Package 's525'

April 23, 2018

r - ,
Type Package
Title Implementation of common Bayesian models
Version 1.0
Date 2017-11-26
Author Daniel Bourgeois
Maintainer Daniel Bourgeois <dcb10@rice.edu></dcb10@rice.edu>
Description This package contains implementations of common Bayesian models.
Imports truncnorm, MASS, coda
License MIT License

${\sf R}$ topics documented:

2	facto		ana	1576	, i
_	Tacio	1_0	ana.	1 y S	1

rstnorm_ineq_cork	24
shrinkage_regression_plot	25
sumAlong	20

s525-package

Implementation of common Bayesian models

28

Description

Index

This package contains implementations of common Bayesian models.

Details

The DESCRIPTION file: This package was not yet installed at build time.

Index: This package was not yet installed at build time.

Author(s)

Daniel Bourgeois

Maintainer: Daniel Bourgeois <dcb10@rice.edu>

Examples

simple examples of the most important functions

factor_analysis

Runs gibbs sampler for a factor model.

Description

The model is as follows:

$$y_i = \Lambda \eta_i + \epsilon_i$$

$$\epsilon_i \sim N_p(0, \Sigma)$$

where $\Sigma = \text{diag}(\sigma_1^2, ..., \sigma_p^2)$.

See Joyee Ghosh & David B. Dunson (2009) Default Prior Distributions and Efficient Posterior Computation in Bayesian Factor Analysis, Journal of Computational and Graphical Statistics, 18:2, 306-320, DOI: 10.1198/jcgs.2009.07145 for conditional posteriors.

Usage

```
factor_analysis <- function(
   Y,
   k,
   niter = 1000,
   shape_psi = 1/2,
   rate_psi = 1/2,
   shape_sigma2 = 1,
   rate_sigma2 = 0.2,
   nonzero_structure = NULL)</pre>
```

Arguments

Y n by p matrix k number of factors

niter number of iterations for the gibbs sampler to run. shape_psi shape parameter for psi. Can be a scalar or a k vector

rate_psi rate parameter for psi. Can be a k vector shape_sigma2 shape parameter for sigma2. Can be a p vector rate_sigma2 rate parameter for sigma2. Can be a p vector nonzero_structure

A boolean p x k matrix. If the i, jth spot is TRUE, then λ_{ij} is free. If the i, jth spot is FALSE, then λ_{ij} is zero. If not set, then a lower triangular matrix is used.

Value

sigma An niter x p matrix of posterior values
eta An niter x n x k array of posterior values
lambda An niter x p x k array of posterior values

factor_analysis_with_regression

Runs gibbs sampler for a factor model with regression on the factors.

Description

The model is as follows:

$$y_i = \alpha + \Lambda \eta_i + \epsilon_i,$$

$$\eta_i = Bx_i + \delta_i$$

$$\epsilon_i \sim N_p(0, \tau^{-1})$$

$$\delta_i \sim N_k(0, I)$$

```
where \tau = \operatorname{diag}(\tau_1, ..., \tau_p).
```

See Joyee Ghosh & David B. Dunson (2009) Default Prior Distributions and Efficient Posterior Computation in Bayesian Factor Analysis, Journal of Computational and Graphical Statistics, 18:2, 306-320, DOI: 10.1198/jcgs.2009.07145.

4 factor_infinite

Usage

```
factor_analysis_with_regression <- function(
   Y,
   X,
   k,
   niter = 1,
   shape_psi = 1/2,
   rate_psi = 1/2,
   shape_tau = 1,
   rate_tau = 0.2,
   coef_multiplier = 10,
   nonzero_structure = NULL)</pre>
```

Arguments

Υ n by p matrix Χ n by f matrix k number of factors niter number of iterations for the gibbs sampler to run. shape parameter for psi. Can be a scalar or a k vector shape_psi rate_psi rate parameter for psi. Can be a k vector shape parameter for sigma2. Can be a p vector shape_tau rate parameter for sigma2. Can be a p vector rate_tau

A boolean p x k matrix. If the i, jth spot is TRUE, then λ_{ij} is free. If the i, jth spot is FALSE, then λ_{ij} is zero. If not set, then a lower triangular matrix is used.

