Single Correct Type

Que. 1. If $A + B + C = 180^{\circ}$ then $\frac{\cos A \cos C + \cos(A + B) \cos(B + C)}{\cos A \sin C - \sin(A + B) \cos(B + C)}$ simplifies to

- (a) $-\cot C$
- (b) 0
- (c) tan C
- (d) cot C
- (code-V1T2PAQ2)

Que. 2 Let $3^a = 4, 4^b = 5, 5^c = 6, 6^d = 7, 7^e = 8$ and $8^f = 9$. The value of product (abcdef), is

Que. 2 Let $3^{\circ} = 4, 4^{\circ} = 5, 5^{\circ} = 6, 6^{\circ} = 7, 7^{\circ} = 8$ and $8^{\circ} = 9$. The value of product (abcdef), is

(a) 1 (b) 2 (c) $\sqrt{6}$ (d) 3 (code-VIT2PAQ3)

Que. 3. Which of the following numbers is the largest 2

(a) $\cos 15^{\circ}$ (b) $\tan 60^{\circ}$ (c) $\sec 15^{\circ}$ (d) $\csc 15^{\circ}$ (code-VIT2PAQ4)

Que. 4. If $\alpha + \gamma = 2\beta$ then the expression $\sin \alpha - \sin \gamma$ cos $\gamma - \cos \alpha$, simplifies to (code-VIT2PAQ4)

Que. 5. If $A = 110^{\circ}$ then $\frac{1 + \sqrt{1 + \tan^2 2A}}{\tan 2A}$ equals

(a) $\tan A$ (b) $- \tan B$ (c) $\cot A$ (d) $- \cot A$ (code-VIT4PAQ2)

Que. 6. Minimum value of $y = 256\sin^2 x + 324\cos e^2 x \forall x \in R$ is

(a) 432 (b) 504 (c) 580 (d) 776 (code-VIT4PAQ4)

Que. 7. If $A = 320^{\circ}$ then $\frac{-1 + \sqrt{1 + \tan^2 A}}{\tan A}$ is equal to (code-VIT5PAQ1)

(a) $\tan \frac{A}{2}$ (b) $- \tan \frac{A}{2}$ (c) $\cot \frac{A}{2}$ (d) $- \cot \frac{A}{2}$ (e) $\cot \frac{A}{2}$ (e) $\cot \frac{A}{2}$ (f) $\cot \frac{A}{2}$ (g) $\cot \frac{A}{2}$ (e) $\cot \frac{A}{2}$ (f) $\cot \frac{A}{2}$ (g) $\cot \frac{A}{2}$ (g) $\cot \frac{A}{2}$ (e) $\cot \frac{A}{2}$ (f) $\cot \frac{A}{2}$ (g) $\cot \frac{A}{2}$ (g) $\cot \frac{A}{2}$ (g) $\cot \frac{A}{2}$ (g) $\cot \frac{A}{2}$ (h) $-\cot \frac{A}$ angle ABC with radius unity, then the radius of the circumcircle of triangle BPC is (code-V1T5PAQ5) $\frac{60}{50}$ (a) 1 (b) $\sqrt{3}$ (c) 2 (d) $\sqrt{3}/2$

Que. 10. In a triangle ABC if angle C is 90° and area of triangle is 30, then the minimum possible value of $\frac{9}{8}$ the hypotenuse c is equal to (code-V1T5PAQ9)

- (a) $30\sqrt{2}$
- (b) $60\sqrt{2}$
- (c) $120\sqrt{2}$
- (d) $2\sqrt{30}$

Also Available online www.MathsBySuhag.com Que. 11. Which one of the following relations does not hold good?

(code-V1T5PAQ13)

(a) $\sin \frac{\pi}{10} \sin \frac{13\pi}{10} = -\frac{1}{4}$

- (b) $\sin \frac{\pi}{10} + \sin \frac{13\pi}{10} = -\frac{1}{2}$

(a)
$$\frac{abc}{R^2}$$

(b)
$$\frac{abc}{4R^2}$$

(c)
$$\frac{4abc}{R^2}$$
 (d) $\frac{abc}{2R^2}$

(d)
$$\frac{abc}{2R^2}$$

Que. 13. General solution of the equation, $2\sin^2 x + \sin^2 2x = 2$, is

(a)
$$(2n+1)\frac{\pi}{4}$$
 (b) $n\pi \pm \frac{\pi}{4}$

(b)
$$n\pi \pm \frac{\pi}{4}$$

(c)
$$n\pi \pm \frac{\pi}{2}$$

(c)
$$n\pi \pm \frac{\pi}{2}$$
 (d) $n\pi \pm \frac{\pi}{4} \cup n\pi \pm \frac{\pi}{2}$

(a)
$$15^{\circ}$$

(c)
$$22.5^{\circ}$$

$$(d) 45^{o}$$

(a)
$$pr = q$$

DOWNLOAD FREE STUDY PACKAGE FROM WEBSITE WWW.TEKOCLASSES.COM

(b)
$$qr = p$$

(e)
$$pq = r$$

(d)
$$pq + r = 0$$
 (code-V1T5PAQ18

(a) $(2n+1)\frac{\pi}{4}$ (b) $n\pi\pm\frac{\pi}{4}$ (c) $n\pi\pm\frac{\pi}{2}$ (d) $n\pi\pm\frac{\pi}{4}$ $n\pi\pm\frac{\pi}{2}$ Que. 14. In a triangle ABC, $\angle A = 60^\circ$ and $b : c = \sqrt{3} + 1 + 2$ then $(\angle B - \angle C)$ has the value equal to (a) 15° (b) 30° (c) 22.5° (d) 45° (code-VITSPAQ17)

Que. 15. If the two roots of the equation, $x^3 - px^2 + dx - r = 0$ are equal in magnitude but opposite sign then 80° (a) pr = q (b) pr = p (c) pq = r (d) pq + r = 0 (code-VITSPAQ18)

Que. 16. The equation, $\sin^2 \theta - \frac{4}{\sin^3 \theta - 1} = 1 - \frac{4}{\sin^3 \theta - 1}$ has (code-VITSPAQ20)

(a) no root (b) one root (c) two roots (d) infinite roots

Que. 17. If a,b,c are the sides of a triangle then the expression $\frac{a^2 + b^2 + c^2}{ab + bc + ca}$ lies in the interval (a) (1,2) (b) [1,2] (c) [1,2] (d) (1,2] (code-VITSPAQ21)

Que. 18. If α and β are the roots of the equation α acos 2θ + bsin 2θ = α then α + α +

(a)
$$(1,2)$$

(b)
$$[1,2]$$

(a)
$$\frac{a^2 + ac + b^2}{a^2 + b^2}$$

(b)
$$\frac{a^2 - ac + b^2}{a^2 + b^2}$$

(c)
$$\frac{2b^2}{a^2 + c^2}$$

(d)
$$\frac{2a^2}{b^2 + c^2}$$
 (code-V1T5PAQ24

(c)
$$ab^2$$

(d)
$$a^{2}$$

Also Available online www.MathsBySuhag.com

(a)
$$\frac{1}{4} - \frac{1}{6}\cos^2 2x$$

(b)
$$\frac{1}{12} + \frac{1}{4}\sin^2 2x$$

(c)
$$\frac{1}{3} - \frac{1}{4}\cos^2 x$$

(d)
$$\frac{1}{12}$$

(a)
$$2 + \frac{r}{2R}$$

(b)
$$4 - \frac{7r}{2R}$$

(c)
$$2 + \frac{r}{4R}$$

$$(d) \frac{3}{4} \left(\frac{4r}{R} + 1 \right)$$

where r and R have their usual meaning.

Que. 22. A cricle is inscribed in a triangle ABC touches the side AB at D such that AD = 5 and BD = 5 and BD= 3. If $\angle A = 60^{\circ}$ then the length of BC equals [Advise - Que. of properties of triangle but tru by 2D.]

(b)
$$\frac{120}{13}$$

(a) The altitudes are A.P.

- (b) The altitudes are in H.P
- (c) The medians are in G.P.
- (d) The medians are in A.P.

Que. 24. Which of the following inequalitie(s) hold(s) true in any triangle ABC? (code-V1T7PAQ13)

(a)
$$\sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2} \le \frac{1}{8}$$

(b)
$$\cos \frac{A}{2} \cos \frac{B}{2} \cos \frac{C}{2} \le \frac{3\sqrt{3}}{8}$$

(c)
$$\sin^2 \frac{A}{2} \sin^2 \frac{B}{2} \sin^2 \frac{C}{2} < \frac{3}{4}$$

(d)
$$\cos^2 \frac{A}{2} + \cos^2 \frac{B}{2} + \cos^2 \frac{C}{2} \le \frac{9}{4}$$

Que. 25. If $\alpha = \frac{\pi}{7}$ which of the following hold(s) good?

(code-V1T7PAQ14)

- (a) $\tan \alpha . \tan 2\alpha . \tan 3\alpha = \tan 3\alpha \tan 2\alpha \tan \alpha$
- (b) $\cos \operatorname{ec} \alpha = \csc 2\alpha + \csc 4\alpha$
- (c) $\cos \alpha \cos 2\alpha + \cos 3\alpha$ has the value equal to 1/2
- (d) $8\cos\alpha.\cos 2\alpha.\cos 4\alpha$ has the value equal to 1.

Que. 26. Identify which of the following are correct?

(code-V1T7PAQ16)

Teko Classes, Maths: Suhag R. Kariya (S. R. K. Sir), Bhopal Phone: 0 903 903 7779, 0 98930 58881

$$(a) \left(\tan x\right)^{\ell n(\sin x)} > \left(\cot x\right)^{\ell n(\sin x)}, \forall x \in \left(0, \frac{\pi}{4}\right)$$

(b)
$$4^{\ln \operatorname{cosec} x} < 5^{\ln \operatorname{cosec} x}, \forall x \in \left(0, \frac{\pi}{2}\right)$$

$$(c) \left(\frac{1}{2}\right)^{\ln(\cos x)} < \left(\frac{1}{3}\right)^{\ln(\cos x)}, \forall x \in \left(0, \frac{\pi}{2}\right)$$

$$(d) \ 2^{\ell n(\tan x)} < 2^{\ell n(\sin x)}, \forall \ x \in \left(0, \frac{\pi}{2}\right)$$

Que. 27. Which of the following is always equal to $\cos^2 A - \sin^2 A$?

(code-V1T10PAQ4)

- (a) sin 2A
- (b) $\cos(A+B)\cos(A-B)-\sin(A+B)\sin(A-B)$
- (c) $\sin(A+B)\cos(A-B)-\cos(A+B)\sin(A-B)$
- (d) $\cos(A+B)\sin(A-B)-\sin(A+B)\cos(A-B)$

Que. 28. Number of values of $x \in [0, \pi]$ satisfying $\cos^2 5x + \cos^2 x + \sin 4x \cdot \sin 6x = 0$, is(code-V1T10PAQ5)

- (a) 2

- (d) infinitely many

(wherever difined) simplifies to Que. 29. $\frac{1}{\sin\alpha + \sin\beta - \sin(\alpha + \beta)}$

(code-V1T10PAO6)

- (a) $\cot \frac{\alpha}{2} \cot \frac{\beta}{2}$ (b) $\cot \frac{\alpha}{2} \tan \frac{\beta}{2}$ (c) $\tan \frac{\alpha}{2} \cot \frac{\beta}{2}$ (d) $\tan \frac{\alpha}{2} \tan \frac{\beta}{2}$

Teko ClassesIIT JEE MATHS by <u>SUHAG SIR</u> Bhopal, Ph. 0 903 903 7779 www.TekoClasses.com Question. & Solution. Trigo. Page: A - 4 of A - 34 Also Available online www.MathsBySuhag.com DOWNLOAD FREE STUDY PACKAGE FROM WEBSITE WWW.TEKOCLASSES.COM

Que. 30. Let A, B, C be three angles such that $A + B + C = \pi$. If $\tan A$, $\tan B = \csc \frac{\pi}{6}$ then the value of $\frac{\cos A \cos B}{\cos C}$ is equal to (code-V1T12PAQ5)

- (a) $\frac{1}{\sqrt{2}}$
- (b) $\frac{1}{2}$
- (c) 1
- (d) $\frac{1}{2}$

Que. 31. Which value of θ listed below leads to $2^{\sin \theta} > 1$ and $3^{\cos \theta} < 1$?

(code-V1T12PAQ7)

Que. 31. Which value of θ listed below leads to $2^{\sin\theta} > 1$ and $3^{\cos\theta} < 1$? (code-VIT12PAQ7)

(a) 70° (b) 140° (c) 210° (d) 280° Que. 32. In a trinalge ABC, a = 3, b = 4 and c = 5. The value of $\sin A + \sin 2B + \sin 3C$ equals

(a) $\frac{24}{25}$ (b) $\frac{14}{25}$ (c) $\frac{64}{25}$ (d) None. (code-VIT13PAQ4)

Que. 33. Let $y = (\sin x + \cos \cos^2)^2 + (\cos x + \sec x)^2$, then the minimum value of $y, \forall x \in R$ is (code-VIT13PAQ4)

(a) 7 (b) 8 (c) 9 (d) 10Que. 34. If the equation $\cot^4 x - 2 \csc^2 x + a^2 = 0$ has atleast one solution then, sum of all possible integral values of 'a' is equal to (code-VIT13PAQ5)

(a) $\frac{1}{8}$ (b) $\frac{2}{3}$ (c) $\frac{2\sqrt{3}}{3}$ (d) $\frac{3}{4}$ (code-VIT13PAQ7)

Que. 35. If θ be an acute angle satistying the equation $8\cos 2\theta + 8\sec 2\theta = 65$, then value of $\cos \theta$ is equal to (a) $\frac{1}{8}$ (b) $\frac{2}{3}$ (c) $\frac{2\sqrt{3}}{3}$ (d) $\frac{3}{4}$ (code-VIT13PAQ7)

Que. 36. If $2\sin x + 7\cos px = 9$ has atleast one solution then p must be (a) an odd integer (b) an even integer (c) a rational number

Que. 37. If $\theta \in (\pi/4, \pi/2)$ and $\sum_{n=1}^{\infty} \frac{1}{\tan^n \theta} = \sin \theta + \cos \theta$ then the value of $\tan \theta$ is (code-VIT13PAQ10)

Que. 38. If $\sin x + a\cos x = b$ then the value of $|a \sin x - \cos x|$ is equal to (a) $\sqrt{3}$ (b) $\sqrt{2} + 1$ (c) $2 + \sqrt{3}$ (d) $\sqrt{2}$ Que. 39. The least value of x = 0 (code-VIT13PAQ14)

(a) $\frac{\pi}{12}$ (b) $\frac{2\pi}{42}$ (c) $\frac{3\pi}{12}$ (d) $\frac{4\pi}{12}$

Que.40. Let $\theta \in [0, 4\pi]$ satisfying the equation $(\sin \theta + 2)(\sin \theta + 3)(\sin \theta + 4) = 6$. if the sum of all value of θ is of the form $k\pi$ then the value of 'k', is (code-V1T13PAQ18)

- (b) 5
- (c) 4
- (d) 2

Que.41. Let $f(x) = a \sin x + c$, where a and c are real numbers and a > 0. Then $f(x) < 0 \forall x \in R$ if

- (c) -a < c < a
- (d) c < a

Que.43. If $\sin x + \sin y + \sin z = 0 = \cos x + \cos y + \cos z$ then the expression, $\cos(\theta - x) + \cos(\theta - y)$ $+\cos(\theta-z)$, for $\theta=\in R$ is (code-V1T15PAQ1)

- (a) independent of θ but dependent on x, y, z
- (b) dependent on θ but independent of x, y, z
- (c) dependent on x, y, z and θ
- (d) independent of x, y, z and θ

(a)
$$3\sqrt{2}$$

DOWNLOAD FREE STUDY PACKAGE FROM WEBSITE WWW.TEKOCLASSES.COM

Also Available online www.MathsBySuhag.com

(c)
$$2\sqrt{2}$$

(d)
$$\sqrt{7}/2$$

(c)
$$\left(\sqrt{5}+1\right)$$

(d)
$$3\sqrt{5}$$

(c) dependent of x, y, z and θ (d) independent of x, y, z and θ (Que.44. In $\triangle ABC$, AB = 1, BC = 1 and $AC = 1/\sqrt{2}$. In $\triangle MNP$, MN = 1, and $\triangle MNP - 2 \triangle ABC$. The side $MP_{EQ}^{(2)}$ (equals (a) $3\sqrt{2}$ (b) 7/4 (c) $2\sqrt{2}$ (d) $\sqrt{7}/2$ (code-VITI5PAQ5) (code-VITI5PAQ5) (a) 5 (b) 4 (c) $(\sqrt{5} + 1)$ (d) $3\sqrt{5}$ (code-VITI5PAQ6) (a) 5 (b) 4 (c) $(\sqrt{5} + 1)$ (d) $3\sqrt{5}$ (eode-VITI5PAQ6) (a) 5 (b) 4 (c) $(\sqrt{5} + 1)$ (d) $3\sqrt{5}$ (eode-VITI5PAQ10) (e) $\frac{1}{2}$ angle C is (code-VITI5PAQ10) (e) $\frac{1}{2}$ (eode-VITI5PAQ10) (e) $\frac{1}{2}$ (eode-VITI5PAQ2) (e) $\frac{1}{2}$ (eode-VITI5PAQ2) (e) $\frac{1}{2}$ (eode-VITI5PAQ3) (e) $\frac{1}{2}$ sin $\left((n + \frac{1}{2})a\right)$ (b) $\frac{1}{2}$ sin $\left((n - \frac{1}{2})a\right)$ (c) $\frac{1}{2}$ sin $\left((n - \frac{1}{2})a\right)$ (e) $\frac{1}{2}$ sin $\left((n - \frac{1}{2})a\right)$ (f) $\frac{1}{2}$ sin $\left((n + \frac{1}{2})a\right)$ (e) sin $\left((n + 1)a\right)$ (f) cos $\frac{1}{2}$ suggested and C. The point whose coordinates are

$$(b) - 3$$

$$(c) - 2$$

$$(d)$$
 –

(b)
$$\frac{1}{2}\sin\left(\left(n-\frac{1}{2}\right)a\right)$$

(b)
$$\cos^n(a)$$

Que. 49. Suppose ABC is a triangle with 3 acute angle A,B and C. The point whose coordinates are $(\cos B - \sin A, \sin B - \cos A)$ can be in the (code-V1T18PAQ4)

