Problema 1.

Data $f(x) = \frac{x+2}{7}\cos(x)$ sull'intervallo $[x_a, x_b] = [0, 6]$, si vuole costruire il polinomio interpolatore di Lagrange di f in (n+1) nodi equispaziati al variare di $n = 1, \ldots, 10$.

Svolgimento

Per ogni *n*:

- si calcoli il polinomio di interpolazione di Lagrange $p_n(x)$ interpolante f su (n+1) nodi equispaziati,
- si rappresenti graficamente $p_n(x)$ insieme alla funzione f(x). Per la rappresentazione grafica, si utilizzi un vettore di 200 punti equispaziati in $[x_a, x_b]$,
- si valuti l'errore

$$E_n = ||e_n||_{\infty} = ||f - p_n||_{\infty} = \max_{x \in [x_a, x_b]} |f(x) - p_n(x)|$$

(si valuti $|f(x) - p_n(x)|$ negli stessi punti utilizzati per il grafico)

A ciclo concluso plottare su una seconda figura gli errori E_n in funzione del grado n.

Gli errori

 $f(x) = \frac{x+2}{7}\cos(x)$, $p_n(x)$ su (n+1) nodi di interpolazione equispaziati in [0,6].

Gli errori E_n stanno tendendo a zero quando n cresce. In questo caso l'interpolazione globale di Lagrange su nodi equispaziati fornisce una successione di polinomi $p_n(x)$, per $n \ge 1$, che sta convergendo alla funzione f(x) quando n cresce.

Problema 2. Data $f(x) = \frac{1}{1+x^2}$, si vuole costruire il polinomio interpolatore di Lagrange di f in (n+1) nodi equispaziati in $[x_a, x_b] = [-5, 5]$ per $n = 2, \ldots, 14$.

Ripetere il lavoro svolto nel Problema 1.

 $f(x) = \frac{1}{1+x^2}$, $p_n(x)$ su (n+1) nodi di interpolazione equispaziati in [-5,5].

 $f(x)=\frac{1}{1+x^2},\; p_n(x)$ su (n+1) nodi di interpolazione equispaziati in [-5,5].

 $f(x)=\frac{1}{1+x^2},\; p_n(x)$ su (n+1) nodi di interpolazione equispaziati in [-5,5].

 $f(x)=\frac{1}{1+x^2},\; p_n(x)$ su (n+1) nodi di interpolazione equispaziati in [-5,5].

 $f(x) = \frac{1}{1+x^2}$, $p_n(x)$ su (n+1) nodi di interpolazione equispaziati in [-5,5].

Gli errori

 $f(x)=rac{1}{1+x^2}$, $p_n(x)$ su (n+1) nodi di interpolazione equispaziati in [-5,5].

Gli errori E_n NON stanno diminuendo quando n cresce. In questo caso l'interpolazione globale di Lagrange su nodi equispaziati fornisce una successione di polinomi $p_n(x)$, per $n \ge 1$, che NON sta convergendo alla funzione f(x) quando n cresce.

Problema 3. Data $f(x) = \frac{1}{1+x^2}$, si vuole costruire il polinomio interpolatore di Lagrange di f in (n+1) nodi di Chebyshev-Gauss-Lobatto in $[x_a,x_b]=[-5,5]$ per $n=1,\ldots,10$. Nodi di Chebyshev-Gauss-Lobatto:

$$\hat{x}_i = -\cos\left(\frac{\pi i}{n}\right), \quad i = 0, \dots, n, \quad \text{in } [-1, 1]$$

$$x_i = \frac{x_b - x_a}{2}\hat{x}_i + \frac{x_b + x_a}{2}, \quad i = 0, \dots, n, \quad \text{in } [x_a, x_b]$$

Ripetere il lavoro svolto nel Problema 2.

Gli errori

errori
$$f(x) = \frac{1}{1+x^2}$$
, $p_n(x)$ su $(n+1)$ nodi di interpolazione CGL in $[-5,5]$.

Gli errori E_n stanno tendendo a zero quando n cresce. L'interpolazione globale di Lagrange su nodi di Chebyshev-Gauss-Lobatto fornisce una successione di polinomi $p_n(x)$, per $n \ge 1$, che converge alla funzione f(x) quando n cresce.

Osservazioni

Quando si vuole costruire il polinomio di Lagrange p_n con $n \ge 20$, la matrice di Vander Monde è mal condizionata. Se si risolve il sistema $X\mathbf{a} = \mathbf{y}$ con il comando backslash, Matlab segnala che la matrice è mal condizionata.

Lo stesso succede se si usa polyfit:

```
% x, y vettori di n+1 elementi ciascuno
a=polyfit(x,y,n); % Matlab dice che risolve Xa=y
% in realta' fa anche qualcos'altro, ma non si sa cos
y1=polyval(a,x1);
```

L'alternativa a VanderMonde è la formula baricentrica (non è implementata in Matlab, si trova sulla pagina del corso):

```
y1=barycentric(x,y,x1)
```

Confronto tra VanderMonde e forma baricentrica

Costruire l'interpolatore globale di Lagrange $p_n(x)$ di $f(x) = \frac{1}{1+x^2}$ sull'intervallo [-5,5] in n+1 nodi di Gauss-Chebyshev, sia con la matrice di VanderMonde che con la formula baricentrica.

