Weierstrass mock modular forms and vertex operator algebras

Michael H. Mertens joint work with Lea Beneish

University of Liverpool

11 May, 2021, International Seminar on Automorphic Forms Introduction

- Preliminaries
 - Vertex operator algebras
 - Harmonic Maaß forms
 - Weierstrass mock modular forms

Table of Contents

- Introduction
- Preliminaries
 - Vertex operator algebras
 - Harmonic Maaß forms
 - Weierstrass mock modular forms
- Main results

The beginning of Monstrous Moonshine

Observation (McKay, 1978)

$$196884 = 1 + 196883$$
$$21493760 = 1 + 196884 + 21296876$$

The beginning of Monstrous Moonshine

Observation (McKay, 1978)

$$196884 = 1 + 196883$$

$$21493760 = 1 + 196884 + 21296876$$
 coefficient of $j=$ dimensions of irreps of $\mathbb M$

The beginning of Monstrous Moonshine

Observation (McKay, 1978)

$$196884 = 1 + 196883$$

$$21493760 = 1 + 196884 + 21296876$$
 coefficient of $j =$ dimensions of irreps of $\mathbb M$

Conjecture (Thompson; Conway-Norton (1979))

There is a graded representation of \mathbb{M} whose graded dimensions (characters) agree with the j-function (other Hauptmoduln).

Moonshine and VOAs

Theorem (Frenkel-Lepowsky-Meurman (1985); Borcherds (1992))

There is such a graded representation V^{\natural} of \mathbb{M} . It carries the structure of a vertex operator algebra (VOA). \mathbb{M} acts on V^{\natural} as VOA-automorphisms.

Moonshine and VOAs

Theorem (Frenkel-Lepowsky-Meurman (1985); Borcherds (1992))

There is such a graded representation V^{\natural} of \mathbb{M} . It carries the structure of a vertex operator algebra (VOA). \mathbb{M} acts on V^{\natural} as VOA-automorphisms.

New(ish) development: Connection of Moonshine (e.g. for ON) to arithmetic of elliptic curves (Duncan-M.-Ono, 2017).

Moonshine and VOAs

Theorem (Frenkel-Lepowsky-Meurman (1985); Borcherds (1992))

There is such a graded representation V^{\natural} of \mathbb{M} . It carries the structure of a vertex operator algebra (VOA). \mathbb{M} acts on V^{\natural} as VOA-automorphisms.

New(ish) development: Connection of Moonshine (e.g. for ON) to arithmetic of elliptic curves (Duncan-M.-Ono, 2017).

Goal: Show a different kind of connection between VOAs and elliptic curves.

Fact: Given an integral lattice $L\subseteq\mathbb{R}^n$, there is an associated VOA V_L of central charge c=n (Frenkel-Lepowsky-Meurman).

Dimension $\mid \#$ even unimodular lattices $\mid \#$ "nice" VOAs

Dimension	# even unimodular lattices	# "nice" VOAs
8	1	1

Dimension	# even unimodular lattices	# "nice" VOAs
8	1	1
16	2	2

Dimension	# even unimodular lattices	# "nice" VOAs
8	1	1
16	2	2
24	24	

Dimension	# even unimodular lattices	# "nice" VOAs
8	1	1
16	2	2
24	24	71 (?)

Fact: Given an integral lattice $L\subseteq\mathbb{R}^n$, there is an associated VOA V_L of central charge c=n (Frenkel-Lepowsky-Meurman).

Dimension	# even unimodular lattices	# "nice" VOAs
8	1	1
16	2	$\overline{2}$
24	24	71 (?)

• List of 71 candidates by Schellekens (1993)

Dimension	# even unimodular lattices	# "nice" VOAs
8	1	1
16	2	2
24	24	71 (?)

- List of 71 candidates by Schellekens (1993)
- Construction of all candidates by van Ekeren, Höhn, Möller, Scheithauer (\sim 2016–2020)

Theorem (Möller, 2016)

Let $V=\bigoplus_{n\geq 0}V_n$ be a "nice" VOA of central charge 24 and $G=\langle g\rangle$ a cyclic group of automorphisms of V of order $N\in\{2,3,5,7,13\}.$

Theorem (Möller, 2016)

Let $V=\bigoplus_{n\geq 0}V_n$ be a "nice" VOA of central charge 24 and $G=\langle g\rangle$ a cyclic group of automorphisms of V of order $N\in\{2,3,5,7,13\}$. Then we have the dimension formula

$$\dim V_1 + \dim V_1^{\text{orb}(g)} = 24 + (N+1) \dim V_1^G$$

$$- \frac{24}{N-1} \sum_{k=1}^{N-1} \sigma(N-k) \sum_{i \in \mathbb{Z}/N\mathbb{Z} \setminus \{0\}} \dim V(g^i)_{k/N}$$

Theorem (Möller, 2016)

Let $V=\bigoplus_{n\geq 0}V_n$ be a "nice" VOA of central charge 24 and $G=\langle g\rangle$ a cyclic group of automorphisms of V of order $N\in\{2,3,5,7,13\}$. Then we have the dimension formula

$$\dim V_1 + \dim V_1^{\text{orb}(g)} = 24 + (N+1) \dim V_1^G$$

$$- \frac{24}{N-1} \sum_{k=1}^{N-1} \sigma(N-k) \sum_{i \in \mathbb{Z}/N\mathbb{Z} \setminus \{0\}} \dim V(g^i)_{k/N}$$

• Extension by van Ekeren, Möller, Scheithauer to $N \in \{2,...,10,12,13,16,18,25\}$

Theorem (Möller, 2016)

Let $V=\bigoplus_{n\geq 0}V_n$ be a "nice" VOA of central charge 24 and $G=\langle g\rangle$ a cyclic group of automorphisms of V of order $N\in\{2,3,5,7,13\}$. Then we have the dimension formula

$$\dim V_1 + \dim V_1^{\text{orb}(g)} = 24 + (N+1) \dim V_1^G$$

$$- \frac{24}{N-1} \sum_{k=1}^{N-1} \sigma(N-k) \sum_{i \in \mathbb{Z}/N\mathbb{Z} \setminus \{0\}} \dim V(g^i)_{k/N}$$

• Extension by van Ekeren, Möller, Scheithauer to $N \in \{2,...,10,12,13,16,18,25\}$ (i.e. such that $X_0(N)$ has genus 0)

Theorem (Möller, 2016)

Let $V=\bigoplus_{n\geq 0}V_n$ be a "nice" VOA of central charge 24 and $G=\langle g\rangle$ a cyclic group of automorphisms of V of order $N\in\{2,3,5,7,13\}$. Then we have the dimension formula

$$\dim V_1 + \dim V_1^{\text{orb}(g)} = 24 + (N+1) \dim V_1^G$$

$$- \frac{24}{N-1} \sum_{k=1}^{N-1} \sigma(N-k) \sum_{i \in \mathbb{Z}/N\mathbb{Z} \setminus \{0\}} \dim V(g^i)_{k/N}$$

- Extension by van Ekeren, Möller, Scheithauer to $N \in \{2,...,10,12,13,16,18,25\}$ (i.e. such that $X_0(N)$ has genus 0)
- ullet Extension to all N by Möller and Scheithauer

Table of Contents

- Introduction
- 2 Preliminaries
 - Vertex operator algebras
 - Harmonic Maaß forms
 - Weierstrass mock modular forms
- Main results

Table of Contents

- Introduction
- Preliminaries
 - Vertex operator algebras
 - Harmonic Maaß forms
 - Weierstrass mock modular forms
- Main results

ullet V: ${\mathbb C}$ -vector space

- ullet V: ${\mathbb C}$ -vector space
- ullet $1 \in V$: vacuum element

- ullet V: ${\mathbb C}$ -vector space
- ullet 1 \in V: vacuum element
- $\omega \in V$: conformal vector

- ullet V: ${\mathbb C}$ -vector space
- $1 \in V$: vacuum element
- $\omega \in V$: conformal vector
- Y: state-field correspondence.

$$Y(\cdot, z) : V \to \text{End}(V)[[z, z^{-1}]], v \mapsto Y(v, z) = \sum_{n \in \mathbb{Z}} v_n z^{-n-1}$$

- ullet $V\colon \mathbb{C} ext{-vector space}$
- ullet $1 \in V$: vacuum element
- $\omega \in V$: conformal vector
- Y: state-field correspondence.

$$Y(\cdot, z) : V \to \text{End}(V)[[z, z^{-1}]], v \mapsto Y(v, z) = \sum_{n \in \mathbb{Z}} v_n z^{-n-1}$$

• $v=\omega$: $Y(\omega,z)=\sum_{n\in\mathbb{Z}}L(n)z^{-n-2}$, where

$$[L(m), L(n)] = (m-n)L(m+n) + \frac{1}{12}(m^3 - m)\delta_{m+n,0}c$$

 $({\sf Virasoro\ algebra})$

- ullet V: ${\mathbb C}$ -vector space
- $1 \in V$: vacuum element
- $\omega \in V$: conformal vector
- Y: state-field correspondence.

$$Y(\cdot, z) : V \to \text{End}(V)[[z, z^{-1}]], v \mapsto Y(v, z) = \sum_{n \in \mathbb{Z}} v_n z^{-n-1}$$

• $v = \omega$: $Y(\omega, z) = \sum_{n \in \mathbb{Z}} L(n) z^{-n-2}$, where

$$[L(m), L(n)] = (m-n)L(m+n) + \frac{1}{12}(m^3 - m)\delta_{m+n,0}c$$

(Virasoro algebra)

• $c \in \mathbb{C}$: central charge

- ullet $V\colon \mathbb{C} ext{-vector space}$
- ullet $1 \in V$: vacuum element
- $\omega \in V$: conformal vector
- Y: state-field correspondence.

