Rank Modulation in Flash Memories Course Project, EE 605

Saketika Chekuri¹ Suraj Samaga²

 $^{1}190070054$ Electrical Engineering, IIT Bombay

 2 190020114 Electrical Engineering, IIT Bombay

Error Correcting Codes, Autumn 2021

Table of Contents

- Setup
- Basic Construction
 - Notation
 - Definitions
 - Construction
- Balanced n-RMGC
 - Definition and Construction
 - Ranking Permutations
- 4 Conclusion
- 6 References

Flash memory is a non-volatile memory that is both electrically programmable and erasable.

Flash memory is a non-volatile memory that is both electrically programmable and erasable. Historically, it comprises of blocks of cells, where each cell is in one of two states. However, multi-level cells, where each cell stores one of q levels are being actively developed.

Flash memory is a non-volatile memory that is both electrically programmable and erasable. Historically, it comprises of blocks of cells, where each cell is in one of two states. However, multi-level cells, where each cell stores one of q levels are being actively developed.

Device electronics tells us that while adding charge to a single cell is a fast and simple operation, removing charge from a single cell is very difficult.

Flash memory is a non-volatile memory that is both electrically programmable and erasable. Historically, it comprises of blocks of cells, where each cell is in one of two states. However, multi-level cells, where each cell stores one of q levels are being actively developed.

Device electronics tells us that while adding charge to a single cell is a fast and simple operation, removing charge from a single cell is very difficult. This calls for accurate programming schemes that cautiously approach target charge levels from below.

Additionally, the move to multi-level flash cells aggravates device reliability.

Additionally, the move to multi-level flash cells aggravates device reliability. For example, sufficient drift in device threshold levels may cause programming and reading errors.

Additionally, the move to multi-level flash cells aggravates device reliability. For example, sufficient drift in device threshold levels may cause programming and reading errors.

Problem

Designing codes where k bits are stored using a block of n cells with q levels each, with the additional requirement of addressing the challenges above.

Additionally, the move to multi-level flash cells aggravates device reliability. For example, sufficient drift in device threshold levels may cause programming and reading errors.

Problem

Designing codes where k bits are stored using a block of n cells with q levels each, with the additional requirement of addressing the challenges above.

One such scheme is Rank Modulation.

Rank Modulation

• An ordered set of n cells stores the information in the permutation induced by the charge levels of the cells

Rank Modulation

- An ordered set of n cells stores the information in the permutation induced by the charge levels of the cells
- The only allowed programming operation is a 'push-to-the-top' operation, raising the charge level of one of the cells to above the current highest one

Rank Modulation

- An ordered set of n cells stores the information in the permutation induced by the charge levels of the cells
- The only allowed programming operation is a 'push-to-the-top' operation, raising the charge level of one of the cells to above the current highest one
- Additionally, 'block-deflation', decrease of all the charge levels in a block by a constant amount smaller than the lowest, maintaining relative values is allowed

We use Gray Codes to implement Rank Modulation.

We use Gray Codes to implement Rank Modulation.

Definition 1 (Gray Codes)

Ordered set of distinct states for which every state s_i is followed by a state s_{i+1} such that $s_{i+1} = t(s_i)$

We use Gray Codes to implement Rank Modulation.

Definition 1 (Gray Codes)

Ordered set of distinct states for which every state s_i is followed by a state s_{i+1} such that $s_{i+1} = t(s_i)$ where $t \in T$ is a transition function from a predetermined set T defining the Gray Code

We use Gray Codes to implement Rank Modulation.

Definition 1 (Gray Codes)

Ordered set of distinct states for which every state s_i is followed by a state s_{i+1} such that $s_{i+1} = t(s_i)$ where $t \in T$ is a transition function from a predetermined set T defining the Gray Code

The traversal of states by the Gray Code is mapped to the increase of cell level in the multi-level flash cell.

Table of Contents

- Setup
- Basic Construction
 - Notation
 - Definitions
 - Construction
- Balanced n-RMGC
 - Definition and Construction
 - Ranking Permutations
- 4 Conclusion
- References

• We consider each relative ordering of the n cells as a state, belonging to state space *S*.

