Reliability Estimation in Series Systems

Maximum Likelihood Techniques for Right-Censored and Masked Failure

Data

Alex Towell

Section 1

Introduction

Context & Motivation

- Quantifying reliability in series systems is essential.
- Real-world systems often only provide system-level failure data.
 - ▶ Masked and right-censored data obscure reliability metrics.
- Need robust techniques to decipher this data and make accurate estimations.

Core Contributions

- Derivation of likelihood model that accounts for right-censoring and masking.
 - ▶ Trivial to add more failure data via a likelihood contribution model.
 - ▶ R Library: github.com/queelius/wei.series.md.c1.c2.c3
- Clarification of the assumptions required for the likelihood model.
- Simulation studies with Weibull distributed component lifetimes.
 - Assess performance of MLE and BCa confidence intervals under various scenarios.

Section 2

Series System

Series System

A lot of complex systems have *critical* components (x_1, \ldots, x_5) .

- One component fails, the system fails.
- "A chain is only as strong as its weakest link." Thomas Reid
- We call these *series systems*. Let $T_i = \min(T_{i1}, \dots, T_{i5})$ be the lifetime of system i.
 - ▶ T_{ij} is the lifetime of component j in system i.

Reliability Function: System Longevity

Definition: Represents the probability that a system or component functions beyond a specified time *t*:

$$R_X(x) = \Pr\{X > x\}.$$

Interpretation:

- A high reliability value indicates a lower probability of failure.
- Essential for understanding the longevity and dependability of systems and components.

Series System Reliability: Product of the reliabilities of its components:

$$R_{T_i}(t; \boldsymbol{\theta}) = \prod_{j=1}^m R_j(t; \boldsymbol{\theta_j}).$$

Relevance: Forms the basis for most reliability analyses and helps in making informed decisions about system design and maintenance.

• Directly used in our likelihood model for right-censoring events.

Hazard Function: Failures Characteristics

Definition: Instantaneous failure rate at a specific time, given survival up to that point:

$$h_X(x) = \frac{f_X(t)}{R_X(t)}.$$

Interpretation

- A tool to understand how failure risk evolves over time.
- Guides maintenance schedules and interventions.
- Failure characteristics:
 - Rising: wear-out (aging).
 - Declining: infant mortality (defects).
 - ► Constant: random (accidents).

Series System Hazard Function: Sum of the hazard functions of its components:

$$h_{T_i}(t;\boldsymbol{\theta}) = \sum_{j=1}^m h_j(t;\boldsymbol{\theta_j}).$$

Component Cause of Failure

Let K_i denote component cause of failure of i^{th} system.

• The probability that the j^{th} component causes failure:

$$\Pr\{K_i = j\} = E_{\theta} \left[\frac{h_j(T_i; \theta_j)}{h_{T_i}(T_i; \theta_l)} \right].$$

• The conditional probability that the j^{th} component causes a failure, given that the system failed at time t:

$$\Pr\{K_i = j | T_i = t\} = \frac{h_j(t; \theta_j)}{h_{T_i}(t; \theta_l)}.$$

Joint Distribution of System Lifetime and Component Cause of Failure

$$f_{K_i,T_i}(j,t;\boldsymbol{\theta}) = h_j(t;\boldsymbol{\theta_j})R_{T_i}(t;\boldsymbol{\theta}).$$

• Relevance: Important in our likelihood model for masked failures.

Reliability of Well-Designed Series Systems

- MTTF is a summary measure of reliability:
 - ▶ Equivalent to integrating its reliability function over its support.
 - MTTF can be misleading. We can't assume components with longer MTTFs are more reliable.
- A series system is only as strong as its weakest component.
- In a well-designed series system, components have similar failure characteristics:
 - ▶ Similar MTTFs and probabilities of being the cause of failure.
- **Relevance**: Our simulation study is based on a (reasonably) well-designed series system.

Section 3

Likelihood Model

Likelihood Model

We have our system model, but we don't observe component lifetimes. We observe data related to component lifetimes.

Observed Data

- Right censoring: No failure observed.
 - The experiment ended before the system failed.
 - \star τ is the right-censoring time.
 - * $\delta_i = 0$ indicates right-censoring for system *i*.
- Masked causes
 - ► The system failed, but we don't know the component cause.
 - * S_i is the observed time of system failure.
 - * $\delta_i = 1$ indicates system failure for system i.
 - * C_i are a subset of components that could have caused failure.

Observed Data Example

Observed data with a right-censoring time $\tau=5$ for a series system with 3 components.

