2021 年考研数学一

一、选择题, $1 \sim 10$ 题,每题 5 分,共 50 分.

1. 函数
$$f(x) = \begin{cases} \frac{e^x - 1}{x}, & x \neq 0 \\ 1, & x = 0 \end{cases}$$
 在 $x = 0$ 处 ()

A. 连续目取极大值

B. 连续且取极小值

C. 可导且导数等于零

D. 可导且导数不为零

解 显然 f(x) 在 x = 0 处是连续的,且

$$\lim_{x \to 0} \frac{f(x) - f(0)}{x} = \lim_{x \to 0} \frac{\frac{e^x - 1}{x} - 1}{x} = \lim_{x \to 0} \lim_{x \to 0} \frac{\frac{x + \frac{1}{2}x^2 + o(x^2)}{x} - 1}{x} = \frac{1}{2},$$

因此选 D.

2. 设函数 f(x,y) 可微,且 $f(x+1,e^x) = x(x+1)^2$, $f(x,x^2) = 2x^2 \ln x$,则 d f(1,1) =

A.
$$dx + dy$$

B.
$$dx - dy$$
 C. dy

$$D. - dv$$

解 分别在题中两个等式中对 x 求导得

$$\begin{cases} f_1'(x+1,e^x) + f_2'(x+1,e^x) \cdot e^x = (x+1)^2 + x \cdot 2(x+1) \\ f_1'(x,x^2) + f_2'(x,x^2) \cdot 2x = 4x \ln x + 2x \end{cases}$$

分别在上述两式中取 x = 0 和 x = 1 得

$$\begin{cases} f_1'(1,1) + f_2'(1,1) = 1\\ f_2'(1,1) + 2f_2'(1,1) = 2 \end{cases}$$

解得 $f'_1(1,1) = 0$, $f'_2(1,1) = 1$, 于是 dz = dy, 选 C.

3. 设函数 $f(x) = \frac{\sin x}{1+x^2}$ 在 x = 0 处的 3 次泰勒多项式为 $ax + bx^2 + cx^3$,则 () A. $a = 1, b = 0, c = -\frac{7}{6}$ B. $a = 1, b = 0, c = \frac{7}{6}$ C. $a = -1, b = -1, c = -\frac{7}{6}$ D. $a = -1, b = -1, c = \frac{7}{6}$

A.
$$a = 1, b = 0, c = -\frac{7}{6}$$

B.
$$a = 1, b = 0, c = \frac{7}{6}$$

C.
$$a = -1, b = -1, c = -\frac{7}{6}$$

D.
$$a = -1, b = -1, c = \frac{7}{6}$$

解 当 $x \to 0$ 时,

$$\frac{\sin x}{1+x^2} = \left(x - \frac{1}{6}x^3 + o(x^3)\right) \left(1 - x^2 + o(x^2)\right) = x - \frac{7}{6}x^3 + o(x^3),$$

因此 $a = 1, b = 0, c = -\frac{7}{6}$,选 A.

4. 设函数 f(x) 在区间 [0,1] 上连续,则 $\int_{0}^{1} f(x) dx =$)

A.
$$\lim_{n \to \infty} \sum_{k=1}^{n} f\left(\frac{2k-1}{2n}\right) \frac{1}{2n}$$
B.
$$\lim_{n \to \infty} \sum_{k=1}^{n} f\left(\frac{2k-1}{2n}\right) \frac{1}{n}$$

B.
$$\lim_{n \to \infty} \sum_{k=1}^{n} f\left(\frac{2k-1}{2n}\right) \frac{1}{n}$$

C.
$$\lim_{n \to \infty} \sum_{k=1}^{2n} f\left(\frac{k-1}{2n}\right) \frac{1}{n}$$
 D. $\lim_{n \to \infty} \sum_{k=1}^{2n} f\left(\frac{k}{2n}\right) \frac{2}{n}$

D.
$$\lim_{n \to \infty} \sum_{k=1}^{2n} f\left(\frac{k}{2n}\right) \frac{2}{n}$$

解 首先令 f(x) = 1 就可以直接判断选项 A,C,D 均不成立,只有 B 满足. 其次,在 定积分的定义

$$\int_0^1 f(x) dx = \lim_{\lambda \to 0^+} \sum_{k=1}^n f(\xi_k) \Delta x_k$$

中,取 $x_k = \frac{k}{n}$,而 $\xi_k = \frac{2k-1}{2n} \in \left(\frac{k-1}{n}, \frac{k}{n}\right)$,就是选项 B.

