Diffusion Models: DALL-E

Deep Learning and Neural Networks: Advanced Topics

Fabio Brau

March 1, 2023

Scuola Superiore Sant'Anna, Pisa.

Introduction

Diffusion Models

Broader Impacts

Introduction

Diffusion Models

Overview

Diffusion models are generative models that aim at denoising data

Timeline

2015) ...Non-equilibrium Thermodynamics. Sohl-Dickstein et al. ICML

2020) Denoising Diffusion Probabilistic Models. Ho et al. NeurIPS.

2021) Score-Based Generative Modeling Through SDE. Song et al. ICLR.

Deep Unsupervised Learning using Non-Equilibrium Thermodynamics

Diffusion process as a Markov Chain with Continuous State Space and Discrete Time.¹

¹Sohl-Dickstein et al., "Deep Unsupervised Learning using Nonequilibrium Thermodynamics".

Reminder: Markov Chains with Discrete Time

Informal Definition

A sequence of random variables $\mathbf{x}^{(0)}, \mathbf{x}^{(1)}, \cdots, \mathbf{x}^{(t)}, \cdots$, such that:

- $\mathbf{x}^{(t)} \in S$, where S State Space
- The future $\mathbf{x}^{(t+1)}$ depends on the present $\mathbf{x}^{(t)}$ but not on the past $\mathbf{x}^{(t-1)}$

Discrete State Space S

Continuous State Space S Transactions of distributions 1

state space

Reminder: MCDT with Discrete State Space

Definition

A sequence $\{\mathbf{x}^{(t)}\}_{t\in\mathbb{N}}\subseteq S$, a matrix $P=(p_{ij})$.

• Discrete state space: $S = \{s_0, \cdots, s_n, \cdots\}$

• Markov Property: $\mathbf{x}^{(t+1)}$ not dep. $\mathbf{x}^{(0)}, \cdots, \mathbf{x}^{(t-1)}$.

• Transaction Matrix: $\mathbb{P}\left(\mathbf{x}^{(t+1)} = s_j | \mathbf{x}^{(t)} = s_i\right) = p_{ij}$

Reminder: MCDT with Discrete State Space

Definition

A sequence $\{\mathbf{x}^{(t)}\}_{t\in\mathbb{N}}\subseteq S$, a matrix $P=(p_{ij})$.

• Discrete state space: $S = \{s_0, \dots, s_n, \dots\}$

• Markov Property: $\mathbf{x}^{(t+1)}$ not dep. $\mathbf{x}^{(0)}, \dots, \mathbf{x}^{(t-1)}$.

• Transaction Matrix: $\mathbb{P}\left(\mathbf{x}^{(t+1)} = s_i | \mathbf{x}^{(t)} = s_i\right) = p_{ii}$

P is a stochastic matrix!

$$\forall i, \quad \sum_{j \in \mathbb{N}} p_{ij} = 1$$

$$P = \begin{pmatrix} 1 - \alpha & \alpha \\ \beta & 1 - \beta \end{pmatrix} \qquad 1 \stackrel{\alpha}{\rightleftharpoons} 2$$

Reminder: DTMC with Continuous State Space

Let assume $\mathbf{x}, \mathbf{y} \in S$ where S continuous state space (e.g. $S = \mathbb{R}^d$).

Joint Distribution $p(\mathbf{x}, \mathbf{y})$

$$\mathbb{P}\left(\mathbf{x} \in A \mid \mathbf{y} \in B\right) = \int_{A} \int_{B} p\left(\mathbf{x}, \mathbf{y}\right) \, d\mathbf{x} \, d\mathbf{y}$$

Transactional Kernel $p(\mathbf{x} | \mathbf{y})$

$$p\left(\mathbf{x}, \mathbf{y}\right) = p(\mathbf{x} \,|\, \mathbf{y}) \, p\left(\mathbf{y}\right)$$

Marginal Distribution $p(\mathbf{x})$

$$p(\mathbf{x}) = \int_{S} p(\mathbf{x}, \mathbf{y}) d\mathbf{y} = \int_{S} p(\mathbf{x} | \mathbf{y}) p(\mathbf{y}) d\mathbf{y}$$

Forward Diffusion Process

"Adding noise to data..."

- Data Distribution: $\mathbf{x}^{(0)} \sim q$
- · Transaction Kernel: $q\left(\mathbf{x}^{(t)} \mid \mathbf{x}^{(t-1)}\right) = \mathcal{N}\left(\mathbf{x}^{(t)}; \sqrt{1-\beta_t}\mathbf{x}^{(t-1)}; \beta_t l\right)$
- · Variance Scheduler: $\beta_0, \dots, \beta_T \in (0, 1)$

Forward Diffusion Process

"Adding noise to data..."

- · Data Distribution: $\mathbf{x}^{(0)} \sim q$
- Transaction Kernel: $q\left(\mathbf{x}^{(t)} \mid \mathbf{x}^{(t-1)}\right) = \mathcal{N}\left(\mathbf{x}^{(t)}; \sqrt{1-\beta_t}\mathbf{x}^{(t-1)}; \beta_t l\right)$
- · Variance Scheduler: $\beta_0, \dots, \beta_T \in (0, 1)$

Not Analytic!!

