Interrogation de cours n°2

- 1. a) La famille $(0_{[X]}, 1, 2 + X, 1 X^2)$ est-elle libre? Justifier.
 - b) Démontrer que la famille $(X X^2, X^3 X^5, X)$ est libre. On exige ici l'utilisation de la méthode correspondant à la vérification de la définition de liberté.

c) De quelle propriété la question précédente est-elle une illustration? (à citer avec précision!)

1

2. Démontrer que la famille $(1+X+X^2,1-X+X^2,3X-2X^2)$ est une base de $\mathbb{R}_2[X]$.

- 3. On note : $A = \begin{pmatrix} 1 & 1 & -1 \\ 2 & 1 & 2 \\ -3 & 2 & -1 \end{pmatrix}$ et $F = \{X \in \mathcal{M}_{3,1}(\mathbb{R}) \mid AX = 2X\}$.
 - Déterminer une base de F et sa dimension (on justifiera).

2

4. Justifier (avec précision) que la famille $(1-X^2,2+X^2+3X^5,1-2X)$ est libre.

5. Démontrer que la famille $\mathcal{F} = (1 - X - X^2, 2 - X^2, -1 + 3X)$ est libre. On exige ici l'utilisation de la méthode correspondant à la vérification de la définition de liberté.

3

6. Démontrer que la famille \mathcal{F} est une base de $\mathbb{R}_2[X]$.

- 7. On note : $A = \begin{pmatrix} 2 & 2 & -1 \\ 2 & 1 & 0 \\ -1 & 1 & 3 \end{pmatrix}$ et $F = \{X \in \mathcal{M}_{3,1}(\mathbb{R}) \mid AX = 3X\}$.
 - Déterminer une base de F et sa dimension (on justifiera).

4

8. Soit $n \in \mathbb{N}^*$. On dit qu'une matrice M de $\mathcal{M}_n(\mathbb{R})$ est **antisymétrique** lorsqu'elle vérifie ${}^tM = -M$. On note $\mathcal{A}_n(\mathbb{R})$ l'ensemble des matrices antisymétriques. On se donne une matrice $A \in \mathcal{M}_n(\mathbb{R})$ et on considère f l'application qui à toute matrice M de $\mathcal{A}_n(\mathbb{R})$ associe :

$$f(M) = (^t A)M + MA$$

a) Montrer que $\mathcal{A}_n(\mathbb{R})$ est un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{R})$.

b) Soit M une matrice de $\mathcal{A}_n(\mathbb{R})$. Établir que f(M) est une matrice antisymétrique.

c) En déduire que f est un endomorphisme de $\mathcal{A}_n(\mathbb{R})$.

9. On considère dans la suite le cas n=3. On considère les trois matrices :

$$J = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad K = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{pmatrix}, \quad L = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix}.$$

Enfin on note : $A = \begin{pmatrix} 0 & 0 & 1 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$.

On admet que la famille $\mathcal{B} = (J, K, L)$ est une base de $\mathcal{A}_3(\mathbb{R})$.

a) Déterminer la matrice représentative de f dans la base \mathcal{B} . On la note T. (faire les calculs au brouillon et écrire uniquement les résultats permettant d'écrire T)

6

b) Déterminer la trace et le déterminant de l'endomorphisme f.

c) Que peut-on déduire du calcul du déterminant?