GÉOMÉTRIE À GRANDE ÉCHELLE DES GROUPES DE LIE DE COURBURE STRICTEMENT NÉGATIVE

Gabriel Pallier - Université Paris-Sud, Orsay

14 juin 2019

Séminaire Teich - Marseille

PLAN DE L'EXPOSÉ

Groupes de Heintze

Géométrie à grande échelle

Bord à l'infini des groupes de Heintze

Invariants pour les groupes de Heintze

GROUPES DE HEINTZE

GROUPES DE HEINTZE

Extrait d'un théorème (Heintze 1974) (Wolf 1964)

Soit Y une variété riemannienne simplement connexe homogène de courbure < 0. Y est une métrique invariante sur S résoluble.

GROUPES DE HEINTZE

Extrait d'un théorème (Heintze 1974) (Wolf 1964)

Soit Y une variété riemannienne simplement connexe homogène de courbure < 0. Y est une métrique invariante sur S résoluble.

Exemple : Si dim Y = 2 alors Y homothétique à \mathbb{H}^2_R (K est constante). En coordonnées horosphériques $ds^2 = dt^2 + e^{-2t}dx^2$.

 $S = \mathbf{R} \ltimes \mathbf{R}$ (avec $t.x = e^t x$) est un minimal parabolique de $\mathsf{Isom}^+(\mathbb{H}^2)$, il fixe $\omega \in \partial_\infty \mathbb{H}^2_\mathbb{R}$.

Soit S un groupe opérant simplement transitivement sur $H_{\mathbf{R}}^3$.

Soit S un groupe opérant simplement transitivement sur H^3_R . On montre qu'un tel S fixe exactement un point à l'infini, ω , le cocycle détermine $S/[S,S] \xrightarrow{\sim} R$ et S permute les horosphères centrées en ω .

Soit S un groupe opérant simplement transitivement sur H^3_R . On montre qu'un tel S fixe exactement un point à l'infini, ω , le cocycle détermine $S/[S,S] \xrightarrow{\sim} R$ et S permute les horosphères centrées en ω .

 $S = \mathbf{R} \ltimes \mathbf{R}^2$, **R** agit par dilatations, engendrées par

$$\alpha \sim \begin{pmatrix} 1+i\tau & 0\\ 0 & 1-i\tau \end{pmatrix}, \tau \in \mathbf{R}.$$

Mod. conjuguaison et normalisation, α détermine S.

Soit S un groupe opérant simplement transitivement sur H^3_R . On montre qu'un tel S fixe exactement un point à l'infini, ω , le cocycle détermine $S/[S,S] \xrightarrow{\sim} R$ et S permute les horosphères centrées en ω .

 $S = \mathbf{R} \ltimes \mathbf{R}^2$, \mathbf{R} agit par dilatations, engendrées par

$$\alpha \sim \begin{pmatrix} 1+i\tau & 0 \\ 0 & 1-i\tau \end{pmatrix}, \tau \in \mathbf{R}.$$

Mod. conjuguaison et normalisation, α détermine S.

infinité de groupes isométriques (à \mathbb{H}^3_R) non isomorphes. Mais un unique purement réel ($\tau = 0$).

Les groupes de Heintze de dimension 3 sont des $\mathbf{R} \ltimes_{\alpha} \mathbf{R}^2$ classifiés par α dilatatante ($\Re(\text{valeurs propres}(\alpha)) > 0$), mod. conjuguaison et et normalisation.

Les groupes de Heintze de dimension 3 sont des $\mathbf{R} \ltimes_{\alpha} \mathbf{R}^2$ classifiés par α dilatatante (\Re (valeurs propres(α)) > 0), mod. conjuguaison et et normalisation.

