singular. $(pos def)^{-1} \exists \& is pos def.$ Res in regression w/ constant or dummy left-tail $\Phi(-c_{\alpha}) = \alpha \setminus 2$, $c_{\alpha} = \Phi^{-1}(\alpha \setminus 2)$. Thm Stats: $p\lim \hat{F}(x) = F(x)$. CLT: $z_n \equiv$ 1 Basics variables sum to 0. If $k \times k$ **A**, symmetric, pos def, $\exists k \times k$ $\Phi^{-1}(.975) = 1.96, \Phi^{-1}(.95) = 1.645.$ $\frac{1}{\sqrt{n}} \sum_{t}^{n} \frac{x_{t} - \mu}{\sigma} \xrightarrow{d} N(0, 1) \text{ if } x_{t} \text{ IID.}$ FWL: β_2 from $\mathbf{y} = \mathbf{X}_1 \beta_1 + \mathbf{X}_2 \beta_2 + \mathbf{u}$ and Distributions $\mathbf{B} : \mathbf{A} = \mathbf{B}^{\top} \mathbf{B}$, \mathbf{B} not unique Power: prob test rejects the null. Prob Normal: $\phi(x) = (2\pi)^{-1/2} \exp(-\frac{1}{2}x^2)$ $M_1y = M_1X_2\beta_2 + res$ are the same. (+ res) Precision mtrx: invers of cov mtrx of estof Type 2 = 1 - P(power). Power \uparrow with Uncorrelated x_t with $E(x_t) = 0 \Rightarrow$ matr. \exists & pos def iff cov mtrx pos def. Normal CDF: $\Phi(\mathbf{x}) = \int_{-\infty}^{x} \phi(y) dy$ FWL β : $(\mathbf{X}_2^{\mathsf{T}}\mathbf{M}_1\mathbf{X}_2)^{-1}\mathbf{X}_2^{\mathsf{T}}\mathbf{M}_1\mathbf{y}$ $(\beta_1 - \beta_0) \uparrow \text{ or } \sigma \downarrow \text{ or } n \uparrow.$ $n^{-1/2} \sum_{t=1}^{n} x_t$ goes to $N(0, \lim \frac{1}{n} \sum_{t=1}^{n} \operatorname{Var}(x_t))$. If u w/ Var σ^2 and cov of any pair = 0: Seasonal w const: $\mathbf{s}_i' = \mathbf{s}_i - \mathbf{s}_4$, i = 1, 2, 3. $p(z) = 2(1 - \Phi(|z|))$ Moments Same for multiv norm. $Var(\mathbf{u}) = E(\mathbf{u}\mathbf{u}^{\top}) = \sigma^2 \mathbf{I}$ — white noise. If Avg is const coeff. Msy is deseasonalized. Continuous: $m_k(X) \equiv \int_{-\infty}^{\infty} x^k f(x) dx$ $x \sim N(\mu, \sigma^2) \Rightarrow z = (x - \mu) \setminus \sigma, z \sim N(0, 1).$ If $\mathbf{u} \sim IID(\mathbf{0}, \sigma^2 \mathbf{I})$, $E(u_t \mid \mathbf{X}_t) = 0$, $E(u_t^2 \mid \mathbf{X}_t)$ false, Ω = err cov mtrx. If diag of Ω differ, **D** has G dummy vars for fixed effects. Density of $N(\mu, \sigma^2) = 1 \setminus \sigma \phi(x - \mu \setminus \sigma)$ heteroskedastic. Homoskedastic: all μ sa- X_t) = σ^2 (innovations), plim $\frac{1}{n}X^{\top}X$ = $\mathbf{M_D}\mathbf{x} = \mathbf{x} - \left[\iota_{n_1}\overline{x}_1 \dots \iota_{n_G}\overline{x}_G\right]$ $\mu_k \equiv E(X - E(X)^k) = \int_{-\infty}^{\infty} (x - \mu)^k f(x) dx$ Lin comb of rand vars that are jointly me Var. Autocorrelated: off-diag $\Omega \neq 0$. $S_{X^{\top}X}$ where S finite, deterministic, multivariate normal must be $\sim \dot{N}$. If \dot{x} $\hat{\eta} = [\overline{y}_1 - \mathbf{X}_1 \beta \dots \overline{y}_G - \mathbf{X}_G \beta]$ Discrete Central: $\operatorname{Var}(\hat{\beta}) = (\mathbf{X}^{\top} \mathbf{X})^{-1} \mathbf{X}^{\top} \mathbf{\Omega} \mathbf{X} (\mathbf{X}^{\top} \mathbf{X})^{-1}$ multivar norm where $\mathbf{x} = \mathbf{Az}, \mathbf{x} \sim N(\mu, \Omega)$, pos def mtrx, then $n^{1/2}(\hat{\beta} - \beta_0) \stackrel{d}{\longrightarrow}$ $\mu_k \equiv E(X - E(X)^k) = \sum_{i=1}^m p(x_i)(x_i - \mu)^k$ $h_t = \mathbf{e_t}^{\top} \mathbf{P_X} \mathbf{e_t} = ||\mathbf{P_X} \mathbf{e_t}||^2$ $\hat{\beta}$ unbiased & $\Omega = \sigma^2 \mathbf{I}$ so no hetero or au- $\Omega = \text{Var}(\mathbf{x}) = \mathbf{A}\mathbf{A}^{\top}$, A lower-triangular. If $N(\mathbf{0}, \sigma^2 \mathbf{S}_{\mathbf{Y}^{\top}\mathbf{Y}}^{-1})$ and plim $s^2 (n^{-1}\mathbf{X}^{\top}\mathbf{X})^{-1} =$ $\beta^{(t)} - \hat{\beta} = \frac{-1}{1-h_t} (\mathbf{X}^\top \mathbf{X})^{-1} \mathbf{X}_{\mathbf{t}}^\top \hat{u}_t$ where h_t de-Multivariate tocorr, then $Var(\hat{\beta}) = \sigma^2(\mathbf{X}^{\top}\mathbf{X})^{-1}$. x multivar norm vector w 0 covs, x com-Joint Density Func: $f(x_1, x_2) = \frac{\partial^2 F(x_1, x_2)}{\partial x_1 \partial x_2}$ notes the t^{th} diagonal element of P_X . ponents mutually indep FWL Variance: $Var(\hat{\beta_1}) = \sigma_0^2 (\mathbf{x_1}^\top \mathbf{M_2} \mathbf{x_1})^{-1}$ χ^2 : $y = ||\mathbf{z}||^2 = \mathbf{z}^{\top}\mathbf{z} = \sum_{i=1}^{m} z_i^2$., $y \sim \chi^2(m)$ $\hat{\beta}$ is root-n consistent, since $O_p(n^{1/2})$. Indep: $F(x_1, x_2) = F(x_1, \infty)F(\infty, x_2)$ Precision affected by n, σ^2 , X. with $\mathbf{z} \sim N(\mathbf{0}, \mathbf{I})$; E(y) = m. Var(y) = 2m. vector of (true) model params: θ An estimator for cov mtrx is consistent or $f(x_1, x_2) = f(x_1)f(x_2)$ Collinearity: precision for β_1 dep on X_2 . Marginal Density: $y_1 \sim \chi^2(m_1) \& y_2 \sim \chi^2(m_2) \text{ indep } \Rightarrow$ Bias: $E(\hat{\theta}) - \theta_0$, $E((\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{u}) = 0$ if $plim(nVar(\hat{\theta})) = V(\theta)$, where $V(\theta)$ is li-Efficiency $f(x_1) \equiv F_1(x_1, \infty) = \int_{-\infty}^{\infty} f(x_1, x_2) dx_2$ $y_1 + y_2 \sim \chi^2(m_1 + m_2)$ $E_{\mathbf{u}}(\hat{\beta}) = \beta_{\mathbf{u}} + E(\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{u}$ miting cov mtrx of $n^{1/2}(\hat{\theta} - \theta_0)$ $\tilde{\beta}$ more effic than $\hat{\beta}$ iff $Var(\tilde{\beta})^{-1} - Var(\hat{\beta})^{-1}$ Conditional Density: $f(x_1|x_2) = \frac{f(x_1,x_2)}{f(x_2)}$ estimating eq: $g(\mathbf{y}, \theta) = 0$ unbiased iff $\chi^2(m) \xrightarrow{d} N(m, 2m)$ If u IID and testing $\beta_2 = \beta_2^0$, $t_{\beta_2} =$ nonzero pos semidef mtrx $\Rightarrow Var(\hat{\beta})$ – $\forall \mu \in \mathbb{M}, E_{\mu}g(\mathbf{y}, \theta_{\mu}) = \mathbf{0} \text{ or } E(\mathbf{X}^{\top}\mathbf{u}) = \mathbf{0}$ Law Iterate Expec: $E(E(X_1|X_2)) = E(X_1)$ Any Deterministic Func h: $Var(\tilde{\beta})$ nonzero pos semidef mtrx $m \times 1 \mathbf{x} \sim N(\mathbf{0}, \mathbf{\Omega})$, then $\mathbf{x}^{\top} \mathbf{\Omega}^{-1} \mathbf{x} \sim \chi^{2}(m)$ $\frac{\beta_2 - \beta_2^0}{\sqrt{s^2 (\mathbf{X}^\top \mathbf{X})_{22}^{-1}}}$ and $t_{\beta_2} \stackrel{a}{\sim} N(0,1) \Rightarrow t_{\beta_2} =$ $X \text{ exogenous } \Longrightarrow E(\mathbf{u} \mid \mathbf{X}) = \mathbf{0} \text{ and both } \hat{\beta}$ If $P \times n$ orthogonal projection w/ rank Lin. estmtr: $\hat{\beta} = \mathbf{A}\mathbf{y} = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{y} + \mathbf{C}\mathbf{y}$ and estimating equations unbiased. $E(X_1 h(X_2) | X_2) = h(X_2) E(X_1 | X_2)$ Gauss-Markov: If $E(\mathbf{u} \mid \mathbf{X}) = \mathbf{0}$ and r < n and $\mathbf{z} \sim N(\mathbf{0}, \mathbf{I})$ then $\mathbf{z}^{\top} \mathbf{P} \mathbf{z} \sim \chi^2(r)$. $O_p(1)$. Under null $\beta_2 = 0$, w predetermi-Make exog assumpt in cross-sec not time Matrix Algebra $E(\mathbf{u}\mathbf{u}^{\top} \mid \mathbf{X}) = \sigma^2 \mathbf{I}$ then OLS $\hat{\beta}$ is BLUE. $z \sim N(0,1) \& y \sim \chi^2(m), z, y$ indep, then regressors predetermined: $E(\mathbf{X}^{\top}\mathbf{u}) = \mathbf{0}$ ned regressors $rF_{\beta_2} \stackrel{a}{\sim} \chi^2(r)$ where $r = k_2$ Symmetric: $\mathbf{A} = \mathbf{A}^{\top}$ Unnecessary for $\mu \sim N$. $t \equiv z \setminus (v \setminus m)^{1/2}$. Or $t \sim t(m)$. Only **Stochastic Limits** Dot Product: $\mathbf{a}^{\top}\mathbf{b} = \sum_{i=1}^{n} a_i b_i$ is dim of β_2 & $F_{\beta_2} \stackrel{a}{\sim} F(r, n-k)$. Wald: first m-1 moments exist. Cauchy: t(1). **Residuals & Disturbances** Converg in prob: $\lim Pr(|Y_n - Y_\infty| > \epsilon) =$ Matrix Mult: $C_{ij} = \sum_{k=1}^{m} A_{ik} B_{ki}$ $Var(t) = m \setminus (m-2)$. t(m) converges in dis- $\hat{\mu} = \mathbf{M}_{\mathbf{X}} \mathbf{u}$ (hat resid, μ dist). $\mathbf{R}\beta = \mathbf{r}$, r is vec of lin. restricts. $W(\hat{\beta}) =$ $0 \Rightarrow \text{plim } Y_n = Y_{\infty} \implies \text{converg dist}$ Invertible: $\mathbf{A}\mathbf{A}^{-1} = \mathbf{A}^{-1}\mathbf{A} = \mathbf{I}$ tribution to std norm If $E(\mathbf{u} \mid \mathbf{X}) = \mathbf{0} \Rightarrow E(\hat{u}_t | \mathbf{X}) = 0 \Rightarrow$ $(n^{1/2}\mathbf{R}\hat{\beta}-r)^{\top}(\mathbf{R}n\widehat{\mathrm{Var}}(\hat{\beta})\mathbf{R}^{\top})^{-1}(n^{1/2}\mathbf{R}\hat{\beta}-r)^{-1}(n^{1/2}\mathbf{R}\hat{\beta}-r)^{-1}(n^{1/2}\mathbf{R}\hat{\beta}-r)^{-1}(n^{1/2}\mathbf{R}\hat{\beta}-r)^{-1}(n^{1/2}\mathbf{R}\hat{\beta}-r)^{-1}(n^{1/2}\mathbf{R}\hat{\beta}-r)^{-1}(n^{1/2}\mathbf{R}\hat{\beta}-r)^{-1}(n^{1/2}\mathbf{R}\hat{\beta}-r)^{-1}(n^{1/2}\mathbf{R}\hat{\beta}-r)^{-1}(n^{1/2}\mathbf{R}\hat{\beta}-r)^{-1}(n^{1/2}\mathbf{R}\hat{\beta}-r)^{-1}(n^{1/2}\mathbf{R}\hat{\beta}-r)^{-1}(n^{1/2}\mathbf{R}\hat{\beta}-r)^{-1}(n^{1/2}\mathbf{R}\hat{\beta}-r)^{-1}(n^{1/2}\mathbf{R}\hat{\beta}-r)^{-1}(n^{1/2}\mathbf{R}\hat{\beta}-r)^{-1}(n^{1/2}\mathbf{R}\hat{\beta}-r)^{-1}(n^{1/2}\mathbf{R}\hat{\beta}-r)^{-1}(n^{1/2}\mathbf{R}\hat{\beta}-r)^{-1}(n^{1/2}\mathbf{R}\hat{\beta}-r)^{-1}(n^{1/2}\mathbf{R}\hat{\beta}-r)^{-1}(n^{1/2}\mathbf{R}\hat{\beta}-r)^{-1}(n^{1/2}\mathbf{R}\hat{\beta}-r)^{-1}(n^{1/2}\mathbf{R}\hat{\beta}-r)^{-1}(n^{1/2}\mathbf{R}\hat{\beta}-r)^{-1}(n^{1/2}\mathbf{R}\hat{\beta}-r)^{-1}(n^{1/2}\mathbf{R}\hat{\beta}-r)^{-1}(n^{1/2}\mathbf{R}\hat{\beta}-r)^{-1}(n^{1/2}\mathbf{R}\hat{\beta}-r)^{-1}(n^{1/2}\mathbf{R}\hat{\beta}-r)^{-1}(n^{1/2}\mathbf{R}\hat{\beta}-r)^{-1}(n^{1/2}\mathbf{R}\hat{\beta}-r)^{-1}(n^{1/2}\mathbf{R}\hat{\beta}-r)^{-1}(n^{1/2}\mathbf{R}\hat{\beta}-r)^{-1}(n^{1/2}\mathbf{R}\hat{\beta}-r)^{-1}(n^{1/2}\mathbf{R}\hat{\beta}-r)^{-1}(n^{1/2}\mathbf{R}\hat{\beta}-r)^{-1}(n^{1/2}\mathbf{R}\hat{\beta}-r)^{-1}(n^{1/2}\mathbf{R}\hat{\beta}-r)^{-1}(n^{1/2}\mathbf{R}\hat{\beta}-r)^{-1}(n^{1/2}\mathbf{R}\hat{\beta}-r)^{-1}(n^{1/2}\mathbf{R}\hat{\beta}-r)^{-1}(n^{1/2}\mathbf{R}\hat{\beta}-r)^{-1}(n^{1/2}\mathbf{R}\hat{\beta}-r)^{-1}(n^{1/2}\mathbf{R}\hat{\beta}-r)^{-1}(n^{1/2}\mathbf{R}\hat{\beta}-r)^{-1}(n^{1/2}\mathbf{R}\hat{\beta}-r)^{-1}(n^{1/2}\mathbf{R}\hat{\beta}-r)^{-1}(n^{1/2}\mathbf{R}\hat{\beta}-r)^{-1}(n^{1/2}\mathbf{R}\hat{\beta}-r)^{-1}(n^{1/2}\mathbf{R}\hat{\beta}-r)^{-1}(n^{1/2}\mathbf{R}\hat{\beta}-r)^{-1}(n^{1/2}\mathbf{R}\hat{\beta}-r)^{-1}(n^{1/2}\mathbf{R}\hat{\beta}-r)^{-1}(n^{1/2}\mathbf{R}\hat{\beta}-r)^{-1}(n^{1/2}\mathbf{R}\hat{\beta}-r)^{-1}(n^{1/2}\mathbf{R}\hat{\beta}-r)^{-1}