# Chi-squared tests

**Stat 250** 

Click here for PDF version

## Can money buy you happiness?

The General Social Survey (GSS) is a sociological survey used to collect data on demographic characteristics and attitudes of residents of the United States. We'll consider two questions:

- Compared with American families in general, would you say your family income is far below average, below average, average, above average, or far above average?
- Taken all together, how would you say things are these days—would you say that you are very happy, pretty happy, or not too happy?

## Can money buy you happiness?



## Happiness contingency table

How can we explore whether opinion on income and happiness are associated?

| happy         | far below average | below average | average | above average | far above average | Total |
|---------------|-------------------|---------------|---------|---------------|-------------------|-------|
| not too happy | 50                | 123           | 120     | 33            | 4                 | 330   |
| pretty happy  | 64                | 350           | 602     | 253           | 24                | 1293  |
| very happy    | 39                | 121           | 319     | 190           | 25                | 694   |
| Total         | 153               | 594           | 1041    | 476           | 53                | 2317  |

#### R:

```
tabyl(happy2018, happy, finrela) |>
  adorn_totals(where = c("row", "col"))
```

### Test statistic

 $H_0$ : the variables are independent

What would the contingency table look like under  $H_0$ ?

| happy         | far below average | below average | average  | above average | far above average |
|---------------|-------------------|---------------|----------|---------------|-------------------|
| not too happy | 21.79111          | 84.60078      | 148.2650 | 67.79456      | 7.548554          |
| pretty happy  | 85.38153          | 331.48123     | 580.9292 | 265.63142     | 29.576608         |
| very happy    | 45.82736          | 177.91800     | 311.8058 | 142.57402     | 15.874838         |

### Test statistic

How can we compare what we observe to what would be expected under  $H_0$ ?

#### **Observed:**

| happy         | far below average | below average | average | above average | far above average | Total |
|---------------|-------------------|---------------|---------|---------------|-------------------|-------|
| not too happy | 50                | 123           | 120     | 33            | 4                 | 330   |
| pretty happy  | 64                | 350           | 602     | 253           | 24                | 1293  |
| very happy    | 39                | 121           | 319     | 190           | 25                | 694   |
| Total         | 153               | 594           | 1041    | 476           | 53                | 2317  |

#### **Expected:**

| happy         | far below average | below average | average  | above average | far above average | Total |
|---------------|-------------------|---------------|----------|---------------|-------------------|-------|
| not too happy | 21.79111          | 84.60078      | 148.2650 | 67.79456      | 7.548554          | 330   |
| pretty happy  | 85.38153          | 331.48123     | 580.9292 | 265.63142     | 29.576608         | 1293  |

| happy      | far below average | below average | average  | above average | far above average | Total |
|------------|-------------------|---------------|----------|---------------|-------------------|-------|
| very happy | 45.82736          | 177.91800     | 311.8058 | 142.57402     | 15.874838         | 694   |
| Total      | 153               | 594           | 1041     | 476           | 53                | 2317  |

### Permutation test

- 1. Store the data in a table: one row per observation, one column per variable.
- 2. Calculate a test statistic for the original data.

#### 3. Repeat

- Randomly permute the rows in one of the columns.
- Calculate the test statistic for the permuted data.

Until we have enough samples

4. Calculate the p-value as the fraction of times the random statistics exceed the original statistic.

## Permutation test setup

Calculate the observed test statistic

```
# Have mosaic package loaded
observed_table <- tally(~ happy + finrela, data = happy2)
observed <- chisq(observed_table)</pre>
```

Remove any missing values on variables of interest

```
library(tidyr) # for drop_na()
happy_complete <- drop_na(happy2018, happy, finrela)

# Extract columns of interest
happy <- happy_complete$happy
finrela <- happy_complete$finrela</pre>
```

### Construct the permutation distribution

```
set.seed(55057)
N <- 10^4 - 1
result <- numeric(N)
for(i in 1:N) {
  finrela_perm <- sample(finrela)
  perm_table <- tally(~happy + finrela_perm)
  result[i] <- chisq(perm_table)
}</pre>
```

### Permutation distribution



## p-value



```
(sum(result >= observed) + 1) / (N + 1)
## [1] 1e-04
```

## Chi-squared distribution

A random variable follows a  $\chi_m^2$  distribution if it has PDF

$$f(x|m) = \frac{1}{2^{m/2}\Gamma(m/2)} x^{m/2-1} e^{-x/2}, x > 0.$$



### Chi-squared reference distribution



#### Simulation vs. model-based results

#### **Chi-squared test**

```
1 - pchisq(observed, df = (3 - 1) * (5 - 1))
X.squared
0
```

#### **Permutation test**

```
(sum(result >= observed) + 1) / (N + 1)
[1] 0.0001
```

### Caution

The  $\chi^2$  distribution provides a reasonable approximation of the null distribution as long as the sample size is "large enough"

Common guidelines:

- "Cochran's rule:" All of the cells have expected counts > 5
- All expected counts are at least 1 and no more than 20% of cells have expected counts < 5</li>

Use a permutation test if the expected counts aren't large enough

#### Your turn

Work through the example on climate change action by generation with your neighbors.

R code for carrying out chi-squared tests is included on the worksheet