Well Structured Transition Systems

15th April 2019

Introduction

State Spaces

WSTS

Well Quasi Orders and Monotonicity WSTS

Safety Properties

Applications

Comparison

Introduction

State Spaces

WSTS

Well Quasi Orders and Monotonicity

NSTS

Safety Properties

Applications

Comparisor

Infinite States Spaces

- Hardware systems have a fundamental restriction that the amount of hardware described is finite. This leads to possibly very large, but finite state spaces.
- ► This finite state framework breaks down for software systems with an unbounded domain of variable values. Even a single variable leads to infinitely large number of states.

Essentially Finite State Spaces

- ► The problem of infinite configurations can be addressed by using an abstraction.
- More precisely we define an equivalence relation ≡ on the configurations such that:
 - ► There are finitely many equivalence classes
 - ▶ \equiv is a congruence. That is if, $c_1 \equiv c_2 \lor c_1 \to c_3$ then there exists c_4 , such that, $c_2 \equiv c_4 \lor c_2 \to c_4$.
- ► This equivalence relations reduces the infinite state space to a finite one (with the states the number of equivalence classes). We have a bisimulation between the original domain and abstract domain.

Introduction

State Spaces

WSTS

Well Quasi Orders and Monotonicity

NSTS

Safety Properties

Applications

Comparisor

Relaxation of \equiv

- Consider a generalization of the ≡ relation as a partial order relation ≤ on the configurations.
- ▶ Extending the definition of congruence to this relation we get the notion of *upward-closedness*.

Well Quasi Orders

► Interesting properties arise from the relation ≤ being a Well Quasi Ordering.

WQO

 \leq is a Well Quasi Ordering if for any infinite sequence of elements c_0 , c_1 , c_2 , ... there exist indices i < j, such that $c_j \leq c_i$.

- ► A consequence of an ordering being a WQO is that all upward closed sets can be expressed as a union of finitely many (principal) filters (Higman).
- ▶ Indeed, if this was not the case, then the generators of these filters would produce a contradiction to WQO.

Monotonicity - an example - Petri Nets

► Consider the following transition system that models a mutual exclusion protocol.

► A typical safety property of this system would be - there is at most one token in the C state. The set of states that the above statement describes is upward closed. Hence the problem effectively reduces to the reachability of an upward closed set.

Monotonicity - an example - Petri Nets

Monotonicity and Upward-closedness

- ▶ We require the that the transition relation \rightarrow is *monotonic*, that is $c_1 \leq c_2$ and $c_1 \rightarrow c_3$ implies that $c_2 \rightarrow c_4$ for some $c_4 \rightarrow c_3$.
- Monotonicity implies that upward-closedness is preserved under Pre.
 - ► This gives a scheme for determining the reachability of an upward closed set *U*.
 - 1. Initialize $U_0 = U_f inal$.
 - 2. Set $U_{i+1} = U_i \cup Pre(U_i)$ till sequence stabilizes.
 - 3. Return $C_{init} \cap U_{stable} = \phi$?
 - Claim: All *U_i* are upward closed and above procedure terminates.

Introduction

State Spaces

WSTS

Well Quasi Orders and Monotonicity

WSTS

Safety Properties

Applications

Comparisor

- ▶ The ideas of monotonicity and WQO combined give a Well Structured Transition System (WSTS or Well Quasi Ordered Transition System) represented as a tuple $(C, \rightarrow, \preceq, C_{init})$.
- Note that each upward closed can be characterized by a finite set of generators. For an upward closed set U, let gen(U) denote this set. If the relation is anti-symmetric, gen(U) is unique.
- Using this characterization we restate the scheme for backward reachability as an algorithm.

- ▶ Let $c_1 \rightsquigarrow c_2$ stand for $c_2 \in gen(Pre(\uparrow c_1))$.
- ▶ For a configuration c, define $(c \leadsto)$ as $\{c'|c \leadsto c'\}$ and extend this definition to set of configurations.
- ▶ Some observations:(c ~→)
 - 1. \rightsquigarrow is an analog of Pre(). More precisely, if C = gen(U), then, $(C \rightsquigarrow) = gen(Pre(U))$.
 - 2. $U_i \cup Pre(U_i)$ update on up-sets maps to the update $gen(C_i \cup (C_I \leadsto))$ on their generators.

▶ If $(c \leadsto)$ is computable and \preceq is decidable then, we can effectively replace the sets U_i , with their generators in the scheme defined earlier.

Algorithm 2 Backward Reachability

```
Input: • \mathcal{T} = (C, \longrightarrow, \preceq, C_{init}): transition system.
            • C_{fin}: finite set of configurations.
Output: Is C_{fin} reachable?
 1: i \leftarrow 0
 2: C_0 := C_{fin}
 3: repeat
 4: C_{i+1} \leftarrow qen\left(C_i \cup (C_i \leadsto)\right)
 5. i \leftarrow i + 1
 6: until C_i \preceq_{\forall \exists} C_{i-1}
 7: if \exists c_1 \in C_i \cdot \exists c_2 \in C_{init} \cdot c_1 \preceq c_2 then
        return true
 9: else
        return false
11: end if
```

► Further optimization's to this algorithm are possible by making observations about ~ which Sriram will discuss in his presentation.

