Assignment 8

Problem Statement:

Implement DBSCAN algorithm from scratch using the same data set that was given for Kmeans.

Calculate the accuracy of the method and compared it with Accuracy of the K-means. Find a suitable value of epsilon for DBSCAN algorithm.

261 kB 5.3 MB/s

```
%matplotlib inline
! pip install -Ugg pandas-profiling
```

```
| 102 kB 9.8 MB/s | 3.1 MB 16.3 MB/s | 3.0 kB 47.3 MB/s | 303 kB 47.3 MB/s | 675 kB 40.4 MB/s | 596 kB 35.3 MB/s | 10.9 MB 33.4 MB/s | 10.9 MB/s |
```

```
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
```

×

✓ 0s completed at 1:32 AM

Exploiatory Data Allarysis

df = pd.read csv("https://gist.githubusercontent.com/kurianbenoy/a4c1f02a3538956554c711969f74a252/raw/290a48669(

df.head()

	CustomerID	Gender	Age	Annual Income	(k\$)	Spending Score	(1-100)	Class
0	1	Male	19		15		39	В
1	2	Male	21		15		81	Е
2	3	Female	20		16		6	Α
3	4	Female	23		16		77	D
4	5	Female	31		17		40	В

no_customers = df.shape[0] no_customers

200

df.describe()

	CustomerID	Age	Annual Income (k\$)	Spending Score (1-100)
count	200.000000	200.000000	200.000000	200.000000
mean	100.500000	38.850000	60.560000	50.200000
std	57.879185	13.969007	26.264721	25.823522
min	1.000000	18.000000	15.000000	1.000000
25%	50.750000	28.750000	41.500000	34.750000

09-03-2022, 01:34 2 of 25

50%	100.500000	36.000000	61.500000	50.000000
75%	150.250000	49.000000	78.000000	73.000000
max	200.000000	70.000000	137.000000	99.000000

```
df.columns
    Index(['CustomerID', 'Gender', 'Age', 'Annual Income (k$)',
            'Spending Score (1-100)', 'Class'],
           dtype='object')
df['Annual Income (k$)'].value_counts()
            12
     54
     78
            12
    48
             6
     71
             6
     63
             6
     58
             2
    59
             2
    16
     64
             2
    137
    Name: Annual Income (k$), Length: 64, dtype: int64
df['Gender'].value_counts()
               112
    Female
                88
    Male
    Name: Gender, dtype: int64
df['Spending Score (1-100)'].value counts()
     42
     55
```

```
Assignment8.ipynb - Colaboratory
```

prof

```
46 6
73 6
35 5
...
31 1
44 1
53 1
65 1
18 1
Name: Spending Score (1-100), Length: 84, dtype: int64

from pandas_profiling import ProfileReport
prof = ProfileReport(df)
```

Summarize dataset: 100% 35/35 [00:06<00:00, 3.42it/s, Completed]

Generate report structure: 100% 1/1 [00:06<00:00, 6.31s/it]

Render HTML: 100% 1/1 [00:02<00:00, 2.27s/it]

Overview

Dataset statistics		Variable types		
Number of variables	6	Numeric	4	
Number of observations	200	Categorical	2	
Missina cells	0			

	-
Missing cells (%)	0.0%
Duplicate rows	0
Duplicate rows (%)	0.0%
Total size in memory	9.5 KiB
Average record size in memory	48.6 B

Alerts

CustomerID is highly correlated with Annual Income (k\$)	High correlation
Annual Income (k\$) is highly correlated with CustomerID	High correlation
CustomerID is highly correlated with Annual Income (k\$)	High correlation
Annual Income (k\$) is highly correlated with CustomerID	High correlation
CustomerID is highly correlated with Annual Income (k\$)	High correlation
Annual Income (k\$) is highly correlated with CustomerID	High correlation
CustomerID is highly correlated with Age and 3 other fields (Age, Annual Income (k\$), Spending Score (1-100), Class)	High correlation

