1 Формулы логики предикатов

1.1 Определения

Условимся обозначать предметные переменные строчными латинскими буквами возможно с индексами

$$a, b, c, \ldots, x, y, z, x_1, x_2, \ldots, x_n,$$

а предикатные переменные прописными латинскими буквами (возможно с индексами) с последующей парой скобок, внутри которых указаны предметные переменные, относительно которых рассматриваются предикатные переменные

$$P(x_1,x_2,\ldots,x_n)-n$$
-местная предикатная переменная, $Q(y_1,y_2,\ldots,y_m)-m$ -местная предикатная переменная, $Z(z_1,z_2,\ldots,z_k)-k$ -местная предикатная переменная.

Для 0-местных предикатных переменных скобки опускаются для краткости записи.

Определение 1. Формулой логики предикатов называется выражение, которое можно получить с помощью конечного числа применений следующих правил:

- *а*) всякая 0-местная предикатная переменная является формулой логики предикатов,
- б) всякая n-местная предикатная переменная ($n \ge 1$) является формулой логики предикатов, в которой все предметные переменные объявляются свободными,
- s) если \mathscr{A} является формулой логики предикатов, то выражение $(\overline{\mathscr{A}})$ является формулой логики предикатов, в которой свободными объявляются те и только те предметные переменные, которые таковыми являются в формуле \mathscr{A} ,
- e) если \mathscr{A},\mathscr{B} формулы логики предикатов такие, что нет предметной переменной, которая свободна в одной формуле и не свободна в другой, то выражения $(\mathscr{A} \vee \mathscr{B}), (\mathscr{A} \cdot \mathscr{B}), (\mathscr{A} \to \mathscr{B}), (\mathscr{A} \sim \mathscr{B})$ формулы логики предикатов, в которых свободными объявляются те и только те предметные переменные, которые таковыми являются в формуле \mathscr{A} или формуле \mathscr{B} ,
- ∂) если \mathscr{A} формула логики предикатов, в которой предметная переменная x является свободной, то выражения $(\forall x\,\mathscr{A})$ и $(\exists x\,\mathscr{A})$ —

формулы логики предикатов, в которых свободными обьявляются все предметные переменные, которые таковыми являются формуле $\mathscr A$ за исключением переменной x, которая обьявляется несвободной (связанной).

При этом в формулах логики предикатов $(\forall x \, \mathscr{A})$ и $(\exists x \, \mathscr{A})$ формула логики предикатов \mathscr{A} называется областью действия квантора.

Примеры. Пусть P,Q(x,y) и R(x,y,z) — предикатные переменные. Согласно пунктам a) и b0 определения

P - формула логики предикатов,

Q(x,y) — формула логики предикатов; x и y — свободные переменные,

R(x,y,z) — формула логики предикатов; x,y,z — свободные переменные.

В соответствии с пунктом s) выражение $(\overline{Q(x,y)})$ является формулой логики предикатов, в которой предметные переменные x и y свободные. На основании пункта s) выражение $((\overline{Q(x,y)}) \lor Q(x,y))$ является формулой логики предикатов, в которой переменные s и s0 свободные. По пункту s0 выражения s1 (s2 s3 (s3 s4 (s3 s3 годинатов с единственной свободной предметной переменной — переменной s3 (переменные s3 и s3 связанные). При этом в обоих формулах действия всех кванторов распространяются до конца формулы.

Выражение

$$(\forall x(\underbrace{\exists x P(x,y)}_{\mathscr{A}}))$$

не является формулой логики предикатов, поскольку переменная x в формуле $\mathscr A$ не является свободной. Выражение

$$(\underbrace{Q(x,y)}_{\mathscr{A}} \vee \underbrace{(\forall \, x R(x,y,z))}_{\mathscr{B}})$$

не является формулой логики предикатов, поскольку предметная переменная x свободная в формуле \mathscr{A} и не свободная в формуле \mathscr{B} .

По определению в формуле логики предикатов должны быть расставлены скобки. Для того, чтобы упростить запись формулы примем следующее соглашение. Условимся в формуле опускать внешние скобки, а также скобки, обрамляющие подформулу, стоящую под отрицанием.

