Міністерство освіти і науки України Національний авіаційний університет Навчально-науковий інститут комп'ютерних інформаційних технологій Кафедра комп'ютеризованих систем управління

Лабораторна робота №2
з дисципліни «Комп'ютерні системи»
на тему «Моделювання часових характеристик обчислювальних систем
та мереж»
Варіант №3

Виконав: студент ННІКІТ групи СП-325 Клокун В. Д. Перевірив: Ковальов М. О.

1. МЕТА РОБОТИ

Вивчення методів оцінки трудомісткості алгоритмів.

2. ХІД РОБОТИ

Вихідними даними для лабораторної роботи є схема алгоритму (рис. 1). Для побудови матриці переходів за схемою алгоритму також надані значення параметрів, що перевіряються алгоритмом (табл. 1).

Рис. 1: Схема алгоритму

Табл. 1: Області зміни параметрів X_i, K_i , що складають оператор $V_{\alpha i}$

Номер варіанта			Парам	Параметр та його значення				
	X_1	X_2	K_1	K_2	K_3			
3	0,+4	-3, 1	10	20	30			

2.1. Обчислення середньої кількості операцій за один прогін алгоритму

Нехай n_1, \dots, n_{k-1} — середня кількість звернень до операторів V_1, \dots, V_{k-1} . Тоді середня кількість операцій за один прогін алгоритму $\theta_{\text{осн}}$ визначається так:

$$\theta_{\text{осн}} = \sum n_i \cdot k_i. \tag{1}$$

Щоб знайти значення середньої кількості звернень $n_1, ..., n_{k-1}$, за схемою алгоритму визначаємо та будуємо матрицю ймовірностей переходу, в якій кожен елемент P_{ij} визначає ймовірність переходу із стану i в стан j (табл. 2).

За матрицею ймовірностей переходу складаємо систему лінійних алгебраїчних рівнянь:

$$\begin{cases} -n_{\alpha 1} + n_{\alpha 2} + n_{\beta 4} + n_{\beta 7} + 0.030n_{\alpha 8} = -1, \\ n_{\alpha 1} - n_{\beta 1} = 0, \\ -n_{\alpha 2} + n_{\beta 2} = 0, \\ -n_{\beta 2} + 0.050n_{\beta 3} = 0, \\ 0.100n_{\beta 1} - n_{\alpha 3} = 0, \\ n_{\alpha 3} - n_{\beta 3} = 0, \\ 0.225n_{\beta 1} - n_{\alpha 4} = 0, \\ -n_{\beta 4} + n_{\alpha 6} = 0, \\ 0.675n_{\beta 1} - n_{\alpha 5} = 0, \\ n_{\alpha 4} - n_{\beta 5} = 0, \\ 0.750n_{\beta 5} - n_{\alpha 6} + 0.750n_{\beta 6} = 0, \\ n_{\alpha 5} - n_{\beta 6} = 0, \\ 0.950n_{\beta 3} - n_{\alpha 7} = 0, \\ n_{\alpha 7} - n_{\beta 7} = 0, \\ -n_{\alpha 8} + n_{\beta 8} = 0, \\ 0.250n_{\beta 5} + 0.250n_{\beta 6} - n_{\beta 8} = 0. \end{cases}$$

$$(2)$$

Знаходимо розв'язок системи лінійних алгебраїчних рівнянь і записуємо його. Для операторних вершин:

$$n_{\alpha 1} = 4,58,$$
 $n_{\alpha 2} = 0,03,$ $n_{\alpha 3} = 0,46,$ $n_{\alpha 4} = 1,03,$ $n_{\alpha 5} = 3,09,$ $n_{\alpha 6} = 3,09,$ $n_{\alpha 7} = 0,44,$ $n_{\alpha 8} = 1,03.$

Для файлових вершин:

$$n_{\beta 1} = 4,58,$$
 $n_{\beta 2} = 0,02,$ $n_{\beta 3} = 0,46,$ $n_{\beta 4} = 3,09,$ $n_{\beta 5} = 1,03,$ $n_{\beta 6} = 3,09,$ $n_{\beta 7} = 0,44,$ $n_{\beta 8} = 1,03.$

