Extracting Biological Processes with Global Constraints

Author 1

XYZ Company
111 Anywhere Street
Mytown, NY 10000, USA
author1@xyz.org

Author 2

ABC University
900 Main Street
Ourcity, PQ, Canada A1A 1T2
author2@abc.ca

Abstract

Biological processes are complex phenomena involving a series of events that are related to one another through multiple dependencies. Teaching computers to read, understand and reason over text describing biological processes could dramatically improve performance of semantic applications such as question answering (QA). In this paper, we present the task of process extraction, in which the events in the process and their relations are automatically extracted from text. We represent processes by graphs whose edges describe a large set of temporal, causal and coreference event-event relations, and characterize the structural properties of that graph (e.g., the graph is *connected*). Then, we present a method for extracting relations between processes, which exploits these structural properties by performing joint inference over the set of possible extracted relations. On a novel data set (released with this paper), containing 148 descriptions of biological processes we show significant improvement comparing to baselines that ignore process structure.

1 Introduction

A *process* is defined as a series of inter-related events that involve multiple entities and lead to an end result. Product manufacturing, economical developments, and various phenomena in life and social sciences can all be viewed as types of processes. Processes are complicated objects; consider for example the biological process of ATP synthesis described in Figure 1. This process involves 12 entities and 8 events. On top of that, it describes the

role of each entity in each event, and the relationship between events (e.g., the second occurrence of the event 'enter', 'causes' the event 'changing').

Automatically extracting the structure of processes from text is crucial for applications that require reasoning such as non-factoid QA. For instance, answering a question on ATP synthesis such as "How do H+ ions contribute to the production of ATP?" is only possible given a structure that links H+ ions (Figure 1, sentence 1) to ATP (Figure 1, sentence 4) through a sequence of intermediate events. Such "how" questions are common in FAQ websites (Surdeanu et al., 2011), which further supports the importance of process extraction.

Process extraction is related to two recent lines of work in Information Extraction - event extraction and timeline construction. Traditional event extraction focuses on identifying specific events from a closed set in a single sentence. For example, the BioNLP 2009 and 2011 shared tasks (Kim et al., 2009; Kim et al., 2011) consider nine events types that are relevant for proteins. Process extraction, on the other hand, is centered around discovering relations between events that span multiple sentences. The set of possible event types in process extraction is also much larger. Timeline construction involves identifying temporal relations between events (Chambers and Jurafsky, 2008a; Yoshikawa et al., 2009; Denis and Muller, 2011; Do et al., 2012; Mc-Closky and Manning, 2012), and is thus related to process extraction as both focus on event-event relations that span multiple sentences. However, events in processes are tightly coupled in ways that go beyond simple temporal ordering, and these inter-

Figure 1: An annotation of the ATP synthesis process

dependencies are central in the task of process extraction. Consequently, capturing process structure requires modeling a larger set of relations that includes, temporal, causal and coreference relations.

In this paper, we formally define the task of process extraction and present automatic extraction methods. Our approach works over multiple sentences and extracts a rich set of event-event relations, where the set of possible event types is open ended. Furthermore, we characterize a set of global properties in process structure that can be utilized during process extraction. For example, in processes all events are somehow connected to one another, and in addition processes usually exhibit a "chain-like" structure corresponding to process progression over time. We show that by incorporating global properties into our model and performing joint inference over the extracted relations, we can significantly improve process quality. Our empirical experiments are performed over a novel data set of 148 process descriptions from the textbook "Biology" (Campbell and Reece, 2005) that were annotated by trained biologists. Our method does not require any domainspecific knowledge and can be easily adopted for domains other than Biology.

The three main contributions of this paper are:

- 1. We define process extraction and characterize their structural properties.
- 2. We show that modeling global structural properties significantly improves process extraction accuracy.

3. We publicly release a novel data set of 148 fully annotated biological process descriptions.

2 Process Definition and Data Set

A process description is a paragraph or sequence of tokens $\mathbf{x} = \{x_1, ... x_{|\mathbf{x}|}\}$ describing a series of events that are related by various temporal and causal relations. For example, in ATP synthesis, the event in which the rotor spins *causes* the event where an internal rod spins.

