Formelsammlung für IKT Prüfung

1. Diskrete Informationsquellen

mittlerer Informationsgehalt: $H_m = \sum_i p(x_i) \cdot \log_2 rac{1}{p(x_i)} = rac{bit}{Zustand}$

Informationsgehalt bei gleichwahrscheinlichen N Zuständen: $H_0 = \lceil log_2 N \rceil = rac{bit}{Zustand}$

Unbestimmtheit eines Ereignisses : $H_i = log_2 \frac{1}{p(x_i)} = \frac{bit}{Ereignis}$

Einsparung durch bessere Kodierung: $(1-rac{l_m}{l})\cdot 100$

Markov-Kette: $p(x_i) = \sum p(x_i) \cdot p(x_i, x_i)$

Einzelwahrscheinlichkeiten: $p(x_i) = \sum_{j=1}^M p(x_i,y_j) =>$ Summe einer Zeile $\,$,

$$p(y_j) = \sum_{i=1}^N p(x_i, y_j) =>$$
 Summe einer Spalte

allgmeine Matrix:
$$p(y_j|x_i) = \begin{pmatrix} p(y_1|x_1) & p(y_2|x_1) & \dots & p(y_N|x_1) \\ p(y_1|x_2) & p(y_2|x_2) & \dots & p(y_N|x_2) \\ \dots & \dots & \dots & \dots \\ p(y_1|x_N) & p(y_2|x_N) & \dots & p(y_N|x_N) \end{pmatrix}$$

$$p(x_i,y_j) = \begin{pmatrix} p(x_1,y_1) & p(x_1,y_2) & \dots & p(x_1,y_M) \\ p(x_2,y_1) & p(x_2,y_2) & \dots & p(x_2,y_M) \\ \dots & \dots & \dots & \dots \\ p(x_N,y_1) & p(x_N,y_2) & \dots & p(x_N,y_M) \end{pmatrix}$$

$$p(x_i,y_j) = egin{pmatrix} p(x_1,y_1) & p(x_1,y_2) & \dots & p(x_1,y_M) \ p(x_2,y_1) & p(x_2,y_2) & \dots & p(x_2,y_M) \ \dots & \dots & \dots & \dots \ p(x_N,y_1) & p(x_N,y_2) & \dots & p(x_N,y_M) \end{pmatrix}$$

bedingte Wahrscheinlichkeit: $p(x_i,y_j) = p(x_i) \cdot p(y_j|x_i) \implies p(y_j|x_i) = \frac{p(x_i,y_j)}{p(x_i)}$

stationäre Zustände einer binären Quelle:

$${ar p}_1 = rac{p(x_1|x_2)}{p(x_2|x_1) + p(x_1|x_2)}$$

$${ar p}_2 = rac{p(x_2|x_1)}{p(x_2|x_1) + p(x_1|x_2)}$$

Markov-Entropie: $H_m = \sum_j \sum_i \bar{p}(x_i) * p(x_j, x_i) * \log_2 \frac{1}{p(x_j, x_i)}$ (es kann $\bar{p}(x_i)$ aus der Gleichung immer ausgeklammert werden)

=> zweistufiger Prozess: $H_m=\sum_{i=1}^N p_i\cdot (log_2rac{1}{p_i}+log_2M)$ (M - Anzahl der Unterelemente in der 2ten Stufe)

Entropien:

$$egin{aligned} H(X) &= \sum_{i=1}^N p(x_i) \cdot log_2 rac{1}{p(x_i)} rac{bit}{KZ} \ , \ \\ H(Y) &= \sum_{j=1}^M p(y_j) \cdot log_2 rac{1}{p(y_j)} rac{bit}{KZ} \ , \ \\ H(Y|X) &= \sum p(x_i) \cdot (\sum p(y_j|x_i) \cdot log_2 rac{1}{p(y_j|x_i)}) rac{bit}{KZ} \end{aligned}$$

 $\mbox{Verbundsentropie: } H(X,Y) = H(X) + H(Y|X)$

vollständige Abhängigkeit: H(X,Y) = H(Y)

vollständig Unabhängigkeit: H(X,Y) = H(X) * H(Y) oder H(Y|X) = H(Y)

Koderedundanz: $R_k = l_m \cdot H_k - H_m$ (H_k wird im Normalfall mit 1 angenommen)

mittlere Kodewortlänge: $l_m = \sum p_i \cdot l_i$ (ungleichmäßiger Kode) , $l = \lceil \log_2 N \rceil$ (gleichmäßiger Kode)

Kraft-Ungleichung: $\sum_{i=1}^{N} 2^{-l_i} \leqslant 1$ (notwendige aber nicht hinreichende Bedingung)

Schranken der Minimierung: $H_m \leqslant l_m < H_m + 1 \;\;$ --> mit Erweiterung: $m\cdot H_m \leqslant m\cdot l_m < m\cdot H_m + 1 \;\;$

2.Übertragungskanal