

Next Generation OP07, Ultralow Offset Voltage Operational Amplifier

OP77

FEATURES

- · Outstanding Gain Linearity
- Ultra High Gain 5000V/mV Min
- + Low V $_{\mbox{\scriptsize OS}}$ Over Temperature 60 $\mu\mbox{\scriptsize V}$ Max
- Excellent TCV_{os}. 0.3μV/°C Max
- High PSRR3µV/V Max
 Low Power Consumption60mW Max
- Fits OP-07, 725, 108A/308A, 741 Sockets
- · Available in Die Form

ORDERING INFORMATION †

	PACK	AGE		OPERATING
TO-99	CERDIP 8-PIN	PLASTIC 8-PIN	LCC 20-PIN	OPERATING TEMPERATURE RANGE
OP77AJ*	OP77AZ*	_	_	MIL
OP77EJ	OP77EZ	_	_	IND
_	_	OP77EP	_	COM
OP77BJ*	OP77BZ*	-	OP77BRC/883	MIL
OP77FJ	OP77FZ	_	-	IND
_	_	OP77FP	-	COM
_	_	OP77GP	-	COM
_	_	OP77GS ^{tt}	_	COM
_	_	OP77HP		XIND
-	-	OP77HS ^{††}	_	XIND

- For devices processed in total compliance to MIL-SDT-883, add/883 after part number. Consult factory for 883 data sheet.
- Burn-in is available on commercial and industrial temperature range parts in CerDIP, plastic DIP, and TO-can packages.
- th For availability and burn-in information on SO and PLCC packages, contact your local sales office.

GENERAL DESCRIPTION

The OP-77 significantly advances the state-of-the-art in precision op amps. The OP-77's outstanding gain of 10,000,000 or more is maintained over the full ± 10 V output range. This exceptional gain-linearity eliminates incorrectable system nonlinearities common in previous monolithic op amps, and provides

superior performance in high closed-loop-gain applications. Low initial V_{OS} drift and rapid stabilization time, combined with only 50mW power consumption, are significant improvements over previous designs. These characteristics, plus the exceptional TCV $_{OS}$ of 0.3 μ V/°C maximum and the low V_{OS} of 25 μ V maximum, eliminates the need for V_{OS} adjustment and increases system accuracy over temperature.

PSRR of $3\mu V/V$ (110dB) and CMRR of $1.0\mu V/V$ maximum virtually eliminiate errors caused by power supply drifts and common-mode signals. This combination of outstanding characteristics makes the OP-77 ideally suited for high-resolution instrumentation and other tight error budget systems.

Continued

PIN CONNECTIONS

SIMPLIFIED SCHEMATIC

0P77

This product is available in six standard grades and five standard packages: the TO-99 can, the 8-pin mini-DIP in ceramic, SO or epoxy, and the 20-contact LCC.

The OP-77 is a direct or upgrade replacement for the OP-07, 05, 725, or 108A op amps. 741-types can be replaced by eliminating the $V_{\rm OS}$ adjust pot. For higher precision performance refer to OP-177.

ABSOLUTE MAXIMUM RATINGS (Note 2)

. ±22V
. ±30V
. ±22V
definite
-150°C
-125°C
-125°C
+85°C

OP-77E, OP-77F, OP-77G (P, S)	0°C to 70°
OP-77H (P, S)	40°C to +85°C
Junction Temperature (T _i)	65°C to +150C
Lead Temperature (Soldering, 60 sec.)	+300°C

PACKAGE TYPE	⊖ _{jA} (Note 3)	e _{jc}	UNITS
TO-99 (J)	150	18	°C/W
8-Pin Hermetic DIP (Z)	148	16	°C/W
8-Pin Plastic DIP (P)	103	43	°C/W
20-Contact LCC (RC, TC)	98	38	°C/W
8-Pin SO (S)	158	43	°C/W

- 1. For supply voltages less than ±22V, the absolute maximum input voltage is equal to the supply voltage.
- 2. Absolute maximum ratings apply to both DICE and packaged parts, unless otherwise noted.
- Θ_{jA} is specified for worst case mounting conditions, i.e., Θ_{jA} is specified for device in socket for TO, CerDIP, P-DIP, and LCC packages; Θ_{jA} is specified for device soldered to printed circuit board for SO package.

ELECTRICAL CHARACTERISTICS at $V_S = \pm 15V$, $T_A = +25$ °C, unless otherwise noted.

