CSE 6140 - Homework 1

Alexander Winkles

Problem 1

(a) Let $k \ge \lceil \log n \rceil$. We wish to design an algorithm of complexity $O(\log n)$. This suggests the idea of an algorithm similar to the methodology behind the Bisection Method.

Algorithm 1 Bisection Search for Box Dropping

- 1: **procedure** BISECTIONSEARCH(l,n)
- 2: $j \leftarrow n$ \triangleright Highest Floor
- $i \leftarrow l$ blowest Floor
- 4: $m \leftarrow \frac{i+j}{2}$
- 5: **if** m = break then \triangleright Checks if box breaks on floor m
- 6: BISECTIONSEARCH(1, m-1)
- 7: else
- 8: BISECTIONSEARCH(m, n) return m

The nature of the algorithm guarentees that this algorithm will take at most $\log n$ steps, so we will not run out of boxes.

(b) Let $k < \lceil \log n \rceil$. We wish to design an algorithm of complexity $O(k + \frac{n}{2^{k-1}})$.

Algorithm 2 Box Dropping for $k < \lceil \log n \rceil$

- 1: **procedure** Solve(n, k)
- 2: BINARYSEARCH(1, n)
- 3: **procedure** BINARYSEARCH(l, n)
- 4: $j \leftarrow n$ \triangleright Highest Floor
- 5: $i \leftarrow l$
- 6: $m \leftarrow \frac{i+j}{2}$
- 7: **if** m = break then \triangleright Checks if box breaks on floor m
- 8: BINARYSEARCH(1, m-1)
- 9: **else**
- 10: BINARYSEARCH(m, n) return m

(c) Let k=2. We wish to design an algorithm of complexity $O(\sqrt{n})$.

```
Algorithm 3 Box Dropping for k=2
 1: procedure FLOORSEARCH(n)
 2:
         m \leftarrow 0
                                                                                                             ▶ Initializes maximum floor
        Nstep \leftarrow \sqrt{n}
                                                                                                    ▶ Number for floors to iterate over
 3:
        for i = 1 : n : Nstep do
 4:
 5:
             if i \neq \text{break then}
 6:
                 m \leftarrow i
 7:
                 break
 8:
         for i = m + 1 : m + \sqrt{n} \ \mathbf{do}
 9:
10:
             if i \neq \text{break then}
11:
                 m \leftarrow i
12:
```

Problem 2

13:

```
Algorithm 4 Greedy 1
```

 $\mathbf{return} \ \overset{\mathbf{break}}{m}$

```
1: procedure MINIMIZESTRIPS(C, n)
2:
                                                                                                   ▷ number of strips needed
       Sort nodes c_i from leftmost to rightmost so that c_1 < c_2 < \ldots < c_n
3:
      minNode \leftarrow c_1
4:
       for i = 1 : n \ do
5:
          if c_i - minNode > 9 then
6:
              m \leftarrow m + 1
7:
              minNode \leftarrow c_i
8:
       return m
9:
```

Essentially, this algorithm works by sorting all the nodes ("holes") from left to right. From here, it starts at the leftmost strip then adds other nodes that will fit within the 9 inches of strip. Once all the nodes for a strip are filled, a new strip is added to the next node and the process is repeated. Given that this has a single for loop, its time complexity is $T(n) \in O(n)$.

Consider the subproblem of several nodes clustered together in such a way that there is no more than 9 inches between the leftmost and rightmost nodes. With our greedy choice, this subproblem will be covered completely by a single strip, which is trivially optimal. Thus, as the algorithm will treat all such subproblems this way, we can inductively see that the algorithm is optimal.

Problem 3

Algorithm 5 Greedy 2

```
1: procedure MAXIMIZEVALUE(L, M)
 2:
        weightUsed \leftarrow 0
        B \leftarrow \emptyset
 3:
        sort minerals m_i by \frac{v_i}{w_i} from highest value to lowest
 4:
        for m_i \in M do
 5:
            if weightUsed + w_i \leq L then
 6:
                B = B \cup \{m_i\}
 7:
                weightUsed + w_i
 8:
                M = M - \{m_i\}
 9:
                break
10:
        if weightUsed < L then
11:
            pick the mineral next in line in M and call it m, with weight of w and value of v
12:
            B = B \cup \{m * \frac{w}{L - \text{weightUsed}}\}
13:
        {\bf return}\ B
14:
```

In order for this algorithm to be optimal, the bag must be completely filled in order to maximize profits.

Theorem 1. The bag has been completely filled by the algorithm.

Proof. This result is easy to see. At the end of the for loop, there are two possibilities:

- (a) weight Used = L
- (b) weightUsed < L

If it is the first case, we are done. However, if it is the second case, then we can fit L – weightUsed amount into the bag. Our algorithm provides this by adding a portion of the next mineral scaled with weight L – weightUsed, so after this our bag is again full. This completes our proof.

Theorem 2. The greedy algorithm is optimal.

Proof. Consider an optimal algorithm \mathcal{O} . Our goal is to use an exchange argument to show that the greedy solution A is optimal. Arrange the minerals in both as such in the algorithm, so m_i is first if and only if v_i/w_i is largest. Consider every mineral o_i in \mathcal{O} that differs from a_i in A. We can exchange this mineral with the corresponding mineral in A. If they are of different weights, we can instead exchange it for the appropriate portion of a_i . By definition of the greedy algorithm, $v_{a_i} \geq v_{o_i}$, where the equality holds otherwise \mathcal{O} is not optimal. By continuously applying the above procedure, we arrive at an optimal solution identical to A, so thus A must be optimal. \square

Problem 4

For this problem, I chose to implement Prim's algorithm in Python. I chose this problem because it was the less intuitive of the two for me, so I thought that writing code for it would help me gain a better understanding. Rather

than designing a second algorithm for recompute MST, I chose to	instead append the new of	edge to my graph then run
computeMST again.		