- We consider each relative ordering of the n cells as a state, belonging to state space *S*.
- Let [n] denote the set $\{1, 2, \dots n\}$. An ordered set of n memory cells labelled $1, 2 \dots n$ which distinct charge levels induce permutations of [n] by representing the cell names as vectors $[a_1, a_2, \dots a_n]$ in descending order of charge levels.
- State space would be all possible permutations on [n].

 For the rank modulation scheme, we only consider push-to-the-top operations.

- For the rank modulation scheme, we only consider push-to-the-top operations.
- Let t_i represent the transition that pushes the ith highest cell to the highest charge level.

$$t_i([a_1, a_2, \ldots, a_i, a_{i+1}, \ldots a_n]) = [a_i, a_1, a_2, \ldots, a_{i-1}, a_{i+1}, \ldots a_n]$$

- For the rank modulation scheme, we only consider push-to-the-top operations.
- Let t_i represent the transition that pushes the ith highest cell to the highest charge level.

$$t_i([a_1, a_2, \ldots, a_i, a_{i+1}, \ldots a_n]) = [a_i, a_1, a_2, \ldots, a_{i-1}, a_{i+1}, \ldots a_n]$$

• Let T be the set of all push-to-the-top transitions. That is, $s_{i+1} = t(s_i)$ for some $t \in T$, $s_i, s_{i+1} \in S$.

Definitions

• The code we consider, in which state space is all permutations on [n] and the set of our transitions is all possible push-to-the-top functions is called a "length-n rank modulation Gray code" (n-RMGC).

Definitions

- The code we consider, in which state space is all permutations on [n] and the set of our transitions is all possible push-to-the-top functions is called a "length-n rank modulation Gray code" (n-RMGC).
- If the code is such that $s_1 = t(s_m)$ for some $t \in T$, the code is **cyclic**.
- If the code spans all of S, it is considered **complete**.

Example

Example 2

A 3-RMGC is given below:

Here, the permutations are the different columns.

Example

Example 2

A 3-RMGC is given below:

Here, the permutations are the different columns. This code is defined by the transitions t_2 , t_3 , t_3 , t_2 , t_3 , t_3 . Note that the last t_3 transition gives back 1, 2, 3, making the code cyclic.

- Construct cyclic and complete RMGCs via recursion.
- Recursion basis is 2-RMGC: [1, 2], [2, 1]

- Construct cyclic and complete RMGCs via recursion.
- Recursion basis is 2-RMGC: [1, 2], [2, 1]
- Assume cyclic and complete (n-1)-RMGC already available called C_{n-1} defined by transitions $t_{i_1}, t_{i_2}, \ldots, t_{i_{(n-1)!}}$ with $t_{i_{(n-1)!}} = t_2$

- Construct cyclic and complete RMGCs via recursion.
- Recursion basis is 2-RMGC: [1, 2], [2, 1]
- Assume cyclic and complete (n-1)-RMGC already available called C_{n-1} defined by transitions $t_{i_1}, t_{i_2}, \ldots, t_{i_{(n-1)!}}$ with $t_{i_{(n-1)!}} = t_2$
- The $t_{i_{(n-1)!}} = t_2$ condition is not very restrictive, since it only necessitates a t_2 transition somewhere in the transition sequence, and we can always rotate the sequence to make t_2 the last one.

- Construct cyclic and complete RMGCs via recursion.
- Recursion basis is 2-RMGC: [1, 2], [2, 1]
- Assume cyclic and complete (n-1)-RMGC already available called C_{n-1} defined by transitions $t_{i_1}, t_{i_2}, \ldots, t_{i_{(n-1)!}}$ with $t_{i_{(n-1)!}} = t_2$
- The $t_{i_{(n-1)!}} = t_2$ condition is not very restrictive, since it only necessitates a t_2 transition somewhere in the transition sequence, and we can always rotate the sequence to make t_2 the last one.
- We further assume t_2 appears at least twice.

- Without loss of generality, assume the first permutation is [1, 2, ..., n].
- Using $t_{i_1}, t_{i_2}, \ldots, t_{i_{(n-1)!-1}}$ from C_{n-1} (and thus effectively keeping the last element fixed), we get the first *block* of (n-1)! elements of our construction.

