		History	
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	M. J. Martin	NDS 114, 1497 (2013)	31-Aug-2013

 $Q(\beta^-)=-12848$ (syst) 246; $S(n)=1.28\times 10^4$ 3; $S(p)=2.79\times 10^3$ 15; $Q(\alpha)=2.78\times 10^3$ 15 2017Wa10 $Q(\varepsilon)=5.45\times 10^3$ 14; S(2n)=23775 3; $S(2p)=3.02\times 10^3$ 15; $Q(\varepsilon p)=4.71\times 10^3$ 15 2017Wa10 Additional information 1.

¹⁵²Yb Levels

Calculations:

Gamow-Teller β^+ decay: 1988Ku20, 1988Su16.

Isotope shift: 1992Be07, 1991Ho27, 1990Sp05, 1990Bi08, 1989Sp04.

2+ g-factor: 2007An16.

Cross Reference (XREF) Flags

- A 152 Yb IT decay
- B 152 Lu ε decay (0.7 s)
- C 156 Hf α decay (23 ms)
- D 156 Hf α decay (0.52 ms)

E(level)	J^{π}	T _{1/2}	XREF	Comments
0.0	0+	3.03 s 6	ABCD	$\%\varepsilon + \%\beta^{+} = 100; \%\beta^{+} p = ?$
				$T_{1/2}$: From 1988BaZS. Other: 3.1 s 2 (1987To02), 3.2 s 3 (1982No13).
				$\%\beta^+$ p: Although energetically possible, this decay has not been seen.
				$\Delta < r^2 > (^{152}\text{Yb}, ^{176}\text{Yb}) = 2.30 \text{ fm}^2 \text{ 5 (1994Ma57, using isotope shift data of 1989Sp04)}.$
				$\langle r^2 \rangle^{1/2} = 5.030 \text{ fm } 14 \text{ (2004An14)}.$
1531.4 5	2+		AB	J^{π} : First excited state in even-even nucleus.
				Predicted B(E2)↑=0.33 8 (1989Ra16, best fit in global systematics). This corresponds to
				a halflife of 0.10 ps +4-2.
1890.1 <i>6</i>	$(3)^{-}$		AB	J^{π} : E1 γ to 2^{+} .
2202.7 7	$(5)^{-}$		AB	J^{π} : E2 γ to (3) ⁻ .
2550.1 7	$(7)^{-}$		Α	J^{π} : E2 γ to (5) ⁻ .
2689.9 8	$(8)^{+}$		Α	J^{π} : E1 γ to $(7)^{-}$.
2744.5	(10^{+})	$30 \mu s 1$	Α	%IT=100
				$T_{1/2}$: from IT decay (1995Ni10).

[†] Syst. For N=82 nuclei and mults as noted. The mults of the cascading γ 's, with no observed crossover transitions, tend to confirm the assignments.

γ (152Yb)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	\mathbf{E}_f \mathbf{J}_f^{π}	Mult.‡	<u>α</u> &	Comments
1531.4	2+	1531.4 5	0.0 0+	[E2]		
1890.1	$(3)^{-}$	358.7 <i>3</i>	1531.4 2 ⁺	E1	0.0130	
2202.7	$(5)^{-}$	312.6 <i>3</i>	1890.1 (3)	E2	0.0653	
2550.1	$(7)^{-}$	347.6 [#] <i>3</i>	2202.7 (5)	E2	0.0479	
2689.9	$(8)^{+}$	140.0 [#] 3	2550.1 (7)	E1	0.141	Mult.: from IT decay.

γ (152Yb) (continued)

$$\frac{E_i(\text{level})}{2744.5} \quad \frac{J_i^{\pi}}{(10^+)} \quad \frac{E_{\gamma}^{\dagger}}{54.6^{\circ}} \quad \frac{E_f}{10} \quad \frac{J_f^{\pi}}{2689.9} \quad \frac{\text{Mult.}^{\ddagger}}{(E2)} \quad \frac{\alpha^{\&}}{39 \ 4} \quad \frac{\text{Comments}}{\text{B(E2)(W.u.)=0.020 3}}$$

$$\alpha: \text{The uncertainty given is that due to the uncertainty in Ey.}$$

Adopted Levels, Gammas

Level Scheme

 $^{^\}dagger$ From 152 Lu ε decay, unless otherwise noted.

[‡] From IT decay.

[#] From IT decay (1982No13). No uncertainties have been assigned by these authors. From a comparison with the 313, 359, and $1531\gamma'$ s reported in ε decay, the evaluator has increased the energies from 1982No13 by 0.2 keV and has assigned an uncertainty of 0.3 keV.

@ From IT decay (1995Ni10).

[&]amp; Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

		History	
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	N. Nica	NDS 176, 1 (2021)	1-May-2021

 $Q(\beta^-)=-7890\ 60$; $S(n)=10401\ 18$; $S(p)=4882\ 28$; $Q(\alpha)=3624\ 25$ 2021Wa16 $S(2n)=18296\ 10$, $S(2p)=7437\ 26\ (2021Wa16)$.

Additional information 1.

In the (HI,xnγ) dataset there are important differences between the works of 2019Sa61 and of 2010Ba02 and 2005Ba88 respectively. 2019Sa61 used triple-coincidence data for level scheme analysis (double-coincidence data could not be used). When compared with 2010Ba02 or 2005Ba88 level schemes (obtained from double-coincidence data) many of the weak low-lying inter-band transitions from bands 2, 4, 5, 7, 8, 9 were not retrieved by 2019Sa61, as well as in-band transitions of band 9 and all transitions of bands 11 and 12. The comparison is even more difficult becasue of 2010Ba02 and 2005Ba88 that did not list any γ-ray relative intensity information. Although questioned, all missing transitions and their corresponding levels were maintained by 2019Sa61 in their level scheme (Figs. 9 and 10). Indeed while triple-coincidence techinque is more selective it can lose weak transitions due to the lack of statistics. As only an inter-comparison of double-coincidence data of 2019Sa61 with 2010Ba02 and 2005Ba88 together with a thorough analysis of possible contaminants could reject such transitions, they are kept and listed as questionable by the evaluator as well. As most of these questioned transitions are in between existing levels they could possibly be revealed by more productive experiments. Finally 2019Ma70 bring new data and confirm the existence and placements of the low-lying inter-band transitions of bands 7, 8 and 9 of 2005Ba88, which indicates that those of 2010Ba02 should not be discarded before new measurements.

¹⁶⁰Yb Levels

Cross Reference (XREF) Flags

- **A** 160 Lu ε decay (36.1 s+40 s)
- $B = {}^{186}W(n.4p23n\gamma)$
- C 120 Sn(44 Ca, 4 n γ):tsd
- D (HI,xn γ)

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	XREF	Comments
0.0&	0+	4.8 min 2	AB D	$\%\varepsilon + \%\beta^+ = 100$ $T_{1/2}$: from 1969NeZW. 1970DeZF have measured an activity with $T_{1/2} = 4.1$ min 2 and assigned it to 160 Yb. 1974AdZX have measured $T_{1/2} = 4.2$ min 2 for a source prepared by chemical separation and mass separation following Ta(p) spallation and assigned the activity to 161 Yb. The activity measured by 1970DeZF was likely due to 161 Yb.
				From a compilation of optical isotope-shift data, 1987Au06 give $\lambda(^{168}\text{Yb}-^{160}\text{Yb})=0.719 \text{ fm}^2$ 40, where the nuclear parameter, λ , is approximately equal to $\Delta < r^2 >$. In an evaluation of nuclear rms charge radii, 2013An02 report $< r^2 > ^{1/2} = 5.1781 \text{ fm } 76$.
243.00 ^{&} 7	2+	121 ps 7	AB D	J^{π} : E2 transition to g.s.
638.39 ^{&} 9	4+	8.5 ps <i>6</i>	AB D	J^{π} : E2 transition to 2^+ state only. Member of g.s. band. g: using a technique involving $\gamma\gamma$ coincidences in a 4π geometry as well as transient magnetic fields and the recoil-distance technique, 1990Lu02 measured an average g-factor of +0.48 26 for the low-spin members (centering around the 4^+ state, and also including primarily the 2^+ and the 6^+ states) of the g.s. band.
820.51 ^f 8	2+		A D	J^{π} : E2 transition to 0^{+} .
1086.01 ^h 12	$(0)^{+}$		A D	J^{π} : sole decay mode is E2 transition to 2^+ state. $J^{\pi}=0^+$ is thus preferred, although 1984Au13 state that $2^+,3^+$, and 4^+ are possible.
1112.68 <mark>8</mark> 10	3 ⁺		A D	J^{π} : M1+E2 γ to 2 ⁺ , D+Q γ to 4 ⁺ .
1147.16 ^{&} 10	6+	1.9 ps 2	B D	XREF: B(?). J^{π} : E2 transition to 4 ⁺ state only. Member of g.s. band.

Continued on next page (footnotes at end of table)

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	XRE	Comments
1221.6?			A	
1255.79 ^f 11	(4+)		A D	J^{π} : 4 ⁺ based on E2, 435 γ to 2 ⁺ (2019Ma70), contradicted by 3 ⁻ based on E1, 617 γ to 4 ⁺ (2019Sa61). Moreover according to 1984Au13 both 435 γ and 617 γ are E1 based on α (K)exp (in the ε decay dataset) which makes 3 ⁻ the best adopted value based on strong arguments. However if 3 ⁻ this would be an odd-spin negative parity band with M2, 318 γ and 366 γ from band 8 and E3, 566 γ from band 10, which is unlikely, which rather qualifies this level as the 4 ⁺ and member of γ -vibrational band as placed in this dataset by 2005Ba88 and maintained by 2019Ma70.
1292.72 ^h 10	(2^{+})		A D	J^{π} : γ transitions to 0^+ and 4^+ states.
1358.30 [@] 10	2+		A D	1115 γ to 2 ⁺ in (HI,xn γ) (2010Ba02). 2 ⁺ is preferred (determined by strong arguments), which makes (3 ⁻) not only tentative but rather questionable.
1496.36 <i>15</i> 1525.37 ^c <i>1</i> 2	$(1,2^+)$		A	J^{π} : transitions to 0^+ and 2^+ .
1525.37° 12 1529.15 12	3^{-} $(2^{+},3,4^{+})$		A D	J ^{π} : E1 705 γ to 2 ⁺ ; it qualifies this level as member of AE, π =-, α =1 band suggested by 2005Ba88 in (HI,xn γ). J ^{π} : transitions to 2 ⁺ and 4 ⁺ .
1567.45 ^b 22	$(2^{-},3,4^{-})$ $(4)^{-}$		A D	J^{π} : E1 transition to 4^{+} state indicates that $J^{\pi}=3^{-}$, 4^{-} , or 5^{-} . Proposed assignment
	(4)		n D	of this level as a member of the negative-parity, signature-0, side band suggests J^{π} =4 ⁻ .
1567.60? ^d 16	5 ⁽⁻⁾		D	A same energy, (4) ⁻ level decayed by a same energy transition (929.6γ, compare with 929γ here) was placed by 1987By04, 1983Ri10, and 1980Ri08 in another band, which makes questionable the existence of this level. J ^π : D γ to 4 ⁺ , π from band assignment.
1573.95 <i>g</i> 10	5 ⁺		D	J^{π} : E2 γ to 3 ⁺ .
1591.70 ^h 11	4+		D	J^{π} : E2 γ from 6^+ .
1629.0? [@] <i>j</i> 6			D	·
1676.37 <i>13</i>	$(2^+,3,4^+)$		Α	J^{π} : transitions to 2^+ and 4^+ .
1694.46 ^e 18	(4-)		D	
1736.79 ^{&} 12	8+	1.0 ps 2	D	J^{π} : E2 γ to 6^{+} .
1743.15 ^{<i>f</i>} 11 1811.26 25	(6^+) $(1,2^+)$		D A	J^{π} : E2 γ to (4 ⁺). J^{π} : transitions to 0 ⁺ and 2 ⁺ .
1871? ^C	(5 ⁻)		A D	
				J ^{π} : if really a member of AE, π =-, α =1 band, its upper level is (7 ⁻) and its lower one is most likely 3 ⁻ .
1926.99 ^d 13	7-		D	J^{π} : E1 multipolarity of 780 γ to 6 ⁺ state.
1952.0? [@] <i>j</i> 6			D	
1957.22 ^h 11	6+		D	J^{π} : E2 γ to 4 ⁺ .
2050.23 ^e 16	(6-)		D	This 2051, (6 ⁻) level with its decaying 482.7γ and 902.9γ placed in this band by 2010Ba02 and 2010Ba25 is the same as 2051, 6 ⁻ level with its decaying 484 and 903.6 placed in a different band by 1987By04, 1983Ri10, and 1980Ri08. J ^{π} : D multipolarity of 903 γ to 6 ⁺ state and band assignment.
2050.56 ^b 24	6-		D	See comment at the nearby level. J^{π} : E2 312 γ from 8 ⁻ .
2108.478 11	7+		D	J^{π} : E2 γ to 5^+ .
2272.0 [@] c 6	7-		D	,
2274.20^{f} 12	(8+)		D	
2362.32 ^b 14	8-		D	,
2364.14 ^h 12	8+		D	J^{π} : E2 γ to 6^+ .

E(level) [†]	$\mathtt{J}^{\pi \ddagger}$	T _{1/2} #	XREF	Comments
2372.63 ^d 14	9-		D	J^{π} : E2 446 γ to 7^{-} state.
2374.32& 14	10+	1.1 ps <i>3</i>	D	J^{π} : E2 638 γ to 8 ⁺ . T _{1/2} : weighted average of 1.0 ps 6 (1988Fe01), 1.3 ps 3 (1990Lu02), and 0.60 ps 35 (1976Bo27).
2415.0? [@] <i>j</i> 2480.55 ^c 13 2527.41 ^e 19	9 ⁻ (8 ⁻)		D D D	J^{π} : E1 744 γ to 8 ⁺ .
2578.58 ^b 14	10-	90 ps 28	D	J^{π} : E2 216 γ to 8 ⁻ .
2649.3? [@] <i>a</i> 9 2700.81 ^g 14	(8 ⁻) 9 ⁺		D D	
2703.8 ^l 13	$(8^-,9^+)$		D	
2718.4? ^{@k} 6	(9-)		D	J^{π} : (7 ⁻ ,8,9 ⁻) from γ 's to 7 ⁻ , 8 ⁺ and 9 ⁻ respectively. (9 ⁻) band-head assigned by 2010Ba02 (HI dataset) based on DCO and polarization measurements (with no listed evidence).
2763.99 ^c 14	11-	46 ps 4	D	J^{π} : E2 283 γ to 9 ⁻ .
2789.83 ^f 12	(10^+)		D	J^{π} : E2 γ to (8^+) .
2840.39 ^h 13	(10^+)		D	
2878.03 ^d 16	11-		D	J^{π} : E2 505 γ to 9 ⁻ .
2898.27 ^a 17 2943? [@] j	(10 ⁻)		D D	
2960.80 ^{&} 17	12 ⁺	1.0 ps 4	D	$T_{1/2}$: 1990Lu02 report $T_{1/2} \le 0.8$ ps.
2977.65 ^b 16	12-		D	
3008.8 ^e 3	(10-)		D	
3024.6 ^l 9	$(10^-,11^+)$		D	
3127.5? ^{@k} 8	(11^{-})		D	
3137.55 ⁱ 17 3195.70 ^c 17	12 ⁺	<6 ps	D	J^{π} : E2 763 γ to 10 ⁺ .
3193.70° 17 3318.72° 14	13-	<6 ps	D	II, II II II II II II II
3318.72 ³ 14 3329.65 ^a 17	(12 ⁺) (12 ⁻)		D D	J^{π} : E2 γ to (10 ⁺).
3330.52 ⁸ 17	11+		D	J^{π} : E2 γ to 9 ⁺ .
3365.00 ^{&} 19	14+	7.7 ps 8	D	μ =-3.2 43 μ : From g=-0.23 31 (1990Lu02, by intergal perturbed angular correlatin method). J ^{π} : E2 404 γ to 12 ⁺ .
3422.9 ^d 3	13-	<3 ps	D	J^{π} : E2 545 γ to 11 ⁻ .
3457.3 ^l 9	$(12^-,13^+)$	to po	D	
3518.44 ^b 17	14-	3.8 ps <i>12</i>	D	J^{π} : E2 541 γ to 12 ⁻ .
3544.8? ^{@e} 11		F	D	
3682.7? ^{@k} 8	(13^{-})		D	
3745.78 ⁱ 17	14+		D	
3757.31 ^c 19	15-	<3 ps	D	J^{π} : E2 562 γ to 13 ⁻ .
3849.10 ^{&} 22	16 ⁺	1.6 ps <i>3</i>	D	,
3869.51 ^f 17	(14^{+})	•	D	
3896.7 ^a 3	(14^{-})		D	
4015.65 ⁸ 21	(13^{+})		D	
4024.9 ^l 13	$(14^-,15^+)$		D	
4028.8 ^d 4	15 ⁽⁻⁾		D	J^{π} : (E2) in-band 606 γ to 13 ⁻ .
4172.52 ^b 21	16-	1.4 ps 7	D	J^{π} : E2 654 γ to 14 ⁻ .
4310.7? ^{@k} 10	(15 ⁻)		D	

E(level) [†]	$J^{\pi \ddagger}$	${{{ m T}_{1/2}}^{\#}}$	XREF	Comments
4375.78 ⁱ 20	16 ⁺		D	J^{π} : E2 630 γ to 14 ⁺ .
4427.50 ^{&} 24	18 ⁺	2.1 ps <i>3</i>	D	,
4428.71 ^c 25	17-	1.5 ps 6	D	J^{π} : E2 671 γ to 15 ⁻ .
4475.5 ^f 3	(16^+)	-	D	
4555.7 ^a 4	(16-)		D	
4683.9 ^l 17	$(16^-, 17^+)$		D	
4702.2 ^d 4	17 ⁽⁻⁾	<7 ps	D	J^{π} : (E2) in-band 673 γ to 15 ⁽⁻⁾ .
4714.2 3	$(17,18^+)$		D	J^{π} : 865 γ to 16 ⁺ but no band assignment.
4911.7 ^b 3	18-	<5 ps	D	
4984.6 3	(17)		D	J^{π} : 1136 γ to 16 ⁺ but no band assignment.
4990.3? ^{@k} 16	(17^{-})		D	
5035.8 ⁱ 3	(18^{+})		D	
5091.2 ^{&} 3	20 ⁺	1.1 ps <i>3</i>	D	J^{π} : E2 664 γ to 18 ⁺ .
5176.7 ^c 4	19-	1.3 ps 8	D	J^{π} : (E2) in-band 748 γ to 17 ⁻ .
5203.7 ^a 4	(18^{-})		D	
5331.8 ^l 20	$(18^-, 19^+)$		D	
5368.2 11			D	
5406.3 ^d 5	(19 ⁻)		D	
5692.7 ^b 4	20^{-}		D	
5827.6 ^{&} 3	22+	0.53 ps 9	D	J^{π} : (E2) 736 γ to 20 ⁺ .
5947.8 ^C 4	21-	1.7 ps 6	D	J^{π} : (E2) in-band 771 γ to 19 ⁻ .
6123.9^{d} 5	(21^{-})		D	
6380.7 ^b 4	22^{-}		D	J^{π} : E2 664 γ to 20 ⁻ .
6623.2 ^{&} 4	24+	0.15 ps 2	D	J^{π} : E2 796 γ to 22 ⁺ .
6694.1° 5	23-	<2 ps	D	J^{π} : E2 746 γ to 21 ⁻ .
7092.4 ^b 5	24-		D	
7458.9 & 4	26 ⁺	0.18 ps +3-4	D	J^{π} : E2 836 γ to 24 ⁺ .
7459.1 ^c 5	25-		D	J^{π} : E2 836 γ to 23 ⁻ .
7870.4 ^b 5	26-		D	J^{π} : E2 778 γ to 24 ⁻ .
8272.1 ^c 11	(27-)		D	
8289.6 ^{&} 5	(28^{+})	0.19 ps <i>3</i>	D	
8708.4 ^b 6	28-		D	J^{π} : E2 838 γ to 24 ⁻ .
9126.6 ^{&} 5	(30^+)	0.19 ps +3-5	D	
9132.1 ^c 15	(29 ⁻)		D	
9555.4 ^b 6	(30-)	0.40	D	
10003.6 ^{&} 12 10010.1 ^c 18	(32^+)	0.19 ps +6-3	D D	
10408.4 ^b 12	(31-)			
10408.4° 12 10887.1° 21	(32 ⁻) (33 ⁻)		D D	
10887.1 21	(34^+)	0.18 ps 3	D	
11293.4 ^b 16	(34^{-})	0.16 ps 5		
11790.1 ^c 23	(34°) (35^{-})		D D	
11790.1 23 11964.6 ^{&} 18	(36^+)	0.26 ps <i>3</i>	D	
12228.4 ^b 19	(36 ⁻)	0.20 ps 3	D	
12740.1° 25	(30°) (37^{-})		D D	
13042.6 ^{&} 21	(38^+)		D	
13228.4^{b} 21	(38 ⁻)		D	
10220.1 21	(50)			

¹⁶⁰Yb Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	XREF	Comments
13740 ^c 3	(39-)	D	
14200.6 ^{&} 23	(40^+)	D	
14290? ^b	(40^{-})	D	
15403? <mark>b</mark>	(42^{-})	D	
$0.0 + x^{m}$	J≈(20)	C	Additional information 2.
654.0+x ^m 10	J+2	C	
1350.0+x ^m 15	J+4	C	
2085.0+x ^m 18	J+6	C	
2856.0+x ^m 20	J+8	C	
3641.0+x ^m 23	J+10	C	
4449.0+x ^m 25	J+12	C	
5304+x ^m 3	J+14	C	
6215+x ^m 3	J+16	C	
7177+x ^m 3	J+18	C	
8185+x ^m 4	J+20	C	
9237+x ^m 4	J+22	C	
10339+x ^m 4	J+24	C	
11501+x ^m 4	J+26	C	
12734+x ^m 4	J+28	C	
14045+x ^m 4	J+30	C	

[†] The level energies have been computed from a least-squares fit to the listed $E\gamma$ values. Where no uncertainties are given for the $E\gamma$ values, these uncertainties have been assumed to be 1 keV.

 $^{^{\}ddagger}$ Most values are from the levels populated in the heavy-ion-induced reactions based on measured γ -ray multipolarities (if polarization information is missing stretched quadrupole transitions are assumed to be E2) together with considerations of expected rotational-band structure and theoretical calculations. If available specific arguments are given in comments.

[#] Except where otherwise noted, the $T_{1/2}$ values are obtained from the level lifetimes determined from the (HI,xny) reaction studies.

[@] Level not confirmed by 2019Sa61 ((HI,xn γ) dataset).

[&]amp; Band(A): Band 1 g.s. band.

^a Band(b): Band 2 AG, π =-, α =0. From HI dataset established by 2010Ba02 and confirmed by 2019Sa61.

^b Band(c): Band 3 AF, π =-, α =0. Negative-parity, signature-0, side band. Probable configuration=(ν 3/2[651])(ν 3/2[532] and ν 3/2[521]).

^c Band(C): Band 4 AE, π =-, α =1. Negative-parity, signature-1, side band. Probable configuration=(ν 3/2[651])(ν 3/2[532] and ν 3/2[521]).

^d Band(D): Band 5 octupole band, α =1. According to 2019Sa61 Band 5 is compatible with a Y30-octupole pear-shape one-phonon vibration band (2019Sa61). Probable configuration=(ν 3/2[651])(ν 3/2[532] and ν 3/2[521]).

^e Band(d): Band 6 octupole band, α =0. Tetrahedral nature of this band proposed earlier in the literature is not supported in 2010Ba02 based on nonzero values of absolute and relative quadrupole moments. According to 2019Sa61 this band is compatible with a K^{π} =2 $^{-}$, Y32-triplanar-octupole or tetrahedral-vibration band.

^f Band(e): Band 7. Even-spin γ -vibrational band based on 2^+ .

^g Band(f): Band 8. Odd-spin γ -vibrational band based on 3⁺.

^h Band(E): Band 9. Tentative β-vibrational band.

ⁱ Band(G): Band 10. Aligned positive-parity (or S) band.

^j Band(F): Band 11. Side band: unassigned J^{π} values from HI dataset established by 2005Ba88 and not confirmed by 2019Sa61.

^k Band(B): Band 12 AH, π =-, α =1. From HI dataset established by 2010Ba02 and not confirmed by 2019Sa61.

¹ Band(H): Band 13. Side band: parity and signature uncertain. Except for the first transitions, this band (with even J values and

¹⁶⁰Yb Levels (continued)

 π =-) is identical with the AG, π =-, α =0 band 2 (each band with different excitation energies).

^m Band(I): Band 14 triaxial strongly-deformed band. Population intensity $\approx 0.3\%$ of the 4n-reaction channel. The decay pattern and dynamic moment of inertia are found to be similar to triaxial strongly-bands in ¹⁵⁷Er and ¹⁵⁸Er. From model calculations, a minimum associated with this structure is suggested to correspond to deformation parameters: $\varepsilon_2 \approx 0.37$, $\gamma \approx 20^\circ$. A discontinuity in the dynamic moment of inertia for this band at $\hbar\omega = 0.40$ -0.45 MeV is interpreted as crossing between $\nu i_{13/2}$ levels. Possible configuration relative to ¹⁴⁶Gd core= $\pi[(h_{11/2}^8, (h_{9/2}, f_{7/2})^1] \otimes \nu[i_{13/2}^4, h_{11/2}^{-2}, N_{osc} = 4^{-2}]$.

1984Au13). 1012 243.00 2 ⁺ Transition observed only in (HI,xnγ) (2005Ba88). 1292.72 (2 ⁺) 653.8 [@] 16 [@] 638.39 4 ⁺ 1049.8 [@] 1 100 [@] 16 243.00 2 ⁺	$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult.‡	α^{b}	Comments
638.39 4 ⁺ 395.6 100 243.00 2 ⁺ E2 ^{ff} 0.0332 B(E2)(W.a.)=129 α(K)=0.001619 ; α(M)=0.001448 21 α(N)=0.000355 ; α(D)=4.34x10 ⁻⁵ 6; α(D)=1.346x10 ⁻⁶ 19 820.51 2 ⁺ 577.2 [®] 1 100 [®] 8 243.00 2 ⁺ M1+E2 0.0204 80 α(K)=0.0169 70; α(L)=0.00272 79; α(M)=6.1x10 ⁻⁴ 17 α(N)=1.000618 30; α(D)=2.01x10 ⁻⁵ 6; α(D)=9.x10 ⁻⁷ 44 Mult.; from (HL,xny) dataset by R(DCO) (2019Ma70). α(K)=0.00462 7; α(L)=0.000772 11; α(M)=0.0001748 25 α(K)=0.00462 7; α(L)=0.000772 11; α(M)=0.0001748 25 α(K)=0.00462 7; α(L)=0.00072 11; α(M)=0.0001635 23 α(K)=3.82x10 ⁻⁵ 6; α(D)=5.29x10 ⁻⁶ 8; α(P)=2.45x10 ⁻⁷ 4 α(K)=0.000163 7; α(L)=0.000072 11; α(M)=0.0001635 23 α(K)=3.82x10 ⁻⁵ 6; α(D)=5.29x10 ⁻⁶ 8; α(P)=2.45x10 ⁻⁷ 4 α(K)=0.000163 7; α(L)=0.000072 11; α(M)=0.0001635 23 α(N)=0.00165 7; α(L)=0.000072 11; α(M)=0.0001635 23 α(N)=0.00165 7; α(L)=0.000072 11; α(M)=0.0001635 23 α(N)=0.00165 7; α(L)=0.000072 11; α(M)=0.0001635 23 α(N)=0.00163 23; α(N)=0.00164 19; α(P)=5.7x10 ⁻⁶ 29 Mult.; based on R(DCO) in (HI,xny) dataset (2019Ma70). Mult.; based on R(DCO) in (HI,xny) dataset (2019Ma70). Mult.; based on R(DCO) and polarization in (HI,xny) dataset (2019Ma70). B(E2)(W.n.)=166 + 19-16 49; α(L)=0.000279 4; α(M)=0.000645 α(K)=0.000498 21; α(O)=1.09057 7; α(M)=0.00065 5; α(P)=7.37x10 ⁻⁷ 11 α(K)=0.0000498 21; α(O)=1.09057 7; α(M)=0.00065 5; α(P)=7.37x10 ⁻⁷ 11 α(K)=0.0000498 21; α(O)=1.09057 7; α(M)=0.00065 5; α(P)=7.37x10 ⁻⁷ 11 α(K)=0.0000498 21; α(D)=1.09057 7; α(M)=0.00065 5; α(P)=3.7x10 ⁻⁷ 11 α(K)=0.00063 23; α(L)=0.00079 4; α(M)=0.00065 5; α(P)=3.7x10 ⁻⁷ 11 α(L)=0.00063 23; α(L)=0.00079 4; α(L)=0.00079	243.00	2+	243.2 1	100	0.0 0+	E2#	0.1419	$\alpha(K)=0.0947$ 14; $\alpha(L)=0.0362$ 6; $\alpha(M)=0.00868$ 13
820.51 2+ 577.2 [®] 1 100 [®] 8 243.00 2+ M1+E2 0.0204 80	638.39	4+	395.6 1	100	243.00 2+	E2#	0.0332	B(E2)(W.u.)=129 9 α (K)=0.0252 4; α (L)=0.00619 9; α (M)=0.001448 21
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	820.51	2+	577.2 [@] 1	100 [@] 8	243.00 2+	M1+E2	0.0204 80	$\alpha(K)$ =0.0169 70; $\alpha(L)$ =0.00272 79; $\alpha(M)$ =6.1×10 ⁻⁴ 17 $\alpha(N)$ =1.43×10 ⁻⁴ 40; $\alpha(O)$ =2.01×10 ⁻⁵ 62; $\alpha(P)$ =9.9×10 ⁻⁷ 44
1086.01 (0)+ 843.0			820.4 [@] 1	57 [@] 5	0.0 0+	E2#	0.00561	$\alpha(K)$ =0.00462 7; $\alpha(L)$ =0.000772 11; $\alpha(M)$ =0.0001748 25
$\alpha(N) = 0.00105 \ 7; \ \alpha(O) = 0.000141 \ 19; \ \alpha(P) = 5.7 \times 10^{-6} \ 29 \\ \text{Mult: based on R(DCO) and polarization in (H1,xny) dataset (2019Ma70).} \\ \text{Mult: based on R(DCO) and polarization in (H1,xny) dataset (2019Ma70).} \\ \text{Mult: based on R(DCO) in (H1,xny) dataset (2019Ma70).} \\ \text{Mult: based on R(DCO) and polarization in (H1,xny) dataset (2019Ma70).} \\ \text{Mult: based on R(DCO) and polarization in (H1,xny) dataset (2019Ma70).} \\ \text{Mult: based on R(DCO) and polarization in (H1,xny) dataset (2019Ma70).} \\ \text{Mult: based on R(DCO) and polarization in (H1,xny) dataset (2019Ma70).} \\ \text{Mult: based on R(DCO) and polarization in (H1,xny) dataset (2019Ma70).} \\ \text{Mult: based on R(DCO) and polarization in (H1,xny) dataset (2019Ma70).} \\ \text{Mult: based on R(DCO) and polarization in (H1,xny) dataset (2019Ma70).} \\ \text{Mult: based on R(DCO) and polarization in (H1,xny) dataset (2019Ma70).} \\ \text{Mult: based on R(DCO) and polarization in (H1,xny) dataset (2019Ma70).} \\ \text{Mult: based on R(DCO) and polarization in (H1,xny) dataset (2019Ma70).} \\ \text{Mult: based on R(DCO) and polarization in (H1,xny) dataset (2019Ma70).} \\ \text{Mult: based on R(DCO) and polarization in (H1,xny) dataset (2019Ma70).} \\ \text{Mult: based on R(DCO) and polarization in (H1,xny) dataset (2019Ma70).} \\ \text{Mult: based on R(DCO) and polarization in (H1,xny) dataset (2019Ma70).} \\ \text{Mult: based on R(DCO) and polarization in (H1,xny) dataset (2019Ma70).} \\ \text{Mult: based on R(DCO) and polarization in (H1,xny) dataset (2019Ma70).} \\ \text{Mult: based on R(DCO) and polarization in (H1,xny) dataset (2019Ma70).} \\ \text{Mult: based on R(DCO) and polarization in (H1,xny) dataset (2019Ma70).} \\ \text{Mult: based on R(DCO) and polarization in (H1,xny) dataset (2019Ma70).} \\ \text{Mult: based on R(DCO) and polarization in (H1,xny) dataset (2019Ma70).} \\ \text{Mult: based on R(DCO) and polarization in (H1,xny) dataset (2019Ma70).} \\ \text{Mult: based on R(DCO) and polarization in (H1,xny) dataset (2019Ma70).} \\ \text{Mult: based on R(DCO) and polarization in (H1,xny) dataset (2019Ma70).} \\ Mult: bas$	1086.01	$(0)^{+}$	843.0 [@] 1	100 [@]	243.00 2+	E2#	0.00529	$\alpha(K)=0.00436$ 7; $\alpha(L)=0.000723$ 11; $\alpha(M)=0.0001635$ 23
474.4® 1 18® 2 638.39 4+ D+Q Mult.: based on R(DCO) in (HI,xny) dataset (2019Ma70).	1112.68	3+	292.5 [@] 3	16 [@] 2	820.51 2+	M1+E2	0.124 45	$\alpha(N)=0.00105\ 7;\ \alpha(O)=0.000141\ 19;\ \alpha(P)=5.7\times10^{-6}\ 29$
$\alpha(N) = 5.0 \times 10^{-5} \ 15; \ \alpha(O) = 7.1 \times 10^{-6} \ 22; \ \alpha(P) = 3.7 \times 10^{-7} \ 14$ $\text{Mult: based on R(DCO) and polarization in (HI, xny) dataset (2019Ma70).}$ $B(E2)(W.u.) = 166 + 19 - 16$ $\alpha(K) = 0.01342 \ 19; \ \alpha(L) = 0.00279 \ 4; \ \alpha(M) = 0.000645 \ 9$ $\alpha(N) = 0.0001498 \ 21; \ \alpha(O) = 1.99 \times 10^{-5} \ 3; \ \alpha(P) = 7.37 \times 10^{-7} \ 11$ $1221.6? 978.5 \ 0 243.00 \ 2^{+}$ $1255.79 (4^{+}) 435.15 \ 10 59 \ 12 820.51 \ 2^{+} (E2) 0.0258 \alpha(K) = 0.0199 \ 3; \ \alpha(L) = 0.00457 \ 7; \ \alpha(M) = 0.001065 \ 15$ $\alpha(N) = 0.000247 \ 4; \ \alpha(O) = 3.23 \times 10^{-5} \ 5; \ \alpha(P) = 1.075 \times 10^{-6} \ 15$ $I_{y}: \ \text{from} \ ^{160}\text{Lu } \varepsilon \ \text{decay.}$ $Mult: E2 \ \text{based on DCO } (2019Ma70) \ \text{contradicts E1 based on } \alpha(K) \text{exp}$ $(1984Au13). \alpha(K) = 0.0144 \ 58; \ \alpha(L) = 0.00229 \ 68; \ \alpha(M) = 5.1 \times 10^{-4} \ 15$ $\alpha(N) = 1.20 \times 10^{-4} \ 35; \ \alpha(O) = 1.69 \times 10^{-5} \ 53; \ \alpha(P) = 8.4 \times 10^{-7} \ 37$ $I_{y}: \ \text{from} \ ^{160}\text{Lu } \varepsilon \ \text{decay.}$ $Mult: \ \text{contradictory assignments: } M1 + E2 \ (2019Ma70) \ \text{versus E1 } (2019Sa61 \ \text{ar} \ 1984Au13).$ $1012 243.00 \ 2^{+} 100^{0} \ 16 243.00 \ 2^{+} 100^{0} \ 16 243.00 \ 2^{+} 100^{0} \ 16 243.00 \ 2^{+} 100^{0} \ 16 243.00 \ 2^{+} 100^{0} \ 16 243.00 \ 2^{+} 100^{0} \ 16 243.00 \ 2^{+} 100^{0} \ 16 243.00 \ 2^{+} 100^{0} \ 16 243.00 \ 2^{+} 100^{0} \ 16 243.00 \ 2^{+} 100^{0} \ 10$			474.4 [@] 1	18 [@] 2	638.39 4+	D+Q		· · · · · · · · · · · · · · · · · · ·
1147.16 6 ⁺ 509.2 <i>l</i> 100 638.39 4 ⁺ E2 0.01703 B(E2)(W.u.)=166 + <i>l</i> 9-16 α (K)=0.00279 4; α (M)=0.000645 9 α (N)=0.0001498 2 <i>l</i> ; α (O)=1.99×10 ⁻⁵ 3; α (P)=7.37×10 ⁻⁷ 11 1221.6? 978.5 α α 243.00 2 ⁺ (E2) 0.0258 α (K)=0.0199 3; α (L)=0.00457 7; α (M)=0.001065 15 α (N)=0.000247 4; α (O)=3.23×10 ⁻⁵ 5; α (P)=1.075×10 ⁻⁶ 15 Ly: from α α (L)=0.00247 4; α (O)=3.23×10 ⁻⁵ 5; α (P)=1.075×10 ⁻⁶ 15 Ly: from α α (L)=0.00247 4; α (O)=3.23×10 ⁻⁵ 5; α (P)=1.075×10 ⁻⁶ 15 Ly: from α α (L)=0.00229 68; α (M)=5.1×10 ⁻⁴ 15 α (N)=1.20×10 ⁻⁴ 35; α (O)=1.69×10 ⁻⁵ 53; α (P)=8.4×10 ⁻⁷ 37 Ly: from α α (L)=0.00229 68; α (M)=5.1×10 ⁻⁴ 15 α (N)=1.20×10 ⁻⁴ 35; α (O)=1.69×10 ⁻⁵ 53; α (P)=8.4×10 ⁻⁷ 37 Ly: from α α (L)=0.00229 68; α (M)=5.1×10 ⁻⁴ 15 α (N)=1.20×10 ⁻⁴ 35; α (O)=1.69×10 ⁻⁵ 53; α (P)=8.4×10 ⁻⁷ 37 Ly: from α α (L)=0.00229 68; α (M)=5.1×10 ⁻⁴ 15 α (N)=1.20×10 ⁻⁴ 35; α (O)=1.69×10 ⁻⁵ 53; α (P)=8.4×10 ⁻⁷ 37 Ly: from α α (L)=0.00229 68; α (M)=5.1×10 ⁻⁴ 15 α (N)=1.20×10 ⁻⁴ 35; α (O)=1.69×10 ⁻⁵ 53; α (P)=8.4×10 ⁻⁷ 37 Ly: from α α (L)=0.00229 68; α (M)=5.1×10 ⁻⁴ 15 α (N)=2.0×10 ⁻⁵ 53; α (P)=8.4×10 ⁻⁷ 37 Ly: from α (B) Lu: α (C)=0.00229 68; α (M)=5.1×10 ⁻⁴ 15 α (N)=0.00247 4; α (D)=3.23×10 ⁻⁵ 5; α (P)=1.075×10 ⁻⁶ 15 Ly: from α (L)=0.00229 68; α (M)=5.1×10 ⁻⁴ 15 α (N)=0.00247 4; α (D)=3.23×10 ⁻⁵ 5; α (P)=1.075×10 ⁻⁶ 15 Ly: from α (L)=0.00229 68; α (M)=5.1×10 ⁻⁴ 15 α (N)=0.00247 4; α (D)=3.23×10 ⁻⁵ 5; α (P)=1.075×10 ⁻⁶ 15 Ly: from α (L)=0.00229 68; α (M)=5.1×10 ⁻⁴ 15 α (N)=0.00247 4; α (D)=3.23×10 ⁻⁵ 5; α (P)=1.075×10 ⁻⁶ 15 Ly: from α (L)=0.00229 68;			869.6 [@] 1	100 [@] 8	243.00 2+	(M1+E2)	0.0075 26	$\alpha(N)=5.0\times10^{-5}$ 15; $\alpha(O)=7.1\times10^{-6}$ 22; $\alpha(P)=3.7\times10^{-7}$ 14
1255.79 (4 ⁺) 435.15 10 59 12 820.51 2 ⁺ (E2) 0.0258 $\alpha(K)=0.0199$ 3; $\alpha(L)=0.00457$ 7; $\alpha(M)=0.001065$ 15 $\alpha(N)=0.000247$ 4; $\alpha(O)=3.23\times10^{-5}$ 5; $\alpha(P)=1.075\times10^{-6}$ 15 1_{γ} : from 160 Lu ε decay. Mult.: E2 based on DCO (2019Ma70) contradicts E1 based on $\alpha(K)$ exp (1984Au13). 616.71 10 100 18 638.39 4 ⁺ (M1+E2) 0.0173 67 $\alpha(K)=0.0144$ 58; $\alpha(L)=0.00229$ 68; $\alpha(M)=5.1\times10^{-4}$ 15 $\alpha(N)=1.20\times10^{-4}$ 35; $\alpha(O)=1.69\times10^{-5}$ 53; $\alpha(P)=8.4\times10^{-7}$ 37 1_{γ} : from 160 Lu ε decay. Mult.: contradictory assignments: M1+E2 (2019Ma70) versus E1 (2019Sa61 at 1984Au13). 1012 243.00 2 ⁺ Transition observed only in (HI,xn γ) (2005Ba88). 1292.72 (2 ⁺) 653.8 $\alpha(I)=0.0029$ 16 243.00 2 ⁺ Transition observed only in (HI,xn γ) (2005Ba88).	1147.16	6+			638.39 4+	E2	0.01703	B(E2)(W.u.)=166 +19-16 α (K)=0.01342 19; α (L)=0.00279 4; α (M)=0.000645 9
$\alpha(N) = 0.000247 \ 4; \ \alpha(O) = 3.23 \times 10^{-5} \ 5; \ \alpha(P) = 1.075 \times 10^{-6} \ 15$ $I_{y}: \ \text{from}^{\ 160} \text{Lu} \ \varepsilon \ \text{decay}.$ $\text{Mult.: E2 based on DCO (2019Ma70) contradicts E1 based on } \alpha(K) \text{exp}$ $(1984 \text{Au} 13).$ $\alpha(K) = 0.0144 \ 58; \ \alpha(L) = 0.00229 \ 68; \ \alpha(M) = 5.1 \times 10^{-4} \ 15$ $\alpha(N) = 1.20 \times 10^{-4} \ 35; \ \alpha(O) = 1.69 \times 10^{-5} \ 53; \ \alpha(P) = 8.4 \times 10^{-7} \ 37$ $I_{y}: \ \text{from}^{\ 160} \text{Lu} \ \varepsilon \ \text{decay}.$ $\text{Mult.: contradictory assignments: } M1 + E2 \ (2019Ma70) \ \text{versus E1 (2019Sa61 an}$ $1984 \text{Au} 13).$ $1012 \qquad 243.00 \ 2^{+}$ $1292.72 (2^{+}) 653.8^{\circ} 16^{\circ} 638.39 \ 4^{+}$ $1049.8^{\circ} \ 1 100^{\circ} \ 16 243.00 \ 2^{+}$								
Mult.: E2 based on DCO (2019Ma70) contradicts E1 based on α (K)exp (1984Au13). 616.71 10 100 18 638.39 4+ (M1+E2) 0.0173 67 α (K)=0.0144 58; α (L)=0.00229 68; α (M)=5.1×10 ⁻⁴ 15 α (N)=1.20×10 ⁻⁴ 35; α (O)=1.69×10 ⁻⁵ 53; α (P)=8.4×10 ⁻⁷ 37 α (N)=1.20×10 ⁻⁴ 35; α (O)=1.69×10 ⁻⁵ 53; α (P)=8.4×10 ⁻⁷ 37 α (N)=1.20×10 ⁻⁴ 35; α (O)=1.69×10 ⁻⁵ 53; α (P)=8.4×10 ⁻⁷ 37 α (N)=1.20×10 ⁻⁴ 35; α (O)=1.69×10 ⁻⁵ 53; α (P)=8.4×10 ⁻⁷ 37 α (N)=1.20×10 ⁻⁴ 35; α (O)=1.69×10 ⁻⁵ 53; α (P)=8.4×10 ⁻⁷ 37 α (N)=1.20×10 ⁻⁴ 35; α (O)=1.69×10 ⁻⁵ 53; α (P)=8.4×10 ⁻⁷ 37 α (N)=1.20×10 ⁻⁴ 35; α (O)=1.69×10 ⁻⁵ 53; α (P)=8.4×10 ⁻⁷ 37 α (N)=1.20×10 ⁻⁴ 35; α (O)=1.69×10 ⁻⁵ 53; α (P)=8.4×10 ⁻⁷ 37 α (N)=1.20×10 ⁻⁴ 35; α (O)=1.69×10 ⁻⁵ 53; α (P)=8.4×10 ⁻⁷ 37 α (N)=1.20×10 ⁻⁴ 35; α (O)=1.69×10 ⁻⁵ 53; α (P)=8.4×10 ⁻⁷ 37 α (N)=1.20×10 ⁻⁴ 35; α (O)=1.69×10 ⁻⁵ 53; α (P)=8.4×10 ⁻⁷ 37 α (N)=1.20×10 ⁻⁴ 35; α (O)=1.69×10 ⁻⁵ 53; α (P)=8.4×10 ⁻⁷ 37 α (N)=1.20×10 ⁻⁴ 35; α (O)=1.69×10 ⁻⁵ 53; α (P)=8.4×10 ⁻⁷ 37 α (N)=1.20×10 ⁻⁴ 35; α (O)=1.69×10 ⁻⁵ 53; α (P)=8.4×10 ⁻⁷ 37 α (N)=1.20×10 ⁻⁴ 35; α (O)=1.69×10 ⁻⁵ 53; α (P)=8.4×10 ⁻⁷ 37 α (N)=1.20×10 ⁻⁴ 35; α (O)=1.69×10 ⁻⁵ 53; α (P)=8.4×10 ⁻⁷ 37 α (N)=1.20×10 ⁻⁴ 35; α (O)=1.69×10 ⁻⁵ 53; α (P)=8.4×10 ⁻⁷ 37 α (N)=1.20×10 ⁻⁴ 35; α (O)=1.69×10 ⁻⁵ 53; α (P)=8.4×10 ⁻⁷ 37 α (N)=1.20×10 ⁻⁴ 35; α (O)=1.69×10 ⁻⁵ 53; α (O)=1.69×10 ⁻⁵ 53; α (P)=8.4×10 ⁻⁷ 37 α (N)=1.20×10 ⁻⁴ 35; α (O)=1.69×10 ⁻⁵ 53; α (P)=8.4×10 ⁻⁷ 37 α (N)=1.20×10 ⁻⁴ 35; α (O)=1.69×10 ⁻⁵ 53; α (P)=8.4×10 ⁻⁷ 37 α (N)=1.20×10 ⁻⁴ 35; α (N)=1.20×10 ⁻	1255.79	(4+)	435.15 10	59 12	820.51 2+	(E2)	0.0258	$\alpha(N)=0.000247$ 4; $\alpha(O)=3.23\times10^{-5}$ 5; $\alpha(P)=1.075\times10^{-6}$ 15
$\alpha(N) = 1.20 \times 10^{-4} \ 35; \ \alpha(O) = 1.69 \times 10^{-5} \ 53; \ \alpha(P) = 8.4 \times 10^{-7} \ 37$ $I_{y}: \ \text{from} \ ^{160}\text{Lu} \ \varepsilon \ \text{decay}.$ $\text{Mult.: contradictory assignments: M1+E2 (2019Ma70) versus E1 (2019Sa61 ar 1984Au13).}$ $1012 \qquad 243.00 \ 2^{+}$ $1292.72 (2^{+}) 653.8 \stackrel{\textcircled{\tiny 0}}{=} 16 \stackrel{\textcircled{\tiny 0}}{=} 638.39 \ 4^{+}$ $1049.8 \stackrel{\textcircled{\tiny 0}}{=} 1 100 \stackrel{\textcircled{\tiny 0}}{=} 16 243.00 \ 2^{+}$ $1049.8 \stackrel{\textcircled{\tiny 0}}{=} 1 100 \stackrel{\textcircled{\tiny 0}}{=} 16 243.00 \ 2^{+}$								Mult.: E2 based on DCO (2019Ma70) contradicts E1 based on $\alpha(K)$ exp
1012 243.00 2 ⁺ Transition observed only in (HI,xny) (2005Ba88). 1292.72 (2 ⁺) 653.8 [@] 16 [@] 638.39 4 ⁺ 1049.8 [@] 1 100 [@] 16 243.00 2 ⁺			616.71 <i>10</i>	100 18	638.39 4+	(M1+E2)	0.0173 67	$\alpha(N)=1.20\times 10^{-4}\ 35;\ \alpha(O)=1.69\times 10^{-5}\ 53;\ \alpha(P)=8.4\times 10^{-7}\ 37$ I_{γ} : from 160 Lu ε decay. Mult.: contradictory assignments: M1+E2 (2019Ma70) versus E1 (2019Sa61 and
1292.72 (2^{+}) 653.8 $^{\textcircled{@}}$ 16 $^{\textcircled{@}}$ 638.39 4 $^{+}$ 1049.8 $^{\textcircled{@}}$ 1 100 $^{\textcircled{@}}$ 16 243.00 2 $^{+}$			1012		243.00 2+			
	1292.72	(2^{+})			638.39 4+			
1202.7° 2 61° 11 00 0 ⁺					243.00 2+			
12/2.7 2 01 11 0.0 0			1292.7 [@] 2	61 [@] 11	$0.0 0^{+}$			

γ (160Yb) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	${\rm I}_{\gamma}{}^{\dagger}$	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.‡	$\alpha^{m{b}}$	Comments
1358.30	2+	719.9 [@] 1	12 [@] 1	638.39 4+	E2#	0.00747	$\alpha(K)$ =0.00610 9; $\alpha(L)$ =0.001070 15; $\alpha(M)$ =0.000243 4 $\alpha(N)$ =5.67×10 ⁻⁵ 8; $\alpha(O)$ =7.77×10 ⁻⁶ 11; $\alpha(P)$ =3.41×10 ⁻⁷ 5
		1115.3 [@] 1	100 <mark>@</mark> 7	243.00 2+			
		1358.3 [@] 2	7 <mark>@</mark> 6	0.0 0+			
1496.36	$(1,2^+)$	1253.4 [@] 2	67 [@] 20	243.00 2+			
	())	1496.3 [@] 2	100 [@] 13	0.0 0+			
1525.37	3-	704.7 [@] 1	100 [@] 7	820.51 2+	E1#	0.00294	$\alpha(K)=0.00250 \ 4; \ \alpha(L)=0.000349 \ 5; \ \alpha(M)=7.72\times10^{-5} \ 11$ $\alpha(N)=1.80\times10^{-5} \ 3; \ \alpha(O)=2.56\times10^{-6} \ 4; \ \alpha(P)=1.333\times10^{-7} \ 19$
		886 ^c		638.39 4+			Transition tentatively observed only in (HI, $xn\gamma$).
		1283.0 [@] 2	18 <mark>@</mark> 7	243.00 2+			Transition observed only in ε decay.
1529.15	$(2^+,3,4^+)$	890.7 [@] 1	100 [@] 14	638.39 4+			
3-2	(- ,-,-)	1286.4 [@] 2	57 [@] 14	243.00 2+			
1567.45	(4)-	929.1 [@] 2	100@	638.39 4+	E1#	1.72×10^{-3}	$\alpha(K)=0.001460 \ 2I; \ \alpha(L)=0.000201 \ 3; \ \alpha(M)=4.44\times10^{-5} \ 7$ $\alpha(N)=1.039\times10^{-5} \ 15; \ \alpha(O)=1.480\times10^{-6} \ 2I; \ \alpha(P)=7.86\times10^{-8} \ II$
1567.60?	5(-)	210 <mark>&c</mark>		1358.30 2+			a(e), 1000, 100 11, a(e), 1100 110 110 110 110 110 110 110 110 1
1007.001	Ü	929.4 2	100	638.39 4+	D		
1573.95	5+	318.05 11		1255.79 (4+)			
		427.08 11		1147.16 6 ⁺			Mult.: M1+E2 adopted by 2019Ma70 in (HI,xnγ) dataset based on
		461.33 10	89 44	1112.68 3+	E2	0.0220	R(DCO) which however better fits Q,E2. $\alpha(K)$ =0.01708 24; $\alpha(L)$ =0.00377 6; $\alpha(M)$ =0.000876 13 $\alpha(N)$ =0.000203 3; $\alpha(O)$ =2.67×10 ⁻⁵ 4; $\alpha(P)$ =9.30×10 ⁻⁷ 13 Mult.: based on R(DCO) and polarization in (HI,xn γ) dataset
		935.43 10	100 56	638.39 4+			(2019Ma70). Mult.: M1+E2 adopted by 2019Ma70 in (HI,xnγ) dataset based on DCO which however based on polarization better fits E1(+M2).
1591.70	4+	299.33 21		1292.72 (2+)			
		953.34 <i>15</i>		638.39 4+			Mult.: M1+E2 adopted by 2019Ma70 in (HI, $xn\gamma$) dataset based on DCO which however better fits Q,E2.
		1348.65 15		243.00 2+			
1629.0?		371&c		1255.79 (4+)			
		514&c		1112.68 3+			
		806&c	0	820.51 2+			
1676.37	$(2^+,3,4^+)$	1038.0 [@] 1	100 25	638.39 4+			
		1433.2 [@] 3	63 [@] 38	243.00 2+			
1694.46	(4^{-})	337 & c		1358.30 2+			
1-21-0	0.4	1056.2 2	100	638.39 4+	774	0.04400	D (TA) (TA) A A A A A A
1736.79	8+	589.5 1	100	1147.16 6+	E2	0.01188	B(E2)(W.u.)=152 +38-26 α (K)=0.00952 14; α (L)=0.00183 3; α (M)=0.000419 6 α (N)=9.75×10 ⁻⁵ 14; α (O)=1.315×10 ⁻⁵ 19; α (P)=5.28×10 ⁻⁷ 8
	(6^+)	488.04 10	100	1255.79 (4+)	E2	0.0191	$\alpha(K)=0.01495$ 21; $\alpha(L)=0.00319$ 5; $\alpha(M)=0.000739$ 11

 ∞

γ (160Yb) (continued)

E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	$I_{\gamma}{}^{\dagger}$	E_f	\mathbf{J}_f^{π}	Mult.‡	$\alpha^{m{b}}$	Comments
1743.15	(6 ⁺)	596.37 10		1147.16	6 ⁺	D(+Q)		$\alpha(N)$ =0.0001716 24; $\alpha(O)$ =2.27×10 ⁻⁵ 4; $\alpha(P)$ =8.18×10 ⁻⁷ 12 Mult.: based on R(DCO) in (HI,xn γ) dataset (2019Ma70). Mult.: M1+E2 adopted by 2019Ma70 in (HI,xn γ) dataset based on DCO which
		1104.52 33		638.39	4+			however better fits D(+Q). A_p =0.17 40 (2019Ma70). Mult.: electric character based on polarization adopted by 2019Ma70 in (HI,xn γ)
1011.26	(1.0±)	1500000	100@ 21	2.12.00	2+			dataset as E2 which however does not exclude E1.
1811.26	$(1,2^+)$	1568.9 [@] 3 1810.1 [@] 4	100 [@] 31 38 [@] 15	243.00 0.0	2 ⁺ 0 ⁺			
1871?	(5^{-})	346 ^C	100	1525.37				
1926.99	7-	359.5 2	4.5 23	1567.60?				
		779.7 <i>1</i>	100 20	1147.16	6+	E1	0.00241	$\alpha(K) \exp = 0.0020 9$
								$\alpha(K)=0.00204 \ 3; \ \alpha(L)=0.000284 \ 4; \ \alpha(M)=6.28\times10^{-5} \ 9$
								$\alpha(N)=1.469\times10^{-5}\ 21;\ \alpha(O)=2.08\times10^{-6}\ 3;\ \alpha(P)=1.094\times10^{-7}\ 16$
1952.0?		325&c		1629.0?				
		696 <mark>&</mark> c		1255.79	(4^{+})			
		839 & c		1112.68	3+			
1957.22	6+	365.60 11		1591.70	4+	E2	0.0414	$\alpha(K)$ =0.0310 5; $\alpha(L)$ =0.00807 12; $\alpha(M)$ =0.00190 3
								$\alpha(N)=0.000439\ 7;\ \alpha(O)=5.63\times10^{-5}\ 8;\ \alpha(P)=1.636\times10^{-6}\ 23$
		000 00 10		11.45.16	~ ±	D(0)		Mult.: based on R(DCO) in (HI,xny) dataset (2019Ma70).
		809.89 12		1147.16	6'	D(+Q)		Mult.: M1+E2 adopted by 2019Ma70 in (HI,xnγ) dataset based on DCO which however better fits D(+Q).
		1318.74 <i>11</i>		638.39	4+	E2	0.00217	$\alpha(K)=0.00180 \ 3; \ \alpha(L)=0.000268 \ 4; \ \alpha(M)=5.97\times10^{-5} \ 9$
								$\alpha(N)=1.398\times10^{-5}\ 20;\ \alpha(O)=1.98\times10^{-6}\ 3;\ \alpha(P)=1.013\times10^{-7}\ 15;$
								$\alpha(IPF)=2.19\times10^{-5} \ 3$
								Mult.: based on R(DCO) in (HI, $xn\gamma$) dataset (2019Ma70).
2050.23	(6-)	355.9 2	34 17	1694.46				
		482.7 2	39 22	1567.60?	5(-)			482.7γ and 902.9γ decaying from 2051, (6) ⁻ level are the same as 484γ and 903.6γ and decaying from 2051, (6) ⁻ level but placed in different bands by different autors (see comments on respective levels).
		902.9 2	100 28	1147.16	6+	D		See comment at 483γ .
2050.56	6-	484	50	1567.45	(4)			See comment at 483γ .
0100.45	7+	903.6	100	1147.16	6+			See comment at 483γ .
2108.47	7+	365.55 <i>12</i> 534.62 <i>10</i>	100 50	1743.15 1573.95	(6 ⁺)	E2	0.01507	$\alpha(K)=0.01195$ 17; $\alpha(L)=0.00242$ 4; $\alpha(M)=0.000557$ 8
		334.02 10	100 30	13/3.93	3	Ľ2	0.01307	$\alpha(K)$ =0.01195 17; $\alpha(L)$ =0.00242 4; $\alpha(M)$ =0.000557 8 $\alpha(N)$ =0.0001294 19; $\alpha(O)$ =1.729×10 ⁻⁵ 25; $\alpha(P)$ =6.59×10 ⁻⁷ 10
								$u(N)=0.0001294$ 19, $u(O)=1.729\times10^{-2}$ 25, $u(P)=0.39\times10^{-1}$ 10 Mult.: based on R(DCO) in (HI,xny) dataset (2019Ma70).
		961.51 <i>11</i>		1147.16	6+			Mult.: M1+E2 adopted by 2019Ma70 in (HI,xny) dataset based on polarization which however does not exclude E1 or E2.
2272.0	7-	344 & c		1926.99	7-			
	•	704 <mark>&</mark> c		1567.60?				
		1124 ^{&c}		1147.16				
		1144		114/.10	U			

9

$\gamma(^{160}\text{Yb})$ (continued)

(8+)	530.9 1	100 60	1743.15 (
			1713.13 ((6 ⁺)	E2		0.01534	$\alpha(K)$ =0.01215 17; $\alpha(L)$ =0.00247 4; $\alpha(M)$ =0.000569 8 $\alpha(N)$ =0.0001322 19; $\alpha(O)$ =1.764×10 ⁻⁵ 25; $\alpha(P)$ =6.70×10 ⁻⁷ 10 Mult.: from R(DCO) in (HI,xn γ) dataset (2019Ma70).
	537.45 15		1736.79 8					
8-							0.0650	(T) 0.04-7-7 (T) 0.04-4-6-00 (T) 0.000-7-7
	311.8 2	5/ 1/	2050.56	6	E2		0.0658	$\alpha(K) = 0.0475 \ 7; \ \alpha(L) = 0.01416 \ 20; \ \alpha(M) = 0.00335 \ 5$
	125.0.2	64.10	1026.00 7	7-	E2 - M1	5	0.0260	$\alpha(N)=0.000774 \ 11; \ \alpha(O)=9.77\times10^{-5} \ 14; \ \alpha(P)=2.44\times10^{-6} \ 4$ $\alpha(K)\approx0.0209; \ \alpha(L)\approx0.00465; \ \alpha(M)\approx0.001080$
	455.0 2	04 19	1920.99	/	EZ+WH	≈೨	≈0.0209	$\alpha(N) \approx 0.00209$; $\alpha(L) \approx 0.00403$; $\alpha(M) \approx 0.001080$ $\alpha(N) \approx 0.000250$; $\alpha(O) \approx 3.30 \times 10^{-5}$; $\alpha(P) \approx 1.142 \times 10^{-6}$
								$\alpha(N) \approx 0.000250$; $\alpha(O) \approx 3.50 \times 10^{-5}$; $\alpha(P) \approx 1.142 \times 10^{-5}$. from measured quadrupole content of $\approx 96\%$ (1980Ri02, HI dataset).
	625.2.2	100.30	1736 70 8	8 +	(F1)		0.00376	α (K)=0.00319 5; α (L)=0.000448 7; α (M)=9.93×10 ⁻⁵ 14
	023.2 2	100 50	1130.19	U	(E1)		0.00570	$\alpha(N)=2.32\times10^{-5}$ 4; $\alpha(O)=3.28\times10^{-6}$ 5; $\alpha(P)=1.693\times10^{-7}$ 24
8+	406.81 10		1957 22. 6	6 ⁺	(E2)		0.0308	$\alpha(K)=0.0234 \ 4; \ \alpha(L)=0.00564 \ 8; \ \alpha(M)=0.001319 \ 19$
Ü	100.01 10		1/3/.22	~	(22)		0.0500	$\alpha(N)=0.00305$ 5; $\alpha(O)=3.97\times10^{-5}$ 6; $\alpha(P)=1.258\times10^{-6}$ 18
								Mult.: based on R(DCO) in (HI, $xn\gamma$) dataset (2019Ma70).
	1216.91 <i>11</i>	100 50	1147.16	6 ⁺	E2		0.00251	$\alpha(K)=0.00210 \ 3; \ \alpha(L)=0.000317 \ 5; \ \alpha(M)=7.08\times10^{-5} \ 10$
								$\alpha(N)=1.657\times10^{-5}$ 24; $\alpha(O)=2.34\times10^{-6}$ 4; $\alpha(P)=1.182\times10^{-7}$ 17;
								$\alpha(\text{IPF})=6.73\times10^{-6}\ 10$
								Mult.: based on R(DCO) in (HI,xny) dataset (2019Ma70).
9-	445.6 2	49 10	1926.99 7	7-	E2		0.0241	$\alpha(K)=0.0186 \ 3; \ \alpha(L)=0.00421 \ 6; \ \alpha(M)=0.000978 \ 14$
								$\alpha(N)=0.000227 \ 4; \ \alpha(O)=2.98\times10^{-5} \ 5; \ \alpha(P)=1.010\times10^{-6} \ 15$
	635.8 <i>1</i>	100 20			D			
10^{+}	637.5 1	100	1736.79 8	8+	E2		0.00987	$\alpha(K)=0.00797$ 12; $\alpha(L)=0.001473$ 21; $\alpha(M)=0.000337$ 5
								α (N)=7.84×10 ⁻⁵ 11; α (O)=1.064×10 ⁻⁵ 15; α (P)=4.44×10 ⁻⁷ 7 B(E2)(W.u.)=94 +35-20
	463 ^{&c}		1952.0?					
	672 ^{&c}		1743.15 ((6^{+})				
	1267 <mark>&c</mark>							
9-	106.2 2	1.6 8						
	209 <mark>&c</mark>							
	553.5 2	22 6			E2		0.01384	$\alpha(K)=0.01102 \ 16; \ \alpha(L)=0.00219 \ 3; \ \alpha(M)=0.000503 \ 7$
								$\alpha(N)=0.0001169 \ 17; \ \alpha(O)=1.567\times10^{-5} \ 22; \ \alpha(P)=6.09\times10^{-7} \ 9$
	743.7 <i>1</i>	100 10	1736.79 8	8+	E1		0.00264	$\alpha(K) = 0.00224 \ 4; \ \alpha(L) = 0.000312 \ 5; \ \alpha(M) = 6.91 \times 10^{-5} \ 10$
								$\alpha(N)=1.616\times10^{-5}$ 23; $\alpha(O)=2.29\times10^{-6}$ 4; $\alpha(P)=1.199\times10^{-7}$ 17
(8^{-})	477.2 2	68 23	2050.23 ((6^{-})				-, -, -, -, -, -, -, -, -, -, -, -, -, -
. ,	600 <mark>&c</mark>							
	790.6 2	100 32	1736.79 8	8+				
10-	97.9 2	4.3 22						
	205.8 2	13 4	2372.63 9	9-	[M1,E2]		0.342 98	$\alpha(K)=0.26\ 11;\ \alpha(L)=0.063\ 8;\ \alpha(M)=0.0148\ 23$
								$\alpha(N)=0.0034\ 5;\ \alpha(O)=0.00045\ 3;\ \alpha(P)=1.48\times10^{-5}\ 77$
	216.4 <i>1</i>	100 10	2362.32 8	8-	E2		0.207	$\alpha(K)$ =0.1319 19; $\alpha(L)$ =0.0576 9; $\alpha(M)$ =0.01389 20
	10 ⁺ 9 ⁻ (8 ⁻)	311.8 2 435.0 2 625.2 2 8+ 406.81 10 1216.91 11 9- 445.6 2 10+ 637.5 1 463&c 672&c 1267&c 1267&c 1262 2 209&c 553.5 2 743.7 1 (8-) 477.2 2 600&c 790.6 2 10- 97.9 2	8- 255.0 2 17 9 311.8 2 57 17 435.0 2 64 19 625.2 2 100 30 8+ 406.81 10 1216.91 11 100 50 9- 445.6 2 49 10 635.8 1 100 20 10+ 637.5 1 100 463&c 672&c 1267&c 1267&c 1267&c 9- 106.2 2 1.6 8 209&c 553.5 2 22 6 743.7 1 100 10 (8-) 477.2 2 68 23 600&c 790.6 2 100 32 10- 97.9 2 4.3 22 205.8 2 13 4	8- 255.0 2 17 9 2108.47 2050.56 6 311.8 2 57 17 2050.56 6 435.0 2 64 19 1926.99 6 625.2 2 100 30 1736.79 8 406.81 10 1957.22 6 1216.91 11 100 50 1147.16 6 6 6 6 1 10 1926.99 6 6 6 6 6 1 10 10 10 1736.79 6 6 72 8 6 10 126.2 2 1.6 8 2374.32 209 8 6 2272.0 553.5 2 22 6 1926.99 6 743.7 1 100 10 1736.79 10 10 10 1736.79 10 10 10 1736.79 10 10 10 10 10 10 10 10 10 10 10 10 10	8- 255.0 2 17 9 2108.47 7 ⁺ 2118.2 57 17 2050.56 6 ⁻ 435.0 2 64 19 1926.99 7 ⁻ 625.2 2 100 30 1736.79 8 ⁺ 8 ⁺ 406.81 10 1957.22 6 ⁺ 1216.91 11 100 50 1147.16 6 ⁺ 1216.91 11 100 50 1736.79 8 ⁺ 10 ⁺ 637.5 1 100 1736.79 8 ⁺ 104 637.5 1 100 1736.79 8 ⁺ 1267&c 1743.15 (6 ⁺) 1269&c 2272.0 7 ⁻ 553.5 2 22 6 1926.99 7 ⁻ 743.7 1 100 10 1736.79 8 ⁺ (8 ⁻) 477.2 2 68 23 2050.23 (6 ⁻) 1926.99 7 ⁻ 790.6 2 100 32 1736.79 8 ⁺ (8 ⁻) 477.2 2 68 23 2050.23 (6 ⁻) 1926.99 7 ⁻ 790.6 2 100 32 1736.79 8 ⁺ 10 ⁻ 97.9 2 4.3 22 2480.55 9 ⁻ 205.8 2 13 4 2372.63 9 ⁻	8- 255.0 2 17 9 2108.47 7+ D 311.8 2 57 17 2050.56 6- E2 435.0 2 64 19 1926.99 7- E2+M1 625.2 2 100 30 1736.79 8+ (E1) 8+ 406.81 10 1957.22 6+ (E2) 1216.91 11 100 50 1147.16 6+ E2 9- 445.6 2 49 10 1926.99 7- E2 10+ 635.8 1 100 20 1736.79 8+ D 10+ 637.5 1 100 1736.79 8+ E2 463&c 1952.0? 672&c 1743.15 (6+) 1267&c 1147.16 6+ 209&c 2272.0 7- 553.5 2 22 6 1926.99 7- E2 743.7 1 100 10 1736.79 8+ E1 (8-) 477.2 2 68 23 2050.23 (6-) 600&c 1926.99 7- 790.6 2 100 32 1736.79 8+ 10- 97.9 2 4.3 22 2480.55 9- 205.8 2 13 4 2372.63 9- [M1,E2]	8 ⁻ 255.0 2 17 9 2108.47 7 ⁺ D 311.8 2 57 17 2050.56 6 ⁻ E2 435.0 2 64 19 1926.99 7 ⁻ E2+M1 ≈5 625.2 2 100 30 1736.79 8 ⁺ (E1) 8 ⁺ 406.81 10 1957.22 6 ⁺ (E2) 1216.91 11 100 50 1147.16 6 ⁺ E2 9 ⁻ 445.6 2 49 10 1926.99 7 ⁻ E2 10 ⁺ 637.5 1 100 1736.79 8 ⁺ D 136.79 8 ⁺ E2 146.8 2 1952.0? 672&c 1743.15 (6 ⁺) 1147.16 6 ⁺ 1267&c 1147.16 6 ⁺ 2272.0 7 ⁻ 553.5 2 22 6 1926.99 7 ⁻ E2 743.7 1 100 10 1736.79 8 ⁺ E1 (8 ⁻) 477.2 2 68 23 2050.23 (6 ⁻) 1926.99 7 7 790.6 2 100 32 1736.79 8 ⁺ 10 (8 ⁻) 477.2 2 68 23 2050.23 (6 ⁻) 1926.99 7 7 790.6 2 100 32 1736.79 8 ⁺ 10 (797.9 2 4.3 22 2480.55 9 ⁻ 205.8 2 13 4 2372.63 9 ⁻ [M1,E2]	8⁻ 255.0 2 17 9 2108.47 7⁺ D 0.0658 435.0 2 64 19 1926.99 7⁻ E2+M1 ≈5 ≈0.0269 625.2 2 100 30 1736.79 8⁺ (E1) 0.00376 8⁺ 406.81 10 1957.22 6⁺ (E2) 0.0308 1216.91 11 100 50 1147.16 6⁺ E2 0.00251 9⁻ 445.6 2 49 10 1926.99 7⁻ E2 0.0241 10⁺ 637.5 1 100 10 1736.79 8⁺ E2 0.00987 463 $\frac{8}{6}$ 1952.0? 672 $\frac{8}{6}$ 1147.16 6⁺ E2 0.00987 463 $\frac{8}{6}$ 1147.16 6⁺ E2 0.00987 463 $\frac{8}{6}$ 1952.0? 672 $\frac{8}{6}$ 1147.16 6⁺ E2 0.00987 79 106.2 2 1.6 8 2374.32 10⁺ 2272.0 7⁻ 553.5 2 22 6 1926.99 7⁻ E2 0.01384 743.7 1 100 10 1736.79 8⁺ E1 0.00264 (8⁻) 477.2 2 68 23 2050.23 (6⁻) 1926.99 7⁻ 790.6 2 100 32 1736.79 8⁺ 10⁻ 97.9 2 4.3 22 2480.55 9⁻ 205.8 2 13 4 2372.63 9⁻ [M1,E2] 0.342 98

