DATASET: Breast Cancer Prediction

In [1]: import pandas as pd
from matplotlib import pyplot as plt
%matplotlib inline

Out[2]:

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_
0	842302	М	17.99	10.38	122.80	1001.0	0.
1	842517	М	20.57	17.77	132.90	1326.0	0.0
2	84300903	М	19.69	21.25	130.00	1203.0	0.
3	84348301	M	11.42	20.38	77.58	386.1	0.
4	84358402	М	20.29	14.34	135.10	1297.0	0.
564	926424	М	21.56	22.39	142.00	1479.0	0.
565	926682	M	20.13	28.25	131.20	1261.0	0.0
566	926954	М	16.60	28.08	108.30	858.1	0.0
567	927241	М	20.60	29.33	140.10	1265.0	0.
568	92751	В	7.76	24.54	47.92	181.0	0.0

569 rows × 33 columns

In [3]: df.head()

Out[3]:

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_me
_	842302	М	17.99	10.38	122.80	1001.0	0.118
	l 842517	М	20.57	17.77	132.90	1326.0	0.084
:	84300903	М	19.69	21.25	130.00	1203.0	0.109
;	84348301	М	11.42	20.38	77.58	386.1	0.142
4	4 84358402	М	20.29	14.34	135.10	1297.0	0.100

5 rows × 33 columns

In [4]: df.tail()

Out[4]:

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_me
564	926424	М	21.56	22.39	142.00	1479.0	0.11
565	926682	М	20.13	28.25	131.20	1261.0	0.097
566	926954	М	16.60	28.08	108.30	858.1	0.084
567	927241	М	20.60	29.33	140.10	1265.0	0.117
568	92751	В	7.76	24.54	47.92	181.0	0.052

5 rows × 33 columns

In [5]: df.drop(['Unnamed: 32'],axis=1)

Out[5]:

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_
0	842302	М	17.99	10.38	122.80	1001.0	0.
1	842517	М	20.57	17.77	132.90	1326.0	0.0
2	84300903	М	19.69	21.25	130.00	1203.0	0.
3	84348301	M	11.42	20.38	77.58	386.1	0.′
4	84358402	М	20.29	14.34	135.10	1297.0	0.
564	926424	M	21.56	22.39	142.00	1479.0	0.
565	926682	M	20.13	28.25	131.20	1261.0	0.0
566	926954	M	16.60	28.08	108.30	858.1	0.0
567	927241	М	20.60	29.33	140.10	1265.0	0.
568	92751	В	7.76	24.54	47.92	181.0	0.0

569 rows × 32 columns

```
In [6]: plt.scatter(df["radius_mean"],df["texture_mean"])
    plt.xlabel("radius_mean")
    plt.ylabel("texture_mean")
```

Out[6]: Text(0, 0.5, 'texture_mean')


```
In [7]: from sklearn.cluster import KMeans
km=KMeans()
km
```

Out[7]:

▼ KMeans KMeans()

```
In [8]: y_predicted=km.fit_predict(df[["radius_mean","texture_mean"]])
y_predicted
```