(a) first and 2nd quadrant

(b) second the 3rd quadrant

(c) third and 4th quadrant

(d) second quadrant only

Que. 50. Number of solution of the equation, $\sin^4 x - \cos^2 x \sin x + 2\sin^2 x + \sin x = 0$ is $0 \le x \le 3\pi$, is

(a) 3

(d) 6

(code-V1T19PAQ3)

- (a) $2R^2$
- (b) $2\sqrt{2} R^2$

Que. 53. In a triangle ABC, if $A-B=120^{\circ}$ and R=8r where R and r have their usual meaning then cos C

$$x - y \cos \theta + z \cos 2\theta = 0$$

$$-x \cos \theta + y - z \cos \theta = 0$$

$$x \cos 2\theta - y \cos \theta + z = 0$$

Que. 53. In a triangle ABC, if $A-B=120^\circ$ and R=8r where R and r have their usual meaning then $\cos C_0^{80}$ equals (a) 3/4 (b) 2/3 (c) 5/6 (d) 7/8 (code-VZT3PAQ9) Que. 54. The system of equations $x-y\cos\theta+z\cos2\theta=0 \\ -x\cos\theta+y-z\cos\theta=0 \\ x\cos2\theta-y\cos\theta+z=0$ has non trivial solution for θ equals (a) $n\pi$ only, $n\in I$. (b) $n\pi+\frac{\pi}{4}$ only, $n\in I$. (c) $(2n-1)\frac{\pi}{2}$ only, $n\in I$. (d) all value of θ Que. 55. If $\tan \left(\tan^{-1}\frac{1}{2}+\tan^{-1}\frac{1}{4}+\tan^{-1}\frac{1}{4}+\tan^{-1}\frac{1}{5}\right)$ is expressed as a rational $\frac{a}{b}$ in lowest form (a+b) has $\frac{a}{b}$ the value equal to (a) $\frac{a}{b}$ (b) $\frac{a}{b}$ (code-VZT8PAQ1) Que. 56. A sector OABO of central angle θ is constructed in a circle with centre O and of radius 6. The first radius of the circle that is circumscribed about the triangle OAB, is (code-VZT8PAQ7) (a) $\frac{a}{b}$ Que. 57. Let a, a, a respectively specify the semiperimeter; inradius and circumradius of a triangle ABC, $\frac{a}{b}$ Then (ab+b+c+a) in terms of a, a and a given by (code-VZT8PAQ8)

(code-V2T8PAQ8)

Then (ab+bc+ca) in terms of s, r and R given by

- (a) sr + rR + Rs

Que. 58. The value of the expression $(1 + \tan A)(1 + \tan B)$ when $A = 20^{\circ}$ and $B = 25^{\circ}$ reduces to

(a) prime number

- (b) composite number
- (code-V2T13PAQ5)

(c) irrational number

(d) rational which is not an integer.

Que. 59. The least value of the expression
$$\frac{\cot 2x - \tan 2x}{1 + \sin \left(\frac{5\pi}{2} - 8x\right)} \ln \left(0, \frac{\pi}{8}\right)$$
 equals (code-V2T13PAQ11)

- (a) 1
- (b) 2
- (c) 4
- (d) none.

Que. 60. The value of x satisfying the equation $\sin(\tan^{-1} x) = \cos(\cos^{-1}(x+1))$ is

(code-V2T13PAQ22)

$$\sin^{-1}\cos\left(\frac{2x^2 + 10|x| + 4}{x^2 + 5|x| + 3}\right) = \cot\left(\cot^{-1}\left(\frac{2 - 81|x|}{9|x|}\right)\right) + \frac{\pi}{2} \text{ is}$$

Que. 60. The value of x satisfying the equation $\sin(\tan^{-1}x) = \cos(\cos^{-1}(x+1))$ is $(\operatorname{code-V2T13PAQ22})$ (a) $\frac{1}{2}$ (b) $-\frac{1}{2}$ (c) $\sqrt{2} - 1$ (d) No finite value

Que. 61. Which one of the following quantities is negative?

(a) $\cos(\tan^{-1}(\tan 4))$ (b) $\sin(\cot^{-1}(\cot 4))$ (c) $\tan(\cos^{-1}(\cos 5))$ (d) $\cot(\sin^{-1}(\sin 4))$ Que. 62. The product of all real values of x satisfying the equation $\sin^{-1}\cos\left(\frac{2x^2+10|x|+4}{x^2+5|x|+3}\right) = \cot\left(\cot^{-1}\left(\frac{2-81|x|}{9|x|}\right)\right) + \frac{\pi}{2} \text{ is}$ (a) 9 (b) -9 (c) -3 (d) -1

Que. 63. Product of all the solution of the equation $\tan^{-1}\left(\frac{2x}{x^2-1}\right) + \cot^{-1}\left(\frac{x^2-1}{2x}\right) = \frac{2\pi}{3}$, is $(\operatorname{code-V2T14PAQ4})$ (a) 1 (b) -1 (c) 3 (d) $-\sqrt{3}$ Que. 64. If the value of $\tan(37.5^\circ)$ can be expressed as $\sqrt{a} - \sqrt{b} + \sqrt{c} - \sqrt{d}$ where $a, b, c, d \in \mathbb{N}$ and $\frac{\pi}{2}$ and $\frac{\pi}{2}$ (a) 1 (b) 2 (c) 3 (d) 4

Que. 65. If the minimum value of expression $y = (27)^{\max} + (81)^{\max}$ can be expressed in the form $\sqrt{a/b}$ by where $a, b \in \mathbb{N}$ and are in their lowest term then the value of (a + b) equals $(\operatorname{code-V2T14PAQ10})$ and $\frac{\pi}{2}$ que. 66. Let $f(x) = \sin x + \cos x + \tan x + \arcsin x +$

where $a, b \in N$ and are in the where $a, b \in N$ and are in the where $a, b \in N$ and are in the where $a, b \in N$ and are in the where $a, b \in N$ and are in the whole $a \in N$ and $a \in N$

(code-V2T19PAQ3)

(a) even integer

- (b) odd integer
- (c) rational which is not an integer
- (d) irraional

1 Paragraph for Q. 1 to Q. 3

Let r and R denote the radii of the incircle and the circumcircle of the triangle ABC with sides a, b, c and a+b+c=2s. Also Δ denotes the area of the triangle. (code-V1T16PAQ7,8,9)

- The value of the product $\prod_{\text{cyclic}\atop \text{ARC}} \cot \frac{A}{2}$ equals

- Also Available online www.MathsBySuhag.com DOWNLOAD FREE STUDY PACKAGE FROM WEBSITE WWW.TEKOCLASSES.COM う っ っ っ . The value of the product $\prod_{\substack{c \in \mathbb{R} \\ ABC}} \cot \frac{A}{2}$ equals

 (a) $\frac{r^2}{\Delta}$ (b) $\frac{\Delta}{s^2}$ (c) $\frac{R}{R}(a+b+c)^2$ (d) $\frac{r}{s}$ The value of the sum $\prod_{\substack{c \in \mathbb{R} \\ ABC}} \cot \frac{A}{2} \cot \frac{B}{2}$ equals

 (a) $\frac{R+4r}{r}$ (b) $\frac{4R+r}{r}$ (c) $\frac{4R+r}{R}$ (d) $\frac{4R}{r}$ Let f(x) = 0 denotes a cubic whose roots are $\cot \frac{A}{2}$, $\cot \frac{B}{2}$, $\cot \frac{C}{2}$. If the triangle ABC is such that one of its anlige is 90° then which one of the following holds good?

 (a) r+2R=s (b) 3r+2R=s+2 (c) 1+r+4R=2s (d) 4r+R=s#2 Paragraph for Q. 4 to Q. 6

 Let ABC be an acute triangle with orthocenter H.D.E.F are the feet of the perpendiculars from A.B. and $\frac{G}{2}$. Given $\frac{1}{2}$ (AH) $\frac{1}{2}$ (BH) $\frac{1}{2}$ (CH) $\frac{1}{2}$ 3 and $\frac{1}{2}$ (AH) $\frac{1}{2}$ 4 to $\frac{1}{2}$ 3 and $\frac{1}{2}$ 4 (BH) $\frac{1}{2}$ 4 (CH) $\frac{1}{2}$ 7

 The ratio $\frac{1}{2} \cos \frac{A}{r}$ has the value equal to

 (a) $\frac{3}{14R}$ (b) $\frac{3}{7R}$ (c) $\frac{7}{3R}$ (d) $\frac{14}{3R}$ The product (HD) (HE) (HF) has the value equal to

- The value of R is
 - (a) 1
- (b) $3^{1/3}$

Teko Classes IIT JEE MATHS by <u>SUHAG SIR</u> Bhopal, Ph. 0 903 903 7779 www.TekoClasses.com Question. & Solution. Trigo. Page: A - 9 of A - 34

Assertion & Reason Type

In this section each que. contains STATEMENT-1 (Assertion) & STATEMENT-2(Reason). Each question has 4 choices (A), (B), (C) and (D), out of which **only one is correct.**

Bubble (A) STATEMENT-1 is true, STATEMENT-2 is True; STATEMENT-2 is a correct explanation for STATEMENT-1.

Bubble (B) STATEMENT-1 is True, STATEMENT-2 is True; STATEMENT-2 is NOT a correct explanation for STATEMENT-1.

Bubble (C) STATEMENT-1 is True, STATEMENT-2 is False.

Bubble (D) STATEMENT-1 is False, STATEMENT-2 is True.

Que. 1. Statement - 1:

(code-V1T4PAQ8)

In a triangle ABC if A is obtuse then $\tan B \tan C > 1$

because

Statement - 2:

In any triangle ABC, $\tan A = \frac{\tan B + \tan C}{\tan B \tan C - 1}$

Que. 2. Statement - 1:

(code-V1T4PAQ9)

 $\cos(10)^{c}$ and $\cos(-10)^{c}$ both are negative and have the same value.

because

Statement - 2:

 $\cos \theta = \cos(-\theta)$ and the real numbers $(10)^{c}$ and $(-10)^{c}$ both lie in the third quadrant.

Que. 3. Let α, β and γ satisfy $0 < \alpha < \beta < \gamma < 2\pi$ and $\cos(x + \alpha) + \cos(x + \beta) + \cos(x + \gamma) = 0 \ \forall x \in \mathbb{R}$

Statement - 1: $\gamma - \alpha = \frac{2\pi}{3}$.

(code-V1T6PAQ1)

eko Classes, Maths: Suhag R. Kariya (S. R. K. Sir), Bhopal Phone: 0 903 903 7779, 0 98930 58881.

because

Statement - 2: $\cos \alpha + \cos \beta + \cos \gamma = 0$ and $\sin \alpha + \sin \beta + \sin \gamma = 0$.

Que. 4. If $A + B + C = \pi$ then

(code-V1T6PAQ3)

Statement - 1: $\cos^2 A + \cos^2 B + \cos^2 C$ has its minimum value $\frac{3}{4}$.

because

Statement - 2: Maximum value of $\cos A \cos B \cos C = \frac{1}{8}$.

Que. 5. Let $f(x) = 3\sin^2 x + 4\sin x \cos x + 4\cos^2 x, x \in \mathbb{R}$.

(code-V1T8PAQ11)

Statement - 1: Greatest and least values of $f(x) \forall x \in R$ are $\frac{7 + \sqrt{17}}{2}$ and $\frac{7 - \sqrt{17}}{2}$ respectively.

because

Statement 2: $\frac{a+b-\sqrt{a^2+b^2+c^2-2ab}}{2} \le a \sin^2 x + b \sin x \cos x + c \cos^2 x \le \frac{a+b+\sqrt{a^2+b^2+c^2-2ab}}{2}$

where $a, b, c \in R$

www.TekoClasses.com Question. & Solution. Trigo. Page: A - 10 of A - 34 $\tan\frac{6\pi}{7} - \tan\frac{5\pi}{7} - \tan\frac{\pi}{7} = \tan\frac{6\pi}{7} \cdot \tan\frac{5\pi}{7} \cdot \tan\frac{\pi}{7}$

(code-V1T10PAQ7)

Statement - 2: If $\theta = \alpha + \beta$, then $\tan \theta - \tan \alpha - \tan \beta = \tan \theta \cdot \tan \alpha \cdot \tan \beta$.

Que. 7. Consider the following statements

(code-V1T12PAQ8)

In any right angled triangle ABC, $\sin^2 A + \sin^2 B + \sin^2 C = 2$ Statement - 1:

because

In any triangle ABC, $\sin^2 A + \sin^2 B + \sin^2 C = 2 - 2\cos A \cos B \cos C$ Statement - 2:

Que. 8. Statement-1:

any

triangle

 $\ell n \left(\cot \frac{A}{2} + \cot \frac{B}{2} + \cot \frac{C}{2} \right)$

 $= \ln \cot \frac{A}{2} + \ln \cot \frac{B}{2} + \ln \cot \frac{\overline{C}}{2}$

because

(code-V1T14PAQ5)

(code-V1T18PAQ11)

 $\ln\left(1+\sqrt{3}+\left(2+\sqrt{3}\right)\right) = \ln 1 + \ln \sqrt{3} + \ln\left(2+\sqrt{3}\right)$ Statement - 2:

Que. 9. Statement - 1:

because

General solution of $\frac{\tan 4x - \tan 2x}{1 + \tan 4x \tan 2x} = 1$ is $x = \frac{n\pi}{2} + \frac{\pi}{8}$, $n \in I$

General solution of $\tan \alpha = 1$ is $\alpha = n\pi + \frac{\pi}{4}$, $n \in I$. Statement - 2:

The equation $\sin(\cos x) = \cos(\sin x)$ has no real solution (code-V1T19PAQ10) **Que. 10. Statement - 1 :**

because

 $\sin x \pm \cos x$ is bounded in $\left[-\sqrt{2}, \sqrt{2}\right]$ Statement - 2:

Que. 11. Statement 1: In any triangle ABC, $\cot A + \cot B + \cot C > 0$

(code-V2T7PAQ10)

because

Statement 2: Minimum value of $\cot A + \cot B + \cot C$ in any triangle ABC is 1.

Que. 12. Let P be the point lying inside the acute triangle ABC such that angles sutended by each side at P is 120°. Equilateral triangles AFB, BDC, CEA are constructed outwardly on sides AB, BC, CA of ΔΑΒC

Statement 1: Lines AD, BE, CF are concurrent at P.

(code-V2T18PAQ8)

because

Also Available online www.MathsBySuhag.com

Statement 2: P is the radical centre of circumcircles of triangles ABF, BDE, CEA

Que. 13. Let ABC be an acute triangle whose orthocentre is at H. Altitude from A is produced to meet the circumcircle of the triangle ABC at D. (code-V2T19PAQ7)

Statement 1: The distange $HD = 4R \cos B \cos C$ where R is the circumradius of the triangle ABC.

because

Statement 2: Image of orthocentre H in any side of an acute triangle lies on its circumcircle.

Teko Classes, Maths: Suhag R. Kariya (S. R. K. Sir), Bhopal Phone: 0 903 903 7779,

Que. 1. If $2\cos\theta + 2\sqrt{2} = 3\sec\theta$ where $\theta \in (0, 2\pi)$ then which of the following can be correct?

(a)
$$\cos \theta = \frac{1}{\sqrt{2}}$$

(b)
$$\tan \theta = 1$$

(c)
$$\sin \theta = -\frac{1}{\sqrt{2}}$$

(a)
$$\cos \theta = \frac{1}{\sqrt{2}}$$
 (b) $\tan \theta = 1$ (c) $\sin \theta = -\frac{1}{\sqrt{2}}$ (d) $\cot \theta = -1$ (code-V1T2PAQ9)

Que. 2 Which of the following real numbers when simplified are neither terminating nor repeating deci-

(c)
$$\log_3 5.\log_5 6$$

(d)
$$8^{-(\log_{27} 3)}$$

Also Available online www.MathsBySuhag.com DOWNLOAD FREE STUDY PACKAGE FROM WEBSITE WWW.TEKOCLASSES.COM Que. 2. Which of the following real numbers when simplified are neither terminating nor repeating decimal?

(a) $\sin 75^{\circ} \cdot \cos 75^{\circ}$ (b) $\log_2 28$ (c) $\log_3 3 \cdot \log_3 6$ (d) $8^{-(\log_2 3)}$ (code-VIT2PAQ10)

Que. 3. Suppose ABCD (in order) is a quadrilateral inscribed in a circle. Which of the following is/are always True?

