Exact Augmented Lagrangian Duality in Mixed-Integer Nonlinear Optimization

Henri Lefebvre, Martin Schmidt *Trier University (Germany), Department of Mathematics*ALOP Research Seminar, 2024

Problem Setting

We consider general MI(N)LPs

$$z^* = \min_{x} c^{\top} x$$

s.t. $Ax = b$
 $Bx \ge f$
 $x \in \mathbb{R}^{n_1} \times \mathbb{Z}^{n_2}$

Problem Setting

We consider general MI(N)LPs

$$z^* = \min_{x} c^{\top} x$$

s.t. $Ax = b$
 $Bx \ge f$
 $x \in \mathbb{R}^{n_1} \times \mathbb{Z}^{n_2}$

Our main interest is in "dualizing" constraints "Ax = b"

Problem Setting

We consider general MI(N)LPs

$$z^* = \min_{x} c^{\top} x$$
s.t. $Ax = b$

$$Bx \ge f$$

$$x \in \mathbb{R}^{n_1} \times \mathbb{Z}^{n_2}$$

Our main interest is in "dualizing" constraints "Ax = b"

Let
$$X = \{x \in \mathbb{R}^{n_1} \times \mathbb{Z}^{n_2} : Bx \ge f\}$$

Lagrangian Duality

Primal Problem

$$z^* = \min_{x} c^{\top} x$$
s.t. $Ax = b$

$$x \in X$$

Lagrangian Dual Problem

$$z^{\mathsf{LD}} = \sup_{\lambda \in \mathbb{R}^m} \ z^{\mathsf{LR}}(\lambda)$$
$$z^{\mathsf{LR}}(\lambda) = \min_{x \in X} \ c^\top x + \lambda^\top (Ax - b)$$

Lagrangian Duality

Primal Problem

$$z^* = \min_{x} c^{\top} x$$

$$z^{LD} = \sup_{\lambda \in \mathbb{R}^m} z^{LR}(\lambda)$$
s.t. $Ax = b$

$$x \in X$$

$$z^{LR}(\lambda) = \min_{x \in X} c^{\top} x + \lambda^{\top} (Ax - b)$$

Strong duality does not hold in general, i.e., $z^* > z^{LD}$

Primal Problem

$$z^* = \min_{x} c^{\top} x$$
s.t. $Ax = b$

$$x \in X$$

Augmented Lagrangian Dual Problem

$$z_
ho^{\mathsf{LD}+} = \sup_{\lambda \in \mathbb{R}^m} \ z_
ho^{\mathsf{LR}+}(\lambda)$$

$$z_{\rho}^{\mathsf{LR}+}(\lambda) = \min_{x \in X} \ c^{\top}x + \lambda^{\top}(Ax - b) + \rho\psi(Ax - b)$$

with $\psi(u) > u$ if and only if $u \neq 0$, $\psi(0) = 0$

Primal Problem

$$z^* = \min_{x} c^{\top} x$$
s.t. $Ax = b$

$$x \in X$$

Augmented Lagrangian Dual Problem

$$z_
ho^{\mathsf{LD}+} = \sup_{\lambda \in \mathbb{R}^m} \; z_
ho^{\mathsf{LR}+}(\lambda)$$

$$z_{\rho}^{\mathsf{LR}+}(\lambda) = \min_{x \in X} \ c^{\top}x + \lambda^{\top}(Ax - b) + \rho\psi(Ax - b)$$

with
$$\psi(u) > u$$
 if and only if $u \neq 0$, $\psi(0) = 0$

Our main interest:

1. What can we say about the duality gap $\gamma = z^* - z_\rho^{\text{LD}+}$?

Primal Problem

$$z^* = \min_{x} c^{\top} x$$
s.t. $Ax = b$

$$x \in X$$

Augmented Lagrangian Dual Problem

$$z_
ho^{\mathsf{LD}+} = \sup_{\lambda \in \mathbb{R}^m} \; z_
ho^{\mathsf{LR}+}(\lambda)$$

$$z_{
ho}^{\mathsf{LR}+}(\lambda) = \min_{x \in X} \ c^{\top}x + \lambda^{\top}(Ax - b) + \rho\psi(Ax - b)$$

with
$$\psi(u) > u$$
 if and only if $u \neq 0$, $\psi(0) = 0$

- 1. What can we say about the duality gap $\gamma = z^* z_{\rho}^{\text{LD}+}$?
- 2. When do we have $\gamma = 0$?

Primal Problem

$$z^* = \min_{x} c^{\top} x$$
s.t. $Ax = b$

$$x \in X$$

Augmented Lagrangian Dual Problem

$$z_
ho^{\mathsf{LD}+} = \sup_{\lambda \in \mathbb{R}^m} \; z_
ho^{\mathsf{LR}+}(\lambda)$$

$$z_{\rho}^{\mathsf{LR}+}(\lambda) = \min_{x \in X} \ c^{\top}x + \lambda^{\top}(Ax - b) + \rho\psi(Ax - b)$$

with
$$\psi(u) > u$$
 if and only if $u \neq 0$, $\psi(0) = 0$

- 1. What can we say about the duality gap $\gamma = z^* z_{\rho}^{\mathsf{LD}+}$?
- 2. When do we have $\gamma = 0$?
 - 2.1 For $\rho \to \infty$? (Asymptotic result)

Primal Problem

$$z^* = \min_{x} c^{\top} x$$
s.t. $Ax = b$

$$x \in X$$

Augmented Lagrangian Dual Problem

$$z_{
ho}^{\mathsf{LD}+} = \sup_{\lambda \in \mathbb{R}^m} \ z_{
ho}^{\mathsf{LR}+}(\lambda)$$

$$z_{\rho}^{\mathsf{LR}+}(\lambda) = \min_{x \in X} \ c^{\top}x + \lambda^{\top}(Ax - b) + \rho\psi(Ax - b)$$

with
$$\psi(u) > u$$
 if and only if $u \neq 0$, $\psi(0) = 0$

- 1. What can we say about the duality gap $\gamma = z^* z_{\rho}^{\text{LD}+}$?
- 2. When do we have $\gamma = 0$?
 - 2.1 For $\rho \to \infty$? (Asymptotic result)
 - 2.2 For some $\rho < \infty$? (Exactness result)

