Problem

Show that a circuit family with depth O(log n) is also a polynomial size circuit family.

Step-by-step solution

Step 1 of 2

A circuit family of depth $O(\log n)$ can be obtained by taking an equivalent polynomial size family of formulas. "To convert a formula μ with h leaves to a similar circuit of depth $O(\log h)$ " is sufficient to show the above statement. Here, it may be assumed that fan-in value of all the nodes is 2 and not gates are pushed to the leaves.

- Now, the proof of $h \ge 4$ (can be done using the induction hypothesis) that is a formula μ with h leaves is similar to a formula μ with a maximum depth of $C \log_2 h$, where the value of the constant C will be further determined.
- If $h \le 4$, suppose $\mu' = \mu$. Otherwise apply the concept of tree which says that every tree with $m \ge 2$ leaves has a sub-tree with between m/3 and 2m/3. By applying this concept, the tree structure of μ acquire a sub-formula β with between m/3 and m/3.

Comment

Step 2 of 2

Suppose $\hat{\mu}(y)$ be μ with the sub-formula μ is replace by a new variable y. Thus, μ is similar to $\hat{\mu}(\beta)$ and μ is equivalent to μ_1 that is given by: $\mu_1 = \left(\beta \wedge \hat{\mu}(1)\right) \vee \left(\neg \beta \wedge \hat{\mu}(0)\right)$

Here, $\hat{\mu}(1)$ and $\hat{\mu}(0)$ each contains maximum $^{2h/3}$ leaves which is variable.

- Finally, suppose μ and μ' with the equivalent of the sub formulas β , $\hat{\mu}(1)$ and $\hat{\mu}(0)$ interchanged by similar small depth formula given by the induction hypothesis.
- Thus, the depth of μ' is maximum $C \log_2((2/3)h) + 3$. This is maximum of $C \log_2 h$ provided $C \ge 3/\log_2(\frac{3}{2})$.
- Thus, from the above explanation it can be said that "A circuit family of depth $O(\log n)$ can be obtained by taking an equivalent polynomial size family of formulas".

Comment