L7.2.X Worked Examples

Zonghua Gu 2021

Recall: TD, Sarsa, Q Learning

- TD solves [BEV] by sampling:
 - $-V(S_t) \leftarrow V(S_t) + \alpha(R_{t+1} + \gamma V(S_{t+1}) V(S_t))$
- Sarsa and Expected Sarsa solve [BEA] by sampling:

$$- Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha(R_{t+1} + \gamma Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t))$$

- $Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha(R_{t+1} + \gamma \sum_{a'} \pi(a'|S_{t+1})Q(S_{t+1}, a') Q(S_t, A_t))$
- Q Learning solves [BOA] by sampling:

$$- Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha(R_{t+1} + \gamma \max_{a'} Q(S_{t+1}, a') - Q(S_t, A_t))$$

- [BEV] Bellman Expectation Equation for State Value Function:
 - $v_{\pi}(s) = \sum_{a} \pi(a|s) \sum_{r,s'} p(r,s'|s,a) [r + \gamma v_{\pi}(s')]$
- [BEA] Bellman Expectation Equation for Action Value Function
 - $q_{\pi}(s, a) = \sum_{r,s'} p(r, s'|s, a) \left[r + \gamma \sum_{a'} \pi(a'|s') q_{\pi}(s', a') \right]$
- [BOA] Bellman Optimality Equation for Optimal Action Value Function:
 - $q_*(s, a) = \sum_{r,s'} p(r, s'|s, a) \left[r + \gamma \max_{a'} q_*(s', a') \right]$

TD, Sarsa, QL w. $\alpha = 1$

- With learning rate $\alpha = 1$, each $V(S_t)$ or $Q(S_t, A_t)$ is completely overwritten by in each update
- update equations simplify to:
 - $MC: V(S_t) \leftarrow V(S_t) + \alpha (G_t V(S_t)) = G_t$
 - TD: $V(S_t) \leftarrow V(S_t) + \alpha (R_{t+1} + \gamma V(S_{t+1}) V(S_t)) = R_{t+1} + \gamma V(S_{t+1})$
 - Sarsa: $Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha (R_{t+1} + \gamma Q(S_{t+1}, A_{t+1}) Q(S_t, A_t)) = R_{t+1} + \gamma Q(S_{t+1}, A_{t+1})$
 - $\text{QL: } Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left(R_{t+1} + \frac{1}{2} \right)$ $\gamma \max_{a'} Q(S_{t+1}, a') Q(S_t, A_t) = R_{t+1} + \frac{1}{2}$ $\gamma \max_{a'} Q(S_{t+1}, a')$

Two-Branch Example

Two-Branch Example

• An episodic MDP w. deterministic env, 3 states $\{B, C, D\}$ and 2 actions $\{1,2\}$ at each state. Discount factor $\gamma = 1$, learning rate $\alpha = 1$. The initial state of each episode is B.

Policy Iteration

1.1 Policy Evaluation of Random Policy

- Bellman Exp Equation: $v_{\pi}(s) = \sum_{a} \pi(a|s) q_{\pi}(s,a)$; $q_{\pi}(s,a) = R_{s}^{a} + \gamma v_{\pi}(s')$
- $v_{\pi}(B) = .5[q_{\pi}(B, a1) + q_{\pi}(B, a2)] = .5[1 + v_{\pi}(C) + v_{\pi}(D)]$ - $q_{\pi}(B, a1) = 1 + v_{\pi}(C), q_{\pi}(B, a2) = 0 + v_{\pi}(D)$
- $v_{\pi}(C) = .5[q_{\pi}(C, a1) + q_{\pi}(C, a2)] = 2$ - $q_{\pi}(C, a1) = 1, q_{\pi}(C, a2) = 3$
- $v_{\pi}(D) = .5[q_{\pi}(D, a1) + q_{\pi}(D, a2)] = -48$ - $q_{\pi}(D, a1) = -100, q_{\pi}(D, a2) = 4$
- Solution: $v_{\pi}(B) = -22.5$, $v_{\pi}(C) = 2$, $v_{\pi}(D) = -48$

$v_{\pi}(s)$ $property property property$
Bellman expectation equation for $v(s)$

	$V_{\pi}(B)$	$V_{\pi}(C)$	$V_{\pi}(D)$
Iter1	-22.5	3	-48
lter2	4	3	4
Iter3	4	3	4

1.2 Policy Improvement

- Plug in values from PE to get new policy
- $\pi'(B) = \operatorname{argmax}_{a}(q_{\pi}(B, a1), q_{\pi}(B, a2)) = a1$ - $q_{\pi}(B, a1) = 1 + v_{\pi}(C) = 3, q_{\pi}(B, a2) = 0 + v_{\pi}(D) = -22.5$
- $\pi'(C) = \operatorname{argmax}_{a}(q_{\pi}(C, a1), q_{\pi}(C, a2)) = a2$ - $q_{\pi}(C, a1) = 1, q_{\pi}(C, a2) = 3$
- $\pi'(D) = \operatorname{argmax}_{a}(q_{\pi}(D, a1), q_{\pi}(D, a2)) = a2$
 - $-q_{\pi}(C, a1) = -100, q_{\pi}(C, a2) = 4$

2.1 Policy Evaluation of Det Policy

- Bellman Exp Equation: $v_{\pi}(s) = \sum_{a} \pi(a|s) q_{\pi}(s,a)$; $q_{\pi}(s,a) = R_{s}^{a} + \gamma v_{\pi}(s')$
- $v_{\pi}(B) = q_{\pi}(B, a1) = 1 + v_{\pi}(C)$ - $q_{\pi}(B, a1) = 1 + v_{\pi}(C)$
- $v_{\pi}(C) = q_{\pi}(C, a2) = 3$ - $q_{\pi}(C, a2) = 3$
- $v_{\pi}(D) = q_{\pi}(D, a2) = 4$ - $q_{\pi}(D, a2) = 4$
- Solution: $v_{\pi}(B) = 4$, $v_{\pi}(C) = 3$, $v_{\pi}(D) = 4$

	$V_{\pi}(B)$	$V_{\pi}(C)$	$V_{\pi}(D)$
Iter1	-22.5	3	-48
lter2	4	3	4
Iter3	4	3	4

2.2 Policy Improvement

- Plug in values from PE to get new policy
- $\pi'(B) = \operatorname{argmax}_{a}(q_{\pi}(B, a1), q_{\pi}(B, a2)) = a1 \text{ or } a2$ - $q_{\pi}(B, a1) = 1 + v_{\pi}(C) = 4, q_{\pi}(B, a2) = 0 + v_{\pi}(D) = 4$
- $\pi'(C) = \operatorname{argmax}_{a}(q_{\pi}(C, a1), q_{\pi}(C, a2)) = a2$ - $q_{\pi}(C, a1) = 1, q_{\pi}(C, a2) = 3$
- $\pi'(D) = \operatorname{argmax}_{a}(q_{\pi}(D, a1), q_{\pi}(D, a2)) = a2$
 - $-q_{\pi}(C, a1) = -100, q_{\pi}(C, a2) = 4$

3.1 Policy Evaluation

- Bellman Exp Equation: $v_{\pi}(s) = \sum_{a} \pi(a|s) q_{\pi}(s,a)$; $q_{\pi}(s,a) = R_s^a + \gamma v_{\pi}(s')$
- $v_{\pi}(B) = .5[q_{\pi}(B, a1) + q_{\pi}(B, a2)] = .5[1 + v_{\pi}(C) + v_{\pi}(D)]$ - $q_{\pi}(B, a1) = 1 + v_{\pi}(C), q_{\pi}(B, a2) = 0 + v_{\pi}(D)$
- $v_{\pi}(C) = q_{\pi}(C, a2) = 3$ - $q_{\pi}(C, a2) = 3$
- $v_{\pi}(D) = q_{\pi}(D, a2) = 4$ - $q_{\pi}(D, a2) = 4$
- Solution: $v_{\pi}(B) = 4$, $v_{\pi}(C) = 3$, $v_{\pi}(D) = 4$

	$V_{\pi}(B)$	$V_{\pi}(C)$	$V_{\pi}(D)$
Iter1	-22.5	3	-48
lter2	4	3	4
Iter3	4	3	4

3.2 Policy Improvement

- Plug in values from PE to get new policy
- $\pi'(B) = \operatorname{argmax}_{a}(q_{\pi}(B, a1), q_{\pi}(B, a2)) = a1 \text{ or } a2$

