x is the designing parameter

Everyy :- ((V)

Def - $E(n) = D(n) + \lambda R(n)$ Energy Data fidelity Regularizer

D(n) measures how well or explains the observations For enoughle, $D(n) = -\log(P(data(n)))$

Posterior probability (probability of data after obsendar (ofn))
utilibration

In tems of P(n|deta) we write P(deta|n) = P(n|deta) P(deta)Pestarian

Likelihood

Prior

Comes pros

R(n) gires the standard on distubution we get for n. For enorph, -log(IP(n))

The work of I to make a stable relation, is, get a sweet spot for Lata fit and prior distribution

and min $(\Xi(x))$ = and min $(D(x) + \lambda R(x))$

For enouple us gets organia (-log(P(data/n)) - log P(n))

=> org min (- log (P(doba(n) · P(n)))

= org min (-log (P(n/dola) P(dola))

= org min (-log (P(n/dola))

= org min (-log (P(n/dola)))

= org mon (log (P(n/dola)))

= org mon (log (P(n/dola)))

Some enouples of D:
1) Gaussian: $D(x) = \frac{1}{2\sigma^2} ||E||_2^2 = \frac{1}{2\sigma^2} ||Mx-f||_2^2 + cont$ all $f'(x) = \frac{1}{2\sigma^2} ||E||_2^2 = \frac{1}{2\sigma^2} ||Mx-f||_2^2 + cont$ all $f'(x) = \frac{1}{2\sigma^2} ||E||_2^2 = \frac{1}{2\sigma^2} ||Mx-f||_2^2$ $\frac{1}{2\sigma^2} ||E||_2^2 = \frac{1}{2\sigma^2} ||Mx-f||_2^2$ $\frac{1}{2\sigma^2} ||Mx-f||_2^2 + cont$ $\frac{1}{2\sigma^2} ||Mx-f||_2^2 + cont$ $\frac{1}{2\sigma^2} ||Mx-f||_2^2 + cont$

Poisson rois: $-\int (n) = Mn + E$, E is passion distribution $D(n) = \sum_{i} (Mn)_{i} - \int_{i} log(Mn)_{i} + const$ $E \sim \frac{E^{2} + (\pi \lambda_{i}^{k_{i}})}{\pi(k_{i})!}$ $E_{i} \sim \frac{E^{2} + (\pi \lambda_{i}^{k_{i}})}{K_{i}!}$ $E_{i} \sim \frac{E^{2} + (\pi \lambda_{i}^{k_{i}})}{K_{i}!}$ $E_{i} \sim \frac{E^{2} + (\pi \lambda_{i}^{k_{i}})}{K_{i}!}$

Note: - we will come to outlies and robustness later

Some emorphs of R!

Tikhonor; - R(n) = 1 11 Tr g 1 2 (for sonos thenty)

(note: to check multivariete trusponetion of q)

(note: - to check multivariete trusparation of 9)

Total Variance: $R(N) = ||\nabla_N \mathcal{J}||_{2,1} = \left(||\nabla_N \mathcal{J}||_2 d_2\right)$ (Pieamise functions) $\{2,1 \text{ norm } (i + i, a \text{ matrix norm})\}$

For emple, let $X \in \mathbb{R}^{m \times n}$ is a matrix $||X||_{2,1} = \sum_{i=1}^{m} ||X_i||_2 = \sum_{i=1}^{m} ||X_i||_2$