STATISTICA

marcowber

June 2024

Indice

1	STATISTICA	3
	1.1 Probabilità	3
	1.2 Teorema di Bayes	4
	1.3 Concetto di limite	4
2	TEOREMA CENTRALE DEL LIMITE	4
3	Distribuzioni di probabilità	5
	3.1 Momenti	6
	3.2 Distribuzioni notevoli	6
	3.3 r.v. continue	6
	3.4 r.v. discrete	9
		11
4	PROPAGAZIONE DEGLI ERRORI	11
	4.1 Cambio di variabili 1-D	11
	4.2 Propagazione 1-D	66 9 111 111 111 122 122
		12
5	STIMA DI PARAMETRI	L 2
	5.1 Campionamenti IID	12
	5.2 Joint-pdf e likelihood	12
	<u> </u>	13
		13
		14
	· · · · · · · · · · · · · · · · · · ·	14
		15
		$15 \\ 15$
	POOL THEORY QUARTERING INCURY	$_{\mathbf{T}}$

6	MAXIMUM LIKELIHOOD	
	6.1 Informazione	
	6.2 Max likelihood	
	6.3 Likelihood e gaussiana	
7	LEAST SQUARES	
	7.1 LQ vs ML	
	7.2 Caso gaussiano	
	7.3 Teorema Gauss-Markov	
	7.4 Propagazione dell'errore delle x su y	
	7.5 Estrapolazione	
8	FIT DI ISTOGRAMMI	
	8.1 Binned data	
	8.2 Fit LS	
	8.3 Fit ML	
9	TEST DI IPOTESI	
	9.1 Null hypotesis	
	9.2 Alternative hypotesis	
	9.3 Test del chi-2	
	9.4 Test di Kolmogorov	
	9.5 Osservazione	

1 STATISTICA

EVENTO CASUALE: risultato di un esperimento che non può essere previsto con certezza.

- ripetibile
- Si presenta in diverse modalità mutualmente esclusive

È rappresentato da numeri detti random variables.

Esse possono essere discrete o continue.

SPAZIO CAMPIONARIO (Ω) : insieme di tutte le possibili modalità dell'evento.

POPOLAZIONE: Insieme di tutti i possibili eventi (insieme astratto contenente ∞ eventi)

CAMPIONE (sample): insieme degli eventi casuali raccolti.

Tramite il campione si possono stimare proprietà della popolazione (sampling).

1.1 Probabilità

DEFINIZIONE MATEMATICA - funzione $P: \Omega \to [0,1]$ t.c.

- $P(A) \ge 0$
- $P(\Omega) = 1$
- $P(A \cup B) = P(A) + P(B) P(A \cap B)$

DEFINIZIONE CLASSICA - Rapporto tra numero di casi favorevoli e casi possibili.

DEFINIZIONE FREQUENTISTA - Frazione dei casi per cui un evento avviene calcolata per N $\to \infty$: $P(A) = \lim_{n \to \infty} \frac{n(A)}{N}$.

PROBABILITÀ CONDIZIONATA - probabilità che si verifichi B assumendo che si sia verificato A:

$$P(B|A) = \frac{P(A \cap B)}{P(A)} \tag{1}$$

EVENTI INDIPENDENTI:

$$P(B|A) = P(B|\Omega) = P(B) \Rightarrow P(A \cap B) = P(A) \cdot P(B) \tag{2}$$

1.2 Teorema di Bayes

$$P(A|B) = \frac{P(B|A)}{P(B)} \cdot P(A) \tag{3}$$

Spesso cerchiamo di associare una probabilità a uno statement logico, si parla di probabilità soggettiva/Bayesiana (probabilità della plausibilità di una teoria).

$$P(teoria|misure) = \frac{P(misure|teoria)}{P(misure)} \cdot P(teoria)$$
 (4)

$$\Rightarrow Posterior(teoria) = \frac{P(misure|teoria)}{P(misure)} \cdot Prior(teoria)$$
 (5)

Misuro come la probabilità della teoria è modificata grazie all'informazione aggiuntiva.

1.3 Concetto di limite

Il concetto di limite adottato in statistica è differente dal classico: quando parliamo di eventi casuali non possiamo avere la certezza che lo sarto sia sempre inferiore a un determinato valore γ , ma solo che la probabilità che lo scarto sia superiore a ϵ sia via via più bassa.

$$NON: \lim_{x \to \infty} f(x) = L \Rightarrow |L - f(x)| \to 0$$
 (6)

$$MA: \lim_{x \to \infty} f(x) = L \Rightarrow P(|L - f(x)| > \epsilon) \to 0$$
 (7)

2 TEOREMA CENTRALE DEL LIMITE

Come è distribuita una r.v. ottenuta come somma di N r.v.?

Sappiamo che se estraiamo da pdf identiche riproducibili la r.v. segue la pdf di partenza. Cosa accade se sono differenti fra loro o non riproducibili?

