

Mark Scheme (Results) January 2008

GCE

GCE Mathematics (6666/01)

January 2008 6666 Core Mathematics C4 Mark Scheme

Question Number	Scheme		Marks
1. (a)	$\begin{array}{c ccccc} x & 0 & \frac{\pi}{4} & \frac{\pi}{2} \\ \hline y & 0 & 1.844321332 & 4.810477381 \\ \end{array}$	$\frac{3\pi}{4}$ π 8.87207 0	
(b) Way 1	Area $\approx \frac{1}{2} \times \frac{\pi}{4}$; $\times \{0+2(1.84432+4.81048+8.87207)+0\}$	awrt 1.84432 awrt 4.81048 or 4.81047 Outside brackets awrt 0.39 or $\frac{1}{2} \times \text{awrt } 0.79$ $\frac{1}{2} \times \frac{\pi}{4} \text{ or } \frac{\pi}{8}$ For structure of trapezium $\frac{\text{rule } \left\{ \dots \right\}}{\text{Correct expression }};$ Correct expression $\frac{\text{inside brackets}}{\text{be multiplied by their "outside }}$ constant".	B1 B1 [2] B1 M1√
	$= \frac{\pi}{8} \times 31.05374 = 12.19477518 = \underline{12.1948} $ (4dp)	<u>12.1948</u>	A1 cao [4]
Alid on	Area $\approx \frac{\pi}{4} \times \left\{ \frac{0+1.84432}{2} + \frac{1.84432 + 4.81048}{2} + \frac{4.81048 + 8.87207}{2} + \frac{8.87207 + 0}{2} \right\}$	$\frac{\pi}{4}$ (or awrt 0.79) and a divisor of 2 on all terms inside brackets.	В1
Aliter (b) Way 2	which is equivalent to: Area $\approx \frac{1}{2} \times \frac{\pi}{4}$; $\times \left\{ 0 + 2(1.84432 + 4.81048 + 8.87207) + 0 \right\}$	One of first and last ordinates, two of the middle ordinates inside brackets ignoring the 2. Correct expression inside brackets if $\frac{1}{2}$ was to be factorised out.	$\underline{M1}\sqrt{}$ $\underline{A1}\sqrt{}$
	$= \frac{\pi}{4} \times 15.52687 = 12.19477518 = \underline{12.1948} $ (4dp)	12.1948	A1 cao
			[4] 6 marks

Note an expression like Area $\approx \frac{1}{2} \times \frac{\pi}{4} + 2(1.84432 + 4.81048 + 8.87207)$ would score B1M1A0A0

Question Number	Scheme		Marks
	** represents a constant (which must be consistent for first accuracy mark) $(8-3x)^{\frac{1}{3}} = (8)^{\frac{1}{3}} \left(1 - \frac{3x}{8}\right)^{\frac{1}{3}} = 2\left(1 - \frac{3x}{8}\right)^{\frac{1}{3}}$	Takes 8 outside the bracket to give any of $(8)^{\frac{1}{3}}$ or $\underline{2}$.	<u>B1</u>
	$= 2\left\{ \frac{1 + (\frac{1}{3})(**x); + \frac{(\frac{1}{3})(-\frac{2}{3})}{2!}(**x)^2 + \frac{(\frac{1}{3})(-\frac{2}{3})(-\frac{5}{3})}{3!}(**x)^3 + \dots \right\}$ with ** \neq 1	Expands $(1+**x)^{\frac{1}{3}}$ to give a simplified or an un-simplified $1+(\frac{1}{3})(**x)$; A correct simplified or an un-simplified $\{\underline{\dots}\}$ expansion with candidate's followed through $(**x)$	M1; A1√
	$=2\left\{ \underbrace{1+(\frac{1}{3})(-\frac{3x}{8})+\frac{(\frac{1}{3})(-\frac{2}{3})}{2!}(-\frac{3x}{8})^2+\frac{(\frac{1}{3})(-\frac{2}{3})(-\frac{5}{3})}{3!}(-\frac{3x}{8})^3+\ldots} \right\}$	Award SC M1 if you see $\frac{(\frac{1}{3})(-\frac{2}{3})}{2!}(**x)^2 + \frac{(\frac{1}{3})(-\frac{2}{3})(-\frac{5}{3})}{3!}(**x)^3$	
	$= 2\left\{1 - \frac{1}{8}x; -\frac{1}{64}x^2 - \frac{5}{1536}x^3 - \ldots\right\}$ $= 2 - \frac{1}{4}x; -\frac{1}{32}x^2 - \frac{5}{768}x^3 - \ldots$	Either $2\{1-\frac{1}{8}x \dots\}$ or anything that cancels to $2-\frac{1}{4}x$; Simplified $-\frac{1}{32}x^2-\frac{5}{768}x^3$	A1; A1 [5]
(b)	$(7.7)^{\frac{1}{3}} \approx 2 - \frac{1}{4}(0.1) - \frac{1}{32}(0.1)^2 - \frac{5}{768}(0.1)^3 - \dots$ $= 2 - 0.025 - 0.0003125 - 0.0000065104166\dots$	Attempt to substitute $x = 0.1$ into a candidate's binomial expansion.	M1
	= 1.97468099	awrt 1.9746810	A1 [2]
			7 marks

You would award B1M1A0 for

$$=2\left\{\underbrace{1+(\frac{1}{3})(-\frac{3x}{8})+\frac{(\frac{1}{3})(-\frac{2}{3})}{2!}(-\frac{3x}{8})^2+\frac{(\frac{1}{3})(-\frac{2}{3})(-\frac{5}{3})}{3!}(-3x)^3+\ldots}\right\}$$

because ** is not consistent.

If you see the constant term "2" in a candidate's final binomial expansion, then you can award B1.

