In Class Work Sheet XII: Elliptic PDEs

- 1. Laplace $\nabla^2 \phi = 0$
- 2. Poisson $\nabla^2 \phi = f$
- 3. Helmholtz $\nabla^2 \phi + \alpha^2 \phi = 0$

These are boundary value problems in all directions (2D and 3D) and can be subject to the following types of boundary conditions:

- 1. Neumann conditions $\frac{\partial \phi}{\partial n} = g$
- 2. Dirichlet conditions $c_1 \phi = g$
- 3. Robin (or mixed conditions) $c_1\phi + \frac{\partial\phi}{\partial n} = g$

Central Differencing to Laplace Consider uniform grid in x and y with $\Delta x = \Delta y = \Delta$. Let there be M+1 points in x and y directions labeled from 0, 1, 2...M and each point the domain is represented by a pair (x_i, y_j) .

How many equations? What about Dirichlet conditions?

Can we arrange them in the form $\mathbf{A}\bar{x}=\bar{b}$? Discretized equation can be written in the form

$$a_P \phi_P = \sum a_{\rm nbr} \phi_{\rm nbr} + b_P \tag{1}$$

1 Point-Jacobi Iterative Method

Starting with k=0 and some initial guess for $\phi_{i,j}^{(k)}$,

$$a_P \phi_P^{(k+1)} = \sum_{\text{nbr}} a_{\text{nbr}} \phi_{\text{nbr}}^{(k)} + b_P \tag{2}$$

or

$$\phi_P^{(k+1)} = \frac{\sum a_{\text{nbr}} \phi_{\text{nbr}}^{(k)} + b_P}{a_P}$$
 (3)

Example of Point-Jacobi

$$T_1 = 0.4T_2 + 0.2 (4)$$

$$T_2 = T_1 + 1 \tag{5}$$

Point Jacobi uses old values for all unknowns and gets the new values using the following equation

$$T_1^{(k+1)} = 0.4T_2^{(k)} + 0.2 (6)$$

$$T_1^{(k+1)} = 0.4T_2^{(k)} + 0.2$$
 (6)
 $T_2^{(k+1)} = T_1^{(k)} + 1$ (7)

2 Gauss-Seidel

However, notice that, if we solve the equation for T_1 first, we will already have $T_1^{(k+1)}$ that can be used in the equation for T_2 . Point Jacobi does not do this, but this is exactly what's done for Gauss-Seidel. **Example Gauss-Seidel** Consider

$$T_1^{(k+1)} = 0.4T_2^{(k)} + 0.2$$
 (8)
 $T_2^{(k+1)} = T_1^{(k+1)} + 1$ (9)

$$T_2^{(k+1)} = T_1^{(k+1)} + 1 (9)$$

$$4\phi_P^{(k+1)} = \phi_{i+1,j}^{(k)} + \phi_{i-1,j}^{(k+1)} + \phi_{i,j+1}^{(k)} + \phi_{i,j-1}^{(k+1)} - \Delta^2 f_{i,j}$$
(10)

For large M, this is faster than Point-Jacobi, but still very slow method. Note that it uses the **latest** value available for each neighboring point value. So if we are going from i=0 to higher i and low j=0 to higher j in our loop, then the left side and bottom side values are already at k+1 level and are readily used here.

Successive Over Relaxation (SOR) 3

Example Successive Over Relaxation (SOR) Consider our test problem, with the Gauss-Seidel iteration. For SOR we write

$$T_1^{(k+1*)} = 0.4T_2^{(k)} + 0.2$$

$$T_1^{(k+1)} = T_1^{(k)} + \alpha(T_1^{(k+1*)} - T_1^{(k)})$$

$$T_2^{(k+1*)} = T_1^{(k+1)} + 1$$

$$T_2^{(k+1)} = T_2^{(k)} + \alpha(T_2^{(k+1*)} - T_2^{(k)})$$

$$(14)$$

$$T_1^{(k+1)} = T_1^{(k)} + \alpha (T_1^{(k+1)} - T_1^{(k)}) \tag{12}$$

$$T_2^{(k+1*)} = T_1^{(k+1)} + 1 (13)$$

$$T_2^{(k+1)} = T_2^{(k)} + \alpha (T_2^{(k+1)} - T_2^{(k)})$$
(14)

Try $\alpha = 1.2$ (over-relaxation)

Successive Over Relaxation (SOR) Consider the discretized equation for Gauss-Seidel iteration. Starting with k=0 and some initial guess for $\phi_{i,j}^{(k)}$,

$$\phi_P^{(k+1*)} = \frac{1}{4} (\phi_{i+1,j}^{(k)} + \phi_{i-1,j}^{(k+1*)} + \phi_{i,j+1}^{(k)} + \phi_{i,j-1}^{(k+1*)} - \Delta^2 f_{i,j})$$
(15)

The change in ϕ_P during this iteration is $d = \phi_P^{(k+1*)} - \phi_P^{(k)}$. In stead of accepting $\phi_P^{(k+1*)}$ as the new solution, we write,

$$\phi_P^{(k+1)} = \phi_P^{(k)} + \alpha(\phi_P^{(k+1*)} - \phi_P^{(k)}) \tag{16}$$

If $\alpha = 1$, we get Gauss-Seidel.

