Segurança Operacional

Análise de Tráfego

Gustavo Vilar

- Mini CV
 - PPF / DPF Papiloscopista Policial Federal
 - Pós-Graduado em Docência do Ensino Superior – UFRJ
 - Graduado em Ciência da Computação e Processamento de Dados – ASPER/PB
 - Aprovações: PRF 2002, <u>PF 2004</u>, MPU 2010, ABIN 2010, PCF-PF 2013

Gustavo Vilar

· Contatos:

http://www.itnerante.com.br/profile/GustavoPintoVilar http://www.provasdeti.com.br/index.php/porprofessor/gustavo-vilar.html

gustavopintovilar@gmail.com p3r1t0f3d3r4l@yahoo.com.br

Escopo

- •Abordar os assuntos mais recorrentes e com fortes tendências para concursos atuais
- Familiarizar o concursando com os tipos de questões mais frequentes.
- •Abordar as metodologias de resolução de questões das principais bancas

Agradecimentos Especiais

Paulo Marcelo
paulo1410@gmail.com

Mini - CV

- Atualmente Analista de Redes Sênior da Infraero
- Pós-Graduado em Administração de Empresas UNIFOR
- Graduado em Tecnologia da Informação IFCE
- Concursos que assumiu: Dataprev 2009, Infraero 2011

Agradecimentos Especiais

- Administrador de Redes do Poder Legislativo da cidade de Guarulhos –SP.
- Formado em 2010 no curso de Ciência da Computação pela Universidade de Sorocaba – UNISO.
 - Principais aprovações:
 - PF 2013 Perito Criminal Federal / SERPRO 2013 Analista de Suporte / ANP 2012 Analista Administrativo / CNJ 2012 Analista Judiciário / CMG 2012 Administrador de Redes / PCDF 2012 Perito Criminal (Excedente) / DATAPREV 2008 Analista de TI (Banco de Dados).

Bibliografia / Ferramentas

RFCs - IETF

CcespeUnB

Análise de Tráfego - Carga Horária

- 22 vídeo aulas (07h30m00s / 00h20m30s)
 - Conceitos e fundamentos
 - A transmissão da Informação
- O quadro Ethernet
- Composição dos cabeçalhos dos protocolos
 - IPv4
 - IPv6
 - ICMP
 - IGMP
 - SCTP
 - SCT
- Ferramentas de captura e análise de tráfego
- Desmontagem de 10 questões de concursos públicos

Segurança Operacional

Análise de Tráfego

Motivações para compreender a análise de tráfego

- Encontrar problemas numa rede de computadores
- Identificar hardware defeituoso
- Detectar intrusões e assinaturas de atividades maliciosas
- Análise de comportamento e desempenho da rede
- Análise de aplicações que geram ou recebem tráfego
- Análise da infraestrutura
- Análise do roteamento
- Preparação para concursos públicos

Análise de Tráfego - Conceitos

Sniffing

- Uso da interface de rede de uma máquina para receber o tráfego de rede que passa por ela, incluindo o tráfego não direcionado àquela máquina
- Modo promíscuo
 - -Interface "escuta" o meio e captura todos pacotes
 - -Rede compartilhada = captura de todo o tráfego
 - -Rede segmentada = captura do tráfego local

Raio X da transmissão

A composição dos cabeçalhos - Arq TCP/IP

A dinâmica da transmissão

O quadro para transporte dos dados

Ethernet x 802.3

- O padrão ethernet surgiu na década de 1970 nos laboratórios da Xerox - DIX
- 1980 o IEEE passou a administrar o padrão -IEEE 802.3
- O Ethernet é um conjunto de protocolos que lida com as camadas 1 e 2 do modelo de referência OSI
 - O Ethernet se preocupa com o aspecto físico da transmissão

Ethernet x 802.3

- Frames Ethernet são "envelopes" para os pacotes TCP/IP
- Informações das camadas superiores serão transportados dentro do campo de dados (ou conteúdo)
- O que é cabeçalho + dados para a camada de cima é apenas dados para a camada de baixo
- 1500 bytes de payload = vários cabeçalhos + dados aplicação

Ethernet x 802.3

- Preamble: sequência de bytes para sincronizar comunicação
- SOF Start of frame: delimitador
- Destination Address: contém o endereço MAC do destinatário;
- Source Address: contém o endereço MAC do remetente;
- Type/Length: indica o tamanho em Bytes do campo de dados; Data: contem os dados que deverão ser passados a próxima camada, deve ter tamanho mínimo de 46 bytes e máximo de 1500 bytes;
- FCS Frame Check Sequence: contém o Cyclic Redundancy Check (CRC).
 - Ele realiza a detecção de erros, não a correção

Ethernet x 802.3

- Redução do preâmbulo para 7 bytes
 - Usou o último byte como delimitador de INÍCIO DE QUADRO
- Transformação do campo tipo em comprimento
 - > 1500 = tipo
 - · Interpretação do Ethernet
 - <= 1500 = tamanho
 - Interpretação do IEEE

O cabeçalho IPv4

O cabeçalho IPv4- Campo Versão

- Version
 - Lido antes do processamento do datagrama
- IPv4
 - -0100
 - 4 decimal
- IPv6
 - 0110
 - 6 decimal

O cabeçalho IPv4- Campo HL

- Hlen
 - valor x 4 bytes. Na prática de 20 a 24 bytes.
 - palayras de 32 bits
 - Na teoria 60 bytes
 - · 2^4, pois o campo tem 4 bits
 - Cabeçalho = 20 (60) bytes + parte opcional de tamanho variável (40 bytes).

