2011 年考研计算机学科专业基础综合 考试真题及答案详解

一、单项选择题: 1~40 小题,每小题 2 分,共 80 分。下列每题给出的四个选项中,只有 一个选项是最符合题目要求的。请在答题卡上将所选项的字母涂里。

	一个选项是最符	合题目要求的。请 在	答题卡上将所选项的	字母涂黑。
1.	设 n 是描述问题	规模的非负整数,下	下面程序片段的时间复	杂度是
	x = 2;			
	while ($x < n$	(2)		
	x = 2*x;			
	A. $O(\log_2 n)$	B. <i>O</i> (<i>n</i>)	C. $O(n \log_2 n)$	D. $O(n^2)$
2.			栈中,若元素进栈后 J中,以元素 d 开头的	可停留、可出栈,直到所有元 I序列个数是
	A. 3	B. 4	C. 5	D. 6
3.	己知循环队列存	储在一维数组 A[0 <i>n</i> -	1] 中,且队列非空时	front 和 rear 分别指向队头元
	素和队尾元素。	若初始时队列为空,	且要求第1个进入队	列的元素存储在 A[0]处,则初
	始时 front 和 rea	r 的值分别是		
	A. 0,0	B. 0, <i>n</i> -1	C. <i>n</i> -1, 0	D. <i>n</i> -1, <i>n</i> -1
4.	若一棵完全二叉	树有 768 个结点,则]该二叉树中叶结点的	个数是
	A. 257	B. 258	C. 384	D. 385
5.	若一棵二叉树的	前序遍历序列和后序	遍历序列分别为 1,2	, 3, 4 和 4, 3, 2, 1,则该二叉树
	的中序遍历序列	不会是		
	A. 1, 2, 3, 4	B. 2, 3, 4, 1	C. 3, 2, 4, 1	D. 4, 3, 2, 1
6.	已知一棵有 201	1 个结点的树, 其叶	结点个数为 116,该	树对应的二叉树中无右孩子的
	结点个数是			
	A. 115	B. 116	C. 1895	D. 1896
7.	对于下列关键字	序列,不可能构成某	 二叉排序树中一条查	找路径的序列是
	A. 95, 22, 91, 24	1, 94, 71	B. 92, 20, 91, 34	1, 88, 35
	C. 21, 89, 77, 29	9, 36, 38	D. 12, 25, 71, 68	3, 33, 34
8.	下列关于图的叙	述中,正确的是		
	I. 回路是简单			
		,用邻接矩阵比邻接		
		存在拓扑序列,则记		
	A. 仅 II	B. 仅I、II		D. 仅 I、III
9.	, , , , , , , ,		可以采取的正确措施	i是
	I. 增大装填(载)因子		

Ⅱ. 设计冲突(碰撞)少的散列函数

Ⅲ. 处理冲突(碰撞)时避免产生聚集(堆积)现象

	A. 仅 I	B. 仅 II	С.	仅にⅡ	D.	仅Ⅱ、Ⅲ
10.	为实现快速排序算法	去, 待排序序列宜采用	目的	存储方式是		
	A. 顺序存储	B. 散列存储	С.	链式存储	D.	索引存储
11.	己知序列 25, 13, 10,	12,9 是大根堆,在月	亨列。	尾部插入新元素 1	8,	将其再调整为大根堆,
	调整过程中元素之间	间进行的比较次数是				
	A. 1	B. 2	С.	4	D.	5
12.	下列选项中, 描述海	孚点数操作速度指标的	的是			
	A. MIPS	B. CPI	С.	IPC	D.	MFLOPS
13.	float 型数据通常用	IEEE 754 单精度浮点	数格	式表示。若编译	器将	float 型变量 x 分配在
	一个 32 位浮点寄存	器 FR1 中,且 <i>x</i> = -8.5	25,	则 FR1 的内容是		
	A. C104 0000H	B. C242 0000H	С.	C184 0000H	D.	C1C2 0000H
14.	下列各类存储器中,	不采用随机存取方式	式的	是		
	A. EPROM	B. CDROM	С.	DRAM	D.	SRAM
15.	某计算机存储器按字	Y节编址,主存地址空	间力	、小为 64 MB,现户	月 41	M×8位的 RAM 芯片组
	成 32 MB 的主存储器	器,则存储器地址寄存	字器	MAR 的位数至少是	是	
	A. 22 位	B. 23 位	С.	25 位	D.	26 位
16.	偏移寻址通过将某个	寄存器内容与一个形	式地	也址相加而生成有	效均	也址。下列寻址方式中,
	不属于偏移寻址方式					
		B. 基址寻址				
17.						、符号标志 SF 和溢出
		指令 bgt(无符号整数 一				
		B. $SF+ZF=1$			D.	CF+SF=1
18.		流特点中,有利于实现。 3.14.55。75				1-2-4-34.
		1长度一致			界X	才 齐存放
		指令才能对操作数进			_	
40		B. 仅 II、III				
19.			LがL名	6处于"开中断"	\(\tau\)	态,则在下列有关指令
	执行的叙述中,错说	天的定 「CPU都至少访问内容	<i>=</i>	\ht		
		·定大于或等于一个(
		(元) [] (] (] (] (] (] (] (] (] (]			5	
		· · · · · · · · · · · · · · · · · · ·			_	
20		《指マ1八71		12X / 1 HH . 1 . E2/13 1 E2/1		
۷٠.	在	<u> </u>		操作数		
	C. 握手 (应答) 信	号		中断类型号		
21					M:=	1(0≤i≤4)表示对 L _i
						$L_2 \rightarrow L_3 \rightarrow L_4$,且要求中