10

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f \mathbf{J}_f^{π}	Mult.‡	α^{b}	Comments
							$\alpha(N)=0.00319$ 5; $\alpha(O)=0.000387$ 6; $\alpha(P)=6.28\times10^{-6}$ 9 B(E2)(W.u.)=1.8×10 ² +8-4
2649.3?	(8-)	286 <mark>&c</mark>		2362.32 8-			
	,	377 & c		2272.0 7-			
		598 & c		2050.23 (6-)			
2700.81	9+	592.47 10	100 50	2108.47 7+			
		963.71 <i>15</i>		1736.79 8+			Mult.: M1+E2 adopted by 2019Ma70 in (HI,xnγ) dataset based on polarization which however does not exclude E1 or E2.
2703.8	$(8^-,9^+)$	775.9 ^c	100	1926.99 7-			which nowever does not exclude E1 or E2.
2703.0	(0 ,)	966.4 ^c	21	1736.79 8+			
2718.4?	(9^{-})	346 ^{&} c		2372.63 9-			
		792 <mark>&</mark> c		1926.99 7-			
		982 <mark>&</mark> c		1736.79 8+			
2763.99	11-	185.5 2	1.7 9	2578.58 10-	[M1,E2]	0.47 12	$\alpha(K)$ =0.35 15; $\alpha(L)$ =0.092 18; $\alpha(M)$ =0.022 5
		202.4.1	100 10	2490.55 0=	Ε0	0.0070	$\alpha(N)=0.0050 \ 11; \ \alpha(O)=0.00064 \ 9; \ \alpha(P)=2.0\times 10^{-5} \ 11$
		283.4 <i>1</i>	100 10	2480.55 9	E2	0.0879	$\alpha(K)$ =0.0617 9; $\alpha(L)$ =0.0201 3; $\alpha(M)$ =0.00479 7 $\alpha(N)$ =0.001105 16; $\alpha(O)$ =0.0001379 20; $\alpha(P)$ =3.12×10 ⁻⁶ 5
							B(E2)(W.u.)=77 +10-9
		389.6 2	19 6	2374.32 10+	[E1]	0.01066	$\alpha(K)=0.00899 \ 13; \ \alpha(L)=0.001303 \ 19; \ \alpha(M)=0.000290 \ 4$
							$\alpha(N)=6.75\times10^{-5}\ 10;\ \alpha(O)=9.43\times10^{-6}\ 14;\ \alpha(P)=4.66\times10^{-7}\ 7$
		201.2.2				0.00.40	B(E1)(W.u.)= $9.5 \times 10^{-6} + 31 - 30$
		391.3 2	37 11	2372.63 9	[E2]	0.0342	$\alpha(K)=0.0259 \ 4; \ \alpha(L)=0.00642 \ 9; \ \alpha(M)=0.001503 \ 22$ $\alpha(N)=0.000348 \ 5; \ \alpha(O)=4.50\times10^{-5} \ 7; \ \alpha(P)=1.383\times10^{-6} \ 20$
							$\alpha(N)=0.000348 \ 5; \ \alpha(O)=4.30 \times 10^{-5} \ 7; \ \alpha(P)=1.383 \times 10^{-5} \ 20$ B(E2)(W.u.)=5.7 15
2789.83	(10^+)	425.55 10		2364.14 8+			Mult.: Q,E2 adopted in (HI,xn γ) dataset (2019Ma70) based on DCO which does
							not exclude $D(+Q)$.
		515.63 10		2274.20 (8+)	E2	0.01650	$\alpha(K)=0.01303 \ 19; \ \alpha(L)=0.00269 \ 4; \ \alpha(M)=0.000621 \ 9$
							$\alpha(N)=0.0001442\ 21;\ \alpha(O)=1.92\times10^{-5}\ 3;\ \alpha(P)=7.16\times10^{-7}\ 10$ Mult.: adopted in (HI,xn γ) dataset (2019Ma70) based on R(DCO).
		1053.14 11	100 67	1736.79 8+			man adopted in (111, xiii)) dataset (2017) havo) based on K(DeO).
2840.39	(10^{+})	476.22 11		2364.14 8+			
		566.18 10		2274.20 (8 ⁺)			
2070.02	11-	1104.52 33		1736.79 8 ⁺			
2878.03	11-	300&c 398&c		2578.58 10			
		503.7 2	26 8	2480.55 9 ⁻ 2374.32 10 ⁺			
		505.7 <i>2</i> 505.4 <i>1</i>	100 19	2372.63 9	E2	0.01736	$\alpha(K)=0.01367\ 20;\ \alpha(L)=0.00285\ 4;\ \alpha(M)=0.000660\ 10$
							$\alpha(N) = 0.0001532 \ 22; \ \alpha(O) = 2.04 \times 10^{-5} \ 3; \ \alpha(P) = 7.50 \times 10^{-7} \ 11$
2898.27	(10^{-})	179 <mark>&</mark> c		2718.4? (9-)			
		250 ^{&c}		2649.3? (8-)			
		319.7 <i>1</i>	100	2578.58 10-			
		371 & c		2527.41 (8-)			

$\gamma(\underline{^{160}\text{Yb})}$ (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult.‡	α^{b}	Comments
2898.27	(10-)	418 ^{&c}	·	2480.55	9-			
	,	526 <mark>&</mark> c		2372.63				
		536 <mark>&</mark> c		2362.32	8-			
2943?		528 ^{&c}		2415.0?				
2960.80	12+	586.6 <i>1</i>	100	2374.32	10+	E2	0.01202	$\alpha(K)=0.00963\ 14;\ \alpha(L)=0.00185\ 3;\ \alpha(M)=0.000425\ 6$
								$\alpha(N)=9.89\times10^{-5} \ 14; \ \alpha(O)=1.333\times10^{-5} \ 19; \ \alpha(P)=5.34\times10^{-7} \ 8$
								$B(E2)(W.u.)=1.6\times10^2 +10-5$
2977.65	12-	213.6 2 399.1 <i>I</i>	4.7 <i>24</i> 100 <i>10</i>	2763.99 2578.58		E2	0.0324	$\alpha(K)=0.0246 \ 4; \ \alpha(L)=0.00601 \ 9; \ \alpha(M)=0.001406 \ 20$
		399.1 1	100 10	2378.38	10	E2	0.0324	$\alpha(K)=0.0246$ 4; $\alpha(L)=0.00001$ 9; $\alpha(M)=0.001406$ 20 $\alpha(N)=0.000325$ 5; $\alpha(O)=4.22\times10^{-5}$ 6; $\alpha(P)=1.318\times10^{-6}$ 19
3008.8	(10^{-})	481.4 2	100	2527.41	(8-)			<i>u</i> (11)=0.000323 3, <i>u</i> (0)=4.22×10 0, <i>u</i> (1)=1.310×10 19
		646		2362.32	8-			
3024.6	$(10^-,11^+)$	320.8	67	2703.8	$(8^-,9^+)$			
		650.5	100	2374.32				
3127.5?	(11^{-})	249&c		2878.03				
		408 ^{&} c 646 ^{&} c		2718.4?	` ′			
		646&c 752&c		2480.55				
				2374.32				
3137.55	12 ⁺	754 ^{&} <i>c</i> 763.1 <i>I</i>	100	2372.63 2374.32		E2	0.00657	$\alpha(K)=0.00538 \ 8; \ \alpha(L)=0.000923 \ 13; \ \alpha(M)=0.000209 \ 3$
3137.33	12	/03.1 1	100	2374.32	10	EZ	0.00037	$\alpha(N)=0.00338 \ \delta; \ \alpha(L)=0.000923 \ 13; \ \alpha(M)=0.000209 \ 3$ $\alpha(N)=4.89\times10^{-5} \ 7; \ \alpha(O)=6.72\times10^{-6} \ 10; \ \alpha(P)=3.02\times10^{-7} \ 5$
3195.70	13-	318 & c		2878.03	11-			$u(11) = 4.09 \times 10^{-7}$, $u(0) = 0.72 \times 10^{-10}$, $u(1) = 3.02 \times 10^{-5}$
3173.70	13	431.7 <i>1</i>	100	2763.99		E2	0.0262	$\alpha(K)=0.0202 \ 3; \ \alpha(L)=0.00465 \ 7; \ \alpha(M)=0.001084 \ 16$
								$\alpha(N)=0.000251$ 4; $\alpha(O)=3.28\times10^{-5}$ 5; $\alpha(P)=1.089\times10^{-6}$ 16
3318.72	(12^{+})	478.37 10		2840.39				
		528.84 10	100 60	2789.83	(10^+)	E2	0.01549	$\alpha(K)=0.01226$ 18; $\alpha(L)=0.00249$ 4; $\alpha(M)=0.000575$ 8
								$\alpha(N)=0.0001337 \ 19$; $\alpha(O)=1.784\times10^{-5} \ 25$; $\alpha(P)=6.76\times10^{-7} \ 10$ Mult.: adopted in (HI,xny) dataset (2019Ma70) based on R(DCO).
3329.65	(12^{-})	352.0 2	23 15	2977.65	12-			Mult adopted iii (III,XII) dataset (2015Ma70) based oii K(DCO).
	·- /	431.4 <i>I</i>	15 8	2898.27				
		451 ^{&c}		2878.03				
		565.6 2	100 <i>31</i>	2763.99				
		751&c		2578.58				
3330.52	11+	629.71 <i>10</i>	100	2700.81	9+	E2	0.01016	$\alpha(K)=0.00819 \ 12; \ \alpha(L)=0.001523 \ 22; \ \alpha(M)=0.000348 \ 5$
								$\alpha(N)=8.11\times10^{-5}$ 12; $\alpha(O)=1.100\times10^{-5}$ 16; $\alpha(P)=4.56\times10^{-7}$ 7 Mult.: based on R(DCO) in (HI,xn γ) dataset (2019Ma70).
3365.00	14 ⁺	404.2 1	100	2960.80	12 ⁺	E2	0.0313	B(E2)(W.u.)= $128 + 15 - 12$
								$\alpha(K)=0.0238$ 4; $\alpha(L)=0.00576$ 8; $\alpha(M)=0.001347$ 19
								$\alpha(N)=0.000312\ 5;\ \alpha(O)=4.05\times10^{-5}\ 6;\ \alpha(P)=1.278\times10^{-6}\ 18$
3422.9	13-	462 ^{&c}		2960.80				
		544.9 2	100	2878.03	11-	E2	0.01438	$\alpha(K)=0.01143$ 16; $\alpha(L)=0.00229$ 4; $\alpha(M)=0.000526$ 8
								$\alpha(N)=0.0001224\ 18;\ \alpha(O)=1.638\times10^{-5}\ 23;\ \alpha(P)=6.31\times10^{-7}\ 9$

12

E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	${\rm I}_{\gamma}{}^{\dagger}$	E_f	${\rm J}^\pi_{_f}$	Mult.‡	$\alpha^{m{b}}$	Comments
			-1γ			with.	<u> </u>	Comments
3422.9	13-	659&c	400	2763.99				
3457.3	$(12^-, 13^+)$	433	100		$(10^-,11^+)$			
3518.44	14-	496.3 322.7 2	47 6 <i>4</i>	2960.80 3195.70				
3316.44	14	540.8 <i>1</i>	100 10	2977.65		E2	0.01465	$\alpha(K)=0.01163\ 17;\ \alpha(L)=0.00234\ 4;\ \alpha(M)=0.000538\ 8$
			100 10	2911.03	12	L2	0.01403	$\alpha(N)$ =0.001105 17, $\alpha(L)$ =0.00254 4, $\alpha(N)$ =0.000538 8 $\alpha(N)$ =0.0001251 18; $\alpha(O)$ =1.673×10 ⁻⁵ 24; $\alpha(P)$ =6.42×10 ⁻⁷ 9 B(E2)(W.u.)=58 +27-14
3544.8?	(12^{-})	536 <mark>&</mark>		3008.8	(10^{-})			
3682.7?	(13^{-})	259 <mark>&</mark> c		3422.9	13-			
	,	555 <mark>&</mark> c		3127.5?	(11^{-})			
		804 <mark>&c</mark>		2878.03				
3745.78	14 ⁺	608.1 <i>I</i>	100 10	3137.55				
37 13.70	1.	785.1 <i>I</i>	48 10	2960.80				
3757.31	15-	334 <mark>&c</mark>		3422.9				
3737.31	13	561.6 <i>I</i>	100	3195.70		E2	0.01335	$\alpha(K)=0.01065 \ 15; \ \alpha(L)=0.00210 \ 3; \ \alpha(M)=0.000482 \ 7$ $\alpha(N)=0.0001121 \ 16; \ \alpha(O)=1.504\times10^{-5} \ 21; \ \alpha(P)=5.89\times10^{-7} \ 9$
3849.10	16 ⁺	484.1 <i>I</i>	100	3365.00	14+	E2	0.0194	$\alpha(K)$ =0.01517 22; $\alpha(L)$ =0.00325 5; $\alpha(M)$ =0.000753 11 $\alpha(N)$ =0.0001748 25; $\alpha(O)$ =2.31×10 ⁻⁵ 4; $\alpha(P)$ =8.30×10 ⁻⁷ 12 B(E2)(W.u.)=2.5×10 ² +6-4
3869.51	(14^{+})	550.79 10	100	3318.72	(12^+)			
3896.7	(14-)	378 & c		3518.44	14-			
		567.0 2	100	3329.65	(12^{-})			
4015.65	(13^{+})	686.00 <i>12</i>	100	3330.52				
4024.9	$(14^-, 15^+)$	567.6	100		$(12^-, 13^+)$			
4028.8	15 ⁽⁻⁾	605.9 2	100	3422.9	13-	(E2)	0.01112	$\alpha(K)=0.00894$ 13; $\alpha(L)=0.001693$ 24; $\alpha(M)=0.000388$ 6 $\alpha(N)=9.03\times10^{-5}$ 13; $\alpha(O)=1.220\times10^{-5}$ 18; $\alpha(P)=4.97\times10^{-7}$ 7
		833 & c		3195.70				
4172.52	16-	415.2 2	2.0 10	3757.31	15-	[M1,E2]	0.048 19	$\alpha(K)$ =0.039 17; $\alpha(L)$ =0.0068 15; $\alpha(M)$ =0.0015 3 $\alpha(N)$ =0.00036 8; $\alpha(O)$ =5.0×10 ⁻⁵ 13; $\alpha(P)$ =2.3×10 ⁻⁶ 11
		654.1 2	100 31	3518.44	14-	E2	0.00930	$\alpha(K)$ =0.00752 11; $\alpha(L)$ =0.001375 20; $\alpha(M)$ =0.000314 5 $\alpha(N)$ =7.31×10 ⁻⁵ 11; $\alpha(O)$ =9.95×10 ⁻⁶ 14; $\alpha(P)$ =4.20×10 ⁻⁷ 6 B(E2)(W.u.)=64 +56-21
4310.7?	(15^{-})	628 & c	100	3682.7?	(13^{-})			
4375.78	16+	630.0 <i>1</i>	100	3745.78		E2	0.01015	$\alpha(K)=0.00818$ 12; $\alpha(L)=0.001521$ 22; $\alpha(M)=0.000348$ 5 $\alpha(N)=8.10\times10^{-5}$ 12; $\alpha(O)=1.099\times10^{-5}$ 16; $\alpha(P)=4.56\times10^{-7}$ 7
		1011 <mark>&</mark> c		3365.00	1 <i>4</i> ⁺			20, 0(2)
4427.50	18 ⁺	578.4 <i>1</i>	100	3849.10		E2	0.01243	$\alpha(K)$ =0.00994 14; $\alpha(L)$ =0.00193 3; $\alpha(M)$ =0.000443 7
								$\alpha(N)=0.0001030 \ I5; \ \alpha(O)=1.386\times10^{-5} \ 20; \ \alpha(P)=5.51\times10^{-7} \ 8$
4428.71	17-	671.4 2	100	3757.31	15-	E2	0.00875	B(E2)(W.u.)=80 +13-10 α (K)=0.00710 10; α (L)=0.001283 18; α (M)=0.000293 5 α (N)=6.82×10 ⁻⁵ 10; α (O)=9.29×10 ⁻⁶ 13; α (P)=3.97×10 ⁻⁷ 6 B(E2)(W.u.)=53 +34-16

$E_i(level)$	J_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbb{E}_f	J_f^π	Mult.‡	α^{b}	Comments
4475.5 4555.7 4683.9	(16 ⁺) (16 ⁻) (16 ⁻ ,17 ⁺)	606.0 2 659.0 2 659.0	100 100 100	3869.51 3896.7 4024.9	(14 ⁺) (14 ⁻) (14 ⁻ ,15 ⁺)			
4702.2	17 ⁽⁻⁾	673.4 2	100	4028.8	15 ⁽⁻⁾	(E2)	0.00870	$\alpha(K)=0.00705 \ 10; \ \alpha(L)=0.001273 \ 18; \ \alpha(M)=0.000290 \ 4$ $\alpha(N)=6.76\times10^{-5} \ 10; \ \alpha(O)=9.22\times10^{-6} \ 13; \ \alpha(P)=3.94\times10^{-7} \ 6$
4714.2 4911.7	(17,18 ⁺) 18 ⁻	865.1 2 483.0 2	100 <3.4	3849.10 4428.71		[M1,E2]	0.032 13	$\alpha(K)=0.026$ 12; $\alpha(L)=0.0044$ 12; $\alpha(M)=0.00100$ 25 $\alpha(N)=0.00023$ 6; $\alpha(O)=3.25\times10^{-5}$ 93; $\alpha(P)=1.54\times10^{-6}$ 71
		739.2 2	100 <i>31</i>	4172.52	16-	E2	0.00705	$\alpha(K)=0.00023 \ \theta, \ \alpha(C)=3.23\times10^{-9}3, \ \alpha(I)=1.34\times10^{-7}1$ $\alpha(K)=0.00576 \ 8; \ \alpha(L)=0.001000 \ 14; \ \alpha(M)=0.000227 \ 4$ $\alpha(N)=5.30\times10^{-5} \ 8; \ \alpha(O)=7.28\times10^{-6} \ 11; \ \alpha(P)=3.23\times10^{-7} \ 5$
4984.6 4990.3?	(17) (17 ⁻)	1135.5 2 681&c	100 100	3849.10 4310.7?	(15^{-})			
5035.8 5091.2	(18 ⁺) 20 ⁺	660.0 <i>2</i> 663.7 <i>1</i>	100 100	4375.78 4427.50		E2	0.00899	$\alpha(K)$ =0.00728 11; $\alpha(L)$ =0.001323 19; $\alpha(M)$ =0.000302 5 $\alpha(N)$ =7.03×10 ⁻⁵ 10; $\alpha(O)$ =9.57×10 ⁻⁶ 14; $\alpha(P)$ =4.07×10 ⁻⁷ 6 B(E2)(W.u.)=77 +30–17
5176.7	19-	748.0 2	100	4428.71	17-	(E2)	0.00686	$\alpha(K)=0.00561 \ 8; \ \alpha(L)=0.000971 \ 14; \ \alpha(M)=0.000220 \ 3$ $\alpha(N)=5.14\times10^{-5} \ 8; \ \alpha(O)=7.06\times10^{-6} \ 10; \ \alpha(P)=3.15\times10^{-7} \ 5$ $\alpha(E)=0.000220 \ 3$ $\alpha(E)=0.000220 \ 3$ $\alpha(E)=0.000220 \ 3$
5203.7 5331.8 5368.2 5406.3	(18^{-}) $(18^{-},19^{+})$ (19^{-})	648.0 2 647.9 654 704.1 2	100 100 100 100	4555.7 4683.9 4714.2 4702.2	(16 ⁻) (16 ⁻ ,17 ⁺) (17,18 ⁺) 17 ⁽⁻⁾			
5692.7 5827.6	20 ⁻ 22 ⁺	781.0 <i>2</i> 736.4 <i>I</i>	100 100	4911.7 5091.2	18 ⁻ 20 ⁺	E2	0.00711	$\alpha(K)$ =0.00581 9; $\alpha(L)$ =0.001010 15; $\alpha(M)$ =0.000229 4 $\alpha(N)$ =5.35×10 ⁻⁵ 8; $\alpha(O)$ =7.34×10 ⁻⁶ 11; $\alpha(P)$ =3.25×10 ⁻⁷ 5 B(E2)(W.u.)=95 +19-14
5947.8	21-	771.1 2	100	5176.7	19-	(E2)	0.00642	$\alpha(K)=0.00526 \ 8; \ \alpha(L)=0.000899 \ 13; \ \alpha(M)=0.000204 \ 3$ $\alpha(N)=4.76\times10^{-5} \ 7; \ \alpha(O)=6.55\times10^{-6} \ 10; \ \alpha(P)=2.95\times10^{-7} \ 5$ B(E2)(W.u.)=24 + 12 - 6
6123.9	(21-)	717.6 2	100	5406.3	(19-)			
6380.7	22-	688.0 2	100	5692.7	20-	E2	0.00828	$\alpha(K)=0.00673 \ 10; \ \alpha(L)=0.001203 \ 17; \ \alpha(M)=0.000274 \ 4$ $\alpha(N)=6.39\times10^{-5} \ 9; \ \alpha(O)=8.72\times10^{-6} \ 13; \ \alpha(P)=3.76\times10^{-7} \ 6$
6623.2	24+	795.6 2	100	5827.6	22+	E2	0.00600	$\alpha(K)$ =0.00492 7; $\alpha(L)$ =0.000832 12; $\alpha(M)$ =0.000189 3 $\alpha(N)$ =4.40×10 ⁻⁵ 7; $\alpha(O)$ =6.07×10 ⁻⁶ 9; $\alpha(P)$ =2.76×10 ⁻⁷ 4 B(E2)(W.u.)=228 +34–28
6694.1	23-	746.3 2	100	5947.8	21-	E2	0.00690	$\alpha(K)=0.00564 \ 8; \ \alpha(L)=0.000976 \ 14; \ \alpha(M)=0.000222 \ 4$ $\alpha(N)=5.17\times10^{-5} \ 8; \ \alpha(O)=7.10\times10^{-6} \ 10; \ \alpha(P)=3.16\times10^{-7} \ 5$
7092.4	24 ⁻	711.7 2	100	6380.7	22 ⁻	F2	0.00520	(II) 0.00444.7 (I.) 0.000720 II. (M.) 0.0001770 24
7458.9	26 ⁺	835.7 2	100	6623.2	24+	E2	0.00539	$\alpha(K)$ =0.00444 7; $\alpha(L)$ =0.000739 11; $\alpha(M)$ =0.0001670 24 $\alpha(N)$ =3.90×10 ⁻⁵ 6; $\alpha(O)$ =5.40×10 ⁻⁶ 8; $\alpha(P)$ =2.50×10 ⁻⁷ 4 B(E2)(W.u.)=149 +41-22

	$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}{}^{\dagger}$	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult.‡	α^{b}	Comments
	7459.1	25-	765.0 2	100	6694.1	23-	E2	0.00653	$\alpha(K)=0.00535 \ 8; \ \alpha(L)=0.000917 \ 13; \ \alpha(M)=0.000208 \ 3$ $\alpha(N)=4.86\times10^{-5} \ 7; \ \alpha(O)=6.68\times10^{-6} \ 10; \ \alpha(P)=3.00\times10^{-7} \ 5$
	7870.4	26-	778.0 2	100	7092.4	24-	E2	0.00630	$\alpha(K)=0.00516 \ 8; \ \alpha(L)=0.000880 \ 13; \ \alpha(M)=0.000199 \ 3$ $\alpha(N)=4.65\times10^{-5} \ 7; \ \alpha(O)=6.41\times10^{-6} \ 9; \ \alpha(P)=2.90\times10^{-7} \ 4$
	8272.1	(27^{-})	813		7459.1	25-			a(i) 1100/110 /, a(e) 01/11/110 /, a(i) 21/0/110
١	8289.6	(28^{+})	830.7 2	100	7458.9	26 ⁺			
	8708.4	28-	838.0 2	100	7870.4	26-	E2	0.00536	$\alpha(K)=0.00442\ 7;\ \alpha(L)=0.000734\ 11;\ \alpha(M)=0.0001659\ 24$ $\alpha(N)=3.87\times10^{-5}\ 6;\ \alpha(O)=5.36\times10^{-6}\ 8;\ \alpha(P)=2.48\times10^{-7}\ 4$
١	9126.6	(30^+)	837.0 2	100	8289.6	(28^+)			
١	9132.1	(29^{-})	860	100	8272.1	(27^{-})			
	9555.4	(30^{-})	847.0 2	100	8708.4	28-			
١	10003.6	(32^+)	877	100	9126.6	(30^+)	[E2]	0.00487	$\alpha(K)=0.00402$ 6; $\alpha(L)=0.000658$ 10; $\alpha(M)=0.0001486$ 21
									$\alpha(N)=3.47\times10^{-5}$ 5; $\alpha(O)=4.82\times10^{-6}$ 7; $\alpha(P)=2.26\times10^{-7}$ 4 B(E2)(W.u.)=111 +21-26
	10010.1	(31^{-})	878	100	9132.1	(29^{-})			
	10408.4	(32^{-})	853	100	9555.4	(30^{-})			
	10887.1	(33^{-})	877	100	10010.1	(31^{-})			
	10957.6	(34^{+})	954	100	10003.6	(32^{+})	[E2]	0.00408	B(E2)(W.u.)=77 +15-11
									$\alpha(K)$ =0.00339 5; $\alpha(L)$ =0.000541 8; $\alpha(M)$ =0.0001218 17 $\alpha(N)$ =2.85×10 ⁻⁵ 4; $\alpha(O)$ =3.97×10 ⁻⁶ 6; $\alpha(P)$ =1.91×10 ⁻⁷ 3
	11293.4	(34^{-})	885	100	10408.4	(32^{-})			
	11790.1	(35^{-})	903	100	10887.1	(33^{-})			
	11964.6	(36 ⁺)	1007	100	10957.6	(34 ⁺)	[E2]	0.00366	B(E2)(W.u.)=41 +5-4 α (K)=0.00304 5; α (L)=0.000479 7; α (M)=0.0001076 15 α (N)=2.51×10 ⁻⁵ 4; α (O)=3.52×10 ⁻⁶ 5; α (P)=1.711×10 ⁻⁷ 24
	12228.4	(36-)	935	100	11293.4	(34^{-})			$u(1)-2.51 \times 10^{-4}$, $u(0)-5.52 \times 10^{-5}$, $u(1)-1.711 \times 10^{-24}$
	12740.1	(30°)	950	100	11790.1	(35^{-})			
	13042.6	(38^+)	1078	100	11964.6	(36^+)			
	13228.4	(38^{-})	1000	100	12228.4	(36^{-})			
	13740	(39^{-})	1000	100	12740.1	(37^{-})			
	14200.6	(40^{+})	1158	100	13042.6	(38^{+})			
	14290?	(40^{-})	1061 ^c	100	13228.4	(38^{-})			
	15403?	(42^{-})	1113 ^c	100	14290?	(40^{-})			
	654.0+x	J+2	654	100	0.0+x	J≈(20)			
	1350.0+x	J+4	696	100	654.0+x				
	2085.0+x	J+6	735	100	1350.0+x				
	2856.0+x	J+8	771	100	2085.0+x				
	3641.0+x	J+10	785	100	2856.0+x				
	4449.0+x	J+12	808	100	3641.0+x				
	5304 + x	J+14	855	100	4449.0+x				
	6215+x	J+16	911	100	5304+x				
	7177+x	J+18	962	100		J+16			
- 1	8185 + x	J+20	1008	100	7177 + x	J+18			

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}
9237+x	J+22	1052	100	8185+x	J+20
10339 + x	J+24	1102	100	9237 + x	J+22
11501 + x	J+26	1162	100	10339 + x	J+24
12734+x	J+28	1233	100	11501 + x	J+26
14045 + x	J + 30	1311	100	12734 + x	J + 28

[†] From (HI,xn γ), except as noted.

[†] Except as noted from (HI,xny) based on angular-distribution, angular-correlation and polarization measurements (2019Sa61). † Determined from $\alpha(K)$ exp data from the 160 Lu(ε + β +) decay. © From 160 Lu ε decay.

[&]amp; γ transition not confirmed by 2019Sa61 ((HI,xn γ) dataset).

a Additional information 3.
 b Additional information 4.
 c Placement of transition in the level scheme is uncertain.

Legend

Level Scheme

Intensities: Relative photon branching from each level

γ Decay (Uncertain)

 $^{160}_{70} Yb_{90}$

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

 $^{160}_{70} \mathrm{Yb}_{90}$

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

→ γ Decay (Uncertain)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- → γ Decay (Uncertain)

 $^{160}_{70}\mathrm{Yb}_{90}$

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

γ Decay (Uncertain)

Band(I): Band 14 triaxial strongly-deformed band

Band(H): Band 13

$(18^-,19^+)$	5331.8
(16-,17+) 648	4683.9
(14-,15+) 659	4024.9
(12 ⁻ ,13 ⁺) 568	3457.3
(10-,11+) 433	3024.6
(8 ⁻ ,9 ⁺) 321	2703.8

$$^{160}_{70}\mathrm{Yb}_{90}$$

		History	
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	Coral M. Baglin	NDS 109,1103 (2008)	1-Mar-2008

 $Q(\beta^-)=-5.57\times 10^3\ 3;\ S(n)=9.37\times 10^3\ 3;\ S(p)=5955\ 8;\ Q(\alpha)=2313\ 7$ 2012Wa38 Note: Current evaluation has used the following Q record -5570 30 9373 29 5942 8 2329 8 2003Au03. For isotope shift data see, e.g., 1989Sp04, 1991Ho27. Other reactions:

¹⁶⁶Yb Levels

Cross Reference (XREF) Flags

		B 1 C 1 D 1	⁶⁶ Lu ε decay (⁶⁶ Lu ε decay (⁶⁶ Lu ε decay (³⁰ Te(⁴⁰ Ar,4nγ)	1.41 min) G 186 W(n,4p17n γ) 2.12 min) H 154 Sm(16 O,4n γ), 159 Tb(11 B,4n γ)
ı.	±		•	
E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	XREF	Comments
0.0	0+	56.7 h <i>I</i>	ABCDEFGHI	%ε=100 $T_{1/2}$: from 1970Ka23 (182 γ (t)). Other measurements: 1954Mi16, 1955Ne03, 1957Go40, 1959Ba12, 1960Bu27, 1963Pa08. Assignment: 181 Ta(p,4p12n), E(p)=340 MeV, chem, ms, parent 166 Tm (1955Ne03); 169 Tm(p,4n), E(p)=230 MeV, ion chem, parent 166 Tm (1960Bu27). Δ <r<sup>2>(166,176)=+0.577 <i>17</i> (1994Ma57, deduced from isotope shift data of 1982Bu21). <r<sup>2>$^{1/2}$(charge)=5.250 6 (2004An14).</r<sup></r<sup>
102.37 ^e 3	2 ⁺ @	1.24 ns 6	ABCDEFGHI	J^{π} : stretched E2 102 γ to 0 ⁺ g.s.
330.48 ^e 4	4 ⁺ @	52.9 ps <i>17</i>	ABCDEFGHI	J^{π} : stretched E2 228 γ to 2 ⁺ 102.
667.97 ^e 5	6 ⁺ @	7.8 ps 3	A D GHI	
932.38^{f} 5	(2) ⁺	то ра с	B E HI	J^{π} : M1 830 γ to 2 ⁺ 102, 932 γ to 0 ⁺ g.s., fit to a band.
1039.14^{f} 5	(3)+		AB HI	J^{π} : E2 937 γ to 2 ⁺ 102, (E2) 709 γ to 4 ⁺ 330, fit to a band.
1043 ^g 10	(0^+)		E	E(level): from (p,t). J^{π} : L(p,t)=(0).
1098.25 ^e 6	8 ⁺ @	2.14 ps 24	A D GHI	
1144.29 <mark>8</mark> 22	(2^{+})		I	J^{π} : 1042 γ to 2 ⁺ 102, 1144 γ to 0 ⁺ g.s., fit to a band.
1162.74 ^{<i>f</i>} 6 1315.22 <i>14</i>	(4) ⁺		AB I B	J^{π} : M1+E2 832 γ to 4 ⁺ 330; 494 γ to 6 ⁺ 668; 1060 γ to 2 ⁺ 102. J^{π} : 985 γ to 4 ⁺ 330.
1327.85 ^f 5	(5) ⁺		A D HI	J ^{π} : M1+E2 997 γ to 4 ⁺ 330; (E2) 660 γ to 6 ⁺ 668; E2 289 γ to (3) ⁺ 1039; not J=4 from 997 γ -228 γ (θ) in ¹⁶⁶ Lu ε decay (2.65 min).
1342.5 <mark>8</mark> 3	(4^{+})		I	J^{π} : γ to 4 ⁺ , possible γ to 2 ⁺ , band assignment.
1358.93 ^h 7	1-		С	J ^{π} : log ft =5.3 from J=0 in ¹⁶⁶ Lu(2.12 min) decay; π from independently-established π =– for band.
1386.05 11	$(2^+,3,4^+)$		В	J^{π} : γ' s to 2^+ and 4^+ .
1418.6 <mark>h</mark> 3	$(3)^{-d}$		I	
1451.38 20			В	J^{π} : gammas to 2^{+} 102 and $(3)^{+}$ 1039.
1482.43 ^f 6	$(6)^{+}$		A I	J^{π} : M1 814 γ to 6 ⁺ 668, 319 γ to (4) ⁺ 1163, fit to a band.
1503.37 ^k 7	(2 ⁻) ^c		В І	J^{π} : γ' s to 3^+ and 2^+ , fit to a band.

 $^{^{124}}$ Sn(48 Ca,xn γ), E=205 MeV; ESSA30 Compton-suppressed Ge detector array; investigated rotational damping γ quasicontinuum (1989KhZY).

E(level) [†]	J^{π} ‡	$T_{1/2}^{\#}$	XR	EF	Comments
1505.40 7	(5)-		Α	I	J^{π} : E1+M2 838 γ to 6 ⁺ 668, γ to 4 ⁺ .
1529.67 9	1-		С		J^{π} : 166 Lu(2.12 min) ε decay from 0^- is allowed.
1570.58 ^h 15	(5)		A	I	J^{π} : γ' s to 4^+ and 6^+ , fit to a $\pi=-$ band.
1579.87 25	(2^{+})		CE		XREF: E(1581).
					J^{π} : 1578 γ to 0^{+} g.s., 1249 γ to 4^{+} 330.
1605.94 ^e 16	10 ⁺ @	1.0 ps 5	D	GHI	
1607.42 20	$(2^+,3,4^+)$	•	В		J^{π} : γ' s to 2^+ and 4^+ .
1608.01 ⁸ 11	6+			I	J^{π} : 940 γ to 6 ⁺ 668 has an E0 component.
1616.78 ^k 5	$(4^{-})^{c}$		A D	HI	
1684.80 <i>14</i>	$(2^+,3,4^+)$		AB		J^{π} : 1582 γ to 2 ⁺ 102, 1354 γ to 4 ⁺ 330.
1704.54 ^f 18	(7)+		D	ΗI	J^{π} : M1+E2 1037 γ to 6 ⁺ 668, fit to a band.
1724.85 11	$(6^+,7^+)$		A_		J^{π} : 397 γ to (5) ⁺ 1328, possible 625 γ to 8 ⁺ 1098.
1744.27 6	$(3^+,4^+)$		В		J^{π} : 812 γ to (2) ⁺ 932, 705 γ to (3) ⁺ 1039, (E2) 212 γ from (5,6) ⁺
1790.33 ⁱ 7	(5 ⁻)&				1957.
			A D	HI	J^{π} : fit to a band, γ' s to 4^+ and 6^+ .
1812.47 ^{<i>f</i>} 13 1818.28 20	$(8^+)^{d}$		A	Ι	J^{π} : 1151 γ to 6 ⁺ 668, 1487 γ to 4 ⁺ 330.
1833.3 ^h 5	$(4^+,5,6^+)$		A	_	
	(7) ⁻		A	I	J^{π} : E1 1165 γ to 6 ⁺ 668, band assignment.
1835.42 ^k 20 1852.91 ^g 19	(6 ⁻) ^c 8 ⁺		D	HI	II. 755. 4- 9 ⁺ 1009 l E0
				I	J^{π} : 755 γ to 8 ⁺ 1098 has an E0 component.
1865.41 ^{<i>j</i>} 5 1923.1 <i>4</i>	$(6)^{-a}$ $(1,2^+)$		A D	HI	J^{π} : M1 360 γ to (5) ⁻ 1505, (E1) 383 γ to (6) ⁺ 1482, band assignment. J^{π} : 1923 γ to 0 ⁺ g.s., 1820 γ to 2 ⁺ 102.
1923.1 4 1940.90 ^h 21	(1,2) $(9)^{-}$			_	J^{π} : E1 843 γ to 8 ⁺ 1098, band assignment.
1940.90 21	$(5,6)^+$		Α	I H	J^{π} : M1 629 γ to (5) ⁺ 1328, $\Delta J \le 1$ 209 γ from $J \ge 6$, 2166.
1958.93 ⁱ 7	7- <mark>&</mark>		A D	HI	J^{π} : E1 861 γ to 8 ⁺ 1098, E1 1291 γ to 6 ⁺ 668.
2016.35 22	$(4^+,5,6^+)$		A D	пт	J^{π} : 1482 γ to 4 ⁺ 330, possible 534 γ to (6) ⁺ 1482.
2029.32 7	$(3^-,4^-)$		В		J^{π} : E1 285 γ to (3 ⁺ ,4 ⁺) 1744, 526 γ to (2 ⁻) 1503, 1698 γ to 4 ⁺ 331.
2030.14 ^l 22	8+ b			I	J^{π} : γ to 8^+ has an E0 component.
2072.33 ^j 19	$(8^{-})^{a}$		D	ΗI	J^{π} : (E2) 208 γ to (6) ⁻ 1865, band assignment.
2098.61 12	1-		c		J^{π} : 166 Lu(2.12 min) ε decay from 0 ⁻ is allowed (log ft =5.3).
2137.13 ^k 24	(8 ⁻) ^c		D	ΗI	
2143.11^{f} 23	$(10)^{+}$		_	I	J^{π} : M1 537 γ to 10 ⁺ 1606, fit to a band.
2150.32^{f} 23	(9) ⁺		D	HI	J^{π} : M1+E2 1053 γ to 8 ⁺ 1098, 445 γ to (7) ⁺ 1705, fit to a band.
2165.77 7	$(6,7)^+$		A	111	J^{π} : 1067 γ to 8 ⁺ 1098, 1497 γ to 6 ⁺ 668, M1+E2 209 γ to J≤6, π =+
21001777	(0,7)				1957.
2176.02 ^e 22	12 ⁺ @	0.64 ps <i>33</i>	D	GHI	
2209.90 ⁱ 24	$(9)^{-}$	1	D	ΗI	J^{π} : E1 1111 γ to 8 ⁺ 1098, fit to a band.
2214.89 ^l 18	10 ⁺ b		_	I	J^{π} : γ to 10^+ has an E0 component.
2233.36 6	6-,7-	<10 ns	A	HI	$T_{1/2}$: from ¹⁶⁶ Lu ε decay (2.65 min).
2200.00 0	0 ,,	110 115			J^{π} : ¹⁶⁶ Lu(2.65 min) ε decay from J=6 is allowed (log ft =4.7); M1
					274γ to 7 ⁻ 1959, M1 368γ to (6) ⁻ 1865.
					Low log ft from configuration containing the (ν 5/2[523]) orbital
					implies the presence of the $(\pi 7/2[523])$ orbital in the configuration
2210 568 25	(10 ⁺)			-	of this level. J^{π} : 713 γ to 10 ⁺ 1606, 507 γ to (8 ⁺) 1812, band assignment.
2319.56 ⁸ 25 2361.45 ^j 21	(10^{+})			I	J. 7137 to 10 1000, 3077 to (8) 1812, band assignment.
	$(10^{-})^{a}$		D	HI	
2417.51 ⁱ 24	(11) ^{-&}		D	HI	ит. 1661 - (2.12) - d f 0- ; и
2426.44 <i>17</i>	1-		C		J^{π} : $^{166}Lu(2.12 min) \varepsilon$ decay from 0^- is allowed.
2491.1 ^k 3	$(10^{-})^{c}$		D	HI	

E(level) [†]	J^{π} ‡	${T_{1/2}}^{\#}$	XRE	EF	Comments
$2531.3^{l} 3$	12 ⁺ b		D	HI	J^{π} : γ to 12 ⁺ is M1, fit to a band.
2609.6 ^f 3	$(12^+)^{d}$			I	J^{π} : (M1) 433 γ to 12 ⁺ 2176, 467 γ to (10) ⁺ 2143, band assignment.
2646.7 ^f 4	$(11)^{+}$			ΗI	J^{π} : stretched E2 intraband 496 γ to (9) ⁺ 2150.
2728.9 ^j 4	$(12^{-})^{a}$		D	ΗI	
2779.5 <mark>e</mark> 3	14 ⁺ @	0.51 ps <i>30</i>	D	GHI	
2862.9 ⁱ 3	$(13)^{-}$		D	ΗI	
2891.6 ^k 3	$(12^{-})^{c}$		D	ΗI	
2897.9 ^l 3	14 ⁺ b		D	H	
3166.5 ^j 5	$(14^{-})^{a}$		D	H	
3196.7 ^f 7	$(13^+)^d$			H	J^{π} : stretched Q intraband 550 γ to (11) ⁺ 2647.
3273.7^{l} 3	16 ⁺ b	1.14 ps 27	D	HI	
3350.6 ^k 5	$(14^{-})^{c}$		D	ΗI	
3354.0^{i} 3	$(15^{-})^{\&}$		D	H	
3490.1 ^e 3	16 ⁺ @		D	H	
3665.9 ^j 5	$(16^{-})^{a}$		D	H	
3782.0^{l} 4	18+ b	0.82 ps 10	D	ΗI	
3878.1 ^k 7	$(16^{-})^{c}$		D	H	
3892.2 ⁱ 4	(17) ^{-&}		D	H	
4189.9 ^e 4	$(18^+)^{@}$		D	H	
4218.7^{j} 5	$(18^{-})^{a}$		D	H	
4370.6^{l}	20+ b	0.41 ps <i>3</i>	D	HI	
4470.8 ^k 9	(18 ⁻) ^c		D	H	
4478.7 ⁱ 4	(19) ^{-&}		D	H	
$4819.2^{j} 6$	$(20^{-})^{a}$		D	H	
4922.8 ^e 4	20 ⁺ @		D		
5036.9 ^l 5	22^{+b}	0.201 ps 21	D	H	
5108.7^{i} 5	(21 ⁻)&		D	H	
5119.1 ^k 10 5468.6 ^j 6	$(20^{-})^{c}$		D	H	
	$(22^{-})^{a}$ $(22^{+})^{\textcircled{@}}$		D	Н	
5649.7 ^e 7 5775.5 ^l 5	24^{+b}	0.125	D		
5775.5° 5 5782.7 ⁱ 5	(23^{-}) &	0.125 ps <i>14</i>	D	H	
5/82.7 5 5814.0 ^k 11	$(23)^{c}$ $(22^{-})^{c}$		D	Н	
6173.4 ^j 7	$(24^{-})^{a}$		D D		
6378.1? ^e 10	$(24^{+})^{\textcircled{@}}$		D		
6507.6^{i} 6	(25^{-}) &		D		
6551.8^{k} 12	$(24^{-})^{c}$		D		
$6581.8^{l}6$	$26^{+}\frac{b}{b}$	0.083 ps 7	D		
6940.0 ^j 7	$(26^{-})^{a}$	0.005 ps /	D		
7294.7 ⁱ 6	(27^{-}) &		D		
$7334.6?^{k}$ 15	$(26^{-})^{c}$		D		
7452.0^{l} 6	28^{+}	0.069 ps 7	D		
7773.6 ^j 7	$(28^{-})^{a}$	5.005 ps /	D		
,	()		_		

¹⁶⁶Yb Levels (continued)

E(level) [†]	$\mathrm{J}^{\pi \ddagger}$	$T_{1/2}^{\#}$	XREF	Comments
8148.5 ⁱ 8	(29 ⁻)&		D	
8387.0 ^l 6	30^{+}	0.055 ps 7	D	
8677.0 ^j 9	$(30^{-})^{a}$	•	D	
9071.3 ⁱ 9	(31 ⁻)&		D	
9385.8 ^l 8	32^{+}	0.042 ps 7	D	
9648.6 ^j 10	$(32^{-})^{a}$	1	D	
10057.5 ⁱ 11	(33 ⁻)&		D	
10445.8 ^l 10	$34^{+}\dot{b}$	0.035 ps 7	D	
11102? ⁱ 2	(35 ⁻)&	1	D	
11557.8 ^l 11	$(36^+)^{b}$		D	J^{π} : from probable band assignment.
12186? ⁱ 2	(37 ⁻)&		D	
12716? ¹ 2	$(38^+)^{b}$		D	J^{π} : from probable band assignment.
0.0+x ^m	J		F	Additional information 1.
162.6+x ⁿ 10	J+1		F	
334.9+x ^m 13	J+2		F	
524.9+x ⁿ 13	J+3		F	
735.5+x ^m 16	J+4		F	
966.4+x ⁿ 16	J+5		F	
1217.0+x ^m 18	J+6		F	
1486.2+x ⁿ 18	J+7		F	
1772.7+x ^m 18	J+8		F	
2075.2+x ⁿ 19	J+9		F	
2392.6+x ^m 19	J+10		F	
2722.6+x ⁿ 20	J+11		F	
3064.1+x ^m 20	J+12		F	
3416.6+x ⁿ 21	J+13		F	
3778.4+x ^m 21	J+14		F	
4149.6+x ⁿ 22	J+15		F	
4531.2+x ^m 23	J+16		F	
4921.6+x ⁿ 24	J+17		F	

[†] From least-squares fit to Eγ, assigning 1 keV uncertainty to data for which authors did not state an uncertainty.

[‡] Values given without comment are based on band structure deduced in the $(\alpha, xn\gamma)$, $(^{16}O, 4n\gamma)$ and $(^{40}Ar, 4n\gamma)$ reaction studies and supported in part by transition multipolarities.

[#] The half-lives of excited states are from (⁴⁰Ar,4nγ), unless otherwise noted.

[®] Based on known $J^{\pi}=0^+$ for the g.s. bandhead, stretched E2 character for the 102γ connecting the J=0 and 2 members and stretched Q character for a number of other intraband transitions, firm J^{π} assignments are adopted for J≤22 members of the g.s. band

[&]amp; Based on established $J^{\pi}=7^-$ for the 1959 level and regular progression of E γ and I γ for cascade gammas in band, many of which are stretched Q.

^a The regularity and the stretched Q character of the cascade transitions populating the (6)⁻ 1865 level justify the classification of this cascade as a band.

^b Based on established $J^{\pi}=8^{+}$ and 10^{+} for the 2030 and 2215 levels, respectively, and E2 character of the 375 γ connecting the J=16 and 14 members of the band, firm J^{π} assignments have been adopted for the J=8 through 36 members of this band.

^c Tentatively assigned on the basis of systematics (1984Fi18).

^d Fit to a band.

^e Band(A): $K^{\pi}=0^{+}$ g.s. band. A=16.99, B=-=0.027.

¹⁶⁶Yb Levels (continued)

- ^f Band(B): $K^{\pi}=2^{+}$ γ-vibrational band. A=13.86, B=0.021 (even J); A=17.58, B=-0.036 (odd J).
- ^g Band(C): $K^{\pi}=0^{+}$ β -vibrational band. A=17 if B=0.
- ^h Band(D): $K^{\pi}=(0)^{-}$ band. $\pi=-$ for band is established by E1 1165 γ and 843 γ to $\pi=+$ g.s. levels.
- ⁱ Band(E): $K^{\pi}=5^{-}$, $\alpha=1$ band.
- ^j Band(F): $K^{\pi}=5^{-}$, $\alpha=0$ band.
- ^k Band(G): $K^{\pi}=(2^{-})$ band.
- l Band(H): π=+ super band. Becomes yrast for J≥16.
- ^m Band(I): $((\pi 7/2[523])+(\pi 7/2[404]))(v i_{13/2}^2)$? band. Configuration assignment supported by large B(M1)/B(E2) ratios, bandhead energy and crossing frequency arguments (1994Ol04). ⁿ Band(i): $((\pi 7/2[523])+(\pi 7/2[404]))(\nu i_{13/2}^2)$? band. See comment on signature partner of this band.

$\gamma(^{166}\text{Yb})$

$E_i(level)$	\mathtt{J}_i^{π}	E_{γ}^{\sharp}	I_{γ}^{\dagger}	E_f J_f^π	Mult.#	δ	α^{g}	Comments
102.37	2+	102.38 ^b 3	100 b	0.0 0+	E2		2.93	B(E2)(W.u.)=191 10 Mult.: from ce data in 166 Lu ε decay (2.65 min).
330.48	4+	228.12 ^b 3	100 b	102.37 2+	E2		0.1743	B(E2)(W.u.)=272 9
								Mult.: from ce data in 166 Lu ε decay (2.65 min).
667.97	6+	337.50 ^b 3	100 ^b	330.48 4+	E2		0.0521	B(E2)(W.u.)=291 12
								Mult.: from $\alpha(L)$ exp in 166 Lu ε decay (2.65 min) and $\alpha(K)$ exp and $\gamma(\theta)$ in $(\alpha, xn\gamma)$.
932.38	$(2)^{+}$	830.06 ^c 9	100° 5	102.37 2+	M1		0.01134	
		932.35 ^c 7	78 ^c 5	$0.0 0^{+}$				
1039.14	(3)+	708.82 ^b 7	20.0 ^b 21	330.48 4+	(E2)		0.00774	Other Iy: 17 5 in ε decay (1.41 min), 25 in (16 O,4n γ), 54 6 in (α ,xn γ).
		936.79 ^b 7	100 ^b 4	102.37 2+	E2		0.00424	
1098.25	8+	430.28 ^b 3	100 <mark>b</mark>	667.97 6 ⁺	$E2^{f}$		0.0264	$B(E2)(W.u.)=3.2\times10^2 4$
1144.29	(2^{+})	1042.0 [@] 3	100 [@]	102.37 2+				
		1144.2 3		$0.0 0^{+}$				E_{γ} : for doubly-placed transition in $(\alpha, xn\gamma)$.
1162.74	$(4)^{+}$	494.2 ^b 8	4 ^b 2	667.97 6 ⁺				
		832.20 ^b 8	100 ^b 7	330.48 4+	M1+E2	+0.6 2	0.0097 8	δ : from 832 γ -228 $\gamma(\theta)$ in ¹⁶⁶ Lu ε decay (2.65 min); larger δ solution rejected based on measured $\alpha(K)$ exp.
		1060.28 ^b 11	21.8 ^b 14	102.37 2 ⁺				
1315.22		152.49 ^b 13	65 ^b 5	1162.74 (4)	+			
		984.6 <mark>b</mark> 6	100 ^b 20	330.48 4+				
1327.85	$(5)^{+}$	289.3 <i>3</i>	7.9 8	1039.14 (3)	+ E2		0.0829	E_{γ} : from $(\alpha, xn\gamma)$.
		659.93 ^b 5	20.5 ^b 14	((7.07.6	(E3)		0.00011	I_{γ} : from $(\alpha, xn\gamma)$. Others: <10.9 in ε decay (2.65 min).
				667.97 6+	(E2)		0.00911	Other E γ : 659.2 3 in $(\alpha, xn\gamma)$. Other I γ : 30 3 in $(\alpha, xn\gamma)$.
		997.38 ^b 5	100 ^b 4	330.48 4+	M1+E2	-10 +3-13	0.00376 7	δ : -0.2 <i>I</i> or -10 +3-13 from 997γ-228γ(θ) (2007Mc08) in ¹⁶⁶ Lu ε decay (2.65 min); α (K)exp=0.0036 3 in (α ,xnγ) rules out the first option.
1342.5	(4^{+})	1012.0 3		330.48 4+				E_{γ} : from $(\alpha, xn\gamma)$.
		1238.9 ⁱ 3		102.37 2+				E_{γ} : from $(\alpha, xn\gamma)$.
1358.93	1-	1256.64 ^b 10	100 ^b 10	102.37 2+				•
		1358.79 ^b 10	88 ^b 11	$0.0 0^{+}$				
1386.05	$(2^+,3,4^+)$	345.0 ^{hci} 6	<14 ^{hc}	1039.14 (3)	+			
	/	1054.7 ^c 6	23 ^c 11	330.48 4+				
		1283.45 ^c 21	100° 20	$102.37 \ 2^{+}$				
1418.6	$(3)^{-}$	1316.2 [@] 3	100 [@]	$102.37 \ 2^{+}$				

$\gamma(^{166}\text{Yb})$ (continued)

	$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	${\rm I}_{\gamma}{}^{\dagger}$	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.#	δ	$\alpha^{\mathbf{g}}$	Comments
	1451.38		412.20° 20	100° 9	1039.14 (3)+				
			1349.4 ^c 6	45° 18	102.37 2+				
	1482.43	$(6)^{+}$	318.6 ^{@i} 3	24.3 [@] 24	1162.74 (4) ⁺ 667.97 6 ⁺	M1		0.01100	E . f
			814.46 5	100 9	007.97 0	M1		0.01189	E_{γ} : from ε decay (2.65 min). I_{γ} : from $(\alpha, xn\gamma)$.
			1151.7 ^h 4	<8.5 ^h	330.48 4+				E_{γ} : weighted average of 1151.1 4 in ε decay (2.65)
									min) and 1152.0 3 in $(\alpha, xn\gamma)$.
	1503.37	(2-)	464.29 ^c 7	24 ^c 7	1039.14 (3)+				I_{γ} : from ε decay (2.65 min).
	1000107	(=)	570.93° 9	100° 10	932.38 (2)+				
	1505.40	(5)	837.57 <mark>b</mark> 8	62 ^b 4	667.97 6+	E1+M2	0.31 + 3 - 4	0.0044 6	
		,	1174.80 <mark>b</mark> <i>13</i>	100 ^b 9	330.48 4+				
	1529.67	1-	1427.18 ^d 14	100 ^d 10	102.37 2 ⁺				
			1529.73 ^d 11	48 ^d 3	$0.0 0^{+}$				
	1570.58	(5)	901.5 ^b 6	30 ^b 12	667.97 6 ⁺				
		(=)	1240.05 ^b 25	100 ^b 12	330.48 4+				
	1579.87	(2^{+})	1249.4 <mark>d</mark> 8	56 ^d 22	330.48 4+				
		,	1477.5 ^d 3	100 ^d 17	102.37 2+				
			1579.4 ^d 6	39 ^d 17	$0.0 0^{+}$				
	1605.94	10 ⁺	507.2 2	100	1098.25 8 ⁺	E2		0.01718	$B(E2)(W.u.)=3.1\times10^2 16$
									Mult.: Q from $\gamma(\theta)$ in (16 O,4n γ); not M2 from RUL.
	1607.42	$(2^+,3,4^+)$	568.5° 6	64 ^c 27	$1039.14 (3)^{+}$				
			1276.92 ^C 22	100° 27	330.48 4+				
	1.600.01	6+	1504.9 ^c 6 939.5 [@] 3	100 ^c 27 100 [@]	102.37 2+	E0 - M1 - E2		0.0062.21	
	1608.01 1616.78		939.5° 3 288.87 ^{hb} 5	100 $^{\circ}$ $^{\circ}$	667.97 6+	E0+M1+E2		0.0063 21	
	1010./8	(4-)	453.86 ^b 8	38.9^{b} 25	1327.85 (5) ⁺ 1162.74 (4) ⁺				Other I. 1. 55 5 in (1. 1111)
			433.80° 8 577.70 ^b 5	38.9° 23 100 ^b 6	* *	FF11		0.00444	Other I γ : 55 5 in $(\alpha, xn\gamma)$.
	1604.00	(0+ 0, 4+)	1354.35 ^b 15	$100^{b} \ 0$ $100^{b} \ 21$	1039.14 (3)+	[E1]		0.00444	
	1684.80	$(2^+,3,4^+)$	1354.35 ^b 15 1582.2 ^b 6	$100^{b} 21$ $14^{b} 7$	330.48 4 ⁺				
	1704.54	(7)+	1582.2° 6 376.9 [@] 3	14 ⁸ / 42 [@] 4	102.37 2+				
	1704.54	$(7)^{+}$	3/6.9 3 1036.6 <i>3</i>	100 [@] 11	1327.85 (5) ⁺ 667.97 6 ⁺	M1 . E2		0.0050.16	
	1704.05	(6+ 7+)	397.02^{b} 10	$70.6^{b} 20$	1327.85 (5) ⁺	M1+E2		0.0050 16	
	1724.85	$(6^+,7^+)$	625.29 ^{bi} 46	$\frac{70.6^{b}}{20^{b}} \frac{20}{6}$					
			$1056.3^{b} 6$	$100^{b} 22$	1098.25 8 ⁺ 667.97 6 ⁺				
			1030.3 0	100° 22	007.97 0				
п									

γ (166Yb) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\dagger}	\mathbf{E}_f \mathbf{J}_f^{π}	Mult.#	α^{g}	Comments
1744.27	$(3^+,4^+)$	705.08 ^c 11	45° 4	1039.14 (3)+			
		811.92 ^c 6	100° 6	932.38 (2)+			
1790.33	(5^{-})	219.4 ^b 3	4.2^{b} 5	1570.58 (5)-			
		1122.38 ^b 8	52 ^b 3	667.97 6+			
		1459.63 ^b 10	100 ^b 5	330.48 4+			
1812.47	(8^{+})	330.9 ^{hb} 5	<87 <i>hb</i>	$1482.43 (6)^+$			
		714.39 ^b 15	100 ^b 10	1098.25 8+			
		1144.5 <mark>b</mark> 5	80 ^b 20	667.97 6+			
1818.28	$(4^+,5,6^+)$	490.4 ^b 5	42 ^b 12	$1327.85 (5)^{+}$			
		1151.1 ^{hb} 4	42 ^{hb} 12	667.97 6+			
		1487.3 ^b 4	100 ^b 19	330.48 4+			
1833.3	$(7)^{-}$	735.2 ^b 6	90 ^b 30	1098.25 8 ⁺			
		1165.2 ^b 6	100 <mark>b</mark> 40	667.97 6+	E1	1.14×10^{-3}	
1835.42	(6^{-})	217.9 [@] 3	<4 [@]	1616.78 (4-)			
		507.4 [@] 3	100 [@] 10	1327.85 (5) ⁺			
1852.91	8+	754.8 [@] 3	100 [@] 10	1098.25 8+	E0+M1+E2	0.011 4	α : based on $\alpha(K)$ exp in (HI,xn γ).
		1184.1 [@] 3	90 [@] 10	667.97 6 ⁺			
1865.41	$(6)^{-}$	74.92 <mark>b</mark> 10	11.0 ^b 15	1790.33 (5-)	M1,E2	8.9 12	Mult.: from $\alpha(\exp)$ in 166 Lu ε decay (2.65 min).
		248.53 ^b 7	59 b 3	1616.78 (4-)	(E2)	0.1324	Mult.: from $\alpha(K)$ exp in 166 Lu ε decay (2.65 min).
		294.8 <mark>b</mark> 3	4.5 ^b 10	1570.58 (5)			
		360.09 ^b 7	44 ^b 4	1505.40 (5)	M1	0.0966	Mult.: from $\alpha(K)$ exp in 166 Lu ε decay (2.65 min).
		382.97 ^b 4	37.5 ^b 25	1482.43 (6) ⁺	(E1)	0.01110	Mult.: from $\alpha(K)$ exp in 166 Lu ε decay (2.65 min).
		537.64 ^b 4	100 ^b 4	1327.85 (5)+	(E1)	0.00518	Mult.: D from $\gamma(\theta)$ in (16 O,4n γ) from $\alpha(K)$ exp in 166 Lu ε decay (2.65 min).
		1197.2 ^b 3	7.0 ^b 10	667.97 6 ⁺			
1923.1	$(1,2^+)$	1820.4 ^b 6	38 <mark>b</mark> 19	102.37 2+			
		1923.2 ^b 4	100 <mark>b</mark> 13	$0.0 0^{+}$			
1940.90	(9)	843.3 [@] 3	100 [@]	1098.25 8+	E1	0.00207	
1957.13	$(5,6)^{+}$	139.0 <mark>b</mark> 3	5.9 ^b 18	1818.28 (4 ⁺ ,5,6 ⁺)			
		166.6 <mark>b</mark>	b	1790.33 (5 ⁻)			
		212.4 ^b 3	16.4 <mark>b</mark> 18	1744.27 (3+,4+)	(E2)	0.220	Mult.: from 166 Lu ε decay (2.65 min).
		272.2 ^b 5	23 b 3	1684.80 (2+,3,4+)			• •
		386.7 ^b 6	4.1 ^b 18	1570.58 (5)			

 ∞

γ (166Yb) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\dagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.#	α^g	Comments
1957.13	$(5,6)^+$	474.74 ^b 6	39.2 ^b 23	1482.43	(6) ⁺			
		629.32 <mark>b</mark> 7	100 ^b 6	1327.85	$(5)^{+}$	M1	0.0227	Mult.: from $\alpha(K)$ exp in 166 Lu ε decay (2.65 min).
		794.41 <mark>b</mark> 5	43 ^b 3	1162.74	$(4)^{+}$			
		1626.6 <mark>b</mark> 3	13.5 ^b 23	330.48	4+			
1958.93	7-	93.2 ^b 5	2.1 ^b 4	1865.41	(6)	[M1,E2]	4.17 11	
		860.56 ^b 11	33.5 ^b 21	1098.25	8+	E1+(M2)	0.014 13	Other Iy: 98 10 in (α, xny) .
		1290.71 ^b 20	100 ^b 7	667.97	6 ⁺	E1	1.01×10^{-3}	Mult.: from $\alpha(K)$ exp in $(\alpha, xn\gamma)$ and $\gamma(\theta)$ in $(^{16}O, 4n\gamma)$.
2016.35	$(4^+,5,6^+)$	330.9 ^{hi} 5	<100 ^h	1684.80	$(2^+,3,4^+)$			
		445.8 ^b 4	41 ^b 16	1570.58	$(5)^{-}$			
		534.2 ^{bi} 6	100 ^b 31	1482.43	$(6)^{+}$			
		1685.85 ^b 25	92 ^b 15	330.48	4 ⁺			
2029.32	$(3^-,4^-)$	285.07 ^c 5	100 ^c 5	1744.27	$(3^+,4^+)$	E1	0.0226	Mult.: from $\alpha(K)$ exp in ε decay (1.41 min).
		345.0 ^{hc} 6	<5 <i>hc</i>	1684.80	$(2^+,3,4^+)$			
		421.26 ^c 9	19 ^c 1		$(2^+,3,4^+)$			
		526.01 ^c 10 643.2 ^c 1	27 ^c 3 32 ^c 3	1503.37				
		866.4 ^c 4	11 ^c 2	1386.03	$(2^+,3,4^+)$			
		1698.7 ^c 4	$12^{c} 3$	330.48				
2030.14	8+	547.5 [@] 3	<14 [@]	1482.43				
		932.1 [@] 3	100 [@] 10	1098.25		E0+M1	0.116 12	α : from $\alpha(K)$ exp in $(\alpha, xn\gamma)$.
2072.33	(8-)	112.9 3	10 5	1958.93				I_{γ} : from (40 Ar, 4 n γ).
		207.6 3	100 50	1865.41	(6)-	(E2)	0.237	Other Ey: 206.0 5 in (16 O,4n γ) and (40 Ar,4n γ). I _{γ} : from (40 Ar,4n γ).
2098.61	1-	518.0 ^b 8	7 ^b 3	1579.87	(2^{+})			
		1996.25 ^b 15	21 ^b 6	102.37	2+			
		2098.6 ^b 2	100 ^b 12	0.0	0_{+}			
2137.13	(8-)	300.8 [@] 3	100 [@] 11	1835.42	(6-)	(E2)	0.0733	Mult.: Q intraband γ in (16 O,4n γ).
		433.2 [@] 3	<22 [@]	1704.54	$(7)^{+}$			
2143.11	$(10)^{+}$	331.0 ^{h@} 3	<110 ^{h@}	1812.47	(8+)			
		537.2 [@] 3	100 [@] 10	1605.94	10 ⁺	M1	0.0340	
2150.32	$(9)^{+}$	445.4 [@] 3	<207 [@]	1704.54	$(7)^{+}$	[E2]	0.0241	
		1052.5 [@] 3	100 [@] 10	1098.25	8+	E2+M1	0.00334	Mult.: D+Q from $\gamma(\theta)$ in (¹⁶ O,4n γ); α (K)exp in (α ,4n γ).

