PROJET MONTE-CARLO, ENSAE

Mastermind et permutations

KIM ANTUNEZ, ROMAIN LESAUVAGE ET ALAIN QUARTIER-LA-TENTE 25/04/2020 Ensae — 2019-2020

Sommaire

- 1. Introduction
- 1.1 Rappels sur la méthode de *Cross-Entropy*
- 2. Application de la méthode de Cross-Entropy au Mastermind (Q1)
- 3. Restriction aux permutations (Q2)
- 4. Loi spécifique pour générer les permutations (Q3)

Introduction

- **code** : n boules de couleur parmi m couleurs possibles (classiquement n = 4 et m = 6)
- boules noires : boules bien placées
- boules blanches : boules de la bonne couleur, mais mal placées

Objectif de la Cross-Entropy

Résoudre . . .

$$S(x^*) = \gamma^* = \max_{x \in \mathcal{X}} S(x) \tag{1}$$

... en lui associant un problème stochastique :

- $1_{\{S(x) \geq \gamma\}}$ sur \mathcal{X} pour plusieurs seuils $\gamma \in \mathbb{R}$;
- $\{f(\cdot; v), v \in \mathcal{V}\}$ famille de probabilités sur \mathcal{X} , paramétrée par v.

1. Initialisation : on fixe \hat{v}_0 , $N \in \mathbb{N}$ et $\rho \in]0,1[$, t=1.

- 1. Initialisation : on fixe $\hat{\mathbf{v}}_0$, $\mathbf{N} \in \mathbb{N}$ et $\rho \in]0,1[$, t=1.
- 2. On génère $X_1,\ldots,X_N \sim f(\cdot,v_{t-1})$, on calcule

$$\hat{\gamma}_t = S_{\lceil (1-\rho)N \rceil}$$

- **1.** Initialisation : on fixe \hat{v}_0 , $N \in \mathbb{N}$ et $\rho \in]0,1[$, t=1.
- 2. On génère $X_1,\ldots,X_N \sim f(\cdot,v_{t-1})$, on calcule $\hat{\gamma}_t = S_{\lceil (1-\varrho)N \rceil}$
- 3. On utilise le même échantillon X_1, \ldots, X_N pour trouver \hat{v}_t :

$$\hat{v}_t = \underset{v}{\operatorname{argmax}} \ \hat{D}(v) = \underset{v}{\operatorname{argmax}} \frac{1}{N} \sum_{i=1}^N \mathbb{1}_{\{S(X_i) \ge \hat{\gamma}_t\}} \ln f(X_i; v)$$
 (2)

- **1.** Initialisation : on fixe \hat{v}_0 , $N \in \mathbb{N}$ et $\rho \in]0,1[$, t=1.
- 2. On génère $X_1, \ldots, X_N \sim f(\cdot, v_{t-1})$, on calcule

$$\hat{\gamma}_t = S_{\lceil (1-\rho)N \rceil}$$

3. On utilise le même échantillon X_1, \ldots, X_N pour trouver \hat{v}_t :

$$\hat{v}_t = \underset{v}{\operatorname{argmax}} \ \hat{D}(v) = \underset{v}{\operatorname{argmax}} \frac{1}{N} \sum_{i=1}^N \mathbb{1}_{\{S(X_i) \ge \hat{\gamma}_t\}} \ln f(X_i; v) \tag{2}$$

5. **Arrêt** : si pour un certain $t \ge d$, on a :

$$\hat{\gamma}_t = \hat{\gamma}_{t-1} = \dots = \hat{\gamma}_{t-d}$$

- **1.** Initialisation : on fixe \hat{v}_0 , $N \in \mathbb{N}$ et $\rho \in]0,1[$, t=1.
- 2. On génère $X_1, \ldots, X_N \sim f(\cdot, v_{t-1})$, on calcule

$$\hat{\gamma}_t = S_{\lceil (1-\rho)N \rceil}$$

3. On utilise le même échantillon X_1, \ldots, X_N pour trouver \hat{v}_t :

$$\hat{v}_t = \underset{v}{\operatorname{argmax}} \ \hat{D}(v) = \underset{v}{\operatorname{argmax}} \frac{1}{N} \sum_{i=1}^N \mathbb{1}_{\{S(X_i) \ge \hat{\gamma}_t\}} \ln f(X_i; v) \tag{2}$$

