Supporting Information

What shall we do with steel mill off-gas: Optimization of polygeneration systems using steel mill off-gases to reduce greenhouse gas emissions

Johanna Kleinekorte,*,† Matthias Leitl,‡ Christian Zibunas,‡ and André
Bardow¶,§

†Lehrstuhl für Technische Thermodynamik, RWTH Aachen University, Schinkelstraße 8, 52062 Aachen, Germany

‡Institute for Technical Thermodynamics, RWTH Aachen University, Schinkelstraße 8, 52062 Aachen, Germany

¶Energy & Process Systems Engineering, Department of Mechanical and Process

Engineering, ETH Zurich, Tannenstrasse 3, 8092 Zurich, Switzerland

§Institute of Energy and Climate Research - Energy Systems Engineering (IEK-10),

Forschungszentrum Jülich GmbH, Jülich

E-mail: johanna.kleinekorte@ltt.rwth-aachen.de

43 pages including cover sheet, seven tables and two additional figures.

3 Included processes and products in the chemical indus-

4 try

Table S1: List of considered chemicals and processes. The abbreviation (SC) behind a process indicates that this process is only approximated by stoichiometric inputs of the reactants and an averaged energy value obtained from a chemical park in Gendorf¹. Processes with an asterisk (*) are aggregated processes.

name of flow	production technologies	source
1,3-propanediol	1,3-propanediol from ethylene oxide	IHS Markit ²
	1,3-propanediol via SHELL one-step	IHS Markit 2
	OXO process	
	1,3-propanediol from ethylene oxide via	IHS Markit 2
	hydroxyester	
1,4-butanediol	1,4-butanediol from propylene oxide	IHS Markit 2
	(allyl alcohol intermediate)	
2,4-dimethyl	2,4-dimethyl benzaldehyde from m-	IHS Markit ²
benzaldehyde	xylene	
2-ethylhexanol	2-ethylhexanol by hydroformylation	IHS Markit ²
	followed by aldol condensation and hy-	
	drogenation	
	2-ethylhexanol from propylene, cobalt	IHS Markit 2
	hydrocarbonyl catalyst	
	2-ethylhexanol from propylene, cobalt	IHS Markit 2
	phosphine catalyst	
	2-ethylhexanol from propylene,	IHS Markit 2
	rhodium catalyst	

2-methyl-1,3- propanediol	co-product of '1,4-butanediol from propylene oxide (allyl alcohol intermediate)'	IHS Markit ²
acetic acid	acetic acid by low pressure carbonylation of methanol	IHS Markit ²
	acetic acid by the CHIYODA ACETICA process	IHS Markit ²
	acetic acid by the CHIYODA/UOP ACETICA TM process	IHS Markit ²
	acetic acid from MeOH by low pressure carbonylation, supported Rh catalyst	IHS Markit ²
	acetic acid from MeOH by the celanese	IHS Markit ²
	process acetic acid via the BP cativa process	IHS Markit ²
	acetic acid via the BP SAABRE pro-	IHS Markit ²
	cess acetic acid via the celanese AO plus process	IHS Markit ²
	acetic acid from meoh by the BP CATVIA process	IHS Markit ²
	global market for acetoacetic acid*	ecoinvent 3.5^3
acetone	global market for acetone, liquid*	ecoinvent 3.5^3
acetaldehyde	co-product of 'vinyl acetate from methanol and acetic acid'	IHS Markit ²
acetylene	acetylene production*	ecoinvent 3.5 ³

acrylic acid	acrylic acid, glacial from acetylene by catalytic process	IHS Markit ²
acrylonitrile	acrylonitrile from propylene by ammoxidation	IHS Markit ²
ammonia	ammonia from natural gas by steam reforming by ICI "AMV" process	IHS Markit ²
benzene	ammonia from N2 and H2 methanol to benzene Low-TRL benzene from CO_2 (SC) global market for benzene*	Kätelhön et al. ¹ IHS Markit ² Kätelhön et al. ¹ Kätelhön et al. ¹
butene	global market for butene* butene-1 from raffinate-1 by the ucc adsorption process, with deisobutanizer	ecoinvent 3.5^3 IHS Markit ²
butadiene	butadiene from n-butenes by oxidative dehydrogenation butadiene via catadiene process butadiene via tpc oxo-d process	IHS Markit ² IHS Markit ² IHS Markit ²
calcium formate	calcium formate from lime by carbony-	IHS Markit ²
calcium oxide	calcium oxide*	Gabi Service Pack 39 ⁴
caprolactam	caprolactam from butadiene by the DUPONT-DSM process caprolactam from toluene via cyclohexane carboxylic acid	

carbon dioxide	by direct air capture	Kätelhön et al. 1
	ammonia from natural gas by steam re-	Kätelhön et al. 1
	forming by ICI "AMV" process' incl	
	CO_2 capture	
	Water gas shift reaction	IHS Markit ²
carbon monox-	Reverse water gas shift reaction	Artz et al. ⁵
ide		
	Low-TRL CO from CO_2 (SC)	Kätelhön et al. 1
	Carbon monoxide (via synthetic gas)	Gabi Service Pack 39^4
chlorine	global market for chlorine, gaseous*	ecoinvent 3.5^3
cooling energy	cooling energy, from natural gas, at	ecoinvent 3.5 ³
	cogen unit with absorption chiller	
	100kW*	
	global market for water, decarbonized,	ecoinvent 3.5^3
	at user*	
cumene	cumene from benzene and propylene	IHS Markit ²
cyclohexane	global market for cyclohexane*	ecoinvent 3.5^3
dimethyl car-	Oxidative carbonylation (Eni-) process	Artz et al. ⁵
bonate		
	Ethylene carbonate Route A1	Artz et al. 5
	Ethylene carbonate Route A2	Artz et al. 5
	Urea transformation Route B	Artz et al. 5
	Ethylene carbonte - MIBK Route	Artz et al. 5
	Ethylene carbonte - EG Route	Artz et al. 5

	dimethyl carbonate by liquid-phase ox-	IHS Markit ²
	idative carbonylation	
	dimethyl carbonate by vapor-phase ox-	IHS Markit 2
	idative carbonylation	
diphenyl carbon-	diphenyl carbonate by direct phosgena-	IHS Markit ²
ate	tion with fixed-bed reactors	
	diphenyl carbonate from phenol by ox-	IHS Markit 2
	idative carbonylation using fixed-bed	
	reactors	
	diphenyl carbonate from phenol via	IHS Markit ²
	dpo with ube technology	
	diphenyl carbonate production by a	IHS Markit 2
	phosgene process	
	diphenyl carbonate production by a	IHS Markit 2
	process similar to ge process	
	diphenyl carbonate production by a	IHS Markit 2
	process similar to ube process	
	diphenyl carbonate via dimethyl car-	IHS Markit ²
	bonate by oxidative carbonylation and	
	reactive distillation	
electricity	EU-28: Electricity from wind power ts*	Gabi Service Pack 39 ⁴
	EU-28: Electricity from grid mix	Gabi Service Pack 39^4
	(2020)*	
	manually variated impact to analyse	
	the influence	

ethylbenzene	ethylbenzene by badger EBMAX $\hat{\mathbf{A}}^{\mathrm{TM}}$	IHS Markit ²
	liquid phase alkylation proces	
	ethylbenzene from benzene by liquid-	IHS Markit 2
	phase alkylation, zeolite cat.	
ethylene	Low-TRL ethylene from CO_2 via CH4	Kätelhön et al. ¹
	(SC)	
	ethylene by the UOP/HYDRO	IHS Markit 2
	methanol to olefins process	
	Low-TRL ethylene from CO_2 via H2	Kätelhön et al. 1
	(SC)	
	global market for ethylene*	ecoinvent 3.5^3
ethylene carbon-	ethylene carbonate production	ecoinvent 3.5 ³
ate		
ethylene glycol	ethylene glycol from ethylene oxide by	IHS Markit ²
	thermal hydration	
	ethylene glycol production from syngas	IHS Markit ²
	by SINOPEC process	
ethylene oxide	Low-TRL ethylene oxide from CO_2	Kätelhön et al. ¹
	(SC)	
	ethylene oxide from ethylene by oxygen	IHS Markit ²
	oxidation (all marketable ethylene ox-	
	ide)	
formic acid	$\mathrm{CO}_2 ext{-based}$ formic acid production (val-	Artz et al. ⁵
	ues per kg pure formic acid) Ia (Pérez-	
	Fortes et al.)	