$$Y(\cdot, z): V \to \text{End}(V)[[z, z^{-1}]], v \mapsto Y(v, z) = \sum_{n \in \mathbb{Z}} v_n z^{-n-1}$$

• $v=\omega$: $Y(\omega,z)=\sum_{n\in\mathbb{Z}}L(n)z^{-n-2}$, where

$$[L(m), L(n)] = (m-n)L(m+n) + \frac{1}{12}(m^3 - m)\delta_{m+n,0}c$$

(Virasoro algebra)

- $c \in \mathbb{C}$: central charge
- Grading: $V_n = \{v \in V : L(0)v = nv\}, n \in \mathbb{Z}.$

ullet rational: finitely many irreducible $V ext{-modules}$ and every module is semisimple

- ullet rational: finitely many irreducible $V ext{-modules}$ and every module is semisimple
- holomorphic: one irreducible V-module

- ullet rational: finitely many irreducible $V ext{-modules}$ and every module is semisimple
- \bullet holomorphic: one irreducible V-module
- ullet C_2 -cofinite: $\{v_2w\,:\,v,w\in V\}$ has finite codimension in V

- ullet rational: finitely many irreducible $V ext{-modules}$ and every module is semisimple
- \bullet holomorphic: one irreducible V-module
- ullet C_2 -cofinite: $\{v_2w\,:\,v,w\in V\}$ has finite codimension in V
- CFT-type: $V_n = \{0\}$ for n < 0 and $V_0 = \mathbb{C} \mathbf{1}$.

- ullet rational: finitely many irreducible $V ext{-modules}$ and every module is semisimple
- ullet holomorphic: one irreducible V-module
- ullet C_2 -cofinite: $\{v_2w\,:\,v,w\in V\}$ has finite codimension in V
- CFT-type: $V_n = \{0\}$ for n < 0 and $V_0 = \mathbb{C} \mathbf{1}$.
- \bullet strongly rational: rational, C_2 -cofinite, of CFT-type, self-dual

V a nice VOA, $G=\langle g \rangle$ group of automorphisms, order N.

• $V(g^i)$ (unique) g^i -twisted module. Decomposition $V(g^i) = \bigoplus_{j \pmod N} W^{(i,j)}$ as $\mathbb{C}[G]$ -modules

V a nice VOA, $G=\langle g \rangle$ group of automorphisms, order N.

- $V(g^i)$ (unique) g^i -twisted module. Decomposition $V(g^i) = \bigoplus_{j \pmod N} W^{(i,j)}$ as $\mathbb{C}[G]$ -modules
- ullet $V^G=W^{(0,0)}$ fixed point sub-VOA

V a nice VOA, $G=\langle g \rangle$ group of automorphisms, order N.

- $V(g^i)$ (unique) g^i -twisted module. Decomposition $V(g^i) = \bigoplus_{j \pmod N} W^{(i,j)}$ as $\mathbb{C}[G]$ -modules
- ullet $V^G=W^{(0,0)}$ fixed point sub-VOA
- $V^{\operatorname{orb}(g)} = \bigoplus_{i \pmod N} W^{(i,0)}$ orbifold VOA.

V a nice VOA, $G=\langle g \rangle$ group of automorphisms, order N.

- $V(g^i)$ (unique) g^i -twisted module. Decomposition $V(g^i) = \bigoplus_{j \pmod N} W^{(i,j)}$ as $\mathbb{C}[G]$ -modules
- ullet $V^G=W^{(0,0)}$ fixed point sub-VOA
- $V^{\operatorname{orb}(g)} = \bigoplus_{i \pmod N} W^{(i,0)}$ orbifold VOA.

Theorem (Zhu, Dong-Li-Mason, Dong-Lin-Ng)

Let V be a nice VOA of central charge c with $24 \mid c$. The characters $\operatorname{ch}_{W^{(i,j)}}(\tau) = \operatorname{tr}_{W^{(i,j)}} q^{L(0)-c/24}$ form a vector-valued modular form of weight 0 for $\operatorname{SL}_2(\mathbb{Z})$.

V a nice VOA, $G=\langle g \rangle$ group of automorphisms, order N.

- $V(g^i)$ (unique) g^i -twisted module. Decomposition $V(g^i) = \bigoplus_{j \pmod N} W^{(i,j)}$ as $\mathbb{C}[G]$ -modules
- ullet $V^G=W^{(0,0)}$ fixed point sub-VOA
- $V^{\operatorname{orb}(g)} = \bigoplus_{i \pmod N} W^{(i,0)}$ orbifold VOA.

Theorem (Zhu, Dong-Li-Mason, Dong-Lin-Ng)

Let V be a nice VOA of central charge c with $24 \mid c$. The characters $\operatorname{ch}_{W^{(i,j)}}(\tau) = \operatorname{tr}_{W^{(i,j)}} q^{L(0)-c/24}$ form a vector-valued modular form of weight 0 for $\operatorname{SL}_2(\mathbb{Z})$. In particular $\operatorname{ch}_{V^G}(\tau)$ is a modular function (holomorphic in \mathfrak{H}) for $\Gamma_0(N)$.

