$\tau_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{2ik}{t_1 + 2k^2t_1}$	$-\frac{i\sqrt{2}}{(t_1+2k^2t_1)^2}$	0	$\frac{-4k^4r_5 + 2k^2t_1}{(t_1 + 2k^2t_1)^2}$
$\tau_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{\sqrt{2}}{t_1 + 2 k^2 t_1}$	$\frac{-2k^2r_5+t_1}{(t_1+2k^2t_1)^2}$	0	$\frac{i\sqrt{2} k(2k^2 r_5 - t_1)}{(t_1 + 2k^2 t_1)^2}$
$\sigma_{1^{-}}^{\#1}{}_{\alpha}$	0	0	0	0	$\frac{\sqrt{2}}{t_1 + 2k^2t_1}$	0	$-\frac{2ik}{t_1+2k^2t_1}$
${\tau_1^{\#1}}_{\alpha\beta}$	$\frac{i\sqrt{2}k(t_1-2t_2)}{(1+k^2)(3t_1t_2+2k^2t_5(t_1+t_2))}$	$\frac{i k (6 k^2 r_5 + t_1 + 4 t_2)}{(1 + k^2)^2 (3 t_1 t_2 + 2 k^2 r_5 (t_1 + t_2))}$	$\frac{k^2 \left(6 k^2 r_5 + t_1 + 4 t_2\right)}{\left(1 + k^2\right)^2 \left(3 t_1 t_2 + 2 k^2 r_5 \left(t_1 + t_2\right)\right)}$	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha\beta}$	$\frac{\sqrt{2} (t_1 - 2t_2)}{(1 + k^2) (3t_1 t_2 + 2k^2 r_5 (t_1 + t_2))}$	$\frac{6 k^2 r_5 + t_1 + 4 t_2}{(1 + k^2)^2 (3 t_1 t_2 + 2 k^2 r_5 (t_1 + t_2))}$		0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha\beta}$	$\frac{2(t_1+t_2)}{3t_1t_2+2k^2r_5(t_1+t_2)}$	$\frac{\sqrt{2} (t_1 - 2t_2)}{(1 + k^2) (3t_1 t_2 + 2k^2 r_5 (t_1 + t_2))}$	$\frac{i\sqrt{2}k(t_{1}-2t_{2})}{1+k^{2})(3t_{1}t_{2}+2k^{2}t_{5}(t_{1}+t_{2}))}$	0	0	0	0
	$\sigma_1^{\#1} + ^{\alpha \beta}$	$\sigma_1^{\#2} + ^{\alpha\beta}$	$\tau_{1+}^{\#1} + ^{\alpha\beta}$	$\sigma_{1}^{\#1} +^{\alpha}$	$\sigma_1^{\#2} +^{\alpha}$	$\tau_1^{\#1} +^{\alpha}$	$\tau_1^{\#2} + \alpha$

	$\omega_{1^{+}lphaeta}^{\sharp1}$	$\omega_{1}^{\#2}{}_{lphaeta}$	$f_{1}^{\#1}{}_{\alpha\beta}$	$\omega_{1-lpha}^{\#1}$	$\omega_{1-\alpha}^{\#2}$	$f_{1-\alpha}^{\#1}$	$f_{1-\alpha}^{#2}$
$\omega_{1}^{\#1} \dagger^{\alpha\beta}$	$\frac{1}{6} \left(6 k^2 r_5 + t_1 + 4 t_2 \right)$	$-\frac{t_1-2t_2}{3\sqrt{2}}$	$-\frac{i k (t_1 - 2 t_2)}{3 \sqrt{2}}$	0	0	0	0
$\omega_{1}^{\#2} \dagger^{\alpha\beta}$	$-\frac{t_1-2t_2}{3\sqrt{2}}$	$\frac{t_1+t_2}{3}$	$\frac{1}{3}\bar{l}k(t_1+t_2)$	0	0	0	0
$f_{1}^{#1} \dagger^{\alpha\beta}$	$\frac{i k (t_1 - 2 t_2)}{3 \sqrt{2}}$	$-\frac{1}{3}\bar{l}k(t_1+t_2)$	$\frac{1}{3}k^2(t_1+t_2)$	0	0	0	0
$\omega_{1}^{#1}$ † lpha	0	0	0	$k^2 r_5 - \frac{t_1}{2}$	$\frac{t_1}{\sqrt{2}}$	0	īkt ₁
$\omega_{1}^{#2} \dagger^{\alpha}$	0	0	0	$\frac{t_1}{\sqrt{2}}$	0	0	0
$f_{1}^{#1} \dagger^{\alpha}$	0	0	0	0	0	0	0
$f_{1}^{#2} \dagger^{\alpha}$	0	0	0	-	0	0	0