C:\Users\Welcome\AppData\Local\Programs\Python\Python310\lib\site-packages\sk
learn\cluster_kmeans.py:870: FutureWarning: The default value of `n_init` wi
ll change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to s
uppress the warning
warnings.warn(

```
Out[8]: array([6, 4, 4, 0, 4, 6, 4, 1, 2, 2, 1, 1, 5, 1, 2, 3, 1, 1, 4, 6, 6, 7,
               6, 5, 1, 6, 1, 4, 2, 6, 5, 0, 1, 5, 1, 1, 1, 0, 2, 1, 2, 2, 5, 1,
               2, 4, 0, 0, 7, 2, 2, 6, 0, 4, 1, 0, 4, 1, 0, 7, 7, 0, 2, 7, 2, 2,
               0, 0, 0, 6, 4, 7, 5, 6, 0, 1, 7, 6, 5, 0, 2, 6, 5, 5, 7, 4, 1, 5,
               2, 6, 2, 1, 6, 0, 1, 5, 0, 0, 7, 1, 2, 7, 0, 0, 0, 6, 0, 0, 4, 2,
               0, 2, 1, 0, 7, 2, 7, 6, 1, 1, 7, 4, 4, 6, 6, 6, 2, 4, 6, 5,
               1, 6, 4, 2, 0, 7, 6, 7, 7, 1, 0, 6, 7, 7, 0, 1, 6, 0, 2, 0, 7, 7,
               6, 0, 1, 1, 7, 7, 0, 4, 4, 2, 4, 1, 7, 1, 5, 6, 7, 0, 6, 7,
               0, 1, 2, 7, 4, 5, 1, 7, 1, 7, 4, 0, 0, 6, 2, 2, 0, 3, 2, 6, 2, 1,
               4, 1, 0, 1, 5, 2, 0, 6, 0, 1, 2, 6, 4, 0, 4, 5, 2, 6,
               6, 6, 0, 1, 6, 6, 7, 6, 2, 2, 1, 3, 3, 5, 7, 1, 5, 4, 3, 3,
               0, 2, 5, 0, 0, 7, 2, 7, 5, 0, 4, 6, 4, 6, 5, 6, 1, 3, 5, 1, 1, 1,
               1, 5, 0, 2, 6, 0, 6, 7, 4, 7, 5, 0, 7, 4, 0, 6, 5, 7, 4,
               2, 7, 0, 0, 1, 1, 6, 0, 7, 6, 7, 0, 0, 2, 4, 0, 5, 0, 0, 2, 6, 7,
               7, 7, 0, 6, 7, 7, 0, 0, 7, 4, 0, 0, 7, 4, 7, 4, 7, 0, 6,
               6, 0, 0, 7, 0, 1, 6, 4, 0, 5, 6, 0, 7, 4, 7, 7, 0, 6, 7, 7, 0, 1,
               4, 2, 7, 0, 0, 6, 7, 0, 0, 2, 0, 1, 6, 4, 5, 0, 4, 4, 1, 6, 4, 4,
               6, 6, 0, 3, 6, 0, 7, 7, 2, 0, 6, 2, 7, 6, 7, 5, 7, 0, 1, 4,
               0, 0, 7, 0, 1, 7, 0, 6, 7, 0, 6, 2, 1, 0, 0, 0, 2, 1, 3, 2, 2, 1,
               7, 2, 0, 6, 7, 0, 0, 2, 7, 2, 0, 0, 1, 0, 4, 4, 6, 1, 0,
               0, 5, 6, 0, 4, 2, 5, 6, 1, 4, 2, 5, 3, 6, 0, 3, 3, 2, 2, 3, 5, 5,
               3, 0, 0, 0, 2, 0, 1, 0, 0, 3, 6, 3, 7, 6, 1, 6, 7, 1, 0, 1, 6, 0,
               6, 0, 6, 4, 0, 1, 2, 6, 1, 7, 2, 1, 0, 0, 4, 4, 6, 2, 6, 4, 7, 7,
               0, 0, 6, 2, 7, 6, 1, 6, 1, 0, 4, 4, 0, 0, 7, 4, 0, 0, 7, 7, 0, 7,
               6, 7, 0, 0, 6, 4, 0, 4, 2, 2, 2, 2, 7, 2, 2, 3, 1, 2, 0, 0, 0, 2,
               2, 2, 3, 2, 3, 3, 0, 3, 2, 2, 3, 3, 3, 5, 4, 5, 3, 5, 2])
```

```
In [10]: df["cluster"]=y_predicted
df.head()
```

Out[10]:

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_me
0	842302	М	17.99	10.38	122.80	1001.0	0.118
1	842517	М	20.57	17.77	132.90	1326.0	0.084
2	84300903	М	19.69	21.25	130.00	1203.0	0.109
3	84348301	М	11.42	20.38	77.58	386.1	0.142
4	84358402	М	20.29	14.34	135.10	1297.0	0.100

5 rows × 34 columns

```
In [11]: df1=df[df.cluster==0]
    df2=df[df.cluster==1]
    df3=df[df.cluster==2]
    plt.scatter(df1["radius_mean"],df1["texture_mean"],color="red")
    plt.scatter(df2["radius_mean"],df2["texture_mean"],color="green")
    plt.scatter(df3["radius_mean"],df3["texture_mean"],color="blue")
    plt.xlabel("radius_mean")
    plt.ylabel("texture_mean")
```

Out[11]: Text(0, 0.5, 'texture_mean')

Out[12]:

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_me
0	842302	М	17.99	0.022658	122.80	1001.0	0.11{
1	842517	М	20.57	0.272574	132.90	1326.0	0.084
2	84300903	М	19.69	0.390260	130.00	1203.0	0.109
3	84348301	М	11.42	0.360839	77.58	386.1	0.142
4	84358402	М	20.29	0.156578	135.10	1297.0	0.100

5 rows × 34 columns

In [13]: scaler.fit(df[["radius_mean"]])
 df["radius_mean"]=scaler.transform(df[["radius_mean"]])
 df.head()

Out[13]:

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_me
0	842302	М	0.521037	0.022658	122.80	1001.0	0.118
1	842517	М	0.643144	0.272574	132.90	1326.0	0.084
2	84300903	М	0.601496	0.390260	130.00	1203.0	0.109
3	84348301	М	0.210090	0.360839	77.58	386.1	0.142
4	84358402	М	0.629893	0.156578	135.10	1297.0	0.100

5 rows × 34 columns

```
In [14]: y_predicted=km.fit_predict(df[["radius_mean","texture_mean"]])
y_predicted
```

C:\Users\Welcome\AppData\Local\Programs\Python\Python310\lib\site-packages\sk
learn\cluster_kmeans.py:870: FutureWarning: The default value of `n_init` wi
ll change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to s
uppress the warning
warnings.warn(

```
Out[14]: array([5, 3, 3, 0, 3, 5, 3, 4, 4, 4, 5, 1, 4, 4, 6, 4, 4, 3, 5, 5, 2,
                5, 1, 4, 3, 4, 3, 4, 3, 1, 0, 1, 1, 5, 4, 4, 0, 4, 4, 4, 0, 1, 4,
                4, 3, 2, 0, 2, 4, 0, 5, 0, 3, 4, 0, 3, 4, 0, 2, 2, 0, 4, 2, 4, 4,
                0, 0, 2, 5, 3, 2, 1, 5, 0, 4, 5, 3, 1, 0, 0, 5, 7, 1, 2, 3, 4, 1,
                4, 5, 4, 4, 5, 0, 4, 1, 0, 0, 2, 4, 4, 2, 0, 0, 0, 5, 0, 0, 7, 0,
                2, 0, 4, 0, 2, 0, 2, 5, 4, 3, 2, 3, 7, 5, 5, 5, 4, 3, 5, 1,
                                                                            2, 4,
                4, 5, 3, 4, 0, 2, 5, 2, 2, 3, 0, 5, 2, 2, 0, 4, 5, 5, 4, 0, 2, 2,
                5, 0, 3, 3, 2, 2, 0, 3, 3, 4, 7, 4, 2, 3, 1, 5, 2, 4,
                0, 3, 4, 5, 7, 1, 4, 2, 4, 2, 3, 0, 0, 5, 4, 4, 0, 6, 4, 5, 4, 3,
                3, 4, 0, 3, 7, 4, 0, 5, 0, 3, 4, 5, 3, 0, 7, 1, 4, 5,
                5, 5, 0, 4, 5, 5, 2, 5, 4, 4, 3, 6, 6, 1, 2, 4, 7, 3, 6, 6,
                0, 4, 1, 0, 5, 5, 6, 2, 1, 0, 3, 3, 3, 5, 1, 5, 4, 6, 1, 1, 3, 4,
                            5, 0, 5, 2, 7, 2, 1, 0, 2, 3, 5, 5, 1, 2, 3, 3,
                0, 5, 0, 0, 4, 4, 5, 0, 5, 5, 2, 0, 5, 0, 3, 0, 1, 0, 0, 6, 5, 2,
                5, 5, 0, 5, 5, 2, 0, 0, 2, 3, 0, 0, 2, 3, 5, 3, 2, 0,
                5, 0, 0, 2, 0, 3, 5, 3, 0, 7, 5, 2, 2, 3, 2, 2, 0, 5, 2, 2,
                7, 4, 2, 0, 0, 5, 2, 0, 0, 4, 0, 3, 5, 3, 1, 0, 3, 7,
                5, 5, 0, 6, 5, 0, 2, 2, 4, 0, 5, 4,
                                                    2, 5, 2, 1, 2, 2, 4,
                0, 0, 2, 0, 3, 2, 0, 5, 2, 0, 5, 4, 3, 0, 0, 0, 0, 4, 6,
                2, 0, 0, 5, 2, 4, 0, 0, 2, 0, 2, 0, 4, 0, 3, 3, 5, 4, 0,
                0, 1, 5, 0, 3, 6, 1, 5, 4, 3, 0, 1, 6, 5, 0, 6, 6, 6, 6, 6, 1, 7,
                6, 0, 0, 4, 4, 0, 1, 0, 0, 6, 5, 6, 2, 5, 4, 5, 2, 3,
                5, 5, 5, 3, 2, 3, 4, 5, 3, 2, 4, 4, 0, 0, 3, 3, 5, 4, 5, 7, 2, 2,
                0, 0, 5, 4, 2, 5, 4, 5, 4, 0, 3, 3, 0, 5, 2, 7, 0, 0, 2, 2, 0, 2,
                5, 2, 0, 0, 5, 3, 0, 3, 4, 6, 6, 6, 2, 4, 4, 6, 4, 4, 2, 2, 0, 6,
                0, 0, 6, 0, 6, 6, 0, 6, 4, 6, 6, 6, 6, 1, 7, 1, 1, 1, 6
```

```
In [15]: df["New Cluster"]=y_predicted
df.head()
```

