Проект №19455 "Решетчатые модели макромолекул"

Пчелинцев Илья Игоревич, БПМ-195

Содержание

1	Введение	3
	1.1 Одномерная модель Изинга	3
	1.3 Диагонализация Трансфер-матрицы	
	1.4 Статсумма цепи Изинга общего случая $(h,J\neq 0)$: открытые гран. условия	4
	1.5 Итоги	5
2	Средняя намагнинченность случая $\mathbf{h}=0$	6
	2.1 Периодичные гран. условия	6
	2.2 Открытые гран. условия	6
	2.3 Магнитная воприимчивость	7
3	Средняя энергия	8
	3.1 Проверка случая $J=0$	8
	3.2 Случай h = 0	
	3.3 Сравнение средней энергии моделей с периодичным и открытым гран. условиями	Ĝ
4	Теплоёмкость на спин при $\mathbf{h}=0$	10
	4.1 Открытое гран. условие	10
	4.2 Периодическое гран. условие	11
5	Свободная энергия	12
6	Разница между открытым и периодичным случаем	13
	6.1 Средняя энергия системы (равное число спинов)	13
	6.2 Средняя энергия системы (равное число рёбер)	14
	6.3 Теплоёмкость системы (равное число рёбер)	
	6.4 Квадрат намагниченности системы (равное число рёбер)	15
7	Сравнение решения одномерной модели Изинга с расчётами Монте-Карло	16
8	Поведение модели Изинга на блужданиях без самопересечений вблизи крит. температуры	17
	8.1 Расчёты крит. экспонент при наблюдении коллапса данных	
	8.2 Определение погрешностей измерений экспонент	18
9	Модель Изинга на прямоугольной решётке	20
	9.1 Расчёт критических кумулянтов для модели прямоугольного Изинга	20
	9.2 Сравнение модели Изинга и модели взаимодействующих непересекающихся блужданий	22
	9.3 Связь тензора инерции и тензора вращения	23
	9.3 Связь тензора инерции и тензора вращения	24

10 Оценка работы алгоритма для трёхмерной модели Изинга		
	10.1 Расчёт магнитных свойств	30
11	Геометрические свойства модели Изинга с точки зрения числа соседей в узлах	31
	11.1 Сравнение модели Изинга и полимерной цепочки в решетках с 2-6 возможными соседями у	
	мономеров	31
	11.2 Сравнение геометрических свойств модели Изинга на треугольной решётке с квадратной	33
	11.3 Сравнение геометрических свойств модели Изинга на треугольной решётке с кубической	34

1 Введение

1.1 Одномерная модель Изинга

Модель Изинга представляет собой решетку, в узлах которой расположены магнитные моменты, направленные "вверх"или "вниз чему соответствует значение "спина"на j-ом месте в решетке.

$$\sigma_i = \pm 1$$

Энергией взаимодействия внешнего поля с моделью будем считать сумму взаимодействий поля h с каждым из N моментов со спином σ_i

$$H_h = -\sum_{j=1}^{N} h\sigma_j \tag{1.1}$$

Внутренним взаимодействией между двумя соседними моментами считаем:

$$H_J = -\sum_{(i,j)} J\sigma_i \sigma_j \tag{1.2}$$

Тогда Гамильтонианом системы из N спинов будет:

$$H = -h\sum_{j=1}^{N} \sigma_j - J\sum_{(i,j)} (\sigma_1 \sigma_2 + \sigma_2 \sigma_3 + \dots + \sigma_{N-1} \sigma_N)$$

$$\tag{1.3}$$

1.2 Статсумма цепи Изинга общего случая $(h, J \neq 0)$: периодич. гран. условия и Трансфер-матрица

Для поиска решения данного случая воспользуемся методом трансфер-матриц.

Для начала перепишем формулу (1.3) в другой форме:

$$H = -\frac{h}{2} \sum_{j=1}^{N} (\sigma_j + \sigma_{j+1}) - J \sum_{j=1}^{N} \sigma_j \sigma_{j+1}$$
(1.4)

Учитывая периодические гран. условия $(\sigma_{N+1} = \sigma_1)$, то формулы (1.3) и (1.4) тождественно равны. Тогда статсумма такой модели будет равна:

$$Z = \sum_{\sigma} e^{-\beta H} = \sum_{\sigma} \prod_{j=1}^{N} \exp(\beta J \sigma_{j} \sigma_{j+1} + \frac{1}{2} \beta h(\sigma_{j} + \sigma_{j+1})) = \sum_{\sigma} \prod_{j=1}^{N} T(\sigma_{j}, \sigma_{j+1})$$
(1.5)

Где $T(\sigma_j, \sigma_{j+1})$ - трансфер-матрица для двух соседних моментов. Поскольку один момент принимают лишь два значения (± 1), а пара - уже четыре - (1,1),(1,-1),(-1,1),(-1,-1) - то, их матрица представляет с собой матрицу с элементами, соответствующими этим парам значений:

$$T(\sigma_j, \sigma_{j+1}) = \begin{pmatrix} \exp(\beta J + \beta h) & \exp(-\beta J) \\ \exp(-\beta J) & \exp(\beta J - \beta h) \end{pmatrix}$$
(1.6)

Если рассмотреть сумму произведений двух соседних матриц от j-1, j и j+1 внутри цепи при всевозможных значениях моментов, мы получим:

$$\sum_{\sigma_{j-1}} T(\sigma_{j-1}, \sigma_{j}) T(\sigma_{j}, \sigma_{j+1}) = T^{2}(\sigma_{j-1}, \sigma_{j+1})$$

1.3 Диагонализация Трансфер-матрицы

Попробуем диагонализировать Трансфер-матрицу $(T = RT^DR^{-1})$, тогда полное произведение матриц будет:

$$\sum_{\sigma} \prod_{j=1}^{N} T(\sigma_{j}, \sigma_{j+1}) = R(T^{D})^{N} R^{-1}(\sigma_{1}, \sigma_{N+1} = \sigma_{1})$$

Диагонализированная матрица будет выглядеть как:

$$T^{D} = \begin{pmatrix} \lambda_{+} & 0\\ 0 & \lambda_{-} \end{pmatrix} \tag{1.7}$$

$$(T^D)^N = \begin{pmatrix} \lambda_+^N & 0\\ 0 & \lambda_-^N \end{pmatrix} \tag{1.8}$$

Найдём собственные значения λ_{\pm} и их собственные вектора:

$$\lambda_{\pm} = e^{\beta J} \cosh(\beta h) \pm Q$$
$$Q = \sqrt{e^{2\beta J} \cosh(\beta h)^2 - 2 \sinh(2\beta J)}$$

$$R = \begin{pmatrix} e^{\beta J} \lambda_{+2} & e^{\beta J} \lambda_{-2} \\ 1 & 1 \end{pmatrix} \tag{1.9}$$

$$R^{-1} = \begin{pmatrix} \frac{1}{2e^{\beta J}Q} & 1 - \frac{\lambda + 2}{2Q} \\ -\frac{1}{2e^{\beta J}Q} & \frac{\lambda + 2}{2Q} \end{pmatrix}$$
 (1.10)

$$\lambda_{\pm 2} = e^{\beta J} \sinh\left(\beta h\right) \pm Q$$

Эти формулы понадобятся нам позднее.

Поскольку нам нужен инвариантный след данной матрицы, т.к. матрица зависит от одного элемента, то достаточно $Z = Tr(T^D)^N$

Таким образом:

$$Z_{PBC} = \lambda_+^N + \lambda_-^N \tag{1.11}$$

1.4 Статсумма цепи Изинга общего случая $(h, J \neq 0)$: открытые гран. условия

Расчёт статсуммы в данном случае сложнее, т.к. система не замкнута, и крайние значения не имеют внутреннего взаимодействия между с собой. Попробуем воспользоваться формулой (1.4) с корректировкой под открытые условия:

$$H = -\frac{h}{2} \sum_{j=1}^{N-1} (\sigma_j + \sigma_{j+1}) - J \sum_{j=1}^{N-1} \sigma_j \sigma_{j+1} - \frac{h}{2} (\sigma_1 + \sigma_N)$$
(1.12)

$$Z = \sum_{\sigma} e^{-\beta H} = \sum_{\sigma} \prod_{j=1}^{N-1} \exp(\beta J \sigma_{j} \sigma_{j+1} + \frac{1}{2} \beta h(\sigma_{j} + \sigma_{j+1})) exp(\frac{1}{2} \beta h(\sigma_{1} + \sigma_{N})) =$$

$$= \sum_{\sigma} \prod_{j=1}^{N-1} T(\sigma_{j}, \sigma_{j+1}) T'(\sigma_{1}, \sigma_{N})$$

Где $T'(\sigma_1, \sigma_N)$ - трансфер-матрица для крайних моментов. От ранее расмотренных матриц она отличается отсутствием внутреннего взаимодействия, поэтому она представима в виде:

$$T(\sigma_1, \sigma_N) = \begin{pmatrix} \exp(\beta h) & 1\\ 1 & \exp(-\beta h) \end{pmatrix}$$

К полному произведению применимы те же рассуждения, что и в периодическом случае: воспользовшись диагонализацией трансфер-матрицы T, мы получим:

$$Z = \sum_{\sigma} \prod_{j=1}^{N-1} T(\sigma_{j}, \sigma_{j+1}) T'(\sigma_{1}, \sigma_{N}) = R(T^{D})^{N-1} R^{-1} T'(\sigma_{1}, \sigma_{N})$$

Просуммировав элементы матрицы, полученной из данного произведения, мы получим:

$$Z_{OBC} = \lambda_{+}^{N-1} \left(\frac{e^{\beta J} \sinh \beta h^{2}}{Q} + \frac{1}{e^{\beta J} Q} + \cosh \beta h \right) - \lambda_{-}^{N-1} \left(\frac{e^{\beta J} \sinh \beta h^{2}}{Q} + \frac{1}{e^{\beta J} Q} - \cosh \beta h \right)$$
(1.13)