$\sigma_{2^{-}}^{\#1}{}_{lphaeta\chi}$	0	0	$\frac{2}{t_1}$
$\tau_{2}^{\#1}_{\alpha\beta}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0
$\sigma_{2}^{\#1}{}_{\alpha\beta}$		$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0
	$\sigma_{2}^{\#1} + \alpha \beta$	$\tau_{2+}^{\#1} + \alpha \beta$	$\sigma_{2}^{\#1} +^{lphaeta\chi}$

_	$\omega_0^{\sharp 1}$	$f_{0^{+}}^{#1}$	$f_{0}^{#2}$	$\omega_0^{\#1}$
$\omega_{0}^{\#1}$ †	-t ₁	$i \sqrt{2} kt_1$	0	0
$f_{0^{+}}^{#1}\dagger$	$-\bar{l} \sqrt{2} kt_1$	$-2 k^2 t_1$	0	0
$f_{0^{+}}^{#2}$ †	0	0	0	0
$\omega_{0}^{\sharp_{1}}$ †	0	0	0	t_2

	$\omega_{2^{+}\alpha\beta}^{\#1}$	$f_{2+\alpha\beta}^{\#1}$	$\omega_{2^{-}\alpha\beta\chi}^{\#1}$
$\omega_{2}^{\#1} \dagger^{\alpha\beta}$	<u>t</u> 1 2	$-\frac{ikt_1}{\sqrt{2}}$	0
$f_{2+}^{#1} \dagger^{\alpha\beta}$	$\frac{i k t_1}{\sqrt{2}}$	$k^2 t_1$	0
$\omega_{2}^{\#1} \dagger^{lphaeta\chi}$	0	0	<u>t</u> 1 2

Lagrangian density

 $-t_1 \ \omega_{,\alpha}^{\alpha l} \ \omega_{\kappa\alpha}^{ \kappa} - \frac{1}{3} t_1 \ \omega_{,\alpha}^{ \lambda} \ \omega_{\kappa\lambda}^{ l} + \frac{2}{3} t_2 \ \omega_{,\alpha}^{ \lambda} \ \omega_{\kappa\lambda}^{ l} + \frac{1}{3} t_1 \ \omega_{\kappa\lambda}^{ l} \ \omega_{\kappa\lambda}^{ l} + \frac{1}{3} t_1 \ \omega_{\kappa\lambda}^{ l} \ \omega_{\kappa\lambda}^{ l} + \frac{1}{3} t_2 \ \omega_{\kappa\lambda}^{ l} \ \omega_{\kappa\lambda}^{ l} + f^{\alpha\beta} \ \tau_{\alpha\beta} + \omega^{\alpha\beta\chi} \ \sigma_{\alpha\beta\chi}^{ l} - r_5 \, \partial_{i} \omega_{\kappa\lambda}^{ \lambda} \, \partial^{i} \omega_{\lambda}^{ \alpha} - r_5 \, \partial_{\alpha} \omega_{\lambda}^{ \alpha} \, \partial_{\kappa} \omega^{\theta\kappa\lambda} + \frac{1}{3} t_1 \, \partial^{\alpha} f_{\alpha} \, \partial_{\kappa} \omega^{\theta\kappa\lambda} + \frac{1}{3} t_1 \, \partial^{\alpha} f_{\alpha}^{ l} + \frac{1}{3} t_1 \, \partial^{\alpha} f_{\alpha}^{ l} \, \partial^{\kappa} f_{\alpha}^{ l} + \frac{1}{3} t_1 \, \partial^{\alpha} f_{\alpha}^{ l} \, \partial^{\kappa} f_{\alpha}^{ l} + \frac{1}{3} t_1 \, \partial^{\alpha} f_{\alpha}^{ l} \, \partial^{\kappa} f_{\alpha}^{ l} + \frac{1}{3} t_1 \, \partial^{\alpha} f_{\alpha}^{ l} \, \partial^{\kappa} f_{\alpha}^{ l} + \frac{1}{3} t_1 \, \partial^{\alpha} f_{\alpha}^{ l} \, \partial^{\kappa} f_{\alpha}^{ l} + \frac{1}{3} t_1 \, \omega_{\alpha}^{ l} \, \partial^{\kappa} f_{\alpha}^{ l} + \frac{1}{3} t_1 \, \omega_{\alpha}^{ l} \, \partial^{\kappa} f_{\alpha}^{ l} + \frac{1}{3} t_1 \, \omega_{\alpha}^{ l} \, \partial^{\kappa} f_{\alpha}^{ l} + \frac{1}{3} t_1 \, \omega_{\alpha}^{ l} \, \partial^{\kappa} f_{\alpha}^{ l} + \frac{1}{3} t_1 \, \omega_{\alpha}^{ l} \, \partial^{\kappa} f_{\alpha}^{ l} + \frac{1}{3} t_1 \, \omega_{\alpha}^{ l} \, \partial^{\kappa} f_{\alpha}^{ l} + \frac{1}{3} t_1 \, \omega_{\alpha}^{ l} \, \partial^{\kappa} f_{\alpha}^{ l} + \frac{1}{3} t_2 \, \omega_{\alpha}^{ l} \, \partial^{\kappa} f_{\alpha}^{ l} + \frac{1}{3} t_1 \, \omega_{\alpha}^{ l} \, \partial^{\kappa} f_{\alpha}^{ l} + \frac{1}{3} t_2 \, \omega_{\alpha}^{ l} \, \partial^{\kappa} f_{\alpha}^{ l} + \frac{1}{3} t_1 \, \omega_{\alpha}^{ l} \, \partial^{\kappa} f_{\alpha}^{ l} + \frac{1}{3} t_1 \, \omega_{\alpha}^{ l} \, \partial^{\kappa} f_{\alpha}^{ l} + \frac{1}{3} t_1 \, \omega_{\alpha}^{ l} \, \partial^{\kappa} f_{\alpha}^{ l} + \frac{1}{3} t_1 \, \omega_{\alpha}^{ l} \, \partial^{\kappa} f_{\alpha}^{ l} + \frac{1}{3} t_1 \, \omega_{\alpha}^{ l} \, \partial^{\kappa} f_{\alpha}^{ l} + \frac{1}{3} t_1 \, \omega_{\alpha}^{ l} \, \partial^{\kappa} f_{\alpha}^{ l} + \frac{1}{3} t_1 \, \omega_{\alpha}^{ l} \, \partial^{\kappa} f_{\alpha}^{ l} + \frac{1}{3} t_1 \, \omega_{\alpha}^{ l} \, \partial^{\kappa} f_{\alpha}^{ l} + \frac{1}{3} t_1 \, \omega_{\alpha}^{ l} \, \partial^{\kappa} f_{\alpha}^{ l} + \frac{1}{3} t_1 \, \partial_{\alpha}^{ l} \, \partial^{\kappa} f_{\alpha}^{ l} + \frac{1}{3} t_1 \, \partial_{\alpha}^{ l} \, \partial^{\kappa} f_{\alpha}^{ l} + \frac{1}{3} t_1 \, \partial_{\alpha}^{$

