# Algorithm Design & Analysis (CSE222)

Lecture-10

# Recap

- Matrix Chain multiplication
  - $\circ$  AER<sup>5x3</sup>, BER<sup>3x8</sup> and CER<sup>8x2</sup>.
  - ∘ A·(B·C) is more efficient than (A·B)·C
- Table Filling (Bottom Up)

Memoization (Top Down)

# Outline

Longest Common Subsequence

Edit Distance

Maximum Job

# Computational Biology

DNA (consists of base) sequencing has played crucial role in computational biology.

Gene identification, prediction

Gene variations, uncovers evolution

Personalized medications

## Problem

Given two DNA sequences, compare the similarity between them.

- Check if two sequences are equal.
- Check if one sequence is a substring of another sequence.
- Find the longest sequence such that the bases in it are also present in the original sequence in the same order.

Example  $S_1 = \{a\underline{a}g\underline{c}\underline{t}cg\}$  and  $S_2 = \{g\underline{a}\underline{c}\underline{t}ag\}$   $S_3 = \{actg\}$ 

Note that  $S_3$  is not a continuous sequence in either  $S_1$  or  $S_2$ .

# Longest Common Subsequence

Given a sequence  $X = \langle x_1, x_2, ..., x_m \rangle$ , a sequence  $Z = \langle z_1, z_2, ..., z_k \rangle$  is a <u>subsequence</u> of X if there is an increasing sequence  $\langle i1, i2, ..., ik \rangle$  of X

such that,  $x_{ij} = z_{j}$  for every  $j = \{1, 2, ..., k\}$ .

# Longest Common Subsequence

Given a sequence  $X = \langle x_1, x_2, ..., x_m \rangle$ , a sequence  $Z = \langle z_1, z_2, ..., z_k \rangle$  is a <u>subsequence</u> of X if there is an increasing sequence  $\langle i1, i2, ..., ik \rangle$  of X such that,  $x_{ij} = z_i$  for every  $j = \{1, 2, ..., k\}$ .

Given a sequence  $X = \langle x_1, x_2, ..., x_m \rangle$ ,  $i^{th}$  prefix of X is  $X_i = \langle x_1, x_2, ..., x_i \rangle$  for  $i = \{0, 1, 2, ..., m\}$ .

Given two sequences X and Y, Z is a <u>common subsequence</u> if it is a subsequence of both X and Y.

Longest such common subsequence is called the *longest common* subsequence.

Given two sequences X and Y, find its longest common subsequence.

## Problem

Given two sequences  $X = \langle x_1, x_2, ..., x_m \rangle$  and  $Y = \langle y_1, y_2, ..., y_n \rangle$ , find its longest common subsequence.

#### **Brute force**

- 1. If m < n, then go over every possible subset of X and return the longest subset that is a subsequence of Y.
- 2. Else, then go over every possible subset of Y and return the longest subset that is a subsequence of X.

Running time: 
$$min(2^m/2^n)$$

## Claim

Given two sequences  $X = \langle x_1, x_2, ..., x_m \rangle$  and  $Y = \langle y_1, y_2, ..., y_n \rangle$ , let  $Z = \langle z_1, z_2, ..., z_k \rangle$  be its longest common subsequence.

- If  $x_m = y_n$ , then  $z_k = x_m = y_n$  and  $Z_{k-1}$  is the LCS of  $X_{m-1}$  and  $Y_{n-1}$ .
- If  $x_m \neq y_n$ , then  $z_k \neq x_m$  implies Z is the LCS of  $X_{m-1}$  and Y.
- If  $x_m \neq y_n$ , then  $z_k \neq y_n$  implies Z is the LCS of X and  $Y_{n-1}$ .

## **Proof**

Given two sequences  $X = \langle x_1, x_2, ..., x_m \rangle$  and  $Y = \langle y_1, y_2, ..., y_n \rangle$ , let  $Z = \langle z_1, z_2, ..., z_k \rangle$  be its longest common subsequence.

• If  $x_m = y_n$ , then  $z_k = x_m = y_n$  and  $Z_{k-1}$  is the LCS of  $X_{m-1}$  and  $Y_{n-1}$ .

#### Proof by contradiction

- Let  $z_k$  of Z is not equal to  $x_m$ .
- Since,  $x_m$  and  $y_n$  are the equal (by assumption), so we can append  $x_m$  with Z and get LCS of X and Y of length k+1.
- This contradicts that  $Z = \langle z_1, z_2, ..., z_k \rangle$  is the LCS.
- Let W be LCS of  $X_{m-1}$  and  $Y_{n-1}$  such that it is greater than k-1, then we can append  $x_m$  with W and get LCS of X and Y of length k (Contradiction).
- Hence,  $Z_{k-1}$  is LCS of  $X_{m-1}$  and  $Y_{n-1}$ .

## **Proof**

Given two sequences  $X = \langle x_1, x_2, ..., x_m \rangle$  and  $Y = \langle y_1, y_2, ..., y_n \rangle$ , let  $Z = \langle z_1, z_2, ..., z_k \rangle$  be its longest common subsequence.

- If  $x_m = y_n$ , then  $z_k = x_m = y_n$  and  $Z_{k-1}$  is the LCS of  $X_{m-1}$  and  $Y_{n-1}$ .
- If  $x_m \neq y_n$ , then  $z_k \neq x_m$  implies Z is the LCS of  $X_{m-1}$  and Y.