1.5 Итоги

Нам известна статсумма модели для общего случая:

$$Z_{PBC} = \lambda_{+}^{N} + \lambda_{-}^{N}$$

- для периодичного граничного условия

$$Z_{OBC} = \lambda_+^{N-1} \left(\frac{e^{\beta J} \sinh \beta h^2}{Q} + \frac{1}{e^{\beta J} Q} + \cosh \beta h \right) - \lambda_-^{N-1} \left(\frac{e^{\beta J} \sinh \beta h^2}{Q} + \frac{1}{e^{\beta J} Q} - \cosh \beta h \right)$$

- для открытого погран. случая, где

$$\lambda_{\pm} = e^{\beta J} \cosh{(\beta h)} \pm Q$$

$$Q = \sqrt{e^{2\beta J} \cosh{(\beta h)}^2 - 2 \sinh{(2\beta J)}}$$

2 Средняя намагнинченность случая h=0

По предыдущим расчетам мы знаем формулу ср. намагниченности, с самого начала считая J=0. С одной стороны, по определению среднего:

$$\langle \sigma \rangle = \frac{1}{ZN} \int S e^{-\beta H}, H = -h \sum_{j=1}^{N} \sigma_j = -hS$$
 (2.1)

где S - сумма всех моментов в цепи. С другой стороны:

$$\frac{1}{ZN} \int S e^{-\beta H} = \frac{\partial Log[Z_{J=0}]}{\partial h} \frac{1}{\beta N} = \frac{1}{Z\beta N} \frac{\partial Z}{\partial h}$$
 (2.2)

В этом случае Z берется сразу при условии (J=0), её гамильтонианом для N спинов при периодичном и открытом гран. условии будет (1.1), а статсуммой будет формула (30.8) при (30.10) из учебника Свендсена [1]:

$$Z_{i=0} = (2\cosh\beta h)^N \tag{2.3}$$

$$\frac{\partial Z}{\partial h}_{j=0} = \beta N 2^{N} (\cosh \beta h)^{N-1} \sinh \beta h \tag{2.4}$$

Следовательно, при подстановке в (2.2), получим:

$$\langle \sigma \rangle = \frac{1}{Z\beta N} \frac{\partial Z}{\partial h} = \tanh(\beta h)$$
 (2.5)

Применим эту операцию для статсуммы общего случая. Для упрощения задачи будем рассматривать случай $\mathbf{h}=0.$

2.1 Периодичные гран. условия

Перед этим для простоты найдём производные всех составляющих статсумм:

$$(Q)'_{h} = \frac{1}{2\sqrt{e^{2\beta J}\cosh(\beta h)^{2} - 2\sinh(2\beta J)}} \left(e^{2\beta J}2\cosh(\beta h)\sinh(\beta h)\beta\right)$$
(2.6)

и при (h = 0) = 0Тогда:

$$(\lambda_{\pm})'_{h} = e^{\beta J} \sinh(\beta h)\beta \pm (Q)'_{h} \tag{2.7}$$

и при (h = 0) так же = 0

Таким образом:

$$\langle \sigma_{PBC} \rangle = \frac{1}{Z\beta N} \frac{\partial Z}{\partial h} = \frac{1}{Z\beta N} \left(N \lambda_{+}^{N-1} (\lambda_{+})_{h}^{'} + \lambda_{-}^{N-1} (\lambda_{-})_{h}^{'} \right) = 0 \tag{2.8}$$

2.2 Открытые гран. условия

Найдём дополнительные значения составляющих Z_{OBC}

$$Q_{h=0} = e^{-\beta J}$$

Также найдём значения λ_{\pm} при h=0

$$\lambda_{\pm(h=0)} = e^{\beta J} \pm \sqrt{e^{2\beta J} - (e^{2\beta J} - e^{-2\beta J})} = e^{\beta J} \pm e^{-\beta J}$$
(2.9)

Тогда $\lambda_{+(h=0)} = 2 \cosh \beta J$ и $\lambda_{-(h=0)} = 2 \sinh \beta J$

Рассмотрим производную Z_{OBC} по h, учитывая дифференцирование произведения и все полученные ранее результаты ((2.6), (2.7), (2.9))

$$\frac{\partial Z}{\partial h} = \lambda_{+}^{N-1} \left(\frac{e^{\beta J} 2 \sinh \beta h \cosh \beta h \beta Q - (Q)'_{h} e^{\beta J} \sinh \beta h^{2}}{Q^{2}} - \frac{(Q)'_{h}}{e^{\beta J} Q^{2}} + \beta \sinh \beta h \right) - \lambda_{-}^{N-1} \left(\frac{e^{\beta J} 2 \sinh \beta h \cosh \beta h \beta Q - (Q)'_{h} e^{\beta J} \sinh \beta h^{2}}{Q^{2}} - \frac{(Q)'_{h}}{e^{\beta J} Q^{2}} - \beta \sinh \beta h \right) =_{h=0} 0 \quad (2.10)$$

Следовательно, $\langle \sigma_{OBC} \rangle = 0$

2.3 Магнитная воприимчивость

Мы выяснили, что средняя намагниченность одномерной цепи при любом гран. условии равна нулю. Рассмотрим в таком случае магнитную восприимчивость $X=\frac{\partial \langle m \rangle}{\partial h}$

Учитывая формулу намагниченности (2.1) и то, что первая производная статсуммы (2.10) равна нулю:

$$X = (\frac{1}{Z\beta} \frac{\partial Z}{\partial \beta})_h^{'} = \frac{1}{\beta} (\frac{\partial Z}{\partial \beta} (-\frac{1}{Z^2} \frac{\partial Z}{\partial \beta}) + \frac{1}{Z} \frac{\partial^2 Z}{\partial h^2}) = \frac{1}{Z\beta} \frac{\partial^2 Z}{\partial h^2}$$

После расчётов, представленных в .nb файле (раздел 21.10.2020 (поиск X)) получим:

$$X = \frac{\beta}{2} (2Ne^{2\beta J} - e^{4\beta J} + 1) + \frac{\beta}{2} \tanh^{N-1} \beta J (e^{4\beta J} - 2e^{2\beta J} + 1)$$

Подстановка $T=0,\infty$ приведёт к одинаковому результату и обратной зависимости от T, что говорит о парамагнетических свойствах одномерной модели Изинга.

3 Средняя энергия

Чтобы удостовериться в правильности полученной формулы для статсуммы общего случая открытого гран. условия (1.13), проверим её на предельных условиях ($h=0,\ J=0$), поскольку они были рассмотрены в учебнике [1].

Нам известна формула средней энергии:

$$\langle U \rangle = -\frac{\partial Log[Z]}{\partial \beta} = \frac{1}{Z} \frac{\partial Z}{\partial \beta}$$
 (3.1)

Предварительно будет нелишним найти значения составных частей формулы и их производных по β

$$\begin{split} \lambda_{\pm}^{'} &= e^{\beta J} J \cosh \beta h + e^{\beta J} \sinh \beta h \ h \pm \\ &\pm \frac{1}{Q} (e^{2\beta J} J \cosh \beta h + e^{2\beta J} \cosh \beta h \ \sinh \beta h \ h - \cosh 2\beta J \ 2J) \end{split}$$

В виду большого числа различных значений, составим таблицу всех составных значений в формуле.

Таблица 1: Производные составных значений статсумм

3.1 Проверка случая J=0

Теперь можно перейти к проверке по предельным случаям.

$$Z_{OBC}(h=0) = 2^{N-1} \cosh \beta J^{N-1}(0+1+1) - 2^{N-1} \sinh \beta J^{N-1}(0+1-1) = 2^{N} \cosh \beta J^{N-1}$$

$$Z_{OBC}(J=0) = 2^{N-1} \cosh \beta h^{N-1} \left(\frac{(\sinh \beta h)^{2} + 1}{\cosh \beta h} + \cosh \beta h \right) =$$

$$= 2^{N-1} \cosh \beta h^{N-1} \left(\frac{(\cosh \beta h)^{2}}{\cosh \beta h} + \cosh \beta h \right) =$$

$$= 2^{N} \cosh \beta h^{N}$$

Как и ожидалось, статсуммы совпали с расчетами учебника [1], что говорит о правильности формулы. Чтобы сильнее убедиться в этом, найдём формулы средней энергии.

Для J=0 заранее учтём, что правое слагаемое формулы статсуммы и её производной обнулится:

$$\frac{\partial Z}{\partial \beta} = \lambda_{+}^{N-1} \left(\frac{e^{\beta J} \sinh \beta h ((J \sinh \beta h + 2h \cosh \beta h) Q - (Q)_{\beta}^{'} \sinh \beta h)}{Q^{2}} - \frac{JQ + (Q)_{\beta}^{'}}{e^{\beta J} Q^{2}} + h \sinh \beta h \right) + \lambda_{+}^{N-2} (\lambda_{+})_{\beta}^{'} (N-1) \left(\frac{e^{\beta J} \sinh \beta h^{2}}{Q} + \frac{1}{e^{\beta J} Q} + \cosh \beta h \right)$$

При подстановке J=0 мы получим $2^N(\cosh\beta h)^{N-1}N\sinh\beta h$

И в конечном счёте формула средней энергии системы при $J{=}0$:

$$\langle U_{J=0} \rangle = -\frac{1}{Z} \frac{\partial Z}{\partial \beta} = -Nh \tanh \beta h$$

Даннная формула полностью совпадает с расчётами в учебнике [1], что говорит о правильности формулы для статсуммы обобщенного случая.

3.2 Случай h=0

Из проделанных ранее расчётов для средней энергии системы при случае h=0, используя соответствующую статсумму, мы получили следующую формулу:

$$\langle U_{h=0} \rangle = -J(N-1) \tanh \beta J$$

Попробуем вывести ту же формулу через статсумму общего случая.

