Optimization and Computational Linear Algebra for Data Science Homework 1: Vector spaces

Due on September 10, 2019

- Unless otherwise stated, all answers must be mathematically justified.
- Partial answers will be graded.
- You can work in groups but each student must write his/her own solution based on his/her own understanding of the problem. Please list on your submission the students you work with for the homework (this will not affect your grade).
- Problems with a (*) are extra credit, they will not (directly) contribute to your score of this homework. However, for every 4 extra credit questions successfully answered your lowest homework score get replaced by a perfect score.
- If you have any questions, feel free to contact me (lm4271@nyu.edu) or to stop at the office hours.

Problem 1.1 (3 points). Are the following sets subspaces of \mathbb{R}^3 ? Justify your answer.

- (a) $E_1 = \{(x, y, z) \in \mathbb{R}^3 \mid x 2y + z = 0\}.$
- (b) $E_2 = \{(x, y, z) \in \mathbb{R}^3 \mid x 2y + z = 3\}.$
- (c) $E_3 = \{(x, y, z) \in \mathbb{R}^3 \mid 5x + y^2 + z = 0\}.$

Problem 1.2 (2 points). Let $x_1, \ldots, x_k \in \mathbb{R}^n$, for some $k \geq 2$. Assume that $x_1 \in \text{Span}(x_2, \ldots, x_k)$. Show that

$$\operatorname{Span}(x_1,\ldots,x_k) = \operatorname{Span}(x_2,\ldots,x_k).$$

Problem 1.3 (2 points). Suppose that $v_1, \ldots, v_k \in \mathbb{R}^n$ are linearly independent. Let $x \in \mathbb{R}^n$ and assume that $x \notin \text{Span}(v_1, \ldots, v_k)$. Show that (v_1, \ldots, v_k, x) are linearly independent.

Problem 1.4 (3 points). Let S be a subspace of \mathbb{R}^n of dimension k and let $x_1, \ldots, x_k \in S$.

- (a) Show that if x_1, \ldots, x_k are linearly independent, then (x_1, \ldots, x_k) is a basis of S.
- (b) Show that if $\operatorname{Span}(x_1,\ldots,x_k)=S$, then (x_1,\ldots,x_k) is a basis of S.

Problem 1.5 (*). Let U and V be two subspaces of \mathbb{R}^n . Show that if

$$\dim(U) + \dim(V) > n,$$

then there must exist a non-zero vector in their intersection, i.e. $U \cap V \neq \{0\}$.

