Frencitorione 5 - Rotolaments

In comme:

se σ è ferms $\Rightarrow \vec{\nabla}_E = 0$ e $\vec{\alpha}_E^{ASS}$ he componente normale, se no tangensiale

Vadogni punto, sono tutte uguali.

OLE con la concava è maggiore invere con la Con resta è minore

$$\mathcal{N}(R-r) = \omega r$$

$$\mathcal{N}(R-r) = \tilde{\omega}r$$

$$\tilde{\omega}r = \tilde{a}_{e}^{ASS}$$

	ars - arh + arh + arh + arh + aco										
M	?	wr	wr	SL ² (R-r)	3(R-r)	=0					
$\overline{\mathcal{D}}$?	∥Ec E>c	TEC	1CE	150E	Rif Trans					
						rorrante					

/4 m/s

$$\frac{1}{\sin x} \int \frac{\sqrt{r}(R-r)}{\sqrt{r}(R-r)} = 2.5 \frac{m}{s^2}$$
Shagliote

$$\mathcal{R} = \frac{\omega \Gamma}{R - r} = 2, 5 \frac{rool}{5}$$

$$\mathcal{R} = \frac{\omega \Gamma}{R - r} = 10 \frac{rool}{5}$$

$$\int_{\tilde{W}^{r}}^{\tilde{U}(R-r)} \int_{\tilde{W}^{r}}^{\tilde{U}(R-r)} dr = 7.5 \text{ m/s}^{2}$$

Convers

Strono aproch sistema di ML Nterimento

$$\mathcal{N} = w \frac{r}{R+r}$$

$$\mathcal{N} = \dot{w} \frac{r}{R+r}$$

$$\vec{a}_{z} = \vec{a}_{En} + \vec{a}_{El} + \vec{a}_{En} + \vec{a}_{zl} + \vec{a}_{z}$$

$$M \stackrel{?}{=} w^{2}r \quad \vec{w}r \quad \vec{n}(R+r) \vec{n}(R+r) = 0$$

$$\vec{n}_{e} = \vec{n}_{e} + \vec{n}_{e$$

$$\int_{-1/25}^{2} ||R_{t}|| = 4 ||M||^{2^{2}}$$

$$= 1/25 ||M|| = 1/25 ||M|$$

W=10 ned (cost)

W=10 ned (cost)

Ve 455? à 455?

Coutatto di purso retalamento

Assoluta orelativa (relativa (relativa)

 V_c V_c^{RL} V_c V_c

Ve¹¹⁰= 4,47 <u>we</u>

	ac s	acn -	à mi	+ acn	+ act	· ac
M	,	Χ	<i>= 0</i>	Ryr	° 0	2JZVERZ
$ \mathcal{D} $	\ \	Rettilina	M _E O	//co C+0	√S=0	100
	<u> </u>	•		,	l	

$$2 \pi \cdot \sqrt{c}$$
= 20 m
$$\int_{0}^{2} 4r = 20 m$$

$$\vec{\omega}^{ASS} = \vec{\omega}^{EL} + \vec{\omega}^{TRA}$$

$$= -10 \frac{ned}{s} + 5 \frac{rad}{s} = -5 \frac{rad}{s}$$

Esercizio Propostos

Solidate

Riferento 0,2,14,
rotante con 0,=0

Dati:

Vρ A53? aps ? 2455?

$$Wd = \frac{\vec{Vc}}{R} = \frac{2}{-1} = 20 \frac{\text{nad}}{\text{s}}$$

$$V_{p} = 2WdR = 4 \frac{m}{\text{s}}$$

$$\Delta p = W^{2}r - 20^{2} \cdot 0, 4 = 40 \frac{m}{\text{s}^{2}}$$