断处理优先级从高到低的顺序为 $L_4 \rightarrow L_0 \rightarrow L_2 \rightarrow L_1 \rightarrow L_3$,则 L_1 的中断处理程序中设置的中 断屏蔽字是

A. 11110 B. 01101 C. 00011 D. 01010

22. 某计算机处理器主频为 50 MHz,采用定时查询方式控制设备 A 的 I/O,查询程序运行 一次所用的时钟周期数至少为500。在设备A工作期间,为保证数据不丢失,每秒需对 其查询至少 200 次,则 CPU 用于设备 A 的 I/O 的时间占整个 CPU 时间的百分比至少是

B. 0.05%

C. 0.20%

D. 0.50%

23. 下列选项中,满足短任务优先且不会发生饥饿现象的调度算法是

A. 先来先服务

B. 高响应比优先

C. 时间片轮转

D. 非抢占式短任务优先

24. 下列选项中,在用户态执行的是

A. 命令解释程序

B. 缺页处理程序

C. 进程调度程序

D. 时钟中断处理程序

25. 在支持多线程的系统中,进程 P 创建的若干个线程不能共享的是

A. 进程 P 的代码段 B. 进程 P 中打开的文件

C. 进程 P 的全局变量

D. 进程 P 中某线程的栈指针

26. 用户程序发出磁盘 I/O 请求后,系统的正确处理流程是

A. 用户程序→系统调用处理程序→中断处理程序→设备驱动程序

B. 用户程序→系统调用处理程序→设备驱动程序→中断处理程序

C. 用户程序→设备驱动程序→系统调用处理程序→中断处理程序

D. 用户程序→设备驱动程序→中断处理程序→系统调用处理程序

27. 某时刻进程的资源使用情况如下表所示。

进		已分配资	资源		尚需资	源		可用资	源
程	R	R	R	R	R	R	R	R	R
7.5	1	2	3	1	2	3	1	2	3
Р	2	0	0	0	0	1			
1	2	U	U	U	U	1			
Р	1	2	0	1	3	2			
2	1	2	0	1	3	2	0	2	1
Р	0	1	1	1	3	1	U	2	1
3	U	1	1	1	3	1			
Р	0	0	1	2	0	0			
4	0	U	1	2	U	0			

