# Proj\_01: Finding Donors for CharityML

Source: UdaCity, Machine Learning Intro, Supervided Learning

### Introduction

In this project, I will employ several supervised algorithms to accurately model indivisuals' income using data collected from the 1944 U.S. Census.

I will then chose the best candidate algorithm from preliminary results and further optimize this algorithm to best model the data.

### Goal

The goal of this project is to construct a model that accurately predicts whether an individual makes more than \$50,000.

### **Contents**

- 1. Exploring the Dataset
  - 1-1. Overview the data
  - 1-2. Check invalid and missing data
  - 1-3. Data exploration: income
  - 1-4. Data exploration: numerical data
  - 1-5. Data exploration: string data
- 2. Preprocessing the Dataset
  - 2-1. Transformation: skewed continuous data
  - 2-2. Normalization: numerical data
  - 2-3. Normalization: non-numerical data
  - 2-4. Shuffle and Split Data
- 3. Modeling
  - 3-1. Metrics
  - 3-2. Recap of Metrics
  - 3-3. Naive Predictor Performace
  - 3-4. Select Supervised Learning Models
  - 3-5. Create a training and predicting pipeline
  - 3-6. Initial Model Evaluation
  - 3-7. Chose the Best Model
  - 3-8. Model Tuning
- 4. Evaluation
  - 4-1. Final Model Evaluation
  - 4-2. Feature Importance

# 1. Exploring the Dataset

```
In [1]: # Import libraries
   import numpy as np
   import pandas as pd
   from time import time
   from IPython.display import display # this allows the use of display() for DataFrames
   # import visuals as vs #
   import matplotlib.pyplot as plt
%matplotlib inline
```

#### 1-1. Overview the data

- The dataset for this project originates from the UCI Machine Learning Repository.
- From the table below, I found that there are numerical and string features.

```
In [2]: # Load the Census dataset
data = pd.read_csv("./Data/Proj_01/census.csv")

# Display the first 5 records
display(data.head(5))

# Display the unique income values
print("The unique values of INCOME")
display(data["income"].unique())
```

|   | age | workclass            | education_level | education-<br>num | marital-<br>status         | occupation            | relationship      | race  | sex    | capital-<br>gain | capita<br>lo |
|---|-----|----------------------|-----------------|-------------------|----------------------------|-----------------------|-------------------|-------|--------|------------------|--------------|
| 0 | 39  | State-gov            | Bachelors       | 13.0              | Never-<br>married          | Adm-<br>clerical      | Not-in-<br>family | White | Male   | 2174.0           | С            |
| 1 | 50  | Self-emp-<br>not-inc | Bachelors       | 13.0              | Married-<br>civ-<br>spouse | Exec-<br>managerial   | Husband           | White | Male   | 0.0              | С            |
| 2 | 38  | Private              | HS-grad         | 9.0               | Divorced                   | Handlers-<br>cleaners | Not-in-<br>family | White | Male   | 0.0              | С            |
| 3 | 53  | Private              | 11th            | 7.0               | Married-<br>civ-<br>spouse | Handlers-<br>cleaners | Husband           | Black | Male   | 0.0              | С            |
| 4 | 28  | Private              | Bachelors       | 13.0              | Married-<br>civ-<br>spouse | Prof-<br>specialty    | Wife              | Black | Female | 0.0              | С            |

### 1-2. Check invalid and missing data

array(['<=50K', '>50K'], dtype=object)

• There are no invalid data.

The unique values of INCOME

```
In [3]: data.isnull().sum(axis=0)
```

Out[3]: age

```
workclass 0
education_level 0
education-num 0
marital-status 0
occupation 0
relationship 0
race 0
sex 0
capital-gain 0
capital-loss 0
hours-per-week 0
native-country 1
income 0
dtype: int64
```

### 1-3. Data exploration: income

A cursory investigation of the dataset will determine how many individuals fit into either group, and will tell us about the percentage of these individuals making more than \$50,000.

In the code cell below, I will compute the following:

- The total number of records : n\_records
- The number of individuals making more than \$50,000 annually n\_greater\_50k
- The number of individuals making at most \$50,000 annually: n\_at\_most\_50k
- The percentage of individuals making more than \$50,000 annually: greater\_percent

```
In [4]: n_records
                      = data.shape[0]
        n greater 50k = (data["income"] == ">50K").sum()
       n at most 50k = (data["income"] == "<=50K").sum()
        greater percent = n greater 50k / n records * 100
        # Print results
       print("Total number of records
                                                                             : {}".format(n rec
                                                                             : {}".format(n gre
       print ("The number of individuals making more than $50,000 annually
       print("The number of individuals making at most $50,000 annually : {}".format(n at
       print("The percentage of individuals making more than $50,000 annually: {0:5.1f} %".form
       Total number of records
                                                                     : 45222
       The number of individuals making more than $50,000 annually
                                                                     : 11208
       The number of individuals making at most $50,000 annually
       The percentage of individuals making more than $50,000 annually: 24.8 %
```

