

College of Engineering School of Aeronautics and Astronautics

AAE 564 System Analysis and Synthesis

Homework 1 State Space Representation of Dynamic Systems

Author: Supervisor:
Tomoki Koike Martin Corless

September 4th, 2020 Friday
Purdue University
West Lafayette, Indiana

Exercise 1 Consider a system described by a single n^{th} -order linear differential equation of the form

$$q^{(n)} + a_{n-1}q^{(n-1)} + \dots a_1\dot{q} + a_0q = u$$

where $q(t) \in \mathbb{R}$ and $q^{(n)} := \frac{d^n q}{dt^n}$. By appropriate definition of state variables, obtain a first order state space description of this system.

Exercise 2 By appropriate definition of state variables, obtain a first order state space description of the following systems where q_1 and q_2 are real scalars.

(i)

$$\begin{array}{rcl} 2\ddot{q}_1 + \ddot{q}_2 + \sin q_1 & = & 0 \\ \ddot{q}_1 + 2\ddot{q}_2 + \sin q_2 & = & 0 \end{array}$$

(ii)

$$\ddot{q}_1 + \dot{q}_2 + q_1^3 = 0$$

 $\dot{q}_1 + \dot{q}_2 + q_2^3 = 0$

(i) Say	$q_1 = \chi_1$, $\dot{q}_1 = \chi_2$, $\ddot{q}_1 = \chi_3$
-then	$\chi_2 = \dot{\chi}_1$, $\chi_3 = \dot{\chi}_2$
Say	$q_2 = q_1$, $\dot{q}_2 = q_2$, $\ddot{q}_2 = q_3$
-then	1/2 = y1 , y3 = y2
and	$\int 2\chi_3 + \psi_3 + \sin \chi_1 = 0$
	$\begin{cases} 2\chi_3 + \gamma_3 + \sin \chi_1 = 0 \\ \chi_3 + 2\gamma_3 + \sin \gamma_1 = 0 \end{cases}$
	$3\chi_3 + 2\sin\chi_1 - \sin\gamma_1 = 0$
	$\therefore \mathcal{N}_3 = -\frac{2}{3} \sin \chi_1 + \frac{1}{3} \sin \chi_1$
also	24 + 2-14
	$\frac{3}{3} + 2\sin y_1 - \sin x_1 = 0$ $\frac{1}{3} = \frac{1}{3} \sin x_1 - \frac{2}{3} \sin y_1$
-thus,	
	$\begin{bmatrix} \dot{\chi}_2 \\ \dot{\chi}_1 \end{bmatrix} \begin{bmatrix} 0 & -\frac{2\sin\chi_1}{\chi_1} \\ 0 \end{bmatrix} \begin{bmatrix} \chi_2 \\ \chi_1 \end{bmatrix} \begin{bmatrix} \chi_2 \\ \chi_2 \end{bmatrix}$
	$ \frac{x_1}{y_2} = 0 \qquad \frac{\sin x_1}{x_2} \qquad 0 \qquad -\frac{2\sin y_1}{y_2} \qquad y_2 $
-thus,	$\begin{bmatrix} \dot{\chi}_{2} \\ \dot{x}_{1} \end{bmatrix} \begin{bmatrix} 0 & -\frac{2\sin\chi_{1}}{\chi_{1}} & 0 & \frac{\sin\eta_{1}}{\eta_{1}} \\ 0 & 0 & 0 & \chi_{1} \\ \dot{\eta}_{2} \end{bmatrix} \begin{bmatrix} \chi_{2} \\ \chi_{1} \\ 0 & \frac{\sin\chi_{1}}{\chi_{1}} \\ 0 & \frac{2\sin\eta_{1}}{\eta_{1}} \end{bmatrix} \begin{bmatrix} \chi_{2} \\ \eta_{2} \end{bmatrix}$

