# 实验4: 互联网组网与路由器配置

姓名: 张刘明 学号: 2110049

# 实验内容及要求:

# 实体环境下互联网组网与路由器配置

在实体环境下完成互联网组网与路由器配置,要求如下:

- 1. 在机房实验室环境下,通过将局域网划分为不同子网,用多IP主机作为路由器,组建互联网。
- 2. 在命令行方式下,按照静态路由方式,配置路由器和主机,测试互联网的连通性。

## 仿真环境下的互联网组网与路由器配置

在仿真环境下完成互联网组网与路由器配置,要求如下:

- 1. 学习路由器的配置方法和配置命令。
- 2. 参考实体实验,组建由多个路由器组成的互联网。物理网络可以由集线器、交换机构成。
- 3. 按照静态路由方式配置路由器和主机,测试互联网的连通性。
- 4. 利用动态路由方式配置路由器和主机,测试互联网的连通性。
- 5. 在仿真环境的"模拟"方式中观察数据包在互联网中的传递过程,并进行分析。

# 实验过程

# 仿真环境下的互联网组网与路由配置

### 根据要求在Cisco Packet Tracer中建立组网拓扑结构



### 1. 静态路由拓扑结构配置



### 2. 动态路由拓扑结构配置



### 配置过程

### 静态路由部分

1. 配置路由设备的IP地址

给静态路由Router2和Router3设置IP地址,由于路由设备需要连接2个或2个以上的网络,因此需要设置多个IP地址

• router2:

#### 在CLI中配置如下:

router3:

#### 在CLI中配置如下:

```
Router>enable
Router#config terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)#interface gig 0/1
Router(config-if) #ip address 10.2.0.1 255.255.0.0
Router(config-if) #no shutdown
Router (config-if) #exit
Router(config) #interface gig 0/0
Router(config-if) #ip address 10.3.0.1 255.255.0.0
 2. 为路由器添加路由表项
在全局配置模式下使用如下命令给 Router2、Router3 增加路由表项
R2: ip route 10.3.0.0 255.255.0.0 10.2.0.1
R1: ip route 10.1.0.0 255.255.0.0 10.2.0.2
再退回到特权执行模式,用 show ip route 查看路由表,如下,均添加成功
 router2:
   Router(config) #ip route 10.3.0.0 255.255.0.0 10.2.0.1
   Router (config) #exit
   %SYS-5-CONFIG I: Configured from console by console
```

```
Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP
         D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
         N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
         E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
         i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
         * - candidate default, U - per-user static route, o - ODR
         P - periodic downloaded static route
  Gateway of last resort is not set
       10.0.0.0/8 is variably subnetted, 5 subnets, 2 masks
          10.1.0.0/16 is directly connected, GigabitEthernet0/0
          10.1.0.2/32 is directly connected, GigabitEthernet0/0
          10.2.0.0/16 is directly connected, GigabitEthernet0/1
  C
          10.2.0.2/32 is directly connected, GigabitEthernet0/1
  L
          10.3.0.0/16 [1/0] via 10.2.0.1
router3:
  Router(config) #ip route 10.1.0.0 255.255.0.0 10.2.0.2
  Router(config) #exit
  Router#
  %SYS-5-CONFIG I: Configured from console by console
  Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP
         D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
         N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
         E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
         i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
         * - candidate default, U - per-user static route, o - ODR
         P - periodic downloaded static route
  Gateway of last resort is not set
       10.0.0.0/8 is variably subnetted, 5 subnets, 2 masks
          10.1.0.0/16 [1/0] via 10.2.0.2
  S
  С
          10.2.0.0/16 is directly connected, GigabitEthernet0/1
  L
          10.2.0.1/32 is directly connected, GigabitEthernet0/1
  С
          10.3.0.0/16 is directly connected, GigabitEthernet0/0
          10.3.0.1/32 is directly connected, GigabitEthernet0/0
```

show ip route

# 3. 测试网络连通性

ip为 10.1.0.1 的主机执行指令 ping 10.3.0.3 和指令 tracert 10.3.0.2 如下:

