

basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

NASIONALE SENIOR SERTIFIKAAT

GRAAD 12

WISKUNDE V3

NOVEMBER 2011

MOONTLIKE ANTWOORDE

PUNTE: 100

Hierdie memorandum bestaan uit 14 bladsye.

Kopiereg voorbehou

LET WEL:

- As 'n kandidaat'n vraag TWEE keer beantwoord, merk net die EERSTE poging.
- As 'n kandidaat 'n antwoord deurhaal en nie oordoen nie, merk die deurgehaalde antwoord.
- Deurlopende Akkuraatheid (DA) moet deurgaans in die memorandum toegepas word.
- 'n Kandidaat kan nie iets bewys met dit wat nog bewys moet word nie.

1.1	$T_{k+1} = T_k - 2 \; ; \; k \ge 1 \; ; \; T_1 = 1$	2			
	$T_1 = 12$				
	$T_2 = 12 - 2 = 10$	✓ 10			
	$T_3 = 10 - 2 = 8$			✓ 8	
	$T_4 = 8 - 2 = 6$			√ 6	`
1.2	12+10+8+6+4+2+0 = 0) + (-2) + (-4	(4) + (-6) + (-8) + (-10) + (-12)	✓✓ uitbreiding	<u>'</u> _
	∴ 13 terme	LET WEL:	i	✓ 13 terme	
				(3))
		neerskryf: 1	73 punte		
			LET WEL:		
	OF		Slegs antwoord: VOLPUNTE		
	Daar is 6 positiewe terme vangelyk	✓ 12 terme			
-	nul is.	$\checkmark T_7 = 0$			
	6 positiewe terme + 1 nulte = 13 terme	✓ 13 terme (3))		
	OF				
	$ \frac{n}{-[2(12) + (n-1)(-2)]} = 0 $			✓ vervang in	
	$\frac{n}{2}[2(12) + (n-1)(-2)] = 0$			rekenkundige som- formule	
	$\frac{n}{2}[24+2-2n]=0$	Tomate			
	$\frac{n}{2}[26-2n]=0$			$\checkmark \frac{n}{2}[26-2n] = 0$	
	$13n - n^2 = 0$				
	n(13-n)=0			✓ 13 terme	
	$n \neq 0$ or $n = 13$			$\sqrt{13}$ terme (3))
			- Control of the Cont	[6]	

(1)
oord
(1)
ulatiewe
nsie waarde
afgelees met ninder as 80
oord
(2)
ulatiewe
nsie waarde
afgelees met
ninder as 80
oord
(2)
oordeeld/partydig
(1)
[5]

3.1	Vir onderling uitsluitende gebeurte		
	P(A of B) = P(A) + P(B) 0.7 = 0.4 + k k = 0.3	LET WEL: Slegs antwoord: VOLPUNTE	$\checkmark 0.7 = 0.4 + k$ $\checkmark \text{ antwoord}$ (2)
	LET WEL: Indien die kandidaat $k = 1 - 0.7 =$	0,3 neerskryf: 0/2 punte	
3.2	Vir onafhanklike gebeurtenisse $P(A \text{ en } B) = P(A).P(B)$		\checkmark P(A en B) = P(A).P(B)
	= 0.4k P(A of B) = P(A) + P(B) - P(A en 0.7 = 0.4 + k - 0.4k	B)	$\checkmark 0,4k$ $\checkmark 0,7 = 0,4 + k - 0,4k$
	0.3 = 0.6k	ET WEL: Slegs antwoord: 1/4 punte	✓ antwoord
	OF .	Verkeerde formule: 0/4 punte	(4)
	0,7 = 0,4 + k - 0,4k $0,3 = 0,6k$		$\checkmark\checkmark\checkmark0,7 = 0,4 + k - 0,4k$
	k = 0.5		✓ antwoord (4)
			[6]

4.1	21 minute is 1 standaardafwyking van di ∴ 34% van die pizzas word tussen 21 en	✓ 1 standaard- afwyking		
	LET WEL: Slegs antwoord: VOLPU	NTE	√ 34%	(2)
4.2	15 minute is 3 standaardafwykings na lin 27 minute is 1 standaardafwyking na reg 84% van die pizzas word tussen 15 en 27	s van die gemiddelde : 34%	✓ 50% ✓ 34% ✓ 84%	(3)
	OF 2% + 14% + 34% + 34% = 84%	LET WEL: Slegs antwoord: VOLPUNTE	✓ 50% ✓ 34% ✓ 84%	(3)
4.3	Die vereiste 2% is die gedeelte regs van die regterkant van die gemiddelde. Maksimum vir aflewering moet	die 2 standaardafwykings reeds aan	✓ 2 standaard- afwykings ✓ 24 + 2(3)	
	24 + 2(3) = 30 minute wees	LET WEL: Slegs antwoord: VOLPUNTE	✓ 30	(3) [8]

