Méthodes numériques : Structure Stellaire.

January 17, 2017

Contents

L	Hypothèses:	2
2	Équations de structure stellaire : 2.1 Structure mécanique :	2 2 2
3	Dédimensionnement des équations :	2
4	Conditions aux limites :	3
5	Passage en variables de Milne :	3
3	Discrétisation:	3

Notes:

Bouquin structure stellaire (Kippenhahn): http://bookzz.org/book/2292709/51adf0 Voire Chapitres I.1, I.2; II.10, II.11, II.12; IV.19, IV.21

On s'intéresse à la structure mécanique d'étoiles pouvant être décrites par une équation d'état polytropique, soit les étoiles avec un gaz d'électrons dégénérés (type naine blanche, K fixé, n=3/2 si non relativiste, n=3 si relativiste), ou décrits par un gaz parfait + condition adiabatique (étoiles convectives très massives, K paramètre libre).

1 Hypothèses:

- Équilibre hydrostatique
- Chimiquement homogène
- Sans rotation propre
- Équation d'état polytropique $P = K\rho^{1+\frac{1}{n}}$
- Traitement Lagrangien (variable indépendante : m)
- Calcul à une dimension

2 Équations de structure stellaire :

Kippenhahn Ch.10, p89

2.1 Structure mécanique :

Équation du rayon:

$$\frac{dr}{dm} = \frac{1}{4\pi r^2 \rho} \tag{1}$$

Équation d'équilibre hydrostatique :

$$\frac{dP}{dm} = -\frac{Gm}{4\pi r^4} \tag{2}$$

2.2 Structure thermique et énergétique :

Équations découplées de la structure mécanique dans le cas d'une équation d'état polytropique. Ces équations ne sont donc pas considérées dans un premier temps.

Équation de conservation de l'énergie :

$$\frac{dl}{dm} = \epsilon_{nuc} \tag{3}$$

Équation de transport de l'énergie :

$$\frac{dT}{dm} = -\frac{Gm}{4\pi r^4} \frac{T}{P} \nabla \quad avec \nabla = \frac{d \ln T}{d \ln P}$$
 (4)

3 Dédimensionnement des équations :

Kippenhahn Ch.20, p
234 $\,$

On pose $q = \frac{m}{M}$ la masse adimensionnée.

Conditions aux limites: 4

Kippenhahn Ch.11, p93

Au centre :

Rayon
$$r(m=0)=0$$

Variation de pression $\frac{\partial P}{\partial m}|_{m=0} = 0$ Variation de densité $\frac{\partial \rho}{\partial m}|_{m=0} = 0$

En surface :

Pression
$$P(m = M) = 0$$

Densité $\rho(m = M) = 0$

Passage en variables de Milne : 5

Kippenhahn Ch.21, p243 $U = \frac{d\ lnm}{d\ lnr} \text{ et } V = -\frac{d\ lnP}{d\ lnr}$ Au centre, $U \to 3$ et $V \to 0$.

En surface, U devient très faible et V augmente beaucoup.

6 Discrétisation: