Machine Learning Lab2 SVM

袁雨 PB20151804

一、实验内容与提示

1. 任务:

你需要去完成类 svm1 和 svm2 ,并且使用不同的算法去寻找支持向量机的解。 更具体地说,因为解决支持向量机的关键在于解决书本上的二次规划问题 (6.6) ,你只需要使用两种不同的方法去解决 (6.6) 。剩下的部分,比如预测,内容可以相同。

在完成了类方法的部分之后, 你需要测试你代码的效率。比较应当包含以下内容:

- 1. 正确率,
- 2. 计算 (训练) 的时间消耗。

如果可能的话, 你可以使用 sklearn 与你的代码比较。如果比不过它, 也是没事的。

2. 提示:

- 1. 我们不推荐你使用已有的库函数去**直接**解决二次规划问题,这是会被扣除一部分分数的。当然,如果你无法使用两种方法去解决,你也可以使用库函数。
- 2. 我们推荐你使用合适的维度去训练、测试,这会使你的结果更加可靠。同时,不同的维度和样本数也会使你的报告内容更丰富。但是不要让他过于冗杂。
- 3. 因为我们的数据是基于线性核生成的,你不需要尝试其他的核函数。但是你可以使用软间隔或者正则化等方法来提升你模型的能力。切记,这不是本实验的核心内容。
- 4. 记得添加你的错标率,它会由函数 generate_data 生成。

二、实验要求

- 禁止使用 sklearn 或者其他的机器学习库,你只被允许使用 numpy, pandas, matplotlib, 和 Standard Library, 你需要从头开始编写这个项目。
- 你可以和其他同学讨论,但是你不可以剽窃代码,我们会用自动系统来确定你的程序的相似性,一 旦被发现,你们两个都会得到这个项目的零分。

三、实验设备和环境

1. 实验设备

设备: HUAWEI MateBook X Pro

处理器: Intel(R) Core(TM) i5-10210U CPU @1.60GHz 2.11 GHz

2. 实验环境

pycharm, jupyter, python 3.10

四、实验原理

1. SVM的基本型

通过求解上式来得到大间隔划分超平面所对应的模型: \$f(\boldsymbol{x})=\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}+b\$, 其中 \$\boldsymbol{w}\$ 和 \$b\$ 是模型参数。

2. SVM的对偶问题

对SVM问题的基本型使用拉格朗日乘子法可得到其"对偶问题",对每条约束添加拉格朗日乘子 \$\alpha_i\geqslant 0\$,得到该问题的拉格朗日函数:

其中 \$\boldsymbol{\alpha}=\left(\alpha_1; \alpha_2; \ldots; \alpha_m\right)\$。令 \$L(\boldsymbol{w}, b, \boldsymbol{\alpha})\$ 对 \$\boldsymbol{w}\$ 和 \$b\$ 的偏导为零可得:

代入\$L(\boldsymbol{w}, b, \boldsymbol{\alpha})\$得:

这是一个二次规划问题,可使用通用的二次规划算法来求解,然而该问题的规模正比于训练样本数,这会在实际任务中造成很大的开销。为了避开这个障碍,人们通过利用问题本身的特性,提出了很多高效算法,SMO(Sequential Minimal Optimization)是其中一个著名的代表。

3. SMO算法解二次规划问题

SMO的基本思路是先固定\$\alpha_i\$之外的所有参数,然后求\$\alpha_i\$上的极值。由于存在约束\$\sum_{i=1}^N \alpha_i y_i=0\$,若固定\$\alpha_i\$之外的其他变量,则\$\alpha_i\$可由其他变量导出。于是SMO每次选择两个变量\$\alpha_i\$和\$\alpha_j\$,并固定其他参数,这样,在参数初始化后,SMO不断执行如下两个步骤直至收敛:

- 选取一对需更新的变量\$\alpha_i\$和\$\alpha_j\$;
- 固定\$\alpha_i\$和\$\alpha_j\$以外的参数,求解对偶问题目标函数获得更新后的\$\alpha_i\$和\$\alpha_i\$。

注意到只需选取的\$\alpha_i\$和\$\alpha_j\$中有一个不满足KKT条件(如下),目标函数就会在迭代后减小。

下面进行具体求解。

记\$K_{i,j}= x_i^T x_j^T\$, 常数项\$C\$表示与\$\alpha_1, \alpha_2\$无关的项。

根据约束条件 \$\sum_{i=1}^N \alpha_i y_i=0\$ 可以得到 \$\alpha_1\$ 与 \$\alpha_2\$ 的关系: \$\alpha_1 y_1+\alpha_2 y_2=-\sum_{i=3}^N \alpha_i y_i=\zeta\$

两边同时乘上 \$y_1\$,由于 \$y_i y_i=1\$ 得到: \$\alpha_1=\zeta y_1-\alpha_2 y_1 y_2\$

令 \$v_1=\sum_{i=3}^N \alpha_i y_i K_{i, 1}, v_2=\sum_{i=3}^N \alpha_i y_i K_{i, 2}\$, 将 \$\alpha_1\$ 的表达式代入得到:

我们需要对这个一元函数求极值, 令\$W\$ 对 \$\alpha_2\$ 的一阶导数为 0 得:

记 \$E_i\$ 为 SVM预测值与真实值的误差,即 \$E_i=g\left(x_i\right)-y_i=\sum_{i=1}^N y_j \alpha_j K\left(x_i, x_j\right)+b^{\text {new }}-y_i\$, 记 \$\left(x_i, x_j\right)+b^{\text {new }}-y_i\$,

得最终的一阶导数表达式:

解得:

通过对一元函数求极值的方式得到的最优\$\alpha_i\$和\$\alpha_j\$是未考虑约束条件下的最优解,下面对原始解进行修剪,更正上部分得到的\$\alpha_2^{\text {new }}\$ 为 \$\alpha_2^{\text {new, unclipped }}\$, 即\$\alpha_2^{\text {new, unclipped }}=\alpha_2^{\text {old }}+\frac{y_2\left(E_1-E_2\right)}{\text {salpha_2^{\text {new, unclipped }}}=\alpha_2^{\text {new }}\$.

但在SVM中 \$\alpha_i\$ 是有约束的,即\$\alpha_1 y_1+\alpha_2 y_2=-\sum_{i=3}^N \alpha_i y_i=\zeta\$, \$0 \leq \alpha_i \leq C\$。

在二维平面中我们可以看到这是个限制在方形区域中的直线(见下图)。

(如左图) 当 $y_1 \neq y_2$ 时,线性限制条件可以写成: $\alpha_1 = 1 - \alpha_2 = k$,根据 $\beta_2 = k$,根据 $\beta_3 = 1 - \alpha_2 = k$,根据 $\beta_4 = 1 - \alpha_3 = k$ 的正负可以得到不同的上下界,因此统一表示成:

- 下界: \$L=\max \left(0, \alpha_2^{\text {old }}-\alpha_1^{\text {old }}\right)\$
- 上界: \$H=\min \left(C, C+\alpha_2^{\text {old }}-\alpha_1^{\text {old }}\right)\$(如右图) 当 \$y_1=y_2\$ 时,限制条件可写成:\$\alpha_1+\alpha_2=k\$,上下界表示成:
- 下界: \$L=\max \left(0, \alpha_1^{\text {old }}+\alpha_2^{\text {old }}-C\right)\$
- 上界: \$H=\min \left(C, \alpha_2^{\text {old }}+\alpha_1^{\text {old }}\right)\$根据得到的上下界,我们可以得到修剪后的 \$\alpha_2^{\text {new }}\$:

又 $1^{\left } y_1+\alpha_2^{text {old }} y_1+\alpha_2^{text {old }} y_2=\alpha_1^{text {new }} y_1+\alpha_2^{text {new }} y_2 , 可得 $\alpha_1^{text {new }} :$

接下来计算阈值\$b\$和差值\$E_i\$。

在每次完成两个变量 \$\alpha_i, \alpha_i\$ 的优化后,都要重新计算阈值 \$b\$。

当 \$0<\alpha_1^{\text {new }}<C\$,由KKT条件可知相应的数据点为支持向量,解得:

当\$0<\alpha_2^{n e w}<C\$,可以得到\$b^{new}_2\$:

当 \$\alpha_1^{new}\$ 和 \$\alpha_2^{new}\$ 同时满足条件时,有 \$b^{\text {new }}=b_1^{\text {new }}=b_2^{\text {new }}} 。 当两个乘子 \$\alpha_1, \alpha_2\$ 都在边界上,那么\$b_1^{new}, b 2^{new}\$ 以及它们之间的数都是符合KKT条件的阈值,这时选择它们的中点作为\$b^{new}\$:

但通过实践,本次实验采用一种更鲁棒的做法:对\$b\$使用所有支持向量求解的平均值:

对\$E_i\$,使用其sign()。

对 \$\alpha_i\$和\$\alpha_j\$的选择,因为\$\alpha_2^{\text {new }}\$ 是依赖于 \$\left|E_1-E_2\right|\$ 的,为了加快计算速度,一种做法是选择 \$\alpha_2\$,使其对应的 \$\left|E_1-E_2\right|\$ 最大。但考虑到计算出最大的\$\left|E_1-E_2\right|\$较耗时且相对复杂,故在本次实验中对 \$\alpha_i\$和\$\alpha_j\$的选择使用简化方法: 对于\$\alpha_i\$采用遍历,选定\$\alpha_i\$后,对于 \$\alpha_i\$采用随机选择(除\$\alpha_i\$外)。

在实验中,使用矩阵乘法代替for循环,并通过多次判断,减少不必要的计算,从而优化算法效率。

4. 定义损失函数使用梯度下降法

基本想法: 最大化间隔的同时, 让不满足约束的样本应尽可能少。

其中 \$\ell_{0 / 1}\$ 是 \$0 / 1\$ 损失函数。

存在的问题: 0/1损失函数非凸、非连续,不易优化!

