Capítol 7

Integració

7.1 Subvarietats de \mathbb{R}^n

Recordem la noció de subvarietat de \mathbb{R}^n , així com les diferents caracteritzacions locals de les subvarietats vistes a la Secció 2.3.

Definició 7.1.1. Sigui $M \subset \mathbb{R}^n$. Diem que M és una **subvarietat** de \mathbb{R}^n de **dimensió** k (i **codimensió** n-k) si per a tot $z \in M$ podem trobar un entorn U de z en \mathbb{R}^n i un difeomorfisme $g: U \to g(U) \subset \mathbb{R}^n$ de manera que

$$g(U \cap M) = g(U) \cap (\mathbb{R}^k \times \{0\}). \tag{7.1}$$

Teorema 7.1.2. Sigui $M \subset \mathbb{R}^n$. Les següents condicions són equivalents:

- a) M és una subvarietat de \mathbb{R}^n de dimensió k.
- b) $\forall z \in M, \exists U \text{ entorn obert de } z \text{ en } \mathbb{R}^n \text{ i } F : U \to \mathbb{R}^{n-k} \text{ submersi\'o tal que } M \cap U = F^{-1}(0).$
- c) $\forall z \in M$, $\exists U$ entorn obert de z en \mathbb{R}^n , Ω obert de \mathbb{R}^k i $\varphi : \Omega \to \mathbb{R}^n$ diferenciable tal que
 - i) φ és immersió.
 - ii) φ és homeomorfisme de Ω sobre $M \cap U$ (amb la topologia relativa induïda per \mathbb{R}^n).

Definició 7.1.3. Un parell $(\Omega, \varphi = \varphi(u^1, \dots, u^k))$ complint la condició c) de la proposició anterior s'anomena **parametrització local** (o carta local) de M. Pensarem u^1, \dots, u^k com coordenades locals de M en $\varphi(\Omega)$. Un conjunt $\{(\Omega_\alpha, \varphi_\alpha)\}$ de parametritzacions de M tal que $M = \bigcup \varphi_\alpha(\Omega_\alpha)$ s'anomena **atles** de M.

Comentari 7.1.4. Excepte menció explícita, suposarem que totes les subvarietats considerades en aquestes notes són connexes.

Definició 7.1.5. Sigui M una subvarietat de \mathbb{R}^n . Una funció $f: M \to \mathbb{R}^m$ és diferenciable si les composicions $f \circ \varphi \colon \Omega \to \mathbb{R}^m$, on (Ω, φ) és una parametrització de M, són diferenciables.

Comentari 7.1.6. D'acord amb la Proposició 2.3.5, si (Ω_1, φ_1) i (Ω_2, φ_2) són dues parametritzacions de M llavors la composició $\varphi_2^{-1} \circ \varphi_1$ és un difeomeomorfisme (del seu domini sobre la seva imatge). Per tant la funció $f \colon M \to \mathbb{R}^m$ serà diferenciable si, per a un conjunt de parametritzacions locals φ_α de M que formin un atles de M, les composicions $f \circ \varphi_\alpha$ són diferenciables.

De manera general, entendrem que els diferents objectes que considerem sobre una subvarietat M són diferenciables si la seva expressió, en termes de les coordenades locals induïdes per parametritzacions de M, és diferenciable.

Exemple 7.1.7. A \mathbb{R}^3

- les 0-subvarietats (connexes) són els punts,
- les 1-subvarietats admeten localment parametritzacions com a corbes regulars,
- les 2-subvarietats són les superfícies regulars,
- les 3-subvarietats són els oberts de \mathbb{R}^3 .

Definició 7.1.8. S'anomena **espai tangent** a una subvarietat M de \mathbb{R}^n en un punt $p \in M$ al conjunt

$$T_n M = \{ \alpha'(0) \mid \alpha \colon (-\epsilon, \epsilon) \to M \subset \mathbb{R}^n \text{ differentiable amb } \alpha(0) = p \}.$$

Comentari 7.1.9. Si la subvarietat M està definida, en un entorn de $p \in M$, com $F^{-1}(0)$ amb F submersió, o com imatge d'una parametrització (Ω, φ) , llavors

$$\operatorname{Im} d\varphi_{\varphi^{-1}(p)} = T_p M = \ker dF_p$$

d'on resulta que T_pM és un espai vectorial de la mateixa dimensió que la de M.

Definició 7.1.10. Sigui M una subvarietat de \mathbb{R}^n . Un camp vectorial diferenciable sobre un obert $V \subset M$ és una correspondència

$$X \colon p \in V \longmapsto X(p) = X_p \in T_p \mathbb{R}^n \equiv \mathbb{R}^n$$

de manera que l'aplicació $p \in V \mapsto X_p \in \mathbb{R}^n$ és diferenciable en el sentit de la definició 7.1.5. Diem que el camp vectorial X és **tangent a** M si es compleix $X_p \in T_pM$ per a tot $p \in V$.

Denotarem per $\mathcal{X}(V)$ l'espai vectorial dels camps vectorials diferenciables sobre V que són tangents a M.

Exemples 7.1.11. 1) El camp normal unitari ν_S d'una superfície S de \mathbb{R}^3 (o de manera més general d'una hipersuperfície de \mathbb{R}^n) és un camp vectorial diferenciable.

2) Si $(\Omega, \varphi = \varphi(u^1, \dots, u^k))$ és una parametrització local de M llavors

$$\varphi_{u^i} = \frac{\partial \varphi}{\partial u^i}$$

són camps vectorials diferenciables tangents a M. De fet els camps vectorials

$$\left(\frac{\partial \varphi}{\partial u^1}\right)_p, \dots, \left(\frac{\partial \varphi}{\partial u^k}\right)_p$$

formen una base de T_pM per a cada punt $p \in V = \varphi(\Omega)$ i tot element $X \in \mathcal{X}(V)$ s'escriu, de forma única,

$$X = \sum_{i=1}^{k} X^{i} \frac{\partial \varphi}{\partial u^{i}}$$

amb $X^i=X^i(u^1,\ldots,u^k)$ funcions diferenciables. Fent un abús de notació escriurem $\frac{\partial \varphi}{\partial u^i}\equiv \frac{\partial}{\partial u^i}$, és a dir que identificarem els vectors $\frac{\partial \varphi}{\partial u^i}$, tangents a la subvarietat M en el obert V, amb el vectors $\frac{\partial}{\partial u^i}$, tangents a \mathbb{R}^n a l'obert Ω .

Nota 7.1.12. D'ara endavant tant sols considerarem camps vectorials diferenciables de forma que, per simplicitat, ometrem aquest qualificatiu.

Definició 7.1.13. Sigui M una subvarietat de \mathbb{R}^n de dimensió k. Una forma diferencial de grau ℓ sobre un obert $V \subset M$ és una correspondència

$$\omega \colon p \in V \longmapsto \omega(p) = \omega_p \in \Lambda^{\ell}(T_p M)^* \equiv \mathbb{R}^{\binom{k}{\ell}}$$

de manera que l'aplicació $p \in V \mapsto \omega_p \in \mathbb{R}^{\binom{k}{\ell}}$ és diferenciable.

Denotarem per $\Omega^{\ell}(V)$ l'espai vectorial de les ℓ -formes diferenciables sobre V.

Comentaris 7.1.14. a) Sigui $(U, \varphi = \varphi(u^1, \dots, u^k))$ una parametrització local de M i posem $V = \varphi(U)$. Denotem per

$$du^1, \dots, du^k \tag{7.2}$$

la base dual dels camps vectorials $\frac{\partial \varphi}{\partial u^i} \equiv \frac{\partial}{\partial u^i}$. Llavors tot element $\omega \in \Omega^{\ell}(V)$ s'escriu, de manera única,

$$\omega = \sum_{i_1 < \dots < i_{\ell}} \omega_{i_1 \dots i_{\ell}} du^{i_1} \wedge \dots \wedge du^{i_{\ell}}. \tag{7.3}$$

Dir que ω és diferenciable vol dir que les funcions components $\omega_{i_1...i_\ell}$ són diferenciables. Seguint amb l'abús de notació que identifica $\frac{\partial \varphi}{\partial u^i} \equiv \frac{\partial}{\partial u^i}$ podem pensar les 1-formes du^i com formes diferencials sobre $V \subset M$ o sobre $U \subset \mathbb{R}^k$. De la mateixa manera l'escriptura (7.3) identifica $\omega \in \Omega^\ell(V)$ amb $\varphi^*\omega \in \Omega^\ell(U)$.

b) Totes les propietats de les formes diferencials sobre \mathbb{R}^n que hem vist al capítol anterior s'estenen sense dificultat a les formes diferencials sobre subvarietats. En particular, podem definir la diferencial exterior de la forma diferencial $\omega \in \Omega^{\ell}(V)$, definida en 7.3, per la fórmula (6.43). és a dir

$$d\omega = \sum_{\substack{m \ i_1 < \dots < i_\ell \\ \partial u^m}} \frac{\partial \omega_{i_1 \dots i_\ell}}{\partial u^m} du^m \wedge du^{i_1} \wedge \dots \wedge du^{i_\ell}.$$

Com ja hem fet notar, aquesta definició no depèn de l'elecció de les coordenades, és a dir de la particular parametrització local φ que haguem triat per representar ω .

