- 1. (010101) 证明: 对于正数 h, 如果 $|x-a|<\frac{h}{2},\,|y-a|<\frac{h}{2},\,$ 那么 |x-y|< h.
- 2. (010102) 已知直角坐标平面上的三点 $A(x_1,y_1)$ 、 $B(x_2,y_2)$ 、 $C(x_3,y_3)$, 记 $d(A,B) = |x_2 x_1| + |y_2 y_1|$ $d(B,C) = |x_3 - x_2| + |y_3 - y_2|, d(C,A) = |x_1 - x_3| + |y_1 - y_3|.$ 求证: $d(A,B) \le d(B,C) + d(C,A)$.
- 3. (010103) 已知 a、b、c 是实数, 求证: $|a+b+c| \le |a| + |b| + |c|$.
- 4. (020001) 判断下列各组对象能否组成集合, 若能组成集合, 指出是有限集还是无限集.
 - (1) 上海市控江中学 2022 年入学的全体高一年级新生;
 - (2) 中国现有各省的名称;
 - (3) 太阳、2、上海市;
 - (4) 大于 10 且小于 15 的有理数;
 - (5) 末位是 3 的自然数;
 - (6) 影响力比较大的中国数学家;
 - (7) 方程 $x^2 + x + 3 = 0$ 的所有实数解;
 - (8) 函数 $y = \frac{1}{x}$ 图像上所有的点;
 - (9) 在平面直角坐标系中, 到定点 (0,0) 的距离等于 1 的所有点;
 - (10) 不等式 3x 10 < 0 的所有正整数解;
 - (11) 所有的平面四边形.
- 5. (020002) 用 "∈"或" ∉"填空:
 - $(1) -3_{--}N;$
 - (2) 3.14___**Q**;

 - (3) 5____**Z**; (4) $\frac{1}{2}$ ___**N**;
 - $(5) -2_{\mathbf{Q}};$
 - (6) π ____**R**; (7) 0. $\dot{1}\dot{3}$ ___**Q**;
 - (8) $\frac{1}{\sqrt{2}-1} \sqrt{2}$ _**Z**;

 - (9) $\frac{\sqrt{2} 1}{2}$ (9) $\frac{\pi}{2}$ **Q**; (10) $\frac{1}{1 \frac{1}{1 \frac{1}{2}}}$ **N**;
 - $(11) \ 0\underline{\hspace{1cm}}\varnothing;$
 - (12) 0___**N**.
- 6. (020003) 对于一个确定的实数 x, 由 x, -x, |x|, $-\sqrt{x^2}$ 中的一个值或几个值组成的所有集合中, 元素的个数最 多有多少个?
- 7. (020004) 已知关于 x 的方程 $\sqrt{x^2+4x+a}=x+2$, 若以该方程的所有解为元素组成的集合是无限集, 求实数 a满足的条件.

- 8. (020005) 用列举法表示下列集合:
 - (1) 12 以内的素数组成的集合;
 - (2) 绝对值小于 3 的所有整数的集合;
 - (3) $\{x | \frac{6}{3-x} \in \mathbf{N}, \ x \in \mathbf{Z}\};$
 - (4) $\{y|y=x^2-1, |x| \leq 2, x \in \mathbf{Z}\};$
 - (5) $\{(x,y)|y=x^2-1, |x|<2, x\in \mathbf{Z}\};$
 - (6) $\{(x,y)|x+y=5, x \in \mathbb{N}, y \in \mathbb{N}\}.$
- 9. (020006) 用描述法表示下列集合:
 - (1) 所有奇数组成的集合;
 - (2) 被 3 除余数等于 2 的正整数的集合;
 - (3) 不小于 10 的实数组成的集合;
 - (4) 绝对值大于 4 的所有整数组成的集合;
 - (5) 平面直角坐标系内 y 轴上的点的坐标组成的集合;
 - (6) 在直线 y=2x+1 上所有的点的坐标组成的集合.
- 10. (020007) 用区间表示下列集合:
 - (1) $\{x | -2 < x < 7\}$;
 - (2) $\{x | -2 \le x \le 7\};$
 - (3) $\{x | -2 \le x < 7\};$
 - (4) 不等式 2x < 5 的解集;
 - (5) 不等式 -x < 5 的解集;
 - (6) 非负实数集.
- 11. (020008) 用适当的方法表示下列集合:
 - (1) 能被 10 整除的所有正整数组成的集合;
 - (2) 能整除 10 的所有正整数组成的集合;
 - (3) 方程 $x^2 + 2 = 0$ 的实数解组成的集合;
 - (4) 方程组 $\begin{cases} 2x + y = 0, \\ x y + 3 = 0 \end{cases}$ 的所有解组成的集合;
 - (5) 两直线 y = 2x + 1 和 y = x 2 的交点组成的集合.
- 12. (020009) 下面写法正确的有_____.
 - $(1) \varnothing \in \{a\}; (2) (0,1) \in \{0,1\}; (3) 1 \in \{(0,1)\}; (4) (0,1) \in \{(0,1)\}; (5) 0 \in \{0,1\}; (6) 0 \notin \{0,1\}.$
- 13. (020010) 集合 $\{(x,y)|xy \ge 0, x \in \mathbf{R}, y \in \mathbf{R}\}$ 是指 ().
 - A. 第一象限内的所有点

