পরমাপুর মডেল ও নিউক্লিয়ার পদার্থবিজ্ঞান

High voltage for Board CQ

For any suggestions or queries, please contact us.

ভর ত্রুটি ও বন্ধন শক্তি

এই টাইপের ম্যাথ গুলো গ নাম্বারের জন্য খুবই গুরুত্বপূর্ণ।

প্रसाजनीं स मृत्रावर्ली

৬. ভর হ্রুটি (Mass Defect)

ভরক্রটি, $\Delta m = \left(Z_{m_p} + N_{m_n}\right) - M$

M = নিউক্লিয়াসের প্রকৃত ভর

Z = প্রোটন সংখ্যা

N = নিউট্রন সংখ্যা

 $m_p=$ একটি প্রোটনের ভর

m_n= একটি নিউট্রনের ভর

৬. বন্ধন শক্তি (Binding Energy) ০ 1 ৪

বন্ধনশক্তি, B. E $= \Delta mc^2$

বা, B.E = [
$$\left(Z_{m_p} + N_{m_n}\right) - M$$
] c^2

প্রতি বন্ধন শক্তি বললে আনবিক ভর দাড়া ভাগ করতে হবে

तप्तुता प्रश्व

 $^{235}_{92} U$ ও $^{141}_{56} Ba$ নিউক্লিয়াসদ্বয়ের ভর যথাক্রমে $236.\,0526~amu$ ও

140. 9139 amu। প্রোটন ও নিউট্রনের ভর যথাক্রমে 1. 007277 amu ও

1.008665 amu. [1 amu = $1.66 \times 10^{-27} kg$]

 $^{235}_{92} U$ এর ভরক্রটি নির্ণয় কর।

এখানে, নিউট্রনের ভর, $m_n=1.008665\ amu$ প্রোটনের ভর, $m_p=1.007277\ amu$

 $M_{^{235}_{92}U} = 236.0526 \ amu$

∴ ²³⁵U এর ভরক্রটি,

 $\Delta m = 92 \times mp + (235 - 92) \times m_n - M_{\frac{235}{92}U}$

 $= (92 \times 10.007277 + 143 \times 1.008665 - 236.0526)amu$

 $= 0.855979 \times 1.66 \times 10^{-27} \ kg$

 $= 1.42 \times 10^{-27} \ kg$

SINCE 2018

নিউক্লিয়ন প্রতি বন্ধনশক্তি কত?

 $^{235}_{92}U$ এর ভরক্রটি, $\Delta m = 1.42 \times 10^{-27}~kg$

 $\therefore {}^{235}_{92}U$ এর নিউক্লিয়ন প্রতি বন্ধন শক্তি, $E=rac{\Delta mc^2}{235}$

 $E=rac{1.42 imes10^{-27} imes(3 imes10^8)^2}{235}\,j$ /নিউক্লিয়ন $=5.44 imes10^{-13}\,j$ /নিউক্লিয়ন

 $\therefore E = 3.4 \ MeV/$ নিউক্লিয়ন

প্র্যাকটিস প্রবলেম

- প্রোটন ও নিউট্রনের ভর যথাক্রমে 1.007285 amu ও 1.004665 amu হলে ও C-12-এর ভরক্রটি ও মোট বন্ধন শক্তি নির্ণয় কর।
- 28 Ni^{62} এর নিউক্লিয়ন প্রতি বন্ধন শক্তি নির্ণয় কর।
- α এর নিউক্লিয়ন প্রতি বন্ধন শক্তি নির্ণয় কর।

A পরমাণুর নিউক্লিয়াসটির প্রকৃত ভর = $6.64 \times 10^{-27} \text{kg}$.

B পরমাণুর নিউক্লিয়াসটির ভর A পরমাণুর প্রকৃত ভরের অর্ধেক।

- (i) B পরমাণুর ভরত্রটি নির্ণয় কর।
- (ii) কোন পরমাণু থেকে প্রোটন ও নিউট্রনকে আলাদা করতে বেশি শক্তি প্রয়োজন হবে-তা গাণিতিক যুক্তি দিয়ে ব্যাখ্যা কর।

श्राकिम CQ

SINCE 2018

ধর $_1{
m H}^3+_1{
m H}^2 o _2{
m He}^4+_0{
m n}^1$ ফিউশান বিক্রিয়ায় নির্গত শক্তি দিয়ে একটি আলফা কণাকে আঘাত করা হলো।