4. [FACULTATIF] smoothed updating (éviter l'occurence de 0 et de 1) :

$$\hat{\mathbf{v}}_t = \alpha \tilde{\mathbf{v}}_t + (1 - \alpha)\hat{\mathbf{v}}_{t-1}$$

5. **Arrêt** : si pour un certain $t \ge d$, on a :

$$\hat{\gamma}_t = \hat{\gamma}_{t-1} = \dots = \hat{\gamma}_{t-d}$$

Sommaire

- 1. Introduction
- 2. Application de la méthode de Cross-Entropy au Mastermind (Q1)
- 2.1 Paramètres utilisés
- 2.2 Algorithme de Cross-Entropy
- 2.3 Résultats
- 3. Restriction aux permutations (Q2)
- 4. Loi spécifique pour générer les permutations (Q3)

Question 1

Mettre en oeuvre un algorithme basé sur la méthode CE en détaillant :

- 1. la fonction score choisie;
- 2. la famille paramétrique choisie (pour simuler des codes);
- 3. la méthode pour simuler une loi de cette famille;
- 4. la méthode utilisée pour estimer le paramètre « optimal » à chaque étape.

Paramètres utilisés

• $\mathcal{X} = \{1, 2, \dots, m\}^n$

Paramètres utilisés

- $\mathcal{X} = \{1, 2, \dots, m\}^n$
- Famille paramétrique :

$$\mathcal{V} = \left\{ (p_{i,j})_{i,j} \in \mathcal{M}_{n,m}([0,1]) : \forall i, \sum_{j=1}^{m} p_{i,j} = 1 \right\}$$

Remarque : $X = (X_1, ..., X_n) \in \mathcal{X}$ tirées aléatoirement selon $p_1, ..., p_n$, la j e composante de p_i étant égale à $p_{ij} = \mathbb{P}(X_i = j)$: probabilité d'avoir une boule de couleur j en ième position.

Paramètres utilisés

- $\mathcal{X} = \{1, 2, \dots, m\}^n$
- Famille paramétrique :

$$\mathcal{V} = \left\{ (p_{i,j})_{i,j} \in \mathcal{M}_{n,m}([0,1]) : \forall i, \sum_{j=1}^{m} p_{i,j} = 1 \right\}$$

Remarque : $X = (X_1, ..., X_n) \in \mathcal{X}$ tirées aléatoirement selon $p_1, ..., p_n$, la j e composante de p_i étant égale à $p_{ij} = \mathbb{P}(X_i = j)$: probabilité d'avoir une boule de couleur j en ième position.

• Score:

$$S(x) = \frac{\omega_{noir} \times N_{\text{boules noires}} + \omega_{blanc} \times N_{\text{boules blanches}}}{\omega_{noir} \times n}$$

avec, par exemple, $\omega_{noir} = 2$ et $\omega_{blanc} = 1$.

Algorithme de Cross-Entropy

- 1. Initialisation
 - $\hat{v}_0 = \left(\frac{1}{m}\right)_{i=1...n, i=1..m}$ (probabilités uniformes pour chaque couleur)
 - ∘ $N = C \times m \times n$ (C = 5 par défaut)
 - ho = 0, 1 (maximisation réalisée sur les 10 % meilleurs échantillons)
- 2. $X_1, \ldots, X_N \sim f(\cdot, v_{t-1}), \, \hat{\gamma}_t = S_{\lceil (1-\rho)N \rceil}$
- 3. Trouver \hat{v}_t , qui correspond ici à la matrice de terme :

$$\rho_{k,l} = \frac{\sum_{i=1}^{N} 1_{\{S(X_i) \ge \hat{\gamma}_t\}} 1_{\{X_{i,k} = l\}}}{\sum_{i=1}^{N} 1_{\{S(X_i) \ge \hat{\gamma}_t\}}}$$
(3)

