Algorithmics Correction Midterm #3 (C3)

Undergraduate 2^{nd} year - S3 — Epita

9 November 2020 - 13:30

Solution 1 (Some different results -5 points)

Showing of the hash tables in the cases of:

1. Coalesced hashing

0	5	-1
1	20	-1
2	16	0
3	39	-1
4	11	2
5	44	10
6	94	3
7	12	8
8	23	-1
9	13	-1
10	88	4

2. Linear probing:

0	11	
1	39	
2	20	
3	5	
4	16	
5	44	
6	88	
7	12	
8	23	
9	13	
10	94	
		,

3. Double hashing

0	11
1	23
2	20
3	16
4	39
5	44
6	94
7	12
8	88
9	13
10	5

Solution 2 (Find the sum - 4 points)

Specifications:

The function $find_sum(B, sum)$ tests if there exists a branch in the tree B (TreeAsBin) such that the sum of its values (integers) is equal to sum.

```
def find_sum_tab(B, sum, s=0):
    if B.child == None:
        return s + B.key == sum
else:
        C = B.child
    while C:
        if find_sum(C, sum, s + B.key):
            return True
        C = C.sibling
    return False
```

Using the "binary structure":

```
def find_sum_bin(B, sum, s=0):
    if B.child == None:
        if s + B.key == sum:
            return True

else:
        if find_sum_bin(B.child, sum, s + B.key):
            return True

return True

return B.sibling != None and find_sum_bin(B.sibling, sum, s)
```

Solution 3 (Maximum Gap - 4 points)

Specifications:

The function maxgap(B) computes the maximum gap of the B-tree B.

```
# optimised version: searching in all children is useless,
_2 \ \# \ first \ and \ last \ child \ are \ sufficient!
         def __maxgap(B):
             gap = 0
             for i in range(B.nbkeys-1):
                 gap = max(gap, B.keys[i+1] - B.keys[i])
             if B.children:
                 gap = max(gap, __maxgap(B.children[0]))
                 gap = max(gap, __maxgap(B.children[-1]))
             return gap
11
12
\# less optimized...
15
        def __maxgap2(B):
             gap = 0
             for i in range(B.nbkeys-1):
                 gap = max(gap, B.keys[i+1] - B.keys[i])
18
             for child in B.children:
20
                 gap = max(gap, __maxgap2(child))
21
22
             return gap
23
  \# call function:
        def maxgap(B):
25
            if B == None:
26
               return 0
27
            else:
28
               return __maxgap(B)
29
```

Solution 4 (What? - 4 points)

1. Application results:

what(B_3 , 2)	what(B_3 , 7)	what(B_3 , 18)	what(B_3 , 39)	what(B_3 , 41)	what(B_3 , 99)
5	13	20	40	42	None

2. The function what(B, x) returns the nearest key bigger than x in B. The function returns None if such a key does not exists.

Solution 5 (B-tree: insertion and deletion -3 points)

1. After the insertion of the value 39, using the "in going down" principle:

Figure 1: Après insertion

2. After the deletion of the value 72, using the "in going down" principle:

Figure 2: Après suppression