CÁLCULO DIFERENCIAL E INTEGRAL

Pré-Cálculo: Funções e modelos

Thiago de Paula Oliveira February 10, 2018

② You may copy, distribute and modify this list as long as you cite the author.

1. Considere $f(x) = 3x^2 + 2x$ e $g(x) = \frac{x}{x^2 + x}$, determine as funções e as simplifique:

(a)
$$h(x) = f(x) + 2g(x)$$
 (b) $h(x) = f(x) \times g(x)$

(b)
$$h(x) = f(x) \times q(x)$$

(c)
$$h(x) = f(g(x))$$

(d)
$$h(x) = f(x) \times g^2(x)$$

(d)
$$h(x) = f(x) \times g^2(x)$$
 (e) $h(x) = \frac{1}{f(x) + 1} + g(x)$ (f) $h(x) = g(f(x))$

(f)
$$h(x) = g(f(x))$$

- 2. O modelo matemático de Henderson e Pabis é um dos modelos utilizados para predizer o fenômeno de secagem de alimentos, sendo dado por $RU = a.e^{-kt}$ em que RU é a razão de umidade do produto, adimensional; t é tempo de secagem; k é o coeficiente de secagem e a é uma constante qualquer. Faça o gráfico da função RU, sabendo que a=5 e k=7.
- 3. Determine o domínio, imagem e contra-domínio das seguintes funções:

(a)
$$f(x) = 2 - 1,5x$$

(b)
$$h(x) = \sqrt{(4-x^2)}$$

(c)
$$f(u) = u^2 + 2x$$
, com $x \in \mathbb{R}$ (d) $f(z) = |z + 2|$

(d)
$$f(z) = |z + 2|$$

(e)
$$g(h) = \frac{x^2 + 4}{\sqrt{|x|}}$$

(f)
$$f(x) = \begin{cases} 2x + 2, & \text{se } x > 2\\ -x^2 + 2x, & \text{se } 0 < x < 2 \end{cases}$$

(g)
$$g(h) = \frac{\log(x)}{2 - x^2}$$

(h)
$$f(x) = \begin{cases} x+4, & \text{se } x < -1 \\ -3x^2 + 2x + 4, & \text{se } -1 \le x < 6 \\ 9, & \text{se } x \le 6 \end{cases}$$

4. No Brasil a base de cálculo (em reais) para o pagamento do imposto de renda é baseado em uma tabela de alíquota dada na Tabela 1. Essas alíquotas são descontadas do salário do trabalhador mensalmente como forma de contribuição.

Table 1: Tabela anual do Imposto de Renda 2018

Base de cálculo (R\$)	Alíquota (%)	Parcela a deduzir do IR (R\$)
Até 1.903,98	-	Isento
De $1.903,99$ até $2.826,65$	7.5	142,8
De $2.826,66$ até $3.751,05$	15	354,8
De $3.751,06$ até $4.664,68$	22,5	636,13
Acima de 4.664,69	27,5	869,36

- (a) Faça um gráfico da alíquota em função da base de cálculo e do tempo.
- (b) Se uma pessoa ganha 4550, qual será a contribuição dela no período de um ano?
- **②** You may copy, distribute and modify this list as long as you cite the author.

- (c) Se uma pessoa tem seu salário aumentado de 4.600,00 para 4.700,00 reais, qual será o incremento salarial e de contribuição ao estado no período de um ano?
- 5. Estude a paridade das seguintes funções:

(a)
$$f(x) = x^4 + x^2$$

(a)
$$f(x) = x^4 + x^2$$
 (b) $f(x) = -x^3 - x$ (c) $f(x) = |x^3|$

(c)
$$f(x) = |x^3|$$

(d)
$$f(x) = \sqrt{x^2}$$

(e)
$$f(x) = \cos x$$

(d)
$$f(x) = \sqrt{x^2}$$
 (e) $f(x) = \cos x$ (f) $f(x) = \operatorname{tg}(x)$, para $\forall x \in [-\pi/2, \pi/2]$

- 6. A relação entre as temperaturas medidas em gaus Celsius (C) e Fahrenheit
 - (F) é dada pela função

$$C = \frac{5\left(F - 32\right)}{9}.$$

- (a) Apresente o gráfico da função
- (b) Calcule o coeficiente angular e o interprete. Faça o mesmo para o intercepto.
- 7. A tonalidade (h) pode ser definida como uma medida angular como ilustra a Figura 1, logo $h \in [0, 360]$.

