STA302/1001: Methods of Data Analysis

Instructor: Fang Yao

Chapter 5: WLS and LOF

Weighted Least Square Lack of Fit

Weighted Least Squares (WLS)

- relax the assumption $Var(Y|X) = \sigma^2$
- change to $Var(Y|X=x_i) = Var(e_i) = \frac{\sigma^2}{w_i}$ where w_1, \dots, w_n are known positive numbers
- in matrix form, the model becomes

$$Y = X\beta + e$$
 $Var(e) = \sigma^2 W^{-1}$,

where W is a diagonal matrix with elements w_1, \dots, w_n

ullet the estimator eta is defined as the minimizer of

$$RSS(\boldsymbol{\beta}) = \sum_{i} w_{i}(y_{i} - \mathbf{x}_{i}'\boldsymbol{\beta})^{2}$$

$$= (\boldsymbol{Y} - \boldsymbol{X}\boldsymbol{\beta})'\boldsymbol{W}(\boldsymbol{Y} - \boldsymbol{X}\boldsymbol{\beta})$$

WLS Solution

- the WLS solution is $\hat{\beta} = (X'WX)^{-1}X'WY$
- this can be obtained using results from OLS
- more precisely, transform the WLS problem into an OLS problem
- first we calculate

$$Var(\mathbf{W}^{1/2}\mathbf{e}) = \mathbf{W}^{1/2}Var(\mathbf{e})\mathbf{W}^{1/2}$$

$$= \mathbf{W}^{1/2}(\sigma^2\mathbf{W}^{-1})\mathbf{W}^{1/2}$$

$$= \mathbf{W}^{1/2}(\sigma^2\mathbf{W}^{-1/2}\mathbf{W}^{-1/2})\mathbf{W}^{1/2}$$

$$= \sigma^2(\mathbf{W}^{1/2}\mathbf{W}^{-1/2})(\mathbf{W}^{-1/2}\mathbf{W}^{1/2})$$

$$= \sigma^2\mathbf{I}$$

WLS Solution - con't

ullet multiply $oldsymbol{W}^{1/2}$ to the regression model

$$m{W}^{1/2}m{Y} = m{W}^{1/2}m{X}m{eta} + m{W}^{1/2}m{e}$$

ullet define $\mathbf{Z}=oldsymbol{W}^{1/2}\mathbf{Y}, \mathbf{M}=oldsymbol{W}^{1/2}oldsymbol{X}$ and $\mathbf{d}=oldsymbol{W}^{1/2}\mathbf{e}$, then

$$Z = M\beta + d$$

$$\hat{\boldsymbol{\beta}} = (\mathbf{M}'\mathbf{M})^{-1}\mathbf{M}'\mathbf{Z}$$

$$= \left((\boldsymbol{W}^{1/2}\boldsymbol{X})'(\boldsymbol{W}^{1/2}\boldsymbol{X})\right)^{-1}(\boldsymbol{W}^{1/2}\boldsymbol{X})'(\boldsymbol{W}^{1/2}\boldsymbol{Y})$$

$$= (\boldsymbol{X}'\boldsymbol{W}^{1/2}\boldsymbol{W}^{1/2}\boldsymbol{X})^{-1}(\boldsymbol{X}'\boldsymbol{W}^{1/2}\boldsymbol{W}^{1/2}\boldsymbol{Y})$$

$$= (\boldsymbol{X}'\boldsymbol{W}\boldsymbol{X})^{-1}(\boldsymbol{X}'\boldsymbol{W}\boldsymbol{Y})$$

WLS: Other Remarks

- how to determine the weights?
- **sometimes** the weights w_1, \dots, w_n are known
 - (i) if y_i is the average of n_i observations, then $Var(y_i) = \frac{\sigma^2}{n_i}$ and $w_i = n_i$
 - (ii) if y_i is the total of n_i observations, then $\mathrm{Var}(y_i) = n_i \sigma^2$ and $w_i = \frac{1}{n_i}$
- collapse data by predictor values (sufficient statistic)
- ullet sometimes W may depend on unknown parameters, and the choice could be subjective or based on some criteria

Lack of Fit (LOF)

