Tema 4 Aritmética en coma flotante

Índice

- Introducción
 - ✓ Medida del rendimiento
- La norma IEEE y su implementación en el MIPS
 - ✓ La norma IEEE 754
 - √ Visión del programador: banco de registros y movimiento de datos
 - ✓ Juego de instrucciones de coma flotante
- Operadores de coma flotante
 - ✓ Operador de cambio de signo
 - ✓ Operadores de conversión de tipo
 - ✓ Operador de multiplicación

Bibliografía

- D.L. Patterson, J. L. Hennessy: Estructura y diseño de computadores
 - Ed. Reverté, 2000: volumen 1, capítulo 4
 - Ed. Reverté, 2011, traducción de la 4ª edición en inglés: cap. 3
- W. Stallings: Organización y Arquitectura de Computadores (7a ed.)
 Prentice Hall, capítulo 9
- David Goldberg: Computer Arithmetic
 - Apéndice H de J. L. Hennessy, D. L. Patterson: Computer Architecture, a
 Quantitative Approach, 3a edició
 - Disponible en castellano en la la edición en McGraw-Hill
- ✓ David Goldberg:What every computer scientist should know about floating-point arithmetic
 - PDF (accesible en muchos sitios de la web)

Índice

- Introducción
 - ✓ Medida del rendimiento
- La norma IEEE y su implementación en el MIPS

Vídeo 1

- ✓ La norma IEEE 754
- ✓ Visión del programador: banco de registros y movimiento de datos
- ✓ Juego de instrucciones de coma flotante
- Operadores de coma flotante
 - ✓ Operador de cambio de signo
 - ✓ Operadores de conversión de tipo
 - ✓ Operador de multiplicación

Vídeo 2

Introducción

• La aritmética de coma flotante

- ✓ Sirve para cálculos definidos sobre reales (*float* y *double* en alto nivel)
- ✓ Puede que no esté directamente soportada por la ALU:
 - no es esencial para el funcionamiento de la CPU
 - puede ser emulada mediante instrucciones de enteros

✓ Evolución

- Hasta 1985 (aprox) los operadores de CF iban dentro de un chip opcional que se colocaba al lado de la CPU
- Desde 1985 en adelante, las CPU de propósito general incluyen operadores de CF dentro de su UAL
- Desde 1990, los adaptadores de vídeo incluyen una GPU (*Graphics Processing Unit*) con un número creciente de operadores de CF

Introducción

La medida de prestaciones en coma flotante

- ✓ El número de operaciones de coma flotante por segundo (FLOPS, prefijos M=106, G=109, T=1012) es una medida de prestaciones utilizada en dos contextos:
- ✓ En el diseño de operadores de CF el número máximo de operaciones por segundo viene determinado por el tiempo de operación de cada circuito.
- ✓ En las comparativas entre computadores o entre aceleradores gráficos: se utiliza el número de operaciones de CF que ejecuta el dispositivo por segundo.
 - El número de operaciones: depende del número y características de los operadores incluídos y del uso que se hace de ellos.
 - **Productividad punta** de un computador o de un acelerador gráfico: es suma de las productividades de todos los operadores de CF incluídos.
 - Suele ser imposible de alcanzar en el uso corriente.

Introducción

Productividades punta

Procesador Intel Core2 Duo @2GHz 16 GFLOPS

Procesador Intel Core i7 965 XE 70 GFLOPS

GPU ATI Radeon HD4890 2.4 TFLOPS

K Computer (Japón, junio 2011) 10 PFLOPS

Índice

Video

http://politube.upv.es/play.php?vid=63612

- Introducción
 - ✓ Medida del rendimiento
- La norma IEEE y su implementación en el MIPS

Vídeo 1

- ✓ La norma IEEE 754
- ✓ Visión del programador: banco de registros y movimiento de datos
- ✓ Juego de instrucciones de coma flotante
- Operadores de coma flotante

- ✓ Operador de cambio de signo
- ✓ Operadores de conversión de tipo
- ✓ Operador de multiplicación

Notas sobre la representación de números

- Representación del conjunto R (reales positivos y negativos)
 - ✓ El conjunto R es un conjunto denso: entre dos números reales hay infinitos números reales
 - ✓ La representación del computador es limitada y no siempre es exacta
 - Con 32 bits se pueden obtener 2³² palabras diferentes. Por tanto, como máximo se pueden representar 2³² valores del conjunto R
 - ✓ Hay números reales que tienen representación exacta otros que no, como los números con parte decimal periódica

- Representación del conjunto R (reales positivos y negativos)
 - ✓ ¿Cómo codificar un número real en una palabra de bits?
 - Aplicando un formato arbitrario, como el IEEE 754, estructurado en tres campos de bits para el signo, el exponente y la parte significativa (mantisa)

- ✓ Campo S: signo
 - S = 0 Valor positivo
 - S = I Valor negativo
- ✓ Campo M: mantisa (normalizada I,M)
- ✓ Campo E : Exponente en exceso a 127

$$(-1)^{S} \cdot 1.M \cdot 2^{E-127}$$

- Representación del conjunto R (reales positivos y negativos)
 - ✓ El formato impone más restricciones a la representación:
 - habrá algunas palabras de bits con una significación matemática especial:
 - como el valor infinito, E=255, M=0
 - el cero E = 0 , M = 0
 - Nan (not a number) $E = 255, M \neq 0$

- Patrón de la representación de los números reales
- ✓ Ningún valor real tendrá por tanto exponente igual a cero, ni exponente igual a 255 porque están reservados.
- ✓ La diferencia entre la representación del valor infinito y Nan es la mantisa.