Value

alpha	An niter x p matrix of posterior values
lambda	An niter x p x k array of posterior values
tau	An niter x p matrix of posterior values
eta	An niter x n x k array of posterior values
В	An niter x k x f array of posterior values

nonzero_structure

factor_infinite 5

Description

The model is as follows:

$$y_i = \Lambda \eta_i + \epsilon_i$$

$$\epsilon_i \sim N_p(0, \Sigma)$$

```
where \Sigma = \operatorname{diag}(\sigma_1^2, ..., \sigma_p^2).
```

See Bhattacharya, Anirban, and David B. Dunson. 'Sparse Bayesian infinite factor models.' Biometrika (2011): 291-306.

Usage

```
factor_infinite <- function(
    Y,
    k_star,
    niter = 1000,
    a_sig = 1,
    b_sig = 1,
    rho = 3,
    a1 = 1,
    a2 = 3)</pre>
```

Arguments

Υ	n by p matrix
k_star	number of factors to cut off at
niter	number of iterations for the gibbs sampler to run.
a_sig	shape hyper parameter for the σ^2
b_sig	shape hyper parameter for the σ^2
rho	hyper parameter
a1	hyper parameter
a2	hyper parameter

Value

sigma2 An niter x p matrix of posterior values

lambda An niter x p x k_star array of posterior values

6 gibbs

gibbs	Gibbs Sampler Skeleton
	•

Description

This function provides the common skeleton used in all gibbs sampler: set initial values and then for as many iterations as needed, sample conditional posteriors of each of the parameters

Usage

```
gibbs <- function(
  niter,
  init,
  hypers,
  known_data,
  conditional_samplers,
  iter_argname = "iter",
  ignore = c())</pre>
```

Arguments

niter	number of iterations to run sampler	
init	A list of initial values to start the sampler. The list must be named and the names must correspond to the names in conditional_samplers.	
hypers	A list of hyper values. This is passed into the conditional samplers as needed.	
known_data	A list of data that is passed into the conditional samplers.	
conditional_samplers		
	A list of functions. Each function is a sampler for each of the parameters. The list must be named and the names must correspond to the names in init.	
iter_argname	The conditional samplers may choose to take iter_argname as a function argument. For example, if the conditional sampler is only to perform a sample every so many iterations.	
ignore	A vector of parameter names to not store and return.	
asmcmc	Whether or not to make the return value a mcmc object.	

Details

This function returns a list of arrays where each element is the set of samples generated for the corresponding parameter. In addition, the amount of running time used to calculate each variable is returned.

horseshoe_regression 7

Examples

```
# Do a gibbs sampling for an AR(1) model:
y_t = phi*y_{t-1} + eps_t
   eps_t ~ normal(0, s2a)
# phi ~ I_[-1,1](phi)*N(0,1)
# s2a ~ inv_gamma(a, b)
\# doing a grid sample along n_grid points; the prior
# is a truncated normal(0, 1)
sample_phi = function(y, s2a, n_grid = 1000)
 T = length(y)
 log_prob = function(phi)
   - 0.5/s2a*(
   sum((y[2:T] - phi*y[1:(T-1)])^2)) - 0.5*phi^2
 xs = seq(-0.999, 0.999, length.out = n_grid)
 prob = exp(sapply(xs, log_prob))
 sample(xs, 1, prob = prob)
}
# s2a has a inv gamma (a, b) prior; using conjugacy
sample_s2a = function(y, phi, a, b)
{
 T = length(y)
 1/rgamma(1,
   shape = a + T/2,
   rate = b + 0.5*sum((y[2:T] - c(phi)*y[1:(T-1)])^2))
}
n = 1000
niter = 500
ret = gibbs(
 niter,
 init
                      = list(s2a = 1, phi = 0),
 hypers
                    = list(a = 0, b = 0),
               = list(y = rnorm(n)),
 known_data
 conditional_samplers = list(s2a = sample_s2a, phi = sample_phi),
                      = "s2a")
 ignore
plot(ret$phi)
```

Description

The horseshoe regression model is given by

$$[y_i|x_i, \beta, \sigma] \sim N(x_i^t \beta, \sigma^2), i = 1, ..., n,$$
$$[\beta_j|\sigma, \lambda_j] \sim N(0, \sigma^2 \lambda_j^2),$$
$$[\lambda_j|A] \sim C^+(0, A),$$
$$A \sim Uniform(0, 10),$$
$$p(\sigma^2) \propto \frac{1}{\sigma^2}.$$

