Tabelle Fondamenti Logico Matematici

Deduzione Naturale Proposizionale Varie Logiche

connettivo/falso	introduzione	eliminazione
\wedge	$rac{A,B}{A\wedge B}i\wedge$	$\frac{A \wedge B}{A} e \wedge \frac{A \wedge B}{B} e \wedge$
V	$\frac{A}{A \lor B} i \lor \frac{B}{A \lor B} i \lor$	$\frac{A \lor B, \frac{A}{C}, \frac{B}{C'}}{C} e \lor$
\rightarrow	$rac{A \over \pi}{A o B} i o$	$\frac{A,A \rightarrow B}{B}e \rightarrow$
	$\frac{\stackrel{\mathcal{A}}{\pi}}{\stackrel{\perp}{\lnot}A}i\lnot$	$\frac{A}{\frac{\pi}{A}}e$
	$\frac{A, \neg A}{\perp} i \bot$	$\frac{\pm}{B}e\pm$

- La regola dell'eliminazione del \perp non si può usare in logica minimale
- La regola dell'introduzione del ¬ non si può usare in logica minimale
- La regola dell'eliminazione del \neg non si può usare in logica intuizionistica
- Le altre regole sono valide sia per la logica classica che per quella intuizionistica che per quella modale

Deduzione Naturale Predicativa Varie Logiche

quantificatore	introduzione	eliminazione
∃	$\frac{P(a)}{\exists x P(x)}i\exists$	$\frac{\exists x P(x), C}{C} e \exists$
\forall	$rac{P(a)}{orall xP(x)}iorall$	$\frac{\forall x P(x)}{P(a)} e \forall$

• Le regole valgono sia per logica classica che intuizionistica

Tableaux Logica Intuizionistica Proposizionale

connettivo	T-regola	F-regola
\land	$\frac{S,T(A \wedge B)}{S,TA,TB}T \wedge$	$\frac{S,F(A \land B)}{S,FA/S,FB}F \land$
V	$\frac{S,T(A\vee B)}{S,TA/S,TB}T\vee$	$\frac{S,F(A\vee B)}{S,FA,FB}F\vee$
\rightarrow	$\frac{S,T(A\to B)}{S,FA/S,TB}T\to$	$\frac{S,F(A\to B)}{S_T,TA,FB}F\to$
	$\frac{S,T(\neg A)}{S,FA}T\neg$	$\frac{S,F(\neg A)}{S_T,TA}F\neg$

Tableaux Logica Intuizionistica Proposizionale Estesi con Ripetizioni

connettivo	T-regola con eventuale ripetizione
\rightarrow	$\frac{S,T(A\to B)}{S,FA,T(A\to B)/S,TB}T\to$
	$\frac{S,T(\neg A)}{S,FA,T(\neg A)}T eg$

Tableaux Ottimizzati Logica Intuizionistica Proposizionale

	T-regola	F-regola	F_C -regola
\wedge	$\frac{S,T(A \wedge B)}{S,TA,TB}T \wedge$	$\frac{S,F(A \land B)}{S,FA/S,FB}F \land$	$\frac{S,F_C(A \land B)}{S_C,F_CA/S_C,F_CB}F_C \land$
V	$\frac{S,T(A\vee B)}{S,TA/S,TB}T\vee$	$\frac{S,F(A\vee B)}{S,FA,FB}F\vee$	$\frac{S,F_C(A\lor B)}{S,F_CA,F_CB}F_C\lor$
\rightarrow	$\frac{S,T(A \to B)}{S,FA,T(A \to B)/S,TB}T \to$	$\frac{S,F(A\to B)}{S_C,TA,FB}F\to$	$\frac{S.F_C(A \to B)}{S_C,TA,F_CB}F_C \to$
	$\frac{S,T(\neg A)}{S,F_CA}T eg$	$\frac{S,F(\neg A)}{S_C,TA}F eg$	$\frac{S,F_C(\neg A)}{S_C,TA}F_C \neg$

