©צוות קורס "תורת המספרים האלגוריתמית" סמסטר א תש"פ: בר אלון, מיכאל פרי, שמואל שמעוני, <mark>אריאל</mark> איברהים שאהין, דורון מור, חיה קלר, אלעד אייגנר-חורב. נכתב ע"י דורון מור

<u>תמורות</u>

X כאשר X (תמורה/פרמוטציה): תמורה היא העתקה חד-חד-ערכית ועל מ-X ל-X כאשר קבוצה לא ריקה.

<u>סימון</u>: נסמן תמורה בצורת טבלה בעלת שתי שורות- השורה העליונה היא איברי הקבוצה המקורית לפי הסדר (התחום), והשורה השנייה היא האיברים אליהם מועתקים איברי הקבוצה בסדר כלשהו (הטווח).

:2 דוגמה

$$\sigma = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$$

 $\,$.3 משמעו שהאיבר $\,$ 1 מומר לאיבר $\,$ 2, האיבר $\,$ 2 מומר לאיבר $\,$ 1 והאיבר $\,$ 3 מומר לאיבר

X נסמן ב- S_n את אוסף כל התמורות מעל $X = [1 \dots n]$ נסמן עבור תמורה על הקבוצה (אוסף ב-X

:4 דוגמה

$$S_{3} = \left\{ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \quad \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}, \quad \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}, \quad \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}, \quad \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, \quad \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} \right\}$$

.4! מה תמורות יש ב- $.S_4$? תשובה: .4!

פעולת הרכבה, דוגמה:

יהיו

$$\sigma = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}, \qquad \tau = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$$

אזי

$$\sigma\tau = \sigma \circ \tau = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$$

$$\tau \sigma = \tau \circ \sigma = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$$

(מפעילים את התמורה הימנית, ועל התוצאה מפעילים את התמורה השמאלית)

הרכבה של שתי תמורות יוצרת תמורה חדשה.

 $.\sigma \tau = \tau \sigma$ נקראות **מתחלפות** אם $\sigma, \tau \in S_n$ נקראות מתחלפות אם :

. שראינו לעיל אינן מתחלפות σ, au שראינו לעיל אינן מתחלפות

מתקיים σ מתקיים לכל תמורה $1_{S_n}=\begin{pmatrix}1&2&3\\1&2&3\end{pmatrix}$ (תמורת הזהות):

$$1_{S_n}\sigma=\sigma=\sigma 1_{S_n}$$

אוניברסיטו \ צוות קורס "תורת המספרים האלגוריתמית" סמסטר א תש"פ: בר אלון, מיכאל פרי, שמואל שמעוני, <mark>אריאל</mark> איברהים שאהין, דורון מור, חיה קלר, אלעד אייגנר-חורב. נכתב ע"י דורון מור

<u>דוגמה 8</u>: תהי

$$\sigma = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$$

אזי

$$\begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$$

אבחנה 9: תמורת הזהות מתחלפת עם כל תמורה.

כך $\sigma^{-1} \in S_n$ תמורה הופכית לכל תמורה $\sigma \in S_n$ קיימת תמורה הופכית) שמתקיים שמתקיים

$$\sigma\sigma^{-1}=1_{S_n}=\sigma^{-1}\sigma$$

<u>דוגמה 11</u>: תהי

$$\sigma = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$$

אזי

$$\sigma^{-1} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$$

ואכן מתקיים

$$\begin{pmatrix}1&2&3\\3&1&2\end{pmatrix}\begin{pmatrix}1&2&3\\2&3&1\end{pmatrix}=\begin{pmatrix}1&2&3\\1&2&3\end{pmatrix}=\sigma^{-1}\sigma$$

 $\alpha, \beta, \gamma \in S_n$ יהיו 12: יהוו לתמורות 1

(צמצום משמאל)
$$eta=\gamma$$
 אזי $lphaeta=lpha\gamma$ אם .1

(צמצום מימין)
$$\beta=\gamma$$
 אזי $\beta \alpha=\gamma \alpha$ אם 2.

<u>הוכחה</u>:

נניח $\beta(i)=\gamma(i)$ מתקיים $1\leq i\leq n$ נניח עלינו להראות $\beta=\gamma$ עלינו להראות כי לכל $\beta(i)=\gamma(i)$ מתקיים $\alpha(\beta(i))\neq\alpha(\gamma(i))$ בשלילה כי קיים $\alpha(\beta(i))\neq\alpha(\gamma(i))$ עבורו $\alpha(\beta(i))\neq\alpha(\gamma(i))$ לכן מתקיים $\alpha(\beta(i))\neq\alpha(\gamma(i))$ סתירה להנחה. (ההוכחה של 2 באופן סימטרי.)