(ii) Say $q_1 = \chi_1$, $\dot{q}_1 = \chi_2$, $\ddot{q}_1 = \chi_3$	
then $\chi_2 = \dot{\chi}_1$, $\chi_3 = \dot{\chi}_2$	
λ ₂	
Say $q_2 = y_1$, $\dot{q}_2 = y_2$, $\ddot{q}_2 = y_3$	
then $y_2 = \dot{y}_1$, $y_3 = \dot{y}_2$	
V 01) V V2	
and from $\hat{q}_1 + \hat{q}_2 + \hat{q}_1^3 = 0$	
take the derivative of this	
$\ddot{q}_{1} + \ddot{q}_{2} + 3\dot{q}_{2}\dot{q}_{2} = 0$	
then,	
$\begin{cases} \ddot{q}_{1} + \dot{q}_{2} + \dot{q}_{1}^{3} = 0 \\ \ddot{q}_{1} + \ddot{q}_{2} + 3\ddot{q}_{2}\dot{q}_{2}^{2} = 0 \end{cases}$	
$\vec{q}_1 + \vec{q}_2 + 3\vec{q}_3, \vec{q}_2^2 = 0$	
1 1 1 1 1 1 1 1 1 1	
$\int x_3 + y_2 + x_1^3 = 0$	
$\begin{cases} \mathcal{X}_3 + \mathcal{Y}_2 + \mathcal{X}_1^3 = 0 \\ \mathcal{X}_3 + \mathcal{Y}_3 + 3\mathcal{Y}_2\mathcal{Y}_1^2 = 0 \end{cases}$	
₩	
$\mathcal{N}_3 = -\chi_1^3 - \gamma_2$	
$y_3 = \chi_1^3 + y_2(3y_1^2 + 1)$	
thus,	
$\begin{bmatrix} \dot{\chi}_{2} \end{bmatrix} \begin{bmatrix} 0 & -\chi_{1}^{2} & -I \end{bmatrix}$	0 [χ ₂]
×, / 0 0	0 1
$\hat{y} = 0 x_i^2 3y_i^2 + 1$	0 17-
jų o o ,	D 4.
	, J [, ,]

Exercise 3 Obtain a state-space description of the following system.

$$\ddot{q}_1 + \dot{q}_2 + \sin q_1 = u$$

 $\dot{q}_2 + q_1 + q_2 = 0$
 $y = q_1 + q_2$

Exercise 4 Consider the discrete-time system described by

$$q(k+3) + 7q(k+2) + q(k+1) + 6q(k) + 7u(k) = 0$$

Obtain a state space description of this system.

say	$\chi_o(k) = q(k)$, $\chi_i(k) = q(k+1)$
'	$\chi_{2}(k) = q(k+2), \chi_{3}(k) = q(k+3)$
then	Xo(k+1) = X1(k)
	21(k+1)= 22(k)
	x2(k+1) = x3(k) = -79(k+2)-9(k+1)-68(k)-7u(k)
	= - 7 x2(k) - 21(k) - 6x6(k) - 72(k)
thus,	
	x2(k+1) -7 -1 -6 x2(k) -7]
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	$\mathcal{P}_{0}(\xi + 1)$ $\mathcal{P}_{0}(\xi)$ $\mathcal{P}_{0}(\xi)$

Exercise 5 Obtain a state space representation of the following system:

$$q(k+n) + a_{n-1}q(k+n-1) + \ldots + a_1q(k+1) + a_0q(k) = 0$$

where $q(k) \in \mathbb{R}$.