• S_C è definito come l'insieme S meno l'insieme delle formule segnate con FOttimizzazioni Implicazione Logica Intuizionistica Proposizionale

Antecedente Ant	$\mathbf{T} \rightarrow$
$Ant = A \ o \ Ant = \neg A$	$\frac{S,TA \to B}{S,FA/S,TB}T \to AN$
$Ant = A \wedge B$	$\frac{S,T(A \land B) \to C}{S,T(A \to (B \to C))}T \to \land$
$Ant = A \vee B$	$\frac{S,T(A\vee B)\to C}{S,TA\to C,TB\to C}T\to \vee$
$Ant = A \to B$	$\frac{\stackrel{S,T(A\to B)\to C}{\longrightarrow} C}{\stackrel{S,FA\to B,TB\to C/S,TC}{\longrightarrow} T} \to \to$

Implicazione segnata (versione corretta ma non completa di $T \rightarrow)$

$$\frac{S,TA \to B}{S,F_CA/S_C,TB} \overline{T \to}$$

Traduzione da Logica Classica Predicativa a Intuizionistica

Si ha
$$\vdash_{CL} A \iff \vdash_{INT} \tau(A)$$
 con:

- $\tau(A) = \neg \neg A$, con A atomica
- $\tau(A \wedge B) = \tau(A) \wedge \tau(B)$
- $\tau(A \to B) = \tau(A) \to \tau(B)$
- $\tau(A \vee B) = \neg(\neg \tau(A) \wedge \neg \tau(B))$
- $\tau(\neg A) = \neg \tau(A)$
- $\tau(\forall x A(x)) = \forall x \tau(A(x))$
- $\tau(\exists x A(x)) = \neg \forall x \neg \tau(A(x))$

Tableaux Logica Intuizionistica Predicativa

quantificatore	T-regola	F-regola
3	$\frac{S,T \exists x A(x)}{S,T A(a)} \text{(con a nuovo)}$	$\frac{S,F \exists x A(x)}{S,FA(a)}$
\forall	$\frac{S,T\forall xA(x)}{S,TA(a)}$	$\frac{S,F \forall x A(x)}{S_T,FA(a)} \text{(con a nuovo)}$

Tableaux Logica Intuizionistica Predicativa Estesi con Ripetizioni

quantificatore	T-regola	F-regola
\exists	$\frac{S,T \exists x A(x)}{S,T A(a)} \text{(con a nuovo)}$	$\frac{S,F \exists x A(x)}{S,FA(a)}$
\forall	$\frac{S,T \forall x A(x)}{S,TA(a),T \forall x A(x)}$	$\frac{S,F \forall x A(x)}{S_C,FA(a)} \text{(con a nuovo)}$

Tableaux Ottimizzati Logica Intuizionistica Predicativa

quantificatore	F_{C} -regola
3	$\frac{S,F_C \exists x A(x)}{S,F_C A(a),F_C \exists x A(x)}$
\forall	$\frac{S,F_C \forall x A(x)}{S_C,FA(a),F_C \forall x A(x)} $ (con a nuovo)

Ottimizzazioni Implicazione Logica Intuizionistica Predicativa

quantificatore Ant	$T \rightarrow$
∃	$\frac{S,T \exists x A(x) \to B}{S,T(\forall x (A(x) \to B))}$
\forall	$\frac{S,T \forall x A(x) \to B}{S,F \forall x A(x),T \forall x A(x) \to B/S,TB}$

Logica di Kuroda

Si usano le regole dei tableaux Intuizionistici predicativi tranne le seguenti regole:

$$\frac{S, F_C \, \forall x A(x)}{S_C, F_C A(a)} \overline{F_C \forall} \text{ (con a nuovo)}$$

$$\frac{S, T \forall x A(x) \to B}{S, F \forall x A(x), F_C \neg \exists x (A(x) \to B)/S, TB} \overline{T \to \forall}$$

$$\frac{S_C, TA \to B}{S_C, F_C A/S_C, TB} CL\text{-}T \to$$

 $\frac{S}{S_C}AT$ (se S contiene formule segnate F solo atomiche, più le T e F_C qualsiasi)

