CSC311 Notes

When to use machine learning vs. other computer tools?

- It's hard to manually code a solution to an issue (eg. recognizing vision, speech)
- Program has to adapt to changing environments (eg. detect spam)
- Program should perform better than humans
- Privacy/fairness (eg. ranking search results)

Machine learning vs statistics

- > Both find patterns in data, draw on similar math bases, same core algorithms
- Stats about helping scientists/policymakers draw conclusions; ML about algorithms, coding the theoretical
- > Stats about interpreting results, math & rigor; ML about predictive performance scalability, autonomous agents

Programs learn from experience E with respect to tasks T, performance measures P, when E grows \Rightarrow P improves.

Supervised Learning: Teaching by giving labelled examples of correct behavior.

Reinforcement Learning: Teaching by letting program interact with simulation, maximize some value

Unsupervised Learning: No labelled examples, finds "interesting" data patterns.

Supervised Learning

Parameter: A variable that affects the learning model's output. "Learning" refers to optimizing the parameters.

Parametric Models: Models that "learn" parameters from data and at test-time, refer back to the "learned" data

- eg. linear regression, which learns optimal weights for a linear equation like $y(x) = \alpha x + \beta$
- eg. decision trees, which build a tree based on parameter values for predicting stuff

Non-Parametric Models: Models without parameters. There's no "learning phase"; all work is done at run-time.

• eg. nearest neighbours

Training Set (\mathcal{D}) : A set of data fed into the program for learning.

- Data consists of examples of correct behavior to emulate: inputs and labels (i.e. correct outputs)
- Labels can also be called targets/responses/outcomes/outputs/classes
- Usually, we collapse any input into a <u>vector</u> of form $x = \begin{bmatrix} x_1 \\ \vdots \\ x_d \end{bmatrix}$ because it makes computation fast.
 - o The vector components are also called **features/covariates**
 - o e.g. Images can be thought of huge matrices of RGB values. We concatenate each row into a superlong vector because we don't need the matrix's extra "spatial" information.
- Regression Algorithm: An algorithm $\mathbb{R}^d \to \mathbb{R}$ that predicts continuous values
- Classification Algorithm: An algorithm $\mathbb{R}^d \to \{\text{discrete outputs}\}\$ that predicts a class
- $\bullet \quad \text{Formally, } \mathcal{D} = \{(\mathbf{x}_1, t_1), \dots, (\mathbf{x}_n, t_n)\}, \text{ where } \mathbf{x}_i \in \mathbb{R}^d \text{ is an input and } t_i \in \mathbb{R} \text{ is the corresponding label}.$

Validation Set: A set of data where for any (\mathbf{x}_i, t_i) pair, each t_i is compared to $y(\mathbf{x}_i)$ using the same model on different hyperparameter values. Used to find the optimal hyperparameter values.

- Hyperparameter: A parameter we set that affects learning, in contrast to parameters an algorithm derives.
- Grid Search: Exhaustively searching for optimal value through a manually-chosen subset of hyperparameters
- Random Search: Testing random hyperparameter configurations using a probability distribution

Test Set: A set of data where for any (\mathbf{x}_i, t_i) pair, t_i is compared to $y(\mathbf{x}_i)$, the model's prediction

- Generalization Error: How often the program correctly predicts data it hasn't seen before (ie. generalizes).
- Test sets are used on the "final" model, unlike the validation set, which tests variations of the same model

Nearest Neighbours

Argmin (argmin
$$f(x)$$
): The argument of $\min_{x \in \mathcal{D}} f(x)$; $f\left(\underset{x \in \mathcal{D}}{\operatorname{argmin}} f(x)\right) = \min_{x \in \mathcal{D}} f(x)$. Same logic with argmax.

Indicator/Identity Function: The function
$$\mathbb{I}(P) = \begin{cases} 1 & P \text{ is true} \\ 0 & P \text{ is false} \end{cases}$$

Metric Space: A set of points with some notion of distance between them defined by a distance function. A generalization of the idea of distance (MAT327).

 L^p Space: In functional analysis, a metric space defined by distance function

$$\|\mathbf{x}\|_{p} = \sqrt[p]{\sum_{i=1}^{d} |x_{i}|^{p}} = \sqrt[p]{|x_{1}|^{p} + |x_{2}|^{p} + \dots + |x_{n}|^{p}}$$

where $\mathbf{x} \in \mathbb{R}^d$. This is also called the *p*-norm.

- On the right is the unit circle in \mathbb{R}^2 under different *p*-values.
- The <mark>2-norm</mark> is the Euclidean norm, how we've understood distance so far: $\|\mathbf{x}\|_2 = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}$

-0.5

-1

-0.5

0.5

Nearest Neighbours (NN): A non-parametric algorithm $y(\mathbf{x})$ that, given a query point \mathbf{x} , returns the label of the training set input "nearest" to x.

Not always the best distance measure. Higher/lower p-values make larger/smaller errors more significant.

<u>Algorithm</u>

- 1) Recall the training set $\mathcal{D} = \{(\mathbf{x}_1, t_1), \dots, (\mathbf{x}_n, t_n)\}$. Find the nearest (\mathbf{x}^*, t^*) to \mathbf{x} with the formula $\mathbf{x}^* = \operatorname*{argmin}_{\mathbf{x}_i \in \{\mathbf{x}_1, \dots, \mathbf{x}_n\}} (\operatorname{distance}(\mathbf{x}_i, \mathbf{x})) = \operatorname*{argmin}_{\mathbf{x}_i \in \{\mathbf{x}_1, \dots, \mathbf{x}_n\}} \|\mathbf{x}_i - \mathbf{x}\|$ In other words, $\|\mathbf{x}^* - \mathbf{x}\| = \min_{\mathbf{x}_i \in \{\mathbf{x}_1, \dots, \mathbf{x}_n\}} \|\mathbf{x}_i - \mathbf{x}\|$. If there are multiple minimums, pick any one of them.
- 2) Output $y(\mathbf{x}^*) = t^*$

Practically, compute $\|\mathbf{x}_i - \mathbf{x}\|^2 = \sum_{i=1}^d (u_i - v_i)^2$ since it saves computing $\sqrt{\dots}$ and squaring preserves argmins.

• Algorithm is the same between regression/classification; only difference is t^* is a scalar/discrete value

- Despite its simplicity, NN is a competitive learning algorithm
- NN is very effective if we know what we should measure distances of, and how we measure distances

Input Space: Set of all possible inputs (vectors) that the learning model accepts; the domain of the learning model's algorithm, in \mathbb{R}^d

Decision Boundaries: The dividing lines in input space between inputs that output different categories.

Voronoi Diagram: Given points $\{p_1, \dots, p_n\}$ in \mathbb{R}^d , a partition of input space into n tiles where each tile contains the closest points to some p_i .

- Helps visualize how NN assigns parts of input space to categories
- Plot \mathbf{x} , see the tile \mathbf{x} falls in, find the other point \mathbf{x}^* in the tile, return t^*

K-Nearest Neighbours (KNN): An extension of NN using odd hyperparameter $k \in \mathbb{N}$. Finds the k nearest neighbours to X and returns a normal/weighted average (regression) or majority classification (classification).

Algorithm

- 1) Find k examples of (\mathbf{x}^*, t^*) with the closest \mathbf{x}^* values to \mathbf{x} using the NN algorithm.
- 2) Output the mean/mode of $\{t_1^*, \dots, t_k^*\}$ with the formulae

Regression (Mean) $y(\mathbf{x}) = \frac{1}{k} \sum_{i=1}^{k} t_i^*$

Classification (Mode) $y(\vec{\mathbf{x}}) = \operatorname*{argmax}_{t^* \in \{t^* \ t^* \}} \sum_{i'=1}^k \mathbb{I}(t_i^* = t_{i'}^*)$

Sma	ıll k
•	Overfitting: Too sensiti

- Overfitting: Too sensitive to noise or mislabelled data, complex ("class noise")
- Captures fine-grained patterns

training set

• If k = 1, training set error is 0

Balanced k

- Nice theoretical properties if $\lim_{n\to\infty}k=\infty \text{ and }\lim_{n\to\infty}\frac{k}{n}=0 \text{ with }$ k=f(n) for some function f
- Generally, choose $f(n) < \sqrt{n}$
- Can be chosen by validation sets

Large k

- <u>Underfitting:</u> Simple, can't show important regularities
- Stable predictions by averaging examples
- If k = n, KNN gives the same output for any input

Validation, Testing, and KNN

- Use a validation set to tune for *k*, then a testing set at the end to test everything
- As *k* grows, training error increases, but this is fine (don't expect 100% accuracy)

validation

test set

• What matters is performing just as well on training and testing sets; generalizing

k - Number of Nearest Neighbors

Pitfalls of Nearest Neighbours

Curse of Dimensionality: Various phenomena with data in higher dimensions, occurring usually because volume of space increases very fast with increasing dimensions

- e.g. Sample points from *n*-dimensional sphere. As *n* increases, distance between points get **farther** and more uniform (provable using expected value and covariance)
- Thus, common distances become less meaningful; using Euclidean norm may become problematic.
- Luckily, some data has low intrinsic dimension: it lies on or near a low-dimensional manifold, so the volume issues are less pronounced
 - o Manifold: Informally, a lower-dimensional surface/object in a higher dimension

Normalization: Issues regarding units – higher ranges of absolute numbers in a vector contributes more to distance than smaller ranges of numbers.

