Algorithm Sketch

The algorithm needs two parameters: $\gamma \in [0, 1]$ and s a positive integer, which have to be tuned. γ should be like $\alpha - 2\varepsilon_4$ of Step 4.1 2. of our ICML paper. s should be about $4/\varepsilon_0$ of our ICML paper.

- 1. For each i, i = 1, 2, ..., d do the following:
 - (a) Sort the *i* th row of *A* and find a(1,i) = sum of highest n/s elements of the row; a(2,i) = sum of the next highest n/s elements and so on up to a(s,i).
 - (b) Find largest $t \in \{1, 2, ..., s\}$ with $a(t, i) \ge \gamma a(1, i)$.
 - (c) Set Q_i = the set of tn/s j 's (t as in last step) consisting of the highest tn/s elements of row i of A.
- 2. Set R = [d]. Sort the $|Q_i|$ in ascending order. For convenience, renumber the i so that now $|Q_i|$ are in the ascending order.
- 3. For i = 1, 2, ..., in R: (If $Q_i \subseteq Q_{i'}$, we "prune" i' out of R.)
 - (a) For i' > i with $i' \in R$, and $|Q_i| \leq |Q_{i'}| 2(n/s)$, if $Q_i \subseteq Q_{i'}$, delete i' from R.
- 4. Find the minimum k such that there are k disjoint subsets K_1, K_2, \ldots, K_k of [n] such that for every $i \in R$, $|Q_i \triangle K_r| \leq (3n/s)$ for some $r \in \{1, 2, \ldots, k\}$.

¹If $Q, Q' \subseteq [n]$, we write $Q \subseteq Q'$ to denote: $|Q \setminus Q'| \le 2n/s$.