Vorlesung 12: Lineare Hüllen, Basen, Dimension.

02.12.2022

Sei V ein \mathbb{K} -Vektorraum und $M \subset V$ eine beliebige Teilmenge.

Sei V ein \mathbb{K} -Vektorraum und $M \subset V$ eine beliebige Teilmenge.

Die **lineare Hülle** oder der **Spann** [M] von M ist für $M \neq \emptyset$ die Menge aller Linearkombinationen von Vektoren aus M.

Sei V ein \mathbb{K} -Vektorraum und $M \subset V$ eine beliebige Teilmenge.

Die **lineare Hülle** oder der **Spann** [M] von M ist für $M \neq \emptyset$ die Menge aller Linearkombinationen von Vektoren aus M.

Für $M = \emptyset$ setzen wir $[\emptyset] = \{0\}$.

Sei V ein \mathbb{K} -Vektorraum und $M \subset V$ eine beliebige Teilmenge.

Die **lineare Hülle** oder der **Spann** [M] von M ist für $M \neq \emptyset$ die Menge aller Linearkombinationen von Vektoren aus M.

Für
$$M = \emptyset$$
 setzen wir $[\emptyset] = \{0\}$.

Ist
$$M = \{v_1, \dots, v_n\}$$
, so schreibt man auch $[v_1, \dots, v_k]$ statt $[\{v_1, \dots, v_k\}]$.

■ Die lineare Hülle der Vektoren $v_1=(1,2)$ und $v_2=(0,1)$ in \mathbb{R}^2 ist der gesamte \mathbb{R}^2

- Die lineare Hülle der Vektoren $v_1=(1,2)$ und $v_2=(0,1)$ in \mathbb{R}^2 ist der gesamte \mathbb{R}^2
- Die lineare Hülle $[X^0, X^1, X^2, X^3]$ ist die Menge der Polynome vom Grad kleiner gleich 3. Die Menge *aller* Polynome $\mathbb{K}[X]$ ist die lineare Hülle *aller* Monome X^0, X^1, X^2, \dots

Allgemeine Eigenschaften

Gegeben: V = Vektorraum, $M \subset V$

Dann gilt:

$$M \subset [M]$$
 $M_1 \subset M_2 \implies [M_1] \subset [M_2].$

Erzeugende Mengen

Gegeben sei ein \mathbb{K} -Vektorraum V.

Erzeugende Mengen

Gegeben sei ein \mathbb{K} -Vektorraum V.

Eine Menge $M \subset V$ mit [M] = V heißt erzeugende Menge oder Erzeugendensystem von V.

Erzeugende Mengen

Gegeben sei ein \mathbb{K} -Vektorraum V.

Eine Menge $M \subset V$ mit [M] = V heißt erzeugende Menge oder Erzeugendensystem von V.

Eine erzeugende Menge M von V heißt **minimal**, wenn es keine echte Teilmenge M' von M gibt, für die [M'] = V gilt.

Die Menge $M=\{v_1,v_2,v_3\}$ mit $v_1=(1,2),\ v_2=(0,1),\ v_3=(0,2)$ ist eine erzeugende Menge des \mathbb{R}^2 , denn jedes $v\in\mathbb{R}^2$ ist als Linearkombination von $v_1,\ v_2,\ v_3$ darstellbar.

Die Menge $M=\{v_1,v_2,v_3\}$ mit $v_1=(1,2),\ v_2=(0,1),\ v_3=(0,2)$ ist eine erzeugende Menge des \mathbb{R}^2 , denn jedes $v\in\mathbb{R}^2$ ist als Linearkombination von $v_1,\ v_2,\ v_3$ darstellbar.

M ist nicht minimal, denn für die echten Teilmengen $M' = \{v_1, v_2\}$ und $M'' = \{v_1, v_3\}$ gilt ebenfalls $[M'] = [M''] = \mathbb{R}^2$.