- e.g. In a dataset where $\mathbf{x} = \begin{bmatrix} \text{age} \\ \text{income} \end{bmatrix}$, age ranges from 0 to 100, income ranges from 0 to 500,000. Income will influence distance much more than age.
- Normalize each vector by setting the boundaries to 0 and 1 by applying this on each value:

$$x_i \leftarrow \frac{x_i - \mu}{\sigma}$$

where $\mu = \text{mean of all } x_i, \sigma = \text{standard deviation of all } x_i.$

• However, there are also cases where we don't want to normalize!

Computational Cost: In machine learning, which requires large amounts of data, there are very high standards for efficient running-times of algorithms/memory storage

- Naïve implementations of NN have running-time O(nd), with n data points, d dimensions, which then must be sorted, which is usually $O(n \log n)$. This algorithm is run for each query, too, which is expensive.
- A lot of work has been done to make NN more efficient.

Decision Trees

Entropy: In information theory, a number describing information/surprise/uncertainty in a random variable (RV).

- Symbol is H, capital letter of $eta(\eta)$
- Unit is a bit, because it's commonly used in computers storing/compressing/encrypting information
- High Entropy: Variable distribution is uniform; less predictable; more "info"
 - e.g. A fair coin flip has entropy of 1 bit
- Low Entropy: Variable distribution is concentrated, more predictable; less "info"; 0 means 100% predictability e.g. A biased coin flip of 8/9 heads, 1/9 tails has an entropy of -1/2 bits
- Most commonly applies to discrete RVs, but can be extended to continuous RVs in differential entropy

$$H(X) = -\sum_{x \in X} p_X(x) \log_2 p_X(x) \qquad \qquad H[Y|X = x] = -\sum_{y \in Y} p_{Y|X}(y|x) \log_2 p_{Y|X}(y|x) \\ H(X,Y) = -\sum_{x \in X} \sum_{y \in Y} p_{X,Y}(x,y) \log_2 p_{X,Y}(x,y) \qquad \qquad \mathbb{E}[H[Y|X]] = -\sum_{x \in X} \sum_{y \in Y} p_{X,Y}(x,y) \log_2 p_{Y|X}(y|x)$$

$$\begin{split} H[Y|X=x] &= -\sum_{y \in Y} p_{Y|X}(y|x) \log_2 p_{Y|X}(y|x) \\ &\mathbb{E}\big[H[Y|X]\big] = -\sum_{x \in X} \sum_{y \in Y} p_{X,Y}(x,y) \log_2 p_{Y|X}(y|x) \end{split}$$

$$H(X) \geq 0 \quad \left| \begin{array}{c} H(X|X) = 0 \end{array} \right| \begin{array}{c} H(X|Y) = H(X) \\ \text{for independent } X,Y \end{array} \right| \begin{array}{c} H(X,Y) = H(X|Y) + H(Y) \end{array} \right| \quad H(X|Y) \leq H(X)$$

$$\mid H(X,Y) = H(X|Y) + H(Y) \mid H(X|Y) \le H(X)$$

Information Gain (IG(Y|X)): How much more certain we are about Y's result from knowing X.

$$IG(Y|X) = H(Y) - H(Y|X)$$

- AKA how informative X is to Y, or the loss of entropy/uncertainty in Y due to knowing X
- X is completely informative: IG(Y|X) = H(Y)
- X is completely uninformative: IG(Y|X) = 0

Greedy Heuristic: A type of approach/strategy that involves always choosing the most locally-optimal choice (ie. what looks best in the moment)

Loss (\mathcal{L}): Refers to a loss function, that returns a non-negative scalar quantifying "error levels". Should be minimized

- Objective Function: In optimization, a function that needs to be minimized.
- Cost Function: Usually averaged loss over \mathcal{D} plus the regularizer function (see later). No strict definition, often interchangeable with loss. (sometimes, omit $\frac{1}{n}$ as it's a scalar multiple)

$$\mathcal{J}(\mathcal{D}) = \frac{1}{n} \sum_{i=1}^n \mathcal{L}(y(\mathbf{x}_i), t_i)$$

Mean Squared Error: Average squared difference between a model output $y(\mathbf{x})$ and training target t.

$$\mathcal{J}(\mathcal{D}) = \frac{1}{n} \sum_{i=1}^n (y(\mathbf{x}_i) - t_i)^2 \,, \qquad \mathcal{L}(y(\mathbf{x}), t) = (y(\mathbf{x}) - t)^2 \,$$

Decision Tree: A parametric model based on a tree structure where features are split based on their value.

- Decision boundaries are axis-aligned lines
- Internal nodes are booleans about feature values
- Leaf nodes are outputs (ie. predictions)
- are tree height, branches per node, Hyperparameters number of features, nodes, information gain threshold, etc.

<u>Algorithm – Learning</u>

- 1) Start with no nodes.
- 2) Use a greedy heuristic to pick features and a split that minimizes loss.
 - a. Regression Tree: Minimize squared error in the divided regions per split
 - b. Classification Tree: Maximize information gain per split

For splits with the same loss, the program picks splits that maximize the decision boundary's margins – i.e. distance to points on both sides

3) Stop subdividing if all points in regions have same classification, no points left, or hyperparameters say so

<u>Algorithm - Predicting</u>

- 4) Let R be a region of input space corresponding to an output. Find the R associated with new point \mathbf{x} . Let $\{(\mathbf{x}_1,t_1),\ldots,(\mathbf{x}_k,t_k)\}$ be the training points where $x_i\in R$
 - a. Regression Tree: Since the output is continuous, we output the mean of all t_i
 - b. Classification Tree: Since the output is discrete, we output the mode of all t_i

Small Tree	Balanced Tree	Big Tree
• <u>Underfitting:</u> Simple,	• <u>"Occam's Razor":</u> Find the simplest	Overfitting: Complex, incorporates
can't handle important	hypothesis that fits observations	meaningless noise into decisions
distinctions in data	Ideally, smaller trees with	Difficult for humans to interpret
	informative nodes near the root	Computationally inefficient
		(redundant, nonsense attributes)

Pitfalls of Decision Trees

- As you descend paths in a decision tree, training set data is further subdivided and exponentially decreases
- Greedy algorithms do not necessarily yield the global optimum

KNN	Decision Trees
One hyperparameter	➤ Faster at test-time
Can choose what to measure distance	Easier to interpret for a non-professional
of, how to measure distance	Easier for discrete features, missing values, poorly-scaled data

Bias-Variance Decomposition

Generalization: Ability of models to predict from unseen examples (in the same distribution as training data)

• Models can overfit and underfit simultaneously. Simple models underfit more, complex models overfit more.

Bias-Variance Decomposition (BVD): A way to quantify underfitting and overfitting

• Data Generating Distribution $(p_{X,T}(\mathbf{x},t))$: A hypothetical probability distribution function from which we assume all training/test data \mathcal{D} originates. We assume data is independent and identically distributed (i.i.d.).

- 1) Create a training set \mathcal{D} using samples from $p_{X,T}(\mathbf{x},t)$
- 2) Pick a fixed query point \mathbf{x} in \mathcal{D} , find output $Y = y(\mathbf{x})$
- 3) Sample a T value from $p_{T|X}(t|\mathbf{x})$, the hypothetical probability distribution of outputs, given an input
- 4) Compute loss using $\mathcal{L}(Y,T)$
- 5) By repeating steps 2-5 enough times, we find the expected loss, $\mathbb{E}[\mathcal{L}(Y,T)|X]$. We want to minimize this value to reduce bias and variance in our model.

Y and T are both random variables (RV), but when we find \mathbb{E} , we treat one of Y and T as a RV at a time and the other as a constant.

BVD of Mean Squared Error

Recall, MSE's loss function is $\mathcal{L}(Y,T) = (Y-T)^2$

Treating T as RV, Y as arbitrary output	Treating Y as RV, T as arbitrary output
$\mathbb{E}[\mathcal{L}(Y,T) X] = \mathbb{E}[(Y-T)^2 X]$	$\mathbb{E}[\mathcal{L}(Y,T) X]$
$= \mathbb{E}[Y^2 - 2YT + T^2 X]$	$=\mathbb{E}[(Y - \mathbb{E}[T X])^2] + \text{Var}[T X]$ (from result on the left)
$= \mathbb{E}[Y^2] - 2Y \mathbb{E}[T X] + \mathbb{E}[T^2 X]$	$= \mathbb{E}[(Y - Y^*)^2 X] + \operatorname{Var}[T X]$
$= \mathbb{E}[Y^2] - 2Y\mathbb{E}[T X] + \mathbb{E}[T X]^2 + \operatorname{Var}[T X]$	$=Y^{*2} - 2Y^*\mathbb{E}[Y X] + \mathbb{E}[Y^2 X] + \text{Var}[T X]$
$= \mathbb{E}[(Y - \mathbb{E}[T X])^2] + \operatorname{Var}[T X]$	$=Y^{*2} - 2Y^*\mathbb{E}[Y X] + \mathbb{E}[Y X]^2 + \text{Var}[Y X] + \text{Var}[T X]$
To minimize $(Y - \mathbb{E}[T X])^2$, set $Y = \mathbb{E}[T X] = Y^*$; predict the expected output of a sample, the Bayes optimal decision.	$=\underbrace{(Y^* - E[Y X])^2}_{\text{bias}} + \underbrace{\text{Var}[Y X]}_{\text{variance}} + \underbrace{\text{Var}[T X]}_{\text{Bayes error}}$
The second term is Bayes Error, the inherent unpredictability/noise of T . This is the best error algorithms can hope to get.	

Bayes Optimal: An algorithm that makes Bayes optimal decisions, ones that minimize expected loss; any error in this algorithm is due to Bayes error and it cannot be further improved.

Bias-Variance Trade-off: Idea that by tuning parameters/hyperparameters, one can increase bias but at the cost of decreasing variance and vice versa.

Bias: Model accuracy, related to underfitting	Model can't learn all patterns in data	High bias
	Model has enough data for stable estimates	Low variance
Variance: Model variability, related to overfitting	Model learns patterns in data	Low bias
	Model incorporates noise/quirks of sampled data	High variance

Bagging/Bootstrap Aggregation

Ensemble Method: Using the majority prediction of multiple learning algorithms to get a prediction

• Small ensembles can be better than a single good model

Bagging/Bootstrap Aggregation: A type of ensemble method where n training sets are "sampled" from $p_{X,T}(\mathbf{x},t)$, a model is trained on each set, and each prediction $y_i(\mathbf{x})$ (for the model on the i-th set) is averaged/compared.

Regression Classification (Binary) $y(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^{n} y_i(\mathbf{x})$ $y(\mathbf{x}) = \mathbb{I}\left(\frac{1}{n} \sum_{i=1}^{n} y_i(\mathbf{x}) > 0.5\right)$

- In reality, $p_{X,T}(\mathbf{x},t)$ is often expensive/impossible to sample from, and we only have one training set \mathcal{D} .
- Thus, assume data in \mathcal{D} is independent, use $p_{\mathcal{D}}(\mathbf{x},t)$ as a proxy for $p_{X,T}(\mathbf{x},t)$, create n datasets using resamples/bootstrap samples drawn with replacement from $p_{\mathcal{D}}(\mathbf{x},t)$.
- $\bullet \quad \text{ As } |\mathcal{D}| \to \infty, p_{\mathcal{D}}(\mathbf{x},t) \to p_{X,T}(\mathbf{x},t)$

Bias is the same (as predictions are same)	<u>Variance</u> is reduced (as we average independent predictions)
$\mathbb{E}[y(\mathbf{x})] = \mathbb{E}[y_i(\mathbf{x})]$	$\operatorname{Var}[y(\mathbf{x})] = \operatorname{Var}\left[\frac{1}{n}\sum_{i=1}^{n}y_{i}(\mathbf{x})\right] = \frac{1}{n^{2}}\sum_{i=1}^{n}\operatorname{Var}[y_{i}(\mathbf{x})] = \frac{1}{n}\operatorname{Var}[y_{i}(\mathbf{x})]$

Pitfalls of Bagging:

- Resampled data might not be independent! We thus try reducing correlation between resampled data sets by introducing variability
 - o eg. Average over multiple algorithms, multiple configurations of an algorithm
 - o eg. In random forests (ie. ensemble of decision trees), choose a subset of features for each tree, have that tree only split according to those features
- Does not reduce bias (at least in the case of squared error)
- Equal weights to ensemble members may not be ideal weighted ensembling is often better for radically-different members

Linear Regression

Partial Derivative: Of function $f: \mathbb{R}^n \to \mathbb{R}$, the derivative with respect to (w.r.t.) a variable

- For instance, in $\frac{\partial f}{\partial x} = \frac{\partial}{\partial x} f$, differentiate f w.r.t. x, treating all other variables as constants.
- $\bullet \quad \text{ As a notational shorthand, } \frac{\partial f}{\partial \mathbf{x}} = \frac{\partial f}{\partial (x_1, \dots, x_n)} = \begin{bmatrix} \frac{\partial f}{\partial x_1} & \cdots & \frac{\partial f}{\partial x_n} \end{bmatrix}$
- eg. $\frac{\partial}{\partial x}(x^2y + xy^2 + y) = 2yx + y^2$

Gradient (∇): Of function $f: \mathbb{R}^n \to \mathbb{R}$, vector $\left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \dots, \frac{\partial f}{\partial x_n}\right) \in \mathbb{R}^n$.

- eg. $\nabla(x^2y + xy^2 + y) = (2yx + y^2, x^2 + 2xy + 1)$
- $\bullet \quad \text{ If } \tfrac{\partial}{\partial x_i} f(x) = \alpha_i, \text{ then } \nabla f = (\alpha_1, \dots, \alpha_n) = \mathbf{\alpha}$
- If A is a matrix and \mathbf{x}, b are vectors, then $\frac{\partial}{\partial \mathbf{x}}(A\mathbf{x} + b) = A$

Convex Function: Functions where f'' > 0 or f'' < 0. AKA the line segment between any x_0, x_1 is above/below f(x),

$$f\big((1-\lambda)x_0+\lambda x_1\big) \leq (1-\lambda)f(x_0) + \lambda f(x_1)$$

• The local maximum/minimum of a convex function is the global maximum/minimum

Vectorization: The practice of turning loops in code to vector/matrix operations.

- ➤ Simpler & readable code no dummy variables/indices
- > Computationally faster linear algebra libraries are highly-optimized, matrix multiplication is very fast, parallelizable and good for GPU, cut down on slowness of Python interpreter overhead
 - Why use Python vs. *C/C++* if performance matters? Because Python's quicker to write code in, it's better for prototyping, quickly experimenting, & communicating algorithms to others. Most code is done in libraries compiled in other languages too. *C/C++* is good for optimizing algorithms.

f(x)

 $(1-\lambda)x_0$

 $(1-\lambda)f(x_0) + \lambda f(x_1)$

Most "math" in of a machine learning algorithm is just matrices/vectors anyways

Linear Regression: A parametric regression model that finds the best linear relationship between two variables

• Involves many modular components very typical of machine learning:

o Model describes variable relationships

o Loss function quantifies how bad a fit to data is

o Optimization Algorithm minimizes the loss function

o Regularizer quantifies our preference for candidate models (optional)

• Goal is to learn a function y such that $\forall (\mathbf{x}, t) \in \mathcal{D}, t \approx y(\mathbf{x})$

Model: Let $\mathbf{x} \in \mathbb{R}^D$ be input, $y(\mathbf{x})$ be output, $\mathbf{w} \in \mathbb{R}^D$ be weight, $b \in \mathbb{R}$ be bias/intercept. Parameters are b and \mathbf{w} .

$$y(\mathbf{x}) = b + \sum_{d=1}^D (w_d x_d) = b + \mathbf{w} \cdot \mathbf{x}$$

Vectorization in Linear Regression

For N training set vectors of dimension D.

Store all training set vectors into a design matrix of size $\mathbb{R}^{N \times D}$	$X = \begin{bmatrix} \overrightarrow{x_1}^{\mathrm{T}} \\ \vdots \\ \overrightarrow{x_T}^{\mathrm{T}} \end{bmatrix} = \begin{bmatrix} (x_1)_1 & \cdots & (x_1)_D \\ \vdots & \ddots & \vdots \\ (x_N)_1 & \cdots & (x_N)_D \end{bmatrix}$	$X\mathbf{w} + \mathbf{b} = \begin{bmatrix} (x_1)_1 & \cdots & (x_1)_D \\ \vdots & \ddots & \vdots \\ (x_N)_1 & \cdots & (x_N)_D \end{bmatrix} \begin{bmatrix} w_1 \\ \vdots \\ w_D \end{bmatrix} + \begin{bmatrix} b \\ \vdots \\ b \end{bmatrix}$
Store all outputs into a target vector of size \mathbb{R}^N	$\mathbf{t} = (t_1, \dots, t_N)$	$= \begin{bmatrix} \mathbf{w} \cdot \mathbf{x}_1 + b \\ \vdots \\ \mathbf{w} \cdot \mathbf{x}_N + b \end{bmatrix}$
Store weights for each x_d as a vector of size \mathbb{R}^D	$\mathbf{w} = (w_1, \dots, w_D)$	$egin{bmatrix} oxtdot{\mathbf{w}} \cdot \mathbf{x}_N + b oldsymbol{eta} \\ oxdot{y}(\mathbf{x}_1) oxdot{t}_1 oxdot{t}_2 oxdot{t}_1 oxdot{t}_2 oxdot{t}_1 oxdot{t}_2 oxdot{t}$
Store bias as vector in \mathbb{R}^N	$\mathbf{b} = (b, \dots, b)$	$= \begin{bmatrix} y(\mathbf{x}_1) \\ \vdots \\ y(\mathbf{x}_N) \end{bmatrix} \approx \mathbf{t} = \begin{bmatrix} t_1 \\ \vdots \\ t_N \end{bmatrix}$

We can simplify X**w** + **b** into X**w** by cramming value b into X and **w**. We could also just label b as w_0 .

$$X = \begin{bmatrix} 1 & \mathbf{x}_1^{\mathrm{T}} \\ \vdots & \vdots \\ 1 & \mathbf{x}_N^{\mathrm{T}} \end{bmatrix} = \begin{bmatrix} 1 & (x_1)_1 & \cdots & (x_1)_D \\ \vdots & \vdots & \ddots & \vdots \\ 1 & (x_N)_1 & \cdots & (x_N)_D \end{bmatrix}, \mathbf{w} = \begin{bmatrix} b \\ w_1 \\ \vdots \\ w_D \end{bmatrix}, \text{ then } X\mathbf{w} = \begin{bmatrix} 1 & (x_1)_1 & \cdots & (x_1)_D \\ \vdots & \vdots & \ddots & \vdots \\ 1 & (x_N)_1 & \cdots & (x_N)_D \end{bmatrix} \begin{bmatrix} b \\ w_1 \\ \vdots \\ w_D \end{bmatrix} = \begin{bmatrix} \mathbf{w} \cdot \mathbf{x}_1 + b \\ \vdots \\ \mathbf{w} \cdot \mathbf{x}_N + b \end{bmatrix}$$

