Questions of the day

- How can a BST guarantee that it remains balanced, no matter what values are added or removed?
- Could there be anything better than a BST with guaranteed best-case performance?

AVL Trees and hash tables

William Hendrix

Outline

- Review
 - Lists
 - Stacks and queues
 - BSTs
- Balanced BSTs
- AVL trees
- Hash tables
- Collisions
- Hash functions

Review: lists

- List: ADT that stores and accesses values based on index
 - Implemented as array or linked list

Operation	Array-based (shifting)	Array-based (swapping)		LinkedList (given pointers)
Get(i)	$\Theta(1)$	$\Theta(1)$	O(n)	О
Set(i, x)	$\Theta(1)$	$\Theta(1)$	O(n)	$\Theta(1)$
Insert(i, x)	O(n)	Θ (1) *	O(n)	$\Theta(1)$
Delete(i)	O(n)	$\Theta(1)$	O(n)	$\Theta(1)$
Append(x)	Θ (1) *	$\Theta(1)^*$	$\Theta(1)$	$\Theta(1)$

* Amortized complexity

- Array-based implementations get and set in $\Theta(1)$ time
 - Can insert and delete in $\Theta(1)$ if willing to swap
- LinkedLists usually slower
 - Can insert and delete in $\Theta(1)$ if given pointers
 - Some operations (like concatenation) are faster

Stack/queue review

- Data structures that access newest/oldest element added
 - Array implementations generally preferred
 - Linked list possible

Operation	Stack	Queue	Deque
Push(x) / Enqueue(x)	$\Theta(1)^*$	$\Theta(1)^*$	$\Theta(1)^*$
Pop() / Dequeue()	$\Theta(1)$	$\Theta(1)$	$\Theta(1)$
Peek()	$\Theta(1)$	$\Theta(1)$	Θ (1)

* amortized time

- All operations are constant amortized time
- Do not support random access
- Choice of stack/queue is based on desired access order
 - Stack: Last In, First Out (LIFO)
 - Queue: First In, First Out (FIFO)
 - Deque: Can simulate either

Review: trees

- Nonlinear linked data structure
- From graph theory: any connected acyclic graph
- Most trees in CS are rooted
 - Special vertex
 - Other vertices are defined in relation to root
 - Root has children, children have children, etc.
- *Leaf*: vertex with degree 1 (no children)
- Level: nodes at same distance from root
- *Height*: max level
- Siblings: vertices with same parent
- Binary tree
 - Tree where every node has at most 2 children
 - *left* and *right*
 - *m*-ary tree: every node has at most *m* children
 - Full binary tree: all non-leaf nodes have 2 children

Tree height

- How tall can a BST be?
- Worst case
 - Degenerate tree
 - Only left or right children
 - Height = O(n)
 - Can happen if inserting in sorted order
- Best case
 - Complete tree

•••

Complete tree height

- **Theorem:** Complete trees have 2^i nodes on level i, for every level (except possibly bottom level)
 - Proof sketch:
 - $1 = 2^{0}$ on level 0
 - Every subsequent level has twice as many as previous
- # nodes in complete binary tree of height h: $\sum_{i=0}^{n} 2^{i}$
 - Exponential identity: $\Theta(2^h)$
 - # nodes in complete tree w/ height h is $\Theta(2^h)$
 - Height of tree with n nodes is $\Theta(\lg n)$
- **Theorem:** half of all nodes in complete tree are leaves

BST complexity

	BST (best)	BST (worst)	Unsorted array	Sorted array
Search(x)	$\Omega(\lg n)$	O(n)	O(n)	$\Theta(\lg n)$
Insert(x)	$\Omega(\lg n)$	O(n)	$\Theta(1)$	O(n)
Delete(x)	$\Omega(\lg n)$	O(n)	Θ(1)*	O(n)
Min()	$\Omega(\lg n)$	O(n)	$\Theta(n)$	$\Theta(1)$
Max()	$\Omega(\lg n)$	O(n)	$\Theta(n)$	$\Theta(1)$

^{*} Swap to end and decrement size

- BST have great best-case complexity
- Worst case is worse than arrays!