9

γ (166Yb) (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\dagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.#	δ	$\alpha^{\mathbf{g}}$	Comments
2165.77	$(6,7)^+$	208.65 ^b 10	100 ^b 10	1957.13	$(5,6)^+$	M1+E2	0.9 4	0.34 5	Mult.: from 166 Lu ε decay (2.65 min).
		1067.34 ^b 20	68 <mark>b</mark> 9	1098.25	8+				
		1497.33 <mark>b</mark> 23	20 ^b 4	667.97	6+				
2176.02	12+	570.6 [@] 3	100 [@]	1605.94	10 ⁺	$E2^{f}$		0.01290	$B(E2)(W.u.)=2.7\times10^2 14$
									Other E γ : 569.4 2 in (⁴⁰ Ar,4n γ), 569.7 2 in (¹⁶ O,4n γ).
2209.90	$(9)^{-}$	1111.4 [@] 3	100 [@]	1098.25	8+	E1		1.24×10^{-3}	
2214.89	10 ⁺	361.3 [@] 3	<45 [@]	1852.91	8+				
		402.7 [@] 3	<45 [@]	1812.47	(8^{+})				
		608.9 [@] 3	77 [@] 8	1605.94	10+	E0+M1+E2		0.052 26	α : based on $\alpha(K)$ exp in $(\alpha, xn\gamma)$.
		1117.1 [@] 3	100 [@] 10	1098.25	8+				
2233.36	$6^{-},7^{-}$	67.57 ^b 4	12.7 <mark>b</mark> 13	2165.77	$(6,7)^+$	E1		0.943	$B(E1)(W.u.)>4.2\times10^{-6}$
									Mult.: from 166 Lu ε decay (2.65 min).
		274.41 ^b 4	31.8 ^b 20	1958.93	7-	M1		0.200	$B(M1)(W.u.) > 1.5 \times 10^{-5}$
		1	1						Mult.: from 166 Lu ε decay (2.65 min).
		276.28 ^b 4	43.6 ^b 26	1957.13	$(5,6)^+$	(E1)		0.0244	$B(E1)(W.u.)>2.1\times10^{-7}$
		<i>L</i>	L						Mult.: from 166 Lu ε decay (2.65 min).
		367.95 ^b 3	100 ^b 3	1865.41	$(6)^{-}$	M1		0.0913	$B(M1)(W.u.)>2.0\times10^{-5}$
		b	b .						Mult.: from 166 Lu ε decay (2.65 min).
		442.87^{b} 20	1.7^{b}_{h} 4	1790.33					
2319.56	(10^+)	507.4 ^h 3 713.3 3	n	1812.47 1605.94					E_{γ} : from $(\alpha, xn\gamma)$.
2361.45	(10-)	151.3 [@] 3	59 [@] 6	2209.90					E_{γ} : from $(\alpha, xn\gamma)$.
2301.43	(10)	289.2 [@] 2	100 [@] 6	2072.33		(E2)		0.0021	I_{γ} : see comment on 289.2 γ . Mult.: Q from DCO ratio in (40 Ar,4 $n\gamma$) for intraband
		289.2 2	100 0	2072.33	(8)	(E2)		0.0831	γ . However, γ may Be a doublet in this reaction based on I(289 γ)/I(151 γ)=8 4 cf. adopted value of 1.7 2.
		420.6 [@] 3	94 <mark>@</mark> 9	1940.90	$(9)^{-}$				
2417.51	$(11)^{-}$	477.2 [@] 3	<34 [@]	1940.90	(9)				
	•	811.0 [@] 3	100 [@] 10	1605.94	10 ⁺	(E1)		0.00223	Mult.: D from $\gamma(\theta)$ in ($^{16}\text{O},4\text{n}\gamma$), $\Delta\pi$ =(yes) from level scheme.
2426.44	1-	1067.32 ^d 20	60 <mark>d</mark> 10	1358.93	1-				
		2324.6 ^d 3	100 ^d 8	102.37					
		2425.9 ^d 6	6 <mark>d</mark> 3	0.0	0^{+}				
2491.1	(10^{-})	341.0 5		2150.32					E_{γ} : from (^{16}O ,4n γ). I_{γ} : weak γ in (^{16}O ,4n γ).

10

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\dagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.#	α^{g}	Comments
2491.1	(10-)	353.7 3	100	2137.13	(8-)	(E2)	0.0455	E_{γ} : from (α,xnγ). Mult.: Q intraband γ from γ(θ) in (16 O,4nγ).
2531.3	12+	355.8 [@] 3 924.7 [@] 3	65 [@] 7 100 [@] 10	2176.02 1605.94		M1	0.0998	
2609.6	(12+)	433.2 [@] 3 466.9 [@] 3	<200 [@] 100 [@] 10	2176.02 2143.11	12 ⁺	(M1)	0.0594	
2646.7	$(11)^{+}$	496.4 [@] 3	100 [@]	2150.32	. ,	E2	0.0182	
2728.9	(12^{-})	367.5 [@] 3	100 [@]	2361.45	(10^{-})	(E2)	0.0409	Mult.: Q intraband γ from DCO ratio in (40 Ar, 4 n γ).
2779.5	14+	603.6 [@] 2	100 [@]	2176.02		$E2^{\hat{f}}$	0.01122	$B(E2)(W.u.)=2.5\times10^2 \ 15$
2862.9	$(13)^{-}$	445.4 [@] 3	72 [@] 8	2417.51	$(11)^{-}$	(E2)	0.0240	Mult.: Q intraband γ from DCO ratio in (40 Ar, 4 n γ).
		686.3 [@] 3	100 [@] 10	2176.02	12 ⁺	E1	0.00310	
2891.6	(12^{-})	400.2 [@] 3	100 [@] 11	2491.1	(10^{-})	(E2)	0.0322	
		715.8 [@] 3	<36 [@]	2176.02	12+			
2897.9	14+	366.0 5	9 5	2531.3	12+	(E2)	0.0413	Mult.: Q from DCO ratio in (40 Ar. 40 Yr) for intraband γ .
		722.1 2	100 10	2176.02	12+	(E2)	0.00742	Mult.: Q from DCO ratio in (40 Ar.4n γ), $\Delta \pi$ =no from level scheme.
3166.5	(14 ⁻)	437.6 2	100	2728.9	(12^{-})	(E2)	0.0252	Mult.: Q intraband γ from DCO in (40 Ar, 4 n γ) and from $\gamma(\theta)$ in (16 O, 4 n γ).
3196.7	(13^{+})	550.0 ^a 5	100 ^a	2646.7	$(11)^{+}$	(E2)	0.01405	Mult.: from $\gamma(\theta)$ in (16 O,4n γ) for intraband γ .
3273.7	16 ⁺	375.8 2	22.6 23	2897.9	14 ⁺	$E2^{f}$	0.0383	$B(E2)(W.u.)=2.2\times10^2 6$
		494.3 2	100 10	2779.5	14 ⁺	$E2^{f}$	0.0184	B(E2)(W.u.)= $2.5 \times 10^2 \ 7$
3350.6	(14-)	459.0 [@] 3	100@	2891.6	(12^{-})	(E2)	0.0222	Mult.: Q from $\gamma(\theta)$ in (16 O, 4 n γ) for intraband γ .
3354.0	(15^{-})	490.8 2	100 10	2862.9	(13)	(E2) ^e	0.0187	M. I. C. (0): (160.4.)
3490.1	16 ⁺	575.1 <i>5</i> 592.5 2	32 <i>16</i> 63 <i>6</i>	2779.5 2897.9	14 ⁺ 14 ⁺	D		Mult.: from $\gamma(\theta)$ in (16 O,4n γ).
3490.1	10	710.5 2	100 10	2779.5	14 ⁺	(E2) ^e	0.00770	
3665.9	(16^{-})	499.4 2	100	3166.5	(14^{-})	$(E2)^{e}$	0.0179	
3782.0	18 ⁺	508.3 2	100	3273.7	16 ⁺	[E2]	0.01711	B(E2)(W.u.)= $3.7 \times 10^2 5$
3878.1	(16^{-})	527.5 ^a 5	100 ^a	3350.6	(14^{-})	(E2) €	0.01557	
3892.2	$(17)^{-}$	403.0 ^a 5	49 ^a	3490.1	16+	(Ea)	0.01.402	I_{γ} : for possible doublet.
4189.9	(18^{+})	538.1 2 699.8 2	100 100	3354.0 3490.1	(15 ⁻) 16 ⁺	(E2) ^e (E2) ^e	0.01483 0.00797	I_{γ} : from (16 O,4n γ).
4189.9	(18)	552.8 2	100	3665.9	(16^{-})	$(E2)^e$	0.00797	
4370.6	20+	588.5 2	100	3782.0	18 ⁺	$E2^{f}$	0.01192	$B(E2)(W.u.)=3.6\times10^2 \ 3$
4470.8	(18^{-})	592.7 5	100	3878.1	(16^{-})	[E2]	0.01172	_(/(,
4478.7	(19)	586.5 2	100	3892.2	$(17)^{-}$	(E2) [€]	0.01202	
4819.2	(20^{-})	600.4 2	100	4218.7	(18 ⁻)	(E2) ^e	0.01137	
4922.8	20+	732.9 2	100	4189.9	(18^{+})	(E2) [€]	0.00718	

$\gamma(^{166}\text{Yb})$ (continued)

	E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult.#	α^{g}	Comments
ı	5036.9	22+	666.3 2	100	4370.6	20+	$E2^{f}$	0.00891	B(E2)(W.u.)= $3.9 \times 10^2 4$
ı	5108.7	(21^{-})	630.0 2	100	4478.7	$(19)^{-}$	$(E2)^{e}$	0.01015	
ı	5119.1	(20^{-})	648.3 5	100	4470.8	(18^{-})	c		
ı	5468.6	(22^{-})	649.4 2	100	4819.2	(20^{-})	$(E2)^f$	0.00945	
ı	5649.7	(22^{+})	726.9 5	100	4922.8	20+	(E2) ^e	0.00731	D. (Ta) (Tr)
ı	5775.5 5782.7	24 ⁺ (23 ⁻)	738.6 2 674.0 2	100 100	5036.9 5108.7	22 ⁺ (21 ⁻)	[E2] (E2) ^e	0.00706 0.00868	$B(E2)(W.u.)=3.8\times10^2 5$
ı	5814.0	(23°) (22^{-})	694.9 5	100	5108.7	(21) (20^{-})	(E2)	0.00808	
ı	6173.4	(24^{-})	704.8 2	100	5468.6	(22^{-})	(E2) [€]	0.00784	
ı	6378.1?	(24^{+})	728.5 ⁱ 5	100	5649.7	(22^{+})	(E2) ^e	0.00728	
ı	6507.6	(25^{-})	724.9 2	100	5782.7	(23^{-})	[E2]	0.00736	
ı	6551.8	(24^{-})	737.8 5	100	5814.0	(22^{-})	C		
ı	6581.8	26 ⁺	806.3 2	100	5775.5	24+	$E2^f$	0.00583	B(E2)(W.u.)= $3.7 \times 10^2 \ 3$
ı	6940.0 7294.7	(26^{-})	766.6 2 787.1 2	100 100	6173.4 6507.6	(24^{-})	(E2) [€] (E2) [€]	0.00650 0.00614	
ı	7334.6?	(27^{-}) (26^{-})	$787.1 \ 2$ $783.0^{i} \ 5$	100	6551.8	(25^{-}) (24^{-})	(E2)	0.00014	
	7452.0	28 ⁺	870.2 <i>2</i>	100	6581.8	(24) 26 ⁺	[E2]	0.00495	B(E2)(W.u.)= $3.0 \times 10^2 \ 3$
	7773.6	(28^{-})	833.6 2	100	6940.0	(26^{-})	$(E2)^e$	0.00542	B(L2)(W.d.)=3.0×10 3
ı	8148.5	(29-)	853.8 5	100	7294.7	(27^{-})	(E2) ^e	0.00515	
ı	8387.0	30 ⁺	935.0 2	100	7452.0	28+	$E2^{f}$	0.00426	$B(E2)(W.u.)=2.6\times10^2 4$
ı	8677.0	(30^{-})	903.4 5	100	7773.6	(28^{-})	(E2) ^e	0.00457	
ı	9071.3	(31 ⁻) 32 ⁺	922.8 5	100	8148.5	(29 ⁻) 30 ⁺	[E2]	0.00438	$B(E2)(W.u.)=2.5\times10^2 5$
ı	9385.8 9648.6	(32^{-})	998.8 <i>5</i> 971.6 <i>5</i>	100 100	8387.0 8677.0	(30^{-})	(E2) ^e (E2) ^e	0.00372 0.00393	$B(E2)(W.u.)=2.5\times10^{-5}$
ı	10057.5	(33^{-})	986.2 5	100	9071.3	(31^{-})	$(E2)^e$	0.00333	
ı	10445.8	34+	1060.0 5	100	9385.8	32+	[E2]	0.00329	B(E2)(W.u.)= $2.2 \times 10^2 5$
	11102?	(35^{-})	1045.0 ⁱ 5	100	10057.5	(33^{-})			
1	11557.8	(36^+)	1112.0 5	100	10445.8	34 ⁺			
1	12186?	(37-)	1084.0^{i} 5	100	11102?	(35^{-})			
1	12716?	(38^+)	1158.0^{i} 5	100	11557.8	(36^+)			
1	162.6+x	J+1	162.6&	100	0.0+x				
1	334.9+x	J+2	172.3 <mark>&</mark>	100	162.6+x				
	524.9+x	J+3	190.0		334.9+x				
1			362.3&		162.6+x				
1	735.5+x	J+4	210.6		524.9+x				
1			400.6 ^{& i}		334.9+x				
	966.4+x	J+5	230.9 <mark>&</mark>		735.5+x	J+4			

$\gamma(^{166}\text{Yb})$ (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	\mathbf{E}_f \mathbf{J}_f^{π}	E_i (level)	J_i^{π}	E_{γ}^{\ddagger}	\mathbf{E}_f \mathbf{J}_f^{π}	E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	\mathbf{E}_f \mathbf{J}_f^{π}
966.4+x	J+5	441.5 <mark>&</mark>	524.9+x J+3	2392.6+x	J+10	317.4 <mark>&</mark>	2075.2+x J+9	3778.4+x	J+14	714.3 <mark>&</mark>	3064.1+x J+12
1217.0+x	J+6	250.6 <mark>&</mark>	966.4+x J+:	;		619.9 <mark>&</mark>	1772.7+x J+8	4149.6+x	J+15	371.2 <mark>&</mark>	3778.4+x J+14
		481.5 <mark>&i</mark>	735.5+x J+4	2722.6+x	J+11	330.0 <mark>&</mark>	2392.6+x J+10			733.0 <mark>&</mark>	3416.6+x J+13
1486.2+x	J+7	269.2 <mark>&</mark>	1217.0+x J+0	5		647.4 <mark>&</mark>	2075.2+x J+9	4531.2+x	J+16	381.6 <mark>&</mark>	4149.6+x J+15
		519.8 <mark>&</mark>	966.4+x J+:	3064.1+x	J+12	341.5 <mark>&</mark>	2722.6+x J+11			752.8 <mark>&</mark>	3778.4+x J+14
1772.7+x	J+8	286.5 <mark>&</mark>	1486.2+x J+	'		671.5 <mark>&</mark>	2392.6+x J+10	4921.6+x	J+17	390.4 ^{&} i	4531.2+x J+16
		555.7 <mark>&</mark>	1217.0+x J+0	3416.6+x	J+13	352.5 <mark>&</mark>	3064.1+x J+12			772.0 <mark>&</mark>	4149.6+x J+15
2075.2+x	J+9	302.5 <mark>&</mark>	1772.7+x J+8	3		694.0 <mark>&</mark>	2722.6+x J+11				
		589.0 <mark>&</mark>	1486.2+x J+	3778.4+x	J+14	361.8 <mark>&</mark>	3416.6+x J+13				

 $^{^{\}dagger}$ Relative photon intensity normalized to 100 at strongest photon deexciting each level. From (40 Ar,4n γ), except as noted.

[‡] From $^{130}\text{Te}(^{40}\text{Ar},4\text{n}\gamma)$, unless otherwise noted.

[#] From $\alpha(K)$ exp in $(\alpha, xn\gamma)$, except as noted.

[@] From $Er(\alpha, xn\gamma)$.

[&] From ¹²⁴Sn(⁴⁸Ca,6nγ). ^a From ¹⁵⁴Sm(¹⁶O,4nγ).

^b From ¹⁶⁶Lu ε decay (2.65 min) (1974De09).

^c From ¹⁶⁶Lu ε decay (1.41 min) (1974De09).

^d From ¹⁶⁶Lu ε decay (2.12 min) (1974De09).

^e Q from $\gamma(\theta)$ in (16 O,4n γ) and/or from DCO ratio in (40 Ar,4n γ) for intraband transition.

f Q from DCO ratio in (40 Ar, 40 Y); not M2 from RUL.

g Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^h Multiply placed with undivided intensity.

i Placement of transition in the level scheme is uncertain.

Legend

Level Scheme

Intensities: Relative photon branching from each level

---- → γ Decay (Uncertain)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

 $^{166}_{70}{\rm Yb}_{96}$

Level Scheme (continued)

Intensities: Relative photon branching from each level

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

---- → γ Decay (Uncertain)

 $^{166}_{70} Yb_{96}$

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

---- γ Decay (Uncertain)

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

---- γ Decay (Uncertain)

Legend

$$^{166}_{70}\mathrm{Yb}_{96}$$

Band(B): $K^{\pi}=2^{+}$ γ-vibrational band (13^{+}) 3196.7 Band(C): $K^{\pi}=0^+$ β -vibrational band $(11)^{+}$ 550 2646.7 (12⁺)\ 2609.6 (9) 2150.32 (10^{+}) 2319.56 $(10)^{+}$ 467 2143.11 (8⁺) **-**/1812.47 $(7)^{+}$ 331 1704.54 1852.91 (6) 1482.43 $\frac{6^{+}}{(4^{+})}$ 1608.01 331 1327.85 $(5)^{+}$ 1342.5 377 377 1162.74 289 1039.14 **(4)**⁺ (2^{+}) 1144.29 (3) 289- (0^{+}) 1043 932.38

(9) 1940.90 (7) 1833.3 (5) 1570.58 (3) 1418.6 1358.93

$$^{166}_{\,70}Yb_{96}$$

		History	
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	Coral M. Baglin	NDS 111,1807 (2010)	15-Jun-2010

 $Q(\beta^{-})=-4.51\times10^{3} \text{ 4}; S(n)=9062 \text{ 4}; S(p)=6326.4 \text{ 16}; Q(\alpha)=1935.2 \text{ 12}$ 2012Wa38

Note: Current evaluation has used the following Q record -4510 509052 56315 41950 4 2003Au03,2009AuZZ.

See 1982Bu21, 1985Ne09, 1991Ki14, 1991Ma48, 2002Zi04, 2003Ba90 for recent hfs and isotope shift data (168Yb, with low natural abundance, barely detected).

Calculations of α -decay halflife (>10²⁴ y): see, e.g., 2002Fu04. This suggests that Yb is a viable material for a large-volume solar neutrino detector.

Search for hyperdeformation in ¹⁶⁸Yb (none found): 1997Wi19.

¹⁶⁸Yb Levels

Cross Reference (XREF) Flags

A	168 Lu ε decay (5.5 min)	E	¹⁶⁸ Yb(d,d')	I	$^{186}W(N,4p15n\gamma)$
В	168 Lu ε decay (6.7 min)	F	Coulomb excitation	J	171 Yb(3 He, α 2n γ)
C	(HI,xnγ)	G	170 Yb(p,t)		
D	169 Tm(p,2n γ), (d,3n γ),	H	168 Tm β^- decay		

E(level) [†]	$J^{\pi \ddagger}$	${{{\rm T}_{1/2}}^{\sharp}}$	XREF	Comments
0.0 ^c	0^{+}^{b}	stable	ABCDEFGHI	$(r^2)^{1/2}$ (charge)=5.268 6 (2004An14).
87.73 ^c 1	2+ b	1.49 ns <i>4</i>	ABCDEFGHI	J ^π : g.s. of even-even nuclide. J ^π : E2 88 γ to 0 ⁺ g.s T _{1/2} : deduced from B(E2)↑=5.77 4 in Coulomb excitation and adopted properties for 87.7 γ . Other: 1.4 ns 5 ($\gamma\gamma$ (t) in ¹⁶⁸ Lu ε decay, 1973Ch28).
286.551 ^c 21	4^{+}^{b}		ABCDEFG I	J^{π} : $L(p,t)=4$.
585.25 ^c 5	6+ b		ABCDEFG I	J^{π} : stretched E2 intraband 299 γ to 4 ⁺ 287.
970.03 ^c 11	8+ b		ABCD F I	J^{π} : stretched E2 intraband 385 γ to 6 ⁺ 585.
984.00 ^d 5	2+	1.03 ps <i>10</i>	ABCDEFG	J ^{π} : L=2 in ¹⁷⁰ Yb(p,t); γ 's to 0 ⁺ and 4 ⁺ . T _{1/2} : deduced from B(E2)↑=0.128 5 in Coulomb excitation and adopted properties for 984 γ .
1067.15 ^d 5	$(3)^{+}$		ABCD G	J^{π} : E2 781 γ to 4 ⁺ 287; 980 γ to 2 ⁺ 88; band assignment.
1098 <mark>&</mark> 5			G	
1155.2 ^e 8	(0^{+})		B DEF	J^{π} : E0 γ to 0^{+} ; J^{π} uncertain due to questionable 1156 γ placement.
1159.7	(1-)		B G	J^{π} : 1159 γ to 0 ⁺ g.s.; 1072 γ to 2 ⁺ 88; the 1161-keV peak in ¹⁷⁰ Yb(p,t) does not have an L=0 shape.
1171.38 ^d 6	(4) ⁺		AB DEFG	J^{π} : L=(4) in 170 Yb(p,t); E2 885 γ to 4 ⁺ 287; 586 γ to 6 ⁺ 585; 187 γ to 2 ⁺ 984.
1197? ^f 4	0^{+}	1.3 ns 3	D G	J^{π} : L=0 in 170 Yb(p,t).
				$T_{1/2}$: from n-ce(t) in 169 Tm(p,2n γ), (d,3n γ), 166 Er(α ,2n γ) (1967Ke08).
1231.5? 3	(1-)		B G	J^{π} : 1231 γ to 0 ⁺ g.s.; the 1231-keV peak in ¹⁷⁰ Yb(p,t) does not have an L=2 shape.
1233.1 ^e 3	2+		B DEF	J^{π} : Coulomb excited with B(E2) \uparrow =0.050 5.
1279.0 ^f 4	(2^{+})		B G	J^{π} : L=(2) in 170 Yb(p,t); gammas to 0^+ and 2^+ ; band assignment.
1302.30 ^d 8	(5) ⁺		ABCD	J^{π} : E2 1016 γ to 4 ⁺ 287; 717 γ to 6 ⁺ 585; 236 γ to (3) ⁺ 1067; band assignment.
1340 <mark>&</mark> 7	(0^+)		G	J^{π} : L=(0) in 170 Yb(p,t).
1390.12? ^e 3	(4^{+})		B DE	J^{π} : (E0+E2) 1103 γ to 4 ⁺ 287; 1302 γ to 2 ⁺ 88; 805 γ ? to 6 ⁺ 585.
1407.86? <i>17</i>	(2^{-})		В	J^{π} : 1320 γ ? to 2 ⁺ 88; 176 γ ? to (1 ⁻) 1232.

168 Yb Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	XREF	Comments
1425.45 ^c 22 1433 [@] 6	10 ⁺ b		CD I	J^{π} : stretched E2 intraband 455 γ to 8 ⁺ 970.
1445.13 ^d 9 1451.76 ^a 5 1472.6 5 1479.99 14	(6) ⁺ (3) ⁺ (4 ⁺) 3 ⁻		A D ABC B B EF	J^{π} : M1+E2 860 γ to 6 ⁺ 585; 1159 γ ? to 4 ⁺ 287; band assignment. J^{π} : E2 385 γ to (3) ⁺ 1067; 1364 γ to 2 ⁺ 88; band assignment. J^{π} : 888 γ to 6 ⁺ 585; 300 γ to (4) ⁺ 1171; 406 γ ? to (3) ⁺ 1067. J^{π} : from consistent B(E3) values at two different scattering angles in Coulomb excitation; supported by relative cross sections in 168 Yb(d,d'), 1392 γ to 2 ⁺ 88 and 1193 γ to 4 ⁺ 287.
1480 ^{&} f 5 1543? ⁸ 4	(4^+) (0^+)	≤1.1 ns	G De G	J^{π} : L=(4) in 170 Yb(p,t); 4^{+} consistent with band assignment. J^{π} : E0 1543 γ ? to 0^{+} g.s
1551.33 ^a 5	(4) ⁺		ABC e	$T_{1/2}$: from n-ce(t) in 169 Tm(p,2n γ), (d,3n γ), 166 Er(α ,2n γ) (1967Ke08). J^{π} : 1464 γ to 2 ⁺ 88; 249 γ to (5) ⁺ 1302; E2(+M1) 854 γ from (3) ⁺ 2405; band assignment.
1595 [@] 6	3-		EF	J^{π} : from consistent B(E3) values at two different scattering angles in Coulomb excitation and relative cross sections in (d,d') .
1597.89? 7	(¯)		AB	Level may also Be populated in ε decay; see comment on 1597.9 level. Level and deexciting transitions are not well characterized; there may be another level involved (possibly 1595 level) and, if so, which γ's deexcite which level is unclear. J ^π : (M2) 1013γ to 6 ⁺ 585; (E1) 1311γ to 4 ⁺ 287; 1510γ to 2 ⁺ .
1604.5 <mark>8</mark> 6	(2^{+})		B G	J^{π} : L=(2) in 170 Yb(p,t); 1605 γ to 0 ⁺ g.s
1618.5 ^d 3	(7+)		CD	J ^{π} : tentatively assigned as 7 ⁺ member of K^{π} =0 ⁺ β-vibration band in ¹⁶⁹ Tm(p,2nγ), (d,3nγ); 1034γ to 6 ⁺ 585; 316γ to (5) ⁺ 1302.
1650.66 <i>9</i> 1674.21 ^{<i>a</i>} <i>8</i> 1698 ^{&} <i>5</i>	(2,3,4) ⁻ (5 ⁺)		A ABC G	J^{π} : E1 584 γ to (3) ⁺ . J^{π} : 223 γ to (3) ⁺ 1452; 1089 γ to 6 ⁺ 585; band assignment.
1725 ^{&} 8 6 1730.48 25 1770.18 8	(4 ⁺) (1,2 ⁺) 5 ⁻		E G B A G	J^{π} : L=(4) in 170 Yb(p,t); band assignment. J^{π} : 1730 γ to 0 ⁺ g.s.; 1642 γ to 2 ⁺ 88. J^{π} : E1 1185 γ to 6 ⁺ 585; E1 1483 γ to 4 ⁺ 286.
1793 ^{&} 5 1819.04 ^a 8	(6 ⁺)		G A C	J^{π} : (M1+E2) 1234 γ to 6 ⁺ ; 1533 γ to 4 ⁺ 287; band assignment.
1842.17 ⁱ 11				J^{π} : E1 540y to (5) ⁺ 1302; 397y to (6) ⁺ 1445; band assignment.
1860 [@] 6	(6-)		A C E G	
1904 ^{&} h 5 1917.8? 4	(0+)		G B	J^{π} : L=(0) in 170 Yb(p,t). J^{π} : 1631 γ ? to 4 ⁺ 287.
1936.0 ^c 5	12^{+b}		CI	
1945.4 ^m 11	(11)		С	J^{π} : 520 γ to 10 ⁺ 1425; band assignment.
1972.7	$(5,6^+)$		A e	J ^π : fed from $6^{(-)}$ in ε decay (5.5 min); 1388γ to 6^{+} 585; 1686γ to 4^{+} 287.
1972.86 ^h	(2+)		B e G	J^{π} : 375 γ to (2 ⁺) 1598; 522 γ to (3) ⁺ 1452; L(p,t)=(2) for E(level)=1973 5.
				This second E \approx 1973 level is proposed to accommodate L(p,t) and inconsistent branching in 5.5-min and 6.7-min ε decays.
1986.6 <mark>a</mark>	(7+)		С	·
1993 <i>5</i> 1998.74 <i>6</i>	(5)-	82 ns 5	e G	J^{π} : M1 157 γ to (6 ⁻) 1842; 1712 γ to 4 ⁺ 287.
1998.74 6 2002.9 ^d	(5) ⁻ (9 ⁺)	02 IIS J	A e	J. 1811 13/7 W (U) 1042, 1/127 W 4 20/.
2011.39 7	(9^+) $(2^+,3,4^+)$		C B	J^{π} : 1725 γ to 4 ⁺ 287; 1027 γ to 2 ⁺ 984.
2055.88 4	$(2^+,3^+,4^+)$		B E	J^{π} : (M1,E2) 1072 γ to 2 ⁺ 984; 675 γ to (4 ⁺) 1390.
2065.09 22	$(2^+,3,4^+)$		В	J^{π} : 1978 γ to 2 ⁺ 88; 675 γ to (4 ⁺) 1390.
2092 <mark>&</mark> 7			G	

168 Yb Levels (continued)

E(level) [†]	$\mathrm{J}^{\pi \ddagger}$	T _{1/2} #	XI	REF	Comments
2100.6 ⁱ	(8-)		С		
2110.6	(5-,6-,7-)	0.34 ns 6	A		J^{π} : (E2) 112 γ to (5) ⁻ 1999; 1525 γ to 6 ⁺ 585; analogy with the well-known 5 ⁻ and 6 ⁻ and 7 ⁻ levels (and depopulating γ' s) in ¹⁶⁴ Er and their apparent counterparts in ¹⁶⁸ Yb. B(E2)(W.u.)(112) seems too large for a pure E2 transition so J=7 may Be unlikely.
2122 [@] 6			I	E G	
2135.34 12	$(3^+,4^+)$		В		J^{π} : 2048y to 2 ⁺ 88; 832y to (5 ⁺) 1302.
2158.56 5	(4 ⁺)		В	_	J^{π} : 2071 γ to 2 ⁺ 88; 1573 γ to 6 ⁺ 585.
2160 ^{&} 7 2173 ^{&} 12	(0^+)			G	J^{π} : L=(0) in 170 Yb(p,t).
				G	Level is near, but probably different from, the 2174 level; it is unlikely that an 8^+ level would be excited in 170 Yb(p,t) (the g.s. band is observed only to 6^+ , with rapidly decreasing cross section) and no other member of the postulated K^{π} =3 ⁺ band is populated in (p,t).
2174 ^a	(8 ⁺) 4 ⁺		С	6	
2180.28 <i>19</i> 2203.84 <i>5</i>	(4) ⁺	<0.14 ns	B B	G	$T_{1/2}$: from 1220 γ -x coin in ¹⁶⁸ Lu ε decay (6.7 min).
2203.84 3	(4)	<0.14 IIS	Б		11/2: From 1220y-x coin in Facture decay (6.7 min). J ^{π} : 530 γ to (5) ⁺ 1674; E2(+M1) 1137 γ to (3) ⁺ 1067; 2116 γ to 2 ⁺ 88. Likely configuration: K^{π} =4 ⁺ (π 1/2[541])+(π 7/2[523]) (1999Ba65) based on allowed unhindered ε decay from (π 1/2[541])+(ν 5/2[523]) ¹⁶⁸ Lu(6.7 min) and Gallagher's rule.
2222.37 20	(-)	62 ns 8	A		J^{π} : 224 γ to (5) ⁻ 1999; analogy with the well-known 5 ⁻ and 6 ⁻ and 7 ⁻ levels (and depopulating γ' s) in ¹⁶⁴ Er and their apparent counterparts in ¹⁶⁸ Yb.
2256.03 15	$(3^+,4^+)$		В		J^{π} : 2168 γ to 2 ⁺ 99; 954 γ to (5) ⁺ 1302.
2292 <mark>&</mark> 7				G	
2327 <mark>&</mark> 7				G	
2364.5 3	(4+)		В	G	J^{π} : 2277 γ to 2 ⁺ 88; 1780 γ to 6 ⁺ 585.
2404.87 4	(3)+		В		J^{π} : M1+E2 1421 γ to 2 ⁺ 984; (E2) 731 γ to (5 ⁺) 1764. configuration: Probably K^{π} =3 ⁺ (π 1/2[541])+(π 5/2[532]) (1999Ba65).
2415.3 <i>4</i> 2426.5 <i>i</i>	(3,4,5)		C		J ^{π} : 2129 γ to 4 ⁺ 287; 1114 γ to (5) ⁺ 1302; fed from 3 ⁺ in ε decay.
2426.5° 2427.96 23	(10^{-}) $(2^{+},3^{+},4^{+})$		C B		J^{π} : 2141 γ to 4 ⁺ 287; 2341 γ to 2 ⁺ 88; ε decay from 3 ⁺ ¹⁶⁸ Lu(6.7
	. , , ,		В		min) is probably allowed. configuration: Possibly $K^{\pi}=3^+$ (π 1/2[541])-(π 7/2[523]) (1999Ba65). If so, $J^{\pi}=(3^+)$ can Be assigned.
2443.5 ^d	(11^{+})		C		
2464 ^{&} 12 2475.18 19	(2+,3,4+)		В	G	J ^π : 2188γ to 4 ⁺ 287; log ft =6.8 from 3 ⁺ in ε decay. Possible configuration: (π 1/2[541])-(π 5/2[532]) (1999Ba65), implying J^{π} =(2 ⁺).
2488.5° 6	14 ⁺ b		С	I	J = (Z).
$2488.3^{\circ}0$ $2500^{\&}12$	14		C	G	
2514.5 ^m 15	(13)		С	G	
2645.0? 8	(10)		В		J^{π} : 2358 γ to 4 ⁺ 287.
2824.9 ⁱ	(12^{-})		С		•
2846.2 ^j	(13-)		С		
2930.9 ^d	(13^{+})		С		
3073.1 ^c 7	16^{+}		С		
3131.4 ^m 18	(15)		C		
3294.9 ⁱ	(14 ⁻)		C		

168 Yb Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	XREF	E(level) [†]	$J^{\pi \ddagger}$	XREF
3310.2 ^j	(15^{-})	С	7516.9 ^c	28^{+}^{b}	С
3447.1 ^d	(15^+)	С	7599.4 ^k	(27^{-})	С
3532.2 ⁿ 10	(15^+)	С	7727 <mark>d</mark>	(27^{+})	С
3613.2 ^k 10	(15^{-})	C	7791.7 ⁿ 23	(27^{+})	С
3686.9 ^c 8	18+ <mark>b</mark>	C	7912 ^{<i>l</i>}	(28^+)	С
3797.5 ^m 21	(17)	C	7917 ^{<i>j</i>}	(29^{-})	С
3821.1 <i>j</i>	(17^{-})	С	7984 ⁱ	(28^{-})	С
3827.5 ⁱ	(16^{-})	С	8453.4 ^k	(29^{-})	С
3981.9 ^d	(17^{+})	С	8475.2 ^c	30^{+}	С
4092.2 ⁿ 10	(17^{+})	С	8669 ^d	(29^+)	С
4133.8 ^l	(18^{+})	С	8697.7 ⁿ 25	(29^+)	C
4165.1 ^k	(17^{-})	С	8801.3 ^l	(30^+)	C
4336.9 ^c 8	20^{+}	С	8825.6 ^j	(31^{-})	C
4373.9 <i>j</i>	(19^{-})	С	8880 ⁱ	(30^{-})	C
4410.0 ⁱ	(18^{-})	С	9372.2 ^k	(31^{-})	C
4514.3 ^m 23	(19)	С	9496 ^c	32^{+b}	С
4579.5 ^d	(19^+)	С	9748.3 ^l	(32^{+})	С
4721.1 ⁿ 11	(19^+)	С	9803 ^j	(33^{-})	C
4763 ^k	(19^{-})	С	9841 ⁱ	(32^{-})	C
4786.1 ^l	(20^{+})	С	10353 ^k	(33^{-})	С
4968.5 ^j	(21^{-})	С	10575 ^c	34^{+}	C
5032 ⁱ	(20^{-})	С	10760 ^l	(34^{+})	С
5036.9 ^c	22^{+b}	С	10848 ^j	(35^{-})	C
5255.9 ^d	(21^{+})	С	10861 ⁱ 4	(34^{-})	C
5287.1 ^m 25	(21)	С	11388 ^k	(35^{-})	C
5400.5 ^k	(21^{-})	С	11703 ^c	36+ <i>b</i>	С
5404.6 ⁿ 15	(21^+)	С	11841 ¹	(36^+)	С
5511.1 ^l	(22^{+})	С	11931 ⁱ 4	(36^{-})	С
5612.3 ^j	(23^{-})	С	11959 ^j	(37^{-})	С
5686.9 ⁱ	(22^{-})	С	12864 ^c	$(38^+)^{b}$	С
5797.4 ^c	24^{+}^{b}	С	12985 ^l	(38^{+})	С
6009.0 ^d	(23^{+})	С	13023 ⁱ 4	(38^{-})	С
6080.6 ^k	(23^{-})	С	13128 ^j	(39^{-})	С
6122 ^m 3	(23)	С	14033° 4	$(40^+)^{b}$	С
6143.3 ⁿ 18	(23^{+})	С	14138 ⁱ 4	(40^{-})	С
6276.0 ^l	(24^{+})	С	14190 ^l .4	(40)	С
6314.7 ^j	(25^{-})	С	14362 ^j	(41^{-})	С
6391.9 ⁱ	(24^{-})	С	15228° 4	$(42^+)^{b}$	С
6623.9 ^c	26+b	С	15269 ⁱ 4	(42^{-})	С
6809.6 ^k	(25^{-})	С	15578 ^j	(43^{-})	С
6835 ^d	(25^+)	С	16457? ^c 4	$(44^+)^{b}$	С
6938.7 ⁿ 21	(25^{+})	C	16846? ^j 4	(45 ⁻)	C
7024 ^m 3	(25)	C	0.0+x ⁰	(20)	C
7072.5 ^l	(26^+)	C	625.7+x ⁰	(22)	C
7081.9 ^J	(27-)	С	1289.2+x ⁰	(24)	C
7156 ⁱ	(26^{-})	С	2019.0+x ^o	(26)	С

¹⁶⁸Yb Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	XREF	E(level) [†]	$J^{\pi \ddagger}$	XREF
2802.1+x°	(28)	С	368.6+y ^p 15	J+2	С
3644.5+x ⁰	(30)	C	584.1+y ^P 18	J+3	C
4548.9+x ⁰	(32)	C	820.2+y ^P 19	J+4	C
5514.4+x ⁰	(34)	C	1075.4+y ^P 19	J+5	C
6542+x ^o	(36)	C	1349.8+y ^P 20	J+6	C
7629+x°	(38)	C	1642.3+y ^P 21	J+7	C
8772+x°	(40)	C	1952.2+y ^P 21	J+8	C
0.0+y ^p	J	C	2279.3+y ^p 22	J+9	C
173.8+y ^p 10	J+1	C	2616.7+y? ^p 24	J+10	C

- [†] From least-squares fit to Eγ, assigning 1 keV uncertainty to data for which the authors gave no uncertainty, except where noted.
- [‡] Values given without further comment are based on band structure deduced in (HI,xnγ) reactions.
- # From $\gamma \gamma(t)$ in ¹⁶⁸Lu ε decay, except where noted.
- [@] From ¹⁶⁸Yb(d,d').
- & From ¹⁷⁰Yb(p,t).
- ^a Band(A): $K^{\pi}=(3)^{+}$ band. A=12.6, B=-8.9 (J=3, 4, 5, 6 levels). Likely configuration: $K^{\pi}=3^{+}$ (π 7/2[404])-(π 1/2[411]) (1999Ba65).
- b Smooth progression of level energies within g.s. band, established J^{π} =0⁺ for g.s. and multipolarity of E2 for the J=2 to J=0 88 γ enable assignment of definite J^{π} to J≤20 band members.
- ^c Band(B): $K^{\pi}=0^{+}$ g.s. band. A=14.7, B=-17.9 (J=0, 2, 4, 6 levels).
- ^d Band(C): $K^{\pi}=2^{+}$ γ -vibration band. A=13.7, B=-17.6 (J=2, 3, 4, 5 levels).
- ^e Band(D): $K^{\pi}=(0^+) \beta^-$ vibration band. A=11.7 (J=0, 2, 4 levels).
- ^f Band(E): $K^{\pi}=0^{+}$ band. A=14.2 (J=0, 2, 4 levels).
- ^g Band(F): $K^{\pi}=0^{+}$ band. A=9.1 (J=0, 2, 4 levels).
- ^h Band(G): $K^{\pi}=(0^+)$ band.
- ⁱ Band(H): $\pi = -$, $\alpha = 0$ band. High-excitation band (feeds into 2^+ γ -vibration band).
- ^j Band(I): $\pi = -$, $\alpha = 1$ band 2. High-excitation band feeding into g.s. band.
- ^k Band(J): $\pi = -$, $\alpha = 1$ band 1. High-excitation band feeding into g.s. band.
- ¹ Band(K): α =(0) band. High-excitation band feeding into g.s. band. Tentative π =+ for this band is taken from 1993Ol02.
- ^m Band(L): α =1 band. High-excitation band. Note that 1993Ol02 suggest J values that are two units higher.
- ⁿ Band(M): π =(+), α =1 band. High-excitation band.
- o Band(N): α =0 band. Feeds into g.s. band, but connecting transitions unknown. J assignments for this band are taken from 1993O102.
- ^p Band(O): M1 band (1994Ol04).

γ (168Yb

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Mult. [†]	α^{c}	Comments
87.73	2+	87.733 9	100	0.0	0+	E2	5.35	B(E2)(W.u.)=209 7 E_{γ} : weighted average from β^- decay, (p,2n γ), ε decay (5.5 min) and
					- 1			ε decay (6.7 min).
286.551	4+	198.84 <i>3</i>	100	87.73	2+	E2	0.274	E_{γ} : weighted average from (p,2n γ), ε decay (5.5 min) and ε decay (6.7 min).
585.25	6+	298.74 <i>4</i>	100	286.551	4+	E2	0.0749	E_{γ} : weighted average from (p,2n γ), ε decay (5.5 min) and ε decay (6.7 min).
970.03	8+	384.75 10	100	585.25	6 ⁺	E2	0.0359	Mult.: from K/L in (p,2n γ). E_{γ} : from (p,2n γ); doublet in ε decay (5.5 min). Mult.: from K/L in (p,2n γ).
984.00	2+	697.6 <i>4</i>	0.93 25	286.551	4+			B(E2)(W.u.)≈1.8
		896.261 <i>24</i>	100	87.73	2+	E2	0.00465	B(E2)(W.u.)=9.2 10
		983.99 <i>4</i>	86 [#] 7	0.0	0_{+}	(E2)	0.00383	B(E2)(W.u.)=5.0 7
1067.15	$(3)^{+}$	84.0 6	0.19 11	984.00	2+	[M1,E2]	6.0 5	
		780.61 5	20.7 [#] <i>18</i>	286.551		E2	0.00625	
		979.379 24	100 [#] 7	87.73	2+	(E2)	0.00387	
1155.2	(0^{+})	1066.8 9	100	87.73	2+			
1150.7	(1=)	1156 ^g 3 1071.9 ^g 10	.100	0.0	0 ⁺ 2 ⁺	E0		E_{γ} : from $(p,2n\gamma)$.
1159.7	(1^{-})	10/1.98 10 1159.28 7	<100 <20	87.73 0.0	0 ⁺			
1171.38	$(4)^{+}$	104.8 9	0.10 8	1067.15	$(3)^{+}$	[M1,E2]	2.82 17	
1171.50	(1)	187.34 19	0.51 13	984.00	2+	[E2]	0.335	
		586.4 9	0.40 24	585.25	6+			
		884.807 24	100 # 7	286.551	4+	E2	0.00478	
		1083.58 <i>3</i>	48 [#] 3	87.73	2+	(E2)	0.00315	
1197?	0^{+}	1197 <mark>8</mark> 4		0.0	0^{+}	E0&		
1231.5?	(1^{-})	1231.3 <mark>8</mark> 4	100	0.0	0^{+}			
1233.1	2+	74.0 ⁸ 5	<13	1159.7	(1^{-})			
		166.3 5	7 3	1067.15	$(3)^{+}$			2
		1144.9 6	20 10	87.73	2+	(E0+E2)		ρ^2 =0.030 7 (1999Wo07).
		1233.46 ^f 7	$10 \times 10^{1} f$ 10	0.0	0_{+}	[E2]	0.00245	B(E2)(W.u.)=1.8 2
								B(E2)(W.u.) deduced from B(E2) \uparrow =0.050 5 for 1233.2 level (Coulomb excitation, 1982Ro07) and B(E2)(single particle)=0.0275.
1279.0	(2^{+})	1191.2 8	100 <i>31</i>	87.73	2+			exchangli, 1702 Nov.) and D(E2)(shigh particle)=0.0213.
12//.0	(2)	1279.0 4	46 23	0.0	0^{+}			
1302.30	$(5)^{+}$	130.90 <i>6</i>	11.4 20	1171.38	$(4)^{+}$	[M1,E2]	1.37 20	
		235.6 5	2.0 14	1067.15	$(3)^{+}$	[E2]	0.1571 25	
		717.28 20	20.2 [#] 22	585.25	6+			
		1015.86 7	100 [#] 8	286.551	4+	E2	0.00359	

$E_i(level)$	J_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	\mathbf{E}_f \mathbf{J}_f^{π}	Mult. [†]	α ^c	Comments
1390.12? 1407.86?	(4 ⁺)	405.9° 5 804.90° 16 1102.9° 3 1302.4 3 176.3° 3	<26 ^e 49 13 100 21 84 21 7 3	984.00 2 ⁺ 585.25 6 ⁺ 286.551 4 ⁺ 87.73 2 ⁺ 1231.5? (1 ⁻)	(E0+E2)		
1425.45	10 ⁺	1320.12 ⁸ 18 455.4 2	100 <i>20</i> 100	87.73 2 ⁺ 970.03 8 ⁺	E2&	0.0227	
1445.13	(6) ⁺	860.0 2	100 15	585.25 6 ⁺	M1+E2	0.008 3	
1451.76	$(3)^{+}$	1158.5 <i>3</i> 280.5 <i>3</i>	26 <i>4</i> 1.7 <i>4</i>	286.551 4 ⁺ 1171.38 (4) ⁺	[M1,E2]	0.14 5	
1431.70	(3)	384.80 7	30 5	1067.15 (3)+	E2	0.0359	
		467.90 5	26 # 3	984.00 2+	M1,E2	0.035 14	
		1165.21 <i>16</i>	22 <mark>#</mark> 4	286.551 4+			
	(41)	1363.90 4	100# 9	87.73 2+			
1472.6	(4^{+})	300.2 8 405.9 ^e 5	29 <i>16</i> <55 ^e	$1171.38 (4)^+ 1067.15 (3)^+$			
		887.6 <i>5</i>	100 44	585.25 6 ⁺			
1479.99	3-	27.1 5	10 5	$1451.76 (3)^{+}$	[E1]	2.23 13	
		89.6 <i>4</i> 1193.4 <i>3</i>	9 <i>3</i> 64 <i>12</i>	1390.12? (4 ⁺) 286.551 4 ⁺	[E1]	0.456 9	
		1193.4 3 1392.19 <i>13</i>	100 <i>18</i>	87.73 2 ⁺			
		(1480)	100 10	0.0 0+	E3		B(E3)(W.u.)=19 3 E_{γ} : from level energy difference; γ unobserved but must exist. B(E3)(W.u.),Mult.: From observed B(E3) \uparrow =0.22 4 in Coulomb excitation.
1543?	(0^+)	1543 ⁸ 5		0.0 0+	E0&		D(E3)(W.d.), Mait. Troin observed D(E3) =0.22 4 in Coulomb excitation.
1551.33	$(4)^{+}$	99.60 <i>3</i> 248.7 <i>3</i>	18 [#] 3 3.2 10	1451.76 (3) ⁺ 1302.30 (5) ⁺	[M1,E2]	3.34 10	
		380.11 <i>6</i> 484.32 ^e 18 567.41 15	33 [#] 4 <13.1 ^e 16 3	1171.38 (4) ⁺ 1067.15 (3) ⁺ 984.00 2 ⁺	[M1,E2]	0.060 24	
		1264.68 5	100 [#] 8	286.551 4+			
	_	1463.47 10	72 [#] 9	87.73 2+			
1595	3-	(1595)		0.0 0+	E3		B(E3)(W.u.)=7.7 17 E _{γ} : from level energy difference; γ unobserved but must exist. B(E3)(W.u.),Mult.: From observed B(E3) \uparrow =0.09 2 in Coulomb excitation.
1597.89?	(-)	530.1 ^e 7	<28 ^e	1067.15 (3) ⁺			
		1012.9 <i>3</i>	10 4	585.25 6+	(M2)	0.01728	I_{γ} : from ε decay (6.7 min). Other I_{γ} : 22 3 in ε decay (5.5 min).
		1311.27 <i>11</i>	100 15	286.551 4+	(E1)	9.91×10^{-4}	

γ (168Yb) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\ddagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult. [†]	α^{C}	Comments
1597.89?	(-)	1510.00 <i>13</i>	92 15	87.73	2+			I_{γ} : from ε decay (6.7 min). Other I_{γ} : 13 3 in ε decay (5.5 min).
1604.5	(2^{+})	1516.7 <i>6</i>	100 30	87.73	2+			
1610.5	(7 +)	1605.2 20	24 12	0.0	0+			
1618.5	(7^{+})	316		1302.30	$(5)^{+}$	a		M k D(:0) f (0) f 1 11 1 1 1 (2)
4.50	(0.0.1)	1033.7 <i>3</i>		585.25	6+	C.		Mult.: D(+Q) from $\gamma(\theta)$ for doubly-placed γ in (p,2n γ).
1650.66	$(2,3,4)^-$	348.3 ^{dg} 2		1302.30	$(5)^{+}$			E_{γ} : from ε decay (5.5 min) for doublet, little of whose I_{γ} belongs with this placement.
		479.4 <i>4</i>	31 [#] 6	1171.38	$(4)^{+}$			
		583.50 <i>21</i>	100 [#] <i>12</i>	1067.15	$(3)^{+}$	E1	0.00435	
1674.21	(5^{+})	122.95 6	18 <i>3</i>	1551.33	$(4)^{+}$	[M1,E2]	1.67 20	
		222.55 17	13 <i>3</i>	1451.76	$(3)^{+}$	[E2]	0.189	
		371.8 ^g 4	20 3	1302.30	(5) ⁺			E_{γ} , I_{γ} : from ε decay (5.5 min). Placement shown as tentative because similar E_{γ} is placed instead from 2428 level in ε decay (6.7 min), and γ is absent in (HI,xn γ).
		1089.0 <i>10</i>	4 4	585.25	6+			Other I γ : 33 6 in ε decay (5.5 min), but line may Be complex there. γ is absent in (HI,xn γ).
		1387.43 12	100 <i>16</i>	286.551				I _{\gamma} : from ε decay (6.7 min). Ey also fits a 1973 to 585 placement (see 1972Ch44), but 1999Ba65, in ε decay (6.7 min), placed it from 1674 level only, even though they observed a 1973 level; I(123\gamma)/I(1387\gamma)=0.14 3 and 0.18 4 in the respective studies, allows a single placement, but this placement alone is not consistent with $\gamma\gamma$ coin data (1970Ch28) in 5.5-min decay.
1730.48	$(1,2^+)$	497.40 20	100 <i>50</i>	1233.1	2+			
		1642.1 <i>12</i>	55 21	87.73	2+			
		1730.8 ^g 6	75 38	0.0	0+			
1770.18	5-	1184.94 8	64 <i>6</i>	585.25	6+	E1	1.12×10^{-3}	
1010.01	(e ± s	1483.65 8	100 13	286.551		E1	9.26×10^{-4}	
1819.04	(6^+)	145.1 3	52 9	1674.21	(5^{+})			
		268 <mark>8</mark>	@	1551.33	$(4)^{+}$			
		374.2 5	53 10	1445.13	$(6)^{+}$	D. 61 F.21	0.0024.10	
		1233.5 2	100 55	585.25	6 ⁺	[M1,E2]	0.0034 10	
10/2 17	(6-)	1533.3 5	32 10	286.551				
1842.17	(6-)	397.2 <i>6</i> 539.8 2	16 <i>3</i> 100 <i>11</i>	1445.13 1302.30	$(6)^{+}$	E1	0.00413	
1017 99		539.8 <i>2</i> 1631.2 ⁸ <i>4</i>	100 11		$(5)^{+}$	Сl	0.00413	
1917.8? 1936.0	12+	510.5 5	100	286.551 1425.45	10 ⁺	(E2) ^a	0.01692	
1730.0	(11)	510.5 5 520 <i>1</i>	100	1425.45	10 ⁺	(E2)	0.01092	
10/15 /	1111							
1945.4 1972.7	$(5,6^+)$	1387.5 2	<80	585.25	6+			E_{γ} , I_{γ} : from ε decay (5.5 min); data are for doubly-placed γ , I_{γ}

 ∞

γ (168Yb) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	${\rm I}_{\gamma}^{ \ddagger}$	\mathbf{E}_f \mathbf{J}_f^π	Mult. [†]	α^c	Comments
1972.86	(2+)	375.0 4	100 36	1597.89? (-)			
		521.7 7	57 32	$1451.76 (3)^+$			Absent in ε decay (5.5 min).
		1686.3 ⁸ 3	38 <i>38</i>	286.551 4+			
1986.6	(7^{+})	166	63 [@]	1819.04 (6 ⁺)			
		311	100 [@]	$1674.21 (5^+)$			
1998.74	$(5)^{-}$	156.6 2	44 6	$1842.17 (6^{-})$	M1	0.943	$B(M1)(W.u.)=6.5\times10^{-6} 13$
		179.6 2	36 <i>4</i>	$1819.04 (6^+)$	(E1)	0.0733	$B(E1)(W.u.)=3.5\times10^{-8} 6$
		228.6 2	100 10	1770.18 5	(M1)	0.329	$B(M1)(W.u.)=4.7\times10^{-6} 8$
		324.7 2	43 4	$1674.21 (5^+)$	(E1+M2)	0.26 24	
		348.3 ^d 2	≈94	1650.66 (2,3,4)	E2	0.0476	
		401.1 <i>3</i>	37 4	1597.89? (-)	M1	0.0727	$B(M1)(W.u.)=3.2\times10^{-7} 6$
		1413.5 <i>3</i>	23.4 26	585.25 6 ⁺			
		1712.0 5	≈2.9	286.551 4+			
2002.9	(9^+)	384.3	100.0 10	1618.5 (7+)	$(E2)^a$	0.0360	
2011.39	$(2^+,3,4^+)$	1033 <i>I</i> 621.6 8	8.51 <i>18</i> 14 <i>7</i>	970.03 8 ⁺ 1390.12? (4 ⁺)	$(M1+E2)^{a}$	0.0050 16	
2011.39	(2,5,4)	944.42 25	64 21	1067.15 (3) ⁺			
		1027.44 20	100 21	984.00 2 ⁺			
		1724.6 7	30 9	286.551 4+			
2055.88	$(2^+,3^+,4^+)$	884.8 <i>5</i>	6 3	1171.38 (4) ⁺			
		988.96 <i>18</i>	40 7	$1067.15 (3)^+$			
		1071.94 5	100 16	984.00 2+	(M1,E2)	0.0046 15	
2065.00	(2+ 2 4+)	1967.7 <i>14</i>	3.8 19	87.73 2+			
2065.09	$(2^+,3,4^+)$	53.2 ⁸ 5 147.08 ^e 8	<110 68 ^e 28	2011.39 (2+,3,4+)			
		674.6 ^e 5	100 ^e 44	1917.8? 1390.12? (4 ⁺)			
		998.7 <i>7</i>	67 3	1067.15 (3) ⁺			
		1977.6 9	77 23	87.73 2 ⁺			
2100.6	(8-)	258 <i>I</i>	100 35	1842.17 (6 ⁻)			
	, ,	482.2 10		$1618.5 (7^+)$			
2110.6	$(5^-,6^-,7^-)$	112.4	≈100	1998.74 (5)	(E2)	2.06	B(E2)(W.u.)≈540
		1525.1 5	9.2 20	585.25 6 ⁺			
2135.34	$(3^+,4^+)$	683.4 6	13 4	1451.76 (3) ⁺			
		832.1 <i>3</i> 964.19 <i>15</i>	26 9 100 <i>17</i>	1302.30 (5) ⁺ 1171.38 (4) ⁺			
		1068.0 <i>9</i>	28 17	11/1.38 (4) ⁺ 1067.15 (3) ⁺			
		1151.0 9	10 4	984.00 2 ⁺			
		1848.74 25	62 11	286.551 4+			
		2047.6 <i>4</i>	40 9	87.73 2+			
2158.56	(4^{+})	147.08 ° 8	<10 ^e	2011.39 (2+,3,4+)			

9

γ (168Yb) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult. [†]	δ^{\dagger}	α^{c}	Comments
2158.56	(4+)	484.32 ^e 18	<23 ^e	1674.21	(5 ⁺)				
		560.0 <i>5</i>	5.4 26	1597.89?					
		607.22 9	100 <i>16</i>	1551.33	$(4)^{+}$				
		706.83 <i>17</i>	36 7	1451.76	$(3)^{+}$				
		768.4 <i>7</i>	7.3 27	1390.12?					
		856.3 10	9 4	1302.30	$(5)^{+}$				
		987.34 <i>15</i>	96 <i>16</i>	1171.38	(4) ⁺				
		1091.58 <i>19</i>	35 8	1067.15	$(3)^{+}$				
		1573.0 20	6 6	585.25	6+				
		1871.8 <i>4</i>	22 5	286.551	4+				
		2070.9 4	24 5	87.73	2+				
2174	(8^{+})	189 <mark>8</mark>	100	1986.6	(7^{+})				
2180.28	4+	449.7 <i>4</i>	34 12	1730.48	$(1,2^+)$				
		1113.6 ^e 8	<47 ^e	1067.15	$(3)^{+}$				
		1594.2 <i>4</i>	74 <i>16</i>	585.25	6+				
		1894.1 <i>10</i>	19 <i>11</i>	286.551					
		2093.1 4	100 <i>21</i>	87.73	2+				
2203.84	$(4)^{+}$	68.0 <mark>8</mark> 5	< 0.4	2135.34	$(3^+,4^+)$				
		148.16 <i>4</i>	5.0 8	2055.88	$(2^+,3^+,4^+)$	[M1,E2]		0.93 18	
		231.3 5	0.20 11	1972.86	(2^{+})				
		473.6 <i>4</i>	0.9 3	1730.48	$(1,2^+)$				
		530.1 ^e 7	<2.0 ^e	1674.21	(5^+)				
		605.8 <i>3</i>	2.0 6	1597.89?					
		652.75 9	6.2 11	1551.33	(4) ⁺				
		723.4 7	0.58 27	1479.99	3-				
		752.33 8	9.8 16	1451.76	(3)+				
		901.6 10	9.1 16	1302.30	(5)+			0.00 70 75	
		1032.61 4	68 10	1171.38	(4)+	M1,E2	. 1.0	0.0050 16	
		1136.83 4	100 15	1067.15	$(3)^{+}$	E2(+M1)	≥ 1.0	0.00250	D(E2)(W.), 0.0070
		1219.94 5	82 13	984.00	2 ⁺	E2		0.00250	B(E2)(W.u.)>0.0070
		1619.0 <i>10</i>	<0.5	585.25	6 ⁺				
		1917.28 10	12.0 19	286.551					
2222.37	(-)	2116.24 <i>20</i> 111.4	13.9 26 ≈100	87.73	2 ⁺	DM11		2.48	
2222.31	(-)	111.4 223.59 <i>19</i>	≈100 ≤82	2110.6 1998.74	$(5^-,6^-,7^-)$	[M1] [E2]		2.48 0.186	B(E2)(W.u.)=0.03 +4-3
2256.03	$(3^+,4^+)$	191.24 23	≤82 9.3 26	2065.09	$(5)^{-}$ $(2^{+},3,4^{+})$	[E4]		0.100	D(E2)(W.U.)=0.03 + 4-3
4430.03	(3,4)	191.24 23 200.2 <mark>8</mark> 8	9.3 20 64 23	2065.09	$(2^+,3,4^+)$ $(2^+,3^+,4^+)$	[M1,E2]		0.37 11	
		283.5 5	4.0 21	1972.86		[WII,E2]		0.37 11	
		283.3 <i>3</i> 659.0 <i>5</i>	4.0 <i>21</i> 9 <i>5</i>	1597.89?	(2^+)				
		953.3 ^e 3	<47 <mark>e</mark>	1397.897	(5) ⁺				
		1084.9 <i>4</i>	15 8	1171.38	(4) ⁺				

10

E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\ddagger}	E_f J_f^π	Mult. [†]	δ^{\dagger}	α^c
2256.03	(3+,4+)	1188.31 <i>21</i> 1969.5 <i>5</i> 2168.4 <i>5</i>	15 <i>13</i> 100 <i>21</i> 19 <i>6</i>	1067.15 (3) ⁺ 286.551 4 ⁺ 87.73 2 ⁺			
2364.5	(4+)	1380.0 <i>6</i> 1779.5 <i>8</i> 2276.8 <i>4</i>	47 <i>18</i> 26 <i>11</i> 100 <i>24</i>	984.00 2 ⁺ 585.25 6 ⁺ 87.73 2 ⁺			
2404.87	(3)+	201.01 <i>15</i> 246.33 <i>4</i> 269.48 ^e <i>11</i> 339.2 <i>4</i>	18 3 8.4 13 <2.4 ^e 0.8 3	2203.84 (4) ⁺ 2158.56 (4 ⁺) 2135.34 (3 ⁺ ,4 ⁺) 2065.09 (2 ⁺ ,3,4 ⁺)	[M1,E2] [M1,E2]		0.37 <i>11</i> 0.20 <i>7</i>
		348.99 <i>4</i> 393.50 <i>7</i> 674.6 ^e <i>5</i>	15.3 24 8.2 13 <2.2 ^e	2055.88 (2 ⁺ ,3 ⁺ ,4 ⁺) 2011.39 (2 ⁺ ,3,4 ⁺) 1730.48 (1,2 ⁺)	[E2] [M1,E2]		0.0473 0.055 22
		730.73 <i>7</i> 806.95 <i>11</i>	15.3 24 7.7 18	$1674.21 (5^+)$	(E2)		0.00723
		853.57 4 924.93 24 953.3 ^e 3	44 6 3.7 8 <4.0 ^e	1597.89? (⁻) 1551.33 (4) ⁺ 1479.99 3 ⁻ 1451.76 (3) ⁺	E2(+M1)		0.008 3
2415.3	(3,4,5)	1233.46 ^f 7 1337.65 5 1420.79 5 2118.1 10 2317.18 24 1113.6 ^e 8	27 ^f 4 40 6 100 16 2.3 13 4.4 10 <56 ^e	1171.38 (4) ⁺ 1067.15 (3) ⁺ 984.00 2 ⁺ 286.551 4 ⁺ 87.73 2 ⁺ 1302.30 (5) ⁺	(M1,E2) E2 M1+E2		0.0034 <i>10</i> 0.00211 0.0025 <i>6</i>
		2128.7 4	100 <i>19</i> 100 ^b 22	286.551 4+	(E2) <i>(</i> l		0.0570.10
2426.5	(10 ⁻)	325.8 <i>10</i> 423.7 <i>10</i>	83^{b} 5	2100.6 (8 ⁻) 2002.9 (9 ⁺)	$(E2)^{a}$ $(E1+M2)^{a}$		0.0578 <i>10</i> 0.11 <i>11</i>
2427.96	(2+,3+,4+)	24.0 5 224.15 17 269.48 ^e 11 372.17 18 830.3 4 947.85 12	6 3 4.29 9 <6.9 ^e 6.2 14 8.1 19 11 5	2404.87 (3) ⁺ 2203.84 (4) ⁺ 2158.56 (4 ⁺) 2055.88 (2 ⁺ ,3 ⁺ ,4 ⁺) 1597.89? (⁻) 1479.99 3 ⁻	[M1(+E2)] [M1,E2]	<0.38	1.8×10 ² 14 0.27 9
2443.5	(11+)	1256.36 <i>12</i> 1360.7 <i>6</i> 1445.5 ^g <i>6</i> 2141.39 <i>8</i> 2340.6 <i>11</i> 440.4	23 4 6.2 14 3.8 14 100 14 2.9 14 86 6	1171.38 (4) ⁺ 1067.15 (3) ⁺ 984.00 2 ⁺ 286.551 4 ⁺ 87.73 2 ⁺ 2002.9 (9 ⁺)	[M1,E2]		0.0032 9
2 11 3,3	(11)	1018 <i>I</i>	100 3	1425.45 10 ⁺	(M1+E2) ^a		0.0052 7

