

Europäisches Patentamt

European Patent Office

Office européen des brevets

EP 0 747 483 A2 (11)

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication: 11.12.1996 Bulletin 1996/50

(21) Application number: 96108556.0

(22) Date of filing: 29.05.1996

(51) Int. Cl.6: C12N 15/53, C12N 15/54, C12N 15/60, C12N 15/70. C12N 15/74, C12N 15/80. C12N 15/81, C12P 23/00

(84) Designated Contracting States: AT BE CH DE DK ES FR GB IT LI NL

(30) Priority: 09.06.1995 EP 95108888

(71) Applicant: F. HOFFMANN-LA ROCHE AG 4002 Basel (CH)

(72) Inventors:

· Hohmann, Hans-Peter 79100 Freiburg (DE)

- · Pasamontes, Luis 4632 Trimbach (CH)
- · Tessier, Michel 68100 Mulhouse (FR)
- van Loon, Adolphus 4310 Rheinfelden (CH)
- (74) Representative: Braun, Axel et al F.Hoffmann-La Roche AG Patent Department (PLP), 124 Grenzacherstrasse 4070 Basel (CH)

(54)Fermentative carotenoid production

The present invention is directed to a DNA sequence comprising one or more DNA sequences selected from the group consisting of a DNA sequence which encodes the GGPP synthase of Flavobacterium sp. R1534 (crtE), a DNA sequence which encodes the prephytoene synthase of Flavobacterium sp. R1534 (crtB), a DNA sequence which encodes the phytoene desaturase of Flavobacterium sp. R1534 (crtl), a DNA sequence which encodes the lycopene cyclase of Flavobacterium sp. R1534 (crtY) or a DNA sequence which encodes the β -carotene hydroxylase of Flavobacterium sp. R1534 (crtZ) or DNA sequences which are substantially homolgous, vectors comprising such DNA sequences and/or a DNA sequence which encodes the β-carotene β4-oxygenase of Alcaligenes strain PC-1 (crt W) or a DNA sequence which is substantially homologous, cells which are transformed by such DNA sequences and/or vectors, a process for the preparation of a desired carotenoid or a mixture of carotenoids by cultering such transformed cells and a process for the preparation of a food or feed composition.

Fla. 1

Description

30

35

40

45

55

Over 600 different carotenoids have been described from carotenogenic organisms found among bacteria, yeast, fungi and plants. Currently only two of them, β-carotene and astaxanthin are commercially produced in microorganisms and used in the food and feed industry. β-carotene is obtained from algae and astaxanthin is produced in Pfaffia strains which have been generated by classical mutation. However, fermentation in Pfaffia has the disadvantage of long fermentation cycles and recovery from algae is cumbersome. Therefore it is desiderable to develop production systems which have better industrial applicability, e.g. can be manipulated for increased titers and/or reduced fermentation times. Two such systems using the biosynthetic genes form Erwinia herbicola and Erwinia uredovora have already been described in WO 91/13078 and EP 393 690, respectively. Furthermore, three β -carotene ketolase genes (β -carotene β -4-oxygenase) of the marine bacteria Agrobacterium aurantiacum and Alcaligenes strain PC-1 (crtW) [Misawa, 1995, Biochem. Biophys. Res. Com. 209, 867-876][Misawa, 1995, J. Bacteriology 177, 6575-6584] and from the green algae Haematococcus pluvialis (bkt) [Lotan, 1995, FEBS Letters 364, 125-128][Kajiwara, 1995, Plant Mol. Biol. 29, 343-352] have been cloned. E. coli carrying either the carotenogenic genes (crtE, crtB, crtY and crtl) of E. herbicola [Hundle, 1994, MGG 245, 406-416] or of E. uredovora and complemented with the crtW gene of A. aurantiacum [Misawa, 1995] or the bkt gene of H. pluvialis [Lotan, 1995][Kajiwara, 1995] resulted in the accumulation of canthaxanthin (β,β-carotene-4,4'-dione), originating from the conversion of β -carotene, via the intermediate echinenone (β , β -carotene-4-one). Introduction of the above mentioned genes (crtW or bkt) into E. coli cells harbouring besides the carotenoid biosynthesis genes mentioned above also the crtZ gene of E. uredovora [Kajiwara, 1995][Misawa, 1995], resulted in both cases in the accumulation of astaxanthin (3,3'-dihydroxy- β , β -carotene-4,4'-dione). The results obtained with the bkt gene, are in contrast to the observation made by others [Lotan, 1995], who using the same experimental set-up, but introducing the H. pluvialis bkt gene in a zeaxanthin (β , β -carotene-3,3'-diol) synthesising E. coli host harbouring the carotenoid biosynthesis genes of E. herbicola, a close relative of the above mentioned E. uredovora strain, did not observe astaxanthin production.

However, functionally active combinations of the carotenoid biosynthesising genes of the present invention with the known crtW genes have not been shown so far and even more importantly there is a continuing need in even more optimized fermentation systems for industrial application.

It is therefore an object of the present invention to provide a DNA sequence comprising one or more DNA sequences selected from the group consisting of:

 a) a DNA sequence which encodes the GGPP synthase of Flavobacterium sp. R1534 (crtE) or a DNA sequence which is substantially homologous;

b) a DNA sequence which encodes the prephytoene synthase of Flavobacterium sp. R1534 (crtB) or a DNA sequence which is substantially homologous;

c) a DNA sequence which encodes the phytoene desaturase of Flavobacterium sp. R1534 (crtl) or a DNA sequence which is substantially homologous;

d) a DNA sequence which encodes the lycopene cyclase of Flavobacterium sp. R1534 (crtY) or a DNA sequence which is substantially homologous;

e) a DNA sequence which encodes the β -carotene hydroxylase of Flavobacterium sp. R1534 (crtZ) or a DNA sequence which is substantially homologous.

It is also an object of the present invention to provide a vector comprising such DNA sequence, preferably in the form of an expression vector. Furthermore it is an object of the present invention to provide a cell which is transformed by such DNA sequence or vector, preferably which is a prokaryotic cell and more preferably which is E. coli or a Bacillus strain. Such transformed cell which is an eukaryotic cell, preferably a yeast cell or a fungal cell, is also an object of the present invention. Finally the present invention concerns also a process for the preparation of a desired carotenoid or a mixture of carotenoids by culturing such a cell under suitable culture conditions and isolating the desired carotenoid or a mixture of carotenoids from such cells or the culture medium and, in case only one carotenoid is desired separating it by methods known in the art from other carotenoids which might also be present and a process for the preparation of a food or feed composition characterized therein that after such a process has been effected the carotenoid or carotenoid mixture is added to food or feed.

Furthermore, a DNA sequence comprising the following DNA sequences is an object of the present invention:

a) a DNA sequence which encodes the GGPP synthase of Flavobacterium sp. R1534 (crtE) or a DNA sequence which is substantially homologous, and

- b) a DNA sequence which encodes the prephytoene synthase of Flavobacterium sp. R1534 (crtB) of a DNA sequence which is substantially homologous, and
- c) a DNA sequence which encodes the phytoene desaturase of Flavobacterium sp. R 1534 (crtl) or a DNA sequence which is substantially homologous.

It is also an object of the present invention to provide a vector comprising such DNA sequence, preferably in the form of an expression vector. Furthermore it is an object of the present invention to provide a cell which is transformed by such DNA sequence or vector, preferably which is a prokaryotic cell and more preferably which is E. coli or a Bacillus strain. Such transformed cell which is an eukaryotic cell, preferably a yeast cell or a fungal cell, is also an object of the present invention. Finally the present invention concerns also a process for the preparation of a desired carotenoid or a mixture of carotenoids by culturing such a cell under suitable conditions and isolating the desired carotenoid or a mixture of carotenoids from such cells or the culture medium and, in case only one carotenoid is desired separating it by methods known in the art from other carotenoids which might also be present, preferably such a process for the preparation of lycopene and a process for the preparation of a food or feed composition characterized therein that after such a process has been effected the carotenoid, preferably lycopene or carotenoid mixture, preferably a lycopene comprising mixture is added to food or feed.

Furthermore a DNA sequence comprising the following DNA sequence is also an object of the present invention:

- a) a DNA sequence which encodes the GGPP synthase of Flavobacterium sp. R1534 (crtE) or a DNA sequence which is substantially homologous, and
- b) a DNA sequence which encodes the prephytoene synthase of Flavobacterium sp. R1534 (crtB) or a DNA sequence which is substantially homologous, and
- c) a DNA sequence which encodes the phytoene desaturase of Flavobacterium sp. R1534 (crtl) or a DNA sequence which is substantially homologous, and
- d) a DNA sequence which encodes the lycopene cyclase of Flavobacterium sp. R1534 (crtY) or a DNA sequence which is substantially homologous.

It is also an object of the present invention to provide a vector comprising such DNA sequence, preferably in the form of an expression vector. Furthermore it is an object of the present invention to provide a cell which is transformed by such DNA sequence or vector, preferably which is a prokaryotic cell and more preferably which is E. coli or a Bacillus strain. Such transformed cell which is an eukaryotic cell, preferably a yeast cell or a fungal cell, is also an object of the present invention. Finally the present invention concerns also a process for the preparation of a desired carotenoid or a mixture of carotenoids by culturing such a cell under suitable conditions and isolating the desired carotenoid or a mixture of carotenoids from such cells or the culture medium and, in case only one carotenoid is desired separating it by methods known in the art from other carotenoids which might also be present, preferably such a process for the preparation of β -carotene and a process for the preparation of a food or feed composition characterized therein that after such a process has been effected the carotenoid, preferably β -carotene or carotenoid mixture, preferably a β -carotene comprising mixture is added to food or feed.

Furthermore a cell which is transformed by the above mentioned DNA sequence comprising subsequences a) to d) or the vector comprising it and a second DNA sequence which encodes the β -carotene β 4-oxygenase of Alcaligenes strain PC-1 (crt W) or a DNA sequence which is substantially homologous or a second vector which comprises a DNA sequence which encodes the β -carotene β 4-oxygenase of Alcaligenes strain PC-1 (crt W) or a DNA sequence which is substantially homologous; and a process for the preparation of a desired carotenoid or a mixture of carotenoids by culturing such cell under suitable conditions and isolating the desired carotenoid or a mixture of carotenoids from such cells or the culture medium and, in case only one carotenoid is desired separating it by methods known in the art from other carotenoids which might also be present, preferably such a process for the preparation of echinenone and a process for the preparation of a food or feed composition characterized therein that after such a process has been effected the carotenoid, preferably echinenone or carotenoid mixture, preferably an echinenone comprising mixture is added to food or feed.

Furthermore it is an object of the present invention to provide a DNA sequence as mentioned above comprising subsequences a) to d) and a DNA sequence which encodes the β-carotene β4-oxygenase of Alcaligenes strain PC-1 (crt W) or a DNA sequence which is substantially homologous and a vector comprising such DNA sequence, preferably in the form of an expression vector. Furthermore it is an object of the present invention to provide a cell which is transformed by such DNA sequence or vector, preferably which is a prokaryotic cell and more preferably which is E. coli or a Bacillus strain. Such transformed cell which is an eukaryotic cell, preferably a yeast cell or a fungal cell, is also an

5

20

25

object of the present invention. Finally the present invention concerns also a process for the preparation of a desired carotenoid or a mixture of carotenoids by culturing such a cell under suitable culture conditions and isolating the desired carotenoid or a mixture of carotenoids from such cells of the culture medium and, in case only one carotenoid is desired separating it by methods known in the art from other carotenoids which might also be present, especially such a process for the preparation of echinenone or canthaxanthin and a process for the preparation of a food or feed compositing characterized therein that after such a process has been effected the carotenoid, preferably echinenone or canthaxanthin or carotenoid mixture, preferably a echinenone or canthaxanthin containing mixture is added to food or feed.

Furthermore a DNA sequence comprising the following DNA sequences is also an object of the present invention:

- a) a DNA sequence which encodes the GGPP synthase of Flavobacterium sp. R1534 (crtE) or a DNA sequence which is substantially homologous, and
- b) a DNA sequence which encodes the prephytoene synthase of Flavobacterium sp. R1534 (crtB) or a DNA sequence which is substantially homologous, and
- c) a DNA sequence which encodes the phytoene desaturase of Flavobacterium sp. R1534 (crtl) or a DNA sequence which is substantially homologous, and
- d) a DNA sequence which encodes the lycopene cyclase of Flavobacterium sp. R1534 (crtY) or a DNA sequence which is substantially homologous, and
- e) a DNA sequence which encodes the β -carotene hydroxylase of Flavobacterium sp. R1534 (crtZ) or a DNA sequence which is substantially homologous.

It is also an object of the present invention to provide a vector comprising such DNA sequence, preferably in the form of an expression vector. Furthermore it is an object of the present invention to provide a cell which is transformed by such DNA sequence or vector, preferably which is a prokaryotic cell and more preferably which is E. coli or a Bacillus strain. Such transformed cell which is an eukaryotic cell, preferably a yeast cell or a fungal cell, is also an object of the present invention. Finally the present invention concerns also a process for the preparation of a desired carotenoid or mixture of carotenoids by culturing such a cell under suitable conditions and isolating the desired carotenoid or a mixture of carotenoids from such cells of the culture medium and, in case only one carotenoid is desired separating it by methods known in the art from other carotenoids which might also be present, preferably such a process for the preparation of zeanxanthin and a process for the preparation of a food or feed composition characterized therein that after such a process has been effected the carotenoid, preferably zeaxanthin or the carotenoid mixture, preferably a zeaxanthin containing mixture is added to food or feed.

Furthermore a DNA sequence as mentioned above comprising subsequences a) to e) and in addition a DNA sequence which encodes the β -carotene β 4-oxygenase of Alcaligenes strain PC-1 (crt W) of a DNA sequence which is substantially homologous is an object of the present invention and to provide a vector comprising such DNA sequence, preferably in form of an expression vector. Furthermore it is an object of the present invention to provide a cell which is transformed by such DNA sequence or vector, preferably which is a prokaryotic cell and more preferably which is E. coli or a Bacillus strain. Such transformed cell which is an eukaryotic cell, preferably a yeast cell or a fungal cell, is also an object of the present invention. Finally the present invention concerns also a process for the preparation of a desired carotenoid or a mixture of carotenoids by culturing such a cell under suitable culture conditions and isolating the desired carotenoid or a mixture or carotenoids from such cells of the culture medium and, in case only one carotenoid is desired separting it by methods known in the art from other carotenoids which might also be present, preferably such a process for the preparation of zeaxanthin, adonixanthin or astaxanthin and a process for the preparation of a food or feed composition characterized therein that after such a process has been effected the carotenoid, preferably zeaxanthin, adonixanthin or astaxanthin or carotenoid mixture, preferably a zeaxanthin, adonixanthin or astaxanthin containing mixture is added to food or feed.

Furthermore a cell which is transformed by the DNA sequence mentioned above comprising subsequences a) to e) or a vector comprising such DNA sequence and a second DNA sequence which encodes the β -carotene β 4-oxygenase of Alcaligenes strain PC-1 (crt W) or a DNA sequence which is substantially homologous or a second vector which comprises a DNA sequence which encodes the β -carotene β 4-oxygenase of Alcaligenes strain PC-1 (crt W) or a DNA sequence which is substantially homologous is also an object of the present invention and a process for the preparation of a desired carotenoid or a mixture of carotenoids by culturing such a cell under suitable conditions and isolating the desired carotenoid or a mixture of carotenoids from such cells or the culture medium, and in case only one carotenoid is desired separating it by methods known in the art from other carotenoids which might also be present, preferably such a process for the preparation of zeanxanthin or adonixanthin and a process for the preparation of a food or feed composition characterized therein that after such a process has been effected the carotenoid, preferably zeaxanthin or

10

15

20

25

adonixanthin or carotenoid mixture, preferably a zeaxanthin or adonixanthin containing mixture is added to food or feed.

In this context it should be mentioned that the expression "a DNA sequence is substantially homologous" refers with respect to the crtE encoding DNA sequence to a DNA sequence which encodes an amino acid sequence which shows more than 45%, preferably more than 60% and more preferably more than 75% and most preferably more than 90% identical amino acids when compared to the amino acid sequence of crtE of Flavobacterium sp. 1534 and is the amino acid sequence of a polypeptide which shows the same type of enzymatic activity as the enzyme encoded by crtE of Flavobacterium sp. 1534. In analogy with respect to crtB this means more than 60%, preferably more than 70%, more preferably more than 80% and most preferably more than 90%; with respect to crtI this means more than 70%, preferably 80% and most preferably more than 90%; with respect to crtZ this means 55%, preferably 70%, more preferably 80% and most preferably 90%; with respect to crtZ this means more than 60%, preferably 70%, more preferably 80% and most preferably 90%; with respect to crt W this also means more than 60%, preferably 70%, more preferably 80% and most preferably 90%. Sequences which are substantially homologous to crt W are known, e.g. in form of the β-carotene β4-oxygenase of Agrobacterium aurantiacum or the green algae Haematococous pluvialis (bkt).

DNA sequences in form of genomic DNA, cDNA or synthetic DNA can be prepared as known in the art [see e.g. Sambrook et al., Molecular Cloning, Cold Spring Habor Laboratory Press 1989] or, e.g. as specifically described in Examples 1, 2 or 7.

The cloning of the DNA-sequences of the present invention from such genomic DNA can than be effected, e.g. by using the well known polymerase chain reaction (PCR) method. The principles of this method are outlined e.g. in PCR Protocols: A guide to Methods and Applications, Academic Press, Inc. (1990). PCR is an in vitro method for producing large amounts of a specific DNA of defined length and sequence from a mixture of different DNA-sequences. Thereby, PCR is based on the enzymatic amplification of the specific DNA fragment of interest which is flanked by two oligonucleotide primers which are specific for this sequence and which hybridize to the opposite strand of the target sequence. The primers are oriented with their 3' ends pointing toward each other. Repeated cycles of heat denaturation of the template, annealing of the primers to their complementary sequences and extension of the annealed primers with a DNA polymerase result in the amplification of the segment between the PCR primers. Since the extension product of each primer can serve as a template for the other, each cycle essentially doubles the amount of the DNA fragment produced in the previous cycle. By utilizing the thermostable Taq DNA polymerase, isolated from the thermophilic bacteria Thermus aquaticus, it has been possible to avoid denaturation of the polymerase which necessitated the addition of enzyme after each heat denaturation step. This development has led to the automation of PCR by a variety of simple temperature-cycling devices. In addition, the specificity of the amplification reaction is increased by allowing the use of higher temperatures for primer annealing and extension. The increased specificity improves the overall yield of amplified products by minimizing the competition by non-target fragments for enzyme and primers. In this way the specific sequence of interest is highly amplified and can be easily separated from the non-specific sequences by methods known in the art, e.g. by separation on an agarose gel and cloned by methods known in the art using vectors as described e.g. by Holten and Graham in Nucleic Acid Res. 19, 1156 (1991), Kovalic et. al. in Nucleic Acid Res. 19, 4560 (1991), Marchuk et al. in Nucleic Acid Res. 19, 1154 (1991) or Mead et al. in Bio/Technology 9, 657-663 (1991).

The oligonucleotide primers used in the PCR procedure can be prepared as known in the art and described e.g. in Sambrook et al., s.a.

Amplified DNA-sequences can than be used to screen DNA libraries by methods known in the art (Sambrook et al., s.a.) or as specifically described in Examples 1 and 2.

Once complete DNA-sequences of the present invention have been obtained they can be used as a guideline to define new PCR primers for the cloning of substantially homologous DNA sequences from other sources. In addition they and such homologous DNA sequences can be integrated into vectors by methods known in the art and described e.g. in Sambrook et al. (s.a.) to express or overexpress the encoded polypeptide(s) in appropriate host systems. However, a man skilled in the art knows that also the DNA-sequences themselves can be used to transform the suitable host systems of the invention to get overexpression of the encoded polypeptide. Appropriate host systems are for example Bacteria e.g. E. coli, Bacilli as, e.g. Bacillus subtilis or Flavobacter strains. E. coli, which could be used are E. coli K12 strains e.g. M15 [described as DZ 291 by Villarejo et al. in J. Bacteriol. 120, 466-474 (1974)], HB 101 [ATCC No. 33694] or E. coli SG13009 [Gottesman et al., J. Bacteriol. 148, 265-273 (1981)]. Suitable eukaryotic host systems are for example fungi, like Aspergilli, e.g. Aspergillus niger [ATCC 9142] or yeasts, like Saccharomyces, e.g. Saccharomyces cerevisiae or Pichia, like pastoris, all available from ATCC.

Suitable vectors which can be used for expression in E. coli are mentioned, e.g. by Sambrook et al. [s.a.] or by Fiers et al. in Procd. 8th Int. Biotechnology Symposium" [Soc. Franc. de Microbiol., Paris (Durand et al., eds.), pp. 680-697 (1988)] or by Bujard et al. in Methods in Enzymology, eds. Wu and Grossmann, Academic Press, Inc. Vol. 155, 416-433 (1987) and Stüber et al. in Immunological Methods, eds. Lefkovits and Pernis, Academic Press, Inc., Vol. IV, 121-152 (1990). Vectors which could be used for expression in Bacilli are known in the art and described, e.g. in EP 405 370, EP 635 572 Procd. Nat. Acad. Sci. USA 81, 439 (1984) by Yansura and Henner, Meth. Enzym. 185, 199-228 (1990) or EP 207 459. Vectors which can be used for expression in fungi are known in the art and described e.g. in EP 420 358 and for yeast in EP 183 070, EP 183 071, EP 248 227, EP 263 311.

Once such DNA-sequences have been expressed in an appropriate host cell in a suitable medium the carotenoids can be isolated either from the medium in the case they are secreted into the medium or from the host organism and, if necessary separated from other carotenoids if present in case one specific carotenoid is desired by methods known in the art (see e.g. Carotenoids Vol IA: Isolation and Analysis, G. Britton, S. Liaaen-Jensen, H. Pfander; 1995, Birkhäuser Verlag, Basel).

The carotenoids of the present invention can be used in a process for the preparation of food or feeds. A man skilled in the art is familiar with such process. Such compound foods or feeds can further comprise additives or components generally used for such purpose and known in the state of the art.

After the invention has been described in general hereinbefore, the following figures and examples are intended to illustrate details of the invention, without thereby limiting it in any matter.

- Figure 1: The biosynthesis pathway for the formation or carotenoids of *Flavobacterium* sp. R1534 is illustrated explaining the enzymatic activities which are encoded by DNA sequences of the present invention.
- Southern blot of genomic *Flavobacterium* sp. R1534 DNA digested with the restriction enzymes shown on top of each lane and hybridized with Probe 46F. The arrow indicated the isolated 2.4 kb Xhol/Pstl fragment.
 - Southern blot of genomic *Flavobacterium* sp. R1534 DNA digested with Clal or double digested with Clal and HindIII. Blots shown in Panel A and B were hybridized to probe A or probe B, respectively (see examples). Both Clal/HindIII fragments of 1.8 kb and 9.2 kb are indicated.
 - Southern blot of genomic *Flavobacterium* sp. R1534 DNA digested with the restriction enzymes shown on top of each lane and hybridized to probe C. The isolated 2.8 kb Sa1l/HindIII fragment is shown by the arrow.
 - Figure 5: Southern blot of genomic *Flavobacterium* sp. R1534 DNA digested with the restriction enzymes shown on top of each lane and hybridized to probe D. The isolated Bcll/Sphl fragment of approx. 3 kb is shown by the arrow.
 - Figure 6: Physical map of the organization of the carotenoid biosynthesis cluster in Flavobacterium sp. R1534, deduced from the genomic clones obtained. The location of the probes used for the screening are shown as bars on the respective clones.
- Nucleotide sequence of the Flavobacterium sp. R1534 carotenoid biosynthesis cluster and its flanking regions. The nucleotide sequence is numbered from the first nucleotide shown (see BamHI site of Fig. 6). The deduced amino acid sequence of the ORF's (orf-5, orf-1, crtE, crtB, crtI, crtY, crtZ and orf-16) are shown with the single-letter amino acid code. Arrow (-->) indicate the direction of the transcription; asterisks, stop codons.
 - Figure 8: Protein sequence of the GGPP synthase (crtE) of Flavobacterium sp. R1534 with a MW of 31331 Da.
 - Figure 9: Protein sequence of the prephytoene synthetase (crtB) of *Flavobacterium* sp. R1534 with a MW of 32615 Da.
 - Figure 10: Protein sequence of the phytoene desaturase (crtl) of *Flavobacterium* sp. R1534 with a MW of 54411 Da.
 - Figure 11: Protein sequence of the lycopene cyclase (crtY) of Flavobacterium sp. R1534 with a MW of 42368 Da.
 - Figure 12: Protein sequence of the β-carotene hydroxylase (crtZ) of *Flavobacterium* sp. R1534 with a MW of 19282 Da.
- Figure 13: Recombinant plasmids containing deletions of the *Flavobacterium* sp. R1534 carotenoid biosynthesis gene cluster.
 - Figure 14: Primers used for PCR reactions. The underlined sequence is the recognition site of the indicated restriction enzyme. Small caps indicate nucleotides introduced by mutagenesis. Boxes show the artificial RBS which is recognized in B. subtilis. Small caps in bold show the location of the original adenine creating

20

25

30

40

45

the translation start site (ATG) of the following gene (see original operon). All the ATG's of the original Flavobacter carotenoid biosynthetic genes had to be destroyed to not interfere with the rebuild transcription start site. Arrows indicate start and ends of the indicated Flavobacterium R1534 WT carotenoid genes.

