ISOMORPHISM THEOREMS AND COMPOSITION SERIES

COLTON GRAINGER (MATH 6130 ALGEBRA)

5. Assignment due 2018-10-03

5.1. [1, No. 3.3.6]. Let $M = \langle u, v : u^2 = v^8 = 1, vu = uv^5 \rangle$ be the modular group of order 16.

To show the subgroup $\langle v^4 \rangle$ is normal in M, we conjugate the generator v^4 by the generators u, v in M.

- $uv^4u^{-1} = uv^4u = u^2v^{20} = v^4$
- $vv^4v^{-1} = v^4$
- $N_M(\langle v^4 \rangle)$ contains $\langle u, v \rangle = M$ by closure.

Since $\langle v^4 \rangle$ is normal in M, the quotient group $M/\langle v^4 \rangle$ is well defined. By the lattice isomorphism theorem, the lattice of subgroups of $M/\langle v^4 \rangle$ order isomorphic to the lattice pictured below (where the order isomorphism maps each subgroup to itself mod $\langle v^4 \rangle$).

In the previous assignment, we proved that $Z_2 \times Z_4 \cong \bar{M} = M/\langle v^4 \rangle$ by defining an isomorphism between the two groups. We can also prove $Z_2 \times Z_4 \cong \bar{M}$ by mapping the generators \bar{u} and \bar{v} of \bar{M} to $Z_2 \times Z_4$ and showing that \bar{u} and \bar{v} satisfy the relations on $Z_2 \times Z_4$. By the fourth isomorphism theorem, $\bar{M} = \langle u, v \rangle = \langle \bar{u}, \bar{v} \rangle$. Now note

- $|\bar{u}| = 2$,
- $|\bar{v}| = 4$, and
- $\bullet \ \bar{u}\bar{v}=\bar{v}\bar{u}.$

So $\langle \bar{u}, \bar{v} \rangle \cong Z_2 \times Z_4$.

5.2. [1, No. 3.3.7]. Let M and N be subgroups normal in G such that G = MN.

Considering the lattice of G, we have that $G/(M \cap N) \cong (G/M) \times (G/N)$.

Date: 2018-09-29. Compiled: 2018-10-03.

1

Proof. Since the intersection of subgroups normal in G is also a subgroup normal in G, we have $M \cap N \triangleleft G$. Further, since $M \leq G$ and $N \leq G$, it follows that $M \cap N \triangleleft M$ and $M \cap N \triangleleft N$.

Now to show $G/N \cong M/(M \cap N)$. Define an epimorphism $\varphi \colon M \to G/N$ by $\varphi(m) = mN$. Note φ is a homomorphism because it's the restriction to M of the natural homomorphism from G to G/N. Note also that φ is surjective as for all $gN \in G/N$, we can write g = mn, so there's $m \in M$ such that mN = mnN = gN. An element $m \in M$ is in the kernel of φ if mN = 1N. It follows that $m \in \ker \varphi$ if and only if $m \in N$, hence $\ker \varphi = M \cap N$. By the first isomorphism theorem,

$$M/(M \cap N) \cong G/N$$
.

Repeating this argument, one may find $N/(M \cap N) \cong G/M$.

Proceeding, define an epimorphism $\psi \colon G \to (G/M) \times (G/N)$ given by $mn \mapsto nM \times mN$. Because every element of G = MN is of the form mn, ψ is well defined. ψ is clearly surjective. Lastly, because ψ is in its coordinates the restriction of natural homomorphisms, we expect ψ will be a homomorphism. To wit:

$$\psi(mn)\psi(\mu\nu) = (nM \times mN)(\nu M \times \mu N)$$

$$= (nM\nu M \times mN\mu N)$$

$$= (n\nu M \times m\mu N)$$

$$= \psi((m\mu)(n\nu))$$

$$= \psi(m(n\mu')\nu) \qquad \text{for some } \mu' \in M \text{ since } M \triangleleft G$$

$$= \psi((mn)(\mu\nu)) \qquad (\text{why?})$$

where from $\mu N = N\mu'$ and $N \triangleleft G$ one deduces that $\mu N = \mu' N$. To obtain the desired isomorphism, observe $nM \times mN = 1M \times 1N$ if and only if both $m \in N$ and $n \in M$, so the kernel of ψ is $M \cap N$. By the first isomorphism theorem, we conclude $G/(M \cap N) \cong (G/N) \times (G/M)$. \square