| Vis. | Time(sec) | Last Device | At Device | Туре |
|------|-----------|-------------|-----------|------|
|      | 0.000     |             | PC0       | ICMP |
|      | 0.001     | PC0         | Switch0   | ICMP |
|      | 0.002     | Switch0     | Router2   | ICMP |
|      | 0.003     | Router2     | Router3   | ICMP |
|      | 0.004     | Router3     | Switch1   | ICMP |
|      | 0.005     | Switch1     | PC2       | ICMP |
|      | 0.006     | PC2         | Switch1   | ICMP |
|      | 0.007     | Switch1     | Router3   | ICMP |
|      | 800.0     | Router3     | Router2   | ICMP |
|      | 0.009     | Router2     | Switch0   | ICMP |
|      | 0.010     | Switch0     | PC0       | ICMP |
|      | 1.011     | -           | PC0       | ICMP |
|      | 1.012     | PC0         | Switch0   | ICMP |
|      | 1.013     | Switch0     | Router2   | ICMP |
|      | 1.014     | Router2     | Router3   | ICMP |
|      | 1.015     | Router3     | Switch1   | ICMP |
|      | 1.016     | Switch1     | PC2       | ICMP |
|      | 1.017     | PC2         | Switch1   | ICMP |
|      | 1.018     | Switch1     | Router3   | ICMP |
|      | 1.019     | Router3     | Router2   | ICMP |
|      | 1.020     | Router2     | Switch0   | ICMP |
|      | 1.021     | Switch0     | PC0       | ICMP |
|      | 1.082     | -           | Switch1   | STP  |

| Vis. | Time(sec) | Last Device    | At Device | Туре |
|------|-----------|----------------|-----------|------|
|      | 0.000     | · <del>-</del> | PC0       | ICMP |
|      | 0.001     | PC0            | Switch0   | ICMP |
|      | 0.002     | Switch0        | Router2   | ICMP |
|      | 0.002     |                | Router2   | ICMP |
|      | 0.003     | Router2        | Switch0   | ICMP |
|      | 0.004     | Switch0        | PC0       | ICMP |
|      | 0.107     |                | PC0       | ICMP |
|      | 0.108     | PC0            | Switch0   | ICMP |
|      | 0.109     | Switch0        | Router2   | ICMP |
|      | 0.109     |                | Router2   | ICMP |
|      | 0.110     | Router2        | Switch0   | ICMP |
|      | 0.111     | Switch0        | PC0       | ICMP |
|      | 0.212     |                | PC0       | ICMP |
|      | 0.213     | PC0            | Switch0   | ICMP |
|      | 0.214     | Switch0        | Router2   | ICMP |
|      | 0.214     | -              | Router2   | ICMP |
|      | 0.215     | Router2        | Switch0   | ICMP |
|      | 0.216     | Switch0        | PC0       | ICMP |
|      | 0.318     |                | PC0       | ICMP |
|      | 0.319     | PC0            | Switch0   | ICMP |
|      | 0.320     | Switch0        | Router2   | ICMP |
|      | 0.321     | Router2        | Router3   | ICMP |
|      | 0.321     |                | Router3   | ICMP |
|      | 0.322     | Router3        | Router2   | ICMP |
|      | 0.323     | Router2        | Switch0   | ICMP |
|      | 0.324     | Switch0        | PC0       | ICMP |

```
C:\>ping 10.3.0.3
Pinging 10.3.0.3 with 32 bytes of data:
Reply from 10.3.0.3: bytes=32 time=10ms TTL=126
Ping statistics for 10.3.0.3:
Packets: Sent = 4, Received = 4, Lost = 0 (0% loss), Approximate round trip times in milli-seconds:
    Minimum = 10ms, Maximum = 10ms, Average = 10ms
C:\>tracert 10.3.0.2
Tracing route to 10.3.0.2 over a maximum of 30 hops:
      4 ms
                 4 ms
                            4 ms
                                       10.1.0.2
                 6 ms
                                       10.2.0.1
      6 ms
                            6 ms
                            10 ms
      10 ms
                 10 ms
                                       10.3.0.2
Trace complete.
C:\>
```