Figure 1: Região das cores pertencentes ao sistema de cores CIELab (ou CIELCh), com representação de duas cores: A, amarela, em $h = 82^{\circ}$) e B, vermelha, em que $h=24^{\circ}$)

Fonte: Modificado a partir da ColorMetrix

Na área de pós-colheita, a tonalidade da cor é uma variável muito utilizada para descrever curvas de maturação de diversos frutos. Assim, considere que o a função definda por

$$f(t) = 111,09 - 1,65t + 0,0405t^2$$

9 You may copy, distribute and modify this list as long as you cite the author.

é utilizada para descrever a tonalidade do mamão papaya "Sunrise Solo" ao longo do tempo (t).

- (a) Em quanto tempo o fruto mudará sua tonalidade de verde (120) para amarela (90)?
- (b) Após 5,3 dias qual deve ser a tonalidade do fruto?
- (c) Apresente o gráfico da função;
- 8. Expresse as funções na forma $f \circ g$

(a)
$$f(x) = (x+5)^5$$

(a)
$$f(x) = (x+5)^5$$
 (b) $f(x) = \log(x+4)$ (c) $f(x) = |e^{x^3}|$

(c)
$$f(x) = |e^{x^3}|$$

(d)
$$f(x) = \sqrt{x^2}$$

(e)
$$f(x) = \cos 2x$$

(d)
$$f(x) = \sqrt{x^2}$$
 (e) $f(x) = \cos 2x$ (f) $f(x) = \frac{1}{\lg(x)}$

- 9. Utilize as respostas obtidas para o exercício 8 e calcule g(f(2))
- 10. Obtenha $f \circ g \circ h$

(a)
$$f(x) = 2x + 1$$
, $g(x) = x^2$, $h(x) = \frac{1}{x}$

(b)
$$f(x) = x^3 + 3$$
, $g(x) = \sqrt{x}$, $h(x) = \frac{x+1}{x}$

(c)
$$f(x) = \frac{2x^2 + 1}{2x + 2}$$
, $g(x) = x$, $h(x) = \text{sen } x$

11. Determine o domínio das seguintes funções

(a)
$$f(x) = e^x$$

(b)
$$f(v) = \frac{e^v}{1 - e^v}$$

(a)
$$f(x) = e^x$$
 (b) $f(v) = \frac{e^v}{1 - e^v}$ (c) $f(x) = \frac{1 + x}{1 = e^{2x}}$

(d)
$$f(x) = \frac{1}{e^{x^2 + 2x}}$$
 (e) $f(t) = \sqrt{1 - t^2}$ (f) $f(x) = \cos(e^{-x})$

(e)
$$f(t) = \sqrt{1 - t^2}$$

$$(f) f(x) = \cos(e^{-x})$$

12. Determine o domínio e construa o gráfico das seguintes funções

(a)
$$f(x) = \ln x$$

(b)
$$f(x) = \ln \frac{x}{e}$$

(a)
$$f(x) = \ln x$$
 (b) $f(x) = \ln \frac{x}{e}$ (c) $f(x) = \ln \frac{1+x}{x}$

- 13. Relacione as funções a seguir $f(x) = \log(x) + x$, $f(x) = \frac{x^3 + 2x}{|x| + 1}$, $f(x) = \frac{x^3 + 2x}{|x| + 1}$ e^{x^2} , e $f(x) = \sqrt{x}$ com os gráficos da Figura 2.
- **②** You may copy, distribute and modify this list as long as you cite the author.

