Japanese Patent Application Laid-open No. H11-233434

[Title of the Invention] EXPOSURE CONDITIONS DECIDING
METHOD, EXPOSURE METHOD, EXPOSURE APPARATUS, AND DEVICE
MANUFACTURING METHOD

[Abstract]

[Object] To decide best exposure conditions stably and with good accuracy, and to achieve exposure with high precision without fail by the best exposure conditions.

[Solving Means] A pattern formed on a measurement mask RT is transferred onto a photosensitive measurement 15 substrate WT under exposure conditions where various kinds of exposure energy amount and focus position are combined. Then, pattern matching is performed between the pattern transferred onto the photosensitive measurement substrate WT and a template pattern which is prepared in 20 advance, and the best exposure conditions are decided based on the results of the pattern matching. Under the best exposure conditions decided in this manner, the pattern formed on a mask R is transferred onto a photosensitive substrate W. As a result, exposure can be 25 performed with good accuracy.

[What Is Claimed Is:]

[Claim 1] An exposure condition deciding method, in which

exposure conditions are decided so that an exposure illumination light is irradiated on a mask and a pattern formed on said mask is transferred onto a photosensitive substrate via a projection optical system, said method including:

5

10

15

20

25

a first process in which a measurement pattern formed on a measurement mask is transferred onto divided areas, said divided areas being a matrix shaped virtual divided area that has a row direction and a column direction perpendicular with each other on a surface of a measurement photosensitive substrate subject to exposure, and said measurement pattern being transferred by setting said measurement photosensitive substrate at the same position in an optical axis direction of said projection optical system for the same row while monotonously changing an exposure energy amount in said row direction, whereas for the same column an exposure energy amount is the same while a position of said measurement photosensitive substrate in said optical axis direction is monotonously changed in said column direction;

a second process in which said photosensitive substrate on which said pattern is transferred in said first process is developed and a transferred pattern formed on said photosensitive substrate that has been developed is detected;

a third process in which pattern matching is performed between said transferred pattern in each of said divided areas that has been detected in said second

process and a template pattern that has been prepared in advance; and

a fourth process in which the best exposure conditions are obtained based on results of said pattern matching in said third process.

[Claim 2] The exposure condition deciding method according to Claim 1, wherein

said divided areas each have the same shape and a difference of an exposure energy amount between said divided areas adjacent in said row direction is the same.

[Claim 3] The exposure condition deciding method according to Claim 1, wherein

said divided areas each have the same shape and a difference of a position in said optical axis direction between said divided areas adjacent in said column direction is the same.

20 [Claim 4] The exposure condition deciding method according to Claim 1, wherein

said measurement pattern is a cyclic pattern formed overall in an irradiation area of said exposure illumination light of said measurement mask.

25

5

[Claim 5] The exposure condition deciding method according to Claim 1, wherein

said measurement pattern is a cyclic pattern formed

on a part of an irradiation area of said exposure illumination light of said measurement mask.

[Claim 6] The exposure condition deciding method 5 according to Claim 5, wherein

a part of said irradiation area of said exposure illumination light where said measurement pattern of said measurement mask is formed, is two fine areas and over whose distance from a center point of said irradiation area is different.

[Claim 7] The exposure condition deciding method according to Claim 1, wherein

10

said template pattern is a pattern transferred onto a divided area selected from said divided areas.

[Claim 8] The exposure condition deciding method according to Claim 1, wherein

said template pattern is a pattern calculated based
on said measurement pattern and a projection
magnification of said projection optical system.

[Claim 9] The exposure condition deciding method according to Claim 1, wherein

said template pattern is a pattern that consists of only one of maximum brightness and minimum brightness.

[Claim 10] The exposure condition deciding method

according to Claim 1, wherein

said best exposure conditions are at least one of conditions related to the best focus position in said optical axis direction and conditions related to the best exposure energy amount.

[Claim 11] An exposure method in which an exposure illumination light irradiates a mask and a pattern formed on said mask is transferred onto a photosensitive substrate via a projection optical system, said method comprising:

a setting process in which the best exposure conditions is set to the best exposure conditions decided by an exposure conditions deciding method according to any one of Claims 1 to 10; and

a transferring process in which a pattern formed on said mask is transferred onto a photosensitive substrate via said projection optical system under said exposure conditions that are set.

20

25

5

10

15

[Claim 12] An exposure apparatus that irradiates an exposure illumination light on a mask and transfers a pattern formed on said mask onto a photosensitive substrate via a projection optical system, said exposure apparatus comprising:

a drive mechanism that drives said photosensitive substrate in an optical axis direction of said projection optical system and within a two-dimensional plane

perpendicular to said optical axis direction;

a focus adjustment system that has a detection system detecting a position of said photosensitive substrate in said optical axis direction, and adjusts said position of said photosensitive substrate in said optical axis direction via said drive mechanism while monitoring detection results of said detection system;

a light intensity variable mechanism that changes an intensity density of said exposure illumination light;

a storage device that stores the best exposure conditions decided by said exposure condition deciding method of Claim 1, which has been performed using said drive mechanism and said light intensity variable mechanism; and

an adjustment unit that adjusts at least one of a target position of said focus adjustment system and said light intensity variable mechanism so that exposure conditions match the best exposure conditions stored in said storage device.

20

5

[Claim 13] A device manufacturing method, said method including:

an exposure process using said exposure method of Claim 11.

25

[Detailed Description of the Invention]
[0001]

[Technical Field of the Invention] The present invention

relates to a method of deciding exposure conditions, an exposure method, an exposure apparatus, and a device manufacturing method. More particularly, the invention relates to a method of deciding exposure conditions to decide exposure conditions when transferring a pattern formed on a mask onto a photosensitive substrate, an exposure method in which exposure is performed under the exposure conditions decided by the method of deciding exposure conditions, an exposure apparatus to which the exposure method is applied, and a device manufacturing method for manufacturing a device such as a semiconductor device, which uses the exposure method.

[0002]

5

10

15 [Prior Art] Conventionally, in a lithographic process for manufacturing devices such as semiconductor devices or liquid crystal display devices, an exposure apparatus has been used where a pattern (also referred to as 'reticle pattern' hereinafter) formed on a mask or a reticle 20 (collectively referred to as 'reticle' hereinafter) is transferred onto a substrate (referred to as 'a photosensitive substrate or a wafer' appropriately, hereinafter) such as a wafer or a glass plate via a projection optical system. As an apparatus of this kind, 25 a reduction projection exposure apparatus (a so-called 'stepper') of a stationary exposure type (also referred to as step-and-repeat method) that repeats a stepping operation, where a wafer stage on which the wafer as a

sensitive substrate is mounted moves only by a predetermined amount in a two-dimensional direction to position the wafer at a predetermined exposure position, and an exposure operation, where the reticle pattern is transferred onto a shot area on the photosensitive substrate via the projection optical system at the positioned state, and a scanning exposure apparatus based on a step-and-scan method that is an improvement of the stepper, where an illumination light illuminates a predetermined slit-shaped area on the reticle while the reticle and the wafer synchronously move with respect to the projection optical system in a predetermined scanning direction in order to sequentially transfer the reticle pattern onto the wafer via the projection optical system, are practically used.

[0003] On exposure by such exposure apparatuses, it is known that the shape of the pattern transferred onto the wafer changes depending on the energy amount (exposure dose) of exposure light illuminated on the area subject to exposure on the wafer, or a positional relationship between the image plane of the reticle pattern that should be transferred on exposure and the area subject to exposure on the wafer, that is, the focus error of the area subject to exposure on the wafer. In other words, when the exposure dose is small, an area on the wafer that is to be exposed will not be sufficiently exposed, whereas when the exposure dose is large, an area on the

wafer that is not to be exposed will be exposed. Further, when the area subject to exposure on the wafer does not coincide with the image plane of the reticle pattern (the image plane of the reticle surface is not within the depth of focus regarding the projection optical system). That is, when there is a focus error, the reticle pattern image formed in the area subject to exposure on the wafer is blurred, and a faithful reduced image of the reticle pattern cannot be transferred onto the wafer. Therefore, in order to transfer a faithful reduced image of the reticle pattern onto the wafer, it is necessary to perform exposure after optimizing the exposure dose and focus control position (referred to as 'focus position' hereinafter) of the wafer.

[0004] Conventionally, such best exposure conditions have been detected by performing test exposure of a predetermined reticle pattern (such as a line-and-space pattern) serving as a test pattern on a test wafer with various exposure doses at various focus positions of the wafer, and by visually inspecting the state of the pattern transferred onto the test wafer. Specifically, the exposure dose and the focus position of the wafer by which the test exposure having the best transferred state from visual inspection was performed were decided as the best exposure conditions, or the presence of the transferred pattern was visually inspected and when the transferred pattern was confirmed, the midpoint of the

exposure dose range and the midpoint of the focus position range of the wafer were decided as the best exposure conditions of the exposure dose and the focus positions of the wafer.

5

10

15

20

25

visual inspection.

[0005]

[Problems to be Solved by Invention] In the abovedescribed conventional method of deciding the exposure
conditions, because the results of the test exposure were
reviewed based on visual inspection, the following
problems occurred.

[0006] Specifically, in the method of deciding the exposure conditions where the best exposure conditions are obtained from the test exposure having the best transferred state by visual inspection, although it was easy to find the best transferred state from the test exposure when the test exposure conditions were roughly set, the best exposure conditions that was obtained could not be obtained with good accuracy. On the other hand, when the test exposure conditions were set in detail, firstly, the time required for the test exposure was prolonged, which decreased the productivity. Furthermore, many possibilities of the best exposure conditions could be expected, thus making it difficult to decide the best exposure conditions stably and with good accuracy by

[0007] Further, in the method of deciding the exposure

conditions where the best exposure conditions are obtained from the midpoint of the exposure dose range and the midpoint of the focus position range of the wafer when the presence of the transferred pattern was visually confirmed, in the case where the test exposure conditions were roughly set, the presence of the transferred pattern could be easily confirmed from the test exposure, however because there was no assurance that the true boundary of the transferred pattern was the test exposure conditions, the best exposure conditions could not be obtained with good accuracy. On the other hand, when the test exposure conditions were set in detail, firstly, the time required for the test exposure was prolonged, which decreased the productivity. Furthermore, the boundary of the presence of the transferred pattern was difficult to decide, which made it difficult to decide the best exposure conditions stably and with good accuracy.

10

15

[0008] The present invention was made under such

circumstances, and has as its first object to provide a

method of deciding the exposure conditions by which the

best exposure conditions can be obtained stably and with

good accuracy.

25 [0009] Further, the second object of the present invention is to provide an exposure method in which exposure with high precision under the best exposure conditions can be performed without fail.

[0010] Furthermore, the third object of the present invention is to provide an exposure apparatus capable of performing exposure with high precision under the best exposure conditions without fail.

[0011] Still further, the fourth object of the present invention is to provide a device manufacturing method for manufacturing a highly integrated device.

10

5

[0012]

[Means for Solving the Problems] The invention according to Claim 1 is an exposure condition deciding method, in which exposure conditions are decided so that an exposure 15 illumination light is irradiated on a mask(R) and a pattern formed on the mask(R) is transferred onto a photosensitive substrate(W) via a projection optical system(PL), the method including: a first process in which a measurement pattern formed on a measurement mask 20 is transferred onto divided areas, the divided areas being a matrix shaped virtual divided area that has a row direction and a column direction perpendicular with each other on a surface of a measurement photosensitive substrate subject to exposure (W_T) , and the measurement 25 pattern being transferred by setting the measurement photosensitive substrate $(W_{\mathtt{T}})$ at the same position in an optical axis direction of the projection optical system(PL) for the same row while monotonously changing

an exposure energy amount in the row direction, whereas for the same column an exposure energy amount is the same while a position of the measurement photosensitive $substrate(W_T)$ in the optical axis direction is 5 monotonously changed in the column direction; a second process in which the photosensitive substrate (W_T) on which the pattern is transferred in the first process is developed and a transferred pattern formed on the photosensitive substrate (W_T) that has been developed is detected; a third process in which pattern matching is 10 performed between the transferred pattern in each of the divided areas that has been detected in the second process and a template pattern that has been prepared in advance; and a fourth process in which the best exposure 15 conditions are obtained based on results of the pattern matching in the third process.

[0013] In the exposure condition deciding method according to Claim 1, on a two-dimensional coordinate

20 where the direction of the axes are the row direction and the column direction, respectively, which are orthogonal with each other on the photosensitive measurement substrate, the exposure energy amount is changed in the row direction while the position of the photosensitive

25 measurement substrate in the optical axis direction of the projection optical system, that is, the focus position of the photosensitive measurement substrate is monotonously changed in the column direction, and the

measurement pattern formed on the measurement mask is transferred onto the virtual divided areas arranged on the photosensitive measurement substrate in the shape of a matrix (the first process). As a result, a test exposure is preformed under various kinds of test exposure conditions for each of the divided areas on a single photosensitive measurement substrate where the change in the exposure energy amount as exposure conditions is reflected in the row direction and the change in the focus position of the photosensitive measurement substrate also as exposure conditions is reflected in the column direction.

5

10

[0014] Next, the photosensitive measurement substrate on 15 which test exposure has been performed, is developed and the pattern transferred onto each of the divided areas on the photosensitive measurement substrate (transferred pattern) is detected (the second process). Then, pattern matching is performed between each transferred pattern 20 detected and the template pattern previously prepared, and a degree of matching (degree of correlation between the two patterns) is obtained for each divided area (the third process). In other words, the transferred state of each divided area is obtained not by a sensory method 25 such as visual inspection but by pattern matching, which is an objective and quantitative method. Then, the best exposure conditions are obtained based on the results of the pattern matching that have been obtained objectively

and quantitatively for each of the divided areas (the fourth process).

[0015] Therefore, according to the exposure condition deciding method of Claim 1, the best exposure conditions can be obtained stably and with good accuracy, without setting detailed test exposure conditions that are more than necessary.

10 [0016] The invention according to Claim 2 is the exposure condition deciding method according to Claim 1, wherein the divided areas each have the same shape and a difference of an exposure energy amount between the divided areas adjacent in the row direction is the same.

15

20

25

[0017] According to the method, it is possible to obtain a quantitative pattern matching result where the exposure energy has a width of an equal distance, which simplifies the processing in obtaining the best exposure conditions in the fourth process.

[0018] The invention according to Claim 3 is the exposure condition deciding method according to Claim 1, wherein the divided areas each have the same shape and a difference of a position in the optical axis direction

between the divided areas adjacent in the column direction is the same.

[0019] According to the method, it is possible to obtain a quantitative pattern matching result where the focus position of the photosensitive measurement substrate has a width of an equal distance, which simplifies the processing in obtaining the best exposure conditions in the fourth process.

10

15

20

25

[0020] In the exposure condition deciding method of Claim 1, various kinds of measurement patterns formed on the measurement mask can be considered. For example, as in the invention according to Claim 4, the measurement pattern may be a cyclic pattern formed overall in an irradiation area of the exposure illumination light of the measurement $mask(R_T)$, or as in the invention according to Claim 5, the measurement pattern may be a cyclic pattern formed on a part of an irradiation area of the exposure illumination light of the measurement $mask(R_T)$. Herein, the irradiation area of the exposure illumination light of the measurement mask is an area where the exposure illumination light simultaneously illuminates. Specifically, in the case of exposure based on the stepand-repeat method, it is the area on the mask where the pattern that is to be transferred onto the photosensitive substrate can be formed, and in the case of exposure based on the step-and-scan method, it is the slit-shaped area referred to earlier.

[0021] According to the exposure condition deciding

method of Claim 4, by performing pattern matching on all the shot areas on the photosensitive substrate corresponding to the illumination area of the exposure illumination light on the measurement mask, the best exposure conditions can be obtained for each of the positions in the shot area.

[0022] According to the exposure condition deciding method of Claim 5, because the calculation in the pattern matching can be reduced, the pattern matching results can be obtained at a high-speed and the exposure conditions can be decided at a high-speed.

10

[0023] In the exposure condition deciding method according to Claim 5, as in the invention according to 15 Claim 6, a part of the irradiation area of the exposure illumination light where the measurement pattern of the measurement $mask(R_T)$ is formed, can be two fine areas and over whose distance from a center point of the 20 irradiation area is different. According to the method, by performing pattern matching between two or more fine areas whose distance from the center point of the shot area is different, the best exposure conditions can be obtained for the positions corresponding to these fine 25 areas. Therefore, the image plane of the mask pattern for each of the fine areas is obtained from the best exposure conditions that have been obtained, and the focus control position of the shot area can be decided.

[0024] In the exposure condition deciding method of Claim 1, various configurations of the template pattern can be considered. For example, as in the invention according to Claim 7, the template pattern can be a pattern transferred onto a divided area selected from the divided areas, or as in the invention according to Claim 8, the template pattern can be a pattern calculated based on the measurement pattern and a projection magnification of the projection optical system(PL). Alternatively, as in the invention according to Claim 9, the template pattern can be a pattern that consists of only one of maximum brightness and minimum brightness.

15 [0025] According to the exposure condition deciding method of Claim 7, because the template pattern does not have to be prepared in advance by calculation or the like, the state of the transferred pattern can easily be pattern matched. On selecting the template pattern, the 20 transferred pattern of a divided area whose state of the transferred pattern is considered to be the best is selected by visual inspection. However, since a statistical operation called pattern matching is performed after selecting the template pattern, and the 25 exposure conditions are decided based on its result, subjective factors are completely eliminated when deciding the exposure conditions; therefore, the best exposure conditions can be obtained in a stable manner

with good accuracy.

5

10

[0026] Further, according to the exposure condition deciding method of Claim 8, since the template pattern is a pattern calculated based on the measurement pattern and the projection magnification of the projection optical system, the exposure conditions are decided eliminating the subjective factor completely, which allows the best exposure conditions to be obtained in a stable manner with good accuracy.

[0027] Further, according to the exposure condition deciding method of Claim 9, since the template pattern is a pattern that consists of only either the maximum 15 brightness of the minimum brightness, the exposure conditions can be decided eliminating the subjective factor completely similar to the exposure condition deciding method of Claim 8, and calculation is not necessary when making the template pattern. Furthermore, 20 since it is possible to avoid a sudden change in the pattern matching result caused by the exposure conditions in the case of the exposure condition deciding method of Claim 8, factors that require the skills of an operator, such as setting a threshold value in order to obtain the 25 best exposure conditions, can be reduced.

[0028] In the exposure condition deciding method of Claim .

1, various kinds of the best exposure conditions to be

found can be considered, and as in the invention of Claim 10, the best exposure conditions can be at least one of conditions related to the best focus position in the optical axis direction and conditions related to the best exposure energy amount.

5

10

15

[0029] The invention of Claim 11 is an exposure method in which an exposure illumination light irradiates a mask(R) and a pattern formed on the mask(R) is transferred onto a photosensitive substrate(W) via a projection optical system(PL), the method comprising: a setting process in which the best exposure conditions is set to the best exposure conditions decided by an exposure conditions deciding method according to any one of Claims 1 to 10; and a transferring process in which a pattern formed on the mask(R) is transferred onto a photosensitive substrate(W) via the projection optical system(PL) under the exposure conditions that are set.

- 20 [0030] According to the method, since the pattern formed on the mask is transferred onto the photosensitive substrate via the projection optical system under the exposure conditions decided by the exposure condition deciding method of the present invention, exposure can be performed on the photosensitive substrate with good accuracy.
 - [0031] The invention of Claim 12 is an exposure apparatus

that irradiates an exposure illumination light on a mask(R) and transfers a pattern formed on the mask(R) onto a photosensitive substrate(W) via a projection optical system(PL), the exposure apparatus comprising: a drive mechanism(21) that drives the photosensitive substrate(W) in an optical axis direction of the projection optical system(PL) and within a twodimensional plane perpendicular to the optical axis direction; a focus adjustment system(19, 40, 42) that has 10 a detection system (40, 42) detecting a position of the photosensitive substrate in the optical axis direction, and adjusts the position of the photosensitive substrate(W) in the optical axis direction via the drive mechanism(21) while monitoring detection results of the detection system(40, 42); a light intensity variable 15 mechanism(1, 3) that changes an intensity density of the exposure illumination light; a storage device(29) that stores the best exposure conditions decided by the exposure condition deciding method of Claim 1, which has 20 been performed using the drive mechanism(21) and the light intensity variable mechanism(1, 3); and an adjustment unit(20) that adjusts at least one of a target position of the focus adjustment system(19, 40, 42) and the light intensity variable mechanism(1, 3) so that 25 exposure conditions match the best exposure conditions stored in the storage device.

[0032] In the exposure apparatus of Claim 12, by using

the drive mechanism, the focus adjustment system, and the light intensity variable mechanism, the measurement pattern formed on the measurement mask is transferred onto each of the divided areas, which are virtual divided areas in the shape of a matrix having a row direction and a column direction that is perpendicular to each other on the surface of a photosensitive measurement substrate subject to exposure, by setting the photosensitive measurement substrate to the same position in the optical axis direction of the projection optical system for the same row while monotonously changing the exposure energy amount in the row direction, whereas for the same column the same exposure energy amount is set and the position of the photosensitive measurement substrate in the optical axis direction is monotonously changed in the column direction. Next, the best exposure conditions, which have been obtained based on the transferred results of each of the divided areas and the pattern matching results between the template prepared in advance and the template pattern, are stored in the storage device. Then, the adjustment unit adjusts at least one of the target position of the focus adjustment system and the light intensity variable mechanism so that the exposure conditions match the best exposure conditions stored in the storage device, and then exposure is performed on the photosensitive substrate.

10

15

20

25

[0033] Therefore, according to the exposure apparatus of

Claim 12, it can support the exposure condition deciding method of Claim 1 as well as perform exposure on the photosensitive substrate with good accuracy, because the pattern formed on the mask is transferred onto the photosensitive substrate via the projection optical system under the best exposure conditions decided by the exposure condition deciding method of Claim 1.

[0034] The invention according to Claim 13 is a device
manufacturing method, which includes an exposure process
using the exposure method of Claim 11.

[0035] According to the method, because it uses the exposure method of Claim 11, exposure with high precision is performed under the best exposure conditions that have been obtained using the exposure condition deciding method in any one of Claims 1 to 10, thereby a high integration device can be manufactured.

20 [0036]

5

[Preferred Embodiments of the Invention] Description will be given for an embodiment of the exposure apparatus and an exposure method according to the present invention based on Figs. 1 to 12.

25

15

[0037] Fig. 1 shows a schematic configuration of an exposure apparatus 100 according to the embodiment.

Exposure apparatus 100 is a projection exposure apparatus

based on a so-called step-and-scan exposure method.

[0038] Exposure apparatus 100 comprises an illumination system 10 that emits an illumination light for exposure,

5 a reticle stage RST serving as a mask stage that holds a reticle R serving as a mask, a projection optical system PL, an XY stage unit 14 that comprises a substrate table 18 that holds a wafer W serving as a photosensitive substrate and moves in an XY two-dimensional direction within an XY plane, a control system for these parts, and the like. The control system includes a main controller 20 and a storage device 29 storing the exposure conditions.

- 15 [0039] Fig. 2 is a view for explaining an example of a specific configuration of illumination system 10. As is shown in Fig. 2, illumination system 10 comprises an excimer laser beam source 1, a beam shaping optical system 2, an rough energy adjuster 3, a fly-eye lens 4, an illumination system aperture stop plate 5, a beam splitter 6, a first relay lens 7A, a second relay lens 7B, a fixed reticle blind 8A, a movable reticle blind 8B, and the like.
- [0040] Herein, each section of the configuration of illumination system 10 will be described. As excimer laser beam source 1, a KrF excimer laser beam source (oscillation wavelength 248nm), an ArF excimer laser beam

source (oscillation wavelength 193nm), an F_2 excimer laser beam source (oscillation wavelength 157nm), or the like is used. Instead of excimer laser beam source 1, a metal vapor laser beam source or a pulse light source such as a harmonic generator of a YAG laser may also be used as the exposure light source.

[0041] Beam shaping optical system 2 shapes the cross-sectional shape of laser beam LB, which is a pulsed beam emitted from excimer laser beam source 1, so that the beam effectively enters fly-eye lens 4 provided in the rear of the optical path of laser beam LB. For example, the system consists of a cylinder lens, a beam expander (both are not shown), or the like.

15

10

5

[0042] Rough energy adjuster 3 is arranged on the optical path of laser beam LB in the rear of beam shaping optical system 2. In this case, a plurality (six, for example) of ND filters (Fig. 1 shows only two ND filters (32A and 32D)) having different transmittance (=1- attenuation ratio) are arranged around a rotating plate 31, and a drive motor 33 rotates rotating plate 31 so that the transmittance to incident laser beam LB can be switched geometrically in a plurality of steps from 100%. Drive motor 33 operates under the control of main controller 20. A fine adjuster based on a double grating method or a fine energy adjuster that adjusts the crossing angle of two optical filters can also be arranged in the rear of

rough energy adjuster 3.

[0043] Fly-eye lens 4 is arranged on the optical path of laser beam LB in the rear of rough energy adjuster 3, and forms a large number of secondary light sources to illuminate reticle R with a uniform illumination distribution. The laser beam outgoing from the secondary light source will hereinafter be referred to as 'pulse illumination light'.

10

5

[0044] In the vicinity of the outgoing plane of fly-eye lens 4, illumination system aperture stop plate 5 made up of a disk-shaped member is arranged. On illumination system aperture stop plate 5, for example, an aperture 15 stop made up of a regular circular aperture, an aperture stop made up of a small circular aperture to minimize σ value that is a coherence factor, a ring-shaped aperture for ring-shaped illumination, a modified aperture stop in which a plurality of apertures are arranged in a decentered manner for the use of a modified light source 20 method (only two kinds of aperture stop are shown in Fig. 1), and the like are arranged in a substantially equiangular distance. A drive unit 51 such as a motor controlled by the main controller 20 (described later) 25 rotates illumination system aperture stop plate 5, and an aperture stop is selectively set on the optical path of pulse illumination light IL.

[0045] On the optical path of the pulse illumination light IL in the rear of the illumination system aperture stop plate 5, beam splitter 6 that has small reflectivity and large transmittance is arranged, and further in the rear of the beam splitter, a relay optical system is arranged made up of the first relay lens 7A and the second relay lens 7B, with the fixed reticle blind 8A and the movable reticle blind 8B disposed in between.

5

25

- 10 [0046] Fixed reticle blind 8A is arranged on a plane slightly defocused from a conjugate plane against the pattern plane of reticle R, and a rectangular aperture that sets an illumination area IAR (refer to Fig. 4) on reticle R is formed on the blind. In addition, movable reticle blind 8B having an aperture section, whose position and width corresponding to a scanning direction are variable, is arranged near fixed reticle blind 8A, and it so as to further limit illumination area IAR at the beginning and the end of scanning exposure to prevent unnecessary areas from being exposed.
 - [0047] A bending mirror M, which reflects pulse illumination light IL having passed the second relay lens 7B toward reticle R, is arranged on the optical path of pulse illumination light IL in the rear of the second relay lens 7B that makes up the relay optical system.

[0048] The operation of illumination system 10 having

such an arrangement is briefly described. Laser beam LB, which is a pulsed beam emitted from excimer laser beam source 1, enters beam shaping optical system 2 where its cross-sectional shape is shaped so that the beam effectively enters fly-eye lens 4 in the rear, and then enters the rough energy adjuster 3. Laser beam LB having passed through one of the ND filters of the rough energy adjuster 3 then enters fly-eye lens 4. A large number of the secondary light sources are then formed on the outgoing end of fly-eye lens 4. Pulse illumination light IL outgoing from the large number of the secondary light sources reaches beam splitter 6 having large transmittance and small reflectivity, after passing through one of the aperture stops on illumination system aperture stop plate 5. Pulse illumination light IL as the exposure light having passed beam splitter 6, passes through the rectangular aperture stop of fixed reticle blind 8A and the movable reticle blind 8B via the first relay lens 7A, passes through the second relay lens 7B, and then its optical path is bent perpendicularly downward by mirror M, and so that it illuminates the rectangular illumination area IAR on reticle R held on reticle stage RST with a uniform illumination

25

distribution.

5

10

15

20

[0049] On the other hand, pulse illumination light IL reflected off beam splitter 6 is received by an integrator sensor 53 that consists of a photoelectric

conversion element via a condenser lens 52, and the photoelectric conversion signal of integrator sensor 53 is supplied as an output DS to main controller 20 via a peak holding circuit and an A/D converter (not shown). As integrator sensor 53, for example, a PIN type photodiode or the like having sensitivity within the far-ultraviolet region and a high response frequency to detect the pulse emission of excimer laser beam source 1 can be used. The correlation coefficient between output DS of integrator sensor 53 and the illuminance (dose) of pulse illumination light IL on the surface of wafer W is obtained in advance, and stored in a memory 29 provided beside main controller 20.

- 15 [0050] In Fig. 3, a constituent related to dose control of illumination system 10 in Fig. 2 is extracted and shown. As is shown in Fig. 3, inside the excimer laser beam source 1, a laser resonator 1a, a beam splitter 1b, an energy monitor 1c, an energy controller 1d, a high-voltage power supply 1e, and the like are provided. Rough energy adjuster 3 and excimer laser beam source 1 make up a light intensity variable mechanism.
- [0051] In Fig. 3, the laser beam outgoing from the laser resonator 1a in a pulsed state enters beam splitter having high transmittance and extremely low reflectivity, and laser beam LB having passed through beam splitter 1b proceeds outside. Further, laser beam LB reflected by the

beam splitter 1b enters energy monitor 1c that consists of the photoelectric conversion element, and a photoelectric conversion signal from energy monitor 1c is supplied as an output ES to energy controller 1d via a peak holding circuit (not shown). The unit of the energy 5 control amount corresponding to output ES of energy monitor 1c is (mJ/pulse). During regular emission, energy controller 1d performs feedback control on the power supply voltage in high-voltage power supply 1e so that 10 output ES of energy monitor 1c becomes a value corresponding to a target value of energy per pulse in control information TS supplied from main controller 20. Further, by controlling the energy supplied to laser resonator la via high-voltage power supply le, energy 15 controller 1d also changes the oscillation frequency. Specifically, energy controller 1d sets the oscillation frequency of excimer laser beam source 1 to a frequency instructed by main controller 20 according to control information TS from main controller 20, and performs 20 feedback control on the power supply voltage of highvoltage power supply le so that the energy per pulse in excimer laser beam source 1 becomes the value instructed by the main controller 20.

[0052] Furthermore, a shutter 1f to shield laser beam LB according to the control information from main controller 20 is also arranged outside beam splitter 1b in excimer laser beam source 1.

[0053] Returning to Fig. 1, on reticle stage RST, reticle R is fixed, for example, by vacuum chuck. Reticle stage RST is constituted finely drivable within a plane

5 perpendicular to an optical axis IX (which matches an optical axis AX of the projection optical system to be described later) of the illumination optical system, two-dimensionally (in the X-axis direction and the Y-axis direction perpendicular thereto, and a rotational

10 direction around the Z-axis perpendicular to the XY-plane).

[0054] Further, reticle stage RST is movable in a predetermined scanning direction (the Y-axis direction in this case) by a reticle drive section (illustration is omitted) made up of a linear motor or the like in a specified scanning velocity on a reticle base (not shown). Reticle stage RST has a moving stroke in which the entire surface of reticle R can cross optical axis IX of the illumination optical system in the least.

15

20

25

[0055] A movable mirror 15 that reflects the laser beam from a reticle laser interferometer (hereinafter, referred to as 'reticle interferometer') 16 is fixed on reticle stage RST, and reticle interferometer 16 detects the position of reticle stage RST at all times within a stage movement plane at a resolution of, for example, approximately 0.5 to 1nm. In actual, a movable mirror

having a reflection surface perpendicular to the scanning direction (the Y-axis direction) and a movable mirror having a reflection surface perpendicular to a non-scanning direction (the X-axis direction) are provided on reticle stage RST, and reticle interferometer 16 is provided on one axis in the scanning direction and on two axes in the non-scanning direction, however, in Fig. 1, they are representatively shown as movable mirror 15 and reticle interferometer 16.

10

15

[0056] The positional information of reticle stage RST from reticle interferometers 16 is sent to main controller 20 via a stage control system 19, which drives the reticle stage RST via the reticle drive section (illustration is omitted) based on the positional information of reticle stage RST, in response to instructions from main controller 20.

[0057] Since the initial position of reticle stage RST is decided so that reticle R is aligned to a predetermined reference position with good accuracy by a reticle alignment system (not shown), the operation of simply measuring the position of movable mirror 15 by reticle interferometer 16 means that the position of reticle R has been measured with sufficiently high accuracy.

[0058] Projection optical system PL is arranged below reticle stage RST in Fig. 1, and the direction of its

optical axis AX (which coincides with optical axis IX of the illumination optical system) is the Z-axis direction. In this case, in the system, in order to form a double telecentric optical arrangement, a refraction optical system made up of a plurality of lens elements (60a, 60b, ...) arranged along optical axis AX in a predetermined distance is used. Projection optical system PL is, for example, a reduction optical system having a predetermined projection magnification of 1/5 (or 1/4).

O Accordingly, when illumination light IL from the illumination optical system illuminates illumination area

10 Accordingly, when illumination light IL from the illumination optical system illuminates illumination area IAR of reticle R, a reduced image (partially inverted image) of a circuit pattern of reticle R is formed on wafer W coated with a photoresist by illumination light IL having passed through reticle R, via the projection optical system PL.

[0059] Among the lens elements, the uppermost lens element 60a closest to reticle stage RST is held by a ring shaped support member 62, which is supported at three points by flexible drive elements such as piezoelectric elements 64a, 64b, and 64c (drive element 64c in the depth of the page surface is not shown) and is connected to a barrel portion 66. The above drive elements 64a, 64b, and 64c are capable of individually moving the three points in the periphery of lens element 60a in the optical axis AX direction of projection optical system PL. In other words, lens element 60a can

20

25

be parallelly moved along optical axis AX according to the displacement amount of drive elements 64a, 64b, and 64c, and can be inclined in any direction with respect to a plane perpendicular to optical axis AX. Then, the 5 voltage provided to these drive elements 64a, 64b, and 64c is controlled by an image forming characteristics correction controller 68 based on instructions from main controller 20, and the displacement amount of drive elements 64a, 64b, and 64c is controlled. In Fig. 1, 10 optical axis AX of projection optical system PL coincides with the optical axes of lens element 60b and other lens elements (illustration is omitted) fixed to barrel portion 66.

- [0060] Furthermore, in the embodiment, a sealed chamber 15 69 is formed in between particular lens elements near the center portion of the projection optical system PL in the optical axis direction, and the inner pressure of sealed chamber 69 is adjusted with a pressure adjustment
- 20 mechanism (not shown) (such as a bellows pump). The pressure adjustment mechanism also operates under the control of image forming characteristics correction controller 68, based on instructions from main controller 20, and the inner pressure of sealed chamber 69 is 25

adjusted.

[0061] Herein, by moving lens element 60a in the optical axis AX direction or by inclining it, the magnification

of projection optical system PL can be changed, or distortion and the image forming surface of projection optical system PL can be changed. In addition, by changing the inner pressure of sealed chamber 69 inside projection optical system PL, the magnification and the image forming surface of projection optical system PL can be changed.

[0062] XY stage unit 14 has a Y stage 16 that can move reciprocally on a base (not shown) in the Y-axis direction (right and left directions in Fig. 1), which is the scanning direction, an X stage 12 that can move reciprocally on the Y stage 16 in the X-axis direction (direction orthogonal to document surface in Fig. 1) perpendicular to the Y-axis direction, and a substrate table 18 provided on the X stage 12. Further, a wafer holder 25 is mounted on the substrate table 18, and wafer holder 25 holds wafer W serving as the photosensitive substrate by vacuum chucking.

20

5

[0063] The substrate table 18 is attached on X stage 12 positioned in the XY direction, in a state where movement in the Z direction and inclination are allowed. Substrate table 18 is supported at three different support points by three axes (not shown), and these three axes are independently driven in the Z-axis direction by wafer drive unit 21 serving as the drive mechanism so as to set the surface position (the position in the Z-axis

direction and tilt with respect to XY plane) of wafer W held on substrate table 18 to a desired state.

[0064] A movable mirror 27 that reflects the laser beam from a wafer laser interferometer (hereinafter, referred to as 'wafer interferometer') 28 is fixed on substrate table 18, and wafer interferometer 28, which is arranged externally, detects the position of substrate table 18 within the XY plane at all times at a resolution of, for example, approximately 0.5 to 1nm.