VRAAG 5

5.1	Getal unieke kodes			
	$= 7 \times 7 \times 7$	LET WEL: Slegs antwoord:	$\checkmark 7 \times 7 \times 7$	
	$=7^3$	VOLPUNTE	(t	
	= 343		✓ antwoord	(2)
5.0		· · · · · · · · · · · · · · · · · · ·		(2)
5.2	Getal unieke kodes sonder herhaling			
	$=7\times6\times5$		$\checkmark 7 \times 6 \times 5$	
	= 210		✓ antwoord	
	OF	TEMPANDE OI		(2)
		LET WEL: Slegs antwoord:	√ 7!	
	<u> 7!</u>	VOLPUNTE	$\sqrt{\frac{7!}{4!}}$	
	4!		✓ antwoord	
	= 210			(2)
5.3	Getal kodes met herhaling wat groter	r as 300 en deelbaar deur 5 is	$\checkmark 4 \times 7 \times 2$	
	$=4\times7\times2-1$	LET WEL:	√ − 1	
	= 55	• Geen DA by nasien nie.	✓ antwoord	
		• Slegs antwoord: VOLPUNTE		(3)
	OF		✓ 14× 4	` /
	Vir 100 getalle is daar 14 getalle wat	deelbaar deur 5 is	√ − 1	
	$14 \times 4 = 56$		✓ antwoord	
	56 - 1 = 55			(3)
				[7]
		_		

Kopiereg voorbehou

Middagtemperature (in °C)	2	3	4	5	7	7	9	10	11
Eenhede elektrisiteit gebruik	37	36	32	33	32	28	27	23	20

7.1 Sien spreidiagram hierbo

LET WEL:

Ignoreer die punt (0; 41) asseblief.

✓✓✓ al 9 punte is korrek geplot.

2 punte indien 5 - 8 punte korrek geplot is.

1 punt indien 1 – 4 punte korrek geplot is.

(3)

Kopiereg voorbehou

			NSS -
7.2	a = 40,97	(40,97108844)	
	1		

$\checkmark\checkmark$	a
• •	и
$\checkmark h$	
. 0	

b = -1,74 (-1,736394558...) $\hat{v} = 40.97 - 1.74x$

✓ vergelyking

(4)

LET WEL:

- Penaliseer met 1 punt vir verkeerde afronding tot 1 desimaal in 7.2 of 7.3
- Slegs antwoord: VOLPUNTE

verder vereenvoudig nie: 1 punt.

LET WEL:

r = -0.97

Indien die kandidaat die koeffisient van b met die hand metode bereken, is $b = \frac{-204,2}{117,6}$: 2 punte vir *b*.

✓ antwoord

(2)

LET WEL: Indien die kandidaat aantoon dat $b = \frac{6,139218}{3,42928}r$ en nie

(-0.9699269087...)

- Daar is 'n sterk negatiewe korrelasie/verwantskap tussen die 7.4 middagtemperature en die eenhede elektrisiteit wat gebruik is.
- √ sterk
- ✓ negatiewe (2)

OF

7.3

Soos wat die middagtemperature toeneem, neem die eenhede elektrisiteit wat gebruik word af.

✓✓ middagtemp toeneem en elektrisiteit afneem

OF

Soos wat die middagtemperature afneem, neem die eenhede elektrisiteit wat gebruik word toe.

✓✓ middagtemp afneem en elektrisiteit toeneem

(2)

(2)

7.5 $\hat{y} \approx 40,97 - 1,74(8)$ ≈ 27.05

LET WEL:

- Slegs antwoord: 2/2 punte
- ✓ vervanging
- ✓ antwoord

(2)

OF

 $\hat{y} \approx 27,0799 \approx 27,08$

• Aanvaar die interval van 26.5 - 27.5indien die lyn van beste passing geteken is en die antwoord daarna afgelees is: 2/2 punte

[13]

