Riemann; Complex Analysis

- HW1 -

Ji, Yong-hyeon

April 28, 2025

We cover the following topics in this note.

- Vector Fields
- Line Integrals for Vector Fields
- Surface Integrals for Vector Fields
- TBA

Contents

Sc	alar Function and Vector Fields	2
Li	Line Integrals	
	Line Integral of Scalar Function over Arc Length	3
1	Best Linear Approximation	5
2	Velocity Interpretation	6
3	Differential-Geometric View	6
4	Summary	6
	Line Integral of Vector Fields	12
A	Differential Geometry	18

Scalar Function and Vector Fields

A **scalar function** on \mathbb{R}^n is a real-valued function of an n-tuple; that is,

$$f: \mathbb{R}^n \to \mathbb{R}, \quad \mathbf{x} \mapsto f(\mathbf{x}) = f(x_1, x_2, \dots, x_n).$$

where $\mathbf{x} = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$ and $f(\mathbf{x}) \in \mathbb{R}$.

A **vector field** on \mathbb{R}^n is a function

$$\mathbf{F}: \mathbb{R}^n \to \mathbb{R}^n, \quad \mathbf{x} \mapsto \mathbf{F}(\mathbf{x}) = (F_1(\mathbf{x}), F_2(\mathbf{x}), \dots, F_n(\mathbf{x})),$$

where each component $F_i : \mathbb{R}^n \to \mathbb{R}$ is itself a scalar function.

Line Integrals

Line Integral of Scalar Function over Arc Length

Secant Lines & Tangent as a Limit

For a curve γ : $t \mapsto (x(t), y(t))$, the *secant vector* over $[t, t + \Delta t]$ is

$$\frac{\gamma(t+\Delta t)-\gamma(t)}{\Delta t}=\left(\frac{x(t+\Delta t)-x(t)}{\Delta t},\ \frac{y(t+\Delta t)-y(t)}{\Delta t}\right).$$

As $\Delta t \rightarrow 0$, these secants converge (if γ is smooth) to

$$\frac{d}{dt}\gamma(t) = \gamma'(t) = \lim_{\Delta t \to 0} \frac{\gamma(t + \Delta t) - \gamma(t)}{\Delta t},$$

which gives the *tangent vector* at $\gamma(t)$.

Example: $\frac{d}{dt}$ as a Linear Derivation Let

$$\gamma(t) = (x(t), y(t)) = (t^2, \sin t).$$

Then the operator

$$v_t = \frac{d}{dt}\Big|_t : C^{\infty}(\mathbb{R}^2) \longrightarrow \mathbb{R}, \quad f \longmapsto \frac{d}{dt}(f(\gamma(t)))$$

satisfies the Leibniz rule and in coordinates

$$v_t = \sum_{i=1}^2 \dot{x}_i(t) \frac{\partial}{\partial x_i} = 2t \frac{\partial}{\partial x} + \cos t \frac{\partial}{\partial y}.$$

Applying v_t to a Test Function Take

$$f(x,y) = x^2 y.$$

Then

$$v_t(f) = 2t \frac{\partial}{\partial x}(x^2y) + \cos t \frac{\partial}{\partial y}(x^2y) = 2t(2xy) + \cos t(x^2) \Big|_{(x,y)=(t^2,\sin t)} = 4t^3 \sin t + t^4 \cos t.$$

Equivalently,

$$\frac{d}{dt}[f(\gamma(t))] = \frac{d}{dt}(t^4 \sin t) = 4t^3 \sin t + t^4 \cos t.$$

Verifying the Leibniz Property For f(x, y) = x, g(x, y) = y:

$$v_t(fg) = \frac{d}{dt}(x(t)y(t)) = \frac{d}{dt}(t^2\sin t) = 2t\sin t + t^2\cos t,$$

while

$$v_t(f)g + f v_t(g) = (2t)(\sin t) + (t^2)(\cos t) = 2t \sin t + t^2 \cos t.$$

Hence $v_t(fg) = v_t(f)g + f v_t(g)$.

$$\frac{d}{dt}\bigg|_{t}: C^{\infty}(\mathbb{R}^{n}) \longrightarrow \mathbb{R}, \qquad f \longmapsto \frac{d}{dt}\big(f(\gamma(t))\big) = \sum_{i=1}^{n} \frac{dx_{i}}{dt}(t) \frac{\partial f}{\partial x_{i}}\big(\gamma(t)\big).$$

$$\frac{d}{dt} = \sum_{i=1}^{n} \frac{dx_i}{dt}(t) \frac{\partial}{\partial x_i} \quad \text{so that} \quad \frac{d}{dt}(f) = \left(\sum_{i} \dot{x}_i \, \partial_{x_i}\right) [f].$$