### 1-4. Data exploration: numerical data

- From the table and the graph below, capital-gain and capital-loss are highly skewed.
- So, some transformation are needed for those features.

```
In [5]: col_names_numerical = ["age", "education-num", "capital-gain", "capital-loss", "hours-pe
    data_numerical = data.loc[:, col_names_numerical]
    data_numerical.describe()
```

#### Out[5]: age education-num capital-gain capital-loss hours-per-week **count** 45222.000000 45222.000000 45222.000000 45222.000000 45222.000000 38.547941 10.118460 1101.430344 88.595418 40.938017 mean 13.217870 2.552881 7506.430084 404.956092 12.007508 17.000000 1.000000 0.000000 0.000000 1.000000 min

| 25% | 28.000000 | 9.000000  | 0.000000     | 0.000000    | 40.000000 |
|-----|-----------|-----------|--------------|-------------|-----------|
| 50% | 37.000000 | 10.000000 | 0.000000     | 0.000000    | 40.000000 |
| 75% | 47.000000 | 13.000000 | 0.000000     | 0.000000    | 45.000000 |
| max | 90.000000 | 16.000000 | 99999.000000 | 4356.000000 | 99.000000 |

```
In [6]: def plot_hist(df, col_names, plot_row_num=2, plot_col_num=3, y_limit=(0,2000)):
    # create figure
    fig = plt.figure(figsize = (11,5));

# plot in bin
for i, feature in enumerate(col_names):
        ax = fig.add_subplot(plot_row_num, plot_col_num, i+1)
        ax.hist(df[feature], bins=25)
        ax.set_title("'%s' distribution"%(feature), fontsize=14)
        ax.set_xlabel("Value")
        ax.set_ylabel("Number of Records")
        ax.set_ylim(y_limit)

# fig.tight_layout()
```

```
In [7]: #plot_hist(data, ["capital-gain", "capital-loss"])
plot_hist(data, col_names_numerical)
```



### 1-5. Data exploration: string data(other than income)

- I show the unique values of string data.
- A conversion from string to numerical data is needed.

```
for j, unique_name in enumerate(unique_names):
    if j == 0:
        output_name = unique_name
    else:
        output_name = output_name + ", " + unique_name

    print(output_name)

0. [sex]: unique value num = 2
Male, Female

1. [education_level]: unique value num = 16
Bachelors, HS-grad, 11th, Masters, 9th, Some-college, Assoc-acdm, 7th-8th, Doct orate, Assoc-voc, Prof-school, 5th-6th, 10th, Preschool, 12th, 1st-4th

2. [workclass]: unique value num = 7
```

State-qov, Self-emp-not-inc, Private, Federal-qov, Local-qov, Self-emp-inc, Witho

ut-pay

\_\_\_\_\_\_

\_\_\_\_\_

and-Netherlands

3. [relationship] : unique value num = 6
Not-in-family, Husband, Wife, Own-child, Unmarried, Other-relative

4. [occupation] : unique value num = 14
Adm-clerical, Exec-managerial, Handlers-cleaners, Prof-specialty, Other-service, S
ales, Transport-moving, Farming-fishing, Machine-op-inspct, Tech-support, Craft-rep
air, Protective-serv, Armed-Forces, Priv-house-serv

5. [marital-status] : unique value num = 7
Never-married, Married-civ-spouse, Divorced, Married-spouse-absent, Separated, Married-AF-spouse, Widowed

6. [race] : unique value num = 5
White, Black, Asian-Pac-Islander, Amer-Indian-Eskimo, Other

7. [native-country] : unique value num = 41
United-States, Cuba, Jamaica, India, Mexico, Puerto-Rico, Honduras, England, Ca
nada, Germany, Iran, Philippines, Poland, Columbia, Cambodia, Thailand, Ecuador,
Laos, Taiwan, Haiti, Portugal, Dominican-Republic, El-Salvador, France, Guatema
la, Italy, China, South, Japan, Yugoslavia, Peru, Outlying-US(Guam-USVI-etc), Sc
otland, Trinadad&Tobago, Greece, Nicaragua, Vietnam, Hong, Ireland, Hungary, Hol

# 2. Preprocessing the Dataset

- Fortunately, for this dataset, there are no invalid or missing entries we must deal with.
- However, there are some qualities about certain features that must be adjusted.
- This preprocessing can help tremendously with the outcome and predictive power of nearly all learning algorithms.

```
In [9]: # Split the dataset into "target label" and "features"
  income_raw = data["income"]
  features_raw = data.drop("income", axis=1)
```

#### 2-1. Transformation: skewed continuous data

• Algorithms can be sensitive hightly skewed feature distribution such as capital-gain and capital-loss, and underperform if the range is not properly normalized.

- I will apply logarithmic transformation) on the data, so that the very large and very small values do not genatively affect the performance of a learning algorithm.
- Using a logarithmic transformation significantly reduces the range of values caused by outliers.
  - The logarighm of 0 is undefined, so we must translate the values by a small amount above 0 to apply the logarithm successfully.

|       | capital-gain | capital-loss |
|-------|--------------|--------------|
| count | 45222.000000 | 45222.000000 |
| mean  | 0.740759     | 0.355489     |
| std   | 2.466527     | 1.595914     |
| min   | 0.000000     | 0.000000     |
| 25%   | 0.000000     | 0.000000     |
| 50%   | 0.000000     | 0.000000     |
| 75%   | 0.000000     | 0.000000     |
| max   | 11.512925    | 8.379539     |



- From the table above, the data range becomes smaller.
  - capital-gain : 99999.0 --> 11.5
  - capital-loss:4356.0 --> 8.3

#### 2-2. Normalization: numerical data

- Normalization enusures that each feature is treated equally when applying supervised learners.
- I will use sklearn.preprocessing.MinMaxScaler for this.

```
features_log_minmax_transform = pd.DataFrame(data=features_log_transformed)
features_log_minmax_transform[col_names_numerical] = scaler.fit_transform(features_log_t
# Show results
display(features_log_minmax_transform[col_names_numerical].describe())
```

|       | age          | education-num | capital-gain | capital-loss | hours-per-week |
|-------|--------------|---------------|--------------|--------------|----------------|
| count | 45222.000000 | 45222.000000  | 45222.000000 | 45222.000000 | 45222.000000   |
| mean  | 0.295177     | 0.607897      | 0.064342     | 0.042423     | 0.407531       |
| std   | 0.181067     | 0.170192      | 0.214240     | 0.190454     | 0.122526       |
| min   | 0.000000     | 0.000000      | 0.000000     | 0.000000     | 0.000000       |
| 25%   | 0.150685     | 0.533333      | 0.000000     | 0.000000     | 0.397959       |
| 50%   | 0.273973     | 0.600000      | 0.000000     | 0.000000     | 0.397959       |
| 75%   | 0.410959     | 0.800000      | 0.000000     | 0.000000     | 0.448980       |
| max   | 1.000000     | 1.000000      | 1.000000     | 1.000000     | 1.000000       |

### 2-3. Normalization: non-numerical data

- There are several features for each record that are non-numeric.
- Typically, learning algorithms expect input to be numeric.
- I will use one-hot encoding to convert categorical features.
  - One-hot encoding creates a dummy cariable for each possible category of each non-numerical feature.
  - For exapmle, assume someFeature has three possible entiries: A , B or C .
  - We then endode this feature into someFeatureA, someFeatureB and someFeatureC.
- I will use pandas.get\_dummies() to perform one-hot encoding on the feature\_log\_minmax\_transform data.

|   | someFeature |                   | someFeature_A | someFeature_B | someFeature_C |
|---|-------------|-------------------|---------------|---------------|---------------|
| 0 | В           |                   | 0             | 1             | 0             |
| 1 | С           | > one-hot encode> | 0             | 0             | 1             |
| 2 | А           |                   | 1             | 0             | 0             |

- Additionally, I will convert the non-numerical target label income to numerical values.
- Since there are only two possible categories for this label( <=50K and >50K), we can avoid using one-hot encoding and simply encode these two categories as 0 and 1.
  - I set records with <=50K to 0 and record with >50K to 1.

```
In [13]: # One-hot encoding : features
  features_final = pd.get_dummies(features_log_minmax_transform)
  display(features_final.describe())
```

| count | 45222.000000 | 45222.000000 | 45222.000000 | 45222.000000 | 45222.000000 | 45222.000000 | 45222.000000 | 45222.0 |
|-------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|---------|
| mean  | 0.295177     | 0.607897     | 0.064342     | 0.042423     | 0.407531     | 0.031091     | 0.068551     | 0.7     |
| std   | 0.181067     | 0.170192     | 0.214240     | 0.190454     | 0.122526     | 0.173566     | 0.252691     | 0.4     |
| min   | 0.000000     | 0.000000     | 0.000000     | 0.000000     | 0.000000     | 0.000000     | 0.000000     | 0.0     |
| 25%   | 0.150685     | 0.533333     | 0.000000     | 0.000000     | 0.397959     | 0.000000     | 0.000000     | 0.0     |
| 50%   | 0.273973     | 0.600000     | 0.000000     | 0.000000     | 0.397959     | 0.000000     | 0.000000     | 1.0     |
| 75%   | 0.410959     | 0.800000     | 0.000000     | 0.000000     | 0.448980     | 0.000000     | 0.000000     | 1.0     |
| max   | 1.000000     | 1.000000     | 1.000000     | 1.000000     | 1.000000     | 1.000000     | 1.000000     | 1.0     |