结果显示网络联通。

### 动态路由部分

动态路由可以通过自身的学习,自动修改和刷新路由表。

在互联网中RIP是一个经常使用的动态路由选择协议,适合在中小型互联网上使用。

### 1. 配置路由器接口的IP地址

单击需要配置的路由器,在弹出的配置界面选择CLI。使用enable命令进入路由器的特权执行模式,然后使用config terminal 进入全局配置模式,通过interface进入特定接口的配置模式。配置路由器的IP地址的命令 ip address IP 地址 掩码 ,利用命令 no shutdown 保证使用的接口处于激活状态。具体配置命令如下图所示:

#### router2:

```
Router(config) #interface gig0/0
Router(config-if) #ip address 10.1.0.2 255.255.0.0
Router(config-if) #no shutdown
Router(config-if) #exit
Router(config) #interface gig0/1
Router(config-if) #ip address 10.2.0.2 255.255.0.0
Router(config-if) #no shutdown
Router(config-if) #exit
Router(config) #
```

#### • router3:

```
Router>enable
Router#config terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)#interface gig0/0
Router(config-if)#ip address 10.3.0.1
% Incomplete command.
Router(config-if)#ip address 10.3.0.1 255.255.0.0
Router(config-if)#exit
Router(config)#interface gig0/1
Router(config-if)#ip address 10.2.0.1 255.255.0.0
Router(config-if)#no shutdown
Router(config-if)#exit
Router(config-if)#exit
Router(config)#
```

#### 2. RIP的配置

RIP的配置需要在全局配置模式下进行。在全局配置模式下运行router rip 命令进入RIP配置模式,利用 version2命令通知系统使用的RIP版本为可以处理子网编址的Version2版本。使用network命令说明路由器直接相连的网络,最后使用show ip route命令查看路由器是否获得了正确的路由。

#### router2:

```
Router(config) #router rip
Router(config-router) #version 2
Router(config-router) #network 10.1.0.0
Router(config-router) #network 10.2.0.0
Router(config-router) #exit
Router(config) #
```

```
Router#
%SYS-5-CONFIG_I: Configured from console by console
show ip route
Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP
      D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
      N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
      E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
       * - candidate default, U - per-user static route, o - ODR
       P - periodic downloaded static route
Gateway of last resort is not set
     10.0.0.0/8 is variably subnetted, 5 subnets, 2 masks
C
       10.1.0.0/16 is directly connected, GigabitEthernet0/0
       10.1.0.2/32 is directly connected, GigabitEthernet0/0
L
       10.2.0.0/16 is directly connected, GigabitEthernet0/1
L
        10.2.0.2/32 is directly connected, GigabitEthernet0/1
       10.3.0.0/16 [1/0] via 10.2.0.1
Router#
 • router3:
Router(config) #router rip
Router(config-router) #version 2
Router(config-router) #network 10.2.0.0
Router(config-router) #network 10.3.0.0
Router(config-router)#exit
Router(config)#
Router#
SYS-5-CONFIG I: Configured from console by console
show ip route
Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
       * - candidate default, U - per-user static route, o - ODR
       P - periodic downloaded static route
Gateway of last resort is not set
     10.0.0.0/8 is variably subnetted, 5 subnets, 2 masks
       10.1.0.0/16 [1/0] via 10.2.0.2
C
        10.2.0.0/16 is directly connected, GigabitEthernet0/1
        10.2.0.1/32 is directly connected, GigabitEthernet0/1
L
С
        10.3.0.0/16 is directly connected, GigabitEthernet0/0
        10.3.0.1/32 is directly connected, GigabitEthernet0/0
```