We define the process events and their relations by a directed graph $\mathcal{P}=(V,E)$, where the nodes $V=\{1,...,|V|\}$ represent event mentions and labeled edges correspond to event-event relations. An event mention $v\in V$ is defined by a trigger t_v , which is a span of words $x_i, x_{i+1},...,x_j$ and by a set of argument mentions A_v , where each argument mention $a_v\in A_v$ is also a span of words labeled by a semantic role l taken from a set \mathcal{L} . For example, in the first event mention of ATP synthesis $t_v=flowing$, and one of the arguments is $a_v=(H+ions, AGENT)$. A labeled edge (u,v,r) in the graph describes a relation $r\in \mathcal{R}$ between the event mentions u and v. The task of process extraction is to extract the structure P from the text \mathbf{x}^1 .

A natural way to break down process extraction into two steps is to first perform semantic role labeling (SRL), that is, identify triggers and predict argument mentions with their semantic role, and then

¹Argument mentions are also related by coreference relations, but we neglect that since it is not central in this paper.

extract event-event relations between pairs of event mentions. In this paper, we focus on the second task, where given a set of triggers \mathcal{T} , we find all event-event relations, where a trigger is a representative for the entire event. For completeness, we now describe the semantic roles \mathcal{L} used in our data set, and then present the set of event-event relations \mathcal{R} .

The set \mathcal{L} contains standard semantic roles such as AGENT, THEME, ORIGIN, DESTINATION and LOCATION. Two additional semantic roles were employed that are relevant for biological text: RESULT corresponds to an entity that is the result of an event, and RAW-MATERIAL describes an entity that is used or consumed during an event. For example, in the last event 'produce' in Figure 1 'ATP' is the RESULT of the event, while 'ADP' is the RAW-MATERIAL.

The relation set \mathcal{R} contains the following relations (assuming an edge (u, v, r)):

- 1. PREV denotes that u is an event immediately before v. Thus, the edges (u, v, PREV) and (v, w, PREV) , preclude the edge (u, w, PREV) . For example, in "When a photon *strikes* ... energy is passed ... until it reaches ...", there is no edge $(strikes, reaches, \mathsf{PREV})$ due to the intervening event 'passed'.
- 2. Cotemp denotes that events u and v overlap in time(e.g., the first two event mentions in Figure 1).
- 3. SUPER denotes that event v is included in event u. For instance, in "During *DNA replication*, DNA polymerases *proofread* each nucleotide..." there is an edge (*DNA replication*, *proofread*, SUPER).
- 4. CAUSES denotes that event *u* causes event *v* (e.g., the relation between *changing* and *spins* in sentence 2 of Figure 1).
- 5. ENABLES denotes that event u creates preconditions that allow event v to take place. For example, the description "... cause cancer cells to *lose* attachments to neighboring cells..., allowing them to *spread* into nearby tissues" has the edge (*lose*, *spread*, ENABLES).
- 6. SAME denotes that u and v co-refer to the same event (see Figure 1).

Our relation set contains the relations CAUSES and ENABLES, which are important for modeling

	Avg	Min	Max
# of sentences	3.80	1	15
# of tokens	89.98	19	319
# of events	6.20	2	15
# of relations	5.64	1	24

Table 1: Process statistics over 148 process descriptions

processes and go beyond just temporal ordering. Since for each pair of triggers, we define at most one relation, the relation CAUSES and ENABLES take precedence over the PREV relation and implicitly captures it. The SUPER relation appears in temporal annotations such as the Timebank corpus (Pustejovsky et al., 2003) and in work on temporal logic (Allen, 1983), but in practice it is not considered by many temporal ordering systems (Chambers and Jurafsky, 2008a; Yoshikawa et al., 2009; Do et al., 2012).

We also added event coreference (SAME) to \mathcal{R} . Do et al. (2012) used event coreference information in a temporal ordering task to modify probabilities provided by pairwise classifiers prior to joint inference. In this paper, we simply treat SAME as another event-event relation, which allows us to easily perform joint inference and employ structural constraints that combine both coreference and temporal relations simultaneously. For example, if u and v are the same event, then it can not be for any w, that u is before w, but v is after w (see Section 3.3)

We have annotated 148 process descriptions based on the aforementioned definitions and provide further details on annotation and data set statistics in Section 4.1 and Table 1.

Structural properties of processes Naturally, coherent processes exhibit many structural properties. For example, two argument mentions related to the same event can not overlap – a constraint that has been used in the past in SRL (Toutanova et al., 2008). In this paper we focus on three main structural properties of the graph \mathcal{P} . First, in a coherent process all events mentioned are related to one another, and hence the graph \mathcal{P} must be connected. Second, processes tend to have a "chain-like" structure where one event follows another, and thus, we expect node degree to generally be ≤ 2 . Indeed, 90% of event mentions have degree ≤ 2 , as is demonstrated by the first column in Table 2. Last, if

Deg.	Gold	Local	Global
0	0	29	0
1	219	274	224
2	369	337	408
3	46	14	17
≥ 4	22	2	7

Table 2: Node degree distribution for event mentions on the training set. Predictions for the *Local* and *Global* models were obtained using 10-fold cross validation

we consider all possible relation triangles (between all combinations of three event triggers in the process), clearly some triangles are impossible, while other are common, which is illustrated in Figure ??. In Section 3.3, we will show how by modeling these properties we can improve process extraction using a joint inference framework.

3 Joint Model for Process Extraction

Given a paragraph x and a trigger set \mathcal{T} we wish to extract all event-event relations E. Similar to Do et al. (2012) our model consists of a local pairwise classifier and global constraints. We first introduce a classifier that is based on features from previous work (Section 3.1). Next, we describe novel features specific for process extraction (Section 3.2). Last, we incorporate global constraints into our model in an ILP formulation (Section 3.3).

3.1 Local pairwise classifier

The pairwise classifier predicts relations between all event mention pairs (represented by their triggers). Since some of the relations in \mathcal{R} are directed, we must predict also the direction of these relations. We do this by expanding \mathcal{R} to include the reverse of four directed relations: PREV-NEXT, SUPER-SUB, CAUSES-CAUSED, ENABLES-ENABLED. After adding NONE to indicate no relation, \mathcal{R} contains 11 relations. Our classifier is a function $f:\mathcal{T}\times\mathcal{T}\to\mathcal{R}$. Let n be the number of triggers in a process description, and t_i be the i'th trigger appearing in the description, since $f(t_i,t_j)$ completely determines $f(t_j,t_i)$ it suffices to consider only pairs such that i< j. Note that in this new definition of \mathcal{R} the process graph $\mathcal{P}=(V,E)$ is undirected.

Table 3 describes features from previous work (Chambers and Jurafsky, 2008a; Do et al.,

Feature	Description			
POS	Pair of POS tags			
Lemma	Pair of lemmas			
Prep*	Preposition lexeme, if in a preposi-			
	tional phrase			
Words between	For adjacent triggers, content words			
	between triggers			
Temp. between	For adjacent triggers, temporal con-			
	nectives (from a small list) between			
	triggers			
Adjacency	Whether two triggers are adjacent			
# Sent.	Quantized number of sentences be-			
	tween triggers			
# Word.	Quantized number of words between			
	triggers			
LCA	Least common ancestor on con-			
	stituency tree, if exists			
Dominates*	Whether one trigger dominates other			
Share	Whether triggers share a child on de-			
	pendency tree			

Table 3: Features extracted for a trigger pair (t_i, t_j) . Asteriks (*) indicate features that are duplicated, once for each trigger.

2012) extracted for a trigger pair (t_i, t_j) . Some features were omitted since they did not yield improvement in performance on a development set, or they require gold annotations provided in TimeBank, which we do not have. To reduce sparseness, we convert nominalizations into their verbal forms when computing word lemmas, using WordNet's (Fellbaum, 1998) derivation links.

3.2 Classifier extensions

A central source of information for extracting eventevent relations from text are *connectives* such as *after*, *during*, etc. However, there is variability in the occurrence of these connectives. Consider the following two sentences (connectives in bold, triggers in italics):

- Because alleles are exchanged during gene flow, genetic differences are reduced.
- During gene flow, alleles are exchanged, and genetic differences are hence reduced.

Both sentences express the relation (exchanged, reduced, CAUSES), but the connective used is different, its linear position with respect to the triggers is different, and in sentence 1 the trigger gene flow intervenes between exchanged and reduced. Since our data set is very small, we would like to identify the triggers related to

each connective, and share features between such sentences. We do this using the syntactic structure and a clustering of connectives.

Sentence 1 presents a typical case where by walking up the Stanford dependency tree from the marker because we can find the triggers related by this marker: because $\stackrel{mark}{\longleftarrow}$ exchanged $\stackrel{advel}{\longleftarrow}$ reduced. Whenever a trigger is the head of an adverbial clause and marked by a mark dependency label, we walk on the dependency tree and look for a trigger in the main clause that is closest to the root (or the root itself in this example). By utilizing the syntactic structure we can correctly ignore the trigger gene flow that is linearly closer to the trigger exchanged. After locating the relevant pair of triggers, we reduce sparseness utilizing a hand-made clustering of 30 connectives that maps words such as because and since to a "causality" cluster and fire a feature for this cluster. We perform a similar procedure whenever a trigger is part of a prepositional phrase (imagine sentence 1 starting with "due to allele exchange during gene flow...") by walking up the constituency tree, but we omit details here for brevity. In sentence 2, the connective *hence* is an adverbial modifier of the trigger reduced. We look up the cluster for the connective *hence* and fire the same feature in this sentence as well for the adjacent triggers exchanged and reduced.

We further extend our features to handle the rich relation set necessary for process extraction. Processes often begin with a trigger for an event that includes subsequent triggers, e.g., "The Calvin cycle begins by incorporating...". Thus, we add a feature for t_i indicating whether i = 1 and t_i is a noun. We also add two features targeted at the relation SAME: one indicating whether the lemmas of t_i and t_j are same, and another specifying the determiner of t_i , if it exists. Intuition is that certain determiners indicate that the event triggered had already been mentioned, e.g., the determiner this hints a SAME relation in "The next steps decompose citrate back to oxaloacetate. This regeneration makes...". Last, we add as a feature the dependency path between t_i and t_j , if it exists, e.g., the feature $\xrightarrow{dobj} \xrightarrow{rcmod}$ between produces and divide will fire in "meiosis produces cells that divide...". In Section 4.2 we will empirically show that our extension to the local classifier

substantially improves performance

For our pairwise classifier, we train a maximum entropy classifier that provides a probability p_{ijr} for every trigger pair (t_i, t_j) and relation r. Hence, $f(t_i, t_j) = \arg\max_r p_{ijr}$.

3.3 Global Constraints

Naturally, a pairwise classifier can result in a process structure that violates global properties (see Section 2). Figure 2 shows in black edges the predictions of our local classifier, which result in the trigger *passed* being isolated from the rest of the process [NEED BETTER EXAMPLE]. In this section we incorporate into our model, constraints that result in a coherent global process structure.

Let θ_{ijr} be a score for the relation r and the triggers (t_i, t_j) (e.g, $\theta_{ijr} = \log p_{ijr}$), and y_{ijr} be the corresponding indicator. Our goal is to find an assignment for the indicators $\mathbf{y} = \{y_{ijr} \mid 1 \leq i < j \leq n, r \in \mathcal{R}\}$. With no global constraints this can be formulated as the following ILP:

$$\underset{\mathbf{y}}{\operatorname{arg max}} \sum_{ijr} \theta_{ijr} y_{ijr}$$

$$s.t. \forall_{i,j} \sum_{r} y_{ijr} = 1$$

$$(1)$$

where the constraint ensures each trigger pair is assigned exactly one relation. We now describe constraints that result in a process that is connected, "chain-like", and has reasonable relation triangles.

Connectivity Our formulation for enforcing connectivity is a minor variation on the one suggested by Martins et al. (2009) for dependency parsing. In our setup, we want \mathcal{P} to be a connected undirected graph, and not a directed tree. However, an undirected graph is connected iff there is a directed tree embedded in it, and thus the resulting formulation is almost identical. This formulation is based on flow constraints that ensure that there is a path from a designated root in the graph to all other nodes.

Let $\bar{\mathcal{R}}$ be the set $\mathcal{R}\setminus \text{None}$. An edge (t_i,t_j) is in E if $y_{ij}=\sum_{r\in\bar{\mathcal{R}}}y_{ijr}=1$. For each variable y_{ij} we define two auxiliary binary variables z_{ij} and z_{ji} that correspond to the directed edges in the embedded tree. We tie each auxiliary variable to its

corresponding ILP variable by ensuring z_{ij} and z_{ji} are active only if y_{ij} is active:

$$\forall_{i < j} \ z_{ij} \le y_{ij}, z_{ji} \le y_{ij} \tag{2}$$

Next, we add constraints that enforce that the graph structure induced by the auxiliary variables results in a tree rooted in an arbitrary node 1 (The choice of root doesn't affect connectivity). For that we need for every $i \neq j$ a flow variable ϕ_{ij} which specifies the amount of flow on the directed edge z_{ij} .

$$\sum_{i} z_{i1} = 0, \forall_{j \neq 1} \sum_{i} z_{ij} = 1$$
 (3)

$$\sum_{i} \phi_{1i} = n - 1 \tag{4}$$

$$\forall_j \ \sum_i \phi_{ij} - \sum_k \phi_{jk} = 1 \tag{5}$$

$$\forall_{i \neq j} \ \phi_{ij} \le n \cdot z_{ij} \tag{6}$$

Equation 3 says that all nodes in the graph have exactly one parent, except for the root that has no parents. Equation 4 ensures that the outgoing flow from the root is n-1, and Equation 5 states that each of the other n-1 nodes consumes exactly one flow unit. Last, Equation 6 ties the auxiliary variables to the flow variables, making sure that flow occurs only on edges. The combination of these constraints guarantees that the graph induced by the variables z_{ij} is a directed tree and consequently the graph induced by our variables y is connected.

Chain structure A connected graph where the degree of all nodes is ≤ 2 is a chain. Table 2 presents nodes' degree and demonstrates that indeed process graphs are close to being chains. The following constraint bounds nodes' degree by 2:

$$\forall_j \sum_{i < j} y_{ij} + \sum_{j < k} y_{jk} \le 2 \tag{7}$$

Since graph structures are not always chains we add this as a soft constraint, that is, we penalize the objective for each node with degree > 2. Thus, our modified objective function is $\sum_{ijr} \theta_{ijr} y_{ijr} + \sum_{k \in \mathcal{K}} \alpha_k C_k$, where \mathcal{K} is the set of soft constraints, α_k is the penalty, and C_k indicates whether a constraint is violated. We tune the parameters α_k on a development set, as explained in Section 4.3.

Relation triangles A triangle is a 3-tuple of relations $(f(t_i, t_i), f(t_i, t_k), f(t_i, t_k))$. Clearly, some triangles are impossible while others are quite common. In order to look for triangles that could potentially improve process extraction we counted how many time each possible triangle occurs in both the training data and the output of our pairwise classifier, and focused on those for which the classifier and the gold standard disagree. We are interested in triangles that never occur in the training data but are predicted by the classifier, and triangles that are frequent in the gold standard but do not appear in the classifier output. Table ?? illustrates the triangles found and Equations 8-12 provide the corresponding ILP formulation. Soft constraints are incorporated by defining a penalty/reward α_k for each triangle structure and expanding the set K accordingly.

1. SAME transitivity: The transitivity of SAME (co-reference) has been used in past work (Finkel and Manning, 2008) and we incorporate it as a soft constraint (Equation 8).

$$y_{ijSAME} + y_{jkSAME} - y_{ikSAME} \le 1$$
 (8)

2. COTEMP transitivity: If t_i is co-temporal with t_j and t_j is co-temporal with t_k , then usually t_i and t_k are either co-temporal or denote the same event (soft constraint in Equation 9).

$$y_{ijCOTEMP} + y_{jkCOTEMP} - y_{ikCOTEMP} - y_{ikSAME} \le 1$$
 (9)

3. CAUSE-COTEMP: If t_i causes both t_j and t_k , then often t_j and t_k are co-temporal. E.g, in "genetic drift has led to a loss of genetic variation and an increase in the frequency of harmful alleles", a single event causes two subsequent events that occur simultaneously (soft constraint in Equation 10).

$$y_{ijCAUSES} + y_{jkCOTEMP} - y_{ikCAUSES} \le 1$$
(10)

4. SAME contradiction: if t_i is the same event as t_j, then their temporal ordering with respect to a third trigger t_k may result in a contradiction, e.g., if t_i is before t_k, but t_j is after t_k. We define 5 temporal categories that generate (⁵₂) possible contradictions, but for brevity

present just one representative hard constraint (Equations 11). This constraint ensures that if $f(t_j, t_k) = SAME$, then t_i cannot occur before t_j and after t_k . Note that this constraint depends on co-reference and temporal relations being predicted jointly.

$$y_{ijPREV} + y_{jkSAME} + y_{ikNEXT} \le 2$$
 (11)

5. PREV: As mentioned (Section 3.3), if t_i is immediately before t_j , and t_j is immediately before t_k , then it can not be that t_i is immediately before t_k (hard constraint in Equation 12).

$$y_{ijPREV} + y_{jkPREV} - y_{ikNONE} \le 1$$
 (12)

We used the Gurobi optimization package² to find an exact solution for our ILP, which contains $O(n^2r)$ variables and $O(n^3)$ constraints. We have also developed an equivalent formulation amenable to dual decomposition (Reichart and Barzilay, 2012), which is a faster approximation method, but practically found that solving the problem exactly with Gurobi is quite fast (average/median time per process: 0.294 sec/0.152 sec).

4 Experimental Evaluation

4.1 Experimental setup

Our data set consists of 148 process descriptions annotated by a biologist. The annotator was presented with annotation guidelines, annotated 20 descriptions and then annotations were discussed with the authors, after which all process descriptions were annotated. After training a second biologist, we measured inter-annotator agreement on 30 random process descriptions, resulting in agreement $\kappa=0.69$.

Process descriptions were parsed with Stanford constituency and dependency parsers (Klein and Manning, 2003; de Marneffe et al., 2006), and 35 process descriptions were set aside as a test set (# of training set trigger pairs: 1932, # of test set trigger pairs: 906). We performed 10-fold cross validation over the training set for feature selection and tuning of constraint parameters. For each constraint type (connectivity, chain-structure, and five

	Temporal		Full			
	P	R	F_1	P	R	F_1
All-Prev	62.2	58.3	60.2	34.1	32.0	33.0
$Local_{base}$	65.6	55.3	60.0	52.1	43.9	47.6
Local	66.2	58.3	62.0	54.7	48.3	51.3
Global	66.5	64.5*	65.5*	55.7	54.0*	54.8*

Table 4: Test set results on all experiments. Asterisk (*) denotes statistical significance (p < 0.01) against all other baselines.

triangle constraints) we introduced a parameter and tuned the seven parameters by coordinate-wise ascent, where for hard constraints a binary parameter controls whether the constraint is used, and for soft constraints it controls reward/penalty (α_k).

We test the following systems: (a) *All-Prev*: since the most common process structure is a chain of consecutive events we simply predict NEXT for every two adjacent triggers. (b) *Local*_{base}: A pairwise classifier with features from previous work (Section 3.1) (c) *Local* A pairwise classifier with all features (Section 3.2) (d) *Global*: Our full model that uses ILP inference.

To evaluate system performance we compare its set of predictions on all trigger pairs to the gold standard annotations and compute micro-averaged precision, recall and F_1 . We perform two types of evaluations: (a) *Full*: evaluation on our full set of 11 relations (b) *Temporal*: Evaluation on temporal relations only, by collapsing PREVIOUS, CAUSES, and ENABLES to a single category and similarly for NEXT, CAUSED, and ENABLED (inter-annotator agreement $\kappa = 0.75$). We computed statistical significance of our results with the paired bootstrap resampling method (Efron and Tibshirani, 1993).

4.2 Results

Table 4 presents performance of all systems. Our main result is that using global constraints improves performance on all measures in both full and temporal evaluations. Particularly, in the full evaluation recall improves by 12% and overall F_1 improves significantly by 3.5 points against $Local\ (p < 0.01)$. Recall improvement suggests that modeling connectivity allowed Global to add correct relations in cases where some events were not connected to one another [double penalization? for now not mentioning it]

²www.gurobi.com

Figure 2: Process graph example. Black edges are predictions of *Local*, green edges indicate edges added by *Global*, and gold edges represent gold standard edges. **Original text:** "... Individuals in a population exhibit *variations* in their heritable traits, and those with traits that are *better* suited to their environment tend to *produce* more offspring than those with traits that are not as well suited. In genetic terms, we now know that selection results in alleles being *passed* to the next generation in proportions that differ from those in the present generation."

The full Local classifier substantially outperforms $Local_{base}$. This indicates that our novel features (Section 3.2) are important for discriminating between process relations. Specifically, in the full evaluation Local improves precision more than in the temporal evaluation, suggesting that designing syntactic and semantic features for connectives is useful for distinguishing NEXT, CAUSES, and ENABLES when the amount of training data is small.

The *All-Prev* baseline performs quite badly in the full evaluation, but in temporal evaluation it performs reasonably well. This shows a strong tendency of process descriptions to proceed linearly from one event to the other, which is a general property of discourse structure (Schegloff and Sacks, 1973).

Table 2 presents the degree distribution of *Local* and *Global* on the development set comparing to the gold standard. Clearly, degree distribution of *Global* is much more similar to the gold standard than *Local*. In particular, the connectivity constraint ensures that there are no isolated nodes and shifts mass from nodes with degree 0 and 1 to nodes with degree 2.

4.3 Analysis and Discussion

Table 5 shows the order in which global constraints were introduced into the model using coordinate ascent on the development set. Connectivity is the first constraint to be introduced, and improves performance considerably. The chain constraint, on the other hand, is included last, which can be explained by examining the distribution of degrees in Table 2. The predictions of Local do not have many nodes with degree > 2 and thus the effect of this constraint is small. As for triangle constraints, we see that three constraints are included in the model but two are discarded, since the changes they caused to the final solution did not improve F_1 on the development set.