Table of Contents

- Introduction
- Preliminaries
 - Vertex operator algebras
 - Harmonic Maaß forms
 - Weierstrass mock modular forms
- Main results

A harmonic Maaß form of weight $k \in \mathbb{Z}$ for the group $\Gamma_0(N)$ is a smooth function $f: \mathfrak{H} \to \mathbb{C}$ satisfying the following three conditions:

 $oldsymbol{0}$ f is invariant under the weight k slash operator,

$$f|_k\left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix}\right) := (c\tau + d)^{-k} f\left(\frac{a\tau + b}{c\tau + d}\right) = f(\tau), \quad \tau \in \mathfrak{H} \text{ and } \left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix}\right) \in \Gamma_0(N)$$

A harmonic Maaß form of weight $k\in\mathbb{Z}$ for the group $\Gamma_0(N)$ is a smooth function $f:\mathfrak{H}\to\mathbb{C}$ satisfying the following three conditions:

 $oldsymbol{0}$ f is invariant under the weight k slash operator,

$$f|_k\left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix}\right) := (c\tau + d)^{-k} f\left(\frac{a\tau + b}{c\tau + d}\right) = f(\tau), \quad \tau \in \mathfrak{H} \text{ and } \left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix}\right) \in \Gamma_0(N)$$

② f is annihilated by the weight k hyperbolic Laplacian (au=x+iy),

$$\Delta_k f := \left[-y^2 \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right) + iky \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right) \right] f \equiv 0.$$

A harmonic Maaß form of weight $k\in\mathbb{Z}$ for the group $\Gamma_0(N)$ is a smooth function $f:\mathfrak{H}\to\mathbb{C}$ satisfying the following three conditions:

 $oldsymbol{0}$ f is invariant under the weight k slash operator,

$$f|_k\left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix}\right) := (c\tau + d)^{-k} f\left(\frac{a\tau + b}{c\tau + d}\right) = f(\tau), \quad \tau \in \mathfrak{H} \text{ and } \left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix}\right) \in \Gamma_0(N)$$

② f is annihilated by the weight k hyperbolic Laplacian $(\tau = x + iy)$,

$$\Delta_k f := \left[-y^2 \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right) + iky \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right) \right] f \equiv 0.$$

A harmonic Maaß form of weight $k\in\mathbb{Z}$ for the group $\Gamma_0(N)$ is a smooth function $f:\mathfrak{H}\to\mathbb{C}$ satisfying the following three conditions:

 $oldsymbol{0}$ f is invariant under the weight k slash operator,

$$f|_k\left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix}\right) := (c\tau + d)^{-k} f\left(\frac{a\tau + b}{c\tau + d}\right) = f(\tau), \quad \tau \in \mathfrak{H} \text{ and } \left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix}\right) \in \Gamma_0(N)$$

② f is annihilated by the weight k hyperbolic Laplacian (au=x+iy),

$$\Delta_k f := \left[-y^2 \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right) + iky \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right) \right] f \equiv 0.$$

 $oldsymbol{0}$ f has at most linear exponential growth at the cusps

Fact: $f = f^+ + f^-$ splits into a holomorphic part (called a mock modular form) and a non-holomorphic part

The Bruinier-Funke pairing I

Proposition (Bruinier-Funke)

The operator $\xi_k=2iy^krac{\overline{\partial}}{\overline{\partial}\overline{ au}}$ defines a surjective $\mathbb C$ -antilinear map

$$H_k(N) \twoheadrightarrow S_{2-k}(N)$$

with kernel $M_k!(N)$.

The Bruinier-Funke pairing I

Proposition (Bruinier-Funke)

The operator $\xi_k=2iy^k rac{\partial}{\partial \overline{ au}}$ defines a surjective $\mathbb C$ -antilinear map

$$H_k(N) \twoheadrightarrow S_{2-k}(N)$$

with kernel $M_k^!(N)$.

Bruinier-Funke pairing

$$\{\cdot,\cdot\}: M_k(N) \times H_{2-k}(N) \to \mathbb{C}, \ \{g,f\} := \langle g,\xi_{2-k}f \rangle,$$

The Bruinier-Funke pairing II

Theorem (Bruinier-Funke)

Let $g \in M_k(N)$ and $f \in H_{2-k}(N)$ with Fourier expansions

$$(g|\gamma)(\tau) = \sum_{n=0}^{\infty} a_{\mathfrak{a}}(n)q^{n/h} \quad \text{and} \quad (f|\gamma)^{+}(\tau) = \sum_{m \gg -\infty} b_{\mathfrak{a}}(n)q^{n/h}$$

at each cusp \mathfrak{a} .