(n^{1/2}\mathbf{R}\hat{\beta}-r)^{-1}(n^{1/2}\mathbf{R}\hat{\beta}-r)^{-1}(n^{1/2}\mathbf{R}\hat{\beta}-r)^{-1}(n^{1/2}\mathbf{R}\hat{\beta}-r)^{-1}(n^{1/2}\mathbf{R}\hat{\beta}-r)^{-1}(n^{1/2}\mathbf{R}\hat{\beta}-r)^{-1}(n^{1/2}\mathbf{R}\hat{\beta}-r)^{-1}(n^{1/2}\mathbf{R}\hat{\beta}-r)^{-1}(n^{1/2}\mathbf{R}\hat{\beta}-r)^{-1}(n^{1/2}\mathbf{R}\hat{\beta}-r)^{-1}(n^{1/2}\mathbf{R}\hat{\beta}-r)^{-1}(n^{1/2}\mathbf{R}\hat{\beta}-r)^{-1}(n^{1/2}\mathbf{R}\hat{\beta}-r)^{-1}(n^{1/2}\mathbf{R}\hat{\beta}-r)^{-1}(n^{1/2}\mathbf{R}\hat{\beta}-r)^{-1}(n^{1/2}\mathbf{R}\hat{\beta}-r)^{-1}(n^{1/2}\mathbf{R}\hat{\beta}-r)^{-1}(n^{1/2}\mathbf{R}\hat{\beta}-r)^{-1}(n^{1/2}\mathbf{R}\hat{\beta}-r)^{-1}(n^{1/2}\mathbf{R}\hat{\beta}-r)^{-1}(n^{1/2}\mathbf{R}\hat{\beta}-r)^{-1}(n^{1/2}\mathbf{R}\hat{\beta}-r)^{-1}(n^{1/2}\mathbf{R}\hat{\beta}-r)^{-1}(n^{1/2}\mathbf{R}\hat{\beta}-r)^{-1}(n^{1/2}\mathbf{R}\hat{\beta}-r)^{-1}(n^{1/2}\mathbf{R}\hat{\beta}-r$ Converg dist: $\lim F_n(x) = F(x) \equiv Y_n \to F$ $y_1, y_2 \text{ indep rand var } \sim \chi^2(m_1) \& \chi^2(m_2),$ $\|\mathbf{x}\| = (\mathbf{x}^{\top}\mathbf{y})^{1/2} = (\sum_{i=1}^{n} x_i^2)^{1/2}$ $E(||\hat{\mathbf{u}}||^2|\mathbf{X}) \le E(||\mathbf{u}||^2|\mathbf{X})$ r) is Wald where cov mtrx consistent. LLN: $\operatorname{plim} \overline{Y_n} = \operatorname{plim} \frac{1}{n} \sum_{t=1}^{n} Y_t = \mu_Y$, Y_t then $F \equiv \frac{y_1 \setminus m_1}{y_2 \setminus m_2}$. $F \sim F(m_1, m_2)$. As $m_2 \rightarrow$ $Var(\hat{u}_t) = (1 - h_t)\sigma^2 < \sigma^2; \ \hat{\sigma}^2 = \frac{1}{n} \sum_{t=1}^{n} \hat{u}_t^2$ $\mathbf{X}^{\top}\mathbf{X}_{ij} = \sum_{t=1}^{n} x_{ti}x_{tj}$ $W(\hat{\beta}) \stackrel{a}{\sim} \chi^2(r)$ under null where r is r-IID, $\overline{Y_n}$ sample mean of Y_t , μ_T pop ∞ , $F \sim 1 \setminus m_1$ times $\chi^2(m_1)$. $t \sim t(m_2) \Rightarrow$ $E(\hat{\sigma}^2) = \frac{n-k}{n} \sigma^2$ vector. $\langle \mathbf{x}, \mathbf{y} \rangle = ||\mathbf{x}|| ||\mathbf{y}|| \cos(\theta)$ mean, finite $E(Y_n)^2$ LLN2: $p\lim_{t \to \infty} \frac{1}{t} \sum_{t=1}^{n} Y_t =$ $t^2 \sim F(1, m_2)$. **Multiple Testing** $\sin(x \pm y) = \sin x \cos y \pm \cos x \sin y$ $E(\mathbf{u}^{\top}\mathbf{M}_{\mathbf{X}}\mathbf{u}) = E(SSR(\hat{\beta})) = (n-k)\sigma^{2}$ $\lim_{t \to \infty} \frac{1}{n} \sum_{t}^{n} E(Y_t)$ FWER: $\alpha_m = 1 - (1 - \alpha)^m$ (reject if any test $\cos(x \pm y) = \cos x \cos y \mp \sin x \sin y$ unbiased: $s^2 \equiv \frac{1}{n-k} \sum_{t=0}^{n} \hat{u}_t^2$; s = std err.Exact Tests ($\mathbf{u} \sim N(\mathbf{0}, \sigma^2 \mathbf{I})$) $plim\eta(Y_n) = plim\eta(Y_{\infty})$ if converg $\sin 2\theta = 2\sin\theta\cos\theta$ $p\lim Y_n Z_n = p\lim Y_n p\lim Z_n$ if converg unbias est of $Var(\hat{\beta})$: $\widehat{Var}(\hat{\beta}) = s^2 (\mathbf{X}^{\top} \mathbf{X})^{-1}$ $\cos 2\theta = 1 - 2\sin^2 \theta = 2\cos^2 \theta - 1$ Bonferroni: $Pr(\bigcup_{i=1}^{m} P_i \leq \alpha/m) \leq \alpha$ (reject if $\frac{\mathbf{x}_{2}^{\top}\mathbf{M}_{1}\mathbf{y}}{s(\mathbf{x}_{2}^{\top}\mathbf{M}_{1}\mathbf{x}_{2})^{1/2}} = \left(\frac{\mathbf{y}^{\top}\mathbf{M}_{X}\mathbf{y}}{n-k}\right)^{-\frac{1}{2}} \frac{\mathbf{x}_{2}^{\top}\mathbf{M}_{1}\mathbf{y}}{(\mathbf{x}_{2}^{\top}\mathbf{M}_{1}\mathbf{x}_{2})^{1/2}}$ Cauchy-Schwartz: $\langle \mathbf{x}, \mathbf{y} \rangle \le ||\mathbf{x}|| ||\mathbf{y}||$ $\mathbf{X}^{\top}\mathbf{X}$ may not have plim so mult by $1 \setminus n$. s^2 unbiased and consistent. Linear Indep: $\exists \mathbf{b} \neq \mathbf{0} \text{ s.t. } \mathbf{X}\mathbf{b} = \mathbf{0}$ Then, plim1\ $nX^{T}X = S_{X^{T}X}$ $MSE(\hat{\beta}) \equiv E((\hat{\beta} - \beta_0)(\hat{\beta} - \beta_0)^{\top}$ is t-stat $t_{\beta_2} \sim t(n-k)$ for testing $\beta_2 = 0$. Simes: Reject if any $P_{(i)} \leq j\alpha/m$ for in-Singular: $\exists \mathbf{x} \neq 0 : \mathbf{A}\mathbf{x} = \mathbf{0}$ same order: $\forall \epsilon > 0 \exists K, N : P(|a_n \setminus n^r| > 1)$ If $\tilde{\beta}$ unbiased $MSE(\tilde{\beta}) = Var(\tilde{\beta})$. creasing *P*. Bonf more conservative than $\beta_2 \in \mathbb{R} \Rightarrow \text{test for } \beta_2 = \beta_{20} : (\hat{\beta_2} - \beta_{20})/s_2.$ Tr(ABC) = Tr(CAB) = Tr(BCA)K) $< \epsilon \forall n > N \implies f(n) = O_p(n^r)$ **Measures of Goodness of Fit** $Tr(P_X) = \operatorname{rank}(X)$ $USSR = \mathbf{y}^{\top} \mathbf{M}_1 \mathbf{y} - \mathbf{y}^{\top} \mathbf{M}_1 \mathbf{P}_{\mathbf{M}_1 \mathbf{X}_2} \mathbf{M}_1 \mathbf{y}$ consistent: $\operatorname{plim}_{\mu}\hat{\beta} = \beta_{\mu}$, may be bias TSS = ESS + SSR**Power** 2 Linear Regression $RSSR = \mathbf{y}^{\mathsf{T}} \mathbf{M}_1 \mathbf{y}$ $R_u^2 = \frac{\text{ESS}}{\text{TSS}} = \frac{\|\mathbf{P}_{\mathbf{X}}\mathbf{y}\|^2}{\|\mathbf{y}\|^2} = \cos^2 \theta$, where θ an-If $\mathbf{z} \sim N(\mu, \mathbf{I})$ then $\mathbf{z}^{\top}\mathbf{z} \sim \text{non-central}$ $E(\mu_t \mid \mathbf{X}_t) = 0 \implies \hat{\beta}$ consistent. $F_{\beta_2} = \frac{(\text{RSSR - USSR})/r}{\text{USSR}/(n-k)} = \frac{\mathbf{y}^{\top} \mathbf{P}_{\mathbf{M}_1 \mathbf{X}_2} \mathbf{y}/r}{\mathbf{y}^{\top} \mathbf{M}_{\mathbf{X}} \mathbf{y}/(n-k)}$ Information set: Ω_t , for conditioning **Covariance and Precision Matrices** $\chi^2(m, \Lambda = \mu^T \mu)$ If $\mathbf{z} \sim N(\mu, \mathbf{I})$ then gle between **y** and $P_{\mathbf{X}}\mathbf{y}$. $0 \le R_u^2 \le 1$. is F-stat $\sim F(r, n - k)$, used for Estimator: $\hat{\beta} = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{y}$ $Cov(b_i, b_i) \equiv E((b_i - E(b_i))(b_i - E(b_i)))$ $\mathbf{z}^{\top}\mathbf{z} \sim \text{non-central } \chi^{2}(m, \Lambda = \mu^{\top}\mu).