Secant Lines & the Limit

• For a curve $\gamma : t \mapsto (x(t), y(t))$, the *secant vector* over $[t, t + \Delta t]$ is

$$\frac{\gamma(t+\Delta t)-\gamma(t)}{\Delta t} = \left(\frac{x(t+\Delta t)-x(t)}{\Delta t}, \ \frac{y(t+\Delta t)-y(t)}{\Delta t}\right).$$

• As $\Delta t \rightarrow 0$, these secants converge (if γ is smooth) to

$$\frac{d}{dt}\gamma(t) = \gamma'(t) = \lim_{\Delta t \to 0} \frac{\gamma(t + \Delta t) - \gamma(t)}{\Delta t},$$

which gives the *tangent vector* at $\gamma(t)$.

1 Best Linear Approximation

Derivative as Best Linear Approximation

• The derivative is the unique linear map $D\gamma_t$ satisfying

$$\gamma(t + \Delta t) = \gamma(t) + D\gamma_t(\Delta t) + o(\Delta t).$$

- In one–dimensional parameter space, $D\gamma_t(\Delta t) = \gamma'(t) \Delta t$.
- Thus $\gamma'(t)$ is the *linear part* of the local approximation.

2 Velocity Interpretation

Velocity Vector Interpretation

- View $\gamma(t)$ as the position of a particle at time t.
- Then

$$\gamma'(t) = \frac{d}{dt}\gamma(t)$$
 is exactly the particle's velocity vector.

• Velocity lies in the tangent space of the curve and measures *instantaneous* speed & direction.

3 Differential-Geometric View

Differential-Geometric View

- A smooth curve is a map $\gamma: I \to M$.
- The tangent vector is the push-forward

$$\mathrm{d}\gamma_t\left(\frac{\partial}{\partial t}\right) \in T_{\gamma(t)}M.$$

• In coordinates x^i , one has

$$\gamma'(t) = x^{i}(t) \frac{\partial}{\partial x^{i}}.$$

4 Summary

Summary

- Tangent vectors are the *limit of secant vectors* as the interval shrinks.
- They arise as the *best linear approximation* to the curve.
- Physically, they correspond to a particle's *velocity*.
- In differential geometry, they are the *push-forward* of $\partial/\partial t$.

Let

$$\mathbf{r} : [a,b] \to \mathbb{R}^m, \quad \mathbf{r}(t) = (x_1(t), \dots, x_m(t))$$

be a C^1 parametrized curve. We give two equivalent definitions of its length.

1. Polygonal Approximation. Take a partition $a = t_0 < t_1 < \cdots < t_n = b$, and set

$$\Delta S_k = \|\mathbf{r}(t_k) - \mathbf{r}(t_{k-1})\| = \sqrt{\sum_{i=1}^m [x_i(t_k) - x_i(t_{k-1})]^2}.$$

Then

$$L(C) = \lim_{\max |t_k - t_{k-1}| \to 0} \sum_{k=1}^{n} \Delta S_k = \lim_{n \to \infty} \sum_{k=1}^{n} \Delta S_k.$$

For example, if m=2 and $\mathbf{r}(t)=(\cos t,\sin t)$, $t\in[0,\pi/2]$, one finds $\Delta S_k\approx |t_k-t_{k-1}|$ and hence $L=\int_0^{\pi/2}1\,dt=\frac{\pi}{2}$.

2. Differential-Form Definition. In coordinates, let

$$dx_i = x_i'(t) dt$$
, $i = 1, \ldots, m$.

Define the line-element (a 1-form)

$$ds = \sqrt{(dx_1)^2 + (dx_2)^2 + \dots + (dx_m)^2} = \sqrt{\sum_{i=1}^m (dx_i)^2}.$$

Then the arc-length is

$$L(C) = \int_C ds = \int_a^b \sqrt{\sum_{i=1}^m (x_i'(t))^2} dt = \int_a^b ||\mathbf{r}'(t)|| dt.$$

In particular:

- 2-D: $ds = \sqrt{dx^2 + dy^2}$, so $L = \int_C \sqrt{dx^2 + dy^2}$.
- 3-D: $ds = \sqrt{dx^2 + dy^2 + dz^2}$, so $L = \int_C \sqrt{dx^2 + dy^2 + dz^2}$.
- n-D: $ds = \sqrt{\sum_{i=1}^{n} dx_i^2}$, so $L = \int_C ds$ as above.

