Университет ИТМО

Мегафакультет трансляционных информационных технологий Факультет информационных технологий и программирования

Группа <u>М32041</u>	_К работе допущен			
Студентка Курепин, Игнатьев, Никитин Работа выполнена				
Преподаватель Лабунцов Виктор	Отчет принят			

Рабочий протокол и отчет по лабораторной работе №5.07

Определение постоянной Планка методом задерживающего потенциала

- 1. Цель работы.
- Экспериментально проверить законы фотоэффекта.
- Определение постоянной Планка и работы выхода электрона из металла.
- 2. Задачи, решаемые при выполнении работы. Определение запирающего напряжения.
- Изучение зависимости кинетической энергии электронов от частоты падающего излучения.
- Экспериментальное определение материала фотокатода и вычисление постоянной Планка.
- 3. Объект исследования.
- Законы фотоэффекта

- 4. Метод экспериментального исследования.
- Метод задерживающего потенциала, проведение прямых и косвенных измерений.
- 5. Рабочие формулы и исходные данные.

$$c \\ \nu = _\lambda$$

$$E_{\Phi} = h\nu = \frac{hc}{\lambda},$$

$$h\nu = A_{\text{вых.}} + T,$$

$$T = eU_0$$
,

$$U_0 = \frac{h\nu}{e} - \frac{A_{\text{вых.}}}{e}$$

6. Измерительные приборы.

№ n/n	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора
1	наноамперметр	электронный	-	-
2	Вольтметр	электронный	-	-
2	Набор светодиодов	электронный	472 нм, 505 нм, 525 нм, 588 нм, 611 нм	-

7. Схема установки

7. Результаты измерений и их обработки.

1) Меняя поочередно светодиоды на вход фотоэлемента, сняли зависимость запирающего напряжения U0 от длины волны излучения λ . Результаты измерения занесли в таблицу 1.

Таблица 1.

λ, нм	U0, B	ν, ТГц	T = e * U0, Дж
472	0,647	635,6	1,0352* 10 ⁻¹⁹
505	0,496	594,1	0,7936* 10 ⁻¹⁹
525	0,446	571,4	0,7136* 10 ⁻¹⁹
588	0,127	510,2	0,2032* 10 ⁻¹⁹
611	0,096	491	0,1536* 10 ⁻¹⁹

По формуле $\nu=rac{c}{\lambda}$ посчитали частоту излучения и результаты занесли в таблицу выше.

По формуле T = e * U0, Дж посчитали энергию электронов и построили зависимость этой энергии от частоты излучения (аппроксимация) (см. график 1)

2) Методом наименьших квадратов аппроксимировали полученную линейную зависимость.

По формулам
$$\overline{x} = \frac{1}{n} \sum x_i$$
; $\overline{y} = \frac{1}{n} \sum y_i$.

нашли среднее значение частоты излучения $\overline{\nu}=560,\!46\,T$ Гц и среднее значение энергии электронов $\overline{T}=5,\!798*10^{-20}$ Дж По формулам

$$b = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{\sum (x_i - \overline{x})^2}; \qquad a = \overline{y} - b\overline{x}.$$

Нашли коэффициенты а и b линейной зависимости $\overline{T}=a+b\overline{\nu}$

$$-A_{\text{вых}} = a = -3,0157 * 10^{-19}$$

 $h = b = 6,415 * 10^{-34}$

Учтём, что эти а и в посчитаны для частоты в Гц.

Таким образом, получили зависимость $T=6,415*10^{-34}*\overline{\nu}-3,0157*10^{-19}$

3) Тогда угол наклона касательной найденной зависимости:

$$\alpha = arctg(b) = 3,676 * 10^{-32}$$
 $^{\circ} = 6,415 * 10^{-34}$

Так как по оси абсцисс была отложена частота падающего света ν , а по оси ординат максимальная кинетическая энергия электрона, то тангенс угла наклона прямой к оси частот равен постоянной Планка:

$$\operatorname{tg} \alpha = h = 6,415 * 10^{-34} \, \text{Дж} * \text{с}$$

(угол α очень мал, поэтому он примерно равен своему арктангенсу.)

Для красной границы фотоэффекта $h\nu_0=A_{\scriptscriptstyle \mathrm{BbIX}}$

Тогда красную границу найдём по формуле $\nu_0 = -\frac{a}{b} = \frac{A_{\text{вых}}}{h} = 470,08$ ТГц

$$A_{\text{вых}} = -a = 3,0157 * 10^{-19} \, \text{Дж} = 1,89 \, \text{эВ}$$

4) Согласно справочнику величин частот красных границ фотоэффекта для разных веществ ближе всего к найденному — частота красной границы цезия (662 ТГц), также работа выхода цезия равна 1,94 эВ, что тоже ближе всего к найденной работе выхода.

Значит в опыте используется фотокатод, сделанный из цезия.

5) Рассчитаем погрешность для постоянной Планка и работы выхода при относительной погрешности измерения напряжения $\frac{\Delta U}{U} = 0.5\% = 0.05$, погрешности в измерении длины волны $\Delta \lambda = 0.5$ нм, погрешности в измерении частоты $\Delta \nu \approx 3$ ТГц и длине волны $\lambda = 500$ нм.

$$\frac{\Delta h}{h} = \sqrt{\left(\frac{\Delta U}{U}\right)^2 + \left(\frac{\Delta \lambda}{\lambda}\right)^2} = \sqrt{(0,005)^2 + \left(\frac{0,5}{500}\right)^2} = 0,005$$

$$\frac{\Delta A}{A} = \sqrt{\left(\frac{\Delta h}{h}\right)^2 + \left(\frac{\Delta \nu}{\nu}\right)^2} = \sqrt{(0,005)^2 + \left(\frac{3 * 10^{12}}{0,006 * 10^{17}}\right)^2} = 0,007$$

Таким образом, относительная погрешность измерения постоянной Планка в данном примере 0,5%, а относительная погрешность работы выхода 0,7%.

8. Графики

График 1. Зависимость энергии электронов T от частоты падающего излучения ν

9. Результаты вычислений.

• Постоянная планка:

$$h = 6,415 * 10^{-34}$$
 Дж $*$ с

• Работы выхода:

$$A_{\text{вых}} = 3,0157 * 10^{-19} \, \text{Дж} = 1,89 \, \text{эВ}$$

• Красная граница фотоэффекта:

$$\nu_0 = 470,08 \text{ T}\Gamma_{\text{LL}}$$

Из полученных результатов видно, что вычисленная постоянная Планка близка к реальной $(6.63*10^{-34} \, \text{Дж} * \text{с})$, значит измерения и выкладки были сделаны верно.

Из работы выхода (или красной границы фотоэффекта) видно, что фотокатод сделан из цезия.

10. Выводы:

В результате выполнения лабораторной работы была вычислена постоянная Планка и работа выхода электрона для фотокатода, определена красная граница фотоэффекта, а также материал, из которого изготовлен фотокатод.