5.3. [1, No. 3.3.9]. Let p be a prime and let G be a group of order $p^a m$ where p does not divide m. Further, let P be a subgroup of G of order p^a and N is a normal subgroup of G order $p^b n$, where p does not divide n. Then $|P \cap N| = p^b$ and $|PN/N| = p^{a-b}$.

Proof. As $P \le N_G(N) = G$, by the third isomorphism theorem $PN \le G$. We deduce $|PN| = p^a k$ where k|m and n|k from Lagrange's theorem for, respectively, $PN \le G$ together with $P \le PN$ for k|m, and $N \le PN$, for n|k. By the orbit stabilizer theorem,

$$|PN| = \frac{|P|\,|N|}{|P\cap N|}.$$

Hence

$$|P \cap N| = \frac{|P| \, |N|}{|PN|} = \frac{p^a p^b n}{p^a} = p^b \frac{n}{k} = p^b,$$

where the equality n/k = 1 is justified: n|k implies $\frac{n}{k} \le 1$, yet k does not divide p, where $|P \cap N|$ must be a natural number.

Appealing to the third isomorphism theorem, $PN/N \cong P/(P \cap N)$ hence $|PN/N| = \frac{|P|}{|P \cap N|} = p^{a-b}$.

¹The subgroup P of G is called a $Sylow\ p$ -subgroup of G. Hence, the intersection of any Sylow p-subgroup of G with a normal subgroup N is a Sylow p-subgroup of N.

5.4. [1, No. 3.3.10]. A subgroup H of a finite group G is called a *Hall subgroup* of G if its index in G is relatively prime to its order: (|G:H|, |H|) = 1. If H is a Hall subgroup of G and $N \triangleleft G$, then $H \cap N$ is a Hall subgroup of G and G is a Hall subgroup of G and G is a Hall subgroup of G in G in G is a Hall subgroup of G in G in G is a Hall subgroup of G in G is a Hall subgroup of G in G in G is a Hall subgroup of G in G in G in G in G in G is a Hall subgroup of G in G in

 $Proof.^2$ First, since $H \cap N \le H \le G$ it's true that $|H \cap N|$ divides |H|. Second, observe $|N:H \cap N| = |HN:H| = \frac{|G:H|}{|G:HN|}$ divides |G:H|. (We have $H \le N_G(N) = G$, so by the second isomorphism theorem |G:HN| is an integer.) By assumption, H is a Hall subgroup of G, so we must have that $(|N:H \cap N|, |H \cap N|) = 1$.

Now $|HN/N| = |H: H \cap N|$ must divide |H|. Also

$$\left| \frac{G}{N} : |HN|N \right| = \left| \frac{G}{HN} \right| = \left| \frac{G : H}{HN : H} \right|$$

must divide |G:H|. Again, because H is a Hall subgroup of G, we conclude (|G/N:HN/N|,|HN/N|)=1. \square

5.5. [1, No. 3.4.2]. We exhibit all 3 composition series for Q_8 and all 7 composition series for D_8 . We list the composition factors in each case.

Demonstration. By inspection, Q_8 has composition series

- $Q_8 \triangleright \langle i \rangle \triangleright \langle -1 \rangle \triangleright 1$
- $Q_8 \triangleright \langle j \rangle \triangleright \langle -1 \rangle \triangleright 1$
- $Q_8 \triangleright \langle k \rangle \triangleright \langle -1 \rangle \triangleright 1$
- each with factors Z_2 , Z_2 , Z_2 .