tay,	q.((×) =	χ_{o}	(۴)	, q	(kti)	= X	(K)		٠,	9,(k+n-	.1)=	x_{h-1}	(K),	
<u> </u>				г(r	+n) :	= X	(F)									
Then	Y	(k+1	I) =	χ_{i}	k)											
Her				X+(
	,~		:	((()											
	χ,	1-2(K	(۱۲،	= A	Cn-1	(k)										
	χ	۱) ۱۰	C+1)	= 1	Xn (K)										
Using	the	giv	eh d	guic	tian											
	0 (1)	h \ -	n		(L	4 .1	\		A /	9 (L	· /\ -		0 (I.	`		
	9.(K+												•		n 0/	14
•	\mathcal{X}_{h}	1 LF-	トリァ	An((F)		141-1	Mn-	1 (4)			- 11/	<i>c</i> ick) - L	LO K	حا) ہ
Thus,																
	. (k+ı)	1										_	7.5			
χ	n-1 (k41)	-			h -	-0,	1-2				- a ₁	-a.	1	Xn-1 ((k)	
χ,	- -([+1)						1-2	• •			- A ₁	-a.		Х _{и-і} (Х _{и-} ((k)	
χ,				-a	h -1	-a,	n-2.	• •			- A ₁	-a.		Xn-1 ((k)	
χ,	- -([+1)				h -1	-0,	n-2.	• •			- A ₁	-a.		Х _{и-і} (Х _{и-} ((k)	
χ, χ,	- -([+1)		=	-a	h -1	-a,	n-2.	• •			- A ₁	-a. D O		Х _{и-і} (Х _{и-} ((¢) (¢)	
χ, χ,	1-2(k41) 1-3(k41) -		=	-a	n-i	- a ₁	n-2.	• •			- A ₁	-a. 0		Xn-ı (Vn-+(Xn-3((k) (k) (k)	
χ, χ, χ,	1-2(k41) 1-3(k41)		=	-a	n-i	- A ₁	n-2.	• •			- A ₁	-a. 0		Xn-1 (Nn-+(Xn-3(: : X3 ((k) (k) (k)	
χ, χ, χ, χ,	1-2(k+1) 1-3(k+1)			-a	n-i	- a ₁	n-2.	• •			- A ₁	-a. 0		Xn-1 (Xn-1 (Xn-3 (:: X3 (X5-()	(k) (k) (k) (k)	
χ, χ, χ, χ,	1-2(k+1) 1-3(k+1)			-a	h-I	- a,	n-2.	• •			0	-a. D O		Xn-1 (Xn-+(Xn-s(: : : : : : : : : : : : : : : : : : :	(k) (k) (k) (k) (k)	

Exercise 6 Obtain a state description of the following system:

$$q_1(k+2) + q_2(k+1) + q_1(k) = u(k)$$

 $q_1(k+2) - q_2(k+1) + q_2(k) = 0$
 $y(k) = q_1(k+1) + q_2(k)$

$$\begin{array}{lll} \text{Say} & A_{o}(k) = q_{1}(k) \; , \; A_{1}(k) = q_{1}(k+1) \; , \; A_{2}(k) = q_{1}(k+2) \\ & b_{o}(k) = q_{2}(k) \; , \; b_{1}(k) = q_{2}(k+1) \; , \; b_{2}(k) = q_{2}(k+2) \end{array}$$

$$\begin{array}{lll} \text{Then} & a_{o}(k+1) = a_{1}(k) \; , \; a_{1}(k+1) = a_{2}(k) \\ & b_{o}(k+1) = b_{1}(k) \; , \; b_{1}(k+1) = b_{2}(k) \end{array}$$

$$\begin{array}{lll} \text{Then} & a_{o}(k+1) = a_{1}(k) \; , \; a_{1}(k+1) = a_{2}(k) \\ & b_{o}(k+1) = b_{1}(k) \; , \; b_{1}(k+1) = b_{2}(k) \end{array}$$

$$\begin{array}{lll} \text{Then} & a_{o}(k+1) = a_{1}(k) \; , \; a_{1}(k+1) = a_{2}(k) \\ & b_{o}(k+1) = b_{1}(k) \; , \; a_{1}(k+1) = b_{2}(k) \end{array}$$