$ If R_c^2 : center all vars first. Invalid if $\iota \notin \mathcal{S}(\mathbf{X})$. multiple hyp on β_2 . Under null, $E(x_{ti}u_t) = 0 \implies \mathbf{X}^{\top}(\mathbf{y} - \mathbf{X}\beta) = \mathbf{0}$ if i = j, $Cov(b_i, b_i) = Var(b_i)$ $\mathbf{x} \sim \mathrm{N}(\mu, \mathbf{\Omega}), \mathbf{x}^{\top} \mathbf{\Omega} \mathbf{x} \sim \chi^{2}(m, \mu^{\top} \mathbf{\Omega} \mu).$ $R_c^2 = 1 - \sum_t^n \hat{u}_t^2 \setminus \sum_t^n (y_t - \overline{y})^2.$ $\mathbf{M_1 y} = \mathbf{M_1 u} \Rightarrow F_{\beta_2} = \frac{e^{\top} \mathbf{P_{M_1 X_2}} e^{/r}}{e^{\top} \mathbf{M_X} e^{/(n-k)}}$, where $SSR(\beta) := \sum_{t=1}^{n} (y_i - \mathbf{X_t} \beta)^2$ $Var(\mathbf{b}) \equiv E((\mathbf{b} - E(\mathbf{b}))(\mathbf{b} - E(\mathbf{b}))^{\top})$ $\Lambda = (1 \backslash \sigma^2) \beta_2^\top \mathbf{X}_2^\top \mathbf{M}_1 \mathbf{X}_2 \beta_2$. Under null Adj R^2 : unbiased estimators. maybe < 0. $\mathbf{y}^{\top}\mathbf{y} = \hat{\beta}^{\top}\mathbf{X}^{\top}\mathbf{X}\hat{\beta} + (\mathbf{y} - \mathbf{X}\hat{\beta})^{\top}(\mathbf{y} - \mathbf{X}\hat{\beta})$ when $E(\mathbf{b}) = \mathbf{0}$, $Var(\mathbf{b}) = E(\mathbf{b}\mathbf{b}^{\top}) b_i$, b_i in- $\beta_2 = \mathbf{0} \Rightarrow \Lambda = 0.$ $\epsilon \equiv \mathbf{u}/\sigma$, $\mathbf{P}_{\mathbf{M}_1\mathbf{X}_2} = \mathbf{P}_{\mathbf{x}} - \mathbf{P}_{\mathbf{1}}$. $\overline{R}^2 = 1 - \frac{\frac{1}{n-k} \sum_{t=0}^{n} \hat{u_t}^2}{\frac{1}{n-1} \sum_{t=0}^{n} (y_t - \overline{y})^2} = 1 - \frac{(n-1)\mathbf{y}^{\mathsf{T}} \mathbf{M_X y}}{(n-k)\mathbf{y}^{\mathsf{T}} \mathbf{M_t y}}$ dep: $Cov(b_i, b_i) = 0$, converse false Power of χ^2 or *F* test in $r \downarrow$, in $\Lambda \uparrow$. Projection: $P_X = X(X^TX)^{-1}X^T$ $\mathbf{y} = \mathbf{P_1} \mathbf{y} + \mathbf{P_{M_1}} \mathbf{X_2} \mathbf{y} + \mathbf{M_X} \mathbf{y}$ $t(n-k,\lambda) \sim \frac{N(\lambda,1)}{(\chi^2(n-k)/(n-k))^{1/2}}, \quad \lambda =$ $\mathbf{M}_{\mathbf{X}} = \mathbf{I} - \mathbf{P}_{\mathbf{X}} = \mathbf{I} - \mathbf{X}(\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}$ correlation: $\rho(b_i, b_j) \equiv \frac{\text{Corr}_{i,j}}{(\text{Var}(b_i)\text{Var}(b_j))^{1/2}}$ P-value for \hat{F} is $1 - F_{r,n-k}(F_{\beta_2})$. When \overline{R}^2 does not always \uparrow in regressors. $\mathbf{P}_{\mathbf{X}}\mathbf{y} = \mathbf{X}((\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{y}) = \mathbf{X}\hat{\boldsymbol{\beta}}; \ \mathbf{P}_{\mathbf{X}}\mathbf{P}_{\mathbf{X}} = \mathbf{P}_{\mathbf{X}}$ only 1 restriction, F and 2-tailed t $(1 \setminus \sigma)(\mathbf{x}_2^\top \mathbf{M}_1 \mathbf{x}_2)^{1/2} \beta_2 = \sqrt{\Lambda}.$ $\mathbf{M}_{\mathbf{X}}\mathbf{y} = \hat{\mathbf{u}}; \mathbf{M}_{\mathbf{X}}\dot{\mathbf{X}} = \mathbf{0}; \mathbf{M}_{\mathbf{X}}\mathbf{M}_{\mathbf{X}}^{T} = \mathbf{M}_{\mathbf{X}}^{T}$ Var(b) positive semidefinite. cov and corr **Hypothesis Testing** test are the same. If testing all $\beta = 0$, matrix positive definite most of the time. If u_t normal, and σ known, test $\beta = \beta_0$ w Pretest estimator: $\hat{\beta} = \mathbb{I}(F_{\gamma=0} > c_{\alpha})\hat{\beta} +$ $P_{X} + M_{X} = I; P_{X}M_{X} = 0; P_{X}^{+} = P_{X}$ $F = \text{ESS}\setminus(\text{TSS - ESS}) = \frac{n-k}{k-1} \times \frac{R_c^2}{1-R^2}$. If positive definite: $\mathbf{x}^{\top} \mathbf{A} \mathbf{x} > 0$ for $\mathbf{x} \in k \times 1$. $z = \frac{\hat{\beta} - \beta_0}{(\text{Var}(\hat{\beta}))^{1/2}} = \frac{n^{1/2}}{\sigma}(\hat{\beta} - \beta_0), z \sim N(0, 1)$ $\|\mathbf{y}\|^2 = \|\mathbf{P}_{\mathbf{X}}\mathbf{y}\|^2 + \|\mathbf{M}_{\mathbf{X}}\mathbf{y}\|^2; \|\mathbf{P}_{\mathbf{X}}\mathbf{y}\| \le \|\mathbf{y}\|$ A, $k \times k$ nonsingular, $\mathbf{P}_{\mathbf{X}\mathbf{A}} = \mathbf{P}_{\mathbf{X}}$ $\mathbb{I}(F_{\nu=0} \le c_{\alpha})\tilde{\beta} = \tilde{\beta} + \hat{\lambda}(\hat{\beta} - \tilde{\beta})$ where c_{α} is testing $\beta_1 = \beta_2$, let $\gamma = \beta_2 - \beta_1$ then $\mathbf{x}^{\top} \mathbf{A} \mathbf{x} = \sum_{i=1}^{k} \sum_{j=1}^{k} x_{i} x_{j} A_{ij}$. If $\geq 0 \Rightarrow$ semidef. critical value for F test with r and n-k-r $F_{\gamma} = \frac{(RSSR - SSR_1 - SSR_2)/k}{(SSR_1 + SSR_2)/(n-2k)}$ NCP: $\lambda = \frac{n^{1/2}}{\sigma} (\beta_1 - \beta_0), \, \beta_1 \neq \beta_0$ A pos semidef \Rightarrow det(A) ≥ 0 X_1, X_2 orthogonal, $X_1 X_2 = O$ df at α . $\beta = \beta$ when pretest rejects and