KNN from scratch

	18, 18, 19, 19, 19, 20, 21, 22, 23, 24, 25, 28, 28, 29, 30, 33, 33, 33, 33, 33, 33, 33	6] 94] 72] 14] 99] 15] 77] 13] 79] 35] 73] 73] 14] 82] 32] 61] 31] 87] 4] 92] 14] 81] 73] 92] 14] 93]	
[37,	75]	
			,
[38 ,	92]	,
[39, 39, 39,	36] 61]	
[[39 , 30	28]	,
[39, 39,	20] 65]	,
	40,	55]	′
[⊒∪,	J J]	′

```
[ 40, 47],
           [ 40, 42],
           [ 40, 42],
           [ 42, 52],
           [ 42, 60],
           [ 43, 54],
           [ 43, 60],
           [ 43, 45],
           [ 43, 41],
           [ 44, 50],
           [ 44, 46],
m = df X.shape[0] #number of training examples
n = df X.shape[1] #number of features. Here n=2n iter=100
m, n
     (200, 2)
import matplotlib.pyplot as plt
plt.scatter(df_X[:,0],df_X[:,1],c='black',label='unclustered data')
plt.xlabel('Income')
plt.ylabel('Number of transactions - Spending Score')
plt.legend()
plt.title('Plot of data points')
plt.show()
centroids=np.array([]).reshape(n,0)
centroids
    array([], shape=(2, 0), dtype=float64)
K=5
import random as rd
```

```
import ramaom at ra
for i in range(K):
   rand=rd.randint(0,m-1)
   centroids=np.c [centroids,df X[rand]]
centroids
    array([[72., 78., 77., 65., 87.],
         [71., 90., 74., 43., 10.]])
outputs = {}
euclidean distance = np.array([]).reshape(m, 0)
for k in range(K):
 temp dist = np.sum((df X - centroids[:, k])**2, axis=1)
 euclidean distance = np.c [euclidean distance, temp dist]
some value c = np.argmin(euclidean distance, axis=1) + 1
some value c
    array([4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 2, 4, 1, 4, 1, 4, 4, 4, 2, 4, 1,
         4, 1, 4, 1, 4, 4, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 4,
         4, 4, 4, 4, 4, 4, 4, 1, 4, 4, 4, 4, 1, 2, 4, 1, 4, 2, 5, 1, 5, 1,
         4, 1, 5, 2, 5, 1, 5, 1, 5, 2, 4, 2, 5, 2, 4, 3, 5, 2, 5, 2, 5, 3,
         5, 2, 5, 3, 5, 3, 4, 2, 5, 2, 5, 3, 5, 2, 5, 3, 5, 3, 5, 2, 5, 2,
         5, 3, 5, 2, 5, 2, 5, 2, 5, 2, 5, 3, 5, 2, 5, 3, 5, 2, 5, 3, 5, 2,
         5, 21)
len(some value c)
    200
```

```
Y = \{ \}
for k in range(K):
    Y[k+1]=np.array([]).reshape(2,0)
for i in range(m):
    Y[some_value_c[i]]=np.c_[Y[some_value_c[i]],df_X[i]]
