

Compute Surface Correction Factors:				
Require:	δ	Horizon Parameter		
Require:	a, b, d	PD Material Properties		
Require:	μ	Shear Modulus		
Require:	Pandas DataFrame Object	Instance that implements required data structure for PD attributes for all points		
1.	for each material point i in the body do			
2.	Get neighbor indices of i^{th} material point	$\leftarrow j, if: \left x_j - x_i \right \le \delta$		
3.	Compute initial distance, $ \xi $	$\leftarrow \xi_{ij} = x_j - x_i $		
4.	Compute length of the deformed bond, $ \eta $	$\leftarrow \eta_{ij} = (x_j + u_j) - (x_i + u_i) $		
5.	Compute stretch of the deformed bond, $ s $	$\leftarrow s_{ij} = \frac{ \eta_{ij} }{ \xi_{ij} } = \frac{ (x_j + u_j) - (x_i + u_i) }{ x_j - x_i }$		
6.	Compute Volume Correction Factor, $v_{c(j)}$	$ \leftarrow s_{ij} = \frac{ \xi_{ij} }{ \xi_{ij} } = \frac{ x_j - x_i }{ x_j - x_i } $ $ \leftarrow v_c = \begin{cases} \frac{(\delta + r - \xi_{ij})}{\Delta}, & \delta - \frac{\Delta}{2} < \xi_{ij} < \delta, \\ 1, & \xi_{ij} \le \delta - \frac{\Delta}{2} \\ 0, & \xi_{ij} > \delta \end{cases} $		
7.	Compute parameter Λ	$\leftarrow \Lambda_{ij} = \left(\frac{\boldsymbol{\xi}_{ij}}{\left \boldsymbol{\xi}_{ij}\right }\right) \cdot \left(\frac{\boldsymbol{\eta}_{ij}}{\left \boldsymbol{\eta}_{ij}\right }\right)$		
8.	Compute Dilatation Term, $oldsymbol{ heta}$	N		
9.	Compute Strain Energy Density, W	$\leftarrow \theta_{i} = d\delta \sum_{j=1}^{N} s_{ij} \Lambda_{ij} v_{c(j)} V_{j}$ $\leftarrow W_{i} = a\theta_{i}^{2} + b\delta \sum_{j=1}^{N} \frac{\left(\left \boldsymbol{\eta}_{ij}\right - \left \boldsymbol{\xi}_{ij}\right \right)^{2}}{\left \boldsymbol{\xi}_{ij}\right } v_{c(j)} V_{j}$ $\leftarrow S_{i\alpha} \text{ or } D_{i\alpha} = \frac{W^{CM}}{W_{i}^{PD}} \text{ or } \frac{\theta^{CM}}{\theta_{i}^{PD}}$		
10.	Set Surface Correction Factor, $S_{i_{\alpha}}$ or $D_{i_{\alpha}}$	$\leftarrow S_{i_{\alpha}} \text{ or } D_{i_{\alpha}} = \frac{W^{CM}}{W_{i}^{PD}} \text{ or } \frac{\theta^{CM}}{\theta_{i}^{PD}}$		

Preprocess with Surface Correction Vectors:				
Require:	δ	Horizon Parameter		
Require:	a, b, d	PD Material Properties		
Require:	Pandas DataFrame Object	Instance that implements required data structure for PD attributes for all points		
1.	for each material point i in the body do			
2.	Get neighbor indices of i^{th} material point	$\leftarrow j, if: x_j - x_i \le \delta$		
3.	Compute Principal Axes for Surface Correction Ellipsoid, G_b , G_d	$\leftarrow G_{b_{ij}}\&G_{d_{ij}}$		
4.	Compute initial distance, $ \xi $	$\leftarrow \xi_{ij} = x_j - x_i $		
5.	Compute length of the deformed bond, $ \eta $	$\leftarrow \eta_{ij} = (x_j + u_j) - (x_i + u_i) $		
6.	Compute stretch of the deformed bond, $ s $	$\leftarrow s_{ij} = \frac{ \eta_{ij} }{ \xi_{ij} } = \frac{ (x_j + u_j) - (x_i + u_i) }{ x_j - x_i }$		