Primal Problem

$$z^* = \min_{x} c^{\top} x$$
s.t. $Ax = b$

$$x \in X$$

Augmented Lagrangian Dual Problem

$$z_
ho^{\mathsf{LD}+} = \sup_{\lambda \in \mathbb{R}^m} \ z_
ho^{\mathsf{LR}+}(\lambda)$$

$$z_{\rho}^{\mathsf{LR}+}(\lambda) = \min_{x \in X} \ c^{\top}x + \lambda^{\top}(Ax - b) + \rho\psi(Ax - b)$$

with
$$\psi(u) > u$$
 if and only if $u \neq 0$, $\psi(0) = 0$

- 1. What can we say about the duality gap $\gamma = z^* z_o^{\text{LD}+}$?
- 2. When do we have $\gamma = 0$?
 - 2.1 For $\rho \to \infty$? (Asymptotic result)
 - 2.2 For some $\rho < \infty$? (Exactness result)
- 3. Is it hard to compute ρ ?

Primal Problem

$$z^* = \min_{x} c^{\top} x$$
s.t. $Ax = b$

$$x \in X$$

Augmented Lagrangian Dual Problem

$$z_
ho^{\mathsf{LD}+} = \sup_{\lambda \in \mathbb{R}^m} \; z_
ho^{\mathsf{LR}+}(\lambda)$$

$$z_{
ho}^{\mathsf{LR}+}(\lambda) = \min_{x \in X} \ c^{\top}x + \lambda^{\top}(Ax - b) + \rho\psi(Ax - b)$$

with
$$\psi(u) > u$$
 if and only if $u \neq 0$, $\psi(0) = 0$

- 1. What can we say about the duality gap $\gamma = z^* z_o^{\text{LD}+}$?
- 2. When do we have $\gamma = 0$?
 - 2.1 For $\rho \to \infty$? (Asymptotic result)
 - 2.2 For some $\rho < \infty$? (Exactness result)
- 3. Is it hard to compute ρ ?

Outline

Literature Review

Asymptotic Result

Exact Penalty Parameters

Guarantees From a Given Penalty Parameter

Conclusion

Outline

Literature Review

Asymptotic Result

Exact Penalty Parameters

Guarantees From a Given Penalty Parameter

Conclusion

Previous Works

Growing interest in the discrete community

	Asymptotic	Exactness	Poly. size	Poly. time	Opt. set
ILP (Boland and Eberhard 2014)	√	√	\uparrow		\uparrow
MILP (Feizollahi et al. 2016)	\checkmark	\checkmark	\uparrow		\checkmark
MIQP (Gu et al. 2020)	\checkmark	\checkmark	\checkmark		
MICP (Bhardwaj et al. 2024)	\checkmark	\checkmark			
,					

Previous Works

Growing interest in the discrete community

	Asymptotic	Exactness	Poly. size	Poly. time	Opt. set
ILP (Boland and Eberhard 2014)	√	√	\uparrow	\uparrow	
MILP (Feizollahi et al. 2016)	\checkmark	\checkmark	\uparrow	\uparrow	\checkmark
MIQP (Gu et al. 2020)	\checkmark	\checkmark	\checkmark	✓	\uparrow
MICP (Bhardwaj et al. 2024)	\checkmark	\checkmark			\uparrow
MINLP (our work)	✓	\checkmark			✓

Assumptions

Assumption (Compactness)

X is compact.

Assumptions

Assumption (Compactness)

X is compact.

Assumption (Penalty Function)

The penalty function $\psi: \mathbb{R}^m \to \mathbb{R}_{\geq 0}$ is

- 1. continuous, i.e., $\lim_{u\to u^*} \psi(u) = \psi(u^*)$;
- 2. positive definite, i.e., $\psi(u) > 0$ for all $u \neq 0$ and $\psi(0) = 0$.

Outline

Literature Review

Asymptotic Result

Exact Penalty Parameters

Guarantees From a Given Penalty Parameter

Conclusion

Let $\lambda \in \mathbb{R}^m$. Let x_ρ denote any solution of

$$z_{\rho}^{\mathsf{LR}+}(\lambda) = \min_{x \in X} \ c^{\top}x + \lambda^{\top}(Ax - b) + \rho\psi(Ax - b)$$

Let $\lambda \in \mathbb{R}^m$. Let x_ρ denote any solution of

$$z_{\rho}^{\mathsf{LR}+}(\lambda) = \min_{x \in X} \ c^{\top}x + \lambda^{\top}(Ax - b) + \rho\psi(Ax - b)$$

$$\rho\psi(Ax_{\rho}-b)\leq\kappa$$

Let $\lambda \in \mathbb{R}^m$. Let x_ρ denote any solution of

$$z_{\rho}^{\mathsf{LR}+}(\lambda) = \min_{x \in X} \ c^{\top}x + \lambda^{\top}(Ax - b) + \rho\psi(Ax - b)$$

$$\rho\psi(\mathsf{A}\mathsf{x}_\rho-\mathsf{b})\leq\kappa$$

$$z_{
ho}^{\mathsf{LR}+}(\lambda) \leq z^*$$

Let $\lambda \in \mathbb{R}^m$. Let x_ρ denote any solution of

$$z_{\rho}^{\mathsf{LR}+}(\lambda) = \min_{x \in X} \ c^{\top}x + \lambda^{\top}(Ax - b) + \rho\psi(Ax - b)$$

$$\rho\psi(\mathsf{A}\mathsf{x}_\rho-\mathsf{b})\leq\kappa$$

$$z_{
ho}^{\mathsf{LR}+}(\lambda) \leq z^*$$

$$c^{\top}x_{\rho} + \lambda^{\top}(Ax_{\rho} - b) + \rho\psi(Ax_{\rho} - b) \leq c^{\top}x^{*}$$

