Lecture 2: Symplectic Manifolds

Yannis Bähni

University of Augsburg

yannis.baehni@math.uni-augsburg.de

April 22, 2021

Linear Symplectic Geometry

Definition (Symplectic Vector Space)

A *symplectic vector space* is defined to be a tuple (V, ω) , where V is a finite-dimensional real vector space and $\omega: V \times V \to \mathbb{R}$ is a nondegenerate skew-symmetric bilinear form.

Theorem

Let (V, ω) be a symplectic vector space. Then there exists a basis (a_i, b_i) of V such that

$$\omega(b_i, a_j) = \delta_{ij}$$
 and $\omega(a_i, a_j) = \omega(b_i, b_j) = 0$

for all i, j. Any such basis is called a **symplectic basis for V**.

Corollary

Every symplectic vector space (V, ω) is of even dimension 2n and

$$\omega = \sum_{i=1}^{n} \beta^{i} \wedge \alpha^{i}$$

in the dual basis (α^i, β^i) of a symplectic basis (a_i, b_i) for V.

Corollary

A skew-symmetric bilinear form ω on a real vector space V^{2n} is nondegenerate if and only if $\omega^n \neq 0$.

The Category of Symplectic Manifolds

Definition (Symplectic Manifold)

A *symplectic manifold* is defined to be a tuple (M, ω) where M is a smooth finite-dimensional manifold and $\omega \in \Omega^2(M)$ is closed and nondegenerate.

Definition (Symplectomorphism)

Let (M, ω) and $(\widetilde{M}, \widetilde{\omega})$ be two symplectic manifolds. A *symplectomorphism* is a diffeomorphism $\varphi \colon M \to \widetilde{M}$ such that $\varphi^* \widetilde{\omega} = \omega$.

Let (M, ω) be a compact symplectic manifold. Then $H^2_{dR}(M) \neq 0$.

Corollary

No even sphere \mathbb{S}^{2n} admits a symplectic form for $n \geq 2$.

Let M be a smooth manifold. Then $(T^*M, d\lambda)$ is a symplectic manifold with the **Liouville form**

$$\lambda_{(x,\xi)}(v) := \xi(D\pi(v)) \qquad \forall (x,\xi) \in T^*M, v \in T_{(x,\xi)}T^*M,$$

where $\pi: T^*M \to M$ denotes the cotangent bundle projection. The symplectic form $d\lambda$ on T^*M is called the **canonical symplectic form**.

Let $\varphi: M \to \widetilde{M}$ be a diffeomorphism between smooth manifolds M and \widetilde{M} . Then the **cotangent lift**

$$D\varphi^{\dagger} \colon T^{*}M \to T^{*}\tilde{M}, \qquad D\varphi^{\dagger}_{(x,\xi)}(\varphi(x),v) := \xi(D\varphi^{-1}(v))$$

is an exact symplectomorphism.

Definition (Lagrangian Submanifold)

Let (M, ω) be a symplectic manifold. An embedded submanifold L of M is said to be *Lagrangian*, iff dim $L = \frac{1}{2} \dim M$ and $\iota_I^* \omega = 0$.

Let $\varphi: M \to \widetilde{M}$ be a diffeomorphism between symplectic manifolds (M, ω) and $(\widetilde{M}, \widetilde{\omega})$. Then φ is a symplectomorphism if and only if its graph

$$\Gamma_{\varphi} \subseteq (M \times \widetilde{M}, -\omega \oplus \widetilde{\omega})$$

is a Lagrangian submanifold.

The Darboux Theorem and Moser's Trick

Theorem (Darboux Theorem)

Let M^{2n} be a smooth manifold and $\omega \in \Omega^2(M)$ nondegenerate. Then ω is closed if and only if for every $x \in M$ there exists a chart $(U, (x^i, y^i))$ about x such that

$$\omega|_U = \sum_{i=1}^n dy^i \wedge dx^i.$$