(a) $\sec B = \sec D$ (b) $\cot A + \cos C = 0$ (c) $\csc A = \csc C$ (d) $\tan B + \tan D = 0$ Que. 4. which of the following quantities are rational?

(a) $\sin\left(\frac{11\pi}{12}\right)\sin\left(\frac{5\pi}{12}\right)$ (b) $\csc\left(\frac{9\pi}{10}\right)\sec\left(\frac{4\pi}{5}\right)$ (c) $\sin^4\left(\frac{\pi}{8}\right) + \cos^4\left(\frac{\pi}{8}\right)$ (d) $\left(1 + \cos\frac{2\pi}{9}\right)\left(1 + \cos\frac{4\pi}{9}\right)\left(1 + \cos\frac{8\pi}{9}\right)$ Que. 5. In a triangle ABC, a semicircle is inscribed, whose diameter lies on the side c. If x is the length of the angle bisector through angle C then the radius of the semicircle is (code-VIT6PAQ6)

Que. 6. The possible value(s) of x satisfying the equation $\sin x - 3\sin 2x + \sin 3x = \cos x - 3\cos 2x + \cos 3x$, is/given are.

(a) $\frac{-7\pi}{8}$ (b) $\frac{\pi}{8}$ (c) $\frac{\pi}{8}$ (d) $\frac{\pi}{4}$ Que. 7. In which of the following sets the inequality $\sin^6 x + \cos^6 x > \frac{5}{8}$ holds good? (code-VIT6PAQ12)

(a)
$$\sec B = \sec D$$

(b)
$$\cot A + \cos C = 0$$

(c)
$$\cos \operatorname{ecA} = \operatorname{cos} \operatorname{ecC}$$

(d)
$$\tan B + \tan D = 0$$

(a)
$$\sin\left(\frac{11\pi}{12}\right)\sin\left(\frac{5\pi}{12}\right)$$

(b)
$$\csc\left(\frac{9\pi}{10}\right)\sec\left(\frac{4\pi}{5}\right)$$

(c)
$$\sin^4\left(\frac{\pi}{8}\right) + \cos^4\left(\frac{\pi}{8}\right)$$

$$(d) \left(1 + \cos\frac{2\pi}{9}\right) \left(1 + \cos\frac{4\pi}{9}\right) \left(1 + \cos\frac{8\pi}{9}\right)$$

(a)
$$\frac{abc}{4R^2(\sin A + \sin B)}$$

(b)
$$\frac{\Delta}{x}$$

(c)
$$x \sin \frac{C}{2}$$

(d)
$$\frac{2\sqrt{s(s-a)(s-b)(s-c)}}{s}$$

(a)
$$-\frac{7\pi}{8}$$

$$(b) -\frac{\pi}{8}$$

(c)
$$\frac{\pi}{8}$$

(d)
$$\frac{\pi}{4}$$

Que. 7. In which of the following sets the inequality $\sin^6 x + \cos^6 x > \frac{5}{8}$ holds good? (code-V1T6PAQ12)

(a)
$$\left(-\frac{\pi}{8}, \frac{\pi}{8}\right)$$

(a)
$$\left(-\frac{\pi}{8}, \frac{\pi}{8}\right)$$
 (b) $\left(\frac{3\pi}{8}, \frac{5\pi}{8}\right)$

(c)
$$\left(\frac{\pi}{4}, \frac{3\pi}{4}\right)$$

(c)
$$\left(\frac{\pi}{4}, \frac{3\pi}{4}\right)$$
 (d) $\left(\frac{7\pi}{8}, \frac{9\pi}{8}\right)$

Que. 8. The value of x satisfying the equation $\cos(\ln x) = 0$, is

(code-V1T10PAQ9)

(a)
$$e^{\pi/2}$$

(b)
$$e^{-\pi/2}$$

$$(c) e^{t}$$

(d)
$$e^{3\pi/2}$$

(a)
$$\frac{\sin(180^{\circ} + A)}{\tan(180^{\circ} + A)} \cdot \frac{\cot(90^{\circ} + A)}{\tan(90^{\circ} + A)} \cdot \frac{\cos(360^{\circ} - A)\cos ecA}{\sin(-A)}$$

(b)
$$\frac{\sin(-A)}{\tan(180^{\circ} + A)} - \frac{\tan(90^{\circ} + A)}{\cot A} + \frac{\cos A}{\sin(90^{\circ} + A)}$$

(c)
$$\frac{\sin 24^{\circ} \cos 6^{\circ} - \sin 6^{\circ} \sin 66^{\circ}}{\sin 21^{\circ} \cos 39^{\circ} - \cos 51^{\circ} \sin 69^{\circ}}$$

(d)
$$\frac{\cos(90^{\circ} + A)\sec(-A)\tan(180^{\circ} - A)}{\sec(360^{\circ} + A)\sin(180^{\circ} + A)\cot(90^{\circ} - A)}$$

Que. 10. Which of the following identities wherever diffined hold(s) good?

(code-V1T10PAQ12)

(a)
$$\cot \alpha - \tan \alpha = 2 \cot 2\alpha$$

(b)
$$\tan (45^{\circ} + \alpha) - \tan (45^{\circ} - \alpha) = 2 \cos ec 2\alpha$$

(c)
$$\tan(45^{\circ} + \alpha) + \tan(45^{\circ} - \alpha) = 2\sec 2\alpha$$
 (d) $\tan \alpha + \cot \alpha = 2\tan 2\alpha$.

(d)
$$\tan \alpha + \cot \alpha = 2 \tan 2\alpha$$
.

Que. 11. Let α, β and γ are some angles in the 1st quadrant satisfying $\tan(\alpha + \beta) = \frac{15}{9}$ and $\csc \gamma = \frac{17}{9}$ then which of the following holds good? (code-V1T14PAQ7)

(a) $\alpha + \beta + \gamma = \pi$

(b)
$$\cot \alpha . \cot \beta . \cot \gamma = \cot \alpha + \cot \beta + \cot \gamma$$

(c)
$$\tan \alpha + \tan \beta + \tan \gamma = \tan \alpha \cdot \tan \beta \cdot \tan \gamma$$

(d)
$$\tan \alpha . \tan \beta + \tan \beta . \tan \gamma + \tan \gamma . \tan \alpha = 1$$

Que. 12. Which of the following statements are always correct? (where Q denotes the set of rationals)

- (a) $\cos 2\theta \in Q$ and $\sin 2\theta \in Q$
- $\tan \theta \in Q$ (in difinde)
- (code-V1T14PAQ8)

- (b) $\tan \theta \in Q$
- $\sin 2\theta, \cos 2\theta$ and $\tan 2\theta \in Q$ (if defined)
- (c) If $\sin \theta \in Q$ and $\cos \theta \in Q$
- $\tan 3\theta \in Q$ (if defined)

- (d) if $\sin \theta \in Q$
- $\cos 3\theta \in Q$

Que. 13. Given that $\sin 3\theta = \sin 3\alpha$, then which of the following angles will be equal to $\cos \theta$?

(a)
$$\cos\left(\frac{\pi}{3} + \alpha\right)$$

(b)
$$\cos\left(\frac{\pi}{3} - \alpha\right)$$

(c)
$$\cos\left(\frac{2\pi}{3} + \alpha\right)$$

(a)
$$\cos\left(\frac{\pi}{3} + \alpha\right)$$
 (b) $\cos\left(\frac{\pi}{3} - \alpha\right)$ (c) $\cos\left(\frac{2\pi}{3} + \alpha\right)$ (d) $\cos\left(\frac{2\pi}{3} - \alpha\right)$ (code-V1T14PAQ9)

Que. 14. If the quadratic equation $(\cos ec^2\theta - 4)x^2 + (\cot \theta + \sqrt{3})x + \cos^2 \frac{3\pi}{2} = 0$ holds true for all real x then

the most general values of θ can be given by

(code-V1T15PAQ12)

(a)
$$2n\pi + \frac{11\pi}{6}$$

(b)
$$2n\pi + \frac{5\pi}{6}$$
 (c) $2n\pi \pm \frac{7\pi}{6}$ (d) $n\pi \pm \frac{11\pi}{6}$

(c)
$$2n\pi \pm \frac{72}{6}$$

(d)
$$n\pi \pm \frac{11\pi}{6}$$

Que. 15. If α and β are two different solution of $a\cos\theta + b\sin\theta = c$, then which of the following hold(s) good? (code-V1T15PAQ13)

(a)
$$\sin \alpha + \sin \beta = \frac{2bc}{a^2 + b^2}$$

(b)
$$\sin \alpha \sin \beta = \frac{c^2 - a^2}{a^2 + b^2}$$

(c)
$$\cos \alpha \cos \beta = \frac{2ac}{a^2 + b^2}$$

(d)
$$\cos \alpha \cos \beta = \frac{c^2 + a^2}{a^2 + b^2}$$

(a)
$$\frac{\pi}{12}$$

(b)
$$\frac{5\pi}{12}$$

(c)
$$\frac{7\pi}{24}$$

(d)
$$\frac{117}{36}$$

(a)
$$\pm \sin \alpha$$

(b)
$$\sin\left(\frac{\pi}{3} \pm \alpha\right)$$

(c)
$$\sin\left(\frac{2\pi}{3} + \alpha\right)$$

(d)
$$\sin\left(\frac{2\pi}{3} - \alpha\right)$$

(a)
$$2a^2 = b^2 + c^2$$

(b)
$$3b^2 + c^2 + a^2$$

(c)
$$4c^2 + a^2 + b^2$$

(d)
$$3a^2 + b^2 + c^2$$

$$\mathbf{A.} \qquad \cos^2 2x + \cos^2 x = 1$$

P.
$$x = n\pi + \frac{\pi}{4} \cup n\pi + \frac{\pi}{6}, n \in I$$

$$\mathbf{B.} \qquad \cos \mathbf{x} = \sqrt{3} \left(1 - \sin \mathbf{x} \right)$$

$$Q. \qquad x = \frac{n\pi}{3}, n \in I$$

C.
$$1 + \sqrt{3} \tan^2 x = (1 + \sqrt{3}) \tan x$$

R.
$$x = (2n-1)\frac{\pi}{6}, n \in I.$$

$$\mathbf{D.} \qquad \tan 3\mathbf{x} - \tan 2\mathbf{x} - \tan \mathbf{x} = 0$$

S.
$$x = 2n\pi + \frac{\pi}{2} \cup 2n\pi + \frac{\pi}{6}, n \in I$$
.

Teko ClassesIIT JEE MATHS by <u>SUHAG SIR</u> Bhopal, Ph. 0 903 903 7779 www.TekoClasses.com Question. & Solution. Trigo. Page: A - 14 of A - 34

- Que. 1. The expression $2\cos\frac{\pi}{17}.\cos\frac{9\pi}{17}+\cos\frac{7\pi}{17}+\cos\frac{9\pi}{17}$ simplifies to an integer P. Find the value of P. (code-V1T1PAQ1)
- Que. 2. Show that the expression $\frac{\sin(\alpha+\beta)-2\sin\alpha+\sin(\alpha-\beta)}{\cos(\alpha+\beta)-2\cos\alpha+\cos(\alpha-\beta)}$ is independent of β . (code-V1T1PAQ2)
- Que. 3. If the expression $\frac{\sin \theta . \sin 2\theta + \sin 3\theta \sin 6\theta + \sin 4\theta \sin 13\theta}{\sin \theta \cos 2\theta + \sin 3\theta \cos 6\theta + \sin 4\theta \cos 13\theta} = \tan k\theta, \text{ where } k \in \mathbb{N}. \text{ Find the value of } \frac{\sin \theta . \sin \theta \cos \theta}{\sin \theta \cos \theta} = \tan k\theta$ k. (code-V1T1PAQ4)
- Que. 4. If $y = \cos^8 \frac{x}{2} \sin^8 \frac{x}{2}$. Find the value of y when $x = \frac{\pi}{4}$ and also when $x = \frac{\pi}{6}$. (code-V1T3PAQ4)
- **Que. 5.** In a triangle ABC, given $\sin A : \sin B : \sin C = 4 : 5 : 6$ and $\cos A : \cos B : \cos C = x : y : z$. If the ordered pair (x, y) satisfies this, then compute the value of $(x^2 + y^2 + z^2)$ where $x, y, z \in N$ and are in their lowest form. (code-V1T7PBQ2)
- $A = \cos 360^{\circ} \cdot \sin^2 270^{\circ} 2\cos 180^{\circ} \cdot \tan 225^{\circ}$, $B = 3\sin 540^{\circ} \cdot \sec 720^{\circ} + 2\cos \sec 450^{\circ} \cos 3600^{\circ}$ $C = 2\sec^2 2\pi \cdot \cos 0^c + 3\sin^3 \frac{3\pi}{2} - \csc \frac{5\pi}{2} \text{ and } D = \tan \pi \cdot \cos \frac{3\pi}{2} + \sec 2\pi - \csc \frac{3\pi}{2}.$ Find the value of $A+B-C \div D$.

- Que. 7. If the value of the expression $E = \cos^4 x k^2 \cos^2 2x + \sin^4 x$, is independent of x then find the set of values of k.

 Que. 8. If $\cot \frac{\pi}{24} = \sqrt{p} + \sqrt{q} + \sqrt{r} + \sqrt{s}$ where $p, q, r, s \in \mathbb{N}$, find the value of (p+q+r+s). (code-VIT9PAQ3)

 Que. 9. Let L denotes the value of the expression, $\sin 2\theta \sin 6\theta + \cos 2\theta \cos 6\theta \sin 4\theta \cos 4\theta$, when $\theta = 27^\circ$ and M denotes the value of $\frac{\tan x \tan 2x}{\tan 2x \tan x}$ when $x = 9^\circ$.

 Que. 10. If $\cos(\alpha + \beta) = \frac{4}{5}$; $\sin(\alpha \beta) = \frac{5}{13}$ and α, β lie between 0 and $\frac{\pi}{4}$, then find the value of $\tan 2\beta$. Que. 10. If $\cos(\alpha + \beta) = \frac{4}{5}$; $\sin(\alpha \beta) = \frac{5}{13}$ and α, β lie between 0 and $\frac{\pi}{4}$, then find the value of $\tan 2\beta$. Que. 11. Find the range of values of k for which the equation $2\cos^4 x \sin^4 x + k = 0$, has at least one solutions.
- Que. 11. Find the range of values of k for which the equation $2\cos^4 x \sin^4 x + k = 0$, has at least one solution. (code-V1T11PAQ3)
- Que. 12. Prove that, $\sin^3 \theta + \sin^3 \left(\theta + \frac{2\pi}{3}\right) + \sin^3 \left(\theta + \frac{4\pi}{3}\right) = -\frac{3}{4}\sin 3\theta$.
- Que. 13. Compute the value of the sum $\sum_{r=1}^{n} \left(\frac{\tan 2^{r-1}}{\cos 2^r} \right)$ (code-V1T11PAQ6)

DOWNLOAD FREE STUDY PACKAGE FROM WEBSITF WWW.TEKOCLASSES.COM

Que. 15. Given that $x + \sin y = 2008$ and $x + 2008 \cos y = 2007$ where $0 \le y \le \pi/2$. Find the value [x + y]. (Here [x] denotes greatest interger function) (code-V2T1PDQ2)

Que. 16. The sum $\sum_{n=2}^{44} 2\sin x \cdot \sin 1 \left[1 + \sec(x-1) \cdot \sec(x+1)\right]$ can be written in the form as $\sum_{n=1}^{4} (-1)^n \frac{\phi^2(\theta_n)}{w(\theta_n)}$ where

Que. 16. The sum $\sum_{n=2} 2\sin x \sin 1[1+\sec(x-1).\sec(x+1)]$ can be written in the form as $\sum_{n=1} (-1)^n \frac{y_1 \cdot y_2}{y_1 \cdot y_2}$ where ϕ and ψ are trigonometric functions and $\theta_1, \theta_2, \theta_3, \theta_4$ are in degrees $\in [0,45]$. Find $(\theta_1+\theta_2+\theta_3+\theta_4)$. Example 1. So $(\cot V2T17PDQ1)$ Que. 17. If the total between the curves $f(x) = \cos^{-1}(\sin x)$ and $g(x) = \sin^{-1}(\cos x)$ on the interval $[-7\pi, 7\pi]$ is $(\cot V2T17PDQ3)$ Single Correct Type

Que. 1. (D) $\frac{\cos A \cos C + (-\cos C)(-\cos A)}{\cos A \sin C - (\sin C)(-\cos A)} \Rightarrow \frac{2\cos A \cos C}{2\cos A \sin C} = +\cos C$ Que. 2. (B) $3^{n_1} = 4$; $a = \log_3 4$; $\|11y\|_0 = \log_3 etc$.

Hence $abcdef = \log_3 4$; $\log_3 6$; $\log_3 6$; $\log_3 6$; $\log_3 9 = \log_3 9 = 2$ 2.