c) Si U és un obert de \mathbb{R}^n , tota forma diferencial $\omega \in \Omega^{\ell}(U)$ indueix, per restricció, una forma diferencial $\omega_M \in \Omega^{\ell}(V)$ on $V = U \cap M$. Més precisament, ω_M està definida per

$$\omega_M(X_1,\ldots,X_\ell)(p) = \omega_p((X_1)_p,\ldots,(X_\ell)_p)$$
 per $p \in V$ i $X_i \in \mathcal{X}(V)$. (7.4)

L'expressió en les coordenades u^1,\dots,u^k induïdes per una parametrització local φ està donada per

$$\omega_M = \varphi^* \omega. \tag{7.5}$$

Exercici 7.1.15. Es considera la superfície $S = \{(x, y, z) \in \mathbb{R}^3 \mid z = x^2 - y^2\}$ parametritzada per $\varphi(u, v) = (u, v, u^2 - v^2)$. Determineu la restricció ω_M de la forma diferencial $\omega = x \, dy \wedge dz \in \Omega^2(\mathbb{R}^3)$ a S. Més precisament, comproveu que es compleix

$$\omega_M = \varphi^* \omega = -2u^2 du \wedge dv = \omega(\varphi_u, \varphi_v) du \wedge dv.$$

Exercici 7.1.16. Es considera l'esfera $S^2 = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = 1\}$ amb la parametrització donada per la colatitud u i la longitud v:

$$\varphi(u, v) = (\sin u \cos v, \sin u \sin v, \cos u).$$

Sigui $\eta \in \Omega^3(\mathbb{R}^3)$ l'element de volum de \mathbb{R}^3 , i.e. $\eta = dx \wedge dy \wedge dz$, i sigui ν el camp normal unitari exterior a S^2 , i.e. $\nu = x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y} + z \frac{\partial}{\partial z}$.

- 1) Calculeu la contracció $\omega = i_{\nu}\eta$.
- 2) Determineu la restricció ω_{S^2} de ω a l'esfera S^2 .
- 3) Comproveu que ω_{S^2} és l'element d'àrea de S^2 , és a dir

$$\omega_{S^2} = \sqrt{EG - F^2} \, du \wedge dv.$$

7.2 Subvarietats amb vora

En aquesta secció introduïm la noció de subvarietat amb vora com la de subvarietats de \mathbb{R}^n localment modelades en un semiespai tancat. Amb aquest objecte definim el conjunts $\mathbb{H}^k \subset \mathbb{R}^k$ i $\partial \mathbb{H}^k \subset \mathbb{H}^k$ per

$$\mathbb{H}^{k} = \{ (x^{1}, \dots, x^{k}) \in \mathbb{R}^{k} \mid x^{k} \ge 0 \},$$

$$\partial \mathbb{H}^{k} = \{ (x^{1}, \dots, x^{k}) \in \mathbb{R}^{k} \mid x^{k} = 0 \}.$$
(7.6)

Definició 7.2.1. Sigui V un conjunt obert de \mathbb{H}^k . Diem que una aplicació $f \colon V \to \mathbb{R}^m$ és diferenciable si $\forall p \in V$ hi ha un entorn W de p en \mathbb{R}^k i una aplicació diferenciable $\tilde{f} \colon W \to \mathbb{R}^m$ tal que $\tilde{f}|_{V \cap W} = f|_{V \cap W}$. En aquest cas es defineix la diferencial de f en un punt $p \in V$ com $df_p = d\tilde{f}_p$.

Comentari 7.2.2. L'anterior definició de la diferencial df_p no depèn de l'extensió \tilde{f} . En efecte, es compleix

$$\frac{\partial \tilde{f}}{\partial x^k}(p) = \lim_{t \to 0^+} \frac{\tilde{f}(t + e_k) - \tilde{f}(p)}{t} = \lim_{t \to 0^-} \frac{\tilde{f}(t + e_k) - \tilde{f}(p)}{t}.$$

Definició 7.2.3. Diem que un subconjunt M de \mathbb{R}^n és una subvarietat amb vora de dimensió k si per a cada $p \in M$ hi ha un entorn obert U de p en \mathbb{R}^n , un obert V de \mathbb{H}^k i una aplicació diferenciable $\varphi \colon V \to \mathbb{R}^n$ tal que

- 1) es compleix $\varphi(V) = U \cap M$ i $\varphi \colon V \to U \cap M$ és homeomorfisme,
- 2) φ és immersió, i.e. $d\varphi_x$ és injectiva $\forall x \in V$.

Un parell (V,φ) complint les condicions anteriors s'anomena parametrització local de M.

De manera similar a la Proposició 2.5.4, es compleix

Proposició 7.2.4. Sigui (V, φ) una parametrització local d'una subvarietat amb vora M i sigui $f: W \to \mathbb{R}^n$ una aplicació diferenciable, on W és un obert de \mathbb{R}^m , tal que $f(W) \subset M$. Llavors la composició $\varphi^{-1} \circ f$ és diferenciable.

Lema 7.2.5. Sigui (V, φ) una parametrització local d'una k-subvarietat amb vora M i sigui $x \in V \cap \partial \mathbb{H}^k$. Posem $p = \varphi(x)$. Llavors el conjunt

$$\{\alpha'(0) \mid \alpha \colon [0, \epsilon) \to M \text{ diferenciable amb } \alpha(0) = p\}$$
 (7.7)

coincideix amb la imatge $d\varphi_x(\mathbb{H}^k) \subset T_p\mathbb{R}^n \cong \mathbb{R}^n$ del semiespai tancat \mathbb{H}^k .

Demostració. Sigui $\alpha \colon [0,\epsilon) \to M$ diferenciable amb $\alpha(0) = p$. Per la proposició anterior la composició $\varphi^{-1} \circ \alpha \colon [0,\epsilon) \to V$ és diferenciable i

$$t \longmapsto \varphi^{-1}(\alpha(t)) = (u_1(t), \dots, u_k(t)) \in \mathbb{H}^k$$

és una corba de \mathbb{H}^k . Com que $u_k(0) = 0$ i $u_k(t) \ge 0$ per $t \in [0, \epsilon)$ tindrem $u_k'(0) \ge 0$ i per la regla de la cadena

$$\alpha'(0) = d\varphi_x \big(u_1'(0), \dots, u_k'(0) \big) \in d\varphi_x(\mathbb{H}^k).$$

La inclusió inversa és evident.

Definició 7.2.6. Sigui M una k-subvarietat amb vora. Diem que $p \in M$ és un **punt** interior si hi ha una parametrització local (V, φ) de M tal que $p \in \varphi(V \setminus \partial \mathbb{H}^k)$. Diem vora de M al conjunt

$$\partial M = M \setminus \{ p \in M \mid p \text{ és interior} \}.$$

Comentari 7.2.7. El Lema 7.2.5 demostra que tota parametrització local d'una subvarietat amb vora M porta $\partial \mathbb{H}^k$ a ∂M i que si φ i ψ són parametritzacions de M aleshores $(\psi^{-1} \circ \varphi)(\partial \mathbb{H}^k) \subset (\partial \mathbb{H}^k)$. D'aquí resulta que l'anterior definició de punt interior, i per tant també la de vora de M, no depenen de la parametrització.

També com a conseqüència del Lema 7.2.5 resulta

Proposició 7.2.8. La vora ∂M d'una k-subvarietat (amb vora) M és una subvarietat (sense vora) de dimensió k-1.

Demostració. Si $(V, \varphi = \varphi(u^1, \dots, u^k))$ és una parametrització local de M llavors la seva restricció a $\partial \mathbb{H}^k \cong \mathbb{R}^{n-1}$, és a dir

$$(\tilde{V} = V \cap \partial \mathbb{H}^k, \tilde{\varphi} = \varphi(u^1, \dots, u^{k-1}0))$$

és una parametrització local de ∂M .

La següent proposició dona un criteri útil per decidir si un subconjunt de \mathbb{R}^n és una subvarietat amb vora de dimensió n. La demostració és similar a la prova del Teorema 2.3.2 i la deixem com exercici. Deixem també com exercici la caracterització local de subvarietats amb vora per medi de submersions en el cas de dimensió k < n.

Proposició 7.2.9. Un subconjunt M de \mathbb{R}^n és una subvarietat amb vora de dimensió n si i només si per a tot punt $p \in M$ hi ha un entorn obert U de p en \mathbb{R}^n i una aplicació $F \colon U \to \mathbb{R}$ tal que

- a) $U \cap M = \{x \in U \mid F(x) \le 0\},\$
- b) F és submersió en els punts de $F^{-1}(0)$.

Exemples 7.2.10. 1) Si M és una subvarietat, en el sentit de la secció anterior, llavors també és una subvarietat amb vora, encara que $\partial M = \emptyset$.

