Ejemplos y ejercicios variables aleatorias discretas y continuas

Bioestadística 1

Edimer David Jaramillo 19 y 26 de abril de 2018

Contents

Ejemplos																									
Ejemplo 1.												 													
Ejemplo 2.																									
Ejemplo 3.																									
Ejemplo 4.																									
Ejemplo 5.												 													
Ejemplo 6.												 													
Ejemplo 7.		٠							•	•				•							•	•			
Ejercicios sug	ger	id	los	3																					
Ejercicio 1.												 													
Ejercicio 2.												 													
Ejercicio 3.												 													

Ejemplos

Ejemplo 1.

Suponga que la función f(x) representa una función de probabilidad dada por la siguiente expresión:

$$f(x) = \frac{2x+1}{25}, \ x = 0, 1, 2, 3, 4$$

Obtener las siguientes probabilidades:

- P(X = 4)
- $P(X \le 1)$
- $P(2 \le X < 4)$
- P(X > -10)

Ejemplo 2.

Con base en el siguiente gráfico de función de distribución acumulada, obtener las siguientes probabilidades:

X_i	50	200	350
p_{i}	0.3	0.2	0.5

- $P(X \le 170)$ $P(X \le 200)$ P(X = 200)• $P(X \ge 350)$

Ejemplo 3.

Considere la siguiente función de distribución acumulada para la variable aleatoria X:

Obtener las siguientes probabilidades:

- $P(X \le 1)$
- P(X < 1)
- P(X = 1)
- $P(X \le 0)$

Ejemplo 4.

Una ambulancia de voluntarios realiza de 0 a 5 servicios por día. A continuación se presenta la distribución de probabilidad de los servicios por día.

Número de servicios	Probabilidad	Número de servicios	Probabilidad
0	0.10	3	0.20
1	0.15	4	0.15
2	0.30	5	0.10

Obtener:

- $\bullet\,$ El valor esperado o esperanza matemática E(X) del número de servicios
- La varianza Var(X) del número de servicios
- La desviación estándar del número de servicios

Ejemplo 5.

En un juego de azar una persona saca una sola carta de una baraja ordinaria de 52 cartas. A una persona le pagan 15 pesos por sacar una "sota" o una reina y 5 pesos por sacar un rey o un as. Alguien que saque cualquier otra carta paga 4 pesos. Si una persona participa en este juego:

- ¿Cuál es la ganancia esperada?
- ¿Cómo se interpreta este valor?

Ejemplo 6.

Cuatro personas apuestan $1 \in$ a que saldrá un número en un dado, cada uno a un número diferente. Entonces por cada euro apostado si se gana recibes 3 euros más. ¿Es conveniente apostar en este juego?

Ejemplo 7.

La vida útil en kilómetros (miles de kilómetros) de una llanta es una v.a. cuya función de densidad está dada por la siguiente expresión:

$$f(x) = \frac{1}{30}e^{-\frac{x}{30}} para x > 0$$

- Dibuje la función de densidad de probabilidad
- P(X < 15)
- P(X > 20)
- ¿Cuál es la duración promedio de una llanta?
- ¿Cuál es la desviación estándar de una llanta?

Solución:

1. **Función de densidad:

curve(exp(-x/30)/30, from=0, to=200, lwd=3)

2. P(X < 15)

fdp <- function(x) $\{\exp(-x/30)/30\}$ # Función de densidad integrate(fdp, lower = 0, upper = 15)

0.3934693 with absolute error < 4.4e-15

3. P(X > 20)

integrate(fdp, lower = 20, upper = Inf)

0.5134173 with absolute error < 0.00011

4. Duración promedio de una llanta

```
funcion_media <- function(x) x * fdp(x) #esperanza matemática de una v.a.c integrate(funcion_media, lower = 0, upper = Inf)
```

30 with absolute error < 2.5e-05

5. Desviación estándar de la duración de una llanta

```
funcion_var <- function(x) (x-30)^2 * fdp(x) #varianza de una v.a.c.
fv <- integrate(funcion_var, lower = 0, upper = Inf)
sqrt(fv$value)
```

[1] 30

Ejercicios sugeridos

Ejercicio 1.

Se venden 5000 billetes para una rifa a 1 euro cada uno. Si el único premio del sorteo es de 1800 euros, calcular el resultado que debe esperar una persona que compra 3 billetes.

Ejercicio 2.

Una variable aleatoria discreta toma todos los valores enteros entre 0 y 4 con la siguiente función de densidad:

		1				
f(x)	0.3	0.25	0.25	0.1	0.1	

Obtener:

- La representación gráfica de la función masa de probabilidad y distribución de probabilidad acumulada
- El valor esperado
- La varianza
- La desviación estándar

Ejercicio 3.

Se arrojan dos dados no cargados (equiprobables) al aire, se define la variable aleatoria X como los números obtenidos en el dado 1 y en el dado 2.

Obtener:

- La representación gráfica de la función masa de probabilidad
- La representación gráfica de la función de distribución acumulada
- EL valor esperado
- La varianza
- La desviación estándar