5. 二次型 $f(x_1, x_2, x_3) = (x_1 + x_2)^2 + (x_2 + x_3)^2 - (x_3 - x_1)^2$ 的正惯性指数与负惯性 指数依次为)

A. 2.0

D. 1, 2

)

解 首先令 $y_1 = x_1 + x_2, y_2 = x_2 + x_3, y_3 = x_3, 则$

$$f(x_1, x_2, x_3) = y_1^2 + y_2^2 - (y_1 - y_2)^2 = 2y_1y_2.$$

再令 $y_1 = z_1 + z_2$, $y_2 = z_1 - z_2$, $y_3 = z_3$, 则 $2y_1y_2 = 2(z_1 + z_2)(z_1 - z_2) = 2z_1^2 - 2z_2^2$, 选 B.

6. 已知
$$\alpha_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \alpha_2 = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}, \alpha_3 = \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix}, 已知 $\boldsymbol{\beta}_1 = \boldsymbol{\alpha}_1, \boldsymbol{\beta}_2 = \boldsymbol{\alpha}_2 - k\boldsymbol{\beta}_1, \boldsymbol{\beta}_3 = \boldsymbol{\alpha}_1$$$

$$\alpha_3 - l_1 \beta_1 - l_2 \beta_2$$
,若 β_1 , β_2 , β_3 两两正交,则 l_1 , l_2 依次为 A. $\frac{5}{2}$, $\frac{1}{2}$ B. $-\frac{5}{2}$, $\frac{1}{2}$ C. $\frac{5}{2}$, $-\frac{1}{2}$ D. $-\frac{5}{2}$, $-\frac{1}{2}$ 解 这里就是求斯密特正交化的系数,其中

$$k = \frac{(\boldsymbol{\alpha}_2, \boldsymbol{\alpha}_1)}{(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_1)} = \frac{2}{2} = 1, l_1 = \frac{(\boldsymbol{\alpha}_3, \boldsymbol{\beta}_1)}{(\boldsymbol{\alpha}_1, \boldsymbol{\beta}_1)} = \frac{5}{2}, l_2 = \frac{(\boldsymbol{\alpha}_3, \boldsymbol{\beta}_2)}{(\boldsymbol{\alpha}_2, \boldsymbol{\beta}_2)} = \frac{1}{2},$$

选 A.

7. 设 A, B 为 n 阶矩阵,下列不成立的是

A.
$$r \begin{pmatrix} A & O \\ O & A^{T}A \end{pmatrix} = 2r(A)$$
 B. $r \begin{pmatrix} A & AB \\ O & A^{T} \end{pmatrix} = 2r(A)$

C.
$$r \begin{pmatrix} A & BA \\ O & AA^{T} \end{pmatrix} = 2r(A)$$
 D. $r \begin{pmatrix} A & O \\ BA & A^{T} \end{pmatrix} = 2r(A)$

解 对任意矩阵 A, B 有 $r\begin{pmatrix} A & O \\ O & B \end{pmatrix} = r(A) + r(B)$, 且 $r(A) = r(A^{T}) = r(A^{T}A) = r(AA^{T})$. 于是

$$r\begin{pmatrix} A & O \\ O & A^{\mathsf{T}}A \end{pmatrix} = r(A) + r(A^{\mathsf{T}}A) = 2r(A),$$

选项 A 正确. 对选项 B 和 D,利用分块矩阵的初等变换可得

$$\begin{pmatrix} A & AB \\ O & A^{\mathsf{T}} \end{pmatrix} \begin{pmatrix} E & -B \\ O & E \end{pmatrix} = \begin{pmatrix} A & O \\ O & A^{\mathsf{T}} \end{pmatrix}, \begin{pmatrix} E & O \\ -B & E \end{pmatrix} \begin{pmatrix} A & O \\ BA & A^{\mathsf{T}} \end{pmatrix} = \begin{pmatrix} A & O \\ O & A^{\mathsf{T}} \end{pmatrix},$$