 $\cdot \ \alpha$ est **diagonale** : soit $\mu \geqslant$ 1, on forme $S_{\mu} = \mathbf{R} \ltimes \mathbf{R}^2$ avec

$$t.(x_1, x_2) = \exp\left[t\begin{pmatrix} 1 & 0 \\ 0 & \mu \end{pmatrix}\right] \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

· α est **unipotente** : on forme $S' = \mathbf{R} \ltimes \mathbf{R}^2$ avec

$$t.(x_1, x_2) = \exp\left[t\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}\right] \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

(Bianchi 1898 : S_{μ} avec $\mu \neq 1$ et S' ont chacune une famille à 1 param. de métriques invariantes à homothétie près) Pour S', pincement arbitrairement proche de 1.

Y = G/K espace symétrique de courbure sect. < 0, G = KAN. S = AN groupe de Heintze, agit simplement transitivement sur Y.

Y = G/K espace symétrique de courbure sect. < 0, G = KAN. S = AN groupe de Heintze, agit simplement transitivement sur Y.

Y = G/K espace symétrique de courbure sect. < 0, G = KAN. S = AN groupe de Heintze, agit simplement transitivement sur Y.

Exemples:

$$A = \mathbf{R}^1$$
, $N = \mathbf{R}^n$, $Y = \mathbb{H}_{\mathbf{R}}^{n+1}$.
 $A = \mathbf{R}^1$, $N = \text{Heisenberg}^{2n+1}$,
 $Y = \mathbb{H}_{\mathbf{C}}^{n+1}$.

Y = G/K espace symétrique de courbure sect. < 0, G = KAN. S = AN groupe de Heintze, agit simplement transitivement sur Y.

Exemples:

$$A = \mathbb{R}^1$$
, $N = \mathbb{R}^n$, $Y = \mathbb{H}_{\mathbb{R}}^{n+1}$.
 $A = \mathbb{R}^1$, $N = \text{Heisenberg}^{2n+1}$, $Y = \mathbb{H}_{\mathbb{C}}^{n+1}$.

En général un groupe de Heintze a la forme $\mathbf{R} \ltimes N$ où N est nilpotent et l'action dilatante. Ceux qui n'ont pas de métriques symétrique sont dits focaux.

GÉOMÉTRIE À GRANDE ÉCHELLE

QUASIISOMÉTRIES ET ÉQUIVALENCES SOUS-LINÉAIRES

Y, Y' sont des espaces métriques pointés $\lambda \geqslant 1$.

· $f: Y \to Y'$ est une **quasiisométrie** (QI) si $\exists c \ge 0$ s.t. $\forall y_1, y_2 \in Y$, $\forall y' \in Y'$,

$$\begin{cases} \lambda^{-1}d(y_1, y_2) - c \leqslant d(f(y_1), f(y_2)) \leqslant \lambda d(y_1, y_2) + c \\ d(y', f(Y)) \leqslant c. \end{cases}$$

QUASIISOMÉTRIES ET ÉQUIVALENCES SOUS-LINÉAIRES

Y, Y' sont des espaces métriques pointés $\lambda \geqslant 1$.

· $f: Y \to Y'$ est une **quasiisométrie** (QI) si $\exists c \geqslant 0$ s.t. $\forall y_1, y_2 \in Y$, $\forall y' \in Y'$,

$$\begin{cases} \lambda^{-1}d(y_1, y_2) - c \leq d(f(y_1), f(y_2)) \leq \lambda d(y_1, y_2) + c \\ d(y', f(Y)) \leq c. \end{cases}$$

· $f: Y \to Y'$ est une **équivalence bilipschitzienne sous-linéaire** (SBE) s'il existe $v: \mathbb{R}_{\geqslant 0} \to \mathbb{R}_{\geqslant 1}$ sous linéaire $tq \ \forall y_1, y_2 \in Y$ and $\forall y' \in Y'$,

$$\begin{cases} \lambda^{-1}d(y_1, y_2) - v(|y_1| + |y_2|) & \leq d(f(y_1), f(y_2)) \\ & \leq \lambda d(y_1, y_2) + v(|y_1| + |y_2|) \\ d(y', f(Y)) \leq v(|y'|), \end{cases}$$

où $|\cdot|$ est la distance au point base. (D'après Y. Cornulier).

Soit $\{S, T\}$ une paire de groupes de Heintze **purement réels**.