Начнём со статсуммы:

$$Z_{OBC}(h=0) = \lambda_{+}^{N-1}(0+1+1) - \lambda_{-}^{N-1}(0+1-1) = 2^{N}(\cosh\beta J)^{N-1}$$

Поскольку формула производной статсуммы увеличится в два раза из-за ненулевых λ_- и $(\lambda_-)_{\beta}^{'}$ рассмотрим их сомножители, заранее учитывая их отличие лишь в знаке правого $\cosh\beta h$. Назовём их A_+ и A_-

Так, при подстановке в производную как $_{+}$, так и A_{-} h=0 получим ноль. А при подстановке h=0 в сами сомножители, получим:

$$A_{+(h=0)} = 2$$

$$A_{-(h=0)} = 0$$

Таким образом, наша формула $\frac{\partial Z}{\partial \beta}_{h=0}$ сократилась в 4 раза и равна:

$$\frac{\partial Z}{\partial \beta}_{h=0} = (N-1)\lambda_{+}^{N-2}(\lambda_{+})_{\beta}' 2 = J(N-1)2^{N}(\cosh\beta J)^{N-1}\sinh\beta J$$

Итоговая формула средней энергии будет:

$$\langle U_{h=0} \rangle = -\frac{1}{Z} \frac{\partial Z}{\partial \beta} = -J(N-1) \tanh \beta J$$

3.3 Сравнение средней энергии моделей с периодичным и открытым гран. условиями

Найдём формулу средней энергии для случая с периодичным гран. условием для h = 0. Воспользовавшись формулой (1.11) для нахождения средней энергии через (3.1) и таблицей производных, получим:

$$\begin{split} \langle E_{PBC(h=0)} \rangle &= \frac{1}{Z_{PBC}(h=0)} \left(N \lambda_{+}^{N-1} (\lambda_{+})_{\beta}^{'} + N \lambda_{-}^{N-1} (\lambda_{-})_{\beta}^{'} \right) = \\ &= J N 2^{N} \sinh \beta J \; \cosh \beta J \frac{(\cosh \beta J)^{N-2} + (\sinh \beta J)^{N-2}}{(\cosh \beta J)^{N} + (\sinh \beta J)^{N}} = \\ &= J N 2^{N} \tanh \beta J \frac{1 + (\tanh \beta J)^{N-2}}{1 + (\tanh \beta J)^{N}} \approx {}^{1} J N 2^{N} \tanh \beta J \end{split}$$

 $\frac{1 + (\tanh x)^{N-2}}{1 + (\tanh x)^N} = \frac{1 + x^N (\frac{1}{x^2} + (\frac{2}{3} - \frac{n}{3}) + O(x))}{1 + x^N (1 - \frac{nx^2}{3} + O(x^3))} \approx 1, x \to 0, \quad 1, x \to \infty$

4 Теплоёмкость на спин при h=0

Теперь, поскольку наша формула статсуммы Z_{OBC} (для крайних случаев) и её производная (для средних наблюдаемых) полностью верна, проверим правильность статсуммы до второй производной по β для нахождения темплоёмкости на спин C в случае нулевого поля.

4.1 Открытое гран. условие

Из учебника данная формула выглядит следующим образом:

$$c = \frac{1}{N} \frac{\partial U}{\partial T} = -\frac{1}{Nk_B T^2} \frac{\partial U}{\partial \beta} \approx k_B \beta^2 J^2 (\operatorname{sech} \beta J)^2$$
(4.1)

Предыдущие вычисления уже показали правильность формулы средней энергии, однако для более полной проверки выразим U через статсумму, и следовательно:

$$-\frac{1}{Nk_BT^2}\frac{\partial U}{\partial \beta} = -k_B\beta^2 \frac{1}{N}\frac{\partial}{\partial \beta} \left(-\frac{1}{Z}\frac{\partial Z}{\partial \beta}\right) = k_B\beta^2 \frac{1}{N} \left(-\frac{1}{Z^2} \left(\frac{\partial Z}{\partial \beta}\right)^2 + \frac{1}{Z}\frac{\partial^2 Z}{\partial \beta^2}\right)$$

Теперь для определения второйй производной статсуммы перейдём к той же замене, как в конце предыдущего раздела:

$$Z_{OBC} = \lambda_{+}^{N-1} A_{+} - \lambda_{-}^{N-1} A_{-}$$

$$(Z_{OBC})_{\beta}^{'} = (N-1)\lambda_{+}^{N-2} (\lambda_{+})_{\beta}^{'} A_{+} + \lambda_{+}^{N-1} (A_{+})_{\beta}^{'} - (N-1)\lambda_{-}^{N-2} (\lambda_{-})_{\beta}^{'} A_{-} - \lambda_{-}^{N-1} (A_{-})_{\beta}^{'}$$

Т.к. мы знаем, что первые производные $(A_{\pm})_{\beta}^{'}=0$ и $A_{-}=0, A_{+}=2$, то половина второй производной (вследствие производной произведения) обнулится. Будет лучше заранее найти значения вторых производных A и λ_{\pm} при h = 0.

$$(A_{\pm})_{\beta}^{"} =_{h=0} 0$$
$$(\lambda_{\pm})_{\beta}^{"} =_{h=0} J^{2} (e^{\beta J} \pm e^{-\beta J})$$

Таким образом, единственным необнулённым слагаемым второй производной будет первое и:

$$Z_{OBC} = 2\lambda_{+}^{N-1}$$

$$(Z_{OBC})'_{\beta} = 2(N-1)\lambda_{+}^{N-2}(\lambda_{+})'_{\beta}$$

$$(Z_{OBC})''_{\beta} = 2(N-1)((N-2)\lambda_{+}^{N-3}(\lambda_{+})'_{\beta}^{2} + \lambda_{+}^{N-2}(\lambda_{+})''_{\beta})$$

Раскрыв все λ_{+} и подставив в формулу теплоёмкости на спин, получим:

$$c = k_B \beta^2 (1 - \frac{1}{N}) (-(N - 1)(\frac{(\lambda_+)'_{\beta}}{\lambda_+})^2 + (N - 2)(\frac{(\lambda_+)'_{\beta}}{\lambda_+})^2 + \frac{(\lambda_+)''_{\beta}}{\lambda_+}) =$$

$$= k_B \beta^2 J^2 (1 - \frac{1}{N}) (1 - (\frac{\sinh \beta J}{\cosh \beta J})^2) \approx k_B \beta^2 J^2 (\operatorname{sech} \beta J)^2$$

Формулы полностью совпали.

4.2 Периодическое гран. условие

Формула теплоёмкости на спин для данного условия отсутствует в учебнике, поэтому сравнить полученный результат с первоисточником не получится и к вычислениям данной формулы требуется особое внимание.

Начнём с формулы статсуммы:

$$Z_{PBC} = \lambda_{+}^{N} + \lambda_{-}^{N} = \lambda_{+}^{N} (1 + (\frac{\lambda_{+}}{\lambda_{-}})^{N}) =_{h=0} 2^{N} (\cosh \beta J)^{N} (1 + (\tanh \beta J)^{N})$$

$$(Z_{PBC})'_{\beta} = N(\lambda_{+}^{N-1} (\lambda_{+})'_{\beta} + \lambda_{-}^{N-1} (\lambda_{-})'_{\beta}) = JN2^{N} (\cosh \beta J)^{N-1} \sinh \beta J (1 + (\tanh \beta J)^{N-2})$$

$$(Z_{PBC})''_{\beta} = N(\lambda_{+}^{N-1} (\lambda_{+})''_{\beta}) + (N-1)\lambda_{+}^{N-2} (\lambda_{+})'_{\beta}^{2} + \lambda_{-}^{N-1} (\lambda_{-})''_{\beta}) + (N-1)\lambda_{-}^{N-2} (\lambda_{-})'_{\beta}^{2}) =$$

$$= 2^{N} NJ^{2} (\cosh \beta J)^{N} (1 + (N-1)(\tanh \beta J)^{2} + (N-1)(\tanh \beta J)^{N-2} + \tanh \beta J)$$

Прошлые расчёты показали, что формула теплоёмкости на спин выражается через статсумму как:

$$c = \frac{k_B \beta^2}{N} \left(-\frac{1}{Z^2} \left(\frac{\partial Z}{\partial \beta} \right)^2 + \frac{1}{Z} \frac{\partial^2 Z}{\partial \beta^2} \right)$$

В таком случае, при подстановке статсуммы и производных, мы получим:

$$c = k_B \beta^2 J^2 \left(1 + (N-1) \tanh^2 \beta J \left(\frac{1 + \tanh^{N-4} \beta J}{1 + \tanh^N \beta J} \right) - N \tanh^2 \beta J \left(\frac{1 + \tanh^{N-2} \beta J}{1 + \tanh^N \beta J} \right)^2 \right)$$

В случае термодинамического предела, все дроби вида $\frac{1+\tanh}{1+\tanh}$ стремятся к единице (есть небольшое отклонение, которое при увеличении N смещается вправо и одновременно уменьшается. Тогда в итоге:

$$c = k_B \beta^2 J^2 sech^2 \beta J$$

5 Свободная энергия

Учитывая предыдущие вычисления, будет удобно проверить формулу другой величины - свободной энергии дл я случая h=0. Для этого слегка преобразуем нашу статсумму:

$$Z_{OBC} = \lambda_{+}^{N-1} A_{+} \left(1 - \left(\frac{\lambda_{-}}{\lambda_{+}}\right)^{N-1} \left(\frac{A_{-}}{A_{+}}\right)\right)$$

где

$$A_{+} = \frac{e^{\beta J} \sinh \beta h^{2}}{Q} + \frac{1}{e^{\beta J} Q} + \cosh \beta h$$

$$A_{-} = \frac{e^{\beta J} \sinh \beta h^{2}}{Q} + \frac{1}{e^{\beta J} Q} - \cosh \beta h$$

Тогда свободная энергия для случая h=0 будет равна:

$$F_{h=0} = k_B T \ln Z = k_B (N-1) \ln \lambda_+ + k_B T \ln A + k_B T \ln \left(1 - \left(\frac{\lambda_-}{\lambda_+}\right)^{N-1} \left(\frac{A_-}{A_+}\right)\right)$$

Ранее мы узнали все преобразования при $\mathbf{h}=0$: $A_{+}=2, A_{-}=0,$ следовательно:

$$F_{h=0} = k_B T (N-1) \ln (2 \cosh \beta J) + k_B T \ln 2$$

Результаты снова совпали с формулой из учебника [1].

