4. fejezet

Egyváltozós valós függvények integrálszámítása

4.1. Primitív függvény és határozatlan integrál

4.1.1. Definíció. Legyen $I \subset \mathbb{R}$ intervallum és f egy I-n definiált valós függvény. Az $F: I \to \mathbb{R}$ függvényt f primitív függvényének mondjuk az I intervallumon, ha F differenciálható I-n és itt $F_I' = f$.

Emlékeztetőül: F_I' az F függvény I-n vett deriváltját jelöli (lásd 3.5.1 Definíció). A következő tulajdonság Lagrange tételének következménye.

4.1.2. Tétel. Ha F az f függvény primitív függvénye az I intervallumon, akkor minden $c \in \mathbb{R}$ esetén F+c is primitív függvénye f-nek I-n, és f bármely primitív függvénye I-n F+c alakú, ahol $c \in \mathbb{R}$.

4.1.3. Definíció. Egy f valós függvény határozatlan integrálján az $I \subset \mathbb{R}$ intervallumon f I-n vett primitív függvényeinek halmazát értjük (ha nem üres). Jelölés: $\int f$ vagy $\int f(x) \, dx$. Az f függvényt integrandusnak nevezzük.

Ha F primitív függvénye f-nek I-n, akkor

$$\int f = \{\, F + c \mid c \in \mathbb{R} \,\} \qquad \text{I-n.}$$

Ezt a következő pontatlan, de rövidsége miatt kényelmes és ezért általánosan használt alakban szokás írni:

$$\int f = F + c$$
, (az I intervallumon),

vagy

$$\int f(x) dx = F(x) + c, \qquad (x \in I).$$

Mivei

$$\left(\frac{x^2}{2}\right)' = x, \qquad x \in (-\infty, \infty),$$

© www.tankonyvtar.hu

© Győri I., Pituk M., Pannon Egyetem

ezért

$$\int x \, dx = \frac{x^2}{2} + c, \qquad x \in (-\infty, \infty).$$

4.2. Alapintegrálok

A differenciálási szabályok megfordításával kapjuk a következő integrálokat.

$\int f(x) dx$	F(x) + c
$\int x^b dx$	$\frac{x^{b+1}}{b+1} + c$
$\int \frac{1}{x} dx$	$\ln x + c$
$\int e^x dx$	$e^x + c$
$\int a^x dx$	$\frac{a^x}{\ln a} + c$
$\int \sin x dx$	$-\cos x + c$
$\int \cos x dx$	$\sin x + c$
$\int \frac{1}{\cos^2 x} dx$	tg x + c
$\int \frac{1}{\sin^2 x} dx$	$-\operatorname{ctg} x + c$
$\int \frac{1}{\sqrt{1-x^2}} dx$	$\arcsin x + c$
$\int \frac{1}{1+x^2} dx$	$\operatorname{arctg} x + c$

$$(b \in \mathbb{R} \setminus \{-1\}, a \in (0, \infty) \setminus \{1\})$$

A táblázatban szereplő integrálformulák érvényesek minden olyan nyílt intervallumon, ahol f és a jobb oldalon szereplő függvény értelmezve van.

4.3. Integrálás elemi átalakításokkal

4.3.1. Tétel (Linearitás). Ha f-nek és g-nek primitív függvénye az $(a,b) \subset \mathbb{R}$ intervallumon F, illetve G, továbbá $k \in \mathbb{R}$, akkor (kf)-nek primitív függvénye (a,b)-n kF, (f+g)-nek

pedig F + G. Eszerint

$$\int (kf) = k \int f,$$

$$\int (f+g) = \int f + \int g.$$

Az első képletet úgy kell érteni, hogy az $\int (kf)$ függvényhalmaz elemei az $\int f$ függvényhalmaz elemeinek k-szorosai, a második képletet pedig úgy, hogy az $\int (f+g)$ függvényhalmaz elemei az $\int f$ és $\int g$ függvényhalmaz elemeinek összeadásával állnak elő. Hasonlóképpen értendők a további határozatlan integrálokkal kapcsolatos képletek is.

