5

10

WHAT IS CLAIMED IS:

1. A compound of the general formula:

$$QR_9$$
 R_2
 R_1
 QR_1
 QR_2
 R_1
 QR_2
 QR_3
 QR_4
 QR_4
 QR_5
 QR_6
 $QR_$

wherein X is O, S, NH or CH2;

R₁ and R₂ are the same and are either H, CH₃ or F;

 R_9 is H, or C_1 - C_{20} straight chain, saturated or unsaturated or branched acyl; R_{11} is H, or C_1 - C_{20} straight chain, saturated or unsaturated or branched acyl; represents any combination of a single bond, or a cis or trans double bond; Z is H, Cl, Br, I, CF₃, CH₃, or C₁-C₁₀ straight chain or branched alkyl;

Y is O, S, NH or CH₂.

- The compound of claim 1 wherein R₉ and R₁₁ are H; Y is O, S, or NH; 2. and Z is CH₃.
- 3. The compound of claim 1 wherein X is CH₂; R₁, R₂ is H; Y is O; and Z is CF₃.
- 4. The compound of claim 1 wherein X is CH₂; R₁, R₂ is H; Y is O; and Z 15 is Cl.
 - 5. The compound of claim 1 wherein X is CH2; R1, R2 is H; Y is CH2; and Z is H.
- A method of treating increased intraocular pressure in the eye of a human 20 or animal comprising the step of:

5

10

administering a therapeutically effective amount of at least one compound of the general formula to the eye:

wherein X is O, S, NH or CH₂;

R₁ and R₂ are the same and are either H, CH₃ or F;

 R_9 is H, or C_1 - C_{20} straight chain, saturated or unsaturated or branched acyl; R_{11} is H, or C_1 - C_{20} straight chain, saturated or unsaturated or branched acyl; represents any combination of a single bond, or a cis or trans double bond; Z is H, Cl, Br, I, CF₃, CH₃, or C_1 - C_{10} straight chain or branched alkyl;

Y is O, S, NH or CH₂.

- 7. The method of claim 6 wherein the compound is selected from the group consisting of a 1,15-lactone of fluprostenol, a 1,15-lactone of cloprostenol, and a 1,15-lactone of latanoprost.
- 8. A topical ophthalmic composition for treating increased intraocular pressure comprising a pharmaceutically acceptable carrier and a therapeutically effective amount of at least one compound of the general formula:

5

10

Formula I

wherein X is O, S, NH or CH₂;

R₁ and R₂ are the same and are either H, CH₃ or F;

R₉ is H, or C₁-C₂₀ straight chain, saturated or unsaturated or branched acyl; R₁₁ is H, or C₁-C₂₀ straight chain, saturated or unsaturated or branched acyl; represents any combination of a single bond, or a cis or trans double bond; Z is H, Cl, Br, I, CF₃, CH₃, or C₁-C₁₀ straight chain or branched alkyl; Y is O, S, NH or CH₂.

- 9. The topical ophthalmic composition of claim 8 wherein the compound is selected from the group consisting of a 1,15-lactone of fluprostenol, a 1,15-lactone of cloprostenol, and a 1,15-lactone of latanoprost.
- 10. A topical formulation for treating increased intraocular pressure comprising the following ingredients by weight percent:

	Fluprostenol 1,15-lactone	0.002
15	Dextran 70	0.1
	Hydroxypropyl Methylcellulose	0.3
	Sodium Chloride	0.77
	Potassium Chloride	0.12
	Disodium EDTA	0.05
20	Benzalkonium Chloride	0.01
	HCl and/or NaOH	to pH=7.0-7.6
	Purified water	q.s. to 100%