Universidad de San Carlos de Guatemala

Facultad de Ingeniería

Escuela de Ciencias y Sistemas

Organización Computacional

Ing. Juan Carlos Maeda Juárez

Auxiliar: Carlos Rangel

Práctica No. 2

LogicCalc

Integrantes Grupo No. 5

Carnet	Estudiante
201602404	Kevin Estuardo Secaida Molina
202000173	Christian Alessander Blanco González
202101499	Denis Augusto Coronado Calderón
202106484	Wendi Paulina Vicente Pérez

Introducción.

En el presente documento se aplican los conocimientos teóricos aprendidos en la clase magistral y laboratorio para la creación de una unidad comparativa y circuitos combinacionales lógicos y aritméticos que tienen como entrada dos números de 4 bits cada uno y mostrando el resultado en leds y en displays de 7 segmentos.

Para esta práctica se trabajó con simuladores y con un grupo de 4 integrantes se dividió el trabajo para encontrar la solución al problema utilizando bloques digitales combinacionales MSI tipo aritmético y varias compuertas lógicas.

Objetivos.

Objetivo General.

Desarrollar un prototipo de calculadora llamado "LogicCalc", basado en lógica combinacional, que sea capaz de realizar operaciones aritméticas, lógicas y comparativas entre números binarios de 4 bits.

Objetivos específicos.

- Diseñar e implementar una Unidad Aritmética Lógica (ALU) que pueda realizar operaciones de suma, resta, multiplicación y cálculo de potencias sobre números binarios de 4 bits.
- Desarrollar una Unidad Lógica que permita realizar operaciones de negación lógica, multiplicación lógica (AND) y suma lógica (OR) sobre números binarios de 4 bits.
- 3. Crear una Unidad Comparativa que determine el número mayor y menor de las entradas proporcionadas y muestre estos resultados en dos displays de 7 segmentos. En caso de que las entradas sean iguales, ambos displays mostrarán el mismo número.

Descripción del problema.

Como estudiantes del curso de Organización Computación se nos solicitó desarrollar un prototipo de calculadora llamado "LogicCalc" que de una solución óptima basada en lógica combinacional que sea capaz de realizar cálculos aritméticos, lógicos y comparativos entre los cuales encontramos la suma, resta, multiplicación, elevación de un número, la comparación entre dos números, AND, OR y NOT. Para esto se trabajaron con especificaciones únicas para una Unidad Aritmética Lógica Básica (ALU).

Diagramas del diseño del circuito.

Proteus – Ingreso de números.

Proteus – Comparador.

Proteus – Sumador.

Proteus – Decodificador (suma)

Proteus – Resta.

Proteus – Multiplicación.

Proteus – Unidad Lógica.

Proteus – Potencia.

Proteus – Salidas.

Tinkercad – Sumador.

Tinkercad – Resta.

Tinkercad – Multiplicación.

Tinkercad – Not.

Tinkercad – Or.

Simulador – Comparador.

Equipo utilizado.

Proteus.

Cantidad	Código	Componente
16	R#	Resistencias de 1K ohm
16	R#	Resistencias de 2.2K ohm
28	R#	Resistencias de 100 ohm
7	R#	Resistencias de 330 ohm
8	R#	Resistencias de 10K ohm
11	U#	Compuerta XOR
57	U#	Compuerta AND
30	U#	Compuerta OR
24	U#	Compuerta NOT
7	74LS48	Decoder
8	74283	Sumador
1	74LS85	Comparador
10	74193	Contador binario
3	74192	Contador BCD

2	7485	Comparador
3	74175	Flip flop tipo D
2	4511	NPN
1	7483	Sumador
1	74LS86	Compuerta Xor
36	Diodo	Led's verdes.
12	Diodo	Led's rojas
2	Dip switch	Conmutadores DIP x 4
9	Display	Displays verdes
2	Display	Displays azules
1	Batería.	Batería de 12 Voltios.

Tinkercad/Simulador.

Componentes del Sumador.

Cantidad	Código	Componente
2	Batería	Batería de 1.5 V
2	Dip Switch	conmutadores DIP x 4
5	Led	Leds rojos
2	And	Compuerta And cuádruple
2	Xor	Compuerta Xor cuádruple
2	Or	Compuerta Or cuádruple
5	Resistencia	Resistencia de 200 ohm

Componentes del Or.