Soit {S, T} une paire de groupes de Heintze **purement réels**.

 La réciproque de (a) est ouverte, connue si de plus S a une métrique symétrique ou est de dim 3 (Mostow, Xie).

Soit {S, T} une paire de groupes de Heintze purement réels.

- La réciproque de (a) est ouverte, connue si de plus S a une métrique symétrique ou est de dim 3 (Mostow, Xie).
- Pas de réciproque de (b): $\mathbb{H}_{\mathbf{R}}^{3}$ et S' sont $O(\log)$ -SBE (Cornulier).

Soit {S, T} une paire de groupes de Heintze purement réels.

- La réciproque de (a) est ouverte, connue si de plus S a une métrique symétrique ou est de dim 3 (Mostow, Xie).
- · Pas de réciproque de (b): $\mathbb{H}_{\mathbf{R}}^3$ et S' sont $O(\log)$ -SBE (Cornulier).

Théorème I (P. 2018)

Soient $n, m \ge 2$, $K, L \in \{R, C, H\}$. Si \mathbb{H}_K^n et \mathbb{H}_L^m sont SBE alors n = m, K = L.

Théorème II (P. 2019)

Soient $\mu_1, \mu_2 \geqslant 1$. Si S_{μ_1} et S_{μ_2} sont SBE alors $\mu_1 = \mu_2$.

BORD À L'INFINI DES GROUPES DE HEINTZE

Les horosphères centrées en ω sont des classes de N = [S, S]

Les horosphères centrées en ω sont des classes de N = [S,S] Le bord privé de ω est noté $\partial_{\infty}^* S$. Les géodésiques finissant en ω sont de la forme $\{(t,x,y)\}_{t\in \mathbb{R}}$.

Les horosphères centrées en ω sont des classes de N = [S, S] Le bord privé de ω est noté $\partial_{\infty}^* S$. Les géodésiques finissant en ω sont de la forme $\{(t, x, y)\}_{t \in \mathbb{R}}$. On identifie $\partial_{\infty}^* Y$ et N.

Le noyau d'Euclide-Cygan (Paulin, Hersonsky)

$$\rho(\xi,\xi') := \exp\left(-\frac{1}{2}\lim_{t\to-\infty} d_Y((-t,x_0,x_1),(-t,(x_0',x_1')) + 2t\right).$$

Les horosphères centrées en ω sont des classes de N = [S, S] Le bord privé de ω est noté $\partial_{\infty}^* S$. Les géodésiques finissant en ω sont de la forme $\{(t, x, y)\}_{t \in \mathbb{R}}$. On identifie $\partial_{\infty}^* Y$ et N.

Le noyau d'Euclide-Cygan (Paulin, Hersonsky)

$$\rho(\xi,\xi') := \exp\left(-\frac{1}{2}\lim_{t\to-\infty} d_Y((-t,x_0,x_1),(-t,(x_0',x_1')) + 2t\right).$$

SUR LE NOYAU D'EUCLIDE-CYGAN

Les isométries de S s'étendent en homéomorphismes de ∂_{∞}^*S .

SUR LE NOYAU D'EUCLIDE-CYGAN

Les isométries de S s'étendent en homéomorphismes de ∂_{∞}^*S . Pas de distance invariante

SUR LE NOYAU D'EUCLIDE-CYGAN

Les isométries de S s'étendent en homéomorphismes de ∂_{∞}^*S . Pas de distance invariante mais pour tous $\xi, \xi' \in \partial_{\infty}^*Y$,

$$\rho(e^{\alpha t}\xi_0, e^{\alpha t}\xi_1) = e^t \rho(\xi_0, \xi_1).$$

Avec ρ , ∂_{∞}^* est **auto-similaire** Ses auto-similarités sont les $e^{\alpha t}$.

$$\begin{array}{c|c} \textbf{Groupe} & S \text{ isom. } \mathbb{H}^3_{\mathbf{R}} \\ \textbf{auto-similarit\'es} & \left\{ \begin{pmatrix} e^t & 0 \\ 0 & e^t \end{pmatrix} \right\} & \left\{ \begin{pmatrix} e^{te} & te^t \\ 0 & e^t \end{pmatrix} \right\} & \left\{ \begin{pmatrix} e^t & 0 \\ 0 & e^{\mu t} \end{pmatrix} \right\} \end{array}$$

QUASIISOMETRIES AND THE BOUNDARY

Soit $\tau \geqslant 0$. Un couple d'ensemble (a, a^+) dans un espace quasimétrique est une τ -couronne intérieure s'il y a une boule B telle que $B \subseteq a \subseteq a^+ \subseteq e^{\tau}B$. rayon(B) est un rayon interne et τ une asphéricité pour (a, a^+) .

Un homéomorphisme est dit quasisymétrique s'il **préserve** l'asphéricité bornée, c-à-d. toute τ -couronne est envoyée sur une famille de τ' -couronne avec τ' ne dépendant que de τ .

QUASIISOMETRIES AND THE BOUNDARY

Soit $\tau \geqslant 0$. Un couple d'ensemble (a, a^+) dans un espace quasimétrique est une τ -couronne intérieure s'il y a une boule B telle que $B \subseteq a \subseteq a^+ \subseteq e^{\tau}B$. rayon(B) est un rayon interne et τ une asphéricité pour (a, a^+) .

Un homéomorphisme est dit quasisymétrique s'il **préserve** l'asphéricité bornée, c-à-d. toute τ -couronne est envoyée sur une famille de τ' -couronne avec τ' ne dépendant que de τ .

Théorème (1970s-1980s)

Soient S et S' des groupes de Heintze. Supposons qu'il existe une quasiisométrie $f: Y \to Y'$. Alors $\partial_\infty f$ s'étend en un homéomorphisme $\partial_\infty f: \partial_\infty Y \to \partial_\infty Y'$. De plus on peut supposer que f envoie les points focaux l'un sur l'autre, et $\partial_\infty f: \partial_\infty^* Y \to \partial_\infty^* Y'$ est quasisymétrique.

CÔNE HYPERBOLIQUE ET BORD DE GROMOV

La classe quasisymétrique de ∂_{∞}^*S correspond à la structure à grande échelle de S.

∂_{∞}^*S	S
R ⁿ euclidien	$\mathbb{H}^{n+1} = \{ \text{dilatations scalaires} \} \ltimes \mathbf{R}^n$
R ² unipotent	$S' = \{ dilatations unipotentes \} \ltimes \mathbb{R}^2$
R ² diagonal	$S_{\mu} = \{ \text{dilatations diagonales} \} \ltimes \mathbb{R}^2$
Heis ⁿ sous-riemannien	$\mathbb{H}_{C}^{n+1} = \{ \text{dilatations de Carnot} \} \ltimes Heis^n$
q.s. homeo $\partial_{\infty} S \to \partial_{\infty} T$	quasiisométrie $S \to T$

Soit $s_n \to +\infty$. Une famille de couronnes (a_n, a_n^+) de $(\partial_\infty^*, \rho)$ de rayons internes e^{-s_n} et d'asphéricités τ_n est **d'asphéricité** sous-linéaire si $\tau_n \ll |s_n|$ (quantitativement : $\tau_n = O(v(n))$).

Soit $s_n \to +\infty$. Une famille de couronnes (a_n, a_n^+) de $(\partial_\infty^*, \rho)$ de rayons internes e^{-s_n} et d'asphéricités τ_n est **d'asphéricité** sous-linéaire si $\tau_n \ll |s_n|$ (quantitativement : $\tau_n = O(v(n))$).

Definition (P.)

Un homéomorphisme est sous-linéairement quasisymétrique s'il est biHölder et si lui et son inverse preservent l'asphéricité sous-linéaire pour toute famille de couronnes.

Soit $s_n \to +\infty$. Une famille de couronnes (a_n, a_n^+) de $(\partial_\infty^*, \rho)$ de rayons internes e^{-s_n} et d'asphéricités τ_n est **d'asphéricité** sous-linéaire si $\tau_n \ll |s_n|$ (quantitativement : $\tau_n = O(v(n))$).