for k in range(K):
    Y[k+1] = Y[k+1].T
for k in range(K):
     centroids[:,k]=np.mean(Y[k+1],axis=0)
output = Y
n iter=100
for iter in range(n_iter):
  euclidean_distance = np.array([]).reshape(m, 0)
  for k in range(K):
    temp_dist = np.sum((df_X - centroids[:, k])**2, axis=1)
    euclidean_distance = np.c_[euclidean_distance, temp_dist]
    # It contains euclidean distance of all values
    some_value_c = np.argmin(euclidean_distance, axis=1) + 1
  Y = \{ \}
  for k in range(K):
      Y[k+1]=np.array([]).reshape(n,0)
  for i in range(m):
      Y[some_value_c[i]]=np.c_[Y[some_value_c[i]],df_X[i]]
  for k in range(K):
      Y[k+1]=Y[k+1].T
  for k in range(K):
```

```
centroids [:,k] = np.mean (Y[k+1],axis=0)
 output = Y
centroids
   array([[ 25.72727273, 78.03571429, 108.18181818, 48.16831683,
          87.
                   1,
         [79.36363636, 81.89285714, 82.72727273, 43.3960396,
          18.6315789511)
df X[:, 0]
   array([ 15, 15, 16, 16, 17, 17, 18, 18, 19, 19, 19, 19, 20,
          20, 20, 20, 21, 21, 23, 23, 24, 24, 25, 25, 28, 28,
          28, 28, 29, 29, 30, 30, 33, 33, 33, 34, 34, 37,
          37, 38, 38, 39, 39, 39, 40, 40, 40, 40, 42,
          43, 43, 43, 43, 44, 44, 46, 46, 46, 47, 47, 48,
          48, 48, 48, 48, 48, 49, 49, 50, 50, 54, 54, 54, 54,
          54, 54, 54, 54, 54, 54, 54, 57, 57, 58, 58, 59,
          59, 60, 60, 60, 60, 60, 61, 61, 62, 62, 62,
          62, 62, 63, 63, 63, 63, 63, 64, 64, 65, 65, 65,
          65, 67, 67, 67, 69, 69, 70, 70, 71, 71, 71, 71,
          71, 71, 72, 72, 73, 73, 73, 74, 74, 75, 75, 76,
          78, 78, 78, 79, 79, 81, 81, 85, 85, 86, 86, 87,
          87, 87, 87, 87, 88, 88, 88, 93, 93, 97, 97,
          120, 126, 126, 137, 137])
color=['red','blue','green','cyan','magenta']
labels=['cluster1','cluster2','cluster3','cluster4','cluster5']
for k in range(K):
   plt.scatter(output[k+1][:,0],output[k+1][:,1],c=color[k],label=labels[k])
plt.scatter(centroids[0,:],centroids[1,:],s=300,c='yellow',label='Centroids')
plt.xlabel('Income')
plt.ylabel('Number of transactions')
plt.legend()
```

```
plt.show()
```

KMeans Approach (Finding optimal value of K)

Reference - ML models being shared at class

```
from dataclasses import dataclass, field
import pandas as pd
import random as rd
@dataclass
class kmeans:
    df X: pd.DataFrame
    K: int
    m: int
    output: dict = field(default factory=dict)
    centroids: np.array = np.array([]).reshape(m, 0)
    def kmeanspp(self, df X, K):
        """Responsible for creating initial k centroids
        Else we can randomly choose k points
        i = rd.randint(0, df X.shape[0])
        Centroid temp = np.array([df_X[i]])
        for k in range(1, K):
            D = np.array([])
            for x in df X:
                D = np.append(D, np.min(np.sum((x - Centroid temp) ** 2)))
            prob = D / np.sum(D)
            cummulative prob = np.cumsum(prob)
            r = rd.random()
            i = 0
            for j, p in enumerate (cummulative prob):
                if r < p:
```

```
i = j
                    break
            Centroid temp = np.append(Centroid temp, [df X[i]], axis=0)
        return Centroid temp.T
   def fit(self, n iterations):
        self.centroids = self.kmeanspp(self.df_X, self.K)
        for iter in range(n iterations):
            euclidean distance = np.array([]).reshape(self.m, 0)
            for k in range(self.K):
                temp_dist = np.sum((df_X - centroids[:, k])**2, axis=1)
                euclidean_distance = np.c_[euclidean_distance, temp_dist]
            # It contains euclidean_distance of all values
            some_value_c = np.argmin(euclidean_distance, axis=1) + 1
            Y = \{ \}
            for k in range (self.K):
                Y[k+1]=np.array([]).reshape(n,0)
            for i in range(self.m):
                Y[some_value_c[i]]=np.c_[Y[some_value_c[i]],self.df_X[i]]
            for k in range(self.K):
                Y[k+1]=Y[k+1].T
            for k in range(self.K):
                centroids[:,k]=np.mean(Y[k+1],axis=0)
            self.output = Y
    def predict(self):
        return self.output, self.centroids.T
# Unfortunately the implementation with DataClasses had a bug in python implementation(which is causing errors)
```

```
class Kmeans:
    def init (self, X, K):
        self.X = X
        self.Output = {}
        self.Centroids = np.array([]).reshape(self.X.shape[1], 0)
        self.K = K
        self.m = self.X.shape[0]
    def kmeanspp(self, X, K):
        """Responsible for creating initial k centroids
        Else we can randomly choose k points
        i = rd.randint(0, X.shape[0])
        Centroid temp = np.array([X[i]])
        for k in range (1, K):
            D = np.array([])
            for x in X:
                D = np.append(D, np.min(np.sum((x - Centroid temp) ** 2)))
            prob = D / np.sum(D)
            cummulative prob = np.cumsum(prob)
            r = rd.random()
            i = 0
            for j, p in enumerate (cummulative prob):
                if r < p:
                    i = j
                    break
            Centroid temp = np.append(Centroid temp, [X[i]], axis=0)
        return Centroid temp.T
    def fit(self, n iter):
        # randomly Initialize the centroids
        self.Centroids = self.kmeanspp(self.X, self.K)
        """for i in range(self.K):
            rand=rd.randint(0, self.m-1)
            self.Centroids=np.c [self.Centroids,self.X[rand]]"""
        # compute euclidian distances and assign clusters
```

```
for n in range(n_iter):
            EuclidianDistance = np.array([]).reshape(self.m, 0)
            for k in range (self.K):
                tempDist = np.sum((self.X - self.Centroids[:, k]) ** 2, axis=1)
                EuclidianDistance = np.c [EuclidianDistance, tempDist]
            C = np.argmin(EuclidianDistance, axis=1) + 1
            # adjust the centroids
            Y = \{ \}
            for k in range(self.K):
                Y[k + 1] = np.array([]).reshape(2, 0)
            for i in range(self.m):
                Y[C[i]] = np.c [Y[C[i]], self.X[i]]
            for k in range(self.K):
                Y[k + 1] = Y[k + 1].T
            for k in range (self.K):
                self.Centroids[:, k] = np.mean(Y[k + 1], axis=0)
            self.Output = Y
    def predict(self):
        return self.Output, self.Centroids.T
    def WCSS(self):
        wcss = 0
        for k in range(self.K):
            wcss += np.sum((self.Output[k + 1] - self.Centroids[:, k]) ** 2)
        return wcss
t = Kmeans(df_X, K)
t.fit(100)
output, centroids = t.predict()
df X.shape
     (200, 2)
```

```
WCSS array=np.array([])
for K in range (1,11):
    print(f"Value of k: {K}")
    t=Kmeans(df X,K)
    t.fit(100)
    Output, Centroids=t.predict()
    wcss=0
    for k in range(K):
        wcss+=np.sum((Output[k+1]-Centroids[k,:])**2)
    WCSS array=np.append(WCSS array, wcss)
    Value of k: 1
    Value of k: 2
    Value of k: 3
    Value of k: 4
    Value of k: 5
    Value of k: 6
    Value of k: 7
    Value of k: 8
    Value of k: 9
    Value of k: 10
    /usr/local/lib/python3.7/dist-packages/numpy/core/fromnumeric.py:3441: RuntimeWarning: Mean of empty slice
      out=out, **kwargs)
    /usr/local/lib/python3.7/dist-packages/numpy/core/ methods.py:182: RuntimeWarning: invalid value encounter
      ret, rcount, out=ret, casting='unsafe', subok=False)
K array=np.arange(1,11,1)
plt.plot(K array, WCSS array)
plt.xlabel('Number of Clusters')
plt.ylabel('within-cluster sums of squares (WCSS)')
plt.title('Elbow method to determine optimum number of clusters')
plt.show()
```

Elbow method to determine optimum number of clusters

Let's Choose K = 5

```
t = Kmeans(df X, K=5)
t.fit(100)
output, centroids = t.predict()
centroids
    array([[26, 20],
            [86, 82],
            [55, 49],
            [25, 79],
            [88, 17]])
K=5
kmeans=Kmeans(df X,K)
kmeans.fit(n_iter)
Output, Centroids=kmeans.predict()
color=['red','blue','green','cyan','magenta']
labels=['A','B','C','D','E']
for k in range(K):
  plt.scatter(Output[k+1][:,0],Output[k+1][:,1],c=color[k],label=labels[k])
plt.scatter(Centroids[:,0],Centroids[:,1],s=300,c='yellow',label='Centroids')
plt.title('Clusters of customers')
n1+ +1 aba1 / 17 nona | Trans / 1+ 0 1 1
```

```
plt.xlabel('Annual Income (K9)')
plt.ylabel('Spending Score (1-100)')
plt.legend()
plt.show()
```



```
df.columns
```

Calculate Accuracy for Kmeans

```
for k in range(K):
  for n in range(len(Output[k+1])):
    x, y = Output[k+1][n][0],Output[k+1][n][1]
  for row in df.itertuples():
    if((row._4==x )& (row._5 == y)):
        df.at[row.Index, 'predicted'] = labels[k]
```

```
df['predicted'].value counts()
         81
    С
         39
         36
    Ε
    D
         22
         22
    Name: predicted, dtype: int64
actual results = df['Class'].tolist()
predicted_results = df['predicted'].tolist()
    <class 'list'>
from ·sklearn.metrics ·import ·accuracy score
print(f"Accuracy of kmeans classifier is: {accuracy score(actual results, predicted results)}")
    Accuracy of kmeans classifier is: 0.025
```

• The way I have labelled model and models prediction is different

```
df['Class'].value_counts()

C    75
A    37
D    32
E    30
B    26
Name: Class, dtype: int64

df['predicted'].value_counts()

B    81
C    39
D    32
D    36
```

```
E 30
D 22
A 22
Name: predicted, dtype: int64
```

Yet our ML had clearly identified the pattern of total counts per classes, and the low accuracy is probably because of incorrect labelling technique used.

DBSCAN Algorithm

Let's try to implement DBSCAN Algorithm for calculating accuracy.

Reference: https://github.com/scrunts23/CS-Data-Science-Build-Week-1/blob/master/model/test.py

```
C = 0
# This outer loop is just responsible for picking new seed points -- a point
# from which to grow a new cluster.
# Once a valid seed point is found, a new cluster is created, and the
# cluster growth is all handled by the 'expandCluster' routine.
# For each point P in the Dataset D...
# ('P' is the index of the datapoint, rather than the datapoint itself.)
for P in range (0, len(D)):
    # Only points that have not already been claimed can be picked as new
    # seed points.
    # If the point's label is not 0, continue to the next point.
    if not (labels[P] == 0):
       continue
    # Find all of P's neighboring points.
    NeighborPts = region query(D, P, eps)
    # If the number is below MinPts, this point is noise.
    # This is the only condition under which a point is labeled
    # NOISE--when it's not a valid seed point. A NOISE point may later
    # be picked up by another cluster as a boundary point (this is the only
    # condition under which a cluster label can change--from NOISE to
    # something else).
    if len(NeighborPts) < MinPts:</pre>
        labels[P] = -1
    # Otherwise, if there are at least MinPts nearby, use this point as the
    # seed for a new cluster.
    else:
       C += 1
       grow cluster (D, labels, P, NeighborPts, C, eps, MinPts)
# All data has been clustered!
return labels
```

```
def grow cluster(D, labels, P, NeighborPts, C, eps, MinPts):
    111
   Grow a new cluster with label `C` from the seed point `P`.
    This function searches through the dataset to find all points that belong
    to this new cluster. When this function returns, cluster `C` is complete.
    Parameters:
              - The dataset (a list of vectors)
      `labels` - List storing the cluster labels for all dataset points
               - Index of the seed point for this new cluster
      `NeighborPts` - All of the neighbors of `P`
               - The label for this new cluster.
      `eps` - Threshold distance
      `MinPts` - Minimum required number of neighbors
    1 1 1
    # Assign the cluster label to the seed point.
    labels[P] = C
    # Look at each neighbor of P (neighbors are referred to as Pn).
    # NeighborPts will be used as a FIFO queue of points to search--that is, it
    # will grow as we discover new branch points for the cluster. The FIFO
    # behavior is accomplished by using a while-loop rather than a for-loop.
    # In NeighborPts, the points are represented by their index in the original
    # dataset.
    i = 0
    while i < len(NeighborPts):</pre>
        # Get the next point from the queue.
        Pn = NeighborPts[i]
        # If Pn was labelled NOISE during the seed search, then we
        # know it's not a branch point (it doesn't have enough neighbors), so
        # make it a leaf point of cluster C and move on.
        if labels [Pn] == -1:
           labels[Pn] = C
```

```
# Otherwise, if Pn isn't already claimed, claim it as part of C.
        elif labels[Pn] == 0:
            # Add Pn to cluster C (Assign cluster label C).
            labels[Pn] = C
            # Find all the neighbors of Pn
            PnNeighborPts = region query(D, Pn, eps)
            # If Pn has at least MinPts neighbors, it's a branch point!
            # Add all of its neighbors to the FIFO queue to be searched.
            if len(PnNeighborPts) >= MinPts:
                NeighborPts = NeighborPts + PnNeighborPts
            # If Pn *doesn't* have enough neighbors, then it's a leaf point.
            # Don't queue up it's neighbors as expansion points.
            #else:
                # Do nothing
                #NeighborPts = NeighborPts
        # Advance to the next point in the FIFO queue.
        i += 1
    # We've finished growing cluster C!
def region query(D, P, eps):
    Find all points in dataset `D` within distance `eps` of point `P`.
    This function calculates the distance between a point P and every other
    point in the dataset, and then returns only those points which are within a
    threshold distance `eps`.
    neighbors = []
    # For each point in the dataset...
    for Pn in range (0, len(D)):
        # If the distance is below the threshold, add it to the neighbors list.
```

```
if numpy.linalg.norm(D[P] - D[Pn]) < eps:
    neighbors.append(Pn)

return neighbors

from sklearn.preprocessing import StandardScaler
dbscan_X = StandardScaler().fit_transform(df_X)

plt.scatter(dbscan_X[:,0],dbscan_X[:,1],c='black',label='unclustered data')
plt.xlabel('Income')
plt.ylabel('Number of transactions')
plt.legend()
plt.title('Plot of data points')
plt.show()</pre>
```


Let's choose epsilon = 0.5 and minPoints = 10

```
eps_value = 0.5
min_points = 10
```

```
mm_points = 10
my_labels = dbscan(dbscan_X, eps=eps_value, MinPts=min_points)

print(my_labels)

[-1, 1, 2, 1, -1, 1, 2, -1, 2, 1, 2, -1, 2, 1, 2, 1, -1, 1, -1, -1, -1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 2

len(my_labels)

200

for row in df.itertuples():
    if(my_labels[row.Index]>0):
        df.at[row.Index, 'Dbscan_predicted'] = labels[my_labels[row.Index-1]]
```

Calculate accuracy for DBSCAN

```
df.Class.value_counts()
          75
    С
          37
    D
          32
          30
          26
    Name: Class, dtype: int64
df.Dbscan predicted.value counts()
    В
          106
    Ε
          33
           30
    D
           10
    Name: Dbscan predicted, dtype: int64
```

```
actual_results = df['Class'].tolist()
predicted_dbscan_results = df['Dbscan_predicted'].tolist()

from sklearn.metrics import accuracy_score

print(f"Accuracy of kmeans classifier is: {accuracy_score(actual_results, predicted_dbscan_results)}")

Accuracy of kmeans classifier is: 0.115
```