Evaluation of Risk Factors Affecting Cost Performance of Construction Projects in Jalingo, Taraba State

Dr. Ajator Uchenna O.

Associate Professor of Quantity Surveying and Cost Engineering, Department of Quantity Surveying, Nau, Awka Nigeria.

Abstract — Effective management of risk is critical to the success of any construction project. The importance of risk management has grown as projects have become more complex. Contractors have traditionally used financial mark-ups to cover the risk associated with construction projects, but as competition increases and the margins become tighter, they can no longer rely on this strategy and must improve their ability to manage risk. This study has carried out an empirical evaluation of the effect of risk factors on cost performance of projects at delivery. The study is based on the analysis of primary data derived from bills of quantities for the construction/erection of hospital projects by the Ministry of Works and Housing, Jalingo in Taraba State. The obtained data was analyzed using linear regression, t-statistics, F-statistics, line and scatter graphs. The study identified the following risk variables as having significant impact on cost performance: project size, project location, project complexity, level of variations, prime cost sums and provisional sums, estimator bias, market conditions, level of competition, fraudulent practices, construction techniques, economic and political factors, construction accidents, health and safety factors. The study concludes that these factors have to be comprehensively assessed in the light of the individual projects. It recommends among others, the need for a departure from the use of traditional approach of percentage risk adjustment factor to a more comprehensive risk management system.

Keywords— Taraba Projects, Cost Performance, Risk Factors, Consequential Cost, Evaluation, Management.

I. INTRODUCTION

In life, risks exist in everything we do. In construction, risks present in the form of events which occurrence may likely obstruct the achievement of stated project objectives where not controlled or managed. The basic objectives in construction projects are to complete within budget, schedule and specified quality.

Such risk issues/events in construction impacting the realization of project objectives include among others: Project size, location, complexity, haste, level of prime cost sums and provisional sums, estimators' bias, changing market condition, level of competition, fraudulent practices, inappropriate construction technique, health and safety, foreign exchange fluctuations, economic and political factors.

[Vol-3, Issue-2, Mar-Apr, 2017]

ISSN: 2455-5304

Project cost and time overruns are common experiences in Nigeria construction industry. These put the competence and integrity of construction professionals who plan, predict, budget and manage costs of the projects in great doubt. To an average Nigerian, fouls play is usually suspected given the size or billions of naira cost overruns beyond what can be attributed to genuine risks. Risk is a measurable uncertainty or loss. Genuine risk is the chance of an event happening which has measurable financial consequences on the project. All investments, tasks or projects face elements of risk such as physical risk or damage to life/property, financial or funding risks, legal or statutory risks, political risks and construction risks (Ajator, 2012, 2014; Onyeador and Ukwuoma, 2006; Smith 1999). Construction related risks factors include, geological conditions landslide/unexpected site conditions, weather, accessibility, client, contractor and sub-contractorgenerated risks. Plant/equipment accidents and disputes. Political risk factors include strikes, power/project promoters' influences, labour restrictions/ civil disorder, change in Government, joint ventures risks, bilateral Government relations, tariff/taxation, high donor/lender charges and politics-induced exchange fluctuations.

Indeed the characteristics of construction industry and its projects predispose projects to risk. Most projects have long life cycle, involve different professionals, participants/multiple stakeholders. It has varied labour, materials, equipment from various parts of the world and diverse sectors of the economy affected by socio-economic, political and technological changes. It requires huge capital diverse financing methods and varied costs of finances, diverse contract and procurement requirements.

Risk can emanate from changes in requirements of clients, poor estimates, design errors; omissions under/overdesigns, discrepancies, divergences, poor documentation, poor coordinations, undefined roles and responsibilities and

insufficient professionals' technical and operative skills (Ajator, 2014; Miller & Lessard 2001; Morris & Hough 1987).

In complex construction projects uncertainties may rear in diverse forms apart from force majeure. There are diverse parochial objectives or interests of project participants which threaten the tripartite project objective of completing within cost, time and quality. This indicates that effective co-ordination and management is critical to the success of any construction project. Thus risk awareness and identification are inevitable prerequisites to proper risk management.

Project risks (costs) over and above those carefully identified, planned, projected and provided for at project packaging and estimating may rear as consequential costs (CCS). These are additional costs arising from changes to the contract. Cost performance is a situation where a project is completed within the planned costs for it, that would add value to the economy. Cost performance of a project is thus a function of quality of cost estimate (QCE) plus size of consequential costs (SCC), plus quality of Cost/Risk Management (QCRM) exercised in project delivery. (see model I).

Cost performance is therefore viewed as a measure of extent of control of cost growth. High Quality cost estimate and quality contract/risk management seek to reduce consequential costs, thereby resulting in high project cost performance. It is a situation where design quality/management appropriate, is (inducement) bias and cognitive (adjustment) bias of the estimator are controlled and efficient cost and risk management implemented.

In contract practice, project final completion cost (FCC) equals Contract Sum (CS) plus consequential costs (CCS) ie Final Completion Cost (FCC) = CS + CCS(2)

But Contract Sum (CS) is Prime Cost (PC) plus markup (MU) plus contingencies (C).

Final Completion Cost (FCC) = (Prime Cost + Markup + Contingencies) + Consequential Costs ie FCC = (PC + MU + C) + CCS(3)

High cost performance therefore depict situations where consequential costs (CCS) arising from project delivery is reduced to the barest minimum or possibly eliminated (CCS O). It is where contingencies' (C) allocation in project, virtually takes care of all consequential costs (CCS O) such that final completion cost (FCC) equates with the original Contract Sum (CS). See models (3) and (4).

$$FCC = PC + MU + C + O = Contract Sum$$
(4)

This is a rare fit in most project delivery especially in Nigeria. Efficient contract/cost management and effective risk management where professionally applied, would drastically reduce consequential costs.

The objective of this research is to attempt to identify and characterize various construction project risk factors through incisive literature scan. To establish the impact of key risk factors, such as builder's work, prime cost sums and provisional sums on cost performance of Taraba hospital projects over the years. And advice Government and construction stakeholders on the necessary risk response and management strategies to be put in place to forestall project non-performance arising from high consequential costs.

II. LITERATURE

The works of many previous researchers attempted to identify and document internal and external risk factors and their consequential costs on projects. This review exposes these perspectives, their strength and weaknesses to enable project participants to maximize the result of positive events and minimize the consequence of the adverse effect. Construction projects risks may relate to external, commercial, design, construction and operational factors impacting cost, time and quality in varying degrees. The time and quality impacts consequently translate to cost impact as the ultimate denominator.