Definition (P.)

Un homéomorphisme est sous-linéairement quasisymétrique s'il est biHölder et si lui et son inverse preservent l'asphéricité sous-linéaire pour toute famille de couronnes.

Théorèmes

Les SBE se prolongent à $\partial_{\infty}^* Y$ (ou bord Gromov), quantitativement

1. (Cornulier 2017) en homéomorphismes biHölder.

Soit $s_n \to +\infty$. Une famille de couronnes (a_n, a_n^+) de $(\partial_\infty^*, \rho)$ de rayons internes e^{-s_n} et d'asphéricités τ_n est **d'asphéricité** sous-linéaire si $\tau_n \ll |s_n|$ (quantitativement : $\tau_n = O(v(n))$).

Definition (P.)

Un homéomorphisme est sous-linéairement quasisymétrique s'il est biHölder et si lui et son inverse preservent l'asphéricité sous-linéaire pour toute famille de couronnes.

Théorèmes

Les SBE se prolongent à $\partial_{\infty}^* Y$ (ou bord Gromov), quantitativement

- 1. (Cornulier 2017) en homéomorphismes biHölder.
- 2. (P.) en homéomorphismes sous-linéairement quasisymétriques.

Figure: Homéomorphisme sous-linéairement quasisymétrique de \mathbb{R}^2 euclidien préservant l'asphéricité de classe $O(\sqrt{n})$

\mathbb{H}^3_R ET S' SONT SBE

Observation (Cornulier 2008, 2011)

 \mathbb{H}^3_R et S' sont SBE via l'identité en coordonnées horosphériques (centrées au point focal pour S').

\mathbb{H}^3_R ET S' SONT SBE

Observation (Cornulier 2008, 2011)

 \mathbb{H}^3_R et S' sont SBE via l'identité en coordonnées horosphériques (centrées au point focal pour S').

\mathbb{H}^3_R ET S' SONT SBE

Observation (Cornulier 2008, 2011)

 $\mathbb{H}^3_{\mathbf{R}}$ et S' sont SBE via l'identité en coordonnées horosphériques (centrées au point focal pour S').

On le constate aussi au bord : l'identité (via l'identification avec \mathbb{R}^2) est sous-linéairement quasisymétrique. Précisément $v = O(\log)$.

Ingrédients

· La mesure de Lebesgue λ sur [0, 1],

Ingrédients

- · La mesure de Lebesgue λ sur [0, 1],
- · Une famille décroissante $\epsilon_n \downarrow 0$ de limite nulle mais pas dans ℓ^1 ,

Ingrédients

- · La mesure de Lebesgue λ sur [0, 1],
- · Une famille décroissante $\epsilon_n \downarrow 0$ de limite nulle mais pas dans ℓ^1 ,
- · Un arbre binaire enraciné
- $\cdot \aleph_0$ variables aléatoires i.i.d. dans $\{\leftarrow, \rightarrow\}$.

Ingrédients

- · La mesure de Lebesgue λ sur [0, 1],
- · Une famille décroissante $\epsilon_n \downarrow 0$ de limite nulle mais pas dans ℓ^1 ,
- · Un arbre binaire enraciné
- $\cdot \aleph_0$ variables aléatoires i.i.d. dans $\{\leftarrow, \rightarrow\}$.

1ère étape Obtenir une mesure aléatoire M sur [0,1].

Ingrédients

- · La mesure de Lebesgue λ sur [0, 1],
- · Une famille décroissante $\epsilon_n \downarrow 0$ de limite nulle mais pas dans ℓ^1 ,
- · Un arbre binaire enraciné
- $\cdot \aleph_0$ variables aléatoires i.i.d. dans $\{\leftarrow, \rightarrow\}$.

1^{ère} étape Obtenir une mesure aléatoire M sur [0, 1].

Ingrédients

- · La mesure de Lebesgue λ sur [0, 1],
- · Une famille décroissante $\epsilon_n \downarrow 0$ de limite nulle mais pas dans ℓ^1 ,
- · Un arbre binaire enraciné
- $\cdot \aleph_0$ variables aléatoires i.i.d. dans $\{\leftarrow, \rightarrow\}$.