5

10

15

20

25

[0065] In actual, a movable mirror having a reflection surface perpendicular to the Y-axis direction, which is the scanning direction, and a movable mirror having a reflection surface perpendicular to the X-axis direction, which is the non-scanning direction, are provided on substrate table 18, and wafer interferometer 28 is provided on one axis in the scanning direction and on two axes in the non-scanning direction, however, in Fig. 1, they are representatively shown as movable mirror 27 and wafer interferometer 28. The positional information (or velocity information) of substrate table 18 is sent to main controller 20 via stage control system 19, which drives Y stage 16 and X stage 12 via the wafer drive section 21 (which includes all of the drive systems of X stage 12 and Y stage 16, and the drive system of substrate table 18) based on instructions from main controller 20.

[0066] Furthermore, on substrate table 18, a fiducial mark plate FM is fixed on which various kinds of fiducial marks are formed for baseline measurement or the like, in which the distance from the detection center of an alignment detection system (not shown) based on an offaxis method to the optical axis of projection optical system PL is measured.

5

- 10 [0067] Still further, in the apparatus of Fig. 1, a multiple point focus position detection system that is one of a focus detection system (focal point detection system) based on an oblique incident method for detecting the position of an area within an exposure area IA (an area on wafer W, which is conjugate to the above-15 described illumination area IAR: refer to Fig. 4) on the surface of wafer W and its vicinity in Z-axis direction (optical axis AX direction). As is shown in Fig. 1, the multiple point focus position detection system is made up 20 of an illumination optical system 40 and a photodetection optical system 42. The illumination optical system 40 consists of an optical fiber bundle 80, a mirror 81, a condenser lens 82, a pattern forming plate 83, a lens 84, a mirror 85, and an illumination objective lens 86, 25 whereas photodetection optical system 42 consists of a condenser objective lens 87, a rotational direction
- vibration plate 88, an image forming lens 89, a photodetection slit plate 98, and a photodetection unit

90 having a large number of photosensors. Details on configuration or the like of the multiple point focus position detection system is disclosed in, for example, Japanese Patent Application Laid-open No. H6-283403.

5

10

15

[0068] Herein, each of the constituent sections of the multiple point focus position detection system (40 and 42) will be described, together with its operation.

Illumination light that has a different wavelength from the exposure light and is not photosensitive to the photoresist on wafer W is guided from an illumination source (not shown) via optical fiber bundle 80. The illumination light outgoing from optical fiber bundle 80 passes through mirror 81 and condenser lens 82, and illuminates pattern forming plate 83.

[0069] On pattern-forming plate 83, a plurality of slitshaped aperture patterns (not shown) is formed in a
matrix arrangement. The illumination light having passed
through each slit-shaped aperture pattern of pattern
forming plate 83 (imaging beam of the aperture pattern)
proceeds through lens 84, mirror 85, and illumination
objective lens 86 and is projected on the surface of
wafer W subject to exposure, and the image of the slitshaped aperture pattern on the pattern forming plate 83
is projected and formed thereon. A part of the images of
the aperture pattern is formed within exposure area IA
(refer to Fig. 4) on wafer W, while other parts are

formed outside exposure area IA.

[0070] Then, the reflection beams reflected off the surface of wafer W subject to exposure proceeds toward a 5 direction symmetrical to the imaging beam from illumination optical system 40 inclined with respect to optical axis AX by a predetermined angle, passes through condenser objective lens 87, rotational direction vibration plate 88, and image forming lens 89, and then 10 the image is formed again on photodetection slit plate 98 arranged in front of photodetection unit 90. Photodetection unit 90 detects the re-formed image, and a signal processing unit 91 performs synchronous detection with a rotation-vibration frequency signal via a sensor selection circuit 93. Multiple focus signals obtained by 15 the synchronous detection of signal processing unit 91 are supplied to main controller 20.

[0071] Consequently, the multiple focus signals obtained
20 by the synchronous detection of signal processing unit 91
are supplied to main controller 20. Then, main controller
20 uses the focus signals related to the aperture
patterns that have been formed outside exposure area IA
of wafer W to predict the state of the next focusing,
25 that is, to predict whether the surface of wafer W will
change in the +Z direction or in the -Z direction, or to
predict the leveling of the surface of wafer W. Based on
such predictions and the focus signals related to the

aperture patterns formed within exposure area IA of wafer W, stage control system 19 and wafer drive unit 21 perform focusing and leveling adjustment of exposure area IA on wafer W. The multiple point focus position detection system (40 and 42) and stage control system 19 make up the focus adjustment system.

[0072] Further, the apparatus of Fig. 1 comprises an alignment microscope based on an off-axis method (not shown), which is arranged on the side surface of projection optical system PL, made up of an image forming alignment sensor that observes positional detection marks (alignment marks) formed on wafer W, and an image processing unit (not shown) to which the observation results of the alignment microscope and positional information on wafer W from wafer interferometer 28 are input in order to obtain the position of the positional detection marks on wafer W. The position of the positional detection marks obtained by the image processing unit is supplied to main controller 20.

[0073] As is shown in Fig. 4, in exposure apparatus 100 of the embodiment, reticle R is illuminated by a rectangular (slit shape) illumination area IAR having a longitudinal direction in a direction perpendicular to the scanning direction (the Y-axis direction), and reticle R is scanned at a velocity V_R in the -Y direction during exposure. Illumination area IAR (whose center

substantially matches optical axis AX) is projected on wafer W via projection optical system PL, and a slitshaped projection area conjugate to illumination area IAR, that is, exposure area IA is formed. Since wafer W has an inverted image forming relationship with reticle R, wafer 5 W is scanned at a velocity V_{W} synchronously with reticle R in a direction (the +Y direction) opposite to the direction of velocity V_{R} , and the entire surface of a shot area SA on wafer W can be exposed. The scanning velocity 10 ratio V_W/V_R accurately corresponds to the reduction magnification of projection optical system PL, and the pattern in pattern area PA of reticle R is accurately reduced and transferred onto shot area SA on wafer W. width of illumination area IAR in the longitudinal 15 direction is set so as to be wider than pattern area PA on the reticle R and narrower than the maximum width of a light shielded area ST, and the entire pattern area PA is illuminated when scanning is performed.

[0074] In scanning exposure apparatus 100, during the above scanning exposure, main controller 20 performs alignment of reticle R and wafer W via stage control system 19, wafer drive unit 21, and the like based on detection signals of an alignment detection system (not shown). Further, the main controller 20 controls substrate table 18 by driving it in the Z-axis direction and a direction of inclination via stage control system 19 and wafer drive unit 21, based on detection signals of

the multiple point focus position detection systems (40 and 42) so that the pattern surface of reticle R and the surface of wafer W become conjugate to projection optical system PL and the image forming surface of projection optical system PL and the surface of wafer W also match each other (the surface of the wafer falls within the depth of focus range of the best image forming plane of projection optical system PL), and thus the surface position is adjusted (setting the alignment surface).

10

5

[0075] Next, the method of deciding exposure conditions related to the above-described exposure apparatus 100 will be described. Prior to describing the method of deciding exposure conditions, an outline of the principle 15 for detecting the best exposure conditions in the embodiment will be described, based on Fig. 5. As is shown in Fig. 5A, exposure illumination light IL that has an intensity (exposure energy) 'I' is irradiated on reticle R, and wafer W is arranged at a position Z in the 20 optical axis AX direction (that is, the Z direction) of projection optical system PL. Further, Fig. 5B schematically shows a pattern (a line-and-space mark: hereinafter referred to as 'L/S mark') PR that is formed on reticle R, and Fig. 5C shows a schematic diagram of a 25 pattern (L/S mark) PW transferred onto wafer W. Herein, as is shown in Fig. 5B, pattern PR formed on reticle R is to be an L/S mark having a line width LR and an array cycle of 2LR, while pattern PW transferred onto wafer W

is an L/S mark having a line width LW and an array cycle of LWP.

[0076] In an ideal exposure, when the projection magnification of projection optical system PL is β , the following expressions hold.

 $LW=\beta \times LR$... (1)

 $LWP=2\beta \times LR \qquad ...(2)$

When exposure energy I or position Z (focus position) of 10 wafer W in the Z direction changes, the relationship in expression (2) is maintained, while the relationship in expression (1) may not necessarily hold because line width PW of pattern PW changes. That is, line width LW is a function LW (I, Z) of exposure energy I and focus position Z. For this reason, it is necessary to adjust 15 exposure energy I and focus position Z in order to make the relationship in expression (1) hold and to set the best exposure conditions (I_B, Z_B) , which are defined to have the smallest shift level from the relationship in 20 expression (1) caused by the change in exposure energy I focus position Z.

[0077] Incidentally, when considering a value $|\Delta L|$, which is the difference between line width LW of the pattern transferred on wafer W and an ideal line width LT (= $\beta \times LR$), it becomes larger as the exposure conditions (I, Z) move away from the best exposure conditions (IB, ZB). In other words, if the exposure conditions (I, Z) move away from

the best exposure conditions (I_B , Z_B), the actual transferred pattern shape will also shift from an ideal transferred pattern. For example, when the ideal transferred pattern is used as a template pattern and pattern matching is performed between the template pattern and the actual transferred pattern, when the exposure conditions (I_A , I_B) move away from the best exposure conditions (I_B , I_B), the correlation coefficient becomes small.

10

5

[0078] Accordingly, for example, by executing the following procedure it is possible to decide the best exposure conditions. Following is a brief description of the procedure. Exposure is performed on wafer W using a 15 measurement pattern PR formed on reticle R under exposure conditions where various kinds of exposure energy I and focus position Z are combined, and the pattern is transferred onto wafer W. Next, each pattern PW transferred onto wafer W under each of the exposure 20 conditions is measured and pattern matching with the template pattern is performed. Then, for example, the correlation coefficient is obtained for each of the exposure conditions. Then, after obtaining the distribution of the correlation coefficient in two-25 dimensional coordinates (I, Z), the threshold value of a correlation coefficient C is set, and based on a figure formed by the coordinate values of the two dimensional coordinates (I, Z) serving as threshold values, the best

exposure conditions (I_B, Z_B) are obtained.

[0079] In this procedure, the above-described value $|\Delta L|$ could be used instead of the correlation coefficient, however, when value $|\Delta L|$ is used, on measuring the line width LW, the measurement has to be extremely accurate in order to detect subtle changes in each individual line width. Whereas, when pattern matching with the template pattern is performed, by collectively treating pattern PW transferred onto the wafer W, the changes in pattern PW transferred onto wafer W can be detected with good accuracy. That is, from the viewpoint of measurement accuracy, using the correlation coefficient is more advantageous than using value $|\Delta L|$.

15

5

10

[0080] Details on detecting the best exposure conditions in the embodiment will now be described, referring to Figs. 6 to 11. Figs. 6 and 7 show flowcharts for detecting the best exposure conditions in this embodiment.

20

25

[0081] Firstly, in step 201 of Fig. 6, a reticle loader (not shown) loads a reticle R_T for reference information collection onto reticle stage RST. Fig. 8 shows a pattern configuration that is formed on R_T for reference information collection used in this embodiment. As is shown in Fig. 8A, a total of five marks RM are formed in the center and the four corners of pattern area PA in

reticle R_T . Further, in pattern area PA, the areas

besides where marks RM are formed are made into a light shielding pattern. As is shown in Fig. 8B, each mark RM is a L/S mark having lines of a line width $LR_{\rm X}$ and a line length $LR_{\rm Y}$ that are arranged in the line width direction at a cycle $2LR_{\rm X}$.

[0082] Returning to Fig. 6, in step 203, a wafer loader (not shown) continuously loads a measurement wafer W_T onto substrate table 18.

10

15

20

25

5

[0083] Next, in step 205, the exposure energy is set to be an initial value (= I_1). In the embodiment, when deciding the exposure conditions, the exposure energy is changed from I_1 to I_N (N=6, for example) with the pitch of ΔI . This exposure energy setting is performed with rough energy adjuster 3 or the light source 1 of Fig. 2. In other words, rough energy adjuster 3 adjusts the exposure energy by changing the transmittance of laser beam LB. On the other hand, the correlation between output ES of energy controller 1c and output DS of integrator sensor 53 in Fig. 3 is obtained in advance, and based on the correlation light source 1 adjusts the exposure energy by changing the energy per pulse of laser beam LB. Incidentally, light source 1 adjusts the exposure energy

[0084] Next, in step 207, main controller 20 notifies stage controller 19 that a target position related to the

in a state where laser beam LB is shielded by shutter 1f.

alignment of wafer W_T in the Z direction (hereinafter, referred to as 'Z position' or 'focus position') in scanning exposure is an initial value (=Z₁). In the embodiment, on deciding the exposure conditions, Z position is changed from Z₁ to Z_M (M=6, for example) with the pitch of ΔZ .

[0085] Continuously, in step 209, substrate table 18 is moved to a scanning starting position so as to transfer marks RM on reticle R onto divided areas DA_{11} in divided 10 areas DA_{ij} (I=1 to M, j=1 to N) on the surface of wafer W_T subject to exposure. Main controller 20 performs this movement via stage control system 19, wafer drive unit 21, and the like. Figs. 9 and 10 show an arrangement of divided areas DA_{ij} on wafer W. The surface of wafer W is 15 divided into a plurality of shot areas SA corresponding to pattern area PA of reticle R, as shown in Fig. 9A. In such shot area, as is shown in Fig. 9B, five areas DA are located that correspond to five marks which will be 20 transferred in the following measurement exposure. Each of the areas DA is virtually divided in the shape of a matrix, and these divided areas are divided areas DAii onto which one mark RM is transferred per scanning exposure. Further, as is shown in Fig. 10, divided areas 25 DA_{ij} are arranged on wafer W_T in the shape of a matrix, where +X direction is a row direction (increasing direction of j) and +Y direction is a column direction (increasing direction of i).

[0086] Returning to Fig. 6, next, in step 211, as is described above referring to Fig. 4, scanning exposure is performed on the shot area on the surface of wafer \textbf{W}_{t} 5 subject to exposure by synchronously moving reticle $R_{\mathtt{T}}$ and wafer W_T and opening shutter 1f immediately before a conjugate area IA of illumination area IAR begins to cover the shot area SA. During the scanning exposure, main controller 20 performs drive control on substrate table 18 in the Z-axis direction via stage control system 10 19 and wafer drive unit 21 so that an alignment target position in the Z-axis direction becomes Z_1 , based on detection signals of the multiple point focus position detection system (40 and 42), as well as perform drive 15 control in the direction of inclination to adjust the surface position (setting the aligning surface). Then, shutter 1f closes immediately after conjugate area IA of illumination area IAR moves away from divided areas DA;;.

20 [0087] When step 211 is completed, in step 213, the decision is made whether or not transfer related to the divided areas corresponding to a predetermined Z position range has been completed in a state where the exposure energy is constant. In the description above, since marks

25 RM have been transferred only for divided areas DA₁₁, it is decided that scanning exposure has not been performed for the predetermined Z position range. Then, in step 215, main controller 20 notifies stage control system 19 that

the Z position of wafer W_T during scanning exposure is Z_2 . Continuously, in step 209, substrate table 18 is moved to the scanning starting position so as to transfer marks RM onto divided areas DA_{21} in the same manner as is described above. At this point, reticle R_T returns to the scanning starting position. Then, in step 211, likewise the divided areas DA_{11} , scanning exposure is performed in order to transfer marks RM related to divided areas DA_{21} .

5

[0088] Subsequently, in step 213, scanning exposure to 10 transfer marks RM related to divided areas DA_{i1} (i=3 to M) is sequentially executed until it is decided that scanning exposure has been performed for the predetermined Z position range. In this manner, the 15 pattern formed on reticle $R_{\mathtt{T}}$ is transferred onto the surface of wafer $W_{\mathtt{T}}$ subject to exposure for the case where the exposure energy during scanning exposure is I_1 . In step 213, when it has been decided that scanning exposure has been performed for the predetermined Z position range, 20 then in the next step, step 217, the decision is made whether or not exposure related to the divided areas in a predetermined exposure energy range has been completed. In the description above, since marks RM have been transferred only for divided areas DA_{i1} (i=1 to M), it is 25 decided that scanning exposure has not been performed in the predetermined exposure energy range, and in step 219, the exposure energy is set to be I_2 similar to step 205.

[0089] Next, similar to the case when the exposure energy is I_1 , in step 207, main controller 20 notifies stage control system 19 that the Z position of wafer W_T during scanning exposure is Z_1 , and then steps 209 to 215 are executed again, thus scanning exposure to transfer marks RM related to divided areas DA_{i2} is performed.

5

[0090] Subsequently, in step 217, scanning exposure for transferring the marks RM regarding divided areas DAii 10 (i=3 to M, j=3 to N) is sequentially executed until it is decided that scanning exposure has been performed for the predetermined exposure energy range. In this manner, the pattern formed on reticle R_T is transferred onto the surface of wafer W_T subject to exposure for the 15 predetermined exposure energy range. As a result, marks RM are transferred onto all divided areas DA_{ij} . When the decision is made in step 217 that scanning exposure has been performed for the predetermined exposure energy range, then, in subroutine 221, pattern matching is 20 performed between the pattern transferred onto each of the divided areas DAij and the template pattern.

[0091] Fig. 7 shows a flowchart of sub-routine 221. As is shown in Fig. 7, in sub-routine 221, first of all, in step 227, wafer W_T is unloaded from substrate table 18 (refer to Fig. 1), and then in step 229, wafer W_T is developed. Next, in step 231, the transferred patterns formed on each of the divided areas DA_{ij} on wafer W_T that

has been developed are picked up by a CCD or the like via a microscope, and the pick-up results are downloaded into a computer. To download the data, an exposure apparatus similar to the above-described exposure apparatus 100 in the embodiment may be used that further equips the microscope and the CCD may be used, or a different apparatus that comprises the microscope or the like and the computer may be used.

