NAVIGACE VZDUCHOLODI

ONDREJ KUREŠ, MAREK MIKLOŠ, LADISLAV TRNKA

ABSTRAKT. Řešíme problém navržený (Průša and Tůma, 2021)

Obsah

1.	Úvod	1	Reference	2
2.	Variační počet	2		
3.	Závěr	2		

1. Úvod

Vzducholoď se pohybuje ve větrném poli \boldsymbol{w} a má za cíl překonat vzdálenost z bodu A do bodu B. V tomto textu se budeme zabývat otázkou jak zvolit její trasu, aby dorazila do cíle v nejkratším možném čase. Točení kormidla vzducholodi budeme charakterizovat jejím směrem letu tedy funkcí $\beta(t)$. Můžeme se ptát, jak točit kormidlem tak, aby vzducholoď dorazila do cíle co nejdříve.

Trajektorii vzducholodi budeme popisovat v kartézských souřadnicích a to v rovině (x, y), zanedbáme popis výšky. Vzducholoď se v bezvětří pohybuje rychlostí V. Pro zjednodušení výpočtů uvažujme konstantní rychlost V, stacionární pole w a cílový bod B jako počátek souřadnic (lze vždy zajistit vhodnou transformací).

Obrázek 1. Nastínění uvažované situace.

Pro okamžitou rychlost vzducholodi platí:

$$\frac{\mathrm{d}x}{\mathrm{d}t} = V \cos \beta(t) + u(x, y),$$

$$\frac{\mathrm{d}y}{\mathrm{d}t} = V \sin \beta(t) + v(x, y),$$
(1.1)

kde $\boldsymbol{x}(t) = \begin{bmatrix} x(t) & y(t) \end{bmatrix}^{\mathsf{T}}$ je hledaná trajektorie, $\beta \in (0, 2\pi)$ je směr letu a $\boldsymbol{w} = \begin{bmatrix} u & v \end{bmatrix}^{\mathsf{T}}$ je dané pole větru. Dále známe:

$$x(t_A) = A, (1.2a)$$

$$\boldsymbol{x}(t_B) = B = \begin{bmatrix} 0 & 0 \end{bmatrix}^\mathsf{T},\tag{1.2b}$$

kde t_A je čas startu vzducholodi a t_B je čas příletu¹.

¹Při příletu vzducholoď nebude mít nulovou rychlost.

2. Variační počet

Náš zájem se proto soustřeďuje na minimalizaci funkcionálu:

$$I(\beta, t_B) =_{\operatorname{def}} \int_{t_A}^{t_B} dt = t_B - t_A, \tag{2.1}$$

při splnění soustavy rovnic (1.1), které kompaktněji přepišme jako:

$$\frac{\mathrm{d}\boldsymbol{x}}{\mathrm{d}t} = \boldsymbol{f}(\boldsymbol{x}, \beta). \tag{2.2}$$

Chceme tedy minimalizovat cestovní čas a přípustné trajektorie musí splňovat (2.2). Při hledání extremály využijme koncept vázaných extrémů a Lagrangeových multiplikátorů λ . Proto studujme funkcionál:

$$J(\beta, t_B) =_{\text{def}} \int_{t=t_A}^{t_B} \left(1 - \lambda \bullet \left(\frac{\mathrm{d} \boldsymbol{x}}{\mathrm{d} t} - \boldsymbol{f}(\boldsymbol{x}, \beta) \right) \right) \mathrm{d} t, \tag{2.3}$$

kde funkce λ bude upřesněna později. Nyní hledejme Gâteauxovu derivaci $J(\beta, t_B)$:

$$DJ(\beta, t_B)[(\alpha, \tau)] =_{\text{def}} \frac{\mathrm{d}}{\mathrm{d}\varepsilon} J(\beta_{\text{ext}} + \varepsilon \alpha, t_{B, \text{ext}} + \varepsilon \tau) \Big|_{\varepsilon = 0}$$

$$=_{\text{def}} \left[\frac{\mathrm{d}}{\mathrm{d}\varepsilon} \int_{t=t_A}^{t_{B, \text{ext}} + \varepsilon \tau} \left(1 - \lambda \bullet \left(\frac{\mathrm{d} \boldsymbol{x}_{\varepsilon}}{\mathrm{d}t} - \boldsymbol{f}(\boldsymbol{x}_{\varepsilon}, \beta) \right) \right) dt \right] \Big|_{\varepsilon = 0},$$
(2.4)

při variaci:

$$\beta = \beta_{\text{ext}} + \varepsilon \alpha, \tag{2.5a}$$

$$t_B = t_{B,\text{ext}} + \varepsilon \tau, \tag{2.5b}$$

kde $\boldsymbol{x}_{\epsilon}$ je korespondující trajektorie k β a $t_{B}.$ Přičemž stále platí:

$$\boldsymbol{x}_{\epsilon}(t_A) = \boldsymbol{x}_{\text{ext}}(t_A) = A, \tag{2.6a}$$

$$\mathbf{x}_{\epsilon}(t_{B,\text{ext}} + \varepsilon \tau) = \mathbf{x}_{\text{ext}}(t_{B,\text{ext}}) = B = \mathbf{0}.$$
 (2.6b)

Nejdříve upravme (2.4) pomocí integrace per partes na člen $\lambda \bullet \frac{\mathrm{d}x_{\varepsilon}}{\mathrm{d}t}$, některé členy budou dle předchozího nulové a dostáváme:

$$DJ(\beta, t_B)[(\alpha, \tau)] = \left[\frac{\mathrm{d}}{\mathrm{d}\varepsilon} \int_{t=t_A}^{t_{B,\mathrm{ext}}} \left(1 + \frac{\mathrm{d}\lambda}{\mathrm{d}t} \bullet \boldsymbol{x}_{\varepsilon} + \lambda \bullet \boldsymbol{f}(\boldsymbol{x}_{\varepsilon}, \beta)\right) \mathrm{d}t\right]\Big|_{\varepsilon=0} + \left[\frac{\mathrm{d}}{\mathrm{d}\varepsilon} \int_{t=t_{B,\mathrm{ext}}}^{t_{B,\mathrm{ext}}+\varepsilon\tau} \left(1 + \frac{\mathrm{d}\lambda}{\mathrm{d}t} \bullet \boldsymbol{x}_{\varepsilon} + \lambda \bullet \boldsymbol{f}(\boldsymbol{x}_{\varepsilon}, \beta)\right) \mathrm{d}t\right]\Big|_{\varepsilon=0} + \left[1 + \lambda \bullet \boldsymbol{f}(\boldsymbol{x}_{\mathrm{ext}}, \beta_{\mathrm{ext}})\right]\Big|_{t=t_{B,\mathrm{ext}}} \tau. \quad (2.7)$$

Podle (Průša and Tůma, 2021) použijeme geniální trik: $\boldsymbol{x}_{\varepsilon} \approx \boldsymbol{x}_{\text{ext}} + \epsilon \boldsymbol{y} + \cdots$, kde zanedbáme členy vyššího řádu a kde \boldsymbol{y} je funkce času. Tím dále můžeme upravit první člen v poslední rovnosti (2.7):

$$\left[\frac{\mathrm{d}}{\mathrm{d}\varepsilon} \int_{t=t_{A}}^{t_{B,\mathrm{ext}}} \left(1 + \frac{\mathrm{d}\lambda}{\mathrm{d}t} \bullet \boldsymbol{x}_{\varepsilon} + \lambda \bullet \boldsymbol{f}(\boldsymbol{x}_{\varepsilon}, \beta)\right) \mathrm{d}t\right]\Big|_{\varepsilon=0} = \int_{t=t_{A}}^{t_{B,\mathrm{ext}}} \left(\left[\frac{\mathrm{d}\lambda}{\mathrm{d}t} + \frac{\partial \boldsymbol{f}}{\partial \boldsymbol{x}}\Big|_{\boldsymbol{x}=\boldsymbol{x}_{\mathrm{ext}}, \beta=\beta_{\mathrm{ext}}}^{\mathsf{T}} \boldsymbol{\lambda}\right] \bullet \boldsymbol{y} + \lambda \bullet \frac{\partial \boldsymbol{f}}{\partial \beta}\Big|_{\boldsymbol{x}=\boldsymbol{x}_{\mathrm{ext}}, \beta=\beta_{\mathrm{ext}}} \alpha\right) \mathrm{d}t.$$
(2.8)

Nyní můžeme přistoupit k vybraní $\pmb{\lambda}$ takové, aby bylo splněno:

$$\frac{\mathrm{d}\boldsymbol{\lambda}}{\mathrm{d}t} = -\left. \frac{\partial \boldsymbol{f}}{\partial \boldsymbol{x}} \right|_{\boldsymbol{x} = \boldsymbol{x}_{\mathrm{ext}}, \beta = \beta_{\mathrm{ext}}}^{\mathsf{T}} \boldsymbol{\lambda}. \tag{2.9}$$

Po dosazení dostáváme výsledný vztah pro Gâteuxovu derivaci:

$$DJ(\beta, t_B)[(\alpha, \tau)] = \int_{t=t_A}^{t_{B,ext}} \lambda \bullet \frac{\partial f}{\partial \beta} \Big|_{\boldsymbol{x} = \boldsymbol{x}_{ext}, \beta = \beta_{ext}} \alpha dt + [1 + \lambda \bullet f(\boldsymbol{x}_{ext}, \beta_{ext})] \Big|_{t=t_{B,ext}} \tau = 0,$$
 (2.10)

což musí platit pro libovolně α a τ . Tímto dostáváme

$$\lambda \bullet \frac{\partial \mathbf{f}}{\partial \beta}(\mathbf{x}_{\text{ext}}, \beta_{\text{ext}}) = 0,$$
 (2.11a)

$$[1 + \lambda \bullet f(x_{\text{ext}}, \beta_{\text{ext}})]|_{t=t_{B,\text{ext}}} = 0,$$
(2.11b)

. . . .

3. Závěr

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Nullam sit amet magna in magna gravida vehicula. Nullam eget nisl. In rutrum. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat. Maecenas sollicitudin. Integer malesuada. (Průša and Tůma, 2021)

REFERENCE

Průša, V. and K. Tůma. How to navigate zeppelin. 2021.