Abstract Algebra and Fundamental Analysis

${\rm Jeremy\ Le-UNSW\ MATH 2701\ 24T3}$

Contents

1	Transformations and Groups	2
2	Subgroups and the Group of Isometries	3
3	Reflections and Isometries	4
4	Translations and Rotations on \mathbb{R}^2	5

1 Transformations and Groups

Definition 1.1. A transformation on \mathbb{R}^n is a **bijection** from \mathbb{R}^n to \mathbb{R}^n . We will denote $\mathscr{B}(\mathbb{R}^n)$ the set of all transformations on \mathbb{R}^n .

In particular, a transformation on the Euclidean plane \mathbb{R}^2 is called a **plane transformation**.

Definition 1.2 (Group). A group is a set G equipped with a map

$$*: G \times G \rightarrow G, (g, h) \mapsto g * h = gh,$$

that satisfies the following axioms:

- (G1) Associativity, i.e. $g, h, k \in G$, then (gh)k = g(hk).
- (G2) Existence of identity, i.e. there is an element denoted by e in G called the *identity* of G such that eg = g = ge for any $g \in G$. (Such e is unique; notation: 1_G .)
- (G3) Existence of inverse, i.e. for any $g \in G$, there is an element denoted by $h \in G$ called the inverse of g such that gh = hg = e. (h is also unique; notation: g^{-1} .)

A group G is called commutative or abelian if gh = hg for all $g, h \in G$.

Proposition 1.3. Examples of Transformation Groups

- (1) The set $\mathscr{B}(\mathbb{R}^n)$ of all transformations on \mathbb{R}^n together with the operation of composition forms a group.
- (2) The set $\mathcal{T}(\mathbb{R}^n)$ of all translations on \mathbb{R}^n together with the operation of composition forms a group.
- (3) The set $\mathscr{C}(\mathbb{R}^n)$ of collineations of \mathbb{R}^n together with the operation of composition forms a group.

Definition 1.4 (Subgroup). Let (G, *) be a group. A nonempty subset $H \subseteq G$ is said to be a subgroup of G, denoted by $H \subseteq G$, if (H, *) is a group.

Lemma 1.5 (Subgroup Lemma). A nonempty subset H of a group G is a subgroup if and only if the following two closure conditions are satisfied:

- **(SG1)** Closure under multiplication, i.e. if $h, k \in H$, then $hk \in H$;
- (SG2) Closure under inverse, i.e. if $h \in H$, then $h^{-1} \in H$.

In particular, $1_H = 1_G \in H$.

Definition 1.6 (Group Isomorphisms). For groups G, H, a map $f : G \to H$ is called a group homomorphism if f(xy) = f(x)f(y) for all $x, y \in G$. A bijective group homomorphism is called an isomorphism. In this case, we say that G is isomorphic to H. Notation $G \cong H$.

2 Subgroups and the Group of Isometries

Lemma 2.1. If S is a subset of a group (G, *), then $\langle S \rangle = \bigcap_{S \subseteq H \leq G} H$. In other words, $\langle S \rangle$ is the **smallest** subgroup of G that contains all the elements of S.

Definition 2.2. We call $\langle S \rangle$ the subgroup of G generated by S. A group generated by one element is called a cyclic group.

Notation:

- space: \mathbb{R}^n ;
- points: A, B, C, P, Q, R, \dots with position vectors $\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{p}, \mathbf{q}, \mathbf{r} \dots$;
- transformations: $\tau, \pi, \sigma, \delta, \ldots$;
- lines: l, m, n, \ldots ; line equations in $\mathbb{R}^n : \mathbf{x} = \mathbf{a} + \lambda \mathbf{v}$ for all $\lambda \in \mathbb{R}$;
- planes in $\mathbb{R}^n = \mathbf{x} = \mathbf{a} + \lambda \mathbf{u} + \mu \mathbf{v}$ for all $\lambda, \mu \in \mathbb{R}$;
- Hyperplanes through $\mathbf{a} \in \mathbb{R}^n$ with normal $\mathbf{n} \in \mathbb{R}^n = \mathbf{0}$:

$$\mathbb{H}_{\mathbf{n},\mathbf{a}} = \{ \mathbf{x} \in \mathbb{R}^n \mid (\mathbf{x} - \mathbf{a}) \cdot \mathbf{n} = 0 \} = \langle \mathbf{n} \rangle^{\perp} + \mathbf{a}.$$