Figure 2 shows an example where the global con-

Order	Parameter name	Value (α)	F ₁ score
-	Local model	-	49.9
1	Connectivity constraint	∞	51.2
2	SAME transitivity	0.5	52.0
3	CAUSE-COTEMP	0.75	52.2
4	SAME contradiction	∞	52.4
5	Chain constraint	0.25	52.5

Table 5: Order in which constraint parameters were set using coordinate ascent on the dev set. For each parameter, the value chosen and F_1 score after including the constraint are provided. A value of ∞ indicates a hard constraint

straints improve the predictions made by the local model. We see that the connectivity constraints help to identify the relation between *produce* and *passed* [TEMP EXAMPLE - FIND MORE INTERESTING]

5 Related Work

As we mentioned in the introduction, a closely related line of work is biomedical event extraction in recent BioNLP shard tasks (Kim et al., 2009; Kim et al., 2011). Traditional approach to event extraction employs a pipeline architecture where events are identified first, typically done using classifiers with rich set of features (Miwa et al., 2010), arguments of the candidate events are then identified next (Björne et al., 2011). Poon and Vanderwende (2010) showed improved results using Markov logic to jointly predict events and arguments. McClosky et al. (2011) observed that the arguments in nested events exhibit a tree-like structure. They proposed an approach to extract such structure using dependency parsing algorithms.

One limitation in the setting of these earlier work in event extraction is that events that occur together are considered independently, and the context is limited to a single sentence. Riedel and McCallum (2011) presented three successive models that capture the correlations between events, and enforces consistency across arguments. They showed an efficient joint-inference algorithm using dual decomposition techniques. Temporal event-to-event relations have been extensively studied before (Chambers et al., 2007; Chambers and Jurafsky, 2008a; D'Souza and Ng, 2013). We leverage the techniques used in temporal relation extraction in our work and borrow some features from (Chambers et al., 2007). But one importance is that we extend beyond the simple types of temporal relations (e.g., before, after and overlap) to a richer set that includes cause, enable and super-event.

Chambers and Jurafsky (2008b) learns narrative events and arguments using distributional similarities, and then resort to a temporal classifier to link the events in temporal order in a chain structure. In our work, we make no such assumption of a chain structure, and predict more complex structures. Cheung et al. (2013) also learns to construct a event template (a.k.a. *frame*) from text using unsupervised generative models. A major difference in our work is that we do not have the abundance of data as in frame learning setting, where common events and their arguments are observed many times; instead we are given one paragraph and our model has a "one-shot" chance at extracting the process structure.

We showed in this paper that global structural properties can lead to significant improvements in process extraction accuracy, and ILP is an effective framework for modeling global constraints. Similar observations and techniques have also been proposed in other information extraction tasks. Reichart and Barzilay (2012) ties information from multiple sequence models that describe the same event by using global higher-order potentials. Berant et al. (2011) proposed a global inference algorithm to identify entailment relations. Do et al. (2012) models a set of global temporal order constraints also using ILP for timeline construction. There is abundance of examples of enforcing global constraints using approximate in other NLP tasks, such as in coreference resolution (Finkel and Manning, 2008), parsing (Rush et al., 2012) and named entity recognition (Wang et al., 2013).

6 Conclusion

In this paper we presented the task of process extraction and a method for extracting processes. We focused on extracting relations between event triggers. We also release publicly a data set for the scientific community. We have shown that by taking advantage of the global structure of a process we can improve performance.

Future work - adding more constraints - Mengqiu's idea. This may results in inference problems (it does) and so we can try think of smarter inference. There is the problem of very little data and we can think about using data from other domains and do adaptations. We want to do the full pipeline jointly.

References

James F. Allen. 1983. Maintaining knowledge about temporal intervals. *Commun. ACM*, 26(11):832–843.

Jonathan Berant, Ido Dagan, and Jacob Goldberger. 2011. Learning entailment relations by global graph structure optimization. *Journal of Computational Linguistics*, 38(1).

Jari Björne, Juho Heimonen, Filip Ginter, Antti Airola, Tapio Pahikkala, and Tapio Salakoski. 2011. Extracting contextualized complex biological events with rich graph-based feature sets. *Computational Intelligence*, 27(4):541–557.

Neil Campbell and Jane Reece. 2005. *Biology*. Benjamin Cummings.

Nathanael Chambers and Daniel Jurafsky. 2008a. Jointly combining implicit constraints improves temporal ordering. In *Proceedings of EMNLP*.

Nathanael Chambers and Daniel Jurafsky. 2008b. Unsupervised learning of narrative event chains. In *Proceedings of ACL*.

Nathanael Chambers, Shan Wang, and Daniel Jurafsky. 2007. Classifying temporal relations between events. In *Proceedings of ACL*.

