Этот алгоритм представляет собой онлайн-оптимизацию параметров модели ARIMA (AutoRegressive Integrated Moving Average) с использованием метода оптимизации на основе шага Ньютона (ONS). Давайте разберем основные шаги алгоритма:

1. Определение параметров:

- \mathcal{K} множество коэффициентов модели ARIMA(m+k,d,0), где m порядок авторегрессии, k порядок скользящего среднего, d порядок интегрирования.
- D диаметр (возможно, нормированный) множества \mathcal{K} .
- G норма градиента лосс-функции ℓ_t^m для текущего шага и текущего значения γ .
- λ параметр экспоненциальной вогнутости лосс-функции.

2. Инициализация:

- A_0 начальная матрица размера (m+k) imes (m+k).
- m вычисляется на основе параметра λ_{\max} и максимального значения функции потерь.

3. Основной цикл:

- Для каждого временного шага *t*:
 - Прогнозирование $ilde{X}_t(\gamma^t)$ на основе текущих коэффициентов γ^t .
 - Получение фактического значения X_t и вычисление функции потерь $\ell_t^m(\gamma^t)$.
 - Вычисление градиента ∇_t функции потерь и обновление матрицы A_t .
 - Выполнение проекции $\prod_{\mathcal{K}}^{A_t}(\gamma^t)$ для обновления коэффициентов γ^{t+1} .
 - Продолжение цикла для следующего временного шага.

4. Проекция $\prod_{\mathcal{K}}^{A_t}(y)$:

• Это операция проекции точки y на множество $\mathcal K$ с использованием матрицы A_t .

5. Обновление матрицы A_t :

• Используется формула Шермана-Моррисона для обновления обратной матрицы.

6. Оптимизация коэффициентов γ :

• Используется метод оптимизации на основе шага Ньютона с использованием матрицы A_t и градиента ∇_t .

Алгоритм итеративно обновляет параметры модели ARIMA, чтобы минимизировать функцию потерь в онлайн-режиме.