UBA-CBC	Física(03)	20	do P	arcial			1/Ju	ılio/	16		Tem	a 1
Apellido:		PRO	MO	CIONA	()	- FINA	L() -	Re c	1 ro () - R	$\det c 2^{do}$ ()
Nombre:		D1a	D1b	D2a	D2b	D3a	D3b	E4	E5	E6	E7	Nota
D.N.I.:												
email(optativo):		CU]	Ma-Vi:14	1-17hs	Comi	sión:			Aula:		Hoja 1 de:

Lea por favor todo antes de comenzar. Resuelva los 3 problemas en otras hojas <u>que debe entregar</u>. En los ejercicios a desarrollar debe incluir los desarrollos que le permitieron llegar a la solución. Las 4 preguntas tienen SOLO UNA respuesta correcta. Indique la opción elegida con una **X** en el casillero correspondiente. Los desarrollos y respuestas deben estar en tinta (**no lápiz**). Si encuentra algún tipo de ambigüedad en los enunciados, aclare en las hojas cuál fue la interpretación que adoptó. Algunos resultados pueden estar aproximados. Dispone de 2 horas. Autores: CC –AR

En los casos en los que sea necesario utilice $|g| = 10 \text{ m/s}^2$, $G = 6,67 \cdot 10^{-11} \text{ m}^3/\text{kg.s}^2$, $M_{\text{Tierra}} = 6 \cdot 10^{24} \text{ kg}$, $R_{\text{Terrestre}} = 6370 \text{ km}$.

D1. Un cuerpo de masa m = 0,5 kg está apoyado a 10 cm del centro de una plataforma horizontal. La plataforma gira alrededor de un eje vertical que pasa por su centro a razón de 20 vueltas por minuto. El coeficiente de rozamiento estático

entre el cuerpo y la plataforma es μ_E = 0,6. Sabiendo que el cuerpo gira con la plataforma sin deslizar sobre ella,

- a) Calcule la fuerza de rozamiento sobre el cuerpo. Froz = 0,22 N
- b) Halle la máxima velocidad angular con la que podría girar la plataforma sin que el cuerpo comience a deslizar. $\omega = 7.7 \text{ l/s}$
- **D2.** Considere el sistema de la figura. Donde el resorte, de constante elástica k y longitud natural l_0 , las sogas y las poleas son ideales. La polea P es móvil y la restante se encuentra fija al plano inclinado. No hay rozamiento.

Datos: $m_1 = 14 \text{ kg}$, $m_2 = 4 \text{ kg}$, k = 100 N/m, $l_0 = 0.3 \text{ m}$.

- a) Si el sistema se encuentra en equilibrio. ¿Cuál es la longitud del resorte? I = 0,4 m
- b) Suponga que ahora se desengancha el resorte de m_1 , halle el vector aceleración de m_2 .

 $a_2 = -0.67 \text{ m/s}^2 \text{ y}$, (hacia abajo).

D3. En un día de lluvia, un peatón camina hacia su trabajo. Abre su paraguas (asumimos que es una superficie plana) y lo dispone con una inclinación de 64° respecto al suelo, mientras camina a una velocidad de 5 km/h. De esta manera observa que las gotas de lluvia caen en forma perpendicular a la superficie del

paraguas. Sabiendo que las gotas vistas desde la vereda caen verticalmente:

- a) Halle el vector velocidad de las gotas para un observador fijo a la vereda. $\mathbf{v} = -2,44 \text{ km/h y}$
- b) Durante los últimos 5 minutos del trayecto el peatón duplica su velocidad y modifica el ángulo de inclinación del paraguas. ¿Cuál será el ángulo de inclinación en este caso si nuevamente el peatón observa caer a las gotas en forma perpendicular al paraguas? $\approx 76^{\circ}$

E4. ¿A qué distancia de la superficie terrestre la aceleración de la gravedad se reduce a la cuarta parte de la que existe a nivel del mar? (resultado aproximado)

□ 400 km	□ 1590 km	□ 3180 km
□ 6370 km	□ 12720 k	□ 19080 km

E5. Un cuerpo se mueve en una trayectoria circular de 2 m de radio en sentido horario. Al pasar por el punto A su velocidad angular es de $\omega = \pi/2$ rad/s y esta *disminuye* uniformemente a razón de $\pi/4$ rad/s². ¿Luego de cuánto tiempo pasará por el punto B y cuál es el módulo de su velocidad en ese instante?

□ 2 s; 0 m/s	\square 2 s; π m/s	\Box 4 s; $\pi/4$ m/s
1 s; π m/s	\Box 4 s; $\pi/2$ m/s	□ 1 s; 0 m/s

E6. Un objeto de masa 50kg se encuentra apoyado sobre una balanza dentro de un ascensor. La balanza indica 600N, entonces puede afirmarse que el ascensor:

Está	en	re	poso.

- ☐ Baja con velocidad constante.
- ☐ Sube con velocidad constante.
- ☐ Sube frenando o baja amentando su velocidad.
- ☐ Sube aumentando su velocidad o baja frenando.
- ☐ Está en caída libre.

E7. El sistema de la figura está en equilibrio cuando F = 0 N. Decir cuáles de las siguientes afirmaciones son correctas, a medida que aumentamos el módulo de F, conservando la dirección y sentido mostrado en la figura:

- a) aumenta el módulo de la cota máxima para la fuerza de rozamiento ($F_{rozEmax}$).
- b) aumenta el módulo de la fuerza de rozamiento.
- c) disminuye el módulo de la fuerza de rozamiento.
- d) disminuye el módulo de la cota máxima para la fuerza de rozamiento $(F_{rozEmax})$.
- e) el cuerpo comienza a descender y la fuerza de rozamiento es de origen dinámica.
- f) Si estaba inicialmente en reposo queda en reposo, aún cuando aumente el módulo de F.

\Box a,c	\Box b,c	□ c,e
\Box c,f	\Box d,e	\Box a,f