Тогда руководствуясь предыдущими расчётами для случая J=0, свободная энергия для данного случая (зная, что $\lambda_+=2\cosh\beta h, \lambda_-=0, A_+=2\cosh\beta h$) будет равна:

$$F_{J=0} = k_B T N \ln (2 \cosh \beta h)$$

6 Разница между открытым и периодичным случаем

Будем рассматривать разность между различными энергетическими величинами при разных случаев.

6.1 Средняя энергия системы (равное число спинов)

Найдём разность средней энергии открытого и периодичного случая:

$$\langle U_{OBC} \rangle - \langle U_{OBC} \rangle = -\frac{\partial Log[Z_{OBC}]}{\partial \beta} + \frac{\partial Log[Z_{PBC}]}{\partial \beta} = -\frac{\partial Log[\frac{Z_{OBC}}{Z_{PBC}}]}{\partial \beta}$$

$$\frac{Z_{OBC}}{Z_{PBC}} = \frac{A_{+} \left(1 + \left(\frac{\lambda_{-}}{\lambda_{+}} \right)^{N-1} \frac{A_{-}}{A_{+}} \right)}{\lambda + \left(1 + \left(\frac{\lambda_{-}}{\lambda_{+}} \right)^{N} \right)}$$

$$A_{\pm} = \frac{e^{\beta J} \sinh \beta h^{2}}{Q} + \frac{1}{e^{\beta J} Q} \pm \cosh \beta h$$

$$(6.1)$$

Учитывая что мы рассматриваем системы при $N \to \infty$, все скобки вида $Log[1+(<1)^N] \approx (<1)^N$ Тогда

$$\langle U_{OBC} \rangle - \langle U_{PBC} \rangle = -\frac{\partial (Log[\frac{Z_{OBC}}{Z_{PBC}}])}{\partial \beta} = -\frac{\partial}{\partial \beta} \left(Log[\frac{A_{+}}{\lambda_{+}}] + (\frac{\lambda_{-}}{\lambda_{+}})^{N-1} (\frac{A_{-}}{A_{+}} - \frac{\lambda_{-}}{\lambda_{+}}) + o((\frac{\lambda_{-}}{\lambda_{+}})^{N-1}) \right)$$
(6.2)

Перед тем, как продолжить расчёты, стоит заранее найти производные отношений $\frac{\lambda_-}{\lambda_-}$ и $\frac{A_-}{A_+}$. Тогда производная их частного будет выглядеть как:

$$\left(\frac{\lambda_{-}}{\lambda_{+}}\right)_{\beta}' = \frac{\left(\lambda_{-}\right)_{\beta}' \lambda_{+} - \lambda_{-}\left(\lambda_{+}\right)_{\beta}'}{\lambda_{+}^{2}}$$

Все значения для крайних случаев можно легко взять из нашей таблицы.

$$h = 0: \frac{J}{\cosh^2 \beta J}$$

$$J = 0:0$$

Теперь перейдём к A_{\pm} . Поскольку они имеют одинаковые слагаемые, отличающиеся по знаку, то для упрощения можно представить их как:

$$A_{\pm} = A_0 \pm \cosh \beta h$$

Тогда при дифференцировании частного половина слагаемых в числителе сократится, а другая сложится:

$$\left(\frac{A_{-}}{A_{+}}\right)_{\beta}' = \frac{(A_{-})_{\beta}'A_{+} - A_{-}(A_{+})_{\beta}'}{A_{+}^{2}} = \frac{(A_{0}' - h\sinh\beta h)(A_{0} + \cosh\beta h) - (A_{0} - \cosh\beta h)(A_{0}' + h\sinh\beta h)}{A_{+}^{2}} = \frac{2\frac{A_{0}'\cosh\beta h - A_{0}h\sinh\beta h}{A_{+}^{2}}}{A_{+}^{2}}$$

Формулу A'_0 и значения A_{\pm} для предельных значении можно взять из расчётов производной статсуммы и средней энергии. При предельных случаях производная частного A_{-} и A_{+} обращается в ноль.

Теперь вернёмся к формуле (6.2) и продифференцируем всю скобку по β

$$\langle U_{OBC} \rangle - \langle U_{PBC} \rangle = -\frac{(A_{+})_{\beta}^{'}}{A_{+}} + \frac{(\lambda_{+})_{\beta}^{'}}{\lambda_{+}} + N(\frac{\lambda_{-}}{\lambda_{+}})^{N-1}(\frac{\lambda_{-}}{\lambda_{+}})_{\beta}^{'} - (N-1)(\frac{\lambda_{-}}{\lambda_{+}})^{N-2}(\frac{\lambda_{-}}{\lambda_{+}})_{\beta}^{'}(\frac{A_{-}}{A_{+}}) - (\frac{\lambda_{-}}{\lambda_{+}})^{N-1}(\frac{A_{-}}{A_{+}})_{\beta}^{'}$$
(6.3)

Рассмотрим все значения и значения производных по β λ_+ и A_+ при h=0 и J=0 из таблицы. Путём подстановки в полученную формулу производной (6.3), получим:

$$h = 0: J + JN \frac{(\tanh \beta J)^{N-1}}{(\cosh \beta J)^2} \approx_{N \to \infty} J^{-2}$$

$$J = 0: 0$$

6.2 Средняя энергия системы (равное число рёбер)

Рассмотрим теперь случай с равным числом ребёр - он достигается при сравнении моделей с периодическим гран. условием с N спинами и с открытым гран. условием с N+1 спинами, тогда формула (6.2) станет:

$$\langle U_{OBC} \rangle - \langle U_{PBC} \rangle = -\frac{\partial}{\partial \beta} \left(Log[A_+] + (\frac{\lambda_-}{\lambda_+})^N (\frac{A_-}{A_+} - 1) + o((\frac{\lambda_-}{\lambda_+})^N) \right)$$
(6.4)

Все дополнительные расчёты производных мы сделали в предыдущем подразделе, поэтому перейдём к изменённой формуле, аналогичной (6.3), и затем сразу к предельным случаям:

$$\langle U_{OBC} \rangle - \langle U_{PBC} \rangle = -\frac{(A_{+})_{\beta}'}{A_{+}} - N(\frac{\lambda_{-}}{\lambda_{+}})^{N-1} (\frac{\lambda_{-}}{\lambda_{+}})_{\beta}' (\frac{A_{-}}{A_{+}} - 1) - (\frac{\lambda_{-}}{\lambda_{+}})^{N} (\frac{A_{-}}{A_{+}})_{\beta}'$$

$$h = 0 : JN \frac{(\tanh \beta J)^{N-1}}{(\cosh \beta J)^{2}} \approx_{N \to \infty} 0$$

$$J = 0 : -h \tanh \beta h$$
(6.5)

6.3 Теплоёмкость системы (равное число рёбер)

2

Формулу для теплоёмкости системы возьмём из (4.1) без деления на N:

$$c = \frac{\partial U}{\partial T} = -\frac{1}{k_B T^2} \frac{\partial U}{\partial \beta} = \frac{1}{k_B T^2} \frac{\partial^2 Log[Z]}{\partial \beta^2}$$
(6.6)

Так как мы рассматриваем случай равных ребёр, то как и в прошлый раз, возьмём систему из N спинов для модели с периодическим гран. условием и систему из N+1 спинов для модели с открытым гран. условием - таким образом мы получим вторую производную знакомого нам выражения из формулы (6.4):

$$c_{OBC}^{N+1} - c_{PBC}^{N} = \frac{1}{k_B T^2} \frac{\partial^2}{\partial \beta^2} Log[\frac{Z_{OBC}}{Z_{PBC}}] = \frac{1}{k_B T^2} \frac{\partial^2}{\partial \beta^2} \left(Log[A_+] + (\frac{\lambda_-}{\lambda_+})^N (\frac{A_-}{A_+} - 1) + o((\frac{\lambda_-}{\lambda_+})^N) \right)$$
(6.7)

Рассмотрим первые два слагаемых выражения в скобках по отдельности, чтобы не запутаться в расчётах:

$$(Log[A_+])_{\beta}^{"} = \frac{(A_+)_{\beta}^{"}}{A_+} - (\frac{(A_+)_{\beta}^{'}}{A_+})^2$$
$$((\frac{\lambda_-}{\lambda_+})^N (\frac{A_-}{A_+} - 1))_{\beta}^{"} =$$

 $\frac{(\tanh x)^{N-1}}{(\cosh x)^2} = x^{N-1} + o(x^N) \approx 0, x \to 0$ $= \frac{\to 1}{\to \infty} \approx 0, x \to \infty$

$$=N(N-1)(\frac{\lambda_{-}}{\lambda_{+}})^{N-2}(\frac{\lambda_{-}}{\lambda_{+}})^{'2}(\frac{A_{-}}{A_{+}}-1)+N(\frac{\lambda_{-}}{\lambda_{+}})^{N-1}(\frac{\lambda_{-}}{\lambda_{+}})_{\beta}^{''}(\frac{A_{-}}{A_{+}}-1)+2N(\frac{\lambda_{-}}{\lambda_{+}})^{N-1}(\frac{\lambda_{-}}{\lambda_{+}})_{\beta}^{'}(\frac{A_{-}}{A_{+}})_{\beta}^{'}+(\frac{\lambda_{-}}{\lambda_{+}})^{N}(\frac{A_{-}}{A_{+}})_{\beta}^{''}+(\frac{\lambda_{-}}{\lambda_{+}})_{\beta}^{N-1}(\frac{\lambda_{-}}{\lambda_{+}})_{\beta}^{''}+(\frac{\lambda_{-}}{\lambda_{+}})_{\beta}^{N-1}(\frac{\lambda_{-}}{\lambda_{+}})_{\beta}^{$$

Все вспомогательные расчёты для предльных случаев были сделаны в Wolfram Mathematica (Проект2.pdf, Теплоёмкость) [2], поэтому пропустим этот шаг и перейдём к итоговым выражениям:

$$h = 0: -N(N-1)J^2 \frac{(\tanh \beta J)^{N-2}}{(\cosh \beta J)^2}$$

 $J = 0: 0$

6.4 Квадрат намагниченности системы (равное число рёбер)

Формула среднего квадрата намагниченности во многом схожа с формулой теплоёмкости при предельных случаях. С одной стороны, по определению средней наблюдаемой величины, квадрат намагничесности представима в виде:

$$\langle M^2 \rangle = \frac{1}{Z} \sum_{\{\sigma\}} M^2 e^{-\beta H},\tag{6.8}$$

где Н - гамильтониан системы (1.3).

