FOUNDATIONS IN IT SECURITY: CORE SECURITY PRINCIPLES COMPUTER SYSTEMS SECURITY

GORDON | REYNOLDS (2019

COMPUTER SYSTEMS SECURITY

CORE SECURITY PRINCIPLES: KEEPING INFORMATION SAFE

GORDON | REYNOLDS (201

KEEPING INFORMATION SAFE

- A basic principle of providing a secure system is:
 - Manage Risk
 - Protect sensitive information
 - Keep data private, unchanged and available
 - CIA triad: a widely recognised information assurance model

GORDON | REYNOLDS (2019)

- Private Information Includes:
 - Personally identifiable information
 - PPSN, credit card or bank account numbers
 - Business information
 - Data, employee records and trade secrets

GORDON | REYNOLDS (2019)

PRIVATE INFORMATION

- The Challenge
 - Nearly everyone, including companies, social media, hospitals and many others collect, store and share our information

GORDON | REYNOLDS (2019)

- Confidentiality
 - The promise of keeping private information private by preventing unauthorised access.
- Violations of Confidentiality
 - Includes, someone other than your doctor's office reading your medical file

GORDON | REYNOLDS (2019)

PRIVATE INFORMATION

- Integrity
 - Protecting data from unauthorised changes
 - Both from intentional and unintentional changes
- Violation of Integrity
 - Data integrity can be compromised when information has been altered or destroyed, either maliciously or accidentally.
 - E.g. A student goes into a gradebook and changes their (or someone else's) subject grade(s).

GORDON | REYNOLDS (2019)

- Availability
 - Ensuring data and services are available only to authorised users when needed
- Preventing Access to Data
 - One threat against availability is a distributed denial-of-service attack or DDoS.
 - Such an attack interrupts or suspends services to legitimate users.

GORDON | REYNOLDS (2019)

PRIVATE INFORMATION

- DDoS and Botnets
 - At a predefined time, armies of Botnets will launch an attack by sending multiple requests to a system and lockout legitimate users.

GORDON | REYNOLDS (2019)

- Keep Data Private
 - Provide access to private data only to authorised individuals.
 - Verify a users identity in some way. Methods include:
 - Password or Pin
 - Smart Card
 - Fingerprint
 - Permissions allow access to data only to authorised users and no one else.

GORDON | REYNOLDS (2019)

PRIVATE INFORMATION

- Keep Data Private
 - Encryption
 - Scrambles and conceals the data in a format where the only way you can see the data is if you have a key.

GORDON | REYNOLDS (2019)

- Prevent Unauthorised Changes
 - Use specialised software that monitors for suspicious activity and notify someone if there
 are unauthorised changes to the data.
- Prevent a Denial of Service
 - Tune devices to monitor for DDoS attacks
 - Keep Systems current
 - Backup and store in an offsite location
 - Backup your own personal data as well

GORDON | REYNOLDS (2019)

EXERCISE

In-class video (DDoS)

- Website:
 - www.digitalattackmap.com

GORDON | REYNOLDS (2019)

MANAGING RISK Risk When a person, place or thing is open or exposed to harm, which can result in injury, death or destruction RISK AHEAD

MANAGING RISK CALCULATIONS Risk Analysis Consider potential threats FINANCE HAZARD Such as a cyberattack QUANTITATIVE Supply LOSS Chains QUALITATIVE PROBABILITY Opportunities Evaluate system weakness ANALYSIS Market PROBABILITY Such as a missing password Challenges GORDON | REYNOLDS (2019)

MANAGING RISK

- Manage Risk
 - Implement methods to manage risks and reduce potential for harm
 - Managing risk is an important exercise for a company / business
- Reduce Risk
 - The goal is to protect assets which are both tangible and intangible items that can be assigned a value.

GORDON | REYNOLDS (2019)

MANAGING RISK

- Assets
 - Tangible
 - Printers, Computers, Servers
 - Intangible
 - Databases, Trade Secrets, Company Records

GORDON | REYNOLDS (2019)

MANAGING RISK

Risk is a function of a threat exploiting a weakness or vulnerability

RISK = Threats x Vulnerabilities

GORDON | REYNOLDS (2019)

MANAGING RISK

- Defining risk:
 - Threats may exist but if there is no vulnerability, there will be no risk
 - Also, if there is a vulnerability but no threat, then there is no risk.
 - Risk includes:
 - Business disruption
 - Financial loss
 - Loss of Life

GORDON | REYNOLDS (2019)

MANAGING RISK

- Defining Threat:
 - Anything that can exploit a vulnerability (intentionally or accidentally) and obtain, damage or destroy an asset.
 - Something that might happen and are difficult to control. (employee mistakes to natural disasters).