	$\mathrm{CO}_2\text{-based}$ formic acid production (val-	Artz et al. ⁵
	ues per kg pure formic acid) Ib (Jens et	
	al.)	
	formic acid (85%) by BASF process	IHS Markit ²
	formic acid (85%) by HALCON/SD	IHS Markit ²
	process	
	formic acid (85%) by LEONARD pro-	IHS Markit 2
	cess	
	formic acid (85%) via improved	IHS Markit ²
	KEMIRA process	
formaldehyde	formaldehyde from methanol by the	IHS Markit ²
	TOPSOE SR process	
	formaldehyde from methanol, ferric-	IHS Markit 2
	molybdate catalyst	
	formaldehyde from methanol, silver	IHS Markit 2
	catalyst	
heat	power to heat ($\eta = 95 \%$)	Artz et al. ⁵
	EU-28: Thermal energy from natural	Gabi Service Pack 39^4
	gas ts	
hydrochlorid acid	market for hydrochloric acid*	ecoinvent 3.5^3
hydrogen	GLO: Electrolysis with wind, 50 (kW	Götz et al.
	h)/ kg of H2 ts	
	hydrogen from natural gas by steam re-	IHS Markit 2
	forming	
	Water gas shift reaction	IHS Markit 2

hydrogen cyanide	global market for hydrogen cyanide*	ecoinvent 3.5^3
incineration of steel mill off-gases	treatment of blast furnace gas, in power plant	ecoinvent 3.5 ³
	treatment of coal gas, in power plant	ecoinvent 3.5^3
isobutanol	co-product of '2-ethylhexanol from propylene, cobalt hydrocarbonyl catalyst'	IHS Markit ²
	co-product of '2-ethylhexanol from propylene, cobalt phosphine catalyst'	IHS Markit ²
inert gas	European market for nitrogen, liquid*	ecoinvent 3.5 ³
isobutylene	global market for butene, mixed*	ecoinvent 3.5 ³
isobutyraldehyde	co-product of 'n-butanol from propy- lene via n-butyraldehyde, rhodium cat- alyst'	IHS Markit ²
	co-product of 'n-butyraldehyde by the oil-soluble phosphine process with dual reactors'	IHS Markit ²
	co-product of 'n-butyraldehyde by the water-soluble phosphine process with a	IHS Markit ²
	secondary reactor' co-product of 'n-butyraldehyde from	IHS Markit 2

	co-product of 'n-butyraldehyde from	IHS Markit ²
	propylene by the phosphite process	
	with c3 absorption'	
	co-product of 'n-butyraldehyde from	IHS Markit ²
	propylene via LP OXO process with liq-	
	uid recycle'	
	co-product of 'n-butyraldehyde produc-	IHS Markit ²
	tion by LP OXO selector process'	
lime	global market for lime*	ecoinvent 3.5 ³
methane	Methane from CO_2 (de Saint Jean et	Artz et al. ⁵
	al.)	
	Methane from CO_2 (Müller et al.)	Artz et al. ⁵
	Methane from purification of natural	Gabi Service Pack 39^4
	gas	
methanol	Methanol from CO_2 (from JRC)	Artz et al. ⁵
methanol	Methanol from CO_2 (from JRC) CO_2 -based methanol synthesis	Artz et al. ⁵ Artz et al. ⁵
methanol	- · · · · · · · · · · · · · · · · · · ·	
methanol	$\mathrm{CO}_2\text{-based}$ methanol synthesis	Artz et al. ⁵
methanol	$\mathrm{CO}_2\text{-based}$ methanol synthesis $\mathrm{CO}_2\text{-based}$ methanol production (val-	Artz et al. ⁵
methanol	${\rm CO_2}$ -based methanol synthesis ${\rm CO_2}$ -based methanol production (values per kg methanol) IVa (Rhiko-	Artz et al. ⁵ Artz et al. ⁵
methanol	${\rm CO_2}$ -based methanol synthesis ${\rm CO_2}$ -based methanol production (values per kg methanol) IVa (Rhiko-Struckmann et al.)	Artz et al. ⁵ Artz et al. ⁵
methanol	${\rm CO_2}$ -based methanol synthesis ${\rm CO_2}$ -based methanol production (values per kg methanol) IVa (Rhiko-Struckmann et al.) ${\rm CO_2}$ -based methanol production (val-	Artz et al. ⁵ Artz et al. ⁵
methanol	${\rm CO_2}$ -based methanol synthesis ${\rm CO_2}$ -based methanol production (values per kg methanol) IVa (Rhiko-Struckmann et al.) ${\rm CO_2}$ -based methanol production (values per kg methanol) IVb (Van Dal et	Artz et al. ⁵ Artz et al. ⁵ Artz et al. ⁵
methanol	CO ₂ -based methanol synthesis CO ₂ -based methanol production (values per kg methanol) IVa (Rhiko-Struckmann et al.) CO ₂ -based methanol production (values per kg methanol) IVb (Van Dal et al.)	Artz et al. ⁵ Artz et al. ⁵ Artz et al. ⁵
methanol	${\rm CO_2}$ -based methanol synthesis ${\rm CO_2}$ -based methanol production (values per kg methanol) IVa (Rhiko-Struckmann et al.) ${\rm CO_2}$ -based methanol production (values per kg methanol) IVb (Van Dal et al.) ${\rm CO_2}$ -based methanol production (val-	Artz et al. ⁵ Artz et al. ⁵ Artz et al. ⁵

	methanol (mega scale) via LURGI technology	IHS Markit ²
methyl	methyl methacrylate via EASTMAN	IHS Markit ²
methacrylate	technology (C2 based)' methyl methacrylate via LUCITE tech-	IHS Markit ²
	nology (C2 based)'	
methyl t-butyl	MTBE production integrated with n-	IHS Markit ²
ether	butene isomerization and petrochemi-	
	cal plant process	
	methyl tert-butyl ether production*	ecoinvent 3.5 ³
natural gas	European natural gas mix*	Kätelhön et al. ¹
nitric oxide	nitric oxide production*	ecoinvent 3.5 ³
nitric oxide nitrogen	nitric oxide production* European market for nitrogen, liquid*	ecoinvent 3.5^3 ecoinvent 3.5^3
	<u>-</u>	
nitrogen	European market for nitrogen, liquid*	ecoinvent 3.5 ³
nitrogen n-butane	European market for nitrogen, liquid* butane production mix*	ecoinvent 3.5^3 Gabi Service Pack 39^4
nitrogen n-butane	European market for nitrogen, liquid* butane production mix* n-butanol from propylene via n-	ecoinvent 3.5^3 Gabi Service Pack 39^4 IHS Markit ²
nitrogen n-butane	European market for nitrogen, liquid* butane production mix* n-butanol from propylene via n- butyraldehyde, rhodium catalyst	ecoinvent 3.5^3 Gabi Service Pack 39^4 IHS Markit ²
nitrogen n-butane	European market for nitrogen, liquid* butane production mix* n-butanol from propylene via n- butyraldehyde, rhodium catalyst n-butanol from propylene, cobalt hy-	ecoinvent 3.5^3 Gabi Service Pack 39^4 IHS Markit ² IHS Markit ²
nitrogen n-butane	European market for nitrogen, liquid* butane production mix* n-butanol from propylene via n- butyraldehyde, rhodium catalyst n-butanol from propylene, cobalt hy- drocarbonyl catalyst	ecoinvent 3.5^3 Gabi Service Pack 39^4 IHS Markit ² IHS Markit ²
nitrogen n-butane	European market for nitrogen, liquid* butane production mix* n-butanol from propylene via n- butyraldehyde, rhodium catalyst n-butanol from propylene, cobalt hy- drocarbonyl catalyst n-butanol from propylene, cobalt-	ecoinvent 3.5^3 Gabi Service Pack 39^4 IHS Markit ² IHS Markit ²

