

On the Value of Learning From Defect Dense Components for Software Defect Prediction

Hongyu Zhang, Adam Nelson, Tim Menzies

Defect Prediction /1

- Software quality assurance (QA) is a resource and time-consuming activity to detect defects (bugs).
 - Software testing
 - Code inspection
 - Model checking
 - Review meetings

• ...

- One contributing factor to low software quality is the limitation of resources for QA
 - Limited by time and cost

How to allocate the limited QA resources more efficiently?

Defect Prediction /2

- Software defect prediction: we want to be able to predict the defect-proneness of a software
 - to better estimate the quality of the software
 - to better allocate QA resources.
- In recent years, research on software defect prediction has drawn the attention of many researchers in the software engineering filed.

Defect Prediction /3

- A few recent works on NASA datasets:
 - Menzies et al. performed defect predictions for five NASA projects using static code metrics.
 - \circ The average results of recall= 71% and pf = 25%, using a Naive Bayes classifier, but the precisions are low.
 - Khoshgoftaar and Seliya performed an extensive study on NASA datasets using 25 classifiers.
 - They observed low prediction performance, and they did not see much improvement by using different classifiers.
 - Lessmann et al. reported a study on the statistical differences between 19 data miners used for defect prediction.
 - o The learner's performance was remarkably similar.
 - many more ...

The Ceiling Effect

- The high water mark in this field has been static for several years.
- For example, for four years we have been unable to improve on Menzies' 2006 results.
- Other studies report the same ceiling effect:

...the importance of the classifier model is less than

generally assumed ... practitioners are free to choose

from a broad set of models [Lessmann et al., 2008]

Perhaps it is time to explore other approach - we can look more at the data rather than the miner.

Maths about Defect Prediction

- Let {A, B, C, D} denote the true negatives, false negatives, false positives, and true positives (respectively) found by a binary detector.
- Certain standard measures can be computed as:
 - pd = recall = D/(B + D)
 - pf = C/(A+C)
 - prec = precision = D/(D + C)
 - acc = accuracy = (A + D)/(A + B + C + D)
 - F-measure = 2 *recall *prec/(recall + precision)
 - neg/pos = (A + C)/(B + D)
- The last measure (neg/pos) is important for understanding the data and the results.

The Impact of Neg/Pos ratio

• The Zhangs' equation about Precision and Recall

$$pf = \frac{pos}{neg} \cdot \frac{(1 - prec)}{prec} \cdot recall$$

- As neg/pos increases, high *recall&precision* 0.2 is only possible when *pf* becomes vanishingly small.
- For example, in the ranges $0.65 \le prec$, recall ≤ 0.8 , pf falls into the following ranges:

$$\checkmark$$
 0.023 ≤ pf ≤ 0.062 for neg/pos = 7;

$$\checkmark$$
 0.011 ≤ pf ≤ 0.029 for neg/pos = 15;

$$\checkmark 0.007 \le pf \le 0.002$$
 for neg/pos = 250;

The change of precision with pf and pd when neg/pos = 15

Changing the NEG/POS ratio /1

- One obvious way to change neg/pos ratio is to over-sample or under-sample the training data.
- Both methods might be useful in data sets with highly imbalances class distributions.
- At PROMISE'08, Menzies et al. demonstrated in the paper that:
 - "No treatment" performed as well as under-sampling
 - Over-sampling did not improve classifier performance.

Changing the NEG/POS ratio /1

- We replicated the experiment described by Menzies et al. The results were evaluated using f-measure
- In summary, undersampling/oversampling approaches do not appear to be promising.

		f-m	casur	e	2nc	l quartile
		perc	entile	s	n	nedian,
Rank	Treatment	25% 5	50%	75%	3rd	l quartile
1	j48/ none	27	86	94	ı –	
2	j48/ over	33	80	92	1 .	- •
3	nb/none	33	69	81	1 .	- •
4	nb/under	33	67	79	1 .	- •
4	nb/over	33	67	79	1 .	- •
5	j48/ under	30	53	79	1 -	
					0	50 100

Breaking Through the Ceiling

- In this paper, we exploit the naturally occurring distributions inside defect data sets.
 - Some interesting observations:
 - In Eclipse 3.0, 20% of the largest packages are responsible for 60.34% of the pre-release defects and 63.49% of post-release defects
 - At the file level, 20% of the largest Eclipse 3.0 files are responsible for 62.29% pre-release defects and 60.62% postrelease defects.
 - These results are consistent with those reported by other researchers.

The Nature of Defect Data

- Similar phenomenon is observed in NASA datasets
- For example, for the PC3 dataset (module level):
 - The top 5% "most defective" PC3 modules contain 68.34% of the defects
 - The top 10% "most defective" PC3 modules contain 98.84% of the defects.
- For example for the PC3 dataset (component level):
 - 6 out of 29 (20.69%) "most-defective" components contains 77.61% defects and 70% defective modules.
 - The NEG/POS ratios in these components range from 0.93 to 2.70, while for all modules in PC3, the overall NEG/POS ratio is 8.77.

in a large software system, the distribution of defects are skewed — most of the defects are found in the minority of components, which have lower NEG/POS ratios.

Defect Distributions of components

KC1 Defect Distribution

Defect Distributions of components

Breaking Through the Ceiling

Identifying the defect dense components:

If the number of defective modules per component exceeds the median number of defective modules across all components in that data set, it is labeled as a defect-dense component.