- B. 第三象限内的所有点
- C. 第一象限和第三象限内的所有点
- D. 不在第二象限、第四象限内的所有点

14. (020011) 若集合 $M=\{0,2,3,7\},\,P=\{x|x=ab,\;a,b\in M,\;a\neq b\}.$ 用列举法写出集合 P.15. (020012) 已知集合 $A = 2, a^2, a$, 且 $1 \in A$, 求实数 a 的值. 16. (020013) 设集合 $M = \{a | a = x^2 - y^2, x, y \in \mathbf{Z}\}$, 下列数中不属于 M 的为 (A. 3 B. 6 C. 9 D. 12 17. (020014) 已知集合 $A = \{x | x = a + \sqrt{2}b, \ a, b \in \mathbf{Z}\},$ 若 $x_1, x_2 \in A$, 证明: $x_1x_2 \in A$. 18. (020015) 已知集合 $A = \{x | (k+1)x^2 + x - k = 0\}$ 中只有一个元素, 求实数 k 的值. 19. (020016) 用符号 "⊂"、"="或"⊃"填空: (1) $\{a\}$ _____ $\{a,b,c\}$; (2) $\{a, b, c\}$ _____ $\{a, c\}$; (3) $\{1, 2\}$ ____ $\{x|x^2 - 3x + 2 = 0\};$ (4) $A = \{x|x^2 - 2x + 1 = 0\}$ _____B = $\{x|x^2 + 2x - 3 = 0\}$; (5) $A = \{1, 2\}$ _____B = $\{x | x \neq 2 \text{ }$ **的正约数** $\};$ (6) $A = \{(x,y)|xy > 0\}$ _____B = $\{(x,y)|x > 0, y > 0\}$. 20. (020017) 集合 $\{1,2,3\}$ 的子集共有______ 个. 21. (020018) 已知集合 $A = \{1, 2\}$, 集合 $B = \{1, 2, 3, 4, 5\}$. 若集合 M 满足 $A \subset M$ 且 $M \subseteq B$, 则这样的集合 M有_____个. 23. (020020) 下列写法正确的有_____. ① $\varnothing \subset \{0\};$ ② $\varnothing = \varnothing;$ ③ $\varnothing \in \{0\};$ ④ $0 \in \varnothing$. 24. (020021) 下列各选项中, M 与 P 表示同一个集合的有______ ① $M = \{(1, -3)\}, P = \{(-3, 1)\};$ ② $M = \{1, -3\}, P = \{-3, 1\};$ ③ $M = \emptyset, P = \{\emptyset\};$ ④ $M = \{y|y = \{0, 1\}\};$ ② $M = \{0, 1\}$ $x^2 + 1$, $x \in \mathbb{R}$ }, $P = \{(x, y)|y = x^2 + 1$, $x \in \mathbb{R}$ }; $\mathfrak{D} M = \{y|y = x^2 + 1, x \in \mathbb{R}\}$, $P = \{t|t = y^2 + 1, y \in \mathbb{R}\}$; (6) $M = \{y | y = x^2 + 1, x \in \mathbf{R}\}, P = \{x | y = \sqrt{x - 1}, x \in \mathbf{R}\}.$ 25. (020022) 下列说法正确的有___ ① $\dot{\mathbf{A}} = A \perp A \subseteq B$, $\mathbf{M} = A \subseteq B$; ② $\dot{\mathbf{A}} = A \subseteq B \perp A \subseteq C$, $\mathbf{M} = A \subseteq C$; ③ $\dot{\mathbf{A}} = A \subseteq B \perp B \subseteq C$, $\mathbf{M} = A \subseteq C$. 26. (020023) 设常数 $x, y \in \mathbb{R}$, 已知集合 $A = \{x, y\}, B = \{2x, x^2\},$ 且 A = B, 求集合 A. 27. (020024) 证明: 集合 $A = \{1, 2, 3\}$ 是集合 $B = \{0, 1, 2, 3, 4, 5, 6\}$ 的子集. 28. (020025) 判断集合 $A = \{n | n = 2k - 1, k \in \mathbf{Z}\}, B = \{n | n = 2m + 1, m \in \mathbf{Z}\}$ 的关系, 并说明理由. 29. (020026) 证明集合 $A = \{n | n = 2k - 1, k \in \mathbb{N}\}$ 不是集合 $B = \{n | n = 2m + 1, m \in \mathbb{N}\}$ 的子集, 且集合 A 真包

