RNA-SEQ DE WITH EDGER

V. STORME

READING THE COUNTS FROM A FILE

- edgeR requires a table of integer read counts
 - Rows corresponding to genes
 - Columns corresponding to independent libraries (samples)

READING THE COUNTS FROM A FILE

 Count data contained in a single tab-delimited or comma-separated text

genelD	A 1	A2	A3	B1	B2	В3
ID0001	20	25	23	100	102	105
ID0002	30	31	27	12	10	9
•••	•••	•••	•••	•••	•••	

- > x <- read.delim("fileofcounts.txt", row.names="geneID")
- > x <- read.csv("fileofcounts.csv", row.names="geneID")
- > group <- factor(c(1,1,1,2,2,2))
- > y <- DGEList(counts=x, group=group)

READING THE COUNTS FROM A FILE

Counts for different samples stored in separate files:

A1.txt

targets.txt

genelD	counts
ID0001	20
ID0002	30
•••	•••

files	group	description
A1.txt	Α	Treatment A rep 1
A2.txt	Α	Treatment A rep 2
A3.txt	Α	Treatment A rep 3
B1.txt	В	Treatment B rep 1
B2.txt	В	Treatment B rep 2
B3.txt	В	Treatment B rep 3

- > targets <- read.delim("targets.txt")
- > d <- readDGE(targets)

THE DGELIST DATA CLASS

- edgeR stores data in a simple list-based data object called a **DGEList**
- Function readDGE makes a DGEList object directly
- Table of counts available as a matrix or a data.frame:
 - > y <- DGEList(counts=x, group=group)</pre>
- Components:
 - A matrix counts containing the integer counts
 - A data.frame samples containing info about the samples or libraries
 - Contains a column lib.size for the library size computed from the column sum of the counts
 - Optional: a data.frame genes containing annotation

MODELLING COUNTS THE POISSON DISTRIBUTION

 Famous example by von Bortkiewicz (1898): observe the number of soldiers in the Prussian army who got kicked by horses over a number of years and corps

# kicks (=k)	# soldiers	fraction	Expected fraction
0	109	0.545	0.543
1	65	0.325	0.331
2	22	0.110	0.101
3	3	0.015	0.021
4	1	0.005	0.003

Average nr of horsekicks per soldier:

$$\bar{X} = \frac{0*109+1*65+2*22+3*3+4*1}{200} = 0.61$$

The probability that the nr of kicks=k

$$P(X = k) = \frac{\lambda^k e^{-\lambda}}{k!} \qquad \hat{\lambda} = \bar{X}$$

THE POISSON DISTRIBUTION

MODELLING RNA-SEQ COUNTS

 Let y_{gi} be the number of reads that map to gene g in sample i

$$f(y_{gi}|\mu_{gi}) = P(Y_{gi} = y_{gi}|\mu_{gi}) = \frac{\mu_{gi}^{gg_i} e^{-\mu_{gi}}}{y_{gi}!}$$
$$E(y_{gi}) = var(y_{gi}) = \mu_{gi}$$

- Overdispersion:
 - the observed variance is larger than expected.
 - SE is underestimated
 - test statistic is overestimated
 - the type I error is increased and thus also the false discovery rate

NEGATIVE BINOMIAL MODEL

- Is a generalization of the Poisson distribution
 - It allows the mRNA proportions to vary across samples, capturing better the variability across biological replicates

$$var(y_{gi}) = \mu_{gi} + \phi \mu_{gi}^2$$

• ϕ is the dispersion and $\sqrt{\phi}$ is the biological coefficient of variation (BCV)

GENERALIZED LINEAR MODELS (GLM)

- A glm consists of 3 parts
 - A **distribution**, specifying the conditional distribution of the the response Y given the predictor variables
 - A linear predictor

$$\eta = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p$$

- A **link function** g, linking the conditional expected value of Y to η

$$g(E[Y|X]) = \eta$$

Poisson model:

$$log(E[Y|X) = \beta_0 + \beta_1 x_1 + ... + \beta_p x_p E(Y|X) = exp(\beta_0 + \beta_1 x_1 + ... + \beta_p x_p)$$

GLM FOR RNA-SEQ

- Distribution: negative binomial
- Link function: log
 - The link function transforms the mean, not the observed values $log(E[Y|X]) \neq E[log(Y|X)]$
 - Transforming the observed values changes the association between mean and variance