Example (Quarter-Circle). On $C: x^2 + y^2 = 1$, $\mathbf{r}(t) = (\cos t, \sin t)$, $t \in [0, \pi/2]$, we have

$$ds = \sqrt{(-\sin t)^2 + (\cos t)^2} dt = 1 \cdot dt$$

so

$$L = \int_0^{\pi/2} ds = \int_0^{\pi/2} 1 \, dt = \frac{\pi}{2}.$$

On \mathbb{R}^n let (x^1, \dots, x^n) be Cartesian coordinates. Define the *line element* (a differential 1-form)

$$ds = \sqrt{(dx^1)^2 + (dx^2)^2 + \dots + (dx^n)^2} = \sqrt{\sum_{i=1}^n (dx^i)^2}.$$

Then for any smooth curve

$$\mathbf{r}: [a,b] \longrightarrow \mathbb{R}^n, \quad t \mapsto (x^1(t), \dots, x^n(t)),$$

its *arc-length* is the pullback of *ds* integrated over [*a*, *b*]:

$$L(C) = \int_{C} ds = \int_{a}^{b} ||\mathbf{r}'(t)|| dt = \int_{a}^{b} \sqrt{\sum_{i=1}^{n} (x^{i}'(t))^{2}} dt.$$

In particular:

• 2-D:
$$ds = \sqrt{dx^2 + dy^2}$$
, so $L = \int_C \sqrt{dx^2 + dy^2}$.

• 3-D:
$$ds = \sqrt{dx^2 + dy^2 + dz^2}$$
, so $L = \int_C \sqrt{dx^2 + dy^2 + dz^2}$.

• *n-D*: as above with *n* differentials.

Justification. By definition of the pullback,

$$\mathbf{r}^*(dx^i) = x^{i\prime}(t) dt,$$

so

$$\mathbf{r}^*(ds) = \sqrt{\sum_i (x^{i}'(t) dt)^2} = \sqrt{\sum_i (x^{i}'(t))^2} dt = ||\mathbf{r}'(t)|| dt.$$

Hence $L = \int_C ds = \int_a^b ||\mathbf{r}'(t)|| dt$, recovering the usual formula.

We begin with the intuitive idea: approximate a smooth curve by joining successive points with straight chords, sum their lengths, and let the mesh of the partition tend to zero. Concretely:

1. Planar Curves (2-D)

Let *C* be a smooth curve in the plane parametrized by

$$\mathbf{r}(t) = (x(t), y(t)), \quad t \in [a, b],$$

with $x, y \in C^1$. Choose a partition

$$a = t_0 < t_1 < \cdots < t_n = b$$
,

and for each k let

$$\Delta S_k = \left\| \mathbf{r}(t_k) - \mathbf{r}(t_{k-1}) \right\| = \sqrt{\left[x(t_k) - x(t_{k-1}) \right]^2 + \left[y(t_k) - y(t_{k-1}) \right]^2}.$$

Then the length of *C* is

$$L(C) = \lim_{\max|t_k - t_{k-1}| \to 0} \sum_{k=1}^{n} \Delta S_k = \lim_{n \to \infty} \sum_{k=1}^{n} \Delta S_k.$$

Example. For the quarter-circle of radius 1, $\mathbf{r}(t) = (\cos t, \sin t)$, $t \in [0, \pi/2]$, one computes

$$\Delta S_k \approx \sqrt{2 - 2\cos(t_k - t_{k-1})} \approx |t_k - t_{k-1}|$$
 (for small Δt),

so summing and taking limits yields $L = \int_0^{\pi/2} 1 dt = \frac{\pi}{2}$.