Any $\mathbf{B}^{\mathsf{T}}\mathbf{B}$ is pos semidef. If full col rank

then pos def. pos def \Rightarrow diag > 0 & non-

Asymptotic Theory

EDF: $\hat{F}(x) \equiv \frac{1}{n} \sum_{t=1}^{n} \mathbb{I}(x_t \leq x)$. Fund

Reject null if z large enough. 2-tail: |z|.

Type 1: reject true null, 2: accept false

Centering: $\mathbf{M}_{\iota}\mathbf{x} = \mathbf{z} = \mathbf{x} - \overline{x}\iota; \ \iota^{\top}\mathbf{z} = 0$

 $P_1 \equiv P_{X_1}, P_1 P_X = P_X P_1 = P_1$

ECON 468 Cheat Sheet

Tiffany Yong Page:1

 $\lambda h) = f(a) + \sum_{i=1}^{p} \frac{h^{i}}{i!} f^{(i)}(a), \text{ when } \lambda = 0$ $f(\mathbf{x} + \mathbf{h}) \cong f(\mathbf{x}) + \sum_{j=1}^{m} h_{j} f_{j}(\mathbf{x} + \lambda \mathbf{h})$ tor of $\Gamma(i)$, since i can be very close to n $\hat{\beta} = \tilde{\beta}$ when not reject. and no LLN will apply to it. To solve this, $\hat{\beta} - \beta = -\mathbf{Q}(\hat{\lambda}\hat{\gamma} - \gamma) + (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{u}$ we only estimate models where $\Gamma(j) \to 0$ as $j \to \infty$. Then beyond some threshold, $MSE(\hat{\beta}) = \sigma^2 (\mathbf{X}^{\top} \mathbf{X})^{-1} + \mathbf{QMSE}(\hat{\lambda}\hat{\gamma})\mathbf{Q}^{\top}$ we can assume autocovariance is 0. Confidence & Sandwich Cov Matrices $\hat{\Sigma}_{HW} = \hat{\Gamma}(0) + \sum_{i=1}^{p} (\hat{\Gamma}(i) + \hat{\Gamma}(i)), p \rightarrow \infty$ Coverage: *P*(conf. set includes true value) with $O(n^{1/4})$ as $n \to \infty$. But HW might not be pos def. Thus, NW estimator. Test stat: $\tau(\mathbf{y}, \theta_0)$. $\theta_0 \in \text{confidence set}$ iff $\tau(\mathbf{y}, \theta_0) \leq c_{\alpha}$, if θ_0 true then prob is $\hat{\Sigma}_{NW} = \hat{\Gamma}(0) + \sum_{i=1}^{p} (1 - \frac{1}{p+1})(\hat{\Gamma}(j) + \hat{\Gamma}(j))$ $1 - \alpha$. Asymp t-stat: $(\hat{\theta} - \theta)/s_{\theta}$. Pivot: same distribution ∀DGP. CI exact only if $p \to \infty$ with $O(n^{1/3})$ as $n \to \infty$, since HW underestimates cov matrices, esp for τ pivot. Asymmetric CI: reject $\hat{\tau}$ if $\hat{\tau} < c_{\alpha}$ or $\hat{\tau} > c_{\alpha}^+$. $s^2 = \mathbf{y}^\top \mathbf{M}_{\mathbf{X}} \mathbf{y} \setminus (n-k)$ larger vals of *i*. **Bootstrap** Conf ellipse centr. at $(\hat{\beta_1}, \hat{\beta_2})$. Points $\hat{\Sigma} = (1/n)\mathbf{X}^{\top}\hat{\Omega}\mathbf{X}$ (Newey-West/H. White) can be in CI & outside ellipse, Error components model: $u_{\sigma i} = v_{\sigma} + \epsilon_{\sigma i}$ and vice versa. Conf. reg. formula: Cluster: disturbances uncorrelated across $(\hat{\beta}_2 - \beta_{20})^{\top} \mathbf{X}_2^{\top} \mathbf{M}_1 \mathbf{X}_2 (\hat{\beta}_2 - \beta_{20}) \le c_{\alpha} k_2 s^2$ clusters but corrlted and hetero within clusters. Block-diag sandwich matrix: $Corr(X_1, X_2) = \mathbf{x}_1^{\top} \mathbf{x}_2 \setminus (\mathbf{x}_1^{\top} \mathbf{x}_1)^{1/2} (\mathbf{x}_2^{\top} \mathbf{x}_2)^{1/2}$ $(\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{\Omega}\mathbf{X}(\mathbf{X}^{\top}\mathbf{X})^{-1}$ $\operatorname{Corr}(\hat{\beta_1}, \hat{\beta_2}) = -\operatorname{Corr}(X_1, X_2)$ $(\mathbf{X}^{\top}\mathbf{X})^{-1}(\sum_{\sigma=1}^{G}\mathbf{X}_{\mathbf{g}}^{\top}\mathbf{\Omega}_{\mathbf{g}}\mathbf{X}_{\mathbf{g}})(\mathbf{X}^{\top}\mathbf{X})^{-1}$ If no stat with known finite sample dist, use Wald with k_2 vector $\hat{\theta}_2$ asym normal: $\operatorname{Var}(\hat{\beta}_2) \setminus \operatorname{Var}_c(\hat{\beta}_2) = 1 + (n_{\varphi} - 1)\rho$ $(\hat{\theta}_2 - \theta_{20})^{\top} (\widehat{\text{Var}}(\hat{\theta}_2))^{-1} (\hat{\theta}_2 - \theta_{20}) \le c_{\alpha}.$ What if disturbances are not IID? Group fixed effects: if regressors don't vary within clusters, fixed effects will $Var(\hat{\beta}) \neq s^2(\mathbf{X}^{\top}\mathbf{X})^{-1}$. Assume disturbanexplain all variation, so we can't tell coef we're interested in. Intra-cluster ces indep & exogen. regres. corr. also comes from data collection, $Var(\hat{\beta}) = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{\Omega}\mathbf{X}(\mathbf{X}^{\top}\mathbf{X})^{-1}$: Sandmisspecification; more complex than wich cov matrix. OLS estmtr inefficient, error-components model treats all diag. ω_t^2 the same even though $CV_1 = \frac{G(n-1)}{(G-1)(n-k)} (\mathbf{X}^{\top}\mathbf{X})^{-1} (\sum_{g=1}^{G} \mathbf{X}_g^{\top} \hat{\mathbf{u}}_g \hat{\mathbf{u}}_g^{\top} \mathbf{X}_g^{\mathsf{Tor}}$ unknown parametric DGP, estimated a bootstrap DGP to draw sim some have more weight. $(1 \setminus n) \mathbf{X}^{\top} \hat{\mathbf{\Omega}} \mathbf{X} = \lim_{t \to \infty} \frac{1}{n} \sum_{t=1}^{n} \omega_{t}^{2} x_{ti} x_{ti}$ $(\mathbf{X}^{\top}\mathbf{X})^{-1}$; cannot exceed G (rank 1 sum). When $n_{\varphi} = 1 \forall g \text{ s.t. } G = n, CV_1 = HC_1$. $\widehat{\operatorname{Var}}(\hat{\beta}) = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\widehat{\mathbf{\Omega}}\mathbf{X}(\mathbf{X}^{\top}\mathbf{X})^{-1}$ dof adjust for #regressors and #clusters. HC_0 : \hat{u}_t^2 in diag of $\hat{\Omega}$ and 0 else. For asymp. construct, $G \rightarrow \infty$, or $\hat{\beta}$ $\operatorname{plim} \frac{1}{n} \sum_{t=1}^{n} u_{t}^{2} x_{ti} x_{ti} \stackrel{a}{=} \frac{1}{n} \sum_{t=1}^{n} \hat{u}_{t}^{2} x_{ti} x_{ti} \rightarrow$ $M_{gg} = \mathbf{I}_{n_{\sigma}} - \mathbf{X}_{g} (\mathbf{X}^{\top} \mathbf{X})^{-1} \mathbf{X}_{g}^{\top}$, diag blocks $\lim_{n \to \infty} \frac{1}{n} \sum_{t=0}^{n} \omega_{t}^{2} x_{ti} x_{tj} \text{ w/LLN on } v_{t} = u_{t}^{2} - \overline{\omega}_{t}^{2}$ $n^{1/2}(\hat{\beta}-\beta_0) \to N(\mathbf{0}, \mathbf{S}_{\mathbf{X}^{\top}\mathbf{X}}^{-1}(\lim \frac{1}{n}\mathbf{X}^{\top}\mathbf{\Omega}\mathbf{X})\mathbf{S}_{\mathbf{X}^{\top}\mathbf{X}}^{-1}\mathbf{X}_{CV_2} = \mathbf{u}_g = M_{gg}^{-1/2}\hat{\mathbf{u}}; CV_3 = \mathbf{u}_g = M_{gg}^{-1}\hat{\mathbf{u}}$ $\lim_{n \to \infty} \frac{1}{n} \widehat{\operatorname{Var}}_{h}(\hat{\beta}) = \mathbf{S}_{\mathbf{X}^{\top}\mathbf{X}}^{-1} (\lim_{n \to \infty} \frac{1}{n} \mathbf{X}^{\top} \mathbf{\Omega} \mathbf{X}) \mathbf{S}_{\mathbf{X}^{\top}\mathbf{X}}^{-1}$ Req to use \overrightarrow{CV} : approp. cluster level, large no, of clusters, disturbances homo across clusters. $y_{gti} = \eta_g + \lambda_t + u_{gti}$, which represent group fixed effect, time fixed effect and idiosyncratic shock $y_{gti} = \beta_1 + \beta_2 D_{gti}^2 + \beta_3 D_{gti}^2 + \delta D_{gti}^b D_{gti}^2 +$ $u_{\alpha ti}$; $\beta_1 = \eta_{\alpha} + \lambda_1, \beta_2 = \eta_{\beta} - \eta_{\alpha}, \beta_3 =$ No clustered disturbances: collin. betw jurisdic. dummy and treatm. dummy if iurisd. treated/untreated every period. Can't tell what are treatm. effects vs. cluster effects $MVT = f(a + h) = f(a) + hf'(a + \lambda h)$ First order taylor: $f(a+h) \cong f(a) + hf'(a)$, h = b - a. Second order taylor: $\Gamma(j) = \frac{1}{n} \sum_{t=j+1}^{n} E(u_t u_{t-j} \mathbf{X}_t^{\top} \mathbf{X}_{t-j}) \ j \ge 0$ or $f(a+h) = f(a) + hf'(a) + \frac{1}{2}h^2f''(a)$ $\mathbf{\Gamma}(j) = \frac{1}{n} \sum_{t=-i+1}^{n} E(u_t u_{t+j} \mathbf{X}_t^{\top} \mathbf{X}_{t+j}) \ j < 0.$

