Exam Questions

TEACHING ASSISTANT: DAVID TRABISH

The program contains a string constant.

The program contains a string constant.

The function **printf** from the standard library is not found.

The function **printf** from the standard library is not found.

Every time the command x = y + 42 is executed, the value of y is 0.

Every time the command x = y + 42 is executed, the value of y is 0.

All the variable names start with x.

All the variable names start with x.

The program contains a nested loop.

The program contains a nested loop.

The program contains a string constant with at least 200 characters.

The program contains a string constant with at least 200 characters.

The size of the stack exceeds 400 bytes.

The size of the stack exceeds 400 bytes.

The code contains only invocations of methods which located at offset 4 in the virtual table.

The code contains only invocations of methods which located at offset 4 in the virtual table.

There is an addition operation which is never executed in any run.

There is an addition operation which is never executed in any run.

LR(0) Item

An LR(0) item with the dot at the end is called **reduce** item:

• $N \rightarrow \alpha \beta$.

Otherwise, it's a **shift** item:

- $N \rightarrow \alpha \beta$
- $N \rightarrow \alpha . \beta$

LR(0) Item Closure Set

The LR(0) closure set of an LR(0) item i is a set S such that:

- $i \in S$
- If $A \to \alpha . N\beta \in S$ then for each rule $N \to \gamma$:
 - $N \rightarrow \gamma \in S$

SLR(1)

- Same push-down automaton as in LR(0)
- But reduce items has a look-ahead set
 - $A \to \alpha.\{t_1, t_2, ...\}$
 - where $Follow(A) = \{t_1, t_2, ...\}$

LR(1)

Maintain items with more precise look-ahead sets

An LR(1) item is of the form:

- $N \to \alpha.\beta \{\sigma\}$
- where $\sigma = t_1, t_2, \dots$ (terminals)

LR(1) Item Closure Set

The LR(1) closure set of an LR(1) item i is a set S such that:

- $i \in S$
- If $A \to \alpha . N\beta \{\sigma\} \in S$ then for each rule $N \to \gamma$:
 - $N \rightarrow \gamma\{\tau\} \in S$, where $\tau = First(\beta, \{\sigma\})$

Definition for $First(\beta, \{\sigma\})$:

- If β is not nullable:
 - $First(\beta)$
- Otherwise:
 - $(First(\beta) \cup {\sigma}) \setminus {\epsilon}$

Is the following CFG LR(0) / SLR(1) / LR(1)?

- $S \rightarrow A$ \$
- $A \rightarrow Axx$
- $A \rightarrow x$

$$S \to A\$$$

$$A \to Axx$$

$$A \to x$$

Is the following CFG LR(0) / SLR(1) / LR(1)?

- $S \rightarrow A$ \$
- $A \rightarrow xxA$
- $A \rightarrow x$

$$S \to A\$$$

$$A \to xxA$$

$$A \to x$$

$$S \to A\$$$

$$A \to xxA$$

$$A \to x$$

$$Follow(A) = \{\$\}$$

$$S \to A\$$$

$$A \to xxA$$

$$A \to x$$

Is the following CFG LR(0) / SLR(1) / LR(1)?

- $S \rightarrow A$ \$
- $A \rightarrow xAx$
- $A \rightarrow x$

$$S \to A\$$$

$$A \to xAx$$

$$A \to x$$

$$S \to A\$$$

$$A \to xAx$$

$$A \to x$$

$$Follow(A) = \{\$, x\}$$

$$S \to A\$$$

$$A \to xAx$$

$$A \to x$$

Question

We extend the language with automatic type inference:

• Can use auto when the declaration has an initial value

Describe the changes required in:

- Lexical analysis
- Syntactic analysis
- Semantic analysis

```
auto i := 8 + 100;
auto s := "1234";
class A {}
A a := new A;
auto b := a;
```

Question

A variable x depends on a variable y if y is used (directly or indirectly) to compute x. For example, c depends on x,y,b,z but not on t.

- Define a static analysis in terms of (D, V, \sqcup, F, I)
- Run on the example

```
y := t;
y := z + 5;
if (x > 0) {
   x := y * 2;
} else {
   x := y + b;
}
c := x;
```

Abstract Domain

We define (D, V, \sqcup, F, I) :

- Forward analysis
- *V* contains maps of the form:
 - $Var \mapsto P(Var) \text{ (e.g., } \{a : \{b,c\}\})$
- The join operator unifies the values of the map for each key
 - $\{a:\{b\}\} \sqcup \{a:\{c\},d:\{e\}\} = \{a:\{b,c\},d:\{e\}\}$
- On a = b + c:
 - $\{a: s_a, b: s_b, c: s_c, ...\} \rightarrow \{a: \{b, c\} \cup s_b \cup s_c, b: s_b, c: s_c, ...\}$
- Initialize with:
 - $\{v_1: \{\}, v_2: \{\}, ...\}$

Question

Add support for detecting accesses to uninitialized local variables. Describe the required changes in the code generation step.

For example:

```
void f() {
  int x;
  int y := 7;
  if (y > 10) {
    x := 100;
  }
  int z := x + 1;
}
```

High level idea:

- Initialize each variable flag to zero on function entry
- When writing to a local variable, set its flag to 1
- When reading a local variable, check if its flag is 1

- Initialize each variable flag to zero on function entry
- When writing to a local variable, set its flag to 1
- When reading a local variable, check if its flag is 1

```
prologue:
...
li $s0, 0
sw $s0, local_1_flag_offset($fp)
li $s0, 0
sw $s0, local_2_flag_offset($fp)
...
```


- Initialize each variable flag to zero on function entry
- When writing to a local variable, set its flag to 1
- When reading a local variable, check if its flag is 1

```
x = t0
```

```
sw $t0, x_offset($fp)
li $s0, 1
sw $s0, x flag offset($fp)
```


- Initialize each variable flag to zero on function entry
- When writing to a local variable, set its flag to 1
- When reading a local variable, check if its flag is 1

```
t0 = x
```

```
lw $s0, x_flag_offset($fp)
beq $s0, 0, abort
lw $t0, x_offset($fp)
```

var 1
flag 1
var 2
flag 2

Question

Apply the register allocation algorithm with 3 registers (R1,R2,R3) R1 can't hold a result of a multiplication operation.

```
t0 = 0
t1 = 1
t2 = 2
t3 = t2 * t1
t2 = t3
t1 = t1 + t0
```


initialization

first iteration

second iteration...

```
{t0}
{t0,t1}
{t0,t2,t1}
{t0,t3}
```



```
{t0}
{t0,t1}
{t0,t2,t1}
{t0,t3}
```



```
{t0}
{t0,t1}
{t0,t2,t1}
{t0,t3}
```

```
t0 = 0

t1 = 1

t2 = 2

t3 = t2 * t1

t2 = t3

t1 = t1 + t0
```



```
{t0}
{t0,t1}
{t0,t2,t1}
{t0,t3}
```

```
t0 = 0
t1 = 1
t2 = 2
t3 = t2 * t1
t2 = t3
t1 = t1 + t0
```


t2 t1 t0 t3

R3