С другой стороны:

$$\frac{1}{Z} \sum_{\{\sigma\}} M^2 e^{-\beta H} = \frac{1}{\beta^2} \left(\frac{\partial^2 \log Z}{\partial h^2} + \left(\frac{\partial \log Z}{\partial h} \right)^2 \right) = \langle M^2 \rangle \tag{6.9}$$

Правое слагаемое в скобке является квадратом средней намагниченности, который при предельных случаях равна нулю, поэтому нам достаточно только левого. Это значит, что в формуле разности будет то же самое выражение под знаком дифференцирования, что и в формулах (6.4) и (6.7). Опять же, мы берём N+1 спин для открытого условия, и N для периодического. Тогда:

$$\langle M_{OBC}^2 \rangle - \langle M_{PBC}^2 \rangle = \frac{1}{\beta^2} \frac{\partial^2}{\partial h^2} Log[\frac{Z_{OBC}}{Z_{PBC}}] = \frac{1}{\beta^2} \frac{\partial^2}{\partial h^2} \left(Log[A_+] + (\frac{\lambda_-}{\lambda_+})^N (\frac{A_-}{A_+} - 1) + o((\frac{\lambda_-}{\lambda_+})^N) \right) \tag{6.10}$$

Воспользуемся расчётами Wolfram Mathematica (Проект2.pdf, Квадрат намагниченности), и получим:

$$h = 0: \frac{1}{2} (2e^{2\beta J} - e^{4\beta J} + 1) + 2N(\tanh \beta J)^N - 2e^{2\beta J} (\sinh \beta J)^2 (\tanh \beta J)^n$$
$$J = 0: 1 - (\tanh \beta J)^2$$

7 Сравнение решения одномерной модели Изинга с расчётами Монте-Карло

Для сравнения значений наблюдаемых из решения для одномерной модели Изинга и расчётов методом Монте-Карло были расмотрены значения средней энергии на спин, удельной теплоёмкости, и среднего квадрата намагниченности на спин с формулами соответственно:

$$\langle U \rangle = \beta J (1 - \frac{1}{N}) \tanh \beta J$$

$$c = (\beta J)^2 (1 - \frac{1}{N}) (\operatorname{sech} \beta J)^2$$

$$\langle m^2 \rangle = (\frac{e^{2\beta J} - 1}{N})^2 (\tanh \beta J)^{N-1} + 2 \frac{e^{2\beta J}}{N} + \frac{1 - e^{4\beta J}}{n^2}$$

(Расчёт последней формулы описан в Проект7.1.pdf [2])

Были проведены расчёты для длин от 250 до 10000, сейчас полученные данные находятся в обработке.

8 Поведение модели Изинга на блужданиях без самопересечений вблизи крит. температуры

Критическая область - одна из сложнейших областей для изучения поведения любой термодинамической модели, как для теоретическим, так и экспериментальным способом. В частности, есть предположение, что модель Изинга на блужданиях без самопересечений вблизи крит. температуры (далее Изинг-блуждание) вблизи крит. температуры показывает схожесть в поведении с фазовым переходом жидкой/парообразной системы в области тройной точки, что даёт интересный повод для изучения данной области и расчётов критических экспонент с помощью симуляций Монте-Карло.

Определим приведённую температуру t как "расстояние" от критической температуры:

$$t = \frac{T - T_C}{T_C} \tag{8.1}$$

T - текущая температура модели, T_C - критическая температура. Тогда корреляционная длина при термодинамическом пределе (системе бесконечной длины) в критической области будет:

$$\xi \sim \mid t \mid^{-v} \tag{8.2}$$

где v - критическая экспонента

Также мы можем определить другие экспоненты - к примеру, в нормальной модели Изинга определяются экспоненты γ , α и β для магнитной восприимчивости, темпоёмкости и намагниченности соответственно:

$$\chi \sim \mid t \mid^{-\gamma} \tag{8.3}$$

$$c \sim |t|^{-\alpha} \tag{8.4}$$

$$m \sim \mid t \mid^{-\beta} \tag{8.5}$$

Рассмотрим случай квадрата намагниченности:

$$m^2 \sim |t|^{-2\beta} \tag{8.6}$$

Воспользовавшись (8.2), избавимся от t:

$$m^2 \sim \xi^{2\beta/\nu} \tag{8.7}$$

учитывая поведение корреляционной длины в конечноразмерных системах (книга "Monte Carlo Methods in Statistical Physics график 4.1 и стр. 232-233) [3], мы можем представить функцию квадрата намагниченности в виде:

$$m^2 = \xi^{-2\beta/\nu} m_{02}(L/\xi) \tag{8.8}$$

Где L - размер системы (для квадратной решётки кол-во спинов = L * L) m_{02} обладает следующими свойствами:

$$m_{02}(x) = C, \ x >> 1$$

 $m_{02}(x) \sim x^{-2\beta/\upsilon}, \ x \to 0$

Так как (8.8) содержит неизвестную нам корреляционную длину, преобразуем её с новой безразмерной функцией:

$$\tilde{m}_{02}(x) = x^{-2\beta} m_{02}(x^{\upsilon}) \tag{8.9}$$

Тогда получим:

$$m^2 = L^{-2\beta/\nu} \tilde{m}_{02}(L^{1/\nu}|t|) \tag{8.10}$$

8.1 Расчёты крит. экспонент при наблюдении коллапса данных

Для того, чтобы найти крит. экспоненты β и v, а также крит. температуру модели Изинга-блуждания, достаточно определить, при каких их значениях графики шкалирующих функций \tilde{m}_{02} для разных размеров L системы сливаются к как можно более однородному графику. Для этого значение шкал. функции расчитывается из (8.10):

$$\tilde{m}_{02} = L^{2\beta/\nu} m_L^2(t) \tag{8.11}$$

Перед этим, был произведен расчёт зависимости квадрата намагниченности для квадратных решёток с длиннами L=300-1000 от температуры (https://github.com/kamilla0503/saw/tree/master/Ising/BC [7]). Наилучший коллапс данных наблюдался при:

 $T_C = 1.1976$

$$eta = 0.125$$
 $v = 1.01$

Рис. 1: График зависимости значений шкалирующей функции квадрата намагниченности от приведённой температуры при крит. экспонентах, обеспечивших наилучший коллапс данных

8.2 Определение погрешностей измерений экспонент

Разумеется, поскольку мы не можем численно определить качество коллапса данных, а лишь визуально определить при каких значениях он будет лучше, необходимо задать погрешность - область значений критических экспонент и температур, при которых качество коллапса данных наблюдаемой величины при измерении "на глаз"не меняется.

Таким образом, мы уточняем возможные критические значения для сравнения с расчётов в других источниках, для определения модели по её поведению.

Рис. 2: Погрешность критических экспонент и их влияние на коллапс данных

Из графиков видно, что несмотря на колоссальное отличие от расчитанных из литературы [3] значений, качество коллапса данных для квадрата намагниченности едва отличается между графиками - отличие заключается лишь в их масштабе - что говорит о серьёзной погрешности данного метода для расчёта критических показателей модели.

9 Модель Изинга на прямоугольной решётке

В данном разделе мы будем рассматривать зависимость наблюдаемых модели Изинга от формы решетки: в частности, от отношения сторон в прямоугольной решётке

9.1 Расчёт критических кумулянтов для модели прямоугольного Изинга

Кумулянт Биндера для модели Изинга в критической точке расчитывается по формуле:

$$U_4 = 1 - \frac{\langle m^4 \rangle}{3(m^2)^2} \tag{9.1}$$

где $\langle m^2 \rangle$ - средний квадрат удельной намагниченности, $\langle m^4 \rangle$ - средная удельная намагниченность в четвертой степени.

Для сравнения значения кумулянтов модели прямоугольного Изинга с разными размерами, но одинаковым отношением сторон (так же Aspect Ratio или r), так, что число спинов составляет $L \times rL$ были проведены симуляции модели на основе алгоритма из проектной работы Сорокина Никиты [5] и Камиллы Файзулиной [6] - для этого были взяты длины $L=50,\,100,\,200$ и 400 и отношения сторон $r=1/4,\,1/2,\,3/4$ при $2*10^6$ итераций. Все расчёты проводились в критической точке [8]:

$$J = \frac{1}{2.26918...} \tag{9.2}$$

Рис. 3: График зависимости значения кумулянта Биндера (9.1) в крит. точке (9.2) от Aspect Ratio при открытых (снизу) и периодических гран. условиях (сверху). Черные точки - значения критических кумулянтов из работы W. Selke [8]

Крайние левые точки в отметке нуля являются расчётами для модели одномерного Изинга (где длина цепочки равна соответствующей стороне в двумерном изинге). Так, в случае открытых гран. условий (рис. 3

Boundary	r	U_4
OBC	1	0.396 ± 0.002
OBC	0.5	0.349 ± 0.002
PBC	1	0.61069

Таблица 2: Таблица значений критических кумулянтов для прямоугольных решёток из статьи У. Сельке [8]

снизу) и периодических (рис. 3 сверху) значения кумулянта стремится к нулю с увеличением длины цепочки(см. Проект6.pdf [2]). Черными точками отмечены значения критического кумулянта из работы Уолтера Сельке [8]:

Эти же значения отмечены в графиках 4 и 5 зависимости крит. кумулянта от обратной длины стороны как крайние левые (в нуле - так обозначен случай термодинамического предела).

