

Indian Institute of Technology Kharagpur

IP Subnetting and Addressing

ľ

Lecture 6: IP Subnetting and Addressing

On completion, the student will be able to:

- Explain the concept of IP subnets, and subnet masks.
- Compare the benefits of using subnets against multiple address classes.
- Explain the concept of variable length subnet mask (VLSM) with example.
- Explain how classless inter-domain routing (CIDR) helps in better address assignment.

IP Subnetting

Example (Routing table for R1)

Mask	Dest	NextHop	Interface
255.0.0.0	115.0.0.0		MO
255.255.255.224	196.23.15.161		M1
0.0.0.0	0.0.0.0	112.11.35.18	MO

IP Subnet

- Basic concept:
 - >A subset of a class A, B or C network.
- IP addresses that do not use subnets consists of
 - a network portion, and
 - a host portion.
 - Represents a static two-level hierarchical addressing model.

IP Subnet (contd.)

- IP subnets introduces a third level of hierarchy.
 - a network portion
 - a subnet portion
 - a host portion
 - Allow more efficient (and structured) utilization of the addresses.
 - >Uses network masks.

Natural Masks

- Network mask 255.0.0.0 is applied to a class A network 10.0.0.0.
 - ➤In binary, the mask is a series of contiguous 1's followed by a series of contiguous 0's.

 11111111 00000000 00000000 00000000

Natural Masks (contd.)

- Provide a mechanism to split the IP address 10.0.0.20 into
 - > a network portion of 10, and
 - >a host portion of 20.

Decimal

Binary

IP address:10.0.0.20

00001010 00000000 00000000 00010100

Mask:

255.0.0.0

1111111 00000000 00000000 00000000

Network

Host

Natural Masks (contd.)

- Class A, B and C addresses
 - > Have fixed division of network and host portions.
 - Can be expressed as masks.
 - Called natural masks.
- Natural Masks

>Class A :: 255.0.0.0

Class B :: 255,255,0,0

Class C :: 255.255.255.0

Creating Subnets using Masks

- Masks are very flexible.
 - Using masks, networks can be divided into smaller subnets.
- How?
 - **▶**By extending the network portion of the address into the host portion.
- Advantage gained:
 - >We can create a large number of subnets from one network.
 - Can have less number of hosts per network.

Example: Subnets

- Network mask 255.255.0.0 is applied to a class A network 10.0.0.0.
 - This divides the IP address 10.5.0.20 into
 - a network portion of 10,
 - a subnet portion of 5, and
 - a host portion of 20.
 - The 255.255.0.0 mask borrows a portion of the host space, and applies it to network space.

Subnets (contd.)

- What happens?
 - ► Initially it was a single large Class A network (2²⁴-2 hosts).
 - >We have now split the network into 256 subnets.
 - From 10.0.0.0 to 10.255.0.0.
 - The hosts pet subnet decreases to 65,534.

Subnets (contd.)

Decimal

Binary

IP address: 10.5.0.20 00001010 00000101 00000000 00010100

Mask:

255.255.0.0 11111111 11111111 100000000 00000000

Network Subnet

Host

Default Mask and Subnet mask

192: 1100 0000

72: 0100 1000

Subnets vrs Multiple Address Classes

Subnets

- Management of subnets is done by local network administrator.
- **➢**Single entry in external router tables.
- Multiple Address Classes
 - > Multiple entries in external router tables.
 - Additional overhead on the backbone (external) routers.

Comparison

Variable Length Subnet Masks (VLSM)

Basic concept

- The same network can be configured with different masks.
- Can have subnets of different sizes.
- Allows better utilization of available addresses.

Example: VLSM

- Suppose we are assigned a Class C network 192.203.17.0.
 - >To be divided into three subnets.
 - Corresponding to three departments.
 - With 110, 45 and 50 hosts respectively.

The Example (contd.)

- Available subnet options
 - The network mask will be the Class C natural mask 255.255.25.0
 - Subnet masks of the form 255.255.255.X
 - Can be used to divide the network into more subnets.

The Subnet Options

X	X (in binary)	No. of Subnets	No. of Hosts
128	1000 0000	2	128
192	1100 0000	4	64
224	1110 0000	8	32
240	1111 0000	16	16
248	1111 1000	32	8
252	1111 1100	64	4

Cannot satisfy the requirements.

The VLSM Option

- Basic concept:
 - ➤ Use the mask 255.255.255.128 to divide the network address into two subnets with 128 hosts each.
 - **192.203.17.0** (.0 to .127)
 - **192.203.17.0** (.128 to .255)

The VLSM Option (contd.)

- Next subnet the second .128 subnet using a mask of 255.255.255.192.
 - Creates two subnets, 64 hosts each

```
192.213.17.128 (.128 to .191)
```

192.213.17.128 (.192 to .255)

The VLSM Option (contd.)

HIDDEN SLIDE

Interface 1 :: 128 hosts

Network number: 192.203.17.0

Network mask: 255.255.255.128

Address: 192.203.17.0 -- .127

Interface 2 :: 64 hosts

Network number: 192.203.17.128

Network mask: 255.255.255.192

Address: 192.203.17.128 -- .191

Interface 3 :: 64 hosts

Network number: 192.203.17.192

Network mask: 255.255.255.192

Address: 192.203.17.192 -- .255

Running out of IP addresses

- Growing demand for IP addresses.
 - >Severe strain on the classful model.
 - > Due to wastage of address space.
- Measures taken:
 - >Creative allocation of IP addresses.
 - Classless Inter-Domain Routing (CIDR).
 - **Private IP addresses, and Network Address Translation (NAT).**
 - ►IP version 6 (IPv6).

CIDR: Introduction

- The size of the global routing tables have grown very fast in recent years.
 - Caused routers to become saturated.
- CIDR is a new concept to manage IP networks.
 - Classless Inter Domain Routing.
 - **➢** No concept of class A, B, C networks.
 - > Reduces sizes of routing tables.

Basic Idea Behind CIDR

- An IP address is represented by a prefix, which is the IP address of the network.
- It is followed by a slash, followed by a number M.
 - ➤M: number of leftmost contiguous bits to be used for the network mask.
 - Example: 144.16.192.57 / 18

CIDR: An Important Rule

- The number of addresses in each block must be a power of 2.
- The beginning address in each block must be divisible by the number of addresses in the block.
 - A block that contains 16 addresses cannot have beginning address as 144.16.223.36.
 - But the address 144.16.192.64 is possible.

Example: CIDR

 An organization is allotted a block with beginning address:

144.16.192.24 / 29

What is the range of the block?

Start addr: 10010000 00011000 11000000 00011000

End addr: 10010000 00011000 11000000 00011111

There are 8 addresses in the block.

Recent Trend

- Move on to CIDR addressing.
 - Existing classful networks can also be represented using this notation.
 - Class A: W.X.Y.Z / 8
 - Class B: W.X.Y.Z / 16
 - Class C: W.X.Y.Z / 24
- Recent routers support CIDR.

End of Lecture 6

Indian Institute of Technology Kharagpur

