特願2002-056225

ページ: 1/

S.28

第5号部

(19)日本国特許庁 (JP)

(12)特 許 公 報(182)

(11)特許出越公告番号

特公平7-37334

(24)(44)公告日 平成7年(1995)4月26日

(51) Int. C1. * #例配号 P1 (B) 20301140188 C09E 10/12 (B) 20301140188 (B) 203014018 (B) 2030114018 (B) 20301140

CO4B 35/18

競収項の数4 (全4百)

(21) 出取容分 特取平3~31314 (71) 出版人 39100785] 岡本胡子傑式会社 (22) 出顧日 平成3年(1991)2月1日 千葉與柏市十余二380番地 (72) 発明者 向井 敬一 千架県松戸市二つ木二葉町204-17 (65)公院春号 特爾平4-387538 (43)公開日 平成4年(1992)12月18日 (72)発明省 林 貞富 千葉県流山市平方原新田200 (72) 苑明看 玉筐 越 千葉県柏市豊四季台1-1-1-205 (72)発明者 類月 廣二 千葉県流山市東採井724-21 (74)代理人 弁理士 板井 一取 審査官 高梨 操 (56) 参考文献 特公昭(9-10134 (JP, B2)

(54) 【発明の名称】耐熱性セラミックス成形体及びその製造法

【特許請求の範囲】

【請求項1】 マグネンウム、カルシウム、亜鉛、鉛、およびパナジウムからなる群から選ばれた企画の1種以上を酸化物として0.6~7.0重量%含有するβースポジュウメン固溶体もしくはβーユークリプタイト固熔体からなり、表面の平均担さが本質的に0.03μm以下であることを特徴とする耐熱性セラミックス成形体。

【請求項2】 酸化物組成がSiO。 60~65室量 %、Al,O。18~30重量%、Li,O 3~8重量 %、TiO,+ZrO。3~6重量%、P,O.および(室 たは)8,O.を合計量で8重量%以下、RO(ただしR はマグネシウム、カルシウム、亜鉛、鉛、およびパナジウムからなる群から遅ばれた金属原子を挙す)0.3~7.0重量%、R,O(ただしRはカリウム原子虫たはナトリウム原子を挙す)3.0重量%以下のガラスを所成

の形状と平特な表面を有する成形体に成形し、得られた ガラス成形体を、上記ガラスの変形温度以下の温度で熱 処理して結晶核を生成させた後、昇型して8ースポジュ ウメン固治体または8ーユークリプタイト固溶体を生成 させることを特徴とする、平均独生が0.03μロ以下で ある平滑な表面を有する面操性セラミックス成形体の製 造法。

【翻求項3】 マグネシウム、カルシウム、亜鉛、鉛、 およびパナジウムからなる群から選ばれた金属の酸化物 10・の1種以上を0.9~7.0重量%含有するタースポジュ ウメン関格体もしくはターユークリプタイト固容体から なり表面の平均組さが本質的に0.03μm以下であることを特徴とする反射線底材。

【請求項4】 酸化物组成站SiO, 50~85重量%、Al,O, 18~80重量%、Li,O 3~8重量

BEST AVAILABLE COPY

(2)

特公平7-37334

%、TiOz+2rOz 3~5重量%、P.O.および(ま たけ) B: O: を合計量で8 重量%以下、RO(ただしR はマグネシウム、カルシウム、亜鉛、鉛、およびパナジ ウムからなる群から選ばれた金属原子を表す) 0.3~ 7. O 鼠量%、R. O (ただしRはカリウム原子またはナ トリウム原子を表す) 3.0重量%以下のガラスを所定 の形状と単滑な要面を有する成形体に成形し、得られた ガラス成形体を、上記ガラスの変形程度よりも60~1 ○○℃低い促度で熟処理して結晶核を生成させた後、昇 クイト国際体を生成させることを特徴とする、平均組さ が 0.03 μ 以下である平滑な表面を存する函熱性セラ ミックス成形体の製造法。

【発明の詳細な説明】

[0001]

【死業上の利用分野】本発明は、表面の平滑性が良好な 耐熱性セラミックス成形体およびその製造法に関するも のである、本発明はまた、副熱性が良く高温度での使用 に耐える反射機器材に関するものである。

[0002]