-
$$q_{\pi}(B, a1) = 1 + v_{\pi}(C) = 4, q_{\pi}(B, a2) = 0 + v_{\pi}(D) = 4$$

- $\pi'(C) = \operatorname{argmax}_{a}(q_{\pi}(C, a1), q_{\pi}(C, a2)) = a2$
 - $-q_{\pi}(C, a1) = 1, q_{\pi}(C, a2) = 3$
- $\pi'(D) = \operatorname{argmax}_{a}(q_{\pi}(D, a1), q_{\pi}(D, a2)) = a2$
 - $-q_{\pi}(C, a1) = -100, q_{\pi}(C, a2) = 4$
- Policy has converged

Value Iteration

Value Iteration

- Bellman Opt Equation: $v_*(s) = \max_a q_*(s, a); q_*(s, a) = R_s^a + \gamma v_*(s')$
- $v_*(B) = \max_a [q_*(B, a1), q_*(B, a2)] = \max[1 + v_*(C), v_*(D)]$
 - $q_*(B, a1) = 1 + v_*(C), q_*(B, a2) = 0 + v_*(D)$
- $v_*(C) = \max_{a} [q_*(C, a1), q_*(C, a2)] = q_*(C, a2) = 3$
 - $-q_*(C,a1) = 1, q_*(C,a2) = 3$
- $v_*(D) = \max_{a}[q_*(D, a1), q_*(D, a2)] = 4$

 $q_*(D, a1) = -100, q_*(D, a2) = 4$

• We use Value Iteration to solve it. Table shows the iteration process until convergence (not using in-place

updates for clarity). Solution: $v_*(1) = -3$, $v_*(2) = -2$, $v_*(3) = -1$

• Optimal policy: $\pi_*(B) = \operatorname*{argmax}_a q_*(B,a) = a1$ or a2; $\pi_*(C) = \operatorname*{argmax}_a q_*(C,a) = a2$; $\pi_*(D) = \operatorname*{argmax}_a q_*(D,a) = a2$

	$V_{\pi}(B)$	$V_{\pi}(C)$	$V_{\pi}(D)$
Init	0	0	0
lter1	0	3	4
lter2	4	3	4
Iter3	4	3	4

MC

MC, Episodes $3 \times (B, a2, 0, D, a1, -100, T)$

- MC update equation: $V(S_t) \leftarrow G_t$
- EP1:
- G(D) = -100 + V(T) = -100, V(D) = G(D) = -100
- G(B) = 0 + G(D) = -100, V(D) = G(D) = -100
- EP2:
- G(D) = -100 + V(T) = -100, V(D) = G(D) = -100
- G(B) = 0 + G(D) = -100, V(D) = G(D) = -100
- EP3:
- G(D) = -100 + V(T) = -100, V(D) = G(D) = -100
- G(B) = 0 + G(D) = -100, V(D) = G(D) = -100

a1, r = 1	C $a_1, r = 1$
B	a2, r = 3 T $a1, r = -100$
a2, r = 0	

	V(B)	V(D)
Init	0	0
EP1	-100	-100
EP2	-100	-100
EP3	-100	-100

MC, Episodes $n \times (B, a2, 0, D, a2, 4, T)$

- MC update equation: $V(S_t) \leftarrow G_t$
- EP1:
- G(D) = -100 + V(T) = 4, V(D) = G(D) = 4
- G(B) = 0 + G(D) = 4, V(D) = G(D) = 4
- EP2:
- G(D) = -100 + V(T) = 4, V(D) = G(D) = 4
- G(B) = 0 + G(D) = 4, V(D) = G(D) = 4
- EP3:
- G(D) = -100 + V(T) = 4, V(D) = G(D) = 4
- G(B) = 0 + G(D) = 4, V(D) = G(D) = 4

a1, r = 1	C $a_1, r = 1$
B	a2, r = 3 T $a1, r = -100$
a2, r = 0	D = 4

	V(B)	V(D)
Init	0	0
EP1	4	4
EP2	4	4
EP3	4	4

TD

TD, Episodes $n \times (B, a2, 0, D, a1, -100, T)$

- TD update equation: $V(S_t) \leftarrow R_{t+1} + \gamma V(S_{t+1})$
- EP1:
- $V(B) \leftarrow R_{t+1} + \gamma V(D) = 0 + 0 = 0$
- $V(D) \leftarrow R_{t+1} + \gamma V(T) = -100 0 = -100$
- EP2:
- $V(B) \leftarrow R_{t+1} + \gamma V(D) = 0 100 = -100$
- $V(D) \leftarrow R_{t+1} + \gamma V(T) = -100 0 = -100$
- EP3:
- $V(B) \leftarrow R_{t+1} + \gamma V(D) = 0 100 = -100$
- $V(D) \leftarrow R_{t+1} + \gamma V(T) = -100 0 = -100$

	V(B)	V(D)
Init	0	_ 0
EP1	0	-100
EP2	−100 *	-100
EP3	−100 *	-100

TD, Episodes $3 \times (B, a2, 0, D, a2, 4, T)$

- TD update equation: $V(S_t) \leftarrow R_{t+1} + \gamma V(S_{t+1})$
- EP1:
- $V(B) \leftarrow R_{t+1} + \gamma V(D) = 0 + 0 = 0$
- $V(D) \leftarrow R_{t+1} + \gamma V(T) = 4 0 = 4$
- EP2:
- $V(B) \leftarrow R_{t+1} + \gamma V(D) = 0 + 4 = 4$
- $V(D) \leftarrow R_{t+1} + \gamma V(T) = 4 0 = 4$
- EP3:
- $V(B) \leftarrow R_{t+1} + \gamma V(D) = 0 + 4 = 4$
- $V(D) \leftarrow R_{t+1} + \gamma V(T) = 4 0 = 4$

	V(B)	V(D)
Init	0	0
EP1	0	4
EP2	4	4
EP3	4	4

Sarsa

Sarsa, Episodes $3 \times (B, a2, 0, D, a1, -100, T)$

- Sarsa update equation: $Q(S_t, A_t) \leftarrow R_{t+1} + \gamma Q(S_{t+1}, A_{t+1})$
- EP1:
- $Q(B, a2) \leftarrow R_{t+1} + \gamma Q(D, a1) = 0 0 = 0$
- $Q(D, a1) \leftarrow R_{t+1} + \gamma Q(T, -) = -100 + 0 = -100$
- EP2:
- $Q(B, a2) \leftarrow R_{t+1} + \gamma Q(D, a1) = 0 100 = -100$
- $Q(D, a1) \leftarrow R_{t+1} + \gamma Q(T, -) = -100 + 0 = -100$
- EP3:
- $Q(B, a2) \leftarrow R_{t+1} + \gamma Q(D, a1) = 0 100 = -100$
- $Q(D, a1) \leftarrow R_{t+1} + \gamma Q(T, -) = -100 + 0 = -100$

	Q(B,a1)	Q(B,a2)	Q(D,a1)	Q(D,a2)
Init	0	0	_ 0	0
EP1	0	0	-100	0
EP2	0	-100^{4}	-100	0
EP3	0	−100	-100	0

Sarsa, Episodes $3 \times (B, a2, 0, D, a2, 4, T)$

- Sarsa update equation: $Q(S_t, A_t) \leftarrow R_{t+1} + \gamma Q(S_{t+1}, A_{t+1})$
- EP1:
- $Q(B, a2) \leftarrow R_{t+1} + \gamma Q(D, a2) = 0 0 = 0$
- $Q(D, a2) \leftarrow R_{t+1} + \gamma Q(T, -) = 4 + 0 = 4$
- EP2:
- $Q(B, a2) \leftarrow R_{t+1} + \gamma Q(D, a2) = 0 + 4 = 4$
- $Q(D, a2) \leftarrow R_{t+1} + \gamma Q(T, -) = 4 + 0 = 4$
- EP3:
- $Q(B, a2) \leftarrow R_{t+1} + \gamma Q(D, a2) = 0 + 4 = 4$
- $Q(D, a2) \leftarrow R_{t+1} + \gamma Q(T, -) = 4 + 0 = 4$

	Q(B,a1)	Q(B,a2)	Q(D,a1)	Q(D,a2)
Init	0	0	0	0
EP1	0	0	0	4
EP2	0	4	0	4
EP3	0	4	0	4

QL, Episodes $3 \times (B, a2, 0, D, a1, -100, T)$

- QL update equation: $Q(S_t, A_t) \leftarrow R_{t+1} + \gamma \max_{a'} Q(S_{t+1}, a')$
- EP1:
- $Q(B, a2) \leftarrow R_{t+1} + \gamma \max_{a} Q(D, a) = 0 + \max(0, 0) = 0$
- $Q(D, a1) \leftarrow R_{t+1} + \gamma Q(T, -) = -100 + 0 = -100$
- EP2:
- $Q(B, a2) \leftarrow R_{t+1} + \gamma \max_{a} Q(D, a) = 0 + \max(-100, 0) = 0$
- $Q(D, a1) \leftarrow R_{t+1} + \gamma Q(T, -) = -100 + 0 = -100$
- EP3:
- $Q(B, a2) \leftarrow R_{t+1} + \gamma \max_{a} Q(D, a) = 0 + \max(-100, 0) = 0$
- $Q(D, a1) \leftarrow R_{t+1} + \gamma Q(T, -) = -100 + 0 = -100$