The idea:

Build defect prediction model using the training data from high defect dense components, instead of using all project data.

Datasets

Project	language	#Defects	#Modules	#Defective Modules	#Components	#Defective Components	#Dense Components
CM1	C++	70	505	48	20	9	9
KC1	C++	525	2107	325	18	18	9
MC1	C++	79	9466	68	57	26	26
PC1	C++	139	1107	76	29	17	14
PC3	C++	259	1563	160	29	17	14

- Five NASA defect datasets from the PROMISE repository were used.
- For each data set, components are extracted (using a unique identifier) containing both defective and non-defective modules.

The experiments

```
1 \text{ For run} = 1 \text{ to } 10
    For each dense component C in data set D
3
      Train = C
       Test = D - C
5
       For bin = 1 to 10
          Test' = 10% of Test (picked at random)
          Train' = 90% of Train (picked at random)
8
          Naive Bayes (Train', Test')
      end bin
9
10
     end component
11 end run
```


Using data from all components, rank computed by												
C v			recall			2nd quartile						
Mann-Whitney test:				percentiles			median,					
	Rank	Treatment	25% 50% 75%		3rd quartile							
	1	Train on Dense Components	31	69	91	ı						
	1	Train on All Components	35	71	93	I		l				
•						0	50 10	00				

			pf	2nd quarti			le
		perc	percentiles median,				
Rank	Treatment	25% 5	0%	75%	3re	d quartil	e
1	Train on Dense Components	0	15	52	—		- 1
2	Train on All Components	0	26	65	⊢	——	1
				•	0	50	100

				cisio centile		2	nd quartil median,	le
	Rank	Treatment	25% :	50%	75%	3	rd quartil	e
	1	Train on All Components	20	78	95	I -		
	1	Train on Dense Components	12	75	96	I —		— ∣
•					•	0	50	100

- Over all the datasets studied here, training on dense components (those containing a higher number of defective modules) yields:
 - Similar medians (for recall and precision).
 - however, dramatic gains are seen with pf: the median error rates decrease by nearly half

Project	Recall				b. False	Alarm (Pf)		Precision		
		(0% 50% 100%		(0% 50%	100%		0% 50% 100%	
	1	All	ı - • 	1	Dense	← I	I	1	All I 	
CM1	2	Over	ı - 	2	Over	I 	1	1	Over	
CIVII	2	Under	ı - • -	2	Under	I — —	1	1	Under 1 — 1 → 1	
	3	Dense		2	All	I 	1	1	Dense -	
	1	Dense	l + → l	1	All	I ● ───────	I	1	Dense ∣ 	
KC1	1	Under		1	Over	I ◆ 	1	1	All 1 + ◆ 1	
KCI	1	All	I I	1	Under	I ● 	1	1	Under	
	1	Over	I I	1	Dense	I - ●+	1	1	Over 1 • − − 1	
	1	Over	I I —●I	1	Over	1 ← 1	I	1	Dense - ← - -	
MC1	1	Under		1	Under	I ● ── I	1	1	All + ◆ + → +	
MC1	2	All	ı → —ı	2	All	I ●	1	1	Under -◆	
	3	Dense		3	Dense	I ● 	1	1	Over 1 ● 	
	1	Dense		1	Dense	I ← I	I	1	Dense I I —●I	
PC1	2	Over		2	Over	I ● 	1	2	All	
rei	2	All		2	All	I ● 	1	2	Under	
	3	Under		3	Under	I 	1	3	Over 1	
	1	Under	I	1	Dense	⊢	I	1	Dense	
PC3	1	Over		2	Over	I — • —	1	1	Under	
PCS	2	All		2	Under	I - ●I	1	1	All 1 - • 1 1	
	2	Dense		3	All	I 	I	1	Over	

data	performance	all	dense	over	under
set	measure	components	components	sampling	sampling
CM1	precision	0	^O	Ô	Ô
	recall	+	-	-	-
	pf	-	+	-	-
KC1	precision	0	0	0	0
	recall	0	0	0	0
	pf	0	0	0	0
MC1	precision	0	0	0	0
	recall	-	-	0	0
	pf	-	-	0	0
PC1	precision	-	+	-	-
	recall	-	+	-	-
	pf	-	+	-	-
PC3	precision	0	0	0	0
	recall	-	-	0	0
	pf	-	+	-	-
summary	+	1	5	0	0
	0	6	6	9	9
	-	8	4	6	6

Each treatment is assigned one of {+, 0, -} depending on if it won, tied, lost in the statistical rankings

Note that dense won most often, and lost the least amount of times compared to all other treatments

- In the majority cases, training on dense components yielded:
 - statistically significantly better defect prediction models than training on all components.
 - these detectors performs better than those learned from over- and under- samplings.

Conclusions

- A previously unexplored feature of the PROMISE defect data sets are the small number of components containing most of the defects.
- This skewed defect distribution has implications on our data analysis of the PROMISE defect datasets.
- To test this possibility, we restricted training to just the components with higher than the median number of defective modules.
- We found that training via dense sampling is useful for generating better defect prediction.
- we recommended the proposed method whenever it becomes apparent that components have different defect densities.

Thank you!

Hongyu Zhang Associate Professor School of Software, Tsinghua University Beijing 100084, China

Email: hongyu@tsinghua.edu.cn

Web: http://www.thss.tsinghua.edu.cn/hongyu