Consideriamo N variabili aleatorie indipendenti x_i ciascuna caratterizzata da pdf_i , e per ciascuna pdf esistono finite media e varianza. Definiamo una nuova r.v. \overline{x} costituita dalla media delle r.v. di ciascuna pdf_i : $\overline{x} = \frac{\sum_{i=1}^{N} x_i}{N}$. Il TCL afferma:

- media di $pdf_{\overline{x}}$ è la somma delle medie $\cdot \frac{1}{N}$: $E[\overline{x}] = \mu_{\overline{x}} = \frac{\sum_{i=1}^{N} \mu_i}{N}$
- la varianza è la somma delle varianze $\cdot \frac{1}{N^2}: Var[\overline{x}] = \sigma_{\overline{x}}^2 = \frac{\sum_{i=1}^N \sigma_i^2}{N^2}$
- \bullet se N $\to \infty$ la r.v. \overline{x} è distribuita in modo gaussiano

Il TCL fornisce una spiegazione per l'osservazione: ripetendo la misura di una grandezza X tante volte, le misure raccolte si distribuiscono in modo gaussiano.

- la singola misura è affetta da un errore che la sposta dal valore vero, e che cambia ogni volta che è ripetuta; misura = valore vero + ϵ
- le misure sono distribuite come l'errore casuale ϵ
- esso è solitamente la somma di tanti contributi dovuti a sorgenti differenti, quindi per il TCL la $pdf(\epsilon)$ è gaussiana.

3 Distribuzioni di probabilità

PDF: descrive la popolazione dicendo quanto è la densità di frequenza associata ad ogni valore di x.

$$P(a < x < b) = (\int_{a}^{b} p df(x) dx) \le 1$$
 (8)

• CDF: è la primitiva della pdf, e restituisce una probabilità

Figura 1: Relazione tra pdf e cdf

- Media (μ): valore di aspettazione di x \Rightarrow E[x] = μ
- Varianza (σ^2): valore di aspettazione di $(x-\mu)^2$, è lo scarto quadratico medio sulla popolazione $\sigma^2=E[x^2]-\mu^2$
- deviazione standard (σ): misura la larghezza della pdf
- Moda: massimo della pdf (potrebbero essercene più di una ⇒ pdf multimodale)
- Mediana: punto che divide a metà l'area della pdf

Figura 2: Stime di tendenza centrale

3.1 Momenti

$$E[x^m] = \int_a^b x^m p df(x) dx$$

Momento di ordine 1: $E[x] = \mu$

Momento centrale: valore di aspettazione di $(x - \mu)^m$

- Ordine $1 \Rightarrow \text{nullo}$
- Ordine $2 \Rightarrow \text{varianza} \Rightarrow \text{larghezza}$
- Ordine $3 \Rightarrow$ legato al parametro γ_1 skewness (obliquità): $\gamma_1 = \frac{[E(x-\mu)^3]}{\sigma^3} \Rightarrow$ asimmetria
- Ordine $4 \Rightarrow$ legato al parametro γ_2 kurtosi: $\gamma_2 = \frac{E[(x-\mu)^4]}{\sigma^4} 3 \Rightarrow$ quanto è piccata la curva

Figura 3: Skewness e kurtosis

RIPRODUTTIVITÀ: siano x e y due r.v. distribuite secondo stessa pdf, se la r.v. somma è distribuita secondo la pdf di partenza, gode di proprietà riproduttiva

3.2 Distribuzioni notevoli

Pdf caratterizzata da una forma che comprende:

- variabile indipendente x che assume valori nel dominio
- parametri α_i che possono essere espressi in termini dei momenti della pdf
- \Rightarrow pdf $(x; \alpha_1, \alpha_2, \dots)$

3.3 r.v. continue

DISTRIBUZIONE UNIFORME

Estraggo un numero casuale x compreso fra a e b. Ogni numero ha la stessa probabilità di essere estratto: pdf(x) = k.

Figura 4: Rappresentazione

• **pdf:** $U(x; a, b) = \frac{1}{b-a}$

• media: $E[x] = \frac{a+b}{2}$

• varianza: $Var[x] = \frac{(b-a)^2}{12}$

• cdf: $\int_a^x \frac{dx}{b-a} = \frac{1}{b-a} \text{ (x-a)}$

 $\bullet \ \ riproduttivit\ \grave{a}; \ non \ vale$

DISTRIBUZIONE NORMALE (Gauss)

Figura 5: Rappresentazione

• pdf: Gauss(x; μ , σ) = $\frac{1}{\sqrt{2\pi}\sigma} \cdot e^{-\frac{(x-\mu)^2}{2\sigma^2}}$

• media: $E[x] = \mu$

• varianza: $Var[x] = \sigma^2$

• skewness: $\gamma_1 = 0$

• kurtosis: $\gamma_2 = 0$

• cdf: ∄

• riproduttività: vale

La probabilità di un intervallo centrato in μ e largo $\pm 1\sigma$ è 68.27%.

