

Table of Contents

What is a Population?

What is a Production Type?

Assembling a Population

Sample Scenario

What's Next

What is a Population?

What is a Production Type?

A key concept in the population is the use of

Production Types

A production type describes both the species and the management practice of the farms to be included in the simulation

The Sample Scenario includes very simple production types

The production types that go into the population depend on a number of factors, such as the disease that is being simulated.

The production types will also depend on the area (location) that you want to represent and the animal management practices that are commonly used in that area.

A limitation in building a population may be the information you are able to find about the real farms in the area you want to represent.

In the United States, the National Agricultural Statistics Service, Census of Agriculture provides an estimate of farm populations and farm types.

www.nass.usda.gov/AgCensus/

Assembling a Population

Assembling the Population

Depending on the source of your units, assembling the population file may be a quick process or a long complicated process. The final file is expected to follow some rules for ADSM to recognize the parts of the file that are necessary for the simulation to complete.

File Type

ADSM expects the file type to be a comma-separate value, or .csv file. It is possible to make a .csv file with Excel and other programs. The examples that are pictured will be in Excel as it is familiar to most users.

Ι.						
4	Α	В	С	D	E	F
1	UnitID	ProductionType	UnitSize	Lat	Lon	Status
2	2	Swine	89	33.41808	-35.2526	S
3	3	Dairy Cattle	141	36.78172	-36.36554	S
4	4	Dairy Cattle	341	32.93898	-35.34563	L
5	5	Feedlot	114	36.31128	-35.21025	S
6	6	Feedlot	155	33.27371	-35.20067	S
,	7	Facilist	1.51	26 50602	26 20207	

Required and Optional fields in the Population File

Field Name	Data Type	Description				
The following fields a	The following fields are required:					
UnitID	Text	User-defined Identifier of a unit. It is suggested that this identifier be unique.				
ProductionType	Text	User-defined name of Production Type				
UnitSize	Integer	Number of animals in the unit, noted in application as Initial Size.				
Lat	Real (floating point) number	Latitude of the unit, between -90 and 90 inclusive				
Lon	Real (floating point) number	Longitude of the unit, between -180 and 180 inclusive				
Initial_State	Text	Disease state at the beginning of the simulation, see valid list on the following slide.				
The following fields are optional if needed to adjust the disease state:						
Daysinstate	Integer	Number of days the unit has been in the disease state, null or -1 indicate no days				
Daysleftinstate	Integer	Number of days the unit has left in the disease state, null or -1 indicate no days				

Disease State Options for the Required Population File Field: Initial_State

Disease State	Single Character Code
Susceptible	S
Latent	L
Subclinical	В
Clinical	С
Naturally Immune	N
Vaccine Immune	V
Destroyed	D

Some critical notes about the population file...

- Field Names must match exactly as shown, with no spaces
- Latitude and Longitude (Lat and Lon) must be valid within the
 - accepted world boundaries
- An error message will appear if the population file import fails to meet the expected guidelines

The online version of population requirements has a slightly more flexibility interpretation. A single version is presented here to simplify the process.

Unit ID is reflected in the Supplemental File outputs. It is not necessary to be unique for the application. Therefore, the application is not performing a verification of uniqueness.

However, if you wish to perform herd-level followup analysis, a unique identifier could be helpful.

The thought behind the text identifier is that you may acquire your population from a source that uses a herd-level identifier that has a meaning and needs to be conserved and used for analysis (e.g. CH_120.0760).

Sample Scenario

SQL

Unit id

Initial size

Scenario Description

Population

Disease Disease Progression

Assign Progression

Disease Spread

Review Disease Spread

Controls

Control Protocol

Vaccination Triggers

Vaccination Rings

Vaccination Global

Destruction Global

Assign Protocols

Zones

Zone Effects

Assign Effects

Output Settings

Population File: Sample_Pop_Big.xml (3,957 units) Replace Population

The Sample Scena installed with ADS

The map displays a representative sampling of population data

FILTERS	Refresh Map
Production Type	
Initial State	
Initial Size Min: Max:	
Longitude Min: Max:	
Latitude Min: Max:	

Cattle	32.99984	-35.12144	Latent	107	19
rio	33.41808	-35.2526	Susceptible	89	2
Irio	36.78172	-36.36554	Susceptible	141	3
	32.93898	-35.34563	Susceptible	341	4
Λ	36.31128	-35.21025	Susceptible	114	5
IVI	33.27371	-35.20067	Susceptible	155	6
Cattle	36.59603	-36.28207	Susceptible	161	7
Cattle	34.54935	-32.81917	Susceptible	827	8
Cattle	35.55098	-31.74311	Susceptible	355	9
Cattle	32.79245	-34.2104	Susceptible	46	10
Cattle	35.76083	-37.81564	Susceptible	518	11
Cattle	34.47019	-36.0473	Susceptible	356	12
Cattle	36.11096	-35.13854	Susceptible	100	13
Cattle	34.92398	-33.8703	Susceptible	904	14
Swine	36.0872	-34.33728	Susceptible	142	15
Cattle	34.83321	-32.90607	Susceptible	191	16
Cattle	37.38944	-35.13237	Susceptible	156	17
Cattle	36.50795	-36.37611	Susceptible	228	18
Cattle	33.89553	-34.55941	Susceptible	327	20
Cattle	33.95002	-35.69487	Susceptible	55	21
Cattle	34.00686	-35.59949	Susceptible	169	22
Swine	34.5475	-35.05291	Susceptible	841	23
Cattle	36.01563	-34.36979	Susceptible	31	24
Cattle	37.40086	-35.21244	Susceptible	115	25
Cattle	35.26371	-36.31808	Susceptible	56	26
Cattle	33.10394	-32.70794	Susceptible	55	27
Cattle	36.89481	-34.46319	Susceptible	81	28
Cattle	33.92407	-33.14195	Susceptible	20	29

Initial state

Latitude

Longitude

Production type

What's Next

Join the flock! Learn more about ADSM or try an example

ADSM is currently available at https://github.com/NAVADMC/ADSM/releases/latest

Try the sample scenario

https://github.com/NAVADMC/ADSM/wiki/A-Quick-Start-Guide:-Running-the-sample-scenario

Read the wiki pages link https://github.com/NAVADMC/ADSM/wiki

This work was funded in whole through Cooperative Agreement AP18VSCEAH00C005 with the University of Tennessee Department of Animal Science by the Animal and Plant Health Inspection Service, an agency of the United States Department of Agriculture.

