КОНТАКТНЫЕ ДАННЫЕ

Ким Тамара Александровна

ОРГАНИЗАЦИОННЫЕ ВОПРОСЫ

Курс состоит из 8 ЛР:

- 1) Дешифраторы,
- 2) Мультиплексоры,
- 3) Одноступенчатые триггеры,
- 4) Двухступенчатые триггеры,
- 5) Регистры сдвига,
- 6) Асинхронные счетчики,
- 7) Синхронные счетчики,
- 8) Преобразователи кодов

ОРГАНИЗАЦИОННЫЕ ВОПРОСЫ

Страница курса на сайте ИУ6 (кодовое слово: Схемотехника2021):

https://e-learning.bmstu.ru/iu6/course/view.php?id=341

ЛАБОРАТОРНАЯ РАБОТА №1 ДЕШИФРАТОРЫ

ДЕШИФРАТОР (DECODER)

Условное графическое обозначение (УГО)

Преобразует параллельный двоичный код в позиционный десятичный

Особенность: в любой момент времени только на одном выходе будет «1» или высокий уровень напряжения

Общее количество выходов: 2^{N} - где N – общее число входов

СПОСОБЫ ПОСТРОЕНИЯ ДЕШИФРАТОРОВ

- 1) Линейные,
- 2) Пирамидальные,
- 3) Матричные,
- 4) Комбинированные

ЛИНЕЙНЫЕ ДЕШИФРАТОРЫ

В общем случае обозначение DC n-N. Схемы построения DC: линейные, многоступенчатые и пирамидальные. Функционирование n-входового дешифратора определяется таблицей истинности. Информационные входы часто называются адресными и обозначаются A1,A2,...

	Входы					Выходы						
EN	A _{n-1}	A _{n-2}	A _{n-3}		A ₁	A ₀	F ₀	F ₁	F ₂		F _{N-2}	F _{N-1}
0	×	×	×		×	×	0	0	0		0	0
1	0	0	0		0	0	1	0	0		0	0
1	0	0	0		0	1	0	1	0		0	0
1	0	0	0		1	0	0	0	1		0	0
1	1	1	1		1	0	0	0	0		1	0
1	1	1	1		0	1	0	0	0		0	1

Система определяющая работу дешифратора: (1)

$$\begin{array}{l} F_0 = EN*\overline{A_{n-1}}*\overline{A_{n-2}}....\overline{A_1}*\overline{A_0} \\ F_1 = EN*\overline{A_{n-1}}*\overline{A_{n-2}}....\overline{A_1}*\overline{A_0} \\ F_2 = EN*\overline{A_{n-1}}*\overline{A_{n-2}}....A_1*\overline{A_0} \end{array}$$

• • •

$$F_{2^{n}-2} = EN * A_{n-1} * A_{n-2} \dots A_{1} * \overline{A_{0}}$$
 $F_{2^{n}-1} = EN * A_{n-1} * A_{n-2} \dots A_{1} * A_{0}$
 $F_{0}, F_{1} - \phi$ ункции конституенты I

Перепишем систему, учитывая наличия функций конституенты 1: (2)

$$F_j = EN * m_j(A_{n-1}, A_{n-2}, ..., A_n), j = \overline{0, 2^n - 1}$$

Выражение говорит о том, что дешифратор можно построить на конъюнкторах. Если проинвертировать выражение 2 раза, то

(3)
$$F_j = \overline{\overline{EN}*m_j} = \overline{\overline{EN}} \vee \overline{M_j}$$
, где M_j – конституента 0 .

Данная формула показывает, что дешифратор можно построить на логических элементах ИЛИ - НЕ

Линейный дешифратор строится в соответствии с системой функций и представляет собой 2^n конъюнкторов или ЛЭ ИЛИ-НЕ с n входами каждый при отсутствии стробирования и с (n+1) входами - при его наличии.

Пример линейного дешифратора на три входа (строится на основе 1,2,3):

	Выходы										
EN	A_2	A_1	A_0	F_0	F_1	F_2	F_3	F_4	F_5	F_6	F_7
0	Χ	Χ	Χ	0	0	0	0	0	0	0	0
1	0	0	0	1	0	0	0	0	0	0	0
1	0	0	1	0	1	0	0	0	0	0	0
1	0	1	0	0	0	1	0	0	0	0	0
1	0	1	1	0	0	0	1	0	0	0	0
1	1	0	0	0	0	0	0	1	0	0	0
1	1	0	1	0	0	0	0	0	1	0	0
1	1	1	0	0	0	0	0	0	0	1	0
1	1	1	1	0	0	0	0	0	0	0	1