দেওয়া আছে,

₁H³ এর ভর = 3.0155 amu

₁H² এর ভর = 2.0136 amu

₂He⁴ এর ভর = 4.0015 amu

নিউটন (n) এর ভর = 1.00867 amu

প্রোটন (p) এর ভর = 1.00758 amu

- গ. ফিউশান বিক্রিয়াটির ভরক্রটি নির্ণয় কর।
- ঘ. ফিউশান বিক্রিয়ায় নির্গত শক্তি দ্বারা আলফা কণাকে সম্পূর্ণ ভাঙতে পারবে কিনা? গাণিতিকভাবে যাচাই কর ।

নির্গত শক্তি আলফা কণার বন্ধন শক্তি হতে বেশি হতে হবে

মূর্চীপত্রে ফেরত

তেজক্কিয় পদার্থের অর্ধায়ু

এই টাইপ থেকেও গ নম্বরে আসবে । এগুলো শুধু সূত্রগুলো মনে রাখলেই খুব সহজে পারা যায় ।

প্রয়োজর্নীয় সূত্রাবর্লী

$$1. \ \frac{dN}{dt} = -\lambda N$$

2.
$$T_{1/2} = \frac{\ln 2}{\lambda} = \frac{0.693}{\lambda}$$

3.
$$N = N_0 e^{-\lambda t} \Rightarrow \frac{N}{N_0} = e^{-\lambda t}$$

N কিন্তু T সময় পরে অক্ষত পরমাণু সংখ্যা । তাহলে যদি ক্ষয়প্রাপ্ত পরমাণু সংখ্যা চায় তাহলে No থেকে N বিয়োগ করতে হবে ।

 $oldsymbol{4}$. তেজন্ত্রিয় মৌলের গড় আয়ু, $oldsymbol{ au} = rac{1}{\lambda} = rac{{T_1}_2}{0.693}$

नप्तुना प्रश्व

SINCE 2018

কোনো তেজন্ধ্রিয় মৌলের ক্ষয় ধ্রুবকের মান $0.01 \ S^{-1}$ । এর অর্ধায়ু নির্ণয় কর।

$$T_{1/2} = \frac{\ln 2}{\lambda} = \frac{0.693}{0.01} = 69.3 \text{ s}$$

একটি তেজন্ধ্রিয় পদার্থের অর্ধায়ু 1600 বছর । কত সময় পরে তেজন্ধ্রিয় পদার্থের $\frac{15}{16}$ অংশ ক্ষয়প্রাপ্ত হবে?

$$rac{15}{16}$$
 অংশ ক্ষয় প্রাপ্ত হলে অবশিষ্ট থাকে $=1-rac{15}{16}=rac{1}{16}$ অংশ

$$\therefore N = \frac{1}{16}N_0$$

এখন,
$$N=N_0e^{-\lambda t}\Rightarrow rac{N}{N_0}=e^{-\lambda t}\Rightarrow \ln\left(rac{N}{N_0}
ight)=-\lambda t$$

$$\Rightarrow \lambda t = \ln\left(\frac{N_0}{N}\right) \Rightarrow \frac{0.693}{T_{1/2}}t = \ln\left(\frac{N_0}{\frac{N_0}{16}}\right) \quad \Rightarrow t = 6401.359Y \approx 6400Y$$

মূর্চীপত্রে ফেরত

রেডিয়ামের গড় আয়ু 2294 বছর। এর অবক্ষয় ধ্রুবকের মান ও অর্ধায়ু বের কর।

(i) অবক্ষয় ধ্রুবক,
$$\lambda = \frac{1}{\tau} = \frac{1}{2294} = 4.359 \times 10^{-4} \mathrm{yr}^{-1}$$

(ii) অর্ধায়ু,
$$T_{1/2}=rac{0.693}{\lambda}$$

$$=0.693 imes au$$

$$=0.693 imes 2294$$

$$=1590 বছর$$

1g রেডিয়াম থেকে প্রতি সেকেন্ডে 3.5×10^{10} সংখ্যক আলফা কণা নির্গত হয়, রেডিয়ামের অর্ধায়ু নির্ণয় কর। [রেডিয়ামের পারমাণবিক ভর 226 এবং অ্যাভোগেড্রো 6.023×10^{23}]