此时的安全序列是

A. P1, P2, P3, P4

B. P1, P3, P2, P4

C. P1, P4, P3, P2

D. 不存在

28. 在缺页处理过程中,操作系统执行的操作可能是

Ⅰ. 修改页表
 Ⅱ. 磁盘 I/O
 Ⅲ. 分配页框

	A. 仅 l、II	B. 仅 II	C. 仅Ⅲ	D. I、II 和 III
29.	当系统发生抖动(tl	hrashing)时,可以采	区取的有效措施是	
	I. 撤销部分进程			
	Ⅱ. 增加磁盘交换区	区的容量		
	Ⅲ. 提高用户进程的	1优先级		
	A. 仅 I	B. 仅 II	c. 仅III	D. 仅 I、II
30.	在虚拟内存管理中,	地址变换机构将逻辑	肆地址变换为物理 均	也址,形成该逻辑地址的阶段
	是			
	A. 编辑	B. 编译	C. 链接	D. 装载
31.	某文件占 10 个磁盘	块,现要把该文件磁	盘块逐个读入主在	序缓冲区,并送用户区进行分
	析。假设一个缓冲区	与一个磁盘块大小相	同,把一个磁盘块	读入缓冲区的时间为 100 μs,
	将缓冲区的数据传送	送到用户区的时间是5	50 μs,CPU 对一块数	数据进行分析的时间为50 μs。
	在单缓冲区和双缓冲	中区结构下,读入并分	分析完该文件的时	间分别是
	A. $1500 \mu s \sqrt{1000 \mu}$	sB.1550 μs、1100 μ	S	
	C. 1550 μs、1550 μs	sD. 2000 μs、2000 μ	S	
32.				P1 对 x 加 1, P2 对 x 减 1。
	加1和减1操作的打	旨令序列分别如下所法	示。	
	// 加1	操作		// 减 1 操作
	load R1,	x // 取 x 到寄存器	器 R1 中	load R2, x
	inc R1			dec R2
	store x,	R1 // 将 R1 的内容	存入 x	store x, R2
	两个操作完成后, x	的值		
	A. 可能为-1或3		B. 只能为1	
	C. 可能为 0、1 或	2	D. 可能为-1、0、	、1或2
33.	TCP/IP 参考模型的网	的络层提供的是		
	A. 无连接不可靠的	数据报服务	B. 无连接可靠的	的数据报服务
	C. 有连接不可靠的	虚电路服务	D. 有连接可靠的	的虚电路服务
34.	若某通信链路的数据	居传输速率为 2400 bps	s,采用 4 相位调制	1),则该链路的波特率是
	A. 600 波特	B. 1200 波特	C. 4800 波特	D. 9600 波特
35.	数据链路层采用选择	¥重传协议(SR)传输	俞数据,发送方己	发送了0~3号数据帧,现已
	收到1号帧的确认,	而 0、2 号帧依次超	时,则此时需要重	重传的帧数是
	A. 1	B. 2	C. 3	D. 4
36.	下列选项中,对正确	角接收到的数据帧进行	亍确认的 MAC 协议	又是
	A. CSMA	B. CDMA	C. CSMA/CD	D. CSMA/CA
37.	某网络拓扑如下图所	听示,路由器 R1 只有	到达子网 192.168	.1.0/24 的路由。为使 R1 可以

将 IP 分组正确地路由到图中所有子网,则在 R1 中需要增加的一条路由(目的网络,子 网掩码,下一跳)是

A. 192.168.2.0, 255.255.255.128, 192.168.1.1
B. 192.168.2.0, 255.255.255.0, 192.168.1.1
C. 192.168.2.0, 255.255.255.128, 192.168.1.2

D. 192.168.2.0, 255.255.255.0, 192.168.1.2

38. 在子网 192.168.4.0/30 中, 能接收目的地址为 192.168.4.3 的 IP 分组的最大主机数是

A. 0

B. 1

C. 2

D. 4

39. 主机甲向主机乙发送一个(SYN = 1, seq = 11220)的 TCP 段,期望与主机乙建立 TCP 连接,若主机乙接受该连接请求,则主机乙向主机甲发送的正确的 TCP 段可能是

- A. (SYN = 0, ACK = 0, seq = 11221, ack = 11221)
- B. (SYN = 1, ACK = 1, seq = 11220, ack = 11220)
- C. (SYN = 1, ACK = 1, seq = 11221, ack = 11221)
- D. (SYN = 0, ACK = 0, seq = 11220, ack = 11220)
- 40. 主机甲与主机乙之间已建立一个 TCP 连接,主机甲向主机乙发送了 3 个连续的 TCP 段,分别包含 300 字节、400 字节和 500 字节的有效载荷,第 3 个段的序号为 900。若主机乙仅正确接收到第 1 和第 3 个段,则主机乙发送给主机甲的确认序号是
 - A. 300
- B. 500
- C. 1200
- D. 1400

二、综合应用题: 41~47 小题, 共 70 分。请将答案写在答题纸指定位置上。

41. (8分)已知有6个顶点(顶点编号为0~5)的有向带权图G, 其邻接矩阵A为上三角矩阵, 按行为主序(行优先)保存在如下的一维数组中。

		l	l		l	l	l	

要求:

- (1) 写出图 G 的邻接矩阵 A。
- (2) 画出有向带权图 G。
- (3) 求图 G 的关键路径,并计算该关键路径的长度。

- 42. (15 分) 一个长度为 L (L≥1) 的升序序列 S,处在第 L/2 个位置的数称为 S 的中位数。例如,若序列 S1=(11,13,15,17,19),则 S1 的中位数是 15。两个序列的中位数是含它们所有元素的升序序列的中位数。例如,若 S2=(2,4,6,8,20),则 S1 和 S2 的中位数是 11。现有两个等长升序序列 A 和 B,试设计一个在时间和空间两方面都尽可能高效的算法,找出两个序列 A 和 B 的中位数。要求:
 - (1) 给出算法的基本设计思想。
 - (2) 根据设计思想,采用 C 或 C++或 JAVA 语言描述算法,关键之处给出注释。
 - (3) 说明你所设计算法的时间复杂度和空间复杂度。
- 43. (11 分)假定在一个8位字长的计算机中运行如下类C程序段:

unsigned int x = 134;

unsigned int y = 246;

int m = x;

int n = y;

unsigned int z1 = x-y;

unsigned int z2 = x+y;

int k1 = m-n;

int k2 = m+n:

若编译器编译时将 8 个 8 位寄存器 R1 ~ R8 分别分配给变量 x、y、m、n、z1、z2、k1 和 k2。请回答下列问题。(提示:带符号整数用补码表示)

- (1) 执行上述程序段后,寄存器 R1、R5 和 R6 的内容分别是什么? (用十六进制表示)
- (2) 执行上述程序段后,变量 m 和 k1 的值分别是多少? (用十进制表示)
- (3)上述程序段涉及带符号整数加/减、无符号整数加/减运算,这四种运算能否利用 同一个加法器及辅助电路实现?简述理由。
- (4) 计算机内部如何判断带符号整数加/减运算的结果是否发生溢出?上述程序段中,哪些带符号整数运算语句的执行结果会发生溢出?
- 44. (12 分) 某计算机存储器按字节编址,虚拟(逻辑)地址空间大小为 16 MB,主存(物理)地址空间大小为 1 MB,页面大小为 4 KB; Cache 采用直接映射方式,共 8 行;主存与 Cache 之间交换的块大小为 32 B。系统运行到某一时刻时,页表的部分内容和 Cache 的部分内容分别如题 44-a 图、题 44-b 图所示,图中页框号及标记字段的内容为十六进制形式。

虚页号	有效位	页框号	•••
0	1	06	•••
1	1	04	•••
2	1	15	•••
3	1	02	
4	0	_	
5	1	2B	•••
6	0	-	•••
		I.	

行号	有效位	标记	•••
0	1	020	•••
1	0	-	•••
2	1	01D	•••
3	1	105	•••
4	1	064	•••
5	1	14D	•••
6	0	-	•••

题 44-a 图 页表的部分内容

题 44-b 图 Cache 的部分内容

请回答下列问题。

- (1) 虚拟地址共有几位,哪几位表示虚页号?物理地址共有几位,哪几位表示页框号(物理页号)?
- (2) 使用物理地址访问 Cache 时,物理地址应划分成哪几个字段?要求说明每个字段的位数及在物理地址中的位置。
- (3) 虚拟地址 001C60H 所在的页面是否在主存中? 若在主存中,则该虚拟地址对应的物理地址是什么?访问该地址时是否 Cache 命中?要求说明理由。
- (4) 假定为该机配置一个 4 路组相联的 TLB, 该 TLB 共可存放 8 个页表项, 若其当前内容(十六进制)如题 44-c 图所示,则此时虚拟地址 024BACH 所在的页面是否在主存中?要求说明理由。