System	Right-censored lifetime	Event indicator	Candidate set
1	1.1	1	{1,2}
2	1.3	1	{2}
4	2.6	1	{2,3}
5	3.7	1	$\{1, 2, 3\}$
6	5	0	Ø
7	5	0	Ø

Data Generating Process

DGP is underlying process that generates observed data:

- Green elements are observed.
- Red elements are unobserved (latent).
- Candidate sets (C_i) related to component lifetimes (T_{ij}) and other (unknown) covariates.
 - Distribution of candidate sets complex. Seek a simple model valid under certain assumptions.

Likelihood Function

Assumptions

• Right-censoring time τ independent of component lifetimes and parameters:

$$S_i = \min(\tau, T_i),$$

 $\delta_i = 1_{\{T_i < \tau\}}.$

 Observed failure time with candidate sets. Candidate sets satisfy some conditions (discussed later).

Likelihood Contributions

$$L_i(\boldsymbol{\theta}) \propto \begin{cases} \prod_{l=1}^m R_l(s_i; \boldsymbol{\theta_l}) & \text{if } \delta_i = 0\\ \prod_{l=1}^m R_l(s_i; \boldsymbol{\theta_l}) \sum_{j \in c_i} h_j(s_i; \boldsymbol{\theta_j}) & \text{if } \delta_i = 1. \end{cases}$$

Derivation: Likelihood Contribution for Masked Failures

Masking occurs when a system fails but the precise failed component is ambiguous. To make problem more tractable, we introduce certain conditions (which are reasonable for many real-world systems).

Conditions

- **1** Candidate Set Contains Failed Component: The candidate set, C_i , always includes the failed component:
 - $\mathsf{Pr}_{\boldsymbol{\theta}}\{K_i \in \mathcal{C}_i\} = 1.$
- **Q** Equal Probabilities Across Candidate Sets: For an observed system failure time $T_i = t_i$ and a candidate set $C_i = c_i$, the candidate set probability is constant across different component failure causes within the set:
 - $Pr_{\theta}\{C_i = c_i | K_i = j, T_i = t_i\} = Pr_{\theta}\{C_i = c_i | K_i = j', T_i = t_i\} for every j, j' \in c_i.$
- **Masking Probabilities Independent of** θ : Masking probabilities, when conditioned on T_i and failed component, aren't functions of θ .

Likelihood Contribution: Masked Component Cause of Failure

We construct the likelihood contribution for masked data like so:

• The joint distribution of T_i , K_i , and C_i is written as:

$$f_{T_i,K_i,C_i}(t_i,j,c_i;\theta) = f_{T_i,K_i}(t_i,j;\theta) \operatorname{Pr}_{\theta} \{C_i = c_i | T_i = t_i, K_i = j\}.$$

• Marginalizing over K_i and applying Conditions 1, 2, and 3 yields:

$$f_{T_i,C_i}(t_i,c_i;\boldsymbol{\theta}) = \beta_i \prod_{l=1}^m R_l(t_i;\boldsymbol{\theta_l}) \sum_{j \in c_i} h_j(t_i;\boldsymbol{\theta_j}).$$

- The likelihood contribution: $L_i(\theta) \propto f_{T_i,C_i}(t_i,c_i;\theta)$.
 - ▶ We do not need to model the distribution of the candidate sets.

Methodology: Maximum Likelihood Estimation

Maximum Likelihood Estimation (MLE): Maximize the likelihood function:

$$\hat{m{ heta}} = rg \max_{m{ heta}} L(m{ heta}).$$

Log-likelihood: Easier to work with and numerically more stable:

$$\ell(\boldsymbol{\theta}) = \sum_{i=1}^n \ell_i(\boldsymbol{\theta}),$$

where ℓ_i is the log-likelihood contribution for the i^{th} observation:

$$\ell_i(\boldsymbol{\theta}) = \sum_{j=1}^m \log R_j(s_i; \boldsymbol{\theta_j}) + \delta_i \log \left(\sum_{j \in c_i} h_j(s_i; \boldsymbol{\theta_j}) \right).$$

Solution: Numerically solve the following system of equations for $\hat{\theta}$:

$$\nabla_{\boldsymbol{\theta}}\ell(\hat{\boldsymbol{\theta}}) = \mathbf{0}.$$

Bootstrap Method: Confidence Intervals

Sampling Distribution of MLE: Asymptotic normality is useful for constructing confidence intervals.

• Issue: May need large samples before asymptotic normality holds.

Bootstrapped CIs: Resample data and find an MLE for each. Use the distribution of the bootstrapped MLEs to construct CIs.