Let $\lambda \in \mathbb{R}^m$. Let x_ρ denote any solution of

$$z_{\rho}^{\mathsf{LR}+}(\lambda) = \min_{x \in X} \ c^{\top}x + \lambda^{\top}(Ax - b) + \rho\psi(Ax - b)$$

$$\rho\psi(Ax_{\rho}-b)\leq\kappa$$

$$z_{
ho}^{\mathsf{LR}+}(\lambda) \leq z^*$$

$$c^{\top}x_{\rho} + \lambda^{\top}(Ax_{\rho} - b) + \rho\psi(Ax_{\rho} - b) \leq c^{\top}x^{*}$$

$$\iff \rho\psi(Ax_{\rho} - b) \leq c^{\top}x^{*} - c^{\top}x_{\rho} + \lambda^{\top}(b - Ax_{\rho})$$

Let $\lambda \in \mathbb{R}^m$. Let x_ρ denote any solution of

$$z_{\rho}^{\mathsf{LR}+}(\lambda) = \min_{x \in X} \ c^{\top}x + \lambda^{\top}(Ax - b) + \rho\psi(Ax - b)$$

$$\rho\psi(Ax_{\rho}-b)\leq\kappa$$

$$z_{
ho}^{\mathsf{LR}+}(\lambda) \leq z^*$$

$$c^{\top}x_{\rho} + \lambda^{\top}(Ax_{\rho} - b) + \rho\psi(Ax_{\rho} - b) \leq c^{\top}x^{*}$$

$$\iff \rho\psi(Ax_{\rho} - b) \leq c^{\top}x^{*} - c^{\top}x_{\rho} + \lambda^{\top}(b - Ax_{\rho})$$

$$\iff \rho\psi(Ax_{\rho} - b) \leq \max_{y,z \in X} \left\{ c^{\top}y - c^{\top}z + \lambda^{\top}(b - Az) \right\}$$

$$\rho \geq \frac{1}{\varepsilon} \kappa$$

$$\rho \ge \frac{1}{\varepsilon} \kappa$$

$$\implies \rho \psi (Ax_{\rho} - b) \ge \frac{1}{\varepsilon} \kappa \psi (Ax_{\rho} - b)$$

$$\rho \ge \frac{1}{\varepsilon} \kappa$$

$$\implies \rho \psi(Ax_{\rho} - b) \ge \frac{1}{\varepsilon} \kappa \psi(Ax_{\rho} - b)$$

$$\implies \kappa \ge \frac{1}{\varepsilon} \kappa \psi(Ax_{\rho} - b)$$

$$\rho \ge \frac{1}{\varepsilon} \kappa$$

$$\implies \rho \psi(Ax_{\rho} - b) \ge \frac{1}{\varepsilon} \kappa \psi(Ax_{\rho} - b)$$

$$\implies \kappa \ge \frac{1}{\varepsilon} \kappa \psi(Ax_{\rho} - b)$$

$$\implies \varepsilon \ge \psi(Ax_{\rho} - b)$$

$$\rho \ge \frac{1}{\varepsilon} \kappa$$

$$\Rightarrow \rho \psi(Ax_{\rho} - b) \ge \frac{1}{\varepsilon} \kappa \psi(Ax_{\rho} - b)$$

$$\Rightarrow \kappa \ge \frac{1}{\varepsilon} \kappa \psi(Ax_{\rho} - b)$$

$$\Rightarrow \varepsilon \ge \psi(Ax_{\rho} - b)$$

$$\rho \ge \frac{1}{\varepsilon} \kappa$$

$$\implies \rho \psi(Ax_{\rho} - b) \ge \frac{1}{\varepsilon} \kappa \psi(Ax_{\rho} - b)$$

$$\implies \kappa \ge \frac{1}{\varepsilon} \kappa \psi(Ax_{\rho} - b)$$

$$\implies \varepsilon \ge \psi(Ax_{\rho} - b)$$

Let $\varepsilon > 0$. Any $\rho \geq \frac{1}{\varepsilon} \kappa$ guarantees that $\psi(Ax_{\rho} - b) \leq \varepsilon$.

Let
$$\varepsilon \to 0 \ (\rho \to \infty)$$

$$\varepsilon \geq \psi(Ax_{\rho}-b)$$

Let
$$\varepsilon \to 0 \ (\rho \to \infty)$$

$$\begin{array}{c} \varepsilon \geq \psi(Ax_{\rho} - b) \\ \stackrel{\varepsilon \to 0}{\Longrightarrow} \quad 0 \geq \liminf_{\rho \to \infty} \ \psi(Ax_{\rho} - b) \end{array}$$

Let
$$\varepsilon \to 0 \ (\rho \to \infty)$$

$$\varepsilon \ge \psi(Ax_{\rho} - b)$$

$$\stackrel{\varepsilon \to 0}{\Longrightarrow} \quad 0 \ge \liminf_{\rho \to \infty} \ \psi(Ax_{\rho} - b)$$

$$\Longrightarrow \quad 0 \ge \psi(Ax_{\infty} - b)$$

Let
$$\varepsilon \to 0 \ (\rho \to \infty)$$

$$\varepsilon \ge \psi(Ax_{\rho} - b)$$

$$\stackrel{\varepsilon \to 0}{\Longrightarrow} \quad 0 \ge \liminf_{\rho \to \infty} \ \psi(Ax_{\rho} - b)$$

$$\Longrightarrow \quad 0 \ge \psi(Ax_{\infty} - b)$$

$$\Longleftrightarrow \quad Ax_{\infty} = b$$

Asymptotic Result (Part 2)

Let
$$\varepsilon \to 0 \ (\rho \to \infty)$$

There is a limit point of (a sub-sequence of) $(x_{\rho})_{\rho>0}$, say $x_{\infty}\in X$

$$\varepsilon \ge \psi(Ax_{\rho} - b)$$

$$\stackrel{\varepsilon \to 0}{\Longrightarrow} \quad 0 \ge \liminf_{\rho \to \infty} \ \psi(Ax_{\rho} - b)$$

$$\implies \quad 0 \ge \psi(Ax_{\infty} - b)$$

$$\iff \quad Ax_{\infty} = b$$

Asymptotic Result (Part 2)

Let
$$\varepsilon \to 0 \ (\rho \to \infty)$$

There is a limit point of (a sub-sequence of) $(x_{\rho})_{\rho>0}$, say $x_{\infty}\in X$

$$\varepsilon \ge \psi(Ax_{\rho} - b)$$

$$\stackrel{\varepsilon \to 0}{\Longrightarrow} \quad 0 \ge \liminf_{\rho \to \infty} \ \psi(Ax_{\rho} - b)$$

$$\implies \quad 0 \ge \psi(Ax_{\infty} - b)$$

$$\iff \quad Ax_{\infty} = b$$

This shows that x_{∞} is feasible for the primal problem!

$$z^* = \lim_{
ho o \infty} \ z^{\mathsf{LR}+}_
ho(\lambda)$$

Asymptotic Result (Part 3)

$$ho
ightarrow z_
ho^{\mathsf{LR}+}(\lambda)$$
 is non-decreasing

Asymptotic Result (Part 3)

$$\rho \to z_\rho^{\rm LR+}(\lambda)$$
 is non-decreasing
$$z_\rho^{\rm LR+}(\lambda) \le z^*$$

Asymptotic Result (Part 3)

$$ho o z_
ho^{
m LR+}(\lambda)$$
 is non-decreasing $z_
ho^{
m LR+}(\lambda) \le z^*$

$$z^* = \sup_{
ho>0} \; z^{\mathsf{LR}+}_
ho(\lambda)$$

Outline

Literature Review

Asymptotic Result

Exact Penalty Parameters

Guarantees From a Given Penalty Parameter

Conclusion

Assume that for all $x \in X$ such that $Ax \neq b$ it holds $\psi(Ax - b) \geq \delta > 0$.

Assume that for all $x \in X$ such that $Ax \neq b$ it holds $\psi(Ax - b) \geq \delta > 0$.

For any
$$ho \geq 2\kappa/\delta$$
, $z_{
ho}^{\mathsf{LR}+}(\lambda) = z^*$

Assume that for all $x \in X$ such that $Ax \neq b$ it holds $\psi(Ax - b) \geq \delta > 0$.

For any
$$ho \geq 2\kappa/\delta$$
, $z_
ho^{\mathsf{LR}+}(\lambda) = z^*$

It holds

$$\psi(Ax_{\rho}-b)\leq \delta/2$$

Assume that for all $x \in X$ such that $Ax \neq b$ it holds $\psi(Ax - b) \geq \delta > 0$.

For any
$$ho \geq 2\kappa/\delta$$
, $z_{
ho}^{\mathsf{LR}+}(\lambda) = z^*$

It holds

$$\psi(Ax_{\rho}-b)\leq \delta/2$$

So it must be that $\psi(\mathit{Ax}_{\rho}-b) \leq 0 \implies \mathit{Ax}_{\rho}=b$

Assume that for all $x \in X$ such that $Ax \neq b$ it holds $\psi(Ax - b) \geq \delta > 0$.

For any
$$ho \geq 2\kappa/\delta$$
, $z_
ho^{\mathsf{LR}+}(\lambda) = z^*$

It holds

$$\psi(Ax_{\rho}-b)\leq \delta/2$$

So it must be that $\psi(Ax_{\rho}-b)\leq 0 \implies Ax_{\rho}=b$

Problem Assumption already fails for some MILPs (Feizollahi et al., 2016)

We now assume $\psi = \lVert \cdot \rVert$ for any norm $\lVert \cdot \rVert.$

We now assume $\psi = \lVert \cdot \rVert$ for any norm $\lVert \cdot \rVert.$

Lemma 1 The choice of the norm does not matter

We now assume $\psi = \lVert \cdot \rVert$ for any norm $\lVert \cdot \rVert.$

Lemma 1 The choice of the norm does not matter

Say that $\rho < \infty$ is exact for $\| \cdot \|$

By equivalence of norms, there exists $\gamma>0$ such that $\|\cdot\|\leq\gamma\|\cdot\|'$

We now assume $\psi = \lVert \cdot \rVert$ for any norm $\lVert \cdot \rVert.$

Lemma 1 The choice of the norm does not matter

Say that $\rho < \infty$ is exact for $\|\cdot\|$

By equivalence of norms, there exists $\gamma>0$ such that $\|\cdot\|\leq\gamma\|\cdot\|'$

$$z^* = \min_{x \in X} c^\top x + \lambda^\top (Ax - b) + \rho ||Ax - b||$$

$$\leq \min_{x \in X} c^\top x + \lambda^\top (Ax - b) + \rho \gamma ||Ax - b||'$$

$$\leq z^*$$

Thus $\rho\gamma$ is exact for $\|\cdot\|'$

We now assume $\psi = \lVert \cdot \rVert$ for any norm $\lVert \cdot \rVert.$

Lemma 1 The choice of norm does not matter

Lemma 2 The choice of λ does not matter

We now assume $\psi = \lVert \cdot \rVert$ for any norm $\lVert \cdot \rVert.$

Lemma 1 The choice of norm does not matter

Lemma 2 The choice of λ does not matter

Say $\rho < \infty$ is exact for $\lVert \cdot \rVert_2$ and $\lambda = 0$

We now assume $\psi = \lVert \cdot \rVert$ for any norm $\lVert \cdot \rVert.$

Lemma 1 The choice of norm does not matter

Lemma 2 The choice of λ does not matter

Say
$$\rho < \infty$$
 is exact for $\|\cdot\|_2$ and $\lambda = 0$

$$z^* = \min_{x \in X} c^\top x + \rho ||Ax - b||_2$$

$$= \min_{x \in X} c^\top x + \lambda^\top (Ax - b) - \lambda^\top (Ax - b) + \rho ||Ax - b||_2$$

$$\leq \min_{x \in X} c^\top x + \lambda^\top (Ax - b) + ||\lambda||_2 ||Ax - b||_2 + \rho ||Ax - b||_2$$

$$= \min_{x \in X} c^\top x + \lambda^\top (Ax - b) + (||\lambda||_2 + \rho) ||Ax - b||_2$$