GORDON | REYNOLDS (2019)

MANAGING RISK - Threat Assessment - Determine the best approach to securing a system Identify the threat Gather information Assess the situation Manage the threat GORDON | RETNOLDS (2019)

MANAGING RISK

- Identifying Vulnerabilities:
 - A security flaw or weakness in a system that can be exploited by threats to gain unauthorised access to an asset.
 - Connecting a system to the internet can represent a vulnerability if the system is unpatched.
 - Other vulnerabilities can include:
 - Unpatched systems
 - Human error
 - Software flaws

GORDON | REYNOLDS (2019)

MANAGING RISK

Remember,

RISK = Threats x Vulnerabilities

■ Therefore, in order to understand the risk to assets, we need to identify the possible threats and vulnerabilities.

GORDON | REYNOLDS (2019)

MANAGING RISK

■ The Three Little Pigs

Scenario	Risk		Threat		Vulnerability
Straw House	90%	=	100%	X	90%
Stick House	40%	=	100%	X	40%
Brick House	0%	=	100%	X	0%

GORDON | REYNOLDS (2019)

MANAGING RISK

- The Moral of the Story
 - We can't do anything about the threats
 - In most cases, a vulnerability can be fixed
 - Test and address vulnerabilities on an ongoing basis
 - Remember,

GORDON | REYNOLDS (2019)

CORE SECURITY PRINCIPLES: AVOIDING SCAMARTISTS

AVOIDING SCAM ARTISTS

- Social Engineering (SE)
 - A process used by Cybercriminals to trick us into doing something
 - To obtain information so they can launch an attack
 - SE is accomplished in many ways:
 - Telephone, online, dumpster diving
 - Shoulder surfing and simple persuasion

GORDON | REYNOLDS (2018)

AVOIDING SCAM ARTISTS

- Social Engineering (SE)
 - Anyone can use Social Engineering
 - Scam Artists
 - Sales people
 - Ordinary individuals
 - The goal is to trick you into completing a task you might not otherwise do in normal circumstances.

GORDON | REYNOLDS (2018)

AVOIDING SCAM ARTISTS

- Social Engineering (SE)
 - SE is one of the hardest attacks to protect against and is now one of the most prevalent
 - A malicious actor doesn't need technical skills
 - Instead, it uses persuasion to gain access into a system

GORDON | REYNOLDS (2018)

AVOIDING SCAM ARTISTS

- Several methods are used in Social Engineering
 - Some are simple
 - Some are sophisticated
 - Many don't appear malicious

GORDON | REYNOLDS (2018)

Many other methods exist Phishing using email Vishing using the telephone IM (instant messaging) GORDON | REYNOLDS (2018)

AVOIDING SCAM ARTISTS

- Scareware
 - A message is presented to the user
 - Tricks them into clicking a malicious link
 - **Exercise:** https://haveibeenpwned.com/

GORDON | REYNOLDS (2018)

AVOIDING SCAM ARTISTS

- Best Practices
 - Be aware of people that want too much information
 - Don't trust individuals you meet on the web
 - Avoid answering typical security questions
 - Use caution when providing credit card details
 - Don't allow push notifications

GORDON | REYNOLDS (2018)

AVOIDING SCAM ARTISTS

- Social Engineering is effective because people can be the weakest link.
 - Be vigilant, stop a social engineering attack before it begins.
 - Be a human firewall

GORDON | REYNOLDS (2018)

COMPUTER SYSTEMS SECURITY

CORE SECURITY PRINCIPLES: ANALYSING THE ATTACK SURFACE

GORDON | REYNOLDS (2018

- Attack Surface
 - Known or potential vulnerabilities across different areas that might be exposed
 - Example:
 - Hardware
 - Software
 - Networks
 - Users

GORDON | REYNOLDS (2018)

ANALYSING THE ATTACK SURFACE

- Vulnerability
 - A flaw in a system that can be exploited by threats to launch an attack and gain unauthorised access to an asset.
 - When we reduce the vulnerabilities in each attack surface, we can reduce the overall risk.
- Cyberattacks
 - Anything that can compromise the security of a system

GORDON | REYNOLDS (2018)

- Types of Cyberattacks
 - Passive
 - Non-invasive, such as monitoring transmissions
 - Capturing passwords or data files
 - Active
 - Tries to break into secured systems
 - Steal, modify information, introduce malicious code

