Cognome									
Nome		No	ON S	SCR	IVEF	RE G	QUI		
MATRICOLA				1		<u> </u>		1	
Laurea	CIV AMB GEST INF ELN TLC MEC	1	2	3	4	5	6		

Università degli Studi di Parma Dipartimento di Ingegneria e Architettura Esame di Analisi Matematica 2 — Soluzioni A.A. 2018-2019 — PARMA, 2 SETTEMBRE 2019

Compilate l'intestazione in alto a sinistra e scrivete cognome e nome in stampatello anche su ogni altro foglio. Il tempo massimo per svolgere la prova è di tre ore. Al momento della consegna, inserite tutti i fogli dentro a questo foglio.

Esercizio 1. L'integrale curvilineo I del campo $f \in C(\mathbb{R}^2, \mathbb{R}^2)$ di componenti $f^1(x,y) = e^x e f^2(x,y) = e^x e f^2(x,y)$ sen y per $(x,y) \in \mathbb{R}^2$ lungo la curva parametrica $\gamma(t) = \log(\cos t)e_1 + te_2, t \in [0,\pi/4],$ è

(b)
$$I = \frac{\pi}{4} - \frac{1}{\sqrt{2}};$$
 (c) $I = 0;$ (d) $I = \frac{\pi}{4} - 1.$

(c)
$$I = 0;$$

(d)
$$I = \frac{\pi}{4} - 1$$

Soluzione. Poiché il campo f è continuo e la curva γ è liscia, risulta

$$I = \int_{\gamma} f \cdot dl = \int_{0}^{\pi/4} \langle f(\gamma(t) | \gamma'(t) \rangle dt = \int_{0}^{\pi/4} \left[\cos t \left(-\frac{\sin t}{\cos t} \right) + \sin t \right] dt = 0.$$

La risposta corretta è quindi (c).

Sia $f \in C^1(\mathbb{R}^2)$ una funzione tale che f(0,0) = -1 e $\nabla f(0,0) = (2,-1/2)$. Allora, il piano tangente al grafico di $q = (1 + f^2)^{-1}$ in (0,0)

(b) è
$$4x - y - 4z = -2$$
; (c) è $4x - y - 8z = -4$.

(c) è
$$4x - y - 8z = -4$$

Soluzione. Poiché f è di classe C^1 e $1 + f^2 \ge 1$ in \mathbb{R}^2 , la funzione $g = (1 + f^2)^{-1}$ risulta di classe C^1 in \mathbb{R}^2 e si ha q(0,0) = 1/2 e

$$g_x(0,0) = -\frac{2f(0,0)}{(1+[f(0,0)]^2)^2} f_x(0,0) = 1$$
 e $g_y(0,0) = -\frac{2f(0,0)}{(1+[f(0,0)]^2)^2} f_y(0,0) = -1/4.$

L'equazione del piano tangente al grafico di g in (0,0) è z-1/2=x-y/4. La risposta corretta è quindi (b).

Esercizio 3. Il volume V dell'insieme $K = \{(x, y, z) : 0 \le x \le y \le z \le 1\}$ è

(a)
$$V = 1$$

(b)
$$V = 1/3$$

(c)
$$V = 1/6$$

(a)
$$V = 1$$
; (b) $V = 1/3$; (c) $V = 1/6$; (d) $V = 1/27$.

Soluzione. L'insieme K è un poliedro compatto e quindi misurabile. Per la formula di riduzione risulta

$$V = \int_{K} 1 \, dV_3(x, y, z) = \int_{0}^{1} \left(\int_{0}^{z} \left(\int_{0}^{y} 1 \, dx \right) dy \right) dz = \int_{0}^{1} \left(\int_{0}^{z} y \, dy \right) dz = \int_{0}^{1} z^2 / 2 \, dz = 1/6.$$

La risposta corretta è quindi (c).

Esercizio 4. Sia

$$f(x,y) = \frac{x^2 - y^2}{x^2 + y^2 - 2},$$
 $(x,y) \in D.$

- (a) Determinate il dominio D di f.
- (b) Determinate gli eventuali punti critici di f e stabilitene la natura.
- (c) Calcolate il minimo globale di f sull'insieme

$$K_R = \{(x,y): 3 \le x^2 + y^2 \le R^2, x \ge 0 \text{ e } 0 \le y \le 1\}, \qquad R > \sqrt{3}.$$

(d) Stabilite se esiste il minimo globale di f in

$$K_{\infty} = \{(x, y) : x^2 + y^2 \ge 3, x \ge 0 \text{ e } 0 \le y \le 1\}.$$

Soluzione. (a) Il dominio di f è l'insieme aperto $D = \{(x, y) : x^2 + y^2 \neq 2\}.$

