro

Sumário

- Problema e Escopo
- Métricas, Parâmetros e Fatores
- Metodologia
- Dados no R
- Apresentação Resultados
- Considerações
- Trabalhos Relacionados
- Conclusão

Problema

- Crescimento dos dispositivos conectados
 - IoT (Internet of Things)
- Diversidade de Equipamentos
 - Marcas, modelos, aplicações
- Fatores de Decisão
 - Form Factory (Tamanho)
 - Memória
 - Consumo de Energia
 - Processamento

Escopo

Analisar 4 microcontroladores disponíveis e bastante utilizados por desenvolvedores de soluções IoT para identificar o desempenho (Velocidade /Tempo) de cada um deles referente ao processamento de informações

Escopo

MODELO	PROCESSADOR	CLOCK	SRAM	FLASH	VOLTS
Arduino UNO	ATmega328PU	16MHz	2 KB	32 KB	5V
Arduino Pro Mini	ATmega328P	8MHz	1 KB	32 KB	3.3V
Attiny85	Atinny85	8MHz	0,5 KB	8 KB	1.8V
Attiny85	Atinny85	1MHz	0,5 KB	8 KB	1.8V

Métricas

- Desempenho do Microcontrolador
 - Clock Processador MHz
 - Tempo Microsegundos
 - Função Nativa dos Processadores AVR
 - micro();
 - milis();
 - Tempo de Execução

Parâmetros

- Ordenação de Vetores
 - Algoritmos
 - Bubble Sort
 - Selection Sort
 - Tamanho do Vetor
 - 50
 - 100
 - 150

Fatores

- Frequência Processador
 - Atmega 328PU 16MHz
 - Atmega 328PU 8MHz
 - □ ATtiny85 8MHz
 - □ ATtiny85 1MHz
- Memória RAM
 - Atmega 328PU 2KB
 - Atmega 328PU 1KB
 - □ ATtiny85 0.5KB
 - □ ATtiny85 0.5KB

Metodologia

- Para cada Microcontrolador
 - Vetor com 50, 100 e 150 Registros
 - Algoritmos Bubble Sort e Selection Sort
 - Execução 20 vezes
 - Coleta dos dados
 - Micro * Tam * Algoritmos * 20 x
 - 4 * 3 * 2 * 20 = 480 medições

Análise de Variância

dados.aov <- aov(Tempo ~ Ram + Frequencia + Sort + Quantidade, data=dados) summary(dados.aov)

	Df	Sum Sq	Mean Sq	F value	Pr(>F)	
Ram	2	1.169e+13	5.843e+12	573	<2e-16	***
Frequencia	1	1.703e+13	1.703e+13	<u> 1670</u>	<2e-16	***
Sort	1	5.097e+10	5.097e+10	5	0.0258	*
Quantidade	2	2.980e+12	1.490e+12	146	<2e-16	***
Residuals	473	4.821e+12	1.019e+10			

Signif. codes: 0 "*** 0.001 "** 0.01 " 0.05 ".' 0.1 " 1

Como os fatores influenciam a resposta? Alocação da Variação

	Sum Sq
Ram	31.96
Frequencia	46.57
Sort	0.14
Quantidade	8.15
Residuals	13.18

	Sum So
Ram	31.96
Frequencia	46.57
Sort	0.14
Quantidade	8.15
Residuals	13.18

	Sum So
Ram	31.96
Frequencia	46.57
Sort	0.14
Quantidade	8.15
Residuals	13.18

	Sum Sq
Ram	31.96
Frequencia	46.57
Sort	0.14
Quantidade	8.15
Residuals	13.18

	Sum Sq
Ram	31.96
Frequencia	46.57
Sort	0.14
Quantidade	8.15
Residuals	13.18

Regressão Linear

- 2 MicroControladores
 - ATmega328PU 8MHz
 - □ ATtiny85 8MHz
- Algoritmo
 - Bubble Sort
- Tamanho do Vetor(12 Tamanhos)
 - 12, 20, 40, 50, 60, 70, 80, 100, 120, 123, 140, 150
 - 20 leituras cada
 - Média Aritmética