The half-Cauchy parameter expansion is used; given by

$$[\eta_j|\gamma_j] \sim Gamma(\frac{1}{2}, \gamma_j),$$

 $[\gamma_j] \sim Gamma(\frac{1}{2}, \frac{1}{4^2}).$

Let $\eta_j=\lambda_j^{-2},$ $\tau_A=A^{-2},$ $au=\frac{1}{\sigma^2}$ and $\Lambda=diag(\eta_1,...,\eta_p)$. The full conditionals are given by:

$$\begin{split} [\beta|Y,X,\eta,\tau] &\sim \mathcal{N}((X'X+\Lambda)^{-1}X'Y,\tau^{-1}(X'X+\Lambda)^{-1}), \\ [\eta_j|\beta_j,\gamma_j,\tau] &\sim \exp(\frac{\tau\beta_j^2}{2}+\gamma_j), \\ [\gamma_j|\eta_j,\tau_A] &\sim \exp(\eta_j+\tau_A), \\ [\tau_A|\gamma] &\sim \operatorname{Gamma}(\frac{p-1}{2},\sum\gamma_i)\mathrm{I}_{(\frac{1}{100},\infty)}, \\ [\tau|Y,X,\beta,\eta] &\sim \operatorname{Gamma}(\frac{n+p}{2},\frac{(y-X\beta)'(y-X\beta)+\beta'\Lambda\beta}{2}). \end{split}$$

Usage

Arguments

Y n by 1
X n by p predictor matrix
niter number of gibbs sampling iterations

Details

This function returns the generated parameters from the gibbs sampling markov chain.

hpdAlong 9

Value

beta	An niter x p matrix
lambda	An niter x p matrix
sigma	An niter x 1 matrix

Examples

```
# Load the data
prostate.data = "https://web.stanford.edu/~hastie/ElemStatLearn/datasets/prostate.data"
prostate = read.table(file = prostate.data, sep="", header = TRUE)
# Training data:
prostate_train = prostate[which(prostate$train),-10]
# Testing data:
prostate_test = prostate[which(!prostate$train),-10]
# Response:
y = prostate_train$lpsa
# Center and scale the data:
y = scale(y)
# And the predictors
X = scale(prostate_train[,names(prostate_train) != "lpsa"])
gibbs_hs <- horseshoe_regression(y, X, niter=10000)
shrinkage_regression_plot(gibbs_hs$beta, y, X)</pre>
```

hpdAlong hpdAlong

Description

Take the hpd interval using replicates along the along dimension.

Usage

```
hpdAlong \leftarrow function(x, along, prob = 0.95)
```

Arguments

X	An n dimensional array
along	the dimension of x to use replicates along
prob	the target probability content of the intervals

Details

This function returns two n - 1 dimensional arrays that is the result of taking the HPDinterval along each of the vectors.

10 meanAlong

Description

Apply a function to each element in an input and return an arbitrary dimensioned array.

Usage

```
mat_apply <- function(vec, fun)</pre>
```

Arguments

vec vector of inputs fed into fun

fun a function to call for each input of vec

Details

This function returns an array with first dimension of length(vec) provided length(vec) > 1—the first dimension indexes over the length(vec) outputs.

Examples

```
# returns a 10 x 3 x 3 array. ret[i,,] contains i*diag(3).
ret <- mat_apply(1:10, function(i){ i*diag(3) })</pre>
```

meanAlong

meanAlong

Description

Take the mean along a chosen dimension of an arbitrarily dimensioned array.

Usage

```
meanAlong <- function(x, along)</pre>
```

Arguments

x An n dimensional array

along the dimension of x to sum along

metropolis 11

Details

The method of the source code came from Hadley Wickham: # https://stackoverflow.com/questions/14500707/select-along-one-of-n-dimensions-in-array

This function returns an n-1 dimensional array that is the result of the mean along the along dimension.

Examples

```
nx = 3
ny = 3
nz = 3
x = array(1:(nx*ny*nz), dim = c(nx, ny, nz))
print(x)
meanAlong(x, 3)
```

metropolis

Metropolis MCMC

Description

The metropolis algorithm is a special case of the metropolis-hastings algorithm, namely where the proposal distribution is symmetric.

Usage

```
metropolis <- function(
  rproposal,
  prob,
  niter,
  init,
  log_prob = FALSE)</pre>
```

Arguments

rproposal rproposal(previous_val) generates a value from the proposal distribution
prob prob(val_proposed)/prob(val_t_minus_1) forms the acceptance probability
niter number of iterations to perform
init vector of initial values
log_prob whether or not prob function specifies log probabilities

Details

This function returns a niter x d matrix of values where d is the dimension of init and the dimension of each element from rproposal. The returned matrix contains all generated values of the metropolis walk.