4.3.2. Tétel (Lineáris helyettesítés). Legyen f-nek az $(\alpha, \beta) \subset \mathbb{R}$ intervallumon primitív függvénye F, továbbá g(x) = ax + b lineáris függvény, $a, b \in \mathbb{R}$, $a \neq 0$, és (γ, δ) olyan intervallum, hogy $g((\gamma, \delta)) \subset (\alpha, \beta)$. Ekkor az $f \circ g$ függvénynek (γ, δ) -n primitív függvénye $\frac{1}{\alpha}(F \circ g)$, azaz

$$\int f(ax+b) dx = \frac{1}{a} F(ax+b) + c, \qquad x \in (\gamma, \delta).$$

4.3.3. Példa.

$$\int \sqrt{3x+5} \, dx = \int (3x+5)^{\frac{1}{2}} \, dx = \frac{1}{3} \frac{(3x+5)^{\frac{3}{2}}}{\frac{3}{2}} + c = \frac{2}{9} \sqrt{(3x+5)^3} + c,$$

ahol $x \in (-\frac{5}{3}, \infty)$.

4.3.4. Példa.

$$\int \cos^2 x \, dx = \int \frac{1 + \cos 2x}{2} \, dx = \int \left(\frac{1}{2} + \frac{\cos 2x}{2}\right) dx$$
$$= \frac{1}{2} \int 1 \, dx + \frac{1}{2} \int \cos 2x \, dx = \frac{1}{2} x + \frac{1}{2} \frac{\sin 2x}{2} + c = \frac{x}{2} + \frac{\sin 2x}{4} + c,$$

ahol $x \in (-\infty, \infty)$.

4.4. Parciális integrálás

A szorzat deriváltjából könnyen levezethető a következő tétel.

4.4.1. Tétel (Parciális integrálás). Legyen $(a,b) \subset \mathbb{R}$. Ha f és g differenciálhatók (a,b)-n és az f g függvénynek van primitív függvénye (a,b)-n, akkor az f g függvénynek is van primitív függvénye (a,b)-n, és

$$\int f'(x)g(x) dx = f(x)g(x) - \int f(x)g'(x) dx, \qquad x \in (a,b).$$

4.4.2. Példa.

$$\int (\cos x)x \, dx = \int (\sin x)'x \, dx = (\sin x)x - \int (\sin x)1 \, dx = (\sin x)x + \cos x + c,$$

ahol $x \in (-\infty, \infty)$.

4.5. Integrálás helyettesítéssel

Az alábbi tétel az összetett függvény differenciálási szabályából következik.

4.5.1. Tétel (1. típusú helyettesítés). Legyen g differenciálható és nem állandó az $(a,b) \subset \mathbb{R}$ intervallumon. Ha F primitív függvénye f-nek a g((a,b)) intervallumon, akkor $F \circ g$ primitív függvénye f-nek (a,b)-n, azaz

$$\int (f(g(x))g'(x) dx = F(g(x)) + c, \qquad x \in (a,b),$$

avagy

$$\int (f(g(x))g'(x) dx = \left[\int f(u) du \right]_{u=g(x)}.$$

Ez utóbbi képlethez formálisan úgy is eljuthatunk, hogy a bal oldali integrálban bevezetjük az u=g(x) helyettesítést, majd a $\frac{du}{dx}=g'(x)$ képletből a $g'(x)\,dx=du$ összefüggést származtatjuk, és így jutunk a jobb oldalon látható integrálhoz.

4.5.2. Példa. Az

$$\int (\sin^2 x) \cos x \, dx$$

integrálból az $u=\sin x$ helyettesítéssel, amikor $\frac{du}{dx}=\cos x$, s így $\cos x\,dx=du$, az

$$\left[\int u^2 du\right]_{u=\sin x}$$

integrált kapjuk. Mivel

$$\int u^2 \, du = \frac{u^3}{3} + c,$$

ezért

$$\int (\sin^2 x) \cos x \, dx = \frac{\sin^3 x}{3} + c, \qquad x \in (-\infty, \infty).$$

4.5.3. Tétel (2. típusú helyettesítés). Tegyük fel, hogy g differenciálható az $(\alpha, \beta) \subset \mathbb{R}$ intervallumon és g' sehol sem tűnik el (α, β) -n. Ha H primitív függvénye $(f \circ g)g'$ -nek (α, β) -n, akkor $H \circ g_{-1}$ primitív függvénye f-nek a $g((\alpha, \beta))$ intervallumon, azaz

$$\int f(x) dx = \left[\int (f(g(u)))g'(u) du \right]_{u=g_{-1}(x)}, \qquad x \in g((\alpha, \beta)).$$