NORMALIZATION

- Observed read counts depend on:
 - Abundance
 - Sequencing depth
 - Gene length
 - GC content
- edgeR is concerned with DE and not with the quantification of expression levels,
 - therefore no correction needed for gene length and GC content

NORMALIZATION

- There is correction for:
 - Sequencing depth represented by the library size
 - RNA composition: highly expressed genes can consume a substantial proportion of the total library size, causing the remaining genes to be under-sampled
 - Corrected for by Trimmed Means of M values (TMM)
- Normalization takes the form of correction factors that enter into the statistical model as offsets

POISSON REGRESSION FOR RATES

- Rates provide the necessary standardization to make the outcomes comparable
- Rates are counts divided by some measure of exposure, in this case the library size
- Poisson model for rates:

$$log(E[Y/L|X]) = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p$$

$$log(E[Y|X]) - log(L) = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p$$

$$log(E[Y|X]) = log(L) + \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p$$
offset

OFFSET

Assume that we have RNA-seq reads for one gene,
 Is the gene differentially expressed?

OFFSET

Incorporate library size as offset

$$log(E[Y|X]) = \beta_0 + \beta_1 x_1 + log(libsize)$$

$$log(E[\frac{Y}{libsize}|X]) = \beta_0 + \beta_1 x_1$$

The counts are not explicitly scaled

TMM NORMALIZATION

Set of trimmed genes

- Remove the genes with 0 counts
- Calculate for each remaining gene g and sample i the M and A values compared to a reference sample r
- Calculate for each sample i the percentiles of the M and A values
- Trim the M values by 30% and the A values by 5 %
- Now G* genes are retained

gene	M	Α
1	M_{1i}	A^{r}_{1i}
•••	•••	•••
g	M_{gi}^{r}	A_{gi}^{r}
•••	•••	•••
G	M^{r}_{Gi}	A_{Gi}^{r}

$$M_{gi}^{r} = log_2 \frac{y_{gi}/N_i}{y_{gr}/N_r}$$

$$A_{gi}^{r} = \frac{1}{2} log_2 \left(\frac{y_{gi}}{N_i} * \frac{y_{gr}}{N_r} \right)$$

!Assumption!
majority of the genes are not DE

TMM NORMALIZATION

(MAZA 2016, FRONTIERS IN GENETICS)

$$Y_{gkr} = \frac{X_{gkr}}{N_{kr}}$$

$$Y_g^{\text{TMM}} = Yg11$$

$$\tau_{kr}^{\text{TMM}} = \frac{1}{\#\mathscr{G}_{kr}^*} \sum_{g \in \mathscr{G}_{kr}^*} \frac{Y_{gkr}}{Y_g^{\text{TMM}}}$$

where \mathcal{G}_{kr}^* represents the set of not trimmed genes

$$\widetilde{\tau}_{kr}^{\mathrm{TMM}} = \frac{\tau_{kr}^{\mathrm{TMM}}}{\widetilde{\tau}^{\mathrm{TMM}}}$$
 where

$$\widetilde{\tau}^{\text{TMM}} = \sqrt[K]{\prod_{k=1}^{K} \prod_{r=1}^{R} \tau_{kr}^{\text{TMM}}}$$

$$e_{kr}^{\rm TMM} = \widetilde{\tau}_{kr}^{\rm TMM} N_{kr}$$

$$f_{kr}^{\text{TMM}} = \widetilde{\tau}_{kr}^{\text{TMM}}$$

- 1. Normalise by library size
- 2. Choose a ref sample
- 3. Take the sum of the ratio of counts between a sample and the reference sample for each gene in the set of G genes
- 4. Adjust to multiply to 1
 - K conditions
 - R replicates
- 5. Effective library size
- 6. TMM normalization factor

NORMALIZATION AS OFFSET

> calcNormFactors()

$$log(E[Y|X]) = \beta_0 + \beta_1 X_1 + log(eff.libsize)$$

QUASI NEGATIVE BINOMIAL

 The NB model can be extended with quasi-likelihood methods to account for gene-specific variability for both biological and technical resources

$$var(y_{gi}) = \sigma_g^2(\mu_{gi} + \phi \mu_{gi}^2)$$

- Where φ is the NB trended dispersion and $\sigma^2_{\ g}$ is the genespecific QL dispersion
- Estimation of the QL dispersion is difficult (empirical Bayes approach)
- Minimum 3 replicates required
- Better FDR control
- The estimation of QL dispersions is performed using the glmQLFit function

NB DISPERSIONS

Figure 4. Scatterplot of the biological coefficient of variation (BCV) against the average abundance...

Chen Y, Lun ATL and Smyth GK. From reads to genes to pathways: differential expression analysis of RNA-Seq experiments using Rsubread and the edgeR quasi-likelihood pipeline [version 2]. F1000Research 2016, 5:1438 (doi: 10.12688/f1000research.8987.2)

QL DISPERSIONS

> plotQLDisp

- The raw QL dispersion estimates are squeezed towards a global trend
 - reduces the uncertainty of the estimates
 - improves testing power.
- The extent of the squeezing is governed by the value of the prior.df estimated from the data.
 - Large prior.df:
 - QL dispersions are less variable between genes
 - strong EB moderation should be performed.
 - Smaller prior.df:
 - true unknown dispersions are highly variable
 - weaker moderation towards the trend is appropriate

> glmQLFit(...robust=TRUE)

- allows gene-specific prior df estimates
- lower values for outlier genes

MODULE FORMULAS AND DESIGN MATRICES

- Design matrices can be defined in many equivalent ways (different parameterization)
 - > model.matrix()
- The contrasts need to be defined accordingly

DUMMY VARIABLES

- a dummy variable is one that takes only the value 0 or 1 to indicate the absence or presence of some categorical effect
 - Eg treatment-control experiment
 - Intercept model:
 - X=0 for a sample belonging to the control group
 - X=1 for a sample belonging to the treatment group
 - No intercept model:
 - $X_1=1$ for a sample belonging to the control group and 0 otw
 - $X_2=1$ for a sample belonging to the treatment group and 0 otw
 - Eg control treatment A treatment B
 - X₁=1 for a sample belonging to the A group and 0 otw
 - $X_2=1$ for a sample belonging to the B group and 0 otw

ANOVA AND REGRESSION

- A regression model in which the dependent variable is quantitative in nature but all the explanatory variables are dummies
- In an intercept model: number of dummies=k-1 where k represents the number of factor levels
- In a no intercept model: number of dummies=k

- Assume treatment: control and treated
- Formula: y ~ 0 + treatment
 - Indicates no intercept

obs	sample	treatment	
1	C1	control	
2	C2	control	
3	C3	control	
4	T1	treated	
5	T2	treated	
6	T3	treated	

	X_1	X_2
obs	treatmentcontrol	treatmenttreated
1	1	0
2	1	0
3	1	0
4	0	1
5	0	1
6	0	1

- Assume treatment: control and treated
- Formula:

$$log(E[Y|X]) = \beta_1 X_1 + \beta_2 X_2 + log(eff.libsize)$$

	X ₁	X_2				
obs	treatmentcontrol	treatmenttreated				
1	1	0			β	
2	1	0			Р	П
3	1	0	X		β_1	
4	0	1			β_2	
5	0	1		(- -)
6	0	1				

$$log(E[Y|X = control]) = \beta_1 + log(eff.libsize)$$

 $log(E[Y|X = treated]) = \beta_2 + log(eff.libsize)$

$$H_0: log(E[Y|X=treated]) - log(E[Y|X=control]) = \beta_2 - \beta_1 = 0$$

- > TvsC <- makeContrasts(treatmenttreated treatmentcontrol, levels=design)
- > glmQLFTest(fit,contrast = TvsC)
- > glmQLFTest(fit,contrast =c(-1,1))

- Assume treatment: control and treated
- Formula: y ~ treatment
 - With intercept

obs	sample	treatment	
1	C1	control	
2	C2	control	
3	C3	control	
4	T1	treated	
5	T2	treated	
6	T3	treated	

obs	Intercept	treatmenttreated
1	1	0
2	1	0
3	1	0
4	1	1
5	1	1
6	1	1

$$log(E[Y|X = control]) = \beta_0 + log(eff.libsize)$$

$$log(E[Y|X = treated]) = \beta_0 + \beta_1 + log(eff.libsize)$$

$$H_0: log(E[Y|X=treated]) - log(E[Y|X=control]) = \beta_1 = 0$$

> glmQLFTest(fit,coef=2)