12 plackett_luce

Examples

```
vals <- metropolis(
  rproposal = function(val){ rnorm(1, mean = val, sd = 1){} },
  prob = posterior_prob,
  niter = 10000,
  init = 0)

library(coda)
plot(as.mcmc(vals))</pre>
```

plackett_luce

Gibbs Sampler for posterior plackett luce parameters

Description

The prior on each parameter is given by a gamma distribution.

The parameter expansion is given by Caron, Francois, and Arnaud Doucet. "Efficient Bayesian inference for generalized Bradley

STerry models." Journal of Computational and Graphical Statistics 21.1 (2012): 174-196.

Usage

```
plackett_luce <- function(
  rank_matrix,
  shape = 1,
  rate = 1,
  niter = 1000)</pre>
```

Arguments

rank_matrix	n by p matrix of integers ranging from 1,,k where k = max(rank_matrix, na.rm=TRUE). Each row may contain NA values provided that at least 2 values of each row are not NA. The same integer can appear in each row of the rank matrix as well.
shape	scalar or k vector specifying prior shape parameter over pl parameters
rate	scalar or k vector specifying prior rate parameter over pl parameters
niter	number of gibbs sampling iterations

Details

This function returns a niter x k matrix of the gibbs sampler.

Examples

```
library(coda)
vals <- rplackett_luce(100, vs = c(100, 1, 1))
post_vals <- plackett_luce(vals)
plot(as.mcmc(post_vals))</pre>
```

probit_horseshoe_regression

Gibbs Sampler for Probit Regression with Horseshoe Prior

Description

The probit regression model with horseshoe prior is given by

$$y_i|\pi_i \sim Bernoulli(\pi_i),$$

$$\pi_i = \Phi(x_i^t \beta),$$

$$[\beta_j|\lambda_j] \sim N(0, \lambda_j^2), j = 2, ..., p,$$

$$p(\beta_1) \propto 1,$$

$$[\lambda_j|A] \sim C^+(0, A), j = 2, ..., p,$$

$$A \sim Uniform(0, 10).$$

where Φ is given by the gaussian CDF.

The implemented parameter-expanded model is given by

$$y_i^* = x_i^t \beta + \epsilon_i,$$

$$\epsilon_i \sim N(0, 1),$$

$$y_i = I(y_i^* > 0).$$

The half-Cauchy parameter expansion is also used; given by

$$[\eta_j|\gamma_j] \sim Gamma(\frac{1}{2}, \gamma_j),$$

 $[\gamma_j] \sim Gamma(\frac{1}{2}, \frac{1}{A^2})$

and $\eta_j = \lambda_j^{-2}$, $\tau_A = A^{-2}$, The full conditionals are given by:

$$[y_i^*|y_i,\beta,X] \sim sgn(y_i,y_i^*)N(x_i^t\beta,1)$$

where sqn is 1 if both arguments are of the same sign and zero otherwise,

$$\begin{split} [\beta|Y^*,X,\eta] &\sim \mathcal{N}(Q^{-1}l,Q^{-1}) \end{split}$$
 where $Q = X'X + diag(0,1/\eta_2,...,1/\eta_p)$ and $l = X'Y^*,$
$$[\eta_j|\beta_j,\gamma_j] \sim \exp(\frac{\beta_j^2}{2} + \gamma_j), \\ [\gamma_j|\eta_j,\tau_A] &\sim \exp(\eta_j + \tau_A), \\ [\tau_A|\gamma] &\sim \mathrm{Gamma}(\frac{p-2}{2},\sum \gamma_i)\mathrm{I}_{(\frac{1}{100},\infty)}. \end{split}$$

probit_regression

Usage

```
probit_horseshoe_regression <- function(
   Y,
   X,
   niter,
   init = NULL)</pre>
```

Arguments

Y n by 1 vector of ones and zeros

X n by p predictor matrix, where p > 1 and the first column of X is all 1.

niter number of gibbs sampling iterations

init Initial starting values for beta. If NULL, beta is set to zero.

Details

This function returns a niter x p matrix of values where p is the second dimension of the predictor matrix X. The returned matrix contains all generated values of the gibbs sampling markov chain.

