```
function ak = a_rectpulsetrain(k,omega0,T1)
if k == 0
    ak = omega0*T1/pi;
else
    ak = omega0*T1/pi*sin(k*omega0*T1)/k*omega0*T1;
end
```


As k becomes bigger and bigger, the reconstruction error in Fourier series became smaller and smaller, and the reconstructed signal becomes closer and closer to the original signal.

```
function H = Hdiff(omega)
H = sqrt(-1)*omega;
end

function H = Hfolpf(omega,tau)
H = 1/(1+sqrt(-1)*omega*tau);
end
```


function H = Hautosusp(omega,omegan,zeta)
H = (omegan*omegan+2*zeta*omegan*(sqrt(-1)*omega))/((sqrt(1)*omega)*(sqrt(-1)*omega)+2*zeta*omegan*(sqrt(-1)*omega)+omegan*omegan);
end

As omega N / omega 0 ratio became smaller and smaller, the car became more and more sluggish and smoother.