* Master Theorem:
In $T(n) = a T(n) + \theta(n^k \cdot \log^k n)$ where $a \ge 1$, $b \ge 1$, $k \ge 0$, p is real case-I: If $a \ge b^k$ then $T(n) = \theta(n^{\log_b a})$ case-II: If $a = b^k$ and

(i) p < -1 then $T(n) = \theta(n^{\log_b a})$ (ii) p = -1 then $T(n) = \theta(n^{\log_b a})$ (iii) $p \ge -1$ then $T(n) = \theta(n^{\log_b a})$ case-III a $\le b^k$ and

(i) $p \le 0$ then $T(n) = \theta(n^k)$ or $O(n^k)$ (ii) $p \ge 0$ then $T(n) = \theta(n^k)$ or $O(n^k)$