Chapter6

Properties and Applications of Metals

강의명: 기계재료공학 (MFA9009)

정영웅

창원대학교 신소재공학부

YJEONG@CHANGWON.AC.KR

연구실: #52-208 전화: 055-213-3694

HOMEPAGE: http://youngung.github.lo

Intro

 새로운 재료의 개발이 주 업무가 아닌 엔지니어라면 재료와 관련된 대부분의 문제는 특정한 응용에 필요한 적절한 특성을 갖는 재료를 선택하는 것이다. 재료 선택의 결정에 참여하는 엔지니어는 가능한 선택에 대한 지식을 가지고 있어야 한다.

■이번 장에서는 중요한 상용(commercial) 합금의 종류와 성질 그리고 응용에 있어서의 한계점들을 간단히 살펴보도록 하겠다.

■금속합금은 크게 두 종류로 나뉜다. 철합금(ferrous alloy)과 비철합금(non-ferrous alloy).

철합금 Ferrous alloy

Metal alloys

강鋼 (steel)

Fe-C alloy (Carbon wt% < 1.4% - 탄소 농도에 따라 저탄소, 중탄소, 고탄소 강 분류)

탄소 외에도 상당히 많은 양의 다른 합금 원소(alloying element)를 포함한다.

조성(chemical composition)과 열처리(heat treatment)에 따라 다양한 종류가 존재한다.

기계적 성질은 탄소의 함량(carbon content)에 큰 영향을 받는다.

순탄소강(plain carbon steel)은 Carbon이외에 잔류하는 <u>미량의</u> 타원소 존재 (그리고 약간의 망간Mn)

합금강(alloy steel)은 상대적으로 더 많은 합금 원소를 특정 농도만큼 첨가한다.

탄소 농도에 따른 강 분류

탄소외의 합금 원소 여부에 따른 분류

강 (steel)의 분류법은 두가지:

- 탄소 함유량에 의한 분류
- 탄소에 합금 원소가 있는지 없는지

Plain-carbon steel (Fe + C) - 순탄소강 Alloy steel (Fe + C + Ni, Cr, Mo, Mn, V, Ti, ...) - 합금강

저탄소강

- ■강(steel)중에 가장 많이 생산된다 (Carbon ~ 0.4 wt%)
- ■Martensite 열처리에 반응하지 않는다.
- ■Microstructure(미세구조)는 주로 Ferrite+Pearlite
- ■우수한 연성과 인성
- ■기계가공성이 좋다 연성이 높으니까
- ■용접성이 좋다 합금 원소가 많지 않다!
- ■다양한 응용 (차체, 건축, 판재, 깡통 ...)

HSLA: High Strength Low-Alloyed carbon steel – addition of Cr, V, Ni, Mo. 순 저탄소(plain low-carbon steel)에 비해 hard, strong. 내부식성이 상대적으로 높다

중탄소강

Medium-carbon steel; 탄소 함유량이 0.25~0.60 wt% 열처리 과정:

Austenitizing (오스테나이트 상으로 변태 – 냉각 열처리/상변태의 시작 상태로) Quenching (급랭 – martensite 생성)

Tempering (martensite의 취성을 낮추고, 연성과 인성을 높이는 열처리)

- Plain medium-carbon steel (즉 탄소외의 다른합금 원소 없는 중탄소강)의 경우 위의 열처리가 표면에 국한하여 나타난다. 내부까지 tempered martensite를 갖기위해서는 pearlite/bainite nose를 더욱 뒤로 shift할 필요 – Cr, Ni, Mo 등을 첨가.
- ■Hardenability (경화능 개념)

AISI/SAE Designation ^a	UNS Designation	Composition Ranges (wt% of Alloying Elements in Addition to C) ^b			
		Ni	Cr	Мо	Other
10xx, Plain carbon	G10xx0				
11xx, Free machining	G11xx0				0.08-0.33 S
12xx, Free machining	G12xx0				0.10-0.35 S, 0.04-0.12 P
13xx	G13xx0				1.60-1.90 Mn
40xx	G40xx0			0.20 - 0.30	
41xx	G41xx0		0.80 - 1.10	0.15 - 0.25	
43xx	G43xx0	1.65 - 2.00	0.40 - 0.90	0.20 - 0.30	
46xx	G46xx0	0.70 - 2.00		0.15 - 0.30	
48xx	G48xx0	3.25-3.75		0.20 - 0.30	
51xx	G51xx0		0.70 - 1.10		
61xx	G61xx0		0.50 - 1.10		0.10-0.15 V
86xx	G86xx0	0.40 - 0.70	0.40 - 0.60	0.15 - 0.25	
92xx	G92xx0				1.80-2.20 Si

고탄소강

- ■High-carbon steel; 탄소 함유량이 0.60~1.40 wt%
- ■탄소강중에서 가장 경하고 강하다(일반적으로 탄소 함유량 높을 수록). 그리고 가장 낮은 연성.
- ■높은 내마모성이 요구될 때 (wearability)
- ■공구강(tool steel), 다이용 강(die steel)
- ■Cr, V, W, Mo (고탄소 합금강)

스테인리스강 (대표적인 합금강)

- ■내부식성 매우 우수; 표면이 미려
- ■필수적인 합금 원소는 Cr. 적어도 11 wt% 이상 필요 (*passive film*)
- ■주된 상이 Martensite or Austenite or Ferrite; 따라서 주된 상에 따라 stainless 세 종류로 나뉠 수 있다.
- ■Austenite stainless steel이 가장 흔하게 많이 쓰인다. Ni 필요 18-8 (Cr, Ni wt%); 최근 Ni 가격 상승으로 대체 STS 개발 요구된다.
- ■Austenite stainless steel은 자성이 없다.

Review on nomenclature (North America)

```
Nomenclature for steels (AISI/SAE)
  10xx
          Plain Carbon Steels
          Plain Carbon Steels (re-sulfurized for machinability-절삭 가공 쉽게하기 위해)
  11xx
  15xx
          Mn (1.00 - 1.65%)
  40xx
         Mo (0.20 \sim 0.30\%)
  43xx
         Ni (1.65 - 2.00%), Cr (0.40 - 0.90%), Mo (0.20 - 0.30%)
          Mo (0.5\%)
  44XX
where xx is wt% C x 100
example: 1060 steel – plain carbon steel with 0.60 wt% C
Stainless Steel >11% Cr
```

Steels

Based on data provided in Tables 13.1(b), 14.4(b), 13.3, and 13.4, Callister & Rethwisch 9e.

Cast iron (주철)

■탄소 함량이 2.14 wt% 이상인 ferrous alloy (철합금) - 대부분 주철: 3~4.5 C wt%

Fe-C phase diagram (revisited)

●앞서 Fe-C 평형 상태도에서 metastable한 Fe₃C를 평형상이라 가정하고 나타내었다. 주철의 경우 cementite가 열처리에 의해 평형상인 흑연(graphite)으로 변태하는 다음의 반응이 발생하는 경우가 종종있다:

$$Fe_3C \rightarrow 3Fe(\alpha) + C(흑연; graphite)$$

따라서 다음과 같이 Fe-C 상태도가 더욱 적절하다.

다만 흑연의 생성되는 경향은 조성과 냉각 속도(열처리 조건)에 영향을 받는다. Si가 흑연 생성을 촉진하는 역할을 하기도.

Si forces carbon out of (liquid or solid) solution – graphitizing agent

Adapted from Binary Alloy Phase Diagrams, T. B. Massalski (Editor-in-Chief), 1990. Reprinted by permission of ASM International, Materials Park, OH.

