Задача различения сигналов. Критерии различения. Оптимальные алгоритмы приема при полностью известных сигналах на фоне АБГШ. Когерентный прием.

Задача обнаружения сигнала на фоне шума является частным случаем задачи различения двух сигналов. В общем случай задача различения — задача проверки m статистических гипотез.

Рассматриваются гипотезы: H_k : $y(t) = S_k(t) + \eta(t)$, $k = \overline{1:m}$, по каждой из которых на входе приемного устройства в смеси с шумом присутствует сигнал $S_k(t)$. Обрабатывая выборку наблюдаемого процесса y(t), надо принять решение о том, который из m возможных сигналов пришел на вход приемника.

Для задач различения чаще более обоснованным является применение критерия идеального наблюдателя, максимума апостериорной вероятности и максимума отношения правдоподобия.

2.2.1. Критерий идеального наблюдателя (критерий Зигерта-Котельникова)

Критерий идеального наблюдателя заключается в минимизации средней вероятности ошибки. Для случая m гипотез он выглядит следующим образом:

$$P_{OUU} = \sum_{k=1}^{m} \sum_{j=1}^{m} P(H_k) P(\gamma_j | H_k) = P_{OUU \ min} , \qquad (2.27)$$

где $P(H_k)$ - априорные вероятности появления сигналов $S_k(t)$, $P(\gamma_j | H_k)$ - вероятность принять решение о появлении j – го сигнала при условии, что на самом деле присутствует k – ый сигнал. По критерию идеального наблюдателя решающее правило имеет вид:

приемник регистрирует сигнал $S_k(t)$, если для всех 1 $(l \neq k)$ выполняющиеся m-1 неравенство:

$$A_{kl}\left(\vec{\mathbf{y}}_{n}\right) > \frac{p_{l}}{p_{k}} \tag{2.28}$$

$$k = \overline{l:m}, \qquad A_{kl}\left(\overrightarrow{\mathbf{y}_n}\right) = \frac{w\left(\overrightarrow{\mathbf{y}_n} \mid H_k\right)}{w\left(\overrightarrow{\mathbf{y}_n} \mid H_l\right)}, \qquad \overrightarrow{\mathbf{y}_n} = \left(y_l, \dots, y_n\right), \qquad p_l = P(H_l), \ p_k = P(H_k) - \frac{1}{2} \left(\frac{1}{2} \right)\right)\right)\right)\right)}{1\right)}\right)\right)}\right)\right)}{w_{1}}}\right)}\right)}\right)$$

априорные вероятности появления сигналов $S_{i}(t)$ и $S_{k}(t)$ соответственно.

Алгоритм (2.28) можно переписать в следующем виде:

$$p_k w(\overrightarrow{\mathbf{y}_n} | H_k) > p_l w(\overrightarrow{\mathbf{y}_n} | H_l), k \neq l$$

$$p_k w(\overrightarrow{\mathbf{y}_n} \mid H_k) = \max_k \tag{2.29}$$

Рисунок 2.7. Структурная схема алгоритма различения сигналов по критерию идеального наблюдателя.

Приемник, работающий по правилу (2.29) назван Котельниковым В.А. идеальным (оптимальным).

2.2.2. Критерий максимальной апостериорной вероятности (МАВ).

Критерий МАВ можно получить, переписав формулу (2.29) следующим образом:

$$\frac{p_k w \left(\overrightarrow{\mathbf{y_n}} \mid H_k\right)}{\sum\limits_{i=l}^m p_i w \left(\overrightarrow{\mathbf{y_n}} \mid H_i\right)} = P \Big(H_k \mid \overrightarrow{\mathbf{y_n}}\Big) \quad \text{- апостериорная вероятность гипотезы } H_k \implies$$

совокупность неравенств, эквивалентная (2.29) принимает вид:

$$P(H_{k} \mid \overrightarrow{\mathbf{y}_{\mathbf{n}}}) = \max_{k} \tag{2.30}$$

Рисунок 2.8. Структурная схема алгоритма различения сигналов по критерию **MAB**.

Недостатком алгоритмов (2.29) и (2.30) является то, что надо знать априорные вероятности гипотез p_{\flat} , $k = \overline{I : m}$.