- Without loss of generality, assume the first permutation is [1, 2, ..., n].
- Using $t_{i_1}, t_{i_2}, \ldots, t_{i_{(n-1)!-1}}$ from C_{n-1} (and thus effectively keeping the last element fixed), we get the first *block* of (n-1)! elements of our construction.
- Since $t_{i_{(n-1)!}} = t_2$, the last element of the first block is $[2, 1, 3, 4, \ldots, n-1, n]$

- Without loss of generality, assume the first permutation is [1, 2, ..., n].
- Using $t_{i_1}, t_{i_2}, \ldots, t_{i_{(n-1)!-1}}$ from C_{n-1} (and thus effectively keeping the last element fixed), we get the first *block* of (n-1)! elements of our construction.
- Since $t_{i_{(n-1)!}} = t_2$, the last element of the first block is $[2,1,3,4,\ldots,n-1,n]$
- For the first element of the second block, we first use t_n , and use $t_{i_1}, t_{i_2}, \ldots, t_{i_{(n-1)!-1}}$ again.

- Without loss of generality, assume the first permutation is [1, 2, ..., n].
- Using $t_{i_1}, t_{i_2}, \ldots, t_{i_{(n-1)!-1}}$ from C_{n-1} (and thus effectively keeping the last element fixed), we get the first *block* of (n-1)! elements of our construction.
- Since $t_{i_{(n-1)!}} = t_2$, the last element of the first block is $[2, 1, 3, 4, \ldots, n-1, n]$
- For the first element of the second block, we first use t_n , and use $t_{i_1}, t_{i_2}, \ldots, t_{i_{(n-1)!-1}}$ again.
- This time, (n-1) would be the fixed last element while all the other elements create (n-1)! more permutations.

- Without loss of generality, assume the first permutation is [1, 2, ..., n].
- Using $t_{i_1}, t_{i_2}, \ldots, t_{i_{(n-1)!-1}}$ from C_{n-1} (and thus effectively keeping the last element fixed), we get the first *block* of (n-1)! elements of our construction.
- Since $t_{i_{(n-1)!}} = t_2$, the last element of the first block is $[2,1,3,4,\ldots,n-1,n]$
- For the first element of the second block, we first use t_n , and use $t_{i_1}, t_{i_2}, \ldots, t_{i_{(n-1)!-1}}$ again.
- This time, (n-1) would be the fixed last element while all the other elements create (n-1)! more permutations.
- Repeat this process (n-1) times to get (n-1)! permutations each time.

Lemma 3

Second element in first permutation to every block is 2. It follows that first element of last permutation in every block is also 2.

Proof.

We use the transitions $t_{i_1}, t_{i_2}, \ldots, t_{i_{(n-1)!-1}}$ in this particular order. If we use $t_{i_{(n-1)!}} = t_2$, we get the first permutation of the block back, which has 2 in the second position. Therefore, after $t_{i_{(n-1)!-1}}$, we get the last permutation of the block in which 2 must have been the first element.

Lemma 4

In any block, last element of all permutations is always constant, and the sequence of last elements starting from [1, 2, ..., n] is always n, n-1, ..., 4, 3, 1. 2 is never the last element.

- The first claim is justified since we use transitions that define C_{n-1} which only operate on the first (n-1) elements.
- 2 is the first element for the last permutation of each block from Lemma 3, so it can't simultaneously the last element as well.

- Let the set of (n-1) blocks we constructed be C'.
- From the lemmas above, we can see that C' is not complete yet since it doesn't have any permutations ending in 2.

- Let the set of (n-1) blocks we constructed be C'.
- From the lemmas above, we can see that C' is not complete yet since it doesn't have any permutations ending in 2.
- We provide an alternate construction to build C'', the set of all permutations with 2 as last element.

• Start by rotating $t_{i_1}, t_{i_2}, \dots, t_{i_{(n-1)!}}$ so that the last transition is t_{n-1} .

