מבוא לתקשורת מחשבים

פתרון תרגיל 2

1. פרוטוקול ALOHA

1.1 ההסתברות שלא תהיה התנגשות (הסתברויות שידור שונות):

חצי מהתחנות משדרות בהסתברות p והחצי השני בהסתברות 2p.

1.1.1. התחנה המשדרת היא מסוג המשדר בהסתברות p ביחידת זמן:

$$P_{1_Success} = ((1-p)^2)^{\frac{n}{2}-1} \cdot ((1-2p)^2)^{\frac{n}{2}}$$

n/2 וכן n/2 יחידות (עם הסתברות שידור (p) אריכות אריכות (עם הסתברות (n/2-1) ומן, וכן n/2 אריכות עם הסתברות (n/2-1) אריכות לא לשדר בזמן זה.

.1.1.2 במקרה השני:

$$P_{2_Success} = ((1-2p)^2)^{\frac{n}{2}-1} \cdot ((1-p)^2)^{\frac{n}{2}}$$

1.2 הסתברות ההצלחה בשידור של שתי חבילות:

תסריט II: תחנה אי משדרת בזמן 6 ו-7, שאר התחנות משדרות בהסתברות p

השידור יצליח רק אם כל תחנה אחרת לא תנסה לשדר במשך 3 פרקי זמן רצופים:

$$P_{1_Success} = ((1 - p)^3)^{n-1}$$

ים בהסתברות משדרות בזמן 2 ו-8, שאר התחנות משדרות בהסתברות יות יות ועסריט I

למעשה יש לנו כאן שני מקרים בלתי תלויים של שידור, שכל אחד מהם צריך להצליח:

$$P_{t=2_Success} = ((1-p)^2)^{n-1}$$

$$P_{t=8_Success} = ((1-p)^2)^{n-1}$$

$$P_{Success} = P_{t=2_Success} \cdot P_{t=8_Success} = ((1-p)^2)^{n-1})^2 = ((1-p)^4)^{n-1}$$

המסקנה אם כן היא שההסתברות לשידור מוצלח של שתי חבילות ברציפות, גבוהה מההסתברות להצלחה של שידור בפרקי זמן לא רציפים.

1.3 הסתברות ההצלחה בשידור של שתי חבילות ברשת Slotted 1.3 ALOHA:

ים בהסתברות בומן 6 ו-7, שאר התחנות משדרות בהסתברות p: תסריט II: תחנה אי משדרת בומן

: השידור יצליח רק אם כל תחנה אחרת לא תנסה לשדר במשך 2 פרקי זמן רצופים

$$P_{6-7_Success} = ((1-p)^2)^{n-1}$$

: p תסריט I: תחנה אי משדרת בזמן 2 ו-8, שאר התחנות משדרות בהסתברות

למעשה יש לנו כאן שני מקרים בלתי תלויים של שידור, שכל אחד מהם צריך להצליח:

$$P_{t=2_Success} = (1 - p)^{n-1}$$

$$P_{t=8_Success} = (1 - p)^{n-1}$$

$$P_{Success} = P_{t=2_Success} \cdot P_{t=8_Success} = ((1 - p)^{n-1})^2 = ((1 - p)^2)^{n-1}$$

המסקנה אם כן היא שההסתברות לשידור מוצלח של שתי חבילות ברציפות, זהה להסתברות להצלחה של שידור בפרקי זמן לא רציפים.

2. גישה מרובה

 $E_2(t)$ - עבור 2 תחנות

$$P(no\ collision \land end\ in\ 2\ time\ units) = 2 \cdot \left(\frac{1}{4} \cdot \frac{1}{4}\right) = \frac{1}{8}$$

$$cost = 2$$

$$P(no\ collision \land end\ in\ 3\ time\ units) = 2 \cdot 2 \cdot \left(\frac{1}{4} \cdot \frac{1}{4}\right) = \frac{1}{4}$$

$$cost = 3$$

$$P(no\ collision \land end\ in\ 4\ time\ units) = 2 \cdot 3 \cdot \left(\frac{1}{4} \cdot \frac{1}{4}\right) = \frac{3}{8}$$

$$cost = 4$$

$$P(collision) = 4 \cdot \left(\frac{1}{4} \cdot \frac{1}{4}\right) = \frac{1}{4}$$

$$cost = 4 + E_2(t)$$

$$E_2(t) = \frac{1}{8} \cdot 2 + \frac{1}{4} \cdot 3 + \frac{3}{8} \cdot 4 + \frac{1}{4} \cdot (4 + E_2(t))$$