- Patrón de la representación de los números reales
 - ✓ Los rangos de representación de números positivos o negativos se calculan del mismo modo, solo les cambia el signo.
 - ✓ El rango será] -1.0×2¹²⁸ ... -1.0×2⁻¹²⁶] \cup 0 \cup [1.0×2⁻¹²⁶...1.0×2¹²⁸[

La norma IEEE 754

Representación en Simple Precisión (32 bits)

Símbolos: S es el signo, M la magnitud de la mantisa, E el exponente

Ejemplo: Codificar el valor real 1.0₁₀

La norma IEEE 754

Representación en Simple Precisión (32 bits)

Símbolos: S es el signo, M la magnitud de la mantisa, E el exponente

Ejemplo: Codificar el valor real 1.5₁₀

$$1.5_{10} = 1.1_2 \times 2^0 \quad S = 0$$

$$M = 1000 \dots 0$$

$$E = 0 + 127 = 01111111_2$$

$$0 01111111 | 1000000000000 \dots 00 = 0 \times 3FC00000$$

La norma IEEE 754

Representación en Simple Precisión (32 bits)

Símbolos: S es el signo, M la magnitud de la mantisa, E el exponente

Ejemplo: Codificar el valor real 2.0₁₀

$$2.0_{10} = 10.0_2 \times 2^0 = 1.0_2 \times 2^1$$
 $S = 0$ $M = 0$ $E = I + I27 = 10000000_2$

La norma IEEE 754

Representación en Simple Precisión (32 bits)

Símbolos: S es el signo, M la magnitud de la mantisa, E el exponente

La norma IEEE 754

Conclusiones:

- ✓ Cuanto más grande es el exponente más distancia hay entre dos números representados consecutivos (la densidad de representación disminuye)
- ✓ Para un mismo valor de exponente los números representados están separados por la misma distancia
- ✓ Además existe baja densidad de representación cerca del cero.

Cada grupo de valores tiene el mismo exponente y diferentes mantisas

- Los valores cercanos al cero
 - ✓ El formato IEEE 754 reserva un subconjunto de palabras de bits para representar números reales cerca del cero y que se interpretan de forma diferente del resto de valores (valores desnormalizados)
 - Exponente = 0, y mantisa $\neq 0$
- ✓ No todas las unidades de coma flotante soportan este subconjunto de valores

Los valores cercanos al cero

✓ Valores desnormalizados: E = 0 y $M \neq 0$ (-1)^S ×0,M ×2⁻¹²⁶

- Representación del conjunto R (reales positivos y negativos)
 - ✓ En el computador interesa aumentar
 - La cantidad de números representados (densidad)
 - · El rango de la representación
 - ✓ Estos dos aspectos dependen de los campos de la parte significativa (mantisa) y del exponente del formato
 - Exponente : influye sobre el rango
 - Mantisa: influye sobre la densidad
 - ✓ La norma contempla dos representaciones:
 - Simple precisión (float): 32 bits
 - Doble precisión (double): 64 bits

Representación: Todos los formatos

Símbolos: S es el signo, M la magnitud de la mantisa, E el exponente

Simple precisión (SP)

S E M

 $(-1)^{S} \cdot 1.M \cdot 2^{E-127}$

Doble precisión (DP)

1 11 52 S E M

 $(-1)^{S} \cdot 1.M \cdot 2^{E-1023}$

√ Valores subnormales

• (SP y DP)

S 000..00 M ≠ 0

(-1)^s · 0.M · 2⁻¹⁰²²

 $(-1)^{S} \cdot 0.M \cdot 2^{-126}$

✓ Valores especiales (SP y DP)
 ±0 S 000...00 000...00

±∞ S 111...11 000...00

NaN x 111...11 M ≠ 0

Alcance de la norma

- ✓ La norma IEEE 754 (y su ampliación a la aritmética de punto fijo, IEEE 854) especifican:
 - codificación: cómo representar los números en diversos formatos (precisiones simple, doble y extendida, SP DP EP) y el tratamiento de casos particulares: NaN (Not a Number), ±∞ (infinity), 0 (zero)
 - unos modos de funcionamiento (p. ej, el método de <u>redondeo</u> aplicable durante los cálculos)
 - un conjunto de <u>operaciones</u> que se pueden implementar en el hardware o en forma de bibliotecas
 - el soporte que ha de dar el sistema de <u>excepciones</u> de los procesadores (para que se puedan diseñar buenas bibliotecas de cálculo numérico)

La norma IEEE 754

Los valores especiales

- ✓ Son manipulados por las operaciones junto con los reales corrientes
- ✓ Cero e infinito:
 - se entienden como límites matemáticos; por eso

```
+\infty + +\infty = +\infty; -\infty + -\infty = -\infty; etc.

+\infty \times positivo = +\infty; +\infty \times negativo = -\infty; etc.

positivo / +0 = +\infty; positivo / -0 = -\infty; etc.
```

- atención a las comparaciones: +0 y -0 son iguales
- ✓ Not a Number:

Los valores especiales

- ✓ Son manipulados por las operaciones junto con los reales corrientes
- ✓ Cero e infinito
- ✓ Not a Number:
 - propagación: cualquier operación donde un operando es NaN dará como resultado NaN
 - generación: NaN es el resultado de $(+\infty)$ + $(-\infty)$, ± 0 × $\pm \infty$, ± 0 / ± 0 , $\pm \infty$ / $\pm \infty$ y otras
 - una comparación (=, <, ≥, etc) entre NaN y otro número resulta siempre falsa

- La norma y los lenguajes de programación
- ✓ Los valores especiales permiten tratar los incidentes del cálculo
- ✓ El desbordamiento aritmético produce un resultado representable

```
float x = +0.0f;
                                   Java
float y = 1/x;
float z = Float.NEGATIVE INFINITY;
float t = 1/z;
float u = x*z;
System.out.println("x = " + x);
System.out.println("1/x = " + y);
                                       \mathbf{x} = 0.0
System.out.println("z = " + z);
                                       1/x = Infinity
System.out.println("1/z = " + 1/z);
                                       z = -Infinity
System.out.println("x * z = " + u);
                                       1/z = -0.0
                                       x * z = NaN
```

