

Agenda

- 1 Session Overview
- **2** Wireless and Mobile Networks
- **3 Summary and Conclusion**

Course description and syllabus:

- http://www.nyu.edu/classes/jcf/csci-ga.2262-001/
- http://cs.nyu.edu/courses/spring16/CSCI-GA.2262-001/index.html

Textbooks:

» Computer Networking: A Top-Down Approach (6th Edition)

James F. Kurose, Keith W. Ross Addison Wesley

ISBN-10: 0132856204, ISBN-13: 978-0132856201, 6th Edition (02/24/12)

Course Overview

- Computer Networks and the Internet
- Application Layer
- Fundamental Data Structures: queues, ring buffers, finite state machines
- Data Encoding and Transmission
- Local Area Networks and Data Link Control
- Wireless Communications
- Packet Switching
- OSI and Internet Protocol Architecture
- Congestion Control and Flow Control Methods
- Internet Protocols (IP, ARP, UDP, TCP)
- Network (packet) Routing Algorithms (OSPF, Distance Vector)
- IP Multicast
- Sockets

Course Approach

- Introduction to Basic Networking Concepts (Network Stack)
- Origins of Naming, Addressing, and Routing (TCP, IP, DNS)
- Physical Communication Layer
- MAC Layer (Ethernet, Bridging)
- Routing Protocols (Link State, Distance Vector)
- Internet Routing (BGP, OSPF, Programmable Routers)
- TCP Basics (Reliable/Unreliable)
- Congestion Control
- QoS, Fair Queuing, and Queuing Theory
- Network Services Multicast and Unicast
- Extensions to Internet Architecture (NATs, IPv6, Proxies)
- Network Hardware and Software (How to Build Networks, Routers)
- Overlay Networks and Services (How to Implement Network Services)
- Network Firewalls, Network Security, and Enterprise Networks

Background:

- # wireless (mobile) phone subscribers now exceeds # wired phone subscribers!
- computer nets: laptops, palmtops, PDAs, Internet-enabled phone promise anytime untethered Internet access
- two important (but different) challenges
 - » wireless: communication over wireless link
 - » mobility: handling the mobile user who changes point of attachment to network

Wireless and Mobile Networks Session in Brief

- Introduction
- Wireless
 - Wireless Links characteristics CDMA
 - IEEE 802.11 wireless LANs ("wi-fi")
 - Cellular Internet Access architecture and standards (e.g., GSM)
- Mobility
 - Principles addressing and routing to mobile users
 - Mobile IP
 - Handling mobility in cellular networks
 - Mobility and higher-layer protocols
- Summary

Icons / Metaphors

Information

Common Realization

Knowledge/Competency Pattern

Governance

Alignment

Solution Approach

Agenda

1 Session Overview

2 Wireless and Mobile Networks

3 Summary and Conclusion

Session Outline

1 Introduction

Wireless

- 2 Wireless links, characteristics
 - » CDMA
- 3 IEEE 802.11 wireless LANs ("wi-fi")
- 4 Cellular Internet Access
 - » architecture
 - » standards (e.g., GSM)

Mobility

- 5 Principles: addressing and routing to mobile users
- 6 Mobile IP
- 7 Handling mobility in cellular networks
- 8 Mobility and higherlayer protocols

9 Summary

Characteristics of selected wireless link standards

ad hoc mode

- no base stations
- nodes can only transmit to other nodes within link coverage
- nodes organize themselves into a network: route among themselves

Wireless network taxonomy

	single hop	multiple hops
infrastructure (e.g., APs)	host connects to base station (WiFi, WiMAX, cellular) which connects to larger Internet	host may have to relay through several wireless nodes to connect to larger Internet: <i>mesh net</i>
no infrastructure	no base station, no connection to larger Internet (Bluetooth, ad hoc nets)	no base station, no connection to larger Internet. May have to relay to reach other a given wireless node MANET, VANET

Wireless Link Characteristics (1)

Differences from wired link

- » decreased signal strength: radio signal attenuates as it propagates through matter (path loss)
- » interference from other sources: standardized wireless network frequencies (e.g., 2.4 GHz) shared by other devices (e.g., phone); devices (motors) interfere as well
- » multipath propagation: radio signal reflects off objects ground, arriving ad destination at slightly different times