8 rows × 103 columns

```
In [14]: # One-hot encoding : target label
        income = income raw.map(\{"<=50K":0, ">50K":1\})
        display(income.describe())
        count 45222.000000
       mean
                  0.247844
                   0.431766
        std
                  0.000000
       min
        25%
                  0.000000
                  0.000000
        50%
        75%
                   0.000000
       max
                  1.000000
        Name: income, dtype: float64
```

## 2-4. Shuffle and Split Data

Testing set has 9045 samples.

Now all *categorical features* have been converted into numerical features, and all numerical features have been normalized. As always, I will now split the data into training and test sets.

80% of the data will be used for training and 20% for testing.

```
In [15]: # Import train_test_split
    from sklearn.model_selection import train_test_split

# Spline the features and the label into training and testing sets
    x_train, x_test, y_train, y_test = train_test_split(features_final, income, test_size =

# Show resutls
    print("Training set has {} samples.".format(x_train.shape[0]))
    print("Testing set has {} samples.".format(x_test.shape[0]))

Training set has 36177 samples.
```

# 3. Modeling

In this section, I will investigate four different algorithms and determine which is best at modeling the data. Three of these algorithms will be supervised learners, and the fourth algorithm is known as a predictor.

### 3-1. Metrics

CharityML, equipped with theire research, knows individuals that make more than \$50,000 are most likely to donate to their charity. Because of this, \*CharityML\* is particularly interested in predicting who makes more than \$50,000 accurately.

It would seem that using **accuracy** as a metric for evaluating a particular model's performance would be appropriate.

Additionally, identifying someone that does not make more than \$50,000 as someone who does would be detrimental to \*CharityML\*, since they are looking to find individuals willing to donate. <br/>
Therefore, a model's ability to precisely predict those that make more than \$50,000 is *more important* than the model's ability to recall those individuals.

I can use **F-beta score** as a metric that considers both precision and recall:

$$F_{eta} = (1 + eta^2) \cdot rac{precision \cdot recall}{(eta^2 \cdot precision) + recall}$$

In particular, when  $\beta=0.5$ , more emphasis is placed on precision. This is called the  $F_{0.5}score$  or (F-score for simplicity).

$$egin{aligned} F_1 = (1+1^2) \cdot rac{precision \cdot recall}{\left(1^2 \cdot precision
ight) + recall} &= rac{2 \cdot precision \cdot recall}{precision + recall} \ F_0 = (1+0^2) \cdot rac{precision \cdot recall}{\left(0^2 \cdot precision
ight) + recall} &= precision \end{aligned}$$

# 3-2. Recap of Metrics

|                |     | Prediction Value   |                    |  |  |
|----------------|-----|--------------------|--------------------|--|--|
|                |     | Yes                | No                 |  |  |
| American Volus | Yes | TP: True Positive  | FN: False Negative |  |  |
| Answer Value   | No  | FP: False Positive | TN: True Negative  |  |  |

### **Accuracy**

- Accurach = TP / (TP + FP + TN + FN)
- Accracy mesures how often the classifier make the correct prediction.
- It's the ratio of the number of correct predictions to the total number of predictions (the number of test data points).

#### **Precision**

- Precision = TP / (TP + FP)
- Precision tells us what proportion of messages we classified as spam, actually were spam.
- It is a ratio of true positives to all positives.
- If we want to reduce the ration of FP, we ues precision.
- e.g.
  - true positives : words classified as spam, and which are accually spam

all positives : all words classified as spam, irrespective of whether that was the correct classification

### Recall (sensitivity)

- Recall = TP / (TP + FN)
- Recall tells us what proportion of messages that actually were spam were classified by us as spam.
- It is a ration of true positives to all the words that were actually spam.
- If we want to reduce the ration of FN, we use recall. (e.g. cancer detection)

### 3-3. Naive Predictor Performace

- I create a naive predictor which always predicts 1 (i.e. the individuals makes more than 50k).
- I will evaluate this model's accuracy and F-score.
- The purpose of generating a native predictor is simply to show what a base model without any intelligence would look like.
- This model will have no TN(true negative) or FN(false negative).

```
In [16]: TP = np.sum(income)
        FP = income.shape[0] - TP
        TN = 0
        FN = 0
        accuracy = TP / (TP+FP+TN+FN)
        precision = TP / (TP+FP)
        recall = TP / (TP+FN)
        beta
                  = 0.5
        fscore = (1+beta**2)*(precision*recall)/(beta**2*precision+recall)
        # Show Results
        print("Naive Predictor Performance")
        print(" Accuracy = {:.4f}".format(accuracy))
        print(" F-score = {:.4f}".format(fscore))
        Naive Predictor Performance
           Accuracy = 0.2478
           F-score = 0.2917
```

# 3-4. Select Supervised Learning Models

I choose three models which are appropriate for this model. I will explain the reasons about the four points below.

