Лабораторная работа № 3

Тема: Решение нелинейных уравнений.

Комбинированный метод хорд и касательных.

Задание: 1) Отделить корни уравнения графически и программно.

- 2) Уточнить корни уравнения данным методом с точностью $\varepsilon = 0,0001$.
- 3) Нарисовать схему применения метода к каждому корню уравнения.

Вариант	Уравнение
1	$x^3 + 4x^2 - 1,5 = 0$
2	$x^2 - 2 + 2\sin(x) = 0$
3	$x^3 - 2x^2 - 7 = 0$
4	$x^3 - 6\cos(x) + 5 = 0$
5	$\sin(x) + 1, 2 \cdot \lg(x) = 0$
6	$tg(0,2x+0,3) = x^2 - 2$
7	$x^3 - 5x^2 + x = 3,2$
8	$3(x-2)^2 - 3 \cdot \lg(x) - 2 = 0$
9	$x^4 + 2x^2 - e^{2x - 1} = 0$
10	$e^{x^2} - 5\sin(x) = 0$
11	$4 \cdot \ln(x) - \frac{x^2}{3} + 1 = 0$
12	$2x^2 - 2^x - 3\sin(x) = 0$
13	$2^x - 3x^2 + 2 = 0$
14	$\cos(x-1) - \frac{x^2}{3} = 0$

Вариант	Уравнение
31	$x^3 - 3x^2 + x + 3 = 0$
32	$x^3 + 0.1 - tg(x) = 0$
33	$x^3 - 2x^2 - 3x + 1 = 0$
34	$(x-1)^3 \cos(x) + 1 = 14x^2$
35	$x^2 - 2 \cdot \ln(x) = 2,5$
36	$\cos(2x - 1) = x^3 - 2x - 1$
37	$x^3 - 5x^2 + 2x + 1 = 0$
38	$3 x - 3 \cdot \ln(x+2) - 4 = 0$
39	$3 \cdot \lg(x+2) - \frac{4x}{2x^2 + 3} = 1$
40	$2 \cdot \ln(x+1) - \frac{x^2}{2} + 1 = 0$
41	$2x^4 - 0.5^x - 1 = 0$
42	$2^x + x^2 - 2 = 0$
43	$3\cos(x^{0,5} - 0,3) = \frac{3}{2x}$
44	$x^3 - 2\cos(3x+1) + 2 = 0$

15	$0.19 * x + \sin(x) = \lg(x)$
16	$x^3 - 3x^2 - 4x + 1 = 0$
17	$x^3 - 4x^2 + 3x = 0,2$
18	$e^x + 5x^2 - 7 = 0$
19	$3\sin(x) = x - 1$
20	$3\cos(2x - 0.5) = 2x^2$
21	$x^4 - 5x(x+0,1) + 6 = 0$
22	$(x-1)^3 + 2\ln x-2 = 0$
23	$tg(0,2x+\frac{1}{2})+0.55=2x^3$
24	$x^3 - 4x^2 + 2 x - 1 = 0$
25	$(x-3)^2 - 2\lg(x^2-3) = 1$
26	$x^2 - 2\sin(x-1) - 2 = 0$
27	$x^3 - 1.2x + 1 = 0$
28	$x^2 - 2\sin(2x) - 0.5 = 0$
29	$x^3 - x - 0.2 = 0$
30	$x^3 - 4x^2 + x + 2.5 = 0$

45	$x^2 + 5\sin(3x + 1) = 0$
46	$x^3 - 3x^2 + 2x - 5 = 0$
47	$\frac{2}{ x } - \lg(x) - 3 = 0$
48	$x^4 + 2x^2 + 2x - 1 = 0$
49	$x^2 - 2\sin(x) = 0$
50	$4 \cdot \lg(x) - \frac{x^2}{3} + 1 = 0$
51	$3x^2 - 0.5^x - 2 = 0$
52	$(x-1)^{3/2} - (x-1)^2 = 0.03$
53	$3x^2 + \cos(x - \frac{\pi}{5}) - 1 = 0$
54	$ (x-1)^3 + 2\ln x-2 = 0,2$
55	$tg(0,2x+0,5) + 0.51 = x^3$
56	$x^3 - 4x^2 + 2 x - 1 = 0$
57	$(x-3)^2 - 2\lg(x^2-3) = 1$
58	$x^2 - 2\sin(x - 1) - 2 = 0$
59	$x^3 - 1.2x + 1 = 0$
60	$x^2 - 2\sin(2x) - 0.5 = 0$

Образцы выполнения заданий лабораторных работ №3

(Приближенное решение нелинейных уравнений.