【世来の技術】原明装置、映写機等の光源ヲンプは、そ れが高輝度のものになるほど発熱も苦しく、したがっ て、ランプと組み合わせて使用される反射線の視度上昇 も激しい。特に、近年はランプの高輝度化と小型化が多 くの分野で進んでおり、反射鏡部分で550℃を超える こともあるようになった。反射鏡は基材とその表面にコ ーティングされた反射反からなり、そのいずれもが反射 鏡の耐熱性を支配することは言うまでもないが、基材部 分の耐熱性について考えると、最高使用程度を耐熱衝撃 性の二つが重要である。 基材としてよく使われるガラス 30 の場合、最高使用温度は転移点以下の温度となるため、 最高度の耐熱性を有するパイレックス挺ガラスでも55 0 で以下でしか使用できず、耐熱衝撃性はムク棒 (直径 5 ㎜) による試験でも温度逆250℃が限界であるか ら、上述のような苛酷な条件では安心して使用すること ができない。また、正材の耐能促昇によってランプや反 耐煙の小型化が制限されてしまうことになる。

【0003】より耐熱性の高い材料としては石英ガラス があるが、このガラスは成形加工が容易でなく、量産が 困難できわめて高価なものとなる欠点がある。セラミッ 40 クスは、一般に耐熱性は優れているが、十分な光学特性 を備えた反射転を製造するのに必要な高精度曲面を形成 することが難しく、また安置平滑性にも問題があり、反 射顔基材として異用化された例はない。 Lie O、Ali O 、およびSIO、の3成分を基本成分とする低熱膨脹率が ラスを熱処理して8-Aポジュウメン固終体(Lico-Al, O, -4 SiO,) またはβーユークリプタイト圏容 体(1.1, ローA」、ロー2 810。)を生じさせることに より得られるセラミックス(いわゆる結晶化ガラス)

要な成形および研究は結晶化させる前のガラスの段階で 容易に行うことができるので、反射競基材として好生し い材料である。しかしながら、ガラスの段階でいかに平 滑に仕上げておいた表面も結晶化にともない相面化して しまうことが、反射銃基材として利用する場合の欠点と なる。すなわち、反射競基材に真空燕着等の手段でコー ティングされる多層反射膜は全体でも2月10程度の薄い ものであるから、差対の表面が平滑性が悪いと反射膜も また平滑にならず、反射率の高い反射膜は得られない 担してβースポジュウメン部溶体またはβーユークリブ 10 が、従来のお品化ガラスの表面は平均和さが 0.1 μ前 後、場所によっては0.5μを超える和さであるから、 高反射中反射銃の基材として使用することはできなかっ た(パイレックスガラス系反射競無材の研磨された反射 西の平均組さは通常0.001~0.003μα段度であ る。ただし、 "平均积さ" はJIS B0601の「中 心験平均無さRij である。)。

[0004]

【発明が解決しようとする課題】本発明の目的は、上述 のように反射検基材として有利な性質を備えているにも 20 かかわらず表面の平裕座が不十分なために高反射率反射 鍵の基材として使用することができなかった結晶化ガラ ス製品の表面や消性を改良することにある。本登明の他 の目的は、反射銃基材以外の用途にも有用な、本質的に 平滑な光沢表面を有する結晶化ガラス系耐熱性セラミッ クス成形体およびその製造法を提供することにある。 [0005]

【練題を解決するための手段】本発明が提供することに 成功した耐熱性セラミックス成形体およびそれよりなる 反射振器材は、マグネシウム、カルシウム、亜鉛、鉛、 およびパナジウムからなる群から選ばれた金銭の1億以 上を酸化物として0、3~7、0%(重量%;以下同じ) 合有するタースポジュウメン固溶体もしくはβーニーク リプクイト団溶体からなり、その表面の平均和さが本質。 的に D. O 3 μω以下であることを特徴とする。ここで、 "平均根さが本質的に 0.03 μα以下である" とは、 B - スポジュウメン園溶体もしくは8~ユークリプタイト 固溶体を生成させる結晶化処理後いかなる研磨処理も拡 されていない本来の表面が 0.03 μ μ以下の 半均組さむ 示すことをいう。