初等变换不改变矩阵的秩,于是 B 和 D 都是对的,注意初等变换的左行右列原则,C 是不成立的. 我们给出一个 C 的反例:

$$A = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} A & BA \\ O & AA^{\mathrm{T}} \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

- 8. 设 A, B 为随机事件,且 0 < P(B) < 1,下列命题中为假命题的是 ()
 - A. 若 P(A|B) = P(A),则 $P(A|\overline{B}) = P(A)$
 - B. 若 P(A|B) > P(A),则 $P(\bar{A}|\bar{B}) > P(\bar{A})$
 - C. 若 $P(A|B) > P(A|\bar{B})$,则 P(A|B) > P(A)
 - D. 若 $P(A|A \cup B) > P(\overline{A}|A \cup B)$,则 P(A) > P(B)

解 首先取 A = B 可以直接得出 D 为假命题. 对选项 A, P(A|B) = P(A) 说明 A, B 独立,自然有 A, \overline{B} 也独立,于是 $P(A|\overline{B}) = P(A)$. 对选项 B 有

$$\begin{split} P(A|B) > P(A) &\Leftrightarrow P(AB) > P(A)P(B) \\ &\Leftrightarrow P(A) - P(AB) < P(A) - P(A)P(B) \\ &\Leftrightarrow P(A\overline{B}) < P(A)P(\overline{B}) \\ &\Leftrightarrow P(\overline{B}) - P(A\overline{B}) > P(\overline{B}) - P(A)P(\overline{B}) \\ &\Leftrightarrow P(\overline{A}\overline{B}) > P(\overline{A})P(\overline{B}) \\ &\Leftrightarrow P(\overline{A}|B) > P(\overline{A}). \end{split}$$

对选项 C¹有

$$\begin{split} P(A|B) > P(A|\overline{B}) &\Leftrightarrow \frac{P(AB)}{P(B)} > \frac{P(A\overline{B})}{P(\overline{B})} \\ &\Leftrightarrow P(AB)P(\overline{B}) > P(B)P(A\overline{B}) \\ &\Leftrightarrow P(AB)\big(1 - P(B)\big) > P(B)\big(P(A) - P(AB)\big) \\ &\Leftrightarrow P(AB) > P(A) \Leftrightarrow P(A|B) > P(A). \end{split}$$

①这个选项其实就是2017年数学一的第7题.

9. 设 $(X_1, Y_1), (X_2, Y_2), \dots, (X_n, Y_n)$ 为来自总体 $N(\mu_1, \mu_2; \sigma_1^2, \sigma_2^2; \rho)$ 的简单随机样本,

$$\Leftrightarrow \theta = \mu_1 - \mu_2, \bar{X} = \frac{1}{n} \sum_{i=1}^n X_i, \bar{Y} = \frac{1}{n} \sum_{i=1}^n Y, \hat{\theta} = \bar{X} - \bar{Y}, \text{ }$$

- A. $\hat{\theta}$ 是 θ 的无偏估计, $D(\hat{\theta}) = \frac{\sigma_1^2 + \sigma_2^2}{\sigma_1^2 + \sigma_2^2}$
- B. $\hat{\theta}$ 不是 θ 的无偏估计, $D(\hat{\theta}) = \frac{\sigma_1^2 + \sigma_2^2}{\sigma_1^2 + \sigma_2^2}$
- C. $\hat{\theta}$ 是 θ 的无偏估计, $D(\hat{\theta}) = \frac{\sigma_1^2 + \sigma_2^2 2\rho\sigma_1\sigma_2}{\sigma_1^2}$
- D. $\hat{\theta}$ 不是 θ 的无偏估计, $D(\hat{\theta}) = \frac{\sigma_1^2 + \sigma_2^2 2\rho\sigma_1\sigma_2}{\sigma_1^2 + \sigma_2^2 2\rho\sigma_1\sigma_2}$

