CHAPTER-11 TRIANGLES

1 Exercise 11.2

Q5. Construct a right triangle whose base is 12cm and sum of its hypotenuse and other side is 18cm

Solution:

Let \mathbf{A}, \mathbf{B} and \mathbf{C} are the vertices of the right triangle with coordinates. Given BC = 12cm(base). So the coordinates of vertices \mathbf{B}, \mathbf{C} are:

$$\mathbf{B} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \mathbf{C} = \begin{pmatrix} 12 \\ 0 \end{pmatrix}$$

Also given $\angle B = 90^{\circ}$, so by finding the coordinates of the other side we can form a required triangle.

The input parameters for this construction are

Symbol	Value	Description
a	12	BC
$\angle B$	90°	$\angle B$ in $\triangle ABC$
k	18	AB + AC i.e $b + c$
$\mathbf{e_2}$	$\begin{pmatrix} 0 \\ 1 \end{pmatrix}$	Basis vector

Table 1: Parameters

Caluclating Other Coordinate:

$$\mathbf{A} = c \begin{pmatrix} \cos B \\ \sin B \end{pmatrix} \tag{1}$$

We know that

$$c = \frac{1}{2(1 - \frac{a\cos B}{k})} \mathbf{e_2}^{\top} \begin{pmatrix} 1 & 1\\ -1 & 1 \end{pmatrix} \begin{pmatrix} \frac{a^2}{k}\\ k \end{pmatrix}$$
 (2)

$$c = 5 \tag{3}$$

The vertices of \triangle ABC are

$$\mathbf{A} = 5 \begin{pmatrix} \cos 90^{\circ} \\ \sin 90^{\circ} \end{pmatrix} = \begin{pmatrix} 0 \\ 5 \end{pmatrix} \tag{4}$$

$$\mathbf{B} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \tag{5}$$

$$\mathbf{B} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \tag{5}$$

$$\mathbf{C} = \begin{pmatrix} 12 \\ 0 \end{pmatrix} \tag{6}$$

Construction:

Figure 1: Triangle ABC