组号 有效位 标记 页框号 有效位 标记 页框号 有效位 标记 页框号 有效位 标记 页框号

0	0	I	_	1	001	15	0	1	-	1	012	1F
1	1	013	2D	0	I	_	1	008	7E	0	1	_

题 44-c 图 TLB 的部分内容

45. (8分) 某银行提供 1 个服务窗口和 10 个供顾客等待的座位。顾客到达银行时,若有空座位,则到取号机上领取一个号,等待叫号。取号机每次仅允许一位顾客使用。当营业员空闲时,通过叫号选取一位顾客,并为其服务。顾客和营业员的活动过程描述如下:

```
{
    process 顾客 i
    {
        从取号机获得一个号码;
        等待叫号;
        获得服务;
    }
    process 营业员
    {
        while (TRUE)
        {
            叫号;
            为顾客服务;
        }
```

} coend

}

cobegin

请添加必要的信号量和 P、V(或 wait()、signal())操作,实现上述过程中的互斥与同

- 步。要求写出完整的过程,说明信号量的含义并赋初值。
- **46**. (**7**分)某文件系统为一级目录结构,文件的数据一次性写入磁盘,已写入的文件不可修改,但可多次创建新文件。请回答如下问题。
 - (1) 在连续、链式、索引三种文件的数据块组织方式中,哪种更合适?要求说明理由。 为定位文件数据块,需在 FCB 中设计哪些相关描述字段?
 - (2) 为快速找到文件,对于 FCB,是集中存储好,还是与对应的文件数据块连续存储好?要求说明理由。

47. (9 分) 某主机的 MAC 地址为 00-15-C5-C1-5E-28, IP 地址为 10.2.128.100 (私有地址)。题 47-a 图是网络拓扑, 题 47-b 图是该主机进行 Web 请求的 1 个以太网数据帧前 80 个字节的十六进制及 ASCII 码内容。

题 47-a 图 网络拓扑

0000	00 21 27 21 5	1 ee 00 15	c5 c1 5e 28 08 00 45 00	.!'!Q^(E.
0010	01 ef 11 3b 40	0 00 80 06	ba 9d 0a 02 80 64 40 aa	;@d@.
0020	62 20 04 ff 00	0 50 e0 e2	00 fa 7b f9 f8 05 50 18	bР{Р.
			54 20 2f 72 66 63 2e 68	GE T /rfc.h
0040	74 6d 6c 20 48	8 54 54 50	2f 31 2e 31 0d 0a 41 63	tml HTTP /1.1Ac

题 47-b 图 以太网数据帧(前 80 字节)

请参考图中的数据回答以下问题。

- (1) Web 服务器的 IP 地址是什么?该主机的默认网关的 MAC 地址是什么?
- (2) 该主机在构造题 47-b 图的数据帧时,使用什么协议确定目的 MAC 地址? 封装该协议请求报文的以太网帧的目的 MAC 地址是什么?
- (3) 假设 HTTP/1.1 协议以持续的非流水线方式工作,一次请求-响应时间为 RTT, rfc.html 页面引用了 5 个 JPEG 小图像,则从发出题 47-b 图中的 Web 请求开始到浏览器收到 全部内容为止,需要多少个 RTT?
- (4) 该帧所封装的 IP 分组经过路由器 R 转发时, 需修改 IP 分组头中的哪些字段?

注: 以太网数据帧结构和 IP 分组头结构分别如题 47-c 图、题 47-d 图所示。

题 47-c 图 以太网帧结构

题 47-d 图 IP 分组头结构

答案及详解

- 一、单项选择题: 1~40 小题,每小题 2 分,共 80 分。下列每题给出的四个选项中,只有一个选项是最符合题目要求的。请在答题卡上将所选项的字母涂黑。
- 1. 【答案】A
- 2. 【答案】B
- 3. 【答案】B
- 4.【答案】C
- 5.【答案】C
- 6.【答案】D
- 7. 【答案】A
- 8. 【答案】C
- 9. 【答案】B
- 10. 【答案】A
- 11.【答案】B
- 12. 【答案】D
- 13. 【答案】A
- 14. 【答案】B
- 15.【答案】D
- 16. 【答案】A
- 17. 【答案】C
- 18. 【答案】D
- 19.【答案】C
- 20.【答案】C
- 21.【答案】D
- 22.【答案】C
- 23.【答案】B
- 24.【答案】A
- 25.【答案】D
- 26.【答案】B
- 27.【答案】D
- 28.【答案】D
- 29.【答案】A
- 30.【答案】B
- 31.【答案】B
- 32.【答案】C

33.【答案】A

34. 【答案】B

35.【答案】B

36.【答案】D

37. 【答案】D

38.【答案】C

39.【答案】C

40.【答案】B

二、综合应用题: 41~47 小题,共 70 分。请将答案写在答题纸指定位置上。

41.