5

10 [0092] Next, in step 233, the template pattern is set. Herein, as the template pattern, an ideal transferred pattern calculated based on the pattern formed on reticle R_T and the projection magnification of projection optical system PL may be used, or a pattern selected from the 15 patterns transferred onto divided areas DAii may also be used. On selecting the pattern, a pattern which is decided to be the closest to the ideal pattern among the patterns transferred onto divided areas DAij by human choice may be selected, or a pattern may be selected from 20 the viewpoint of design that is exposed and transferred onto divided areas with the exposure conditions closest to the best exposure energy and the best focus position. Then, in step 235, pattern matching is performed between the pattern transferred onto each divided area DA_{ij} and 25 the template pattern to find the correlation coefficient per each divided area DA_{ij}. Then, in step 237, correlation coefficients Cij that have been obtained for each of the divided areas DAij are saved, and the

procedure returns to the main routine.

[0093] Next, returning to Fig. 6, in step 223, the best exposure energy and the best focus position, which are the best exposure conditions, are obtained for each of 5 the five areas DA in shot area SA in the following manner. Firstly, the two-dimensional coordinates (I, Z) of exposure energy I and focus position Z are considered for a single area DA, and by plotting the correlation 10 coefficient C_{ij} on the coordinate values (I_j, Z_i) , the distribution of the correlation coefficient is thus obtained. On exposing the above-described measurement wafer W_T , because the divided areas DA_{ij} were set to a same size, and the difference of the exposure energy 15 between adjacent divided areas in the row direction was set to the same value (= Δ I) while the difference of the focus position between adjacent divided areas in the column direction was set to the same value (= ΔZ), the arrangement of divided areas DA_{ij} on wafer W_T coincides 20 with the coordinate values (I_i, Z_i) in the two-dimensional coordinates (I, Z) without any modification.

[0094] Next, the best exposure conditions are obtained, based on the distribution of the correlation coefficient

25 C_{ij} obtained in this manner. On obtaining the best exposure conditions, several methods can be considered. For example, in a first method, a threshold value of a correlation coefficient is set, and in a divided area

that has a correlation coefficient larger than the threshold value, such area can be decided as an area containing a transferred pattern, whereas in a divided area that has a correlation coefficient smaller than the 5 threshold value, the area does not contain a transferred pattern. Fig. 11 shows an example of a result of such a decision. In Fig. 11, the divided areas that do not contain any transferred patterns based on the decision are shown as outlined areas while the divided areas that 10 have the transferred patterns are shown as hatched areas. Then, divided areas adjacent to the divided areas that do not contain any transferred patterns are extracted from the divided areas that contain the transferred patterns, and the coordinate values of the extracted divided areas 15 are obtained. From the coordinate values obtained in such a manner, an approximated curve in the two-dimensional coordinates (I,Z) is obtained, for example, by the least squares method. And, the best exposure energy I_{B} and the best focus position Z_B are decided based on the 20 approximated curve. In this case, regarding the best exposure energy I_{B} , when exposure energy I is assumed as an independent variable and a difference δZ of a value at a particular focus position and focus position Z is assumed as a dependent variable in the approximated curve, 25 a value of the exposure energy where value δZ becomes the largest (or value δZ becomes the smallest) may be obtained as the best exposure energy I_{B} . Alternatively, regarding the best focus position Z_B , when focus position Z is

assumed as an independent variable and a difference δI of a particular exposure energy value and exposure energy I is assumed as a dependent variable in the approximated curve, a value of the focus position where value δI becomes the largest (or value δI becomes the smallest) may be obtained as the best focus position Z_B .

[0095] In a second method, a plurality of threshold values of the dependent variable is set in the 10 approximated curve of the first method, and a midpoint of a value of the independent variable where the dependent variable becomes the threshold values, is obtained for each of the threshold values. Then, from the average value of such midpoints, the best value of a parameter 15 for the exposure conditions selected as the independent variable is obtained. According to this method, it is possible to decide one value as the best value without fail. Besides such a method, as the third method, an approximated surface (that is, C (I,Z)) may be obtained 20 from the correlation coefficient Cij for the twodimensional coordinates (I_j, Z_i) , and the best exposure conditions may be obtained, by using the exposure energy value and the focus position value on the approximated surface where the correlation coefficient becomes the 25 largest as the best exposure energy and the best focus position.

[0096] Hereinafter, the best exposure conditions are

obtained for each of the other areas DA in the same manner as is described above. Consequently, the best exposure conditions of each area DA in the shot area are obtained.

5

[0097] The best exposure conditions obtained in step 223 as is described above are stored in storage device 29 in step 225. Thus, subjective factors are eliminated, and the best exposure conditions can be obtained in a stable manner with good accuracy.

[0098] Next, an exposure operation by scanning exposure apparatus 100 of the embodiment when manufacturing a device will be described.

15

10

[0099] Firstly, the reticle loader loads reticle R on which a pattern to be transferred is formed onto reticle stage RST. In the same manner, the wafer loader loads wafer W to be exposed onto substrate table 18.

20

25

[0100] Next, main controller 20 performs preparatory operations for alignment measurement or the like, such as reticle alignment and baseline measurement using a reticle microscope (not shown) and fiducial mark plate FM on substrate table 18, and EGA (enhanced global alignment) using the alignment detection system (not shown), according to a predetermined procedure when necessary.

[0101] On the exposure operation, substrate table 18 is moved so that the XY position of wafer W is at the scanning starting position for exposure of the first shot area (first shot) on wafer W. Main controller 20 performs the movement via stage control system 19 and wafer drive unit 21 or the like. At the same time, reticle stage 18 is moved so that the XY position of reticle R is also at the scanning starting position. Main controller 20 also performs this movement via stage control system 19 and the reticle drive section (not shown) or the like.

- [0102] Accordingly, wafer W and reticle R move to their scanning starting positions, and before starting

 15 synchronous movement, main controller 20 reads the best exposure energy I_B and the best focus position Z_B , which are the best exposure conditions, from storage device 29. Then, main controller 20 adjusts the energy of the exposure illumination light to I_B by controlling light source 1 and rough energy adjuster, based on the best exposure energy I_B that it read, and notifies stage control system 19 of best focus position Z_B that has been read as the target focus position.
- 25 [0103] Then, stage control system 19 relatively moves reticle R and wafer W via the reticle drive section (not shown) and wafer drive unit 21, based on the XY positional information of reticle R that has been

measured by reticle interferometer 16, the XY positional information of wafer W that has been measured by wafer interferometer 28, and a first velocity information. Scanning exposure is performed along with such relative movement.

5

[0104] Furthermore, stage control system 19 adjusts the surface position of substrate table 18 by driving substrate table 18 in Z-axis direction and in the direction of inclination via wafer drive unit 21, based on the Z positional information of the wafer that has been detected by the multiple point focus position detection system (40 and 42).

- [0105] When the reticle pattern has been transferred onto the first shot area by the scanning exposure performed with the above-described control, stepping operation of substrate table 18 is performed by one shot area, and then scanning exposure is performed in the same manner as the previous shot area. The opening/closing of shutter 1f is performed at the same timing as is previously described.
- [0106] Hereinafter, stepping and scanning exposure

 25 operations are sequentially repeated in this manner, and
 the pattern of a required shot number is transferred onto
 wafer W. Therefore, according to the embodiment, scanning
 exposure can be performed under the best exposure

conditions that have been obtained with good accuracy, and thus it is possible to perform highly accurate exposure.

5 [0107] Next, an embodiment of a device manufacturing method that uses the scanning exposure apparatus and the method described above will be described.

[0108] Fig. 12 is a flowchart showing an example of

manufacturing a device (a semiconductor chip such as an'

IC or an LSI, a liquid crystal panel, a CCD, a thin

magnetic head, a micromachine, or the like). As shown in

Fig. 12, in step 301 (design step), function/performance

is designed for a device (e.g., circuit design for a

semiconductor device) and a pattern to implement the

function is designed. In step 302 (mask manufacturing

step), a mask on which the designed circuit pattern is

formed is manufactured, whereas, in step 303 (wafer

manufacturing step), a wafer is manufacturing by using a

silicon material or the like.

[0109] Next, in step 304 (wafer processing step), an actual circuit and the like is formed on the wafer by lithography or the like using the mask and wafer prepared in steps 301 to 303, as will be described later. Next, in step 305 (device assembly step) a device is assembled using the wafer processed in step 304. The step 305 includes processes such as dicing, bonding, and packaging

(chip encapsulation), as necessary.

[0110] Finally, in step 306 (inspection step), tests on operation, durability, and the like are performed on the device processed in step 305. After these steps, the device is completed and shipped out.

[0111] Fig. 13 is a flow chart showing a detailed example of step 304 described above in manufacturing the

- semiconductor device. Referring to Fig. 13, in step 311 (oxidation step), the surface of the wafer is oxidized. In step 312 (CVD step), an insulating film is formed on the wafer surface. In step 313 (electrode formation step), an electrode is formed on the wafer by vapor deposition.
- In step 314 (ion implantation step), ions are implanted into the wafer. Steps 311 to 314 described above make up a pre-process for the respective steps in the wafer process, and are selectively executed depending on the processing required in the respective steps.

20

25

5

[0112] When the above pre-process is completed in the respective steps in the wafer process, a post-process is executed in the following manner. In this post-process, first, in step 315 (resist formation step), the wafer is coated with a photosensitive agent. Next, in step 316 (exposure step), the circuit pattern on the mask is transferred onto the wafer by the exposure apparatus and the exposure method described above. And, in step 317

(development step), the wafer that has been exposed is developed. Then, in step 318 (etching step), an exposed member of an area other than the area where the resist remains is removed by etching. Finally, in step 319 (resist removing step), when etching is completed, the resist that is no longer necessary is removed.

[0113] By repeatedly performing these pre-process and post-process steps, multiple circuit patterns are formed 10 on the wafer.

[0114] By using the device manufacturing method in the embodiment, devices with high integration that was difficult to manufacture conventionally can be manufactured.

[0115] In this embodiment, an L/S pattern has been used as the pattern formed on measurement reticle R_T , but a cyclic dot pattern resembling the actual circuit pattern whose image can also be easily processed can be used likewise the L/S pattern. In the case of using either pattern, however, the pattern should be a cyclic pattern close to the minimum line width or the minimum area that the subject exposure apparatus is capable of transferring.

25

15

20

5

[0116] Further, in the embodiment, the patterns formed on measurement reticle R_T at the five positions, in the center and the four corners, were made up by marks MR,

however, marks MR can be formed on measurement reticle $R_{\mathtt{T}}$ according to a desired positional resolution for obtaining the best exposure conditions.

5 [0117] Moreover, although the L/S pattern of the same cycle direction has been used as the pattern formed on measurement reticle R_T , a combined L/S pattern having vertical lines, horizontal lines, diagonal lines and the like, which are formed close to one another, can be used as well. In this case, aberration measurement such as astigmatism can be performed.

[0118] Furthermore, in the embodiment, although pattern matching that calculates the correlation coefficient has been used as the pattern matching with the template pattern, a pattern matching may be used, for example, that calculates the difference between patterns. In this case, although the pattern matching result is minimal under the best exposure conditions and the pattern matching result becomes larger as the exposure conditions move away from the best exposure conditions, the best exposure conditions can be decided in a similar manner as in the embodiment when this point is taken into consideration.

25

[0119] In addition, the template pattern can be made to be a pattern that consists of only the maximum brightness or the minimum brightness. In this case, as well, by

checking the dependency of the pattern matching results to the exposure energy and the focus position, the best exposure conditions can be decided. For example, by directly using the first method for finding the best exposure conditions in the embodiment, the best focus position can be decided, or alternatively, a focus position at which the pattern matching result becomes an extreme value due to the change in focus position when the exposure energy is uniform is obtained for each exposure energy, and the exposure energy value in which the type of the extreme value changes from the maximum value to the minimum value can be obtained as the best exposure energy.

- 15 [0120] In addition, in the embodiment, the best focus position has been obtained by performing exposure while changing the Z position of the wafer, but the best image forming conditions can be obtained when main controller 20 changes the image forming surface position of projection optical system PL in Fig. 1 via imaging characteristic correction controller 68. In this case, main controller 20 adjusts the image forming characteristics of projection optical system PL via image forming characteristic correction controller 68, in order to set the best exposure conditions.
 - [0121] Further, in the embodiment, the excimer laser beam source has been used as the light source, but an emission

line (such as a g-line and an i-line) in an ultraviolet region from an ultra high-pressure mercury lamp may be used. In this case, the exposure energy can be adjusted by lamp output control, an attenuation filter such as an ND filter, a light quantity aperture diaphragm, or the like.

[0122] Still further, the present invention can be applied to any wafer exposure apparatus and liquid crystal exposure apparatus, such as a reduction projection exposure apparatus using ultraviolet ray as a light source, a reduction projection exposure apparatus using soft X-ray having a wavelength of approximately 10nm as a light source, an X-ray exposure apparatus using a light source having a wavelength of approximately 1nm, and an exposure apparatus using an EB (electron beam) or an ion beam. In addition, the type of the apparatus does not matter, whether it is a step-and-repeat type, a step-and-scan type, or a step-and-stitch type.

20

25

5

10

15

[0123]

[Effect of the Invention] As it has been described in detail, according to the method of deciding exposure conditions of Claims 1 to 10, the pattern formed on the mask is transferred onto the photosensitive substrate under the exposure conditions where various kinds of exposure energy and focus position are combined. Then, pattern matching is performed between the pattern

transferred onto the photosensitive substrate and the previously prepared template pattern, and the best exposure conditions are decided based on the result of pattern matching, so that subjective factors can be eliminated and the best exposure conditions can be decided in a stable manner with good accuracy.

5

25

[0124] Further, according to the exposure method of Claim 11, the pattern formed on the mask is transferred onto the photosensitive substrate under the best exposure conditions decided by the method of deciding exposure conditions of any one of Claims 1 to 10, therefore, exposure can be performed with good accuracy.

15 [0125] Furthermore, according to the exposure apparatus of Claim 12, the pattern formed on the mask is transferred onto the photosensitive substrate based on the best exposure conditions decided by the method of deciding exposure conditions of Claim 1, which is stored in the storage device, therefore, exposure can be performed with good accuracy.

[0126] According to the exposure method of Claim 13, the exposure method of Claim 11 is used in the exposure process, therefore, high integration devices that have been difficult to manufacture, can be manufactured.

[Brief Description of the Drawings]

- Fig. 1 is a view showing a general configuration of an exposure apparatus related to an embodiment of the present invention.
- Fig. 2 is a view for explaining an example of a specific configuration of an illumination system 10 in Fig. 1.
- Fig. 3 is a view for explaining a part related to dose control of illumination system 10 in Fig. 2.
- Fig. 4 is a view for explaining an outline of a principle of scanning exposure by the apparatus in Fig. 2.
- 10 Figs. 5A to C are views for explaining a principle of deciding the best exposure conditions in an embodiment.

 Fig. 6 is a flowchart of deciding exposure conditions in an embodiment.
 - Fig. 7 is a flowchart of a subroutine 221 in Fig. 6.
- Figs. 8A and 8B are views for explaining a pattern formed on a reticle $R_{\mathtt{T}}$.
 - Figs. 9A and 9B are views for explaining an arrangement of divided areas on wafer $W_{\mathtt{T}}.$
 - Fig. 10 is a view for explaining an arrangement of
- 20 divided areas.

5

- Fig. 11 is a view for explaining a state of a transferred pattern due to the change in exposure energy I and focus position Z.
- Fig. 12 is a flowchart for explaining an embodiment of a device manufacturing method according to the present invention.
 - Fig. 13 is a flowchart of processing in step 304 in Fig. 12.

[Description of Reference Numerals]

- 1...Light source (a part of light intensity variable
 mechanism)
- 5 3...Rough energy adjuster (a part of light intensity variable mechanism)
 - 19...Stage control system (a part of focus adjustment system)
 - 20...Main controller (adjustment unit)
- 10 21...Wafer drive unit (drive mechanism)
 - 29...Storage device
 - 40...Illumination optical system (a part of detection system, a part of focus adjustment system)
 - 42...Photodetection optical system (a part of detection
- 15 system, a part of focus adjustment system)

PL...Projection optical system

R...Reticle (mask)

R_T...Reticle (measurement mask)

W...Wafer (photosensitive substrate)

20 $W_{T}...Wafer$ (photosensitive measurement substrate)

FIG.1

20...MAIN CONTROLLER

FIG.2

- 1...EXCIMER LASER BEAM SOURCE
- 5 2...BEAM SHAPING OPTICAL SYSTEM

20...MAIN CONTROLLER

FIG.3

3...ROUGH ENERGY ADJUSTER

20...MAIN CONTROLLER

10 FIG.

START

201...LOAD RETICLE R_T .

203...LOAD WAFER W_T .

205...SET I₁ AS EXPOSURE ENERGY AMOUNT $(\uparrow \leftarrow 1)$.

- 15 207...SET Z_1 AS ALIGNMENT TARGET POSITION OF WAFER IN Z DIRECTION ($i\leftarrow 1$).
 - 209...MOVE SUBSTRATE TABLE TO SCANNING STARTING POSITION WHERE SCANNING EXPOSURE START POSITION WHERE MARKS RM ARE TRANSFERRED ONTO DIVIDED AREAS DA_{ij} .
- 20 211...SCANNING EXPOSURE
 - 213...WHETHER OR NOT EXPOSURE IN PREDETERMINED Z RANGE ENDED?
 - 215...UPDATE TARGET POSITION IN Z DIRCTION.
 - 217...WHETHR OR NOT EXPOSURE IN PREDECIDE I RANGE ENDED?
- 25 219...UPDATE EXPOSURE ENERGY AMOUNT.
 - 221...TEMPLATE MATCHING WITH TRANSFERRED PATTERN
 - 223...FIND BEST EXPOSURE CONDITIONS.
 - 225...STORE IN STORAGE DEVICE.

END

FIG.7

START

22.7...UNLOAD WAFER W_T .

5 229...DEVELOP WAFER.

231...DOWNLOAD TRANSFERRED PATTERN.

233...SET TEMPLATE PATTERN.

235...PERFORM PATTERN MATCHING BETWEEN EACH TRANSFERRED PATTERN AND TEMPLATE PATTERN.

10 237...STORE PATTERN MATCHING RESULT.