Low percentage of Si allows carbon to remain in solution forming iron carbides

회주철(gray cast iron)

■파괴시의 단면적(fractograph)이 회색을 띈다 –graphite structure 때문에

■조성:

Carbon: 2.5~4.0 wt%

■ Silicon: 1.0~3.0 wt% (Si: 흑연 생성 촉진)

■미세구조

■ 흑연(graphite)이 박편의 형태 – 콘후레크 (corn flake) 모양

■ 주로 α- ferrite나 pearlite의 matrix에 graphite가 박혀 있는 형태

■ 물성

- 흑연의 박편 모서리가 뾰족하여 응력집중 인자 역할.
- 인장 응력상태에서 낮은 강도, 그리고 brittle
- 압축 응력상태에서 비교적 높은 강도, 연성.
- 진동에너지 흡수에 매우 효과적

■응용

■ 진동에 노출되기 쉬운 기계의 지지 구조; 무거운 장비;

■기타:

■ <u>매우 저렴. 마찰에 대한 내성이 좋다</u>. 고온에서 유동성이 좋아 (Si) 복잡한 형태의 제조 가능.

From Metals Engineering Quarterly, February 1961. Copyright © 1961. Reproduced by permission of ASM International, Materials Park, OH.

회주철의 미세구조 조정

- ■조성 변화와 다양한 열처리를 통해
 - 연성(또는 구상) 주철
 - 백주철
 - 가단주철 (단조가 가능한 주철)
 - 조밀 흑연 주철(compacted graphite iron; CGI)

Fast cooling leads to 'metastable' Fe₃C over the stable Graphite

> 가단 (malleable) 주철

Adapted from W. G. Moffatt, G. W. Pearsall, and J. Wulff, The Structure and Properties of Materials, Vol. I, Structure, p. 195. Copyright © 1964 by John Wiley & Sons, New York.

연성(또는 구상) 주철

마그네슘/세륨 첨가

Ductile iron; or nodular (덩이덩이) iron

- ■일반적으로 pearlite가 matrix(모체)이나, 700°C 장시간 열처리후 ferrite 기지로 바뀐다 (pearlite의 Fe₃C내 carbon이 diffusion 통해 뭉쳐 graphite 형성)
- ■Ductile한 물성.

courtesy of C. H. Brady and L. C. Smith, National Bureau of Standards, Washington, DC (now the National Institute of Standards and Technology, Gaithersburg, MD).

백주철 (white cast iron)

- ■낮은 Si (1.0wt% 미만) 주철에서 급속 냉각을 통해 cementite상을 얻는다. 이 합금의 파단면(fractograph)이 백색의 외관을 띄어 백주철(white cast iron)이라고 부른다 (due to cementite)
- ■두꺼운 주철의 생산 공정중에 급속히 냉각될 수 있는 표면층에 백주철이 보일 수도 있다. 그 경우 회주철은 내부(interior)의 더욱 느리게 냉각되는 영역에서 생성. Cementite상의 비율이 높다 (낮은 Si). 매우 brittle하지만 매우 강하다.

■응용:

- 매우 단단하고 표면의 강한 내마모성이 필요한 분야. 압축기의 롤러
- 가단 주철 생산의 주원료.

Fast cooling leads to 'metastable' Fe₃C rather than the stable Graphite

회주철/백주철 미관

Fe+Graphite

Moderate/slow cooling + High Si

Fe+Cementite

Fast cooling + low Si

가단 주철

- ■백주철을 800~900°C 에서 가열하면 cementite가 분해되어 흑연 생성 (하루/이틀 가열 + 하루/이틀 냉각).
- ■흑연상은 냉각속도에 따라 응집형(cluster) 또는 장미형(rosette)으로 나타난다.
 - 매우 낮은 냉각속도하에서 surface tension의 작용으로 spheroidal shape으로 흑연이 석출된다.
- ■높은 강도와 상당한 연성 (따라서 단조 가능 – 가단이라는 명칭)

reprinted with permission of the Iron Castings Society, Des Plaines. IL.

조밀 흑연 주철 (compacted graphite iron, CGI)

■회주철(박편)과 연성(구상)주철의 중간 형태의 미세 조직을 가진다.