আমরা জানি,
$$\frac{dN}{dt} = -\lambda N$$

$$-\frac{dN}{dt} = 3.5 \times 10^{10}$$

$$-\frac{dN}{dt} = \lambda N$$
SINCE 2018

$$1g$$
 রেডিয়ামে, $N = \frac{6.023 \times 10^{23}}{226}$

$$\therefore \lambda = -\frac{dN}{dt}/N = \frac{3.5 \times 10^{10} \times 226}{6.023 \times 10^{23}}$$

$$T_{1/2} = \frac{0.603}{\lambda} = 5.27 \times 10^{10} \text{sec}$$

= 1673.2 years

পরমাণুর ভাঙন ও সময়

ঘ নম্বরের জন্য এই অধ্যায়ের সবচেয়ে গুরুত্বপূর্ণ টপিক এটি । প্রশ্ন হবে যে নির্দিষ্ট সময় পরে কতগুলো অনু বা পরমাণু অবশিষ্ট রয়েছে বা ক্ষয় হয়েছে । এর জন্য সূত্র একটাই তবে অনেক সময় অবক্ষয় ধ্রুবকের মান দেওয়া থাকে না সেটা তোমাদের আগে বের করতে হবে ।

প্रसाजर्नीय সূত্রাবর্লी

1.
$$\frac{dN}{dt} = -\lambda N$$

2.
$$T_{1/2} = \frac{\ln 2}{\lambda} = \frac{0.693}{\lambda}$$

3.
$$N = N_0 e^{-\lambda t} \Rightarrow \frac{N}{N_0} = e^{-\lambda t}$$

N কিন্তু T সময় পরে অক্ষত পরমাণু সংখ্যা । তাহলে যদি ক্ষয়প্রাপ্ত পরমাণু সংখ্যা চায় তাহলে N₀ থেকে N বিয়োগ করতে হবে ।

नघुना श्रञ्ज

SINCE 2018

226 ঘন্টা অর্ধায়ুবিশিষ্ট তেজক্ষিয় আয়োডিন আইসোটোপ মুকিৎসাবিদ্যায় রোগ নির্ণয়ে ব্যবহৃত হয়। কোনো একজন রোগীর রোগ নির্ণয়ের জন্য তার শরীরে 15 g তেজক্ষিয় আয়োডিন আইসোটোপ প্রবেশ করানো হলো। ঠিক 24 ঘন্টা পরে আবার তার শরীরে আয়োডিনের উপস্থিতি নির্ণয় করা হলো।

এখানে, আয়োডিনের অর্ধায়ু, $T_{\frac{1}{2}}=2.26h$

আয়োডিনের ক্ষয়ধ্রুবক, $\lambda = ?$

আমরা জানি,
$$T_{\frac{1}{2}} = \frac{0.693}{\lambda}$$
 $\lambda = \frac{0.693}{T_{\frac{1}{2}}} = \frac{0.693}{2.26} = 0.307 \ h^{-1}$

এখানে, সময়, t = 24 h

ক্ষয় ধ্রুবক, $\lambda = 0.307 \ h^{-1}$

ধরি, প্রাথমিক অবস্থায় আয়োডিনের পরিমাণ m_0 এবং পরে m_g

প্রাথমিক অবস্থায় আয়োডিনের পরমাণুর সংখ্যা N_0 এবং পরে N

তাহলে,
$$\frac{N_0}{N}=\,rac{m_0}{m}$$

মূর্চীপত্রে ফেরত

আমরা জানি,

$$N = N_0 e^{(-0.307 \times 24)}$$

বা, $N = N_0 \times 6.37 \times 10^{-4}$
বা, $\frac{N_0}{N} = 1570.72$
 $\therefore \frac{m_0}{m} = \frac{N_0}{N} = 1570.72 = \frac{m_0}{1570.72} = \frac{15gm}{1570.72}$

 \therefore অবশিষ্ট আয়োডিনের পরিমাপ, $m=9.55 imes 10^{-3}~gm$

প্র্যাকটিস প্রবলেম

- ট্রিটিয়ামের অর্ধায়ু 12.5 বছর। 25 বছর পর একটি নির্দিষ্ট ট্রিটিয়াম বহু খণ্ডের কত অংশ অবশিষ্ট থাকবে?

 Ans: 1/4
- একটি তেজক্ষ্রিয় বস্তুতে 1018 পরমাণু আছে। বস্তুটির অর্ধায়ু হচ্ছে 2000 দিন।
 5000 দিন পর কত ভগ্নাংশ অবশেষ থাকবে?

 Ans: 17.7%
- কোনো একটি তেজক্রিয় বস্তুর অর্ধায়ু 6.93 দিন। কতদিনপরে কিছু পরিমাণ এই তেজক্রিয়ের মাত্র 1/10th অবশিষ্ট থাকবে?

 Ans: 23,026 day
- রোগীর শরীরে 10μg এর একটি 228 Ra ট্যাবলেট রাখা হল। 24 ঘন্টা পর রোগী নিরাপদ থাকবে কী? দেওয়া আছে, 2.23 × 10³ টি পরমাণু বিয়োজিত হলে রোগী বিপদগ্রস্ত হবে এবং 228Ra এর অর্ধায়ু 1600 বছর Ans: নিরাপদ
- তেজক্মিয় পদার্থ স্বতঃস্ফূর্তভাবে ক্ষয়প্রাপ্ত হয়। কোনো এক গবেষণাগারে দুইটি
 বিশেষ ধরনের পাত্র A ও B তে দুটি ভিন্ন তেজক্মিয় পদার্থ রাখা আছে, যাদের
 অর্থায়ু য়থাক্রমে 16 ঘন্টা ও 4 দিন।
 - (i) তেজক্ষিয় মৌলদ্বয়ের গড় আয়ৣর অনুপাত নির্ণয় কর। Ans: 0.167
 - (ii) A পাত্রের মৌলটির যে সময় 75% ক্ষয়প্রাপ্ত হবে ঐ সময়ে B পাত্রের মৌলটির 25% অক্ষত থাকবে কিনা-গাণিতিকভাবে বিশ্লেষণ কর।

Ans: 9,91%

श्राकिम CQ

- X তেজন্ধ্রিয় মৌলটির অর্ধায়ু 3.82 দিন। ল্যাব পর্যবেক্ষণে জানা গেল 17.74 দিন পরে মৌলটির অক্ষত পরমাণুর সংখ্যা প্রারম্ভিক মানের $\frac{1}{25}$ অংশ .
- গ. উদ্দীপকে মৌলটির ৪5% ক্ষয় হতে কত সময় লাগবে?
- ঘ, উদ্দীপকমতে পর্যবেক্ষণটি সঠিক ছিল কিনা? গাণিতিকভাবে যাচাই কর।
- ইউরেনিয়ামের অর্ধায়ু 700 মিলিয়ন বছর। নিউট্রন ও ইউরেনিয়ামের সংঘর্ষে তেজন্ধিয় শক্তি নির্গত হয়। যদি ভরগুলো $^{235}_{92}$ U = 235.0439amu, , $^{141}_{56}$ Ba = 140.9139amu; $^{92}_{36}$ Kr = 91.8973amu $^{8}_{0}$ n = 1.0087amu হয়। [1amu = 1.6604×10^{-27} kg]
- গ. ইউরেনিয়ামের 40% ক্ষয় হতে কত সময় লাগবে ? ঘ. উদ্দীপকের বিক্রিয়ায় নির্গত শক্তির পরিমাণ 200 Mev এর অধিক হইবে কিনা? তোমার উত্তর গাণিতিক বিশ্লেষণে দাও।
- একখণ্ড রেডিয়ামের ভর 5 g। 1g রেডিয়াম $\binom{266}{88}Ra$) হতে প্রতি সেকেন্ডে প্রায় 3.7×10^{10} টি পরমাণু ভেঙে যায়। একজন শিক্ষার্থী হিসাব করে বলল 600 বছর পরেও 2g রেডিয়াম অবশিষ্ট থাকবে।
 - গ. রেডিয়ামের অর্ধায়ু নির্ণয় কর।
 - ঘ. শিক্ষার্থীর বক্তব্য সঠিক কিনা? গাণিতিকভাবে ব্যাখ্যা দাও ।

বোর পরমাণু মডেল

এখান থেকে খুব কম প্রশ্ন আসে । যদিও আসে থাকে তাহলে ডাইরেক্ট সূত্র দিয়ে করা যায় । তাই সূত্রগুলো ভালোমতো দেখে রাখো । (এখানে সবগুলো এসআই এককে দেওয়া , চাইলে রসায়নের দ্বিতীয় অধ্যায়ে এই সূত্রগুলো ইউজ করতে পারো)

প্रसाजर्नीय मूत्रावर्ली

1.
$$r_n = \frac{\epsilon_0 r^2 h^2}{\pi m Z e^2}$$

$$2. L = mvr = \frac{nh}{2\pi}$$

3.
$$v_n = \frac{ze^2}{2\epsilon_0 nh} = \frac{nh}{2\pi mr_n}$$

4.
$$E_n = \frac{-me^4z^2}{8n^2\epsilon_0^2h^2}$$

6.
$$|E_n| = \frac{1}{2} |E_{p_n}| = E_{k_n}$$

•
$$\epsilon_0 = 8.85 \times 10^{-12} \ C^2 N^{-1} m^{-2}$$

•
$$h = 6.63 \times 10^{-34} \, Js$$

•
$$m = 9.11 \times 10^{-31} \text{ kg}$$

•
$$e = 1.6 \times 10^{-19}$$
C

•
$$R_H = 1.097 \times 10^7 \, m^{-1}$$

গতিশক্তি,
$$E_k=rac{Ze^2}{8\pi\epsilon_0r_n}$$
 SINCE 2018 স্থিতিশক্তি, $E_p=rac{-Ze^2}{4\pi\epsilon_0r_n}$

$$6. hf = E_u - E_f$$

7. তরঙ্গ দৈর্ঘ্য
$$rac{1}{\lambda}=R_Higg(rac{1}{n_1^2}-rac{1}{n_2^2}igg)$$
নির্ণয়ের জন্য,

ফোটনের কম্পাঙ্ক,
$$f=rac{z^2me^4}{8arepsilon_0^2h^3}igg(rac{1}{n_1^2}-rac{1}{n_2^2}igg)$$

কম্পাঙ্ক নির্ণয় করতে হলে আমরা এই সূত্র ইউজ করব না । দেখতেই পাচ্ছো কি পরিমাণ বিদঘুটে একটা সূত্র এটা । তাই কম্পাঙ্ক নির্ণয় করতে হলে আমরা আগে তরঙ্গ দৈর্ঘ্য নির্ণয় করে নিচের সূত্রটি ব্যবহার করব,

8. f =
$$\frac{c}{\lambda}$$

প্র্যাকতিস প্রবলেম

- হিলিয়াম পরমাণুর প্রথম কক্ষের ইলেকট্রনের বেগ নির্ণর করো। ১ম কক্ষের ব্যাসার্ধ $2.6 \times 10^{-11} m$.
- হাইড্রোজেন পরমাণুর প্রথম বোর কক্ষের কৌণিক ভরবেগ নির্ণয় কর।
- হাইড্রোজেন পরমাণুর ৩য় কক্ষপথের ব্যাসার্ধ 4.78 A এ কক্ষপথে e এর বেগ
 কত?
- হাইড্রোজেন পরমাণুর ইলেকট্রন ২য় শক্তিস্তর থেকে ১ম শক্তিস্তরে লাফ দেওয়ার
 ফলে সৃষ্ট বর্ণালী রেখার তরঙ্গ দৈর্ঘ্য কত?

এই টাইপের প্রশ্ন থেকে কম্পাঙ্ক কিংবা শক্তি দুইটাই নির্ণয় করা কিন্তু একদমই সহজ আগে সবসময় তরঙ্গদৈর্ঘ্যটা বের করে নিবা । আর তরঙ্গ দৈর্ঘ্য দেওয়া থাকলে কম্পাঙ্ক ও শক্তি নির্ণয়ের সূত্র তো জানো ।

$$f = \frac{c}{\lambda}, E = \frac{hc}{\lambda}$$

 হাইড্রোজেন পরমাণুর ইলেকট্রন তৃতীয় কক্ষপথ থেকে দ্বিতীয় কক্ষপথে যাওয়ার ফলে নিঃসৃত বিকিরণের কম্পাঙ্ক ও তরঙ্গদৈর্ঘ্য নির্ণয় কর। এ বিকিরণ কি চোখে দেখা যাবে?

বিকিরণ চোখে তখনই দেখা যাবে যখন তরঙ্গ দৈর্ঘ্য এর মান ৩৮০ থেকে ৭৮০ ন্যানোমিটার হবে । মিটার থেকে ন্যানামিটারে যেতে 10^9 দ্বারা গুন করতে হবে .

श्राकिंग CQ

- হাইড্রোজেন পরমাণুর অনুমোদিত দ্বিতীয় কোয়ান্টাম কক্ষ হতে প্রথম কোয়ান্টাম কক্ষে ইলেকট্রন যাওয়ার জন্য ফোটন নিগর্ত হয় ।
- (গ) হাইড্রোজেন পরমাণুর দ্বিতীয় বোর কক্ষের ব্যাসার্ধ নির্ণয় কর।
- (ঘ) উদ্দীপকের হাইড্রোজেন পরমাণুর দ্বিতীয় কক্ষপথে থেকে প্রথম কক্ষপথে ইলেকট্রন যাওয়ার ফলে নিঃসৃত বিকিরণ কি চোখে দেখা যাবে ? গাণিতিকভাবে যাচাই কর।
- একটি হাইড্রোজেন পরমাণুর ইলেক্ট্রন −1.5eV শক্তি অবস্থা হতে 3.4ev শক্তি অবস্থায় আসে।
- (গ) ভূমি অবস্থার শক্তি 13.6 eV হলে ইলেক্ট্রন প্রথমে কোন শক্তি স্তরে ছিল?
- (ঘ) নিঃসরিত বিকিরণটি দৃশ্যমান হবে কি? যাচাই কর।