2.2.3. Критерий максимального отношения правдоподобия.

Приемник регистрирует сигнал $S_{k}(t)$, если

$$\Lambda_{ko}\left(\overrightarrow{\mathbf{y}_n}\right) = \max_{k} \tag{2.31}$$

Индекс «0» - нулевая гипотеза H₀ о действии только шума.

Если априорные вероятности гипотез H_k равны, т.е. $P(H_k) = \frac{1}{m}$, $k = \overline{1 : m} \Rightarrow$ критерий максимального отношения правдоподобия совпадает с критериям идеального наблюдения.

2.2.4. <u>Оптимальные алгоритмы приема при полностью известных сигналах</u> (когерентный прием) на фоне аддитивного ГБШ.

Рассмотрим модель приходящего сигнала: $y_i = S_{ki} + \eta_i$, $i = \overline{I:n}$, дискретное время, сигналы S_{ki} — известны η_i - шум. Неизвестны реализация помехи η_i и индекс k переданного сигнала, который должна определить решающая схема.

Запишем отношение правдоподобия:
$$A_{kl}\left(\overrightarrow{\mathbf{y}_{n}}\right) = \frac{w\left(\overrightarrow{\mathbf{y}_{n}}\mid H_{k}\right)}{w\left(\overrightarrow{\mathbf{y}_{n}}\mid H_{l}\right)}$$
, где $w\left(\overrightarrow{\mathbf{y}_{n}}\mid H_{k}\right)$ -

многомерная гауссовская ФПВ выборки $\overrightarrow{\mathbf{y}}_n$ при условии действия гипотезы H_k

Т.к. шум η_i - белый \Rightarrow выборка $\overrightarrow{\mathbf{y}_{\mathtt{n}}}$ независимая, тогда $w\left(\overrightarrow{\mathbf{y}_{n}}\,|\,H_k\right)$

факторизуется:
$$w(\overrightarrow{\mathbf{y}_n} \mid H_k) = \prod_{i=1}^n w(y_i \mid H_k) = \frac{1}{\left(\sqrt{2\pi}\sigma_\eta\right)^n} exp\left(-\sum_{i=1}^n \frac{\left(y_i - S_{ki}\right)^2}{2\sigma_\eta^2}\right)$$
. В

этом случае отношение правдоподобия приводится к виду:

$$\Lambda_{kl}\left(\overrightarrow{\mathbf{y}}_{n}\right) = exp\left(-\sum_{i=1}^{n} \frac{\left(y_{i} - S_{ki}\right)^{2}}{2\sigma_{\eta}^{2}} + \sum_{i=1}^{n} \frac{\left(y_{i} - S_{li}\right)^{2}}{2\sigma_{\eta}^{2}}\right).$$

Далее возьмем от левой и правой части данного выражения функцию натурального логарифма:

$$\ln A_{kl}(\overrightarrow{\mathbf{y}_{n}}) = \lambda_{kl}(\overrightarrow{\mathbf{y}_{n}}) = \frac{1}{2\sigma_{\eta}^{2}} \sum_{i=1}^{n} (-y_{i}^{2} + 2y_{i}S_{ki} - S_{ki}^{2} + y_{i}^{2} - 2y_{l}S_{kl} + S_{li}^{2}) \Rightarrow$$

$$\lambda_{kl}(\overrightarrow{\mathbf{y}_{n}}) = \frac{2}{2\sigma_{\eta}^{2}} \sum_{i=1}^{n} y_{i}S_{ki} - \frac{1}{2\sigma_{\eta}^{2}} \sum_{i=1}^{n} S_{ki}^{2} - \left(\frac{2}{2\sigma_{\eta}^{2}} \sum_{i=1}^{n} y_{i}S_{li} - \frac{1}{2\sigma_{\eta}^{2}} \sum_{i=1}^{n} S_{li}^{2}\right).$$

По критерию идеального наблюдателя (см. 2.28) $\Lambda_{kl}\left(\overrightarrow{\mathbf{y}}_{n}\right)$ сравнивается с единицей при $p_{l}=\frac{1}{m},\ l=\overline{l:m}$, а $\lambda_{kl}\left(\overrightarrow{\mathbf{y}}_{n}\right)$ с «0» т.к. $\ln 1=0 \Rightarrow$

$$\frac{1}{\sigma_{\eta}^{2}} \sum_{i=1}^{n} y_{i} S_{ki} - \frac{0.5}{\sigma_{\eta}^{2}} \sum_{i=1}^{n} S_{ki}^{2} - \left(\frac{1}{\sigma_{\eta}^{2}} \sum_{i=1}^{n} y_{i} S_{li} - \frac{0.5}{\sigma_{\eta}^{2}} \sum_{i=1}^{n} S_{li}^{2} \right) \ge 0.$$

Обозначив $E_k = \sum_{i=1}^n S_{ki}^2$ - энергию сигнала S_{ki} , получим алгоритм различения:

Передается сигнал S_{ki} , если

$$\sum_{i=l}^{n} y_{i} S_{ki} - 0.5 E_{k} \ge \sum_{i=l}^{n} y_{i} S_{li} - 0.5 E_{l}, \text{ при } l = \overline{1:m}, l \ne k$$
 (2.32)

На рисунке 2.9. изображена структурная схема алгоритма (2.32) различения детерминированных сигналов в дискретном и непрерывном времени.

б)

Рисунок 2.9. Оптимальный демодулятор детерминированного сигнала, реализованный на корреляторах в дискретном времени — а, в непрерывном времени — б $E_k = \int\limits_0^{T_H} S_k^2(t)\,,\; k=\overline{1,m}\,.$

Достоинством корреляционной схемы приема сигналов является ее простота, недостатком — чувствительность к задержке сигнала.

2. Амплитудная модуляция. Спектр АМ-сигнала. Амплитудный модулятор.

При АМ амплитуда несущего ВЧ колебания изменяется в соответствии с модулирующим НЧ сигналом.

$$U_{AM}(t) = U_{m}(1 + M_{A}U_{HV}(t))\cos\omega_{0}t$$
 (3.1)

Um - средняя амплитуда АМ сигнала.

 $M_{\scriptscriptstyle A}$ - глубина (коэффициент) АМ.

 $0 \le M_A \le 1$

Если модулирующий сигнал гармонический:

$$U_{H,Y}(t) = \cos \Omega t$$

 Ω - модулирующая, низкая частота,

 ω_0 - несущая, высокая частота, то AM сигнал принимает вид:

$$U_{AM}(t) = U_m(1 + M_A \cos \Omega t) \cos \omega_0 t$$
(3.2)

Временная диаграмма НЧ сигнала:

Временная диаграмма модулированного сигнала АМ:

В соответствии с временной диаграммой глубина амплитудной модуляции равна:

$$M_A = \Delta U/Um.$$
 (3.3)

Определим спектр АМ сигнала, для чего раскроем скобки в выражении

для АМ и представим произведение косинусов в виде косинуса суммы и разности углов:

$$U_{AM}(t) = U_{\text{max}} (1 + M_A \cos \Omega t) \cos \omega_0 t = U_{\text{max}} \cos \omega_0 t + \frac{M_A U_{\text{max}}}{2} \cos(\omega_0 + \Omega) t + \frac{M_A U_{\text{max}}}{2} \cos(\omega_0 - \Omega) t$$
(3.4)

Спектр модулирующего сигнала $U_{HY}(t) = \cos \Omega t$.

Спектр АМ сигнала.

 Π_{AM} - ширина спектра сигнала AM — полоса частот, в пределах которой заключена основная доля энергии сигнала.

$$\Pi_{AM} = 2\Omega \tag{3.5}$$

Боковые имеют высоту (амплитуду) не более половины несущей.

Схема базового амплитудного модулятора имеет вид:

На входе 3 напряжения:

- 1. $U_{H^{\!\scriptscriptstyle H}}$ модулирующее напряжение.
- 2. U_{B4} несущее напряжение.
- 3. Е напряжение смещения.

Задача. Построить спектр дискретного сигнала $x_{\delta}(t) = x(t) \delta_{T}(t)$, если $\delta_{T}(t)$ - периодическая с периодом T=1 мс последовательность дельта - функций, а непрерывный сигнал имеет спектр

$$S(f) = \cos(\frac{\pi}{2}10^{-3}f),$$
 $|f| \le 1 кГц.$

