Notes on Alternating Least Squares

Signal Data Science

This document is an exposition of the method of alternating least squares (ALS) for imputation of missing values. The reference is Hastie *et al.* (2014), Matrix Completion and Low-Rank SVD via Fast Alternating Least Squares; ALS is implemented in the softImpute package in R.

Theory

The operation of matrix multiplication allows us to *multiply* two matrices and form a new matrix. It is illustrated below:

$$\begin{bmatrix} a_{11} & a_{12} \\ \vdots & \vdots \\ a_{31} & a_{32} \\ \vdots & \vdots \end{bmatrix} \begin{bmatrix} 2 \times 3 \text{ matrix} \\ b_{12} & b_{13} \\ b_{22} & b_{23} \end{bmatrix} = \begin{bmatrix} 4 \times 3 \text{ matrix} \\ x_{12} & x_{13} \\ \vdots & \vdots \\ x_{32} & x_{33} \\ \vdots & \vdots \end{bmatrix}$$

Figure 1: An illustration of matrix multiplication, where $x_{12} = a_{11}b_{12} + a_{12}b_{22}$ and $x_{33} = a_{31}b_{13} + a_{32}b_{23}$.

Note specifically the dimensions of the resulting matrix. If **A** is an $n \times p$ matrix and **B** is a $p \times m$ matrix, the product **AB** will have dimensions $n \times m$. What if p is very small compared to n and m? We will be able to obtain quite a large matrix just from multiplying together two very narrow matrices (one tall and one wide).

In general, we find that it is possible to decompose large matrices into the *product* of multiple *smaller* matrices. This is the key behind the method of alternating least squares.

The task at hand is that given a matrix **X** with many missing entries, we want to construct a filled-in matrix **Z** which *minimizes some loss function*. It turns out that we can write a *regularized* cost function which makes this task straightforward, and also that we can write the solution which minimizes the cost function as

¹If the matrices all have real values, we can write $\mathbf{A} \in \mathbb{R}^{n \times p}$, etc.

for an appropriate choice of a tall matrix **A** and a wide matrix \mathbf{B}^{T} , where the operator T denotes the *transpose* of a matrix (flipping a $n \times m$ matrix so that its dimensions become $m \times n$). Note that for the existing data in X we simply use that rating data directly in the filled-in matrix Z instead of the approximated values in AB^{T} (hence the \approx symbol).

Our imputation method is an indirect one in the sense that instead of *directly* trying to calculate missing values from existing ones, we ask what the optimal filled-in matrix **Z** would look like and infer the missing values based on an analysis of **Z**. Precisely, we are trying to minimize the differences between the filled-in entries of **X** and the corresponding entries of AB^{T} along with a regularization term controlled by a parameter λ . Our cost function only considers the matrix entries which correspond to existing data (the filled-in values of **X**), but the fashion in which we estimate **A** and **B** operate on the *entirety* of each matrix. Consequently, the entries of AB^{T} corresponding to *missing* data in **X** serve as rating estimates.

Our task is now simply to estimate the matrices **A** and **B**. It turns out that the optimal estimates are related via the equation

$$\mathbf{B} = (\mathbf{A}^{\mathsf{T}}\mathbf{A} + \lambda \mathbf{I})^{-1} \, \mathbf{A}^{\mathsf{T}} \mathbf{Z}$$

and vice versa with $\bf A$ and $\bf B$ switched, where λ is the regularization parameter and $\bf I$ is the identity matrix. For mathematical reasons, this is actually equivalent to running a regularized least squares regression for each column of $\bf Z$ with the columns of $\bf A$ as predictors, with the coefficient estimates corresponding to entries of $\bf B$!

As such, this suggests a strategy for estimating A and B. First, we start by initializing A. Next, we use the regression strategy described above both to

²Specifically, we minimize the expression $\frac{1}{2} \| P_{\Omega}(\mathbf{X}) - P_{\Omega}(\mathbf{A}\mathbf{B}^{\mathsf{T}}) \| + \frac{\lambda}{2} \left(\|\mathbf{A}\|_F^2 + \|\mathbf{B}\|_F^2 \right)$, where Ω is the set of positions of \mathbf{X} which do not correspond to missing values, $P_{\Omega}(\mathbf{X})$ denotes \mathbf{X} with the positions *not* in Ω set to 0, and $\|\mathbf{X}\|_F$ denotes the Frobenius norm of \mathbf{X} (the square root of the sum of squares of entries of \$ \mathbf{X}).

 $^{^3}$ One can ask the question of why we don't simply estimate A = B = 0 in the degenerate case of X having no missing values. If that were the result, it would contradict the fact that AB^{T} should be equal to the soft-thresholded SVD of Z (presented later in this exposition)! The reason is that although AB^{T} contains information about the *differences* between X and Z, we don't try to impute those differences directly (in which case we might stop immediately if there were no differences whatsoever) but rather *infer* them by trying to bring X and AB^{T} closer together.