Morris and Hough (1987) examined the records of some 4000 different World Bank funded projects between 1974 and 1988 and concluded that 63% of projects had experienced significant cost overruns. In similar report, Kaming, Olomolaiye, Holt and Harris (1997) presented high rate of time and cost overrun in high rise projects in Indonesia.

Poor cost performance of construction projects in various developing countries were exposed in the listed studies (Okpala & Aniekwu, 1998; Elinwa & Buba, 1993; Mansfield, et al, 1994; Assaf et al, 1995; Kim & Bajaj 2000), among many others. Also the works of (Ajator, 2014; Ugwu, 2013; Aja, 2013; and Giwa, 1988) not only identified two most common and frequently recurring problems in Nigeria contract execution as (i) cost overruns or excess of final completion cost over contract sum and (2) time and schedule slippages arising from inherent/external project risks but proffered various management strategies. Ajator (2014) specifically developed an integrated framework for financial engineering and project risk management and recommended it for adoption by quantity surveyors, cost engineers and project practitioners in managing heavy engineering and infrastructure project financing and construction risk (see figure I).

Fig.1: Integrated Framework for Financial engineering and Project risk Management.

Source: Ajator's Research 2014.

Concepts of Cost, Cost Estimate, Risk Factors, Consequential Costs

A review of construction contracts produces a variety of definition of cost.

Cost may be viewed as what is paid for a project. What is paid for the various factor and services input in a project:cost of material, labour, plant, equipment, subcontract/supply, supervision, entrepreneurial skill or opportunity foregone cost, contract procurement cost, project procurement cost, total project or life cycle cost. The lifecycle cost of project (Ajator, 2012b; Cao, Wang

- & Tiong, 2008) encompasses;
 Cost of work in the development phase such as; feasibility study, planning and engineering of the project and
- The client's management and overhead costs at implementation phase for procuring the working drawings, specifications, full documentation, tender actions and award to actual construction process costs. Some of these costs evidently are consultant

- services costs, corporate overheads, contingency reserve for scope changes and changes in financing costs.
- Construction costs in the construction phase, include prime cost or direct costs, indirect costs, preliminaries, other statutory fees and taxes and
- Operation and maintenance costs in the operation phase. Ajator (2012b) recorded that whole lifecycle cost components for typical school building project may include:
- Cost of land, cost of building, cost of furniture, cost of equipment, cost of building component (structure) replacement, cost of furniture replacement, cost of equipment replacement, cost of building maintenance, cost of equipment maintenance, cost of building adaptation, with interest cost for acquisition of these costs inbuilt into each component cost. Hence total lifecycle development costs, include investment cost, land acquisition costs, engineering

design costs, construction costs, administration costs, replacement costs, operating costs.

Investment Cost:

Cost of carrying out market survey Cost of carrying out analysis of alternatives Cost required for development of financial plan Cost of acquiring finance/credits.

• Land acquisition costs:

Cost of land, cost of deed preparation, cost of legal fees & stamp duties, cost of

insurance, interest cost of land finance.

Engineering Costs:

Cost of planning, cost of design, cost of bidding, cost of constructing of prototypes, cost of consultancy (pre—contract), and cost of design changes.

Construction Costs:

Cost of labour, cost of materials, cost of plants and equipment, cost of subcontract/supplies, cost of accidents.

Administrative Costs:

Cost of managing and co-ordinating (Post contract), cost of planning, cost of contracting/recruitment, cost of marketing and selling, legal costs.

Replacement Costs:

Capital replacement costs, programmed maintenance costs, facility adaptation costs.

Operating Costs:

Cost of staff wages/salaries and benefits, costs of energy, fuel, gases etc, cost of consumable materials used in upkeep of facilities, costs of contracted services of cleaning, sweeping, catering etc, and host of other intangible costs.

These costs are prone to risks of overrunning their target provisions by way of consequential costs, especially where the target costs were not originally assessed in detail and value-analyzed. Hence for most construction contracts, costs covered include the contract price, additional contract amount arising from variations, remeasured/other costs, increases from prime cost sum and provisional sums. These consequential costs arising as additional contract amount, remeasured/other costs, constitute incurred costs to deal with risk and uncertainties during construction and commissioning periods. In total cost management the above costs among others have to be properly estimated, risk-adjusted, budgeted and strategically (proactively) controlled to achieve the desired objective. And to drastically reduce consequential costs to the level of contingency allowance provided for the project.

Cost Estimate:

Cost estimate is the product of costing or cost estimating. Costing is essentially the use of cost data to develop cost estimate and construct cost statement or cost plan (Ajator & Onyeador, 2009). Hence the quality of cost estimate is dependent on the quality of cost data and the estimators' visionary and practice skills. There is therefore the risk of use of inaccurate cost data and poor estimating skill and lack of value-analysed cost decisions. Cost estimate presents a cost model for measuring cost performance; hence defective cost model will ultimately impede cost performance of construction projects.

[Vol-3, Issue-2, Mar-Apr, 2017]

ISSN: 2455-5304

Cost Data:

Cost data are researched updatable cost atoms. The smallest division of cost e.g. labour, materials plant/equipment costs and output cost constants etc. To minimize risks, the quantity surveyor has to gather, screen and factor the cost data in full consideration of the background from which they originate (BCIS and BMI, 1999; Flanagan & Marsh, 1994; CIBW 80 Report, 1996; Ajator and Onyeador, 2009) and pose Salient questions that serve as drivers for data integrity.

Risk Factors:

These are those elements of risks that may give rise to consequential costs.

Ajator (2013) grouped the general risk factors earlier exposed in the introduction into five basic domainstechnological, social, physical, economic and political. They impact organizations' (agency or private) projects leading to consequential costs depending on actions or inactions of the project managers. They may present as internal and external risk factors. Internal risk factors are within the control of organization eg its human, physical, financial, technological and managerial value and ethics. While external risks are outside the organizations control. Labour, material, plant/equipment quality, availability, reliability and management efficiency are internal risks. Also opting for a contract without adequate human financial technical and technological resources or pricing competitive project at breakeven margin, or implementing too many projects concurrently without adequate carrying capacity or lack of professional skill for a listed project are internal organization's risk while external risks are macro-economic, political, competition, environmental, multiple clients/joint venture project risks. There is therefore the need for application of strength weakness and opportunity threat (SWOT) strategies in project execution and management to reduce planning, consequential costs. Both internal, external and operational environment of construction organization significant impacts on management/cost performance of project. Act of God risk factors include: heavy floods, landslide, fire, earthquakes, hurricanes. They have low probability of occurrence, yet with huge negative impact on project when they occur (Ajator, 2000a, 2000b).