- 2) \mathbb{H}^k és una subvarietat amb vora de \mathbb{R}^k i la seva vora és el conjunt $\partial \mathbb{H}^k$ definit a (7.6).
- 3) La bola tancada $B = \{x \in \mathbb{R}^n \mid ||x|| \le 1\}$ és una n-subvarietat amb vora de \mathbb{R}^n i la seva vora és l'esfera unitat $\partial B = S^{n-1} = \{x \in \mathbb{R}^n \mid ||x|| = 1\}.$
- 4) L'hemisferi tancat $M = S^2 \cap \mathbb{H}^3$, és a dir

$$M = S^2 \cap \mathbb{H}^3 = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = 1, z \ge 0\},\$$

és una 2-subvarietat amb vora de \mathbb{R}^3 , i la seva vora és la circumferència

$$\partial M = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = 1, z = 0\} \equiv S^1.$$

5) El tor sòlid de revolució definit per $F(x, y, z) = z^2 + (\sqrt{x^2 + y^2} - R)^2 - r^2 \le 0$ és una 3-subvarietat amb vora de \mathbb{R}^3 .

Definició 7.2.11. Sigui M una k-subvarietat amb vora de \mathbb{R}^n i sigui p un punt de M. Donada una parametrització local $(V, \varphi = \varphi(u^1, \dots, u^k))$ de M amb $p \in \varphi(V)$, es defineix l'espai tangent a M en p com el subespai vectorial de $T_p\mathbb{R}^n$ generat pels vectors $\left(\frac{\partial \varphi}{\partial u^i}\right)_p$, és a dir

$$T_p M = \left\langle \left(\frac{\partial \varphi}{\partial u^1} \right)_n, \dots, \left(\frac{\partial \varphi}{\partial u^k} \right)_n \right\rangle_{\mathbb{R}}$$

Comentari 7.2.12. L'anterior definició no depèn de l'elecció de la parametrització φ . Notem també que aquesta definició té sentit quan $p \in \partial M$ i que, quan $p \in M \backslash \partial M$, coincideix amb la Definició 7.1.8.

Definició 7.2.13. Sigui M una k-subvarietat amb vora de \mathbb{R}^n i sigui $p \in \partial M$. Es defineix el conjunt de **vectors interiors** de T_pM com

$$T_p^i M = \{ \alpha'(0) \mid \alpha \colon [0, \epsilon) \to M \text{ diferenciable amb } \alpha(0) = p \}$$
 (7.8)

Notem que $T_p^i M$ és un semiespai tancat de $T_p M$ i que la seva frontera és $T_p \partial M \cong \mathbb{R}^{k-1}$. Els elements del semiespai obert $T_M \backslash T_p^i M$ s'anomenen **vectors exteriors**

Comentari 7.2.14. Sigui $(V, \varphi = \varphi(u^1, \dots, u^k))$ una parametrització local de M i siguin $x \in \partial \mathbb{H}^k \cap V$ i $p = \varphi(x) \in \partial M$. Un vector $\vec{w} \in T_p M$ s'escrirà

$$\vec{w} = a^1 \left(\frac{\partial \varphi}{\partial u^1} \right)_p + \dots + a^k \left(\frac{\partial \varphi}{\partial u^k} \right)_p.$$

Llavors es compleix

$$\left\{ \begin{array}{ll} \vec{w} & \text{\'es interior} & \Leftrightarrow & a^k \geq 0 \\ \vec{w} & \text{\'es exterior} & \Leftrightarrow & a^k < 0 \end{array} \right.$$

Nota 7.2.15. Les subvarietats en el sentit de la Secció 7.1 són, així mateix, subvarietats amb vora. Per aquest motiu d'ara endavant parlarem simplement de subvarietats de \mathbb{R}^n , tinguin o no vora, i indicarem quan s'escaigui si la vora és buida.

7.3. ORIENTACIÓ 89

7.3 Orientació

En aquesta secció suposarem que l'espai vectorial \mathbb{R}^k , i el seu semiespai \mathbb{H}^k , estan orientats amb l'orientació estàndard.

Definició 7.3.1. Diem que una k-subvarietat M de \mathbb{R}^n és **orientable** si es possible assignar una orientació a cada espai tangent T_pM de M de manera que, per a cada $p \in M$, hi ha (V, φ) parametrització de M amb $p \in \varphi(V)$ i tal que $d\varphi_x : T_x\mathbb{R}^k$ (o $T_x\mathbb{H}^k$) $\to T_{\varphi(x)}M$ conserva orientacions $\forall x \in V$. Llavors diem que la parametrització (V, φ) és **compatible** amb l'orientació de M.

Comentaris 7.3.2. 1) Si M és orientable i hem elegit una orientació, direm que M és una subvarietat orientada. Notem que si M és orientable i connexa, llavors admet exactament dues orientacions.

- 2) La condició que la parametrització $\left(V,\varphi=\varphi(u^1,\ldots,u^k)\right)$ sigui compatible amb l'orientació de M és dir que $\left(\frac{\partial \varphi}{\partial u^1},\ldots,\frac{\partial \varphi}{\partial u^k}\right)$ és base positiva en cada punt.
- 3) La transformació $\sigma \colon \mathbb{R}^k \to \mathbb{R}^k$ definida per

$$\sigma(u^1, u^2, \dots, u^k) = (-u^1, u^2, \dots, u^k)$$

inverteix orientacions. A més, si $k \geq 2$, σ preserva els semiespai \mathbb{H}^k de \mathbb{R}^k . Per tant, si M està orientada, una parametrització (V,φ) de M conserva/inverteix orientacions si i només si la parametrització $(\sigma(V),\varphi\circ\sigma)$ les inverteix/conserva. D'aquí resulta, en particular, que l'anterior definició no depèn de l'elecció de la parametrització.

Proposició 7.3.3. Una subvarietat M de \mathbb{R}^n és orientable si i només si hi ha un atles $\{(V_{\alpha}, \varphi_{\alpha}(u^1, \ldots, u^k))\}$ de M amb la propietat que

$$\det \left(J(\varphi_{\beta}^{-1} \circ \varphi_{\alpha}) \right) > 0.$$

Demostraci'o. Si posem $h=\varphi_\beta^{-1}\circ\varphi_\alpha$ llavors $\varphi_\alpha=\varphi_\beta\circ h$ i per la regla de la cadena

$$\frac{\partial \varphi_{\alpha}}{\partial u^{i}} = \sum_{j} \frac{\partial \varphi_{\beta}}{\partial u^{j}} \cdot \frac{\partial h^{j}}{\partial u^{i}}$$

o, equivalentment,

$$\left(\frac{\partial \varphi_{\alpha}}{\partial u^{1}}, \dots, \frac{\partial \varphi_{\alpha}}{\partial u^{k}}\right) = \left(\frac{\partial \varphi_{\beta}}{\partial u^{1}}, \dots, \frac{\partial \varphi_{\beta}}{\partial u^{k}}\right) \cdot J(h) \tag{7.9}$$

és a dir que la matriu jacobiana J(h) és la matriu de canvi entre les dues bases. D'aquí, i dels comentaris 2) i 3) anteriors, la proposició resulta immediatament.

De manera similar al Lema 6.3.19 es compleix

Proposició 7.3.4. Sigui M una k-subvarietat orientada de \mathbb{R}^n . Hi ha una única k-forma diferencial $\eta_M \in \Omega^k(M)$ tal que si (e_1, \ldots, e_k) és una base ortonormal positiva de T_pM llavors $\eta_M(e_1, \ldots, e_k) = 1$.

Demostració. Sigui $(V, \varphi = \varphi(u^1, \dots, u^k))$ una parametrització local de M compatible amb l'orientació. Ortonormalitzant la base $\left(\frac{\partial \varphi}{\partial u^1}, \dots, \frac{\partial \varphi}{\partial u^k}\right)$ pel procediment de Gram-Schmidt s'obté una base local de camps vectorials (X_1, \dots, X_k) tangents a M que és ortonormal i positiva. Si $(\alpha^1, \dots, \alpha^k)$ és la corresponent base dual llavors, a l'obert $\varphi(U)$, ha de ser $\eta_M = \alpha^1 \wedge \dots \wedge \alpha^k$.

Nota 7.3.5. La k-forma η_M donada per la proposició anterior s'anomena **element de volum** de la k-subvarietat orientada M. Notem que un canvi d'orientació de M determina un canvi de signe de η_M .

Com a consequència de l'anterior proposició obtenim el seguent criteri d'orientabilitat.

Proposició 7.3.6. Una k-subvarietat M de \mathbb{R}^n és orientable si i només si hi ha una k-forma $\eta \in \Omega^k(M)$ que és no nul·la en cada punt.

Demostració. Sigui $\eta \in \Omega^k(M)$ no nul·la en cada punt i sigui $\left(V, \varphi = \varphi(u^1, \dots, u^k)\right)$ una carta local de M tal que $\eta\left(\frac{\partial \varphi}{\partial u^1}, \dots, \frac{\partial \varphi}{\partial u^k}\right) > 0$. Llavors, $\eta = h \, du^1 \wedge \dots \wedge du^k$ amb h = h(u) funció positiva. Sigui ara $\left(W, \psi = \psi(v^1, \dots, v^k)\right)$ una altra parametrització de M. D'acord amb el comentari 3) de 7.3.2, permutant l'ordre de les coordenades si és necessari podem suposar que també es compleix $\eta\left(\frac{\partial \psi}{\partial v^1}, \dots, \frac{\partial \psi}{\partial v^k}\right) > 0$ i per tant que $\eta = g \, dv^1 \wedge \dots \wedge dv^k$ amb g = g(v) funció positiva. Aleshores, en virtud del Comentari 6.3.21 (o del Corol·lari 6.2.15), tenim

$$h du^1 \wedge \cdots \wedge du^k = \eta = g dv^1 \wedge \cdots \wedge dv^k = g \det (J(\psi^{-1} \circ \varphi)) du^1 \wedge \cdots \wedge du^k$$

d'on resulta que det $(J(\psi^{-1} \circ \varphi)) > 0$ i per tant que podem trobar un atles de M complint les condicions de la Proposició 7.3.3. Això prova que M és orientable. La implicació recíproca és conseqüència de la Proposició 7.3.4.

