Assignment-9

AI24BTECH11036- Shreedhanvi Yadlapally

I. Questions with two marks each

- 1) Let $X_1, ..., X_n$ be arandom sample size of $n (\ge 2)$ from $N(\theta, 1)$ distribution where $\theta \in (-\infty, \infty)$. Consider the problem of testing $H_0: \theta \in [1, 2]$ against $H_1: \theta < 1$ or $\theta > 2$, based on $X_1, ..., X_n$. Which of the following statements is TRUE?
 - a) Critical region, of level α (0 < α < 1) of uniformly most powerful test for H_0 against H_1 is of the form $\{(x_1, \ldots, x_n) : c_1 \leq \sum_{i=1}^n x_i \leq c_2\}$, where c_1 and c_2 are such that the test is of level α
 - b) Critical region, of level α ($0 < \alpha < 1$) of uniformly most powerful test for H_0 against H_1 is of the form $\{(x_1, \ldots, x_n) : \sum_{i=1}^n x_i > c \text{ or } \sum_{i=1}^n < d\}$, where c and d are such that the test is of level α
 - c) At any level $\alpha \in (0, 1)$, uniformly most powerful test for H_0 against H_1 does **NOT** exist
 - d) At any level $\alpha \in (0, 1)$, uniformly most powerful test for H_0 against H_1 is less than α
- 2) In a pure birth process with birth rates $\lambda_n = 2^n, n \ge 0$ let the random variable T denote the time taken for the population size to grow from 0 to 5. If Var(T) denotes the variance of the random variable T, then

$$256 \times \text{Var}(T) = \underline{\hspace{1cm}}$$

- 3) Let $\{X_n\}_{n\geq 0}$ be a homogenous Markov chain whose state space is $\{0, 1, 2\}$ and whose one-step transition probability matrix $P = \begin{pmatrix} 0 & 1 & 0 \\ 0.3 & 0 & 0.7 \\ 0 & 1 & 0 \end{pmatrix}$ Then $\lim_{n\to\infty} P(X_{2n} = 2|X_0 = 2) = \underline{\qquad}$ (coorect upto one decimal place).
- 4) Let (X, Y) be a random vector such that, for any y > 0, the conditional probability density function of X given Y = y is

$$f_{X|Y=y}(x) = ye^{-yx}, x > 0.$$

If the marginal probability density function of Y is

$$g(y) = ye^{-y}, y > 0,$$

then E(Y|X=1) = (correct up to one decimal place).

5) Let (X, Y) be a random vector with the joint moment generating function

$$M_{X,Y}\{s,t\} = e^{2s^2+t}, -\infty < s, t < \infty.$$

Let $\Phi(\cdot)$ denote the distribution function of the standard normal distribution and p = P(X + 2Y < 1). If $\Phi(0) = 0.5$, $\Phi(0.5) = 0.6915$, $\Phi(1) = 0.8413$ and $\Phi(1.5) = 0.9332$ then the value of 2p + 1 (round off to two decimal places) equals _____

6) Consider a homogeneous Markov chain $\{X_n\}_{n\geq 0}$ with state space $\{0,1,2,3\}$ and one-step transition probability matrix

$$P = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & 0 & 0 \\ \frac{1}{2} & \frac{1}{4} & \frac{1}{4} & 0 \\ 0 & 0 & \frac{1}{3} & \frac{2}{3} \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Assume that $P(X_0 = 1) = 1$. Let p be the probability that state 0 will be visited before state 3. Then

7) Let (X, Y) be a random vector with joint probability mass function

$$f_{X,Y}(x,y) = \begin{cases} {}^xC_y\left(\frac{1}{4}\right)^x, & y = 0, 1, 2, \dots, x; \ x = 1, 2, \dots \\ 0, & \text{otherwise} \end{cases}$$
hen the variance of Y equals _____.

where ${}^xC_y = \frac{x!}{y!(x-y)!}$. Then the variance of Y equals _____. 8) Let X be a discrete random variable with probability mass function $f \in \{f_0, f_1\}$ where The power of

	x=1	x=2	x=3	x=4	x=5
$f_0(x)$	0.10	0.10	0.10	0.10	0.60
$f_1(x)$	0.05	0.06	0.08	0.09	0.72

the most powerful level $\alpha = 0.1$ test for testing $H_0: X \sim f_0$ against $H_1: X \sim f_1$ based on X, equals ____ (correct up to two decimal places).

9) Let $\underline{X} = (X_1, X_2, X_3)$ be a random vector following $N_3(\underline{0}, \Sigma)$ distribution, where

 $\Sigma = \begin{pmatrix} 1 & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & 1 & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & 1 \end{pmatrix}.$ Then the partial correlation coefficient between X_2 and X_3 , with fixed X_1 , equals (correct up to two decimal places).

10) Let X_1, X_2, X_3 and X_4 be a random sample from a population having probability density function $f_{\theta}(x) = f(x - \theta), -\infty < x < \infty, \theta \in (-\infty, \infty)$ and f(-x) = f(x), for all $x \in (-\infty, \infty)$. For testing $H_0: \theta = 0$ against $H_1: \theta < 0$, let T^+ denote the Wilcoxon Signed-rank statistic. Then under H_0 ,

$$32 \times P(T^+ \le 5) =$$

11) A simple linear regression model with unknown intercept and unknown slope is fitted to the following data: sing the method of ordinary least squares. Then the predicted value of y corresponding to x = 5

	X	-2	-1	0	1	2
Ī	у	3	5	8	9	10

12) Let $D = \{(x, y, z) \in \mathbb{R} \times \mathbb{R} \times \mathbb{R} : 0 \le x, y, z \le 1, x + y + z \le 1\}$, where \mathbb{R} denotes the set of all real numbers. If

$$I = \iiint_D (x+y) \ dx \, dy \, dz,$$

then $84 \times I =$ _____.

13) Let the random vector (X, Y) have the joint distribution function

$$F(x,y) = \begin{cases} 0, & x < 0 \text{ or } y < 0\\ 1 - e^{-x}, & x \ge 0, 0 \le y < 1\\ \frac{4 - e^{-x}}{1 - e^{-x}}, & x \ge 0, y \ge 1 \end{cases}$$

Let Var(X) and Var(Y) denote the variances of random variables X and Y, respectively. Then

$$16 \operatorname{Var}(X) + 32 \operatorname{Var}(Y) =$$
.