.... make communication across (even a point to point) wireless link much more "difficult"

Wireless Link Characteristics (2)

- SNR: signal-to-noise ratio
 - » larger SNR easier to extract signal from noise (a "good thing")
- SNR versus BER tradeoffs
 - » given physical layer: increase power -> increase SNR- >decrease BER
 - » given SNR: choose physical layer that meets BER requirement, giving highest thruput
 - SNR may change with mobility: dynamically adapt physical layer (modulation technique, rate)

Multiple wireless senders and receivers create additional problems (beyond multiple access):

Hidden terminal problem

- B, A hear each other
- B, C hear each other
- A, C can not hear each other

means A, C unaware of their interference at B

Signal attenuation:

- B, A hear each other
- B, C hear each other
- A, C can not hear each other interfering at B

Code Division Multiple Access (CDMA)

- used in several wireless broadcast channels (cellular, satellite, etc) standards
- unique "code" assigned to each user; i.e., code set partitioning
- all users share same frequency, but each user has own "chipping" sequence (i.e., code) to encode data
- encoded signal = (original data) X (chipping sequence)
- decoding: inner-product of encoded signal and chipping sequence
- allows multiple users to "coexist" and transmit simultaneously with minimal interference (if codes are "orthogonal")

CDMA Encode/Decode

CDMA: two-sender interference

Session Outline

1 Introduction

Wireless

- 2 Wireless links, characteristics
 - » CDMA
- 3 IEEE 802.11 wireless LANs ("wi-fi")
- 4 cellular Internet access
 - » architecture
 - » standards (e.g., GSM)

Mobility

- 5 Principles: addressing and routing to mobile users
- 6 Mobile IP
- 7 Handling mobility in cellular networks
- 8 Mobility and higherlayer protocols

9 Summary

IEEE 802.11 Wireless LAN

- 802.11b
 - » 2.4-5 GHz unlicensed spectrum
 - » up to 11 Mbps
 - » direct sequence spread spectrum (DSSS) in physical layer
 - all hosts use same chipping code

- 802.11a
 - 5-6 GHz range
 - » up to 54 Mbps
- 802.11g
 - 2.4-5 GHz range
 - up to 54 Mbps
- 802.11n: multiple antennae
 - 2.4-5 GHz range
 - » up to 200 Mbps
- all use CSMA/CA for multiple access
- all have base-station and ad-hoc network versions

802.11 LAN architecture

- wireless host communicates with base station
 - » base station = access
 point (AP)
- Basic Service Set (BSS)

 (aka "cell") in
 infrastructure mode
 contains:
 - » wireless hosts
 - » access point (AP): base station
 - » ad hoc mode: hosts only

802.11: Channels, association

- 802.11b: 2.4GHz-2.485GHz spectrum divided into 11 channels at different frequencies
 - » AP admin chooses frequency for AP
 - » interference possible: channel can be same as that chosen by neighboring AP!
- host: must associate with an AP
 - » scans channels, listening for beacon frames containing AP's name (SSID) and MAC address
 - » selects AP to associate with
 - » may perform authentication [Chapter 8]
 - » will typically run DHCP to get IP address in AP's subnet

802.11: passive/active scanning

<u>Passive Scanning:</u>

- (1) beacon frames sent from APs
- (2) association Request frame sent:H1 to selected AP
- (3) association Response frame sent: H1 to selected AP

Active Scanning

- (1) Probe Request frame broadcast from H1
- (2) Probes response frame sent from APs
- (3) Association Request frame sent: H1 to selected AP
- (4) Association Response frame sent: H1 to selected AP

IEEE 802.11: multiple access

- avoid collisions: 2+ nodes transmitting at same time
- 802.11: CSMA sense before transmitting
 - > don't collide with ongoing transmission by other node
- 802.11: no collision detection!
 - » difficult to receive (sense collisions) when transmitting due to weak received signals (fading)
 - can't sense all collisions in any case: hidden terminal, fading
 - » goal: avoid collisions: CSMA/C(ollision)A(voidance)

IEEE 802.11 MAC Protocol: CSMA/CA

802.11 sender

1 if sense channel idle for **DIFS** then transmit entire frame (no CD)