Табл. 2: Матриця ймовірностей переходу схеми алгоритму

	$V_{\alpha 1}$	$V_{\beta 1}^1$	$V_{\alpha 2}$	$V_{\beta 2}^1$	$V_{\alpha 3}$	$V_{\beta 3}^2$	$V_{\alpha 4}$	$V_{\beta 4}^1$	$V_{\alpha 5}$	$V_{\beta 5}^2$	$V_{\alpha 6}$	$V_{\beta 6}^3$	$V_{\alpha7}$	$V_{\beta7}^3$	$V_{\alpha 8}$	$V_{\beta 8}^2$	V_k
$V_{\alpha 1}$		1,0															
$V_{\alpha 1}$ $V_{\beta 1}^{1}$ $V_{\beta 1}^{2}$ $V_{\beta 2}^{1}$ $V_{\alpha 2}^{2}$ $V_{\beta 2}^{3}$ $V_{\alpha 4}^{2}$ $V_{\beta 4}^{2}$ $V_{\alpha 5}^{2}$ $V_{\alpha 6}^{3}$ $V_{\alpha 7}^{3}$ $V_{\alpha 8}^{2}$ $V_{\beta 8}^{2}$					0,1		0,225		0,675								
$V_{\alpha 2}$	1,0																
$V_{eta 2}^1$			1,0														
$V_{\alpha 3}$						1,0											
$V_{\beta 3}^2$				0,05									0,95				
$V_{\alpha 4}$										1,0							
$V_{\beta 4}^1$	1,0																
$V_{\alpha 5}$												1,0					
$V_{\beta 5}^2$											0,75					0,25	
$V_{\alpha 6}$								1,0									
$V_{\beta 6}^3$											0,750					0,25	
$V_{\alpha7}$														1,0			
$V_{\beta7}^3$	1,0																
$V_{\alpha 8}$	0,03																0,97
$V_{\beta 8}^2$															1,0		

Отже, розв'язавши систему рівнянь, отримали середні кількості звернень n_1,\dots,n_{k-1} до операторів V_1,\dots,V_{k-1} .

Щоб обчислити значення середньої кількості операцій за один прогін алгоритму $\theta_{\text{осн}}$, необхідно знати значення кількості операцій k_i кожного оператора $V_{\alpha i}$ (для заданого варіанту №3 — табл. 3).

Табл. 3: Число операцій k_i , що складають оператор $V_{\alpha i}$

Номер варіанта	Кількість операторів V_lpha									
	V_{lpha_1}	V_{α_2}	V_{α_3}	V_{α_4}	V_{lpha_5}	V_{lpha_6}	V_{α_7}	V_{α_8}		
3	30	10	30	20	20	30	50	100		

Тепер обчислюємо середню кількість операцій за один прогін алгоритму. Для цього підставляємо задані значення кількості операцій кожного оператора (табл. 3) у формулу (1):

$$\begin{split} \theta_{\text{осн}} &= \sum_{V \in S_o} n_{\alpha i} \cdot k_i \\ &= 4,58 \cdot 30 + 0,02 \cdot 10 + 0,46 \cdot 30 + 1,03 \cdot 20 \\ &\quad + 3,09 \cdot 20 + 3,09 \cdot 30 + 0,44 \cdot 50 + 1,03 \cdot 100 \\ &\approx 451,55. \end{split}$$

Отже, середня кількість операцій за один прогін заданого алгоритму $\theta_{\rm och} \approx 451,55$.

2.2. Обчислення середньої кількості звернень до кожного з файлів

Середня кількість звернень до файлів визначається так:

$$N_h = \sum_{v_i \in S_h} n_i,\tag{3}$$

де n_i — середня кількість звернення до оператора V_i . На схемі алгоритму вершини з операціями звернення до файлів позначені $V_{\beta i}^c$, де $c \in (1,2,3)$. Тоді значення середньої кількості звернень до файлів N_1, N_2, N_3 обчислюються так:

$$N_1 = n_{\beta 1} \cdot n_{\beta 2} \cdot n_{\beta 4} = 4,58 + 0,02 + 3,09 = 7,70,$$

 $N_2 = n_{\beta 3} \cdot n_{\beta 5} \cdot n_{\beta 8} = 0,46 + 1,03 + 1,03 = 2,52,$
 $N_3 = n_{\beta 6} \cdot n_{\beta 7} = 3,09 + 0,44 = 3,53.$

Отже, були знайдені значення середньої кількості звернень до кожного з файлів: $N_1 = 7,70, N_2 = 2,52, N_2 = 3,53$.