The Bruinier-Funke pairing II

Theorem (Bruinier-Funke)

Let $g \in M_k(N)$ and $f \in H_{2-k}(N)$ with Fourier expansions

$$(g|\gamma)(\tau) = \sum_{n=0}^{\infty} a_{\mathfrak{a}}(n)q^{n/h} \quad \text{and} \quad (f|\gamma)^{+}(\tau) = \sum_{m \gg -\infty} b_{\mathfrak{a}}(n)q^{n/h}$$

at each cusp a. Then we have

$$\{g,f\} = \sum_{\mathfrak{a}} \sum_{n < 0} a_{\mathfrak{a}}(-n)b_{\mathfrak{a}}(n).$$

Table of Contents

- Introduction
- Preliminaries
 - Vertex operator algebras
 - Harmonic Maaß forms
 - Weierstrass mock modular forms
- Main results

$$E: y^2 = 4x^3 - g_2x - g_3 \qquad \text{elliptic curve}/\mathbb{Q}.$$

$$E: y^2 = 4x^3 - g_2x - g_3 \qquad \text{elliptic curve}/\mathbb{Q}.$$

Note: $E\cong_{\mathbb{C}} \mathbb{C}/\Lambda_E$

$$E: y^2 = 4x^3 - g_2x - g_3 \qquad \text{elliptic curve}/\mathbb{Q}.$$

Note: $E \cong_{\mathbb{C}} \mathbb{C}/\Lambda_E$

The Weierstrass &-function

$$\wp(\Lambda_E; z) = \frac{1}{z^2} + \sum_{\omega \in \Lambda_E \setminus \{0\}} \left(\frac{1}{(z - \omega)^2} - \frac{1}{\omega^2} \right)$$

$$E: y^2 = 4x^3 - g_2x - g_3 \qquad \text{elliptic curve}/\mathbb{Q}.$$

Note: $E \cong_{\mathbb{C}} \mathbb{C}/\Lambda_E$

The Weierstrass &-function

$$\wp(\Lambda_E; z) = \frac{1}{z^2} + \sum_{\omega \in \Lambda_E \setminus \{0\}} \left(\frac{1}{(z - \omega)^2} - \frac{1}{\omega^2} \right)$$

• satisfies $\wp(\Lambda_E; z + \omega) = \wp(\Lambda_E; z)$ for all $z \in \mathbb{C}$ and $\omega \in \Lambda_E$.

$$E: y^2 = 4x^3 - g_2x - g_3 \qquad \text{elliptic curve}/\mathbb{Q}.$$

Note: $E \cong_{\mathbb{C}} \mathbb{C}/\Lambda_E$

The Weierstrass &-function

$$\wp(\Lambda_E; z) = \frac{1}{z^2} + \sum_{\omega \in \Lambda_E \setminus \{0\}} \left(\frac{1}{(z - \omega)^2} - \frac{1}{\omega^2} \right)$$

- satisfies $\wp(\Lambda_E; z + \omega) = \wp(\Lambda_E; z)$ for all $z \in \mathbb{C}$ and $\omega \in \Lambda_E$.
- differential equation

$$(\wp')^2 = 4\wp^3 - g_2 - g_3.$$

$$E: y^2 = 4x^3 - g_2x - g_3 \qquad \text{elliptic curve}/\mathbb{Q}.$$

Note: $E \cong_{\mathbb{C}} \mathbb{C}/\Lambda_E$

The Weierstrass &-function

$$\wp(\Lambda_E; z) = \frac{1}{z^2} + \sum_{\omega \in \Lambda_E \setminus \{0\}} \left(\frac{1}{(z - \omega)^2} - \frac{1}{\omega^2} \right)$$

- satisfies $\wp(\Lambda_E; z + \omega) = \wp(\Lambda_E; z)$ for all $z \in \mathbb{C}$ and $\omega \in \Lambda_E$.
- differential equation

$$(\wp')^2 = 4\wp^3 - g_2 - g_3.$$

Laurent expansion

$$\wp(\Lambda_E; z) = \frac{1}{z^2} + \sum_{n=2}^{\infty} (2n - 1)G_{2n}(\Lambda_E)z^{2n-2},$$

$$\zeta(\Lambda_E; z) = \sum_{\omega \in \Lambda_E} \left(\frac{1}{z - \omega} + \frac{1}{\omega} + \frac{z}{\omega^2} \right) = \frac{1}{z} - \sum_{n=2}^{\infty} G_{2n}(\Lambda_E) z^{2n-1}.$$

$$\zeta(\Lambda_E; z) = \sum_{\omega \in \Lambda_E} \left(\frac{1}{z - \omega} + \frac{1}{\omega} + \frac{z}{\omega^2} \right) = \frac{1}{z} - \sum_{n=2}^{\infty} G_{2n}(\Lambda_E) z^{2n-1}.$$

is NOT an elliptic function

$$\zeta(\Lambda_E; z) = \sum_{\omega \in \Lambda_E} \left(\frac{1}{z - \omega} + \frac{1}{\omega} + \frac{z}{\omega^2} \right) = \frac{1}{z} - \sum_{n=2}^{\infty} G_{2n}(\Lambda_E) z^{2n-1}.$$