2. Space Curves (3-D)

Let *C* be a smooth curve in space, $\mathbf{r}(t) = (x(t), y(t), z(t)), t \in [a, b]$. With the same partition,

$$\Delta S_k = \sqrt{\left[x(t_k) - x(t_{k-1})\right]^2 + \left[y(t_k) - y(t_{k-1})\right]^2 + \left[z(t_k) - z(t_{k-1})\right]^2},$$

and

$$L(C) = \lim_{n \to \infty} \sum_{k=1}^{n} \Delta S_k = \int_a^b \sqrt{x'(t)^2 + y'(t)^2 + z'(t)^2} dt.$$

Example. For the helix $\mathbf{r}(t) = (\cos t, \sin t, t), t \in [0, 2\pi]$, one finds $\|\mathbf{r}'(t)\| = \sqrt{\sin^2 t + \cos^2 t + 1} = \sqrt{2}$, so $L = \int_0^{2\pi} \sqrt{2} \, dt = 2\pi \sqrt{2}$.

3. Curves in \mathbb{R}^n

In \mathbb{R}^n , a smooth curve $\mathbf{r}(t) = (x_1(t), \dots, x_n(t))$ admits

$$\Delta S_k = \sqrt{\sum_{i=1}^n [x_i(t_k) - x_i(t_{k-1})]^2},$$

and

$$L(C) = \lim_{n \to \infty} \sum_{k=1}^{n} \Delta S_k = \int_a^b \sqrt{\sum_{i=1}^{n} [x_i'(t)]^2} dt.$$

Why this works: each chord $\mathbf{r}(t_k) - \mathbf{r}(t_{k-1})$ approximates $\mathbf{r}'(t) \Delta t$, so $\|\Delta \mathbf{r}\| \approx \|\mathbf{r}'(t)\| \Delta t$, and summing gives the Riemann integral of $\|\mathbf{r}'(t)\|$.

Consider the quarter-circle

$$C: x^2 + y^2 = 1, \quad x \ge 0, \ y \ge 0.$$

A natural parametrization is

$$\mathbf{r} \colon [0, \frac{\pi}{2}] \longrightarrow \mathbb{R}^2, \qquad \mathbf{r}(t) = (\cos t, \sin t).$$

Then

$$\mathbf{r}'(t) = \left(-\sin t, \, \cos t\right),\,$$

and its Euclidean norm is

$$\|\mathbf{r}'(t)\| = \sqrt{(-\sin t)^2 + (\cos t)^2} = \sqrt{\sin^2 t + \cos^2 t} = 1.$$

By the definition of arc length,

Length(C) =
$$\int_0^{\pi/2} ||\mathbf{r}'(t)|| dt = \int_0^{\pi/2} 1 dt = [t]_0^{\pi/2} = \frac{\pi}{2}$$
.

Hence the quarter-circle has length $\frac{\pi}{2}$.

Let $I = [a, b] \subset \mathbb{R}$ and let

$$\mathbf{r} \colon I \longrightarrow \mathbb{R}^n, \quad t \mapsto \mathbf{r}(t)$$

be a continuously differentiable (C^1) curve.

Definition 1 (Arc Length). The *arc length* of the curve $\mathbf{r}(t)$ over the interval [a, b] is

$$L[\mathbf{r}] = \sup_{\mathcal{P}} \sum_{i=1}^{N} ||\mathbf{r}(t_i) - \mathbf{r}(t_{i-1})||,$$

where the supremum is taken over all partitions \mathcal{P} : $a = t_0 < t_1 < \cdots < t_N = b$ of the interval [a, b], and $\|\cdot\|$ is the Euclidean norm on \mathbb{R}^n .

Remark 1 (Motivation).

- We approximate the smooth curve by a polygonal path joining the points $\mathbf{r}(t_0)$, $\mathbf{r}(t_1)$, . . . , $\mathbf{r}(t_N)$.
- Each segment has length $||\mathbf{r}(t_i) \mathbf{r}(t_{i-1})||$.
- Taking the supremum over all finer and finer partitions captures the intuitive "length of the curve."
- This definition reduces to the usual distance when $\mathbf{r}(t)$ is a straight line.

Theorem 1. *If* $\mathbf{r} \in C^1([a,b], \mathbb{R}^n)$, then the above supremum equals the integral

$$L[\mathbf{r}] = \int_a^b \|\mathbf{r}'(t)\| dt.$$

Sketch of proof.

1. On each subinterval $[t_{i-1}, t_i]$, the Mean Value Theorem gives $\mathbf{r}(t_i) - \mathbf{r}(t_{i-1}) = \mathbf{r}'(\xi_i)(t_i - t_{i-1})$ for some ξ_i .

- 2. Hence $\|\mathbf{r}(t_i) \mathbf{r}(t_{i-1})\| = \|\mathbf{r}'(\xi_i)\| (t_i t_{i-1}).$
- 3. Summing and passing to the limit as the mesh of the partition goes to zero yields the Riemann integral $\int_a^b ||\mathbf{r}'(t)|| dt$.