解 直接计算得 $E(\hat{\theta}) = E(\bar{X}) - E(\bar{Y}) = \mu_1 - \mu_2$, 因此 $\hat{\theta}$ 是 $\theta = \mu_1 - \mu_2$ 的无偏估计,且

$$\begin{split} D(\hat{\theta}) &= D(\bar{X} - \bar{Y}) = D(\bar{X}) + D(\bar{Y}) - 2\operatorname{Cov}(\bar{X}, \bar{Y}) \\ &= \frac{\sigma_1^2}{n} + \frac{\sigma_2^2}{n} - 2\operatorname{Cov}\left(\frac{1}{n}\sum_{i=1}^n X_i, \frac{1}{n}\sum_{i=1}^n Y_i\right) \\ &= \frac{\sigma_1^2}{n} + \frac{\sigma_2^2}{n} - \frac{2}{n^2}\operatorname{Cov}\left(\sum_{i=1}^n X_i, \sum_{i=1}^n Y_i\right) \\ &= \frac{\sigma_1^2}{n} + \frac{\sigma_2^2}{n} - \frac{2}{n^2}\sum_{i=1}^n \operatorname{Cov}(X_i, Y_i) \\ &= \frac{\sigma_1^2}{n} + \frac{\sigma_2^2}{n} - \frac{2}{n^2} \cdot n\operatorname{Cov}(X_1, Y_1) \\ &= \frac{\sigma_1^2}{n} + \frac{\sigma_2^2}{n} - \frac{2}{n}\rho\sigma_1\sigma_2, \end{split}$$

选 C.

10.设 X_1, X_2, \cdots, X_{16} 是来自总体 $N(\mu, 4)$ 的简单随机样本,考虑假设检验问题: H_0 : $\mu \leq 10, H_1$: $\mu > 10$, $\Phi(x)$ 表示标准正态分布函数,若该检验问题的拒绝域为 $W = \{\bar{X} \geq 11\}$, 其中 $\bar{X} = \frac{1}{16}X_i$, 则 $\mu = 11.5$ 时,该检验犯第二类错误的概率为 ()

A.
$$1 - \phi(0.5)$$
 B. $1 - \phi(1)$ C. $1 - \phi(1.5)$ D. $1 - \phi(2)$

解 第二类错误是取伪, 也就是在 H_0 为假的情况下我们接受了 H_0 . 现在拒绝域为 $W = \{\bar{X} \ge 11\}$,那么接受域为 $\{\bar{X} < 11\}$,且 $\mu = 11.5$,那么所求的概率为

$$\begin{split} P(\overline{X} < 11 | \mu = 11.5) &= P\left(\frac{\sqrt{16}(\overline{X} - 11.5)}{2} < \frac{\sqrt{16}(11 - 11.5)}{2}\right) \\ &= P\left(\frac{\sqrt{16}(\overline{X} - 11.5)}{2} < -1\right) = \varPhi(-1) = 1 - \varPhi(1). \end{split}$$

二、填空题,11~16题,每题5分,共30分.

$$11. \int_0^{+\infty} \frac{\mathrm{d}x}{x^2 + 2x + 2} = \underline{\qquad}.$$

$$\text{Iff } \int_0^{+\infty} \frac{\mathrm{d}x}{x^2 + 2x + 2} = \int_0^{+\infty} \frac{\mathrm{d}x}{(x+1)^2 + 1} = \arctan(x+1) \Big|_0^{+\infty} = \frac{\pi}{4}.$$

12.设函数
$$y = y(x)$$
 由参数方程
$$\begin{cases} x = 2e^{t} + t + 1 \\ y = 4(t-1)e^{t} + t^{2} \end{cases}$$
 确定,则 $\frac{d^{2}y}{dx^{2}}\Big|_{t=0} =$ ______.

$$\mathbf{R} \left. \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} \right|_{t=0} = \frac{y''(t)x'(t) - x''(t)y'(x)}{x'^2(t)} \right|_{t=0} = \frac{2}{3}.$$

13.欧拉方程 $x^2y'' + xy' - 4y = 0$ 满足条件 y(1) = 1, y'(1) = 2 的解为 $y = _____$. **解** 令 $x = e^t$,则 $y' = \frac{dy}{dt} / \frac{dx}{dt} = e^{-t} \frac{dy}{dt} = \frac{1}{r} \frac{dy}{dt}$,进一步,

$$y'' = \frac{d}{dx} \left(\frac{dy}{dx} \right) = \frac{d}{dt} \left(\frac{dy}{dx} \right) / \frac{dx}{dt}$$
$$= \left(-e^{-t} \frac{dy}{dt} + e^{-t} \frac{d^2y}{dt^2} \right) / e^t$$
$$= \frac{1}{x^2} \left(\frac{dy}{dt} + \frac{d^2y}{dt^2} \right).$$