7.	Compute Volume Correction Factor, $v_{c(j)}$	$\leftarrow v_c = \begin{cases} \frac{ \xi_{ij} }{\Delta}, & \delta - \frac{\Delta}{2} < \xi_{ij} < \delta, \\ 1, & \xi_{ij} \le \delta - \frac{\Delta}{2} \\ 0, & \xi_{ij} > \delta \end{cases}$		
8.	Compute parameter Λ	$\leftarrow \Lambda_{ij} = \left(\frac{\boldsymbol{\xi}_{ij}}{ \boldsymbol{\xi}_{ij} }\right) \cdot \left(\frac{\boldsymbol{\eta}_{ij}}{ \boldsymbol{\eta}_{ij} }\right)$		
9.	Compute Dilatation Term, $oldsymbol{ heta}$	$\leftarrow \theta_i = d\delta \sum_{j=1}^N G_{d_{ij}} s_{ij} \Lambda_{ij} v_{c(j)} V_j$		
10.	Compute Strain Energy Density, W	$\leftarrow \theta_i = d\delta \sum_{j=1}^{N} G_{d_{ij}} s_{ij} \Lambda_{ij} v_{c(j)} V_j$ $\leftarrow W_i = a\theta_i^2 + b\delta \sum_{j=1}^{N} G_{b_{ij}} \frac{\left(\left \boldsymbol{\eta}_{ij}\right - \left \boldsymbol{\xi}_{ij}\right \right)^2}{\left \boldsymbol{\xi}_{ij}\right } v_{c(j)} V_j$		

Compute PD Forces and Iteration with Adaptive Dynamic Relaxation:				
Require:	δ	Horizon Parameter		
Require:	a, b, d	PD Material Properties		
Require:	Pandas DataFrame Object	Instance that implements required data structure for PD attributes for all points		
1.	for each iteration between 1 to max. iter. do			
2.	for each material point i in the body do			
3.	Get neighbor indices of i^{th} material point	$\leftarrow j, \qquad if: \ x_j - x_i \le \delta$		
4.	Compute Principal Axes for Surface Correction Ellipsoid, G_b , G_d	$\leftarrow G_{b_{ij}} \& G_{d_{ij}}$		
5.	Compute initial distance, $ \xi $	$\leftarrow \xi_{ij} = x_j - x_i $		
6.	Compute length of the deformed bond, $ oldsymbol{\eta} $	$ \begin{aligned} &\leftarrow \left \xi_{ij} \right = \left x_j - x_i \right \\ &\leftarrow \left \eta_{ij} \right = \left \left(x_j + u_j \right) - \left(x_i + u_i \right) \right \end{aligned} $		
7.	Compute stretch of the deformed bond, $ s $	$\leftarrow s_{ij} = \frac{\left \boldsymbol{\eta}_{ij} \right }{\left \boldsymbol{\xi}_{ij} \right } = \frac{\left \left(\boldsymbol{x}_j + \boldsymbol{u}_j \right) - \left(\boldsymbol{x}_i + \boldsymbol{u}_i \right) \right }{\left \boldsymbol{x}_j - \boldsymbol{x}_i \right }$		
8.	Compute Volume Correction Factor, $v_{c(j)}$	$ \leftarrow \eta_{ij} = (x_j + u_j) - (x_i + u_i) $ $ \leftarrow s_{ij} = \frac{ \eta_{ij} }{ \xi_{ij} } = \frac{ (x_j + u_j) - (x_i + u_i) }{ x_j - x_i } $ $ \leftarrow v_c = \begin{cases} \frac{(\delta + r - \xi_{ij})}{\Delta}, & \delta - \frac{\Delta}{2} < \xi_{ij} < \delta, \\ 1, & \xi_{ij} \le \delta - \frac{\Delta}{2} \\ 0, & \xi_{ij} > \delta \end{cases} $		
9.	Compute parameter Λ	$(0, \xi_{ij} > \delta^{2})$ $\leftarrow \Lambda_{ij} = \left(\frac{\xi_{ij}}{ \xi_{ij} }\right) \cdot \left(\frac{\eta_{ij}}{ \eta_{ij} }\right)$		
10.	Compute PD Force $oldsymbol{t_{ij}}$	$\leftarrow \boldsymbol{t_{ij}} = 2\delta \left(G_{d_{ij}} d \frac{\Lambda_{ij}}{ \boldsymbol{\xi_{ij}} } (a\theta_i) + G_{b_{ij}} b(s_{ij}) \right) \frac{\boldsymbol{\eta_{ij}}}{ \boldsymbol{\eta_{ij}} }$		