On the other hand, D_8 has composition series

- $D_8 \triangleright \langle s, r^2 \rangle \triangleright \langle s \rangle \triangleright 1$
- $D_8 \triangleright \langle s, r^2 \rangle \triangleright \langle r^2 s \rangle \triangleright 1$
- $D_8 \triangleright \langle s, r^2 \rangle \triangleright \langle r^2 \rangle \triangleright 1$
- $D_8 \triangleright \langle r \rangle \triangleright \langle r^2 \rangle \triangleright 1$
- $D_8 \triangleright \langle rs, r^2 \rangle \triangleright \langle r^2 \rangle \triangleright 1$
- $D_8 \triangleright \langle rs, r^2 \rangle \triangleright \langle r^2 \rangle \triangleright 1$
- $D_8 \triangleright \langle rs, r^2 \rangle \triangleright \langle rs \rangle \triangleright 1$
- $D_8 \triangleright \langle rs, r^2 \rangle \triangleright \langle r^3s \rangle \triangleright 1$
- each with factors Z_2 , Z_2 , Z_2 .
- 5.6. [1, No. 3.4.7]. If G is a finite group and $H \triangleleft G$, then there is a composition series of G one of whose terms in H. TODO
- 5.7. [1, No. 3.4.11]. If H is a nontrivial normal subgroup of the solvable group G, then there is a nontrivial subgroup A of H with $A \triangleleft G$ and A abelian. TODO
- 5.8. [1, No. 3.5.6]. The group $H = \langle (13), (1234) \rangle$ is a proper subgroup of S_4 . We give the isomorphism type of H. TODO
- 5.9. [1, No. 3.5.10]. We find a composition series for A_4 , and argue that A_4 is not solvable. TODO

²See also https://math.stackexchange.com/questions/811039.

- 5.10. [1, No. 4.1.7]. Let G be a transitive permutation group on the finite set A. A block is a nonempty subset B of A such that for all $\sigma \in G$ either $\sigma(B) = B$ or $\sigma(B) \cap B = \emptyset$ (where $\sigma(B)$ is the set $\{\sigma(b) : b \in B\}$).
 - (a) If B is a block containing the element a of A, then the set $Stab_G(B)$ defined by $\{\sigma \in G : \sigma(B) = B\}$ is a subgroup of G containing $Stab_G(a)$.

Proof. Let $\sigma, \tau \in \operatorname{Stab}_G(B)$. To satisfy the subgroup criterion, we want to show that $\sigma\tau^{-1} \in \operatorname{Stab}_G(B)$. Well $\sigma(B) = B$ and $\tau(B) = B$. So $\tau^{-1}(B) = B$. Now B is stabilized under τ^{-1} , then under σ . By definition of a group action, $\sigma\tau^{-1}(B) = (\sigma \circ \tau^{-1})(B) = B$. Therefore $\sigma\tau^{-1} \in \operatorname{Stab}_G(B)$.

Now to verify $\operatorname{Stab}_G(a) \leq \operatorname{Stab}_G(B)$. For $a \in B$, let $v \in \operatorname{Stab}_G(a)$. Then $v(a) = a \in B$. Assuming B is a block, we require either v(B) = B or $v(B) \cap B = \emptyset$. Observing $a = v(a) \in v(B) \cap B$, it must be that v(B) = B. We conclude $v \in \operatorname{Stab}_G(B)$. \square

(b) If *B* is a block and $\sigma_1(B), \sigma_2(B), \dots, \sigma_n(B)$ are *all* the distinct images of *B* under the elements of *G*, then these form a partition of *A*.

Proof. To show by contrapositive that distinct images of B are disjoint. Suppose $\sigma, \tau \in G$ such that $a \in \sigma(B) \cap \tau(B)$. Then $\tau^{-1}(a) \in (\tau^{-1} \circ \sigma)(B) \cap B$. Because B is a block we must have that $(\tau^{-1} \circ \sigma)(B) = B$. Hence $\sigma(B) = \tau(B)$.