• Start by rotating $t_{i_1}, t_{i_2}, \ldots, t_{i_{(n-1)!}}$ so that the last transition is t_{n-1} . Let this rotated sequence be $\tau_{i_1}, \tau_{i_2}, \ldots, \tau_{i_{(n-1)!}}$ such that $\tau_{i_{(n-1)!}} = t_{n-1}$

- Start by rotating $t_{i_1}, t_{i_2}, \ldots, t_{i_{(n-1)!}}$ so that the last transition is t_{n-1} . Let this rotated sequence be $\tau_{i_1}, \tau_{i_2}, \ldots, \tau_{i_{(n-1)!}}$ such that $\tau_{i_{(n-1)!}} = t_{n-1}$
- We start with the first permutation in the block as $[a_1, a_2, \ldots, a_{n-1}, 2]$. Set the permutations of C'' as those formed by $\tau_{i_1}, \tau_{i_2}, \ldots, \tau_{i_{(n-1)!-1}}$ starting from this first permutation.

- Start by rotating $t_{i_1}, t_{i_2}, \ldots, t_{i_{(n-1)!}}$ so that the last transition is t_{n-1} . Let this rotated sequence be $\tau_{i_1}, \tau_{i_2}, \ldots, \tau_{i_{(n-1)!}}$ such that $\tau_{i_{(n-1)!}} = t_{n-1}$
- We start with the first permutation in the block as $[a_1, a_2, \ldots, a_{n-1}, 2]$. Set the permutations of C'' as those formed by $\tau_{i_1}, \tau_{i_2}, \ldots, \tau_{i_{(n-1)!-1}}$ starting from this first permutation.
- The last permutation of C'' will therefore be $[a_2, a_3, \ldots, a_{n-1}, a_1, 2]$

• In C', we look for a transition of the form $[a_2, a_3, \ldots, a_{n-1}, 2, a_1] \rightarrow [2, a_2, \ldots, n-1, a_1]$

- In C', we look for a transition of the form $[a_2, a_3, \ldots, a_{n-1}, 2, a_1] \rightarrow [2, a_2, \ldots, n-1, a_1]$
- Such a transition would surely exist; while C' doesn't have any
 permutations in which 2 is the last element, it does have permutations
 in which 2 is the penultimate element and others in which 2 is the
 first element. Since C' is cyclic, such a transition would surely exist.

- In C', we look for a transition of the form $[a_2, a_3, \ldots, a_{n-1}, 2, a_1] \rightarrow [2, a_2, \ldots, n-1, a_1]$
- Such a transition would surely exist; while C' doesn't have any
 permutations in which 2 is the last element, it does have permutations
 in which 2 is the penultimate element and others in which 2 is the
 first element. Since C' is cyclic, such a transition would surely exist.
- Whenever such a transition occurs (note that there can be multiple such occurrences, so we can choose any one), we split C' and insert C" to create a complete RMGC as follows:

Summary

Theorem 5

For every integer $n \ge 2$, there exists a cyclic and complete n-RMGC.

Example

Example 6

As considered in Example 2, we start the 3-RMGC we obtained. However, this had the transition sequence t_2 , t_3 , t_3 , t_2 , t_3 , t_3 , but we want it to end in t_2

Example

Example 6

As considered in Example 2, we start the 3-RMGC we obtained. However, this had the transition sequence t_2 , t_3 , t_3 , t_2 , t_3 , t_3 , but we want it to end in t_2 . So, we rotate the sequence to t_3 , t_3 , t_2 , t_3 , t_3 , t_2 and obtain the following C' starting with [1, 2, 3, 4]:

1	3	2	3	1	2
2	1	3	2	3	1
3	2	1	1	2	3
4	4	4	4	4	4

4	1	2	1	4	2
2	4	1	2	1	4
1	2	4	4	2	1
3	3	3	3	3	3

3	4	2	4	3	2	
2	3	4	2	4	3	
4	2	3	3	2	4	
1	1	1	1	1	1	

Example

To construct C'', we look for a transition in which 2 goes from the penultimate position to the top. Multiple such transitions exist, so we choose $[1,3,2,4] \rightarrow [2,1,3,4]$. Inserting C'' between C', we get:

Table of Contents

- Setup
- Basic Construction
 - Notation
 - Definitions
 - Construction
- Balanced n-RMGC
 - Definition and Construction
 - Ranking Permutations
- 4 Conclusion
- 6 References

While the construction seen in the previous section is straightforward and intuitive, it suffers from a serious drawback.

While the construction seen in the previous section is straightforward and intuitive, it suffers from a serious drawback. While the top-charged cells are changed regularly while permuting within a block, the bottom cell remains unchanged and is only activated at the end of each block.

