

Compa Family CPLDs Embedded Flash (EFlash) User Guide

(UG030006, V1.2) (03.03.2020)

Shenzhen Pango Microsystems Co., Ltd.
All Rights Reserved. Any infringement will be subject to legal action.

Revisions History

Document Revisions

Version	Date of Release	Revisions
V1.2	03.03.2020	Initial release.

(UG030006, V1.2) 1/16

About this Manual

Terms and Abbreviations

Terms and Abbreviations	Meaning
JTAG	Joint Test Action Group
SPI	Serial Peripheral Interface
I ² C	Inter-Integrated Circuit
APB	Advanced Peripheral Bus
CCS	Configuration Control System

(UG030006, V1.2) 2 / 16

Table of Contents

Revisions History	1
About this Manual	
Table of Contents	3
Figures	4
Tables	5
Chapter 1 Introduction	6
Chapter 2 Function Description	7
2.1 User Programming Interfaces	7
2.1.1 JTAG Interface	7
2.1.2 Slave SPI Interface	9
2.1.3 Slave I ² C interface	10
2.1.4 Internal Slave APB Interface	11
2.2 EFlash Programming	15
Disclaimer	16

Figures

Figure 2-1 JTAG Interface Diagram	7
Figure 2-2 JTAG Interface Timing	
Figure 2-3 SPI Interface	9
Figure 2-4 Slave I ² C Port Diagram	10
Figure 2-5 Slave I ² C Interface Timing	
Figure 2-6 Internal Slave APB Interface	
Figure 2-7 Write Without Wait	12
Figure 2-8 Write With Wait	13
Figure 2-9 Read Without Wait	13
Figure 2-10 Read With Wait	14
Figure 2-11 EFlash Programming Method	15

Tables

Table 1-1 Compa Family CPLDs EFlash Resources	6
Table 2-1 List of JTAG Ports	7
Table 2-2 JTAG Instruction Set	8
Table 2-3 Slave SPI Port List	9
Table 2-4 Slave SPI Instruction Set	9
Table 2-5 Slave I ² C Port List	10
Table 2-6 Slave I2C Instruction Set	11
Table 2-7 Internal Slave APB Port List	12
Table 2-8 Internal Slave APB Registers	14

Chapter 1 Introduction

Compa Family CPLDs devices include an embedded Flash (EFlash) that can be used to store configuration information or provide general Flash storage space for the user. Embedded Flash has the following functions:

- ➤ Up to 5120 Kbits of storage space
- ➤ 1 page contains 2Kbits
- Less than 1μA leakage current
- > 38ns read access time
- ➤ At least 100,000 programming/erasing cycles
- ➤ 32-bit data bus
- Supports JTAG, Slave I2C, Slave SPI, and APB interfaces
- ► +1.2V supply independently
- ➤ Operating Temperature Range (junction): -40°C to 100°C

Table 1-1 Compa Family CPLDs EFlash Resources

Device	EFLASH Capacity (Kbits)
PGC1K	664
PGC2K	664
PGC4K	2560
PGC7K	3616
PGC10K	5120

(UG030006, V1.2) 6 / 16

Chapter 2 Function Description

2.1 User Programming Interfaces

Users can access Embedded Flash through JTAG, Slave I2C, Slave SPI, and APB interfaces.

2.1.1 JTAG Interface

The JTAG interface is shown in the following figure:

Figure 2-1 JTAG Interface Diagram

2.1.1.1 Port List

Table 2-1 List of JTAG Ports

Name	Direction	Description
TCK Input		Test Clock input.
ICK	Input	TCK provides the clock for chip test logic
		Test Mode Select.
TMS	Input	Used to control the status switching of the test access port controller state machine on the
		rising edge of TCK to move test instructions and test data.
		Test Data In.
TDI	Innut	Serial input pin.
ועו	Input	Used to move the test instructions into the instruction register and the test data into the test
		data register on the rising edge of TCK.
		Test Data Out.
		Serial output pin.
TDO Output	Output	During the instruction shift state, it is used to shift the test instructions out from the
	Output	instruction register on the falling edge of the TCK signal.
		During the data shift state, it is used to shift out the test data stored in the test data register
		that is placed on the scan chain from TDI to TDO on the falling edge of the TCK signal.

