Lecture 2

Simple Linear Regression II

Reading: Chapter 11

STAT 8020 Statistical Methods II August 25, 2020

Parameter Estimation

nesiduai Ariaiysis

Confidence/Prediction Intervals

Hypothesis Testir

Whitney Huang Clemson University

Agenda

- Simple Linear Regression II
- CLEMS N

Parameter Estimation

Residual Analysis

Intervals

- Parameter Estimation
- 2 Residual Analysis
- Confidence/Prediction Intervals
- 4 Hypothesis Testing

Estimation: Method of Least Square

For the given observations $(x_i, y_i)_{i=1}^n$, choose β_0 and β_1 to minimize the *sum of squared errors*:

$$L(\beta_0, \beta_1) = \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2$$

Solving the above minimization problem requires some knowledge from Calculus....

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (X_i - \bar{X})(Y_i - \bar{Y})}{\sum_{i=1}^n (X_i - \bar{X})^2}$$

$$\hat{\beta}_0 = \bar{Y} - \hat{\beta}_1 \bar{X}$$

Parameter Estimation

Hesiduai Ariaiysis

Intervals

Estimation: Method of Least Square

For the given observations $(x_i, y_i)_{i=1}^n$, choose β_0 and β_1 to minimize the *sum of squared errors*:

$$L(\beta_0, \beta_1) = \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2$$

Solving the above minimization problem requires some knowledge from Calculus....

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (X_i - \bar{X})(Y_i - \bar{Y})}{\sum_{i=1}^n (X_i - \bar{X})^2}$$

$$\hat{\beta}_0 = \bar{Y} - \hat{\beta}_1 \bar{X}$$

We also need to **estimate** σ^2

Parameter Estimation

Hesiduai Ariaiysis

Intervals

Estimation: Method of Least Square

For the given observations $(x_i, y_i)_{i=1}^n$, choose β_0 and β_1 to minimize the *sum of squared errors*:

$$L(\beta_0, \beta_1) = \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2$$

Solving the above minimization problem requires some knowledge from Calculus....

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (X_i - \bar{X})(Y_i - \bar{Y})}{\sum_{i=1}^n (X_i - \bar{X})^2}$$

$$\hat{\beta}_0 = \bar{Y} - \hat{\beta}_1 \bar{X}$$

We also need to **estimate** σ^2

$$\hat{\sigma}^2 = \frac{\sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2}{n-2}$$
, where $\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i$

Parameter Estimation

Hesiduai Anaiysis

Intervals

Properties of Least Squares Estimates

- CLEMS N
- Parameter Estimation
- 1 tooladal Pillalyolo
- Intervals
- Hypothesis Testin

- Gauss-Markov theorem states that in a linear regression these least squares estimators
 - Are unbiased, i.e.,
 - $E[\hat{\beta}_1] = \beta_1; E[\hat{\beta}_0] = \beta_0$
 - $\bullet \ \mathrm{E}[\hat{\sigma}^2] = \sigma^2$
 - Have minimum variance among all unbiased linear estimators

Note that we do not make any distributional assumption on ε_i

Example: Maximum Heart Rate vs. Age

The maximum heart rate MaxHeartRate of a person is often said to be related to age Age by the equation:

MaxHeartRate = 220 - Age.

Suppose we have 15 people of varying ages are tested for their maximum heart rate (bpm) (link to the "dataset":

whitneyhuang83.github.io/STAT8010/Data/
maxHeartRate.csv)

- Compute the estimates for the regression coefficients
- Compute the fitted values
- Compute the estimate for σ

UNIVERSITY

Parameter Estimation

.....

