CS5234 Cheat Sheet Gabriel Yeo

Inequalities

Markov:	$P(X \ge \alpha) \le \frac{E(X)}{\alpha}$

Chebyshev:
$$P(|X - \mu| \ge k) \le \frac{Var(X)}{k^2}$$

Chernoff:
$$P(X \le (1 - \delta)\mu) \le e^{-\frac{\delta^2 \mu}{2}} \le e^{-\frac{\delta^2 \mu}{3}}$$

$$P(X \ge (1+\delta)\mu) \le e^{-\frac{\delta^2 \mu}{2+\delta}} \le e^{-\frac{\delta^2 \mu}{3}}$$

$$X = X_1 + \dots + X_n,$$

$$X_i \in \{0, 1\}, \text{ (ind. Bernoulli)}$$

Chernoff:
$$P(|X - \mu| \ge \delta \mu) \le 2e^{-\frac{\delta^2 \mu}{3}}$$

Hoeffding:
$$P(|X - \mu| \ge t) \le 2e^{\frac{-2t^2}{n}}$$

$$X = X_1 + \dots + X_n,$$

$$X_i \in [0, 1]$$

Hoeffding:
$$P(|\overline{X} - E[\overline{X}]| \ge t) \le 2e^{-2nt^2}$$

$$\overline{X} = \frac{1}{n}(X_1 + \dots + X_n)$$

Hoeffding (gen):
$$P(|\overline{X} - E[\overline{X}]| \ge t) \le 2e^{-\frac{2t^2}{\sum (a_i - b_i)^2}}$$

$$X_i \in [a_i, b_i]$$

Facts

Taylor expansion:	$e^x = 1 + x + \frac{x^2}{2!} + \dots =$	$= \sum_{n=0}^{\infty} \frac{x^n}{n!}$

For
$$0 < x \le 1$$
:
$$1 - x \le e^{-x} \le \frac{1}{2} - \frac{x}{2}$$
For $0 < x \le 1$:
$$\frac{1}{e^2} \le (1 - x)^{1/x} \le \frac{1}{e}$$
Approx $\binom{a}{b}$:
$$(\frac{a}{b})^b \le \binom{a}{b} \le (\frac{ea}{b})^b$$

$$Approx \binom{a}{b}: \qquad \qquad \binom{\frac{a}{b}}{\frac{a}{b}} \leq \binom{a}{b} \leq \binom{\frac{ea}{b}}{\frac{ea}{b}}$$

For
$$0 < x < 1$$
:
$$\sum_{i=0}^{\infty} a^i = \frac{1}{1-a}$$

Natural log:
$$ln(n-1) \le \sum_{i=1}^{n} \frac{1}{i} \le ln(n) + 1$$

Powers of 2:
$$\sum_{i=0}^{n} 2^{i} = 2^{n+1} - 1$$

$$1/e$$
: $= 0.36787944117$

$$1/e^2$$
: = 0.13533528323 $\leq 1/6$

$1/e^{3}$:

Probability

$E[X] = \sum_{v \in D} v \cdot Pr[X = v]$ Expectation:

Variance:
$$Var[X] = E[(X - E[X])^2]$$

$$=E[X^2]-E[X]$$

= 0.04978706836 < 1/20

 $Var[aX] = a^2 Var[X]$ More variance: $E[\sum X_i] = \sum E[X_i]$ Linearity of expectation: $Var[\sum X_i] = \sum Var[X_i]$ If independent X_i : Conditional: $P[XandY] = P[X|Y] \cdot P[Y]$ Independence: $P[XandY] = P[X] \cdot P[Y]$

Union bound: $P[\bigcup E_i] \leq \sum P[E_i]$

Complexities

Algorithm	Classical	Approx
BFS	O(n+m)	
Connected?	O(n+m)	$O(\frac{1}{\epsilon^2 d})$
# CCs	O(n+m)	$O(\frac{d}{\epsilon^3})$
MST weight	O(mlogn)	$O(\frac{dW^4 log W}{\epsilon^3})$
Prim's	$O((m+n) \cdot log n)$	
Prim's (Fib heap)	O(m + nlogn)	
Kruskal's (MST)	O(mlogn)	
Dijkstra	$O((m+n) \cdot log n)$	
Dijkstra (Fib heap)	O(m + nlogn)	

Lecture 1 All 0s

Give an array A with n elements, $A[i] \in 0, 1$:

(1) If array has $\geq \epsilon n$ 1's, return False with probability at least $1 - \delta$:

Assume $\geq \epsilon n$ 1's, then for sample i:

 $Pr[A[i] = 1] > \epsilon n/n > \epsilon$.

$$\begin{split} Pr(\text{all samples are 0}) &\leq (1-\epsilon)^s \\ &\leq (1-\epsilon)^{\frac{\ln(1/\delta)}{\epsilon}} \\ &\leq e^{-\ln(1/\delta)} \\ &< \delta \end{split}$$

Fix $s = \frac{\ln(1/\delta)}{\epsilon}$

Lecture 1 Number of 1s

Give an array A with n elements, $A[i] \in 0, 1$:

(1) Find number of 1's $\pm \epsilon$ with probability at least $1 - \delta$. Let Y_i be s independent samples in [0,1].