Метод хорд, касательных (Ньютона), комбинированный метод).

I). Найти приближенные решения уравнения $x^2 + 2x - \cos(1,1x+1) = 0$ методом хорд с точностью $\varepsilon = 10^{-4}$.

Отделим корни этого уравнения графически (можно и программно). Для этого построим графики функций $y_1(x) = x^2 + 2x$, $y_2(x) = \cos(1,1x+1)$ и найдем абсциссы точек пересечения графиков этих функций: $\xi_1 \in [-2,5;-2]$, $\xi_2 \in [0;0,5]$.

Рассмотрим в качестве примера первый корень. Уточним его методом хорд. Для этого определим знаки функции y = F(x) и второй ее производной y'' = F''(x) на этом отрезке [-2,5;-2].

$$F(x) = x^2 + 2x - \cos(1,1x+1)\,,$$

$$F''(x) = 2 + 1,21\cos(1,1x+1)\,\,;$$

$$F(-2,5) = 1,42825 > 0\,,\, F(-2) = -0,36236 < 0\,\,;\,\, \text{tak kak } \left|\cos(1,1*x+1)\right| \le 1\,,\,\, \text{to} \quad F''(x) > 0\,,$$

$$\forall x \in \left[-2,5;\,-2\right].$$

Поскольку $F(-2,5) \cdot F''(x) > 0$, то применяем формулу

$$x_{n+1} = (-2,5) - \frac{F(-2,5)}{F(x_n) - F(-2,5)} (x_n - (-2,5)),$$

где неподвижная точка x=a=-2.5, а начальная точка $x_0=b=-2$. Получим следующую таблицу

x	y	$\Delta x = x_n - a$	h_n	Δh	Δx
-2	-0,362357754	0,5	-0,398816882		
-2,101183118	-0,043988132	0,398816882	-0,386900836	0,011916	0,101183
-2,113099164	-0,004912162	0,386900836	-0,38557473	0,001326	0,011916
-2,11442527	-0,000543307	0,38557473	-0,385428113	0,000147	0,001326
-2,114571887	-0,000060028	0,385428113	-0,385411914	1,62E-05	0,000147
-2,114588086	-0,000006632	0,385411914	-0,385410125	1,79E-06	1,62E-05

а	b	F(a)
-2,5	-2	1,428246056

Где
$$h_n = \frac{F(a)}{F(x_n) - F(a)} (x_n - a)$$
, $\Delta h = h_{n+1} - h_n$, $\Delta x = x_{n+1} - x_n$.

Схема применения метода хорд.

Оценим погрешность приближения. Так как F''(x) не меняет свой знак на данном отрезке, то F'(x) достигает своего наибольшего и наименьшего значения на концах отрезка [-2,5;-2], поэтому $|F'(x)| = |2x+2+1,1\cdot\sin\left(1,1\cdot x+1\right)| \ge 3 = m > 0$ для $\forall x \in [-2,5;-2]$.

А) Тогда используя оценку погрешности

$$\left|x_n - \xi_1\right| \le \frac{\left|F(x_n)\right|}{m} \le \varepsilon, \ \left|F'(x)\right| \ge m > 0, \ \forall x \in [a, b]$$

получим
$$\tilde{\xi}_1 = x_4 = -2,114571887$$
 , $\Delta \tilde{\xi} = \left| \tilde{\xi}_1 - \xi_1 \right| \leq \frac{0,00006003}{3} \leq 0,0000201 = \Delta_{\tilde{\xi}} \leq \varepsilon$.

Следовательно, приближенное значение корня равно

$$\tilde{\xi}_1 = -2,114571887 \pm 0,0000201$$
.

Запишем приближенное значение корня только верными значащими цифрами в узком смысле.

Имеем $\Delta_{\tilde{\xi}_1}=0,0000201\leq \frac{1}{2}10^{-4}=\frac{1}{2}10^{m-n+1}, m=0, n=5.$ Округлим $\tilde{\xi}_1=-2,114571887$ до n=5. Получим $\tilde{\xi}_{11}=-2,1146, \Delta_{o\kappa p}=\left|\tilde{\xi}_1-\tilde{\xi}_{11}\right|\leq 0,000029,$ $\Delta_{\tilde{\xi}_1}=\Delta_{o\kappa p}+\Delta_{\tilde{\xi}_1}=0,0000491.$

Найдем число верных знаков для $\tilde{\xi}_{11}$ = -2,1146 . Имеем $\Delta_{\tilde{\xi}_{11}}=0,0000491\leq \frac{1}{2}10^{-4}=\frac{1}{2}10^{m-n_1+1},\ m=0,\ n_1=5$. Так как $n_1=n$, то получим приближенное значение корня с числом верных знаков $n_1=5$.

Otbet: $\tilde{\xi}_1 = -2,1146 \pm 0,0000491$.

Б) Верна так же следующая формула оценки погрешности приближенного значения корня:

$$\left|x_n - \xi_1\right| \leq \frac{M-m}{m} \left|x_n - x_{n-1}\right| \leq \varepsilon, \quad 0 < m \leq \left|F'(x)\right| \leq M < +\infty, \ \forall x \in \left[a,b\right].$$

Для нашего уравнения имеем m=3, M=4,1.

Тогда полагая $\tilde{\xi}_1 = x_4 = -2,114571887$, получим

$$\Delta \tilde{\xi} = \left| \tilde{\xi}_1 - \xi_1 \right| \le \frac{4,1-3}{3} \cdot 0,000147 = 0,00005137 \le 0,0000514 = \Delta_{\tilde{\xi}} \le \varepsilon.$$

Следовательно, приближенное значение корня равно $\tilde{\xi}_1 = -2,114571887 \pm 0,0000514$.

Запишем приближенное значение корня только верными значащими цифрами в узком смысле.

Имеем $\Delta_{\tilde{\xi}_1}=0,0000514\leq \frac{1}{2}10^{-3}=\frac{1}{2}10^{m-n+1}, m=0, n=4$. Округлим $\tilde{\xi}_1=-2,114571887$ до n=4. Получим $\tilde{\xi}_{11}=-2,115$, $\Delta_{o\kappa p}=\left|\tilde{\xi}_1-\tilde{\xi}_{11}\right|\leq 0,000429$, $\Delta_{\tilde{\xi}_{11}}=\Delta_{o\kappa p}+\Delta_{\tilde{\xi}_1}=0,0004804$.

Найдем число верных знаков для $\tilde{\xi}_{11}=-2,115$. Имеем $\Delta_{\tilde{\xi}_{11}}=0,0004804\leq \frac{1}{2}10^{-3}=\frac{1}{2}10^{m-n_1+1},\ m=0\ ,\ n_1=4\ .$

Так как $n=n_1$, то получим приближенное значение корня $\tilde{\xi}_{11}=-2,115$ с числом верных знаков $n_1=4$.

Otbet: $\tilde{\xi}_1 = -2,115 \pm 0,0004804$.

II) Найти приближенные решения уравнения $x^2 + 2x - \cos(1,1x+1) = 0$ методом касательных (методом Ньютона) с точностью $\varepsilon = 10^{-4}$.

Отделим корни этого уравнения графически (можно и программно). Для этого построим графики функций $y_1(x) = x^2 + 2x$, $y_2(x) = \cos(1,1x+1)$ и найдем абсциссы точек пересечения графиков этих функций: $\xi_1 \in [-2,5;-2]$, $\xi_2 \in [0;0,5]$.

<u>В качестве примера рассмотрим второй корень</u>. Уточним его методом касательных. Для этого определим знаки функции y = F(x) и второй ее производной y'' = F''(x) на этом отрезке [0;0,5]: $F(x) = x^2 + 2x - \cos(1,1x+1)$, $F''(x) = 2 + 1,21\cos(1,1x+1)$; F(0) = -0,54031 < 0, F(0,5) = 1,22921 > 0; так как $|\cos(1,1*x+1)| \le 1$, то F''(x) > 0, $\forall x \in [0;0,5]$.

Поскольку $F(0,5) \cdot F''(x) > 0$, то применяем формулу $x_{n+1} = x_n - \frac{F(x_n)}{F'(x_n)}$, $n = 0,1,2,\ldots, x_0 = 0,5$.

x	у	$F'(x_0)$	$h = \frac{F\left(x_{n}\right)}{F'\left(x_{n}\right)}$	$\Delta x = x_{n+1} - x_n$
0,5	1,229205172	4,099762141	0,29982354	
0,200176466	0,096960102	3,433435582	0,028239965	0,299823534
0,171936501	0,000967890	3,364722863	0,000287658	0,028239965
0,171648863	0,000000101	3,364017852	0,000000030	0,000287658
0,171648813	0,000000000	3,364017778	0,000000000	0,000000030

а	b	F(a)	F(b)	F''(a)	F''(b)
0	0,5	-0,54030231	1,229205172	2,65376579	2,02516174

Схема применения метода касательных.

