Définition 17.1 - fraction rationnelle

Dans $\mathbb{K}[X] \times (\mathbb{K}[X] \setminus \{0\})$ On définit la relation d'équivalence \mathcal{R} en posant :

$$(P,Q)\mathcal{R}(R,S)$$

- $\Leftrightarrow P/Q = R/S$ (Cette étape n'est qu'à titre explicatif dans la mesure où l'opération / n'est pas définie)
- $\Leftrightarrow PS = RQ$

On appelle fraction rationnelle à coefficients dans \mathbb{K} toute classe d'équivalence pour la relation \mathcal{R} . La classe de (P,Q) est alors notée $\frac{P}{Q}$. On a donc :

$$\frac{P}{Q} = \{(R, S) \in \mathbb{K}[X] \times (\mathbb{K}[X] \setminus \{0\}), PS = RQ\}$$

On dit que (P,Q) est un représentant de la fraction $\frac{P}{Q}$. L'ensemble des fractions rationnelles est noté $\mathbb{K}(X)$ et la relation \mathcal{R} est appelée égalité des fractions rationnelles.

Proposition 16.4 - structure de $\mathbb{K}(X)$

 $(\mathbb{K}(X), +, \times)$ est un corps commutatif et $(\mathbb{K}(X), +, \times, \cdot)$ (où \cdot est la loi externe) est une \mathbb{K} -algèbre commutative.

L'application $\varphi : \mathbb{K}[X] \to \mathbb{K}(X)$ définie par $\varphi(P) = \frac{P}{1}$ est un morphisme d'algèbres injectif.

Définition 17.7 - représentant irréductible

Soit $F = \frac{P}{Q}$ une fraction. On dit que $\frac{P}{Q}$ est un représentant irréductible lorsque $P \wedge Q = 1$ et que Q est unitaire. Toute fration rationnelle de $\mathbb{K}(X)$ admet un unique (dénominateur unitaire) représentant irréductible.

Théorème 17.34 - décomposition en éléments simples

Soit $F = \frac{A}{B}$ une fraction sous forme irréductible, et $B = \prod_{i=1}^k P_i^{\alpha_i}$ sa décomposition en produit de polynômes irréductibles. Il existe des polynômes $(U_i)_{i \in [\![1,k]\!]}$ tels que

$$F = E + \sum_{i=1}^{k} \frac{U_i}{P_i^{\alpha_i}} \quad \text{avec deg}(\frac{U_i}{P_i}) < 0$$

De plus, pour $n \in \mathbb{N}^*$, Si $T \in \mathcal{I}_{\mathbb{K}[X]}$ et $\deg(\frac{A}{T^n}) < 0$, alors il existe des polynômes V_1, \ldots, V_n tels que

$$\frac{A}{T^n} = \sum_{k=1}^n \frac{V_k}{T^k} \quad \text{avec deg}(\frac{V_k}{T^k}) < 0$$

Finalement, Il existe des polynômes $(U_{i,j})_{i\in [\![1,k]\!],j\in [\![1,\alpha_i]\!]}$ tels que

$$F = E + \sum_{i=1}^{k} \sum_{j=1}^{\alpha_i} \frac{U_{i,j}}{P_i^j}$$
 avec $\deg(\frac{U_{i,j}}{P_i}) < 0$

Cette décomposition est unique.