If $0 \le \alpha \le 1$ we get under-relaxation.

If $\alpha > 1$, we get over-relaxation which can accelerate convergence!

4 Does iterative method always converge?

Consider

$$T_1 = 0.4T_2 + 0.2 (17)$$

$$T_2 = T_1 + 1 ag{18}$$

Re-arrange and get the following set of equations:

$$T_1 = T_2 - 1 (19)$$

$$T_2 = 2.5T_1 - 0.5 (20)$$

Apply Gauss-Seidel (relaxation factor = 1) to get

Does iterative method always converge? No! A *sufficient* condition for convergence is the Scarborough criterion:

For the finite-difference approximation of the type

$$a_P \phi_P = \sum a_{\rm nbr} \phi_{\rm nbr} + b_P \tag{21}$$

A sufficient condition for convergence is:

$$\frac{\sum |a_{\rm nbr}|}{|a_P|} \begin{cases} \le 1 & \text{for all equations} \\ < 1 & \text{for at least one equation} \end{cases}$$
(22)

Point-Jacobi

Iteration #	0	1	2	3	4	5	6	7
$\overline{T_1}$	0	0.2	0.6	0.68	0.84	0.872	0.936	
T_2	0	1	1.2	1.6	1.68	1.84	1.872	

However, notice that, if we solve the equation for T_1 first, we will already have $T_1^{(k+1)}$ that can be used in the equation for T_2 . Point Jacobi does not do this, but this is exactly what's done for Gauss-Seidel.

Gauss-Seidel Consider

$$T_1^{(k+1)} = 0.4T_2^{(k)} + 0.2$$
 (23)
 $T_2^{(k+1)} = T_1^{(k+1)} + 1$ (24)

$$T_2^{(k+1)} = T_1^{(k+1)} + 1$$
 (24)

Iteration #	0	1	2	3	4	5	6	7
$\overline{T_1}$	0	0.2	0.68	0.872	0.9488	0.979	0.9918	
T_2	0	1.2	1.68	1.872	1.9488	1.979	1.9918	

Notice faster convergence than Point-Jacobi.

SOR

Consider our test problem, with the Gauss-Seidel iteration. For SOR we write

$$T_1^{(k+1*)} = 0.4T_2^{(k)} + 0.2 (25)$$

$$T_1^{(k+1)} = T_1^{(k)} + \alpha (T_1^{(k+1)} - T_1^{(k)}) \tag{26}$$

$$T_2^{(k+1*)} = T_1^{(k+1)} + 1 (27)$$

$$T_{1}^{(k+1*)} = 0.4T_{2}^{(k)} + 0.2$$

$$T_{1}^{(k+1)} = T_{1}^{(k)} + \alpha(T_{1}^{(k+1*)} - T_{1}^{(k)})$$

$$T_{2}^{(k+1*)} = T_{1}^{(k+1)} + 1$$

$$T_{2}^{(k+1)} = T_{2}^{(k)} + \alpha(T_{2}^{(k+1*)} - T_{2}^{(k)})$$

$$(25)$$

$$(26)$$

$$(27)$$

$$T_{2}^{(k+1)} = T_{2}^{(k)} + \alpha(T_{2}^{(k+1*)} - T_{2}^{(k)})$$

$$(28)$$

Try $\alpha = 1.2$ (over-relaxation)

Iteration #	0	1	2	3	4	5	6	7
T_1	0	0.24	0.90624	1.01389	1.0061981			
T_2	0	1.488	1.989888	2.0187003	2.0036977			

Scarborough Consider

$$T_1 = 0.4T_2 + 0.2 (29)$$

$$T_2 = T_1 + 1 ag{30}$$

Re-arrange and get the following set of equations:

$$T_1 = T_2 - 1$$
 (31)

$$T_2 = 2.5T_1 - 0.5 (32)$$

Apply Gauss-Seidel (relaxation factor = 1) to get

Iteration #	0	1	2	3	4	5	6	7
$\overline{T_1}$	0	-1	-4	-11.5	-30.25			
T_2	0	-3	-10.5	-29.25	-76.13			