Output = $Z = 1/s \sum Y_i$

Probability of failure:

$$Pr(|Z - E[Z]| \ge \epsilon) \le 2e^{-2s\epsilon^2}$$

$$\le 2e^{-2\frac{\ln(2/\delta)}{2\epsilon^2}\epsilon^2}$$

$$\le 2e^{-\ln(2/\delta)}$$

$$\le 2e^{\ln(\delta/2)}$$

$$\le 2 \cdot \delta/2$$

$$< \delta$$

Fix $s = \frac{\ln(2/\delta)}{2\epsilon^2}$

Lecture 2 Connectivity

G is ϵ -close to connected if you can modify at most ϵnd entries in the adjaceny list to make it connected. If G(V, E)is connected, output True, else if ϵ -far from connected, output False.

```
Connected(G, n, d, \epsilon)
    Repeat 16/\epsilon d times:
          - Choose a random node u
          - Do a BFS from u , stopping after 8/\epsilon d nodes
          - If CC of u has < 8/\epsilon d nodes, return FALSE.
    return TRUE
```

BFS cost = $\frac{8}{\epsilon d} \cdot d$ Total complexity = $O(\frac{1}{\epsilon^2 d})$

Lecture 2 Connected Components

Output CC such that: $|CC(G) - C| < \epsilon n$, w.p. $> 1 - \delta$ Define n(u) = num nodes in the CC of u. cost(u) = 1/n(u). $\sum_{u \in CC_i} cost(u) = 1.$

```
Sample u randomly
     - BFS from u , stop when see up to 2/\epsilon nodes
      If BFS found > 2/\epsilon node:
           sum := sum + \epsilon/2
         - sum := sum + cost(u)
return n · (sum/s)
```

Let $\overline{C} = \sum cost(u_i)$ Let $Y_i = cost(u_i)$ of our sample j $|CC(G) - \overline{C}| < \epsilon n/2$ $E[Y_j] = \sum_{n=1}^{\infty} \frac{1}{n} cost(u_i) = \frac{1}{n} \overline{C}$ $E[\sum Y_i] = s \cdot E[Y_i] = \frac{s}{n}\overline{C}$ Since we output $\frac{n}{s} \sum Y_j$, we get $E[\frac{n}{s} \sum Y_j] = \overline{C}$

$$P(|\overline{C} - \frac{n}{s} \sum Y_j| > \epsilon n/2)$$

$$= P(|E[\sum Y_j] - \sum Y_j| > \frac{s}{n} \epsilon n/2)$$

$$= P(|E[\sum Y_j] - \sum Y_j| > s\epsilon/2)$$

$$\leq 2e^{-2\epsilon^2 s^2/4s}$$

$$\leq 2e^{-\epsilon^2 s/2} \leq \delta$$

Set $s = \frac{2}{s^2} ln(2/\delta)$. Complexity = $2d/\epsilon \cdot O(\frac{1}{\epsilon^2}ln(1/\delta)) = O(\frac{d}{\epsilon^3}ln(1/\delta)).$

Lecture 3 MST weight

sum := n - W

for j = 1 to W - 1:

- $X_i = \text{ApproxCC}(G_i, d, \epsilon' \delta')$

Output M such that: $M = MST(G)(1 \pm \epsilon)$ w.p. $> 1 - \delta$. Let G_j be the graph with edge weights j and below. Let C_j be the connected components in G_j . MST(G) contains $C_j - 1$ edges of weight > j. Therefore:

$$MST(G) = (n - C_1) + \sum_{j=1}^{W-1} (j+1)(C_j - C_j + 1)$$
$$= n - W + \sum_{j=1}^{W-1} C_j$$

$$\begin{array}{l} -\text{ sum } := \text{ sum } + X_j \\ \text{return sum} \end{array}$$
 Sum of errors: $(\epsilon' n)(W-1)$
Set $\epsilon' = \epsilon/W$, then sum of errors $\leq \epsilon n$.
Set $\delta' = \delta/W$. Then $P(anyfail) \leq \sum\limits_{1}^{W-1} \delta/W \leq \delta$.
 $MST(G) - \epsilon n \leq sum \leq MST(G) + \epsilon n$
Since $MST(G) \geq n-1 \geq n/2, \ n \leq 2MST(G), \\ MST(G)(1-2\epsilon) \leq sum \leq MST(G)(1+2\epsilon) \end{array}$