El redondeo

- ✓ Situación frecuente: una operación genera una mantisa M de longitud más larga (p bits) que la prevista en el formato (m bits)
 - los m primeros bits de la mantisa M se llaman retenidos
- ✓ Posibilidades:
 - M es representable de forma exacta en el formato: los p-m bits no retenidos son 0 y se pueden eliminar: $010000 \rightarrow 0100$
 - M se encuentra entre dos valores representables M_ y M₊
 (M_<M<M₊) y hay que redondear: escoger uno de ellos como representación inexacta de M
- ✓ La norma admite cuatro modos de redondeo:

La norma IEEE 754

El redondeo

- ✓ Situación frecuente: una operación genera una mantisa M de longitud más larga (p bits) que la prevista en el formato (m bits)
 - los m primeros bits de la mantisa M se llaman retenidos
- ✓ Posibilidades
- ✓ La norma admite cuatro modos de redondeo:
 - Hacia +∞
 - Hacia –∞
 - Hacia 0
 - Escoger el más próximo de los dos (este es el modo por omisión)

El redondeo

• El redondeo: hacia +∞

• El redondeo: hacia -∞

• El redondeo: hacia 0

La norma IEEE 754

• El redondeo: hacia el par más próximo

✓ La variante por omisión es "tie to even": en caso de que M equidiste de M_ y M₊ hay que escoger la mantisa representable par (o sea, la que acabe en 0)

El redondeo hacia el más próximo (sesgado al par)

✓ Ejemplo:

M	se elige	M resultante
010000	(exacta)	0100
010001	M_(más próxima)	0100
010010	M_(par)	0100
010011	M₊(más próxima)	0101
010100	(exacta)	0101
010101	M_(más próxima)	0101
010110	M₊ (par)	0110
010111	M₊(más próxima)	0110
011000	(exacta)	0110

Índice

- Introducción
 - ✓ Medida del rendimiento
- La norma IEEE y su implementación en el MIPS
 - ✓ La norma IEEE 754
 - ✓ Visión del programador: banco de registros y movimiento de datos
 - ✓ Juego de instrucciones de coma flotante
- Operadores de coma flotante
 - ✓ Operador de cambio de signo
 - ✓ Operadores de conversión de tipo
 - ✓ Operador de multiplicación

La coma flotante en el MIPS Visión del programador

Enteros: Procesador

Bytes / Half / Words

Registros: \$0, \$1,

\$0 = CERO

Reales: Coprocesador 1

Word: simple precisión IEEE 754 Doble Word: doble precisión IEEE 754

Registros: \$f0, \$f1,

\$f0 ≠CERO

Visión del programador

Visión del programador

Coprocesador 1

La coma flotante en el MIPS

El banco de registros

- √ Hay 32 registros de 32 bits, \$f0,\$f1,...,\$f31 para tipo float
 - Se suelen utilizar los números pares \$f0,\$f2,...,\$f30

La coma flotante en el MIPS

El banco de registros

(\$f1||\$f0)

- ✓ Hay 32 registros de 32 bits, \$f0,\$f1,...,\$f31 para tipo float
 - Se suelen utilizar los números pares \$f0,\$f2,...,\$f30
- ✓ Emparejables para formar 16 registros de 64 bits para tipo double
 - Si \$f0 "contiene" un double: \$f0 tiene la parte baja y \$f1 la parte alta

La coma flotante en el MIPS R2000

Convenio de uso de los registros

Nombre del registro	Utilización
\$f0	Retorno de función (parte real)
\$f2	Retorno de función (parte imaginaria)
\$f4,\$f6,\$f8,\$f10	Registros temporales
\$f12,\$f14	Paso de parámetros a funciones
\$f16,\$f18	Registros temporales
\$f20,\$f22,\$f24,\$f26,\$f28,\$f30	Registros a preservar entre llamadas

- Introducción
 - ✓ Medida del rendimiento
- La norma IEEE y su implementación en el MIPS
 - ✓ La norma IEEE 754
 - ✓ Visión del programador: banco de registros y movimiento de datos
 - ✓ Juego de instrucciones de coma flotante
- Operadores de coma flotante
 - ✓ Operador de cambio de signo
 - ✓ Operadores de conversión de tipo
 - ✓ Operador de multiplicación

- Introducción
 - ✓ Medida del rendimiento
- La norma IEEE y su implementación en el MIPS
 - ✓ La norma IEEE 754
 - ✓ Visión del programador: banco de registros y movimiento de datos
 - ✓ Juego de instrucciones de coma flotante
 - Intercambio con la memoria y registros
 - Pseudoinstrucciones de carga
 - Intercambios entre registros
 - Conversión de formatos
 - Instrucciones aritméticas básicas
 - Instrucciones de comparación

Intercambio con la memoria y los registros de enteros

operación

lectura *\$ft ← Mem[X+\$rs]* escritura $Mem[X+\$rs] \leftarrow \ft swc1 \$ft,X(\$rs)transferencia $fs \leftarrow r$

transferencia $rt \leftarrow fs$

instrucción

lwc1 \$ft,X(\$rs)

mtc1 \$rt,\$fs

mfc1 \$rt,\$fs

fs y ft: registros de coma flotante

rs y rt: son registros de enteros

mtc1 = MOVE TO coprocesador 1 = escribo en c1

mfc1 = MOVE FROM coprocesador 1 = leo de c1

Intercambio con la memoria y los registros de enteros

operación	instrucción	
lectura $\$ft \leftarrow Mem[X+\$rs]$ escritura $Mem[X+\$rs] \leftarrow \ft transferencia $\$fs \leftarrow \rt transferencia $\$rt \leftarrow \fs	<pre>lwc1 \$ft,X(\$rs) swc1 \$ft,X(\$rs) mtc1 \$rt,\$fs mfc1 \$rt,\$fs</pre>	fs y ft: registros de coma flotante rs y rt: son registros de enteros
. data		

```
x: .float 3.14
```