Logica T

- la logica classica, con tutte le sue proprietà
- l'assioma $\Box A \to A$
- l'assioma $\Box(A \to B) \to (\Box A \to \Box B)$
- la regola di inferenza che dice che se è dimostrabile A allora è dimostrabile $\Box A$, ovvero $\vdash A \Longrightarrow \vdash \Box A$

Logica S_4

- logica T
- l'assioma $\Box A \to \Box \Box A$

connettivo	T-regola	F-regola
\wedge	$\frac{S,T(A \wedge B)}{S,TA,TB}T \wedge$	$\frac{S,F(A \land B)}{S,FA/S,FB}F \land$
V	$\frac{S,T(A\vee B)}{S,TA/S,TB}T\vee$	$\frac{S,F(A\vee B)}{S,FA,FB}F\vee$
\rightarrow	$\frac{S,T(A\to B)}{S,FA/S,TB}T\to$	$\frac{S,F(A\to B)}{S,TA,FB}F\to$
コ	$\frac{S,T(\neg A)}{S,FA}T\neg$	$\frac{S,F(\neg A)}{S,TA}F\neg$

operatore T-regola F-regola
$$\square \qquad \frac{S,T(\square A)}{S,TA}T\square \qquad \frac{S,F(\square A)}{S_{\square},FA}F\square$$

$$S_{\square} = \{ T \square X | T \square X \in S \}$$

ovvero in S_{\square} tengo solo le formule di S che sono T "necessarie"

$$\frac{S, T(\Box A)}{T(\Box A), S, TA}T\Box$$

Tableaux Ottimizzati per Logica S_4

connettiv	VO	T-regola	F-regola	T _C -regola
\wedge		$\frac{S,T(A \wedge B)}{S,TA,TB}T \wedge$	$\frac{S,F(A \land B)}{S,FA/S,FB}F \land$	$\frac{S,T_C(A\wedge B)}{S,T_CA,T_CB}T_C\wedge$
		$\frac{S,T(\neg A)}{S,FA}T\neg$	$\frac{S,F(\neg A)}{S,TA}F\neg$	$\frac{S,\tilde{T}_C(\neg A)}{S,FA,T_C(\neg A)}T_C \neg$
		$\frac{S,T(\Box A)}{S,T_CA}T\Box$	$\frac{S,F(\Box A)}{S_C,FA}F\Box$	$\frac{S,T_C(\Box A)}{S,T_CA}T_C\Box$

$$S_C = \{T \square X | T \square X \in S\} \cup \{T_C Y | T_C Y \in S\}$$

Ovvero in S_C manteniamo sia le formule $T\Box$ che le formule T_C di S

Logica K_1

- logica S_4
- l'assioma $\Box \Diamond A \rightarrow \Diamond \Box A$

Tableaux Ottimizzati per Logica K_1

connettivo	T _C -regola	F _C -regola
\land	$\frac{S,T_C(A \land B)}{S,T_CA,T_CB}T_C \land$	$\frac{S_C, F_C(A \land B)}{S_C, F_C A / S_C, F_C B} F_C \land -f$
Г	$\frac{S,T_C(\neg A)}{S,F_CA}T_C \neg$	$\frac{S,F_C(\neg A)}{S,T_CA}F_C eg$
	$\frac{S,T_C(\Box A)}{S,T_CA}T_C\Box$	$\frac{S,F_C(\Box A)}{S_C,F_CA}F_C\Box$

$$S_C = \{T \square X | T \square X \in S\} \cup \{T_C Y | T_C Y \in S\} \cup \{F_C Z | F_C Z \in S\}$$

Ovvero in S_C manteniamo sia le formule $T\Box$ che le formule T_C che quelle F_C di S T-regole e F-regole come S_4

