線形関係式

$$c_1\boldsymbol{a}_1+c_2\boldsymbol{a}_2+\cdots+c_k\boldsymbol{a}_k=\mathbf{0}$$

を、 $\boldsymbol{a}_1, \boldsymbol{a}_2, \ldots, \boldsymbol{a}_k$ の線形関係式という

特に、 $c_1=c_2=\cdots=c_k=0$ として得られる線形関係式を自明な線形関係式という

これ以外の場合、つまり $c_i \neq 0$ となるような i が少なくとも 1 つあるならば、これは非自明な線形関係式である

線形従属なベクトルでは、その中の $\mathbf 1$ つのベクトルが、他のベクトルの線形結合で表される

 $oldsymbol{\$}$ 線形結合によるベクトルの表現 $oldsymbol{a}_1, oldsymbol{a}_2, \dots, oldsymbol{a}_m \in K^n$ を線型独立なベクトルとする

 K^n のベクトル \boldsymbol{a} と $\boldsymbol{a}_1, \boldsymbol{a}_2, \ldots, \boldsymbol{a}_m$ が一次従属であるとき、

 \boldsymbol{a} は $\boldsymbol{a}_1, \boldsymbol{a}_2, \ldots, \boldsymbol{a}_m$ の線形結合で表される

すなわち、 $c_1, c_2, \ldots, c_m \in K$ を用いて次のように書ける

 $\boldsymbol{a} = c_1 \boldsymbol{a}_1 + c_2 \boldsymbol{a}_2 + \cdots + c_m \boldsymbol{a}_m$

ref: 行列と行列式の基

礎 p38~40

ref: 図で整理!例題で 納得!線形空間入門 p31

~32

証明

 $oldsymbol{a}$, $oldsymbol{a}_1,\ldots,oldsymbol{a}_m$ が一次従属であるので、少なくとも $oldsymbol{1}$ つは $oldsymbol{0}$ でない係数 $oldsymbol{c}$, $oldsymbol{c}_1$, $oldsymbol{c}_2$, \ldots , $oldsymbol{c}_m$ を用いて

$$c\boldsymbol{a} + c_1\boldsymbol{a}_1 + c_2\boldsymbol{a}_2 + \cdots + c_m\boldsymbol{a}_m = \boldsymbol{0}$$

が成り立つ

もし c=0 だとすると、 c_1,c_2,\ldots,c_m のいずれかが 0 でないことになり、 $oldsymbol{a}_1,oldsymbol{a}_2,\ldots,oldsymbol{a}_m$ が線型独立であることに矛盾するよって、 $c\neq 0$ である

そのため、上式をcで割ることができ、aは

$$\boldsymbol{a} = -\frac{c_1}{c}\boldsymbol{a}_1 - \frac{c_2}{c}\boldsymbol{a}_2 - \cdots - \frac{c_m}{c}\boldsymbol{a}_m$$

という $\boldsymbol{a}_1, \boldsymbol{a}_2, \ldots, \boldsymbol{a}_m$ の線形結合で表せる

≥ 証明

ベクトルの集まりが線型独立であることは、それらに対する線形関 係式はすべて自明であるというのが定義である

それを否定すると、「自明でない線形関係式が存在する」となる

♣ 線型結合の一意性 線型独立性は、線形結合の一意性

$$c_1 \boldsymbol{a}_1 + \cdots + c_k \boldsymbol{a}_k = c'_1 \boldsymbol{a}_1 + \cdots + c'_k \boldsymbol{a}_k$$

 $\Longrightarrow c_1 = c'_1, \ldots, c_k = c'_k$

と同値である

線型独立性の定義式を移項することで得られる

この定理から、

線型独立性は、両辺の係数比較ができるという性質

であるとも理解できる

k = 1 の場合に、次の定理が成り立つ

→ 単一ベクトルの線型独立性と零ベクトル

$$a_1$$
が線型独立 $\iff a_1 \neq 0$

 $oldsymbol{a}_1$ が線型独立であるとする

すると、 $oldsymbol{a}_1$ に対する線形関係式

$$c_1 a_1 = 0$$

が成り立つのは、 $c_1=0$ のときだけである

ここで、 $\mathbf{a}_1 = \mathbf{0}$ と仮定すると、 $c_1 \mathbf{0} = \mathbf{0}$ が成り立つので、 c_1 は任意の値をとることができる

これは、 $oldsymbol{a}_1$ に対する線形関係式が $c_1=0$ のときだけ成り 立つという線型独立性の定義に反する

k to $\mathbf{a}_1 \neq \mathbf{0}$ $\mathbf{0}$ \mathbf{a}_2

 \leftarrow

$a_1 \neq 0$ とする

このとき、もし $oldsymbol{a}_1$ に対する線形関係式

$$c_1 a_1 = 0$$

が成り立つとしたら、 $oldsymbol{a}_1
eq oldsymbol{0}$ なので、 $oldsymbol{c}_1$ は必ず $oldsymbol{0}$ でなければならない

したがって、 $oldsymbol{a}_1$ に対する線形関係式は $oldsymbol{c}_1=0$ のときだけ成り立つ

これは、 $oldsymbol{a}_1$ が線型独立であることを意味する