(UG030006, V1.2) 7 / 16

2.1.1.2 Interface Timing

Figure 2-2 JTAG Interface Timing

2.1.1.3 Instruction Set

Table 2-2 JTAG Instruction Set

Instruction	Op Code	Description
BYPASS	1111111111	Bypass instruction
SAMPLE/PRELOAD	1010000000	Sample/preload instruction
EXTEST	1010000001	External test instruction
INTEST	1010000010	Internal test instruction
IDCODE	1010000011	Identification instruction
HIGHZ	1010000101	High-Z instruction
JRST	1010001010	Reset instruction
READ_UID	0101001100	Read-UID instruction
RDSR	0101011001	Read-Status-Register instruction
WADR	0101011010	Write-Address instruction
ERASE	0101011101	Erase instruction
ERASE_PAGE	0101011110	Page-Erase instruction
ERASE_CTL	0101011111	Control-Erase instruction
PROGRAM	0101100000	Program instruction
PROGRAM_CTL	0101100001	Program-Control instruction
READ	0101100010	Read instruction
READ_CTL	0101100011	Control-Read instruction
PROGRAM_LOCK	0101100100	Lock-Embedded-Flash instruction
READ_LOCK	0101100101	READ-Embedded-Flash-Lock-Flag instruction
EFlash_SLEEP	0101100110	Embedded-Flash-Sleep instruction
EFlash_WAKEUP	0101100111	Embedded-Flash-Wakeup instruction

(UG030006, V1.2) 8 / 16

2.1.2 Slave SPI Interface

Slave SPI interface is shown in the figure below.

Figure 2-3 SPI Interface

2.1.2.1 Port List

Table 2-3 Slave SPI Port List

Name	Direction	Description	
RSTN	Input	Reset pin; active-low	
CFG_CLK	Input	Input clock, up to 100 MHz.	
INIT_FLAG_N	Open-drain	It is a bidirectional open-drain pin indicating the completion of device initialization or a configuration error During configuration, if an error occurs, the pin is driven by the internal circuit to output a low level while feedbacking the pin's state to the inside of the chip.	
CFG_DONE	Open-drain	It is a bidirectional open-drain pin that indicates configuration completion. 0: Compa Family CPLDs device not configured 1: Compa Family CPLDs device configured	
FCSI_N	Input	Chip select input pin, active low.	
MOSI_SI	Input	Data input pin, that carries output data from the external SPI master to Compa device	
MISO_SO	Output	Data output pin, that carries output data from Compa device to the external SPI master	

2.1.2.2 Instruction Set

Table 2-4 Slave SPI Instruction Set

Instruction	Description	Op Code
NOP	No Operation	FF
RDID	Read Identification	A1
RDSR	Read Status Register	A3
RDLOCK	Read Embedded Flash Lock Information	A5
WREN	Write Enable	51
WRDIS	Write Disable	52
RESET	Reset	60
ERASE	Erase Bulk	10

(UG030006, V1.2) 9 / 16

Instruction	Description	Op Code
ERASE_PAGE	Erase Page	11
ERASE_CTL	Erase Feature Control Page	12
PROGRAM	Program Page	20
READ	Read	30
READ_CTL	Read Feature Control Page 31	
PROGRAM_LOCK	Lock Embedded Flash	40
EFlash_SLEEP	Embedded Flash Sleep 70	
EFlash_WAKEUP	Embedded Flash Wake Up 71	

2.1.3 Slave I²C interface

The slave I²C mode interface is as follows:

Figure 2-4 Slave I²C Port Diagram

2.1.3.1 Port List

Table 2-5 Slave I²C Port List

Name	Direction	Description
SCL	Input	Serial clock, with a maximum frequency of 400KHz
SDA	Input/Output	Serial Data

2.1.3.2 Interface Timing

Figure 2-5 Slave I²C Interface Timing

(UG030006, V1.2) 10 / 16

2.1.3.3 Instruction Set

Table 2-6 Slave I2C Instruction Set

Instruction	Description	Op Code
NOP	No Operation	FF
RDID	Read Identification	A1
RDSR	Read Status Register	A3
RDLOCK	Read Embedded Flash Lock Information	A5
WREN	Write Enable	51
WRDIS	Write Disable	52
RESET	Reset	60
ERASE	Erase Bulk	10
ERASE_PAGE	Erase Page	11
ERASE_CTL	Erase Feature Control Page	12
PROGRAM	Program Page	20
READ	Read	30
READ_CTL	Read Feature Control Page	31
PROGRAM_LOCK	Lock Embedded Flash	40
EFlash_SLEEP	Embedded Flash Sleep	70
EFlash_WAKEUP	Embedded Flash Wake Up	71

