from google.colab import files
uploaded = files.upload()

Choose files Mall_Customers.csv

• Mall_Customers.csv(text/csv) - 3981 bytes, last modified: 27/06/2025 - 100% done Saving Mall_Customers.csv to Mall_Customers.csv

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.cluster import KMeans

#loading the data
data = pd.read_csv("Mall_Customers.csv")
data.head()

→		CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)	
	0	1	Male	19	15	39	ılı
	1	2	Male	21	15	81	
	2	3	Female	20	16	6	
	3	4	Female	23	16	77	
	4	5	Female	31	17	40	

Next steps:

Generate code with data

New interactive sheet

#checking the datatypes and missing values

```
data.info()
data.isnull().sum()
```


<<class 'pandas.core.frame.DataFrame'> RangeIndex: 200 entries, 0 to 199

Data columns (total 4 columns):

Column	Non-Null Count	Dtype
Gender	200 non-null	int64
Age	200 non-null	int64
Annual Income (k\$)	200 non-null	int64
Spending Score (1-100)	200 non-null	int64
	Gender Age Annual Income (k\$)	Gender 200 non-null Age 200 non-null Annual Income (k\$) 200 non-null

dtypes: int64(4) memory usage: 6.4 KB

	0
Gender	0
Age	0
Annual Income (k\$)	0
Spending Score (1-100)	0

dtype: int64

```
#convert gender into numbers
data['Gender'] = data['Gender'].map({'Male': 0, 'Female': 1})
```

#data exploration and descriptive stats data.describe()

→				
		Age	Annual Income (k\$)	Spending Score (1-100)
	count	200.000000	200.000000	200.000000
	mean	38.850000	60.560000	50.200000
	std	13.969007	26.264721	25.823522
	min	18.000000	15.000000	1.000000
	25%	28.750000	41.500000	34.750000
	50%	36.000000	61.500000	50.000000
	75%	49.000000	78.000000	73.000000
	max	70.000000	137.000000	99.000000

#decribing the data data.describe()

	Gender	Age	Annual Income (k\$)	Spending Score (1-100)	\blacksquare
count	0.0	200.000000	200.000000	200.000000	ılı
mean	NaN	38.850000	60.560000	50.200000	
std	NaN	13.969007	26.264721	25.823522	
min	NaN	18.000000	15.000000	1.000000	
25%	NaN	28.750000	41.500000	34.750000	
50%	NaN	36.000000	61.500000	50.000000	
75%	NaN	49.000000	78.000000	73.000000	
max	NaN	70.000000	137.000000	99.000000	

Distributions

2-d distributions

#elbow method to decide cluster count
X = data[['Age', 'Annual Income (k\$)', 'Spending Score (1-100)']]

```
#running the elboow method loop
wcss = []
for i in range(1, 11):
    kmeans = KMeans(n_clusters=i, init='k-means++', random_state=42)
    kmeans.fit(X)
```

wcss.append(kmeans.inertia_)

```
#plot the elbow loop
plt.figure(figsize=(10,6))
plt.plot(range(1,11), wcss)
plt.title("Elbow Method for Optimal Clusters")
plt.xlabel("Number of Clusters")
plt.ylabel("WCSS")
plt.show()
```

₹

Elbow Method for Optimal Clusters


```
#apply the kmeans algorithm
kmeans = KMeans(n_clusters=5, init='k-means++', random_state=42)
data['Cluster'] = kmeans.fit_predict(X)
```

data.head()

				1 to 5 of 5 entries Filte	er 🛭 😯
index	Gender	Age	Annual Income (k\$)	Spending Score (1-100)	Cluster
0	NaN	19	15	39	2
1	NaN	21	15	81	2
2	NaN	20	16	6	0
3	NaN	23	16	77	2
4	NaN	31	17	40	0

Show 25 ➤ per page

Like what you see? Visit the <u>data table notebook</u> to learn more about interactive tables.

Distributions

2-d distributions

Time series

Values

```
Annual Income (k$) vs Age

Annual Income (k$) vs Spending Score (1-100)

Annual Income (k$) vs Cluster

Annual Income (k$) vs count()

Age

Annual Income (k$) vs count()

Cluster
```


Customer Segments Based on Income and Spending

3D View of Customer Segments

#view cluster averages
data.groupby('Cluster').mean(numeric_only=True)

Gender Age Annual Income (k\$) Spending Score (1-100)


```
#cluster summary
```

```
cluster_summary = data.groupby('Cluster').mean(numeric_only=True)
print(" Average values per cluster:")
print(cluster_summary)
```

```
Average Valles 40e394737ster:
                                             87.000000
                                                                       18.631579
                                   Annual Income (k$)
76.090909
                                                         Spending Score (1-100)
77.757576
                  NaN
                       46.213483
                                             47.719101
                                                                       41.797753
     1
                  NaN 32.454545
                                            108.181818
                                                                       82.727273
     2
                                             29.586207
                                                                       73.655172
                  NaN
                      24.689655
     3
                  NaN 40.394737
                                             87.000000
                                                                       18.631579
     4
                  NaN 31.787879
                                             76.090909
                                                                       77.757576
print("\n ★ Insights per Cluster:\n")
```

```
for i in range(cluster_summary.shape[0]):
    print(f" ◆ Cluster {i}:")
    income = cluster_summary.iloc[i]['Annual Income (k$)']
    score = cluster_summary.iloc[i]['Spending Score (1-100)']

if income >= 70 and score >= 60:
```

print(" in High income, high spending - Target with luxury or premium offers.")
elif income >= 70 and score < 40:
 print(" High income, low spending - Upsell premium or loyalty programs.")
elif income < 40 and score >= 60:
 print(" Low income, high spending - Possibly impulsive buyers.")

elif income < 40 and score < 40:

print("* Low income, low spending - Budget-sensitive customers.")

print("☆ Low income, low spending - Budget-sensitive customers.")
else:

★ Insights per Cluster: