RBE 500 Group Assignment #1

Joshua Gross, Arjan Gupta, Melissa Kelly

Problem 1

Create ROS Package for PD Controller

Preliminary Work with Gazebo

Before creating the ROS package for the PD controller we performed some reconnaissance.

When we executed ros2 topic list, we saw that the /forward_effort_controller/commands topic was part of it. We then executed the following command in an attempt to move the joints.

```
ros2 topic pub --once /forward_effort_controller/commands ...
std_msgs/msg/Float64MultiArray "{data: [1, 1, 1]}"
```

However, this took no effect. We remember from the last group assignment (Part 1) that we executed a very similar command to make the joints move to a specific position, except in that case the topic we published to was /forward_position_controller/commands. This gave us a hint to the fact that Gazebo was preferring the position controller over the effort controller. Upon discovering the controller_switch.cpp file in the rrbot simulation files, we realized that we must 'activate' the effort controller in order to use it. Next, we did some more discovery using terminal commands. We executed

```
1 ros2 service list -t
```

This helped us see that /controller_manager/switch_controller was an available service we could use. Since we supplied the -t flag to this command, we could also see that controller_manager_msgs/srv/SwitchController was the type of message we had to use. To further take note of the message type, we executed

```
1 ros2 interface show controller_manager_msgs/srv/SwitchController
```

Here we could see that activate_controllers and deactivate_controllers were parameters of the message. Now we put together our findings and executed the following command that we constructed.

```
ros2 service call /controller_manager/switch_controller ...
controller_manager_msgs/srv/SwitchController "{activate_controllers: ...
["forward_effort_controller"], deactivate_controllers: ...
[forward_position_controller, forward_velocity_controller]}"
```

Upon doing this, we saw the prismatic joint drop. This means something took effect. We now tried our initial command,

```
ros2 topic pub --once /forward_effort_controller/commands ...
std_msgs/msg/Float64MultiArray "{data: [1, 1, 1]}"
```

Now we saw the robot in Gazebo move! The two revolute joints 'spun' in an anti-clockwise direction in the XY plane, whereas the prismatic joint did not do anything. With some more experimentation we realized:

• Acceleration due to gravity, approximated in magnitude to $9.8m/s^2$ was acting on the prismatic joint. Therefore, in order to make it move upward we needed to publish an effort with an acceleration of anything less than $-9.8m/s^2$, and in order to hold the prismatic joint in that state, we needed to apply

exactly $-9.8m/s^2$ acceleration. Since our joint mass is simply 1, we were able to publish the joint effort as simply -9.8, for example.