In a similar vein, Dey (2002) in measuring the likelihood of risks in a project, compartmentalized risk factors into five categories; Technical risk (0.479), Financial and Economic risk (0.228), organizational risk (0.146), Acts of God (0.064) and clearance risk (0.083). And stated the likelihood of occurrence of the risk sub factors in each category (see table I). He recorded the most likely occurring risk factor as the technical risk, with risk

subfactors as; scope change, technology selection, implementation methodology, equipment risk, materials risk, engineering and design change.

Mac-Barango, Imimabo and Ajator (2016) exposed the high cost impacts of Spatial disparity (or difficult terrain) on the price of sandcrete blocks, which reduces project cost performance.

Table.1: Likelihood of Risk in a Project

Factors	likelihood	Sub-factors	Li	Likelihood		
			LP	GP		
Technical Risk	0.479	Scope change	0.36	0.172		
		Technology selection	0.124	0.059		
		Implementation methodology	0.13	0.062		
		Equipment risk	0.073	0.035		
		Materials risk	0.08	0.038		
		Engineering and design change	0.233	0.112		
Financial & Economical	0.228	Inflation risk	0.152	0.035		
Risk		Fund risk	0.383	0.087		
		Changes in local law	0.105	0.024		
		Changes in Govt. Policy	0.105	0.024		
		Improper estimate	0.255	0.058		
Organizational Risk	0.146	Capability of owner's project group	0.106	0.015		
		Contractor's capability				
		Vendor's Capability	0.283	0.041		
		Consultant's Capability	0.448	0.065		
			0.163	0.024		
Acts of God	0.064	Calamity Normal	0.44	0.028		
		Calamity abnormal	0.56	0.036		
Clearance risk	0.083	Environmental clearance	0.026	0.022		
		Land acquisition	0.461	0.038		
		Explosive clearance	0.133	0.011		
		Other clearances	0.142	0.012		

LP – Local percentage

Source: Dey (2002).

Akinci and fisher (1998) report showed that contractors ascribed high importance index to construction related risk factors. Geological conditions, site accessibility and weather conditions have importance index of 62 whereas site location, non/delay payments and subcontractor with its supervision and management problems have importance index of 70, 74, 74 and 70 respectively.

In tropical regions weather effect is significant because it is characterized by heavy rain, wind, fire, extreme heat/humidity which affect workers' and equipment output negatively. Delay payment and nonpayment create great difficulties for contractor. In most public projects contractors manage it in order to keep good relationship for future projects.

Further risk Categorization

Many other researchers have further categorized risk factors. Miller & Lessard grouped risk into Market risk; demand, financial, supply; competition risk; technical, construction, operational and instructional risks; regulatory, social acceptability and sovereign risks.

Abrahamson (1998) arranged risk factors under subheads:

- Physical Works: ground conditions, artificial obstruction, defective material/workmanship, faulty samples and tests, weather, site preparation, inadequate staff, labour, plant, material, time and financial risks.
- **Delay and disputes:** possession of site, late/inadequate information, layout disputes.

CP - Global percentage

- **Direction and supervision:** greed, incompetence, unreasonableness, partiality, poor communication, design/documentation errors, unclear requirements and breaches, inappropriate consultants, contractors and change orders.
- Damage and injury to persons/properties: negligence, accidents, loses, insurances/gaps.
- **External factors:** Government tax policies, labour, safety laws, planning approvals, tight finances, payment restraints, war/civil commotion, vandalism, intimidation, industrial disputes.
- Payments: delay payments, delay claims agreement/payments, unpaid interest, insolvency, inaccurate valuations, high exchange rates, inflation.
- Law and Arbitration: Ambiguity of contract, delay in resolving disputes, cost of award and its enforcement, miscarriage of justice and law reforms.

Finerty (1996) categorized risk under:- Supply, technological competition, economic, financial, currency, political, environmental and force majeure. Chapman and Ward (2002) considered risk associated with: estimate variability, uncertainty of basis of estimate, uncertainty of design/logistics, uncertainty of objectives and priorities, uncertainty of mutual relationship of project parties.

Other authorities (undated), grouped risks under; technical, construction, legal, natural, logistics, social, economic, financial, commercial and political. Cohen & Palmer (2004) reviewed construction project risk sources to include project scope crip, design errors/ omissions, undefined roles/ responsibilities, unskilled staff/multi subcontractors and use of inexperienced contractor.

The above categorizations especially construction risks of adversarial relationships of participants, use of new technologies, extensive subcontracting, unfamiliarity with local conditions, restiveness, language difficulties and force majeure, present risks as something negative and which threaten project success and heighten consequential costs.

Consequential Costs:

Factors causing consequential costs, e.g. influence of contract provisions on consequential costs:

Consequential costs may be viewed as those costs over and above the costs defined as the contract price payable to the contractor for execution and completion of the works including remedying defects as provided in the contract. In addition to force majeure/uncertainties, they arise from the operation of detailed and implied conditions of the contract.

It is an agreed term in most contracts for implementation of variations/change orders. There is also stipulated mechanism for pricing variations. But excessive variations or change orders from clients, design consultants, specialist prime cost and provisional works,

macro variables and weak pricing mechanisms introduce huge consequential costs. Most of these costs are not recovered by the project contractor. The huge undervaluation/under-recovery often lead to dispute and constitute serious delays on the progress of the project. Ajator, Okonye and Agbonome (2014) reviewing the JCT. 1963 and its updates outlined similar unrecoverable consequential costs that threaten project success:

- The joint contract tribunal JCT condition of contract allows for fluctuation claims (in fluctuation-term contracts) but excludes claims in respect of labour "price-hike" not arising from national/local wage negotiations. As Government's increase in wage rates comes once in many years, contractors pay more than they recover in fluctuation claims especially in inflation-prone developing economies like Nigeria.
- Inflation rate may well be in excess of "firm-price" risk adjustment factor (for competitive firm-price contracts) thereby presenting unrecovered costs.
- Excessive variation instructions introduce inevitable loss/expense not fully recovered under the contract pricing formula (see clause 11(6) and clause 24) of the JCT.
- Accelerated retention provision holds back sizeable proportion of monies due to contractor till practical completion and completion of defects periods respectively, without interest recoupment on them.
- Inaccurate valuation for interim certificates following the concept of "payment-on-account", introduce hidden retention, increasing contractor's costs
- Violation of assignment/subletting provisions by client clause 17 (1) and Architect under clause 11(3) instruction for expenditure of prime cost and provisional sums, reduce contract profit and increase consequential costs through increased co-ordination costs and huge attendance costs.
- Delay or non-payment of certificates cause capital lock-up and disincentive, lower productivity and increase finance costs.