$$E_2(t) = 4\frac{2}{3}$$

 $E_3(t)$ - עבור 3 עבור

$$P(no\ collision \land end\ in\ 3\ time\ units) = 3! \cdot \left(\frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{4}\right) = \frac{3}{32}$$

$$cost = 3$$

 $P(no\ collision \land end\ in\ 4\ time\ units) = 3 \cdot 3! \cdot \left(\frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{4}\right) = \frac{9}{32}$

$$cost = 4$$

$$P(3 \ collide) = 4 \cdot \left(\frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{4}\right) = \frac{1}{16}$$

$$cost = 4 + E_3(t)$$

$$P(2 collide) = {3 \choose 2} \cdot 4 \cdot \left(\frac{1}{4} \cdot \frac{1}{4} \cdot \frac{3}{4}\right) = \frac{9}{16}$$

$$cost = 4 + E_2(t)$$

$$E_3(t) = \frac{3}{32} \cdot 3 + \frac{9}{32} \cdot 4 + \frac{1}{16} \cdot (4 + E_3(t)) + \frac{9}{16} \cdot (4 + E_2(t))$$

$$E_3(t) = \frac{209}{30} \approx 7$$

3. מחיר בנית מתג

3.1. מחיר מנית מתג מסוג בנש:

 $\#Crossbars = \frac{N}{2}(2\log_2 N - 1)$: אינו כי מספר הרכיבים המצליבים במתג מסוג בנש הוא

יהיה: מאחר וכל הרכיבים הם בגודל 2×2 , מחיר כל רכיב הוא 23/2, ולכן המחיר הכולל יהיה:

$$price = 2^{\frac{3}{2}} \frac{N}{2} \cdot (2 \log_2 N - 1) = \sqrt{2} N \cdot (2 \log_2 N - 1)$$

3.2. מחיר מתג מסוג Clos:

. # $Crossbars = \frac{N}{C}(2\log_{C}N - 1)$ הוא Clos מסוג מסוג במתג המצליבים המצליבים המצליבים המצליבים במתג מסוג

$$price = C^{\frac{3}{2}} \frac{N}{C} \cdot (2\log_C N - 1) = \sqrt{C}N \cdot (2\log_C N - 1)$$

 $price'=rac{N}{2\sqrt{C}}\cdot\left(2rac{\ln N}{\ln C}-1-4rac{\ln N}{\ln^2 C}
ight)$: על מנת למצוא מחיר מינימלי נגזור לפי

$$\frac{N}{2\sqrt{C}} \cdot \left(2\frac{\ln N}{\ln C} - 1 - 4\frac{\ln N}{\ln^2 C}\right) = 0$$

$$\Rightarrow \left(2\frac{\ln N}{\ln C} - 1 - 4\frac{\ln N}{\ln^2 C}\right) = 0$$

$$\Rightarrow \ln^2 C - 2\ln N \cdot \ln C + 4\ln N = 0$$

$$N \to \infty \Rightarrow 4\ln N - 2\ln N \cdot \ln C = 0$$

$$\Rightarrow \ln C = 2$$

$$\Rightarrow C = e^2 \approx 7.39$$

הערך השלם הוא או 7 או 8. נבדוק כל אחד מהשניים ונבחר בזה המביא למינימום מחיר:

$$\begin{aligned} price &= \sqrt{C}N \cdot \left(2\frac{\ln N}{\ln C} - 1 \right) \\ price \Big|_{c=7} &= \sqrt{7}N \left(2\frac{\ln N}{\ln 7} - 1 \right) \approx N(2.719\ln N - 2.64) \\ price \Big|_{c=7} &= \sqrt{8}N \left(2\frac{\ln N}{\ln 8} - 1 \right) \approx N(2.72\ln N - 2.83) \end{aligned}$$

מתקבל כי הערך השלם הטוב ביותר הוא 7.

4. בנית מתג Clos

4.1. בנית מתג ללא רקורסיה:

נתון שגודל כל Crossbar הינו כעת עלינו לבנות מתג לא-חוסם במובן הצר ללא רקורסיה. כאב (Crossbar כלומר עובר דרך 3 רכיבי (כלומר עובר דרך 3 רכיבי אובר דרך 3 רכיבי בישר (כלומר עובר דרך 3 רכיבי בישר לאב (כלומר עובר דרך 3 רכיבי בישר לאב הינו בישר הינו בישר לאב הינו בישר לאב

 $.c^2/2 \times c^2/2$ נקבל ש אווי) וגודל המתג המקסימלי וגודל (ל- $N=c^2/2$

. במקרה הזוגי למקרה הזוגי בלבד,
$$N=c imes \left\lfloor \dfrac{(c+1)}{2} \right
floor$$
במקרה הכללי

4.2. מספר הרכיבים למימוש המתג:

בסדיים בסיסיים לכן הקודם, ולכן בסעיף המתואר בסיסיים בסיסיים בסד c רכיבים בסיסיים בסד רכיבים כל רמה של המתואר בסעיף הקודם, ולכן הכל רמה של המתואר בסיסיים בסד הכל.