$$\begin{array}{lll} \text{Then} & a_{o}(k+1) = a_{1}(k) = a_{2}(k) \\ & b_{1}(k+2) = b_{2}(k) = a_{2}(k) \\ & q_{1}(k+2) = a_{2}(k) + q_{2}(k) = a_{2}(k) \\ & q_{1}(k+2) = -q_{1}(k) + q_{2}(k) + q_{2}(k) \\ & q_{1}(k+2) = -q_{1}(k) + q_{2}(k) + q_{2}(k) \\ & q_{1}(k+2) = -q_{2}(k) + q_{2}(k) + q_{2}(k) \\ & q_{1}(k+2) = -q_{2}(k) + q_{2}(k) + q_{2}(k) \\ & q_{1}(k) = q_{1}(k) + q_{2}(k) + q_{2}(k) \\ & q_{1}(k+1) = -q_{2}(k) + q_{2}(k) + q_{2}(k) \\ & q_{1}(k+1) = -q_{2}(k) + q_{2}(k) + q_{2}(k) \\ & q_{1}(k+1) = -q_{2}(k) + q_{2}(k) + q_{2}(k) \\ & q_{1}(k+1) = -q_{2}(k) + q_{2}(k) + q_{2}(k) \\ & q_{1}(k+1) = -q_{2}(k) + q_{2}(k) + q_{2}(k) \\ & q_{1}(k+1) = -q_{2}(k) + q_{2}(k) + q_{2}(k) \\ & q_{1}(k+1) = -q_{2}(k) + q_{2}(k) + q_{2}(k) \\ & q_{1}(k+1) = -q_{2}(k) + q_{2}(k) + q_{2}(k) \\ & q_{1}(k+1) = -q_{2}(k) + q_{2}(k) + q_{2}(k) \\ & q_{1}(k+1) = -q_{2}(k) + q_{2}(k) + q_{2}(k) \\ & q_{1}(k+1) = -q_{2}(k) + q_{2}(k) \\ & q_{1}(k+1) = -q_{2}(k) + q_{2}(k) \\ & q_{2}(k) + q_{2}(k) + q_{2}(k) \\ & q_{1}(k) + q_{2}(k) + q_{2}(k) \\ & q_{2}(k) + q_{2}(k) + q_{2}(k) \\ & q_{1}(k) + q_{2}(k) + q_{2}(k) \\ & q_{2}(k) + q_{2}(k) + q_{2}(k) \\ & q_{1}(k) + q_{2}(k) + q_{2}(k) \\ & q_{2}(k) + q_{2}(k) + q_{2}(k) \\ & q_{1}(k) + q_{2}(k) + q_{2}(k) \\ & q_{2}(k) + q_{2}(k) + q_{2}(k) \\ & q_{1}(k) + q_{2}(k) + q_{2}(k) \\ & q_{2}(k) + q_{2}(k) + q_{2}(k) \\ & q_{1}(k) + q_{2}(k) + q_{2}(k) \\ & q_{2}(k) + q_{2}(k) + q_{2}(k) \\ & q_{1}(k) + q_{2}(k) + q_{2}(k) + q_{2}(k) \\ & q_{2}(k) + q_{2}(k) + q_{2}(k) \\ & q_{1}(k) +$$

$ \begin{bmatrix} a_{1}(k+1) \\ a_{0}(k+1) \end{bmatrix} = \begin{bmatrix} 0 & -\frac{1}{2} & 0 & -\frac{1}{2} \\ 1 & 0 & 0 & 0 \\ b_{1}(k+1) \end{bmatrix} = \begin{bmatrix} 0 & -\frac{1}{2} & 0 & -\frac{1}{2} \\ 0 & -\frac{1}{2} & 0 & \frac{1}{2} \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} a_{1}(k) \\ b_{0}(k) \\ b_{1}(k) \end{bmatrix} + \begin{bmatrix} \frac{1}{2} \\ 0 \\ \frac{1}{2} \end{bmatrix} $ $ b_{1}(k) \\ b_{0}(k) \\ b_{0}(k) \\ 0 $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
$b_1(k+1) = 0 - \frac{1}{2} 0 \frac{1}{2} b_1(k) + \frac{1}{2} U(k)$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				- <u>†</u>					
[bo(k+1)] [0 0 1 0] [bo(k)] [0]		b1(k+1)	=	0	- 1		1/2	b1(k)	.	U(þ)
		[bo(k+1)]	L	0	0	1	0	p°(k)	_ 0	