is **NOT** an elliptic function

Completion of ζ :

$$\widehat{\zeta}(\Lambda_E; z) = \zeta(\Lambda_E; z) - G_2^*(\Lambda_E)z - \frac{\pi}{\operatorname{vol}(\mathbb{C}/\Lambda_E)}\overline{z}$$

$$\zeta(\Lambda_E; z) = \sum_{\omega \in \Lambda_E} \left(\frac{1}{z - \omega} + \frac{1}{\omega} + \frac{z}{\omega^2} \right) = \frac{1}{z} - \sum_{n=2}^{\infty} G_{2n}(\Lambda_E) z^{2n-1}.$$

is **NOT** an elliptic function

Completion of ζ :

$$\widehat{\zeta}(\Lambda_E; z) = \zeta(\Lambda_E; z) - G_2^*(\Lambda_E)z - \frac{\pi}{\operatorname{vol}(\mathbb{C}/\Lambda_E)}\overline{z}$$

Transforms like an elliptic function but is no longer holomorphic.

Let $f_E \in S_2(N)$ the newform associated to E, \mathcal{E}_E its Eichler integral.

Let $f_E \in S_2(N)$ the newform associated to E, \mathcal{E}_E its Eichler integral.

Theorem (Alfes-Griffin-Ono-Rolen)

The function

$$\mathfrak{Z}_E(\tau) = \zeta(\Lambda_E; \mathcal{E}_E(\tau)) - G_2^*(\Lambda_E)\mathcal{E}_E(\tau),$$

called the Weierstrass mock modular form is a polar mock modular form of weight 0 for the group $\Gamma_0(N)$.

Let $f_E \in S_2(N)$ the newform associated to E, \mathcal{E}_E its Eichler integral.

Theorem (Alfes-Griffin-Ono-Rolen)

The function

$$\mathfrak{Z}_E(\tau) = \zeta(\Lambda_E; \mathcal{E}_E(\tau)) - G_2^*(\Lambda_E)\mathcal{E}_E(\tau),$$

called the Weierstrass mock modular form is a polar mock modular form of weight 0 for the group $\Gamma_0(N)$. To be more precise, there exists a meromorphic modular function M_E for $\Gamma_0(N)$ such that the function

$$\widehat{\mathfrak{Z}}_E(\tau) = \widehat{\zeta}(\Lambda_E; \mathcal{E}_E(\tau)) - M_E(\tau)$$

is a harmonic Maaß form of weight 0 for $\Gamma_0(N)$.

Let $f_E \in S_2(N)$ the newform associated to E, \mathcal{E}_E its Eichler integral.

Theorem (Alfes-Griffin-Ono-Rolen)

The function

$$\mathfrak{Z}_E(\tau) = \zeta(\Lambda_E; \mathcal{E}_E(\tau)) - G_2^*(\Lambda_E)\mathcal{E}_E(\tau),$$

called the Weierstrass mock modular form is a polar mock modular form of weight 0 for the group $\Gamma_0(N)$. To be more precise, there exists a meromorphic modular function M_E for $\Gamma_0(N)$ such that the function

$$\widehat{\mathfrak{Z}}_E(\tau) = \widehat{\zeta}(\Lambda_E; \mathcal{E}_E(\tau)) - M_E(\tau)$$

is a harmonic Maaß form of weight 0 for $\Gamma_0(N)$.

Note: If $E = X_0(N)$ is a strong Weil curve, we can choose $M_E(\tau) = 0$.

Table of Contents

- Introduction
- 2 Preliminaries
 - Vertex operator algebras
 - Harmonic Maaß forms
 - Weierstrass mock modular forms
- Main results

Theorem 1 (Beneish-M., 2020)

Let E denote the strong Weil curve of conductor

$$N \in \{11, 14, 15, 17, 19, 21\}.$$

Theorem 1 (Beneish-M., 2020)

Let E denote the strong Weil curve of conductor

$$N \in \{11, 14, 15, 17, 19, 21\}.$$

Then any harmonic Maaß form of weight 0 for $\Gamma_0(N)$ is is a linear combination of images of the completed Weierstrass mock modular form $\widehat{\mathfrak{Z}}_E$ under the Hecke operators T_m and Atkin-Lehner involutions,

Theorem 1 (Beneish-M., 2020)

Let E denote the strong Weil curve of conductor

$$N \in \{11, 14, 15, 17, 19, 21\}.$$

Then any harmonic Maaß form of weight 0 for $\Gamma_0(N)$ is is a linear combination of images of the completed Weierstrass mock modular form $\widehat{\mathfrak{Z}}_E$ under the Hecke operators T_m and Atkin-Lehner involutions,

$$H_0(N) \le \operatorname{span}_{\mathbb{C}} \left\{ \widehat{\mathfrak{Z}}_E |W_Q| T_m | B_d : m \in \mathbb{N}_0, \ Q \mid N, \ d \mid N \right\}.$$

