36710 - 36752 ADVANCED PROBABILITY OVERVIEW FALL 2020 LECTURE 3: WED, SEP 9, 2020 SUPPORT OF A MEASURE: (1, 63, 11) 11(-2)=2<0 BOREL GEVELD SUPPORT OF M IS SUPP (M) = 1 { C e B , C closed and } u(c) = 2 SMALLEST CLOSED SET OF FULL 11- MEASURE ALTERNATIVELY, supp(n) = {we IL: n(Nw) > 0 FOR ALL OPEN { NEIGHBORKSODS OF a त्रा १८ ५ ८००१२० ४६ । EXERCISE

EXAMPLE 1) $\times \sim Un(form on (0,1))$. THEN THE SUPPORT OF THE OWTRIBUTION OF \times IS [0,1]2) $\times \sim N(\mu,6^2)$, THE CORRESPONDING SUPPORT


```
AS FOR CASE II): Wlog ASSUME M(A:) < 00
       SINCE {An} is DECREASING, FOR EACH N > 2,
             {A1 \An } is increasing and A1 \An A A1 \A∞
      THEREFORE, BY PART I),
                 u(A_1 \setminus A_n) \neq u(A_1 \setminus A_{\infty}) as n \to \infty
 BECLUSÉ

M(A_1) - M(A_n) \uparrow M(A_1) - M(A_0)
m(AL) (00
AND M(An) = m(A2)
                   59 u(An) bu(Ass)
       USING THIS RESULT, WE CAN PROVE THE FOLLOWING:
   Thin LET {An } BE A SEQUENCE OF (MEASURABLE!) SETS, THEN
       i) u (lin inf An) \le lin inf u (An) \le lin suo u (An)
                                                     = u (lam up An)
      11) IF An -> AOD TREN
              \lim_{n} \mu(A_n) = \mu(A_\infty).
   Pf/ Let 3n = \bigcap_{k=n}^{\infty} A_k  and C_n = \bigcup_{k=1}^{\infty} A_k . Then A_n and C_n \downarrow l_{lm}   and A_n
        \lim_{n \to \infty} u(A_n) \ge \lim_{n \to \infty} u(B_n) = \lim_{n \to \infty} u(B_n) = u(\lim_{n \to \infty} A_n)
         AND SIMILARLY
              lim sur m (An) & m (lim ar An)
```

Remark THIS IS AN APPLICATION OF THE IT- I THEOREM!

tu	ow D	o we	CONSTRU	CT A MA	EAJURE ?	WE W	ILL CONSIDER	ONLY P	ce case
	OF ([R. 63) .						
LET	-15 PU	ويح دي	K AT	PROBABIL	ITY MEA	WKEZ.	LET		
		:	F: IR	->	[0,1]	BE	a cdf		
00	e mor	re pre	÷دده€د۷ ر	ASSUM	E PUAT				
	1) lin	F(2)	= 0	۷۸)	in F(2) 2-500) = 1		
	222)) F 1	S NON -1	DE CREAJI	λ¢G		n F(x)	v) 1	in F(2)
							SATINUITY		
Re	emerk	WE				m)	(LV) ANG	v)	
			CAD	LAG F	UNCTONS				
.— <u>А</u>	SIDE .	THE	E SET	OF DIS	UMMO	ITY POIN	ITS of 4	edf is	COUMABLE
	P-P/	LET	y GE	A Po	अग कि ।	DISCONTINU	iry of F	•,	
	•			f (g-)	< F1	(g+)			
Ay 7.	•	-	l	in x f y	2	m F(2)	= f/y)		
	4	->	3	RATIONSL	~UMB <i>e</i> R	9,9	s.7. F(g-)	< 99 <	f(5+)
	1 N	THIS W	A4 WE	- tuve	ESTABLE SA	en A	ONE - TO - ON	F CORRE	SPONDENCE
	BETW	EN TH	LE SET QU	= DISCOUT	7Nu (7Æ)	of Fa	NO A SUBSE	T 08 (? /
	BEC	AUSE (Pis	COUNTAGLE	E, we	ARE D	ONF E		
B	ACK T	D THE	CON 577RU	cton of	PROBAB	וגתץ נ	ET V con	1515TS OF	FINITE
D	15 JOI NT	UNIO	NS OF	s€TS of	THE ,	FORM	(2, 5]	_ & <a <<="" td=""><td>6 <0</td>	6 <0
						1	(2, 5] (6, ∞) Ø		

NEXT, LET $\mu(A) = \int_{K=2}^{7} F(b_{R}) - F(a_{R})$ when $A = \int_{K=1}^{4} (2\kappa, b_{R}) \in \mathcal{V}$ This is a finitely additive

SET EUNCTION ON FIELD \mathcal{V}

IN Lemma 21 IN NOTES, IT IS SHOWN IT IS ALSO COUMABLY

ADDITIVE ON US THIS DEPINE A PROBABILITY MEASURE ON U.

THM (CARRIMEDORY EXTENSION THEOREM) LET IN BE A 6-FINTE MEASURE
ON A FIELD (2 OF SUBSETS OF 1. THEN IN HAS A

UMQUE EXTENSION TO 6 (C).