Client's ref: P920052 Our ref: 0389-8356US-final/Uofung/Kevin rev

What is claimed is:

24

1	1. A method of fabricating a nitride read only
2	memory, comprising the steps of:
3	providing a semiconductor substrate, comprising a
4	memory region and a peripheral circuit region
5	therein;
6	growing a pad oxide on the semiconductor substrate;
7	forming a plurality of parallel buried diffusion
8	regions as bit lines in the memory region;
9	forming a first shallow trench and a second shallow
10	trench in the peripheral circuit region;
11	conformally forming an ONO film on the semiconductor
12	substrate;
13	depositing a polysilicon layer on the ONO film to fill
14	the first shallow trenches and the second shallow
15	trench;
16	selectively etching the polysilicon layer in the memory
17	region to define a plurality of polysilicon
18	structures as word lines having gaps therein, and
19	removing the polysilicon from the first shallow
20	trenches and leaving the polysilicon layer in the
21	second shallow trench in the peripheral circuit
22	region; and
23	forming an insulator in the first shallow trenches and

1 2. The method as claimed in claim 1, further
2 comprising:

the gaps between the word lines.

Client's ref: P920052 Our ref: 0389-8356US-final/Uofung/Kevin rev

insulator to leave shallow trench planarizing the 3 isolations in the first shallow trenches 4 between the word lines; 5 selectively etching the polysilicon structures and the 6 ONO layer to expose the semiconductor substrate 7 between the first shallow trenches; and 8 implanting dopants into the substrate between the first 9 shallow trenches to define the well regions. 10 3. The method as claimed in claim 1, wherein the bit 1 2 lines formation further comprises: forming a first photoresist pattern with a plurality of parallel first openings on the pad oxide in the memory region to serve as bit line mask; 5 implanting dopants into the semiconductor substrate to 6 form a plurality of parallel buried diffusion 7 regions as bit lines in the memory region; and 8 removing the bit line mask. 9 4. The method as claimed in claim 1, wherein the first 1 and the second shallow trench formation further comprises: 2 forming a second photoresist pattern on the pad oxide, 3 wherein the second photoresist pattern has second openings in the peripheral circuit region; 5 selectively etching the semiconductor substrate through 6 the second openings to create a first shallow 7 trenche and a second shallow trench; and 8 removing the second photoresist pattern and the pad 9 oxide. 10

Client's ref: P920052
Our ref: 0389-8356US-final/Uofung/Kevin rev

- 1 5. The method as claimed in claim 1, wherein the
- 2 semiconductor substrate is a silicon substrate.
- 1 6. The method as claimed in claim 1, wherein the
- 2 semiconductor substrate is a silicon-on-insulator (SOI
- 3 substrate.
- 1 7. The method as claimed in claim 1, wherein the pad
- 2 oxide is formed by thermal oxidation.
- 1 8. The method as claimed in claim 1, wherein the
- 2 buried diffusion regions are formed by implanting n-type
- 3 ions in the semiconductor substrate.
- 1 9. The method as claimed in claim 1, wherein the
- 2 buried diffusion region is implanted before the ONO layer is
- 3 formed.
- 1 10. The method as claimed in claim 1, wherein the
- 2 buried diffusion region is implanted after the ONO layer is
- 3 formed.
- 1 11. The method as claimed in claim 1, further
- 2 comprising rapid thermal anneraling (RTA) after implantation
- 3 to activate the dopants in the substrate.
- 1 12. The method as claimed in claim 1, wherein the bit
- 2 line mask is a patterned photoresist.
- 1 13. The method as claimed in claim 1, wherein
- 2 thickness of the ONO layer is between about 150 and 250Å.

Client's ref: P920052 Our ref: 0389-8356US-final/Uofunq/Kevin rev

- 1 14. The method as claimed in claim 1, wherein the ONO
- 2 layer is further formed on the sidewall of the shallow
- 3 trench to avoid STI corner recess.
- 1 15. The method as claimed in claim 1, wherein the ONO
- 2 layer is further formed on the sidewall of the shallow
- 3 trench to avoid deformation of the STI profile during
- 4 thermal process.
- 1 16. The method as claimed in claim 1, wherein the
- 2 insulator is a silicon dioxide layer.
- 1 17. The apparatus as claimed in claim 16, wherein the
- 2 polysilicon layer comprises a dopant polysilicon layer.
- 1 18. The method as claimed in claim 1, wherein the
- 2 insulator is formed by high density plasma chemical vapor
- 3 deposition (HDPCVD).
- 1 19. The method as claimed in claim 2, wherein the
- 2 insulator is planarized by chemical mechanical polishing.