

- 1. 指数函数 00:05
- 1) 根式 00:09
- 根式的概念 00:13

一、指数对数函数 00:00

- \circ 定义: 若 $x^n = a \ (a \in R, x \in R, n > 1 \exists n \in N_+)$,则x称为a的n次方根。
- o **奇次根性质**: 当n为奇数时, $\sqrt[n]{a^n} = a$ 。例如: $\sqrt[3]{(-5)^3} = -5$, $\sqrt[5]{3^5} = 3$ 。
- \circ **偶次根性质**: 当n为偶数时, $\sqrt[n]{a^n} = |a|$, 即结果为非负数。例如: $\sqrt{(-3)^2} = 3$ 。
- 实数范围限制:在实数范围内,负数不能开偶次方根(如√-5无意义),但在虚数中有意义。
- 分数指数幂的概念 03:27

0

0

0

- o **正分数指数幂**: $a^{\frac{m}{n}} = {}^{n}\sqrt{a^{m}}$ $(a > 0, m, n \in N_{+}, n > 1)$ 。记忆口诀: 分母n起"削弱"作用(开n次方),分子m起"增强"作用(m次方)。例如: $a^{\frac{2}{3}} = {}^{3}\sqrt{a^{2}}$ 。
- **负分数指数幂**: $a^{-\frac{m}{n}} = \frac{1}{\frac{m}{a \, n}} = \sqrt[n]{\left(\frac{1}{a}\right)^m}$ 。口诀: "底数取倒数,指数取相反数"。例如: $3^{-\frac{2}{3}} = \sqrt[3]{\frac{1}{9}}$ 。
- 指数幂的运算法则 07:28

- o **同底数相乘**: $a^r \cdot a^s = a^{r+s}$ 。例如: $a^2 \cdot a^4 = a^6$ 。
- **同底数相除**: $a^r \div a^s = a^{r-s}$ 。例如: $a^2 \div a^4 = a^{-2}$ 。

- **幂的乘方**: $(a^r)^s = a^{rs}$ 。例如: $(2^2)^3 = 2^6$ 。
- o **积的乘方**: $(ab)^r = a^r b^r$ 。例如: $(2 \times 3)^2 = 2^2 \times 3^2$ 。
- 2) 指数函数及其性质 10:03
- 定义 10:14

- 标准形式: y = a^x (a > 0且a ≠ 1) , 底数a为常数, 指数x为自变量。
- 图像 10:24

- 递增型: 当a > 1时(如y = 2x), 函数单调递增。例如: x = 0,1,2时, y = 1,2,4。
- \circ **递减型**: 当0 < a < 1时(如 $y = (\frac{1}{2})^x$),函数单调递减。
- o **定点**: 所有指数函数均过定点(0,1), 因为 $a^0 = 1$ 。
- 值域 11:26

- 定义域: 全体实数R。
- **值域**: $(0, + \infty)$, 即函数图像始终位于x轴上方。
- 应用案例 12:14

0

o 例题:平方差公式应用

- 解题关键:通过乘以(2-1)构造平方差公式链式化简。
- 步骤解析
 - 原式 $(2+1)(2^2+1)(2^4+1)$ ··· 乘以(2-1)后,首项变为 (2^2-1) 。
 - 依次与后续括号相乘, 最终得到2²ⁿ⁺¹-1。
- 指数运算技巧: 利用 $(a^r)^s = a^{rs}$ 合并指数,如 $2^{2^n} \times 2 = 2^{2^n+1}$ 。

二、本章总结

1. 集合

- **关系与运算**:需要掌握集合的基本关系(包含、相等、真包含等)以及集合的运算 (交集、并集、补集等)
- **应用要点**:理解集合运算的实际意义,能够通过图示法辅助理解集合关系
- 2. 函数
- 1) 一元二次函数
- **核心要素**: 重点掌握一元二次函数的开口方向、标准公式 $y = ax^2 + bx + c$ 、对称轴 $x = \frac{b}{2a}$ 、顶点坐标 $\left(-\frac{b}{2a}, \frac{4ac b^2}{4a}\right)$
- **图像特征**:需要分析函数与x轴的交点情况(判别式 $\Delta = b^2 4ac$ 决定交点个数)
- **学习方法**:通过具体例题练习函数性质分析,避免死记硬背公式
- 2) 指数函数
- **公式特点**: 掌握指数函数 $y = a^x$ (a > 0且 $a \ne 1$) 的基本形式及其变形
- **学习建议**:结合实际问题理解指数增长/衰减模型,通过做题加深公式记忆
- 3) 对数函数
- **公式体系**: 熟悉对数函数 $y = log_{qx}$ 的定义及其与指数函数的互逆关系
- **运算规则**:重点掌握换底公式、对数运算性质等核心公式
- **记忆技巧**:建议通过推导理解公式来源,避免机械记忆,在解题中灵活应用
- 3. 学习建议

