Visual Scan Recognition

How Al can read images for pneumonia

The problem

Pneumonia

Pneumonia is an infection that inflames the air sacs in one or both lungs.

Causes Include:

- Flu Viruses
- Cold Viruses
- RSV Viruses (age 1 or younger
- Bacteria (streptococcus pneumoniae and mycoplasma pneumoniae)

Tests

- Blood Tests bacterial infections
- Chest X-ray to see the spread in the lungs
- Pulse Oximetry level of oxygen in your blood
- Sputum Test check the fluids in lungs for cause of infection

Imaging to Diagnose

Hospitalization If:

- Imaging is a very common non-invasive test.
- Imaging shows inflammation which shows up as white areas in the lung.
- The location of the infection allows for classification of type Pneumonia

- Older than 65
- Confusion
- Rapid Breathing
- Heart rate below 50
- Heart rate above100

Chest X-ray showing pneumonia

This chest X-ray shows an area of lung inflammation indicating the presence of pneumonia.

How The Computer Program Works

- 1. We will feed images on lungs infected with pneumonia and normal lung images.
- The program will look at these images in detail.
- 3. Learning will take place from looking at thousands of images.
- 4. The images will be classified
- Our program will return a percentage of how many pictures it was able to classify.

The Result

- We will have a program that can read images.
- This program will be able to classify the images for healthcare workers.
- This will help speed up patient diagnosis
- The sooner we can treat a patient, the better the prognosis.

Baseline Model

Train set:

PNEUMONIA=3883

NORMAL=1342

Test set:

PNEUMONIA=390 NORMAL=234

Validation set:

PNEUMONIA=8
NORMAL=8

Accuracy Evolution 7 - Loss Val_Loss — Accuracy 5 - Val_Accuracy 1 - Val_Accuracy

Data Set

The more images, the better the

results

Model: "sequential_1"			
Layer (type)	Output	Shape	Param #
dense_2 (Dense)	(None,	20)	1350020
dense_3 (Dense)	(None,	7)	147
dense_4 (Dense)	(None,	5)	40
dense_5 (Dense)	(None,	1)	6
Total params: 1,350,213 Trainable params: 1,350,213 Non-trainable params: 0			

Using various models to classify our image, the goal was to have our program read the images and classify them as 'Pneumonia' or 'Normal'.

Using Convolutional Neural Network Models

Various Optimizers Were Used to Make Our Model Recognize Images Better

All Had an Accuracy of: **0.50**

Baseline Model: Loss: 0.26 Accuracy: 0.50

RMSprop	Loss: 0.26
Adam_01	0.26
SGD	0.26
AdaDelta	0.26
AdaGrad	0.26

Conclusion

We are able to design a Neural Network that can distinguish images. This can be a big help to healthcare providers including radiologists.

Although my results were not able to create an accuracy of over 50%; it is possible to construct a model with over 90% accuracy.

Future Work

- Develop a classifier that will distinguish between the different types of pneumonia.
- Develop a translator to label the scans.
- Create a neural network that can classify other types of images, including MRIs.

Thank You!

Appreciate the help of my instructors and the FlatIron cohort

Blog:

https://arash28.medium.com/image-recognition-of-x-rays-26552a620ec2

Resource: Mayo Clinic

https://www.mayoclinic.org/diseases-conditions/pneumonia/diagnosis-treatment/drc-20354210#dialogId39054

