Exercise 6 (python code + text):

Consider a two-class, two-dimensional classification problem for which you can find attached two sets: one for training and one for testing (file HW8.mat). Each of these sets consists of pairs of the form (y_i,x_i) , where y_i is the class label for vector x_i . Let N_{train} and N_{test} denote the number of training and test sets, respectively. The data are given via the following arrays/matrices:

- \rightarrow train_x (a N_{train} x2 matrix that contains in its rows the training vectors x_i)
- \succ train_y (a N_{train} -dim. column vector containing the class labels (1 or 2) of the corresponding training vectors x_i included in train_x).
- \triangleright test_x (a $N_{\text{test}} \times 2$ matrix that contains in its rows the test vectors x_i)
- \succ test_y (a N_{test} -dim. column vector containing the class labels (1 or 2) of the corresponding test vectors x_i included in test x_i).

Assume that the two classes, ω_1 and ω_2 are modeled by normal distributions.

- (a) Adopt the Bayes classifier.
 - i. Use the training set to **estimate** $P(\omega_1)$, $P(\omega_2)$, $p(x|\omega_1)$, $p(x|\omega_2)$ (Since $p(x|\omega_j)$ is modeled a normal distribution, it is completely identified by μ_j and Σ_j . Use the **ML estimates** for them as given in the lecture slides).
- ii. Classify the points x_i of the test set, using the Bayes classifier (for each point apply the Bayes classification rule and keep the class labels, to an a N_{test} -dim. column

- **vector**, called **Btest_y** containing the **estimated class labels** (1 or 2) of the corresponding test vectors x_i included in $test_x$.).
- iii. Estimate the error classification probability ((1) **compare** *test_y* and *Btest_y* , (2) **count** the positions where both of them have the same class label and (3) **divide** with the total number of test vectors).
- (b) Adopt the naïve Bayes classifier.

- Recall that $\boldsymbol{x} = [x_1, x_2]^T$
- i. Use the training set to estimate $P(\omega_1)$, $P(\omega_2)$, $p(x_1|\omega_1)$, $p(x_2|\omega_1)$, $p(x_1|\omega_2)$, $p(x_2|\omega_2)$ (Each $p(x|\omega_j)$ is written as $p(x|\omega_j) = p(x_1|\omega_j)^* p(x_2|\omega_j)$. Use the **ML estimates** of the mean and variance for each one of the 1-dim. pdfs).
- ii. Classify the points $\mathbf{x}_i = [x_{i1}, x_{i2}]^T$ of the test set, using the naïve Bayes classifier (Estimate $p(\mathbf{x}|\mathbf{\omega}_j)$ with $p(x_{i1}|\mathbf{\omega}_j)^* p(x_{i2}|\mathbf{\omega}_j)$ and then apply the Bayes rule. Keep the class labels, to an a N_{test} —dim. column **vector**, called $NBtest_y$ containing the **estimated class labels** (1 or 2) of the corresponding test vectors \mathbf{x}_i included in $test_x$)
- iii. Estimate the error classification probability (work as in the previous case).
- (c) Adopt the **k-nearest neighbor classifier**, for k=5 and estimate the classification error probability.
- (d) Adopt the **logistic regression classifier** and (i) train it using the training set and then (ii) measure its performance on the test set.
- (e) Depict graphically the training set, using different colors for points from different classes.
- (f) Report the classification results obtained by the four classifiers and comment on them. Under what conditions, the first two classifiers would exhibit the same performance?

Hint: Use the attached Python code.