Exemples 7.3.7. 1. Si M pot ser recoberta per la imatge d'una única parametrització, llavors M és orientable.

- 2. Si M es pot recobrir per les imatges de dues parametritzacions (V_1, φ_1) i (V_2, φ_2) de manera que $\varphi_1(V_1) \cap \varphi_2(V_2)$ és connexa (com és el cas de, per exemple, una esfera $S^{n-1} \subset \mathbb{R}^n$) llavors M és orientable.
- 3. Una n-subvarietat de \mathbb{R}^n , és orientable.
- 4. Una hipersuperfície, és a dir una (n-1)-subvarietat de \mathbb{R}^n , és orientable si i només si admet un camp vectorial normal unitari globalment definit. Es demostra com en el cas de les superfícies de \mathbb{R}^3 (cf. Proposició 4.1.2).

Lema 7.3.8. Sigui M una k-subvarietat de \mathbb{R}^n (no necessàriament orientada) amb vora $\partial M \neq \emptyset$. Hi ha un camp vectorial exterior ν globalment definit a ∂M , és a dir un camp ν que, en cada punt $p \in \partial M$, compleix $\nu_p \neq 0$ i que $-\nu_p \in T_p^i M$.

Demostració. Podem prendre com ν_p l'únic vector de T_pM que és exterior, unitari i perpendicular a $T_p\partial M$.

Nota 7.3.9. Anomenarem **camp exterior normal unitari** al camp $\nu_{\partial M}$, construït a la demostració del lema anterior i que està unívocament determinat pel fet de ser exterior, unitari i perpendicular a $T_p\partial M$ en cada punt $p\in\partial M$.

Proposició 7.3.10. Sigui M una k-subvarietat de \mathbb{R}^n amb vora. Si M és orientable llavors ∂M també és orientable.

Demostració. Suposem que M és orientable. Sigui η_M l'element de volum de M i sigui $\nu_{\partial M}$ el camp exterior normal unitari. Llavors la restricció a ∂M de la contracció $i_{\nu}\eta_M$ és una (k-1)-forma no nul·la.

7.3. ORIENTACIÓ 91

Definició 7.3.11. Sigui M una k-subvarietat de \mathbb{R}^n orientada i amb vora $\partial M \neq \emptyset$. Diem que una base (e_1, \ldots, e_{k-1}) de $T_p \partial M$ és **positiva** si $(\nu_{\partial M}, e_1, \ldots, e_{k-1})$ és base positiva de $T_p M$. Aquesta elecció defineix una orientació de ∂M . Diem que és l'**orientació de** ∂M induïda per la de M.

La següent afirmació, que resulta immediata a partir de les definicions i consideracions anteriors, és útil per determinar l'orientació de la vora d'una subvarietat.

Proposició 7.3.12. Sigui M una k-subvarietat de \mathbb{R}^n orientada i amb vora $\partial M \neq \emptyset$. Siguin η_M l'element de volum de M i $\nu_{\partial M}$ el camp exterior normal unitari. Llavors l'element de volum de ∂M associat a l'orientació de ∂M induïda per la de M és

$$\eta_{\partial M} = i_{\nu} \eta_{M}. \tag{7.10}$$

Exemple 7.3.13. Considerem \mathbb{H}^k com subvarietat amb vora (de \mathbb{R}^k) amb l'orientació habitual, i.e. $\left(\frac{\partial}{\partial u^1}, \dots, \frac{\partial}{\partial u^k}\right)$ és base positiva en cada punt $p \in \mathbb{H}^k$. Si $p \in \partial \mathbb{H}^k$ llavors $\left(\frac{\partial}{\partial u^1}, \dots, \frac{\partial}{\partial u^{k-1}}\right)$ és base positiva si i només si k és parell. En efecte, el camp exterior normal unitari és $\nu_{\partial \mathbb{H}^k} = -\frac{\partial}{\partial u^k}$ i $\left(\frac{\partial}{\partial u^1}, \dots, \frac{\partial}{\partial u^{k-1}}\right)$ és base positiva de $T_p \partial \mathbb{H}^k$ si i només si $\left(\nu_{\partial \mathbb{H}^k}, \frac{\partial}{\partial u^1}, \dots, \frac{\partial}{\partial u^{k-1}}\right)$ és base positiva. Però

$$\det\left(-\frac{\partial}{\partial u^k}, \frac{\partial}{\partial u^1}, \dots, \frac{\partial}{\partial u^{k-1}}\right) = \begin{vmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & 0 & \dots & 1 \\ -1 & 0 & 0 & \dots & 0 \end{vmatrix} = (-1)(-1)^{k+1} = (-1)^k$$

i aquest nombre és positiu si i només si k és parell.

Observem d'altra banda que $\eta_{\mathbb{H}^k}=du^1\wedge\cdots\wedge du^k$ i $\nu_{\partial\mathbb{H}^k}=-\frac{\partial}{\partial u^k}$. D'acord amb la proposició 7.3.12

$$\eta_{\partial \mathbb{H}^k} = i_{\nu \partial \mathbb{H}^k} \eta_{\mathbb{H}^k} = i_{(-\frac{\partial}{\partial \nu^k})} du^1 \wedge \dots \wedge du^k = (-1)^k du^1 \wedge \dots \wedge du^{k-1},$$

la qual cosa està en acord amb la discussió anterior.

Acabarem aquesta secció comentant diferents exemples de superfícies de \mathbb{R}^3 . Abans però precisem l'anterior proposició en aquest context.

Proposició 7.3.14. Sigui S una superfície regular de \mathbb{R}^3 orientada i sigui ν_S el seu camp normal unitari. Aleshores l'element d'àrea de S està donat per $\eta_S = i_{\nu}\eta$, on $\eta = dx \wedge dy \wedge dz$. Si $\varphi = \varphi(u, v)$ és una parametrització local de S compatible amb l'orientació llavors, en la imatge de la parametrització, es compleix

$$\eta_S \equiv \varphi^* \eta_S = \sqrt{EG - F^2} \, du \wedge dv, \tag{7.11}$$

on E,F,G són els coeficients de la primera forma fonamental de S en la parametrització $\varphi.$

Demostració. La primera part de l'enunciat es demostra com la Proposició 7.3.12. Demostrem la identitat (7.11). Sigui $\varphi = \varphi(u, v)$ una parametrització compatible amb l'orientació. Llavors serà $\varphi^*\eta_S = A \cdot du \wedge dv$. Però

$$A = (\varphi^* \eta_S) \left(\frac{\partial}{\partial u}, \frac{\partial}{\partial v} \right) = \eta_S \left(\varphi_u, \varphi_v \right) = i_{\nu} \eta \left(\varphi_u, \varphi_v \right)$$
$$= \eta \left(\nu, \varphi_u, \varphi_v \right) = \det \left(\nu, \varphi_u, \varphi_v \right) = \left\langle \nu, \varphi_u \wedge \varphi_v \right\rangle$$
$$= \left\langle \frac{\varphi_u \wedge \varphi_v}{\|\varphi_u \wedge \varphi_v\|}, \varphi_u \wedge \varphi_v \right\rangle = \|\varphi_u \wedge \varphi_v\|.$$

Per tant $\varphi^* \eta_S = \| \varphi_u \wedge \varphi_v \| du \wedge dv = \sqrt{EG - F^2} du \wedge dv$ com volíem demostrar.

Nota 7.3.15. L'element d'àrea d'una superfícies S s'acostuma a denotar $\eta_S = dS$.

Exemples 7.3.16. 1) La bola unitat tancada de \mathbb{R}^3

$$B = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 \le 1\}$$

és una 3-subvarietat de \mathbb{R}^3 amb vora igual a l'esfera unitat $\partial B = S^2$. Considerem en B l'orientació induïda per la de \mathbb{R}^3 . Llavors η_B és la restricció a B de $\eta = dx \wedge dy \wedge dz$. El vector exterior normal unitari de B és

$$\nu_{\partial B} = \nu_{S^2} = x \, \frac{\partial}{\partial x} + y \, \frac{\partial}{\partial y} + z \, \frac{\partial}{\partial z}.$$

Per tant l'orientació de $\partial B=S^2$ induïda per la de B és precisament la definida per $\nu_{S^2}.$ L'element de volum de $\partial B=S^2$ és

$$\eta_{\partial B} = \eta_{S^2} = i_{\nu_{S^2}}(dx \wedge dy \wedge dz) = x\, dy \wedge dz + y\, dz \wedge dx + z\, dx \wedge dy. \tag{7.12}$$

Parametritzem S^2 per la colatitud u i la longitud v:

$$\varphi(u, v) = (\cos u \cos v, \cos u \sin v, \sin u).$$

En aquestes coordenades l'element d'àrea de $\partial B = S^2$ és

$$\begin{split} \eta_{\partial B} &= \eta_{S^2} = \varphi^*_{\nu_{S^2}}(i_{\nu_{S^2}}\,\eta) \\ &= \varphi^*\left(x\,dy \wedge dz + y\,dz \wedge dx + z\,dx \wedge dy\right) \\ &= \sin u\,du \wedge dv, \end{split}$$

que efectivament coincideix amb $\sqrt{EG - F^2} du \wedge dv$.

2) L'hemisferi M definit per

$$M = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = 1, z \ge 0\}$$

és una 2-subvarietat i la seva vora és el cercle

$$\partial M = S^1 = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = 1, z = 0\}.$$

El camp exterior normal unitari és $\nu_{\partial M} = -\frac{\partial}{\partial z}$. L'element de volum η_M de M és la restricció a M de la 2 forma donada a (7.12) i l'element de volum de la vora ∂M serà

$$\eta_{\partial M} = i_{\nu_{\partial M}} \eta_M = i_{\left(-\frac{\partial}{\partial z}\right)} \left(x \, dy \wedge dz + y \, dz \wedge dx + z \, dx \wedge dy \right) = x \, dy - y \, dx.$$

Si parametrizem el cercle $\partial M = S^1$ per $\psi(\theta) = (\cos \theta, \sin \theta, 0)$ (notem que aquesta parametrització és compatible amb l'orientació de ∂M) llavors, en la coordenada local θ , és

$$\eta_{\partial M} = i_{\nu_{\partial M}} \eta_M = \psi^*(x \, dy - y \, dx) = d\theta.$$

3) La corona $M = \{(x,y) \in \mathbb{R}^2 \mid 1 \leq x^2 + y^2 \leq 2\}$ és una 2-subvarietat de \mathbb{R}^2 i la seva vora ∂M és la unió dels cercles C_1 i C_2 de radis 1 i 2 respectivament. Si considerem a M l'orientació induïda per l'orientació de \mathbb{R}^2 llavors l'orientació positiva de ∂M és l'horària en el cercle C_1 i l'antihorària en el cercle C_2 .

7.4 Integració de formes diferencials

Al llarg d'aquesta secció M serà una k-subvarietat de \mathbb{R}^n (amb vora o sense) que suposarem orientada. Recordem que el suport d'una forma diferencial $\omega \in \Omega^{\ell}(M)$ es defineix com

$$\sup(\omega) := \overline{\{p \in M : \omega_p \neq 0\}}. \tag{7.13}$$

Definició 7.4.1. Sigui U un conjunt obert de \mathbb{R}^k i sigui $\omega = h \, du^1 \wedge \cdots \wedge du^k \in \Omega^k(\mathbb{R}^k)$, on $h = h(u^1, \dots, u^k)$, una forma diferencial de grau màxim amb suport compacte $\sup(\omega) \subset U$. Es defineix la integral de ω en U com

$$\int_{U} \omega = \int_{U} h \, du^{1} \wedge \dots \wedge du^{k} := \int_{U} h \, du^{1} \dots du^{k}. \tag{7.14}$$

Comentari 7.4.2. Notem que, d'acord amb l'anterior definició, es compleix

$$\int_{U} h \, du^{\sigma(1)} \wedge \cdots \wedge du^{\sigma(k)} = \epsilon(\sigma) \int_{U} h \, du^{1} \, \ldots \, du^{k} \quad \text{on } \sigma \in S_{k}.$$

Definició 7.4.3. Sigui M una k-subvarietat de \mathbb{R}^n orientada. Sigui $(U, \varphi = \varphi(u^1, \dots, u^k))$ una parametrització local de M compatible amb l'orientació de M i sigui $\omega \in \Omega^k(M)$ forma diferencial de grau màxim amb suport compacte $\sup(\omega) \subset \varphi(U)$. Es defineix la **integral** de ω sobre M com

$$\int_{M} \omega := \int_{U} \varphi^{*} \omega = \int_{U} \omega \left(\frac{\partial \varphi}{\partial u^{1}}, \dots, \frac{\partial \varphi}{\partial u^{k}} \right) du^{1} \wedge \dots \wedge du^{k}
= \int_{U} \omega \left(\frac{\partial \varphi}{\partial u^{1}}, \dots, \frac{\partial \varphi}{\partial u^{k}} \right) du^{1} \dots du^{k}$$
(7.15)

Proposició 7.4.4. L'anterior definició no depèn de l'elecció de la parametrització (U, φ) .

Demostració. Sigui (V, ψ) una altra parametrització complint les mateixes condicions. La composició $f = \varphi^{-1} \circ \psi$ està definida a $\psi^{-1}(\varphi(U)) \subset V$. Posem $\varphi^*\omega = A \eta = A du^1 \wedge \cdots \wedge du^k$, on $A = \omega \left(\frac{\partial \varphi}{\partial u^1}, \ldots, \frac{\partial \varphi}{\partial u^k} \right)$. Llavors es compleix

$$\int_{V} \psi^{*}\omega = \int_{V} (\varphi \circ f)^{*}\omega = \int_{V} f^{*}\varphi^{*}\omega = \int_{V} f^{*}(A \eta)$$

$$= \int_{V} (A \circ f) f^{*}(du^{1} \wedge \dots \wedge du^{k}) = \int_{V} (A \circ f) \det(J(f)) du^{1} \wedge \dots \wedge du^{k}$$

$$\stackrel{(*)}{=} \int_{U} A \eta = \int_{U} \varphi^{*}\omega$$

on la igualtat (*) resulta del teorema del canvi de variables ja que $\det(J(f)) > 0$.

Comentaris7.4.5. 1) Si a M considerem l'orientació oposada llavors la integral de ω canvia de signe.

2) Tota forma diferencial de grau màxim $\omega \in \Omega^k(M)$ és de la forma $\omega = h \eta_M$, on η_M és l'element de volum de M i h és una funció diferenciable. Si h té suport compacte podem definir la seva integral com

$$\int_{M} h = \int_{M} h \, \eta_{M}. \tag{7.16}$$

Definició 7.4.6. Sigui (U, φ) una parametrització local de M compatible amb l'orientació i sigui R una regió compacta de M continguda en $\varphi(U)$. Posem $Q = \varphi^{-1}(R) \subset U$. Es defineix el **volum** de R com

$$Vol(R) = \int_{R} \eta_{M} := \int_{Q} \varphi^{*} \eta_{M}, \tag{7.17}$$

on η_M denota l'element de volum de M.

Comentari 7.4.7. Per ser precisos, hem d'entendre $\int_Q \varphi^* \varphi^* \eta_M$ com la integral $\int_U \chi_Q \varphi^* \eta_M$, on χ_Q és la funció característica de Q.

Proposició 7.4.8. Sigui $K \subset \mathbb{R}^n$ compacte i sigui $\{V_{\alpha}\}_{{\alpha}\in A}$ un recobriment obert de K, és a dir que els conjunts V_{α} són oberts i es compleix $K \subset \bigcup_{{\alpha}\in A} V_{\alpha}$. Hi ha un nombre finit de funcions diferenciables no negatives $\rho_1, \ldots, \rho_m \in C^{\infty}(\mathbb{R}^n)$ tals que

- a) $\sum_{i} \rho_i(x) = 1 \quad \forall x \in K$,
- b) $\forall i = 1, ..., m, \exists \alpha \in A \quad tal \ que \quad \sup(\rho_i) \subset V_{\alpha}.$

Demostració. Per a cada punt $x \in K$ escollim un parell de boles obertes centrades en x, que denotem B(x) i D(x), de manera que $\overline{B(x)} \subset D(x) \subset \overline{D(x)} \subset V_{\alpha}$ per algun $\alpha \in A$. Per ser K compacte, hi ha un nombre finit de punts $x_1, \ldots, x_m \in K$ tals que $K \subset B(x_1) \cup \cdots \cup B(x_m)$. D'acord amb la Proposició 2.1.3 podem trobar funcions $f_i : \mathbb{R}^n \to \mathbb{R}$, diferenciables i a valors en [0,1], tals que $f_i \equiv 1$ a $B(x_i)$ i sup $f_i \subset D(x_i)$. Definim

$$\rho_1 = f_1
\rho_2 = (1 - f_1)f_2
\vdots
\rho_m = (1 - f_1)(1 - f_2) \cdots (1 - f_{m-1})f_m$$

és clar que $\sup(\rho_i) \subset \sup(f_i) \subset D(x_i) \subset V_{\alpha}$. Per tant les funcions ρ_i compleixen la condició b) de la proposició.

Veiem ara, per inducció sobre m, que es compleix

$$\rho_1 + \rho_2 + \dots + \rho_m = 1 - (1 - f_1)(1 - f_2) \cdots (1 - f_m)$$
(7.18)

Per m=1 és evident. Suposem-ho cert fins m-1. Aleshores

$$\rho_1 + \dots + \rho_{m-1} + \rho_m = 1 - (1 - f_1) \cdots (1 - f_{m-1}) + (1 - f_1) \cdots (1 - f_{m-1}) f_m$$
$$= 1 - (1 - f_1)(1 - f_2) \cdots (1 - f_{m-1})(1 - f_m).$$

De la igualtat (7.18) resulta $\sum_{i} \rho_i(x) \equiv 1$ a K, ja que tot punt $x \in K$ pertany a alguna bola $B(x_i)$, i això conclou la demostració.