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult. [†]	α^{c}
2475.18	$(2^+,3,4^+)$	271.4 3	13 6	2203.84	$(4)^{+}$	[M1,E2]	0.15 6
		294.90 9	100 20	2180.28	4+		
		2187.9 7	43 11	286.551	4+		
2488.5	14 ⁺	552.6 <i>3</i>	100	1936.0	12 ⁺	(E2) ^a	0.01389
2514.5	(13)	569.1	100	1945.4	(11)		
2645.0?		2358.4 ⁸ 8	100	286.551	4+		
2824.9	(12^{-})	381.3 <i>10</i>	100	2443.5	(11^{+})		
		398.6 10	79 <i>5</i>	2426.5	(10^{-})	$(E2)^a$	0.0325
2846.2	(13^{-})	910.4 <i>10</i>	100	1936.0	12 ⁺	$(E1+M2)^{a}$	0.012 11
2930.9	(13^{+})	487.3	91 5	2443.5	(11^{+})	(E2) ^a	0.0190
		995 <i>1</i>	100.0 23	1936.0	12 ⁺		
3073.1	16 ⁺	584.5 <i>3</i>	100	2488.5	14 ⁺	$(E2)^a$	0.01212
3131.4	(15)	616.9	100	2514.5	(13)		
3294.9	(14^{-})	470.0 <i>10</i>	100	2824.9	(12^{-})	$(E2)^a$	0.0209
3310.2	(15^{-})	464.0 <i>10</i>	93 6	2846.2	(13^{-})		
		821.6 <i>10</i>	100 11	2488.5	14 ⁺	$(E1+M2)^{a}$	0.016 <i>15</i>
3447.1	(15^{+})	516.2	100	2930.9	(13^{+})	(E2) ^a	0.01645
3532.2	(15^{+})	1044 <i>I</i>	100	2488.5	14 ⁺		
3613.2	(15^{-})	1125 <i>I</i>	100	2488.5	14 ⁺		
3686.9	18 ⁺	613.8 <i>4</i>	100	3073.1	16 ⁺	(E2) ^a	0.01079
3797.5	(17)	666.1	100	3131.4	(15)		
3821.1	(17^{-})	511.0 <i>10</i>		3310.2	(15^{-})	(E2) ^a	0.0169
		747.9 <i>10</i>		3073.1	16 ⁺	$(E1+M2)^{a}$	0.021 19
3827.5	(16^{-})	532.6 10	100	3294.9	(14^{-})	(E2) ^a	0.01522
3981.9	(17^{+})	534.8	100	3447.1	(15^{+})	(E2) ^a	0.01506
4092.2	(17^{+})	560.4	100 27	3532.2	(15^{+})		
		1019 <i>I</i>		3073.1	16 ⁺		
4133.8	(18^{+})	447 <i>1</i>		3686.9	18+		
		1060 <i>I</i>	100 20	3073.1	16+		
4165.1	(17^{-})	552.0 5	100.0 10	3613.2	(15^{-})		
		1092 ⁸ 1	2.9 4	3073.1	16 ⁺		
4336.9	20 ⁺	650.0 <i>3</i>	100	3686.9	18 ⁺	$(E2)^{a}$	0.00943
4373.9	(19^{-})	552.8 10	100.0 10	3821.1	(17^{-})	(E2) ^a	0.01388
		686.8 <i>10</i>	5.3 6	3686.9	18 ⁺	$(E1+M2)^{a}$	0.027 24
4410.0	(18^{-})	582.5 10	100	3827.5	(16^{-})	(E2) ^a	0.01222
4514.3	(19)	716.8		3797.5	(17)	a	
4579.5	(19^+)	597.6	100	3981.9	(17^{+})	(E2) ^a	0.01149
4721.1	(19^+)	629.1	100 15	4092.2	(17^{+})		
	(10-)	1034 1	68 4	3686.9	18+		
4763	(19^{-})	598.1 <i>10</i>	100 13	4165.1	(17^{-})		

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\ddagger}	$\mathrm{E}_f \qquad \mathrm{J}_f^\pi$	Mult. [†]	α^{c}
4763	(19-)	1076 <mark>8</mark> 1		3686.9 18 ⁺		
4786.1	(20^{+})	450 <i>I</i>		4336.9 20 ⁺		
4700.1	(20)	651.8	100 25	4133.8 (18 ⁺)		
		1099 <i>I</i>	51 7	3686.9 18 ⁺		
4968.5	(21^{-})	594.4 10	100 ^b 6	4373.9 (19 ⁻)	(E2) ^a	0.01164
1700.5	(21)	631.8 10	43^{b} 4	4336.9 20+	$(E1+M2)^a$	0.03 3
5032	(20^{-})	620.3 10	100	4410.0 (18 ⁻)	$(E2)^a$	0.01052
5036.9	22+	699.9 10	100	4336.9 20+	$(E2)^a$	0.00796
5255.9	(21^{+})	676.4	100	4579.5 (19 ⁺)	$(E2)^a$	0.00861
5287.1	(21)	772.8	100	4514.3 (19)	()	
5400.5	(21^{-})	638.4 10	100 11	4763 (19 ⁻)		
		1063 <i>1</i>		4336.9 20 ⁺		
5404.6	(21^{+})	683.5		4721.1 (19 ⁺)		
5511.1	(22^{+})	725.3	100 8	$4786.1 (20^{+})$		
		1174 <i>I</i>	78 <i>14</i>	4336.9 20 ⁺		
5612.3	(23^{-})	575.3 10	11.7 <i>15</i>	5036.9 22+		
		643.9 <i>10</i>	100 4	4968.5 (21-)	(E2) ^a	0.00964
5686.9	(22^{-})	656.6 <i>10</i>	100	5032 (20-)	$(E2)^{a}$	0.00922
5797.4	24+	760.5 10	100	5036.9 22+	$(E2)^a$	0.00662
6009.0	(23^{+})	753.1	100	5255.9 (21+)		
6080.6	(23^{-})	680.1 <i>10</i>	100	5400.5 (21 ⁻)		
6122	(23)	835.2	100	5287.1 (21)		
6143.3	(23^{+})	738.7	100	5404.6 (21 ⁺)		
6276.0	(24^{+})	764.9	100	5511.1 (22 ⁺)	(Ea)(0.00700
6314.7 6391.9	(25^{-})	702.4 <i>10</i> 705.0 <i>5</i>	100 100	5612.3 (23 ⁻) 5686.9 (22 ⁻)	(E2) ^a (E2) ^a	0.00790 0.00783
6623.9	(24 ⁻) 26 ⁺	826.5 <i>10</i>	100	5797.4 24 ⁺	(E2)	0.00783
6809.6	(25^{-})	729.0 10	100	6080.6 (23 ⁻)		
6835	(25^{+})	826.2	100	6009.0 (23 ⁺)	(E2) ^a	0.00553
6938.7	(25^{+})	795.4	100	6143.3 (23+)	(E2)	0.00555
7024	(25)	902 <i>I</i>	100	6122 (23)		
7072.5	(26^+)	796.5	100	6276.0 (24+)		
7081.9	(27^{-})	767.2 10	100	6314.7 (25 ⁻)	(E2) ^a	0.00649
7156	(26^{-})	764.0 10	100	6391.9 (24 ⁻)	$(E2)^a$	0.00655
7516.9	28+	893.0 <i>10</i>	100	6623.9 26 ⁺	$(E2)^a$	0.00469
7599.4	(27^{-})	789.8 <i>10</i>	100	6809.6 (25 ⁻)	. ,	
7727	(27^{+})	891.4	100	6835 (25 ⁺)	(E2) ^a	0.00470
7791.7	(27^{+})	853 <i>1</i>	100	6938.7 (25+)	. /	
7912	(28^{+})	839.5	100	7072.5 (26+)		
7917	(29^{-})	836.3	100	7081.9 (27-)	(E2) ^a	0.00539

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Mult. [†]	α^{c}
7984	(28^{-})	828.5 10	100	7156	(26^{-})		
8453.4	(29^{-})	854.0 <i>10</i>	100	7599.4	(27^{-})		
8475.2	30^{+}	958.3 10	100	7516.9	28 ⁺	(E2) ^a	0.00405
8669	(29^+)	944.2	100	7727	(27^{+})	, ,	
8697.7	(29^+)	906 <i>1</i>	100	7791.7	(27^{+})		
8801.3	(30^{+})	889.3	100	7912	(28^+)		
8825.6	(31^{-})	907.4 10	100	7917	(29^{-})	$(E2)^a$	0.00453
8880	(30^{-})	896.0 <i>10</i>	100	7984	(28^{-})	, ,	
9372.2	(31^{-})	918.8 <i>10</i>	100	8453.4	(29^{-})		
9496	32+	1020.4 10	100	8475.2	30 ⁺		
9748.3	(32^{+})	947 <i>1</i>	100	8801.3	(30^+)		
9803	(33^{-})	977.2 10	100	8825.6	(31^{-})	$(E2)^a$	0.00389
9841	(32^{-})	960.5 10	100	8880	(30^{-})	, ,	
10353	(33^{-})	980.7 10	100	9372.2	(31^{-})		
10575	34+	1079.1 <i>10</i>	100	9496	32+	$(E2)^{a}$	0.00318
10760	(34^{+})	1012 <i>I</i>	100	9748.3	(32^{+})	, ,	
10848	(35^{-})	1045.7 10	100	9803	(33^{-})	$(E2)^a$	0.00339
10861	(34^{-})	1020.0 10	100	9841	(32^{-})	()	
11388	(35^{-})	1035.2 10	100	10353	(33^{-})		
11703	36 ⁺	1128.6 10	100	10575	34+		
11841	(36^+)	1081 <i>I</i>	100	10760	(34^{+})		
11931	(36^{-})	1070 <i>I</i>	100	10861	(34^{-})		
11959	(37^{-})	1110.3 10	100	10848	(35^{-})	(E2) ^a	0.00300
12864	(38^{+})	1161 <i>I</i>	100	11703	36 ⁺	()	
12985	(38^{+})	1144 <i>1</i>	100	11841	(36^+)		
13023	(38^{-})	1092 <i>1</i>	100	11931	(36^{-})		
13128	(39^{-})	1169.7 10	100	11959	(37^{-})		
14033	(40^{+})	1169 <i>I</i>	100	12864	(38^{+})		
14138	(40^{-})	1115 <i>1</i>	100	13023	(38^{-})		
14190	(40)	1205 <i>1</i>	100	12985	(38^{+})		
14362	(41^{-})	1234 <i>1</i>	100	13128	(39^{-})		
15228	(42^{+})	1195 <i>1</i>	100	14033	(40^{+})		
15269	(42^{-})	1131 <i>1</i>	100	14138	(40^{-})		
15578	(43^{-})	1215 <i>1</i>	100	14362	(41^{-})		
16457?	(44^{+})	1229 <mark>8</mark> <i>1</i>	100	15228	(42^{+})		
16846?	(45^{-})	1268 <mark>8</mark>	100	15578	(43^{-})		
625.7+x	(22)	625.7	100	0.0+x	(20)		
1289.2+x	(24)	663.5	100	625.7+x			
2019.0+x	(26)	729.8	100	1289.2+x			
2802.1+x	(28)	783.1	100	2019.0+x	(26)		
3644.5+x	(30)	842.4	100	2802.1+x	(28)		

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$
4548.9+x	(32)	904.4	100	3644.5+x (30)	1075.4+y	J+5	491.3		584.1+y J+3
5514.4+x	(34)	965 <i>1</i>	100	4548.9+x (32)	1349.8+y	J+6	274.4		1075.4+y J+5
6542+x	(36)	1025 <i>1</i>	100	5514.4+x (34)			529.6		820.2+y J+4
7629 + x	(38)	1084 <i>I</i>	100	6542+x (36)	1642.3+y	J+7	292.5		1349.8+y J+6
8772 + x	(40)	1143	100	7629+x (38)			566.9		1075.4+y J+5
173.8+y	J+1	173.8	100	0.0+y J	1952.2+y	J+8	309.9		1642.3+y J+7
368.6+y	J+2	194.8		173.8+y J+1			602.4		1349.8+y J+6
		368.6 <mark>8</mark>		0.0+y J	2279.3+y	J+9	327.1		1952.2+y J+8
584.1+y	J+3	215.5	100	368.6+y J+2			637.0		1642.3+y J+7
820.2+y	J+4	236.1	100	584.1+y J+3	2616.7+y?	J+10	337.4 <mark>8</mark>	100	2279.3+y J+9
1075.4+y	J+5	255.2		820.2+y J+4					

[†] From ¹⁶⁸Lu ε decay (6.7 min) except as noted.

 $^{^{\}ddagger}$ Relative photon branching from each level; from 168 Lu ε decay (6.7 min) except as noted. Upper limits are given for photon branchings affected by multiple placement.

[#] Weighted average from ε decay (5.5 min) and ε decay (6.7 min).

[@] From relative photon branchings in $^{166}\text{Er}(\alpha,2n\gamma)$ (1982Wa19).

[&]amp; From 169 Tm(p,2n γ), (d,3n γ), 168 Yb(d,d' γ).

^a From (HI,xn γ), Er(α ,xn γ).

^b From relative photon branchings in 124 Sn(48 Ca,4n γ) (1985Ba47).

^c Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ-ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^d Multiply placed.

^e Multiply placed with undivided intensity.

^f Multiply placed with intensity suitably divided.

g Placement of transition in the level scheme is uncertain.

Legend

Level Scheme

Intensities: Relative photon branching from each level

---- → γ Decay (Uncertain)

 $^{168}_{\,70}\mathrm{Yb}_{98}$

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- → γ Decay (Uncertain)

¹⁶⁸Yb₉₈

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{168}_{70}{
m Yb}_{98}$

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

 $^{168}_{70}{\rm Yb}_{98}$

Level Scheme (continued)

Legend

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided

---- γ Decay (Uncertain)

 $^{168}_{70}{\rm Yb}_{98}$

Level Scheme (continued)

Legend

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided

---- γ Decay (Uncertain)

Level Scheme (continued)

Legend

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided

---- γ Decay (Uncertain)

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided

Level Scheme (continued)

Legend

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided

---- γ Decay (Uncertain)

Level Scheme (continued)

Legend

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided

---- γ Decay (Uncertain)

 $^{168}_{70}{\rm Yb}_{98}$

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

Legend

@ Multiply placed: intensity suitably divided

 $^{168}_{\,70}\mathrm{Yb}_{98}$

$$^{168}_{70}{
m Yb}_{98}$$

Band(O): M1 band (1994Ol04)

<u>J+10</u> _		2616.7+y
J+9	337	2279.3+y
J+8	327	1952.2+y
J+7	310	1642.3+y
J+6	292	1349.8+y
J+5	274	1075.4+y
J+4	255	820.2+y
J+3	236	584.1+y
J+2	216	368.6+y
J+1	- [-	173.8+y
J	174	0.0+y

Band(N): α =0 band

$$^{168}_{\,70}\mathrm{Yb}_{98}$$

	History		
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	C. M. Baglin ¹ , E. A. Mccutchan ² , S. Basunia ¹	NDS 153, 1 (2018)	1-Oct-2018

 $Q(\beta^{-})=-3458\ 17;\ S(n)=8457.7\ 12;\ S(p)=6777.7\ 8;\ Q(\alpha)=1737.2\ 12$ 2017Wa10

S(2n)=15324.7 12; S(2p)=12350.7 12 (2017Wa10).

% Abundance: 2.982 6 (from compilation by 2008De16).

Other Reactions:

 186 W(n,4p13n γ): 2000Ya22: E(n)=250-600 MeV; 4 HPGe detectors; measured E γ , $\gamma\gamma$ coin; tentatively observed 296 γ and 390 γ cascade connecting J=2, 4 and 6 members of g.s. band.

Muonic atoms: 1975Ze04: Measured muonic x ray spectra; deduced isotope shift and intrinsic Q=7.80 30 (which implies Q(84 level)=2.23 9, based on rotational model).

Isotope shifts, hfs: see, e.g., 2003Ba90, 2002Zi04, 2001Lo30, 1991Ji06, 1991Ki14, 1991Ma48.

Study of order-to-chaos transition In ¹⁷⁰Yb: 2006Le41.

Measurement of level density and radiative strength function: 2004Ag05.

¹⁷⁰Yb Levels

For discussions of rotational band configurations see, e.g., 1972Ca21, 1981Wa14, 1985SuZX, 1994Go29, 1998Ar08.

Cross Reference (XREF) Flags

		B 17 C 17 D 16	0 Tm β^{-} decay 1 Lu ε decay 4 Hf α decay 0 Gd(14 C,4n γ)	$F = {169 \text{Yb}(n, \gamma) \text{ E=res}}$ $F = {171 \text{Yb}(d, t)}$ $F = {170 \text{Er}(\alpha, 4n\gamma)}$ $F = {171 \text{Yb}(3, t)}$ $F = {171 \text{Yb}(3, t)}$ $F = {171 \text{Yb}(3, t)}$	
E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	XREF	Comments	
0.0^{a}	0^{+}	stable	ABCDE GHIJ L		
84.25468 ^a 8	2+ <i>b</i>	1.61 ns 2	AB DE GHIJ L	μ =+0.675 12 (1968Mu01); Q=2.1 4 (1971Pl03) μ : from 1968Mu01, Mossbauer effect. Other: +0.67 4 (1965Ti02). Q: from Q(¹⁷² Yb)/Q(¹⁷⁰ Yb)=1.020 12 (1971Pl03, Mossbauer effect). J ^π : E2 84 γ to 0 ⁺ . T _{1/2} : weighted average of 1.60 ns 2 (1972Gr05), 1.8 ns 3 (1967Ba27), and 1.62 ns 2 (2017Ka10). Others: 1.58 ns 5 (Coulomb excitation), 1.66 ns 9 from B(E2), 1.58 ns 7 from $\gamma\gamma$ (t) in ¹⁷⁰ Lu ε decay.	
277.43 ^a 4	4^{+}	98 [@] ps 4	B DE GHIJ L	J^{π} : stretched E2 193 γ to 2 ⁺ ; band assignment.	
573.30 ^a 8	6+ b	13 [@] ps 3	DE GHIJ L	J^{π} : stretched E2 296 γ to 4 ⁺ ; band assignment.	
963.32 ^a 10	8+ b	2.97 ps 25	DE G I	J^{π} : stretched E2 390y to 6 ⁺ ; band assignment.	
1069.35 ^c 6	0_{+}		B J L	J^{π} : E2 985 γ to 2 ⁺ ; J=0 from $\gamma\gamma(\theta)$ in ¹⁷⁰ Lu ε decay; L(p,t)=0.	
1138.55 ^c 3	2+	2.1 ps 4	В І	J ^{π} : E2 1139 γ to 0 ⁺ . T _{1/2} : from B(E2)=0.030 6 in Coulomb excitation and adopted branching.	
1145.72 ^d 5	2+	0.83 ps <i>16</i>	B HIJ L	J^{π} : E2 1146 γ to 0 ⁺ . $T_{1/2}$: from B(E2)=0.077 15 in Coulomb excitation and adopted branching.	
1225.35 ^e 6	(3)+		B J L	J ^{π} : E2 1141 γ to 2 ⁺ ; E2,M1 948 γ to 4 ⁺ ; E1,E2 1921 γ from 1 ⁺ ; J=3 from band assignment.	
1228.84 10	0_{+}	0.51 ps <i>10</i>	B I	J^{π} : E0 1228 γ to 0^{+} ; L(p,t)=0.	
1258.46 ^h 14	4^{-i}	370 ns <i>15</i>	E G	J ^{π} : E2+M1 87 γ from 5 ⁻ ; $\gamma(\theta)$ of E1 981G to 4 ⁺ in (α ,2n γ). T _{1/2} : from γ (t) measurement in (α ,2n γ).	
1292.4 ^c 7	(4) ⁺		E GH J	XREF: H(1300). J ^{π} : M1(+E2) 1015 γ to 4 ⁺ ; band structure in (α ,2n γ) and (α ,4n γ).	

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$		XREF	Comments
1306.39 5	2+		В	I	J^{π} : 1222 γ to 2 ⁺ has E0 component; E2 1029 γ to 4 ⁺ .
1329.31 ^d 20	$(4)^{+}$			E GHIJ L	J^{π} : E2(+M1) 1052 γ to 4 ⁺ ; band assignment.
1345.18 ^j 9	5-i			E G J L	J^{π} : E1 1068y to 4 ⁺ and E1 772y to 6 ⁺ .
1364.53 <i>q</i> 4	1-		В	J L	J^{π} : E1 1365 γ to 0 ⁺ .
1397.05 ^q 13	(3)-		В	нјц	J^{π} : E1 1119 γ to 4 ⁺ ; M1,E2 967 γ from 1 ⁻ . J^{π} supported by σ for E=1398 5 doublet In (p,t) and E=1400 or 1398 levels In (d,d') and (d,t). However, log ft =9.5 from 0 ⁺ is too low for a ΔJ =3 branch.
1408.73° 20 1425.24° 4	(4) ⁺ (2) ⁻		В	E G	J^{π} : E2(+M1) 1132 γ to 4 ⁺ ; K^{π} =(4) ⁺ bandhead. J^{π} : 1 ⁻ ,2 ⁻ based on E1 287 γ to 2 ⁺ and M1 938 γ from 1 ⁻ ; band assignment (1999GrZV) requires J=2.
1437.53 ^a 13	10 ⁺	1.16 ps 8		DE G I	J^{π} : stretched E2 474 γ to 8 ⁺ ; band assignment.
1450.35 ^h 13	6^{-i}			E G	J^{π} : E2 192 γ to 4 ⁻ ; D+Q 105 γ to 5 ⁻ ; D+Q 123 γ from 7 ⁻ .
1459.75 ^e 18	$(5)^{+}$			E G J	J^{π} : E2(+M1) 1182 γ to 4 ⁺ ; possible γ to 6 ⁺ ; band structure.
1479.91 <i>6</i>	0_{+}		В	JL	J^{π} : J=0 from $\gamma\gamma(\theta)$ in ¹⁷⁰ Lu ε decay; E2 1397 γ to 2 ⁺ ; L(p,t)=0.
1510.2 ^q 5	(5^{-})			E G	J^{π} : γ to 4^+ ; $K^{\pi}=1^-$ band assignment.
1512.37 4	1-		В	J L	J^{π} : E1 1512 γ to 0 ⁺ .
1521.31 ^c 14	6 ⁺			E G	J^{π} : M1 948y to 6 ⁺ ; stretched E2 1244y to 4 ⁺ .
1528.74 ^p 18 1534.57 4	5 ⁺ 2 ⁺		В	E G J L	J^{π} : M1(+E2) 955γ to 6 ⁺ from $\gamma(\theta)$ in (α ,2nγ); M1+E2 1251γ to 4 ⁺ . J^{π} : E2 1534γ to 0 ⁺ .
1552	2		ь	J	J . E2 1334y to 0 .
1566.38 8	0^{+}		В	ĴL	J^{π} : E0 transitions to 0^+ ; $L(p,t)=0$.
1572.73 ^j 11	7^{-i}			E GH	J^{π} : 228 γ E2 to 5 ⁻ ; E1 609 γ to 8 ⁺ .
1573.10 ^r 20	(4 ⁻)			G	0 1 22 07 22 to 0 3 21 0057 to 0 1
1601.33 ^d 17	6+			E G L	J^{π} : $\Delta J=0$ E2(+M1) 1028 γ to 6 ⁺ from $\gamma(\theta)$ in $(\alpha,2n\gamma)$.
1634.84 8	(1^{+})		В	L	J^{π} : 1635 γ to 0 ⁺ g.s. is M1(+E2) or E1 based on separate α (K)exp data;
					$\Delta\pi$ =no 1551 γ to 2 ⁺ , but γ may be a doublet (see ¹⁷⁰ Lu ε decay dataset).
1658.06 9	$(2)^{+}$		В	J 1	J^{π} : 1381 γ to 4 ⁺ ; M1 865 γ from 1 ⁺ .
1660.26 ^f 14	(5-)			E G 1	J^{π} : (E1) 1087 γ to 6 ⁺ ; D 1383 γ to 4 ⁺ from $\gamma(\theta)$ in $(\alpha, 2n\gamma)$. However, (4 ⁺) suggested in (p,t).
1669.03° 17	6+			E G	J^{π} : $\Delta J=0$ E2(+M1) 1096 γ to 6 ⁺ ; 260 γ to (4) ⁺ .
1690	(77-)			J	IT AT 1 1100 (C+ 1 1 1 (2) (A)
1712.41 ^q 21	(7^{-})			E G L	J^{π} : $\Delta J=1$ 1139 γ to 6 ⁺ ; band assignment in $(\alpha,2n\gamma)$, $(\alpha,4n\gamma)$.
1715.95 ^h 4 1717.95 4	8^{-i}		ъ	E G	J^{π} : E2 265 γ to 6 ⁻ ; D+Q 143 γ to 7 ⁻ ; band assignment.
1717.93 4 1762.63 ⁸ 22	(2) ⁻ (6 ⁻)		В	E G J	J^{π} : E1 572 γ to 2 ⁺ ; log ft =9.4 from 0 ⁺ ; E1 493 γ to (3) ⁺ . XREF: J(1774).
1702.030 22	(0)			EGJ	J^{π} : $\Delta J=1 \ 102\gamma$ to $5^{(-)}$; band assignment.
1780.55 ^e 15	$(7)^{+}$			E G	J^{π} : M1(+E2) 817 γ to 8 ⁺ ; 321 γ to (5) ⁺ .
1783	(3 ⁻)&			H L	E(level): from (d,d'); 1780 5 for doublet in (p,t).
≈1789	(3 ⁻)&			J	E(level): may be same level as seen in (d,d') at 1783 and in (p,t) at 1780 5; however, E from (d,t) is, typically,≈6 keV low, so it does not appear to be consistent with those.
1793.37 ^r 18	(6-)			G	to be consistent with those.
1803.39 ^c 14	$(8)^{+}$			E G	J^{π} : M1 840 γ to 8 ⁺ ; 1230 γ to 6 ⁺ ; band assignment.
1835.06 ^p 21	7(+)			E G	J^{π} : D 1261 γ to 6 ⁺ ; D 872 γ to 8 ⁺ ; band assignment.
1838.2 <i>3</i>	(2)+		В	JL	
1851.23 ^k 16	6-	<0.2 ns		E G	J^{π} : $\Delta J=1$ for M1+E2 506 γ to 5 ⁻ ; M1+E2 401 γ to 6 ⁻ . $T_{1/2}$: from $\gamma(t)$ measurement in $(\alpha, 2n\gamma)$.
1871 <i>5</i>				L	
1872.09 ^{<i>j</i>} <i>14</i>	9- <i>i</i>			E G	J^{π} : E1 909 γ to 8 ⁺ ; E2 299 γ to 7 ⁻ ; 434 γ to 10 ⁺ ; band assignment.
1903.14 ^f 14	7-			E G	J^{π} : E1 939 γ to 8 ⁺ ; E1 1330 γ to 6 ⁺ .
					•

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #	XREF		Comments
1911				J	
1954.13 ^d 17	8+		E G		J^{π} : $\Delta J = 0 \text{ M1} + \text{E2 } 991 \gamma \text{ to } 8^{+}$.
1964.64 ^l 22	(7-)		E GH		J ^π : intraband ΔJ=1 D+Q 113γ to 6 ⁻ ; K^{π} =6 ⁻ band member in (α,2nγ),
1971 <i>10</i>				J L	$(\alpha,4n\gamma)$. XREF: J(1963).
1002 260 17	12+ b	0.77 6	DE C T		E(level): from (p,t).
1983.36 ^a 17 1985.64 9	1-,2-	0.77 ps 6	DE G I B		J^{π} : stretched E2 546 γ to 10 ⁺ ; K^{π} =0 ⁺ g.s. band member. J^{π} : E1 1901 γ to 2 ⁺ ; log f t=9.2 from 0 ⁺ .
2001 10	1 ,2			J L	XREF: J(2000).
2001 10					E(level): for doublet in (p,t).
2005.43 ^q 18	(9)-		E G		J^{π} : $\gamma(\theta)$ of E1 1043 γ to 8^{+} in $(\alpha,2n\gamma)$ favors $\Delta J=1$; band assignment.
2009.35° 17	8+		E G		J^{π} : E2(+M1), ΔJ =0 1046 γ to 8 ⁺ .
2039.85 8	1+		В		J^{π} : M1 2040 γ to 0 ⁺ .
2044.64 ⁸ 17	(8-)		E G		J^{π} : $\Delta J=(1)$ 142 $\gamma(\theta)$ to 7 ⁻ ; (Q) intraband 282 γ to (6 ⁻); band assignment.
2047 <i>7</i> 2052.59 <i>7</i>	0-,1-,2-		В	L	J^{π} : M1 540 γ to 1 ⁻ .
2056.73 ^h 15	10^{-i}		E G		J^{π} : stretched E2 341 γ to 8 ⁻ ; 185 γ to 9 ⁻ ; band structure.
2088	0+		E G	L	J^{π} : L(p,t)=0.
2096.81 ^r 18	(8-)		G	_	U = L(p,t) = 0.
2098.5^{k} 3	(8-)		E G		J^{π} : $\Delta J=1$ from $134\gamma(\theta)$ to (7^{-}) ; band assignment.
2115.90 7	1-		в н	J	J^{π} : (E1) 2116 γ to 0^{+} ; E1 2032 γ to 2^{+} ; log ft =9.1 from 0^{+} .
2126.14 5	1-		В		J^{π} : E1 2126 γ to 0 ⁺ .
2135.33 ^c 15	10 ⁺		E G		J^{π} : M1 698 γ to 10 ⁺ ; stretched Q 1172 γ to 8 ⁺ ; band structure.
2137 12	(9 ⁺)		C	L	
2170.04 ^e 19	$(2^+)^{\&}$		G		
2171? 7 2186	0+			L L	J^{π} : L(p,t)=0.
2189.65 ^m 17	7-	2.5 ns <i>3</i>	E G	L	J^{π} : $\Delta J=1 \text{ M1}(+\text{E2}) 338\gamma \text{ to } 6^-$; stretched E2 845 γ to 5 ⁻ ; E2(+M1) 739 γ
					to 6 ⁻ ; band structure.
					$T_{1/2}$: from $\gamma(t)$ in $(\alpha, 2n\gamma)$.
2200.91 9	$1^{-},2^{-}$		В		J^{π} : E1 2117 γ to 2 ⁺ ; log ft =8.8 from 0 ⁺ .
2220.69 ^f 15 2229 7	(9) ⁻ 0 ⁺		E G	L	J^{π} : $\Delta J=1$ 1258 γ to 8 ⁺ ; 783 γ to 10 ⁺ . J^{π} : $L(p,t)=0$.
2242.00 ^j 16	11^{-i}		E G		J^{π} : stretched E2 370 γ to (9) ⁻ ; E1 804 γ to 10 ⁺ .
2249 7				L	, , , , ,
2253.5^{l} 3	(9-)		E G		J^{π} : $\Delta J=1$ 155 $\gamma(\theta)$ to (8 ⁻); $K^{\pi}=6^{-}$ band assignment.
2268.08 <i>17</i>	1-		В		J^{π} : E1 2268 γ to 0 ⁺ .
2275.49 5	1-		В	1	XREF: 1(2281).
2289.37 10	1+		В	1	J^{π} : E1 2275 γ to 0 ⁺ . XREF: I(2281).
2207.57 10	1		5	_	J^{π} : M1 γ to 0 ⁺ .
2328.0? 4	(0^+)		В	L	J ^π : possible E0 2328-keV transition to 0 ⁺ g.s.; possible γ to 2 ⁺ ; log $ft \approx 9.7$ from 0 ⁺ .
2341.6 ⁿ 3	(8-)		E G		J^{π} : $\Delta J=1$ 152 γ to 7 ⁻ ; band assignment.
2351.71 6	0-,1-,2-		В	L	J^{π} : M1 987 γ to 1 ⁻ ; log ft =8.0, log $f^{1u}t$ =8.65 4 from 0 ⁺ .
2364.06 4	1-		В		J^{π} : E1 2364 γ to 0 ⁺ .
2367.65 5	(1)		В		J^{π} : M1 242 γ to 1 ⁻ ; log $f^{1u}t < 8.5$ from 0 ⁺ ; 1061 γ to 2 ⁺ .
2372.83 ^d 19	10 ⁺		E G		J^{π} : stretched Q 418 γ to 8 ⁺ ; M1+E2 935 γ to 10 ⁺ .
2388.06 ^q 18	(11)		E G		J^{π} : $\Delta J = 1$ E1 951 γ to 10 ⁺ ; band assignment.
2398.51 ⁸ 19	(10^{-})		E G		J^{π} : $\Delta J = 1 \ 178 \gamma$ to (9) ⁻ ; intraband 354 \gamma\$ to (8 ⁻).
2399 2400.10 <i>6</i>	0 ⁺ 1 ⁻		В	L L	J^{π} : L(p,t)=0. XREF: L(2390).
2700.10 0	1		ע	L	J^{π} : E1 2400 γ to 0 ⁺ .
					/

E(level) [†]	$J^{\pi \ddagger}$	XREF	Comments
2412.39° 19	(10)+	E G	J^{π} : M1,E2 975 γ to 10 ⁺ ; ΔJ =0,2 404 γ to 8 ⁺ ; band assignment.
2429.0 ^k 3 2429.05 11 2436.01 11 2460.55 23	(10 ⁻) 1 ⁺ ,2 ⁺ (2,3) ⁻ (10 ⁻)	E G B B L	J^{π} : 175.4 γ to (9 ⁻), 330.7 γ to (8 ⁻); band structure. J^{π} : M1 2345 γ to 2 ⁺ ; M1 712 γ from 1. J^{π} : E1 2352 γ to 2 ⁺ ; 2158 γ to 4 ⁺ .
2473.69 ^h 19 2477.8 ^r 3	12 ⁻ⁱ (10 ⁻)	E G G	J^{π} : E2 417 γ to 10 ⁻ ; γ to 11 ⁻ ; band structure in $(\alpha,2n\gamma)$.
2496.20 <i>5</i> 2498.19 <i>7</i> 2501 2523.07 <i>14</i>	1 ⁻ 0 ⁻ ,1 ⁻ ,2 ⁻ 0 ⁺ 1 ⁺	B L B L	J^{π} : E1 2496 γ to 0 ⁺ . J^{π} : M1 1134 γ to 1 ⁻ . J^{π} : L(p,t)=0. J^{π} : M1 2523 γ to 0 ⁺ .
2524.27 ^c 17 2525.1 ^m 3 2536.97 6	12 ⁺ (9 ⁻) 1 ⁻	E G E G B L	J^{π} : M1(+E2) 541 γ to 12 ⁺ ; stretched Q 1087 γ to 10 ⁺ . J^{π} : 183.6 γ to (8 ⁻), 335.4 γ to 7 ⁻ ; band assignment. J^{π} : E1 2537 γ to 0 ⁺ ; π supported by E2 612 γ from 1 ⁻ and M1(+E2) 587 γ from 1 ⁻ . However, M1 498 γ to 1 ⁺ .
2560 2580.35 ^a 24 2595 7	0 ⁺ 14 ⁺ <i>b</i>	DE G L	J^{π} : L(p,t)=0. J^{π} : stretched E2 597 γ to 12 ⁺ ; band structure in (α ,2n γ), (α ,4n γ).
2603.60 ^f 21 2603.8 ^e 3 2661.02 12 2667.19 4	(11 ⁻) (11 ⁺) 1 ⁺ 1 ⁽⁺⁾	E G E G B	J ^{π} : 205 γ to (10 ^{$-$}); 382 γ to (9) $^{-}$; band assignment. J ^{π} : Q 433.8 γ to (9 ^{$+$}); K^{π} =2 $^{+}$ band assignment. J ^{π} : M1,E2 2661 γ to 0 $^{+}$; log ft =8.7 from 0 $^{+}$. J ^{π} : M1 1598 γ to 0 $^{+}$; π supported by mult for 1010 γ , 1438 γ , 1522 γ . However, E1 2583 γ to 2 $^{+}$ and (M1) 152 γ from π = $-$ 2819.
2678 7 2680.75 j 19 2732.3 n 3 2748.08 5 2768.34 8 2775.66 8	13 ⁻ⁱ (10 ⁻) 1 ⁻ 0 ⁻ ,1 ⁻ 1 ⁻	E G L E G B B B B	J ^{π} : E2 439 γ to (11) ^{$-$} ; D 698 γ to 12 ^{$+$} ; band structure in (α ,xn γ). J ^{π} : 207 γ to (9 $^{-}$); 391 γ to (8 $^{-}$); K ^{π} =7 $^{-}$ band assignment. J ^{π} : E1 2748 γ to 0 $^{+}$. J ^{π} : M1 1404 γ to 1 $^{-}$; log ft =7.9, log ft t =8.1 from 0 $^{+}$. J ^{π} : E1 2691 γ to 2 $^{+}$; log ft =7.6, log ft t =7.7 from 0 $^{+}$.
2783.12 <i>10</i> 2815.73 ⁸ 23 2819.77 4	1 ⁺ (12 ⁻) 0 ⁻ ,1 ⁻	B E G B	J ^π : M1 2783γ to 0 ⁺ ; M1 2699γ to 2 ⁺ ; however, M1 1419γ to 1 ⁻ . J ^π : 417γ to (10 ⁻); 212γ to (11 ⁻); band structure. J ^π : M1 324γ to 1 ⁻ ; (M2) 2736γ to 2 ⁺ favors J=0; mixed multipolarity for 531γ and possibly for the 1308γ and 1565γ favor J=1.
2826.8 ^d 3 2847.0? ^k 11	(12 ⁺) (12 ⁻)	E G G	J^{π} : stretched Q 454 γ to 10 ⁺ ; K^{π} =2 ⁺ band assignment.
2854 2855.61 ^q 21 2859.2 ^o 3 2927.2 ^r 4	0 ⁺ (13 ⁻) (12 ⁺) (12 ⁻)	E G G G	J^{π} : L(p,t)=0. J^{π} : 873 γ to 12 ⁺ ; band assignment.
2929.60 8 2938.6 <i>3</i> 2939.73 <i>5</i>	1 ⁻ 12 ⁽⁻⁾ 1 ⁻	B G B	J^{π} : E1 2930 γ to 0 ⁺ ; E1 1860 γ to 0 ⁺ . J^{π} : E1 1405 γ to 2 ⁺ ; however, 1305 γ to (1 ⁺) is M1,E2.
2945 2947.84 <i>6</i> 2956.55 <i>11</i> 2959.4 ^{<i>m</i>} 3	0 ⁺ 1 ⁻ 1 ⁺ (11 ⁻)	L B B E G	
2965.66 8 2966.42 ^h 22 2969.45 13	1 ⁺ 14 ⁻ⁱ 1 ⁻	B E G B	J^{π} : M1 2966 γ to 0 ⁺ ; however, M1 467 γ to π =– 2498 and M1,E2 1601 γ to π =– 1365. J^{π} : E2 493 γ to 12 ⁻ ; K^{π} =4 ⁻ band member. J^{π} : 2970 γ to 0; M1 917 γ to π =– 2053.
2975.32 <i>11</i> 2986.67 ^c 21 2995	1 ⁻ (14 ⁺) 0 ⁺	B G L	J^{π} : M1 1611 γ to 1 ⁻ ; M1(+E0) 859 γ to 1 ⁻ . However, weak M1(+E2) 1746 γ to 0 ⁺ . J^{π} : stretched Q intraband 462 γ to (12) ⁺ ; 1003 γ to 12 ⁺ . J^{π} : L(p,t)=0.
3007.6 <i>3</i>	1-	В	J^{π} : E1 2923 γ to 2 ⁺ ; log $ft=8.2$, log $f^{1u}t=8.0$ from 0 ⁺ .

170 Yb Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	XREF	Comments
3027	0+	L	
3042.46 <i>17</i>	1+	В	J^{π} : M1 3043 γ to 0 ⁺ .
3049.95 ^f 24	(13 ⁻) 1 ⁺	E G	J^{π} : 234 γ to (12 ⁻); 446 γ to (11 ⁻); band assignment.
3065.36 <i>12</i> 3067.0 ^e 4	(13 ⁺)	B G	J^{π} : E2,M1 1996 γ to 0^{+} .
3067.62 10	1-	В	J^{π} : 3067.0 γ to 0 ⁺ ; M1 1703 γ to 1 ⁻ .
3070.52 19	0,1	В	J^{π} : log $ft=8.1$, log $f^{1u}t=7.75$ from 0^{+} .
3077	0_{+}	L	
3091.93 <i>11</i>	1	В	J ^{π} : M1 596 γ to 1 ⁻ ; M1 692 γ to 1 ⁻ . Inconsistent with (E2(+M1)) 3008 γ to 2 ⁺ and E2(+M1) or E1+M2 3092 γ to 0 ⁺ .
3099.64 9	1 ⁽⁻⁾	В	J^{π} : E1 2030 γ to 0 ⁺ ; however, π =+ based on E2 3100 γ to 0 ⁺ g.s. and (M1) 1620 γ and (M1) 1954 γ to 2 ⁺ .
3108	0^{+}	L	
3115.58 <i>11</i>	1-	В	J^{π} : E1 3115 γ to 0 ⁺ .
3123.94 12	1-	В	J^{π} : E1 2054 γ to 0 ⁺ .
3131.10 16	1+	В	J^{π} : log $ft=7.9$, log $f^{1u}t=7.4$ from 0^+ ; (M1) 3046.9 γ to 0^+ ; E2,M1 1993 γ to 2^+ . J^{π} : weak 3140 γ to 0^+ , M1 712 γ to $1^+,2^+$, and M1+E2 480 γ to 1^+ ; inconsistent with
3140.60 <i>13</i>	(1)	В	M1 1776 γ to 1 ⁻ .
3146.03 9	1+	В	J^{π} : M1,E2 3146 γ to 0 ⁺ .
3149.09 9	1-	В	J^{π} : E1 3149 γ to 0 ⁺ .
3150	0^{+}	L L	
3153 3161.02 <i>17</i>	(1-)	В	J^{π} : L(p,t)=0. J^{π} : (E1) 3161 γ to 0 ⁺ .
3165.59 9	1-	В	J^{π} : E1 3165 γ to 0 ⁺ . However, (M1,E2) 1686 γ to 0 ⁺ .
3169.59 <i>12</i>	1-	В	J^{π} : 3169.6 γ to 0 ⁺ , M1 401.3 γ to 0 ⁻ ,1 ⁻ 2783.
3179.76 <i>16</i>	1-	В	J^{π} : E1 3096 γ to 2 ⁺ .
3186.2^{j} 4	15^{-1}	E G	J^{π} : E2 505 γ to 13 ⁻ ; 4 ⁻ band member.
3186.66 <i>13</i>	(1-)	В	J ^{π} : M1 1061 γ to 1 ⁻ ; 3102 γ to 2 ⁺ ; doubly-placed 751 γ to (2,3) ⁻ . However, M1 758 γ TO π =+ 2429.
3195.1 ^a 3	16 ⁺	DE G	J^{π} : E2 615 γ to (14 ⁺); band assignment.
3195.58 8	1-	В	J^{π} : E1,E2 3196 γ to 0 ⁺ ; M1 448 γ to 1 ⁻ ; log ft =7.3, log $f^{1u}t$ =6.6 from 0 ⁺ . However, (M1) 1967 γ to 0 ⁺ .
3202.1 ⁿ 4	(12^{-})	E G	J^{π} : 242.5 γ to (11 ⁻), 469.9 γ to (10 ⁻); band structure.
3202.94 <i>13</i>	1+	В	J^{π} : M1 3202 γ to 0 ⁺ .
3213.27 <i>13</i> 3258.18 <i>10</i>	1 ⁻ 1 ⁺	B B	J^{π} : E1 2144 γ to 0 ⁺ . J^{π} : M1 3173 γ to 2 ⁺ ; however, M1 822 γ to (2,3) ⁻ .
3268.91 <i>15</i>	1(+)	В	J^{π} : M1 3184 γ to 2 ⁺ ; however, M1 449 γ to 0 ⁻ ,1 ⁻ .
3274.17 <i>14</i>	1-	В	J^{π} : E1 3274 γ to 0 ⁺ , E1 3190 γ to 2 ⁺ , and E1 1235 γ to 1 ⁺ . The J^{π} assignment,
2201 92 27	1+	D	however, is in disagreement with M1(+E2) 491 γ to 1 ⁺ .
3291.82 <i>21</i> 3296.5 ⁸ <i>3</i>	(14 ⁻)	B G	J^{π} : E2,M1 2063 γ to 0 ⁺ ; however, weak E1 3291 γ to 0 ⁺ g.s.
3301.95 11	1+	В	J^{π} : M1 2232.7 γ to 0 ⁺ , M1 518.9 γ to 1 ⁺ . J^{π} assignment is, however, in disagreement with M1 806 γ 1 ⁻ .
3307.3 ^d 4	(14^{+})	E G	J^{π} : stretched Q 481 γ to (14 ⁺); band structure in (α ,2n γ), (α ,4n γ).
3314.42 11	ì	В	J^{π} : (M1) 3314 γ to 0 ⁺ and (M1) 1748 γ to 0 ⁺ give 1 ⁺ ; however, π =– from E1 3230 γ
2225	0+	_	TO 2^+ , and M1+E2+E0 963 γ TO 1^- , 2^- .
3325 3333.2? ⁰ 11	0 ⁺ (14 ⁺)	L G	$J^{\pi}: L(p,t)=0.$
3366.40 11	(14.)	В	J^{π} : log $ft=6.5$, log $f^{1u}t=5.3$ from 0^+ ; 1799 γ to 0^+ . M1 301 γ to 1^+ , E2 598 γ to $0^-,1^-$
			give conflicting π assignments.
3384.87 <i>17</i> 3401.7 ⁹ <i>3</i>	1 ⁻	B E G	J^{π} : E1 2315 γ to 0^+ . J^{π} : band structure in $(\alpha, 4n\gamma)$.
3423.2? 8	(15^{-}) (0^{-})	B E G	J^{π} : possible M1+E2+E0 or M2 3339 γ to 2 ⁺ .
3437.8 ^r 6	(14^{-})	G	_K

E(level) [†]	Jπ‡	XREF	Comments
3466.8? ^m 8	(13^{-})	G	
≈3500	, ,	L	J^{π} : E and excitation probability fit systematics for 5 ⁻ and 7 ⁻ doublets observed to be strongly excited in (p,t) for neighboring nuclei.
3533.8 ^h 3	16 ⁻ⁱ	E G	J^{π} : E2 567 γ to 14 ⁻ ; 4 ⁻ band member.
3547.3 ^c 3	(16^{+})	G	J^{π} : intraband 561 γ to (14 ⁺); band assignment.
3558.1 ^e 4	(15^{+})	G	
3567.4 ^f 3	(15^{-})	G	
3742.1 ⁿ 4	(14^{-})	G	
3756.5 ^j 4	$(17^{-})^{i}$	E G	J^{π} : E2 570 γ to (15 ⁻); band structure.
3806.8 ^a 4	18+ b	DE G	J^{π} : E2 612 γ to (16 ⁺); band assignment.
3833.3 ^d 4	(16^{+})	G	
3842.3 ⁸ 6	(16^{-})	G	
3844.2? ⁰ 15	(16^{+})	G	
4011.8 ^r 12	(16^{-})	G	
4017.6 ^q 6	(17^{-})	G	
4065.1? ^e 11	(17^{+})	G	
4174.0 ^h 4	18^{-i}	G	
4207.1 ^c 5	(18^{+})	G	J^{π} : intraband 659 γ to (16 ⁺); 1012 γ to 16 ⁺ ; band assignment.
4390.3 ^j 5	19 ⁻	G	
4436.5 <i>a</i> 7	20^{+b}	E G	J^{π} : (E2) 631 γ to 18 ⁺ ; K^{π} =0 ⁺ g.s. band assignment.
4885.9 ^h 7	20^{-i}	G	
5084.8 ^j 5	21^{-i}	G	

[†] From least-squares fit to adopted Εγ.

 $^{^{\}ddagger}$ For levels observed only in $(\alpha,4n\gamma)$, J^{π} is based on DCO ratio data and probable band structure deduced in that reaction.

[#] From Doppler-broadened lineshape analyses in Coulomb excitation, unless noted otherwise.

[@] from $\gamma \gamma(t)$ in $(\alpha, 2n\gamma)$.

[&]amp; Based on measured $\sigma(\theta)$, comparison to Nilsson-model prediction, and band configuration analysis in $^{170}\text{Er}(d,d')$, $^{171}\text{Yb}(d,t)$ or $^{172}\text{Yb}(p,t)$

^a Band(A): $K^{\pi}=0^{+}$ g.s. band. Rotational parameters: $\alpha=14.1$, $\beta=-0.012$.

^b Definite J^{π} assigned to members of g.s. band based on smooth progression of level energies and independently-established $J^{\pi}(g.s.)=0^+$ and E2 multipolarity for J=2 to 0 84γ.

^c Band(B): $K^{\pi}=0^{+}$, $\alpha=0$ β band. Rotational parameters: $\alpha=11.6$, $\beta=-0.021$. Sharp rise in alignment at low rotational frequency probably indicates a change from vibrational to two-quasiparticle character as states gradually mix with low-spin members of (ν i_{13/2})² band. However, 2001Ga02 suggest that the J=0, 1069 level is not a good β-vibration candidate.

^d Band(C): K^π=2⁺, α =0 γ band. Rotational parameters: α =13.0, β =−0.011. Small alignment at low spin. At higher frequencies, vibrational states probably mix with two-quasiparticle (ν 5/2[512])⊗(ν 1/2[521]) band.

^e Band(c): $K^{\pi}=2^{+}$, $\alpha=1$ γ band. Rotational parameters: $\alpha=13.6$, $\beta=-0.016$. Small alignment at low spin. At higher frequencies, vibrational states probably mix with two-quasiparticle (ν 5/2[512])⊗(ν 1/2[521]) band.

^f Band(d): K^{π} =(3)⁻, α=1. Rotational parameters: α=9.3, β=-0.0003. Signature partner of K^{π} =3⁻, α=0 band. See comments on that band. J=3 member not yet identified.

^g Band(D): $K^{\pi}=(3)^{-}$, $\alpha=0$. Rotational parameters: $\alpha=9.5$, $\beta=-0.0014$. Bandhead energy very close to that calculated for the (ν 7/2[633])-(ν 1/2[521]) configuration; assignment supported by absence of a (ν i_{13/2})² crossing in kinematic moment of inertia and by in-band transition strength ratios (B(M1)(cascade)/B(E2)(crossover)) (1998Ar08). Probable admixture with $K^{\pi}=1^{-}$ (1981Wa14). J=4 member not yet identified.

^h Band(E): $K^{\pi}=4^{-}$, $\alpha=0$. Rotational parameters: $\alpha=8.7$, $\beta=+0.0024$. Configuration (ν 7/2[633])+(ν 1/2[521]) supported by

¹⁷⁰Yb Levels (continued)

two-quasiparticle plus rotor calculations, by large splitting from signature partner (as in 7/2[633] band in 171 Yb), by similarity of kinematic moment of inertia plot to that for (ν 7/2[633])+(ν 1/2[521]) band in 172 Yb, by alignment (which is close to sum of alignments for 7/2[633] and 1/2[521] bands in 171 Yb and 169 Tm), and by in-band transition strength ratios (B(M1)(cascade)/B(E2)(crossover)) (1998Ar08).

- ⁱ Definite J^{π} assigned to members of (ν 7/2[633])+(ν 1/2[521]) band based on smooth progression of level energies and independently-established $J^{\pi}(1258)=4^{-}$ and multipolarity of M1+E2 for J=5 to 4 87 γ .
- ^j Band(e): $K^{\pi}=4^{-}$, $\alpha=1$. Rotational parameters: $\alpha=8.7$, $\beta=+0.0008$. Signature partner of $K^{\pi}=4^{-}$, $\alpha=0$ band. See comments on that band.
- ^k Band(F): K^{π} =6⁻, α=0. Rotational parameters: α=8.0, β=+0.0065. Configuration (ν 7/2[633])+(ν 5/2[512]) consistent with observed alignment and with behavior of ¹⁷²Yb band with same configuration.
- ¹ Band(f): $K^{\pi}=6^{-}$, $\alpha=1$. Rotational parameter: $\alpha=8.5$. Configuration (ν 7/2[633])+(ν 5/2[512]) consistent with observed alignment and with behavior of ¹⁷²Yb band with same configuration.
- ^m Band(g): $K^{\pi}=7^{-}$, $\alpha=1$. Rotational parameters: $\alpha=9.6$, $\beta=+0.0063$. Signature partner of $K^{\pi}=7^{-}$, $\alpha=0$ band. See comments on that band.
- ⁿ Band(G): $K^{\pi}=7^{-}$, $\alpha=0$. Rotational parameters: $\alpha=10.3$, $\beta=-0.00075$. Configuration (π 7/2[523])+(π 7/2[404]) consistent with observed alignment and with in-band transition strength ratios (B(M1)(cascade)/B(E2)(crossover)) for J=9, 10, 11 (1998Ar08).
- ^o Band(H): K^{π} =(3)⁺ band, α =0. Rotational parameters: α =12.3, β =-0.0145. Band's decay characteristics imply K≤4; probably analogous (based on comparison of kinetic moment of inertia plots) to a K^{π} =3⁺ band in ¹⁷²Yb which includes the (ν 5/2[512])+(ν 1/2[521]) configuration. 1998Ar08 suggest that configuration for this band also. However, postulated in 1993Wu03 to be $\gamma\gamma$ vibrational band (K=4). J=3 member not yet identified.
- ^p Band(h): $K^{\pi}=(3)^+$, $\alpha=1$ (1998Ar08). Signature partner of the $K^{\pi}=(3)^+$, $\alpha=0$ band. See comments on that band.
- ^q Band(i): $K^{\pi}=1^{-}$, $\alpha=1$ octupole band. $K^{\pi}=3^{-}$ admixture. Probable dominant configuration (ν 7/2[633])-(ν 5/2[512]). Assignment supported by large B(E3) for J=3 member of this band and by observed alignment relative to g.s. band of $\approx 3\hbar\omega$. Large energy splitting relative to signature partner is observed, as expected (1998Ar08).
- ^r Band(I): $K^{\pi}=(1)^{-}$, $\alpha=0$ octupole band. Possible signature partner of $K^{\pi}=1^{-}$, $\alpha=1$ octupole band (1998Ar08). Large energy splitting relative to signature partner is observed, as expected.

E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	$\mathrm{I}_{\gamma}^{\dagger}$	\mathbb{E}_f	J_f^{π}	Mult.‡	α^{c}	Comments
84.25468	2+	84.25474 8	100	0.0	0+	E2	6.28	B(E2)(W.u.)=201 6
								E_{γ} : from 170 Tm β^- decay.
								Mult.: from $\alpha(K)$ exp and subshell ratios in 170 Tm β^- decay.
277.43	4+	193.13 5	100	84.25468		E2	0.302	
573.30	6+	295.86 9	100	277.43	4+	E2&	0.0771	E_{γ} : weighted average from $(\alpha,4n\gamma)$ and $(\alpha,2n\gamma)$.
963.32	8+	390.06 9	100	573.30	6+	E2&	0.0345	B(E2)(W.u.)=3.6×10 ² 3 E _{γ} : weighted average from (α ,4n γ) and (α ,2n γ).
1069.35	0^{+}	985.10 <i>10</i>	100	84.25468	2+	E2		_y· ···-8 (,, /, (,, /, (,, /,
		1069.4		0.0	0_{+}	E0		
1138.55	2+	1054.28 5	100 <i>3</i>	84.25468		E2		
		1138.65 <i>10</i>	75.7 23	0.0	0+	E2		B(E2)(W.u.)=1.08 21
1145.72	2+	868.10 20	3.6 4	277.43	4+	(E2)		B(E2)(W.u.)=0.48 11
		1061.39 10	100 3	84.25468		E2		B(E2)(W.u.)=4.8 10
	(a) ±	1145.80 20	83 <i>3</i>	0.0	0+	E2		B(E2)(W.u.)=2.7 6
1225.35	$(3)^{+}$	947.80 15	30.7 9	277.43	4 ⁺	E2,M1		
1220 04	0^{+}	1141.30 <i>20</i> 160.2	100 3	84.25468 1069.35	0+	E2		
1228.84	0	100.2 1144.65 <i>20</i>	100 3	84.25468		E0 E2		B(E2)(W.u.)=10.1 21
		1228.9	100 3	0.0	0+	E2 E0		ce(K)/ce=0.87.
		1220.9		0.0	U	EU		$I(ce(K))/I(1145\gamma)=0.0027$ from ¹⁷⁰ Lu ε decay.
								$\rho^2(\text{E0}) = 0.027 \text{ 5 (evaluation in 1999Wo07)}.$
1050 46	4-	981.1 [@] 2	100	077.40	4+	E1&		β (E0)=0.027 3 (evaluation in 1999 woo7). B(E1)(W.u.)=6.3×10 ⁻¹⁰ 3
1258.46	4-		100	277.43	4+			
1292.4	(4) ⁺	1015.0 7	100	277.43	4+	M1(+E2)&		E_{γ} : weighted average of 1014.7 2 in $(\alpha,4n\gamma)$ and 1016.7 5 in $(\alpha,2n\gamma)$.
1306.39	2+	1028.80 <i>10</i>	100 3	277.43	4+	E2		
		1222.3 3	79 3	84.25468		E0+E2+M1	0.013	α : estimated from $\alpha(K)$ exp.
		1306.30 20	61 3	0.0	0+	(E2)		
1329.31	$(4)^{+}$	1051.8 ^a 2	100	277.43	4+	E2(+M1)&		
1345.18	5-	86.8 ^a 2	13 5	1258.46	4-	E2+M1 ^{&}	5.3 3	Iy: unweighted average of 8.0 8 and 18.7 I3 from $(\alpha,4n\gamma)$ and $(\alpha,2n\gamma)$, respectively. δ : -0.42 7 or -1.63 20 from $(\alpha,2n\gamma)$. α : for range of δ allowed by $\gamma(\theta)$.
		771.8 [@] 1	33.2 ^a 16	573.30	6+	E1 <mark>&</mark>		
		1067.8 [@] 1	100 <mark>a</mark> 4	277.43	4+	E1&		
1364.53	1-	1280.25 10	100 3	84.25468		E1		
		1364.60 10	56.5	0.0	0+	E1		
1397.05	$(3)^{-}$	1119.40 20	57.1 <i>17</i>	277.43	4+	E1		
		1312.9 <i>3</i>	100 6	84.25468	2+			
1408.73	$(4)^{+}$	1131.3 ^a 2	100	277.43	4+	E2(+M1)&		
	$(2)^{-}$	118.80 <i>15</i>	1.02 10	1306.39	2+	[E1]	0.217	

 ∞

$\gamma(^{170}\text{Yb})$ (continued)

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	${ m I}_{\gamma}{}^{\dagger}$	E_f	\mathbf{J}_f^{π}	Mult. [‡]	α^{c}	Comments
1425.24	$(2)^{-}$	286.60 5	14.3 4	1138.55	2+	E1	0.0223	
	. ,	1341.20 10	100 <i>3</i>	84.25468		(E1)		
1437.53	10 ⁺	474.2 <mark>a</mark> 2	100	963.32	8+	E2&	0.0204	B(E2)(W.u.)=356 25
1450.35	6-	105.2^{a} 2	89 ^a 6	1345.18	5-	(M1+E2)	2.78 15	Mult.: D+Q from $\gamma(\theta)$ in $(\alpha,2n\gamma)$; δ larger than typical for E1+M2.
1 100.00	O							δ : -0.41 5 or -1.75 15 from $(\alpha,2n\gamma)$.
		191.9 ^a 2	100 ^a 6	1258.46	4-	E2&	0.308	
1459.75	$(5)^{+}$	887.0 <i>5</i>	33 9	573.30	6+			E_{γ} , I_{γ} : weighted average from $(\alpha, 2n\gamma)$ and $(\alpha, 4n\gamma)$.
		1182.2 ^a 2	100 ^a 18	277.43	4+	E2+M1		Mult.: E2(+M1) from $(\alpha,2n\gamma)$; D from $(\alpha,4n\gamma)$.
1479.91	0_{+}	251.0		1228.84	0_{+}	E0		ce(K)/ce=0.87.
								$I(ce(K))/I(1396\gamma)=0.0051$ from ¹⁷⁰ Lu ε decay.
		410.5		1069.35	0_{+}	E0		ce(K)/ce=0.87.
								$I(ce(K))/I(1396\gamma)=0.00103$ from ¹⁷⁰ Lu ε decay.
		1395.65 <i>10</i>	100 <i>3</i>	84.25468		E2		•
		1479.9		0.0	0_{+}	E0		ce(K)/ce=0.87.
								$I(ce(K))/I(1396\gamma)=0.0133$ from ¹⁷⁰ Lu ε decay.
1510.2	(5^{-})	1232.8 ^a 5	100	277.43	4+	(D) b		•
1512.37	1-	1428.08 10	100 3	84.25468		E1		
12.07	-	1512.50 10	73.2 20	0.0	0^{+}	E1		
1521.31	6+	228.2^{af} 5	11 ^a 4	1292.4	$(4)^{+}$			
		948.0 <mark>a</mark> 2	79 <i>17</i>	573.30	6+	M1 ^{&}		I_{γ} : weighted average of 52 15 from $(\alpha, 2n\gamma)$ and 96 13 from $(\alpha, 4n\gamma)$
		1243.6 ^a 2	100 20	277.43	4+	E2&		I_{γ} : weighted average from $(\alpha, 2n\gamma)$ and $(\alpha, 4n\gamma)$.
1528.74	5 ⁺	955.3 <i>4</i>	41 10	573.30	6+	M1(+E2)&		E_{γ} , I_{γ} : weighted average from $(\alpha, 2n\gamma)$ and $(\alpha, 4n\gamma)$.
		1251.3 ^a 2	100 ^a 21	277.43	4+	M1+E2&		
1534.57	2+	228.05 15	2.29 14	1306.39	2+	E0+M1+E2	≈0.65	α : adopted value estimated from $\alpha(K)$ exp in ¹⁷⁰ Lu ε decay.
100 1.07	_	388.80 10	5.71 <i>17</i>	1145.72	2 ⁺	M1(+E0+E2)	0.081	α: if M1.
		395.95 10	12.0 3	1138.55	2 ⁺	M1(+E0+E2)	0.077	α: if M1.
		1257.20 10	87 <i>3</i>	277.43	4 ⁺	(. 20 . 22)	0.07.	
		1450.20 10	100 3	84.25468		E0+M1+E2		
		1534.55 10	58.3 17	0.0	0+	E2		
1566.38	0^{+}	201.75 15	2.59 22	1364.53	1-	[E1]	0.0542	
		337.5		1228.84	0^{+}	E0		ce(K)/ce=0.87.
								$I(ce(K))/I(1482\gamma)=0.00111$ from ¹⁷⁰ Lu ε decay.
		497.0		1069.35	0^{+}	E0		ce(K)/ce=0.87.
								$I(ce(K))/I(1482\gamma)=0.0032$ from ¹⁷⁰ Lu ε decay.
		1482.15 <i>10</i>	100 4	84.25468	2+	(E2)		-((///-(1.02/) 0.0002 1.0111
		1566.4		0.0	0^{+}	E0		ce(K)/ce=0.87.
					-	-		$I(ce(K))/I(1482\gamma)=0.0061$ from ¹⁷⁰ Lu ε decay.
1572.73	7-	122.6 <mark>a</mark> 5	6.5 ^a 14	1450.35	6-	(M1+E2)	1.69 20	I_{γ} : other: 10.2 17 in $(\alpha, 2n\gamma)$.
	•	122.0	0.0 1.		-	()	1.02 20	Mult.: D+Q from $\gamma(\theta)$ in $(\alpha,2n\gamma)$; δ larger than typical for E1+M2
								δ : -0.37 7 or -1.95 25 from $(\alpha, 2n\gamma)$.
		227.5 <mark>a</mark> 2	21.0 ^a 14	1345.18	5-	E2&	0.176	· · · · · · · · · · · · · · · · · · ·
		441.3 4	21.0 14	1343.10	J	154	0.170	

9

γ (170Yb) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.‡	$\delta^{\#}$	α^{c}	Comments
1572.73	7-	609.2 ^a 2	34.1 <mark>a</mark> 22	963.32	8+	E1&			I_{γ} : other: 20 3 in $(\alpha,2n\gamma)$.
		999.5 [@] 1	100 ^a 4	573.30	6+	(E1)&			
1573.10	(4^{-})	1295.7 <mark>a</mark> 2	100	277.43	4+				
1601.33	6+	271.6 ^a 5	7 ^a 4	1329.31	$(4)^{+}$				
		1028.1 <mark>a</mark> 2	100°a 21	573.30	6+	E2(+M1)&	>1.5		
1634.84	(1^{+})	1550.55 <i>10</i>	100 3	84.25468		(M1)			
4 6 7 0 0 6	(a) ±	1634.8 <i>3</i>	21.0 8	0.0	0+	(M1)			
1658.06	$(2)^{+}$	1380.80 20	100 13	277.43	4 ⁺				
1660.26	(5-)	1573.60 25	74 4	84.25468		T1) &			
1660.26	(5^{-})	1086.8 ^a 2 1382.9 ^a 2	100 ^a 10 100 ^a 12	573.30	6 ⁺ 4 ⁺	(E1)&			Multi-D form (200) A = form local column
1669.03	6+	1382.9 ^a 2 260.4 ^a 5	$15^{a} 7$	277.43 1408.73	(4) ⁺	(E1)			Mult.: D from $(\alpha,2n\gamma)$; $\Delta\pi$ from level scheme.
1009.03	U	1095.8^{a} 2	100 ^a 19		6 ⁺	E2(+M1)&			
1710 41	(7-)			573.30		D_{b}^{b}			
1712.41	(7 ⁻) 8 ⁻	1139.1 ^a 2 143.2 ^a 2	100 42 ^a 3	573.30	6 ⁺ 7 ⁻	_		1.03 19	I4h 20 2 22 in (- 2m-)
1715.95	8	143.24 2	424 3	1572.73	/	(M1+E2)		1.03 19	I _{γ} : other: 28.3 22 in $(\alpha,2n\gamma)$. Mult.: D+Q from $\gamma(\theta)$ in $(\alpha,2n\gamma)$; δ larger than typical for E1+M2.
						0			δ : -0.51 6 or -1.50 20 from (α,2n γ).
		265.4 ^a 2	100.0 ^a 9	1450.35	6-	E2&		0.1077	
1717.95	$(2)^{-}$	205.55 20	0.63 5	1512.37	1-	(M1+E2)		0.34 10	
		292.55 ^e 20	<0.43 ^e 45.4 <i>14</i>	1425.24 1225.35	$(2)^{-}$	[M1,E2]		0.12 5	
		492.58 <i>5</i> 572.20 <i>5</i>	45.4 <i>14</i> 100 <i>3</i>	1225.35	$(3)^+$ 2^+	E1 E1			
		579.40 <i>5</i>	35.7 11	1138.55	2 ⁺	E1			
1762.63	(6^{-})	102.4 ^a 5	100	1660.26	(5^{-})	(M1)			Mult.: D from $(\alpha, 2n\gamma)$; $\Delta\pi$ =(No) from level scheme.
1780.55	$(7)^{+}$	320.7 4	6.4 23	1459.75	$(5)^{+}$,			E_{γ}, I_{γ} : weighted average from $(\alpha, 2n\gamma)$ and $(\alpha, 4n\gamma)$.
		817.1 <mark>a</mark> 2	18.1 ^a 25	963.32	8+	M1(+E2)&			
		1207.0 <mark>a</mark> 2	100 <i>a</i> 13	573.30	6+	$D^{\boldsymbol{b}}$			
1793.37	(6^{-})	132.9 ^a 2	23 ^a 7	1660.26	(5^{-})				
	, ,	220.5 ^a 5	27 <mark>a</mark> 10	1573.10	(4^{-})	Q^{b}			
		1220.2 5	100 33	573.30	6+				
1803.39	$(8)^{+}$	281.8 ^a 2	18 ^a 5	1521.31	6+				
		840.1 ^a 2	100 <mark>a</mark> 10	963.32	8+	M1 ^{&}		0.01101	
		1230.3 ^a 2	63 ^a 9	573.30	6+				I_{γ} : other: 91 18 in $(\alpha,2n\gamma)$.
1835.06	7 ⁽⁺⁾	306.1 ^a 5	10 6	1528.74	5 ⁺				
		871.8 ^{aa} 2	100 ^a 11	963.32	8+	D^{b}			Eγ=870.6 5 in (α,2nγ). I(872γ)/I(1261γ)=2.3 3 in (α,4nγ) but 0.35 13 in (α,2nγ).
		1261 ^a 1	31 ^a 7	573.30	6+	$D^{\boldsymbol{b}}$			I_{γ} : see comment on 870.6 γ .
1838.2	$(2)^{+}$	1753.9 ^f 3	100 5	84.25468	2+	M1(+E2+E0)			,