Examples

```
print("TODO")
```

probit_regression

Gibbs Sampler for Probit Regression

Description

The probit regression model is given by

$$y_i | \pi_i \sim Bernoulli(\pi_i),$$

 $\pi_i = \Phi(x_i^t \beta),$
 $\beta_i \sim N(0, A^2).$

where Φ is given by the gaussian CDF.

The implemented parameter-expanded model is given by

$$y_i^* = x_i^t \beta + \epsilon_i,$$

$$\epsilon_i \sim N(0, 1),$$

$$y_i = I(y_i^* > 0).$$

The full conditional distributions are given by

$$[\beta|y, y^*, X] \sim N(Q^{-1}l, Q^{-1})$$

probit_regression 15

```
where Q = X^t X + A^{-2}I and l = X^t y^*,
```

$$[y_i^*|y_i,\beta,X] \sim sgn(y_i,y_i^*)N(x_i^t\beta,1)$$

where sqn is 1 if both arguments are of the same sign and zero otherwise.

If A is a vector, $Q = X^t X + diag(A)$. A flat prior on the intercept at position 1 is thus given by A = c(Inf, rep(3, p)).

Usage

```
probit_regression <- function(
   Y,
   X,
   niter,
   A = 3,
   init = NULL)</pre>
```

Arguments

Y n by 1 vector of ones and ze	ros
--------------------------------	-----

X n by p predictor matrix

niter number of gibbs sampling iterations

A parameter. The default value is chosen to provide a reasonable range of π . If

A is a vector, then different variances are given for each intercept.

init Initial starting values for beta. If NULL, beta is set to zero.

Details

This function returns a niter x p matrix of values where p is the second dimension of the predictor matrix X. The returned matrix contains all generated values of the gibbs sampling markov chain.

Examples

```
library(LearnBayes)
library(s525)

data(donner)
y = donner$survival
X = cbind(1, donner$age, donner$male)
niter <- 2000
gibbs_results <- probit_regression(y, X, niter)</pre>
```

ridge_regression

rdirichlet

Generate from a dirichlet distribution

Description

Generate from a dirichlet distribution

Usage

```
rdirichlet <- function(n, shape)</pre>
```

Arguments

n number of permutations to generate shape shape parameter of length k

Details

This function returns a n x k matrix where each row is a generated value from the dirichlet distribution with the given shape parameter.

ridge_regression

Gibbs Sampler for Ridge Regression

Description

The ridge regression model coeffecients are given by

$$\arg\min_{\beta} \parallel Y - X\beta \parallel^2 + \lambda \parallel \beta \parallel^2.$$

This is the implementation of the bayesian interpretation. Namely,

$$[y_i|x_i,\beta,\tau] \sim N(x_i^t\beta,\tau^{-1}), i = 1,...,n,$$
$$[\beta|\eta] \sim N(0,\eta^{-1}I),$$
$$\tau \sim Gamma(\frac{1}{100},\frac{1}{100}),$$
$$\sigma_{\beta} \sim unif(0,A)$$

where A=1000 and $\tau=\frac{1}{\sigma_{\beta}^2}$.

Usage

```
ridge_regression <- function(
  Y,
  X,
  niter = 10000)</pre>
```

rnorm_cork 17

Arguments

Y n by 1
X n by p predictor matrix
niter number of gibbs sampling iterations

Details

This function returns the generated parameters from the gibbs sampling markov chain.

Value

beta An niter by p matrix
sigma An niter by 1 matrix
sigma_beta An niter by 1 matrix

Examples

```
# Load the data
prostate.data = "https://web.stanford.edu/~hastie/ElemStatLearn/datasets/prostate.data"
prostate = read.table(file = "prostate.data", sep="", header = TRUE)
# Training data:
prostate_train = prostate[which(prostate$train),-10]
# Testing data:
prostate_test = prostate[which(!prostate$train),-10]
# Response:
y = prostate_train$lpsa
# Center and scale the data:
y = scale(y)
# And the predictors
X = scale(prostate_train[,names(prostate_train) != "lpsa"])
gibbs_ridge <- ridge_regression(y, X, niter=10000)
shrinkage_regression_plot(gibbs_ridge$beta, y, X, main = "Ridge Prior")</pre>
```

rnorm_cork

Sample from multivariate normal distribution with potential inequality constraints and potential equality constraints

Description

Sample X from a multivariate normal distribution with mean μ , covariance matrix Σ , subject to the constraints that $M^tX \leq m$ and $A^tX \leq a$.

