Tutorium 4

Funktionentheorie

19. & 20. Mai 2025

Etwas zu Dreiecken

Etwas zu Dreiecken

Theorem

Seien $D \subset \mathbb{C}$ eine offene Kreisscheibe und $f:D \to \mathbb{C}$ stetig mit

$$\int_T f(z)\,\mathrm{d}z=0$$

für jedes Dreieck $T \subset D$. Dann besitzt f eine Stammfunktion in D.

Etwas zu Dreiecken

Theorem

Seien $D \subset \mathbb{C}$ eine offene Kreisscheibe und $f:D \to \mathbb{C}$ stetig mit

$$\int_T f(z)\,\mathrm{d}z=0$$

für jedes Dreieck $T \subset D$. Dann besitzt f eine Stammfunktion in D.

Lemma (Goursat's lemma)

Sei $\Omega \subset \mathbb{C}$ offen und $f: \Omega \to \mathbb{C}$ holomorph. Dann gilt für jedes Dreieck T, das mitsamt seinem "Inneren" in Ω enthalten ist,

$$\int_T f(z)\,\mathrm{d}z=0.$$

Konvexe Mengen (in \mathbb{C})

Konvexe Mengen (in \mathbb{C})

Definition

Eine Menge $\Omega \subset \mathbb{C}$ heißt *konvex*, falls für alle $w_1, w_2 \in \mathbb{C}$ die Verbindungsstrecke $[w_1, w_2] := \{tw_1 + (1-t)w_2 : t \in [0,1]\}$ von w_1 nach w_2 vollständig in Ω enthalten ist:

$$tw_1+(1-t)w_2\in\Omega \qquad \forall t\in[0,1]$$

Konvexe Mengen (in \mathbb{C})

Definition

Eine Menge $\Omega \subset \mathbb{C}$ heißt *konvex*, falls für alle $w_1, w_2 \in \mathbb{C}$ die Verbindungsstrecke $[w_1, w_2] := \{tw_1 + (1-t)w_2 : t \in [0,1]\}$ von w_1 nach w_2 vollständig in Ω enthalten ist:

$$tw_1 + (1-t)w_2 \in \Omega \qquad \forall t \in [0,1]$$

Definition

Eine Menge $\Omega\subset\mathbb{C}$ heißt bezüglich eines Punktes $z_0\in\Omega$ sternförmig, falls für jedes $w\in\Omega$ die Verbindungsstrecke $[z_0,w]:=\{tz_0+(1-t)w:t\in[0,1]\}$ von z_0 nach w vollständig in Ω enthalten ist:

$$tz_0 + (1-t)w \in \Omega \qquad \forall t \in [0,1]$$

Definition

Eine Menge $\Omega\subset\mathbb{C}$ heißt bezüglich eines Punktes $z_0\in\Omega$ sternförmig, falls für jedes $w\in\Omega$ die Verbindungsstrecke $[z_0,w]:=\{tz_0+(1-t)w:t\in[0,1]\}$ von z_0 nach w vollständig in Ω enthalten ist:

$$tz_0 + (1-t)w \in \Omega \qquad \forall t \in [0,1]$$

Definition

Eine Menge $\Omega \subset \mathbb{C}$ heißt bezüglich eines Punktes $z_0 \in \Omega$ sternförmig, falls für jedes $w \in \Omega$ die Verbindungsstrecke $[z_0,w]:=\{tz_0+(1-t)w:t\in[0,1]\}$ von z_0 nach w vollständig in Ω enthalten ist:

$$tz_0 + (1-t)w \in \Omega \qquad \forall t \in [0,1]$$

Definition

Eine Menge $\Omega \subset \mathbb{C}$ heißt bezüglich eines Punktes $z_0 \in \Omega$ sternförmig, falls für jedes $w \in \Omega$ die Verbindungsstrecke $[z_0,w]:=\{tz_0+(1-t)w:t\in[0,1]\}$ von z_0 nach w vollständig in Ω enthalten ist:

$$tz_0 + (1-t)w \in \Omega \qquad \forall t \in [0,1]$$

Definition

Eine Menge $\Omega \subset \mathbb{C}$ heißt bezüglich eines Punktes $z_0 \in \Omega$ sternförmig, falls für jedes $w \in \Omega$ die Verbindungsstrecke $[z_0,w]:=\{tz_0+(1-t)w:t\in[0,1]\}$ von z_0 nach w vollständig in Ω enthalten ist:

$$tz_0 + (1-t)w \in \Omega \qquad \forall t \in [0,1]$$

Definition

Eine Menge $\Omega\subset\mathbb{C}$ heißt bezüglich eines Punktes $z_0\in\Omega$ sternförmig, falls für jedes $w\in\Omega$ die Verbindungsstrecke $[z_0,w]:=\{tz_0+(1-t)w:t\in[0,1]\}$ von z_0 nach w vollständig in Ω enthalten ist:

$$tz_0 + (1-t)w \in \Omega \qquad \forall t \in [0,1]$$