⁴The identity matrix is a matrix with 1 on the diagonal and 0 elsewhere. Multiplying it by a different matrix leaves that matrix unchanged.

⁵Specifically, this is equivalent to using Tihkonov regularized linear regression with Tikhonov matrix $\Gamma = (\lambda \mathbf{I})^{1/2}$. This is also called *ridge regression* and reduces to L^2 regularization in the case where Γ is the identity matrix. We are essentially running a linear regression of each column of \mathbf{Z} with the columns of \mathbf{A} as predictors and getting \mathbf{B} back as the coefficient estimates.

generate predictions for **Z** and to generate an estimate for **B**. Next, we can switch the places of **A** and **B** in the above equation and use the same process to update **Z** and **A**. We repeat in this *alternating* fashion until we achieve convergence.

Soft-thresholded SVD

After running the algorithm described above, softImpute() returns the imputed matrix **Z** in a *special form*. It turns out that the product AB^{T} is related to **Z** in yet another fashion!

Taking a step back: in general, *all* matrices can be decomposed into a product of the form $\mathbf{U}\mathbf{D}\mathbf{V}^{\mathsf{T}}$ called the singular value decomposition (SVD) where \mathbf{D} is a diagonal matrix (the only nonzero entries are on the diagonal). We can compute a *modified* version of the SVD for \mathbf{Z} called the *soft-thresholded SVD* formed by taking \mathbf{D} and shrinking the entries on its diagonal toward 0 by a value λ , setting an entry d_i equal to 0 if $|d_i| \leq \lambda$. With the modified matrix \mathbf{D}^* , we can compute the soft-thresholded SVD as $S_{\lambda}(\mathbf{Z}) = \mathbf{U}\mathbf{D}^*\mathbf{V}^{\mathsf{T}}$.

The connection between AB^{T} and Z lies in the somewhat remarkable relation

$$\mathbf{A}\mathbf{B}^{\mathsf{T}} = S_{\lambda}(\mathbf{Z})$$

for the optimal estimates of **A** and **B**.

Indeed, softImpute() will return three matrices as \$u, \$d, and \$v, corresponding to the matrices in $S_{\lambda}(\mathbf{Z}) = \mathbf{U}\mathbf{D}^{\star}\mathbf{V}^{\intercal}$. From those, we also know $\mathbf{A}\mathbf{B}^{\intercal}$, and so the imputed matrix $\mathbf{Z} \approx \mathbf{A}\mathbf{B}^{\intercal}$ can be calculated.

Dimensionality reduction

From the definition of the soft-thresholded SVD, we see that increasing λ sufficiently high will make every value in \mathbf{D}^* equal to 0. The immediate takeaway is that by calculating the maximum value in \mathbf{D} , we can establish an *upper bound* for the values of λ to test. However, there is a more important and subtler interpretation of the results of ALS in connection with the regularization parameter.

In addition, we can check that the dimensions match up. Suppose that $\mathbf{Z} \in \mathbb{R}^{n \times p}$, $\mathbf{A} \in \mathbb{R}^{n \times f}$, and $\mathbf{B} \in \mathbb{R}^{p \times f}$. Then the columns of \mathbf{Z} and \mathbf{A} all have n entries each, and so we can run p different linear regressions (one for each column of \mathbf{Z}) and get out f coefficient estimates each time. We therefore estimate $p \times f$ different coefficient estimates in total, which matches up with the dimensions of \mathbf{B} .

 $^{^6}$ Soft-thresholding is basically solving a L^1 regularized cost function very rapidly by looking at the first derivative. Refer back to the theoretical discussion in *Linear Regression: Regularization* for some related details. We can therefore think of soft-thresholded SVD as a sort of L^1 regularized version of SVD which shrinks the singular values closer to 0.

It is likely that the optimal value of λ is one which drives some *but not all* of the values in **D** to 0. An $n \times n$ diagonal matrix with a *rank* of k, *i.e.*, k nonzero values on the diagonal can simply be rewritten as a $k \times k$ diagonal matrix without any nonzero values on the diagonal. Our decomposition then becomes the product of (1) **U** (a tall $n \times f$ matrix), (2) **D*** (a small square $f \times f$ matrix), and (3) **V**^T (a wide $f \times m$ matrix) for some small value of f. We can interpret this as being able to *summarize* both users and movies in terms of f factors, with the columns of **U** being factor scores for users and the rows of **V**^T being factor scores for movies.

If a user has factor scores $\mathbf{u} = (u_1, u_2, \dots, u_f)$, a movie has factor scores $\mathbf{m} = (m_1, m_2, \dots, m_f)$, and the diagonal entries of \mathbf{D}^* are given by $\{d_1, d_2, \dots, d_f\}$, then the predicted rating for that user–movie pair is simply given a weighted inner product of \mathbf{u} and \mathbf{m} equal to

$$\langle \mathbf{u}, \mathbf{m} \rangle = \mathbf{u}^{\mathsf{T}} \mathbf{D} \mathbf{m} = \sum_{i=1}^{f} u_i d_i m_i.$$