5 Figure 15:

Linkers used for the different constructions. The underlined sequence is the recognition site of the indicated restriction enzyme. Small caps indicate nucleotides introduced by synthetic primers. Boxes show the artificial RBS which is recognized in B. subtilis. Arrow indicate start and ends of the indicated Flavo-bacterium carotenoid genes.

10

Figure 16: Costruction of plasmids pBIIKS(+)-clone59-2, pLyco and pZea4.

Figure 17: Construction of plasmid p602CAR.

5 Figure 18: Construction of plasmids pBIIKS(+)-CARVEG-E and p602 CARVEG-E.

Figure 19: Construction of plasmids pHP13-2CARZYIB-EINV and pHP13-2PN25ZYIB-EINV.

Figure 20: Construction of plasmid pXI12-ZYIB-EINVMUTRBS2C.

Figure 21:

Norhern blot analysis of B. subtilis strain BS1012::ZYIB-EINV4. Panel A: Schematic representation of a reciprocal integration of plasmid pXI12-ZYIB-EINV4 into the levan-sucrase gene of B-subtilis. Panel B: Northern blot obtained with probe A (PCR fragment which was obtained with CAR 51 and CAR 76 and hybridizes to the 3' end of crtZ and the 5' end or crtY). Panel C: Northern blot obtained with probe B (BamHI-Xhol fragment isolated from plasmid pBIIKS(+)-crtE/2 and hybridizing to the 5' part of the crtE gene).

25

Figure 22: Schematic representation of the integration sites of three transformed Bacillus subtilis strains: BS1012::SFCO, BS1012::SFCOCAT1 and BA1012::SFCONEO1. Amplification of the synthetic Flavo-bacterium carotenoid operon (SFCO) can only be obtained in those strains having amplifiable structures. Probe A was used to determine the copy number of the integrated SFCO. Erythromycine resistance gene (ermAM), chloramphenicol resistance gene (cat), neomycine resistance gene (neo), terminator of the cryT gene of B. subtilis (cryT), levan-sucrase gene (sac-B 5' and sac-B 3'), plasmid sequences of pXI12 (pXI12), promoter originating from site I of the veg promoter complex (Pvegl).

35

40

30

Figure 23: Construction of plasmids pXI12-ZYIB-EINV4MUTRBS2CNEO and pXI12-ZYIB-EINV4MUTRBS2CCAT.

<u>Figure 24</u>: Complete nucleotide sequence of plasmid pZea4.

Figure 25:

Synthetic crtW gene of Alcaligenes PC-1. The translated protein sequence is shown above the double stranded DNA sequence. The twelve oligonucleotides (crtW1-crtW12) used for the PCR synthesis are underlined.

45 <u>Figure 26</u>:

Construction of plasmid pBIIKS-crtEBIYZW. The HindIII-Pm1I fragment of pALTER-Ex2-crtW, carrying the synthetic crtW gene, was cloned into the HindIII and MluI (blunt) sites. PvegI and Ptac are the promoters used for the transcription of the two opera. The CoIE1 replication origin of this plasmid is compatible with the p15A origin present in the pALTER-Ex2 constructs.

50 <u>Figure 27</u>:

Relevant inserts of all plasmids constructed in Example 7. Disrupted genes are shown by //. Restriction sites: S=SacI, X=XbaI, H=HindIII, N=NsiI, Hp=HpaI, Nd=NdeI.

Figure 28:

Reaction products (carotenoids) obtained from β-carotene by the process of the present invention.

55 Example 1

Materials and general methods used

Bacterial strains and plasmids: Flavobacterium sp. R1534 WT (ATCC 21588) was the DNA source for the genes

cloned. Partial genomic libraries of *Flavobacterium sp.* R1534 WT DNA were constructed into the pBluescriptII+(KS) or (SK) vector (Stratagene, La Jolla, USA) and transformed into *E. coli* XL-1 blue (Stratagene) or JM109.

Media and growth conditions: Transformed *E. coli* were grown in Luria broth (LB) at 37° C with 100μg Ampicillin (Amp)/ml for selection. *Flavobacterium sp.* R1534 WT was grown at 27° C in medium containing 1% glucose, 1% tryptone (Difco Laboratories), 1% yeast extract (Difco), 0.5% MgSO₄ 7H₂O and 3% NaCl.

Colony screening: Screening of the *E. coli* transformants was done by PCR basically according to the method described by Zon et al. [Zon et al., BioTechniques <u>7</u>, 696-698 (1989)] using the following primers:

Primer #7: 5'-CCTGGATGACGTGCTGGAATATTCC-3'

Primer #8: 5'-CAAGGCCCAGATCGCAGGCG-3'

Genomic DNA: A 50 ml overnight culture of *Flavobacterium sp*. R1534 was centrifuged at 10,000 g for 10 minutes. The pellet was washed briefly with 10 ml of lysis buffer (50 mM EDTA, 0.1M NaCl pH7.5), resuspended in 4 ml of the same buffer sumplemented with 10 mg of lysozyme and incubated at 37°C for 15 minutes. After addition of 0.3 ml of N-Lauroyl sarcosine (20%) the incubation at 37°C was continued for another 15 minutes before the extraction of the DNA with phenol, phenol/chloroform and chloroform. The DNA was ethanol precipitated at room temperature for 20 minutes in the presence of 0.3 M sodium acetate (pH 5.2), followed by centrifugation at 10,000 g for 15 minutes. The pellet was rinsed with 70% ethanol, dried and resuspended in 1 ml of TE (10 mM Tris, 1mM EDTA, pH 8.0).

All genomic DNA used in the southern blot analysis and cloning experiments was dialysed against H_2O for 48 hours, using collodium bags (Sartorius, Germany), ethanol precipitated in the presence of 0.3 M sodium acetate and resuspended in H_2O .

Probe labelling: DNA probes were labeled with $(\alpha^{-32}P)$ dGTP (Amersham) by random-priming according to [Sambrook et al., s.a.].

Probes used to screen the mini-libraries: Probe 46F is a 119 bp fragment obtained by PCR using primer #7 and #8 and *Flavobacterium sp.* R1534 genomic DNA as template. This probe was proposed to be a fragment of the *Flavobacterium sp.* R1534 phytoene synthase (crtB) gene, since it shows significant homology to the phytoene synthase genes from other species (e.g. *E. uredovora*, *E. herbicola*). **Probe A** is a BstXI - PstI fragment of 184 bp originating from the right arm of the insert of clone 85. **Probe B** is a 397 bp Xhol - NotI fragment obtained from the left end of the insert of clone 85. **Probe C** is a 536 bp BgIII - PstI fragment from the right end of the insert of clone 85. **Probe D** is a 376 bp KpnI - BstYI fragment isolated from the insert of clone 59. The localization of the individual probes is shown in figure 6.

Oligonucleotide synthesis: The oligonucleotides used for PCR reactions or for sequencing were synthesized with an Applied Biosystems 392 DNA synthesizer.

Southern blot analysis: For hybridization experiments *Flavobacterium sp. R1534* genomic DNA (3 μg) was digested with the appropriate restriction enzymes and electrophoresed on a 0.75% agarose gel. The transfer to Zeta-Probe blotting membranes (BIO-RAD), was done as described [Sourthern, E.M., J. Mol. Biol. <u>98</u>, 503 (1975)]. Prehybridization and hybridization was in 7%SDS, 1% BSA (fraction V; Boehringer), 0.5M Na₂HPO₄, pH 7.2 at 65°C. After hybridization the membranes were washed twice for 5 minutes in 2x SSC, 1% SDS at room temperature and twice for 15 minutes in 0.1% SSC, 0.1% SDS at 65°C.

DNA sequence analysis: The sequence was determined by the dideoxy chain termination technique [Sanger et al., Proc. Natl. Acad. Sci. USA <u>74</u>, 5463-5467 (1977)] using the Sequenase Kit (United States Biochemical). Both strands were completely sequenced and the sequence analyzed using the GCG sequence analysis software package (Version 8.0) by Genetics Computer, Inc. [Devereux et al., Nucleic Acids. Res. <u>12</u>, 387-395 (1984)].

Analysis of carotenoids: *E. coli* XL-1 or JM109 cells (200 - 400 ml) carrying different plasmid constructs were grown for the times indicated in the text, usually 24 to 60 hours, in LB suplemented with 100µg Ampicillin/ml, in shake flasks at 37° C and 220 rpm.

The carotenoids present in the microorganisms were extracted with an adequate volume of acetone using a rotation homogenizer (Polytron, Kinematica AG, CH-Luzern). The homogenate was the filtered through the sintered glass of a suction filter into a round bottom flask. The filtrate was evaporated by means of a rotation evaporator at 50° C using a water-jet vacuum. For the zeaxanthin detection the residue was dissolved in n-hexane/acetone (86:14) before analysis with a normalphase HPLC as described in [Weber, S. in Analytical Methods for Vitamins and Carotenoids in Feed, Keller, H.E., Editor, 83-85 (1988)]. For the detection of β -carotene and lycopene the evaporated extract was dissolved in n-hexane/acetone (99:1) and analysed by HPLC as described in [Hengartner et al., Helv. Chim. Acta $\underline{75}$, 1848-1865 (1992)].

55

10

25

Example 2

Cloning of the Flavobacterium sp. R1534 carotenoid biosynthetic genes.

To identify and isolate DNA fragments carrying the genes of the carotenoid biosynthesis pathway, we used the DNA fragment 46F (see methods) to probe a Southern Blot carrying chromosomal DNA of Flavobacterium sp. R1534 digested with different restriction enzymes Fig. 2. The 2.4 kb Xhol/Pstl fragment hybridizing to the probe seemed the most appropiate one to start with. Genomic Flavobacterium sp. R1534 DNA was digested with Xhol/Pstl and run on a 1% agarose gel. According to a comigrating DNA marker, the region of about 2.4 kb was cut out of the gel and the DNA isolated. A Xhol/Pstl mini library of Flavobacterium sp. R1534 genomic DNA was constructed into Xhol - Pstl sites of pBluescriptIISK(+). One hundred E. coli XL1 transformants were subsequentely screened by PCR with primer #7 and primer # 8, the same primers previously used to obtain the 119 bp fragment (46F). One positive transformant, named done 85, was found. Sequencing of the insert revealed sequences not only homologous to the phytoene synthase (crtB) but also to the phytoene desaturase (crtI) of both Erwinia species herbicola and uredovora. Left and right hand genomic sequences of done 85 were obtained by the same approach using probe A and probe B. Flavobacterium sp. R1534 genomic DNA was double digested with Clal and Hind III and subjected to Southern analysis with probe A and probe B With probe A a Clal/HindIII fragment of aprox. 1.8 kb was identified (Fig. 3A), isolated and subcloned into the ClaVHindIII sites of pBluescriptIIKS (+). Screening of the E. coli XL1 transformants with probe A gave 6 positive clones. The insert of one of these positives, clone 43-3, was sequenced and showed homology to the N-terminus of crtl genes and to the C terminus of crtY genes of both Erwinia species mentioned above. With probe B an approx. 9.2 kb Clal/Hindill fragment was detected (Fig. 3B), isolated and subcloned into pBluescriptIIKS (+).

A screening of the transformants gave one positive, clone 51. Sequencing of the 5' and 3' of the insert, revealed that only the region close to the HindIII site showed relevant homology to genes of the carotenoid biosynthesis of the Fivinia species mentioned above (e.g. crtB gene and crtE gene). The sequence around the Clal site showed no homology to known genes of the carotenoid biosynthesis pathway. Based on this information and to facilitate further sequencing and construction work, the 4.2 kb BamHI/HindIII fragment of done 51 was subcloned into the respective sites of pBluescriptIIKS(+) resulting in clone 2. Sequencing of the insert of this clone confirmed the presence of genes homologous to Envirola sp. crtB and crtE genes. These genes were located within 1.8 kb from the HindIII site. The remaining 2.4 kb of this insert had no homology to known carotenoid biosynthesis genes.

Additional genomic sequences downstream of the Clal site were detected using probe C to hybridize to *Flavobacterium so.* R1534 genomic DNA digested with different restriction enzymes (see figure 4).

A Sall/HindIII fragment of 2.8 kb identified by Southern analysis was isolated and subcloned into the HindIII/Xhol sites of pBluescriptIIKS (+). Screening of the *E. coli* XL1 transformants with probe A gave one positive clone named clone 59. The insert of this clone confirmed the sequence of clone 43-3 and contained in addition sequences homologous to the N-terminus of the crtY gene from other known lycopene cyclases. To obtain the putative missing crtZ gene a Sau3Al partial digestion library of *Flavobacterium sp. R1534* was constructed into the BamHI site of pBluescriptIIKS(+). Screening of this library with probe D gave several positive clones. One transformant designated, clone 6a, had an insert of 4.9 kb. Sequencing of the insert revealed besides the already known sequences coding for crtB, crtI and crtY also the missing crtZ gene. Clone 7g was isolated from a mini library carrying BcII/SphI fragments of R1534 (Fig. 5) and screened with probe D. The insert size of done 7g is approx. 3 kb.

The six independent inserts of the clones described above covering approx. 14 kb of the *Flavobacterium sp.* R1534 genome are compiled in Figure 6.

The determined sequence spanning from the BamHI site (position 1) to base pair 8625 is shown figure 7.

Putative protein coding regions of the cloned R1534 sequence.

Computer analysis using the CodonPreference program of the GCG package, which recognizes protein coding regions by virtue of the similarity of their codon usage to a given codon frequency table, revealed eight open reading frames (ORFs) encoding putative proteins: a partial ORF from 1 to 1165 (ORF-5) coding for a polypeptide larger than 41382 Da; an ORF coding for a polypeptide with a molecular weight of 40081 Da from 1180 to 2352 (ORF-1); an ORF coding for a polypeptide with a molecular weight of 31331 Da from 2521 to 3405 (crtE); an ORF coding for a polypeptide with a molecular weight of 32615 Da from 4316 to 3408 (crtB); an ORF coding for a polypeptide with a molecular weight of 54411 Da from 5797 to 4316 (crtI); an ORF coding for a polypeptide with a molecular weight of 42368 Da from 6942 to 5797 (crtY); an ORF coding for a polypeptide with a molecular weight of 19282 Da from 7448 to 6942 (crtZ); and an ORF coding for a polypeptide with a molecular weight of 19368 Da from 8315 to 7770 (ORF-16); ORF-1 and crtE have the opposite transcriptional orientation from the others (Fig. 6). The translation start sites of the ORFs crtI, crtY and crtZ could clearly be determined based on the appropiately located sequences homologous to the Shine/Delgano (S/D) [Shine and Dalgarno, Proc. Natl. Acad. Sci. USA 71, 1342-1346 (1974)] consensus sequence AGG--6-9N--ATG (Fig. 10) and the homology to the N-terminal sequences of the respective enzymes of *E. herbicola* and *E. uredovora*. The

translation of the ORF crtB could potentially start from three closely spaced codons ATG (4316), ATG (4241) and ATG (4211). The first one, although not having the best S/D sequence of the three, gives a translation product with the highest homology to the N-terminus of the *E. herbicola* and *E. uredovora* crtB protein, and is therefore the most likely translation start site. The translation of ORF crtE could potentially start from five different start codons found within 150 bp: ATG (2389), ATG (2446), ATG (2473), ATG (2497) and ATG (2521). We believe that based on the following observations, the ATG (2521) is the most likely transcription start site of crtE: this ATG start codon is preceded by the best consensus S/D sequence of all five putative start sites mentioned; and the putative N-terminal amino acid sequence of the protein encoded has the highest homology to the N-terminus of the crtE enzymes of *E. herbicola* and *E. uredovora*;

Characteristics of the crt translational initiation sites and gene products.

The translational start sites of the five carotenoid biosynthesis genes are shown below and the possible ribosome binding sites are underlined. The genes crtZ, crtY, crtl and crtB are grouped so tightly that the TGA stop codon of the anterior gene overlaps the ATG of the following gene. Only three of the five genes (crtl, crtY and crtZ) fit with the consensus for optimal S/D sequences. The boxed TGA sequence shows the stop condon of the anterior gene.

Amino acid sequences of individual crt genes of Flavobacterium sp. R1534.

All five ORFs of *Flavobacterium sp*. R1534 having homology to known carotenoid biosynthesis genes of other species are clustered in approx. 5.2 kb of the sequence (Fig. 7).

GGDP synthase (crtE)

35

40

45

The amino acid (aa) sequence of the geranylgeranyl pyrophosphate synthase (crtE gene product) consists of 295 aa and is shown in figure 8. This enzyme condenses farnesyl pyrophosphate and isopentenyl pyrophosphate in a 1' - 4.

Phytoene synthase (crtB)

This enzyme catalyzes two enzymatic steps. First it condenses in a head to head reaction two geranylgeranyl pyrophosphates (C20) to the C40 carotenoid prephytoene. Second it rearanges the cyclopropylring of prephytoene to phytoene. The 303 aa encoded by the crtB gene of *Flavobacterium sp.* R1534 is shown in figure 9.

Phytoene desaturase (crtl)

The phytoene desaturase of *Flavobacterium sp.* R1534 consisting of 494 aa, shown in figure 10, performs like the crtl enzyme of *E. herbicola* and *E. uredovora*, four desaturation steps, converting the non-coloured carotenoid phytoene to the red coloured lycopene.

Lycopene cyclase (crtY)

5

25

30

The crtY gene product of *Flavobacterium sp.* R1534 is sufficient to introduce the β -ionone rings at both sides of lycopene to obtain β -carotene. The lycopene cyclase of *Flavobacterium sp.* R1534 consists of 382 aa (Fig. 11).

β-carotene hydroxylase (crtZ)

The gene product of crtZ consisting of 169 aa (Fig. 12) and hydroxylates β-carotene to the xanthophyll zeaxanthin.

Putative enzymatic functions of the ORF's (orf-1, orf-5 and orf-16)

The orf-1 has at the aa level over 40% identity to acetoacetyl-CoA thiolases of different organisms (e.g. Candida tropicalis, human, rat). This gene is therefore most likely a putative acetoacetyl-CoA thiolase (acetyl-CoA acetyltransferase), which condenses two molecules of acetyl-CoA to Acetoacetyl-CoA. Condensation of acetoacetyl-CoA with a third acetyl-CoA by the HMG-CoA synthase forms β -hydroxy- β -methylglutaryl-CoA (HMG-CoA). This compound is part of the mevalonate pathway which produces besides sterols also numerous kinds of isoprenoids with diverse cellular functions. In bacteria and plants, the isoprenoid pathway is also able to synthesize some unique products like carotenoids, growth regulators (e.g. in plants gibberellins and abcissic acid) and sencodary metabolites like phytoalexins [Riou et al., Gene 148, 293-297 (1994)].

The orf-5 has a low homology of approx. 30%, to the amino acid sequence of polyketide synthases from different streptomyces (e.g. S. violaceoruber, S. cinnamonensis). These antibiotic synthesizing enzymes (polyketide synthases), have been classified into two groups. Type-I polyketide synthases are large multifunctional proteins, whereas type-II polyketide synthases are multiprotein complexes composed of several individual proteins involved in the subreactions of the polyketide synthesis [Bibb, et al. Gene 142, 31-39 (1994)].

The putative protein encoded by the orf-16 has at the aa level an identity of 42% when compared to the soluble hydrogenase subunit of Anabaena cylindrica.

Functional assignment of the ORF 's (crtE, crtB, crtI, crtY and crtZ) to enzymatic activities of the carotenoid biosynthesis pathway.

The biochemical assignment of the gene products of the different ORF's were revealed by analyzing carotenoid accumulation in *E. coli* host strains that were transformed with deleted variants of the *Flavobacterium sp.* gene cluster and thus expressed not all of the crt genes (Fig. 13).

Three different plasmid were constructed: pLyco, p59-2 and pZea4. Plasmid p59-2 was obtained by subcloning the Hindlll/BamHI fragment of clone 2 into the Hindlll/BamHI sites of done 59. p59-2 carries the ORF's of the crtE, crtB, crtI and crtY gene and should lead to the production of β-carotene. pLyco was obtained by deleting the Kpnl/Kpnl fragment, coding for approx. one half (N-terminus) of the crtY gene, from the p59-2 plasmid. *E. coli* cells transformed with pLyco, and therefore having a truncated non-functional crtY gene, should produce lycopene, the precursor of β-carotene. pZea4 was constructed by ligation of the Ascl-Spel fragment of p59-2, containing the crtE, crtB, crtI and most of the crtY gene with the Ascl/Xbal fragment of clone 6a, containing the sequences to complete the crtY gene and the crtZ gene. pZea4 [for complete sequence see Fig. 24; nucleotides 1 to 683 result from pBluescriptllKS(+), nucleotides 684 to 8961 from Flavobacterium R1534 WT genome, nucleotides 8962 to 11233 from pBluescriptllKS(+)] has therefore all five ORF's of the zeaxanthin biosynthesis pathway. Plasmid pZea4 has been deposited on May 25, 1995 at the DSM-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH (Germany) under accession No. DSM 10012. *E. coli* cells transformed with this latter plasmid should therefore produce zeaxanthin. For the detection of the carotenoid produced, transformants were grown for 48 hours in shake flasks and then subjected to carotenoid analysis as described in the methods section. Figure 13 summarizes the different inserts of the plasmids described above, and the main carotenoid detected in the cells.

As expected the pLyco carrying $E.\ coli$ cells produced lycopene, those carrying p59-2 produced β -carotene (all-E,9-Z,13-Z) and the cells having the pZea4 construct produced zeaxanthin. This confirms that all the necessary genes of Flavobacterium sp. R1534 for the synthesis of zeaxanthin or their precursors (phytoene, lycopene and β -carotene) were cloned.

Example 3

55

Materials and methods used f r expression of carot noid synthesizing enzymes

Bacterial strains and plasmids: The vectors pBluescriptllKS (+) or (-) (Stratagene, La Jolla, USA) and pUC18 [Vieira and Messing, Gene 19, 259-268 (1982); Norrander et al., Gene 26, 101-106 (1983)] were used for cloning in dif-

ferent *E. coli* strains, like XL-1 blue (Stratagene), TG1 or JM109. In all *B. subtilis* transformations, strain 1012 was used. Plasmids pHP13 [Haima et al., Mol. Gen. Genet. 209, 335-342 (1987)] and p602/22 [LeGrice, S.F.J. in Gene Expression Technology, Goeddel, D.V., Editor, 201-214 (1990)] are Gram (+)/(-) shuttle vectors able to replicate in *B. subtilis* and *E. coli* cells. Plasmid p205 contains the vegl promoter cloned into the Smal site of pUC18. Plasmid pX112 is an integration vector for the constitutive expression of genes in *B. subtilis* [Haiker et al., in 7th Int. Symposium on the Genetics of Industrial Microorganisms, June 26-July 1, 1994. Mongreal, Quebec, Canada (1994)]. Plasmid pBEST501 [Itaya et al., Nucleic Adds Res. 17 (11), 4410 (1989)] contains the neomycin resistance gene cassette originating from the plasmid pUB110 (GenBank entry: M19465) of *S. aureus* [McKenzie et al., Plasmid 15, 93-103 (1986); McKenzie et al., Plasmid 17, 83-84 (1987)]. This neomycin gene has been shown to work as a selection marker when present in a single copy in the genome of *B. subtilis*. Plasmid pC194 (ATCC 37034)(GenBank entry: L08860) originates from *S. aureus* [Horinouchi and Weisblaum, J. Bacteriol. 150, 815-825 (1982)] and contains the chloramphenical acetyltransferase gene.

Media and growth conditions: *E. coli* were grown in Luria broth (LB) at 37° C with 100μ g Ampicillin (Amp)/ml for selection. *B. subtilis* cells were grown in VY-medium supplemented with either erythromycin (1 μ g/ml), neomycin (5-180 μ g/ml) or chloramphenicol (10-80 μ g/ml).

Transformation: *E. coli* transformations were done by electroporation using the Gen-pulser device of BIO-RAD (Hercules, CA, USA) with the following parameters (200 Ω, 250 μFD, 2.5V). *B. subtilis* transformations were done basically according to the standard procedure method 2.8 described by [Cutting and Vander Horn in Molecular Biological Methods for Bacılus, Harwood, C.R and Cutting, S.M., Editor, John Wiley & Sons: Chichester, England. 61-74 (1990)].

Colony screening: Bacterial colony screening was done as described by [Zon et al., s.a.].

Oligonucleotide synthesis: The oligonucleotides used for PCR reactions or for sequencing were synthesized with an Applied Biosystems 392 DNA synthesizer.

PCR reactions: The PCR reactions were performed using either the UITma DNA polymerase (Perkin Elmer Cetus) or the Ptu Vent polymerase (New England Biolabs) according to the manufacturers instructions. A typical 50 μl PCR reaction contained: 100ng of template DNA, 10 pM of each of the primers, all four dNTP's (final conc. 300 μM), MgCl₂ (when UITma polymerase was used; final conc. 2 mM), 1x UITma reaction buffer or 1x Pfu buffer (supplied by the manufacturer) All components of the reaction with the exception of the DNA polymerase were incubated at 95°C for 2 min. tollowed by the cycles indicated in the respective section (see below). In all reactions a hot start was made, by adding the polymerase in the first round of the cycle during the 72°C elongation step. At the end of the PCR reaction an aliquot was analysed on 1% agarose gel, before extracting once with phenol/chloroform. The amplified fragment in the aqueous phase was precipitated with 1/10 of a 3M NaAcetate solution and two volumes of Ethanol. After centrifugation for 5 min. at 12000 rpm, the pellet was resuspended in an adequate volume of H₂O, typically 40 μl, before digestion with the indicated restriction enzymes was performed. After the digestion the mixture was separated on a 1% low melting point agarose. The PCR product of the expected size were excised from the agarose and purified using the glass beads method (GENECLEAN KIT, Bio 101, Vista CA, USA) when the fragments were above 400 bp or directly spun out of the gel when the fragments were shorter than 400 bp, as described by [Heery et al., TIBS 6 (6), 173 (1990)].

Oligos used for gene amplification and site directed mutagenesis:

All PCR reactions performed to allow the construction of the different plasmids are described below. All the primers used are summarized in figure 14.

Primers #100 and #101 were used in a PCR reaction to amplify the complete crtE gene having a Spel restriction site and an artificial ribosomal binding site (RBS) upstream of the transcription start site of this gene. At the 3' end of the amplified fragment, two unique restriction sites were introduced, an AvrII and a Smal site, to facilitate the further cloning steps. The PCR reaction was done with UITma polymerase using the following conditions for the amplification: 5 cycles with the profile: 95°C, 1 min./ 60°C, 45 sec./ 72°C, 1 min. and 20 cycles with the profile: 95°C, 1 min./ 72°C, 1 min.. Plasmid pBIIKS(+)-clone2 served as template DNA. The final PCR product was digested with Spel and Smal and isolated using the GENECLEAN KIT. The size of the fragment was approx. 910 bp.

Primers #104 and #105 were used in a PCR reaction to amplify the crtZ gene from the translation start till the Sall restriction site, located in the coding sequence of this gene. At the 5' end of the crtZ gene an EcoRI, a synthetic RBS and a Ndel site was introduced. The PCR conditions were as described above. Plasmid pBIIKS(+)-clone 6a served as template DNA and the final PCR product was digested with EcoRI and Sall. Isolation of the fragment of approx. 480 bp was done with the GENECLEAN KIT.

Primers MUT1 and MUT5 were used to amplify the complete crtY gene. At the 5' end, th⁻ last 23 nucleotides of the crtZ gene including the Sall site are present, followed by an artificial RBS preceding the translation start site of the crtY gene. The artificial RBS created includes a PmII restriction site. The 3' end of the amplified fragment contains 22 nucleotides of the crtI gene, preceded by an newly created artifial RBS which contains a MunI restriction site. The conditions used for the PCR reaction were as described above using the following cycling profile: 5 rounds of 95°C, 45 sec./ 60°C, 45 sec./ 72°C, 75 sec. followed by 22 cycles with the profile: 95°C, 45 sec./ 66°C, 45 sec./ 72°C, 75 sec.. Plasmid

20

pXI12-ZYIB-EINV4 served as template for the Pfu Vent polymerase. The PCR product of 1225 bp was made blunt and cloned into the Smal site of pUC18, using the Sure-Clone Kit (Pharmacia) according to the manufacturer.

Primers MUT2 and MUT6 were used to amplify the complete crtl gene. At the 5' the last 23 nucleotides of the crtY gene are present, followed by an artificial RBS which precedes the translation start site of the crtl gene. The new RBS created, includes a Munl restriction site. The 3' end of the amplified fragment contains the artificial RBS upstream of the crtB gene including a BamHI restriction site. The conditions used for the PCR reaction were basically as described above including the following cycling profile: 5 rounds of 95°C, 30 sec./ 60°C, 30 sec./ 72°C, 75 sec., followed by 25 cycles with the profile: 95°C, 30 sec./ 66°C, 30 sec./ 72°C, 75 sec.. Plasmid pXI12-ZYIB-EINV4 served as template for the Pfu Vent polymerase. For the further cloning steps the PCR product of 1541 bp was digested with Munl and BamHI.

Primers MUT3 and CAR17 were used to amplify the N-terminus of the crtB gene. At the 5' the last 28 nucleotides of the crtI gene are present followed by an artificial RBS, preceding the translation start site of the crtB gene. This new created RBS, includes a BamHI restriction site. The amplified fragment, named PCR-F contains also the HindIII restriction site located at the N-terminus of the crtB gene. The conditions used for the PCR reaction were as described elsewhere in the text, including the following cycling profile: 5 rounds of 95°C, 30 sec./ 58°C, 30 sec./ 72°C, 20 sec. followed by 25 cycles with the profile: 95°C, 30 sec./ 60°C, 30 sec./ 72°C, 20 sec.. Plasmid pXI12-ZYIB-EINV4 served as template for the Pfu Vent polymerase. The PCR product of approx. 160 bp was digested with BamHI and HindIII.

Oligos used to amplify the chloramphenicol resistance gene (cat):

Primers CAT3 and CAT4 were used to amplify the chloramphenical resistance gene of pC194 (ATCC 37034) [Horinouchi and Weisblum, s.a.] a R-plasmid found in *S. aureus*. The conditions used for the PCR reaction were as described previously including the following cycling profile: 5 rounds of 95°C, 60 sec./ 50°C, 60 sec./ 72°C, 2 min. followed by 20 cycles with the profile: 95°C, 60 sec./ 60°C, 60 sec./ 72°C, 2 min.. Plasmid pC198 served as template for the Pfu Vent polymerase. The PCR product of approx. 1050 bp was digested with EcoRI and AatII.

Oligos used to generate linkers: Linkers were obtained by adding 90 ng of each of the two corresponding primers into an Eppendorf tube. The mixture was dried in a speed vac and the pellet resuspended in 1x Ligation buffer (Boehringer, Mannheim, Germany). The solution was incubated at 50°C for 3 min. before cooling down to RT, to allow the primers to hybridize properly. The linker were now ready to be ligated into the appropriate sites. All the oligos used to generate linkers are shown in figure 15.

Primers CS1 and CS2 were used to form a linker containing the following restrictions sites HindIII, AfIII, Scal, Xbal, Pmel and EcoRI.

Primers MUT7 and MUT8 were used to form a linker containing the restriction sites Sall, Avril, Pmll, Mlul, Munl, BamHI, Sphl and Hindill.

Primers MUT9 and MUT10 were used to introduce an artificial RBS upstream of crtY.

Primers MUT11 and MUT12 were used to introduce an artificial RBS upstream of crtE.

Isolation of RNA: Total RNA was prepared from log phase growing *B. subtilis* according to the method described by [Maes and Messens, Nucleic Acids Res. <u>20</u> (16), 4374 (1992)].

Northern Blot analysis: For hybridization experiments up to 30 μg of *B. subtilis* RNA was electrophoreses on a 1% agarose gel made up in 1x MOPS and 0.66 M formaldehyde. Transfer to Zeta-Probe blotting membranes (BIO-RAD), UV cross-linking, pre-hybridization and hybridization was done as described elsewhere in [Farrell, J.R.E., RNA Methodologies. A laboratory Guide for isolation and characterization. San Diego, USA: Academic Press (1993)]. The washing conditions used were: 2 x 20 min. in 2xSSPE/0.1% SDS followed by 1 x 20min. in 0.1% SSPE/0.1% SDS at 65°C. Northern blots were then analyzed either by a Phosphorimager (Molecular Dynamics) or by autoradiography on X-ray films from Kodak.

Isolation of genomic DNA: B. subtilis genomic DNA was isolated from 25 ml overnight cultures according to the standard procedure method 2.6 described by [13].

Southern blot analysis: For hybridization experiments *B. subtilis* genomic DNA (3 µg) was digested with the appropriate restriction enzymes and electrophoresed on a 0.75% agarose gel. The transfer to Zeta-Probe blotting membranes (BIO-RAD), was done as described [Southern, E.M., s.a.]. Prehybridization and hybridization was in 7%SDS, 1% BSA (fraction V; Boehringer), 0.5M Na₂HPO₄, pH 7.2 at 65°C. Alter hybridization the membranes were washed twice for 5 min. in 2x SSC, 1% SDS at room temperature and twice for 15 min. in 0.1% SSC, 0.1% SDS at 65°C. Southern blots were then analyzed either by a Phosphorimager (Molecular Dynamics) or by autoradiography on X-ray films from Kodak.

DNA sequence analysis: The sequence was determined by the dideoxy chain termination technique [Sanger et al., s.a.] using the Sequenase Kit Version 1.0 (United States Biochemical). Sequence analysis were done using the GCG sequence analysis software package (Version 8.0) by Genetics Computer, Inc. [Devereux et al., s.a.].

Gene amplification in *B. subtilis*: To amplify the copy number of the SFCO in *B. subtilis* transformants, a single colony was inoculated in 15 ml VY-medium supplemented with 1.5 % glucose and 0.02 mg chloramphenicol or neomycin/ml, dependend on the antibiotic resistance gene present in the amplifiable structure (see results and discussion).

30

The next day 750 μ l of this culture were used to inoculate 13 ml VY-medium containing 1.5% glucose supplemented with (60, 80, 120 and 150 μ g/ml) for the cat resistant mutants, or 160 μ g/ml and 180 μ g/ml for the neomycin resistant mutants). The cultures were grown overnight and the next day 50 μ l of different dilutions (1: 20, 1:400, 1: 8000, 1: 160'000) were plated on VY agar plates with the appropriate antibiotic concentration. Large single colonies were then further analyzed to determine the number of copies and the amount of carotenoids produced.

Analysis of carotenoids: E. coli or B. subtilis transformants (200 - 400 ml) were grown for the times indicated in the text, usually 24 to 72 hours, in LB-medium or VY-medium, respectively, supplemented with antibiotics, in shake flasks at 37° C and 220 rpm.

The carotenoids produced by the microorganisms were extracted with an adequate volume of acetone using a rotation homogenizer (Polytron, Kinematica AG, CH-Luzern). The homogenate was the filtered through the sintered glass of a suction filter into a round bottom flask. The filtrate was evaporated by means of a rotation evaporator at 50° C using a water-jet vacuum. For the zeaxanthin detection the residue was dissolved in n-hexane/acetone (86:14) before analysis with a normalphase HPLC as described in [Weber, S., s.a.]. For the detection of β -carotene and lycopene the evaporated extract was dissolved in n-hexane/acetone (99:1) and analysed by HPLC as described in Hengartner et al., s.a.].

Example 4

15

20

Carotenoid production in E. coli

The biochemical assignment of the gene products of the different open reading frames (ORF'S) of the carotenoid biosynthesis cluster of *Flavobacterium sp.* were revealed by analyzing the carotenoid accumulation in *E. coli* host strains, transformed with plasmids carrying deletions of the *Flavobacterium sp.* gene cluster, and thus lacking some of the crt gene products. Similar functional assays in *E. coli* have been described by other authors [Misawa et al., s.a.; Perry et al., J. Bacteriol., <u>168</u>, 607-612 (1986); Hundle, et al., Molecular and General Genetics <u>254</u> (4), 406-416 (1994)]. Three different plasmid pLyco, pBIIKS(+)-clone59-2 and pZea4 were constructed from the three genomic isolates pBIIKS(+)-clone2, pBIIKS(+)-clone59 and pBIIKS(+)-clone6a (see figure 16).

Plasmid pBIIKS(+)-clone59-2 was obtained by subcloning the HindIII/BamHI fragment of pBIIKS(+)-clone 2 into the HindIII/BamHI sites of pBIIKS(+)-clone59. The resulting plasmid pBIIKS(+)-clone59-2 carries the complete ORF's of the crtE, crtB, crtI and crtY gene and should lead to the production of β-carotene. pLyco was obtained by deleting the KpnI/KpnI fragment, coding for approx. one half (N-terminus) of the crtY gene, from the plasmid pBIIKS(+)-clone59-2. E. coli cells transformed with pLyco, and therefore having a truncated non-functional crtY gene, should produce lycopene, the precursor of β-carotene. pZea4 was constructed by ligation of the AscI-SpeI fragment of pBIIKS(+)-clone59-2, containing the crtE, crtB, crtI and most of the crtY gene with the AscI/XbaI fragment of clone 6a, containing the crtZ gene and sequences to complete the truncated crtY gene mentioned above. pZea4 has therefore all five ORF's of the zeaxanthin biosynthesis pathway. E. coli cells transformed with this latter plasmid should therefore produce zeaxanthin. For the detection of the carotenoid produced, transformants were grown for 43 hours in shake flasks and then subjected to carotenoid analysis as described in the methods section. Figure 16 summarizes the construction of the plasmids described above.

As expected the pLyco carrying $E.\ coli\cdot$ cells produced lycopene, those carrying pBIIKS(+)-clone59-2 produced β -carotene (all-E,9-Z,13-Z) and the cells having the pZea4 construct produced zeaxanthin. This confirms that we have cloned all the necessary genes of *Flavobacterium sp.* R1534 for the synthesis of zeaxanthin or their precursors (phytoene, lycopene and β -carotene). The production levels obtained are shown in table 1.

45

50

lycopene

0.05%

ND

ND

plasmid	h st	zeaxanthin	β-carotene	
pLyco	E. coli JM109	ND	ND	
pBIIKS(+)-clone59-2	н	ND .	0.03%	
pZea4	n	0.033%	0.0009%	

Table 1: Carotenoid content of *E. coli* transformants, carrying the plasmids pLyco, pBIIKS(+)-clone59-2 and pZea4, after 43 hours of culture in shake flasks. The values indicated show the carotenoid content in % of the total dry cell mass (200 ml). ND = not detectable.

Examples 5

5

10

15

20

Carotenoid production in B. subtilis

In a first approach to produce carotenoids in B. subtilus, we cloned the carotenoid biosynthesis genes of Flavobacterium into the Gram (+)/(-) shuttle vectors p602/22, a derivative of p602/20 [LeGrice, S.F.J., s.a.]. The assembling of the final construct p602-CARVEG-E, begins with a triple ligation of fragments PvuII-AvrII of pZea4(del654-3028) and the AvrII-EcoRI fragment from plasmid pBIIKS(+)-clone6a, into the EcoRI and Scal sites of the vector p602/22. The plasmid pZea4(del654-3028) had been obtained by digesting pZea4 with SacI and Espl. The protruding and recessed ends were made blunt with Klenow enzyme and religated. Construct pZea4(del654-3028) lacks most of the sequence upstream of crtE gene, which are not needed for the carotenoid biosynthesis. The plasmid p602-CAR has approx. 6.7 kb of genomic Flavobacterium R1534 DNA containing besides all five carotenoid genes (approx. 4.9 kb), additional genomic DNA of 1.2 kb, located upstream of the crtZ translation start site and further 200 bp, located upstream of crtE transcription start. The crtZ, crtY, crtI and crtB genes were cloned downstream of the $P_{N25/0}$ promoter, a regulatable E. coli bacteriophage T5 promoter derivative, fused to a lac operator element, which is functional in B. subtilis [LeGrice, S.F.J., s.a.]. It is obvious that in the p602CAR construct, the distance of over 1200 bp between the $P_{N25/0}$ promoter and the transcription start site of crtZ is not optimal and will be improved at a later stage. An outline of the p602CAR construction is shown in figure 17. To ensure transcription of the crtE gene in B. subtilis, the vegI promoter [Moran et al., Mol. Gen. Genet 186, 339-346 (1982); LeGrice et al., Mol. Gen. Genet. 204, 229-236 (1986)] was introduced upstream of this gene, resulting in the plasmid construct p602-CARVEG-E. The vegl promoter, which originates from sitel of the veg promoter complex described by [LeGrice et al., s.a.] has been shown to be functional in E. coli [Moran et al., s.a.]. To obtain this new construct, the plasmid p602CAR was digested with Sall and HindIII, and the fragment containing the complete crtE gene and most of the crtB coding sequence, was subcloned into the Xhol and HindIII sites of plasmid p205. The resulting plasmid p205CAR contains the crtE gene just downstream of the Pvegl promoter. To reconstitute the carotenoid gene cluster of Flavobacterium sp. the following three pieces were isolated: Pmel/HindIII fragment of p205CAR, the HincII/Xbal fragment and the EcoRI/HindIII fragment of p602CAR and ligated into the EcoRI and XbaI sites of pBluescriptIIKS(+), resulting in the construct pBIIKS(+)-CARVEG-E. Isolation of the EcoRI-Xbal fragment of this latter plasmid and ligation into the EcoRI and Xbal sites of p602/22 gives a plasmid similar to p602CAR but having the crtE gene driven by the Pvegl promoter. All the construction steps to get the plasmid p602CARVEG-E are outlined in figure 18. E. coli TG1 cells transformed with this plasmid synthesized zeaxanthin. In contrast B. subtilis strain 1012 transformed with the same constructs did not produce any carotenoids. Analysis of several zeaxanthin negative B. subtilis transformants always revealed, that the transformed plasmids had undergone severe deletions. This instability could be due to the large size of the constructs.

In order to obtain a stable construct in *B. subtilis*, the carotenoid genes were cloned into the Gram (+)/(-) shuttle vector pHP13 constructed by [Haima et al., s.a.]. The stability problems were thought to be omitted by 1) reducing the

size of the cloned insert which carries the carotenoid genes and 2) reversing the orientation of the crtE gene and thus only requiring one promoter for the expression of all five genes, instead of two, like in the previous constructs. Furthermore, the ability of cells transformed by such a plasmid carrying the synthetic Flavobacterium carotenoid operon (SFCO), to produce carotenoids, would answer the question if a modular approach is feasible. Figure 19 summarizes all the construction steps and intermediate plasmids made to get the final construct pHP13-2PNZYIB-EINV. Briefly: To facilitate the following constructions, a vector pHP13-2 was made, by introducing a synthetic linker obtained with primer CS1 and CS2, between the HindIII and EcoRI sites of the shuttle vector pHP13. The intermediate construct pHP13-2CARVEG-E was constructed by subcloning the AfIII-Xbal fragment of p602CARVEG-E into the AfIII and Xbal sites of pHP13-2. The next step consisted in the inversion of crtE gene, by removing Xbal and AvrII fragment containing the original crtE gene and replacing it with the Xbal-AvrII fragment of plasmid pBIIKS(+)-PCRRBScrtE. The resulting plasmid was named pHP13-2CARZYIB-EINV and represented the first construction with a functional SFCO. The intermediate construct pBIIKS(+)-PCRRBScrtE mentioned above, was obtained by digesting the PCR product generated with primers #100 and #101 with Spel and Smal and ligating into the Spel and Smal sites of pBluescriptIIKS(+). In order to get the crtZ transcription start close to the promoter P_{N25/0} a triple ligation was done with the BamHI-Sall fragment of pHP13-2CARZYIB-EINV (contains four of the five carotenoid genes), the BamHI-EcoRI fragment of the same plasmid containing the P_{N25/0} promoter and the EcoRI-Sall fragment of pBIIKS(+)-PCRRBScrtZ, having most of the crtZ gene preceded by a synthetic RBS. The aforementioned plasmid pBIISK(+)-PCRRBScrtZ was obtained by digesting the PCR product amplified with primers #104 and #105 with EcoRI and Sall and ligating into the EcoRI and Sall sites of pBluescriptIISK(+). In the resulting vector pHP13-2PN25ZYIB-EINV, the SFCO is driven by the bacteriophage T5 promoter P_{N25/0}, which should be constitutively expressed, due to the absence of a functional lac repressor in the construct [Peschke and Beuk, J. Mol. Biol. 186, 547-555 (1985)]. E. coli TG1 cells transformed with this construct produced zeaxanthin. Nevertheless, when this plasmid was transformed into B. subtilis, no carotenoid production could be detected. Analysis of the plasmids of these transformants showed severe deletions, pointing towards instability problems, similar to the observations made with the aforementioned plasmids.

Examples 6

25

Chromosome Integration Constructs

Due to the instability observed with the previous constructs we decided to integrate the carotenoid biosynthesis genes of Flavobacterium sp. into the genome of B. subtilis using the integration/expression vector pXI12. This vector allows the constitutive expression of whole operons after integration into the levan-sucrase gene (sacB) of the B. subtilis genome. The constitutive expression is driven by the vegl promoter and results in medium level expression. The plasmid pXI12-ZYIB-EINV4 containing the synthetic Flavobacterium carotenoid operon (SFCO) was constructed as follows: the Ndel-HincII fragment of pBIISK(+)-PCRRBScrtZ was cloned into the Ndel and Smal sites of pXI12 and the resulting plasmid was named pXI12-PCRcrtZ. In the next step, the BstEII-Pmel fragment of pHP13-2PN25ZYIB-EINV was ligated to the BstEll-Pmel fragment of pXI12-PCRcrtZ (see figure 20). B. subtilis transformed with the resulting construct pXI12-ZYIB-EINV4 can integrate the CAR genes either via a Campbell type reaction or via a reciprocal recombination. One transformant, BS1012::ZYIB-EINV4, having a reciprocal recombination of the carotenoid biosynthesis genes into the levan-sucrase gene was further analyzed (figure 21). Although this strain did not synthesize carotenoids, RNA analysis by Northern blots showed the presence of specific polycistronic mRNA's of 5.4 kb and 4.2 kb when hybridized to probe A (see figure 21, panel B). Whereas the larger mRNA has the expected message size, the origin of the shorter mRNA was unclear. Hybridization of the same Northern blot to probe B only detected the large mRNA fragment, pointing towards a premature termination of the transcription at the end of the crtB gene. The presence of a termination signal at this location would make sense, since in the original operon organisation in the Flavobacterium sp. R1534 genome, the crtE and the crtB genes are facing each other. With this constellation a transcription termination signal at the 5' end of crtB would make sense, in order to avoid the synthesis of anti-sense RNA which could interfere with the mRNA transcript of the crtE gene. Since this region has been changed considerably with respect to the wild type situation, the sequences constituting this terminator may also have been altered resulting in a "leaky" terminator. Western blot analysis using antisera against the different crt enzymes of the carotenoid pathway, pointed towards the possibility that the ribosomal binding sites might be responsible for the lack of carotenoid synthesis. Out of the five genes introduced only the product of crtZ, the β -carotene hydroxylase was detectable. This is the only gene preceded by a RBS site, originating from the pXI12 vector, known to be functional in B. subtilis. Base pairing interactions between a mRNA's Shine-Dalgarno sequence [Shine and Delagarno, s. a.] and the 16S rRNA, which permits the ribesome to select the proper initiation site, have been proposed by [McLaughlin et al., J. Biol. Chem. 256,11283-11291 (1981)] to be much more stable in Gram-positive organisms (B. subtilis) than in Gram-negative organisms (E. coli). In order to obtain highly stable complexes we exchanged the RBS sites of the Gram-negative Flavobacterium sp., preceding each of the genes crtY, crtI, crtB and crtE, with synthetic RBS's which were designed complementary to the 3' end of the B. subtilis 16S rRNA (see table 2). This exchange should allow an effective translation initiation of the different

carotenoid genes in B. subtilis. The strategy chosen to construct this pXI12-ZYIB-EINV4MUTRBS2C, containing all four altered sites is summarized in figure 20. In order to facilitate the further cloning steps in pBluescriptlIKS(+), additional restriction sites were introduced using the linker obtained with primer MUT7 and MUT8, cloned between the Sall and HindIII sites of said vector. The new resulting construct pBIIKS(+)-LINKER78 had the following restriction sites introduced: Avril, Pmli, Mull, Munl, BamHl and Sphl. The general approach chosen to create the synthetic RBS's upstream of the different carotenoid genes, was done using a combination of PCR based mutagenesis, where the genes were reconstructed using defined primers carrying the modified RBS sites, or using synthetic linkers having such sequences. Reconstitution of the RBS preceding the crtl and crtB genes was done by amplifying the crtl gene with the primers MUT2 and MUT6, which include the appropriate altered RBS sites. The PCR-I fragment obtained was digested with Muni and BamHi and ligated into the Muni and BamHi sites of pBllKS(+)-LINKER78. The resulting intermediate construct was named pBIIKS(+)-LINKER78PCRI. Reconstitution of the RBS preceding the crtB gene was done using a small PCR fragment obtained with primer MUT3, carrying the altered RBS site upstream of crtB, and primer CAR17. The amplified PCR-F fragment was digested with BamHI and HindIII and sub cloned into the BamHI and HindIII sites of pBIIKS(+)-LINKER78, resulting in the construct pBIIKS(+)-LINKER78PCRF. The PCR-I fragment was cut out of pBI-IKS(+)-LINKER78PCRI with BamHI and Sapl and ligated into the BamHI and Sapl sites of pBIIKS(+)-LINKER78PCRF. The resulting plasmid pBIIKS(+)-LINKER78PCRFI has the PCR-I fragment fused to the PCR-F fragment. This construct was cut with Sall and Pmll and a synthetic linker obtained by annealing of primer MUT9 and MUT10 was introduced. This latter step was done to facilitate the upcoming replacement of the original Flavobacterium RBS in the above mentioned construct. The resulting plasmid was named pBIIKS(+)-LINKER78PCRFIA. Assembling of the synthetic RBS's preceding the crtY and crtI genes was done by PCR, using primers MUT1 and MUT5. The amplified fragment PCR-G was made blunt end before cloning into the Smal site of pUC18, resulting in construct pUC18-PCR-G. The next step was the cloning of the PCR-G fragment between the PCR-A and PCR-I fragments. For this purpose the PCR-G was isolated from pUC18-PCR-G by digesting with Munl and PmII and ligated into the MunI and PmII sites of pBIIKS(+)-LINKER78PCRFIA. This construct contains all four fragments, PCR-F, PCR-I, PCR-G and PCR-A, assembled adjacent to each other and containing three of the four artificial RBS sites (crtY, crtl and crtB). The exchange of the Flavobacterium RBS's preceding the genes crtY, crtl and crtB by synthetic ones, was done by replacing the HindIII-Sall fragment of plasmid pXI12-ZYIB-EINV4 with the HindIII-Sall fragment of plasmid pBIIKS(+)-LINKER78PCRFIGA. The resulting plasmid pXI12-ZYIB-EINV4 MUTRBSC was subsequently transformed into E. coli TG1 cells and B. subtilis 1012. The production of zeaxanthin by these cells confirmed that the PCR amplified genes where functional. The B. subtilis strain obtained was named BS1012::SFCO1. The last Flavobacterium RBS to be exchanged was the one preceding the crtE gene. This was done using a linker obtained using primer MUT11 and MUT12. The wild type RBS was removed from pXI12-ZYIB-EINV4MUTRBS with Ndel and Spel and the above mentioned linker was inserted. In the construct pXI12-ZYIB-EINV4MUTRBS2C all Flavobacterium RBS's have been replaced by synthetic RBS's of the consensus sequence AAAGGAGG- 7-8 N -ATG (see table 2). E. coli TG1 cells transformed with this construct showed that also this last RBS replacement had not interferred

Table 2

40	mRNA	nucleotide sequence
	crtZ	AAAGGAGG GUUUCAU <u>AUG</u> AGC
45	crtY	AAAGGAGG ACACGUG <u>AUG</u> AGC
	crtI	AAAGGAG CAAUUGAG <u>AUG</u> AGU
	crtB	AAAGGAGG AUCCAAUC <u>AUG</u> ACC
50	crtE	AAAGGAGG GUUUCUU <u>AUG</u> ACG

B. subtilis

16S rRNA

3'-UCUUUCCUCCACUAG

E. coli

16S rRNA

mentioned gene.