Regressão Linear

Tamanho	ATmega328 (Microsegundos)	ATtiny85 (Microsegundos)
12	2592	7704
20	4544	13040
40	10176	27176
50	13392	34712
60	16984	42464
70	20960	50768
80	25080	58904
100	34128	77040
120	43904	95096
123	46128	98544
140	55088	110155
150	61752	118377

Modelo de Regressão Linear

Independência de Erros Gráfico de Dispersão

Distribuição Normal do Erros

Outliers

Resíduos Vs Influência

Dados no R - Regressão Linear ATMega328 - BubbleSort

```
> summary(ajuste)
Call:
lm(formula = tempo ~ qtde)
Residuals:
   Min 10 Median 30
                                Max
-2635.4 -2158.9 -675.4 1877.1 4031.0
Coefficients:
           Estimate Std. Error t value
                                        Pr(>|t|)
                                         0.00172 **
(Intercept) -6576.69 1551.01 -4.24
qtde 428.65 16.89 25.38
                                         2.07e-10 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 2593 on 10 degrees of freedom
Multiple R-squared: 0.9847, Adjusted R-squared: 0.9832
F-statistic: 644 on 1 and 10 DF, p-value: 2.071e-10
```

Dados no R - Regressão Linear ATtiny85 - BubbleSort

```
> summary(ajuste)
Call:
lm(formula = tempo ~ qtde)
Residuals:
   Min 10 Median 30
                                 Max
-1918.4 -1541.1 -113.4 1426.4 2791.9
Coefficients:
           Estimate Std. Error t value
                                         Pr(>|t|)
(Intercept) -4954.46 1055.22 -4.695
                                         0.000848 ***
     822.21 11.49 71.545
qtde
                                         6.94e-15
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1764 on 10 degrees of freedom
Multiple R-squared: 0.9981, Adjusted R-squared: 0.9979
F-statistic: 5119 on 1 and 10 DF, p-value: 6.941e-15
```

ATMega328 - BubbleSort - 90%

```
pred.df <- data.frame(qtde=c(25, 75, 133))
predict(ajuste, newdata=pred.df, int="p", level=0.9)</pre>
```

Qtde	Lwr	Fit	Upr	Lido
25	-1038	4139	9317	5872
75	20677	25572	30467	23312
133	45283	50433	55584	51768

ATtiny85 - BubbleSort - 90%

```
pred.df <- data.frame(qtde=c(25, 75, 133))
predict(ajuste, newdata=pred.df, int="p", level=0.9)</pre>
```

Qtde	Lwr	Fit	Upr	Lido
25	12077	15600	19123	16472
75	53381	56711	60041	54728
133	100895	104399	107903	107592

Bandas de Confiança e Predição

Confiança e Predição - ATMega328 8MHz - Bubble Sort

Confiança e Predição - ATtiny85 8MHz - Bubble Sort

Considerações dos Resultados

- Fatores Mais Significativos
 - Frequência
 - Ram
- Modelo de Regressão Linear
 - Resultados Validados
- Desempenho
 - ATtiny85 o.5KB Ram
 - ATmega328 1KB Ram

Conclusões

- Ideia, Escopo e Resultados
- Coleta dos Dados
- Uso do R
- Fidelidade do Modelo Gerado
- Validação na prática
 - Teste em tempo Real

Trabalhos Futuros

- Adicionar novo fator
 - Consumo de Energia
 - Processamento: Energia
- Alterar o parâmetro
 - Algoritmo de Ordenação por sqrt()
 - Método:Processamento

Referências

- ATtiny85 Datasheet Disponível em http://www.atmel.com/images/atmel-2586-avr-8-bit-microcontroller-attiny25-attiny45-attiny85 datasheet.pdf
- ATmega328PU Datasheet Disponível em http://www.atmel.com/Images/Atmel-8271-8-bit-AVR-Microcontroller-ATmega48A-48PA-88A-88PA-168PA-328-328P datasheet Summary.pdf
- Verzani, John. Using R for Introductory Statistics.
 Editora Taylor & Francis. 2005