- F-test from ANOVA could only tell if the regression model
 (i.e. slope in simple linear regression) helps explaining or not
- but it does not tell if the explanation is enough
- that is, any lack of fit
- main idea behind the "Lack of Fit Test":
 - if the model is good, then $\mathrm{E}(\hat{\sigma}^2) \approx \sigma^2$ unbiased \implies model is
 - if the model is "not enough", then $\hat{\sigma}^2$ will be estimating something bigger than σ^2 (why?)
- ullet so we could compare σ^2 and $\hat{\sigma}^2$

Lack of Fit - con't

- Lack of Fit Test: two cases:
 - 1. σ^2 known
 - 2. σ^2 unknown
- σ^2 known, if there no lack of fit (NH), assuming normal error,

$$X^{2} = \frac{RSS}{\sigma^{2}} = \frac{(n - (p+1))\hat{\sigma^{2}}}{\sigma^{2}} \sim \chi^{2}_{(n-(p+1))}$$

• this actually becomes a hypothesis test, p-value is $P(X^2 \ge X_{obs}^2 | \text{ no lack of fit})$

Lack of Fit, σ^2 unknown

- what do we do if σ^2 is unknown?
- estimate it!
- but we need to estimate it in a "model-free" manner: not use any model
- we can do it if we have repeated measurements at some x_i 's, otherwise NOT!
- we call these repeated measurements replicates, denoted by y_{ij} , $j = 1, ..., n_i$, corresponding to x_i

Sum of Squares for Pure Error

- for example, if we have 3 replicates at x_i , then we can calculate the sample variance of these 3 observations
- and use it as an estimate of σ^2 (at x_i)
- since we assume $Var(y_{ij}|x_i) = \sigma^2$ is constant at all x_i 's
- if we have replicates at more values of x_i , then we can pool them together to get a better estimate of σ^2
- this involves the calculation of SS_{pe} , sum of squares for pure error

Computation of Pure Error

Table 5.4 An Illustration of the Computation of Pure Error

x_i	y_{ij}	\overline{y}_i	$\sum_{j=1}^{n_i} (y_{ij} - \bar{y}_i)^2$	$\hat{\sigma}$	df
1	2.55				
1	2.75	2.6233	0.0243	0.1102	2
1	2.57				
2	2.40	2.4000	0	0	0
3	4.19	4.4450	0.1301	0.3606	1
3	$4.70 \int$	4.4450	0.1001	0.5000	'
4	3.81				
4	4.87	4.0325	2.2041	0.8571	3
4	2.93	7.0023	L.2071	0.0071	J
4	4.52				
			2.3585		6

Computation of Pure Error - con't

- $SS_{pe} = 0.0243 + \cdots + 2.2041 = 2.3585$ with 6 df
- similar to "pooled sample variance", the pure error estimate of σ^2 is

$$\hat{\sigma}_{pe}^2 = SS_{pe}/df_{pe} = 2.3585/6 = 0.3931$$

- as similar to $SYY = SS_{reg} + RSS$, we split RSS as
- $RSS = SS_{lof} + SS_{pe}$ SS_{lof} : sum of squares due to lack of fit $(\bar{y}_i \Rightarrow \beta_0 + \beta_1 x_i)$ SS_{pe} : sum of squares due to pure error $(y_{ij} \Rightarrow \bar{y}_i)$
- implied by SS_{pe} is a saturated model

Decomposition: $RSS = SS_{pe} + SS_{lof}$

$$RSS_{ols} = \sum_{i=1}^{n} \sum_{j=1}^{n_{i}} (y_{ij} - \hat{\beta}_{0} - \hat{\beta}_{1}x_{i})^{2}$$

$$= \sum_{i} \sum_{j} (y_{ij} - \bar{y}_{i} + \bar{y}_{i} - \hat{\beta}_{0} - \hat{\beta}_{1}x_{i})^{2}$$

$$= \sum_{i} \sum_{j} (y_{ij} - \bar{y}_{i})^{2} + \sum_{i} n_{i}(\bar{y}_{i} - \hat{\beta}_{0} - \hat{\beta}_{1}x_{i})^{2}$$

$$+ 2\sum_{i=1}^{n} \left[\sum_{j=1}^{n_{i}} (y_{ij} - \bar{y}_{i}) \right] (\bar{y}_{i} - \hat{\beta}_{0} - \hat{\beta}_{1}x_{i}) \xrightarrow{\text{des rit}} \xrightarrow{\text{on } j}$$

$$= \sum_{i} \sum_{j} (y_{ij} - \bar{y}_{i})^{2} + \sum_{i} n_{i}(\bar{y}_{i} - \hat{\beta}_{0} - \hat{\beta}_{1}x_{i})^{2}$$

$$= SS_{pe} + SS_{lof} = SS_{pe} + RSS_{wls}.$$

Lack of Fit, σ^2 unknown

obtained from R function "pureErrorAnova" in "alr3"

