Examples of Markov chains from Hopf algebras (in the sense of [Pan15a]). This version: January 8, If you spot an error, or know of any other Markov chains built in a similar way, please let me know.

Markov chain	Hopf algebra / Hopf monoid	algebra is	
		commutative?	cocommutative
shuffling	shuffle algebra ${\mathscr S}$	X	
inverse-shuffling	free associative algebra \mathscr{S}^*		X
edge-removal	$ ar{\mathcal{G}} $	X	X
edge-removal	\mathscr{G}		X
restriction-then-induction	representations of symmetric groups	X	X
rock-breaking	symmetric functions (partitions) $\subseteq \bar{\mathscr{G}}$	X	X
tree-pruning	Connes-Kreimer	X	
descent-set-under-shuffling	quasisymmetric functions	X	
jeu-de-taquin	Poirier-Reutenauer FSym		
shuffle with standardisation	Malvenuto-Reutenauer FQSym		

[[]DPR14] P. Diaconis, C. Y. A. Pang, and A. Ram. Hopf algebras and Markov chains: two examples and a theory. *J. Algebra* [Pan13] C. Y. A. Pang. A Hopf-power Markov chain on compositions. In 25th International Conference on Formal Power

[[]Pan14] C. Y. A. Pang. Hopf algebras and Markov chains. *ArXiv e-prints*, December 2014. A revised thesis.

[[]Pan15a] C. Y. A. Pang. Card-shuffling via convolutions of projections on combinatorial Hopf algebras. In 27th Internation

[[]Pan15b] C. Y. A. Pang. Lifting the down-up chain on partitions to permutations. ArXiv e-prints, August 2015.

2016. Curated by Amy Pang. Printer-friendly version, plus related summary tables, available at my website.

			basis			basis is			$ \mathscr{B}_1 $	pro
?	free?	cofree?		free-commutative?	free?	cofree?	self-dual?	multigraded?		
		X	words / decks of cards			X		X	arbitrary	sh
	X		words / decks of cards		X			X	arbitrary	col
			unlabelled graphs	X					1	dis
	X		labelled graphs		X				1	dis
		X	irreducible representations				X		1	ext
		X	elementary or complete	X					1	dis
			rooted forests	X					1	dis
		X	fundamental (compositions)			X			1	(no
	X		standard Young tableaux						1	B2
	X	X	fundamental (permutations)						1	shi

REFER

nic Combin., 39(3):527–585, 2014.

al Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2015), Discrete Math. Theor. Comput. Sci. Proc., AU, pages 49-60. Assoc

Series and Algebraic Combinatorics (FPSAC 2013), Discrete Math. Theor. Comput. Sci. Proc., AS, pages 499–510. Assoc. Discrete Math. Theor. Comput.

oduct	coproduct	rescaling	stationary distribution	refere
uffle	deconcatenation	none	uniform	[Pan1
ncatenation	deshuffle	none	uniform	[DPR
joint union	induced on subsets	none	absorbing at empty graph	[DPR
joint union	induced on subsets	none	absorbing at empty graph	[DPR
ternal induction	sum of restrictions	dimension	plancherel	[Pan]
sjoint union	$\Delta((n)) = \sum_{i=1}^{n} (i) \otimes (n-i)$	$\frac{n!}{\prod \lambda_i!}$	absorbing at $(1,1,\ldots,1)$	[DPR
sjoint union	cut branches ⊗ trunks	$\frac{n!}{\prod \operatorname{desc}(v)}$	absorbing at disconnected forest	[Pan]
on-explicit - use Pr	rojection Theorem)	none	proportion of permutations with this descent set	[Pan]
R: add outer box	B2R: unbump	dimension of shape	proportion of standard tableaux with this shape	[Pan]
ifted shuffle	deconcatenate and standardise	none	uniform	[Pan]

ENCES

ut. Sci., Nancy, 2013.

. Discrete Math. Theor. Comput. Sci., Nancy, 2015. available on Arxiv.

ences
14, Sec. 6.1]
R14, Sec. 6] [Pan14, Ex. 4.6.2, Ex. 4.7.2]
R14, Ex. 3.1] [Pan14, Sec. 5.1]
R14, Ex. 3.2]
14, Ex. 4.1.4, Ex. 4.3.2, Ex. 4.4.3, Ex. 4.5.3, Ex. 4.6.4] [Pan15a, Ex. 3.5] [Pan15b, Sec. 2]
R14, Sec. 4] [Pan14, Sec. 5.2]
14, Sec. 5.3] [Pan15a, Ex. 5.3]
[13][Pan14, Sec. 6.2]
15b, Sec. 4]
15b, Sec. 51