

BEST AVAILABLE COPY

2

NGC-140/000047-199

CLAIM AMENDMENTS**RECEIVED
CENTRAL FAX CENTER****AUG 21 2006**

- 1 1. (Currently amended) A method, comprising the steps of:
 - 2 introducing a plurality of voids into a polymeric material, wherein the plurality of voids fill up to twenty-five percent of a total volume of the polymeric material ~~introducing of the plurality of voids reduces a density of the polymeric material and promotes a decrease in a bulk modulus of the polymeric material;~~
 - 3 buffering one or more sensor fibers having one or more stress sensitive components in abutment with a portion of the polymeric material from one or more stresses through employment of the portion of the polymeric material that comprises one or more voids of the plurality of voids; and
 - 4 accommodating a movement of the portion of the polymeric material through compression of one or more of the one or more voids.
- 1 2. (Original) The method of claim 1, wherein the step of introducing the plurality of voids into the polymeric material comprises the steps of:
 - 2 adding the plurality of voids into a resin of the polymeric material; and
 - 3 curing the plurality of voids and the resin to create a potting compound that comprises the plurality of voids.
- 1 3. (Original) The method of claim 2, further comprising the steps of:
 - 2 encapsulating one or more of the one or more stress sensitive components in the potting compound; and
 - 3 accommodating an expansion of the one or more stress sensitive components through compression of the one or more voids.

~~ALL COPY~~

3

NGC-140/000047-199

1 4. (Previously presented) The method of claim 1, wherein the plurality of
2 voids are contained within a plurality of hollow compressible microballoons, and wherein
3 the step of introducing the plurality of voids into the polymeric material comprises the
4 step of:

5 adding the plurality of hollow compressible microballoons to the polymeric
6 material.

BEST AVAILABLE COPY

1 5. (Previously presented) The method of claim 4, wherein the compressible
2 microballoons comprise a thin polymer wall that encapsulate a gas, and wherein the thin
3 polymer wall promotes a reservation of space in the polymeric material for the gas, the
4 method further comprising the step of:

5 accommodating the movement of the one or more stress sensitive components
6 through compression of the gas which allows a partial collapse of the thin polymer wall.

1 6. (Previously presented) The method of claim 4, wherein the step of adding
2 the plurality of hollow compressible microballoons to the polymeric material comprises
3 the steps of:

4 employing a coupling agent to promote an adhesion between the plurality of
5 hollow compressible microballoons and the polymeric material; and

6 employing the coupling agent to promote a decrease in a settling rate of the
7 plurality of hollow compressible microballoons in the polymeric material.

1 7. (Withdrawn) The method of claim 1, wherein the plurality of voids are
2 contained within a plurality of hollow compressible microfibers, wherein the step of
3 introducing the plurality of voids into the polymeric material comprises the steps of:
4 adding the plurality of hollow compressible microfibers to the polymeric material;
5 and
6 creating a plurality of void channels in the polymeric material.

BEST AVAILABLE COPY

1 8. (Withdrawn) The method of claim 1, wherein the plurality of voids
2 comprise a plurality of gas bubbles within the polymeric material, wherein the step of
3 introducing the plurality of voids into the polymeric material and the step of buffering the
4 one or more stress sensitive components in abutment with the portion of the polymeric
5 material from the one or more stresses through employment of the portion of the
6 polymeric material that comprises the one or more voids of the plurality of voids
7 comprise the step of:
8 spraying the polymeric material through an aerator component to introduce the
9 plurality of gas bubbles into the polymeric material and to apply the polymeric material
10 with the plurality of gas bubbles to the one or more stress sensitive components.

1 9. (Withdrawn) The method of claim 1, wherein the plurality of voids
2 comprise a plurality of gas bubbles within the polymeric material, wherein the step of
3 introducing the plurality of voids into the polymeric material comprises the steps of:
4 mixing the plurality of gas bubbles into the polymeric material; and
5 employing an air-entrainer to stabilize the plurality of gas bubbles in the
6 polymeric material.

~~-1-
-1A
-1B
-1C
-1D
-1E
-1F
-1G
-1H
-1I
-1J
-1K
-1L
-1M
-1N
-1O
-1P
-1Q
-1R
-1S
-1T
-1U
-1V
-1W
-1X
-1Y
-1Z~~ COPY 5

NGC-140/000047-199

1 10. (Withdrawn) The method of claim 1, wherein the plurality of voids
2 comprise a plurality of gas bubbles within the polymeric material, wherein the step of
3 introducing the plurality of voids into the polymeric material comprises the steps of:
4 adding a chemical blowing agent to the polymeric material;
5 increasing the temperature of the chemical blowing agent;
6 releasing the plurality of gas bubbles from the chemical blowing agent into the
7 polymeric material once the chemical blowing agent reaches a decomposition
8 temperature; and
9 trapping the plurality of gas bubbles within the polymeric material.

BEST AVAILABLE COPY

1 11. (Withdrawn) The method of claim 1, wherein the plurality of voids
2 comprise a plurality of gas bubbles within the polymeric material, wherein the step of
3 introducing the plurality of voids into the polymeric material comprises the steps of:
4 placing a diffuser component substantially at a bottom of a container;
5 filling a portion of the container with the polymeric material;
6 activating the diffuser component to begin to release the plurality of gas bubbles
7 into the polymeric material;
8 raising the diffuser component through the polymeric material to a position
9 substantially at a top of the container; and
10 curing the polymeric material to preserve the plurality of gas bubbles within the
11 polymeric material.

1 12. (Withdrawn) The method of claim 1, wherein the step of introducing the
2 plurality of voids into the polymeric material comprises the steps of:

3 adding a plurality of dissolvable microstructures to the polymeric material; and
4 dissolving the plurality of dissolvable microstructures through an increase in
5 temperature of the plurality of dissolvable microstructures to leave the plurality of voids
6 in the polymeric material once the plurality of dissolvable microstructures reach an
7 activation temperature.

BEST AVAILABLE COPY

1 13. (Withdrawn) The method of claim 1, wherein the plurality of voids
2 comprise a plurality of gas bubbles within the polymeric material, wherein the step of
3 introducing the plurality of voids into the polymeric material and the step of buffering the
4 one or more stress sensitive components in abutment with the portion of the polymeric
5 material from the one or more stresses through employment of the portion of the
6 polymeric material that comprises the one or more voids of the plurality of voids
7 comprise the steps of:

8 applying the polymeric material to the one or more stress sensitive components
9 with a brush that comprises a plurality of hollow bristles; and
10 introducing the plurality of gas bubbles from a gas supply into the polymeric
11 material through the plurality of hollow bristles.

1 14. (Previously presented) The method of claim 1, wherein the step of
2 buffering the one or more sensor fibers having the one or more stress sensitive
3 components in abutment with the portion of the polymeric material from the one or more
4 stresses through employment of the portion of the polymeric material that comprises the
5 one or more voids of the plurality of voids comprises the steps of:

6 forming a pressure-sensitive foam tape from the polymeric material with the
7 plurality of voids;

8 applying a portion of the pressure-sensitive foam tape to the one or more stress
9 sensitive components; and

10 encapsulating the portion of the pressure-sensitive foam tape and the one or
11 more stress sensitive components with a potting compound.

1 15. (Original) The method of claim 1, wherein the step of accommodating the
2 movement of the portion of the polymeric material through compression of the one or
3 more of the one or more voids comprises the step of:

4 allowing compression of one or more of the one or more voids in response to an
5 applied force to promote a decrease in a response force from the portion of the
6 polymeric material to one or more of the one or more stress sensitive components.