	n-butyraldehyde by the water-soluble	IHS Markit ²
	phosphine process with a secondary re-	
	actor	
	n-butyraldehyde from propylene	IHS Markit 2
	(water-sol rh catalyst)	
	n-butyraldehyde from propylene by the	IHS Markit 2
	phosphite process with C3 absorption	
	n-butyraldehyde from propylene via lp	IHS Markit 2
	oxo process with liquid recycle	
	n-butyraldehyde production by lp oxo	IHS Markit ²
	selector process	
octene	1-octene production by ethylene	IHS Markit ²
	tetramerization process	
oleum	mixing of sulfur trioxide and sulfuric	Kätelhön et al. ¹
	acid	
oxygen	European market for oxygen, liquid*	ecoinvent 3.5^3
phenol	phenol from cumene via oxygen-based	IHS Markit ²
	liquid oxidation	
phosgene	phosgene from chlorine and carbon	IHS Markit ²
	monoxide by active carbon catalysis	
polycarbonate	Polycarbonate (PC) units	Artz et al. ⁵
	CO-based polycarbonate	own assessment
	Polycarbonate via phosgenation of	own assessment
	Bisphenol A	

polyether units	Polyether (PE) units	Artz et al. ⁵
polyethylene	polyethylene, HD, by gas phase	IHS Markit 2
	fluidized-bed process (UCC)	
	polyethylene, lLD by a high pressure	IHS Markit 2
	autoclave process	
	polyethylene, LLD, by a medium pres-	IHS Markit ²
	sure solution process (DUPONT tech-	
	nology)	
polyol	$\mathrm{CO}_2 ext{-based}$ polyol production	Artz et al. ⁵
	polyol production*	ecoinvent 3.5 ³
polypropylene	polypropylene homopolymer by a ver-	IHS Markit 2
	tical stirred bed gas phase process	
	(BASF)	
process water	global market for water, decarbonized,	ecoinvent 3.5^3
	at user*	
propylene	methanol to olefins by the DMTO pro-	IHS Markit 2
	cess	
	methanol to olefins by the DMTO-II	IHS Markit 2
	process	
	methanol to olefins by the DMTO-II	IHS Markit 2
	process - modified	
	methanol to propylene by the LURGI	IHS Markit 2
	MTP process	
	methanol to propylene by the LURGI	IHS Markit 2
	MTP process updated	

	Low-TRL propylene from CO_2 (SC) global market for propylene*	Kätelhön et al. ¹ ecoinvent 3.5^3
propylene oxide	propylene oxide by the conventional chlorohydrin process	IHS Markit ²
sodium	market for sodium*	ecoinvent 3.5^3
starter (glycerol)	glycerine production, from epichlorohy- drin*	ecoinvent 3.5^3
steam	steam (medium pressure) production from packaged gas boiler	IHS Markit ²
	combustion of natural gas	Kätelhön et al. ¹
	venting of overproduced steam	Kätelhön et al. 1
styrene	Low-TRL styrene from CO_2 (SC)	Kätelhön et al. ¹
	styrene from benzene and ethylene via	IHS Markit 2
	liquid-phase alkylation and oxidative reheat	
	styrene from benzene and ethylene via vapor-phase alkylation and adiabatic dehydrogenation	IHS Markit ²
sulfur trioxide	global market for sulfur trioxide*	ecoinvent 3.5^3
sulfuric acid	global market for sulfuric acid*	ecoinvent 3.5^3
synthesis gas	${\rm CO_2\text{-}based}$ carbon monoxide production via rWGS (valus per kg CO) IIa - electrically heated reactor (${\rm CO_2RRECT}$)	Artz et al. ⁵

	$\mathrm{CO}_2\text{-based}$ carbon monoxide produc-	Artz et al. ⁵
	tion via rWGS (valus per kg CO) IIb	
	- reactor heated by steam	
	CO_2 -based carbon monoxide pro-	Artz et al. ⁵
	duction via DRM (valus per kg	
	CO) IIa - electrically heated reactor	
	$(\mathrm{CO_2RRECT})$	
	$\mathrm{CO}_2\text{-based}$ carbon monoxide produc-	Artz et al. 5
	tion via DRM (valus per kg CO) IIb	
	- reactor heated by steam	
	separation/treatment of steel mill off-	own calculations
	gases	
	mixing of hydrogen and carbon monox-	own calculations
	ide to adjust mixing rations	
terephthalic acid	terephthalic acid, purified, by the con-	IHS Markit ²
	ventional catalytic air oxidation pro-	
	cess	
thermal energy	production of thermal energy from var-	Kätelhön et al. ¹
thermal energy		Kätelhön et al. ¹
thermal energy	production of thermal energy from var-	Kätelhön et al. ¹
thermal energy	production of thermal energy from various feedstock: fuel oil, fuel gas, C1-C2	Kätelhön et al. ¹
thermal energy	production of thermal energy from various feedstock: fuel oil, fuel gas, C1-C2 purge, C4-C5 purge, liquid-petroleum	Kätelhön et al. ¹
thermal energy toluene	production of thermal energy from various feedstock: fuel oil, fuel gas, C1-C2 purge, C4-C5 purge, liquid-petroleum gas, methane, methanol, natural gas,	Kätelhön et al. ¹ Kätelhön et al. ¹
	production of thermal energy from various feedstock: fuel oil, fuel gas, C1-C2 purge, C4-C5 purge, liquid-petroleum gas, methane, methanol, natural gas, propane, residual fuel oil, propylene	
	production of thermal energy from various feedstock: fuel oil, fuel gas, C1-C2 purge, C4-C5 purge, liquid-petroleum gas, methane, methanol, natural gas, propane, residual fuel oil, propylene methanol-to-aromatics	Kätelhön et al. ¹

toluene diiso-	Low-TRL CO_2 -based TDI	own assessment
cyanate	TDI via phosgenation of TDA	own assessment
urea	urea by the	IHS Markit ²
	SAIPEM/SNAMPROGETTI pro-	
	cess	
	urea by the STAMICARBON UREA	IHS Markit 2
	2000PLUS process	
	urea by UTIS heat recycle process	IHS Markit 2
	urea, agricultural grade, by the isobaric	IHS Markit 2
	double recycle process	
	urea, agricultural grade, by the MIT-	IHS Markit ²
	SUI TOATSU process	
vinyl acetate	vinyl acetate from methanol and acetic	IHS Markit ²
	acid	
vinyl chloride	vinyl chloride by a balanced pro-	IHS Markit ²
	cess with heat and HCl recovery (oxy	
	vinyls)	
carbon waste	carbon waste streams calculated ac-	Kätelhön et al. ¹
flow	cording to Kätelhön et al. 1 et al. 2019	
waste water	Municipal waste water treatment*	Gabi Service Pack 39 ⁴
water	Water (desalinated; deionized)*	Gabi Service Pack 39 ⁴
xylene (mixed)	methanol to xylene (ortho)	Kätelhön et al. ¹

	Low-TRL xylene (ortho) from CO_2	Kätelhön et al. 1
	(SC)	
	global market for xylene*	ecoinvent 3.5^3
xylene (para)	methanol to xylene (para)	Kätelhön et al. ¹
	Low-TRL xylene (para) from CO_2 (SC)	Kätelhön et al. 1
	p-xylene by a PAREX(R)/MHAI pro-	IHS Markit 2
	cess	

Table S2: Market capacities of the considered chemical products

Product	Mt/year	year	Reference
1,3-propanediol	0.146	2014	Grand View Research ⁶
1,4-butanediol	2	2025	Burgard et al. ⁷
2-ethylhexanol	4	2018	Markets and Markets ⁸
Acetic acid	13	2013	Pal and Nayak ⁹
Acetaldehyde	2	2009	$Jira^{10}$
Acetylene	0.4	2012	Getman et al. ¹¹
Acrylic acid	5.85	2014	Market Research Store 12
Calcium formate	0.695	2018	Transparency Market Research ¹³
Cyclohexane	9.19	2016	Grand View Research ¹⁴
Dimethyl carbonate	0.09	2002	Cavani ¹⁵
Diphenyl carbonate	0.254	2002	Wikipedia ¹⁶
Ethylbenzene	37	2012	Al-Kinany and Aldrees ¹⁷
Formic acid	0.76	2019	Pérez-Fortes et al. ¹⁸
Formaldehyde	20.9	2006	Duong et al. ¹⁹
Isobutanol	0.552	2014	Grand View Research ²⁰
Isobutylene	15	2015	$\mathrm{Vaz}\;\mathrm{Jr}^{21}$
Isobutyralaldehyde	1	2000	Cornils et al. ²²
Methyl formate	0.002	2002	PubChem ²³
Methyl methacrylate	3.5	2008	PubChem ²⁴
n-butanol	3.8	2012	Jiang et al. ²⁵
n-butyraldehyde	7	2013	Ku et al. ²⁶
Octene	0.609	2006	ICIS - Independent Commodity Intelli-
			gence Services ²⁷
Phosgene	6	2003	Cotarca and Eckert ²⁸
Vinyl acetate	6.97	2007	Wikipedia ²⁹

Table S3: Production volumes of the considered chemical products

Product	Mt/year	year	Reference
Acetone	10.68	2030	Kätelhön et al. ¹
Acrylonitrile	10.42	2030	Kätelhön et al. ¹
Ammonia	229.17	2030	Kätelhön et al. ¹
Benzene	65.97	2030	Kätelhön et al. ¹
Caprolactam	3.48	2030	Kätelhön et al. ¹
Cumene	24.32	2030	Kätelhön et al. ¹
Ethylene	250.01	2030	Kätelhön et al. ¹
Ethylene glycol	41.66	2030	Kätelhön et al. ¹
Ethylene oxide	41.66	2030	Kätelhön et al. ¹
Methanol	134.42	2030	Kätelhön et al. ¹
Phenol	17.35	2030	Kätelhön et al. ¹
Polycarbonate	5.1	2016	Plastics Insight ³⁰
Polyethylene	163.19	2030	Kätelhön et al. ¹
Polyol	9.4	2016	Statista ³¹
Polypropylene	100.71	2030	Kätelhön et al. ¹
Propylene	139.18	2030	Kätelhön et al. ¹
Propylene oxide	13.89	2030	Kätelhön et al. ¹
Styrene	48.61	2030	Kätelhön et al. ¹
Terephthalic acid	100.69	2030	Kätelhön et al. ¹
Toluene	34.7	2030	Kätelhön et al. ¹
Toluene diisocyanate	3.36	2019	ECTC Chemical Technologies ³²
Urea	197	2022	International Fertilizer Association ³³
Vinyl chloride	55.56	2030	Kätelhön et al. ¹
Xylene (mixed)	93.74	2030	Kätelhön et al. ¹
Xylene (para)	69.45	2030	Kätelhön et al. ¹

5 Mass flows in the optimized chemical industry

- ⁶ The chemical industry is optimized for the today and the future electricity scenario. The
- optimized chemical industries are compared to the business-as-usual benchmark in Figure
- 8 S1 and Figure S2, respectively. For reasons of clarity, only the mass flows that are changed
- 9 by the optimization of the chemical industry are shown. In contrast to optimization pro-
- posed by Kätelhön et al. 1, where the methanol-to-olefin processes only became ecologically
- $_{\rm 11}$ advantageous for the electricity supply from a carbon footprint of 124 219 g $\rm CO_2$ equiv-
- alents/kWh, in this study these processes are already advantageous in the today scenario.

Figure S1: Mass flows in the optimized chemical industry using the today electricity scenario. A reference flow, consisting of 3 ≥ 5 Mt, is given at the bottom left as a scale.

This is due to the fact that in the process Ethylene by the UOP/Hydro methanol to olefins a C₄-C₅ fraction is co-produced. The combustion of this fuel gas provides heat with lower GHG emissions than the combustion of natural gas and is thus used for heat integration with other processes within this optimized chemical industry. Furthermore, the production of CO₂-based dimethyl carbonate, polyol, carbon monoxide and formic acid becomes climate beneficial.

Steel mill off-gas compositions

Amount and properties of the generated steel mill off-gases influence the subsequent utilization. In this paper, we assume the off-gas streams as steady-state and the respective
input stream parameters are characterized in Table S4. Because of the similar compositions
and the low quantity of generated BOFG, we aggregate BFG and BOFG into one stream.

Pollutions such as metals in the steel mill off-gases are neglected since these substances must
be separated already today before the steel mill off-gases can be used ³⁴. The separation
processes such as electrostatic precipitators with their related GHG emissions are thus similar for all regarded scenarios and can be allocated to the steel mill itself outside the system
boundaries.

29 Combustion Processes

Today, steel mill off-gases are combusted for re-heating and power generation. Accordingly,
we include this utilization pathway in the integrated model. Since the steel mill and thus the
heat integration with the steel mill is excluded from the model, we consider the combustion
in combined heat and power plants (CHP). The linear combustion processes are shown in
Table S5.

When steel mill off-gases are utilized for chemical production, the resulting demand of heat and electricity is settled from other sources. Accordingly, we consider an annual demand

Figure S2: Mass flows in the optimized chemical industry using the *future* electricity scenario. A reference flow, consisting of 3 x 5 Mt, is given at the bottom left as a scale.

Table S4: Quantity and properties of the annual, worldwide steel mill off-gas streams. Molar compositions are adapted from Uribe-Soto et al. 35, mass streams are obtained from own calculations.

	in	$\overline{\text{COG}}$	BFG	BOFG	BFG/BOFG mix
\overline{m}	Mt/year	39.70	-	-	1740.55
$\mid t$	$^{\circ}\mathrm{C}$	30	30	30	30
$\mid p \mid$	bar	1	1	1	1
M	g/mol	8.94	-	-	30.11
Component k			l	Mole fract:	ions y_k
CO_2		0.012	0.22	0.2	0.21
CO		0.042	0.24	0.54	0.24
H_2		0.621	0.04	0.03	0.065
CH4		0.225	0	0.3	0.011
N_2		0.059	0.47	0.18	0.436
H_2O		0.041	0.04	0	0.04

of 248 TWh heat and 638 TWh electricity in the polygeneration system, corresponding to

Unit Operations for the Separation System

- The unit operations considered in the separation system are chosen according to the work
- proposed by Ghanbari et al. ³⁶. Both steel mill off-gases are mixtures of different chemical

Table S5: Combustion processes for steel mill off-gases³

		Combustion	Combustion
Interm. Flow	in	COG in CHP	BFG/BOFG in CHP
BFG/BOFG	kg	0	-0.370
COG	kg	-0.027	0
Electricity	MJ	0.396	0.365
Heat	MJ	0.145	0.145
Water	kg	0.206	-0.177
GWI	kg CO ₂ -eq	0.263	0.036

the complete combustion of the steel mill off-gas streams in the CHP.

components. Although first approaches are presented in the literature, utilizing the raw steel mill off-gas as feedstock, e.g. Thonemann and Maga³⁷, the separation of these gas mixtures is inevitable for the subsequent chemical utilization in the presented model. In the following section, we present the used unit operations for the separation steps according to the work proposed by Ghanbari et al.³⁶.

Absorption and adsorption processes are among those unit operations. The target component is selectively removed from the gas mixture through chemical or physical binding. While absorption refers to the transfer into a liquid solvent, adsorption refers to the interaction at a solid surface. Both mechanisms prefer low temperatures and high pressures. In the subsequent desorption step, the binding is released and the target component is recovered in gaseous state. For desorption, high temperatures and low pressures are favourable. Additionally, chemical reactions are performed to convert the components. Those reactions include the reforming of CH_4 and the conversion of CO to CO_2 and H_2 .

55 Pressure Swing Adsorption

Pressure swing adsorption (PSA) exploits the pressure dependence of the adsorption equilibrium. The adsorption step is performed at high pressure levels. Through binding to the solid material (adsorbent) surface, target component is removed from the gas mixture. Compressing the feed gas stream requires energy. Accordingly, the feed compressor power is the main energy cost of the process. The desorption step is conducted subsequently. By lowering the pressure, the target component leaves the adsorbent surface and is recovered in gaseous state³⁸.

Continuous operation of the PSA process requires a two-unit arrangement (Figure S3).

The circulation of the solid adsorbent between two pressure levels is hard to conduct in practice. Instead, the adsorbent bed is fixed in two columns. The two beds alternate between adsorption and desorption phases to enable a continuous process. Only one column at a time is connected to the feed and by-product stream, therefore representing the adsorption

column. In the fixed adsorbent bed of column 1, the target component accumulates. When
the adsorbent is saturated, column 1 is disconnected from feed and by-product stream and
connected to the product stream. Now, the desorption step takes place in column 1. The
respective opposite step occurs simultaneously in the column 2³⁹.

Figure S3: Basic flowsheet of the continous pressure swing adsorption process (PSA)

The PSA process is suitable for two tasks in steel mill off-gas separation: First, the recovery of H_2 from COG, BFG and BOFG^{35,40}. Second, the recovery of CO_2 from BFG and BOFG. Kim et al.⁴¹ presented a detailed study on the application of PSA to recover CO_2 from steel mill off-gas streams.

76 Temperature Swing Adsorption

Temperature swing adsorption (TSA) exploits the temperature dependency of the adsorption equilibrium. The adsorption step is performed at moderate temperatures. For the desorption step, the temperature is increased. Subsequently, the target component is released. Heating the product-enriched adsorbent is the greatest operational energy requirement of this pro-

cess³⁸. Ghanbari et al. ³⁶ suggested TSA for the recovery of *CO* from BFG and BOFG. Rabo et al. ⁴² investigated the adsorption behaviour of *CO* on zeolitic molecular sieves. While the adsorption process showed a strong temperature dependence, no significant pressure dependency was observed. Accordingly, TSA was found suitable for *CO* recovery.

85 Chemical Absorption

The main concept of chemical absorption is the transfer of the gaseous target component into a liquid solvent (absorbent). Chemical reactions take place in the liquid phase, thereby retaining the target component. In the subsequent desorption step, the reactions are reversed by temperature changes. The target component is stripped from the solvent and recovered as gaseous product.

Figure S4: Basic flowsheet of the chemical CO_2 absorption process

Chemical absorption (CCA) with aqueous monoethanolamine (MEA) solutions is the conventional set-up for removing CO_2 from gas streams⁴³. Figure S4 shows the main units of this separation process. The absorber is operated at temperatures around 40°C. The

lean solvent enters at the top and flows countercurrently to the feed gas stream through the
column. The product-enriched solvent is drained at the bottom and sent to the desorber. As
the desorption step takes place at elevated temperatures (around 120°C), the rich solvent is
pre-heated by the lean solvent stream leaving the desorber. Main energy cost of the chemical
absorption process is the desorption heat, supplied in the desorber bottom. Because of the
elevated temperatures, water evaporates from the MEA solution. To obtain a pure product,
this water is removed from the product gas stream in a condenser at the column top 41,44.

Membrane Separation Process

Membrane separation processes (MSP) are investigated as alternative to the conventional 102 gas separation processes. Key element is the membrane, beeing selectively permeable to the 103 target component. The feed gas stream enters the membrane module at elevated pressure 104 and flows along the membrane. By passing through the membrane, the target component is 105 enriched with the product stream (permeate). The by-product stream (retentate) leaves the 106 module without passing the membrane. Lower energy requirements are the most prominent 107 advantage of membrane separation processes³⁸. However, limited product purities are the 108 main drawback⁴¹. To obtain a product stream of sufficient quality, multiple membrane 100 stages are often required. Moreover, purity and product recovery form a trade-off. Higher 110 feed pressures force more gas through the membrane, increasing the product recovery rate. 111 At the same time, the product purity decreases³⁵. 112

Two steps in the separation of steel mill off-gases can be conducted with membrane separation processes: First, the recovery of H_2 from COG, BFG and BOFG. Second, the recovery of CO_2 from BFG and BOFG^{35,36}. Lie et al. 45 presented a detailed study on the recovery of CO_2 from steel mill off-gases with a fixed-site-carrier membrane.

Water Gas Shift Reaction

The water-gas-shift reaction (WGSR) enhances the flexibility of the separation system: Under addition of steam (H_2O) , CO is converted into H_2 and CO_2 by the equilibrium reaction:

$$CO + H_2O \Longrightarrow CO_2 + H_2$$
 $\Delta H_R = -41.1 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$ (1)

Thereby, the ratio of the three products is adjusted to fulfill the demands of the subsequent utilization. The reaction enthalpy is denoted by ΔH_R . According to Le Chatelier's principle, low temperatures raise the equilibrium product concentration of the exothermic reaction. However, the reaction slows at low temperatures. To adress this trade-off between kinetics and equilibrium, several operation modes are applied. For the WGSR of steel mill off-gases, the low-temperature shift reaction (LTSR) operated at 200 - 300 °C over Cu-Zn catalysts was found promising 46 .

127 Methane Reforming

Methane reforming decomposes CH_4 into H_2 and CO. Many chemical production processes consume this product mixture, referred to as synthesis gas (syngas). The ratio between both components varies for each process and is therefore an important property. syngas 2:1 denotes a molar H_2 -to-CO-ratio of 2:1. Three reaction pathways can be applied to methane reforming:

Steam methane reforming

133

Steam methane reforming (SMR) is the conventional reaction pathway. However, the strong endothermic SMR consumes large amounts of heat. The product mixture contains comparatively high amounts of H_2 , resulting in syngas 3:1 (Equation 2). Simultaneos to the SMR, the WGSR takes place.

$$CH_4 + H_2O \rightleftharpoons CO + 3H_2$$
 $\Delta H_R = 234.7 \text{ kJ mol}^{-1}$ (2)

Partial oxidation reforming

138

141

Partial oxidation reforming (POR) is slightly exothermic and therefore beneficial in terms of energy consumption. However, the reaction requires pure oxygen (O_2) as co-reactant.

$$CH_4 + 0.5O_2 \rightleftharpoons CO + 2H_2$$
 $\Delta H_R = -35.9 \text{ kJ mol}^{-1}$ (3)

The oxygen supply leads to additional costs. Syngas 2:1 is obtained as product stream, the optimal composition for most subsequent production processes ⁴⁷.

Carbon dioxide reforming

Carbon dioxide reforming (CDR) utilizes CO_2 as co-reactant. Therefore, CDR is considered as CCU technology. Heat is supplied to perform the strongly endothermic reaction step. Syngas 1:1 is produced, according to the stoichiometry ⁴⁸.

$$CH_4 + CO_2 \rightleftharpoons 2CO + 2H_2$$
 $\Delta H_R = 247 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$ (4)

Flowsheet of the separation superstructure

We use a fixed sequence and connectivity of the separation steps, adapted from Ghanbari et al. ³⁶

The first step of the COG separation (see Figure S5) is the H_2 recovery. MSP or PSA are applied for this task. For both pressure-driven units, an upstream compressor is required. The by-product stream contains mainly CH_4 , which can either be utilized (Stream 35) or converted. To produce syngas, Stream 37 supplies the co-reactant (CO_2, H_2O) or

 O_2). Subsequently, the mixture is sent to the methane-reforming unit. Three reactions are applicable to this task: SMR, CDR and POR. Dependent on the selected reaction, heat is consumed or produced. All three reactions are operated at high conversion rates (see Table S7). Accordingly, output stream 40 is assumed as pure syngas.

Figure S5: Superstructure of the COG separation system

The BFG/BOFG mixture contains large amounts of CO (see Table S4). Thus, CO recovery is performed via TSA as first step (Figure S6). Recovered CO is either utilized (Stream 20) or converted. For the WGSR step, steam (H_2O) is supplied as co-reactant (Stream 22). The resulting gas mixture is heated and sent to the reactor. Through the WGSR step, additional H_2 and CO_2 can be obtained. Since the reactor output stream (25) and the TSA by-product stream (4) both consist of H_2 and CO_2 in similar compositions, the streams are mixed to conduct the CO_2 separation subsequently.