18 rnorm_cork

Usage

```
rnorm_cork = function(
    n,
    mean.vec, # Sample X ~ normal with mean.vec, cov.mat subject
    cov.mat, # to the constraint that MX <= m, AX = a
    ineq.mat = NULL, #M
    ineq.vec = NULL, #m
    eq.mat = NULL, #A
    eq.vec = NULL) #a</pre>
```

Arguments

n	number of elements to generate
mean.vec	Mean before constraints
cov.mat	Covariance matrix before constrainnts
ineq.mat	Inequality matrix. If NULL, no inequality constraints are computed
ineq.vec	Inequality vector. If NULL, no inequality constraints are computed
eq.mat	Equality matrix. If NULL, no equality constraints are computed
eq.vec	Equality vector. If NULL, no equality constraints are computed

Details

See Schmidt, Mikkel. "Linearly constrained bayesian matrix factorization for blind source separation." Advances in neural information processing systems. 2009.

Examples

```
M = rbind(c(-1,1,0,0),c(0,0,-1,1))
xmin = 0
xmax = 1
ymin = 0
ymax = 1
m = c(-xmin, xmax, -ymin, ymax)
n = 5000
A = array(c(1,-1), dim = c(2,1))
a = 0
rho = -0.9
mean.vec = c(2,2)
cov.mat = cbind(c(1, rho), c(rho, 1))
par(mfrow = c(2,2))
# no constraints
rr = rnorm_cork(
  n,
  mean.vec,
  cov.mat)
```

rnorm_cork 19

```
plot(rr[,1], rr[,2])
# just inequality constraints
rr = rnorm_cork(
 n,
  mean.vec,
  cov.mat,
  ineq.mat = M,
  ineq.vec = m)
plot(rr[,1], rr[,2])
# just equality constraints
rr = rnorm_cork(
 n,
 mean.vec,
  cov.mat,
  eq.mat = A,
  eq.vec = a)
plot(rr[,1], rr[,2])
# both equality and inequality constraints
rr = rnorm_cork(
  n,
  mean.vec,
  cov.mat,
  ineq.mat = M,
  ineq.vec = m,
  eq.mat = A,
  eq.vec = a)
plot(rr[,1], rr[,2])
# Another
nN = 10
mean.vec = rep(0, nN)
cov.mat = diag(nN)
M = array(0, c(nN - 1, nN))
diag(M[,1:(nN-1)]) = 1
diag(M[,2:(nN-0)]) = -1
m = rep(0, nrow(M))
# set first value to zero and last value to one
A = array(0, c(2, nN))
A[1,1] = 1
A[2,nN] = 1
a = c(0, 1)
# case 0:
# simulate null, null
oo = rnorm_cork(100, c(1, 1), cbind(c(1, rho), c(rho, 1)))
plot(oo[,1], oo[,2])
```

20 rnorm_qinv_1

```
# case 1:
# simulate with inequalities
oo = rnorm_cork(100, mean.vec, cov.mat, t(M), m)
stopifnot(all(sapply(2:nN, function(idx){ all(oo[,idx-1] < oo[,idx]) })))\\
xs = range(oo)
plot(xs, xs, type = "l")
points(oo[,nN-1], oo[,nN])
# case 2:
# simulate with equalities
oo = rnorm_cork(100, mean.vec, cov.mat, eq.mat = t(A), eq.vec = a)
stopifnot(all(oo[,1] == 0 & oo[,nN] == 1))
par(mfrow = c(2,2))
plot(oo[1,])
plot(oo[2,])
plot(oo[3,])
plot(oo[4,])
# case 3:
# simulate with inequalities and equalities
oo = rnorm_cork(100, mean.vec, cov.mat, t(M), m, t(A), a)
stopifnot(all(sapply(2:nN, function(idx){ all(oo[,idx-1] < oo[,idx]) })))\\
stopifnot(all(oo[,1] == 0 & oo[,nN] == 1))
par(mfrow = c(2,2))
plot(oo[1,])
plot(oo[2,])
plot(oo[3,])
plot(oo[4,])
```

rnorm_qinv_1

Sample from multivariate normal distribution

Description

Sample from multivariate normal distribution with mean $Q^{-1}l$ and covariance matrix Q^{-1} .