La probabilità associata a 1 FWHM (full width at half maximum), parametro che vale 2.35σ , è di 98%.

GAUSSIANA STANDARDIZZATA (ricavata da gauss per cambio variabili, con y = $\frac{x-\mu}{\sigma}$)

• pdf: Gauss(x) = $\frac{1}{\sqrt{2\pi}} \cdot e^{-\frac{(x)^2}{2}}$

• media: $\mu = E[x] = 0$

• varianza: $\sigma^2 = \operatorname{Var}[x] = 1$

• skewness: $\gamma_1 = 0$

• kurtosis: $\gamma_2 = 0$

• **cdf:** Erf(x) = $\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{(x)^2}{2}} dx$

• riproduttività: vale

CHAUCHY

Riconducibile alla creazione e decadimento veloce di una particella elementare, essa è definita 'patologica': i suoi momenti non esistono.

8

• **pdf:** BW(x; α , x_0) = $\frac{1}{\pi \alpha} \cdot \frac{\alpha^2}{(x+x_0)^2 + \alpha^2}$

• momenti: ∄

• moda, mediana: x_0

LOGNORMALE (ricavata da gaussiana per cambio di variabili, con y = e^x)

• pdf: pdf(y; μ , σ) = $\frac{1}{\sqrt{2\pi}\sigma} \cdot \frac{1}{y} e^{-\frac{(\log(y)-\mu)^2}{2\sigma^2}}$

• media: $E[y] = e^{\mu + \frac{\sigma^2}{2}}$

• varianza: $Var[y] = e^{2\mu + \sigma^2} \cdot (e^{\sigma^2} - 1)$

3.4 r.v. discrete

BINOMIALE

È il caso più semplice, descrive la probabilità di k successi in N prove, dove le prove sono Bernoulli trials (possibili solo due eventi complementari: successo o insuccesso) con probabilità di successo p

Figura 6: Rappresentazione

• **pdf:** B(k, N, p) = $\binom{N}{k} \cdot p^k (1-p)^{(N-k)}$

• media: $\mu = E[k] = Np$

• varianza: $\sigma^2 = \text{Var}[k] = \text{Np}(1-p)$

• skewness: $\gamma_1 \to 0$ quando $N \to \infty$

• kurtosis: $\gamma_2 \to 0$ quando $N \to \infty$

POISSONIANA

Descrive eventi indipendenti che avvengono in maniera casuale nel tempo (o spazio, o...) con frequenza media costante (indipendente da tempo, o spazio, o...). Utilizzata per descrivere eventi 'rari' come i decadimenti radioattivi all'interno di un campione.

Figura 7: Rappresentazione

• **pdf:** Poiss(k; λ) = $\frac{e^{-\lambda \cdot \lambda^k}}{k!}$ (probabilità di contare k eventi in un intervallo di tempo Δt unitario)

• media: $\mu = E[k] = \lambda$

 \bullet varianza: $\sigma^2 = \text{Var}[k] = \lambda$ (all'aumentare della media aumenta anche la varianza!)

• skewness: $\gamma_1 = \frac{1}{\sqrt{\lambda}}$

• kurtosis: $\gamma_2 = \frac{1}{\lambda}$

• riproduttività: vale

Si può ricavare la distribuzione in due modi: o partendo da una binomiale dove $p \to 0$ con N·p finito, o dimostrando che l'intervallo di tempo tra due eventi segue distribuzione esponenziale.

ESPONENZIALE (τ = tempo medio tra due eventi poissoniani)

• **pdf**: pdf(t; λ) = $\lambda \cdot e^{-\lambda t}$

• pdf: pdf(t; τ) = $\frac{1}{\tau} \cdot e^{-\frac{t}{\tau}}$

• media: $\mu = E[t] = \tau = \frac{1}{\lambda}$

• varianza: $\sigma^2 = \text{Var}[t] = \tau^2 = \frac{1}{\lambda^2}$

• skewness: $\gamma_1 = 2$

• kurtosis: $\gamma_2 = 6$

Figura 8: Comportamenti asintotici

3.5 Joint-pdf

Figura 9: Probabilità congiunta (joint-pdf)

Quando un evento è identificato da un vettore $\vec{x} = x_1...x_N$ parliamo di joint-pdf. Essa è definita per estensione di quanto fatto nel caso 1dimensionale, tuttavia la varianza è sostituita dalla covarianza.

COVARIANZA: matrice n x n simmetrica definita $\sigma_{ij}^2 = E[(x_i - \mu_i)(x_j - \mu_j)]$; i termini sulle diagonali sono l'equivalente della varianza: $\sigma_{ii}^2 = E[(x_i - \mu_i)^2]$.

Per le 2-dimensioni (x, y) si definiscono le probabilità:

- congiunta (o joint): pdf(x,y)
- marginale: $pdf_M(x), pdf_M(y)$, indipendente dai valori assunti dall'altra variabile
- condizionata: $pdf(x|y=y_0)$, associata a x quando y ha un valore specifico.

