Grundlagen der Informatik

Prof. Dr. J. Schmidt Fakultät für Informatik

GDI – WS 2018/19 Einführung in die Informatik

Leitfragen

- Was sind besonders wichtige, historische Meilensteine in der Informatik?
- Aus welchen Teilgebieten setzt sich die Informatik zusammen?

Begriff Informatik

- Kombination der beiden Begriffe
 - Information
 - Automatik
 - Ende der 1950er Jahre von Karl Steinbuch eingeführt
- Wissenschaft von der automatisierten Informationsverarbeitung
- Angelsächsische Länder: computer science (Computerwissenschaft)
 - es gibt auch den Begriff Informatics
 - ist allgemeiner, umfasst z.B. auch Informationsverarbeitung in biologischen oder sozialen Systemen

Historische Entwicklung (1)

- Wurzeln der Informatik:
 - Vor mehr als 3000 Jahren: Bestrebung mechanische Geräte zu entwickeln, die dem Menschen einfache Berechnungen abnahmen
 - Abakus

- Rechenbrett mit Kugeln, meist Holz- oder Glasperlen
- Durchführbar sind Addition, Subtraktion, Multiplikation und Division, aber auch das Ziehen von Quadrat- und Kubikwurzeln

Historische Entwicklung (2)

Kapitel 1: Einführung in die Informatik

Wurzeln der Informatik:

- 300 v. Chr: Euklid entwickelt sein Verfahren zur Bestimmung des größten gemeinsamen Teilers (ggT)
- um 825: Al-Khwarizmi fasst in einem Buch Lösungen zu bekannten mathematischen Problemen zusammen
 - Algorithmus geht möglicherweise auf seinem Namen zurück
 - Verarbeitungsvorschrift (Gerät Mensch)
 - Beispiele: Kochrezepte, Bastelanleitungen, Spielregeln, Gebrauchsanweisungen, etc.
 (nicht exakt formuliert – Interpretation notwendig)
 - Computer: präzise Definition wie Eingabedaten schrittweise in Ausgabedaten umgewandelt werden

Wichtige historische Meilensteine (1)

- A. Ries (1492 1559)
 Rechengesetze zum Dezimalsystem
- W. Schickard (1623)
 Erste Rechenmaschine
- B. Pascal (1642)
 Rechenmaschine mit 6 Stellen
- G. Leibniz (1673)
 Maschine für vier Grundrechenarten
- P. Hahn (1774)
 Erste zuverlässig arbeitende mechanische Rechenmaschine

Wichtige historische Meilensteine (2)

- Charles Babbage (1838) –
 "Analytical Engine"
 - Unterscheidung "Store" (Speicher) und "Mill" (mechanisches Pendant zu Rechenwerk)
 - "Programmierung" mit Lochkarten

- Hermann Hollerith (1860-1929)
 - Elektromechanische Zählmaschine
 - Auswertung von Lochkarten

Religion	evang.	kath.	jüd.	sonst.	monati.	bis 100 \$	bis 200 \$	bis 500 \$	über 500\$	13
Beruf	Ind Arb.	Land - Arb.	Kfm Ang.	Leit. Ang.	Stoatsdienst	Selbstand.	Sonst.	Bürger- recht	ja •	nein
Familien - stand	ledig	verh.	gesch.	Zahl der Kinder	1,13	2	3	•	5	uber 5
Alter in Jahren	bis 5	bis 10	bis 20	bis 30	bis 40	bis 50	bis 60	bis 70	bis 80	uber 80

Erster funktionstüchtiger Computer

Kapitel 1: Einführung in die Informatik

 Mit der aufkommenden Elektrotechnik wurde auf elektromechanische Bauteile gesetzt.

 Solche Maschinen wurden in den 1940er Jahren von Konrad Zuse in Berlin gebaut.

- Elektromechanische Z3 besaß ca. 2600 Relais und 64 Speicherplätze mit jeweils 22 Bits.
- Multiplikation in etwa 3 Sekunden.

Weiterer Meilenstein

- Howard Aiken erstellte 1944 in Zusammenarbeit mit der Harvard University und der Firma IBM die teilweise programmgesteuerte Rechenanlage Mark I.
 - bestand aus ca.100.000 Teilen.
 - war ca. 15 m lang.
 - Addition in 1/3 Sekunde.
 - Multiplikation in etwa 6 Sekunden.

Generationen der elektronischen Datenverarbeitung

Kapitel 1: Einführung in die Informatik

1. Generation

Elektronische Röhrenrechner

2. Generation

Transistorrechner

3. Generation

Mikrochips mit hochintegrierten Schaltkreisen

4. Generation

MOS-Technologie

5. Generation

Parallelverarbeitung und Vernetzung

1. Generation: Elektronische Röhrenrechner

- Der erste elektronische Rechner ENIAC (Electronic Numerical Integrator and Automatic Calculator) wurde 1946 in den USA von J.P. Eckert und J.W. Mauchley fertig gestellt.
 - Er bestand aus ca.
 17.000 Elektronenröhren und
 1500 Relais.
 - Gewicht 30 Tonnen,
 Stellfläche 140 m²,
 Strombedarf 140 kW.

2. Generation: Transistorrechner

Kapitel 1: Einführung in die Informatik

- Beginn ab etwa dem Jahr 1955
- Transistor ist erheblich kleiner und verbraucht nur einen Bruchteil der elektrischen Energie einer vergleichbaren Röhre.

 Einzelne Transistoren, Widerstände, Dioden und Kapazitäten wurden auf eine gedruckte Schaltung

gebracht.

3. und 4. Generation:

Mikrochips mit hoch- und höchstintegrierten Schaltkreisen

Kapitel 1: Einführung in die Informatik

- Ab Anfang der 1960er Jahre wurden Bauteile in einen Chip integriert.
- Anfangs kamen auf ca. 3 mm² ca. 100
 Transistoren.
- Später wurden in hochintegrierten Schaltkreisen (LSI "large scale integration"), so genannten Mikrochips, auf ca. 30 mm² schon über eine Million

Transistoren zusammengefasst.

5. Generation:

Parallelverarbeitung und Vernetzung – heutige Rechner

- Moderne Rechner
 - Mikroprozessoren mit vielen Millionen Transistoren
 - Arbeitsspeicher mit Milliarden von Speicherplätzen (Gigabytes)
 - Milliarden von Operationen pro Sekunde

- Das Mooresche Gesetz besagt, dass sich die
 - Packungsdichte der Transistoren auf einem Mikroprozessor
 - in etwa alle 18 Monate verdoppelt.

Mooresches Gesetz

Moore's Law – The number of transistors on integrated circuit chips (1971-2016)

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years. This advancement is important as other aspects of technological progress – such as processing speed or the price of electronic products – are strongly linked to Moore's law.

Year of introduction

Data source: Wikipedia (https://en.wikipedia.org/wiki/Transistor count) The data visualization is available at OurWorldinData.org. There you find more visualizations and research on this topic.

Licensed under CC-BY-SA by the author Max Roser.

15

Mooresches Gesetz

120 Years of Moore's Law **VACUUM MECHANICAL RELAY TRANSISTOR INTEGRATED CIRCUIT** TUBE 1E+09 NVIDIA TITAN X Calculations per second per constant dollar 1E+07 1E+05 1,000 10 APPLE MACINTOSH 0.7 0.001 **ENIAC** 1E-05 COLOSSUS 1E-07 IBM TABULATOR HOLLERITH TABULATOR ANALYTICAL ENGINE 1E-09 1900 1905 1910 1915 1920 1925 1930 1935 1940 1945 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 Year Source: Ray Kurzweil, DFJ

© Steve Jurvetson / Wikimedia Commons / CC BY 2.0

Teilgebiete der Informatik

Kapitel 1: Einführung in die Informatik

Einteilung in vier Bereiche

Angewandte Informatik

Technische Informatik Praktische Informatik

Theoretische Informatik

Theoretische Informatik

- Grundlage für die anderen Bereiche, z.B.
 - Automatentheorie und formale Sprachen
 - Berechenbarkeitstheorie
 - Komplexitätstheorie
 - Automatisches Beweisen

Praktische Informatik

- Grundlagen der Systemsoftware, z.B.
 - Höhere Programmiersprachen,
 Compiler und Interpreter
 - Algorithmen und Datenstrukturen
 - Betriebssysteme und Netzwerke
 - Datenbanken

Technische Informatik

- Grundlagen der Hardware, z.B.
 - Mikroprozessortechnik
 - Rechnerarchitektur
 - Rechnerkommunikation
 - Maschinennahe Programmierung

Angewandte Informatik

- Der Computer für die Anwender, z.B.
 - Wirtschaftliche, kommerzielle Anwendungen
 - Technisch-wissenschaftliche Anwendungen
 - Mensch-Maschine-Kommunikation,
 Schnittstellengestaltung, Ergonomie

Interdisziplinäre Gebiete der Informatik

- Wirtschaftsinformatik
- Computervisualistik
- Künstliche Intelligenz
- Computerlinguistik
- Bioinformatik

Informatik ≠ PC!

- ein weitaus größerer Markt sind die eingebetteten Systeme (embedded systems)
- Anwendungsgebiete z.B.
 - Flugzeuge
 - Autos
 - Lokomotiven
 - Blu-ray Player
 - Smartphones
 - Fernseher
 - Waschmaschinen
 - Spielekonsolen
 - Hörgeräte
 - Computertomographen

Eingebettetes System

 eingebettetes System = Computer, der in ein technisches Umfeld eingebunden ist

- typisch:
 - Regel- und Überwachungsfunktionen,
 - Verarbeitung von Sensorsignalen
 - Echtzeitanforderungen

Beispiel: Automotive

- Auto = fahrendes Computernetzwerk
 - Oberklasse: bis zu 80 Steuergeräte
 - Mittelklasse: > 20 Steuergeräte
 - verbunden über Bussystem (CAN/FlexRay)
- Aufgaben z.B.
 - Motorsteuerung
 - Kombiinstrument
 - ABS/ESP
 - Airbag
 - Fahrerassistenzsysteme

Airbag Steuergerät

diese Computer benötigen natürlich Software ...