代入原方程得

$$x^{2}y'' + xy' - 4y = \frac{d^{2}y}{dt^{2}} - 4y = 0,$$

解此二阶常系数线性方程得 $y = C_1 e^{2t} + C_2 e^{-2t} = C_1 x^2 + \frac{x_2}{x^2}$, 结合条件 y(1) = 1, y'(1) = 2 得 $C_1 = 1$, $C_2 = 0$, 于是特解为 $y = x^2$.

14.设 Σ 为空间区域 $\{(x,y,z)|x^2+4y^2 \le 4,0 \le z \le 2\}$ 表面的外侧,则曲面积分 $\iint_{\Sigma} x^2 \, \mathrm{d}y \, \mathrm{d}z + y^2 \, \mathrm{d}z \, \mathrm{d}x + z \, \mathrm{d}x \, \mathrm{d}y = _____.$

 \mathbf{m} 设 Σ 所包围的区域为 Ω ,利用高斯公式及对称性可得

$$\iint_{\Sigma} x^2 \, dy \, dz + y^2 \, dz \, dx + z \, dx \, dy = \iiint_{\Omega} (2x + 2y + 1) \, dx \, dy \, dz$$
$$= \iiint_{\Omega} dx \, dy \, dz = 2\pi \cdot 2 = 4\pi.$$

15.设 $A=(a_{ij})$ 为 3 阶矩阵, A_{ij} 为代数余子式,若 A 的每行元素之和为 2,且 |A|=3,

则
$$A_{11} + A_{21} + A_{31} =$$

解 记 $x = (1,1,1)^{T}$,由条件得

$$Ax = 2x \Rightarrow A^*Ax = 2A^*x \Rightarrow 3x = 2A^*x \Rightarrow A^*x = \frac{3}{2}x$$

即 A^* 的每行的和为 $\frac{3}{2}$, $A_{11} + A_{21} + A_{31} = \frac{3}{2}$.

16.甲、乙两个盒子中有 2 个红球和 2 个白球,从甲盒中任取一球,观察颜色后放入乙盒,再从乙盒中任取一球,令 X, Y 分别表示从甲盒和乙盒中取到的红球的个数,则 X 与 Y 的相关系数为______.

解 由题意可得 X, Y 的联合分布为

XY	0	1
0	$\frac{3}{10}$	$\frac{1}{5}$
1	$\frac{1}{5}$	$\frac{3}{10}$

于是
$$E(X) = E(Y) = \frac{1}{2}$$
, $E(XY) = \frac{3}{10}$, $D(X) = D(Y) = \frac{1}{4}$, 因此
$$\rho_{X,Y} = \frac{E(XY) - E(X)E(Y)}{\sqrt{D(X)D(Y)}} = \frac{1}{5}.$$

三、解答题,17~22题,共70分.

17.(本题满分 10 分)

计算极限
$$\lim_{x\to 0} \left(\frac{1+\int_0^x e^{t^2} dt}{e^x-1} - \frac{1}{\sin x} \right).$$

解 注意到当 $x \to 0$ 时

$$\sin x = x + o(x^2), \quad \int_0^x e^{t^2} dt = x + o(x), \quad e^x - 1 = x + \frac{1}{2}x^2 + o(x^2).$$

则

$$\lim_{x \to 0} \left(\frac{1 + \int_0^x e^{t^2} dt}{e^x - 1} - \frac{1}{\sin x} \right) = \lim_{x \to 0} \frac{\sin x \left(1 + \int_0^x e^{t^2} dt \right) - (e^x - 1)}{\sin x (e^x - 1)}$$

$$= \lim_{x \to 0} \frac{\left(x + o(x^2) \right) \left(1 + x + o(x) \right) - x - \frac{1}{2} x^2 + o(x^2)}{x^2}$$

$$= \lim_{x \to 0} \frac{x + x^2 - x - \frac{1}{2} x^2 + o(x^2)}{x^2} = \frac{1}{2}.$$

18.(本题满分 12 分)

设
$$u_n(x) = e^{-nx} + \frac{x^{n+1}}{n(n+1)}$$
,求级数 $\sum_{n=1}^{\infty} u_n(x)$ 的收敛域及和函数.