<u>Loss/Cost Function</u>: Use a modified squared error loss function with $\frac{1}{2}$ to simplify derivative calculations (see below).

$$\begin{split} \mathcal{L}(y(\mathbf{x}),t) &= \frac{1}{2}(y(\mathbf{x})-t)^2 \\ \mathcal{J}(y(\mathbf{x}),t) &= \frac{1}{N} \sum_{n=1}^{N} \mathcal{L}(y(\mathbf{x}_n),t_n) \\ &= \frac{1}{2N} \sum_{n=1}^{N} (y(\mathbf{x}_n)-t_n)^2 \\ &= \frac{1}{2N} [(y(\mathbf{x}_1)-t_1)^2 + \dots + (y(\mathbf{x}_N)-t_N)^2] \end{split} \qquad \Rightarrow = \frac{1}{2N} \left\| \begin{bmatrix} y(\mathbf{x}_1) \\ \vdots \\ y(\mathbf{x}_N) \end{bmatrix} - \begin{bmatrix} t_1 \\ \vdots \\ y(\mathbf{x}_N) \end{bmatrix} \right\|^2 \\ &= \frac{1}{2N} \left\| \begin{bmatrix} \mathbf{w} \cdot \mathbf{x}_1 + b \\ \vdots \\ \mathbf{w} \cdot \mathbf{x}_N + b \end{bmatrix} - \mathbf{t} \right\|^2 \\ &= \frac{1}{2N} \|X\mathbf{w} - \mathbf{t}\|^2 \end{split}$$

We then write \mathcal{J} as a function of its weights and bias, $\mathcal{J}(\mathbf{w})$, to make it suitable for optimizing our parameter, \mathbf{w} .

Optimization Algorithm: Find $\operatorname{argmin}_{\mathbf{w} \in \mathbb{R}^D} \mathcal{J}(\mathbf{w})$, the **w** that minimizes a non-negative $\mathcal{J}(\mathbf{w})$.

 \triangleright Direct Solution: Find critical point! Set $\nabla \mathcal{J}(\mathbf{w}) = 0$, solve for \mathbf{w} (possible in linear regression, rarely possible elsewhere)

$$\begin{split} \nabla \mathcal{J}(\mathbf{w}) &= \frac{1}{N} (X^{\mathrm{T}} X \mathbf{w} - X^{\mathrm{T}} \mathbf{t}) = 0 \\ & \div \mathbf{w} = (X^{\mathrm{T}} X)^{-1} X^{\mathrm{T}} \mathbf{t} \end{split}$$

- > Iterative Solution: Repeatedly apply an update rule that gradually takes us closer to the solution
 - o Iterative Algorithm: An algorithm that is repeatedly updates a variable until it meets criteria
 - o (Batch) Gradient Descent: Iterative algorithm that adjusts weights in direction of steepest descent
 - **Direction of Steepest Ascent:** The direction of ∇f
 - Direction of Steepest Descent: The direction of $-\nabla f$

$$\begin{split} \mathbf{w} &\leftarrow \mathbf{w} - \alpha \nabla \mathcal{J}(\mathbf{w}) \\ &= \mathbf{w} - \frac{\alpha}{N} {\sum_{i=1}^{N}} (y(\mathbf{x}_n) - \mathbf{t}_n) \, \mathbf{x}_n \end{split}$$

where $\alpha = \text{step size/learning rate}$, a hyperparameter.

- Values of α are usually very small (eg. 0.01)
- Need smaller α for total loss (N times as small) vs. average loss.
- Use gradient descent as it's versatile, often easier than direct solving, computationally efficient
 - eg. In linear regression, for $\mathbf{w}, \mathbf{x} \in \mathbb{R}^D$ and N samples of \mathbf{x} , the direct solution of $\mathbf{w} = (X^{\mathrm{T}}X)^{-1}X^{\mathrm{T}}\mathbf{t}$ requires matrix inversion, which is $\mathcal{O}(D^3)$
 - eg. Gradient descent cost is O(ND) and can be even less.

Feature Mapping: Using linear regression on a non-linear relationship by transforming input space using feature mapping ψ : $\mathbb{R}^{d_1} \to \mathbb{R}^{d_2}$ into something linear, comparing transformed inputs with outputs.

- Polynomial Feature Mapping: Fitting data with $y(x) = \sum_{n=0}^N w_n x^n = w_0 + w_1 x + w_2 x^2 + \dots + w_N x^N$
 - $\circ \quad \text{Here, we have } \psi \colon \mathbb{R} \to \mathbb{R}^N \text{ by } \psi(x) = (x^0, \dots, x^N), \text{so } y(\mathbf{x}) = \mathbf{w} \cdot \psi(\mathbf{x}).$
 - o N is a hyperparameter. N=1 is just regular linear regression.

Optimization - Derivation of direct solution, linear regression

Since $\nabla \mathcal{J}(\mathbf{w}) = \left(\frac{\partial}{\partial w_1} \mathcal{J}(\mathbf{w}), \dots, \frac{\partial}{\partial w_D} \mathcal{J}(\mathbf{w})\right)$, we will consider the derivative w.r.t. a component.

$$\begin{split} \frac{\partial}{\partial w_d} \mathcal{J}(\mathbf{w}) &= \frac{\partial}{\partial w_d} \left(\frac{1}{2N} \| \mathbf{X} \mathbf{w} - \mathbf{t} \|^2 \right) \\ &= \frac{1}{2N} \frac{\partial}{\partial w_d} \left(\left\| \begin{bmatrix} \mathbf{w} \cdot \mathbf{x}_1 + b \\ \vdots \\ \mathbf{w} \cdot \mathbf{x}_N + b \end{bmatrix} - \begin{bmatrix} t_1 \\ \vdots \\ t_N \end{bmatrix} \right\|^2 \right) \\ &= \frac{1}{2N} \frac{\partial}{\partial w_d} \left(\sqrt{\sum_{n=1}^N [(\mathbf{w} \cdot \mathbf{x}_n + b) - t_n]^2} \right)^2 \\ &= \frac{1}{2N} \frac{\partial}{\partial w_d} \sum_{n=1}^N [(\mathbf{w} \cdot \mathbf{x}_n + b) - t_n]^2 \\ &= \frac{1}{2N} \sum_{n=1}^N 2[(\mathbf{w} \cdot \mathbf{x}_n + b) - t_n] \frac{\partial}{\partial w_d} [\mathbf{w} \cdot \mathbf{x}_n + b - t_n] \text{ (chain rule works the same)} \\ &= \frac{1}{N} \sum_{n=1}^N [(\mathbf{w} \cdot \mathbf{x}_n + b) - t_n] \frac{\partial}{\partial w_d} [(w_1(x_n)_1 + \dots + w_d(x_n)_d + \dots + w_D(x_n)_D) + b - t_n] \\ &= \frac{1}{N} \sum_{n=1}^N [(\mathbf{w} \cdot \mathbf{x}_n + b) - t_n] (x_n)_d \text{ (= iterative solution)} \\ &= \frac{1}{N} \sum_{n=1}^N (\mathbf{w} \cdot \mathbf{x}_n + b) (x_n)_d - \frac{1}{N} \sum_{n=1}^N t_n(x_n)_d \\ &: \nabla \mathcal{J}(\mathbf{w}) = \begin{bmatrix} \frac{\partial}{\partial w_1} \mathcal{J}(\mathbf{w}) \\ \vdots \\ \frac{\partial}{\partial w_D} \mathcal{J}(\mathbf{w}) \end{bmatrix} = \begin{bmatrix} \frac{1}{N} \sum_{n=1}^N (\mathbf{w} \cdot \mathbf{x}_n + b) (x_n)_1 \\ \vdots \\ \frac{1}{N} \sum_{n=1}^N t_n(\mathbf{w} \cdot \mathbf{x}_n + b) (x_n)_D \end{bmatrix} - \begin{bmatrix} \frac{1}{N} \sum_{n=1}^N t_n(x_n)_1 \\ \vdots \\ \frac{1}{N} \sum_{n=1}^N t_n(x_n)_D \end{bmatrix} = \frac{1}{N} \sum_{n=1}^N (\mathbf{w} \cdot \mathbf{x}_n + b) \overline{x}_n - \frac{1}{N} \sum_{n=1}^N t_n \overline{x}_n \end{bmatrix} \\ &= \frac{1}{N} \sum_{n=1}^N (\mathbf{w} \cdot \mathbf{x}_n + b) \overline{x}_n - \frac{1}{N} \sum_{n=1}^N t_n \overline{x}_n \end{bmatrix} \\ &= \frac{1}{N} \sum_{n=1}^N (\mathbf{w} \cdot \mathbf{x}_n + b) \overline{x}_n - \frac{1}{N} \sum_{n=1}^N t_n \overline{x}_n \end{bmatrix} \\ &= \frac{1}{N} \sum_{n=1}^N (\mathbf{w} \cdot \mathbf{x}_n + b) \overline{x}_n - \frac{1}{N} \sum_{n=1}^N t_n \overline{x}_n \end{bmatrix} \\ &= \frac{1}{N} \sum_{n=1}^N (\mathbf{w} \cdot \mathbf{x}_n + b) \overline{x}_n - \frac{1}{N} \sum_{n=1}^N t_n \overline{x}_n \end{bmatrix}$$