3'- AUUCCUCCACUAG

5

10

15

20

Table 2:

Nucleotide sequences of the synthetic ribosome binding sites in the constructs pXI12-ZYIB-EINV4MUTRBS2C, pXI12-ZYIB-EINV4MUTRBS2CCAT and pXI12-ZYIB-EINV4 MUTRBS2CNEO. Nucleotides of the Shine-Dalgarno sequence preceding the individual carotenoid genes which are complementary to the 3' ends of the 16S rRNA of *B. subtilis* are shown in bold. The 3' ends of the 16S rRNA of *E. coli* is also shown as comparison. The underlined AUG is the translation start site of the

25

with the ability to produce zeaxanthin. All the regions containing the newly introduced synthetic RBS's were confirmed by sequencing. *B. subtilis* cells were transformed with plasmid pXI12-ZYIB-EINV4MUTRBS2 and one transformant having integrated the SFCO by reciprocal recombination, into the levan-sucrase gene of the chromosome, was selected. This strain was named BS1012::SFCO2. Analysis of the carotenoid production of this strain show that the amounts zeaxanthin produced is approx. 40% of the zeaxanthin produced by *E. coli* cells transformed with the plasmid used to get the *B. subtilis* transformant. Similar was the observation when comparing the BS1012::SFCO1 strain with its *E. coli* counter part (30%). Although the *E. coli* cells have 18 times more carotenoid genes, the carotenoid production is only a factor of 2-3 times higher. More drastic was the difference observed in the carotenoid contents, between *E. coli* cells carrying the pZea4 construct in about 200 copies and the *E. coli* carrying the plasmid pXI12-ZYIB-EINV4MUTRBS2C in 18 copies. The first transformant produced 48x more zeaxanthin than the latter one. This difference seen can not only be attributed to the roughly 11 times more carotenoid biosynthesis genes present in these transformants. Contributing to this difference is probably also the suboptimal performance of the newly constructed SFCO, in which the overlapping genes of the wild type *Flavobacterium* operon were separated to introduce the synthetic RBS's. This could have resulted in a lower translation efficiency of the rebuild synthetic operon (e.g. due to elimination of putative translational coupling effects, present in the wild type operon).

In order to increase the carotenoid production, two new constructs were made, pXI12-ZYIB-EINV4MUTRBS2CNEO and pXI12-ZYIB-EINV4 MUTRBS2CCAT, which after the integration of the SFCO into the levan-sucrase site of the chromosome, generate strains with an amplifiable structure as described by [Janniere et al., Gene 40, 47-55 (1985)]. Plasmid pXI12-ZYIB-EINV4MUTRBS2CNEO has been deposited on May 25, 1995 at the DSM-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH (Germany) under accession No. DSM 10013. Such amplifiable structures, when linked to a resistance marker (e.g chloramphenicol, neomycin, tetracycline), can be amplified to 20-50 copies per chromosome. The amplifiable structure consist of the SFCO, the resistance gene and the pXI12 sequence, flanked by direct repeats of the sac-B 3' gene (see figure 22). New strains having elevated numbers of the SFCO could now be obtained by selecting for transformants with increased level of resistance to the antibiotic. To construct plasmid pXI12-ZYIB-EINV4MUTRBS2CNEO, the neomycin resistance gene was isolated from plasmid pBEST501 with Pstl and Small and subcloned into the Pstl and EcoO1091 sites of the pUC18 vector. The resulting construct was named pUC18-Neo. To get the final construct, the Pmel - AatII fragment of plasmid pXI12-ZYIB-EINV4MUTRBS2C was replaced with the Smal-AatlI fragment of pUC18-Neo, containing the neomycin resistance gene. Plasmid pXI12-ZYIB-EINV4MUTRBS2CCAT was obtained as follows: the chloramphenicol resistance gene of pC194 was isolated by PCR using the primer pair cat3 and cat4. The fragment was digested with EcoRI and AatII and subcloned into the EcoRI and AatlI sites of pUC18. The resulting plasmid was named pUC18-CAT. The final vector was obtained by replacing the Pmel-AatlI fragment of pXI12-ZYIB-EINV4MUTRBS2C with the EcoRI-AatlI fragment of pUC18-CAT, carrying the chloramphenicol resistance gene. Figure 23 summarizes the different steps to obtain aforementioned constructs. Both plasmids were transformed into B. subtilis strain 1012, and transformants resulting from a

Campbell-type integration were selected. Two strains BS1012::SFCONEO1 and BS1012::SFCOCAT1 were chosen for further amplification. Individual colonies of both strains were independently amplified by growing them in different concentrations of antibiotics as described in the methods section. For the cat gene carrying strain, the chloramphenicol concentrations were 60, 80, 120 and 150 μ g/ml. For the neo gene carrying strain, the neomycin concentrations were 160 and 180 μ g/ml. In both strains only strains with minor amplifications of the SFCO's were obtained. In daughter strains generated from strain BS1012::SFCONEO1, the resistance to higher neomycin concentrations correlated with the increase in the number of SFCO's in the chromosome and with higher levels of carotenoids produced by these cells. A different result was obtained with daughter strains obtained from strain BS1012::SFCOCAT1. In these strains an increase up to 150 μ g chloramphenicol/ml resulted, as expected, in a higher number of SFCO copies in the chromosome.

Example 7

10

15

Construction of CrtW containing plasmids and use for carotenoid production

Polymerase chain reaction based gene synthesis. The nucleotide sequence of the artificial crtW gene, encoding the β -carotene β -4-oxygenase of Alcaligenes strain PC-1, was obtained by back translating the amino acid sequence outlined in [Misawa, 1995], using the BackTranslate program of the GCG Wisconsin Sequence Analysis Package, Version 8.0 (Genetics Computer Group, Madison, WI, USA) and a codon frequency reference table of E. coli (supplied by the Bach Translate Program). The synthetic gene consisting of 726 nucleotides was constructed basically according to the method described by [Ye, 1992]. The sequence of the 12 oligonucleotides (crtW1 · crtW12) required for the synthesis are shown in Figure 25. Briefly, the long oligonucleotides were designed to have short overlaps of 15-20 bases, serving as primers for the extension of the oligonucleotides. After four cycles a few copies of the full length gene should be present which is then amplified by the two terminal oligonucleotides crtW15 and crtW26. The sequences for these two short oligonucleotides are for the forward primer crtW15 (5'-TATATCTAGAcatatgTCCGGTCGTAAA CCGG-3') and for the reverse primer crtW26 (5'-TATAgaattccacgtgTCA AGCACGACCACCGGTTTTACG-3'), where the sequences matching the DNA templates are underlined. Small cap letters show the introduced restriction sites (Ndel for the forward primer and EcoRl and Pmll for the reverse primer) for the latter cloning into the pALTER-Ex2 expression vector.

Polymerase chain reaction. All twelve long oligonucleotides (crtW1-crtW12; 7 nM each) and both terminal primers (crtW15 and crtW26; 0.1 mM each) were mixed and added to a PCR reaction mix containing Expand™ High Fidelity polymerase (Boehringer, Mannheim) (3.5 units) and dNTP's (100 mM each). The PCR reaction was run for 30 cycles with the following profile: 94 °C for 1 min, 50 °C for 2 min and 72 °C for 3 min. The PCR reaction was separated on a 1% agarose gel, and the band of approx. 700 bp was excised and purified using the glass beads method (Geneclean Kit, Bio101, Vista, CA, USA). The fragment was subsequentely cloned into the *Smal* site of plasmid pUC18, using the Sure-Clone Kit (Pharmacia, Uppsala, Sweden). The sequence of the resulting crtW synthetic gene was verified by sequencing with the Sequenase Kit Version 1.0 (United States Biochemical, Cleveland, OH, USA). The crtW gene constructed by this method was found to contain minor errors, which were subsequently corrected by site-directed mutagenesis.

Construction of plasmids. Plasmid pBIIKS(+)-CARVEG-E (see also Example 5) (Figure 26) contains the carotenoid biosynthesis genes (crtE, crtB, crtY, crtI and crtZ) of the Gram (-) bacterium Flavobacterium sp. strain R1534 WT (ATCC 21588) [Pasamontes, 1995 #732] cloned into a modified pBluescript II KS(+) vector (Stratagene, La Jolla, USA) carrying site I of the B. subtilis veg promoter [LeGrice, 1986 #806]. This constitutive promoter has been shown to be functional in E. coli. Transformants of E. coli strain TG1 carrying plasmid pBIIKS(+)-CARVEG-E synthesise zeaxanthin. Plasmid pALTER-Ex2-crtW was constructed by cloning the NdeI - EcoRI restricted fragment of the synthetic crtW gene into the corresponding sites of plasmid pALTER-Ex2 (Promega, Madison, WI). Plasmid pALTER-Ex2 is a low copy plasmid with the p15a origin of replication, which allows it to be maintained with CoIE1 vectors in the same host. Plasmid pBIIKS-crtEBIYZW (Figure 26) was obtained by cloning the HindIII-PmII fragment of pALTER-Ex2-crtW into the HindIII and the blunt end made Mlul site obtained by a fill in reaction with Klenow enzyme, as described elsewhere in [Sambrook, 1989 #505]. Inactivation of the crtZ gene was done by deleting a 285 bp Nsil-Nsil fragment, followed by a fill in reaction and religation, resulting in plasmid pBIIKS-crtEBIY[\(\Delta Z \)]W. Plasmid pBIIKS-crtEBIY[\(\Delta Z \)] carrying the nonfunctional genes crtW and crtZ, was constructed by digesting the plasmid pBIIKS-crtEBIY[\(\Delta Z\)]W with NdeI and HpaI, and subsequent self religation of the plasmid after filling in the sites with Klenow enzyme. E. coli transformed with this plasmid had a yellow-orange colour due to the accumulation of β-carotene. Plasmid pBIIKS-crtEBIYZ[ΔW] has a truncated crtW gene obtained by deleting the NdeI - HpaI fragment in plasmid pBIIKS-crtEBIYZW as outlined above. Plasmids pALTER-Ex2-crtEBIY[\(\Delta ZW \)] and pALTER-Ex2-crtEBIYZ[\(\Delta W \)], were obtained by isolating the \(\Ban Am HI - Xbal \) fragment from pBIIKS-crtEBIY[Δ ZW] and pBIIKS-crtEBIYZ[Δ W], respectively and cloning them into the BamHI and Xbal sites of pALTER-Ex2. The plasmid pBIIKS-crtW was constructed by digesting pBIIKS-crtEBIYZW with Nsil and Sacl, and self-religating the plasmid after recessing the DNA overhangs with Klenow enzyme. Figure 27 compiles the relevant inserts of all the plasmids used in this paper.

Carotenoid analysis. E. coli TG-1 transformants carrying the different plasmid constructs were grown for 20 hours in Luria-Broth medium supplemented with antibiotics (ampicillin 100 μg/ml, tetracyclin 12.5 μg/ml) in shake flasks at 37°C and 220 rpm. Carotenoids were extracted from the cells with acetone. The acetone was removed in vacuo and the residue was re dissolved in toluene. The coloured solutions were subjected to high-performance liquid chromatography (HPLC) analysis which was performed on a Hewlett-Packard series 1050 instrument. The carotenoids were separated on a silica column Nucleosil Si - 100, 200 x 4 mm, 3m. The solvent system included two solvents: hexane (A) and hexane/THF, 1:1 (B). A linear gradient was applied running from 13 to 50 % (B) within 15 minutes. The flow rate was 1.5 ml/min. Peaks were detected at 450 nm by a photo diode array detector. The individual carotenoid pigments were identified by their absorption spectra and typical retention times as compared to reference samples of chemically pure carotenoids, prepared by chemical synthesis and characterised by NMR, MS and UV-Spectra. HPLC analysis of the pigments isolated from E. coli cells transformed with plasmid pBIIKS-crtEBIYZW, carrying besides the carotenoid biosynthesis genes of Flavobacterium sp. strain R1534, also the crtW gene encoding the β-carotene ketolase of Alcaligenes PC-1 [Misawa, 1995 #670] gave the following major peaks identified as: β-cryptoxanthin, astaxanthin, adonixanthin and zeaxanthin, based on the retention times and on the comparison of the absorbance spectra to given reference samples of chemically pure carotenoids. The relative amount (area percent) of the accumulated pigment in the E. coli transformant carrying pBIIKS-crtEBIYZW is shown in Table 3 ["CRX": cryptoxanthin; "ASX": astaxanthin; "ADX": adonixanthin; "ZXN": zeaxanthin; "ECM": echinenone; "MECH": 3-hydroxyechinenone, "CXN": cantaxanthin]. The Σ of the peak areas of all identified carotenoids was defined as 100%. Numbers shown in Table 3 represent the average value of four independent cultures for each transformant. In contrast to the aforementioned results, E. coli transformants carrying the same genes but on two plasmids namely, pBIIKS-crtEBIYZ[\(\Delta \W \)] and pALTER-Ex2-crtW, showed a drastical drop in adonixanthin and a complete lack of astaxanthin pigments (Table 3), whereas the relative amount of zeaxanthin (%) had increased. Echinenone, hydroxyechinenone and canthaxanthin levels remained unchanged compared to the transformants carrying all the crt genes on the same plasmid (pBIIKS-crtEBIYZ∆W). Plasmid pBIIKS-crtE-BIYZ[\Delta W] is a high copy plasmid carrying the functional genes of crtE, crtB, crtY, crtI, crtZ of Flavobacterium sp. strain R1534 and a truncated, non-functional version of the crtW gene, whereas the functional copy of the crtW gene is located on the low copy plasmid pALTER-Ex2-crtW. To analyze the effect of overexpression of the crtW gene with respect to the crtZ gene, E. coli cells were co-transformed with plasmid pBIIKS-crtW carrying the crtW gene on the high copy plasmid pBIIKS-crtW and the low copy construct pALTER-Ex2-crtEBIYZ[ΔW], encoding the Flavobacterium crt genes. Pigment analysis of these transformants by HPLC monitored the presence of β-carotene, cryptoxanthin, astaxanthin, adonixanthin, zeaxanthin, 3-hydroxyechine-none and minute traces of echinenone and canthaxanthin (Table 3). Transformants harbouring the crtW gene on the low copy plasmid pALTER-Ex2-crtW and the genes crtE, crtB, crtY and crtl on the high copy plasmid pBIIKS-crtEBIY[ΔZW] expressed only minor amounts of canthaxanthin (6 %) but high levels of echinenone (94%), whereas cells carrying the crtW gene on the high copy plasmid pBIIKS-crtW and the other crt genes on the low copy construct pALTER-Ex2-crtEBIY[ΔZW], had 78.6 % and 21.4 % of echinenone and canthaxanthin, respectively (Table 3).

Table 3

plasmids	CRX	ASX	ADX	ZXN	ECH	HECH	CXN
pBIIKS-crtEBIYZW	1.1	2.0	44.2	52.4	< 1	< 1	< 1
pBIIKS-crtEBIYZ[ΔW] + pALTER-Ex2-crtW	2.2	-	25.4	72.4	< 1	< 1	<1
pBIIKS-crtEBIY[∆Z]W	-	-	-	-	66.5	- '	33.5
pBIIKS-crtEBIY[\(\Delta\)ZW] + pBIIKS-crtW	-	-	-	_	94	_	6

o Claims

40

45

- 1. A DNA sequence comprising one or more DNA sequences selected from the group consisting of:
 - a) a DNA sequence which encodes the GGPP synthase of Flavobacterium sp. R1534 (crtE) or a DNA sequence which is substantially homologous;
 - b) a DNA sequence which encodes the prephytoene synthase of Flavobacterium sp. R1534 (crtB) or a DNA sequence which is substantially homologous;

- c) a DNA sequence which encodes the phytoene desaturase of Flavobacterium sp. R1534 (crtl) or a DNA sequence which is substantially homologous;
- d) a DNA sequence which encodes the lycopene cyclase of Flavobacterium sp. R1534 (crtY) or a DNA sequence which is substantially homologous;
- e) a DNA sequence which encodes the β-carotene hydroxylase of Flavobacterium sp. R1534 (crtZ) or a DNA sequence which is substantially homologous.
- 10 2. A DNA sequence as claimed in claim 1 comprising the following DNA sequences:
 - a) a DNA sequence which encodes the GGPP synthase of Flavobacterium sp. R1534 (crtE) or a DNA sequence which is substantially homologous, and
- b) a DNA sequence which encodes the prephytoene synthase of Flavobacterium sp. R1534 (crtB) or a DNA sequence which is substantially homologous, and
 - c) a DNA sequence which encodes the phytoene desaturase of Flavobacterium sp. R1534 (crtl) or a DNA sequence which is substantially homologous.
 - 3. A DNA sequence as claimed in claim 1 comprising the following DNA sequences:
 - a) a DNA sequence which encodes the GGPP synthase of Flavobacterium sp. R1534 (crtE) or a DNA sequence which is substantially homologous, and
 - b) a DNA sequence which encodes the prephytoene synthase of Flavobacterium sp. R1534 (crtB) or a DNA sequence which is substantially homologous, and
 - c) a DNA sequence which encodes the phytoene desaturase of Flavobacterium sp. R1534 (crtl) or a DNA sequence which is substantially homologous, and
 - d) a DNA sequence which encodes the lycopene cyclase of Flavobacterium sp. R1534 (crtY) or a DNA sequence which is substantially homologous.
- 35 4. A DNA sequence as claimed in claim 1 comprising the following DNA sequences:
 - a) a DNA sequence which encodes the GGPP synthase of Flavobacterium sp. R1534 (crtE) or a DNA sequence which is substantially homologous, and
 - b) a DNA sequence which encodes the prephytoene synthase of Flavobacterium sp. R1534 (crtB) or a DNA sequence which is substantially homologous, and
 - c) a DNA sequence which encodes the phytoene desaturase of Flavobacterium sp. R1534 (crtl) or a DNA sequence which is substantially homologous, and
 - d) a DNA sequence which encodes the lycopene cyclase of Flavobacterium sp. R1534 (crtY) or a DNA sequence which is substantially homologous, and
 - e) a DNA sequence which encodes the β-carotene hydroxylase of Flavobacterium sp. R1534 (crtZ) or a DNA sequence which is substantially homologous.
 - 5. A DNA sequence as claimed in claim 4 which comprises in addition to the DNA sequences specified in claim 4 a DNA sequence which encodes the β-carotene β4-oxygenase of Alcaligenes strain PC-1 (crt W) or a DNA sequence which is substantially homologous.
 - 6. A DNA sequence as claimed in claim 3 which comprises in addition to the DNA sequences specified in claim 3 a DNA sequence which encodes the β-carotene β4-oxygenase of Alcaligenes strain PC-1 (crt W) or a DNA sequence which is substantially homologous.

5

25

30

40

45

50

- 7. A vector comprising the DNA sequence of claim 1.
- 8. A vector comprising the DNA sequence of claim 2.
- 9. A vector comprising the DNA sequence of claim 3.
 - 10. A vector comprising the DNA sequence of claim 4.
 - 11. A vector comprising the DNA sequence of claim 5.
- 10

20

40

50

55

- 12. A vector comprising the DNA sequence of claim 6
- 13. A cell which is transformed by the DNA sequence of claim 1 or the vector of claim 7.
- 15 14. A cell which is transformed by the DNA sequence of claim 2 or the vector of claim 8.
 - 15. A cell which is transformed by the DNA sequence of claim 3 or the vector of claim 9.
 - 16. A cell which is transformed by the DNA sequence of claim 4 or the vector of claim 10.
 - 17. A cell which is transformed by the DNA sequence of claim 5 or the vector of claim 11.
 - 18. A cell which is transformed by the DNA sequence of claim 6 or the vector of claim 12.
- 19. A cell which is transformed by the DNA sequence of claim 4 or the vector of claim 10 and a second DNA sequence which encodes the β-carotene β4-oxygenase of Alcaligenes strain PC-1 (crt W) or a DNA sequence which is substantially homologous or a second vector which comprises a DNA sequence which encodes the β-carotene β4-oxygenase of Alcaligenes strain PC-1 (crt W) or a DNA sequence which is substantially homologous.
- 20. A cell which is transformed by the DNA sequence of claim 3 or the vector of claim 9 and a second DNA sequence which encodes the β-carotene β4-oxygenase of Alcaligenes strain PC-1 (crt W) or a DNA sequence which is substantially homologous or a second vector which comprises a DNA sequence which encodes the β-carotene β4-oxygenase of Alcaligenes strain PC-1 (crt W) or a DNA sequence which is substantially homologous.
- 21. The cell of any one of claims 13 to 20 which is a prokaryotic cell.
 - 22. The cell of claim 21 which is E. coli.
 - 23. The cell of claim 21 which is a Bacillus strain.
 - 24. The cell of any one of claims 13 to 20 which is an eukaryotic cell.
 - 25. The cell of claim 24 which is a yeast cell.
- 45 26. The cell of claim 24 which is a fungal cell.
 - 27. A process for the preparation of a desired carotenoid or a mixture of carotenoids by culturing a cell as claimed in any one of claims 13 to 26 under suitable culture conditions and isolating the desired carotenoid or a mixture of carotenoids from such cells or the culture medium and, in case only one carotenoid is desired separating it by methods known in the art from other carotenoids which might also be present.
 - 28. A process as claimed in claim 27 for the preparation of lycopene by culturing a cell as claimed in claim 14.
 - 29. A process as claimed in claim 27 for the preparation of β-carotene by culturing a cell as claimed in claim 15.
 - 30. A process as claimed in claim 27 for the preparation of echinenone by culturing cells as claimed in claim 18 or 20.
 - 31. A process as claimed in claim 27 for the preparation of canthaxanthin by culturing cells as claimed in claim 18.