4.3. מתג עם רמה אחת של רקורסיה:

במתג עם רמה אחת של רקורסיה יהיו לנו מתגים של $c/2\times c$ בשכבות החיצוניות ומתגים של במתג עם רמה אחת של רקורסיה יהיו לנו $N=(c/2)\cdot(c^2/2)=c^3/4$ בשכבה המרכזית, ולכן $N=(c/2)\cdot(c^2/2)=c^3/4$ בשכבה המרכזית, ולכן $N=(c/2)\cdot(c^2/2)=c^3/4$

4.4. מתג עם M רמות רקורסיה:

נסתכל על מקרה כללי בו יש M רמות רקורסיה. נסמן ב- N_M את גודל המתג ברקורסיה ה-M את מספר הרכיבים ברקורסיה ה-M. ראינו כבר בסעיף הקודם כי על מנת למצוא את גודל המתג S_M למעשה עלינו רק להציב תוצאת כל שלב קודם בשכבה המרכזית ולהכפיל במתג של $c/2 \times c$ בשכבה החיצונית. מסיבה זו גודל המתג יהיה:

$$N_{M} = \left(\left(\left(\frac{c}{2} \times c \right) \times \frac{c}{2} \right) \times \dots \times \frac{c}{2} \right) = \frac{c^{M+2}}{2^{M+1}}$$

ומספר הרכיבים בו יהיה:

$$\begin{split} S_{\scriptscriptstyle M} &= 2 \times N_{\scriptscriptstyle M-1} + c \times S_{\scriptscriptstyle M-1} = 2 \times N_{\scriptscriptstyle M-1} + c \times \left(2 \times N_{\scriptscriptstyle M-2} + c \times \left(2 \times N_{\scriptscriptstyle M-3} + c \times (....+1)\right)\right) \\ &= 4 \times c^{\scriptscriptstyle M+1} \times \sum_{i=0}^{\scriptscriptstyle M} \frac{1}{2^i} + c^{\scriptscriptstyle M+1} = \frac{5 \times 2^{\scriptscriptstyle M-1} - 1}{2^{\scriptscriptstyle M-1}} \times c^{\scriptscriptstyle M+1} \end{split}$$

5. עץ פורש

.5.1.1 העץ הפורש הנוצר:

5.1.2. מרחק כל גשר מהשורש:

פורט השורש	מרחק מגשר השורש	שם הגשר
NULL	0	B12
P2	1	B24
P2	1	B16
P3	2	B32
P2	2	B35
P1	2	B92
P2	3	B55
P2	3	B73

.5.1.3 הפורט המיועד:

פורט מיועד	שם הסגמנט
P2 (B12)	S1
P2 (B92)	S2
P1 (B12)	S 3
P3 (B16)	S4
P1 (B16)	S5

P3 (B35)	S6
P1 (B24)	S7
P4 (B32)	S8
P1 (B32)	S9
P5 (B32)	S10
P1 (B55)	S11
P3 (B73)	S12

5.1.4. כל הגשרים מקדמים מסגרות.

.5.1.5 מתחזה לB16 לא משתנה כלום.

:כאשר **B32** תקול נוצרים שני עצים. 5.1.6

6. עץ פורש

- 6.1. כמובן. נתון כי הגשר שהתקלקל עלול להחזיר את החבילה לגשר ממנו נשלחה. זהו מסלול מעגלי.
 - כן. תקלה כזאת תגרום לחבילה להישלח שוב ושוב (כדוגמא קיצונית, חשבו על סגמנט אחד עם שני גשרים: גשר א' משדר על הסגמנט, ולכן גם ב', ואז א, שוב וחוזר חלילה). לכן התקשורת בכל הרשת תחסם לאחר שתשודר חבילה אחת.
- הוא המקולקל, C כן. נניח כי המסלול E-D-C-B-A הוא מסלול בעץ הפורש, הגשר C כן. נניח כי המסלול E-D-C-B-A הוא מסלול בעץ הפורש עוברת מ C ל C בנוסף נניח כי קיים חיבור (שאינו חלק מהעץ הפורש) בין C גבוסף עקב התקלה, ההודעה שמגיעה לC ויעדה C נשלחת גם לגשר C וגם לגשר C היא נשלחת לאורך המסלול שוב כמו בהתחלה.