- 4. [FACULTATIF] smoothed updating
- 5. Arrêt : si pour un certain $t \geq d$ (d = 5), on a : $\hat{\gamma}_t = \cdots = \hat{\gamma}_{t-d}$

Premiers résultats

Application web interactive

Résultats sur de nombreuses simulations

Itération médiane de convergence

n / m	4	6	10	15	20	30	40
4	8	8	9	10,0	9,5	10,0	10,0
6	9	10	11	11,0	11,0	11,0	12,0
10	11	12	13	13,5	14,0	14,0	14,0
15	12	13	15	16,0	17,0	17,5	18,0
20	13	14	16	18,0	19,5	19,5	19,5
30	14	16	19	21,0	23,0	24,0	24,0
40	16	17	19	22,0	23,0	27,0	27,0

Nombre de simulations n'ayant pas convergé vers la bonne valeur

n/m	4	6	10	15	20	30	40
4	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0
10	0	0	0	0	0	0	0
15	0	0	1	1	1	0	0
20	0	1	1	0	1	1	0
30	1	1	3	3	4	1	2
40	1	0	2	4	6	3	3

Moyenne de l'erreur à la simulation de convergence

n/m	4	6	10	15	20	30	40
4	0,000	0,000	0,000	0,000	0,000	0,000	0,000
6	0,000	0,000	0,000	0,000	0,000	0,000	0,000
10	0,000	0,000	0,000	0,000	0,000	0,000	0,000
15	0,000	0,000	0,003	0,003	0,003	0,000	0,000
20	0,000	0,005	0,005	0,000	0,005	0,005	0,000
30	0,003	0,003	0,010	0,005	0,008	0,002	0,007
40	0,003	0,000	0,005	0,005	0,009	0,004	0,004

Moyenne du temps de calcul jusqu'à la convergence

	n/m	4	6	10	15	20	30	40
	4	0	0	0	0	0	0	0
	6	0	0	0	0	0	1	1
-	10	0	0	1	1	1	2	3
-	15	0	1	1	2	3	6	8
-	20	1	1	2	4	6	11	16
-	30	1	3	6	11	17	30	43
-	40	3	5	11	21	31	60	88

Sommaire

- 1. Introduction
- 2. Application de la méthode de Cross-Entropy au Mastermind (Q1)
- 3. Restriction aux permutations (Q2)
- 3.1 Adaptation de l'algorithme précédent
- 3.2 Résultats
- 4. Loi spécifique pour générer les permutations (Q3)

Question 2

Le Joueur 1 choisit obligatoirement une **permutation** (chaque couleur ne peut apparaître qu'une seule fois, donc $m \ge n$).

- 1. Mettre en oeuvre l'algorithme précédent en l'adaptant;
- 2. La méthode d'estimation utilisée dans la question précédente est toujours valide?

Par rapport à l'algorithme précédent, on ne change que le **mécanisme de génération** des échantillons :

Par rapport à l'algorithme précédent, on ne change que le **mécanisme de génération** des échantillons :

Les échantillons sont désormais générés grâce à une loi « sans remise ».

• Initialisation : on tire la première boule, entier x_1 , selon la loi discrète donnée par $p_{1,\cdot}=(p_{1,1},\ldots,p_{1,m})$. On pose k=1 et $P^{(1)}=P$.

Par rapport à l'algorithme précédent, on ne change que le **mécanisme de génération** des échantillons :

Les échantillons sont désormais générés grâce à une loi « sans remise ».

- Initialisation : on tire la première boule, entier x_1 , selon la loi discrète donnée par $p_{1,\cdot}=(p_{1,1},\ldots,p_{1,m})$. On pose k=1 et $P^{(1)}=P$.
- Itération : $P^{(k+1)}$ est obtenue en remplaçant la colonne k de $P^{(k)}$ par 0 et en normalisant les lignes (somme = 1). On tire x_{k+1} selon la loi discrète donnée par la ligne k+1 de $P^{(k+1)}$.

