АЛГОРИТМ ROTATION FOREST: СРАВНИЕТЛЬНЫЙ АНАЛИЗ С ИЗВЕСТНЫМИ АНСАМБЛЯМИ КЛАССИФИКАТОРОВ

PANIN KIRILL
FACULTY OF APPLIED
MATHEMATICS AND COMPUTER
SCIENCE OF THE BELARUSIAN
STATE UNIVERSITY

Power of the crowds. Wisdom of the crowds

Задачи исследования

- Оценить тенденцию изменений эффективности классификации с использованием критерия точности классификации для ансамблей с увеличением из размерности (количества деревьев). Разработать способ обобщения оценок точности классификации ансамблями, полученных по всем наборам данных.
- Выполнить сравнительный анализ эффективности классификации для ансамблей с фиксированным размером по всем наборам данных. Особый интерес представляют ансамбли малой размерности, т.к. известно, что эффективности различных методов ансамблевой классификации сравниваются с увеличением числа деревьев. Для сравнения разработать способ ранжирования ансамблей на основе попарного сравнения эффективности по совокупности всех анализируемых наборов данных.
- Оценить отличие эффективности предложенного метода на основе вращающихся деревьев от других ансамблей классификаторов с использованием как табличного, так и графического представления

Эксперименты

Постановка эксперимента

Ансамбли классификаторов:

- Метод бэггинг
- Метод бустинг
- Метод случайных лесов
- Предложенный метод на основе вращающихся лесов

Базовый алгоритм:

Деревья решений CART

Наборы данных:

• 14 наборов данных из UCI Machine Learning Repository и KEEL-dataset repository

Table 1 Характеристики наборов данных использованных в исследовании

Имя датасета	Атрибуты (R/I/N)	Количество объектов	Количество классов
Appendicitis	7 (7/0/0)	106	2
Balance	4 (4/0/0)	625	3
BreastCancer	5 (5/0/0)	215	3
Bupa	6 (1/5/0)	345	2
Cleveland	13 (13/0/0)	297 (303)	5
Ecoli	7 (7/0/0)	336	8
Heart	13 (1/12/0)	270	2
Ionosphere	33 (32/1/0)	351	2
Iris	4 (4/0/0)	150	3
Led7digit	7 (7/0/0)	500	10
Pima	8 (8/0/0)	768	2
Sonar	60 (60/0/0)	208	2
Vehicle	18 (0/18/0)	846	4
Wine	13 (13/0/0)	178	3

Experimental results

Постановка эксперимента

- Размер ансамблей варьировался от 10 до 100 с шагом 10.
 Эффективность классификации сравнивалась для ансамблей равных размеров. Интерес представляют ансамбли малых фиксированных размеров ансамблей.
- Для каждого набора данных и ансамбля эффективность классификации оценивалась с использованием 100 повторных разбиений объектов на обучающее и тестовое множества в пропорции 10:1. Т.е. ансамбль строился на обучающем множестве, а эффективность классификации оценивалась на тестовом. Данный подход позволил оценить среднее значение и стандартное отклонение критерия эффективности классификации.
- В качестве критерия оценки эффективности классификации рассчитывалась точность классификации и результаты для каждого ансамбля представляются.

Table 2 Точность классификации(Classification Accuracy) и стандантное отклонение(Standard Deviation)							
datasets	Rotation Forest	AdaBoost	Bagging	Random Forest			
Appendiciti	0.848667±0.0033	0.84275±0.0031	0.84725±0.003	0.85725±0.00545			
s	38	68	58	8 •			
•Balance	0.889524±0.0055	0.839778±0.005	0.834968±0.00	0.840444±0.0061			
	94 •	067	2947	32			
BreastCanc	0.966521±0.0008	0.960676±0.001	0.957014±0.00	0.96607±0.00203			
er	35 •	713	154	2			
Bupa	0.706114±0.0056	0.709971±0.006	0.720229±0.00	0.726371±0.0151			
	23	335	8857	35 •			
Cleveland	0.554594±0.0035	0.52175±0.0062	0.535187±0.00	0.539062±0.0044			
	17 •	12	2201	59			
Ecoli	0.803395±0.0058	0.784947±0.003	0.762763±0.00	0.805684±0.0070			
	59	797	2867	71 •			
•Heart	0.846963±0.0037	0.809556±0.008	0.818815±0.00	0.826222±0.0107			
	68 •	433	618	65			
•lonospher	0.954167±0.0036	0.93775±0.0017	0.921222±0.00	0.933167±0.0025			
e	9 •	59	2706	97			
Iris	0.947733±0.0029 35	0.946±0.002534	0.953533±0.00 2704 •	0.950467±0.0016 35			
Led7digit	0.726182±0.0035	0.730964±0.001	0.719582±0.00	0.721636±0.0069			
	57	934 •	2574	8			
Pima	0.770078±0.0027 07 •	0.743±0.003503	0.76974±0.002 654	0.763052±0.0061 85			
Sonar	0.835591±0.0146 48 •	0.829±0.020402	0.780091±0.00 4762	0.817727±0.0165 13			

Haбор данных: Balance.

Ранжированный список сравниваемых методов, согласно разнице между числом раз, когда метод был лучше или хуже другого метода при проведении попарных сравнений.

	RotationForest	AdaBoost	Bagging	RandomForest
Rank	20	-12	-22	14
Wins	31	15	10	28
Losses	11	27	32	14

Диаграмма демонстрирует точность предложенного метода к остальным методам по всем наборам данных

На оси Y представлена точность предложенного метода, а на оси X наилучшая точность классификации среди сравниваемых методов. Диагональной линия, соответствует одинаковым значениям точности. Большинство точек лежит выше диагональной линии означает преимущество предложенного метода.

.График со слоями демонстрирует долю выигрышей для каждого метода на наборе данных «Balance»

График со слоями демонстрирует долю выигрышей для каждого метода на всех наборах данных в зависимости от количества деревьев

Выводы

В ходе исследований проведен сравнительный анализ нескольких ансамблей классификаторов, включая предложенныю ансамбль на основе вращающихся деревьев. Гипотеза о преимуществах предложенного ансамбля подтвердилась на большинстве проанализированных наборах данных. Кроме того получены следующие результаты:

- Проанализированы изменения эффективности классификации с использованием критерия точности классификации для ансамблей с увеличением их размерности. Разработан способ обобщения оценок точности классификации ансамблями, полученных по всем наборам данных. Для визуализации результатов классификации разработан вариант графического представления эффективности ансамблей на наборах данных в виде процентной диаграммы.
- Выполнен сравнительный анализ эффективности классификации для ансамблей с фиксированным размером по всем наборам данных. Разработан способ ранжирования ансамблей на основе попарного сравнения эффективности по совокупности всех анализируемых наборов данных.
- С помощью разработанного способа ранжирования ансамблей на основе попарного сравнения эффективности по совокупности всех анализируемых наборов данных получили, что метод вращающихся деревьев стоит на первом месте в списке ансамблей классификаторов, ранжированном по эффективности. На втором месте стоит случайный лес. При анализе эффективности ансамблей по совокупности наборов ланных

Thank you!