UNIVERSITETET I OSLO

Det matematisk-naturvitenskapelige fakultet

Deleksamen i MAT1110 — Kalkulus og lineær algebra.

Eksamensdag: 29. april, 2010.

Tid for eksamen: 10:00-12:00.

Oppgavesettet er på 9 sider.

Vedlegg: Ingen.

Tillatte hjelpemidler: Formelsamling, godkjent kalkulator.

Kontroller at oppgavesettet er komplett før du begynner å besvare spørsmålene.

Husk å fylle inn kandidatnummer under.

Kandidatnr:	

Alle oppgavene teller 1 poeng hver. Den totale poengsummen er altså 20. Det er 5 svaralternativer for hvert spørsmål, men det er bare ett av disse som er riktig. Dersom du svarer feil eller lar være å krysse av på et spørsmål, får du null poeng. Du blir altså ikke "straffet" med minuspoeng for å svare feil. Lykke til!

Oppgave- og svarark

Oppgave 1. Sett

$$\mathbf{F}(x,y) = (y,x),$$

og la \mathcal{C} være kurven $\mathbf{r}(t) = (t^4 \cos t, t^4 \sin t)$, der $0 \le t \le \frac{\pi}{4}$. Linjeintegralet $\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r}$ blir da:

- \Box 0
- $\checkmark \qquad \frac{\pi^8}{2^{17}}$
- \square Eksisterer ikke
- \Box $\frac{\pi^4}{2^4}$
- \Box π

Oppgave 2. La \mathcal{C} være kurven parametrisert ved $\mathbf{r}(t) = (\cos(2\pi(e^t - 1)), \sin(2\pi(e^t - 1))),$ $0 \le t \le \ln 2$, og la $\mathbf{F}(x, y) = (x^2y, xy^2)$. Da er $\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r}$ lik:

- \Box π
- \square ln 2
- $\Box e^2$
- \Box 1
- \checkmark 0

Oppgave 3. La \mathcal{C} være kurven definert ved $\mathbf{r}(t) = (\sqrt{t}\cos(2t), \sqrt{t}\sin(2t)), 0 \le t \le 2\pi$. Kurven ser da slik ut:

Oppgave 4. Mengden

$$\{(x,y) \mid \sin(x^2 + y^2) = 0\}$$
 blir

 \square en sirkel med radius $\sqrt{\pi}$.

 \checkmark Punktet (0,0), sammen med uendelig mange sirkler, der sirklene med større radier er nærmere hverandre.

 \square kun punktet (0,0).

 $\hfill\Box$ punktet (0,0), sammen med uendelig mange sirkler, der sirklene har lik avstand mellom hverandre.

 \square punktet (0,0), sammen med uendelig mange sirkler, der sirklene med større radier er lenger unna hverandre.

(Fortsettes på side 4.)

Oppgave 5. Ligningen

$$x^2 - y^2 + 4x - 3y + 10 = 0$$

beskriver:

- □ en rett linje
- \square en parabel
- □ en ellipse
- ✓ en hyperbel
- \square det fins ingen punkter (x, y) som oppfyller ligningen

Oppgave 6. En lysstråle kommer inn parallelt med aksen til parabelen $y^2 = 4x$ fra punktet (4,1), med retning mot y-aksen, og blir reflektert via parabelen to ganger (vi tenker oss parabelen som et perfekt speil). Den totale lengden lyset tilbakelegger før det treffer linjen x = 5 er:

- \square 10
- □ 9
- **▼** 11
- \square avhengig av lyshastigheten
- \square 14

Oppgave 7. Vi definerer funksjonene $F: \mathbb{R}^2 \to \mathbb{R}$ og $\mathbf{G}: \mathbb{R}^2 \to \mathbb{R}^2$ ved

$$F(u, v) = u\cos(v) \text{ og } \mathbf{G}(x, y) = (e^{xy}, x^2).$$

Da er tangentplanet til grafen til den sammsensatte funksjonen $H(x,y)=F(\mathbf{G}(x,y))$ i (x,y)=(0,1) gitt ved:

- $\Box y = 0$
- $\Box x + y + z = 0$
- ☐ Tangentplanet eksisterer ikke i det gitte punktet
- $\square \ x y z = 0$
- $\sqrt{-x+z}=1$

Oppgave 8. Lineæravbildningen $T: \mathbb{R}^3 \to \mathbb{R}^3$ er slik at alle punkter speiles gjennom planet x+y=0. Matrisen til T er da gitt ved:

 $\begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$

 $\begin{pmatrix} 0 & 0 & 1 \\ 0 & -1 & 0 \\ -1 & 0 & 0 \end{pmatrix}$

 $\begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$

 $\begin{pmatrix} 0 & -1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

 $\begin{pmatrix} 1 & -1 & 1 \\ -1 & 0 & 0 \\ 1 & 0 & 1 \end{pmatrix}$

Oppgave 9. En affinavbildning $T\mathbf{x} = A\mathbf{x} + \mathbf{c}$, er gitt ved at

$$T\begin{pmatrix}0\\0\end{pmatrix}=\begin{pmatrix}1\\2\end{pmatrix},\ T\begin{pmatrix}1\\1\end{pmatrix}=\begin{pmatrix}1\\4\end{pmatrix},\ \mathrm{og}\ T\begin{pmatrix}1\\-1\end{pmatrix}=\begin{pmatrix}5\\2\end{pmatrix}.$$

Matrisen til T (altså A) er da gitt ved:

 $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

 $\begin{pmatrix} 1 & 1 \\ 2 & -2 \end{pmatrix}$

 $\begin{pmatrix} 1 & 5 \\ 4 & 2 \end{pmatrix}$

 $\begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}$

 $\begin{pmatrix} 2 & -2 \\ 1 & 1 \end{pmatrix}$

Oppgave 10. Arelaet av området som er avgrenset av kurvene $y = x^{1/4}$ og $y = x^4$ er:

- \Box 1
- $\sqrt{\frac{3}{5}}$
- $\square \frac{2}{5}$
- \square 2
- $\Box \sqrt{2}$

Oppgave 11. La den parametriserte kurven \mathcal{C} være gitt ved $\mathbf{r}(t) = (e^t, \sqrt{2}t, e^{-t}), 0 \le t \le 1$. Da blir

$$\int_{\mathcal{C}} xz \, ds$$

- $\Box e-1$
- $\square 2\sqrt{2}$
- $\Box e + e^{-1}$
- \square 0

Oppgave 12. Buelengden til kurven $\mathbf{r}(t)=(\frac{1}{2}t^2,\frac{8}{3}t^{3/2},8t)$ fra t=0 til t=1 er:

- $\Box \sqrt{2}$
- \Box 1
- \Box 4
- \checkmark $\frac{17}{2}$
- $\square \frac{3}{2}$

Oppgave 13. I punktet (0,0,1) vokser funksjonen

$$f(x,y,z) = x^4 + y^4 + z^4 + e^{x^2 + y^2}$$

raskest i retningen:

- \Box (-1,-1,3)
- \Box (1, 1, 3)
- \Box (1, 1, 1)
- \Box (-1, -1, 1)

Oppgave 14. For funksjonen $f(x, y, z) = x^4 + y^4 + z^4 + e^{x^2 + y^2}$ i forrige deloppgave er (0, 0, 0) (origo):

- $\mathbf{\nabla}$ et globalt minimum for f
- \square et globalt maksimum for f
- \square et lokalt minimum for f
- \square et lokalt maksimum for f
- \square ikke et kritisk punkt for f

Oppgave 15. Vi lar $R = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \ge 1\}$. For hvilke positive tall p vil det uegentlige integralet

$$\iint_R \frac{1}{(x^2 + y^2)^p} \, dx \, dy$$

konvergere?

- \square Kun for p=2
- \square $p \ge 1$
- $\checkmark p > 1$
- \square Ikke konvergens for noen p
- \square $p \ge 0$

Oppgave 16. La A være paraboloiden gitt ved $z=x^2+y^2$. Da er arealet av den delen av A som har $x^2+y^2\leq 1$ lik:

- \Box π
- \Box $\pi/4$
- $\pi (5\sqrt{5}-1)/6$
- $\Box \sqrt{5}\pi$
- \square $2\pi^2$

Oppgave 17. Volumet til legemet avgrenset av paraboloiden $z=x^2+y^2$, sylinderen $x^2+y^2=25$, xy-planet, og som ligger i første oktant (d.v.s. $x,y,z\geq 0$) er:

- $\Box \frac{625\pi}{2}$
- $\Box \frac{25\pi}{4}$
- \square π
- $\sqrt{625\pi}$

Oppgave 18. Den inverse til matrisen

$$\begin{pmatrix} 1 & 2 & 0 \\ 2 & 5 & 3 \\ -1 & -1 & 4 \end{pmatrix}$$

er gitt ved:

 \checkmark

$$\begin{pmatrix} 23 & -8 & 6 \\ -11 & 4 & -3 \\ 3 & -1 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 22 & -8 & 6 \\ -13 & 2 & -10 \\ 3 & -1 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 23 & -8 & 4 \\ -13 & 3 & -3 \\ 3 & -1 & 4 \end{pmatrix}$$

$$\begin{pmatrix} 25 & -8 & 4 \\ -11 & 4 & -3 \\ 2 & -1 & 3 \end{pmatrix}$$

$$\begin{pmatrix}
17 & -8 & 6 \\
-10 & 4 & -3 \\
14 & -1 & 4
\end{pmatrix}$$

Oppgave 19. Vektorene

$$\mathbf{a} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \ \mathbf{b} = \begin{pmatrix} 0 \\ 4 \\ 0 \end{pmatrix}, \ \mathbf{c} = \begin{pmatrix} 1 \\ 9 \\ 4 \end{pmatrix}, \ \mathbf{d} = \begin{pmatrix} 1 \\ 13 \\ 8 \end{pmatrix}$$

tilfredsstiller:

d = a - b + 3c

$$d = -\mathbf{a} - \mathbf{b} + 2\mathbf{c}$$

$$d = -\frac{3}{2}\mathbf{a} - \mathbf{b} + 2\mathbf{c}$$

$$\Box$$
 d = -a - 4b + 2c

$$\square \ d = -a + b + c$$

Oppgave 20. La $T: \mathbb{R}^n \to \mathbb{R}^n$ være en affinavavbildning. Hvillket av følgende utsagn er *riktig*? (for *alle* affinavbildninger T)?

- \Box T er unikt bestemt av $T(\mathbf{e}_1), T(\mathbf{e}_2), \cdots, T(\mathbf{e}_n)$, der \mathbf{e}_i er vektoren med 1 på plass i, 0 ellers.
- $\Box T(t\mathbf{x}) = tT(\mathbf{x})$ for alle $\mathbf{x} \in \mathbb{R}^n$, der t er et vilkårlig tall
- $\Box T(\mathbf{x} \mathbf{y}) = T(\mathbf{x}) T(\mathbf{y})$
- \triangle Avbildningen $S(\mathbf{x}) = T(\mathbf{x}) T(\mathbf{0})$ er lineær
- $\hfill\Box$ Funksjonen $f(\mathbf{x}) = |T(\mathbf{x})|^2$ har et globalt minimum for $\mathbf{x} = \mathbf{0}$

SLUTT