.text

la
$$$t0,x$$
 # $f0 <- x$

Leer un FLOAT

Otro modo: lwc1 \$f0, x

Intercambio con la memoria y los registros de enteros

	peración	instr	ucción	
t	ectura <i>\$ft ← Mem[X+\$rs]</i> escritura <i>Mem[X+\$rs] ← \$ft</i> transferencia <i>\$fs ← \$rt</i> transferencia <i>\$rt ← \$fs</i>	swc mtc	1 \$ft,X(\$rs) 1 \$ft,X(\$rs) 1 \$rt,\$fs 1 \$rt,\$fs	fs y ft: registros de coma flotante rs y rt: son registros de enteros
х У	: .double 0.1 .text	0 <- x		
	lwc1 \$f0,0(\$t0)	2 <- y	Leer un DO	UBLE lwc1 \$f2, y lwc1 \$f3, y+4

Intercambio con la memoria y los registros de enteros

operac	ión		instru	cción	
escritui transfe	\$ft ← Mem[X+\$rs] a Mem[X+\$rs] ← \$ rencia \$fs ← \$rt rencia \$rt ← \$fs		swc1 mtc1	<pre>\$ft,X(\$rs) \$ft,X(\$rs) \$rt,\$fs \$rt,\$fs</pre>	fs y ft: registros de coma flotante rs y rt: son registros de enteros
x: y:	.data .float 3.14 .double 0.1 .text la \$t0,x lwc1 \$f0,0(\$t0) la \$t0,y lwc1 \$f2,0(\$t0) lwc1 \$f3,4(\$t0) mtc1 \$0,\$f4	# f2	<- x <- y	coprocosac	n registro del lor:

Intercambio con la memoria y los registros de enteros

operación instrucción lectura $\$ft \leftarrow Mem[X+\$rs]$ lwc1 \$ft, X(\$rs) fs y ft: registros de escritura $Mem[X+\$rs] \leftarrow \ft swc1 \$ft, X(\$rs) coma flotante transferencia $\$fs \leftarrow \rt mtc1 \$rt, \$fs rs y rt: son registros de enteros

```
.data
.float 3.14
.double 0.1
.text
la $t0,x  # f0 <- x
lwc1 $f0,0($t0)
la $t0,y  # f2 <- y
lwc1 $f2,0($t0)
lwc1 $f3,4($t0)
mtc1 $0,$f4  # f4 <- 0.0
```

Las instrucciones de CF no admiten operandos inmediatos. Hay que ubicar las constantes en la memoria o construirlas en los registros de enteros

x:

y:

Intercambio con la memoria y los registros de enteros

operación lectura $\$ft \leftarrow Mem[X+\$rs]$ escritura $Mem[X+\$rs] \leftarrow \ft transferencia $\$fs \leftarrow \rt transferencia $\$rt \leftarrow \fs

.data

instrucción

```
lwc1 $ft,X($rs)
swc1 $ft,X($rs)
mtc1 $rt,$fs
mfc1 $rt,$fs
```

```
fs y ft: registros de coma flotante rs y rt: son registros de enteros
```

Por eso se han introducido las pseudoinstrucciones que inicializan los registros del coprocesador.

x:

y:

- Introducción
 - ✓ Medida del rendimiento
- La norma IEEE y su implementación en el MIPS
 - ✓ La norma IEEE 754
 - ✓ Visión del programador: banco de registros y movimiento de datos
 - ✓ Juego de instrucciones de coma flotante
 - · Intercambio con la memoria y registros
 - Pseudoinstrucciones de carga
 - Intercambios entre registros
 - Conversión de formatos
 - · Instrucciones aritméticas básicas
 - Instrucciones de comparación

Pseudoinstrucciones de carga de constantes

	_	
Operación	pseudoinstrucción	
<i>\$ft ← cte</i>	li.s \$ft,cte	ft: registro en coma flotante
\$ft+1 \$ft ← cte	li.d \$ft,cte	par por convenio para float por necesidad para double
El ensamblador c	odifica cte en formato	IEEE 754

.data .float 3.14 x: .double 0.1 **y**:

.text la \$t0,x # f0 <- x lwc1 \$f0,0(\$t0) # f2 <- y

la \$t0,y lwc1 \$f2,0(\$t0) lwc1 \$f3,4(\$t0)

mtc1 \$0,\$f4 # f4 <- 0.0

li.s \$f0, 3.14

li.d \$f2, 0.1

.text

li.s \$f4,0.0

- Introducción
 - ✓ Medida del rendimiento
- La norma IEEE y su implementación en el MIPS
 - ✓ La norma IEEE 754
 - ✓ Visión del programador: banco de registros y movimiento de datos
 - ✓ Juego de instrucciones de coma flotante
 - · Intercambio con la memoria y registros
 - Pseudoinstrucciones de carga
 - Intercambios entre registros
 - Conversión de formatos
 - Instrucciones aritméticas básicas
 - Instrucciones de comparación

Intercambio entre registros del coprocesador

operación established	instrucción
-----------------------	-------------

$$fd \leftarrow fs$$

\$fd+1 ←\$fs+1

fs y ft: registros de

coma flotante

La coma flotante en el MIPS

Intercambio entre registros del coprocesador

operación instrucción $fd \leftarrow fs$ mov.s \$fd,\$fs fs y ft: registros de coma flotante $fd \leftarrow fs$ mov.d \$fd,\$fs $fd+1 \leftarrow fs+1$.data Mover un DOUBLE .float 3.14 \mathbf{x} : .double 0.1 **y**: .text la \$t0,x # \$f0 <- xlwc1 \$f0,0(\$t0) la \$t0,y # \$f2 <- y lwc1 \$f2,0(\$t0) lwc1 \$f3,4(\$t0) mov.d \$f0,\$f2 # \$f1<-\$f3 y \$f0 <-\$f2

