PEIQI YU

Email: peiqiyu1019@gmail.com & Homepage: patricia1019.github.io

EDUCATION

Tsinghua University 2019 - 2023

B.E. in Automation

GPA: 3.81/4.0 Mentor: Chao Shang, Associate Professor

Major Courses: The Artificial Intelligence, Control Theory, Random Mathematics and Statistics, Signal and System Analysis, Numerical Analysis and Algorithms, Data Structure, Digital Image Processing

WORK EXPERIENCES

Short Term Scholar 2023

Intelligent Control Lab, Carnegie Mellon Univeristy (CMU)

Advisor: Prof.Changliu Liu

Research Intern 2022 - 2023

Learning & Neural Systems Group, Tsinghua University (THU)

Co-advisor: Prof.Yilin Mo & Prof.Yanan Sui

Research Intern 2021 - 2022

Information Processing Institute, Tsinghua University (THU)

Advisor: Prof.Jiwen Lu

PUBLICATIONS

Recovering Realistic Details for Magnification Arbitrary Image Super-Resolution 2022 *IEEE Transactions on Image Processing*

Cheng Ma, **Peiqi Yu**, Jiwen Lu and Jie Zhou

- * Proposed Implicit Pixel Flow (IPF) to bridge the gap between blurry Implicit Neural Representation(INR) distribution and sharp real-world distribution by assigning pixel-coordinate offsets near blurry edges.
- * Noticed block effects of previous models and proposed using feature aggregation module instead of local ensemble model to avoid block effects, largely promoting model performances.
- * Introduced double constraint strategy and confidence map to ensure the stability of performances.
- * The first successful method for recovering perceptually-pleasant details in single image super-resolution, outperforming SoTA models.

WORKING PAPERS

Hierarchical and Multimodal Human-Robot Collaboration

2023

Manuscript in Preparation

Peiqi Yu, Abulikemu Abuduweili, Ruixuan Liu and Changliu Liu

- * Designed a multimodal framework that enabled robots to efficiently collaborate with humans by hierarchically predicting human intentions and adapting to human trajectories.
- * Introduced multimodality via perceving both vision and speech signals, promoting the robustness of human-robot collaboration.
- * Proposed hierarchy in both distance estimation and planning prediction, enhancing both the precision and efficiency of human intention prediction.
- * Incorporated trajectory prediction in intention prediction module and focused on user studies in real world, building a more user-friendly human-robot collaboration system with adaptation abilities.

SELECTED RESEARCH EXPERIENCES

Graduation Thesis, Tsinghua University

Supervisors: Prof.Yilin Mo, Department of Automation, Tsinghua University Prof.Yanan Sui, School of Aerospace Engineering, Tsinghua University

- * Proposed using Transformer for Bayesian Optimization(BO) by leveraging its alignment with the sequential decision-making characteristics of Bayesian optimization.
- * The first to incorporate two mathematical characteristics of BO: translation&rotation invariance and input equivariance into the Transformer network, promoting the accuracy of the network.
- * Demonstrated an impressive 80% performance improvement compared to state-of-the-art (SoTA) models in few-shot learning.
- * Combined the applicability of BO with the high-dimensional scalability of Transformer, enhancing the robustness and adaptability, potentially applicable in continuous learning and online learning.

Learning From the Wild: Imitation Learning From Real Life Demonstrations Cooperative Research Project, Tsinghua University

Supervisors: Prof. Yanan Sui, School of Aerospace Engineering, Tsinghua University Prof. Dorsa Sadigh, Department of Computer Science, Stanford University

- * Designed a Reinforcement Learning framework that enables robots to observe and perform actions through imitation learning on real-life videos.
- * Considering the diversity of real-life videos, introduced domain adaptation to align robot and human actions during training, promoting robustness and achieving generalization.
- * To avoid being interfered by moving backgrounds, incorporated optical flow to extract human actions, leading to more effective and precise learning outcomes.

Wearable Sensor Data-Based Intelligent Sleep Stage Detection Enterprise Internship Project, Beijing Academy of Blockchain and Edge Computing

2021

2022

Supervisor: Tianyu Feng, Beijing Academy of Blockchain and Edge Computing

- * Developed precise sleep-staging algorithms using Support Vector Machines (SVM), Random Forest, and Neural Networks, controlling the prediction error within 5-minutes range.
- * Proficiently managed a MySQL database, overseeing the storage and retrieval of critical data, including heart rate, temperature, and motion signals.

ACHIEVEMENTS

TECHNICAL SKILLS

Academic excellence award	2020
Huang Yicong Scholarship (top 3%)	
Science&technology excellence Award	2021
School Management Scholarship (top 10%))
Academic excellence award	2022
National Inspirational Scholarship (top 3%	<u>(</u>)

Languages	Python, C++, Matlab, LATEX
Libraries	PyTorch, RosPy, Numpy
	Matplotlib,Sci-kit,GPytorch
Hardware	Kinova, Raspberry Pi
Software	Mujuco, ROS, Openai-Gym, MySQL
Systems	Ubuntu, Windows

Please visit my homepage for more information: https://patricia1019.github.io