Рис. 4: График зависимости значения кумулянта Биндера в крит. точке от обратной длины стороны при открытых гран. условиях

Рис. 5: График зависимости значения кумулянта Биндера в крит. точке от обратной длины стороны при периодических гран. условиях

Учитывая погрешность в расчётах симуляций, зависимость от обратной длины прямоугольника 1/L не наблюдается.

9.2 Сравнение модели Изинга и модели взаимодействующих непересекающихся блужданий

Здесь мы рассмотрим основные понятия в модели взаимодействующих блужданий (Self-Avoiding Walks, SAWs), связанные с их формой и сравним их с прямоугольной моделью в тех же условиях.

Важнейшим параметром в описании полученной симуляциями Монте-Карло блуждания из N узлов является радиус инерции, численно равный среднему квадратическому расстоянию частиц (і-я частица в блуждании имеет вектор w_i) от положения среднего арифметического центра система (сумма w_k в скобке) [9]:

$$R_g^2 = \frac{1}{N+1} \sum_{i=0}^{N} \left(w_i - \frac{1}{N+1} \sum_{k=0}^{N} w_k \right)^2 = \frac{1}{2(N+1)^2} \sum_{i,j=0}^{N} (w_i - w_j)^2$$
 (9.3)

(Под операцией возведения вектора или разности векторов в квадрат подразумевается сумма квадратов элементов вектора) Так же для описания формы модели применяется тензор вращения относительно центра масс - матрица, $\alpha\beta$ -й элемент которой расчитывается по формуле (4) из статьи [10] :

$$Q_{N,\alpha\beta} = \frac{1}{N+1} \sum_{i=0}^{N} (w_{i,\alpha} - w_{c,\alpha})(w_{i,\beta} - w_{c,\beta})$$
(9.4)

где $w_{c,\alpha} - \alpha$ -я координата вектора центра масс. В случае, если начало координат расположено в центре масс (следовательно, сумма векторов точек блуждания = 0), формула $\alpha\beta$ -элемента тензора упрощается и численно равна второму моменту координаты (если $\alpha = \beta$), или до среднего произведения разных координат по всем точкам блуждания.

$$Q_{N,\alpha\beta} = \frac{1}{(N+1)} \sum_{i=0}^{N} w_{i,\alpha} w_{i,\beta}$$
 (9.5)

$$\sum_{i=0}^{N} w_i = 0 (9.6)$$

Рассмотрим формулу (9.4). Так так wc - центра масс блуждания, то:

$$w_c = \frac{1}{N+1} \sum_{k=0}^{N} w_k \tag{9.7}$$

Так же можно представить і-й вектор блуждания как:

$$w_i = \frac{1}{N+1} \sum_{k=0}^{N} w_i \tag{9.8}$$

Это позволит нам вытащить из скобок N+1 и избавиться от неизвестного w_c

$$Q_{N,\alpha\beta} = \frac{1}{(N+1)^3} \sum_{i=0}^{N} (\sum_{k=0}^{N} (w_{i,\alpha} - w_{k,\alpha})) (\sum_{l=0}^{N} (w_{i,\beta} - w_{l,\beta})) =$$

$$= \frac{1}{(N+1)^3} \sum_{i=0}^{N} \sum_{k,l=0}^{N} (w_{i,\alpha} - w_{k,\alpha}) (w_{i,\beta} - w_{l,\beta}) =$$

$$\frac{1}{(N+1)^3} \sum_{i=0}^{N} \sum_{k,l=0}^{N} (w_{i,\alpha} w_{i,\beta} - w_{i,\alpha} w_{l,\beta} - w_{k,\alpha} w_{i,\beta} + w_{k,\alpha} w_{l,\beta})$$

Расскроем суммирование у учётов зависимостей индексов:

$$Q_{N,\alpha\beta} = \frac{1}{(N+1)^2} \left(\sum_{i,k=0}^{N} (w_{i,\alpha} w_{i,\beta}) - \sum_{i,l=0}^{N} (w_{i,\alpha} w_{l,\beta}) - \sum_{i,k=0}^{N} (w_{k,\alpha} w_{i,\beta}) + \sum_{k,l=0}^{N} (w_{k,\alpha} w_{l,\beta}) \right) = \frac{1}{(N+1)^2} \sum_{i,k=0}^{N} (w_{i,\alpha} w_{i,\beta} - w_{k,\alpha} w_{i,\beta}) = \frac{1}{2(N+1)^2} \sum_{i,k=0}^{N} (w_{i,\alpha} - w_{k,\alpha}) (w_{i,\beta} - w_{k,\beta})$$

т.к. кол-во произведений координат разных векторов и одинаковых меньше в два раза. Полученная формула:

$$Q_{N,\alpha\beta} = \frac{1}{2(N+1)^2} \sum_{i,k=0}^{N} (w_{i,\alpha} - w_{k,\alpha})(w_{i,\beta} - w_{k,\beta})$$
(9.9)

совпадает с формулой (4.1) из статьи о взаимодействующих блужданиях [9], что значит что используемое ими понятие "тензора вращения" совпадает.

9.3 Связь тензора инерции и тензора вращения

Можно заметить некоторое сходство в расчётах недиагональных элементов тензора инерции J и тензора вращения из статей [9, 10]. Действительно, для системы из N материальных точек единичной массы тензор инерции в системе центра масс рассчитывается следующим образом:

$$J = \begin{pmatrix} J_{xx} & J_{xy} & J_{xz} \\ J_{yx} & J_{yy} & J_{yz} \\ J_{zx} & J_{zy} & J_{zz} \end{pmatrix}$$
(9.10)

$$J_{xy} = J_{yx} = -\sum_{i=1}^{N} x_i y_i \tag{9.11}$$

$$J_{yz} = J_{zy} = -\sum_{i=1}^{N} y_i z_i \tag{9.12}$$

$$J_{xz} = J_{zx} = -\sum_{i=1}^{N} x_i z_i \tag{9.13}$$

В тоже время, формулы диагональных элементов принципиально отличаются:

$$J_{xx} = \sum_{i=1}^{N} y_i^2 + z_i^2 \tag{9.14}$$

$$J_{yy} = \sum_{i=1}^{N} x_i^2 + z_i^2 \tag{9.15}$$

$$J_{zz} = \sum_{i=1}^{N} x_i^2 + y_i^2 \tag{9.16}$$

Сравнивая с формулой элементов тензора вращения в системе центра масс (9.5), можно заметить, что недиагональные элементы тензоров отличаются знаком и усреднением в тензоре вращения. Диагональные же элементы "противоположны" друг другу: в тензоре инерции они обозначают осевые моменты инерции (относительно O_{α} , и поэтому обозначенные моменты одной координатой ($J_{\alpha\alpha}$ используют сумму квадратов отличных от α координат.

Таким образом, элементы тензора вращения в системе центра масс в трехмерном пространстве можно представить как:

$$Q_{\alpha\alpha} = \frac{1}{N} \sum_{i=1}^{N} w_{i,\alpha}^2 = \frac{1}{N} \left(\sum_{i=1}^{N} x_i^2 + y_i^2 + z_i^2 - J_{\alpha\alpha} \right) = R_g^2 - \frac{1}{N} J_{\alpha\alpha}$$
 (9.17)

где $w_{i,\alpha}$ - α -я координата радиус-вектора і-й материальной точки.

$$Q_{\alpha\beta} = -\frac{1}{N} J_{\alpha\beta}, \quad \alpha \neq \beta \tag{9.18}$$

Тогда матричный вид формулы тензора вращения (9.5) через тензор инерции (9.10) будет:

$$Q = R_g^2 * E - \frac{1}{N}J (9.19)$$

где E - это единичная матрица порядка, совпадающим с размерностью данной модели Dim.

Мы знаем, что симметричная матрица (какой являются и Q, и J) всегда диагонализируема, а базис из собственных векторов - ортогонален. Пусть S - матрица перехода в жорданов базис тензора инерции. Произведём переход в этот базис для тензора вращения:

$$S^{T}QS = S^{T}(R_{g}^{2} * E - \frac{1}{N}J)S = R_{g}^{2} * S^{T}ES - \frac{1}{N} * S^{T}JS$$

Матрица S - ортогональна, следовательно $S^{-1} = S^T$, поэтому:

$$S^{T}QS = R_g^2 * E - \frac{1}{N} * J_D \tag{9.20}$$

где J_D - диагонализированная матрица тензора инерции. Очевидно, что полученная в правой части матрица - диагональная. Следовательно, матрица в левой части так же получилась диагональной полсе перехода в новый базис и жорданов базис тензоров инерции и вращения одинаковы, пусть и с разными собственными значениями. Соответствующие собственные значения матриц в жордановом базисе будут равны:

$$(S^T Q S)_{ii} = Q_{D,ii} = R_g^2 - \frac{1}{N} J_{ii}, \ i = 1..Dim$$

Стоит подчеркнуть, что если жорданов базис составлен так, что собственные значения тензора инерции в матрице упорядочены по неубыванию, то в тензоре вращения собственные значения в матрице в этом базисе же будут упорядочены по невозрастанию.

9.4 Показатели формы блуждания из тензора вращения

Так как полученная матрица симметричная, то существует такой поворот, преобразующий её в диагональную (т.е., приводящий систему в Жорданов базис с собственными значениями по диагонали, и нулевыми недиагональными элементами), причём так, чтобы значения на диагонали были положительными и упорядоченными по невозрастанию.

