Prova scritta di Elettrotecnica

Corso di Laurea in Ingegneria Informatica

1) Determinare il circuito equivalente di Norton fra i punti 1 e 2 del circuito in figura.

$$V_1 = 100 \text{ V};$$
 R = 20 Ω ; I_{NO} = -2.5 A; α = 0.05 A/V;

 $R_{NO} = 20 \Omega;$

2) Determinare l'andamento temporale della corrente $i_R(t)$ e la potenza apparente erogata dal generatore di corrente nel circuito in figura.

$$i(t) = \sqrt{2} \cos(1000t) \text{ A};$$
 $R = 10 \Omega;$
 $C = 100 \mu\text{F};$
 $L = 10 \text{ mH};$
 $i_R(t) = 0.33\sqrt{2} \cos(1000t) \text{ A};$
 $S = 3.33 \text{ VA};$

3) Determinare l'andamento temporale della tensione $V_R(t)$ ai capi del resistore per $-\infty < t < +\infty$, considerando che l'interruttore si APRE per t=0. Il circuito è ipotizzato a regime per tempi negativi

 $E=50 \ V \ (costante);$ $J=2 \ A \ (costante);$ $R=30 \ \Omega;$ $L=10 \ mH;$ $C \ C=150 \ \mu F.$ Risultati:

$$V_R(t) = \begin{cases} 56.67 \, V, & t < 0 \\ (-3.33 e^{-222.22t} + 60) \, V, t \ge 0 \end{cases}$$

 $\overline{S} = 500 \text{j VA}$

4) Determinare la rappresentazione a parametri **Z** della rete a due porte indicata in figura, e successivamente calcolare la **potenza complessa** erogata dal generatore di tensione **e(t)** in ingresso nel circuito di destra.