含集合 B.

- 30. (020027) 已知集 B = {0,2,4}, C = {0,2,6}, 若集合 A 满足 A ⊆ B, A ⊆ C, 写出所有满足条件的集合 A. 31. (020029) 若集合 $A = \{2, a, a+3\}, B = \{2, 3, 5, 8\},$ 且 $B \supset A$, 则 a 的值为___ 32. (020031) 设常数 $p \in \mathbb{R}$, 已知 $A = \{x | x < -1 \ \mathbf{u} \ x > 2\}$, $B = \{x | 4x + p = 0\}$, 若 $B \subset A$, 则 p 的取值范围 33. (020032) 已知集合 $A = \{1\}$, 集合 $B = \{x|x^2 - 2x + a = 0\}$, 且 $A \subset B$, 求实数 a 的取值范围. 34. (020033) 已知集合 $S = \{1, 2\}$, 集合 $T = \{x | ax^2 - 3x + 2 = 0\}$, 且 S = T, 求实数 a 的取值范围. 35. (020036) 设常数 $a \in \mathbf{R}$, 已知集合 $\{A = x | x^2 - 1 = 0\}$, 集合 $\{B = x | (x-1)(x-a) = 0\}$. (1) 若 $B \subset A$, 求 $a \in \mathbf{R}$ 值的集合; (2) 若 B 不是 A 的子集, 求 a 值的集合. 36. (□20037) 已知集合 A = {x|0 < x < a}, B = {x|1 < x < 2}, 若 B ⊆ A, 则实数 a 的取值范围为_____ 37. (020038) 已知集合 A = [-2,5], B = [m+1,2m-1], 满足 B ⊆ A, 则实数 m 的取值范围为__ 38. (020039) 已知非空集合 P 满足: ① $P \subseteq \{1, 2, 3, 4, 5\}$; ② 若 $a \in P$, 则 $6 - a \in P$, 符合上述要求的集合 P 的个 数是_____ 39. (020042) 已知 $A = \{1, 2, 3, 4\}, B = \{3, 4, 5, 6\},$ 求: (1) $A \cap B = ____;$ (2) $A \cup B =$ (3) $A \cap \emptyset = \underline{\hspace{1cm}};$ $(4) A \cup \varnothing = \underline{\hspace{1cm}}.$ 40. (020043) 已知任一集合 A, 则 $(1) A \cap A = ____;$ $(2) A \cap \varnothing = \underline{\hspace{1cm}};$ $(3) A \cup A = _{__}$ $(4) A \cup \varnothing =$ 41. (020044) 已知 $A = \{x|x^2 - 4 = 0\}, B = \{x|x^2 + 2x - 8 = 0\}, 则 A \cap B =$, $A \cup B =$.
- 41. (020044) **EXI** $A = \{x | x 4 = 0\}, B = \{x | x + 2x 8 = 0\}, \text{ M} A \cap B = _____, A \cup B = ______$
- 42. (020045) 已知 $A = \{y|y = x^2 4, x \in \mathbf{R}\}, B = \{y|y = x^2 + 2x 8, x \in \mathbf{R}\}, 则 <math>A \cap B = \underline{\hspace{1cm}}, A \cup B = \underline{\hspace{1cm}}.$
- 44. (020047) 已知 $A = \{x \mid$ 存在 $y \in \mathbb{R}$, 使得 $y = x + 1\}$, $B = \{x \mid$ 存在 $y \in \mathbb{R}$, 使得 $y = x\}$, 则 $A \cap B =$ _______