- Percentile Method: Simple and intuitive.
- Coverage Probability: Probability that the confidence interval contains the true parameter value θ .

Correctly Specified Cls: A coverage probability close to the nominal level of 95%.

• Adjustments: To improve coverage probability, we use the BCa method to adjust for bias (bias correction) and skewness (acceleration) in the estimate. Coverage probabilities above 90% acceptable.

Challenges with MLE on Masked Data

We discovered some challenges with the MLE on masked data.

Convergence Issues: Flat likelihood regions were observed due to the ambiguity in the masked data and small sample sizes.

Bootstrap Issues: Bootstrap relies on the Law of Large Numbers.

- Bootstrap might not represent the true variability, leading to inaccuracies.
- Due to right censoring and masking, the effective sample size is reduced.

Mitigation: We discard non-convergent samples for the MLE on original data, but keep all resamples for the bootstrap.

- This ensures that the bootstrap for "good" data is representative of the variability in the original data.
- We report convergence rates in our simulation study.

Section 4

Series System with Weibull Component Lifetimes

Series System with Weibull Component Lifetimes

The Weibull distribution has been crucial in reliability analysis due to its versatility. In our study, we model a system's components using Weibull distributed lifetimes.

- Introduced by Waloddi Weibull in 1937.
- Reflecting on its utility, Weibull modestly noted: "[...] may sometimes render good service."

Weibull Distribution Characteristics

The lifetime distribution for the j^{th} component of the i^{th} system is:

$$T_{ij} \sim \mathsf{Weibull}(k_j, \lambda_j)$$

Where:

- $\lambda_j > 0$ is the scale parameter.
- $k_j > 0$ is the shape parameter.

Significance of the Shape Parameter:

- $k_j < 1$: Indicates infant mortality. E.g., defective components weeded out early.
- $k_i = 1$: Indicates random failures. E.g., result of random shocks.
- $k_j > 1$: Indicates wear-out failures. E.g., components wearing out with age.

Theoretical Results

Reliability and hazard functions of a series system with Weibull components:

$$R_{T_i}(t; \boldsymbol{\theta}) = \exp\left\{-\sum_{j=1}^m \left(\frac{t}{\lambda_j}\right)^{k_j}\right\},$$

 $h_{T_i}(t; \boldsymbol{\theta}) = \sum_{j=1}^m \frac{k_j}{\lambda_j} \left(\frac{t}{\lambda_j}\right)^{k_j-1},$

where $\theta = (k_1, \lambda_1, \dots, k_m, \lambda_m)$ is the parameter vector of the series system.

Likelihood Model

We deal with right censoring and masked component cause of failure. The likelihood contribution of system i:

$$L_i(\boldsymbol{\theta}) \propto \begin{cases} R_{T_i}(t_i; \boldsymbol{\theta}) & \text{if } \delta_i = 0, \\ R_{T_i}(t_i; \boldsymbol{\theta}) \sum_{j \in c_i} h_j(t_i; \boldsymbol{\theta_j}) & \text{if } \delta_i = 1. \end{cases}$$

Section 5

Simulation Study Overview

Simulation Study Overview

We conduct a simulation study based on a series system.

System Description

This study is centered around the following well-designed series system:

Component	Shape	Scale	MTTF	$\Pr\{K_i\}$
1	1.26	994.37	924.87	0.17
2	1.16	908.95	862.16	0.21
3	1.13	840.11	803.56	0.23
4	1.18	940.13	888.24	0.20
5	1.20	923.16	867.75	0.20
System	NA	NA	222.88	NA

Performance Metrics

Our main objective is to evaluate the MLE and BCa confidence intervals' performance across various scenarios.

- MLE Evaluation:
 - ▶ **Accuracy**: Proximity of the MLE's expected value to the actual value.
 - ▶ **Precision**: Consistency of the MLE across samples.
- BCa Confidence Intervals Evaluation:
 - ► **Accuracy**: Ideally, Confidence Intervals (CIs) should encompass true parameters around 95% of the time.
 - ▶ **Precision**: Assessed by the width of the Cls.

Both accuracy and precision are crucial for confidence in the analysis.

Data Generation

We generate data for n systems with 5 components each. We satisfy the assumptions of our likelihood model by generating data as follows:

- **Right-Censoring Model**: Right-censoring time set at a known value, parameterized by the quantile *q*.
 - Satisfies the assumption that the right-censoring time is independent of component lifetimes and parameters.
- Masking Model: Using a *Bernoulli masking model* for component cause of failure, parameterized by the probability *p*.
 - ▶ Satisfies masking Conditions 1, 2, and 3.

Scenario: Impact of Right-Censoring

Vary the right-censoring quantile (q): 60% to 100%. Fixed the parameters: p=21.5% and n=90.

Background

- Right-Censoring: No failure observed.
- Impact: Reduces the effective sample size.
- MLE: Bias and precision affected by censoring.

Scale Parameters

- **Dispersion**: Less censoring improves MLE precision.
- Bias: Both parameters are biased. Bias decreases with less censoring.
- Median-Aggregated CIs: Bootstrapped CIs become consistent with more data.

Shape Parameters

- **Dispersion**: Less censoring improves MLE precision.
- Bias: Both parameters are biased. Bias decreases with less censoring.
- Median-Aggregated CIs: Bootstrapped CIs become consistent with more data.

Coverage Probability and Convergence Rate

- Calibration: Cls converge to 95%. Scale parameters better calibrated.
- Convergence Rate: Increases as right-censoring reduces.

Conclusion

- MLE precision improves, bias drops with decreased right-censoring.
- BCa CIs perform well, particularly for scale parameters.
- MLE of most reliable component more affected by right-censoring.

Impact of Masking Probability

Vary the masking probability p: 0.1 to 0.7. Fixed the parameters: q = 0.825 and n = 90.

Background

- Masking adds ambiguity in identifying the failed component.
- Impacts of masking on MLE:
 - ► **Ambiguity**: Higher *p* increases uncertainty in parameter adjustment.
 - **Bias**: Similar to right-censoring, but affected by both p and q.
 - Precision: Reduces as p increases.

Scale Parameters

- **Dispersion**: Increases with p, indicating reduced precision.
- **Bias**: Positive bias rises with *p*.
- Median-Aggregated Cls: Widen and show asymmetry as *p* grows.

Shape Parameters

- **Dispersion**: Increases with p, indicating reduced precision.
- **Bias**: Positive bias rises with *p*.
- Median-Aggregated Cls: Widen and show asymmetry as *p* grows.

Coverage Probability and Convergence Rate

Calibration: Caution advised for severe masking with small samples.

- Scale parameters maintain coverage up to p = 0.7.
- Shape parameters drop below 90% after p = 0.4.

Convergence Rate: Reduces after p > 0.4, consistent with CP behavior.

Conclusion

- Masking influences MLE precision, coverage probability, and introduces bias.
- Despite significant masking, scale parameters have commendable CI coverage.

Impact of Sample Size

Assess the impact of sample size on MLEs and BCa Cls.

- Vary sample size *n*: 50 to 500
- Parameters: p = 0.215, q = 0.825

Background

- Sample Size: Number of systems observed.
- Impact: More data reduces uncertainty in parameter estimation.
- MLE: Mitigates biasing effects of right-censoring and masking.

Both Scale and Shape Parameters

Parameters

Dispersion:

- ▶ Dispersion reduces with *n*—indicating improved precision.
- ▶ Disparity observed between components k_1 , λ_1 and k_3 , λ_3 .

• Bias:

- ▶ High positive bias initially, but diminishes around n = 250.
- ▶ Enough sample data can counteract right-censoring and masking effects.

• Median-Aggregated CIs:

- ▶ Cls tighten as *n* grows—showing more consistency.
- Upper bound more dispersed than lower, reflecting the MLE bias direction.

Coverage Probability and Convergence Rate

Calibration:

- Cls are mostly above 90% across sample sizes.
- ▶ Converge to 95% as n grows.
- Scale parameters have better coverage than shape.

Convergence Rate:

- ▶ Improves with n, surpassing 95% for $n \ge 100$.
- ▶ Caution for estimates with n < 100 in specific setups.

Conclusion

- Sample size significantly mitigates challenges from right-censoring and masking.
- MLE precision and accuracy enhance notably with growing samples.
- BCa CIs become narrower and more reliable as sample size increases.

Section 6

Conclusion

Part 1

Key Findings

- Employed maximum likelihood techniques for component reliability estimation in series systems with masked failure data.
- Methods performed robustly despite masking and right-censoring challenges.

Simulation Insights

- Right-censoring and masking introduce positive bias; more reliable components are most affected.
- Shape parameters harder to estimate than scale.
- Large samples can counteract these challenges.

Part 2

Confidence Intervals

 Bootstrapped BCa CIs demonstrated commendable coverage probabilities, even in smaller sample sizes.

Takeaways

- Framework offers a rigorous method for latent component property estimation from limited observational data.
- Techniques validated to provide practical insights in diverse scenarios.
- Enhanced capability for learning from obscured system failure data.

Section 7

Discussion