Par rapport à l'algorithme précédent, on ne change que le **mécanisme de génération** des échantillons :

Les échantillons sont désormais générés grâce à une loi « sans remise ».

- Initialisation : on tire la première boule, entier x_1 , selon la loi discrète donnée par $p_{1,\cdot}=(p_{1,1},\ldots,p_{1,m})$. On pose k=1 et $P^{(1)}=P$.
- Itération : $P^{(k+1)}$ est obtenue en remplaçant la colonne k de $P^{(k)}$ par 0 et en normalisant les lignes (somme = 1). On tire x_{k+1} selon la loi discrète donnée par la ligne k+1 de $P^{(k+1)}$.
- Si k = n alors on arrête, sinon on pose k = k + 1 et on répéte l'étape 2.

Les $p_{k,l}$ s'interprètent de la même façon qu'en question 1 et la formule de mise à jour des paramètres s'écrit :

$$p_{k,l} = \frac{\sum_{i=1}^{N} \mathbb{1}_{\{S(X_i) \geq \hat{\gamma}_t\}} \mathbb{1}_{\{X_{i,k} = l\}} \mathbb{1}_{\{X_i \text{ permutation}\}}}{\sum_{i=1}^{N} \mathbb{1}_{\{S(X_i) \geq \hat{\gamma}_t\}} \mathbb{1}_{\{X_i \text{ permutation}\}}}$$

Les $p_{k,l}$ s'interprètent de la même façon qu'en question 1 et la formule de mise à jour des paramètres s'écrit :

$$p_{k,l} = \frac{\sum_{i=1}^{N} \mathbb{1}_{\{S(X_i) \geq \hat{\gamma}_t\}} \mathbb{1}_{\{X_{i,k} = l\}} \mathbb{1}_{\{X_i \text{ permutation}\}}}{\sum_{i=1}^{N} \mathbb{1}_{\{S(X_i) \geq \hat{\gamma}_t\}} \mathbb{1}_{\{X_i \text{ permutation}\}}}$$

Possibilité d'appliquer la méthode de génération des échantillons de la ${f question}~{f 1}\dots$

Les $p_{k,l}$ s'interprètent de la même façon qu'en question 1 et la formule de mise à jour des paramètres s'écrit :

$$p_{k,l} = \frac{\sum_{i=1}^{N} \mathbb{1}_{\{S(X_i) \geq \hat{\gamma}_t\}} \mathbb{1}_{\{X_{i,k} = l\}} \mathbb{1}_{\{X_i \text{ permutation}\}}}{\sum_{i=1}^{N} \mathbb{1}_{\{S(X_i) \geq \hat{\gamma}_t\}} \mathbb{1}_{\{X_i \text{ permutation}\}}}$$

Possibilité d'appliquer la méthode de génération des échantillons de la ${f question}\ 1\dots$

... mais dans ce cas, beaucoup d'échantillons non pertinents (les non-permutations)

Les $p_{k,l}$ s'interprètent de la même façon qu'en question 1 et la formule de mise à jour des paramètres s'écrit :

$$p_{k,l} = \frac{\sum_{i=1}^{N} \mathbb{1}_{\{S(X_i) \geq \hat{\gamma}_t\}} \mathbb{1}_{\{X_{i,k} = l\}} \mathbb{1}_{\{X_i \text{ permutation}\}}}{\sum_{i=1}^{N} \mathbb{1}_{\{S(X_i) \geq \hat{\gamma}_t\}} \mathbb{1}_{\{X_i \text{ permutation}\}}}$$

Possibilité d'appliquer la méthode de génération des échantillons de la ${f question}\ 1\dots$

- ... mais dans ce cas, beaucoup d'échantillons non pertinents (les non-permutations)
- \longrightarrow Algorithme de la **question 2** améliore le processus en ne conservant que les permutations (telles que $1_{\{X_i \text{ permutation}\}} = 1$)

Résultats

Itération médiane de convergence

converge + vite...