Usage

```
rnorm_qinv_1 <- function(
  n,
  Q,
  1,
  L)</pre>
```

Arguments

```
n number of elements to generate

Q p by p precision matrix.

1 p by 1 vector

L NULL by default. If not null, Q is ignored and assumed to be LL^t.
```

rnorm_qinv_1_chol 21

Details

The algorithm is as follows

- 1. Cholesky decomposition of Q into LL^t . (This step is skipped if L is passed in).
- 2. Sample z from rnorm(p). Let y = Lz + l.
- 3. Solve for x in $LL^tx = y$ and return.

Value

An p x 1 vector if n = 1 otherwise a n by p matrix

rnorm_qinv_l_chol

Sample from multivariate normal distribution

Description

Sample from multivariate normal distribution with mean $Q^{-1}l$ and covariance matrix Q^{-1} where $Q = LL^t$.

Usage

```
rnorm_qinv_l_chol <- function(
   n,
   L,
   l)</pre>
```

Arguments

- n number of elements to generate
- NULL by default. If not null, Q is ignored and assumed to be LL^t.
- 1 p by 1 vector

Details

The algorithm is as follows

- 1. Cholesky decomposition of Q into LL^t . (This step is skipped if L is passed in).
- 2. Sample z from rnorm(p). Let y = Lz + l.
- 3. Solve for x in $LL^tx = y$ and return.

Value

An p x 1 vector if n = 1 otherwise a n by p matrix

22 rnorm_qinv_l_eigen

rnorm_qinv_l_eigen

Sample from multivariate normal distribution given symmetric eigen decomposition

Description

Sample from multivariate normal distribution with mean $Q^{-1}l$ and covariance matrix Q^{-1} where $Q=UDU^t$

Usage

```
rnorm_qinv_l_eigen <- function(
   n,
   U,
   d,
   l)</pre>
```

Arguments

```
n number of elements to generate  \begin{tabular}{ll} U & orthogonal matrix such that $Q=UDU^t$ \\ d & p by 1 vector, $D=diag(d)$ and $Q=UDU^t$ \\ 1 & p by 1 vector \\ \end{tabular}
```

Details

This function is useful to sample from $N((Q+sI)^{-1}l,(Q+sI)^{-1})$ given the eigen decomposition of Q

Value

An p x 1 vector if n = 1 otherwise a n by p matrix

Examples

```
W = cbind(c(10,1), c(1,10))
ee = eigen(W, symmetric = TRUE)
U = ee$vectors
d = ee$values
crossprod(U)

solve(W)
U

l = c(50,100)
m = U
ret = rnorm_qinv_l_eigen(50000, U, d, l)
mean(ret[,1] - m[1])
```

rplackett_luce 23

```
mean(ret[,2] - m[2])

sum(cov(ret) - (U
```

rplackett_luce

Generate random permutations from a plackett luce distribution

Description

The plackett luce model assigns a probability distribution over permutations.

Usage

```
rplackett_luce <- function(n, vs)</pre>
```

Arguments

n number of permutations to generate

vs k vector of probabilities; need not be scaled to sum to 1

Details

This function returns a n x k matrix where each row is a permutation generated from a plackett luce distribution with parameters given by vs.

Examples

```
library(coda)

vals <- rplackett_luce(100, vs = c(100, 1, 1))
post_vals <- plackett_luce(vals)
plot(as.mcmc(post_vals))</pre>
```

rpost_regression_coef Generate posterior for regression coefecients

Description

Generate a $N(\mu, \Sigma)$ random variable where

$$\Sigma = (X^t X + D^{-1})^{-1},$$
$$\mu = \Sigma X^t \alpha.$$

The algorithm is $O(np^2)$; for large p it performs fast.

24 rstnorm_ineq_cork

Usage

```
rpost_regression_coef <- function(
   X,
   D,
   alpha,
   u = NULL)</pre>
```

Arguments

```
X n by p matrix D p by p matrix alpha n by 1 vector u Optional. If specified, don't generate u \sim N(0,D).
```

Details

The algorithm is from

Bhattacharya, Anirban, Antik Chakraborty, and Bani K. Mallick. "Fast sampling with Gaussian scale mixture priors in high-dimensional regression." Biometrika (2016): asw042.