Intercambio entre registros del coprocesador

```
operación
                              instrucción
 fd \leftarrow fs
                              mov.s $fd,$fs
                                                   fs y ft: registros de
                                                         coma flotante
 fd \leftarrow fs
                             mov.d $fd,$fs
 fd+1 \leftarrow fs+1
                .data
                                    ¿Cómo sería mover un FLOAT?
                .float 3.14
        \mathbf{x}:
                .double 0.1
        y:
                .text
               la $t0,x # f0 <- x
               lwc1 $f0,0($t0)
               la $t0,y
                                 # f2 <- y
               lwc1 $f2,0($t0)
               lwc1 $f3,4($t0)
                mov.d $f0,$f2
                                    # $f1, $f0 <- $f3,$f2
                                    # $f4 <- $f0
```

- Introducción
 - ✓ Medida del rendimiento
- La norma IEEE y su implementación en el MIPS
 - ✓ La norma IEEE 754
 - √ Visión del programador: banco de registros y movimiento de datos
 - ✓ Juego de instrucciones de coma flotante
 - · Intercambio con la memoria y registros
 - Pseudoinstrucciones de carga
 - Intercambios entre registros
 - Conversión de formatos
 - · Instrucciones aritméticas básicas
 - Instrucciones de comparación

La coma flotante en el MIPS

Conversión de formatos

✓ Los registros de CF pueden contener:

<u>símbolo</u>	tipo
S	números en coma flotante en SP
D	(por parejas) números en coma flotante en DP
W	números enteros de 32 bits

✓ La instrucción cvt._._ fd,fs hace las conversiones posibles entre los tres tipos

Conversión de formatos

✓ Los registros de CF pueden contener:

<u>símbolo</u>	tipo
S	números en coma flotante en SP
D	(por parejas) números en coma flotante en DP
W	números enteros de 32 bits

✓ La instrucción cvt._._ fd,fs hace las conversiones posibles entre los tres tipos

```
hace la conversión del entero contenido en $f7 a CF en doble precisión contenido en $f5||$f4
```

```
cvt.d.w $f4,$f7 # (double) $f5||$f4 = (entero)$f7
```

Conversión de formatos

✓ Los registros de CF pueden contener:

<u>símbolo</u>	tipo
S	números en coma flotante en SP
D	(por parejas) números en coma flotante en DP
W	números enteros de 32 bits

- ✓ La instrucción cvt._._ fd,fs hace las conversiones posibles entre los tres tipos
 - Ejemplo: cvt.d.w \$f4,\$f7 hace la conversión del entero contenido en \$f7 a CF en doble precisión contenido en \$f5||\$f4
- ✓ En combinación con las instrucciones de transferencia con el banco de registros de enteros, se puede hacer aritmética con variables de tipos diversos

- Introducción
 - ✓ Medida del rendimiento
- La norma IEEE y su implementación en el MIPS
 - ✓ La norma IEEE 754
 - ✓ Visión del programador: banco de registros y movimiento de datos
 - ✓ Juego de instrucciones de coma flotante
 - · Intercambio con la memoria y registros
 - Pseudoinstrucciones de carga
 - Intercambios entre registros
 - Conversión de formatos
 - Instrucciones aritméticas básicas
 - Instrucciones de comparación

La coma flotante en el MIPS

Instrucciones aritméticas básicas

- ✓ Hay dos versiones de cada operación: S (simple precisión) y D (doble precisión)
 - Ejemplo: add.s \$f0,\$f1,\$f2; add.d \$f2,\$f4,\$f6

operación	instrucción	
suma	add	fd,fs,ft
resta	sub	fd,fs,ft
multiplicación	mul	fd,fs,ft
división	div	fd,fs,ft
cambio de signo	neg	fd,fs
valor absoluto	abs	fd,fs

Chuletario de instrucciones

Tabla de instrucciones Flotantes:

rs es un registro del banco de enteros, ft del banco de flotantes

Tipo = s (float), d (double)

	MEMORIA ↔ REGISTRO FLOTANTE	REG. ENTERO ↔REG. FLOTANTE	REG.FLOTANTE ↔R	EG. FLOTANTE
CARGA	lwc1 ft , $X(fs)$ # $ft \leftarrow Mem(fs+X)$	mtc1 \$rs, \$ft # \$ft ← \$rs	mov.tipo \$fd, \$fs	# \$ <u>fd</u> ← \$fs
	swc1 \$ft, $X(\$\underline{rs})$ # \$ft $\rightarrow \underline{Mem}(\$\underline{rs}+X)$	mfc1 \$rs, \$ft # \$ft \rightarrow \$rs		
CONVERSION	cvt.dest.font \$fd, \$fs # \$fd ← \$fs Dest = s.d.w Font = s.d.w		·	
ARITMETICAS	add.tipo \$fd, \$ft,\$fs # \$fd=\$ft + \$fs	mul.tipo \$fd, \$ft,\$fs # \$fd = \$ft*	* \$fs neg.tipo \$fd, \$fs	# \$fd = - \$fs
	sub.tipo \$fd, \$ft,\$fs # \$fd= \$ft - \$fs	div.tipo \$fd, \$ft,\$fs # \$fd = \$ft/	\$fs abs.tipo \$fd, \$fs	# $$fd = $fs $
COMPARACION	c.comp.tipo \$fd, \$fs # \$fd comp \$fs	\$fd>\$fs	\$fd =\$fs	\$fd ≤\$fs
	comp =	gt	eg	<u>lt</u>
		le	neg	ge
	, and the second	\$fd \$fs	\$fd ≠\$fs	\$fd ≥\$fs
SALTO	bc1t etiqueta #Salta si es TRUE			
	bc1f etiqueta #Salta si es FALSE			

