Cumulative Design Review

Stride March 7, 2018

Group Members

Advisor Prof. Tessier

Richie Hartnett CSE

Joe Menzie CSE

Jarred Penney EE

Jack Higgins EE

Department of Electrical and Computer Engineering

Advisor : Professor Tessier

What is the Problem?

- Parkinson's Disease (PD) makes walking challenging
- Physical therapy and other treatments are expensive
- Limited inexpensive methods of monitoring exercises outside of clinical environment

What is Stride?

- Low cost array of wearable sensors that collects body movement information, designed for those with Parkinson's Disease
- Provide real-time feedback and track long term performance progress
- Used in home as well as in clinical environment

Neuro Training

- Vibrations on knee to indicate stride length error
 - Patient-specific stride length threshold
 - Two levels of vibrations depending on severity of error (both benign)

- Auditory Cueing
 - Rhythms played via app to stimulate proper cadence
 - Recommended by a Neurological PT

System Requirements

- Accurately collect movement data to appropriately monitor an individual's:
 - Stride length
 - Cadence
 - Heel-to-toe motion
 - Freezing
- Provide real-time feedback to correct stride length during exercise (less than 100ms)
- Store and display data Android application to track long term patient progress
- Lightweight product that is easy for patient to put on
 - Sensor systems < 1 pound each
 - Waist clip (Raspberry Pi + power supply) < 1 pound
- Sensor systems and Raspberry Pi will have battery life of greater than 2 hours

CDR Block Diagram

Hardware Components

PCB	Shoe (x2)	Knee Sleeve (x2)
Processor	Atmega328p	Atmega328p
Bluetooth	HC-05	HC-05
Battery	Lithium Polymer	Lithium Polymer
Feedback Circuit	No	Yes
IMU	BNO055	BNO055

Lithium Polymer Battery

- 5 Identical Batteries
- Rechargable
 - RPi PowerPack V1.1
- 4.3-3.7 V
- 3800 mAh
- Meets all power specs
 - > 6 hrs Raspberry Pi
 - > 12 hrs knee sensor
 - > 20 hrs shoe sensor

Feedback Circuit

Motor Noise Elimination

- Pulldown Resistors
 - R1,R2
- Flyback Diode
- Filtering Capacitor

BNO-055 Sensor

- Fuses 3 axis gyroscope, accelerometer, and magnetometer data using an embedded processor
- Data Outputs: Absolute orientation, linear acceleration (100 Hz maximum)
- Advantages over LSM9DOF: Frees space on ATmega for calculations, outputs more reliable and useful data

Data Analysis Overview

- Calculating Parkinsonian performance metrics
- Use double integration of linear acceleration for stride length
- Use absolute orientation values for heel-to-toe transfer

Table 1: IMU Measurements and Metrics

	Measurements	Metrics
Ankle IMU	Linear Acceleration	Stride length, Cadence
Shoe IMU	Euler Angles (Orientation), Linear Acceleration	Heel-to-toe weight distribution, freezing

Data Analysis-Ankle

- Spike in linear acceleration in Z direction = step complete
- Track time between samples, do successive integrations over this sample period
- Sum of displacements over this time = stride length
- Averaging (Low Pass) Filter: average each acceleration with two nearest neighbors to eliminate noise and outliers

Data Analysis-Shoe

- New step = spike in linear acceleration on Z axis
- Record range of angular orientation values upon each new step
- Larger range of Euler angle from heel-strike to toe-off means greater degree of heel-to-toe weight transfer
- Understand acceptable values through experimentation
- Track this data long term

Data Movement

Data Movement: PCB to Raspberry Pi

- HC-05 transmits data outputted by Atmega over serial Pi connection
- Auto-Pair and Start Functions
- Python program on Raspberry Pi program, then listens and formats the received bytes

Data Movement: Raspberry Pi to Amazon Iot

- Pi runs program to format data into MQTT, JSON format
- Amazon IoT Topic

```
dataTopic Dec 8, 2017 10:41:44 AM -0500

{
    "sessionID": "1_49",
    "magnetometerz": "0.66",
    "accelerometer x": "-3.18",
    "user": "rhartnett",
    "accelerometer z": "8.61",
    "magnetometer x": "0.26",
    "magnetometer x": "0.26",
    "magnetometer y": "1.03",
    "gyroscope x": "-0.42",
    "gyroscope z": "-7.84",
    "accelerometer y": "-2.02"
}
```


Data Movement: Amazon Iot to DynamoDB

- Rules that react to Topics
- Permissions for Certified Users

<u>Application Backend</u>

- Used AWS Mobile Hub to integrate backend with Android Application
- Created multiple NoSQL database tables to store application data
- Database consists of 5 tables
 - User Information
 - Patient List for Therapist
 - Patient Workout List
 - Overall Workout Performance
 - Session Workout Performance

<u>UMassAmherst</u>

Application

- Android application designed in Android Studio
- Functionality:
 - Patient/Therapist Login
 - Therapist can program workouts for specific patient
 - Therapist can view patients session performance
 - Patient can view session performance
 - Patient can view and perform programmed workouts
 - Patient workout auditory queuing

Proposed CDR Deliverables

- Complete design of knee sleeve with functional IMU (no feedback)
 - Completed data analysis
- Functioning prototype of shoe with no data analysis
 - Data passed through the pipeline of system
- Simultaneous bluetooth connection between IMU systems and Raspberry Pi
- Implement auditory cueing on Android Application and exercise programming

FDR Deliverables

- Fully functional knee and shoe sensor with data analysis
- Breadboard → PCB
- Real-time feedback incorporated into data analysis
- Fully functional and polished application
 - Be able to start workout from application

Goals of Demo

- Show basic data analysis using knee sensor system and view data received by the Raspberry Pi over BlueTooth
- Show data movement through all systems
 - BNO055 → Atmega328 → HC-05 → Raspberry Pi → AWS backend → Android Application
- Show simultaneous sensor data transfer
- Show feedback system functionality
- Show application design and functionality
 - login/create account
 - Therapist side
 - Patient side

Thank You

Questions?