أطول رحلة

لقد وقع منظمو أولمبياد المعلوماتية الدولي لعام 2023 في ورطة كبيرة، لانهم نسوا أن يخططوا للرحلة إلى أوبوستازر في اليوم التالي ولكن ربما يكونون غير متأخرين كثيراً

هناك N معلماً سياحياً (landmark) في أوبوستازر مرقمة من 0 وحتى N-1 بعض أزواج المعالم السياحية متصلة مع بعضها عن طريق طرق ثنائية الاتجاه كل زوج من المعالم يتصل مع بعضه بطريق واحد على الأكثر. V يعلم المنظمون أي من المعالم متصلة مع بعضها بطرق.

نعرف **كثافة** شبكة الطرقات في أبوستازر بأنها δ على الأقل إذا تحقق: من أجل كل δ معالم مختلفة سيكون هناك ، $0 \leq u < v < w < N$ بحيث δ طريق فيما بينها. بعبارة أخرى: من أجل أي ثلاثية من المعالم (u,v,w) بحيث δ (u,v) و (u,v) يوجد δ زوج منها على الأقل متصلة بطرقات.

يعرف المنظمون أن العدد الصحيح D يحقق أن كثافة شبكة الطرق هي بقيمته على الأقل. لاحظ أن قيمة D لا يمكن أن تكون أكبر من 3.

يمكن للمنظمين *الاتصال* هاتفياً بعامل الهاتف في أوبوستازر لجمع معلومات عن شبكة الطرق بين معالم سياحية معينة. في كل اتصال يتم تزويد العامل بمصفوفتين غير خاليتين من المعالم $[A[0],\ldots,A[P-1]]$ و $[B[0],\ldots,B[R-1]]$.

يجب على المعالم أن تكون مختلفة بشكل ثنائي كالتالي:

- $i,0 \leq i < j < P$ من أجل i و j بحيث A[i]
 eq A[j]
- $i,0 \leq i < j < R$ من أجل i و i بحيث B[i]
 eq B[j]
- $0 \leq j < R$ من أجل i و i بحيث $i \leq i \leq n$ من أجل A[i]
 eq A[j]

من أجل كل اتصال، يقوم عامل الهاتف بالإجابة فيما إذا كان يوجد طريق يصل بين أحد المعالم من المصفوفة A مع أحد المعالم من المصفوفة B, بشكل أخر: يعيد العامل القيمة 'true' إذا كان يوجد i و i بحيث أن i عنصلان بطريق، أما إذا لم يوجد هكذا معلمين فإنه يعيد القيمة 'false'. $0 \leq j < R$

l-2 و 0 بين i بين i بين i و و $t[0],t[1],\ldots,t[l-1]$ بحيث من أجل كل i بين i و و i بين طولها i الرحلة التي طولها i هي سلسلة من المعالم i و i متضمنة هذين القيمتين: المعلمان i و i متصلان بطريق فيما بينهما.

l+1 تدعى الرحلة التي طولها l بـ l بـ l أطول رحلة إذا لم يكن يوجد أي رحلة أخرى طولها على الأقل

مهمتك هي مساعدة المنظمين على إيجاد أطول رحلة في أوبوستازر عن طريق إجراء عدة اتصالات مع عامل الهاتف.

تفاصيل البرمجة

يجب عليك برمجة الإجرائية التالية

int[] longest_trip(int N, int D)

- N: عدد المعالم السياحية في أوبوستازر. N
- . الكثافة الدنيا لشبكة الطرقات المعروفة من قبل المنظمينD •
- هذه الإجرائية يجب أن تعيد المصفوفة $[l-1], \ldots, t[l-1]$, التي تمثل أطول رحلة..
 - يمكن أن يتم استدعاء هذه الإجرائية عدة مرات في كل حالة اختبار.

يمكن للإجرائية السابقة أن تقوم باستدعاء الإجرائية التالية:

bool are_connected(int[] A, int[] B)

- مصفوفة غير خالية من المعالم المختلفة. A
- مجموعة غير خالية من المعالم المختلفة: $B \bullet$
 - و Bيجب أن تكون منفصلة عن بعضها.. \bullet
- تعيد هذه الإجرائية القيمة B إذا كان أحد المعالم من A وأحد المعالم من B متصلين بطريق. وإلا تعيد القيمة false.
- يمكن استدعاء هذه الإجرائية 32 640 مرة في كل استدعاء للتابع longest_trip, وعلى الاكثر 150 000 مرة في المجموع الكلي.
- المجموع الكلي لطول المصفوفتين A و B التي سيتم تمريرها لهذه الإجرائية في كل الاستدعاءات لا يجب أن يتجاوز $1\,500\,000$.

المقيم لن يكون **متكيفا** أي أن قيم N و D بالإضافة إلى أزواج المعالم المتصلة بطرقات ثابتة ومحددة قبل استدعاء التابع longest_trip.

أمثلة

المثال 1

ليكن ليدنا السيناريو التالي بحيث N=5 , D=1 , ووصلات الطرق كما هو موضح في الشكل التالي

يتم استدعاء الإجرائية longest_tripبالشكل التالي:

يمكن أن تقوم الإجرائية باستدعاء are_connected كالتالي.