Определение 2. Пусть A — произвольное непустое множество. Интерпретацией формулы логики предикатов на множестве A называется преобразование формулы в высказывание, при котором в формулу

- a) вместо каждой предикатной переменной подставляется конкретный предикат, определённый на множестве A,
- δ) вместо каждой свободной предметной переменной подставляется конкретный предмет из множества A.

Примеры. Приведём примеры интерпретаций формул логики предикатов.

1. Рассмотрим формулу логики предикатов

$$\forall x (\exists y \, P(x, y)). \tag{1}$$

Построим интерпретацию этой формулы на множестве A, состоящем из всех людей когда-либо живших или живущих в настоящий момент. Подставим в формулу вместо предикатной переменной P(x,y) предикат «y является родителем x». Тогда формула (1) превратится в истинное высказывание

 $\forall x\,\exists y\,(y$ является родителем x)= «У каждого человека есть родитель»

2. Построим интерпретацию формулы логики предикатов $((\forall x\,P(x,y))\to Q)$ на множестве натуральных чисел \mathbb{N} . Подставим в формулу вместо двухместной предикатной переменной P(x,y) двухместный предикат «x < y», $x,y \in \mathbb{N}$, вместо нульместной предикатной переменной Q нульместный предикат «x = 4» и вместо свободной предметной переменной x = 4» и вместо свободной переменной x = 4 и вместо свободной переменной x = 4 и вместо свободной переменной

1.2 Классы формул логики предикатов

Выделяют четыре типа формул логики предикатов относительно фиксированного множества A.

Определение 3. Пусть A — произвольное непустое множество. Формула логики предикатов называется

- a) выполнимой на множестве A, если существует интерпретация этой формулы на множестве A, в результате которой получается истинное высказывание,
- б) тождественно истинной на множестве A, если в результате любой интерпретации этой формулы на множестве A, получается истинное высказывание,
- b) тождественно ложной на множестве A, если в результате любой интерпретации этой формулы на множестве A, получается ложное высказывание,

e) опровержимой на множестве A, если существует интерпретация этой формулы на множестве A, в результате которой получается ложное высказывание.

Примеры.

1. Формула логики предикатов

$$\forall x P(x, y) \tag{2}$$

является выполнимой на множестве натуральных чисел. Для доказательства этого факта достаточно предъявить интерпретацию этой формулы на множестве натуральных чисел, в результате которой получается истинное высказывание. Подставим в формулу вместо предикатной переменной P(x,y) предикат « $x \geq y$ », вместо свободной предметной переменной y число 1. В результате получим истинное высказывание $\forall x \ (x \geq 1), \ x \in \mathbb{N}$.

- 2. Формула логики предикатов (2) является опровержимой на множестве натуральных чисел. Для доказательства этого факта достаточно указать интерпретацию формулы (2) на множестве натуральных чисел, в результате которой получается ложное высказывание. Подставим в формулу вместо предикатной переменной P(x,y) предикат « $x \le y$ », вместо свободной предметной переменной y число 1. В результате получим ложное высказывание $\forall x \, (x \le 1), \, x \in \mathbb{N}$.
- 3. Формула логики предикатов

$$P(x) \to P(x) \tag{3}$$

является тождественно истинной на множестве натуральных чисел. Докажем это. Воспользуемся методом от противного. Допустим, что формула (3) не является тождественно истинной на множестве натуральных чисел, т.е. найдутся предикат $\widetilde{P}(x), x \in \mathbb{N}$, и натуральное число \widetilde{x} , которые при подстановке в формулу (3) обращают её в ложное высказывание

$$\widetilde{P}(\widetilde{x}) \to \widetilde{P}(\widetilde{x}) = \mathcal{I} \quad \Rightarrow \quad \widetilde{P}(\widetilde{x}) = \mathcal{I} \wedge \widetilde{P}(\widetilde{x}) = \mathcal{I}.$$

Получим противоречие с законом непротиворечивости, который утверждает, что нет высказывания, которое истинно и ложно одновременно. Стало быть наше изначальное предположение о том, что формула (3) не является тождественно истинной на множестве \mathbb{N} не верно.