A képlethez formálisan úgy juthatunk el, hogy a bal oldali integrálban elvégezzük az x=g(u) helyettesítést, majd a $\frac{dx}{du}=g'(u)$ összefüggésből a $dx=g'(u)\,du$ kifejezést származtatjuk, végül megkapjuk a jobb oldali integrált. Ennek kiszámítása után u helyébe $g_{-1}(x)$ -et kell írunk.

4.5.4. Példa. Az

$$\int x\sqrt[3]{x-1}\,dx$$

integrálból az $x=u^3+1$ helyettesítéssel a $\frac{dx}{du}=3u^2$ és $dx=3u^2du$ kifejezéseket használva az

$$\int (u^3 + 1)u \, 3u^2 \, du = 3 \int (u^6 + u^3) \, du$$

integrált kapjuk. Ezt már ki tudjuk számítani:

$$3\int (u^6 + u^3) du = 3\left(\frac{u^7}{7} + \frac{u^4}{4}\right) + c = \frac{3}{7}u^7 + \frac{3}{4}u^4 + c.$$

Végül az $x=u^3+1$ összefüggésből nyert $u=\sqrt[3]{x-1}$ felhaszálásával kapjuk, hogy

$$\int x\sqrt[3]{x-1} \, dx = \frac{3}{7} (\sqrt[3]{x-1})^7 + \frac{3}{4} (\sqrt[3]{x-1})^4 + c, \qquad x \in (-\infty, \infty).$$

4.6. A Riemann-integrál definíciója

Adott egy nemnegatív folytonos f az $[a,b] \subset \mathbb{R}$ intervallumon. Kiszámítandó annak a "görbevonalú" trapéznak a T területe, amelyet felülről az y=f(x) görbe, oldalról az x=a és x=b egyenesek, alulról pedig az x-tengely határol. Az alábbiakban definiált fogalmak segítségével alsó és felső becslést adhatunk T-re. A konstrukció abban az általánosabb esetben is használható, amikor f csupán korlátos [a,b]-n.

4.6.1. Definíció. Az $[a,b] \subset \mathbb{R}$ intervallum *felosztásán* olyan véges $\{x_0,\ldots,x_k\}$ sorozatot értünk, amelyre

$$a = x_0 < x_1 < \cdots < x_k = b$$
.

4.6.2. Definíció. Legyen adva egy korlátos f függvény az [a,b] intervallumon és $\Phi = \{x_0, \ldots, x_k\}$ legyen [a,b] egy felosztása. A korlátosság miatt minden $i \in \{1,2,\ldots,k\}$ esetén az

$$m_i = \inf f([x_{i-1}, x_i]), \qquad M_i = \sup f([x_{i-1}, x_i])$$

számok jól definiáltak. Az

$$s_{\Phi} = \sum_{i=1}^{k} m_i (x_i - x_{i-1})$$

összeget az f függvény Φ felosztáshoz tartozó alsó összegének, az

$$S_{\Phi} = \sum_{i=1}^{k} M_i (x_i - x_{i-1})$$

összeget az f függvény Φ felosztáshoz tartozó felső összegének nevezzük (lásd a 4.1 ábra).

43

4.1. ábra.

Ha f korlátos [a, b]-n, akkor [a, b] bármely Φ felosztására

$$\inf f([a,b]) \cdot (b-a) \le s_{\Phi} \le \sup f(([a,b]) \cdot (b-a).$$

4.6.3. Definíció. Bármely [a, b]-n korlátos f esetén legyen

$$I_A = \sup\{ s_{\Phi} \mid \Phi \text{ az } [a, b] \text{ felosztása } \},$$

és

$$I_F = \inf\{ S_{\Phi} \mid \Phi \text{ az } [a, b] \text{ felosztása } \}.$$

Az I_A számot az f függvény (Darboux-féle) alsó integráljának, az I_F számot pedig f (Darboux-féle) felső integráljának nevezzük.

