Delirios de AnalFun

Paco Mora

29 de septiembre de 2022

CAPÍTULO 1

Yo qué sé qué es esto

Definición 1.1. Un espacio de medida nula de primera categoría cuando está contenido en una unión numerable de cerrados con interior vacío. Si no es de primera categoría se llama de segunda categoría.

Teorema 1. (Baire)

Sea (X,d) espacio métrico completo $\{G_n\}_{n\in\mathbb{N}}$ abiertos de en $X, \overline{G}_r = X \ \forall n \in \mathbb{N}$. Entonces:

$$\bigcap_{n=1}^{\infty} G_n \neq \emptyset$$

//Repaso de la relación de orden

Teorema 2. Principio de la buena ordenación Para todo conjunto S, existe una relación de orden \leq tal que (S, \leq) está bien ordenado, \leq es un buen orden.

Teorema 3. Lema de Zorn

 $Si\ (P,\leq)$ es un conjunto parcialmente ordenado en el que cada cadena tiene una cota superior (para C, cadena, existe $c\in P$ tal que $x\leq c$ para todo $x\in C$), entonces P tiene un elemento maximal (existe $m\in P$ tal que $si\leq x$ entonces x=m)

Teorema 4. Principio Maximal de Hasudorff

Cada conjunto parcialmente ordenado (P, \leq) contiene una cadena maximal.

Teorema 5. Son equivalentes:

- 1. El principio Maximal de Hasudorff
- 2. Lema de Zorn
- 3. Principio de la buena ordenación
- 4. Axioma de elección

//Definiciones de espacio de Hilbert y de Banach

//1.2.8 del libro

//Del 1.3 ha dicho que lo leamos.

//"Los teoremas que pregunto son los que tienen nombre"

Teorema 6. De la mejor aproximación

Dado $(H, <\cdot>)$ espacio de Hilbert y $C\subset H$ cerrado y convexo. Sea $x_0\not\in C$. Entonces existe un único elemento $c_0 \in C$ tal que $||x_0 - x|| = \inf\{||x_0 - c|| = \alpha : c \in C\}$

Demostración

Tomemos una sucesión $(c_n)_{n\in\mathbb{N}}$ con $c_n\in C$ de forma que se verifique

$$\alpha \qquad \|c_n\| \quad \alpha + \frac{1}{n}$$

Si c_n fuera de Cauchy, existe $c_0 = \lim_{n \to \infty} c_n$. Probemos que (c_n) es de Cauchy. Para ello basta usar la identidad del paralelogramo.

Como
$$\underbrace{2\|c_n\|^2}_{2\alpha^2} + \underbrace{2\|c_m\|^2}_{2\alpha^2} - \|c_n + c_m\|^2 = \|c_n - c_m\|^2$$

Dividimos la expresión por 4 podemos usar la convexidad de C para el punto medio entre c_n y c_m :

$$\frac{1}{2}||c_n||^2 + \frac{1}{2}||c_m||^2 - \left|\left|\frac{c_n + c_m}{2}\right|\right|^2 = \frac{1}{4}||c_n - c_m||^2$$

Ahora tomamos límites para ver que $||c_n - c_m|| \to 0$.

Teorema 7. (de la proyección)

Sea M un subespacio cerrado del Hilbert H, entonces existen un único par de aplicaciones lineales continuas $P, Q: H \to H$ tales que P(H) = M y $Q(H) = M^{\perp} = \{y \in H: \langle y, m \rangle = 0 \ \forall m \in M\}$ y $x = Px + Qx \ \forall x \in H$

Además se verifica:

- $\begin{array}{ll} \bullet & x \in M \implies Px = x, \ Qx = 0; \ x \in M^{\perp} \implies Px = 0, \ Qx = x \\ \bullet & \|x Px\| = \inf\{\|x y\|, \ y \in M\} \ \forall x \in H \\ \bullet & \|x\|^2 = \|Px\|^2 + \|Qx\|^2 \ (Pitágoras) \end{array}$

