ADVANCED PLACEMENT PHYSICS C TABLE OF INFORMATION

CONSTANTS AND CONVERSION FACTORS

Proton mass, $m_p = 1.67 \times 10^{-27} \text{ kg}$

Neutron mass, $m_n = 1.67 \times 10^{-27} \text{ kg}$

Electron mass, $m_e = 9.11 \times 10^{-31} \text{ kg}$

Avogadro's number, $N_0 = 6.02 \times 10^{23} \text{ mol}^{-1}$

Universal gas constant, $R = 8.31 \text{ J/(mol \cdot K)}$

Boltzmann's constant, $k_B = 1.38 \times 10^{-23} \text{ J/K}$

 $e = 1.60 \times 10^{-19} \text{ C}$ Electron charge magnitude,

1 electron volt. 1 eV = 1.60×10^{-19} J

 $c = 3.00 \times 10^8 \text{ m/s}$ Speed of light,

Universal gravitational

 $G = 6.67 \times 10^{-11} \left(\text{N} \cdot \text{m}^2 \right) / \text{kg}^2$ constant,

Acceleration due to gravity at Earth's surface,

 $g = 9.8 \text{ m/s}^2$

1 unified atomic mass unit,

Planck's constant,

 $1 \text{ u} = 1.66 \times 10^{-27} \text{ kg} = 931 \text{ MeV/}c^2$

 $h = 6.63 \times 10^{-34} \text{ J} \cdot \text{s} = 4.14 \times 10^{-15} \text{ eV} \cdot \text{s}$

 $hc = 1.99 \times 10^{-25} \text{ J} \cdot \text{m} = 1.24 \times 10^3 \text{ eV} \cdot \text{nm}$

Vacuum permittivity,

 $\varepsilon_0 = 8.85 \times 10^{-12} \text{ C}^2 / (\text{N} \cdot \text{m}^2)$ Coulomb's law constant, $k = 1/(4\pi\varepsilon_0) = 9.0 \times 10^9 (\text{N} \cdot \text{m}^2)/\text{C}^2$

Vacuum permeability,

 $\mu_0 = 4\pi \times 10^{-7} \text{ (T-m)/A}$

Magnetic constant, $k' = \mu_0/(4\pi) = 1 \times 10^{-7} \text{ (T-m)/A}$

1 atmosphere pressure,

 $1 \text{ atm} = 1.0 \times 10^5 \text{ N/m}^2 = 1.0 \times 10^5 \text{ Pa}$

UNIT SYMBOLS	meter,	m	mole,	mol	watt,	W	farad,	F
	kilogram,	kg	hertz,	Hz	coulomb,	С	tesla,	T
	second,	S	newton,	N	volt,	V	degree Celsius,	°C
SIMBOLS	ampere,	A	pascal,	Pa	ohm,	Ω	electron volt,	eV
	kelvin,	K	joule,	J	henry,	Н		

PREFIXES				
Factor	Prefix	Symbol		
10 ⁹	giga	G		
10 ⁶	mega	M		
10 ³	kilo	k		
10^{-2}	centi	С		
10^{-3}	milli	m		
10^{-6}	micro	μ		
10^{-9}	nano	n		
10^{-12}	pico	p		

VALUES OF TRIGONOMETRIC FUNCTIONS FOR COMMON ANGLES							
θ	0°	30°	37°	45°	53°	60°	90°
$\sin \theta$	0	1/2	3/5	$\sqrt{2}/2$	4/5	$\sqrt{3}/2$	1
$\cos \theta$	1	$\sqrt{3}/2$	4/5	$\sqrt{2}/2$	3/5	1/2	0
$\tan \theta$	0	$\sqrt{3}/3$	3/4	1	4/3	$\sqrt{3}$	8

The following assumptions are used in this exam.

- The frame of reference of any problem is inertial unless otherwise
- II. The direction of current is the direction in which positive charges would drift.
- III. The electric potential is zero at an infinite distance from an isolated point charge.
- All batteries and meters are ideal unless otherwise stated. IV.
- Edge effects for the electric field of a parallel plate capacitor are negligible unless otherwise stated.