45.	(020048) 已知 $A = \{x x \leq 6\}, B = \{x x < 1\}, C = \{x x > 5\}, 则 A \cap B = $
	$A\cap (B\cap C) = \underline{\hspace{1cm}}, (A\cap B)\cap C = \underline{\hspace{1cm}}, A\cap (B\cup C) = \underline{\hspace{1cm}}, (A\cap B)\cup (A\cap C) = \underline{\hspace{1cm}},$
	$A \cup (B \cap C) = \underline{\hspace{1cm}}, (A \cup B) \cap (A \cup C) = \underline{\hspace{1cm}}.$
46.	(020049) 用 "⊂"、" ⊆" 或 "=" 填空:
	$A \cap B$ $B \cap A$, \varnothing $B \cap A$.
47.	(020050) 已知集合 $A=\{x x\leq 1\},$ 集合 $B=\{x x\geq a\},$ 且 $A\cup B=\mathbf{R},$ 则 a 的取值范围为

- 48. (020051) 设常数 $a \in \mathbf{R}$. 已知集合 $A = \{x|x^2 3x + 2 = 0, \ x \in \mathbf{R}\},$ 集合 $B = \{x|2x^2 x + 2a = 0, \ x \in \mathbf{R}\}.$
 - (1) 若 $A \cup B = B$, 求 a 的值的集合;
 - (2) 若 $A \cap B = B$, 求 a 的值的集合.
- 49. (020052) 已知集合 $A = (-\infty, -1) \cup (6, +\infty)$, 集合 B = (5 a, 5 + a). 若 $11 \in B$, 则 $A \cup B =$ ______.
- 50. (020053) 已知集合 $P = \{x | -2 \le x \le 5\}$, $Q = \{x | x > k+1$ 且 $x < 2k-1\}$, 若 $P \cap Q = \emptyset$, 求实数 k 的取值范围.
- 51. (020054) 已知集合 A=(x,y)|x+y=0,集合 $B=\{(x,y)|y=x-2\}$,集合 $C=\{(x,y)|y=x+b\}$. 若 $(A\cup C)\cap (B\cup C)=C$,求实数 b.
- 52. (020055) 设常数 $m \in \mathbb{R}$. 若集合 $A = \{1,2,3\}$, 集合 $B = \{m^2,3\}$, 且 $A \cup B = \{1,2,3,m\}$, 则 m 的值 是______.
- 53. (020056) 设常数 $a \in \mathbf{R}$. 已知集合 $A = \{x | x \le 1\}$, 集合 $B = \{x | x > a\}$, 且 $A \cap B = \emptyset$, 则 a 的取值范围为______.
- 54. (020057) 设全集 $U = \{x | x$ 是小于9的正整数 $\}, A = \{1, 2, 3\}, B = \{3, 4, 5, 6\}, 则 \overline{A} = ______; \overline{B} = ______; \overline{A \cap B} = ______; \overline{A \cap B} = ______.$
- 55. (020058) 已知 $A = \{x | x < 2\}$. ① 若 $U = \mathbf{R}$, 则 $\overline{A} = \underline{\hspace{1cm}}$;
 - ② 若 $U = \{x | x \ge 0\}$, 则 $\overline{A} =$ ______;
 - ③ 若 $U = \mathbf{N}$, 则 $\overline{A} = \underline{\hspace{1cm}}$.
- 56. (020059) 已知全集 $U = \mathbf{R}, A = \{x | -1 < x < 2\}, 则 <math>\overline{A} = \underline{\hspace{1cm}}; \overline{\overline{A}} = \underline{\hspace{1cm}}; \overline{A} \cap U = \underline{\hspace{1cm}};$
- 57. (020060) 已知集合 $U = \{x | x \ge 2\}$, 集合 $A = \{y | 3 \le y < 4\}$, 集合 $B = \{z | 2 \le z < 5\}$, 则 $\overline{A} \cap B = \underline{\hspace{1cm}}$; $\overline{B} \cup A = \underline{\hspace{1cm}}$.
- 58. (020061) 设全集 $U = \mathbb{N}$, $A = \{x | x$ 为正奇数 $\}$, $B = \{x | x$ 是5的倍数 $\}$, 则 $B \cap \overline{A} =$ _____.
- 59. (020062) 设常数 $a, b \in \mathbb{R}$, 已知全集 $U = \{2, 4, b\}, B = \{a + 1, 2\}.$ 若 $\overline{B} = \{7\}, 则 a = \underline{\hspace{1cm}}$.