10

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult.‡	δ#	α^{c}	Comments
1838.2	$(2)^{+}$	1838.2 ^{ef} 5	<97 ^e	0.0	0^{+}				
1851.23	6-	400.9 ^a 2	46 ^a 5	1450.35	6-	M1+E2&	0.7 + 6 - 4	0.059 13	$B(M1)(W.u.)>1.5\times10^{-4}$
					_				I_{γ} : other: 20.4 20 from $(\alpha, 2n\gamma)$.
		505.9 ^a 2	100 ^a 10	1345.18	5-	M1+E2&	0.9 + 6 - 4	0.030 6	B(M1)(W.u.)>0.00012; B(E2)(W.u.)>0.12
1872.09	9-	156.4 ^a 2	11.7 ^a 14	1715.95	8-	D^b			
		299.2^{a} 2	60.0 ^a 21	1572.73	7-	E2&		0.0745	
		434.2 [@] f 5	8 3	1437.53	10 ⁺	0_			I_{γ} : from $(\alpha,2n\gamma)$; γ absent in $(\alpha,4n\gamma)$.
1000.11		908.8 ^a 2	$100^a 3$	963.32	8+	E1&			
1903.14	7-	$141.0^a 5$	4.9 ^a 24	1762.63	(6-)				
		234.4 [@] f 5	14 7	1669.03	6 ⁺	a h			I_{γ} : from $(\alpha,2n\gamma)$; γ absent in $(\alpha,4n\gamma)$.
		243.3 4	24 ^a 7	1660.26	(5 ⁻)	Q^b			E_{γ} : weighted average from $(\alpha,2n\gamma)$ and $(\alpha,4n\gamma)$.
		939.6 ^a 2	43 ^a 7	963.32	8+	E1&			I_{γ} : weighted average of 36 7 from (α,2nγ) and 49 7 from (α,4nγ).
		1329.8 ^a 2	100 ^a 12	573.30	6+	E1&			
1954.13	8+	352.8 ^a 2	27 ^a 7	1601.33	6+	Q^{b}			
		990.8 ^a 2	100 ^a 11	963.32	8+	M1+E2&			
1964.64	(7-)	113.6 ^a 5	54 8	1851.23	6-	(M1+E2)			I _γ : weighted average of 50 17 from $(\alpha,4n\gamma)$ and 55 9 from $(\alpha,2n\gamma)$.
		5140000	1000 17	1.450.25	<i>-</i>				Mult.: D+Q from $(\alpha,2n\gamma)$; $\Delta\pi$ =(No) from level scheme.
1983.36	12 ⁺	514.3 ^a 2 545.7 ^a 2	100 ^a 17 100	1450.35 1437.53	6 ⁻ 10 ⁺	E2		0.01433	B(E2)(W.u.)=268 21
1903.30	12	343.7 2	100	1437.33	10	EZ		0.01433	Mult.: Q from $(\alpha,4n\gamma)$; not M2 from RUL.
1985.64	$1^{-},2^{-}$	560.55 15	2.8 4	1425.24	$(2)^{-}$	M1		0.0305	Mater. Q from (c, m _f), not M2 from Re2.
		621.40 ^e 15	<8.1 ^e	1364.53	1-	[M1]		0.0235	
		1901.35 15	100 4	84.25468		E1			
2005.43	(9)-	1985.5 ^e 3 292.9 ^a 5	<13.3 ^e 5.8 ^a 19	0.0	0^{+}				
2003.43	(7)	1042.1 ^a 2	$100^a 9$	1712.41 963.32	(7 ⁻) 8 ⁺	E1&			
2009.35	8+	340.4^{a} 2	$\frac{100^{a}}{20^{a}} \frac{9}{4}$	1669.03	6 ⁺	EI			I_{γ} : other: 50 20 in $(\alpha,2n\gamma)$.
2007.55	J	1046.0^a 2	$100^{a} 11$	963.32	8 ⁺	E2(+M1)&			ry. onto. 30 20 iii (u,2ii/).
2039.85	1+	675.45 20	0.42 3	1364.53	1-	L2(11111)			
		901.40 ^e 20	<2.8 	1138.55	2+				
		970.20 ^e 20	<4.5 ^e	1069.35	0+	(M1)			
		1955.65 15	52.5 18	84.25468		M1+E2			
2044.64	(8-)	2040.00 <i>15</i> 141.5 ^a 2	100 4 88 ^a 8	0.0 1903.14	0 ⁺ 7 ⁻	M1 (D+Q)			I_{γ} : other: 30 10 in $(\alpha, 2n\gamma)$.
20 11 .04	(0)	281.9^a 2	100^{a} 13	1762.63	(6 ⁻)	(D+Q) (Q)			17. Outer. 30 10 III $(\alpha, 2\pi\gamma)$.
2052.59	$0^{-},1^{-},2^{-}$	540.15 10	100 4	1512.37	1-	M1		0.0336	
		688.00 8	96 <i>3</i>	1364.53	1-	M1		0.0181	

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult.‡	δ#	α^{c}	Comments
2056.73	10-	184.6 ^a 2	17.8 <mark>a</mark> 18	1872.09	9-	D&			
		341.0 [@] 1	100.0 <mark>a</mark> 18	1715.95	8-	E2&		0.0506	
2096.81	(8^{-})	303.3 ^a 2	100 ^a 19	1793.37	(6^{-})	Q^{b}			
		334.4 ^a 5	<16 ^a	1762.63	(6-)				
		1133.6 ^a 2	69 ^a 9	963.32	8+	0			
2098.5	(8^{-})	133.9 ^a 2	100 ^a 12	1964.64	(7^{-})	$D^{\&}$			
		247.0 ^a 5	29 ^a 12	1851.23	6-				
2115.90	1-	457.90 <i>15</i>	5.9 5	1658.06	(2)+	(E1+M2)	0.36 7	0.026 7	Mult.: $\alpha(K)$ exp In ε decay implies E2(+M1) or E1+M2 with δ =0.36 7; level scheme requires $\Delta \pi$ =yes.
		970.20 ^e 20	<32 ^e	1145.72	2+				
		2031.70 20	100 <i>3</i>	84.25468		E1			
212511		2116.0	43 5	0.0	0+	E1			
2126.14	1-	614.00 ^e 20	<0.16 ^e	1512.37	1 ⁻ 0 ⁺				
		645.80 <i>20</i> 700.80 <i>20</i>	0.23 <i>1</i> 0.530 <i>15</i>	1479.91 1425.24	$(2)^{-}$	M1		0.01732	
		819.50 <i>20</i>	0.530 15	1306.39	2 ⁺	IVII		0.01732	
		980.30 20	2.20 23	1145.72	2+				$\alpha(K)$ exp in Lu ε decay is inconsistent with placement.
		988.5	2.27 23	1138.55	2+				
		2041.88 10	100 <i>3</i>	84.25468	2+	E1			
		2126.11 <i>10</i>	84 <i>3</i>	0.0	0_{+}	E1			
2135.33	10 ⁺	331.9 ^a 2	44 ^a 12	1803.39	$(8)^{+}$	Q^{b}			
		697.8 <mark>a</mark> 2	100 ^a 18	1437.53	10+	M1&		0.01751	Mult.: possible E0 component suggested in $(\alpha,2n\gamma)$.
		1172.3 <mark>a</mark> 2	53 ^a 15	963.32	8+	Q^{b}			I_{γ} : other: $I_{\gamma}(1172\gamma):I_{\gamma}(698\gamma)=117\ 33:100\ 33$ in $(\alpha,2n\gamma)$.
2170.04	(9^{+})	389.1 ^a 2	100 ^a 18	1780.55	$(7)^{+}$,
		732.9 ^a 2	7.3 ^a 18	1437.53	10+				
2189.65	7-	338.3 ^a 2	100 ^a 6	1851.23	6-	M1(+E2)&		0.08 4	
		739.2 ^a 5	18 6	1450.35	6-	E2(+M1)&	≥1.1	0.0089 19	B(M1)(W.u.)<1.6×10 ⁻⁶ ; B(E2)(W.u.)>0.00076 I _γ : average of 12 6 in $(\alpha,4n\gamma)$, 23 6 in $(\alpha,2n\gamma)$.
		844.6 ^a 2	35 12	1345.18	5-	E2&			B(E2)(W.u.)=0.0020 8
									 I_γ: 35 12 for γ possibly contaminated by ²⁷Al(n,n'γ) line in (α,2nγ); however, Iγ=110 10 from (α,4nγ). Reason for discrepancy has not been identified. Mult.: M1,E2 from α(K)exp in (α,2nγ), Q from DCO ratio in (α,4nγ).
2200.91	$1^{-},2^{-}$	1055.23	45 9	1145.72	2+	E1			1000 m (u, m).
	,	2116.60 <i>15</i>	100 4	84.25468	2+	E1			
		2200.9 3	10.9 5	0.0	0_{+}				
2220.69	$(9)^{-}$	175.9 ^a 2	23 ^a 3	2044.64	(8-)				I_{γ} : other: 11 5 in $(\alpha, 2n\gamma)$.
		317.5 ^a 2	25 ^a 3	1903.14	7-	Q^b			
		783.1 ^a 2	25 ^a 3	1437.53	10^{+}	(D) b			

						γ (*** 1 b) (continued)		
$E_i(level)$	\mathbf{J}_i^{π}	${\rm E}_{\gamma}{}^{\dagger}$	${\rm I}_{\gamma}{}^{\dagger}$	E_f	\mathbf{J}_f^{π}	Mult.‡	$\delta^{\#}$	α^{c}	Comments
2220.69	(9)	1257.6 ^a 2	100 ^a 7	963.32	8+	$\overline{{ m D}^{b}}$			
2242.00	11-	185.3 ^a 2	10.7 <mark>a</mark> 10	2056.73	10-	D^{b}			
		369.9 ^a 2	100 ^a 3	1872.09	9-	E2&		0.0401	
		804.3 ^a 2	94 ^a 3	1437.53	10 ⁺	E1&		0.0.01	
2253.5	(9-)	154.9 ^a 2	100 ^a 13	2098.5	(8-)	(M1)			Mult.: D from.
2200.0	()	288.8 ^a 2	73 ^a 20	1964.64	(7^{-})	(1121)			
2268.08	1-	1122.5 3	8.33 24	1145.72	2+				
		2183.9 5	21.0 12	84.25468					
		2268.2 3	100 3	0.0	0_{+}	E1			
2275.49	1-	850.05 <i>15</i>	2.96 14	1425.24	(2)-				
		910.8 <i>3</i> 969.05 ^e 20	2.59 14	1364.53	1 ⁻ 2 ⁺				
		1046.60 ^e 25	<3.8 ^e <5.8 ^e	1306.39 1228.84	0+				
		1137.1 3	9.9 3	1138.55	2 ⁺	(E1+M2)	0.57 16		Mult.: $\alpha(K)$ exp In ε decay implies E2(+M1) or E1+M2 (δ =0.57 <i>16</i>); level scheme requires $\Delta \pi$ =yes.
		1206.30 20	8.5 4	1069.35	0^{+}	E1			$(0=0.57 \ TO)$; level scheme requires $\Delta \pi = \text{yes}$.
		2191.15 <i>15</i>	100 3	84.25468		E1			
		2275.40 10	54.6 17	0.0	0^{+}	E1			
2289.37	1+	249.95 ^e 20	<11.6 ^e	2039.85	1+	[M1,E2]		0.19 7	
		2205.3 4	80 <i>3</i>	84.25468					
		2289.2 4	100 5	0.0	0_{+}	M1			
2328.0?	(0^+)	1181.5 <i>ef</i> 3	<149 ^e	1145.72	2+				
		2243.7 ^f 4	100 7	84.25468	2+				
		2327.5 ^f 3		0.0	0_{+}	E0			
2341.6	(8-)	152.0 ^a 2	100	2189.65	7-				
2351.71	$0^-, 1^-, 2^-$	225.45 ^e 20	<0.40 ^e	2126.14	1-	[M1,E2]		0.26 8	
		235.55 ^e 15	<2.6 ^e	2115.90	1-	[M1,E2]		0.23 8	
		311.80 <i>20</i> 366.35 ^e <i>15</i>	0.43 <i>4</i> <1.51 ^e	2039.85 1985.64	1+	[E1]		0.0181	
		633.75 25	0.54 3	1983.04	1 ⁻ ,2 ⁻ (2) ⁻				
		839.30 <i>10</i>	42.4 12	1512.37	1-	M1		0.01104	
		926.40 15	15.7 5	1425.24	$(2)^{-}$	E2		0.01101	
		987.25 10	100 3	1364.53	1-	M1			
2364.06	1-	238.25 ^e 15	<0.38 ^e	2126.14	1-	[M1,E2]		0.22 8	
		829.30 <i>10</i>	10.1 3	1534.57	2+	E1			
		851.45 20	1.67 9	1512.37	1-	M1		0.01065	
		884.10 <i>15</i> 938.75 <i>8</i>	7.1 <i>4</i> 32.6 9	1479.91	0^{+}	E1			
		938.75 8 966.85 20	32.6 9 2.96 9	1425.24 1397.05	(2) ⁻ (3) ⁻	M1 (E2)			Mult.: M1,E2 from $\alpha(K)$ exp In ε decay; $\Delta J=2$ from level
		900.03 20	2.30 9	1371.03	(3)	(E4)			scheme. With $\alpha(\mathbf{K})$ exp in ε decay, $\Delta \mathbf{j} = 2$ from level scheme.
		999.60 <i>10</i>	31.5 9	1364.53	1-	M1			

$E_i(level)$	\mathtt{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbb{E}_f	J_f^π	Mult. [‡]	α^c	Comments
2364.06	1-	1057.70 <i>15</i> 1135.2	4.40 14	1306.39 1228.84	2 ⁺ 0 ⁺	E1		
		1218.50 20	28.2 9	1145.72	2+	E1		
		1225.65 10	100 3	1138.55 1069.35	2 ⁺ 0 ⁺	E1		
		1294.70 <i>10</i> 2279.9 <i>2</i>	58.8 <i>19</i> 3.94 <i>14</i>	84.25468		E1 E1		
		2364.10 15	30.0 9	0.0	0_{+}	E1		
2367.65	(1)	166.70 ^e 20	<0.20 ^e	2200.91	1-,2-	[M1,E2]	0.64 15	
		241.50 <i>5</i> 251.75 <i>10</i>	6.62 <i>19</i> 1.36 <i>6</i>	2126.14 2115.90	1 ⁻ 1 ⁻	M1 [M1,E2]	0.283 0.19 <i>7</i>	
		649.60 ^e 15	<1.38 ^e	1717.95	(2)-	[M1]	0.0210	
		855.15 <i>15</i>	27.8 8	1512.37	1-	M1	0.01054	
		942.45 <i>15</i> 1003.20 <i>10</i>	6.10 <i>19</i> 100 <i>3</i>	1425.24 1364.53	(2) ⁻ 1 ⁻	E2 M1,E2		
		1061.35	6.5 13	1306.39	2+			
2372.83	10+	418.7 ^a 2	92 ^a 15	1954.13	8+	Q^{b}		
2200.06	(11)-	935.3 ^a 2	$100^a 23$	1437.53	10+	M1+E2&		
2388.06	(11)-	382.6 ^a 2 950.5 ^a 2	13 ^a 3 100 ^a 10	2005.43 1437.53	(9) ⁻ 10 ⁺	E1&		
2398.51	(10^{-})	950.3" 2 177.8 <mark>a</mark> 2	67^{a} 5	1437.53 2220.69	(9)	(M1+E2)		I_{γ} : other: 33 11 in $(\alpha, 2n\gamma)$.
	()	-,,,,			(-)			Mult.: intraband D+Q from $(\alpha,2n\gamma)$.
		353.9 ^a 2	100 <i>a</i> 5	2044.64	(8-)	Q^{b}		
2400.10	1-	741.50 <i>20</i> 1330.7 ^e <i>3</i>	10.7 <i>3</i> < 9.2 ^e	1658.06 1069.35	$(2)^+$ 0^+			
		2315.9 2	50.8 17	84.25468		E1		
		2400.15 20	100 3	0.0	0_{+}	E1		
2412.39	$(10)^{+}$	403.1 ^a 2	100 ^a 19	2009.35	8+	Q^{b}		
2420.0	(10=)	974.8 ^a 2 175.4 ^a 2	56 ^a 13 93 ^a 13	1437.53	10+	M1,E2		I_{γ} : $I_{\gamma}(975\gamma)/I_{\gamma}(403\gamma)=1.7$ 9 in $(\alpha,2n\gamma)$.
2429.0	(10^{-})	$\frac{1}{5.4}$ $\frac{4}{2}$ $\frac{2}{330.7}$ $\frac{a}{2}$	93 ^a 13 100 ^a 13	2253.5 2098.5	(9 ⁻) (8 ⁻)			
2429.05	1+,2+	303.20 <mark>e</mark> 20	<4.5 <mark>e</mark>	2126.14	1-	[E1]	0.0194	
		916.65	100 9	1512.37	1-	[E1]		MILES FOR (II) I I I I I I I
		1290.9 4	86 16	1138.55	2+	(E2)		Mult.: E1 or E2 from $\alpha(K)$ exp In ε decay; level scheme requires $\Delta \pi$ =No.
		2344.9 5	45.5 18	84.25468		M1		
0426.01	(2.2)=	2429.0 4	48 5	0.0	0+	(M1,E2)	0.22.0	
2436.01	$(2,3)^{-}$	235.55 ^e 15 801.25 20	<87 ^e 73 4	2200.91 1634.84	$1^-,2^ (1^+)$	[M1,E2]	0.23 8	
		901.40 <mark>e</mark> 20	<143 ^e	1534.57	2+			
		1211.2 3	73 4	1225.35	$(3)^{+}$	E1		
		2157.7 5	20.0 9	277.43	4+			

γ (170Yb) (continued
-----------------	--------------

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	${\rm I}_{\gamma}{}^{\dagger}$	\mathbb{E}_f	\mathtt{J}_f^π	Mult.‡	$\delta^{\#}$	α^{c}	Comments
2436.01	$(2,3)^{-}$	2352.3 5	100 4	84.25468	2+	E1			
2460.55	(10^{-})	1023.0 ^a 2	100	1437.53	10 ⁺				Mult.: transition interpreted as D ($\Delta J=0$) in (α ,4n γ).
2473.69	12-	231.6 ^a 2	13.1 ^a 21	2242.00	11^{-}				
		417.0 <mark>a</mark> 2	100.0 ^a 21	2056.73	10-	E2&		0.0287	
2477.8	(10^{-})	381.0 ^a 2	100	2096.81	(8^{-})	Q^{b}			
2496.20	1-	220.90 15	2.37 8	2275.49	1-	[M1,E2]		0.28 9	
2170.20	•	369.80 <i>15</i>	3.24 17	2126.14	1-	[1111,22]		0.20	
		983.67 20	39 3	1512.37	1-	M1			
		1070.9 <i>3</i>	6.54 22	1425.24	$(2)^{-}$	M1			
		1426.72	56 6	1069.35	0+	E1			
		2411.90 <i>15</i>	100 3	84.25468	2+	E1			
		2496.15 <i>15</i>	92 <i>3</i>	0.0	0_{+}	E1			
2498.19	$0^{-},1^{-},2^{-}$	222.40 ^e 15	<4.0 ^e	2275.49	1-	[M1]		0.355	
		371.90 <i>15</i>	2.96 17	2126.14	1-	(M1)		0.0887	
		382.35 10	5.65 22	2115.90	1-	(M1)		0.0825	
		1133.60 <i>10</i>	100 3	1364.53	1-	M1			
2523.07	1+	864.85 25	26.7 13	1658.06	$(2)^{+}$	M1		0.01024	
		1158.5 ^e 3	<16.2 ^e	1364.53	1-				
		1217.30 ^e 20	<155 ^e	1306.39	2+				
		2438.6 <i>3</i>	77 3	84.25468		M1			
		2523.0 <i>3</i>	100 3	0.0	0_{+}	M1			
2524.27	12 ⁺	389.2 ^a 2	56 ^a 6	2135.33	10 ⁺	Q^{b}			E_{γ} : not reported in $(\alpha, 2n\gamma)$.
		540.6 ^a 2	91 <mark>a</mark> 16	1983.36	12 ⁺	M1(+E2)&	≤1.0	0.029 5	I_{γ} : other: 47 7 in $(\alpha, 2n\gamma)$.
		1086.80 ^a 20	100 ^a 16	1437.53	10 ⁺	(E2)			Mult.: stretched Q from DCO in $(\alpha,4n\gamma)$; $\alpha(K)\exp(1087$ doublet) in $(\alpha,2n\gamma)$ consistent with E1+E2 doublet.
2525.1	(9^{-})	183.6 <mark>a</mark> 2	100 <mark>a</mark> 8	2341.6	(8^{-})				
		335.4 ^a 5	15 ^a 8	2189.65	7-				
2536.97	1-	497.50 <i>15</i>	10.3 3	2039.85	1+				Mult.: M1 from $\alpha(K)$ exp in 170 Ly ε decay, but E1 is required by level scheme.
		1002.3	100 10	1534.57	2+				-
		1173.2 ^e 4	<33 ^e	1364.53	1-				
		1230.2 <i>3</i>	83 <i>3</i>	1306.39	2+				
		1307.97	87 10	1228.84	0_{+}				
		1398.30 20	50 10	1138.55	2+				
		1467.50	50 5	1069.35	0_{+}				4=0
		2452.7 3	100 3	84.25468	2+				Mult.: M1,E2 from $\alpha(K)$ exp in ¹⁷⁰ Lu ε decay is inconsistent with placement.
		2536.9 4	47 3	0.0	0_{+}	E1			-
2580.35	14 ⁺	597.0 <mark>a</mark> 2	100	1983.36	12+	E2&		0.01152	
2603.60	(11^{-})	205.1 ^a 2	46 ^a 3	2398.51	(10^{-})	$D^{\boldsymbol{b}}$			I_{γ} : other: 100 33 in $(\alpha, 2n\gamma)$.
	. /	382.9 ^a 2	100 <i>a</i> 5	2220.69	(9)-				

2603.8 (11 ⁺) 433.8 ^d 2 100 2170.04 (9 ⁺) Q ^b E _{γ} : doubly placed in (α ,2) 2661.02 1 ⁺ 225.45 ^e 20 <3.0 ^e 2436.01 (2,3) ⁻ [E1] 0.0407 296.70 ^e 20 <3.7 ^e 2364.06 1 ⁻ [E1] 0.0205 621.40 ^e 15 <21 ^e 2039.85 1 ⁺ [M1] 0.0235 1181.5 ^e 3 <24 ^e 1479.91 0 ⁺ 2576.8 4 34 6 84.25468 2 ⁺ M1,E2 2661.0 3 100 6 0.0 0 ⁺ (M1) 231.15 ^e 20 <4.7 ^e 2436.01 (2,3) ⁻ [E1] 0.0382 238.25 ^e 15 <13.2 ^e 2429.05 1 ⁺ ,2 ⁺ [M1,E2] 0.22 8	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
2667.19 $1^{(+)}$ 231.15 ^e 20 <4.7 ^e 2436.01 (2,3) ⁻ [E1] 0.0382 238.25 ^e 15 <13.2 ^e 2429.05 1^+ ,2 ⁺ [M1,E2] 0.22 8	
238.25^{e} 15 <13.2 ^e 2429.05 1 ⁺ ,2 ⁺ [M1,E2] 0.22 8	
$303.20^{e} \ 20 \ < 3.2^{e} \ 2364.06 \ 1^{-} $ [E1] 0.0194	
1009.5 3 28.4 16 1658.06 (2) ⁺ M1	
1132.86 48 5 1534.57 2 ⁺	
1187.5 3 32.3 16 1479.91 0 ⁺	
scheme.	X)exp In ε decay; $\Delta \pi$ =(yes) from level
1361.1 3 81 8 1306.39 2^+ (E2) Mult.: E1 or E2 from α (K scheme.	X)exp In ε decay; $\Delta \pi$ =(No) from level
1438.1 <i>3</i> 35.5 <i>16</i> 1228.84 0 ⁺ M1	
1521.7 <i>3</i> 26 <i>6</i> 1145.72 2 ⁺ M1,E2	
1529.0 <i>3</i> 52 <i>5</i> 1138.55 2 ⁺	
1597.6 3 52 3 1069.35 0 ⁺ M1	4=0
2582.9 3 100 3 84.25468 2^+ Mult.: E1 from $\alpha(K)$ exp in placement.	n 170 Lu ε decay inconsistent with this
	urements In ε decay are mutually mult=E1 (1988DzZW) or M1 (1972Ca21).
2680.75 13 ⁻ 206.9 ^a 5 4.7 ^a 19 2473.69 12 ⁻	
$438.7^{a} \ 2 100^{a} \ 3 2242.00 11^{-} E2^{\&} 0.0251$	
697.5^a 2 49.5^a 19 1983.36 12^+ D^b	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
2748.08 1 $^{-}$ 249.95 e 20 <0.23 e 2498.19 0 $^{-}$,1 $^{-}$,2 [M1,E2] 0.19 7	
472.50 <i>15</i> 0.54 <i>2</i> 2275.49 1 M1 0.0474	
547.25 <i>15</i> 1.86 9 2200.91 1 ⁻ ,2 ⁻ M1(+E2) 0.023 <i>10</i>	
762.55 <i>15</i> 1.34 <i>4</i> 1985.64 1 ⁻ ,2 ⁻ M1 0.01402	
1113.10 20 4.86 22 1634.84 (1 ⁺)	
1181.5^{e} 3 $ < 2.6^{e}$ 1566.38 0^{+}	
1213.65 20 2.48 <i>13</i> 1534.57 2 ⁺	
1235.90 <i>10</i> 11.0 <i>3</i> 1512.37 1 M1	
$1268.30\ 20$ $5.62\ 22$ 1479.91 0^+	
1323.00 20 8.4 7 1425.24 (2) ⁻ M1	
1383.60 20 9.1 3 1364.53 1 ⁻	
1518.9 <i>3</i> 2.81 <i>11</i> 1228.84 0 ⁺	

						70			
$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	E_f	${\rm J}_f^\pi$	Mult.‡	$\delta^{\!\#}$	α^{c}	Comments
2748.08	1-	1602.2 3	4.97 22	1145.72	2+	E1			
2710.00	1	1609.40 20	10.4 5	1138.55	2 ⁺	E1			
		1678.60 20	10.8 3	1069.35	0+	E1			
		2663.95 20	59.0 22	84.25468		E1			
		2748.15 20	100 4	0.0	0+	E1			
2768.34	$0^{-},1^{-}$	231.15 ^e 20	<0.66 ^e	2536.97	1-	[M1,E2]		0.24 8	
2700.31	0 ,1	339.45 ^e 20	<0.37 ^e	2429.05	1+,2+	[1111,22]		0.210	
		368.30 20	0.91 5	2400.10	1-,2	[M1,E2]		0.07 3	
		416.50 20	0.61 7	2351.71	0-,1-,2-	(M1,E2)		0.047 19	
		1050.40 10	100 3	1717.95	$(2)^{-}$	E2		0.0.7.17	
		1110.7 3	1.23 7	1658.06	$(2)^{+}$				
		1403.79	20.5 23	1364.53	1-	M1			
2775.66	1-	279.40 15	0.95 6	2496.20	1-	[M1,E2]		0.14 5	
		649.60 ^e 15	<2.1 ^e	2126.14	1-	[M1]		0.0210	
		659.70 20	0.48 3	2115.90	1-	(M1)		0.0202	
		723.05 20	0.89 4	2052.59	$0^{-},1^{-},2^{-}$				
		1263.45 20	13.9 4	1512.37	1-	M1			
		1350.5 <i>3</i>	2.59 12	1425.24	$(2)^{-}$				
		1469.10 20	4.04 20	1306.39	2+	E1			
		2691.45 20	100 4	84.25468		E1			
		2775.7 <i>3</i>	4.95 20	0.0	0^{+}				
2783.12	1+	656.65 ^e 20	<1.32 ^e	2126.14	1-				
		1418.7 <i>3</i>	3.13 18	1364.53	1-				Mult.: M1 from $\alpha(K)$ exp in 170 Lu ε decay is
									inconsistent with this placement.
		1636.9 ^e 3	<5.5 ^e	1145.72	2+				
		1714.4 <mark>e</mark> 4	<2.15 ^e	1069.35	0_{+}				
		2698.8 <i>3</i>	58.9 22	84.25468		M1			
		2783.00 <i>20</i>	100 4	0.0	0_{+}	M1			
2815.73	(12^{-})	212.1 ^a 2	47 ^a 3	2603.60	(11^{-})	$D^{\mathbf{b}}$			
		417.2 ^a 2	100 ^a 6	2398.51	(10^{-})	Q^{b}		0.0287	
2819.77	$0^{-},1^{-}$	152.60 <i>3</i>	23.9 8	2667.19	1(+)	[E1]		0.1123	Mult.: $\alpha(K)$ exp In ε decay implies M1, inconsistent
	,					. ,			with placement.
		283.05 10	17.5 6	2536.97	1-	M1		0.184	•
		323.57 5	30.2 10	2496.20	1-	M1		0.1285	
		390.40 ^e 15	4.90 ^e 20	2429.05	$1^+, 2^+$	[E1]		0.01061	
		419.65 5	43.9 12	2400.10	1-	M1		0.0646	
		455.50 10	11.4 4	2364.06	1-	M1		0.0521	
		530.50 10	8.2 4	2289.37	1+	(E1+M2)	0.28 + 6 - 7	0.013 4	Mult.: E2 or E1+M2 (δ =0.28 + δ -7) from α (K)exp In
									ε decay; $\Delta \pi$ =yes from level scheme. Mixed
									multipolarity inconsistent with level scheme if
									J(2820)=0.
		544.24 5	72.5 20	2275.49	1-	M1(+E2)		0.024 10	Mult.: E2 component inconsistent with decay scheme if
									J(2820)=0.

17

Adopted Levels, Gammas (continued)

$\gamma(^{170}{\rm Yb})$ (c	continued)
-----------------------------	------------

$E_i(level)$	J_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	\mathbf{E}_f	J_f^π	Mult.‡	α^{c}	Comments
2819.77	$0^{-},1^{-}$	618.95 ^e 10	<6.7 ^e	2200.91	$1^{-},2^{-}$	[M1,E2]	0.017 7	
		693.55 20	2.08 20	2126.14	1-	M1	0.01778	
		703.85 <i>15</i> 834.45 ^e <i>10</i>	6.67 20 <9.1 ^e	2115.90 1985.64	1 ⁻ 1 ⁻ ,2 ⁻	M1	0.01713	
		1101.70 10	83.5 24	1717.95	(2)	E2		
		1307.55 10	94 4	1512.37	1-	M1+E2		Mult.: M1+E2 from $\alpha(K)$ exp In ε decay; mixed multipolarity inconsistent with level scheme if J(2820)=0.
		1455.25 10	100 3	1364.53	1-	E2(+M1)		Mult.: mixed multipolarity inconsistent with level scheme if J(2820)=0.
		2735.6 6	2.16 20	84.25468	2+	(M2)		Mult.: M1(+E2+E0) or M2 from α (K)exp In ε decay; $\Delta \pi$ =yes from level scheme.
2826.8	(12^+)	454.0 <mark>a</mark> 2	100	2372.83	10 ⁺	Q^{b}		
2847.0?	(12^{-})	$418^{af} I$	100	2429.0	(10^{-})			
2855.61	(13^{-})	467.5 <mark>a</mark> 2	43 <mark>a</mark> 10	2388.06	$(11)^{-}$	Q^{b}		
		872.3 ^a 2	100 <mark>a</mark> 14	1983.36	12 ⁺	D^{b}		
2859.2	(12^{+})	446.8 ^a 2	100	2412.39	$(10)^{+}$			
2927.2	(12^{-})	449.4 ^a 2	100	2477.8	(10^{-})	Q^{b}		
2929.60	1-	406.25 ^e 15	<1.48 ^e	2523.07	1+	[E1]	0.00968	
		500.50 15	0.59 <i>3</i>	2429.05	1+,2+			Mult.: $\alpha(K)$ exp In ε decay favors mult=M1, but large uncertainty may render result unreliable. Placement requires E1.
		728.85 20	2.6 5	2200.91	1-,2-			may render result differiable. Fracement requires E1.
		813.55 ^e 20	<2.66 ^e	2115.90	1-,-			
		876.80 25	1.61 8	2052.59	$0^-, 1^-, 2^-$	M1	0.00990 14	
		1294.74	2.7 3	1634.84	(1^+)			
		1395.03 1449.64	24 <i>3</i> 8.1 <i>11</i>	1534.57 1479.91	2 ⁺ 0 ⁺			
		1503.9 ^e 4	<0.59 ^e	1479.91	(2)-			
		1564.97	5.4 5	1364.53	1-			
		1700.90 ^e 20	<8.3 ^e	1228.84	0^{+}			
		1783.3 <i>4</i>	1.45 13	1145.72	2+			
		1791.7 <i>4</i> 1860.30 <i>15</i>	2.10 <i>5</i> 32.5 <i>13</i>	1138.55 1069.35	2 ⁺ 0 ⁺	E1		
		2845.30 20	100 5	84.25468		E1		
		2929.50 20	34.9 17	0.0	0+	E1		
2938.6	$12^{(-)}$	478.0 <mark>a</mark> 2	100 <mark>a</mark> 11	2460.55	(10^{-})			
		955.3 ^a 5	56 ^a 22	1983.36	12+			Mult.: transition interpreted as D ($\Delta J=0$) in (α ,4n γ).
2939.73	1-	119.90 20	0.27 3	2819.77	$0^{-},1^{-}$	[M1,E2]	1.81 20	
		272.40 15	0.36 4	2667.19	1(+)	[E1] M1 E2	0.0253	
		443.40 <i>15</i> 575.95 <i>25</i>	1.61 <i>5</i> 0.77 <i>4</i>	2496.20 2364.06	1 ⁻ 1 ⁻	M1,E2 M1	0.040 <i>16</i> 0.0285	
		813.55 ^e f 20	<1.75 ^e	2126.14	1-	1411	0.0203	
		013.33 20	1.75	2120.17	1			

 $\gamma(^{170}\text{Yb})$ (continued)

 α^{c}

0.478

0.01476

Comments

Mult.: $\alpha(K)$ exp implies mult=M1,E2, inconsistent with placement.

Mult.: E1, E2 from $\alpha(K)$ exp In ε decay; $\Delta \pi$ =ves from level scheme.

Mult.: M1 from $\alpha(K)$ exp In ε decay; inconsistent with placement.

Mult.‡

E1

E1

E1

M1

M1

E1

E1

M1

M1

E1

M1

E1

E1

E1

E1

E1

E1

E1

(E1)

M1

M1

 O^{b}

[E1]

(M1)

(M1,E2)

[M1]

 I_{γ}^{\dagger}

<9.1^e

100 *3*

3.89 14

6.6 6

12.9 14

41.6 13

21.6 9

19.8 5

<2.4^e

<0.85^e

12.6 5

<1.28^e

1.3 3

3.95 12

3.14 17

5.8 6

28.5 20

32.0 12

11.6 12

7.6 *3*

40.1 12

18.9 6

20.4 6

71.5 23

16.7 6

77.5 25

11.8 13

42.0 20

47.5 15

57^a 4

100**a** 13

<1.05^e

<0.76^e

<3.0^e

3.58 18

1.76 9

<5.8^e

<21^e

75 *4*

100 4

100 *3*

59 4

 E_f

 $1^{-},2^{-}$ (1^{+})

 0^+

2+

1-

 0^{+}

 $(2)^{-}$

1-

2+

 $(3)^{+}$

2+

 0^{+}

1-

 $1^{-},2^{-}$

 (1^{+})

2+

1-

 0^{+}

1-

2+

 0^{+}

2+

2+

0+

 0_{+}

 $(2)^{-}$

1-

 0^{+}

 0^{+}

 (10^{-})

 (9^{-})

 (1^{+})

 $0^{-}, 1^{-}, 2^{-}$

 $0^-, 1^-, 2^-$

 $(3)^{+}$ 2+

 $0^{-},1^{-},2^{-}$

1985.64

1634.84

1566.38

1534.57

1512.37

1479.91

1425.24

1364.53

1306.39

1225.35

0.0

2748.08

2536.97

2200.91

2052.59

1634.84

1534.57

1512.37

1479.91

1364.53

1306.39

1228.84

1145.72

1138.55

1069.35

0.0

1425.24

1364.53

1225.35

1138.55

1069.35

0.0

2732.3

2525.1

2498.19

2400.10

2351.71

1634.84

1479.91

84.25468 2+

84.25468 2+

84.25468

 E_{γ}

954.30^e 15

1304.85 20

1373.50 20

1405.15 10

1459.85 10

1514.60 20

1575.10 20

1633.3^e 3

1714.4^e 4

2939.65 20

199.65^e 15

410.55 15

746.90 20

895.00 25

1413.20 20

1435.40 20

1641.30 20

1719.10 20

1802.25 15

1809.50 15

1878.65 15

2947.80 20

1531.30 20

1592.05 20

1731.3^e 4

1887.1^e 5

1818.8 5

2872.5 4

2956.6 4

 227.0^a 2

434.4^a 2

467.35 15

565.80^e 15

614.00^e 20

1330.7^e 3

1486.0 *3*

2863.6 *3*

1313.03

1467.93

1583.3 *3*

2855.4 *3*

1427.27

 E_i (level)

2939.73

2947.84

19

1-

1+

 (11^{-})

1+

2956.55

2959.4

2965.66

$E_i(level)$	J_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.‡	α^{c}	Comments
2965.66	1+	1540.4 3	6.8 4	1425.24	(2)-			
		1601.2 <i>3</i>	9.3 4	1364.53	1-			Mult.: M1,E2 from $\alpha(K)$ exp In ε decay; placement requires E1.
		1659.9 <i>5</i>		1306.39	2+			
		1736.6 ^e 3	<3.6 ^e	1228.84	0+			
		1820.7 5	1.25 14	1145.72	2+	M1		
		1896.5 ^e 3	<4.6 ^e	1069.35	0+			
		2881.40 20	58 <i>3</i>	84.25468		M1		
2011		2965.6 2	100 5	0.0	0+	M1		
2966.42	14-	285.7 ^a 2	15.2 ^a 25	2680.75	13-	1.		
		492.7 ^a 2	100 ^a 4	2473.69	12-	$E2^{b}$	0.0185	
2969.45	1-	916.90	23.1 23	2052.59	$0^-, 1^-, 2^-$	M1		
		1457.12 <i>15</i>	58 6	1512.37	1-	(E2)		Mult.: E1 or E2 from $\alpha(K)$ exp In ε decay; $\Delta \pi$ =No from level scheme.
		1662.8 <i>3</i>	22.0 12	1306.39	2+	(E1)		Mult.: E1 or E2 from $\alpha(K)$ exp In ε decay; $\Delta \pi =$ yes from level scheme.
		2885.1 <i>3</i>	100 4	84.25468		(E1)		Mult.: E1 or E2 from $\alpha(K)$ exp In ε decay; $\Delta\pi=$ yes from level scheme.
		2969.7 5	9.2 11	0.0	0+			
2975.32	1-	539.05 ^e 15	<6.1 ^e	2436.01	$(2,3)^{-}$	3.647 (50)		
		859.45 20	13.5 10	2115.90	1-	M1(+E0)		
		1463.3 3	16.7 21	1512.37	1-	M1		
		1549.92	26 3	1425.24	(2)-	3.61		
		1610.70 <i>15</i>	100 5	1364.53	1-	M1		M I M (FO) C (V) I I ' ' (' I I I
		1746.3 <i>3</i>	7.1 4	1228.84	0+			Mult.: M1(+E2) from α (K)exp In ε decay, inconsistent with level scheme.
		1836.7 <mark>e</mark> 5	<14.9 ^e	1138.55	2+			
		2976.4 11		0.0	0^+			
2986.67	(14^{+})	462.4 ^a 2	43 <mark>a</mark> 7	2524.27	12 ⁺	Q^{b}		
_,	(1.)	1003.3 ^a 2	100 ^a 12	1983.36	12 ⁺	~		
3007.6	1-	955.22 ^d 24	100 12	2052.59	0-,1-,2-			
		1021.5 ^d 3		1985.64	$1^{-},2^{-}$			
		1778.8 ° 4	<14.75 ^e	1228.84	0+			
		2923.3 3	100 5	84.25468		E1		
		3007.5 ^e 3	76 e 4	0.0	0^{+}			
3042.46	1+	1507.80 20	67 10	1534.57	2+			
		1736.6 ^e 3	<66 ^e	1306.39	2+			
		1896.5 <mark>e</mark> 3	<86 <mark>e</mark>	1145.72	2+			
		1904.6 ^e 5	<31 ^e	1138.55	2+			
		2958.1 <i>4</i>	67 3	84.25468				
		3042.8 <i>4</i>	100 5	0.0	0^{+}	M1		
3049.95	(13^{-})	234.3 <mark>a</mark> 2	45 ^a 5	2815.73	(12^{-})			
		446.4 ^a 2	100 <mark>a</mark> 9	2603.60	(11^{-})	Q^{b}		
						~		
3065.36	1+	296.70 ^e 20	<10 ^e	2768.34	$0^{-},1^{-}$	[E1]	0.0205	

E_i (level)	J_i^{π}	$\mathrm{E}_{\gamma}{}^{\dagger}$	${\rm I}_{\gamma}{}^{\dagger}$	\mathbf{E}_f	$\mathbf{J}_f^{\boldsymbol{\pi}}$	Mult.‡	α^{c}	Comments
3065.36	1+	863.7 3		2200.91	1-,2-			
		1012.3 ^e 3	<16 ^e	2052.59	$0^-, 1^-, 2^-$			
		1498.8 <i>3</i>	42.2 22	1566.38	0^{+}			
		1585.8 ^e 4	<11 ^e	1479.91	0^{+}			
		1700.90 ^e 20	<167 ^e	1364.53	1-			
		1758.95 20	100 <i>3</i>	1306.39	2+	E2		
		1836.7 e 5	<79 ^e	1228.84	0+			
		1995.8 <i>3</i>	100 4	1069.35	0+	(M1)		Mult.: E2,M1 from $\alpha(K)$ exp In ε decay; not ΔJ =2 from level scheme.
		2981.5 5	39 4	84.25468	2+			seneme.
3067.0	(13^{+})	463.2 ^a 2	100	2603.8	(11^{+})	Q^{b}		
3067.62	1-	406.25 ^e 15	<19 ^e	2661.02	1+	[E1]	0.00968 14	
		700.15 20	16.3 5	2367.65	$(1)^{-}$	(M1)	0.01736	
		792.00 <i>15</i>	82 <i>4</i>	2275.49	1-	E2		
		1082.1 <i>3</i>	20.0 21	1985.64	$1^{-},2^{-}$	M1		
		1410.4 <i>4</i>	100 11	1658.06	$(2)^{+}$			
		1703.3 <i>3</i>	66.7 21	1364.53	1-	M1		
		1761.4 ^e 3	<37 ^e	1306.39	2+			
		1838.2 ^e 5	<34 ^e	1228.84	0+			
		1998.4 ^e 5	<17.5 ^e	1069.35	0+			
		2983.1 4	60 4	84.25468	2+			Mult.: $\alpha(K)$ exp In ε decay implies M2 or M1+E2+E0, neither of which is consistent with level scheme.
		3067.0 <i>3</i>	91 <i>7</i>	0.0	0^{+}			
3070.52	0,1	574.2 <i>3</i>		2496.20	1-			
		670.35 ^e 20	<73 ^e	2400.10	1-			
		802.40 ^e 20	<64 ^e	2268.08	1-			
		954.30 ^e 15	<430 ^e	2115.90	1-			
		1558.4 <i>3</i>		1512.37	1-			
		1645.4 ^e 4	<37 e	1425.24	$(2)^{-}$			
		1706.0 ^e 3	<100 ^e	1364.53	1-			
		1925.1 7		1145.72	2+			
		1932.6 <mark>d</mark> 7		1138.55	2+			
		2985.9 <i>4</i>	100 7	84.25468	2+			
3091.93	1	595.70 <i>15</i>	20.6 6	2496.20	1-	M1	0.0261	
		691.75 20	10.9 4	2400.10	1-	M1	0.0179	
		802.40 ^e 20	<23 ^e	2289.37	1+			
		965.52 ^d 26		2126.14	1-			
		3007.5 ^e 3	<94 ^e	84.25468				Mult.: E2(+M1) from $\alpha(K)$ exp for doubly-placed γ In ε decay is
		3091.9 <i>3</i>	100 6	0.0	0+			inconsistent with both placements. Mult.: E2(+M1) or E1+M2 from $\alpha(K)$ exp In ε decay; adopted level scheme requires pure ΔJ =1.

E_i (level)	J_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	$_{\mathrm{I}_{\gamma}}^{\dagger}$	\mathbf{E}_f	$\mathbf{J}_f^{\boldsymbol{\pi}}$	Mult.‡	α^{c}	Comments
3099.64 1	1(-)	134.05 15	4.4 5	2965.66	1+	[E1]	0.1579	
		670.35 ^e 20	<13.7 ^e	2429.05	$1^+, 2^+$	[E1]		
		1565.08	70 <i>3</i>	1534.57	2+	. ,		
		1619.7 <i>3</i>	31.3 16	1479.91	0+			Mult.: M1(+E2) from α (K)exp In ε decay; however, level scheme requires E1.
		1793.8 <i>3</i>	31.3 16	1306.39	2+	E1		10441100 211
		1954.0 3	56 3	1145.72	2+			Mult.: (M1) from $\alpha(K)$ exp In ε decay; however, level scheme requires E1.
		1960.8 <i>3</i>	100 3	1138.55	2+	(E1)		
		2030.15 20	100 6	1069.35	0^{+}	È1		
		3015.1 <i>3</i>	86 <i>4</i>	84.25468	2+	E1		
		3099.55 25	67 4	0.0	0+			Mult.: E2 from $\alpha(K)$ exp In ε decay; inconsistent with adopted J^{π} .
3115.58	1-	339.45 ^e 20	<0.28 ^e	2775.66	1-			, ,. <u>r</u> , ,
	-	618.95 ^e 10	<5.9 ^e	2496.20	1-	[M1,E2]	0.017 7	
		678.8 ^d 3		2436.01		[,]	3.01, /	
		752.3 3		2364.06	(2,3) ⁻ 1 ⁻			
		1603.8 ^d 5	0	1512.37	1-			
		1887.1 ^e 5	<3.0 ^e	1228.84	0+			
		1977.4 ^e 5	<3.0 ^e	1138.55	2+			
		2046.5 5	<2.1	1069.35	0+			
		3030.95 20	100 5	84.25468	2+	E1		
		3115.20 25	57 3	0.0	0+	E1		
3123.94	1-	166.70 ^e 20	<5.4 ^e	2956.55	1+	[E1]	0.0890	
		340.90 ^e 15	<12.7 ^e	2783.12	1+	[E1]	0.01461	
		587.15 <i>15</i>	24 4	2536.97	1-	M1(+E2)	0.020 8	
		756.15 20	16.1 7	2367.65	$(1)^{-}$	M1	0.01431	
		834.45 ^e 10	<83 e	2289.37	1+			
		1985.5 ^e 3	<63 ^e	1138.55	2+			
		2054.4 3	100 4	1069.35	0^{+}	E1		
		3123.0 6	15.0 <i>14</i>	0.0	0^{+}			
3131.10	1+	695.2 <i>3</i>		2436.01	$(2,3)^{-}$			
		1078.3 4	100 27	2052.59	$0^-, 1^-, 2^-$			
		1651.4 <i>4</i>	91 <i>3</i>	1479.91	0+	(M1)		
		1706.0 ^e 3	<160 ^e	1425.24	$(2)^{-}$	•		
		1824.6 5	91 9	1306.39	2+			
		1985.5 e 3	<235 ^e	1145.72	2+			
		1992.7 5	53.3 27	1138.55	2+	E2,M1		
		2061.3 5	41.3 20	1069.35	0^{+}	(M1)		
		3046.9 5	100 11	84.25468		(M1)		Mult.: $\alpha(K)$ exp In ε decay exceeds $\alpha(K)(M1)$ significantly; level scheme inconsistent with M1+E0 or M2.
		3130.9 7	33 5	0.0	0+	(M1)		Mult.: M1(+E2) from α (K)exp In ε decay; E2 component is inconsistent with level scheme.

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult. [‡]	α^{c}	Comments
3140.60	(1)	479.50 15	11.7 5	2661.02	1+	M1+E2	0.033 13	
	. ,	711.65 <i>15</i>	27.8 9	2429.05	$1^+, 2^+$	M1	0.01667	
		1776.1 <i>3</i>	100 <i>3</i>	1364.53	1-	M1		
		3139.6 8	1.13 26	0.0	0^{+}			
3146.03	1+	170.80 ^e 20	<3.2 ^e	2975.32	1-			
		478.80 <i>10</i>	50 <i>6</i>	2667.19	1(+)	M1	0.0458	
		622.75 20	22.0 16	2523.07	1+	M1	0.0233	
		709.9 <i>4</i>		2436.01	$(2,3)^{-}$			
		1107.1 5		2039.85	1+	(M1+E2+E0)		
		1633.3 ^e 3	<54 ^e	1512.37	1-			
		1667.1 ^e 4	<29 ^e	1479.91	0_{+}			
		1917.7 5	20.0 10	1228.84	0^{+}			
		1920.7 <i>3</i>	84 <i>3</i>	1225.35	$(3)^{+}$	(E2)		Mult.: E1,E2 from $\alpha(K)$ exp In ε decay; not E1 from level scheme.
		2007.3 5	11.2 <i>16</i>	1138.55	2+	(E2)		Mult.: E1,E2 from $\alpha(K)$ exp In ε decay; not E1 from level scheme.
		3062.1 <i>3</i>	92 8	84.25468	2+	M1,E2		
		3146.1 <i>4</i>	100 8	0.0	0^{+}	(M1)		Mult.: M1,E2 from $\alpha(K)$ exp In ε decay; not E2 from level scheme.
3149.09	1-	329.3 2	4.5 4	2819.77	$0^-, 1^-$	M1	0.1226	
		366.35 ^e 15	<10.0 ^e	2783.12	1+			
		612.15 <i>15</i>	16.6 5	2536.97	1-	E2	0.01086	
		652.65 20	6.6 5	2496.20	1-	M1	0.0207	
		873.85 ^e 25	<5.9 ^e	2275.49	1-			
		1614.7 3	14.6 7	1534.57	2+			
		1636.9 ^e 3	<22.1 ^e	1512.37	1-	M1(. F2)		
		1784.7 4	16 3	1364.53	1-	M1(+E2)		M 1
		1842.8 <i>5</i> 3064.8 <i>3</i>	20.5 <i>13</i> 100 <i>4</i>	1306.39 84.25468	2 ⁺ 2 ⁺	(E1) E1		Mult.: E1,E2 from $\alpha(K)$ exp In ε decay; not E2 from level scheme.
		3149.4 <i>4</i>	40 4	0.0	0 ⁺	E1		
3161.02	(1^{-})	340.90 ^e 15	<35.5 ^e	2819.77	0-,1-	[M1]	0.1118	
3101.02	(1)	809.25 20	62 3	2351.71	0-,1-,2-	[1011]	0.1116	
		1503.9 ^e 4	<22 ^e	1658.06	$(2)^{+}$			
		1648.7 ^e 3	<36 ^e	1512.37	1-			
		1736.6 ^e 3	<99 ^e	1425.24	(2)			
		1796.3 5	40.0 20	1364.53	1-			
		1855.0 5	35 4	1306.39	2+			
		1932.6 ^d 7		1228.84	0+			
		3076.8 11		84.25468	2+			
		3161.1 5	100 10	0.0	0+	(E1)		
3165.59	1-	1630.5 3	46.3 11	1534.57	2+	(E1)		Mult.: E1,E2 from $\alpha(K)$ exp In ε decay; not E2 from level scheme.
2100.07	-	1653.2 4	9.9 5	1512.37	1-	M1+E2+E0		a(12)out in a seekly, not be from fever semente.
		1685.6 <i>3</i>	27 3	1479.91	0+	-		Mult.: $\alpha(K)$ exp In ε decay favors M1,E2; level scheme requires
								$\Delta \pi$ =yes.
		1740.7 <i>3</i>	37.9 13	1425.24	$(2)^{-}$	E2(+M1)		•

$\gamma(^{170}\text{Yb})$ (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult.‡	α^{c}	Comments
3165.59	1-	1859.20 20	95 <i>15</i>	1306.39	2+			
		1936.9 <i>3</i>	100 <i>3</i>	1228.84	0_{+}	E1		
		2019.7 3	28.4 21	1145.72	2+	(E1)		
		2027.2 3	77 3	1138.55	2+	(E1)		
		2096.3 2	65.3 21	1069.35	0_{+}	E1		
		3165.3 4	46 <i>4</i>	0.0	0^{+}	E1		
3169.59	1-	386.45 20	40 3	2783.12	1+	[E1]	0.01087	
		401.30 20	38 12	2768.34	$0^-, 1^-$	M1	0.0726	
		674.1 <i>3</i>		2496.20	1-			
		802.40 ^e 20	<154 ^e	2367.65	(1)			
		879.65 25	100 5	2289.37	1+			
		901.40 ^e 20	<314 ^e	2268.08	1-			
		1603.8 ^d 5		1566.38	0_{+}			
		3085.4 6	66 4	84.25468				
		3169.6 8	20 3	0.0	0_{+}			
3179.76	1-	404.00 ^e 15	<4.7 ^e	2775.66	1-	[M1]	0.0714	
		656.65 ^e 20	<4.1 ^e	2523.07	1+			
		681.50 25	2.43 14	2498.19	$0^-, 1^-, 2^-$	(M1)	0.0186	
		1053.7	35 7	2126.14	1-			
		1645.4 ^e 4	<6.2 ^e	1534.57	2+			
		1667.1 ^e 4	<10.1 ^e	1512.37	1-			
		3095.50 20	100 6	84.25468		E1		
		3179.8 <i>7</i>	5.3 6	0.0	0^{+}			
3186.2	15	220^{af} 1	<4.2 ^a	2966.42	14-	Q _T		
		505.4 3	100 4	2680.75	13-	E2&	0.01736	E_{γ} : unweighted average of 505.1 I in $(\alpha,2n\gamma)$ and 505.7 2 in $(\alpha,4n\gamma)$.
3186.66	(1^{-})	750.95 ^e 20	<15.6 ^e	2436.01	$(2,3)^{-}$	[M1,E2]	0.011 4	
		757.60 <i>15</i>	46.4 18	2429.05	1+,2+			Mult.: M1 from $\alpha(K)$ exp In ε decay is inconsistent with placement.
		1060.58 20	100 9	2126.14	1-	M1		
		1674.2 <i>3</i>	63.6 18	1512.37	1-	M1,E2		
		1761.4 ^e 3	<19.1 ^e	1425.24	$(2)^{-}$			
		3102.1 6	6.0 6	84.25468				
3195.1	16 ⁺	614.8 ^a 2	100	2580.35	14+	E2&	0.01075	170
3195.58	1-	427.20 20	4.9 8	2768.34	$0^-, 1^-$	M1(+E2+E0)	≈0.114	α : adopted value estimated from $\alpha(K)$ exp in 170 Lu ε decay.
		447.65 10	40.3 13	2748.08	1-	M1	0.0546	
		534.65 <i>15</i>	5.64 26	2661.02	1+			
		658.20 20	5.6 5	2536.97	1-			
		1068.8 4	3.08 26	2126.14	1-			
		1155.3 ^e 3	<20.5 ^e	2039.85	1+			
		1682.7 3	31 10	1512.37	1-	M1		
		1770.4 4	6.4 6	1425.24	(2)	M1		

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.‡	α^{c}	Comments
3195.58	1-	1888.7 ^e 5 1966.8 5	<21.5 ^e 16.7 <i>13</i>	1306.39 1228.84	2 ⁺ 0 ⁺			Mult.: E2,M1 from $\alpha(K)$ exp In ε decay; inconsistent with adopted level scheme.
		2057.1 ^e 4 3111.5 3 3195.3 4	<22.7 ^e 100 5 51 5	1138.55 84.25468 0.0	2 ⁺ 2 ⁺ 0 ⁺	(E1) (E1)		Mult.: Possible doublet; $\alpha(K)$ exp lies midway between $\alpha(K)(E1)$ and
3202.1	(12-)	242.5 ^a 2 469.9 ^a 2	100 ^a 13 60 ^a 13	2959.4 2732.3	(11 ⁻) (10 ⁻)			$\alpha(K)(E2)$; adopted $\Delta \pi$ =yes.
3202.94	1+	535.95 <i>15</i> 678.8 ^d 3	12.7 6	2667.19 2523.07	1 ⁽⁺⁾ 1 ⁺			
		706.5 <i>5</i> 802.40 ^e 20	100 9 <47 ^e	2496.20 2400.10	1 ⁻ 1 ⁻	E1		
		1086.9 ^e 3 1162.4 3 1217.30 ^e 20	<47 ^e 55 3 <273 ^e	2115.90 2039.85 1985.64	1 ⁻ 1 ⁺ 1 ⁻ ,2 ⁻	M1,E2		
		1636.9 ^e 3 1838.2 ^e 5 1896.5 ^e 3	<75 ^e <59 ^e <78 ^e	1566.38 1364.53 1306.39	0 ⁺ 1 ⁻ 2 ⁺			
		1977.4 ^e 5 2057.1 ^e 4 3119.2 6	<52 ^e <54 ^e 27 9	1225.35 1145.72 84.25468	(3) ⁺ 2 ⁺ 2 ⁺			
3213.27	1-	3202.4 5 170.80 ^e 20	91 9 <5.0 ^e	0.0 3042.46	0 ⁺ 1 ⁺	M1		
		238.25 ^e 15 465.50 15 861.8 ^d 4	<26 ^e 15.0 <i>13</i>	2975.32 2748.08 2351.71	1 ⁻ 1 ⁻ 0 ⁻ ,1 ⁻ ,2 ⁻	[M1,E2] M1+E0	0.22 8	
		1012.3 ^e 3 1086.9 ^e 3 1173.2 ^e 4	<20.0 ^e <49 ^e <63 ^e	2200.91 2126.14 2039.85	1 ⁻ ,2 ⁻ 1 ⁻ 1 ⁺			
		1700.90 ^e 20 1847.7 7 1983.9 5	<194 ^e 35.6 <i>19</i>	1512.37 1364.53 1228.84	1 ⁻ 1 ⁻ 0 ⁺			
		2143.5 <i>3</i> 3128.1 <i>5</i> 3212.2 8	100 <i>4</i> 56 <i>6</i>	1069.35 84.25468 0.0	0^{+}	E1 E1		
3258.18	1+	142.50 <i>15</i> 292.55 ^e 20	9.4 9 8.6 8 <4.9 ^e	3115.58 2965.66	1 ⁻ 1 ⁺	[E1] [M1,E2]	0.1344 0.12 5	
		301.85 <i>20</i> 590.85 ^e <i>15</i> 822.30 <i>15</i>	5.3 6 <34 ^e 100 4	2956.55 2667.19 2436.01	1 ⁺ 1 ⁽⁺⁾ (2,3) ⁻	[M1]	0.1548	Mult.: M1 from $\alpha(K)$ exp In ε decay; E1 required by placement.

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	\mathbb{E}_f	J_f^π	Mult.‡	α^{c}	Comments
3258.18	1+	858.1 <i>3</i>		2400.10	1-			
		969.05 ^e 20	<56 ^e	2289.37	1+			
		1204.8 <i>3</i>	16.3 8	2052.59	$0^-, 1^-, 2^-$			
		1692.0 <i>4</i>		1566.38	0^{+}			
		1832.4 ^e 4	<22.5 ^e	1425.24	$(2)^{-}$			
		1893.7 5	38.8 20	1364.53	1-			
		3173.4 7	12.2 12	84.25468	2+	M1		
		3258.2 8	10.2 10	0.0	0^{+}	M1,E2		
3268.91	1 ⁽⁺⁾	449.25 20	7.4 <i>7</i>	2819.77	$0^{-},1^{-}$	[E1]		Mult.: M1 from $\alpha(K)$ exp In ε decay; level scheme requires E1.
		1633.3 ^e 3	<63 ^e	1634.84	(1^+)			
		1734.4 5		1534.57	2+			
		1904.6 ^e 5	<21 ^e	1364.53	1-			
		1962.5 <i>3</i>	100 <i>3</i>	1306.39	2+	E2(+M1)		
		3183.6 5	65 7	84.25468		M1		
3274.17	1-	490.95 15	40.0 12	2783.12	1+	[E1]		Mult.: M1(+E2) from $\alpha(K)$ exp In ε decay; level scheme requires E1.
		750.95 ^e 20	<69 ^e	2523.07	1+			
		873.85 ^e 25	<26 ^e	2400.10	1-			
		1158.5 ^e 3	<39 ^e	2115.90	1-			
		1234.5 3	40.0 20	2039.85	1+	E1		
		1761.4 ^e 3	<84 ^e	1512.37	1-			
		1909.7 5	36.0 20	1364.53	1-	M1,E2		
		3190.3 5	100 10	84.25468		E1		
		3274.2 5	80 8	0.0	0_{+}	E1		
3291.82	1+	199.65 ^e 15	<14 ^e	3091.93	1	[E1]	0.0557	
		861.8 ^d 4		2429.05	$1^+, 2^+$			
		1252.1 4		2039.85	1+			
		1633.3 ^e 3	<85 e	1658.06	$(2)^{+}$			
		1778.8 ^e 4	<37 ^e	1512.37	1-			
		1985.5 ^e 3	<111 ^e	1306.39	2+			
		2063.2 3	100 3	1228.84	0+	(M1)		Mult.: M1,E2 from $\alpha(K)$ exp In ε decay; pure ΔJ =1 required by adopted level scheme.
		2152.9 5	27.2 13	1138.55	2+			
		3206.8 8	19.0 <i>19</i>	84.25468		M1,E2		
		3291.4 7	6.3 6	0.0	0^{+}			Mult.: E1 from $\alpha(K)$ exp In ε decay; level scheme requires M1.
3296.5	(14^{-})	246.7 ^a 2	23^{a}_{5} 5	3049.95	(13^{-})			
		480.7 ^a 2	100 ^a 9	2815.73	(12^{-})			
3301.95	1+	209.90 20	5.1 5	3091.93	1			
		518.90 <i>15</i>	6.8 <i>3</i>	2783.12	1+	M1	0.0372	
		805.85 25	12 3	2496.20	1-			Mult.: $\alpha(K)$ exp In ε decay favors M1; decay scheme requires E1.
		901.40 ^e 20	<48 ^e	2400.10	1-			
		1034.2 3	18 6	2268.08	1-			
		1667.1 ^e 4	<22 e	1634.84	(1^+)			

 $\gamma(^{170}\text{Yb})$ (continued)

 α^{c}

0.355

0.1565

0.01147

0.016 6

Comments

Mult.: M1,E2 from $\alpha(K)$ exp In ε decay; E2 not consistent with ε

feeding of parent level.

Mult.‡

M1,E2

E1

M1

(M1)

[M1]

M1(+E2+E0)

M1+E2+E0

(M1)

E1

(M1)

M1

E2

E1,E2

M1,E2

 $O_{\mathbf{b}}$

 I_{γ}^{\dagger}

55 *3*

100 6

100

<207^e

<124^e

<131^e

<456^e

<187^e

100 4

33 *3*

62 7

13.9 *14*

100

<181^e

<116^e

100 4

51 3

<49^e

<32^e

<76^e

<118^e

40 3

6.9 14

63 10

<66^e

38 4

56 6

<18^e

10.8 5

1.5 *3*

8.08

22.2 22

71 3

 E_f

1534.57

1425.24

1069.35

0.0

2826.8

3091.93

2975.32

2947.84

2939.73

2929.60

2775.66

2748.08

2351.71

2268.08

1566.38

1425.24

1228.84

0.0

2859.2

3065.36

2975.32

2775.66

2768.34

2400.10

2126.14

1717.95

1634.84

1566.38

1534.57

1479.91

1145.72

1138.55

2748.08

2523.07

2429.05

2364.06

84.25468 2+

84.25468 2+

84.25468

2+

 0^{+}

2+

 0^{+}

1-

1-

1-

1-

1-

1-

 0_{+}

 0^{+}

 0^{+}

 (12^+)

1+

1-

1-

1-

 $(2)^{-}$

 (1^+)

 0^{+}

 0^{+}

2+

2+

1-

1+

 $1^+, 2^+$

 $0^{-},1^{-}$

 $(2)^{-}$

 $0^{-},1^{-},2^{-}$

 (12^{+})

 $(2)^{-}$

 E_{γ}

1767.2 3

1876.2 *3*

2232.7 5

3218.4 9

3302.4 7

480.5^a 2

222.40^e 15

339.45^e 20

366.35^e 15

374.55 20

384.85 15

539.05^e 15

565.80^e 15

962.85 25

1046.60^e 25

1747.8 4

2086.4 5

3229.5 8

3314.1 7

474**af** 1

300.60 20

390.40^e 15

590.85^e 15

598.15 *15*

965.52^d 26

1240.7 3

1648.7^e 3

1731.3^e 4

1799.3 5

1832.4^e 4

1887.1^e 5

2219.4 6

2228.6 3

3282.1 8

636.80 20

861.8^d 4

1021.5^d 3

955.22^d 24

1888.7^e 5

 E_i (level)

3301.95

3307.3

3314.42

3333.2?