	Q(B,a1)	Q(B,a2)	Q(D,a1)	Q(D,a2)
Init	0	0	0	0
EP1	0	0	-100	0
EP2	0	0	-100	0
EP3	0	0	-100	0

Q Learning

QL, Episodes $3 \times (B, 2, 0, D, 2, 4, T)$

- QL update equation: $Q(S_t, A_t) \leftarrow R_{t+1} + \gamma \max_{a} Q(S_{t+1}, a')$
- EP1:
- $Q(B, a2) \leftarrow R_{t+1} + \gamma \max_{a} Q(D, a) = 0 + \max(0, 0) = 0$
- $Q(D, a2) \leftarrow R_{t+1} + \gamma Q(T, -) = 4 + 0 = 4$
- EP2:
- $Q(B, a2) \leftarrow R_{t+1} + \gamma \max_{a} Q(D, a) = 0 + 4 = 4$
- $Q(D, a2) \leftarrow R_{t+1} + \gamma Q(T, -) = 4 + 0 = 4$
- EP3:
- $Q(B, a2) \leftarrow R_{t+1} + \gamma \max_{a} Q(D, a) = 0 + 4 = 4$
- $Q(D, a2) \leftarrow R_{t+1} + \gamma Q(T, -) = 4 + 0 = 4$

	Q(B,a1)	Q(B,a2)	Q(D,a1)	Q(D,a2)
Init	0	0	0	_0
EP1	0	0 🗲	0	4
EP2	0	4	0	4
EP3	0	4	0	4

Comparisons

MC and TD:

- Transition (D, a1, -100, T) drives $V(D) \rightarrow -100$; V(D) drives $V(B) \rightarrow -100$.
- Transition (D, a2, 4, T) drives $V(D) \rightarrow 4$; V(D) drives $V(B) \rightarrow 4$.
- Final values of V(B), V(D) depend on relative execution frequencies of the 2 transitions (e.g., ϵ -greedy).

Sarsa:

- Transition (D, a1, -100, T) drives $Q(D, a1) \rightarrow -100$; Q(D, 1) drives $Q(B, a2) \rightarrow -100$.
- Transition (D, a2, 4, T) drives $Q(D, a2) \rightarrow 4$; Q(D, a2) drives $Q(B, a2) \rightarrow 4$.
- Final value of Q(B,2) depends on relative execution frequencies of the 2 transitions (e.g., ϵ -greedy).

QL:

- Transition (D, a1, -100, T) drives $Q(D, a1) \rightarrow -100$; Q(D, a1) does not affect Q(B, a2) since
- $\max_{a} Q(D, a) = \max(Q(D, a1), Q(D, a2)) = 0$. (assuming Q(D, a2) is initialized to 0 and it never updated)
- Transition (D, a2, 4, T) drives $Q(D, a2) \rightarrow 4$, which in turn drives $Q(B, a2) \rightarrow 4$.
- Our example here only illustrates the policy evaluation for a given set of episodes, not control. If we consider control, and Sarsa or QL uses ϵ -greedy policy with small ϵ , then the agent will likely avoid action a1 in state D after taking it for the 1st time.

Sarsa w. ϵ -greedy

- Suppose EP1 is (B, a2, 0, D, a1, -100, T). After EP1:
- $Q(B,a2) \leftarrow R_{t+1} + \gamma Q(D,a1) = 0 0 = 0, Q(D,a1) \leftarrow R_{t+1} + \gamma Q(T,-) = -100 + 0 = -100$
- Suppose EP2 starts with (B, a2, 0, D), then in state D, the agent is likely to select action $\underset{argmax}{a}{\{Q(D, a1) = -100, Q(D, a2) = 0\}} = a2$ based on ϵ -greedy, so the episode is (B, a2, 0, D, a2, 4, T). After EP2:
- $Q(B,a2) \leftarrow R_{t+1} + \gamma Q(D,a1) = 0 100 = -100, \ Q(D,a2) \leftarrow R_{t+1} + \gamma Q(T,-) = 4 + 0 = 4$
- In EP3, in initial state B, the agent is likely to select action $argmax_a\{Q(B,a1)=0,Q(B,a2)=-100\}=a1$. Suppose the episode is (B,a1,1,C,a1,1,T)
- $Q(B,a1) \leftarrow R_{t+1} + \gamma Q(C,a1) = 1 + 0 = 1, Q(C,a1) \leftarrow R_{t+1} + \gamma Q(T,-) = 1 + 0 = 1$
- In EP4, in initial state B, the agent is likely to select action $\operatorname{argmax}_a\{Q(B,a1)=1,Q(B,a2)=-100\}=a1$. in state D, the agent is likely to select action $\operatorname{argmax}_a\{Q(D,a1)=1,Q(D,a2)=0\}=a1$. Suppose the episode is again (B,a1,1,C,a1,1,T)
- $Q(B, a1) \leftarrow R_{t+1} + \gamma Q(C, a1) = 1 + 1 = 2, \ Q(C, a1) \leftarrow R_{t+1} + \gamma Q(T, -) = 1 + 0 = 1$
- if the agent always follows the greedy action, it will always follow the trajectory (B,a1,1,C,a1,1,T) and never learn anything new, e.g., it will never experience the trajectories (B,a1,1,C,a2,3,T),(B,a2,0,D,a2,4,T). It got scared when Q(B,a2) was updated to -100 after EP2 and never wanted to take action a2 in state B, but if it were more adventurous and tried it, it will likely experience EP5 (B,a2,0,D,a2,4,T):
- $Q(B, a2) \leftarrow R_{t+1} + \gamma Q(D, a2) = 0 + 4 = 4, Q(D, a2) \leftarrow R_{t+1} + \gamma Q(T, -) = 4 + 0 = 4$
- Now you can see the importance of exploration by selecting the non-greedy action occasionally.

		Q(B,a1)	Q(B,a2)	Q(C,a1)	Q(C,a2)	Q(D,a1)	Q(D,a2)
a1, r = 1	Init	0	0	0	0	_ 0	0
	EP1	0	0	0	0	100	0
(B) $a2, r = 3$	EP2	0	-100 ⁴	0	0	-100	4
a1, r = -100	EP3	1=	-100	1	0	-100	4
a2, r = 0 D $a2, r = 4$	EP4	2	-100	1	0	-100	4
$\bigcup_{i=1}^{n} uz_i r = 1$	EP5	2	4	1	0	-100	4

QL w. ϵ -greedy

- Suppose EP1 is (B, a2, 0, D, a1, -100, T). After EP1:
- $Q(B, a2) \leftarrow R_{t+1} + \gamma \max_{a} Q(D, a) = 0 + \max(0, 0) = 0, Q(D, a1) \leftarrow R_{t+1} + \gamma Q(T, -) = -100 + 0 = -100$
- Suppose EP2 starts with (B, a2, 0, D), then in state D, the agent is likely to select action $\underset{argmax}{a}{\{Q(D, a1) = -100, Q(D, a2) = 0\}} = a2$ based on ϵ -greedy, so the episode is (B, a2, 0, D, a2, 4, T). After EP2:
- $Q(B,a2) \leftarrow R_{t+1} + \gamma \max_{a} Q(D,a) = 0 + \max(-100,0) = 0, Q(D,a2) \leftarrow R_{t+1} + \gamma Q(T,-) = 4 + 0 = 4$
- In EP3, in initial state B, the agent is equally likely to select action a1 and a2 since Q(B, a1) = Q(B, a2) = 0. Suppose the episode is (B, a1, 1, C, a1, 1, T)
- $Q(B,a1) \leftarrow R_{t+1} + \gamma \max_{a} Q(C,a) = 1 + \max(0,0) = 1, Q(C,a1) \leftarrow R_{t+1} + \gamma Q(T,-) = 1 + 0 = 1$
- In EP4, in initial state B, the agent is likely to select action $\operatorname{argmax}_a\{Q(B,a1)=1,Q(B,a2)=0\}=a1$. in state D, the agent is likely to select action $\operatorname{argmax}_a\{Q(D,a1)=1,Q(D,a2)=0\}=a1$. Suppose the episode is (B,a1,1,C,a1,1,T)
- $Q(B, a1) \leftarrow R_{t+1} + \gamma \max_{a} Q(C, a) = 1 + \max(1, 0) = 2, \ Q(C, a1) \leftarrow R_{t+1} + \gamma Q(T, -) = 1 + 0 = 1$
- The difference from Sarsa lies in Q(B,a2), which stays at 0 until the agent experienced EP4. So it got less scared than Sarsa (where Q(B,a2) was updated to -100 after EP2), so QL agent is more likely to explore unseen states.
- Suppose EP5 is (*B*, *a*2, 0, *D*, *a*2, 4, *T*):
- $Q(B,a2) \leftarrow R_{t+1} + \gamma \max_{a} Q(D,a) = 0 + \max(-100,4) = 4, Q(D,a2) \leftarrow R_{t+1} + \gamma Q(T,-) = 4 + 0 = 4$

