Strategies for computing the scalar self-force on a Schwarzschild background

Steven Dorsher

Louisiana State University

September 26, 2017

Gravitational Waves

Figure: LIGO detection, September 14, 2015. General relativity was tested by comparing inpsiral with merger/ringdown phases.

Extreme Mass Ratio Inspirals

Laser Interferometer Space Antenna

Figure: Laser Interferometer Space Antenna, which will operate around launches in early 2030's, ESA-NASA partnership, will detect EMRI's

Toward LISA EMRI templates

- ▶ Generating LISA EMRI templates require resolving 10^6 orbits with precision on the order of $\delta P/P \sim 10^{-6}$ Danzmann, Karsten. LISA: A proposal in response to the ESA call for L3 mission concepts (2017)
- ▶ For EMRI's, the self-force approximation is used in the limit where the mass ratio is large $(10^4 \text{ to } 10^6)$
- Nearly equal mass numerical relativity uses spacetimes with initial conditions smoothly matched between the two blackholes, consistently evolved
- ▶ EMRI's have an orbital evolution timescale that scales as M/μ , and a period that scales as M. These two widely different timescales necessitate a different numerical approach than numerical relativity.
- ► Self-force is a perturbative approximation in either the distance from the small black hole or the mass ratio.

Self-force in a classical atom

- Consider a classical atom without quantization (not even a Bohr atom)
- The electron orbits the nucleus
- It radiates energy because it is accelerated
- Because it radiates energy, it becomes more tightly bound
- The electron spirals inward
- ► The self-force of the particle interacting with its own field causes this

Self-force in general relativity

- ▶ In general relativity, test particles move along geodesics
- A compact object is not a test particle
- ▶ Motion \rightarrow radiation \rightarrow energy and angular momentum loss \rightarrow inspiral
- ► The self-force is a finite-mass particle's interaction with its own field that causes the inspiral
- Applies to scalar, electromagnetic, and tensor fields on a gravitational background
- ► We use perturbative expansion in terms of powers of radius from small black hole— perturbations of the orbit

Approximations and Goals

The long term goal for the field is to generate extremely precise EMRI gravitational wave templates for LISA.

Approximations:

- lacktriangle Scalar rather than tensor waves (Ψ rather than $h_{\mu
 u}$)
- Non-rotating black holes: Schwarzschild spacetime
- Self-force causes a particle to inspiral as it emits radiation
- We use the Detweiler-Whiting effective source as implemented by Barry Wardell
- ► In our self-consistent evolution, our self-force naturally takes into account the past history of the particle
- ▶ Niels Warburton assumes: the particle has been on the same geodesic for all time when he calculates the self-force

Our goal is to implement a highly accurate self-consistent evolution and do a comparison study with Niels Warburton.

Schwarzschild spacetime without a source

- Wave equation: $\Box \Psi = \frac{1}{\sqrt{-g}} \partial_{\mu} \left(g^{\mu\nu} (\partial_{\nu} \Psi) \sqrt{-g} \right) = 0$
- Multipole moment decomposition to account for angular dependence
- Quasinormal mode (QNM) ringing
 - higher frequencies and faster decay for higher I
 - due to interactions near peak of potential
- Power law tails
 - go as $t^{-(2l+3)}$
 - ▶ follow the QNM
 - due to scattering off spacetime far from the peak of the potential

Quasinormal modes

Figure: l=2 has a higher frequency and a faster decay rate than l=1

Power law tails

Figure: l=1 decays as t^--5 as expected; however, l=2 has no power law tail due to truncation error

Scalar charge on a circular orbit with an effective source

- ► Self-force causes the particle to emit radiation and inspiral. An artifical force holds it on a circular orbit.
- Regularize field: $\Psi^R = \Psi^{ret} \Psi^S$
- ▶ Detweiler-Whiting singular field: Steven Detweiler, Bernard F. Whiting (2002). Phys. Rev. D 67, 024025
- $\blacktriangleright \ \Box \Psi^R = \mathcal{S}_{eff} = \Box \Psi^{ret} \Box (W\tilde{\Psi}^S) = -q4\pi \int \delta_4(\mathsf{x},\mathsf{z}(\tau'))d\tau'$
- ▶ Wave equation for retarded field has delta function effective source proportional to charge in the scalar case.
- ▶ In tensor case for gravitational field, perturbative expansion in terms of powers of radius: *Anna Heffernan, Adrian Ottewill, Barry Wardell (2012). Phys. Rev. D 86, 104023*
- ▶ I have ported this from Fortran to C++ with partially redesigned structure. I have succeeded in reproducing the results to roundoff error precision.

Circular orbit roundoff error comparison between languages

Figure: Relative and absolute errors are at the roundoff level– 10^{-10} to 10^{-12} . Oscillations do not appear in the l=0 mode but appear with the orbital period in the l=1 mode.

Eccentric orbits using Peter Diener's simulation

- $\blacktriangleright \chi, \phi \rightarrow \text{precession}$
- ► The orbit is artifically held on a geodesic to counteract the self-force generating the scalar waves
- **p**, e held fixed, monotonically evolving χ , ϕ
- $ightharpoonup r_{periastron} = rac{pM}{1+e}, \ r_{apastron} = rac{pM}{1-e}$
- ► Radial self-force: $F_r = q \partial_r \Psi^R$
- Warburton initial conditions: particle has been on the same geodesic for all time
- Diener initial conditions: field starts at zero with particle at aphelion

Precession of the eccentric orbit

Figure: Precession of the eccentric orbit. p = 9.9, e = 0.0.

Evolution of the radial self-force for different initial conditions

Figure: Modes zero through seven are shown. Zero through five have smooth starts. Six and seven have transients.

Addressing instabilities and error

- ▶ I characterized the error in the eccentric evolutions due to
 - ▶ Neglecting the first order Richardson extrapolation
 - ▶ Choice of start and end modes in mode sum fit
 - ▶ Choice of number of terms in mode sum fit
 - Selection of weights associated with mode sum fit
- ▶ Concluded the first three errors were comparable and at the 10⁻⁴ level and the fourth was negligible. This is a one order of magnitude improvement over a previous study that made use of circular orbits instead of eccentric orbits. *Ian Vega and Steven Detweiler (2008). Phys Rev D. 77, 084008.*

The first order Richardson extrapolation

- ▶ Discontinuous Galerkin: ODE solver with errors that scale as h^{n+1}
- ▶ Truncation error is skewed entirely to one side when measured using L_0 or L_2 error
- Convergent code approaches an asymptote
- ► Assume $F_r(n, l) = F_{inf}(l) + c(l) \exp(-\alpha n)$
- ▶ Use three different DG orders arranged in steps of four to obtain an extrapolation to *F*_{inf} from some starting order

Well-converging data

Figure: I=0 at t=370. This data converges very cleanly until it hits roundoff noise at high DG orders.

Error due to neglecting the first order Richardson Extrapolation

Figure: Relative error between DG starting orders and F_{inf} vs time. For DG order 36 where roundoff error sets in, the error is about 10^{-4} .

The I-mode sum and fit

$$F_r(l,t) = \frac{A(t)}{(2l-1)(2l+3)} + \frac{B(t)}{(2l-3)(2l-1)(2l+3)(2l+5)} + \frac{C(t)}{(2l-5)(2l-3)(2l-1)(2l+3)(2l+5)(2l+7)} + \dots$$
(1)

Anna Heffernan, Adrian Ottewill, Barry Wardell (2012). Phys. Rev. D 86, 104023

- Fit from I_{min} to I_{max} .
- Sum numerically from zero to l_{max} then use fit coefficients to analytically sum to $l=\infty$

I-mode fit

Figure: I-mode versus F_{inf} .

Smooth evolution of total radial self-force

Figure: Total radial self-force including sum to $I = \infty$ over time

Summary of I-mode fit results

- ► The best $I_{min} = 14$ and $I_{max} = 25$. The relative error in these choice of values is 10^{-4} .
- ► The relative error due to the number of terms used in the fit is 10⁻⁴.
- ▶ The error due to the use of weights in fitting is insignificant.

Comparison study of self-consistent evolution to geodesic evolution

- Self-consistent evolution accounts for the interaction of the particle with the field it has generated in the past naturally since it is evolved in the time domain
 - Uses the Detweiler-Whiting singular field
 - ► The particle position evolves according to the geodesic equation with an acceleration on the right hand side
 - ► The mass of the particle also evolves according to the work being done on it
- ► Geodesic evolution uses an self-force that assumes the particle has been evolving on the same geodesic for all time
 - Self-force can be efficiently calculated in the frequency domain due to periodicity
 - Frequency domain component is good for initial conditions without transients
 - ► Evolves in the time domain after generating the self-force in the frequency domain
 - ► Cannot handle effects where the timescale of the orbital evolution is short compared to the period

Long term goals

- Goal is to compare Diener's self-consistent code using Warburton's initial conditions and Wardell's effective source to Warburton's geodesic evolutions using frequency domain self force.
- ▶ I will run code, analyze physics, and debug, as necessary.
- In particular, some instabilities in the self-consistent evolutions need to be addressed before a publication will be possible. I will help look for a solution to those instabilities.
- ► Timescale: highly variable. 2-3 years potentially?

Extra slides

Flat space evolution

Figure: Gaussian initial conditions, flat spacetime

Flat spacetime error convergence

Figure: L_2 error converges exponentially until it hits roundoff noise with DG order for sinusiodal initial conditions with ten elements of size h = 0.01.

Residuals to the I-mode fit

Figure: $I_{min} = 14$ is a better fit than $I_{min} = 8$ both because it is less systematically biased and because it has an amplitude an order of magnitude smaller. Both fits end at $I_{max} = 30$.

Roundoff noise in F_{inf} at high I_{max}

Figure: $l_{min} = 14$ and $l_{max} = 25$ appear to be good start and stop values. Roundoff noise is evident at higher I.

Error due to I-mode selection, number of terms

Figure: Relative errors in both of these effects appear to be at the 10^{-4} level.