Formação Cientista de Dados

Estatística II: Métricas de Erros

Métricas de Erros

- ➤ Previsão de valores numéricos (reais, inteiros)
- ➤ Métricas diferentes da previsão de categorias
- Uso:
 - Regressão linear
 - Regressão ML
 - Series Temporais
 - Etc.

Quando uma previsão é feita...

- Existe uma diferença entre a previsão e o que ocorreu...
- Temos que medir esta diferença!
 - Para saber a qualidade do nosso modelo!
 - Para podermos melhora-lo
 - Para podermos fazer benchmarks

Como eu sei?

Diferença...

Previsto	Realizado
3,34	3,00
4,18	4,00
3,00	3,00
2,99	3,00
4,51	4,50
5,18	4,00
8,18	4,50

Mean Erro (ME)

Dependente de Escala

• A média da diferença entre realizado e previsto

Previsto	Realizado	Dif.
3,34	3,00	-0,34
4,18	4,00	-0,18
3,00	3,00	0
2,99	3,00	0,01
4,51	4,50	-0,01
5,18	4,00	-1,18
8,18	4,50	-3,68
		-5,38

$$ME = \frac{\sum_{i=1}^{n} y_i - x_i}{n}.$$

$$ME = \frac{-5,38}{7} = -0,76$$

Mean Absolute Error (MAE)

Dependente de Escala

• A média da diferença absoluta entre o realizado e o previsto

Previsto	Realizado	Dif. Absoluta
3,34	3,00	0,34
4,18	4,00	0,18
3,00	3,00	[0]
2,99	3,00	0,01
4,51	4,50	0,01
5,18	4,00	1,18
8,18	4,50	3,68
		5,4

$$ext{MAE} = rac{\sum_{i=1}^{n} |y_i - x_i|}{n}$$

MAE =
$$\frac{5,4}{7}$$
 = 0,77

Root Mean Squared Error (RMSE)

Independente de Escala

• O desvio padrão da amostra da diferença entre o previsto e o teste

Previsto	Realizado	Dif. ao Quad.
3,34	3,00	0,1156
4,18	4,00	0,0324
3,00	3,00	0
2,99	3,00	1E-04
4,51	4,50	1E-04
5,18	4,00	1,3924
8,18	4,50	13,5424
		15.083

$$\mathsf{RMSE} = \sqrt{\frac{\sum_{t=1}^{T} (\hat{y}_t - y_t)^2}{T}}$$

RMSE =
$$\sqrt{\frac{15,083}{7}}$$

RMSE =
$$1,46$$

Mean Percentage Error (MPE)

Independente de Escala (%)

• Diferença percentual de erro

Previsto	Realizado	Erro %
3,34	3,00	-11,3333
4,18	4,00	-4,5
3,00	3,00	0
2,99	3,00	0,333333
4,51	4,50	-0,22222
5,18	4,00	-29,5
8,18	4,50	-81,7778
		-127

$$ext{MPE} = rac{100\%}{n} \sum_{t=1}^n rac{a_t - f_t}{a_t}$$

$$MPE = \frac{-127}{7}$$

$$MPE = -18,14$$

Mean Absolute Percentage Error (MAPE) Independente de Escala (%)

• Diferença absoluta percentual de erro

Previsto	Realizado	Erro abs.	Erro % abs.
3,34	3,00	0,1156	0,1133333
4,18	4,00	0,0324	0,045
3,00	3,00	0	0
2,99	3,00	1E-04	0,0033333
4,51	4,50	1E-04	0,0022222
5,18	4,00	1,3924	0,295
8,18	4,50	13,5424	0,8177778
·			1,2766667

$$\mathsf{MAPE} = \left. rac{100\%}{n} \sum_{t=1}^n \left| rac{A_t - F_t}{A_t}
ight|$$

$$MAPE = \frac{1,2766667}{7}$$

$$MAPE = 0.18$$

%

Com Funciona...

ME RMSE MAE MPE MAPE

Test set -0.1333333 0.9565215 0.8133333 -0.5505051 9.994949

ME RMSE MAE MPE MAPE

Test set 0.4 0.6389575 0.6 9.036341 10.70301

Calcule: Root Mean Squared Error (RMSE)

Previsto	Realizado	
3,12	3,00	0,0144
6,18	7,20	1,0404
12,30	11,00	1,69
		2,7448

$$\mathsf{RMSE} = \sqrt{\frac{\sum_{t=1}^{T} (\hat{y}_t - y_t)^2}{T}}$$

RMSE =
$$\sqrt{\frac{2,7448}{3}}$$

RMSE = 0,9565215

Previsto	Realizado	Diferença	Dif. Abs.	Dif. Quad.	Erro %	Erro % abs
3,34	3	-0,34	0,34	0,1156	-11,3333	11,33333
4,18	4	-0,18	0,18	0,0324	-4,5	4,5
3	3	0	0	0	0	0
2,99	3	0,01	0,01	1E-04	0,33333	0,333333
4,51	4,5	-0,01	0,01	1E-04	-0,22222	0,222222
5,18	4	-1,18	1,18	1,3924	-29,5	29,5
8,18	4,5	-3,68	3,68	13,5424	-81,7778	81,77778

ME	-0,76857
MAE	0,77143
RMSE	1,46789
MPE	-18,1429
MAPE	18,2381