Source constraints			
SO(3) irreps	#		
$\tau_{0+}^{#2} == 0$	1		
$\tau_{0+}^{\#1} - 2 i k \sigma_{0+}^{\#1} == 0$	1		
$\tau_{1}^{\#2\alpha} + 2 i k \sigma_{1}^{\#2\alpha} == 0$	3		
$\tau_{1}^{\#1\alpha} == 0$	3		
$\tau_{1+}^{\#1}{}^{\alpha\beta} + i k \sigma_{1+}^{\#2}{}^{\alpha\beta} == 0$	3		
$\tau_{2+}^{\#1\alpha\beta} - 2 i k \sigma_{2+}^{\#1\alpha\beta} == 0$	5		
Total #:	16		

$\sigma_{0^{\text{-}}}^{\#1}$	0	0	0	$\frac{1}{t_2}$	
$\tau_0^{\#2}$	0	0	0	0	
$ au_0^{\#1}$	$\frac{i\sqrt{2}k}{(1+2k^2)^2t_1}$	$-\frac{2k^2}{(1+2k^2)^2t_1}$	0	0	
$\sigma_{0}^{\#1}$	$-\frac{1}{(1+2k^2)^2t_1}$	$-\frac{i\sqrt{2}k}{(1+2k^2)^2t_1}$	0	0	
,	$\sigma_{0}^{\#1}$ †	$\tau_{0}^{\#1}$ †	$\tau_{0}^{\#2}$ †	$\sigma_{0}^{\#1}\dagger$	

Massive particle				
Pole residue:	$\frac{-3t_1t_2(t_1+t_2)+3r_5(t_1^2+2t_2^2)}{r_5(t_1+t_2)(-3t_1t_2+2r_5(t_1+t_2))} > 0$			
Polarisations:	3			
Square mass:	$-\frac{3t_1t_2}{2r_5t_1+2r_5t_2} > 0$			
Spin:	1			
Parity:	Even			

(No massless particles)