- 1. Describe one real-world application in industry where the model can be applied.
- 2. What are the strengths of the model; when does it perform well?
- 3. What are the weaknesses of the model; when does it perform poorly?
- 4. What makes this model a good candidate for the problem, given what you know about the data?

### 1:Gaussian Naive Bayes

- 1. Real time forecast of stock prices
- 2. Training time and prediction time are small. We use it when features are independent.

- 3. When features are not independent, accuracy will become bad.
- 4. For 1st trial, I use this. I want to find quickly whether features are independent.

#### 2:Decision Tree

- 1. Optimization of the arrangement of workers according to the weather forecast
- 2. By using this, we can easily visualize the result.
- 3. This tends to overfit the data.
- 4. To get good understanding of the data visually.

#### 3:AdaBoost

- 1. classification of image data
- 2. To get better accuracy, this method can select the features which mostly contribute to the true prediction.
- 3. This tends to overfit the data.
- 4. To use this, we can find the necessary features, so we will be able to do better preprocessings.

# 3-5. Create a Training and Predicting Pipeline

To properly evaluate the performance of each model you've chosen, it's important that I create a training and predicting pipeline that allows me to quickly and effectively train models using various sizes of training data and perform predictions on the testing data.

I will implement the following:

- Import fbeta\_score and accuracy\_score from sklearn.metrics
- Fit the learner to the sampled training data and record the training time.
- Perform predictions on the test data X\_test, and also on the first 300 training points
   X\_train[:300]
  - Record the total prediction time.
- Calculate the accuracy score for both the training subset and testing subset
- Calculate the F-score for both the training subset and testing subset

```
results['train_time'] = t_end - t_start

# Prediction
t_start = time()
predictions_train = learner.predict(x_train.iloc[:300])
predictions_test = learner.predict(x_test)
t_end = time()
results['pred_time'] = t_end - t_start
beta = 0.5

# Evaluation : train
results['train_acc'] = accuracy_score(y_train[:300], predictions_train[:300])
results['train_f'] = fbeta_score( y_train[:300], predictions_train[:300], beta=b

# Evaluation : test
results['test_acc'] = accuracy_score(y_test, predictions_test)
results['test_f'] = fbeta_score( y_test, predictions_test, beta=beta)

return results
```

I implement a plot function to evaluate.

```
In [18]: import matplotlib.patches as mpatches
                     def plot evaluate(results, bar width=0.3, figsize=(11,7)):
                              Visualization code to display results of learners.
                              inputs:
                                 - results: a map. results[model name][sample num id][metric]
                              # Create a figure
                              fig, ax = plt.subplots(2,3,figsize=figsize)
                              # Parameters
                              model colors = ["tab:blue", "tab:orange", "tab:green", "tab:red", "tab:purple", \
                                                                  "tab:brown", "tab:pink", "tab:gray", "tab:olive", "tab:cyan"]
                              metric_names = ["train_time", "train_acc", "train_f", "pred_time", "test_acc", "test_acc", "test_acc", "train_f", "pred_time", "test_acc", "test_acc", "train_f", "pred_time", "test_acc", "test_acc", "train_f", "pred_time", "test_acc", "test_
                              ylabels = ["Time[s]", "Accuracy", "F-score", "Time[s]", "Accuracy", "F-sc
                              titles = ["Training:Time", "Training:Accuracy", "Training:F-score", "Pred:Time
                              model names = results.keys()
                              num sampling type = 3;
                              # Loops for bar plot
                              for model id, model name in enumerate(model names):
                                       model color = model colors[model id]
                                       for metric id, metric name in enumerate(metric names):
                                                 plot row = metric id // 3 #//len(model names); # shou
                                                 plot col = metric id % 3 #len(model names); # amari
                                                 tmp ax = ax[plot row, plot col]
                                                 for sample id in range (num sampling type):
                                                          x = sample id + model id * bar width;
                                                          y = results[model name][sample id][metric name]
                                                          tmp ax.bar(x,y, width=bar width, color=model color)
                                                          tmp ax.set xticks([0.45, 1.45, 2.45])
                                                          tmp ax.set xticklabels(["1%", "10%", "100%"])
                                                          tmp ax.set xlabel("Training Set Size")
                                                           tmp ax.set xlim((-0.1, 3.0))
                                                           tmp ax.set title(titles[metric id])
                                                           tmp ax.set ylabel(ylabels[metric id])
```

```
# # end of [for sample_id]
# end of [for metric_id]
# end of [for model_id]

# Create patches for the legend
patches = []
for model_id, model_name in enumerate(model_names):
    patches.append(mpatches.Patch(color=model_colors[model_id], label=model_name))
#
plt.legend(handles=patches, bbox_to_anchor=(1.05, 2.0), loc='upper left', \
    borderaxespad = 0.0, ncol = 1, fontsize = 'x-large')

# To avoid overlapping xlabel and title
fig.subplots_adjust(wspace=0.5, hspace=0.3)
```

### 3-6. Initial Model Evaluation

I will implement the following:

- Import the three supervised learning models which I have discussed in the previous section.
- Initialize the three models
  - I will use the default settings for each model. I will tune one specific model in a later section.
- Calculate the number of records equal to 1%, 10% and 100% of the training data.

```
In [19]: # Import models
        from sklearn.naive bayes import GaussianNB
        from sklearn.ensemble import AdaBoostClassifier
        # Initialize the three models
        models = [GaussianNB(), DecisionTreeClassifier(random state=0), AdaBoostClassifier(random)
        # list of number of sample
        sample list = [int(len(y train)/100), int(len(y train)/10), int(len(y train))]
        # Train models and Predict results
        results = {}
        for model in models:
            model name = model.__class__.__name__
            results[model name] = {}
            for i, sample size in enumerate(sample list):
                t start = time()
                results[model name][i] = train and predict(model, sample size, x train, y train,
                t end = time()
                print("{}[{}]] : {:..3f}[s]".format(model name, i, (t end-t start)))
        print("Finish !")
        GaussianNB[0] : 0.021[s]
        GaussianNB[1] : 0.026[s]
        GaussianNB[2] : 0.072[s]
        DecisionTreeClassifier[0] : 0.012[s]
        DecisionTreeClassifier[1] : 0.027[s]
        DecisionTreeClassifier[2] : 0.246[s]
        AdaBoostClassifier[0] : 0.165[s]
        AdaBoostClassifier[1] : 0.306[s]
        AdaBoostClassifier[2] : 1.642[s]
        Finish!
```



In [22]: show\_results\_table(results);

Gauss 1 Gauss 10 Gauss 100 train time 0.001966 0.005980 0.051188 pred time 0.015855 0.016969 0.017952 0.400000 0.383333 train acc 0.593333 0.333333 0.325092 0.412500 train f test acc 0.351797 0.366059 0.597678 test f 0.310134 0.320258 0.420899 Decis 1 Decis 10 Decis 100 train\_time 0.002992 0.018694 0.237493 pred time 0.005765 0.005985 0.005847 train acc 1.000000 0.996667 0.970000 train f 1.000000 0.997191 0.963855 test acc 0.771918 0.801658 0.818242 test f 0.535978 0.593875 0.627250 AdaBo 1 AdaBo 10 AdaBo 100 1.526668 train time 0.047863 0.182667 pred time 0.113699 0.120073 0.112408 train acc 0.893333 0.840000 0.850000 0.711538 train f 0.801282 0.680147 test acc 0.820674 0.849862 0.857601 test f 0.632757 0.701882 0.724551

### 3-7. Chose the Best Model

From the table above, I select the Adaboost mode.

- F-score using 100% of traning data(colum= AdaBo\_100 , row= test\_f ) is the best.
- Both of the training and prediction time are small enough.
- From the value of F-score(train\_f and test\_f), the result of AdaBoost did not overfit.

# 3-8. Model Tuning

I will fine tune the chosen model using gird search( GridSearchCV ). I will implement the following:

- Import sklearn.grid\_search.GridSearchCV and sklearn.metrics.make\_scorer.
- Initialize the classifier which I've chosen and store it in base model.
- Create a dictionary of parameters I wich to tune for the chosen model.
- Use make\_scorer to create an fbeta\_score scoring object(with  $\beta$ =0.5)
- Perform grid search on the classifier base\_model using the scorer and store it in grid\_obj.
- Fit the grid search object to the training data( x\_train , y\_train ), and store it in grid\_fit

```
In [23]: import os
         import pickle
         from sklearn.model selection import GridSearchCV
                              import make_scorer, f1_score, fbeta score
        from sklearn.metrics
         # Initialize my model
        base model = AdaBoostClassifier(random state=0)
         file name best model = './Data/Proj 01/best model.sav'
        if os.path.isfile(file name best model):
            print("Load the best model from a file")
             # If there is already a file which contains the best model, load it.
            best model = pickle.load(open(file name best model, 'rb'))
        else:
            print("Train the model with grid search to get the best model")
            # Paremter settings
            params = {}
            params['base estimator'] = [DecisionTreeClassifier(random state=0, max depth=x) for
            params['n estimators'] = [50, 100, 200, 400] # default = 50
            params['learning rate'] = [0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1] # default = 1.0
            # Grid search and Cross Validation
            scorer = make scorer(fbeta score, beta=0.5)
            grid obj = GridSearchCV(base model, params, scoring=scorer)
            grid fit = grid obj.fit(x train, y train)
            best model = grid fit.best estimator
             # save the model to a file
            pickle.dump(best model, open(file name best model, 'wb'))
```

Load the best model from a file

I show the score

```
In [24]: pred base = (base model.fit(x train, y train)).predict(x test)
        pred best = best model.predict(x test)
        # Report the before-and-afterscores
        print("----- Unoptimized model ----")
        print("Accuracy score on testing data: {:.4f}".format(accuracy score(y test, pred base))
        print("F-score on testing data: {:.4f}".format(fbeta score(y test, pred base, bet
        print("----- Optimized model ----")
        print("Final accuracy score on the testing data: {:.4f}".format(accuracy score(y test, p
        print("Final F-score on the testing data:
                                                  {:.4f}".format(fbeta score(y test, pred
        ----- Unoptimized model -----
        Accuracy score on testing data: 0.8576
        F-score on testing data:
                                      0.7246
        ----- Optimized model -----
        Final accuracy score on the testing data: 0.8690
        Final F-score on the testing data: 0.7489
```

• These are parameter of the best\_model .

```
In [25]: best_model.get params()
         { 'algorithm': 'SAMME.R',
Out[25]:
         'base estimator ccp alpha': 0.0,
         'base estimator class weight': None,
          'base estimator criterion': 'gini',
         'base estimator max depth': 2,
         'base estimator max features': None,
          'base estimator max leaf nodes': None,
          'base estimator min impurity decrease': 0.0,
         'base_estimator__min_samples leaf': 1,
          'base estimator min samples split': 2,
          'base estimator min weight fraction leaf': 0.0,
          'base_estimator__random_state': 0,
         'base estimator splitter': 'best',
          'base estimator': DecisionTreeClassifier(max depth=2, random state=0),
          'learning rate': 0.5,
          'n estimators': 100,
          'random state': 0}
```

### 4. Evaluation

### 4-1. Final Model Evaluation

I show the results.

| Metric         | Naive Predictor | Unoptimized AdaBoost | Optimized AdaBoost |
|----------------|-----------------|----------------------|--------------------|
| Accuracy Score | 0.2478          | 0.8576               | 0.8690             |
| F-score        | 0.2917          | 0.7246               | 0.7489             |

Compaired to the Navive Predictor, the performance of the Optimized Model is improved by 62.1%. Compaired to the Unoptimized Model, the performance of the Optimized Model is improved by 2.4%.

### 4-2. Feature Importance

An important task when performing supervised learning on a dataset like the census data is determining which features provide the most predictive power.

By focusing on the relationship between only a few crucial features and the target label, I can simplify our understanding of the phenomenon, which is most always a useful thing to do.

In the case of this project, that means I wish to identify a small number of features that most strongly predict whether an indivisual makes at most or more than \$50,000.

Some scikit-learn classifiers(e.g., adaboost, random forests) have a feature\_importance\_ attributee, which is a function that ranks the importance of features. In the code cell below, I will use this attribute to determin the top X most important features for the census dataset.

# This is a plot function which display the top X most important features

In [26]:

```
def plot features(importances, x train, y train, top x, figsize=(15,5)):
             # Get Top X most important features
            indices = np.argsort(importances)[::-1]
            columns = x train.columns.values[indices[:top x]]
            weights = importances[indices][:top x]
            # Create Figure
            bar x1 = np.arange(top x) - 0.3
            bar x2 = np.arange(top x)
            bar y1 = weights
            bar y2 = np.cumsum(weights)
            colors = ["tab:blue", "tab:orange", "tab:green", "tab:red", "tab:purple"]
            labels = ["Feature Weight", "Cumulative Feature Weight"]
            fig = plt.figure(figsize=figsize)
            plt.title("Normalized Wieghts for Frist Five Most Predictive Features", fontsize=16)
             # Plot Bar
            plt.bar(bar x1, bar y1, width=0.6, align="center", color=colors[0], label=labels[0])
            plt.bar(bar x2, bar y2, width=0.3, align="center", color=colors[1], label=labels[1])
            plt.xticks(bar x1, columns, fontsize=12)
            plt.xlim((-0.5, top x-0.5))
            plt.xlabel("Feature", fontsize=12)
            plt.xlabel("Weight", fontsize=12)
            plt.legend(loc="upper center")
            plt.tight layout()
            return columns
         # Extranct feature importances
In [27]:
         importances = best model.feature importances
         # plot
         top x = 6
```

important columns = plot features(importances, x train, y train, top x)

'marital-status Married-civ-spouse', 'education-num'],

array(['capital-gain', 'capital-loss', 'age', 'hours-per-week',

display(important columns)

dtype=object)



### Observation about the top 5 features extraction

- 1. capital-gain
- 2. capital-loss
  - I guess that those who can afford to invest can donate a lot.
- 3. age
  - I guess that experience of how to earn relates with investing.
- 4. hours-per-week
  - I guess that who can use more time to invest makes more money.
- 5. marital-status\_ Married-civ-spouse
  - I geuss that a lot of citizens with spouse can afford to pay attention not only to themselves but also to their surrounding.

#### **Features Selection**

I will train the model with less features. The expectation is that training and prediction time is much lower. From the visualization above, I see that the top 6 most important features contributes more than half of the importance of all features present in the data.

This hins that I can attempt to reduce the feature space and simplify the information required to the model to learn.

```
from sklearn.base import clone
In [28]:
         # create reduced features ant target
         x train reduced = x train[important columns]
         x test reduced = x test[important columns]
         # calculate the training time of best model
         t start = time()
         best model = best model.fit(x train, y train)
         training time best model = time() - t start
         # clone the best model and train
         light model = clone(best model)
         t start = time()
         light model = light model.fit(x train reduced, y train)
         training time light model = time() - t start
         # predict
         pred reduced = light model.predict(x test reduced)
         # Report the before-and-afterscores
```

```
print("----- Optimized model -----")
print("Accuracy score on testing data: {:.4f}".format(accuracy score(y test, pred best))
print("F-score on testing data: {:.4f}".format(fbeta_score(y_test, pred_best, bet
print("Training Time[s]: {:.4f}".format(training_time_best_model))
print("----- Optimized model on reduced data -----")
print("Accuracy score on the testing data: {:.4f}".format(accuracy score(y test, pred re
print("F-score on the testing data: {:.4f}".format(fbeta_score(y_test, pred_reduc
print("Training Time[s]:
                                           {:.4f}".format(training time light model))
----- Optimized model -----
Accuracy score on testing data: 0.8690
F-score on testing data: 0.7489
                               4.3591
Training Time[s]:
----- Optimized model on reduced data -----
Accuracy score on the testing data: 0.8601
F-score on the testing data: 0.7318
Training Time[s]:
                                     0.9891
```

Optimized model used 103 features, and optimized model on reduced data used only 6 features. With reduced features, the F-score reduced only 1.7% and training time is about 4 time faster.

#### For more information about Features Selection

I will research the detail effect of the number of features which are used on training. I will show the training time, accuracy and f-score chaging the number of features from 1 to 10.

```
In [29]:
        indices = np.argsort(importances)[::-1]
        all columns sorted = x train.columns.values[indices]
        train time list = []
        accuracy list = []
        fscore list = []
        for cnt in range(10):
            top x = cnt + 1
           important columns = all_columns_sorted[:top_x]
            #----#
            # create reduced features ant target
            x train reduced = x train[important columns]
            x_test_reduced = x_test[important columns]
            # clone the best model and train
            light model = clone(best model)
            t start = time()
            light model = light model.fit(x train reduced, y train)
            t end = time()
            pred reduced = light model.predict(x test reduced)
            # output
            train time list.append(t end-t start)
            accuracy list.append(accuracy score(y test, pred reduced))
            fscore list.append(fbeta score(y test, pred reduced, beta = 0.5))
```

```
In [30]: fig = plt.figure(figsize=(15,3))
x_data = np.arange(10) + 1

ax = fig.add_subplot(1,3,1)
plt.plot(x_data, train_time_list)
plt.grid(1)
plt.title('Training Time[s]')
```

```
plt.xlabel('Feature Num')

ax = fig.add_subplot(1,3,2)
plt.plot(x_data, accuracy_list)
plt.grid(1)
plt.title('Accuracy [-]')
plt.xlabel('Feature Num')
plt.ylim((0.8, 0.87));

ax = fig.add_subplot(1,3,3)
plt.plot(x_data, fscore_list)
plt.grid(1)
plt.title('F-Score [-]')
plt.xlabel('Feature Num')
plt.ylim((0.55, 0.75));
```



In [ ]: