DATA QUALITY

Alexander Huth @ UBA ECI Course 2017-7-25

ONLINE MATERIALS

http://github.com/alexhuth/eci-2017

BEFORE YOU DO ANYTHING ELSE, MAKE SURE YOUR DATA IS GOOD

HOW GOOD IS YOUR (TIMESERIES) DATA?

HOW GOOD IS YOUR (TIMESERIES) DATA?

WHAT IS NOISE?

 If the same stimulus is repeated, the NOISE is different while SIGNAL is the same

$$x_i(t) = s(t) + \epsilon_i(t)$$

measured response on i'th repetition

WHAT IS NOISE?

• (Assuming stationarity of the signal!)

- Repeat the same experiment multiple times
- The component of the response that is the same across repetitions is the SIGNAL, the components that are different are NOISE

PREGUNTA

What is noise? Is all trial-to-trial variability noise?

Please:

- Think about this question for 2 minutes
- Turn to your neighbor and discuss what you thought of

METRICS FOR REPEATABILITY

- SNR (signal-to-noise ratio)
- EV (explainable variance)
- MPWC (mean pairwise correlation)
- Coherence spectrum

SIGNAL TO NOISE RATIO

 The signal-to-noise ratio (SNR) is defined as:

$$SNR = \frac{\text{var}(s(t))}{\text{var}(\epsilon(t))}$$

 But this is rarely used in practice (at least for neuroscience data)

SNR = \frac{\mbox{var}(s(t))}{\mbox{var}
(\epsilon(t))}

SIGNAL TO NOISE RATIO

 In practice SNR must be computed using mean response:

$$S\hat{N}R = \frac{\text{var}(\bar{x}(t))}{\langle \text{var}(x_i(t) - \bar{x}(t)) \rangle_i}$$

\hat{SNR} = \frac{\mbox{var}(\bar{x}(t))}
{\langle\mbox{var}(x_i(t) - \bar{x}(t))
\rangle i}

SIGNAL TO NOISE RATIO

- NB: Functional SNR is <u>not</u> tSNR (temporal SNR) aka SFNR (signal to fluctuation noise ratio) commonly used in MRI & image processing
 - tSNR/SFNR are usually defined as inverse of coefficient of variation:

$$tSNR = \frac{\text{mean}(x(t))}{\text{std}(x(t))}$$

EV (EXPLAINABLE VAR.)

 How much of the total variance is explained by the mean across repeats?

$$EV = 1 - \frac{\sum_{i} \operatorname{var}(x_i(t) - \bar{x}(t))}{\sum_{i} \operatorname{var}(x_i(t))}$$

EV (EXPLAINABLE VAR.)

- EV is between 0 and 1 (nice!)
- EV is related to noise ceiling (later!)

EV (EXPLAINABLE VAR.)

- EV is positive even for completely random datasets!
 - EV is biased upwards!

• Bias correction:
$$EV^* = EV - \frac{1-EV}{N-1}$$

number of repetitions

MPWC (MEAN PAIRWISE CORR.)

 On average, how correlated are the responses from different repeats with each other?

$$MPWC = \langle corr(x_i(t), x_j(t)) \rangle_{i,j}$$

MPWC = \langle \mbox{corr}(x_i(t),
x_i(t)) \rangle_{i,i}

MPWC (MEAN PAIRWISE CORR.)

- MPWC is easy to explain!
- MPWC is unbiased
- MPWC is almost identical to biascorrected EV (proof left as exercise...)

COHERENCE SPECTRUM

• First, coherence between two signals

$$C_{xy}(f) = rac{|G_{xy}(f)|^2}{G_{xx}(f)G_{yy}(f)}$$
 autospectral density

COHERENCE SPECTRUM

 When used to measure data quality, coherence gives repeatability at each frequency!

$$Coh(f) = \langle C_{\bar{x},x_i}(f) \rangle_i$$

COHERENCE SPECTRUM

Example: fMRI data collected at different sampling rates

10 MINUTE BREAK

WHY IS REPEATABILITY IMPORTANT?

- Models require signal test of a good paradigm
- Explanation for Type II error (false negatives)
- Provides a ceiling on predictive model performance (noise ceiling)

- Maximum predictive performance of a model is limited by repeatability of the data
 - Even with n repeats, the average response is still noisy!

- Many approaches:
 - Sahani & Linden (2003)
 - Hsu, Borst, & Theunissen (2004)
 - David & Gallant (2005)
 - Schoppe et al. (2016)
- All have problems with very noisy data (e.g. fMRI)

David 2005 method HBT 2004 method

- Recommended procedure given in:
 Schoppe, Harper, Willmore, King, & Schnupp (2016)
- (But there's room to improve on this!)

No!

• Thought (fMRI) experiment: average together all the voxels in the brain.

Does the resulting megavoxel have high repeatability? *Yes!*

Is it useful? No!

- Repeatability is GOOD for comparing:
 - Across response channels (e.g. voxels) in same dataset
 - Across different types of stimuli
 - Across data acquisition methods where spatial and temporal resolution are preserved

- Repeatability is BAD for comparing:
 - Across data acquisition methods where spatial or temporal resolution are NOT preserved

- Repeatability is susceptible to the information trade-off problem
 - You can increase repeatability by sacrificing information
 - Thus, repeatability can be "falsely" inflated

PREGUNTA

Can you think of a metric for data quality that could not be inflated by sacrificing information?

Please:

- Think about this question for 2 minutes
- Turn to your neighbor and discuss what you thought of

TIMEPOINT CLASSIFICATION

- 1. (Optional: temporally up-sample data)
- 2. Average n-1 repeats
- 3. In n'th repeat, take timepoint t^*
- 4. Decide which of T timepoints in average response best matches t^* (by correlation)

TIMEPOINT CLASSIFICATION

h/t James Gao, Anwar Nuñez

TIMEPOINT CLASSIFICATION

TIMEPOINT CLASSIFICATION

- A measure of how much information there is about the stimulus in the measured responses
- Perhaps a more absolute (& thus comparable) measure than repeatability

TAKEAWAYS

- Data quality is important
- Learn how to measure data quality
- Before doing an experiment, cycle:
 - (1) select data collection parameters,
 - (2) collect test data,
 - (3) assess data quality

THANKS