O cabeçalho IPv4- Campo TOS

- ToS
 - Diffserv
 - 6 bits iniciais -CODEPOINT
 - Indicam a QoS desejada
 - Differentiated Services Code Point (DSCP)
 - 2 bits FINAIS são usados para aviso explicito de congestionamento

O cabeçalho IPv4- Campo Total Length

- Total Length
 - Pacote completo 16 bits- 65535 octetos

O cabeçalho IPv4- Campo ID

- Identificação
 - Id do datagrama
 - 16 bits
 - Repetido nos fragmentos

O cabeçalho IPv4- Campos de fragmentação

- Flags
 - Existe um bit não usado
 - DF
 - Roteador pode descartar
 - 1 está em uso
 - MF
 - Ultimo fragmento não possui esta marcação
 - Todos fragmentos possuem, exceto o último
 - 1 está em uso

O cabeçalho IPv4- Campos de fragmentação

- Offset
 - Posição do fragmento no datagrama original
 - 13 bits
 - Múltiplo de 8 bytes desconsiderar na análise de tráfego

O cabeçalho IPv4- Campo TTL

- TTL número máx de hops
 - Roteador que decrementa para 0 descarta o pacote e envia mensagem de erro à origem
 - Decrementa 1 unidade a cada segundo no roteador
 - 37 é um número aproximado de saltos para rodar a internet toda
 - CESPE considera que o TTL está associado ao tempo

O cabeçalho IPv4- Campo Protocol

- Protocol: 8 bits
 - 6 TCP
 - 17 UDP
 - 132 SCTP
 - 1 ICMP
 - 2 IGMP
 - 50 ESP (IPSec)
 - 51 AH (IPSec)

O cabeçalho IPv4- Campo Checksum

- · Header checksum
 - Contém 0 para fins de cálculo de checksum, assim como os outros campos variáveis
 - válido somente para o cabeçalho
 - TTL, ToS, Checksum e flags são considerados preenchidos com 0 para efeitos de cálculo de checksum

O cabeçalho IPv4- Campos de endereço

- Source IP address
 - Endereço IPV4 do remetente
 - 32 bits
 - Diferentemente do endereço físico, não se modifica durante o trajeto

O cabeçalho IPv4- Campos de endereço

- · Destination IP address
 - Endereço IPV4 do remetente
 - 32 bits
 - Diferentemente do endereço físico, não se modifica durante o trajeto

O cabeçalho IPv4- Ainda sobre endereços

32 bits —							
ш	ш		ш				
Versão	HL	TOS Comprimento Total					
	Identif	icação	P M F F	Offset			
TTL Protocolo		Checksum					
	Endereço de Origem						
Endereço de Destino							
Opplies							

- Blocos CIDR reservados para redes privadas
 - Todos 10.x.x.x
 - 8 bits rede
 24 bits hosts
 - 172.16.0.0 a 172.31.255.255
 - 192.168.0.0 a 192.168.255.255
 - 16 bits rede
 16 bits host
- APIPA Automatic Private Internet Protocol Addressing
 - 169.254.0.0/16 a 169.254.255.254/16

 - Microsoft
 Não elencado na RFC 1918

O cabeçalho IPv4- Ainda sobre endereços

- Endereços especiais
 - Tudo 0 Endereço de origem inicial
 - Tudo 1 broadcast Limitado
 - Rede + Tudo 0 Endereço da rede
 - Rede + Tudo 1 broadcast direcionado
 - 127.x.x.x loopback

O cabeçalho IPv6

O cabeçalho IPv6

- Version (4 bits)
 - Versão do IP utilizada. No caso no IPv6, este campo vale 0110.
 - Segundo algumas pessoas, esse campo seria desnecessário e somente rouba ciclos de instruções. O campo Type do frame ethernet já serviria para identificar a carga o frame como IPv6

O cabeçalho IPv6

- Traffic Class Priority (8 bits) -Indica a prioridade com a qual o pacote deve ser tratado. Também referenciado como Serviços Diferenciados
 - 0 a 7 para aqueles que podem sofrer atraso
 - 8 a 15 para aqueles com tráfego em tempo real
- QoS na camada de rede
- 2 bits menos significativos não são usados para esse fim, mas para aviso explícito de congestionamento

O cabeçalho IPv6

· Flow label (20 bits)

- Identifica, juntamente com os campos Source Address e Destination Address, o fluxo ao qual o pacote pertence. . Valor 0 indica que não será
 - usado
 - Valor <> 0 indica que os roteadores precisam dar tratamento ao fluxo. Tratase de uma aproximação do conceito de circuitos virtuais

O cabeçalho IPv6

Payload Length (16 bits)

- Tamanho, em octetos, do restante do pacote, após o cabeçalho.

 • Somente os dados

 - Cabeçalhos de extensão possuem campo que identifica seu tamanho (Header Extension Length)
- Como o cabeçalho deixou de ser contado, podemos ter uma carga de 65535 bytes em vez de apenas 65515 como no IPv4
- No cabeçalho base IPv6 não existe o campo HEADER LENGTH, justamente por que ele tem tamanho fixo

O cabeçalho IPv6

- Next Header (8 bits)
- xt Header (8 bits)
 Indica o tipo do possível cabeçalho
 de extensão que segue o cabeçalho
 IPv6. Caso não esteja se utilizando
 cabeçalho de extensão, este campo
 indica a qual protocolo de
 transporte/rede o pacote deve ser
 repassado.
 Essa informação pode ser o
 protocolo usado na camada de
 transporte/ UDP User Datagram
 Protocol ou TCP Transmission
 Control Protocol, ou um cabeçalho
 de extensão
 Úttimo cabeçalho coloca em seu

 - de extensão Último cabeçalho coloca em seu interior o número tradicional que indica o protocolo de entrega do pacote: 6 TCP, 17 UDP, 132 SCTP, etc...

ITnerante 7

O cabeçalho IPv6

· Hop Limit (8 bits)

Número máximo de roteamentos que o pacote pode sofrer. O valor deste campo é decrementado a cada roteamento. Quando seu valor chega a zero o pacote é descartado. Similar ao campo Time to live do IPv4.