Be wary of calculator value of $(7.7)^{\frac{1}{3}} = 1.974680822...$

Question Number	Scheme		Marks
Aliter 2. (a)	$(8-3x)^{\frac{1}{3}}$		
Way 2	$= \begin{cases} (8)^{\frac{1}{3}} + (\frac{1}{3})(8)^{-\frac{2}{3}}(**x); + \frac{(\frac{1}{3})(-\frac{2}{3})}{2!}(8)^{-\frac{5}{3}}(**x)^{2} \\ + \frac{(\frac{1}{3})(-\frac{2}{3})(-\frac{5}{3})}{3!}(8)^{-\frac{8}{3}}(**x)^{3} + \dots \end{cases}$ with $** \neq 1$	2 or $(8)^{\frac{1}{3}}$ (See note ↓) Expands $(8-3x)^{\frac{1}{3}}$ to give an un-simplified or simplified $(8)^{\frac{1}{3}} + (\frac{1}{3})(8)^{-\frac{2}{3}}(**x);$ A correct un-simplified or simplified {} expansion with candidate's followed through $(**x)$	B1 M1; A1√
	$= \begin{cases} (8)^{\frac{1}{3}} + (\frac{1}{3})(8)^{-\frac{2}{3}}(-3x); + \frac{(\frac{1}{3})(-\frac{2}{3})}{2!}(8)^{-\frac{5}{3}}(-3x)^{2} \\ + \frac{(\frac{1}{3})(-\frac{2}{3})(-\frac{5}{3})}{3!}(8)^{-\frac{8}{3}}(-3x)^{3} + \dots \end{cases}$ $= \left\{ 2 + (\frac{1}{3})(\frac{1}{4})(-3x) + (-\frac{1}{9})(\frac{1}{32})(9x^{2}) + (\frac{5}{81})(\frac{1}{256})(-27x^{3}) + \dots \right\}$	Award SC M1 if you see $\frac{(\frac{1}{2})(-\frac{2}{2})}{2!}(8)^{-\frac{1}{2}}(**x)^{2} + \frac{(\frac{1}{2})(-\frac{2}{2})(-\frac{5}{2})}{3!}(8)^{-\frac{7}{2}}(**x)^{3}$	
	$=2-\frac{1}{4}x;-\frac{1}{32}x^2-\frac{5}{768}x^3-\dots$	Anything that cancels to $2 - \frac{1}{4}x$; or $2\left\{1 - \frac{1}{8}x \dots \right\}$ Simplified $-\frac{1}{32}x^2 - \frac{5}{768}x^3$	A1; A1 [5]

Attempts using Maclaurin expansion should be escalated up to your team leader.

Be wary of calculator value of $(7.7)^{\frac{1}{3}} = 1.974680822...$

If you see the constant term "2" in a candidate's final binomial expansion, then you can award B1.

Question Number	Scheme		Marks
3.	Volume = $\pi \int_a^b \left(\frac{1}{2x+1}\right)^2 dx = \pi \int_a^b \frac{1}{(2x+1)^2} dx$	Use of $V = \pi \int y^2 dx$. Can be implied. Ignore limits.	B1
	$= \pi \int_a^b (2x+1)^{-2} dx$		
	$= (\pi) \left[\frac{(2x+1)^{-1}}{(-1)(2)} \right]_a^b$		
	$= (\pi) \left[-\frac{1}{2} (2x+1)^{-1} \right]_a^b$	Integrating to give $\frac{\pm p(2x+1)^{-1}}{-\frac{1}{2}(2x+1)^{-1}}$	M1 A1
	$= (\pi) \left[\left(\frac{-1}{2(2b+1)} \right) - \left(\frac{-1}{2(2a+1)} \right) \right]$	Substitutes limits of <i>b</i> and <i>a</i> and subtracts the correct way round.	dM1
	$= \frac{\pi}{2} \left[\frac{-2a-1+2b+1}{(2a+1)(2b+1)} \right]$		
	$= \frac{\pi}{2} \left[\frac{2(b-a)}{(2a+1)(2b+1)} \right]$		
	$=\frac{\pi(b-a)}{(2a+1)(2b+1)}$	$\frac{\pi(b-a)}{(2a+1)(2b+1)}$	A1 aef
			5 marks

Allow other equivalent forms such as

$$\frac{\pi b - \pi a}{(2a+1)(2b+1)}$$
 or $\frac{-\pi (a-b)}{(2a+1)(2b+1)}$ or $\frac{\pi (b-a)}{4ab+2a+2b+1}$ or $\frac{\pi b - \pi a}{4ab+2a+2b+1}$.

Note that π is not required for the middle three marks of this question.

Question Number	Scheme		Marks
Aliter 3. Way 2	Volume = $\pi \int_{a}^{b} \left(\frac{1}{2x+1}\right)^{2} dx = \pi \int_{a}^{b} \frac{1}{(2x+1)^{2}} dx$	Use of $V = \pi \int y^2 dx$. Can be implied. Ignore limits.	B1
	$= \pi \int_a^b (2x+1)^{-2} dx$		
	Applying substitution $u = 2x + 1 \Rightarrow \frac{du}{dx} = 2$ and changing limits $x \to u$ so that $a \to 2a + 1$ and $b \to 2b + 1$, gives		
	$= (\pi) \int_{2a+1}^{2b+1} \frac{u^{-2}}{2} \mathrm{d}u$		
	$= \left(\pi\right) \left[\frac{u^{-1}}{(-1)(2)}\right]_{2a+1}^{2b+1}$		
	$= (\pi) \left[-\frac{1}{2} u^{-1} \right]_{2a+1}^{2b+1}$	Integrating to give $\frac{\pm pu^{-1}}{-\frac{1}{2}u^{-1}}$	M1 A1
	$= \left(\pi\right) \left[\left(\frac{-1}{2(2b+1)}\right) - \left(\frac{-1}{2(2a+1)}\right) \right]$	Substitutes limits of $2b+1$ and $2a+1$ and subtracts the correct way round.	dM1
	$= \frac{\pi}{2} \left[\frac{-2a - 1 + 2b + 1}{(2a+1)(2b+1)} \right]$		
	$= \frac{\pi}{2} \left[\frac{2(b-a)}{(2a+1)(2b+1)} \right]$		
	$=\frac{\pi(b-a)}{(2a+1)(2b+1)}$	$\frac{\pi(b-a)}{(2a+1)(2b+1)}$	A1 aef
			[5] 5 marks

Note that π is not required for the middle three marks of this question.