【答案解析】此题考察的知识点是图的存储以及关键路径求解的综合知识。

(1) 由题可以画出待定上三角矩阵的结构图如下(图中"?"待定元素)

$$\begin{bmatrix} 0 & ? & ? & ? & ? & ? \\ \infty & 0 & ? & ? & ? & ? \\ \infty & \infty & 0 & ? & ? & ? \\ \infty & \infty & \infty & 0 & ? & ? \\ \infty & \infty & \infty & \infty & 0 & ? \\ \infty & \infty & \infty & \infty & \infty & 0 \end{bmatrix}$$

可以看出,第一行至第五行主对角线上方的元素分别5、4、3、2、1个,由此可以画出

压缩存储数组中的元素所属行的情况,如下图所示:

将个元素填入各行即得邻接矩阵:(2分)

$$A = \begin{bmatrix} 0 & 4 & 6 & \infty & \infty & \infty \\ \infty & 0 & 5 & \infty & \infty & \infty \\ \infty & \infty & 0 & 4 & 3 & \infty \\ \infty & \infty & \infty & 0 & \infty & 3 \\ \infty & \infty & \infty & \infty & \infty & 0 & 3 \\ \infty & \infty & \infty & \infty & \infty & \infty & 0 \end{bmatrix}$$

(2)根据第一步所得矩阵 A 容易做出有向带权图 G,如下:(2分)

(3)下图中粗线箭头所标识的 4 个活动组成 G 的关键路径 (3 分)

由上图容易求得图的关键路径长度为: 4+5+4+3=16。

42.

【答案解析】此题考察的知识点是基本算法的灵活运用。

- (1) 算法的基本设计思想: (5分)
- 1) 比较笨的方法:

将两升序序列归并排序,然后求其中位数,时间复杂度是 O(n),空间复杂度 O(n)。

2) 高效的方法:分别求两个升序序列 A 和 B 的中位数,设为 a 和 b。

如果 a=b,则 a 或者 b 即为所求的中位数。

原因:如果将两序列归并排序,则最终序列中,排在子序列 ab 前边的元素为先前两序列中排在 a 和 b 前边的元素;排在子序列 ab 后边的元素为先前两序列 a 和 b 后边的元素。所以子序列 ab 一定位于最终序列的中间,有因为 a=b,显然 a 就是中位数。如果 $a\neq b$ (假设 $a\langle b\rangle$,中位数只能出现在(a,b)范围内。

原因:同样可以用归并排序后的序列来验证,归并后排序后必然有形如···a···b···的序列出现,中位数必然出现在(a,b)范围内。因此可以做如下处理:舍弃 a 所在序列 A 之中比较小的一半,同时舍弃 b 所在序列 B 之中比较大的一半。在保留的两个升序序列中求出新的中位数 a 和 b,重复上述过程,直到两个序列只含一个元素为止,则较小者即为所求中位数。

```
(2) 算法实现(高效方法): (8分)
int Search(int A[], int B[], int n)
{
   int s1, e1, mid1, s2, e2, mid2;
   s1=0;
```

```
e1=n-1:
s2=1;
e2=n-1;
while(s1!=e1||s2!=e2)
   mid1=(s1+e1)/2;
   mid2=(s2+e2)/2;
   if(A[mid1] == B[mid2])
   return A[mid1];
   if(A[mid1] < B[mid2])</pre>
          //分别考虑奇数和偶数,保持两个子数组元素个数相等
          if ((s1+e1) %2==0) //若元素个数为奇数
              s1=mid1;//舍弃A中间点以前部分且保留中间点
              e2=mid2: //舍弃 B 中间点以后部分且保留中间点
          else//若元素个数为偶数
              s1=mid1+1;//舍弃 A 中间点以前部分且保留中间点
              e2=mid2; //舍弃B中间点以后部分且保留中间点
     else
        if((s1+e1)%2==0)//若元素个数为奇数个
          {
             el=mid1;//舍弃A中间点以后部分且保留中间点
             s2=mid2;//舍弃B中间点以前部分且保留中间点
          }
        else //若元素个数为偶数个
          {
              e1=mid1+1; //舍弃 A 中间点以后部分且保留中间点
              s2=mid2; //舍弃 B 中间点以前部分且保留中间点
         您所下载的资料来源于 kaoyan.com 考研资料下载中心
        获取更多考研资料,请访问 http://download.kaoyan.com
```

```
}
}
return (A[s1] 〈B[s2] ? A[s1]:B[s2]);
}
(3) 上述所给算法的时间、空间复杂度分别是 0(log<sub>2</sub>n)和 0(l)。(2分)
因为每次总的元素个数变为原来的一半,所以有:
第一次:元素个数为 n/2=n/(2¹)
第二次:元素个数为 n/4=n/(2²)
……
第 k 次:元素个数为 n/(2²)
最后元素个数为 2
则有 n/(2²)=2
解得 k= log<sub>2</sub>n - 1
因此:时间复杂度为 0(log<sub>2</sub>n),而空间复杂度从上述程序中可看出为 0(l)。
```