O cabeçalho IPv6

- · Source Address (128 bits)
 - Endereço do remetente.
 - 8 quartetos em hexa
 - Zeros à esquerda podem ser suprimidos, zeros à direita JAMAIS
 - Grupos de bits zeros ou mais podem ser substituídos, somente uma única vez, por ::
 - 0123:0221:3456:3643:0988: 0987:9088:9900
 - 123:221:3456:3643:988:987
 - Somente uma única vez

O cabeçalho IPv6

- Destination Address (128 bits)
- Endereço do remetente.
 - 8 quartetos em hexa Zeros à esquerda podem ser suprimidos, zeros à direita JAMAIS
 - Grupos de bits zeros ou mais podem ser substituídos, somente uma única vez, por ::
 - 0123:0221:3456:3643:0988:09 87:9088:9900
 - 123:221:3456:3643:988:987:90 88:9900
 - Somente uma única vez

O cabeçalho IPv6

- Possibilidade de utilização de múltiplos cabeçalhos encadeados
 - Estes cabeçalhos, caso sejam utilizados, devem aparecer entre o cabeçalho IPv6 e o bloco de dados
 - Podem ser sempre adicionados novos cabeçalhos para satisfazer novas especificações
 - Emissor deve mandar os cabeçalhos numa sequencia pré-definida, entretanto o receptor deve estar apto a tratá-los em qualquer ordem
 - De acordo com a necessidade, novos tipos de cabeçalho de extensão podem ser criados (evolução do protocolo)

O cabeçalho IPv6

Identificadores importantes na análise de tráfego – Cabeçalho IP

- Free Net/Open BSD/MacOS X/Impressoras HP com interface de rede: TTL 255 Windows (98 ult. Versões /NT/2K/VISTA/7/8): TTL 128
- Linux: TTL 64 Windows ME e anteriores: 32 Roteadores CISCO: 255
- Roteadores Ciclades: 28
- OBS: TTL vai decrementando até chegar no ponto de captura. O S.O. é deduzido pela contagem de decrementos, pois o TTL só apresenta os valores padrão quando a captura é feita antes de ultrapassar o primeiro roteador

O processo de fragmentação - IPv4

- Fragmentação
 - É o processo no qual um pacote IP é fragmentado em unidades de menor tamanho para se acomodar a um menor MTU de
 - No IPV4, a fragmentação ocorre dentro da infraestrutura da rede, ou seja, os roteadores a executam.
 - Apesar de existir o conceito de fragmentação transparente, na prática, essa remontagem é feita no destinatário.
 - A cada fragmento é acrescentado um novo cabeçalho IP, ou seja, ele aumenta de tamanho.
 - Cada fragmento possui não somente um identificador que o relaciona com o pacote original (packet id), mas um posicionador que diz em qual ponto do pacote original se encaixa o fragmento (offset)

O processo de fragmentação - Ipv6

Fragmentação

- No IPv6 o responsável pela fragmentação é o host que envia o datagrama, e não os roteadores intermediários como no caso do IPv4
 - Fragmentação fim-a-fim

 - Fragmentação tim-a-fim Redução de overhead nos roteadores Rotas não podem ser alteradas tão facilmente Inclusão de nova mensagem de erro ICMP: Descoberta do MTU na rede No IPv6, os roteadores intermédios descartam os datagramas maiores que o MTU da rede
 - O MTU será o MTU mínimo suportado pelas diferentes redes entre a origem e o destino O MTU será o MTU mínimo suportado pelas diferentes redes entre a origem e o destino Para isso o host envia pacotes ICMP de vários tamanhos; quando um pacote chega ao host destino, todos os dados a serem transmitidos são fragmentados no tamanho deste pacote que altançou o destino. O processo de descoberta do MTU tem que ser dinâmico, porque o percurso pode ser alterado durante a transmissão dos datagramas. A informação de fragmentação é guardada num cabeçalho de extensão separado Cadaf fragmento é iniciado por uma componente não fragmentável seguida de um cabeçalho do fragmento.

O processo de fragmentação

O processo de fragmentação

Cabeçalho IP 20 bytes	Carga 480 byt	
Cabeçalho IP 20 bytes	Carga 480 byl	
Cabeçalho IP 20 bytes	Carga 480 byt	
Cabeçalho IP 20 bytes	Carga IP 40 bytes	

Protocolo ICMP - (RFC 792)

- Permite que roteadores enviem mensagens de erro ou controle para outros roteadores ou hosts (origem)
 - Utiliza o IP para transporte da mensagem
 - Não existe mensagem ICMP para erros de datagramas que transportam ICMP
 - Aparece quando há:
 - Impossibilidade de roteamento
 - Congestionamento na rede
 - Destino pode ser inalcançável por vários motivos:
 - Rede ou host inalcançáveis
 - Porta inalcançável
 - Rede ou host desconhecidos

Protocolo ICMP - (RFC 792)

- · Mensagens (principais)
 - Source Quench
 - Extinção de origem
 - · retardamento das taxas de transmissão
 - tarefa deixada para camadas superiores
 - Time exceeded
 - TTL atingiu 0
 - O ICMP envia mensagem de erro correspondente a falha de remontagem de fragmentos
 - Nem todos fragmentos foram recebidos par
 - remontagem Só gera mensagem DE ERRO pela manipulação do fragmento inicial, evitando inundação
 - Sem o fragmento 0 não há mensagem de erro

Protocolo ICMP - (RFC 792)

- Mensagens (principais, continuação...)
 - Destination unreacheable
- Redirect

 - · host mudar tabela de roteamento
 - Echo request / reply
 - Ping
 - Envio de um pacote ping grande é útil para testar fragmentação e remontagem
 - Serviços que usam ICMP

 - Ping
 Traceroute

Protocolo IGMP

- Utilizado para Multicast
- Parte integrante do protocolo IP
- Mensagens são encapsuladas nos datagramas IP

Protocolo IGMP

- Três tipos de mensagem
 - Host Membership Query enviado pelo roteador para descobrir hosts e grupos
 - Host Membership Report resposta do Host
 - Leave Group host deixa o grupo
 - opcional
 - · Ou não responder à mensagem
 - Roteador mantém listas com membros do multicast em suas

Cabeçalho UDP

- User Datagram Protocol
- Cabeçalho de 8 bytes
- Porta de origem usada para respostas, opcional
- Inclui os endereços de origem/destino do cabeçalho IP no cálculo do Checksum
- Checksum opcional
- 0 se não for calculado
- Se o valor é 0, armazena-se 16 bits = 1
- Não possui
 - Controle de erro
 - Controle de fluxo Retransmissão
 - Confiabilidade

Cabeçalho UDP

- Especialmente útil em aplicações cliente/servidor
- Podem ser perdidos, duplicados ou fora de ordem
- Interações cliente/servidor e multimídia
- Usado principalmente em multimídia em tempo real
 - RTP (multiplexar diversos fluxos de dados de tempo real sobre um único fluxo de pacotes UDP, não tem controle de fluxo). RDP admite multidifusão e unidifusão.

Cabeçalho SCTP

- Stream Control Transmission Protocol
- Cabeçalho de 12 bytes
- Foi desenvolvido inicialmente para transportar SS7 sobre IP
- Orientado a mensagens como o UDP e assegura transporte confiável, ordenado e controle de fluxo como o TCP
- Envia mensagens e informação de controle em diferentes Chunks
 - Cada um com seu próprio cabeçalho

Cabeçalho SCTP

- Limitações do TCP que justificaram a criação de um protocolo intermediário
 - TCP é bastante usado para a transferência confiável de dados sobre redes IP
 - Não é adequado para comunicações de
 - Número crescente de aplicações têm implementado seus próprios mecanismos para a transferência confiável de dados sobre o UDP
 - Enquanto que o TCP acopla a transferência confiável com a ordenação estrita da entrega dos dados, o SCTP separa uma da outra (multi - streaming)

Cabeçalho TCP

0							15	16 32
	Número Porta Origem							Número Porta Destino
	Número Sequenciação							
	ACKNOWLEDMENT							
Tamanho	Reservado	U	Α	Ρ	R	S	F	Tamanho da Janela de Transmissão
do		R	C	S	S	ΙY	Ι	
Cabeçalh		G	K	Η	Т	И	И	
٥								
Checksum Ponteiro							Ponteiro Urgente	
	Opções							
	Dados							

Cabeçalho TCP

- · Source port
- Hlen
- Destination Port
- Unidades de 4 bytes
- Sequence number
- Limitado a 60 bytes: 2^4
- Primeiro byte que compõe
- Reserved

- 6 bits

- o segmento
 Acknowledgement
 - Próximo byte
- ITnerante

Cabeçalho TCP

- · Code bits ou flags
 - Urg: Prioridade sobre os outros pacotes não urgentes. Trabalha em conjunto com o ponteiro de urgente.
 - Sinais precisam ser enviados sem esperar que o programa leia octetos no fluxo
 - Programa receptor é informado de sua chegada
- Ack: Indica de flag é de reconhecimento
- Psh: Entrega imediata à camada de aplicação. Não espera completar o buffer para envio
- Rst: fechamento abrupto
- Syn: Estabelecimento /
- sincronização
- Fin: Fechamento Elegante

Cabeçalho TCP

- Window: Controle de fluxo
- Checksum: Usa o pseudo cabeçalho que engloba alguns campos do cabeçalho IP
- Urgent Pointer: Casado com flag urgent. Indica a posição FINAL dos dados urgentes indicados no flag urg
- Options

- MSS: Tamanho do payload TCP
- Aumento de escala de janela para redes de alta velocidade
- Marca de tempo
- SACK

Padding: Tornam o cabeçalho múltiplo de 32 bits

Ainda sobre cabeçalho TCP

- Window: especifica o tamanho da parte de memória (buffer) disponível para os dados a receber
 - TCP window scale option é uma forma de aumentar o tamanho da janela de recepção além do limite dos 16 bits especificados no campo Window Size
- Alguns campos opcionais só aparecem com o Syn
- O campo de timestamp e sack aparecem normalmente noutros segmentos

Estabelecimento da conexão TCP

- Full-duplex e ponto-a-ponto
 - Não admite difusão e multidifusão
- Handshake de 3 vias: Explícito
 - Syn / Syn + Ack / Ack
 - Ack = Seq + 1 (próximo byte esperado)
 - Connection request (syn 1 ack 0)
 - Connection accepted (syn 1 ack 1)
- Piggybacking
 - É a inserção de mais informações do que a forma básica do protocolo, a fim de otimizar a movimentação de dados.

Encerramento da conexão TCP

- Encerramento formal da conexão TCP.
 - Buffers e variáveis liberados
- Simétrico
 - Cada direção é encerrada independentemente
 - FIN: Fecha em uma direção, dados permanecem fluindo na outra, até que o encerramento também se dê do outro lado
- Assimétrico

 - Abrupto
 Transferências nas duas direções são terminadas e buffers liberados
 - Apesar do flag RST, Não existe reinicialização, mas sim o término da conexão.

O pseudo cabeçalho

• Tamanho: 12 bytes • End Origem: 4 bytes

• End Destino: 4 bytes

· Reservado: 1 byte

• Protocol: 1 byte

• Não é enviado, apenas usado para cálculo do checksum.

Camada de transporte - Portas

http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.txt

Identificadores importantes na análise de tráfego – Quadro 802.3

ITnerante 🔊

Identificadores importantes na análise de tráfego – Quadro 802.3

Identificadores importantes na análise de tráfego – Quadro 802.3

Principais Ferramentas de Análise de Tráfego - TCPDUMP

- Ferramenta utilizada para monitorar os pacotes trafegados numa rede de computadores
- Mostra os cabeçalhos dos pacotes que passam pela interface de rede
- Sua versão para windows chama-se WinDump
- Os filtros de captura são passados ao lado do executável seguido dos parâmetros
 - tcpdump -n -i eth0 port 80

ITnerante?

Principais Ferramentas de Análise de Tráfego - TCPDUMP

- · Parâmetros mais comuns
 - -i: Define a interface de rede
 - -n: Não converte IP em nome DNS
 - -x: Exibe o pacote em hexa
 - -X: Exibe o pacote em hexa + ASCII

Principais Ferramentas de Análise de Tráfego - TCPDUMP

Formato Padrão

00.454.5.11279 P 32.106.0.312.43291 at 18400 - 16-151.5.106.x. www. 57772271002772271029(0) win 5880 cm 5880 calcid.Climentamp 97842 Quoquuscale to 00.454.28086 p 781.006.3126.2014 billion 15-151.006.2014 billion 15-151.006.2014 billion 15-151.006.2014 billion 15-151.006.2014 billion 15-151.006.2014 billion 15-151.006.2014 billion 16-151.006.2014 billion 16-151.00

• Com informações da camada de enlace (-e)

A CONTROL OF THE PROPERTY OF T

• Com informações do cabeçalho IP (-v)

Address from the Control Contr

Principais Ferramentas de Análise de Tráfego - TCPDUMP

• Envolvendo fragmentação – Formato 01 (payload de 3000 bytes)

16:35:06.823982 IP (to: 0m, 0t.16 4/[id] 12477, offiset 0, flags (-1), proto ICMP (1), [length 1500) 192.168.0.182 > 192.168.0.1 : ICMP echo request, id 43794, seq 1, length 1481 16:35:06.82392 IP (to: 0m), tt 44, [id] 12477, offiset 1480, flags (-1), proto ICMP (1), length 1500) 192.168.0.182 > 192.168.0.1 : icmp 16:35:06.82392 IP (to: 0m), tt 64, [id] 12477, offiset 2956, flags (hone), proto ICMP (1), length 69) 192.168.0.182 > 192.168.0.1 : icmp

Envolvendo fragmentação – Formato 02 (frag pcktID:size@offset+)

02:13:22.216445 truncated-tcp 16 (frag 32470:16@0+)

Principais Ferramentas de Análise de Tráfego - WIRESHARK

- É um analisador de tráfego para Windows e Linux
- É a continuação do Ethereal
- Suas funcionalidades são similares às do tcpdump, mas com interface GUI

Principais Ferramentas de Análise de Tráfego - WIRESHARK

- Tipos de filtros
 - Capture Filters
 - São filtros utilizados ANTES do início da captura
 - São os mesmos filtros utilizados no TCPDUMP
 - Display Filters
 - Realiza filtros no decorrer da captura
 - É somente um filtro para exibição

Principais Ferramentas de Análise de Tráfego – Microsoft NetMon

- NetMon captura pacotes utilizando o drive NDIS (Network Driver Interface Specification), sendo assim, captura tráfego da camada 2 (ex. beacons 802.11)
- Wireshark utiliza um drive separado, simulando um único protocolo de camada 2
- Outra diferença é que o NetMon separa e filtra o tráfego por processos, já o Wireshark não o faz

Questões de Aprendizagem

Análise de Tráfego

CPC – CESPE 2007 – Perito Criminal – Processamento de Dados

- 1. Quanto ao monitoramento de tráfego em uma rede, julgue os seguintes itens
- I O tcpdump é um packet sniffer que possibilita a interceptação e apresentação de pacotes que trafegam por uma rede TCP/IP. Os dados nos pacotes interceptados podem ser armazenados em arquivos para posterior análise.
- II Um packet sniffer possibilita monitorar o tráfego em uma rede. Em uma rede Ethernet, para monitorar o tráfego destinado ao endereço de broadcast, a placa de interface com a rede precisa ser configurada no modo promiscuo.
- III Em uma rede Ethernet, um packet sniffer pode ser usado para monitorar o tráfego destinado ao endereço de broadcast e a endereços de multicast, mas não tráfego unicast destinado à máquina com o packet sniffer.
- IV Há técnicas que podem ser usadas para se tentar identificar a presença de packet sniffers em redes Ethernet. Por exemplo, um pacote ARP pode ser enviado para um endereço que não seja o de broadcast. Se uma máquina responder a esse pacote, possivelmente tem uma placa de rede no modo promiscuo.
- Estão certos apenas os iten
- A. I e II.
- B. I e IV. C. II e III.
- D. III e IV

ANA – ESAF 2009 Analista Administrativo – Adm de Redes e Segurança

- 2. Ao fragmentar um fragmento, que não seja o último fragmento de um datagrama, o roteador IP deve
- A. ativar o bit do flag 'mais fragmentos' em todos os sub-fragmentos que produzir, exceto no último deles.
- B. ativar o bit do flag 'não fragmente'.
- C. ficar inativo, pois é impossível ocorrer esta situação em redes IP.
- D. ativar o bit do flag 'mais fragmentos' apenas do primeiro subfragmento que produzir.
- ativar o bit do flag 'mais fragmentos' em todos os sub-fragmentos que produzir.

TRE MT – CESPE 2010 – Analista Judiciário – Análise de Sistemas

3. Em um enlace de comunicação de dados com MTU (maximum transmission unit) de 1.500 bytes, que conecta um roteador A a um roteador B, o roteador A recebe um datagrama de 6 kilobytes, a ser repassado ao roteador B. Esse enlace utiliza o protocolo IPv4, com cabeçalho padrão de 20 bytes, e permite a fragmentação. Com base nessas informações, é correto afirmar que

- A. o último fragmento recebido pelo roteador B tem o campo de flag do cabeçalho IP aiustado para 1.
- B. o primeiro fragmento tem o valor de deslocamento igual ao valor do cabeçalho IP.
- C. o segundo fragmento tem deslocamento de 185, desde que o primeiro fragmento tenha sido enviado com o MTU máximo.
- D. são necessários quatro fragmentos para transferir os 6 kilobytes do datagrama
- E. o campo de flag do cabeçalho IP contém zero para todos os fragmentos, exceto o último.

SEF-SC – FEPESE 2010 – Tecnologia da Informação

4. Suponha que um datagrama IP com 5.000 bytes de dados e cabeçalho de 20 bytes deve ser enviado através de um caminho de rede cuja unidade máxima de transmissão (MTU) é de 1500 bytes.

Assinale a alternativa correta a respeito dos fragmen-tos gerados pelo protocolo IP versão 4 a partir desse datagrama.

- A. Os três primeiros fragmentos terão 1500 bytes de dados.
- B. O primeiro fragmento terá o valor do campo identificação (identification) igual a 1, indi-cando que se trata do primeiro fragmento.
- C. O valor do campo deslocamento do fragmento (fragment offset) do segundo fragmento será igual a 1480.
- D. O valor do campo flag do quarto fragmento será igual a zero, para indicar que se trata do último fragmento do datagrama.
- E. O valor do campo deslocamento do fragmento (fragment offset) de todos os fragmentos será igual a 20, para indicar que os dados do frag-mento iniciam após 20 bytes de cabeçalho.

Cabeçalho IP 20 bytes	Carga 1480 b	
Cabeçalho IP 20 bytes	Carga 1480 b	
Cabeçalho IP 20 bytes	Carga 1480 b	
		1

DPE SP – FCC 2013 – Agente de Defensoria Pública – Administrador de Redes

5. Considere a seguinte tabela, obtida a partir de um aplicativo de captura de pacotes em uma rede de computadores.

Está correto afirmar que:

- A. os endereços **Ethernet** de origem e destino dos computadores envolvidos nessa troca de dados são, respectivamente, aa:aa:a0:00:00:02 e aa:aa:aa:00:00:01
- B. o protocolo utilizado no teste permite saber a rota para alcançar um **host**, mesmo na presença de **firewall**.
- C. os endereços IP de origem e destino dos computadores envolvidos desde o inicio nas trocas de dados são, respectivamente, 10.1.1.1 e 10.1.1.2
- D. o comando utilizado no teste tem a finalidade de testar a conectividade e o congestionamento da rede.
- E. o protocolo utilizado no teste permite o controle de fluxo de pacotes na rede

TRE RJ – CESPE 2012 – Técnico Judiciário – Operação de Computado

 $1\ 00.998952\ \mathsf{IP}\ 10.1.1.1 > 10.1.1.2 \mathsf{:}\ \mathsf{icmp}\ 1480 \mathsf{:}\ \mathsf{echo}\ \mathsf{request}\ \mathsf{seq}\ 4864\ (\mathsf{frag}\ 10550 \mathsf{:} 1480@0+)$

2 00.999881 IP 10.1.1.1 > 10.1.1.2: icmp (frag 10550:1480@1480+)

3 02.000787 IP 10.1.1.1 > 10.1.1.2: icmp (frag 10550:48@2960)

4 02.005395 IP 10.1.1.2 > 10.1.1.1: icmp 1480: echo reply seq 4864 (frag 3672:1480@0+)

5 02.007137 IP 10.1.1.2 > 10.1.1.1: icmp (frag 3672:1480@1480+)

6 02.008060 IP 10.1.1.2 > 10.1.1.1; icmp (frag 3672:48@2960)

6. Considerando a captura de tráfego mostrada acima, em que os endereços são fictícios, julgue os itens que se seguem

[77] A chegada dos fragmentos aos hosts de destino ocorreu fora da ordem de envio.

[78] Se os hosts tiverem máscaras de rede /24, eles estão em redes diferentes.

[79] O MTU dos enlaces em que se conectam os hosts é maior que 1.480. [80] O datagrama IP que foi fragmentado carregava 3.008 bytes.

[81] Trata-se de tráfego consistente com a execução do comando ping no host 10.1.1.1.

MEC UNIPAMPA - CESPE 2009 - Analista Judiciário - Analista de TI Rede e Suporte

7. Considerando o trecho de captura de tráfego apresentado acima, julgue os próximos itens.

[81] A captura ilustra uma conexão em que o fluxo de dados é interativo.

[82] Os hosts da captura oferecem o mesmo valor inicial de janela deslizante.

[83] O encerramento da conexão não se deu de forma abrupta, mas totalmente dentro da normalidade.

[84] Apenas um dos hosts envolvidos na captura é capaz de tratar retransmissões seletivas.

[85] Apenas um dos hosts envolvidos na captura está conectado a uma rede cujo MTU é 1500.

0.280264 IP 10.1.1.1.1047 > 10.1.1.2.1100: S 0:0(0) win 65535 <mss 1460,nop,nop,sackOK> 0.280499 IP 10.1.1.2.1100 > 10.1.1.1.1047: S 0:0(0) ack 0 win 65535 <mss 1460,nop,nop,sackoK> 0.280560 IP 10.1.1.1.1047 > 10.1.1.2.1100: . ack 1 win 65535 0.282520 IP 10.1.1.2.1100 > 10.1.1.1.1047; P 1:19(18) ack 1 win 65535 0.413863 IP 10.1.1.1.1047 > 10.1.1.2.1100: . ack 19 win 65517 1.790006 IP 10.1.1.1.1047 > 10.1.1.2.1100: P 1:14(13) ack 19 win 65517 1.790368 IP 10.1.1.2.1100 > 10.1.1.1.1047: P 19:43(24) ack 14 win 65535 1.947466 IP 10.1.1.1.1047 > 10.1.1.2.1100: . ack 43 win 65493 3.596518 IP 10.1.1.1.1047 > 10.1.1.2.1100: P 14:27(13) ack 43 win 65493 3.690765 IP 10.1.1.2.1100 > 10.1.1.1.1047: . ack 27 win 65535 6.611284 IP 10.1.1.2.1100 > 10.1.1.1.1047; P 43:63(20) ack 27 win 65535 6.782028 IP 10.1.1.1.1047 > 10.1.1.2.1100: . ack 63 win 65473 8.195496 IP 10.1.1.1047 > 10.1.1.2.1100: P 27:33(6) ack 63 win 65473 8.195872 IP 10.1.1.2.1100 > 10.1.1.1.1047: P 63:91(28) ack 33 win 65535 8.195964 IP 10.1.1.1.1047 > 10.1.1.2.1100: F 33:33(0) ack 91 win 65445 8.196006 IP 10.1.1.2.1100 > 10.1.1.1.1047: F 91:91(0) ack 33 win 65535

8 196026 TP 10 1 1 1 1047 - 10 1 1 2 1100 - ack 92 win 65445

MPOG – CESPE 2009 – Analista Judiciário – Esp em Pol Púb e Gest Governamental

8. Considerando o trecho de captura de tráfego de rede apresentado acima, julgue os próximos itens.

[48] A captura em apreço ilustra uma conexão TCP com todas as suas fases, com tráfego interativo.

[49] Assumindo que a captura apresentada adira ao modelo cliente-servidor, o cliente seria o host 10.1.1.1 e servidor, o host 10.1.1.2.

[50] Segundo a captura em questão, ocorrem retransmissões de pacotes.

- 0.055429 IP (tos 0x0, ttl 128, id 2442, offset 0, flags [DF], proto: TCP (6), length: 48) 10.1.1.1.2373 > 10.1.1.2.7777: S, cksum 0x9764 (correct), 160520737:160520737(0) win 64240 <mss 1460,nop,nop,sackoK>
- 0.055990 IP tice Ord, til 28, id 2691, offset 0, fast (240 cms 1400, nor, nop, sackor 10.1, 277) 10.11, 2771; s, ctsum Oxbēa6 (correct), 3778498614(3)78438614(0) ack 160520738 win 17520 cms
- 0.056088 IP (tos 0x0, ttl 128, id 2443, offset 0, flags [DF], proto: TCP (6), length: 40) 10.1.1.2373 > 10.1.1.2.7777: ., cksum 0x2eea (correct), ack 1 win 64240
- 10.1.1.2.7777; , cksmm Unizea (correct), ack I win 62240
 0.055338 IP too Goo, ttl 128, id 2590, offset 0, flags (EF), proto: TCP (6), length: 1064) 10.1.1.1.2373
 > 10.1.1.2.7777; F, cksmm Ox2407 (correct), 1:1025(1024) ack I win 64240
 0.055444 IP too Goo, ttl 128, id 2540, offset 0, flags (EF), proto: TCP (6), length: 1500) 10.1.1.2.2373
 > 10.1.1.2.7777; F, cksmm Ox7607 (correct), 1025(248)(1460) ack I win 64240
 0.089918 IP too Goo, ttl 128, id 2590, offset 0, flags (EF), proto: TCP (6), length: 40) 10.1.1.2.7777 > 10.1.1.1.2373; .cksmm Ox7606 (correct), ack 2485 win 17520
 0.089018 IP too Goo, ttl 128, id 2590, offset 0, flags (EF), proto: TCP (6), length: 40) 10.1.1.2.7777 > 10.1.1.1.2373; .cksmm Ox7606 (correct), ack 2485 win 17520
- 0.099035 IP (tos 0x0, ttl 128, id 2452, offset 0, flags (DF), proto: TCP (6), length: 1500) 10.1.1.1.2373 > 10.1.1.2.7777; P, cksum 0x970f (correct), 2485:3945(1460) ack 1 win 64240
- > 10.1.1.2.7777: p. cksum 0x970f (correct), 2485/3945[1460] ack 1 vin 64240

 8 0.099073 1B. (too Su0, tot 128, 1d 243), offsee, 0.1lass [pr], propor 170F (6), length: 1500) 10.1.1.1.2373

 > 10.1.1.2.7777: p. cksum 0x1825 (correct), 3945/5005[1460] ack 1 vin 64240

 9 0.099109 1 toos 000, tot 128, 1d 243, of frase, 0.1lass (pr], propor 170F (6), length: 1500) 10.1.1.2373

 > 10.1.1.2.7777: p. cksum 0x738f (correct), 5405/5665[1460] ack 1 vin 64240

 10.1.3041 IP (too 0x0, ttl 128, id 2705, offset 0, flags [DP], protor TCP (6), length: 40) 10.1.1.2.7777 > 10.1.1.2.2732 ., cksum 0x050f (correct), ack 3450 vin 17250

CTI Renato Archer – CESPE 2008 – Tecnologista Pleno – Segurança de Sistemas de Informação

tcpdump -1 eth0 -1 -n -x port 25 tcpdump : 1setening on eth0 14:17:51.90111 192.168.0.9.1100-192.168.0.1.25: P 1043394526:1043394554(28)... 4500 0044 9481 0000 4006 64d8 c0a8 0009 c0a8 0001.044c 0019 3e30 efde 679c eea4 5018 37ff 03b9 0000 7263 7074 2074 667a 203c 7565 6461

1.1.1	1111	Litition	Lerence Lerence	ı	
Versão	HL	TOS	Comprimento Total		
	Identif	icação	D M F F Offset		
TTL Protocolo			Checksum		
		Endereço	de Origem		
		Endereço	de Destino		
		Oor	jões .		