2.3. Обчислення середньої кількості інформації, яка передається при одному зверненні до файлу

Середня кількість інформації, яка передається при одному зверненні до файлу визначається так:

$$\theta_h = \frac{1}{N_h} \sum_{v_i \in S_h} n_{\beta i} \cdot l_i, \tag{4}$$

де N_h — середня кількість звернення до файлу F_h , $n_{\beta i}$ — середня кількість звернення до оператора $V_{\beta i}$, l_i — середня кількість інформації, що передається при виконанні оператора звернення $V_{\beta i}$ (табл. 4).

Табл. 4: Середня кількість інформації l_i , що передається при виконанні оператора звернення $V_{\beta i}$

Номер варіанта					Кількість інформації			
	$V_{oldsymbol{eta}_1}^1$	$V_{eta_2}^1$	$V_{eta_3}^2$	$V_{eta_4}^1$	$V_{eta_5}^2$	$V_{eta_6}^3$	$V_{eta_7}^3$	$V_{eta_8}^2$
3	250	500	150	1000	200	100	400	200

Підставляємо значення середньої кількості звернень до файлових вершин $n_{\beta i}$ та середню кількість інформації, що передається при виконанні оператора звернення $V_{\beta i}$ у формулу (4):

$$\theta_1 = \frac{1}{N_1} \cdot \left(n_{\beta 1} \cdot l_1 + n_{\beta 2} \cdot l_2 + n_{\beta 4} \cdot l_4 \right) = \frac{1}{7,70} \cdot (4,58 \cdot 250 + 0,02 \cdot 500 + 3,09 \cdot 1000)$$

$$= 552.08.$$

$$\theta_2 = \frac{1}{N_2} \cdot \left(n_{\beta 3} \cdot l_3 + n_{\beta 5} \cdot l_5 + n_{\beta 8} \cdot l_8 \right) = \frac{1}{2,52} \cdot (0,46 \cdot 150 + 1,03 \cdot 200 + 1,03 \cdot 200)$$

$$= 190.9.$$

$$\theta_3 = \frac{1}{N_3} \cdot (n_{\beta 6} \cdot l_6 + n_{\beta 7} \cdot l_7) = \frac{1}{3,53} \cdot (3,09 \cdot 100 + 0,44 \cdot 400) = 137,01.$$

Отже, знайшли середні значення кількості інформації, яка передається при одному зверненні до файлів F_1 , F_2 і F_3 : $\theta_1=552,08$, $\theta_2=190,9$ і $\theta_3=137,01$ відповідно.

2.4. Обчислення середньої трудомісткості етапу рахування

Середня трудомісткість етапу рахування $\theta_{\rm O}$ визначається так:

$$\theta_0 = \frac{\theta_{\text{och}}}{N},\tag{5}$$

де N — сума середнього числа N_i звернень до основних операторів S_{O} , тобто:

$$N = \sum_{i=1}^{V_{\text{O}i}} n_i. \tag{6}$$

Отже, спочатку обчислюємо суму середнього числа звернень до основних операторів N:

$$N = \sum_{i=1}^{V_{Oi}} n_i = 4,58 + 0,03 + 0,46 + 1,03 + 3,09 + 3,09 + 0,44 + 1,03 = 13,75.$$

Підставляємо отримане значення у формулу (5) і знаходимо середню трудоміскістість етапу рахування:

$$\theta_0 = \frac{451,55}{13,75} = 32,85.$$

Отже, знайшли значення середньої трудомісткості етапу рахування $\theta_{\rm O} = 32,\!85.$

3. Висновок

Виконуючи дану лабораторну роботу, ми вивчили методі оцінки трудомісткості алгоритмів.