3366.40

3384.87

1-

1+

 (14^{+})

 (14^{+})

$\gamma(^{170}\text{Yb})$ (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.‡	α^{c}	Comments
3384.87	1-	1667.1 ^e 4	<91 ^e	1717.95	$(2)^{-}$			
		1904.6 ^e 5	<58 ^e	1479.91	0+			
		2246.8 <i>5</i> 2315.1 <i>4</i>	31.3 <i>19</i> 100 <i>5</i>	1138.55 1069.35	2 ⁺ 0 ⁺	E1		
		3385.0 8	5.0 13	0.0	0+	ы		
3401.7	(15^{-})	546.1 ^a 5	53 ^a 26	2855.61	(13^{-})			E_{γ} : other: 543.1 5 in $(\alpha, 2n\gamma)$.
		821.4 <mark>a</mark> 2	100 <mark>a</mark> 16	2580.35	14+	$D^{\mathbf{b}}$,
3423.2?	(0^{-})	1155.3 e f 3	71 e 5	2268.08	1-			Mult.: (M1) for doubly-placed line.
		1585.8 e f 4	19.1 <mark>e</mark> 19	1838.2	$(2)^{+}$			•
		1706.0 e f 3	100 e 14	1717.95	$(2)^{-}$			Mult.: (M1) for multiply-placed line.
		1998.4 e f 5	38 e 10	1425.24	$(2)^{-}$			Mult.: (M1,E2) for doubly-placed line.
		3338.9 ^f 8	3.8 10	84.25468		(M2)		Mult.: M1+E2+E0 or M2 from $\alpha(K)$ exp In ε decay; ε feeding of parent level favors the latter.
3437.8	(14^{-})	510.6 ^a 5		2927.2	(12^{-})			
3466.8?	(13^{-})	265^{af} 1	50 ^a 20	3202.1	(12^{-})			
		507^{af} 1	100 ^a 20	2959.4	(11^{-})			
3533.8	16-	567.4 ^a 2	100	2966.42	14-	E2 b	0.01302	E_{γ} : other: 565.1 5 for weak γ in $(\alpha, 2n\gamma)$.
3547.3	(16^{+})	560.6 ^a 5	56 ^a 31	2986.67	(14^{+})			
3558.1	(15^{+})	966.9 ^a 2 491.1 ^a 2	100 ^a 13 100	2580.35 3067.0	14 ⁺ (13 ⁺)			
3567.4	(15^{-})	270.8^{a} 2	36 ^a 9	3296.5	(13^{-}) (14^{-})			
	()	517.4 ^a 2	100 <mark>a</mark> 18	3049.95	(13^{-})			
3742.1	(14^{-})	540.0 ^a 2	100	3202.1	(12^{-})			
3756.5	(17^{-})	570.3 ^a 2	100	3186.2	15-	E2 b	0.01286	
3806.8	18+	611.7 ^a 2	100	3195.1	16+	E2 <mark>&</mark>	0.01087	
3833.3	(16^+)	526.0 ^a 2	100	3307.3	(14^{+})			
3842.3	(16^{-})	545.8 ^a 5 511 ^a f 1	100	3296.5	(14^{-})			
3844.2? 4011.8	(16^+) (16^-)	511 ^a 1 574 ^a 1	100 100	3333.2? 3437.8	(14^+) (14^-)			
4017.6	(10^{-})	616.0^{a} 5	100^{a} 50	3401.7	(14^{-}) (15^{-})			
.017.0	(1)	822 ^a 1	<50 ^a	3195.1	16+			
4065.1?	(17^+)	507.0 <i>af</i> 10	100	3558.1	(15^+)			
4174.0	18-	640.2 ^a 2	100	3533.8	16-			
4207.1	(18^{+})	659.4 ^a 5	50 ^a 33	3547.3	(16^{+})			
4390.3	19-	1012.4 ^a 5 633.8 ^a 2	100 ^a 33 100	3195.1 3756.5	16 ⁺ (17 ⁻)			
4390.3 4436.5	20 ⁺	629.7 ^a 5	100	3806.8	(17) 18 ⁺	(E2)&	0.01016	
4436.3 4885.9	20-	711.9 ^a 5	100	3806.8 4174.0	18 ⁻	(EZ)	0.01016	
5084.8	21-	694.5 ^a 2	100	4390.3	19 ⁻			

γ (170Yb) (continued)

- † From $^{170}{\rm Lu}~\varepsilon$ decay, unless noted otherwise. ‡ From $\alpha({\rm K}){\rm exp}$ in $^{170}{\rm Lu}~\varepsilon$ decay, except as noted.
- # From $(\alpha, 2n\gamma)$, except as noted.
- [@] From 168 Er(α ,2n γ).
- & From $\alpha(K)$ exp and/or $\gamma(\theta)$ in $(\alpha, 2n\gamma)$. RUL has been used to eliminate M2 for some stretched Q transitions, assuming $T_{1/2} \le 5$ ns (1981Wa14) (based on observation of prompt $\gamma\gamma$ coin).
- ^a From 168 Er(α ,4n γ).
- ^b From (α,4nγ). Based on $\gamma(\theta)$ for transitions detected in prompt coin in 1981Wa14 ($T_{1/2} \le 5$ ns) and/or measured DCO ratios.
- ^c Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ-ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.
- ^d Multiply placed.
- ^e Multiply placed with undivided intensity.
- f Placement of transition in the level scheme is uncertain.

Legend

Level Scheme

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

---- γ Decay (Uncertain)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

---- γ Decay (Uncertain)

Level Scheme (continued)

Level Scheme (continued)

Level Scheme (continued)

Legend

Level Scheme (continued)

Level Scheme (continued)

Level Scheme (continued)

Level Scheme (continued)

Legend

Level Scheme (continued)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

---- → γ Decay (Uncertain)

 $^{170}_{70}\mathrm{Yb}_{100}$

Level Scheme (continued)

Level Scheme (continued)

Level Scheme (continued)

Level Scheme (continued)

Legend

44

Level Scheme (continued)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

---- → γ Decay (Uncertain)

46

Level Scheme (continued)

Legend

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

---- γ Decay (Uncertain) (6^{-}) 1762.63 (2) 1717.95 1715.95 1712.41 6⁺ (5⁻) (2)⁺ 1669.03 1660.26 1658.06 (1^{+}) 1634.84 $\frac{6^{+}}{(4^{-})}$ 1601.33 1573.10 7 1572.73 $\frac{0^{+}}{2^{+}}$ 1566.38 1534.57 1528.74 6+ 1521.31 1⁻ (5⁻) 1512.37 1510.2 (2) (4) 1450.35 1425.24 1408.73 1364.53 $\frac{5^{-}}{(4)^{+}}$ 1345.18 1329.31 2⁺ (4)⁺ 1306.39 1292.4 $\frac{0^{+}}{(3)^{+}}$ 1228.84 0.51 ps 10 1225.35 2+ 2+ 1145.72 0.83 ps 16 2.1 ps 4 1138.55 0+1069.35 963.32 2.97 ps 25 573.30 13 ps 3 277.43 98 ps 4 84.25468 1.61 ns 2 0.0 stable $^{170}_{70}\mathrm{Yb}_{100}$

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

48

		History	
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh	NDS 75,199 (1995)	31-May-1995

 $Q(\beta^{-}) = -2518.0 \ 24$; $S(n) = 8019.47 \ 14$; $S(p) = 7333.7 \ 10$; $Q(\alpha) = 1309.6 \ 13$ 2012Wa38

Note: Current evaluation has used the following Q record -2519.3 24 8019.7 3 7333.8 10 1310.2 14 1993Au05,1993Au07.

Other reaction: (n,n): 1986Ko07 at E=0.5 milliev. Measured cross section and neutron scattering lengths.

Hyperfine structure studies: 1992Ku21, 1991Ma48, 1991Ki14, 1991Ji06, 1991Ho27, 1990Sp05, 1990Bi08, 1985Ne09, 1983Ma49, 1982Bu21, 1979Gr17, 1973Le16.

Nuclear structure calculations (levels, moments, deformation, etc.):

1994Ze07, 1994Vo19, 1994Al23, 1994Mi14, 1994Co20, 1994Tr04, 1994Ku01, 1993El03, 1993Kn01, 1993Sa08, 1993Ba17, 1992Wo11, 1992Vo02, 1992So22, 1992Ch21, 1992Ca08, 1991Su08, 1991So11, 1991Ch09, 1990Zi05, 1990So16, 1990Sa42, 1989So11, 1988Pe06, 1988Du15, 1987Li11, 1986So09, 1986Ba56, 1985An12, 1982Zh03, 1981Ma17, 1979Si13, 1976Ne05, 1975Dz03, 1975An03, 1974Ma05, 1974Ha54, 1972Mo05, 1971Ha56, 1971Fr02, 1970Wa03, 1970Ne02, 1963Ya06. Additional information 1.

¹⁷²Yb Levels

Levels marked with XREF=O correspond to the following reactions and level energies therein:

 175 Lu(p, α): 0, 79, 261, 543, 1172, 1263, 1375, 1510, 1662, 1701, 1749, 1800, 1860, 1924, 2002, 2073, 2154, 2190, 2213, 2274, 2298, 2333, 2409, 2467, 2547, 2628, 2667, 2720, 2740, 2819, 2844.

¹⁷³Yb(p,d): 78, 260, 540, 1118, 1173, 1222, 1263, 1287, 1331, 1353, 1376, 1467, 1477, 1496, 1510, 1540, 1551, 1609, 1635, 1663, 1672, 1701, 1751, 1759, 1778, 1804, 1811, 1926, 1966, 2010.

¹⁷²Yb(d,d'): 0, 79, 260, 543, 1116, 1222, 1262, 1355, 1465, 1605, 1631, 1660, 1708, 1747, 1789, 1820, 2032, 2050.

¹⁷⁰Yb(t,p): 0, 78, 260, 1043, 1118, 1263, 1287, 1466, 1654, 1823, 1853, 2046, 2177, 2228, 2466.

Muonic atom: 0, 79, 260, 1043, 1118, 1155, 1172, 1757, 1821.

 172 Yb(γ,γ) Mossbauer: 0, 79.

Cross Reference (XREF) Flags

Α	172 Tm β^{-} decay (63.6 h)	I	172 Yb(3 He, 3 He' γ)	Q	¹⁷² Yb(d,d')
В	172 Lu ε decay (6.70 d)	J	172 Yb(α,α')	R	170 Yb(t,p)
C	170 Er(α ,2n γ)	K	Coulomb excitation	S	Muonic atom
D	171 Yb(n, γ) E=thermal	L	173 Yb(d,t)	T	172 Yb(γ,γ):Mossbauer
E	171 Yb(n, γ) E=2 keV	M	173 Yb(3 He, α), (3 He, $\alpha\gamma$)	U	171 Yb(n, γ) E=res
F	¹⁷¹ Yb(d,p)	N	174 Yb(p,t)	٧	¹⁷² Yb(pol p,p), (p,p')
G	172 Yb (γ, γ')	0	175 Lu(p, α)		
H	172 Yb(n,n' γ)	P	173 Yb(p,d)		

E(level) [†]	J^{π}	$T_{1/2}$	XREF		
0.0#	0+	stable	ABCDEFGHIJKL NO QRST		
78.7427 <mark>#</mark> <i>6</i>	2+	1.65 ns 5	ABCDEFGHIJKLMNOPQRST		

Comments

μ=+0.669 *16* (1989Ra17,1968Mu01) Q=2.16 *37* (1989Ra17,1970WaZS)

Q=2.10 3/ (1989Ra17,1970WaZS)

μ: Mossbauer effect (1968Mu01,1966Mu04). Other: 1966Ti01. Q: DPAC method (1970WaZS). Other: -2.32 (1979Ho23).

 $\beta_2 = +0.21 \ 1 \ (\alpha, \alpha'); \ 0.284 \ (\text{Coul. ex.}).$

 J^{π} : E2 γ to 0^+ .

 $T_{1/2}$: from B(E2)=6.03 *6* in Coul. ex. (1975Wo08). Others: B(E2): 1.67 ns 14 (1970Sa09), 1.69 ns 7 (1960El07). γ (t) method: 1.80 ns 5 (1970Ra18), 1.61 ns 3 (1970He17), 1.69 ns 4 (1969FuZX), 1.67 ns 8 (1969Fo07), 1.58 ns 6 (1969Be34), 1.6 ns 4 (1968Ka01), 1.71 ns 5 (1966Ti01), 1.57 ns 4 (1964Gu01), 1.5 ns 1 (1963He01), 1.66 ns 14 (1962Bi05).

E(level) [†]	J^{π}	T _{1/2}	XREF	Comments
260.268 [#] 5	4+	0.122 ns 8	ABCDEF HIJKLMNOPQRS	B(E2)(IS)=7.5 9 (α , α'). μ =+1.37 5 (1989Ra17,1972Be94) Q=-2.3 12 (1989Ra17,1970McZQ)
,,				μ : IPAC method (1972Be94). Q: Coulomb excitation (1970McZQ). β_4 =-0.028 4 (α , α'); -0.006 (Coul. ex.). B(E4)(IS)<0.010 (α , α'). B(E4)=0.05 +7-4 (Coul. ex.). J ^{π} : Δ J=2, E2 γ to 2 ⁺ and member of g.s. band. T _{1/2} : from B(E2)=3.24 23 in Coul. ex. (1970Sa09).
539.977# 6	6+	16.6 ps <i>15</i>	ABCD F HIJKLMNOPQ	J^{π} : ΔJ =2, E2 γ to 4 ⁺ and member of g.s. band. $T_{1/2}$: B(E2) in Coul. ex. B(E6)(IS)<0.086 (α , α').
912.12 [#] 7	8+	3.5 ps <i>3</i>	C IJKL N	J^{π} : $\Delta J=2$, E2 γ to 6 ⁺ and member of g.s. band. $T_{1/2}$: Doppler broadening in Coul. ex. (1977Ke06).
1042.914 [@] 18	0+	3.3 ps 9	A CDEF HIJKL N RS	J^{π} : $L(p,t)=L(t,p)=0$. $T_{1/2}$: B(E2) in Coul. ex.
1117.874 [@] 5	2+	3.7 ps 4	ABCDEF HIJKLMN PQRS	J^{π} : E2 γ to 0 ⁺ . $T_{1/2}$: B(E2)=0.0067 3 in Coul. ex. B(E2)(IS)=0.0015 5 (α , α').
1154.935 <mark>&</mark> 6	1-		A CDE HIJK N S	J^{π} : E1 γ to 0^+ .
1172.385 ^a 6	3 ⁺	8.14 ns <i>17</i>	ABCDEF HI LMNOP S	μ =+0.65 4 (1989Ra17,1965Gu01)
				Q=2.87 41 (1989Ra17,1970Wa25) μ: DPAC method (1965Gu01).
				Q: DPAC method (1970Wa25). Others: 1970Ra18, 1969Li08.
				J^{π} : M1+E2 γ' s to 2 ⁺ and 4 ⁺ .
				$T_{1/2}$: weighted average of 8.33 ns 8 ($\gamma\gamma$ (t) in 172 Lu
				ε ,1980En01) and 7.95 ns 9 (γγ(t) in ¹⁷² Tm β^- ,1970He17). Others: 8.3 ns 3 (γ(t) in
				$(\alpha, 2n\gamma), 1980$ Wa15); 8.14 ns 22 $(\gamma\gamma(t))$ in $(\alpha, 2n\gamma), 1980$ Wa15); 8.14 ns 22 $(\gamma\gamma(t))$ in $(\alpha, 2n\gamma), 1980$ Wa15);
				ε ,1969Be34).
1198.472 ^{&} 7	2-		A CDE HI L	J^{π} : E1 γ to 2^{+} and band member.
1221.720 ^{&} 7	3-		BCDE HIJKL N PQ	β_3 =0.0132; B(E3)(IS)=0.016 3 (α,α').
				B(E3)(Coul. ex.)=0.045 3. J^{π} : E1 γ' s to 2 ⁺ and 4 ⁺ .
1263.028 ^a 6	4+	0.49 ns 3	ABCD F HIJ LmN PQR	J^{π} : E1 γ s to 2 and 4 . J^{π} : E2 γ 's to 2 ⁺ and 6 ⁺ .
1200.020	·	01.7 110 0	11202 1 1120 21111 1 411	$T_{1/2}$: $\gamma \gamma(t)$ in ¹⁷² Lu ε (1969Be34). Other: 0.50 ns $10 \gamma(t)$
				in $(\alpha,2n\gamma)$ (1980Wa15). B(E4)(IS)=0.036 7 (α,α') .
1286.54 [@] 3	4+		ABCD H LmN P R	J^{π} : M1+E2 γ to 4 ⁺ and γ 's to 2 ⁺ and 6 ⁺ .
1330.693 <u>&</u> <i>14</i>	4-		BCDE H LM P	J^{π} : E1 γ to 4 ⁺ , γ to 2 ⁻ and band member.
1352.95 9	(5^{-})		CD F H JKLMN PQ	J^{π} : γ to 4^+ , $\Delta J=1$ γ to 6^+ and band member.
1370.07 [#] <i>10</i>	10 ⁺	1.32 ps 8	C K	J^{π} : ΔJ =2, E2 γ to 8 ⁺ and band member. T _{1/2} : Doppler broadening in Coul. ex. (1977Ke06).
1375.815 ^a 7	5+	0.21 ns 6	BCD F HI LM OP	$\Delta J=2$, E2 γ to 3 ⁺ and γ' s to 4 ⁺ and 6 ⁺ . $T_{1/2}$: γ (t) in $(\alpha,2n\gamma)$ (1980Wa15,1983Ko28).
1405.008 ^b 6	0+	0.42 ns 6	CDE H N	J^{π} : E0 transition to 0 ⁺ . $T_{1/2}$: centroid-shift method in (n,γ) E=th (1986An14).
1465.875 ^c 4	2+	0.47 ps <i>3</i>	ABCDEF HIJKL N PQR	J^{π} : E2 γ to 0 ⁺ . $T_{1/2}$: B(E2)=0.038 3 in Coul. ex. B(E2)(IS)=0.041 9 (α , α').
1476.784 ^b 17	2+	48 ps 11	ABCDE H KL P	J ^{π} : E2 γ to 0 ⁺ . T _{1/2} : B(E2)=0.00021 4 in Coul. ex.

1496.1 10 1510.179 ^a 8 6 ⁺ BC F HI L NOP 1510.179 ^a 8 6 ⁺ BC F HI L NOP 1537.50 ^a 6 6 ⁺ C N 1540.61 ^{&} 6 6 ⁻ 1549.150 ^c 16 3 ⁺ 1550.43 ^d 6 6 ⁻ 3.6 μs 1 C mn p 1550.8 7 I mn p 1557.58 ^{&} 6 7 ⁻ C Lm 1599.870 ^e 12 1 ⁻ 11 fs 3 CDE GH DF 1608.490 ^f 11 2 ⁺ 1.1 ps 2 ABCDEF H JKL N PQ TF: ΔJ=2, E2 γ to 4 ⁺ and M1+E2 γ to 5 ⁺ . Jπ: ΔJ=0, M1+E2 γ to 6 ⁺ . T _{1/2} : γ(t) in (α,2nγ) (1969No05). The second of the second	Comments	XREF	T _{1/2}	J^{π}	E(level) [†]
1537.50 [@] 6 6 6 ⁺ C N J^{π} : ΔJ=0, M1+E2 γ to 6 ⁺ . 1540.61 ^{&} 6 6 ⁻ C Lm P J^{π} : ΔJ=2, (E2) γ to 4 ⁻ and γ to 6 ⁺ . 1549.150 ^C 16 3 ⁺ ABCDEF H Lmn p J^{π} : M1+E2 γ 's to 2 ⁺ and 4 ⁺ . 1550.43 ^d 6 6 ⁻ 3.6 μ s 1 C mn p J^{π} : ΔJ=0, E1+M2 γ to 6 ⁺ . $T_{1/2}$: γ (t) in (α ,2n γ) (1969No05). 1550.8 7 I mn p J^{π} : ΔJ=1, E1 γ to 6 ⁺ and γ to 8 ⁺ . 1599.870 ^e 12 1 ⁻ 11 fs 3 CDE GH J^{π} : ΔJ=1, E1 γ to 6 ⁺ and γ to 8 ⁺ . $T_{1/2}$: from Γ _{γ0} in (γ ,γ'). B(E1)(↑)=10.7×10 ⁻⁵ 32 (γ ,γ'). 1608.490 ^f 11 2 ⁺ 1.1 ps 2 ABCDEF H JKL N PQ XREF: N(1604). J^{π} : E2 γ to 0 ⁺ . $T_{1/2}$: from B(E2)=0.0109 20 in Coul. ex. Other: 0.93 ps 25					
1540.61 $^{\&}$ 6 6 $^{-}$ C Lm P $^{-}$ Jπ: ΔJ=2, (E2) γ to 4 $^{-}$ and γ to 6 $^{+}$. 1549.150 c 16 3 $^{+}$ ABCDEF H Lmn p $^{-}$ Jπ: M1+E2 γ's to 2 $^{+}$ and 4 $^{+}$. 1550.43 d 6 6 $^{-}$ 3.6 μs $^{-}$ C mn p $^{-}$ Jπ: ΔJ=0, E1+M2 γ to 6 $^{+}$. $^{-}$ T _{1/2} : γ(t) in (α,2nγ) (1969No05). 1550.8 7 I mn p 1557.58 $^{\&}$ 6 7 $^{-}$ C Lmn $^{-}$ C Lmn $^{-}$ Jπ: ΔJ=1, E1 γ to 6 $^{+}$ and γ to 8 $^{+}$. 1599.870 e 12 1 $^{-}$ 11 fs 3 CDE GH $^{-}$ CDE GH $^{-}$ Jπ: ΔJ=1, E1 γ to 2 $^{+}$ and ΔJ=1 γ to 0 $^{+}$. $^{-}$ T _{1/2} : from Γ _{γ0} in (γ,γ'). B(E1)(↑)=10.7×10 $^{-5}$ 32 (γ,γ'). 1608.490 f 11 2 $^{+}$ 1.1 ps 2 ABCDEF H JKL N PQ XREF: N(1604). $^{-}$ Jπ: E2 γ to 0 $^{+}$. $^{-}$ T _{1/2} : from B(E2)=0.0109 20 in Coul. ex. Other: 0.93 ps 25					
1549.150 ^c 16 3 ⁺ ABCDEF H Lmn p J ^π : M1+E2 γ's to 2 ⁺ and 4 [‡] . 1550.43 ^d 6 6 ⁻ 3.6 μs 1 C mn p J ^π : ΔJ=0, E1+M2 γ to 6 ⁺ . T _{1/2} : γ(t) in (α,2nγ) (1969No05). 1550.8 7 I mn p 1557.58 ^{&} 6 7 ⁻ C Lmn J ^π : ΔJ=1, E1 γ to 6 ⁺ and γ to 8 ⁺ . 1599.870 ^e 12 1 ⁻ 11 fs 3 CDE GH J ^π : ΔJ=1, E1 γ to 2 ⁺ and ΔJ=1 γ to 0 ⁺ . T _{1/2} : from Γ _{γ0} in (γ,γ'). B(E1)(↑)=10.7×10 ⁻⁵ 32 (γ,γ'). XREF: N(1604). J ^π : E2 γ to 0 ⁺ . T _{1/2} : from B(E2)=0.0109 20 in Coul. ex. Other: 0.93 ps 25	· ·				
1550.43 ^d 6 6 ⁻ 3.6 μs 1 C mm p J^{π} : ΔJ=0, E1+M2 γ to 6 ⁺ . $T_{1/2}$: γ(t) in (α,2nγ) (1969No05). 1550.8 7 I mm p J^{π} : ΔJ=1, E1 γ to 6 ⁺ and γ to 8 ⁺ . J^{π} : ΔJ=1, E1 γ to 2 ⁺ and ΔJ=1 γ to 0 ⁺ . J^{π} : ΔJ=1, E1 γ to 2 ⁺ and ΔJ=1 γ to 0 ⁺ . J^{π} : ΔJ=1, E1 γ to 2 ⁺ and ΔJ=1 γ to 0 ⁺ . J^{π} : ΔJ=1, E1 γ to 2 ⁺ and ΔJ=1 γ to 0 ⁺ . J^{π} : ΔJ=1, E1 γ to 2 ⁺ and ΔJ=1 γ to 0 ⁺ . J^{π} : E2 γ to 0 ⁺ .					1540.61 6
1550.8 7			26 1		
1557.58& 6 7- C Lmn J^{π} : ΔJ=1, E1 γ to 6 ⁺ and γ to 8 ⁺ . J^{π} : ΔJ=1, E1 γ to 2 ⁺ and ΔJ=1 γ to 0 ⁺ . $T_{1/2}$: from $\Gamma_{\gamma 0}$ in (γ, γ') . $T_{1/2}$: from $\Gamma_{\gamma 0}$ in (γ, γ') . $T_{1/2}$: from B(E1)(↑)=10.7×10 ⁻⁵ 32 (γ, γ') . $T_{1/2}$: from B(E2)=0.0109 20 in Coul. ex. Other: 0.93 ps 25			3.6 μs 1	6	1550.45 0
1599.870 ^e 12 1 ⁻ 11 fs 3 CDE GH J^{π} : $\Delta J = 1$, E1 γ to 2 ⁺ and $\Delta J = 1$ γ to 0 ⁺ . $T_{1/2}$: from $\Gamma_{\gamma 0}$ in (γ, γ') . $B(E1)(\uparrow) = 10.7 \times 10^{-5}$ 32 (γ, γ') . 1608.490 ^f 11 2 ⁺ 1.1 ps 2 ABCDEF H JKL N PQ XREF: N(1604). J^{π} : E2 γ to 0 ⁺ . $T_{1/2}$: from B(E2)=0.0109 20 in Coul. ex. Other: 0.93 ps 25		•			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
1608.490 f 11 2 ⁺ 1.1 ps 2 ABCDEF H JKL N PQ XREF: N(1604). J^{π} : E2 γ to 0 ⁺ . $T_{1/2}$: from B(E2)=0.0109 20 in Coul. ex. Other: 0.93 ps 25	(γ,γ') .	$T_{1/2}$:	11 fs 3	1-	1599.870° <i>12</i>
$T_{1/2}$: from B(E2)=0.0109 20 in Coul. ex. Other: 0.93 ps 25		ABCDEF H JKL N PQ XREF	1.1 ps 2	2+	1608.490 ^f 11
from B(E2)(IS)=0.012 3 (α,α') .		$T_{1/2}$:			
1633.14^{b} 6 (4) ⁺ BCD F H 1 N PQ J ^{π} : M1,E2 γ 's to 2 ⁺ and 4 ⁺ .				$(4)^{+}$	1633.14 ^b 6
1640.5578 8 4 0.5 ns 2 BCD H 1 J^{π} : $\Delta J=0$, dipole γ to 4 and E1 γ' s to 4 and 5.	to 4^+ and E1 γ' s to 4^+ and 5^+ .	BCD H 1 J^{π} : ΔJ	0.5 ns 2		1640.557 <mark>8</mark> 8
$T_{1/2}$: $\alpha \gamma(t)$ in $(\alpha, 2n\gamma)$ (1983Ko28).			0.05	(4) +	1657 7006 24
1657.790 ^C 24 (4) ⁺ 0.05 ps 3 BC F IJK n QR J^{π} : E2 γ to 2 ⁺ , M1+E2 γ to 4 ⁺ and band member. $T_{1/2}$: B(E2) in Coul. ex. B(E4)(IS)=0.006 2 (α,α') .	ul. ex.	$T_{1/2}$:	0.05 ps 3	(4)	1657.790° 24
1662.810^{h} 8 3 ⁺ ABCD H LmnOP J^{π} : M1 γ' s to 3 ⁺ and 4 ⁺ ; E2 γ' s to 2 ⁺ and 4 ⁺ . J=4 not	and 4^+ ; E2 γ 's to 2^+ and 4^+ . J=4 not	ABCD H LmnOP J^{π} : M		3 ⁺	1662.810 ^h 8
allowed by $\gamma(\theta,t)$ in ¹⁷² Lu ε .				(7+)	1666 100 5
1666.12 ^{<i>d</i>} 5 (7 ⁺) C J^{π} : $\Delta J = 2$, (E2) γ to 5 ⁺ and $\Delta J = 1$ γ to 6 ⁺ . 1670.55 ^{<i>d</i>} 11 (7 ⁻) C Lm P J^{π} : $\Delta J = 1$, D+O γ to 6 ⁻ .	•				
to 3 ⁺ .		to 3			
1706.4478 13 5 BC n J^{π} : E1 γ' s to 6+ and 4+. 1707.8? 3	nd 4 ⁺ .			5-	
1710.480 ^e 18 3 ⁽⁻⁾ CD H JK Q β_3 =0.0092; B(E3)(IS)=0.0078 16 (α,α'). B(E3)=0.025 6 (Coul. ex.).	(IS)=0.0078 16 (α , α'). B(E3)=0.025 6			3 ⁽⁻⁾	1710.480 ^e 18
J^{π} : $\Delta J=1$, dipole γ' s to 2^+ and 4^+ and band member.	s to 2 ⁺ and 4 ⁺ and band member.				
1720 5 L					1720 5
1749.205^{h} 9 4 ⁺ BC F H LM OPQ J^{π} : E2 γ to 2 ⁺ and γ to 6 ⁺ .	1γ to 6^+ .	BC F H LM OPQ J^{π} : E2		4+	1749.205 ^h 9
1757.367^{i} 5 (2) CDE HI L N P S Q=-3.44 10 (1989Ra17,1979Ho23)				$(2)^{-}$	1757.367 ⁱ 5
Q: muonic atom x-ray study (1979Ho23).					
J^{π} : M1+E2 γ to 1 ⁻ and M1 γ to 2 ⁻ . Probable γ to 3 ⁺ . 1778.86 ^c 5 5 ⁺ BC L P J^{π} : 1239 γ M1(+E2) to 6 ⁺ , 1519 γ M1,E2 to 4 ⁺ .				5+	1778 86 <mark>0</mark> 5
1789 5 (4 ⁺) F Q J^{π} : from comparison between theoretical and experimental cross sections in (d,p) and (d,d').	on between theoretical and experimental	F Q J^{π} : from			
1794.08 j 5 0^{+} <0.15 ns CDE H N XREF: N(1791). J^{π} : L(p,t)=0.		CDE H N XREF	<0.15 ns	0+	1794.08 ^j 5
$T_{1/2}$: centroid-shift method in (n,γ) E=th (1986An14).		$T_{1/2}$:			
1802.65 g 5 6 C J $^\pi$: from $\gamma(\theta)$ and band member.					
1803.108 ^f 8 4 ⁺ BC HIJ Lm OP J^{π} : 1263γ E2 to 6 ⁺ , 1724γ E2 to 2 ⁺ . B(E4)(IS)≤0.012 (α , α').				4+	_
1810.32^{d} 12 (8 ⁻) C Lm P J^{π} : $\Delta J = (2) \gamma$ to 6 ⁻ .		C Lm P J^{π} : ΔJ		(8-)	
1821.583 ⁱ 9 3 BCD HIJK1 N QRS Q=1.97 10 (1989Ra17,1979Ho23) Q: muonic atom x-ray study (1979Ho23).				3-	1821.583 ⁱ 9

E(level) [†]	J^{π}	T _{1/2}	XREF	Comments
				β_3 =0.023; B(E3)(IS)=0.065 <i>13</i> (α , α'). B(E3)=0.033 <i>7</i> (Coul. ex.). J ^{π} : band member.
1828.76 ^{&} 15	8-		C 1M	XREF: M(1838). J^{π} : ΔJ=2, (E2) to 6 ⁻ , ΔJ=1, E1 to 8 ⁺ .
1839.80 <mark>&</mark> <i>11</i>	9-		С	J^{π} : $\Delta J=1$, E1 γ to 8^+ , γ to 10^+ .
1841.84 ^a .8	(8+)		С	J^{π} : $\Delta J=2$, (E2) to 6 ⁺ , γ to 7 ⁺ .
1849.173 ^j 22	2+	0.8 ps 5	CDEF H K N	R XREF: R(1853). J^{π} : M1+E2+E0 γ to 2 ⁺ . $T_{1/2}$: B(E2)=0.0041 21 in Coul. ex.
1853.46 [@] 11	8+		С	J^{π} : $\Delta J=0$, (M1) γ to 8^+ , γ to 10^+ .
1862.799 ^h 15	$(5)^{+}$		BC L O	J^{π} : E2 to 3 ⁺ and 6 ⁺ ; probable band assignment.
1869.634 <i>12</i> 1887 <i>5</i>	$(4,5)^{-}$		BC LM	J^{π} : M1(+E2) γ' s to 4 ⁻ and 5 ⁻ . XREF: M(1879).
1894.616 ^k 25	0_{+}	<0.15 ns	DEF N	XREF: N(1892).
				J^{π} : L(p,t)=0. T _{1/2} : centroid-shift method in (n, γ) E=th (1986An14).
1899.30? 20			С	11/2. Controls sint method in (1,7) 2 in (1700/1117).
1907.48 [#] <i>14</i>	(12^{+})	0.52 ps 7	C K	$T_{1/2}$: Doppler broadening in Coul. ex. (1977Ke06). J^{π} : ΔJ =2, E2 γ to 10 ⁺ .
1919.84 8	(5,6)		C F 1MN	XREF: M(1916). Population in (d,t) is uncertain. J^{π} : γ' s to 6 ⁺ and 4 ⁺ .
1921.80 ^g 20	(7-)		C 1	Population in (d,t) is uncertain. J^{π} : $\gamma(\theta)$ in $(\alpha,2n\gamma)$.
1927.016 ^f 12	5+		BC L OF	
1956.351 ^k 25	2+	0.29 ps <i>15</i>	CDE KL N	J^{π} : M1+E2+E0 γ to 2 ⁺ . $T_{1/2}$: from B(E2)=0.0095 49 in Coul. ex.
1968.20 ^d 14	(9-)		C F LM F	
1975.63 ^{<i>j</i>} 14	(4^{+})		C	J^{π} : γ' s to 2^+ and 6^+ .
2007.98 ^h 14	(6^{+})		C no	J^{π} : γ' s to 4^+ and 6^+ and band member.
2009.80 ^l 3	1+		CDE LMnoI	XREF: L(2009)M(2007). J^{π} : E2 γ to 2 ⁺ and (M1) γ to 0 ⁺ .
2030 5	3-		J N	
2039.38 ^a 22	(9^+)		С	J^{π} : $\Delta J=2$, (E2) γ to 7^+ , γ to 8^+ .
2046.99 ^l 3	(2)+		CDE H LMN	QR XREF: M(2055)N(2041). J^{π} : E2 γ to 2 ⁺ , γ 's to 4 ⁺ and 1 ⁻ .
2064.04 ⁸ 20	(8-)		С	J^{π} : γ' s to 7^+ , 7^- , and 6^- . Band member.
2073.114 ^m 7	4+		BC NO	XREF: N(2060). J^{π} : M1 γ' s to 5 ⁺ and 3 ⁺ .
2075.27 ^f 11	(6+)		C L	XREF: L(2075). J^{π} : γ' s to 4 ⁺ and 6 ⁺ .
2076.172 <i>13</i> 2084.81? <i>20</i>	(1)-		DE C	J^{π} : E2 γ to 3 ⁻ , γ' s to 1 ⁻ , 2 ⁻ , 2 ⁺ .
2100.22 ^k 17	(4 ⁺)		C f 1 N	XREF: N(2098). J^{π} : γ' s to 4 ⁺ and 6 ⁺ ; probable band assignment.
2102.944 24	1-		DEf 1	J^{π} : E1 γ to 2^+ , γ to 0^+ .
2108 ¹ 5	(3+)		LM	J^{π} : comparison between experimental and theoretical cross sections in (d,t) and (${}^{3}\text{He},\alpha$). Also band member.

E(level) [†]	J^{π}	T _{1/2}	XREF	Comments
2115.8 8	$(0^-,1^-,2^-)$		EF L	XREF: F(2121)L(2119). J^{π} : (M1) primary γ from 0 ⁻ , 1 ⁻ in (n, γ) E=2 keV.
2145.03 ^d 22 2154.30 21	(10 ⁻) (7)	0.17 ns 10	C C o	J ^{π} : ΔJ=2, (E2) γ to 8 ⁻ , γ to 9 ⁻ . T _{1/2} : γ (t) in (α ,2n γ) (1980Wa15).
2156.43 ^j 3 2160.7 8 2175.059 ⁿ 12 2176.20 5 2180 ^o 5	(6 ⁺) (0 ⁻ ,1 ⁻ ,2 ⁻) 3 ⁺ (1) ⁻ (6 ⁻)		C o E BC f DEf LM	J ^π : ΔJ=1 γ to 6 ⁻ . J ^π : γ to 6 ⁺ and band member. J ^π : (M1) primary f from 0 ⁻ , 1 ⁻ in (n,γ) E=2 keV. J ^π : M1+E2 to 2 ⁺ and 4 ⁺ . J ^π : M1+E2 γ to 1 ⁻ and possible γ to 0 ⁺ . J ^π : from comparison between experimental and theoretical cross sections in (d,t) and (³ He,α), and
2181.97 <i>3</i> 2184 <i>7</i>	(4,5,6) ⁺ (2 ⁺)		B n J n R	band member. J^{π} : M1(+E2) γ to 5 ⁺ . XREF: R(2177). J^{π} : from comparison of experimental cross sections in (α, α') with calculated cross sections and shapes of $\sigma(\theta)$ distributions.
2192.130 ^{<i>m</i>} 11 2193.02 ^{&} 24 2193.16 ^{<i>l</i>} 12	5 ⁺ (10 ⁻) (4 ⁺)		B 0 C C L	B(E2)(IS)=0.0019 4 (α , α'). J ^{π} : M1 γ' s to 4 ⁺ and 6 ⁺ . J ^{π} : Δ J=2, (E2) γ to (8 ⁻), 823 γ to 10 ⁺ . XREF: L(2193).
2194.331 ^p 14	(1+)		DE H	J^{π} : γ' s to 4 ⁺ and 6 ⁺ ; probable band assignment. XREF: H(2192.8).
2195.03 5 2199.47& 21 2210 1 2212.52@ 24 2213.307 23 2214.06 8	(1,2 ⁺) (11 ⁻) 1 ^{(-)‡} (10 ⁺) 3 ⁺ ,4 ⁺ (1 ⁻)	4.6 [‡] fs 9	D C G O C B f 1 O DEf 1 O	J^{π} : γ's to 2 ⁺ and 2 ⁻ ; strong primary (E1) γ from 0 ⁻ ,1 ⁻ . J^{π} : γ's to 0 ⁺ , 2 ⁺ , and 2 ⁻ . J^{π} : ΔJ=1 γ to 10 ⁺ . $B(E1)(\uparrow)=10.5\times10^{-5}$ 20 (γ,γ'). J^{π} : γ's to 8 ⁺ and 10 ⁺ . Band member. J^{π} : M1 γ to 3 ⁺ and log f =7.9 from 4 ⁻ . J^{π} : (M1) primary γ from 0 ⁻ ,1 ⁻ in (n,γ) E=2 keV, γ to
2225.3 ^g 3 2228.63 ^p 4 2248.19 14	9 ⁻ 2 ⁺		C 1 DE 1 N R C	0^+ . J^{π} : $\Delta J=1 \ \gamma \text{ to } 8^-$, $\gamma \text{ to } 7^-$. J^{π} : $L(t,p)=2$.
2255 5 2256.3 ^a 3 2272 2285.399 ⁿ 11 2293.4 10	(2 ⁺) (10 ⁺) 4 ⁺ (0 ⁻ ,1 ⁻ ,2 ⁻)	0.15	J MN C L N B F M E 1	XREF: M(2249). J ^π : from comparison of experimental cross sections in (α,α') with calculated cross sections and shapes of σ(θ) distributions. B(E2)(IS)=0.0029 6 (α,α'). J ^π : ΔJ=(2) γ to 8 ⁺ and band member. J ^π : M1 γ to 3 ⁺ and M1+E2 γ to 5 ⁺ . J ^π : (M1) primary γ from 0 ⁻ , 1 ⁻ in (n,γ) E=2 keV.
2299.29 23 2306.20 22 2307.786 20 2312.90 8 2316.97 10	(0 ⁻ ,1 ⁻ ,2 ⁻) 3 ⁺ ,4 ⁺ (2 ⁺) 1,2 ⁽⁺⁾	0.15 ns <i>10</i>	C 1 0 E B DE D L	T _{1/2} : γ (t) in (α ,2n γ) (1980Wa15). J ^π : (M1) primary γ from 0 ⁻ ,1 ⁻ in (n, γ) E=2 keV. J ^π : M1 γ to 3 ⁺ ; log f t=7.8 (log f t ^u t =6.9) from 4 ⁻ . J ^π : γ 's to 0 ⁺ and 4 ⁺ . J ^π : primary γ from 0 ⁻ , 1 ⁻ in (n, γ) and possible γ 's to 0 ⁺ and 2 ⁺ .
2327.58 7 2333 ^m 5	(2 ⁺) (6 ⁺)		DEF L NO	J^{π} : (E2) γ to 0 ⁺ . XREF: N(2337). J^{π} : from comparison between experimental and

E(level) [†]	J^π	$T_{1/2}$		XREF	Comments
					theoretical cross sections in (p,α) ; and probable band assignment.
2340.7 ^d 3	(11^{-})		С		J^{π} : $\Delta J=1 \gamma$ to (10^{-}) and band member.
2341.86 <i>3</i>	$(0^+,1^+,2^+)$		DEf		J^{π} : (E1) primary γ from $0^-, 1^-$ in (n, γ) E=2 keV.
2343.715 <i>q 15</i>	4+		B f		J^{π} : M1+E2 γ' s to 4 ⁺ and 5 ⁺ , γ to 2 ⁺ .
2346° 5	(7^{-})		f	LM	J^{π} : from comparison between experimental and
					theoretical cross sections in (d,t) and (${}^{3}\text{He},\alpha$).
2352.6 8	$(0^-,1^-,2^-)$		E		J^{π} : (M1) primary γ from 0^- , 1^- in (n,γ) .
2356.59 11	$(0^-,1^-,2^-)$		E	L	XREF: L(2360).
	(24)				J^{π} : (M1) primary γ from 0^- , 1^- in (n,γ) .
2367 5	(2^{+})			J N	XREF: N(2364).
					J^{π} : from comparison of experimental cross sections in
					(α, α') with calculated cross sections and shapes of $\sigma(\theta)$ distributions.
					B(E2)(IS)=0.005 $I(\alpha,\alpha')$.
2369.2 8	$(0^-,1^-,2^-)$		Ef		J^{π} : (M1) primary γ from 0^- , 1^- in (n,γ) .
2375.37 3	$(0^{-},1^{-},2^{-})$ $(1^{+},2)$		DEf		J^{π} : γ' s to 3^+ , 1^+ , and 1^- .
2387.706 <i>15</i>	$(1^+,2^+)$		DE	N	XREF: N(2396).
	(- ,-)				J^{π} : γ' s to 0^+ and 3^+ .
2392.3 4			C		,
2404.8 10	$(0^-,1^-,2^-)$		E	1 0	XREF: O(2409).
					J^{π} : (M1) primary γ from 0^- , 1^- in (n,γ) .
2411.4 ^g 3	(10^{-})		С	1	J^{π} : $\gamma(\theta)$.
2439.2 8	(0,1,2)		E	n	J^{π} : primary γ from 0^- , 1^- in (n,γ) .
2444.2 8	(0,1,2)		E	n 	J^{π} : primary γ from 0^- , 1^- in (n,γ) .
2456 2464.09 8	(2+)		DE	LMn J nO R	J^{π} : from comparison of experimental cross sections in
					(α, α') with calculated cross sections and shapes of
					$\sigma(\theta)$ distributions.
2465.22 21	(7,8)	0.13 ns 10	С		B(E2)(IS)=0.010 2 (α,α') . $T_{1/2}$: $\gamma(t)$ in $(\alpha,2n\gamma)$ (1980Wa15).
2403.22 21	(7,0)	0.13 118 10	C		J^{π} : from $\gamma(\theta)$.
2480.037 20	$(1^+,2^+)$		DE	Ln	XREF: L(2476).
2.00.007 20	(1 ,2)				J^{π} : (E2) γ to 2^{+} , γ' s to 0^{+} and 3^{+} .
2488.7 5			E	n	
2492.2 ^a 4	(11^{+})		C		J^{π} : $\Delta J = 2$, (E2) γ to (9 ⁺).
2503.9 <i>3</i>			DE		
2515.1 <i>4</i>			E		
2518.7 [#] 4	(14^{+})	0.29 ps 4	C	K	J^{π} : $\Delta J = 2$, (E2) γ to (12 ⁺).
					$T_{1/2}$: from B(E2) in Coul. ex.
2524.1 3	(at)		DE		
2534.9 <i>3</i>	(0^+)		DE	N	XREF: N(2540).
2539.2 4			D		J^{π} : L(p,t)=(0).
2545° 5	(8-)		ע	LM o	J^{π} : from comparison between experimental and
2545 5	(0)			LII O	theoretical cross sections in (d,t) and (3 He, α).
2547.0 6			DE	1 o	
2554.2 ^d 3	(12^{-})		С	1	J^{π} : from $\gamma(\theta)$ in $(\alpha, 2n\gamma)$.
2559.5 3	, ,		DE	L	
2567.6 5			E		
2573 1	1 [‡]	12 [‡] fs 3	G		This level may be the same as 2575.7 from (n,γ) .
					$B(E1)(\uparrow)=4.3\times10^{-5} \ 11. \ B(M1)(\uparrow)=0.93 \ 10.$
2575.6 <i>3</i>	(2^{+})		DE	j mn	XREF: j(2580).

E(level) [†]	\mathbf{J}^{π}	T _{1/2}		XREF	Comments
					J ^{π} : from comparison of experimental cross sections in (α, α') with calculated cross sections and shapes of $\sigma(\theta)$ distributions. B(E2)(IS)=0.0034 7 (α, α') .
2582.8 <i>4</i> 2588.5 <i>4</i>			De De	j Lmn L n	XREF: j(2580).
2598.9 <i>5</i> 2599.7 ^{r} <i>5</i>	(4 ⁺)		D	L	J^{π} : from a comparison between experimental and theoretical cross sections in (d,t).
2607.2 [@] 4 2607.3 2	(12^+)		C DE	Н	J^{π} : from $\gamma(\theta)$.
2609.2 ⁸ 4	(11^{-})		C	••	J^{π} : $\Delta J=2$, (E2) γ to (9 ⁻).
2612 <i>I</i>	1‡	12 [‡] fs <i>3</i>	G	i	$B(E1)(\uparrow)=3.6\times10^{-5}$ 10. $B(M1)(\uparrow)=0.33$ 9.
2627.9 <i>3</i>			D	L O	XREF: L(2622).
2629.8 <mark>&</mark> 4	(12^{-})		C		J^{π} : $\Delta J=2 \gamma$ to (10^{-}) .
2636.1 ^{&} 3	(13^{-})		С		J^{π} : from $\gamma(\theta)$.
2650.0 4	(2+)		E	J LM	J ^{π} : from comparison of experimental cross sections in (α, α') with calculated cross sections and shapes of $\sigma(\theta)$ distributions. B(E2)(IS)=0.0038 8 (α, α') .
2653.3 <i>3</i>			C		
2668.1 3			DE	LM O	
2676.0 <i>15</i> 2689.8 ^s 4	(9-)	0.7 ns 1	DE C	L L	$T_{\text{cons}}(t) = (\alpha/2n\alpha) (1092 V_0 29)$
		0.7 IIS I	C		$T_{1/2}$: γ (t) in $(\alpha,2n\gamma)$ (1983Ko28). J^{π} : from $\gamma(\theta)$.
2697 ^r 5	(5 ⁺)			LM	J^{π} : from comparison between experimental and theoretical cross sections in (d,t).
2700.3 3			DE		
2713.6 7			E	1 0	
2721.0 <i>8</i> 2732.8 <i>3</i>			E DE	l o Ln	
2738 5	(2+)		DL	J nO	J ^{π} : from comparison of experimental cross sections in (α, α') with calculated cross sections and shapes of $\sigma(\theta)$ distributions. B(E2)(IS)=0.012 3 (α, α') .
2741° 5	(9-)			LM	J^{π} : from comparison between experimental and theoretical cross sections in (d,t) and (3 He, α).
2746.5 ^a 5	(12^+)		С		J^{π} : $\Delta J=2 \gamma$ to (10^+) .
2747.3 6			DE		
2766.3 4			DE	L	
2776.8 <i>6</i> 2781.4 <i>14</i>			DE	L	
2786.8 ^d 4	(12=)		D	L n	IT C (0)
2786.8 ^a 4 2787 ^t 5	(13^{-}) (8^{+})		С	TM	J^{π} : from $\gamma(\theta)$.
	(8.)			LM	J^{π} : from comparison between experimental and theoretical cross sections in (d,t) and (${}^{3}\text{He},\alpha$).
2787.6 4			DE	l n	
2795.9 <i>5</i> 2808.0 <i>4</i>			E DE	l n L n	
2818.5 ^r 7	(6 ⁺)		DE	L nO	J^{π} : from a comparison between experimental and theoretical
	(0)		DL		cross sections in (d,t).
2831 <i>5</i> 2834.6 <i>5</i>	(2^{+})		DE	LMn J n	XREF: J(2836).
			DE	J	J ^{π} : from comparison of experimental cross sections in (α, α') with calculated cross sections and shapes of $\sigma(\theta)$ distributions. B(E2)(IS)=0.0072 <i>15</i> (α, α') .
2840.8 ^g 5	(12^{-})		C		J^{π} : $\Delta J=2$, (E2) γ to (12 ⁻).
2844.3 5			DE	0	

E(level) [†]	\mathbf{J}^{π}	$T_{1/2}$		XREF	Comments
2856.4 ^s 5	(10^{-})		С		J^{π} : $\Delta J=1 \ \gamma \text{ to } (9^{-})$.
2861.8 9	, ,		DE	1	
2864.6 <i>6</i>			E	1	
2872.2 5			DE	M	
2881.0 <i>6</i> 2887.3 <i>8</i>	(2+)		E DE	L J L	J ^{π} : from comparison of experimental cross sections in (α, α') with calculated cross sections and shapes of $\sigma(\theta)$ distributions. B(E2)(IS)=0.017 4 (α, α') .
2904.2 10			E	LM	
2916.4 8			DE	L	
2943.0 6			DE	Lm	XREF: L(2936).
2959.8 6			DE	Lm	
2967.7 <i>7</i> 2985.4 <i>8</i>			E DE		
2991.7 6	(2+)		E	j lm	J^{π} : from comparison of experimental cross sections in (α, α') with calculated cross sections and shapes of $\sigma(\theta)$ distributions.
2993.8 9			D	j lm	B(E2)(IS)=0.0087 17 (α, α') .
3002 1	1‡	8.7 [‡] fs 24	DE G	1	B(E1)(\uparrow)=3.7×10 ⁻⁵ 10; B(M1)(\uparrow)=0.34 9 (in γ, γ').
3012.7 6	1	0.7 18 27	E	i	$D(L1)(1) = 3.7 \times 10^{-10}$, $D(W11)(1) = 0.34^{\circ}$ y (III y,y).
3017 <i>I</i>	1‡	18 [‡] fs 9	G	1	This level may be the same as 3020.2 from (n,γ) .
2017 1	-	10 10 /		-	B(E1)(\uparrow)=1.0×10 ⁻⁵ 5 or B(E1)(\uparrow)=1.2×10 ⁻⁵ 5; B(M1)(\uparrow)=0.11 4.
3020.0 <mark>a</mark> 5	(13^+)		С		J^{π} : from $\gamma(\theta)$.
3020.2 6			DE		
3034.2 ^d 4 3036.8 6	(14 ⁻)		C DE		J^{π} : $\gamma(\theta)$.
3043.9 [@] 5	(14^{+})		С		J^{π} : probable band member.
3044.5 <i>s</i> 6	(11^{-})		С	_	J^{π} : $\Delta J=1 \gamma$ to (10^{-}) .
3058.0 <i>13</i>	.()+	. 4	E	1M	XREF: 1(3067)M(3062).
3072 1	1(-)‡	6.1 [‡] fs 20	G	1	XREF: 1(3067). This level may be the same as 3074.8 from (n,γ) . B(E1)(\uparrow)=3.2×10 ⁻⁵ 10 (γ,γ') .
3074.8 6			D	L	XREF: L(3072).
3081 6				L	
3085 6				L	
3096 1	1 [‡]	17 [‡] fs 9	G	lm	This level may be the same as 3098.7 from (n,γ) . B(E1)(\uparrow)=0.9×10 ⁻⁵ 5 or B(E1)(\uparrow)=1.0×10 ⁻⁵ 4; B(M1)(\uparrow)=0.09 3. T _{1/2} : 30 fs 9 for I γ (3017)/I γ (3096)=0.46 12.
3098.7 6			DE	lm	$1_{1/2}$. 30 is 7 for $1/(3017)/(3050) = 0.1012$.
3106.3 <i>6</i>			E	L	
3118 <i>I</i>	1(-)‡	8 [‡] fs 4	G	1	This level may be the same as 3120.1 from (n,γ) . B(E1)(\uparrow)=2.2×10 ⁻⁵ 10.
3120.1 6			DE	1	
3130.6 6			D	L	XREF: L(3127).
3134.6 ^{&} 5	(14^{-})		С	Ŧ	J^{π} : probable band member.
3141.3 <i>6</i> 3146 <i>5</i>			D	Lm Lm	XREF: L(3138).
3155.9 7			E	LIII	
3160 <i>I</i>	1(-);	3.4 [‡] fs 10	G		B(E1)(\uparrow)=4.3×10 ⁻⁵ 13.
3170.8 7	-	2 15 10	E		=(=-/(1) 25.

E(level) [†]	\mathbf{J}^{π}	T _{1/2}	XREF	Comments
3174 1	1(-)‡	3.7 [‡] fs <i>11</i>	G	This level may be the same as 3175.6 from (n, γ) . B(E1)(\uparrow)=3.4×10 ⁻⁵ 10. T _{1/2} : 4.8 fs 14 for I γ (3096)/I γ (3174)=1.86 40.
3175.6 7			D	.,2
3198.4 [#] 6 3205.5 7	(16 ⁺)		C D	J^{π} : probable band member.
3246 <i>I</i> 3251.6 <i>11</i>	1(-)‡	5.6 [‡] fs 23	G E	$B(E1)(\uparrow)=2.9\times10^{-5} I2.$
3252.9 ^s 7	(12^{-})		C	J^{π} : probable band member.
3253 1	1‡	12 [‡] fs 4	G	This level may be the same as 3251.6 from (n,γ) . B(E1)(\uparrow)=2.1×10 ⁻⁵ 7. B(M1)(\uparrow)=0.19 6.
3254.4 7			D	$B(E1)()=2.1\times10$ 7. $B(M11)()=0.19$ 0.
3258.4 8			E	
3260.2 5			D	
3283.6 6			DE	
3289.2 8			D	
3300.2 6			DE	
3308.5 7			DE	
3309.5 ^a 6	(14^{+})		C	J^{π} : probable band member.
3332.6 5			E	
3334.6 9			D	
3346.6 5			D	
3360.7 7			DE	
3366.7 <i>7</i> 3381.5 <i>5</i>			DE DE	
3387.6 5			DE D	
3393 <i>1</i>	1(-)‡	2.7 [‡] fs 7		$B(E1)(\uparrow)=4.5\times10^{-5} 11.$
3404.6 <i>6</i>	100	2.7° IS /	G E	$B(E1)(1)=4.3\times10^{-5}$ 11.
3404.0 0			D	
3426.4 7			D	
3437.0 7			E	
3465.1 6			D	
3481.6 ^s 8	(13^{-})		С	J^{π} : probable band member.
3490.3 12			D	
3494.7 <i>6</i>			DE	
3506.0 <i>6</i>			D	
3543.4 <i>6</i>			DE	
3545 <i>I</i>	1(-)‡	1.6 [‡] fs 5	G	This level may be the same as 3543.4 from (n,γ) . B(E1)(\uparrow)=5.1×10 ⁻⁵ 17.
3557.3 5			DE	
3570.0 6			DE	
3586.9 7	4	4	DE	
3604 <i>1</i>	1‡	2.9 [‡] fs 8	G	$B(E1)(\uparrow)=5.4\times10^{-5} 14. B(M1)(\uparrow)=0.49 12.$
3607.6 7			E	
3620.8 6			E	
3627.5 <i>9</i> 3634.3 <i>7</i>			D D	
	1(-)‡	1.3 [‡] fs 3		This level was be the same a 2024.2 ft ()
3635 1	I/)+	1.5 ^T IS 5	G	This level may be the same as 3634.3 from (n,γ) . B(E1)(\uparrow)=8.1×10 ⁻⁵ 19.
3640.4 6			D	
3657.0 6			D	
3669.7 6			D	
3680.9 <i>6</i>			D	
3714.2 6			D	

E(level) [†]	J^{π}	$T_{1/2}$	XREF	Comments				
3719.2 6			D					
3740.9 5			D					
3747.6 5			D					
3754.7 10			D					
3766.5 7			D					
3777.0 6			E					
3786.3 <i>7</i>			D					
3799.0 <i>6</i>			D					
3819.5 9			D					
3829.1 7			E					
3856.3 <i>6</i>			D					
3863 <i>1</i>	1‡	2.1 [‡] fs 6	G	$B(E1)(\uparrow)=5.0\times10^{-5}$ 15. $B(M1)(\uparrow)=0.45$ 14.				
3876.4 <i>6</i>			D					
3880.5 7			E					
3901.6 8			E					
3908.3 7			DE					
3917.3 <i>6</i>			DE					
3927.6 <i>6</i>			DE					
3955.7 7			D					
3963.0 7			D					
3984.9 <i>7</i>			D					
3990.7 7			D					
4008.8 7			D					
4020.8 7			D					
4043.4 7			D					
4056.2 11			D					
4062.1 6			D					
4078.2 7			D					
4162.8 6			D					
4251.5 6			D					
4351.5 7			D					

 $^{^{\}dagger}$ From least-squares fit to E γ' s for levels populated in γ -ray studies. For other levels weighted averages are taken from different reaction studies

[‡] Spin is from $\gamma\gamma(\theta)$ data in (γ,γ') . Parity is from a comparison of reduced transition probabilities with Alaga's rules. $T_{1/2}$ (level) is deduced from $\Gamma_{\gamma 0}$ (1990Zi01) and branching ratio. It is assumed that the level deexcites only to g.s. and first 2⁺ level.

[#] Band(A): $K^{\pi}=0^+$ g.s. band. variations in g factors are deduced from $\gamma(\theta,H)$ data in Coul. ex. for levels of $J^{\pi}=2^+$ to 10^+ (1979Wa15). Deviation from rotational behavior is expressed in terms of g factor variation: $g(J)=g(0)(1+\alpha J^2)$. 1979Wa15 deduce $\alpha=+0.0010$ 15 from $\gamma(\theta,H)$ data.

[®] Band(B): $K^{\pi}=0^{+}$ β-band. Configuration=((ν 5/2[512])(ν 5/2[512]))(44%) + ((ν 1/2[521]) (ν 1/2[521]))(18%) + ((ν 7/2[633])(ν 7/2[633]))(13%). The 5/2[512] and 1/2[521] components are seen in (d,t), (3 He, α), and (d,p). The 7/2[633] component and the % amplitudes are quoted by 1980Wa15 from a calculation by Grigoriev and Soloviev.

[&]amp; Band(C): $K^{\pi}=1^{-}$ octupole band. Configuration=((v 7/2[633])(v 5/2[512])) (94%). The amplitude is quoted by 1972On01 from a calculation by Neergard. Cross section data in (d,t) and (3 He, α) are consistent with this configuration as the dominant (almost pure) component.

^a Band(D): $K^{\pi}=3^+$ band. Configuration= $((v 5/2[512])(v 1/2[521]))(81\%) + ((\pi 7/2[404])(\pi 1/2[411]))$ (1980Wa15,1972On01,1967Bu21). From (p,α) ; 1982Bu23 suggest 27% 10 admixture of the latter configuration. Strong population of 4^+ member (1263 level) of this band in (d,d') suggests hexadecapole vibrational nature.

^b Band(E): $K^{\pi}=0^{+}$ band.

^c Band(F): $K^{\pi}=2^{+} \gamma$ band.

^d Band(G): $K^{\pi}=(6^{-})$ band. probable configuration= $((\nu 7/2[633])(\nu 5/2[512]))$ (1972On01).

^e Band(H): $K^{\pi}=0^{-}$ octupole band.

¹⁷²Yb Levels (continued)

```
<sup>f</sup> Band(I): K^{\pi}=2^{+} band. Configuration=((\nu 5/2[512])(\nu 1/2[521])) + 26\% 10 of configuration=((\pi 7/2[404])(\pi 1/2[411]))
  (1982Bu23).
<sup>g</sup> Band(J): K^{\pi}=(4^{-}) band. probable configuration=((\nu 7/2[633])(\nu 1/2[521])) (1980Wa15).
<sup>h</sup> Band(K): K^{\pi}=3^{+} band. Configuration=((v \ 11/2[505])(v \ 5/2[512])) + (26\pm10)\% of configuration=((\pi \ 7/2[404])(\pi \ 1/2[411]))
  (1982Bu23).
<sup>i</sup> Band(L): K^{\pi}=2^{-} octupole band.
<sup>j</sup> Band(M): K^{\pi}=0^{+} band.
<sup>k</sup> Band(N): K^{\pi}=0^+ band.
<sup>l</sup> Band(O): K^{\pi}=(1^+) band. probable configuration=((\nu 5/2[512])(\nu 3/2[521])).
<sup>m</sup> Band(P): K^{\pi} = (4^{+}) band. probable configuration=((\pi 7/2[404])(\pi 1/2[411])).
<sup>n</sup> Band(Q): K^{\pi}=(3^+) band member.
<sup>o</sup> Band(R): K^{\pi}=(5^{-}) band. probable configuration=((v 5/2[512])(v 5/2[642])). The 5<sup>-</sup> member is not reported.
<sup>p</sup> Band(S): K^{\pi}=(1^+) band.
<sup>q</sup> Band(T): K^{\pi}=(4^+) band.
<sup>r</sup> Band(U): K^{\pi}=(4^+) band. probable configuration=((\nu 5/2[512])(\nu 3/2[521])).
<sup>s</sup> Band(V): K^{\pi}=(9^{-}) band. Probable configuration=((\nu 7/2[633])(\nu 11/2[505])) (1980Wa15).
```

^t Band(W): $K^{\pi} = (8^{+})$ band. probable configuration= $((\nu 5/2[512])(\nu 11/2[505]))$.