val for $r_{\alpha \setminus 2} = \lceil \alpha \beta \setminus 2 \rceil$ -th val of t_h^* $n^{1/2}(\hat{\gamma}-\gamma_0) \stackrel{a}{=} g_0' n^{1/2}(\hat{\theta}-\theta_0)$, and asymp. $\tau_h^* = (\theta_h^* - \hat{\theta})^{\top} (\text{Var}^*(\theta_h^*))^{-1} (\theta_h^* - \hat{\theta}), \text{ and}$ distribution follows, with $s_{\gamma} = |g'(\hat{\theta})|s_{\theta}$ CR is Wald with $c_{\alpha}^* = (B+1)(1-\alpha)$ -th τ_{b}^* DMI = $[\hat{\gamma} - s_{\gamma} z_{1-\alpha/2}, \hat{\gamma} + s_{\gamma} z_{1-\alpha/2}]$. Transform I: $[g(\hat{\theta} - s_{\theta}z_{1-\alpha/2}), g(\hat{\theta} + s_{\theta}z_{1-\alpha/2})]$. Use DMI if γ normal, use TI if θ norm. $n^{1/2}(\hat{\gamma} - \gamma_0) \stackrel{a}{\sim} N(0, \mathbf{G_0} \mathbf{V}^{\infty}(\hat{\theta}) \mathbf{G_0}^{\top}), \mathbf{G_0}$ $l \times k$ is the Jacobian with $\partial g_i(\theta) \setminus \partial \theta_i$ $\widehat{\text{Var}}(\hat{\gamma}) = \widehat{\mathbf{G}}\widehat{\text{Var}}(\hat{\theta})\widehat{\mathbf{G}}^{\top}, \, \widehat{\mathbf{G}} = \mathbf{G}(\hat{\theta})$ Monte Carlo: Choose DGP in H_0 and sim. samples to get val of (asymp.) pivotal test stat. Sim. samples indep \Rightarrow sim test stats draw from EDF; consistent CDF estimate $\hat{F}^*(x) = 1 \setminus B \sum_{h=1}^B \mathbb{I}(\tau_h^* \le x)$ $\hat{p}^*(\hat{\tau}) = 1 - \hat{F}^*(\hat{\tau}) = \frac{1}{B} \sum_{h}^{B} \mathbb{I}(\tau_h^* > \hat{\tau})$ $\hat{p}_{s}^{*}(\hat{\tau}) = \frac{1}{B} \sum_{h=1}^{B} \mathbb{I}(|\tau_{h}^{*}| > |\hat{\tau}|)$ when biased param est and 2-tailed. $\hat{p}^*(\hat{\tau}) \to p(\hat{\tau})$ as $B \to \infty$. τ pivotal. $\hat{p}^*(\hat{\tau}) = r \setminus B$. Reject if $r < \alpha \beta \Rightarrow |\alpha \beta| + 1$ vals where rej. $P(\text{rej.}) = (|\alpha\beta| + 1) \setminus (B+1)$. This equals α , so $\alpha(\beta+1)=|\alpha\beta|+1\in\mathbb{Z}$ mate a bootstrap DGP to draw sim. samples by regressing assuming CNLM. $y_t = \mathbf{X_t} \tilde{\beta} + \tilde{\delta} y_{t-1}^* + u_t^*, u_t^* \sim NID(0, \tilde{s}^2)$ Resampling: without assuming CNLM bootstrap DGP, get disturbances from EDF of original sample residuals. This EDF is first centered $(-\overline{u}\iota)$, then rescaled by multiplying by $(n \setminus (n-k))^{1 \setminus 2}$ GR1: Bootstrap $\overrightarrow{DGP} \in \mathbb{M}_0$ GR2: Unless the test stat is pivotal for M₀, bootstrap DGP should be best possible estimate of the true DGP, assuming true DGP $\mu \in \mathbb{M}_0$ Loss of power due to finite *B* Pairs: $v_t^* = \mathbf{X}_{s1}\tilde{\beta}_1 + \hat{u}_s$, \hat{u}_s from unres. mdl, s resampling index, $\tilde{\beta}$ from res. mdl Wild: $y_t^* = \mathbf{X}_t \tilde{\beta} + s_t^* \tilde{u}_t$, $s_t^* = -1$ w/ prob 1/2 and 1 w/ prob 1/2 (Rademacher) Block: Resample *l*-length blocks of rescaled residuals or $[\mathbf{y}, \mathbf{X}]$ pairs. $l = O(n^{1/3})$