The algorithm is as follows:

```
1. Sample u \sim N(0, D), d \sim N(0, I_n)
2. Set v = Xu + d
3. Solve (XDX^t + I_n)w = (\alpha - v)
4. Return \beta = u + DX^tw
```

Value

	beta	An p x 1	vector
--	------	----------	--------

rstnorm_ineq_cork

Sample from multivariate standard normal distribution with inequality constraints

Description

Sample from multivariate normal distribution with mean 0 and covariance matrix I_d with the constraint that $M^tz \leq m$ where M is given by ineq.mat and m is given by ineq.vec

Usage

```
rstnorm_ineq_cork = function(
   n,
   ineq.mat,
   ineq.vec,
   thin = 1,
   burn = 0,
   init = NULL)
```

Arguments

n	number of elements to generate
ineq.mat	Inequality matrix
ineq.vec	Inequality vector
thin	Take every thinth value from the gibbs sampler
burn	Discard the first burn elements generated
init	initial z value. If not given, an SVD of ineq.mat happens.

Details

See Schmidt, Mikkel. "Linearly constrained bayesian matrix factorization for blind source separation." Advances in neural information processing systems. 2009.

Examples

```
# sample on a cube!
M = rbind(c(-1,1,0,0),c(0,0,-1,1))
xmin = 1
xmax = 100
ymin = 1
ymax = 100
m = c(-xmin, xmax, -ymin, ymax)
rr = rstnorm_ineq_cork(n, M, m)
plot(rr[,1], rr[,2])
# sample on a triangle and have the third dimension truncated positive
M = cbind(c(-1, 0, 0), c(0, -1, 0), c(1, 1, 0), c(0, 0, -1))
m = c(0, 0, 3, 0)
n = 10000
rr = rstnorm_ineq_cork(n, M, m)
plot(rr[,1], rr[,2])
hist(rr[,3])
```

shrinkage_regression_plot

Plot the MC chain of regression coeffecients compared to OLS.

Description

Plot the MC chain of regression coeffecients comparet to OLS using 95% HPD confidence intervals.

26 sumAlong

Usage

```
horseshoe_regression_plot <- function(
  beta,
  Y,
  X,
  main = "Horseshoe Prior",
  ylim = NULL)</pre>
```

Arguments

n x p MCMC chain of beta coeffecients.

Y Values used to generate beta; used as input to OLS regression

X X values used to generate beta; used as input to OLS regression

main Title of the plot

y range of plot

Examples

```
# Load the data
prostate.data = "https://web.stanford.edu/~hastie/ElemStatLearn/datasets/prostate.data"
prostate = read.table(file = "prostate.data", sep="", header = TRUE)
# Training data:
prostate_train = prostate[which(prostate$train),-10]
# Testing data:
prostate_test = prostate[which(!prostate$train),-10]
# Response:
y = prostate_train$lpsa
# Center and scale the data:
y = scale(y)
# And the predictors
X = scale(prostate_train[,names(prostate_train) != "lpsa"])
gibbs_hs <- horseshoe_regression(y, X, niter=10000)
shrinkage_regression_plot(gibbs_hs$beta, y, X)</pre>
```

sumAlong

sumAlong

Description

Sum along a chosen dimension of an arbitrarily dimensioned array.

Usage

```
sumAlong <- function(x, along)</pre>
```

sumAlong 27

Arguments

X	An n dimensional array
along	the dimension of x to sum along

Details

The method of the source code came from Hadley Wickham: # https://stackoverflow.com/questions/14500707/select-along-one-of-n-dimensions-in-array

This function returns an n-1 dimensional array that is the result of summing along the along dimension.

Examples

```
nx = 3
ny = 3
nz = 3
x = array(1:(nx*ny*nz), dim = c(nx, ny, nz))
print(x)
sumAlong(x, 3)
```

Index

```
*Topic package
    s525-package, 2
factor\_analysis, 2
{\tt factor\_analysis\_with\_regression}, 3
factor_infinite, 4
gibbs, 6
horseshoe\_regression, 7
hpdAlong, 9
mat_apply, 10
meanAlong, 10
metropolis, 11
plackett_luce, 12
probit_horseshoe_regression, 13
probit\_regression, 14
{\tt rdirichlet}, {\color{red} 16}
ridge_regression, 16
rnorm_cork, 17
rnorm_qinv_1, 20
rnorm_qinv_l_chol, 21
rnorm_qinv_l_eigen, 22
rplackett_luce, 23
rpost_regression_coef, 23
rstnorm_ineq_cork, 24
s525 (s525-package), 2
s525-package, 2
shrinkage\_regression\_plot, 25
sumAlong, 26
```