Que. 3. (D) $\cos 15^n = 2 + \sqrt{3} \equiv 3.732$; $\tan 60^n = \sqrt{3} \equiv 1.732$; $\sec 15^n = \frac{4}{\sqrt{6} + \sqrt{2}} = \sqrt{6} - \sqrt{2} = 1.035$; $\cos 15^n = \frac{4}{\sqrt{6} - \sqrt{2}} = \sqrt{6} + \sqrt{2} = 3.86$ whitch is largest

Que. 4. (C) $\sin \alpha - \sin \gamma \cos \alpha = \frac{2\sin(\frac{\alpha - \gamma}{2})\cos(\frac{\alpha + \gamma}{2})}{2\sin(\frac{\alpha - \gamma}{2})\sin(\frac{\alpha + \gamma}{2})} = \cot(\frac{\alpha + \gamma}{2}) = \cot \beta$ Que. 5. (B) $\frac{1 + \sqrt{1 + \tan^2 2A}}{\tan 2A} = \frac{1 + |\sec 2A|}{\tan 2A}$ $(2A = 220^n) = \frac{1 - \sec 2A}{\tan 2A} = -(\frac{1 - \cos 2A}{\sin 2A}) = -\tan A$. Que. 6. (C) $y = 256(\sin^2 x + \cos e^2 x) + 68\cos e^2 x$, $256((\sin x - \cos e^2 x) + 2) + 68\cos e^2 x$

$$\frac{\cos A \cos C + (-\cos C)(-\cos A)}{\cos A \sin C - (\sin C)(-\cos A)} \Rightarrow \frac{2\cos A \cos C}{2\cos A \sin C} = +\cos C$$

$$\cos 15^{\circ} = 2 + \sqrt{3} \cong 3.732;$$
 $\tan 60^{\circ} = \sqrt{3} \cong 1.732;$ $\sec 15^{\circ} = \frac{4}{\sqrt{6 + \sqrt{2}}} = \sqrt{6} - \sqrt{2} = 1.035;$

$$\cos \text{ec15}^{\circ} = \frac{4}{\sqrt{6} - \sqrt{2}} = \sqrt{6} + \sqrt{2} = 3.86$$
 which is largest

Also Available online www.MathsBvSuhag.com

$$\frac{\sin\alpha - \sin\gamma}{\cos\gamma - \cos\alpha} = \frac{2\sin\left(\frac{\alpha - \gamma}{2}\right)\cos\left(\frac{\alpha + \gamma}{2}\right)}{2\sin\left(\frac{\alpha - \gamma}{2}\right)\sin\left(\frac{\alpha + \gamma}{2}\right)} = \cot\left(\frac{\alpha + \gamma}{2}\right) = \cot\beta$$

Que. 5. (B)
$$\frac{1+\sqrt{1+\tan^2 2A}}{\tan 2A} = \frac{1+|\sec 2A|}{\tan 2A}$$

Que. 5. (B)
$$\frac{1+\sqrt{1+\tan^2 2A}}{\tan 2A} = \frac{1+|\sec 2A|}{\tan 2A}$$
 $(2A = 220^\circ) = \frac{1-\sec 2A}{\tan 2A} = -\left(\frac{1-\cos 2A}{\sin 2A}\right) = -\tan A.$

Que. 6. (C) $y = 256(\sin^2 x + \csc^2 x) + 68 \csc^2 x, 256((\sin x - \csc x)^2 + 2) + 68 \csc^2 x$

Minimum when $x = \frac{\pi}{2}$ or $-\frac{\pi}{2}$ and minimum vlue = 512 + 68 = 580

Que. 7. (a)
$$E = \frac{-1 + |\sec A|}{\tan A} = \frac{1 - \cos A}{\sin A} = \tan \frac{A}{2}$$

Que. 8. (B).

Que. 9. (A) Let R be the radius of the circumcircle of triangle ABC using sine law in triangle BPC

$$\frac{a}{\sin 120^{\circ}} = 2R_1 \qquad \qquad \text{also} \qquad \frac{a}{\sin 60^{\circ}} = 2R \quad \text{(in } \Delta ABC)$$

$$a = 2R \sin 60^{\circ} (R = 1 \text{ given}) \ a = \sqrt{3};$$
 form (1) $R_1 = \frac{2\sqrt{3}}{\sqrt{3}} \cdot \frac{1}{2} = 1.$

Que. 10. (D)
$$\Delta = \frac{1}{2}ab \implies ab = 60 \quad c = \sqrt{a^2 + b^2}$$
 also $a^2 + b^2 \ge 2ab$

$$\therefore \qquad \sqrt{a^2 + b^2} \ge \sqrt{2ab}$$

$$\therefore$$
 equality occurs when $a = b$

quality occurs when
$$a = b$$

$$C \qquad \qquad C \qquad \qquad B$$

minimum value of
$$\sqrt{a^2 + b^2} = \sqrt{2}\sqrt{ab} = \sqrt{120} = 2\sqrt{30}$$

Alternatively:
$$b = c \cos \theta$$
; $a = c \sin \theta$ $\Delta = \frac{1}{2}c^2 \sin \theta \cos \theta = \frac{c^2 \sin 2\theta}{4} = 3\theta$ $c^2 = 120 \cos ec 2\theta$

Teko Classes, Maths: Suhag R. Kariya (S. R. K. Sir), Bhopal Phone: 0 903 903 7779, 0 98930 58881.

$$c^2 \mid_{min} = 120$$
 \Rightarrow $c = 2\sqrt{30}$

Que. 11. (D) In (D) it should be
$$\frac{\sqrt{5}-1}{8}$$
.

Que 12. (A) put
$$a = 2R \sin A$$
 etc.

$$T_1 = 2R\sin(B+C)\cos(B-C) = R[\sin 2B + \sin 2C]etc.$$

$$E = R \left[\sin 2B + \sin 2C + \sin 2A + \sin 2A + \sin 2B \right] = 2R \left(\sin 2A + \sin 2B + \sin 2C \right)$$
$$= 8R \cdot \frac{a}{2R} \cdot \frac{b}{2R} \cdot \frac{c}{2R} = \frac{abc}{R^2}.$$

Que. 13. (D) where
$$n \in I$$
.

$$\sin^2 2x = 2\cos^2 x$$
 $4\sin^2 x \cos^2 x = 2\cos^2 x$ $\cos^2 x \left[1 - 2\sin^2 x\right] = 0$

$$\cos^2 x = 0$$
 or $\sin^2 x = \frac{1}{2}$ \therefore $x = n\pi \pm \frac{\pi}{2}$ or $x = n\pi \pm \frac{\pi}{4}$

Que. 14. (B)
$$\frac{b}{c} = \frac{\sqrt{3}+1}{2}; \frac{b-c}{b+c} = \frac{\sqrt{3}+1-2}{\sqrt{3}+1+2} = \frac{\sqrt{3}-1}{\left(\sqrt{3}+1\right)} \cdot \frac{1}{\sqrt{3}}$$

now using
$$\tan \frac{B-C}{2} = \frac{b-c}{b+c} \cot \frac{A}{2} = \frac{\sqrt{3}-1}{\left(\sqrt{3}+1\right)} \cdot \frac{\sqrt{3}}{\sqrt{3}} = 2 - \sqrt{3} \Rightarrow \frac{B-C}{2} = 15^{\circ}$$
 $\therefore B-C = 30^{\circ}$

Que. 16. (D)
$$\sin^2 \theta = 1 \ \left[\sin \theta \neq +1 \right] \Rightarrow \sin \theta = -1 \Rightarrow \theta = 2n\pi - \pi/2 \Rightarrow \text{ infinite roots}$$

Que. 17. (C) In a triangle
$$b+c>a \implies b+c-a>0$$
 : $a(b+c-a)>0$ |||1y $b(c+a-b)>0$

and
$$c(a+b-c)>0$$

$$a(b+c)+b(c+a)+c(a+b)>a^2+b^2+c^2$$
 $2(ab+bc+ca)>a^2+b^2+c^2$

$$\therefore \frac{a^2 + b^2 + c^2}{ab + bc + ca} < 2 \qquad \text{...........(1) also for any } a, b, c \in R \quad a^2 + b^2 + c^2 \ge ab + bc + ca$$

$$\therefore \frac{a^2 + b^2 + c^2}{ab + bc + ca} \ge 1 \qquad \dots (2) \text{ (equality holds if } a = b = c) \text{ form (1) and (2)} \qquad 1 \le \frac{\sum a^2}{\sum ab} < 2$$

Que. 18. (A) Make a quadratic in
$$\cos 2\theta$$
 to get $\cos 2\alpha + \cos 2\beta = \frac{2ac}{a^2 + b^2}$

$$\Rightarrow 2(\cos^{2}\alpha + \cos^{2}\beta) = \frac{2ac}{a^{2} + b^{2}} + 2; \qquad \cos^{2}\alpha + \cos^{2}\beta = \frac{a^{2} + ac + b^{2}}{a^{2} + b^{2}}$$

Que. 19. (A)
$$\frac{a(1-\tan^2\theta)}{1+\tan^2\theta} + \frac{2b \cdot \tan\theta}{1+\tan^2\theta} = \frac{a(1-\frac{b^2}{a^2}) + \frac{2b^2}{a}}{1+\frac{b^2}{a^2}} = \frac{a(a^2-b^2) + 2ab^2}{a^2+b^2} = \frac{a(a^2+b^2)}{a^2+b^2} = a.$$

Que. 20. (D)
$$f_4(x) - f_6(x) = \frac{1}{4} \left(\sin^4 x + \cos^2 x \right) - \frac{1}{6} \left(\sin^6 x + \cos^6 x \right) = \frac{1}{4} \left(1 - 2\sin^2 \cos^2 x \right) - \frac{1}{6} \left(1 - 3\sin^2 \cos^2 x \right)$$

$$= \frac{1}{4} \left[1 - \frac{1}{2}\sin^2 2x \right] - \frac{1}{6} \left[1 - \frac{3}{4}\sin^2 2x \right] = \frac{1}{4} - \frac{1}{6} = \frac{1}{12}.$$

Que. 21. (A)

Also Available online www.MathsBySuhag.com

Que. 22. (D) Given
$$A = 60^\circ$$
; $\tan 30^\circ = \frac{r}{5} \Rightarrow r = \frac{5}{\sqrt{3}}$ now $\tan \frac{B}{2} = \frac{r}{3} = \frac{5}{3\sqrt{3}}$ (a = ?)

$$\cos B = \frac{1 - \tan^2(B/2)}{1 + \tan^2(B/2)} = \frac{1 - (25/27)}{1 + (25/27)} = \frac{2}{521} = \frac{1}{26} = 26$$

Hence

$$\sin B = \frac{15\sqrt{3}}{26}\sin C = \sin(A+B)$$

$$A = \sin A\cos B + \cos A\sin B = \sin A\cos B + \cos B +$$

$$\frac{\sqrt{3}}{2} \cdot \frac{1}{26} + \frac{1}{2} \cdot \frac{15\sqrt{3}}{26} = \frac{1}{52} \left[16\sqrt{3} \right] = \frac{4\sqrt{3}}{13} = \sin C \Rightarrow \frac{c}{\sin C} = \frac{a}{\sin A}; \quad a = \frac{8.\sqrt{3}}{2} \cdot \frac{13}{4\sqrt{3}} = 13.$$

Que. 23. (B)

Que. 24. (A,B,D) (c)
$$\sum \sin^2 \frac{A}{2} = \frac{1}{2} [3 - (\cos A + \cos B + \cos C)] = \frac{3}{2} - \frac{1}{2} (\cos A + \cos B + \cos C)$$

but
$$\left[\cos A + \cos B + \cos C\right]_{\max} = \frac{3}{2} \cdot \sum \sin^2 \frac{A}{2} \Big]_{\min} = \frac{3}{2} - \frac{3}{4} = \frac{3}{4} \cdot \sum \sin^2 \frac{A}{2} \ge \frac{3}{4} \Rightarrow (c)$$
 si wrong.

a,b,c are correct and hold good in an equilateral triangle as their maximumum values.

Que. 25. (A,B,C) (b) RHS =
$$\frac{\sin 4\alpha + \sin 2\alpha}{\sin 2\alpha \cdot \sin \alpha 4} = \frac{2\sin 3\alpha \cdot \cos \alpha}{\sin 2\alpha \cdot \sin 4\alpha} = \frac{1}{\sin \alpha} = \cos ec \alpha \left(u \sin \alpha = 7\alpha \right) \Rightarrow (b)$$
.

- $\cos \alpha + \cos 3\alpha + \cos 5\alpha$ sum of a series with constant $d = 2\alpha$ sum $= \frac{1}{2} \Rightarrow (c)$ is wrong. (c)
- continued product $\equiv 1 \Rightarrow (d)$ is also wrong. (d)

Que. 26. (**A,B,C**) (a)
$$x = \pi/8, \Rightarrow (\tan x)^{(n(\sin x))} > 1$$
 and $(\cot x)^{(n(\sin x))} < 1 \Rightarrow \text{True}$.

- $x = \pi/6$, $\Rightarrow 4^{\ln 2} < 5^{\ln 2} \Rightarrow True$. (b)
- (c) $x = \pi/2, 2^{\ln 2} < 3^{\ln 2} \Rightarrow True.$
- (d) $x = \pi/4, 2^0 > 2^{-\ell_n 2} \Rightarrow 1 < \frac{1}{2^{\ell_n 2}}$ is not correct \Rightarrow False.

Que. 27. (B)
$$(\cos^2 A - \sin^2 B) - (\sin^2 A - \sin^2 B) = \cos^2 A - \sin^2 A = \cos 2A$$

 $(D) - \sin 2B$

Que. 28. (D)
$$(1-\sin^2 5x)-(1-\sin^2 x)+\sin 4x \sin 6x = 0 \Rightarrow \sin^2 x -\sin^2 5x +\sin 4x \sin 6x = 0$$

 $-\sin 6x \cdot \sin 4x +\sin 4x \cdot \sin 6x = 0$ which is true for all $x \in [0,\pi] \Rightarrow$ it is indentity

Que. 29. (A)
$$\frac{2\sin\left(\frac{\alpha+\beta}{2}\right)\cos\left(\frac{\alpha-\beta}{2}\right)+2\sin\left(\frac{\alpha+\beta}{2}\right)\cos\left(\frac{\alpha+\beta}{2}\right)}{2\sin\left(\frac{\alpha+\beta}{2}\right)\cos\left(\frac{\alpha-\beta}{2}\right)-2\sin\left(\frac{\alpha+\beta}{2}\right)\cos\left(\frac{\alpha+\beta}{2}\right)} = \frac{\cos\left(\frac{\alpha-\beta}{2}\right)+\cos\left(\frac{\alpha+\beta}{2}\right)}{\cos\left(\frac{\alpha-\beta}{2}\right)-\cos\left(\frac{\alpha+\beta}{2}\right)}$$

$$= \frac{2\cos\frac{\alpha}{2}\cos\frac{\beta}{2}}{2\sin\frac{\alpha}{2}\sin\frac{\beta}{2}} = \cot\frac{\alpha}{2}\cot\frac{\beta}{2}.$$

Que. 30. **C.** Given $\tan A \cdot \tan B = 2$

Let
$$y = \frac{\cos A \cos B}{\cos C} = -\frac{\cos A \cdot \cos B}{\cos (A + B)} = \frac{\cos A \cdot \cos B}{\sin A \sin B - \cos A \cos B} = \frac{1}{\tan A \tan B - 1} = \frac{1}{2 - 1} = 1$$

Teko Classes, Maths: Suhag R. Kariya (S. R. K. Sir), Bhopal Phone: 0 903 903 7779, 0 98930 58881. **Que. 31. B.** $2^{\sin \theta} > 1 \Rightarrow \sin \theta > 0 \Rightarrow \theta \in 1^{\text{st}}$ or 2^{nd} quadrant, $3^{\sin \theta} < 1 \Rightarrow \cos \theta < 0 \Rightarrow \theta \in 2^{\text{nd}}$ or 3^{rd} quadrant hence $\theta \in 2^{nd} \Rightarrow \text{possible answer is (B)}.$

Que. 32. B.
$$E = \sin A + \sin 2B + \sin 3C \Rightarrow E = \frac{3}{5} + 2 \cdot \frac{4}{5} \cdot \frac{3}{5} - 1 = \frac{15}{25} + \frac{24}{25} - 1 = \frac{39 - 25}{25} = \frac{14}{25}$$
.

 $= 5 + 2 + \tan^2 x + \cot^2 x = 7 + (\tan x - \cot x)^2 + 2 \quad \therefore \quad y_{\min} = 9.$

Que.34. D. $\cot^4 x - 2(1 + \cot^2 x) + a^2 = 0 \Rightarrow \cot^4 x - 2\cot^2 x + a^2 - 2 = 0 \Rightarrow (\cot^2 x - 1)^2 = 3 - a^2$ to have at least one solution $3 - a^2 \ge 0 \Rightarrow a^2 - 3 \le 0 \Rightarrow a \in \left[-\sqrt{3}, \sqrt{3}\right]$ integral values $-1, 0, 1 \therefore \text{ sum } = 0$.