Why this definition?

- It agrees with our geometric intuition of "length" via polygonal approximation.
- It is *reparametrization invariant*: if one changes t–coordinate without reversing direction, the integral of $\|\mathbf{r}'(t)\| dt$ remains the same.
- It generalizes the classical arclength formula for graphs y = y(x):

$$L = \int_{a}^{b} \sqrt{1 + (y'(x))^{2}} \, dx.$$

Definition (Line Integral of Scalar Function over Arc Length). Let $f : \mathbb{R}^n \to \mathbb{R}$ be a scalar function, and let C be a piecewise smooth curve in \mathbb{R}^n given by a smooth parameterization:

$$\gamma:[a,b]\to\mathbb{R}^n,\quad t\mapsto \gamma(t)=(x_1(t),x_2(t),\ldots,x_n(t)).$$

Then the *arc length* of the curve C from t = a to t = b is defined by

$$L(\gamma) := \int_a^b \left\| \frac{d\gamma}{dt} \right\| dt, \quad \text{where } \left\| \frac{d\gamma}{dt} \right\| = \sqrt{\left(\frac{dx_1}{dt}\right)^2 + \left(\frac{dx_1}{dt}\right)^2 + \dots + \left(\frac{dx_1}{dt}\right)^2}.$$

The **line integral of the scalar function** f along the curve C with respect to arc length is defined by

$$\int_C f \ ds := \int_a^b f(\gamma(t)) \| \gamma'(t) \| \ dt.$$

Here, $ds = ||\gamma'(t)|| dt$ is the *infinitesimal arc length*.

Line Integral of Vector Fields

Excellent — this is a key question for understanding how **vector calculus** connects with **differential forms** and notation. Let's walk through how to **rigorously deduce**:

$$\int_C F_1 dx + F_2 dy \quad \text{from} \quad \int_C \mathbf{F} \cdot d\mathbf{r}$$

for a vector field $\mathbf{F}(x, y) = (F_1(x, y), F_2(x, y)).$

Step 1: Parametrize the Curve C

Let $\gamma : [a, b] \to \mathbb{R}^2$ be a smooth parameterization of the curve *C*, given by:

$$\gamma(t) = (x(t), y(t)), \quad t \in [a, b].$$

Then the **derivative of the curve** is:

$$\gamma'(t) = (x'(t), y'(t)),$$

and the **differential displacement** is:

$$d\mathbf{r} = \gamma'(t) dt = (dx, dy) = (x'(t) dt, y'(t) dt).$$

Step 2: Write the Line Integral of F

The **vector line integral** is defined as:

$$\int_C \mathbf{F} \cdot d\mathbf{r} = \int_a^b \mathbf{F}(\gamma(t)) \cdot \gamma'(t) dt = \int_a^b \left[F_1(x(t), y(t)) x'(t) + F_2(x(t), y(t)) y'(t) \right] dt.$$

Step 3: Recognize the Total Differentials

From calculus, we know:

$$dx = x'(t) dt$$
, $dy = y'(t) dt$.

Substitute into the integral:

$$\int_{a}^{b} F_{1}(x(t), y(t)) dx + F_{2}(x(t), y(t)) dy.$$

So we have:

$$\int_{C} \mathbf{F} \cdot d\mathbf{r} = \int_{a}^{b} F_{1}(x(t), y(t)) dx + F_{2}(x(t), y(t)) dy = \int_{C} F_{1} dx + F_{2} dy.$$

Final Deduction

Thus:

$$\int_C \mathbf{F} \cdot d\mathbf{r} = \int_C F_1 \, dx + F_2 \, dy$$

where: $-\mathbf{F} = (F_1, F_2)$, $-d\mathbf{r} = (dx, dy)$, - The dot product $\mathbf{F} \cdot d\mathbf{r} = F_1 dx + F_2 dy$.

Interpretation

- The vector line integral becomes an integral of a **1-form**:

$$\mathbf{F} \cdot d\mathbf{r} \quad \leftrightarrow \quad F_1 \, dx + F_2 \, dy.$$

- The dot product turns into a sum of **components times differentials**.

Would you like to go one step further and express this in terms of pullbacks or show how it generalizes to \mathbb{R}^3 ?

