Math 470 Assignment 27

Arnold Jiadong Yu

April 17, 2018

10.3.8 Let Y be a subspace of X.

a) Show that a set V is open in Y if and only if there is an open set U in X such that $V = U \cap Y$.

b) Show that a set E is closed in Y if and only if there is a closed set A in X such that $E = A \cap Y$.

proof: a) (\Rightarrow) Let Y be a subspace of X and V be an open set in Y, then $V \subseteq Y \subseteq X$. Let $\delta > 0$ and $x \in V$, then $B_{\delta}(x) \subseteq V \subseteq Y \subseteq X$. Moreover, $x \in X$. Let $U = \bigcup_{x \in V} B_{\delta}(x)$, then U is open in X. Hence $V = \bigcup_{x \in V} B_{\delta}(x) \cap Y = U \cap Y$.

(\Leftarrow) Let Y be a subspace of X, U be an open set in X and $V = U \cap Y$. Then $V \subseteq U$ and U is open in X implies $\forall \delta > 0$ and $x \in V$, $B_{\delta}(x) \subseteq V \subseteq U$. Moreover $V \subseteq Y$, then $B_{\delta}(x) \cap Y \subseteq V$. That is V is open set in Y.

b) Let Y be a subspace of X and a set E is closed in Y. Then $Y \setminus E$ is open. By part a), $Y \setminus E = U \cap Y$ for some open U in X. Let $A = Y \setminus U$, then $E = A \cap Y$ and A is closed. The converse is trivial.

10.3.10 Let V be the subset of X.

a)Prove that V is open in X if and only if there is a collection of open balls $\{B_{\alpha} : \alpha \in A\}$ such that

$$V = \bigcup_{\alpha \in A} B_{\alpha}$$

b) What happens to this result if open is replaced by closed?

proof: a) (\Rightarrow) Let V be a subset of X, and V is open in X. Let $\epsilon > 0$ and $x \in V$, then $B_{\epsilon}(x) \subseteq V$. Moreover, $\bigcup_{x \in V} B_{\epsilon}(x) \supseteq V$. On the other hand, $\bigcup_{x \in V} B_{\epsilon}(x) \subseteq V$ since every $B_{\epsilon}(x) \subseteq V$. Hence $V = \bigcup_{x \in V} B_{\epsilon}(x)$

- (\Leftarrow) By Theorem 10.31 i) A collection of open sets in X is open. Then let each ball from $\{B_{\alpha}: \alpha \in A\}$ to be a open set, then $V = \bigcup_{\alpha \in A} B_{\alpha}$ is open in X.
- b) If open is replaced by closed, then the close subset V will be decomposited into smaller closed balls, which also can be understood as closed sets.

10.3.11 Let $E \subseteq X$ be closed.

- a) Prove that $\partial E \subseteq E$.
- b) Prove that $\partial E = E$ if and only if $E^0 = \emptyset$.

- c) Show that b) is false if E is not closed.
- proof: a) By Theorem 10.39, $\partial E = \overline{E} \backslash E^0$. Here $E = \overline{E}$. By definition, $\partial E \subseteq E$. b) Suppose $\partial E = E$. By Theorem 10.39, $\partial E = \overline{E} \backslash E^0 = E \backslash E^0 = E$, then $E^0 = \emptyset$. The converse is trivial.
- c) Let $E = \mathbf{Q}$, then $E^0 = \emptyset$. But $E = \mathbf{Q} \neq \partial E = \mathbf{R}$.