Kabinet výuky obecné fyziky, UK MFF

Fyzikální praktikum ...

Úloha č					
Název úlohy:					
Jméno:		Obor:	FOF	FAF	FMUZV
Datum měření:	Datum o	devzdá	ní:		

Připomínky opravujícího:

	Možný počet bodů	Udělený počet bodů
Práce při měření	0 - 5	
Teoretická část	0 - 1	
Výsledky měření	0 - 8	
Diskuse výsledků	0 - 4	
Závěr	0 - 1	
Seznam použité literatury	0 - 1	
Celkem	max. 20	

Posuzoval:	dne:

Pracovní úkoly

- 1. Změřte ohniskovou vzdálenost tenké ploskovypuklé (plankonvexní) čočky jednak Besselovou metodou, jednak metodou dvojího zvětšení.
- 2. Změřte kulovou vadu vyšetřované ploskovypuklé čočky v obou směrech pro dvě vzdálenosti předmětu $a=30\,\mathrm{cm},~a=60\,\mathrm{cm}.$ Získané výsledky zpracujte do jednoho grafu a diskutujte velikost kulové vady v jednotlivých případech.
- 3. Užitím goniometru určete vzdálenost hlavních rovin čočky měřené v bodě 1 a tlusté ploskovypuklé čočky.
- 4. Na fokometru změřte optickou mohutnost čočky měřené v bodě 1 a výsledek srovnejte s výsledky měření ohniskové vzdálenosti.
- 5. Na základě výsledků získaných v bodech 1. a 3. diskutujte, která z uvedených metod měření ohniskové vzdálenosti dle bodu 1. je v uvedeném uspořádání přesnější. Porovnejte relativní chyby měření. Odhadněte systematickou chybu, které se dopouštíme při měření ohniskové vzdálenosti Besselovou metodou.
- 6. Ze známé tloušťky tlusté ploskovypuklé čočky a změřené vzdálenosti hlavních rovin určete index lomu skla

Teoretická část

Změříme ohniskovou vzdálenost tenké čočky Besselovou metodou a metodou dvojího zvětšení. Při Besselově metodě umístíme předmět a stínítko do vzájemné vzdálenosti D. Posouváním spojné čočky určíme její dvě polohy, při kterých je obraz zaostřen na stínítko. Pokud je vzdálenost těchto dvou poloh čočky Δ , pak ohnisková vzdálenost čočky f je [1]

$$f = \frac{D^2 - \Delta^2}{4D} \,. \tag{1}$$

Při metodě dvojího zvětšení změříme příčné zvětšení β při dvou různých vzdálenostech předmětu a nebo obrazu a'. Označíme-li veličiny odpovídající obou uspořádáním dolními indexy 1 resp. 2, pak ohnisková vzdálenost čočky je [1]

$$f = \frac{|a_1' - a_2'|}{|\beta_2 - \beta_1|} = \frac{\beta_1 \beta_2 |a_1 - a_2|}{|\beta_2 - \beta_1|}.$$
 (2)

Pokud spojnou čočkou nebudou procházet pouze paraxiální paprsky, zjistíme, že se protnou v jiném místě (viz [1]). Vzdálenost průsečíku neparaxiálních paprsků od průsečíku paraxiálních paprsků nazýváme sférickou vadou čočky a značíme v, přičemž používáme stejnou znaménkovou konvenci. v je funkce polohy předmětu a a vzdálenosti paprsku od optické osy s. Pro jednotlivou čočku platí přibližně [1]

$$v = Ks^2, (3)$$

kde K je konstanta. Pro spojnou čočku je K < 0.

U čočky splývají hlavní body s uzlovými body, takže můžeme pomocí goniometru určit vzdálenost hlavních rovin δ . Ze známě tloušťky čočky d potom můžeme určit index lomu skla n pomocí vztahu [1]

$$\delta = \frac{n-1}{n}d. \tag{4}$$

Výsledky měření

Jako tenkou čočku jsme použili čočku označenou číslicí 5. Změřili jsme polohu čočky a velikost obrazu pro 5 různých hodnot D. Změřené hodnoty jsou v tabulce 1. Velikost předmětu byla $Y=10\,\mathrm{mm}$. f_B značíme ohniskovou vzdálenost vypočtenou z (1) Besselovou metodou. Standardní odchylku určení polohy čočky, ve které byl obraz ostrý, odhadujeme na $2\,\mathrm{mm}$. Standardní odchylku určení velikosti obrazu odhadujeme na $0.3\,\mathrm{mm}$.

Hodnoty f_B se příliš neliší, takže z nich určíme střední hodnotu a standardní odchylku, ve které zohledníme chyby přímo měřených veličin

$$f_B = 10,82(10) \,\mathrm{cm}$$

Z hodnot v tabulce 1 jsme spočítali z (2) ohniskovou vzdálenost f_a resp. $f_{a'}$ metodou dvojího zvětšení pro variaci předmětové resp. obrazové vzdálenosti. Vzorec (2) je citlivý na blízké hodnoty argumentů a, a' nebo β .

Proto jsme vybrali jen několik měření, ve kterých se příslušné argumenty dostatečně liší. Vybraná měření jsou uvedeny v tabulce 2. Výsledné hodnoty jsou

$$f_a = 10,2(10) \,\mathrm{cm}$$
 $f_{a'} = 10,4(1) \,\mathrm{cm}$.

D (cm)	Δ (cm)	a (cm)	a' (cm)	Y' (mm)	β	f_B (cm)
54,0	24,1	38,5	15,5	3,7	0,37	10,81
54,0		14,4	39,6	26,5	2,65	
114,0	89,3	11,7	102,3	87,3	8,73	10,81
114,0 0	03,3	101,0	13,0	1,2	$0,\!12$	10,01
94.0	68,9	12,0	82,0	66,8	$6,\!68$	10,87
94,0	00,3	80,9	13,1	1,7	0,17	10,01
79.0	53,1	65,5	13,5	2,0	$0,\!20$	10,83
	55,1	12,4	66,6	53,4	5,34	10,03
64,0	36,7	49,8	14,2	2,6	$0,\!26$	10,74
	50,1	13,1	50,9	37,7	3,77	10,74
46,0	12,3	16,2	29,8	26,7	2,67	10,68
40,0	12,0	28,5	17,5	5,6	$0,\!56$	10,00

Tabulka 1: Měření ohniskové vzdálenosti Besselovou metodou

$a_1 \text{ (cm)}$	$a_2 \text{ (cm)}$	a_1' (cm)	a_2' (cm)	β_1	β_2	f_a (cm)	$f_{a'}$ (cm)
11,7	28,5	102,3	17,5	8,73	0,56	10,0(8)	10,38(1)
11,7	12,4	102,3	66,6	8,73	$5,\!34$	9,6(30)	10,53(3)
101,0	12,4	13,0	66,6	0,12	$5,\!34$	10,9(30)	10,27(2)
12,4	49,8	66,6	14,2	5,34	$0,\!26$	10,2(14)	10,31(2)
28,5	12,0	17,5	82,0	0,56	$6,\!68$	10,1(8)	10,54(1)
38,5	12,0	15,5	82,0	0,37	6,68	10,4(10)	10,54(1)

Tabulka 2: Měření ohniskové vzdálenosti metodou dvojího zvětšení

Pro měření kulové vady jsme použili sadu mezikružných clon. Jako vzdálenost paprsku od optické osy s považujeme podle zadání aritmetický průměr největšího a nejmenšího poloměru. Změřené hodnoty jsou v tabulce 3 a zaneseny do grafu 1.

Závislost v(s) jsme nafitovali funkcí tvaru (3) a dostali hodnoty

$$K_{V|a=30 \,\text{cm}} = -39(2) \,\text{m}^{-1}$$
 $K_{V|a=60 \,\text{cm}} = -19,7(3) \,\text{m}^{-1}$ $K_{P|a=30 \,\text{cm}} = -58(3) \,\text{m}^{-1}$ $K_{P|a=60 \,\text{cm}} = -48(2) \,\text{m}^{-1}$ (5)

	$a = 30 \mathrm{cm}$				$a = 60 \mathrm{cm}$			
	vypi	uklá	ploská		vypuklá		ploská	
s (mm)	a' (cm)	v (cm)	a' (cm)	v (cm)	a' (cm)	v (cm)	a' (cm)	v (cm)
0,0	22,4	_	23,0	_	18,7	_	19,8	_
7,5	22,2	-0,2	22,9	-0,1	18,6	-0,1	19,6	-0,2
12,5	21,7	-0.7	22,3	-0,7	18,4	-0,3	19,1	-0.7
17,5	21,3	-1,1	21,2	-1,8	18,1	-0,6	18,4	-1,4
$22,\!5$	20,4	-2,0	20,0	-3,0	17,7	-1,0	17,3	-2,5

Tabulka 3: Kulová vada tenké čočky. Vypuklá/ploská označuje, která strana čočky byla směrem k předmětu.

Pomocí goniometru jsme změřili vzdálenost hlavních rovin. Polohy obou uzlových bodů jsme změřili víckrát, z hodnot jsme určili standardní odchylku a tu přenesli součtem čtverců do hodnoty δ . Jednotlivé hodnoty jsou uvedeny v tabulce 4. Celkové výsledky jsou

$$\delta_{tenka} = 12.9(3) \,\mathrm{mm}$$
 $\delta_{tlusta} = 3.9(3) \,\mathrm{mm}$

Na fokometru jsme změřili optickou mohutnost tenké čočky. Vypuklou stranou čočky k okuláru jsme změřili $10,25(25)\,\mathrm{m}^{-1}$, ploskou stranou $9,75(25)\,\mathrm{m}^{-1}$.

Tloušťka tlusté čočky byla 38 mm. Dosazením do (4) jsme určili index lomu skla $n_{tlusta} = 1,51(3)$.

Graf 1: Kulová vada tenké čočky. Vypuklá/ploská označuje, která strana čočky byla směrem k předmětu.

Tenká čočka						
vypuklá	$12,3\mathrm{mm}$	$12,1\mathrm{mm}$	$12,1\mathrm{mm}$			
ploská	$16,0\mathrm{mm}$	$15,7\mathrm{mm}$	$16,3\mathrm{mm}$	$16,2\mathrm{mm}$		
	-	Γlustá čočk	a			
vypuklá	$13,7\mathrm{mm}$	$13,2\mathrm{mm}$	$13,3\mathrm{mm}$	$13,3\mathrm{mm}$		
ploská	26.1 mm	$26.2\mathrm{mm}$	$26.5\mathrm{mm}$			

Tabulka 4: Měření vzdálenosti hlavních rovin pomocí goniometru. První sloupec označuje, která strana čočky byla směrem k okuláru, ostatní sloupce jsou poloha uzlového bodu na mikrometru.

Diskuze

Při měření kulové vady jsme považovali clonu č. 1 za paraxiální, tedy kulovou vadu pro ostatní clony jsme měřili jako rozdíl mezi polohami obrazu první a oné clony. Vzniklá chyba je zanedbatelná v porovnání s ostatními vlivy.

Podle zadání jsme považovali za s aritmetický průměr vnějšího a vnitřního poloměru clony. K tomuto postupu není zřejmý důvod, jako lepší se jeví místo aritmetického průměru použít kvadratický průměr nebo ještě lépe s středované přes intenzitu světla. Obraz bude v každém případě rozostřen a my neznáme přesný mechanismus vyhodnocování jeho polohy a nemůžeme tedy rozhodnout, která z možností je nejlepší. Proto předpokládáme, že použití aritmetického průměru má dobrý důvod a je správné.

Kulová vada je u obou předmětových vzdáleností větší, když je čočka orientovaná ploskou stranou k předmětu, což kvalitativně odpovídá našim výpočtům. Kulová vada je větší pro menší z obou předmětových vzdáleností.

Při Besselově metodě jsme se dopustili systematické chyby, protože jsme zanedbali tloušťku čočky. D ve skutečnosti není vzdálenost vzdálenost předmětu a obrazu, ale D=a+a', kde a a a' se měří od hlavních rovin. Abychom dostali správnou hodnotu D, musíme od změřené odečíst vzdálenost hlavních rovin δ_{tenka} . Potom by vyšla ohnisková vzdálenost 10,69(10) cm, tedy jsme se dopustili systematické chyby přibližně 1,3%.

Při metodě dvojího zvětšení je vnesená systematická chyba zanedbatelná. Výpočet ze změny obrazových vzdáleností byl přesnější. V každé dvojici má vždy buď součin $\beta_1\beta_2$ nebo rozdíl $|a_1 - a_b|$ velkou chybu.

Rozmezí obou hodnot optické moutnosti, které jsme změřili na fokometru, přibližně odpovídá změřené optické vzdálenosti.

Metoda dvojího zvětšení byla přesnější.

Index lomu skla vypočtený z tloušťky tlusté čočky a vzdálenosti jejích hlavních rovin je v rozsahu hodnot, kterých běžně nabývá. Tabelovaná hodnota je 1,5-1,9.

Závěr

Změřili jsme ohniskovou vzdálenost tenké čočky Besselovou metodou

$$f_B = 10.82(6) \,\mathrm{cm}$$

a metodou dvojího zvětšení

$$f_a = 10,2(10) \,\mathrm{cm}$$
 $f_{a'} = 10,4(1) \,\mathrm{cm}$.

Změřili jsme kulovou vadu téže čočky pro dvě různé předmětové vzdálenosti, viz tabulka 3 a graf 1. Změřili jsme vzdálenost hlavních rovin tenké a tlusté čočky

$$\delta_{tenka} = 12.9(3) \,\mathrm{mm}$$
 $\delta_{tlusta} = 3.9(3) \,\mathrm{mm}$

Na fokometru jsme změřili optickou mohutnost tenké čočky v obou směrech

$$\varphi_V = 10,25(25) \,\mathrm{m}^{-1}$$
 $\varphi_P = 9,75(25) \,\mathrm{m}^{-1}$.

Ze známé tloušťky čočky a vzdáleností jejích hlavních rovin jsme určili index lomu skla, ze kterého byla zhotovena

$$n_{tlusta} = 1,51(3).$$

Seznam použité literatury

1. Základní fyzikální praktikum [online]. [cit. 2017-04-20]. Dostupný z WWW: http://physics.mff.cuni.cz/vyuka/zfp/start.