Example: US States Data

Merge and join operations come up most often when combining data from different sources. Here we will consider an example of some data about US states and their populations. The data files can be found at http://github.com/jakevdp/data-USstates:

Let's take a look at the three datasets, using the Pandas read csv function:

```
pop = pd.read_csv('state-population.csv')
areas = pd.read_csv('state-areas.csv')
abbrevs = pd.read_csv('state-abbrevs.csv')
display('pop.head()', 'areas.head()', 'abbrevs.head()')
```

pop.head()

	state/region	ages	year	population
0	AL	under18	2012	1117489.0
1	AL	total	2012	4817528.0
2	AL	under18	2010	1130966.0
3	AL	total	2010	4785570.0
4	AL	under18	2011	1125763.0

Given this information, say we want to compute a relatively straightforward result: rank US

states and territories by their 2010 population density. We clearly have the data here to find this result, but we'll have to combine the datasets to do so.

We'll start with a many-to-one merge that will give us the full state names within the population DataFrame. We want to merge based on the state/region column of pop and the abbreviation column of abbrevs. We'll use how='outer' to make sure no data is thrown away due to mismatched labels:

```
merged = pop.merge(abbrevs, how='outer', left_on='state/region', right_on='abbre
merged = merged.drop('abbreviation', axis=1) # dr
merged.head()
```

	state/region	ages	year	population	state	
0	AL	under18	2012	1117489.0	Alabama	ılı
1	AL	total	2012	4817528.0	Alabama	
2	AL	under18	2010	1130966.0	Alabama	
3	AL	total	2010	4785570.0	Alabama	
4	AL	under18	2011	1125763.0	Alabama	

Let's double-check whether there were any mismatches here, which we can do by looking for rows with nulls:

merged.isnull().sum()

state/region	0
ages	0
year	0
population	20
state	96
dtype: int64	

Some of the population values are null; let's figure out which these are!

merged[merged['population'].isnull()].head()

	state/region	ages	year	population	state	
2448	PR	under18	1990	NaN	NaN	ılı
2449	PR	total	1990	NaN	NaN	
2450	PR	total	1991	NaN	NaN	
2451	PR	under18	1991	NaN	NaN	
2452	PR	total	1993	NaN	NaN	

Double-click (or enter) to edit

It appears that all the null population values are from Puerto Rico prior to the year 2000; this is likely due to this data not being available in the original source.

More importantly, we see that some of the new state entries are also null, which means that there was no corresponding entry in the abbrevs key! Let's figure out which regions lack this match:

```
merged.loc[merged['state'].isnull(), 'state/region']
    2448
              PR
    2449
              PR
    2450
              PR
    2451
              PR
    2452
              PR
    2539
            USA
    2540
            USA
    2541
            USA
    2542
            USA
    2543
             USA
    Name: state/region, Length: 96, dtype: object
merged.loc[merged['state'].isnull(), 'state/region'].unique()
    array(['PR', 'USA'], dtype=object)
```

We can quickly infer the issue: our population data includes entries for Puerto Rico (PR) and the United States as a whole (USA), while these entries do not appear in the state abbreviation key. We can fix these quickly by filling in appropriate entries:

No more nulls in the state column: we're all set!

Now we can merge the result with the area data using a similar procedure. Examining our results, we will want to join on the state column in both:

merged.head()

	state/region	ages	year	population	state	=
0	AL	under18	2012	1117489.0	Alabama	ılı
1	AL	total	2012	4817528.0	Alabama	
2	AL	under18	2010	1130966.0	Alabama	
3	AL	total	2010	4785570.0	Alabama	
4	AL	under18	2011	1125763.0	Alabama	

areas.head()

	state	area (sq. mi)	=
0	Alabama	52423	ılı
1	Alaska	656425	
2	Arizona	114006	
3	Arkansas	53182	
4	California	163707	

entirepop = merged.merge(areas, on='state', how='left')
entirepop.head()

	state/region	ages	year	population	state	area (sq. mi)	\blacksquare
0	AL	under18	2012	1117489.0	Alabama	52423.0	ılı
1	AL	total	2012	4817528.0	Alabama	52423.0	
2	AL	under18	2010	1130966.0	Alabama	52423.0	
3	AL	total	2010	4785570.0	Alabama	52423.0	
4	AL	under18	2011	1125763.0	Alabama	52423.0	

