Av1 - Lógica e Matemática Computacional

1) Em um sentido amplo, a lógica é o estudo da estrutura e dos princípios relativos ao raciocínio, à estruturação do pensamento, com ênfase na argumentação, que pode ser considerada como válida ou inválida. Com base em premissas, ela permite a construção do raciocínio indutivo ou dedutivo, e também a realização de operações lógicas simbólicas e demonstrações matemáticas.

Podemos classificar o estudo da lógica em três grandes períodos:

Alternativas:

a) o Período Aristotélico, o Período Booleano e o Período Atual. Alternativa assinalada

- b) o Período do Silogismo, o Período Booleano e o Período Isaacotélico.
- c) o Período Aristotélico, Período do Silogismo e o Período Atual.
- d) o Período Aristotélico, o Período Booleano e o Período do Silogismo.
- e) o Período Aristotélico, o Período Booleano e o Período Isaacotélico.
- 2) Em um sentido amplo, a lógica é o estudo da estrutura e dos princípios relativos ao raciocínio, à estruturação do pensamento, com ênfase na argumentação, que pode ser considerada como válida ou inválida. Considere, por exemplo, as seguintes afirmações:
- (A) A Argentinal é um país da América do Sul.
- (B) Pedro Alvares Cabral é um grande jogador de futebol.

Assumindo a primeira proposição como verdadeira e a segunda como falsa, podemos dizer que:

- (A) = 1
- (B) = 0

Baseado no exemplo acima, a proposição "A Argentina é um país da América do Sul ou Pedro Alvares Cabral é um grande jogador de futebol" pode ser também representada como: (A) + (B) = 1 + 0 = 1, utilizando

Alternativas:

a) Linguagem natural e assim conclui-se que a proposição é verdadeira.

b) Álgebra Booleana e assim conclui-se que a proposição é verdadeira. Alternativa assinalada

- c) Aritmética convencional e assim conclui-se que a proposição é falsa.
- d) Teoria de Conjuntos e assim conclui-se que a proposição é falsa.
- e) Estrutura de linguageme assim conclui-se que a proposição é verdadeira.
- 3) A operação de complemento entre conjuntos tem uma hipótese importante, onde um conjunto precisa estar contido no outro. Na Matemática, observar quais são as hipóteses que um determinado resultado precisa satisfazer, é uma análise essencial. Relembrando a notação: $C_UA = U A = \{x; x \in U \mid e \times \notin A\}$

Sejam os conjuntos $U = \{1, 2, 4, 5, 6, 9, 10, 13, 15\}_{e} A = \{1, 2, 6, 9, 15\}$

Dentro desse contexto, observe o texto a seguir e preencha as lacunas.

Temos que $C_UA =$ ______. Agora, $C_AU =$ ______. Isso mostra que ______ e que $C_AU =$ é sempre igual ______, pois ______.

Assinale a alternativa que preenche corretamente as lacunas.

Alternativas:

- a) $\{1,2,6,9,15\}/\{1,2,4,5,6,9,10,13,15\}/C_AU = U/\text{ao conjunto } U/A \subseteq U$
- b) \emptyset /{1,2,6,9,15}/ $C_A U = A$ / ao conjunto A / $A = A \cap U$
- c) $\{4,5,10,13\}$, \emptyset , $C_UA \neq C_AU$, ao conjunto vazio, $A \subseteq U$. Alternativa assinalada
- d) $\{4,5,10,13\}/\{4,5,10,13\}/C_UA = C_AU/\text{ao conjunto } C_UA/A \subseteq U$
- e) $\{1,2,6,9,15\}$ / Ø / $C_U A \neq C_A U$ / ao conjunto vazio / $A = A \cap U$
- 4) Usualmente, um conjunto é descrito pelas suas propriedades. Por exemplo, se o conjunto é de números pares positivos, ao invés de escrever $\{2,4,6,8,10,12,....\}$, podemos representar esse conjunto como $\{x \in \mathbb{N}; 2x\}$. Assinale a alternativa que apresenta o conjunto definido por $C = \{x \in \mathbb{Z}; -2 \le x < 8\}$.

Alternativas:

- a) $C = \{-2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8\}$
- b) $C = \{-2,8\}$
- c) $C = \{0, 1, 2, 3, 4, 5, 6, 7\}$
- d) $C = \{-2,0,2,4,6\}$
- e) $C = \{-2, -1, 0, 1, 2, 3, 4, 5, 6, 7\}$ Alternativa assinalada
- 5) Quando pensamos de forma lógica, efetuamos muitas vezes certas operações sobre proposições, chamadas operações lógicas. Estas operações obedecem a regras de um cálculo, denominado cálculo proposicional, semelhante ao da aritmética sobre números. Os conectivos sentenciais correspondem a várias palavras nas linguagens naturais que servem para conectar proposições declarativas.

De acordo com as informações apresentadas na tabela a seguir, faça a associação dos principais conectivos (símbolos) com sua respectiva operação lógica.

I. ~	1. operação lógica CONJUNÇÃO.
II. A	2. operação BICONDICIONAL.
III. V	3. operação lógica NEGAÇÃO
IV. →	4. operação CONDICIONAL.
V. ↔	5. operação lógica DISJUNÇÃO.

ALENCAR FILHO, E. Iniciação à lógica matemática. São Paulo: Nobel, 2002.

Assinale a alternativa que apresenta a associação correta entre as colunas

Alternativas:

b)
$$I - 3$$
, $II - 1$, $III - 5$, $IV - 2$, $V - 4$.

d)
$$I - 3$$
, $II - 5$, $III - 1$, $IV - 4$, $V - 2$.