

SUBJECT:	DATE:	
6) L=25m Tp=42 d=100mm Tu=29	8.15K E = 0.8	
hr=4.0.8.5.67x10-9	(360.65)	
$q = \Delta T R = q'' = \Delta T \left(\frac{1}{h_{r}} + \frac{1}{h_{r}} \right)$ $q'' = \frac{150 - 25}{8.511} + \frac{1}{10}$ $q'' = \frac{125}{0.21749}$ $q'' = 574.73 \% m^{2}$		
574.73 W (2H (0.05m), 25) _m 2 = 4513.94W	
	Total loss	

SUBJECT:	DATE:
8) Room: Tar= 20°C Ts=32°C Tw,s=27°C E=0.9 Tw,w=14°C h=2"/m"	
The heat loss is greater	
Summer $q^{11} \cdot A = \sqrt{\frac{1}{5}}$ $q^{11} = \frac{15 - 100}{5 + 10} + \frac{1}{10}$ $q^{11} = \frac{(32 - 27)}{5 + 10} + \frac{1}{2}$ $q^{11} = \frac{5 \times 0.682998 \times m^2}{9 \times 100}$ $q^{11} = \frac{7.32}{5} \frac{W}{m^2}$	h.=4.0.9.5.67.10-8.299.15 h.=5.46
Winter $q'' = (32-14)^{\frac{1}{2}} \sqrt{0.682498^{\frac{1}{2}}}$ $q'' = 76.35^{\frac{1}{2}} \sqrt{m^2}$	
The heat loss during the between the person and the	winter is greater

A) $h_0 = (60) \frac{1}{m^2 K}$ $K_p = 0.17$ $h_1 = 30 \frac{1}{m^2 K}$ $K_b = 0.038$ $\frac{1}{m^2 K}$ $A = 350 m^2$ $K_b = 0.12$ The second s	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	SUBJECT:	DATE,
$\begin{array}{c} R_{h} = \frac{1}{h \cdot A} = \frac{1}{30.350} = 9.5234 \times 10^{-5} \frac{k}{\omega} \\ R_{Kp} = \frac{1}{K \cdot A} = \frac{1}{0.17.350} = 1.6407 \times 10^{-4} \frac{k}{\omega} \\ R_{Kp} = \frac{1}{K \cdot A} = \frac{0.01}{0.17.350} = 1.6407 \times 10^{-4} \frac{k}{\omega} \\ R_{Kp} = \cdots = \frac{0.01}{0.038(350)} = 0.0075 q \cdot \frac{k}{\omega} \\ R_{Ks} = \cdots = \frac{0.01}{0.12(350)} = 4.76 q \times 10^{-5} \frac{k}{\omega} \\ R_{ho} = \cdots = \frac{0.01}{60(350)} = 4.76 q \times 10^{-5} \frac{k}{\omega} \\ R_{ho} = \frac{1}{30(350)} = \frac{1}{20(350)} = 1$	$\begin{array}{c} R_{h} = \frac{1}{h \cdot A} = \frac{1}{30.350} = 9.5234 \times 10^{-5} \frac{k}{\omega} \\ R_{Kp} = \frac{1}{K \cdot A} = \frac{1}{0.17.350} = 1.6407 \times 10^{-4} \frac{k}{\omega} \\ R_{Kp} = \frac{1}{K \cdot A} = \frac{0.01}{0.17.350} = 1.6407 \times 10^{-4} \frac{k}{\omega} \\ R_{Kp} = \cdots = \frac{0.01}{0.038(350)} = 0.0075 q \cdot \frac{k}{\omega} \\ R_{Ks} = \cdots = \frac{0.01}{0.12(350)} = 4.76 q \times 10^{-5} \frac{k}{\omega} \\ R_{ho} = \cdots = \frac{0.01}{60(350)} = 4.76 q \times 10^{-5} \frac{k}{\omega} \\ R_{ho} = \frac{1}{30(350)} = \frac{1}{20(350)} = 1$	9)	h; = 30 m2 K Kb=0.038 (m.K
$R_{Kb} = \frac{1}{K \cdot A} = \frac{1}{0.17 \cdot 350} = 1.6807 \times 10^{-4} \frac{1}{100}$ $R_{Kb} = \cdots = \frac{2.1}{0.023(350)} = 0.0075 q \cdot \frac{1}{100} \frac{1}{100}$ $R_{Kb} = \cdots = \frac{2.01}{0.12(350)} = 4.7619 \times 10^{-4} \frac{1}{100}$ $R_{ho} = \cdots = \frac{1}{60(350)} = 4.7619 \times 10^{-5} \frac{1}{100}$ $Q = \frac{\Delta T}{R} = \frac{(20 - 15)k}{2R}$ $Q = \frac{4213.870}{200}$ $New Rho = \frac{1}{300(350)} = 9.5238 \times 10^{-16}$ $ZR = 0.00827$ $Q = \frac{4233.280}{200}$ % increase: 0.4607 % increase	$R_{Kb} = \frac{1}{K \cdot A} = \frac{1}{0.17 \cdot 350} = 1.6807 \times 10^{-4} \frac{1}{100}$ $R_{Kb} = \cdots = \frac{2.1}{0.023(350)} = 0.0075 q \cdot \frac{1}{100} \frac{1}{100}$ $R_{Kb} = \cdots = \frac{2.01}{0.12(350)} = 4.7619 \times 10^{-4} \frac{1}{100}$ $R_{ho} = \cdots = \frac{1}{60(350)} = 4.7619 \times 10^{-5} \frac{1}{100}$ $Q = \frac{\Delta T}{R} = \frac{(20 - 15)k}{2R}$ $Q = \frac{4213.870}{200}$ $New Rho = \frac{1}{300(350)} = 9.5238 \times 10^{-16}$ $ZR = 0.00827$ $Q = \frac{4233.280}{200}$ % increase: 0.4607 % increase		Ti T
$q = 4213.87\omega$ New Rho= $\frac{1}{300(350)} = 9.5238 \times 10^{-6}$ $ZR = 0.00827$ $q = 4233.28\omega$ / increase: 0.4607 // increase	$q = 4213.87\omega$ New Rho= $\frac{1}{300(350)} = 9.5238 \times 10^{-6}$ $ZR = 0.00827$ $q = 4233.28\omega$ / increase: 0.4607 // increase		$R_{hi} = \frac{1}{hi \cdot A} = \frac{1}{30.350} = 9.5234 \times 10^{-5} \frac{1}{k0}$ $R_{Kp} = \frac{1}{K \cdot A} = \frac{0.01}{0.17.350} = 1.6807 \times 10^{-4} \frac{1}{k0}$ $R_{Kb} = \cdots = 0.01 \times (350) = 0.0075 \cdot 19. \frac{1}{k0}$ $R_{KS} = \cdots = \frac{0.01}{0.12(350)} = 4.7619 \times 10^{-4} \frac{1}{k0}$ $R_{ho} = \cdots = \frac{1}{60(350)} = 4.7619 \times 10^{-5} \frac{1}{k0}$
9=4233.28W / increase: 0.4607 // increase	9=4233.28W / increase: 0.4607 // increase		q= 4213.87W
The glass fiber blanket has the largest resistance so it controls the majority of the heat flow.	The glass fiber blanket has the largest resistance so it controls the majority of the heat flow.		9=4233,28W % increase: 0.4607% increase
			The glass fiber blanket has the largest resistance so it controls the majority of the heat flow.