Intervals

• To obtain $\hat{\beta}_1$

individual

- Ompute $\bar{Y} = \frac{\sum_{i=1}^{n} Y_i}{n}$, $\bar{X} = \frac{\sum_{i=1}^{n} X_i}{n}$
- Compute $Y_i \bar{Y}$, $X_i \bar{X}$, and $(X_i \bar{X})^2$ for each observation
- Compute $\sum_{i=1}^{n} (X_i \bar{X})(Y_i \bar{Y})$ divived by $\sum_{i=1}^{n} (X_i \bar{X})^2$

 Y_i and X_i are the Maximum Heart Rate and Age of the ith

- $\hat{\beta}_0$: Compute $\bar{Y} \hat{\beta}_1 \bar{X}$
- $\hat{\sigma}^2$
 - Compute the fitted values: $\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i$, $i = 1, \dots, n$
 - Compute the **residuals** $e_i = Y_i \hat{Y}_i$, $i = 1, \dots, n$
 - Compute the residual sum of squares (RSS) $=\sum_{i=1}^{n}(Y_i-\hat{Y}_i)^2$ and divided by n-2 (why?)

Let's Do the Calculations

Parameter Estimation

sidual Analysis

Confidence/Prediction Intervals

$$\bar{X} = \sum_{i=1}^{15} \frac{18 + 23 + \dots + 39 + 37}{15} = 37.33$$

$$\bar{Y} = \sum_{i=1}^{15} \frac{202 + 186 + \dots + 183 + 178}{15} = 180.27$$

X	18	23	25	35	65	54	34	56	72	19	23	42	18	39	37
Y	202	186	187	180	156	169	174	172	153	199	193	174	198	183	178
	-19.33	-14.33	-12.33	-2.33	27.67	16.67	-3.33	18.67	34.67	-18.33	-14.33	4.67	-19.33	1.67	-0.33
	21.73	5.73	6.73	-0.27	-24.27	-11.27	-6.27	-8.27	-27.27	18.73	12.73	-6.27	17.73	2.73	-2.27
	-420.18	-82.18	-83.04	0.62	-671.38	-187.78	20.89	-154.31	-945.24	-343.44	-182.51	-29.24	-342.84	4.56	0.76
	373.78	205.44	152.11	5.44	765.44	277.78	11.11	348.44	1201.78	336.11	205.44	21.78	373.78	2.78	0.11
	195.69	191.70	190.11	182.13	158.20	166.97	182.93	165.38	152.61	194.89	191.70	176.54	195.69	178.94	180.53

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (X_i - \bar{X})(Y_i - \bar{Y})}{\sum_{i=1}^n (X_i - \bar{X})^2} = -0.7977$$

$$\hat{\beta}_0 = \bar{Y} - \hat{\beta}_1 \bar{X} = 210.0485$$

•
$$\hat{\sigma}^2 = \frac{\sum_{i=1}^{15} (Y_i - \hat{Y}_i)^2}{13} = 20.9563 \Rightarrow \hat{\sigma} = 4.5778$$

Parameter Estimation

Residual Analysis

Confidence/Prediction Intervals

```
Output from  Studio
 > fit <- lm(MaxHeartRate ~ Age)</pre>
 > summary(fit)
 Call:
 lm(formula = MaxHeartRate \sim Age)
 Residuals:
     Min
              10 Median
                             30
                                    Max
 <u>-8.9258 -2.5383</u> 0.3879 3.1867 6.6242
 Coefficients:
              Estimate Std. Error t value Pr(>|t|)
 (Intercept) 210.04846 2.86694 73.27 < 2e-16 ***
              -0.79773 0.06996 -11.40 3.85e-08 ***
 Age
 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
 Residual standard error: 4.578 on 13 degrees of freedom
 Multiple R-squared: 0.9091, Adjusted R-squared: 0.9021
 F-statistic: 130 on 1 and 13 DF, p-value: 3.848e-08
```

Linear Regression Fit

Question: Is linear relationship between max heart rate and age reasonable? \Rightarrow Residual Analysis

Parameter Estimation

Residual Analysis

Confidence/Prediction Intervals

Residuals

 The residuals are the differences between the observed and fitted values:

$$e_i = Y_i - \hat{Y}_i,$$

where
$$\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i$$

- e_i is NOT the error term $\varepsilon_i = Y_i \mathrm{E}[Y_i]$
- Residuals are very useful in assessing the appropriateness of the assumptions on ε_i . Recall
 - $E[\varepsilon_i] = 0$
 - $Var[\varepsilon_i] = \sigma^2$
 - $Cov[\varepsilon_i, \varepsilon_j] = 0, \quad i \neq j$

Parameter Estimation

.....

Intervals

Parameter Estimation

Residual Analysis

Confidence/Prediction Intervals

Interpreting Residual Plots

Simple Linear Regression II

Parameter Estimation

Residual Analysis

Intervals

Interpreting Residual Plots

Figure: Figure courtesy of Faraway's Linear Models with R (2005, p. 59).

Parameter Estimation

Residual Analysis

Confidence/Prediction Intervals

How (Un)certain We Are?

Can we formally quantify our estimation uncertainty? \Rightarrow We need additional (distributional) assumption on ε

Parameter Estimation

riodiadai rinaiyolo

CLEMS N

Recall

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$$

- Further assume $\varepsilon_i \sim N(0, \sigma^2) \Rightarrow Y_i \sim N(\beta_0 + \beta_1 X_i, \sigma^2)$
- With normality assumption, we can derive the **sampling** distribution of $\hat{\beta}_1$ and $\hat{\beta}_0 \Rightarrow$

$$\bullet \quad \frac{\hat{\beta}_1 - \beta_1}{\hat{\sigma}_{\hat{\beta}_1}} \sim t_{n-2}, \quad \hat{\sigma}_{\hat{\beta}_1} = \frac{\hat{\sigma}}{\sqrt{\sum_{i=1}^n (X_i - \bar{X})^2}}$$

$$\bullet \ \frac{\hat{\beta}_0 - \beta_0}{\hat{\sigma}_{\hat{\beta}_0}} \sim t_{n-2}, \quad \hat{\sigma}_{\hat{\beta}_0} = \hat{\sigma} \sqrt{\left(\frac{1}{n} + \frac{\bar{X}^2}{\sum_{i=1}^n (X_i - \bar{X})^2}\right)}$$

where t_{n-2} denotes the Student's t distribution with n-2 degrees of freedom

Parameter Estimation

Residual Analysis

Confidence/Prediction Intervals

Confidence Intervals

CLEMS N

• Recall $\frac{\hat{\beta}_1 - \beta_1}{\hat{\sigma}_{\beta_1}} \sim t_{n-2}$, we use this fact to construct **confidence intervals (CIs)** for β_1 :

$$\left[\hat{\beta}_1 - t_{\alpha/2,n-2}\hat{\sigma}_{\hat{\beta}_1}, \hat{\beta}_1 + t_{\alpha/2,n-2}\hat{\sigma}_{\hat{\beta}_1}\right],$$

where α is the **confidence level** and $t_{\alpha/2,n-2}$ denotes the $1-\alpha/2$ percentile of a student's t distribution with n-2 degrees of freedom

• Similarly, we can construct CIs for β_0 :

$$\left[\hat{\beta}_0 - t_{\alpha/2, n-2}\hat{\sigma}_{\hat{\beta}_0}, \hat{\beta}_0 + t_{\alpha/2, n-2}\hat{\sigma}_{\hat{\beta}_0}\right]$$

Parameter Estimation

Hesiduai Anaiysis

Intervals

Interval Estimation of $E(Y_h)$

- We often interested in estimating the mean response for a particular value of predictor, say, X_h. Therefore we would like to construct CI for E[Y_h]
- We need sampling distribution of \hat{Y}_h to form CI:

$$\bullet \quad \frac{\hat{Y}_h - Y_h}{\hat{\sigma}_{\hat{Y}_h}} \sim t_{n-2}, \quad \hat{\sigma}_{\hat{Y}_h} = \hat{\sigma} \sqrt{\left(\frac{1}{n} + \frac{(X_h - \bar{X})^2}{\sum_{i=1}^n (X_i - \bar{X})^2}\right)}$$

CI:

$$\left[\hat{Y}_h - t_{\alpha/2,n-2}\hat{\sigma}_{\hat{Y}_h}, \hat{Y}_h + t_{\alpha/2,n-2}\hat{\sigma}_{\hat{Y}_h}\right]$$

• **Quiz:** Use this formula to construct CI for β_0

Danamatas Estimationation

Residual Analysis

Intervals

- Suppose we want to predict the response of a future observation given $X = X_h$
- We need to account for added variability as a new observation does not fall directly on the regression line (i.e., $Y_{h(new)} = E[Y_h] + \varepsilon_h$)
- $\bullet \text{ Replace } \hat{\sigma}_{\hat{Y}_h} \text{ by } \hat{\sigma}_{\hat{Y}_{\mathsf{h}(\mathsf{new})}} = \hat{\sigma} \sqrt{\left(1 + \frac{1}{n} + \frac{(X_h \bar{X})^2}{\sum_{i=1}^n (X_i \bar{X})^2}\right)} \text{ to construct CIs for } Y_{\mathsf{h}(\mathsf{new})}$

Maximum Heart Rate vs. Age Revisited

The maximum heart rate MaxHeartRate (HR_{max}) of a person is often said to be related to age Age by the equation:

$$HR_{max} = 220 - Age.$$

Suppose we have 15 people of varying ages are tested for their maximum heart rate (bpm)

- Construct the 95% CI for β₁
- Compute the estimate for mean MaxHeartRate given Age = 40 and construct the associated 90% CI
- Construct the prediction interval for a new observation given Age = 40

Maximum Heart Rate vs. Age: Hypothesis Test for Slope

- CLEMS N
- UNIVERSIT
 - nesiduai Arialysis
 - Hypothesis Testing

- **1** $H_0: \beta_1 = 0$ vs. $H_a: \beta_1 \neq 0$
- ② Compute the **test statistic**: $t^* = \frac{\hat{\beta}_1 0}{\hat{\sigma}_{\hat{\beta}_1}} = \frac{-0.7977}{0.06996} = -11.40$
- **Outpute** P-value: $P(|t^*| \ge |t_{obs}|) = 3.85 \times 10^{-8}$
- **Q** Compare to α and draw conclusion:

Reject H_0 at α = .05 level, evidence suggests a negative linear relationship between MaxHeartRate and Age

Maximum Heart Rate vs. Age: Hypothesis Test for Intercept

UNIVERSIT

Residual Analysis

Confidence/Prediction Intervals

Hypothesis Testing

- **1** $H_0: \beta_0 = 0$ vs. $H_a: \beta_0 \neq 0$
- ② Compute the **test statistic**: $t^* = \frac{\hat{\beta}_0 0}{\hat{\sigma}_{\beta_0}} = \frac{210.0485}{2.86694} = 73.27$
- **Our Compute P-value:** $P(|t^*| \ge |t_{obs}|) \simeq 0$
- **3** Compare to α and draw conclusion:

Reject H_0 at α = .05 level, evidence suggests evidence suggests the intercept (the expected MaxHeartRate at age 0) is different from 0

CLEMS N

Parameter Estimation

Residual Analysis

Intervals

Hypothesis Testing

$$H_0: eta_{\mathsf{age}} = -1 \ \mathsf{vs.} \ H_a: eta_{\mathsf{age}}
eq -1$$

Test Statistic:
$$\frac{\hat{eta}_{age}-(-1)}{\hat{\sigma}_{\hat{eta}_{age}}}=\frac{-0.79773-(-1)}{0.06996}=2.8912$$

P-value: $2 \times \mathbb{P}(t^* > 2.8912) = 0.013$, where $t^* \sim t_{df=13}$

Summary

In this lecture, we reviewed

- Simple Linear Regression: $Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$
- Method of Least Square for parameter estimation
- Residual analysis to check model assumptions
- statistical inference for β_0 and β_1
- Confidence/Prediction Intervals and Hypothesis Testing
 Next time we will talk about
- Analysis of Variance (ANOVA) Approach to Regression
- **②** Correlation (r) & Coefficient of Determination (R^2)

Parameter Estimation

Residual Analysi

Intervals