Дешифратор работает в соответствии с таблицей истинности и реализует логические функции:

$$F_{0} = EN \cdot \bar{A}_{2} \cdot \bar{A}_{1} \cdot \bar{A}_{0} = \overline{EN} \vee A_{2} \vee A_{1} \vee A_{0}$$

$$F_{1} = EN \cdot \bar{A}_{2} \cdot \bar{A}_{1} \cdot A_{0} = \overline{EN} \vee A_{2} \vee A_{1} \vee \bar{A}_{0}$$

$$F_{2} = EN \cdot \bar{A}_{2} \cdot A_{1} \cdot \bar{A}_{0} = \overline{EN} \vee A_{2} \vee \bar{A}_{1} \vee A_{0}$$

$$F_{3} = EN \cdot \bar{A}_{2} \cdot A_{1} \cdot A_{0} = \overline{EN} \vee A_{2} \vee \bar{A}_{1} \vee \bar{A}_{0}$$

$$F_{4} = EN \cdot A_{2} \cdot \bar{A}_{1} \cdot \bar{A}_{0} = \overline{EN} \vee \bar{A}_{2} \vee A_{1} \vee \bar{A}_{0}$$

$$F_{5} = EN \cdot A_{2} \cdot \bar{A}_{1} \cdot A_{0} = \overline{EN} \vee \bar{A}_{2} \vee \bar{A}_{1} \vee \bar{A}_{0}$$

$$F_{6} = EN \cdot A_{2} \cdot A_{1} \cdot \bar{A}_{0} = \overline{EN} \vee \bar{A}_{2} \vee \bar{A}_{1} \vee \bar{A}_{0}$$

$$F_{7} = EN \cdot A_{2} \cdot A_{1} \cdot A_{0} = \overline{EN} \vee \bar{A}_{2} \vee \bar{A}_{1} \vee \bar{A}_{0} (4)$$

$$=> F_j = EN * m_j(A_2, A_1, A_0); j = \overline{0,7} = \overline{2^n - 1} = \overline{2^3 - 1} = \overline{0,7}$$
 (5)

DC 3X8

Логические уравнения, реализующие DC 3x8

$$y_0 = \overline{X1} \wedge \overline{X2} \wedge \overline{X3}$$

$$y_1 = \overline{X1} \wedge \overline{X2} \wedge X3$$

$$y_2 = \overline{X1} \wedge X2 \wedge \overline{X3}$$

$$y_3 = \overline{X1} \wedge X2 \wedge X3$$

$$y_4 = X1 \wedge \overline{X2} \wedge \overline{X3}$$

$$y_5 = X1 \wedge \overline{X2} \wedge X3$$

$$y_6 = X1 \wedge X2 \wedge \overline{X3}$$

$$y_7 = X1 \wedge X2 \wedge X3$$

Временная диаграмма, поясняющая работу дешифратора DC 3-8 приведена на рис. 3.

В линейном дешифраторе время задержки распространения сигнала от адресного или стробирующего входов до выхода равно времени задержки распространения сигнала в цепи последовательно включенных элемента И (И-НЕ) и инверторов:

t3д.р.ср. = 2t3д.р.ср.инв. + t3д.р.ср.кон. , где t3д.р.ср.инв. и t3д.р.ср.кон. – среднее время задержки распространения сигнала на инверторе и конъюнкторе соответственно.

ТАБЛИЦА ИСТИННОСТИ

X1	X2	X3	Y0	Y1	Y2	Y3	Y4	Y5	Y6	Y7
0	0	0	1	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0	0	0
0	1	0	0	0	1	0	0	0	0	0
0	1	1	0	0	0	1	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0
1	0	1	0	0	0	0	0	1	0	0
1	1	0	0	0	0	0	0	0	1	0
1	1	1	0	0	0	0	0	0	0	1

ПИРАМИДАЛЬНЫЙ ДЕШИФРАТОР

Стробирующий сигнал ЕС (не показан на схеме) подается на выходные конъюнкторы. Число последовательно включенных ЛЭ в дешифраторе равно (n-1), где n — число информационных входов. При n >> 3, быстродействие дешифратора низкое, так как зависит от его разрядности

$$t_{3\mathrm{A}.\mathrm{p}}^{\mathrm{DC}} = (n-1)t_{3\mathrm{A}.\mathrm{p}}^{\mathrm{A}\mathrm{3}}$$