These consequential costs arising from contract provisions alone are preventable risks which proper implementation of contract and risk management practices, will solve.

Cao, et al (2008) aligning with the foregoing expositions/conditions of JCT, illustrated types of consequential costs and the events that may trigger them and the related contract clauses from China Condition of Contract CCC99 (see table 2). They also charted other factors causing consequential costs and their managing measures as depicted in table 3.

Table.2: CCC99 Clauses That May Incur Consequential Cost to Client.

Clause	Table.2: CCC99 Clauses That May Incur Con Event	Consequential Cost
3.3	Works required other than local specification	Proposal for special construction process
6.2	Error in the engineer's instruction	The correction cost and cost for extension of
0.2	Error in the engineer's instruction	time
6.3	The engineer fails to provide instruction on time	The cost and delay incurred
7.3	Emergency in complying with statutory requirement	Additional contract amount shall be borne by
7.5	Emergency in comprying with statutory requirement	the client, if due to his responsibility.
8.1(1)-(9)	The client's obligations	Site preliminary development cost
8.2	Appoint the contractor to undertake extra works	Service commission cost and delay incurred
	excluded in the contract.	,
8.3	The client fails to fulfill his obligations	The cost and delay incurred
9(1)-(9)	Contractor's obligation but some costs to be borne by	The client bears the costs accordingly.
	the client due to the latter's faults	
11.2	The client fails to give the contractor possession of site	The cost and delay incurred.
	on time.	
12	Suspension caused by default of the client	Default cost and delay
14.3	Accelerating completion prior to the time prescribed	Acceleration fee
	in the contract.	
16.3	Required by the engineer, opening up of work or	The cost and delay incurred
	testing of material or goods found to be in accordance	
	with the contract.	
19.5	Failure of commissioning test due to: (a) default of	(a) Design cost
	design; (b) defects of equipment purchased by the	(b) Replacement cost and extension of time
10.5(1)	client	
19.5(4)	Divergence between contract documents and actual	Extra cost for commissioning test
21	works.	
21	Security and protective work	Cost for security work
27.3	Material and goods storage	Storage fee
27.4(3)	Defects of goods purchased by the client	Goods replacement and extension of time
27.4(6)	The client fails to deliver goods on time	The cost and delay incurred Test fee
27.5 29.1/30/31.	Test for material/equipment supplied by the client	
29.1/30/31. 5	Design variation	Variation cost
39.3	Force Majeure	Repay to the contractor any costs of the
37.3	1 ofce Majeure	execution of works.
40.1	Failure to pay insurance premium for the client's	Insurance premium
10.1	workman and third party	and all the promising
40.2	Failure to pay insurance premium for equipment or	Insurance premium
· ·-	material	
40.3	Appoint the contractor to arrange insurance	Service commission
42.1	Patent right	Patent right cost
43.1	Loss and/or expense in regards to antiquities	Cost for antiquities protection
43.2	Underground obstacles	Underground obstacles settlement cost
44.6	All parties are released from performance for various	Sum payable by the client to contractor in
	reasons.	respect to the work executed.
-		

Source: Cao, et al (2008).

Table.3: Other Factors Causing Consequential Cost and Their Managing Measures.

Factors	Consequential Costs	Managing Measures
Loose contract	Misunderstanding the scope of	Avoid such loose commitments; use standard form of
management	work can cause additional cost	contract and legal terms
Changes in law	Inflation, taxation increase,	Detailed clauses should be highlighted in the contract
	currency exchange rate	agreement e.g. how to share the risk of change in current
		law.
Reliance on Guanxi	Business development cost	Estimate certain percentage of this cost as part of
(Relationship)		contingency cost.
Cultural difference	Investment cost increase and	Use local engineers familiar with Chinese regulation and
and language	translation cost	local situations
deficiency		
Corruption and	Extra cost for operation business	Clause for preventing corruption could be drafted out in
operating cost		the contract.
Various polices in	Business development costs in	Feasibility study must be carried out to identify the
different territory	various territory of China	complexity in different places of China.
Non-convertible	Devaluation of Chinese RMB	Obtain government's guarantees on exchange rate and
Chinese currency		convertibility. E.g. fixed rate is the most effective
		measure for mitigating the risk.
Inflation	Material price fluctuation	List the principal materials with unit rates. For a long
		project period, both parties can negotiate for relevant
		material prices to be fixed.

Source: Cao et al (2008).

Other factors causing consequential cost

In addition to the clauses highlighted by Cao, et al (2008), Ajator, et al (2015), and issues pinpointed in Ajator (2014) there exist other factors capable of causing consequential cost:

• Loose Contract Agreement

Most contracts are let in a hurry without detailed agreement. Some are let with incomplete execution of agreement leaving future issues to be mutually negotiated on trust. For instance non-execution of consultancy agreement which define terms, responsibilities and benefits (or fees) of the parties do create problems in the management of contracts, increasing consequential cost. Just in the same way, non-definition of cost ceiling, percentage/adjustable profits and loss sharing incentives in cost-plus contract do. Hence all issues must be comprehensively and strategically analysed, proactive measures defined for handling Consultancy agreement must be executed and should clearly define scope, responsibilities and specific fees from start. Issues requiring decision/authorization/approval and their stages must be known and approval sought in good time, and not delayed to the prejudice of progress of work. Ajator (2000) opined that the consequent delay causes consequential costs, through disruption of programmes, force extension of time and payment of cost of extension for loss and suffered by expenses the contractor,

consultants' costs for supervising beyond target completion date and fuel general cost escalation due to inflation.

- Changes in Law:- Too frequent policy revisions and conflicting government policies create consequential costs.
- Corruption and Operating Cost: corruption is one of the major bane of construction projects resulting in very high consequential cost and loss of value-adding of our development programme. It undermines fair play, leads to substantial increase in costs and budget overruns. Contractors incur huge costs or loses due to theft of materials/components on site. Clauses must be detailed in the contract for dealing with bribery and gratification and must be spiritedly enforced.

There is need for efficient implementation of variation control and management principles.

Cao, et al (2008) aligning with (Ajator, et al 2015) suggested five action steps necessary for effective variation control (see table 4), to include use of: Detailed tender document, variation order and variation control, valuation of variation and its control, Exclusion of the rules (clauses) of valuation and variation cost control. For instance to control valuation of variation, the variation work must be valued according to the principle/pricing rules of the condition of contract in use.