4. Формула логики предикатов

$$\overline{P(x)} \sim P(x)$$
 (4)

является тождественно ложной на множестве $\mathbb N$. Докажем этот факт методом от противного. Допустим, что формула (4) не является тождественно ложной на множестве $\mathbb N$. Значит найдутся предикат $\widetilde P(x)$, $x\in\mathbb N$, и натуральное число $\widetilde x$, которые при подстановке в формулу обращают её в истинное высказывание

$$\overline{\widetilde{P}(\widetilde{x})} \sim \widetilde{P}(\widetilde{x}) = \mathsf{И}.$$

Здесь возможны только два случая, которые мы рассмотрим по отдельности

$$a) \ \ \overline{\widetilde{P}(\widetilde{x})} = \mathsf{И} \wedge \widetilde{P}(\widetilde{x}) = \mathsf{И} \ \Rightarrow \ \widetilde{P}(\widetilde{x}) = \mathsf{Л} \wedge \widetilde{P}(\widetilde{x}) = \mathsf{И} \ (\text{противоречиe}),$$

$$\widetilde{\widetilde{P}(\widetilde{x})} = \mathcal{J} \wedge \widetilde{P}(\widetilde{x}) = \mathcal{J} \Rightarrow \widetilde{P}(\widetilde{x}) = \mathcal{J} \wedge \widetilde{P}(\widetilde{x}) = \mathcal{J}$$
 (противоречие).

Мы рассмотрели все возможные случаи и в каждом из них получили противоречие с законом непротиворечивости. Стало быть наше изначальное предположение о том, что формула (4) на множестве $\mathbb N$ не является тождественно ложной не верно.

5. Формула логики предикатов $P(x) \to P(y)$ является тождественно истинной на множестве $\{1\}$ и опровержимой на множестве $\{1,2\}$. Доказательство этого факта остаётся читателю в качестве упражнения.

Существуют формулы логики предикатов, которые на одних множествах являются тождественно истинными, а на других множествах нет. В логике предикатов важное значение имеют формулы, которые тождественно истинны на любом непустом множестве.

Определение 4. Формула логики предикатов называется *общезначимой*, если она тождественно истинна на любом непустом множестве.

Примеры. Покажем, что формула логики предикатов $P(x) \vee \overline{\forall y\, P(y)}$ является общезначимой. Допустим, что эта формула не общезначима, т.е. найдутся непустое множество A, предикат $\widetilde{P}(x), \ x \in A$, и предмет $\widetilde{x} \in A$ такие, что

$$\widetilde{P}(\widetilde{x}) \vee \overline{\forall y \, \widetilde{P}(y)} = \mathcal{I} \quad \Rightarrow \quad \begin{cases} \widetilde{P}(\widetilde{x}) = \mathcal{I}, & (*) \\ \forall y \, \widetilde{P}(y) = \mathcal{I}. & (**) \end{cases}$$

Из (**) следует, что предикат $\widetilde{P}(y)$ тождественно истинный. Значит предикат $\widetilde{P}(y)$ при подстановке в него вместо переменной y любого предмета из множества A обращается в истинное высказывание. Следовательно, $\widetilde{P}(\widetilde{x})=\mathsf{И}$. Мы получили противоречие с (*).

Существуют общезначимые и необщезначимые формулы логики предикатов. Для того, чтобы уметь отличать первые от вторых нам нужен алгоритм, который по заданной формуле логики предикатов определяет общезначима она или нет. В 1936 г. американский математик Алонзо Чёрч доказал, что такого алгоритма не существует.

1.3 Равносильные формулы логики предикатов. Приведённая и нормальная формы записи формул логики предикатов.

Определение 5. Две формулы логики предикатов называются *равносильными на непустом множестве* A, если при подстановке в эти формулы вместо предикатных переменных любых предикатов, определённых на множестве A, формулы превращаются в равносильные предикаты.

Если формулы \mathscr{A} и \mathscr{B} логики предикатов равносильны на любом непустом множестве, то мы говорим, что эти формулы *равносильны* и пишем $\mathscr{A} \equiv \mathscr{B}$.

Теорема 1 (основные равносильности логики предикатов).