Como consecuencia $H = M \oplus M^{\perp}$

Demostración

Sea $x \in H$, x + M cerrado y convexo, llamemos Qx alúnico elemento en x + M de norma mínima y definimos Px = x - Qx. Vemos que $Qx \in M^{\perp}$, $\langle z, y \rangle = 0 \forall y \in M$. Aplicando que $Qx \equiv Z$ tiene norma mínima en x + M tendremos:

$$0 \leq \|z\|^2 = < z, z > \leq \underbrace{\|z - \alpha y\|^2}_{\forall \alpha \in \mathbb{R}} = < z - \alpha y, z - \alpha y > = \leq z, z > - \overline{\alpha} < z, y > -\alpha < y, z > = \alpha^2 \|y\|^2$$

Tomando ahora $\alpha = \langle z, y \rangle$ y como se tiene que cumplir siempre que la expresión es mayor o igual que 0 llegamos a $0 \le -\alpha^2 \implies \alpha = 0$, luego $\operatorname{Im}(Q) \subset H^{\perp}$. Como además $M \cap M^{\perp} = \{0\} \implies x = Px + Qx$, entonces $H = M \oplus M^{\perp}$

Análogamente sale el resto de los enunciados¹.

Lema 1.0.1. $M \subset H$ subespacio estricto cerrado del espacio de Hilbert H. Entonces $\exists x_0 \neq 0, x_0 \perp M, < x_0, m \geq 0 \forall m \in M$

Demostración

П

Como $H \neq M \implies M^{\perp} \neq \{0\}$

 $\{d_n: n=1,2,..\}$ numerable y denso en H

Tomamos entonces una base ortonormal $\{e_1, e_2, ..., e_n, ...\}$ tal que:

$$span\{d_1,...,d_n,...\} = span\{e_1,...,e_n,...\}$$

Definición 1.2. Conjunto ortonormal $\{\overline{u}_1, \overline{u}_2, ...\}$ en $H : \langle u_i, u_j \rangle = \delta_{ij}$. Tenemos además que son LI:

$$0 = \|\sum_{i=1}^{n} c_i 0_i\|^2 = \langle \sum_{i=1}^{n} c_i 0_i, \sum_{i=1}^{n} c_i 0_i \rangle = \sum_{i=1}^{n} c_i^2 \implies c_i = 0, \ i = 1, 2, ..., n$$

Proposición 1.1. $M = \text{span}\{u_1, u_2, ..., u_n\} \subset H, \ P_M(x) = \sum_{i=1}^n \langle x_i, u_i \rangle u_i. \ Si \ d = dist\{x, M\}$ entonces:

$$||x||^2 - \delta^2 = \sum_{i=1}^n |\langle x, u_i \rangle|^2$$

Lema 1.0.2. Sea $\{u_1, u_2, ..., u_n, ...\}$ ortonormal, $||x||^2 \ge \sum_{i=1}^{\infty} |\langle x, u_i \rangle|^2 \ \forall x \in H$

 $^{^{1}}xd$

Proposición 1.2. $\{u_1, u_2, ..., u_n, ...\}$ ortonormal en H, la función:

$$\Lambda: H \to \ell^2 \ \Lambda(x) = (\langle x, u_i \rangle)_{i=1}^{\infty}$$

es continua y sobre

Demostración

 $(\xi_n) \in \ell^2$ encontramos $x \in H$: $\Lambda(x) = (\xi_n)$. Nos preguntamos si:

$$\sum_{i=1}^{\infty} \xi_n u_n \to <\sum_{n=1}^{\infty} \xi_n u_n, u_m >$$

No se ve nada en la pizarra, ha probado que es de Cauchy para ver que es convergente.

Teorema 8. (de la base hilbertiana)

 $Para \{u_1, u_2, ..., u_n, ...\}$ conjunto ortonormal en H (espacio de Hilbert). Son equivalentes:

Para $\{u_1, u_2, ..., u_n, ...\}$ conjunct of the second of $\{u_1, u_2, ...\}$ es ortonormal maximal.