Factors giving rise to huge variations must be controlled such as:

- Excessive lump sum/provisional sum adjustments in contract bills must be avoided.
- Preliminaries bill must be priced in detail (full).
- Use day work method and star rate method where nature of variation work so demands.
- Anticipate the variations in advance
- Get early knowledge of likely instructions.
- Negotiate with the contractor.
- Avoid protracted claims-agreement delays.

To control variation cost:

Check the tenders carefully

Table.4: Variation Control Strategies and Details

Variation Control	Details				
Strategies					
Detailed tender document	• Ask the contractor to provide a list of principal materials.				
	• State clearly in the contract the obligations of each parties' obligations for the variation work and cost.				
Variation order and	Analyze and categorize properly the variations				
variation control	Follow proper format and procedure e.g.:				
	Channel for instructions and variation orders				
	 Authorize persons/parties for issuing them 				
	 In standard writing form with serial number 				
Valuation of variation and	Value variations according to CCC999				
its control	Consider other factors affecting the valuation of work:				
	A percentage or lump sum adjustments in the contract bills				
	All preliminary items priced in the contract bills				
	Valuation of variation by day-work				
Exclusion of the rules	Sign separate agreements for variations under different circumstance e.g.				
(Clauses) of valuation	 Where the client requires as a necessity a fixed cost prior to execution. 				
	Where no rates exist in the contract document.				
	 Where an unrealistic and high figure exist in the contract. 				
Variation Cost Control	Check the tenders carefully				
	Anticipate the variations in advance				
	Get early knowledge of instructions				
	Negotiate with the contractor				

Source: Cao, et al (2008).

Consequential Cost Management Framework:

As exposed in the foregoing there is implicit need for proactive management of consequential costs to avert their swell of construction cost or budget overrun. To this effect (Ajator, 2004, 2015), managing consequential cost must start with such "front-end" development risk factors:

- Multiple client projects with slow decision making process.
- Procurement of incompetent consultants and use of inappropriate contract.
- Unduly short construction programme that increase design errors.
- Obsolete design concepts in this era of dynamic technology
- Misread of brief or user requirement.
- Lack of co-ordination between client(s) and design team.

- Imperfect design information without valuealternative review.
- Biased disposition of design team.
- Frequent change of project consultants.
- Poor design expertise, incomplete designing or over designing.
- Procurement of mediocre contractor/poor placement of contract, through management of contract provisions at project process stage to commissioning and project closure.

Cao, et al (2008) proposed a consequential cost management framework that will help international investors, developers and design consultants to identify and manage consequential costs and consequently total project cost. (see figure 2).

The framework consists of five steps of consequential cost identification and management, each providing appropriate detailed measures and activities. It is our view that the framework is appropriate and adaptable for

managing consequential costs of conventional public and

non-conventional public private partnership projects.

Fig.2: Framework for Consequential Cost Management

Source: Adapted from Cao, et al (2008).

Response to Risks/Methods of Reacting to Risk

Conventionally three main types of responses to risk exists: (1) Avoid or reduce the risks (2) transfer the risks (3) retain the risks. Avoidance of risk may lead to early rejection of projects with high risks/high co-efficient of variation. Or changing of project features responsible for high risks. Or building in excessive percentage costs for risk that would make the bid uncompetitive.

Risks transfers – may mean transferring the risks to contractors or to insurance firm with robust capacity to underwrite the risks as stipulated in the condition of contract. Retaining the risk means the party has willingness and capacity to accept and manage the risk in which case professional application of risk management strategies becomes imperative.

In most project, risk sharing and risk retainance and management seem to be the dominant options. Of course risk acceptance is market-sensitive. In recession, most contractors lacking adequate size of jobs to service overheads may accept risky projects even at breakeven value, hoping to recoup costs through claims and depressed quality of construction. This increases the risk of project failure, hence must be discouraged.

III. METHODOLOGY

The research is designed to identify and characterize various construction project risk factors using incisive literature search, experiential contract practice skills and interview of practicing quantity surveyors, construction cost estimators, design and engineering consultants.

It further sought to establish the impact of some risk factors such as prime cost sums, provisional sums and builder's work on cost performance of Taraba hospital project over the years. And advice Government and construction stakeholders on the necessary risk response and management strategies that would avert poor cost performance arising from high consequential costs. To this effect, the research design crafted four risk factors or variables of prime cost sums, provisional sums, builder's work and contract sum as the data needs for the study. Bills of quantities and associated documents of thirty completed cottage hospital projects in Taraba state were evaluated and cost data extracted on the selected risk variables (see table 4.1) Also relative cost statistics i.e. cost data over floor area are charted in Table 4.2.

The extent of variability of prime cost sums in the thirty hospital projects was measured.

This was repeated for the other risk variables, provisional sums, builder's work and contract sum to establish their beta or cost changes and measure their regression with the contract sum, i.e. measure whether the changes in size of each of the selected risk factors, have significant impact on the contract sum of the hospital projects. Regression metric analysis. T-test of significance and F-test were

implemented and statistical package for social sciences (SPSS) model was used as the instrument for data analysis.

The decision rule employed was to reject Null (Ho) hypothesis if t-tabulated (t.025)< t-calculated, and F-calculated > F-tabulated. Where that is the case the relationship between each of the variables and contract sum is statistically significant. Coefficient of regression R and coefficient of determination \mathbb{R}^2 were used to measure

whether the relationship between the risk variables are high, positive (+ve) or negative (-ve) and the extent of change in the contract sum or dependent variable that is explained by change in prime sum, provisional sum and builder's work respectively. Also descriptive analysis in the form of trend/line graphs for the risk variables and their cost charts, minimum, maximum and standard deviation were also employed. The report is presented in the section below.

IV. DATA PRESENTATION AND ANALYSIS

Table.4.1: Analyzed Risk Factors/Cost Variables of Taraba Cottage Hospital Projects.

