The z-model

Parametrization

The z-model is an implementation of the "classical" way to define the "random effect" part of a mixed model, through

$$\eta = \ldots + Zz$$

where Z is a $n \times m$ matrix and z a vector of length m representing zero-mean "random effects". The z-model is defined as the augmented model

$$\widetilde{z} = \begin{pmatrix} v \\ z \end{pmatrix}$$

where $v \sim \mathcal{N}_n(Zz, \kappa I)$, where κ is a high fixed precision, and where the precision matrix for z is τC where C > 0 is a $m \times m$ (fixed) matrix.

Hyperparameters

The precision parameter of the z-model is represented as

$$\theta = \log(\tau)$$

and prior is assigned to θ

Specification

The z-model is specified inside the f() function as

```
f(<whatever>, model="z", Z = <Z>, Cmatrix = <Cmat>, hyper = <hyper>,
precision = recision>)
```

where the Z-matrix argument defines the Z matrix and is required. The Cmatrix defines the C matrix and if not given, taken to the diagonal matrix with dimension m. The precision parameter defines the value of κ .

If Z is a $n \times m$ matrix then the C matrix must be $m \times m$ matrix, and \widetilde{z} has length n + m. The n first terms of \widetilde{z} is then v and the last m terms of \widetilde{z} is then z.

Hyperparameter spesification and default values

hyper

theta

name log precision short.name prec initial 4 fixed FALSE prior loggamma param 1 5e-05 to.theta function(x) log(x) from.theta function(x) exp(x)

constr FALSE

nrow.ncol FALSE

augmented FALSE

aug.factor 1

aug.constr

n.div.by

 $\mathbf{n.required} \ \mathrm{TRUE}$

set.default.values TRUE

 \mathbf{pdf} z.pdf

Example

Notes