2 if sense channel busy then

start random backoff time timer counts down while channel idle transmit when timer expires if no ACK, increase random backoff interval, repeat 2

802.11 receiver

- if frame received OK

return ACK after **SIFS** (ACK needed due to hidden terminal problem)

Avoiding collisions (more)

- idea: allow sender to "reserve" channel rather than random access of data frames: avoid collisions of long data frames
- sender first transmits small request-to-send (RTS) packets to BS using CSMA
 - » RTSs may still collide with each other (but they're short)
- BS broadcasts clear-to-send CTS in response to RTS
- CTS heard by all nodes
 - » sender transmits data frame
 - other stations defer transmissions

avoid data frame collisions completely using small reservation packets!

Collision Avoidance: RTS-CTS exchange

802.11 frame: addressing

transmitting this frame

802.11 frame: addressing

802.11 frame: more

802.11: mobility within same subnet

- H1 remains in same
 IP subnet: IP
 address can remain
 same
- switch: which AP is associated with H1?
 - » self-learning (Ch. 5): switch will see frame from H1 and "remember" which switch port can be used to reach H1

802.11: advanced capabilities

Rate Adaptation

base station, mobile dynamically change transmission rate (physical layer modulation technique) as $mobile \underbrace{moves, SNR}_{QAM256 \, (8 \, Mbps)} SNR$ QAM16 (4 Mbps) varies operating point

- 1. SNR decreases, BER increase as node moves away from base station
- 2. When BER becomes too high, switch to lower transmission rate but with lower BER

802.11: advanced capabilities

Power Management

- node-to-AP: "I am going to sleep until next beacon frame"
 - »AP knows not to transmit frames to this node
 - »node wakes up before next beacon frame
- beacon frame: contains list of mobiles with AP-to-mobile frames waiting to be sent
 - »node will stay awake if AP-to-mobile frames to be sent; otherwise sleep again until next beacon frame

802.15: personal area network

- less than 10 m diameter
- replacement for cables (mouse, keyboard, headphones)
- ad hoc: no infrastructure
- master/slaves:
 - » slaves request permission to send (to master)
 - master grants requests
- 802.15: evolved from Bluetooth specification
 - 2.4-2.5 GHz radio band
 - » up to 721 kbps

- S Slave device
- P Parked device (inactive)

802.16: WIMAX

- like 802.11 & cellular: base station model
 - > transmissions to/from base station by hosts with omnidirectional antenna
 - » base station-to-base station backhaul with point-to-point antenna
- unlike 802.11:
 - range ~ 6 miles ("city rather than coffee shop")
 - > ~14 Mbps

802.16: WiMAX: downlink, uplink scheduling

- transmission frame
 - >> down-link subframe: base station to node
 - » uplink subframe: node to base station

 WiMAX standard provide mechanism for scheduling, but not scheduling algorithm

Session Outline

1 Introduction

Wireless

- 2 Wireless links, characteristics
 - » CDMA
- 3 IEEE 802.11 wireless LANs ("wi-fi")
- 4 Cellular Internet Access
 - » architecture
 - » standards (e.g., GSM)

Mobility

- 5 Principles: addressing and routing to mobile users
- 6 Mobile IP
- 7 Handling mobility in cellular networks
- 8 Mobility and higherlayer protocols

9 Summary

Components of cellular network architecture

Cellular networks: the first hop

Two techniques for sharing mobile-to-BS radio spectrum

- combined FDMA/TDMA:
 divide spectrum in
 frequency channels,
 divide each channel into
 time slots
- CDMA: code division multiple access

Cellular standards: brief survey

2G systems: voice channels

- IS-136 TDMA: combined FDMA/TDMA (north america)
- GSM (global system for mobile communications): combined FDMA/TDMA
 - most widely deployed
- IS-95 CDMA: code division multiple access

Don't drown in a bowl of alphabet soup: use this for reference only

Cellular standards: brief survey

2.5 G systems: voice and data channels

- for those who can't wait for 3G service: 2G extensions
- general packet radio service (GPRS)
 - » evolved from GSM
 - » data sent on multiple channels (if available)
- enhanced data rates for global evolution (EDGE)
 - » also evolved from GSM, using enhanced modulation
 - » data rates up to 384K
- CDMA-2000 (phase 1)
 - > data rates up to 144K
 - » evolved from IS-95