MULTIPLE HYPOTHESIS TESTING

- p-value
 - the probability of obtaining a test statistic at least as extreme as the one observed if the null hypothesis is true
- p=0.05
 - there is a 5% chance of getting that extreme result even in the absence of a real effect, a 5% chance of rejecting the null hypothesis while in fact it is true (= **type 1 error**).
- Performing 10000 tests (one for each gene) and assuming that there is no true signal in the data might lead to 500 p-values below 0.05

MULTIPLE HYPOTHESIS TESTING

	accepted	rejected	total
True nulls	U	V (type I error)	m0
False nulls	T (type II error)	S	m1
	m - R	R	m tests

- Familywise error rate (FWER)
 - The probability of making at least one type I error

$$FWER = P[V \ge 1]$$

- False discovery rate (FDR)
 - Expected proportion of type I errors among the rejected hypotheses (if R=0 then FDR=0)

$$FDR = E\left[\frac{V}{R}\right]$$

> topTags()

CLUSTERING, HEATMAPS,...

- > plotMDS() draws a multi-dimensional scaling plot of the RNA samples
 - Default: distances correspond to leading log-fold changes between each pair of samples (by default top=500) Leading log-fold changes ie root-mean-square value RMS $d_{12} = \sqrt{(logFC_1^2 + logFC_2^2 + \dots + logFC_{500}^2)/500}$

Separate set of genes for each pairwise comparison selection.genes="pairwise" (default)

- Option: distances in terms of BCV
 - selection.genes="common" selects the top genes with the largest standard deviation between samples

INPUT FOR POST-PROCESSING

- Which counts should be used as input for clustering or heatmap routines?
 - Still a matter of research
 - edgeR manual suggests using moderated log-counts-per-million
 - By default normalized library sizes are used
 - > y <- cpm(d, prior.count=2, log=TRUE)
 - My suggestion:
 - Use the fitted values normalised to a libsize of 1000000 counts
 - Log(E(y_{gi})/ N_i) = $x_i^T \beta_g$

```
> N <- dim(y$counts)[[1]]
> gene.fitted <- matrix(rep(NA,N*12),nrow=N)
> for (i in 1:N)
> {
> beta <- as.matrix(fit$coefficients[i,])
> gene.fitted[i,] = exp(t(design %*% beta))*1000000
> }
```

NOTE ON PRIOR.COUNT

DEMO

- Data1 (data1.R)
 - control-treatment case
 - 3 independent biological samples for each treatment group
 - Analysis with a glm model
- Data2 (data2.R)
 - control-treatment case and a batch effect
 - 3 independent biological samples for each treatment group
 - Analysis with a glm model
- Data4 (data4.R)
 - 3 mutant lines and 1 ref line
 - 3 independent biological samples for each line
 - Analysis with a glm model

EXERCISES

- Analyse data 3:
 - control-treatment case
 - 3 independent biological samples for each treatment group
 - Count files and target file are in the EXERCISES/data3 folder
 - Use an intercept model
- Analyse data 5:
 - 1 factor with 2 factor levels and a batch effect
 - 3 independent biological samples
 - Use data5_input.R in EXERCISES/data5 folder to read the data
- Extra questions data 4:
 - set up a contrast for C vs A
 - Re-analyse the data using a no intercept model, and compare C vs A

REFERENCES

- McCarthy, D. J., Chen, Y., & Smyth, G. K. (2012). Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic acids research, 40(10), 4288–97. doi:10.1093/nar/gks042
- Robinson, M. D., & Smyth, G. K. (2007). Moderated statistical tests for assessing differences in tag abundance. Bioinformatics (Oxford, England), 23(21), 2881–7. doi:10.1093/bioinformatics/btm453
- Robinson, M. D., & Smyth, G. K. (2008). **Small-sample estimation of negative binomial dispersion, with applications to SAGE data**. Biostatistics (Oxford, England), 9(2), 321–32. doi:10.1093/biostatistics/kxm030
- Robinson, M. D., & Oshlack, A. (2010). A scaling normalization method for differential expression analysis of RNA-seq data. Genome biology, 11(3), R25. doi:10.1186/gb-2010-11-3-r25
- Lun, ATL., Chen, Y., & Smyth, G. K. (2016). It's DE-licious: a recipe for differential expression analyses of RNA-seq experiments using quasilikelihood methods in edgeR. Methods in Molecular Biology, in press