1

BEST AVAILABLE COPY

1 16. (Withdrawn) A method, comprising the steps of:
2 introducing a plurality of voids into a potting compound;
3 encapsulating a fiber optic sensing coil of a fiber optic gyroscope with a portion of
4 the potting compound that comprises one or more voids of the plurality of voids; and
5 promoting a decrease in a bias error of the fiber optic sensing coil though
6 accommodation of an expansion of the fiber optic sensing coil by a compression of one
7 or more of the one or more voids.

1 17. (Withdrawn) The method of claim 16, wherein the plurality of voids are
2 contained within a plurality of hollow compressible microballoons, wherein the step of
3 introducing the plurality of voids into the potting compound comprises the step of:
4 adding the plurality of hollow compressible microballoons to the potting compound.

1 18. (Withdrawn) The method of claim 16, wherein the step of promoting the
2 decrease in the bias error of the fiber optic sensing coil though accommodation of the
3 expansion of the fiber optic sensing coil by the compression of the one or more of the
4 one or more voids comprises the step of:
5 promoting a decrease in a strain on the fiber optic sensing coil due to a contact
6 between the fiber optic sensing coil and the potting compound by the compression of
7 the one or more of the one or more voids upon the contact.

BEST AVAILABLE COPY

1 19. (Withdrawn) A method, comprising the steps of:
2 introducing a plurality of voids into a polymeric material;
3 coating one or more stress sensitive components with a portion of the polymeric
4 material that comprises one or more of the plurality of voids; and
5 accommodating an expansion of the one or more stress sensitive components
6 through compression of one or more of the one or more voids.

1 20. (Withdrawn) The method of claim 19, wherein the plurality of voids are
2 contained within a plurality of hollow compressible microballoons, wherein the step of
3 introducing the plurality of voids into the polymeric material comprises the step of:
4 adding the plurality of hollow compressible microballoons to the polymeric
5 material.

1 21. (Previously presented) The method of claim 1, wherein the step of
2 buffering the one or more sensor fibers having the one or more stress sensitive
3 components comprises the steps of:
4 encapsulating a fiber optic sensing coil within the polymeric material that
5 comprises the plurality of voids, wherein the fiber optic sensing coil comprises a first coil
6 portion and a second coil portion, and wherein the first coil portion is adjacent to the
7 second coil portion; and
8 locating one or more of the plurality of introduced voids between the first coil
9 portion and the second coil portion.

BEST AVAILABLE COPY

1 22. (Previously presented) The method of claim 21, wherein the first coil
2 portion comprises a first layer of the fiber optic sensing coil, and wherein the second coil
3 portion comprises a second layer of the fiber optic sensing coil; and
4 wherein the step of locating one or more of the plurality of introduced voids
5 between the first coil portion and the second coil portion comprises the step of:
6 locating one or more of the plurality of introduced voids between the first layer
7 and the second layer.

1 23. (Previously presented) The method of claim 21, wherein the fiber optic
2 sensing coil comprises a layer of a plurality of optical fiber windings, and wherein the
3 first coil portion comprises a first optical fiber winding of the plurality of optical fiber
4 windings, and wherein the second coil portion comprises a second optical fiber winding
5 of the plurality of optical fiber windings; and
6 wherein the step of locating one or more of the plurality of introduced voids
7 between the first coil portion and the second coil portion comprises the step of:
8 locating one or more of the plurality of introduced voids between the first winding
9 and the second winding.

1 24. (New) The method of claim 2, wherein the step of adding the plurality of
2 voids into the resin of the polymeric material further comprises the step of adding the
3 plurality of voids into the resin of the polymeric material in a substantially uniform
4 distribution.

BEST AVAILABLE COPY

1 25. (New) The method of claim 1, wherein the plurality of voids comprise a
2 diameter that is smaller than a distance of separation between adjacent portions of the
3 one or more sensor fibers.

1 26. (New) The method of claim 25, wherein the diameter of each of the
2 plurality of voids is less than fifty micrometers.

1 27. (New) The method of claim 1, wherein the plurality of voids fill ten percent
2 of the total volume of the polymeric material.

BEST AVAILABLE COPY