1ère étape Obtenir une mesure aléatoire M sur [0,1].

Ingrédients

- · La mesure de Lebesgue λ sur [0, 1],
- · Une famille décroissante $\epsilon_n \downarrow 0$ de limite nulle mais pas dans ℓ^1 ,
- · Un arbre binaire enraciné
- $\cdot \aleph_0$ variables aléatoires i.i.d. dans $\{\leftarrow, \rightarrow\}$.

1ère étape Obtenir une mesure aléatoire M sur [0,1].

Ingrédients

- · La mesure de Lebesgue λ sur [0, 1],
- · Une famille décroissante $\epsilon_n \downarrow 0$ de limite nulle mais pas dans ℓ^1 ,
- · Un arbre binaire enraciné
- $\cdot \aleph_0$ variables aléatoires i.i.d. dans $\{\leftarrow, \rightarrow\}$.

1^{ère} étape Obtenir une mesure aléatoire M sur [0, 1].

$$M = \lim_{n} \lambda_n$$

2ème étape : Prendre la primitive $\phi:[0,1] \to [0,1]$ au sens des distributions.

 \cdot ϕ n'est pas abs. continue. La dérivée est λ -p.p. 0. Le module de continuité est presque celui d'une fonction lipschitzienne : $\log |\phi(x) - \phi(y)| \leq \log |x - y| + v(\log |x - y|), v(r) \ll r.$

2ème étape : Prendre la primitive $\phi:[0,1] \to [0,1]$ au sens des distributions.

 \cdot ϕ n'est pas abs. continue. La dérivée est λ -p.p. 0. Le module de continuité est presque celui d'une fonction lipschitzienne : $\log |\phi(x) - \phi(y)| \le \log |x - y| + v(\log |x - y|), v(r) \ll r.$

 $\mathbf{3}^{\mathsf{ème}}$ **étape :** Pour obtenir un homéomorphisme sous-linéairment quasisymétrique du tore, $\Phi = \phi_1 \times \phi_2$, où ϕ_1 et ϕ_2 sont comme précédemment. N'a pas la propriété ACL.

2ème étape : Prendre la primitive $\phi:[0,1] \to [0,1]$ au sens des distributions.

 \cdot ϕ n'est pas abs. continue. La dérivée est λ -p.p. 0. Le module de continuité est presque celui d'une fonction lipschitzienne : $\log |\phi(x) - \phi(y)| \le \log |x - y| + v(\log |x - y|), v(r) \ll r.$

 $\mathbf{3}^{\mathsf{ème}}$ **étape :** Pour obtenir un homéomorphisme sous-linéairment quasisymétrique du tore, $\Phi = \phi_1 \times \phi_2$, où ϕ_1 et ϕ_2 sont comme précédemment. N'a pas la propriété ACL.

Proposition

 ϕ and Φ sont sous-linéairement quasisymétriques. La distorsion d'asphéricité à l'échelle s est bornée par $(\sum_{n<-\log_2 s} \epsilon_n)$.

INVARIANTS POUR LES GROUPES DE HEINTZE

DIMENSIONS CONFORMES

La dimension topologique, la dimension conforme (déf. ci-dessous) sont invariantes par homéomorphismes quasisymétrique.

DIMENSIONS CONFORMES

La dimension topologique, la dimension conforme (déf. ci-dessous) sont invariantes par homéomorphismes quasisymétrique.

$$\operatorname{Cdim}(Z) = \inf \left\{ p > 0 : \operatorname{mod}_p^{\{\tau_j\}} (\text{courbes non ponctuelles dans } Z) = 0 \right\}$$

 $\{\tau_j\}$ sont des paramètres d'asphéricité pour mesures d'empilement; $\operatorname{mod}_p^{\{\tau_j\}}$ sont des modules grossiers (Pansu). On construit une variante.