- Introducción
 - ✓ Medida del rendimiento
- La norma IEEE y su implementación en el MIPS
 - ✓ La norma IEEE 754
 - √ Visión del programador: banco de registros y movimiento de datos
 - ✓ Juego de instrucciones de coma flotante
 - · Intercambio con la memoria y registros
 - Pseudoinstrucciones de carga
 - Intercambios entre registros
 - Conversión de formatos
 - · Instrucciones aritméticas básicas
 - Instrucciones de comparación

La coma flotante en el MIPS

La comparación

- ✓ Las instrucciones de comparación escriben un bit implícito FPc que codifica cierto=1 y falso=0
- ✓ Este bit se encuentra en un registro de control del coprocesador y puede ser consultado por las instrucciones de salto
- ✓ Para cada tipo de datos, hay un conjunto de comparaciones codificables
- ✓ Las más importantes: (c. .s fd,fs o c. .d fd,fs)

fd>fs	fd=fs	fd <fs< th=""></fs<>
gt	eq	1t
le	neq	ge
fd≤fs	fd≠fs	fd≥fs

La coma flotante en el MIPS

Control de flujo y aritmética de coma flotante

✓ Hay dos instrucciones de bifurcación asociadas al bit FPc

```
bclt eti si (FPc == I) bifurcar a eti bclf eti si (FPc == 0) bifurcar a eti
```

- ✓ Combinadas con las instrucciones de comparación, permiten bifurcar con condiciones aritméticas complejas
- ✓ Cada condición permite dos implementaciones
 - Ejemplo en simple precisión: si (\$f0 > \$f2) bifurcar a eti

```
; mirar si $f0>$f2
                       c.gt.s $f0,$f2
; saltar si afirmativo
                       bc1t eti
```

La coma flotante en el MIPS

Chuletario de instrucciones

Tabla de instrucciones Flotantes:

rs es un registro del banco de enteros, ft del banco de flotantes

Tipo = s (float), d (double)

	MEMORIA ↔ REGISTRO FLOTANTE	REG. ENTERO ↔REG. FLOTANT	TE REG.FLOTANT	E ↔REG. FLOTANTE
CARGA	lwc1 ft , $X(fs)$ # $ft \leftarrow Mem(fs+X)$	mtc1 \$rs, \$ft # \$ft ← \$rs	mov.tipo \$fd	, \$fs # \$ <u>fd</u> ← \$fs
	swc1 \$ft, $X($\underline{s}\underline{r}\underline{s}) # $ft \rightarrow \underline{Mem}($\underline{r}\underline{s}\underline{+}\underline{X})$	mfc1 \$rs, \$ft # \$ft \rightarrow \$rs		
CONVERSION	cvt.dest.font \$fd, \$fs # \$fd ← \$fs Dest = s.d.w Font = s.d.w		·	
ARITMETICAS	add.tipo \$fd, \$ft,\$fs # \$fd=\$ft + \$fs	mul.tipo \$fd, \$ft,\$fs # \$fd div.tipo \$fd, \$ft,\$fs # \$fd	= \$ft* \$fs	
COMPARACION	c.comp.tipo \$fd, \$fs # \$fd comp \$fs	\$fd>\$fs	\$fd =\$fs	\$ <u>fd</u> ≤\$ <u>fs</u>
	comp =	gt	eg	<u>lt</u>
		le	neg	ge
	'	\$fd \$fs	\$fd ≠\$fs	\$fd ≥\$fs
SALTO	bc1t etiqueta # Salta si es TRUE			
	bc1f etiqueta #Salta si es FALSE			

Índice

- Introducción
 - ✓ Medida del rendimiento
- La norma IEEE y su implementación en el MIPS
 - ✓ La norma IEEE 754
 - √ Visión del programador: banco de registros y movimiento de datos
 - ✓ Juego de instrucciones de coma flotante

HACER Todos los ejercicios pendientes.

El boletín Tema 4 Problemas de aritmética real.pdf

- Introducción
 - ✓ Medida del rendimiento
- La norma IEEE y su implementación en el MIPS
 - ✓ La norma IEEE 754
 - ✓ Visión del programador: banco de registros y movimiento de datos
 - ✓ Juego de instrucciones de coma flotante
- Operadores de coma flotante
 - ✓ Operador de cambio de signo
 - ✓ Operadores de conversión de tipo
 - ✓ Operador de multiplicación

Operadores de coma flotante

Operadores

- ✓ Toman como entrada uno o dos operandos en un formato de CF dado
- ✓ Su resultado es un valor en CF codificado según la norma
 - · excepto los operandos de comparación
- ✓ Su diseño es complejo porque, además de realizar la operación definida, se han de ocupar de ciertos detalles:
 - Han de suministrar el resultado correctamente <u>normalizado</u> según la precisión con la que trabajan
 - Han de gestionar los <u>valores especiales</u> definidos en la norma
 - · Si procede, han de redondear el resultado según el modo programado
 - · Han de señalar las excepciones previstas por la norma
- ✓ Estudiaremos la estructura básica de algunos operadores y veremos, en casos seleccionados, cómo resuelven los detalles

Operadores de coma flotante

- Ejemplos de operadores
 - NEG.S y NEG.D (cambio de signo)
 - Estructura
 - CVT.D.S (conversión de simple a doble precisión)
 - Estructura básica
 - Detalle: tratamiento de los valores especiales
 - CVT.S.D (conversión de doble a simple precisión)
 - Estructura básica
 - Detalle: el redondeo