【0006】本発明はまた、酸化物組成がSiO。60 ~65%, ALO, 18~20%, Li,O 3~8%, TiO, -2rO。3~5%、P。O。および(または)B。 Oaを合計量でB重量%以下、RO(ただしRはマグネ シウム、カルシウム、亜鉛、鉛、およびパナジウムから なる群から選ばれた金属原子を殺す) 0.8~7.0%。 R、O(ただしRはカリウム原子はたはナトリウム原子 を表す)3、0%以下のガラスを所定の形状と平滑な法 固を有する以形体に成形し、得られたガラス以形体を、 上記ガラスの変形但度以下の迫度で熱処理して結晶域を は、優れた耐熱性を有し、また区対航基材とするのに必 50 生成させた後、昇遠してB-スポジュウメン関係体また

(3)

特公平7-37334

はB-ユークリプタイト国際体を生成させることを特徴 とする上記表面平滑な耐熱性セラミックス成形体の製造 法を提供するものである。ただし、直径5mm 長さ30 □の丸棒状にしたガラスを垂直に支持し、頂部より5g の荷盒をかけた状態で毎分5℃の昇温速度で温度を上昇 させたとき試料棒が曲がり始める温度をガラスの変形温 度とする。

[0007]

【作用】マグネシウム、カルシウム、亜鉛、鉛、パナジ して0.3~7.0%含有する8ースポジュウメン固溶体 もしくは8ーユークリプタイト固熔体からなり、表面の 平均組さが本質的に0.03μ以下である本発明のセラ ミックス成形体は、B-スポジュウメン固溶体またはB ----クリプタイト国が体からなる結晶化ガラス特有の 優れた耐熱性を示すとともに、本質的に優れた表面平滑 性により、困難な研磨仕上げを要することなしに、反射 競基材等、耐熱性と高度の表面平滑性を要求される分野 に使用することができる。以下、上記セラミックス成形 体の製造造を工程順に説明しながら本党明につき詳述す。20

【0008】まず、酸化物組成がSIO, 50~65 %, ALO, 18~30%, Li,O 5~8%, TiO, +ZrO: 3~5%、P,O,および(または) B,O,を 合針量で8%以下、RO(ただしRはマグネシウム、カ ルシウム、亜鉛、鉛、パナジウムからなる群かも選ばれ た金属原子を殺す) 0.3~1.0%、R,O (ただしR はカリウム原子またはナトリウム原子を患す) 2.0% 以下のガラスを得るのに必要な原料軟物を用意し、これ をガラス製造の常法に従って粉砕、混合し、さらに加熱 30 して溶融状態で配合することによりガラス化させる。上 記ガラス組成の段散の第一は、従来のこの報ガラスと比 べて形敵迅度がやや低いことであり、このため、約15 ○○℃以下の退度で溶融してガラス化させることができ る。RO成分の配合は、表面平滑性のよい製品を得るの に待に重要な意味を持ち、高反射平反射銃の基材になり 得るような表面平滑性のよい結晶化ガラス製品は適量の RO成分を配合しかつ後述するやや低い温度で結晶化を 述めることによって初めて製造可能である。RO成分と して特に好ましいのは、PbOおよびVOである。

【0.009】その他の成分の比率も、本意明の目的を途 成するためには上記範囲に限定される。SIO。は、50 %未満ではガラスが成形中に失透し易く、68%を超え ると熔融が困惑になる。Al; O, は17%未備では熱秘 強係級が大きくなって耐熱衝撃性が悪くなり、30%を 超えると溶痕が困難になる。LigOは、3%未算では容 融が困難であり、8%を狙えると熱感染係数が大きくな りすぎる。TIO。およびZrO。は結晶放形成剤として配 合される収分であって、これらの合計量が3%未満では

が困難になるとともにガラス成形中に失透を起こしやす くなる。その他、Pa Oa、B; Oa、およびRa Oは溶融 性と作業性の内上に有効な成分であるが、多すぎると、 失透、ガラス成形体の変形等、好ましくない結果を生じ るので、過剰量の配合は避ける。P.O.およびB.O ,は、単独では5%を超えないことが望ましい。

