Apply machine learning to Performance trend analysis

Araya Eamrurksiri

March 28, 2017

Araya Eamrurksiri Midterm report March 28, 2017 1 / 16

Overview

- Recall: Thesis objectives
- Markov switching model
 - Markov switching autoregressive model
- Model estimation
 - E-M algorithm
- What has been done?
- Mext step

Araya Eamrurksiri

Objectives

- Detect the state of the CPU utilization (degrading, improving or steady state)
- Detect whether there is any change in the test environment that effects the CPU utilization

Araya Eamrurksiri Midterm report March 28, 2017 3 / 16

Markov switching model, [Hamilton, 1989]

- A technique uses for describing the evolution of the process at different period of time
- Model involves multiple structures that can characterize the time series behaviors in different states
- The switching mechanism between the states is assumed to be an unobserved Markov chain - a stochastic process which contains the probability of transition from one state to any other state

Figure: regime shift between states

March 28, 2017

Markov switching model, [Hamilton, 1989]

Assuming that S_t denote an unobservable state variable

$$y_t = X_t' \beta_{S_t} + \varepsilon_t, \quad \varepsilon_t \sim N(0, \sigma_{S_t}^2)$$

 y_t is the observed value of time series at time t X_t are the predictor variables of time series at time t β_{S_t} are the coefficients in state S_t , where $S_t = 1, 2, ..., k$

Figure: Model structure

◆□▶ ◆□▶ ◆필▶ ◆필▶ ○

Araya Eamrurksiri Midterm report March 28, 2017 5 / 3

Markov switching model

Given dataset,

$$y_t = X_t' \beta_{S_t} + \varepsilon_t, \quad \varepsilon_t \sim N(0, \sigma_{S_t}^2)$$

- y_t is CPU utilization
- ullet X_t are components which have an impact on the CPU utilization
- Assume there are three states (k = 3): normal, good, bad

Figure: Model structure

6 / 16

Araya Eamrurksiri Midterm report March 28, 2017

Markov switching autoregressive model

Autoregressive model

$$y_t = c + \sum_{i=1}^{p} \phi_p y_{t-i} + \varepsilon_t$$

where c is constant, ϕ_p are parameters and ε_t is white noise

◆ロト ◆個ト ◆差ト ◆差ト 差 めなぐ

Araya Eamrurksiri Midterm report March 28, 2017 7 / 16

Markov switching autoregressive model

The observation are drawn from the first order autoregressive model, AR(1).

$$y_t = X_t' \beta_{S_t} + \phi_{1,S_t} y_{t-1} + \varepsilon_t$$

Figure: Model with additional dependencies at observation level

◆ロト ◆部ト ◆差ト ◆差ト 差 めなべ

Araya Eamrurksiri Midterm report March 28, 2017 8 / 16

Model estimation

Model parameters

$$\theta = (\beta_{S_t}, \phi_{1,S_t}, \sigma_{S_t}^2, \pi_{S_t}, p_{ij})$$

where,

 π_{S_t} is initial probabilities in state S_t p_{ij} is transition probabilities, $p_{ij} = P(S_t = j | S_{t-1} = i)$ $1 \le i, j \le k$ and S_t is non-observable variable

Model Likelihood

$$L(\theta; y_t) = f(y_t | \theta) = \sum_{t=1}^{T} \sum_{S_t=1}^{k} f(y_t | S_t; \theta) P(S_t)$$

9 / 16

Araya Eamrurksiri Midterm report March 28, 2017

Model estimation

E-M algorithm

- Expectation step: Calculate the expectation of S_t given the observation under the current estimated parameters
- Maximization step: Obtain new estimates of the parameters by maximizing likelihood
- Repeat until converged

10 / 16

One software product \Rightarrow many software packages One software package ⇒ many different types of test cases

Data preprocessing

- Select a test case which has a minimum value of CPU utilization for each software package
- Multiple values separated by a tab character are stored together in $column \Rightarrow split a tab-separated values to columns$
- Remove incomplete test cases

ID	Variable1	Variable2		ID	Variable1	A	В	С
1 2	X Y	A=2 B=1 C=5 A=4 B=2 C=8		1 2	X Y	2	1 2	5 8
3	Z	A=1 C=6	└ /	3	Z	1	0	6

Figure: Data example

Study and review source code in the R package in detail

 MSwM: An univariate autoregressive Markov switching model for linear and generalized model by using the EM algorithm [Sanchez-Espigares, 2014]

12 / 16

Implement and modify code in the package

- Small typo in the code when computing residual variance
- Solve non-invertible Hessian using generalized inverse procedure [Gill, 2004]
- Extension for categorical predictor variables
- Deal with NA coefficients
 - \Rightarrow Mostly occurs when predictor variables are categorical
 - ⇒ Initial coefficients with random subsets
 - ⇒ A single value or incomplete levels of variable

13 / 16

Results of fitting Markov switching autoregressive model

- Estimated parameters in each state
- For each observation,
 - ⇒ State assignment
 - ⇒ Probability assignment in each state
- Graphs show periods where the observation is in the specific state

Next step

- Model selection: Compare several models (e.g., number of states, number of parameters which have switching effects)
- State prediction: Find the most probable state for the new observation
- Making a state inference
- Fit model for other software products

15 / 16

Araya Eamrurksiri Midterm report March 28, 2017

References

James D Hamilton (1989)

A new approach to the economic analysis of nonstationary time series and the business cycle

Econometrica: Journal of the Econometric Society, pages 357-384.

Jeff Gill and Gary King (2004)

What to do when your hessian is not invertible: Alternatives to model respecification in nonlinear estimation

Sociological methods & research, 33(1):54-87.

Josep A. Sanchez-Espigares and Alberto Lopez-Moreno (2014)

MSwM: Fitting Markov Switching Models
CRAN R