Instrumental Variables Can define $E(u_t \mid \Omega_t) = 0$. Err in variables: indep vars in regr model measured with err. $u_t = u_t^{\circ} + v_{2t} - \beta_2 v_{1t} \Rightarrow$ $E(u_t | x_t) \neq 0$, $Cov(x_t, u_t) = E(x_t u_t) \neq 0$. OLS est biased and inconsist. Simultaneity: two or more endog vars jointly determined by sys of simultaneous eq. Assume, $E(\mathbf{u}\mathbf{u}^{\top}) = \sigma^2 \mathbf{I}$ and at least one in **X** not predetermined wrt disturb. $n \times k$ mtrx W with $W_t \in \Omega_t$. Col of W are IV. $E(u_t \mid \mathbf{W}_t) = 0$, $\mathbf{W}^{\top}(\mathbf{y} - \mathbf{X}\beta) = \mathbf{0}$ are unbiased est eq. $\hat{\beta}_{IV} \equiv (\mathbf{W}^{\top}\mathbf{X})^{-1}\mathbf{W}^{\top}\mathbf{y}$. $\mathbf{W}^{\top}\mathbf{X}$ must be non-sing. $\hat{\beta}_{IV}$ generally biased but consistent. Assume S_{W^TX} $\hat{p}_{et}^*(\hat{\tau}) = 2\min\left(\frac{1}{B}\sum_b^B \mathbb{I}(\tau_b^* \leq \hat{\tau}), \frac{1}{B}\sum_b^B \mathbb{I}(\tau_b^* > \hat{\tau})\right) \lim \frac{1}{n} \mathbf{W}^\top \mathbf{X} \text{ is deterministic and non-}$ sing. Same for S_{W^TW} . β_{IV} consistent iff $p\lim_{n \to \infty} \frac{1}{n} \mathbf{W}^{\top} \mathbf{u} = 0$ (disturb. asymp. un-If $\alpha(\beta + 1) \in \mathbb{Z}$, MC test is exact. corr w/ instr.). Asym cov mtrx of IV est: $\sigma_0^2 \operatorname{plim}(n^{-1}\mathbf{X}^{\top}\mathbf{PwX})^{-1}$. If overidentified (l > k), we aim to find WI s.t. J: full col rank, asym deterministic, min asym cov mtrx of IV est. MA(1): $u_t = \epsilon_t + \alpha_1 \epsilon_{t-1}$, $\epsilon_t \sim IID(0, \sigma_{\epsilon}^2)$ $\mathbf{X} = \overline{\mathbf{X}} + \mathbf{V}$, $E(\mathbf{V}_t | \Omega_t) = \mathbf{0}$, $\overline{\mathbf{X}}_t = E(\mathbf{X} | \Omega_t)$ $\sigma_u^2 = (1 + \alpha_1^2)\sigma_{\epsilon}^2$, $Cov(u_t, u_{t-1}) = \alpha_1\sigma_{\epsilon}^2$ \overline{X} optimal instr, by LLN & $E(\mathbf{V}^{\top}\mathbf{W}) = \mathbf{O}$, Cov mtrx: $\Omega(\alpha_1) = \sigma_{\epsilon}^2 \Delta(\alpha_1)$, $\Delta(\alpha_1)$ w/ and since $n^{-1}\overline{X}^{\top}M_{W}\overline{X}$ pos semidef. All $(1 + \alpha_1)^2$ diag and α_1 1 from diag, 0 else. exo/predet explan. vars shld be in W. $y_t = \mathbf{X}_t(\hat{\beta} + \mathbf{b}_{\beta}) + (y_{t-1} - \mathbf{X}_{t-1}\hat{\beta})\rho + \epsilon_t \Rightarrow$ GIVE: $\hat{\beta}_{IV} = (\mathbf{X}^{\top} \mathbf{P_W} \mathbf{X})^{-1} \mathbf{X}^{\top} \mathbf{P_W} \mathbf{y}$ IV est: $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + b_{\rho}\tilde{\mathbf{u}}_{t-1} + \epsilon$, asymp. t/F test $b_{\rho} = 0$ Col of P_WX should be lin indep. Asymptotically, $S_{X^\top P_WX}$ determ. & non-sing. t stat pivotal since scale invar. and depends on res and X only \Rightarrow exact Monte IV asym normal like all est. $n^{1/2}(\hat{\beta}_{IV} -$ Carlo. For AR(1), t. AR(p): F. If lagged β_0) = $(n^{-1}\mathbf{X}^{\top}\mathbf{P_W}\mathbf{X})^{-1}n^{-1/2}\mathbf{X}^{\top}\mathbf{P_W}\mathbf{u}$, appdep. vars, generate 1 row at a time. If not CNLM, resample. ly CLT. $\widehat{\text{Var}}(\hat{\beta}_{IV}) = \hat{\sigma}^2 (\mathbf{X}^{\top} \mathbf{P_W} \mathbf{X})^{-1}$, $\hat{\sigma}^2 =$ Hetero-robust: Wald w/ HCCME, Wild $(1 \mid n) ||\mathbf{y} - \mathbf{X} \hat{\beta}_{\mathbf{IV}}||^2$ since σ_0^2 unknown $\Psi(p)$: $(1-\rho^2)^{1/2}$ in first, 1 in diag, $-\rho$ one $\hat{\beta}_{IV} - \beta_0 = \frac{\sigma_u \mathbf{w}^\top (\rho \mathbf{v} + \mathbf{u}_1)}{\pi_0 + \sigma_v \mathbf{w}^\top \mathbf{v}} = \frac{\rho \sigma_u z}{\sigma_v (a + z)}, \ z =$ above diag, ρ estim by $b\rho$ FWL regress If explan. var not all exogenous, don't use $\mathbf{w}^{\top}\mathbf{v}, a = \pi_0/\sigma_v$ Unbias. when $\rho = 0$, GLS. Iterated GLS: OLS, get ρ , feasible otherwise moments don't exist. GLS, update res, repeat. Underspec. W_{β_2} : $y - X_1 \ddot{\beta}_1 = P_W X_1 b_1 + P_W X_2 b_2 + res$ looks like serial corr. ESS divided by consistent est. of Random effects mdl: $E(v_i|\mathbf{X}) =$ $0 \Rightarrow E(u_{it}|\mathbf{X}) = 0$, but u_{it} not IID. σ^2 , ESS $O_p(1) = \mathbf{y}^{\mathsf{T}} \mathbf{P}_{\mathbf{P}_{\mathbf{W}} \mathbf{X}} - \mathbf{P}_{\mathbf{P}_{\mathbf{W}} \mathbf{X}_1} \mathbf{y} / \sigma^2$. $\Sigma = \sigma_e^2 \mathbf{I}_T + \sigma_v^2 u^{\mathsf{T}}$, on m block diag of Ω Stationary: l random. Moving block: $M_{P_WX_1}P_W = P_W - P_{P_WX_1}$, $P_{P_WX} =$ Regress $P_D y = P_D X \beta$ + res (BG) $P_{P_WX_1} + P_{(P_W - P_{P_WX_1})}$, RHS orthog. Test stat is $nR_{1}^{2} \stackrel{a}{\sim} \chi^{2}(l-k)$. Can't use F stat: oblique proj, so TSS \neq ESS + SSR. $Q(\hat{\beta}, \mathbf{y}) =$ $(\mathbf{y} - \mathbf{X}\hat{\boldsymbol{\beta}})^{\top} \mathbf{P}_{\mathbf{W}}(\mathbf{y} - \mathbf{X}\hat{\boldsymbol{\beta}})$. Use HAC/HCCME for hetero/autocorr. Test overidentification: check $\mathbf{W}^{*\top}\mathbf{u} \neq 0$. Sieve: $u_t^* = \sum_{i=1}^p \hat{\rho}_i u_{t-i} + \epsilon_t^*$, where Large val means either misspec. mdl or $1 - (T\sigma_v^2/\sigma_e^2 + 1)^{-1/2}$. If unbal, $T = T_i$.