TABLE 5.5 Analysis of Variance for the Data in Table 5.4

Analysis of Variance Table F value is not 11.6247

Df Sum Sq Mean Sq F value Pr(>F)

Regression 1 4.5693 4.5693 11.6247 0.01433

Residuals 8 4.2166 0.5271

Lack of fit 2 1.8582 0.9291 2.3638 0.17496

Pure error 6 2.3584 0.3931

$$F$$
-value = $\frac{SS_{lof}/df_{lof}}{SS_{pe}/df_{pe}}$

• compare with $F(df_{lof}, df_{pe})$

Apple Shoots Data

- Y: # of stem units, X: days from dormancy
- a simple linear regression will do? partial data

Long Shoots

Day	n	y	SD	Len
0	5	10.200	0.830	1
3	5	10.400	0.540	1
7	5	10.600	0.540	1
13	6	12.500	0.830	1
18	5	12.000	1.410	1
24	4	15.000	0.820	1
25	6	15.170	0.760	1
32	5	17.000	0.720	1
38	7	18.710	0.740	1
42	9	19.220	0.840	1

Apple Shoots Data - con't

TABLE 5.7 Regression for Long Shoots in the Apple Data

```
(a) was regression using day means
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 9.973754 0.314272 31.74 <2e-16
           0.217330 0.005339 40.71 <2e-16
Day
Residual standard error: 1.929 on 20 degrees of freedom
Multiple R-Squared: 0.988
Analysis of Variance Table
         Df Sum Sq Mean Sq F value Pr(>F)
Day
         1 6164.3 6164.3 1657.2 < 2.2e-16
Residuals 20 74.4 3.7
(b) ols regression of y on Day
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 9.973754 0.21630 56.11 <2e-16
Day
           0.217330 0.00367 59.12 <2e-16
Residual standard error: 1.762 on 187 degrees of freedom
Multiple R-Squared: 0.949
Analysis of Variance Table
             Df Sum Sq Mean Sq F value Pr(>F)
              1 6164.3 6164.3 1657.2 < 2.2e-16
Regression
Residual
         187 329.5 1.8
Lack of fit 20 74.4 3.7 2.43 0.0011
```

1.5

Pure error 167 255.1

Apple Shoots Data - con't

- WLS: use 22 daily means as response OLS: use 189 original # of stem units
- ullet parameter estimates, SS_{reg} are the same, general conclusions are the same
- $m{P}$ RSS_{wls} and RSS_{ols} are different $RSS_{wls}=74.4$ with 20 d.o.f. $RSS_{ols}=SS_{pe}+SS_{lof}=255.1+74.4=329.5$
- note $SS_{pe} = RSS_{ols} RSS_{wls} = SYY_{ols} SYY_{wls}$
- pure error test shows lack of fit, but such a large sample size (n = 189) can detect a small deviation that may not be scientifically or practically important

General F-testing

- ullet NH: $\mathbf{Y}=\mathbf{X_1}oldsymbol{eta_1}+\mathbf{e}$ AH: $\mathbf{Y}=\mathbf{X_1}oldsymbol{eta_1}+\mathbf{X_2}oldsymbol{eta_2}+\mathbf{e}$
- in general, model in NH is a subset of the model in AH
- i.e., by setting some parameters in AH to 0
- $F = \frac{(RSS_{NH} RSS_{AH})/(df_{NH} df_{AH})}{RSS_{AH}/df_{AH}}$
- compare to critical value $F_{(\alpha,df_{NH}-df_{AH},df_{AH})}$ or compute p-value $P(F \geq F_{obs}|NH)$ with $F \sim F_{(df_{NH}-df_{AH},df_{AH})}$ under NH