方法指导:强调理解性记忆,将公式与具体题目结合,通过实际应用掌握知识 复习策略:建议建立知识框架,区分不同函数的特征和联系,形成系统认知 注意事项:避免孤立记忆公式,要理解公式背后的数学原理和几何意义

三、知识小结

二、知识小结			
知识点	核心内容	考试重点/易混淆点	难度系数
根式与N次方	- 定义: x ⁿ =	- 偶次根号结果非负	**
根	a (a∈ℝ, n>1且n∈ℤ+) ;	(易忽略绝对值);-	
	- 奇偶性区分: ■ n为奇	奇偶性对结果的影响	
	数时, ゚゚√ (a゚) = a; ■ n为	(如 ⁿ √ (-5)³ = -5)	
	偶数时,		
	数范围内 :负数的偶次方		
	根无意义		
分数指数幂	- 转换公式: a^(m/n) =	- 负指数处理(如3^(-	***
	n√(a ^m); - 记忆口诀: 分母	2/3) = (1/3)^(2/3)) ; -	
	削弱(开方),分子增强	分数与根式双向转化	
	(乘方) ; - 零的幂: 0+a =		
	0, 0-a无意义		
指数运算法	1. 同底相乘→指数相加:	- 混淆运算顺序 (如	**
则	a ^r ×a ^s = a^(r+s); 2. 同底相除	(a ^r) ^s ≠ a^(r^s)); - 公	
	→指数相减: a ^r /a ^s = a^(r-	式逆用(如a^(r-s) =	
	s); 3. 幂的乘方→指数相	a ^r /a ^s)	
	乘: (a ^r) ^s = a^(r×s); 4. 积的		
	乘方→分别乘方: (ab) ^r =		
	a ^r b ^r		
指数函数图	- 定义: y = a ^x (a>0且		**
像	a≠1);-特性: ■ a>1时	增减性依赖a范围); -	
	单调增(如 y=2 ×); ■	定义域为R,值域恒	
	0 <a<1时单调减(如< th=""><th>正</th><th></th></a<1时单调减(如<>	正	
	y=(1/2) [×]); - 横过定点		
	(0,1),值域(0,+∞)		
对数定义与	- 对数与指数互化: a ^x = N	- 对数存在条件∶真	***
恒等式	⇔ x = logaN; - 恒等式: ■	数N>0,底数a>0且	
		a≠1; - 特殊对数(常	
	logaa = 1 (因a¹=a); ■	用对数lg、自然对数	
	$log_a(a^b) = b$	ln)	

对数运算法	1. 同底相加→真数相乘:	- 无乘法公式 (如	***
则	logaM + logaN = loga(MN); 2. 同底相减→真数相除: log aM - logaN = loga(M/N); 3. 幂运算→系数前置: loga(M ^b) = b·logaM	logaM×logaN无法简 化); - 换底公式应用 (如logab = Inb/Ina)	~ ~ ~ ~
对数函数图 像	- 定义: y = logax (a>0且 a≠1); - 特性: ■ a>1时 单调增(如y=log2x); ■ 0 <a<1时单调减(如 y=log_(1/2)x); - 横过定点 (1,0),定义域(0,+∞)</a<1时单调减(如 	- 与指数函数互为 反 函数 (图像关于y=x对称); - 真数为1时函数值为0	**
综合应用题	- 配方求值(如x²+y²-4x- 2y+5=0 ⇒ (x-2)²+(y-1)²=0); - 对数求值(如log21 = 0)	- 非负性应用 (平方和为零→各项为零); - 对数与指数混合运算	***