

Fast Approximations of High-Rank Hessians: Applications to Seismic Inversion and Uncertainty Quantification

Mathew Hu, Nick Alger, Omar Ghattas, Rami Nammour
IMAGE24 - W-7: Exposing our Errors
Houston, TX
August 30, 2024

Introduction

Seismic Inversion → Uncertainty Quantification Hessian

Seismic Inversion

Seismic Inversion

- Full-waveform inversion: $\min_{m} \Phi(m) \coloneqq \| f(m) - d \|_{2}^{2} + \mathcal{R}(m)$
- Quasi-Newton methods (Newton-CG, L-BFGS) require many iterations (wave simulations).
- Need a preconditioner for the Hessian of Φ :

$$\mathcal{H} = \frac{d^2}{dm^2} \Phi(m)$$

Uncertainty Quantification

- Bayesian inference framework: $d\mu_{post}(m|d) \propto \pi_{like}(d|m) d\mu_{prior}(m)$
- Information extraction is challenging.
- The Hessian contains crucial local curvature information to accelerate the Monte Carlo sampling.

$$\mathcal{H} = -\frac{d^2}{dm^2} \log d\mu_{post}(m|d)$$

Hessian Operator

- The whole Hessian matrix is intractable for large-scale problems.
- Hessian matrix-vector multiplication is available via the Adjoint Method (\approx 4 Forward computations).
- Conventional low-rank methods are not suitable for seismic Hessian which is high-rank (with informative data from multiple sources and receivers).

Research Questions

1. How to approximate the seismic Hessian which is high-rank?

2. How to utilize the approximation to accelerate the seismic inversion?

3. How to utilize the approximation to accelerate seismic uncertainty quantification and hence make it tractable?

Hessian Approximation Methods

ΨDO Probing Method + PSF Method ⇒ Low-rank Symbol Method

Pseudo-differential Operator (YDO) Probing

$$(Hv)(x) = \int e^{ix\cdot\xi} s(x,\xi)\hat{v}(\xi)d\xi, \qquad v \in L^2(\mathbb{R}^d)$$

• Symbol $s(x,\xi)$: $\mathbb{R}^d \times \mathbb{R}^d \setminus \{0\} \to \mathbb{R}$ (smooth in x,ξ , asymptotically polynomial in ξ)

$$s(x,\xi) = e^{-ix\cdot\xi} (He^{ix\cdot\xi})(x)$$

Bao and Symes (1996) use the symbol's asymptotic behavior to apply it in $\mathcal{O}(N^d \log N)$ vs $\mathcal{O}(N^{d+1})$ for simulation:

$$s(x,\xi) \approx |\xi| s_1(x,\arg\xi) \approx |\xi| \sum_{k,l} c_k(x) e^{il\arg\xi}$$

 \Rightarrow Only need to compute symbol s on angles.

YDO in One Hessian Action

Pick sample points ξ_k in different directions.

- Naive scheme: Compute symbol columns $s(x, \xi_1)$, $s(x, \xi_2)$, ..., $s(x, \xi_n)$ individually (n Hessian actions).
- Advanced scheme: The angles are preserved in frequency space ⇒ Compute on all angles together (one Hessian action).

$$v(x) = \sum_{k=1}^{n} e^{ix \cdot \xi_k} \Rightarrow (Hu)(x) = \sum_{k=1}^{n} (He^{ix \cdot \xi_k})(x) = \sum_{k=1}^{n} s(x, \xi_k) e^{ix \cdot \xi_k}$$

Then extract each symbol column $s(x, \xi_k)$ from the product Hv.

ΨDO in One Hessian Action (Example)

11

Point Spread Function Method (PSF)

- PSFs are local ⇒ Compute multiple PSFs in one Hessian action.
- PSFs are translation invariant ⇒ Approximate PSFs with nearby PSFs.
- \Rightarrow Approximate H as a sum of Product-Convolutions.

Observation: Duality between PSF and ΨDO

PSF Method: Row of symbol $s(x_k,\cdot) = \mathcal{F}[H^T(\delta_x)(x_k - x)]$

ΨDO Method: Cols of symbol

$$s(\cdot, \xi_k) = \frac{H(\mathcal{F}^{-1}[\delta_{\xi_k}])(x)}{\mathcal{F}^{-1}[\delta_{\xi_k}](x)}$$

ΨDO + PSF = Low-Rank Symbol Method

• Both PSF and ΨDO method utilize the fact that the symbol of the seismic Hessian (at a smooth background) is low-rank.

XR Algorithm:

- 1. Convert the PSF method's result to low-rank symbol: $S_{psf} = X_0 Q$
- 2. Refine X_0 to fit the symbol columns $S[:,I_C]$ from the ΨDO method: $X = \underset{X}{\operatorname{argmin}} |XQ[:,I_C] S[:,I_C]|_F^2 + \alpha |X X_0|_F^2$
- 3. Create Hessian approximation from the low-rank symbol: $S_{new} = XQ$

Accelerate Seismic Inversion

```
m^* = \underset{m}{\operatorname{argmin}} \Phi(m) \coloneqq \| f(m) - d \|_2^2 + \mathcal{R}(m)
```

Preconditioner $P = (\widetilde{H} + R)^{-1}$ applies to L-FBGS algorithm:

Algorithm 1 Preconditioned L-BFGS

```
1: Choose starting point x_0, and integer m > 0
2: k \leftarrow 0
                                                                                                ▶ Initialization
3: repeat
                                                                                               ▶ Newton Loop
       Choose H_k^0 = \gamma_k' P
       Compute p_k = -H_k \nabla f_k via two-loop recursion.
       Compute \alpha_k which satisfies Wolf conditions
                                                                                                 ▶ Line search
6:
       x_{k+1} \leftarrow x_k + \alpha_k p_k
       if k > m then
           Discard vector pair \{s_{k-m}, y_{k-m}\} from storage
9:
        end if
10:
        Compute and save s_k = x_{k+1} - x_k and y_k = g_{k+1} - g_k
11:
        k \leftarrow k + 1
12:
13: until convergence
```


Accelerate Uncertainty Quantification

• Build a Laplace Approximation to the posterior:

$$\mathcal{N}\left(m^*,\left(\widetilde{H}+R\right)^{-1}\right)$$

- Draw samples from this distribution.
- These samples are more likely to be accepted.
- Implemented by the generalized preconditioned Crank-Nicolson algorithm (gpCN).

Visualizations of different types of proposal distributions for MCMC

Reference: Martin, James, Lucas C. Wilcox, Carsten Burstedde, and Omar Ghattas. "A stochastic Newton MCMC method for large-scale statistical inverse problems with application to seismic inversion." *SIAM Journal on Scientific Computing* 34, no. 3 (2012): A1460-A1487.

Numerical Results

Quadratic Toy Model

The Marmousi Model

Quadratic Toy Model

- Hessian = Low-rank matrix + ΨDO
- True model x^* . Right hand side $b = Hx^*$.
- Suppose x = Wy. (W suppresses boundaries).

$$\begin{cases} cost(x) = \frac{1}{2}x^{T}Hx - b^{T}x \\ grad(x) = Hx - b \\ hess(x) = H \end{cases} \begin{cases} cost(y) = \frac{1}{2}y^{T}WHWy - b^{T}Wy \\ grad(y) = WHWy - Wb \\ hess(y) = WHW \end{cases}$$

Model	Quadratic Model
Dimensions	100m × 50m
Grids	$101 \times 51 = 5151$

- The toy model is linear
- The posterior is Gaussian.

Inversion Solution: Preconditioned L-BFGS

- Decay slower at beginning.
 - Our methods do not address the low-rank part.
- Decay faster later.

Preconditioner	L-BFGS Steps
No Preconditioner	169
Prior-Preconditioner	108
PDO1	92
PSF4	55
PDO1+PSF4	69

- We draw 50k samples from the posterior via MCMC-gpCN.
- Quantity of Interest (QoI) = The value at a certain position

Our methods draw samples with more mixture.

Our methods derive nearly the true distribution

Our methods achieve larger effective samples size (ESS)

Sampling Method	Computational Cost	ESS
gpCN-LR100	200Hess+50kFwd	7.89
gpCN-PDO8+LR100	208Hess+50kFwd	24.20
gpCN-PSF4+LR100	204Hess+50kFwd	57.48
gpCN-PDO8PSF4+LR100	212Hess+50kFwd	132.66

Our methods draw samples with faster decaying autocorrelation.

Marmousi Model

$$\Phi(x) \coloneqq \parallel f(m_0 + Wx) - d \parallel_2^2 + \mathcal{R}(m)$$

Model	Marmousi + water layer		
Dimensions	9200m × 2400m		
Grids	461 × 121 = 55781		
Grid Size	20m × 20m		
Simulation Time T	8s		
Time Interval dt	0.0025s		
Number of Sources N_s	92		
Number of Receivers N_r	153		
Source wave frequency	4-12Hz		

Inversion Solution: Preconditioned L-BFGS

 Our methods achieve faster decaying solution errors.

Preconditioner	L-BFGS Steps
No Preconditioner	333
Prior-Preconditioner	465
PDO1	267
PSF4	231
PDO1+PSF4	238

- We draw 50k samples from the posterior via MCMC-pCN/gpCN.
- Quantity of Interest (QoI) = The value $m-m_0$ at a certain position

- The Marmousi model is non-linear (FWI). The correct UQ is unavailable.
- We benchmark against the low-rank approximation with 5000 eigenvalues.

Our methods draw samples with more mixture.

Our methods derive a distribution that is closer to the baseline.

pCN & gpCN-LR100 are trapped in a small region \Rightarrow Under-estimated variation \Rightarrow non-interpretable UQ

 The autocorrelation seems to indicate that pCN and gpCN-LR100 are well, but they underestimate the uncertainty in fact.

Algorithm	Computational Cost	ESS
gpCN-LR5000 (Baseline)	10kHess+50kFwd	53.12
pCN	0Hess+50kFwd	7.03
gpCN-LR100	200Hess+50kFwd	6.11
gpCN-PDO8+LR100	208Hess+50kFwd	12.10
gpCN-PSF10+LR100	210Hess+50kFwd	12.32
gpCN-PDO8+PSF10+LR100	218Hess+50kFwd	13.49

Contributions

- Develop novel Hessian approximation algorithms based pseudodifferential operators, which also applies to general hyperbolic problems.
- Accelerate the solution of deterministic seismic inversions via preconditioned quasi-Newton methods.
- Enable large-scale seismic inversion uncertainty quantification via Markov Monte-Carlo with generalized preconditioned Crank-Nicolson kernel.

Future Direction

- Investigate the trade-off between the cost of Hessian approximation and the cost of sampling.
- Test on other benchmark models (e.g. Salt Model).
- Compare with Variational Bayesian Inference.

Acknowledgement

- TotalEnergies for sponsoring this research and allowing me to present the results.
- **Dr. Omar Ghattas** and **Dr. Rami Nammour** for their advising and support.
- Dr. Nick Alger, Dr. Stefan Henneking, and Dr. Lianghao Cao for helpful discussions.

Thank you!

Connect me on LinkedIn!