Nyilvánvaló, hogy ha f nemnegatív és folytonos [a,b]-n, akkor az [a,b] bármely Φ felosztására

$$s_{\Phi} \leq T \leq S_{\Phi},$$

és ezért

$$I_A < T < I_F$$

is teljesül, ahol T a kiszámítandó terület.

4.6.4. Definíció. Az f függvényt integrálhatónak mondjuk az $[a,b] \subset \mathbb{R}$ intervallumon, ha f korlátos [a,b]-n és $I_A=I_F$. Ekkor az $I=I_A=I_F$ közös értéket az f függvény [a,b]-n vett Riemann-féle határozott integráljának, vagy röviden Riemann-integráljának nevezzük. Jele:

$$\int_{a}^{b} f \qquad \text{vagy} \qquad \int_{a}^{b} f(x) \, dx.$$

Szükségünk lesz a következő fogalomra.

4.6.5. Definíció. Azt mondjuk, hogy az f függvény szakaszosan folytonos (szakaszosan monoton) az $[a,b] \subset \mathbb{R}$ intervallumon, ha [a,b]-nek létezik $\{x_0,\ldots,x_k\}$ felosztása $(a=x_0 < x_1 < \cdots < x_k = b)$ úgy, hogy az (x_{i-1},x_i) , $i \in \{1,\ldots,k\}$, részintervallumok mindegyikében f folytonos (monoton).

A következő tétel azt mutatja, hogy a függvények egy igen széles osztálya integrálható.

4.6.6. Tétel (Egzisztencia tétel). Ha f korlátos és szakaszosan folytonos vagy szakaszosan monoton az [a,b] intervallumon, akkor f integrálható is [a,b]-n.

Legyen f nemnegatív és folytonos [a,b]-n. Ekkor f integrálhatósága folytán $I_A=I_B=\int_a^b f$. Figyelembe véve, hogy $I_A\leq T\leq I_F$, azt kapjuk, hogy

$$T = \int_{a}^{b} f,$$

ahol T a szakasz elején említett síkidom területe.

A következő tétel azt mutatja, hogy az integrálhatóságot és az integrál értékét nem befolyásolja, ha az integrandust véges számú pontban megváltoztatjuk.

4.6.7. Tétel. Legyenek f és g az $[a,b] \subset \mathbb{R}$ intervallumon definiált valós függvények. Ha f integrálható az [a,b]-n, és van [a,b]-nek olyan véges H részhalmaza, hogy f=g az $[a,b]\setminus H$ halmazon, akkor g is integrálható [a,b]-n, és

$$\int_{a}^{b} g = \int_{a}^{b} f.$$

Ez a tétel motiválja az alábbi definíciót.

4.6.8. Definíció. A g függvényt az $[a,b] \subset \mathbb{R}$ intervallumon *tágabb értelemben integrálhatónak* mondjuk, ha van olyan az [a,b]-n integrálható f, amely g-vel [a,b]-n véges számú pont kivételével egyenlő. Ekkor definícióképpen

$$\int_{a}^{b} g = \int_{a}^{b} f.$$

4.6.9. Példa. A

$$g(x) = \frac{\sin x}{x}, \qquad x \in (0, 1]$$

függvény ugyan nincs definiálva 0-ban, mégis tágabb értelemben integrálható a [0,1]-en, mivel a

$$\lim_{x \to 0} g(x) = \lim_{x \to 0} \frac{\sin x}{x} = 1$$

limeszreláció folytán korlátos, és ha a 0 helyen bárhogyan definiáljuk, akkor szintén korlátos és szakaszosan folytonos függvényt kapunk.

A továbbiakban az integrálhatóságot mindig tágabb értelemben fogjuk érteni.

4.7. A Riemann-integrál tulajdonságai

A következő tételekben összefoglaljuk a Riemann-integrál fontosabb tulajdonságait.