8.1 Teken middellyn AM en verbind M met B.

$$\hat{A}_1 + \hat{A}_2 = 90^{\circ}$$
 (raaklyn \perp radius)

$$\hat{B}_1 + \hat{B}_2 = 90^{\circ} (\angle \text{ in } \frac{1}{2} \text{ sirkel})$$

$$\hat{B}_2 = \hat{A}_2$$
 (\(\subseteq \text{e in dieselfde } \Omega \text{ segment} \)

$$\hat{\mathbf{B}}_1 = \hat{\mathbf{A}}_1$$

- ✓ konstruksie
- ✓ S/R
- $\checkmark \hat{B}_1 + \hat{B}_2 = 90^{\circ}$
- ✓ ∠ in ½ sirkel
- ✓ S/R

(5)

OF

Teken OC en OA

Let
$$\hat{A}_2 = x$$

$$\hat{C}_1 = x \text{ (OC = OA; gelykbenige } \Delta$$
)

$$\hat{A}_1 = 90^{\circ} - x$$
 (radius \perp raaklyn)

$$\hat{AOC} = 180^{\circ} - 2x \ (\angle e \text{ van } \Delta)$$

$$\hat{ABC} = 90^{\circ} - x \text{ (middel punt shoek)}$$

$$\hat{ABC} = \hat{A}_1$$
 (= 90°-x)

- √ konstruksie
- $\checkmark \hat{A}_1 = 90^{\circ} x$
- √ radius ⊥ raaklyn
- ✓ S/R
- ✓ S/R

(5)

LET WEL:

- Geen konstruksie: 0 / 5 punte
- As 'n kandidaat die benoemings verander en stel "Soortgelyk kan bewys word": volpunte

OF

Teken QA verleng tot P. Teken raaklyn CP by C.

PC = PA (raaklyne vanaf dieselfde punt)

$$\hat{C}_2 = \hat{A}_1$$
 (\angle e teenoor gelyke sye)

$$\hat{COA} = 2\hat{ABC}$$

(middelpuntshoek = 2 x omtrekshoek)

$$\hat{A}_1 + \hat{A}_2 = 90^{\circ}$$
 (raaklyn \perp radius)

$$\hat{COA} = 180^{\circ} - (90^{\circ} - \hat{A}_1 + 90^{\circ} - \hat{C}_2)$$

$$= \hat{A}_1 + \hat{C}_2$$
$$= \hat{A}_1 + \hat{A}_1$$

$$=2\hat{A}_1$$

$$\hat{A}_1 = \frac{1}{2}C\hat{O}A$$

$$= \hat{CBA}$$

$$\checkmark \hat{A}_1 + \hat{A}_2 = 90^{\circ}$$

(5)

Kopiereg voorbehou

OF

Teken middlelyn en verbind M met C

$$\hat{MCA} = 90^{\circ}$$

(∠ in ½ sirkel)

$$\hat{AMC} + \hat{A}_2 = 90^{\circ}$$

 $(\angle e \text{ van } \Delta)$

$$\hat{A}_1 + \hat{A}_2 = 90^{\circ}$$

(radius ⊥ raaklyn)

$$\hat{AMC} = \hat{A}_1$$

 $\hat{AMC} = \hat{B}$ ($\angle \epsilon$

(∠e in dieselfde ⊙ segment)

$$\hat{\mathbf{A}}_1 = \hat{\mathbf{B}}$$

- ✓ konstruksie
- ✓ S/R
- ✓ S/R

$$\checkmark \hat{A}_1 + \hat{A}_2 = 90^{\circ}$$

(5)

8.2.1	WRS = 90°	(raaklyn⊥radius) S	✓ S	(1)
8.2.2	$\hat{W} = 40^{\circ}$	(∠ tussen raaklyn en koord) (∠ e van Δ)	✓ S/R ✓ Ŵ = 40°	(2)
	1	$(\angle \text{ in } \frac{1}{2} \text{ sirkel})$ (buitehoek $\angle \text{ van } \Delta$)	$ \begin{array}{ccc} \checkmark & \hat{W} + \hat{R}_1 = \hat{T}_1 \\ \checkmark & \hat{W} = 40^{\circ} \end{array} $	(2)
8.2.3	$\hat{R}_2 = 40^{\circ}$ $\hat{P}_1 = 40^{\circ}$	(∠e in dieselfde ⊙ segment)	✓ $\hat{R}_2 = 40^\circ$ ✓ $\hat{P}_1 = 40^\circ$ ✓ \angle e in dieselfde Θ segment	(3)
			l	

Kopiereg voorbehou

 $8.2.4 \mid \hat{P}_1 = \hat{W}$

WVPT is 'n koordevierhoek (buite \angle = teenoorst binne \angle) $\hat{V} = P\hat{T}S$ (buite \angle van koordevierhoek)

 $\hat{V}_1 = P\hat{T}S$ (buite \angle van koordevierhoek)

OF

$$\hat{T}_1 = 90^{\circ}$$
 (\angle in $\frac{1}{2}$ sirkel)

$$P\hat{T}S = 90^{\circ} + \hat{T}_2$$

$$\hat{T}_2 = \hat{S}_1$$
 (\angle e in dieselfde Θ segment)

$$P\hat{T}S = 90^{\circ} + \hat{S}_1$$

$$\hat{V}_1 = 90^{\circ} + \hat{S}_1$$
 (buitehoek $\angle \Delta$)

$$\hat{V}_1 = P\hat{T}S$$

OF

 $\hat{P}_2 = 140^{\circ}$ (\angle e op reguitlyn)

$$\hat{W} + \hat{P}_2 = 180^{\circ}$$

WVPT is 'n koordevierhoek (teenoorstaande hoeke suppl)

$$\hat{V}_1 = P\hat{T}S$$
 (buite \angle van koordevierhoek)

OF

 $\hat{V}_1 = \hat{R}_1 + \hat{R}_2 + \hat{S}_1$ (buitehoek $\angle \text{van } \Delta$)

$$\hat{V}_1 = 90^\circ + \hat{S}_1$$

$$P\hat{T}S = 90^{\circ} + \hat{T}_2$$

maar $\hat{T}_2 = \hat{S}_1$ ($\angle e$ in dieselfde Θ segment)

$$\hat{V}_1 = P\hat{T}S$$

OF

In ΔPTS en ΔWVS is

$$\hat{P}_1 = \hat{W} \qquad (=40^\circ)$$

 \hat{S}_2 is gemeenskaplik

$$\hat{V}_1 = P\hat{T}S$$
 ($\angle e \text{ van } \Delta$)

 $\checkmark \hat{P}_1 = \hat{W}$

✓ WVPT is 'n koordevierhoek

✓ buite \angle = teenoorst binne \angle

✓ buite ∠ van kvh

(4)

✓∠ in ½ sirkel

$$\checkmark P\hat{T}S = 90^{\circ} + \hat{T}_2$$

$$\checkmark \hat{T}_2 = \hat{S}_1$$

✓ ∠e in dieselfde ⊙ segment

(4)

(4)

(4)

 $\checkmark \hat{W} + \hat{P}_2 = 180^{\circ}$

✓ WVPT is'n koordevierhoek

√ teenoorstaande hoeke suppl

✓ buite ∠ van koordevierhoek

 $\checkmark \hat{V}_1 = 90^{\circ} + \hat{S}_1$

 $\checkmark P\hat{T}S = 90^{\circ} + \hat{T}_2$

 $\checkmark \hat{T}_2 = \hat{S}_1$

✓ ∠e in dieselfde ⊙ segment

✓ identifisering van driehoeke

 $\checkmark \hat{P}_1 = \hat{W}$

 \checkmark \hat{S}_2 is gemeenskaplik

✓ ∠e van ∆

(4) [15]

10.1	$\hat{A} = \hat{D}_4 = x$ (\angle tussen raaklyn en koord)	$\checkmark \hat{A} = x$
h. •.	$\hat{E}_2 = x$ (\angle tussen raaklyn en koord) OF (\angle e in dieselfde Θ segment)	✓ ∠ tussen raaklyn
	$\hat{D}_2 = \hat{A} = x$ (verwissellende $\angle e$; CA DF)	en koord
		$\checkmark \hat{E}_2 = x$
		✓ rede
		$\checkmark \hat{\mathbf{D}}_2 = x$
		✓ verwisselende ∠e; CA DF
		(6)
10.2	In ΔBHD en Δ FED	$\mathbf{\hat{B}}_2 = \hat{\mathbf{F}}$
	1. $\hat{B}_2 = \hat{F}$ (\angle e in dieselfde Θ segment)	✓ ∠e in dieselfde ⊙
	2. $\hat{D}_3 = \hat{D}_1$ (omtreks \angle^e onderspan deur gelyke koorde)	segment
		$\checkmark \hat{D}_3 = \hat{D}_1$
	$\Delta BHD \parallel \Delta FED (\angle \angle \angle)$	✓ omtreks ∠ ^e
		onderspan deur gelyke koorde
		geryke koorde ✓ ∠∠∠
		(5)
10.3	$\frac{FE}{BH} = \frac{FD}{BD} \qquad (\Delta s)$	$\checkmark \frac{\text{FE}}{\text{BH}} = \frac{\text{FD}}{\text{BD}}$
	But $FE = AB$ (gegee)	✓ FE = AB
	$\frac{AB}{AB} = \frac{FD}{AB}$	(2)
	BH BD	
	AB.BD = FD.BH	[13]