Que.35. D. Let $\cos 2\theta = t : .8t + \frac{8}{t} = 65 \Rightarrow 8t^2 - 65t + 8 = 0 \Rightarrow 8t - 64t - t + 8 \Rightarrow 8t(t - 8) - (t - 8) = 0$ $\Rightarrow t = 8 \text{ or } t = \frac{1}{8} \text{ (}t = 8 \text{ is rejected, think !)} \quad \therefore \cos 2\theta = \frac{1}{8}; \ 2\cos^2 \theta - 1 = \frac{1}{8} \Rightarrow \cos^2 \theta = \frac{9}{16} \Rightarrow \cos \theta = \frac{3}{4}.$

Que.36. C. $2\sin x + 7\cos px = 9$ is possible only if $\sin x = 1\cos px = 1$

 $x = (4n+1)\frac{\pi}{2} \text{ and } px = 2m\pi \Rightarrow x = \frac{2m\pi}{p} \big(m, n, \in I \big) \ \therefore (4n+1)\frac{\pi}{2} = \frac{2m\pi}{p} \Rightarrow p = \frac{4m}{4n+1} \therefore \ p \in \ rational.$

Que.37. A. $\tan \theta > 1 \Rightarrow 0 < \frac{1}{\tan \theta} < 1$ $\cos \theta$

 $\Rightarrow \frac{\frac{1}{\tan \theta}}{1 - \frac{1}{\tan \theta}} = \sin \theta + \cos \theta \Rightarrow \frac{1}{\tan \theta - 1} = \sin \theta + \cos \theta \Rightarrow \frac{\cos \theta}{\sin \theta - \cos \theta} = \sin \theta + \cos \theta$

 $\Rightarrow \cos \theta = \sin^2 \theta - \cos^2 \theta = 1 - 2\cos^2 \theta \qquad \Rightarrow 2\cos^2 \theta + \cos \theta - 1 = 0 \Rightarrow (2\cos \theta - 1)(\cos \theta + 1) = 0$ $\cos \theta = \frac{1}{2} \text{ or } \cos \theta = -1 \text{ (rejected)} \Rightarrow = \frac{\pi}{3} \Rightarrow \tan \theta = \sqrt{3}.$

Feko Classes, Maths: Suhag R. Kariya (S. R. K. Sir), Bhopal Phone: 0 903 903 7779, 0 98930 5888

Que.39. A. $\frac{\cos 2x}{2} - \frac{\sqrt{3}}{2}\sin 2x = 0$ or $\cos 2x.\cos 2x.\cos \frac{\pi}{3} - \sin 2x.\sin \frac{\pi}{3} \Rightarrow \cos \left(2x + \frac{\pi}{3}\right) = 0$

 $\Rightarrow 2x + \frac{\pi}{3} = \frac{\pi}{2}; 2x = \frac{\pi}{6} \Rightarrow x = \frac{\pi}{12}.$

Que.40. B. $(\sin \theta + 2)(\sin \theta + 3)(\sin \theta + 4) = 6$ LHS ≥ 6 and RHS $= 6 \Rightarrow$ equality only can hold if $\sin \theta = -1$. $\Rightarrow \sin \theta = -1 \Rightarrow \theta = \frac{3\pi}{2}, \frac{7\pi}{2}$.: sum $= 5\pi \Rightarrow 5$.

Que.41.A. $a \sin x + c < 0 \Rightarrow \sin x < -\frac{c}{a}; -\frac{c}{a} > \sin x; -\frac{c}{a} > 1; -c > a \Rightarrow a + c < 0 \Rightarrow (A)$

Also Available online www.MathsBySuhag.com DOWNLOAD FREE STUDY PACKAGE FROM WEBSITE WWW.TEKOCLASSES.COM Que.42. A. In 2^{nd} quadrant $\sin x < \cos x$ is False (think!)

In 4^{th} quadrant $\cos x < \tan x$ is False (think!)

in 3rd quadrant, i.e. $\left(\frac{5\pi}{4}, \frac{3\pi}{2}\right)$ if $\tan x < \cot x \Rightarrow \tan^2 x < 1$ which is not correct hence A can be correct

 $\sin x < \cos x$ is true in $\left(0, \frac{\pi}{4}\right)$ and $\tan x < \cot x$ is also true

only the value of x for which $\cos x < \tan x$ is be determined

 $\cos x = \tan x$ i.e. $\cos^2 x = \sin x$ or $1 - \sin^2 x = \sin x$ $\Rightarrow \sin^2 x + \sin x - 1 > 0$

 $\Rightarrow \sin x = \frac{-1 \pm \sqrt{5}}{2}; \sin x = \frac{\sqrt{5} - 1}{2} \Rightarrow x = \sin^{-1}\left(\frac{\sqrt{5} - 1}{2}\right)$

 $\therefore \cos x < \tan x \text{ in } \left(\sin^{-1} \frac{\sqrt{5} - 1}{2}, \frac{\pi}{4} \right) \text{ and } \cos x > \tan x \text{ in } \left(0, \sin^{-1} \frac{\sqrt{5} - 1}{4} \right)$

 $\cos\theta\left(\sum\cos x\right) + \sin\theta\left(\sum\sin x\right) = 0$ Que.43. D.

Que.44. D. $\cos \theta = \frac{1+1-\frac{1}{2}}{2} = \frac{3}{4}$: $\cos 32\theta = 2\cos^2 \theta - 1 = 2 \cdot \frac{9}{16} - 1 = \frac{2}{16} = \frac{1}{8}$

agin $x^2 = 1 + 1 - 2\cos 2\theta = 2(1 - \cos 2\theta) = 2\left(1 - \frac{1}{8}\right) = \frac{7 \cdot 2}{8} = \frac{7}{4} \Rightarrow x = \frac{\sqrt{7}}{2}$

Que.45. A. $sum = sin^2 \frac{\pi}{18} + sin^2 \frac{2\pi}{18} + \dots + sin^2 \frac{8\pi}{18} + 1$ now $sin^2 \frac{\pi}{18} + sin^2 \frac{8\pi}{18} = 1$ etc. $\Rightarrow sum = 5$.

Que.46. A. Using $\Delta = \frac{1}{2} bc \sin A$: $\frac{1}{2} \cdot 2(\sqrt{3} - 1) \sin A = \frac{\sqrt{3} - 1}{2}$: $\sin A = \frac{1}{2} \Rightarrow A = 30^{\circ}$

 $\Rightarrow \tan \frac{B-C}{2} = \frac{b-c}{b+c} \cot \frac{A}{2} = \frac{3-\sqrt{3}}{\sqrt{3}+1} \cdot \frac{\sqrt{3}+1}{\sqrt{3}-1} = \sqrt{3} \implies B-C = 120^{\circ} \text{ also } B+C = 150^{\circ} \Rightarrow C = 15^{\circ}.$

 $\sin^2 x + a \cos x + a^2 > 1 + \cos x$ put $x = 0 \Rightarrow a + a^2 > 2 \Rightarrow a^2 + a = 2 > 0 \Rightarrow (a+2)(a-1) > 0$

largest negative integral value of 'a' = -3.

Teko Classes, Maths: Suhag R. Kariya (S. R. K. Sir), Bhopal Phone: 0 903 903 7779, 0 98930 58881

Teko Classes IIT JEE MATHS by <u>SUHAG SIR</u> Bhopal, Ph. 0 903 903 7779 www.TekoClasses.com Question. & Solution. Trigo. Page: A - 21 of A - 34

Que. 48. A.
$$\sin\left(\frac{a}{2}\right) \cdot \left(\frac{1}{2} + \sum_{k=1}^{n} \cos(ka)\right) \Rightarrow \sin\left(\frac{a}{2}\right) \cdot \left(\frac{1}{2} + \cos a + \cos 2a + \cos 3a + \dots + \cos na\right)$$

$$\frac{1}{2}\sin\frac{a}{2} + \frac{1}{2}\left[\left(\sin\frac{3a}{2} - \sin\frac{a}{2}\right) + \left(\sin\frac{5a}{2} - \sin\frac{3a}{2}\right) + \dots + \left(\sin\left(n + \frac{1}{2}\right)a - \sin\left(n - \frac{1}{2}\right)a\right)\right]$$

$$\frac{1}{2}\sin\frac{a}{2} + \frac{1}{2}\left[\sin\left(n + \frac{1}{2}\right)a - \sin\frac{a}{2}\right] = \frac{1}{2}\sin\left(n + \frac{1}{2}\right)a.$$

Que. 49. D. Since ABC are acute angle

$$\therefore A + B > \pi/2 \Rightarrow A > \frac{\pi}{2} - B \Rightarrow \sin A - \cos B > 0 \Rightarrow \cos B - \sin A < 0 \qquad \dots (1)$$

Again,
$$B > \frac{\pi}{2} - A \Rightarrow \sin B > \cos A \Rightarrow \sin B - \cos A > 0$$
(2)

x-coordinate is – ve and y-coordinate is +ve

line in 2nd quadrant only.

Que. 50. B.
$$\sin^4 x - \cos^2 \sin x + 2\sin^2 x + \sin x = 0$$
 $\Rightarrow \sin x \left[\sin^3 x - \cos^2 x + 2\sin x + 1 \right] = 0$

$$\Rightarrow \sin x \left[\sin^3 x - 1 + \sin^2 x + 2\sin x + 1 \right] = 0 \quad \Rightarrow \quad \sin x \left[\sin^3 x + \sin^2 x + 2\sin x \right] = 0$$

$$\Rightarrow \sin^2 x = 0$$
 or $\sin^2 x + \sin x + 2 = 0$ \Rightarrow not possible for real x. $\sin x = 0$

$$\Rightarrow$$
 x = 0, π , 2π , 3π , \Rightarrow 4 solution.

Oue. 51. D.

Que. 52. C.
$$a^2 + b^2 = 4R^2 \left[\sin^2 \left(45^\circ - \theta \right) + \sin^2 \left(135^\circ - \theta \right) \right] = 4R^2 \left[\sin^2 \left(45^\circ - \theta \right) + \cos^2 \left(45^\circ - \theta \right) \right] = 4R^2.$$

Que. 53. D.
$$R = 8r = 8\left(4R\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2}\right)$$
 $\therefore 2\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2} = \frac{1}{16}$

$$\Rightarrow \left(\cos\frac{A-B}{2} - \cos\frac{A+B}{2}\right)\sin\frac{C}{2} = \frac{1}{16} \Rightarrow \sin\frac{C}{2} \cdot \left(\frac{1}{2} - \sin\frac{C}{2}\right) = \frac{1}{16};$$

$$\sin^2 \frac{C}{2} - \frac{1}{2}\sin \frac{C}{2} + \frac{1}{16} = 0 \qquad \Rightarrow \qquad \left(\frac{1}{4} - \sin \frac{C}{2}\right)^2 = 0 \qquad \Rightarrow \qquad \sin \frac{C}{2} = \frac{1}{4}$$

$$\cos C = 1 - 2\sin^2\frac{C}{2} = 1 - \frac{1}{8} = \frac{7}{8}.$$

Que. 54. D. For non trivial solution
$$-\cos\theta$$
 1 $-\cos\theta = 0$ using $C_1 \rightarrow C_1 \rightarrow C_3$ $\cos 2\theta - \cos \theta$ 1

$$\begin{vmatrix} 2\sin^2\theta & -\cos\theta & \cos 2\theta \\ 0 & 1 & -\cos\theta \\ -2\sin^2\theta & -\cos\theta & 1 \end{vmatrix} = 0 \Rightarrow 2\sin^2\theta \begin{vmatrix} 1 & -\cos\theta & \cos 2\theta \\ 0 & 1 & -\cos\theta \\ -1 & -\cos\theta & 1 \end{vmatrix} = 0 \Rightarrow \sin^2\theta = 0$$

or
$$1[1-\cos^2\theta]-1[\cos^2\theta-\cos 2\theta] \Rightarrow \sin^2\theta-[\cos^2\theta-(\cos^2\theta-\sin^2\theta] \Rightarrow \sin^2\theta-\sin^2\theta=0$$

Que. 55. A.
$$\tan\left(\frac{\pi}{4} + \alpha\right)$$
 when $\alpha = \tan^{-1}\left(\frac{\frac{1}{4} + \frac{1}{5}}{1 - \frac{1}{20}}\right)$; $\alpha = \tan^{-1}\left(\frac{9}{19}\right) = \frac{1 + \frac{9}{19}}{1 - \frac{9}{19}} = \frac{28}{10} = \frac{14}{5} = \frac{a}{b} \implies 14 + 5 = 19$.

Que. 56. D.
$$R = \frac{abc}{4\Delta}$$
; $\Delta = \frac{1}{2}.6.6\sin\theta = 18\sin\theta \implies a = b = 6 \implies \sin\frac{\theta}{2} = \frac{c}{12} \implies c = 12\sin\frac{\theta}{2}$.

Alternatively:

$$OD^{2} = 6^{2} + x^{2} \Rightarrow \frac{x}{6} = \tan(\theta/2) \Rightarrow OD^{2} = 6^{2} \cdot \sec^{2}(\theta/2) \Rightarrow 4r^{2} = 36 \sec^{2}(\theta/2) \Rightarrow r = 3 \sec(\theta/2).$$

Que. 57. D.
$$\Delta^2 = s(s-a)(s-b)(s-c) \implies r^2s = (s-a)(s-b)(s-c)$$
 (: $r = \Delta/s$)

$$= s^3 - s^2 (a + b + c) + (ab + bc + ca) s - abc$$
 : $r^2 s = s^3 - 2s^3 + (ab + bc + ca) s - abc$

using
$$\frac{abc}{4R} = \Delta$$
 \Rightarrow $abc = 4Rrs$ \Rightarrow $r^2 = (ab + bc + ca) - s^2 - 4Rr$ \therefore $\sum ab = r^2 + s^2 + 4Rr$.

Now
$$\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B} = 1 \implies A = 20^{\circ} \text{ and } B = 25^{\circ} \implies 1 - \tan A \tan B = \tan A + \tan B$$

$$\Rightarrow$$
 tan A + tan B + tan A tan B = 1 \therefore E = 2. \Rightarrow A.

Que. 59. B. Expression reduces to 2 corosec 8x

Que. 60. D.

$$\frac{x}{\sqrt{1+x^2}} = \frac{x+1}{\sqrt{(x+1)^2+1}} \Rightarrow x^2 \left[(x+1)^2 + 1 \right] = (x+1)^2 \left[(x^2+1) \right] \Rightarrow x^2 (x+1)^2 + x^2 = x^2 (x+1)^2 + (x+1)^2$$

Que. 61. D. (A) $\cos(\tan^{-1}(\tan(4-\pi))) = \cos(4-\pi) = \cos(\pi-4) = -\cos 4 > 0$

(B)
$$\sin(\cot^{-1}(\cot(4-\pi))) = \sin(4-\pi) = -\sin 4 > 0$$
 (as $\sin 4 < 0$)

(C)
$$\tan(\cos^{-1}(\cos(2\pi-5))) = \tan(2\pi-5) = -\tan 5 > 0 \text{ (as } \tan 5 < 0)$$

(D)
$$\cot\left(\sin^{-1}\left(\sin\left(\pi-4\right)\right)\right) = \cot\left(\pi-4\right) = -\cot 4 < 0 \implies (\mathbf{D}) \text{ si correct.}$$

Que. 62. A.

$$\frac{\pi}{2} - \cos^{-1} \cos \left(\frac{2(x^2 + 5 \mid x \mid + 3) - 2}{\underbrace{x^2 + 5 \mid x \mid + 3}_{0 < \sqrt{2}}} \right) = \cot \cot^{-1} \left(\frac{2}{9 \mid x +} - 2 \right) + \frac{\pi}{2} \Rightarrow \frac{\pi}{2} - 2 + \frac{2}{x^2 + 5 \mid x \mid + 3} = \frac{2}{9 \mid x \mid} - 2 + \frac{\pi}{2}$$

$$\Rightarrow |x|^2 - 4|x| + 3 = 0 \Rightarrow |x| = 1,3 \Rightarrow x = \pm 1, \pm 3$$

Que. 63. A. Solution are $\sqrt{3}$, $-\frac{1}{\sqrt{3}}$, $2-\sqrt{3}$, $-(2+\sqrt{3}) \Rightarrow$ Product = 1.

Que. 64. A.