Nota 7.4.9. Un conjunt de funcions $\{\rho_i\}$ complint les condicions de la proposició anterior s'anomena **partició de la unitat** de K subordinada al recobriment $\{V_{\alpha}\}$.

Comentari 7.4.10. La demostració de la proposició anterior s'adapta sense dificultats per provar que si K és un subconjunt compacte d'una subvarietat M de \mathbb{R}^n i $\{(U_\alpha, \varphi_\alpha)\}$ és una família de parametritzacions de M amb $K \subset \bigcup_{\alpha} V_{\alpha}$, on $V_{\alpha} = \varphi_{\alpha}(U_{\alpha})$, llavors hi ha una partició de la unitat de K subordinada al recobriment $\{V_{\alpha}\}$.

Nota 7.4.11. Sigui M una subvarietat de \mathbb{R}^n . Denotarem per $\Omega_c^k(M)$ l'espai vectorial de les k-formes diferencials de M amb suport compacte.

Definició 7.4.12. Sigui M una k-subvarietat de \mathbb{R}^n orientada i sigui $\{(U_\alpha, \varphi_\alpha)\}$ un atles de M compatible amb l'orientació. Donada $\omega \in \Omega_c^k(M)$ sigui $\{\rho_1, \ldots, \rho_m\}$ una partició de la unitat del compacte $K = \sup(\omega)$ subordinada al recobriment $\{V_\alpha = \varphi_\alpha(U_\alpha)\}$. Es defineix la **integral** de ω a M com

$$\int_{M} \omega = \int_{M} \sum_{i=1}^{m} \rho_{i} \, \omega = \sum_{i=1}^{m} \int_{M} \rho_{i} \, \omega = \sum_{i=1}^{m} \int_{U_{\alpha}} \varphi_{\alpha}^{*}(\rho_{i} \, \omega), \tag{7.19}$$

on α és tal que $\sup(\rho_i) \subset \varphi_{\alpha}(U_{\alpha})$.

Proposició 7.4.13. L'anterior definició no depèn de l'atles ni de la partició de la unitat elegits.

Demostració. Notem que si els atles es redueixen a una sola carta aquest resultat és la Proposició 7.4.4. Considerem el cas general. Sigui $\{\tau_j\}$ partició de la unitat subordinada al segon atles. Com que $\rho_i \omega = \sum_j \tau_j \, \rho_i \, \omega$, tenim

$$\sum_{i} \int_{M} \rho_{i} \, \omega = \sum_{i} \sum_{j} \int_{M} \tau_{j} \, \rho_{i} \, \omega = \sum_{j} \int_{M} \tau_{j} \, \omega,$$

on l'última igualtat resulta també de la Proposició 7.4.4. I això prova l'enunciat. $\hfill\Box$

Exemple 7.4.14. Sigui $\omega = z \, dx \wedge dy \in \Omega^2(\mathbb{R}^3)$ i considerem la seva restricció al tor de revolució M parametritzat per

$$\varphi(u,v) = (\cos u (2 + \cos v), \sin u (2 + \cos v)), \sin v).$$

Considerem a M l'orientació induïda per la parametrització φ . Es compleix

$$\varphi^*\omega = \sin^2 v \left(2 + \cos v\right) du \wedge dv.$$

Llavors

$$\int_{M} \omega \stackrel{\text{(1)}}{=} \int_{\varphi((0,2\pi)\times(0,2\pi))} \omega \stackrel{\text{(2)}}{=} \int_{(0,2\pi)\times(0,2\pi)} \varphi^* \omega$$
$$= \int_{0}^{2\pi} \int_{0}^{2\pi} \sin^2 v \left(2 + \cos v\right) du dv = 4\pi^2.$$

Per justificar els passos (1) i (2) cal utilitzar la proposició que segueix.

Com hem vist a l'exemple anterior, en els exemples concrets no utilitzem la definició d'integral basada en particions de la unitat sinó que fem servir el resultat que segueix, el qual acceptem sense demostració.

Proposició 7.4.15. Sigui M una k-subvarietat orientada de \mathbb{R}^n , i sigui $\{(U_i, \varphi_i)\}$ un conjunt finit de parametritzacions de M compatibles amb l'orientació i tals que

1) $M \setminus \bigcup \varphi_i(U_i)$ és la unió de subvarietats de dimensió $\langle k, \rangle$

2) $\varphi_i(U_i) \cap \varphi_j(U_j) = \emptyset$ si $i \neq j$.

Aleshores, donada $\omega \in \Omega_c^k(M)$, es compleix

$$\int_{M} \omega = \sum_{i} \int_{U_{i}} \varphi_{i}^{*} \omega. \tag{7.20}$$

Comentari 7.4.16. A l'anterior proposició no es requereix que $\sup(\omega) \subset \bigcup_i \varphi_i(U_i)$.

Proposició 7.4.17 (Canvi de variables). Siguin M i M' dues k-subvarietats orientades de \mathbb{R}^n i \mathbb{R}^m respectivament, i sigui $F \colon M \to M'$ un difeomorfisme que conserva orientacions. Si $\omega \in \Omega^k_c(M')$ llavors es compleix

$$\int_{M'} \omega = \int_{M} F^* \omega. \tag{7.21}$$

Demostració. Sigui $\{(U_{\alpha}, \varphi_{\alpha})\}$ un atles de M compatible amb l'orientació. Llavors la família $\{(U_{\alpha}, F \circ \varphi_{\alpha})\}$ és un atles de M', també compatible amb l'orientació. Posem $K' = \sup(\omega)$ i sigui $\{\rho'_i\}$ partició de la unitat de K' subordinada al recobriment $\{F \circ \varphi_{\alpha}(U_{\alpha})\}$. Aleshores $\{\rho_i = \rho'_i \circ F\}$ és partició de la unitat del compacte $K = F^{-1}(K')$ subordinada a $\{\varphi_{\alpha}(U_{\alpha})\}$. De les definicions resulta

$$\begin{split} \int_{M'} \omega &= \int_{F(M)} \omega = \sum_i \int_{U_\alpha} (F \circ \varphi_\alpha)^* (\rho_i' \, \omega) \\ &= \sum_i \int_{U_\alpha} (\varphi_\alpha^* \circ F^*) (\rho_i' \, \omega) = \sum_i \int_{U_\alpha} \varphi_\alpha^* (\rho_i \, F^* \omega) = \int_M F^* \omega, \end{split}$$

la qual cosa demostra la proposició.

Comentari 7.4.18. Si l'aplicació F invertís orientacions llavors la relació seria

$$\int_{M'} \omega = -\int_{M} F^* \omega.$$

7.5 Teorema de Stokes

L'objectiu d'aquesta secció és demostrar el teorema de Stokes. Començarem amb algunes consideracions sobre integració de formes a \mathbb{H}^1 i a \mathbb{H}^k .

Sigui $h \in C^{\infty}(\mathbb{R})$ amb suport compacte $\sup(h) \subset [a,b]$. Podem pensar h com un element de $\Omega_c^0(\mathbb{R})$. Llavors dh = h' dx i, d'acord amb el teorema fonamental del càlcul, es compleix

$$\int_{\mathbb{R}} dh = \int_{-\infty}^{\infty} h'(x) \, dx = \int_{a}^{b} h'(x) \, dx = h(b) - h(a) = 0$$

$$\int_{\mathbb{H}^{1}} dh = \int_{0}^{\infty} h'(x) \, dx = \int_{0}^{b} h'(x) \, dx = h(b) - h(0) = -h(0)$$
(7.22)

De manera general tenim

Proposició 7.5.1. Sigui $\omega \in \Omega_c^{k-1}(\mathbb{H}^k)$. Es compleix

a)
$$si \sup(\omega) \cap \partial \mathbb{H}^k = \emptyset$$
 $llavors$ $\int_{\mathbb{H}^k} d\omega = 0$,

b)
$$si \sup(\omega) \cap \partial \mathbb{H}^k \neq \emptyset$$
 $llavors$ $\int_{\mathbb{H}^k} d\omega = \int_{\partial \mathbb{H}^k} \omega.$

on a $\partial \mathbb{H}^k \cong \mathbb{R}^{k-1}$ es considera l'orientació induïda per la de \mathbb{H}^k .

Demostració. Denotem $u = (u^1, \dots, u^k)$ i escrivim

$$\omega = \sum_{i=1}^{k} f_i(u) du^1 \wedge \cdots \wedge \widehat{du^i} \wedge \cdots \wedge du^k.$$

Llavors

$$d\omega = \left(\sum_{i=1}^{k} (-1)^{i-1} \frac{\partial f_i}{\partial u^i}\right) du^1 \wedge \dots \wedge du^k.$$

Aleshores, aplicant el teorema de Fubini, tenim

$$\int_{\mathbb{H}^k} d\omega = \sum_{i=1}^k (-1)^{i-1} \int_{\mathbb{H}^k} \frac{\partial f_i}{\partial u^i} du^1 \wedge \dots \wedge du^k = \sum_{i=1}^k (-1)^{i-1} \int_{\mathbb{H}^k} \frac{\partial f_i}{\partial u^i} du^1 \dots du^k$$

$$= \sum_{i=1}^{k-1} (-1)^{i-1} \int_{\mathbb{H}^{k-1}} \left(\int_{-\infty}^{\infty} \frac{\partial f_i}{\partial u^i} du^i \right) du^1 \dots \widehat{du^i} \dots du^k +$$

$$+ (-1)^{k-1} \int_{\mathbb{R}^{k-1}} \left(\int_0^{\infty} \frac{\partial f_k}{\partial u^k} du^k \right) du^1 \dots du^{k-1}$$

$$= (-1)^{k-1} \int_{\mathbb{R}^{k-1}} (-1) f_k(u^1, \dots, u^{k-1}, 0) du^1 \dots du^{k-1}$$

$$= (-1)^k \int_{\mathbb{R}^{k-1}} f_k(u^1, \dots, u^{k-1}, 0) du^1 \wedge \dots \wedge du^{k-1} = \int_{\partial \mathbb{H}^k} \omega,$$

on hem tingut en compte l'orientació de $\partial \mathbb{H}^k$, determinada pel seu element de volum $\eta_{\partial \mathbb{H}^k} = (-1)^k du^1 \wedge \cdots \wedge du^k$.

Teorema 7.5.2 (Teorema de Stokes). Sigui M una k-subvarietat orientada de \mathbb{R}^n . Donada $\omega \in \Omega^{k-1}_c(M)$ es compleix

$$\int_{M} d\omega = \int_{\partial M} \omega. \tag{7.23}$$

Demostració. Sigui $\{(U_{\alpha}, \varphi_{\alpha})\}$ un atles de M compatible amb l'orientació. Posem $K = \sup(\omega)$ i sigui $\{\rho_i\}_{i\in I}$ partició de la unitat de K subordinada al recobriment $\{\varphi_{\alpha}(U_{\alpha})\}$. Posem

$$J = \{ i \in I \mid \sup(\rho_i) \cap \partial M \neq \emptyset \}$$

i per a cada $i \in I$ escollim $\alpha = \alpha(i)$ tal que $\sup(\rho_i) \subset \varphi_{\alpha(i)}(U_{\alpha(i)})$. Per simplificar la notació escriurem $\alpha(i) = i$. Notem que

$$\sum \rho_i = 1 \quad \Longrightarrow \quad \sum d\rho_i = 0.$$

Per tant

$$d\omega = \sum \rho_i d\omega = d(\sum \rho_i \omega) - (\sum d\rho_i) \wedge \omega = \sum d(\rho_i \omega).$$

D'aquí i de la Proposició 7.5.1 deduïm

$$\begin{split} \int_{M} d\omega &= \sum_{i \in I} \int_{M} d(\rho_{i} \, \omega) = \sum_{i \in I} \int_{U_{i}} \varphi_{i}^{*} \big(d(\rho_{i} \, \omega) \big) \\ &= \sum_{i \in J} \int_{U_{i}} \varphi_{i}^{*} \big(d(\rho_{i} \, \omega) \big) + \sum_{i \notin J} \int_{U_{i}} \varphi_{i}^{*} \big(d(\rho_{i} \, \omega) \big) \\ &= \sum_{i \in J} \int_{U_{i}} d \big(\varphi_{i}^{*} (\rho_{i} \, \omega) \big) = \sum_{i \in J} \int_{U_{i} \cap \partial \mathbb{H}^{k}} \varphi_{i}^{*} \big(\rho_{i} \, \omega \big) = \int_{\partial M} \omega \end{split}$$

i això completa la demostració.

Corol·lari 7.5.3. Siqui M una k-subvarietat orientada de \mathbb{R}^n amb $\partial M = \emptyset$. Llavors

$$\int_{M} d\omega = 0 \qquad \forall \omega \in \Omega_{c}^{k-1}(M). \tag{7.24}$$

També com a corol·lari del teorema de Stokes s'obté

Teorema 7.5.4 (Fórmula de Green). Sigui D un domini regular de \mathbb{R}^2 , i.e. una 2-subvarietat amb vora de \mathbb{R}^2 . Siguin P = P(x,y) i Q = Q(x,y) funcions differenciables sobre D. Llavors

$$\int_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx \, dy = \int_{\partial D} P \, dx + Q \, dy. \tag{7.25}$$

Demostració. Apliquem el teorema de Stokes a la 1-forma $\omega = P dx + Q dy$.

Exemple 7.5.5. Sigui M el tor de sòlid de revolució definit per

$$z^2 + \left(\sqrt{x^2 + y^2} - 2\right)^2 \le 1,$$

amb l'orientació induïda per la de \mathbb{R}^3 . Llavors, el seu element de volum η_M és la restricció a M de $\eta = dx \wedge dy \wedge dz$ i una possible manera de determinar $\operatorname{Vol}(M)$ és calcular

$$\operatorname{Vol}(M) = \int_M \eta = \int_M dx \wedge dy \wedge dz.$$

Alternativament, podem utilitzar el teorema de Stokes. La vora $T=\partial M$ es pot parametritzar per

$$\varphi(u, v) = (\cos u (2 + \cos v), \sin u (2 + \cos v)), \sin v).$$

Notem aquesta parametrització és compatible amb l'orientació de T induïda per la de M, és a dir la definida pel camp normal exterior. D'altra banda $\eta = d\omega$ on $\omega = z\,dx \wedge dy$. Utilitzant el càlcul fet a l'Exemple 7.4.14 resulta

$$\operatorname{Vol}(M) = \int_{M} \eta = \int_{M} d\omega = \int_{\partial M} \omega = 4\pi^{2}.$$

Exemple 7.5.6. Considerem l'esfera unitat S^2 com a vora de la bola unitat tancada $B = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 \le 1\}$ i considerem a S^2 l'orientació induïda per la de B. La parametrització de $S^2 = \partial B$ donada per

$$\varphi(u,v) = (\sin u \cos v, \sin u \sin v, \cos u)$$

és compatible amb aquesta orientació, que és precisament la donada pel vector normal exterior.

Sigui $\omega = y \, dx \wedge dz \in \Omega^2(\mathbb{R}^3)$ i suposem que volem calcular la integral de la restricció de ω a S^2 . Observem que

$$\varphi^*\omega = -\sin^3 u \, \sin^2 v \, du \wedge dv.$$

Per tant, utilitzant el teorema de Stokes podem calcular la integral $\int_{S^2} \omega$ de dues maneres. D'una banda tenim

$$\int_{S^2} \omega = \int_{\varphi((0,\pi)\times(0,2\pi))} \omega = \int_{(0,\pi)\times(0,2\pi)} \varphi^* \omega = -\int_0^\pi \int_0^{2\pi} \sin^3 u \, \sin^2 v \, du \, dv$$
$$= -\left(\int_0^\pi \sin^3 u \, du\right) \left(\int_0^{2\pi} \sin^2 v \, dv\right) = -\frac{4}{3} \pi.$$

Però també podem fer

$$\int_{S^2} \omega = \int_B d\omega = \int_B dy \wedge dx \wedge dz = -\int_B dx \wedge dy \wedge dz = -\operatorname{Vol}(B) = -\frac{4}{3}\pi.$$

7.6 Càlcul vectorial

Sigui U un conjunt obert de \mathbb{R}^3 . Recordem que, donada una funció $f \in C^{\infty}(U)$ i un camp vectorial $X \in \mathcal{X}(U)$, que escrivim

$$X = X^{1} \frac{\partial}{\partial x} + X^{2} \frac{\partial}{\partial y} + X^{3} \frac{\partial}{\partial z},$$

es defineixen el **gradient** de f, grad $f \in \mathcal{X}(U)$, el **rotacional** de X, rot $X \in \mathcal{X}(U)$, i la **divergència** de X, div $X \in C^{\infty}(U)$, com

$$\operatorname{grad} f = \nabla \cdot f = \frac{\partial f}{\partial x} \frac{\partial}{\partial x} + \frac{\partial f}{\partial y} \frac{\partial}{\partial y} + \frac{\partial f}{\partial z} \frac{\partial}{\partial z}$$
$$\operatorname{rot} X = \nabla \times X = \left(\frac{\partial X^3}{\partial y} - \frac{\partial X^2}{\partial z}\right) \frac{\partial}{\partial x} + \left(\frac{\partial X^1}{\partial z} - \frac{\partial X^3}{\partial x}\right) \frac{\partial}{\partial y} + \left(\frac{\partial X^2}{\partial x} - \frac{\partial X^1}{\partial y}\right) \frac{\partial}{\partial z}$$
$$\operatorname{div} X = \nabla \cdot X = \frac{\partial X^1}{\partial x} + \frac{\partial X^2}{\partial y} + \frac{\partial X^3}{\partial z}.$$

Definició 7.6.1. Siguin $f \in C^{\infty}(U)$ i $X \in \mathcal{X}(U)$. Es defineixen les formes diferencials sobre $U, \omega_X^1, \omega_X^2$ i ω_f^3 , de graus respectius 1, 2 i 3, com

$$\omega_X^1 = X^1 dx + X^2 dy + X^3 dz,$$

$$\omega_X^2 = X^1 dy \wedge dz + X^2 dz \wedge dx + X^3 dx \wedge dy,$$

$$\omega_f^3 = f dx \wedge dy \wedge dz.$$
(7.26)

Lema 7.6.2. Siguin $f \in C^{\infty}(U)$ i $X, Y, Z \in \mathcal{X}(U)$. Es compleix

a)
$$\omega_X^1(Y) = \langle X, Y \rangle$$
.

b)
$$\omega_X^2(Y,Z) = \langle X, Y \times Z \rangle = \det(X,Y,Z)$$
.

c)
$$\omega_f^3(X, Y, Z) = f \det(X, Y, Z)$$
.

Demostració. Les igualtats a) i c) són immediates a partir de les definicions. Comprovem la part b).

$$\det(X, Y, Z) = \begin{vmatrix} X^1 & Y^1 & Z^1 \\ X^2 & Y^2 & Z^2 \\ X^3 & Y^3 & Z^3 \end{vmatrix} = X^1 \begin{vmatrix} Y^2 & Z^2 \\ Y^3 & Z^3 \end{vmatrix} - X^2 \begin{vmatrix} Y^1 & Z^2 \\ Y^3 & Z^3 \end{vmatrix} + X^3 \begin{vmatrix} Y^1 & Z^2 \\ Y^2 & Z^2 \end{vmatrix}$$
$$= (X^1 dy \wedge dz + X^2 dz \wedge dx + X^3 dx \wedge dy)(Y, Z)$$
$$= \omega_X^2(Y, Z).$$

Per tant $\omega_X^2(Y,Z) = \det(X,Y,Z)$.

El resultat següent és immediat.

Proposició 7.6.3. Siguin $f \in C^{\infty}(U)$ i $X \in \mathcal{X}(U)$. Es compleix

$$df = \omega_{\text{grad }f}^{1}$$

$$d\omega_{X}^{1} = \omega_{\text{rot }X}^{2}$$

$$d\omega_{X}^{2} = \omega_{\text{div }X}^{3}$$
(7.27)

Proposició 7.6.4. Siguin $f \in C^{\infty}(U)$ i $X \in \mathcal{X}(U)$. Es compleix

- a) rot grad f = 0,
- b) div rot X = 0.

Demostració. Aquestes identitats resulten immediatament de la Proposició 7.6.3 i del fet que la diferencial exterior compleix $d^2=0$.

Definició 7.6.5. Sigui S una superfície orientada de \mathbb{R}^3 (possiblement amb vora). Sigui X un camp vectorial definit en un entorn obert de S. Es defineix la **integral de superfície**, o flux, de X a través de S com la integral

$$\int_{S} X \equiv \int_{S} X \cdot dS := \int_{S} \omega_{X}^{2}. \tag{7.28}$$

Comentari 7.6.6. A l'anterior expressió, dS denota l'element d'àrea de la superfície, i.e. $dS = \eta_S$. Suposem que $(U, \varphi = \varphi(u, v))$ és una parametrització de S compatible amb l'orientació i tal que $S \setminus \varphi(U)$ és una unió de 1-subvarietats. Llavors

$$\begin{split} \int_{S} X &= \int_{S} \omega_{X}^{2} = \int_{U} \omega_{X}^{2} \left(\frac{\partial \varphi}{\partial u}, \frac{\partial \varphi}{\partial v} \right) du \, dv \\ &= \int_{U} \det \left(X, \frac{\partial \varphi}{\partial u}, \frac{\partial \varphi}{\partial v} \right) du \, dv = \int_{U} \left\langle X, \frac{\partial \varphi}{\partial u} \wedge \frac{\partial \varphi}{\partial v} \right\rangle du \, dv \\ &= \int_{U} \langle X, \nu \rangle \left\| \frac{\partial \varphi}{\partial u} \wedge \frac{\partial \varphi}{\partial v} \right\| du \, dv = \int_{U} (X \cdot \nu) \, dS \equiv \int_{U} X \cdot dS, \end{split}$$

on ν és el camp normal unitari de S que defineix l'orientació.

Definició 7.6.7. Sigui C una corba regular (i.e. una 1-subvarietat) de \mathbb{R}^3 amb vora. Sigui X un camp vectorial definit en un entorn obert de C. Es defineix la **integral de línia**, o circulació, de X al llarg de C com la integral

$$\int_C X \equiv \int_C X \cdot dL := \int_C \omega_X^1. \tag{7.29}$$

Comentari 7.6.8. A l'anterior expressió, dL denota l'element de longitud de la corba. Sigui $\gamma\colon I=(a,b)\to C\subset\mathbb{R}^3$ parametrització de C compatible amb l'orientació i tal que $C\backslash\gamma(I)$ és un o dos punts. Llavors

$$\int_C X = \int_C \omega_X^1 = \int_a^b \omega_X^1(\gamma'(t)) dt$$
$$= \int_a^b \langle X, \gamma'(t) \rangle dt = \int_a^b X \cdot \gamma'(t) dt \equiv \int_C X \cdot dL.$$

Com a colol·laris del teorema de Stokes s'obté

Teorema 7.6.9 (Teorema del rotacional). Sigui S una superfície orientada de \mathbb{R}^3 amb vora i sigui X un camp vectorial definit en un entorn de S. Aleshores

$$\int_{S} \operatorname{rot} X \cdot dS = \int_{\partial S} X \cdot dL. \tag{7.30}$$

Demostració. De la Proposició 7.6.3 i del teorema de Stokes resulta

$$\int_{S} \operatorname{rot} X \cdot dS = \int_{S} \omega_{\operatorname{rot} X}^{2} = \int_{S} d\omega_{X}^{1} = \int_{\partial S} \omega_{X}^{1} = \int_{\partial S} X \cdot dL.$$

com volíem demostrar.

Teorema 7.6.10 (Teorema de la divergència). Sigui D una 3-subvarietat amb vora de \mathbb{R}^3 i sigui X un camp vectorial definit en un entorn de D. Aleshores

$$\int_{D} \operatorname{div} X \cdot dV = \int_{\partial D} X \cdot dS,\tag{7.31}$$

on dV és l'element de volum de D, i.e. $dV = \eta$.

Demostració. De la Proposició 7.6.3 i del teorema de Stokes resulta

$$\int_{D} \operatorname{div} X \, dV = \int_{D} \omega_{\operatorname{div} X}^{3} = \int_{D} d\omega_{X}^{2} = \int_{\partial D} \omega_{X}^{2} = \int_{\partial D} X \cdot dS.$$

com volíem demostrar.

Exemple 7.6.11. Sigui E l'el·lipsoide de \mathbb{R}^3 definit per

$$E = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + 2y^2 + 3z^2 = 1\}$$

orientat pel vector normal unitari ν_E que, en el punt $p=(1,0,0)\in E$, val $\nu_E(p)=(1,0,0)$. Considerem el camp vectorial

$$X(x,y,z) = \frac{1}{(x^2 + y^2 + z^2)^{3/2}} (x,y,z).$$

Volem determinar el flux, o integral de superfície, de X a través de E, és a dir la integral $I = \int_E X \cdot dS$.

Observem primer que div X=0. D'aquí però no podem deduir que I=0 ja que el camp X és singular a l'origen. Per aquest motiu considerem també l'esfera de radi R

$$S_R = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = R^2\}$$

orientada pel vector normal unitari $\nu_{S_R} = \frac{1}{R}(x,y,z)$. Parametritzem S_R per la colatitud θ i la longitud φ . Llavors l'element d'àrea dS de S_R és

$$\eta_{S_R} = R^2 \sin\theta \, d\theta \wedge d\varphi$$

i pel teorema de la divergència tindrem

$$\int_E X \cdot dS = \int_{S_R} X \cdot dS = \int_{S_R} \langle X, \nu_{S_R} \rangle \, dS = \int_0^{2\pi} \left(\int_0^{\pi} \frac{1}{R^2} \cdot R^2 \sin \theta \, d\theta \right) d\varphi = 4\pi.$$

Exemple 7.6.12. Considerem la semiesfera S donada per

$$S = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = 1, z \ge 0\}$$

orientada pel vector normal unitari ν_S que, en el punt $p=(0,0,1)\in S$, val $\nu_S(p)=(0,0,1)$. Considerem el camp vectorial

$$X(x, y, z) = (y - z, x + z^{2}, 2yz - x).$$

Comprovem el teorema del rotacional per aquest camp i aquesta superfície. D'una banda és rot X=0 i per tant serà $\int_S \operatorname{rot} X \cdot dS = 0$. Calculem ara la circulació, o integral de línia, de X al llarg de ∂S . Notem que $\alpha(t) = (\cos t, \sin t, 0)$ és una parametrització positiva de ∂S i es compleix

$$\alpha'(t) = (-\sin t, \cos t, 0),$$

$$X_{\alpha(t)} = (\sin t, \cos t, -\cos t).$$

Per tant

$$\int_{\partial S} X = \int_{0}^{2\pi} \langle X_{\alpha(t)}, \alpha'(t) \rangle \, dt = \int_{0}^{2\pi} (-\sin^2 t + \cos^2 t) \, dt = 0$$

com esperavem.