Exact Penalty Parameter: How to Prove It

Exact Penalty Parameter: The Proof

Fix the integer part in the primal, say, $x_2 = \hat{x}_2$ with $x = (x_1, x_2)$

$$z^*(\hat{x}_2) = \min_{x_1} c_1^{\top} x_1 + c_2^{\top} \hat{x}_2$$

s.t. $Ax_1 = b - A\hat{x}_2$
 $g(x_1, \hat{x}_2) \le 0$
 $x_1 \in \mathbb{R}^{n_1}$

We distinguish two cases

- 1. Feasible case: $z^*(x_2) < \infty$
- 2. Infeasible case: $z^*(x_2) = \infty$

As per the previous lemma, let's use $\psi(\cdot) = \|\cdot\|_{\infty}$ and $\lambda = 0$

$$z^*(\hat{x}_2) - c_2^{\top} \hat{x}_2 = \min_{\substack{x_1 \ \text{s.t.}}} c_1^{\top} x_1$$

s.t. $A_1 x_1 = b - A_2 \hat{x}_2$
 $B_1 x_1 \ge f - B_2 \hat{x}_2$

As per the previous lemma, let's use $\psi(\cdot) = \|\cdot\|_{\infty}$ and $\lambda = 0$

$$z^{*}(\hat{x}_{2}) - c_{2}^{\top} \hat{x}_{2} = \min_{\substack{x_{1} \\ s.t.}} c_{1}^{\top} x_{1} = \max_{\substack{\mu, \lambda \\ B_{1}x_{1} \geq f - B_{2}\hat{x}_{2}}} (b - A_{2}\hat{x}_{2})^{\top} \mu + (f - B_{2}x_{2})^{\top} \lambda$$

$$= \max_{\substack{\mu, \lambda \\ s.t.}} (b - A_{2}\hat{x}_{2})^{\top} \mu + (f - B_{2}x_{2})^{\top} \lambda$$

$$\text{s.t.} \quad A_{1}^{\top} \mu + B_{1}^{\top} \lambda = c_{1}$$

$$\lambda \geq 0$$

As per the previous lemma, let's use $\psi(\cdot) = \|\cdot\|_{\infty}$ and $\lambda = 0$

s.t. $B_1 x_1 > f - B_2 \hat{x}_2$

$$z^{*}(\hat{x}_{2}) - c_{2}^{\top}\hat{x}_{2} = \min_{\substack{x_{1} \\ s.t.}} c_{1}^{\top}x_{1} = \max_{\substack{\mu,\lambda \\ s.t.}} (b - A_{2}\hat{x}_{2})^{\top}\mu + (f - B_{2}x_{2})^{\top}\lambda$$

$$\text{s.t.} \quad A_{1}x_{1} = b - A_{2}\hat{x}_{2} \qquad \text{s.t.} \quad A_{1}^{\top}\mu + B_{1}^{\top}\lambda = c_{1}$$

$$B_{1}x_{1} \geq f - B_{2}\hat{x}_{2} \qquad \lambda \geq 0$$

$$z_{\rho}^{\mathsf{LR}+}(\hat{x}_{2}) - c_{2}^{\top}\hat{x}_{2} = \min_{\substack{x_{1} \\ x_{1}}} c_{1}^{\top}x_{1} + \rho\|A_{1}x_{1} + A_{2}\hat{x}_{2} - b\|_{\infty}$$

As per the previous lemma, let's use $\psi(\cdot) = \|\cdot\|_{\infty}$ and $\lambda = 0$

$$z^{*}(\hat{\mathbf{x}}_{2}) - c_{2}^{\top}\hat{\mathbf{x}}_{2} = \min_{\substack{\mathbf{x}_{1} \\ \mathbf{x}_{1}}} c_{1}^{\top}\mathbf{x}_{1} = \max_{\substack{\mu,\lambda \\ \mathbf{x}_{1} = b - A_{2}\hat{\mathbf{x}}_{2} \\ B_{1}\mathbf{x}_{1} \geq f - B_{2}\hat{\mathbf{x}}_{2}}} = \max_{\substack{\mu,\lambda \\ \mathbf{x}_{1} = b - A_{2}\hat{\mathbf{x}}_{2} \\ B_{1}\mathbf{x}_{1} \geq f - B_{2}\hat{\mathbf{x}}_{2}}} = \min_{\substack{\mathbf{x}_{1} \\ \mathbf{x}_{1} \geq f - B_{2}\hat{\mathbf{x}}_{2}}} c_{1}^{\top}\mathbf{x}_{1} + \rho \|A_{1}\mathbf{x}_{1} + A_{2}\hat{\mathbf{x}}_{2} - b\|_{\infty} = \max_{\substack{\mu,\lambda \\ \mu,\lambda \\ \mathbf{x}_{1} \geq f - B_{2}\hat{\mathbf{x}}_{2}}} (b - A_{2}\hat{\mathbf{x}}_{2})^{\top}\mu + (f - B_{2}\mathbf{x}_{2})^{\top}\lambda$$

$$\mathbf{x}_{1} = \mathbf{x}_{1} + \mathbf{x}_{2}\hat{\mathbf{x}}_{2} - b\|_{\infty} = \max_{\substack{\mu,\lambda \\ \mathbf{x}_{1} \geq f - B_{2}\hat{\mathbf{x}}_{2}}} (b - A_{2}\hat{\mathbf{x}}_{2})^{\top}\mu + (f - B_{2}\mathbf{x}_{2})^{\top}\lambda$$

$$\mathbf{x}_{2} = \mathbf{x}_{1} + \mathbf{x}_{2} + \mathbf{x}_{2} + \mathbf{x}_{3} + \mathbf{x}_{4} + \mathbf{x}_{2} + \mathbf{x}_{2} + \mathbf{x}_{3} + \mathbf{x}_{4} + \mathbf{x}$$