Nombre de simulations n'ayant pas convergé vers la bonne valeur

Moyenne de l'erreur à la simulation de convergence

Moyenne du temps de calcul jusqu'à la convergence

② . . . mais est + gourmand

n/m	4	6	10	15	20	30	40
4	7	8	9,0	9	9	10	10
6		8	9,5	10	10	11	11
10			10,0	12	12	13	13
15				12	14	15	15
20					14	17	17
30						18	19
40							21

n / m	4	6	10	15	20	30	40
4	0	0	0	0	0	0	0
6		0	0	0	0	0	0
10			0	0	0	0	0
15				0	0	0	0
20					0	0	0
30						0	0
40							Λ.

n/m	4	6	10	15	20	30	40
4	0	0	0	0	0	0	0
6		0	0	0	0	0	0
10			0	0	0	0	0
15				0	0	0	0
20					0	0	0
30						0	0
40							0

n/m	4	6	10	15	20	30	40
4	0	0	0	0	0	1	1
6		0	0	1	1	2	3
10			1	2	3	6	9
15				5	9	15	22
20					15	29	44
30						69	109
40							211

Sommaire

- 1. Introduction
- 2. Application de la méthode de ${\it Cross-Entropy}$ au Mastermind (Q1)
- 3. Restriction aux permutations (Q2)
- 4. Loi spécifique pour générer les permutations (Q3)
- 4.1 Application de l'algorithme de CE
- 4.2 Génération des données
- 4.3 Résultats

Question 3

Considérons désormais la loi suivante sur l'ensemble des permutations :

$$\pi_{\lambda,x^*}(x) \propto \exp\left(-\lambda d(x,x^*)\right)$$

avec:

- λ > 0
- $d(x, x^*)$: distance de Hamming (nombre de positions où les deux permutations x et x^* diffèrent).
- 1. Proposer un algorithme de MCMC pour simuler selon une telle loi;
- 2. Utiliser cet algorithme au sein d'une approche CE;
- 3. Comparer la performance de l'algorithme obtenu à l'algorithme proposé en question 1.

Adaptation de l'algorithme de CE

1. Initialisation

- Tirage aléatoire de x_0^* et $\lambda_0 = 1$.
- $N = C \times (n+1)$ (C = 5 par défaut)
- o $\rho = 0,1$ (maximisation réalisée sur les 10 % meilleurs échantillons)
- 2. X_1,\ldots,X_N générés avec la *loi* $\pi_{\lambda_t,\mathbf{x}_t^*}$ (Metropolis-Hastings), calcul de $\hat{\gamma}_t=S_{\lceil(1-\rho)N\rceil}$
- 3. Trouver \tilde{x}_{t+1} . Si $S(\tilde{x}_{t+1}) \geq S(x_t^*)$ alors $x_{t+1}^* = \tilde{x}_{t+1}$, sinon $x_{t+1}^* = x_t^*$. On fixe $\lambda_{t+1} = 1$
- 4. [FACULTATIF] Pas de smoothed updating
- 5. Arrêt : si pour un certain t, $S(x_t^*) = 1$ alors on arrête l'algorithme.

● mécanisme de proposition : inverser deux éléments de la permutation (symétrique).

♦ mécanisme de proposition : inverser deux éléments de la permutation (symétrique).

Pour m = n (vraies permutations)

• Initialisation : on choisit x_0 une permutation au hasard et on fixe t=0.

• mécanisme de proposition : inverser deux éléments de la permutation (symétrique).

Pour m = n (vraies permutations)

- Initialisation : on choisit x_0 une permutation au hasard et on fixe t=0.
- Itération :
 - o On permute au hasard deux éléments i et j de x_t et on note x' la nouvelle permutation.

• mécanisme de proposition : inverser deux éléments de la permutation (symétrique).

Pour m = n (vraies permutations)

- Initialisation : on choisit x_0 une permutation au hasard et on fixe t=0.
- Itération :
 - o On permute au hasard deux éléments i et j de x_t et on note x' la nouvelle permutation.
 - $\begin{array}{l} \bullet \quad \text{On calcule la probabilit\'e d'acceptation:} \\ r(x',x_t) = \min\left(1,\,\frac{\pi_{\lambda,x^*}(x')}{\pi_{\lambda,x^*}(x_t)}\right) = \min\left(1,\,\mathrm{e}^{-\lambda(\mathrm{d}(x',x^*)-\mathrm{d}(x_t,x^*))}\right) \end{array}$

→ mécanisme de proposition : inverser deux éléments de la permutation (symétrique).

Pour m = n (vraies permutations)

- Initialisation : on choisit x_0 une permutation au hasard et on fixe t=0.
- Itération :
 - o On permute au hasard deux éléments i et j de x_t et on note x' la nouvelle permutation.
 - $\begin{array}{l} \bullet \ \ \text{On calcule la probabilité d'acceptation}: \\ r(x',x_t) = \min\left(1,\,\frac{\pi_{\lambda,x^*}(x')}{\pi_{\lambda,x^*}(x_t)}\right) = \min\left(1,\,\mathrm{e}^{-\lambda(\mathrm{d}(\mathbf{x}',\mathbf{x}^*)-\mathrm{d}(\mathbf{x}_t,\mathbf{x}^*))}\right) \end{array}$
 - Acceptation ou rejet : on génére une loi uniforme $u \in [0,1]$. Si $u \le r(x',x_t)$ alors on accepte le nouvel état et on pose $x_{t+1} = x'$, sinon $x_{t+1} = x_t$.

• mécanisme de proposition : inverser deux éléments de la permutation (symétrique).

Pour m = n (vraies permutations)

- Initialisation : on choisit x_0 une permutation au hasard et on fixe t=0.
- Itération :
 - o On permute au hasard deux éléments i et j de x_t et on note x' la nouvelle permutation.
 - $\begin{array}{l} \bullet \ \ \text{On calcule la probabilité d'acceptation}: \\ r(x',x_t) = \min\left(1,\,\frac{\pi_{\lambda,x^*}(x')}{\pi_{\lambda,x^*}(x_t)}\right) = \min\left(1,\,\mathrm{e}^{-\lambda(\mathrm{d}(\mathbf{x}',\mathbf{x}^*)-\mathrm{d}(\mathbf{x}_t,\mathbf{x}^*))}\right) \end{array}$
 - Acceptation ou rejet : on génére une loi uniforme $u \in [0,1]$. Si $u \le r(x',x_t)$ alors on accepte le nouvel état et on pose $x_{t+1} = x'$, sinon $x_{t+1} = x_t$.
 - Incrémentation : t = t + 1.

♦ mécanisme de proposition : inverser deux éléments de la permutation (symétrique).

Pour m > n

- Initialisation : on choisit x_0 une permutation au hasard et on fixe t=0.
- Itération :
 - On permute au hasard deux éléments i et j de x_t et on note x' la nouvelle permutation. $\rightarrow i$ ou $j \le n$
 - On calcule la probabilité d'acceptation : $r(x',x_t) = \min\left(1,\,\frac{\pi_{\lambda,x^*}(x')}{\pi_{\lambda,x^*}(x_t)}\right) = \min\left(1,\,\mathrm{e}^{-\lambda(\mathrm{d}(x',x^*)-\mathrm{d}(x_t,x^*))}\right)$
 - → distances calculées sur n premières coordonnées
 - Acceptation ou rejet : on génére une loi uniforme $u \in [0,1]$. Si $u \le r(x',x_t)$ alors on accepte le nouvel état et on pose $x_{t+1} = x'$, sinon $x_{t+1} = x_t$.
 - Incrémentation : t = t + 1.

Remarque : Pour λ grand on converge vers x^* et tous les échantillons seront égaux à x^* .

Remarque : Pour λ grand on converge vers x^* et tous les échantillons seront égaux à x^* .

L'algorithme de Metropolis-Hastings a deux désavantages :

- 1. Le burn-in.
- 2. Les échantillons générés à des périodes proches sont corrélés entre eux.

Gestion du burn-in

$$\label{eq:figure 1-n = 4, m = 6} \mathrm{Figure} \ 1-n = 4, \ m = 6$$

FIGURE 2 - n = 40, m = 40

 \rightarrow burn-in $\simeq 250 \times m$

Gestion des autocorrélations

Autocorrélogrammes des 4 premières composantes des échantillons ($\lambda=1$, n=10 et m=40)

FIGURE 3 – Toutes les autocorrélations

FIGURE 4 - Pas de 80 périodes

- \longrightarrow Conserver uniquement les simulations séparées de t=80 périodes.
- \longrightarrow Intégrer ce test dans le mécanisme de proposition est **très couteux en temps**.

(Arrieta, 2014) montre qu'on peut séparer le problème d'estimation de x^* et λ

(Arrieta, 2014) montre qu'on peut séparer le problème d'estimation de x^* et λ

Trouver le x^* qui minimise la somme $\sum_{i=1}^N 1_{\{S(X_i) \geq \hat{\gamma}_t\}} d(X_i, x^*)$

(Arrieta, 2014) montre qu'on peut séparer le problème d'estimation de x^* et λ

Trouver le x^* qui minimise la somme $\sum_{i=1}^N 1_{\{S(X_i) \geq \hat{\gamma}_t\}} d(X_i, x^*)$

• Intuitivement, il s'agit de $x^* = (x_1^*, \dots, x_n^*)$ tel que x_j^* correspond au chiffre le plus fréquent dans la jème coordonnée des 10 % meilleurs échantillons.

(Arrieta, 2014) montre qu'on peut séparer le problème d'estimation de x^* et λ

Trouver le x^* qui minimise la somme $\sum_{i=1}^N 1_{\{S(X_i) \geq \hat{\gamma}_t\}} d(X_i, x^*)$

- Intuitivement, il s'agit de $x^* = (x_1^*, \dots, x_n^*)$ tel que x_j^* correspond au chiffre le plus fréquent dans la jème coordonnée des 10 % meilleurs échantillons.
- On part de ce principe en imposant que x^* soit bien une permutation :
 - 1. On crée une matrice $F=(f_{i,j})\in\mathcal{M}_{n,m}(\mathbb{N})$ telle $f_{i,j}$ soit égal au nombre de fois que l'entier j apparaît en ième position parmi les 10 % meilleurs échantillon.
 - On sélectionne une composante par ligne et par colonne de F de façon à ce que leur somme soit maximale

Estimation de λ

Plusieurs tests réalisés pour estimer λ :

1. (Arrieta, 2014) nous fournit la constante de normalisation de π_{λ,x^*} :

$$m! \exp(-\lambda m) \sum_{k=0}^{m} \frac{(\exp(\lambda) - 1)^k}{k!}$$

le λ qui maximise la vraisemblance est alors tel que :

$$\frac{\exp(\lambda)\sum_{k=0}^{m-1}\frac{(\exp(\lambda)-1)^k}{k!}-m\sum_{k=0}^{m}\frac{(\exp(\lambda)-1)^k}{k!}}{\sum_{k=0}^{m}\frac{(\exp(\lambda)-1)^k}{k!}}+\frac{\sum_{i=1}^{N}1_{\{S(X_i)\geq\hat{\gamma}_t\}}d(X_i,x^*)}{\sum_{i=1}^{N}1_{\{S(X_i)\geq\hat{\gamma}_t\}}}=0$$

Problème : croissance rapide de λ à chaque itération. Si y n'est pas décodé dans les premières itérations, les échantillons X_i générés seront très proches de x^* et on ne trouvera pas y.