(b) La funzione f è di classe $C^{\infty}(D)$ ed è evidentemente antisimmetrica rispetto alle bisettrici. Le derivate parziali di f sono date da

$$f_x(x,y) = \frac{4x(y^2 - 1)}{(x^2 + y^2 - 2)^2}$$
 e $f_y(x,y) = -\frac{4y(x^2 - 1)}{(x^2 + y^2 - 2)^2}$

per ogni $(x,y) \in D$ e quindi i punti critici sono le soluzioni del sistema formato da $x(y^2-1)=0$, $y(x^2-1)=0$ e $x^2+y^2\neq 2$. L'unica soluzione di tale sistema si ha per x=y=0 e conseguentemente l'unico punto critico di f è l'origine.

Per stabilire la natura del punto critico (0,0) non è necessario esaminare la matrice hessiana di f in (0,0) poiché si ha f(0,0) = 0 e f prende valori positivi e negativi in ogni intorno dell'origine. L'origine è quindi punto di sella di f.

(c) L'insieme K_R è la striscia orizzontale contenuta nel primo quadrante con $0 \le y \le 1$ e compresa tra le circonferenze di centro nell'origine e raggi $\sqrt{3}$ e R. Tale insieme è evidentemente chiuso (controimmagine di intervalli chiusi mediante polinomi) e limitato e quindi è compatto. Poiché f è continua, essa assume minimo e massimo globale in K_R per ogni $R \ge \sqrt{3}$ per il teorema di Weierstrass. Alla luce di (b) si ricava che il massimo ed il minimo globale di f in K_R devono essere assunti sul bordo ∂K_R .

Le restrizioni di f alle curve parametriche semplici i cui sostegni formano il bordo di K_r sono

$$\varphi_{1}(t) = f(t,0) = \frac{t^{2}}{t^{2} - 2}, \qquad \sqrt{3} \le t \le R;$$

$$\varphi_{2}(t) = f\left(\sqrt{R^{2} - t^{2}}, t\right) = \frac{R^{2} - 2t^{2}}{R^{2} - 2}, \qquad 0 \le t \le 1;$$

$$\varphi_{3}(t) = f(R - t, 1) = 1, \qquad 0 \le t \le R - \sqrt{3};$$

$$\varphi_{4}(t) = f\left(\sqrt{3 - (1 - t)^{2}}, t\right) = 3 - 2(1 - t)^{2}, \qquad 0 \le t \le 1.$$

Le funzioni φ_1 e φ_2 sono strettamente decrescenti mentre φ_4 è strettamente crescente. Conseguentemente, il minimo e il massimo globale di f in K_R sono assunti nei punti del segmento di estremi $(\sqrt{2},1)$ e $(\sqrt{R^2-1},1)$ e in $(\sqrt{3},0)$ rispettivamente e risulta

$$\min_{K_R} f = 1 \qquad \text{e} \qquad \max_{K_R} f = 3.$$

(d) Per quanto provato in (c) la funzione f non può assumere nella striscia K_{∞} alcun valore minore di uno e, essendo costantemente uguale a 1 nei punti del dominio D con y=1 si conclude che il minimo globale di f in K_{∞} esiste ed è uguale a 1.

Esercizio 5. Sia

$$K = \left\{ (x, y, z) : 0 \le y \le x \in \sqrt{x^2 + y^2} - 2 \le z \le 4 - x^2 - y^2 \right\}.$$

(a) Descrive l'insieme K.

(b) Calcolate
$$I = \int_K xyz \, dV_3(x, y, z)$$
.

Soluzione. L'insieme K è la porzione di spazio compresa tra i piani x=0 e x=y con $x,y\geq 0$ del solido di rotazione che si ottiene facendo ruotare attorno all'asse z la figura contenuta nel primo quadrante del piano rz (con $r=\sqrt{x^2+y^2}$) che sta sopra la retta di equazione z=r-2 e sotto la parabola di equazione $z=4-r^2$ come illustrato nella figura seguente.

L'insieme K è compatto perché è limitato ed è intersezione di controimmagini di intervalli chiusi mediante funzioni continue. Inoltre, K è misurabile poiché è intersezione di un solido di rotazione e di semispazi. La funzione

$$f(x, y, z) = xyz,$$
 $(x, y, z) \in \mathbb{R}^3,$

è un polinomio e quindi integrabile su K.