2. $\overline{\text{span}\{u_1, ...\}} = H$ 3. $\forall x \in H \text{ se tiene } x = \sum_{n=1}^{\infty} \langle x, u_n \rangle u_n \text{ en } H$ 4. $\forall x \in H, \ \forall y \in H, \text{ se tiene } \langle x, y \rangle = \sum_{n=1}^{\infty} \langle x, u_n \rangle \langle y, u_n \rangle$ 5. $\forall x \in H, \text{ se tiene } ||x||^2 = \sum_{n=1}^{\infty} |\langle x, u_n \rangle|^2$

A la igualdad de los dos últimos puntos se le llama Identidad de Parseval

Demostración

Recomiendo mirar el libro. 1 \iff 2

Por la definición.

 $2 \implies 3$

Por la desigualdad de Bessel.

Sea $M_n=span\{u_1,u_2,...,u_n\},$ sabemos que $\overline{\bigcup_{n=1}^{\infty}M_n}=H$ y que:

$$\forall x \in H, \ P_{M_n}(x) = \sum_{i=1}^n \langle x, u_i \rangle u_i$$

$$||x||^2 = \underbrace{dist(x, M_n)^2}_{=:\delta_n \to 0} + \sum_{i=1}^n |\langle x, u_i \rangle|^2$$

$$\forall \varepsilon > 0, \ \exists x_{\varepsilon} \in \bigcup_{i=1}^{\infty} M_n : \ \|x - x_{\varepsilon}\| < \varepsilon, \ x_{\varepsilon} = \sum_{i=1}^{n} c_i u_i \in M_P$$
$$\delta_n = d(x, M_n) \le \|x - x_{\varepsilon}\| < \varepsilon$$

 $3 \implies 4$

Continuidad del producto escalar

 $4 \implies 5$

Directo.

 $5 \implies 2$

Por la desigualdad de Bessel.

Definición 1.3. A una base como la anterior se le llama base hilbertiana. A los coeficientes se les llama coeficientes de Fourier.

Lema 1.0.3. Si $(E, \|\cdot\|)$ es un espacio de Banach con una base algebraica numerable, entonces E es finito dimensional.

Para E no completo, no es cierto.

Aquí falta un teorema que ha dictado y no me ha dado tiempo a copiar.

Teorema 9. Sea $<\cdot>$ un producto escalar en C([a,b]) con $\|\cdot\|_{\infty}$ más fina que $\|\cdot\|_{\infty}$. Sea $\{\phi_n: n=0,1,2,\ldots\}$ la sucesión de polinomios ortonormales. Entonces:

$$f = \sum_{n=0}^{\infty} \langle f, \phi_n \rangle \phi_n \ \forall f \in C[a, b]$$

$$\forall \varepsilon > 0 \ \exists N_{\varepsilon} \implies \left\| f - \sum_{n=0}^{\infty} \langle f, \phi_n \rangle \phi_n \right\|_{\varepsilon > 0} < \varepsilon$$

Series de Fourier

Definición 1.4. Un polinomio trigonométrico es una función de la forma

$$h(t) = \sum_{n=0}^{m} \alpha_n \cos(nt) + \beta_n \sin(nt), \ \alpha_n, \beta_n \in \mathbb{R}, \ m = 0, 1, 2, \dots$$

Lema 1.0.4. Si h_1, h_2 son polinomios trigonométricos, su producto también lo es.

Lema 1.0.5. $f: [-\pi, \pi] \to \mathbb{R}, \ \varepsilon > 0$, entonces existe un polinomio trigonométrico q_{ε} tal que:

$$\int_{-\pi}^{\pi} |f(t) - q_{\varepsilon}(t)|^2 dt < \varepsilon$$

Ejercicio 1

$$u_0(t) = \frac{1}{\sqrt{2\pi}}, \ u_{2n+1}(t) = \frac{1}{\sqrt{pi}}\cos(nt), \ u_{2m}(t) = \frac{1}{\sqrt{pi}}\sin(mt), \ m = 1, 2, \dots$$

Es ortonormal en $(C[a,b],\langle\cdot\rangle)$