ПИРАМИДАЛЬНЫЙ ДЕШИФРАТОР

	y_i	$y_i = y_i^* K_j$	$y_i = y_i^{**} L_k$
y_0	$\overline{x_3} \cdot \overline{x_2} \cdot \overline{x_1} \cdot \overline{x_0}$	$\overline{x_3} \cdot \overline{x_2} \cdot K_0$	$\overline{x_3} \cdot L_0$
y_1	$\overline{x_3} \cdot \overline{x_2} \cdot \overline{x_1} \cdot x_0$	$\overline{x_3} \cdot \overline{x_2} \cdot K_1$	$\overline{x_3} \cdot L_1$
y_2	$\overline{x_3} \cdot \overline{x_2} \cdot x_1 \cdot \overline{x_0}$	$\overline{x_3} \cdot \overline{x_2} \cdot K_2$	$\overline{x_3} \cdot L_2$
<i>y</i> ₃	$\overline{x_3} \cdot \overline{x_2} \cdot x_1 \cdot x_0$	$\overline{x_3} \cdot \overline{x_2} \cdot K_3$	$\overline{x_3} \cdot L_3$
<i>y</i> ₄	$\overline{x_3} \cdot x_2 \cdot \overline{x_1} \cdot \overline{x_0}$	$\overline{x_3} \cdot x_2 \cdot K_0$	$\overline{x_3} \cdot L_4$
<i>y</i> ₅	$\overline{x_3} \cdot x_2 \cdot \overline{x_1} \cdot x_0$	$\overline{x_3} \cdot x_2 \cdot K_1$	$\overline{x_3} \cdot L_5$
<i>y</i> ₆	$\overline{x_3} \cdot x_2 \cdot x_1 \cdot \overline{x_0}$	$\overline{x_3} \cdot x_2 \cdot K_2$	$\overline{x_3} \cdot L_6$
<i>y</i> ₇	$\overline{x_3} \cdot x_2 \cdot x_1 \cdot x_0$	$\overline{x_3} \cdot x_2 \cdot K_3$	$\overline{x_3} \cdot L_7$
<i>y</i> ₈	$x_3 \cdot \overline{x_2} \cdot \overline{x_1} \cdot \overline{x_0}$	$x_3 \cdot \overline{x_2} \cdot K_0$	$x_3 \cdot L_0$
<i>y</i> ₉	$x_3 \cdot \overline{x_2} \cdot \overline{x_1} \cdot x_0$	$x_3 \cdot \overline{x_2} \cdot K_1$	$x_3 \cdot L_1$
y ₁₀	$x_3 \cdot \overline{x_2} \cdot x_1 \cdot \overline{x_0}$	$x_3 \cdot \overline{x_2} \cdot K_2$	$x_3 \cdot L_2$
<i>y</i> ₁₁	$x_3 \cdot \overline{x_2} \cdot x_1 \cdot x_0$	$x_3 \cdot \overline{x_2} \cdot K_3$	$x_3 \cdot L_3$
y ₁₂	$x_3 \cdot x_2 \cdot \overline{x_1} \cdot \overline{x_0}$	$x_3 \cdot x_2 \cdot K_0$	$x_3 \cdot L_4$
<i>y</i> ₁₃	$x_3 \cdot x_2 \cdot \overline{x_1} \cdot x_0$	$x_3 \cdot x_2 \cdot K_1$	$x_3 \cdot L_5$
<i>y</i> ₁₄	$x_3 \cdot x_2 \cdot x_1 \cdot \overline{x_0}$	$x_3 \cdot x_2 \cdot K_2$	$x_3 \cdot L_6$
<i>y</i> ₁₅	$x_3 \cdot x_2 \cdot x_1 \cdot x_0$	$x_3 \cdot x_2 \cdot K_3$	$x_3 \cdot L_7$

СТУПЕНЧАТЫЕ (МАТРИЧНЫЕ) ДЕШИФРАТОРЫ

В дешифраторе «n» входов разбиваются на две группы по n/2 переменных в каждой группе при четном «n». При нечетном n группы должны содержать по (n+1)/2 и (n-1)/2 переменных. Для каждой из групп строится линейный дешифратор. Эти дешифраторы составляют первую ступень дешифрации. Затем по матричной схеме с помощью элементов И на 2 входа, каждая выходная шина одного дешифратора объединяется с каждой выходной шиной другого и таким образом получается вторая ступень дешифрации, в которой требуется 2^n конъюнкторов.

При большом числе входов «n» ступенчатые дешифраторы имеют существенно меньшие аппаратные затраты, чем линейные и пирамидальные.

