Note 11 - Feb 26

Review

Solving or stationary distribution

$$\left\{ \begin{array}{ll} \underline{\pi} \cdot P = \underline{\pi} & \text{gives properties between components of } \underline{\pi} \\ \underline{\pi} \cdot \mathbb{1} = 1 & \text{normolize to get exact values} \end{array} \right.$$

Classification

$$T_i:=min\{n>0:X_n=i\}$$
 i $recureent$ $transient$ $P(T_i< infty|X_0=i)=1$ $P(T_i<\infty|X_0=i)<1$ $P(V_i=\infty|X_0=i)=1$ $P(V_i<\infty|X_0=i)=1$ $E(V_i|X_0=i)=\infty$ $E(V_i|X_0=i)<\infty$ easiest to use: $\sum_{n=1}^\infty P_{ii}^{(n)}=\infty$ $\sum_{n=1}^\infty P_{ii}^{(n)}<\infty$

$$\mathsf{Recurrent} egin{cases} \mathsf{positive\ recurrent} & \mathsf{if}\ \mathbb{E}(T_i|X_o=i) < \infty \ \mathsf{null\ recurrent} & \mathsf{if}\ \mathbb{E}(T_i|X_o=i) = \infty \end{cases}$$

4. Stochastic Processes (cont'd)

4.4. Classification of States (cont'd)

4.4.2 Periodicity

Example:

$$P = egin{pmatrix} & 1 & & & \ rac{1}{2} & & rac{1}{2} & & \ & rac{1}{2} & & rac{1}{2} & & \ & & 1 & & \end{pmatrix}$$

Note that if we starts from 0, we can only get back to 0 in $2,4,6,\cdots$, i.t., even number of steps $P_{00}^{(2n+1)}=0 \forall n$

Definition 4.4.2: Period

The **period** of state i is defined as

$$d_i = \underbrace{gcd}_{ ext{greates} \atop ext{common divisor}} (\{n: \underbrace{P_{ii}^{(n)} > 0}_{i ext{ can go back}} \})$$

In this example above, $d_0 = gcd(\{ {
m even \ numbers} \}) = 2$

If $d_i=1$, state i is called "aperiodic"

If $\exists n>0$ such that $P_{ii}^{(n)}>0$, then $d_i=\infty$

Remark 4.4.2

Note that $P_{ii}>0\Rightarrow d_i=1.$ The converse is **not true**.

$$P_{00}^{(2)}>0, P_{00}^{(3)}>0\Rightarrow d_0=1 ext{ but } P_{00}=0$$

In general, $d_i =
ot\!\!/ \Rightarrow P_{ii}^{(d)} > 0$

4.4.3 Equivalent classes and irreducibility

Definition 4.4.3.1: Assessible

Let $\{X_n\}_n=0,1,\cdots$ be a DTMC with state space S. State j is said to be <u>assessible</u> from state i, denoted by $i\to j$, if $P_{ij}^{(n)}>0$ for some $n\ge 0$.

Intuitively, i can go to state j in finite steps.

Definition 4.4.3.2: Communicate

If $i \rightarrow j$ and $j \rightarrow i$, we say i and j **communicate**, denoted by $i \leftrightarrow j$.

Fact 4.4.3.1

"Communication" is an equivalence relation.

1.
$$i\leftrightarrow j$$
 then $P_{ii}^{(0)}=1{=}P(X_0=i|X_0=i)$ (Identity)

- 2. $i \leftrightarrow j$ then $j \leftrightarrow i$ (symmetry)
- 3. $i \leftrightarrow j, j \leftrightarrow k$, then $i \leftrightarrow k$ (transitivity)

Definition 4.4.3.3: Class

As a result, we can use " \leftrightarrow " to divide the state space into different *classes*, each containing only the states which communicate with each other.

$$\begin{cases} S = \bigcup_k C_k & (\{C_n\} \text{ is a partition of } S) \\ C_k \bigcap C_k' = \emptyset, \not k = k' \end{cases}$$

- For state i and j in the same class C_k , $i \leftrightarrow j$.
- For i j in different classes, $i \leftrightarrow j$ ($i \to j$ or $j \to i$)

Definition 4.4.3.4: Irreducible

A MC is called irreducible, if it has only one class. In other words, $i\leftrightarrow j$ for any $i,j\in S$

- -Q: How to find equivalent classes?
- -A: "Draw a graph and find the loops"

Example 4.4.3.1: Find the classes

$$P = egin{pmatrix} rac{1}{2} & rac{1}{2} & & \ rac{1}{2} & rac{1}{2} & & \ rac{1}{4} & rac{1}{4} & rac{1}{4} & & \ & & & 1 \end{pmatrix}$$

Draw an arrow from i to j if $P_{ij}>0$

- $P_{01}>0, P10>0\Rightarrow 0\leftrightarrow 1$
- ullet State 2 does not communicate with any other state, since $P_{i2}=0, {\not j}=2$
- ullet State 3 does not communicate with any other state, since $P_{i3}=0, {\not j}=3$

 $\Rightarrow \text{3 classes: } \{0,1\},\{2\},\{3\}$

Example 4.4.3.2: Find the classes

$$P=egin{pmatrix} rac{1}{2} & rac{1}{2} & & & \ rac{1}{2} & & rac{1}{2} & & \ rac{1}{2} & & & rac{1}{2} & & \ rac{1}{2} & & & rac{1}{2} & rac{1}{2} \end{pmatrix}$$

- ullet $P_{01},P_{12},P_{20}>0 \Rightarrow 0,1,2$ are in the same class
- ullet $P_{23},P_{32}>0\Rightarrow2,3$ are in the same class
- Transitivity \Rightarrow 0,1,2,3 are all in the same class.

⇒ This MC is irreducible

Fact 4.4.3.2

Preposition Transience/Recurrence are class properties. That is, if $i\leftrightarrow j$, then j is transient/recurrent if and only if i is transient/recurrent

Proof:

Suppose i is recurrent, then $\sum_{k=1}^{\infty}P_{ii}^{(k)}=\infty$

Since $i \leftrightarrow j$, $\exists m,n$ such that $P_{ij}^{(m)} > 0, P_{ij}^{(n)} > 0$

Note that

$$\underbrace{P_{jj}^{(m+n+k)}}_{P(X_{m+n+k}=j|X_0=j)} \geq \underbrace{P_{ji}^{(n)}P_{ii}^{(k)}P_{ij}^{(m)}}_{P(X_{m+n+k}=j,X_{n+k}=i,X_n=i|X_0=j)} \Rightarrow \sum_{l=1}^{\infty} P_{jj}^{(l)} \geq \sum_{l=m+n+1}^{\infty} P_{jj}^{(l)}$$

$$= \sum_{k=1}^{\infty} P_{jj}^{(m+n+k)}$$

$$\geq \sum_{k=1}^{\infty} P_{ji}^{(n)}P_{ii}^{(k)}P_{ji}^{(m)}$$

$$= \underbrace{P_{jj}^{(n)}P_{ii}^{(m)}P_{ii}^{(k)}P_{ji}^{(m)}}_{\infty} = \infty$$

Thus, j is recurrent. Symmetrically, j is recurrent $\Rightarrow i$ is recurrent

Thus,

- i recurrent $\Leftrightarrow j$ recurrent
- i transient $\Leftrightarrow j$ transient

For irreducible MC, since recurrence and transience are class properties, we also say the Markov Chain is recurrent/transient