Lecture 3 Maximal Matching

Return the size of the Maximal Matching.

$$\begin{split} E[cost] &= 2\sum_{k=1}^{\infty} \tfrac{d^k}{k!} = O(e^d).\\ sum &= MM(G) \pm \epsilon m.\\ \text{Complexity} &= O(\tfrac{e^d}{\epsilon^2}).\\ \text{Can do better: } O(\tfrac{d^4}{\epsilon^2}), \text{ even } O(\tfrac{d^2}{\epsilon^2}), \text{ and reduce error to} \end{split}$$

Lecture 3 Yao's Mini-Max

Every randomized algorithm on a worst-case input is always slower than the best deterministic algorithm on the worst distribution.

$$\begin{aligned} \forall A \in R : \max_{x \in X} (E[cost(A, x)]) \\ &\geq \min_{B \in D} (E[cost(B, xchosenfrom \gamma)]) \end{aligned}$$

Recipe:

- Choose distribution γ .
- Show that the expected cost of every deterministic algorithm from γ is greater than some cost c.
- Conclude that every randomized algorithm has at least one input with expected cost at least as bad as c.

Lecture 4 Misra Gries

count(x): $N(x) - \epsilon m \le count(x) \le N(x) + \epsilon m$. Heavy Hitters: returns

- every item that appears $\geq 2\epsilon m$ times.
- no item that appears $< \epsilon m$ times.

```
Set P of < item, count > pairs For each u in stream S:
    1. if < u, c > is in set P, increment c.
    2. else add < u, 1 > to set P.
    3. if |P| > k, decrement count c for each item.
    4. Remove all items from P with count c = 0.

Count(x):
    1. if < x, c > is in P, return c.
    2. else return 0.
```

Choose $k = 1/\epsilon$. Then $N(x) - \epsilon m \le count(x) \le N(x)$. Space required: O(klogm).

Proof:

- Count of x is incremented N(x) times in total.
- Total increments is m.
- When count(x) is decremented, at least k items are also decremented.
- At most *m* decrements in total.
- So count(x) is decremented at most m/k times.

For Heavy Hitters: return x if $count(x) \ge \epsilon m$.

Lecture 5 Spanner

If graph H has $girth(H) > 2k \to H$ has $O(n^{1+1/k})$ edges. $\log(n)$ -spanner space with $k = \log(n)$: requires $O(n\log n)$ space.

Lecture 6 k-Median Clustering

Cost of each node i: $C_i = \sum x_{i,j} d(p_i, p_j)$.

The LP minimizes $min \sum_{i} C_{i}$.

Goal: round fractional LP such that $C_i' < 4C_i$.

- If some p_i is within $4C_j$ of p_j , remove p_i from centers.
- In other words: if there is q s.t. $d(p_i, q) \leq 2C_i$ and $d(p_i, q) \leq 2C_j$, delete p_i .
- $C_j \leq C_i$ because of the order of node processing.

Goal: less than 2k centers.

- $\sum_{i:d(p_i,p_j)\leq 2C_j} y_i \geq 1/2$
- Since y's sum to k, if V(i) are disjoint, cannot add more than 2k points to S.

Lecture 7 External Memory Model

Cache size = M. Block size = B. Number of lines (cache slots) = M/B.

Assumptions:

- One cache level.
- Only memory access has cost.
- Ideal cache and replacement.

Problem	Classical	EMM
Scan Linked List	O(N)	O(N)
Scan Array	O(N)	O(N/B)
Search Linked List	O(N)	O(N)
Search Red-black tree	O(log N)	O(log N)
Search Array	O(log N)	O(log(N/B))
Search B-tree	$O(log_B N)$	$O(log_B N)$
Sort B-tree	O(NlogN)	$O(Nlog_BN)$
Read/Write B-tree	$O(log_B N)$	$O(log_B N)$

Lecture 7 Caching

(a,b) - tree with n keys has height $\leq log_a(\frac{n}{a}) + 1$.

At most n/a leaves. Every node except the root has degree > a.

Node at height $log_a(\frac{n}{a})$ has $\geq a^{log_a(\frac{a}{n})} \geq \frac{n}{a}$ leaves.

Corollary: if $a \geq B$, then (a,b) - tree with n keys has height $O(log_B n)$.

Amortized cost of split/share/merge is O(1/B), thus $O((1/B)log_BN)$ per operation.

With parent points: insert may cost $O(Blog_B N)$ if every level needs to split.