Figure S6: Superstructure of the BFG/BOFG separation system (1/2)

Three unit alternatives can perform the subsequent CO_2 recovery: MSP, PSA or CCA

(see Figure S7). Through a heat exchanger and a compressor, the operating conditions for the selected process a generated. Last step of the BFG/BOFG separation is another H_2 recovery step. The by-product stream of this unit (12) contains large amounts of N_2 , but also unrecovered gas components. Accordingly, the stream is considered as waste and passed to the linear model of the chemical industry. There, the stream is released to the atmosphere, and the GHG emissions of environmentally relevant gases, in particular CO and CO_2 , are considered in the objective function.

Figure S7: Superstructure of the BFG/BOFG separation system (2/2)

171 Model equations and parameters for the separation su-

perstructure

In the following section, equations and parameters used for the separation system model are presented.

175 Heat exchanger and compressor

Energy demands for heat exchangers and compressors are calculated by energy balances:

$$q_{\rm HE} = n^{\rm in} (h^{\rm out} - h^{\rm in})/\eta_{\rm HE} \tag{5}$$

$$w_{\rm comp} = n^{\rm in} (h^{\rm out} - h^{\rm in}) / \eta_{\rm comp}$$
 (6)

The efficiencies are set to $\eta_{\text{comp}} = 0.7$ and $\eta_{\text{HE}} = 0.7^{36}$.

Thermodynamic properties 179

181

Pure substance enthalpies for all mill gas components are estimated by the Shomate Equa-180 tion:

$$h_k(T) = B_{1k} + B_{2k} \frac{T^2}{2} + B_{3k} \frac{T^3}{3} + B_{4k} \frac{T^4}{4} - \frac{B_{5k}}{T} + B_{6k} - B_{7k}$$
 (7)

Coefficients B_{1k} - B_{7k} are obtained from the NIST chemical webbook ⁴⁹. Enthalpy of each stream is calculated under assumption of an ideal gas mixture similar to Ghanbari et al. ³⁶:

$$h^i = \sum_k h_k(T^i) y_k^i \tag{8}$$

Isentropic relation for ideal gas:

$$\frac{T^{\text{out}}}{T^{\text{in}}} = \frac{p^{\text{out}}^{\frac{\kappa - 1}{\kappa}}}{p^{\text{in}}} \tag{9}$$

with heat capacity ratio κ and gas constant R:

$$\kappa = \frac{C_p}{C_p - R} \tag{10}$$

The molar heat capacities C_p are calculated with the derivative of the Shomate Equation 7.

Pressure Swing Adsorption

- Following shortcut equation is used to calculate the product recovery from the pressure ratio. 188
- The adsorbent selectivity is denoted by β^{50} :

$$\frac{p^{\text{prod}}}{p^{\text{in}}} = y_{k_{\text{prod}}}^{\text{in}} \left(1 - \frac{\zeta_{k_{\text{prod}}}}{1 - \beta} \right) \tag{11}$$

For hydrogen recovery $(k_{\text{prod}} = H_2)$, a selectivity of $\beta_{H_2} = 0.02$ is used³⁶. For carbon dioxide recovery $(k_{\text{prod}} = CO_2)$, Equation 11 was fitted to operational data from Kim et al. 41, resulting in $\beta_{CO_2}=0.024$. The product stream is assumed to be pure target component $(y_{k_{\text{prod}}}^{\text{prod}}=1)$.

194 Temperature Swing Adsorption

Similar to the PSA, the product stream is assumed as pure target component. Through a mass balance with adsorbent stream m_{ads} , the product flow is determined. X^{rich} and X^{lean} denote rich and lean adsorbent mass loadings.

$$m_{\rm ads}(X^{\rm rich} - X^{\rm lean}) = M_{CO} \, n^{\rm prod} y_{CO}^{\rm prod} \tag{12}$$

As main energy requirement, the desorption heat q_{des} is calculated. Because of very small loadings, adsorption enthalpy and product heating are neglected.

$$q_{\rm des} = m_{\rm ads}c_{p,\rm ads}(t_{\rm des} - t_{\rm ads}) \tag{13}$$

Adsorption isotherms from Rabo et al. 42 at $t_{\rm ads}=50^{\circ}{\rm C}$ and $t_{\rm des}=250^{\circ}{\rm C}$ are used to determine rich and lean loadings. The adsorbent (zeolite 13X) heat capacity $c_{p,{\rm ads}}=1.34\,{\rm kJ\,kg^{-1}\,K^{-1}}$ was obtained from Kakavandi et al. 51 .

203 Chemical Absorption

The desorption heat for the chemical absorption process of CO_2 with MEA is estimated with an empirical correlation from Kim et al.:⁴¹

$$q = 4.2n^{\text{prod}}M_{CO_2} \tag{14}$$

The product recovery is constrained by $\zeta_{CO_2} \leq 0.9$. The process is operated at fixed temperatures $t_{\rm des} = 120^{\circ}C$ and $t_{abs} = 40^{\circ}C$ and and a pressure of 1.5 bar. A more advanced shortcut model by Ralf Notz et al. ⁴⁴, based on the Kremser Equation, was also tested but 209 impaired overall convergence.

210 Membrane Separation Process

The shortcut equations for the MSP are adapted from Ghanbari et al. ³⁶. Product recovery:

$$\frac{p^{\text{prod}}}{p^{\text{in}}} = \left(\frac{y_{k_{\text{prod}}}^{\text{in}}}{y_{k_{\text{prod}}}^{\text{prod}}}\right) \left(\frac{1 - \zeta_{k_{\text{prod}}}}{1 - y_{k_{\text{prod}}}^{\text{in}} \zeta_{k_{\text{prod}}}}\right)$$
(15)

Mole fraction of k in the product stream:

$$n^{\text{prod}} y_k^{\text{prod}} = \frac{\alpha_{k/k_{\text{prod}}} \zeta_{k_{\text{prod}}} y_k^{\text{in}} y_{k_{\text{prod}}}^{\text{in}} n^{\text{in}}}{y_k^{\text{in}} \left(2 - \zeta_{k_{\text{prod}}} - \frac{\alpha_{k/k_{\text{prod}}} \zeta_{k_{\text{prod}}}}{1 - y_{k_{\text{prod}}}^{\text{in}} \zeta_{k_{\text{prod}}}}\right) - 2\left(\frac{y_{k_{\text{prod}}}^{\text{prod}} p^{\text{in}}}{p^{\text{prod}}}\right) (1 - \alpha_{k/k_{\text{prod}}})}$$
(16)

- The membrane selectivities $\alpha_{k/k_{\text{prod}}}$ for the H_2 separation are obtained from Ghanbari et al. ³⁶,
- for the CO_2 separation from Lie et al. ⁴⁵ (Table S6).

Table S6: Permeability coefficients for the H_2 and CO_2 membrane separation obtained from Ghanbari et al. ³⁶ and Lie et al. ⁴⁵, respectively.

Component	Permeability H_2 membrane	Permeability CO_2 membrane
CO	2.4	1/140
CH_4	2.3	1/200
CO_2	38	1
${ m H_2}$	55	1/175
O_2	8.3	1/200
N_2	1.4	1/160

215 Chemical reactions

For a chemical reaction R, $\nu_{k,R}$ denotes the stoichiometric coefficient of component k. The conversion rate ξ_R is determined on basis of the limiting key component k_{key} . Overall mole

218 balance:

$$n^{\rm in}(1+\sum_{k}\nu_{k,R}\xi_{R}y_{k_{\rm key}}^{\rm in})=n^{\rm out}$$
(17)

219 Component mole balance:

$$n^{\rm in} \left(y_k^{\rm in} - \frac{\nu_{R,k}}{\nu_{R,k_{\rm key}}} \xi_R y_{k_{\rm key}}^{\rm in} \right) = n^{\rm out} y_k^{\rm out}$$

$$\tag{18}$$

Energy balance with enthalpy of reaction ΔH_R :

$$n^{\rm in}(h^{\rm in} - \xi_R y_{k_{\rm kev}}^{\rm in} \Delta H_R) + q \eta_{\rm HE} = n^{\rm out} h^{\rm out}$$
(19)

The occurring reactions are modelled with fixed conversion rates and reaction temperatures.