BILLS OF	FLOOR	PRIME	PROVISI	PMCOST	BUILDER'S	CONTRACT
QUANTITIES	AREA	COST	ONAL	+	WORK	SUM
	(\mathbf{M}^2)	SUM (N)	SUM	PROVSU	(N)	(<u>N</u>)
			(N)	M (N)		
BILL NO. 1	489	1397711	800,000	2197.71095	92,573,792	94771502
BILL NO. 2	300	564000	160,000	724,000	13,345,881.00	14069881.00
BILL NO. 3	160	350800	100,000	450,800	7,776,065.00	8226865.00
BILL NO. 4	206	307000	35,000	342,000	4838,145	5180145.00
BILL NO. 5	214	216000	75,000	291,000	7705112,00	7996112.00
BILL NO. 6	307	286850	25,000	311,850	7310,501.00	7622351.00
BILL NO. 7	213	263000	20,000	283,000	5529919.00	5812919.00
BILL NO. 8	67	115000	40,000	155,000	8335991.00	8490991.00
BILL NO. 9	273	260000	0.000	260,000	4911679	5171679.00
BILL NO. 10	240	1295500	395000	1690500	46695251.47	48385751.47
BILL NO. 11	290	1200000	550,000	1750,000	55112900.36	56862900.36
BILL NO. 12	438	1300000	750,000	2050,000	83270,450	85320450.00
BILL NO. 13	145	390000	220,000	610,000	27800150	28410150.00
BILL NO. 14	220	670000	275,000	1045,000	41615225	42660225.00
BILL NO. 15	390	1120000	670,000	1770,000	74070400	75840400.00
BILL NO. 16	50	140000	650,000	240,000	9260000.00	9500000.00
BILL NO. 17	100	200000	100,000	320,000	14430125	14750125.00
BILL NO. 18	135	250000	120,000	350,000	17140991.00	17490991.00
BILL NO. 19	70	325000	100,0000	425,000	12671437.86	13096437.86
BILL NO. 20	110	425000	100,000	635,000	2169511250	22330112.50
BILL NO. 21	310	1000000	210,000	1,625,000	58099315.00	59724315.00
BILL NO. 22	200	600000	625,000	1095,000	37825200.00	38920200.00
BILL NO. 23	250	1100000	495,000	1,950,000	45250000.00	47200000.00
BILL NO. 24	122	750000	850,000	1,045,000	23340751.50	24385751.50
BILL NO. 25	115	450000	295,000	1,650,000	8879360.00	10529360.00
BILL NO. 26	55	150000	1200,0000	250,000	8119076.00	8369076.00
BILL NO. 27	225	850000	100,000	2,350,000	18180500.00	20530500.00
BILL NO. 28	120	250000	1500.000	500,000	16900500	17400500.00
BILL NO. 29	160	1200000	750,000	1950,000	27800200.00	29750200.00
BILL NO. 30	68	250000	95,000	345,000	11773930.00	12118930.00
Total	6,042	17675860.5	10985000	28660860.9	812257960.7	840.918,821.64

Source: Ajator and Ogika (2016)

Table.4.2: Cost Variables Relative to the Floor Areas of the Hospital Projects.

BILLS OF	Prime Cost	Provisional	Builder's	Contract	
QUANTITIES	Sum/Floor Area	Sum/Floor Area	Sum/Floor Area	Sum/Floor Area	PMCOST +
	<u>Pcsum</u>	provsum	<u>bldwrk</u>	contsum	PROVSUM
	m^2	m^2	m^2	m^2	
BILL NO. 1	2858.300	1635.990	189312.5	193806.8	4494.290
BILL NO. 2	1880.00	533.3300	44486.27	46899.60	2413.330
BILL NO. 3	2192.500	625.0000	48600.41	51471.91	2817.500
BILL NO. 4	1490.290	169.9000	23486.14	5146.33	1660.190
BILL NO. 5	1009.350	350.4700	36005.20	37365.00	1359.820
BILL NO. 6	934.3600	81.43000	23812.71	24828.50	1015.790
BILL NO. 7	1234.740	93.90000	25962.06	27290.70	1328.640
BILL NO. 8	1716.420	597.0100	124417.8	126731.2	2313.430
BILL NO. 9	952.3800	0.000000	17991.50	18943.88	952.3800
BILL NO. 10	5397.910	1645.830	194563.5	201607.3	7043.740
BILL NO. 11	4137.930	1896.550	190044.5	196079.0	6034.480
BILL NO. 12	2968.040	1712.330	190115.2	194795.5	4680.370
BILL NO. 13	2689.660	1517.240	191725.2	195932.1	4206.900
BILL NO. 14	3045.450	1704.550	189160.1	193910.1	4750.000
BILL NO. 15	2871.790	1666.670	189924.1	194462.6	4538.460
BILL NO. 16	2800.000	2000.000	18520.00	190000.0	4800.000
BILL NO. 17	2000.000	1200.000	144301.2	147501.2	3200.000
BILL NO. 18	1851.850	740.7400	126970.3	129562.9	2592.590
BILL NO. 19	4642.860	1428.570	181020.5	187092.0	6071.430
BILL NO. 20	3863.640	1909.090	197228.3	203001.0	5772.730
BILL NO. 21	3225.810	2016.130	187417.1	192659.1	5241.940
BILL NO. 22	3000.000	2475.000	189126.0	194601.0	5475.000
BILL NO. 23	4400.000	3400.000	181000.0	188800.0	7800.000
BILL NO. 24	6147.540	2418.030	191317.6	199883.2	8565.570
BILL NO. 25	3913.040	1043.480	77211.83	91559.65	4956.520
BILL NO. 26	1000.000	1818.180	147619.6	152165.0	2818.180
BILL NO. 27	3777.780	6666.670	80.80200	91246.67	10444.45
BILL NO. 28	2083.330	2083.330	140.8370	145004.2	4166.660
BILL NO. 29	7500.000	4687.500	173751.2	185938.8	12187.50
BILL NO. 30	3676.470	1397.060	173146.0	178219.6	5073.530

Source: Ajator and Ogika (2016).

Trend Chart of Changes in prime cost sums of the 30 hospital projects

Fig.4.1: Movement and Trend of prime Cost Sum/Floor Area.

Trend Chart of Changes in Provisional Sums of the 30 Hospital Projects

Fig.4.2: Trend and Movement Line Graph Analysis of provisional Sum

Trend Chart of Changes in Builder's work of the 30 Hospital projects

Fig.4.3: Trend and Movement Line Graph Analysis of Builder's Work.

Trend Chart of changes in contract sum of the 30 Hospital projects

Fig.4.4: Trend and Movement Line Graph Analysis of Contract Sum.