22

BNSDOCID: <EP___0747483A2_I_>

32. A process as claimed in claim 27 for the preparation of zeaxanthin by culturing cells as claimed in claim 17 or 19. 33. A process as claimed in claim 27 for the preparation of adonixanthin by culturing cells as claimed in claim 17 or 19. 34. A process as claimed in claim 27 for the preparation of astaxanthin by culturing cells as claimed in claim 17. 35. A process for the preparation of a food or feed composition characterized therein that after a process as claimed in any one of claims 27 to 34 has been effected the carotenoid or carotenoid mixture is added to food or feed.

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

	350	0 0 0	4 50	500	550	009
	AGATGATGTGCTGATCCATGCGCGTCATTGCAAAACCGATCACTCCTCCTCTCTCT	TGTCGCGTGATGCCATTGCTATGCCCCGAGGGCTAGGATGGCGCGA ACAGCGCACTACCGTACGTTACGGGGCTCCCGATCCTACCGCGCT S R D G I V C N A P R A R M A R	AGGATCAAGGGGGGAGAGACATGGAAAATCGAGGGACGGGTCTTTGTCGT TCCTAGTTCCCCCCCTCTCTGTACCTTTAGCTCCCTGCCCAGAAACAGCA R I K G G R D M R I R G R V F V V	CACGGGCGCCATTGGGGCGGCCTCGGCGCGATGCTGGCCC GTGCCCGCGGCGTAGCCCAGACCCCGCGAAGCCGCGCTACGACCGGG T G A A 8 G L G A A 8 A R M L A Q	AAGGCGCGCGAAAGGTCGTGCTGCCGATCTGCCGAACCGAAGGACGCG TTCCGCCGCGCTTCCACACCGACCGCGCTTCCTGCGC G G A K V V L A D L A K P K D A	COCGAAGGCGCGGTTCACGCGGCCTGCGACCGTGCCGCTGC
	301	351	4 01	. 451	501	551
.7/1	80	100	150	200	250	900
Fig.	GGATCGCCCTGCCGTTCGCGATCAGCAGCCGCCTTGCGGATCGGTC 1++ CTAGGCGCGGAAGCGCTAGTCGTCGCGGGAAAGGCTTAGCGAG OIf-5> D P R L A V R D Q Q P P L R I G Q	AGCATCATCCCCATGAACCGCAGCGCACCACGCGCGCGCCCCAGATC 51+ TCGTAGTAGGCGTACTTGGCGTCGCGGCGCGCGCGGCGGCGGGGGTTAG H P H E P Q R T T Q R A P Q I	GRVQH GRV RHHRRE GROOTECTCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	151	TCGCGCCAATCGCGCCTATTCCGATGCACACGCCCCAATGCGCGT 201	agaccogoccraccoccaccaccacarcacarcacacarcacar

		Fig. 7/2		
601	GCAGA CGGCCA TCGCCGTGCCGA CCGCTTCGGCA CGCCCCCCCTGCCCTG	650 901	COTGCCGCCATGACGCTGCCGATGCCCGCGACCTTGCGCGGCACGCCA	950
	QTAIALATDRFGRLDGL		VAGKTLP MARDLARHGI	
651	TTGTGAACTGCGGGGGTTGCGGCCGGCCGAACGGATGCTGGGCCGCGAC	700 951	TCGCGTCATGACCATCGCGCCCGGCATCTTCCGCACCCCGATGCTGGAG	1000
	VNCAGIAPAERMLGRD		RVNTIAPGIFRTPKLE	
701	GGGCCGCATGGACTGGACGTTTGCCCGTGCGGTCACGATCAACCTGAT	750 1001	GGGCTGCCGCAGGACGTTCAGGACAGCCTGGGCGCGGCGGCGCTTCCC	1050
	GPEGLDSFARAVTINLI		G L P Q D V Q D S L G A A V P F P	
751	CGGCAGCTTCAACATGGCCGCCTTGCAGCCGAGGCGATGCCCGGAACG	1051	CTCOCOGCTGGGAGCCOTCGGAATACCGGGCGCTGTTGCACCACATCA	1100
	GBTNMARLAAEAMARNE		SRIGEPSHYAALLHHII	
801	AGCCCGTOCGGGGCGAGCGTGATCGTCAACACGGCCTCGATCGCG	650 1101	TOGOGANOCOCATGCTGANOGGAGAGGTCATOCGCCTCGACGGCGCATTG	1150
	PVRGKRGVIVNTASIA		ANPHLNGKVIRLDGAL	
851	GOGCIAGACGAACAGATCGGACAGGTCGCCTATGCGGCCAGCAAGGCGGG	900 1151	CGCATGGCCCCCAAGTGAAGGAGGGTTTCATGGACCCCATCGTCATCACC	1200
	A S D O S I O D V A Y A A S K A G		RKAPKA MDPIVIT OXF-1>	

		C77 '813		
1201	GGCGGATGCGCACCCCGATGCGGCCATTCCAGGGCGATCTTGCCGCGAT	1250 1501	GTCGTOGCCGCCGCATGCAAGCATGTCGAACGCCCCCTACCTGCTGCCCCCCTACTGCCGCCCTACTGCTGCCGCGCCTACTGCACGCGGGAATGCACGGG	1550
	санктенса коспиани		VVAGGRESKSRAPYLLP	
1251	GATGCCCCCACCTTGGCGCGGACGCGATCCGCGCGCGCGC	1300 1551	CAAGGGGGGTCGGGATGCGCATGACCGTGTGCTGGATCACA	1600
1301	TGTCGCCCGACATGGTGGACGAGGGGCTGCGTCCTCGCCGCG	1350 1601	TGTTCCTCGACGGGTTGGACGCCTATGACAAGGGCCGCCTGATGGGC ACAAGGAGTGCCCAACCTCCTGCGGATACTGTTCCCGGCGGACTACCCG FLDGLEDAYDR GRUNG	1650
1351	GOCCAGGATCAGGCACCACGCGGCGCTTGGCGCCGGACTGCC CCGCTCCCAGTCCCTGGCCTCCGCCGCGAACCGCGGCTGCGGGGGACCGCGGAACGGCGCCTGAGGGGGGAACGGCGCGCAACGGCGCCTGACGGGGGAACGGCGCCTGACGGGGAACGGCGCGAACGGCGCCTGACGGGGAACGGCGCAACGGCGCCTGACGGGGAACGCGCGCAACGGGCCTGACGGGGACGGAACGGCGCAACGGGAACGGCGCAACGGGAACGGGAACGGCGAACGGGCCTGAACGGGAACGGCCCAACGGGAACGCGCAACGGGAACGGAACGGAACGGAACGGAACGGAACGGAACGGAACGGAACGGAACGGAACGGAACGAACGGAACGAACGGAACGAACGGAACAAC	1400 1651	TOTALGOCCANGGATTGCGCCGGCGATCACGGTTTCACCCGCGAGGCGCAAATGGGGCTCCTAACGCGGCGCTAGTGCCAAAGTGGGCCGCTCGGCTTTCACCCGCGCTAGTGCGCCAAAGTGGGCCGCTCGCGTTTTCACCCGCGCAAAGTGCGCCGCCTAGTGCCGCAAAGTGGGCCGCTCGCGTTTTTAAAAGTGCGCCTCGCGTTTTTAAAAGTGCGCCTCGCGTTTTAAAAGTGCGCCTCGCGTTTTAAAAAGTGCGCGCTCGCGTTTTAAAAAAAA	1700
1401	GCTGTCGACGGCACGACCATCAACGAGATGTGCGGATCGGGCATGA CGACAGCTGCCGTGGTGGTAGTTGCTCTACACGCCTAGCCGTAACT L 9 T G T T I N E N C G 9 G M K	1450 1701	GGACGACTATGCGCTGACCAGGCCGCGCGCGCAGGACGCCATCGCCA	1750
1451	AGGCCGCGATGCTGGCCTGATCGCCGGGGATCGGCGGGCATC TCCGCCGCTACGACCGGTACTGGACTAGCGGCCCTAGCGCCCGTAG A A N L G H D L I A A G 9 A G I	1500 1751	GCGCTGCCTTCGCCGCCGCGCGCGTGACCGTCACGCCACGCAAGCGCCACGCAAGCGCGCTCTAGCGGGGCACTGCCATGCCGTGCCGTTCCGCTTCCTTC	1800

		FIG. 1/4		
1801	GTGCAGACCACCGTCGATACCGACGAGATGCCCGGCCAAGGCCCGCCC	1850 2101	TACGACCTGTTCGAGGTGAACGAGGCATTCGCCGTCGTCGCCATGATCGC	2150
	VQTTVDTDENPGKARPH		X D L W R V N R A F A V V A M I A	
1851	GAAGATCCCCCATCTGAAGCCGCCTTCCGTGACGGTGGCACGGTCACGG	1900 2151	GATGANGGAGCTTGCCCTGCCACGATGCCACGAACATCAACGGCGGGG	2200
	KIPHLKPAFRDOGIVIA		NKELOLPHDATNINGGA	
1901	CGGCGAAACAGCTCGTCGATCTCGGACGGGGGGGGGGCGCTGGTGATGATG	1950 2201	CCTGCGCGCTTGGGCATCCCATCGGCGCGTCGGGGGCGCGCGATCATGGTC	2250
	AMBBBISDGAAALVMK		CALGEFIGASGARINV	
1951	COCCAGTOSCAGGCCAAAGCTGGGCCTGACGCCATCGCGCGGATCAT	2000 2251	ACCTICTANA CACCANTGE CACCOCCACA COCCCCCCCCATC	2300
	ROBOARRIGITPIARII		TLLNAKAARGATRGAAS	
2001	CGSTCATGCGACCGACCGTCCGGGCCTGTTCCCGACGGCCCCAAGGCCCCCAAGGCCCCGACGCCGGACGGCCGGACAAGGGCTGCGGGGTACGCTGCCAGGGCCGGACAAGGGCTGCGGGGGTACGGGGGGGG	2050 2301	CGTCTGCATCGGCGGGGGCGACGCCATCGCGCTGGAACGCCTGAACGCCTGAACGCCTGAACGCTGAACGCCTGCGGTAGCGCGACCTTGCCGACT	2350
	GHATHADRPGLFPTAPI		V CIGGGENTAIALERES	
2051	TCGCCGCGATGCCGAAGCTGCACCGCACGGACACCCGCCTTGGCCAT	2100 2351	GCTAATTCATTTGGGGGAATCCGGGTTTTTCGTGCACGATGGGGGAACCG	2400
	GAMMRILDRTDTRLGD		*	

	2750		2800		2850		2900		2950		3000	
	GTCTGCGATGCGATGCCGCCTGCGCGGTCGAGATGGTCCATGC 1++ CAGACGCTACGCTACGAGCTCGCGAGCTCTACGAGGTCG	V C D A M V D A A C A V E M V H A C C C C C C C C C C C C C C C C C C		A S II II D D M P C M D D A R H R	Grecogrehocogocaccarerosocanogaegaegaegaegaegaegaegaegaegaegaegaegaeg	RGOPATEVARGERAV	CIT 8C GG GCAT CGCCT CAN CACCGA GC CCAT GC GCANTITT GG GC CCACGC CACCGA GC CCACGA CCCCTA AAA CC GCT ACCCCCT AAAA CC GCT CCG GT ACCCCCT AAAA CC GCT CCG GCT ACCCCCT AAAA CC GCT CCG GCT ACCCCC CCG ACCCCC CCG ACCCCC CCG ACCCCC CCG ACCCC CCG ACCCC CCG ACCCC CCC	LAGIALITERMERILGERA	acacaacacacaacaacaacacacaanaacracaracaaracarac	ROMPRIVABROS	GCGCTATGGGACCGGTGGGCTGTGCCCAGGCAGGATCTGGACCTGCAC	ам ср. у слсасови и
S	2701		2751		2801		2851		2901		2951	
Flg. 7/5	2450		2500		2550		2600		2650		2700	
	CTTTGCCGGTGCGGCTAACCCACCTCGACCTGTCTTCGGGCCATGCC	では、そのだと思いている。またいというと思いているというと思いません。			CTGACGCAACGAAGGCACGATGACGCCAAGCAGCAATTCCCCCTACGC	crts> N T P K Q Q F P L R	CARCHOGACCACACCACACACCACACACCCACACTTCCCCTCCTCCT	D L V R I R L A Q I S G Q F G V V	CTCGGCCCCGCTCGGCGGCCATGAGCGATGCCGCCCTGTCCCCCGCCAAACCAACC	S A P L G A A M S D A A L S P G M	AACGCTTTCGCGCCGTGCTGATGGTCGCCGAAAGCTCGGGGGGGG	
	2401		2451		2501		2551		2601		2651	

		77		
3001	GOCCCCAAGGA CGCCCCCGGATCGAACGTGAACAGGACCTCAAGACGGG	3050 3301	AOCOBOBOCAACTOCAACACAATGOCCACCGGGTGTTCCGCGGGGGGGGGG	3350
	APRDAAGIRREQDLKTG		SRAQLDELMRTRLFRGG	
3051	CGTCCTGTTCGTCGCGGCCTCGAGATGCTGTCCATTATTAAGGGTCTGG	3351	GCACATCGCGAACCTGCTGCCGCGTGCTGCCGCATGACATCGCCGCA 	3400
	VIFVAGLENLSINGLD		QIADLLARVLPHDIRRS	
3101	ACAAGGCCGAGAACCGAGCTCATCATTCGGGCGTCAGCTTGGTCGG	3150 3401	GCGCCTAGGCGCGGTCGGGTCCACACGCGTCGCGGCTGATTTCGCCG	3450
-	NAMPER OLKAFGROLGR		* * * * * * * * * * * * * * * * * * * *	
3151	GTCTTCCAGTCCTATGACGACCTGCACGTGATCGGCGACAAGGCCAG	3200 3451	CDOQGGAGGCGCATGCGCCGCGTCCAAGCCTCCGCGCGCCAGAAGCCC	3500
	V F Q S Y D D L L D V I G D K A S		GRIRSAADLGGRALLG	
3201	CACCGGCAAGGATACGGCGCGCGACACCGGCCCCCCGGGCCCAAAAGGCCG	3250 3501	GATCTTGGCAGCCTTCGACGTGCTGATCCGCTGCCGATAGGCCTCGGGGCCTAGAAACCGTCGGAAGCTGCACGACTAGGCGACCGCTATCCGGAGCCCG	3550
	TGKDTARDTAAPGPRGG		IKAAKSTSIRORYARP	
3251	COCTGATGGCGGTCGGACAGATGGGCGACGTGGCGCACTAACCGCGCCCCCCCC	3300 3551	CACCCTGCCGGATGCGCGTCCCGANTTGCGCGATAGATACGCAGCGCCCG	3600
	INAVGQMGDVAQBYRA		GGGRIRTGIARYIRLAA	

	3950		000		4050		4100		4150		4200
	cccaccacccccccaccarcaractartecaccaccrcactarccacccrcaccrca	GVVGAVHYSYELVDDLS	GCGGTATTCGCGATCCGCGACATCCATCGCGAAACCCTCGATCAGGTCCA 1+++ CGCCATAAGCGCTAGGCGTGTAGGTAGCGCTTTGGGAGCTAGTCCAGGT	RYKRDAVDNAFGEILD	TCGCCAAAGGTCCGGGAAATCATGCCGCCGGGCGACCTGGCGCCCCCCCC	MPHLDPFDHRRAVQRLA	acana base cascanent o sascate cortas acades casce cascan sare 1+++++	A F P P S K P G D E H L A A L T D	aececechaececechaeceaecrareaarcacececececracaea	ARLAGLRAQPOGGARP	CAGAACCCATCACCTGCCCTCAATCACGTCATCCGCATGCCTGCACCAG
	3901		3951		4001		4051		4101		4151
Fig. 7/7	3650		3700		3750		3800		3850		3900
	GCGATCGACCACGCGCGGCGGCGAAATGCGGAAGCCCTGCCGCCCCCCCC	атзилскеретнегоска	CGAGCCATAATAGGGCTCGGCCGCGTCAAGCAGGCGGATGATGACGGAAT 51++ 6CTCCGTAATATCCGGAGCGGGGGGGGTTCGTCGGCGTACTACTGCCTTA	SAYYPEAADLLRIIVS	AGAGCGCGTCCGAAGGCACCGGACCTCAACCGTCGCCCCCCCC	YLADSPVPGRVTAGARA	AGCCAGTOGGCAGATAGCAGCGCCCGATGGCGCCATCGTCGATCAC 51	LWDAPLYCRGIAADDIV	GTCGCGAGCGATGTTGGTCAGCTGGAACGCAAAGGCCCAGATGGCAGGGCGC 01	DRAINTLOFALGLDCA	CTAGGECGAGCAGGECTGCAGGCCATCACCAGGCCATCATCACG CTAGGECGTGGCGGATGCTGGGCGCGGTAGTGGGCGCGGTAGTGGGCGCGGTAGTGGGCGCGGTAGTGGGCGCGGTAGTGGGCGCGGTAGTGGGCGCGGTAGTGGGCGCGGTAGTGGTGGCGCGGTAGTGGGCGCGGTAGTGGGCGCGGTAGTGGTGGCGCGGTAGTGGTGCC
	3601		3651		3701		3751		3801		3851

		Fig. 7/8		
5 5	GCATAGAGCATGA CCGTATCCTCGCGGATGCCGGGCGGCATCAGCTTGGC	4250	CGTGATGGGCCGACACTTCGGTGCTGAAATCGGCGGGGCTGAAGATGCGG	4550
~	YINVTDERIGPPMLKA			
8 8	CGCCTGCGCAAAGCTTTGCGAACCCTGCGCAATGGCCGTTCGGAAGTCG	4300 4551	CTGACGGTCAGGTGCTTGCGCAGGTCGGCGATGGCGCGGCGCTCCAGTTC	4 600
	A D A F S D S G D A I A A R S T		SVTLHKRLDPIARREK	
8 8	CCGTCAGATCGGTCATGCGACGGCCAGGTCCGACACGATGACCTGCGCCG	4350 4601	CTCGAAGATGCGCTCGGCATAGCCCGGGGCTCGGCTTCCCAATCGACAT	4650
<	* A V A L D S L M V Q A T L D T M C ortB			
5 S	TGGCCTTGGCGCTGCCAACGACCCCGGGATGCCCTG ACCGGAACCGCGACGCTGCGCCTACGGGCGTGGCCTACGCCTACGGGCGTGGGCCTACGCGCTACGCGCTACGCCCTACGCCCTACGCCCTACGCCCTACGCCCTACGCCCTACGCCCTACGCCCTACGCCCTACGCCCTACGCCCTACGCCCTACGCCCTACGCCCTACGCCCTACGCCCTACGCCCTACGCCCTACGCCCACCCCACCCCCACCCCACCCCCACCCCCACCCCCACCCC	4400 4651	COSCOCCOCAGATOCOGAACGGCCCAAGGACGTAATGCGTGGACATC	4100
E ⊷	ля м з с у у с в и с м с в и т		оля стнрурагуунт эм	
8 8	CCCCCCCACCATGTACAAGTTCGGCATCGCGCGTCGCGGTTATGCGG	4450 4701	CCCTCGGGGGCCAGGCTGGGATCGGTCACGCAGGCGAATGCAGATACAT	4750
0	лоугутир гая рянвр			
8 8	GOGGNACCAGGCGCATTGCGTCAGGATCGGCTCGACCGAGAAGGCGCTGC	4500 4751	CGAGAAATCGTCCGGCAGGCGCGCGTTGAAGATCTCGTTCACCAGCC	4800
_	R W A S O T L I P W V S F A S		STDDDLRPGNTIENVL	

	5150		5200		5250		5300		5350		5400	
	GCTCGAACAGGCCAACCATGCCCGCGACCAGCTGGTTGGT	REFLAVMGAVLQNTGGK	GCGAACCAGACGCCGCCGCCGTTCCAGCGCATGGATCAGCGCATAGAT	AFWVGGRRELAHILAYI	CARCTCATCANANCAGTTCCCGCCACCAGCAGCGTGTGGNACGAAA		AGGOCTGCCGCAGATGCGGGTCCTGGATGAAGCGCGCCACCATGCTGTGG	FAQRLHPDQIFRAVMSH	Apcendegrangecreecatecageccoccecececetreager 	VBRYAQLRMLAPAANLM	CTGGCCCAGCTTCAGGAAGGGCGTGGTCCCCAGCTTCAGATACCCCTCGC	S G L K L W P P P P P C L K L K G W
	5101		5151		5201		5251		5301		5351	•
Fig. 7/9	4850		4900		4950		2000		5050		5100	
	CCTTCTACCCCCCCAAAATCACCCTGTGGTGGGCCCACCTTCTCGGGG CCTTCTACTGCCCCCCCAAACCCTGTGGGCCCCCCCCCC	скукр сг г узния и м вр	CGCTTGGACAGGCCGANATGCAGCACGACACGCGACATCGACCAGGGCTG	RESTRICTERESTR	COSGTTCAGGATCGCGGCCTTGGTGCGCCGCGGGGGTATGGCCCAGCA	RHLIAARTRGRRTRGL	GGTCGCGATACCTGTGCATCACGTCGCCGTTGCTGGCCACCGTATCCGCG	LDRYSHMVDGNSAVTDA	cacaactaccacconcaacaccaccaccaccaccaccaccaccaccaccaccac	RIQRGDILTVGTARDGE	GOTOTOGATOCOCOTGA CECEGGCATTCA GCACA GCOTOCOGOCAA GAC	TDIRTVRANLLLIGGL
	4801		4851		1067		4951		5001		5051	

		118. 1/1U		
5401	CHARGE CONTROCTOR CONTROCTOR CANADOR CONTROCANTOR CANADOR CANA	5450 5701	GOOCCTCGACGATGOTGCCGAATGCCGGCCGATTGCAGCGGATGCCA	5750
	R X V M R A X D H F R R X G D V D		RARVITTAIGASQLRIA	
5451	acacantalaacacacctcaccantractcatcatcatcactcatcac	5500 5751	AGCGCAAGCCCGCCGAAACCTGCGCCGATGACGATGGCGGGAACTCATGCT	5800
	APNESAVORILEDDDИV		LALGGFGAGIVIASSM<	< ort!
5501	GTATTCGAAGCTGCGGCCCATGTCAGCGGTAGAAGGGCGAAAACCAAAAACTTCGACGCGGCGGGCG	5550 5801	CTCTCCTGCAGCAGCGTTCGGGCAGCGCACGCCTGCGACAGGAGGACAGGAGGACAGGCCTGCGACAGGACGTCGCGAAGCCGTCGCGTGCCGAAGCCGTGCCGTGCCGAAGCCGTCGCTGTC	5850
	8 4 5 7 7 7 7 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8		REQLIPREPLCRVAQ 8 L	
5551	CCGGCAGCACGTCA CGTCACGCTCCATCGGTTGGCCGCTGAGGGCCCAC	5600 5851	COGANTOGOCOGOCOTCCGTCACONTOCONACCGGTCGGCCANTGTCA	2900
	VPLLTVDRKKPQGSLAN		PIPPROTVIRLRDALT	
5601	AGCTCTCGCAGGCTGTCGGTCGGTCGACGTCGGACGTCGGAATCGAA TCGAGAGGGTCGGACGCAGCGAGGCTGCAGGTT TCGAGAGGGTCGGAGGCGAGGC	5650 5901	GOCGCCCCCATAGAAGGCTCGATCAGCGCTGCGGCAGGCGGTAGAAC CCGCGGGCCGTATCTTCGCGAGCCTCGCCGACGCCGTATCTTCGCCAACGCCGACGCCCATCTTG	5950
			LRGAYFREILPQPIRYF	
5651	CANCOTOGOCCTGATCGTTCCAGACATAGOCGCGGCGCGGCGTTGTCGC CTGCACCGGGAACTAGCAGGTCTGTATCCGCGCGGCGCG	5700 5951	COCTOCA OCA COCA COCA COCA COCA COCA COC	0009