DIMENSIONS CONFORMES

La dimension topologique, la dimension conforme (déf. ci-dessous) sont invariantes par homéomorphismes quasisymétrique.

$$\operatorname{Cdim}(Z) = \inf \left\{ p > 0 : \operatorname{mod}_p^{\{\tau_j\}} (\text{courbes non ponctuelles dans } Z) = 0 \right\}$$

 $\{\tau_j\}$ sont des paramètres d'asphéricité pour mesures d'empilement; $\operatorname{mod}_p^{\{\tau_j\}}$ sont des modules grossiers (Pansu). On construit une variante.

Espace autosimilaire	Dimension sous-linéaire-conforme
${\bf R}^2$ avec $lpha$ scalaire ou unipotent	2
R^2 avec $\alpha = diag(1, \mu)$	$1 + \mu$
Général (nilpotent, $lpha$ dilatante)	$trace(\alpha)$.

RETOUR SUR LE THÉORÈME I

Υ	$\dim\partial_\infty Y$	(SublinCdim ∂_∞ Y)
$\mathbb{H}^{n+1}_{\mathbf{R}}$	n	n
$\mathbb{H}^{n+1}_{\mathbf{C}}$	2n + 1	2n + 2
$\mathbb{H}^{n+1}_{\mathbf{H}}$	4n + 3	4n + 6
$\mathbb{H}^2_{\mathbf{O}}$	15	22

RETOUR SUR LE THÉORÈME I

Υ	$\dim\partial_\infty Y$	(SublinCdim ∂_∞ Y)
$\mathbb{H}^{n+1}_{\mathbf{R}}$	n	n
$\mathbb{H}^{n+1}_{\mathbf{C}}$	2n + 1	2n + 2
$\mathbb{H}^{n+1}_{\mathbf{H}}$	4n + 3	4n + 6
$\mathbb{H}^2_{\mathbf{O}}$	15	22

La paire d'invariants (dim $\partial_\infty Y$, SublinCdim ∂_∞) classifie les espaces symétriques de rang un.

RETOUR SUR LE THÉORÈME I

Υ	$\dim\partial_\infty Y$	(SublinCdim ∂_∞ Y)
$\mathbb{H}^{n+1}_{\mathbf{R}}$	n	n
$\mathbb{H}^{n+1}_{\mathbf{C}}$	2n + 1	2n + 2
$\mathbb{H}^{n+1}_{\mathbf{H}}$	4n + 3	4n + 6
$\mathbb{H}^2_{\mathbf{O}}$	15	22

La paire d'invariants ($\dim \partial_\infty Y$, SublinCdim ∂_∞) classifie les espaces symétriques de rang un. (Dans ce cas, sur $\partial_\infty^* Y$, une distance dite de Carnot-Carathéodory réalise la dimension conforme. Une telle distance n'est pas disponible en général).

RETOUR SUR LE THÉORÈME II

Cdim ne suffit pas à distinguer \mathbb{H}^3_{R} et S', 3 méthodes: Q-capacité (Kleiner-Xie), cohomologie ℓ^{ϕ} (Carrasco-Piaggio) ou version localement compacte de la rigidité QI (Cornulier). Les 2 premières donnent aussi :

RETOUR SUR LE THÉORÈME II

Cdim ne suffit pas à distinguer \mathbb{H}^3_R et S', 3 méthodes: Q-capacité (Kleiner-Xie), cohomologie ℓ^ϕ (Carrasco-Piaggio) ou version localement compacte de la rigidité QI (Cornulier). Les 2 premières donnent aussi :

Théorème (Xie 2011 Carrasco -Piaggio 2014)

Soit $\{S, T\}$ groupes de Heintze purement réels tels que [S, S] et [T, T] sont abéliens. Si S et T sont QI alors ils sont isomorphes.

RETOUR SUR LE THÉORÈME II

Cdim ne suffit pas à distinguer \mathbb{H}^3_{R} et S', 3 méthodes: Q-capacité (Kleiner-Xie), cohomologie ℓ^ϕ (Carrasco-Piaggio) ou version localement compacte de la rigidité QI (Cornulier). Les 2 premières donnent aussi :

Théorème (Xie 2011 Carrasco -Piaggio 2014)

Soit $\{S, T\}$ groupes de Heintze purement réels tels que [S, S] et [T, T] sont abéliens. Si S et T sont QI alors ils sont isomorphes.