Allow other equivalent forms such as

$$\frac{\pi b - \pi a}{(2a+1)(2b+1)}$$
 or $\frac{-\pi (a-b)}{(2a+1)(2b+1)}$ or $\frac{\pi (b-a)}{4ab+2a+2b+1}$ or $\frac{\pi b - \pi a}{4ab+2a+2b+1}$.

Question Number	Scheme		Marks
4. (i)	$\int \ln\left(\frac{x}{2}\right) dx = \int 1.\ln\left(\frac{x}{2}\right) dx \Rightarrow \begin{cases} u = \ln\left(\frac{x}{2}\right) & \Rightarrow \frac{du}{dx} \\ \frac{dv}{dx} = 1 & \Rightarrow v \end{cases}$	$\frac{u}{x} = \frac{\frac{1}{2}}{\frac{x}{2}} = \frac{1}{x}$ $= x$	
	$\int \ln\left(\frac{x}{2}\right) dx = x \ln\left(\frac{x}{2}\right) - \int x \cdot \frac{1}{x} dx$	Use of 'integration by parts' formula in the correct direction. Correct expression.	M1 A1
	$= x \ln\left(\frac{x}{2}\right) - \int \underline{1} \mathrm{d}x$	An attempt to multiply x by a candidate's $\frac{a}{x}$ or $\frac{1}{bx}$ or $\frac{1}{x}$.	<u>dM1</u>
	$= x \ln\left(\frac{x}{2}\right) - x + c$	Correct integration with $+c$	A1 aef [4]
(ii)	$\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \sin^2 x dx$ $\left[\text{NB: } \frac{\cos 2x = \pm 1 \pm 2 \sin^2 x}{2} \text{ or } \frac{\sin^2 x = \frac{1}{2} (\pm 1 \pm \cos x)}{\sin^2 x} \right]$ $= \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{1 - \cos 2x}{2} dx = \frac{1}{2} \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \left(\frac{1 - \cos 2x}{2} \right) dx$	Consideration of double angle formula for $\cos 2x$	M1
	$=\frac{1}{2}\left[\begin{array}{c}x-\frac{1}{2}\sin 2x\end{array}\right]_{\frac{\pi}{4}}^{\frac{\pi}{2}}$	Integrating to give	dM1 A1
	$= \frac{1}{2} \left[\left(\frac{\pi}{2} - \frac{\sin(\pi)}{2} \right) - \left(\frac{\pi}{4} - \frac{\sin\left(\frac{\pi}{2}\right)}{2} \right) \right]$ $= \frac{1}{2} \left[\left(\frac{\pi}{2} - 0 \right) - \left(\frac{\pi}{4} - \frac{1}{2} \right) \right]$	Substitutes limits of $\frac{\pi}{2}$ and $\frac{\pi}{4}$ and subtracts the correct way round.	ddM1
	$= \frac{1}{2} \left(\frac{\pi}{4} + \frac{1}{2} \right) = \frac{\pi}{8} + \frac{1}{4}$	$\frac{\frac{1}{2}\left(\frac{\pi}{4} + \frac{1}{2}\right)}{\text{Candidate must collect their}} \text{ or } \frac{\frac{\pi}{8} + \frac{1}{4}}{\frac{2}{8}} \text{ or } \frac{\frac{\pi}{8} + \frac{2}{8}}{\frac{2}{8}}$ Candidate must collect their π term and constant term together for A1 No fluked answers, hence cso .	A1 aef, cso [5]
			9 marks

Note: $\int \ln\left(\frac{x}{2}\right) dx = (\text{their } v) \ln\left(\frac{x}{2}\right) - \int (\text{their } v) \cdot (\text{their } \frac{du}{dx}) dx$ for M1 in part (i).

Note $\frac{\pi}{8} + \frac{1}{4} = 0.64269...$

Question Number	Scheme	Marks
Aliter 4. (i) Way 2	$\int \ln\left(\frac{x}{2}\right) dx = \int (\ln x - \ln 2) dx = \int \ln x dx - \int \ln 2 dx$	
	$\int \ln x dx = \int 1 \cdot \ln x dx \Rightarrow \begin{cases} u = \ln x & \Rightarrow \frac{du}{dx} = \frac{1}{x} \\ \frac{dv}{dx} = 1 & \Rightarrow v = x \end{cases}$	
	$\int \ln x dx = x \ln x - \int x \cdot \frac{1}{x} dx$ Use of 'integration by parts' formula in the correct direction.	M1
	$= x \ln x - x + c$ Correct integration of $\ln x$ with or without $+ c$	A1
	$\int \ln 2 dx = x \ln 2 + c$ Correct integration of $\ln 2$ with or without $+ c$	M1
	Hence, $\int \ln(\frac{x}{2}) dx = x \ln x - x - x \ln 2 + c$ Correct integration with $+ c$	A1 aef [4]

Note: $\int \ln x \, dx = (\text{their } v) \ln x - \int (\text{their } v) \cdot (\text{their } \frac{du}{dx}) \, dx$ for M1 in part (i).