RETURN

FIG. 10

COLUMN DIRECTION

ROW DIRECTION

15 FIG.11

Z POSITION

EXPOSURE ENERGY AMOUNT

NO TRANSFERRED PATTERN

WITH TRANSFERRED PATTERN

20 FIG.12

301...DESIGN (FUNCTION, PERFORMANCE, PATTERN)

302...MASK MANUFACTURING

303...WAFER MANUFACTURING

304...WAFER PROCESSING

25 305...DEVICE ASSEMBLY

306...INSPECTION

SHIPPING

FIG.13

FRONT-END PROCESS

- 311...OXIDATION
- 313...ELECTRODE FORMATION
- 314...ION IMPLANTATION
- 5 BACK-END PROCESS
 - 315...RESIST FORMATION
 - 316...EXPOSURE
 - 317...DEVELOPMENT
 - 318...ETCHING
- 10 319...RESIST REMOVAL

(19)日本国特許庁 (JP)

(12)公開特許公報 (A)

(11)特許出願公開番号

特開平11-233434

(43)公開日 平成11年(1999)8月27日

(51) Int. Cl. ⁶ H01L 21/027	識別記号	F I H01L 21/30	516	D	
G03F 7/20	521	G03F 7/20	521		
		H01L 21/30	516	В	
			526	A	
·		審査請求	未請求 請求項の数	(13 FD.	(全21頁)
(21)出願番号	特願平10-51564		000004112 株式会社ニコン		
(22) 出願日	平成10年(1998) 2月17日	東京都千代田区丸の内3丁目2番3号 (72)発明者 今井 裕二 東京都千代田区丸の内3丁目2番3号 株			
			式会社ニコン内 弁理士 立石 篤司	(外1名)
		: - -			
		:			

(54) 【発明の名称】露光条件決定方法、露光方法、露光装置、及びデバイスの製造方法

(57)【要約】

【課題】 安定して、かつ精度良く最良露光条件を決定し、この最良露光条件によって高精度な露光を確実に実現する。

【解決手段】 様々な露光エネルギ量とフォーカス位置との組み合わせの露光条件で、測定用マスクRT に形成されたパターンを測定用感応基板WT に転写する。そして、測定用感応基板WT に転写されたパターンと予め用意されたテンプレートパターンとのパターンマッチングを行い、このパターンマッチングの結果に基づいて最良露光条件を決定する。こうして決定された最良露光条件によって、マスクRに形成されたパターンを感応基板Wに転写する。この結果、精度の良い露光を行うことができる。

2

【特許請求の範囲】

【請求項1】 露光用照明光によりマスクを照射し、前 記マスクに形成されたパターンを投影光学系を介して感 応基板に転写するための露光条件決定方法であって、 測定用感応基板の被露光面上における、互いに直交する 行方向と列方向とを有するマトリクス状の仮想的な区画 領域に関し、同一行については前記測定用感応基板を前 記投影光学系の光軸方向の同一位置とし、前記行方向に ついては露光エネルギ量を単調に変化させるとともに、 同一列については同一露光エネルギ量とし、前記列方向 10 については前記測定用感応基板の前記光軸方向の位置を 単調に変化させて、前記区画領域それぞれに測定用マス クに形成された測定用パターンを転写する第1工程と; 前記第1工程においてパターンが転写された前記感応基 板を現像し、現像された該感応基板上に形成された転写 パターンを検出する第2工程と;前記第2工程において 検出された前記区画領域それぞれの転写パターンと予め 用意されたテンプレートパターンとをパターンマッチン グする第3工程と;前記第3工程におけるパターンマッ チングの結果に基づき、最良露光条件を求める第4工程 20 とを含む露光条件決定方法。

【請求項2】 前記区画領域それぞれは同一形状であり、前記行方向で隣接する前記区画領域間での露光エネルギ量の差は同一であることを特徴とする請求項1に記載の露光条件決定方法。

【請求項3】 前記区画領域それぞれは同一形状であり、前記列方向で隣接する前記区画領域間での前記光軸方向の位置の差は同一であることを特徴とする請求項1に記載の露光条件決定方法。

【請求項4】 前記測定用パターンは、前記測定用マスクの前記露光用照明光の照射領域の全域にわたって形成された周期的なパターンであることを特徴とする請求項1に記載の露光条件決定方法。

【請求項5】 前記測定用パターンは、前記測定用マスクの前記露光用照明光の照射領域の一部に形成された周期的なパターンであることを特徴とする請求項1に記載の露光条件決定方法。

【請求項6】 前記測定用マスクの前記測定用パターンが形成された前記露光用照明光の照射領域の一部は、該照射領域の中心点からの距離が異なる2以上の微小領域 40であることを特徴とする請求項5に記載の露光条件決定方法。

【請求項7】 前記テンプレートパターンは、前記区画 領域の中から選択された一つの区画領域に転写されたパ ターンであることを特徴とする請求項1に記載の露光条 件決定方法。

【請求項8】 前記テンプレートパターンは、前記測定 用パターンと前記投影光学系の投影倍率とに基づいて算 出されたバターンであることを特徴とする請求項1に記 載の露光条件決定方法。 【請求項9】 前記テンプレートパターンは、最大明度 及び最小明度のいずれか一方からのみなるパターンであ ることを特徴とする請求項1に記載の露光条件決定方 法。

【請求項10】 前記最良露光条件は、前記光軸方向に 関する最良フォーカス位置に関する条件及び最良露光エネルギ量に関する条件の少なくとも一方であることを特 像とする請求項1に記載の露光条件決定方法。

【請求項11】 露光用照明光によりマスクを照射し、前記マスクに形成されたパターンを投影光学系を介して感応基板に転写する露光方法であって、前記請求項1~10のいずれか一項に記載の露光条件決定方法によって決定された最良露光条件を設定する工程と;その設定された露光条件にて前記マスクに形成されたパターンを投影光学系を介して感応基板に転写する工程とを含む露光方法。

【請求項12】 露光用照明光によりマスクを照射し、 前記マスクに形成されたパターンを投影光学系を介して 感応基板に転写する露光装置であって、前記感応基板を 前記投影光学系の光軸方向及びこれに直交する2次元平 面内で駆動する駆動機構と;前記感応基板の前記光軸方 向の位置を検出する検出系を有し、該検出系の検出結果 をモニタしつつ前記駆動機構を介して前記感応基板の前 記光軸方向位置を所定の目標位置に調整するフォーカス 調整系と;前記露光用照明光の強度密度を変化させる光 強度可変機構と;前記駆動機構及び前記光強度可変機構 を用いて行われた前記請求項1に記載の露光条件決定方 法によって決定された最良露光条件を記憶する記憶装置 と;前記記憶装置に記憶された最良露光条件となるよう に、前記フォーカス調整系の目標位置及び前記光強度可 変機構の少なくとも一方を調整する調整装置とを備える 露光装置。

【請求項13】 請求項11の露光方法を用いる露光工程を含むことを特徴とするデバイスの製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、露光条件決定方法、露光方法、露光装置、及びデバイスの製造方法に係り、より詳細にはマスクに形成されたパターンを感応基板へ転写する際の露光条件を決定するための露光条件決定方法、その露光条件決定方法で決定された露光条件で露光を行う露光方法、その露光方法が適用される露光装置、及びその露光方法を利用した半導体素子等のデバイスの製造方法に関する。

[0002]

【従来の技術】従来より、半導体素子、液晶表示素子等を製造するためのリソグラフィ工程では、マスク又はレチクル(以下、「レチクル」と総称する)に形成されたパターン(以下、「レチクルパターン」とも呼ぶ)を投50 影光学系を介してレジスト等が塗布されたウエハ又はガ

ラスプレート等の基板(以下、適宜「感応基板又はウエ ハ」という)上に転写する露光装置が用いられている。 この種の装置としては、感応基板としてのウエハが搭載 されたウエハステージを所定量だけ2次元方向に移動さ せて所定の露光位置へ位置決めするステッピング動作 と、その位置決め状態でレチクルのパターンを投影光学 系を介して感応基板上のショット領域に転写する露光動 作とを繰り返す静止露光型(ステップ・アンド・リピー ト方式ともいう) の縮小投影型露光装置 (いわゆる「ス 定のスリット状領域を照明光で照明しながら、レチクル とウエハとを投影光学系に対して所定の走査方向に同期 移動させ、レチクルパターンを投影光学系を介してウエ ハ上に逐次転写するステップ・アンド・スキャン方式の 走査型露光装置が実用化されている。

【0003】この種の露光装置による露光では、ウエハ 上の被露光領域に照射される露光光のエネルギ量(露光 ドーズ量)や、露光時において転写されるべきレチクル パターンの像面とウエハ上の被露光領域との位置関係、 すなわちウエハ上の被露光領域のフォーカス誤差によっ 20 て、ウエハに転写されたパターンの形状が変化すること が知られている。すなわち、露光ドーズ量が少ない場合 にはウエハ上の露光したい領域が十分に露光されず、露 光ドーズ量が多い場合にはウエハ上の露光したくない領 域まで露光されてしまう。また、ウエハ上の被露光領域 がレチクルパターンの像面に一致しない(投影光学系に 関するレチクルパターンの像面の焦点深度内に収ってい ない)、すなわちフォーカス誤差がある場合には、ウエ ハ上の被露光領域に形成されるレチクルパターン像はぼ けたものとなってしまい、レチクルパターンの忠実な縮 30 小像をウエハ上へ転写することができない。したがっ て、レチクルパターンの忠実な縮小像をウエハに転写す るにあたっては、露光ドーズ量とウエハのフォーカス制 御位置(以下、「フォーカス位置」と呼ぶ)とを最適化 して露光を行うことが必要となる。

【0004】従来、こうした最適露光条件の検出は、所 定のレチクルパターン(例えば、ライン・アンド・スペ ースのパターン等)をテストパターンとして、このテス トパターンを様々な露光ドーズ量で様々なウエハのフォ ーカス位置でテスト用ウエハにテスト露光し、テスト用 40 ウエハに転写されたパターンの状態を目視で判断するこ とにより行っていた。すなわち、目視によって最良の転 写状態と判断されたテスト露光を行った露光ドーズ量及 びウエハのフォーカス位置を最良露光条件としたり、目 視によって転写パターンの有無を判定し、転写パターン 有りと判断された露光ドーズ量範囲の中点及びウエハの フォーカス位置範囲の中点を露光ドーズ量及びウエハの フォーカス位置を最良露光条件としたりしていた。

[0005]

【発明が解決しようとする課題】前述の従来の露光条件 50 ては同一露光エネルギ量とし、前記列方向については前

の決定方法では、テスト露光の結果を目視で判断してい るので、以下のような不都合があった。

【0006】すなわち、目視によって最良の転写状態と 判断されたテスト露光から最良露光条件を求める露光条 件の決定方法では、テスト露光条件を大まかに設定した 場合には、テスト露光の内から最良転写状態を見出すこ とは容易であるが、求めた最良露光条件を精度良く求め ることはできなかった。一方、テスト露光条件を細かく 設定した場合には、まずテスト露光にかかる時間が長く テッパ」)や、このステッパを改良し、レチクル上の所 10 なり生産性が悪くなる。さらに、最良露光条件の候補が 多数となることが予想され、目視による人の判断によっ て安定して、かつ精度良く最良露光条件を判断すること が困難であった。

> 【0007】また、目視によって転写パターン有りと判 断された露光ドーズ量範囲の中点及びウエハのフォーカ ス位置範囲の中点から最良露光条件を求める露光条件の 決定方法では、テスト露光条件を大まかに設定した場合 には、テスト露光の内から転写パターンの有無を判断す ることは容易であるが、転写パターンの有無の真の境界 がそのテスト露光条件である保証は無いので最良露光条 件を精度良く求めることはできなかった。一方、テスト 露光条件を細かく設定した場合には、まずテスト露光に かかる時間が長くなり生産性が悪くなる。さらに、転写 パターンの有無の境界の判断が困難であり、安定して、 かつ精度良く最良露光条件を判断することが困難であっ

> 【0008】本発明は、かかる事情の下になされたもの であり、その第1の目的は、安定して、かつ精度良く最 良露光条件を求めることができる露光条件決定方法を提 供することにある。

> 【0009】また、本発明の第2の目的は、最良露光条 件による高精度な露光を確実に実現できる露光方法を提 供することにある。

【0010】また、本発明の第3の目的は、最良露光条 件による高精度な露光を確実に実現できる露光装置を提 供することにある。

【0011】また、本発明の第4の目的は、高集積度の デバイスを製造する方法を提供することにある。

[0012]

【課題を解決するための手段】請求項1に記載の発明 は、露光用照明光によりマスク(R)を照射し、前記マ スク(R)に形成されたパターンを投影光学系(PL) を介して感応基板(W)に転写するための露光条件決定 方法であって、測定用感応基板 (W_r) の被露光面上に おける、互いに直交する行方向と列方向とを有するマト リクス状の仮想的な区画領域に関し、同一行については 前記測定用感応基板(W_r)を前記投影光学系(PL) の光軸方向の同一位置とし、前記行方向については露光 エネルギ量を単調に変化させるとともに、同一列につい

記測定用感応基板 (Win) の前記光軸方向の位置を単調 に変化させて、前記区画領域それぞれに測定用マスクに 形成された測定用パターンを転写する第1工程と;前記 第1工程においてパターンが転写された前記感応基板

(Wr) を現像し、現像された該感応基板 (Wr) 上に 形成された転写パターンを検出する第2工程と;前記第 2 工程において検出された前記区画領域それぞれの転写 パターンと予め用意されたテンプレートパターンとをパ ターンマッチングする第3工程と;前記第3工程におけ 求める第4工程とを含む。

【0013】請求項1の露光条件決定方法では、まず、 測定用感応基板上で互いに直交する行方向及び列方向を それぞれ軸方向とする2次元座標において、行方向につ いては露光エネルギ量を変化させるとともに、列方向に ついては測定用感応基板の投影光学系の光軸方向の位 置、すなわち測定用感応基板のフォーカス位置を単調に 変化させて、測定用マスクに形成された測定用パターン を測定用感応基板上でマトリクス状に配列された仮想的 な区画領域へ転写する(第1工程)。この結果、露光条 20 件としての露光エネルギ量の変化が行方向に反映され、 かつ露光条件としての測定用感応基板のフォーカス位置 の変化が列方向に反映された様々なテスト露光条件によ るテスト露光が、1枚の測定用感応基板上の区画領域毎 になされる。

【0014】次に、テスト露光された測定用感応基板を 現像し、該測定用感応基板上の各区画領域毎に転写され たパターン(転写パターン)を検出し(第2工程)、こ れらの検出された各転写パターンと予め用意されたテン プレートパターンとをパターンマッチングし、マッチン 30 グ度(2つのパターンの相関度)を各区画領域毎に求め る(第3工程)。すなわち、人による目視といった官能 的な手法ではなく、パターンマッチングという客観的か つ定量的な手法によって、各区画領域毎の転写状態を求 める。そして、各区画領域毎に客観的かつ定量的に求め られたパターンマッチングの結果に基づいて、最良露光 条件を求める(第4工程)。

【0015】したがって、請求項1の露光条件決定方法 によれば、テスト露光条件をむやみに細かくすることな く、安定して、かつ精度良く最良露光条件を求めること ができる。

【0016】請求項2に記載の発明は、請求項1の露光 条件決定方法において、前記区画領域それぞれが同一形 状であり、前記行方向で隣接する前記区画領域間での露 光エネルギ量の差は同一であることを特徴とする。

【0017】これによれば、露光エネルギが等間隔の幅 で定量的なパターンマッチング結果を得ることができる ので、前記第4工程における最良露光条件の導出にあた って、処理が容易となる。

【0018】請求項3に記載の発明は、請求項1の露光 50

条件決定方法において、前記区画領域それぞれが同一形 状であり、前記列方向で隣接する前記区画領域間での前 記光軸方向の位置の差は同一であることを特徴とする。

【0019】これによれば、測定用感応基板のフォーカ ス位置が等間隔の幅で定量的なパターンマッチング結果 を得ることができるので、前記第4工程における最良露 光条件の導出にあたって、処理が容易となる。

【0020】請求項1の露光条件決定方法において、測 定用マスクに形成された測定用パターンは様々考えら るパターンマッチングの結果に基づき、最良露光条件を 10 れ、例えば請求項4に記載の発明のように、前記測定用 パターンを、前記測定用マスク (R_r) の前記露光用照 明光の照射領域の全域にわたって形成された周期的なパ ターンとしても良いし、あるいは請求項5に記載の発明 のように、前記測定用パターンを、前記測定用マスク

(R₁) の前記露光用照明光の照射領域の一部に形成さ れた周期的なパターンとしても良い。ここで、測定用マ スクの露光用照明光の照射領域とは、露光用照明光が同 時に照射される領域である。すなわち、ステップ・アン ド・リピート方式の場合には、感応基板に転写されるパ ターンをマスク上での形成可能な領域であり、ステップ ・アンド・スキャン方式の場合には、前述のスリット状 の領域となる。

【0021】請求項4の露光条件決定方法によれば、測 定用マスクの露光用照明光の照射領域に応じた感応基板 のショット領域の全面にわたってパターンマッチングを 行うことにより、ショット領域内の各位置について最良 露光条件求めることができる。

【0022】請求項5の露光条件決定方法によれば、パ ターンマッチングの演算量を低減できるので、高速にパ ターンマッチング結果が得られ、高速に露光条件を決定 することができる。

【0023】本請求項5の露光条件決定方法において は、請求項6に記載の発明のように、前記測定用マスク (R,) の前記測定用パターンが形成された前記露光用 照明光の照射領域の一部を、該照射領域の中心点からの 距離が異なる2以上の微小領域とすることができる。こ れによれば、ショット領域の中心点からの距離が異なる 2以上の微小領域に関してパターンマッチングを行うこ とにより、これらの微小領域に応じた位置について最良 露光条件を求めることができる。したがって、求められ た最良露光条件から各微小領域毎にマスクパターンの像 面を求め、これらからショット領域についてのフォーカ ス制御位置を決定することができる。

【0024】請求項1の露光条件決定方法において、前 記テンプレートパターンの構成は様々考えられ、例えば 請求項7に記載の発明のように、前記テンプレートパタ ーンを、前記区画領域の中から選択された一つの区画領 域に転写されたパターンとすることもできるし、請求項 8に記載の発明のように、前記テンプレートパターン を、前記測定用パターンと前記投影光学系(PL)の投

影倍率とに基づいて算出されたパターンとすることもで きる。あるいは、請求項9に記載の発明のように、前記 テンプレートパターンを、最大明度及び最小明度のいず れか一方からのみなるパターンとすることもできる。