60.	(020063) 设	常数 $a \in \mathbf{R}$,	已知全集	$U = \mathbf{R},$	集合	$A = \{x \mid -$	-2 < x	$< 2\},$	集合	$B = \{$	[x x>	a}. ₹	$\ddagger A \cap$	$\overline{B} =$	A,	则
	a 的取值	范围为														

- 61. (020064) 设常数 $a \in \mathbb{R}$, 全集 $U = \mathbb{R}$. 集合 $A = \{x | x < 2\}$, $B = \{x | x > a\}$. 若 $\overline{A} \subseteq B$, 则 a 的取值范围为______.
- 62. (020066) 设全集为 U, 且 $M \subseteq N$, 则______(填入所有正确选项的序号). (① $M \cup N = N$; ② $M \cup N = M$; ③ $\overline{N} \subseteq \overline{M}$ ④ $\overline{M} \subseteq \overline{N}$; ⑤ $\overline{M} \cup \overline{N} = U$; ⑥ $M \cap \overline{N} = \emptyset$; ⑦ $\overline{M} \cap N = \emptyset$.
- 63. (020067) 已知全集 $U = A \cup B = \{x | 0 \le x \le 10, \ x \in \mathbb{N}\}, \ A \cap \overline{B} = \{1, 3, 5, 7\}.$ 则集合 $B = \underline{\hspace{1cm}}$
- 64. (020068) 若全集 $U = \{(x,y)|x \in \mathbf{R}, y \in \mathbf{R}\},$ 集合 $A = \{(x,y)|\frac{y}{x} = 1\},$ 集合 $B = \{(x,y)|y \neq x\},$ 则 $\overline{A \cup B} = \underline{\qquad}$.
- 65. (020069) 如图, 已知集合 U 为全集, 分别用集合 $A \times B \times C$ 的运算式表示下列图中的阴影部分.

- 66. (020070) 判断下列语句是否为命题, 并在相应的横线上填入"是"或"否".
 - (1) 正方形和四边形;_____;
 - (2) 正方形是四边形吗?_____;
 - (3) $\pi > 3;$ ____;
 - (4) 正方形好美!____;
 - (5) 2x > 4;_____;
 - (6) 968 能被 11 整除;
- 67. (020071) 判断下列命题的真假, 并在相应的括号内填入"真"或"假".
 - $(1) \ 2\sqrt{3} > 3\sqrt{2} \ \mathbf{g} \ 1 \le 1; ____;$
 - (2) $2\sqrt{3} > 3\sqrt{2} \text{ H. } 1 \le 1;$;
 - (3) 如果 a、b 都是奇数, 那么 ab 也是奇数;______;
 - (4) {1} 是 {0,1,2} 的真子集;______;
 - (5) 1 是 {0,1,2} 的真子集;______;

 - (8) 对任意实数 a, b, 方程 (a+1)x + b = 0 的解为 $x = -\frac{b}{a+1};$ _____;
 - $(9) \ \textbf{若命题} \ \alpha \text{、} \ \beta \text{、} \ \gamma \ \textbf{满足} \ \alpha \Rightarrow \beta, \ \beta \Rightarrow \gamma, \ \gamma \Rightarrow \alpha, \ \textbf{则} \ \alpha \Leftrightarrow \gamma; \underline{\hspace{1cm}};$