13

11.1	AF = FC FE CD	(hoeklyne van parm)	\checkmark AF = FC
	AE = ED	(Eweredigheidstelling; FE CD) of (lyn uit middelpunt van een sy aan tweede sy halveer die derde sy) of (omgekeerde middelpuntstelling)	✓ rede (2)
11.2	$\frac{AC}{CP} = \frac{1}{2}$ AD 1	(egee)	
	$\frac{AD}{DQ} = \frac{1}{2}$	(gegee)	
	$\frac{AC}{CP} = \frac{AD}{DQ}$		✓ verhoudings gelyk
	CD PQ CD FE ∴ PQ FE	(omgekeerde eweredigheidstel) of (sye eweredig) (gegee)	✓ CD PQ ✓ rede: omgekeerde eweredigheidstelling en gevolgtrekking
	$ \frac{AC}{AP} = \frac{1}{3} $ $ \frac{AD}{AQ} = \frac{1}{3} $		(3)
	$\frac{AC}{AP} = \frac{AD}{AQ}$		✓ verhoudings gelyk
	CD PQ CD FE ∴ PQ FE	(omgekeerde eweredigheidstelling) of (sye eweredig) (gegee)	✓ CD PQ ✓ rede: omgekeerde eweredigheidstelling en gevolgtrekking
	$\frac{\mathbf{OF}}{\mathbf{AP}} = \frac{1}{6}$		(3)
	$\begin{vmatrix} AP & 6 \\ \frac{AE}{AQ} = \frac{1}{6} \end{vmatrix}$		$\checkmark \frac{AF}{AP} = \frac{1}{6}$
	$\frac{AF}{AP} = \frac{AE}{AQ}$		$\checkmark \frac{AF}{AP} = \frac{AE}{AQ}$
	∴ PQ FE	(omgekeerde eweredigheidstelling)	✓ omgekeerde eweredigheidstelling (3)

11.3	In ΔAEF en ΔAPQ	
	1. Â is gemeenskaplik	✓ eerste paar hoeke
	2. $\triangle AEF = AQP$ (ooreenk $\angle e$; $\triangle FE \parallel PQ$)	gelyk met rede ✓ tweede paar hoeke
	3. $A\hat{F}E = A\hat{P}Q$ (ooreenk $\angle e$; $FE \parallel PQ$)	gelyk met rede
	$\therefore \Delta AEF \parallel \Delta AQP (\angle \angle \angle)$,
	$\frac{FE}{PQ} = \frac{AF}{AP} \qquad (\Delta s)$ LET WEL: As die gelykvormigheid	$\checkmark \frac{FE}{PQ} = \frac{AF}{AP}$
	I LIET WILL. AS the gerykvorningheit i	
	$\frac{FE}{60} = \frac{1}{6}$ nie aangetoon is nie:maks 3/5 punte	$\checkmark \frac{AF}{AP} = \frac{1}{6}$
	60 6	AP 6
	FE = 10 cm	✓ antwoord
	TE - 10 cm	(5)
	OF	
	In $\triangle ADC$ en $\triangle APQ$	✓ eerste paar hoeke
	1. Â is gemeenskaplik	gelyk met rede
	2. $\triangle ADC = \triangle AQP \text{ (ooreenk } \angle e; CD \parallel PQ)$	✓ tweede paar hoeke
	3. $A\hat{C}D = A\hat{P}Q$ (ooreenk $\angle e$; $CD \parallel PQ$)	gelyk met rede
	$\therefore \Delta ADC \parallel \Delta AQP (\angle \angle \angle)$	
	$\frac{AC}{AP} = \frac{AD}{AQ} = \frac{1}{3} \qquad (\Delta s)$	
		(CD 1 DC
	$CD = \frac{1}{3}PQ$	$\checkmark CD = \frac{1}{3}PQ$
	CD = 20 cm	
	Maar AF = FC	
	AE = ED	1
	$FE = \frac{1}{2} CD$ (Middelpuntstelling)	$\checkmark \text{ FE} = \frac{1}{2} \text{ CD}$
	2	✓ antwoord
	FE = 10 cm	(5)
		[10]

TOTAL: 100