MIADC-S1

TP N°4----ANALYSE DE VARIANCE (ANOVA) A UN FACTEUR

I. Enoncé 1:

Voici les résultats d'une étude qui mesure le score de l'iq (indice d'intelligence) sur un groupe d'étudiant selon leur spécialité. (1=étudiant en physique, 2=étudiant en maths, 3=étudiant en chimie) :

Groupe score_iq

Cromp	
1,00	44,00
1,00	40,00
1,00	44,00
1,00	39,00
1,00	25,00
1,00	37.00
1,00	31,00
1,00	40,00
1,00	22,00
1,00	34,00
1,00	39.00
1.00	39,00 20,00
1,00 1,00	39,00
1,00	42,00
1,00	41,00
2,00	36,00
2,00	40,00
2,00	37.00
2,00	37,00 35,00
2,00	39,00
2,00	40,00
2,00	36,00
2,00	38,00
2,00	24.00
2,00	24,00 27,00
2,00	29,00
2,00	24,00
2,00	45,00
2,00	44,00
2,00	44,00
	52.00
3,00	52,00 50,00
3,00	51,00
3,00	52,00
3,00	45,00
3,00	49,00
3,00	47,00
3,00	46,00
3.00	47,00
3,00 3,00	47,00
3,00	46,00
3,00	45,00
3,00	50,00
3,00	47.00
2,00	+ /,00

3,00

49,00

TAF:

- a. Formulez le problème (qu'est-ce qu'on cherche de cette étude ?)
- b. Variable dépendante :
- c. Facteur:
- d. Effectuez une ANOVA pour valider vos hypothèses.

- i. <u>Lecture de données</u> : score_iq <- read.csv2("D:/COURSES_FSTBM/MASTER_ID_1/AD_R_2021/score_iq.txt", sep="")
- ii. <u>Préciser le facteur :</u> data <- data.frame(score=score_iq\$score_iq, group=factor(score_iq\$Groupe)) levels(data\$group)
- iii. Stats descriptives: data %>% group_by(group) %>% get_summary_stats(score, type = "mean_sd")
- iv. <u>Visualisation:</u> ggboxplot(data, x = "group", y = "score")

```
plot(score ~group, data=data)
 v. Outliers: data %>% group by(group) %>% identify outliers(score)
 vi. Normalité:
   data %>% group by(group) %>% shapiro test(score)
   ggqqplot(data, "score", facet.by = "group")
vii. Homogénéité des variances:
     bartlett.test(data$score ~data$group)
     data %>% levene_test(score ~ group)
viii. ANOVA:
     rs.aov <- Anova(lm(score~group, data=data))</pre>
     anova summary(rs.aov)
     rs.aov <- aov(score ~ group, data )
     summary(rs.aov)
     rs.aov <- data %>% anova_test(score ~ group)
     rs.aov
     rs.aovw <- data %>% welch anova test(score ~group)
 ix. Test de Tukey:
     rs.tk <- data %>% tukey_hsd(score ~ group)
     rs.tk
     rs.tk2 <- rs.tk %>% add_xy_position(x = "group")
     ggboxplot(data, x = "group", y = "score") + stat_pvalue_manual(rs.tk2, hide.ns = TRUE) + labs(
     subtitle = get test label(rs.aov, detailed = TRUE),caption = get pwc label(rs.tk2))
 x. Normalité des résidus:
     # Construire le modèle linéaire
     mdl <- lm(score ~ group, data = data)
     # Créer un QQ plot des résidus
     ggqqplot(residuals(mdl))
     # Calculer le test de normalité de Shapiro-Wilk
     shapiro test(residuals(mdl))
 xi. En cas de non normalité
     rs.krl <- data %>% kruskal_test(score ~ group)
     rs.krl
     # taille de l'effet
     #Les valeurs d'interprétation couramment utilisées dans la littérature sont : 0,01-<0,06 (petit
     effet), 0.06 - < 0.14 (effet modéré) et >= 0.14 (effet important).
     data %>% kruskal effsize(score ~ group)
     #test de Dunn post-hoc
     rs.dnt <- data %>% dunn_test(score ~ group, p.adjust.method = "bonferroni")
     rs.dnt
     rs.dnt2 <- rs.dnt %>% add xy position(x = "group")
     ggboxplot(data, x = "group", y = "score") + stat_pvalue_manual(rs.dnt2, hide.ns = TRUE) + labs(
     subtitle = get test label(rs.krl, detailed = TRUE),caption = get pwc label(rs.dnt2))
     # ou bien test de Wilcoxon
     rs.wxt <- data %>% wilcox_test(score ~ group, p.adjust.method = "bonferroni")
     rs.wxt
     rs.wxt2 <- rs.wxt %>% add_xy_position(x = "group")
     ggboxplot(data, x = "group", y = "score") + stat_pvalue_manual(rs.wxt2, hide.ns = TRUE) + labs(
     subtitle = get_test_label(rs.krl, detailed = TRUE),caption = get_pwc_label(rs.wxt2))
```

xii. En cas de non homogénéité:

```
rs.ght <- data %>% games_howell_test(score ~group)
rs.ght
rs.ght2 <- rs.ght %>% add_xy_position(x = "group")
ggboxplot(data, x = "group", y = "score") + stat_pvalue_manual(rs.ght2, hide.ns = TRUE) + labs(
subtitle = get_test_label(rs.aovw, detailed = TRUE),caption = get_pwc_label(rs.ght2))
# ou two sample t-test
rs.tt <- data %>% pairwise_t_test(score ~ group, pool.sd = FALSE, p.adjust.method =
"bonferroni")
rs.tt
rs.tt2 <- rs.ght %>% add_xy_position(x = "group")
ggboxplot(data, x = "group", y = "score") + stat_pvalue_manual(rs.tt2, hide.ns = TRUE) + labs(
subtitle = get_test_label(rs.aovw, detailed = TRUE),caption = get_pwc_label(rs.tt2))
```

II. Enoncé 2:

Les résultats d'une étude menée sur un groupe d'individus pour mesure le score de réaction par rapport au genre et la dose de drogue administrée, sont fournis dans le tableau : genre (1=homme, 2=femme), dose (1=faible, 2=forte).

TAF: Mêmes questions que (I).

Individu	genre	dose	score
1,00	1,00	1,00	6,00
2,00	1,00	1,00	6,00
3,00	1,00	1,00	3,00
4,00	1,00	1,00	5,00
5,00	1,00	1,00	6,00
6,00	1,00	1,00	4,00
7,00	1,00	1,00	5,00
8,00	1,00	1,00	4,00
9,00	1,00	1,00	4,00
10,00	1,00	1,00	5,00
11,00	1,00	1,00	4,00
12,00	1,00	1,00	3,00
13,00	1,00	2,00	6,00
14,00	1,00	2,00	8,00
15,00	1,00	2,00	7,00
16,00	1,00	2,00	8,00
17,00	1,00	2,00	6,00
18,00	1,00	2,00	8,00
19,00	1,00	2,00	8,00
20,00	1,00	2,00	6,00
21,00	1,00	2,00	7,00
22,00	1,00	2,00	8,00
23,00	1,00	2,00	6,00
24,00	1,00	2,00	7,00
25,00	2,00	1,00	2,00
26,00	2,00	1,00	5,00
27,00	2,00	1,00	2,00
28,00	2,00	1,00	4,00
29,00	2,00	1,00	5,00
30,00	2,00	1,00	7,00
31,00	2,00	1,00	4,00

32,00	2,00	1,00	1,00
33,00	2,00	1,00	2,00
34,00	2,00	1,00	7,00
35,00	2,00	1,00	4,00
36,00	2,00	1,00	,00
37,00	2,00	2,00	2,00
38,00	2,00	2,00	3,00
39,00	2,00	2,00	4,00
40,00	2,00	2,00	,00
41,00	2,00	2,00	,00
42,00	2,00	2,00	1,00
43,00	2,00	2,00	2,00
44,00	2,00	2,00	2,00
45,00	2,00	2,00	4,00
46,00	2,00	2,00	3,00
47,00	2,00	2,00	6,00
48,00	2,00	2,00	3,00