ADVANCED PLACEMENT PHYSICS C EQUATIONS

MEC	HANICS
$v_x = v_{x0} + a_x t$	a = acceleration
	E = energy
$x = x_0 + v_{x0}t + \frac{1}{2}a_xt^2$	F = force
<u>~</u>	f = frequency
$v_x^2 = v_{x0}^2 + 2a_x(x - x_0)$	h = height
$\nabla \vec{r} \vec{r}$	I = rotational inertia
$\vec{a} = \frac{\sum \vec{F}}{m} = \frac{\vec{F}_{net}}{m}$	J = impulse
m m	K = kinetic energy
$\vec{E} = d\vec{p}$	k = spring constant
$\Gamma = {}^{**}P$	

$$\vec{F} = \frac{d\vec{p}}{dt}$$
 $k = \text{spring constant}$ $\ell = \text{length}$ $L = \text{angular momentum}$

$$\vec{J} = \int \vec{F} \, dt = \Delta \vec{p}$$
 $m = \text{mass}$ $P = \text{power}$ $\vec{p} = m\vec{v}$ $p = \text{momentum}$

$$p = mv$$
 $p = momentum$
 $r = radius or distance$

$$|\vec{F}_f| \le \mu |\vec{F}_N|$$
 $T = \text{period}$ $t = \text{time}$ $U = \text{potenti}$

$$\Delta E = W = \int \vec{F} \cdot d\vec{r}$$
 $U = \text{ potential energy}$
 $v = \text{ velocity or speed}$
 $K = \frac{1}{2}mv^2$ $W = \text{ work done on a system}$

$$x = position$$

$$\mu = coefficient of friction$$

$$P = \frac{dE}{dt}$$

$$\theta = \text{angle}$$

$$\tau = \text{torque}$$

$$P = \vec{F} \cdot \vec{v}$$

$$\omega = \text{angular speed}$$

$$\alpha = \text{angular acceleration}$$

$$\Delta U_g = mg\Delta h \qquad \phi = \text{phase angle}$$

$$a_c = \frac{v^2}{r} = \omega^2 r$$

$$II = \frac{1}{r} k(\Delta r)^2$$

$$\vec{\tau} = \vec{r} \times \vec{F}$$

$$U_S = \frac{1}{2}k(\Delta x)^2$$

$$x = x_{\text{max}}\cos(\omega t + \phi)$$

$$\vec{\alpha} = \frac{\sum \vec{\tau}}{I} = \frac{\vec{\tau}_{net}}{I}$$

$$T = \frac{2\pi}{\omega} = \frac{1}{f}$$

$$I = \int r^2 dm = \sum mr^2$$

$$T_s = 2\pi \sqrt{\frac{m}{k}}$$

$$T_{p} = 2\pi \sqrt{\frac{\ell}{g}}$$

$$\begin{aligned}
\nabla r &= 2\pi \sqrt{\frac{3}{g}} \\
v &= r\omega \\
\vec{L} &= \vec{r} \times \vec{p} = I\vec{\omega}
\end{aligned} \qquad |\vec{F}_G| = \frac{Gm_1m_2}{r^2}$$

$$\vec{L} = \vec{r} \times \vec{p} = I\vec{\omega}$$
 $|F_G| = \frac{1}{r^2}$

$$K = \frac{1}{2}I\omega^2 \qquad U_G = -\frac{Gm_1m_2}{r}$$

$$\omega = \omega_0 + \alpha t$$

$$\theta = \theta_0 + \omega_0 t + \frac{1}{2} \alpha t^2$$

ELECTRICITY AND MAGNETISM

$ \vec{E} = 1 q_1q_2 $	A = area
$\left \vec{F}_E \right = \frac{1}{4\pi\varepsilon_0} \left \frac{q_1 q_2}{r^2} \right $	B = magnetic field
	C = capacitance
$ec{E} = rac{ec{F}_E}{q}$	d = distance
$E = \frac{q}{q}$	E = electric field
	ε = emf
$\oint \vec{E} \cdot d\vec{A} = \frac{Q}{\varepsilon_0}$	F = force
\mathcal{F}^{ω} ε_0	I = current
117	J = current density
$E_x = -\frac{dV}{dx}$	L = inductance

$$\Delta V = -\int \vec{E} \cdot d\vec{r}$$
 $n = \text{number of loops of wire}$ per unit length $N = \text{number of charge carriers}$

