1. Gün2. Ders:Bölmeli modellerintemel kavramları

Bulaşıcı hastalık dinamiklerinin R'de modellenmesi üzerine kısa kurs

Ankara, Türkiye, Eylül 2025

Dr Juan F Vesga

Oturumun amaçları

- Hastalık modellerinin nasıl tasarlandığını anlamak
- Olasılık, oran ve rakip tehlike kavramlarını gözden geçirmek
- Bölmeli modellerin arkasındaki varsayımları anlamak

Bir hastalık modeli tasarlamak için kontrol listesi

- 1) Hastalığın doğal seyrini açıklayın
- 2) Bölmeler arasındaki gerekli geçişleri tanımlayın
- 3) Bu geçişleri yorumlayın ve parametreleri tahmin etmek için ilgili verileri bulun
- 4) Araştırma sorunuzu gözden geçirin ve modelinizin karmaşıklığını buna göre uyarlayın
- 5) Modelinizi kodlayın!

Basit bir örnek

Bir kohort modeli

- Geçiş oranlarını nasıl belirleriz?
- Çoklu oranlar bir bölmeyi nasıl etkiler?

Bir kohort modeli

$$\frac{dI}{dt} = -\gamma I(t)$$

$$\frac{dR}{dt} = \gamma I(t)$$

- Bölmeden dışarı akış oranı I bölmedeki insan sayısıyla orantılıdır I
- γ orantı sabitidir
- γ 'ye **sabit tehlike** adını veririz
- Tehlike belirli bir *t* zamanındaki olay oranıdır.

Bir kohort modeli

$$\frac{dI}{dt} = -\gamma I(t)$$

$$\frac{dR}{dt} = \gamma I(t)$$

- Bizim kohortumuzda γ iyileşme oranıdır
- γ ne kadar büyükse hastalar o kadar hızlı iyileşir
- Yani γ ters zaman gün⁻¹ birimlerinde ifade edilmelidir
- 10 günlük ortalama iyileşme oranı = 0,1 gün⁻¹ = 1/10

$$\frac{dI}{dt} = -\gamma I(t)$$

$$\frac{dR}{dt} = \gamma I(t)$$

- Enfekte olmuş 1000 kişiden oluşan bir başlangıç kohortu
- 0,1 günlük⁻¹ (10 gün) iyileşme oranı
- Enfekte olanların %50'si ne zaman iyileşecek?

Enfekte İyileşmiş

Çözüm

$$\frac{dI}{dt} = -\gamma I(t) \qquad \Longrightarrow \qquad I = I_0 e^{-\gamma t}$$

$$\frac{dR}{dt} = \gamma I(t) \quad \Longrightarrow \quad R = I_0 (1 - e^{-\gamma t})$$

- Enfekte olmuş 1000 kişiden oluşan bir başlangıç kohortu
- 0,1 günlük⁻¹ (10 gün) iyileşme oranı
- Enfekte olanların %50'si ne zaman iyileşecek?

Enfekte İyileşmiş

Çözüm

- Enfekte olmuş 1000 kişiden oluşan bir başlangıç kohortu
- 0,1 günlük⁻¹ (10 gün) iyileşme oranı
- Enfekte olanların %50'si ne $\frac{dI}{dt} = -\gamma I(t) \qquad \Longrightarrow I = 1000e^{-0.1(10)} \text{ zaman iyileşecek?}$

$$\frac{dR}{dt} = \gamma I(t)$$
 $\implies R = 1000(1 - e^{-0.1(10)})$

10 günlük iyileşme oranı

2 günlük iyileşme oranı. Çok daha hızlı!

Üstel dağılımın davranışı

- γ = 0,1 için ortalama enfeksiyon döneminin 10 gün olduğunu söyleyebiliriz
- = 0,5 için ortalama enfeksiyon döneminin 2 gün olduğunu söyleyebiliriz

Üstel dağılımın davranışı

- I 'de harcanan zaman üstel parametre ile üstel dağılımı takip eder
- Bu dağılımın ortalaması 1/, bizim durumumuzda ortalama enfeksiyon dönemidir (gün cinsinden)
- Enfeksiyon dönemi ne kadar kısaysa iyileşme oranı o kadar fazladır (büyüktür)!

Rakip Tehlikeler

$$\frac{dI}{dt} = -\gamma I(t)$$

$$\frac{dR}{dt} = \gamma I(t)$$

Rakip Tehlikeler

$$\frac{dI}{dt} = -(\gamma + \mu)I(t)$$

$$\frac{dR}{dt} = \gamma I(t) \qquad \frac{dM}{dt} = \mu R(t)$$

- Mortalite oranı ekleyerek biraz karmaşık hale getirelim μ
- Birden fazla olay *I* bölmeden dışarı akabilir.
- Buna rakip tehlike adını veririz: μ and γ

Rakip Tehlikeler

$$\frac{dI}{dt} = -(\gamma + \mu)I(t)$$

$$\frac{dR}{dt} = \gamma I(t) \qquad \frac{dM}{dt} = \mu R(t)$$

- if $\mu > \gamma$, daha fazla insanın iyileşmeden öleceği anlamına gelir (ör. Ebola)
- Bu, belirli bir bölme için iki tehlike oranının rekabet ettiği anlamına gelir
- Oranlarımızın değerini tanımlarken bunu dikkate almamız gerekir

Rakip Tehlikeler: CFR

- Vaka ölüm oranı, iyileşmeden ölen insanların oranıdır.
- Şu şekilde ifade edilebilir:

$$CFR = \mu/(\gamma + \mu)$$

Benzer şekilde, sağkalım oranı

survival =
$$\gamma/(\gamma + \mu)$$

Rakip Tehlikeler: CFR'den µ'yi tahmin edin

Hastalık	Patojen	Eradikasyon durumu	Bir yıldaki ölüm sayısı (son yıllarda)	Vaka ölüm oranı (tedavi edilmezse)
Çiçek hastalığı	Variola virüsü	Eradike edilmiş	0	±%30
Sığır vebası	Rinderpest virüsü	Eradike edilmiş	0	%100'e kadar
Çocuk felci	Poliovirüs	Eradike olmak üzere	0	<%0,5
Gine kurdu	Gine kurdu (nematod)	Eradike olmak üzere	Ölümcül değil	%0
Yaws hastalığı	Treponema pallidum (bakteri)	Eradike olmak üzere	Ölümcül değil	%0
Kuduz	Lyssavirüs	Dünyada eradike olmak üzere	13.289 (2016)	%100
Tüberküloz	Mycobacterium tuberculosis (bakteri)	Gelecekte eradike olması muhtemel	1,21 milyon (2016)	%70
HIV/AIDS	İnsan immün yetmezlik virüsü	Gelecekte eradike olması muhtemel	1,03 milyon (2016)	%100'e kadar
Sitma	Plasmodium (tek hücreli parazit)	Gelecekte eradike olması muhtemel	0,72 milyon (2016)	±%0,3

Şimdiye kadar bilmemiz gerekenler

- Bölmeli modellerin ne olduğu
- Bu modelleri yazmak için ODE'lerin nasıl kullanılacağı
- Tehlike oranlarının ne olduğu ve nasıl yorumlanacağı
- Rakip tehlikelerin ne olduğu ve neden önemli oldukları
- Vaka ölüm oranının (CFR) ne olduğu