Regola di Finning

$$\frac{S}{S_C}TH, \ S_C \neq \emptyset$$

Se non posso applicare la regola di Finning, avendo quindi S e non S_C :

$$\frac{S, F_C(A \wedge B)}{S_C, FA, F_C(A \wedge B)/S_C, FB, F_C(A \wedge B)} F_C \wedge$$

Logica $K_{1.1}$

- logica S_4
- l'assioma $\Box(\Box(A \to \Box A) \to A) \to A$

Tableaux Ottimizzati per Logica $K_{1.1}$

connettivo	T-regola	F-regola
\wedge	$\frac{S,T(A \wedge B)}{S,TA,TB}T \wedge$	$\frac{S,F(A \wedge B)}{S,FA/S,FB}F \wedge$
_	$\frac{S,T(\neg A)}{S,FA}T\neg$	$\frac{S,F(\neg A)}{S,TA}F eg$
	$\frac{S,T(\Box A)}{S,T_CA}T\Box$	$\frac{S,F(\Box A)}{S_C,FA,F_C(A \land \neg \Box A)}F\Box$

connettivo	T _C -regola	F _C -regola
\land	$\frac{S,T_C(A \land B)}{S,T_CA,T_CB}T_C \land$	$\frac{S_C, F_C(A \land B)}{S_C, F_C A / S_C, F_C B} F_C \land -f$
	$\frac{S,T_C(\neg A)}{S,F_CA}T_C \neg$	$\frac{S,F_C(\neg A)}{S,T_CA}F_C eg$
	$\frac{S,T_C(\Box A)}{S,T_CA}T_C\Box$	$\frac{S,F_C(\Box A)}{S_C,F_CA}F_C\Box$

$$S_C = \{T \square X | T \square X \in S\} \cup \{T_C Y | T_C Y \in S\} \cup \{F_C Z | F_C Z \in S\}$$

Ovvero in S_C manteniamo sia le formule $T\Box$ che le formule T_C che quelle F_C di S

Regola di Finning

$$\frac{S}{S_C}TH, S_C \neq \emptyset$$

Se non posso applicare la regola di Finning, avendo quindi S e non S_C :

$$\frac{S, F_C(A \wedge B)}{S_C, FA, F_C(A \wedge B)/S_C, FB, F_C(A \wedge B)} F_C \wedge$$

Logica S_5

- logica S_4
- l'assioma $\Diamond A \to \Box \Diamond A$

Tableaux Ottimizzati per Logica S_5

connettivo	T-regola	F-regola	T _C -regola
\land	$\frac{S,T(A \wedge B)}{S,TA,TB}T \wedge$	$\frac{S,F(A \land B)}{S,FA/S,FB}F \land$	$\frac{S,T_C(A \wedge B)}{S,T_CA,T_CB}T_C \wedge$
	$\frac{S,T(\neg A)}{S,FA}T\neg$	$\frac{S,F(\neg A)}{S,TA}F\neg$	$\frac{S,T_C(\neg A)}{S,FA,T_C(\neg A)}T_C \neg$
	$\frac{S,T(\Box A)}{S,T_CA}T\Box$	$\frac{S,F(\Box A)}{S_C,FA,[S_u]}F\Box$	$\frac{S,T_C(\Box A)}{S,T_CA}T_C\Box$

$$S_C = \{T \square X | T \square X \in S\} \cup \{T_C Y | T_C Y \in S\}$$

Regola di jumping

$$\frac{S, [S_u]}{S_C, [S_{u'}], sB} JP, \text{ con } sB \in S_u$$

Ovvero con la regola di jumping si tolgono da S tutte le formule T, che non siano necessitate, e F e da $[S_u]$ si ottiene $[S_{u'}]$ estraendo la formula sB

$$[S_u] = S - S_C$$

ovvero $[S_u]$ è l'insieme che contiene solo le formule di S segnate T ed F

$$[S_{u'}] = (S_u \cup \{S - S_C\}) - \{sB\}$$

quando si applica la regola di jumping si estrae da $[S_u]$ una formula segnata T o F, che chiamo sB, e chiamo l'insieme rimanente $[S_{u'}]$