- CVT.D.W (conversión de entero a CF doble precisión)
 - Estructura básica
 - Detalle: la normalización
- MULT.S y MULT.D (multiplicación)
 - Estructura básica
 - Detalle: la renormalización

neg.s fdest, forig # fdest = -forig

- Descripción de la operación:
 - ✓ Cambia el signo del valor almacenado en forig
 - √ Hay dos versiones : neg.s y neg.d
 - ✓ En neg.s el valor es de simple precisión (float, 32bits)
 - ✓ En neg.d el valor está almacenado en dos registros, forig y forig+I, y es de doble precisión (64 bits)
 - El dato vendrá expresado en formato IEEE 754 y se distribuye en los dos registros como muestra la figura:

neg.s fdest, forig # fdest = -forig

- Operaciones elementales necesarias:
 - ✓ Cambiar el signo: $S_R = \text{not } S_A$
 - ✓ Copiar el exponente: $E_R = E_A$
 - ✓ Copiar la mantisa: $M_R = M_A$

neg.d fdest, forig # fdest = -forig

- Operaciones elementales necesarias:
 - ✓ Cambiar el signo: $S_R = \text{not } S_A$
 - ✓ Copiar el exponente: $E_R = E_A$
 - ✓ Copiar la mantisa: $M_R = M_A$

Emulación del cambio de signo, neg.s

```
float x = 1.0;
x = -x;
```

Emulación del cambio de signo, neg.s

```
float x = 1.0;
x = -x;
                        0 \times 8000 = 10000 \dots 0000_{2}
         .float 1.
  x:
         lw $t0, x
         lui $t1, 0x8000
                                  $t1 <- 0x80000000
         xor $t0, $t0, $t1
                                # $t0 <- -1.0
               $t0, x
                                # x <- $t0
```

```
I \oplus x = /x # Invierte el valor entrante

O \oplus x = x # deja el valor entrante inalterado
```

Emulación del cambio de signo, neg.s

```
float x = 1.0;
x = -x;
```

¿Qué modificaciones introducirías si fuera double x = 1.0 ?

cvt.d.s fdest, forig # (fdest+l y fdest) ← forig

- Descripción de la operación:
 - ✓ El valor almacenado en forig está codificado en simple precisión (32 b)
 - ✓ Se debe traducir a formato de doble precisión (64 b)

cvt.d.s fdest, forig # (fdest+I y fdest) ← forig

Operaciones elementales necesarias:

✓ El signo no cambia: $S_D = S_O$

✓ Exponente: hay que cambiar de exceso 127 a exceso 1023

•
$$E_D = (E_O - 127) + 1023 = E_O + 896$$

✓ Mantisa: hay que añadir 52–23=29 ceros a la derecha

•
$$M_D = M_O || 00....0$$

cvt.d.s fdest, forig # (fdest+l y fdest) ← forig

- El operador básico
 - ✓ No trata los valores especiales

cvt.d.s fdest, forig # (fdest+l y fdest) ← forig

• Valores especiales: Exponente cero o todo unos

zero y subnorma: ±∞ y NaN:		S _D S _O	E _D 00000000000 ₂ 11111111111 ₂	M _D M _O 000 M _O 000
Valores corrientes:	(otros valores)	So	E _o + 896	M _o 000

cvt.d.s fdest, forig # (fdest+l y fdest) ← forig

• El operador básico, con valores especiales

cvt.s.d fdest, forig # fdest \leftarrow (forig+1 y orig)

- Descripción de la operación:
 - ✓ El valor almacenado en forig está codificado en doble precisión (64 b), abarca dos registros.
 - ✓ Se debe traducir a formato de simple precisión (32 b)

cvt.s.d fdest, forig # fdest ← (forig+1 y orig)

- Operaciones elementales necesarias:
 - ✓ El signo no cambia: $S_D = S_O$
 - ✓ Exponente: hay que cambiar de exceso 1023 a exceso 127

•
$$E_D = (E_O - 1023) + 127 = E_O - 896$$

- ✓ Exponente hay que adaptarlo de II a 8 bits.
 - Podría haber desbordamiento, que no vamos a considerar
- ✓ Mantisa: hay que adaptar de 52 a 23 bits
 - Habrá que redondear según dicta la norma IEEE 754

cvt.s.d fdest, forig # fdest ← (forig+1 y orig)

• El operador básico:

El redondeo

Circuito para el redondeo al más próximo

El redondeo

Circuito para el redondeo al más próximo

El redondeo

Estructura de Computadores

Circuito para el redondeo al más próximo

cvt.d.w fdest, forig # (fdest+l y fdest) ← forig

- Descripción de la operación:
 - ✓ El valor almacenado en forig es un número entero (32 b)

✓ Se debe traducir a formato de doble precisión (64 b)

cvt.d.w fdest, forig # (fdest+l y fdest) ← forig

Filosofía del operador

- ✓ SiW es positivo se puede escribir como +0.Wx2³²
- ✓ Si es negativo, se reescribe como $-0.(-W) \times 2^{32}$
- ✓ La mantisa W comenzará por una serie de Z ceros $(0 \le Z \le 32)$

✓ Habrá que normalizar la mantisa desplazándola Z+I posiciones hacia la izquierda y restar Z+I al exponente

$$W = 1, X, \dots, X - 2^{32-(Z+1)}$$

cvt.d.w fdest, forig # (fdest+l y fdest) ← forig

Operaciones a realizar:

- ✓ SD = Signo(W)
 - El signo es el bit 31, ya que el dato viene expresado en Ca2
- ✓ MD
 - · Calcular |W|
 - Si W<0, hay que hacer W = -W
 - Desplazar Z + I bits a la izquierda y completar con ceros
 - |W| << Z+I (operador << es un desplazador)
- ✓ ED, hay que normalizarlo en doble precisión:
 - 1023 + 32 Z I = 1054 Z

cvt.d.w fdest, forig # (fdest+l y fdest) ← forig

• El circuito básico:

La normalización

Circuito de normalización

- ✓ Un codificador prioritario (que codifica la entrada de menor índice con un I) calcula Z
- ✓ Un barrel shifter desplaza la mantisa hacia la izquierda y elimina los ceros sobrantes
- √ Se descarta el bit implícito