 ${\bf Exercise~7}$ Recall the two pendulum cart example in the notes. Consider the following parameter sets

	m_0	m_1	m_2	l_1	l_2	g
P1	2	1	1	1	1	1
P2	2	1	1	1	0.99	1
P3	2	1	0.5	1	1	1
P4	2	1	1	1	0.5	1

and initial conditions,

	y	θ_1	θ_2	\dot{y}	$\dot{\theta}_1$	$\dot{\theta}_2$
IC1	0	-10°	10°	0	0	0
IC2	0	10°	10°	0	0	0
IC3	0	-90°	90°	0	0	0
IC4	0	-90.01°	90°	0	0	0
IC5	0	100°	100°	0	0	0
IC6	0	100.01°	100°	0	0	0
IC7	0	179.99°	0°	0	0	0

Simulate the system with u=0 using the following combinations:

 $P1: IC1, IC2, IC3, IC7 \\ P4: IC1, IC2, IC3, IC4$

Derivation:

$$\begin{array}{lll} & \underset{\stackrel{\cdot}{\text{Ch}}}{\text{in}} & \underset{\overset{\cdot}{\text{Ch}}}{\text{in}} & \underset{\stackrel{\cdot}{\text{Ch}}}{\text{in}} & \underset{\stackrel{\cdot}{\text{Ch}}}{\text{in$$

The system equation for the double pendulum cart system is

We simulate this system of equations using MATLAB for given initial conditions and input parameters. The given initial conditions and input parameters are organized in the following table.

	m_0	m_1	m_2	l_1	l_2	${\it g}$	и
P1	2	1	1	1	1	1	0
<i>P2</i>	2	1	1	1	0.99	1	0
Р3	2	1	0.5	1	1	1	0
P4	2	1	1	1	0.5	1	0
		_	_				
	<u>y</u>	$ heta_1$	$ heta_2$		<u> </u>	$\dot{ heta_1}$	$\dot{ heta_2}$
IC1	0	-10°	10°		0	0	0
IC2	0	10°	10°		0	0	0
IC3	0	-90°	90°		0	0	0
IC4	0	-90.01°	90°		0	0	0
IC5	0	100°	100°		0	0	0
IC6	0	100.01°	100°		0	0	0
IC7	0	179.99°	0°		0	0	0

Simulations:

.

Appendix

MATLAB Code

AAE 564 HW 1

```
Author: Tomoki Koike
clear all; close all; clc;
fdir = 'C:\Users\Tomo\Desktop\studies\2020-
Fall\AAE564\matlab_simulink\outputs\hw1';
set(groot, 'defaulttextinterpreter', 'latex');
set(groot, 'defaultAxesTickLabelInterpreter', 'latex');
set(groot, 'defaultLegendInterpreter', 'latex');
Simulation
% Simulate this system for given initial conditions
% Initial conditions
IC1 = [0, -10, 10, 0, 0, 0];
IC2 = [0, 10, 10, 0, 0, 0];
IC3 = [0, -90, 90, 0, 0, 0];
IC4 = [0, -90.01, 90, 0, 0, 0];
IC5 = [0, 100, 100, 0, 0, 0];
IC6 = [0, 100.01, 100, 0, 0, 0];
IC7 = [0, 179.99, 0, 0, 0, 0];
% P1
m0 = 2;
m1 = 1;
m2 = 1;
11 = 1;
12 = 1;
g = 1;
u = 0;
t span = linspace(0, 60, 2^10); % time span
% opts = odeset('RelTol',1e-6, 'AbsTol',1e-7); % option for ode
% P1 and IC1, IC2, IC3, IC7
IC = [IC1; IC2; IC3; IC7];
counter = 1;
for i = [1, 2, 3, 7]
   u), t_span, IC(counter,:));
   plot_simulation(t, q, fdir, "P1&IC"+num2str(i));
   counter = counter + 1;
end
% P4
m0 = 2;
m1 = 1;
```

```
m2 = 1;
l1 = 1;
l2 = 1;
g = 0.5;
u = 0;

% P4 and IC1, IC2, IC3, IC4
IC = [IC1; IC2; IC3; IC4];
counter = 1;
for i = [1, 2, 3, 4]
        [t, q] = ode45(@(t, x) double_pendulum_system(t, x, m0, m1, m2, l1, l2, g, u), t_span, IC(counter,:));
    plot_simulation(t, q, fdir, "P4&IC"+num2str(i));
    counter = counter + 1;
end
```