$\gamma(^{172}\text{Yb})$

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.‡	δ#	α&	$I_{(\gamma+ce)}$	Comments
78.7427	2+	78.7426 <i>6</i>	100	$0.0 0^{+}$	E2		8.4		B(E2)(W.u.)=212 2
260.268	4 ⁺	181.528 <i>4</i>	100	$78.7427 \ 2^{+}$	E2		0.376		B(E2)(W.u.)=301 20
539.977	6+	279.717 5	100	260.268 4+	E2		0.092		$B(E2)(W.u.)=3.2\times10^2 \ 3$
912.12	8+	372.06 10	100	539.977 6 ⁺	E2				$B(E2)(W.u.)=4.0\times10^2 4$
1042.914	0_{+}	964.09 5	100	$78.7427 \ 2^{+}$	[E2]				B(E2)(W.u.)=3.6 10
		1042.926 22		$0.0 0^{+}$	E0			0.173 16	$X(E0/E2)=0.029 \ 2 \ (1988Su01).$
									$\rho(E0)=0.049 \ 8 \ (1988Su01).$
1117.874	2+	857.636 7	100 <i>3</i>	260.268 4+	E2				B(E2)(W.u.)=2.5 3
		1039.149 <i>10</i>	100 3	78.7427 2 ⁺	M1+E2+E0	+2.3 +5-3			B(E2)(W.u.)=0.79 12; B(M1)(W.u.)=0.00036 9 δ : from (n,n' γ). Other: +5.0 +25-16 from
		1117.04.2	26.2	0.0	F2				$(\alpha,2n\gamma)$.
1154 025	1-	1117.94 3	36 <i>3</i>	$0.0 0^{+} $ $78.7427 2^{+}$	E2 E1				B(E2)(W.u.)=0.24 <i>I</i>
1154.935	1	1076.240 <i>18</i> 1154.980 <i>15</i>	100.0 <i>5</i> 18.9 <i>7</i>	$0.0 0^{+}$	E1				
1172.385	3 ⁺	912.125 25	24.5 7	260.268 4+	M1+E2	-2.36 15			$B(M1)(W.u.)=1.07\times10^{-7}$ 13;
1172.383	3	912.123 23	24.3 /	200.208 4	MII+E2	-2.30 13			B(M1)(W.u.)=1.07×10 13; B(E2)(W.u.)=0.000325 15 δ : other: -3.7 +1-3 (α ,2n γ), -1.5 4 (n,n' γ), -2.7 7 (172 Tm β^-).
		1093.657 <i>13</i>	100 2	78.7427 2 ⁺	M1+E2	-4.0 3			B(M1)(W.u.)=9.8×10 ⁻⁸ 15;
									B(E2)(W.u.)=0.000591 21
									δ: others: $-14.6 + 21 - 26$ (α,2nγ), -2.7 6 (172 Tm β^-), $-7.2 + 9 - 14$ (n,n'γ).
1198.472	2-	1119.780 <i>13</i>	100	78.7427 2 ⁺	E1				p), (/).
1221.720	3-	961.478 12	100 <i>3</i>	260.268 4+	E1				
		1143.020 <i>15</i>	84 7	78.7427 2 ⁺	E1				
1263.028	4+	90.6440 <i>17</i>	89 <i>3</i>	1172.385 3+	M1+E2	-1.64 2	4.72		B(M1)(W.u.)=0.00233 21; B(E2)(W.u.)=3.5×10 ²
									δ: other: $-2.33 \ 15 \ (^{172}\text{Tm} \ \beta^{-})$.
		723.02 2	8.5 <i>3</i>	539.977 6 ⁺	E2				B(E2)(W.u.)=0.00140 11
		1002.75 2	100 2	260.268 4 ⁺	M1+E2	+13 +76-6			$B(M1)(W.u.)<1.5\times10^{-7}$; $B(E2)(W.u.)=0.0032$ 4
		1184.28 <i>3</i>	6.7 24	78.7427 2 ⁺	E2				B(E2)(W.u.)=9.E-5 4
1286.54	4+	746.60 <i>3</i>	35 <i>5</i>	539.977 6 ⁺					
		1026.27 6	100 3	260.268 4+	M1+E2(+E0)	+0.87 13			
		1208.0 <i>3</i>	29 5	$78.7427 \ 2^{+}$					
1330.693	4-	132.227 <i>13</i>	1.8 9	1198.472 2					
		1070.40 <i>3</i>	100 2	260.268 4+	E1				
1352.95	(5^{-})	812.96 <i>10</i>	55 3	539.977 6+					
	40+	1092.90 25	100 10	260.268 4+	774				D. (72) (72)
1370.07	10+	457.86 10	100	912.12 8+	E2				B(E2)(W.u.)=375 23
1375.815	5 ⁺	112.778 <i>3</i>	25 <i>1</i>	1263.028 4+	M1+E2	1.43 <i>3</i>	2.19		$B(M1)(W.u.)=0.0027 8$; $B(E2)(W.u.)=1.9\times10^2 6$

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult. [‡]	$\delta^{\#}$	$\alpha^{\&}$	${\rm I}_{(\gamma+ce)}$	Comments
1375.815	5 ⁺	203.438 5	100 2	1172.385	3 ⁺	E2		0.26		B(E2)(W.u.)=60 18
		835.85 7	10 2	539.977	6+	M1+E2	1.0 6			B(M1)(W.u.)=4.E-6 3; B(E2)(W.u.)=0.0026 18
		1115.54 5	9.3 10	260.268	4+	E2				B(E2)(W.u.)=0.0011 4
1405.008	0_{+}	250.035 7	6.0 4	1154.935	1-	[E1]				$B(E1)(W.u.)=9.7\times10^{-7} 17$
		287.139 <i>3</i>	100 14	1117.874		[E2]				B(E2)(W.u.)=5.9 13
		362.1		1042.914	0_{+}	E0			7.2 3	$X(E0/E2)=15.6 12$, $\rho(E0)=0.043 5$ (1988Su01).
		1326.10 7	88 <i>5</i>	78.7427		[E2]				B(E2)(W.u.)=0.0025 4
		1405.04 2		0.0	0_{+}	E0			4.5 2	$X(E0/E2)=2.93\ 20,\ \rho(E0)=0.014\ 2\ (1988Su01).$
1465.875	2+	267.14 20	0.04 1	1198.472		[E1]		0.027		$B(E1)(W.u.)=5.4\times10^{-6} 14$
		293.61 6	0.20 2	1172.385	3+	[M1,E2]				B(M1)(W.u.)=0.00102 13; B(E2)(W.u.)=5.4 7
		348.04 <i>6</i>	0.30 2	1117.874	2+	[M1,E2]		0.08 <i>3</i>		B(M1)(W.u.)=0.00092 10; B(E2)(W.u.)=3.4 4
		423.04 6	0.28 2	1042.914	0+	[E2]		0.028		B(E2)(W.u.)=2.42 24
		1205.62 8	2.8 <i>1</i>	260.268	4+	(E2)				B(E2)(W.u.)=0.129 10
		1387.093 [@] 4	100 <i>3</i>	78.7427	2+	M1+E2(+E0)	-5.1 + 11 - 16			B(M1)(W.u.)=0.0094 8
										δ: others: $-5.0 \ 5 \ (^{172}\text{Tm} \ \beta^{-}), \ -4.6 \ +13-20 \ (n,n'\gamma).$
		1465.93 <i>4</i>	77 3	0.0	0_{+}	E2				B(E2)(W.u.)=1.33 11
1476.784	2+	321.82 11	0.60 16	1154.935	1-	E1		0.017		$B(E1)(W.u.)=5.5\times10^{-7} 20$
		358.86 <i>6</i>	1.22 15	1117.874	2+	(E2)		0.044		B(E2)(W.u.)=0.28 8
		1216.35 <i>11</i>	12 2	260.268	4+					
		1397.92 5	100 <i>3</i>	78.7427	2+	M1+E2(+E0)	0.8 5			B(M1)(W.u.)=7.E-5 4; B(E2)(W.u.)=0.010 7
										X(E0/E2)<0.04 (1988Su01).
		1476.77 <i>7</i>	36 <i>1</i>	0.0	0_{+}	E2				B(E2)(W.u.)=0.0071 17
1510.179	6+	134.363 <i>18</i>	10.5 7	1375.815	5+	M1+E2	1.3 3	1.23 6		
		247.155 6	100 4	1263.028	4+	E2		0.136		
		969.81 <i>18</i>	6.9 5	539.977	6+					
1537.50	6+	251.43 [@] 12	8.2 19	1286.54	4+					
		625.1 5	9.4 19	912.12	8+					
		997.42 6	100 4	539.977	6+	M1+E2	+0.63 7			
1540.61	6-	187.5 <mark>b</mark> 3	5 <i>3</i>	1352.95	(5^{-})					
		209.96 10	24.1 11	1330.693	4-	(E2)				
		1000.62 <i>6</i>	100 4	539.977	6+	E1				
1549.150	3+	286.30 20	0.34 6	1263.028	4+	(M1)		0.183		
		431.29 8	0.32 3	1117.874	2+	(M1)		0.062		
		1288.82 <i>3</i>	29 <i>1</i>	260.268	4+	M1+E2	2.8 + 7 - 10			
		1470.42 <i>3</i>	100 3	78.7427	2+	M1+E2	-7.6 + <i>19</i> - <i>36</i>			δ: others: $-7.2 + 17 - 28$ (172 Tm $β^-$); $-11.4 + 26 - (α, 2nγ)$, $-7.0 + 15 - 20$ (n,n'γ).
1550.43	6-	174.7 10	100 4	1375.815	5 ⁺	(E1)		0.079		$B(E1)(W.u.)=7.6\times10^{-9} 5$
		197.6 <i>3</i>	7 1	1352.95	(5^{-})	[M1,E2]				$B(M1)(W.u.)=1.9\times10^{-8}$ 3; $B(E2)(W.u.)=0.00021$
		.			(-)	. / -J				4

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	${\rm I}_{\gamma}{}^{\dagger}$	\mathbf{E}_f \mathbf{J}_f^{π}	Mult.‡	$\delta^{\#}$	α&	Comments
1550.43	6-	1010.45 6	34.8 14	539.977 64	E1+M2	-0.38 5		B(E1)(W.u.)=1.20×10 ⁻¹¹ 8; B(M2)(W.u.)=7.8×10 ⁻⁶
1550.8		1290.5 7	100	260.268 4				
1557.58	7-	645.41 10	45 6	912.12 8				
		1017.63 <i>6</i>	100 4	539.977 6 ⁻¹	E1			
1599.870	1-	401.429 <i>16</i>	1.19 8	1198.472 2				
		1521.114 <i>24</i>	100 <i>3</i>	78.7427 2 ⁻¹				B(E1)(W.u.)=0.00122938 6
		1599.79 7	65 5	0.0				B(E1)(W.u.)=0.0018 5
1608.490	2+	131.83 <i>4</i>	0.20 2	1476.784 2 ⁺			1.4 2	
		142.56 2	2.0 1	1465.875 2 ⁺			1.1 2	
		436.102 <i>16</i>	4.9 2	1172.385 3				
		565.56 5	0.81 5	1042.914 0				
		1348.13 7	3.4 2	260.268 4				_
		1529.72 <i>4</i>	100 5	78.7427 2 ⁻¹		+10 3		B(E2)(W.u.)=0.55 3; B(M1)(W.u.)= 2.9×10^{-5} 15
		1608.56 <i>15</i>	83 5	$0.0 0^{4}$				B(E2)(W.u.)=0.35 6
1633.14	$(4)^{+}$	1372.88 6	100 5	260.268 4				
		1554.38 <i>15</i>	27 4	78.7427 2 ⁻⁴				
1640.557	4-	264.738 9	22.4 6	1375.815 5		-0.09 6	0.035 14	$B(E1)(W.u.)=(4.2\times10^{-6}\ 17); B(M2)(W.u.)=(2\ 3)$
		377.540 8	100 2	1263.028 4	, ,	-0.05 4	0.012 2	B(E1)(W.u.)=(6.E-6.3); B(M2)(W.u.)=(0.5.9)
		1380.23 <i>10</i>	1.2 4	260.268 4	[]			$B(E1)(W.u.)=1.6\times10^{-9}$ 9
1657.790	$(4)^{+}$	1397.50 <i>3</i>	100 10	260.268 4		-1.1 + 2 - 5		B(M1)(W.u.)=0.05 3; B(E2)(W.u.)=13 9
		1578.87 <i>12</i>	55 10	78.7427 2 ⁻¹				B(E2)(W.u.)=7.5
1662.810	3 ⁺	186.11 20	0.38 13	1476.784 2 ⁴	L / J		0.5 1	
		197.02 6	1.04 10	1465.875 2 ⁴			0.4 1	
		399.750 [@] 15	21 <i>I</i>	1263.028 4		-0.077	0.075	
		490.444 8	71 2	1172.385 3 ⁴		+0.04 4	0.044	δ : other: 0.8 3 (from ce in (n,γ)).
		544.82 20	0.97 21	1117.874 2				
		1402.53 <i>3</i>	28 1	260.268 4		+12 +9-4		
		1584.08 <i>10</i>	100 2	78.7427 2		+55 +94-22		
1666.12	(7^{+})	155.99 8	15.5 17	1510.179 6				
1650.55	(7 -)	290.28 6	100 5	1375.815 5	()			
1670.55	(7^{-})	120.21 10	100	1550.43 6	•		0.00.70	
1700.639	3+	151.55 6	0.99 17	1549.150 3 ⁴		. 0. 00. 10	0.88 18	
		437.60 2	5.8 2	1263.028 4 ⁴		+0.09 10	0.059	S4h +0.00 7 (= -1/-) +0.4 ()
		528.260 14	100 2	1172.385 3 ⁴ 260.268 4 ⁴		+0.01 3	0.037	δ : others: +0.09 7 (n,n' γ), <0.4 (n, γ).
		1440.38 3	14.8 5			+6.5 +22-14		
1706.447	5-	1621.92 <i>3</i> 65.8 <i>3</i>	53 1	78.7427 2 ⁴ 1640.557 4 ⁻		+17 4	14 3	
1/00.44/	3	196.38 <i>4</i>	6 3		. , ,		0.058	
		330.619 <i>21</i>	19 <i>I</i>			< 0.13		
			100 5		, ,	<0.15	0.020 4	
		443.29 [@] 4	26 1	1263.028 4	E1			

E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	$I_{\gamma}{}^{\dagger}$	$\mathrm{E}_f \qquad \mathrm{J}_f^\pi$	Mult.‡	$\delta^{\#}$	α ^{&}	$I_{(\gamma+ce)}$	Comments
1706.447	5-	1166.50 5	13 <i>1</i>	539.977 6 ⁺	E1				
		1446.20 6	6.6 6	260.268 4+					
1707.8?	2(-)	1447.51 25	100	260.268 4+					
1710.480	3 ⁽⁻⁾	538.126 <i>23</i> 1450.24 <i>7</i>	9.1 <i>6</i> 59 <i>7</i>	1172.385 3 ⁺ 260.268 4 ⁺	D				
		1430.24 / 1631.67 <i>6</i>	39 / 100 <i>7</i>	260.268 4 ⁺ 78.7427 2 ⁺	D D				
1749.205	4 ⁺	200.5 ^a 4	<4 ^a	1549.150 3 ⁺	E2		0.27		
17.15.200	•	373 ^b		1375.815 5 ⁺	_ _		0.27		
		486.160 <i>18</i>	58 <i>3</i>	1263.028 4+	M1+E2	+0.41 14	0.041 2		
		576.835 18	26.3 12	1172.385 3 ⁺	M1+E2	0.24 6	0.0284		
		1209.13 <i>10</i>	4.5 4	539.977 6+	(E2)				
		1488.94 3	100 2	260.268 4+	E2(+M1)	<-6			δ : other:0.0 +13-3 (α ,2n γ).
1555.065	(2) -	1670.49 <i>3</i>	46 1	78.7427 2 ⁺	E2				
1757.367	$(2)^{-}$	208.305 ^b 10 291.470 4	8.3 <i>11</i> 30 <i>4</i>	1549.150 3 ⁺ 1465.875 2 ⁺					
		535.696 12	30 <i>4</i> 19.3 <i>14</i>	1403.873 2 1221.720 3 ⁻					
		558.931 10	68 5	1198.472 2	M1(+E2)	< 0.7			
		602.472 [@] 6	100 7	1154.935 1	M1+E2	1.0 4			
		1678.5 ^b 3	42 9	78.7427 2 ⁺		1.0 /			Reported in $(\alpha,2n\gamma)$ only.
1778.86	5 ⁺	1238.73 8	100 12	539.977 6 ⁺	M1(+E2)	< 0.8			reported in (a,2n) omj.
		1518.68 <i>6</i>	79 <i>6</i>	260.268 4+	M1,E2				
1794.08	0_{+}	317.04 <i>14</i>	0.81 17	1476.784 2+					
		389.1		1405.008 0 ⁺	E0			0.31 1	X(E0/E2)=0.19 2 (1988Su01).
		751.22 1715.37 <i>5</i>	100 7	$1042.914 0^{+} 78.7427 2^{+}$	E0 E2			0.012 2	X(E0/E2)=0.043 14 (1988Su01). B(E2)(W.u.)>0.0044
		1794.04 9	100 /	$0.0 0^{+}$	E0			0.28 1	$X(E0/E2)=0.38 \ 3 \ (1988Su01)$. Other: 0.34 4
		-,, .,, .,							(1978La14,1985Ge02).
1802.65	6-	95.9 <i>3</i>	17 6	1706.447 5	D+Q				
		161.8 <i>3</i>	11 6	1640.557 4 ⁻					
		292.2 <i>3</i> 426.5 <i>3</i>	100 <i>11</i> 50 <i>11</i>	1510.179 6 ⁺ 1375.815 5 ⁺	D+Q				
1803.108	4 ⁺	145.21 5	2.6 5	1657.790 (4) ⁺	M1(+E2)	<1.4	1.07 13		
1005.100	•	162.20^{b} 25	2.03	1640.557 4	1111(122)	11.1	1.07 15		γ in $(\alpha,2n\gamma)$ only.
		337.85 [@] 9	3.3 5	1465.875 2+	(E2)		0.052		γ III (α,211γ) Omy.
		427.19 5	8.8 5	1375.815 5 ⁺	M1+E2	1.6 6	0.032		
		540.187 [@] 16	100 3	1263.028 4+	M1(+E2)	-0.03 + 10 - 8	0.035		
		630.706 <i>17</i>	31 <i>I</i>	1172.385 3+	M1(+E2)	-0.10 + 14 - 17	0.023		
		1263.16 9	3.1 4	539.977 6+	(E2)				
		1542.850 23	73 2	260.268 4+	E2(+M1)	+9 +11-3			
		1724.35 3	31 <i>I</i>	78.7427 2 ⁺	E2				

E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	\mathbb{E}_f	\mathtt{J}_f^{π}	Mult.‡	δ#	α &	$I_{(\gamma+ce)}$	Comments
1810.32	(8-)	139.87 6	100 10	1670.55	(7^{-})	D+Q				
		259.3 <i>3</i>	11 <i>1</i>	1550.8						
1821.583	3-	272.31 [@] 3	10 5	1549.150	3+					
		490 <i>I</i>		1330.693	4-					
		599.862 19	11 <i>I</i>	1221.720	3-					
		623.114 7	18 2	1198.472	2-					
		649.26 3	10 <i>I</i>	1172.385	3+					
		666.08 [@] 12	30 6	1154.935	1-					
		1743.27 <i>15</i>	100 14	78.7427						
1828.76	8-	288.0 <i>3</i>	87 38	1540.61	6-	(E2)				
400000	0-	916.66 <i>16</i>	100 8	912.12	8+	E1				
1839.80	9-	282.3 2	7 3	1557.58	7-					
		469.75 20	15 5	1370.07	10+	F1				
1841.84	(8 ⁺)	927.68 <i>10</i> 175.2 <i>3</i>	100 5	912.12 1666.12	8 ⁺ (7 ⁺)	E1				
1041.04	(0')	331.67 8	100 4	1510.179	6 ⁺	(E2)				
1849.173	2+	1589.03 7	51 5	260.268	4 ⁺	(E2)				
1049.173	2	1770.9 4	100 7	78.7427		M1+E2+E0				
		1849.06 <i>3</i>	63 4	0.0	0^{+}	(E2)				B(E2)(W.u.)=0.17 11
1853.46	8+	316.3 3	35 8	1537.50	6+	(22)				S(22)(**********************************
		483.26 12	73 7	1370.07	10^{+}					
		941.37 10	100 6	912.12	8+	(M1)				
1862.799	$(5)^{+}$	200.5 ^a 4	<17 ^a	1662.810	3+	E2		0.27		
		352.55 4	21 3	1510.179	6+	E2(+M1)	>2.7	0.050 4		
		599.86 <i>4</i>	46 <i>6</i>	1263.028	4+	E2+M1	>1			
		1322.66 9	33 3	539.977	6+	E2(+M1)	>1.6			
		1602.54 <i>3</i>	100 3	260.268	4+	E2(+M1)	+21 +45-9			
1869.634	$(4,5)^{-}$	163.165 20	19 <i>I</i>	1706.447	5-	M1(+E2)	< 0.8	0.80 7		
		229.080 <i>10</i> 493.89 <i>9</i>	100 3	1640.557	4 ⁻ 5 ⁺	M1(+E2)	<1.4	0.28 6		
			19 4	1375.815						
1004 (16	0+	1329.72 ^b 7	10 <i>I</i>	539.977	6+					
1894.616	0_{+}	739.60 4	1.7 6	1154.935	1-	(E2)				D(F2)(W.), 0.0047
		776.71 <i>7</i> 1815.70 <i>7</i>	2.1 <i>4</i> 100 <i>7</i>	1117.874 78.7427	2 ⁺	(E2) E2				B(E2)(W.u.)>0.0047 B(E2)(W.u.)>0.0032
		1894.53 8	100 /	0.0	0+	E0			0.073 2	X(E0/E2)=0.14 I(1988Su01).
1899.30?		1639.03 20	100	260.268	4 ⁺	EU			0.073 2	$\Lambda(L0/L2) - 0.14 I(17003001).$
1907.48	(12^+)	537.4 1	100	1370.07	10 ⁺	(E2)				$B(E2)(W.u.)=4.3\times10^2 6$
1907.48	(5,6)	253.75 10	39 7	1666.12	(7 ⁺)	(L2)				D(D2)(11.u.)-1.3/10 0
1717.01	(5,0)	410.8 [@] 3	41 4	1510.179	6 ⁺					
		1379.76 <i>14</i>	100 11	539.977	6 ⁺					
		1517.10 17	100 11	337.711	J					

$\gamma(^{172}\text{Yb})$ (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f \mathbf{J}_f^{π}	Mult.‡	$\delta^{\#}$	α &	Comments
1919.84	(5,6)	1658.86 25	37 12	260.268 4+				
1921.80	(7^{-})	119.3 5	33 8	1802.65 6				
		215.4 5	100 17	1706.447 5				
		255.7 5	42 8	1666.12 (7+)			
		411.4 5	92 17	1510.179 6 ⁺				
1927.016	5+	416.65 ^a 8	<21 ^a	1510.179 6 ⁺	M1(+E2)	< 0.7	0.061 7	
		551.078 [@] 19	100 4	1375.815 5 ⁺	M1+E2	+1.5 5	0.020 4	
		664.07 5	26 2	1263.028 4+	M1(+E2)	<1.2	0.017 4	
		1387.18 [@] 2	<30	539.977 6 ⁺				
		1666.38 20	68 2	260.268 4+	E2+M1	+6.9 +19-12		
1956.351	2+	734.77 <i>4</i>	6.7 13	1221.720 3-				
		839.4 <i>4</i>	6.43 16	1117.874 2+				
		1696.00 <i>10</i>	81 5	260.268 4+				
		1877.89 <i>16</i>	100 9	78.7427 2 ⁺	M1+E2+E0			
		1956.90 [@] 18	75 9	$0.0 0^{+}$	[E2]			B(E2)(W.u.)=0.33 16
1968.20	(9^{-})	157.92 8	100 9	1810.32 (8				2(22)(1141) 0100 10
1,00.20	(-)	297.1 3	29 3	1670.55 (7				
1975.63	(4^{+})	1435.23 25	36 <i>6</i>	539.977 6+	,			
	` /	1714.95 25	100 19	260.268 4+				
		1897.42 20	53 6	78.7427 2 ⁺				
2007.98	(6^{+})	350.65 20	100 11	1657.790 (4)	+			
		1468.42 25	80 <i>7</i>	539.977 6+				
		1746.58 [@] 25	38 4	260.268 4+				
2009.80	1+	811.6 ^b 4	9 4	1198.472 2				
		854.435 [@] <i>b</i> 16	27 4	1154.935 1-				
		892.11 [@] 4	5.0 4	1117.874 2+				
		1931.28 9	94 7	78.7427 2 ⁺	E2			
		2009.92 15	100 11	$0.0 0^{+}$	(M1)			
2039.38	(9^+)	197.2 3	100 11	1841.84 (8 ⁺				
2037.30	()	373.6 <i>3</i>	100	1666.12 (7+				
2046.99	$(2)^{+}$	90.645 <i>4</i>	16 3	1956.351 2 ⁺) (22)			
	(-)	892.11 <i>4</i>	6.0 4	1154.935 1				
		1787.85 [@] 20	44 5	260.268 4+				
		1968.19 9	100 20	78.7427 2 ⁺	E2			
2064.04	(8^{-})	142.3 3	28 6	1921.80 (7-				
	(0)	261.6 3	100 11	1802.65 6	,			
		397.7 <i>3</i>	17 6	1666.12 (7 ⁺)			
	4+	146.03 4	0.25 3	1927.016 5+	M1(+E2)	<1.4	1.05 13	
2073.114	4 '	140.03 4					1.00 1.0	

17

$E_i(level)$	\mathtt{J}_{i}^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	E_f	\mathtt{J}_f^π	Mult.‡	$\delta^{\#}$	α &
2073.114	4+	270.028 8	6.48 15	1803.108	4+	M1+E2	+0.79 +21-31	0.172 15
		323.889 15	5.03 8	1749.205	4+	M1+E2	+0.40 8	0.121 4
		366.684 <i>24</i>	0.97 4	1706.447	5-	E1		0.0123
		372.507 12	8.93 <i>17</i>	1700.639	3+	M1+E2	+0.71 7	0.073 2
		410.308 12	6.62 10	1662.810	3 ⁺	M1+E2	+0.74 9	0.056 2
		415.7 4	0.17 8	1657.790	$(4)^{+}$	(M1,E2)		0.048 20
		432.549 13	5.49 15	1640.557	4-	E1(+M2)	+0.04 +9-7	
		524.05 <i>4</i>	0.75 <i>3</i>	1549.150	3+	E2+M1	+2.8 5	0.018
		607.141 [@] 18	1.66 17	1465.875	2+	E2		0.0112
		697.300 <i>16</i>	20.6 4	1375.815	5 ⁺	M1(+E2)	-0.014 10	0.0181
		810.064 15	55.8 8	1263.028	4+	M1+E2	-0.084	0.0124
		900.724 20	100.0 <i>13</i>	1172.385	3+	M1+E2	+0.068 9	
		1533.27 12	0.09 1	539.977	6+			
		1812.85 <i>4</i>	0.65 3	260.268	4+	E2+M1	+6.0 +57-19	
		1994.36 <i>6</i>	0.50 3	78.7427		E2		
2075.27	(6^{+})	565.6 <i>3</i>	72 19	1510.179	6+			
		1535.18 <i>12</i>	100 10	539.977	6+			
		1815.2 <i>3</i>	38 6	260.268	4+			
2076.172	$(1)^{-}$	365.72 <i>3</i>	4.7 23	1710.480	3(-)			
		476.329 18	29 3	1599.870	1-			
		610.963 [@] b 23	7.1 12	1465.875	2+			
		854.435 <i>16</i>	46 7	1221.720	3-	E2		
		877.65 <i>3</i>	12.7 7	1198.472	2^{-}			
		1997.39 <i>15</i>	100 12	78.7427				
2084.81?		708.99 20	100	1375.815	5+			
2100.22	(4^{+})	1560.09 20	48 19	539.977	6+			
		1840.3 <i>3</i>	100 19	260.268	4+			
2102.944	1-	208.315 10	3.0 4	1894.616	0+			
		697.86 16	1.6 3	1405.008	0+			
		2024.38 18	100 11	78.7427		E1		
21.45.02	(10=)	2102.4 3	49 3	0.0	0+			
2145.03	(10^{-})	176.9 3	100 8	1968.20	(9-)	(E2)		
2154.20	(7)	334.8 3	47 5	1810.32	(8^{-})	(E2)		
2154.30	(7)	483.6 3	100 2 <i>1</i> 71 <i>14</i>	1670.55	(7 ⁻) 6 ⁻			
2156.43	(6 ⁺)	603.7 <i>3</i> 1616.45 <i>3</i>	100	1550.43 539.977	6 ⁺			
2175.059	(0) 3 ⁺	517.29 10	4.9 8	1657.790	$(4)^{+}$			
2175.039	3	566.49 <i>5</i>	9.4 8	1608.490	2 ⁺	E2(+M1)	>0.8	
		625.95 4	37.9 <i>16</i>	1549.150	3 ⁺	E2(+M1)	>3	
		709.133 17	100 4	1465.875	2+	E2+M1	+4.9 +10-8	
		1002.74 2	31 15	1172.385	3 ⁺	22 1 1711	1 1.7 110 0	
		1002.712	51 15	11,2.505	_			

$E_i(level)$	\mathtt{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.‡	δ#	α &	Comments
2175.059	3 ⁺	1634.78 ^b 20		539.977	6+				E_{γ} : from (α,2nγ) only. It is suspect since a transition with ΔJ=3 is not expected.
		1914.80 <i>3</i>	72.9 14	260.268	4+	M1+E2	-0.291 24		transition with 23–3 is not expected.
		2096.33 5	8.5 4	78.7427		M1+E2	+0.68 +16-11		
2176.20	$(1)^{-}$	576.31 7	100 8	1599.870	1-	M1+E2	0.8 4		
		1021.27 5	90 8	1154.935	1-				
		1133.56 [@] b 5	67.8	1042.914	0^{+}				
2181.97	$(4,5,6)^+$	254.39 24	41 12	1927.016	5+				
	()-)-)	319.174 22	100 7	1862.799	$(5)^{+}$	M1(+E2)	< 0.5		
		524.05 ^b 6		1657.790	$(4)^{+}$, ,			
2192.130	5 ⁺	119.023 15	1.0 2	2073.114	4 ⁺	[M1,E2]		1.9 2	
21/2.150	5	329.39 5	4.5 4	1862.799	$(5)^{+}$	M1(+E2)	<1	0.108 18	
		389.44 5	2.3 3	1802.65	6-	1111(1112)		0.100 10	Mult=E1 from ce data is in conflict with ΔJ^{π} .
		413.2 3	1.2 5	1778.86	5 ⁺	[M1,E2]		0.049 20	That 21 from 00 data is in connect with 20 f
		534.29 7	4.1 6	1657.790	$(4)^{+}$	M1(+E2)	<2	0.027 9	
		681.82 <i>4</i>	22.8 8	1510.179	6+	M1+E2	+0.10 7	0.0191	
		816.327 20	37.8 8	1375.815	5+	M1+E2	+0.20 14	0.0120 5	
		929.106 20	100.0 23	1263.028	4+	M1+E2	-0.066 9		
		1019.79 <i>4</i>	3.8 <i>3</i>	1172.385	3+	(E2)			
		1652.32 10	0.47 10	539.977	6+	, ,			
		1931.76 7	1.23 12	260.268	4+	(M1,E2)			
2193.02	(10^{-})	364.2 <i>3</i>	100 7	1828.76	8-	(E2)			
		823.0 <i>3</i>	22 7	1370.07	10^{+}				
2193.16	(4^{+})	816.95 25	23 8	1375.815	5+				
		930.13 <i>16</i>	100 8	1263.028	4+				
		1653.64 25	75 14	539.977	6+				
2194.331	(1^+)	585.71 [@] 3	4.7 <i>7</i>	1608.490	2+				
		717.502 18	17.3 19	1476.784	2+				
		728.20 10	5.9 7	1465.875	2+				
		995.740 [@] 21	52 <i>4</i>	1198.472	2-				
		2115.5 ^b 3	100 15	78.7427	2+				
2195.03	$(1,2^+)$	437.67 6	2.5 4	1757.367	$(2)^{-}$				
2173.03	(1,2)	728.8 3	5.0 13	1465.875	2+				
		1152.08 10	32 3	1042.914	0^{+}				
		2195.4 3	100 13	0.0	0^{+}				
2199.47	(11^{-})	359.9 <i>3</i>	19 6	1839.80	9-				
	(**)	829.2 3	100 8	1370.07	10 ⁺				
2210	1(-)	2131	100	78.7427					
	•	2210	65 6	0.0	0+	[E1]			B(E1)(W.u.)=0.00175 33
		358.9 <i>3</i>	81 <i>13</i>	1853.46	8+	r — - J			\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathtt{J}_f^{π}	Mult.‡	δ#	<u>α</u> &
2212.52	(10^{+})	842.6 3	100 19	1370.07	10+			
2213.307	$3^{+},4^{+}$	512.54 5	56 4	1700.639	3+	M1+E2	0.6 3	0.034 5
		664.07 5	31 2	1549.150	3+	M1(+E2)	<1.2	0.017 4
		950.37 7	16 3	1263.028	4+	3.64 (330)		
2214.06	(1-)	1040.99 3	100 3	1172.385	3 ⁺	M1(+E2)	< 0.9	
2214.06	(1^{-})	319.74 12	2.6 16	1894.616	0_{+}			
		605.7 ^b 4	28 10	1608.490	2+			
		746.598 [@] b 16	18 <i>7</i>	1465.875	2+			
		2135.14 <i>14</i>	100 9	78.7427	2+			
2225.3	9-	161.3 <i>3</i>	25 6	2064.04	(8^{-})			
		303.4 <i>3</i>	100 19	1921.80	(7^{-})			
2228.63	2+	272.31 <i>3</i>	3.8 21	1956.351	2+			
		565.02 [@] 3	14.4 9	1662.810	3 ⁺			
		1185.60 12	12.1 4	1042.914	0+			
		1968.19 9	100 20	260.268	4+			
2248.19		1336.06 12	100	912.12	8+			
2256.3	(10^+)	414.5 3	100	1841.84	(8^{+})			
2285.399	4+	358.45 <i>3</i>	7.3 4	1927.016	5+	M1+E2	1.3 2	0.065 5
		422.61 3	8.3 4	1862.799	$(5)^{+}$	(M1,E2)		0.046 19
		482.23 <i>4</i>	35 2	1803.108	4+	M1+E2	-0.107	0.046
		536.194 19	39 2	1749.205	4+	M1+E2	-0.177	0.035
		584.725 17	20.7 6	1700.639	3 ⁺	M1(+E2)	+0.06 9	0.0282
		622.605 22	9.7 <i>7</i>	1662.810	3 ⁺	M1(+E2)	< 0.4	0.023 1
		644.86 <i>6</i>	7.1 6	1640.557	4-			
		909.70 <i>6</i>	39 <i>3</i>	1375.815	5+	E2(+M1)	>1.3	
		1022.370 <i>21</i>	85 2	1263.028	4+	M1+E2	+0.75 17	
		1113.05 5	100 5	1172.385	3+	M1+E2	-0.184	
		2024.9 3	3.4 4	260.268	4+	M1(+E2)	+0.46 44	
		2206.72 ^b 15	0.5 3	78.7427	2+	(E2)		
2299.29		489.2 <i>3</i>	56 22	1810.32	(8^{-})	,		
		628.4 <i>3</i>	100 22	1670.55	(7^{-})			
2307.786	$3^{+},4^{+}$	607.141 18	100 10	1700.639	3+	E2		
		649.6 5	8.7 25	1657.790	$(4)^{+}$			
		758.74 8	14 3	1549.150	3+	M1		
		2047.55 15	2.2 5	260.268	4+			
2312.90	(2^{+})	1026.43 8	36 <i>3</i>	1286.54	4+			
		1269.71 24	25 15	1042.914	0_{+}			
		2233.6 ^b 3	100 25	78.7427	2+			
2316.97	$1,2^{(+)}$	422.351 ^b 16	5.5 20	1894.616	0+			
2310.77	1,2	2238.52^{b} 20	100 20	78.7427				
		2230.32 20	100 20	10.1421	Ζ.			

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	J_f^π	Mult.‡	$\delta^{\#}$	α&
2327.58	(2+)	850.69 9	2.9 3	1476.784	2+			
		861.7 ^b 3	9 3	1465.875	2+			
		1172.68 11	14 8	1154.935	1-			
2240.7	(11=)	2327.3 3	100 17	0.0	0+	(E2)		
2340.7	(11^{-})	195.7 <i>3</i> 372.3 <i>3</i>	100 8 60 8	2145.03 1968.20	(10^{-}) (9^{-})			
2341.86	$(0^+,1^+,2^+)$	294.819 ^b 17	2.0 6	2046.99	$(2)^{+}$			
2541.00	(0 ,1 ,2)	733.360 25	7.1 8	1608.490	2+			
		2263.75 [@] 20	100 25	78.7427	2 ⁺			
2343.715	4+	151.55 6	4.4 8	2192.130	5 ⁺	[M1,E2]		0.88 18
		416.65 <mark>a</mark> 8	<9.5 <mark>a</mark>	1927.016	5+	M1(+E2)	< 0.7	0.061 7
		480.84 10	13.5 14	1862.799	$(5)^{+}$	M1(+E2)	<1.3	0.038 9
		540.187 [@] <i>b</i> 16		1789	(4^{+})			
		594.538 19	46 <i>3</i>	1749.205	4+	M1(+E2)	+0.23 +18-31	0.026
		643.04 3	25.0 13	1700.639	3+	M1(+E2)	< 0.6	0.0222
		680.7 ^b 4	12 5	1662.810	3 ⁺			
		703.06 ^b 8	15.0 16	1640.557	4-) / (F2	0.02.12	
		967.89 <i>5</i> 1080.68 <i>4</i>	21.0 <i>10</i> 100 <i>3</i>	1375.815 1263.028	5 ⁺ 4 ⁺	M1+E2 M1+E2	-0.93 <i>13</i> -0.22 <i>12</i>	
		1171.31 11	2.8 7	1172.385	3 ⁺	WII+EZ	-0.22 12	
		1803.97 ^b 15	1.3 2	539.977	6 ⁺			
		2083.41 6	24.0 8	260.268	4+	M1+E2	+0.41 14	
		2265.02 8	1.45 <i>21</i>	78.7427	2+	(E2)		
2375.37	$(1^+,2)$	272.31 3	7.4	2102.944	1-			
		365.72 3	6 3	2009.80	1+			
		712.51 <i>4</i> 2296.2 <i>4</i>	6.3 <i>7</i> 100 <i>16</i>	1662.810 78.7427	3 ⁺ 2 ⁺			
2387.706	$(1^+, 2^+)$	193.354 6	22 2	2194.331	(1^+)			
2307.700	(1 ,2)	$630.79^{a@}$ 3	<18 ^a	1757.367	$(2)^{-}$			
		839.4 4	20 5	1549.150	3+			
		1216.01 [@] 11	56 <i>6</i>	1172.385	3 ⁺			
		1233.51 [@] 16	27 5	1154.935	1-			
		1269.71 24	91 <i>54</i>	1117.874	2+			
		1344.32 [@] b 12	100 14	1042.914	0^{+}			
2392.3		1852.3 4	100	539.977	6+			
2404.8	$(0^-,1^-,2^-)$	855 ^b	<260	1549.150	3 ⁺			
		2326	38	78.7427	2+			
2411.4	(10^{-})	186.2 <i>3</i>	13 6	2225.3	9-			

						, .	
$E_i(level)$	${\rm J}_i^\pi$	$\mathrm{E}_{\gamma}^{\dagger}$	$_{\mathrm{I}_{\gamma}}^{\dagger}$	E_f	\mathbf{J}_f^{π}	Mult.‡	Comments
2411.4	(10-)	347.4 3	100 13	2064.04	(8-)		
2464.09	(2^{+})	250.035 7	51 4	2214.06	(1^{-})		
2465.22	(7,8)	1242.29 <i>13</i> 310.6 <i>3</i>	100 <i>9</i> 92 <i>15</i>	1221.720 2154.30	3 ⁻ (7)		
2403.22	(7,0)	656.0 <i>3</i>	62 15	1810.32	(8)		
		793.9 3	100 23	1670.55	(7^{-})		
2480.037	$(1^+,2^+)$	523.82 ^b 3	3.5 4	1956.351	2+		
		585.71 [@] <i>b</i> 3	0.90 13	1887			
		630.79 ^a 3	<1.0 ^a	1849.173	2+		
		816.35 [@] <i>b</i> 10	2.6 8	1662.810	3+		
		871.564 <i>21</i>	5.2 4	1608.490	2+		
		1002.81 [@] b 4	6.4 5	1476.784	2+		
		1013.85 [@] <i>b</i> 3 1281.89 <i>13</i>	6.1 8 4.1 <i>5</i>	1465.875 1198.472	2 ⁺ 2 ⁻		
		2401.39 8	100 8	78.7427		(E2)	
2492.2	(11^{+})	452.8 <i>3</i>	100	2039.38	(9^+)	(E2)	
2518.7	(14^{+})	611.2 3	100	1907.48	(12^{+})	(E2)	B(E2)(W.u.)=394 +60-45
2554.2	(12^{-})	213.6 <i>3</i> 409.3 <i>3</i>	100 <i>14</i> 100 <i>14</i>	2340.7	(11^{-})		
2573	1	409.3 3 2494	51 9	2145.03 78.7427	(10^{-}) 2^{+}		
	•	2573	100	0.0	0_{+}		
2607.2	(12^{+})	394.7 3	100	2212.52	(10^{+})		
2607.3		1408.8 <i>3</i> 1434.5 <i>3</i>	81 <i>15</i> 44 <i>15</i>	1198.472 1172.385	2 ⁻ 3 ⁺		
		1489.8 [@] 3	100 15	1172.383	2 ⁺		
2609.2	(11^{-})	383.9 3	100 13	2225.3	9-	(E2)	
2612	1	2533	70 13	78.7427	2+	()	
		2612	100	0.0	0+		
2629.8 2636.1	(12^{-}) (13^{-})	436.8 <i>3</i> 436.7 <i>3</i>	100 42 <i>17</i>	2193.02 2199.47	(10^{-}) (11^{-})		
2030.1	(13)	728.6 3	100 17	1907.48	(11^{+})		
2653.3		353.9 <i>3</i>	100 40	2299.29			
		685.2 3	100 40	1968.20	(9-)		
2689.8 2746.5	(9^{-}) (12^{+})	224.6 <i>3</i> 490.2 <i>3</i>	100 100	2465.22 2256.3	$(7,8)$ (10^+)		
2786.8	(12^{-}) (13^{-})	490.2 3 232.7 <i>3</i>	50 <i>10</i>	2256.3 2554.2	(10^{-}) (12^{-})		
	(10)	446.0 <i>3</i>	100 20	2340.7	(11^{-})		
2840.8	(12-)	429.4 3	100	2411.4	(10^{-})	(E2)	
2856.4	(10 ⁻)	166.6 3	100	2689.8	(9 ⁻)		
3002	1	2923	51 10	78.7427	2'		

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	$I_{\gamma}{}^{\dagger}$	\mathbf{E}_f	J_f^π	Mult.‡	Comments
3002	1	3002	100	0.0	0+		
3017	1	2938	100		2+		
		3017	54 <i>24</i>		0_{+}		
3020.0	(13^{+})	527.8 <i>3</i>	100	2492.2	(11^{+})		
3034.2	(14^{-})	247.4 <i>3</i>	40 20		(13^{-})		
		480.0 <i>3</i>	100 40		(12^{-})		
3043.9	(14^{+})	436.7 <i>3</i>	100 40		(12^{+})		
3044.5	(11^{-})	188.1 <i>3</i>	100		(10^{-})		
3072	1 ⁽⁻⁾	2993	100		2+		
		3072	76 <i>17</i>		0+	[E1]	B(E1)(W.u.)=0.00053 17
3096	1	3017	185 77	78.7427			
		3096	100		0_{+}		
3118	1(-)	3039	100		2+		
		3118	63 19		0_{+}	[E1]	B(E1)(W.u.)=0.00037 17
3134.6	(14^{-})	504.8 <i>3</i>	100		(12^{-})		
3160	1 ⁽⁻⁾	3081	100	78.7427			
		3160	54 10	0.0	0_{+}	[E1]	B(E1)(W.u.)=0.00072 22
3174	1(-)	3096	227 45	78.7427			
		3174	100		0_{+}	[E1]	B(E1)(W.u.)=0.00057 17
3198.4	(16^{+})	679.7 <i>5</i>	100	2518.7	(14^{+})		
3246	1(-)	3167	100		2+		
		3246	73 21		0_{+}	[E1]	B(E1)(W.u.)=0.00048 20
3252.9	(12^{-})	208.4 3	100	3044.5	(11^{-})		
3253	1	3174	46 11		2+		
		3253	100		0+		
3309.5	(14^{+})	563.0 <i>3</i>	100		(12^{+})		
3393	1(-)	3314	100	78.7427			
		3393	57 9		0_{+}	[E1]	B(E1)(W.u.)=0.00075 19
3481.6	(13^{-})	228.7 <i>3</i>	100		(12^{-})		
3545	1 ⁽⁻⁾	3466	100		2+		
		3545	40 9		0+	[E1]	B(E1)(W.u.)=0.00085 28
3604	1	3525	76 13	78.7427			
		3604	100		0+		
3635	1(-)	3556	100	78.7427			
		3635	61 8		0+	[E1]	B(E1)(W.u.)=0.00135 32
3863	1	3784	100	78.7427			
		3863	88 19	0.0	0_{+}		

[†] From weighted averages when data of comparable precision are available from different γ -ray studies. In many cases, however, values are from (n,γ) E=th and/or

- ¹⁷²Lu ε decay for low-spin levels. [‡] From ce data in ¹⁷²Lu ε decay, $(\alpha,2$ n $\gamma)$ and (n,γ) E=th. [#] From $\gamma(\theta,t)$ and/or ce data in ¹⁷²Lu ε decay.
- [®] The least-squares fit gives a poor fit for this transition. The fitted value (level energy difference) deviates up to about four times the quoted uncertainty.
- & Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.
- ^a Multiply placed with undivided intensity.
 ^b Placement of transition in the level scheme is uncertain.

Level Scheme

Intensities: Relative photon branching from each level

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

---- → γ Decay (Uncertain)

Legend

0.0

stable

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

γ Decay (Uncertain) 1.084 1.084 1.082 13.5 2387.706 (1+,2) 2375.37 4⁺ (0⁺,1⁺,2⁺ 2343.715 2341.86 $\overline{(11^{-})}$ 2340.7 (1^{+}) 2194.331 2192.130 (10^{-}) 2145.03 1 2102.944 $(2)^{+}$ 2046.99 2009.80 (9-) 1968.20 5+ 1927.016 $(5)^{+}$ 1862.799 (4^{+}) 1789 (2) 1757.367 4^{+} 1749.205 1700.639 3+ 1662.810 $\frac{4^{-}}{2^{+}}$ 1640.557 0.5 ns 2 1.1 ps 2 1608.490 1549.150 1375.815 0.21 ns 6 1263.028 0.49 ns 3 1172.385 8.14 ns 17 1154.935 1117.874 3.7 ps 4 1042.914 3.3 ps 9 0^{+} 539.977 16.6 ps 15 260.268 0.122 ns 8 78.7427 1.65 ns 5

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

---- γ Decay (Uncertain)

 $^{172}_{\,70}\mathrm{Yb}_{102}$

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

Legend

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

---- γ Decay (Uncertain)

 $^{172}_{\,70}\mathrm{Yb}_{102}$

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

---- γ Decay (Uncertain)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

---- → γ Decay (Uncertain) 1853.46 2⁺ (8⁺) 1849.173 0.8 ps 5 1841.84 9-1839.80 8-1828.76 3⁻ (8⁻) 1821.583 1810.32 4⁺ 6⁻ 1803.108 1802.65 5⁻ (7⁻) (7⁺) 1706.447 1670.55 1666.12 $\overline{(4)^{+}}$ 1657.790 0.05 ps 3 $\frac{4^{-}}{7^{-}}$ 1640.557 0.5 ns 2 1557.58 1550.8 1549.150 1540.61 1537.50 6-6+ 6+ 1510.179 1465.875 $0.47~\mathrm{ps}~3$ 5+ 1375.815 0.21 ns 6 1.32 ps 8 10+ 1370.07 1330.693 4^{-} 1263.028 0.49 ns 3 1221.720 1198.472 1172.385 8.14 ns 17 1154.935 912.12 3.5 ps *3* 539.977 16.6 ps 15 260.268 0.122 ns 8 78.7427 1.65 ns 5 0.0 stable

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

γ Decay (Uncertain)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

γ Decay (Uncertain) $(4)^{+}$ 1657.790 0.05 ps 3 4⁻ (4)⁺ 1640.557 $0.5~\mathrm{ns}~2$ 1633.14 1.1 ps 2 2+ 1608.490 1⁻ 7⁻ 1599.870 11 fs 3 1557.58 1550.8 1550.43 6 $3.6 \, \mu s \, 1$ 3+ 1549.150 1540.61 1537.50 6 6+ $\frac{\frac{6^{+}}{6^{+}}}{\frac{2^{+}}{2^{+}}} \\
\frac{5^{+}}{(5^{-})}$ 1510.179 48 ps 11 1476.784 0.47 ps 3 1465.875 1375.815 0.21 ns 6 . 1352.95 4^{-} 1330.693 4+ 1286.54 4^+ 1263.028 0.49 ns 3 1198.472 1172.385 8.14 ns 17 1154.935 3.7 ps 4 1117.874 0^+ 1042.914 3.3 ps 9 8+ 912.12 3.5 ps *3* 539.977 16.6 ps 15 6+ 260.268 0.122 ns 8 78.7427 1.65 ns 5 0.0 stable

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

$$^{172}_{\,70}\mathrm{Yb}_{102}$$

Band(R): K^{π} =(5 $^-$) band

(9-) 2741

(8-) 2545

Band(P): $K^{\pi}=(4^+)$ band

<u>(6⁺)</u> 2333

119

2073.114

Band(Q): K^{π} =(3⁺) band member

 (7^{-})

 (6^{-})

4+ 2285.399

Band(S): $K^{\pi}=(1^+)$ band

2228.63

Band(O): K^{π} =(1⁺) band

 (4^+) 2193.16 5^+ 2192.130

3+ 2175.059

(1⁺) 2194.331

2346

2180

Band(N): $K^{\pi}=0^+$ band

 (4^+) 2100.22 (3^+) 2108

0+ 1894.616

1956.351

$$^{172}_{70} \mathrm{Yb}_{102}$$

(4⁺) 2599.7

 (6^{+})

(5⁺)

Band(T): $K^{\pi}=(4^+)$ band

2343.715

$$^{172}_{\,70}\mathrm{Yb}_{102}$$

	Hi	story	
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	E. Browne, Huo Junde	NDS 87,15 (1999)	1-Nov-1998

 $Q(\beta^{-})=-1373.4\ 16$; $S(n)=7464.63\ 6$; $S(p)=7980\ 5$; $Q(\alpha)=738.6\ 16$ 2012Wa38

Note: Current evaluation has used the following Q record -1374.3 167464.60 107980 5 740.1 16 1995Au04.

¹⁷⁴Yb Levels

Values of the rotational parameters shown for each band were obtained from least-squares fits to the adopted experimental energies. See 1981Gr01 for additional rotational parameters.

			Cros	s Refe	Ference (XREF) Flags
	A B C D E F	174 Yb(n,n' γ) 174 Tm β^- dec	22 keV H 44.53 eV I 44.51-307.1 eV J K ay L	17 Ce 17 17	74 Lu ε decay (3.31 y) M 174 Yb(pol p,p), (pol p,p') M 173 Yb(d,p),(d,p γ) M 173 Yb(d,p),(d,p γ) M 174 Yb(e,e), (e,e') M 174 Yb(e,c), (e,e') M 174 Yb(p,p) E=19 MeV Q 172 Yb(t,p) E=15 MeV M 175 Lu(t, α)
$\frac{\text{E(level)}^{\dagger}}{0.0^{\#}}$	$\frac{J^{\pi \ddagger}}{0^{+}}$	T _{1/2}	XREF		Comments
	0.	stable	ABCDEFGHIJKLMNO) QK	Isotope shifts: 1994Ma57, 1991Ma48, 1991Ki14, 1991Ji06, 1990Bi08, 1992Ku21.
76.471 [#] <i>I</i>	2+	1.79 ns <i>4</i>	ABCDEFGHIJKLMN	R	μ =+0.676 8 Q=2.12 25 J ^π : 76.471 E2 γ to 0 ⁺ . T _{1/2} : weighted average of: 1.74 ns 9, γ ce(L)(t) (1966Fu03); 1.8 ns 1, $\gamma\gamma$ (t) (1966Ja16); 1.80 ns 5, py(t) in Coul. ex. (1966Ti01); 1.91 ns 21, $\alpha\gamma$ (t) in Coul. ex. (1962Bi05); 1.87 ns 12 (from B(E2),1963Bj04); 1.74 ns 5 (from B(E2),1974Sh12,1975Wo08). μ : Mossbauer (1971He03,1989Ra17). Other value: 0.679 16 (1968Mu01), relative to μ (170 Yb,84)=0.675 12. Q: Mossbauer (1971He03,1971Pl03,1989Ra17). Deduced using Q(170 Yb,84)=2.12 36.
253.117# 2	4+	144 ps 4	ABCDEFGHIJKLMN	QR	Q=-1.8 <i>12</i> T _{1/2} : from 1977Si15, recoil distance, Coul. ex. J ^π : L=4 in (t,p). Q: Coulomb excitation reorientation (1970McZQ,1989Ra17).
526.034 [#] 9	6+	16 ps 2	ABC EF HIJKLMN	QR	$T_{1/2}$: weighted average of: 16.3 ps 24 (1977Si15) and 14 ps 4 (1976Wa06), recoil distance in Coulomb excitation. J^{π} : 273 γ E2 to 4 ⁺ .
889.93 [#] 5	8+	3.8 ps 2	A EF HI K	Q	T _{1/2} : weighted average of: 3.7 ps 2 (1977Si15), 3.6 ps 5 (1976Wa06), recoil distance in Coul. ex., and 4.0 ps 3 (1977Ke06,1974Ke04), Doppler broadening in Coul. ex. J ^π : populated in Coul. ex.
1318.361 [@] 6	2-	0.491 ns <i>13</i>	ABC EFG K	Q	$T_{1/2}$: weighted average of 0.51 ns 3, $\gamma\gamma(t)$, 174 Lu ε decay (1972MaZS,1973ScYS) and 0.486 ns 15, $\gamma\gamma(t)$, 173 Yb(n, γ) E=thermal (1974Lo13). J $^{\pi}$: 1318.3 M2 γ to 0 $^{+}$. γ ray reduced transition probability ratios of transitions deexciting this level are consistent with

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF		Comments
1336 [#] <i>I</i>	10 ⁺	16 1			Alaga's rule for $JK^{\pi}=22^{-}$ assignment. See ¹⁷⁴ Lu ε decay (3.31 y).
1330" 1	10.	1.6 ps <i>I</i>	I		E(level): from Coul. ex. $T_{1/2}$: weighted average. See Coul. ex. J^{π} : populated in Coul. ex.
1348 3			J		
1382.013 [@] 6	3-		ABC EF IJK	Q	J^{π} : 1129 γ E1 to 2 ⁺ , 1305 γ E1 to 4 ⁺ .
1468.195 [@] 6	(4)		ABC EF		J^{π} : population by capture γ ray in (n,γ) , E=2 keV indicates $J^{\pi}=1^{-}$, 4^{-} . 1215.0 γ E1 to 4^{+} .
1487.12 ^{&} 3	0+	1.3 ps 6	A E I K	Q	J^{π} : L=0 in (p,t) and (t,p). T _{1/2} : from Coul. ex.
1518.148 <i>d</i> 13	6+	830 μ s 40	ABC EF H K N	Q	%IT=100
					$T_{1/2}$: weighted average of 850 μ s 80, $\gamma\gamma$ (t) in 174 Tm β^- decay (1964Ka15), and 820 μ s 50, $\gamma\gamma$ (t) in 173 Yb(d,p γ) (1967Bo08).
					J^{π} : 992.1 (M1+E2) γ to 6 ⁺ , 1265.2γ to 4 ⁺ , 628.3γ to 8 ⁺ , γγ(θ) in ¹⁷⁴ Lu ε decay (142 d).
1561.021 ^{&} 20	(2)+		ABCDE K	Q	J^{π} : population by capture γ ray in (n,γ) , E=2 keV indicates J^{π} =2+, 3+. 1484 γ M1+E2 to 2+.
1572.126 [@] 10	(5^{-})		A C EF N		XREF: N(1559).
	, ,				J^{π} : (d,p) strength consistent with configuration assignment ν 9/2[624]- ν 5/2[512]. The K^{π} =2 $^{-}$ octupole vibrational band is
1606.358 ^a 6	(3)+		AB DEF K	R	expected to have a large component of this configuration. J^{π} : population by capture γ ray in (n,γ) , E=2 keV indicates J^{π} =2+, 3+. 288 γ E1 to 2 γ ray reduced transition probability ratio to 1318.32(2-) and 1381.98(3-) members of K^{π} =2- octupole vibrational band is consistent with Alaga's rule for JK^{π} =33+ assignment. B(E1)(288 γ)/B(E1)(224 γ)
b					exp.: 1.9 2, theoretical value: 2.8.
1624.40 ^b 3	(1)+		AB DE		J^{π} : population by capture γ ray in (n,γ) , E=2 keV indicates $J^{\pi}=1^+$, 4^+ . 1624.3 γ to 0^+ .
1633.973 ^c 7	(2)+	0.20 ps <i>3</i>	ABCDE IJK N		J^{π} : L=(2) in (p,t). Population by capture γ ray in (n, γ), E=2 keV indicates J^{π} =2 ⁺ , 3 ⁺ . 1634.2 γ to 0 ⁺ , 1557.5 γ E2 to 2 ⁺ . $T_{1/2}$: from Coul. ex.
1671.216 ^d 14	(7^{+})		A F k n		XREF: k(1676)n(1667).
					E(level): from 174 Tm β^- decay.
b					J^{π} : 153.1 γ to (6 ⁺).
1674.82 ^b 3	2+		AB DE k n		XREF: $k(1676)n(1667)$. J^{π} : 1674.8 γ E2 to 0 ⁺ .
1701.68 ^a 10	4+		AB DEF JK	R	J^{π} : population by capture γ ray in (n,γ) , E=2 keV indicates J^{π} =1 ⁺ , 4 ⁺ . 319.5 γ E1 to 3 ⁻ . γ -decay reduced transition
					probability ratio to 1381.98(3 ⁻) and 1468.15 (4 ⁻) members of K^{π} =2 ⁻ octupole vibrational band is consistent with Alaga's rule for JK^{π} =43 ⁺ assignment, B(E1)(319 γ)/B(E1)(233 γ) exp: 1.6 2 (theoretical value: 1.66).
1709.42 ^c 6	$(3)^{+}$		ABCDE N		XREF: N(1702).
		.0			J^{π} : population by capture γ ray in (n,γ) , E=2 keV indicates $J^{\pi}=2^+$, 3^+ . 1456.2 γ E2 to 4^+ .
1710.859 ^e 50	(1 ⁻)	7.6 ^s fs 20	A	P	J^{π} : γ ray reduced transition probability ratio to $0.0(0^+)$ and $76.470(2^+)$ levels is consistent with Alaga's rule for $JK^{\pi}=11^-$ assignment, B(E1)(1710 γ)/B(E1)(1634 γ) exp: 0.64 15, (theoretical value: 0.50).

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}		KREF			Comments
1715.449 ^{&} 27	4+		ABCDE	K	N	Q	XREF: K(1712)N(1723). J^{π} : population by capture γ ray in (n,γ) , E=2 keV indicates $J^{\pi}=1^+$, 4^+ . 1462.3 γ E2 to 4^+ .
1733.64 ^b 1	(3) ⁺		AB DE				J^{π} : population by capture γ ray in (n,γ) , E=2 keV indicates J^{π} =2+, 3+. 1657.3 γ E2 to 2+.
1760 6 1785.90 ^e 4	3-		B AB	J JK			J ^{π} : population by capture γ ray in (n, γ), E=2 keV indicates J^{π} =2 ⁻ , 3 ⁻ . 1532.8 γ E1 to 4 ⁺ . γ ray reduced transition probability ratio to 76.470(2 ⁺) and 253.123(4 ⁺) levels is consistent with Alaga's rule for JK^{π} =31 ⁻ assignment, B(E1)(1709 γ)/B(E1)(1533 γ) exp: 0.65 9 (theoretical value: 0.75).
1805.40 ^c 15	4+		ABCDE	JK	N	q	XREF: q(1812). J^{π} : population by capture γ ray in (n,γ) , E=2 keV indicates $J^{\pi}=1^+$, 4^+ . 1552.1 γ E2 to 4^+ .
1819.817 ^a 7	(5 ⁺)		A E			qR	XREF: q(1812). J^{π} : γ ray reduced transition probability ratio to 1468.15 (4 ⁻) and 1572.06 (5 ⁻) is consistent with Alaga's rule for JK^{π} =53 ⁺ assignment, B(E1)(351 γ)/B(E1)(248 γ) exp.: 2.4 5 (theoretical value: 1.25).
1851.408 ^f 10	(3)-		AB	Jk	N	q	XREF: k(1852)N(1841)q(1855). J^{π} : population by capture <i>γ</i> ray in (n, <i>γ</i>), E=2 keV indicates J^{π} =2 ⁻ ,3 ⁻ . 1598.3 <i>γ</i> to 4 ⁺ .
1859.232 ^b 25	(4 ⁺)		AB DE	k		q	XREF: k(1852)q(1855). J^{π} : population by capture γ ray in (n,γ) , E=2 keV indicates $J^{\pi}=1^+, 4^+$.
1861 [#] 2	(12+)	0.66 ps 4		I			E(level): from Coul. ex. $T_{1/2}$: from 1977Ke06, 1974Ke04, Doppler broadening, Coul. ex. J^{π} : populated in Coul. ex.
1876 6					N		
1884.674 ⁱ 14	(5)		A EF			Q	E(level): from 174 Tm $β^-$ decay. $J^π$: 366.5 E1 $γ$ to 6^+ , 1631.5 $γ$ to 4^+ .
1886.0 ⁸ 2	0_{+}		CE	K			J^{π} : L=0 in (p,t).
1913 2 1926 ^c	(5 ⁺)		AD E		N	R	J^{π} : strength in (d,p) consistent with $JK^{\pi}=52^{+}$ assignment.
1933.951 <i>25</i> 1949.696 <i>f 6</i>	(4-)		AB E		NT.	R	J^{π} : 567.7 γ to 3 ⁻ , 343.3 γ to (3) ⁺ , 248.1 γ to 4 ⁺ .
1958.52 ^g 3	(4^{-}) (2^{+})		AB ABCDE	K	N	Q	J^{π} : population by capture γ ray in (n,γ) , E=2 keV indicates J^{π} =2+, 3+.
1959 ^a 2 2016.126 20	(6 ⁺) 3 ⁺		AB DE			R	J^{π} : population by capture γ ray in (n,γ) , E=2 keV indicates J^{π} =2+, 3+. 314.5 γ M1 to 4+.
2019 2 2020.622 ⁱ 50	(6-)		A F			R	L=2 in (t,α) . E(level): from ¹⁷⁴ Tm β ⁻ decay.
2027	1					D	J^{π} : 136.0 γ to (5 ⁻), 349.3 γ to (7 ⁺), 502.4 γ to (6 ⁺).
2037 2038.83 <i>3</i>	1		Α		N	P	
2049.967 9	(3)-		AB EF		14		J^{π} : population by capture γ ray in (n,γ) , E=2 keV indicates J^{π} =2 ⁻ , 3 ⁻ . 347.6 γ to (4^+) .
2068.984 <i>60</i>	(1)+		AB DE	K		PQ	J^{π} : population by capture γ ray in (n,γ) , E=2 keV indicates $J^{\pi}=1^+$, 4^+ . 1992.3 γ to 2^- .
2088.46 18	(4)		AB F		N	R	J^{π} : population by capture γ ray in (n,γ) , E=2 keV indicates $J^{\pi}=1^-, 2^-, 3^-, 4^-$. 268.9 γ to (5^+) .
2101.209 23			ABCDE			q	XREF: q(2099).

174 Yb Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	XREF		Comments
2111.876 <i>14</i>		AB D	R	J^{π} : population by capture γ ray in (n,γ) , E=2 keV indicates $J^{\pi}=1^+$, 4^+ . Population in 173 Yb (n,γ) E=4.51-307.1 eV suggests $J^{\pi}=2^+$, 3^+ . $J^{\pi}=(4^+)$ assigned in 174 Yb $(n,n'\gamma)$. $J^{\pi}=(1^-,2^-,3^-)$ from 2024.8 γ (E1) to 2^+ . XREF: R(2114). J^{π} : population by capture γ ray in (n,γ) , E=2 keV indicates $J^{\pi}=2^-$, 3^- . Possibly not consistent with 292 γ to (5^+) .
2113.9 ^h 4	0_{+}	E K	q	XREF: q(2099). J^{π} : L=0 in (p,t).
2123.04 ^g 10 2150 6	(4) ⁺	ABCDE K		J^{π} : 1869.9 γ E2 to 4 ⁺ .
2160.918 ^m 10	4+	A D	R	XREF: D(2161.1)R(2163). J ^{π} : L=2 in (t, α). J ^{π} =1 ⁻ , 2 ⁻ , 3 ⁻ , 4 ⁻ . Population in ¹⁷³ Yb(n, γ) E=4.51-307.1 eV suggests J ^{π} =(2 ⁺ ,3 ⁺ ,4). 341.1 γ to (5 ⁺).
2163.144 <i>11</i>	(2 ⁺)	AB D		XREF: D(2163.3). J^{π} : population by capture γ ray in (n,γ) , E=2 keV indicates $J^{\pi}=2^{+}$, 3^{+} . 2163.6 γ to 0^{+} .
2171.982 ^h 26 2186.864 26 2189	(2 ⁺)	ABCDE JK A		J^{π} : population by capture γ ray in (n,γ) , E=2 keV indicates $J^{\pi}=2^+$, 3^+ .
2191.6 <i>10</i> 2198.6 <i>3</i>	(1-)	B B	R	J ^π : population by capture γ ray in (n, γ), E=2 keV indicates $J^{\pi}=1^-$ to 4 ⁻ . 2198.5 γ to 0 ⁺ .
2213 2230	$(3^+)^{p}$	N J	R	
2237.715 19	$(1^+,2^+)$	AB D N		J ^π : population by capture γ ray in (n, γ), E=2 keV indicates $J^{\pi}=1^+$, 2^+ , 3^+ , 4^+ . 750.6 γ to 0^+ .
2246.825 <i>15</i> 2256.416 8	$(2^+,3^+)$ (3^+)	AB D K AB D	R	J^{π} : population by capture γ ray in (n,γ) , E=2 keV indicates $J^{\pi}=2^+$, 3^+ . XREF: R(2260).
				J^{π} : population in ¹⁷³ Yb(n, γ) E=4.51-307.1 eV suggests J^{π} =(2 ⁺ ,3 ⁺). 788.3 γ to (4) ⁻ , 622.4 γ to (2) ⁺ .
2284^{j}	$(3^+)^{p}$	N		Iπ I 2 · (,)
2290 ^m 2 2295.773 30	5 ⁺ (2) ⁺	AB D K	R	J^{π} : L=2 in (t,α) . J^{π} : population by capture γ ray in (n,γ) , E=2 keV indicates J^{π} =2+, 3+. 808.3 γ to 0+, 661.8 γ M1+E2 to (2)+.
2320.6 ^r 3		E		606.5 y to 0 , 001.6 y WII+L2 to (2) .
2329^{l} 2	7-		R	J^{π} : L=5 in (t,α) .
2336.7 3	$(4^-,5)$	ABCD F		E(level): from 174 Tm β^- decay. J ^{π} : 452.2 γ to (5 ⁻), 315.8 γ to (6 ⁻), populated by β^- with log ft =6.3 from (4) ⁻ .
2336.876 ^h 7 2338	(4 ⁺)	A F K N	P	J^{π} : populated by capture γ ray in (n,γ) , E=2 keV. J^{π} : D γ to 0^+ .
2341.502 17	1,2+	A		J^{π} : 854.5 γ to 0 ⁺ .
2350.3 ^r 2 2361.838 <i>10</i>		E AB E		
2370 <i>j</i>	(4^{+})	N		
2377.9 ^r 2		E K		174
2378.7 2	(5)-	A F		E(level): from 174 Tm β^- decay. J^{π} : log ft =4.6 from 174 Tm $(J^{\pi}$ =(4) $^-$) β^- decay. 494.1 M1 γ to (5) $^-$, 860.7 γ to 6 $^+$. Probable configuration=(π 1/2[411])+(π 9/2[514]).
2384.056 <i>25</i> 2403.332 <i>13</i> 2408 <i>3</i>	(4 ⁺)	AB N	R	J^{π} : 88.2 γ to 2 ⁺ , 578.6 γ to 4 ⁺ , 866.0 γ to 6 ⁺ .
2434 ^k 3 2436.4 ^r 3	5 ⁺	b E k	R	J^{π} : L=2 in (t, α). XREF: b(2437.2)k(2436).

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}		XREI	7	Comments
2438.165 <i>10</i>	(4+)		Ab	k		XREF: b(2437.2)k(2436). J ^π : 866.0 <i>y</i> to (5 ⁻), 763.2 <i>y</i> to 2 ⁺ .
2450					N	3 . 600.0y to (5), 703.2y to 2 .
2457 [#] 3	(14^{+})	0.4 ps 1		I		$T_{1/2}$: from 1976Wa06, Doppler broadening, Coul. ex. J^{π} : populated in Coul. ex.
2464.965 <i>17</i>	$(2^+,3^+)$		AB	K		J ^{π} : population by capture γ ray in (n,γ) , E=2 keV indicates $J^{\pi}=2^+, 3^+.$
2482 <i>j</i>	(5^+)				N	
2496 ^l 4	8-				R	J^{π} : L=5 in (t,α) .
2500	1				P	J^{π} : D γ to 0^+ .
2501.3 5	$(2^-,3^-)$		AB			J^{π} : population by capture γ ray in (n,γ) , E=2 keV indicates $J^{\pi}=2^{-}, 3^{-}$.
2514.3 7			AB			
2519.7 7			AB	K	R	XREF: K(2520)R(2521).
2527.4 <i>7</i> 2540.8 <i>1</i>			AB AB			
2549.1 <i>11</i>			A		R	XREF: R(2546).
2558 <i>5</i>				K		
2572 ^k 3	(6^+)				R	J^{π} : L=2 in (t,α) .
2581.4 <i>4</i>	1 <i>q</i>		Α		P	J^{π} : from ¹⁷⁴ Yb(γ,γ').
2583.1° 7			В			
2588.2 <i>4</i>	$(2^+,3^+)$		AB	K		XREF: K(2588). J^{π} : population by capture γ ray in (n, γ) , E=2 keV indicates
						J^{π} : population by capture γ ray in (n,γ) , $E=2$ keV indicates $J^{\pi}=2^+, 3^+$.
2601.2 ^r 2			AB	E		J - Z , J .
2623.3 5	$(2^+,3^+)$		AB	K		J ^{π} : population by capture γ ray in (n, γ), E=2 keV indicates $J^{\pi}=2^+$, 3^+ .
2642.5 <i>4</i>			AB			
2647.0° 7			В			VIDEO D (2671)
2657.5 <i>5</i> 2663.1 <i>5</i>			AB	17	R	XREF: R(2654).
2680.3 <i>4</i>			AB AB	K		XREF: K(2662).
2683 ^l 3	9-		110		R	J^{π} : L=5 in (t,α) .
2705.3 5			AB			5 · E 5 iii (i,u).
2712.4 <i>4</i>			AB	k		XREF: k(2720).
2728.1 ^{no} 10	2+		В	k		XREF: k(2720).
2722.2.4			٨			J^{π} : L=2 in (t,α) .
2732.3 <i>4</i> 2749.4 <i>5</i>			A AB			
2753 5			עני	K		
2761 3					R	
2767.9 6			A			
2784.0 6	2+		AB		_	VDEE D/2701)
2793.1 ⁿ 4	3 ⁺		A		R	XREF: R(2791). J^{π} : L=2 in (t,α) .
2796.1 ^r 2 2799.3 6			AB	E		
2808.8 5			A A			
2813.8° 15	1 <i>q</i>		В		P	J^{π} : from ¹⁷⁴ Yb(γ, γ').
2818.6 4			A		R	., , .
2821 5	(0^+)			K		J^{π} : L=(0) in (p,t).
2824.4 5			AB	1		VDEE: 1/2840)
2839.5 <i>5</i> 2845.4 <i>4</i>			A AB	k k		XREF: k(2840). XREF: k(2840).
2013.T T			AD	K		. IL 20 10).