【0010】得られたガラスは、過常のガラスの場合と 同様に、ブロ・佐、プレス法、ロール法、キャスト法 等、任意の方法で、所定の形状に成形する。その後、成 ウムからなる群から選ばれた金属の1種以上を酸化物と 10 影精度および表面平滑度を重要視する部分、たとえば反 射鏡基材とする場合における反射膜コーティング菌に は、必要に応じて研磨仕上げを施す。次いでガラス成形 体を加熱炉に入れ、結晶化のための二段の熱処理を施 す。第一段の熱処理は、8ーユークリプタイトまたは8 ースポジュウメンの徴結晶を均一に生成させるための、 結晶核形成工程である。熱処理を二度に分けて行うこと により均一な微結晶を生じさせることは従来の結晶化ガ ラス製造法においても行われているが、従来の製造法に おける第一段熱処理ではもっぱら結晶核性成促進の組点 からのみ条件が選ばれて通常750~800℃に達する 高温で行われている。これに対し、本発明の製造法にお いては、ここでの処理程度を上記組成のガラスの変形視 度(標準的な組成のもので約450~650℃)よりも 低い温度、望ましくは約50~100℃低い温度にする ので、第一段熱処理協定が650℃を超えることはな い。この屈皮条件は最終的に得られる結晶化ガラスの表 節を平滑性のよい光沢面にするために重要であって、理 由は定かでないが、上記組成のガラス成形体でも処理進 度が高すぎると狙い表面のものになってしまう。

> 【0011】上記温度に約30分~2時間保持して結晶 彼を生成させた後、温度を約650~850℃、望まし くは700~800℃に上昇させ、この温度に約30分 ~数時間保持すると、8-ユークリプタイト図標体、次 いでβ~スポジュウメン固溶体が生成する。β-スポジ ュウメン団潜体は、B-ニークリプタイト団溶体よりも 限態長係数がやや高いが強度が優れている。 徒来の結晶 化ガラスの場合、βースポジュウメン固落体を生成させ るには結晶化工程において約900~1200℃という 高祖での熱処理を必要としていたが、本発明による上途 のガラス組成の場合、熱処理過度は高くても800℃で よいから、熱エネルギーの消費がはるかに少なくて済

【0012】待られる結晶化ガラスは、βースポジュウ メン国俗体の場合、描品化にともない完全に失途してい るが、それによる芸面の荒れは最小限度に抑えられてい て、平均粗さは通常0.03μ以下である。安雨の平均 **積さが 0.02μの結晶化ガラスからなる系材を用いて** 製作された反射館は、平均租さが0.002以下の耐熱 性ガラスを基材として同様に製作された反射銃の反射率 粘晶化に時間がかかりすぎるが、5%を超えると、溶融 50 の90%以上の反射率を示し、反射銃基材として十分使

特願2002-056225

ページ: 4/E

(4)

特公平7·37334

用可能である。βースポジュウメン固溶体からなる製品 の軟化変形温度は900℃以上であり、700℃までの 温度で連続使用に耐える。耐熱衝撃性にも優れ、600 ℃に加熱してから冷水中に投入する鈍酸によっても破損 しなかった。

[0013] 【実施例】

英雄例 1

SiO, 60%, ALO, 21%, Li,O 5.5%, Ti O; +ZrO; 4%, PrO; 5%, BrO; 2.5%, Z nO+MgO 4%、K1O+Ns1O1.5%の組成にな るよう原料を網合し、1500℃で溶融してガラス化 し、これをプレス法により資程 8 0mの反射機の基材形 状に成形した。変形担度が660℃のこのガラス成形体 を570℃に1時間保持した後、毎分3℃の昇退速度で 770℃に昇退し、この進度で1時間保持してから希却 した。 熱処理前選明であった成形体は乳白色になってお り、X線回折図から、βースポジュウメン固溶体になっ たことが確認された。設施環係数(空風~400℃の平 均値) は8×10¹¹/C、曲げ強度は900kgf/ca²であ った。また、600℃に加熱して冷水中に投入しても破 損せず、耐熱衝撃性も優れていることが確認された。炎 面は美麗な光沢面で、その平均粗さは0.03μμ以下で あった。製品の所定の位置にTecO SiO.交互多層族 を基着して得られた反射弧の反射率は、上記と同じガラ スの反射競話材に触処理を施さずに同じ反射膜を旅着し て得られた反射鏡の反射率を100とすると全可視光候 城にわたり90以上であった。