	COTCGCTOT 6350	8 Q 9	ACCACATAG + 6400 FCGTCTATC	× 11	GATCATCGG	A H	CCACGAATT 6500 GGTGCTTAA	i >	CGGGCGTCG + 6550 GCCCGCAGC	Q &	CGCGCCGGT + 6600 GCGCGCCA
	CAGCAACGCTOCGCCAGCGCCATCGTCCAGATCGCCGCCGCTGGTGT 	LSAQALAGDDIDG	Aggegtatectegateagatgegggtggaactgaaggelagatag 		Atgargegetrocostocatotegogargegetegogstecatgatortogg 	IFRYCORGPUTADE	GCGCTCAACGCCATGGGGGCGTCGGTCTCGATCTCGACGCCCACGAATT	REVGRPADTET	TCTGGAAAACCCACGGTCAGGGGGGTCTCCACGGCACCACGGGGTCG	KOFGVTLHPTEVAG	ATCACGCAGGCAGCCTCGAAGCCGTCCGTCAGCGTCGCCCGGT TAGACGTCCGTCGGAAGCTAGGCGCTCGGCAGCCAGCGCGGCCGGT I V C A A E I R 8 0 D T L T A G T
777	6301		6351		6401		6451		6501		6331
Fig. 7/11	6050		6100		6150		6200		6250		6300
	coggitchachacogchaanacagtcacahtcacacaaroanacacacacacacacacacacacacacacacacacaca	FRDRDARDIA	Accesce accesces acces	RASATTLDRAA	ATGGCATCCGCGACCTGCGCGCATAGGGCAGCGAATATCCGGTGACGGG	AAYPLSYGTVP	GTGGANCAGCCTGCCCCCAGCCAACCGCCACCGCCTGCGCGTGGT 	GIGVPVAGGAH	COCOCCAGAAGOCTATGOCGTCATGGGCCAGCGCGATGGGCAGGATGCCCCCCCCCC	ADHALAIPLIG	CTTTCGCGCGCATCTCCTGCCGGTCCAGCCCGCCTGGCGCATAGTC
	coagineachacacacaca 6001+ accanarcatogecatori	RALLPL	Accecetacecetacecetaces 6051	* * * * * * * * * * * * * * * * * * * *	ATGCATCCCCACCTGC 6101	I A D A Q A I	GTGGANCACCCTGCCC 6151++ CACCTTGTCGGGACGGG	H H C N	CGCGCCAANGCCTATG 6201+ GCGCGTCTTCGGATAC	I D & M M G	CTTCGCGCGCATCTCCTGCCCGGT 6251++ GANAGCGCGCGTAGAGGACGGCCX RERREGGT

	6950		7000		7050		7100		7150		7200
	Acceancheccocococococantchachterctchtgetartaco	G S L G A G A I L L D H S M	Arcescertesessrectreaseasesesessreserreaserretse	DAGRRDKLLAGSRKLE	CCTTGAGGCTGTCGACGGCGCCCAGATGAAACCGAAGCTGACGCAG GCTTCGAGCTGCTCCCCCGGGGTCTACTTTGGCTTCGACTGCGTC	AKLSDVSPAMIFGFSVC	TTCTCGCGGCCATGGACCGCGTGATGCATCCTGTGTGCCTGGTAGACGCGG	им в с и у м и и и и и и и и и	ACGARGATAGCCGCGCTTGGGGACATAGCGGAACGGGCCAGCGCCCATGCA TGCTTGTATCGGCGGAACCCCTGTATCGCCTTGCCGGGTCGGGGGTAGGT	RLYGRRPYRFPWRGH	CCAAGCCGTCATGCAAATAGTAGATCAGCCGCTAGCAGGTGACCCCCC GGTTCGGCAGTACGTTATCATCTAGTCGGGCATCGTCGTCGGGGG V L G D H L F Y Y I L G Y C T V G
7	6901		6951		7001		7051		7101		7151
Eig. 7/12	6650		6700		6750		0089		6850		0069
	ATCGTCCAGCGTCGCGACATGCGTATTCCACCGCCAATCGACACCCTGCA	DDLTAVETNWRLDVGQ	ecaccocateacococococococateacatacatacatacatacatacacatacacatacat	LIGILAGARISGYGTIL	caccatantestatantestantestantestantestantestatantestatantestatantestante	RRBHDPFAVEQDTHKGR	ACGAATGGGCGACAGCGCCCAGCCATTGGGGCGAAAAGATGCGTGTGGT 51	RIPSLRALWRPSLDTD	GOCAGGA COAGGTGTGCTGGTCCGAGGGCCGGACCGCGCGTCGAGCATC	H C S W T H Q D S P G S R A D L M	ACGATGCGCCATCCGGTCTGCGGTACGCGAACGCGCATCAGCGC TGCTACGCGCGTAGGCCAGCCCAGC
	6601		6651		6701		6751		6801		6851

	7550	7600	7650	7700	7750	7800
	ATGACCAGCCCATGGGGTGCGACCAAAGGGCATCGCGTGACATCTGCGT	TCAGGGCTCATAGCGGGATCATCCGTCACATTCGCCGCCGAACGCGGCAG+++ AGTCCCGAGTATCCGCCTAGTAGCGCCTTGCGCCGTC	GCGCATCACGCGTCCGTCGCTGAAATATTAATGTTTTCCCGAAGATGG	Togggggga algantoslicoslocaloctrosgricoslicos 	actrocractecectroecocaltecearecttraccaritetr 	CCGGCAAGGAAAGACCTAGTCGCAGGCCAGGACCGCATTGTCGCCCATG GCCCGTTCCCTTCTGGATCAGCGTCCGCGTAACAGCGGGTAC A D G M
¤	7501	7551	7601	7653	7701	7751
Fig. 7/13	7250	7300	7350	7400	7450	7500
	Accectaccaccacatccaacccatcccaaccaatcccaaacaa 11	CACGATCGAGATTACCGCGAAGATGACGCCATAGAGGTCGTTCTTCTCGA 1 GTGCTAGCTCTAATGGCGCTTCTACTGCGGTATCTCCAGCAAGAAGAGCT V I S I V A F I V G Y L D N K E	GCGCGTGGTCGTCGTGGTGCGATTTATGCCAGCCCCAGCCC 11	AGGGGCCATCCATCATCCACCAATGGACGAGTAGGCCGTCACTCAT TCCCCGGTACGTAGGTGGCTACCTGCCTCATCCGGCAGTCGAGGTA L P G H M I W R H V S Y A T L R M	COCCOCCACCACCACACACTCACCACCCAACTCCTCATCC 1	CGGCCCTTGCTTGATATGACAGGGAACAGGCTACGCTGCCGCGCGCG
	7201	7251	7301	7351	7401	7451

о •

	8150		8200		8250		8300		8350		000
	GGGGGGTGTGGGGGACCTCGACCCGAAACCCGAGGGTTTC	ARKEPSDAVRVRFGLTR	COCACCOGTATOGACGACAAGACTGCCGGGCGCGCATTCCACCGCCGCCG	AGTDVVLSGPACEVAA	COCCOCCOCCATCACACCCCAACACCCTGCGCCCTTACTCGCCACCACCACCACCACCACCACCACCACCACCACCACC	AAAPKLV-ALLAAAKSPW	Argeschartageactecroscocceacatecroscocroccat 	M P L I P S S P A S I R S V R R M	CCTCOTTCCOOTCATGCAGGCCAGGTCCCATGCCGCATCTGCGCGnnC	R T G T M < orf-16	ATCAGCCCGGGGACCCTCGACGACGGGGGGGGAATCGCCTCGCCGAT
41	8101		8151		8201		8251		1058		8351
Fig. 7/14	7850		7900		7950		8000		8050		8100
	COCGGATGCGCCATCGGCTGACCGGCCTTCAGGCCAAGGCGATCCGCCTC 1	GPHAMPQGPKLGLRDAE	TOGGCOCGCATTTCGAGGACGAACGGACGGGGTCGGGGTCGGCAATCGCCGA	GGAIRLVFLRDPDPDG	COGCCGCCCGGAATGGGCGTCTCGTCCAGCGGGCGCGCATTGCGGTGG	VAAGPIPTEDLPRANRE	Atgrecegaterogocogittcatococaragecatorocogat 	IHRIVGTEDAFVADLPI	Cagtototococatocagaacacococtogogogatectacatga 	ITHRACODDRANTI	ACAGCATTCCGGTGCCCGCAGCTCCTTGCGGAACATCAGGCCCTGC
	7801		7851		7901		7951		8001		8051

8450 8500 8550 9600 GAACAGCTTGGTGAACTGCGCCCGGCCTGCGTCGCCGTnnGCAGGTCTAC CTTGTCGAACCACTTGACGCGGGCCGGACGCGGCAnnCGTCCAGATG CACGAGGTCCGAGAAGCCGGAATGACGGAGCACCTCGATATGGATGAACA GTGCTCCAGGCTCTTCGGCCTTACTGCCTCGTGGACCTATACCTACTTGT CGTOCTCGGGGTGGCCGAAGATGTTGGCGAAAACGGCCCTTGGC GCAGGAGCCCCACCGGCTTCTACAACCGCTTGGCCCTTTTCCGGGAAACCG CTCGATCACCTCGGCATCCAGATCGGCGATnGGGGGGTGnCnGTCGCTTT 8625 Chriceatogacagacte GnnnGCCAAGCTAGCTGTCCTGGAG 8401 8451 8501 8551 8601

1	MTPKQQFPLR	DLVEIRLAQI	SGQFGVVSAP	LGAAMSDAAL	SPGKRFRAVL
51	MLMVAESSGG	VCDAMVDAAC	AVEMVHAASL	IFDDMPCMDD	ARTRRGQPAT
101	HVAHGEGRAV	LAGIALITEA	MRILGEARGA	TPDQRARLVA	SMSRAMGPVG
151	LCAGQDLDLH	APKDAAGIER	EQDLKTGVLF	VAGLEMLSII	KGLDKAETEQ
201	LMAFGRQLGR	VFQSYDDLLD	VIGDKASTGK	DTARDTAAPG	PKGGLMAVGQ
251	MCDVAOHVRA	SRAOT.DET.MR	TRIFREGOTA	חז.ז.אפעז.פאח	Z S S S T

1	MTDLTATSEA	AIAQGSQSFA	QAAKLMPPGI	REDTVMLYAW	CRHADDVIDG
51	QVMGSAPEAG	GDPQARLGAL	RADTLAALHE	DGPMSPPFAA	LRQVARRHDF
101	PDLWPMDLIE	GFAMDVADRE	YRSLDDVLEY	SYHVAGVVGV	MMARVMGVQD
151	DAVLDRACDL	GLAFQLTNIA	RDVIDDAAIG	RCYLPADWLA	EAGATVEGPV
201	PSDALYSVII	RLLDAAEPYY	ASARQGLPHL	PPRCAWSIAA	ALRIYRAIGT
251	RIRQGGPEAY	RQRISTSKAA	KIGLLARGGL	DAAASRLRGG	EISRDGLWTR
301	PRA			•	

1	MSSAIVIGAG	FGGLALAIRL	QSAGIATTIV	EARDKPGGRA	YVWNDQGHVF
51	DAGPTVVTDP	DSLRELWALS	GQPMERDVTL	LPVSPFYRLT	WADGRSFEYV
101	NDDDELIRQV	ASFNPADVDG	YRRFHDYAEE	VYREGYLKLG	TTPFLKLGQM
151	LNAAPALMRL	QAYRSVHSMV	ARFIQDPHLR	QAFSFHTLLV	GGNPFSTSSI
201	YALIHALERR	GGVWFAKGGT	NQLVAGMVAL	FERLGGTLLL	NARVTRIDTE
251	GDRATGVTLL	DGRQLRADTV	ASNGDVMHSY	RDLLGHTRRG	RTKAAILNRO
301	RWSMSLFVLH	FGLSKRPENL	AHHSVIFGPR	YKGLVNEIFN	GPRLPDDFSN
351	YLHSPCVTDP	SLAPEGMSTH	YVLAPVPHLG	RADVDWEAEA	PGYAERIFEE
401	LERRAIPDLR	KHLTVSRIFS	PADFSTELSA	HHGSAFSVEP	ILTQSAWFRE
451	HNRDRAIPNF	YIVGAGTHPG	AGIPGVVGSA	KATAQVMLSD	LAVA

1	MSHDLLIAGA	GLSGALIALA	VRDRRPDARI	VMLDARSGPS	DQHTWSCHDT
51	DLSPEWLARL	SPIRRGEWTD	QEVAFPDHSR	RLTTGYGSIE	AGALIGLLQG
101	VDLRWNTHVA	TLDDTGATLT	DGSRIEAACV	IDARGAVETP	HLTVGFQKFV
151	GVEIETDAPH	GVERPMIMDA	TVPQMDGYRF	IYLLPFSPTR	ILIEDTRYSD
201	GGDLDDGALA	QASLDYAARR	GWTGQEMRRE	RGILPIALAH	DAIGFWRDHA
251	QGAVPVGLGA	GLFHPVTGYS	LPYAAQVADA	IAARDLTTAS	ARRAVRGWAI
301	DRADRDRFLR	LLNRMLFRGC	PPDRRYRLLQ	RFYRLPQPLI	ERFYAGRLTL
351	ADRLRIVTGR	PPIPLSQAVR	CLPERPLLQE	RA	

- 1 MSTWAAILTV ILTVAAMELT AYSVHRWIMH GPLGWGWHKS HHDEDHDHAL
- 51 EKNDLYGVIF AVISIVLFAI GAMGSDLAWW LAVGVTCYGL IYYFLHDGLV
- 101 HGRWPFRYVP KRGYLRRVYQ AHRMHHAVHG RENCVSFGFI WAPSVDSLKA
- 151 ELKRSGALLK DREGADRNT

Fig. 14 CTLE #100: 5'tatatactactagagagagaaattacatATGACGCCCAAGCAGCAGCAATTC 3' RBS #101: 5'TATATACCCGGGTCAGCCGCGACGGCCTGTGG 3' Small crtZ #104: 5'tatatgaattcaagaggagaaattacatATGAGCACTTGGGCCGCAATCC 3' RBS #105: 5'GTTTCAGCTCTGCCTTGAGGC 3' MUTI: 5 GCGAAGGGGCGGATCGCAATAC gTGGAAGGCGT GATGAGCCATGATCTGCTGATCG 3' MUT2: 5' GCCCCCTGCTGCAGGAGAGAGCtTGaaaggaggcadttgagATGAGTTCCGCCATCGTCATCG 3' MUT3: 5' GGTCATGCTGTCGGACCTGGCCGTCGC tTCaaaggaggat catcatGACCGATCTGACGGCGACTTCC3' BamHl MUTS: 5' ATATATet caattgcctectttcaaGCTCTCTCCTGCAGCAGGG 3' Munl CAR175' CAGAACCCATCACCTGCCCGTC 3' cas: 5' CGCGAATTCTCGCCGGCAATAGTTACC 3' EcoRI ==14: 5' GTCACATGCATGCATGTTACGAGGTCATAAGCATGTGACCTCTTCAACTAACGGGGCAGG 3' Sphi Saci Aatil

AatII

- 5

Sall

dacaggaaggaaagtgCATAACGCTAGGCGGGGAAGCGCCAGGAAGTCGTCGCGGGGCTCGCAAAGTCGAGACGGAACTCCGACAGCT

Zt- crtZ

RBS

MUT9: 51 MUT10: 3

qtgtcctcctttcacGTATTGCGATCCGCCCTTCGCGGTCCTTCAGCAGCGCCCCGAGCGTTTCAGCTCTGCCTTGAGGCTG

EcoRI

Xbal

AIIII

HindIII

3. GGGATCCGTGCACTGCGCAGTTAACCTAGGCGTACGTTCGAACTAG HindIII MUT7: 5' TCGACCCTAGGCACGTGACGCGTCAATTGGATCCGCATGCAAGCTT ACCTAGGAATTCATGAGATCTCAAATTTGCTTAA 5' BamHl 5' AGCTTGGATCCTTAAGTACTCTAGAGTTTAAACG Mil Sall AvrII 1/2 Pmll **CS1**: CS2:

3.5 TCTTTGggaggaaalGATC Spel TAAGAAACctccttt MUT11:5' MUT12:3'

Fig. 20/1

61

Fig. 21/2

1	CTAAATTGTAAGCGTTAATATTTTGTTAAAATTCGCGTTAAATTTTTGTTAAATCAGCTC	;
_	GAITTAACATTCGCAATTATAAAACAATTTTAAGCGCAATTTAAAAACAATTTAGTCGAG	60
61	ATTTTTTAACCAATAGGCCGAAATCGGCAAAATCCCTTATAAATCAAAAGAATAGACCGA	
	TAAAAATTGGTTATCCGGCTTTAGCCGTTTTAGGGAATATTTAGTTTTCTTATCTGGCT	120
121	GATAGGGTTGAGTGTTGCAGTTTGGAACAAGAGTCCACTATTAAAGAACGTGGACTC	
	CTATCCCAACTCACAACAAGGTCAAACCTTGTTCTCAGGTGATAATTTCTTGCACCTGAG	180
181	CAACGTCAAAGGGCGAAAAACCGTCTATCAGGGCGATGGCCCACTACGTGAACCATCACC	
	GTTGCAGTTTCCCGCTTTTTGGCAGATAGTCCCGCTACCGGGTGATGCACTTGGTAGTGG	240
241	CTAATCAAGTTTTTTGGGGTCGAGGTGCCGTAAAGCACTAAATCGGAACCCTAAAGGGAG	
	GATTAGTTCAAAAAACCCCAGCTCCACGGCATTTCGTGATTTAGCCTTGGGATTTCCCTC	300
301	CCCCCGATTTAGAGCTTGACGGGGAAAGCCGGCGAACGTGGCGAGAAAGGAAGG	360
	GGGGGCTAAATCTCGAACTGCCCCTTTCGGCCGCTTGCACCGCTCTTTCCTTCC	360
361	AGCGAAAGGAGCGGCGCTAGGGGCTAGCGCTAACCAC	420
	TCGCTTTCCTCGCCGCGATCCCGCGACCGTTCACATCGCCAGTGCGACGCGCATTGGTG	420
421	CACACCEGCGCTTAATGCGCCGCTACAGGGCGCGTCCCATTCAGGCTGCG	480
	GTGTGGGCGGCGAATTACGCGGCGATGTCCCGCGCAGGGTAAGCGGTAAGTCCGACGC	450
81	CAACTGTTGGGAAGGGCGATCGGTGCGGGCCTCTTCGCTATTACGCCAGCTGGCGAAAGG	540
	GTTGACAACCCTTCCCGCTAGCCACGCCCGGAGAAGCGATAATGCGGTCGACCGCTTTCC	340
541	GGGATGTGCTGCAAGGCGATTAAGTTGGGTAACGCCAGGGTTTTCCCAGTCACGACGTTG	600
	CCCTACACGACGTTCCGCTAATTCAACCCATTGCGGTCCCAAAAGGGTCAGTGCTGCAAC	800
501	TAAAACGACGGCCAGTGAGCGCGCGTAATACGACTCACTATAGGGCGAATTGGAGCTCCA	660
	ATTTTGCTGCCGGTCACTCGCGCGCATTATGCTGAGTGATATCCCGCTTAACCTCGAGGT	880
61	CCGCGGTGGCGCCCTTAGTGGATCCGCGCCTTGGCGATCAGCAGCCGCCCT	720
	GGCGCCACCGCCGGCGAGATCACCTAGGCGCGGACCGGCAAGCGCTAGTCGTCGGCGGGA	, 20
21	TGCGGATCGGTCAGCATCATCCCCATGAACCGCAGCGCACGCA	780
	ACGCCTAGCCAGTCGTAGTAGGGGTACTTGGCGTCGCGTGCTGCGTCGCGCGCG	,,,,
81		840
	AGCCCGCGCAGGTCGTGCCGTACGCGGTAGTAGCGCTTCCGGGGGCCGCCGTACCCCGCG	340
41	GTGCCCATTCCGAAGAACTCGCAGCCTGTCCGCTGCGCAAGGTCGCGCCAGATCGCGCCG	900
	CACOGGIAAGGCITCTTGAGCGTCGGACAGGCGACGCGTTCCAGCGGGGTCTAGCGGGGC	300
01	TATTCCGATGCAGTGACGGGCCCGATGCGCCGCCGCCCGC	050
	ATAAGGCTACGTCACTGCCCGGGCTACGCGCACCCGGGCGGG	960

961	GCATCGCGCACGAACCCTTCCGAGATGATGTGCTGATCCATGGCCCGTCATTGCAAAACC	1020
	CGTAGCGCGTGCTTGGGAAGGCTCTACTACACGACTAGGTACCGGGCAGTAACGTTTTGG	
1021	GATCACCGATCCTGTCGCGTGATGGCATTGTTTGCAATGCCCCGAGGGCTAGGATGGCGC	
	CTAGTGGCTAGGACAGCGCACTACCGTAACAAACGTTACGGGGCTCCCGATCCTACCGCG	1080
1081	GAAGGATCAAGGGGGGGACAGACATGGAAATCGAGGGACGGGTCTTTGTCGTCACGGGCG	••••
	CTTCCTAGTTCCCCCCCTCTCTGTACCTTTAGCTCCCTGCCCAGAAACAGCAGTGCCCGC	1140
1141	CCGCATCGGGTCTGGGGGGGCCTCGGCGCGGATGCTGGCCCAAGGCGGCGCGAAGGTCG	
	GGCGTAGCCCAGACCCCGCGGAGCCGCGCCTACGACCGGGTTCCGCCGCGCTTCCAGC	1200
1201	TGCTGGCCGATCTGGCGGAACGGAACGCCCCCGAAGGCCCGGTTCACGCGGCCTGCG	1260
	ACGACCGGCTAGACCGCCTTGGCTTCCTGCGCGGGCTTCCGCGCCCAAGTGCGCCGGACGC	1260
1261	ACGTGACCGACCGCTGCGCAGACGCCATCGCGCTGGCGACCGAC	1320
	TGCACTGGCTGCCGACGCGTCTGCCGGTAGCGCGACCGCTGGCCGAAGCCGT	1320
1321	GGCTGGACGGCCTTGTGAACTGCGGGGGCATCGCGCCGGACGGA	1380
	CCGACCTGCCGGAACACTTGACGCGCCCGTAGCGCCGGCCTTGCCTACGACCCGGCGC	1300
1381	ACGGGCCGCATGGACTGGACAGCTTTGCCCGTGCGGTCACGATCAACCTGATCGGCAGCT	1440
	TGCCCGGCGTACCTGACCTGTCGAAACGGGCACGCCAGTGCTAGTTGGACTAGCCGTCGA	1440
1441	TCAACATGGCCCGCCTTGCAGCCGAGGCGATGGCCCGGAACGAGCCCGTCCGGGGCGAGC	1500
	AGTTGTACCGGGCGGAACGTCGGCTCCGCTACCGGGCCTTGCTCGGGCAGGCCCCGCTCG	1500
1501	GTGGCGTGATCGTCAACACGGCCTCGATCGCGCGCGACGGACG	1560
	CACCGCACTAGCAGTTGTGCCGGAGCTAGCGCGGGTCCTGCCTG	1360
1561	CCTATGCGGCCAGCAAGGCGGGCGTGGCGGGCATGACGCTGCCGATGGCCCGACCTTG	1620
	GGATACGCCGGTCGTTCCGCCCGCACCGCCGTACTGCGACGGCTACCGGGCGCTGGAAC	1920
1621	CGCGGCACGGCATCCGCGTCATGACCATCGCGCCCGGCATCTTCCGCACCCCGATGCTGG	1680
•	GCGCCGTGCCGTAGGCGCAGTACTGGTAGCGCGGGCCGTAGAAGGCGTGGGGCTACGACC	7080
1681	AGGGGCTGCCGCAGGACGTTCAGGACAGCCTGGGCGGGGGGGG	1740
	TCCCCGACGCGTCCTGCAAGTCCTGTCGGACCCGCCGCCACGGGAAGGGGAGCGCCG	
1741	TGGGAGAGCCGTCGGAATACGCGGCGCTGTTGCACCACATCATCGCGAACCCCATGCTGA	1800
	ACCCTCTCGGCAGCCTTATGCGCCGCGACAACGTGGTGTAGTAGCGCTTGGGGTACGACT	
1801	· · · · · · · · · · · · · · · · · · ·	1860
	TGCCTCTCCAGTAGGCGGAGCTGCCGGGGTAACGCGTACCGGGGGTTCACTTCCTCGCAAA	
1861	· · · · · · · · · · · · · · · · · · ·	1920
	GTACCTGGGGTAGCAGTAGTGGCCGCGCTACGCGTGGGGCTACCCCCGTAAGGTCCCGCT	
1921	TCTTGCCGCGATGGATGCCCCGACCCTTCGCGGGGGCGGATCCGCGCCGCCGCTGAACGG	1 980
	AGAACGCCCTACCTACGGGGCTGGGAACCGCGCCTGCGCTAGCCCCCCCC	1 380