V _{OS} /Time	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
			· · · · · · ·				max	CIVITS
AV (Timo		-	10	25	_	20	60	μ٧
Avos/Time	(Note 1)	_	0.2	-		0.2	-	μV/Mo
los		-	0.3	1.5	-	0.3	2.8	nA
I _B		-0.2	1.2	2.0	-0.2	1.2	2.8	nA
e _{np-p}	0.1Hz to 10Hz (Note 2)	_	0.35	0.6	-	0.35	0.6	μ∨р-р
e _n	f _O = 10Hz (Note 2) f _O = 100Hz (Note 2) f _O = 1000Hz (Note 2)	- - -	10.3 10.0 9.6	18.0 13.0 11.0	- - -	10.3 10.0 9.6	18.0 13.0 11.0	V/√Hz
i _{np-p}	0.1Hz to 10Hz (Note 2)	-	14	30	_	14	30	рАр-р
in	$f_O = 10$ Hz (Note 2) $f_O = 100$ Hz (Note 2) $f_O = 1000$ Hz (Note 2)	-	0.32 0.14 0.12	0.80 0.23 0.17	- - -	0.32 0.14 0.12	0.80 0.23 0.17	pA∕√Hz
R _{IN}	(Note 3)	26	45	_	18.5	45	-	МΩ
RINGM	-	_	200	_	-	200	-	GΩ
IVR		±13	±14	_	±13	±14	-	V
CMRR	V _{CM} = ±13V	_	0.1	1.0		0.1	1.0	μV/V
PSRR	V _S = ±3V to ±18V	_	0.7	3	-	0.7	3	μV/V
A _{vo}	$R_L \ge 2k\Omega$, $VO = \pm 10V$	5000	12000	-	2000	8000	-	V/mV
v _o	$\begin{aligned} & R_L \ge 10 k \Omega \\ & R_L \ge 2 k \Omega \\ & R_L \ge 1 k \Omega \end{aligned}$	±13.5 ±12.5 ±12.0	±14.0 ±13.0 ±12.5		±13.5 ±12.5 ±12.0	±14.0 ±13.0 ±12.5	_ _ _	V
SR	$R_L \ge 2k\Omega$ (Note 2)	0.1	0.3	-	0.1	0.3	-	V/µs
BW	A _{VCL} = +1 (Note 2)	0.4	0.6	_	0.4	0.6	_	MHz
Ro		-	60	_	-	60	_	Ω
P _d	$V_S = \pm 15V$, No Load $V_S = \pm 3V$, No Load		50 3.5	60 4.5	_	50 3.5	60 4.5	mW
	$R_p = 20k\Omega$	_	±3	-	-	±3	_	mV
	e _{np-p} e _n i _{np-p} i _n R _{IN} R _{INCM} IVR CMRR PSRR A _{VO} Vo SR BW R _O	$\begin{array}{l} I_{B} \\ e_{np-p} & 0.1 \text{Hz to } 10 \text{Hz } (\text{Note } 2) \\ e_{n} & \int_{O} = 10 \text{Hz } (\text{Note } 2) \\ f_{O} = 100 \text{Hz } (\text{Note } 2) \\ f_{O} = 100 \text{Hz } (\text{Note } 2) \\ f_{O} = 1000 \text{Hz } (\text{Note } 2) \\ \\ i_{np-p} & 0.1 \text{Hz to } 10 \text{Hz } (\text{Note } 2) \\ \\ i_{n} & \int_{O} = 10 \text{Hz } (\text{Note } 2) \\ f_{O} = 100 \text{Hz } (\text{Note } 2) \\ \\ f_{O} = 100 \text{Hz } (\text{Note } 2) \\ \\ f_{O} = 100 \text{Hz } (\text{Note } 2) \\ \\ f_{O} = 100 \text{Hz } (\text{Note } 2) \\ \\ \\ R_{IN} & (\text{Note } 3) \\ \\ \\ IVR & \\ \\ CMRR & V_{CM} = \pm 13 V \\ \\ PSRR & V_{S} = \pm 3 V \text{ to } \pm 18 V \\ \\ A_{VO} & R_{L} \geq 2 \text{k} \Omega, VO = \pm 10 V \\ \\ V_{O} & R_{L} \geq 1 \text{k} \Omega \\ \\ SR & R_{L} \geq 2 \text{k} \Omega \text{ (Note } 2) \\ \\ BW & A_{VCL} = +1 \text{ (Note } 2) \\ \\ R_{O} & V_{S} = \pm 15 \text{V, No Load} \\ \\ V_{S} = \pm 3 V, \text{No Load} \\ \\ V_{S} = \pm 3 V, \text{No Load} \\ \\ V_{S} = \pm 3 V, \text{No Load} \\ \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

- Excluding the initial hour of operation, changes in V_{OS} during the first 30 operation. ating days are typically $2.5\mu V$.
- 2. Sample tested.
- 3. Guaranteed by design.