	Q(B,a1)	Q(B,a2)	Q(C,a1)	Q(C,a2)	Q(D,a1)	Q(D,a2)
Init	0	0	0	0	0	0
EP1	0	0	0	0	-100	0
EP2	0	0	0	0	-100	4
EP3	1	0	1	0	-100	4
EP4	2	0	1	0	-100	4
EP5	2	4	1	0	-100	4

Linear Chain Example

Linear Chain Example

- Consider the following MDP. Environment is deterministic. In each state, there are two possible actions $a \in \{l,r\}$, where I corresponds to moving left, and r corresponds to moving right. Each movement incurs a reward of r=-1. State s=4 is the goal state: taking any action from s=4 results in reward of r=0 and ends the episode by going into the terminal state, hence V(4) = 0, Q(4, a) = 0 for any action a. (Alternatively, we can view state 4 as the terminal state itself.) Assume $\gamma = 1$, $\alpha = 1$. All value functions are initialized to 0.
- A. Use Policy Iteration, Value Iteration to derive optimal policy.

TD, Sarsa, QL

- B. Consider 8 given consecutive episodes in the form of (s,a,r) (we do not consider ϵ -greedy exploration here):
- 1. EP1: (1, r, -1), (2, r, -1), (3, r, -1), (4, r, 0)
- 2. EP2: (1, r, -1), (2, r, -1), (3, r, -1), (4, r, 0)
- 3. EP3: (1, r, -1), (2, r, -1), (3, r, -1), (4, r, 0)
- 4. EP4: (3, l, -1), (2, l, -1), (1, l, -1), (1, r, -1), (2, r, -1), (3, r, -1), (4, r, 0)
- 5. EP5: (3, l, -1), (2, l, -1), (1, l, -1), (1, r, -1), (2, r, -1), (3, r, -1), (4, r, 0)
- 6. EP6: (3, l, -1), (2, l, -1), (1, l, -1), (1, r, -1), (2, r, -1), (3, r, -1), (4, r, 0)
- 7. EP7: (3, l, -1), (2, l, -1), (1, l, -1), (1, r, -1), (2, r, -1), (3, r, -1), (4, r, 0)
- 8. EP8: (3, l, -1), (2, l, -1), (1, l, -1), (1, r, -1), (2, r, -1), (3, r, -1), (4, r, 0)
- Derive the following:
- 1. State value functions (V functions) after TD learning.
- 2. State-action value functions (Q Functions) after Sarsa, and the resulting policy.
- 3. State-action value functions (Q Functions) after Q learning, and the resulting policy.

Policy Iteration

1.1 Policy Evaluation of Random Policy

- Bellman Exp Equation: $v_{\pi}(s) = \sum_{a} \pi(a|s) q_{\pi}(s,a)$; $q_{\pi}(s,a) = R_{s}^{a} + \gamma v_{\pi}(s')$
- $v_{\pi}(1) = .5[q_{\pi}(1, l) + q_{\pi}(1, r)] = -1 + .5[v_{\pi}(1) + v_{\pi}(2)]$ - $q_{\pi}(1, l) = -1 + v_{\pi}(1), q_{\pi}(1, r) = -1 + v_{\pi}(2)$
- $v_{\pi}(2) = .5[q_{\pi}(2, l) + q_{\pi}(2, r)] = -1 + .5[v_{\pi}(1) + v_{\pi}(3)]$ - $q_{\pi}(2, l) = -1 + v_{\pi}(1), q_{\pi}(2, r) = -1 + v_{\pi}(3)$
- $v_{\pi}(3) = .5[q_{\pi}(3, l) + q_{\pi}(3, r)] = -1 + .5 v_{\pi}(2)$
 - $q_{\pi}(3, l) = -1 + v_{\pi}(2), q_{\pi}(3, r) = -1 + v(4) = -1$
- Solution: $v_{\pi}(1) = -12$, $v_{\pi}(2) = -10$, $v_{\pi}(3) = -6$

	$V_{\pi}(1)$	$V_{\pi}(2)$	$V_{\pi}(3)$
Iter1	-12	-10	-6
lter2	4	3	4

1.2 Policy Improvement

- Plug in values from PE to get new policy
- $\pi'(1) = \operatorname{argmax}_{a}(q_{\pi}(1, l), q_{\pi}(1, r)) = r$ - $q_{\pi}(1, l) = -1 + v_{\pi}(1) = -13, q_{\pi}(1, r) = -1 + v_{\pi}(2) = -11,$
- $\pi'(2) = \operatorname{argmax}_{a}(q_{\pi}(2, l), q_{\pi}(2, r)) = r$ - $q_{\pi}(2, l) = -1 + v_{\pi}(1) = -13, q_{\pi}(2, r) = -1 + v_{\pi}(3) = -7$
- $\pi'(3) = \operatorname{argmax}_{a}(q_{\pi}(3, l), q_{\pi}(3, r)) = r$
 - $-q_{\pi}(3,l) = -1 + v_{\pi}(2) = -11, q_{\pi}(3,r) = -1$

2.1 Policy Evaluation of Det Policy

- $v_{\pi}(1) = 1.0q_{\pi}(1,r) = -1 + v_{\pi}(2)$ - $q_{\pi}(1,r) = -1 + v_{\pi}(2)$
- $v_{\pi}(2) = 1.0q_{\pi}(2, r) = -1 + v_{\pi}(3)$ - $q_{\pi}(2, r) = -1 + v_{\pi}(3)$
- $v_{\pi}(3) = 1.0q_{\pi}(3, r) = -1$ - $q_{\pi}(3, r) = -1$
- Solution: $v_{\pi}(1) = -3$, $v_{\pi}(2) = -2$, $v_{\pi}(3) = -1$

	$V_{\pi}(1)$	$V_{\pi}(2)$	$V_{\pi}(3)$
Iter1	-12	-10	-6
Iter2	-3	-2	-1

2.2 Policy Improvement

- Plug in values from PE to get new policy
- $\pi'(1) = \operatorname{argmax}_{a}(q_{\pi}(1, l), q_{\pi}(1, r)) = r$ - $q_{\pi}(1, l) = -1 - 3 = -4, q_{\pi}(1, r) = -1 - 2 = -3$
- $\pi'(2) = \operatorname{argmax}_{a}(q_{\pi}(2, l), q_{\pi}(2, r)) = r$ - $q_{\pi}(2, l) = -1 - 3 = -4, q_{\pi}(2, r) = -1 - 1 = -2$
- $\pi'(3) = \operatorname{argmax}_{a}(q_{\pi}(3, l), q_{\pi}(3, r)) = r$ - $q_{\pi}(3, l) = -1 - 2 = -3, q_{\pi}(3, r) = -1$
- Policy is now stable

Value Iteration

Value Iteration

- Bellman Opt Equation: $v_*(s) = \max_a q_*(s, a); q_*(s, a) = R_s^a + \gamma v_*(s')$
- $v_*(1) = \max_{a} [q_*(1, l), q_*(1, r)] = \max_{a} [-1 + v_*(1), -1 + v_*(2)]$
 - $q_*(1,l) = -1 + v_*(1), q_*(1,r) = -1 + v_*(2)$
- $v_*(2) = \max_{a} [q_*(2, l), q_*(2, r)] = \max_{a} [-1 + v_*(1), -1 + v_*(3)]$ - $q_*(2, l) = -1 + v_*(1), q_*(2, r) = -1 + v_*(3)$
- $v_*(3) = \max_{a} [q_*(3, l), q_*(3, r)] = \max_{a} [-1 + v_*(2), -1 + v(4)] = \max_{a} [-1 + v_*(2), -1]$ - $q_*(3, l) = -1 + v_*(2), q_*(3, r) = -1 + v(4) = -1$
- We use Value Iteration to solve it. Table shows the iteration process until convergence (not using in-place updates for clarity). Solution: $v_*(1) = -3$, $v_*(2) = -2$, $v_*(3) = -1$
- Optimal policy: $\pi_*(1) = \underset{a}{\operatorname{argmax}} q_*(1, a) = r; \pi_*(2) = \underset{a}{\operatorname{argmax}} q_*(2, a) = r; \pi_*(3) = \underset{a}{\operatorname{argmax}} q_*(3, a) = r$

(The $V_*(4)$ column is omitted since it is always 0)

	V _* (1)	V _* (2)	V _* (3)
Init	0	0	0
Iter1	-1	-1	-1
Iter2	-2	-2	-1
Iter3	-3	-2	-1
Iter4	-3	-2	-1

MC

Recall: MC Prediction Details

- State s may be visited multiple times in the same episode; let us call the first time it is visited in an episode the first visit to s.
 - The first-visit MC method estimates $v_{\pi}(s)$ as the average of the returns following first visits to s,
 - The every-visit MC method averages the returns following all visits to s (show below).

```
MC prediction, for estimating V \approx v_{\pi}
Input: a policy \pi to be evaluated
Initialize:
     V(s) \in \mathbb{R}, arbitrarily, for all s \in S
     Returns(s) \leftarrow \text{an empty list, for all } s \in S
Loop forever (for each episode):
     Generate an episode following \pi: S_0, A_0, R_1, S_1, A_1, R_2, \ldots, S_{T-1}, A_{T-1}, R_T
     G \leftarrow 0
     Loop for each step of episode, t = T - 1, T - 2, \dots, 0:
          G \leftarrow \gamma G + R_{t+1}
          Append G to Returns(S_t)
                                                          Can compute running avg w. incremental
          V(S_t) \leftarrow \text{average}(Returns(S_t))
                                                          update V(S_t) \leftarrow_{\alpha} Returns(S_t)
```

- TD update equation: $V(S_t) \leftarrow G_t$
- $V(4) \equiv 0$. Initialize V(1) = V(2) = V(3) = 0,
- EP1: (1, r, -1), (2, r, -1), (3, r, -1), (4, r, 0)

1.
$$G(3) \leftarrow -1, V(3) \leftarrow G(3) = -1$$

2.
$$G(2) \leftarrow -1 + \gamma G(3) = -2$$
, $V(2) \leftarrow G(2) = -2$

3.
$$G(1) \leftarrow -1 + \gamma G(2) = -3$$
, $V(1) \leftarrow G(1) = -3$

• EP2:
$$(1, r, -1), (2, r, -1), (3, r, -1), (4, r, 0)$$

1.
$$G(3) \leftarrow -1, V(3) \leftarrow G(3) = -1$$

2.
$$G(2) \leftarrow -1 + \gamma G(3) = -2$$
, $V(2) \leftarrow G(2) = -2$

3.
$$G(1) \leftarrow -1 + \gamma G(2) = -3$$
, $V(1) \leftarrow G(1) = -3$

• EP3:
$$(1, r, -1)$$
, $(2, r, -1)$, $(3, r, -1)$, $(4, r, 0)$

1.
$$G(3) \leftarrow -1, V(3) \leftarrow G(3) = -1$$

2.
$$G(2) \leftarrow -1 + \gamma G(3) = -2$$
, $V(2) \leftarrow G(2) = -2$

3.
$$G(1) \leftarrow -1 + \gamma G(2) = -3$$
, $V(1) \leftarrow G(1) = -3$

MC EP1-3

V(1)	V(2)	V(3)
0	0	0
-3	-2	-1
-3	-2	-1
-3	-2	-1
-3.5	-3.5	-3.5
-3.5	-3.5	-3.5
-3.5	-3.5	-3.5
-3.5	-3.5	-3.5
-3.5	-3.5	-3.5
	0 -3 -3 -3.5 -3.5 -3.5 -3.5	0 0 -3 -2 -3 -2 -3 -2 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5

- TD update equation: $V(S_t) \leftarrow G_t$
- EP4:

$$(3,l,-1),(2,l,-1),(1,l,-1),(1,r,-1),(2,r,-1),(3,r,-1),(4,r,0)$$
 MC EP4-8

- 1. $G(3) \leftarrow -1$ (2nd visit)
- 2. $G(2) \leftarrow -1 + \gamma G(3) = -2$ (2nd visit)
- 3. $G(1) \leftarrow -1 + \gamma G(2) = -3$ (2nd visit)
- 4. $G(1)' \leftarrow -1 + \gamma G(1) = -4$ (1st visit)
- 5. $G(2)' \leftarrow -1 + \gamma G(1)' = -5$ (1st visit)
- $G(3)' \leftarrow -1 + \gamma G(2)' = -6$ (1st visit)
- (Every visit):
- V(3) = .5(G(3) + G(3)') = -3.5
- 9. V(2) = .5(G(2) + G(2)') = -3.5
- 10. V(1) = .5(G(1) + G(1)') = -3.5
- 11. (First visit):
- 12. V(3) = G(3)' = -6
- 13. V(2) = G(2)' = -5
- 14. V(1) = G(1)' = -4
- EP5-8 omitted

TD	V(1)	V(2)	V(3)
Init	0	0	0
After EP1	-3	-2	-1
After EP2	-3	-2	-1
After EP3	-3	-2	-1
After EP4	-3.5	-3.5	-3.5
After EP5	-3.5	-3.5	-3.5
After EP6	-3.5	-3.5	-3.5
After EP7	-3.5	-3.5	-3.5
After EP8	-3.5	-3.5	-3.5
After EP5 After EP6 After EP7	-3.5 -3.5 -3.5	-3.5 -3.5 -3.5	-3.5 -3.5 -3.5

TD

- TD update equation: $V(S_t) \leftarrow R_{t+1} + V(S_{t+1})$
 - With $\gamma = 1$, $\alpha = 1$, each V(s) is completely replaced overwritten by the TD update
- $V(4) \equiv 0$. Initialize V(1) = V(2) = V(3) = 0,
- EP1: (1, r, -1), (2, r, -1), (3, r, -1), (4, r, 0)
- 1. $V(1) \leftarrow -1 + V(2) = -1 + 0 = -1$
- 2. $V(2) \leftarrow -1 + V(3) = -1 + 0 = -1$
- 3. $V(3) \leftarrow -1 + V(4) = -1 + 0 = -1$
- EP2: (1, r, -1), (2, r, -1), (3, r, -1), (4, r, 0)
- 1. $V(1) \leftarrow -1 + V(2) = -1 1 = -2$
- 2. $V(2) \leftarrow -1 + V(3) = -1 1 = -2$
- 3. $V(3) \leftarrow -1 + V(4) = -1 + 0 = -1$
- EP3: (1, r, -1), (2, r, -1), (3, r, -1), (4, r, 0)
- 1. $V(1) \leftarrow -1 + V(2) = -1 2 = -3$
- 2. $V(2) \leftarrow -1 + V(3) = -1 1 = -2$
- 3. $V(3) \leftarrow -1 + V(4) = -1 + 0 = -1$
- Arrows denote bootstrap dependencies, e.g., V(1) bootstraps off V(2),
 V(2) bootstraps off V(3), V(3) bootstraps off V(4). They also denote direction of information flow during learning, e.g., V(4) ≡ 0 is the external learning signal, and info flows V(4) → V(3) → V(2) → V(1).

TD EP1-3

V(1)	V(2)	V(3)
0	0	0
-1	-1	-1
−2	-2 🖈	_1 ▲
-3	-2	-1
-5	-4	-1
-7	-6	-1
-9	-8	-1
-11	-10	-1
-13	-12	-1
	0 -1 -2 -3 -5 -7 -9 -11	$ \begin{array}{c ccccc} 0 & 0 & & & & \\ -1 & & -1 & & & \\ -2 & & & -2 & & \\ & & & & -2 & & \\ & & & & & -2 & & \\ & & & & & & -2 & & \\ & & & & & & -2 & & \\ & & & & & & -2 & & \\ & & & & & & -2 & & \\ & & & & & & -2 & & \\ & & & & & & & & -2 & & \\ & & & & & & & & & -2 & & \\ & & & & & & & & & & \\ & & & & & &$

- TD update equation: $V(S_t) \leftarrow R_{t+1} + V(S_{t+1})$
- 1. EP4:

$$(3, l, -1), (2, l, -1), (1, l, -1), (1, r, -1), (2, r, -1), (3, r, -1), (4, r, 0)$$

2.
$$V(3) \leftarrow -1 + V(2) = -1 - 2 = -3$$

3.
$$V(2) \leftarrow -1 + V(1) = -1 - 3 = -4$$

4.
$$V(1) \leftarrow -1 + V(1) = -1 - 3 = -4$$

5.
$$V(1) \leftarrow -1 + V(2) = -1 - 4 = -5$$

6.
$$V(2) \leftarrow -1 + V(3) = -1 - 3 = -4$$

7.
$$V(3) \leftarrow -1 + V(4) = -1 + 0 = -1$$

• EP5:

$$(3,l,-1),(2,l,-1),(1,l,-1),(1,r,-1),(2,r,-1),(3,r,-1),(4,r,0)\\$$

1.
$$V(3) \leftarrow -1 + V(2) = -1 - 4 = -5$$

2.
$$V(2) \leftarrow -1 + V(1) = -1 - 5 = -6$$

3.
$$V(1) \leftarrow -1 + V(1) = -1 - 5 = -6$$

4.
$$V(1) \leftarrow -1 + V(2) = -1 - 6 = -7$$

5.
$$V(2) \leftarrow -1 + V(3) = -1 - 5 = -6$$

6.
$$V(3) \leftarrow -1 + V(4) = -1 + 0 = -1$$

• EP6-8 omitted. Some arrows are omitted, since some values are overwritten within an episode.