9. Com base no resultado do comando tcpdump mostrado acima, julgue os itens a seguir.

[68] O cabeçalho do pacote mostra que é utilizada a versão IPv4 com um header length de 5, ou seja, 5 palavras de 4 bytes cada (20 bytes ao todo).

[69] O campo ToS (type of service) corresponde a 06 e total length corresponde a 0044, ou seja, 4 x16 + 4 = 68 bytes, dos quais os 20 primeiros são os que correspondem ao cabeçalho.

[70] O source address é c0a80009, ou seja, 192.168.0.9. O protocolo utilizado é o TCP e o endereço destino é 192.168.0.1.

I	0.771929 TP (toe 0x10, ttl 64, id 46018, offset 0, flags [DF], proto: TCP (6), length: 60) 11.1.1.1.1111 > 2.2.2.2.2.222: 8, cksum 0x1db2 (correct), 0:0(0) win 5840 <mss 0,nop.wscale="" 1460,sacknr,timestamp.2538026="" 6=""></mss>
II	0.994556 IP (tos 0x0, ttl 50, id 20037, offset 0, flags [DF], proto: TCP (6), length: 44) 2.2.2.2.2222 > 1.1.1.1.1111: S, cksum 0x9e62 (correct), 0:0(0) ack 1 win 5840 <mss 1460=""></mss>
III	0.994605 IP (tos 0x10, ttl 64, id 46019, offset 0, flags [DF], proto: TCP (6), length: 40) 1.1.1.1.1111 > 2.2.2.2.2222: ., cksum 0xb61f (correct), 1:1(0) ack 1 win 5840
IV	$3.909380~\text{IP}~\text{(tos 0x10, ttl 64, id 46020, offset 0, flags [DF], proto: TCP~(6), length:~47)}\\ 1.1.1.1.1111 > 2.2.2.2.2222:~\text{P, cksum 0xa89d (correct), 1:8(7) ack 1 win 5840}$
V	$ \begin{array}{llllllllllllllllllllllllllllllllllll$
VI	4.220591 IP (tos 0x0, ttl 50, id 20041, offset 0, flags [DF], proto: TCP (6), length: 40) 2.2.2.2.2222 > 1.1.1.1.1111: F, cksum 0xae04 (correct), 2068:2068(0) ack 8 win 5840
VII	4.220607 IP (tos 0x10, tt1 64, id 46021, offset 0, flags [DF], proto: TCP (6), length: 40) 1.1.1.1.1111 > 2.2.2.2.2222: ., cksum 0xb618 (correct), 8:8(0) ack 1 win 5840
VIII	4.223374 IP (tos 0x0, ttl 50, id 20040, offset 0, flags (DF), proto: TCP (6), length: 647) 2.2.2.2.2222 > 1.1.1.1.1111: P, cksum 0xe4c5 (correct), 1461:2068(607) ack 8 win 5840
IX	$ \begin{array}{l} 4.223391 \ \text{IP} \ (\text{tos 0x10, ttl 64, id 46022, offset 0, flags [DF], proto: TCP (6), length: 40)} \\ 1.1.1.1.11111 \\ > 2.2.2.2.22222 \ ., cksum 0xb618 \ (correct), 8:8(0) \ ack 1 win 5840 \\ \end{array} $
х	$ \begin{array}{l} 4.229617 \ \ {\rm IP} \ ({\rm tos} \ 0x0, \ {\rm ttl} \ 50, \ id \ 20039, \ offset \ 0, \ flags \ [{\rm DF}], \ proto: \ {\rm TCP} \ (6), \ length: \ 1500) \\ 2.2.2.2.2222 > 1.1.1.1.11111: \ ., \ cksum \ 0xbflb \ ({\rm correct}), \ 1:1461(1460) \ ack \ 8 \ win \ 5840 \\ \end{array} $
XI	$4.229632~{\tt IP}~({\tt tos}~0x10,~{\tt ttl}~64,~{\tt id}~46023,~{\tt offset}~0,~{\tt flags}~[{\tt DF}],~{\tt proto:}~{\tt TCP}~(6),~{\tt length:}~40)\\ 1.1.1.1.11111 > 2.2.2.2.2.2222:~,~{\tt cksum}~0xa29c~({\tt correct}),~8:8(0)~{\tt ack}~2069~{\tt win}~8760$
XII	$ 4.231280 \text{ IP (tos 0x10, ttl 64, id 46024, offset 0, flags [DF], proto: TCP (6), length: 40) } \\ 1.1.1.1.11111 > 2.2.2.2.2.2222: F, cksum 0xa29b (correct), 8:8(0) ack 2069 win 8760 $
XIII	4.452312 TP (tos 0x0, ttl 50, id 20042, offset 0, flags [DF], proto: TCP (6), length: 40) 2.2.2.2.2222 > 1.1.1.1.1111: ., cksum 0xae03 (correct), 2069:2069(0) ack 9 win 5840

ITnerante 7

BASA – CESPE 2010 – TI – Redes e telecomunicações

10. Considerando a captura de tráfego apresentada acima, na forma de segmentos numerados de I a XIII, julgue os itens que se seguem.

[91] A captura apresenta apenas uma conexão TCP, estabelecida nos segmentos de I a III e encerrada nos segmentos VI e de XI a XIII.

[92] O segmento XII consiste em uma retransmissão do segmento XI.

[93] Não é consistente a afirmativa de que a captura foi realizada no host

[94] Houve entrega fora de ordem nos segmentos de IV a X.

[95] É consistente a afirmativa de que houve perda de segmentos na captura.

Gabarito

B
 E
 E
 E
 E
 E
 E
 E

3. C 10.C, E, E, E, E

4. D

5. E

6. E, E, C, C, C

7. C, C, C, E, E