Now to show the union of the distinct images of B is the whole of A. It suffices to argue that if $a \in A$, there exists $j \in \{1, \ldots, n\}$ such that $a \in \sigma_j(B)$. Because G is transitive, there's $some \ \tau \in G$ such that $a \in \tau(B)$. Is τ one of the σ_i ? For contradiction, suppose not. Then a is a point in the set $A \setminus \bigcup_{1}^{n} \sigma_i(B)$. Since G is transitive, we can map an element of B to a under the permutation ω . Because distinct images are disjoint, and we have an image $\omega(B)$ disjoint from each of $\sigma_1(B), \ldots, \sigma_n(B)$; but the $\sigma_i(B)$ are all the distinct images of B, a contradiction. Therefore τ is one of the σ_i . \square

(c) A (transitive) group G on a set A is said to be *primitive* if the only blocks in A are the trivial ones, the sets of size 1 and |A|. We demonstrate that S_4 is primitive on $A = \{1, 2, 3, 4\}$. Further, D_8 is not primitive as a permutation group on the four vertices of a square.

Demonstration. Suppose, for contradiction, I have a block of size 2 or 3 in $\{1, 2, 3, 4\}$. Since S_4 is transitive and contains all permutations of $\{1, 2, 3, 4\}$, there's a $\sigma \in S_4$ that maps one element in the block outside the block, fixing the other(s). Whence the only possible blocks have size 1 and 4. (It is trivial to check that indeed the singleton subsets of A and the whole of A are blocks.) So S_4 is primitive on A.

On the other hand, when D_8 acts on A, we have the nontrivial blocks $\{1,3\}$ and $\{2,4\}$. To verify, the images of the blocks under action by the generators of r and s of D_8 are given

- $r(\{1,3\}) = \{2,4\}$ and $r(\{2,4\}) = \{1,3\}$,
- $s(\{1,3\}) = \{1,3\}$ and $s(\{2,4\}) = \{2,4\}$.

Now any element of D_8 is a finite product of these two generators, whose action on B can be decomposed into repeated applications of the maps above. We conclude $\{1,3\}$ and $\{2,4\}$ are blocks under the action of D_8 . \square

- (d) The transitive group G is primitive on A if and only if for each $a \in A$, the only subgroups of G containing $\operatorname{Stab}_G(a)$ are $\operatorname{Stab}_G(a)$ and G (i.e., $\operatorname{Stab}_G(A)$ is a maximal subgroup of G).
 - *Proof.* (⇒) Suppose for all $a \in A$ that $\operatorname{Stab}_G(a)$ is a maximal subgroup of G. We know if B is a block containing a, then $\operatorname{Stab}_G(a) \leq \operatorname{Stab}_G(B)$. But then either $\operatorname{Stab}_G(B) = G$ or $\operatorname{Stab}_G(B) = \operatorname{Stab}_G(a)$. In the former case we have that every $g \in G$ stabilizes B, and given that G acts transitively on $A \supset B$, we must have B = A. In the later case we have that exactly those elements of g that stabilize $\{a\}$ also stabilize B, and further, since G acts transitively on $A \setminus \{a\}$ if B is to be stabilized by $g \in \operatorname{Stab}_G(a)$ then $B \subset \{a\}$. Since $B \neq \emptyset$, we have $B = \{a\}$. Whence G is primitive on A.
 - (⇐) Suppose now that G is primitive of A. We set out to argue if H is a subgroup such that $\operatorname{Stab}_G(a) \leq H \leq G$, then either $H = \operatorname{Stab}_G(a)$ or H = G. Consider $a \in A$. I claim H(a) is a block. Why? Let $g \in G$. Let

$$g(H(a)) = \{(gh)(a) : h \in H\}.$$

Since the cosets of H partition G, either gH = H or $gH \cap H = \emptyset$. In the former case g(H(a)) = H(a) and in the later $g(H(a)) \cap H(a) = \emptyset$. To verify the later, suppose $g(H(a)) \cap H(a) \neq \emptyset$. Then there exist $h, k \in H$ such that gh(a) = k(a), hence $ghk^{-1}(a) = a$, hence $ghk^{-1} \in \operatorname{Stab}_G(a) \leq H$. It follows that $g \in H$ and so too gH = H, but we've already identified this as the former case g(H(a)) = H(a). Therefore H(a) is a block.

