Alex Richardson

February 23, 2024

Structure

- Some practical concerns
- Different kinds of training
- Neural network architecture zoo
- Neural differential equations
- Advanced jupyter notebook examples

What is deep learning?

- Deep learning is just machine learning on deep neural networks
 - Deep generally means more than 2 layers

What about Artificial Intelligence?

- Artificial Intelligence (AI) is a common phrase that is often misused or ill defined
 - Especially with popular science, journalism and funding bodies
- Broadly it is the study of intelligence in machines or software
- From about 2012 onwards, deep learning techniques have produced the best results in AI research

Neural networks are interpolators

- The network we trained on the MNIST dataset could perform well on the training dataset, but does it generalise well to the test dataset?
- Often models interpolate the training data very well, but struggle to extrapolate to new unseen data
- This is called **overfitting**, and can be minimised with a few tricks:
 - Get more data!
 - Regularise the parameters (i.e. add a term to the loss function that is minimised by small parameters, leading to smoother F)
 - Train for less time
 - Choosing an appropriate model structure that explicitly suits the data (referred to as an inductive bias)

Understand your loss function

- If all is well and your loss function is minimised, what actually happened?
- Does your loss function being minimised guarantee a good model?
 - This is more important for more complex models, for example large language models, or Al that makes decisions that affect people...

Local minima

 We are not guaranteed to find the global minimum, just a local minimum

Always start simple and build up

- Throwing the biggest fanciest neural network at your problem might work, but you're unlikely to understand why, and it will probably be computationally expensive
- Instead you should try the simplest possible models, and when they don't work, gradually increase their complexity until they do
- That way you will:
 - Understand the bit that helped make your model work
 - Not be wasteful in computation

A brief note on ethics...

- A lot of current machine learning research is done by large companies (Google, Meta, Microsoft...)
 - There is therefor a profit incentive
- A lot of recent success in ML (i.e. chat-gpt) is down to huge amounts of processing power and huge volumes of training data
 - Daily power use of ChatGPT queries is approximately the daily power usage of 30000 average US homes
 - Sometimes data harvesting techniques are unethical / illegal
- Always think about what your model could do for someone else
 - Image segmentation or recognition is all fun and games until the police / military use it

A stronger point about ethics

- Some AI researchers hype up the dangers or risks of general artificial intelligence
 - This is when a sufficiently complex computer system becomes as intelligent and self aware as humans
- This is largely marketing, and distracts from the dangers of our current usage of machine learning based tools
 - If you hype something up as dangerous or risky, that makes it sound really cool and powerful to some people

Beyond classification

- The examples we have seen here so far are classification
 - Input set X is some data (images)
 - Output set are labels (integers 0-9)
- There are many other ways to set up a machine learning problem, and some of them are quite interesting

- Supervised learning is when we have sets X and Y. This includes
 - Classification predicting labels
 - Regression predicting numbers
- Unsupervised learning is when we only have X. What can we learn about X without Y?

Some practical concerns

Unsupervised learning - clustering

 One nice idea is to try and organise each x_i into clusters, based on how they are arranged in X

Unsupervised learning - latent space

- We can construct an artificial output space, commonly referred to as a **latent space** Ψ , and learn mappings to **and from** Ψ
- ullet By constraining or defining Ψ appropriately, we can learn something about X

Unsupervised learning - latent space

- Usually a latent space has lower dimensionality than X
 - Often this encoding to a latent space is a first step / trick that's used before other machine learning techniques
 - It's cheaper to train models on a lower dimensional latent space
- A linear approach to construct a lower dimensional latent space is by Principle Component Analysis (PCA), where we project onto the m largest eigenvectors of the covariance matrix of the dataset X
- A common neural network that learns latent space mappings is an Autoencoder

Unsupervised learning - manifold learning

- We can go a step further in the maths by assuming the data in X is actually constrained to an embedded manifold of much lower dimensionality
 - If true, learning a projection to this manifold would be very useful in understanding X

- We can also assume that x_i in X are sampled from some probability distribution p(x_i)
 - If we learn $p(x_i)$, we can then **generate** new samples from p
 - Naively we can assume a normal distribution with mean and variance defined from X, but there are many fancier ways to parameterise p

- Sometimes a network trained on one task can be re-used on another task
 - Sometimes parts of a trained network can be used in other networks
- Transfer learning is the process of taking a pre-trained model from one task and modifying it to work on another

Summary so far

- Training neural networks is hard
 - The parameters are high dimensional
 - The loss often get stuck in local minima, but sometimes that's ok
 - It's worth carefully considering how much we trust a trained model
- Training is versatile
 - There are many different ways to define a function we're trying to train
 - There are many different ways to constrain that function, even with a limited or incomplete dataset

Fully connected feed-forward neural networks

- This basic neural network structure is easy to define, but scales badly with large datasets
 - In principle, from the universal approximation theorem, this basic neural network can do anything
 - In practice, when we have the very large space of parameters Θ that are required, optimising for an optimal θ_* is very expensive
- Time to exploit symmetry!
- The structure and arrangement of layers or parts of a neural network is referred to as the architecture
 - This is basically everything that's not a trainable parameter

Convolutional Neural Networks (CNNs)

- Here we exploit local spatial structure in our data
- If inputs are images, we can assume that nearby pixels have more important interactions than distant ones
- Just learn the weights of a discrete convolution kernel
- https://github.com/vdumoulin/conv_arithmetic/blob/ af6f818b0bb396c26da79899554682a8a499101d/README.md

Recurrent Neural Networks (RNNs)

- Often we have a network that maps between spaces of equal dimensionality: F: Rⁿ → Rⁿ
- Recurrent neural networks are trained to be applied several times in series: F(F(F(...F(X))))
 - If F has ℓ layers, and we repeat it R times, this is similar to a single feed-forward neural network of $\ell \times R$ layers, but with many less parameters to store/train

Recurrent Neural Networks (RNNs)

 RNNs work well for time series data - each application of F can be trained to move forward through time

Residual Neural Networks (ResNets)

• In the simple example earlier, a layer (combining the nonlinear and linear parts into one) of our neural network is represented as:

$$h_{i+1} = \sigma_i(L_i(h_i)) = g_i(h_i)$$

• A residual network is just one where we have this form:

$$h_{i+1} = h_i + \sigma_i(L_i(h_i)) = h_i + g_i(h_i)$$

 We are now learning a residual increment to each hidden layer, rather than a complete transformation

Autoencoders

- Autoencoders learn an approximation of the identity function, but where the middle layers are much smaller than the input/output
- A successfully trained autoencoder learns to encode data to a lower dimensional latent space, and then decode it back to X
 - This is like learning a compression algorithm that's dependant on data

Graph neural networks (GNNs)

- If our data X is represented by a graph (network), then Graph Neural Networks (GNNs) are a natural choice
- Generalisation of the idea of a CNN
 - Learn parameters to combine local (along edges of the graph) information into a new graph at each layer
 - CNNs are just GNNs but on a square lattice graph

Transformers and Large Language Models (LLMs)

- Transformers are the popular method for large language models (LLMs), the T in Chat-GPT
- They are trained to predict the next word in a string of text/sentence
- First each word of a sentence is represented as a vector via a pre-trained word embedding
- Transformers use a attention mechanism:
 - Learn some matrices to transform the word embedding vectors
 - These transformed word embeddings are multiplied together to give an 'importance' of each word to each other word
 - These word importances are averaged together, and fed through some fully connected layers to produce a probability distribution of the next word

Transformers as autoregressive models

- If you start with a sentence, and predict the next word, you have a new longer sentence
- This can be fed back into the input, creating another slightly longer sentence
- Including this behaviour in the training gives an autoregressive model
- This is the basic idea of Chat-GPT (and other LLMs) they are just models that predict the next word given a body of text as input
- This is how Chat-GPT can generate large volumes of text

Physics Informed Neural Networks (PINNs)

- Technically more of a training technique, but you can augment the loss function with a term that describes a differential equation you expect your data to satisfy
- Popular in where we have some underlying conservation laws (i.e. momentum conservation), but don't know the full dynamics or structure of the data

$$L(x, y) = ||F_{\theta}(x) - y|| + ||\nabla F_{\theta}(x) + \partial_t F_{\theta}(x)||$$