الاستدعاء	الأزواج المتصلة بطرق	القيمة المعادة
are_connected([0], [1, 2, 4, 3])	$\left(0,1 ight)$ and $\left(0,2 ight)$	true
are_connected([2], [0])	(2,0)	true
are_connected([2], [3])	(2,3)	true
are_connected([1, 0], [4, 3])	none	false

بعد الاستدعاء الرابع، سيكون واضحاً أن V يوجد أي زوج من الأزواج (1,4), (0,4), (0,4), و (0,3) متصلة بطريق. وبما أن كثافة شبكة الطرق هي على الأقل D=1 ، يمكننا أن نستنتج أنه من الثلاثية , (0,3,4),الزوج (3,4) يجب أن يكون متصلاً بطريق.

5 في هذه النقطة، يمكن استنتاج أن t=[1,0,2,3,4] هي رحلة طولها 5 وأنه لا يوجد أي رحلة أخرى طولها أكبر من t=[1,0,2,3,4] ليكن السيناريو الآخر بحيث D=1 , D=1 , والطرقات بين المعالم هي كما هو موضح في الشكل التالي:

يتم استدعاء الإجرائية longest_trip بالطريقة التالية:

في هذا السيناريو، طول أطول رحلة هو 2، لذلك بعد عدة استدعاءات للإجرائية are_connected,سيقوم الإجراء longest_trip. [0,1], [0,1], [0,1], [0,1] أو [0,1].

محالثال 2

المسألة الجزئية 0 تحوي حالة اختبار كمثال يكون فيها عدد المعالم السياحية (landmarks) N=256. حالة الاختبار هذه مضمنة ضمن الحزمة المرفقة والتي يمكنك تحميلها من نظام الاختبارات.

الحدود

- 3 < N < 256 •
- مجموع كل قيم N في كل استدعاءات 1ongest_trip لن تتجاوز $1\,024$.

المسائل الجزئية

$$D=3$$
 (درجات 5).1

$$D=2$$
 (در جات) 2.

3. (25 درجات) D=1. ليكن l^\star يمثل طول أطول رحلة. الإجرائية longest_trip يس بالضرورة أن تعيد D=1. رحلة طولها L^\star . وإنما من الممكن أن تعيد رحلة طولها على الأقل L^\star

$$D=1$$
 (درجة) 4.

إذا تحقق أنه في أحد حالات الاختبار لم تتوافق استدعاءات التابع are_connected مع الحدود المشروحة في تفاصيل البرمجة، أو إذا كانت المصفوفة التي أعادها التابع longest_trip غير صحية, سينال حلك لهذه المسألة الجزئية علامة 0.

في المسألة الجزئية 4 يتم تحديد علامتك بحسب عدد مرات استدعاء الإجرائية are_connected في كل استدعاء الإجرائية 1ongest_trip في كل استدعاء الإجرائية q هو أكبر عدد من الاستدعاءات في كل استدعاءات الإجرائية q في كل حالة اختبار من المسالة الجزئية ستكون علامتك على هذه المسألة الجزئية محسوبة وفق الجدول التالي:

الشرط	العلامة
$2750 < q \leq 32640$	20
$550 < q \leq 2750$	30
$400 < q \leq 550$	45
$q \leq 400$	60

Sample Grader

Let C denote the number of scenarios, that is, the number of calls to longest_trip. The sample :grader reads the input in the following format

C:1 line •

.The descriptions of C scenarios follow

:The sample grader reads the description of each scenario in the following format

- ND:1 line •
- $U_i[0] \; U_i[1] \; \dots \; U_i[i-1]$:(1 $\leq i < N$) 1+i line ullet

Here, each U_i ($1 \le i < N$) is an array of size i, describing which pairs of landmarks are connected $0 \le j < i$ by a road. For each i and j such that $1 \le i < N$ and

- ;1 if landmarks j and i are connected by a road, then the value of $U_i[j]$ should be ullet
- .0 if there is no road connecting landmarks j and i, then the value of $U_i[j]$ should be •

In each scenario, before calling $longest_trip$, the sample grader checks whether the density of the road network is at least D. If this condition is not met, it prints the message losufficient . Density and terminates

If the sample grader detects a protocol violation, the output of the sample grader is Protocol :Violation: <MSG>, where <MSG> is one of the following error messages

- B invalid array: in a call to are_connected, at least one of arrays A and ullet
 - is empty, or o
- contains an element that is not an integer between 0 and N-1, inclusive, or \circ
 - .contains the same element at least twice o
- .non-disjoint arrays: in a call to are_connected, arrays A and B are not disjoint ullet
- too many calls: the number of calls made to are_connected exceeds $32\,640$ over the .current invocation of longest trip, or exceeds $150\,000$ in total
- too many elements: the total number of landmarks passed to are_connected over all \bullet .1500000 calls exceeds

Otherwise, let the elements of the array returned by longest_trip in a scenario be $t[0], t[1], \ldots, t[l-1]$ for some nonnegative l. The sample grader prints three lines for this scenario :in the following format

- l:1 line •
- $t[0] \; t[1] \; \dots \; t[l-1]$:2 line ullet
- line 3: the number of calls to are_connected over this scenario •

:Finally, the sample grader prints

line $1+3\cdot C$: the maximum number of calls to are_connected over all calls to ullet longest_trip