### 3. 测试网络连诵性

Router#

| Vis. | Time(sec) | Last Device | At Device | Туре |
|------|-----------|-------------|-----------|------|
|      | 0.000     |             | PC0       | ICMP |
|      | 0.001     | PC0         | Switch0   | ICMP |
|      | 0.002     | Switch0     | Router2   | ICMP |
|      | 0.003     | Router2     | Router3   | ICMP |
|      | 0.004     | Router3     | Switch1   | ICMP |
|      | 0.005     | Switch1     | PC2       | ICMP |
|      | 0.006     | PC2         | Switch1   | ICMP |
|      | 0.007     | Switch1     | Router3   | ICMP |
|      | 0.008     | Router3     | Router2   | ICMP |
|      | 0.009     | Router2     | Switch0   | ICMP |
|      | 0.010     | Switch0     | PC0       | ICMP |
|      | 1.012     | -           | PC0       | ICMP |
|      | 1.013     | PC0         | Switch0   | ICMP |
|      | 1.014     | Switch0     | Router2   | ICMP |
|      | 1.015     | Router2     | Router3   | ICMP |
|      | 1.016     | Router3     | Switch1   | ICMP |
|      | 1.017     | Switch1     | PC2       | ICMP |
|      | 1.018     | PC2         | Switch1   | ICMP |
|      | 1.019     | Switch1     | Router3   | ICMP |
|      | 1.020     | Router3     | Router2   | ICMP |
|      | 1.021     | Router2     | Switch0   | ICMP |
|      | 1.022     | Switch0     | PC0       | ICMP |
|      | 1.539     |             | Switch0   | STP  |
|      |           | 0.210       | 200       | OTD  |
| S.   | Time(sec) | Last Device | At Device | Туре |
|      | 0.000     |             | PC0       | ICMB |

| Vis. | Time(sec) | Last Device | At Device | Type |
|------|-----------|-------------|-----------|------|
|      | 0.000     | -           | PC0       | ICMP |
|      | 0.001     | PC0         | Switch0   | ICMP |
|      | 0.002     | Switch0     | Router2   | ICMP |
|      | 0.002     |             | Router2   | ICMP |
|      | 0.003     | Router2     | Switch0   | ICMP |
|      | 0.004     | Switch0     | PC0       | ICMP |
|      | 0.105     |             | PC0       | ICMP |
|      | 0.106     | PC0         | Switch0   | ICMP |
|      | 0.107     | Switch0     | Router2   | ICMP |
|      | 0.107     | -           | Router2   | ICMP |
|      | 0.108     | Router2     | Switch0   | ICMP |
|      | 0.109     | Switch0     | PC0       | ICMP |
|      | 0.209     |             | PC0       | ICMP |
|      | 0.210     | PC0         | Switch0   | ICMP |
|      | 0.211     | Switch0     | Router2   | ICMP |
|      | 0.211     | -           | Router2   | ICMP |
|      | 0.212     | Router2     | Switch0   | ICMP |
|      | 0.213     | Switch0     | PC0       | ICMP |
|      | 0.316     |             | PC0       | ICMP |
|      | 0.317     | PC0         | Switch0   | ICMP |
|      | 0.318     | Switch0     | Router2   | ICMP |
|      | 0.319     | Router2     | Router3   | ICMP |
|      | 0.319     | -           | Router3   | ICMP |
|      | 0.320     | Router3     | Router2   | ICMP |
|      | 0.321     | Router2     | Switch0   | ICMP |
|      | 0.322     | Switch0     | PC0       | ICMP |
|      |           |             |           |      |

```
C:\>ping 10.3.0.3
Pinging 10.3.0.3 with 32 bytes of data:
Reply from 10.3.0.3: bytes=32 time=10ms TTL=126
Ping statistics for 10.3.0.3:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 10ms, Maximum = 10ms, Average = 10ms
C:\>tracert 10.3.0.2
Tracing route to 10.3.0.2 over a maximum of 30 hops:
      4 ms
                4 ms
                          4 ms
                                    10.1.0.2
      6 ms
                6 ms
                          6 ms
                                    10.2.0.1
                          10 ms
                                    10.3.0.2
                10 ms
Trace complete.
C:\>
```

成功。

# 实体环境下互联网组网与路由器配置

在四台win10虚拟机镜像下跑出的结果如下:



使用虚拟机组网过程中与实机组网的不同:

1. 用实机实验开启 Routing and Remote Access 服务后不重启也可以,但是虚拟机镜像必须重启才能启动服务;

| 2. | 用实机做实验时为路由添加规则的指令不需要进入管理员模式即可,式才行; | 但虚拟机必须进入管理员模 |
|----|------------------------------------|--------------|
|    |                                    |              |
|    |                                    |              |
|    |                                    |              |
|    |                                    |              |
|    |                                    |              |
|    |                                    |              |
|    |                                    |              |
|    |                                    |              |
|    |                                    |              |
|    |                                    |              |
|    |                                    |              |
|    |                                    |              |