# Machine learning handbook

Optimizer

Taeyang Yang

Update: July 17, 2018

BCILAB, UNIST

# **Gradient descent algorithm**

- Gradient Descent (GD)
- Full-batch Gradient Descent
- Stochastic Gradient Descent (SGD)
- Mini-batch (Stochastic) Gradient Descent

# **Gradient Descent (GD): algorithm**

• Update rule

$$\theta = \theta - \eta * \frac{\partial}{\partial \theta} J(\theta)$$





# **Gradient Descent (GD): Learning rate**

$$\theta = \theta - \frac{\eta}{\eta} * \frac{\partial}{\partial \theta} J(\theta)$$



# Gradient Descent (GD): Local minimum problem



## **Gradient Descent (GD): Momentum**



# Comparison

20

-10.0 -7.5 -5.0 -2.5

Gradient descent

100
2
00
40

Stochastic gradient descent

5.0

7.5

10.0



Full-batch gradient descent



Mini-batch gradient descent



## **Further materials**

- Momentum
- Regularization (Weight decay)

### Momentum



### **Momentum**

- Parameters update methods
  - Vanilla update

$$\Delta Weight_t = -\eta * Gradient_t$$
  
 $Weight_t = Weight_{t-1} + \Delta Weight_t$ 

- Momentum update
  - 직전 w 업데이트 ( $\Delta Weight_{t-1}$ ) \* momentum( $\mu$ )를 현재 w 업데이트에 추가

$$\Delta Weight_t = -\eta * Gradient_t + \mu * \Delta Weight_{t-1}$$

$$Weight_t = Weight_{t-1} + \Delta Weight_t$$

- Nesterov momentum update
  - Momentum update와 비슷하지만, momentum를 더한 위치에서 Gradient 계산



Bengio, Y., Boulanger-Lewandowski, N., & Pascanu, R. (2013, May). Advances in optimizing recurrent networks. In Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE International Conference on (pp. 8624-8628). IEEE.

## Momentum: Nesterov momentum update



- Parameters update methods
  - Nesterov momentum update
    - Momentum update와 비슷하지만, momentum를 더한 위치에서 Gradient 계산

$$Weight\_ahead_t = Weight_t + \mu * \Delta Weight_{t-1}$$

•  $Weight\_ahead_t$  이용해서  $Gradient\_ahead_t$  계산

$$\Delta Weight_t = -\eta * Gradient_{ahead_t} + \mu * \Delta Weight_{t-1}$$

$$Weight_t = Weight_{t-1} + \Delta Weight_t$$

• 정리된 표현

```
\begin{split} \Delta Weight_t &= -\eta * Gradient_t + \mu * \Delta Weight_{t-1} \\ Weight_t &= Weight_{t-1} + \Delta Weight_t + \mu * \Delta Weight_t - \mu * \Delta Weight_{t-1} \\ &= Weight_{t-1} + (1 + \mu) * \Delta Weight_t - \mu * \Delta Weight_{t-1} \end{split}
```

# Regularization (Weight decay)

- Weight 들의 absolute 값 총합을 줄이기 위한 방법 (극단적인 weight 값 방지)
- Weight 각각의 일정 비율  $(\lambda, lambda)$  을 곱해준 값을 gradient 값에서 빼준다.
- 이 때, learning rate 곱하기 전에 빼주기!
- 매우 작은 값을 사용한다 (RBM에서는 0.0002)
- 예시 1: Vanilla update에서,

$$\Delta\theta = \eta(\frac{\partial E}{\partial \theta} - \lambda\theta)$$

• 예시 2: Momentum update에서,

$$\Delta\theta = \eta \left( \frac{\partial E}{\partial \theta} - \lambda \theta \right) + \mu \Delta \theta$$