【0025】請求項7の露光条件決定方法によれば、予 め計算等によりテンプレートパターンを用意することを 必要としないので、簡易に転写パターンの状態をパター ンマッチングすることができる。なお、テンプレートパ ターンの選択にあたっては転写パターンの状態が最良と 思われる区画領域の転写パターンを人による目視によっ 10 て行うことになるが、このテンプレートパターンの選択 の後にパターンマッチングという統計的な操作を行い、 その結果に基づいて露光条件を決定するので、テンプレ ートパターンの選択における選択者の主観的な要素が解 消し、安定して、かつ精度良く最良露光条件を求めるこ とができる。

【0026】また、請求項8の露光条件決定方法によれ ば、テンプレートパターンを測定用パターンと投影光学 系の投影倍率とに基づいて算出されたパターンとするの で、主観的な要素を一切排除して露光条件を決定するの 20 で、安定して、かつ精度良く最良露光条件を求めること ができる。

【0027】また、請求項9の露光条件決定方法によれ ば、テンプレートパターンを最大明度及び最小明度のい ずれか一方からのみなるパターンとするので、請求項8 の露光条件決定方法と同様に、主観的な要素を一切排除 して露光条件を決定することができ、かつ、テンプレー トパターンの作成にあたって一切演算を必要としないで 済む。さらに、請求項8の露光条件決定方法の場合にお けるパターンマッチング結果の露光条件による急激な変 30 化の発生を避けることができるので、最良露光条件を求 める際における閾値の設定等のオペレータの熟練度を必 要とする要素を低減することができる。

【0028】請求項1の露光条件決定方法において、求 めるべき最良露光条件としては様々考えられるが、請求 項10に記載の発明のように、前記最良露光条件を、前 記光軸方向に関する最良フォーカス位置に関する条件及 び最良露光エネルギ量に関する条件の少なくとも一方と することができる。

【0029】請求項11に記載の発明は、露光用照明光 40 によりマスク (R) を照射し、前記マスク (R) に形成 されたパターンを投影光学系(PL)を介して感応基板 (W) に転写する露光方法であって、前記請求項1~1 0のいずれか一項に記載の露光条件決定方法によって決 定された最良露光条件を設定する工程と;その設定され た露光条件にて前記マスク(R)に形成されたパターン を投影光学系 (PL) を介して感応基板 (W) に転写す る工程とを含む。

【0030】これによれば、本発明の露光条件決定方法

成されたパターンを投影光学系を介して感応基板に転写 するので、精度良く感応基板を露光することができる。 【0031】請求項12に記載の発明は、露光用照明光 によりマスク (R) を照射し、前記マスク (R) に形成 されたパターンを投影光学系(PL)を介して感応基板 (W) に転写する露光装置であって、前記感応基板

(W) を前記投影光学系 (PL) の光軸方向及びこれに 直交する2次元平面内で駆動する駆動機構(21)と; 前記感応基板の前記光軸方向の位置を検出する検出系 (40, 42) を有し、該検出系(40, 42) の検出 結果をモニタしつつ前記駆動機構(21)を介して前記 感応基板(W)の前記光軸方向位置を所定の目標位置に 調整するフォーカス調整系(19,40,42)と;前 記露光用照明光の強度密度を変化させる光強度可変機構 (1,3)と;前記駆動機構(21)及び前記光強度可 変機構(1,3)を用いて行われた前記請求項1に記載 の露光条件決定方法によって決定された最良露光条件を 記憶する記憶装置(29)と;前記記憶装置(29)に 記憶された最良露光条件となるように、前記フォーカス 調整系(19,40,42)の目標位置及び前記光強度 可変機構(1,3)の少なくとも一方を調整する調整装 置(20)とを備える。

【0032】本請求項12の露光装置では、駆動機構、 フォーカス調整系、及び光強度可変機構を使用して、測 定用感応基板の被露光面上における、互いに直交する行 方向と列方向とを有するマトリクス状の仮想的な区画領 域に関し、同一行については測定用感応基板を投影光学 系の光軸方向の同一位置とし、行方向については露光エ ネルギ量を単調に変化させるとともに、同一列について は同一露光エネルギ量とし、列方向については測定用感 応基板の前記光軸方向の位置を単調に変化させて、区画 領域それぞれに測定用マスクに形成された測定用パター ンを転写する。次に、これらの区画領域のそれぞれに関 する転写結果と予め用意されたテンプレートとテンプレ ートパターンとのパターンマッチング結果に基づいて求 められた最良露光条件を記憶装置に記憶する。そして、 調整装置が、記憶装置に記憶された最良露光条件となる ように、フォーカス調整系の目標位置及び光強度可変機 構の少なくとも一方を調整して、感応基板を露光する。

【0033】したがって、請求項12の露光装置によれ ば、請求項1の露光条件決定方法を支援できるととも に、この請求項1の露光条件決定方法で決定された最良 露光条件でマスクに形成されたパターンを投影光学系を 介して感応基板に転写するので、精度良く感応基板を露 光することができる。

【0034】請求項13に記載の発明は、請求項11の 露光方法を用いる露光工程を含むことを特徴とするデバ イスの製造方法である。

【0035】これによれば、請求項11の露光方法を用 によって決定された最良露光条件によって、マスクに形 50 いるので、請求項1~10のいずれかの露光条件決定方

法で精度良く求められた最良露光条件にて、高精度の露 光が行われ、高集積度のデバイスを製造することが可能 となる。

[0036]

・【発明の実施の形態】以下、本発明に係る露光装置及び 露光方法の一実施形態を図1~図12に基づいて説明す

【0037】図1には、一実施形態に係る露光装置10 0の概略的な構成が示されている。この露光装置100 影露光装置である。

【0038】この露光装置100は、露光用照明光を射 出する照明系10、マスクとしてのレチクルRを保持す るマスクステージとしてのレチクルステージRST、投 影光学系PL、感応基板としてのウエハWを保持してX Y平面内をXY2次元方向に移動する基板テーブル18 を備えたXYステージ装置14、及びこれらの制御系等 を備えている。この制御系には、調整装置としての主制 御装置20及び露光条件を記憶する記憶装置29が含ま れている。

【0039】図2は、前記照明系10の具体的構成の一 例を説明するための図である。図2に示されるように、 この照明系10は、エキシマレーザ光源1、ビーム整形 光学系2、エネルギ粗調器3、フライアイレンズ4、照 明系開口絞り板5、ビームスプリッタ6、第1リレーレ ンズ7A、第2リレーレンズ7B、固定レチクルブライ ンド8A、及び可動レチクルブラインド8B等を備えて

【0040】ここで、この照明系10の上記構成各部に ついて説明する。エキシマレーザ光源1としては、Kr Fエキシマレーザ光源(発振波長248nm)、ArF エキシマレーザ光源(発振波長193nm)、又はF: エキシマレーザ光源 (発振波長157nm) 等が使用さ れる。なお、このエキシマレーザ光源1に代えて、金属 蒸気レーザ光源やYAGレーザの高調波発生装置等のパ ルス光源を露光光源として使用しても良い。

【0041】前記ビーム整形光学系2は、エキシマレー ザ光源1からパルス発光されたレーザビームLBの断面 形状を、該レーザビームLBの光路後方に設けられたフ ライアイレンズ4に効率よく入射するように整形するも 40 ので、例えばシリンダレンズやビームエキスパンダ (い ずれも図示省略)等で構成される。

【0042】前記エネルギ粗調器3は、ビーム整形光学 系2後方のレーザビームLBの光路上に配置され、ここ では、回転板31の周囲に透過率(=1-減光率)の異 なる複数個 (例えば6個) のNDフィルタ (図1ではそ の内の2個のNDフィルタ32A、32Dのみが示され ている)を配置し、その回転板31を駆動モータ33で 回転することにより、入射するレーザビームLBに対す る透過率を100%から等比級数的に複数段階で切り換 50

えることができるようになっている。駆動モータ33 は、主制御装置20によって制御される。なお、エネル ギ粗調器3の後方に、さらにダブルグレーティング方式 の微変調器や2枚の光学フィルタの交差角を調整するエ ネルギ微変調器を配置することもできる。

【0043】前記フライアイレンズ4は、エネルギ粗調 器3後方のレーザビームLBの光路上に配置され、レチ クルRを均一な照度分布で照明するために多数の2次光 源を形成する。この2次光源から射出されるレーザビー は、いわゆるステップ・アンド・スキャン露光方式の投 10 ムを以下においては、「パルス照明光IL」と呼ぶもの とする。

> 【0044】前記フライアイレンズ4の射出面の近傍 に、円板状部材から成る照明系開口絞り板5が配置され ている。この照明系開口絞り板5には、等角度間隔で、 例えば通常の円形開口より成る開口絞り、小さな円形開 口より成りコヒーレンスファクタであるσ値を小さくす るための開口絞り、輪帯照明用の輪帯状の開口絞り、及 び変形光源法用に複数の開口を偏心させて配置して成る 変形開口絞り(図1ではこのうちの2種類の開口絞りの みが図示されている) 等が配置されている。この照明系 開口絞り板5は、後述する調整装置としての主制御装置 20により制御されるモータ等の駆動装置51により回 転されるようになっており、これによりいずれかの開口 絞りがパルス照明光ILの光路上に選択的に設定され る。

> 【0045】照明系開口絞り板5後方のパルス照明光 I Lの光路上に、反射率が小さく透過率の大きなビームス プリッタ6が配置され、更にこの後方の光路上に、固定 レチクルブラインド8A及び可動レチクルブラインド8 Bを介在させて第1リレーレンズ7A及び第2リレーレ ンズ7Bから成るリレー光学系が配置されている。

> 【0046】固定レチクルブラインド8Aは、レチクル Rのパターン面に対する共役面から僅かにデフォーカス した面に配置され、レチクルR上の照明領域IAR(図 4参照)を規定する矩形開口が形成されている。また、 この固定レチクルブラインド8Aの近傍に走査方向の位 置及び幅が可変の開口部を有する可動レチクルブライン ド8Bが配置され、走査露光の開始時及び終了時にその 可動レチクルブラインド8日を介して照明領域 IARを 更に制限することによって、不要な部分の露光が防止さ れるようになっている。

> 【0047】リレー光学系を構成する第2リレーレンズ 7 B後方のパルス照明光 I Lの光路上には、当該第2 リ レーレンズ7Bを通過したパルス照明光ILをレチクル Rに向けて反射する折り曲げミラーMが配置されてい

> 【0048】このようにして構成された照明系10の作 用を簡単に説明すると、エキシマレーザ光源1からパル ス発光されたレーザビームLBは、ビーム整形光学系2 に入射して、ここで後方のフライアイレンズ4に効率よ

く入射するようにその断面形状が整形された後、エネル ギ粗調器3に入射する。そして、このエネルギ粗調器3 のいずれかのNDフィルタを透過したレーザビームLB は、フライアイレンズ4に入射する。これにより、フラ イアイレンズ4の射出端に多数の2次光源が形成され る。この多数の2次光源から射出されたパルス照明光 I Lは、照明系開口絞り板5上のいずれかの開口絞りを通 過した後、透過率が大きく反射率が小さなビームスプリ ッタ6に至る。このビームスプリッタ6を透過した露光 光としてのパルス照明光 I Lは、第1リレーレンズ7A 10 を経て固定レチクルブラインド8Aの矩形の開口部及び 可動レチクルブラインド8Bを通過した後、第2リレー レンズ7Bを通過してミラーMによって光路が垂直下方 に折り曲げられた後、レチクルステージRST上に保持 されたレチクルR上の矩形の照明領域IARを均一な照 度分布で照明する。

11

【0049】一方、ビームスプリッタ6で反射されたパルス照明光ILは、集光レンズ52を介して光電変換素子よりなるインテグレータセンサ53で受光され、インテグレータセンサ53の光電変換信号が、不図示のピー 20 クホールド回路及びA/D変換器を介して出力DSとして主制御装置20に供給される。インテグレータセンサ53としては、例えば遠紫外域で感度があり、且つエキシマレーザ光源16のパルス発光を検出するために高い応答周波数を有するPIN型のフォトダイオード等が使用できる。このインテグレータセンサ53の出力DSと、ウエハWの表面上でのパルス照明光ILの照度(露光量)との相関係数は予め求められて、主制御装置20に併設された記憶装置29内に記憶されている。

【0050】図3には、図2の照明系10の露光量制御 30 に関連する構成部分が取り出して示されている。この図 3に示されるように、エキシマレーザ光源1の内部に は、レーザ共振器1a、ビームスプリッタ1b、エネルギモニタ1c、エネルギコントローラ1d及び高圧電源 1e等が設けられている。なお、エネルギ粗調器3とエキシマレーザ光源1とで光強度可変機構が構成されている。.

【0051】図3において、レーザ共振器1aからパルス的に放出されたレーザビームは、透過率が高く僅かな反射率を有するビームズプリッタ1bに入射し、このビ 40ームスプリッタ1bを透過したレーザビームLBが外部に射出される。また、ビームスプリッタ1bで反射されたレーザビームLBが光電変換素子より成るエネルギモニタ1cに入射し、このエネルギモニタ1cからの光電変換信号が不図示のピークホールド回路を介して出力ESとしてエネルギコントローラ1dに供給されている。エネルギモニタ1cの出力ESに対応するエネルギの制御量の単位は(mJ/pulse)である。通常の発光時には、エネルギコントローラ1dは、エネルギモニタ1cの出力ESが、主制御装置20より供給された制御情報 50

TS中の1パルス当たりのエネルギの目標値に対応した値となるように、高圧電源1eでの電源電圧をフィードバック制御する。また、エネルギコントローラ1dは、レーザ共振器1aに供給されるエネルギを高圧電源1eを介して制御することにより発振周波数をも変更する。すなわち、エネルギコントローラ1dは、主制御装置20からの制御情報TSに応じてエキシマレーザ光源1の発振周波数を主制御装置20で指示された周波数に設定するとともに、エキシマレーザ光源1での1パルス当たりのエネルギが主制御装置20で指示された値となるように高圧電源1eの電源電圧のフィードバック制御を行なう。

12

【0052】また、エキシマレーザ光源1内のビームスプリッタ1bの外側には、主制御装置20からの制御情報に応じてレーザビームLBを遮光するためのシャッタ1fも配置されている。

【0053】図1に戻り、前記レチクルステージRST上にはレチクルRが、例えば真空吸着により固定されている。レチクルステージRSTは、レチクルRの位置決めのため、照明光学系の光軸IX(後述する投影光学系PLの光軸AXに一致)に垂直な平面内で2次元的に

(X軸方向及びこれに直交するY軸方向及びXY平面に 直交するZ軸回りの回転方向に)微少駆動可能に構成さ れている。

【0054】また、このレチクルステージRSTは、不 図示のレチクルベース上をリニアモータ等で構成された レチクル駆動部(図示省略)により、所定の走査方向 (ここではY軸方向とする)に指定された走査速度で移 動可能となっている。このレチクルステージRSTは、 レチクルRの全面が少なくとも照明光学系の光軸IXを 横切ることができるだけの移動ストロークを有してい る。

【0055】レチクルステージRST上にはレチクルレーザ干渉計(以下、「レチクル干渉計」という)16からのレーザビームを反射する移動鏡15が固定されており、レチクルステージRSTのステージ移動面内の位置はレチクル干渉計16によって、例えば0.5~1nm程度の分解能で常時検出される。ここで、実際には、レチクルステージRST上には走査方向(Y軸方向)に直交する反射面を有する移動鏡と非走査方向(X軸方向)に直交する反射面を有する移動鏡とが設けられ、レチクル干渉計16は走査方向に1軸、非走査方向には2軸設けられているが、図1ではこれらが代表的に移動鏡15、レチクル干渉計16として示されている。

【0056】レチクル干渉計16からのレチクルステージRSTの位置情報はステージ制御系19及びこれを介して主制御装置20に送られ、ステージ制御系19では主制御装置20からの指示に応じてレチクルステージRSTの位置情報に基づいてレチクル駆動部(図示省略)を介してレチクルステージRSTを駆動する。

【0057】なお、不図示のレチクルアライメント系に より所定の基準位置にレチクルRが精度良く位置決めさ れるように、レチクルステージRSTの初期位置が決定 されるため、移動鏡15の位置をレチクル干渉計16で 測定するだけでレチクルRの位置を十分高精度に測定し たことになる。

【0058】前記投影光学系PLは、レチクルステージ RSTの図1における下方に配置され、その光軸AX (照明光学系の光軸 I Xに一致) の方向が Z 軸方向とさ うに光軸AX方向に沿って所定間隔で配置された複数枚 のレンズエレメント60a、60b、……から成る屈折 光学系が使用されている。この投影光学系PLは所定の 投影倍率、例えば1/5 (あるいは1/4) を有する縮 小光学系である。このため、照明光学系からの照明光Ⅰ LによってレチクルRの照明領域 I ARが照明される と、このレチクルRを通過した照明光ILにより、投影 光学系PLを介してその照明領域IAR内のレチクルR の回路パターンの縮小像(部分倒立像)が表面にフォト レジストが塗布されたウエハW上に形成される。

【0059】前記レンズエレメントのうち、レチクルス テージRSTに最も近い一番上のレンズエレメント60 aは、リング状の支持部材62により保持され、この支 持部材62は、伸縮可能な駆動素子、例えばピエゾ素子 64a, 64b, 64c (紙面奥側の駆動素子64cは 図示せず)によって、3点支持されるとともに鏡筒部6 6と連結されている。上記の駆動素子64a,64b, 64cによって、レンズエレメント60aの周辺3点を 独立に、投影光学系PLの光軸AX方向に移動させるこ とができるようになっている。すなわち、レンズエレメ ント60aを駆動素子64a,64b,64cの変位量 に応じて光軸AXに沿って平行移動させることができる とともに、光軸AXと垂直な平面に対して任意に傾斜さ せることもできる。そして、これらの駆動素子64a, 64b, 64cに与えられる電圧が、主制御装置20か らの指令に基づいて結像特性補正コントローラ68によ って制御され、これによって駆動素子64a,64b, 64 c の変位量が制御されるようになっている。なお、 図1中、投影光学系PLの光軸AXは鏡筒部66に固定 されているレンズエレメント60bその他のレンズエレ 40 メント(図示省略)の光軸に一致している。

