* Assignment 3 ** Question 1 Rules of Inference procedure in Proporitional Logic.

Logical reasoning is the process of drawing

Consulsions from premises using rules of inference.

The basic rule of is modus pomens.

It states that y both P -> Q & Phold,

then Q can be concluded, and it is written as $P \rightarrow Q$ Here the lines above the dotted line are

Here the lines above the dotted line are premises and the line below it is the condision drawn from the premises.

Rules of inference provide the templetes or guidelines for constructing valid arguments from the statements that we already have.

Date:	/	/	

1) Addition
11 Pin a premise us can use Addition rule
If P is a premise, us can use Addition rule to choive PVQ.
P
1.700
Eg. Let P be the proposition, He studies very hard is the "Therefore - "Fither he studies very hard or he is a very bad student".
hard is the
Therefore - "Either he studies very hand or
he is a very bad student".
② Conjunction: P & Q are two premises. P — > He studies hard Q → He is the best bod boy ∴ PAQ
P & Q are two premises.
P - 7 He studies hard
Q -> He is the best book boy
·. PAR
Therefore, He studies very hard & he is the best boy in the chass.
boot boy in the chass.
3 Simplification
3 Simplification If A PAQ is a premise, we can use simplificate rule to device P.
vale to device P.
PAQ
PAQ

Date:	 /	/	

(<u>L</u>	Modus Ponems
	11 P & P-> Q are two overwises.
	HP & P-7 Q are two premises, we can use Modus Ponens to derive Q.
	P -> Q
	P
	· · Q
(3)	Modus Jollens
	Modus Tollens 17 P > Q & ¬Q are two premises, we can Use Modus Tollens to derive ¬P
	$\mathcal{P} \to \mathcal{Q}$
	70
	:. ¬P
(6)	Dipinative Syllogism
	Disjunctive Syllogism P
	Pva
	· . Q
(7)	Hypothetical Syllogism P->0
U	Hypothetical Syllogism P->0 Q->R
	: . P→Q

	Date://
(8)	Constructive Dilema (P -> Q) 1 (R -> 8)
	$(P \rightarrow Q) \land (R \rightarrow S)$
	PVR
	Q v S
9	Destructive Dilema
	$(\mathcal{P} \rightarrow \mathcal{Q}) \wedge (\mathcal{R} \rightarrow \mathcal{S})$
	$\frac{\neg Q \lor \neg S}{}$
	1 PV-R
**	Exertion 2
*	Resolution in Propositional Logic Convert all the propositions of F to clause form Negate S & convert the result to clause form. Add it to the second the result to clause form.
	Convert all the proposition of [to al. 1
<u> </u>	Nearte S & course the worth
	Add it to the set of the result to clause form.
·	Add it to the set of clauses obtained it in step) Record with which will aid a step)
	apar a contraction
	found or no grangers can be made.
	Found or no of progress can be made. (a) Select 2 dayses. Call these the parent clauses. (b) Parely of the parent clauses.
	he was the
	called the resolvent will be the disjunction of
	on of the weeks of both the
	with the tollowing a Line parent Clauses
	cair 1 literal 1
	with the following exception If there are any pairs of literals L& The Such that one of the
	$oldsymbol{\mathcal{V}}$ #learnthesmarterway
	· · · · · ·

parent clauses contain L & other contains 7 L, then eliminate both L & TL from the resolvent.

(2) If the resolvent is the empty clause, then a contradiction has been found. If it is not, then add it to the set of clauses available to the procedure. * Resolution in First Order Logic O Convert all the statements of F to clause form DiNegate S & convert the result to clause form. Add it to the set of clauses obtained in!

3 Repeat until meither a contradiction is found, no progress can be made or a predetermined

amount of effort has been expended:

(a) Select 2 clauses. Call these the parent clauses.

(b) Resolve them together. The resolvent will be the disjunction of all of the literals of both of the parent clauses with appropriate substitutions performed.

Bubstitutions performed.

(c) If the revolvent is the empty classe, then
a contradiction has been found. If not, add it to the set of clauses available to the procedure.

**	Question 3
	Backward chaining
ی	It is reverse of forward chaining.
0 (Rules start with the goal?
•	The wes whose ight side matches with the
	root are considered.
•	The process of selection is from right to left.
•	Once a rule is applied its left side is then
	Once a role is applied, its left side is then looked upon searched in the right
	side again. This is continued till the initial
	state is reached.
•	It is depth-first search algorithm.
	7
	Example:
	Criminal (west)
American	(west) [Weapon (y)) (Sells (west, M.) (Hostile (none))
· Y	
	(Missile (y)) (Missile (M)) (Owns (Mono, M)) (Freny)
	Pulay (None, Andree
	#learnthesmarterway
	esmarterway

Date:	/	/	
Date.	 /	_ ′	

Fig. Proof thee constructed by backward chaining
Fig. Proof thee constructed by backward chaining to prove that West is a criminal. The tree
should be read depth first left to right. To prove criminal (west), we have to prove
To prove criminal (west), we have to prove
the down conjucts believe it.
The four conjucts believe it. Some of these are in the knowledge base, and others require further backward chaining.
other require further backward chaining.
Evertion 4
Semantic net allow you to define relations
1 1 X X X X X

- · Semantic net allow you to define relations (x is a Y)
 · Only restricted by methods.
- Eg. Fido is a clog dog have 4 legs.

P: Dog (Fido)
P-> Q IJ Dog (Fido) Then has 4 legs (Fido)
P

Q

** Question 5

- A frame is a prototype of a concept

 - Denoting the attributes of the canapt.

 The class of objects or concepts to which

 the concept in question belongs.

 And some more things.
- An instance of a frame is a

- A slot in a frame specify the charecterist of the entity which the frame represents.

 A slot in a frame contains into as attribute value pairs, default values etc.

Date: / /
O Employee details
imployee details
Ti. 9 J
Tim Snith (Profession (Value, Manager)) (Empl) (Value 100213) (Address (Value Pune))
(Profession (Value, Manager)) (EmplD (Value 100213)) (Address (Value Pune))
(top) (value 100213)
(Address (Value Pune))
2 Tweety is a blue bird having wings to fly".
Tweety (Value bird)
(Socies (value bird))
(Color (Value yellow)) (Activity (Value Hy))
Activity (value H.)
) (vame 4m)