## Fonction exponentielle.

Quelques petits rappels utiles à connaître pour cette année de terminale.

## Définition.

Définition : On appelle fonction exponentielle l'unique fonction f dérivable sur  $\mathbb{R}$  telle que f'=f et f(0)=1 . On note cette fonction exp.

Nous savons donc que  $\exp(0)=1$  et pour tout  $x \in \mathbb{R}$ ,  $\exp'(x)=\exp(x)$ 

Propriété : Pour tout  $x \in \mathbb{R}$ ,  $\exp(x) > 0$ 

Notons e l'image de 1 par la fonction exponentielle. On a donc e=exp(1).

Remarque : à la calculatrice, on a  $e \approx 2,7182818$ .

Nous noterons donc la fonction exponentielle de la manière suivante :

$$\exp: \mathbb{R} \to \mathbb{R}$$
$$x \mid -> e^x$$

#### **Relation fonctionnelle:**

Pour tous 
$$x$$
,  $y$ ,  $e^{x+y} = e^x e^y$ 

$$e^{-x} = \frac{1}{e^x}$$

$$e^{x-y} = \frac{e^x}{e^y}$$

$$(e^x)^n = e^{nx} \text{ pour tout } n \in \mathbb{N}$$

### Variations.

Propriété :la fonction exp est strictement croissante sur R



Voici la courbe représentative de la fonction exponentielle.



# Propriété;

- 1. Pour tout  $m \in ]0$ ;  $+\infty[$ , l'équation  $e^x = m$  admet une solution unique dans  $\mathbb{R}$
- 2.  $e^a = e^b \le a = b$  $e^a < e^b \le a < b$