Théorème (P. 2019)

 $\{S,T\}$ paire de groupes de Heintze purement réels tels que [S,S] et [T,T] sont abéliens **et** α_S , α_T **sont diagonalisables**. Si S et T sont SBE alors ils sont isomorphes.

Obs1. Les quasiconformes C¹ entre domaines de C quasi-préservent l'énergie de Dirichlet.

- Obs1. Les quasiconformes C¹ entre domaines de C quasi-préservent l'énergie de Dirichlet.
- Obs2. Bornes sur les modules \leftrightarrow Bornes sur les énergies.

- Obs1. Les quasiconformes C¹
 entre domaines de C
 quasi-préservent l'énergie
 de Dirichlet
- Obs2. Bornes sur les modules ↔ Bornes sur les énergies.

- Obs1. Les quasiconformes C¹
 entre domaines de C
 quasi-préservent l'énergie
 de Dirichlet.
- Obs2. Bornes sur les modules ↔ Bornes sur les énergies.

On définit des algèbres de fonctions $\mathcal{W}_{loc}^{p,\{ au\}}$ (p-énergie bornée, et continues); si φ est un homéomorphisme sous-linéairement quasisymétrique alors $\mathcal{W}_{loc}^{p,\{ au'\}}(\Omega) \overset{\sim}{\to} \mathcal{W}_{loc}^{p,\{ au'\}}(\varphi^{-1}\Omega)$ pour Ω ouvert à l'arrivée. $\mathcal{W}_{loc}^{p,\{ au\}}(\Omega)$ est une algèbre de Fréchet dont le spectre est le plus grand quotient de Ω qu'elle sépare.

THÉORÈME DE CORNULIER (POUR LES GROUPES DE HEINTZE)

Soit S un groupe de Heintze purement réel, α sa dérivation structurelle. On forme S_{∞} avec la même structure mais en ne consevant que la partie semi-simple de α .

Théorème (Cornulier 2008, 2011) généralisant l'observation

S et S_{∞} sont $O(\log)$ -SBE.

Avec le th. précédent, pour $\{S,T\}$ paire de groupes de Heintze purement réels tels que [S,S] et [T,T] sont abéliens, si S et T sont SBE alors S_{∞} et T_{∞} sont isomorphes.

CLASSIFICATIONS DES GROUPES DE HEINTZE

CLASSIFICATIONS DES GROUPES DE HEINTZE

 A-t-on que si S et T Heintze purement réels sont o(log)-SBE alors ils sont isomorphes? Pour S et T de dim 3?

- A-t-on que si S et T Heintze purement réels sont o(log)-SBE alors ils sont isomorphes? Pour S et T de dim 3?
- Peut-on décrire le groupe des SBE d'un groupe de Heintze? ou au moins certaines caractéristiques de son action au bord.

- A-t-on que si S et T Heintze purement réels sont o(log)-SBE alors ils sont isomorphes? Pour S et T de dim 3?
- 2. Peut-on décrire le groupe des SBE d'un groupe de Heintze ? ou au moins certaines caractéristiques de son action au bord. (Dans le cas focal on s'attend à ce qu'il fixe ω).

Dans $\partial_{\infty}S$, le **point focal** ω .

- A-t-on que si S et T Heintze purement réels sont o(log)-SBE alors ils sont isomorphes? Pour S et T de dim 3?
- 2. Peut-on décrire le groupe des SBE d'un groupe de Heintze ? ou au moins certaines caractéristiques de son action au bord. (Dans le cas focal on s'attend à ce qu'il fixe ω).
- 3. Rigidité : pas au sens généralisé aux groupes

localement compacts, mais possible pour les groupes de type fini.

Dans $\partial_{\infty}S$, le **point focal** ω .

Merci pour votre attention.