We then vectorize by turning all summations into matrices. Make sure to check dimensions for matrix multiplication!

$$\frac{1}{N} \sum_{n=1}^{N} (\mathbf{w} \cdot \mathbf{x}_n + b) \overrightarrow{x}_n = \frac{1}{N} \begin{bmatrix} \sum_{n=1}^{N} (\mathbf{w} \cdot \mathbf{x}_n + b)(x_n)_1 \\ \vdots \\ \sum_{n=1}^{N} (\mathbf{w} \cdot \mathbf{x}_n + b)(x_n)_D \end{bmatrix}$$
 (expand outer vector $\mathbf{x}_n = \begin{bmatrix} (x_n)_1 \\ \vdots \\ (x_n)_D \end{bmatrix}$)
$$= \frac{1}{N} \begin{bmatrix} (\mathbf{w} \cdot \mathbf{x}_1 + b)(x_1)_1 + \dots + (\mathbf{w} \cdot \mathbf{x}_N + b)(x_N)_1 \\ \vdots \\ (\mathbf{w} \cdot \mathbf{x}_1 + b)(x_1)_D + \dots + (\mathbf{w} \cdot \mathbf{x}_N + b)(x_N)_D \end{bmatrix}$$
 (expand summation)
$$= \frac{1}{N} \begin{bmatrix} (x_1)_1 & \dots & (x_N)_1 \\ \vdots & \ddots & \vdots \\ (x_1)_D & \dots & (x_N)_D \end{bmatrix} \begin{bmatrix} \mathbf{w} \cdot \mathbf{x}_1 + b \\ \vdots \\ \mathbf{w} \cdot \mathbf{x}_N + b \end{bmatrix}$$
 (factor into matrices)
$$= \frac{1}{N} [\mathbf{x}_1 & \dots & \mathbf{x}_N] X \mathbf{w}$$

$$= \frac{1}{N} X^T X \mathbf{w}$$

$$\frac{1}{N} \sum_{n=1}^{N} t_n \mathbf{x}_n = \frac{1}{N} \begin{bmatrix} \sum_{n=1}^{N} t_n(x_n)_1 \\ \vdots \\ \sum_{n=1}^{N} t_n(x_n)_D \end{bmatrix} = \frac{1}{N} \begin{bmatrix} t_1(x_1)_1 + \dots + t_N(x_N)_1 \\ \vdots \\ t_1(x_1)_D + \dots + t_N(x_N)_D \end{bmatrix} = \frac{1}{N} \begin{bmatrix} (x_1)_1 & \dots & (x_N)_D \\ \vdots & \ddots & \vdots \\ (x_1)_D & \dots & (x_N)_D \end{bmatrix} \begin{bmatrix} t_1 \\ \vdots \\ t_N \end{bmatrix} = \frac{1}{N} X^T \mathbf{t}$$

From which you can conclude

$$\begin{split} :: \nabla \mathcal{J}(\mathbf{w}) &= \frac{1}{N} \sum_{n=1}^{N} (\mathbf{w} \cdot \mathbf{x}_n + b) \mathbf{x}_n - \frac{1}{N} \sum_{n=1}^{N} t_n \mathbf{x}_n \\ &= \frac{1}{N} (X^{\mathrm{T}} X \mathbf{w} - X^{\mathrm{T}} \mathbf{t}) = 0 \\ X^{\mathrm{T}} X \mathbf{w} &= X^{\mathrm{T}} \mathbf{t} \\ :: \mathbf{w} &= (X^{\mathrm{T}} X)^{-1} X^{\mathrm{T}} \mathbf{t} \end{split}$$

For future reference, here're useful formulas, which you can find more of here and here:

Squared norm to vector dot product	$\ \mathbf{x}\ ^2 = \mathbf{x}^{\mathrm{T}} \cdot \mathbf{x} = \mathbf{x} \cdot \mathbf{x}^T$
Derivative product of functions of <i>x</i>	$\frac{\partial}{\partial \mathbf{x}} f(\mathbf{x})^{\mathrm{T}} g(\mathbf{x}) = f(\mathbf{x})^{\mathrm{T}} \frac{\partial g}{\partial \mathbf{x}} + g(\mathbf{x})^{\mathrm{T}} \frac{\partial f}{\partial \mathbf{x}} \text{ for } f, g : \mathbb{R}^n \to \mathbb{R}^n$
Quadratic form	$\mathbf{x}^{\mathrm{T}}A\mathbf{x}$ where A is a symmetric matrix (ie. $A_{i,j}=A_{j,i}$). $\frac{\partial}{\partial \mathbf{x}}\mathbf{x}^{\mathrm{T}}A\mathbf{x}=2\mathbf{x}^{\mathrm{T}}A$
Matrix product to summation	$(XY)_{i,k} = \sum_{j=1}^{n} X_{i,j} Y_{j,k}$

Here's another direct solution. Note some differing notation, and that I left out b because leaving it in is annoying.

$$\begin{split} \mathcal{J}(\mathbf{w}) &= \frac{1}{2N} \sum_{n=1}^{N} (\mathbf{w} \cdot \mathbf{x}_n - t_n)^2 \\ &= \frac{1}{2N} \sum_{n=1}^{N} \left(\sum_{d=1}^{D} (w_d(x_n)_d) - t_n \right)^2 \\ &\frac{\partial}{\partial w_{d^*}} \mathcal{J}(\mathbf{w}) = \frac{1}{2N} \sum_{n=1}^{N} \left[2 \left(\sum_{d=1}^{D} (w_d(x_n)_d) - t_n \right) \frac{\partial}{\partial w_{d^*}} \left(\sum_{d=1}^{D} (w_d(x_n)_d) - t_n \right) \right] \text{ (where } d^* \in \{1, \dots, D\}) \\ &= \frac{1}{N} \sum_{n=1}^{N} \left(\sum_{d=1}^{D} (w_d(x_n)_d) - t_n \right) (x_n)_{d^*} \left(= \frac{1}{N} \sum_{n=1}^{N} (\overrightarrow{w} \cdot \overrightarrow{x_n} - t_n) (x_n)_{d^*}, \text{iterative solution} \right) \\ &= \frac{1}{N} \sum_{n=1}^{N} \left(\sum_{d=1}^{D} w_d(x_n)_d \right) (x_n)_{d^*} - \frac{1}{N} \sum_{n=1}^{N} t_n (x_n)_{d^*} \\ &= \frac{1}{N} \sum_{d=1}^{D} \left(\sum_{n=1}^{N} (x_{d^*}^{\mathsf{T}})_n (x_n)_d \right) w_d - \frac{1}{N} \sum_{n=1}^{N} (x_{d^*}^{\mathsf{T}})_n t_n \\ &= \sum_{d=1}^{D} A_{d^*,d} w_d - \mathbf{c}_{d^*} \\ &A_{d^*,d} &= \frac{1}{N} \sum_{n=1}^{N} (x_{d^*}^{\mathsf{T}})_n (x_n)_d = \frac{1}{N} \sum_{n=1}^{N} X_{d^*,n}^{\mathsf{T}} X_{n,d} \\ &\Rightarrow \mathbf{c}_{d^*} &= \frac{1}{N} X^{\mathsf{T}} X \end{aligned} \Rightarrow \mathbf{c} &= \frac{1}{N} X^{\mathsf{T}} X$$

From which you can conclude

$$\begin{array}{l} : \nabla \mathcal{J}(\mathbf{w}) = \begin{bmatrix} \sum\limits_{d=1}^{D} A_{1,d} w_d \\ \vdots \\ \sum\limits_{d=1}^{D} A_{N,d} w_d \end{bmatrix} - \begin{bmatrix} c_1 \\ \vdots \\ c_D \end{bmatrix} \\ = \begin{bmatrix} A_{1,1} & \cdots & A_{1,D} \\ \vdots & \ddots & \vdots \\ A_{N,1} & \cdots & A_{N,D} \end{bmatrix} \begin{bmatrix} \mathbf{w}_1 \\ \vdots \\ \mathbf{w}_D \end{bmatrix} - \mathbf{c} \\ = A\mathbf{w} - \mathbf{c} = 0 \\ \vdots \\ \mathbf{w} = A^{-1}\mathbf{c} \\ = \frac{1}{N} (X^{\mathrm{T}} X)^{-1} X^{\mathrm{T}} \mathbf{t} \end{array}$$

You can also obtain the solution by working directly with matrix derivatives if you're comfortable.