3. A. Solution are
$$\sqrt{3}$$
, $-\frac{1}{\sqrt{3}}$, $2-\sqrt{3}$, $-(2+\sqrt{3}) \Rightarrow \text{Product} = 1$.

4. A.

$$\tan 37.5^{\circ} = \tan\left(\frac{75}{2}\right)^{\circ} = \frac{1-\cos 75^{\circ}}{\sin 75^{\circ}} = \frac{1-\sqrt{3}-1}{2\sqrt{2}} = \frac{2\sqrt{2}-\sqrt{3}+1}{\sqrt{3}+1} = \frac{(2\sqrt{2}-\sqrt{3}+1)(\sqrt{3}-1)}{2} = 2\sqrt{6}-4-2\sqrt{2} + 2\sqrt{2} = 2\sqrt{2} = \sqrt{6}-4+2\sqrt{3}-2\sqrt{2} =$$

$$\frac{2(\sqrt{6}-3+\sqrt{3})-(2\sqrt{2}-\sqrt{3}+1)}{2} = \frac{2\sqrt{6}-4+2\sqrt{3}-2\sqrt{2}}{2} = \sqrt{6}-\sqrt{4}+\sqrt{3}-\sqrt{2}$$

$$\therefore$$
 a = 6; b = 4, c = 3, d = 2 $\Rightarrow \frac{\text{ad}}{\text{bc}} = \frac{12}{12} = 1.$

Que. 65. C.
$$y = (3)^{3\cos x} + (3)^{4\sin x}$$
 now using $AM \ge GM$ $\frac{3^{3\cos x} + 3^{4\sin x}}{2} \ge (3^{3\cos x} . 3^{4\sin x})^{1/2}$

$$\Rightarrow 3^{3\cos x} + 3^{4\sin x} \ge 2\sqrt{3^{3\cos x + 4\sin x}} \ge 2\sqrt{3^{-5}} \quad \text{but} \quad -5 \le 3\cos x + 4\sin x \le 5 \quad \therefore \quad 3^{3\cos x} + 3^{4\sin x} \ge 2\sqrt{3^{-5}}$$

$$= \frac{2}{3^{5/2}} = \frac{2}{3 \cdot 3 \cdot \sqrt{3}} = \frac{2}{\sqrt{243}} = \sqrt{\frac{4}{243}} \Rightarrow \text{ a + b} = 247.$$

$$= \frac{2}{3^{5/2}} = \frac{2}{3 \cdot 3 \cdot \sqrt{3}} = \frac{2}{\sqrt{243}} = \sqrt{\frac{4}{243}} \implies a + b = 247.$$

Domain of f is [-1, 1]; $f(x) = \sin x + \cos x + \tan x + \sin^{-1} x + \cos^{-1} x + \tan^{-1} x$

$$f'(x) = \cos x - \sin x + \underbrace{\sec^2 x}_{>1} + 0 + \underbrace{\frac{1}{1+x^2}}_{[1/2,1]}$$

Hence f'(x) > 0 \Rightarrow f is increasing \Rightarrow range is [f(-1), f(1)]

$$\therefore f(x)|_{\min} = f(-1) = -\sin 1 + \cos 1 - \tan 1 - \frac{\pi}{2} + \pi - \frac{\pi}{4} = \frac{\pi}{4} + \cos 1 - \sin 1 - \tan 1$$

$$\Rightarrow \frac{M+m}{2} = \frac{\pi}{2} + \cos 1 \Rightarrow (A)$$

 $S = \cos\theta + \cos 2\theta + \dots + \cos n\theta$

$$S = \frac{\sin\frac{n\theta}{2}}{\sin\frac{\theta}{2}}\cos(n+1)\frac{\theta}{2}$$
 $\Rightarrow \text{now } (n+1)\frac{\theta}{2} = \left(\frac{2010}{2}\right)\frac{\pi}{6} = (335)\frac{\pi}{2}$

Hence $\cos(n+1)\frac{\theta}{2} = 0$

Que. 68. A.
$$= (\sqrt{2} + 1)^{2009} - (\sqrt{2} - 1)^{2009}$$

$$\Rightarrow 2 \left[{}^{2009}C_{1} \left(\sqrt{2} \right)^{2008} + {}^{2009}C_{3} \left(\sqrt{2} \right)^{2006} + {}^{2009}C_{5} \left(\sqrt{2} \right)^{2004} + \dots + {}^{2009}C_{2009} \left(\sqrt{2} \right)^{0} \right]$$

= which is an even integer (A)

Comprehesion Type

(i)
$$\tan \frac{A}{2} = \frac{\Delta}{s(s-a)} = \frac{r}{s-a} \left(r = \frac{\Delta}{s} \right) \therefore \cot \frac{A}{2} = \frac{s-a}{r}$$

in any triangle,
$$\sum \cot \frac{A}{2} = \prod \cot \frac{A}{2} = \frac{s-a+s-b+s-c}{r} = \frac{s}{r} = \frac{s^2}{\Delta} = \frac{4s^2}{4\Delta} = \frac{\left(a+b+c\right)^2}{abc}.R\left(\Delta \frac{abc}{4R}\right).$$

Now consider
$$\sin\left(\frac{\overline{A} + \overline{B}}{2} + \frac{\overline{C}}{2}\right) = 1 \Rightarrow \sin\left(\frac{A}{2} + \frac{B}{2}\right) \cos\left(\frac{C}{2} + \cos\left(\frac{A}{2} + \frac{B}{2}\right)\right) \sin\left(\frac{C}{2}\right)$$

$$\left(\sin\frac{A}{2}\cos\frac{B}{2}\cos\frac{C}{2} + \sin\frac{B}{2}\cos\frac{C}{2}\cos\frac{C}{2}\cos\frac{C}{2}\cos\frac{A}{2} + \cos\frac{A}{2}\cos\frac{B}{2}\cos\frac{C}{2}\right) - \left(\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2}\right) = 1$$

$$\therefore \cos \frac{A}{2} \cos \frac{B}{2} \sin \frac{C}{2} + \cos \frac{B}{2} \cos \frac{C}{2} \sin \frac{A}{2} + \cos \frac{C}{2} \cos \frac{A}{2} \sin \frac{B}{2} = 1 + \prod \sin \frac{A}{2}$$

$$\therefore \sum \cot \frac{A}{2} \cot \frac{B}{2} = \frac{1 + \prod \sin \frac{A}{2}}{\prod \sin \frac{A}{2}} \quad \left(\text{using } r = 4R \prod \sin \frac{A}{2} \right) = \frac{1 + \frac{r}{4R}}{\frac{r}{4R}} = \frac{4R + r}{r}.$$

(iii) We have
$$\sum \cot \frac{A}{2} = \prod \cot \frac{A}{2} = \frac{s}{r}$$
 and $\sum \cot \frac{A}{2} \cot \frac{B}{2} = \frac{4R + r}{r}$ hence an equation whose roots

are not
$$\cot \frac{A}{2}$$
, $\cot \frac{B}{2}$ and $\cot \frac{C}{2}$ is $x^3 - \left(\sum \cot \frac{A}{2}\right)x^2 + \left(\sum \cot \frac{A}{2}\cot \frac{B}{2}\right)x - \prod \cot \frac{A}{2} = 0$

$$f(x) = x^3 - \frac{s}{r}x^2 + \left(\frac{4R+r}{r}\right)x - \frac{s}{r} = 0 \text{ as A or B } C \in \left\{\frac{\pi}{2}\right\}.$$

$$\therefore x = 1 \text{ must a root} \left(as \cot \frac{A}{2} \text{ or } \cot \frac{B}{2} \text{ or } \cot \frac{C}{2} = 1 \right) \therefore f(1) = 0 \Rightarrow 1 - \frac{s}{R} + \frac{4R + r}{r} - \frac{s}{r} = 0$$

$$\Rightarrow$$
 r-2s+4R+r=0 \Rightarrow 2R+r=s.

5. B 6. C.

(AH)(BH)(CH) = 3 i.e.
$$(2R\cos A)(2R\cos B)(2R\cos C) = 3 \Rightarrow \prod \cos A = \frac{3}{8R^3}$$
(1)

$$(HD)(HE)(HF) = (2R\cos B\cos C)(2R\cos C\cos A)(2R\cos A\cos B) = 8R^{3}(\cos^{2}A\cos^{2}B\cos^{2}C) \dots (2)$$

From (1) and (2)
$$\Pi(HD) = 8R^3 \cdot \frac{9}{64R^6} = \frac{9}{8R^3}$$
 also $(AH)^2 + (BH)^2 + (CH)^2 = 7$ \therefore (1) \div (3)

$$\frac{\prod \cos A}{\sum \cos^2 A} = \frac{3}{8R^3} \cdot \frac{4R^2}{7} = \frac{3}{14R}$$
 Now we know that, in a triangle ABC $\cos^2 A + \cos^2 B + \cos^2 C$

$$=1-2\cos A\cos B\cos C \qquad \Rightarrow \frac{7}{4R^2}=1-2\cdot\frac{3}{8R^3} \Rightarrow \frac{7}{4R^2}=1-\frac{3}{4R^3}$$

$$\therefore 4R^3 - 7R - 3 = 0 \implies (R+1)(2R+1)(2R-3) = 0 \qquad \therefore R = \frac{3}{2}.$$

Assertion & Reason Type

Que. 1. (**D**)
$$A = \pi - (B + C)$$
 $\tan A = -\tan(B + C) = \frac{\tan B + \tan C}{\tan B \tan C - 1} \implies S - 2$ is True

hence if A is acute then tan B tan C > 1 if A is obtuse then than B tan C < \Rightarrow S-1 is False \Rightarrow answer is (D)

Que. 2. (C)

Que. 3. (C)
$$f(x) = ax^2 + bx + c$$
 given $f(0) + f(1) = 2 \Rightarrow f(x) > 0 \forall x \in R \Rightarrow S - 1$ is true.

Let
$$f(x) = x^2 - x + 1 \implies a + b = 0 \implies S - 2$$
 is False

Que. 4. (A)
$$\cos^2 A + \cos^2 B + \cos^2 C = 1 - 2\cos A \cos B \cos C$$

$$\therefore \sum \cos^2 A |_{\min} = 1 - 2 \cdot \frac{1}{8} = 1 - \frac{1}{4} = \frac{3}{4}.$$

#2 Paragraph for Q. 4 to Q. 6

4. A. 5. B 6. C.

$$(AH)(BH)(CH) = 3 \text{ i.e. } (2R\cos A)(2R\cos C\cos A)(2R\cos C) = 3 \Rightarrow \prod \cos A = \frac{3}{8R^3} \dots (1)$$

$$(HD)(HE)(HF) = (2R\cos B\cos C)(2R\cos C\cos A)(2R\cos A\cos B) = 8R^3(\cos^2 A\cos^2 B\cos^2 C) \dots (2)$$

$$From (1) \text{ and } (2) \prod (HD) = 8R^3 \cdot \frac{9}{64R^6} = \frac{9}{9R^3} \text{ also } (AH)^2 + (BH)^2 + (CH)^2 = 7 \qquad \therefore (1) \div (3)$$

$$\prod \frac{\cos A}{\cos^2 A} = \frac{3}{8R^3} \cdot \frac{4R^2}{7} = \frac{3}{14R} \text{ Now we know that, in a triangle } \Delta BC \cos^2 A + \cos^2 B + \cos^2 C$$

$$= 1 - 2\cos A\cos B\cos C \qquad \Rightarrow \frac{7}{4R^2} = 1 - 2 \cdot \frac{3}{8R^3} \Rightarrow \frac{7}{4R^2} = 1 - \frac{3}{4R^3}$$

$$\therefore 4R^3 - 7R - 3 = 0 \Rightarrow (R+1)(2R+1)(2R-3) = 0 \qquad \therefore R = \frac{3}{2}.$$

$$\frac{Assertion & Reason Type}{\tan B \tan C - 1} \Rightarrow S - 2 \text{ is True}$$

$$\text{hence if } A \text{ is a cute then } \tan B \text{ tan } C > 1 \text{ if } A \text{ is obtuse then } \tan B \text{ tan } C < 1$$

$$\Rightarrow S - 1 \text{ is } \text{ False } \Rightarrow \text{ answer is } (D)$$

$$\text{Que. 2. } (C)$$

$$\text{Que. 3. } (C) \quad f(x) = ax^2 + bx + cgiven f(0) + f(1) = 2 \Rightarrow f(x) > 0 \text{ for } x = 3 \text{ for } x = 3$$

Que. 9. D. Givne
$$\tan 2x = 1$$
 : $2x = n\pi + \frac{\pi}{4}$ (note that $\tan 4x$ is not defined)

Hence given equation has no solution Statement - 1 is false and Statement - 2 is true.

If it is acute triangle then statement -1 is abviously true

Let A be obtuse say $A = 150^{\circ}$ $B+C=30^{\circ}$ both angles $< 30^{\circ}$ and if $C=30^{\circ}$ Now $\cot A$ and $\cot (B+C)$ will be of equal magnithe but opposite sign, As $\cot \theta$ is decreasing hence, $\cos B + \cos A$ alone is +ve $\therefore \cos A + \cot B + \cot C > 0$.

Que. 12. B
$$\angle BPD = \angle BCD = 60^{\circ}$$

(∴ chord BD subtends equal angle in same segment)

Que. 13. A. ABHN and BDN are congruent

 $\therefore HN = ND = 2R \cos B \cos C \Rightarrow HD = 4R \cos B \cos C$

Teko Classes, Maths: Suhag R. Kariya (S. R. K. Sir), Bhopal Phone: 0 903 903 7779, 0 98930 58881.

More than One May Correct Type

Que. 1. (**A,B,C,D**)

$$2\cos\theta + 2\sqrt{2} = 3\sec\theta$$

$$\therefore 2\cos^2\theta + 2\sqrt{2}\cos\theta - 3 = 0$$

$$\cos \theta = \frac{-2\sqrt{2} \pm \sqrt{32}}{4} = \frac{-2\sqrt{2} \pm 4\sqrt{2}}{4}$$

$$\therefore \quad \cos \theta = \frac{1}{\sqrt{2}} \quad \text{or} \quad \cos \theta = -\frac{3}{\sqrt{2}} \quad \text{(rejected)}$$

$$\therefore \qquad \theta = \frac{\pi}{4} \quad \text{or} \qquad -\frac{\pi}{4}$$

$$\Rightarrow \sin \theta = -\frac{1}{\sqrt{2}}; \cot \theta = -1; \qquad \tan \theta = 1 \qquad \text{and} \qquad \cos \theta = -\frac{1}{\sqrt{2}}$$

 $(A) = \frac{1}{2}\sin 150^{\circ} = \frac{1}{4} \implies \text{rational}$

- (B) $2 + \log_2 7 \implies \text{irrational}$
- (C) $\log_3 6 = 1 + \log_3 2$ \Rightarrow irrational
- (D) $8^{-1/3} = 2^{-1} = \frac{1}{2} \implies \text{irrational}$

Que. 3. (B,C,D)

Opposite angles of a cyclic quadrilateral are supplementary

Que. 4. (**A,B,C,D**) (A) $\sin\left(\frac{11\pi}{12}\right)\sin\left(\frac{5\pi}{12}\right) = \sin\left(\frac{\pi}{12}\right)\cos\left(\frac{\pi}{12}\right) = \frac{1}{2}\sin\left(\frac{\pi}{6}\right) = \frac{1}{4} \in Q$

(B).
$$\csc\left(\frac{9\pi}{19}\right)\sec\left(\frac{4\pi}{5}\right) = -\csc\left(\frac{\pi}{10}\right)\sec\left(\frac{\pi}{5}\right) = \frac{1}{\sin 18^{\circ}\cos 36^{\circ}} = -\frac{16}{\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)} = -4 \in Q$$

Teko Classes, Maths: Suhag R. Kariya (S. R. K. Sir), Bhopal Phone: 0 903 903 7779, 0 98930 58881.

(C).
$$\sin^4\left(\frac{\pi}{8}\right) + \cos^4\left(\frac{\pi}{8}\right) = 1 - 2\sin^2\left(\frac{\pi}{8}\right)\cos^2\left(\frac{\pi}{8}\right) = 1 - \frac{1}{2}\sin^2\left(\frac{\pi}{4}\right) = 1 - \frac{1}{4} = \frac{3}{4} \in Q$$

(D).
$$2\cos^2\frac{\pi}{9}.2\cos^2\frac{2\pi}{9}.2\cos^2\frac{4\pi}{9} = 8(\cos 20^\circ.\cos 40^\circ.\cos 80^\circ) = \frac{1}{8} \in Q$$

Que. 5. (A,C) $\frac{1}{2}$ ra $+\frac{1}{2}$ rb $=\frac{1}{2}$ ab sin C \Rightarrow r(a+b) $=2\Delta \Rightarrow$ r $=\frac{2\Delta}{a+b}$ (1)

$$\therefore r = \frac{2abc}{4R(2R\sin A + 2R\sin B)} = \frac{abc}{4R^2(\sin A + \sin B)} \Rightarrow (A) \text{ also } x = \frac{2ab}{a+b}\cos\frac{C}{2}$$

form (1)
$$r = \frac{2 \cdot \frac{1}{2} ab \sin C}{a+b} = \frac{2ab \sin \frac{C}{2} \cos \frac{C}{2}}{a+b} = \frac{2ab \cos \frac{C}{2}}{a+b} \cdot \sin \frac{C}{2} = x \sin \frac{C}{2}$$

Que. 6. (A,C) $\sin x - 3\sin 2x + \sin 3x = \cos x - 3\cos 2x + \cos 3x$ or $2\sin 2x \cos x - 3\sin 2x = 2\cos x - 3\cos 2x$

$$\sin 2x [(2\cos x) - 3] = \cos 2x [2\cos x - 3] \Rightarrow (\sin 2x - \cos 2x)(2\cos x - 3) = 0 \text{ but } 2\cos x - 3 \neq 0$$

as $\cos x \le 1$ hence, $\sin 2x - \cos 2x = 0 \Rightarrow \tan 2x = 1 \Rightarrow 2x = n\pi + \pi/4$ or $x = \frac{n\pi}{2} + \frac{\pi}{8} \Rightarrow a, b, c$

 $(\sin^2 x + \cos^2 x)^3 - 3\sin^2 x \cos^2 x (\sin^2 + \cos^2 x) > \frac{5}{6}$

=
$$1 - 3\sin^2 x \cos^2 x > \frac{5}{8} \Rightarrow 1 - \frac{5}{8} > 3\sin^2 x \cos^2 x$$

$$\Rightarrow \frac{3}{8} > 3\sin^2 x \cos^2 x \Rightarrow 1 - 2\sin^2 2x > 0 \Rightarrow \cos 4x > 0 \Rightarrow 4x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \Rightarrow 4x \in \left(2\pi r - \frac{\pi}{2}, 2\pi r + \frac{\pi}{2}\right)$$

$$x \in \left(\frac{n\pi}{2} - \frac{\pi}{8}, \frac{n\pi}{2} + \frac{\pi}{8}\right) n \in I$$
 now verify