Se due eventi x, y sono indipendenti la loro covarianza è nulla, Cov[x, y] = 0, tuttavia la covarianza nulla non è sufficiente a garantire l'indipendenza (ossia $pdf(x, y) = pdf(x) \cdot pdf(y)$)

4 PROPAGAZIONE DEGLI ERRORI

4.1 Cambio di variabili 1-D

x è una r.v. descritta da $pdf_1(x)$.

 $y = y(x) \text{ monotona} \Rightarrow pdf_2(y) = pdf_1(x) \cdot |x'(y)|.$

Motivo: sia dx un intervallo infinitesimo per x e dy per y, ai due intervalli deve essere associata la stessa probabilità: $pdf_1(x) \cdot dx = pdf_2(y) \cdot dy$

4.2 Propagazione 1-D

Misuro la grandezza X, ma mi interessa Y che è una sua funzione. Voglio passare dalla stima di X a Y.

• Caso lineare: $y(x) = ax + b \Rightarrow \mu_y = a \cdot \mu_x + b \cdot \sigma_y^2 = a^2 \cdot \sigma_x^2$

• Caso non lineare: y(x) = f(x) uso lo sviluppo di Taylor della funzione intorno a μ_x :

$$y(x) = y(\mu_x) + \frac{dy}{dx} \Big|_{\mu_x} (x - \mu_x) + \frac{1}{2} \left. \frac{d^2y}{dx^2} \right|_{\mu_x} (x - \mu_x)^2 + \dots$$
 (9)

MEDIA: $\mu_y \simeq y(\mu_x) + \frac{1}{2} \left. \frac{d^2y}{dx^2} \right|_{\mu_x} \cdot \sigma_x^2$ VARIANZA: $\sigma_y^2 = E[y^2] - \mu_y^2 \simeq \left(\left. \frac{dy}{dx} \right|_{\mu_x} \right)^2 \cdot \sigma_x^2$

4.3 Cambio di variabili n-D

Si procede in modo analogo: $pdf_x(\vec{x}) \cdot d\vec{x} = pdf_y(\vec{y}) \cdot d\vec{y}$, da cui:

$$pdf_y(\vec{y}) = pdf_x(\vec{x}) \cdot |J(\vec{w})| \tag{10}$$

dove $|J(\vec{w})|$ è il determinante della matrice jacobiana della funzione $w(\vec{y}) = \vec{x}$, data da: $J_{i,j} = \frac{\partial w_i}{\partial y_i}$

4.4 Propagazione n-D

- MEDIA: $\mu_y = E[y(\vec{x})] \simeq y(E[\vec{x}] = f(E[x_1], ... E[x_N])$
- VARIANZA: $\sigma_y^2 = Var(y) \simeq \sum_{i,j=1}^n \frac{\partial y}{\partial x_i} \left. \frac{\partial y}{\partial x_j} \right|_{E[\vec{x}]} \cdot \sigma_{ij}^2$

5 STIMA DI PARAMETRI

Ho a disposizione dei dati che sono r.v. provenienti dal campionamento di una pdf_x che dipende dal parametro θ che si vuole stimare. Costruisco una funzione dei campionamenti che possa stimare il parametro θ , la chiamiamo stimatore: $\hat{\theta} = f(x_1, ..., x_n)$ a cui si associa un'incertezza δ_{θ} .

5.1 Campionamenti IID

N campionamenti $x_1, ..., x_n$ che sono:

- indipendenti (non condizionati dai precedenti)
- $\bullet\,$ identicamente distribuiti (estratti dalla stessa pdf)

5.2 Joint-pdf e likelihood

La joint-pdf di N campionamenti IID è:

$$pdf_{set}(x_1, ..., x_n, \theta) = \prod_{i=1}^n pdf_x(x_i, \theta)$$
(11)

Questa misura la probabilità di estrarre uno specifico set di dati. Se vista come una funzione del parametro θ , si chiama likelihood. $L(\theta) = pdf_{set}(x_1...x_N, \theta)$

5.3 Statistica

Una funzione di N campionamenti IID che contiene solo parametri noti: $f(x_1...x_N)$ si chiama statistica. Essa è una variabile aleatoria, e come tale ha una sua pdf. Abbiamo a che fare con 3 pdf:

- $pdf_x(x,\theta)$ campionata IID
- $pdf_{set}(x_1...x_N, \theta)$ dei campionamenti
- $\bullet \ pdf_f$ della statistica dei campionamenti

5.4 Stimatore

Statistica scelta in modo da poter usare N campionamenti IID per stimare il valore dei parametri della pdf_x . Notazione:

- $pdf_x(x,\theta)$ è la pdf della quale stimare il parametro
- $x_1...x_N$ sono i campionamenti
- $\hat{\theta}(x_1...x_N)$ è lo stimatore
- $pdf_{\hat{\theta}}(\hat{\theta})$ è la pdf dello stimatore
- $\hat{\theta}^*$ è il valore dello stimatore ottenuto per uno specifico campionamento (quindi per uno specifico set di dati)

CONSISTENZA: uno stimatore è consistente se per $N \to \infty$ resistuisce il valore vero del parametro. Quindi: $\lim_{N\to\infty} \hat{\theta_N} = \theta_V$.