$$\mathcal{J}(\mathbf{w}) = \frac{1}{2N} \| X\mathbf{w} - \mathbf{t} \|^2$$

$$= \frac{1}{2N} (X\mathbf{w} - \mathbf{t})^{\mathrm{T}} (X\mathbf{w} - \mathbf{t})$$

$$\mathbf{by} \| \mathbf{x} \|^2 = \mathbf{x}^{\mathrm{T}} \cdot \mathbf{x} = \mathbf{x} \cdot \mathbf{x}^T$$

$$\frac{\partial}{\partial \mathbf{w}} \mathcal{J}(\mathbf{w}) = \frac{1}{2N} \left[2(X\mathbf{w} - \mathbf{t})^{\mathrm{T}} \frac{\partial}{\partial \mathbf{w}} (X\mathbf{w} - \mathbf{t}) \right]$$

$$\mathbf{by} \frac{\partial}{\partial \mathbf{x}} f(\mathbf{x})^{\mathrm{T}} g(\mathbf{x}) = f(\mathbf{x})^{\mathrm{T}} \frac{\partial g}{\partial \mathbf{x}} + g(\mathbf{x})^{\mathrm{T}} \frac{\partial f}{\partial \mathbf{x}} \text{ (where } f(\mathbf{w}) = g(\mathbf{w}) = X\mathbf{w} - \mathbf{t})$$

$$= \frac{1}{N} (X\mathbf{w} - \mathbf{t})^{\mathrm{T}} X$$

$$\mathbf{by} \frac{\partial}{\partial \mathbf{x}} (A\mathbf{x} + \mathbf{b}) = A$$

$$= \frac{1}{N} [(X\mathbf{w})^{\mathrm{T}} - \mathbf{t}^{\mathrm{T}}] X$$

$$\mathbf{since} X\mathbf{w} \text{ and } \mathbf{t} \text{ are } n \times 1 \text{ vectors, } (X\mathbf{w} - \mathbf{t})^{\mathrm{T}} = (X\mathbf{w})^{\mathrm{T}} - \overline{t}^{\mathrm{T}}$$

$$= \frac{1}{N} (\mathbf{w}^{\mathrm{T}} X^{\mathrm{T}} X - \mathbf{t}^{\mathrm{T}} X) = 0$$

$$\mathbf{w}^{\mathrm{T}} X^{\mathrm{T}} X = \mathbf{t}^{\mathrm{T}} X$$

$$\mathbf{w}^{\mathrm{T}} = \mathbf{t}^{\mathrm{T}} X (X^{\mathrm{T}} X)^{-1}$$

$$\therefore \mathbf{w} = (X^{\mathrm{T}} X)^{-1} X^{\mathrm{T}} \mathbf{t}$$

Regularization: A function \mathcal{R} artificially added to a loss function to penalize unwanted parameter values.

• L^2/l_2 -Regularization/Penalty: Penalizes high magnitudes of w. The $\frac{1}{2}$ simplifies derivative calculations.

$$\mathcal{R}(\mathbf{w}) = \frac{1}{2} \|\mathbf{w}\|^2$$

o Ridge Regression: Least squares error combined with L^2 regularization, which punishes both bad fits (\mathcal{J}) and high weights (\mathcal{R}).

$$\begin{split} \mathcal{J}_{\text{reg}}(\mathbf{w}) &= \mathcal{J}(\mathbf{w}) + \lambda \mathcal{R}(\mathbf{w}) \\ &= \frac{1}{2} \|X\mathbf{w} - \mathbf{t}\|^2 + \frac{\lambda}{2} \|\mathbf{w}\|^2 \end{split}$$

- λ is a hyperparameter that controls the penalization of large weights.
- We ignore $\frac{1}{N}$ in the cost function for simplicity.

Small $lpha$	Balanced $lpha$	High $lpha$
Slow progress, convergence	Optimal values usually 0.001 to 0.1	Instability, oscillations,
takes a long time	> Training curve (above) can diagnose issues	misses optimum

Stochastic Gradient Descent: Gradient descent that chooses a random x of \mathcal{D} to calculate loss, instead of all of \mathcal{D} .

- Instead of $\mathcal{J}(\mathbf{w}) = \frac{1}{2N} \|X\mathbf{w} \mathbf{t}\|^2$, we have $\mathcal{J}(\mathbf{w}, \mathbf{x}) = \frac{1}{2} \|\mathbf{x} \cdot \mathbf{w} t\|^2$
- ullet Running-time of each update is independent of size of training data (ie. N). Faster!
- Mathematically, it is unbiased and equivalent to gradient descent, given sampling is random

$$\mathbb{E}\left[\frac{\partial \mathcal{J}_{\text{stochastic}}(\mathbf{w}, \mathbf{x})}{\partial \mathbf{w}}\right] = \frac{1}{N} \sum_{n=1}^{N} \frac{\partial \mathcal{J}_{\text{stochastic}}(\mathbf{w}, \mathbf{x}_n)}{\partial \mathbf{w}} = \frac{\partial \mathcal{J}_{\text{batch}}(\mathbf{w})}{\partial \mathbf{w}}$$

- Batch/subset size is a hyperparameter.
- In theory, get i.i.d. examples from \mathcal{D} . In practice, we permute training set, go through it sequentially. Each pass over all data is called an epoch.

Small Batch Size	Balanced Batch Size	High Batch Size
> Faster updates	Batch size is hyperparameter	Slower updates
$ ightharpoonup$ High variance in $\mathcal{J}(\mathbf{w}, \mathbf{x})$,	➤ A reasonable size might be 100	$ ightharpoonup$ Less variance in $\mathcal{J}(\mathbf{w}, \mathbf{x})$,
noisier movement		more accurate movement
Cannot exploit speed of		Exploits speed of
vectorization		vectorization

^{*}Learning rate affects how batch sizes affect noise, so when testing, it's best to start with high learning rates and move down

Linear Classification

Binary Linear Classification: A parametric classification model that, given a $\mathbf{x} \in \mathbb{R}^d$, predicts a binary target t

- Depending on what's convenient, use $t \in \{0,1\}$ or $t \in \{-1,1\}$ for negative/positive examples
- The parameter threshold r splits input space into two

$$f(\mathbf{x}) = \mathbf{w} \cdot \mathbf{x} + b, \qquad y(\vec{x}) = \begin{cases} 1 & \text{if } f(\mathbf{x}) \ge r \\ 0 & \text{if } f(\mathbf{x}) < r \end{cases}$$

In practice, we can remove b and r by introducing $w_0 = b - r$, $x_0 = 1$, and squishing it into w and x like this:

$$\mathbf{w} = \begin{bmatrix} w_0 \\ w_1 \\ \vdots \\ w_d \end{bmatrix} = \begin{bmatrix} b-r \\ w_1 \\ \vdots \\ w_d \end{bmatrix}, \mathbf{x} = \begin{bmatrix} x_0 \\ x_1 \\ \vdots \\ x_d \end{bmatrix} = \begin{bmatrix} 1 \\ x_1 \\ \vdots \\ x_d \end{bmatrix}, \ \ f(\mathbf{x}) = \mathbf{w} \cdot \mathbf{x} = (w_1 x_1 + \dots + w_d x_d) + b - r, \ \ y(\mathbf{x}) = \begin{cases} 1 & \text{if } f(\mathbf{x}) \geq 0 \\ 0 & \text{if } f(\mathbf{x}) < 0 \end{cases}$$

 $|f(\mathbf{x})|$ is proportional to the algorithm's confidence in the prediction.

Input/Data Space: A subset of \mathbb{R}^d ; all possible of \mathbf{x} .

Weight Space: A subset of \mathbb{R}^d ; all possible values of w.

Half-Space: A half of \mathbb{R}^n divided by a hyperplane (a plane in \mathbb{R}^{n-1}). Can be written as $w_0x_0+\cdots+w_dx_d\geq r$

NOT Operator

X	Т		As $f(\mathbf{x}) = w_0 x_0 + w_1 x_1$, then for $y(\mathbf{x}) = t$ to hold, we have
x_0	x_1	ι	As $f(\mathbf{x})=w_0x_0+w_1x_1$, then for $y(\mathbf{x})=t$ to hold, we have $f(\mathbf{x}_1)=w_0(1)+w_1(0)=w_0 \geq 0$
	0		$f(\mathbf{x}_2) = w_0(1) + w_1(1) = w_0 + w_1 < 0$
_ 1	1	0	

AND Operator

	\mathbf{x}^{T}			As $f(\mathbf{x}) = w_0 x_0 + w_1 x_1 + w_2 x_2$, then for $y(\mathbf{x}) = t$ to
x_0	x_1	x_2	t	hold, we must have
1	0	0	0	$f(\mathbf{x}_1) = w_0(1) + w_1(0) + w_2(0) = w_0 \qquad < 0$
1	0	1	0	$f(\mathbf{x}_2) = w_0(1) + w_1(0) + w_2(1) = w_0 \\ \hspace{0.5cm} + w_2 < 0$
1	1	0	0	$f(\mathbf{x}_3) = w_0(1) + w_1(1) + w_2(0) = w_0 + w_1 $ < 0
1	1	1	1	$f(\mathbf{x}_4) = w_0(1) + w_1(1) + w_2(1) = w_0 + w_1 + w_2 \ge 0$

Feasible Region: A region of weight space that correctly classifies all \mathbf{x}_i

• Each \mathbf{x}_i adds more constraints on w_i , AKA creates more half-spaces whose intersections w_i must lie in

Feasible: The classification problem, if the feasible region is non-empty

Convex Set: A set S such that $\forall x_0, x_1 \in S$, the line segment connecting x_0, x_1 is in S. That is,

$$\lambda x_0 + (1-\lambda)x_2 \quad \text{(where } 0 \leq \lambda \leq 1)$$

- Weighted averages/convex combinations are in S: $\lambda_1 x_1 + \dots + \lambda_n x_n$ (where $\lambda_i > 0, \sum_{i=1}^n \lambda_i = 1$)
- Both +/- regions of input space are half-spaces, which are convex
- Feasible regions of weight space are intersections of convex half-spaces, which are convex

Linearly Separable: Training data, if linear decision rules can perfectly separate it. Almost never the case.