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}$		XREF		Comments
2870.1 7			A		R	XREF: R(2868).
2882.8 ⁿ 4	(4^{+})		AB	K	R	J^{π} : L=(2) in (t, α).
2895.4 5	(+)		AB	K	K	$J : L-(2) \coprod (i,\alpha).$
2902.4 <i>4</i>					D	
	(O±)		Α	77	R	$I\pi$, $I = (0)$ in (n, t)
2904 5	(0^{+})		A D	K		J^{π} : L=(0) in (p,t).
2909.1 5	10		AB		_	TT C 174 TI (1)
2918.2 5	1 9		A		P	J^{π} : from ¹⁷⁴ Yb(γ, γ').
2944.5 4			AB			
2965.3 7			AB			
3001.7° 6	(1-)(1	2086 12	В	K	_	
3009	$(1^{-})^{q}$	3.9 ^s fs 13			P	
3009 4	(5^{+})				R	
3014.8° 8			В			
3038.9 7			A	K		
3049.0 7	(1^{-})	15 ^s fs 10	Α		P R	XREF: R(3051).
						J^{π} : from $^{174}Yb(\gamma,\gamma')$.
3062.4 7			Α			
3075.2 <i>10</i>			Α			
3095.6 7			Α			
3117 [#] 4	(16^+)			I		J^{π} : populated in Coul. ex.
3122.3 11	1 q		A		P	1.1
3136.1 8	•		A		-	
3145	1 9				P	
3153.9° 9	1		В		•	
3163.0 6			AB		R	XREF: R(3162).
3174.6 6			A			11(31-14(3102).
3184 <i>4</i>					R	
3210.6 7			AB			
3217.2 3			A			
3222	$(1^{-})^{q}$	3.9 ^s fs 19			P	
3236.3 <i>6</i>	(1)-	3.7 13 17	AB		•	
3244 <i>3</i>			ш		R	
3250.8° 8			В		K	
3268.0 7			AB			
3283.8° 9			В			
3294.2° 8			В			
3300.00 8			В			
3314.9 8			AB			
3327	(1-) q	2.8 ^s fs 7	AD		P	
3349.1 9	$(1^{-})^{q}$ 1^{+}	2.0 18 /	Α		oP	XREF: o(3350).
3343.1 3	1		А		OF	J^{π} : from excitation strength and form factor in (e,e').
3352.7° 10			В		0	XREF: o(3350).
3356.0 7			A		0	XREF: 0(3350).
3383.4 7			A		U	AREF. 0(3330).
3387	$(1-)^{a}$	1.8 ^s fs 5	А		D	
3395.3 <i>6</i>	$(1^{-})^{q}$	1.8 18 3	Α.		P	
			Α	E		
3402.9 ^r 2 3410.1 6				E		
3410.16 3427.0^{r} 2			Α	D.		
				E		
3446.1 <i>7</i> 3462.0 <i>6</i>			A AD			
3477.6° 8			AB			
			В			
3480.1 <i>6</i> 3485	1 q		Α		D	
3403	1.7				P	

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}$		XREF		Comments
3491.2 <i>6</i> 3519.8 <i>3</i> 3523.6 <i>0</i> 12			A A B		R	XREF: R(3521).
3527	$(1^{-})^{q}$	1.6 ^s fs 5	_	I	P	
3534.6° 9	,		В			
3553.4 7	1+		AB	OI	P	XREF: P(3562). J^{π} : from excitation strength and form factor in (e,e').
3597.8 <i>6</i>			AB			- · · · · · · · · · · · · · · · · · · ·
3602.8 7			A			
3614.5 6			Α			
3624.0° 12		. 6 -	В			
3648.1 <i>12</i>	$(1^{-})^{q}$	7.8 ^s fs 7	A	I	P	XREF: P(3647). $J^{\pi}: \text{ from }^{174}\text{Yb}(\gamma, \gamma').$
3655.8 6			Α			
3692.2 8	1 ^q		A	I	P	XREF: P(3695). J^{π} : from ¹⁷⁴ Yb(γ, γ').
3725.6 <i>6</i>			A			
3733.3 6			AB			
3757.1 6			A			
3772.5 8			AB			
3836 [#] 5	(18^{+})			I		J^{π} : populated in Coul. ex.
3886.2 7			Α			
3895.5 <i>6</i>			A			
3901.5 6			Α			
3918.8 6			Α			
4610 [#] 7	(20^+)			I		J^{π} : populated in Coul. ex.

[†] Level energies are from $^{173}{\rm Yb}({\rm n},\gamma)$ E=thermal, for levels populated by this reaction.

[‡] Assignments are based on rotational band structure and γ-decay patterns. Assignments from ¹⁷³Yb(n,γ) E=2 keV (1981Gr01) are based on systematic trends of $I\gamma/E\gamma^3$ for various γ-ray multipolarities (note the incorrect scale of fig. 3 in 1981Gr01).

[#] Band(A): $K^{\pi}=0^{+}$ g.s.-rotational band. Rotational parameters: A=12.76, B=-5.55. Spin members of the band used in the fit: 0 to 8

[@] Band(B): $K^{\pi}=2^{-}$ octupole-vibrational band. rotational parameters: A=10.43, B=5.47. Spin members of the band used in the fit: 2 to 6.

[&]amp; Band(C): $K^{\pi}=0^{+}$ band. rotational parameters: A=12.64, B=-61.8. Spin members of the band used in the fit: 0 to 4. Populated in (p,t).

^a Band(D): $K^{\pi}=(3^{+})$ band. probable configuration= $((n,7/2[514])-(\nu 1/2[521]))$ is consistent with experimental g-factor(K)=+(0.62 4) or +(0.06 4). Theoretical g-factor(K)=+(0.84). Fast E1 γ rays to $K^{\pi}=2^{-}$ octupole-vibrational band (which contains a large configuration= $((\nu 9/2[624])-(\nu 5/2[512]))$ component) requires mixing with configuration $((\nu 11/2[505])-(\nu 5/2[512]))$.

^b Band(E): $K^{\pi}=(1^{+})$ band. Probable configuration=(ν 5/2[512])-(ν 7/2[514]) consistent with (d,p) strengths for J=1 to 4 band members (fingerprint). Anomalous rotational spacing is probably caused by mixing with $K^{\pi}=0^{+}$ rotational band at 1487.4.

^c Band(F): $K^{\pi}=(2^{+}) \gamma$ -vibrational band. Probable configuration= $(\nu 5/2[512])$ - $(\nu 1/2[510])$ consistent with relative (d,p) strengths to J=2 to 5 band members. Absolute (d,p) strengths suggest mixing with configuration= $(\nu 5/2[512])$ - $(\nu 1/2[521])$.

^d Band(G): K^{π} =(6⁺) band. Probable configuration=(ν 7/2[514])+(ν 5/2[512]) consistent with (d,p) strength to J=6 and J=(7) band members.

^e Band(H): $K^{\pi}=(0^{-})$ octupole-vibrational band. Rotational parameter A=7.5 suggests mixing with a higher $K^{\pi}=1^{-}$ octupole-vibrational band.

^f Band(I): $K^{\pi}=(3^{-})$ octupole-vibrational band.

^g Band(J): $K^{\pi}=(0^{+})$ band. Rotational parameters: A=12.25, B=-20.0. Spin members of the band used in the fit: 0 to 4. Populated in (p,t).

¹⁷⁴Yb Levels (continued)

- ^h Band(K): K^{π} =(0⁺) band. Rotational parameters: A=9.1, B=105.0. Spin members of the band used in the fit: 0 to 4. Populated in (p,t).
- ⁱ Band(L): K^{π} =(5⁻) band. Probable configuration=(ν 1/2[521])+(ν 9/2[624]). log ft=4.7 from ¹⁷⁴Tm β⁻ decay and intense M1 494.4 γ from 2378.7 level to the bandhead requires mixing between these states.
- ^j Band(M): K^π=(3⁺) band. Rotational parameters: A=9.9, B=25.0. Spin members of the band used in the fit: 3 to 5. (d,p) strengths to J^{π} =3⁺, 4⁺, and 5⁺ levels are consistent with ≈60% component of configuration=((ν 5/2[512])+(ν 1/2[510])).
- ^k Band(N): $K^{\pi}=(5^+)$ band.
- ^l Band(O): $K^{\pi}=7^{-}$ band.
- ^m Band(P): $K^{\pi}=4^{+}$ band.
- ⁿ Band(Q): $K^{\pi}=(2^+)$ band.
- ^o From (n,γ) E=2 keV.
- ^p Based on comparison between experimental and theoretical (d,p) and (d,d') cross sections.
- ^q J=1 or 2 from excitation in (γ, γ') . J=1 from Alaga branching ratio.
- ^r From 174 Yb(n,n' γ).
- s From 174 Yb (γ, γ') .

γ (174Yb)

253.117 4 ⁺ 176.645 2 1 526.034 6 ⁺ 272.918 6 1	100 253.1 100 526.0 0.32 [@] 4 253.1	71 2 ⁺ 17 4 ⁺ 34 6 ⁺ 17 4 ⁺	E2 E2 [‡] E2 [‡] [E2]		9.43 0.413 0.0996 0.0423	B(E2)(W.u.)=201 7 Mult.: from ce data, ¹⁷⁴ Lu ε decay. B(E2)(W.u.)=280 9 B(E2)(W.u.)=370 50
526.034 6 ⁺ 272.918 6 1	100 253.1 100 526.0 0.32 [@] 4 253.1	17 4 ⁺ 34 6 ⁺	E2 [‡] [E2]		0.0996	B(E2)(W.u.)=280 9 B(E2)(W.u.)=370 50
526.034 6 ⁺ 272.918 6 1	100 253.1 100 526.0 0.32 [@] 4 253.1	17 4 ⁺ 34 6 ⁺	E2 [‡] [E2]			B(E2)(W.u.)=370 50
	100 526.0 0.32 [@] 4 253.1	34 6+	[E2]			
		17 4 ⁺	F2(-142)		****	B(E2)(W.u.)=388 21 E_{γ} : from ¹⁷⁴ Lu(142 d) ε decay.
1318.361 2 ⁻ 1065.04 [@] 8			E3(+M2)	>1.64	0.0082 11	B(M2)(W.u.)<0.001; B(E3)(W.u.)>2.4 4 Mult.,δ: from α (K)exp, 174 Lu ε decay (3.31 y).
	100 [@] 2 76.4	71 2+	E1+E3(+M2)	0.19 8		Mult.: from $\gamma \gamma(\theta)$, ¹⁷⁴ Lu ε decay (3.31 y). δ : from $\gamma \gamma(\theta)$. δ (M2/E1)=0.05 9, δ (E3/E1)=0.19 8 in ¹⁷⁴ Lu (3.31 y) ε decay.
1318.296 [@] 10	0.69 [@] 5 0.0	0+	M2		0.00891	B(M2)(W.u.)=0.0033 4 Mult.: from α (K)exp, ¹⁷⁴ Lu ε decay (3.31 y).
1336 10 ⁺ 447.2 ^{&} 10 1	100 889.9	3 8+	[E2]		0.0239	B(E2)(W.u.)=335 22
1382.013 3 ⁻ 1128.895 <i>14</i>	23.2 22 253.1	17 4 ⁺	E1 [‡]		0.00120	
		71 2+	E1 [‡]			
1468.195 (4) ⁻ 86.181 ^e 2	12 ^e 4 1382.0	13 3-				
	16 ^e 5 1318.3		4			
		17 4 ⁺	E1 [‡]		0.00106	D(E2)(W) 14 + 11 5
1487.12 0 ⁺ 1410.73 10 1 1518.148 6 ⁺ 628.37 [#] 4		71 2 ⁺ 3 8 ⁺	[E2]			B(E2)(W.u.)=1.4 +11-5
		3 8 6 ⁺	(M1+E2)	-1.63 20	0.00482 16	$B(M1)(W.u.)=7.0\times10^{-12}$ 15
992.120 13	100 / 320.0	J4 U	(MITE2)	-1.03 20	0.00482 10	$B(M1)(W.u.)=7.0\times10$ 13 $B(E2)(W.u.)=8.5\times10^{-9}$ 11
						δ : δ =-1.6 +4-3 from ¹⁷⁴ Yb(n,n'γ) (1986Yo08).
						Mult.: from $\alpha(K)$ exp, ¹⁷⁴ Lu ε decay (142 d).
						δ : from $\gamma \gamma(\theta)$, ¹⁷⁴ Lu ε decay (142 d).
1265.18 [#] 10		17 4 ⁺	[E2]			$B(E2)(W.u.)=8.7\times10^{-11} 9$
. ,		17 4 ⁺	E2 [‡]		0.00219	
		71 2+	M1+E2 [‡]	+1.3 +9-5	0.00214 15	δ: from 174 Yb(n, γ) E=thermal. δ =+1.7 4 from 174 Yb(n, $^{\prime}\gamma$) (1986Yo08).
	<8.5 0.0					• • • • • • • • • • • • • • • • • • • •
		95 (4)	D 06	0.026.4		F F 10165 10 C 174m
1319.02 <i>15</i> 1606.358 (3) ⁺ 138.170 <i>14</i>		17 4 ⁺ 95 (4) ⁻	$D+Q^{C}$	-0.03 ^c 4		E _{γ} : E γ =1316.5 10 from ¹⁷⁴ Tm ε decay.
. ,	24.3 <i>20</i> 1382.0		E1 [‡]		0.0414	
	100 5 1318.3		E1* E1*		0.0414	
287.997 Z	100 3 1318.3	01 2	E1 [∓]		0.0221	

$\gamma(^{174}\text{Yb})$ (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	${}_{\rm I_{\gamma}}{}^{\dagger}$	\mathbf{E}_f \mathbf{J}_f^{π}	Mult.	δ	α^d	Comments
1606.358	$(3)^{+}$	1353.18 <i>15</i>	9.1 7	253.117 4+				
		1529.68 <i>16</i>	18.7 15	76.471 2 ⁺	D+Q ^c	C		
1624.40	$(1)^{+}$	1547.97 10	100 7	$76.471 \ 2^{+}$	E2 [‡]		0.00133	
		1624.28 23	50 5	$0.0 0^{+}$				
1633.973	$(2)^{+}$	1380.98 <i>15</i>	14 5	253.117 4+				
		1557.49 10	100 4	$76.471 \ 2^{+}$	E2 [‡]			B(E2)(W.u.)=2.5 5
		1634.2 ^f 3	53 <i>f</i>	$0.0 0^{+}$				I_{γ} : from 1981Gr01.
1671.216	(7^{+})	153.074 20	100	1518.148 6 ⁺				
1674.82	2+	1598.36 <i>10</i>	100 8	76.471 2+	E2‡			Mult.: D+Q from $\gamma(\theta)$ in 174 Yb(n,n' γ).
		1674.76 <i>10</i>	139 8	$0.0 0^+$	E2			174
1701.68	4+	95.212 2	31 6	$1606.358 (3)^{+}$	M1+E2 [‡]	0.56 18	3.97	δ: from ¹⁷⁴ Yb(n, $γ$) E=thermal.
		233.376 [#] 5	≈33 [#]	1468.195 (4)				
		319.546 5	100 8	1382.013 3-	E1 [‡]		0.0171	
		1175.38 <i>10</i>	20.1 19	526.034 6 ⁺				M1 multipolarity in 173 Yb(n, γ) E=thermal is not consistent with decay scheme.
		1448.46 8	61 5	253.117 4+	M1+E2 [‡]	0.5 + 5 - 5	0.0028 4	δ : from ¹⁷⁴ Yb(n, γ) E=thermal.
1709.42	$(3)^{+}$	1456.15 7	38 4	253.117 4+	E2 [‡]		0.00178	
		1632.92 20	100 <i>16</i>	76.471 2+	D+Q ^c	$-3.8^{\circ} + 14 - 8$		
1710.859	(1^{-})	149.832 ^e 7	≈3 ^e	$1561.021 (2)^{+}$				
		1634.2 ^f 3	107 ^f	76.471 2 ⁺	[E1]			I_{γ} : from 1981Gr01.
		1710.87 20	100 14	$0.0 0^{+}$				E_{γ} : from ¹⁷⁴ Yb(n, γ) E=thermal (1981Gr01).
1715.449	4+	1189.44 9	20.9 2	526.034 6 ⁺				
		1462.32 6	100 6	253.117 4+	E2 [‡]		0.00177	
1722 (4	(2)+	1639.4 4	15 3	76.471 2 ⁺				
1733.64	$(3)^{+}$	172.64 ^e 8 351.615 ^e 6	1.7 ^e 6 22 ^e 4	1561.021 (2) ⁺ 1382.013 3 ⁻				
		1480.78 7	26 3	253.117 4 ⁺	E2‡		0.00173	
					E2* E2 [‡]		0.001/3	
1705.00	2-	1657.33 10	100 5	76.471 2 ⁺	E2* E1 [‡]			
1785.90	3-	1532.79 <i>10</i> 1709.05 <i>20</i>	100 <i>5</i> 91 <i>10</i>	253.117 4 ⁺ 76.471 2 ⁺	EI"			
1005 40	4+				E2 [‡]			
1805.40	4 '	1552.13 <i>10</i> 1729.4 <i>5</i>	100 <i>7</i> 36 <i>4</i>	253.117 4 ⁺ 76.471 2 ⁺	E2 ^T			
1819.817	(5^{+})	86.181 ^e 2	100 ^e 34	1733.64 (3) ⁺				
1017.017	(5)	118.272 9	53 4	1701.68 4+				
		213.458 ^e 4	68 <mark>e</mark> 9	1606.358 (3) ⁺				
		247.675 ^e 25	19 ^e 3	1572.126 (5-)				
		351.615 ^e 6	130 ° 17	1468.195 (4)				

10

γ (174Yb) (continued)

E_i (level)	$\frac{J_i^{\pi}}{(5+)}$	Ε _γ †	Ιγ [†]	E _f	$\frac{\mathbf{J}_f^{\pi}}{c^+}$	Mult.	δ	α^{d}	Comments
1819.817 1851.408	(5^+) $(3)^-$	1293.64 <i>15</i> 217.434 <i>4</i>	100 <i>13</i> 25.5 <i>24</i>	526.034 1633.973		D+Q ^c	-0.43° 4		
1031.100	(3)	245.044 <i>4</i>	100 8	1606.358		E1 [‡]		0.0331	
		383.02 ^e 8	12 ^e 5	1468.195		LI		0.0551	
		469.398 ^e 22	9.7 ^e 11	1382.013					
		533.039 8	67 5	1318.361	2-				
1859.232	(4^{+})	341.090 ^e 23	5.6 ^e 12	1518.148					
		1333.10 11	17.9 24	526.034					
		1782.3 <i>3</i>	100 11	76.471					
1861	(12^+)	524.4 ^{&} 13	100	1336	10 ⁺	[E2]		0.016	B(E2)(W.u.)=369 23
1884.674	$(5)^{-}$	366.526 5	100 4	1518.148		E1		0.0123	Mult.: from $\alpha(K)$ exp, 174 Tm β^- decay.
		1358.7 [#] 3	0.07# 3	526.034					
		1631.5 [#] <i>3</i>	0.20 [#] 4	253.117					
1886.0	0_{+}	1809.6 2	100	76.471					E_{γ} : from 174 Yb(n,n' γ) (1986Yo08).
1933.951		1681.13 <i>17</i>	100 13	253.117					
1040 (0((4-)	1858.00 19	87 7	76.471					
1949.696	(4-)	248.138 ^e 4 343.321 5	59 ^e 7 100 7	1701.68 1606.358					
		567.688 8	68 6	1382.013					
1958.52	(2^{+})	172.64 ^e 8	2.8 ^e 9	1785.90					
1,00.02	(-)	247.675 ^e 25	5.0 ^e 8	1710.859					
		1882.07 20	100 8	76.471		(E2) [‡]			
2016.126	3 ⁺	314.546 <i>13</i>	10.1 <i>13</i>	1701.68	4+	M1 [‡]		0.142	
		409.768 8	100 6	1606.358		M1 [‡]		0.0705	
		1763.5 2	26 6	253.117					From 174 Yb(n,n' γ) (1986Yo08).
2020.622	(6^{-})	136.0 [#] 5	23 [#] 10	1884.674					
	ζ- /	349.421 [#] 5	65 [#] 36	1671.216					
		502.46 4	44 11	1518.148					
2037	1	1960 <mark>b</mark>	64 ^b 40	76.471					
	-	2037 ^b	100 ^b		0+	$D^{\color{red} oldsymbol{b}}$			
2038.83		233.376 5	$1.25 \times 10^3 \ 10$		4 ⁺				
_======		570.60 9	100 30	1468.195					
2049.967	$(3)^{-}$	198.560 7	100 20	1851.408					
		348.395 [#] 8	24 [#] <i>12</i>	1701.68	4+				
		443.60 [#] 4	100 # <i>10</i>	1606.358					E_{γ} : from ¹⁷⁴ Tm β^- decay.
2068.984	$(1)^{+}$	750.632 ^e 28	21 ^e 8	1318.361					, ry.
		1992.3 5	100 10	76.471					

$\gamma(^{174}\text{Yb})$ (continued)

	$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f J_f^{π}	Mult.	Comments
	2068.984	$(1)^{+}$	2068 ^b	b	$0.0 0^{+}$	$D^{\boldsymbol{b}}$	
١	2088.46	$(4)^{-}$	268.944 9	5.1 6	1819.817 (5 ⁺)	
١			387.19 [#] 4	100 [#] 18	1701.68 4 ⁺		
١			482.385 17	42 16	1606.358 (3)	-	I_{γ} : from ¹⁷⁴ Tm β^- decay.
١	2101.209		399.638 <i>16</i>	5.3 6	1701.68 4+		,
١			2024.79 14	100 6	76.471 2 ⁺	(E1) [‡]	
	2111.876		291.977 23	100 20	1819.817 (5+)	
			643.57 5	16 <i>3</i>	1468.195 (4)		
١			793.36 <i>3</i>	59 10	1318.361 2		
١	2123.04	$(4)^{+}$	1869.87 20	100	253.117 4+	E2‡	
١	2160.918	4+	341.090 ^e 23	29 <mark>e</mark> 6	1819.817 (5+)	E_{γ} : not seen in 174 Tm β^- decay.
١			458.400 <i>15</i>	69 6	1701.68 4+		E_{γ} : placed by evaluator in the decay scheme.
١			554.56 <i>1</i>	100 12	1606.358 (3)	-	
١			779.01 ^e 8	50 ^e 13	1382.013 3		
١	2163.144	(2^{+})	213.458 ^e 4	13.3 ^e 17	1949.696 (4-)	
١			2085.9 5	100 5	76.471 2+		
		(0.1)	2163.1 4	56 8	$0.0 0^{+}$		
1	2171.982	(2^{+})	213.458 ^e 4	12.9 ^e 16	1958.52 (2 ⁺)	
١			456.4 <i>4</i> 497.120 <i>21</i>	4.8 <i>8</i> 4.8 <i>8</i>	1715.449 4 ⁺ 1674.82 2 ⁺		
١			1918.96 <i>18</i>	4.8 8 72 6	253.117 4 ⁺		
١			2095.64 25	100 7	76.471 2 ⁺		
١			2171.0 2	60 7	$0.0 0^{+}$		E_{γ},I_{γ} : from ¹⁷⁴ Yb(n,n' γ).
١	2186.864		718.67 3	39 6	1468.195 (4) ⁻	-	L_{γ} , i_{γ} . Holli $I_{\beta}(i_{\gamma},i_{\gamma})$.
١	2100.001		1933.66 25	100 10	253.117 4+		
١	2198.6	(1^{-})	2198.55 30	100	0.0 0+		
١	2237.715	$(1^+, 2^+)$	526.830 17	72 8	1710.859 (1-)	
- [603.290 ^e 19	45 ^e 7	1633.973 (2)		
J			631.394 <i>18</i>	88 11	1606.358 (3)		
- [676.68 8	100 33	1561.021 (2)	-	
		(a.t. a.t.	750.632 ^e 28	133 ^e 67	1487.12 0 ⁺		
- [2246.825	$(2^+,3^+)$	612.841 <i>16</i>	100 15	1633.973 (2)		
			622.432 ^e 8	274 ^e 36	1624.40 (1)		
- [2256.416	(3 ⁺)	685.808 <i>21</i> 240.291 ^e 7	85 <i>15</i> 60 ^e 7	1561.021 (2) ⁻² 2016.126 3 ⁺		
	2230.410	(3)	547.15 25	79 <i>13</i>	1709.42 (3)	-	
- [622.432 ^e 8	19 13 100 ^e 13	1633.973 (2) ⁻¹		
J			695.46 <i>3</i>	23 3	1561.021 (2)		
J			788.29 <i>4</i>	47 13	1468.195 (4)		
				., 10	00.170 (1)		
- 1							

$\gamma(^{174}\text{Yb})$ (continued)

	$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f .	I_f^{π} Mult	. δ	α^d	Comments
	2256.416	(3+)	938.07 5	40 7	1318.361 2				
ı	2295.773	$(2)^{+}$	172.64 ^e 8	6.8 ^e 22	2123.04 (4	1)+			
ı			586.282 <i>13</i>	21.9 24	1709.42 (3				
ı			661.758 9	100 11	1633.973 (2		2^{\ddagger} 0.9 +7-4	0.0155 <i>21</i>	
ı	2220.6		808.26 <i>12</i> 2067.5 ^a 3	62 <i>19</i> 100 ^a <i>10</i>	1487.12 0				
ı	2320.6		2067.3" 3 2244.2 ^a 3	100° 10 100° 10	253.117 4° 76.471 2°				
ı	2336.7	$(4^{-},5)$	315.8# 8	≈30 [#]	2020.622 (6				
ı	2330.7	(4,5)	452.2 [#] 2	≈30 100 [#] 24	1884.674 (5				
ı	2336.876	(4^{+})	248.138 ^e 4	29 ^e 4	2088.46 (4				
ı	2330.670	(+)	517.048 8	18 4	1819.817 (5				
ı			603.29 ^e 19	4.9 ^e 7	1733.64 (3				
ı			2083.6 2	100 16	253.117 4				
ı	2338	1	2261 ^b	74 <mark>b</mark> 20	76.471 2	+			
ı			2338 ^b	100 <mark>b</mark>	0.0	$^{+}$ $D^{\mathbf{b}}$			
ı	2341.502	$1,2^{+}$	240.291 ^e 7	100 ° 11	2101.209				
ı			383.02 ^e 8	89 ^e 33		2+)			
ı	2250.2		854.48 6	78 22	1487.12 0				
ı	2350.3		2273.8 ^a 3 2350.5 ^a 3	74 ^a 11 100 ^a 16	76.471 2 0.0 0				
ı	2361.838		105.421 5	3.3 8	2256.416 (3				
ı	2501.050		652.64 7	4.2 17	1709.42 (3				
ı			2285.1 <i>3</i>	100 17	76.471 2	+			
ı	2377.9		661.9 ^a 2	80 ^a 10	1715.449 4				
ı			2124.7 <mark>a</mark> 2	100 ^a 10	253.117 4				
ı	2378.7	$(5)^{-}$	358.1# 2	4.6 [#] 5	2020.622 (6				- 174
ı			494.164 <i>16</i>	100 5	1884.674 (5	5) ⁻ M1		0.0433	I_{γ} : from 174 Tm β^- decay.
ı			o.co. #	# -		_			Mult.: from $\alpha(K)$ exp, 174 Tm β^- decay.
Į	2201 056	(4 ⁺)	860.75 [#] 10	14.2 [#] 8	1518.148 6				
ı	2384.056	(4.)	88.23 <i>4</i> 578.605 <i>17</i>	100 <i>20</i> 15.6 <i>22</i>	2295.773 (2 1805.40 4				
ı			866.04 ^e 5	13.0 22 13 ^e 4	1518.148 6				
۱	2403.332		291.662 8	94 31	2111.876				
			469.398 ^e 22	100 e 11	1933.951				
			779.01 ^e 8	125 ^e 31		l) ⁺			
ı	2436.4		2360.0^{a} 3	79 ^a 14	76.471 2				
ı	2420.167	(44)	2436.4 ^a 4	100 ^a 21	0.0 0				
l	2438.165	(4^{+})	349.421 ^{e#} 5	≈30 e #	2088.46 (4	1)-			
П									

γ (174Yb) (continued)

$E_i(level)$	\mathtt{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.	δ	α^d	Comments
2438.165	(4+)	763.22 6	75 25	1674.82	2+				
		866.04 ^e 5 1056.13 3	75 ^e 25 100 50	1572.126 1382.013					
2457	(14^{+})	595.9 ^{&} 17	100 30	1861	(12^{+})	[E2]		0.0117	$B(E2)(W.u.)=3.2\times10^2 8$
2464.965	$(2^+,3^+)$	763.22 <i>6</i>	11 4	1701.68	4+	[22]		0.0117	<i>B</i> (<i>B</i> 2)(<i>M</i> . <i>a.</i>) <i>3.2</i> /10 0
		2388.96 25	100 21	76.471					
2500	1	2423 ^b	60 ^b 16	76.471		1			
		2500^{b}	100 ^b	0.0	0_{+}	D^{b}			
2581.4	1	2504 ^b	46 ^b 14	76.471		1.			
2601.2		2581 ^b	$\frac{100^{b}}{100^{a}}$	0.0	0+	D_{p}	. 1 16 2		
2601.2		532.8 ^a 2 885.3 ^a 2	24 ^a 6	2068.984 1715.449	(1) ¹	D+Q ^C	+1.1 ^c 3		
		2524.8 ^a 3	82 ^a 12	76.471					
2796.1		1094.4 <mark>a</mark> 2	100 ^a 6	1701.68	4+				
		2719.7 ^a 4	89 ^a 17	76.471					
2813.8	1	2738 ^b	90 ^b 38	76.471		<i>b</i>			
		2815 ^b	100 ^b	0.0	0+	D^{b}			
2918.2	1	2843 ^b	41^{b} 7	76.471		- h			
2000	(4 =)	2920^{b}	100^{b}	0.0	0+	D_p			
3009	(1-)	2932 ^b 3009 ^b	100 ^b 39 ^b 7	76.471	0 ⁺	[E1] D ^b			
2040.0	(1=)	3009 ^b 2973 ^b	100 ^b	0.0					
3049.0	(1-)	3050^{b}	94 ^b 37	76.471	0 ⁺	[E1] D ^b			
3117	(16^+)	660 & 2	100	0.0 2457	(14^+)	D			
3122.3	1	3045 ^b	50^{b} 27	76.471					
3122.3	1	3122^{b}	100^{b}	0.0	0 ⁺	$D^{\color{red} oldsymbol{b}}$			
3145	1	3068 ^b	76 ^b 29	76.471		Ъ			
3113	1	3145 ^b	100^{b}	0.0	0+	D^{b}			
3222	(1^{-})	3145 ^b	100 b	76.471		[E1]			
<i></i>	(1)	3222 ^b	54 ^b 15	0.0	0+	D^{b}			
3327	(1^{-})	3250^{b}	100 ^b	76.471		[E1]			
	` /	3327^{b}	88 ^b 11	0.0	0+	D^{b}			
3349.1	1+	3272 b	58 ^b 18	76.471	2+				
		3349 b	100 b	0.0	0^{+}	$\mathrm{D}^{oldsymbol{b}}$			

$\gamma(^{174}\text{Yb})$ (continued)

Adopted Levels, Gammas (continued)

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	\mathbf{E}_f	\mathbf{J}_f^π	Mult.	E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f	\mathbf{J}_f^π	Mult.
3387	(1^{-})	3310 ^b	100 <mark>b</mark>	76.471	2+	[E1]	3527	(1^{-})	3527 ^b	57 ^b 8	0.0	0^{+}	$D^{\color{red} b}$
		3387 <mark>b</mark>	47 <mark>b</mark> 7	0.0	0^{+}	D^{b}	3553.4	1+	3485 ^b	47 <mark>b</mark> 8	76.471	2+	
3402.9		1934.5 <mark>a</mark> 3	33 <mark>a</mark> 6	1468.195	$(4)^{-}$				3562 ^b	100 b	0.0	0_{+}	D^{b}
		2084.6 <mark>a</mark> 2	100 <mark>a</mark> 8	1318.361	2-		3648.1	(1^{-})	3571 ^b	100 b	76.471	2+	[E1]
3427.0		1711.0 <mark>a</mark> 1	100 ^a 2	1715.449	4+				3647 ^b	83 ^b 48	0.0	0_{+}	D^{b}
		2044.7 ^a 4	13 ^a 3	1382.013	3-		3692.2	1	3619 ^b	48 <mark>b</mark> 16	76.471	2+	
3485	1	3409 ^b	68 <mark>b</mark> 18	76.471	2+				3695 ^b	100 <mark>b</mark>	0.0	0_{+}	D^{b}
		3485 ^b	100 ^b	0.0	0_{+}	$\mathrm{D}^{oldsymbol{b}}$	3836	(18^{+})	719 <mark>&</mark> 3	100	3117	(16^{+})	
3527	(1^{-})	3451 ^b	100 <mark>b</mark>	76.471	2+	[E1]	4610	(20^+)	774 <mark>&</mark> 5	100	3836	(18^{+})	

 $^{^{\}dagger}$ From (n, γ), E=thermal, unless otherwise specified.

[†] From 173 Yb(n, γ) E=thermal. # From 174 Tm β^- decay. @ From 174 Lu ε decay (3.31 y).

[&]amp; From Coulomb excitation.

^a From 174 Yb(n,n' γ).

^b From 174 Yb(γ , γ ').

^c From $\gamma(\theta)$ in ¹⁷⁴Yb(n,n' γ).

^d Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^e Multiply placed with undivided intensity.

^f Multiply placed with intensity suitably divided.

^g Placement of transition in the level scheme is uncertain.

Level Scheme

Intensities: Relative photon branching from each level

Level Scheme (continued)

Level Scheme (continued)

Level Scheme (continued)

Level Scheme (continued)

Legend

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided

γ Decay (Uncertain)

20

Band(A): K^{π} =0⁺ g.s.-rotational band

 (12^{+})

10⁺

 $\frac{2^{+}}{0^{+}}$

1861

1336

889.93

526.034

253.117

0.0

Band(B): K^π=2⁻ octupole-vibrational band

Band(C): $K^{\pi}=0^+$ band

1715.449
1561.021
1487.12

Band(D): $K^{\pi}=(3^+)$ band

(6 ⁺)		1959	Band(E):	\mathbf{K}^{π} =(1 ⁺) band
(5 ⁺) 4 ⁺ (3) ⁺	118	1819.817 1701.68 1606.358	(4 ⁺) (3) ⁺ 2 ⁺ (1) ⁺	1859.232 1733.64 1674.82 1624.40

Band(F): K^{π} =(2⁺) γ -vibrational band

(5')	1926
4+	1805.40
(3) ⁺	1709.42
(2) ⁺	1633.973

 $^{174}_{70}\mathrm{Yb}_{104}$

Band(K): K^{π} =(0⁺) band

(4+) 2336.876

 $\begin{array}{c} \textbf{Band(H): } \mathbf{K}^{\pi} \text{=} (0^{-}) \\ \textbf{octupole-vibrational} \\ \textbf{band} \end{array}$

3- 1785.90

$$^{174}_{70}\mathrm{Yb}_{104}$$

Band(Q): K^{π} =(2⁺) band

(4⁺) 2882.8

3⁺ 2793.1

2+ 2728.1

Band(O): $K^{\pi}=7^-$ band

9- 2683

Band(N): $K^{\pi}=(5^+)$ band

(6⁺) 2572

Band(M): K^{π} =(3⁺) band

(5⁺) 2482

8- 2496

5+ 2434

(4⁺) 2370

2284

 (3^{+})

7- 2329

Band(P): $K^{\pi}=4^{+}$ band

5⁺ **2290**

4+ 2160.918

 $^{174}_{70}\mathrm{Yb}_{104}$

		History	
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	M. S. Basunia	NDS 107,791 (2006)	15-Sep-2005

 $Q(\beta^-)$ =-105.5 17; S(n)=6864.4 11; S(p)=8.47×10³ 5; $Q(\alpha)$ =569 5 2012Wa38 Note: Current evaluation has used the following Q record -106.8 166864.8 108470

50570 2003Au03.

¹⁷⁶Yb Levels

Cross Reference (XREF) Flags

	B 17	76 Tm β^- decay 76 Yb IT decay oulomb excita 74 Yb(t,p)	(11.4 s) F		$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
E(level) [†]	J^π	$T_{1/2}^{a}$	XREF		Comments						
0.0°	0+@	stable	ABCDEFGHIJ	K	$T_{1/2}(\beta\beta) >= 1.6 \times 10^{17} \text{ y } (68\% \text{ confidence level}) \text{ to } 2^+ 82 \text{ level in } 1^{176}\text{Hf } (1996\text{De}60).$ Measured isotope shift: $\Delta < r^2 > (^{174}\text{Yb}, ^{176}\text{Yb}) = 0.0833 \text{ fm}^2 43$ (1991Ji06), $\Delta < r^2 > (^{174}\text{Yb}, ^{176}\text{Yb}) = 0.090 \text{ fm}^2 2 (1994\text{Ma}57)$. Others: 2003Ba90, 2002Zi04, 2001Lo30, 1991Ho27, 1991Ma48, 1991Ki14, 1990Sp05, 1990Bi08, 1973Le16, 1973Ru04.						
82.135 ^c 15	2 ^{+‡@}	1.76 ns 5	ABCDEFGHIJK		 μ=+0.67 3 Q=2.2 4 μ: Mossbauer (1967Ec02,1989Ra17). Coul. ex. DPAD (1966Ti01,1989Ra17). J^π: 82.13γ E2 to 0⁺ in Coulomb excitation. Q: From Q(¹⁷⁶Yb-82)/Q(¹⁷⁰Yb-84)=1.045 2 Mossbauer (1967Ec01), and Q(¹⁷⁰Yb-84)=2.1 4 (1989Ra17). No polarization correction (1989Ra17). T_{1/2}: Weighted average of 1.72 ns 5 (Coul. Excitation), 1.76 ns 5 delay coin (1966Ti01), and 2.01 ns 14 delay coin (1962Bi05). 						
271.85 ^c 3	4+‡@	0.11 ns <i>1</i>	ABCDEFG J	K	J^{π} : 189.7 γ E2 to 2 ⁺ in Coulomb excitation.						
564.5 ^c 4	6+‡	14 ps <i>I</i>	ABC EFG J	K	J^{π} : 292.6 γ E2 to 4 ⁺ in Coulomb excitation. From good fit of both cross sections and analyzing powers in (pol p,p'); and agreement between experimental and theoretical cross sections in (α,α') .						
953.9 ^c 6	8+‡	3.5 ps 5	BC EFG J	K	J^{π} : 389.4 γ E2 to 6 ⁺ state. Agreement between experimental and theoretical cross sections in (α, α') .						
1049.8 ^k 6	8-	11.4 s <i>3</i>	B G J		%IT=100						
					$T_{1/2}$: from ¹⁷⁶ Yb IT decay (11.4 s). J^{π} : 96.0 γ E1 to 8 ⁺ state.						
1088.228 ⁱ 17	(1-)		A J		J^{π} : 1088 γ E1 to 0 ⁺ g.s.						
1132.104 ⁱ 23	$(2^{-})^{\&}$		A D J								
1138.95 ^e 4	$(0^+)^{\&}$		J								
1193.309 ⁱ 23	$(3^{-})^{\&}$		A J								
1199.578 ^e 24	(2^{+})		J		J^{π} : 1199.5 γ E2 to 0 ⁺ g.s. Band assignment.						
1260.893 ^d 17	2+	0.76 ps 7	A CDEFG J		J^{π} : 1260.8 γ E2 to 0 ⁺ g.s. Experimental B(E2, 1261 γ)/B(E2, 179 γ) =0.53 7 agrees with theoretical value of 0.70 for J,K=2,2 (Alaga rule). $T_{1/2}$: Other value: 0.55 ps 4 (d,d'),(α , α').						
1283.27 ⁱ 13	$(4^{-})^{\&}$		A J								
1336.378 ^d 25	$(3^+)^{\&}$		d J		XREF: d(1338).						
1341.08 ^f 3	(4 ⁺)		A dE J		XREF: d(1338).						

¹⁷⁶Yb Levels (continued)

E(level) [†]	${ m J}^{\pi}$	T _{1/2} ^a	XRE	7	Comments
					J^{π} : 1258.9γ E2 to 2 ⁺ state.
1409.61 ⁱ 11	$(5^{-})^{\&}$			J	
1431.0 ^c 13	$(10)^{+\ddagger}$	1.2 ps 1	С	K	
1431.70 ^{<i>j</i>} 3	$(2^{-})^{\&}$		A	J	
1435.50 ^d 5	(4)+		A CDEFG	J	J^{π} : 1353 γ E2 to 2 ⁺ , 1163.7 γ to 4 ⁺ . Experimental B(E2, 1353 γ)/B(E2, 1164 γ)=0.3 <i>I</i> compares with theoretical value of 0.34 for J,K=2,2 (Alaga rule) in Coulomb excitation.
1491.52 ^f 13	$(5^+)^{\&}$		EF	J	
1498.73 ^j 4	(3 ⁻)		A F	J	J^{π} : 410.5 γ E2 to the (1 ⁻) state.
1518.93 <mark>8</mark> 7	$(0^+)^{\&}$		D	J	
1541.1 5	$(6^+)^{\&}$			J	
1558.34 ^d 7	$(5^+)^{\&}$			J	
1575.32 5	(3)&		A	J	
1588.57 ^j 8	$(4^{-})^{\&}$			J	
1609.978 5	(2^{+})			J	J^{π} : 1338 γ E2 to the 4 ⁺ state.
1630.03 <i>6</i> 1671.45 <i>4</i>	(3) &		A A	J	J ^{π} : 239.8 γ to (2 ⁻), δ =0.00 <i>10</i> , and 330.4 γ to (4 ⁺), δ -0.14 7 and -3.8 +9-13 in (n,n' γ).
1692 <i>6</i> 1738 <i>6</i> 1767 <i>6</i>			E D E		
1778.46 <i>11</i> 1790 <i>6</i> 1798.10 <i>6</i>	0+		D EF A F	J	J^{π} : L=0 in (t,p).
1819.24 ^h 12 1821.09 6	(1 ⁺)&			J J	
1867.93 ^h 10	$(2^+)^{\&}$			J	
1984.6 ^c 20 2027?	$(12)^{+\ddagger}$	0.59 ps 6	С	K J	J^{π} : 553.6 γ E2 to the (10) ⁺ state.
2053.34 <i>12</i> 2095? 2139?	(3+,4+)		A D	J J	J^{π} : 1971 γ to 2 ⁺ , log ft =5.65 from ¹⁷⁶ Tm (J^{π} =(4 ⁺)).
2153.50 <i>24</i> 2163.1 <i>7</i>	(1) [#]	11.5 ^b fs 3	A	J I	
2170? 2170? 2245?	(1)"	11.5" 18 5		J J	
2295.2 4			A D		
2394?	#	<i>b</i>		J	
2453.1 7 2480.7 4 2530?	(1) [#]	7.7 ^b fs 17	A	I	
2537.8 <i>6</i>			A	J	
2570?				J	
2602 ^c 3	$(14)^{+\ddagger}$	0.38 ps 7	С	K	
2704.1 7	(1) [#]	7.4 ^b fs 15		IJ	
2938.1 7	(1) [#]	10 ^b fs 4		I	
2949.8 6	$(3^+,4^+)$		A		J^{π} : 2868 γ to (2 ⁺), log ft =5.66 from ¹⁷⁶ Tm (J^{π} =(4 ⁺)).
2953.8 <i>3</i>	$(3^+,4^+)$		A		J^{π} : 2872 γ to (2 ⁺), $\log ft$ =5.21 from ¹⁷⁶ Tm (J^{π} =(4 ⁺)).
3052.2 <i>3</i> 3126.1 <i>7</i>	$(3^+,4^+,5^+)$ 1-	3.8 ^b fs 16	A	I	J^{π} : log ft =5.50 from 176 Tm $(J^{\pi}=(4^{+}))$.
/	-	10 10		_	

¹⁷⁶Yb Levels (continued)

E(level) [†]	J^π	$T_{1/2}^{a}$	XR	REF	Comments
3143.1 7	(1) [#]	2.2 ^b fs 16		I	
3186.3 <i>4</i>	$(4^+,5^+)$		Α		J^{π} : 2622 γ to 6 ⁺ , log ft =4.92 from ¹⁷⁶ Tm (J^{π} =(4 ⁺)).
3270 ^c 5	$(16)^{+}$		C	K	
3456.1 7	(1) [#]	6 ^b fs 3		I	
3480.1 7	1-	8 ^b fs 4		I	
3516.1 7	(1) [#]	5 ^b fs 3		I	
3540.1 7	(1 ⁻)#	3.2^{b} fs 15		I	
3557.1 7	(1) [#]	3.1 ^b fs 9		I	
3780.1 7	$(1^{-})^{\#}$	1.6 ^b fs 5		I	
3845.2 10		1.7 ^b fs 9		I	
3979 ^c 6	$(18)^{+\ddagger}$		C	K	
4729 ^c 6	$(20)^{+}$			K	J^{π} : Based on rotational structure and stretched E2 transition.

[†] Deduced by evaluator from a least-squares fit to adopted γ -ray energies.

 $^{^{\}ddagger}$ Assignment based on rotational band structure, E2 cascade γ 's, and on the comparison of experimental level half-lives with values predicted by the rotational model (1976Wa06).

[#] From $\gamma(\theta)$ in 176 Yb (γ, γ') .

[@] From excellent fit of both cross sections and analyzing powers in (pol p,p'); and agreement between experimental and theoretical cross sections in (α, α') .

[&]amp; From $\gamma(\theta)$ and relative level population in $(n,n'\gamma)$.

^a From Coulomb excitation, unless otherwise specified.

^b From $\Gamma_{\nu 0}$ and branching in ¹⁷⁶Yb(γ, γ').

^c Band(A): K=0⁺ g.s. rotational band Rotational parameters: A=13.7, B=-6.5. Spin members of the band used in the fit: 0 to 8. Deformation parameters: β_2 =0.276, β_4 =-0.054 (1968He24); β_2 =0.230 *10*, β_4 =-0.350 *10* (1970Ap03).

^d Band(B): $K^{\pi}=2^{+}_{1}$ γ -vibrational band.

^e Band(C): $K^{\pi}=0^{+}_{2}$ band.

^f Band(D): $K^{\pi}=4_{1}^{+}$, configuration: $\pi 1/2[411]+\pi 7/2[404]$.

^g Band(E): $K^{\pi}=0^{+}_{2}$ band.

^h Band(F): $K^{\pi}=1^{+}_{1}$, configuration: v7/2[633]-v9/2[624].

ⁱ Band(G): $K^{\pi}=1_{1}^{-}$, configuration: v7/2[514]-v9/2[624].

^j Band(H): $K^{\pi}=2^{-}_{1}$, configuration: v5/2[512]-v9/2[624].

^k Band(I): $K^{\pi} = 8^{-}_{1}$, configuration: v7/2[514] + v9/2[624].

$\gamma(^{176}\mathrm{Yb}$

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult.b	δ^{d}	α^e	Comments
82.135	2+	82.13 [‡] 2	100	0.0	0+	E2		7.06	B(E2)(W.u.)=183 7
271.85	4+	189.69 [‡] <i>4</i>	100	82.135	2+	E2		0.324	B(E2)(W.u.)=270 25
564.5	6+	292.6 <mark>&</mark> 4	100	271.85	4+	E2		0.0803	B(E2)(W.u.)=298 22
953.9	8+	389.4 [‡] 5	100	564.5	6+	E2		0.0349	$B(E2)(W.u.)=3.0\times10^2 5$
1049.8	8-	95.92 9	100	953.9	8+	E1		0.384	$B(E1)(W.u.)=1.47\times10^{-14} 9$
									Mult.: from ¹⁷⁶ Yb IT decay (11.4 s).
1088.228	(1^{-})	1006.11 4	100 5	82.135		(E1+M2)	0.0 + 2 - 8		177
1122 104	(2-)	1088.245 20	21.9 11		0+	E1 ^d	0.02.5		I_{γ} : 17.9 <i>19</i> in ¹⁷⁶ Tm β^- decay.
1132.104 1138.95	(2^{-}) (0^{+})	1049.966 <i>20</i> 1056.81 <i>3</i>	100 100	82.135 82.135		(E1+M2)	-0.02 5		
1193.309	(3^{-})	921.48 5	10.1 6	271.85		E1+(M2)	0.00 5		
11,0.00,	(5)	1111.150 20	100 8	82.135		E1+(M2)	0.00 5		
1199.578	(2^{+})	111.38 9	19.37 <i>15</i>	1088.228					
		927.7	< 0.4	271.85		1			
		1117.440 20	100 5	82.135		$M1+E2^d$	+11 +5-3		
1260.002	2+	1199.50 8	12.1 7		0+	E2 ^d			
1260.893	2+	122.01	7.4		(0^+)				
		172.8 ^f 3 988.8 3	5.6 ^f 10 2.7 5	1088.228 271.85					
		1178.759 20	100 6	82.135		M1+E2 ^d	+160 +0-130		B(E2)(W.u.)=0.000111 <i>15</i>
		1260.875 23	88.7 <i>4</i>	0.0	0+	E2	+100 +0-130		B(E2)(W.u.)=1.80 21
									I_{γ} : 74 7 in ¹⁷⁶ Tm β^- decay.
1283.27	(4^{-})	1011.35 4	100	271.85	4+	(E1+M2)	-0.05 5		, ,
1336.378	(3^{+})	1064.55 7	22.2 14		4+	M1+E2 ^d	-6 +9-5		
		1254.235 20	100 5	82.135		M1+E2			$+100 < \delta < -100.$
1341.08	(4^{+})	1069.223 20	100 5	271.85		M1+E2	-0.26 2		E_{γ} : Multiplete in $(n,n'\gamma)$.
1409.61	(5-)	1258.95 <i>4</i> 1137.77 <i>11</i>	11.9 <i>6</i> 100	82.135 271.85	2 ⁺ 4 ⁺	E2 ^d			
1409.01	$(3)^{+}$	477.1 ^a 11	100	953.9	8 ⁺	E2		0.0202	B(E2)(W.u.)=320 <i>30</i>
1431.70	(2^{-})	238.31 5	28.7 18	1193.309		M1+E2	-0.40 + 10 - 20	0.281 10	I_{γ} : 39 5 in 176 Tm β^- decay.
	(-)	299.60 5	43.2 24	1132.104		M1+E2	+0.09 +3-6	0.161 <i>I</i>	-yy
		343.60 <i>5</i>	100 5	1088.228		M1+E2	-0.11 2	0.111	100
1.425.50	(A) ±	1349.45 15	12.2 10	82.135		E1+M2+(E3)	1.0.2		I_{γ} : 23 3 in ¹⁷⁶ Tm β^- decay.
1435.50	$(4)^{+}$	1163.65 4	100 5	271.85		M1+E2	-1.2 3		
1491.52	(5 ⁺)	1353.36 8	65 <i>4</i> 100 <i>6</i>	82.135 1341.08	2 ⁺ (4 ⁺)	E2 ^d M1+E2	+0.23 8	1.06 <i>I</i>	
1491.32	(3.)	150.44 <i>12</i> 208.1 <i>10</i>	100 6 14 <i>4</i>		(4^{-})	WII+EZ	+0.23 0	1.00 1	
		1219.7 10	6 2		(4) 4 ⁺				

$\gamma(^{176}\text{Yb})$ (continued)

E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}{}^{\dagger}$	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult.b	δ^d	α^e	Comments
1498.73	(3^{-})	215.5 3	30 3		(4^{-})				
		305.34 ^f 12	26.7^{f} 25	1193.309					I_{γ} : 50 17 with respect to I_{γ} of 215.5 γ in $^{175}Tm \beta^-$ decay.
		366.60 5	100 6	1132.104		M1+E2	0.00 5	0.07 3	
		410.54 ^f 6	90^{f} 5	1088.228	. ,	E2 ^d		0.0301	
		1226.91 <i>14</i>	32.6 21		4 ⁺	E1+M2	-0.04 + 8 - 4		
1518.93	(0^+)	1416.7 1436.79 <i>6</i>	2.1 100	82.135 82.135		E2			
1518.95	(6 ⁺)	976.6 <i>3</i>	100 11		6 ⁺	EZ			
1341.1	(0)	1269.0 <i>10</i>	24 11		4 ⁺				
1558.34	(5^+)	1286.49 6	100		4+	M1+E2			
1575.32	(3)	234.21 4	100 5		(4^{+})				Mult.: M1 or E1 in $(n,n'\gamma)$.
	. ,	1303.3 <i>3</i>	9.8 15	271.85	4+				· · · · · ·
		1493.12 <i>11</i>	17.7 <i>15</i>	82.135					
1588.57	(4^{-})	152.8 5	6 4		$(4)^{+}$				
		179.2 5	4.9 21		(5^{-})				
		247.32 19	25 <i>5</i>		(4^{+})				
		305.34 ^f 12	44 ^f 4		(4^{-})			0.0=4.0	
		395.27 8	100 6	1193.309		M1+E2	+0.27 10	0.074 2	
1609.97	(2^{+})	1338.11 6	92 5		4 ⁺	E2 ^d	15.0.25		
		1527.83 <i>6</i> 1610.04 22	100 <i>5</i> 29 <i>3</i>	82.135 0.0	0+	M1+E2	-1.5 + 9 - 35		
1630.03		288.93 6	100 7		(4^+)				
1030.03		436.75 19	39 4	1193.309					
		498.3 2	25 4	1132.104					I_{γ} : 65 8 in ¹⁷⁶ Tm β ⁻ decay.
		1358.1 4	12 3		4+				17. se s m 1 m p detay.
1671.45	(3)	95.9 [@] 1	9.8 ^{@} 12		(3)				I_{γ} : With respect to I_{γ} of 330.4 γ in $^{176}\text{Tm }\beta^-$ decay.
	(-)	172.8 ^f 3	$19^{f} 3$		(3^{-})				I_{γ} : 11.0 12 with respect to I_{γ} of 330.4 γ in $^{176}\text{Tm }\beta^-$ decay.
		239.80 5	83 5		(2^{-})				δ : 0.00 10 in (n,n' γ).
		330.42 5	84 5		(4^{+})				δ : -0.14 7 and -3.8 +9-13 in (n,n' γ).
		410.54 ^f 6	$100^{f} 5$	1260.893	2+				I_{γ} : 51 4 with respect to Iy of 330.4y in 176 Tm β^- decay.
		477.8 2	16.0 <i>18</i>	1193.309					, , , , , , , , , , , , , , , , , , , ,
		539.0	2.8	1132.104					I_{γ} : 7.7 12 with respect to I_{γ} of 330.4 γ in $^{176}Tm \beta^{-}$ decay.
		1589.39 <i>17</i>	25.9 24	82.135					,
1778.46	0_{+}	1696.32 <i>11</i>	100	82.135					
1798.10	(1±)	457.02 5	100		(4^{+})				
1819.24	(1^{+})	1737.1 <i>3</i> 1819.23 <i>13</i>	49 <i>6</i> 100 <i>8</i>	82.135 0.0	0 ⁺	M1,E1		0.0015 5	
1821.09		322.30 16	48 <i>4</i>		(3^{-})	1VI 1,E I		0.0013 3	
1021.07		389.40 <i>5</i>	100 6		(2^{-})				

S

$\gamma(^{176}\text{Yb})$ (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	${\rm I}_{\gamma}{}^{\dagger}$	\mathbf{E}_f \mathbf{J}_f^{π}	Mult.b	δ^{d}	α^{e}	Comments
1867.93	(2+)	1785.80 <i>10</i> 1867.2 <i>7</i>	100 <i>6</i> 15 <i>4</i>	82.135 2 ⁺ 0.0 0 ⁺	(M1+E2)	+0.02 +16-1	0.00201 4	
1984.6	$(12)^{+}$	553.6 ^a 15	100	$1431.0 (10)^+$	E2		0.0140	$B(E2)(W.u.)=3.1\times10^2 4$
2027?		1945.3 ⁸ 3	100 8	82.135 2+				E_{γ} : Multiplete in $(n,n'\gamma)$.
		2027.0^{8} 3	66 8	$0.0 0^{+}$				
2053.34	$(3^+,4^+)$	255.2 [@] 2	4.7 [@] 6	1798.10				
		381.8 [@] 2	100 [@] 5	1671.45 (3)				
		423.6 [@] 3	3.9 [@] 8	1630.03				
		554.6 [@] 5	2.2 [@] 3	1498.73 (3-)				
		621.7 [@] 3	14.4 [@] 13	$1431.70 (2^{-})$				
		712.1 [@] 6	3.0 [@] 6	$1341.08 (4^+)$				
		1970.9 [@] 6	10.6 [@] 9	82.135 2+				
2095?		2012.9 ⁸ 3	100 15	82.135 2+				E_{γ} : Multiplete in $(n,n'\gamma)$.
		2094.5 ⁸ 5	35 9	0.0 0+				
2139?		2056.7 ⁸ 3	100	82.135 2+				E_{γ} : Multiplete in $(n,n'\gamma)$.
2153.50		482.2 [@] 3	100 [@] 10	1671.45 (3)				
		654.8 [@] 6	27 [@] 7	1498.73 (3-)				
		1881.2 [@] 7	23 [@] 5	271.85 4+				
		2070.8 [@] 8	23 [@] 5	82.135 2 ⁺				
2163.1	(1)	2081 [#]	65 [#] 14	82.135 2+				
		2163 [#]	100 [#]	$0.0 0^{+}$	D^{c}			
2170?		1898.3 ⁸ 3	100 13	271.85 4+				E_{γ} : Multiplete in $(n,n'\gamma)$.
22.452		2088.2 ^g 12	25 13	82.135 2+				
2245?		1973.38 2	65 16	271.85 4 ⁺				E_{γ} : Multiplete in $(n,n'\gamma)$.
2205.2		2163.1 ^g 2 241.9 [@] 3	100 <i>13</i> 100 [@]	82.135 2 ⁺				
2295.2 2394?		241.9° 3 2122.48 5	100 5	2053.34 (3 ⁺ ,4 ⁺) 271.85 4 ⁺				E_{γ} : Multiplete in $(n,n'\gamma)$.
2394?		2122.48 <i>3</i> 2311.3 ⁸ <i>7</i>	42 8	82.135 2 ⁺				E_{γ} : Multiplete in (n,n' γ). E_{γ} : Multiplete in (n,n' γ).
2453.1	(1)	2371#	41#6	82.135 2 ⁺				by. Multiplete in (ii,ii y).
2433.1	(1)	2453 [#]	100#	$0.0 0^{+}$	D^{c}			
2480.7		809.2 [@] 5	100 [@]	1671.45 (3)	ט			
2530?		2258.5 ⁸ 8	93 17	271.85 4 ⁺				
2550.		2448.3 ⁸ 6	100 17	82.135 2+				E_{γ} : Multiplete in $(n,n'\gamma)$.
2537.8		2265.5 [@] 8	54 [@] 12	271.85 4+				
		2456.0 [@] 8	100 0 12	82.135 2 ⁺				
		2.50.0	100 12	32.133 2				

6

$\gamma(^{176}\text{Yb})$ (continued)

E_i (level)	$_J_i^\pi$	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f J_f^{π}	Mult.b	α^e	Comments
2570?		2298.3 ⁸ 3 2487.9 ⁸ 8	100 <i>12</i> 37 <i>12</i>	271.85 4 ⁺ 82.135 2 ⁺			E_{γ} : Multiplete in $(n,n'\gamma)$.
2602	$(14)^{+}$	617^{a} 2	100	1984.6 (12) ⁺	E2	0.0108	$B(E2)(W.u.)=2.8\times10^2 6$
2704.1	(1)	2622 [#]	37 [#] 5	82.135 2+			
		2704 [#]	100 [#]	$0.0 0^{+}$	D^{c}		
2938.1	(1)	2856 [#]	30 [#] <i>10</i>	82.135 2+	D^{C}		
		2938 [#]	100 [#]	$0.0 0^{+}$	D^{c}		
2949.8	$(3^+,4^+)$	1756.1 [@] 8	27 [@] 6	1193.309 (3-)			
		2678 [@] 1	51 [@] 6	271.85 4+			
		2868 [@] 1	100 [@] 12	82.135 2+			
2953.8	$(3^+,4^+)$	900.4 [@] 5	100 [@] 10	2053.34 (3+,4+)			
		1282.4 [@] 6	69 [@] 8	1671.45 (3)			
		1612.7 [@] 7	39 [@] 4	1341.08 (4+)			
		2682.0 [@] 8	51 [@] 5	271.85 4+			
		2871.9 [@] 9	80 [@] 8	82.135 2+			
3052.2	$(3^+,4^+,5^+)$	571.5 [@] 3	33 [@] 5	2480.7			
		1254.1 [@] 4	100 [@] 11	1798.10			
		2780.7 [@] 8	29 [@] 3	271.85 4+			
3126.1	1-	3044 [#]	100#	82.135 2+			
		3126 [#]	43 [#] <i>13</i>	$0.0 0^{+}$			
3143.1	(1)	3061 [#]	100#	82.135 2+			
		3143#	46 [#] 7	$0.0 0^{+}$	D^{c}		
3186.3	$(4^+,5^+)$	1845.1 [@] 6	17.4 [@] 16	1341.08 (4 ⁺)			
		2621.6 [@] 6	69 [@] 6	564.5 6+			
		2914.7 [@] 6	100 [@] 8	271.85 4+			
3270	(16) ⁺	668 ^a 3	100	$2602 (14)^+$	E2		
3456.1	(1)	3374 [#]	80 [#] 36	82.135 2+	T-C		
24004		3456 [#]	100#	0.0 0+	$D^{\boldsymbol{c}}$		
3480.1	1-	3398#	100#	82.135 2+			
25161	(1)	3480 [#]	76 [#] 34	$0.0 0^{+}$			
3516.1	(1)	3434 [#]	98 [#] 38	82.135 2+	D.C		
2540.1	(1-)	3516 [#]	100 [#]	$0.0 0^{+}$	D^{c}		
3540.1	(1-)	3458 [#]	100 [#]	82.135 2+			

$\gamma(^{176}\text{Yb})$ (continued)

$E_i(level)$	J_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult.b	Comments
3540.1	(1-)	3540 [#]	56 [#] 18	0.0	0+	$\overline{\mathrm{D}^{\boldsymbol{c}}}$	
3557.1	(1)	3475 [#]	97 [#] 19	82.135	2+		
		3557 [#]	100 [#]	0.0	0_{+}	D^{c}	
3780.1	(1^{-})	3698 [#]	100 [#]	82.135	2+		
		3780 <mark>#</mark>	53 [#] 11	0.0	0_{+}	D^{c}	
3845.2		3763 [#]	100 [#]	82.135	2+		
3979	$(18)^{+}$	709 ^a 4	100	3270	$(16)^{+}$	E2	
4729	$(20)^{+}$	750.5	100	3979	$(18)^{+}$		E_{γ} : From (⁴⁸ Ca, $X\gamma$).

[†] From ¹⁷⁶Yb(n,n' γ), unless otherwise specified. [‡] Weighted average from ¹⁷⁶Tm β ⁻ decay, Coulomb excitation, ¹⁷⁶Yb IT decay (11.4 s), and ¹⁷⁶Yb(n,n' γ), unless otherwise specified.

[#] From 176 Yb(γ, γ').

[@] From 176 Tm β^- decay.

[&]amp; Using the limitation of relative statistical weight method (1985ZiZY) from 176 Tm β^- decay, Coulomb excitation, 176 Yb IT decay (11.4 s), and 176 Yb(n,n' γ).

^a From Coulomb excitation.

^b From Coulomb excitation, unless otherwise specified. ^c From $\gamma(\theta)$ in ¹⁷⁶Yb(γ,γ').

^d From 176 Yb(n,n' γ).

^e Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

f Multiply placed with undivided intensity.

^g Placement of transition in the level scheme is uncertain.

Level Scheme

Intensities: Relative photon branching from each level

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

---- γ Decay (Uncertain)

 $^{176}_{70}\text{Yb}_{106}$ -12

Adopted Levels, Gammas

Level Scheme (continued)

Level Scheme (continued)

Band(A): $K=0^+$ g.s. rotational band Rotational parameters: A=13.7, B=-6.5

Band(F): $K^{\pi} = 1_{1}^{+}$, configuration: v7/2[633]-v9/2[624]

1867.93 Band(E): $K^{\pi} = 0_3^+$ (1^{+}) 1819.24 band

1609.97

1518.93

 $\pi 1/2[411] + \pi 7/2[404]$ 1491.52 150 1341.08

Band(D): $K^{\pi} = 4_1^+$,

configuration:

 (2^{+}) (0^{+})

 $^{176}_{70}\mathrm{Yb}_{106}$

	History		
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	E. Achterberg, O. A. Capurro, G. V. Marti	NDS 110,1473 (2009)	31-May-2008

 $Q(\beta^-)=646\ 11;\ S(n)=6780\ 10;\ S(p)=9.5\times 10^3\ syst;\ Q(\alpha)=-2.\times 10^2\ syst$ 2012Wa38 Note: Current evaluation has used the following Q record 645 10 6780 10 9520 syst -170 syst 2003Au03. $\Delta S(p)=300,\ \Delta Q(\alpha)=300\ (2003Au03).$

¹⁷⁸Yb <u>Levels</u>

Level energies derived from proton spectra in 176 Yb(t,p) reactions (1983Bu03,1982Zu02), and γ -ray data from 176 Yb(48 Ca,X γ) and 176 Yb(154 Sm,X γ) deep inelastic reactions (1997Le11,1999As05).

Cross Reference (XREF) Flags

```
A ^{176}Yb(t,p)

B ^{176}Yb(^{48}Ca,X\gamma),^{176}Yb(^{154}Sm,X\gamma)
```

				-(, //)
E(level)	$J^{\pi\dagger}$	T _{1/2}	XREF	Comments
0.0@	0+	74 min <i>3</i>	AB	$\%\beta^-=100$ $T_{1/2}$: from 1973Or03. J^{π} : L=0 in (t,p).
84.0 [@] 3	2+		AB	J^{π} : L=2 in (t,p).
278.0 [@] 7	4+		AB	J^{π} : L=4 in (t,p).
578.1 [@] 12	(6^+)		AB	
981.3 [@] <i>18</i>	(8^+)		В	
1221 <mark>&</mark> 3	(2^{+})		A	J^{π} : L=2 in (t,p).
1315 ^a 3	0+		A	J^{π} : L=0 in (t,p).
1335 <i>3</i>			Α	
1387 [‡] <i>3</i>	(2^{+})		A	
1404 [‡] <i>a</i> 3 1436 3	2+		A A	J^{π} : L=2 in (t,p).
1483.5 [@] 25	(10^+)		В	
1559 ^a 4	(4^+)		A	J^{π} : L=4 in (t,p).
1705 5	(1)		A	$J: E^{-1}$ in (Q_p) .
1813 5			Α	
1869 <i>5</i>			A	
1969 4			Α	
2080 [@] 4	(12^{+})		В	
≈2111	. 4		A	
2131 4	$(4^+,5^-)^{\#}$		A	
2351 <i>5</i> 2371 <i>5</i>			A	
2390 5	(4^{+})		A A	
2405 5	(1)		A	
2690 7	(4^{+})		A	
2770 [@] 4	(14^{+})		В	
2899 7	3-		Α	J^{π} : L=3 in (t,p).
2996 13	(4^{+})		A	
3037 10	1-		A	J^{π} : L=1 in (t,p).

¹⁷⁸Yb Levels (continued)

- † J^{π} assignments are based on experimental L-values from $^{175}{\rm Yb}(t,p)$ and on band structure systematics of lighter even-Yb isotopes. L-values are given with individual levels.
- [‡] There is some ambiguity about the identity of the 2⁺ member of the excited $K^{\pi}=0^{+}$ band. Both the 1387 and the 1404 keV levels have been proposed; see comment in the (t,p) reaction dataset.
- # The J^{π} assignment should be considered tentative; see comments in the (t,p) reaction dataset.
- [@] Band(A): $K^{\pi}=0^{+}$ g.s. rotational band.
- & Band(B): $K^{\pi}=2^{+}$ γ -vibrational band. ^a Band(C): $K^{\pi}=0^{+}$ band.

$E_i(level)$	\mathtt{J}_i^{π}	E_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}
84.0	2+	84.0 3	0.0	0+
278.0	4+	194.0 6	84.0	2+
578.1	(6^{+})	300.1 10	278.0	4+
981.3	(8^{+})	403.2 13	578.1	(6^{+})
1483.5	(10^{+})	502.2 17	981.3	(8^{+})
2080	(12^{+})	596.0 20	1483.5	(10^{+})
2770	(14^{+})	690.0 <i>23</i>	2080	(12^{+})

 $^{^{\}dagger}$ γ -ray data from (HI,X γ) deep inelastic reaction dataset.

Level Scheme

Band(A): $K^{\pi}=0^{+}$ g.s. rotational band

Band(C): $K^{\pi}=0^+$ band

and(B):
$$K^{\pi}$$
=2⁺ 0^+ 1315

Band(B): $K^{\pi}=2^+$ γ -vibrational band

1221

403

981.3

578.1

 (8^{+})

 (6^{+})

$$^{178}_{\,70}\mathrm{Yb}_{108}$$