Uno stimatore, in quanto r.v. è caratterizzato da un valore medio $E[\hat{\theta}]$ e varianza $Var(\hat{\theta})$.

BIAS: misura quanto la stima sia capace di restituire un risultato prossimo a quello vero. Per ogni set di campionamenti ho stime diverse, quindi devo richiedere che la media delle stime sia il valore vero. Il bias è $b_N = E[\hat{\theta_N}] - \theta_{Vero}$. Se $b_N = 0$ lo stimatore è unbiased. Il bias ha a che fare con l'ACCURATEZZA.

VARIANZA: ripetendo i campionamenti vogliamo che le stime siano vicine fra loro. L'efficienza rappresenta questa vicinanza, vogliamo che sia minima e ha a che fare con la PRECISIONE.

Figura 10: Varianza e Bias

5.5 Stime di μ e σ

Lo stimatore per $\mu = E[x]$ è la media campionaria \overline{x} . $\hat{\mu_N} = \overline{x} = \frac{1}{N} \sum_{i=1}^N x_i$.

- è unbiased: $E[\overline{x}] = \mu$
- è efficiente (la varianza decresce all'aumentare di N): $Var[\overline{x}] = \frac{\sigma^2}{N}$
- se la pdf soddisfa le ipotesi del TCL, la $pdf_{\overline{x}}$ per N $\to \infty$ tende a una gaussiana con media μ e varianza σ/N .

Lo stimatore per σ^2 è la sample variance. Il bias di $s_{\overline{x}}^2$ è diverso da zero; applico quindi la correzione di Bessel, e ottengo: $s^2 = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \overline{x})^2$

- la varianza generalmente non può essere deerminata, a meno che $pdf_x(x)$ sia una gaussiana, in tal caso si introduce una variabile ausiliaria chiamata χ^2 .
- $\operatorname{Var}[\chi_N^2] = 2N \Rightarrow \operatorname{Var}[s^2] = \frac{2\sigma^4}{(N-1)}$

5.6 Confidenza

Dato che μ si stima con \overline{x} , che ha una varianza $Var[\overline{x}] = \frac{\sigma^2}{N}$, asintoticamente \overline{x} ha una pdf gaussiana centrata su μ e larga $\frac{\sigma}{\sqrt{N}}$. Possiamo associare alla stima un intervallo $\overline{x} \pm \frac{\sigma}{\sqrt{N}}$. La probabilità di trovare un \overline{x} che stia nell'intervallo $\mu \pm \frac{\sigma}{\sqrt{N}}$ è 68%. Il problema si complica quando σ non è nota, e devo utilizzare la sua stima s. In tal caso, la probabilità dipende non solo da pdf(\overline{x}), ma anche da pdf(s^2).

Ricorro a una variabile ausiliaria: $t = \frac{\overline{x} - \mu}{\frac{s}{\sqrt{N}}}$

L'intervallo $\mu \pm \frac{s}{\sqrt{N}}$ corrisponde all'intervallo per t ± 1. Quando s^2 è distribuito come un χ^2 ($pdf_x(x)$ gaussiana) la distribuzione t è nota ed è la distribuzione di student.

5.7 Distribuzione χ^2

Figura 11: Rappresentazione

La pdf chi-quadro è descritta da un solo parametro chiamato gradi di libertà. Una r.v. χ^2 si costruisce estraendo N valori IID ciascuno da una pdf_i gaussiana di media μ_i s varianza σ_i^2 .

$$\chi^2 = \sum \frac{(x_i - \mu_i)^2}{\sigma_i^2} \tag{12}$$

La forma analitica della pdf della r.v. χ_N^2 è:

$$pdf(\chi_N^2) = (\chi^2)^{\frac{N}{2} - 1} \cdot \frac{e^{x^2/2}}{\Gamma(N/2)} \cdot 2^{N/2}$$
(13)

dove $\Gamma(N/2)$ è un'estensione del fattoriale per valori non interi.

• media: E[k] = N

• varianza: Var[k] = 2N

• moda: N-2

• mediana: è il punto dove la cdf vale 0.5, e vale 1.4 per N=2, 4.3 per N=5, 9.4 per N = 10 ...

• riproduttività: vale

È spesso utile definire χ^2 ridotto, ossia $\chi^2_N/{\rm N},$ di media 1.