^{1.} Long-Term Input Offset Voltage Stability refers to the averaged trend line of V_{OS} vs Time over extended periods after the first 30 days of operation.

ELECTRICAL CHARACTERISTICS at $V_S = \pm\,15V$, $-55^{\circ}\,C \le T_A \le +\,125^{\circ}\,C$, unless otherwise noted.

				OP-77	١	OP-77B			
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Input Offset Voltage	V _{OS}		_	25	60	_	45	120	μV
Average Input Offset Voltage Drift	TCVos	(Note 1)	_	0.1	0.3	_	0.2	0.6	μV/°C
Input Offset Current	los			0.5	2.2	_	0.5	4.5	nA
Average Input Offset Current Drift	TCIOS	(Note 2)	_	1.5	25	_	1.5	50	pA/°C
Input Bias Current	1 _B		-0.2	2.4	4	-0.2	2.4	6	nA
Average Input Bias Current Drift	TCIB	(Note 2)	_	8	25	_	15	35	pA/°C
Input Voltage Range	IVR		±13	± 13.5	_	±13	±13.5		V
Common-Mode Rejection Ratio	CMRR	$V_{CM} = \pm 13V$	_	0.1	1.0	_	0.1	3	μV/V
Power Supply Rejection Ratio	PSRR	$V_S = \pm 3V$ to $\pm 18V$	_	1	3	_	1	5	μV/V
Large-Signal Voltage Gain	A _{VO}	$R_L \ge 2k\Omega$, $V_O = \pm 10V$	2000	6000		1000	4000	-	V/mV
Output Voltage Swing	V _O	$R_L \ge 2k\Omega$	±12	±130		±12	±13.0		V
Power Consumption	P _d	$V_S = \pm 15V$, No Load	_	60	75	_	60	75	mW

NOTES:

- OP-77A: TCV_{OS} is 100% tested.
 Guaranteed by end-point limits.

TYPICAL OFFSET VOLTAGE TEST CIRCUIT

TYPICAL LOW-FREQUENCY NOISE TEST CIRCUIT

OPTIONAL OFFSET NULLING CIRCUIT

BURN-IN CIRCUIT

OP77

ELECTRICAL CHARACTERISTICS at $V_S=\pm\,15V,\,T_A=25^{\circ}\,C,\,$ unless otherwise noted.

				OP-77	'E		OP-77	7 F		OP-77	G/H	
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Input Offset Voltage	V _{OS}		_	10	25		20	60	_	50	100	μV
Long-Term V _{OS} Stability	V _{OS} /Time	(Note 1)	_	0.3	_	_	0.4	_	_	0.4	_	μV/Μο
Input Offset Current	Ios	A constitution of the state of	_	0.3	1.5	_	0.3	2.8	_	0.3	2.8	nA
Input Bias Current	IB		-0.2	1.2	2.0	-0.2	1.2	2.8	-0.2	1.2	2.8	пА
Input Noise Voltage	e _{np-p}	0.1Hz to 10Hz (Note 2)	_	0.35	0.6	_	0.38	0.65		0.38	0.65	μV _{p-p}
Input Noise Voltage Density	e _n	$f_{O} = 10Hz$ $f_{O} = 100Hz$ (Note 2) $f_{O} = 1000Hz$	_ _ _	10.3 10.0 9.6	18.0 13.0 11.0		10.5 10.2 9.8	20.0 13.5 11.5		10.5 10.2 9.8	20.0 13.5 11.5	nV/√Hz
Input Noise Current	i _{np-p}	0.1Hz to 10Hz (Note 2)	_	14	30	-	15	35	_	15	35	pA _{p-p}
Input Noise Current Density	i _n	$f_O = 10Hz$ $f_O = 100Hz$ (Note 2) $f_O = 1000Hz$	_ _ _	0.32 0.14 0.12	0.80 0.23 0.17	_ _ _	0.35 0.15 0.13	0.90 0.27 0.18	- - -	0.35 0.15 0.13	0.90 0.27 0.18	pA/√Hz
Input Resistance — Differential-Mode	R _{IN}	(Note 3)	26	45		18.5	45	_	18.5	45	_	МΩ
Input Resistance — Common-Mode	R _{INCM}		_	200	_	_	200	_	_	200	_	GΩ
Input Voltage Range	IVR		±13	±14	_	±13	±14	_	± 13	±14	_	V
Common-Mode Rejection Ratio	CMRR	$V_{CM} = \pm 13V$	_	0.1	1.0	_	0.1	1.6	_	0.1	1.6	μV/V
Power Supply Rejection Ratio	PSRR	$V_S = \pm 3V \text{ to } \pm 18V$	_	0.7	3.0		0.7	3.0		0.7	3.0	μ V /V
Large-Signal Voltage Gain	A _{VO}	$R_L \ge 2k\Omega$, $V_O = \pm 10V$	5000	12000	_	2000	6000	_	2000	6000		V/mV
Output Voltage Swing	Vo	$R_L \ge 10k\Omega$ $R_L \ge 2k\Omega$ $R_L \ge 1k\Omega$	±13.5 ±12.5 ±12.0	± 14.0 ± 13.0 ± 12.5	_ _ _	±13.5 ±12.5 ±12.0	±14.0 ±13.0 ±12.5	_ _ _	±13.5 ±12.5 ±12.0	±14.0 ±13.0 ±12.5		V
Slew Rate	SR	$R_L \ge 2k\Omega$ (Note 2)	0.1	0.3		0.1	0.3	_	0.1	0.3		V/μs
Closed-Loop Bandwidth	BW	A _{VCL} = +1 (Note 2)	0.4	0.6	<u></u>	0.4	0.6	_	0.4	0.6	_	MHz
Open-Loop Output Resistance	R _O		_	60	-	_	60	_	_	60	_	Ω
Power Consumption	P _d	$V_S = \pm 15V$, No Load $V_S = \pm 3V$, No Load	_	50 3.5	60 4.5	_	50 3.5	60 4.5		50 3.5	60 4.5	mW
Offset Adjustment Range		$R_P = 20k\Omega$	_	±3			±3			±3	_	mV

NOTES:

^{1.} Long-Term Input Offset Voltage Stability refers to the averaged trend line congression in part voltage stability refers to the averaged trend line of V_{OS} vs. Time over extended periods after the first 30 days of operation. Excluding the initial hour of operation, changes in V_{OS} during the first 30 operating days are typically 2.5 μV.
 Sample tested.

^{3.} Guaranteed by design.

ELECTRICAL CHARACTERISTICS at $V_S = \pm 15V$, $-25^{\circ}C \le T_A \le +85^{\circ}C$ for OP-77E/FJ and OP-77E/FZ, $0^{\circ}C \le T_A \le +70^{\circ}C$ for OP-77E/F/GP/GS, $-40^{\circ}C \le TA \le +85^{\circ}C$ for OP-77HP/HS, unless otherwise noted.

				OP-77E	:		OP-77	F	()P-77G	/H	
PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Input Offset Voltage	v _{os}	J, Z Packages P Package	_	10 10	45 55		20 20	100 100	_	- 80	150	μ۷
Average Input Offset Voltage Drift	TVCos	J, Z Packages P Package (No	ote 1) _	0.1 0.3	0.3 0.6	_	0.2 0.4	0.6 1.0	<u>-</u>	0.7	- 1.2	μV/°C
Input Offset Current	los		_	0.5	2.2	_	0.5	4.5	_	0.5	4.5	nA
Average Input Offset Current Drift	TCI _{OS}	(Note 2)	_	1.5	40	-	1.5	85	-	1.5	85	pA/°C
Input Bias Current	I _B	E, F, G Grades H Grade	-0.2 -	2.4	4.0	-0.2 -	2.4 -	6.0	-0.2 -	2.4 2.4	6.0 ±6.0	nA
Average Input Bias Current Drift	TCIB	(Note 2)	-	8	40	_	15	60		15	60	pA/°C
Input Voltage Range	IVR		±13.0	±13.5	_	±13.0	±13.5	_	±13.0	±13.5	-	٧
Common-Mode Rejection Ratio	CMRR	V _{CM} = ±13V	-	0.1	1.0		0.1	3.0	_	0.1	3.0	μV/V
Power Supply Rejection Ratio	PSRR	V _S = ±3V to ±18V	-	1.0	3.0	-	1.0	5.0	_	1.0	5.0	μV/V
Large-Signal Voltage Gain	A _{vo}	$R_L \ge 2k\Omega$ $V_O = \pm 10V$	2000	6000	_	1000	4000	-	1000	4000		V/mV
Output Voltage Swing	v _o	R _L ≥ 2kΩ	±12	±13.0		±12	±13.0		±12	±13.0		٧
Power Consumption	P _d	V _S = ±15V, No Loa	d –	60	75	_	60	75	_	60	75	mW

NOTES:

- 1. OP-77E: TCV_{OS} is 100% tested on J and Z packages.
- 2. Guaranteed by end-point limits.

OPEN-LOOP GAIN LINEARITY

Actual open-loop voltage gain can vary greatly at various output voltages. All automated testers use end-point testing and therefore only show the average gain. This causes errors in high closed-loop gain circuits. Since this is so difficult for manufacturers to test, you should make your own evaluation. This simple test circuit makes it easy. An ideal op amp would show a horizontal scope trace.

This is the output gain linearity trace for the new OP-77. The output trace is virtually horizontal at all points, assuring extremely high gain accuracy. The average open-loop gain is truly impressive – approximately 10,000,000.

OP77

DICE CHARACTERISTICS

DIE SIZE 0.093 \times 0.057 inch, 5301 sq. mils (2.36 \times 1.45 mm, 3.42 sq. mm)

- 1. BALANCE
- 2. INVERTING INPUT
- 3. NONINVERTING INPUT
- 4. V-
- 6. OUTPUT
- 7. V+
- 8. BALANCE

WAFER TEST LIMITS at $V_S = \pm 15 V$, $T_A = 25^{\circ} \, C$ for OP-77N/G devices.

PARAMETER	SYMBOL	CONDITIONS	OP-77N LIMIT	OP-77G LIMIT	UNITS
Input Offset Voltage	Vos		40	75	μV MAX
Input Offset Current	Ios		2.0	2.8	nA MAX
Input Bias Current	I _B		±2	±2.8	n A MAX
Input Resistance Differential-Mode	R _{IN}	(Note 1)	26	17	ΜΩ ΜΙΝ
Input Voltage Range	IVR		±13	±13	V MIN
Common-Mode Rejection Ratio	CMRR	V _{CM} = ±13V	1	1.6	μV/V MAX
Power Supply Rejection Ratio	PSRR	$V_S = \pm 3V$ to $\pm 18V$	3	3	μV/V MAX
Output Voltage Swing	v _o	$R_{\perp} = 10k\Omega$ $R_{\perp} = 2k\Omega$ $R_{\perp} = 1k\Omega$	±13.5 ±12.5 ±12.0	± 13.5 ± 12.5 ± 12.0	V MIN
Large-Signal Voltage Gain	Avo	$R_{\perp} = 2k\Omega$ $V_{O} = \pm 10V$	2000	1000	V/mV MIN
Differential Input Voltage			±30	±30	V MAX
Power Consumption	P _d	V _{OUT} = 0V	60	60	mW MAX

NOTES:

Electrical tests are performed at wafer probe to the limits shown. Due to variations in assembly methods and normal yield loss, yield after packaging is not guaranteed for standard product dice. Consult factory to negotiate specifications based on dice lot qualification through sample lot assembly and testing.

TYPICAL ELECTRICAL CHARACTERISTICS at $V_S=\pm 15V$, $T_A=\pm 25^{\circ}C$, unless otherwise noted.

PARAMETER	SYMBOL	CONDITIONS	OP-77N TYPICAL	OP-77G TYPICAL	UNITS
Average Input Offset Voltage Drift	TCVos	$R_S = 50\Omega$	0.1	0.2	μV/°C
Nulled Input Offset Voltage Drift	TCV _{OSn}	$R_S = 50\Omega$, $R_P = 20$ k Ω	0.1	0.2	μV/°C
Average Input Offset Current Drift	TCIOS		0.5	0.5	pA/°C
Slew Rate	SR	$R_L \ge 2k\Omega$	0.3	0.3	V/μs
Closed-Loop Bandwidth	BW	A _{VCL} = +1	0.6	0.6	MHz

Guaranteed by design.

TYPICAL PERFORMANCE CHARACTERISTICS

OPEN-LOOP GAIN

OPEN-LOOP GAIN vs POWER SUPPLY VOLTAGE

UNTRIMMED OFFSET

WARM-UP DRIFT

OFFSET VOLTAGE CHANGE DUE TO THERMAL SHOCK

CLOSED-LOOP RESPONSE FOR VARIOUS GAIN CONFIGURATIONS

OPEN-LOOP GAIN/PHASE RESPONSE

CMRR vs FREQUENCY

OP77

TYPICAL PERFORMANCE CHARACTERISTICS

APPLICATIONS INFORMATION

PRECISION HIGH-GAIN DIFFERENTIAL AMPLIFIER

The high gain, gain linearity, CMRR, and low TCV_{OS} of the OP-77 make it possible to obtain performance not previously available in single stage very high-gain amplifier applications.

For best CMR, $\frac{R1}{R2}$ must equal $\frac{R3}{R4}$. In this example,

with a 10 mV differential signal, the maximum errors are as listed.

TYPE	AMOUNT
COMMON-MODE VOLTAGE	0.01%/V
GAIN LINEARITY, WORST CASE	0.02%
TCV _{OS}	0.003%/°C
TCI _{OS}	0.008%/°C

ISOLATING LARGE CAPACITIVE LOADS

This circuit reduces maximum slew-rate but allows driving capacitive loads of any size without instability. Because the 100Ω resistor is inside the feedback loop, its effect on output impedance is reduced to insignificance by the high open-loop gain of the OP-77.

BILATERAL CURRENT SOURCE

These current sources will supply both positive and negative current into a grounded load.

Note that
$$Z_0 = \frac{R5 \left(\frac{R4}{R2} + 1\right)}{\frac{R5 + R4}{R2} - \frac{R3}{R1}}$$

and that for Z_O to be infinite,

$$\frac{R5 + R4}{R2} \text{ must} = \frac{R3}{R1}.$$

PRECISION CURRENT SINKS

These simple high current sinks require that the load float between the power supply and the sink.

In these circuits, OP-77's high gain, high CMRR, and low $\rm TCV_{OS}$ assure high accuracy.

HIGH STABILITY VOLTAGE REFERENCE

This simple bootstrapped voltage reference provides a precise 10 volts virtually independent of changes in power supply voltage, ambient temperature, and output loading. Correct zener operating current of exactly 2mA is maintained by R1, a selected 5ppm/°C resistor, connected to the regulated output. Accuracy is primarily determined by three factors: the 5ppm/°C temperature coefficient of D1, 1ppm/°C ratio tracking of R2 and R3, and operational amplifier V_{OS} errors.

 V_{OS} errors, amplified by 1.6 (A_{VCL}), appear at the output and can be significant with most monolithic amplifiers. For example: an ordinary amplifier with TCV_{OS} of 5μ V/°C contributes 0.8ppm/°C of output error while the OP-77, with TCV_{OS} of 0.3μ V/°C, contributes but 0.05ppm/°C of output error, thus effectively eliminating TCV_{OS} as an error consideration.

PRECISION ABSOLUTE VALUE AMPLIFIER

V_{IN} ≤ 0V

The high gain and low TCV_{OS} assure accurate operation with inputs from microvolts to volts. In this circuit, the signal always appears as a common-mode signal to

the op amps. The OP-77E CMRR of $1\mu V/V$ assures errors of less than 2ppm.

LOW NOISE PRECISION REFERENCE

PRECISION POSITIVE PEAK DETECTOR

^{*}Teflon is a registered trademark of the Dupont Company.

OP77

PRECISION THRESHOLD DETECTOR/AMPLIFIER

When $V_{IN} < V_{TH}$, amplifier output swings negative, reverse biasing diode D1. $V_{OUT} = V_{TH}$ if $R_L = \infty$. When $V_{IN} \! \geq V_{TH}$, the loop closes,

$$V_{OUT} = V_{TH} + (V_{IN} - V_{TH}) \left(1 + \frac{R_F}{R_S}\right).$$

 C_{C} is selected to smooth the response of the loop.

PRECISION TEMPERATURE SENSOR

RESISTOR VALUES	3		
TCV _{OUT} SLOPE (S)	10mV/°C	100mV/°C	10mV/° F
TEMPERATURE RANGE	−55° C to +125° C	−55°C to +125°C	−67°F to +257°C
OUTPUT VOLTAGE RANGE	-0.55V to +1.25V	-5.5V to +12.5V	-0.67V to +2.57V
ZERO-SCALE	0V @ 0°C	0V @ 0°C	0V @ 0 °F
R _a (±1% Resistor)	9.09kΩ	15kΩ	7.5kf)
R _{b1} (±1% Resistor)	1.5kΩ	1.82kΩ	1.21kΩ
R _{bp} (Potentiometer)	200Ω	500Ω	200Ω
R _c (±1% Resistor)	5.11kΩ	84.5kΩ	8.25kΩ