Theorem 1 (Beneish-M., 2020)

Let E denote the strong Weil curve of conductor

$$N \in \{11,14,15,17,19,21\}.$$

Then any harmonic Maaß form of weight 0 for $\Gamma_0(N)$ is is a linear combination of images of the completed Weierstrass mock modular form $\widehat{\mathfrak{Z}}_E$ under the Hecke operators T_m and Atkin-Lehner involutions,

$$H_0(N) \le \operatorname{span}_{\mathbb{C}} \left\{ \widehat{\mathfrak{Z}}_E |W_Q| T_m | B_d : m \in \mathbb{N}_0, \ Q \mid N, \ d \mid N \right\}.$$

Idea of the proof: $\widehat{\mathfrak{Z}}_E$ in the cases considered has a simple pole at ∞ and nowhere else. Move the pole to another cusp using W_Q , and increase the pole order using T_m (action on Poincaré series).

Another dimension formula

Theorem 2 (Beneish-M., 2020)

Let V be a nice VOA of central charge 24, $G=\langle g\rangle$ be a cyclic group of automorphisms of V of order $p\in\{11,17,19\}$. Further let $E=X_0(p)$ be the $\Gamma_0(p)$ -optimal elliptic curve of conductor p.

Another dimension formula

Theorem 2 (Beneish-M., 2020)

Let V be a nice VOA of central charge 24, $G=\langle g\rangle$ be a cyclic group of automorphisms of V of order $p\in\{11,17,19\}$. Further let $E=X_0(p)$ be the $\Gamma_0(p)$ -optimal elliptic curve of conductor p. Then we have the following dimension formula,

$$\dim V_1 + \dim V_1^{\operatorname{orb}(g)} = (p+1)\dim V_1^G - (p-1)C_E + C_E \sum_{i=1}^{p-1} \sum_{j=1}^{p-1} \sigma(p-j)\dim V(g^i)_{j/p},$$

Another dimension formula

Theorem 2 (Beneish-M., 2020)

Let V be a nice VOA of central charge 24, $G=\langle g\rangle$ be a cyclic group of automorphisms of V of order $p\in\{11,17,19\}$. Further let $E=X_0(p)$ be the $\Gamma_0(p)$ -optimal elliptic curve of conductor p. Then we have the following dimension formula,

$$\dim V_1 + \dim V_1^{\operatorname{orb}(g)} = (p+1)\dim V_1^G - (p-1)C_E + C_E \sum_{i=1}^{p-1} \sum_{j=1}^{p-1} \sigma(p-j)\dim V(g^i)_{j/p},$$

where we set

$$C_E := -\frac{3 - \#E(\mathbb{F}_2)}{2} - \widehat{\zeta}(\Lambda_E; L(E, 1)).$$

•
$$\operatorname{ch}_{V^G}(\tau) = q^{-1} \sum_{n=0}^{\infty} \dim V_n^G q^n \in H_0(\Gamma_0(p))$$

- $\operatorname{ch}_{V^G}(\tau) = q^{-1} \sum_{n=0}^{\infty} \dim V_n^G q^n \in H_0(\Gamma_0(p))$
- ullet Use vector-valued description to obtain expansion at other cusp 0

- $\operatorname{ch}_{V^G}(\tau) = q^{-1} \sum_{n=0}^{\infty} \dim V_n^G q^n \in H_0(\Gamma_0(p))$
- ullet Use vector-valued description to obtain expansion at other cusp 0
- By Theorem 1, this can be expressed in terms of $\widehat{\mathfrak{Z}}_E$, Atkin-Lehner involutions, and Hecke operators

- $\operatorname{ch}_{V^G}(\tau) = q^{-1} \sum_{n=0}^{\infty} \dim V_n^G q^n \in H_0(\Gamma_0(p))$
- ullet Use vector-valued description to obtain expansion at other cusp 0
- By Theorem 1, this can be expressed in terms of $\widehat{\mathfrak{Z}}_E$, Atkin-Lehner involutions, and Hecke operators
- constant term of $\widehat{\mathfrak{Z}}_E$ is $-a_E(2)/2$, of $\widehat{\mathfrak{Z}}_E|W_p$ it is $\widehat{\zeta}(\Lambda_E;L(E,1))$.

- $\operatorname{ch}_{V^G}(\tau) = q^{-1} \sum_{n=0}^{\infty} \dim V_n^G q^n \in H_0(\Gamma_0(p))$
- ullet Use vector-valued description to obtain expansion at other cusp 0
- ullet By Theorem 1, this can be expressed in terms of $\widehat{\mathfrak{Z}}_{E}$, Atkin-Lehner involutions, and Hecke operators
- constant term of $\widehat{\mathfrak{Z}}_E$ is $-a_E(2)/2$, of $\widehat{\mathfrak{Z}}_E|W_p$ it is $\widehat{\zeta}(\Lambda_E;L(E,1))$.
- Compare constant terms

Yet another dimension formula

Theorem 3 (Beneish-M.; indep. Möller-Scheithauer, 2020)

Assume the hypotheses and notation from Theorem 2, except that p may now denote any prime number, and let $f(\tau) = \sum_{n=1}^{\infty} a(n) e^{2\pi i n \tau} \in S_2(p)$ be a newform with Atkin-Lehner eigenvalue $\varepsilon \in \{\pm 1\}$.

