Mathe 1

Mitschrift

Fabian Damken

18. Oktober 2016

Inhaltsverzeichnis

1	Grundbegriffe								
	1.1	Aussagen							
		1.1.1	Aussageformen						
		1.1.2	Quantoren						
		1.1.3	Aussagenlogische Verknüpfungen						
	1.2 Mengen								
		1.2.1	Formalia						
		1.2.2	Operationen						

1 Grundbegriffe

1.1 Aussagen

Beispiele:

- A_1 : 3 ist eine gerade Zahl.
- A_2 : Jede natürliche Zahl ist gerade.
- A_3 : 3 ist prim.

1.1.1 Aussageformen

Aussagen mit Variablen.

Beispiele:

- E_1 : x + 10 = 5
- E_2 : $x^2 >= 0$
- E_3 : n ist gerade.
- E_4 : $x^2 + y^2 = 1$

1.1.2 Quantoren

- $\forall x \in M : E(x)$ Für alle x in M gilt E(x) wobei E eine Aussageform darstellt.
- $\exists x \in M : E(x)$ Es existiert mindestens ein x in M für das gilt E(x) wobei E eine Aussageform darstellt.

Beispiele:

- $\forall x \in \mathbb{R} : x^2 >= 0$ (w)
- $\forall n \in \mathbb{N} : E_3(n)$ (f)
- $\exists n \in \mathbb{N} : E_3(n) (\mathbf{w})$

1.1.3 Aussagenlogische Verknüpfungen

- $A \wedge B$ Konjunktion (und)
- $A \vee B$ Disjunktion (oder)
- $A \implies B$ Implikation (aus A folgt B)
- $\neg A$ Negation (nicht)
- $A \iff B$ Äquivalenz (Gleichheit)

A	$\mid B \mid$	$\neg A$	$\neg B$	$A \wedge B$	$A \lor B$	$A \implies B ((\neg A) \vee B)$	$A \iff B$
W	W	f	f	W	W	W	W
W	f	f	w	f	W	f	f
f	w	W	f	f	w	W	f
f	f	W	w	f	f	W	f

Äquivalenz $A \iff B \equiv (A \implies B) \land (B \implies A)$

Kontraposition $A \implies B \iff (\neg B \implies \neg A)$

de Morgan'schen Regeln

- $\neg (A \lor B) \iff \neg A \land \neg B$
- $\neg (A \land B) \iff \neg A \lor \neg B$

Distributivgesetz

- $(A \lor B) \land C \iff (A \land C) \lor (B \land C)$
- $(A \land B) \lor C \iff (A \lor C) \land (B \lor C)$

1.2 Mengen

Beispiele:

- $\mathbb{N} = \{0; 1; ...; n; ...\}$
- $\mathbb{N} * = \{1; 2; ...; n; ...\} = \{n \in \mathbb{N} : n \neq 0\}$
- $\{x \in M : E(x)\}$ wobei E eine Aussagenform darstellt.
- $\bullet \ \{n \in \mathbb{N} : prim(x) \land n <= 6\} = \{2; 3; 5\}$

1.2.1 Formalia

- $A \subseteq B \equiv \forall x \in A : x \in B$
- $\bullet \ A = B \equiv (A \subseteq B) \land (B \subseteq A) \equiv \forall x \in M : (x \in A \implies x \in B) \land (x \in B \implies x \in A)$
- $\emptyset \equiv \{x \in A : x \neq x\} \ (x \neq x \equiv \neg x = x)$

1.2.2 Operationen

 $M, N \in G$

- $M \cap N \equiv \{x \in M : x \in N\} \equiv \{x \in G : x \in M \land x \in N\}$
- $M \cup N \equiv \{x \in G : x \in M \lor x \in N\}$
- $M \setminus N \equiv \{x \in M : x \notin N\} \equiv \{x \in M : \neg x \in N\}$
- $M^{c} \equiv \{x \in G : x \notin M\} \equiv \{x \in G : \neg x \in M\}$
- $M \times N \equiv \{(x,y) : x \in M, y \in N\}$ Kartesisches Produkt
- $A_1 \times ... \times A_n \equiv \{(x_1, ..., x_n) : x_y \in A_1, ..., x_n \in A_n\}$
- $P(M) = \{x : x \in M\}$
 - $-\emptyset \subseteq P(\emptyset) \subseteq P(P(\emptyset)) \subseteq \dots$
 - $-V_w \subseteq P^n(\emptyset) \ (n \in \mathbb{N})$
 - $-P(V_w) = V_0(w+1)$