UNIVERSITY OF LONDON

[I(1) 2001]

B.ENG. AND M.ENG. EXAMINATIONS 2001

For Internal Students of the Imperial College of Science, Technology and Medicine This paper is also taken for the relevant examination for the Associateship.

PART I: MATHEMATICS 1

Wednesday 6th June 2001 10.00 am - 1.00 pm

 $Answer\ EIGHT\ questions.$

[Before starting, please make sure that the paper is complete; there should be 6 pages, with a total of 10 questions. Ask the invigilator for a replacement if your copy is faulty.]

Copyright of the University of London 2001

1. Let

$$f(x) = \frac{x+3}{2x+1} .$$

- (i) Find the inverse function $f^{-1}(x)$ of f(x).
- (ii) Write f(x) as the sum of an even and an odd function.
- (iii) Find all solutions of the equation

$$f(f(x)) = 0.$$

(iv) Find all solutions of the equation

$$\frac{1}{f(\cos\theta)} = 0.$$

2. Consider the curve defined by the equation

$$y^2 = x^2 - \frac{x^4}{4} .$$

- (i) Find the coordinates of all stationary points of the curve.
- (ii) Find the coordinates of all points at which $\frac{dy}{dx}$ becomes infinite.
- (iii) Sketch the curve.

3. Find $\frac{dy}{dx}$ in each of the following cases.

In case (v) you may express your answer in terms of x and y.

$$(i) y = e^{\sin x}.$$

(ii)
$$y = \ln(\ln x).$$

$$(iii) y = x^2 e^x \cos x.$$

(iv)
$$y = x^{\ln x}.$$

$$(v) xy + \ln(xy) = 1.$$

4. (i) Show that if $y = (\sin^{-1} x)^2$, then

$$(1-x^2)^{1/2}\frac{dy}{dx} = 2\sin^{-1}x.$$

Hence or otherwise show that y satisfies the equation

$$(1-x^2)\frac{d^2y}{dx^2} - x\frac{dy}{dx} - 2 = 0.$$

- (ii) Find the n^{th} derivatives of the functions $f(x) = e^{3x}$ and $h(x) = x^2 e^{3x}$.
- (iii) Two sides of a triangle are of unit length and meet at angle θ . The length of the third side is given by $l(\theta) = (2 2\cos\theta)^{1/2}$. Find $dl/d\theta$.

By using the formula

$$\frac{dl}{d\theta} = \lim_{h \to 0} \frac{l(\theta + h) - l(\theta)}{h} ,$$

find the approximate change in l if θ changes from $\frac{\pi}{3}$ to $\frac{\pi}{3}+0.01$ (in radians).

5. Evaluate the following limits:

(i)
$$\lim_{x \to 5} \frac{3 - \sqrt{x+4}}{x-5} ;$$

(ii)
$$\lim_{x \to 0} x^{-3} \tan^3(3x);$$

(iii)
$$\lim_{x \to 0} \frac{\ln(1+3x^2)}{1+x-e^x};$$

(iv)
$$\lim_{x \to \pi/3} \frac{1 + \cos 3x}{\sqrt{3} - \tan x}.$$

6. Evaluate the following integrals:

(i)
$$\int_1^e \frac{(\ln x)^2}{x} dx;$$

(ii)
$$\int_0^1 \sqrt{1 - x^2} \, dx \; ;$$

$$\int \frac{x \, dx}{(1+x^2)^2} \; ;$$

$$\int \frac{x^2 dx}{(1+x^2)^2} .$$

(i) Express the function

$$\frac{2x}{\left(x^2+1\right)\left(x-1\right)}$$

in partial fraction form, and hence find

$$\int \frac{2x \, dx}{\left(x^2 + 1\right)\left(x - 1\right)} \; .$$

(ii) Let

$$I_n = \int_0^\pi \sin^n x \, dx.$$

By integrating by parts, prove that for $n \geq 2$,

$$I_n = \frac{n-1}{n} I_{n-2}.$$

Hence find

$$\int_0^\pi \sin^6 x \, dx \, .$$

(i) Find which of the following series converge:

(a)
$$\sum_{n=0}^{\infty} \frac{n}{2^n}$$

(b)
$$\sum_{n=1}^{\infty} \frac{n!}{2^n}$$

(a)
$$\sum_{n=1}^{\infty} \frac{n}{2^n}$$
; (b) $\sum_{n=1}^{\infty} \frac{n!}{2^n}$; (c) $\sum_{n=1}^{\infty} \frac{n}{n+10}$.