Graphite vs. Cementite in Cast Iron

Phase Stability Graphite

Cementite

Stable

Meta-stable

Cooling rate

Prefers slow

Prefers fast

Si effect

High Si promotes
Graphite
formation

Type of Cast iron

Gray

White

Non ferrous alloys

- ■철합금의 단점
 - 상대적으로 높은 밀도
 - 낮은 전기 전도도
 - 일상 분위기에서의 낮은 내부식성 (스테인레스 제외하고)
 - 더 이상적인 물성을 가진 합금이 필요한 곳이 있다.
- ■성형/가공성에 따른 분류
 - 주조합금(cast alloy); brittle하여 가공에 필요한 소성변형이 어렵다.
 - 단조합금(wrought alloy): 소성 변형이 가능한 경우
- ■열처리에 의해 기계적 강도가 높아질 수 있는 합금을 우리는 '열처리가 가능한 합금'이라 한다 heat treatability (열처리 가능성)

다양한 비철합금

구리 및 구리합금

- ■순수 구리는 연성이 높아 냉간 가공이 매우 쉽다. 하지만 절삭(machining)이 어렵다.
- ■내부식성이 높다.
- ■구리 합금은 대부분 열처리에 의해 경화나 강화되지 않는다. 따라서 냉간 가공을 통한 물성 향상이 주로 행해진다.

■합금:

- 황동 (brass): Substitutional alloy with Zinc
- 청동 (bronze): Cu + Tin, Al, Si, Ni 황동보다 단단하고 좋은 내부식성.
- Be-Cu: 우수한 특성 ; 높은 인장 강도와 전기적 성질. 내부식성, 내모마성 등이 높다. Heat-treatable. 하지만 제조 원가가 높다 (Be 비쌈)

알루미늄 및 알루미늄 합금

- ■FCC 결정구조
- ■밀도가 낮다 (2.7 g/cm³; steel: 7.9 g/cm³)
- ■높은 전기/열전도성
- "대기에서 높은 내부식성;
- ■비교적 높은 연성으로 성형 가공이 용이하다 알루미늄 호일
- ■기계적 강도는 냉간 가공과 합금화에 의해 증가. 석출 경화를 일으키는 합금도 있다.
- ■저밀도 경량 합금 (+Mg, Ti)
- 명명법
 - 네자리 숫자 (합금) + 열처리 기호

마그네슘 및 마그네슘 합금

- ■밀도가 매우 낮은 구조용 금속 (1.7 g/cm³)
- ■비행기 부품, 차체의 경량화를 위한 금속으로써 많은 연구가 활발히.
- ■내부식성 낮고, 점화가 쉽다 (발화가능성 높음)
- ■각종 모바일 기기, 컴퓨터, 자동차 등등.

타이타늄과 타이타늄 합금

- ■비교적 낮은 밀도 (4.5 g/cm³)
- ■높은 용융점 (1668°C)
- ■인장 강도가 1400 MPa
- ■연성이 높고, 단조, 기계 가공이 가능하다.
- ■상온에서 안정한 α상의 경우 HCP 결정 구조.
- ■883°C 에서 HCP상이 BCC-β상으로로 변태
- ■합금 원소에 의해 $\alpha \beta$ 상의 안정성이 달라진다.
- ■합금으로 인해 상온에 안정화된 β상 타이타늄 합금

고용융점 금속

- ■특별히 높은 용융 온도(melting temperature)를 갖는 금속들을 refractory metal(고용융점 금속)이라고 부른다 내열금속
- ■Nb, Mo, W, Ta 등이 대표적인 고용융점 금속
- Melting T of Nb: 2468 °C, W: 3410 °C
- ■텅스텐이 금속중 가장 높은 용융점 가진다.

초합금 (superalloy)

- ■최상의 성질을 갖는 합금- 고온과 가혹한 산화분위기에 장시간 노출되는 비행기의 터빈 부품 등에 사용된다.
- Co, Ni, Fe.
- ■Inconel, Rene 등이 널리 알려진 superalloy.

귀금속 (noble metal)

■산화와 부식에 강하고, 비싸고 ductile. 열에 강한 특징.

Ag, Au, Pt, Pd, Rh, Ru, Ir, Os

Summary

Steel / Cast iron

- Low/medium/high carbon steels.
- Plain carbon steel / alloy steel (such as stainless steel)
- Cast iron
 - Gray cast iron
 - Ductile cast iron
 - White cast iron
 - Malleable cast iron

Non ferrous alloys