# **Hate Speech Classification Project Report**

### **Project Overview**

This project aimed to develop deep learning models for classifying tweets into three categories: Hate Speech, Offensive Language, and Neither. Four different neural network architectures were properly implemented and compared: LSTM, GRU, CNN, and RNN.

#### **Dataset**

The dataset consisted of labeled tweets with the following class distribution:

- Offensive Language: 15,358 samples (77.5%)
- Neither: 3,328 samples (16.8%)
- Hate Speech: 1,140 samples (5.7%)

This distribution shows a significant class imbalance, with offensive language being the dominant class.



# Methodology

# **Text Preprocessing**

- 1. Lowercase conversion
- 2. Removal of URLs, HTML tags, emojis, and user mentions
- 3. Hashtag and RT prefix removal
- 4. Slang and abbreviation expansion using a custom dictionary
- 5. Removal of numbers and punctuation

- 6. Tokenization
- 7. Stopword removal

### **Feature Engineering**

- Pre-trained Word2Vec embeddings (300 dimensions) were used
- Sequence data was prepared.
- Maximum sequence length was determined based on the 95th percentile of token counts

#### **Model Architectures**

Four distinct neural network architectures were implemented:

- 1. LSTM Model
  - a. Masking layer to handle variable sequence lengths
  - b. Two stacked LSTM layers with dropout
  - c. Dense layers for classification
- 2. GRU Model
  - a. Masking layer for variable sequence handling
  - b. Two stacked GRU layers with dropout
  - c. Dense layers for classification
- 3. CNN Model
  - a. 1D convolutional layers for n-gram pattern detection
  - b. MaxPooling layers
  - c. Multiple dense layers with dropout
- 4. RNN Model
  - a. Masking layer for sequence handling
  - b. Two stacked SimpleRNN layers with dropout
  - c. Dense layers for classification

### **Training**

- Data was split into training (80%) and validation (20%) sets
- Early stopping was implemented to prevent overfitting
- Adam optimizer with categorical cross-entropy loss
- Batch size of 64
- Maximum of 10 epochs with early stopping

### Results

#### **Performance Metrics**

The models achieved the following performance metrics on the validation set:

| Model | Accuracy | Precision | Recall | F1 Score |
|-------|----------|-----------|--------|----------|
| LSTM  | 0.89     | 0.88      | 0.89   | 0.88     |
| GRU   | 0.90     | 0.89      | 0.90   | 0.89     |

| CNN | 0.91 | 0.90 | 0.91 | 0.91 |
|-----|------|------|------|------|
| RNN | 0.88 | 0.87 | 0.88 | 0.87 |



# **Key Findings**

- The CNN model achieved the best overall performance with the highest F1 score
- 2. GRU slightly outperformed LSTM, which is common due to its simpler architecture
- 3. The SimpleRNN model had the lowest performance, which is expected due to its limited ability to capture long-term dependencies
- 4. All models showed strong performance despite the class imbalance