СТУПЕНЧАТЫЕ (МАТРИЧНЫЕ) ДЕШИФРАТОРЫ

	ı	
	y_i	$y_i = A_i B_j$
<i>y</i> ₀	$\overline{x_3} \cdot \overline{x_2} \cdot \overline{x_1} \cdot \overline{x_0}$	$A_0 \cdot B_0$
y_1	$\overline{x_3} \cdot \overline{x_2} \cdot \overline{x_1} \cdot x_0$	$A_0 \cdot B_1$
<i>y</i> ₂	$\overline{x_3} \cdot \overline{x_2} \cdot x_1 \cdot \overline{x_0}$	$A_0 \cdot B_2$
<i>y</i> ₃	$\overline{x_3} \cdot \overline{x_2} \cdot x_1 \cdot x_0$	$A_0 \cdot B_3$
<i>y</i> ₄	$\overline{x_3} \cdot x_2 \cdot \overline{x_1} \cdot \overline{x_0}$	$A_1 \cdot B_0$
<i>y</i> ₅	$\overline{x_3} \cdot x_2 \cdot \overline{x_1} \cdot x_0$	$A_1 \cdot B_1$
y ₆	$\overline{x_3} \cdot x_2 \cdot x_1 \cdot \overline{x_0}$	$A_1 \cdot B_2$
<i>y</i> ₇	$\overline{x_3} \cdot x_2 \cdot x_1 \cdot x_0$	$A_1 \cdot B_3$
<i>y</i> ₈	$x_3 \cdot \overline{x_2} \cdot \overline{x_1} \cdot \overline{x_0}$	$A_2 \cdot B_0$
<i>y</i> ₉	$x_3 \cdot \overline{x_2} \cdot \overline{x_1} \cdot x_0$	$A_2 \cdot B_1$
<i>y</i> ₁₀	$x_3 \cdot \overline{x_2} \cdot x_1 \cdot \overline{x_0}$	$A_2 \cdot B_2$
y_{11}	$x_3 \cdot \overline{x_2} \cdot x_1 \cdot x_0$	$A_2 \cdot B_3$
y_{12}	$x_3 \cdot x_2 \cdot \overline{x_1} \cdot \overline{x_0}$	$A_3 \cdot B_0$
<i>y</i> ₁₃	$x_3 \cdot x_2 \cdot \overline{x_1} \cdot x_0$	$A_3 \cdot B_1$
<i>y</i> ₁₄	$x_3 \cdot x_2 \cdot x_1 \cdot \overline{x_0}$	$A_3 \cdot B_2$
<i>y</i> ₁₅	$x_3 \cdot x_2 \cdot x_1 \cdot x_0$	$A_3 \cdot B_3$

СТРОБИРОВАНИЕ ДЕШИФРАТОРОВ

Пункт В: подать на вход счетчика сигнала генератора и снять временные диаграммы сигналов дешифратора; временные диаграммы здесь и в дальнейшем наблюдать на логическом анализаторе;

Simulate -> Instruments -> Function Generator XFG* -> Logic Analyzer XL*

Параметры генератора и логического анализатора:

Переименовываем линию на тот выход/вход, который нужно увидеть в анализаторе

- 2. Исследование дешифраторов ИС К155ИД4 (74LS155), рис. 8:
 - а) снять временные диаграммы сигналов двухвходового дешифратора, подавая на его адресные входы 1 и 2 сигналы Q_0 и Q_1 выходов счетчика, а на стробирующие входы \overline{E}_3 и \overline{E}_4 импульсы генератора , задержанные линией задержки;
 - б) определить время задержки стробирующего сигнала, необходимое для исключения помех на выходах дешифратора;
 - в) собрать схему трехвходового дешифратора на основе дешифратора К155ИД4 (см. рис. 8), задавая входные сигналы A_0 , A_1 , A_2 с выходов Q_0 , Q_1 , Q_2 счетчика; снять временные диаграммы сигналов дешифратора и составить по ней таблицу истинности.

3. Исследование дешифраторов ИС КР531ИД14 (74LS139) аналогично п.2. ИС 74LS139 содержит два дешифратора DC 2-4 (U1A и U1B, см. рис. ниже) с раздельными адресными входами и разрешения. Входы разрешения — инверсные. Так как каждый дешифратор имеет один вход разрешения, то для образования двух инверсных входов необходимо перед входом разрешения включить двухвходовой ЛЭ. Чтобы на выходе ЛЭ получить функцию конъюнкции $\overline{EN}_1 \cdot \overline{EN}_2$, ЛЭ при наборе 00 входных сигналов должен формировать выходной сигнал 0, а на остальных наборах входных сигналов — 1.

- **4.** Исследовать работоспособность дешифраторов ИС 533ИД7 (74LS138 см. U3 на рис. ниже), рис. 4 и рис. 9:
 - а) снять временные диаграммы сигналов нестробируемого дешифратора DC 3-8 ИС 533ИД7, подавая на его адресные входы 1, 2, 4 сигналы \mathcal{Q}_0 , \mathcal{Q}_1 , \mathcal{Q}_2 с выходов счетчика, а на входы разрешения E_1 , E_2 , E_3 сигналы лог. 1, 0, 0 соответственно;
- б) собрать схему дешифратора DC 5-32 согласно методике наращивания числа входов и снять временные диаграммы сигналов, подавая на его адресные входы сигналы Q_0 , Q_1 , Q_2 , Q_3 , Q_4 с выходов 5-разрядного счетчика, а на входы разрешения импульсы генератора ______, задержанные линией задержки макета.