- 1. Замена символа предметной переменной
 - a) $\forall x P(x) \equiv \forall y P(y)$;
 - 6) $\exists x P(x) \equiv \exists y P(y);$
- 2. Законы де Моргана для кванторов
 - a) $\forall x P(x) \equiv \exists x \overline{P(x)};$
 - 6) $\exists x P(x) \equiv \forall x \overline{P(x)};$
- 3. Законы пронесения кванторов через конъюнкцию и дизъюнкцию
 - a) $\forall x (P(x) \cdot Q(x)) \equiv (\forall x P(x)) \cdot (\forall x Q(x));$
 - 6) $\exists x (P(x) \lor Q(x)) \equiv (\exists x P(x)) \lor (\exists x Q(x))$
 - $\boldsymbol{\varepsilon}) \ \forall x \left(P(x) \vee Q \right) \equiv \left(\forall x \, P(x) \right) \vee Q;$
 - e) $\exists x (P(x) \cdot Q) \equiv (\exists x P(x)) \cdot Q;$
- 4. Законы пронесения кванторов через импликацию
 - a) $\forall x (P(x) \to Q) \equiv (\exists x P(x)) \to Q;$
 - 6) $\exists x (P(x) \to Q) \equiv (\forall x P(x)) \to Q;$
 - *B*) $\forall x (Q \to P(x)) \equiv Q \to (\forall x P(x));$
 - e) $\exists x (Q \to P(x)) \equiv Q \to (\exists x P(x));$
- 5. Законы коммутативности для кванторов

- a) $\forall x \, \forall y \, P(x,y) \equiv \forall y \, \forall x \, P(x,y)$;
- 6) $\exists x \, \exists y \, P(x,y) \equiv \exists y \, \exists x \, P(x,y);$

Доказательство. Докажем равносильность 2δ). Подставим в обе части равносильности вместо предикатной переменной P(x) произвольный конкретный предикат $\widetilde{P}(x)$, определённый на непустом множестве A. В результате получим два нульместных предиката, т.е. два высказывания

$$\overline{\exists x\widetilde{P}(x)}$$
 и $\forall x\,\overline{\widetilde{P}(x)}.$

Наша цель — доказать, что истинностные значения этих высказываний совпадают.

$$\overline{\exists x\,\widetilde{P}(x)}= extsf{H}$$
 \Rightarrow $\exists x\,\widetilde{P}(x)= extsf{J}$ \Rightarrow $\widetilde{P}(x)$ тождественно ложный \Rightarrow \Rightarrow $\overline{\widetilde{P}(x)}$ тождественно истинный \Rightarrow $\forall x\,\overline{\widetilde{P}(x)}= extsf{H}$.

$$\overline{\exists x\, \widetilde{P}(x)} = \mathcal{I} \quad \Rightarrow \quad \underline{\exists x\, \widetilde{P}(x)} = \mathcal{U} \ \Rightarrow \ \widetilde{P}(x) - \$$
выполнимый предикат $\ \Rightarrow \ \overline{\widetilde{P}(x)} - \$ опровержимый предикат $\ \Rightarrow \ \overline{\widetilde{P}(x)} = \mathcal{I}.$

Докажем равносильность 3ε).

Подставим в обе части равносильности вместо предикатной переменной P(x) произвольный конкретный предикат $\widetilde{P}(x)$, определённый на произвольном непустом множестве A, а вместо предикатной переменной Q произвольное высказывание \widetilde{Q} . В результате получим два нульместных предиката, т.е. два высказывания

$$\exists x \, (\widetilde{P}(x) \cdot \widetilde{Q})$$
 и $(\exists x \, \widetilde{P}(x)) \cdot \widetilde{Q}$.

Наша цель — доказать, что истинностные значения этих высказываний совпадают.

 $extit{Cлучай 1.}$ Пусть $\exists x\, (\widetilde{P}(x)\cdot \widetilde{Q})=\mathsf{H}.$ Тогда одноместный предикат $\widetilde{P}(x)\cdot \widetilde{Q}$ выполним, т.е. найдётся предмет $\widetilde{x}\in A$ такой, что

$$\widetilde{P}(\widetilde{x})\cdot\widetilde{Q}=$$
И \Rightarrow $\widetilde{P}(\widetilde{x})=$ И и $\widetilde{Q}=$ И.