While the construction seen in the previous section is straightforward and intuitive, it suffers from a serious drawback. While the top-charged cells are changed regularly while permuting within a block, the bottom cell remains unchanged and is only activated at the end of each block. This leads to a large gap between the least charged and most charged cells, which is undesirable

Definition 7

Definition 7

We define $c_i : \mathbb{N} \to \mathbb{N}$ where $c_i(p)$ is the charge level of the i^{th} cell after the p^{th} programming cycle.

• Suppose we use transition t_j in the p^{th} programming cycle, and the i^{th} cell is at that time, j^{th} from the top

Definition 7

- Suppose we use transition t_j in the p^{th} programming cycle, and the i^{th} cell is at that time, j^{th} from the top
- $c_i(p) > \max_k c_k(p-1)$

Definition 7

- Suppose we use transition t_j in the p^{th} programming cycle, and the i^{th} cell is at that time, j^{th} from the top
- $c_i(p) > \max_k c_k(p-1)$
- for $k \neq i, c_k(p) = c_k(p-1)$

Definition 7

- Suppose we use transition t_j in the p^{th} programming cycle, and the i^{th} cell is at that time, j^{th} from the top
- $c_i(p) > \max_k c_k(p-1)$
- for $k \neq i, c_k(p) = c_k(p-1)$
- In an optimal setting with no overshoots, or 'gaps', $c_i(p) = \max_k c_k(p-1) + 1$

• Assuming the i^{th} cell was affected (moved) in the p^{th} transition, 'jump' is defined as $c_i(p)-c_i(p-1)$

- Assuming the i^{th} cell was affected (moved) in the p^{th} transition, 'jump' is defined as $c_i(p)-c_i(p-1)$
- **Jump Cost** of an *n*-RMGC is defined as the maximum jump over all transitions of the code

- Assuming the i^{th} cell was affected (moved) in the p^{th} transition, 'jump' is defined as $c_i(p)-c_i(p-1)$
- Jump Cost of an n-RMGC is defined as the maximum jump over all transitions of the code
- An n-RMGC is said to be optimal if it's jump cost is not larger than any other n-RMGC

- Assuming the i^{th} cell was affected (moved) in the p^{th} transition, 'jump' is defined as $c_i(p)-c_i(p-1)$
- Jump Cost of an n-RMGC is defined as the maximum jump over all transitions of the code
- An n-RMGC is said to be optimal if it's jump cost is not larger than any other n-RMGC
- In the above definition we assume that there are no degenerate cells, i.e. every cell level is raised at-least once

Lemma 8

For any optimal n-RMGC, $n \ge 3$ without any degenerate cells, the jump cost is at least n+1

Lemma 8

For any optimal n-RMGC, $n \ge 3$ without any degenerate cells, the jump cost is at least n+1

Proof.

 The transition t_n would be the worst-case one to consider while evaluating jump cost

Lemma 8

For any optimal n-RMGC, $n \ge 3$ without any degenerate cells, the jump cost is at least n+1

- The transition t_n would be the worst-case one to consider while evaluating jump cost
- Such a jump has magnitude of at-least n (when all charge levels are consecutive) and we must use it at-least n times to cover all states

Lemma 8

For any optimal n-RMGC, $n \ge 3$ without any degenerate cells, the jump cost is at least n+1

- The transition t_n would be the worst-case one to consider while evaluating jump cost
- Such a jump has magnitude of at-least n (when all charge levels are consecutive) and we must use it at-least n times to cover all states
- However we cannot apply t_n n times consecutively, as that would lead us to the first permutation after just n steps

Lemma 8

For any optimal n-RMGC, $n \ge 3$ without any degenerate cells, the jump cost is at least n+1

- The transition t_n would be the worst-case one to consider while evaluating jump cost
- Such a jump has magnitude of at-least n (when all charge levels are consecutive) and we must use it at-least n times to cover all states
- However we cannot apply t_n n times consecutively, as that would lead us to the first permutation after just n steps
- Hence our set of transitions must at-least one other transition t_i , $i \neq n$

Lemma 8

For any optimal n-RMGC, $n \ge 3$ without any degenerate cells, the jump cost is at least n+1

