Christina Wang

Econ 108

21 October 2022

Econ 108 Pset 3

1)

a)

b)
$$p(y=1 | x) = e^x'B / (1 + e^x'B)$$
.

$$\exp(b["char dollar"]) = 6.492946$$

$$\exp(b["word george"]) = .003089205$$

$$(6.492946 + .003089205) / (6.492946 + .003089205 + 1) = .8666$$

The in-sample
$$R^2 = 1 - (1548.7/6170.2) = .75$$

.8666 > .75, so the in-sample R² of the simplified model is larger than the in-sample R² of the full regression.

- c) Having the word "george" in an email multiplies the odds of spam by exp(-5.8) or around .003. It is statistically significant because it greatly reduces the chances of this email being spam.
- d) Two feature logit model using training subsample:

$$(6.160852 + .001257)/(6.160852 + .001257 + 1) = .86037$$

 R^2 on leave-out subsample:

$$1 - (223.13/1310.25) = .8297$$

 R^2 on leave-out subsample is greater than in-sample R^2 .

e) $\exp(b["word_make"]) + \exp(b["word_address"]) + \exp(b["word_all"]) + \exp(b["word_all"]) + \exp(b["word_address"]) + \exp(b["word_all"]) + \exp(b["word_address"]) + \exp(b["word_all"]) + \exp(b["word_all"]) + \exp(b["word_address"]) + \exp(b["word_all"]) + \exp(b["word_all"]) + \exp(b["word_address"]) + \exp(b["word_all"]) + \exp(b["word_address"]) + \exp(b["word_address"]) + \exp(b["word_all"]) + \exp(b["word_address"]) + \exp(b["word_add$ exp(b["word_our"]) + exp(b["word_over"]) + exp(b["word_remove"]) + exp(b["word_internet"]) + exp(b["word_people"]) + exp(b["word_report"]) + exp(b["word_addresses"]) + exp(b["word_free"]) + exp(b["word_order"]) + exp(b["word_mail"]) + exp(b["word_receive"]) + exp(b["word_will"]) + exp(b["word_business"]) + exp(b["word_email"]) + exp(b["word_you"]) $+ \exp(b["word_credit"]) + \exp(b["word_your"]) + \exp(b["word_font"]) + \exp(b["word_000"]) + \exp(b["word_font"]) + \exp$ $\exp(b["word_money"]) + \exp(b["word_hp"]) + \exp(b["word_hpl"]) + \exp(b["word_650"]) + \exp(b["word_hpl"]) + \exp(b["word_$ $\exp(b["word_lab"]) + \exp(b["word_labs"]) + \exp(b["word_telnet"]) + \exp(b["word_857"]) + \exp(b["word_lab"]) + \exp(b["word_labs"]) + \exp(b["$ $\exp(b["word_data"]) + \exp(b["word_415"]) + \exp(b["word_85"]) + \exp(b["word_technology"])$ $+ \exp(b["word_1999"]) + \exp(b["word_parts"]) + \exp(b["word_pm"]) + \exp(b["word_direct"]) + \exp(b["word_parts"]) + \exp(b["wor$ exp(b["word_cs"]) + exp(b["word_meeting"]) + exp(b["word_original"]) + $\exp(b["word_project"]) + \exp(b["word_re"]) + \exp(b["word_edu"]) + \exp(b["word_table"]) + \exp(b["word_$ exp(b["word_conference"]) + exp(b["char_semicolon"]) + exp(b["char_leftbrac"]) + $\exp(b["char_leftsquarebrac"]) + \exp(b["char_exclaim"]) + \exp(b["char_pound"]) = 89.5785$ 89.5785/(89.5785+1) = .989.989 > .75, so this out of sample R² is much greater than the in-sample R². 2) a) $glm(formula = log(sales) \sim log(price) + brand, data = oj)$ b) plot(residuals(reg) ~ log(price), data=oj, col=brandcol[oj\$brand])

The residual plots are mostly consistent, so I don't think they suggest possible conditional heteroskedasticity.

c) plot(residuals(reg) ~ brand, data=oj, col=brandcol)

The residual plots mostly center around 0, so I don't think they suggest possible conditional heteroskedasticity.

d) summary(reg) shows us std. error of log(price) = .022, brandminute.maid = .012, brandtropicana = .016 as shown below.

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
                                      745.04
(Intercept)
                 10.82882
                                                 <2e-16
                              0.01453
log(price)
                 -3.13869
                              0.02293 -136.89
                                                 <2e-16
brandminute.maid 0.87017
                              0.01293
                                        67.32
                                                 <2e-16
brandtropicana
                                        93.81
                  1.52994
                              0.01631
                                                 <2e-16
```

When computing the HC-robust standard errors using the AER package, we get very similar numbers; however, each of these standard errors are slightly larger.

```
> sqrt(bvar["log(price)","log(price)"])
[1] 0.02494664
> sqrt(bvar["brandminute.maid","brandminute.maid"])
[1] 0.01441403
> sqrt(bvar["brandtropicana","brandtropicana"])
[1] 0.01740783
```