<u>Instructions</u>: Please answer the following legibly, logically, and **show all work** on a **separate sheet of paper**. Please scan your work (or take pictures) and submit via the Assignments link on Canvas.

1. Let W be the subspace spanned by the \mathbf{u} 's and write \mathbf{y} as the sum of a vector in W and a vector orthogonal to W.

$$\mathbf{y} = \begin{bmatrix} -1\\4\\3 \end{bmatrix}, \mathbf{u}_1 = \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \mathbf{u}_2 = \begin{bmatrix} -1\\3\\-2 \end{bmatrix}$$

2. Find the closest point to \mathbf{y} in the subspace W spanned by \mathbf{v}_1 and \mathbf{v}_2 .

$$\mathbf{y} = \begin{bmatrix} 3 \\ -1 \\ 1 \\ 13 \end{bmatrix}, \mathbf{v}_1 = \begin{bmatrix} 1 \\ -2 \\ -1 \\ 2 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} -4 \\ 1 \\ 0 \\ 3 \end{bmatrix}$$

3. Find the best approximation to **z** by vectors of the form c_1 **v**₁ + c_2 **v**₂.

$$\mathbf{z} = \begin{bmatrix} 3 \\ -7 \\ 2 \\ 3 \end{bmatrix}, \mathbf{v}_1 = \begin{bmatrix} 2 \\ -1 \\ -3 \\ 1 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} 1 \\ 1 \\ 0 \\ -1 \end{bmatrix}$$

4. Let
$$\mathbf{y} = \begin{bmatrix} 4 \\ 8 \\ 1 \end{bmatrix}$$
, $\mathbf{u}_1 = \begin{bmatrix} 2/3 \\ 1/3 \\ 2/3 \end{bmatrix}$, $\mathbf{u}_2 = \begin{bmatrix} -2/3 \\ 2/3 \\ 1/3 \end{bmatrix}$, and $W = \text{Span}\{\mathbf{u}_1, \mathbf{u}_2\}$.

- (a) Let $U = [\mathbf{u}_1 \ \mathbf{u}_2]$. Compute $U^T U$ and $U U^T$.
- (b) Compute $\operatorname{proj}_{W}\mathbf{y}$ and $(UU^{T})\mathbf{y}$.
- 5. Find a least-squares solution of $A\mathbf{x} = \mathbf{b}$ by (a) constructing the normal equations for $\hat{\mathbf{x}}$ and (b) solving for $\hat{\mathbf{x}}$. And (c) compute the least squares error associated with the least-squares solution.

(1)
$$A = \begin{bmatrix} 1 & 3 \\ 1 & -1 \\ 1 & 1 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 5 \\ 1 \\ 0 \end{bmatrix}$$

(2)
$$A = \begin{bmatrix} 1 & -2 \\ -1 & 2 \\ 0 & 3 \\ 2 & 5 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 3 \\ 1 \\ -4 \\ 2 \end{bmatrix}$$

6. Find (a) the orthogonal projection of **b** onto Col A and (b) a least-squares solution of $A\mathbf{x} = \mathbf{b}$. [*Hint:* Don't work too hard here. Investigate the columns of A.]

(1)
$$A = \begin{bmatrix} 1 & 2 \\ -1 & 4 \\ 1 & 2 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 3 \\ -1 \\ 5 \end{bmatrix}$$

(2)
$$A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & -1 \\ 0 & 1 & 1 \\ -1 & 1 & -1 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 2 \\ 5 \\ 6 \\ 6 \end{bmatrix}$$

7. Let A be an $m \times n$ matrix such that $A^T A$ is invertible. Show that the columns of A are linearly independent. [Careful: You may NOT assume that A is invertible; it may not even be square.]