- For points P, Q in \mathbb{R}^n , we may also define the **perpendicular bisector** of the line segment PQ to be the hyperplane \mathbb{H} that passes through the midpoint of PQ and perpendicular to PQ. So \mathbb{H} has the equation $(\mathbf{x} \mathbf{m}) \cdot (\mathbf{p} \mathbf{q}) = 0$ where $\mathbf{m} = \frac{1}{2}(\mathbf{p} + \mathbf{q})$.
- It is clear that, for all $X \in \mathbb{H}$,

$$d(X, P) = \sqrt{\|\mathbf{x} - \mathbf{m}\|^2 + \|\mathbf{p} - \mathbf{m}\|^2} = \sqrt{\|\mathbf{x} - \mathbf{m}\|^2 + \|\mathbf{q} - \mathbf{m}\|^2} = d(X, Q).$$

The Euclidean space \mathbb{R}^n

- Length of a vector: $\|\mathbf{a} = \sqrt{\mathbf{a} \cdot \mathbf{a}}\|$;
- Distance between two points $P, Q : d(P, Q) := ||\mathbf{p} \mathbf{q}||$;
- Projection of **a** on **b**: $\operatorname{proj}_{\mathbf{b}}(\mathbf{a}) = \frac{\mathbf{a} \cdot \mathbf{b}}{\mathbf{b} \cdot \mathbf{b}} \mathbf{b};$
- Angle between **a** and **b**: $\cos(\theta) = \frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{a}\| \|\mathbf{b}\|}$;
- Orthogonality: $\mathbf{a} \perp \mathbf{b} \iff \mathbf{a} \cdot \mathbf{b} = 0$;

Definition 2.3. An isometry on \mathbb{R}^n is a map $\tau: \mathbb{R}^n \to \mathbb{R}^n$ which preserves distance between points: $d(P,Q) = d(\tau(P), \tau(Q)), \forall P, Q \in \mathbb{R}^n$.

Lemma 2.4. The set of isometries which fix the zero vector is equal to the set of (linear) maps that represent multiplication by an orthogonal matrix.

Theorem 2.5. An isometry can be decomposed into a translation multiplied by a linear transformation, which can be represented by an orthogonal matrix. In other words, for every $\tau \in \mathscr{I}(\mathbb{R}^n)$, there exist an orthogonal $n \times n$ matrix Q and a vector $\mathbf{b} \in \mathbb{R}^n$ such that $\tau = T_{Q,\mathbf{b}} = T_{I,\mathbf{b}} \circ T_{Q,\mathbf{0}}$. In particular, an isometry is a **transformation**.

Theorem 2.6. The group of Isometries

- (1) The set $\mathscr{I}(\mathbb{R}^n)$ of all isometries forms a subgroup of the group $\mathscr{B}(\mathbb{R}^n)$ of all transformations.
- (2) The group $\mathscr{I} = \mathscr{I}(\mathbb{R}^n)$ contains two subgroups: the group \mathscr{T} of translations and the group \mathscr{O} of all orthogonal linear transformations. Moreover, we have $\mathscr{I} = \mathscr{T}\mathscr{O} := \{\tau\sigma \mid \tau \in \mathscr{T}, \sigma \in \mathscr{O}\}.$

3 Reflections and Isometries

Definition 3.1. Let \mathbb{H} be a hyperplane. The reflection $\sigma_{\mathbb{H}}$ in \mathbb{H} is the mapping defined by:

$$\sigma_{\mathbb{H}}(P) = \begin{cases} P & \text{if } P \in \mathbb{H}; \\ P' & \text{if } P \text{ is off } \mathbb{H} \text{ and } \mathbb{H} \text{ is the perpendicular bisector of } P\bar{P}'. \end{cases}$$

(in the sense that d(P, X) = d(P', X) for all $X \in \mathbb{H}$.)

Proposition 3.2. Let \mathbb{H} be a hyperplane.

- (1) A reflection $\sigma_{\mathbb{H}}$ is an isometry satisfying $\sigma_{\mathbb{H}}^2 = 1$.
- (2) $\sigma_{\mathbb{H}}$ fixes a line $m \nsubseteq \mathbb{H}$ if and only if $m \perp \mathbb{H}$.
- (3) $\sigma_{\mathbb{H}}$ fixes a line **pointwise** if and only if $m \subseteq \mathbb{H}$.