【0060】また、本実施形態においては、投影光学系 PLの光軸方向中央部近傍の特定のレンズエレメント相 互間には密封室69が形成されており、この密封室69 の内圧が不図示の圧力調整機構(例えばベローズポンプ 等) によって調整されるようになっている。この圧力調 整機構も主制御装置20からの指令に基づいて結像特性 補正コントローラ68によって制御され、これによって 密封室69の内圧が調整されるようになっている。

【0061】ここで、レンズエレメント60aの光軸A 50 ク板FMが固定されている。

X方向の移動や傾斜により投影光学系 P L の倍率を変更 させたり、ディストーションや投影光学系PLの結像面 を変更したりできる。また、投影光学系PL内部の密封 室69の内圧を変化させることにより倍率や投影光学系 PLの結像面を変更できる。

【0062】前記XYステージ装置14は、不図示のベ ース上を走査方向であるY軸方向(図1における左右方 向)に往復移動可能なYステージ16と、このYステー ジ16上をY軸方向と直交するX軸方向(図1における れ、ここでは両側テレセントリックな光学配置となるよ 10 紙面直交方向)に往復移動可能なXステージ12と、こ のXステージ12上に設けられた基板テーブル18とを 有している。また、基板テーブル18上に、ウエハホル ダ25が載置され、このウエハホルダ25によって感応 基板としてのウエハWが真空吸着によって保持されてい

> 【0063】基板テーブル18は、Xステージ12上に XY方向に位置決めされかつZ軸方向の移動及び傾斜が 許容された状態で取り付けられている。そして、この基 板テーブル18は、異なる3点の支持点で不図示の3本 の軸によって支持されており、これら3本の軸が駆動機 構としてのウエハ駆動装置21によって独立して2軸方 向に駆動され、これによって基板テーブル18上に保持 されたウエハWの面位置(Z軸方向位置及びXY平面に 対する傾斜)が所望の状態に設定されるようになってい

> 【0064】基板テーブル18上にはウエハレーザ干渉 計(以下、「ウエハ干渉計」という)28からのレーザ ビームを反射する移動鏡27が固定され、外部に配置さ れたウエ干渉計28により、基板テーブル18のXY面 内での位置が例えば0.5~1 n m程度の分解能で常時 検出されている。

> 【0065】ここで、実際には、基板テーブル18上に は走査方向であるY軸方向に直交する反射面を有する移 動鏡と非走査方向であるX軸方向に直交する反射面を有 する移動鏡とが設けられ、ウエハ干渉計28は走査方向 に1軸、非走査方向には2軸設けられているが、図1で はこれらが代表的に移動鏡27、ウエハ干渉計28とし て示されている。基板テーブル18の位置情報(又は速 度情報) はステージ制御系19及びこれを介して主制御 装置20に送られ、ステージ制御系19では主制御装置 20からの指示に応じて前記位置情報(又は速度情報) に基づいてウエハ駆動装置21 (これは、Xステージ1 2、Yステージ16の駆動系及び基板テーブル18の駆 動系の全てを含む)を介してYステージ16、Xステー ジ12を制御する。

> 【0066】また、基板テーブル18上には、不図示の オフアクシス方式のアライメント検出系の検出中心から 投影光学系PLの光軸までの距離を計測するベースライ ン計測等のための各種基準マークが形成された基準マー

【0067】更に、図1の装置には、ウエハW表面の露 光領域IA(前述した照明領域IARに共役なウエハW 上の領域:図4参照)内部分及びその近傍の領域のZ方 向(光軸AX方向)の位置を検出するための斜入射光式 のフォーカス検出系(焦点検出系)の一つである、多点 フォーカス位置検出系が設けられている。この多点フォ ーカス位置検出系は、図1に示されるように、光ファイ バ束80、ミラー81、集光レンズ82、パターン形成 板83、レンズ84、ミラー85及び照射対物レンズ8 6から成る照射光学系40と、集光対物レンズ87、回 10 ーク(アライメントマーク)を観測する結像アライメン 転方向振動板88、結像レンズ89、受光用スリット板 98及び多数のフォトセンサを有する受光器90から成 る受光光学系42とから構成されている。この多点フォ ーカス位置検出系の詳細な構成等については、例えば特 開平6-283403号公報に開示されている。

【0068】ここで、この多点フォーカス位置検出系 (40、42)の構成各部について、その作用とともに 説明する。露光光とは異なるウエハW上のフォトレジス トを感光させない波長の照明光が、図示しない照明光源 から光ファイバ束80を介して導かれている。光ファイ バ東80から射出された照明光は、ミラー81及び集光 レンズ82を経てパターン形成板83を照明する。

【0069】このパターン形成板83上には不図示の複 数のスリット状の開口パターンがマトリクス状配置で形 成されている。このパターン形成板83の各スリット状 の開口パターンを透過した照明光(開口パターンの像光 束)は、レンズ84、ミラー85及び照射対物レンズ8 6を経てウエハWの被露光面に投影され、ウエハWの被 露光面にはパターン形成板83上のスリット状の開口パ ターンの像が投影結像される。これら開口パターンの一 30 部はウエハWの露光領域IA(図4参照)内に結像さ れ、また開口パターンの他の一部はウエハWの露光領域 IAの外に結像される。

【0070】そして、ウエハWの被露光面からの反射光 束が、光軸AXに対して前記照射光学系40からの像光 束と対称に所定角度だけ傾斜した方向に進んで、集光対 物レンズ87、回転方向振動板88及び結像レンズ89 を経て受光器90の手前側に配置された受光用スリット 板98上に再結像される。この再結像された像が受光器 90で検出され、センサ選択回路93を介して信号処理 40 装置91により、回転振動周波数の信号で同期検波され る。この信号処理装置91により同期検波して得られた 多数のフォーカス信号が主制御装置20に供給される。

【0071】こうして同期検波して得られた多数のフォ ーカス信号が主制御装置20に供給される。そして、主 制御装置20は、ウエハWの露光領域IAの外に結像さ れた開口バターンに関するフォーカス信号を、次のフォ ーカス状態を予測、すなわちウエハW表面が+2方向又 は-2方向のいずれの方向に変化するかやレベリングに 関する予測のために用いる。こうして行った予測ととも 50 に、ウエハWの照明領域IA内に結像された開口パター ンに関するフォーカス信号に基づいて、ステージ制御系 19及びウエハ駆動装置21によって、ウエハWの露光 領域IAのフォーカス合わせやレベリング調整が行われ る。なお、多点フォーカス位置検出系(40、42)及 びステージ制御系19からフォーカス調整系が構成され

【0072】また、図1の装置には、投影光学系PLの 側面に配置され、ウエハW上に形成された位置検出用マ トセンサから成る不図示のオフ・アクシス方式のアライ ンメント顕微鏡と、このアラインメント顕微鏡の観測結 果及びウエハ干渉計28からのウエハWの位置情報を入 カし、ウエハW上における位置検出用マークの位置を求 める不図示の画像処理装置とを備えている。この画像処 理装置で求められた位置検出用マークの位置は、主制御 装置20に供給される。

【0073】本実施形態の露光装置100においては、 図4に示されるように、レチクルRの走査方向(Y軸方 向)に対して垂直な方向に長手方向を有する長方形(ス リット状)の照明領域IARでレチクルRが照明され、 レチクルRは露光時にーY方向に速度V。で走査(スキ ャン) される。照明領域 IAR (中心は光軸AXとほぼ 一致)は投影光学系PLを介してウエハW上に投影さ れ、照明領域IARに共役なスリット状の投影領域、す なわち露光領域IAが形成される。ウエハWはレチクル Rとは倒立結像関係にあるため、ウエハWは速度V。の 方向とは反対方向(+Y方向)にレチクルRに同期して 速度V。で走査され、ウエハW上のショット領域SAの 全面が露光可能となっている。走査速度の比V. / V。 は正確に投影光学系PLの縮小倍率に応じたものになっ ており、レチクルRのパターン領域PAのパターンがウ エハW上のショット領域SA上に正確に縮小転写され る。照明領域IARの長手方向の幅は、レチクルR上の パターン領域PAよりも広く、遮光領域STの最大幅よ りも狭くなるように設定され、走査 (スキャン) するこ とによりパターン領域PA全面が照明されるようになっ ている。

【0074】この走査型露光装置100では、上記の走 査露光の際に、不図示のアライメント検出系の検出信号 に基づいて主制御装置20によりステージ制御系19及 びウエハ駆動装置21等を介してレチクルRとウエハW との位置合わせ (アライメント) が行なわれ、また、多 点フォーカス位置検出系(40、42)の検出信号に基 づいて、レチクルRのパターン面とウエハW表面とが投 影光学系PLに関して共役となるように、かつ投影光学 系PLの結像面とウエハW表面とが一致する(ウエハ表 面が投影光学系PLの最良結像面の焦点深度の範囲内に 入る)ように、主制御装置20によりステージ制御系1 9及びウエハ駆動装置21を介して基板テーブル18が

18

2 軸方向及び傾斜方向に駆動制御されて面位置の調整 (合わせ面の設定)が行なわれる。

【0075】次に、上述の露光装置100に関する露光条件決定方法を説明する。この露光条件決定方法の説明に先立って、本実施形態における最良露光条件の検出の原理の概略を、図5に基づいて説明する。図5(A)に示されるように、レチクルRには、強度(露光エネルギ)Iの露光用照明光ILが照射されており、ウエハWは投影光学系PLの光軸AX方向(すなわち、Z方向)の位置2に配置されている。また、図5(B)にはレチ10クルRに形成されたパターン(ライン・アンド・スペー

 $LW = \beta \cdot LR$ $LWP = 2 \beta \cdot LR$

であるが、露光エネルギ I やウエハWの Z 方向の位置 Z (フォーカス位置)が変化すると、(2)式の関係は維持されるがパターン P Wのライン幅 P Wが変化するので、(1)式の関係を満たすとは限らない。すなわち、ライン幅 L W は、露光用エネルギ I 及びフォーカス位置 Z の関数 L W (I, Z)である。このため、(1)式の関係を満たすとともに、露光エネルギ I やフォーカス位 20 置 Z の変化によって、(1)式の関係からのずれの度合いが最も小さいことによって定義される最良露光条件(I。, Z。)を設定するためには、露光エネルギ I やフォーカス位置 Z を調整することが必要である。

【0077】ところで、ウエハWに転写されたライン幅 LWと理想的なライン幅LT ($=\beta$ ・LR) との差の値 $|\Delta L|$ を考えると、露光条件 (I, Z) が最良露光条件 (I₈, Z₈) から離れると大きくなる。すなわち、露光条件 (I, Z) が最良露光条件 (I₈, Z₈) から離れると、実際の転写パターン形状は理想的な転写パタ 30 一ン形状から離れる。例えば、理想的な転写パターンをテンプレートパターンとし、これと実際の転写パターンとのパターンマッチングをした場合、露光条件 (I, Z) が最良露光条件 (I₈, Z₈) から離れると、相関係数が小さくなる。

【0078】したがって、例えば、以下の手順を実行することにより、最良露光条件を決定することができる。簡単に説明すると、レチクルRに形成された測定用パターンPRを、様々な露光エネルギI及びフォーカス位置 Zの組み合わせの露光条件で露光を行い、ウエハWに転 40 写する。次に、各露光条件でウエハWに転写された各パターンPWを測定してテンプレートパターンとのパターンマッチングを行い、各露光条件毎に例えば相関係数を求める。そして、求めた相関係数の2次元座標(I, Z)における分布を求めた後、相関係数Cの閾値を設定して、その閾値となる2次元座標(I, Z)の座標値が形成する図形に基づいて、最良露光条件(I。, Z。)を求める。

【0079】なお、この手順において、相関係数に代え 方、図3のエネルギコントローラ1cの出力ESとインて上述の値 | ΔL | を使用することも考えられるが、値 50 テグレータセンサ53の出力DSとの相関関係は予め求

ス・マーク:以下、「L/Sマーク」と呼ぶ)PRの概念図が示され、図5 (C)にはウエハW上に転写されたパターン (L/Sマーク)PWの概念図が示されている。ここで、図5 (B)に示されるように、レチクルRに形成されたパターンPRは、ライン幅LR、配列周期2LRのL/Sマークであるとすると、ウエハWに転写されるパターンPWは、図5 (C)に示されるように、ライン幅LW、配列周期LWPを有するL/Sマークとなる。

【0076】理想的な露光では、投影光学系PLの投影 倍率をβとすると、

... (1)

... (2)

【0080】以下、図6~図11を参照して、本実施形態における最良露光条件の検出についてより詳細に説明する。図6及び図7には、本実施形態における最良露光条件の検出のフローチャートが示されている。

【0081】まず、図6のステップ201において、不図示のレチクルローダによって、基準情報収集用のレチクルR、がレチクルステージRSTにロードされる。図8には、本実施形態で使用される基準情報収集用のレチクルR、に形成されたパターン構成が示されている。レチクルR、には、図8(A)に示されるように、レチクルR、のパターン領域PAの中央部及び四隅部に計5個のマークRMが形成されている。また、マークRMの形成領域以外のパターン領域PAは遮光パターンとなっている。各マークRMは、図8(B)に示されるように、ライン幅LR、ライン長LR、のラインがライン幅方向へ周期2LR、で配列されたL/Sマークである。

【0082】図6に戻り、引き続き、ステップ203において、不図示のウエハローダによって、計測用ウエハ W_{τ} が基板テーブル18にロードされる。

【0083】次に、ステップ205において、露光エネルギが初期値(=I、)となるように設定される。なお、本実施形態では、露光条件の決定にあたって、露光エネルギをI、からΔI刻みでI、(N=例えば6)まで変化させる。この露光エネルギの設定は、図2の露光エネルギの粗調器3又は光源1によって行われる。すなわち、粗調器3による露光エネルギの調整はレーザビームLBの透過率を変化させることによって行われる。一方、図3のエネルギコントローラ1cの出力ESとインテグレータセンサ53の出力DSとの相関関係け予めサ

められており、この相関関係に基づいて、光源1による 露光エネルギの調整はレーザビームLBの1パルス当た りのエネルギを変化させることによって行われる。な お、光源1による露光エネルギの調整は、シャッタ1 f · によってレーザビームLBが遮断された状態で行われ

【0084】次いで、ステップ207において、主制御 装置20が、ステージ制御系19に、走査露光における ウエハWrのZ方向の位置合わせに関する目標位置(以 後、「乙位置」又は「フォーカス位置」と呼ぶ)が初期 10 値(=Z₁)であることを通知する。なお、本実施形態 では、露光条件の決定にあたって、Z位置をZ₁から Δ Z刻みでZ』(M=例えば6)まで変化させる。

【0085】引き続き、ステップ209において、ウエ $\cap W_T$ の被露光面の区画領域 DA_{ij} ($i=1\sim M, j=1$ 1~N)の内の区画領域DA」にレチクルR上のマーク RMが転写される走査開始位置に基板テーブル18が移 動される。この移動は、主制御装置20によりステージ 制御系19及びウエハ駆動装置21等を介して行われ る。図9及び図10には、ウエハW上における区画領域 20 DAiiの配列が示されている。ウエハWの表面は、図9 (A) に示されるように、レチクルRのパターン領域P Aに応じた複数のショット領域SAに分割されている。 このショット領域内には、図9(B)に示されるよう に、以後の計測用露光で転写される5個のマークに応じ て5個の領域DAが存在する。これらの領域DAのそれ ぞれは、マトリクス状に仮想的に分割されており、これ らの分割された領域が、1つマークRMが1回の走査露 光によって転写される区画領域DAijとなっている。ま た、区画領域DA:,は、図10に示されるように、+X 30 方向が行方向(jの増加方向)であり、+Y方向が列方 向(iの増加方向)であるマトリクス状にウエハW₁上 に配列されている。

【0086】図6に戻り、次に、ステップ211におい て、上記で図4を参照して説明したようにレチクルR_r とウエハ W_{t} とを同期移動させて、前記照明領域 IARの共役領域IAがショット領域SAにかかり始める直前 に前記シャッタ1fを開き、ウエハWrの被露光面のシ ョット領域についての走査露光を実行する。この走査露 光中では、多点フォーカス位置検出系(40、42)の 検出信号に基づいて、主制御装置20によりステージ制 御系19及びウエハ駆動装置21を介して基板テーブル 18が Z 軸方向の位置合わせ目標位置が Z となるよう に 2 軸方向に駆動制御されるとともに、傾斜方向に駆動 制御されて面位置の調整(合わせ面の設定)が行なわれ る。そして、前記照明領域IARの共役領域IAが区画 領域DA;から離脱した直後に前記シャッタ1fを閉じ る。

【0087】ステップ211が終了すると、ステップ2

のZ位置範囲に応じた区画領域に関する転写が完了した か否かが判断される。以上では区画領域DAIIについて だけマークRMが転写されただけなので、所定のZ位置 範囲について走査露光がなされていないと判断される。 そして、ステップ215において、主制御装置20が、 ステージ制御系19に走査露光におけるウエハWr のZ 位置がZ。であることを通知する。引き続き、ステップ 209において、前述のようにして、区画領域DA₂、へ マークRMが転写される走査開始位置に基板テーブル1 8が移動される。このとき、レチクルRr は走査開始位 置に戻される。そして、ステップ211において、区画 領域DA: の場合と同様にして、区画領域DA: に関す るマークRMの転写のための走査露光が行われる。

【0088】以後、ステップ213において、所定の2 位置範囲について走査露光がなされたと判断されるま で、区画領域DA $_{ii}$ ($i=3\sim M$) に関するマークRM の転写のための走査露光が順次実行される。こうして、 走査露光における露光エネルギ量が I. である場合につ いて、ウエハW、の被露光面ヘレチクルR、に形成され たパターンが転写される。ステップ213において、所 定のZ位置範囲について走査露光がなされたと判断され ると、次に、ステップ217において、所定の露光エネ ルギ範囲についての区画領域に関する露光が完了したか 否かが判断される。以上では区画領域DAil(i=1~ M) だけにマークRMの転写が行われただけなので、所 定の露光エネルギ範囲について走査露光がなされていな いと判断され、ステップ219において、ステップ20 5と同様にして、露光エネルギが I。となるように設定 される。

【0089】次いで、露光エネルギが I, の場合と同様 にして、ステップ207において、主制御装置20が、 ステージ制御系19に、走査露光におけるウエハW₁の Z位置が Z, であることを通知した後、ステップ209 ~ステップ215が繰り返して実行され、区画領域DA ::に関するマークRMの転写のための走査露光が行われ