Codificador prioritario

$W_{31}W_{30}W_{29}W_{28}$				 W ₁ \	N_0	Z	
	1	X	X	Χ	 X	X	00000
	0	1	X	X	 X	X	00001
	0	0	1	X	 X	X	00010
	0	0	0	0	 0	1	 11111

mul.s fdest, fA, fB # fdest \leftarrow fA \times fB

• Descripción de la operación:

- ✓ Realiza la operación de multiplicación de dos valores en simple precisión almacenados en fA y fB, el resultado lo deja en fdest
- ✓ La operación matemática es la siguiente:

mul.s fdest, fA, fB # fdest \leftarrow fA \times fB

• Descripción de la operación:

- ✓ Realiza la operación de multiplicación de dos valores en simple precisión almacenados en fA y fB, el resultado lo deja en fdest
- ✓ La operación matemática es la siguiente:

→ SR= SA⊕SB

mul.s fdest, fA, fB # fdest \leftarrow fA \times fB

• Descripción de la operación:

- ✓ Realiza la operación de multiplicación de dos valores en simple precisión almacenados en fA y fB, el resultado lo deja en fdest
- ✓ La operación matemática es la siguiente:

$$\begin{array}{c}
32b \\
1.M_A = 1, XX...X
\end{array}$$

$$\times$$
 1.M_B = 1, XX...X

mul.s fdest, fA, fB # fdest \leftarrow fA \times fB

• Descripción de la operación:

- ✓ Realiza la operación de multiplicación de dos valores en simple precisión almacenados en fA y fB, el resultado lo deja en fdest
- ✓ La operación matemática es la siguiente:

$$\begin{array}{c}
\stackrel{32b}{\longleftrightarrow} \\
1.M_A = 1, XX...X
\end{array}$$

$$\times$$
 1.M_B = 1, XX...X

01, X....X Ya normalizado

mul.s fdest, fA, fB # fdest \leftarrow fA \times fB

Descripción de la operación:

- ✓ Realiza la operación de multiplicación de dos valores en simple precisión almacenados en fA y fB, el resultado lo deja en fdest
- ✓ La operación matemática es la siguiente:

$$\begin{array}{c}
\stackrel{32b}{\longleftrightarrow} \\
1.M_A = 1, XX...X
\end{array}$$

$$\times$$
 1.M_B = 1, XX...X

01, X....X Ya normalizado

mul.s fdest, fA, fB # fdest \leftarrow fA \times fB

• Descripción de la operación:

✓ Realiza la operación de multiplicación de dos valores en simple precisión almacenados en fA y fB, el resultado lo deja en fdest

✓ La operación matemática es la siguiente:

$$\begin{array}{c}
\stackrel{32b}{\longleftrightarrow} \\
1.M_A = 1, XX...X
\end{array}$$

$$\times$$
 1.M_B = 1, \times XX...X

01, X....X Ya normalizado

mul.s fdest, fA, fB # fdest \leftarrow fA \times fB

• Descripción de la operación:

- ✓ Realiza la operación de multiplicación de dos valores en simple precisión almacenados en fA y fB, el resultado lo deja en fdest
- ✓ La operación matemática es la siguiente:

$$(-1)^{SA} \cdot 1.M_{A} \cdot 2^{EA}$$

$$S_{A} \mid Ef_{A} = E_{A} + 127 \mid M_{A} = fA$$

$$\times (-1)^{SB} \cdot 1.M_{B} \cdot 2^{EB}$$

$$S_{B} \mid Ef_{B} = E_{B} + 127 \mid M_{B} = fB$$

$$1 \quad 8 \quad 23$$

$$S_{B} \mid Ef_{B} = E_{B} + 127 \mid M_{B} = fB$$

$$1 \quad 8 \quad 23$$

$$S_{B} \mid Ef_{B} = E_{B} + 127 \mid M_{B} = fB$$

$$1 \quad 8 \quad 23$$

$$S_{B} \mid Ef_{B} = E_{B} + 127 \mid M_{B} = fB$$

$$S_{B} \mid Ef_{B} = E_{A} + EB$$

$$Ef_{B} = EA + EB$$

$$Ef_{B} = EA + EB$$

$$Ef_{B} = EA + EB + 127 = Ef_{A} + Ef_{B} - 127 + normalización si procede$$

mul.s fdest, fA, fB

Operaciones elementales necesarias:

- ✓ Cálculo del signo: SR = SA ⊕ SB
- ✓ Cálculo del exponente: ER= Ef_A +Ef_B -127 + posibles normalizaciones
- ✓ Cálculo de la mantisa: MR
 - Multiplicar I.M_A x I.M_B (considerando el bit implícito, 24bits)
 - El resultado serán 24× 24 = 48 bits
 - Si el bit de mayor peso de la operación es uno, habrá que normalizar el resultado sumando uno al exponente
 - Luego habrá que reducir el resultado para adaptarlo a 23, redondeando y normalizando de nuevo si fuera preciso

mul.s fdest, fA, fB

• El operador básico:

- ✓ Normalización:
 - Si la mantisa comienza por 0: 0X,XXX.....X
 - · Desplazar a la izquierda una posición
 - No se sumará nada al exponente (ya normalizada)
 - Si comienza por I: IX,XXX...XXX
 - Se sumará uno al exponente (normalizar)
- ✓ Eliminar el bit de más peso (implícito)

1100001

1,000

1.000

mul.d fdest, fA, fB

11 **52** MA -1023Multiplicador CBN (53x53 bits) Normalización Redondeo M_{R}

 Adaptar este circuito para que realice una multiplicación en doble precisión consistirá en aumentar el número de bits de los circuitos del operador

Tema 4 Aritmética en coma flotante

Fin