43.

【答案解析】此题考察的知识点是程序编译运行时各寄存器的运用与变化。

- (1) 寄存器 R1 存储的是 134,转换成二进制为 1000 0110B,即 86H。寄存器 R5 存储的是 x-y 的内容,x-y=-112,转换成二进制为 1001 0000B,即 90H。寄存器 R6 存储的是 x+y 的内容,x+y=380,转换成二进制为 1 0111 1100B(前面的进位舍弃),即 7CH。由于计算机字长为 8 位,所以无符号整数能表示的范围为 0~255。而 x+y=380,故溢出。
- (2) m 二进制表示为 1000 0110B, 由于 m 是 int 型, 所以最高位为符号位, 所以可以得出 m 的原码为: 1111 1010 (对 1000 0110 除符号位取反加 1), 即-122。同理 n 的二进制表示为 1111 0110B, 故 n 的原码为: 1000 1010, 转成十进制为-10。所以 k1=-122-(-10)=-112.
- (3) 可以利用同一个加法器及辅助电路实现。因为无符号整数都是以补码形式存储, 所以运算规则都是一样的。但是有一点需要考虑,由于无符号整数和有符号整数 的表示范围是不一样的,所以需要设置不一样的溢出电路。
- (4) 带符号整数只有 k2 会发生溢出。分析: 8 位带符号整数的补码取值范围为: -128~+127, 而 k2=m+n=-122-10=-132, 超出范围, 而 k=-112, 在范围-128~+127 之内。三种方法可以判断溢出: 双符号位、最高位进位、符号相同操作数的运算后与原码操作数的符号不同则溢出。

【答案解析】此题考察的知识点是计算机的地址管理。

- (1)由于虚拟地址空间大小为 16MB,且按字节编址,所以虚拟地址共有 24 位(2^{24} =16M)。由于页面大小为 4KB(2^{12} =4K),所以虚页号为前 12 位。由于主存(物理)地址空间大小为 1MB,所以物理地址共有 20 位(2^{20} =1M)。由于页内地址 12 位,所以 20–12=8,即前 8 位为 页框号。
 - (2) 由于 Cache 采用直接映射方式, 所以物理地址应划分成 3 个字段, 如下:

_	12 位	3位	5 位
	主存字块标记	Cache 字块标记	字块内地址

分析:由于块大小为 32B,所以字块内地址占 5 位。Cache 共 8 行,故字块标记占 3 位,所以主存字块标记占 20–5–3=12 位。

- (3) 虚拟地址 001C60H 的虚页号为前 12 位,即 001H=1。查表可知,其有效位为 1,故在内存中。虚页号为 1 对应页框号为 04H,故物理地址为 04C60H。由于采用的是直接映射方式,所以对应 Cache 行号为 4。尽管有效位为 1,但是由于标记位 04CH \neq 064H,故不命中。
- (4) 由于采用了 4 路组相联的, 所以 Cache 被分为 2 组, 每组 4 行。所以物理地址 应划分成 3 个字段, 如下:

11 位	1位	12 位
标记位	组号	页内地址

将 024BACH 转成二进制为: 0000 0010 010 0 1011 1010 1100,可以看出组号为 0,标记为 0000 0010 010,换成十六进制为 0000 0001 0010(高位补一个 0),即 012H,从图 44-c 中的 0 组可以看出,标记为 012H 页面的页框号为 1F,故虚拟地址 024BACH 所在的页面在主存中。

45.