Оценим погрешность приближения. Так как F''(x) не меняет свой знак на данном отрезке, то F'(x) достигает своего наибольшего и наименьшего значения на концах отрезка [0;0,5], поэтому $|F'(x)| = |2x + 2 + 1,1\sin(1,1x+1)| \ge 2 = m > 0$ для $\forall x \in [0;0,5]$.

А) Тогда используя оценку погрешности

$$|x_n - \xi_2| \le \frac{|F(x_n)|}{m} \le \varepsilon, |F'(x)| \ge m > 0, \forall x \in [a,b]$$

получим

$$\tilde{\xi}_2 = x_4 = 0,171648813,$$

$$\Delta \tilde{\xi}_2 = \left| \tilde{\xi}_2 - \xi_2 \right| \le \frac{0,000000030}{2} = \Delta_{\tilde{\xi}_2} = 0,00000015 \le \varepsilon.$$

Следовательно, приближенное значение корня равно $\tilde{\xi}_2 = 0.171648813 \pm 0.00000030 \, .$

Запишем приближенное значение корня только верными значащими цифрами в узком смысле.

Имеем $\Delta_{\tilde{\xi}_2}=0,00000003\leq \frac{1}{2}10^{-7}=\frac{1}{2}10^{m-n+1}, m=0, n=8.$ Округлим $\tilde{\xi}_2=0,171648813$ до n=8. Получим $\tilde{\xi}_{21}=0,1716488$, с погрешностью округления $\Delta_{o\kappa p}=\left|\tilde{\xi}_2-\tilde{\xi}_{21}\right|\leq 0,000000014$, $\Delta_{\tilde{\xi}_{21}}=\Delta_{o\kappa p}+\Delta_{\tilde{\xi}_2}=0,0000000044$.

Найдем число верных знаков для $\tilde{\xi}_{21} = 0,1716488$.

Имеем $\Delta_{\tilde{\xi}_{21}} = 0,000000044 \le \frac{1}{2}10^{-7} = \frac{1}{2}10^{m-n_1+1}$, m=0, $n_1=8$. Так как $n_1=n$, то получим приближенное значение корня с числом верных знаков $n_1=8$.

Otbet: $\tilde{\xi}_2 = 0.1716488 \pm 0.000000044$.

Б) Верна так же следующая формула оценки погрешности приближенного значения корня:

$$\left|x_n - \xi_2\right| \le \frac{M}{2m} \left|x_n - x_{n-1}\right|^2 \le \varepsilon$$
, $0 < m \le \left|F'(x)\right| \le M < +\infty$, $\forall x \in [a,b]$.

Для нашего уравнения имеем m=2, M=2,7. Тогда полагая $\tilde{\xi}_2=x_3=0,171648843$, получим

$$\Delta \tilde{\xi}_2 = \left| \tilde{\xi}_2 - \xi_2 \right| \le \frac{2.7}{2 \cdot 2} \cdot 0,000287658^2 = \Delta_{\tilde{\xi}_2} = 0,000000056 \le \varepsilon.$$

Следовательно, приближенное значение корня равно $\tilde{\xi}_2 = 0.171648843 \pm 0.000000056$.

Запишем приближенное значение корня только верными значащими цифрами в узком смысле.

Имеем
$$\Delta_{\tilde{\xi}_2} = 0.000000056 \le \frac{1}{2} 10^{-6} = \frac{1}{2} 10^{m-n+1}, m = 0, n = 7.$$

Округлим $\tilde{\xi}_2=0,171648843$ до n=7. Получим $\tilde{\xi}_{21}=0,171649$, $\Delta_{o\kappa p}=\left|\tilde{\xi}_2-\tilde{\xi}_{21}\right|\leq 0,00000016,$ $\Delta_{\tilde{\xi}_{21}}=\Delta_{o\kappa p}+\Delta_{\tilde{\xi}_2}=0,0000011+0,0000171=0,0000281$ $\Delta_{\tilde{\xi}_{21}}=\Delta_{o\kappa p}+\Delta_{\tilde{\xi}_2}=0,0000000216$

Найдем число верных знаков для $\tilde{\xi}_{21}=0,171649$. Имеем $\Delta_{\tilde{\xi}_{21}}=0,000000216 \leq \frac{1}{2}10^{-6}=\frac{1}{2}10^{m-n_1+1}, \ m=0\,, n_1=7\,.$ Так как $n_1=n\,,$ то получим приближенное значение корня с числом верных знаков $n_1=7\,.$

Otbet: $\tilde{\xi}_{21} = 0,171649 \pm 0,000000216$.

<u>Замечание</u>. Из сравнения результатов пунктов **A**) и **Б**) метода касательных видно, что оценка во втором пункте позволяет получить приближенный результат за меньшее число приближений и может быть получен округлением из результата пункта **A**).

III) Найти приближенные решения уравнения $x^2 + 2x - \cos(1, 1x + 1) = 0$ комбинированным методом с точностью $\varepsilon = 10^{-4}$.

Отделим корни этого уравнения графически (можно и программно). Для этого построим графики функций $y_1(x) = x^2 + 2x$, $y_2(x) = \cos(1,1x+1)$ и найдем абсциссы точек пересечения графиков этих функций: $\xi_1 \in [-2,5;-2]$, $\xi_2 \in [0;0,5]$.

Рассмотрим второй корень в качестве примера. Уточним его комбинированным методом. Для этого определим знаки функции y = F(x) и второй ее производной y'' = F''(x) на этом отрезке [0;0,5]: $F(x) = x^2 + 2x - \cos(1,1x+1)$, $F''(x) = 2 + 1,21\cos(1,1x+1)$; F(0) = -0,54031 < 0, F(0,5) = 1,22921 > 0; F'(x) > 0, так как $|\cos(1,1*x+1)| \le 1$, то F''(x) > 0, $\forall x \in [0;0,5]$.

Тогда применяем формулы

$$x_{n+1} = x_n - h_1, \quad h_1 = \frac{F(x_n)}{F(\overline{x}_n) - F(x_n)} (\overline{x}_n - x_n), \quad \overline{x}_{n+1} = \overline{x}_n - h_2, \quad h_2 = \frac{F(\overline{x}_n)}{F'(\overline{x}_n)},$$

 $x_0 = a, \quad \overline{x}_0 = b, \quad m = 0, 1, 2, \dots.$

Процесс продолжаем до выполнения условия $|\overline{x}_n - x_n| < \varepsilon$, тогда за приближенное значение корня можно взять значение

$$\tilde{\xi} = \frac{x_n + \overline{x}_n}{2}, \ \Delta_{\tilde{\xi}} = \frac{|x_n - \overline{x}_n|}{2}.$$

		_	_		
x_n	\overline{x}_n	$F(x_n)$	h_1	$F(\overline{x}_n)$	h_2
0,00000000	0,50000000	-0,54030231	-0,15267025	1,22920517	0,29982353
0,15267025	0,20017647	-0,06340140	-0,01878232	0,09696010	0,02823997
0,17145257	0,17193650	-0,00066012	-0,00019622	0,00096789	0,00028766
0,17164879	0,17164884	-0,00000007	-0,00000002	0,00000010	0,00000003

$F'(\overline{x}_n)$	$\overline{x}_n - x_n$	کع	$\Delta_{ ilde{\xi}}$
4,09976214	0,50000000	0,25000000	0,25000000
3,43343558	0,04750621	0,17642336	0,02375311
3,36472286	0,00048393	0,17169453	0,00024197
3,36401785	0,00000005	0,17164882	0,00000003

Схема применения комбинированного метода.

Найдем число верных знаков у приближенного корня $\tilde{\xi}_2=0,17164882$. Так как $\Delta_{\tilde{\xi}_2}=0,000000003<\frac{1}{2}10^{-7}=\frac{1}{2}10^{m-n+1},\ m=0$, то получим n=8. Округлим до верных знаков $\tilde{\xi}_{21}=0,1716488$, при этом погрешность округления будет $\Delta_{okp}=0,000000003$, а погрешность приближенного решения $\Delta_{\tilde{\xi}_{21}}=0,000000006$.

Найдем число верных знаков $\Delta_{\tilde{\xi}_{21}} = 0,000000006 < \frac{1}{2} 10^{-6} = \frac{1}{2} 10^{m-n_1+1}, m=0, n_1=7.$

Округлим до верных знаков $\tilde{\xi}_{22}=0,171649$, при этом погрешность округления будет $\Delta_{o\kappa p_1}=0,00000003$, а погрешность приближенного решения $\Delta_{\tilde{\xi}_{22}}=0,00000036$.

Найдем число верных знаков $\Delta_{\tilde{\xi}_{22}}=0,00000036<\frac{1}{2}10^{-6}=\frac{1}{2}10^{m-n_2+1},\ m=0\ ,\ n_2=7\ .$ Так как $n_2=n_1$, то прекращаем округление.

Otbet: $\tilde{\xi}_2 = 0.171649 \pm 0.00000036$.