- The transition t_n would be the worst-case one to consider while evaluating jump cost
- Such a jump has magnitude of at-least n (when all charge levels are consecutive) and we must use it at-least n times to cover all states
- However we cannot apply t_n n times consecutively, as that would lead us to the first permutation after just n steps
- ullet Hence our set of transitions must at-least one other transition $t_i, i
 eq n$
- This would cause a 'gap' in the charge levels, and the first t_n to be used after it will have a jump of magnitude at-least n+1

Balanced n-RMGC

ullet An n-RMGC that achieves the optimal jump cost of n+1 is called a Balanced n-RMGC

Balanced n-RMGC

- An n-RMGC that achieves the optimal jump cost of n+1 is called a Balanced n-RMGC
- We now try to come up with a construction that converts any (n-1)-RMGC that is cyclic(complete) into a balanced n-RMGC that is cyclic(complete)

Balanced n-RMGC

- An n-RMGC that achieves the optimal jump cost of n+1 is called a Balanced n-RMGC
- We now try to come up with a construction that converts any (n-1)-RMGC that is cyclic(complete) into a balanced n-RMGC that is cyclic(complete)
- We observe that the transition t_n is the only one that does not introduce gaps between charge levels.

Balanced n-RMGC

- An n-RMGC that achieves the optimal jump cost of n+1 is called a Balanced n-RMGC
- We now try to come up with a construction that converts any (n-1)-RMGC that is cyclic(complete) into a balanced n-RMGC that is cyclic(complete)
- We observe that the transition t_n is the only one that does not introduce gaps between charge levels.
- Hence we base our construction around t_n and try to use it as often as possible

Theorem 9

Given a cyclic and complete (n-1)-RMGC C_{n-1} defined by the transitions $t_{i_1}, \ldots, t_{i_{(n-1)!}}$, the following transitions define an n-RMGC that is cyclic, complete and balanced

$$t_{j_k} = egin{cases} t_{n-i_{\lceil k/n
ceil}+1} & k \equiv 1 (\textit{modn}) \ t_n & \textit{otherwise} \end{cases}$$

for all $k \in \{1, \ldots, n\}$

Proof.

• Consider the abstract transition $\bar{t}_i, 2 \le i \le n$ that pushes the i^{th} element from the bottom to the bottom of a permutation

- Consider the abstract transition $\bar{t}_i, 2 \le i \le n$ that pushes the i^{th} element from the bottom to the bottom of a permutation
- $\bar{t}_i([a_1, a_2, \dots, a_{n-i+1}, a_{i+1}, \dots a_n]) = [a_1, a_2, \dots, a_{i-1}, a_{i+1}, \dots a_n, a_{n-i+1}]$

- Consider the abstract transition \bar{t}_i , $2 \le i \le n$ that pushes the i^{th} element from the bottom to the bottom of a permutation
- $\bar{t}_i([a_1, a_2, \dots, a_{n-i+1}, a_{i+1}, \dots a_n]) = [a_1, a_2, \dots, a_{i-1}, a_{i+1}, \dots a_n, a_{n-i+1}]$
- Since C_{n-1} is cyclic and complete, using $\{\bar{t}_i\}_{(n-1)!}$ we can traverse all permutations of [n-1]

- Consider the abstract transition \bar{t}_i , $2 \le i \le n$ that pushes the i^{th} element from the bottom to the bottom of a permutation
- $\bar{t}_i([a_1, a_2, \dots, a_{n-i+1}, a_{i+1}, \dots a_n]) = [a_1, a_2, \dots, a_{i-1}, a_{i+1}, \dots a_n, a_{n-i+1}]$
- Since C_{n-1} is cyclic and complete, using $\{\bar{t}_i\}_{(n-1)!}$ we can traverse all permutations of [n-1]
- Using the above with [n] will thus generate all (n-1)! permutations of [n] with first element fixed

- Consider the abstract transition $\bar{t}_i, 2 \le i \le n$ that pushes the i^{th} element from the bottom to the bottom of a permutation
- $\bar{t}_i([a_1, a_2, \dots, a_{n-i+1}, a_{i+1}, \dots a_n]) = [a_1, a_2, \dots, a_{i-1}, a_{i+1}, \dots a_n, a_{n-i+1}]$
- Since C_{n-1} is cyclic and complete, using $\{\bar{t}_i\}_{(n-1)!}$ we can traverse all permutations of [n-1]
- Using the above with [n] will thus generate all (n-1)! permutations of [n] with first element fixed
- It is not hard to see that

$$\bar{t}_i(\sigma) = (t_n \circ \dots (n-1 \text{times}) \circ t_n \circ t_{n-i+1})(\sigma), \forall \sigma \in S_n$$

contd.

$$\underbrace{t_{n-i_1+1},t_n,\dots,t_n}_{\overrightarrow{t_{i_1}}},\dots,\underbrace{t_{n-i_{(n-1)!}+1},t_n,\dots,t_n}_{\overrightarrow{t_{i_{(n-1)!}}}}$$

Figure: Transition sequence

• From the above two points, the sequence of transitions to be applied to [n] to generate a balanced n-RMGC is as shown in 1

Figure: Transition sequence

- From the above two points, the sequence of transitions to be applied to [n] to generate a balanced n-RMGC is as shown in 1
- Note that in every block of n transitions starting with a t_{n-i+1} , for $2 \le i \le n-1$ we have:

Figure: Transition sequence

- From the above two points, the sequence of transitions to be applied to [n] to generate a balanced n-RMGC is as shown in 1
- Note that in every block of n transitions starting with a t_{n-i+1} , for $2 \le i \le n-1$ we have:
- the transition t_{n-i+1} with a jump of n-i+1

Figure: Transition sequence

- From the above two points, the sequence of transitions to be applied to [n] to generate a balanced n-RMGC is as shown in 1
- Note that in every block of n transitions starting with a t_{n-i+1} , for $2 \le i \le n-1$ we have:
- the transition t_{n-i+1} with a jump of n-i+1
- i-1 transitions of type t_n with a jump of n+1

Figure: Transition sequence

- From the above two points, the sequence of transitions to be applied to [n] to generate a balanced n-RMGC is as shown in 1
- Note that in every block of n transitions starting with a t_{n-i+1} , for $2 \le i \le n-1$ we have:
- the transition t_{n-i+1} with a jump of n-i+1
- i-1 transitions of type t_n with a jump of n+1
- n-i transitions of type t_n with a jump of n

Balanced n-RMGC - Example

We now demonstrate the above theorem by ways of an example.

Balanced n-RMGC - Example

Programming cycle

Ranking Permutations

For completing the design of a multi-level flash cell, we must define the correspondence between a permutation and its rank in the balanced n-RMGC.

Ranking Permutations

For completing the design of a multi-level flash cell, we must define the correspondence between a permutation and its rank in the balanced n-RMGC. We use the B-Factoradic Number System for representation.

B-Factoradic Number System

A number $m \in \{0, \ldots, n! - 1\}$ can be uniquely represented by the digits $b_{n-1}b_{n-2}\ldots b_1b_0$ where $b_i \in \{0, \ldots, n-i-1\}$ and the weight of b_i is $\frac{n!}{(n-i)!}$.

We now describe an algorithm by way of an example to ascertain the rank of a permutation in the B-Factoradic Number System.

Example 10

• Let n=4 and the current permutation be $\sigma=[1,4,3,2]$, let $pos(k), k \in \{1,\ldots,n\}$ be the position of k in σ from the left. For example, pos(4)=2

We now describe an algorithm by way of an example to ascertain the rank of a permutation in the B-Factoradic Number System.

Example 10

- Let n=4 and the current permutation be $\sigma=[1,4,3,2]$, let $pos(k), k \in \{1,\ldots,n\}$ be the position of k in σ from the left. For example, pos(4)=2
- We find it's B-Factoradic representation $b_3b_2b_1b_0$ as follows

We now describe an algorithm by way of an example to ascertain the rank of a permutation in the B-Factoradic Number System.

Example 10

- Let n=4 and the current permutation be $\sigma=[1,4,3,2]$, let $pos(k), k \in \{1,\ldots,n\}$ be the position of k in σ from the left. For example, pos(4)=2
- We find it's B-Factoradic representation $b_3b_2b_1b_0$ as follows
- With $i \in \{0, \dots n-1\}$, for the i^{th} digit from the right, $b_i =$ the position of the largest element still in the permutation minus 2 (modulo (n-i))

We now describe an algorithm by way of an example to ascertain the rank of a permutation in the B-Factoradic Number System.

