競プロ勉強会 180717

17 - baton

グラフとは...

グラフとは...

- $E \subseteq [V]^2$ を満たす集合の組 G = (V, E) のことである。
- Eの要素はグラフGの頂点、Vの要素はグラフGの辺

(グラフ理論[Rディスティール著]より)

グラフとは...

無向グラフと有向グラフ

特別なグラフ-木

- 閉路がない
- ■連結

■ 辺の本数がN-1

特別なグラフ-森

- ■閉路がない
- ■各連結成分が木

特別なグラフ - DAG

特別なグラフ - DAG

特別なグラフ - 二部グラフ

グラフの表現 - 隣接行列

	1	2	3	4	5
1	0	1	1	0	1
2	1	0	0	1	0
3	1	0	0	1	1
4	0	1	1	0	0
5	1	0	1	0	0

グラフの表現 - 隣接行列

	1	2	3	4	5
1	0	1	0	0	0
2	0	0	0	1	0
3	1	0	0	1	0
4	0	0	0	0	0
5	1	0	1	0	0

グラフの表現 - 隣接行列

	1	2	3	4	5
1	∞	3	7	∞	1
2	3	∞	∞	5	∞
3	7	∞	∞	10	4
4	∞	5	10	∞	∞
5	1	∞	4	∞	∞

グラフの表現 - 隣接リスト

1	2	3	5
2	1	4	
3	1	4	5
4	2	3	
5	1	3	

グラフの表現 - 隣接リスト

1	2
2	4
3	1 4
4	
5	1 3

グラフの表現 - 隣接リスト

1	(2,3) (3,7) (5,1)
2	(1,3) (4,5)
3	(1,7) (4,10) (5,4)
4	(2,5) (3,10)
5	(1,1) (3,4)

計算量

	隣接行列	隣接リスト
隣接判定	O(1)	O(M)
隣接の列挙	O(N^2)	O(M)
空間計算量	O(N^2)	O(N + M)

実装

- ライブコーディング??
- AOJ ALDS1_11_C
 http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?
 id=ALDS1_11_C&lang=jp

おまけ: ワーシャルフロイド法

- 全点間最短距離をO(N^3)で求めることができる手法
- 実装が4行で終わるのでとても楽

```
for(int k=0;k<N;k++)
  for(int i=0;i<N;i++)
    for(int j=0;j<N;j++)
      dist[i][j] = min(dist[i][j], dist[i][k] + dist[k][j]);</pre>
```

- dist[i][i] = 0で初期化、繋がってない場所は、dist[i][j] = INF
- 負のループがある場合は求まらない(停止しない)

おまけ: ワーシャルフロイド法

- なぜ?(適当な説明)
- 最短経路なので、同じ頂点を高々1回しか通らない
- 各kでは、全ての2頂点間で、 k番以下の頂点のみを使う最短距離を求めている
- k-1番目以下を使う最短距離から、 k番目以下を使う最短距離が求まる (Kleene っぽくない?)

おまけ: 実装

- ・時間があれば
- AOJ GRL_1_C
 http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?
 id=GRL_1_C&lang=jp