Introduction

State Spaces

WSTS

Well Quasi Orders and Monotonicity

Safety Properties

Applications

Unsafe configurations to unsafe traces

- Another way to specify safety properties of the system can be to characterize bad traces (sequences of transitions). For this purpose transitions are labelled with a finite alphabet.
- ▶ The resultant system is a composition of finite automata $A = (Q, \delta, q_{init}, F)$ (recognizing traces) and the original transition system $T = (C, \rightarrow, \preceq, C_{init})$. A state is represented by a pair (c, q), $c \in C$ and $q \in Q$.
- ▶ The composition is also a WSTS $(C', \rightarrow', \preceq', C'_{init})$ defined as:
 - 1. $(c_1, q_1) \leq' (c_2, q_2)$ iff $c_1 \leq c_2$ and $q_1 = q_2$.
 - 2. $(c,q) \in C'_{init}$ iff $c \in C_{init}$ and $q \in Q_{init}$

Unsafe configurations to unsafe traces

- ▶ Now we have a method transforming checking regular safety properties into reachability of upward-closed sets.
- ▶ We construct an automaton \mathcal{A} recognizing language which is complement of safe traces. Compose this with the given WSTS. Check if the accepting states for \mathcal{A} are reached. The set of these states is upward closed.

Algorithm 4 Checking Safety Properties

Input: $\bullet \mathcal{T} = (C, \longrightarrow, \preceq, C_{init})$: LTS.

• Σ : regular set of words over A.

Output: $Traces(\mathcal{T}) \subseteq \Sigma$?

1: construct A s.t. $Lang(A) = \neg \Sigma$

2: $\mathcal{T}' \leftarrow (\mathcal{T} \| \mathcal{A}) = (C', \longrightarrow', \preceq', C'_{init})$

3: $C_{fin} \leftarrow \{(c,q) \mid c \in gen(C) \land q \in Q_{fin}\}.$

4: use Algorithm 3 to check whether \widehat{C}_{fin} is reachable.

Introduction

State Spaces

WSTS

Well Quasi Orders and Monotonicity WSTS

Safety Properties

Applications

Comparisor

Applications

- Petri Nets ... As discussed in the example earlier
 - 1. \leq is the natural element-wise ordering on the number of tokens in each place in the net, which is a WQO (Dickson's lemma)
 - 2. \rightarrow is determined by the firing transitions
 - 3. We also have computability of $(c \leadsto)$ and decidability of \preceq
- ▶ Lossy Channel Systems ... Finite state transition automata are augmented by a set of channels on which the automata can read and write tokens. There are no guarantees about the channel as tokens may be lost non-deterministically.
 - 1. \leq is the sub-word ordering (for each channel). The fact that this is a WQO follows from Higman's lemma.
 - 2. \rightarrow is given by $\{silent \text{ transitions}\} \cup \text{read} \cup \text{write actions to}$ the channels

Introduction

State Spaces

WSTS

Well Quasi Orders and Monotonicity

Safety Properties

Applications

Comparison

Comparison

- ► The above backward-reachability methods fall under the class of set saturation methods. We perform iterative updates on upward-closed sets (or their generators).
- ► Another method is to consider *forward-reachability* using structures such as coverability trees. This class of methods is called tree-saturation methods.

Finite Reachability Tree

Given a WSTS, $(C, \rightarrow, \leq, C_{init})$ consider a tree defined as follows:

- ▶ nodes are represented as (n : c) (labelled with configurations) and flagged as either dead or live
- ▶ a leaf is dead (has no children) while a live node (n : c) has its Post(c) set as its children
- if a node $(n_1:c_1)$ has a node $(n_2:c_2)$ as its strict descendant with $c_1 \leq c_2$ then we say that n_1 subsumes n_2 (in set terms c_2 is in upward closure of c_1 and hence keeping track of n_1 is sufficient for reachability)
- the leaves are exactly the set of subsumed nodes and terminal nodes

Finite Reachability Tree

Further results need slightly restricted notions of compatibility: transitive, stuttering, strict compatibility

Fig. 3. Strict compatibility.

Figure: compatibility in WSTS

Finite Reachability Tree

Termination

Proposition 4.5. \mathcal{S} has a non-terminating computation starting from s iff FRT(s) contains a subsumed node.

Theorem 4.6. Termination is decidable for WSTSs with (1) transitive compatibility, (2) decidable \leq , and (3) effective Succ.

Boundedness

Proposition 4.10. For any $s \in S$, $Succ^*(s)$ is infinite iff FRT(s) contains a leaf node n:t subsumed by an ancestor n':t with t' < t.

Theorem 4.11. The boundedness problem is decidable for WSTSs with (1) strict transitive compatibility, (2) a decidable \leq which is a partial ordering, and (3) computable Succ.

Further discussions on board.

References I

Abdulla, Parosh Aziz

Well (and better) quasi-ordered transition systems

Bulletin of Symbolic Logic, 2010

Thank You!