(ii) Find the radius of convergence of the power series

$$\sum_{n=0}^{\infty} (n+1) x^n.$$

(iii) Find $\frac{d^n}{dx^n}(1-x)^{-2}$ and hence show that the Maclaurin expansion of $(1-x)^{-2}$ is given by the series in part (ii).

9. (i) Express each of the following in the form a+ib:

(a)
$$(1+i)^2$$
, (b) $\frac{1+i}{1-i}$, (c) $\left(\frac{\sqrt{3}+i}{2}\right)^{101}$.

(ii) Find all complex roots z of the equation

$$z^4 = \frac{1}{4} (1+i)^4.$$

Show on a diagram where these roots lie.

What is the sum of all the roots?

(iii) If z = x + iy, express the equation

$$z + \overline{z} = \frac{1}{z} + \frac{1}{\overline{z}}$$

in terms of x and y. Hence sketch the solution curves of this equation in the complex plane.

- 10. (i) (a) Define the functions $\sin z$, $\cos z$, $\sinh z$, $\cosh z$ (where z is a complex number) in terms of the exponential function.
 - (b) Find all complex roots z of the equation $\tanh z = i$.
 - (c) Hence or otherwise find all roots of the equation $\tan^2(iz) = 1$.
 - (ii) If z = x + iy, find the real and imaginary parts of $\cos(z^2)$ in terms of trigonometric and hyperbolic functions of x and y.

Hence, find all complex numbers such that $\cos(z^2)$ is real.

END OF PAPER

	ATION QUESTIONS/SOLUTIONS SESSION 2000-2001	COURSE B. Eng.
	Setters are advised that Checkers, Editors, Typists and External Examiners greatly appreciate the merits of accuracy, legibility and neatness.	SETTER CROWNY
	Write on one side only, between the margins, double-spaced. Not more than one question or solution per sheet, please	QUESTION NO.
Mark Scheme	(a) $f = \frac{x+3}{2x+1} \Rightarrow (2x+1)f = x+7$ $\Rightarrow (2f-1)x = 3-f$	SOLUTION NO.
	$\Rightarrow \times (f) = \frac{3-f}{2f-1}$	3
	$f^{-1}(x) = \frac{3-x}{2x-1}$	
	(b) $f(x) = \left[\frac{f(x) + f(x)}{2}\right] + \left[\frac{f(x) - f(-x)}{2}\right]$	
	$= \frac{2x^2-3}{4x^2-1} + \frac{5x}{4x^2-1}$ even odd	3
	(c) $f(f(x)) = \frac{f(x)+3}{2f(x)+1} = \frac{x+3}{2x+1} + 3$	-
)	$\frac{2(x+3)}{2x+1} + 1$ $= \frac{7x+6}{2x+6}$	5
	$f(f(x)) = 0 \iff x = -\frac{6}{7}$	
	$(d) \frac{1}{f(\cos 0)} = \frac{2\cos 0 + 1}{\cos 0 + 3} = 0 \iff \cos 0 = -\frac{1}{2}$	
	$\therefore \Theta = \begin{cases} 2\pi/3 + 2\kappa\pi \\ 4\pi/3 + 2\kappa\pi \end{cases} \text{ kany integer}$	

SETTER: D. CROWDY CHECKER: WILLOW

SETTER'S SIGNATURE:

CHECKER'S SIGNATURE:

DATE: 7/11/00

MATHEMATICS FOR ENGINEERING STUDENTS EXAMINATION QUESTION/SOLUTION

SESSION: 2000 - 2001

QUESTION

PAPER

Please write on this side only, legibly and neatly, between the margins

SOLUTION 2

(a)
$$y^2 = x^2 - x^{1/4}$$

Differentiating wrt x:

$$2y\frac{dy}{dx} = 2x - x^3$$

$$\Rightarrow \frac{dy}{dx} = \frac{2x - x^3}{2y} = \frac{x(2 - x^2)}{2y} \triangle$$

Only Stat pts are at $x = \pm \sqrt{2}$

N.B no Stat pt at (0,0) - look at limit as x >0

(b) From (b),
$$\frac{dy}{dx} \rightarrow \infty$$
 when $\frac{dy}{dx} = \frac{+ \times (2-x^2)}{2 \times \sqrt{1-x^2/4}} \rightarrow \infty$

(c) Note curve invariant under transformations

x +> ->e

y +> -y

...

=> reflectionally-symmetric in x & y axes

setter: D. ceway

Checker: WILLING

Checker's signature

EXAMINATION QUESTION / SOLUTION

SESSION: 2000 - 2001

QUESTION

PAPER

T.1

Please write on this side only, legibly and neatly, between the margins

SOLUTION 3

3

i)
$$y' = \frac{d}{dx} e^{u}$$
, where $u = \sin x$,
$$= \frac{du}{dx} \frac{d}{dx} e^{u} = \cos x e^{u} = \cos x e^{u}$$

ii)
$$y' = \frac{1}{2\pi} \ln u$$
, where $u = \ln x$,
$$= \frac{1}{2\pi} \frac{1}{2\pi} \ln u = \frac{1}{2\pi} \ln u = \frac{1}{2\pi} \ln u$$

iii)
$$y' = (x^2 v)'$$
 where $v = e^{x} \cos x$
 $= 2x v + x^2 v'$
 $= 2x e^{x} \cos x + x^2 e^{x} \cos x - x^2 e^{x} \sin x$,
(or we logarithmic differentiation)

(v)
$$hy = (hx)^2$$
.
 $y' = \frac{2}{x} hx$, $y' = 2x^2y hx = 2x^{hx-1} hx$.

$$y) xy + lnx + lny = 1,$$

$$y + xy' + x + ty' = 0, \quad y' \frac{xy+1}{y} + \frac{xy+1}{x} = 0.$$

$$y' = -y/x.$$

Setter:

("JRIDLER-REWE

Checker: J.R. CASH

Setter's signature:

Checker's signature: TR Chal

Of Kidle Rim

EXAMINATION QUESTION / SOLUTION

SESSION: 2000 - 2001

QUESTION

PAPER

TI

Please write on this side only, legibly and neatly, between the margins

SOLUTION

i)
$$y' = 2(1-x^2)^{-1/2} \sin x$$
 so $(1-x^2)^{1/2} y' = 2 \sin x$.

$$(1-x^2)^{-1/2} y' + (1-x^2)^{1/2} y'' = 2(1-x^2)^{-1/2}$$
,
so $(1-x^2) y'' - x y' - 2 = 0$.

2

ii)
$$y' = 3e^{3x}, y'' = 3^2e^{3x}, ..., y'' = 3^ne^{3x}$$

With $f(x) = x^2$, $g(x) = e^{3x}$,
 $h^{(n)} = (f_g)^{n} = f_g^{(n)} + {^n}C_1f_g^{(n-1)} + {^n}C_2f_g^{(n-2)} + ...$
 $= x^2 3^n e^{3x} + n2x 3^{n-1}e^{3x} + n(n-1)3^{n-2}e^{3x}$.

2

$$\frac{df}{d\theta} = \sin\theta \left(2 - 2\cos\theta\right)^{-1/2}$$

$$f(\theta + h) - f(\theta) \approx h \frac{df}{d\theta} \text{ for } h \text{ small}.$$

2

2

i. For
$$\theta = 7/3$$
, $h = 0.01$, the change in f is ≈ 0.01 . $\frac{\sqrt{3}}{2} \cdot l = \frac{1.732}{200}$

|2

= 0.00866

2

Setter:

Checker:

RIDLER- Rowe

J.R. CASH

Setter's signature:

Checker's signature: TROUN.

EXAMINATION QUESTION / SOLUTION

SESSION: 2000 - 2001

Please write on this side only, legibly and neatly, between the margins

(i)
$$\frac{3-\sqrt{x+4}}{3(x-5)} = \frac{5-x}{(x-5)(3+\sqrt{x+4})} = \frac{-1}{3+\sqrt{x+4}}$$

On
$$x \rightarrow 5$$
, this $\rightarrow \frac{-1}{3+\sqrt{9}} = -\frac{1}{6}$

(ii)
$$x^{-3} \tan^3(3x) = \left(\frac{\sin 3x}{3x}\right)^3 \frac{27}{\cos^3(3x)}$$

$$a_{3} \approx 0$$
, this $\Rightarrow 1^{3} = 27$

$$\frac{\ln(1+3x^2)}{1+x-e^x} = \frac{+3x^2+...}{-x^2/2+...}$$

$$\lim_{N \to \infty} \frac{1 + \cos 3x}{\sqrt{3} - \tan x} = \lim_{N \to \infty} \frac{-3 \sin 3x}{-3x}$$

Setter:

WILSON

Checker: MALL

Setter's signature:

Checker's signature:

of Wilson

SOLUTIC 5

PAPE

3

3

4

.

