

Quasimetric Graph Edit Distance as a Compact Quadratic Assignment Problem

D. B. Blumenthal¹, É. Daller², S. Bougleux², L. Brun², J. Gamper¹

¹Free University of Bozen-Bolzano, Faculty of Computer Science, Bolzano, Italy {david.blumenthal,gamper}@inf.unibz.it

²Normandie Université, UNICAEN, ENSICAEN, CNRS, GREYC, Caen, France {evariste.daller,bougleux}@unicaen.fr,luc.brun@ensicaen.fr

Contributions

- graph edit distance (GED): minimal cost of transforming one graph into another by substituting, removing, and inserting nodes and edges
- widely used in Pattern Recognition community but NP-hard to compute
- one state of the art approach [1–3]:
 - 1. transform GED to instance of quadratic assignment problem (QAP)
 - 2. use well-performing heuristics for QAP for approximating GED
- our assumption: edit costs are quasimetric, i.e., satisfy triangle inequality
- our contributions:
 - 1. reduce size of QAP-instance constructed by the transformation
 - 2. speed up QAP-based heuristics by using the smaller instances

Quadratic Assignment Problem (QAP)

- QAP(C) := $min\{vec(X)^TCvec(X) \mid X max. partial permutation matrix\}$
- cost matrix $\mathbf{C} \in \mathbb{R}^{(N \cdot M) \times (N \cdot M)}$, assignment matrix $\mathbf{X} \in \{0, 1\}^{N \times M}$
- sizes of instances constructed by transformations from GED:
 - baseline transformation [1]: $N = M = |V^G| + |V^H|$
 - first improvement [2]: $N = |V^G| + 1$, $M = |V^H| + 1$; uses non-standard version of QAP \rightsquigarrow QAP-based heuristics must be adapted
 - our transformation: $N = |V^G|$, $M = |V^H|$; uses standard version of QAP like baseline \sim QAP-based heuristics can be used off-the-shelf

GRAPH EDIT DISTANCE (GED)

- $GED(G, H) := min\{c(P) \mid P \text{ edit path between } G \text{ and } H\}$
- $G = (V^G, E^G)$ and $H = (V^H, E^H)$ are attributed graphs
- $P = (o_1, \ldots, o_r)$ is sequence of edit operations transforming G into H
- edit operations and edit costs ($i \in V^G$, $k \in V^H$, (i, j) $\in V^G$, (k, l) $\in E^H$):

node edit operation	edit cost	edge edit operation	edit cost
$sub_V(i, k)$	$c_V(i,k)$	$sub_E((i, j), (k, l))$	$c_E((i,j),(k,l))$
$rem_V(i)$	$c_V(i,\epsilon)$	$rem_E((i, j))$	$c_E((i,j),\epsilon)$
$ins_V(k)$	$c_V(\epsilon, k)$	$ins_E((k, l))$	$c_E(\epsilon,(k,l))$

- edit path cost: $c(P) = \sum_{i=1}^{r} c(o_i)$
- example with quasimetric edit costs and attributes $\alpha, \beta \in \mathbb{R}_{>0}$:
 - $sub_V(\cdot, \cdot), sub_E(\cdot, \cdot)$: edit cost = $|\alpha \beta|$
 - $rem_V(\cdot), rem_E(\cdot), ins_V(\cdot), ins_E(\cdot)$: edit cost $= |\alpha|$
 - edit path cost: $c(P) = c(o_1) + c(o_2) + c(o_3) = 3.0 + 5.0 + 2.0 = 10.0$

BASELINE TRANSFORMATION

as assignment matrix:

- node substitution cost: $c_{(i,k),(i,k)} = c_V(i,k)$
- node insertion cost:
- $c_{(\epsilon_k,k),(\epsilon_k,k)} = c_V(\epsilon,k)$
- node removal cost: $c_{(i,\epsilon),(i,\epsilon_i)} = c_V(i,\epsilon_i)$
- edge edit operation cost:
- $c_{(i,k),(j,l)} = 0.5$
- $(\delta_{(i,j)\in E^G}\delta_{(k,l)\in E^H}c_E((i,j),(k,l))+$ $\delta_{(i,j)\notin E^G}\delta_{(k,l)\in E^H}c_E(\epsilon,(k,l)) +$ $\delta_{(i,j)\in E^G}\delta_{(k,l)\notin E^H}c_E((i,j),\epsilon)$
- forbidden assignment cost: $c_{(i,k),(j,l)}=\infty$
- free assignment cost: $c_{(i,k),(j,l)}=0$

COMPACT TRANSFORMATION FOR QUASIMETRIC EDIT COSTS

key property for quasimetric edit costs:

- exactly $\max\{0, |V^G| |V^H|\}$ node removals in optimal edit path
- exactly $\max\{0, |V^H| |V^G|\}$ node insertions in optimal edit path
- edit path $\hat{=}$ maximal matching:

- possibly implicitly encoded edit operations:
- $-|V^G|>|V^H|$: removals of nodes $k\in V^G$ and edges $(k, l) \in E^G$
- $-|V^G|<|V^H|$: insertions of nodes $k\in V^H$ and edges $(k, l) \in E^H$

- strategy: define compact QAP-instance $\widehat{\mathbf{C}}$ by including the costs of possibly implicitly encoded edit operations in topleft part of C
- in our example:

- node substitution cost:
- $\widehat{c}_{(i,k),(i,k)} = c_{(i,k),(i,k)} c_V(i,\epsilon)$
- edge edit operation cost:
- $\widehat{c}_{(i,k),(i,k)} = c_{(i,k),(i,k)} 1.5 \cdot c_E((i,j),\epsilon)$
- general formula for node substitution cost: $\widehat{c}_{(i,k),(i,k)} = c_{(i,k),(i,k)} - \delta_{|V^G| > |V^H|} c_V(i,\epsilon) - \delta_{|V^G| < |V^H|} c_V(\epsilon,k)$
- general formula for edge edit operation cost: $\widehat{c}_{(i,k),(i,k)} = c_{(i,k),(i,k)} - 1.5 \cdot (\delta_{|V^G|>|V^H|} c_E((i,j),\epsilon) \delta_{|V^G|<|V^H|}c_E(\epsilon,(k,l))$

main theorem $GED(G, H) = QAP(\hat{C})$ $+ \delta_{|V^G|>|V^H|} \Big(\sum_{(i,j)\in E^G} c_E((i,j),\epsilon) + \sum_{i\in V^G} c_V(i,\epsilon) \Big)$ $+ \delta_{|V^G| < |V^H|} \left(\sum_{(k,l) \in E^H} c_E(\epsilon,(k,l)) + \sum_{k \in V^H} c_V(\epsilon,k) \right)$

EXPERIMENTS

- **QAP-based** heuristic: tested mIPFP (conditional gradient descent for QAP) [3]; best available QAP-based heuristic for GED
- compared transformations: baseline [1], non-standard [2], transformation proposed in this paper
- **metrics**: computed distance (d), error (e), runtime in seconds (t)

transformation	d	<i>e</i>	t
	alkane		
baseline	15.37	0.023	0.41
non-standard	15.34	0.009	0.22
this paper	15.39	0.062	0.15
		acyclic	
baseline	16.77	0.035	0.24
non-standard	16.73	0.0076	0.13
this paper	16.81	0.079	0.06
		mao	
baseline	33.4	_	2.9
non-standard	33.3	_	8.0
this paper	39.7	_	1.5
		pah	
baseline	36.7	_	3.14
non-standard	36.6	_	1.17
this paper	36.7	_	0.89

REFERENCES

- S. Bougleux, L. Brun, V. Carletti, P. Foggia, B. Gaüzère, and M. Vento, "Graph edit distance as a quadratic assignment problem," Pattern Recogn. Lett., vol. 87, pp. 38–46, 2017.
- S. Bougleux, B. Gaüzère, and L. Brun, "Graph edit distance as a quadratic program," in ICPR, 2016, pp. 1701–1706.
- É. Daller, S. Bougleux, B. Gaüzère, and L. Brun, "Approximate graph edit distance by several local searches in parallel," in *ICPRAM*, 2018, pp. 149–158.

Presented at ICPR 2018, Beijing, China, August 20–24, 2018