Let $U \subseteq \mathbb{R}^n$ be an open set and $\mathbf{F}: U \to \mathbb{R}^n$ a continuous vector field. Suppose $C \subset U$ is a smooth curve parametrized by

$$\mathbf{r} \colon [a,b] \longrightarrow \mathbb{R}^n, \quad t \mapsto \mathbf{r}(t),$$

with nonzero velocity $\mathbf{r}'(t)$. Then the *line integral* of \mathbf{F} along C is defined by

$$\int_C \mathbf{F} \cdot d\mathbf{r} = \int_a^b \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) dt = \int_a^b \sum_{i=1}^n F_i(\mathbf{r}(t)) x_i'(t) dt,$$

where $\mathbf{r}(t) = (x_1(t), ..., x_n(t))$ and $\mathbf{F} = (F_1, ..., F_n)$.

This integral "accumulates" at each infinitesimal step dt the projection of \mathbf{F} onto the tangent vector $\mathbf{r}'(t)$, yielding a single real number that captures the *circulation* or *work* of \mathbf{F} along C.

Example. Take n=2 and $\mathbf{F}(x,y)=\left(-\frac{y}{x^2+y^2},\frac{x}{x^2+y^2}\right)$ on $U=\mathbb{R}^2\setminus\{(0,0)\}$. Let C be the unit circle $x^2+y^2=1$, counterclockwise. Parametrize $\mathbf{r}(t)=(\cos t,\sin t), t\in[0,2\pi]$. Then

$$\mathbf{r}'(t) = (-\sin t, \cos t), \qquad \mathbf{F}(\mathbf{r}(t)) = (-\sin t, \cos t),$$

so

$$\int_C \mathbf{F} \cdot d\mathbf{r} = \int_0^{2\pi} \left(-\sin t, \cos t \right) \cdot \left(-\sin t, \cos t \right) dt = \int_0^{2\pi} \left(\sin^2 t + \cos^2 t \right) dt = 2\pi.$$

Thus the total circulation (or "work") of **F** around the unit circle is 2π .

Problem #1 (Line Integral around Unit Circle). Let $C \subset \mathbb{R}^2$ be the unit circle defined by

$$C: x^2 + y^2 = 1,$$

traversed in the *counterclockwise direction*. Let the vector field $\mathbf{F}: \mathbb{R}^2 \setminus \{(0,0)\} \to \mathbb{R}^2$ be defined by

$$\mathbf{F}(x,y) = \left(\frac{-y}{x^2 + y^2}, \frac{x}{x^2 + y^2}\right).$$

Evaluate the *line integral* of **F** along *C*:

$$\oint_C \mathbf{F} \cdot d\mathbf{r}.$$

Sol.

Consider the vector field:

$$\mathbf{F}(x,y) = \left(\frac{-y}{x^2 + y^2}, \ \frac{x}{x^2 + y^2}\right),$$

and the curve *C* is the unit circle $x^2 + y^2 = 1$, traversed counterclockwise.

Step 1. (Parametrization) Define a function

$$\begin{array}{cccc} \gamma & : & [0,2\pi] & \longrightarrow & \left\{ (x,y) \in \mathbb{R}^2 : x^2 + y^2 = 1 \right\} \\ \theta & \longmapsto & \gamma(\theta) = (\cos\theta, \sin\theta) \end{array}.$$

Here, $\frac{d\gamma}{d\theta} = (-\sin\theta, \cos\theta)$.

Step 2. (Evaluate $F(\gamma(\theta))$) and the dot product) We have

$$\mathbf{F}(\gamma(\theta)) = \mathbf{F}(\cos\theta, \sin\theta) \stackrel{\sin^2\theta + \cos^2\theta = 1}{=} \left(\frac{-\sin\theta}{1}, \frac{\cos\theta}{1} \right) = (-\sin\theta, \cos\theta).$$

and

$$\mathbf{F}(\gamma(\theta)) \cdot \frac{d\gamma}{d\theta} = (-\sin\theta)(-\sin\theta) + (\cos\theta)(\cos\theta) = \sin^2\theta + \cos^2\theta = 1.$$

Step 3. (Integral)

$$\oint_C \mathbf{F} \cdot d\mathbf{r} = \int_0^{2\pi} \mathbf{F}(\gamma(\theta)) \cdot \frac{d\gamma}{d\theta} d\theta = \int_0^{2\pi} 1 d\theta = 2\pi.$$

A Differential Geometry