Que. 8. (A,B,D)

$$\Rightarrow \frac{3}{8} > 3\sin^2 x \cos^2 x \Rightarrow 1 - 2\sin^2 2x > 0 \Rightarrow \cos 4x > 0 \Rightarrow 4x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \Rightarrow 4x \in \left[2\pi r - \frac{\pi}{2}, 2\pi r + \frac{\pi}{2}\right]$$

$$x \in \left(\frac{n\pi}{2} - \frac{\pi}{8}, \frac{n\pi}{2} + \frac{\pi}{8}\right) \text{n} \in \text{I} \quad \text{now verify}.$$

$$\text{Que. 8. (A,B,D)}$$

$$\text{Que. 9. (B,C,D)} \quad \text{(A) 1 (B) 3' (C)} \quad \frac{\sin 24^{\circ} \cos 60^{\circ} - \cos 24^{\circ} \sin 60^{\circ}}{\sin 21^{\circ} \cos 30^{\circ} - \sin 30^{\circ} \cos 21^{\circ}} = \frac{\sin(18^{\circ})}{\sin(-18^{\circ})} = -1 \quad \text{(D) } -1$$

$$\text{Que. 10. (A,C)} \quad \text{(A)} \quad \frac{\cos^{\circ} \alpha - \sin \alpha}{\sin \alpha \cos \alpha} = 2 \cot 2\alpha$$

$$\text{Que. 11. B,D.} \quad \tan(\alpha + \beta) = \frac{15}{8} \text{ and } \tan \gamma = \frac{8}{15} \therefore \alpha + \beta + \gamma = \frac{\pi}{2} \Rightarrow \text{(B) and (D)}$$

$$\text{Que. 12. A,B,C.} \quad \text{(A).} \quad \tan\alpha = \frac{1 - \cos 2\theta}{\sin 2\theta} \Rightarrow \text{(A) is correct.}$$

$$\text{(B).} \quad \sin 2\theta = \frac{2 \tan \theta}{1 + \tan^{2} \theta} : \cos 2\theta = \frac{1 - \tan^{2} \theta}{1 + \tan^{2} \theta} : \tan 2\theta = \frac{2 \tan \theta}{1 - \tan^{2} \theta} \Rightarrow \text{(B) is correct.}$$

$$\text{(C).} \quad \tan 3\theta = \frac{\sin \theta}{\cos 3\theta} \Rightarrow \text{(C) is correct.}$$

$$\text{(D).} \quad \sin \theta = \frac{1}{3} \text{ which is rational but } \cos 3\theta = \cos \theta (4\cos^{2} \theta - 3) \text{ which is irrational } \Rightarrow \text{(D) is correct.}$$

$$\text{Que. 13. A,B,C,D.} \quad 3\theta = n\pi + (-1)^{\circ} (3\alpha) \qquad \therefore 3\theta = 3\alpha; \quad 3\theta = \pi - 3\alpha; \quad 3\theta = -\pi - 3\alpha \text{ or } 3\theta = 2\pi + 3\alpha; \quad 3\theta = -2\pi +$$

Que. 10. (A,C) (A)
$$\frac{\cos^2 \alpha - \sin \alpha}{\sin \alpha \cos \alpha} = 2 \cot 2\alpha$$

Que. 11. B,D.
$$\tan(\alpha + \beta) = \frac{15}{8} \text{ and } \tan \gamma = \frac{8}{15} : \alpha + \beta + \gamma = \frac{\pi}{2} \implies \text{ (B) and (D)}$$

Que. 12. A,B,C. (A).
$$\tan \alpha = \frac{1-\cos 2\theta}{\sin 2\theta} \Rightarrow$$
 (A) is correct.

(B).
$$\sin 2\theta = \frac{2\tan\theta}{1+\tan^2\theta}; \cos 2\theta = \frac{1-\tan^2\theta}{1+\tan^2\theta}; \tan 2\theta = \frac{2\tan\theta}{1-\tan^2\theta} \Rightarrow \text{ (B) is correct.}$$

(C).
$$\tan 3\theta = \frac{\sin \theta}{\cos 3\theta} \Rightarrow$$
 (C) is correct.

(**D**).
$$\sin \theta = \frac{1}{3}$$
 which is rational but $\cos 3\theta = \cos \theta (4\cos^2 \theta - 3)$ which is irrational \Rightarrow (D) is correct.

Que. 13. A,B,C,D.
$$3\theta = n\pi + (-1)^n (3\alpha)$$

$$\therefore 3\theta = 3\alpha; \quad 3\theta = \pi - 3\alpha; \quad 3\theta = -\pi - 3\alpha \text{ or } 3\theta = 2\pi + 3\alpha$$

$$3\theta = -2\pi + 3\alpha$$

Hence
$$\theta = \alpha$$
; $\theta = \frac{\pi}{3} - \alpha$; $\theta = -\left(\frac{\pi}{3} + \alpha\right)$; $\theta = \left(\frac{2\pi}{3} + \alpha\right)$; $\theta = -\frac{2\pi}{3} + 3\alpha$

$$\Rightarrow \cos\theta = \cos\left(\frac{\pi}{3} \pm \alpha\right) \text{ or } \cos\theta = \cos\left(\frac{2\pi}{3} \pm \alpha\right) \Rightarrow (A), (B), (C) \text{ and } (D) \text{ all are correct.}$$

Que. 14. A,B. Given quadratic equation is an identity $\therefore \csc^2 \theta = 4$ and $\cot \theta = -\sqrt{3} \Rightarrow \csc \theta = 2$

or
$$-2$$
 and $\tan \theta = -\frac{1}{\sqrt{3}} \implies \theta = \frac{5\pi}{6}$ or $\frac{11\pi}{6}$

Also Available online www.MathsBySuhag.com Que. 15. A,B,C.

Making quadrtic in sine from $a\cos\theta + b\sin\theta + c$, we get

$$(a^2 + b^2)\sin^2\theta - 2bc\sin^2\theta - 2bc\sin^2\theta - a^2 = 0 < \frac{\alpha}{\beta}$$
....(1)

Teko Classes IIT JEE MATHS by <u>SUHAG SIR</u> Bhopal, Ph. 0 903 903 7779 www.TekoClasses.com Question. & Solution. Trigo. Page: A - 29 of A - 34

$$\Rightarrow \sin \alpha + \sin \beta = \frac{2bc}{a^2 + b^2} \Rightarrow (A) \text{ is correct } \Rightarrow \sin \alpha + \sin \beta = \frac{c^2 - a^2}{a^2 + b^2} \Rightarrow (B) \text{ is correct}$$

Making quadratic equation in cos, we get (changing a and b)

$$(a^2 + b^2)\cos^2\theta - 2a\cos\theta + c^2 - b^2 = \frac{\alpha}{\beta}$$

$$\Rightarrow \cos\alpha + \cos\beta = \frac{2bc}{a^2 + b^2} \Rightarrow (C) \text{ is correct } \Rightarrow \cos\alpha + \cos\beta = \frac{c^2 - b^2}{a^2 + b^2} \Rightarrow (D) \text{ is correct}$$

Que. 16. B,D.
$$\sum \cos 3A = 1 \Rightarrow \sin \frac{3A}{2} \cdot \sin \frac{3B}{2} = 0$$
 .: $A = \frac{2\pi}{3}$ or $B = \frac{2\pi}{3}$ or $C = \frac{2\pi}{3} \Rightarrow (B)$

alos
$$r = (s-a) \tan \frac{A}{2}$$
 or $(s-b) \tan \frac{B}{2}$ or $(s-c) \tan \frac{C}{2}$
 $r = \sqrt{3}(s-a)$ or $\sqrt{3}(s-b)$ or $\sqrt{3}(s-c) \Rightarrow (D$

$$\Rightarrow \cos\alpha + \cos\beta = \frac{2bc}{a^2 + b^2} \Rightarrow (C) \text{ is correct } \Rightarrow \cos\alpha + \cos\beta = \frac{c^2 - b^2}{a^2 + b^2} \Rightarrow (D) \text{ is correct}$$

$$\text{Que. 16. B,D.} \qquad \sum \cos 3A = 1 \Rightarrow \sin \frac{3A}{2} \cdot \sin \frac{3B}{2} \cdot \sin \frac{3C}{2} \neq 0 \text{ is } A = \frac{2\pi}{3} \text{ or } C = \frac{2\pi}{3} \Rightarrow (B)$$

$$\text{alos } r = (s - a) \tan \frac{A}{2} \text{ or } (s - b) \tan \frac{B}{2} \text{ or } (s - c) \tan \frac{C}{2}$$

$$r = \sqrt{3}(s - a) \text{ or } \sqrt{3}(s - b) \text{ or } \sqrt{3}(s - c) \Rightarrow (D)$$

$$\text{Que. 17. A,D.} \frac{\sqrt{3} - 1}{2\sqrt{2} \sin x} + \frac{\sqrt{3} + 1}{2\sqrt{2} \cos x} = 2 \Rightarrow \sin \frac{\pi}{12} \cos x + \cos \frac{\pi}{12} \sin x = \sin 2x \Rightarrow \sin 2x = \sin \left(x + \frac{\pi}{12}\right)$$

$$\therefore 2x = x + \frac{\pi}{12} \text{ or } 2x = \pi - x - \frac{\pi}{12} \Rightarrow x = \frac{\pi}{12} \text{ or } 3x = \frac{11\pi}{12} \Rightarrow x = \frac{\pi}{12} \text{ or } \frac{11\pi}{36} \Rightarrow A, C.$$

$$\text{Que. 18. A. Square and adding } 9 + 16 + 24\sin(A + B) = 37 \Rightarrow 24\sin(A + B) = 12 \Rightarrow \sin(A + B) = \frac{1}{2} \frac{4B}{65} = \frac{1}{2} \frac{11B}{65} = \frac{1}{2} \frac{11B}{65}$$

$$\therefore 2x = x + \frac{\pi}{12} \text{ or } 2x = \pi - x - \frac{\pi}{12} \implies x = \frac{\pi}{12} \text{ or } 3x = \frac{11\pi}{12} \qquad \therefore x = \frac{\pi}{12} \text{ or } \frac{11\pi}{36} \implies A, C.$$

Que. 18. A. Square and adding
$$9+16+24\sin(A+B)=37 \implies 24\sin(A+B)=12 \implies \sin(A+B)=\frac{1}{2}$$

$$\Rightarrow$$
 sin C = $\frac{1}{2}$; C = 30° Or 150° if C = 150° then even of B = 0 and A = 30° the quantity

$$3\sin A + 4\cos B \implies 3.\frac{1}{2} + 4 = 5\frac{1}{2} < 6 \text{ hence } C = 150^{\circ} \text{ is not possible} \implies \angle C = 30^{\circ} \text{ only}$$

Que. 19. A,B,C,D.
$$\cos 3\theta = \cos 3\alpha$$
 put $n = 0,1 \Rightarrow 3\theta = 2n\pi \pm 3\alpha$

$$\therefore 3\theta = 3\alpha \text{ or } -3\alpha \text{ or } 2\pi + 3\alpha \text{ or } 2\pi - 3\alpha$$

$$\theta = \alpha$$
 or $-\alpha$ or $\frac{2\pi}{3} + \alpha$ or $\frac{2\pi}{3} - \alpha \Rightarrow (A), (C), (D)$ are correct

if
$$n = -1 \implies 3\theta = -2\pi \pm 3\alpha \implies \theta = -\frac{2\pi}{3} \pm \alpha$$

$$\sin\theta = \sin\left(-\frac{2\pi}{3} \pm \alpha\right) = -\sin\left(\frac{2\pi}{3} \pm \alpha\right) = -\sin\left(\pi - \frac{\pi}{3} \pm \alpha\right) = -\sin\left(\pi - \left(\frac{\pi}{3} \pm \alpha\right)\right) = -\sin\left(\frac{\pi}{3} \pm \alpha\right)$$

hence (B) is not correct.

use power of point B w.r.t. the circle passing through AC₁GB₁ Que. 20. B, C, D

i.e.
$$BC_1 \times BA = BG \times BB_1 \Rightarrow \frac{c}{2} \times c = \frac{2}{3}BB_1 \times BB_1 \Rightarrow \frac{c^2}{3} \times \frac{2}{3}(m_b)^2 \Rightarrow \frac{c^2}{3} = \frac{2}{3}\left(\frac{2c^2 + 2a^2 - b^2}{4}\right)$$

Teko Classes IIT JEE MATHS by <u>SUHAG SIR</u> Bhopal, Ph. 0 903 903 7779 www.TekoClasses.com Question. & Solution. Trigo. Page: A - 30 of A - 34

$$\therefore \quad x - \frac{1}{3} = 2\pi \pi + \frac{1}{6} \text{ of } 2\pi \pi - \frac{1}{6} \Rightarrow x = 2\pi \pi + \frac{1}{6} \Rightarrow (3)$$

C.
$$\sqrt{3} \tan^2 x - (\sqrt{3} + 1) \tan x + 1 = 0 \Rightarrow \sqrt{3} \tan x (\tan x - 1) - (\tan x - 1) = 0 \Rightarrow (\tan x - 1) (\sqrt{3} \tan x - 1) = 0$$

$$\therefore \quad \tan x - 1 \qquad \Rightarrow \quad x = n\pi + \frac{\pi}{4}$$
or
$$\tan x = \frac{1}{\sqrt{3}} \quad \Rightarrow \quad x = n\pi + \frac{\pi}{6}$$

D.
$$\tan 3x - \tan 2x - \tan x = 0$$
 or $\tan x \cdot \tan 2x \cdot \tan 3x = 0 \implies x = n\pi$ or $\frac{n\pi}{2}$ (rejected) or $\frac{n\pi}{3}$

$$\Rightarrow \qquad \text{general solution } \frac{n\pi}{3} \text{ are } n\pi \text{ is contained in } \frac{n\pi}{3} \qquad \Rightarrow \qquad (Q)$$

Que. 1.
$$\frac{\pi}{17} = \theta$$
; $17\theta = \pi \implies 2\cos\theta \cdot \cos\theta\theta + \cos\theta\theta + \cos\theta\theta \implies \cos(100)\theta + \cos \theta\theta + \cos \theta\theta = 0$

Sum of cosines of supplymentary angles is zero.

Que. 2 tan lpha

$$\frac{2\sin\alpha\cos\beta - 2\sin\alpha}{2\cos\alpha\cos\beta - 2\cos\alpha} = \frac{2\sin\alpha(\cos\beta - 1)}{2\cos\alpha(\cos\beta - 1)} = \tan\alpha \text{ Hence proved.}$$

$$\therefore \frac{\cos\theta - \cos 3\theta + \cos 3\theta - \cos 9\theta + \cos 9\theta - \cos 17\theta}{\sin 3\theta - \sin \theta + \sin 9\theta - \sin 3\theta + \sin 17\theta - \sin 9\theta}$$

$$= \frac{\cos \theta - \cos 17\theta}{\sin 17\theta - -\sin \theta} = \frac{2\sin 9\theta \sin 4\theta}{2\sin 4\theta \cos 9\theta} = \tan 9\theta = \tan k\theta \implies k = 9.$$

Que. 4.
$$\frac{3\sqrt{2}}{8}$$
; $\frac{7\sqrt{3}}{16}$

Que. 4.
$$\frac{3\sqrt{2}}{8}$$
; $\frac{7\sqrt{3}}{16}$
 $y = \left(\cos\frac{x}{2}\right)^8 - \left(\sin\frac{x}{2}\right)^8 = \left(\cos^4\frac{x}{2} - \sin^4\frac{x}{2}\right) \left(\cos^4\frac{x}{2} + \sin^4\frac{x}{2}\right) = \cos x \left(1 - 2\sin^2\frac{x}{2}\cos^2\frac{x}{2}\right)$

$$= \cos x \left(1 - \frac{1}{2}\sin^2 x\right)$$
(i) $y\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}}\left(1 - \frac{1}{2} \cdot \frac{1}{2}\right) = \frac{1}{\sqrt{2}} \cdot \frac{3}{4} = \frac{3}{4\sqrt{2}} = \frac{3\sqrt{2}}{8}$.
(ii) $y\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2}\left(1 - \frac{1}{2} \cdot \frac{1}{4}\right) = \frac{7\sqrt{3}}{16}$
Que. 5. (229) $\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c} \Rightarrow a = 4k, b = 5k, c = 6k \therefore \cos A = \frac{5^2 + 6^2 - 4^2}{2.5.6} = \frac{3}{4}$; $\frac{\cos B}{2.5.6} = \frac{9}{16}$; $\cos C = \frac{4^2 + 5^2 - 6^2}{2.4.5} = \frac{1}{8}$ hence $\frac{\cos A}{3/4} = \frac{\cos B}{9/16} = \frac{\cos C}{1/8}$ $\frac{\cos C}{2.6}$ deividing by $16\frac{\cos A}{12} = \frac{\cos B}{9} = \frac{\cos C}{2.4.5}$ $\therefore x = 12, y = 9$ and $z = 2$.

Que. 6. $A = 3; B = 1; C = -2; D = 2 \Rightarrow 3 + 1 - (-2) \div 2 = 5$.