5.8 Errore quadratico medio

In generale:

- $\bullet\,$ la stima è il valore assunto da $\hat{\theta}$ per uno specifico campionamento $\hat{\theta}^*$
- l'incertezza della stima è legata a $\mathrm{Var}[\hat{\theta}]$
- la distanza tra stima e valor vero è il bias b = $\mathrm{E}[\hat{\theta}]$ θ_V
- si definisce errore quadratico medio la combinazione di errore statistico (varianza) con errore sistematico (bias): $E[(\hat{\theta} \theta_V)^2] = Var[\hat{\theta}] + b^2$

6 MAXIMUM LIKELIHOOD

La funzione likelihood è definita come la probabilità di osservare il campione di dati IID \vec{x} , condizionata al valore assunto dal parametro θ oggetto di stima. Essa contiene sia il modello (quindi la pdf) che i dati raccolti.

$$L(\theta) = L(x_1...x_N|\theta) = \prod_{i=1}^{N} pdf_x(x_i, \theta)$$
(14)

Figura 12: Differenza tra Joint e likelihood

6.1 Informazione

I campionamenti possono fornire o meno informazioni su θ : se la likelihood è piatta vorrà dire che avrò circa la stessa probabilità di ottenerli a prescindere dal valore di θ , se è a campana invece trovo delle differenze (larghezza della campana legata all'incertezza con cui posso determinare valore vero di θ). L'informazione consente di valutare la MINIMA VA-RIANZA raggiungibile da uno stimatore di $\hat{\theta}$.

Informazione di Fischer:

$$I_{\hat{x}}(\theta) = E\left[-\left.\frac{\partial^2 lnL(\vec{x};\theta)}{\partial \theta^2}\right|_{\theta=\theta_V}\right]$$
(15)

DISUGUAGLIANZA DI RAO-CRAMER o MVB:

$$Var[\hat{\theta}] \ge \frac{[1 + \frac{\partial b}{\partial \theta}]^2}{I(\theta)} \tag{16}$$

Se uno stimatore è asintoticamente unbiased, $Var[\hat{\theta}] \geq \frac{1}{I(\theta)}$

6.2 Max likelihood

Identifica lo stimatore per θ come $\hat{\theta}_{ML}$ in corrispondenza del quale la probabilità associata a un campionamento è quella maggiore possibile. Poichè L è un prodotto di N fattori, considero il logaritmo che diventa: $\sum ln[pdf_x(x_i...,\theta)]$. Ne devo annullare la derivata prima e assicurarmi che la derivata seconda, pari a $1/\sigma_{ML}^2 = I(\theta)$, sia negativa.

Figura 13: Stimatore massima verosimiglianza

6.3 Likelihood e gaussiana

Per N $\to \infty$, la likelihood è asintotica a una funzione gaussiana, e può essere scritta come $L(\theta) = L_{Max} \cdot e^{(\frac{\theta - \hat{\theta}_{ML}}{2\sigma_{ML}^2})}$.

7 LEAST SQUARES

Sceglie come stima di $\hat{\theta}$ il valore per cui è minimo:

$$Q^{2}(\hat{\theta}) = \sum_{i=1}^{N} \frac{[y_{i} - f(\hat{\theta}, x_{i})]^{2}}{\sigma_{i}^{2}}$$
(17)

 Q^2 è la somma dei quadrati delle distanze fra i punti campionati e la funzione $Y = f(\hat{\theta}, X)$. In questo caso si cerca un valore $\hat{\theta}_{LQ}$ per cui Q^2 ammetta un minimo assoluto.

7.1 LQ vs ML

LQ: cerco i valori dei parametri che rendano minima la distanza fra dati campionati e modello. ML: cerco i valori dei parametri che rendano massima la probabilità, dato un modello, di osservare i dati campionati.

7.2 Caso gaussiano

Quando le $pdf_i(y_i)$ sono gaussiane, non solo i due stimatori coincidono, ma sappiamo anche che $f(x_i, \hat{\theta}_{LQ}) \simeq E[y_i] = \mu_i \Rightarrow Q_{min}^2 = \sum_{i=1}^N \frac{(y_i - \mu_i)^2}{\sigma_i^2}$, che è l'espressione di un chi quadro a N-K gradi di libertà.

Di conseguenza
$$\mathrm{E}[Q_{min}^2] = \mathrm{N-K}$$
, e sfruttando MVB, $\sigma_{\hat{\theta}_{LQ}}^2 = \frac{2}{-[\frac{\partial^2 Q^2(\vec{x};\theta)}{\partial \theta^2}]\Big|_{\theta = \hat{\theta}_{LQ}}}$

7.3 Teorema Gauss-Markov

Due grandezze X e Y sono legate da una relazione lineare nei K parametri descritti dal vettore $\vec{\theta}$: Y = $\sum_{j=1}^{K} \theta_j \cdot h_j(X)$. i dati sono N misure indipendenti (x_i, y_i) , dove x_i sono privi di errore, e y_i hanno incertezza σ_i nota: $E[y_i] = \sum_{j=1}^{K} \theta_j \cdot h_j(x_i)$.