Yet another dimension formula

Theorem 3 (Beneish-M.; indep. Möller-Scheithauer, 2020)

Assume the hypotheses and notation from Theorem 2, except that p may now denote any prime number, and let $f(\tau)=\sum_{n=1}^\infty a(n)e^{2\pi in\tau}\in S_2(p)$ be a newform with Atkin-Lehner eigenvalue $\varepsilon\in\{\pm 1\}$. Then we have

$$\sum_{i=1}^{p-1} \sum_{j=1}^{p-1} a(p-j) \dim V(g^i)_{j/p} = -\varepsilon p - a(p).$$

Yet another dimension formula

Theorem 3 (Beneish-M.; indep. Möller-Scheithauer, 2020)

Assume the hypotheses and notation from Theorem 2, except that p may now denote any prime number, and let $f(\tau)=\sum_{n=1}^\infty a(n)e^{2\pi in\tau}\in S_2(p)$ be a newform with Atkin-Lehner eigenvalue $\varepsilon\in\{\pm 1\}$. Then we have

$$\sum_{i=1}^{p-1} \sum_{j=1}^{p-1} a(p-j) \dim V(g^i)_{j/p} = -\varepsilon p - a(p).$$

Idea of the proof: Since ch_{V^G} is a modular function, we must have $\{\mathrm{ch}_{V^G},f\}=0$. The theorem follows from the formula for the Bruinier-Funke pairing.

Another dimension formula

Theorem 2 (Beneish-M., 2020)

Let V be a nice VOA of central charge 24, $G=\langle g\rangle$ be a cyclic group of automorphisms of V of order $p\in\{11,17,19\}$. Further let $E=X_0(p)$ be the $\Gamma_0(p)$ -optimal elliptic curve of conductor p. Then we have the following dimension formula,

$$\dim V_1 + \dim V_1^{\operatorname{orb}(g)} = (p+1) \dim V_1^G - (p-1)C_E + C_E \sum_{i=1}^{p-1} \sum_{j=1}^{p-1} \sigma(p-j) \dim V(g^i)_{j/p},$$

where we set

$$C_E := -\frac{3-\#E(\mathbb{F}_2)}{2} - \widehat{\zeta}\left(\Lambda_E; L(E,1)\right).$$

An algebraicity result

A theorem of Schneider implies that $\zeta(\Lambda_E; L(E,1))$ is transcendental. What about $\widehat{\zeta}(\Lambda_E; L(E,1))$?

An algebraicity result

A theorem of Schneider implies that $\zeta(\Lambda_E;L(E,1))$ is transcendental. What about $\widehat{\zeta}(\Lambda_E;L(E,1))$?

Corollary (Beneish-M., 2020)

Assume the notations as in Theorem 2. If we have

$$\sum_{i=1}^{p-1} \sum_{j=1}^{p-1} \sigma(p-j) \dim V(g^i)_{j/p} \neq p-1$$

for some VOA V as in Theorem 2, then the value $\widehat{\zeta}\left(\Lambda_E;L(E,1)\right)$ is rational.

Some remarks

• Möller and Scheithauer showed that one always has the inequality

$$\sum_{i=1}^{p-1} \sum_{j=1}^{p-1} \sigma(p-j) \dim V(g^i)_{j/p} \le p-1$$

if $X_0(p)$ has genus > 0.

Some remarks

Möller and Scheithauer showed that one always has the inequality

$$\sum_{i=1}^{p-1} \sum_{j=1}^{p-1} \sigma(p-j) \dim V(g^i)_{j/p} \le p-1$$

if $X_0(p)$ has genus > 0.

ullet Using work of Chenevier and Lannes, Möller and Scheithauer could construct examples of VOAs V such that the inequality is strict.

Some remarks

Möller and Scheithauer showed that one always has the inequality

$$\sum_{i=1}^{p-1} \sum_{j=1}^{p-1} \sigma(p-j) \dim V(g^i)_{j/p} \le p-1$$

if $X_0(p)$ has genus > 0.

- Using work of Chenevier and Lannes, Möller and Scheithauer could construct examples of VOAs V such that the inequality is strict.
- Numerically one finds $\widehat{\zeta}\left(\Lambda_E;L(E,1)\right)=17/5,\ 2,\ 4/3$ for $p=11,\ 17,\ 19$, respecitvely, yielding $C_E=-\frac{24}{p-1}$ ins Theorem 2.

Thank you for your attention.