Out[15]:

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_me
0	842302	М	0.521037	0.022658	122.80	1001.0	0.118
1	842517	М	0.643144	0.272574	132.90	1326.0	0.084
2	84300903	М	0.601496	0.390260	130.00	1203.0	0.109
3	84348301	М	0.210090	0.360839	77.58	386.1	0.142
4	84358402	М	0.629893	0.156578	135.10	1297.0	0.100

5 rows × 35 columns

```
In [16]: df1=df[df["New Cluster"]==0]
    df2=df[df["New Cluster"]==1]
    df3=df[df["New Cluster"]==2]
    plt.scatter(df1["radius_mean"],df1["texture_mean"],color="red")
    plt.scatter(df2["radius_mean"],df2["texture_mean"],color="green")
    plt.scatter(df3["radius_mean"],df3["texture_mean"],color="blue")
    plt.xlabel("radius_mean")
    plt.ylabel("texture_mean")
```

Out[16]: Text(0, 0.5, 'texture_mean')

Out[18]: Text(0, 0.5, 'texture_mean')


```
In [19]: k_rng=range(1,10)
sse=[]
```

```
In [20]: for k in k rng:
          km=KMeans(n clusters=k)
          km.fit(df[["radius_mean","texture mean"]])
          sse.append(km.inertia )
         #km.inertia_ will give you the value of sum of square error
         print(sse)
         plt.plot(k rng,sse)
         plt.xlabel("K")
         plt.ylabel("Sum of Squared Error")
         C:\Users\Welcome\AppData\Local\Programs\Python\Python310\lib\site-packages\sk
         learn\cluster\_kmeans.py:870: FutureWarning: The default value of `n_init` wi
         ll change from 10 to 'auto' in 1.4. Set the value of `n init` explicitly to s
         uppress the warning
           warnings.warn(
         C:\Users\Welcome\AppData\Local\Programs\Python\Python310\lib\site-packages\sk
         learn\cluster\ kmeans.py:870: FutureWarning: The default value of `n init` wi
         ll change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to s
         uppress the warning
           warnings.warn(
         C:\Users\Welcome\AppData\Local\Programs\Python\Python310\lib\site-packages\sk
         learn\cluster\_kmeans.py:870: FutureWarning: The default value of `n_init` wi
         ll change from 10 to 'auto' in 1.4. Set the value of `n init` explicitly to s
         uppress the warning
           warnings.warn(
         C:\Users\Welcome\AppData\Local\Programs\Python\Python310\lib\site-packages\sk
         learn\cluster\ kmeans.py:870: FutureWarning: The default value of `n init` wi
         ll change from 10 to 'auto' in 1.4. Set the value of `n init` explicitly to s
         uppress the warning
           warnings.warn(
         C:\Users\Welcome\AppData\Local\Programs\Python\Python310\lib\site-packages\sk
         learn\cluster\ kmeans.py:870: FutureWarning: The default value of `n init` wi
         ll change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to s
         uppress the warning
           warnings.warn(
         C:\Users\Welcome\AppData\Local\Programs\Python\Python310\lib\site-packages\sk
         learn\cluster\_kmeans.py:870: FutureWarning: The default value of `n_init` wi
         ll change from 10 to 'auto' in 1.4. Set the value of `n init` explicitly to s
         uppress the warning
           warnings.warn(
         C:\Users\Welcome\AppData\Local\Programs\Python\Python310\lib\site-packages\sk
         learn\cluster\ kmeans.py:870: FutureWarning: The default value of `n init` wi
         ll change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to s
         uppress the warning
           warnings.warn(
         C:\Users\Welcome\AppData\Local\Programs\Python\Python310\lib\site-packages\sk
         learn\cluster\_kmeans.py:870: FutureWarning: The default value of `n_init` wi
         ll change from 10 to 'auto' in 1.4. Set the value of `n init` explicitly to s
         uppress the warning
           warnings.warn(
         [27.81750759504307, 14.872032958271173, 10.252751496105198, 8.49005022151144
         2, 7.030202097311372, 6.033393942670979, 5.1181440612291205, 4.45499490621672
```

9, 4.027478532464383]

C:\Users\Welcome\AppData\Local\Programs\Python\Python310\lib\site-packages\sk
learn\cluster_kmeans.py:870: FutureWarning: The default value of `n_init` wi
ll change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to s
uppress the warning
 warnings.warn(

Out[20]: Text(0, 0.5, 'Sum of Squared Error')

CONCLUSION

for the given data set we conclude that the KMeans data was the best fit

In []: