Project Report

Diabetes is a growing global health concern, affecting millions of people and leading to severe complications if not detected early. With advancements in technology, machine learning offers a powerful tool to analyze medical data and predict diabetes risk efficiently. This project leverages data-driven insights to build a predictive model that helps in early diagnosis, potentially improving healthcare outcomes and patient wellbeing. This project aims to predict diabetes based on medical attributes using Machine Learning (ML).

Subject: Machine Learning Prediction for diabetes using Python

Group Members: Kundella Surya Teja, Mohammed Feroz, Ankith Cherupillil Anil,

Chamreun Khim, K. Mahalingam Agathiyar

Cohort: S24

Date: 30.03.2025

Dataset: TAIPEI diabetes CSV file - The dataset used is the PIMA Indians Diabetes

Dataset, which contains 768 records.

Remarks

You can also reach our works on the following Github repository:

https://github.com/Surya9810/Diabetes-Prediction-DSTI

Introduction

Diabetes is a chronic health condition affecting millions worldwide. Early diagnosis and prediction can significantly improve treatment and patient outcomes. This project uses **Machine Learning (ML)** to develop a predictive model that estimates the likelihood of diabetes based on patient health indicators.

For patients, this system offers a quick and accessible risk assessment tool, while for researchers and healthcare professionals, it highlights key factors contributing to diabetes.

Using the **PIMA Indians Diabetes Dataset**, we train a **Random Forest Classifier** and deploy the model using **Streamlit**, enabling real-time predictions via a simple webbased interface.

Environment, Packages, and Libraries

Development Environment

This project is implemented using:

• **Programming Language**: Python 3.8+

• **IDE**: Jupyter Notebook, VS Code

• **Deployment**: Streamlit

Required Packages & Libraries

To ensure smooth execution, install the required dependencies:

pip install -r requirements.txt

Key Libraries Used

Library	Purpose	
Pandas	Data manipulation & preprocessing	
NumPy	Numerical computations	
Matplotlib & Seaborn	Data visualization	
Scikit-Learn (sklearn)	Machine learning model training & evaluation	
Pickle	Model serialization & saving	
Streamlit	Deploying the model as a web application	

Project Objectives

- **Develop a machine learning model** to predict diabetes based on medical attributes.
- ✓ **Analyze key features** influencing diabetes prediction.
- Achieve high accuracy using data preprocessing and feature engineering.
- **✓ Deploy the model as a user-friendly web app** using **Streamlit**.

Dataset Overview

The dataset used is the **PIMA Indians Diabetes Database**, which includes key patient health indicators.

Features Used

- **Pregnancies** Number of times a patient was pregnant
- **Plasma Glucose Concentration** Blood sugar levels
- **Diastolic Blood Pressure** Blood pressure measurement
- Triceps Skin Fold Thickness Body fat percentage indicator
- **Serum Insulin** Insulin concentration in the blood
- Body Mass Index (BMI) Weight-to-height ratio
- **Diabetes Pedigree Function** Genetic predisposition to diabetes
- **Age** Patient's age

The **target variable** is **Outcome**, where:

- $1 \rightarrow Diabetic$
- $0 \rightarrow \text{Non-Diabetic}$

Methodology

The project follows a structured machine learning pipeline:

1. Data Collection & Preprocessing

- Load the dataset (diabetes.csv)
- Handle missing values
- Feature scaling using StandardScaler

2. Exploratory Data Analysis (EDA)

- Checked for missing values (none found).
- Identified correlations between features (Glucose and BMI had strong correlations with diabetes).
- Visualized distributions using histograms and scatter plots.

3. Feature Engineering

- Scaling: Used StandardScaler to normalize numerical features.
- Outlier Handling: Applied interquartile range (IQR) filtering.
- Feature Selection: Used feature importance from Random Forest.

4. Model Training & Evaluation

Algorithms Used:

- Logistic Regression
- Decision Trees
- Random Forest (Best Performing)
- XGBoost

Model Performance:

Model	Accuracy	ROC-AUC
Logistic Regression	80%	0.85
Decision Tree	78%	0.82
Random Forest	85%	0.88
XGBoost	84%	0.87

Results & Insights

The trained **Random Forest Classifier** achieves:

• **Accuracy**: ~85%

• ROC-AUC Score: 0.88

• Feature Importance Analysis:

o **Glucose Levels** and **BMI** are the strongest predictors of diabetes.

Deployment & Usage

- Model Saved: random_forest_model.pkl (for predictions in Streamlit app)
- Web App: Streamlit used for an interactive prediction interface.
- Deployment Options: Can be hosted on Streamlit, flask etc.

Running the Model Locally

To set up and run the diabetes prediction model on your machine, follow these steps:

1. Clone the Repository

git clone - https://github.com/Surya9810/Diabetes-Prediction-DSTI.git

cd Diabetes-Prediction-DSTI

2. Install Dependencies

pip install -r requirements.txt

3. Train the Model

Run the Jupyter Notebook to train the model and save the necessary files:

jupyter notebook diabetes_ml_pipeline.ipynb

This step:

- ✓ Preprocesses the data
- **✓** Trains the model
- ✓ Saves the trained model (random_forest_model.pkl) & scaler (scaler.pkl)

4. Run the Streamlit App

streamlit run app.py

This launches an interactive web application where users can input their health metrics and receive diabetes predictions in real time.

Conclusion

This project successfully demonstrates how **Machine Learning** can be applied to healthcare for diabetes prediction. With **85% accuracy**, this model provides a **data-driven approach** for early diabetes detection and can be expanded with more advanced techniques.

• Random Forest provided the best performance.

- The web app enables real-time diabetes predictions.
- Future work: Improve model with deep learning techniques.

References

- PIMA Indians Diabetes Dataset
- Scikit-learn Documentation