# **Error Detection / Correction**

### **Error Detection / Correction**

• Why might we need Error detection/correction?

- Even & Odd Parity
  - Error detection

- Hamming code
  - Used for error detection & error correction

### Parity bits

ASCII - 7 bit code (hex 00 to 7F)
 Could use "8<sup>th</sup>" bit for parity bit:
 X1011010

- Even parity: make total number of "1" bits is even
  01011010
- Odd parity: make total number of "1" bits odd
  11011010

If a parity bit is added to a bit stream, then there is a basis to check for bit(s) being corrupted.

## Hypercube Interpretation

Consider codewords as vertices on a hypercube.



codeword

 $d = 2 = \min \text{ distance}$ 

n = 3 = dimensionality

 $2^n = 8 = number of nodes$ 

The distance between nodes on the hypercube is the Hamming distance D. The minimum distance is d.

001 is equidistance from 000, 011 and 101.

For s-bit error detection  $d \ge s + 1$ 

For s-bit error correction  $d \ge 2s + 1$ 

15-853 Page4

### Hamming Distance

• The Hamming distance is the number of bits that have to be changed to get from one bit pattern to another.

Example: 10010101 & 1001 1001 have a hamming distance of 2

· For any coding whose members have a Hamming distance of two, any one bit error can be detected. Why?





### Hamming Distance

- For any coding whose members have a Hamming distance of three, any one bit error can be detected and corrected.
   Why?
- And any two bit error can be detected. Why?





### Error Correcting Code Function



The output of the "Compare" to the "Corrector" is termed the "syndrome", and is K bits long

# Hamming Code Syndrome

• If we compare the read K bits compared with the write K bits, using an EXOR function, the result is called the "syndrome".

• If the syndrome is all zeros, there were no errors.

• If there is a 1 bit <u>somewhere</u>, we know it represents an error.

### Hamming Code Design – determining K

To store an M bit word with detection/correction takes M+K bit words

If K = 1, we can detect single bit errors but not correct them

If  $2^{k} - 1 >= M + K$ , we can detect, identify, and correct all single bit errors, i.e. the syndrome contains the information to correct any single bit error

Example: For M = 8:

and K = 3:  $2^3 - 1 = 7 < 8 + 3$  (doesn't work)

and K = 4:  $2^4 - 1 = 15 > 8 + 4$  (works!)

Therefore, we must choose K = 4,

i.e., the minimum size of the syndrome is 4

# Increased word length for error correcting

|           | Single-Error Correction |            | Single-Error Correction/ |            |
|-----------|-------------------------|------------|--------------------------|------------|
|           |                         |            | Double-Error Detection   |            |
| Data Bits | Check Bits              | % Increase | Check Bits               | % Increase |
| 8         | 4                       | 50         | 5                        | 62.5       |
| 16        | 5                       | 31.25      | 6                        | 37.5       |
| 32        | 6                       | 18.75      | 7                        | 21.875     |
| 64        | 7                       | 10.94      | 8                        | 12.5       |
| 128       | 8                       | 6.25       | 9                        | 7.03       |
| 256       | 9                       | 3.52       | 10                       | 3.91       |

## Hamming code

- 01001101 ---- Data
- ??0?100?1101 ---- ? For 1,2,4,8
- P1= ??0?100?1101
  - P1=?01010
  - Even ? 0
- P2= ??0?100?1101
  - P2=?00010
  - Even ? 1
- P4= ??0<u>?100</u>?110<u>1</u>
  - P4=?1001
  - Even ? 0
- p8= ??0?100<u>?1101</u>
  - P8=?1101
  - Even ? 1

## Detecting and correcting

- 01001101 ---- Data
- Transmitted data with hamming code: 010010011101 ---
- Suppose error in bit 9--- 0100100101101
- P1= 010010010101
  - P1=001000
  - Even ? 1
- P2= 0<u>10</u>01<u>00</u>10<u>10</u>1
  - P2=100010
  - Even ? 0
- P4= 010<u>0100</u>1010<u>1</u>
  - P4=01001
  - Even ? 0
- p8= 0100100<u>10101</u>
  - P8=10101
  - Even ? 1
- correcting---- 1+0+0+8=9