5

EXAMINATION QUESTION / SOLUTION

SESSION: 2000 - 2001

T(i)

PAPER

QUESTION

Please write on this side only, legibly and heatly, between the margins

(i) Set u = ln x, ro du = dx/x. The

integral becomes $\int_{0}^{1} u^{2} du = \left[\frac{1}{3}u^{3}\right]_{0}^{1} = \frac{1}{3}$.

(ii) Let x = rin u. The integral becomes

 $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty$

 $=\frac{1}{2}\left[u+\frac{1}{2}\sin 2u\right]^{\frac{n}{2}}=\frac{\pi}{4}.$

(iii) Set x2 = u. The integral becomes

 $\int \frac{\frac{1}{2} du}{(1+u)^2} = \frac{-1}{2(1+u)} = -\frac{1}{2(1+u^2)} (+c),$

SOLUTION

(iv) By (iii), the integrand is $x \in \frac{d}{dx} \left(-\frac{1}{x(1+x^2)}\right)$.

Integrating by facts, we get that the given

integral is = $-\frac{\chi}{\chi(1+\chi^2)} + \frac{1}{\chi} \left(\frac{dx}{1+\chi^2}\right)$

 $= + \frac{1}{2} \left[\tan^{-1} x - \frac{x}{1+x^2} \right] (+c)$

Setter:

WILSON

Setter's signature:

Checker:

WALL

Checker's signature:

EXAMINATION QUESTION / SOLUTION

SESSION: 2000 - 2001 T(i)

PAPER

QUESTION

SOLUTION

Please write on this side only, legibly and neatly, between the margins

$$\frac{2\pi}{(x^2+1)(x-1)} = \frac{Ax+B}{x^2+1} + \frac{C}{\pi-1}; so$$

$$2x = (A + x + B)(x-1) + C(x^2+1).$$

Confaining coefficients =>
$$A = -1$$
, $B = C = 1$, so $\frac{2x}{(x^2 + 1)(x - 1)} = \frac{-x + 1}{x^2 + 1} + \frac{1}{x - 1}$

$$\frac{2x}{(x^2+1)(x-1)} = \frac{-x+1}{x^2+1} + \frac{1}{x-1}$$

$$\int \frac{2x \, dx}{(x^2+1)(x^2+1)} = -\frac{1}{2} \ln (x^2+1) + \tan x + \ln |x-1|$$

$$(+c).$$

(ii)
$$I_{n} = \int_{0}^{\pi} \sin^{n}x \, dx = -\int_{0}^{\pi} \sin^{n-1}x \, \frac{d}{dx} (\cos x) \, dx$$

$$= -\left[\sin^{n-1}x\cos x\right]_0^{\pi} + \int_0^{\pi} (n-1)\sin^n x\cos^2x \, dx$$

$$= 0 + (n-1) \int_{0}^{T} \sin^{n-2}x \left(1-\sin^{2}x\right) dx$$

$$= (n-1) \left(I_{n-2} - I_n \right),$$

Hence
$$n I_n = (n-1) I_{n-2}$$
, i.e. $I_n = \frac{n-1}{n} I_{n-2}$

$$I_{6} = \frac{5}{6}I_{4} = \frac{5}{6}\frac{3}{4}I_{2} = \frac{5}{6}\frac{3}{4}\frac{1}{2}I_{0}$$

$$=\frac{5}{16}I_0=\frac{5\pi}{16}$$

Setter:

WILSON

Setter's signature:

Checker's signature: Checker: HALL

EXAMINATION QUESTION / SOLUTION

SESSION: 2000 - 2001

I 1

PAPER

QUESTION

SOLUTION

Please write on this side only, legibly and neatly, between the margins

a) Using the Ratio Test i) $\left|\frac{(n+1)!^{\frac{1}{n}}term}{n!^{\frac{1}{n}}term}\right| = \frac{n+1}{2^{n+1}}\frac{2^n}{n} = \frac{n+1}{n}\frac{1}{2} \Rightarrow \frac{1}{2} \text{ as } n \Rightarrow \infty.$

Limit is < 1. . Series converges.

b) Using the Ratio Test (n+1) tem = (n+1)! 2" - n+1 -> 00 as n-> 00. Limit à >1 .. Series diverges.

c) nt tem -> 1 as n > 0. . Divergent since ntem to 0.

ii) Fix $z \neq 0$. $\left| \frac{(n+1)^{n} tem}{n + 1} \right| = \frac{n+2}{n+1} |z| \Rightarrow |x| \approx n \Rightarrow \infty$.

: By Ratio Test, the series converges if limit /2/ < 1 and diverges of limit 121>1.

So radius of convergence = 1.

Par $f(x) = (1-x)^{-2}$. $f' = 2(1-x)^{-3}$, $f'' = 2.3(1-x)^{-4}$. 沉) $f''' = 2.3.4 (1-x)^{-5}$, ..., $f^{(n)} = (n+1)!(1-x)^{-n-2}$

Maclaconin series has not term $\frac{f^{(n)}}{f^{(n)}} \times \frac{f^{(n+1)}}{f^{(n+1)}} \times \frac{f^{(n+1)}}{f^{(n+1$

giring the series in ii).

C. J. RIDLER-ROWE

Checker: J.R. CASH

Setter's signature:

MRELL Ren Checker's signature: TR Casl

2

2

3

2

FXAMINATION QUESTION / SOLUTION

SESSION:

2000 - 2001

QUESTION

Please write on this side only, legibly and neatly, between the margins

SOLUTION

PAPER

2

2

3

2_

١

(a)
$$(1+i)^2 = 2i$$

(i)

(b)
$$\frac{1+i}{1-i} = \frac{(1+i)(1+i)}{(1-i)(1+i)} = i$$

(c)
$$\left(\frac{\sqrt{3}+i}{2}\right)^{101} = \left(e^{i\pi/6}\right)^{101} = e^{\frac{16i\pi}{5} + \frac{5i\pi}{6}} = \frac{\left(-\sqrt{3}+i\right)}{2}$$

(ii)
$$z^4 = \frac{1}{4} (1+i)^4 = (\frac{1+i}{52})^4 = (e^{i\pi/4})^4 = e^{i\pi + 2in\pi}$$

$$\Rightarrow z = e^{i\pi/4} + \frac{in\pi}{2} \qquad n = 0, 1, 2, 3$$

$$z_1 = e^{i\pi/4}$$
, $z_2 = e^{3i\pi/4}$, $z_3 = e^{5i\pi/4}$, $z_4 = e^{7i\pi/4}$

(iii)
$$x + iy + x - iy = \frac{1}{x + iy} + \frac{1}{x - iy}$$

 $2x = \frac{x - iy}{x^2 + y^2} + \frac{x + iy}{x^2 + y^2} \Rightarrow 2x = \frac{2x}{x^2 + y^2}$

$$x=0$$
 or $x^2+y^2=1$

Setter: D. T. PAPAGEORGIOU

Checker: R.T. FENNER

Setter's signature :-

Checker's signature:

MATHEMATICS FOR ENGINEERING STUDENTS EXAMINATION QUESTION / SOLUTION

SESSION: 2000 - 2001

QUESTION

PAPER

Please write on this side only, legibly and neatly, between the margins

SOLUTION

(i) (a)
$$\sin z = \frac{e^{iz} - e^{-iz}}{zi}$$
, $\cos z = \frac{e^{iz} + e^{-iz}}{z}$
 $\sinh z = e^{z} - e^{-z}$, $\cosh z = e^{z} + e^{-z}$

10

2

(b)
$$e^{\frac{7}{2}} - e^{-\frac{7}{2}} = i$$
 $\Rightarrow e^{\frac{27}{2}} = \frac{1+i}{1-i} = i$

|i|=1 ang $(i)=\frac{\pi}{2}+2n\pi$ \Rightarrow $2z=\ln 1+i(\frac{\pi}{2}+2n\pi)$

 $z = i\left(\frac{\pi}{4} + n\pi\right)$ any integer

(c)
$$tan^2 iz = 1 \Rightarrow tan iz = 1 \Rightarrow itanhz = 1 \Rightarrow tanhz = i$$

 $tan iz = -1 \Rightarrow itanhz = -1 \Rightarrow tanhz = -i$

2

2

3

tanh z = -i > tanh (- z) = i > -z = i (= + nT)

Z= i(- # + n#)

n any integer

(ii)
$$\cos(z^2) = \cos(x^2 - y^2 + 2ixy) = \cos(x^2 - y^2)\cos(2ixy)$$

- $\sin(x^2 - y^2)\sin(2ixy)$

 $= \cos(x^2 - y^2) \cosh 2xy - i \sin(x^2 - y^2) \sinh 2xy$

 $cos(z^2)$ real \Rightarrow $sin(x^2-y^2)sinh2xy=0$

D. T. PAPAGEORGIOU

Checker:

R.T. FENNER

Setter's signature:

Checker's signature: