ASE3093 Automatic Control: Homework #7

1) Runway approach problem. 아래는 활주로에 접근하고 있는 항공기의 횡방향 경로 제어 시스템을 표현한 것인데, 이 문제에서는 위치 오차 x_c-x 와 속도 오차 v로부터 측방향 기동 가속도 명령 a_c 를 계산하기 위한 제어기를 설계하고 $(K_x$ 와 K_v 를 선택하고), 설계된 제어기의 강인성을 확인하고자 한다. 시스템의 동역학은 아래 블럭 다이어그램으로 나타낼 수 있다.

설계된 제어기는 기동 가속도 명령 a_c 를 계산하며, 기동 가속도 명령 a_c 는 오토파일럿 $G_{\rm ap}(s)=a(s)/a_c(s)$ 로 전달되어 실제 가속도 a가 생성된다.

a) 우선, 오토파일럿이 이상적이라고 가정하여 $G_{\rm ap}(s)=1$ 이라 하자. 즉, 오토파일 럿은 제어기에 의해 계산된 기동가속도 명령을 순간적으로 정확히 발생시킨다고 가정한다.

폐루프 극점이 $s=-1\pm j$ 에 위치하여, 폐루프 대역폭과 댐핑이 각각 $\sqrt{2}$ 와 $1/\sqrt{2}$ 가 되도록 하는 K_v 와 K_x 값을 결정하시오.

- b) 이제, 오토파일럿에 스케일팩터 에러가 존재하여 $G_{\rm ap}(s)=1$ 이 아닌, $G_{\rm ap}(s)=\xi$ 라고 가정하자. 여기서 ξ 는 양의 실수이다.
 - (a)에서 설계된 제어기를 $G_{\rm ap}(s)=\xi$ 가 고려된 시스템에 적용할 때, 페루프 시스템의 안정성이 보장되는 ξ 의 범위를 구하시오. 필요하면 컴퓨터를 사용하시오.
- c) 좀 더 현실적인 오토파일럿은 아래와 같은 3차 동역학 시스템으로 모델링할 수 있다. 아래 시스템에서 $\omega=4$, $\zeta=0.7$, p=6라고 가정한다.

$$G_{\rm ap}(s) = \frac{a(s)}{a_{\rm c}(s)} = \frac{\xi p \omega^2}{(s+p)(s^2+2\zeta\omega s + \omega^2)} \label{eq:Gap}$$

(a)에서 설계된 제어기를 위의 3차 오토파일럿이 고려된 시스템에 적용할 때, 폐루 프 시스템의 안정성이 보장되는 ξ 의 범위를 구하시오. 필요하면 컴퓨터를 사용하시오.

2) Nyquist stability criterion. PID 제어를 활용한 다음 이중 적분 시스템이 있다. 아래 물음에 답하시오.

$$G(s) = \frac{1}{s^2}$$

$$K(s) = 2\left(1 + \frac{1}{s} + s\right)$$

- a) 주파수 $\omega = 1$ (s = j)일 때, K(s)G(s)의 크기와 위상을 구하시오.
- b) 직접 Bode 선도를 그리고, 컴퓨터의 bode() 함수를 이용한 결과와 비교하시오.
- c) 이 제어 시스템의 이득 마진과 위상 마진을 구하고, 컴퓨터의 margin() 함수를 이용한 결과와 비교하시오. 결과가 어떻게 다른지 확인하고, 왜 그런 결과가 나왔는지 기술하시오.
- d) $\omega \to 0$ 인 지점(도표에서 반지름이 무한대인 지점)에 유의하여 Nyquist 선도를 그리시오. 이 문제에서는 컴퓨터의 nyquist() 함수가 큰 도움이 되지는 않을 것이다.
- e) d)에서 얻은 Nyquist 선도에서 폐루프 안정성을 확인하고, N (-1 지점을 시계방 향으로 둘러싸는 선의 개수)과 Z (폐루프 시스템에 있는 불안정한 극점의 개수) 값을 구하시오. 마지막으로 폐루프 시스템의 안정성을 확인하시오.
- f) e)에서 확인한 안정성 확인 결과를 컴퓨터를 활용한 결과와 비교하시오. 페루프 시스템의 극점 위치를 확인하기 위해서 rlocus(), pole(), eig(), 등을 활용하 시오.
- g) f)의 결과는 d)-e)의 결과와 동일해야 한다. 그렇지 않다면 친구들과 의논하여 위 문제를 다시 해결하시오.