Graphs

- > Depth First Search (DFS)
- > Breath First Search (BFS)

Introduction

- Graph A tool to model binary relationships among entities/objects Specified by two sets – Set of vertices V and set of Edges E
- Vertex/Node represent entities
- Edge represent existence of relationship between a pair of entities A graph G(V, E) where E ⊆ VXV

Graph everywhere

Email Communication Network

unication twork

Information networks: Web & citations

Disease pathways

Graph terminology

Undirected graph

Directed graph

Handshaking Lemma

Undirected Graph

Lemma: Sum of degrees of all the vertices is twice the number of edges

$$\sum_{v \in V} \deg(v) = 2|E|$$

Directed Graph

Lemma: Sum of in-degrees of all vertices is same as sum of outdegrees of all vertices is same as total number of edges

$$\sum_{v \in V} \operatorname{Indeg}(v) = \sum_{v \in V} \operatorname{Outdeg}(v) = |E|$$

- Trees are special kinds of <u>directed graphs</u> and are characterized by the fact that one of their nodes, the root, has no incoming arcs and every other node can be reached from the root by a unique path, i.e., by following one and only one sequence of consecutive arcs.
- In the preceding digraph, vertex 1 is "rootlike" node having no incoming arcs, but there are many different paths form vertex 1 to various other nodes. So that is not tree. For example, to vertex 3.

Adjacency Matrix v.s. Adjacency List

	1	2	3	4	5
1	0	1	0	0	1
2	1	0	1	1	1
3	0	1	0	1	0
4	0	1	1	0	1
5	1	1	0 1 0 1 0	1	0

Undirected: |V| + 2|E|

Undirected: |V|²

For every edge connected with v ... Is u and v connected with an edge?

Adjacency Matrix v.s. Adjacency List

	1	2	3	4	5	6
1	0	1	0	1	0	0 0 1 0 0
2	0	0	0	0	1	0
3	0	0	0	0	1	1
4	0	1	0	0	0	0
5	0	0	0	1	0	0
6	0	0	0	0	0	1

Directed: |V| + |E|

Directed: |V|²

For every outgoing edge connected with *v* ... Is *u* has an outgoing edge with v?

Analysis

- For both directed/undirecdted graphs, the adjacency list representation has the desirable property that the amount of memory it requires θ(V+E)
- A potential disadvantage of the adjacency list representation is that there is no quicker way to determine if a given edge (u,v) is present in the graph than to search for v in the adjacency list Adj[u]. This disadvantage can be remedied by an adjacency matrix representation at the cost of using asymptotically more memory.

Analysis

- Adjacency matrix of a graph requires θ(V²)
 memory, independent of the number of edges
 in the graph.
- Although the adjacency list representation is asymptotically at least as efficient as the adjacency matrix representation, the simplicity of adjacency matrix may make it preferable when graphs are reasonably small.

Traversing Graphs

- Two common types of graph traversals are Depth First Search (DFS) and Breadth First Search (BFS).
- DFS is implemented with a stack, and BFS with a queue.
- The aim in both types of traversals is to visit each vertex of a graph exactly once.
- In DFS, you follow a path as far as you can go before backing up. With BFS, you visit all the neighbors of the current node before exploring further a nodes in the graph.

Undiscovered
Discovered
Top of queue

Finished

Queue: s

Undiscovered

Discovered

Top of queue

Finished

Queue: s 2

Undiscovered

Discovered

Top of queue

Finished

Queue: s 2 3

Undiscovered

Discovered

Top of queue

Finished

Undiscovered

Discovered

Top of queue

Finished

Undiscovered

Discovered

Top of queue

Finished

Undiscovered

Discovered

Top of queue

Finished

Undiscovered

Discovered

Top of queue

Finished

Queue: 3 5 4

Undiscovered

Discovered

Top of queue

Finished

Queue: 3 5 4

Undiscovered

Discovered

Top of queue

Finished

Queue: 3 5 4 6

Undiscovered

Discovered

Top of queue

Finished

Queue: 5 4 6

Undiscovered

Discovered

Top of queue

Finished

Queue: 5 4 6

Undiscovered

Discovered

Top of queue

Finished

Undiscovered

Discovered

Top of queue

Finished

Undiscovered

Discovered

Top of queue

Finished

Queue: 4 6 8

Undiscovered

Discovered

Top of queue

Finished

Undiscovered

Discovered

Top of queue

Finished

Queue: 6 8 7

Undiscovered

Discovered

Top of queue

Finished

Queue: 6 8 7 9

Undiscovered

Discovered

Top of queue

Finished

Queue: 8 7 9

Undiscovered

Discovered

Top of queue

Finished

Undiscovered

Discovered

Top of queue

Finished

Undiscovered

Discovered

Top of queue

Finished

Undiscovered

Discovered

Top of queue

Finished

Undiscovered

Discovered

Top of queue

Finished

Undiscovered

Discovered

Top of queue

Finished

Undiscovered

Discovered

Top of queue

Finished

Undiscovered

Discovered

Top of queue

Finished

Level Graph

Depth First Search

Apply DFS algorithm on the same graph using stack and see what is DFS Tree generated after exhausting whole stack.

BFS/DFS

- Time Complexity:
- The operations of enqueuing and dequeuing takes O(1) time, so total time devoted to queue operations is O(V).
- Since sum of the lenghts of all adjacency lists is θ(E), the total time spent in scanning adjacency lists is O(E).
- Total running time of BFS is $\theta(V+E)$.
- Same reasoning can be made for DFS.

Complexity

		Time	Space
Undirected	Adj. Matrix	O(V ²)	O(V)
	Adj. List	O(V + 2 E)	

Breadth-first search

BFS tree

Depth-first search

DFS tree: undirected

Complexity

		Time	Space
Undirected	Adj. Matrix	O(V ²)	O(V)
	Adj. List	O(V + 2 E)	

DFS tree: directed graph

DFS tree

Graph Acyclicity

NO back edges!

Connectivity

Definition

An undirected graph is **connected**, if there is a path between any pair of vertices.

A **connected component** is a subgraph that is internally connected but has no edges to the remaining vertices.

#trees == #connected components