Figure 2: Figuras utilizadas para o exercício 11

14. Curvas de crescimento são muito utilizadas nas áreas de biologia e ciências agrárias para quantificar, por exemplo, a massa de animais e vegetais e o crescimento populacional de microorganismos. Assim, supondo que o crescimeto populacional de uma determinada bactéria em função do tempo (t) pode ser descrita pela função de Gompertz dada por

$$f(t) = a \exp\left[-\exp\left(b - ct\right)\right].$$

Assumindo que a = 3, b = 2 e c = 1.

- (a) Construa o gráfico da função
- **②** You may copy, distribute and modify this list as long as you cite the author.

- (b) Em quando tempo o tamanho da população de bactérias irá passar de 100 para 1000?
- 15. A partir da Figura 3 determine a função definida por partes utilizando conhecimentos de geometria e trigonometria. Além disso, determine o domínio e imagem dessa função.

Figure 3: Figura para o exercício 15

- 16. Determine as funções inversas $(f^{-1}(x))$

 - (a) $f(x) = e^x$ (b) $f(x) = \frac{x}{1-x}$ (c) $f(x) = x^2 + 2x$

- (d) $f(x) = \sqrt{x}$ (e) $f(x) = \frac{a+x}{b-x}$ (f) $f(x) = \cos(x)$
- 17. Considere a função $f(x) = x^3$. Calcule e simplique o quociente $\frac{f(3+h)-f(3)}{h}$.
- 18. Prove que $\operatorname{tg} \alpha \operatorname{sen} \alpha + \cos \alpha = \sec \alpha$.
- 19. Prove que $\frac{2 \operatorname{tg} \alpha}{1 + \operatorname{tg}^2 \alpha} = \operatorname{sen} 2\alpha$.
- 20. Construa o gráfico da função $f(x) = 2 + \sin x$.
- **9** You may copy, distribute and modify this list as long as you cite the author.

- 21. Determine as coordenadas do vértice da equação $x^2 3(x + y) = 1$
- 22. Determine o domínio e imagem da equação $y^2 = -x^2 + 4$
- 23. Determine a monotonicidade das seguintes funções
- (a) $f(x) = x^3$ (b) $f(x) = x^2$ (c) f(x) = x + 3
- (d) $f(x) = \sqrt{x+2}$ (e) $f(x) = \log(2x)$ (f) $f(x) = e^{-x^2}$
- 24. Um veículo teve seu pneu calibrado para 35 libras e, em seguida, o motorista se deslocou do ponto A ao ponto B em 9h a uma velocidade média de 100 km por hora. Suponha que a temperatura do pneu aumenta quadraticamente em função da distância percorrida até aproximadamente 100 graus Celcius. Então a temperatura se mantêm constante até a distância percorrida em 8h (Figura 4). Na última hora, suponha que a temperatura decai quadraticamente em função da distância. Determine uma função que descreva o aumento da temperatura em função da distância (em km).

Figure 4: Exercício 24

- 25. Simplifique as funções a seguir

 - (a) $f(x) = 4 \operatorname{sen}^2 x + 4 \cos^2 x$ (b) $f(x) = \frac{x^2 + 8x + 16}{8x + 32}$ (c) $f(x) = \frac{x}{\sqrt{x^2}}$
 - (d) $f(x) = \log(x^2 + 3x) \log(x)$ (e) $f(x) = \frac{e^x e^{\pi}}{e^{2x}}$ (f) $f(x) = e^{-x^2} e^{x^2 + 2x}$
- (g) $f(x) = \frac{\sin(2x)}{[\cos 2]^{-1}} \frac{\sin 2}{[\cos (2x)]^{-1}}$ (h) $f(x) = \sin^2 x \operatorname{tg}^{-2} x$ (i) $f(x) = x^2 + 4x 4$

- 26. Encontre as raízes das funções polinomiais a seguir

 - (a) $f(x) = x^3 + x^2$ (b) $f(x) = x^2 10x 9$ (c) $f(x) = x^2 + 9$
 - (d) $f(x) = \frac{1}{x^2 + 4}$ (e) $f(x) = cx^2 + 4cx + c^2$ (f) $f(x) = \frac{x^2 + 2}{x}$
- **②** You may copy, distribute and modify this list as long as you cite the author.