	(10) 若关于 x 的方程 $ax^2 + bx + c = 0 (a \neq 0)$ 的两实数根之积是止数, 则 $ac > 0$;;				
	(11) 若某个整数不是偶数, 则这个数不能被 4 整除;;				
	(12) 合数一定是偶数;;				
	(13) 所有的偶数都是素数或合数;;				
	(14) 所有的偶数都是素数或所有的偶数都是合数;;				
	(15) 如果 $A \subset B, B \supset C$, 那么 $A = C$;;				
	(16) 空集是任何集合的真子集;;				
	(17) 若 $x \in \mathbf{R}$, 则方程 $x^2 - x + 1 = 0$ 不成立;;				
	(18) $\not = A \cap B \neq \emptyset, B \subset C, \ \not M \ A \cap C \neq \emptyset; \underline{\qquad};$				
	(19) 存在一个三角形, 它的任意两边的平方和小于第三边的平方;;				
	(20) 对于任意一个三角形, 存在一组两边的平方和不等于第三边的平方;				
68.	(020073) 已知命题 "非空集合 M 的元素都是集合 P 的元素 "是假命题, 给出下列命题: ① M 中的元素都不是				
	P 的元素; ② M 中有不属于 P 的元素; ③ M 中有 P 的元素; ④ M 中的元素不都是 P 的元素. 其中真命				
	题有				
69.	(020074) 已知 $\alpha:2\leq x<4,\ \beta:3m-1\leq x\leq -m,\ $ 且 $\alpha\Rightarrow\beta,$ 求实数 m 的取值范围.				
70.	(020075) 已知 a 是常数, 命题 $\alpha:-1< a<3,$ $\beta:$ 关于 x 的方程 $x+a=0 (x\in {\bf R})$ 没有正根, 若命题 α 、 β 有				
	且只有一个是真命题, 求实数 a 的取值范围.				
71.	$^{(020076)}$ 下列各题中 P 是 Q 的什么条件? $($ 充分非必要、必要非充分、充要、既非充分又非必要 $)$				
	(1) P: x 是 2 的倍数, Q: x 是 6 的倍数;;				
	(2) P: x 不是 2 的倍数, Q: x 不是 6 的倍数;;				
	(3) $P: x \in A \not x \in B, Q: x \in A \cap B;$;				
	(4) $P: f(x) = ax^2 + bx + c$ 的图像过原点, $Q: c = 0;$				
72.	$_{(020077)}$ 如果 A 是 B 的必要条件, C 是 B 的充分条件, A 是 C 的充分条件, 那么 B 、 C 分别是 A 的				
	和条件.				
73.	(020078) 写出使得"x > 3"成立的一个充分条件: 和一个必要条件:				
74.	(020080) 关于 x 的方程 $ax^2 = 0$ 至少有一个实数根的一个充要条件是				
75.	(020082) 三个数 a 、 b 、 c 不全为零的充要条件是 $($ $)$.				
	A. a, b, c 都不是零 B. a, b, c 中最多一个零				
	$C.\ a,b,c$ 中只有一个是零 $D.\ a,b,c$ 中至少有一个不是零				
76.	(020083) 证明: $x_1 > 2$ 且 $x_2 > 2$ 是 $x_1 + x_2 > 4$ 且 $x_1 \cdot x_2 > 4$ 的充分非必要条件.				
77.	(020084) 有限集合 S 中元素的个数记作 $\mathrm{card}(S)$, 设 A,B 都是有限集合, 给出下列命题:				
	① $A \cap B = \emptyset$ 的一个充要条件是 $\operatorname{card}(A \cup B) = \operatorname{card}(A) + \operatorname{card}(B)$;				

(2) $A \subseteq B$ 的一个必要不允分条件是 $card(A) \le$		
③ A 不是 B 的子集的一个充分不必要条件是		
④ $A=B$ 的一个充要条件是 $\operatorname{card}(A)=\operatorname{card}(A)$	<i>B</i>).	
其中真命题的个数是 ().		
A. 0 B. 1	C. 2	D. 3
(020085) 设 α, β 是方程 $x^2 - ax + b = 0$ 的两个的	实数根. 试分析 a > 2 且 b	$>$ 1 是 "两个实数根 α , β 均大于 1"
的什么条件? 并证明你的结论.		
(020086) 设 $x,y \in \mathbf{R}$, 求证: $ x+y = x + y $ 成	立的充要条件是 $xy \ge 0$.	
(020087) 已知下列字母均为常实数, 写出下列陈边	述句的否定形式 ; (1) <i>x</i> > 0;	;
(2) $1 > x > 0$;;		
(3) $x > 0$ H. $y \le 1$;;		
$(4) x > 0 $ ಪ $x \le -2;$;		
$(5) x \neq y \mathbf{g} y \neq z; \underline{\hspace{1cm}};$		
	;	
		err I. Ida S. Walana D. When I
		置中填入"真"或"假"
$(2) \ 2+1=4; \underline{\hspace{1cm}}; \underline{\hspace{1cm}}$;;	
(5) 对一切实数 $x, x^3 + 1 = 0;$;	; _	;
(6) 存在实数 $x, x^3 + 1 = 0;$;	;;	;
(7) 对于任意实数 k , 关于 x 的方程 $x^2+x+k=$	0 都有实数根;;	
(7) 对于任意实数 k , 关于 x 的方程 $x^2+x+k=$;	0 都有实数根;;	
;		;;
	 ④ A = B 的一个充要条件是 card(A) = card(A) 其中真命题的个数是(). A. 0 B. 1 (020085) 设 α, β 是方程 x² - ax + b = 0 的两个约的什么条件? 并证明你的结论. (020086) 设 x, y ∈ R, 求证: x + y = x + y 成 (020087) 已知下列字母均为常实数, 写出下列陈之(2) 1 > x > 0;	④ $A=B$ 的一个充要条件是 $\operatorname{card}(A)=\operatorname{card}(B)$. 其中真命题的个数是()。 A. 0 B. 1 C. 2 (020085) 设 α,β 是方程 $x^2-ax+b=0$ 的两个实数根. 试分析 $a>2$ 且 b 的什么条件? 并证明你的结论。 (020086) 设 $x,y\in\mathbf{R},$ 求证: $ x+y = x + y $ 成立的充要条件是 $xy\geq0$. (020087) 已知下列字母均为常实数,写出下列陈述句的否定形式; (1) $x>0$; (2) $1>x>0$;

