On the Subject of Solubility

Solvent: Perbromic Acid. Solute: This bomb. Solution: An explosion and debris.

- Determine if the solvent will dissolve the solute by determining their chemical properties.
- This module does not follow chemistry to a tee.

Determining the Polarity of a Solvent

- A molecule can be either polar or nonpolar. A solvent cannot dissolve a solute that has opposite polarity.
- The display above both molecules will show the polarity of each one. Unfortunately, the solvent's display is faulty and may display false information.
- To determine the polarity of the solvent, create a Lewis Dot Structure of the formula. If the molecule is asymmetrical or the central atom has a lone pair(s) of electrons then it is polar. Otherwise it is nonpolar.
- A valid Lewis Dot Structure has the following rules:
 - The total amount of electrons required is equal to the sum of all valence electrons in a molecule (the sum of the group numbers per atom).
 - Each atom must be paired to another atom via a molecular bond.
 - Each atom must have eight electrons in total.
 - Exceptions to this rule are Hydrogen (2), Beryllium (4), and Boron (6).
 - A bond between atoms counts as two electrons for both atoms, but counts as only two for the total amount of electrons.
 - o There may be up to three bonds between atoms.
 - If an atom has leftover electrons, then they may be placed on the atom without bonding to another atom.
 - You cannot exceed the amount of required electrons.
- The image on the next page shows an example of a valid Lewis Dot Diagram.

 The left molecule is polar while the right is nonpolar.

Determining the Solubility of the Solute

- The solute itself may not be soluble, determine this by using the rules below. If two rules contradict each other, the preceding rule takes precedence.
- If the solute is insoluble, then it cannot be dissolved by the solvent (duh).
- 1. Salts containing Group I elements are soluble. Salts containing ammonium (NH_4^+) are also soluble.
- 2. Salts containing a nitrate ion (NO₃⁻) are soluble.
- 3. Salts containing Cl⁻, Br⁻, or I⁻ are soluble. Exceptions to this rule are Ag^+ , Pb^{2+} , and $(Hg_2)^{2+}$.
- 4. Most silver salts (contains Ag) are insoluble. AgNO $_3$ and Ag($C_2H_3O_2$) are soluble, virtually all others aren't.
- 5. Most sulfate salts (contains SO₄) are soluble. Exceptions are CaSO₄, BaSO₄, PbSO₄, Ag₂SO₄, and SrSO₄.
- 6. Hydroxide salts (contains OH⁻) are soluble, except for the salts of transition metals and Al³⁺.
- 7. Sulfides (contains S) of transition metals are insoluble.
- 8. Carbonates (contains CO₃) are insoluble.
- 9. Chromates (contains CrO₄) are insoluble.
- 10. Phosphates (contains PO₄) are insoluble.
- 11. Fluorides (contains F_2) are insoluble.
 - If your solvent can dissolve your solute, press the "Dissolve" button.
 - Otherwise, if your solvent and solute do not share polarity, press the "Polarize" button.
 - Otherwise, press the "Insoluble" button.
 - Upon a strike, the module will reset.