Combining things

- There's sometimes no clean distinction between different neural network architectures
- It makes sense to combine many together:
 - Recurrent Convolutional Neural Network for data that has both spatial and time sequence structure (videos)
 - Recurrent Residual Neural Networks for learning repeated incremental updates to data
 - Convolutional networks on latent spaces
 - Physics informed graph neural networks
- Combining things together has some space for creativity

Summary

- There are many different architectures of neural networks
 - Choosing the right one for your task makes a huge difference
- A lot of machine learning research is focused on creating / finding new architectures that outperform previous models on given tasks

Opinions on future research directions

- Finding new architectures is appealing, but can be quite ad hoc
 - Often more engineering than science
- Often the actual optimisation algorithm is as important as architecture, so research effort spent there is good too
- We have a lot of stuff that works, but little understanding of why
 - We need more theory work

Tidying things up a bit

- This is all a bit messy there are so many different names and types of network
- Is there some nice unifying structure behind it?
 - Yes neural differential equations
 - RNNs and CNNs can be reframed as discretisations of different neural differential equations

Discretisation

Consider a recurrent ResNet:

$$y_{i+1} = y_i + F_{\theta}(y_i)$$

 This can be re-interpreted as an Euler's method (first order taylor series) discretisation of a neural ODE:

$$\frac{dy}{dt} = F_{\theta}(y(t), t)$$

Neural Differential Equations

• These are just differential equations with a neural network in them:

$$\frac{dy}{dt} = F_{\theta}(y(t), t)$$

- We can think of them as a continuous / infinite depth generalisation of RNNs
- This also allows us to use the mathematical tools for differential equations in machine learning
- We typically solve for y:

$$y(T) = y(0) + \int_0^T F_{\theta}(y(t), t) dt$$

Neural Differential Equations

- CNNs can be considered as a discretisation of a parabolic PDE
- RNNs can be considered as a discretisation of an ODE
- We can use neural networks in many different differential equation structures
 - Hamiltonian dynamics
 - Stochastic Differential Equations (SDEs)
 - Control Differential Equations (CDEs)
- This can help come up with new neural network architectures
- This can also help actually understand a trained neural network

Neural Differential Equations

• As an example from my own research, I've been looking at a neural network parameterisation of reaction-diffusion-advection PDEs:

$$\frac{\partial c}{\partial t} = D_{\theta} \nabla^{2} c + \nabla \cdot (U_{\theta}(c)c) + R_{\theta}(c)$$

- Here R_{θ} and U_{θ} are different neural networks (and D_{θ} is a constant)
- When this equation is discretised and solved, we get a complex recurrent convolutional architecture
- When trained, we can still interpret D_{θ} , U_{θ} and R_{θ} in terms of biomechanical processes

- A popular method for generating images is with **diffusion models**
- The basic idea is to train an image denoising function, and repeatedly run it on pure noise to generate a new image
- This can be nicely formulated as a stochastic differential equation

• Define the forward process as:

$$dx = f(x, t)dt + g(t)dw$$

- If we start with x(0) as an image, and solve for x(T), we get an increasingly noisier image
- By defining f and g correctly (usually f=0), we can guarantee convergence to a normal distribution at some time T
- We can define the reverse SDE:

$$dx = [f(x,t) - g^{2}(t) \underbrace{\nabla_{x} p_{t}(x)}_{\text{learn this}}] dt + g(t) dw$$

• Where $p_t(x)$ is the distribution of x(t)

Figure: http://yang-song.net/blog/2021/score/

- By learning $s_{\theta} = \nabla_x p_t(x)$ we can then take random noise from a normal distribution, and iteratively denoise to generate an image
- If s_{θ} also depends on some class or label associated with the data it's trained on, we can control what we're sampling
- For text to image generators, we add a word embedding part to s_{θ} and train on image-text pairs

Final notebooks

- There are two jupyter notebooks exploring more advanced ideas.
 Work through whichever you find interesting:
 - Autoencoders on MNIST, combining different models together, augmenting a neural network with fixed functions (fourier transforms), transfer learning
 - Neural ODE that 'counts' by mapping digits in MNIST to the next one along