2.1.4 Internal Slave APB Interface

The internal slave APB interface is shown below:

Figure 2-6 Internal Slave APB Interface

(UG030006, V1.2) 11/16

2.1.4.1 Port List

Table 2-7 Internal Slave APB Port List

Item	Direction	Description		
pclk	Input	Clock, sampled on the rising edge		
presetn	Input	Asynchronous reset, active low		
paddr[4:0]	Input	Address Bus		
psel	Input	Indicates that at the current moment, only 1 of the 7 slave devices can be selected, active high		
penable	Input	Enable signal, indicating that the transmitted data is valid		
pwrite	Input	Read and write enable 0: Read 1: Write		
pwdata[7:0]	Input	Data bus input		
prdata[7:0]	Output	Data bus output		
pready	Output	Ready signal, indicating the end of a normal operation, active high		

2.1.4.2 Interface Timing

Write without wait

Figure 2-7 Write Without Wait

(UG030006, V1.2) 12 / 16

Write with wait

Figure 2-8 Write With Wait

Read without wait

Figure 2-9 Read Without Wait

(UG030006, V1.2) 13 / 16

Read with wait

Figure 2-10 Read With Wait

2.1.4.3 Register

Table 2-8 Internal Slave APB Registers

Name	R/W	Address	Description
IDCODER0	R	00000	IDCODE Register 0
IDCODER1	R	00001	IDCODE Register 1
IDCODER2	R	00010	IDCODE Register 2
IDCODER3	R	00011	IDCODE Register 3
STATUSR0	R	10000	CCS Status Register 0
STATUSR1	R	10001	CCS Status Register 1
STATUSR2	R	10010	CCS Status Register 2
STATUSR3	R	10011	CCS Status Register 3
IRQCTLR	R/W	10100	Interrupt Control Register
CMDR	R/W	10101	Command register
ADR0	R/W	10110	Address Register 0
ADR1	R/W	10111	Address Register 1
ADR2	R/W	11000	Address Register 2
DATATR	W	11001	Data Transmit Registers
DATARR	R	11010	Data Receive Registers
STATUSR	R	11011	Status register
IRQSTATUSR	R	11100	Interrupt Status Registers
IRQR	R	11101	Interrupt Registers
LOCKRAR0	R	11110	Lock Page Register 0
LOCKRAR1	R	11111	Lock Page Register 1

(UG030006, V1.2) 14 / 16

2.2 EFlash Programming

The EFlash is integrated within the chip, supporting in-system programming. In-system programming includes direct in-system programming and indirect in-system programming.

Direct In-System Programming: Operations on the EFlash via JTAG, SPI, and I²C interfaces.

Indirect In-System Programming: Operations on the EFlash through the internal slave APB interface with user logic. The input to user logic can be from JTAG, SPI interface, I2C interface or a user-defined interface. The user logic is to implement the interface conversion between APB and the interface mentioned above.

Figure 2-11 EFlash Programming Method

As shown in Figure 2-11, users operate the EFlash through the in-system programming method. When Master Self Configuration is enabled, bitstream stored in the EFlash can be downloaded into configuration register, then the device begins to work.

For the process of users operating the EFlash through in-system programming, refer to the document "UG030004_Compa Family CPLDs Configuration User Guide".

(UG030006, V1.2) 15 / 16

Disclaimer

Copyright Notice

This document is copyrighted by Shenzhen Pango Microsystems Co., Ltd., and all rights are reserved. Without prior written approval, no company or individual may disclose, reproduce, or otherwise make available any part of this document to any third party. Non-compliance will result in the Company initiating legal proceedings.

Disclaimer

- 1. This document only provides information in stages and may be updated at any time based on the actual situation of the products without further notice. The Company assumes no legal responsibility for any direct or indirect losses caused by improper use of this document.
- 2. This document is provided "as is" without any warranties, including but not limited to warranties of merchantability, fitness for a particular purpose, non-infringement, or any other warranties mentioned in proposals, specifications, or samples. This document does not grant any explicit or implied intellectual property usage license, whether by estoppel or otherwise.
- 3. The Company reserves the right to modify any documents related to its family products at any time without prior notice.

(UG030006, V1.2)