IN THE CLAIMS

Claims 1 through 11 were cancelled in previous Preliminary Amendments. Please amend claims 12 through 32 as set forth below:

Claims 1 through 11: (Cancelled).

12. (Previously Presented) A spinning position for producing yarn from a fiber structure, comprising:

a fiber guidance sleeve defining an interior, said fiber guidance sleeve comprising a fiber guiding surface arranged in the interior of said fiber guidance sleeve, said fiber guiding surface having a deflection point, said deflection point located in said interior of said fiber guidance sleeve;

said fiber guidance sleeve configured to receive a fiber structure introduced into said fiber guidance sleeve at an input direction, said input direction forming an angle of inclination α between said input direction and said fiber guiding surface at said deflection point.

- 13. (Currently Amended) The spinning position of claim 12, wherein said angle of inclination α has a value is in the range of values of approximately about $5^{\circ} \le \alpha \le$ to about 75° .
- 14. (Currently Amended) The spinning position of claim 12, wherein said angle of inclination α has a value is in the range of values of approximately about $5^{\circ} \le \alpha \le$ to about 25° .
- 15. (Currently Amended) The spinning position of claim 12, wherein said angle of inclination α has a value of approximately about 15°.
- 16. (Currently Amended) The spinning position of claim 12, wherein said fiber guidance sleeve further comprises an end face and said fiber guiding surface defines a direction; said deflection point being located at a distance b in the direction of said fiber guiding surface

from said end face, said distance b being having a value in the range of values of approximately about .01 mm \leq b \leq to about 4 mm.

- 17. (Currently Amended) The spinning position of claim 16, wherein the distance b has a value of approximately about 1 mm.
- 18. (Currently Amended) The spinning position of claim 12, wherein the fiber guidance sleeve further comprises a run-in ramp, the run-in ramp being inclined by an angle γ with said fiber guiding surface, the angle γ being having a value in the range of values of approximately about $100^{\circ} \leq \gamma \leq$ to about 150° .
- 19. (Currently Amended) The spinning position of claim 18, wherein the angle γ has a value of approximately about 120°.
- 20. (Previously Presented) The spinning position of claim 12, further comprising a drafting system located upstream of said fiber guidance sleeve, said drafting system defining a plane, said deflection point being located outside said plane defined by said drafting system.
- 21. (Currently Amended) The spinning position of claim 20, wherein the plane of the drafting system is inclined in relation to said input direction of said fiber structure by an angle β , said angle β being having a value in the range of values of approximately about $0^{\circ} < \beta \le to$ about 10° .
- 22. (Currently Amended) The spinning position of claim 21, wherein the angle β has a value of approximately about 5°.
- 23. (Currently Amended) The spinning position of claim 20, wherein the drafting system comprises two delivery rollers having axes of rotation, said axes of rotation defining a plane, said deflection point being located at a distance a from said plane defined by the axes of

rotation of said delivery rollers, said distance a being having a value in the range of values of approximately about 9 mm $\leq a \leq$ to about 13 mm.

- 24. (Currently Amended) The spinning position of claim 23, wherein the distance a has a value of approximately about 11 mm.
- 25. (Currently Amended) The spinning position of claim 20, wherein the deflection point is located at a distance c from said plane defined by said drafting system, said distance c being having a value in the range of values of approximately about 0 mm ≤e≤ to about 7 mm.
- 26. (Currently Amended) The spinning position of claim 25, wherein the distance c has a value of approximately about 1 mm.
- 27. (Previously Presented) A fiber guidance sleeve for a spinning position of an air-jet spinner, the fiber guidance sleeve defining an interior, the fiber guidance sleeve comprising:
 - a fiber guiding surface arranged in the interior of said fiber guidance sleeve;
 - a run-in ramp; and
- a deflection point formed by said fiber guiding surface and said run-in ramp located in the interior of said fiber guidance sleeve.
- 28. (Currently Amended) The fiber guidance element of claim 25, wherein said fiber guidance sleeve further comprises an end face and said fiber guiding surface defines a direction; said deflection point being located at a distance b in the direction of said fiber guiding surface from said end face, said distance b being having a value in the range of values of approximately about .01 mm $\leq b \leq to$ about 4 mm.
- 29. (Currently Amended) The spinning position of claim 26, wherein the distance b has a value of approximately about 1 mm.

- 30. (Currently Amended) The fiber guidance element of claim 25, wherein said runin ramp is inclined by an angle γ with the fiber guiding surface, the angle γ being having a value in the range of values of approximately about $100^{\circ} \le \gamma \le$ to about 150° .
- 31. (Currently Amended) The fiber guidance element of claim 25, wherein the angle γ has a value of approximately about 120°.
- 32. (Currently Amended) A spinning position for producing yarn from a fiber structure, comprising:

a fiber guidance sleeve defining an interior; said fiber guidance sleeve comprising a fiber guiding surface defining a direction, said fiber guiding surface arranged in the interior of said fiber guidance sleeve, said fiber guidance sleeve, said deflection point being located in said interior of said fiber guidance sleeve, said fiber guidance sleeve configured to receive a fiber structure introduced into said fiber guidance sleeve at an input direction, said input direction forming an angle of inclination α between said input direction and said fiber guiding surface at said deflection point, said angle of inclination α being having a value in the range of values of approximately about $5^{\circ} \leq \alpha \leq$ to about 75° ;

an end face located at a distance b in the direction of said fiber guiding surface from said deflection point, said distance b being having a value in the range of values of approximately about .01 mm \leq b \leq to about 4 mm;

a run-in ramp, the run-in ramp being inclined by an angle γ with said fiber guiding surface, the angle γ being having a value in the range of values of approximately about $100^{\circ} \leq \gamma$ \leq to about 150° ; and

a drafting system located upstream of said fiber guidance sleeve, said drafting system defining a plane, the plane defined by said drafting system being inclined in relation to said input

direction of said fiber structure by an angle β , said angle β being having a value in the range of values of approximately about $0^{\circ} < \beta \le \text{to about } 10^{\circ}$, said deflection point being located at a distance c from said plane defined by said drafting system, said distance c being having a value in the range of value of approximately about $0 \text{ mm} \le c \le \text{to about } 7 \text{ mm}$;

the drafting system comprising two delivery rollers having axes of rotation, said axes of rotation defining a plane, said deflection point being located at a distance a from said plane defined by the axes of rotation of said delivery rollers, said distance a being having a value in the range of values of approximately about 9 mm $\leq a \leq$ to about 13 mm.

.