Question Number	Scheme	Marks	8
Aliter 4. (i) Way 3	$\int \ln\left(\frac{x}{2}\right) dx$		
	$u = \frac{x}{2} \implies \frac{\mathrm{d}u}{\mathrm{d}x} = \frac{1}{2}$		
	Applying substitution correctly to give $\int \ln\left(\frac{x}{2}\right) dx = 2 \int \ln u \ du$ $\int \ln\left(\frac{x}{2}\right) dx = 2 \int \ln u \ du$ Decide to award 2^{nd} M1 here!		
	$\int \ln u dx = \int 1 . \ln u du$		
	$\int \ln u dx = u \ln u - \int u \cdot \frac{1}{u} du$ Use of 'integration by parts' formula in the correct direction.	M1	
	$= u \ln u - u + c$ Correct integration of $\ln u$ with or without $+ c$	A1	
	Decide to award 2 nd M1 here!	M1	
	$\int \ln\left(\frac{x}{2}\right) dx = 2\left(u \ln u - u\right) + c$		
	Hence, $\int \ln\left(\frac{x}{2}\right) dx = x \ln\left(\frac{x}{2}\right) - x + c$ Correct integration with $+ c$	A1 aef	[4]

Question Number	Scheme		Marks
Aliter 4. (ii) Way 2	$\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \sin^2 x dx = \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \sin x . \sin x dx \text{and} I = \int \sin^2 x dx$		
	$\begin{cases} u = \sin x & \Rightarrow \frac{du}{dx} = \cos x \\ \frac{dv}{dx} = \sin x & \Rightarrow v = -\cos x \end{cases}$		
	$\therefore I = \left\{ -\sin x \cos x + \int \cos^2 x dx \right\}$	An attempt to use the correct by parts formula.	M1
	$\therefore I = \left\{ -\sin x \cos x + \int (1 - \sin^2 x) dx \right\}$		
	$\int \sin^2 x dx = \left\{ -\sin x \cos x + \int 1 dx - \int \sin^2 x dx \right\}$		
	$2\int \sin^2 x dx = \left\{ -\sin x \cos x + \int 1 dx \right\}$	For the LHS becoming 2 <i>I</i>	dM1
	$2\int \sin^2 x \mathrm{d}x = \left\{-\sin x \cos x + x\right\}$		
	$\int \sin^2 x dx = \left\{ \frac{-\frac{1}{2} \sin x \cos x + \frac{x}{2}}{2} \right\}$	Correct integration	A1
	$\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \sin^2 x dx = \left[\left(-\frac{1}{2} \sin(\frac{\pi}{2}) \cos(\frac{\pi}{2}) + \frac{\frac{\pi}{2}}{2} \right) - \left(-\frac{1}{2} \sin(\frac{\pi}{4}) \cos(\frac{\pi}{4}) + \frac{\frac{\pi}{4}}{2} \right) \right]$ $= \left[\left(0 + \frac{\pi}{4} \right) - \left(-\frac{1}{4} + \frac{\pi}{8} \right) \right]$	Substitutes limits of $\frac{\pi}{2}$ and $\frac{\pi}{4}$ and subtracts the correct way round.	ddM1
	$=\frac{\pi}{8}+\frac{1}{4}$	$\frac{\frac{1}{2}\left(\frac{\pi}{4} + \frac{1}{2}\right)}{\text{Candidate must collect their}} \text{ or } \frac{\frac{\pi}{8} + \frac{1}{4}}{\text{s}} \text{ or } \frac{\frac{\pi}{8} + \frac{2}{8}}{\frac{8}{8}}$ Candidate must collect their π term and constant term together for A1 No fluked answers, hence cso .	A1 aef cso [5]

Note $\frac{\pi}{8} + \frac{1}{4} = 0.64269...$

Question Number	Scheme		Marks
5. (a)	$x^3 - 4y^2 = 12xy$ (eqn *)		
	$x = -8 \implies -512 - 4y^{2} = 12(-8)y$ $-512 - 4y^{2} = -96y$	Substitutes $x = -8$ (at least once) into * to obtain a three term quadratic in y . Condone the loss of = 0.	M1
	$4y^2 - 96y + 512 = 0$ $y^2 - 24y + 128 = 0$		
	$(y-16)(y-8) = 0$ $y = \frac{24 \pm \sqrt{576 - 4(128)}}{2}$	An attempt to solve the quadratic in y by either factorising or by the formula or by completing the square.	dM1
	y = 16 or $y = 8$.	Both $\underline{y=16}$ and $\underline{y=8}$. or $(-8, 8)$ and $(-8, 16)$.	A1 [3]
(b)	$\left\{\frac{\cancel{x}}{\cancel{x}}\times\right\} 3x^2 - 8y \frac{\mathrm{d}y}{\mathrm{d}x}; = \left(\underline{12y + 12x\frac{\mathrm{d}y}{\mathrm{d}x}}\right)$	Differentiates implicitly to include either $\pm ky \frac{dy}{dx}$ or $12x \frac{dy}{dx}$. Ignore $\frac{dy}{dx} =$ Correct LHS equation; Correct application of product rule	M1 A1; (B1)
	$\left\{ \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{3x^2 - 12y}{12x + 8y} \right\}$	not necessarily required.	
	$ (2.8, 8), \frac{dy}{dx} = \frac{3(64) - 12(8)}{12(-8) + 8(8)} = \frac{96}{-32} = \frac{-3}{-3}, $ $ (2.8, 16), \frac{dy}{dx} = \frac{3(64) - 12(16)}{12(-8) + 8(16)} = \frac{0}{32} = \underline{0}. $	Substitutes $x = -8$ and at least one of their y-values to attempt to find any one of $\frac{dy}{dx}$.	dM1
	$ (a) (-8, 16), \frac{dy}{dx} = \frac{3(64) - 12(16)}{12(-8) + 8(16)} = \frac{0}{32} = 0. $	One gradient found. Both gradients of $\underline{-3}$ and $\underline{0}$ <i>correctly</i> found.	A1 A1 cso [6]
			9 marks

Question Number	Scheme		Marks
Aliter 5. (b) Way 2	$\left\{\frac{2x}{2x}\right\} = 3x^2 \frac{dx}{dy} - 8y; = \left(12y \frac{dx}{dy} + 12x\right)$	Differentiates implicitly to include either $\pm kx^2 \frac{dx}{dy}$ or $12y \frac{dx}{dy}$. Ignore $\frac{dx}{dy} =$ Correct LHS equation Correct application of product rule	M1 A1; (B1)
	$\left\{ \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{3x^2 - 12y}{12x + 8y} \right\}$	not necessarily required.	
	$ (2)(-8,8), \frac{dy}{dx} = \frac{3(64) - 12(8)}{12(-8) + 8(8)} = \frac{96}{-32} = \frac{-3}{-3}, $ $ (2)(-8,16), \frac{dy}{dx} = \frac{3(64) - 12(16)}{12(-8) + 8(16)} = \frac{0}{32} = \underline{0}. $	Substitutes $x = -8$ and <i>at least one</i> of their <i>y</i> -values to attempt to find any one of $\frac{dy}{dx}$ or $\frac{dx}{dy}$. One gradient found.	dM1
		Both gradients of <u>-3</u> and <u>0</u> <i>correctly</i> found.	A1 cso [6]

Question Number	Scheme		Marks
Aliter 5. (b) Way 3	$x^3 - 4y^2 = 12xy \text{ (eqn *)}$		
	$4y^{2} + 12xy - x^{3} = 0$ $y = \frac{-12x \pm \sqrt{144x^{2} - 4(4)(-x^{3})}}{8}$		
	$y = \frac{-12x \pm \sqrt{144x^2 + 16x^3}}{8}$		
	$y = \frac{-12x \pm 4\sqrt{9x^2 + x^3}}{8}$		
	$y = -\frac{3}{2}x \pm \frac{1}{2}(9x^2 + x^3)^{\frac{1}{2}}$		
	$\frac{dy}{dx} = -\frac{3}{2} \pm \frac{1}{2} \left(\frac{1}{2}\right) \left(9x^2 + x^3\right)^{-\frac{1}{2}}; \left(18x + 3x^2\right)$	A credible attempt to make y the subject and an attempt to differentiate either $-\frac{3}{2}x$ or $\frac{1}{2}(9x^2 + x^3)^{\frac{1}{2}}$.	M1
	$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{3}{2} \pm \frac{18x + 3x^2}{4(9x^2 + x^3)^{\frac{1}{2}}}$	$\frac{dy}{dx} = -\frac{3}{2} \pm k \left(9x^2 + x^3\right)^{-\frac{1}{2}} \left(g(x)\right)$ $\frac{dy}{dx} = -\frac{3}{2} \pm \frac{1}{2} \left(\frac{1}{2}\right) \left(9x^2 + x^3\right)^{-\frac{1}{2}}; \left(18x + 3x^2\right)$	
	(a) $x = -8$ $\frac{dy}{dx} = -\frac{3}{2} \pm \frac{18(-8) + 3(64)}{4(9(64) + (-512))^{\frac{1}{2}}}$	Substitutes $x = -8$ find any one of $\frac{dy}{dx}$.	dM1
	$= -\frac{3}{2} \pm \frac{48}{4\sqrt{(64)}} = -\frac{3}{2} \pm \frac{48}{32}$		
	$\therefore \frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{3}{2} \pm \frac{3}{2} = \underline{-3}, \underline{0}.$	One gradient correctly found. Both gradients of $\underline{-3}$ and $\underline{0}$ correctly found.	A1 A1 [6]

Question	Scheme	Marks
6. (a)	$\overrightarrow{OA} = \begin{pmatrix} 2 \\ 6 \\ -1 \end{pmatrix} & & \overrightarrow{OB} = \begin{pmatrix} 3 \\ 4 \\ 1 \end{pmatrix}$	
	$\overline{AB} = \overline{OB} - \overline{OA} = \begin{pmatrix} 3 \\ 4 \\ 1 \end{pmatrix} - \begin{pmatrix} 2 \\ 6 \\ -1 \end{pmatrix} = \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix}$ Finding the difference between \overline{OB} and \overline{OA} Correct answer	. M1±
	An expression of the form $ l_1 : \mathbf{r} = \begin{pmatrix} 2 \\ 6 \\ -1 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix} $ or $\mathbf{r} = \begin{pmatrix} 3 \\ 4 \\ 1 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix} $ or $\mathbf{r} = \overrightarrow{OA} \pm \lambda \left(\text{their } \overrightarrow{AB} \right) \mathbf{c} $ $ \mathbf{r} = \overrightarrow{OB} \pm \lambda \left(\text{their } \overrightarrow{AB} \right) \mathbf{c} $	n M1 r
(b)	$l_{1}: \mathbf{r} = \begin{pmatrix} 2 \\ 6 \\ -1 \end{pmatrix} + \lambda \begin{pmatrix} -1 \\ 2 \\ -2 \end{pmatrix} \text{or} \mathbf{r} = \begin{pmatrix} 3 \\ 4 \\ 1 \end{pmatrix} + \lambda \begin{pmatrix} -1 \\ 2 \\ -2 \end{pmatrix} $ $\mathbf{r} = \overrightarrow{OA} \pm \lambda \left(\text{their } \overrightarrow{BA} \right) $ $\mathbf{r} = \overrightarrow{OB} \pm \lambda \left(\text{their } \overrightarrow{BA} \right) $ $\mathbf{r} = \overrightarrow{OB} \pm \lambda \left(\text{their } \overrightarrow{BA} \right) $ $\mathbf{r} = \overrightarrow{OB} \pm \lambda \left(\text{their } \overrightarrow{BA} \right) $ $\mathbf{r} = \overrightarrow{OB} \pm \lambda \left(\text{their } \overrightarrow{BA} \right) $ $\mathbf{r} = \overrightarrow{OB} + \lambda \left(\text{their } \overrightarrow{BA} \right) $ $\mathbf{r} = \overrightarrow{OB} + \lambda \left(\text{their } \overrightarrow{BA} \right) $	r A1√ aef
(c)	$l_2: \mathbf{r} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} + \mu \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \implies \mathbf{r} = \mu \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$	
	$\overline{AB} = \mathbf{d}_1 = \mathbf{i} - 2\mathbf{j} + 2\mathbf{k}$, $\mathbf{d}_2 = \mathbf{i} + 0\mathbf{j} + \mathbf{k}$ & θ is angle	
	$\cos \theta = \frac{\overrightarrow{AB} \cdot \mathbf{d}_2}{\left(\left \overrightarrow{AB}\right \cdot \left \mathbf{d}_2\right \right)} = \frac{\begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}}{\left(\sqrt{(1)^2 + (-2)^2 + (2)^2} \cdot \sqrt{(1)^2 + (0)^2 + (1)^2}\right)}$ Considers dot product between \mathbf{d}_2 and their \overrightarrow{AB}	3.51
	$\cos \theta = \frac{1+0+2}{\sqrt{(1)^2+(-2)^2+(2)^2} \cdot \sqrt{(1)^2+(0)^2+(1)^2}}$ Correct followed throug expression or equation	1 A 1 . /
	$\cos \theta = \frac{3}{3.\sqrt{2}} \Rightarrow \frac{\theta = 45^{\circ} \text{ or } \frac{\pi}{4} \text{ or awrt } 0.79.}{\theta = 45^{\circ} \text{ or } \frac{\pi}{4} \text{ or awrt } 0.79.}$	Al cao
		[3]

This means that $\cos \theta$ does not necessarily have to be the subject of the equation. It could be of the form $3\sqrt{2}\cos\theta = 3$.

Question Number	Scheme		Marks
6. (d)	If l_1 and l_2 intersect then: $\begin{pmatrix} 2 \\ 6 \\ -1 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix} = \mu \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$		
	i : $2 + \lambda = \mu$ (1) j : $6 - 2\lambda = 0$ (2) k : $-1 + 2\lambda = \mu$ (3)	Either seeing equation (2) written down correctly with or without any other equation or seeing equations (1) and (3) written down correctly.	M1 √
	(2) yields $\lambda = 3$ Any two yields $\lambda = 3$, $\mu = 5$	Attempt to solve either equation (2) or simultaneously solve any two of the three equations to find	
	$l_{1}: \mathbf{r} = \begin{pmatrix} 2 \\ 6 \\ -1 \end{pmatrix} + 3 \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix} = \begin{pmatrix} 5 \\ 0 \\ 5 \end{pmatrix} or \mathbf{r} = 5 \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 5 \\ 0 \\ 5 \end{pmatrix}$	either one of λ or μ correct.	A1 cso [4]
Aliter 6. (d) Way 2	If l_1 and l_2 intersect then: $\begin{pmatrix} 3 \\ 4 \\ 1 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix} = \mu \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$		
	i: $3 + \lambda = \mu$ (1) j: $4 - 2\lambda = 0$ (2) k: $1 + 2\lambda = \mu$ (3)	Either seeing equation (2) written down correctly with or without any other equation or seeing equations (1) and (3) written down correctly.	M1 √
	(2) yields $\lambda = 2$ Any two yields $\lambda = 2$, $\mu = 5$	Attempt to solve either equation (2) or simultaneously solve any two of the three equations to find either one of λ or μ correct.	dM1
	$l_1: \mathbf{r} = \begin{pmatrix} 3\\4\\1 \end{pmatrix} + 2 \begin{pmatrix} 1\\-2\\2 \end{pmatrix} = \begin{pmatrix} 5\\0\\\underline{5} \end{pmatrix} or \mathbf{r} = 5 \begin{pmatrix} 1\\0\\1 \end{pmatrix} = \begin{pmatrix} 5\\0\\\underline{5} \end{pmatrix}$	$ \begin{pmatrix} 5 \\ 0 \\ 5 \end{pmatrix} or 5\mathbf{i} + 5\mathbf{k} Fully correct solution & no incorrect values of \lambda or \mu seen earlier.$	A1 cso [4]
			11 marks

Note: Be careful! λ and μ are not defined in the question, so a candidate could interchange these or use different scalar parameters.

Question Number	Scheme	Marks
Aliter 6. (d) Way 3	If l_1 and l_2 intersect then: $\begin{pmatrix} 2 \\ 6 \\ -1 \end{pmatrix} + \lambda \begin{pmatrix} -1 \\ 2 \\ -2 \end{pmatrix} = \mu \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$	
	i: $2 - \lambda = \mu$ (1)Either seeing equation (2) writtenj: $6 + 2\lambda = 0$ (2)down correctly with or without any other equation or seeing equationsk: $-1 - 2\lambda = \mu$ (3)(1) and (3) written down correctly.	M1√
	Attempt to solve either equation (2) or simultaneously solve any two of the three equations to find either one of λ or μ correct.	dM1
	$l_{1}: \mathbf{r} = \begin{pmatrix} 2 \\ 6 \\ -1 \end{pmatrix} - 3 \begin{pmatrix} -1 \\ 2 \\ -2 \end{pmatrix} = \begin{pmatrix} 5 \\ 0 \\ 5 \end{pmatrix} \text{ or } \mathbf{r} = 5 \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 5 \\ 0 \\ 5 \end{pmatrix}$ Fully correct solution & no incorrect values of λ or μ seen earlier.	A1 cso [4]
Aliter 6. (d) Way 4	If l_1 and l_2 intersect then: $\begin{pmatrix} 3 \\ 4 \\ 1 \end{pmatrix} + \lambda \begin{pmatrix} -1 \\ 2 \\ -2 \end{pmatrix} = \mu \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$	
	i: $3 - \lambda = \mu$ (1)Either seeing equation (2) written down correctly with or without any other equation or seeing equationsj: $4 + 2\lambda = 0$ (2)other equation or seeing equationsk: $1 - 2\lambda = \mu$ (3)(1) and (3) written down correctly.	M1√
	(2) yields $\lambda = -2$ Attempt to solve either equation (2) or simultaneously solve any two of the three equations to find either one of λ or μ correct.	dM1
	$l_{1}: \mathbf{r} = \begin{pmatrix} 3 \\ 4 \\ 1 \end{pmatrix} - 2 \begin{pmatrix} -1 \\ 2 \\ -2 \end{pmatrix} = \begin{pmatrix} 5 \\ 0 \\ 5 \end{pmatrix} or \mathbf{r} = 5 \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 5 \\ 0 \\ 5 \end{pmatrix}$ Fully correct solution & no incorrect values of λ or μ seen earlier.	
		[4] 11 marks
		11 maiks

Question Number	Scheme		Marks
7. (a)	$\left[x = \ln(t+2), \ y = \frac{1}{t+1}\right], \Rightarrow \frac{dx}{dt} = \frac{1}{t+2}$	Must state $\frac{dx}{dt} = \frac{1}{t+2}$	B1
	Area(R) = $\int_{\ln 2}^{\ln 4} \frac{1}{t+1} dx$; = $\int_{0}^{2} \left(\frac{1}{t+1}\right) \left(\frac{1}{t+2}\right) dt$	Area = $\int \frac{1}{t+1} dx$. Ignore limits. $\int \left(\frac{1}{t+1}\right) \times \left(\frac{1}{t+2}\right) dt$. Ignore limits.	M1;
	Changing limits, when: $x = \ln 2 \implies \ln 2 = \ln(t+2) \implies 2 = t+2 \implies t = 0$ $x = \ln 4 \implies \ln 4 = \ln(t+2) \implies 4 = t+2 \implies t = 2$	changes limits $x \to t$ so that $\ln 2 \to 0$ and $\ln 4 \to 2$	B1
	Hence, Area(R) = $\int_0^2 \frac{1}{(t+1)(t+2)} dt$		[4]
(b)	$\left(\frac{1}{(t+1)(t+2)}\right) = \frac{A}{(t+1)} + \frac{B}{(t+2)}$ $1 = A(t+2) + B(t+1)$	$\frac{A}{(t+1)} + \frac{B}{(t+2)}$ with A and B found	M1
	1 = A(t+2) + B(t+1)		
	Let $t = -1$, $1 = A(1)$ $\Rightarrow \underline{A = 1}$ Let $t = -2$, $1 = B(-1)$ $\Rightarrow \underline{B = -1}$	Finds both A and B correctly. Can be implied. (See note below)	A1
	$\int_0^2 \frac{1}{(t+1)(t+2)} dt = \int_0^2 \frac{1}{(t+1)} - \frac{1}{(t+2)} dt$		
	$= \left[\ln(t+1) - \ln(t+2)\right]_0^2$	Either $\pm a \ln(t+1)$ or $\pm b \ln(t+2)$ Both ln terms correctly ft.	dM1 A1√
	$= (\ln 3 - \ln 4) - (\ln 1 - \ln 2)$	Substitutes <i>both</i> limits of 2 and 0 and subtracts the correct way round.	ddM1
	$= \ln 3 - \ln 4 + \ln 2 = \ln 3 - \ln 2 = \ln \left(\frac{3}{2}\right)$	$\frac{\ln 3 - \ln 4 + \ln 2 \text{ or } \ln\left(\frac{3}{4}\right) - \ln\left(\frac{1}{2}\right)}{\text{or } \ln 3 - \ln 2 \text{ or } \ln\left(\frac{3}{2}\right)}$	Al aef isw
		(must deal with ln 1)	[6]

Takes out brackets.

Writing down
$$\frac{1}{(t+1)(t+2)} = \frac{1}{(t+1)} + \frac{1}{(t+2)}$$
 means first M1A0 in (b).

Writing down
$$\frac{1}{(t+1)(t+2)} = \frac{1}{(t+1)} - \frac{1}{(t+2)}$$
 means first M1A1 in (b).

Question Number	Scheme		Marks
	$x = \ln(t+2), \qquad y = \frac{1}{t+1}$		
7. (c)	$e^x = t + 2 \implies t = e^x - 2$	Attempt to make $t =$ the subject giving $t = e^x - 2$	M1 A1
	$y = \frac{1}{e^x - 2 + 1} \implies y = \frac{1}{e^x - 1}$	Eliminates <i>t</i> by substituting in <i>y</i> giving $y = \frac{1}{e^x - 1}$	dM1 A1 [4]
Aliter	$t+1=\frac{1}{y} \implies t=\frac{1}{y}-1 \text{ or } t=\frac{1-y}{y}$	Attempt to make $t =$ the subject	M1
7. (c) Way 2	$y(t+1)=1 \implies yt+y=1 \implies yt=1-y \implies t=\frac{1-y}{y}$	Giving either $t = \frac{1}{y} - 1$ or $t = \frac{1 - y}{y}$	A1
	$x = \ln\left(\frac{1}{y} - 1 + 2\right)$ or $x = \ln\left(\frac{1 - y}{y} + 2\right)$	Eliminates t by substituting in x	dM1
	$x = \ln\left(\frac{1}{y} + 1\right)$		
	$e^x = \frac{1}{y} + 1$		
	$e^x - 1 = \frac{1}{y}$		
	$y = \frac{1}{e^x - 1}$	giving $y = \frac{1}{e^x - 1}$	A1
(d)	Domain: $\underline{x > 0}$	$\underline{x > 0}$ or just > 0	[4] B1
			[1]
			15 marks

Question Number	Scheme		Mark	KS
Aliter 7. (c) Way 3	$e^x = t + 2 \implies t + 1 = e^x - 1$	Attempt to make $t+1 =$ the subject giving $t+1 = e^x -1$	M1 A1	
	$y = \frac{1}{t+1} \implies y = \frac{1}{e^x - 1}$	Eliminates t by substituting in y giving $y = \frac{1}{e^x - 1}$	dM1 A1	[4]
Aliter 7. (c) Way 4	$t+1=\frac{1}{y} \implies t+2=\frac{1}{y}+1 \text{ or } t+2=\frac{1+y}{y}$	Attempt to make $t + 2 =$ the subject Either $t + 2 = \frac{1}{y} + 1$ or $t + 2 = \frac{1 + y}{y}$	M1 A1	
	$x = \ln\left(\frac{1}{y} + 1\right)$ or $x = \ln\left(\frac{1+y}{y}\right)$	Eliminates t by substituting in x	dM1	
	$x = \ln\left(\frac{1}{y} + 1\right)$			
	$e^x = \frac{1}{y} + 1 \implies e^x - 1 = \frac{1}{y}$			
	$y = \frac{1}{e^x - 1}$	giving $y = \frac{1}{e^x - 1}$	A1	[4]

Question Number	Scheme		Marks
8. (a)	$\frac{\mathrm{d}V}{\mathrm{d}t} = 1600 - c\sqrt{h} \text{or} \frac{\mathrm{d}V}{\mathrm{d}t} = 1600 - k\sqrt{h} ,$	Either of these statements	M1
	$(V = 4000h \implies) \frac{\mathrm{d}V}{\mathrm{d}h} = 4000$	$\frac{\mathrm{d}V}{\mathrm{d}h} = 4000 \text{ or } \frac{\mathrm{d}h}{\mathrm{d}V} = \frac{1}{4000}$	M1
	$\frac{\mathrm{d}h}{\mathrm{d}t} = \frac{\mathrm{d}h}{\mathrm{d}V} \times \frac{\mathrm{d}V}{\mathrm{d}t} = \frac{\frac{\mathrm{d}V}{\mathrm{d}t}}{\frac{\mathrm{d}V}{\mathrm{d}h}}$		
	Either, $\frac{dh}{dt} = \frac{1600 - c\sqrt{h}}{4000} = \frac{1600}{4000} - \frac{c\sqrt{h}}{4000} = 0.4 - k\sqrt{h}$	Convincing proof of $\frac{dh}{dt}$	A1 AC
	or $\frac{dh}{dt} = \frac{1600 - k\sqrt{h}}{4000} = \frac{1600}{4000} - \frac{k\sqrt{h}}{4000} = 0.4 - k\sqrt{h}$	$\frac{1}{dt}$	
(b)	When $h = 25$ water <i>leaks out such that</i> $\frac{dV}{dt} = 400$		[3]
	$400 = c\sqrt{h} \Rightarrow 400 = c\sqrt{25} \Rightarrow 400 = c(5) \Rightarrow c = 80$		
	From above; $k = \frac{c}{4000} = \frac{80}{4000} = 0.02$ as required	Proof that $k = 0.02$	B1 AG [1]
Aliter (b) Way 2	$400 = 4000k\sqrt{h}$.,
	$\Rightarrow 400 = 4000k\sqrt{25}$ $\Rightarrow 400 = k(20000) \Rightarrow k = \frac{400}{20000} = 0.02$	Using 400, 4000 and $h = 25$ or $\sqrt{h} = 5$. Proof that $k = 0.02$	B1 AG [1]
(c)	$\frac{\mathrm{d}h}{\mathrm{d}t} = 0.4 - k\sqrt{h} \implies \int \frac{\mathrm{d}h}{0.4 - k\sqrt{h}} = \int dt$	Separates the variables with $\int \frac{\mathrm{d}h}{0.4 - k\sqrt{h}}$ and $\int dt$ on either side with integral signs not necessary.	M1 oe
	: time required = $\int_0^{100} \frac{1}{0.4 - 0.02\sqrt{h}} dh = \frac{\div 0.02}{\div 0.02}$		
	time required = $\int_0^{100} \frac{50}{20 - \sqrt{h}} dh$	Correct proof	A1 AG [2]
			[-]

Question Number	Scheme		Marks
8. (d)	$\int_0^{100} \frac{50}{20 - \sqrt{h}} dh \text{with substitution} h = (20 - x)^2$		
	$\frac{dh}{dx} = 2(20-x)(-1)$ or $\frac{dh}{dx} = -2(20-x)$	Correct $\frac{dh}{dx}$	B1 aef
	$h = (20 - x)^2 \Rightarrow \sqrt{h} = 20 - x \Rightarrow x = 20 - \sqrt{h}$	• 20	
	$\int \frac{50}{20 - \sqrt{h}} \mathrm{d}h = \int \frac{50}{x} - 2(20 - x) \mathrm{d}x$	$\pm \lambda \int \frac{20 - x}{x} dx \text{ or}$ $\pm \lambda \int \frac{20 - x}{20 - (20 - x)} dx$	M1
	$=100\int \frac{x-20}{x} \mathrm{d}x$	where λ is a constant	
	$=100\int \left(1-\frac{20}{x}\right)\mathrm{d}x$		
	$=100(x-20\ln x) (+c)$	$\pm \alpha x \pm \beta \ln x ; \alpha, \beta \neq 0$ $100x - 2000 \ln x$	M1 A1
	change limits: when $h = 0$ then $x = 20$ and when $h = 100$ then $x = 10$		
	$\int_0^{100} \frac{50}{20 - \sqrt{h}} \mathrm{d}h = \left[100 x - 2000 \ln x \right]_{20}^{10}$		
	or $\int_0^{100} \frac{50}{20 - \sqrt{h}} dh = \left[100 \left(20 - \sqrt{h} \right) - 2000 \ln \left(20 - \sqrt{h} \right) \right]_0^{100}$	Correct use of limits, ie. putting them in the correct way round	
	$= (1000 - 2000 \ln 10) - (2000 - 2000 \ln 20)$	Either $x = 10$ and $x = 20$ or $h = 100$ and $h = 0$	ddM1
	$= 2000 \ln 20 - 2000 \ln 10 - 1000$	Combining logs to give 2000 ln 2 – 1000	
	$= 2000 \ln 2 - 1000$	or $-2000 \ln \left(\frac{1}{2}\right) - 1000$	A1 aef [6]
(e)	Time required = $2000 \ln 2 - 1000 = 386.2943611 \text{ sec}$		נטן
	= 386 seconds (nearest second)		
	= 6 minutes and 26 seconds (nearest second)	6 minutes, 26 seconds	B1 [1]
			13 marks