Forward Diffusion Process: Explicit Representation

$$\mathbf{x}^{(t)} = \sqrt{1 - \beta_t} \, \mathbf{x}^{(t-1)} + \sqrt{\beta_t} \, \boldsymbol{\varepsilon}_t, \quad \boldsymbol{\varepsilon}_t \sim \mathcal{N}(0, l)$$

Observation: Many small noisy steps \approx Large Noisy step

$$\mathbf{x}^{(t)} = \sqrt{1 - \alpha_t} \, \mathbf{x}^{(0)} + \sqrt{\alpha_t} \boldsymbol{\varepsilon}, \quad \boldsymbol{\varepsilon} \sim \mathcal{N}(0, l)$$

where

$$\alpha_t = 1 - \prod_{i=0}^t (1 - \beta_i)$$

Forward Diffusion Process: Distribution Representation

Markov property allows breaking up distributional Representation...

$$q(\mathbf{x}^{(0)}, \dots, \mathbf{x}^{(T)}) = q\left(\mathbf{x}^{(T)} \mid \mathbf{x}^{(0)}, \dots, \mathbf{x}^{(T-1)}\right) q\left(\mathbf{x}^{(0)}, \dots, \mathbf{x}^{(T-1)}\right)$$

Forward Diffusion Process: Distribution Representation

Markov property allows breaking up distributional Representation...

$$q(\mathbf{x}^{(0)}, \dots, \mathbf{x}^{(T)}) = q\left(\mathbf{x}^{(T)} \mid \mathbf{x}^{(0)}, \dots, \mathbf{x}^{(T-1)}\right) q\left(\mathbf{x}^{(0)}, \dots, \mathbf{x}^{(T-1)}\right)$$

$$= q\left(\mathbf{x}^{(T)} \mid \mathbf{x}^{(T-1)}\right) q\left(\mathbf{x}^{(0)}, \dots, \mathbf{x}^{(T-1)}\right)$$

$$. \tag{1}$$

Forward Diffusion Process: Distribution Representation

Markov property allows breaking up distributional Representation...

$$q(\mathbf{x}^{(0)}, \dots, \mathbf{x}^{(T)}) = q\left(\mathbf{x}^{(T)} \mid \mathbf{x}^{(0)}, \dots, \mathbf{x}^{(T-1)}\right) q\left(\mathbf{x}^{(0)}, \dots, \mathbf{x}^{(T-1)}\right)$$

$$= q\left(\mathbf{x}^{(T)} \mid \mathbf{x}^{(T-1)}\right) q\left(\mathbf{x}^{(0)}, \dots, \mathbf{x}^{(T-1)}\right)$$

$$\vdots$$
(1)

Distributional Representation

$$q(\mathbf{x}^{(0)},\dots,\mathbf{x}^{(T)}) = q(\mathbf{x}^{(0)}) \prod_{t=1}^{T} q\left(\mathbf{x}^{(t)} \mid \mathbf{x}^{(t-1)}\right)$$

Inverse Diffusion Process

Broader Impacts

CLIP Model

"We also found discrepancies across gender and race for people categorized into the 'crime' and 'non-human' categories..."²

²Radford et al., "Learning Transferable Visual Models From Natural Language Supervision".

Thanks for the attention

Fabio Brau

- **m** Scuola Superiore Sant'Anna, Pisa
- fabio.brau@santannapisa.it
- in linkedin.com/in/fabio-brau

Proof Details

Proof of Explicit Representation of Forward Diffusion Process

Let us proceeding by induction by assuming $\mathbf{x}^{(t)} = \sqrt{1 - \alpha_t} \, \mathbf{x}^{(0)} + \sqrt{\alpha_t} \, \boldsymbol{\varepsilon}$ where $\boldsymbol{\varepsilon} \sim \mathcal{N}(0, l)$ and where $\alpha_t = 1 - \prod_{i=0}^t (1 - \beta_i)$.

$$\mathbf{x}^{(t+1)} = \sqrt{1 - \beta_{t+1}} \, \mathbf{x}^{(t)} + \sqrt{\beta_{t+1}} \, \varepsilon_{t+1}$$

$$= \sqrt{1 - \beta_{t+1}} \, \left(\sqrt{1 - \alpha_t} \, \mathbf{x}^{(0)} + \sqrt{\alpha_t} \, \varepsilon \right) + \sqrt{\beta_{t+1}} \, \varepsilon_{t+1}$$

$$= \sqrt{\left(\prod_{i=0}^{t+1} (1 - \beta_i) \right)} \mathbf{x}^{(0)} + \sqrt{(1 - \beta_{t+1}) \alpha_t + \beta_{t+1}} \, \tilde{\varepsilon}$$
(2)

where the last term of the summation is obtained by observing that, since $\sqrt{(1-\beta_{t+1})\alpha_t}\,\varepsilon$ and $\sqrt{\beta_{t+1}}\,\varepsilon_{t+1}$ are independent, then the variance of their sum (that still has a gaussian distribution) is given by $(1-\beta_{t+1})\alpha_t+\beta_{t+1}$.

