Given:

Processor Address Size: 24 bits

Cache Capacity: 4K words of 32 bits = 4 * 1024 = 4096 words

Line Size: 2×16 -bit words = 1 line = 32 bits = 4 bytes

Associativity: 4-way

Processor Word Size: 16-bit

Solution:

1. Calculate Total Cache Size in Bytes

• $4096 \text{ words} \times 4 \text{ bytes} (32 \text{ bits}) = 16,384 \text{ bytes} (16 \text{ KB})$

2. Calculate Number of Cache Lines

- Each cache line = 4 bytes
- Number of lines = 16,384 / 4 = 4096 lines

3. Determine Number of Sets

- It is a 4-way set associative cache
- Number of sets = 4096 lines / 4 = 1024 sets

4. Breakdown of 24-bit Address

Now, split the 24-bit memory address into:

Block Offset (Word Offset):

- Each line holds 2 words (each 16 bits = 2 bytes), total line = 4 bytes
- To identify 1 word in a line \rightarrow needs 1 bit (2 words = 2¹)
- To locate the byte \rightarrow 2 bytes per word = 1 bit
- So: 1 bit for Word and 1 bit for byte in Word ⇒ Total Offset =
 2 bits

Set Index: 1024 sets = 2^10; so, 10 bits for Set Index

Tag: 24 - (10 + 2) = 12 bits for Tag

Diagram