GORDON | REYNOLDS (2018)

ANALYSING THE ATTACK SURFACE

■ There are many attack surfaces, each has a potential for an attack

GORDON | REYNOLDS (2018)

- Software
 - Largest attack surface
 - There are a multitude of applications available
 - Applications (Word), Browsers (Safari), Mobile Apps (Pandora)
 - It also includes everything in the background
 - Software Code & Libraries

GORDON | REYNOLDS (2018)

ANALYSING THE ATTACK SURFACE

- Software Vulnerabilities
 - Theses are common and are found in all types of software and OS and are not limited to a specific vendor
 - When using software, you may or may notice the vulnerabilities, which appear as a flaw or glitch
 - Vulnerabilities can lead to an attack:
 - Can cause anything from minor annoyance to a system crash

GORDON | REYNOLDS (2018)

- Hardware Attack Surface
 - Hardware provides an avenue for attack.
 - As simple as stealing your phone or cutting a cable
 - Generally, physical access to the device is required

GORDON | REYNOLDS (2018)

ANALYSING THE ATTACK SURFACE

- Network Attack Surface
 - Exposure to bogus networks
 - Looks normal
 - Gets you to join so they can capture information
 - Someone gaining access to a network
 - Using default passwords
 - Not using a strong enough password
 - Exercise: https://howsecureismypassword.net/

GORDON | REYNOLDS (2018)

- User Attack Surface
 - Typically the weakest link
 - Can introduce malicious behaviour into the network
 - Both accidently or deliberately
 - Typically, it's a lack of education/training on the users behalf that can lead to a breach.
 - E.g. Social Engineering, where one click can lead to an attack

GORDON | REYNOLDS (2018)

ANALYSING THE ATTACK SURFACE

- Security Education Training and Awareness
 - Typically, an organisation will train their users in respect to security policies and best practices
 - This ensures employees are in tune with common security issues:
 - Report unusual activity
 - Delete emails requesting sensitive information
 - Keep all devices updated with malware protection

GORDON | REYNOLDS (2018)

- Internet of Things (IoT)
 - A collection of devices attached to the internet
 - Collect and exchange data using nodes and controllers
 - IoT creates unique challenges in managing data as all systems become interconnected.
 - All attack surfaces must be considered

GORDON | REYNOLDS (2018)

- Reduce Risk
 - Although we have many attack surfaces, the best way to reduce risk is by reducing the vulnerabilities
- Protect Systems
 - Update systems with the latest security patches
 - Enact software restriction policies
 - Remove unnecessary software and services

GORDON | REYNOLDS (2018)

ANALYSING THE ATTACK SURFACE

- Minimise the attack surface
 - Only enable the necessary features
 - Close unnecessary ports
 - Limit available resources (especially to untrusted users)
 - Implement IDS and firewalls
 - User education
 - Best practices for securing systems
 - Safe computing guidelines

GORDON | REYNOLDS (2018)

CORE SECURITY PRINCIPLES: THREAT MODELLING

THREAT MODELLING

- Threat Modelling
 - Identifies possible weaknesses along with ways cybercriminals can use the information, across entry points such as software, hardware, network and users
 - Becoming more important due to multiple security threats.

GORDON | REYNOLDS (2018)

THREAT MODELLING

- Multiple Security Threats
 - Ransomware holding data hostage
 - Supply chain attacks penetrates through a third-party vendor
 - **Formjacking** theft of information from ecommerce forms
 - **Cryptojacking** using a system to mine cryptocurrency

GORDON | REYNOLDS (2018)

THREAT MODELLING

- There a number of exercises that can help reduce risk:
 - <u>Vulnerability analysis:</u> analysing potential weaknesses for access vectors
 - Threat assessment: determine the best approach to securing a system against a threat
 - Threat modelling: looks at the external attack vectors and how the attacks are delivered

GORDON | REYNOLDS (2018)

THREAT MODELLING

- Threat modelling methods
 - Used to create a visualisation of the entire system along with potential entry points and a list of possible attacks.
 - The goal is to reduce overall risk

GORDON | REYNOLDS (2018)

THREAT MODELLING

- Due to the increase in attack surfaces, data breaches are becoming more common. Check this with the following website:
 - https://informationisbeautiful.net/visualizations/worlds-biggest-data-breaches-hacks/

GORDON | REYNOLDS (2018)

THREAT MODELLING

- Visualise Vulnerabilities
 - Prevent an attack that may result in data loss, business disruption, or even loss of life

GORDON | REYNOLDS (2018)