Example 10

- Let n=4 and the current permutation be $\sigma=[1,4,3,2]$, let $pos(k), k \in \{1,\ldots,n\}$ be the position of k in σ from the left. For example, pos(4)=2
- We find it's B-Factoradic representation $b_3b_2b_1b_0$ as follows
- With $i \in \{0, ..., n-1\}$, for the i^{th} digit from the right, $b_i =$ the position of the largest element still in the permutation minus 2 (modulo (n-i))
- $b_0 = \{pos(4) 2\}(mod 4) = 0$

 Now we remove the largest number from the permutation and read the permutation from the point of removal leftwards, arriving at the residual permutation

- Now we remove the largest number from the permutation and read the permutation from the point of removal leftwards, arriving at the residual permutation
- $\sigma = \{1, 4, 3, 2\}, \sigma_1 = \{1, 2, 3\}$

- Now we remove the largest number from the permutation and read the permutation from the point of removal leftwards, arriving at the residual permutation
- $\sigma = \{1, 4, 3, 2\}, \sigma_1 = \{1, 2, 3\}$
- We now recurse on the residual permutation using the steps described above

- Now we remove the largest number from the permutation and read the permutation from the point of removal leftwards, arriving at the residual permutation
- $\sigma = \{1, 4, 3, 2\}, \sigma_1 = \{1, 2, 3\}$
- We now recurse on the residual permutation using the steps described above
- $b_1 = \{pos(3) 2\}(mod3) = 1$

- Now we remove the largest number from the permutation and read the permutation from the point of removal leftwards, arriving at the residual permutation
- $\sigma = \{1, 4, 3, 2\}, \sigma_1 = \{1, 2, 3\}$
- We now recurse on the residual permutation using the steps described above
- $b_1 = \{pos(3) 2\}(mod3) = 1$
- $\sigma_2 = \{2, 1\}$ and $b_2 = \{pos(2) 2\}(mod 2) = 1$

- Now we remove the largest number from the permutation and read the permutation from the point of removal leftwards, arriving at the residual permutation
- $\sigma = \{1, 4, 3, 2\}, \sigma_1 = \{1, 2, 3\}$
- We now recurse on the residual permutation using the steps described above
- $b_1 = \{pos(3) 2\}(mod3) = 1$
- $\sigma_2 = \{2, 1\}$ and $b_2 = \{pos(2) 2\}(mod 2) = 1$
- $\sigma_3 = \{1\}$ and $b_3 = \{pos(1) 2\}(mod 1) = 0$

- Now we remove the largest number from the permutation and read the permutation from the point of removal leftwards, arriving at the residual permutation
- $\sigma = \{1, 4, 3, 2\}, \sigma_1 = \{1, 2, 3\}$
- We now recurse on the residual permutation using the steps described above
- $b_1 = \{pos(3) 2\}(mod3) = 1$
- $\sigma_2 = \{2, 1\}$ and $b_2 = \{pos(2) 2\}(mod 2) = 1$
- $\sigma_3 = \{1\}$ and $b_3 = \{pos(1) 2\}(mod 1) = 0$
- The B-Factoradic representation is therefore $0_31_21_10_0$

Table of Contents

- Setup
- Basic Construction
 - Notation
 - Definitions
 - Construction
- Balanced n-RMGC
 - Definition and Construction
 - Ranking Permutations
- Conclusion
- 6 References

Conclusion

- We started by looking at what rank modulation is, and why it is needed
- We have looked at a simple construction of cyclic and complete n-RMGC codes
- We then moved to a more efficient balanced n-RMGC construction
- The final mapping from the permutations to the symbols is done by using the B-Factoradic number system

Table of Contents

- Setup
- Basic Construction
 - Notation
 - Definitions
 - Construction
- Balanced n-RMGC
 - Definition and Construction
 - Ranking Permutations
- Conclusion
- References

References

 Anxiao Jiang, R. Mateescu, M. Schwartz and J. Bruck, "Rank modulation for flash memories," 2008 IEEE International Symposium on Information Theory, 2008, pp. 1731-1735, doi: 10.1109/ISIT.2008.4595284.