TD EP4-8

TD	V(1)	V(2)	V(3)
Init	0	_0	_0
After EP1	-1	-1	-1
After EP2	-24	-2	-1
After EP3	-3	-2	-1
After EP4	-5 <	-4	-1
After EP5	-7 <	-6	-1 ▲
After EP6	−9 <	-8	-1
After EP7	-11	-10	−1 🖍
After EP8	-13	-12	_1 ∠

TD failed to converge

- TD failed to converge for this set of episodes. The sequence of TD updates cause all value functions to be increasingly negative.
 - For simplicity, consider the infinite sequence of $(2, 1, -1), (1, r, -1), (2, 1, -1) \dots$
 - The sequence of TD updates: V(2) = -1 + V(1), V(1) = -1 + V(2), ... So V(1) and V(2) bootstrap off each other and both go to $-\infty$.
 - An analogy is that two students V(1) and V(2) are copying from each other, but they never get any true reward feedback from the teacher (V(4) = 0)
- V(3) is bootstrapped off V(2) when moving left, and is bootstrapped off $V(4) \equiv 0$ when moving right. Steps 1-5 form a bootstrap dependency cycle $V(3) \leftarrow V(2) \leftarrow V(1) \leftarrow V(2) \leftarrow V(3)$ that causes V(1), V(2), V(3) to blow up. Even though V(3) is updated to V(3) = -1 + V(4) = -1 when it moves right to state 4, the episode ends immediately afterwards, so V(1) and V(2) do not have a chance to bootstrap off the correct V(3).

1.
$$V(3) \leftarrow -1 + V(2) = -1 - 4 = -5$$

2.
$$V(2) \leftarrow -1 + V(1) = -1 - 5 = -6$$

3.
$$V(1) \leftarrow -1 + V(1) = -1 - 5 = -6$$

4.
$$V(1) \leftarrow -1 + V(2) = -1 - 6 = -7$$

5.
$$V(2) \leftarrow -1 + V(3) = -1 - 5 = -6$$

6.
$$V(3) \leftarrow -1 + V(4) = -1 + 0 = -1$$

• If the episode does not end immediately, but the agent moves left again, then V(1) and V(2) will have a chance to bootstrap off the new V(3), and they may converge to the correct values.

TD	V(1)	V(2)	V(3)
Init	0	_0	0
After EP1	-1	-1	-1
After EP2	−2	-2	_1 🖍
After EP3	-3	-2	-1
After EP4	-5 /	→ -4	−1 ▲
After EP5	-7 \	-6	−1 🖍
After EP6	−9 <	-8	-1
After EP7	-11	-10	<u>−</u> 1 ∠
After EP8	-13	-12	<u>−</u> 1 🖍

Sarsa

- Sarsa update equation: $Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha(R_{t+1} + \gamma Q(S_{t+1}, A_{t+1}) Q(S_t, A_t)) = R_{t+1} + Q(S_{t+1}, A_{t+1})$
 - With $\gamma = 1$, $\alpha = 1$, each Q(S, A) is completely replaced overwritten by the Sarsa update

•
$$Q(4, a) \equiv 0$$
. Initialize $Q(1,*) = Q(2,*) = Q(3,*) = 0$

• After EP1:
$$(1, r, -1)$$
, $(2, r, -1)$, $(3, r, -1)$, $(4, r, 0)$

1.
$$Q(1,r) \leftarrow -1 + Q(2,r) = -1 + 0 = -1$$

2.
$$Q(2,r) \leftarrow -1 + Q(3,r) = -1 + 0 = -1$$

3.
$$Q(3,r) \leftarrow -1 + Q(4,r) = -1 + 0 = -1$$

• After EP2:
$$(1, r, -1)$$
, $(2, r, -1)$, $(3, r, -1)$, $(4, r, 0)$

1.
$$Q(1,r) \leftarrow -1 + Q(2,r) = -1 - 1 = -2$$

2.
$$Q(2,r) \leftarrow -1 + Q(3,r) = -1 - 1 = -2$$

3.
$$O(3,r) \leftarrow -1 + O(4,r) = -1 + 0 = -1$$

• After EP3:
$$(1, r, -1), (2, r, -1), (3, r, -1), (4, r, 0)$$

1.
$$Q(1,r) \leftarrow -1 + Q(2,r) = -1 - 2 = -3$$

2.
$$O(2,r) \leftarrow -1 + O(3,r) = -1 - 1 = -2$$

3.
$$Q(3,r) \leftarrow -1 + Q(4,r) = -1 + 0 = -1$$

Sarsa EP1-3

r = -1 $r = -1$						
Sarsa	Q(1,l)	Q(1,r)	Q(2,l)	Q(2,r)	Q(3,l)	Q(3,r)
Init	0	0	0	0	0	0
After EP1	0	-1⁴	0	1 *	0	1
After EP2	0	-2 ◆	0	2 ←	0	-1
After EP3	0	-3 ◆	0	-2 ❖	0	-1
After EP4	-4	-3	-1	-2	-1	-1
After EP5	-4	-3	-5	-2	-2	-1
After EP6	-4	-3	-5	-2	-6	-1
After EP7	-4	-3	-5	-2	-6	-1
After EP8	-4	-3	-5	-2	-6	-1

- Sarsa update equation: $Q(S_t, A_t) \leftarrow R_{t+1} + Q(S_{t+1}, A_{t+1})$
- EP4: (3, l, -1), (2, l, -1), (1, l, -1), (1, r, -1), (2, r, -1), (3, r, -1), (4, r, 0)
- 1. $Q(3,l) \leftarrow -1 + Q(2,l) = -1 + 0 = -1$
- 2. $Q(2,l) \leftarrow -1 + Q(1,l) = -1 + 0 = -1$
- 3. $Q(1,l) \leftarrow -1 + Q(1,r) = -1 3 = -4$
- 4. $Q(1,r) \leftarrow -1 + Q(2,r) = -1 2 = -3$
- 5. $Q(2,r) \leftarrow -1 + Q(3,r) = -1 1 = -2$
- 6. $Q(3,r) \leftarrow -1 + Q(4,r) = -1 + 0 = -1$
- EP5: (3, l, -1), (2, l, -1), (1, l, -1), (1, r, -1), (2, r, -1), (3, r, -1), (4, r, 0)
- 1. $Q(3,l) \leftarrow -1 + Q(2,l) = -1 1 = -2$
- 2. $Q(2,l) \leftarrow -1 + Q(1,l) = -1 4 = -5$
- 3. $Q(1,l) \leftarrow -1 + Q(1,r) = -1 3 = -4$
- 4. $Q(1,r) \leftarrow -1 + Q(2,r) = -1 2 = -3$
- 5. $Q(2,r) \leftarrow -1 + Q(3,r) = -1 1 = -2$
- 6. $Q(3,r) \leftarrow -1 + Q(4,r) = -1 + 0 = -1$
- EP6: (3, l, -1), (2, l, -1), (1, l, -1), (1, r, -1), (2, r, -1), (3, r, -1), (4, r, 0)
- 1. $Q(3,l) \leftarrow -1 + Q(2,l) = -1 5 = -6$
- 2. $Q(2,l) \leftarrow -1 + Q(1,l) = -1 4 = -5$
- 3. $Q(1,l) \leftarrow -1 + Q(1,r) = -1 3 = -4$
- 4. $O(1,r) \leftarrow -1 + O(2,r) = -1 2 = -3$
- 5. $Q(2,r) \leftarrow -1 + Q(3,r) = -1 1 = -2$
- 6. $Q(3,r) \leftarrow -1 + Q(4,r) = -1 + 0 = -1$
- EP7: (3, l, -1), (2, l, -1), (1, l, -1), (1, r, -1), (2, r, -1), (3, r, -1), (4, r, 0)
- 1. $Q(3,l) \leftarrow -1 + Q(2,l) = -1 5 = -6$
- 2. $Q(2,l) \leftarrow -1 + Q(1,l) = -1 4 = -5$
- 3. $Q(1,l) \leftarrow -1 + Q(1,r) = -1 3 = -4$
- 4. $Q(1,r) \leftarrow -1 + Q(2,r) = -1 2 = -3$
- 5. $Q(2,r) \leftarrow -1 + Q(3,r) = -1 1 = -2$
- 6. $Q(3,r) \leftarrow -1 + Q(4,r) = -1 + 0 = -1$ (EP8 omitted)

Sarsa EP4-8

/ = -1 / = -1							
Sarsa	Q(1,l)	Q(1,r)	Q(2,l)	Q(2,r)	Q(3,l)	Q(3,r)	
Init	0	0	0	9	0	0	
After EP1	0	-1⁴	0	1	0	1*	
After EP2	0	-2 ◆	0	2 ←		1_	
After EP3	0 \	_3 ❖	0	2 ←	0	-1≰∕	
After EP4	-4←	/⇔ 	→ -1 ~	_2 ↓	→ _1	1*	
After EP5	-4❤	3 ↓	_5 _	2 +	<u>-2</u>	1*	
After EP6	-4←	- 3 4	-5		- 6	1	
After EP7	-4	-3	-5	-2	-6	-1	
After EP8	-4	-3	-5	-2	-6	-1	
-							

Q values have converged at EP6. Bootstrap dependency arrows are omitted for EP7-8, since they are the same as EP6. Red arrows denote the stable set of dependencies that keep the Q values stable after EP6.

Comments on Sarsa

- State-action value functions for moving right look reasonable: Q(1,r) = -3, Q(2,r) = -2, Q(3,r) = -1.
- State-action value functions for moving left look unreasonable: Q(1,l) = -4, Q(2,l) = -5, Q(3,l) = -6. This is because the only trajectory with move left actions are $3 \rightarrow 2 \rightarrow 1 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 4$, the Q values are updated based on only this episode (onpolicy), i.e., from state 3 taking action left, it can only take the above trajectory, and reach the goal in 6 steps, hence Q(3,l) = -6. If we had collected more trajectories like $3 \rightarrow 2 \rightarrow 3 \rightarrow 4$, then Sarsa could learn the more accurate Q value Q(3,l) = -1 + Q(2,r) = -3.
- Even though the Q values for left actions are inaccurate, the greedy policy is still optimal since right action is always better than left:
- $\pi_*(1) = \operatorname{argmax}_a(Q(1, l), Q(1, r)) = r$
- $\pi_*(2) = \operatorname{argmax}_a(Q(2, l), Q(2, r)) = r$
- $\pi_*(3) = \operatorname{argmax}_a(Q(3, l), Q(3, r)) = r$

r = -1 $r = -1$						
Sarsa	Q(1,l)	Q(1,r)	Q(2,l)	Q(2,r)	Q(3,l)	Q(3,r)
Init	0	0	0	0	0	0
After EP1	0	-1⁴	0	1 *	0	1*
After EP2	0	-2 ◆	0	2 ←	0	-14
After EP3	0	-3 ❖	0	2 ❖	0	-1≰∕
After EP4	-4 ~	_3	-1	-2	→ -1	-1*
After EP5	-4◀	-3	- 5	2	-2	-1*
After EP6	-4	-3❖	- 5	-2	-6	-14
After EP7	-4	-3	-5	-2◆	6	-1*
After EP8	-4	-3	-5	-2	-6	-1

Why Sarsa did not blow up

- TD: V(s) is updated regardless if agent moves left or right. V(3) is bootstrapped off V(2) when moving left, and is bootstrapped off $V(4) \equiv 0$ when moving right. bootstrap dependency cycle $V(3) \leftarrow V(2) \leftarrow V(1) \leftarrow V(2) \leftarrow V(3)$ that causes V(1), V(2), V(3) to blow up
- Sarsa: when agent moves left, Q(s, l) is updated; when agent moves right, Q(s, r) is updated. Q(3, r) is always bootstrapped off $Q(4, r) \equiv 0$. So there is no bootstrap dependency cycle like TD. The linear dependency chain from Q(4, r) to Q(3, l) determines the stable values:

1.
$$Q(3,l) \leftarrow -1 + Q(2,l) = -1 - 5 = -6$$

2.
$$Q(2,l) \leftarrow -1 + Q(1,l) = -1 - 4 = -5$$

3.
$$Q(1,l) \leftarrow -1 + Q(1,r) = -1 - 3 = -4$$

4.
$$Q(1,r) \leftarrow -1 + Q(2,r) = -1 - 2 = -3$$

5.
$$Q(2,r) \leftarrow -1 + Q(3,r) = -1 - 1 = -2$$

6.
$$Q(3,r) \leftarrow -1 + Q(4,r) = -1 + 0 = -1$$

I = -1 $I = -1$						
Sarsa	Q(1,l)	Q(1,r)	Q(2,l)	Q(2,r)	Q(3,l)	Q(3,r)
Init	0	0	0	9	0	0
After EP1	0	-1⁴	0	_=1*	0	1^_1
After EP2	0	-2 ◆	0	2 ←	0	_11
After EP3	0	-3 ◆		2 ❖	0	-1
After EP4	-4 ~	3/	-1	-2	→ -1	−1 [*]
After EP5	-4◀	/ -3	- 5	2	-2	-1*
After EP6	-4	-3❖	- 5	-2	-6	-14
After EP7	-4	-3	-5	-2❖	\ -6	-1
After EP8	-4	-3	-5	-2	-6	-1

Q Learning

- QL update equation: $(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left(R_{t+1} + \gamma \max_{a'} Q(S_{t+1}, a') Q(S_t, A_t)\right) = R_{t+1} + \gamma \max_{a'} Q(S_{t+1}, a')$
 - With $\gamma = 1$, $\alpha = 1$, each Q(S, A) is completely replaced overwritten by the Q update
- After EP1: (1, r, -1), (2, r, -1), (3, r, -1), (4, r, 0)

1.
$$Q(1,r) \leftarrow -1 + \max_{a'} Q(2,a') = -1 + \max(0,0) = -1$$

2.
$$Q(2,r) \leftarrow -1 + \max_{a'} Q(3,a') = -1 + \max(0,0) = -1$$

3.
$$Q(3,r) \leftarrow -1 + \max_{a'} Q(4,a') = -1 + 0 = -1$$

• After EP2:
$$(1, r, -1), (2, r, -1), (3, r, -1), (4, r, 0)$$

1.
$$Q(1,r) \leftarrow -1 + \max_{\alpha'} Q(2,\alpha') = -1 + \max(-1,0) = -1$$

2.
$$Q(2,r) \leftarrow -1 + \max_{a'} Q(3,a') = -1 + \max(-1,0) = -1$$

3.
$$Q(3,r) \leftarrow -1 + \max_{a'} Q(4,a') = -1 + 0 = -1$$

• After EP3:
$$(1, r, -1), (2, r, -1), (3, r, -1), (4, r, 0)$$

1.
$$Q(1,r) \leftarrow -1 + \max_{a'} Q(2,a') = -1 + \max(-1,0) = -1$$

2.
$$Q(2,r) \leftarrow -1 + \max_{a'} Q(3,a') = -1 + \max(-1,0) = -1$$

3.
$$Q(3,r) \leftarrow -1 + \max_{a'} Q(4,a') = -1 + 0 = -1$$

QL EP1-3

			_	_		_
QL	Q(1,l)	Q(1,r)	Q(2,l)	Q(2,r)	Q(3,l)	Q(3,r)
Init	0	0	_0_	/0	0	0
After EP1	0	-1	0	−1 *	0	-1
After EP2	0	-1	0	-1*	0	-1▲
After EP3	0	-1	0	-14	0	-1
After EP4	-1	-2	-1	-2	-1	-1
After EP5	-2	-3	-2	-2	-2	-1
After EP6	-3	-3	-3	-2	-3	-1
After EP7	-4	-3	-4	-2	-3	-1
After EP8	-4	-3	-4	-2	-3	-1

