第二节 醚和环氧化合物

一、醚的分类和命名

分	类	结构特点	命名实例
按烃基品	简单醚	氧原子所连 接 的 烃 基 相同	CH ₃ CH ₂ OCH ₂ CH ₃ (二)乙醚 cthyl ether 二苯醚 diphenyl ether
是否对称	混合醚	氧原子所连接 的 烃 基不同	CH ₃ OCH ₂ CH ₃ 甲乙醚 ethyl methyl ether 苯甲醚 methyl phenyl ether
按烃基的种类	饱和醚	氧原子所连 接的烃基均 为饱和烃基	CH ₃ H ₃ C—CH—CH—CH ₃ OCH ₃ 2-甲基-3-甲氧基丁烷 2-methoxy-3-methyl butane CH ₃ OCH ₂ CH ₂ CH ₂ OH 3-甲氧基丙醇 3-methoxy propanol
	不饱和醚	氧原子连接 不饱和烃基	H ₂ C=CHOCH=CH ₂ 二乙烯基醚 diethenyl ether CH ₃ CH ₂ OCH=CH ₂ 乙基乙烯基醚 ethyl vinyl ether
	环醚	氧原子与烃 基连成环	四氢呋喃 2-甲基-2,3-环氧丁烷 tetrahydrofuran 2-methyl-2,3-epoxybutane

二、醚的定义、结构及物理性质

定义	水分子 R-O-1	子中的两个氢原子分别被两个烃基取代的化合物称为醚(ether)。醚的通式为R'
结构	与水分	子结构相似: CH ₃ 111.7° CH ₃ CH ₄ CH ₅ CH ₇ CH
物理	性状	常温下甲醚和甲乙醚为气体,大多数醚为无色液体。低级醚具有高挥发性。 醚分子间不能形成氢键,但能与水分子形成氢键,故醚在水中有一定溶解性
性质	波谱 性质	IR: C-O 伸縮振动 1300 ~ 1000cm ⁻¹ ¹ H-NMR: O-C-H 的化学位移值 3.3 ~ 3.9

三、醚的化学反应

詳盐 的形 成	$C_2H_5\ddot{O}C_2H_5 \xrightarrow{\Re H_2SO_4} C_2H_5 - \overset{H}{O} - C_2H_5 + HSO_4$	醚是路易斯碱,可与强 酸或其他路易斯酸成盐 或酸碱配合物
醚键断	$CH_3OCH(CH_3)_2 + HI \xrightarrow{\triangle} CH_3I + (CH_3)_2CHOH$ 反应机制 $(S_N 2)_2$: $H_3C = O - R + H - X \longrightarrow H_3C = O - R + X - X + H_3C = O - R \longrightarrow CH_3X + ROH$ 不同氢卤酸使醚键断裂的能力为: $HI>HBr>HCI$	混合醚反应时,一般是 较小的烃基与卤素结合 形成卤代烃
	$(CH_3)_3COCH_3$ $\xrightarrow{\text{被H}_2SO_4}$ $\xrightarrow{\text{CH}_3OH}$ $+$ $(CH_3)_2C=CH_2$ 反应机制 $(S_N1)_2$: $(CH_3)_3COCH_3$ $\xrightarrow{\text{被H}_2SO_4}$ $+$ $(CH_3)_3C\overset{\dagger}{O}CH_3$ $+$ $(CH_3)_3C\overset{\dagger}{O}CH_3$ $+$ $(CH_3)_3C\overset{\dagger}{C}CH_3$ $+$ $(CH_3)_3C\overset{\dagger}{C}CH_3$ $+$ $(CH_3)_4C\overset{\dagger}{C}CH_2$ $+$ $(CH_3)_4C\overset{\dagger}{C}CH_3$ $+$ $(CH_3)_4C\overset{\dagger}{C}CH_4$ $+$	醚键氧所连接的两个碳原子有一个是叔碳时, 反应的主要产物是烯烃
	O+CH3 + HI	芳醚是烷氧键断裂生成 卤代烃和酚
自动氧化	$CH_3CH_2OCH_2CH_3 + O_2 \longrightarrow CH_3CHOCH_2CH_3$ $O-OH$	过氧化物遇热易爆炸, 用乙醚前需检验

四、醚的制备

醇分子间 脱水	$2ROH \xrightarrow{H_2SO_4} ROR + H_2O$ $2C_2H_5OH \xrightarrow{H_2SO_4} CH_3CH_2OCH_2CH_3$	此法只适合制 备对称醚
威廉姆逊合成法	$CH_3ONa + H_2C = CHCH_2CI \longrightarrow CH_3OCH_2CH = CH_2$ $(CH_3)_3C \longrightarrow ONa + CH_3CH_2X \longrightarrow (CH_3)_3COCH_2CH_3$	可制备单醚或 混醚。卤烃为 伯或仲卤烃, 叔卤烃易消除

五、冠醚

定义	分子中具有+CH ₂ CH ₂ +重复单位的大环多醚称为冠醚 (crown ether)
命名	短離的命名方式为 "X-冠-Y", 如:
	15-冠-5 18-冠-6
用途	冠醚可以与金属离子形成配合物,不同的冠醚,分子中的空穴大小不同,可络合不同的金属离子,具有较高的选择性。例如:
	作为相转移催化剂 (PTC)。冠醚分子内的氧原子可与水形成氢键,具有亲水性;而其外部的碳、氢原子具有疏水性,使它可将水相中的试剂包在内部带到有机相中来,可加速非均相反应。例如:

六、环氧化合物

定义		1,2- 环氧化合物简称环氧化合物 (epoxide)	
结构 特点		是一个张力较大的三元环,比开链醚活泼,易发生开环反应	
	代表反应	H ₂ O/H ⁺	(注乙醇) (乙醇)
开环反应	机制	酸催化开环: C C H C C Nu C C O H	氧的质子化使 碳氧键极性增强,有利于亲 核试剂进攻 亲核试剂的亲 核能力较强
	取向	0 O O O O O O O O O O O O O O O O O O O	亲核试剂进攻 位阻较小的碳 原子
		酸性 Ph C H HCl PhCHCH2OH CHCl3 PhCHCH2OH	亲核试剂进攻 取代基较多的 碳原子
		体 H C	酸、碱条件下,均为 S _N 2 机制

七、硫醇和硫醚

(一)硫醇和硫醚的命名

硫醇	CH₃SH 甲硫醇 methanthiol	CH₃CH₂SH ∠硫醇 ethanthiol CH₂CH₂OH SH 2-巯基乙醇 2-mercaptoethanol	CH ₂ CHCH ₃ SH SH 1,2-丙二硫醇 1,2-prodithiol	硫醇的命名与醇类似,只在"醇"字前加上"硫"即可。当分子中同时含有羟基和巯基时,以醇为
硫醚	CH ₃ SCH ₃ (二)甲硫醚 dimethylsufide	CH ₃ SCH ₂ CH ₃ 甲乙硫醚 ethyl methyl sufide	PhSCH ₂ CH ₃ 苯乙硫醚 ethyl phenyl sufide	硫醚的命名与醇类似,在"醚"字前加上"硫"即可

(二)硫醇和硫醚的化学性质

硫醇	硫醇的酸性	$R-SH + NaOH \longrightarrow R-SNa + H_2O$ $RSH + HgO \longrightarrow (RS)_2Hg \downarrow + H_2O$ $RSH + Pb(Ac)_2 \longrightarrow (RS)_2Pb \downarrow + HAc$ $H_2C-SH \qquad H_2C-S \downarrow HG \rightarrow HC-S \downarrow Hg \downarrow$ $HC-SH + Hg^2 \longrightarrow HC-S \downarrow Hg \downarrow$ $H_2C-OH \qquad H_2C-OH$	硫醇的酸性比醇 和水强 重金属中毒解毒 原理
	氧化反应	$2RSH + 1/2O_2 \longrightarrow RS-SR + H_2O$ $2RSH + H_2O_2 \longrightarrow RS-SR + 2H_2O$ NH_2 HS $COOH$ NH_2 $HOOC$ S S $COOH$ NH_2 E	硫醇易被氧化成二硫化物;在强氧化剂作用下被氧化成磺酸

续表

		
锍 盐的 生成	$R-S-R+H_{2}SO_{4}\longrightarrow R-S-R+H_{3}O_{4}$ $\downarrow H_{2}O \longrightarrow R-S-R+H_{3}O^{+}+HSO_{4}^{-}$ $H_{3}C \longrightarrow CH_{3} \longrightarrow CH_{3}$ $\downarrow H_{3}C \longrightarrow CH_{3} \longrightarrow CH_{3}$	硫醚与卤代烷作 用生成的锍盐较 稳定,易溶于水, 在水中以R ₃ S [*] 和X-存在
硫醚氧化反应	$R-S-R$ $\stackrel{[O]}{\longrightarrow}$ $R-S$	常温下, 硫醚可被硝酸、铬酐、过氧化氢等氧化成亚砜。在高温下,被发烟硝酸、高锰酸钾等强氧化剂氧化成砜

(孙学斌)