1 EE method

$$d_i^{(j)} = \frac{Y(\mathbf{X}_{\sim \mathbf{i}}^{(\mathbf{j})}, X_i^{(j)} + \Delta^{(i,j)})}{\Delta^{(i,j)}},\tag{1}$$

$$\mu_i = \frac{1}{r} \sum_{j=1}^r d_i^{(j)}.$$
 (2)

$$\sigma_i = \frac{1}{r} \sum_{j=1}^r (d_i^{(j)} - \mu_i)$$
 (3)

$$\mu_i^* = \frac{1}{r} \sum_{j=1}^r \left| d_i^{(j)} \right|. \tag{4}$$

$$\mu_{i,\sigma}^* = \mu_i^* \frac{\sigma_{X_i}}{\sigma_Y}.\tag{5}$$

2 Sampling schemes

$$\mathbf{R}_{(k+1)\times k} = \begin{pmatrix}
a_1 & a_2 & \dots & a_k \\
\mathbf{b_1} & a_2 & \dots & a_k \\
a_1 & \mathbf{b_2} & \dots & a_k \\
\vdots & \vdots & \ddots & \vdots \\
a_1 & a_2 & \dots & \mathbf{b_k}
\end{pmatrix}$$
(6)

$$\mathbf{T}_{(k+1)\times k} = \begin{pmatrix}
a_1 & a_2 & \dots & a_k \\
\mathbf{b_1} & a_2 & \dots & a_k \\
\mathbf{b_1} & \mathbf{b_2} & \dots & a_k \\
\vdots & \vdots & \ddots & \vdots \\
\mathbf{b_1} & \mathbf{b_2} & \dots & \mathbf{b_k}
\end{pmatrix}$$
(7)

3 EE method for correlated inputs

- 1. $z = \Phi^{-1}(u)$
- 2. $\mathbf{z_c} = \mathbf{Q^T} \mathbf{z^T}$
- 3. $\mathbf{x} = \boldsymbol{\mu} + \mathbf{z_c}(\mathbf{i})\boldsymbol{\sigma(i)}$

Trajectory design only

$$d_i^{full,T} = \frac{f(\mathcal{T}(\mathbf{T_{i+1,*}}; i-1)) - f(\mathcal{T}(\mathbf{T_{i,*}}; i))}{\Delta}.$$
 (8)

$$d_i^{ind,T} = \frac{f(\mathcal{T}(\mathbf{T_{i+1,*}};i)) - f(\mathcal{T}(\mathbf{T_{i,*}};i))}{\Delta}.$$
 (9)

Improvements

$$d_i^{c,T} = \frac{f\left(\mathcal{T}(\mathbf{T_{i+1,*}}; i-1)\right) - f\left(\mathcal{T}(\mathbf{T_{i-1,*}}; i)\right)}{F^{-1}\left(\Phi^u(b_i)\right) - F^{-1}\left(\Phi^u(a_i)\right)}$$
(10)

$$d_{i}^{u,T} = \frac{f\left(\mathcal{T}(\mathbf{T}_{i+1,*};i)\right) - f\left(\mathcal{T}(\mathbf{T}_{i,*};i)\right)}{F^{-1}\left(Q^{T}_{k,*k-1}(j)T_{i+1,*k-1}^{T}(j) + Q^{T}_{k,k}\Phi^{u}(b_{i})\right) - F^{-1}\left(Q^{T}_{k,*k-1}(j)T_{i,*k-1}^{T}(j) + Q^{T}_{k,k}\Phi^{u}(a_{i})\right)}$$
(11)

Replication and Validation 4

Table 1. Replication and validation - trajectory design

Measure	GM'17	Repl. $\mu^{*\dagger}$	Repl. σ^{\ddagger}	S'20
	1.20	1.36	0.83	1.00
$\mu^{*,ind}$	1.30	1.48	0.91	1.00
	3.20	3.11	1.94	1.00
σ^{ind}	0.55	0.00	0.56	0.00
	0.60	0.00	0.62	0.00
	1.30	0.00	1.32	0.00
$\mu^{*,full}$	14.90	16.20	9.97	2.30
	12.50	13.45	8.31	1.91
	10.00	9.93	6.18	1.41
σ^{full}	6.50	0.00	6.74	0.00
	5.50	0.00	5.63	0.00
	4.00	0.00	4.20	0.00

 $tau^{\dagger} 0^{num} = 0.00001 \text{ and } l = 4.$ $tau^{\dagger} 0^{num} = 0.00000001 \text{ and } l = 24.$

5 Results: Uncertainty Analysis

Figure 1. Probability distribution of quantity of interest q

Figure 2. Comparison of shares of occupation decision over time between scenarios with cone plots

5.1 Results: Qualitative Sensitivity Analysis

Table 2. Mean absolute correlated and uncorrelated elementary effects (based on 150 subsamples in trajectory and radial design)

Parameter	$\mu_T^{*,c}$	$\mu_R^{*,c}$	$\mu_T^{*,u}$	$\mu_R^{*,u}$
General				
δ	17	23	476	415
Blue-collar				
eta^b	1	3	43	88
eta_e^b	11	14	406	443
eta^b_b	25	51	688	1169
eta^b_{bb}	871	934	15 540	17860
eta_w^b	29	48	73	143
eta^b_{ww}	389	460	869	1183
White-collar				
eta^w	1	3	50	117
eta_e^w	26	28	943	852
eta_w^w	24	47	718	1521
eta_{ww}^w	933	997	12257	18069
eta^w_b	131	127	309	356
eta^w_{bb}	120	1352	2088	2477
Education				
eta^e	0.0008	0.0002	0.001	0.003
eta^e_{he}	0.0001	0.0002	0.001	0.001
eta^e_{re}	0.0003	0.0002	0.0003	0.0006
Home				
eta^h	0.0003	0.0003	0.00002	0.00002
Lower Triangula	r Cholesky Matr	ix		
c_1	8	16	18	37
c_2	8	11	22	24
c_3	0.0004	0.0004	0.0004	0.0007
c_4	0.0004	0.00008	0.0002	0.0003
$c_{1,2}$	4	4	10	10
$c_{1,3}$	0.0005	0.0006	0.0006	0.0005
$c_{2,3}$	0.0003	0.0005	0.0006	0.001
$c_{1,4}$	0.00004	0.00005	0.0004	0.0005
$c_{2,4}$	0.0001	0.0002	0.0001	0.0002
$c_{3,4}$	0.0001	0.0001	0.00008	0.0001

Figure 3. Sigma-normalized mean absolute Elementary Effects for trajectory design

Figure 4. Sigma-normalized mean absolute Elementary Effects for radial design

References