2017级计算机学院《数值分析》期末试卷 A 卷

班	[级_	学号		成组	绩
注意) 答题方式为闭卷。 ② ¬ ③ 请将所有答案答在答题纸_		答题。	
<u> </u>	填	空题(每空2分,共40分	۲)		
1.	高为	小刻度为mm的尺子测量行 120mm,则求得梯形面积的 面积计算结果具有【	绝对误差为【		
2.	用麦	麦克劳林展开式 sin x	$c = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^5}{5!}$	$\frac{x^7}{7!} \cdots + (-1)^{n-1} \frac{x^{2n-1}}{(2n-1)!}$	(截断误差
	R =	$(-1)^n \frac{x^{2n+1}}{(2n+1)!} \cos \xi$) 计算	sin(1.0)的近似值		· 差不超过 0.01,
3.	用牛 计算	工公式应该取前【】项 :顿下山法求方程 $f(x)=x^3$: 工出 $x_1=7$,此时下山条件不 此时计算的 $x_1=$ 【	2x -5=0 在区间 [满足,当下山因		
4.	用进	长代法解方程 $x^3 - 2x - 1 = 0$	在区间[1,2]上的	根,采用下面哪个公式	式进行迭代计算
		产适?【】(请填写 A 是不超过 0.005, 预计需要迭			
	A:	$x_{n+1} = \frac{x_n^3 - 1}{2}$ B: x_{n+1}	$=\frac{1}{x_n^2-2}$	$x_{n+1} = \sqrt[3]{2x_n + 1}$	
5.	为损	· · · · · · · · · · · · · · · · · · ·	x 充分大时,应	将 $\ln(x-\sqrt{x^2-1})$ 改写	为【】。
6.	用列]主元素法求解下面的线性	方程组 $egin{cases} 3x_1 - x \ - x_1 + \ - 4x_1 - \end{cases}$	$x_2 + 4x_3 = 1$ $2x_2 - 9x_3 = 0$, 那 $x_2 + x_3 = -1$	么第 1 次消元,
	选择	的主元素为【]		
		数矩阵为【】矩 X=(1,-5,2),则向量 X 的			Ç.
9.	矩阵	$EA = \begin{bmatrix} 0.6 & 0.5 \\ 0.1 & 0.3 \end{bmatrix}$,则矩阵 A	的范数 <i>A</i> _∞ =	【] ,范数 <i>A</i> _,	

- 11. n 个求积节点的插值型求积公式的代数精确度至少为【_____】次,n 个求积节点的高斯求积公式的代数精度为【 】。
- 12. 在[0, 2]上的分段线性插值多项式 $P_1(x)$ 为

$$P_1(x) = \begin{cases} 2x + 3, & x \in [0,1] \\ ax + 4, & x \in [1,2] \end{cases}$$

则 *a*=【 ______】。

- 13. 用龙贝格积分计算 $\int_0^1 f(x)dx$,计算得 $T_1=4$, $S_1=5$,则 $f(\frac{1}{2})=$ 【_____】
- 14. 用 n=2 的高斯求积公式计算 $I = \int_{1}^{3} \frac{1}{x} dx = \mathbb{I}_{1}$. (计算中保留 2 位小数)

n	节点	积分系数
2	±0.577350	1
3	0	0.888889
	±0.774597	0.555556

二、计算题(共60分)

- 1、用**单点弦截法**求方程 $x^3+2x-8=0$ 在区间[1,2]上的根,计算结果准确到 3 位有效数字。
- 2、用平方根法解线性方程组,要求保留到小数点后3位。

$$\begin{cases} 4x_1 - x_2 + x_3 = 6 \\ -x_1 + 4.25x_2 + 2.75x_3 = -0.5 \\ x_1 + 2.75x_2 + 3.50x_3 = 1.25 \end{cases}$$

3、把下列方程组化成等价的方程组,使之能应用高斯—赛德尔迭代法进行求解,再进行计算。取初值 $x_0^{(0)}=0$, $x_1^{(0)}=0$, $x_2^{(0)}=0$,要求**计算过程和计算结果保留 3 位小数**。

$$\begin{cases}
-2x_1 + 10x_2 - x_3 = 15 \\
10x_1 - 2x_2 - x_3 = 3 \\
-x_1 - 2x_2 + 5x_3 = 10
\end{cases}$$

4、根据下表数据,利用插值多项式反插值法求方程 x- e^{-x} =0 的解,计算过程保留到下数点后 4 位。

X	0.3	0.4	0.5	0.6
e^{-x}	0.7408	0.6703	0.6065	0.5488

5、下表为高速公路监测区监测的一辆汽车的行驶信息

时刻 t(秒)	0	3	5
路程 s(英尺)	0	225	383
速度 v(英尺/秒)	75	77	80

根据上述表格,预算出汽车在时刻 t=8 的路程及速度,计算过程保留小数点后 3 位。

6、对于函数 $f(x)=\frac{sinx}{x}$,给出 n=8 时的函数表如下,请用复合梯形公式及复合辛普森公式计算积分 $I=\int_0^1 \frac{sinx}{x} dx$ 。

x	0	1/8	1/4	3/8	1/2	5/8	3/4	7/8	1
f(x)	1	0.9973978	0.9896158	0.9767267	0.9588510	0.9391556	0.9088516	0.8771925	0.8414709

课程编号: H0072101 北京理工大学 2018-2019 学年第一学期

2017级计算机学院《数值分析》期末试卷 A 卷

班级	学号	姓名	成绩	
一、填空题				
1.				
2.				
3.				
4.				
5.				
6.				
7.				
8.				
9.				
10.				
11.				
12.				
13.				
14.				
15.				
计算题:				