Предикат $\widetilde{P}(x)$ выполним и $\exists x \, \widetilde{P}(x) = \mathsf{M}$. Следовательно,

$$(\exists x \, \widetilde{P}(x)) \cdot \widetilde{Q} = \mathsf{M}.$$

Случай 2. Пусть

$$\exists x \, (\widetilde{P}(x) \cdot \widetilde{Q}) = \Pi. \tag{5}$$

Мы хотим показать, что $(\exists x\,\widetilde{P}(x))\cdot\widetilde{Q}= \Pi.$ От противного. Допустим, что $(\exists x\,\widetilde{P}(x))\cdot\widetilde{Q}= \mathrm{M}.$ Тогда $\exists x\,\widetilde{P}(x)= \mathrm{M}$ и $\widetilde{Q}= \mathrm{M}.$ Предикат $\widetilde{P}(x)$ выполним, т.е. найдётся предмет $\widetilde{x}\in A$ такой, что

$$\widetilde{P}(\widetilde{x}) = \mathbf{M} \quad \Rightarrow \quad \widetilde{P}(\widetilde{x}) \cdot \widetilde{Q} = \mathbf{M}.$$

Предикат $\widetilde{P}(x)\cdot\widetilde{Q}$ выполним. Значит $\exists x\,(\widetilde{P}(x)\cdot\widetilde{Q})=\mathsf{V}$, что противоречит (5).

Существуют две стандартные формы записи формул логики предикатов: приведённая форма и нормальная форма.

Определение 6. Будем говорить, что формула логики предикатов находится в приведённой форме, если в ней из логических операций присутствуют только операции дизъюнкции, конъюнкции и отрицания, причём отрицания распространяются только на предикатные переменные.

Определение 7. Будем говорить, что формула логики предикатов находится в нормальной форме, если она записана в приведённой форме и все её кванторы находятся в начале формулы, а области их действий распространяются до конца формулы.

Любую формулу логики предикатов можно привести и к приведённой форме, и к нормальной форме.

Примеры.

