(e) the equation $pV = \frac{1}{3}Nmc^2$, where N is the number of particles (atoms or molecules) and $\frac{1}{c^2}$ is the mean square speed

Derivation of this equation is not required. HSW2

(f) root mean square (r.m.s.) speed; mean square speed

Learners should know about the general characteristics of the Maxwell-Boltzmann distribution.

- (g) the Boltzmann constant; $k = \frac{R}{N_A}$
 - (h) $pV = NkT; \frac{1}{2}m\overline{c^2} = \frac{3}{2}kT$

Learners will also be expected to know the derivation of the equation $\frac{1}{2}m\overline{c^2} = \frac{3}{2}kT$ from $pV = \frac{1}{3}Nm\overline{c^2}$ and pV = NkT.

- (6) M Define and calculate 'root mean square speed'
- (7) S Apply the equation for root mean square speed
- (8) C Derive an equation for root mean square speed.

Lesson 6. Root mean square speed

STARTER:

A rigid cylinder of volume 0.030 m³ holds 4.0 g of air. The molar mass of air is about 29 g.

- a Calculate the pressure exerted by the air when its temperature is 34 °C.
- b What is the temperature of the gas in degrees Celsius when the pressure is twice your value from part a?

$$-\begin{array}{cc} & & | \\ \mathbf{a} & PV = nRT \end{array}$$

$$n = \frac{4.0}{29} = 0.138$$
 moles

$$P = \frac{nRT}{V} = \frac{0.138 \times 8.31 \times (273 + 34)}{0.030}$$
[1]

$$P = 1.17 \times 10^4 \,\text{Pa} \approx 1.2 \times 10^4 \,\text{Pa} \,(12 \,\text{kPa})$$
 [1]

$$\mathbf{b} = \frac{P}{T}$$
 is constant when the volume of the gas is constant. [1]

temperature =
$$2 \times (273 + 34) = 614 \text{ K}$$
 [1]
temperature in °C = $614 - 273 = 341 \text{ °C} \approx 340 \text{ °C}$ [1]

- (6) M Define and calculate 'root mean square speed'
- (7) S Apply the equation for root mean square speed
- (8) C Derive an equation for root mean square speed.

Lesson 6. Root mean square speed

Question 1: Imagine a small sample of 4 gas molecules moving in a line. Their velocites are: -450, -50, 100 and 400 m/s. Find:

- a) the mean velocity.
- b) mean speed
- c) root, mean, square speed.

Worked example: Average speeds

A very small sample of gas contains just four molecules moving in one line. Their velocities in $m s^{-1}$ are: -450, -50, 100, 400. Calculate the mean velocity, the mean speed \bar{c} , and the r.m.s. speed.

Step 1: For the mean velocity, you must take account of the signs of the velocities, because they are vectors.

mean velocity =
$$\frac{(-450 - 50 + 100 + 400)}{4} = 0 \,\mathrm{m}\,\mathrm{s}^{-1}$$

Step 2: Speed is a scalar, so mean speed \bar{c} is calculated by ignoring the negative signs.

$$\overline{c} = \frac{(450 + 50 + 100 + 400)}{4} = 250 \,\mathrm{m \, s^{-1}}.$$

Step 3: To determine the r.m.s. speed, first square the speeds, then determine the mean.

mean square speed =

$$\frac{(202\,500 + 2500 + 100\,000 + 160\,000)}{100\,000 + 160\,000} = 116\,250\,\text{m}^2\,\text{s}^{-2}$$

$$c_{\text{r.m.s.}} = \sqrt{116250} = 34 \text{ m s}^{-1} (2 \text{ s.f.}).$$
 306 my-1

The average speed \bar{c} is not the same as the r.m.s. speed.

Oxford University Press 2016 http://www.axfordsecondary.co.uk/acknowledgements

- (6) M Define and calculate 'root mean square speed'
- (7) S Apply the equation for root mean square speed
- (8) C Derive an equation for root mean square speed.

Maxwell-Boltzmann distribution

Activity: Describe the changes in the distribution as the

 \blacktriangle Figure 2 The spread of speeds of particles in a gas is called the Maxwell-Boltzmann distribution, and is broader at the high temperature T_2 than at the low temperature T_1

- (6) M Define and calculate 'root mean square speed'
- (7) S Apply the equation for root mean square speed
- (8) C Derive an equation for root mean square speed.

Plenary

a A small dust particle in the upper atmosphere is struck by five molecules in succession. The speeds of the molecules are $300~\rm ms^{-1}$, $500~\rm ms^{-1}$, $700~\rm ms^{-1}$, $400~\rm ms^{-1}$, and $600~\rm ms^{-1}$.

Calculate:

i	the mean s	speed of the	he molecu	les, \bar{c}
-				, -

500	(1 mark)
-----	----------

ii the root mean square speed of the molecules, $\sqrt{\overline{c^2}}$.

520 V	
	(2 mark

b Show that for an ideal gas the r.m.s speed of its molecules is given by the formula

$$\sqrt{\overline{c^2}} = \sqrt{\frac{3RT}{M}}$$

- Question number	Answer	Marks	Guidance
_ 4 a i	$\overline{c} = \frac{(300 + 500 + 700 + 400 + 600)}{5} = 500 \text{ ms}^{-1}$	A1	
- 4 a ii	$\overline{c^2} = \frac{\left(300^2 + 500^2 + 700^2 + 400^2 + 600^2\right)}{5}$	C1	
-	$\overline{c^2}$ = 270 000 r.m.s. speed = $\sqrt{\overline{c^2}}$ = 520 ms ⁻¹	A1	
_ 4 b	$\frac{1}{2}m\overline{c^2} = \frac{3}{2}kT$	M1	From data book
_	$N \times m \frac{c^2}{c^2} = 3NkT \text{ but } Nk = nR$	M1	Using $pV = NkT = nRT$ in data book
	$\overline{c^2} = \frac{3nRT}{Nm}$ but $Nm = M$ when $n = 1$	M1	ALLOW alternative method
_	$\sqrt{\overline{c^2}} = \sqrt{\frac{3RT}{M}}$	Α0	if all steps are shown and are logical
4 c	$\frac{\text{r.m.s speed at } 250 ^{\circ}\text{C}}{\text{r.m.s speed at } 25 ^{\circ}\text{C}} = \frac{\sqrt{(273 + 250)}}{\sqrt{(273 + 25)}}$	C1	Mark can be deducted if a unit is provided with the answer
_	$\frac{\text{r.m.s speed at } 250^{\circ}\text{C}}{\text{r.m.s speed at } 25^{\circ}\text{C}} = 1.3(2)$	A1	
4 d	$\sqrt{\overline{c^2}} = \sqrt{\frac{3RT}{M}}$		
_	$11 \times 10^3 = \sqrt{\frac{3 \times 8.31 \times T}{2.0 \times 10^{-3}}}$	C1	
_	T = 9700 K (or 9434°C)	A1	