D. 乙不成立, 可推出甲不成立

C. 乙不成立, 可推出甲成立

	A. 充分非必要条件		B. 必要非充分条件	
	C. 充要条件		D. 既非充分又非必要条件	
84.	(020092) 证明: 若 $x+2y+z$ >	> 0, 则 x,y,z 中至少有一个	大于 0.	
85.	(020093) 证明: 对于三个实数 a	a,b,c , 若 $a \neq c$, 则 $a \neq b$ 或	$b \neq c$.	
86.	(020094)" $x \neq 3$ 或 $x \neq 4$ " 是"	$x^2 - 7x + 12 \neq 0$ "的().	
	A. 充分非必要条件		B. 必要非充分条件	
	C. 充要条件		D. 既非充分又非必要条件	
87.	(020095) 证明: 若 $x^2 \neq y^2$, 则	$x \neq y$ 或 $x \neq -y$.		
88.	$a^3 + b^3 = 2$, 证明:	$a+b \le 2.$		
89.	(030001) 若 x,y,z 都是实数,贝	引:(填写"充分非必要、必要	事非充分、充要、既非充分又	非必要"之一)
	(1) " $xy = 0$ " $\& "x = 0$ " $\& h$ _			
	$(2) "x \cdot y = y \cdot z" 是 "x = z'$			
	(3) " $\frac{x}{y} = \frac{y}{z}$ " 是 " $xz = y^2$ " 自	内条件;		
	(4) " $ x > y $ " \not \not " $x > y > 0$)" 的 条件;		
	(5) " $x^2 > 4$ " 是 " $x > 2$ " 的_	条件;		
	$(6) "x = -3" \not \not \not $	5 = 0"的条件;		
	(7) " x+y < 2" 是 " x < 1	且 y < 1"的	条件;	
	(8) " $ x < 3$ " 是 " $x^2 < 9$ " 的	条件;		
	(9) " $x^2 + y^2 > 0$ " \not \not " $x \neq 0$ "			
	(10) " $\frac{x^2+x+1}{3x+2}$ < 0" 是"3	x+2<0"的	条件;	
	$(11) "0 < x < 3" $ \not \not $\mid x - 1 $	< 2"的条件.		
	(030002) 设 $ab > 0$, 且 $\frac{c}{a} > \frac{d}{b}$,		£ ().	
	A. $bc < ad$	B. $bc > ad$	C. $\frac{a}{c} > \frac{b}{d}$	D. $\frac{a}{c} < \frac{b}{d}$
91.	(030003) 若集合 $M = \{x x \le 6$	$\{a, a = \sqrt{5}, $ 则下面结论正确	角的是 ().	
	A. $\{a\} \subset M$	B. $a \subset M$	C. $\{a\} \notin M$	D. $a \notin M$
92.	(030004) 已知集合 $M = \{y y=$	$= x^2 - 2x - 1, x \in \mathbf{R}\}, P =$	$= \{x -2 \le x \le 4, x \in \mathbf{R}\}, \ \mathbf{M}$	M 与 P 之间的关系是
	().			
	A. $M = P$	B. $M \subset P$	C. $M \supset P$	D. $M \not\subset P$ H. $M \not\supset P$

83. (020091)" $a \neq 1$ 且 $b \neq 2$ " 是 " $a + b \neq 3$ " 的 ().