#### Proof by contradiction

- Since,  $z_k \neq x_m$  so at most  $z_k$  is equal to  $x_{m-1}$  and  $y_n$ .
- Let W be LCS of  $X_{m-1}$  and Y such that it is greater than k, W is also LCS of X and Y of length k (Contradiction).
- Hence, Z is LCS of  $X_{m-1}$  and Y.

## **Proof**

Given two sequences  $X = \langle x_1, x_2, ..., x_m \rangle$  and  $Y = \langle y_1, y_2, ..., y_n \rangle$ , let  $Z = \langle z_1, z_2, ..., z_k \rangle$  be its longest common subsequence.

- If  $x_m = y_n$ , then  $z_k = x_m = y_n$  and  $Z_{k-1}$  is the LCS of  $X_{m-1}$  and  $Y_{n-1}$ .
- If  $x_m \neq y_n$ , then  $z_k \neq x_m$  implies Z is the LCS of  $X_{m-1}$  and Y.
- If  $x_m \neq y_n$ , then  $z_k \neq y_n$  implies Z is the LCS of X and  $Y_{n-1}$ .

Proof by contradiction – same as previous case.

## Recursive Solution

```
c[i,j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \text{ ,} \quad \text{LCS-Length}(X,Y) \\ c[i-1,j-1] + 1 & \text{if } i,j > 0 \text{ and } x_i = y_j & 1 & m = X.length \\ \max(c[i,j-1],c[i-1,j]) & \text{if } i,j > 0 \text{ and } x_i \neq y_j & 2 & n = Y.length \\ 3 & \text{let } b[1\dots m,1\dots n] \text{ and } c[0\dots m,0\dots n] \text{ be new tables} \end{cases}
```

#### Running time:

Table filling or Memoization?

```
4 for i = 1 to m
   c[i, 0] = 0
 6 for j = 0 to n
c[0, j] = 0
  for i = 1 to m
       for i = 1 to n
10
            if x_i == y_i
                c[i, j] = c[i-1, j-1] + 1
12
               b[i, j] = "\\\"
  elseif c[i-1, j] > c[i, j-1]
13
              c[i,j] = c[i-1,j]
14
                b[i, j] = "\uparrow"
15
16
           else c[i, j] = c[i, j-1]
17
               b[i, j] = "\leftarrow"
    return c and b
```

# Example



# Outline

• Longest Common Subsequence

Edit Distance

Maximum Job

# Levenshtein (Edit) Distance

Given two strings, <u>edit distance</u> measures the number of operations needed to transform one string into another.

#### **Operations**

- Insert
- Replace
- Delete

Input: 'horse' and 'rose' Replacing 'h' with 'r' results to 'rorse' Deleting 'r' results to 'rose'.

## **Edit Distance**

Input: A = horse and B = rose

Case-1: Do nothing If A[5] equal to B[4] then transform A[0-4]  $\rightarrow$  B[0-3].

Case-2: Insert

If A[3] not equal to B[3]

then transform A[0-3]  $\rightarrow$  B[0-2].

Case-3: Replace If A[3] not equal to B[3] then transform A[0-2]  $\rightarrow$  B[0-2].

Case-4: Delete If A[3] not equal to B[3] then transform A[0-2]  $\rightarrow$  B[0-3].

# Example



# Outline

• Longest Common Subsequence

Edit Distance

Maximum Job

## Maximum Job

There are two machines A and B. At any given minute we can run job in either machine A or machine B. At ith minute we can run ai steps in machine A or bi steps in machine B. We can move jobs from one machine to another but it will cost us one minute, i.e., no processing for one minute.

Goal: Design an algorithm that determines the maximum number of steps that can be executed in 'n' minutes.

# Subproblem

Cost(k, A) = The maximum number of steps that can be executed in minutes {1, 2, ..., k} such that machine A executes instruction at minute k.

Cost(k, B) = The maximum number of steps that can be executed in minutes  $\{1, 2, ..., k\}$  such that machine B executes instruction at minute k.

$$cost(k, A) = \max \begin{cases} a_k + cost(k - 1, A) \\ a_k + cost(k - 2, B) \end{cases}$$

$$cost(k, B) = \max \begin{cases} b_k + cost(k - 1, B) \\ b_k + cost(k - 2, A) \end{cases}$$

## **Base Cases**

$$Cost(1, A) = a_1$$

$$Cost(1, B) = b_1.$$

$$Cost(2, A) = a_1 + a_2$$

$$Cost(2, B) = b_1 + b_2$$
.

#### Solving Final Problem

$$\max \begin{cases} \cot(n, A), \\ \cot(n, B) \end{cases}$$

# Algorithm

```
Maximum Job(A, B, n)
         cost[1,1] = a_1; cost[1,2] = b_1
         cost[2,1] = a_1 + a_2; cost[2,2] = b_1 + b_2
         for i = 3 \cdots n
4 \cot(i, A) = \max \begin{cases} a_i + \cot(i - 1, A), \\ a_i + \cot(i - 2, B) \end{cases}

5 \cot(i, B) = \max \begin{cases} b_i + \cot(i - 1, B), \\ b_i + \cot(i - 2, A) \end{cases}

6 return \max \begin{cases} \cot(n, A), \\ \cot(n, B) \end{cases}
```

# Reference

Slides

Introduction to Algorithms by CLRS - Chp-15.4