Pointers for Definite Integrals

#1 First and foremost, the function you are integrating must be *continuous on the interval and have an antiderivative* for the interval you are integrating over *in order to use the Fundamental Theorem of Calculus*. That is, if you are evaluating:

$$\int_{a}^{b} f(x) dx$$

then f(x), must be continuous on the closed interval [a,b] and have an antiderivative on the interval to use $\int_a^b f(x)dx = F(b) - F(a)$.

#2 If your function does have a discontinuity within the interval, there are two possibilities:

a) If there is an infinite discontinuity within the interval then

- (i) in AP Calculus AB $\int_{a}^{b} f(x)dx$ Does not exist
 - In AP Calculus BC $\int_{a}^{b} f(x) dx = \lim_{k \to c^{-}} \int_{a}^{k} f(x) dx + \lim_{w \to c^{+}} \int_{w}^{b} f(x) dx$
- b) If the only discontinuities are jump-discontinuities then you can handle the discontinuities by splitting the interval into subintervals. See the example below

$$\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx$$

#3 If your function is not differentiable at a given value in the integral you are integrating, you must break up the integral using that value as one of the endpoints.

$$\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx$$

 $(-)\cdot(+)=(-)$

 $(-)\cdot(-)=(+)$

 $(+)\cdot(+)=(+)$

 $(+)\cdot(-)=(-)$

Basic Integration Rules

$$\int_{a}^{a} f(x) dx = 0$$

$$\int_{a}^{b} f(x) dx = -\int_{a}^{a} f(x) dx$$

When $a \le c \le b$ then $\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{a}^{b} f(x) dx$

en
$$\int_{\underline{a}} f(x) dx = \int_{R_1} f(x) dx + \int_{C} f(x) dx$$

$$\int_{a}^{b} k \cdot f(x) dx = k \cdot \int_{a}^{b} f(x) dx$$

$$\int_{a}^{b} f(x) \pm g(x) dx = \int_{a}^{b} f(x) dx \pm \int_{a}^{b} g(x) dx$$

If
$$f(x) \ge 0$$
 on $[a,b]$, then $\int_a^b f(x) dx \ge 0$

If
$$f(x) \le 0$$
 on $[a,b]$, then $\int_{a}^{b} f(x) dx \le 0$ nsh

If
$$f(x) \ge g(x)$$
 on $[a,b]$, then $\int_{a}^{b} f(x) dx \ge \int_{a}^{b} g(x) dx$

Fundamental Theorem of Calculus

Part I: If f(x) is a continuous function on [a,b], and F(x) is an antiderivative of f(x) on [a,b], then $\int_{a}^{b} f(x)dx = [F(x)]_{a}^{b} = F(b) - F(a)$.

Part II:

$$\frac{d}{dx} \left[\int_{a}^{x} f(t) dt \right] = f(x)$$

$$\frac{d}{dx} \left[\int_{a}^{g(x)} f(t) dt \right] = f(g(x)) \cdot g'(x)$$

$$\frac{d}{dx} \left[\int_{m(x)}^{n(x)} f(t) dt \right] = \frac{d}{dx} \left[\int_{a}^{n(x)} f(t) dt - \int_{a}^{m(x)} f(t) dt \right] = f(n(x)) \cdot n'(x) - f(m(x)) \cdot m'(x)$$

If f(x) is continuous on [a,b], then there exists a number c in [a,b] such that

$$\int_{a}^{b} f(x)dx = \underbrace{f(c) \cdot (b-a)}_{\text{area of rectangle}}$$

$$\updownarrow$$

$$f(c) = \frac{1}{b-a} \int_{a}^{b} f(x)dx$$