 $\epsilon_t^* \sim N(0, \hat{\sigma}_\epsilon^2)$ or resampled

 $t_b = (\theta_b^* - \hat{\theta}) \backslash s_b^*$. Change null to $\theta_0 = \hat{\theta}$

 $CI = [\hat{\theta} - s_{\theta}c_{1-\alpha/2}^*, \hat{\theta} - s_{\theta}c_{\alpha/2}^*], c_{\alpha/2}^* = t$

If H_0 rej, Y endog or P_WY good expl pwr. Bootstrap w/ red. form eqs, get $\tilde{\beta} \& \tilde{\mathbf{u}}$, then get $\hat{\Pi}_2 \& \hat{\mathbf{V}}_2$. For resamp, draw rows $\hat{\mathbf{V}}_t$. For param., estimate $\hat{\sigma} = 1/n\hat{\mathbf{V}}^{\top}\hat{\mathbf{V}}$ **Generalized Least Squares** Consider $E(\mathbf{u}\mathbf{u}^{\top}) = \mathbf{\Omega}$, $\mathbf{\Omega}^{-1} = \mathbf{\Psi}\mathbf{\Psi}^{\top}$ $\hat{\beta}_{GLS} = (\mathbf{X}^{\top} \mathbf{\Omega}^{-1} \mathbf{X})^{-1} \mathbf{X}^{\top} \mathbf{\Omega}^{-1} \mathbf{y}$ $Var(\hat{\beta}_{GLS}) = (\mathbf{X}^{\top} \mathbf{\Omega}^{-1} \mathbf{X})^{-1} \text{ G-M assump.}$ GLS Criterion: $(\mathbf{y} - \mathbf{X}\beta)^{\top} \mathbf{\Omega}^{-1} (\mathbf{y} - \mathbf{X}\beta)$ $\widehat{\operatorname{Var}}(\hat{\beta}_{GLS}) = s^2 (\mathbf{X}^{\top} \boldsymbol{\Delta}^{-1} \mathbf{X})^{-1}, \ \boldsymbol{\Omega} = \sigma^2 \boldsymbol{\Delta}$ Feasible: $E(u_t)^2 = \exp(\mathbf{Z}_t \gamma)$ regress $\log \hat{u}_t^2 = \mathbf{Z_t} \gamma + v_t$ for $\hat{\gamma}$,

 $E(\mathbf{\Psi}^{\top}\mathbf{u}\mathbf{u}^{\top}\mathbf{\Psi}) = \mathbf{I}.$

omitted instr.s from regression func

 $\hat{\beta}_{IV} - \hat{\beta}_{OLS} = (\mathbf{X}^{\top} \mathbf{P}_{\mathbf{W}} \mathbf{X})^{-1} \mathbf{X}^{\top} \mathbf{P}_{\mathbf{W}} \mathbf{M}_{\mathbf{X}} \mathbf{y}.$

DWH: Test if $\mathbf{Y}^{\top} \mathbf{P}_{\mathbf{W}} \mathbf{M}_{\mathbf{X}} \mathbf{y} = \mathbf{0}$ w/ regressi-

on $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{P}_{\mathbf{W}}\mathbf{Y}\boldsymbol{\delta} + \mathbf{u}$, and F test if $\hat{\boldsymbol{\delta}} = 0$.

 $\hat{u}_t^2 = b_\delta + \mathbf{Z}_t \mathbf{b}_{\nu} + \text{res, w}/\delta \text{ methd.}$

 $H_0: \mathbf{b}_{\gamma} = \mathbf{0}$, F stat or nR_c^2 asymp $\chi^2(r)$

 $u_t = \rho u_{t-1} + \epsilon_t$, $\epsilon_t \sim IID(0, \sigma_{\epsilon}^2)$, $|\rho| < 1$, $\sigma_{u}^{2} = \sigma_{e}^{2}/(1-\rho^{2})$, $Cov(u_{t}, u_{t-1}) = \rho \sigma_{u}^{2}$

autocov mtrx of AR(1): $\Omega(\rho)$ = $\sigma_{\epsilon}^2 \setminus 1 - \rho^2 \times \text{ mtrx with } 1 \text{ diag and } \rho^1$ incr. away from diag.; this mtrx is $\Delta(\rho)$

 $\hat{\omega}_t = (\exp(\mathbf{Z}_t \hat{\gamma}))^{1/2}$. $\hat{\beta}$ consis $\Rightarrow \hat{\gamma}$ consis.

 $f(a+h) = f(a) + \sum_{i=1}^{p-1} \frac{h^i}{i!} f^{(i)}(a) + \frac{h^p}{p!} f^{(p)}(a+1)$

However, replacing u_t and u_{t-i} with

 \hat{u}_t, \hat{u}_{t-i} gives us an inconsistent estima-

Then, $\hat{\beta}$ is root-n consistent, asymp. norm HC_1 : Use \hat{u}_t^2 in $\hat{\Omega}$ then mult by n/(n-k) HC_2 : $\hat{u}_t^2/(1-h_t)$ with $h_t \equiv \mathbf{X_t}(\mathbf{X}^\top \mathbf{X})^{-1} \mathbf{X_t}^\top$.

ECON 468 Cheat Sheet Tiffany Yong Page:2

 HC_3 : $\hat{u}_t^2/(1-h_t)$ jackknife, for big variance (small residuals). Ignore hetero for std err of sample mean, since $\lim_{t \to 1} (1 \setminus n) \sum_{t=1}^{n} (\omega + t^2 - \sigma^2) x_{ti} x_{tj} = 0$;

 $1 \setminus n \sum_{t=1}^{n} \omega_t^2 \rightarrow \sigma^2$. All hetero affects efficiency, but only hetero related to squares and cross products of x_{ti} affects HAC for when u_t hetero and/or autocorr. $\Sigma = \lim 1 \setminus n \sum_{t=1}^{n} \sum_{s=1}^{n} E(u_t u_s \mathbf{X}_{\mathbf{t}}^{\top} \mathbf{X}_{\mathbf{s}})$ Autocovariance matrices of $\mathbf{X}_{t}^{\top}u_{t}$:

n-l+1 overlapping blocks, shift by 1 Block-of-blocks: Resample from n-l+1moving blocks AR(p) process: $y_t = \rho_0 + \sum_{i=1}^{p} \rho_i y_{t-i} +$ $u_t, u_t \sim IID(0, \sigma^2). \ \hat{u}_t = \sum_{i=1}^p \rho_i \hat{u}_{t-i} + \epsilon_t,$ $p = t + 1 \dots n$. We obtain $\hat{\sigma}_{\epsilon}^2$ and $\hat{\rho}_i$.

est), var is $\sigma_v^2 + \sigma_\epsilon^2 \backslash T$. Divide SSR by m - k, minus $\hat{\sigma}_{\epsilon}^2/T$ to get $\hat{\sigma}_v^2$. $\hat{\beta} = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{M}_{\mathbf{D}}\mathbf{X}\hat{\beta}_{FE} +$ $(\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{P}_{\mathbf{D}}\mathbf{X}\hat{\boldsymbol{\beta}}_{BG}$ $(I - \lambda P_D)y = (I - P_D)X\beta + res, \lambda =$