As per the previous lemma, let's use $\psi(\cdot) = \|\cdot\|_{\infty}$ and $\lambda = 0$

$$z^{*}(\hat{\mathbf{x}}_{2}) - c_{2}^{\top}\hat{\mathbf{x}}_{2} = \min_{\substack{\mathbf{x}_{1} \\ \mathbf{x}_{1}}} c_{1}^{\top}\mathbf{x}_{1} = \max_{\substack{\mu,\lambda \\ \mathbf{x}_{1} = b - A_{2}\hat{\mathbf{x}}_{2} \\ B_{1}\mathbf{x}_{1} \geq f - B_{2}\hat{\mathbf{x}}_{2}}} = \max_{\substack{\mu,\lambda \\ \mathbf{x}_{1} = b - A_{2}\hat{\mathbf{x}}_{2} \\ B_{1}\mathbf{x}_{1} \geq f - B_{2}\hat{\mathbf{x}}_{2}}} = \min_{\substack{\mathbf{x}_{1} \\ \mathbf{x}_{1} \geq f - B_{2}\hat{\mathbf{x}}_{2}}} c_{1}^{\top}\mathbf{x}_{1} + \rho \|A_{1}\mathbf{x}_{1} + A_{2}\hat{\mathbf{x}}_{2} - b\|_{\infty} = \max_{\substack{\mu,\lambda \\ \mu,\lambda \\ \mathbf{x}_{1} \geq f - B_{2}\hat{\mathbf{x}}_{2}}} (b - A_{2}\hat{\mathbf{x}}_{2})^{\top}\mu + (f - B_{2}\mathbf{x}_{2})^{\top}\lambda$$

$$\mathbf{x}_{1} = \mathbf{x}_{1} + \mathbf{x}_{1} + \mathbf{x}_{2} + \mathbf{x}_{2} + \mathbf{x}_{2} + \mathbf{x}_{3} = \mathbf{x}_{2} + \mathbf{x}_{3} = \mathbf{x}_{4} + \mathbf{x}_{1} + \mathbf{x}_{2} + \mathbf{x}_{2} = \mathbf{x}_{3} = \mathbf{x}_{4} + \mathbf{x}_{1} + \mathbf{x}_{2} + \mathbf{x}_{2} = \mathbf{x}_{3} = \mathbf{x}_{4} = \mathbf{x}_{4} + \mathbf{x}_{1} + \mathbf{x}_{2} = \mathbf{x}_{2} = \mathbf{x}_{3} = \mathbf{x}_{4} = \mathbf{x}_$$

Any $\rho > \|\mu^*\|_1$ is large enough!

It is sufficient to choose ρ such that

$$z_{
ho}^{\mathsf{LR}+}(x_2) = egin{cases} z^*(x_2), & \mathsf{if}\ x_2\ \mathsf{is}\ \mathsf{feasible}, \ \mathsf{UB}, & \mathsf{otherwise}. \end{cases}$$

It is sufficient to choose ρ such that

$$z_{
ho}^{\mathsf{LR}+}(x_2) = egin{cases} z^*(x_2), & \mathsf{if}\ x_2\ \mathsf{is}\ \mathsf{feasible}, \ \mathsf{UB}, & \mathsf{otherwise}. \end{cases}$$

If so,

$$z^* = z_{
ho}^{\mathsf{LR}+} = \min_{x_2} z_{
ho}^{\mathsf{LR}+}(\hat{x}_2)$$

It is sufficient to choose ρ such that

$$z_{\rho}^{\mathsf{LR}+}(x_2) = \begin{cases} z^*(x_2), & \text{if } x_2 \text{ is feasible,} \\ \mathsf{UB}, & \text{otherwise.} \end{cases}$$

If so,

$$z^* = z_{
ho}^{\mathsf{LR}+} = \min_{\mathsf{x}_2} z_{
ho}^{\mathsf{LR}+}(\hat{\mathsf{x}}_2)$$

Any ρ such that $z_{\rho}^{\mathsf{LR}+}(\hat{x}_2) > \mathsf{UB}$ is large enough!

We need to solve the "bilevel" problem

$$\min_{\rho} \quad \rho$$
 s.t. $z_{\rho}^{\mathsf{LR+}}(\hat{x}_2) \geq \mathsf{UB}$

We need to solve the "bilevel" problem

$$\min_{\rho} \quad \rho \qquad \qquad = \min_{\rho} \rho$$
s.t. $z_{\rho}^{\mathsf{LR+}}(\hat{x}_2) \ge \mathsf{UB}$

$$\sup_{\rho} \left\{ \begin{array}{l} \min_{x_1} \quad c_1^{\top} x_1 + \rho \|A_1 x_1 + A_2 \hat{x}_2 - b\|_{\infty} \\ \text{s.t.} \quad B_1 x_1 \ge f - B_2 \hat{x}_2 \end{array} \right\} \ge \mathsf{UB}$$

$$\rho > 0$$

We need to solve the "bilevel" problem

$$\begin{aligned} & \underset{\rho}{\min} \quad \rho & & = \underset{\rho}{\min} \; \rho \\ & \text{s.t.} \quad z_{\rho}^{\mathsf{LR}+}(\hat{\mathbf{x}}_2) \geq \mathsf{UB} \end{aligned} \qquad \begin{aligned} & = \underset{\rho}{\min} \; \rho \\ & \text{s.t.} \quad \left\{ \begin{array}{l} \underset{x_1}{\min} \; \; c_1^\top x_1 + \rho \|A_1 x_1 + A_2 \hat{\mathbf{x}}_2 - b\|_{\infty} \\ & \text{s.t.} \; \; B_1 x_1 \geq f - B_2 \hat{\mathbf{x}}_2 \end{aligned} \right\} \geq \mathsf{UB} \\ & & \rho \geq 0 \\ & = \underset{\rho}{\min} \; \rho \\ & \text{s.t.} \quad \left\{ \begin{array}{l} \underset{x_1}{\max} \; \; (b - A_2 \hat{\mathbf{x}}_2)^\top \mu + (f - B_2 x_2)^\top \lambda \\ & \text{s.t.} \; \; A_1^\top \mu + B_1^\top \lambda = c_1 \\ & \lambda \geq 0 \\ & \|\mu\|_1 \leq \rho \end{aligned} \right\} \geq \mathsf{UB}$$

Single-level reformulation

$$\begin{aligned} & \underset{\rho,\mu,\lambda}{\min} & \rho \\ & \text{s.t. } (b - A_2 \hat{x}_2)^\top \mu + (f - B_2 x_2)^\top \lambda \geq \mathsf{UB} \\ & A_1^\top \mu + B_1^\top \lambda = c_1 \\ & \lambda \geq 0 \\ & \|\mu\|_1 \leq \rho \end{aligned}$$

This problem is feasible (Farkas Lemma) and lower bounded by zero.

Exact Penalty Parameter: How to Prove It

Outline

Literature Review

Asymptotic Result

Exact Penalty Parameters

Guarantees From a Given Penalty Parameter

Conclusion

The Perturbed Problem

Primal Problem

$$z^* = \min_{x} c^{\top} x$$
s.t. $Ax = b$

$$x \in X$$

Perturbed Primal Problem

$$\begin{split} \tilde{z}_{\varepsilon}^* &= \min_{x} \ c^\top x \\ \text{s.t.} \ \|Ax - b\|_{\varphi} \leq \varepsilon \\ x \in X \end{split}$$

Relation to a Perturbed Problem

Assume that ψ has "some relation" to a norm:

$$\psi(u) \le \varepsilon \implies \|u\|_{\varphi} \le \varphi^{-1}(\varepsilon)$$

$$\psi(u) \le \varepsilon \implies \|u\|_{\varphi} \le \varphi^{-1}(\varepsilon)$$

Example
$$\psi = \frac{1}{2} \|\cdot\|_2^2$$
, $\psi(u) \le \varepsilon \implies \|u\|_2 \le \sqrt{2\varepsilon}$

$$\psi(u) \le \varepsilon \implies \|u\|_{\varphi} \le \varphi^{-1}(\varepsilon)$$

Example
$$\psi = \frac{1}{2} \|\cdot\|_2^2$$
, $\psi(u) \le \varepsilon \implies \|u\|_2 \le \sqrt{2\varepsilon}$

Let
$$\rho \geq \kappa/\varphi(\varepsilon)$$

$$\psi(u) \le \varepsilon \implies \|u\|_{\varphi} \le \varphi^{-1}(\varepsilon)$$

Example
$$\psi = \frac{1}{2} \|\cdot\|_2^2$$
, $\psi(u) \le \varepsilon \implies \|u\|_2 \le \sqrt{2\varepsilon}$

Let
$$\rho \geq \kappa/\varphi(\varepsilon)$$

$$\psi(\mathsf{A}\mathsf{x}_{\rho}-\mathsf{b})\leq\varphi(\varepsilon)$$

$$\psi(u) \le \varepsilon \implies \|u\|_{\varphi} \le \varphi^{-1}(\varepsilon)$$

Example
$$\psi = \frac{1}{2} \|\cdot\|_2^2$$
, $\psi(u) \le \varepsilon \implies \|u\|_2 \le \sqrt{2\varepsilon}$

Let
$$\rho \geq \kappa/\varphi(\varepsilon)$$

$$\psi(Ax_{\rho}-b)\leq \varphi(\varepsilon) \implies \|Ax_{\rho}-b\|_{\varphi}\leq \varphi^{-1}(\varphi(\varepsilon))=\varepsilon$$

$$\psi(u) \le \varepsilon \implies \|u\|_{\varphi} \le \varphi^{-1}(\varepsilon)$$

Example
$$\psi = \frac{1}{2} \|\cdot\|_2^2$$
, $\psi(u) \le \varepsilon \implies \|u\|_2 \le \sqrt{2\varepsilon}$

Let
$$\rho \geq \kappa/\varphi(\varepsilon)$$

$$\psi(Ax_{\rho}-b)\leq \varphi(\varepsilon) \implies \|Ax_{\rho}-b\|_{\varphi}\leq \varphi^{-1}(\varphi(\varepsilon))=\varepsilon$$

Assume that ψ has "some relation" to a norm:

$$\psi(u) \le \varepsilon \implies \|u\|_{\varphi} \le \varphi^{-1}(\varepsilon)$$

Example
$$\psi = \frac{1}{2} \|\cdot\|_2^2$$
, $\psi(u) \le \varepsilon \implies \|u\|_2 \le \sqrt{2\varepsilon}$

Let $\rho \geq \kappa/\varphi(\varepsilon)$

$$\psi(Ax_{\rho}-b) \leq \varphi(\varepsilon) \implies ||Ax_{\rho}-b||_{\varphi} \leq \varphi^{-1}(\varphi(\varepsilon)) = \varepsilon$$

 $x_{
ho}$ is feasible for the perturbed primal problem!

Assume that ψ has "some relation" to a norm:

$$\psi(u) \le \varepsilon \implies \|u\|_{\varphi} \le \varphi^{-1}(\varepsilon)$$

Example
$$\psi = \frac{1}{2} \|\cdot\|_2^2$$
, $\psi(u) \le \varepsilon \implies \|u\|_2 \le \sqrt{2\varepsilon}$

Let $\rho \geq \kappa/\varphi(\varepsilon)$

$$\psi(Ax_{\rho}-b)\leq \varphi(\varepsilon) \implies \|Ax_{\rho}-b\|_{\varphi}\leq \varphi^{-1}(\varphi(\varepsilon))=\varepsilon$$

 x_{ρ} is feasible for the perturbed primal problem!

Let x^{ε} denote an optimal point of the perturbed problem

$$z^*=z^{\mathsf{LR}+}_{
ho^*}(\lambda)$$

Let x^{ε} denote an optimal point of the perturbed problem

$$z^* = z_{\rho^*}^{LR+}(\lambda)$$

$$\iff z^* = \min_{x \in X} \left(c^\top x + \lambda^\top (Ax - b) + \rho^* \psi (Ax - b) \right)$$

Let x^{ε} denote an optimal point of the perturbed problem

$$z^* = z_{\rho^*}^{\mathsf{LR}+}(\lambda)$$

$$\iff z^* = \min_{x \in X} \left(c^\top x + \lambda^\top (Ax - b) + \rho^* \psi (Ax - b) \right)$$

$$\implies z^* \le c^\top x^\varepsilon + \lambda^\top (Ax^\varepsilon - b) + \rho^* \psi (Ax^\varepsilon - b)$$

Let x^{ε} denote an optimal point of the perturbed problem

$$z^* = z_{\rho^*}^{\mathsf{LR}+}(\lambda)$$

$$\iff z^* = \min_{x \in X} \left(c^\top x + \lambda^\top (Ax - b) + \rho^* \psi (Ax - b) \right)$$

$$\implies z^* \le c^\top x^\varepsilon + \lambda^\top (Ax^\varepsilon - b) + \rho^* \psi (Ax^\varepsilon - b)$$

$$\implies z^* \le \tilde{z}_\varepsilon^* + \|\lambda\|_2 \|Ax^\varepsilon - b\|_2 + \rho^* \|Ax^\varepsilon - b\|_2$$

Let x^{ε} denote an optimal point of the perturbed problem

$$z^* = z_{\rho^*}^{\mathsf{LR}+}(\lambda)$$

$$\iff z^* = \min_{x \in X} \left(c^\top x + \lambda^\top (Ax - b) + \rho^* \psi (Ax - b) \right)$$

$$\implies z^* \le c^\top x^\varepsilon + \lambda^\top (Ax^\varepsilon - b) + \rho^* \psi (Ax^\varepsilon - b)$$

$$\implies z^* \le \tilde{z}_\varepsilon^* + \|\lambda\|_2 \|Ax^\varepsilon - b\|_2 + \rho^* \|Ax^\varepsilon - b\|_2$$

$$\implies z^* \le \tilde{z}_\varepsilon^* + (\|\lambda\|_2 + \rho^*)\varepsilon$$

Let x^{ε} denote an optimal point of the perturbed problem

$$z^* = z_{\rho^*}^{\mathsf{LR}+}(\lambda)$$

$$\iff z^* = \min_{x \in X} \left(c^\top x + \lambda^\top (Ax - b) + \rho^* \psi (Ax - b) \right)$$

$$\implies z^* \le c^\top x^\varepsilon + \lambda^\top (Ax^\varepsilon - b) + \rho^* \psi (Ax^\varepsilon - b)$$

$$\implies z^* \le \tilde{z}_\varepsilon^* + \|\lambda\|_2 \|Ax^\varepsilon - b\|_2 + \rho^* \|Ax^\varepsilon - b\|_2$$

$$\implies z^* \le \tilde{z}_\varepsilon^* + (\|\lambda\|_2 + \rho^*)\varepsilon$$

$$z^* - (\|\lambda\|_2 + \rho^*)\varepsilon \le \tilde{z}_{\varepsilon}^*$$

Approximation Guarantees

Combining

- $\tilde{z}_{\varepsilon}^* \leq z_{\rho}^{\mathsf{LR}+}(\lambda) \leq z^*$, for any $\rho \geq \kappa/\varphi(\varepsilon)$
- $z^* (\|\lambda\|_2 + \rho^*)\varepsilon \leq \tilde{z}_{\varepsilon}^*$

Approximation Guarantees

Combining

- $\tilde{z}^*_{\varepsilon} \leq z^{\mathsf{LR}+}_{\rho}(\lambda) \leq z^*$, for any $\rho \geq \kappa/\varphi(\varepsilon)$
- $z^* (\|\lambda\|_2 + \rho^*)\varepsilon \leq \tilde{z}_{\varepsilon}^*$
 - If $\psi = \|\cdot\|$, then

$$z^* - o\left(rac{1}{
ho}
ight) \leq z_
ho^{\mathsf{LR}+}(\lambda) \leq z^*$$

• If $\psi = \frac{1}{2} ||\cdot||_2^2$, then

$$z^* - o\left(rac{1}{\sqrt{
ho}}
ight) \leq z_
ho^{\mathsf{LR}+}(\lambda) \leq z^*$$

This generalizes Theorem 2 of Feizollahi et al. (2016)

Outline

Literature Review

Asymptotic Result

Exact Penalty Parameters

Guarantees From a Given Penalty Parameter

Conclusion

Conclusion

In this Talk

- Asymptotic zero-duality gap for MILPs
- Exact penalty parameters when using norms
- Approximation guarantees

Conclusion

In this Talk

- Asymptotic zero-duality gap for MILPs
- Exact penalty parameters when using norms
- Approximation guarantees

In our Preprint

- Extend these results to
 - Convex problems under ~ Slater Constraint Qualification
 - $\bullet \ \, {\sf Nonconvex} \ \, {\sf problems} \ \, {\sf under} \sim {\sf Mangasarian-Fromovitz} \ \, {\sf Constraint} \ \, {\sf Qualification} \\$
- \bullet Show that computing ρ for MILPs can by done in polynomial time

Conclusion

In this Talk

- Asymptotic zero-duality gap for MILPs
- Exact penalty parameters when using norms
- Approximation guarantees

In our Preprint

- Extend these results to
 - ullet Convex problems under \sim Slater Constraint Qualification
 - ullet Nonconvex problems under \sim Mangasarian-Fromovitz Constraint Qualification
- \bullet Show that computing ρ for MILPs can by done in polynomial time

In the Future

Use these results to derive algorithms for multi-level optimization problems