STEFANO PAPADOPOLO CARNÉ 19836

DESARROLLO DE
HERRAMIENTAS EN
SOFTWARE PARA EL
MANEJO, MONITOREO Y
PROGRAMACIÓN DE LA
NUEVA VERSIÓN DEL
HUMANOIDE ROBONOVA

urror\_mod = modifier\_ob. mirror object to mirror MIrror\_mod.mirror\_object peration == "MIRROR\_X": elrror\_mod.use\_x = True irror\_mod.use\_y = False lrror\_mod.use\_z = False operation == "MIRROR\_Y" irror\_mod.use\_x = False alrror\_mod.use\_y = True lrror\_mod.use\_z = False \_operation == "MIRROR\_Z" lrror\_mod.use\_x = False mirror\_mod.use\_y = False rror\_mod.use\_z = True melection at the end -add ob.select= 1 er\_ob.select=1 ntext.scene.objects.activ "Selected" + str(modified) irror ob.select = 0 bpy.context.selected ob Mata.objects[one.name].sel nt("please select exacting OPERATOR CLASSES ---pes.Operator): X mirror to the selected ect.mirror\_mirror\_x" ext.active\_object is not



**ANTECEDENTES** 

### PROGRAMACIÓN EN ROBOBASIC

Software de programación por defecto de los Robonova

- Programación en BASIC
- Interfaz gráfica para:
  - Mover servos en base a diales
  - Programación de un control remoto para rutinas





### PROGRAMACIÓN DE ROBOTS BAILARINES

- Proyecto hecho por estudiantes de Drexel University
- Integraron micrófonos para reconocer sonidos
- Desecharon ROBOBASIC por su propio ecosistema



ire 3: Accuracy of RoboNova gestures with the RoboBasic and new env



## ATLAS

## BOSTON DYNAMICS

- Boston Dynamics está en la vanguardia de este tipo de tecnología
- Con 28 grados de libertad, Atlas es uno de los robots humanoides con mejor movilidad en la academia
- Sistema de control de estado del arte permite sus movimientos tan humanos y complejos





JUSTIFICACIÓN









**OBJETIVOS** 

## OBJETIVO GENERAL

Diseñar una herramienta de software para el monitoreo y programación de forma gráfica de los robots humanoides Robonova-1



## OBJETIVO ESPECÍFICO 1

Conectar la herramienta de software con el robot de forma inalámbrica para su programación y monitoreo en tiempo real.





Crear una librería de subrutinas para facilitar la creación de coreografías complejas.



## OBJETIVO ESPECÍFICO 3

Crear una interfaz gráfica amigable y sencilla para el fácil desarrollo de coreografías del robot.





MARCO TEÓRICO

#### BIOMECÁNICA DEL CUERPO HUMANO





# CINEMÁTICA DE ROBOTS HUMANOIDES





• pyBullet



• Robotics Toolbox



• Onshape-to-Robot





**RESULTADOS** 

## **PYBULLET**

- Inicialización del ecosistema
- Renderización de URDFs preexistentes en pyBullet
- Control de las juntas por medio de diales.



### CREAR URDF

```
"documentId": "013b1c485ee04afc7b99ac21",
    "outputFormat": "urdf",
    "assemblyName": "URDF_Export"
}
```



```
<pr
```





# SIMULACIÓN ROBONOVA

### SIGUIENTES PASOS

- Lograr y guardar movimientos básicos del robot (caminar, saludar, etc.) tomando en cuenta las consideraciones dinámicas del mismo.
- Iniciar la creación de la interfaz gráfica para poder grabar movimientos personalizados