В нашем двумерном случае,

$$Q_N = \begin{pmatrix} q_1 & 0 \\ 0 & q_2 \end{pmatrix}, 0 < q_2 \le q_1$$

Отметим так же, что сумма диагональных элементов тензора вращения равна квадрату радиуса вращения и инвариантна. Определим ещё один показатель формы из статьи Пелиссетто [9]:

$$s_1 = \frac{\langle q_1 \rangle_N}{\langle R_g^2 \rangle_N}$$

$$s_2 = 1 - s_1 = \frac{\langle q_2 \rangle_N}{\langle R_g^2 \rangle_N}$$

$$r_{12} = \frac{s_1}{1 - s_1}$$

 ${
m Y}$ читывая, что в s_1 и s_2 значения в числителе и знаменателе являются квадратами средних квадратичных значений, то следует вывод, что $\sqrt{r_{12}}$ является знакомым нам отношением сторон из предыдущего подраздела, только в данном случае это отношение не сторон прямоугольника, а полуосей эллипса инерции, который образует полученая симуляциями модель-блуждание.

Так же из статьи Пелиссетто [9] определим среднюю асферичность (показатель, насколько блуждание отличается от круга):

$$\mathcal{A} = \left\langle \frac{(q_1 - q_2)^2}{(q_1 + q_2)^2} \right\rangle_N \tag{9.21}$$

9.5Асферичность прямоугольных решёток

Асферичность необходима в следующем подразделе для оценки формы как блужданий в моделях взаимодействующих непересекающихся блужданий ISAW и Изинга на полимерной цепочке, так и прямоугольных решёток для модели Изинга: существует явная зависимость между отношением сторон г (точнее, отношением числа спинов по горизонтали (L) и по вертикали (r x L)) и значением асферичности соответствующей решётки:

Рис. 6: Пример прямоугольной решётки со стороной L=10 и отношением сторон r=0.5 и её эллипс инерции, полуоси которого рассчитаны по формулам (9.22) и (9.23)

Рис. 7: График зависимости значения асферичности прямоугольной решётки длины 500 и в случае бесконечно большой длины от отношения сторон Ratio (или r)

Центр эллипса инерции совпадает с центром прямоугольной решётки, полуоси лежал вдоль сторон и их длины равны:

$$i_x = \sqrt{\frac{J_{xx}}{N}}$$

$$i_y = \sqrt{\frac{J_{yy}}{N}}$$
(9.22)

$$i_y = \sqrt{\frac{J_{yy}}{N}} \tag{9.23}$$

Здесь необходимо подчеркнуть, что моменты инерции считаются относительно осей в базисе, в которой тензор инерции обращается в диагональную матрицу. При этом нужно отметить, что i_x - длина полуоси, перпендикулярной оси оX, и наоборот, i_{y} - длина полуоси, перпендикулярной оси оY того же базиса. Поэтому для упрощения следующих расчётов мы сразу будет считать, что центр прямоугольника лежит в начале координат, а стороны параллельны осям координат - при таких условиях недиагональные элементы тензора инерции обращаются в ноль.

L		1
L	r	\mathcal{A}
10		0.371802
100	0.5	0.360115
1000		0.360001
	1.0	0
	0.8	0.048186
	0.6	0.221455
	0.5	0.360004
500	0.4	0.524383
	0.3	0.697005
	0.2	0.852084
	0.1	0.960803
	0.002 (1D)	1

Таблица 3: Таблица зависимости значения асферичности прямоугольной решётки от стороны L и отношения сторон r. Значения для длины 500 соответствуют значениям из графика 7

r	\mathcal{A}
1.0	0
0.8	0.0481856
0.6	0.221453
0.5	0.36
0.4	0.524374
0.3	0.696995
0.2	0.852071
0.1	0.960788
0(1D)	1

Таблица 4: Таблица зависимости значения асферичности прямоугольной решётки бесконечно большой длины стороны L от отношения сторон r, отмеченная оранжевыми точками в графике 7 и рассчитанные по формуле (9.26)

Рис. 8: Модель прямоугольной решётки для расчётов асферичности - она имеет четную и нечетную стороны, чтобы можно было рассмотреть всевозможные случаи

Рассмотрим зависимость получаемой асферичности прямоугольной решётки с нефиксированными отношением сторон r и стороной L, чтобы оценить шкалирование данной величины от L, заметное из таблицы 4. Для начала рассчитаем собственные значения тензора вращения.

В случае, когда сторона прямоугольной решётки четна (то есть, имеет чётное количество узлов), решётка будет иметь по L/2 спинов слева и справа от начала координат. Причем координаты узлов решётки будут иметь L/2 различных по модулю значений абсциссы, повторяющихся rL раз. Тогда из (9.5), где $N=L\times(r\times L)$:

$$\begin{split} q_{xx} &= \frac{(r \times L) \sum_{i=1}^{L/2} 2(i-0.5)^2}{(r \times L)L} = \frac{\sum_{i=1}^{L/2} (2i^2 - 2i - 0.5)}{L} = \\ &= \frac{0.5L/2}{L} - 2\frac{1+2+\ldots + L/2}{L} + 2\frac{1+4+\ldots + L^2/4}{L} = \\ &= \frac{1}{4} - \frac{2}{L} \frac{L/2(L/2+1)}{2} + \frac{2}{L} \frac{L/2(L/2+1)(L+1)}{6} = \\ &= \frac{1}{4} - \frac{L}{4} - \frac{1}{2} + \frac{L^2}{12} + \frac{3L}{12} + \frac{1}{6} = \frac{L^2 - 1}{12} \end{split}$$

Если же сторона прямоугольника нечётна, то один ряд будет лежать на оси и не будет участвовать в расчётах q для соответствующей оси (в случае из рисунка 8 - q_{yy} из (9.5)):

$$q_{yy} = \frac{2L\sum_{i=1}^{(rL-1)/2} i^2}{(r \times L) \times L} = \frac{2}{rL} (1 + 4 + \dots + (rL - 1)^2 / 4) =$$
$$= \frac{2}{rL} \frac{(rL - 1)/2 \times (rL + 1)/2 \times rL}{6} = \frac{(rL)^2 - 1}{12}$$

Из этого следует, что чётность сторон не влияет на собственные значения тензора вращения и для прямоугольников они равны:

$$q_{xx} = \frac{L^2 - 1}{12} \tag{9.24}$$

$$q_{yy} = \frac{(rL)^2 - 1}{12} \tag{9.25}$$

Перейдём непосредственно к расчёту асферичности по определению (9.21):

$$\mathcal{A} = \frac{(q_1 - q_2)^2}{(q_1 + q_2)^2}, \ q_1 \geqslant q_2 \Rightarrow [q_1 = q_{xx}, \ q_2 = q_{yy}]$$

$$\mathcal{A} = \left(\frac{L^2 - (rL)^2}{L^2 + (rL)^2 - 1/6}\right)^2 = \left(\frac{1 - r^2}{1 + r^2 - 1/(6L^2)}\right)^2 = \left(\frac{1 - r^2}{1 + r^2} + \right)^2 =$$

$$= \left(\frac{1 - r^2}{1 + r^2} + \frac{1 - r^2}{6L^2(1 - r^2)^2} + O\left[\frac{1}{L^4}\right]\right)^2 =$$

$$= \left(\frac{1 - r^2}{1 + r^2}\right)^2 + \left(\frac{1 - r^2}{6L^2(1 + r^2)^2}\right)^2 + \frac{1 - r^2}{3L^2(1 + r^2)^3} + O\left[\frac{1}{L^4}\right] =$$

$$= \left(\frac{1 - r^2}{1 + r^2}\right)^2 + O\left[\frac{1}{L^2}\right]$$

В итоге, получаем:

$$\mathcal{A} = \left(\frac{1-r^2}{1+r^2}\right)^2 + O\left[\frac{1}{L^2}\right] \tag{9.26}$$

9.6 Свойства моделей вблизи фазового перехода с учётом показателей формы

Цель данного раздела - сравнить кумулянты Биндера в области фазового перехода у трёх моделей - гомополимер (далее взаимодействующее блуждание или ISAW), модель Изинга на полимерной цепочке (далее
Pollsing) и модель Изинга на прямоугольной решётке (далее "прямоугольный Изинг"). В отличие от первых
двух моделей, отношение сторон прямоугольного Изинга является параметром модели, а не наблюдаемой
величной. Следовательно, цель - сравнить крит. кумулянты моделей с прямоугольным Изингом, имеющим те
же показатели формы, что имеют ISAW и Pollsing в области фазового перехода. Для этого для первых двух
моделей была рассчитана зависимость значения асферичности А (9.21) от константы взаимодействия Ј при
длиннах N = 1000, 2500, 3600, 4900.

Рис. 9: График зависимости значения асферичности от константы взаимодействия для моделей взаимодействующего блуждания (слева) и Изинга на полимерной цепочке (справа)

Вертикальными линиями обозначены точки фазового перехода моделей: красными линиями отмечены граничные с точки зрения погрешности точки перехода в модели Изинга на гомополимерной цепочке $(0.833\pm0.003,$ или $T_c=1/J_c=1.199\pm0.003$ [11]), а черной сплошной - у модели ISAW (≈ 0.667 [9]). Горизонтальной линией отмечено значение асферичности в критической области модели ISAW из статьи Пелиссетто, равное 0.3726(7) ((4.10) [9]). Однако перед тем как найти значение кумулянта для модели прямоугольного Изинга, необходимо подобрать такое отношение сторон, чтобы асферичность полученного прямоугольника совпадала со значением асферичности в точках перехода соответствующих моделей.

Рис. 10: График 9, увеличенный в масштабе в области фазового перехода модели взаимодействующих блужданий

Рис. 11: График 9, увеличенный в масштабе в области фазового перехода Изинга на полимерной цепочке.