Jackie Chi Kit Cheung, Hoifung Poon, and Lucy Vanderwende. 2013. Probabilistic frame induction. In *Proceedings of NAACL-HLT*.

Marie-Catherine de Marneffe, Bill MacCartney, and Christopher D. Manning. 2006. Generating typed dependency parses from phrase structure parses. In *Proceedings of LREC*.

Pascal Denis and Philippe Muller. 2011. Predicting globally-coherent temporal structures from texts via endpoint inference and graph decomposition. In *Proceedings of IJCAI*.

- Quang Do, Wei Lu, and Dan Roth. 2012. Joint inference for event timeline construction. In *Proceedings* of *EMNLP-CoNLL*.
- Jennifer D'Souza and Vincent Ng. 2013. Classifying temporal relations with rich linguistic knowledge. In *Proceedings of NAACL-HLT*.
- Bradley Efron and Robert Tibshirani. 1993. *An introduction to the bootstrap*, volume 57. CRC press.
- Christiane Fellbaum, editor. 1998. WordNet: An electronic lexical database. MIT Press.
- Jenny Rose Finkel and Christopher D. Manning. 2008. Enforcing transitivity in coreference resolution. In *Proceedings of ACL*.
- Jin-Dong Kim, Tomoko Ohta, Sampo Pyysalo, Yoshinobu Kano, and Junichi Tsujii. 2009. Overview of BioNLP 09 shared task on event extraction. In *Pro*ceedings of BioNLP.
- Jin-Dong Kim, Sampo Pyysalo, Tomoko Ohta, Robert Bossy, and Junichi Tsujii. 2011. Overview of BioNLP shared task 2011. In *Proceedings of BioNLP*.
- Dan Klein and Christopher D. Manning. 2003. Accurate unlexicalized parsing. In *Proceedings of ACL*.
- André L. Martins, Noah A. Smith, and Eric P. Xing. 2009. Concise integer linear programming formulations for dependency parsing. In *Proceedings of ACL/IJCNLP*, pages 342–350.
- David McClosky and Christopher D. Manning. 2012. Learning constraints for consistent timeline extraction. In *Proceedings of EMNLP-CoNLL*, pages 873–882.
- David McClosky, Mihai Surdeanu, and Christopher D. Manning. 2011. Event extraction as dependency parsing. In *Proceedings of ACL*, pages 1626–1635.
- Makoto Miwa, Rune Sætre, Jin-Dong Kim, and Jun'ichi Tsujii. 2010. Event extraction with complex event classification using rich features. *J. Bioinformatics and Computational Biology*, 8(1).
- Hoifung Poon and Lucy Vanderwende. 2010. Joint inference for knowledge extraction from biomedical literature. In *Proceedings of HLT-NAACL*.
- James Pustejovsky, José M. Castaño, Robert Ingria, Roser Sauri, Robert J. Gaizauskas, Andrea Setzer, Graham Katz, and Dragomir R. Radev. 2003. TimeML: Robust specification of event and temporal expressions in text. In New Directions in Question Answering.
- Roi Reichart and Regina Barzilay. 2012. Multi-event extraction guided by global constraints. In *Proceedings of HLT-NAACL*.
- Sebastian Riedel and Andrew McCallum. 2011. Fast and robust joint models for biomedical event extraction. In *Proceedings of EMNLP*.
- Alexander M. Rush, Roi Reichert, Michael Collins, and Amir Globerson. 2012. Improved parsing and POS

- tagging using inter-sentence consistency constraints. In *Proceedings of EMNLP*.
- Emanuel A Schegloff and Harvey Sacks. 1973. Opening up closings. *Semiotica*, 8(4):289–327.
- Mihai Surdeanu, Massimiliano Ciaramita, and Hugo Zaragoza. 2011. Learning to rank answers to non-factoid questions from web collections. *Computational Linguistics*, 37(2).
- Kristina Toutanova, Aria Haghighi, and Christopher D. Manning. 2008. A global joint model for semantic role labeling. *Computational Linguistics*, 34(2):161– 191.
- Mengqiu Wang, Wanxiang Che, and Christopher D. Manning. 2013. Effective bilingual constraints for semi-supervised learning of named entity recognizers. In *Proceedings of AAAI*.
- Katsumasa Yoshikawa, Sebastian Riedel, Masayuki Asahara, and Yuji Matsumoto. 2009. Jointly identifying temporal relations with Markov logic. In *Proceedings of ACL/IJCNLP*.