Because *G* is primitive, the block H(a) is either *A* or $\{a\}$. Because *G* is *transitive*, we are forced to accept that H(a) = A implies H = G, and likewise that $H(a) = \{a\}$ implies $H = \operatorname{Stab}_G(a)$. \square

- 5.11. [1, No. 4.1.9]. Assume G acts transitively on the finite set A and let H be a normal subgroup of G. Let $\mathcal{O}_1, \mathcal{O}_2, \ldots, \mathcal{O}_r$ be the distinct orbits of H on A.
 - (a) G permutes the sets $\mathcal{O}_1, \mathcal{O}_2, \ldots, \mathcal{O}_r$ in the sense that for each $g \in G$ and each $i \in \{1, \ldots, r\}$ there is a j such that $g\mathcal{O}_i = \mathcal{O}_j$, where $g\mathcal{O} = \{g(a) : a \in \mathcal{O}\}$. Then G is transitive on $\{\mathcal{O}_1, \ldots, \mathcal{O}_r\}$. Furthermore, all orbits of H on A have the same cardinality.

Proof. We'll immediately show that G permutes the \mathcal{O}_i . Let $g \in G$ and $i \in \{1, \dots, r\}$. Then

$$g\mathscr{O}_i = gH(a) \qquad \qquad \text{for some } a \in A$$

$$= \{g(h(a)) : h \in H\}$$

$$= \{(gh)(a) : h \in H\}$$

$$= \{(h'g)(a) : h' \in H\}$$

$$= \{h'(g(a)) : h' \in H\}$$

$$= \{h'(b) : h' \in H\}$$

$$= H(b)$$

$$= \mathscr{O}_i$$

Now, G not only permutes the orbits \mathcal{O}_i , but acts *transitively* on them. To justify:

- Given any $a, b \in A$, we can find a $g \in G$ such that gH(a) = H(b).
- The map $A \to \{\mathcal{O}_i\}_1^r$ defined $a \mapsto H(a)$ is a surjection.
- So given any \mathcal{O}_i , we can find $g \in G$ such that $g\mathcal{O}_i = \mathcal{O}_j$.

To show $|\mathcal{O}_j| = |\mathcal{O}_i|$ we appeal to the second isomorphism theorem. Its hypotheses are met: G has subgroups H and $\operatorname{Stab}_G(a)$, with $\operatorname{Stab}_G(a) \leq N_G(H) = G$ (note also that $\operatorname{Stab}_G(a) \cap H = \operatorname{Stab}_H(a)$). Therefore $H\operatorname{Stab}_G(a)/H \cong \operatorname{Stab}_G(a)/\operatorname{Stab}_H(a)$. Now by the orbit stabilizer theorem (noting H also acts on A),

$$|H(a)| = \frac{|H|}{|\operatorname{Stab}_{H}(a)|} = \frac{|H\operatorname{Stab}_{G}(a)||H|}{|\operatorname{Stab}_{G}(a)||H|} = \frac{|H\operatorname{Stab}_{G}(a)|}{|\operatorname{Stab}_{G}(a)|}.$$

Since G acts transitively on A, it seems³ that size of the stabilizer $\operatorname{Stab}_G(a)$ is constant for any $a \in A$. Assuming this is the case, then the cardinality of each orbit H(a) is constant with respect to the choice of element $a \in A$. Therefore the orbits \mathcal{O}_i are all of the same cardinality. \square

(b) If $a \in \mathcal{O}_1$, then $|\mathcal{O}_1| = |H: H \cap \operatorname{Stab}_G(a)|$. Furthermore, $r = |G: H\operatorname{Stab}_G(a)|$.

Proof. The first assertion is justified in part (a), given that $|H: H \cap \operatorname{Stab}_G(a)| = \frac{|H|}{|\operatorname{Stab}_H(a)|}$ by the second isomorphism theorem.

The second assertion requires us to count the number of orbits of H on A. I am guessing this an application of Burnside's lemma, the "orbit counting theorem", but I don't see how to approach a proof.

³How would one go about proving this?

REFERENCES

[1] D. S. Dummit and R. M. Foote, $Abstract\ algebra$, 3rd ed. Hardcover; Prentice Hall, 2004 [Online]. Available: http://www.worldcat.org/isbn/0471433349