Functions

```
function dxdt = double_pendulum_system(t, x, m0, m1, m2, l1, l2, g, u)
    dxdt = zeros(6, 1); % Preallocate the derivative vector
   % Set the variables
   y = x(1);
   theta1 = x(2);
   theta2 = x(3);
   y_dot = x(4);
   theta1_dot = x(5);
   theta2_dot = x(6);
   % Create matrices to simplify the calculations
   M = [ m0 + m1 + m2, -m1*11.*cosd(theta1), -m2*12.*cosd(theta2);
         -m1*l1.*cosd(theta1),
                                          m1*11.^2
                                                                m2*12.^2 ];
         -m2*12.*cosd(theta2),
                                                 0,
    G = [(m1*11.*sind(theta1).*theta1 dot.^2 +
m2*12.*sind(theta2).*theta2_dot.^2); m1*11*g.*sind(theta1);
m2*12*g.*sind(theta2)];
   W = [1; 0; 0];
   dxdt(1) = y_dot;
    dxdt(2) = theta1_dot;
    dxdt(3) = theta2_dot;
    dxdt(4:end) = M \setminus (W * u - G);
end
function plot_simulation(t, q, file_dir, file_name_str)
    P IC = split(file name str, "&");
   % Plot position of cart vs time
   fig1 = figure(1);
   plot(t, q(:, 1))
   title("Position of Cart Over Time "+P_IC(1)+"/"+P_IC(2)+ " - T. Koike")
   xlabel('t [s]')
```

```
ylabel('v [m]')
   grid on; grid minor; box on;
    saveas(fig1, fullfile(file_dir, "y_"+file_name_str+".png"));
   % Plot the angles of pendulums vs time
   fig2 = figure(2);
   plot(t, q(:, 2))
   hold on
   plot(t, q(:, 3))
   hold off
   title("Angles of Pendulums Over Time "+P_IC(1)+"/"+P_IC(2)+ " - T. Koike")
   xlabel('t [s]')
   ylabel('$\theta$ [deg]')
   legend('$\theta_1$', '$\theta_2$')
   grid on; grid minor; box on;
    saveas(fig2, fullfile(file_dir, "theta1&2_"+file_name_str+".png"));
   % Plot the velocity of cart vs time
   fig3 = figure(3);
   plot(t, q(:, 4))
   title("Velocity of Cart Over Time "+P_IC(1)+"/"+P_IC(2)+ " - T. Koike")
   xlabel('t [s]')
   ylabel('$\dot{y}$ [m/s]')
   grid on; grid minor; box on;
   saveas(fig3, fullfile(file_dir, "ydot_"+file_name_str+".png"));
   % Plot the angular velocities vs time
   fig4 = figure(4);
   plot(t, q(:, 5))
   hold on
   plot(t, q(:, 6))
   hold off
   title("Angular Velocities of Pendulums Over Time "+P IC(1)+"/"+P IC(2)+ " -
T. Koike")
   xlabel('t [s]')
   vlabel('$\dot{\theta}$ [deg/s]')
    legend('$\dot{\theta_1}$', '$\dot{\theta_2}$')
    grid on; grid minor; box on;
    saveas(fig4, fullfile(file dir, "thetadot1&2 "+file name str+".png"));
end
```