Aplicação de técnica de aprendizagem por reforço para solução do Jogo Resta Um com tabuleiro triangular

Prof. Jorge Dantas

Alunos:

- Alexandre Gomes de Lima
- Francisco Sales de L. Filho

Agenda

- Definição do Problema
- Objetivo do trabalho
- Algoritmo Escolhido
- Modelagem do Problema
- Implementação
- Resultados Obtidos
- Informações Adicionais
- Conclusões

Definição do Problema

- Resta Um é jogo de tabuleiro formado por casas que podem estar ocupadas ou não
- Existem vário formatos de tabuleiro
 - Retangular
 - Triangular
 - Formato de cruz

- ...

Pefinição do Problema

- O jogo inicia com uma casa vazia
- Uma peça apenas pode ser movida para as casas vizinhas dos vizinhos da sua casa atual e mesmo assim somente se a casa intermediária estiver ocupada e a casa de destino estiver vazia
- Ao movimentar uma peça, a peça da casa intermediária é retirada do tabuleiro
- O jogo termina quando não houverem mais movimentos possíveis
- O objetivo é terminar o jogo restando apenas uma peça
- Alteração da regra para o trabalho
 - O tabuleiro inicia com uma quantidade arbitrária de casas vazias posicionadas aleatoriamente
 - O objetivo é terminar o jogo com a menor quantidade peças possíveis

Definição do problema

Objetivo do trabalho

- Implementar um algoritmo de aprendizagem por reforço para obter o melhor resultado final do jogo Resta Um
- Integrar o algoritmo implementado com algum simulador do jogo com tabuleiro triangular

Algoritmo Escolhido

- Métodos de Monte Carlo
 - Não exigem conhecimento completo do modelo
 - Requerem experiência (seqüência de estados, ações e retornos a partir da interação com o modelo)
 - Necessitam de tarefas episódicas (possuem estado terminal)
 - São baseados na média dos retornos obtidos a partir dos episódios
- Aplicável ao problema do Resta Um

Algoritmo Escolhido

- Monte Carlo ES (Exploring Starts)
 - Utilizado para encontrar a política ótima com base no processo de avaliação e melhoria da política
 - Inicia com uma política arbitrária
 - A cada episódio realiza a melhoria da política com base na média dos retornos obtidos
 - Partidas exploratórias e um número infinito de episódios garantem a convergência para a política ótima

Algoritmo Escolhido

Monte Carlo ES

```
Initialize, for all s \in \mathcal{S}, a \in \mathcal{A}(s):

Q(s, a) \leftarrow \text{arbitrary}

\pi(s) \leftarrow \text{arbitrary}

Returns(s, a) \leftarrow \text{empty list}
```

Repeat forever:

- (a) Generate an episode using exploring starts and π
- (b) For each pair s, a appearing in the episode:

 $R \leftarrow \text{return following the first occurrence of } s, a$ Append R to Returns(s, a)

$$Q(s, a) \leftarrow \text{average}(Returns(s, a))$$

(c) For each s in the episode:

$$\pi(s) \leftarrow \arg\max_a Q(s, a)$$

Modelagem do Problema

- Estados: configurações do tabuleiro
- Ações: movimentos possíveis
- Retornos r(s, a):

```
Se (quantidade de casas ocupadas de s') = 1 R \leftarrow 100 Senão R \leftarrow (quantidade de casas vazias de s') * 2
```

Implementação

• Linguagem de programação Java

Experimentos

- Para o tabuleiro de 15 peças foi gerada uma política a partir de um treinamento com 1.000.000 de episódios
- Para o tabuleiro de 21 peças foi gerada uma política a partir de um treinamento com 400.000 episódios

Tabuleiro com 15 casas

Peças Restantes por Partida

Partidas realizados: 2000 Qtd inicial de casas vazias: aleatório

Peças Restantes por Partida

Tabuleiro com 15 casas

Peças Restantes por Partida

Partidas realizados: 2000 Qtd inicial de casas vazias: 2

Peças Restantes por Partida

• Tabuleiro com 15 casas

Peças Restantes por Partida

• Tabuleiro com 21 casas

Peças Restantes por Partida

Partidas realizados: 2000 Qtd inicial de casas vazias: aleatório

Peças Restantes por Partida

Partidas realizados: 2000 Qtd inicial de casas vazias: 1

Peças Restantes

• Tabuleiro com 21 casas

Peças Restantes por Partida

Partidas realizados: 2000 Qtd inicial de casas vazias: 2

Peças Restantes por Partida

• Tabuleiro com 21 casas

Peças Restantes por Partida

Peças Restantes

Informações Adicionais

- Problemas técnicos de implementação
 - Estouro da capacidade inicial do *heap* (64 MB)
 - Tabuleiro de 15 peças
 - Para 500.000 episódios foram utilizados cerca de 100MB de memória
 - Para 1.000.000 de episódios cerca de 180MB
 - Tabuleiro de 21 peças
 - Para 400.000 episódios cerca de 600MB

Informações Adicionais

- Treinamentos com tabuleiro de 15 peças
 - Com 500.000 episódios (com *profiler* ativado): 25 minutos
 - Com 300.000 episódios o programa raramente conseguia atingir o objetivo de restar um
 - Com 500.000 episódios foram visitados 25.335 estados e 68.840 pares estado-ação, sendo que o total de pares-ação inicializados arbitrariamente foi de 127.639
 - A política gerada a partir de 500.000 episódios mostrou-se ótima para partidas com uma casa vazia
 - Com 1.000.000 episódios (com *profiler* ativado): 40 minutos
- Treinamentos com tabuleiro de 21 peças
 - Com 400.000 episódios: 14 minutos
 - Com 400.000 episódios foram visitados 434.754 estados e 528.738 estados ação, sendo que o total de pares estado-ação inicializados arbitrariamente foi de 2.700.650

Conclusões

- Não foi necessário visitar todos os pares estado-ação para encontrar políticas ótimas para partidas de uma casa vazia
 - Tabuleiro de 15 peças
 - Total de estados: 32.768
 - Estados visitados: 25.335
 - Tabuleiro de 21 peças
 - Total de estados: 2.097.152
 - Estados visitados: 434.754
- Não foi possível determinar se para partidas com mais de uma casa vazia a política encontrada não era a ótima ou tratavam-se de configurações de tabuleiro sem possibilidade de restar um

Referências bibliográficas

• [1] Richard S. Sutton and Andrew G. Barto, Reinforcement Learning: An Introduction.