Государственное бюджетное профессиональное образовательное учреждение «Нижегородский радиотехнический колледж»

ОП.11 Компьютерные сети

ОТЧЁТ по практической работе № 11.5.5

Тема «Разделение IPv4-сети на подсети»

Выполнил: обучающийся группы 2ИСиП19-1 Мамонов Антон

Проверил: Преподаватель Еремеев В. А.

Часть 1. Разделение на подсети назначенной сети

Задание 1.

Сколько адресов узлов необходимо для самой крупной подсети? Ответ: 50. Каково минимальное количество необходимых подсетей? Ответ: Как минимум 4 сети.

Сеть, которую необходимо разделить на подсети, имеет адрес 192.168.0.0/24. Как маска подсети /24 будет выглядеть в двоичном формате? **Ответ:** 1111111.11111111.11111111.00000000

Что в маске сети представляют единицы? Ответ: Сетевую часть.

Что в маске сети представляют нули? Ответ: Часть хоста.

Задание 2. Чтобы разделить сеть на подсети, биты из узловой части исходной маски сети заменяются битами подсети.

Какие маски подсети соответствуют минимальному необходимому количеству адресов узлов? Ответ: /25, /26.

Какие маски подсети соответствуют минимальному необходимому количеству подсетей? Ответ: /26, /27, /28, /29, /30 даст необходимое количество подсетей.

Какая маска подсети соответствует минимальному необходимому количеству как узлов, так и подсетей? Ответ: /26 даст 4 необходимые подсети и 62 хоста на подсеть, что больше, чем 50 хостов, необходимых для первой подсети.

Задание 3. Выяснив, какая маска подсети соответствует всем указанным требованиям к сети, вы определите каждую подсеть, начиная с исходного сетевого адреса. Ниже перечислите все подсети от первой до последней.

Адрес Подсети	Префикс	Маска Подсети
192.168.0.0	/26	255.255.255.192
192.168.0.64	/26	255.255.255.192
192.168.0.128	/26	255.255.255.192
192.168.0.192	/26	255.255.255.192

Задание 4. Заполните отсутствующие ІР-адреса в таблице адресации.

Устройство	Интерфейс	IP-адрес	Маска подсети	Шлюз по умолчанию
Клиентский				
маршрутизатор	G0/0	192.168.0.1	255.255.255.192	N/A
	G0/1	192.168.0.65	255.255.255.192	
	S0/1/0	209.165.201.2	255.255.255.252	
LAN-A Коммутатор	VLAN1	192.168.0.2	255.255.255.192	192.168.0.1
LAN-B				
Коммутатор	VLAN1	192.168.0.66	255.255.255.192	192.168.0.65
PC-A	NIC	192.168.0.62	255.255.255.192	192.168.0.1
PC-B	NIC	192.168.0.126	255.255.255.192	192.168.0.65
ISPRouter	G0/0	209.165.200.225	255.255.255.224	N/A
	S0/1/0	209.165.201.1	255.255.255.252	N/A
ISPSwitch	VLAN1	209.165.200.226	255.255.255.224	209.165.200.225
ISP Workstation	NIC	209.165.200.235	255.255.255.224	209.165.200.225
ISP Server	NIC	209.165.200.240	255.255.255.224	209.165.200.225

Часть 2. Настройка устройств

Задание 1. Hacтройка CustomerRouter

```
Router>enable
Router#conf
Router#configure t
Router#configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config) #hostname CustomerRouter
CustomerRouter(config) #enable secret Class123
CustomerRouter(config) #line con 0
CustomerRouter(config-line) #pass Ciscol23
CustomerRouter(config-line) #login
CustomerRouter(config-line) #interface Gigabi
CustomerRouter(config-line) #interface GigabitEt
CustomerRouter(config-line) #interface GigabitEthernet0/0
CustomerRouter(config-if) #ip address 192.168.0.1 255.255.255.192
CustomerRouter(config-if) #no shutdown
CustomerRouter(config-if) #interface GigabitEthernet0/1
CustomerRouter(config-if) #ip address 192.168.0.65 255.255.255.192
CustomerRouter(config-if) #no shutdown
CustomerRouter(config-if) #interface Serial0/1/0
CustomerRouter(config-if) #ip address 209.165.201.2 255.255.255.252
CustomerRouter(config-if) #no shutdown
CustomerRouter(config-if) #end
CustomerRouter#
CustomerRouter#copy runn
CustomerRouter#copy running-config star
CustomerRouter#copy running-config startup-config
Destination filename [startup-config]?
Building configuration...
[OK]
CustomerRouter#
```

Задание 2. Настройте два коммутатора локальной сети клиента.

LAN-A

```
Switch>enable
Switch#conf t
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)#inter
Switch(config)#interface Vlan1|
Switch(config-if)#ip add 192.168.0.2 255.255.255.192
Switch(config-if)#no shut
Switch(config-if)#ip default-gateway 192.168.0.1
Switch(config)#end
Switch#
%SYS-5-CONFIG_I: Configured from console by console
```

LAN-B

```
Switch>enable
Switch#conf t
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)#inter
Switch(config)#interface vlanl
Switch(config-if)#ip add 192.168.0.66 255.255.255.192
Switch(config-if)#no shut
Switch(config-if)#ip default-gateway 192.168.0.65
Switch(config)#end
Switch#
%SYS-5-CONFIG_I: Configured from console by console
```

Задание 3. Настройте интерфейсы РС

Часть 3. Проверка сети и устранение неполадок

Задание 1. Проверьте, может ли РС-А установить связь со своим шлюзом по умолчанию. Получен ли ответ? **Ответ получен.**

Proyecal Config Desking Programming Administration

Command Prompt

Packet Tracer PC Command Line 1.0
C:\>ping 192.168.0.1 with 31 bytes of data:

Reply from 192.168.0.1: bytes=32 time=3ms TTL=355
Reply from 192.168.0.1: bytes=32 time=4ms TTL=355
Reply from 192.168.0.1: bytes=32 time<4ms TTL=355
Reply from 192.168.0.1: bytes=32 time<4ms TTL=255
Reply from 192.168.0.1: bytes=32 time<4ms TTL=255
Ping statistics for 192.168.0.1:

Packets: Sent = 4, Secalved = 4, Lost = 0 [0% loss),
Representate round trip times in milli-seconds:
Binisum = 0ms, Maxisum = 3ms, Average = 0ms

Задание 2. Проверьте, может ли РС-В установить связь со своим шлюзом по умолчанию. Получен ли ответ? **Ответ получен.**

Задание 3. Определите, может ли РС-А взаимодействовать с РС-В. Вы получили ответ? **Ответ получен**

```
C:\>ping 192.168.0.126
Pinging 192.168.0.126 with 32 bytes of data:

Reply from 192.168.0.126: bytes=32 time=lms TTL=127
Reply from 192.168.0.126: bytes=32 time<lms TTL=127
Reply from 192.168.0.126: bytes=32 time<lms TTL=127
Reply from 192.168.0.126: bytes=32 time<lms TTL=127
Ping statistics for 192.168.0.126:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 0ms, Maximum = lms, Average = 0ms</pre>
```

Вывод: Я разработал схемы разделения сетей на подсети, настроил устройства, проверил работу сетей и устранил неполадки.