Calcoliamo l'integrale di f su K mediante la formula di riduzione per fili. La proiezione di K sul piano xy è la porzione di cerchio

$$\pi_{xy}(K) = \{(x, y) : x^2 + y^2 \le 2 \text{ e } 0 \le y \le x\}$$

e per ogni $(x,y) \in \pi_{xy}(K)$ la corrispondente sezione è il segmento

$$K_{(x,y)} = \left[\sqrt{x^2 + y^2} - 2, 4 - x^2 - y^2\right], \quad (x,y) \in \pi_{xy}(K).$$

Per la formula di riduzione si ha allora

$$I = \int_{\pi_{xy}(K)} \left(\int_{\sqrt{x^2 + y^2} - 2}^{4 - x^2 - y^2} xyz \, dz \right) \, dV_2(x, y)$$

e, utilizzando coordinate polari nel piano abbinate nuovamente alla formula di riduzione, risulta

$$I = \int_0^2 r^3 \left(\int_{r-2}^{4-r^2} z \, dz \right) dr \int_0^{\pi/4} \cos \theta \sin \theta \, d\theta =$$

$$= \frac{1}{8} \int_0^2 r^3 \left[\left(4 - r^2 \right)^2 - \left(2 - r \right)^2 \right] dr =$$

$$= \frac{1}{8} \int_0^2 r^3 \left(r^4 - 9r^2 + 4r + 12 \right) dr = \dots = \frac{6}{5}.$$

Esercizio 6. Considerate il problema di Cauchy

$$\begin{cases} x''(t) - 4x'(t) + 4x(t) = 4e^{2t} - 4t^2 + 8t + 2\\ x(0) = 4 e x'(0) = 1. \end{cases}$$

- (a) Determinate tutte le soluzioni dell'equazione differenziale.
- (b) Determinate la soluzione del problema di Cauchy.

Soluzione. (a) L'equazione proposta è una equazione differenziale lineare del secondo ordine a coefficienti costanti. L'equazione caratteristica è $\lambda^2 - 4\lambda + 4 = 0$ le cui due soluzioni sono $\lambda = 2$ coincidenti. Quindi, le funzioni

$$x_1(t) = e^{2t}$$
 e $x_2(t) = te^{2t}$

con $t \in \mathbb{R}$ sono un sistema fondamentale di soluzioni dell'equazione omogenea e tutte le soluzioni dell'equazione omogenea sono le funzioni

$$x(t) = C_1 e^{2t} + C_2 t e^{2t}, \qquad t \in \mathbb{R},$$

con $C_i \in \mathbb{R}$ (i = 1, 2) costanti arbitrarie.

Poiché il termine non omogeneo dell'equazione è somma di una soluzione dell'equazione omogenea e di un polinomio, cerchiamo una soluzione dell'equazione completa considerando separatamente i due casi. Nel caso della funzione $y_1(t) = e^{2t}$, $t \in \mathbb{R}$, che è soluzione dell'equazione omogenea, cerchiamo una soluzione della forma

$$x_p(t) = At^2 e^{2t}, \qquad t \in \mathbb{R},$$

con $A \in \mathbb{R}$ costante da determinare. Si ha allora

$$x_p''(t) - 4x_p'(t) + 4x_p(t) = 2Ae^{2t}, t \in \mathbb{R},$$

cosicché la funzione x_p è soluzione dell'equazione completa con y_1 per A=2.

Nel caso del polinomio $y_2(t) = -4t^2 + 8t + 2$, $t \in \mathbb{R}$, cerchiamo una soluazione della forma

$$x_p(t) = Bt^2 + Ct + D, \qquad t \in \mathbb{R},$$

con $B, C, D \in \mathbb{R}$ costanti da determinare. Si ha allora

$$x_p''(t) - 4x_p'(t) + 4x_p(t) = 4Bt^2 + 4(C - 2B)t + 2(B - 2C + 2D), \qquad t \in \mathbb{R},$$

cosicché la funzione x_p è soluzione dell'equazione completa con y_2 per B=-1, C=0 e D=1. Pertanto tutte le soluzioni dell'equazione completa sono le funzioni

$$x(t) = C_1 e^{2t} + C_2 t e^{2t} + 2t^2 e^{2t} - t^2 + 1, \qquad t \in \mathbb{R},$$

con $C_i \in \mathbb{R}$ (i = 1, 2) costanti arbitrarie.

(b) Scegliamo le costanti $C_i \in \mathbb{R}$ (i = 1, 2) in modo che la soluzione x(t) definita in (a) sia tale che x(0) = 4 e x'(0) = 1. Si ha

$$\begin{cases} x(0) = C_1 + 1 = 4 \\ x'(0) = 2C_1 + C_2 = 1 \end{cases}$$

da cui segue $C_1 = 3$ e $C_2 = -5$. La soluzione cercata è dunque la funzione

$$x(t) = (2t^2 - 5t + 3) e^{2t} - t^2 + 1, \quad t \in \mathbb{R}.$$