Die Menge $M=\{v_1,v_2,v_3\}$ mit $v_1=(1,2),\ v_2=(0,1),\ v_3=(0,2)$ ist eine erzeugende Menge des \mathbb{R}^2 , denn jedes $v\in\mathbb{R}^2$ ist als Linearkombination von $v_1,\ v_2,\ v_3$ darstellbar.

M ist nicht minimal, denn für die echten Teilmengen $M' = \{v_1, v_2\}$ und $M'' = \{v_1, v_3\}$ gilt ebenfalls $[M'] = [M''] = \mathbb{R}^2$.

Die Mengen M' und M'' sind minimale erzeugende Mengen von \mathbb{R}^2 .

Maximal linear unabhängig

Eine linear unabhängige Menge $B \subset V$ heißt maximal, wenn jede linear unabhängige Teilmenge $B \subset B' \subset V$ mit B übereinstimmt.

Basis

Eine Teilmenge $B \subset V$ eines \mathbb{K} -Vektorraums V heißt eine Basis, wenn B linear unabhängig und erzeugend ist.

Beispiel: Standardbasis

$$B = \{e_1, \dots, e_n\}$$
 ist die **Standardbasis** des \mathbb{K}^n .

Eine weitere Basis des \mathbb{K}^n ist $B = \{b_1, \dots, b_n\}$ mit

$$b_1 = (1,0,0,0,\ldots,0)$$

$$b_2 = (1,1,0,0,\ldots,0)$$

$$b_3 = (1,1,1,0,\ldots,0)$$

$$\vdots$$

$$b_n = (1,1,1,1,\ldots,1)$$
:

Eine weitere Basis des
$$\mathbb{K}^n$$
 ist $B = \{b_1, \dots, b_n\}$ mit $b_1 = (1, 0, 0, 0, \dots, 0)$ $b_2 = (1, 1, 0, 0, \dots, 0)$ $b_3 = (1, 1, 1, 0, \dots, 0)$ \vdots $b_n = (1, 1, 1, 1, \dots, 1)$:

B ist erzeugend:

man kann die Standardbasisvektoren e_1, \ldots, e_n alle durch die b_i linear kombinieren: $e_1 = b_1, e_2 = b_2 - b_1, \ldots, e_n = b_n - b_{n-1}$;

Eine weitere Basis des
$$\mathbb{K}^n$$
 ist $B = \{b_1, \dots, b_n\}$ mit $b_1 = (1, 0, 0, 0, \dots, 0)$ $b_2 = (1, 1, 0, 0, \dots, 0)$ $b_3 = (1, 1, 1, 0, \dots, 0)$ \vdots $b_n = (1, 1, 1, 1, \dots, 1)$:

B ist erzeugend:

man kann die Standardbasisvektoren e_1, \ldots, e_n alle durch die b_i linear kombinieren: $e_1 = b_1$, $e_2 = b_2 - b_1$, \ldots , $e_n = b_n - b_{n-1}$; somit kann man auch alle Vektoren in \mathbb{K}^n aus Vektoren in B linear kombinieren.

Eine weitere Basis des \mathbb{K}^n ist $B = \{b_1, \ldots, b_n\}$ mit

$$b_1 = (1,0,0,0,\ldots,0)$$

$$b_2 = (1,1,0,0,\ldots,0)$$

$$b_3 = (1,1,1,0,\ldots,0)$$

$$\vdots$$

$$b_n = (1,1,1,1,\ldots,1)$$
:

B ist erzeugend:

man kann die Standardbasisvektoren e_1, \ldots, e_n alle durch die b_i linear kombinieren: $e_1 = b_1$, $e_2 = b_2 - b_1$, \ldots , $e_n = b_n - b_{n-1}$; somit kann man auch alle Vektoren in \mathbb{K}^n aus Vektoren in B linear kombinieren.

B ist auch linear unabhängig.

