Company Bankruptcy Prediction

IDS 575 Group Project | Fall 2021

Dataset

The dataset is about bankruptcy prediction of Polish companies. The bankrupt companies were analyzed in the period 2000-2012, while the still operating companies were evaluated from 2007 to 2013.

Financial Ratios as Feature Set

10k

Training Examples (98% of 0 and 2% of 1)

The training set with both predictors and response variable. Highly imbalanced dataset

5k

Test Examples

The test set with ID and predictors

0: Not Bankrupt

1: Bankrupt

The Response Variable : Y

0/1

Data Processing Steps

Models ROC Curve of Logistic Regression 1.4 True Positive Rate 9.0 8.0 8.0 7.0 7.0 8.0 1.0 Best AUC of 0.85 achieved with Logistic Regression model AUC = 0.85 Logistic Regression 0.0 False Positive Rate ROC Curve of SVM Best Margin True Positive Rate **SVM** 0.4 False Positive Rate ROC Curve of kNN True Positive Rate **KNN** False Positive Rate ROC Curve of Naive Bayes 1.0 True Positive Rate 0.8 Naïve Bayes

0.0

0.2

0.4 0.6 False Positive Rate

Results Best Accuracy and F1 Score achieved with SVM and best Recall(0.795) achieved with Logistic Regression

Logistic Regression

Naïve Bayes

KNN (with K=2)

SVM (with C=50, Gaussian Kernel)

Impact of PCA

Tried on Naïve Bayes & Logistic Regression

Logistic Regression

Without PCA

Training Accuracy: 0.83 Test Accuracy: 0.76

With PCA

Training Accuracy: 0.82 Test Accuracy: 0.76

Naïve Bayes

Without PCA

Training Accuracy: 0.65 Test Accuracy: 0.35

With PCA

Training Accuracy: 0.58 Test Accuracy: 0.25

Hyperparameter Tuning – Confusion Matrix

Grid Search Cross Validation with Parameters below:

```
model params = {
 'svm': {
     'model': SVC(gamma='auto',probability=True),
     'params' : {
         'C': [1,10,20,100,200],
         'kernel': ['rbf','linear','sigmoid']
 },
 'logistic regression' : {
     'model': LogisticRegression(multi_class='auto'),
     'params': {
         'C': [1,5,10],
         'solver':['lbfgs','liblinear','saga']
 },
'KNN': {
     'model':KNeighborsClassifier(),
     'params':{
         'n neighbors' : [1,3,5,7],
         'weights': ['uniform', 'distance'],
         'algorithm' : ['auto', 'ball_tree', 'kd_tree', 'brute'],
```


Impact of Hyperparameter Tuning (Performance evaluation metrics)

- Recall = TP/(TP+FN)
- Recall is the key performance evaluation metric in our case. A good recall value minimize the number of False Negatives case (i.e. a firm has to be predicted bankrupt but is not predicted as bankrupt)
- In this case, it is costlier if a system ignores the bankrupt case
- SVM is the best model in terms of Recall value

*HPT - Hyperparameter Tuning

Key Takeaway..