4.7.1. Tétel. Ha f és g integrálható az $[a,b] \subset \mathbb{R}$ intervallumon és α , β állandók, akkor $\alpha f + \beta g$ is integrálható az [a,b]-n, és

$$\int_{a}^{b} (\alpha f + \beta g) = \alpha \int_{a}^{b} f + \beta \int_{a}^{b} g.$$

4.7.2. Tétel. Ha f és g integrálható az $[a,b] \subset \mathbb{R}$ intervallumon és $f \leq g$ az [a,b]-n, akkor

$$\int_a^b f \le \int_a^b g.$$

4.7.3. Tétel. Ha f integrálható az $[a,b]\subset\mathbb{R}$ intervallumon, akkor |f| is integrálható az [a,b]-n, és

$$\left| \int_a^b f \right| \le \int_a^b |f|.$$

4.7.4. Tétel. Ha f integrálható az [a,b] intervallumon és $c \in (a,b)$, akkor f integrálható [a,c]-n és [c,b]-n is, és

$$\int_{a}^{b} f = \int_{a}^{c} f + \int_{c}^{b} f.$$

4.8. A Riemann-integrál kiszámítása

A Riemann-integrál kiszámítása szempontjából alapvető fontosságú a következő tétel.

4.8.1. Tétel (Newton-Leibniz-szabály). Ha f integrálható az $[a,b] \subset \mathbb{R}$ intervallumon, F folytonos [a,b]-n, továbbá F primitív függvénye f-nek (a,b)-n, akkor

$$\int_a^b f(x) dx = F(b) - F(a).$$

4.8.2. Definíció. Legyen $[a,b] \subset \mathbb{R}$ intervallum. Az F(b) - F(a) különbséget az $[F(x)]_a^b$ szimbólummal jelöljük, és az F függvény [a,b] intervallumon vett megváltozásának nevezzük.

A Newton-Leiniz-szabályt a Lagrange-féle középértéktétel segítségével lehet igazolni.

4.8.3. Példa. A Newton-Leibniz-szabály szerint

$$\int_{2}^{3} x^{2} dx = \left[\frac{x^{3}}{3} \right]_{2}^{3} = \frac{3^{3}}{3} - \frac{2^{3}}{3} = \frac{27}{3} - \frac{8}{3} = \frac{19}{3}.$$

A parciális integrálás a következőképpen fogalmazható át határozott integrálra.

4.8.4. Tétel (Parciális integrálás). Ha f és g folytonosan differenciálható az $[a,b] \subset \mathbb{R}$ intervallumon, akkor

$$\int_{a}^{b} f'(x)g(x) dx = [f(x)g(x)]_{a}^{b} - \int_{a}^{b} f(x)g'(x) dx.$$

4.8.5. Példa.

$$\int_{1}^{2} \ln x \, dx = \int_{1}^{2} 1 \cdot \ln x \, dx = \int_{1}^{2} (x)' \ln x \, dx = \left[x \ln x \right]_{1}^{2} - \int_{1}^{2} x \frac{1}{x} \, dx$$
$$= 2 \ln 2 - \int_{1}^{2} 1 \, dx = 2 \ln 2 - \left[x \right]_{1}^{2} = 2 \ln 2 - 1.$$

Vezessük be a következő jelölést.

4.8.6. Definíció. Bármely $a \in D(f)$ esetén legyen

$$\int_{a}^{a} f = 0,$$

továbbá b < a esetén

$$\int_{a}^{b} f = -\int_{b}^{a} f,$$

feltéve, hogy f integrálható a $[b, a] \subset \mathbb{R}$ intervallumon.

4.8.7. Tétel (Integrálás helyettesítéssel). Tegyük fel, hogy g nem állandó és folytonosan differenciálható az $[a,b] \subset \mathbb{R}$ intervallumon és f folytonos a g([a,b]) intervallumon. Ekkor

$$\int_{g(a)}^{g(b)} f(x) \, dx = \int_{a}^{b} f(g(u))g'(u) \, du.$$

4.8.8. Példa. A 2-x=u, avagy x=g(u)=2-u helyettesítéssel kapjuk, hogy

$$\int_0^1 \frac{x}{\sqrt{2-x}} dx = -\int_{g(1)}^{g(2)} \frac{x}{\sqrt{2-x}} dx = \int_1^2 \frac{2-u}{\sqrt{u}} du$$
$$= \int_1^2 \left(\frac{2}{\sqrt{u}} - \sqrt{u}\right) du = \left[4\sqrt{u} - \frac{2}{3}\sqrt{u^3}\right]_1^2 = 4(\sqrt{2} - 1) - \frac{2}{3}(\sqrt{8} - 1).$$