These parameters can be found in Table S7. However, the reaction temperature can be varied in a given range depending on the unit operations used upstream of the reactor. $\frac{n_{k_s}}{n_{k_{\text{key}}}}$ denotes the ratio of supplemented co-reactant k_s to key component in the feed stream. Concurrent to the SMR at its operating condition, the WGSR reaction takes place with $\xi_{CO}^{WGSR} = 0.4$.

Table S7: Reaction parameters of the separation system

Reaction	ΔH_R in kJ/mol	T_R in K	k_{key}	$\xi_{k_{ ext{key}}}$	k_s	$\frac{n_{k_s}}{n_{k_{\mathrm{key}}}}$
WGSR	-41.1	473 - 573	CO	0.96	H_2O	1
SMR	234.7	1153 - 1300	CH_4	0.82	H_2O	3.68
POR	-35.9	1000	CH_4	0.95	O_2	0.48
CDR	247	1143 - 1313	CH_4	0.9	CO_2	1

226 List of abbreviations and mathematical symbols

	Abbreviation	Explanation
	BFG	Blast Furnace Gas
	BOFG	Basic Oxygen Furnace Gas
	CCU	Carbon Capture and Utilization
	CCA	Carbon Chemical Absorption
	CDR	Carbon Dioxide Reforming (of Methane)
	CHP	Combined Heat and Power Unit
	COG	Coke Oven Gas
	GDP	Generalized disjunctive (optimization) program
	GHG	Green House Gas
	GWI	Global Warming Impact
	LCA	Life Cycle Assessment
	LCI	Life Cycle Inventory
227	LTSR	Low Temperature Shift Reaction
	LP	Linear (optimization) program
	MEA	Monoethanolamine
	MGS	Steel Mill Off-Gas Separation
	MINLP	Mixed-integer non-linear (optimization) program
	MSP	Membrane Separation Process
	MIP	Mixed-integer linear (optimization) program
	NLP	Non-linear (optimization) program
	SMR	Steam Methane Reforming
	TCM	Technology Choice Model
	TRL	Technology Readiness Level
	TSA	Temperature Swing Adsorption
	POR	Partial Oxygen Reforming (of Methane)
	PSA	Pressure Swing Adsorption S35
		ააა

Symbol	Explanation	Unit
C_p	Molar heat capacity	$kJ\mathrm{mol^{-1}K^{-1}}$
c_p	Specific heat capacity	${\rm kJkg^{-1}K^{-1}}$
ΔH_R	Reaction enthalpy	${\rm kJmol^{-1}}$
h	Molar enthalpy	${\rm kJmol^{-1}}$
M	Molar weight	$\rm kgmol^{-1}$
n^i	Molar flow	$ m molyr^{-1}$
p	Pressure	bar
p_k	Production volume of chemical component k	${ m Mtyr^{-1}}$
q	Heat flow	${ m MJyr^{-1}}$
R	Gas constant	$kJ\mathrm{mol^{-1}K^{-1}}$
T	Temperature	K
t	Temperature	$^{\circ}C$
w	Electricity flow	${ m MJyr^{-1}}$
X	Mass loading	_
y_k^i	Mole fraction (gas) with $i \in \{in, out\}$	_
α	Membrane selectivity	_
β	Adsorbent selectivity	_
η	Efficiency	_
κ	Molar heat capacity ratio	_
ν	Stoichionetric coefficient	_
ξ	Conversion rate	_
ζ^i	Split factor	_
ζ_k	Product recovery	_

	Subscripts	Explanation
229	ads	Adsorber
	des	Desorber
	prod	Product component
	key	Key component
	k	Chemical component k

	Superscripts	Explanation
	i	Stream i in separation system
	lean	Lean solvent stream
230	rich	Rich solvent stream
	prod	Product stream
	in	Input stream
	out	Output stream

231 References

- Kätelhön, A.; Meys, R.; Deutz, S.; Suh, S.; Bardow, A. Climate change mitigation
 potential of carbon capture and utilization in the chemical industry. Proceedings of the
 National Academy of Sciences of the United States of America 2019, 116, 11187–11194.
- 235 2. IHS Markit, Process Economics Program (PEP) Yearbook. https://ihsmarkit.com/index.html, 2018; (accessed on April 9, 2021).
- 3. Wernet, G.; Bauer, C.; Steubing, B.; Reinhard, J.; Moreno-Ruiz, E.; Weidema, B. The
 Ecoinvent Database Version 3 (Part I): Overview and Methodology. The International

 Journal of Life Cycle Assessment 2016, 21, 1218–1230.
- 4. Sphera Solutions GmbH, GaBi Life Cycle Assessment Database. 2021.
- 5. Artz, J.; Müller, T. E.; Thenert, K.; Kleinekorte, J.; Meys, R.; Sternberg, A.; Bardow, A.; Leitner, W. Sustainable Conversion of Carbon Dioxide: An Integrated Review of Catalysis and Life Cycle Assessment. *Chemical reviews* **2018**, *118*, 434–504.
- 6. Grand View Research, 1,3 Propanediol Market Size, Share & Trends Analysis: Report By Application (Polytrimethylene Terephthalate, Polyurethane, Personal Care & Detergents), By Region, And Segment Forecasts, 2015 2022: Report ID: 978-1-68038-385-0. https://www.grandviewresearch.com/press-release/global-1-3-propanediol-market, 2015; (accessed on April 8, 2021).
- 7. Burgard, A.; Burk, M. J.; Osterhout, R.; van Dien, S.; Yim, H. Development of a commercial scale process for production of 1, 4-butanediol from sugar. *Current opinion in biotechnology* **2016**, *42*, 118–125.
- 8. Markets and Markets, 2-Ethylhexanol Market (2-EH) by Applications (Plasticizers, 2-EH Acrylate, 2-EH Nitrate, and Others) & Geography: Trends and Forecasts to 2018.

- https://www.marketsandmarkets.com/PressReleases/2-ethylhexanol.asp, 2018; (accessed on April 8, 2021).
- 9. Pal, P.; Nayak, J. Acetic acid production and purification: critical review towards process intensification. Separation & Purification Reviews 2017, 46, 44–61.
- ²⁵⁸ 10. Jira, R. Acetaldehyde from ethylene—A retrospective on the discovery of the Wacker process. *Angewandte Chemie International Edition* **2009**, *48*, 9034–9037.
- 11. Getman, R. B.; Bae, Y.-S.; Wilmer, C. E.; Snurr, R. Q. Review and analysis of molecular simulations of methane, hydrogen, and acetylene storage in metal—organic frameworks.
 Chemical reviews 2012, 112, 703–723.
- Market Research Store, Acrylic Acid (Acrylate Esters, Glacial Acrylic Acid Market & Others) Market for Superabsorbent Polymers & Surface Coatings, Adhesives & Sealants, Textiles, Plastic Additives, Printing Ink and Other Applications:
 Global Industry Perspective, Comprehensive Analysis, Size, Share, Growth, Segment,
 Trends and Forecast, 2014 2020. https://www.marketresearchstore.com/news/global-acrylic-acid-market-143, 2016; (accessed on April 9, 2021).
- Industrial Grade; and Application: Tile Additives, Feed Additives, Concrete-setting
 Accelerators, Leather Tanning, Drilling Fluids, Textile Auxiliaries, Flue Gas Desulfurization Additives, and Others) Global Industry Analysis, Size, Share, Growth,
 Trends, and Forecast 2019 2027. https://www.transparencymarketresearch.com/
 calcium-formate-market.html, 2018; (accessed on April 9, 2021).
- 14. Grand View Research, Cyclohexane Market Size, Share & Trends Analysis Report By
 Application (Adipic Acid, Caprolactam), By End-use (Nylon 6, Nylon 66), Competitive
 Landscape, And Segment Forecasts, 2018 2025. https://www.grandviewresearch.
 com/industry-analysis/cyclohexane-market, 2017; (accessed on April 9, 2021).

- 15. Cavani, F. Sustainable industrial processes: Principles, Tools and Industrial Examples;
 Wiley-VCH: Weinheim, 2009.
- 281 16. Wikipedia, Diphenyl carbonate. https://en.wikipedia.org/wiki/Diphenyl_
 282 carbonate#:~:text=decomposition%20of%20polycarbonates.-,Production,is%
 20the%20most%20significant%20route., 2012; (accessed on April 9, 2021).
- 17. Al-Kinany, M. C.; Aldrees, S. A. Advanced Catalysis Processes in Petrochemicals and
 Petroleum Refining: Emerging Research and Opportunities: Emerging Research and Opportunities; IGI Global, 2019.
- Pérez-Fortes, M.; Schöneberger, J. C.; Boulamanti, A.; Harrison, G.; Tzimas, E. Formic
 acid synthesis using CO2 as raw material: Techno-economic and environmental evaluation and market potential. *International Journal of Hydrogen Energy* 2016, 41, 16444–16462.
- 19. Duong, A.; Steinmaus, C.; McHale, C. M.; Vaughan, C. P.; Zhang, L. Reproductive and developmental toxicity of formaldehyde: a systematic review. *Mutation Research/Reviews in Mutation Research* 2011, 728, 118–138.
- 294 20. Grand View Research, Isobutanol Market Analysis By Product (Synthetic, Bio-Based),

 Application (Oil & Gas, Solvents & Coatings, Chemical Intermediates) And Seg
 ment Forecasts To 2022. https://www.grandviewresearch.com/industry-analysis/

 isobutanol-market, 2016; (accessed on April 9, 2021).
- ²⁹⁸ 21. Vaz Jr, S. Biomass and green chemistry: building a renewable pathway; Springer, 2017.
- 22. Cornils, B.; Fischer, R. W.; Kohlpaintner, C. *Ullmann's encyclopedia of industrial chem-*istry; Wiley: Chichester, 2010.
- 23. PubChem, Methyl formate (Compound). https://pubchem.ncbi.nlm.nih.gov/

- compound/Methyl-formate#section=Formulations-Preparations, 2005; (accessed on April 9, 2021).
- 24. PubChem, Methyl methacrylate (Compound). https://pubchem.ncbi.nlm.nih.gov/
 compound/Methyl-methacrylate#section=Consumption-Patterns, 2008; (accessed
 on April 9, 2021).
- ³⁰⁷ 25. Jiang, Y.; Liu, J.; Jiang, W.; Yang, Y.; Yang, S. Current status and prospects of indus-³⁰⁸ trial bio-production of n-butanol in China. *Biotechnology advances* **2015**, *33*, 1493–1501.
- 26. Ku, J. T.; Simanjuntak, W.; Lan, E. I. Renewable synthesis of n-butyraldehyde from glucose by engineered Escherichia coli. *Biotechnology for biofuels* **2017**, *10*, 1–10.
- 27. ICIS Independent Commodity Intelligence Services, CHEMICAL PROFILE: 1-octene. https://www.icis.com/explore/resources/news/2007/08/06/9050162/chemical-profile-1-octene/, 2007; (accessed on April 9, 2021).
- 28. Cotarca, L.; Eckert, H. *Phosgenations: a handbook*; John Wiley & Sons, 2006.
- 29. Wikipedia, Vinyl acetate. https://en.wikipedia.org/wiki/Vinyl_acetate, 2011; (accessed on April 9, 2021).
- 317 30. Plastics Insight, Polycarbonate Production, Price and Market Demand. https:

 //www.plasticsinsight.com/resin-intelligence/resin-prices/polycarbonate/

 #capacity, 2016; (accessed on April 9, 2021).
- 31. Statista, Leading polyether polyol producers worldwide in 2016, by production capacity (in million metric tons). https://www.statista.com/statistics/747099/production-capacity-of-the-leading-polyether-polyol-producers/, 2017; (accessed on April 9, 2021).

- 32. ECTC Chemical Technologies, ISOCYANATES PRODUCTION: GLOBAL AND RUSSIAN ISOCYANATE MARKET OVERVIEW. https://ect-center.com/blog-en/
- global-isocyanate-market, 2019; (accessed on April 9, 2021).
- 33. International Fertilizer Association, Fertilizer Outlook 2018 2022: Production & International Trade and Agriculture Services. 2018.
- 34. Silverman, L. Technical Aspects of High Temperature Gas Cleaning for Steel Making Processes. Air Repair 1955, 4, 189–231.
- 35. Uribe-Soto, W.; Portha, J.-F.; Commenge, J.-M.; Falk, L. A review of thermochemical processes and technologies to use steelworks off-gases. *Renewable and Sustainable Energy Reviews* **2017**, *74*, 809–823.
- 36. Ghanbari, H.; Saxén, H.; Grossmann, I. E. Optimal design and operation of a steel plant integrated with a polygeneration system. *AIChE Journal* **2013**, *59*, 3659–3670.
- 37. Thonemann, N.; Maga, D. Life Cycle Assessment of Steel Mill Gas–Based Methanol Production within the Carbon2Chem® Project. Chemie Ingenieur Technik **2020**, 92, 1425–1430.
- 339 38. Goedecke, R. Fluidverfahrenstechnik: Grundlagen, Methodik, Technik, Praxis, 1st ed.;
 Wiley-VCH, 2006.
- 39. Kwon, S.; Fan, M.; DaCosta, H. F. M.; Russell, A. G.; Berchtold, K. A.; Dubey, M. K. In *Coal Gasification and Its Applications*; Bell, D. A., Towler, B. F., Fan, M., Eds.; Elsevier, 2010; pp 293–340.
- 40. Ghanbari, H.; Pettersson, F.; Saxen, H. Sustainable development of primary steelmaking
 under novel blast furnace operation and injection of different reducing agents. Chemical
 Engineering Science 2015, 129, 208–222.

- 41. Kim, H.; Lee, J.; Lee, S.; Lee, I.-B.; Park, J.-h.; Han, J. Economic process design for separation of CO2 from the off-gas in ironmaking and steelmaking plants. *Energy* **2015**, 88, 756–764.
- 42. Rabo, J. A.; Francis, J. N.; Angell, C. L. Selective Adsorption of Carbon Monoxide from
 Gas Streams: U.S. Patent. 1977.
- 43. Lee, U.; Burre, J.; Caspari, A.; Kleinekorte, J.; Schweidtmann, A. M.; Mitsos, A. Technoeconomic Optimization of a Green-Field Post-Combustion CO2 Capture Process Using
 Superstructure and Rate-Based Models. *Industrial & Engineering Chemistry Research*2016, 55, 12014–12026.
- 44. Ralf Notz,; Inga Tönnies,; Hari Prasad Mangalapally,; Sebastian Hoch,; Hans Hasse, A
 short-cut method for assessing absorbents for post-combustion carbon dioxide capture.
 International Journal of Greenhouse Gas Control 2010, 5, 413–421.
- 45. Lie, J. A.; Vassbotn, T.; Hägg, M.-B.; Grainger, D.; Kim, T.-J.; Mejdell, T. Optimization of a membrane process for CO2 capture in the steelmaking industry. *International Journal of Greenhouse Gas Control* **2007**, *1*, 309–317.
- 46. Chen, W.-H.; Lin, M.-R.; Leu, T.-S.; Du, S.-W. An evaluation of hydrogen production from the perspective of using blast furnace gas and coke oven gas as feedstocks.

 International Journal of Hydrogen Energy 2011, 36, 11727–11737.
- ³⁶⁵ 47. Zhu, J.; Zhang, D.; King, K. D. Reforming of CH4 by partial oxidation: thermodynamic and kinetic analyses. *Fuel* **2001**, *80*, 899–905.
- 48. Wang, S.; Lu, G. Q.; Millar, G. J. Carbon Dioxide Reforming of Methane To Produce
 Synthesis Gas over Metal-Supported Catalysts: State of the Art. Energy and Fuels 1996,
 10, 896–904.

- 49. Linstrom, P. J.; Mallard, W. G. NIST Chemistry WebBook, NIST Standard Reference
 Database Number 69; National Institute of Standards and Technology, Gaithersburg
- MD, 20899, 2020.
- 50. Ruthven, D. M.; Farooq, S.; Knaebel, K. S. *Pressure Swing Adsorption*; Wiley-VCH:
 New York, NY, 1994.
- 51. Kakavandi, I. A.; Shokroo, E. J.; Baghbani, M. Dynamic modeling of nitrogen adsorption on zeolite 13x bed. Fluid Mechanics Research International Journal 2017, 1, 20–24.