1981	CCTGTCGCCCGACATGGTGGACGAGGTGCTGATGGGCTGCGTCCTCGCCGGGGCCAGGG	2040
	GGACAGCGGGCTGTACCACCTGCTCCACGACTACCCGACGCAGGAGCGGCGCCCGGTCCC	2040
2041	TCAGGCACCGGCACGTCAGGCGCGCGCTTGGCGCCGGACTGCCGCTGTCGACGGCACGAC	2100
	AGTCCGTGGCCGTGCAGTCCGCCGCGAACCGCGGCCTGACGGCGACAGCTGCCCGTGCTG	2100
2101	CACCATCAACGAGATGTGCGGATCGGGCATGAAGGCCGCGATGCCTGAT	2160
	GTGGTAGTTGCTCTACACGCCTAGCCCGTACTTCCGGCGCTACGACCCGGTACTGGACTA	2100
2161	CGCCGCGGGATCGGCGGCATCGTCGTCGCCGGCGGGATGGAGAGCATGTCGAACGCCCC	2220
	GCGGCGCCCTAGCCGCCGTAGCAGCAGCGGCCGCCCTACCTCTCGTACAGCTTGCGGGG	
2221	CTACCTGCCCAAGGCGCGGTCGGGGATGCCGCATGGGCCATGACCGTGTGCTGGATCA	2280
	CATGGACGACGGGTTCCGCGCCAGCCCCTACGCGTACCGGGTACTGGCACACGACCTAGT	
2281	CATGTTCCTCGACGGGTTGGAGGACGCCCTATGACAACGGCCGCCTGATGGGCACCTTCGC	2340
	GTACAAGGAGCTGCCCAACCTCCTGCGGATACTGTTCCCGGCGGACTACCCGTGGAAGCG	
2341	CGAGGATTGCGCCGGCGATCACGGTTTCACCCGCGAGGCGACGACGACTATGCGCTGAC	2400
	GCTCCTAACGCGGCCGCTAGTGCCAAAGTGGGCGCTCCGCGTCCTGATACGCGACTG	
2401	CAGCCTGGCCGGGGAGGACGCCATCGCCAGCGGTGCCTTCGCCGCCGAGATCGCGCC	2460
	GTCGGACCGGGCGCGCTCCTGCGGTAGCGGTCGCCACGGAAGCGGCGGCTCTAGCGCGG	
2461	CGTGACCGTCACGGCACGCAAGGTGCAGACCACCGTCGATACCGACGAGATGCCCGGCAA	2520
	GCACTGGCAGTGCCGTCCACGTCTGGTGGCAGCTATGGCTGCTCTACGGGCCGTT	
2521	GGCCGGCCGAGAAGATCCCCCATCTGAAGCCCGCCTTCCGTGACGGTGGCACGGTCAC	2580
	CCGGGCGGGGCTCTTCTAGGGGGTAGACTTCGGGCGGAAGGCACTGCCACCGTGCCAGTG	
2581	GGGGGGGAACAGCTCGTCGATCTCGGACGGGGGGGGGGG	2640
	CCGCCGCTTGTCGAGCAGCTAGAGCCTGCCCCGCCGCCGCCGACCACTACTACGCGGTCAG	
2641	GCAGGCCGAGAAGCTGGGGCCTGACGCCGATCGCGGCATCATCGGTCATGCGACCCATGC	2700
	CGTCCGGCTCTTCGACCCGGACTGCGGCTAGCGCGCCTAGTAGCCAGTACGCTGGGTACG	
2701	CGACCGTCCCGGCCTGTTCCCGACGGCCCCCATCGGCGCGATGCGCAAGCTGCTGGACCG	2760
	GCTGGCAGGGCCGGACAAGGGCTGCCGGGGTAGCCGCGCTACGCGTTCGACGACGACCTGGC	
2761		2820
2821	GTGCCTGTGGGCGGAACCGCTAATGCTGGACAAGCTCCACTTGCTCCGTAAGCGGCAGCA	
	CGCCATGATCGCGATGAAGGAGCTTGGCCTGCCACACGATGCCACGAACATCAACGGCGG	
2881	GCGGTACTAGCGCTACTTCCTCGAACCGGACGGTGTGCTACGGTGCTTGTAGTTGCCGCC	
		2940
	CCGGACGCGCGAACCCGTAGGGTAGCCGCGCAGCCCCGCGCCTAGTACCAGTGCGACGA	
2941	GAACGCGATGGCGCGCGCGCGACGCGCGCATCCGTTCTGCATCGCGCGCG	3000

3001	CGAGGCGACGGCCATCGCGCTGGAACGGCTAATTCATTTGCGCGAATCCGCGTTT	3060
3061	TTCGTGCACGATGGGGGAACCGGAAACGGCCACGCCTGTTGTGGTTGCGTCGACCTGTCT	3120
3121	TCGGGCCATGCCCGTGACGCGATGTGGCAGGCGCATGGGGCGTTGCCGATCCGGTCGCAT AGCCCGGTACGGGCACTGCGCTACACGGTACCCGCGCAACGGCTAGGCCAGCGTA	3180
3181	GACTGACGCAACGAAGGCACCGATGACGCCCAAGCAGCAATTCCCCCTACGCGATCTGGT	3240
3241	CGAGATCAGGCTGGCGCAGATCTCGGGCCAGTTCGGCGTGGTCTCGGCCCGCTCGGCGCGCGC	3300
3301	GGCCATGAGCGATGCCGCCCTGTCCCCCGGCAAACGCTTTCGCGCCGTGCTGATGCTGAT	3360
3361	CCGGTACTCGCTACGGCGGGACAGGGGGCCGTTTGCGAAAGCGCGGCACGACTACGACTA GGTCGCCGAAAGCTCGGGCGGGGTCTGCGATGCGA	3420
3421	CCAGCGGCTTTCGAGCCCGCCCAGACGCTACGCTACCAGCTACGGCGGACGCCCAGCT GATGGTCCATGCCGCATCGCTGATCTTCGACGACATGCCCTGCATGGACGATGCCAGGAC	3480
3481	CTACCAGGTACGGCGTAGCGACTAGAAGCTGCTGTACGGGACGTACCTGCTACGGTCCTG CCGTCGCGGTCAGCCCGCCACCCATGTCGCCCATGGCGAGGGGCGCGCGGTGCTTGCGGG	3540
3401	GGCAGCGCCAGTCGGGGGTACAGCGGGTACCGCTCCCCGGGGCGCCACGAACGCCCCCGATCGCCCTGATCACCGAGGCCATGCGGATTTTGGGCGAGGCGCGCGGGGGGCGCGACGCCGGA	3340
3541	GTAGCGGGACTAGTGGCTCCGGTACGCCTAAAACCCGCTCCGCGCGCG	3600
3601	AGTCGCGCGTTCCGACCAGCGTAGGTACAGCGCGCGCGTACCCTGGCCACCCCGACACGCG	3660
3661	AGGGCAGGATCTGGACCTGCACGCCCCCAAGGACGCCGCCGGGATCGAACGTGAACAGGA TCCCGTCCTAGACCTGGACGTGCGGGGGGTTCCTGCGGCGGCCCTAGCTTGCACTTGTCCT	3720
3721	CCTCAAGACCGGCGTGCTGTTCGTCGCGGGCCTCGAGATGCTGTCCATTATTAAGGGTCT	3780
3781	GGACAAGGCCGAGACCGAGCAGCTCATGGCCTTCGGGCGTCAGCTTGGTCGGGTCTTCCA	3840
3841	GTCCTATGACGACCTGCTGGACGTGATCGGCGACAAGGCCAGCACCGGCAAGGATACGGC	3900
3901	CAGGATACTGCTGGACGACCTGCACTAGCCGCTGTTCCGGTCGTGGCCGTTCCTATGCCG GCGCGACACCGCCCCCGGCCCAAAGGGCGGCCTGATGGCGGTCGGACAGATGGGCGA	
3061	CGCGCTGTGGCGGGGGGGGGGGGGTTTCCCGCCGGACTACCGCCAGCCTGTCTACCCGCT CGTGGCGCAGCATTACCGCGCCAGCCGCGCAACTGGACGAGCTGATGCGCACCCGGCT	
3961	GCACCGCGTCGTAATGGCGCGCTCGGCCGCGTTGACCTGCTCGACTACGCGTGGGCCGA	

4023	GTTCCGCGGGGGGCAGATCGCGGACCTGCTGGCCGCGTGCTGCCGCATGACATCCGCCG	;
	CAAGGCGCCCCCGTCTAGCGCCTGGACGACGGGGGCGCACGACGGCGTACTGTAGGCGGC	4080
4081	CAGCGCCTAGGCGCGGGTCGGGTCACAGGCCGTCGCGGGTGATTTCGCCGCGCGCG	;
	GTCGCGGATCCGCGCGCGAGCCCAGGTGTCCGGCAGCGCGCGACTAAAGCGGCGGCGCGCGC	4140
4141	GCGCGATGCGGCGCGCTCCAAGCCTCCGCGCGCAAAGCCCGATCTTGGCAGCCTTCGA	
	CGCGCTACGCCGGCGCAGGTTCGGAGGCGCGCGGTCTTCGGGCTAGAACCGTCGGAAGCT	4200
4201	CGTGCTGATCCGCTGGCGATAGGCCTCGGGGCCACCCTGCCGGATGCGCGTCCCGATTGC	
	GCACGACTAGGCGACCGCTATCCGGAGCCCCGGTGGGACGGCCTACGCGCAGGGCTAACG	4260
4261	GCGATAGATACGCAGCGCGGCGGCGATCGACCACGCGCGCG	
	CGCTATCTATGCGTCGCCGCCGCCTAGCTGGTGCGCGTCGCGCCGTCTACGCCTTC	4320
4321	CCCCTGCCGCGCGAGGCATAATAGGGCTCGGCCGCGTCAAGCAGCCGGATGATGACGGA	
	GGGGACGGCGCGCGCTATTATCCCGAGCCGCCAGTTCGTCCGCCTACTACTGCCT	4380
4381	ATAGAGCGCGTCCGAAGGCACCGGACCCTCAACCGTCGCCCGCC	
	TATCTCGCGCAGGCTTCCGTGGCCTGGGAGTTGGCAGCGGGGGGGG	4440
4441	GGCAGGCAGATAGCAGCGCCCGATGGCGGCATCGTCGATCACGTCGCGAGCGA	
	CCGTCCGTCTATCGTCGCGGGCTACCGCCGTAGCAGCTAGTGCAGCGCTCGCT	4500
4501	CAGCTGGAACGCAAGGCCCAGATCGCAGGCGCGGATCCAGCACCGCATCGTCCTGCACGCC	45.00
	GTCGACCTTGCGTTCCGGGTCTAGCGTCCGCGCTAGGTCGTGCCGTAGCAGGACGTGCGG	4560
4561	CATCACCCGCGCATCATCACGCCCACGACCCCCGCGACGTGGTAGGAATATTCCAGCAC	4620
	GTAGTGGGCGCGTAGTAGTGCGGGTGCTGGGGGCGCTGCACCATCCTTATAAGGTCGTG	4620
4621	GTCATCCAGGCTGCGGTATTCGCGATCCGCGACATCCATC	4600
	CAGTAGGTCCGACGCCATAAGCGCTAGGCGCTGTAGGTAG	4680
4681	CATCGGCCAAAGGTCCGGGAAATCATGCCGCCGGGGGACCTGGCGCAGGGCGCGCAAGGG	4740
	GTAGCCGGTTTCCAGGCCCTTTAGTACGGCGGCGCCGCTGGACCGCGTCGCGGCGCTTCCC	4/40
4741	CGGCGACATCGGGCCGTCCTCGTGCAGCGCGGCGCGCGCG	4800
	GCCGCTGTAGCCCGGCAGGAGCACGTCGCGCGGGTCGCACAGCCGCGCGTCGCGGGGGTC	4800
1801		4860
_	GGCGCGGACACCCAGCGGCGGGGGAGCCCCCGTCTTGGGTAGTGGACGGGCAGCTAGTG	
861	GTCATCCGCATGCCTGCACCAGGCATAGAGCATGACCGTATCCTCGCGGATGCCGGGCGG	4820
	CAGTAGGCGTACGGACGTGGTCCGTATCTCGTACTGGCATAGGAGCGCCTACGGCCCGCC	7744
1921		4000
	GIAGICGAACCGGCGGACGCCTTCGAAACGCTTGGGACGCGCTACCGGCGAAGCCTTCA	1700
981		5040
	GCGGCAGTCTAGCCAGTACGCTGCCGGTCCAGGCTCTCGTACTCCTACTCCAAGGCTCTCGTACTCCAAGGCTCTCGTACTCCAAGGCTCTCGTACTCCAAGGCTCTCGTACTCCAAGGCTCTCGTACTCCAAGGCTCTCGTACTCCAAGGCTCTCGTACTCCAAGGCTCTCGTACTCCAAGGCTCTCGTACTCCAAGGCTCTCGTACTCCAAGGCTCTCGTACTCCAAGGCTCTCGTACTCCAAGGCTCTCGTACTCCAAGGCTCTCGTACTCCAAGGCTCTCGTACTCCAAGGCTCTCGTACTCCAAGGCTCTCGTACTCCAAGGCTCTCGTACTCCAAGGCTCTCGTACTCCAAGGCTCTCCTACTCCAAGGCTCTCCTACTCCAAGGCTCTCCTACTCCAAGGCTCTCCTACTCCAAGGCTCTCCTACTCCAAGGCTCTCCTACTCCAAGGCTCTCCTACTCCAAGGCTCTCCTACTCCAAGGCTCTCCTACTCCAAGGCTCTCCTACTCCAAGGCTCTCCTACTCCAAGGCTCTCCTACTCCAAGGCTCTCCTACTCCAAGGCTCTCCTACTCCAAGGCTCTCCTACTCCAAGGCTCTCCTACTCCAAGGCTCTCCTACTCAAGGCTCTCCTACTCAAGGCTCTCCTAACTCCAAGGCTCTCCTACTCAAGGCTCTCCTAACTCCAAGGCTCTCCTACTCAAGGCTCTCCTAACTCCAAGGCTCTCCTAACTCCAAGGCTCTCCTAACTCCAAGGCTCTCCTAACTCCAAGGCTCTCCTAACTCCAAGGCTCTCCTAACTCCAAGGCTCTCCTAACTCCAAGGCTCTCCTAACTCCAAGGCTCTCTCCTAACTCCAAGGCTCTCCTAACTCCAAGGCTCTCCTAACTCCAAGGCTCTCCTAACTCCAAGGCTCTCCTAACTCCAAGGCTCTCCTAACTCCAAGGCTCTCCTAACTCCAAGGCTCTCCTAACTCCAAGGCTCTCCTAACTCCAAGGCTCTCCTAACTCCAAGGCTCTCCTAACTCAAGGCTCCAAGGCTCCAAGGCTCTCCTAACTCCAAGGCTCTCCTAACTCAAGGCTCTCCTAACTCAAGGCTCTCCTAACTCAAGGCTCTCCTAACTCAAGGCTCTCCTAACTCAAGGCTCTCCTAACTCAAGGCTCTCCTAACTCAAGGCTCTCCTAACTCAAGGCTCTCCTAACTCAAGGCTCTCCTAACTCAAGGCTCTCCTAACTCAAGGCTCTCCTAACTCAAGGCTCTCCTAACTCAAGGCTCTCCTAACTCAAGGCTCTCCTAACTCAAGGCTCTCTCCTAACTCAAGGCTCTCTCCTAACTCAAGGCTCTCTCCTAACTCAAGGCTCTCTCCTAACTCAAGGCTCTCTCAAGGCTCTCTCCTAACTCAAGGCTCTCTCCTAACTCAAGGCTCTCTCCTAACTCAAGGCTCTCTCCTAACTCAAGGCTCTCTCCTAACTCAAGGCTCTCTCCTAACTCAAGGCTCTCTCCTAACTCAAGGCTCTCTCCTAACTCAAGGCTCTCTCCTAACTCAAGGCTCTCTCCTAACTCAAGGCTCAACTCAAGGCTCAACTCAAGGCTCAAGGCTCAACTCAAGGCTCAAGGCTCAACTCAAGGCTCAACTCAACTCAAGGCTCAACTCAACTCAAGGCTCAACTCAACTCAACTCAACTCAACTCAACAACTCAACTCAACAA	JU4U

5041	GCGCTGCCAACGACACCCGGGATGCCGGCACCCGGATGCGTGCCCCCCACGATGTAG	5100
	CGCGACGGTTGCTGTGGGCCCTACGGGCGTGGCCTACACCCACGGGCGGG	
5101	AAGTTCGGGATCGCGGGTCGCGGTTATGCGGGGGGAACCAGGCGGATTGCGTCAGGATC	5160
	TTCAAGCCCTAGCGCCCAGCGCCAATACGCCCGCCTTGGTCCGCCTAACGCAGTCCTAG	3160
5161	GGCTCGACCGAGAAGGCGCTGCCGTGATGGGCCGACAGTTCGGTGCTGAAATCGGCGGGG	5220
	CCGAGCTGGCTCTTCCGCGACGGCACTACCCGGCTGTCAAGCCACGACTTTAGCCGCCCC	
5221	CTGAAGATGCGGCTGACGGTCAGGTGCTTGCGCAGGTCGGGGATGGCGCGCGC	5280
	GACTTCTACGCCGACTGCCAGTCCACGAACGCGTCCAGCCCCTACCGCGCGCG	
5281	TCCTCGAAGATGCGCTCGGCATAGCCCGGGGCCTCGGCTTCCCAATCGACATCGGCGCGG	5340
	AGGAGCTTCTACGCGAGCCGTATCGGGCCCCGGAGCCGAAGGGTTAGCTGTAGCCGCGCC	
5341	CCCAGATGCGGAACGGCGCAAGGACGTAATGCGTGGACATCCCCTCGGGGGCCAGGCTG	5400
	GGGTCTACGCCTTGCCCGCGTTCCTGCATTACGCACCTGTAGGGGAGCCCCCGGTCCGAC	
5401	GGATCGGTCACGCAGGGCGAATGCAGATACATCGAGAAAATCGTCCGGCAGGCGTGGCCCG	5460
	CCTAGCCAGTGCGTCCCGCTTACGTCTATGTAGCTCTTTAGCAGGCCGTCCGCACCGGGC	
5461	TTGAAGATCTCGTTCACCAGCCCCTTGTAGCGCGGGCCGAAGATGACGCTGTGGTGGGCC	5520
	AACTTCTAGAGCAAGTGGTCGGGGAACATCGCGCCCGGCTTCTACTGCGACACCACCGG	
5521	AGGTTCTCGGGGCGCTTGGACAGGCCGAAATGCAGCACGAACAGCGACATCGACCAGCGC	5580
	TCCAAGAGCCCCGCGAACCTGTCCGGCTTTACGTCGTGCTTGTCGCTGTTAGCTGGTCGCG	
5581	TGCCGGTTCAGGATCGCGGCCTTGGTGCCCCGCGGGGGGTATGGCCCAGCAGGTCGCGA	5640
	ACGGCCAAGTCCTAGCGCCGGAACCACGCGGGCGCCCCATACCGGGTCGTCCAGCGCT	
5641	TAGCTGTGCATCACGTCGCCGTTGCTGGCCACCGTATCCGCGCGCAACTGCCGCCCGTCC	5700
	ATCGACACGTAGTGCAGCGGCAACGACCGGTGGCATAGGCGCGCGC	
5701	AGCAGCGTGACGCCGTGGCGCGATCGCCCTCGGTGTCGATCCGCGTGACGCGGGCATTC	5760
	TCGTCGCACTGCGGGCACCGCGCTAGCGGGAGCCACAGCTAGGCGCACTGCGCCCGTAAG	
5761	AGCAGCAGCGTGCCGACAGACGCTCGAACAGGCGGACCATGCCCGCGACCAGCTGGTTG	5820
	TCGTCGTCGCACGGCGGTTCTGCGAGCTTGTCCCGCTGGTACGGGCGCTGGTCGACCAAC	
5821		
	CACGGCGGGAACCGCTTGGTCTGCGGCGGCGCGCGAAGGTCGCGTACCTAGTCGCGTATC	
5881		
5941	TAGCTCGACCAGCTTTTGCCCAAGGGCGGCTGGTCGTCGCACACCTTGCTCTTCCGGACG	
		6000
	GCGTCTACGCCCAGGACCTACTTCGCGCGGTGGTACGACACCTGGCTCGCCATACGGACG	
6001	AGGCGCATCAGCGCCGCGCGCGCGCGTTCAGCATCTGGCCCAGCTTCAGGAAGGGCGTGGTC	6060

6061	CCCAGCTTCAGATACCCCTCGCGATAGACCTCCTCGGCGTAATCGTGGAAGCGGCGATAG	
	GGGTCGAAGTCTATGGGGAGCGCTATCTGGAGGAGCCGCATTAGCACCTTCGCCGCTATC	6120
6121	CCATCGACATCGGCGGGATTGAAGGAGGCGACCTGGCGGATCAGCTCGTCGTCGTTC	6180
	GGTAGCTGTAGCCGCCTAACTTCCTCCGCTGGACCGCCTAGTCGAGCAGCAGCAGCAGCAGC	
6181	ACGTATTCGAAGCTGCGGCCGTCCGCCCATGTCAGCCGGTAGAAGGGCCGAGACCGGCAGC	6340
	TGCATAAGCTTCGACGCCGGCAGGCGGGTACAGTCGGCCATCTTCCCGGTCTGGCCGTCG	
6241	AGCGTCACGTCACGCTCGGTTGGCCGCTGAGGGCCCACAGCTCTCGCAGGCTGTCG	6300
	TCGCAGTGCAGTGCGAGGTAGCCAACCGGCGACTCCCGGGTGTCGAGAGCGTCCGACAGC	
6301	CCCTCGCTCACGACCGTCGGCCCTGCATCGACGACATAG	
	CCCAGCCAGTGCTGGCAGCCCGGACGTAGCTTCTGCACCGGGACTAGCAAGGTCTGTATC	6360
6361	CCCCGCCCGCCTTGTCGCGGCCTCGACGATGGTGGTCGCGATGCCGGCCCGATTGC	
	CCCCCCGCCGCAACAGCGCCCGGAGCTGCTACCACCAGCGCTACGGCCGGC	6420
6421	AGGCGGATGGCGAAGCCCGCCGAAACCTGCGCCGATGACGATGGCGGAACTCATG	
	TCCGCCTACCGTTCGGGCGGCTTTGGACGCGGCTACTGCTACCGCCTTGAGTAC	6480
6481	CTCTCTCCTGCAGCAGGGGGCCTTCGGGCAGGCAGGCAGG	CE 40
	CAGAGAGGACGTCCCCCGCAAGCCCGTCCGTCGCGTGCCGGACGCTGTCGCCTTACC	6540
6541	CCGGGCGTCCGGTGACGATGCGAAGCCGGTCGGCCAATGTCAGGCGCCCGGCATAGAAGC	6600
	CGCCCGCAGGCCACTGCTACGCTTCGGCCAGCCGGTTACAGTCCGCGGGCCGTATCTTCG	6600
6601	GCTCGATCAGCGGCTGCGGCAGCGGTAGAACCGCTGCAGCAGCGGCGATAGCGACGGTCGG	6660
	CGAGCTAGTCGCCGACGCCGTCCGCCATCTTGGCGACGTCGTCGCTATCGCTGCCAGCC	
5661	GCGGGCAGCCGCGGAACAGCATCCGGTTCAGCAGCCGCAGGAAGCGGTCGCGATCCGCGC	6720
	CGCCCGTCGGCGCCTTGTCGTAGGCCAAGTCGTCGGCGTCCTTCGCCAGCGCTAGGCGCG	
5721	GATCGATGGCCCAGCCGCGCACCGCGCGACGGGCGGACGCGGTCGTCAGGTCGCGCGCCG	6790
	CTAGCTACCGGGTCGGCGGGGGGGGGCGGCGGGCGGGGGGGG	6780
781		6840
	GCTACCGTAGGCGCTGGACGCCGCTATCCCGTCGCTTATAGGCCACTGCCCCACCTTGT	0040
841		6900
	CGGGACGGGGGTCGGGTTGGCCGTGGCGGGGGACGCGCACCAGCGCGGTCTTCGGATACC	3300
901	·	6960
	GCAGTACCCGGTCGCGTACCCGTCCTACGGGGAAAGCGCGCGTAGAGGACGGGCCAGG	
301		7020
	TCGGGGGGACCGCCGTATCAGGTCGCTGCGGACGCGGTCGCCCCTACCACCTCTACCA	7020

7021	CGCCGTCGCTGTAGCGCGTATCCTCGATCAGGATGCGGGTGGGACTGAAGGGCAGCAGAT	7080
	GCGGCAGCGACATCGCGCATAGGAGCTAGTCCTACGCCCACCCTGACTTCCCGTCGTCTA	7080
7081	AGATGAAGCGGTACCCGTCCATCTGCGGAACGGTCGCGTCCATGATCATCGGGCGCTCGA	7140
	TCTACTTCGCCATGGGCAGGTAGACGCCTTGCCAGCGCAGGTACTAGTAGCCCGCGAGCT	,,,,,
7141	CGCCATGGGGGGCGTCGGTCTCGATCTCGACGCCCACGAATTTCTGGAAACCCACGGTCA	7200
	GCGGTACCCCCGCAGCCAGAGCTAGAGCTGCGGGTGCTTAAAGACCTTTGGGTGCCAGT	
7201	GGTGCGGGGTCTCGACGGCACCACGGGCGTCGATCACGCAGGCAG	7260
	CCACGCCCAGAGCTGCCGTGGTGCCCGCAGCTAGTGCGTCCGTC	
7261	CGTCCGTCAGCGTCGCGCAGATATCGTCCACCGCAGAT	7320
	GCAGGCAGTCGCAGCGCGCCATAGCAGGTCGCAGCGCTGTACGCATAAGGTGGCGTCTA	
7321	CGACACCCTGCAGCAGCCCGATCAGCCCGCCCGCCTCGATCGA	7380
	GCTGTGGGACGTCGGGCTAGTCGCGCGGGGGGGGGCTAGCTCGGTATCGGACAGCAGT	
7381	GGCGGCGCGAATGGTCGGGAAACGCGACCTCCTGATCCGTCCATTCGCCGCGACGAATGG	7440
	CCGCCGCGCTTACCAGCCCTTTGCGCTGGAGGACTAGGCAGGTAAGCGGCGCTGCTTACC	
7441	GCGACAGGCGCCAGCCATTCGGGCGAAAGATCCGTGTCGTGGCAGGACCAGGTGTGCT	7500
	CGCTGTCCGCGCGGTCGGTAAGCCCGGCTTTCTAGGCACAGCACCGTCCTGGTCCACACGA	
7501	GGTCCGAGGGCCGGACCGCGCGTCGAGCATCACGATGCGCGCATCCGGTCTGCGGTCGC	7560
	CCAGGCTCCCGGCCTGGCGCGCAGCTCGTAGTGCTACGCGCGTAGGCCAGACGCCAGCG	
7561	GAACGGCAAGCGCGATCAGCGCACCGGACAGCCCCGCGCCCCGCGATCAGCAGATCATGGC	7620
	CTTGCCGTTCGCGCTAGTCGCCTGTCGGGGGGGGGGGGG	
7621	TCATGTATTGCGATCCGCCCCTTCGCGGTCCTTCAGCAGCGCGCCCGAGCGTTTCAGCTC	7680
	AGTACATAACGCTAGGCGGGGAAGCGCCAGGAAGTCGTCGCGCGGCTCGCAAAGTCGAG	
7681	TGCCTTGAGGCTGTCGACCGAGGGCGCCCAGATGAAACCGAAGCTGACGCAGTTCTCGCG	7740
	ACGGAACTCCGACAGCTGGCTCCCGCGGGTCTACTTTGGCTTCGACTGCGTCAAGAGCGC	
7741	GCCATGGACCGCGTGATGCATCCTGTGTGCCTGGTAGACGCGAAGATAGCCGCGCTT	
	CGGTACCTGGCGCACTACGTAGGACACACGGACCATCTGCGCTGCTTCTATCGGCGCGAA	
7801		7860
	CCCCTGTATCGCCTTGCCGGTCGCGGGTACGTGGTTCGGCAGTACGTCCTTTATCATCTA	
7861		7920
	GTCGGGCATCGTCCACTGGGGGTGGCGGTCGGTGGTCCGGTCTAGGCTGGGGTAGCGCGG	
7921	GATCGCGAACAGCACGATCGAGATTACCGCGAAGATGACGCCATAGAGGTCGTTCTTCTC	7980
	CTAGCGCTTGTCGTGCTAGCTCTAATGGCGCTTCTACTGCGGTATCTCCAGCAAGAAGAG	

Fig. 24/9

7981	GAGCGCGTGGTCGTGATCCTCGTCGTGCGATTTATGCCAGCCCCAGCCCAGGGGGGCCC	
	CTCGCGCACCAGCACTAGGAGCAGCACCACGCTAAATACGGTCGGGTCGGGTCCCCCGG	8040
8041	ATGCATGATCCACCGATGGACGGAGTAGGCCGTCAGCTCCATCGCGGCGACGGTCAGGAT	•
	TACGTACTAGGTGGCTACCTGCCTCATCCGGCAGTCGAGGTAGCGCCGCTGCCAGTCCTA	8100
8101	GACGGTCAGGATTGCGGCCCAAGTGCTCATGCCGGCCCCTTGCTTG	:
	CTGCCAGTCCTAACGCCGGGTTCACGAGTACGGCCGGGGAACGAAC	8160
8161	AGGCTACGCTGCGCGCGGTGCATGACCAGCCCATCGGGGTGCGACCAAAGGGCATCGCG	
	TCCGATGCGACGCGCGCCACGTACTGGTCGGGTAGCCCCACGCTGGTTTCCCGTAGCGC	8220
8221	TGACATCTGCGTTCAGGGGCTCATAGGCGGATCATCCGTGACATTCGCCGCCGAACGCGGC	
	ACTGTAGACGCAAGTCCCGAGTATCCGCCTAGTAGGCACTGTAAGCGGCGGCTTGCGCCG	8280
8281	AGGCGCATCACGCGTTCCGTCGCTGGAAATATTAATGTTTTCCCGAAGATGGTCGGGGGG	
	TCCGCGTAGTGCGCAAGGCAGCGACCTTTATAATTACAAAAGGGCTTCTACCAGCCCCGC	8340
8341	AGAGGATTCGAACCTCCGACCTACGGTACCCAAAACCGTCGCGCTACCAGGCTGCGCTAC	•
	TCTCCTAAGCTTGGAGGCTGGATGCCATGGTTTTGGCAGCGCGATGGTCCGACGCGATG	8400
8401	GCCCCGACTGCGCAAGGCTTTAGCCGATTGTTCCGGCAAGGGAAAGACCTAGTCGCAGGC	
	CGGGGCTGACGCCTTCCGAAATCGGCTAACAAGGCCGTTCCCTTTCTGGATCAGCGTCCG	8460
8461	CAGGACCGCATTGTCGCCCATGCCCGGATGCGCCTGACCGGGCTTCAGGCCAAG	2522
	GTCCTGGCGTAACAGCGGGTACGGGCCTACGCGGTAGCCGGACTGGCCCGAAGTCCGGTTC	8520
8521	GCGATCCGCCTCTCCGCCCGCGATTTCGAGGACGAACAGCCGGTCGGGGTCCGGATCGCC	9590
	CGCTAGGCGGAGAGGCGGGCTAAAGCTCCTGCTTGTCGGCCAGGCCCAGGCCTAGCGG	8580
8581	GACCGCCGCGCATGGGCGTCTCGTCCAGCGGGCGCGCATTGCGGTGGATGTGGCG	8640
	CTGGCGGGGGGCCTTACCCGCAGAGCAGGTCGCCGCGCGTAACGCCACCTACACGC	0040
8641	GATGACGCCGGTTTCATCCGCAAGACCATGTCCAGCGGGATCAGTGTGTTGCGCATCCA	8700
	CTACTGCGGCCAAAGTAGGCGTTTCTGGTACAGGTCGCCCTAGTCACACACGCGTAGGT	0,00
8701	GAAGGACACCGGCTGGGGGGATTCGTAGATGAACAGCATTCCGGTGCCCGCAGGCAG	8760
	CTTCCTGTGGCCGACCCCGCTAAGCATCTACTTGTCGTAAGGCCACGGGCGTCCGTC	0,00
8761		8820
	GAACGCCTTGTAGTCCGGGACGCGCGCGAGAGCCCCCGACAGGCGCTGGAGCTGGGCTTT	
8821	CCCGAGCGTTTCCGCACCGGTATCGACGACAAGACTGCCGGGGGGGG	8880
	GGGCTCGCAAAGGCGTGGCCATAGCTGCTGTTCTGACGGCCGCGCGTAAGGTGGCGGCG	
8881	CGCGGCGGCGCATCAGGACCGCAAGAAGCGCTGCGGCCTTACTCGGCCACATGGGCAA	8940
	GCGCCGCCGGTAGTCCTGGCGTTCTTCGCGACGCCGGAATGAGCCGGTGTACCCGTT	-,10
0741	GATAGGACTGCTCGGCGCCGGAGATCCCCCGGGCTGCAGGAATTCGATATCAAGCTTATCG	9000
	CTATCCTGACGAGCCGCGCTCTAGGGGGCCCGACGTCCTTAACCTATACCATACCTACACCATACCTAC	2000

Fig. 24/10

9001	ATACCGTCGACCTCGAGGGGGGGCCCGGTACCCAGCTTTTGTTCCCTTTAGTGAGGGTTA	9060	
9001	TATGGCAGCTGGAGCTCCCCCCGGGCCATGGGTCGAAAACAAGGGAAATCACTCCCAAT		
9061	ATTGCGCGCTTGGCGTAATCATGGTCATAGCTGTTTCCTGTGTGAAATTGTTATCCGCTC	9120	
	TAACGCGCGAACCGCATTAGTACCAGTATCGACAAAGGACACACTTTAACAATAGGCGAG		
9121	ACAATTCCACAACATACGAGCCGGAAGCATAAAGTGTAAAGCCTGGGGTGCCTAATGA	9180	
	TGTTAAGGTGTTGTATGCTCGGCCTTCGTATTTCACATTTCGGACCCCACGGATTACT		
9181	GTGAGCTAACTCACATTAATTGCGTTGCGCTCACTGCCCGCTTTCCAGTCGGGAAACCTG	9240	
	CACTCGATTGAGTGTAATTAACGCAACGCGAGTGACGGGGGGAAAGGTCAGCCCTTTGGAC		
9241	TCGTGCCAGCTGCATTAATGAATCGGCCAACGCGCGGGGAGAGGCGGTTTGCGTATTGGG	9300	
	ASCACGGTCGACGTAATTACTTAGCCGGTTGCGCCCCCTCTCCGCCAAACGCATAACCC		
9301	CSCTCTTCCGCTTCCTCGCTCACTGACTCGCTGCGCTGCG	9360	
	CCAGAAGGCGAAGGAGCGAGTGACTGAGCGAGCGAGCCAAGCCGACGCCGCTCGC		
9361	GTATCAGCTCACTCAAAGGCGGTAATACGGTTATCCACAGAATCAGGGGATAACGCAGGA	9420	
	CATAGTCGAGTGAGTTTCCGCCATTATGCCAATAGGTGTCTTAGTCCCCTATTGCGTCCT		
9421	AACAACATGTGAGCAAAAAGGCCAGCAAAAAGGCCAGGAACCGTAAAAAAGGCCGCGTTGCTG	9480	
	TTCTTGTACACTCGTTTTCCGGTCGTTTTCCGGCGCAACGAC		
9481	CCGTTTTTCCATAGGCTCCGCCCCCTGACGACATCACAAAATCGACGCTCAAGTCAG	9540	
	CGCAAAAAGGTATCCGAGGCGGGGGGACTGCTCGTAGTGTTTTTAGCTGCGAGTTCAGTC		
9541	AGGTGGCGAAACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTC	9600	
	TCCACCGCTTTGGGCTGTCCTGATATTTCTATGGTCCGCAAAGGGGGACCTTCGAGGGAG		
9601	GTGCGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCCTTCG	9660	
	CACGCGAGAGGACAAGGCTGGGACGGCGAATGGCCTATGGACAGGCGGAAAGAGGGGAAAGA		
9661	GGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTCGTT CCTTCGCACCGCGAAAGAGTATCGAGTGCGACATCCATAGAGTCAAGCCACATCCAGGAA	9720	
	CGCTCCAAGCTGGGCTGTGCACGAACCCCCGTTCAGCCCGACCGCTGCGCCTTATCC		
9721	GCGAGGTTCGACCCGACACGTGCTTGGGGGGGCAAGTCGGGCTGGCGACGCGGAATAGG		
	GGTAACTATCGTCTTGAGTCCAACCGGGTAAGACACGACTTATCGCCACTGGCAGCAGCG		
9781		9840	
9841	ACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTCTTGAAGTG		
		9900	
9901	TGGCCTAACTACGGCTACACTAGAAGGACAGTATTTGGTATCTGCGCTCTGCTGAAGCCA		
	ACCGGATTGATGCCGATGTGATCTTCCTGTCATAAACCATAGACGCGAGACGACTTCGG	9960	

Pic. 24/11

1 000	GTTACCTTCGGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAACAAA	9961
10020	CAATGGAAGCCTTTTTCTCAACCATCGAGAACTAGGCCGTTTGTTT	3301
1000	GGTGGTTTTTTTGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGAT	10021
10080	CCACCAAAAAACAAACGTTCGTCGTCTAATGCGCGTCTTTTTTTCCTAGAGTTCTTCTA	
10140	CCTTTGATCTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGATT	10081
10140	GGAAACTAGAAAAGATGCCCCAGACTGCGAGTCACCTTGCTTTTGAGTGCAATTCCCTAA	
10200	TTGGTCATGAGATTATCAAAAAAGGATCTTCACCTAGATCCTTTTAAATTAAAATGAAGT	10141
	AACCAGTACTCTAATAGTTTTTCCTAGAAGTGGATCTAGGAAAATTTAATTTTTACTTCA	
10260	TTTAAATCAATCTAAAGTATATATGAGTAAACTTGGTCTGACAGTTACCAATGCTTAATC	10201
	AAATTTAGTTAGATTTCATATATACTCATTTGAACCAGACTGTCAATGGTTACGAATTAG	
10320	AGTGAGGCACCTATCTCAGCGATCTGTCTATTTCGTTCATCCATAGTTGCCTGACTCCCC	10261
	TCACTCCGTGGATAGAGTCGCTAGACAGATAAAGCAAGTAGGTATCAACGGACTGAGGGG	
10380	GTCGTGTAGATAACTACGATACGGGAGGGCTTACCATCTGGCCCCAGTGCTGCAATGATA	10321
	CAGCACATCTATTGATGCTATGCCCTCCCGAATGGTAGACCGGGGTCACGACGTTACTAT	
10440	CCGCGAGACCCACGCTCACCGGCTCCAGATTTATCAGCAATAAACCAGCCAG	10381
	GGCGCTCTGGGTGCGAGTGGCCGAGGTCTAAATAGTCGTTATTTGGTCGGCCTTCC	
10500	GCCGAGCGCAGAAGTGGTCCTGCAACTTTATCCGCCTCCATCCA	10441
	CGGCTCGCGTCTTCACCAGGACGTTGAAATAGGCGGAGGTAGGT	
10560	CGGGAAGCTAGAGTAGTTCGCCAGTTAATAGTTTGCGCAACGTTGTTGCCATTGCT	10501
	GCCCTTCGATCTCATCAAGCGGTCAATTATCAAACGCGTTGCAACAACGGTAACGA	
10620	ACAGGCATCGTGGTGTCACCGCTCGTTTGGTATGGCTTCATTCA	10561
	TGTCCGTAGCACCACAGTGCGAGCAGCAAACCATACCGAAGTAAGT	
10680	CGATCAAGGCGAGTTACATGATCCCCCATGTTGTGCAAAAAAGCGGTTAGCTCCTTCGGT	10621
	GCTAGTTCCGCTCAATGTACTAGGGGGTACAACACGTTTTTTCGCCAATCGAGGAAGCCA	
10740	CCTCCGATCGTTGTCAGAAGTAAGTTGGCCGCAGTGTTATCACTCATGGTTATGGCAGCA	10681
	GGAGGCTAGCAACAGTCTTCATTCAACCGGCGTCACAATAGTGAGTACCAATACCGTCGT	
10800	· · · · · · · · · · · · · · · · · · ·	10741
	GACGTATTAAGAGAATGACAGTACGGTAGGCATTCTACGAAAAGACACTGACCACTCATG TCAACCAAGTCATTCTGAGAATAGTGTATGCGGCGACCGAGTTGCTCTTGCCCGGCGTCA	
108.60		10801
	AGTTGGTTCAGTAAGACTCTTATCACATACGCCGCTGGCTCAACGAGAACGGGCCGCAGT ATACGGGATAATACCGCGCCACATAGCAGAACTTTAAAAGTGCTCATCATTGGAAAACGT	
10920	TATGCCCTATTATGGCGCGGTGTATCGTCTTGAAATTTTCACGAGTAGTAACCTTTTGCA	10861
•	TCTTCGGGGCGAAAACTCTCAAGGATCTTACCGCTGTTGAGATCCAGTTCGATGTAACCC	
10980	AGAAGCCCGGCTTTTGAGAGTTCCTAGAATGGCGACAACTCTAGGTCAAGCTACATTGGG	10921

Fis. 24/12

10001	ACTCGTGCACCCAACTGATCTTCAGCATCTTTTACTTTCACCAGCGTTTCTGGGTGAGCA	11040
10,81	TGAGCACGTGGGTTGACTAGAAAGTCGTAGAAAATGAAAGTGGTCGCAAAGACCCACTCGT	11040
11041	AAACAGGAAGGCAAAATGCCGCAAAAAAGGGAATAAGGGCGACACGGAAATGTTGAATA	11100
11041	TTTTGTCCTTCCGTTTTACGGCGTTTTTTCCCTTATTCCCGCTGTGCCTTTACAACTTAT	11100
11101	CTCATACTCTTCCTTTTTCAATATTATTGAAGCATTTATCAGGGTTATTGTCTCATGAGC	11160
	GAGTATGAGAAGGAAAAAGTTATAATAACTTCGTAAATAGTCCCAATAACAGAGTACTCG	
11161	GGATACATATTTGAATGTATTTAGAAAAATAAACAAATAGGGGTTCCGCGCACATTTCCC	11220
	CCTATGTATAAACTTACATAAATCTTTTTATTTGTTTATCCCCAAGGCGCGTGTAAAGGG	
11221	CGAAAAGTGCCAC	
	GCTTTTCACGGTG	

Fig. 25

-	ATGICCGGTCGIAAACCGGTACCACGGTACCACGTCGACTCTGACTGACTGA	12
	THE SECTION OF THE SE	
121	ALANISPROLEULEUALAVAILEUCYSLEUALAGIYLEUTIRTPLEUSerVAIGIYLEUPHEILELIEALAHISASPALAHELHISGIYSBRVAIVAIPROGIYARGPROARGALAASAN GECKCACGCCGCTGCTGCTGCTGCTGGTCGTCGTCGCGGGCCTAACGCTGCTGCTGCTGGTCGTCGTCGGGGCTGTTGTTCCGGTTGTT	24
141	CITHS ALBATALICGITCACCTCGCTCTGCTTCTCTCTTCTTCTTCTTCTTABACTCTABACATGACCCACCACCACCACCGTCACCGACAACGACCCGGACTTCGGTCAC GCTGCTATCGGTCAGCTCGGCTGTTTCTTCTTCTTCTTCTTCGTTCG	36(
191	GlyGlyProValArgTrpTyrGlySerPheValSerThrTyrPheGlyTrpArgGluGlyLauLauLauProValIlaValThrTyrAlaLaulleLauGlyAspArgTrpMatTyr GGIGGICCGGTTGGTAGGTTGCTTGGTTGGTTGGTTGGTGGAGGTGTGGCGGTTACGATTACGTTACCACCTACGTTCGTT	480
18	VALILEPHETEPEROVALPROALAVALLAUALASEET LEGIALIEPHEVALPHEGIYTHETELAUPERILIAAEGPEROLIJIISASPARPANAPEROASPARGIIISASAALAARGSEETHE GITALETICIGGCGGTECCGGGACTECCGGACTECCGGACTCCACACGCTCCACACGCTCCACACGCTCCACACGCTCCACACGCTCCACACGCTCCACACGCTCCACACGCTCCACACGCTCCACACGCTCCACACGCTCCACACGCTCCACACGCTCCACACGCTCCACACACA	009
5	GIYII BGIYASPP roLAUSATLAULAUTHTCYSPHAIII SPHGIYGIYTY riiisiiisGIUHISIII SLAUHISP roHISVAIP FOTTPT PATGLAUGUTFOATGTHTA 1919 THTGIYGIY GGTATCGGTGACCGGTGTCCCTGCTGCCTGCTTCCACTTCGGTGGTGGTGACCACCACCTGCACCCGTACCCGTACCCGTAAAACCGGTGGT CCATAGCCACTGGGCCGACGACGACGACGACGAAGGTGAAGGCACCACCACTGTGGTGGACGTGGGCGTGCCACCACCACCACGACGCAAGGCATGGCCATTTGGCCACCACACCACCACCACCACACGAAGGCAAGGCAAGACAAGACAAGAAG	720
21	ArgAla cotoct coacaa	

Fig. 26

Europäisches Patentamt

European Patent Office

Office européen des brevets

EP 0 747 483 A3 (11)

(12)

EUROPEAN PATENT APPLICATION

(88) Date of publication A3: 07.05.1997 Bulletin 1997/19

(43) Date of publication A2: 11.12.1996 Bulletin 1996/50

(21) Application number: 96108556.0

(22) Date of filing: 29.05.1996

(51) Int. Cl.6: C12N 15/53, C12N 15/54, C12N 15/60, C12N 15/70, C12N 15/74, C12N 15/80. C12N 15/81, C12P 23/00

(84) Designated Contracting States: AT BE CH DE DK ES FR GB IT LI NL

(30) Priority: 09.06.1995 EP 95108888

(71) Applicant: F. HOFFMANN-LA ROCHE AG 4002 Basel (CH)

(72) Inventors:

· Hohmann, Hans-Peter 79100 Freiburg (DE)

- · Pasamontes, Luis 4632 Trimbach (CH)
- · Tessier, Michel 68100 Mulhouse (FR)
- · van Loon, Adolphus 4310 Rheinfelden (CH)
- (74) Representative: Braun, Axel et al F.Hoffmann-La Roche AG Patent Department (PLP), 124 Grenzacherstrasse 4070 Basel (CH)

(54)Fermentative carotenoid production

(57)The present invention is directed to a DNA sequence comprising one or more DNA sequences selected from the group consisting of a DNA sequence which encodes the GGPP synthase of Flavobacterium sp. R1534 (crtE), a DNA sequence which encodes the prephytoene synthase of Flavobacterium sp. R1534 (crtB), a DNA sequence which encodes the phytoene desaturase of Flavobacterium sp. R1534 (crtl), a DNA sequence which encodes the lycopene cyclase of Flavobacterium sp. R1534 (crtY) or a DNA sequence which encodes the β -carotene hydroxylase of Flavobacterium sp. R1534 (crtZ) or DNA sequences which are substantially homolgous, vectors comprising such DNA sequences and/or a DNA sequence which encodes the β -carotene β 4-oxygenase of Alcaligenes strain PC-1 (crt W) or a DNA sequence which is substantially homologous, cells which are transformed by such DNA sequences and/or vectors, a process for the preparation of a desired carotenoid or a mixture of carotenoids by cultering such transformed cells and a process for the preparation of a food or feed composition.

Printed by Rank Xerox (UK) Business Services 2.14.3/3.4

EUROPEAN SEARCH REPORT

Application Number EP 96 10 8556

Category	Citation of document with i of relevant pa	ndication, where appropriate, sssages	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int.CL6)	
Υ	US 3 891 504 A (A.J June 1975 * the whole documen	. SCHOCHER ET AL.) 24	1-35	C12N15/53 C12N15/54 C12N15/60 C12N15/70	
D,Y	EP 0 393 690 A (KIR KAISHA) 24 October * the whole documen	1990	1-35	C12N15/74 C12N15/80 C12N15/81 C12P23/00	
D,A	FL US, pages 867-876, XPOO N. MISAWA ET AL.: BIOSYNTHESIS BY THE	April 1995, ORLANDO, 0602246 "CANTHAXANTHIN CONVERSION OF ROUPS IN A HYDROCARBON SINGLE GENE"	3,5,6, 18-20, 22,29-3		
D,A	WO 91 13078 A (AMOO September 1991 * abstract *	O CORPORATION) 5	1-35	TECHNICAL FIELDS SEARCHED (Int.Cl.6)	
A	Class CO3, AN 94-23 XP002027030	s Ltd., London, GB; 0229 KAIYO BIOTECHNOLOGY	27,34	C12N C12P	
A	WO 91 03571 A (APPL INC) 21 March 1991 * page 1 - page 5 *	IED FOOD BIOTECHNOLOGY	27,32		
	The present search report has i				
	Place of search BERLIN	Date of completion of the search 6 March 1997	n _o	Examiner Kok, A	
X : par Y : par doc	CATEGORY OF CITED DOCUME ticularly relevant if taken alone ticularly relevant if combined with an ument of the same category	NTS T: theory or prin E: earlier patent after the filin other D: document cite L: document cite	ciple underlying t document, but pu g date ed in the applicati d for other reason	he invention blished on, or on ss	
A : tec	hnological background n-written disclosure		e same patent fan	silv. operanadina	

EUROPEAN SEARCH REPORT

Application Number EP 96 10 8556

Category	Citation of document with indicas of relevant passage	tion, where appropriate, s	Relevant to claim	CLASSIFICATION OF T APPLICATION (Int.CL6)
A	CH 595 444 A (SOCIÉTÉ S.A.) 15 February 1978 * the whole document * 	DES PRODUITS NESTLÉ		AT DOATION (INC.C.)
				TECHNICAL FIELDS SEARCHED (Int.Cl.6)
	The present search report has been dra	awn up for all claims Date of completion of the search		Examiner
	BERLIN	6 March 1997	De K	Cok, A
X : partic Y : partic docum A : techn	ATEGORY OF CITED DOCUMENTS callarly relevant if taken alone callarly relevant if combined with another ment of the same category ological background written disclosure	T: theory or principl E: earlier patent doc after the filing ds D: document cited in L: document cited for	e underlying the in nument, but published the application or other reasons	nvention hed on, or

EPO FORM 1503 03.12 (POICO!)

					. !
	·				
		·			
				·	