Algebra

D. Zack Garza

August 15, 2019

Contents

	cure 1 (Thu 15 Aug 2019)	1
1.1	Cyclic Groups	2
1.2	Homomorphisms	2
1.3	Direct Products	2
1.4	Finitely Generated Abelian Groups	3
1.5	Fundamental Homomorphism Theorem	3
	1.5.1 The First Homomorphism Theorem	3
	1.1 1.2 1.3 1.4	1.1 Cyclic Groups 1.2 Homomorphisms 1.3 Direct Products 1.4 Finitely Generated Abelian Groups 1.5 Fundamental Homomorphism Theorem

1 Lecture 1 (Thu 15 Aug 2019)

Definition: A group is an ordered pair $(G, \cdot : G \times G \to G)$ where G is a set and \cdot is a binary operation, which satisfies the following axioms:

- 1. Associativity: $(g_1g_2)g_3 = g_1(g_2g_3)$
- 2. Identity: $\exists e \in G \ni ge = eg = g$
- 3. Inverses: $g \in G \implies \exists h \in G \ni gh = gh = e$.

Some examples of groups:

- $(\mathbb{Z},+)$
- $(\mathbb{Q}, +)$
- $(\mathbb{Q}^{\times}, \times)$
- $(\mathbb{R}^{\times}, \times)$
- $(GL(n,\mathbb{R}), \times) = \{A \in Mat_n \ni det(A) \neq 0\}$
- (S_n, \circ)

Definition: A subset $S\subseteq G$ is a subgroup of G iff

- $1. \ s_1, s_2 \in S \implies s_1 s_2 \in S$
- $2. \ e \in S$
- $3. \ s \in S \implies s^{-1} \in S$

We denote such a subgroup $S \leq G$.

Examples:

• $(\mathbb{Z},+) \leq (\mathbb{Q},+)$

• $SL(n,\mathbb{R}) \leq GL(n,\mathbb{R})$, where $SL(n,\mathbb{R}) = \{A \in GL(n,\mathbb{R}) \ni \det(A) = 1\}$

1.1 Cyclic Groups

Definition: A group G is cyclic iff G is generated by a single element.

Exercise: Show $\langle g \rangle = \{g^n \ni n \in \mathbb{Z}\} \cong \bigcap \{H \leq G \ni g \in H\}.$

Theorem: Let G be a cyclic group, so $G\langle g \rangle$.

1. If $|G| = \infty$, then $G \cong \mathbb{Z}$.

2. If $|G| = n < \infty$, then $G \cong \mathbb{Z}_n$

Definition: Let $H \leq G$, and define a right coset of G by $aH = \{ah \ni H \in H\}$. A similar definition can be made for left cosets.

Then $aH = bH \iff b^{-1}a \in G \text{ and } Ha = Hb \iff ab^{-1} \in H.$

Some facts:

- Cosets partition H, i.e. $b \notin H \implies aH \cap bH = \{e\}$.
- |H| = |aH| = |Ha| for all $a \in G$.

Theorem (Lagrange): If G is a finite group and $H \leq G$, then $|H| \mid |G|$.

Definition: $N \leq G$ is normal iff gN = Ng for all $g \in G$, or equivalently $gNg^{-1} \subseteq N$. I denote this $N \leq G$.

When $N \subseteq G$, the set of left/right cosets of N themselves have a group structure. So we define $G/N = \{gN \ni g \in G\}$ where $(g_1N)(g_2N) = (g_1g_2)N$.

Given $H, K \leq G$, define $HK = \{hk \ni h \in H, k \in K\}$. We have a general formula,

$$|HK| = \frac{|H||K|}{|H \cap K|}.$$

1.2 Homomorphisms

Let G, G' be groups, then $\varphi: G \to G'$ is a homomorphism if $\varphi(ab) = \varphi(a)\varphi(b)$.

Examples:

- $\exp: (\mathbb{R}, +) \to (\mathbb{R}^{>0}, \cdot)$ where $\exp(a+b) = e^{a+b} = e^a e^b = \exp(a) \exp(b)$.
- det: $(GL(n,\mathbb{R}),\times) \to (\mathbb{R}^{\times},\times)$ where $\det(AB) = \det(A)\det(B)$.
- Let $N \subseteq G$ and $\varphi G \to G/N$ given by $\varphi(g) = gN$.
- Let $\varphi : \mathbb{Z} \to \mathbb{Z}_n$ where $\phi(g) = [g] = g \mod n$ where $\mathbb{Z}_n \cong \mathbb{Z}/n\mathbb{Z}$

Definitions: Let $\varphi: G \to G'$. Then φ is a monomorphism iff it is injective, an epimorphism iff it is surjective, and an isomorphism iff it is bijective.

1.3 Direct Products

Let G_1, G_2 be groups, then define $G_1 \times G_2 = \{(g_1, g_2) \ni g_1 \in G, g_2 \in G_2\}$ where $(g_1, g_2)(h_1, h_2) = (g_1h_1, g_2, h_2)$.

We have the formula $|G_1 \times G_2| = |G_1||G_2|$.

1.4 Finitely Generated Abelian Groups

We say a group is abelian if G is commutative, i.e. $g_1, g_2 \in G \implies g_1g_2 = g_2g_1$.

A group is *finitely generated* if there exist $\{g_1, g_2, \dots g_n\} \subseteq G$ such that $G = \langle g_1, g_2, \dots g_n \rangle$. This generalizes the notion of a cyclic group, where we can simply intersect all of the subgroups that contain the g_i to define it.

We know what cyclic groups look like – they are all isomorphic to \mathbb{Z} or \mathbb{Z}_n . So now we'd like a structure theorem for abelian f.g. groups.

Theorem: Let G be a f.g. abelian group. Then $G \cong \mathbb{Z}^r \times \prod_{i=1}^s \mathbb{Z}_{p_i^{\alpha_i}}$ for some finite $r, s \in \mathbb{N}$ and p_i are (not necessarily distinct) primes.

Example: Let G be a finite abelian group of order 4. Then $G \cong \mathbb{Z}_4$ or \mathbb{Z}_2^2 , which are not isomorphic because every element in \mathbb{Z}_2^2 has order 2 where \mathbb{Z}_4 contains an element of order 4.

1.5 Fundamental Homomorphism Theorem

Let $\varphi: G \to G'$ be a group homomorphism and define $\ker \varphi = \{g \in G \ni \varphi(g) = e'\}$.

1.5.1 The First Homomorphism Theorem

There exists a map $\varphi': G/\ker \varphi \to G'$ such that the following diagram commutes:

i.e. $\varphi = \varphi' \circ \eta$, and φ' is an isomorphism onto its image, so $G/\ker \varphi = \operatorname{im} \varphi$. This map is give by $\varphi'(g(\ker \varphi)) = \varphi(g)$, which can be checked to be well-defined.