- 1. $\overline{(\forall x\, P(x)) \vee \exists x\, (Q(x) \to R(x))} \equiv \overline{\forall x\, P(x)} \cdot \overline{\exists x\, (Q(x) \to R(x))} \equiv (\exists x\, \overline{P(x)}) \cdot (\overline{\forall x\, Q(x) \to R(x)}) \equiv (\exists x\, \overline{P(x)}) \cdot (\overline{\forall x\, Q(x) \vee R(x)}) \equiv (\exists x\, \overline{P(x)}) \cdot (\overline{\forall x\, Q(x) \vee R(x)}) = (\exists x\, \overline{P(x)}) \cdot (\overline{\forall x\, Q(x) \vee R(x)}) = (\exists x\, \overline{P(x)}) \cdot (\overline{\forall x\, Q(x) \vee R(x)}) = (\exists x\, \overline{P(x)}) \cdot (\overline{\forall x\, Q(x) \vee R(x)}) = (\exists x\, \overline{P(x)}) \cdot (\overline{\forall x\, Q(x) \vee R(x)}) = (\exists x\, \overline{P(x)}) \cdot (\overline{\forall x\, Q(x) \vee R(x)}) = (\exists x\, \overline{P(x)}) \cdot (\overline{\forall x\, Q(x) \vee R(x)}) = (\exists x\, \overline{P(x)}) \cdot (\overline{\forall x\, Q(x) \vee R(x)}) = (\exists x\, \overline{P(x)}) \cdot (\overline{\forall x\, Q(x) \vee R(x)}) = (\exists x\, \overline{P(x)}) \cdot (\overline{\forall x\, Q(x) \vee R(x)}) = (\exists x\, \overline{P(x)}) \cdot (\overline{\forall x\, Q(x) \vee R(x)}) = (\exists x\, \overline{P(x)}) \cdot (\overline{\forall x\, Q(x) \vee R(x)}) = (\exists x\, \overline{P(x)}) \cdot (\overline{\forall x\, Q(x) \vee R(x)}) = (\exists x\, \overline{P(x)}) \cdot (\overline{\forall x\, Q(x) \vee R(x)}) = (\exists x\, \overline{P(x)}) \cdot (\overline{\forall x\, Q(x) \vee R(x)}) = (\exists x\, \overline{P(x)}) \cdot (\overline{\forall x\, Q(x) \vee R(x)}) = (\exists x\, \overline{P(x)}) \cdot (\overline{\forall x\, Q(x) \vee R(x)}) = (\exists x\, \overline{P(x)}) \cdot (\overline{\forall x\, Q(x) \vee R(x)}) = (\exists x\, \overline{P(x)}) \cdot (\overline{\forall x\, Q(x) \vee R(x)}) = (\exists x\, \overline{P(x)}) \cdot (\overline{\forall x\, Q(x) \vee R(x)}) = (\exists x\, \overline{P(x)}) \cdot (\overline{\forall x\, Q(x) \vee R(x)}) = (\exists x\, \overline{P(x)}) \cdot (\overline{\forall x\, Q(x) \vee R(x)}) = (\exists x\, \overline{P(x)}) \cdot (\overline{\forall x\, Q(x) \vee R(x)}) = (\exists x\, \overline{P(x)}) \cdot (\overline{\forall x\, Q(x) \vee R(x)}) = (\exists x\, \overline{P(x)}) \cdot (\overline{\forall x\, Q(x) \vee R(x)}) = (\exists x\, \overline{P(x)}) \cdot (\overline{\forall x\, Q(x) \vee R(x)}) = (\exists x\, \overline{P(x)}) \cdot (\overline{\forall x\, Q(x) \vee R(x)}) = (\exists x\, \overline{P(x)}) \cdot (\overline{\forall x\, Q(x) \vee R(x)}) = (\exists x\, \overline{P(x)}) \cdot (\overline{\forall x\, Q(x) \vee R(x)}) = (\exists x\, \overline{P(x)}) \cdot (\overline{\forall x\, Q(x) \vee R(x)}) = (\exists x\, \overline{P(x)}) \cdot (\overline{\forall x\, Q(x) \vee R(x)}) = (\exists x\, \overline{P(x)}) \cdot (\overline{\forall x\, Q(x) \vee R(x)}) = (\exists x\, \overline{P(x)}) \cdot (\overline{\forall x\, Q(x) \vee R(x)}) = (\exists x\, \overline{P(x)}) \cdot (\overline{\forall x\, Q(x) \vee R(x)}) = (\exists x\, \overline{P(x)}) \cdot (\overline{\forall x\, Q(x) \vee R(x)}) = (\exists x\, \overline{P(x)}) \cdot (\overline{\forall x\, Q(x) \vee R(x)}) = (\exists x\, \overline{P(x)}) \cdot (\overline{\forall x\, Q(x)}) = (\exists x\, \overline{P(x)}) = (\exists x\, \overline{P(x)}$
- 2. $(\forall x\, P(x))\cdot (\forall y\, P(y))\equiv (\forall x\, P(x))\cdot (\forall x\, P(x))\equiv \forall x\, P(x)$ —нормальная форма.

2 Приложения логики предикатов

Логика предикатов применяется при анализе корректности рассуждений, в которых важную роль играет внутренняя стуктура элементарных высказываний. Поясним основную идею на следующем примере. Рассмотрим рассуждение

«Всякое целое число является рациональным, 1 — целое число. Следовательно, 1 — рациональное число.»

Введём два одноместных предиката

$$P(x) = «x -$$
 целое число»,
 $Q(x) = «x -$ рациональное число»,

определённых на множестве вещественных чисел. Посылки рассуждения запишутся следующим образом:

$$\begin{cases} \forall x \, (P(x) \to Q(x)), & (*) \\ P(1), & (**) \end{cases}$$

а заключение рассуждения — Q(1).

Установим теперь правомерность рассуждения, т.е. убедимся, что при истинности посылок его заключение истинно.

Пусть (*) и (**) — истинные высказывания. Так как высказывание (*) истинно, то предикат $P(x) \to Q(x), x \in \mathbb{R}$ является тождественно истинным, т.е. этот предикат при подстановке вместо переменной x любого её значения обращается в истинное высказывание. Подставим вместо x значение $1: P(1) \to Q(1) = \mathsf{И}$. Получаем

$$\begin{cases} P(1) \to Q(1) = \mathsf{M}, \\ P(1) = \mathsf{M}. \end{cases} \Rightarrow Q(1) = \mathsf{M}.$$