Analog: Im Vektorraum $\mathbb{K}[X]$ aller Polynome über \mathbb{K} ist die Menge aller Monome $B = \{m_i := X^i \mid i \in \mathbb{N}_0\}$ eine (unendliche) Basis.

Analog: Im Vektorraum $\mathbb{K}[X]$ aller Polynome über \mathbb{K} ist die Menge aller Monome $B = \{m_i := X^i \mid i \in \mathbb{N}_0\}$ eine (unendliche) Basis.

Der Nullraum $\{0\}$ hat die Basis $B = \emptyset$.

Satz 7.3: Basis = minimal erzeugend

Eine Teilmenge B eines \mathbb{K} -Vektorraumes V ist eine Basis genau dann, wenn B eine minimale erzeugende Menge ist.

Satz 7.4: Basis = maximal linear unabhängig

Eine Teilmenge B eines \mathbb{K} -Vektorraumes V ist eine Basis genau dann, wenn B maximal linear unabhängig ist.

Satz 7.5: Basisergänzungssatz

Es sei V ein endlich erzeugter \mathbb{K} -Vektorraum, $V \neq \{0\}$. Weiter sei $E \subset V$ ein endliches Erzeugendensystem von V und $L \subset E$ eine linear unabhängige Menge. Dann gibt es eine Basis B von V mit $L \subset B \subset E$.

Beweis

Folgerung 7.6

Ist V ein endlich erzeugter Vektorraum und $V \neq \{0\}$, so hat V eine endliche Basis.

Beweis

E nicht endlich?

Der Basisergänzungssatz gilt auch, wenn E unendlich ist.

E nicht endlich?

Der Basisergänzungssatz gilt auch, wenn E unendlich ist.

Der Beweis ist komplizierter, man benötigt das Auswahlaxiom (bzw. das "Lemma von Zorn").

Satz 7.8: Eine Basis existiert immer

Jeder Vektorraum V hat eine Basis.

Bemerkung

Die nach dem Basisergänzungssatz mögliche Ergänzung zu einer Basis ist nicht eindeutig bestimmt.

Satz 7.10: Anzahl Basiselemente ist immer gleich

Hat ein Vektorraum V eine endliche Basis B mit $n \in \mathbb{N}$ Elementen, so hat jede Basis B' von V ebenfalls n Elemente.

Beweis

Dimension

Ein Vektorraum mit einer endlichen Basis heißt **endlich dimensional**.

Dimension

Ein Vektorraum mit einer endlichen Basis heißt **endlich dimensional**.

Die für alle Basen von V übereinstimmende Anzahl $n \in \mathbb{N}$ der Elemente heißt **Dimension** von V.

Schreibweise: $\dim V = n$.

Dimension

Ein Vektorraum mit einer endlichen Basis heißt **endlich dimensional**.

Die für alle Basen von V übereinstimmende Anzahl $n \in \mathbb{N}$ der Elemente heißt **Dimension** von V.

Schreibweise: $\dim V = n$.

Ein Vektorraum, der keine endliche Basis hat, heißt **unendlich dimensional**.

$$\blacksquare$$
 dim $\mathbb{K}^n = n$

- \blacksquare dim $\mathbb{K}^n = n$
- $\mod \mathbb{K}[X] = \infty$

- \blacksquare dim $\mathbb{K}^n = n$
- $\operatorname{dim} \mathbb{K}[X] = \infty$
- Der Vektorraum aller Polynome vom Grad kleiner gleich g hat die Dimension g+1.

Satz 7.13

Für einen n-dimensionalen Vektorraum V gilt:

- (a) n+1 Vektoren aus V sind immer linear abhängig.
- (b) n linear unabhängige Vektoren aus V bilden immer eine Basis von V.

Beweis

Vorlesung 13: Basisdarstellung und Basiswechsel

7.12.2021

Als Vorbereitung lesen Sie bitte im Skript: Seiten 83-87