Definisco delle variabili ausiliarie ϵ_i con stessa pdf delle y_i ma traslate di $E[y_i]$, per cui con $E[\epsilon_i]$ = 0. Queste rappresentano l'errore statistico, posso dunque scrivere: $y_i = \sum_{j=1}^k \theta_j \cdot h_j(x_i) + \epsilon_i$. Scegliendo una rappresentazione matriciale, $\vec{y} = H(\vec{x}) \cdot \vec{\theta} + \vec{\epsilon}$.

In sostanza, ho scritto y_i come la somma tra il valore vero restituito dal modello in corrispondenza di x_i e l'errore di misura ϵ_i .

La pdf (N-dimensionale) di \vec{y} è associata a una matrice di covarianza diagonale V (composta da σ_i^2): $Cov[\vec{y}] = Cov[\vec{\epsilon}] = V$. In questo modo, $Q^2(\vec{\theta}) = \vec{\epsilon}^T \cdot V^{-1} \cdot \vec{\epsilon} = \sum_{i=1}^N \frac{\epsilon_i^2}{\sigma_i^2}$. Il valore ricavato per la stima è $\hat{\theta}_{LS} = (H^T V^{-1} H)^{-1} \cdot H^T V^{-1} \vec{y}$, che ha:

- $E[\hat{\theta}_{LS}] = \vec{\theta}$ (unbiased)
- $Var[\hat{\theta}_{LS}] = (H^T V^{-1} H)^{-1}$

Il teorema dice che, quando il modello è lineare nei parametri, e i campionamenti si possono scrivere come $y_i = f(x_i) + \epsilon_i$ (dove $E[\epsilon_i] = 0$ e $Var[\epsilon_i]$ finita indipendente dai parametri), allora lo stimatore LS è unbiased ed è quello con varianza minima.

7.4 Propagazione dell'errore delle x su y

Se un modello è una retta Y = a + bX, dove sia le x_i che le y_i sono provviste di errore, posso propagare sulle y l'errore delle x: $\sigma_i^2 = \sigma_{yi}^2 + b\sigma_{xi}^2$.

7.5 Estrapolazione

Un problema che ci si pone spesso è quello di valutare il modello in un punto differente da quelli misurati sperimentalmente. Se abbiamo un modello $Y = f(\vec{\theta}, X)$, mediante i valori campionati $(\theta_1...\theta_K)$ si stimano i parametri che descrivono meglio il modello $\Rightarrow \hat{\theta}_{LS}$. Si valuta la funzione in un nuovo punto $x_0 : y_0 = f(\hat{\theta}_{LS}, x_0)$.

Come valuto l'errore su y_0 ? propago su $\hat{\theta}_{LS}$ mediande la matrice di covarianza! nel caso lineare:

$$Var[y_0] = H(x_0) \cdot Cov[\hat{\theta}_{LS}] \cdot H(x_0)^T$$
(18)

dove H è la matrice NxK composta dai $h_i(x_i)$, Cov è la matrice covarianza.

8 FIT DI ISTOGRAMMI

Abbiamo N campionamenti IID di una pdf(x, θ) e vogliamo usarli per stimare θ . Esistono due percorsi:

- unbinned data (uso i dati campionati), quello che abbiamo praticamente visto finora
- binned data (raccolgo i dati in un istogramma, perdendo parte dell'informazione)

Figura 14: Differenza tra dati binned e unbinned

8.1 Binned data

Scelgo di lavorare su dati raggruppati in classi di frequenza (bin).

DATI: k interi che identificano i conteggi in ciascun bin $n_1, ..., n_k$

MODELLO: pdf trasformata in un istogramma $p_1, ..., p_k$

JOINT-PDF: multinomiale con parametri N, p_i : PDF $(n_1...n_k, p_1(\theta)...p_k(\theta))$.

Perchè multinomiale? la probabilità che una misura cada in un bin è un bernoulli trial, quindi per un solo bin la distribuzione è binomiale (e ho molteplici bin).

- $E[n_i] = \mu_i = N \cdot P_i$
- $Var[n_i] = \sigma_i^2 = N \cdot P_i \cdot (1 p_i) \simeq N \cdot p_i$
- $Cov(n_i, n_j) = -N \cdot p_i \cdot p_j \simeq 0$
- $\bullet \simeq \text{valgono se } p_i$ è piccola, rendendo stretti i bin

Quando p_i piccola vale l'approssimazione per Poissoniana, di conseguenza la joint-pdf si scrive:

$$\prod pdf_i(n_i, p_i(\theta)) = \prod \frac{e^{-\mu_i} \mu_i^{n_i}}{n_i!}$$
(19)

dove $\mu_i = Np_i(\theta)$ è il valore di aspettazione di n_i .

Quindi conosco la pdf, il loro valore di aspettazione e la loro varianza \Rightarrow posso usare sia LS che ML.