Balanced BSTs

- BST variants that *guarantee* O(lg n) height
 - All ops have great complexity
- Three common balanced BSTs
 - AVL trees
 - Nodes keep track of *balance*
 - Balance = height(*right*) height(*left*)
 - Force balance to be 0, +1, or -1
 - Red-black trees
 - Nodes are assigned color (red or black)
 - Path to every leaf has same # black nodes
 - No two red nodes in a row
 - Splay trees*
 - Nodes move to the top of the tree as they are requested
- Enforce guarantee by adjusting tree as elements added and removed
 - Main mechanism: tree rotations

Tree rotations

- Based around a *pivot* node
- Two directions: *left* and *right*

• Left rotation:

- Parent becomes left child
- Pivot becomes parent
- Old left child becomes parent right child
- Pivot is new "root" (fix parent)

Right rotation:

- Parent becomes right child
- Pivot becomes parent
- Old right child becomes parent left child
- Fix pivot's new parent

Right rotation

AVL tree insertion

- Leaves have balance o
- Parent balance: add +1 (right) or -1 (left)
- If parent balance = 0: stop
- If parent balance = ± 1 , repeat with parent's parent
- If parent balance = ± 2 , fix the tree!
 - Four cases:

new

node

12

AVL tree insertion

- Leaves have balance o
- Parent balance: add +1 (right) or -1 (left)
- If parent balance = 0: stop
- If parent balance = ± 1 , repeat with parent's parent
- If parent balance = ± 2 , fix the tree!
 - Four cases:

new node

Balancing an AVL tree: left-left and right-right

- If directions match:
 - Rotate current node in opposite direction
 - Current and parent nodes balanced

Balancing an AVL tree: left-right and right-left

- If directions are opposite:
 - Rotate child node towards current
 - Rotate that node towards parent
 - All three nodes balanced

Balancing an AVL tree: left-right and right-left

- If directions are opposite:
 - Rotate child node towards current
 - Rotate that node towards parent
 - All three nodes balanced

AVL tree insertion

- 1. Insert new node with normal BST insert (balance = 0)
- 2. Go to parent of new node
- 3. If you just came from left child, balance--
- 4. Otherwise, balance++
- 5. 3 cases for balance:
 - a) If balance = 0: **stop**
 - b) If balance = ± 1 : go to parent and repeat from step 3

Path towards inserted node

- c) If balance = ± 2 : 4 cases
 - a) If balance negative and left child balance negative (<u>left-left</u>): rotate left child right
 - b) If balance positive and right child balance positive (<u>right-right</u>): rotate right child left
 - c) If balance negative and left child balance positive (<u>left-right</u>): rotate left child's right child left, then right
 - d) If balance positive and right child balance negative (<u>right-left</u>): rotate right child's left child right, then left

d) Stop

AVL tree deletion

- Similar to insertion
- Perform deletion as normal
- Update parent balance
 - Decrement if right child
 - Increment if *left* child
- If balance = \pm 1, no further changes
- If balance = 0, continue updating parent
- If balance = ± 2 , fix the tree

Rebalancing for deletion

- Cases are similar to insertion
 - Based on *sibling* node instead
- Rotate sibling based on its and parent's balance

Rebalancing for deletion

- Cases are similar to insertion
 - Based on sibling node instead
- Rotate sibling based on its and parent's balance
 - -/-: right rotation
 - -/+: left, then right rotation of grandchild
 - +/-: right, then left rotation of grandchild
 - +/+: left rotation
 - New root balance = o, so continue upwards

Hash table

- Sparse array-based data structure
- Insert elements according to a *hash function*
 - Function that maps elements in domain to integers o to size of array minus one (m-1)
 - Must take $\Theta(1)$ time

Example hash function

- $-f:\mathbb{Z}\to[0,m-1]$
- $-f(x) = x \mod m$
 - Overly simple
 - Most hash functions use modulus to ensure range

Example

- Size = 10, hash function: mod 10
- Insert 3, 15, 27, 82, 96, 100

100 82 3	15 96	27		
----------	-------	----	--	--

Collisions

What do we do when two values map to the same location?

- Two ways to resolve collisions
 - Separate chaining
 - Open addressing
- Separate chaining
 - Each index in array is the head of a linked list
 - E.g., node_t* arr;
- On collision:
 - Node containing new value becomes new head
- To search:
 - Start at index given by hash function
 - Scan list until you find target (or end of list)

Open addressing

- Alternative to separate chaining
- On collision, insert at next available open space
 - Use mod to "wrap around"
- Example: insert 25

100	82	3	15	96	27	-
			†			
			25			

- Alternative to separate chaining
- On collision, insert at next available open space
 - Use mod to "wrap around"
- Example: insert 25

100 82 3 15 96 27

† 25

- Alternative to separate chaining
- On collision, insert at next available open space
 - Use mod to "wrap around"
- Example: insert 25

- Alternative to separate chaining
- On collision, insert at next available open space
 - Use mod to "wrap around"
- Example: insert 25

100 82 3 15 96 27 25

- Alternative to separate chaining
- On collision, insert at next available open space
 - Use mod to "wrap around"
- Example: insert 25

To search:

- Start at hash function index
- If target not there, scan until you locate element or find empty space
- To delete: mark element "not present"
- Congestion
 - Challenge with open addressing
 - If too many consecutive entries are full, hash table performance degrades
 - More insertions in congested region aggravate problem

Probing strategies

- How to locate "next" open space
 - All use mod to ensure valid range
- Linear probing
 - Consider h(x), h(x) + 1, h(x) + 2, h(x) + 3, ...
 - Easy
 - Vulnerable to congestion
- Quadratic probing
 - h(x), h(x) + 1, h(x) + 4, h(x) + 9, ...
 - Leaves more "gaps"
 - Not good when array gets nearly full
- Double hashing
 - $h(x), h(x) + h_2(x), h(x) + 2h_2(x), h(x) + 3h_2(x), ...$
 - Usually use secondary hash function
 - Shouldn't return o
 - Congestion less likely
 - More complex

Hashing complexity

Separate chaining

- Search
 - Hash x
 - Scan list
- Insert
 - Hash x
 - Prepend
 - O(1)
- Delete
 - Hash x
 - Scan list and delete
- Complexity depends on length of linked list
 - Worse case: O(n)

Open addressing

- Search
 - Hash x
 - Probe until x or empty space
- Insert
 - Hash x
 - Probe until empty space
- Delete
 - Hash x
 - Probe until *x*
 - Mark "not present"
- Complexity depends on probing
 - Worst case: O(n)

Why would anyone use a hash table?

- Bad worst-case complexity but great expected-case complexity
- Expected-case assumptions
 - Hash function produces $\Theta(1)$ collisions
 - Each inserted value has $\Theta(1)$ duplicates
 - $-m = \Theta(n)$
- Search(x)
 - Hashing and scanning take $\Theta(1)$ time
- Insert(x)
 - Hashing and scanning take $\Theta(1)$ time
- Delete(x)
 - Hashing and scanning take $\Theta(1)$ time
 - Reinsertion takes $\Theta(1)$ time (open addressing)

Rehashing

- As elements get added to hash table, performance gets worse
 - Lists get longer
 - Table gets more clogged
- Rehashing
 - Allocating larger table
 - Double capacity
 - Reinsert everything in old table into new one
 - Doesn't increase average complexity
- Rehashing triggered by load factor
 - size / capacity ratio
 - Rehash at some threshold
- Open addressing does very poorly with high load factor
 - Definitely \leq 0.5
- Separate chaining tolerates higher load factor
 - Between 0.5 and 1

Hash functions

- Good HT performance depends on having good hash function
- Many hash functions use mod at end
 - Ensures range o..capacity-1
- Good hash functions should:
 - Be fast to compute
 - Produce every index equally often
 - Spread nearby values apart
 - Especially for open addressing
 - Reduces chance of congestion

• Example:

- Capacity = 10; h(x) = 3x % 10
- Open addressing + linear probing
- Insert 1, 1, 2, 3, 3

- Much worse if h(x) = x % 10

Linear hash functions

- Linear functions can be dangerous
- Example:
 - Capacity = 10
 - h(x) = 4x % 10
 - Insert 1-10:

- Important that multiplier and capacity not have common factors
 - Prime capacity addresses this issue
- *Alternative*: rotations
 - Bitwise operation
 - Rotate 8 bits left by 3: (x << 3) | (x >> 5)

$$01001101 \quad x = 77$$

$$00000010 \times >> 5$$

$$01101010$$
 rot(x, 3) = 106

Multi-byte inputs

- Hash functions may also need to process strings, arrays, or objects
- Treat input as string of bytes
 - Combine bytes (or ints) together
 - Hash resulting int

Example

```
Input: str: string to be hashed
Input: n: length of str
Input: m: capacity of hash table
Output: hash index for str in the range [0, m)

Algorithm: BasicStringHash

idx = 0

for i = 1 to n do

idx = idx + str[i]

end

return idx \mod m
```

Addition and bitwise xor commonly used to combine

Permutations

- Potential issue for multi-byte hash functions
 - opts, post, pots, stop, tops
 - Affects strings and arrays
- Clever multi-byte hash functions use progressive hashing
 - Multiply or rotate previous hash by a constant
 - Add or xor next char or int