- EP4: (3, l, -1), (2, l, -1), (1, l, -1), (1, r, -1), (2, r, -1), (3, r, -1), (4, r, 0)
- 1. $Q(3,l) \leftarrow -1 + \max_{a'} Q(2,a') = -1 + \max(0,-1) = -1$
- 2. $Q(2,l) \leftarrow -1 + \max_{a'} Q(1,a') = -1 + \max(0,-1) = -1$
- 3. $Q(1,l) \leftarrow -1 + \max_{a'} Q(1,a') = -1 + \max(0,-1) = -1$
- 4. $Q(1,r) \leftarrow -1 + \max_{\alpha} Q(2,\alpha') = -1 + \max(-1,-1) = -2$
- 5. $Q(2,r) \leftarrow -1 + \max_{a'} Q(3,a') = -1 + \max(-1,-1) = -2$
- 6. $Q(3,r) \leftarrow -1 + \max_{a'} Q(4,a') = -1 + 0 = -1$
- EP5: (3, l, -1), (2, l, -1), (1, l, -1), (1, r, -1), (2, r, -1), (3, r, -1), (4, r, 0)
- 1. $Q(3,l) \leftarrow -1 + \max_{a'} Q(2,a') = -1 + \max(-1,-2) = -2$
- 2. $Q(2,l) \leftarrow -1 + \max_{a'} Q(1,a') = -1 + \max(-1,-2) = -2$
- 3. $Q(1,l) \leftarrow -1 + \max_{a'} Q(1,a') = -1 + \max(-1,-2) = -2$
- 4. $Q(1,r) \leftarrow -1 + \max_{a'} Q(2,a') = -1 + \max(-2,-2) = -3$
- 5. $Q(2,r) \leftarrow -1 + \max_{a'} Q(3,a') = -1 + \max(-2,-1) = -2$
- 6. $Q(3,r) \leftarrow -1 + \max_{a'} Q(4,a') = -1 + 0 = -1$
- EP6: (3, l, -1), (2, l, -1), (1, l, -1), (1, r, -1), (2, r, -1), (3, r, -1), (4, r, 0)
- 1. $Q(3,l) \leftarrow -1 + \max_{a'} Q(2,a') = -1 + \max(-2,-2) = -3$
- 2. $Q(2,l) \leftarrow -1 + \max_{a'} Q(1,a') = -1 + \max(-2,-3) = -3$
- 3. $Q(1,l) \leftarrow -1 + \max_{al} Q(1,a') = -1 + \max(-2,-3) = -3$
- 4. $Q(1,r) \leftarrow -1 + \max_{a'} Q(2,a') = -1 + \max(-3,-2) = -3$
- 5. $Q(2,r) \leftarrow -1 + \max_{a'} Q(3,a') = -1 + \max(-3,-1) = -2$
- 6. $Q(3,r) \leftarrow -1 + \max_{a'} Q(4,a') = -1 + 0 = -1$

QL EP4-6

r = -1 $r = -1$							
QL	Q(1,l)	Q(1,r)	Q(2,l)	Q(2,r)	Q(3,l)	Q(3,r)	
Init	0	0	_0_	0	_0	0	
After EP1	0	-1	0	-1 ♣	0	-1	
After EP2	0	-1	0	-1	0	-1	
After EP3	o /	1^	0_	_14	0	1_	
After EP4	† 1√	/ <mark>-2</mark> ↓	→ -1~	_2 4	\ <u>1</u>	1*	
After EP5	<u></u> + 2 -	/ - 3₩	2_	/↓ 	<u>2</u>	1*	
After EP6	<u></u>	/ ₃ ↓	→ 3	/2 ↓	7	1	
After EP7	-4	-3	-4	-2	-3	-1	
After EP8	-4	-3	-4	-2	-3	-1	

- EP7: (3, l, -1), (2, l, -1), (1, l, -1), (1, r, -1), (2, r, -1), (3, r, -1), (4, r, 0)
- 1. $Q(3,l) \leftarrow -1 + \max_{a'} Q(2,a') = -1 + \max(-3,-2) = -3$
- 2. $Q(2,l) \leftarrow -1 + \max_{a'} Q(1,a') = -1 + \max(-3,-3) = -4$
- 3. $Q(1,l) \leftarrow -1 + \max_{a'} Q(1,a') = -1 + \max(-3,-3) = -4$
- 4. $Q(1,r) \leftarrow -1 + \max_{a'} Q(2,a') = -1 + \max(-4,-2) = -3$
- 5. $Q(2,r) \leftarrow -1 + \max_{a'} Q(3,a') = -1 + \max(-3,-1) = -2$
- 6. $Q(3,r) \leftarrow -1 + \max_{a'} Q(4,a') = -1 + 0 = -1$
- EP8: (3, l, -1), (2, l, -1), (1, l, -1), (1, r, -1), (2, r, -1), (3, r, -1), (4, r, 0)
- 1. $Q(3,l) \leftarrow -1 + \max_{a'} Q(2,a') = -1 + \max(-4,-2) = -3$
- 2. $Q(2,l) \leftarrow -1 + \max_{a'} Q(1,a') = -1 + \max(-4,-3) = -4$
- 3. $Q(1,l) \leftarrow -1 + \max_{a'} Q(1,a') = -1 + \max(-4,-3) = -4$
- 4. $Q(1,r) \leftarrow -1 + \max_{a'} Q(2,a') = -1 + \max(-4,-2) = -3$
- 5. $Q(2,r) \leftarrow -1 + \max_{a'} Q(3,a') = -1 + \max(-3,-1) = -2$
- 6. $Q(3,r) \leftarrow -1 + \max_{a'} Q(4,a') = -1 + 0 = -1$
- Q values have converged at EP7. Bootstrap dependency arrows are omitted for EP8, since they are the same as EP7. Red arrows denote the stable set of dependencies that keep the Q values stable after EP7.

QL EP7-8

r = -1 $r = -1$										
QL	Q(1,l)	Q(1,r)	Q(2,l)	Q(2,r)	Q(3,l)	Q(3,r)				
Init	0	0	/0/	0	_0	0				
After EP1	0	-1	9	-1 ♣	0	-1				
After EP2	0	-1	9	-1	0	-1				
After EP3	<u></u>	_1 ^	/ 	-14	0	1_				
After EP4	† 1~	/ <mark>-2</mark> ↓	→ -1/	_2 4	\ <u>1</u>	1*				
After EP5	* 2~	/ - 3₩	2	/↓ 	<u>2</u>	1*				
After EP6	±3 <u></u>	/ သုံ ျ	→ 3	/2	7	1				
After EP7	¥ 4	-3	* _4	2_) }					
After EP8	-4	-3	-4	-2	-3	-1				

- QL converges. All state-action value functions look reasonable.
- Q(1,r) = -3, Q(2,r) = -2, Q(3,r) = -1. The optimal path can be derived from bootstrap dependencies, e.g., dependency chain $Q(1,r) \leftarrow Q(2,r) \leftarrow Q(3,r)$ corresponds to the optimal path $1 \rightarrow 2 \rightarrow 3 \rightarrow 4$.
- Q(1,l) = -4: If agent moves left in state 1, dependency chain $Q(1,l) \leftarrow Q(1,r) \leftarrow Q(2,r) \leftarrow Q(3,r)$ corresponds to the optimal path $1 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 4$ w. 4 steps to reach goal state 4.
- Q(2,l) = -4: If agent moves left in state 2, dependency chain $Q(2,l) \leftarrow Q(1,r) \leftarrow Q(2,r) \leftarrow Q(3,r)$ corresponds to the optimal path $2 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 4$ w. 4 steps to reach goal state 4.
- Q(3,l) = -3: If agent moves left in state 3, dependency chain $Q(3,l) \leftarrow Q(2,r) \leftarrow Q(3,r)$ corresponds to the optimal path $3 \rightarrow 2 \rightarrow 3 \rightarrow 4$ w. 3 steps to reach goal state 4.
- QL is smarter than Sarsa: since it is off-policy, agent can learn the correct Q value functions that correspond to trajectories that it has never actually experienced, e.g., if If agent moves left in state 3, even though it has never experienced the trajectory 3 → 2 → 3 → 4, the bootstrap dependency Q(3, l) ← Q(2, r) lead to that trajectory instead of the experienced trajectory 3 → 2 → 1 → 1 → 2 → 3 → 4.
- The intermediate Q values before convergence may not correspond to a valid policy, e.g., before EP7, $\operatorname{argmax}_a Q(1, a) = l$, so the agent would be stuck in state 1 trying to go left forever.
- Q values learned by QL are accurate, and the greedy policy is optimal:
- $\pi_*(1) = \operatorname{argmax}_a(Q(1, l), Q(1, r)) = r$
- $\pi_*(2) = \operatorname{argmax}_a(Q(2, l), Q(2, r)) = r$
- $\pi_*(3) = \operatorname{argmax}_a(Q(3, l), Q(3, r)) = r$

Comments on QL

r = -1 $r = -1$									
QL	Q(1,l)	Q(1,r)	Q(2,l)	Q(2,r)	Q(3,l)	Q(3,r)			
Init	0	0	0	0	0	0			
After EP1	0	-1	19	-1 ♣	0	-1			
After EP2	0	-1	9	-1	0	-1≰∕			
After EP3	o /	1^	0/	_14	0	1_			
After EP4	† 1√	_ 2 ←	→ -1~	−2	≤ 1	1			
After EP5	<u></u>	_3≰	<u>2</u>	-24	<u>_2</u>	1			
After EP6	±3 <u></u>	/-3 ↓	→ 3	_=2+	3 3	1			
After EP7	¥ 4	-3	≯ _4	2_	_3	1			
After EP8	-4	-3	-4	-2	-3	-1			