Angus Galloway

☑ gallowaa@uoguelph.ca • ② angusg.com

Summary

I am an engineering graduate student with a research emphasis in robust machine learning and characterizing the *adversarial examples* phenomenon. My work has implications for the performance of critical tasks by machine learning-based systems such as autonomous driving and medical imaging. I have experience as a co-founder and scientific advisor to startups at the intersection of hardware and machine learning, and previously interned with several engineering teams in the semiconductor industry. I enjoy writing and have been recognized as an excellent presenter of technical topics to diverse audiences.

Education

2016–present: **MASc Engineering** *University of Guelph*, ON, Canada.

Research emphasis on robust and interpretable machine learning, with applications in computer vision and sequential data analysis, supervised by Graham W. Taylor PhD, and Medhat Moussa PhD, P. Eng.

2012–2016: **Bachelors of Engineering Systems & Computing** *University of Guelph*, ON, Canada. Capstone project titled "*Epileptic Seizure Prediction via Mobile Non-Invasive Electroencephalogram*" supervised by Dr. April Khademi PhD, P. Eng. Senior courses in signal processing, mixed-signal integrated circuit design, computer and large-scale software architecture.

Publications

Adversarial Training Versus Weight Decay *Angus Galloway, Thomas Tanay, Graham W. Taylor,* arXiv preprint arXiv:1804.03308, 2018.

Predicting Adversarial Examples with High Confidence *Angus Galloway, Graham W. Taylor, and Medhat Moussa,* arXiv preprint arXiv:1802.04457, 2018.

Attacking Binarized Neural Networks *Angus Galloway, Graham W. Taylor, and Medhat Moussa,* in the International Conference on Learning Representations (ICLR) 2018, top 19% of 935.

The Cional Dataset for Semantic Segmentation of Aquatic Invasive Species Angus Galloway, Graham W. Taylor, Aaron Ramsay, and Medhat Moussa, in the Conference on Computer and Robot Vision (CRV) 2017.

Teaching

- 2018 Guest lecturer and principal TA for graduate machine vision (30 students)
- 2017–2018 Guest lecturer and TA for senior undergraduate robotics (40–90 students)
 - 2016 Principal TA for senior undergraduate real-time systems design (60 students)

Professional Experience

2017–Present: **Scientific Advisor** *Dynamic Monitors*, Stratford, PE.

Consult on the SepticSitter.com project, a novel non-contact system for onsite wastewater monitoring.

- o Develop recurrent models for anomaly and event detection in time-series data.
- o Co-authored and devised test plan for a "Build in Canada Innovation Program" (BCIP) proposal selected for Pre-Qualified Pool, facilitating procurement of up to \$500K pre-commercial goods.
- o Design digital filters and machine learning models in *Python* and *C*, for temporal localization of ultrasonic reflections, suitable for deployment on a microcontroller with no floating–point unit.
- o Produce high quality graphics illustrating unique insights derived from the system for industry specific publications and magazines.

2017: **Co-Founder** *NextAI venture*, Toronto, ON.

CTO of a NextAI-backed venture providing speech transcription and context searching services for telephony applications. Ours was among 6 of 20 ventures invited to present to media and sponsors at the *NEXT Canada* 2017 *Prototype Day*.

2016: **Systems Engineering Intern** *NXP Semiconductors Inc.*, Austin, TX.

Was actively involved in the new product introduction (NPI) of a dual–radio bluetooth low–energy ARM based SoC. Developed a device characterization framework in *C* for ongoing use by the automated test team, and helped devise data collection procedures for official datasheet. Prototyped application level software for "low-power beacon" use cases (e.g as a Google Eddystone), and worked with design team to replicate and resolve an early-adopter systems integration challenge.

2015: **Engineering Intern** *Freescale Semiconductor Inc.*, Austin, TX.

Prototyped Internet-of-Things software reference designs (e.g in Linux and with an RTOS), and enabled *Kinetis family* microcontrollers with open source transport layer–agnostic connectivity frameworks. Maintained an R3 form factor CAN–bus PCB "shield" as part of the project, as well as a technical blog on Freescale's public community that received tens of thousands of views and was translated to several languages.

2014: **Microprocessor Engineering Intern** *Freescale Semiconductor Inc.*, Austin, TX.

Responsible for the power characterization of a new heterogeneous ARM Cortex-A9/M4 SoC under various benchmarks and multimedia use cases, publishing results in an application note.

2013: Microcontroller Engineering Intern Freescale Semiconductor Inc., Austin, TX.

Prototyped software use cases in *C* and conducted experiments for an online power estimator tool KINETIS-PET, initially for ARM M0+ microcontrollers. Fully characterized several device peripherals including the UART, SPI, I2C, ADC, and DAC, under a range of scenarios and servicing schemes.

Awards

2016: **Helen Grace Tucker Design Award** *University of Guelph*.

Award for the highest overall average in undergraduate engineering design courses for my major.

2016: 2^{nd} place, NXP Semiconductors Inc.

Final project presentations to senior management and peers. Out of 30 interns in the microcontrollers business unit.

2015: 2^{nd} **place**, Freescale Semiconductor Inc.

Global employee information technology hackathon.

2013: 1^{st} place, Freescale Semiconductor Inc.

Final project presentations to senior management and peers. Out of 80 interns in the microcontrollers business unit.

Community Involvement

Vector Institute Summer School on Fairness & Privacy (Apr. 2018): Invited talk.

Canada Learning Code (Dec. 2017): Volunteer instructor for "Ladies Learning Code: Data Insights with Python for Beginners" workshop in Charlottetown, PE.

University of Guelph IEEE Student Branch Chair (2015–2016): Designed an inverted pendulum robotics kit including custom 3D printed componenents, and lead a workshop teaching circuits and digital control theory with microcontrollers to 60 students, in collaboration with the "Women in Science and Engineering" club. Additional activities included:

- o Ran an autonomous line-following car racing challenge, and developed starter code in MATLAB/Simulink for teams. Devised a related challenge for the Guelph Engineering Competition (GEC) and provided technical assistance to teams.
- o Plan and M.C. research talks, helped run an Android programming workshop.

Unmanned Systems Canada (2015–2016): Lead a multidisciplinary effort involving the development of an embedded object recognition and navigation system for a UAV competition with an agricultural focus.

Technical Skills

Python: Over 2+ years for masters-level research experiments and tooling, including core scientific computing suite e.g numpy, scipy, sklearn, opency, matplotlib and GUIs in PyQT.

TensorFlow: Over 2+ years experience as differentiable programming framework of choice, and contributed several open-source TensorFlow based works providing custom low-level CUDA operations and e.g to the CleverHans library for evaluating the robustness of machine learning models against adversarial examples.

High Performance Compute: Conducting large scale deep learning experiments on distributed GPU clusters and troubleshooting performance bottlenecks.

C: Over 4+ years experience with *C* programming including data-structures, algorithm development, microcontroller interfacing (CAN–bus, I2C, etc), bare-metal, and managing complex wireless networking stacks (e.g BLE) with a RTOS.

Competencies and Interests

Leadership: Seek to harness individual strengths in multidisciplinary teams.

Systems: Design and debug complex systems involving custom H/W and S/W.

Other interests: Reading, writing, public-speaking, outdoor sports, electronics.