- If linearly separable, learn weights with linear programming/optimization (APM236), perceptron algorithm
- If not linearly separable, find weights that minimize average loss!
- <u>Proving something is not linearly separable:</u> Suppose it is linearly separable, then the half-spaces containing positive/negative points are convex, and so are the line segments connecting any two points in a half-space. Show a line between two points intersects a point in a different half-space, creating a contradiction

Strategy	Description	Plot
0-1 Loss	$\mathcal{L}(y(\mathbf{x}),t) = \mathbb{I}[y(\mathbf{x}) \neq t]$	10
	$\mathcal{J}(y(\mathbf{x}),t) = \frac{1}{n} \sum_{i=1}^n \mathbb{I}[y(\mathbf{x}_i) \neq t_i]$	08-
	Also called the <u>miscalculation rate</u> .	02 -
	Problem: Derivative is 0 almost everywhere and undefined at	00-
	$f(\mathbf{x}) = 0$, so we can't minimize loss with gradient descent	$f(\mathbf{x})$, give $t=0$
Squared Loss	$\mathcal{L}(y(\mathbf{x}),t) = \frac{1}{2}(f(\mathbf{x})-t)^2$	350
	Unlike 0-1 Loss, we're working with $f(\mathbf{x})$, whose codomain is $\mathbb R$	250
	so r matters more. Set $r = \frac{1}{2}$ as the in-between of 0 and 1.	200
	<i>Problem</i> : High-confidence predictions (ie. $ f(\mathbf{x}) $ is high) incur	100
	large loss, even if they're correct predictions.	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Logistic	$\sigma(x) = \frac{1}{1 + e^{-x}} \in [0, 1]$	1.0
Function,	110	0.8
Squared	$y(\mathbf{x}) = \sigma(f(\mathbf{x})) = \frac{1}{1 + e^{-f(\mathbf{x})}}$	0.6
Loss	$\mathcal{L}(y(\mathbf{x}),t) = \frac{1}{2}(y(\mathbf{x})-t)^2$	0.4
	σ is the logistic function, a non-linear sigmoid (s-shaped).	0.2
	Problem: Confidently wrong answers have low gradients,	0.0 6 -4 -2 0 2 4 6
	resulting in slow updates (ie. the <mark>gradient signal</mark> is weak)	$\sigma(f(\mathbf{x}))$, given $t=0$
Logistic	$y(\mathbf{x}) = \sigma(f(\mathbf{x})) = \frac{1}{1 + e^{-f(\mathbf{x})}}$	3.0 logistic + CE
Function,	$(-\ln y(\mathbf{x})) \text{if } t = 1$	2.0
Cross-	$\mathcal{L}_{\text{CE}}(y(\mathbf{x}), t) = \begin{cases} -\ln y(\mathbf{x}) & \text{if } t = 1\\ -\ln(1 - y(\mathbf{x})) & \text{if } t = 0 \end{cases}$	§ 1.5
Entropy /	$= -t \ln y(\mathbf{x}) - (1-t) \ln(1-y(\mathbf{x}))$	1.0
Logistic Loss	If $f(\mathbf{x}) \ll 0, y(\mathbf{x}) \approx 0$ and is numerically 0, too small to store,	0.5
LUSS	causing computational instability (CSC336). So, expand $y(\mathbf{x})$:	0.0 3 -2 -1 0 1 2 3
	$\mathcal{L}(y(\mathbf{x}),t) = t \ln(1 + e^{-f(\mathbf{x})}) + (1-t) \ln(1 + e^{-f(\mathbf{x})})$	$\sigmaig(f(\mathbf{x})ig),$ given $t=1$

Logistic Regression: Linear classification using logistic function and cross-entropy loss

• Why is it called "regression" if we're doing classification? It's a product of history where there were no naming conventions.

<u>Logistic function + cross-entropy loss</u> is optimal for linear binary classification

- > Smooth, continuous, differentiable
- > Small loss for correct predictions, penalizes extreme misclassifications

·		
Direct Solution:	Iterative Solution:	$\vec{w} \leftarrow \vec{w} - \alpha \nabla \mathcal{L}(y(\vec{x}), t)$
DNE, since $\sigma(x)$ is non-linear	Possible, cross-entropy loss is convex in \vec{w}	$= \vec{w} - \alpha(y(\vec{x}) - t)\vec{x}$

Linear/logistic regression are generalized linear models with the same gradient update rules.

Linear Regression	Logistic Regression				
$\mathbf{w} \leftarrow \mathbf{w} - \nabla \mathcal{J}(\mathbf{w})$	$\overrightarrow{w} \leftarrow \overrightarrow{w} - \alpha \nabla \mathcal{L}(y(\mathbf{x}), t)$				
$= \mathbf{w} - \frac{\alpha}{N} \sum_{n=1}^{N} (y(\mathbf{x}_n) - t_n) \mathbf{x}_n$ $y(\mathbf{x}) = \mathbf{w} \cdot \mathbf{x}$	$= \vec{w} - \alpha(y(\mathbf{x}) - t)\vec{x}$ $\downarrow \qquad \qquad \downarrow$ $y(\mathbf{x}) = \sigma(\mathbf{w} \cdot \mathbf{x})$				
<i>Note</i> : This cost function incorporates all \mathbf{x}_i .	<i>Note</i> : This loss function uses a single \mathbf{x}_i .				

Optimization – Derivation of iterative solution, logistic regression

$$\begin{split} \nabla \mathcal{L} &= \frac{\partial \mathcal{L}_{\text{CE}}}{\partial w_i} \\ &= \frac{\partial \mathcal{L}_{\text{CE}}}{\partial y} \cdot \frac{\partial y}{\partial f} \cdot \frac{\partial f}{\partial \overline{w}} \\ &= \frac{y(\mathbf{x}) - t}{y(\mathbf{x})(1 - y(\mathbf{x}))} \cdot (1 - y(\mathbf{x}))y(\mathbf{x}) \cdot \mathbf{x} \\ &= (y(\mathbf{x}) - t)\mathbf{x} \end{split} \qquad \begin{aligned} &= \frac{t}{y(\mathbf{x})} [-t \ln y(\mathbf{x}) - (1 - t) \ln (1 - y(\mathbf{x}))] \\ &= -\frac{t}{y(\mathbf{x})} (1 - t) \left(-\frac{1}{1 - y(\mathbf{x})} \right) \\ &= -\frac{t}{y(\mathbf{x})} + \frac{1 - t}{1 - y(\mathbf{x})} \\ &= -\frac{t}{y(\mathbf{x})} + \frac{1 - t}{1 - y(\mathbf{x})} \end{aligned} \\ &= \frac{-t(1 - y(\mathbf{x})) + (1 - t)y(\mathbf{x})}{y(\mathbf{x})(1 - y(\mathbf{x}))} \\ &= \frac{y(\mathbf{x}) - t}{y(\mathbf{x})(1 - y(\mathbf{x}))} \end{aligned}$$

Multi-Class Linear Classification: Given a $\mathbf{x} \in \mathbb{R}^D$, predicts a target $t \in \{1, ..., K\}$

- Integer Encoding: Encoding a target as a number
 - o eg. Apple is 1, orange is 2, banana is 3, $t \in \{1,2,3\} \in \mathbb{R}$
- One-hot Vector/One-of-k Encoding: Encoding a target as a unit vector in its own dimension
 - eg. Apple is (1,0,0), orange is (0,1,0), banana is (0,0,1), and $\mathbf{t} \in \mathbb{R}^3$
 - As calculations usually imply "in-between values" and use "distances" between targets, we use onehot vectors such that these "distances" between all targets are the same.

$$f(\mathbf{x}) = W\mathbf{x} + \mathbf{b} = \begin{bmatrix} (w_1)_1 & \cdots & (w_1)_D \\ \vdots & \ddots & \vdots \\ (w_K)_1 & \cdots & (w_K)_D \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_D \end{bmatrix} + \begin{bmatrix} b \\ \vdots \\ b \end{bmatrix}, \qquad y(\mathbf{x}) = \operatorname{softmax} \big(f(\mathbf{x}) \big), \qquad \mathbf{t} = \begin{bmatrix} t_1 \\ \vdots \\ t_K \end{bmatrix}$$

Softmax Function: A multivariate generalization of the logistic function, $\mathbb{R}^D \to (0,1)^D$.

- Inputs are called logits.
- Outputs are thought of as the probability/certainty of an option. All components add up to one.

softmax(**x**) =
$$\left(\frac{e^{x_1}}{\sum_{d=1}^{D} e^{x_d}}, \dots, \frac{e^{x_D}}{\sum_{d=1}^{D} e^{x_d}}\right)$$

Equivalent to $\sigma(x)$ when D=2:

$$\mathrm{softmax}_1(f(x)) = \frac{e^{f_1(x)}}{e^{f_1(x)} + e^{f_2(x)}} = \frac{1}{1 + e^{f_2(x) - f_1(x)}} = \frac{1}{1 + e^{-f^\star(x)}} = \sigma \big(f^\star(x) \big)$$

Softmax function + cross-entropy loss is optimal for linear multiclass classification

$$\begin{split} \mathcal{L}(y(\mathbf{x}), \mathbf{t}) &= -\sum_{k=1}^K t_k \ln y_k(\mathbf{x}) \\ &= -\mathbf{t} \\ &\quad \cdot (\ln y_1(\mathbf{x}) \,, \dots, \ln y_K(\mathbf{x})) \\ \mathbf{w} &\leftarrow \mathbf{w} - \alpha \nabla \mathcal{L}(y(\mathbf{x}), \mathbf{t}) \\ &= \mathbf{w} - \alpha \big(y(\mathbf{x}) - \vec{t}\big) \mathbf{x} \\ &\downarrow \\ y(\mathbf{x}) &= \mathrm{softmax}(\mathbf{w} \cdot \mathbf{x}) \end{split}$$

$$\text{Recall } \mathcal{L}_{\text{CE}}(y(\mathbf{x}),t) = \begin{cases} -\ln y(\mathbf{x}) & \text{if } t=1 \\ -\ln \left(1-y(\mathbf{x})\right) & \text{if } t=0 \end{cases}$$
 This is cross-entropy re-written specifically for the binary case For

multi-class, cross-entropy is $-\ln y(\mathbf{x})$, the component where $t_k = 1$.

Why is the loss $-\sum_{k=1}^K t_k \ln y_k(\mathbf{x})$? Recall \mathbf{t} is a one-hot vector.

When
$$t_k=0$$
, then $-t_k \ln y_k(\mathbf{x})=0$
When $t_k=1$, then $-t_k \ln y_k(\mathbf{x})=-\ln y_k(\mathbf{x})$

So the summation only computes CE at the component where $t_k=1$

Optimization – Derivation of Iterative Solution, Logistic Regression for Multiclass Linear Classification

$$\begin{split} &\frac{\partial \mathcal{L} \big(y(\vec{x}), \vec{t} \big)}{\partial \overrightarrow{w_k}} = \frac{\partial \mathcal{L} \big(y(\vec{x}), \vec{t} \big)}{\partial f(\vec{x})} \cdot \frac{\partial f(\vec{x})}{\partial \overrightarrow{w_k}} \\ &= \frac{\partial}{\partial f(\vec{x})} \left(-\vec{t} \cdot \begin{bmatrix} \ln y_1(\vec{x}) \\ \vdots \\ \ln y_K(\vec{x}) \end{bmatrix} \right) \cdot \frac{\partial}{\partial \overrightarrow{w_k}} \big(W \vec{x} + \vec{b} \big) \end{split}$$

$$\begin{split} W\vec{x} + \vec{b} &= \begin{bmatrix} (w_1)_1 & \cdots & (w_1)_D \\ \vdots & \ddots & \vdots \\ (w_K)_1 & \cdots & (w_K)_D \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_D \end{bmatrix} + \begin{bmatrix} b_1 \\ \vdots \\ b_K \end{bmatrix} = \begin{bmatrix} \overline{w_1} \cdot \vec{x} + b_1 \\ \vdots \\ \overline{w_K} \cdot \vec{x} + b_K \end{bmatrix} \\ & \vdots \\ \overline{w_K} \cdot \vec{x} + b_k \end{bmatrix} \\ & \vdots \\ \begin{bmatrix} \frac{\partial}{\partial w_k} (W\vec{x} + \vec{b}) = \frac{\partial}{\partial w_k} \begin{pmatrix} \begin{bmatrix} w_1 \cdot \vec{x} + b_1 \\ \vdots \\ w_K \cdot \vec{x} + b_K \end{bmatrix} \\ \vdots \\ \ln y_K (\vec{x}) \end{bmatrix} = \vec{x} \\ \\ -\vec{t} \cdot \begin{bmatrix} \ln y_1(\vec{x}) \\ \vdots \\ \ln y_K(\vec{x}) \end{bmatrix} = -\begin{bmatrix} t_1 \\ \vdots \\ t_K \end{bmatrix} \cdot \begin{bmatrix} \ln y_1(\vec{x}) \\ \vdots \\ \ln y_K(\vec{x}) \end{bmatrix} \\ & = -\begin{bmatrix} t_1 \\ \vdots \\ \ln y_K(\vec{x}) \end{bmatrix} \\ & = -\begin{bmatrix} t_1 \\ \vdots \\ \ln y_K(\vec{x}) \end{bmatrix} \\ & = -t_1 \ln \left(\operatorname{softmax}_1(f(\vec{x})) \right) - \cdots - t_K \ln \left(\operatorname{softmax}_K(f(\vec{x})) \right) \\ & = -t_1 \ln \left(\frac{e^{f_1(\vec{x})}}{\sum_{k=1}^K e^{f_k(\vec{x})}} \right) - \cdots - = -t_K \ln \left(\frac{e^{f_K(\vec{x})}}{\sum_{k=1}^K e^{f_k(\vec{x})}} \right) \\ & = -t_1 \left(f_1(\vec{x}) - f_1(\vec{x}) \times \dots \times f_K(\vec{x}) \right) - t_K \left(f_K(\vec{x}) - f_1(\vec{x}) \times \dots \times f_K(\vec{x}) \right) \\ & = \left(f_1(\vec{x}) \times \dots \times f_K(\vec{x}) \right) \left(\vec{t} \cdot f(\vec{x}) \right) \\ & = \left(f_1(\vec{x}) \times \dots \times f_K(\vec{x}) \right) \left(\vec{t} \cdot f(\vec{x}) \right) \\ & = \frac{\partial}{\partial f_k(\vec{x})} \left[\left(f_1(\vec{x}) \times \dots \times f_K(\vec{x}) \times f_K(\vec{x}) \right) \left(\vec{t} \cdot f(\vec{x}) \right) \right] \\ & = 2f_k(\vec{x}) \left(f_1(\vec{x}) \times \dots \times f_K(\vec{x}) \right) \\ & = 2f_1(\vec{x}) \times \dots \times f_K(\vec{x}) \\ & \vdots \\ \ln y_K(\vec{x}) \right] \right) = 2 \begin{bmatrix} f_1(\vec{x}) \times \dots \times f_K(\vec{x}) \\ \vdots \\ f_1(\vec{x}) \times \dots \times f_K(\vec{x}) \end{bmatrix}$$

AAAAAA UNFINISHED

$$\begin{split} \frac{e^{x_1}}{\sum_{d=1}^D e^{x_d}} \\ \ln\left(\frac{e^{x_i}}{\sum_{d=1}^D e^{x_d}}\right) &= \ln e^{x_i} - \ln(e^{x_1} + \dots + e^{x_D}) = x_i - \ln(e^{x_1}) \dots \ln(e^{x_D}) = x_i - x_1 \dots x_D \\ w_i \leftarrow w_i - \frac{\alpha}{N} \sum_{n=1}^N ((y_n)_i - (t_n)_i) x_i \end{split}$$

Gradient Checking: Process of testing correctness of derivative implementation.

Finite Differences: In numerical analysis, a way to approximate derivatives with something of form f(x+b) - f(x+a). Use limit:

$$\begin{split} \frac{\partial}{\partial x_i} f(\mathbf{x}) &= \lim_{h \to 0} \frac{f(x_1, \dots, x_i + h, \dots, x_n) - f(x_1, \dots, x_i - h, \dots, x_n)}{2h} \\ & \circ \quad \text{Use double precision floats (preserve 15-17 significant digits)} \end{split}$$

- Plug in a tiny h (eg. 10^{-10}) for good approximations
- Let a = finite differences estimate, b = your implementation. Find relative error $= \frac{|a-b|}{|a|+|b|}$, which should be small (eg. 10^{-6})
- Algorithms often appear to work even when math is wrong.

KNN		Linear Classifiers
>	High variance if k is small	High bias, may underfit
>	No parameters	$ ightharpoonup$ Parameters \vec{w}, b
>	No training, slow at test-time	Needs to learn a model, fast at test-time
>	Bad in high-dimensions, scale-sensitive	Good in high dimensions, not scale-sensitive

Classification Metrics

Accuracy: Fraction of examples correctly classified, equivalent to average 0-1 loss/error rate/misclassification rate

$$Accuracy = \frac{TP + TN}{P + N} = \frac{TP + TN}{TP + TN + FP + FN}$$

PNTPTNFPFNPositivesNegativesTrue positivesTrue negativesFalse positives, "type I" errorsFalse negatives, "type II" errors

Sensitivity: True positive rate $Sens. = \frac{TP}{P} = \frac{TP}{TP + FN}$ Specificity: True negative rate $Spec. = \frac{TN}{N} = \frac{TN}{TN + FP}$

Receiver Operating Characteristic (ROC) Curve:

Tracks a binary classifier's specificity/sensitivity tradeoff (top-left of curve is the "ideal")

Confusion Matrix: For a multiclass classifier, a $K \times K$ matrix where rows are true targets, columns are predicted targets, entries are frequencies

		0	~	2	3	4	5	9	7	8	9	
actual class	0	90	0	2	0	1	4	0	0	0	0	97
	1	0	107	0	0	0	2	0	0	3	0	112
	2	1	1	93	4	1	1	1	4	6	1	113
	3	0	0	2	88	0	11	0	1	3	2	107
	4	1	4	3	0	84	1	0	0	0	7	100
	5	2	1	1	3	4	55	2	0	6	1	75
	6	3	0	4	0	0	6	86	0	0	0	99
	7	3	0	1	1	0	1	0	92	0	3	101
	8	0	3	5	4	0	7	0	1	75	2	97
	9	1	2	2	0	5	0	0	5	2	82	99
		101	118	113	100	92	88	89	103	95	98	
predicted class												