Was ist so gut an "digitaler Qualität"? (1)

Digitale Übertragung oder Speicherung: Signalfremde Bestandteile (Rauschen) durch geeignete Codierung vom Nutzsignal trennbar Originalsignal ohne Verlust rekonstruierbar

----- Nutzsignal (z.B. Musik)
----- Rauschen
---- Gesamtsignal (verfälscht durch Rauschen)

Vor- und Nachteile digitaler Signale

Vorteile:

- Unempfindlichkeit gegen Störungen des unterliegenden Übertragungsmediums (z.B. Einstrahlung von Störfeldern) bzw. Speichermediums (z.B. magnetische Instabilitäten)
 - Fehler erst ab einem Schwellwert bemerkbar
 - Zusätzlich Fehlererkennung und -korrektur möglich
- Verlustfrei kopierbar
- Viele Signale entstehen bereits in digitaler Form (z.B. Computergrafik)

(Alternativlose) Nachteile:

- Informationsverlust gegenüber einem analogen Original
- Hoher Speicheraufwand bzw. große benötigte Kanalkapazität
- Spezielle Computersysteme notwendig (z.B. schnelle Festplatten, großer Arbeitsspeicher, etc.)

Kapitel 1 Grundlagen digitaler Medien

- 1.1 Medium, Medieninformatik, Multimedia
- 1.2 Digitalisierung
- 1.3 Informationstheoretische Grundlagen
 - 1.3.1 Abtasttheorem
 - 1.3.2 Stochastische Nachrichtenquelle, Entropie, Redundanz
- 1.4 Verlustfreie universelle Kompression

Basis:

- Andreas Butz, Heinrich Hußmann und Rainer Malaka: Medieninformatik: Eine Einführung. Pearson Studium, ISBN-10: 3827373530, 2009. – Kapitel 2
- Digitale Medien (Prof. Dr. Andreas Butz, LMU München, WiSe 2011)
- Digitale Medien (Prof. Dr. Hendrik Lensch, Uni Ulm, SoSe 2011)

Digitalisierungsfehler (Wiederholung)

Durch zu grobe Raster bei Diskretisierung und Quantisierung entstehen Digitalisierungsfehler.

Digitalisierungsfehler

Fehlerklassen:

- Zu grobe Quantisierung: Schlechtere Darstellung von Abstufungen
- Zu grobe Diskretisierung, d.h. Fehler in der Abtastrate:

Zusammenhang schwerer zu verstehen; führt zu gravierenden Fehlern!

Abtastrate: Einführendes Beispiel

Warum drehen sich in Kinofilmen die Räder von Kutschen oft scheinbar rückwärts? http://www.youtube.com/watch?v=0jL5qxx-cWl

Abtastrate: Einführendes Beispiel

Warum drehen sich in Kinofilmen die Räder von Kutschen oft scheinbar rückwärts?

Rad (über die Zeit):

Aufnahmen (über die Zeit):

Frequenz

- Die Frequenz f ist ein Maß für die Häufigkeit eines wiederkehrenden Ereignisses
- Maßeinheit:
 - Hertz, 1 Hz = 1/s
 - 1 Hz bedeutet einmal pro Sekunde
- Wiederkehr / Periodendauer (in Sekunden)
 - Länge des Signalverlaufs bis zum Beginn der nächsten Wiederholung
 - Wellenlänge bei einer Sinusfunktion
 - Wiederkehr/Periodendauer T bei gegebener Frequenz f.

$$T = \frac{1}{f}$$

Hier zeitabhängige Signale – aber übertragbar auf raumabhängige Signale

Abtastfrequenz gleich der

Signalfrequenz ist.

Immer noch zu niedrige Abtastrate

Wie groß muss die Abtastrate sein?

- Bei der doppelten Abtastrate gegenüber einer Sinus-Signalfrequenz ist die Abtastung "noch" nicht korrekt.
- Mindestabtastung: Mehr als doppelte Frequenz im Vergleich zur Frequenz eines reinen Sinus-Signals

Bandbegrenzung

- Reale Signale bestehen immer aus einer Überlagerung von Signalanteilen verschiedener Frequenzen
- "Bandbreite" = Bereich der niedrigsten und höchsten vorkommenden Frequenzen
 - Untere Grenzfrequenz
 - Obere Grenzfrequenz
- Grundfrequenz = Frequenz der Wiederholung des Gesamtsignals (bei periodischen Signalen)

Beispiel: Überlagerung von Signalen mit 50 Hz (Grundfrequenz), 100 Hz und 150 Hz

Abtasttheorem

Nach Harry Nyquist (1928) oft auch Nyquist-Theorem genannt. (Beweis von Claude Shannon)

Wenn eine Funktion

mit höchster vorkommender Frequenz f_q (Bandbegrenzung)

mit einer Abtastrate f_S abgetastet wird, so dass

$$f_S > 2^* f_g$$
,

dann kann die Funktion eindeutig aus den Abtastwerten rekonstruiert werden.

Praktisches Beispiel: Abtastrate für Audio-CDs ist 44,1 kHz (eindeutige Rekonstruktion von Signalen bis ca. 22 kHz)

Aliasing: Audio-Beispiel

- Bei einer nicht genügend hohen Abtastrate entstehen Fehlinterpretationen der hochfrequenten Signalanteile (Aliasing)
- Beispiel Audio: Hohe Töne werden als tiefe Töne rekonstruiert.

Höherfrequente Wellen werden als niederfrequente rekonstruiert → Aliasing-Effekt

http://de.wikipedia.org/wiki/Alias-Effekt

Aliasing: Bildbeispiele

Bei Bildern liefert unzureichende Abtastung sogenannte *Moiré-Effekte*. (Ortsfrequenz * 2 > Abtastfrequenz)

Originalbild: Ringmuster einer Fresnel-Zonenplatte

30 Abtastpunkte je Kante

Rekonstruktion des quantisierten Originalbildes

Moiré im Foto

Quelle:Wikipedia

Vermeidung von Aliasing: Filterung

- Vor digitaler Abtastung: Nyquist-Bedingung sicherstellen!
- Wenn höherfrequente Anteile (≥ 1/2 f_S) vorhanden,
 - Entfernen!
- Filterung
 - Bei Bildern und Ton anwendbar

Wie perfekt ist die Rekonstruktion?

- Das Nyquist-Theorem ist ein mathematisches Theorem.
 - Keinerlei Verlust bei Rekonstruktion innerhalb der angegebenen Rahmenbedingungen (Sinusfrequenzen)
- Mathematische Rekonstruktion mit "idealem Tiefpass"
 - Siehe später!
- Praktische Rekonstruktion
 - Zum Teil sehr aufwändige Systeme für optimale Anpassung an Wahrnehmungsphysiologie
- Praktisches Beispiel:
 - Vergleich der Klangqualität von CD-Spielern (an der gleichen Stereoanlage)

Beispiele digitaler Repräsentationen

Beispiele zu Abtastraten und Auflösungen (ohne Kompression)

		<u>Abtastrate</u>	<u>Auflösung</u>
– Au	dio		
•	Telefon	8 kHz	8 Bit
•	CD Audio	44.1 kHz	16 Bit
– Bil	– Bild		
•	Schwarzweiß	Bildgröße	18 Bit
•	Farbe	Bildgröße	132 Bit
– Dig	gitales Fernsehen		
•	CCIR 601	13,5 MHz	8 Bit
		(bei 720 x 500 Bildgröße)	