1.	Two broad categories of congestion control are
	a) Open-loop and Closed-loop
	b) Open-control and Closed-control
	c) Active control and Passive control
	d) None of the mentioned
2.	In open-loop control, policies are applied to
	a) Remove after congestion occurs
	b) Remove after sometime
	c) Prevent before congestion occurs
	d) Prevent before sending packets
3.	In Go-Back-N window, when the timer of the packet times out, several packets have to be
	resent even some may have arrived safe. whereas in Selective Repeat window, tries to send
	a) Packet that have not lost
	b) Packet that have lost or corrupted
	c) Packet from starting
	d) All the packets
4.	Discarding policy is mainly done by
	a) Sender
	b) Receiver
	c) Router
	d) Switch
5.	7. The technique in which a congested node stops receiving data from the immediate
	upstream node or nodes is called as
	a) Admission policy
	b) Backpressure
	c) Forward signalling
	d) Backward signalling
6.	Backpressure technique can be applied only to
	a) Congestion networks
	b) Closed circuit networks
	c) Open circuit networks
	d) Virtual circuit networks
7.	The packet sent by a node to the source to inform it of congestion is called
	a) Explicit
	b) Discard
	c) Choke
	d) Backpressure
8.	In the slow-start algorithm, the size of the congestion window increases until it
	reaches a threshold.
	a) Exponentially
	b) Additively
	c) Multiplicatively
	d) None of the mentioned

b) Flow o	of Cost
c) Flow o	of Traffic
d) Flow o	of Amount
10. In Congestion	, CBR stands for
a) Control B	it Rate
b) Constant	
c) Constant	
d) Congestio	n Byte Rate
11. There is no co	ommunication between congested node or nodes and source in the
a) Implicit S	
b) Explicit S	
c) Forward S	
d) Backward	Signaling
	following is not used for congestion control
•	aware routing
b) Admis	sion control
c) Load s	hedding
d) All of	above
13. In the1	traffic model, the data rate changes suddenly in a very short time.
a) Consta	nt bit rate
b) Variab	le bit rate
c) Bursty	
d) None of	of the above
14. In the	method, the signal is included in the packets that carry data.
a) Backpr	ressure
b) Choke	packet
c) Implic	it signalling
d) Explic	it signalling
15. Leaky bucket a	algorithm shapes bursty traffic into fixed –rate traffic by averaging the
a) Data ra	ate
b) Averag	ge rate
c) Traffic	rate
d) Traffic	shaping
For a host machine th	nat uses the token bucket algorithm for congestion control, the token
	of 1 mega byte and the maximum output rate is 20 mega bytes per
	e at a rate to sustain output at a rate of 10 mega bytes per second. The
	ntly 25% full and the machine needs to send 12 mega bytes of data. If
	idle for 2 seconds, then the minimum time required to transmit the data
s sec	onds.

9. Effective bandwidth is bandwidth that network needs to allocate for the

Flow of Data

a)