Que. 7. $E = \left(\cos^2 x + \sin^2 x\right)^2 - 2\sin^2 x \cos^2 x - k^2 \left(\cos^2 x - \sin^2 x\right)^2 \frac{dC}{2}$

(i)
$$y\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}}\left(1 - \frac{1}{2} \cdot \frac{1}{2}\right) = \frac{1}{\sqrt{2}} \cdot \frac{3}{4} = \frac{3}{4\sqrt{2}} = \frac{3\sqrt{2}}{8}$$

(ii)
$$y\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2}\left(1 - \frac{1}{2}; \frac{1}{4}\right) = \frac{7\sqrt{3}}{16}$$

Que. 5. (229)
$$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c} \Rightarrow a = 4k, b = 5k, c = 6k : \cos A = \frac{5^2 + 6^2 - 4^2}{2.5.6} = \frac{3}{4};$$

$$\cos B \frac{4^2 + 6^2 - 5^2}{2.5.6} = \frac{9}{16}; \cos C = \frac{4^2 + 5^2 - 6^2}{2.4.5} = \frac{1}{8} \text{ hence } \frac{\cos A}{3/4} = \frac{\cos B}{9/16} = \frac{\cos C}{1/8}$$

deividing by
$$16 \frac{\cos A}{12} = \frac{\cos B}{9} = \frac{\cos C}{2}$$
 \therefore x = 12, y = 9 and z = 2.

Que. 6. A = 3; B = 1; C = -2; D =
$$2 \Rightarrow 3 + 1 - (-2) \div 2 = 5$$
.

$$E = (\cos^2 x + \sin^2 x)^2 - 2\sin^2 x \cos^2 x - k^2 (\cos^2 x - \sin^2 x)^2$$

$$=1-2-\sin^2 x \cos^2 -k^2 \Big[\Big(\cos^2 x + \sin^2 x\Big) - 4\sin^2 x \cos^2 x \Big] = \Big(1-k^2\Big) - 2\sin^2 x \cos^2 x \Big(1-2k^2\Big) \text{ for this to}$$

is
$$\frac{1}{2}$$
.

Also Available online www.MathsBySuhag.com

Que. 7.
$$E = (\cos^{2}x + \sin^{2}x)^{2} - 2\sin^{2}x \cos^{2}x - k^{2}(\cos^{2}x - \sin^{2}x)^{2} \frac{4}{2}$$

$$= 1 - 2 - \sin^{2}x \cos^{2} - k^{2}[(\cos^{2}x + \sin^{2}x) - 4\sin^{2}x \cos^{2}x] = (1 - k^{2}) - 2\sin^{2}x \cos^{2}x (1 - 2k^{2}) \text{ for this to general properties of the solution of } x, 1 - 2k^{2} = 0 \Rightarrow k = \frac{1}{\sqrt{2}} \text{ or } -\frac{1}{\sqrt{2}} \text{ Note : The value of expression for this value of } k \Rightarrow 0$$

$$\lim_{N \to \infty} \frac{1}{2} \cdot \lim_{N \to \infty} \frac$$

$$= \frac{4(\sqrt{6} + \sqrt{2}) + (8 + 4\sqrt{3})}{4} = \sqrt{6} + \sqrt{2} + 2 + \sqrt{3} = \sqrt{2} + \sqrt{3} + \sqrt{4} + \sqrt{6} \quad \therefore \quad p + q + r + s = 15.$$

Que. 9.
$$L = \frac{-2\cos 4\theta \sin 2\theta + 2\sin 4\theta \sin 2\theta}{\sin 4\theta - \cos 4\theta} = \frac{2\sin 2\theta (\sin 4\theta - \cos 4\theta)}{\sin 4\theta - \cos 4\theta} = 2\sin 2\theta$$

Teko Classes IIT JEE MATHS by <u>SUHAG SIR</u> Bhopal, Ph. 0 903 903 7779 www.TekoClasses.com Question. & Solution. Trigo. Page: A - 32 of A - 34

If
$$\theta = 27^{\circ}$$
, $L = 2\sin 54^{\circ} = 2\cos 36^{\circ} \Rightarrow L = \frac{\sqrt{5} + 1}{2}$

$$M = \frac{\tan x \tan 2x}{\tan 2x - \tan x} = \frac{\tan x \cdot \frac{2 \tan x}{1 - \tan^2 x}}{\frac{2 \tan x}{1 - \tan^2 x} - \tan x} = \frac{2 \tan x}{2 - (1 - \tan^2 x)} = \frac{2 \tan x}{1 + \tan^2 x} = \sin 2x$$

when
$$x = 9^{\circ}$$
, $M = \sin 18^{\circ} \Rightarrow M = \frac{\sqrt{5} - 1}{4}$.

$$N = \frac{1-\cos 4\alpha}{\sec^2 2\alpha - 1} + \frac{1+\cos 4\alpha}{\cos ec^2 2\alpha - 1} = \frac{2\sin^2 2\alpha.\cos^2 2\alpha}{\left(1-\cos^2 2\alpha\right)} + \frac{2\cos^2 2\alpha.\sin^2 2\alpha}{\left(1-\sin^2 2\alpha\right)} = 2\left(\cos^2 2\alpha + \sin^2 2\alpha\right) \Rightarrow N = 2.$$

$$\therefore LMN = \left(\frac{\sqrt{5}+1}{2}\right)\left(\frac{\sqrt{5}-1}{4}\right)(2) = 1.$$

Que. 10.
$$\cos(\alpha+\beta) = \frac{4}{5} \Rightarrow \tan(\alpha+\beta) = \frac{3}{4} \Rightarrow \sin(\alpha-\beta) = \frac{5}{13} \Rightarrow \tan(\alpha-\beta) = \frac{5}{12}$$
 now $2\beta = (\alpha+\beta) - (\alpha-\beta)$

$$\tan 2\beta = \frac{\tan (\alpha + \beta) - \tan (\alpha - \beta)}{1 + \tan (\alpha + \beta) \cdot \tan (\alpha - \beta)} = \frac{\left(\frac{3}{4} - \frac{5}{12}\right)}{1 + \frac{3}{4} \cdot \frac{5}{12}} = \frac{16}{63}.$$

Que. 11. $2(1-\sin^2 x)^2 - \sin^4 x + k = 0$ put $\sin^2 x = t$, $t \in [0,1] \Rightarrow 2(1-t)^2 - t^2 + k = 0 \Rightarrow t^2 - 4t + k + 2 = 0$ since sum of the roots is $4 \Rightarrow$ one root in (0,1) and other greater then 1 as shown

 $f(0) \ge 0$ and $f(1) \le 0 \Rightarrow k+2 \le 0$ and $k-1 \ge 0 \Rightarrow k \in [-2,1]$.

Alternatively: $2\cos^4 x - \sin^4 x + k = 0 \Rightarrow \cos^4 x + (\cos^4 x - \sin^4 x) + k = 0 \Rightarrow \cos^4 x + \cos 2x + k = 0$

when
$$x = 9^{\circ}$$
, $M = \sin 18^{\circ} \Rightarrow M = \frac{\sqrt{5} - 1}{4}$.

$$= \frac{1 - \cos 4\alpha}{\sec^{2} 2\alpha - 1} + \frac{1 + \cos 4\alpha}{\cos e^{2} 2\alpha - 1} = \frac{2 \sin^{2} 2\alpha \cos^{2} 2\alpha}{(1 - \cos^{2} 2\alpha)} + \frac{2 \cos^{2} 2\alpha \sin^{2} 2\alpha}{(1 - \sin^{2} 2\alpha)} = 2(\cos^{2} 2\alpha + \sin^{2} 2\alpha) \Rightarrow N = 2.$$

$$\therefore LMN = \left(\frac{\sqrt{5} + 1}{2}\right) \left(\frac{\sqrt{5} - 1}{4}\right) (2) = 1.$$

10. $\cos(\alpha + \beta) = \frac{4}{5} \Rightarrow \tan(\alpha + \beta) = \frac{3}{4} \Rightarrow \sin(\alpha - \beta) = \frac{5}{13} \Rightarrow \tan(\alpha - \beta) = \frac{5}{12} \text{ now } 2\beta = (\alpha + \beta) - (\alpha - \beta)$

$$\tan 2\beta = \frac{\tan(\alpha + \beta) - \tan(\alpha - \beta)}{1 + \tan(\alpha + \beta) \cdot \tan(\alpha - \beta)} = \frac{\left(\frac{3}{4} - \frac{5}{12}\right)}{1 + \frac{3}{4} \cdot \frac{5}{12}} = \frac{16}{63}.$$

11. $2(1 - \sin^{2} x)^{2} - \sin^{4} x + k = 0$ put $\sin^{2} x = t$, $t \in [0, 1] \Rightarrow 2(1 - t)^{2} - t^{2} + k = 0 \Rightarrow t^{2} - 4t + k + 2 = 0$

since sum of the roots is $4 \Rightarrow$ one root in $(0, 1)$ and other greater then 1 as shown

12.
$$\cos(\alpha + \beta) = \frac{1}{5} \cos(\alpha + \beta) =$$

$$\Rightarrow (t+3)^2 = 8 - 4k \Rightarrow (t+3)^2_{\text{max.}} = 16 \Rightarrow (t+3)^2_{\text{min.}} = 4 \therefore 4 \le 8 - 4k \le 16 \Rightarrow -4 \le -4k \le 18 \Rightarrow 1 \ge k \ge -2$$
Alternatively: After step (A)
$$\cos 2x = \frac{-6 \pm \sqrt{36 - 16k - 4}}{2} = \frac{-6 \pm \sqrt{32 - 16k}}{2}$$

$$\cos 2x = -3 + 2\sqrt{2-k}$$
 or $-3 - 2\sqrt{2-k}$ (rejected, think!)

$$\Rightarrow -1 \le -3 + 2\sqrt{2 - k} \le 1 \Rightarrow 2 \le 2\sqrt{2 - k} \le 4 \Rightarrow 1 \le \sqrt{2 - k} \le 2 \Rightarrow 1 \le (2 - k) \le 4 \Rightarrow -1 \le -k \le 2 \Rightarrow 1 \ge k \ge -2$$

Que. 12. Let
$$a = \sin \theta$$
; $b = \sin \left(\theta + \frac{2\pi}{3}\right)$; $c = \sin \left(\theta + \frac{4\pi}{3}\right)$ Hence, $a + b + c = \sin \theta + \sin \left(\theta + \frac{2\pi}{3}\right) + \sin \left(\theta + \frac{4\pi}{3}\right)$

Teko Classes IIT JEE MATHS by <u>SUHAG SIR</u> Bhopal, Ph. 0 903 903 7779 www.TekoClasses.com Question. & Solution. Trigo. Page: A - 33 of A - 34

$$= \sin \theta + \sin \left(\frac{\pi}{3} - \theta\right) - \sin \left(\frac{\pi}{3} + \theta\right) \text{ use : } \left[\sin \left(\pi + \frac{2\pi}{3}\right) = \sin \left(\pi - \left(\theta + \frac{2\pi}{3}\right)\right)\right] = \sin \left(\frac{\pi}{3} - \theta\right)\right] \text{ (using C-D)}$$

$$= \sin \theta - 2\cos \frac{\pi}{3}\sin \theta = \sin \theta - \sin \theta = 0 \text{ since } a + b + c = 0 \text{ hence } a^3 + b^3 + c^3 = abc$$

$$\therefore \sin^3\theta + \sin^3\left(\theta + \frac{2\pi}{3}\right) + \sin^3\left(\theta + \frac{4\pi}{3}\right) = -3\sin\theta\sin\left(\frac{\pi}{3} - \theta\right)\sin\left(\frac{\pi}{3} + \theta\right) = -3\sin\theta\left(\sin^2\frac{\pi}{3} - \sin^2\theta\right)$$

$$=-\frac{3}{4}(3\sin\theta - 4\sin^3\theta) = -\frac{3}{4}\sin 3\theta$$
. H.P.

Que. 13.
$$T_r = \frac{\sin 2^{r-1}}{\cos 2^{r-1}.\cos 2^r} = \frac{\sin \left(2^r - 2^{r-1}\right)}{\cos 2^{r-1}.\cos 2^r} = \frac{\sin 2^r \cos^{r-1} - \cos 2^r \sin 2^{r-1}}{\cos 2^{r-1}.\cos 2^r} = \tan 2^r - \tan 2^{r-1}$$

$$\therefore \quad Sum = \sum_{r=1}^{n} \left(\tan 2^{r} - \tan 2^{r-1} \right) = \tan 2 - \tan 1 + \tan 2^{2} - \tan 2 + \tan 2^{3} - \tan 2^{2} + \dots + \tan 2^{n} - \tan 2^{n-1} + \tan 2^{n} +$$

$$Sum = \tan 2^{n} - \tan (1)$$

Que. 14. (0250.00) Dividing by
$$\cos^4 \alpha$$
 $15 \tan^4 \alpha + 10 = 6 \sec^4 \alpha \Rightarrow 15 \tan^4 \alpha + 10 = 6(1 + \tan^2 \alpha)^2$

$$\Rightarrow 9 \tan^4 \alpha - 12 \tan^2 \alpha + 4 = 0 \Rightarrow \left(3 \tan^2 \alpha - 2\right)^2 = 0 \Rightarrow \tan^2 \alpha = \frac{2}{3}$$

Now
$$8\csc^{6}\alpha + 27\sec^{6}\alpha \Rightarrow 8\left(1+\cot^{2}\alpha\right)^{3} + 27\left(1+\tan^{2}\alpha\right)^{3} \Rightarrow 8\left(1+\frac{3}{2}\right)^{3} + 27\left(1+\frac{2}{3}\right) \Rightarrow 125+125 = 250.$$

$$x + \sin y = 2008$$

Que. 15. (2008). Subtract
$$\frac{x + 2008\cos y = 2007}{\sin y - 2008\cos y = 1} \Rightarrow \sin y = 1 + 2008\cos y$$
 This is possible only if $\cos y = 0$

$$\therefore y = \frac{\pi}{2} \text{ and } x = 2007 \Rightarrow x + y = 2007 + \frac{\pi}{2} \Rightarrow [x + y] = 2008.$$

Que. 16. (92)
$$2\sin x \sin 1 = \cos(x-1) - \cos(x+1)$$

$$\therefore S_{x=2}^{44} \Big[\cos(x-1) - \cos(x+1) \Big] \Big[1 + \sec(x-1) \cdot \sec(x+1) \Big]$$

$$= \sum_{x=2}^{44} \left(\frac{\cos(x-1)}{\cos(x-1)} + \frac{1}{\cos(x+1)} - \frac{\cos(x-1)}{\cos(x-1)} - \frac{1}{\cos(x-1)} \right) = \sum_{x=2}^{44} \left(\frac{1-\cos^2(x+1)}{\cos(x+1)} - \frac{1-\cos^2(x-1)}{\cos(x-1)} \right)$$

$$+\frac{\sin^2 44}{\cos 44} - \frac{\sin^2 42}{\cos 42} + \frac{\sin^2 45}{\cos 45} - \frac{\sin^2 43}{\cos 43} \implies S = \frac{\sin^2 44}{\cos 44} + \frac{\sin^2 45}{\cos 45} - \frac{\sin^2 1}{\cos 1} - \frac{\sin^2 2}{\cos 2}$$

$$S = -\frac{\sin^2 1}{\cos 1} + \frac{\sin^2 44}{\cos 44} - \frac{\sin^2 2}{\cos 2} + \frac{\sin^2 45}{\cos 45} \text{ which resembles 4 term of } \sum_{n=1}^{4} (-1)^n \frac{\phi^2(\theta_n)}{\psi(\theta_n)}$$

$$\therefore \quad \theta_1 + \theta_2 + \theta_3 + \theta_4 = 1 + 2 + 44 + 45 = 92.$$

Teko Classes *IIT JEE MATHS by SUHAG SIR Bhopal, Ph. 0 903 903 7779 www.TekoClasses.com Question. & Solution. Trigo. Page: A - 34 of A - 34*

Que. 17. (3388)
$$f(x) = \cos^{-1}(\sin x) = \frac{\pi}{2} - \sin^{-1}(\sin x)$$
....(1)

$$g(x) = \sin^{-1}(\cos x) = \frac{\pi}{2} - \cos^{-1}(\cos x)$$
(2) both f(x) and g(x) are periodic with period

 2π . The graphs of $\sin^{-1}(\sin x)$ and $\cos^{-1}(\cos x)$ as follows

and

Teko Classes, Maths: Suhag R. Kariya (S. R. K. Sir), Bhopal Phone: 0 903 903 7779, 0 98930 58881.

hence
$$f(x) = \begin{bmatrix} \frac{\pi}{2} - x & \text{if } x \in [0, \pi/2] \\ x - \frac{\pi}{2} & \text{if } \frac{\pi}{2} < x \le \frac{3\pi}{2} \\ \frac{5\pi}{2} - x & \text{if } \frac{3\pi}{2} < x \le 2\pi \end{bmatrix}$$
 $g(x) \begin{bmatrix} \frac{\pi}{2} - x \\ x - \frac{3\pi}{2} \end{bmatrix}$

Now

Area enclosed between the two curves is the area of the rectangle ABCD in one pepriod.

Now now AD =
$$\sqrt{\frac{\pi^2}{4} + \frac{\pi^2}{4}} = \sqrt{\frac{\pi^2}{2}} = \frac{\pi}{\sqrt{2}}$$
 $\Rightarrow \frac{\pi}{\sqrt{2}}.\sqrt{2}[=\pi^2]$

and $DC = \sqrt{2}\pi$: $A = 7.\pi^2 = 7\pi^2$ $\left(in \left[-7\pi, 7\pi \right] \right)$ $49A = 49.7\pi^2 = 7.22.22 = 7.484 = 3388.$