# **Special Relativity**

#### The Road Towards Modern Physics

Dara Daneshvar, Eason Shao Physics Problem Solving 20/05/2024

#### **Prior Knowledge**

• 
$$v = \frac{s}{t}$$

- The speed of light is **constant for all observers**
- Nothing else

#### What we will talk about

- Lorentz Transforms
- Consequences of Special Relativity
- A taste of Minkowski Space

## Why Special Relativity

#### Late 19th Century

- Maxwell's electromagnetism gave rise to the idea of light as an **electromagnetic wave**.
- Many believed that it propagated through something called the aether, which filled the universe.
- They believed that the aether could represent an absolute reference frame.

#### **Einstein**

- Unfortunately this was experimentally falsified (Michelson-Morley) ...
  - o but nobody really noticed its significance until Lorentz ...
  - whose paper inspired Einstein to discover what we are going to talk about today.
- Einstein's solution was to argue that:
  - a. The Aether didn't exist
  - b. The laws of physics **including the measurement of the speed of light** is the same for any **inertial** reference frame.
- This would mean that if I travel at 100,000 m/s, I still measure speed of light to be 299,792,458 m/s and so would a 'stationary observer'

### **The Lorentz Transform**

#### **Mathematical Formulation**

- To formulate the effects of time dilation, we can make use of a **photon clock**
- Use the diagram that Dara is drawing on the board to derive what is known as **the Lorentz Factor**:

$$\gamma = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}}$$

#### **Visualisation**

For your Lorentz factor to be 2, you need to travel at 87% the speed of light!



#### **More Consequences**

Kinetic Energy (try doing a binomial expansion)

$$KE = (\gamma - 1)m_0c^2$$

Lorentz Transformation (1D)

$$x' = \gamma(x - vt)$$



### **Direct Results**

#### **Cosmic Rays**

- Muons are formed at the top of the atmosphere (~ 12000m) due to the decay of cosmic rays. We observe 25% of them reaching the surface of the earth.
- Without relativity, because of their half life of just 1.5 microseconds, how fast would they have to travel in order to cause this result?
- How does relativity save us here?

# **Light Cone**

### **The Light Cone**

You may have seen pictures like this in videos or articles about special relativity, but what does it tell us?



It is a reminder that light has finite speed time = 2

- Light takes time to go between you and me, therefore you are seeing me in the past.
- The "vertex" of this light cone represents an event
- To be able to observe or interact with this event, you must be in the light cone
- Note the labels on the axes.



## A Taste of Minkowski Space

#### Eason will try and talk about the very basics ...

https://www.desmos.com/calculator/wtoyyzbwml (Eason loves Desmos as usual ...)

If you want to go beyond this, some terms that you might wish to search on Google/Wikipedia:

- Minkowski Plane, Space, Metric & Pseudo-Euclidean Space (Some Maths)
- Hyperbolic Orthogonality (Some More Maths)
- Spacetime Diagram (Minkowski & Loedel Diagrams)
- Lorentz Transformation (Physical, Mathematical & Tensor formulation)
- Lorentz Group (which is related to Lie Groups & Lie Algebra)

### Thanks!

Please ask questions.

Google Classroom: JE3ZZL6





