

IN THE SPECIFICATION:

Please replace paragraph 1 at page 94, with the following rewritten paragraph:

In this third embodiment, the calculation circuit 24 determines the true green light intensity $L_g(ig - 0.5, jg - 0.5)$ at a position $(ig - 0.5, jg - 0.5)$ in the coordinate system of the first image, based on pixel values $G_{obs}(k, ig, jg)$ ($k = 1$ to N) of respective first to N -th images.

Please replace paragraph 3 at page 94 continuing onto page 95, with the following rewritten paragraph:

That is, $I' = i - 0.5$ and $J' = j - 0.5$. The true green light intensity $L_g(I', J')$ to be determined can be represented by $L_g(ig - 0.5, jg - 0.5)$ at the center position $(ig - 0.5, jg - 0.5)$ of a pixel that senses a green component. Similarly, the true red light intensity $L_r(I', J')$ to be determined can be represented by $L_r(ir - 0.5, jr - 0.5)$ at the center position $(ir - 0.5, jr - 0.5)$ of a pixel that senses a red component, and the true blue light intensity $L_b(I', J')$ to be determined can be represented by $L_b(ib - 0.5, jb - 0.5)$ at the center position $(ib - 0.5, jb - 0.5)$ of a pixel that senses a blue component.

Please replace paragraph 1 at page 95, with the following rewritten paragraph:

Fig. 17 shows positions, as represented in the coordinate system of the first image, of the true red light intensity $L_r(I', J')$, the true green light intensity $L_g(I', J')$, the true red light intensity $L_r(I', J')$, and the true blue light intensity $L_b(I', J')$ to be determined by the calculation circuit 24 as image signals of a sharp image.