Example

```
Input: str: string to be hashed
Input: n: length of str
Input: m: capacity of hash table
Output: hash index for str in the range [0, m)

Algorithm: BetterStringHash

idx = 0

for i = 1 to n do

idx = 57 \cdot idx + str[i]

end

return idx \mod m
```

- Small multipliers can still produce collisions
- Overflow not an issue; just "wraps around"

Multiplying by 2 and adding

$$1 \rightarrow 2 + 0 = 2 \rightarrow 4 + 2 = 6$$

$$1 \rightarrow 2 + 1 = 3 \rightarrow 6 + 0 = 6$$

Sets or dictionaries

- Abstract data type for storing and retrieving values
 - Multiple valid implementations

Primary operations

- Search(x): returns the location of x in the set, or NIL if not contained
- Insert(x): adds x to the set
- Delete(x): removes x from the set

Additional operations

- Build(data): construct set from unsorted array
- Max(), Min(): return the location of the largest/smallest element
- Successor(x), Predecessor(x): return the next largest/smallest element than x

Set complexity

Operation	Balanced BST (worst case)	Hash table (expected)	Separate chaining (worst case)
Search(x)	O(lg n)	$\Theta(1)$	O(n)
Delete(x)	O(lg n)	$\Theta(1)$	O(n)
Insert(x)	O(lg n)	Θ (1)*	Θ (1)*

- Open addressing: same as separate chaining except that worst case insertion is O(n)
- Hash table expected complexity better than balanced BST
 - Worst case is <u>much</u> worse
- Hash tables better "most of the time"
- Balanced BST better if you need to access values in sorted order
- Or if worried about worst case
 - Not sure about hash function or input data
 - Lots of duplicates

Maps

- Abstraction of a function
- Main operations
 - **Insert**(\mathbf{x} , \mathbf{y}): declares that $f(\mathbf{x}) = y$
 - **Delete(x):** declares that f(x) does not have a value
 - **Search(x):** returns y such that f(x) = y, or NIL if f(x) does not have a value
- **Example:** letter frequencies
 - Problem: count how many times a letter appears in a given text
 - Used in cryptography
 - Sample output

E	Т	A	О	I	N	S	R	Н	•••
12	9	8	7	7	6	6	6	6	•••

- Need to associate count with letter
- f(E) = 12, etc.

Map implementations

- Two main implementations
- Array-based map
 - Array of all possible x values
 - Stores f(x) in arr[x] (NIL if not initialized)

8	2	3	4	12	2	2	•••
\mathbf{A}	В	C	D	E	F	G	•••

- All main operations are constant time
- Only useful when input domain is small
- Set-based map
 - A.k.a., hash map
 - Set of ordered (x, y) pairs
 - Pairs added/searched according to x value
 - Search returns associated y value
 - Time complexity determined by hash table or BBST

Map complexity

Operation	Array-based map	Set-based (hash table)	Set-based (BBST)
Add(x, y)	$\Theta(1)$	Θ (1)*	O(lg n)
Delete(x)	$\Theta(1)$	$\Theta(1)^*$	O(lg n)
Insert(x)	$\Theta(1)$	$\Theta(1)^*$	O(lg n)
Build()	$\Theta(D)$	$\Theta(n)$	O(n lg n)

D: size of domain (*x* values)

^{*} Expected complexity for hash table

The power of maps

- Maps are very useful for storing values that we compute repeatedly
 - Especially when we can use direct maps
- **Example:** Discrete Fourier Transform
 - Given array *x* compute transformed array *c* such that

$$c_k = \sum_{j=1}^n x_j \int_{\mathbf{e}^{j}}^{\mathbf{e}^{j}} k(-2\pi i/n)$$
 Store values in lookup table

- Can also improve best-case performance for <u>any</u> algorithm
- 1. Build a map that contains problem instances and solutions
- 2. Before running another algorithm, test whether input is in map
- 3. If so, return the answer
- Best case typically constant or linear time
- Best case analysis not useful to compare algorithm quality

Coming up

- Hash tables
- Sets and maps
- Priority queues
- Heaps
- Union-Find
- **Recommended readings:** Sections 4.1, 4.2, 6.1, 6.2, and 6.3
 - Consider reading section 6.4
 - We won't cover cuckoo hashing, but it is a powerful idea
 - *Practice problems:* R-4.1, R-4.6, C-4.5, C-4.7, A-4.1, A-4.2, R-6.1, R-6.2, R-6.4 to R-6.7, C-6.6, A-6.1, A-6.6