Cellular standards: brief survey

3G systems: voice/data

- Universal Mobile Telecommunications Service (UMTS)
 - » data service: High Speed Uplink/Downlink packet Access (HSDPA/HSUPA): 3 Mbps
- CDMA-2000: CDMA in TDMA slots
 - » data service: 1xEvolution Data Optimized (1xEVDO) up to 14 Mbps

.... more (and more interesting) cellular topics due to mobility (stay tuned for details)

2G (voice) network architecture

2.5G (voice+data) network architecture

Session Outline

1 Introduction

Wireless

- 2 Wireless links, characteristics
 - » CDMA
- 3 IEEE 802.11 wireless LANs ("wi-fi")
- 4 Cellular Internet Access
 - » architecture
 - » standards (e.g., GSM)

Mobility

- 5 Principles: addressing and routing to mobile users
- 6 Mobile IP
- 7 Handling mobility in cellular networks
- 8 Mobility and higherlayer protocols

9 Summary

What is mobility?

spectrum of mobility, from the network perspective:

Mobility: Vocabulary

home network: permanent "home" of mobile (e.g., 128.119.40/24)

Permanent address:

address in home network, *can always* be used to reach mobile e.g., 128.119.40.186 , home agent: entity that will perform mobility functions on behalf of mobile, when mobile is remote

wide area network

Mobility: more vocabulary

How do you contact a mobile friend:

Consider friend frequently changing addresses, how do you find her?

search all phone books?

- call her parents?
- expect her to let you know where he/she is?

I wonder where Alice moved to?

Mobility: approaches

- Let routing handle it: routers advertise permanent address of mobile-nodes-inresidence via usual routing table exchange.
 - routing tables indicate where each mobile located
 - » no changes to end-systems
- Let end-systems handle it:
 - » indirect routing: communication from correspondent to mobile goes through home agent, then forwarded to remote
 - » direct routing: correspondent gets foreign address of mobile, sends directly to mobile

Mobility: approaches

- Let routing handle suters advertise permanent advertise not scalable to millions of g table exchange.
 >> routing tables mobiles where each mobile located
 - » no changes to end-systems
- let end-systems handle it:
 - » indirect routing: communication from correspondent to mobile goes through home agent, then forwarded to remote
 - » direct routing: correspondent gets foreign address of mobile, sends directly to mobile

Mobility: registration

End result:

- Foreign agent knows about mobile
- Home agent knows location of mobile

Mobility via Indirect Routing

Indirect Routing: comments

- Mobile uses two addresses:
 - » permanent address: used by correspondent (hence mobile location is *transparent* to correspondent)
 - » care-of-address: used by home agent to forward datagrams to mobile
- foreign agent functions may be done by mobile itself
- triangle routing: correspondent-home-network-mobile
 - » inefficient when correspondent, mobile are in same network

Indirect Routing: moving between networks

- suppose mobile user moves to another network
 - registers with new foreign agent
 - » new foreign agent registers with home agent
 - » home agent update care-of-address for mobile
 - » packets continue to be forwarded to mobile (but with new care-of-address)
- mobility, changing foreign networks transparent: on going connections can be maintained!

Mobility via Direct Routing

Mobility via Direct Routing: comments

- overcome triangle routing problem
- non-transparent to correspondent: correspondent must get care-of-address from home agent
 - » what if mobile changes visited network?

Accommodating mobility with direct routing

- anchor foreign agent: FA in first visited network
- data always routed first to anchor FA

 when mobile moves: new FA arranges to have data forwarded from old FA (chaining)

Session Outline

1 Introduction

Wireless

- 2 Wireless links, characteristics
 - » CDMA
- 3 IEEE 802.11 wireless LANs ("wi-fi")
- 4 Cellular Internet Access
 - » architecture
 - » standards (e.g., GSM)

Mobility

- 5 Principles: addressing and routing to mobile users
- 6 Mobile IP
- 7 Handling mobility in cellular networks
- 8 Mobility and higherlayer protocols

9 Summary

Mobile IP

- RFC 3344
- has many features we've seen:
 - » home agents, foreign agents, foreign-agent registration, care-of-addresses, encapsulation (packet-within-a-packet)
- three components to standard:
 - indirect routing of datagrams
 - » agent discovery
 - registration with home agent