Again, let's check for nulls to see if there were any mismatches:

entirepop.isnull().sum()
 state/region 0
 ages 0

.**1**

year

population	2⊍
state	0
area (sq. mi)	48
dtype: int64	

There are nulls in the area column; we can take a look to see which regions were ignored here:

entirepop.head()

	state/region	ages	year	population	state	area (sq. mi)	
0	AL	under18	2012	1117489.0	Alabama	52423.0	ılı
1	AL	total	2012	4817528.0	Alabama	52423.0	
2	AL	under18	2010	1130966.0	Alabama	52423.0	
3	AL	total	2010	4785570.0	Alabama	52423.0	
4	AL	under18	2011	1125763.0	Alabama	52423.0	

entirepop[entirepop['area (sq. mi)'].isnull()].head()

	state/region	ages	year	population	state	area (sq. mi)	
2496	USA	under18	1990	64218512.0	United States	NaN	11.
2497	USA	total	1990	249622814.0	United States	NaN	
2498	USA	total	1991	252980942.0	United States	NaN	

entirepop.isnull().sum()

state/region	0
ages	0
year	0
population	20
state	0
area (sq. mi)	48
dtvpe: int64	

We see that our areas DataFrame does not contain the area of the United States as a whole. We could insert the appropriate value (using the sum of all state areas, for instance),

mar and an arrangement of the contract of the

but in this case we'll just drop the null values because the population density of the entire United States is not relevant to our current discussion:

entirepop = entirepop.dropna()
entirepop.head()

	state/region	ages	year	population	state	area (sq. mi)	
0	AL	under18	2012	1117489.0	Alabama	52423.0	ıl.
1	AL	total	2012	4817528.0	Alabama	52423.0	
2	AL	under18	2010	1130966.0	Alabama	52423.0	
3	AL	total	2010	4785570.0	Alabama	52423.0	
4	AL	under18	2011	1125763.0	Alabama	52423.0	

entirepop.isnull().sum()

state/region	0
ages	0
year	0
population	0
state	0
area (sq. mi)	0
dtype: int64	

```
filtered = entirepop[(entirepop['year'] == 2010) & (entirepop['ages'] == 'total'
# filtered = entirepop.query("year == 2010 & ages == 'total'")
filtered.head()
```

	state/region	ages	year	population	state	area (sq. mi)	
3	AL	total	2010	4785570.0	Alabama	52423.0	ılı
91	AK	total	2010	713868.0	Alaska	656425.0	
101	AZ	total	2010	6408790.0	Arizona	114006.0	
189	AR	total	2010	2922280.0	Arkansas	53182.0	
197	CA	total	2010	37333601.0	California	163707.0	

len(filtered)

52

area

Now let's compute the population density and display it in order. We'll start by re-indexing our data on the state, and then compute the result:

filtered.set_index('state', inplace=True)
filtered['population_density'] = filtered['population'] / filtered['area (sq. mi
filtered.head()

<ipython-input-89-d21fe09ca0a2>:2: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row indexer,col indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs-filtered['population_density'] = filtered['population'] / filtered['area

	state/region	ages	year	population	(sq. mi)	population_densi
state						
Alabama	AL	total	2010	4785570.0	52423.0	91.28760
Alaska	AK	total	2010	713868.0	656425.0	1.08750
Arizona	AZ	total	2010	6408790.0	114006.0	56.21449
Arkansas	AR	total	2010	2922280.0	53182.0	54.94866

filtered.sort_values(by='population_density', ascending=False, inplace=True)
filtered[['state/region', 'population density']].head()

<ipython-input-97-51692f18306a>:1: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs-filtered.sort_values(by='population_density', ascending=False, inplace=Tiltered.sort_values

	state/region	population_density	
state			
District of Columbia	DC	8898.897059	
Puerto Rico	PR	1058.665149	
New Jersey	NJ	1009.253268	
Rhode Island	RI	681.339159	
Connecticut	СТ	645.600649	

The result is a ranking of US states, plus Washington, DC, and Puerto Rico, in order of their 2010 population density, in residents per square mile. We can see that by far the densest region in this dataset is Washington, DC (i.e., the District of Columbia); among states, the

denoted Now Jaron

uensest is new Jersey.

We can also check the end of the list:

filtered[['state/region', 'population_density']].tail()

	state/region	population_density
state		
South Dakota	SD	10.583512
North Dakota	ND	9.537565
Montana	MT	6.736171
Wyoming	WY	5.768079
Alaska	AK	1.087509

We see that the least dense state, by far, is Alaska, averaging slightly over one resident per square mile.

This type of data merging is a common task when trying to answer questions using real-world data sources. I hope that this example has given you an idea of some of the ways you can combine the tools we've covered in order to gain insight from your data!

```
import pandas as pd
import numpy as np
```

Exercise 1
Today, we will be using the ACS data we used during out first pandas exercise
To begin, load the ACS Data we used in our first pandas exercise. That data1 (
data = nd_read_stata('/content/US_ACS_2017_10nct_sample_dta')

data = pd.read_stata('/content/US_ACS_2017_10pct_sample.dta')
data.head()

	year	datanum	serial	cbserial	numprec	subsamp	hhwt	hhtyp
0	2017	1	177686	2.017001e+12	9	64	55	female householder no husbane presen
1	2017	1	1200045	2.017001e+12	6	79	25	male householder no wife presen
2	2017	1	70831	2.017000e+12	1 person record	36	57	mal householder living alon
3	2017	1	557128	2.017001e+12	2	10	98	married couple family househole
4	2017	1	614890	2.017001e+12	4	96	54	married couple family househole

5 rows × 104 columns

data.columns

```
1
                  6000
    2
                  6150
    3
                 14000
    4
               9999999
    318999
                22130
    319000
               999999
    319001
                  5000
    319002
                240000
    319003
                 48000
    Name: inctot, Length: 319004, dtype: int32
# Exercise 2¶
# Let's begin by calculating the mean US incomes from this data (recall that inc
EX2 AVG INCOME = np.mean(data['inctot'])
    1723646.2703978634
# Exercise 3¶
# Hmmm... That doesn't look right. The average American is definitely not earning
# Let's look at the values of inctot using value counts(). Do you see a problem?
# Now use value counts() with the argument normalize=True to see proportions of
# count of people in each category. What percentage of our sample has an income
# Store that proportion (between 0 and 1) as "EX3 SHARE MAKING 9999999".
# What percentage has an income of 0? Store that proportion as "EX3 SHARE MAKING
income counter = data['inctot'].value counts(normalize=True)
income counter
    9999999
                0.168967
    0
                0.105575
    30000
                0.014978
                0.013837
    50000
    40000
                0.013834
                  . . .
    70520
                0.000003
    76680
                0.000003
    57760
                0.000003
    200310
                0.000003
    505400
                0.000003
    Name: inctot, Length: 8471, dtype: float64
income counter[9999999]
    0.1689665333350052
income counter[0]
    0.10557547867738336
EX3 SHARE MAKING 9999999 = income counter[9999999] / len(data)
```

acs_exp4.ipynb - Colaboratory

EX3_SHARE_MAKING_9999999

5.296690114700919e-07

EX3_SHARE_MAKING_ZER0 = income_counter[0] / len(data)
EX3_SHARE_MAKING_ZER0

3.3095346352203535e-07

Exercise 4¶

As we discussed before, the ACS uses a value of 9999999 to denote that income # The problem with using this kind of "sentinel value" is that pandas doesn't ur # and so when it averages the variable, it doesn't know to ignore 9999999. # To help out pandas, use the replace command to replace all values of 9999999 v data.replace(9999999, np.nan, inplace=True) data

	year	datanum	serial	cbserial	numprec	subsamp	hhwt	
0	2017	1	177686	2.017001e+12	9	64	55	hous no t
1	2017	1	1200045	2.017001e+12	6	79	25	hous
2	2017	1	70831	2.017000e+12	1 person record	36	57	hous livir
3	2017	1	557128	2.017001e+12	2	10	98	r ho
4	2017	1	614890	2.017001e+12	4	96	54	r ho
•••								
318999	2017	1	734396	2.017001e+12	4	78	100	r ho
319000	2017	1	586263	2.017001e+12	4	57	77	r ho
210001	2017	1	E10///	2 0170010 : 12	า	ΛO	157	hous

```
STRUCT COTY
                        J1U444 Z.U1/UU1ET1Z
                                                                エンム
                                                                      no ł
                                                                        r
319002 2017
                    1 1220474 2.017001e+12
                                                    4
                                                           16
                                                                148
                                                                       ho
                                                                        r
319003 2017
                    1
                       219435 2.017000e+12
                                                    2
                                                           17
                                                                 47
                                                                       ho
```

 $319004 \text{ rows} \times 104 \text{ columns}$

```
# Exercise 5¶
# Now that we've properly labeled our missing data as np.nan, let's calculate th
income counter = data['inctot'].value counts(normalize=True)
income counter
    0.0
                0.127041
                0.018023
    30000.0
    50000.0
                0.016650
    40000.0
                 0.016646
    20000.0
                0.015341
    246600.0
                0.000004
    90810.0
                0.000004
    341380.0
                0.000004
    15790.0
                0.000004
    505400.0
                0.000004
    Name: inctot, Length: 8470, dtype: float64
# Exercise 6¶
# OK, now we've been able to get a reasonable average income number. As we can s
# But it's not enough to just get rid of the people who had inctot values of 999
# anyone who made more than 100,000 dollars: if we just dropped those people, the
# So let's make sure we understand why data is missing for some people. If you r
# be the case that most of the people who had incomes of 9999999 were children.
# the variable age for people for whom inctot is missing (i.e. subset the data 1
# Then do the opposite: look at the distribution of the age variable for people
# Can you determine when 9999999 was being used? Is it ok we're excluding those
# Note: In this data, Python doesn't understand age is a number; it thinks it is
# like "90 (90+ in 1980 and 1990)" and "less than 1 year old". So you can't just
# We'll discuss converting string variables into numbers in a future class.
print("Null ", data['inctot'].isnull().sum())
data[data['inctot'].isnull()]['age'].value counts()
    Null
          53901
```

```
ΤO
      3997
9
      3977
14
      3847
12
      3845
13
      3800
39
          0
38
          0
37
          0
36
          0
96
          0
```