【答案解析】此题考察的知识点是共享资源的使用与 P、V 操作以防止死锁。

Semaphore seets =10;//表示空余座位数量的资源信号量,初值为 10
Semaphore mutex = 1; //管理取号机的互斥信号量,初值为 1,表示取号机空闲
Semaphore custom = 0; //表示顾客数量的资源信号量,初值为 0
Process 顾客
{

P(seets); //找个空座位

P(mutex); //在看看取号机是否空闲

从取号机取号;

V(mutex) //放开那个取号机

```
V(custom); //取到号,告诉营业员有顾客等待叫号;
V(seets) //被叫号,离开座位接受服务;
}
Process 营业员
{
    While(true)
    {
        P(custom); //看看有没有等待的顾客叫号;
        为顾客服务;
    }
}
```

46.

【答案解析】此题考察的知识点是文件系统中数据的组织方式,及文件的查找。

- (1)连续更合适。因为一次写入不存在插入问题,而且写入文件之后不需要修改,连续的数据块组织方式很适合一次性写入磁盘不再修改的情况,同时连续存储相对链式和索引省去了指针的空间开销,支持随机查找,查找速度最快。
- (2) FCB 集中存储较好。FCB 存储有文件的很多重要信息,同时是文件目录的重要组成部分,在检索时,通常会访问对应文件的 FCB。如果将 FCB 集中存储,则可以减少在检索过程中产生的访盘次数,提高检索速度。

47.

【答案解析】此题考察的知识点是网络层的 ARP 协议与路由算法。

解题之前,首先说明图 47-b 中每行前面的 0000、0010、0020 等等都不属于以太 网帧的内容。

(1) 首先, IP 分组是完整的作为 MAC 帧的数据部分。所以目的 IP 地址应该在 MAC 帧的数据里面,如下图所示:

其次,以太网帧首部有 14 字节,IP 数据包首部目的 IP 地址前有 16 字节。所以目的 IP 地址在一台网帧中的位置应该是第 31、32、33、34 字节。查阅图 47-b,找到这四个字节的内容,即 40aa6220(十六进制),转换成十进制为: 64.170.98.96.32。

从图 47-c 中可以知道,目的 MAC 地址就是前 6 个字节。查阅图 47-b,找到这六个字节的内容,即 00-21-27-21-51-ee。由于下一跳极为默认网关 10.2.128.1,所以所求的目的 MAC

地址就是默认网关 10.2.128.1 端口的物理地址。

- (2) 本小问考察 ARP 协议。ARP 协议主要用来解决 IP 地址到 MAC 地址的映射问题,当源主机知道目的主机的 IP 地址,而不知道目的主机的 MAC 地址时,主机的 ARP 进程就在本以太网上进行广播,此事以太网的目的 MAC 地址为全 1,即 ff-ff-ff-ff-ff-ff.
- (3) 由于采用的是非流水线方式进行工作,所以客户机在收到前一个请求的响应后才能 发送下一个请求。第一个请求用于请求 web 页面,后续 5 个 JPEG 小图像分别需要 5 次请求,故一共需要 6 次请求。
- (4) 首先,题目中已经说明 IP 地址 10.2.128.100 是私有地址。所以经过路由器转发源 IP 地址是要发生改变的,即变成 NAT 路由器的一个全球 IP 地址(一个 NAT 路由可能不止一个全球 IP 地址,随机选一个即可,而本题只有一个)。也就是将 IP 地址10.2.128.100 改成 101.12.123.15。计算得出,源 IP 地址字段 0a 02 80 64(在第一问的目的 IP 地址字段往前数 4 个字节即可)需要改为 65 0c 7b 0f。另外,IP 分组没经过一个路由器,生存时间都需要减 1,结合 47-d 和 47-b 可以得到初始生存时间字段为 80,经过路由器 R 之后变为 7f,当然还得重新计算首部校验和。最后,如果 IP 分组的长度超过该链路所要求的最大长度,IP 分组报就需要分片,此时 IP 分组的总长度字段,标志字段,片偏移字段都是需要发生改变的。