11.	Compute PD Force $oldsymbol{t}_{ji}$	$\leftarrow \mathbf{t}_{ji} = -2\delta \left(G_{dij} d \frac{\Lambda_{ij}}{ \mathbf{\xi}_{ij} } (a\theta_j) + G_{bij} b(s_{ij}) \right) \frac{\mathbf{\eta}_{ij}}{ \mathbf{\eta}_{ij} }$ $\leftarrow \sum_{j=1}^{N} (\mathbf{t}_{ij} - \mathbf{t}_{ji}) v_{c(j)} V_{j}$ $\leftarrow \sum_{j=1}^{N} K_{ij} = \sum_{j=1}^{N} \frac{ \mathbf{\xi}_{ij} \cdot \mathbf{e} }{ \mathbf{\xi}_{ij} } \frac{4\delta}{ \mathbf{\xi}_{ij} } \left(\frac{1}{2} \frac{ad^2 \delta}{ \mathbf{\xi}_{ij} } \left(v_{c(i)} V_i + v_{c(j)} V_j \right) + b \right)$		
12.	Summation of PD Forces	$\leftarrow \sum_{j=1}^{N} (\boldsymbol{t_{ij}} - \boldsymbol{t_{ji}}) v_{c(j)} V_{j}$		
13	Compute Elements of Stiffness Matrix, $\sum_{j=1}^{N} \left K_{ij} \right $	$\leftarrow \sum_{j=1}^{N} K_{ij} = \sum_{j=1}^{N} \frac{ \xi_{ij} \cdot e }{ \xi_{ij} } \frac{4\delta}{ \xi_{ij} } \left(\frac{1}{2} \frac{ad^{2}\delta}{ \xi_{ij} } \left(v_{c(i)} V_{i} + v_{c(j)} V_{j} \right) + b \right)$		

14.	Compute Diagonal Element of Density Matrix, λ_{ii}	$\leftarrow \lambda_{ii} = \frac{1}{4} \Delta t^2 \sum_{j=1}^{N} K_{ij} $
15.	Initialize $c_n = 0$, $c_{num} = 0$, $c_{denom} = 0$	
16.	for each material point i in the body do	
17.	Compute Diagonal Element of Local Stiffness Matrix, ${}^1\!K^n_{ii}$	$\leftarrow {}^{1}K_{ii}^{n} = -\left(\frac{\left(\sum_{j=1}^{N} (\boldsymbol{t_{ij}} - \boldsymbol{t_{ji}}) v_{c(j)} V_{j} + \boldsymbol{b_{i}}\right)^{n}}{\lambda_{ii}} - \frac{\left(\sum_{j=1}^{N} (\boldsymbol{t_{ij}} - \boldsymbol{t_{ji}}) v_{c(j)} V_{j} + \boldsymbol{b_{i}}\right)^{n-1}}{\lambda_{ii}}\right)$ $\Delta t \dot{\mathbf{u}}^{n-\frac{1}{2}}$
18.	Update Numerator and Denominator parts of c^n	$\leftarrow c_{num}^n = c_{num}^n + u_i^{n} K_{ii}^n u_i^n, \qquad c_{denom}^n = c_{denom}^n + u_i^n u_i^n,$
19.	Update Damping Coefficient c^n	$\leftarrow c_{num}^n = c_{num}^n + u_i^{n1} K_{ii}^n u_i^n, \qquad c_{denom}^n = c_{denom}^n + u_i^n u_i^n,$ $\leftarrow c^n = 2 \sqrt{\frac{c_{num}^n}{c_{denom}^n}}, \text{ while } c_{denom}^n > 0 \text{ and } c^n \leq 2$
20.	for each material point i in the body do	
21.	if 1^{st} iteration then, do	
22.	Compute $\dot{u}^{\frac{1}{2}}$	$\leftarrow \dot{u}^{\frac{1}{2}} = \frac{\left(\sum_{j=1}^{N} (\boldsymbol{t}_{ij} - \boldsymbol{t}_{ji}) v_{c(j)} V_{j} + \boldsymbol{b}_{i}\right)^{1}}{2\lambda_{ii}}$
23.	else, do	
24.	Compute $\dot{u}^{n+\frac{1}{2}}$	$\leftarrow \dot{u}^{n+\frac{1}{2}} = \frac{\left((2-c^n\Delta t)\dot{u}^{n-\frac{1}{2}} + 2\Delta t \frac{\left(\sum_{j=1}^{N} (\boldsymbol{t_{ij}} - \boldsymbol{t_{ji}})v_{c(j)}V_j + \boldsymbol{b_i}\right)^n}{\lambda_{ii}}\right)}{(2+c^n\Delta t)}$
25.	Compute u^{n+1}	$\leftarrow u^{n+1} = u^n + \Delta t \dot{u}^{n+\frac{1}{2}}$
26.	Store $\dot{u}^{n-\frac{1}{2}}$	$\leftarrow u^{n+1} = u^n + \Delta t \dot{u}^{n+\frac{1}{2}}$ $\leftarrow \dot{u}^{n-\frac{1}{2}} = \dot{u}^{n+\frac{1}{2}}$