【0090】以後、ステップ217において、所定の露 光エネルギ範囲について走査露光がなされたと判断され るまで、区画領域 DA_{ij} ($i=1\sim M,\ j=3\sim N$) に 関すマークRMの転写のための走査露光が順次実行され る。こうして、所定の露光エネルギ範囲についてウエハ W_r の被露光面ヘレチクル R_r に形成されたパターンが 転写される。この結果区画領域DAiiの全てについてマ ークMRが転写される。ステップ217において、所定 の露光エネルギ範囲について走査露光がなされたと判断 されると、次に、サブルーチン221において、各区画 領域DAi」に転写されたパターンとテンプレートパター ンとのパターンマッチングが行われる。

【0091】図7には、サブルーチン221のフローチ 13において、露光エネルギを一定とした状態で、所定 50 ャートが示されている。図7に示されるように、サブル

ーチン221では、まず、ステップ227において、基 板テーブル18 (図1参照) からアンロードされ、引き 続き、ステップ229において、ウエハW が現像され る。次に、ステップ231において、現像されたウエハ - Wr 上の各区画領域DAi」に形成された転写パターンが 顕微鏡を介してCCD等によって撮像され、撮像結果デ ータが計算機に取り込まれる。このデータ取り込みに は、先に説明した本実施形態の露光装置100に更に顕 微鏡、CCDを装備された露光装置を使用してもよく、 あるいは顕微鏡等及び計算機を備える別の装置で行って 10 g 及び最良フォーカス位置 Z g を決定する。ここで、最 もよい。

【0092】次いで、ステップ233において、テンプ レートパターンを設定する。ここで、テンプレートパタ ーンとしては、レチクルRrに形成されたパターンと投 影光学系PLの投影倍率とに基づいて算出された理想的 な転写パターンとすることもできるし、また、区画領域 DA;」に転写されたパターンの中から選択されたパター ンとすることもできる。このパターンの選択にあたって は、区画領域DAijに転写されたパターンの中で最も理 想的なパターンに近いと人によって判断されたパターン 20 とすることもできるし、また、設計上の観点からの最良 露光エネルギ及び最良フォーカス位置に最も近い露光条 件で露光した区画領域に転写されたパターンとすること もできる。引き続き、ステップ235において、各区画 領域DA。に転写されたパターンとテンプレートパター ンとのパターンマッチングを行い相関係数を各区画領域 DAii 毎に求める。そして、ステップ237において、 こうして求められた各区画領域DAij毎の相関係数Cij を保存し、メインルーチンへリターンする。

【0093】次に、図6に戻って、ステップ223にお いて、以下のようにして、ショット領域SA内の5つの 領域DA毎に、最良露光条件である最良露光エネルギ及 び最良フォーカス位置を求める。まず、1つの領域DA について、露光エネルギ [及びフォーカス位置 2の 2次 元座標(Ⅰ, Ζ) を考え、座標値(Ⅰ, , Ζ,) におけ る相関係数C」をプロットすることにより、相関係数の 分布を得る。なお、前述の測定用ウエハW_tの露光にあ っては、区画領域DA。を同一の大きさとし、かつ、行 方向で隣接する区画領域間の露光エネルギの差を一定値 $(=\Delta I)$ とし、列方向で隣接するフォーカス位置の差 40 を一定値(=ΔZ)としたので、ウエハW: 上の区画領 域DAiiの配列がそのまま2次元座標(I, Z)におけ る座標値(Ii, Zi)の配列に一致している。

【0094】次に、こうして得られた相関係数Cijの分 布に基づいて最良露光条件を求めるのであるが、これに はいくつかの手法が考えられる。例えば、第1の手法で は、相関係数の閾値を設定し、その閾値よりも大きな相 関係数の区画領域では転写パターン有りとし、一方その 閾値よりも小さな相関係数の区画領域では転写パターン 無しと判定する。図11に、この判定結果の一例を示

す。なお、図11においては、転写パターン無しと判定 された区画領域を白抜き領域として示し、転写パターン 有りと判定された区画領域をハッチ領域として示した。 そして、転写パターン有りと判定された区画領域の内、 転写パターン無しと判定された区画領域と隣接する区画 領域を抽出し、それら抽出された区画領域の座標値を求 める。こうして求められた座標値から、例えば最小二乗 法によって、2次元座標(I, Z)における近似曲線を 求める。この近似曲線に基づいて、最良露光エネルギー 良露光エネルギI。を、前記近似曲線において、露光エ ネルギIを独立変数とみなし、特定のフォーカス位置の 値とフォーカス位置Zと差δZを従属変数とみなしたと き、δΖの値が最大値(又は、δΖの値が最小値)とな る露光エネルギの値を最良エネルギI。として求めても よい。また、最良フォーカス位置Z。を、前記近似曲線 において、フォーカス位置2を独立変数とみなし、特定 の露光エネルギの値と露光エネルギΙと差δΙを従属変 数とみなしたとき、 δ Iの値が最大値(又は、 δ Iの値 が最小値)となるフォーカス位置の値を最良フォーカス 位置乙』として求めてもよい。

【0095】第2の手法では、前記第1の手法の近似曲 線において、従属変数の複数の閾値を設定し、該従属変 数がその閾値となる独立変数の値の中点を各閾値毎に求 める。そして、これらの中点の平均値から独立変数に選 んだ露光条件のパラメータの最良値を求める。これによ れば、確実に1つの値を最良値として決定することがで きる。この他第3の手法として、2次元座標値(I,, Z.)に対する相関係数Cijから、近似曲面(すなわ ち、C(I, Z))を求め、この近似曲面において相関 係数が最大となる露光エネルギの値及びフォーカス位置 の値を最良露光エネルギ及び最良フォーカス位置とし て、最良露光条件を求めてもよい。

【0096】以後、上記と同様にして、他の領域DAの それぞれについて最良露光条件を求める。こうして、各 領域DAのショット領域SA内の位置毎の最良露光条件 が求まる。

【0097】以上のようにしてステップ223において 求められた最良露光条件を、ステップ225において、 記憶装置29に記憶する。こうして、主観的な要素を排 除し、安定して、かつ精度良く最良露光条件を求めるこ とができる。

【0098】次に、デバイス製造の場合における、本実 施形態の走査型露光装置100による露光動作を説明す

【0099】まず、レチクルローダにより、転写したい パターンが形成されたレチクルRがレチクルステージR STにロードされる。同様に、ウエハローダにより、露 光したいウエハWが基板テーブル18にロードされる。

【0100】次に、主制御装置20により、不図示のレ

チクル顕微鏡、基板テーブル18上の基準マーク板FM、不図示のアラインメント検出系を用いてレチクルアラインメント、ベースライン計測、アラインメント検出系を用いてEGA(エンハンスト・グローバル・アラインメント)等のアラインメント計測等の準備作業が所定の手順に従って必要に応じて行われる。

【0101】この露光動作にあたって、まず、ウエハWのXY位置が、ウエハW上の最初のショット領域(ファースト・ショット)の露光のための走査開始位置となるように、基板テーブル18が移動される。この移動は、主制御装置20によりステージ制御系19及びウエハ駆動装置21等を介して行われる。同時に、レチクルスのXY位置が、走査開始位置となるように、レチクルステージ18が移動される。この移動は、主制御装置20によりステージ制御系19及び不図示のレチクル駆動部等を介して行われる。

【0102】こうして、ウエハW及びレチクルRがそれぞれの走査開始位置に移動し、同期移動する前に、主制御装置20は、記憶装置29から最良露光条件である最良露光エネルギI。及び最良フォーカス位置2。を読み出す。そして、主制御装置20は、読み出した最良露光エネルギI。に基づいて、光源1及び粗調器3を制御して露光用照明光のエネルギをI。に調整するとともに、読み出した最良フォーカス位置2。を目標フォーカス位置として、ステージ制御系19へ通知する。

【0103】そして、ステージ制御系19が、レチクル 干渉計16によって計測されたレチクルRのXY位置情報、ウエハ干渉計28によって計測されたウエハWのX Y位置情報、及び第1速度情報に基づき、不図示のレチクル駆動部及びウエハ駆動装置21を介してレチクルR 30 とウエハWとを相対移動させる。この相対移動とともに走査露光が行われる。

【0104】また、ステージ制御系19は、多点フォーカス位置検出系(40,42)によって検出されたウエハのZ位置情報に基づき、ウエハ駆動装置21を介して基板テーブル18をZ軸方向及び傾斜方向に駆動制御して面位置の調整を行う。

【0105】以上のように制御されながら行われる走査露光により、ファーストショット領域に対するレチクルパターンの転写が終了すると、基板テーブル18が1シ 40ョット領域分だけステッピングされて、前ショット領域と同様に走査露光が行われる。なお、前記シャッタ1fの開閉は、前述と同様のタイミングで行われる。

【0106】以後、このようにして、ステッピングと走査露光とが順次繰り返され、ウエハW上に必要なショット数のパターンが転写される。したがって、本実施形態によれば、精度良く求められた最良露光条件によって走査露光を行うことができ、高精度な露光を行うことができる。

【0107】次に、上記説明した走査型露光装置及び方 50 ップ319(レジスト除去ステップ)において、エッチ .

法を使用したデバイスの製造方法の実施形態を説明する。

【0108】図12には、デバイス(ICやLSI等の 半導体チップ、液晶パネル、CCD、薄膜磁気ヘッド、 マイクロマシン等)の製造例のフローチャートが示され ている。図12に示されるように、まず、ステップ30 1(設計ステップ)において、デバイスの機能・性能設計(例えば、半導体デバイスの回路設計等)を行い、その機能を実現するためのパターン設計を行う。引き続き、ステップ302(マスク製作ステップ)において、設計した回路パターンを形成したマスクを製作する。一方、ステップ303(ウエハ製造ステップ)において、シリコン等の材料を用いてウエハを製造する。

【0109】次に、ステップ304(ウエハ処理ステップ)において、ステップ301~ステップ303で用意したマスクとウエハを使用して、後述するように、リソグラフィ技術によってウエハ上に実際の回路等を形成する。次いで、ステップ305(デバイス組立ステップ)において、ステップ304で処理されたウエハを用いてデバイス組立を行う。このステップ305には、ダイシング工程、ボンディング工程、及びパッケージング工程(チップ封入)等の工程が必要に応じて含まれる。

【0110】最後に、ステップ306 (検査ステップ) において、ステップ305で作製されたデバイスの動作 確認テスト、耐久性テスト等の検査を行う。こうした工程を経た後にデバイスが完成し、これが出荷される。

【0111】図13には、半導体デバイスの場合における、上記ステップ304の詳細なフロー例が示されている。図13において、ステップ311(酸化ステップ)においてはウエハの表面を酸化させる。ステップ312(CVDステップ)においてはウエハ表面に絶縁膜を形成する。ステップ313(電極形成ステップ)においてはウエハ上に電極を蒸着によって形成する。ステップ314(イオン打込みステップ)においてはウエハにイオンを打ち込む。以上のステップ311~ステップ314それぞれは、ウエハ処理の各段階の前処理工程を構成しており、各段階において必要な処理に応じて選択されて実行される。

【0112】ウエハプロセスの各段階において、上述の前処理工程が終了すると、以下のようにして後処理工程が実行される。この後処理工程では、まず、ステップ315(レジスト形成ステップ)において、ウエハに感光剤を塗布する。引き続き、ステップ316(露光ステップ)において、上記説明した露光装置及び露光方法によってマスクの回路パターンをウエハに転写する。次に、ステップ317(現像ステップ)においては露光されたウエハを現像し、ステップ318(エッチングステップ)において、レジストが残存している部分以外の部分の露出部材をエッチングにより取り去る。そして、ステップ319(レジスト除去ステップ)において、エッチップ319(レジスト除去ステップ)において、エッチップ319(レジスト除去ステップ)において、エッチップ319(レジスト除去ステップ)において、エッチップ319(レジスト除去ステップ)において、エッチップ319(レジスト除去ステップ)において、エッチャープではあります。

ングが済んで不要となったレジストを取り除く。

【0113】これらの前処理工程と後処理工程とを繰り返し行うことによって、ウエハ上に多重に回路パターンが形成される。

【0114】以上のような、本実施形態のデバイス製造 方法を用いれば、従来は製造が難しかった高集積度のデ バイスを製造することができる。

【0115】本実施形態では、測定用のレチクルRrに形成されるパターンとしてL/Sパターンを使用したが、L/Sパターンと同様に実際の回路パターンに近く、画像処理が容易な周期的なドット・パターンを使用することもできる。なお、いずれのパターンを使用するとしても、対象とする露光装置が転写可能な最小線幅近傍あるいは最小面積近傍の周期的なパターンとすることが望ましい。

【0116】また、本実施形態においては、測定用のレチクルR、に形成されるパターンを中央部及び四隅部の5箇所に形成されたマークMRで構成したが、最良露光条件を求める所望の位置分解能に応じて、マークMRを測定用のレチクルR、に形成することが可能である。

【0117】さらに、測定用のレチクルR、に形成されるパターンとして同一周期方向のL/Sパターンを使用したが、互いに近接した位置に形成された縦線、横線、斜め線等の複合L/Sパターンとすることもできる。この場合には、アス収差等の収差測定も可能となる。

【0118】また、本実施形態では、テンプレートパターンとのパターンマッチングとして相関係数を算出するパターンマッチングを使用したが、例えばパターン間の差分を算出するパターンマッチングを使用してもよい。この場合には、最良露光条件でパターンマッチング結果30が最小となり、最良露光条件から離れる程パターンマッチング結果が大きくなるが、この点を考慮すれば本実施形態と同様にして最良露光条件を決定することができる。

【0119】さらに、テンプレートパターンを最大明度 及び最小明度のいずれか一方からのみなるパターンとす ることができる。この場合にも、パターンマッチング結 果の露光エネルギ及びフォーカス位置に対する依存性を 調べることにより最良露光条件を決定することができ る。例えば、本実施形態における最良露光条件を求める 第1の手法をそのまま使用することにより、最良フォー カス位置を決定することができるし、また、同一露光エ ネルギのときのフォーカス位置変化によってパターンマ ッチング結果が極値となるフォーカス位置を各露光エネ ルギについて求め、前記極値の種類が極大値から極小値 に変化する露光エネルギ値を最良露光エネルギとして求 めることができる。

【0120】また、本実施形態では、ウエハのZ位置を す図である。 変化させて露光することにより、最良フォーカス位置を 【図2】図1の照明 求めたが、図1の投影光学系PLの結像面位置を主制御 50 るための図である。

装置20が結像特性補正コントローラ68を介して変化されることによって、最良結像条件を求めることも可能である。この場合には、最良露光条件の設定のためには、主制御装置20が結像特性補正コントローラ68を介して投影光学系PLの結像特性を調整することになる。

26

【0121】また、本実施形態では、光源としてエキシマレーザ光源を使用したが、超高圧水銀ランプからの紫外域の輝線(g線、i線等)等を用いるても良い。この10 場合には、ランプ出力制御、NDフィルタ等の減光フィルタ、光量絞り等によって露光エネルギの調整を行えば良い。

【0122】また、本発明は、紫外線を光源にする縮小投影露光装置、波長10nm前後の軟X線を光源にする縮小投影露光装置、波長1nm前後を光源にするX線露光装置、EB(電子ビーム)やイオンビームによる露光装置などあらゆるウエハ露光装置、液晶露光装置等に適応できる。また、ステップ・アンド・リピート機、ステップ・アンド・スキャン機、ステップ・アンド・スティッチング機を問わない。

[0123]

【発明の効果】以上、詳細に説明したように、請求項1~10に係る露光条件決定方法によれば、様々な露光エネルギ量とフォーカス位置との組み合わせの露光条件で、マスクに形成されたパターンを感応基板に転写する。そして、感応基板に転写されたパターンと予め用意されたテンプレートパターンとのパターンマッチングを行い、このパターンマッチングの結果に基づいて最良露光条件を決定するので、主観的な要素を排除でき、安定して、かつ精度良く最良露光条件を決定することができる。

【0124】また、請求項11に係る露光方法によれば、請求項1~10のいずれかに係る露光条件決定方法で決定された最良露光条件によって、マスクに形成されたパターンを感応基板に転写するので、精度の良い露光ができる。

【0125】また、請求項12に係る露光装置によれば、記憶装置に記憶された、請求項1に係る露光条件決定方法で決定された最良露光条件に基づいて、マスクに形成されたパターンを感応基板に転写するので、精度の良い露光ができる。

【0126】請求項13に記載のデバイスの製造方法によれば、露光工程において、請求項11に係る露光方法を用いるので、従来は製造が難しかった高集積度のデバイスを製造することができる。

【図面の簡単な説明】

【図1】本発明の一実施形態の露光装置の概略構成を示す図である。

【図2】図1の照明系10の具体的構成の一例を説明するための図である。

【図3】図2の照明系10の露光量制御に関連する部分を説明するための図である。

【図4】図1の装置の走査露光の原理を説明するための 図である。

【図5】 一実施形態における露光条件決定の原理を説明 するための図(その1)である((A)~(C))。

【図6】一実施形態の露光条件決定のフローチャートで ある。

【図7】図6のサブルーチン221のフローチャートで ある。

【図8】レチクル R_1 に形成されたパターンを説明する ための図である((A)、(B))。

【図9】 ウエハ W_t 上の区画領域の配置を説明するための図である((A)、(B))。

【図10】区画領域の配列を説明するための図である。

【図11】露光エネルギI及びフォーカス位置 Z の変化による転写パターンの状態を説明するための図である。

【図12】本発明に係るデバイス製造方法の実施形態を 説明するためのフローチャートである。 【図13】図12のステップ304における処理のフローチャートである。

【符号の説明】

1 光源(光強度可変機構の一部)

3 粗調器 (光強度可変機構の一部)

19 ステージ制御系(フォーカス調整系の一部)

20 主制御装置(調整装置)

21 ウエハ駆動装置(駆動機構)

29 記憶装置

10 40 照射光学系(検出系の一部、フォーカス調整

系の一部)

42 受光光学系(検出系の一部、フォーカス調整

系の一部)

PL 投影光学系

R レチクル (マスク)

R₁ レチクル (測定用マスク)

W ウエハ (感応基板)

W₁ ウエハ (測定用感応基板)

【図1】

【図3】

【図10】

【図6】

【図8】

【図9】

【図12】

【図13】

