

# One-dimensional integrals

$$F = \int_{a}^{b} f(x) dx$$

The objective of one-dimensional integral is to calculate the area under the curve f(x).





### First divided the regions into many intervals

$$\Delta x = \frac{b - a}{n}$$

$$x_n = x_0 + n\Delta x$$

For Rectangular approximation

$$F_n \approx \sum_{i=0}^{n-1} f(x_i) \Delta x$$



### For Trapezoidal approximation

$$F_n \approx \left[\frac{1}{2}f(x_0) + \sum_{i=1}^{n-1}f(x_i) + \frac{1}{2}f(x_n)\right] \Delta x$$

For Simpson's rule

$$F_n \approx \frac{1}{3} [f(x_0) + 4f(x_1) + 2f(x_2) + 4f(x_3) + L$$

$$2f(x_{n-2}) + 4f(x_{n-1}) + f(x_n)] \Delta x$$

These approximations are adequate for functions f(x) that are reasonably well behaved, e.g. polynomial.



#### 1. Hit or Miss method



Compute n pairs of random numbers

$$(x_i, y_i)$$
 where  $a \le x_i \le b, 0 \le y_i \le H$ 

$$F_n = H(b-a)\frac{n_s}{n}$$
  $n_s = \text{number of points with } y_i \le f(x_i)$ 

### 2. Sample mean method

$$F_n = (b-a)\langle f \rangle = (b-a)\frac{1}{n}\sum_{i=1}^n f(x_i)$$

where  $x_i$  are random number distributed uniformly in the interval  $a \le x_i \le b$ , and n is the number of *trials*.

$$x_i = a + (b - a) * RANDOM(0,1)$$

Is it the same as the Rectangular approximation?

## Multidimensional integrals

$$F = \prod_{i=1}^{N} \int_{R} dx_{i} f(x_{1}, x_{2}, L x_{N})$$

Classical method

$$F \approx \sum_{i=1}^{N} \sum_{i_{k}=1}^{n} f(x_{1_{k}}, x_{2_{k}}, L, x_{N_{k}}) W(x_{1_{k}}, x_{2_{k}}, L, x_{N_{k}}) h^{N}$$

Monte Carlo method

$$F \approx \frac{\Omega}{n} \sum_{i=1}^{n} f(x_{1_i}, x_{2_i}, L, x_{N_i}) W(x_{1_i}, x_{2_i}, L, x_{N_i})$$

Why Monte Carlo?

## Error and computation time

Integration => summation of a set of numbers with error due to approximation

Rectangular approximation for 1D

error  $\propto n(\Delta x)^2 \propto n[(b-a)/n]^2 \propto 1/n$ 

Simpson's rule for 1D

error  $\propto n(\Delta x)^5 \propto n[(b-a)/n]^5 \propto 1/n^4$ 

The above error terms are for one dimensional only.

For a total of n data, if the error goes as order  $n^{-a}$  in 1D.

Then the error in d dimensions goes as  $n^{-a/d}$ .

However Monte Carlo errors vary as  $n^{-1/2}$ , independent of dimension, it is better for large enough dimension.

Example: 
$$2^{-7} \int_a^b L \int_a^b (x_1 + x_2 + L + x_8)^2 dx_1 L dx_8$$
  

$$= \frac{8}{3} (b^3 - a^3) (b - a)^7 + 14 (b^2 - a^2)^2 (b - a)^6$$

| (a,b); $n$    | Classical method               | Monte Carlo method             |
|---------------|--------------------------------|--------------------------------|
|               | (rectangular approximation)    |                                |
| $(0,1); 4^8$  | 0.1298771                      | 0.1280971                      |
|               | $error = -3.31 \times 10^{-4}$ | error = $-2.11 \times 10^{-3}$ |
| $(0,1); 8^8$  | 0.1314049                      | 0.1294123                      |
|               | error = $-1.20 \times 10^{-3}$ | $error = -7.96 \times 10^{-4}$ |
| $(0,1); 16^8$ | 0.1303383                      | 0.1302604                      |
| The Contract  | error = $-1.30 \times 10^{-4}$ | error = $-5.21 \times 10^{-5}$ |
| $(0,2); 4^8$  | 132.9941                       | 131.1715                       |
|               | error = -0.34                  | error = -2.16                  |
| $(0,2); 8^8$  | 134.5586                       | 132.5182                       |
|               | error = 1.225                  | error = -0.815                 |
| $(0,2); 16^8$ | 134.0973                       | 133.2193                       |
|               | error = 0.764                  | error = -0.114                 |

## Important sampling

The basic idea is to concentrate the distribution of the sample points in the part of region that are most "importance" instead of spreading them evenly.

We introduce a positive function p(x) such that

$$\int_a^b dx \ p(x) = 1$$

$$\int_{a}^{b} dx \ p(x) = 1$$

$$F = \int_{a}^{b} dx \ p(x) \left[ \frac{f(x)}{p(x)} \right]$$

$$F = \frac{1}{n} \sum_{i=1}^{n} \frac{f(x_i)}{p(x_i)}$$

Better choice of p(x) will reduce the variance of the integral.

## Metropolis algorithm

This method is useful for computing

$$\langle f \rangle = \frac{\int p(x)f(x)dx}{\int p(x)dx}$$

The Metropolis method produces a random walk of points  $\{x_i\}$  whose asymptotic probability distribution approaches p(x) after a large number of steps.

The random walk is defined by specifying a *transition* probability  $T(x_i \rightarrow x_j)$  from one value  $x_i$  to another value  $x_j$  such that the distribution of points  $x_0, x_1, x_2, L$  converges to p(x).

It is sufficient to satisfy the "detailed balance" condition if

$$p(x_i)T(x_i \to x_j) = P(x_j)T(x_j \to x_i)$$

This relation does not uniquely specify  $T(x_i \rightarrow x_j)$ 

A simple choice of  $T(x_i \rightarrow x_j)$  is

$$T(x_i \rightarrow x_j) = \min \left[1, \frac{p(x_j)}{P(x_i)}\right]$$

# A simple algorithm

Step 1. Randomly pick up a x

Step 2. Let x' = x + dx, calculate s = p(x')/p(x).

Step 3. If s > 1, accept x'.

Step 4. If s < 1, compare s with r=random number (0,1).

If s > r, accept x'; otherwise, back to step 2.

Continue

Choice of dx? Acceptance rate between 1/3 and 2/3.

#### Example:

Calculate the mean energy for

$$E = \sum_{i=1}^{10} \cos(\theta_i - \theta_{i+1}), where \ \theta_{11} = \theta_1$$

That means we need to calculate

$$\langle E \rangle = \frac{\prod_{i=1}^{10} \int_{-\pi}^{\pi} d\theta_i E \exp(-E)}{\prod_{i=1}^{10} \int_{-\pi}^{\pi} d\theta_i \exp(-E)}$$

| Number of points              | CONTRACTOR CENTRAL CONTRACTOR CON |                                  |
|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| calculated / number of trials | Uniform sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Metropolis method With p=Exp(-E) |
| $2^{10} = 1024$               | -7.955661                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -4.275162                        |
| $3^{10} = 59049$              | -3.494802                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -4.802259                        |
| $4^{10} = 1048576$            | -4.628727                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -4.481805                        |
| $5^{10} = 9765625$            | -4.448703                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -4.476263                        |
| $6^{10} = 60466176$           | -4.470915                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -4.474854                        |