【0014】実施例2

+2ro, 4.3%, P.O, 3%, B.O. 8%, PbO +MgO 3.5%、K,O+Na,O 1.4%の組織にな るよう原料を測合し、1470℃で溶融してガラス化 し、これをプレス法により直径80㎜の反射鏡の基材形 状に成形した。変形国族が650℃のこのガラス成形体 を600℃に1時間保持した後、毎分5℃の昇進速度で 750℃に昇湯し、この温度で1時間保持してから冷却 した。熱処理前透明であった成形体は半透明の乳白色に なっており、X線直折墜から、βースポジュウメン関格 体になったことが確認された、熱胞環係数は15×10 ** /*C、曲げ強度は950kgF/cm* であった。 生た、60 0℃に加熱して冷水中に投入しても破損せず、耐熱衝撃 性も優れていることが感認された。表面は英麗な光沢面 で、その平均組さは0.025月1以下であった。製品の 所定の位置にTB O-SiO,交互多層膜を添着して得ら れた反射銃の反射率は、上記と同じガラスの反射銃系は に熱処理を施さずに同じ反射順心理者して得られた反射 鏡の反射事を100とすると全可視光領域にわたり90

以上であった。

【0015】比较例1

PbOおよびMg Oを含まないほかは突旋例2の場合と 同様の原料、すなわもSiO: 53%、AlcO: 25 %, Li,O 6%, TiO, I ZrO, 4.3%, PrO, 3 %、B,O: 3%、K,O÷Na:O 1.4%の原料を1 470℃で控設してガラス化し、これを実施例2の基合 と同様にして直径80mの反射鏡の基材形状に成形し た。変形温度が650℃のこのガラス成形体を800℃ |10 に1時間保持した後、毎分5℃の昇塩速度で750℃に 昇雄し、この温度で1時間保持してから冷却した。熱処 理前透明であった成形体は半透明の乳白色になってお り、8-スポジュウメン国際体の生成が確認されたが、 製品の表面組さにむらがあり、粗いところは 0. 3 μ mを 超えた。また、全体としても空形していることが認めら れた。その結果、これに実施例2の場合と何様に多層反 射膜を蒸着して得られた反射銃の反射率は、研磨ガラス 面に同じ反射膜を悲考して得られた反射鋭の反射率を 1 00とすると、全可視光領域において90に遂しなかっ %.,

【0016】比較例2

実施例2と向様にして得られたガラス成形体を、650 ℃で1時間保持した後、830℃に昇盘して1時間熱処 理した。熱処理前週間であった成形体は凡白色になって おり、X鉄回折図からβースポジュウメン開始体になっ たことが確認され、由げ強度は140 Okg?/cal と高か ったが、熟膨蛋係数は20×10⁻¹/C、耐熱衡量性は 500℃以下であった。表面の平均租さは0.05μπ以 上であり、さらに、肉根で配められるシワもあった。こ SiO, 83%、Alo, 25%、Li_cO 6%、TiO, 30 の成形体に実施例2の場合と同様にして多層反射膜を落 着して得られた反射艦の反射率は、研磨ガラス面に同じ 反射膜を蒸着して得られた反射能の反射率を100とす ると全可視光質域において80前後であった。

[0017]

【発明の効果】上述のように、耐熱性、耐熱衝撃性およ び提載的強度にすぐれ、しかも従来の結晶化ガラスと返 ってきわめて平滑な光沢表面を本質的に有する本発明の セラミックス成形体は、反射銃曲材として優れているだ けでなく、その特長を生かして、各種光学材料、電気路 径体、電子部品材料など、多くの用途に利用することが できる。また、本発明の製造沈に上れば、従来の結晶化 ガラスを製造する場合よりもずっと低い温度で結晶化を 起こさせて安価に提供することができ、しかも製品は通 常研解仕上げを必要としないほど高度の平滑性を有する 表面のものであるから、本発明により、多くの分野で覚 来よりも容易に平滑座の高い耐熱性材料を利用すること が可能になる。

S.32

特願2002-056225

1/

Hadoual Formers non for Insention. Surjoury of Windoo Frins.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:	
☐ BLACK BORDERS	
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES	
☐ FADED TEXT OR DRAWING	
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING	
☐ SKEWED/SLANTED IMAGES	
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS	
☐ GRAY SCALE DOCUMENTS	
☐ LINES OR MARKS ON ORIGINAL DOCUMENT	
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY	
O OTHER.	

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.