Mobile IP: indirect routing

Mobile IP: agent discovery

 agent advertisement: foreign/home agents advertise service by broadcasting ICMP messages (1 o efield 8 9)

Mobile IP: registration example

Components of cellular network architecture

Handling mobility in cellular networks

- home network: network of cellular provider you subscribe to (e.g., Sprint PCS, Verizon)
 - » home location register (HLR): database in home network containing permanent cell phone #, profile information (services, preferences, billing), information about current location (could be in another network)
- visited network: network in which mobile currently resides
 - » visitor location register (VLR): database with entry for each user currently in network
 - could be home network

GSM: indirect routing to mobile

GSM: handoff with common MSC

- Handoff goal: route call via new base station (without interruption)
- reasons for handoff:
 - » stronger signal to/from new BSS (continuing connectivity, less battery drain)
 - » load balance: free up channel in current BSS
 - SSM doesn't mandate why to perform handoff (policy), only how (mechanism)
- handoff initiated by old BSS

GSM: handoff with common MSC

- 1. old BSS informs MSC of impending handoff, provides list of 1⁺ new BSSs
- 2. MSC sets up path (allocates resources) to new BSS
- 3. new BSS allocates radio channel for use by mobile
- 4. new BSS signals MSC, old BSS: ready
- 5. old BSS tells mobile: perform handoff to new BSS
- 6. mobile, new BSS signal to activate new channel
- 7. mobile signals via new BSS to MSC: handoff complete. MSC reroutes call
- 8 MSC-old-BSS resources released

GSM: handoff between MSCs

(a) before handoff

- anchor MSC: first MSC visited during cal
 - » call remains routed through anchor MSC
- new MSCs add on to end of MSC chain as mobile moves to new MSC
- IS-41 allows optional path minimization step to shorten multi-MSC chain

GSM: handoff between MSCs

(b) after handoff

- anchor MSC: first
 MSC visited during cal
 - » call remains routed through anchor MSC
- new MSCs add on to end of MSC chain as mobile moves to new MSC
- IS-41 allows optional path minimization step to shorten multi-MSC chain

Mobility: GSM versus Mobile IP

GSM element	Comment on GSM element Me	obile IP element
Home system	Network to which mobile user's permanent phone number belongs	Home network
Gateway Mobile Switching Center, or "home MSC". Home Location Register (HLR)	Home MSC: point of contact to obtain routable address of mobile user. HLR: database in home system containing permanent phone number, profile information, current location of mobile user, subscription information	Home agent
Visited System	Network other than home system where mobile user is currently residing	Visited network
Visited Mobile services Switching Center. Visitor Location Record (VLR)	Visited MSC: responsible for setting up calls to/from mobile nodes in cells associated with MSC. VLR: temporary database entry in visited system, containing subscription information for each visiting mobile user	Foreign agent
Mobile Station Roaming Number (MSRN), or "roaming number"	Routable address for telephone call segment between home MSC and visited MSC, visible to neither the mobile nor the correspondent.	Care-of- address

Wireless, mobility: impact on higher layer protocols

- logically, impact should be minimal ...
 - » best effort service model remains unchanged
 - TCP and UDP can (and do) run over wireless, mobile
- ... but performance-wise:
 - » packet loss/delay due to bit-errors (discarded packets, delays for link-layer retransmissions), and handoff
 - TCP interprets loss as congestion, will decrease congestion window un-necessarily
 - >> delay impairments for real-time traffic
 - limited bandwidth of wireless links

Agenda

1 Session Overview
2 Data Link Control

Summary and Conclusion

Summary

Wireless

- wireless links:
 - » capacity, distance
 - » channel impairments
 - » CDMA
- IEEE 802.11 ("wi-fi")
 - SMA/CA reflects wireless channel characteristics
- cellular access
 - » architecture
 - standards (e.g., GSM, CDMA-2000, UMTS)

Mobility

- principles: addressing, routing to mobile users
 - home, visited networks
 - » direct, indirect routing
 - » care-of-addresses
- case studies
 - » mobile IP
 - mobility in GSM
- impact on higher-layer protocols

Assignments & Readings

Readings

- » Chapter 6
- Assignment #5

Next Session: Reliable Data Transfer