把损失函数换为Hinge Loss:

接下来使用梯度下降法更新参数。

实验中使用矩阵乘法代替for循环来优化算法效率。

四、实验结果与比较

1. 实验结果

使用五折交叉验证。

• 样本1

维度: 10;

样本数: 5000; 错标率: 0.04。

o SMO

参数: dim = 10, max_iter=100, C=1, tol = 1e-8, epsilon = 1e-8

轮数	Accuracy	time (s)	
1	0.944	18.901264000000083	
2	0.951	18.753948799989303	
3	0.956	19.18545720000111	
4	0.948	20.798065799986944	
5	0.945	20.169730000008713	
average	0.9488	19.56169315999723	

参数: dim = 10, lr=0.01, max_iter=100, C = 1

轮数	Accuracy	time (s)	
1	0.945	0.012744399995426647	
2	0.954	0.0126419000007445	
3	0.957	0.012590400001499802	
4	0.949	0.014343699993332848	
5	0.945	0.009860899997875094	
average	0.95	0.012436259997775779	

o sklearn

参数: penalty = 'l2', loss='hinge', max_iter=100000。其他均为默认。

轮数	Accuracy	time (s)	
1	0.945	0.2769842000125209	
2	0.954	0.2531458000012208	
3	0.957	0.2692286000092281	
4	0.949	0.26876520000223536	
5	0.945	0.23756069999944884	
average	0.95	0.2611369000049308	

• 样本2

维度: 20;

样本数: 10000; 错标率: 0.0382。

o SMO

参数: dim = 20, max_iter=100, C=1,tol = 1e-8, epsilon = 1e-8

轮数	Accuracy	time (s)	
1	0.9515	43.60137220000615	
2	0.948	47.81860759999836	
3	0.947	51.908864600001834	
4	0.941	54.914126599993324	
5	0.9585	59.3508620000066	
average	0.9492	51.51876660000126	

参数: dim = 20, lr=0.01, max_iter=100, C = 1

轮数	Accuracy	time (s)	
1	0.943	0.027651399999740534	
2	0.9495	0.02711049999925308	
3	0.957	0.024727700001676567	
4	0.949	0.026623400000971742	
5	0.9555	0.026343600009568036	
average	0.9508	0.02649132000224199	

o sklearn

参数: penalty = 'l2', loss='hinge', max_iter=100000。其他均为默认。

轮数	Accuracy	time (s)	
1	0.943	1.4466724000085378	
2	0.9495	1.4882093999913195	
3	0.957	1.46267780000926	
4	0.949	1.4921311999933096	
5	0.9555	1.4843074999953387	
average	0.9508	1.4747996599995532	

• 样本3

维度: 30;

样本数: 15000; 错标率: 0.037。

o SMO

参数: dim = 30, max_iter=100, C=1,tol = 1e-8, epsilon = 1e-8

轮数	Accuracy	time (s)	
1	0.9537	192.71647959999973	
2	0.954	220.26522800000384	
3	0.9537	221.9483368999936	
4	0.9533	227.10284779999347	
5	0.9507	220.8343739999982	
average	0.9531	216.57345325999776	

参数: dim = 30, lr=0.01, max_iter=100, C = 1

轮数	Accuracy	time (s)	
1	0.956	0.0462198999885004	
2	0.9513	0.046176400006515905	
3	0.95	0.050320300011662766	
4	0.9513	0.057560899993404746	
5	0.9553	0.046223699988331646	
average	0.9528	0.04930023999768309	

o sklearn

参数: penalty = 'l2', loss='hinge', max_iter=100000。其他均为默认。

轮数	Accuracy	time (s)	
1	0.956	3.7866291999816895	
2	0.9513	3.889095799997449	
3	0.95	3.8688754999893717	
4	0.9513	3.8002525999909267	
5	0.9553	3.840269000007538	
average	0.9528	3.837024419993395	

3. 方法比较

SMO 与 Grandient Descent 在 max_iter > 10 以后准确率增长不大,sklearn.svm 中的 linearSVC 在 max_iter > 10000 后才开始具有高准确率。分别取三者准确率相对较高时对应的 max_iter 与其他指标,进行比较。

(dim,num)	评价指标	SMO	Gradient Descent	sklearn. svm.linearSVC
	max_iter	100	100	100000
(10,1000)	accuracy	0.9488	0.95	0.95
	time(s)	19.5617	0.0124	0.2611
	max_iter	100	100	100000
(20,10000)	accuracy	0.9492	0.9508	0.9508
	time(s)	51.5188	0.0265	1.4748
	max_iter	100	100	100000
(30,15000)	accuracy	0.9531	0.9528	0.9528
	time(s)	179.9977	0.0493	3.8370

(1) 准确率:

三种方法得到的准确率相差不大。在数据规模较小时,Gradient Descent 与 sklearn. svm.linearSVC 略高;在数据规模较大时,三者差异减小,甚至SMO略高。

(2) 收敛速度:

SMO 与 Gradient Descent 在迭代一轮时准确率就大于0.92,收敛速度较快,sklearn. svm.linearSVC 收敛速度较慢。

(3) 耗时:

单位迭代次数的耗时为 sklearn. svm.linearSVC < Gradient Descent < SMO。 但 Gradient Descent 达到最优准确率的耗时最短。