Estimation de λ

Plusieurs tests réalisés pour estimer λ :

1. (Arrieta, 2014) nous fournit la constante de normalisation de π_{λ,x^*} :

$$m! \exp(-\lambda m) \sum_{k=0}^{m} \frac{(\exp(\lambda) - 1)^k}{k!}$$

le λ qui maximise la vraisemblance est alors tel que :

$$\frac{\exp(\lambda)\sum_{k=0}^{m-1}\frac{(\exp(\lambda)-1)^k}{k!}-m\sum_{k=0}^{m}\frac{(\exp(\lambda)-1)^k}{k!}}{\sum_{k=0}^{m}\frac{(\exp(\lambda)-1)^k}{k!}}+\frac{\sum_{i=1}^{N}1_{\{S(X_i)\geq\hat{\gamma}_t\}}d(X_i,x^*)}{\sum_{i=1}^{N}1_{\{S(X_i)\geq\hat{\gamma}_t\}}}=0$$

Problème : croissance rapide de λ à chaque itération. Si y n'est pas décodé dans les premières itérations, les échantillons X_i générés seront très proches de x^* et on ne trouvera pas y.

- 2. croissance linéaire à chaque itération
- constance

Estimation de λ

Plusieurs tests réalisés pour estimer λ :

1. (Arrieta, 2014) nous fournit la constante de normalisation de π_{λ,x^*} :

$$m! \exp(-\lambda m) \sum_{k=0}^{m} \frac{(\exp(\lambda) - 1)^k}{k!}$$

le λ qui maximise la vraisemblance est alors tel que :

$$\frac{\exp(\lambda)\sum_{k=0}^{m-1}\frac{(\exp(\lambda)-1)^k}{k!}-m\sum_{k=0}^{m}\frac{(\exp(\lambda)-1)^k}{k!}}{\sum_{k=0}^{m}\frac{(\exp(\lambda)-1)^k}{k!}}+\frac{\sum_{i=1}^{N}1_{\{S(X_i)\geq\hat{\gamma}_t\}}d(X_i,x^*)}{\sum_{i=1}^{N}1_{\{S(X_i)\geq\hat{\gamma}_t\}}}=0$$

Problème : croissance rapide de λ à chaque itération. Si y n'est pas décodé dans les premières itérations, les échantillons X_i générés seront très proches de x^* et on ne trouvera pas y.

- 2. croissance linéaire à chaque itération
- constance
- \longrightarrow Meilleure solution : $\lambda = 1$.

Résultats $N = 5 \times (n+1)$

Itération médiane de convergence

converge - vite

Nombre de simulations n'ayant pas convergé vers la bonne valeur converge - souvent

Moyenne de l'erreur à la simulation de convergence

Moyenne du temps de calcul jusqu'à la convergence

et est + gourmand

n / m	4	6	10	15	20	30	40
4	14,5	4	8,5	17	25,5	21,5	91
6		6	15,0	19	90,0		
10			9,0	31	73,5		
15				14	49,0		
20					23,0		
30						95,0	
40							

n / m	4	6	10	15	20	30	40
4	0	0	0	0	4	8	6
6		0	0	2	6	10	10
10			0	3	6	10	10
15				0	7	10	10
20					0	10	10
30						7	10
40							10

n/m	4	6	10	15	20	30	40
4	0,025	0,312	0,462	0,525	0,550	0,662	0,725
6		0,208	0,425	0,492	0,567	0,633	0,725
10			0,295	0,440	0,530	0,640	0,700
15				0,360	0,460	0,587	0,667
20					0,385	0,528	0,622
30						0,425	0,535
40							0,450

n/m	4	6	10	15	20	30	40
4	1	0	2	4	6	5	26
6		1	3	5	19		
10			2	10	15		
15				5	18		
20					12		
30						64	
40							

Merci pour votre attention

- ARKEnsae/Mastermind_Simulation
- Application web: antuki.shinyapps.io/mastermind
- Rapport du projet