SPSS Computation Results

Table.4.3: Model Summary^b

Model	R	R Square	Adjusted R- Square	Std. Error of the Estimate
1	.887ª	.787	.762	32895.52759

- Predictors: (Constant), Builder's Work, Provisional Sum, Prime Cost Sum.
- b. Dependent variable: Contract Sum

Table.4.4: T- Statistic Result

VARIABLES	t-	t-tabulated	Test Result
	computed	(ta/2)	
	(tcal)		
Prime Cost	0.216	2.064	Insignificant
Sum			
Provisional	2.330	2.064	Significant
Sum			
Builders Work	6.869	2.064	Significant

Source: E-views Regression Result

Table.4.5: ANOVAb

Model	Sum of	df	Mean	F	Sig.
	Squares		Square		
Regression	1.0E+011	3	3.459E+010	31.966	$.000^{a}$
Residual	2.8E+010		1082115736		
Total	1.3E+011	26			
		29			

- a. Predictors: (Constant), Builder's Work, provisional Sum, Prime Cost Sum
- b. Dependent variable: Contract Sum

Table.4.6: Coefficients^a

		2 0.0 00 0.00			
Model	Unstandardized Coefficients		Standardized Coefficients		
	В	Std. Error	Beta	t	Sig.
1 (Constant)	30620.959	13646.913		2.244	.034
Prime Cost Sum	1.287	5.968	.030	.216	.831
Provisional Sum	13.577	5.827	.279	2.330	.028
Builder's Work	.682	.099	.766	6.869	.000

a. Dependent variable: Contract Sum

Table.4.7: Descriptive Statistics

T						
	N	Minimum	Maximum	Mean	Std. Deviation	
Prime Cost Sum	30	934.36	7500.00	2975.3813	1589.20803	
Provisional Sum	30	.00	6666.67	1650.4660	1386.53878	
Builder's Work	30	80.80	197228.30	122281.9	75737.21564	
Contact Sum	30	18943.88	203001.00	140216.8	67442.79401	
(Valid N listwise)	30					

Source: Researcher's Computation Using SPSS

Analysis, Findings and Discussion

The graphs of the cost variables, prime cost sums, provisional sums, Builder's work and contract sum as depicted in figures 4.1 to 4.4 show reasonable level of volatility which in deed is an expected pattern in risk variables. They portray likelihood of such volatility to affect cost performance of the projects.

The analyzed results show the existence of positive relationship between the dependent variable contract sum and the independent risk variables (see tables 4.3 and 4.6). The standardized beta coefficient is 0.03 for prime cost sums, 0.279 for provisional sums and 0.766 for builder's work, with total regression frame co-efficient of 0.887 (SPSS Computation results tables 4.3 and 4.6). This evidence thus suggests that increasing the value of risk variables will inevitably lead to increase in contract sum. Also, the regression output (table 4.3) showed R-square (co-efficient of determination) of 0.787. This entails that 78.7% variations in contract sum is attributable to changes in prime cost sum, provisional sum and the builder's work. This alludes to high explanatory power of the independent variables, and the dependence of contract sum on the risk factors.

The T- Statistic result (table 4.4) portrays that T-tabulated value for prime cost sum is 2.064, while T-computed is 0. 216. This leads to the acceptance of null hypothesis of insignificant relationship between changes in contract sum and prime cost sums, contrary to general expectations. Also for provisional sum, T- Tabulated is 2.064, while T computed is 2. 330. This depicts a statistically significant relationship, meaning that increasing provisional sums' work in the project creates unresolved risk issues that will ultimately swell consequential costs.

The result is similar for new builder's work with T-tabulated of 2.064 and T-computed of 6.869.

Possible argument in favour of insignificant relationship between prime cost sum and contract sum is that the prime cost sums are detailed quotation/costs of specialist works and supplies built into the contract sum (unlike provisional sums) and as such its value modification will not result in high consequential costs that will negatively impact cost performance.

The F- statistics metric, analysis of variance (ANOVA), which measured the statistical significance of the entire regression plane (see tables 4.5) showed a computed F* statistics of 31.966 with corresponding probability value of 0.000. This alludes that prime cost sum, provisional sum and Builder's work jointly has significant effect on contract sum of the hospital projects.

The descriptive statistic analyzed to portray the statistical properties of the variables (see table 4.7) showed 30 variable observations with minimum value distributions

for prime cost sum, provisional sum, Builder's work and contract sum of 934.36, 0.00, 80.80, 18943.88, respectively. Maximum value distributions, prime cost sum, provisional sum, Builder's work and contract sum, 7500.00, 6666.67, 197228.3, 203001.00 respectively. Also the mean value distributions for these variables are 2975.3813, 1650.4660, 122281.9, and 140216.8 respectively. While the standard deviation distribution are 1589.20803, 1386. 5387, 75737.21564 and 67442.79401 respectively.

[Vol-3, Issue-2, Mar-Apr, 2017]

ISSN: 2455-5304

The Builder's work risk factor 75737.21564 exhibited the highest dispersion in cost performance hence such huge change orders should best be constituted under a new contract, to minimize friction and risk of underperformance.

V. CONCLUSION AND RECOMMENDATION

Risk is indeed a strong variable that significantly influences cost decisions.

The study concluded that risk factors of increase in provisional sums, Builder's work and to a minimal extent prime cost sums have high potential for increasing consequential costs thereby heightening final completion costs and resulting in low cost performance.

It recommends for contract practitioners and managers to increase their skill in project risk assessment, measurement and management. And at all times to make risk- analyzed cost decisions that will help reduce consequential costs and stem cost growth.

The high explanatory risk factors/variables of prime cost sums, provisional sums, builder's work and unpriced preliminaries must be critically reviewed and managed to reduce their potential to cause high cost over-runs.

Contract managers and cost estimators must improve their risk analytic skill by application of risk estimating software's to reduce motivational and cognitive estimating biases that predispose project to poor cost performance.

Further in-depth studies of impact of other risk factors on cost performance, such as variations, fluctuations and contingencies in rural, urban and spatially – difficult sites should be undertaken as a way of comprehensively stemming the impact of risk factors on project cost performance.

REFERENCES

- [1] **Abrahamson, M.W.** (1998) RISK Management;-International Construction Law, USA.
- [2] Ajator U.O & Ogika G. (2016) Analysis of Risk Factors Affecting Cost Performance of Jalingo Hospital Projects. MSC Thesis Presentation Dept, of Quantity Surveying, ESUT Enugu Nigeria.