Чёрные точки на графиках 10-11 будут точками, для которых мы будет подбирать отношение сторон для модели прямоугольного Изинга по значению асферичности. Для модели Pollsing точки в красных линиях показывают среднее значение асферичности в граничных точках перехода - по ним мы определим погрешность измерений кумулянта: r=0.465 и 0.49, $U_4=0.340\pm0.006$ и 0.348 ± 0.006 . В точке на зелёной линии - в точке ближайшей к пересечению (переходу) рассчитаем само значение кумулянта: r=0.47, $U_4=0.343\pm0.006$. Тогда значение критического кумулянта модели Изинга в прямоугольной решётке для PolIsing $U_4=0.343\pm0.009$

Для ISAW критический кумулянт прямоугольного Изинга рассчитан для r=0.49 и равен 0.349 ± 0.006 соответственно.

PolIsing			
J	J A r		U_4 Rectangular
0.831 0.415 0.465		0.340 ± 0.006	
0.832	0.4072	0.47	0.343 ± 0.006
0.836	0.373	0.490 ± 0.002	0.348 ± 0.006
ISAW			
0.667	0.375	0.49	0.349 ± 0.006

Таблица 5: Таблица значений критических кумулянтов прямоугольной решётки в зависимости от асферичности моделей Pollsing и ISAW в областях крит. перехода и, следовательно, отношения сторон

Сравнение со значением критического кумулянта модели PolIsing ($U_4 = 0.308(8)$ [12]), рассчитанное в статье Файзуллиной Камиллы, показало значительное несовпадение со значениями кумулянта прямоугольной решётки с теми же показателями формы, что и у рассматриваемой модели.

10 Оценка работы алгоритма для трёхмерной модели Изинга

10.1 Расчёт магнитных свойств

Для первого набора симуляций трёхмерной модели Изинга была расмотрена область J=0.5 - 0.63 и длины 100-300.

Рис. 12: График зависимости квадрата намагниченности от J

Рис. 13: График зависимости значения кумулянта Биндера от J

Полученные графики подтверждают первичные расчёты Камиллы, в том числе и неясную область отрицательных значений кумулянта Биндера.

- 11 Геометрические свойства модели Изинга с точки зрения числа соседей в узлах
- 11.1 Сравнение модели Изинга и полимерной цепочки в решетках с 2-6 возможными соседями у мономеров

Pig. 14: Fractions of monomers of Ising-ISAW model (stars) and ISAW model (open squares) on a cubic lattice (left column) and 2D-triangle lattice (right column) with 2-6 nearest neighbors as function of J with length of conformations N=100 (green), 300 (blue) and 600 (red). Vertical lines define points of θ -transition (For cubic lattice: black line for ISAW model [?] and blue line for Ising-ISAW model [?]; for triangle lattice: blue line for ISAW model [?])

Рис. 15: Графики зависимости средней доли узлов с 2-3-мя соседями (сверху вниз) от обратной длины 1/N в модели Изинга на треугольной (слева) при N от 200 до 1200 и квадратной (справа) решётках при N от 250 до 4900 при J=0. Синяя линия описывает результаты симуляций Монте-Карло, оранжевая - линейное приближение результатов, ошибки рассчитаны с учётом погрешностей полученных данных

k	$p^{(k)}$	i	$intercept(\langle n_i \rangle)$
3	$0.711\ 14(3)$	2	$0.71299 \pm 2 * 10^{-5}$
2	$0.225 \ 00(2)$	3	0.25291 ± 10^{-5}
1	$0.054\ 76(1)$	4	0.03410 ± 10^{-5}
0	$0.009 \ 096(4)$	-	-

Таблица 6: Таблица сравнения свободных членов линейных приближений вероятностей у конформации иметь n-ю атмосферу (слева) и долей мономеров c і соседями (справа) в зависимости от обратной длины конформации 1/N

11.2 Сравнение геометрических свойств модели Изинга на треугольной решётке с квадратной

На графике 15 наглядно показано сравнение приближений долей "одномерных" участков (то есть, долей мономеров с двумя соседями) и узлов с тремя соседями в цепочках на треугольной и квадратной решётках. Для расчётов долей на треугольной решётке были использованы длины 200-1200, для квадратной - 250-4900. Приближение долей треугольной решётки имеет отчётливый линейный характер, включая даже в приближении на всех точках (см. раздел "Подсчёт соседей у треугольной решётки" в Bulk2-6.ipynb [2]). Линейность долей квадратной решётки также подтверждается (с учётом погрешности расчётов с наибольшей длиной).

Так же хочется заметить некоторое сходство значений свободного члена для долей с двумя соседями и свободного члена в приближениях графика зависимости вероятности гомополимерной цепочки иметь атмосферу 3 в статье Преллберга [13], то есть вероятность, что второй конец цепочки длины N имеет 3 возможных направления для удлинения и следовательно, 3 узла, которые могут стать N+1-ым в цепочке.

На таблице 6 слева изображены значения свободных членов графика зависимости вероятности гомополимерной цепочки иметь атмосферу k в статье Преллберга [13], то есть вероятность, что второй конец цепочки бесконечно большой длины N имеет k возможных направления для удлинения и следовательно, k возможных узлов, которые могут стать новым узлом в цепочке. Справа изображены значения свободных членов

Рис. 16: Зависимость средней доли узлов с 2-3-мя соседями (сверху вниз) от обратной длины 1/N в модели Изинга на треугольной (слева) и кубической (справа) решётках при J=0. Синяя линия описывает результаты симуляций Монте-Карло, оранжевая - линейное приближение результатов, ошибки рассчитаны с учётом погрешностей полученных данных

приближений графиков долей узлов с і соседями. Хотя все значения отличаются больше чем на погрешность расчётов, однако нельзя не заметить довольно близкое сходство $p^{(3)}$ и свободного члена $\langle n_2 \rangle$, хотя сами приближения имеют противоположные по знаку наклоны. Возможно, обе величины по-разному описывают одно и то же поведение цепочек с точки зрения их плотности: например, если конец цепочки длины N (назовём его "N-ым узлом") имеет атмосферу три, то при добавлении нового N+1-го узла N-й будет иметь два соседа: N-1-й и N+1-й узлы. Так же при атмосфере 2 (то есть, уже имея два соседа и две возможности для удлинения) N-ый узел при удлинении будет иметь 3 соседа. И наконец, при атмосфере 1 удлинение цепочки приведёт к тому, что старый конец цепочки будет иметь 4 соседа. Очевидно, что случай удлинения при атмосфере 0 рассмореть невозможно, и провести аналогию с соседями нельзя.

Однако сходства между одномерием треугольной и квадратной решётки с точки зрения самих приближений почти не наблюдается - они имеют как разные значения свободных членов, так и значения и даже (в случае 2-х соседей) знаки коэффициента наклона, разница который значительно превышает погрешность фита.

11.3 Сравнение геометрических свойств модели Изинга на треугольной решётке с кубической

Здесь мы сравниваем линейное приближение треугольной решётки с кубической, имеющейтакое же количество возможных соседей. Получается примерно та же ситуация как и в случае сравнения с квадратной кубическая решётка на графике 16 показывает почти чёткий линейный характер приближения в пределах погрешности наибольших длин (для n=3 линейно видна значительно лучше), но значения не имеют го сходства. Единственное отличие от сравнения с квадратной решёткой - графики соответствующих долей имеют одинаковое поведение с точки зрения знака наклона, что действительно и для долей узлов с больший числом соседей. Можно утверждать, что треугольная решётка с точки зрения поведения доли одномерных участок больше похожа на кубическую решётку, нежели квадратную, однако универсальность поведения доли "одномерных" участков среди решёток при бесконечно больших длинах конформации не обнаружена.

Список литературы

- [1] Robert Swendsen. An Introduction to Statistical Mechanics and Thermodynamics. Oxford University Press, 17.
- [2] Github Repository: Chpel/ProjectMagnet (https://github.com/Chpel/ProjectMagnet)
- [3] Newman, M. E. J. and Barkema, G. T.. Monte Carlo methods in statistical physics. Oxford: Clarendon Press, 1999.
- [4] Janke W. Monte Carlo Methods in Classical Statistical Physics. In: Fehske H., Schneider R., Weiße A. (eds) Computational Many-Particle Physics. Lecture Notes in Physics, vol 739. Springer, Berlin, Heidelberg, 2008.
- [5] Github Repository: Shroedingercat/Self-learning-Monte-carlo-algorithms (https://github.com/Shroedingercat/Self-learning-Monte-carlo-algorithms)
- [6] Github Repository: kamilla0503/SAWs (https://github.com/kamilla0503/SAWs)
- [7] Github Repository: kamilla0503/saw (https://github.com/kamilla0503/saw)
- [8] Walter Selke. Critical Binder cumulant of two-dimensional Ising models. Eur. Phys. J. B, 51(2):223-228, 2006.
- [9] Sergio Caracciolo, Marco Gherardi, Mauro Papinutto, Andrea Pelissetto. Geometrical Properties of Two-Dimensional Interacting Self-Avoiding Walks at the θ -point. J. Phys. A: Math. Theor.,44(11):1-24, 2011.
- [10] Handan Arkın and Wolfhard Janke. Gyration tensor based analysis of the shapes of polymer chains in an attractive spherical cage. J. Chem. Phys. 138, 054904, 2013.
- [11] Damien Paul Foster and Debjyoti Majumdar. Critical behaviour of magnetic polymers in two and three dimensions. *Phys. Rev. E*, 104:024122, Aug 2021.
- [12] Kamilla Faizullina, Ilya Pchelintsev, Evgeni Burovski. Critical and geometric properties of magnetic polymers across the globule-coil transition. https://arxiv.org/abs/2107.11830
- [13] Owzarek A. L. and Prellberg T. Scaling of the atmosphere of self-avoiding walks. J. Phys. A, 41:375004, 2008.