1

AI1110 ASSIGNMENT-7

DASARI SRINITH (CS21BTECH11015)

Abstract—This document contains the solution for Assignment 7 (NCERT GRADE 11 CHAPTER 16 Exercise 16.2 Question 5)

QUESTION 5:

Three coins are tossed. Describe

- (i) Two events which are mutually exclusive.
- (ii) Three events which are mutually exclusive and exhaustive.
- (iii) Two events, which are not mutually exclusive.
- (iv) Two events which are mutually exclusive but not exhaustive.
- (v) Three events which are mutually exclusive but not exhaustive.

SOLUTION:

Since a coin can either turn up Tail(0) or Head(1), each with equal probability of 0.5 and the possible outcomes when 3 coins are tossed are (or) the sample space contains,

$$S = \{000, 001, 010, 100, 011, 101, 110, 111\}$$
 (1)

Let X be a binomial random variable, with parameters n and p, where

- 1) n = No.of trials = 3
- 2) p = Probability with which we get a favourable outcome (here let us consider getting Head as a favourable outcome) = $\frac{1}{2}$

then,

$$\Pr(X = k) = {}^{n}C_{k}p^{k} (1 - p)^{n-k}, \quad k = 0, \dots, n$$
(2)

where k is number of heads according to this question.

We can tabulate the probabilities of each event into a binomial probability table as shown in Table I

(i) **Two events which are mutually exclusive**Let us take the events A,B as shown in Table II. So,

$$A = \{(X = 3)\}\tag{3}$$

$$B = \{ (X = 0) \} \tag{4}$$

Event	Description of event	Probability of event
X = 0	Zero heads in the trial	$\frac{1}{8}$
X = 1	Exactly one head in the trial	$\frac{3}{8}$
X = 2	Exactly two heads in the trial	$\frac{3}{8}$
X = 3	All three heads in the trial	$\frac{1}{8}$

TABLE I
BINOMIAL PROBABILITY DISTRIBUTION

Event	Description of event
A	Getting all 3 Heads
В	Getting all 3 Tails

TABLE II
EVENTS FOR QUESTION 1

and Since.

$$\Pr(A \cap B) = \Pr((X = 3) \cap (X = 0)) = 0$$
(5)

So ,events A and B are mutually exclusive.

(ii) Three events which are mutually exclusive and exhaustive

Let us take events C,D,E as shown in Table III. So ,

Event	Description of event
C	Getting all 3 Tails
D	Getting exactly 2 Tails
E	Getting at least 2 Heads

TABLE III
EVENTS FOR QUESTION 2

$$C = \{ (X = 0) \} \tag{6}$$

$$D = \{(X = 1)\}\tag{7}$$

$$E = \{(X = 2) \cup (X = 3)\} \tag{8}$$

and Since,

$$\Pr\left(C \cap D\right) = 0\tag{9}$$

$$\Pr\left(D \cap E\right) = 0\tag{10}$$

$$\Pr\left(C \cap E\right) = 0\tag{11}$$

We can say that, events C,D,E are mutually exclusive. And from Table I,

$$\Pr\left(C \cup D \cup E\right) = \Pr\left(\left(X \ge 0\right)\right) \tag{12}$$

$$= \frac{1}{8} + \frac{3}{8} + \frac{3}{8} + \frac{1}{8} = 1$$
 (13)

So, events C,D,E are mutually exclusive and exhaustive.

(iii) Two events ,which are not mutually exclusive

Let us take the events F,G as shown in Table IV. So,

Event	Description of event
F	Getting all 3 Heads
G	Getting at least 2 Heads

TABLE IV EVENTS FOR QUESTION 3

$$F = \{(X = 3)\}\tag{14}$$

$$G = \{(X = 2) \cup (X = 3)\} \tag{15}$$

and Since from Table I,

$$\Pr(F \cap G) = \Pr((X = 3)) = \frac{1}{8} \neq 0$$
 (16)

So ,events F and G are not mutually exclusive.

(iv) Two events ,which are mutually exclusive but not exhaustive

Let us take the events H,I as shown in Table V. So,

Event	Description of event
Н	Getting all 3 Heads
I	Getting all 3 Tails

TABLE V
EVENTS FOR QUESTION 4

$$H = \{(X = 3)\}\tag{17}$$

$$I = \{(X = 0)\}\tag{18}$$

and Since,

$$\Pr\left(H \cap I\right) = 0\tag{19}$$

So ,events H and I are mutually exclusive. And from Table I,

$$\Pr(H \cup I) = \Pr((X = 0)) + \Pr((X = 3))$$
(20)

$$=\frac{1}{8} + \frac{1}{8} = \frac{1}{4} \neq 1 \tag{21}$$

So, events H and I are mutually exclusive but not exhaustive.

(v) Three events which are mutually exclusive but not exhaustive

Let us take events J,K,L as shown in Table VI. So,

Event	Description of event
J	Getting all 3 Tails
K	Getting exactly 2 Tails
L	Getting exactly 1 Tail

TABLE VI EVENTS FOR QUESTION 5

$$J = \{ (X = 0) \} \tag{22}$$

$$K = \{(X = 1)\}\tag{23}$$

$$L = \{(X = 2)\}\tag{24}$$

and Since,

$$\Pr(J \cap K) = 0 \tag{25}$$

$$\Pr\left(K \cap L\right) = 0\tag{26}$$

$$\Pr(J \cap L) = 0 \tag{27}$$

We can say that, events J,K,L are mutually exclusive. And from Table I,

$$\Pr(J \cup K \cup L) = \Pr((X = 0)) + \Pr((X = 1)) + \Pr((X = 2)) \quad (28)$$

$$\Pr(J \cup K \cup L) = \frac{1}{8} + \frac{3}{8} + \frac{3}{8} = \frac{7}{8}$$
 (29)

$$\neq 1$$
 (30)

So, events J,K,L are mutually exclusive but not exhaustive.