- [3] **Ajator, U.O** (2000a) Mitigating the Effects of Natural and Man-made Hazards in Settled Areas, in: *Man and Environment* Obasikene, Adinna and Uzoechi (Eds), Computer Age Publisher, Pp. 363-382, Enugu.
- [4] **Ajator, U.O. & Onyeador, S.O.** (2009) Total Cost Management Framework for Sustainability of Physical Facilities of Federal University, in: *Journal of Environment and Social Harmony*,_Faculty of Environmental Sciences, Enugu State University of Science and Technology ESUT, Vol. 2, No.1, March, Pp. 121-143
- [5] Ajator, U.O. (2004) Value Management and Buildability Assessments as Indispensible Tools for Efficient, Cost Effective Building Production, in: *The Quantity Surveyor*, *Journal of NIQS*, Vol. 48 July/September, pp.2-9
- [6] **Ajator, U.O.** (2000c) Review of Federal Government Scale of Fees for Construction Professionals, Presented Paper at a 2-Day Seminar on Review of Federal Government Scale of Fees for Consultants in Nigeria, Organized by Cost Link Associates for Top Officials of Akwa-Ibom State Government on the 25th to 26th of July 2000 at Government office Annex Uyo.
- [7] Ajator, U.O. (2012a) Project Cost Control Fundamentals (Rojoint Communication Services, BNEN 006710 Enugu ISBN 978-902-479-3.
- [8] Ajator, U.O. (2012b) Total Cost Management of Infrastructural Projects (Ezu Books ltd 2012, Nri;, Abuja, Connecticut, www.ezubooksblogspot.com,ISBN:978-51100-2-9.
- [9] Ajator, U.O. (2013) Financial Engineering and Project Risk Management: Imperatives for Professional Quantity Surveyors, Presented Paper at the NIQS Enugu State Chapter Conference on Financial Engineering/Project Risk Management, Held at Sunshine Guest House Enugu on the 8-9th of August, 2013.
- [10] **Ajator, U.O.** (2014) Financial Engineering and Project Risk Management: Imperatives for Professional Quantity Surveyors in: *Journal of Environment and Earth Science*, ISSN 2224-3216 (Paper) ISSN 2225-0948 (online), vol. 4, No 23, 2014. Pp.60-71. www.iiste.org
- [11] **Ajator, U.O.** (2015) Challenges of Cost Management of Projects in a Dynamic Economic Setting in: *International Journal of Engineering, Applied and Management Sciences Paradigms*, Vol. 26, Issue 01, July 2015, www.ijeam.com.
- [12] **Ajator, U.O. Okoye C.O. and Agbonome, P.C.** (2015) Controlling The Mythical Features of Construction Profit, in: *International Journal of*

- Engineering and Management Sciences Paradigms, vol. 21, Issue 10, Pp. 57-65, www.ijeam.com
- [13] **Ajator. U.O.** (2000b) Projects Impacts and Mitigation-A Challenge for Nigerian Construction Practitioner's in the Third Millennium, In: *Environmental review-* A Multi-disciplinary Journal for Environmental Sciences, Nnamdi Azikiwe University, Awka, vol. 3, No 2, Aug. pp. 343-349
- [14] Aje, I.O. (2013) Cost Implication of Risks on Construction Projects in Nigeria, Presented Paper at the NIQS Enugu State Chapter Conference on Financial Engineering and Project Risk Mgt, held on 8th -9th Aug 2013 at Sunshine Hotel Ebeano Enugu.
- [15] **Akinci, B. and Fisher, M.** (1998) Factors Affecting Contractor's Risk of Cost Overburden, in: *Journal of management in Engineering*. Vol. 14, pp. 67-75.
- [16] Assaf, S.A., Alkhalil, M. and Al-Hazmi M. (1995) Causes of Delays in Large Building Construction Projects, in: *Journal of Construction Engineering & Mgt ASCE* Vol. II
- [17]**BCIS Online & MBI** (1999) Occupancy Cost of Educational Buildings, December UK.
- [18] Cao, D.T., Wang, S.Q. & Tiong, R. (2008) Management of Uncertainties and Consequential Costs for Construction Projects in China, In: Cost Engineering, vol.50, No. 8, August 2008 pp. 26-37
- [19] Chapman, C. & Ward, S. (2002) Managing Project Risk and Uncertainty, Chichester: John Wiley and Sons ltd
- [20] CIBW 80 Report (1996) Prediction of Service Life of Building Materials and Components, CIB London.
- [21] Cohen, M.W & Palmer, G.R. (2004) Project Risk Identification and Management, *ACCE International Transactions*.
- [22] Dey, P.K. (2002) Project Risk Management: A combined Analytic Hierarchy Process and Decision Tree Approach, In: Cost Engineering, Vol. 44, No. 3 March 2002.
- [23] Elinwa, A. and Buba, S. (1993) Construction Cost Factors in Nigeria in: *Journal of Construction Engineering and Management*, ASCE, pp. 698-713
- [24] **Finnerty, J.** (1996) *Project Financing —Asset Based Financing Engineering*, New York, John Wiley and Sons.
- [25] Flanagan, R. and Marsh, L. (1994) Lifecycle Appraisal In: CIOB Handbook of Facilities Management, Spedding, A. (ED) Longman Group Ltd England, pp.94-114
- [26] Kaming, P.F., Olomolaiye, P.O., Holt, G. D., and Harris, F.C. (1997) Factors Influencing Construction time and Cost Overrun on High Rise

- Projects in Indonesia, *Journal of Construction Management and Economics*, Vol. 15, pp. 83-94
- [27] Kim, S & Bajaj, D. (2000) Risk Management in Construction: An Approach for Contractors in South Korea In: *Cost Engineering* Vol. 42, No 1 January 2000 pp. 38-44.
- [28] Mac-Barango, D.O., Iminabo, L.& Ajator, U.O. (2016) Analysis of the Influence of Spatial Disparity on the Price of Sandcrete Blocks in Nigeria, In: *Journal of Oil and Gas Technology*, Vol. 1, No. 2, October 2016, pp. 131-143
- [29] Mansfield, N., Ugwu., O.O. and Doran, T. (1994) Causes of Delays and Cost Overruns in Nigeria Construction Projects, in: *International Journal of Project Management*, 12 (4), 254-260
- [30] Miller, R. and Lessard, D. (2001) Understanding and Managing Risks in Large Engineering Projects; In: *International Journal of project Management*, Vol. 19, pp. 437-443
- [31] Morris, P.W. & Hough, G.H. (1987) The Anatomy of Major Projects, John Wiley & Sons N.Y.
- [32] **Okpala, D. and Aniekwu, A**. (1988) Causes of High Costs of Construction in Nigeria, In: *Journal of Construction Engineering and Management*, Vol. 114, pp.233-245
- [33] Onyedalor S.O., and Ukwuoma, C.U., (2006) Facilities Management Explained for Students, Academics and Professionals, Frank Miller Publisher Enugu.
- [34] **Smith, N.** (1999) *Managing Risks in Construction Projects*, Smith, N., Marna, T. and Jobling, P. (Eds), Oxford Black Well Science Ltd.
- [35] **Ugwu, O.O.** (2013) Risk Analysis and Management for Sustainable Infrastructure Delivery, presented paper at the NIQS Enugu State Chapter Conference on Financial Engineering and Project Risk Mgt, held on 8th -9th August 2013 at Sunshine Hotel Ebeano Enugu.