Name: age, Length: 97, dtype: int64

```
# Exercise 7¶
```

Great, so now we know why those people had missing data, and we're ok with exc # But as we previously noted, there are also a lot of observations of zero incom # Let's limit our attention to people who are currently working by subsetting to data['empstat'].value counts()

employed 148758 not in labor force 104676 n/a 57843 unemployed 7727 Name: empstat, dtype: int64

employed = data[data['empstat'] == 'employed'] employed

	year	datanum	serial	cbserial	numprec	subsamp	hhwt	
1	2017	1	1200045	2.017001e+12	6	79	25	hous
2	2017	1	70831	2.017000e+12	1 person record	36	57	hous livir
5	2017	1	563897	2.017001e+12	3	19	66	hous no ł
9	2017	1	856859	2.017001e+12	5	69	12	r ho
10	2017	1	175930	2.017001e+12	9	72	171	r ho
•••								

21/09/23, 10:59 5 of 8

r	104	36	3	2.017001e+12	46231	1	2017	318995
ho								
r ho	100	78	4	2.017001e+12	734396	1	2017	318999
hous no h	152	43	2	2.017001e+12	510444	1	2017	319001
r ho	148	16	4	2.017001e+12	1220474	1	2017	319002
r ho	47	17	2	2.017000e+12	219435	1	2017	319003

148758 rows × 104 columns

employed['race'].value_counts()

white	116017
black/african american/negro	13175
other asian or pacific islander	6424
other race, nec	5755
two major races	3135
chinese	2149
american indian or alaska native	1290
three or more major races	426
japanese	387
Name: race, dtype: int64	

employed[employed['race'] == 'white']['inctot'].mean()

60473.15372747098

```
# Exercise 8¶
# Now let's estimate the racial income gap in the United States. What is the ave
# In percentage terms (between 0 and 100), how much more does the average White
# Note: these values are not quite accurate estimates. As we'll discuss in later
# Note: This is actually an underestimate of the wage gap. The US Census treats

EX8_AVG_INCOME_WHITE = employed[employed['race'] == 'white']['inctot'].mean()
EX8_AVG_INCOME_BLACK = employed[employed['race'] == 'black/african american/negreenerm.
```

FX8 RACTAL DIFFERENCE = ((FX8 AVG INCOME WHITE - FX8 AVG INCOME BLACK) / FX8 AVG

```
print(EX8_AVG_INCOME_WHITE, EX8_AVG_INCOME_BLACK, EX8_RACIAL_DIFFERENCE)
```

60473.15372747098 41747.949905123336 44.85299006275197

```
# Exercise 9¶
# As noted above, these estimates are not actually quite correct because we arer
# (As you can see, when is constant for all observations, this just simplifies
# In this data, weights are stored in the variable perwt, which is the number of
# Using the formula, re-calculate the weighted average income for both population

EX9_AVG_INCOME = (data['inctot'] * data['perwt']).sum() / data['perwt'].sum()

EX9_AVG_INCOME
```

32135.705606168296

employed['hispan']

1 2 5 9	other not hispanic not hispanic not hispanic
10	mexican
	•••
318995	mexican
318999	not hispanic
319001	not hispanic
319002	not hispanic
319003	not hispanic
Name: hi	span, Length: 148758, dtype: category
Categori	es (5, object): ['not hispanic' < 'mexican' < 'puerto rican' <
'cuban'	< 'other']

Exercise 10¶

While all ethnic distinctions are socially constructed, and so on some level t # So now calculate the weighted average income gap between non-Hispanic White Am non_Hispanic_White_Americans = employed[(employed['race'] == 'white') & (employed non Hispanic White Americans.head()

hhtyp	hhwt	subsamp	numprec	cbserial	serial	datanum	year	
mal householder living alon	57	36	1 person record	2.017000e+12	70831	1	2017	2
femal householder no husban presen	66	19	3	2.017001e+12	563897	1	2017	5
married								

9	2017	1	856859	2.017001e+12	5	69	12	famil househol
12	2017	1	331527	2.017001e+12	4	3	101	hhtyp could not b determine
16	2017	1	274584	2.017000e+12	2	29	42	married coupl famil househol

 $5 \text{ rows} \times 104 \text{ columns}$

EX10_WAGE_GAP = ((non_Hispanic_White_Americans['inctot'].mean() - EX8_AVG_INCOME EX10_WAGE_GAP

51.02404906450736

[#] Exercise 11¶

[#] Is that greater or less than the difference you found in Exercise 8? Why do yo