Álgebra Linear e Aplicações - Lista 2

Entregar dia 18 de Abril

- 1. Para as seguintes matrizes, calcula a forma escalonada e encontra uma base para cada um dos 4 espaços fundamentais: o espaço linha, o espaço coluna, o espaço nulo e o espaço nulo da matriz transposta $(R(A^T), R(A), N(A), N(A^T), respetivamente)$.
 - (a) (5 pts) $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$
 - (b) $(5 \text{ pts}) \begin{bmatrix} 1 & 2 \\ 3 & 6 \end{bmatrix}$
 - (c) (10 pts) $\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$
 - (d) (10 pts) $\begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \end{bmatrix}$
- 2. Supõe que v_1,\ldots,v_n são elementos de um espaço vetorial V, e considera a função $T:\mathbb{R}^n\to V$ definida por

$$T(\alpha_1, \dots, \alpha_n) = \alpha_1 v_1 + \dots + \alpha_n v_n$$

- (a) (5 pts) Mostra que T é uma transformação linear.
- (b) (9 pts) Mostra que $\{v_1, \ldots, v_n\}$ é um conjunto gerador de V se e só se T é uma função sobrejetiva. (Uma função $f: X \to Y$ é sobrejetiva se para todo o $y \in Y$ existe $x \in X$ tal que f(x) = y).
- (c) (9 pts) Mostra que $\{v_1, \ldots, v_n\}$ é um conjunto linearmente independente se e só se T é uma função injetiva (Uma função $f: X \to Y$ é injetiva para todo o $x, y \in X$, $f(y) = f(x) \Rightarrow x = y$).
- (d) (2 pts) Mostra que $\{v_1, \dots v_n\}$ é uma base de V se e só se T é uma função bijetiva (Uma função $f: X \to Y$ é bijetiva se é injetiva e sobrejetiva).
- 3. Denota o espaço de polinómios de grau menor e igual a d por $\mathbb{R}[x]_d$. Polinómios são funções de $\mathbb{R} \to \mathbb{R}$, onde cada polinómio tem a seguinte expressão:

$$p(x) = \alpha_0 + \alpha_1 x + \dots + \alpha_d x^d,$$

para certos escalares $\alpha_0, \ldots, \alpha_d \in \mathbb{R}$. $\mathbb{R}[x]_d$ é um espaço vetorial. Dois polinómios $p(x) = \alpha_0 + \alpha_1 x + \cdots + \alpha_d x^d$ e $q(x) = \beta_0 + \beta_1 x + \cdots + \beta_d x^d$ são iguais se e só se $\alpha_0 = \beta_0$, $\alpha_1 = \beta_1$, \cdots , $\alpha_d = \beta_d$.

1

- (a) (5 pts) Mostra que os polinómios $\{1,x,x^2,\ldots,x^d\}$ são uma base de $\mathbb{R}[x]_d$. Qual é a dimensão de $\mathbb{R}[x]_d$?
- (b) (10 pts) Mostra que a transformação $T: \mathbb{R}[x]_4 \to \mathbb{R}[x]_3$, tal que T(p(x)) = p'(x), é linear. Qual é a matriz que representa esta transformação linear nas bases $\{1, x, x^2, x^3, x^4\}$ de $\mathbb{R}[x]_4$ para $\{1, x, x^2, x^3\}$ de $\mathbb{R}[x]_3$?
- (c) (10 pts) Mostra que a transformação $W: \mathbb{R}[x]_2 \to \mathbb{R}[x]_4$, tal que $W(p(x)) = (x-1)^2 p(x)$, é linear. Qual é a matriz que representa esta transformação linear nas bases $\{1, x, x^2\}$ de $\mathbb{R}[x]_2$ para $\{1, x, x^2, x^3, x^4\}$ de $\mathbb{R}[x]_4$?
- 4. (10 pts) Mostra que o espaço nulo de A é o mesmo de A^TA .
- 5. (10 pts) Mostra que para quaisquer duas matrizes $A \in \mathbb{R}^{m \times n}$ e $B \in \mathbb{R}^{n \times p}$,

$$rank(AB) \le min(rank(A), rank(B)).$$