 $\ell = length$

t = time

$$V = \frac{1}{4\pi\varepsilon_0} \sum_{i} \frac{q_i}{r_i}$$
 per unit volume $P = \text{power}$ $Q = \text{charge}$ $Q = \text{charge}$ $Q = \text{point charge}$ $Q = \text{point charge}$

$$C_E = qV = \frac{1}{4\pi\epsilon_0} \frac{1}{r}$$
 $q = \text{point charge}$
 $R = \text{resistance}$
 $\Delta V = \frac{Q}{C}$ $r = \text{radius or distance}$
 $r = \text{time}$

$$C = \frac{\kappa \varepsilon_0 A}{d}$$

$$U = \text{potential or stored energy}$$

$$V = \text{electric potential}$$

$$v = \text{velocity or speed}$$

$$\rho = \text{resistivity}$$

$$C_p = \sum_i C_i$$
 $\rho = \text{resistivity}$

$$\Phi = \text{flux}$$

$$\kappa = \text{dielectric constant}$$

$$\frac{1}{C_s} = \sum_i \frac{1}{C_i}$$

$$\vec{F}_M = q\vec{v} \times \vec{B}$$

$$\frac{\vec{c}}{C_S} = \sum_{i} \frac{\vec{c}}{C_i} \qquad \vec{F}_M = q\vec{v} \times \vec{B}$$

$$I = \frac{dQ}{dt} \qquad \oint \vec{B} \cdot d\vec{\ell} = \mu_0 I$$

$$U_C = \frac{1}{2}Q\Delta V = \frac{1}{2}C(\Delta V)^2 \qquad d\vec{B} = \frac{\mu_0}{4\pi} \frac{I \, d\vec{\ell} \times \hat{r}}{r^2}$$

$$R = \frac{\rho\ell}{4} \qquad \qquad \vec{F} = \int I \, d\vec{\ell} \times \vec{B}$$

$$ec{E} =
ho ec{J}$$
 $B_S = \mu_0 n I$ $I = Nev_d A$ $\Phi_B = \int ec{B} \cdot d \vec{A}$

$$I = \frac{\Delta V}{R} \qquad \qquad \mathcal{E} = \oint \vec{E} \cdot d\vec{\ell} = -\frac{d\Phi_B}{dt}$$

$$R \qquad \qquad \mathcal{E} \qquad dt$$

$$R_{s} = \sum_{i} R_{i} \qquad \qquad \mathcal{E} = -L \frac{dI}{dt}$$

$$\frac{1}{R_p} = \sum_i \frac{1}{R_i} \qquad U_L = \frac{1}{2}LI^2$$

$$P = I\Delta V$$

GEOMETRY AND TRIGONOMETRY

Rectangle

A = bh

Triangle

$$A = \frac{1}{2}bh$$

Circle

$$A=\pi r^2$$

 $C = 2\pi r$

$$s = r\theta$$

Rectangular Solid

$$V = \ell w h$$

Cylinder

$$V=\pi r^2\ell$$

$$S = 2\pi r\ell + 2\pi r^2$$

Sphere

$$V = \frac{4}{3}\pi r^3$$

$$S = 4\pi r^2$$

Right Triangle

$$a^2 + b^2 = c^2$$

$$\sin \theta = \frac{a}{c}$$

$$\cos\theta = \frac{b}{c}$$

$$\tan \theta = \frac{a}{b}$$

A = area

C = circumference

V = volume

S =surface area

b = base

h = height

 $\ell = length$

w = width

r = radius

s = arc length

 θ = angle

$$\tan \theta = \frac{a}{h}$$

CALCULUS

$$\frac{df}{dx} = \frac{df}{du}\frac{du}{dx}$$

$$\frac{d}{dx}(x^n) = nx^{n-1}$$

$$\frac{d}{dx}(e^{ax}) = ae^{ax}$$

$$\frac{d}{dx}(\ln ax) = \frac{1}{x}$$

$$\frac{d}{dx}[\sin(ax)] = a\cos(ax)$$

$$\frac{d}{dx}[\cos(ax)] = -a\sin(ax)$$

$$\int x^n \, dx = \frac{1}{n+1} x^{n+1}, \, n \neq -1$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}$$

$$\int \frac{dx}{x+a} = \ln|x+a|$$

$$\int \cos(ax) dx = \frac{1}{a} \sin(ax)$$

$$\int \sin(ax)dx = -\frac{1}{a}\cos(ax)$$

VECTOR PRODUCTS

$$\vec{A} \cdot \vec{B} = AB \cos \theta$$

$$|\vec{A} \times \vec{B}| = AB\sin\theta$$