Theorem 3.3. If $\mathbb{H} = \mathbb{H}_{\mathbf{n},\mathbf{a}}$, then there exist $Q = I - \frac{2}{\mathbf{n}.\mathbf{n}} \mathbf{n} \mathbf{n}^T \in O_n(\mathbb{R})$ and $\mathbf{b} = 2 \frac{\mathbf{a}.\mathbf{n}}{\mathbf{n}.\mathbf{n}} \mathbf{n}$ such that

$$\sigma_{\mathbb{H}}(\mathbf{x}) = Q\mathbf{x} + \mathbf{b}.$$

Corollary 3.4. In \mathbb{R}^2 , if line ℓ has equation aX + bY + c = 0, then the reflection σ_{ℓ} in ℓ has equation:

$$\sigma_{\ell}(\mathbf{x}) = \frac{1}{a^2 + b^2} \begin{bmatrix} b^2 - a^2 & -2ab \\ -2ab & a^2 - b^2 \end{bmatrix} \mathbf{x} + \frac{1}{a^2 + b^2} \begin{bmatrix} -2ac \\ -2bc \end{bmatrix}$$
$$= \binom{x}{y} - 2 \frac{(ax + by + c)}{a^2 + b^2} \binom{a}{b}.$$

Definition 3.5 (Points in Generic Position). We say that m points $P_1(\mathbf{p_1}), P_2(\mathbf{p_2}), \dots, P_m(\mathbf{p}_m)$ in \mathbb{R}^n are in **generic position** if the vectors $\mathbf{p}_i - \mathbf{p}_1$, for $i = 2, 3, \dots, m$, are linearly independent. In particular, n+1 points in \mathbb{R}^n are in generic position if every hyperplane contains at most n of the n+1 points.

Theorem 3.6. (1) An isometry on \mathbb{R}^n that fixes n+1 points in generic position is the identity map.

- (2) An isometry on \mathbb{R}^n that fixes n points in generic position is a reflection **or** the identity.
- (3) An isometry that fixes n-1 but not n points in generic position is a product of two **reflections**.
- (4) Every isometry (in \mathbb{R}^n) is a product of **at most** n+1 reflections.

4 Translations and Rotations on \mathbb{R}^2

Theorem 4.1. An isometry τ in \mathbb{R}^n is a **translation** if and only if τ is the product of two reflections in parallel hyperplanes.

Corollary 4.2. A plane isometry is a translation if and only if it is a product of two reflections in parallel lines.

Definition 4.3. A **rotation** on \mathbb{R}^2 about a point C, through angle θ , is the transformation that fixes C and otherwise sends a point P to a point P', where d(C, P) = d(C, P'), and the angle from \vec{CP} to $\vec{CP'}$ is θ (in anti-clockwise direction) if $\theta > 0$, and clockwise if theta < 0). We denote this transformation by $\rho_{C,\theta}$.

Theorem 4.4. A plane isometry is a **rotation** if and only if it is the product of two reflections in intersecting lines. Further we have

- (1) if lines l, m intersect at C, and the directed angle from l to m is $\frac{\theta}{2} \in (-\frac{\pi}{2}, \frac{\pi}{2}]$, then $\sigma_m \sigma_l = \rho_{C,\theta}$;
- (2) if lines p, q, r are concurrent, then there exists a line l such that $\sigma_r \sigma_q \sigma_p = \sigma_l$.

Corollary 4.5. (1) A non-identity rotation (on \mathbb{R}^2) fixes exactly one point.

- (2) A rotation with centre C fixes every circle with centre C.
- (3) The set of all rotations about a particular point (i.e., with centre at a particular point) is a subgroup of the group $\mathscr{I}(\mathbb{R}^2)$ of isometries; further still, it is a **commutative** subgroup. In other words,

$$\mathscr{R}_C := \{ \rho_{C,\theta} : \theta \in \mathbb{R} \} \le \mathscr{I}(\mathbb{R}^2) \text{ and } \rho \rho' = \rho' \rho, \forall \rho, \rho' \in \mathscr{R}_C.$$

Theorem 4.6 (Equation of a rotation). (1) The rotation $\rho_{\mathbf{0},\theta}: \mathbb{R}^2 \to \mathbb{R}^2$ about the origin $\mathbf{0}$ and through angle θ is the linear isomorphism $T_{Q,\mathbf{0}}(\mathbf{x}) = Q\mathbf{x}$, where Q is the following matrix:

$$Q = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}.$$

(2) If **c** is the position vector of C, then $\rho_{C,\theta} = T_{\mathbf{c}}(\rho_{\mathbf{0},\theta})T_{-\mathbf{c}}$. Hence, $\rho_{\mathbf{C},\theta}$ has the equation $\rho_{C,\theta}(\mathbf{x}) = Q\mathbf{x} + \mathbf{b}$, where Q defines $\rho_{\mathbf{0},\theta}$ as in (1) and $\mathbf{b} = (I - Q)\mathbf{c}$. At the group level, we have $\mathscr{R}_C = T_{\mathbf{c}}\mathscr{R}_{\mathbf{0}}T_{-\mathbf{c}}$. Call the group \mathscr{R}_C is **conjugate** to the group $\mathscr{R}_{\mathbf{0}}$.