Cantidad	Código	Componente
3	Batería	Batería de 1.5V
2	Dip Switch	Conmutador de DIP x4
4	Led's	Led rojo
1	OR	Compuerta Or cuádruple
4	Resistencia	Resistencias de 1k ohm.

Componentes del Restador.

Cantidad	Código	Componente
1	74HC283	Sumador
2	Dip Switch	Conmutadores DIP x 4
14	Resistencia	Resistencia de 1k ohm
1	Puerta Xor	XOR cuádruple
4	Led's	Led rojo.
1	Interruptor	Interruptor deslizante
4	Batería	Batería 1.5 V

Componentes del Multiplicador.

Cantidad	Código	Componente
3	74HC283	Sumador
4	Batería	Batería de 1.5V
4	AND	Compuerta And cuádruple
2	Dip Switch	Conmutadores DIP x 4
7	Led's	Led rojo
7	Resistencia	Resistencias de 200 ohm

Componentes del Not.

Cantidad	Código	Componente
3	Batería	Batería de 1.5V
4	Inversor	Not hexagonal.
1	Dip Switch	Conmutador de DIP x4
4	Led's	Led rojo
4	Resistencia	Resistencias de 1k ohm.

Componentes del Comparador.

Cantidad	Código	Componente
7	74LS85	Comparador.
2	Led	Led's rojos.
2	Dip Switch	Conmutador DIP x4
1	Batería	Batería de 1.5V
1	Interruptor	Interruptor deslizante

Conclusiones.

- Se logró diseñar e implementar una Unidad Aritmética Lógica (ALU) capaz de realizar operaciones de suma, resta, multiplicación y cálculo de potencias sobre números binarios de 4 bits. Los resultados obtenidos fueron los esperados y correctos, lo que demuestra la eficacia y precisión de la ALU desarrollada. Esta unidad proporciona una herramienta fundamental para realizar operaciones aritméticas complejas sobre números binarios de manera eficiente y confiable.
- La Unidad Lógica desarrollada demostró ser exitosa en la realización de operaciones de negación lógica, multiplicación lógica (AND) y suma lógica (OR) sobre números binarios de 4 bits. Los resultados obtenidos corresponden con las expectativas, validando así la funcionalidad y el rendimiento de la unidad. Esta unidad proporciona una base sólida para el procesamiento y la manipulación de datos binarios en aplicaciones lógicas y de control.
- La creación de la Unidad Comparativa permitió determinar de manera precisa los números mayor y menor de las entradas proporcionadas. Los resultados fueron visualizados correctamente en dos displays de 7 segmentos, lo que facilita la interpretación y comprensión de los datos por parte del usuario. En caso de que las entradas sean iguales, ambos displays mostraron el mismo número, lo cual es un comportamiento esperado. La Unidad Comparativa proporciona una solución confiable y eficiente para la comparación de valores binarios y su representación visual en displays de salida.

Anexos.
Sumador:
https://www.tinkercad.com/things/4OcDql9k7w1-
sumador/editel?sharecode=HaBku1lcwNr9RRQ1xrcGuAVYZ0QBFVRNNxbqCH9-xX0
Restador:
https://www.tinkercad.com/things/fLDmW6lhuxe-restador-practica-
2/editel?sharecode=VHlxHsAwFAbOfDQGHTibMZv4EsWzbV4ecyb6eurZh0l
Multiplicador: https://www.tinkercad.com/things/a5p5cKRuWm1-magnificent-
elzing/editel?sharecode=gErJw0B5ywS5wneiUpFVtOu7urkHki-YeVFa6PpGo
Not:
https://www.tinkercad.com/things/i3xxAiXxOQt-not-practica-
2/editel?sharecode=oWIUdmJhvjNIETGOU_89hlgd0x8qPWl3c405L0wlo84
Or:
https://www.tinkercad.com/things/2flpVpgtgbl-epic-
sango/editel?sharecode=IILgIM9jXpLhbu6o95M1A3DhC_vr9q7Vd6jMx-OwBJY