

MTH 309T LINEAR ALGEBRA EXAM 1

Naı	Teach Cat	() m	(arı	r						
UB	Pe	rsor	ı Nı	umb	er:			Instru	ctions:		
7 ① 1 ② 3 ④ 6 (7 8 9	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		う (1) (1) (1) (2) (3) (4) (5) (6) (7) (8) (9)		→○ ①○ ③③ ③④ ⑤⑥ ⑦⑤ ⑨⑨⑨⑨⑨⑨⑨⑨⑨⑨⑨⑨⑨⑨⑨⑨⑨⑨⑨⑨⑨⑨⑨⑨⑨⑨⑨⑨⑨⑨⑨⑨⑨⑨⑨⑨⑨⑨⑨⑨⑨⑨⑨⑨⑨⑨⑨⑨⑨⑨⑨⑨⑨○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○<th>5 0 1 2 3 4 9 6 7 8 9</th><th></th><th>electr You r</th><th>ronic de may use full cre</th><th>evices are r one sheet</th><th>each proble</th>	5 0 1 2 3 4 9 6 7 8 9		electr You r	ronic de may use full cre	evices are r one sheet	each proble
9		9 2	9	9	9	9 4	9 5	6	7	TOTAL	GRADE

6	10	6	16	15	6	7			66	C+
1	2	3	4	5	6	7	PIAZZA	HILL	TOTAL	GRADE

1. (20 points) Consider the following vectors in \mathbb{R}^3 :

$$\mathbf{v}_1 = \left[\begin{array}{c} 1 \\ 0 \\ 2 \end{array} \right], \quad \mathbf{v}_2 = \left[\begin{array}{c} -1 \\ 1 \\ -3 \end{array} \right], \quad \mathbf{v}_3 = \left[\begin{array}{c} 1 \\ 2 \\ 0 \end{array} \right], \quad \mathbf{w} = \left[\begin{array}{c} -2 \\ 2 \\ b \end{array} \right]$$

- a) Find all values of b such that $w \in \text{Span}(v_1, v_2, v_3)$.
- b) Is the set $\{v_1,v_2,v_3\}$ linearly independent? Justify your answer.

2. (10 points) Consider the following matrix:

$$A = \begin{bmatrix} 1 & -1 & 2 \\ 1 & 0 & 1 \\ 0 & 2 & -1 \end{bmatrix}$$

Compute A^{-1} .

$$\begin{vmatrix}
1 - 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 2 - 1 & 0 & 0 & 1 & 0 & 1 & 0
\end{vmatrix}$$

$$\begin{vmatrix}
1 - 1 & 2 & 1 & 0 & 0 \\
0 & 2 - 1 & 0 & 0 & 1
\end{vmatrix}$$

$$\begin{vmatrix}
1 - 1 & 2 & 1 & 0 & 0 \\
0 & 2 - 1 & 0 & 0 & 1
\end{vmatrix}$$

$$\begin{vmatrix}
1 - 1 & 2 & 1 & 0 & 0 \\
0 & 2 - 1 & 0 & 0 & 1
\end{vmatrix}$$

$$\begin{vmatrix}
1 - 1 & 2 & 1 & 0 & 0 \\
0 & 2 - 2 & 1 & 0
\end{vmatrix}$$

$$\begin{vmatrix}
1 - 1 & 2 & 1 & 0 & 0 \\
0 & 1 & 2 - 2 & 1
\end{vmatrix}$$

$$\begin{vmatrix}
1 - 1 & 2 & 1 & 0 & 0 \\
0 & 1 & 2 - 2 & 1
\end{vmatrix}$$

$$\begin{vmatrix}
1 - 1 & 2 & 1 & 0 & 0 \\
0 & 1 & 2 - 2 & 1
\end{vmatrix}$$

$$\begin{vmatrix}
1 - 1 & 2 & 1 & 0 & 0 \\
0 & 1 & 2 - 2 & 1
\end{vmatrix}$$

$$\begin{vmatrix}
1 - 1 & 2 & 3 - 1 \\
0 & 1 & 2 - 2 & 1
\end{vmatrix}$$

$$\begin{vmatrix}
1 - 1 & 2 & 3 - 1 \\
2 - 2 & 1
\end{vmatrix}$$

$$\begin{vmatrix}
1 - 1 & 2 & 3 - 1 \\
2 - 2 & 1
\end{vmatrix}$$

3. (10 points) Let A be the same matrix as in Problem 2, and let

$$B = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 4 \\ 3 & 2 & 1 \end{bmatrix}$$

Find a matrix C such that $A^TC = B$ (where A^T is the transpose of A).

4. (20 points) Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be a linear transformation given by

$$T\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} x_1 - 2x_2 \\ x_1 + x_2 \\ x_1 - 3x_2 \end{bmatrix}$$

- a) Find the standard matrix of T.
- b) Find all vectors u satisfying $T(u) = \begin{bmatrix} 1 \\ 10 \\ -2 \end{bmatrix}$.

5. (20 points) For each matrix A given below determine if the matrix transformation $T_A \colon \mathbb{R}^3 \to \mathbb{R}^3$ given by $T_A(\mathbf{v}) = A\mathbf{v}$ is one-to one or not. If T_A is not one-to-one, find two vectors \mathbf{v}_1 and \mathbf{v}_2 such that $T_A(\mathbf{v}_1) = T_A(\mathbf{v}_2)$.

vectors
$$\mathbf{v}_{1}$$
 and \mathbf{v}_{2} such that $T_{A}(\mathbf{v}_{1}) = T_{A}(\mathbf{v}_{2})$.

a) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 4 \end{bmatrix}$

b) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 4 \end{bmatrix}$$

b) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 2 & 4 \\ 0 & 1 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 2 & 4 \\ 0 & 1 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 2 & 4 \\ 0 & 1 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 2 & 4 \\ 0 & 1 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 2 \\ 0 & 2 & 4 \\ 0 & 1 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4$$

- **6.** (10 points) For each of the statements given below decide if it is true or false. If it is true explain why. If it is false give a counterexample.
- a) If u,v,w are vectors in \mathbb{R}^3 such that $w+u\in Span(u,v)$ then $w\in Span(u,v)$.

False, counter example

$$W = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
 $V = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$
 $V = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

So: $\begin{bmatrix} 0 \\ 0 \end{bmatrix} \in Span (\begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \end{bmatrix}$
 $\begin{bmatrix} 0 \\ 0 \end{bmatrix} \neq \begin{bmatrix} 1 \\ 0 \end{bmatrix} \neq \begin{bmatrix} 1 \\ 0 \end{bmatrix} \neq \begin{bmatrix} 1 \\ 0 \end{bmatrix}$

b) If u, v, w are vectors in \mathbb{R}^3 such that the set $\{u, v, w\}$ is linearly independent then the set $\{u, v\}$ must be linearly independent.

True, because some thing in linerly inderenge When it the vectors are not scalar maktiples of each other, and taking out one vector of a set wont make it that the other 2 are now scalar multiples of each other.

- 7. (10 points) For each of the statements given below decide if it is true or false. If it is true explain why. If it is false give a counterexample.
- a) If A is a 2×2 matrix and u, v are vectors in \mathbb{R}^2 such that Au, Av are linearly dependent then u, v also must be linearly dependent.

False
$$V = \begin{bmatrix} 1 \\ 0 \end{bmatrix} V = \begin{bmatrix} 0 \\ 1 \end{bmatrix} A = \begin{bmatrix} 1 \\ 0 \end{bmatrix} A = \begin{bmatrix} 1 \\ 0 \end{bmatrix} A = \begin{bmatrix} 1 \\ 0 \end{bmatrix} A = \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} A = \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix}$$

b) If $T: \mathbb{R}^2 \to \mathbb{R}^2$ is a linear transformation and $u, v, w \in \mathbb{R}^2$ are vectors such that u is in Span(v, w) then T(u) must be in Span(T(v), T(w)).