Статически оптимальное дерево отрезков

Артем Комендантян, 4 курс МФТИ, кафедра анализа данных

Научный руководитель: Михаил Тихомиров, к.ф.-м.н.

Определения

Пусть дан массив из n элементов

Дерево отрезков - это двоичное дерево, в котором есть

- n листьев, соответствующих отрезкам единичной длины
- Вершины с двумя сыновьями. Правый сын соответствует отрезку, следующему сразу за отрезком левого сына. Вершина соответствует объединению отрезков сыновей

Корень дерева соответствует всему массиву (отрезку [1; n])

Определения

Запрос сверху на отрезке [L, R] начинается в корне.

Если сейчас рассматривается вершина, отрезок которой не лежит полностью в отрезке [L, R], то запрос рекурсивно вызывается от тех сыновей, отрезки которых пересекаются с [L, R]. Иначе рекурсивных вызовов от сыновей не происходит.

В обоих случаях вершина считается посещенной и в ней выполняются какие-то действия, специфичные для запроса.

Пример

Дерево отрезков на пяти элементах

Запрос на отрезке [2; 4]

Будет посещено пять выделенных вершин

Постановка задачи

Дано: Распределение вероятностей на запросах-отрезках с границами из [1; n]

Необходимо: построить дерево отрезков, для которого минимально среднее количество посещенных вершин при запросах сверху.

Интересует как точное решение за как можно более лучшую асимптотику, так и приближенное за сложность нахождения O(n + S) или $O(n + S \log S)$, где S - количество отрезков с ненулевой вероятностью

Мотивация

- Дерево отрезков мощная структура, позволяющая эффективно решать множество задач. Примеры: наименьший общий предок двух вершин в дереве, площадь объединения прямоугольников со сторонами, параллельными осям координат
- Потенциальное ускорение в реальных задачах
- Аналогичная задача для деревьев поиска хорошо изучена

Статически оптимальное двоичное дерево поиска

Дано: множество из n упорядоченных элементов и 2n + 1 вероятностей, что запрос будет равен элементу из множества, либо находиться между двух соседних элементов

Необходимо: построить двоичное дерево поиска, для которого минимально среднее количество посещенных вершин при запросах

Статически оптимальное двоичное дерево поиска

Точное решение: динамическое программирование за O(n^2) времени и памяти (Knuth, 1971)

Приближенное решение: жадное решение за O(n), хуже оптимального не более чем в константу раз, где константа примерно равна 2.283... (Mehlhorn, 1975)

Идея решения - выбирать такой корень, чтобы максимально уравнять сумму вероятностей в левом и правом поддереве, затем перейти к двум меньшим подзадачам

Текущий прогресс и планы

Точное решение: динамическое программирование по подотрезкам dp[L][R] - стоимость оптимального дерева отрезков, построенного на точках с L по R. Считается за O(n^3) времени и O(n^2) памяти

Хочется научиться решать с лучшей асимптотикой

Текущий прогресс и планы

Приближенное решение: количество вершин при запросе [L, R] можно приблизить суммой глубин запросов [1, R] и [L, n]. Новая задача сводится к построению оптимального дерева поиска. Решение хуже оптимального не более чем в $4 \cdot$ константу от приближения дерева поиска (оценка сверху) и работает за O(n + S)

Это решение асимптотически оптимально, но хочется уменьшить константу приближения

Спасибо за внимание!