Homework 1

Problem 1.1

2.1 Order the following functions by growth rate: N, \sqrt{N} , $N^{1.5}$, N^2 , $N \log N$, $N \log \log N$, $N \log^2 N$, $N \log(N^2)$, 2/N, 2^N , $2^{N/2}$, 37, $N^2 \log N$, N^3 . Indicate which functions grow at the same rate.

Problem 1.2

- 2.7 For each of the following six program fragments:
 - Give an analysis of the running time (Big-Oh will do).
 - b. Implement the code in Java, and give the running time for several values of *N*.
 - c. Compare your analysis with the actual running times.

```
(1) sum = 0;
    for( i = 0; i < n; i++ )
        sum++;
(2) sum = 0;
    for( i = 0; i < n; i++ )
        for( j = 0; j < n; j++ )
        sum++;
(3) sum = 0;
    for( i = 0; i < n; i++ )
        for( j = 0; j < n * n; j++ )
        sum++;
(4) sum = 0;
    for( i = 0; i < n; i++ )
        for( j = 0; j < i; j++ )
        sum++;</pre>
```

```
(5) sum = 0;
    for( i = 0; i < n; i++ )
        for( j = 0; j < i * i; j++ )
            for( k = 0; k < j; k++ )
            sum++;

(6) sum = 0;
    for( i = 1; i < n; i++ )
        for( j = 1; j < i * i; j++ )
        if( j % i == 0 )
            for( k = 0; k < j; k++ )
            sum++;</pre>
```

Problem 1.3

- 2.11 An algorithm takes 0.5 ms for input size 100. How long will it take for input size 500 if the running time is the following (assume low-order terms are negligible):
 - a. linear
 - b. $O(N \log N)$
 - c. quadratic
 - d. cubic

Problem 1.4

2.15 Give an efficient algorithm to determine if there exists an integer i such that $A_i = i$ in an array of integers $A_1 < A_2 < A_3 < \cdots < A_N$. What is the running time of your algorithm?

Problem 1.5

- **2.25** Programs A and B are analyzed and found to have worst-case running times no greater than $150N \log_2 N$ and N^2 , respectively. Answer the following questions, if possible:
 - a. Which program has the better guarantee on the running time, for large values of N (N > 10,000)?
 - b. Which program has the better guarantee on the running time, for small values of N (N < 100)?
 - c. Which program will run faster on average for N = 1,000?
 - d. Is it possible that program B will run faster than program A on all possible inputs?