8.2 Fit LS

Confronto l'istogramma dei dati con quello atteso.

$$Q^{2} = \sum_{i=1}^{k} \frac{(y_{i} - E[y_{i}])^{2}}{Var[y_{i}]} \Rightarrow Q^{2} = \sum_{i=1}^{k} \frac{(n_{i} - \mu_{i}(\theta))^{2}}{\mu_{i}(\theta)}$$
(20)

Se μ_i (quindi n_i) è grande posso approssimare poisson con gauss. Di conseguenza Q^2 è una r.v. χ^2 con K-s gradi di libertà (s = numero di parametri da stimare). Posso poi sostituire

all'errore atteso σ_i di n_i la sua stima $\sqrt{n_i}$. Il chi-quadro di Neyman è:

$$\chi_{Neyman}^{2} = \sum_{i=1} K \frac{[O_{i} - E_{i}(\theta)]^{2}}{O_{i}}$$
 (21)

Figura 15: I due istogrammi confrontati

8.3 Fit ML

Se l'istogramma non può essere approssimato a gaussiana (ho pochi conteggi) devo usare la binned ML. Massimizzo $L(n_1...n_k,\theta) = \prod Bin(N,n_i,p_i(\theta)) = \prod \frac{\mu_i^{n_i}e^{\mu_i}}{n_i!}$

9 TEST DI IPOTESI

Confronto modelli con dati sperimentali per capire quale spiega meglio le osservazioni.

9.1 Null hypotesis

Voglio verificare la compatibilità dei dati con un'ipotesi H_0 , detta null hypotesis:

- ho un certo numero di dati sperimentali appartenenti a un sample space Ω
- sulla base di H_0 , identifico due sottoinsiemi di Ω : w è la regione critica (rigetto), $w^* = \Omega w$ è la regione di accettanza.

Figura 16: Sample space

C'è la possibilità che l'ipotesi sia vera ma la rigetto (falsi negativi): $P(\vec{x} \in w|H_0) = \alpha$. Quando i dati sono tanti, si opta per costruire una statistica $t(\vec{x})$ definendo la regione di accettanza a partire dal valore di α desiderato. Si hanno due possibili test: one sided (una coda), two sided (entrambe le code).

Figura 17: Sinistra: one sided, Destra: two sided

9.2 Alternative hypotesis

Se considero anche un'ipotesi alternativa, H_1 alternative, definita la statistica t avrò due distribuzioni: $pdf(t|H_0) \Rightarrow$ ottengo t quando vale H_0 , $pdf(t|H_1) \Rightarrow$ ottengo t quando vale H_1 . In questo caso possono anche esserci, oltre a falsi negativi, falsi positivi (probabilità β). È il caso in cui accetto H_0 quando è vera H_1 .

$$\alpha = \int_{w} p df(t|H_0) dt \tag{22}$$

$$\beta = \int_{w^*} p df(t|H_1) dt \tag{23}$$

Figura 18: Falsi positivi e falsi negatvii

9.3 Test del chi-2

Il valore del χ^2_{min} può essere usato per testare la validità del modello. Esso deve essere prossimo a N-K (o chi ridotto prossimo a 1).

P-VALUE: scelgo un criterio di rigettare l'ipotesi che corrisponde a un range di valori del chi-2 che hanno bassa probabilità di essere estratti; solitamente si sceglie la coda destra della distribuzione che corrisponde al 5%. Mi riduco quindi a chiedere:

$$p - value = \int_{\chi_{min}^2}^{\infty} p df(\chi^2) d\chi^2 > \alpha = 0.05$$
 (24)

Figura 19: P-value

Attenzione: un valore di χ^2 vicino a 0 soddisfa il test! uso il test one sided (ossia solo una delle due code) perché le regioni a basso valore di chi2 corrispondono a scarto molto piccolo, quindi a un sovra-accordo (altamente improbabile).

9.4 Test di Kolmogorov

Abbiamo N misure ripetute di X e voglio testare l'ipotesi H_0 che siano campionamenti di una determinata pdf modello. Posso usare il test del chi-2 applicanto a istogrammi costruiti con le misure raccolte, tuttavia non utilizzo tutta l'informazione perchè binno i dati. Alternativa: confrontare le distribuzioni cumulative dei dati e della pdf modello.

Se chiamo F(x) la distribuzione cumulative (discreta) dei dati, e $\Phi(x)$ la distribuzione cumulativa della pdf, posso confrontare con una quantità di riferimento δ_0 lo scarto massimo:

$$\delta = Max|F(x_i) - \Phi(x_i)| \tag{25}$$

Figura 20: se $\delta > \delta_0$ l'ipotesi viene rigettata

9.5 Osservazione

Noto: quando si esegue un testi di ipotesi, quindi quando si cerca di accettare l'ipotesi H_0 che i dati non siano in contraddizione col modello, non si ha mai una prova che il modello sia giusto, ma solo che non è contraddetto dai dati.