解 首先,

$$\sum_{n=1}^{\infty} u_n(x) = \sum_{n=1}^{\infty} e^{-nx} + \sum_{n=1}^{\infty} \frac{x^{n+1}}{n(n+1)} = S_1(x) + S_2(x).$$

其中

$$S_1(x) = \sum_{n=1}^{\infty} e^{-nx} = \frac{e^{-x}}{1 - e^{-x}} = \frac{1}{e^x - 1},$$

其收敛域为x > 0.

而对于 $\sum_{n=1}^{\infty} \frac{x^{n+1}}{n(n+1)}$, 易知其收敛半径为 1, 且 $x = \pm 1$ 时级数也是收敛的. 当 $x \in [0,1)$ 时,

$$S_2(x) = \sum_{n=1}^{\infty} \frac{x^{n+1}}{n} - \sum_{n=1}^{\infty} \frac{x^{n+1}}{n+1} = x \sum_{n=1}^{\infty} \frac{x^n}{n} - \sum_{n=2}^{\infty} \frac{x^n}{n}$$
$$= -x \ln(1-x) - \left(-\ln(1-x) - x\right) = x + (1-x) \ln(1-x).$$

由于级数在 x = 1 也收敛,从而它在 x = 1 处左连续,即 $S(1) = \lim_{x \to 1^{-}} S(x) = 1$.

综上所述,级数 $\sum_{n=1}^{\infty} u_n(x)$ 的收敛域为 (0,1],且

$$\sum_{n=1}^{\infty} u_n(x) = \begin{cases} \frac{1}{e^x - 1} + x + (1 - x)\ln(1 - x), & 0 < x < 1\\ \frac{1}{e - 1} + 1, & x = 1 \end{cases}.$$

19.(本题满分 12 分)

已知曲线 $C:\begin{cases} x^2+2y^2-z=6\\ 4x+2y+z=30 \end{cases}$,求曲线 C 上的点到 xOy 坐标面距离的最大值.

解 点 (x,y,z) 到 xOy 坐标面的距离就是 |z|, 所以只需求 z 的取值范围即可, 根据条件可得

$$\begin{cases} x^2 + 2y^2 = 6 + z \\ 4x + 2y = 30 - z \end{cases}$$

那么由 $(16+2)(x^2+2y^2) \ge (4x+2y)^2$ 可得

$$18(6+z) \geqslant (30-z)^2,$$

解得 $12 \le z \le 66$,且取等条件为 $\frac{x^2}{16} = \frac{2y^2}{2}$,当 x = -8,y = -2 时,z = 66,因此所求的最大距离 (-8, -2, 66) 到 xOy 面的距离,最大值为 66.

20.(本题满分 12 分)

设 $D \subset \mathbb{R}^2$ 是一个平面单连通区域,令 $I(D) = \iint_D (4 - x^2 - y^2) dx dy$,设 I(D) 取得最大值的区域为 D_1 .

(1)计算 $I(D_1)$;

(2)计算
$$\int_{\partial D_1} \frac{(x e^{x^2+4y^2}+y) dx + (4y e^{x^2+4y^2}-x) dy}{x^2+4y^2}$$
,其中 ∂D_1 是 D_1 的正向边界.

解 (1) 首先可知区域 D_1 为 $x^2 + y^2 \le 4$,于是

$$I(D_1) = \iint_{x^2 + y^2 \le 4} (4 - x^2 - y^2) dx dy$$
$$= \int_0^{2\pi} d\theta \int_0^2 (4 - r^2) r dr = 8\pi.$$

(2) 令

$$P = \frac{x e^{x^2 + 4y^2} + y}{x^2 + 4y^2}, \ Q = \frac{4y e^{x^2 + 4y^2} - x}{x^2 + 4y^2}.$$

直接计算可得

$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x} = \frac{8xy e^{x^2 + 4y^2} (x^2 + 4y^2 - 1) + x^2 - 4y^2}{(x^2 + 4y^2)^2}.$$

设曲线 L_1 为 $x^2+4y^2=r^2$,方向为逆时针,r 充分小,使得 L_1 在 D_1 的内部,且设 L_1 与 ∂D_1 所围成的区域为 D_2 , L_1 所包围的区域为 D_3 ,则利用格林公式,可得

$$\begin{split} \int_{\partial D_1} P \, \mathrm{d}x + Q \, \mathrm{d}y &= \int_{\partial D_1 + L_1^-} P \, \mathrm{d}x + Q \, \mathrm{d}y + \int_{L_1} P \, \mathrm{d}x + Q \, \mathrm{d}y \\ &= \iint_{D_2} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \mathrm{d}x \, \mathrm{d}y + \int_{L_1} P \, \mathrm{d}x + Q \, \mathrm{d}y \\ &= 0 + \frac{1}{r^2} \int_{L_1} (x \, \mathrm{e}^{x^2 + 4y^2} + y) \mathrm{d}x + (4y \, \mathrm{e}^{x^2 + 4y^2} - x) \mathrm{d}y \\ &= \frac{1}{r^2} \iint_{D_3} (-1 - 1) \, \mathrm{d}x \, \mathrm{d}y \\ &= \frac{1}{r^2} \cdot (-2) \cdot r \cdot \frac{r}{2} = -\pi. \end{split}$$

21.(本题满分 12 分)

设矩阵
$$A = \begin{pmatrix} a & 1 & -1 \\ 1 & a & -1 \\ -1 & -1 & a \end{pmatrix}$$
.

- (1)求正交矩阵 P,使 $P^{T}AP$ 为对角矩阵;
- (2)求正定矩阵 C,使 $C^2 = (a+3)E + A$,其中 E 为 3 阶单位矩阵.

 \mathbf{M} (1) 先求 \mathbf{A} 的特征值,

$$|\lambda \mathbf{E} - \mathbf{A}| = \begin{vmatrix} \lambda - a & -1 & 1 \\ -1 & \lambda - a & 1 \\ 1 & 1 & \lambda - a \end{vmatrix} = (\lambda - (a-1)^2)(\lambda - (a+2)) = 0,$$

于是 $\lambda_1 = \lambda_2 = a - 1, \lambda_3 = a + 2.$

对 $\lambda_1 = \lambda_2 = a - 1$,解方程组 ((a - 1)E - A)x = 0 得两个正交的单位特征向量

$$\alpha_1 = \frac{1}{\sqrt{2}}(1,0,1), \quad \alpha_2 = \frac{1}{\sqrt{6}}(1,-2,-1).$$

对 $\lambda_3 = a + 2$,解方程 ((a + 2)E - A)x = 0 得一个单位特征向量 $\alpha_3 = \frac{1}{\sqrt{3}}(1, 1, -1)^T$.

$$\diamondsuit \mathbf{P} = (\alpha_1, \alpha_2, \alpha_3) = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ 0 & -\frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{3}} \end{pmatrix}, \text{M}$$

$$\mathbf{P}^{\mathsf{T}} \mathbf{A} \, \mathbf{P} = \mathbf{P}^{-1} \mathbf{A} \, \mathbf{P} = \begin{pmatrix} a - 1 & 0 & 0 \\ 0 & a - 1 & 0 \\ 0 & 0 & a + 2 \end{pmatrix}.$$

(2)(a+3)E-A的特征值为 4,4,1,因此

$$\mathbf{P}^{\mathrm{T}}((a+3)\mathbf{E} - \mathbf{A})\mathbf{P} = \begin{pmatrix} 4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 1 \end{pmatrix},$$

于是

$$\mathbf{C}^{2} = \mathbf{P} \begin{pmatrix} 4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 1 \end{pmatrix} \mathbf{P}^{T} = \mathbf{P} \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix} \mathbf{P}^{T} \mathbf{P} \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix} \mathbf{P}^{T}.$$

其中
$$C = P \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix} P^{T} = \frac{1}{3} \begin{pmatrix} 5 & -1 & 1 \\ -1 & 5 & 1 \\ 1 & 1 & 5 \end{pmatrix}$$
 是正定矩阵.

22.(本题满分 12 分)

在区间 (0,2) 上随机取一点,将该区间分成两段,较短的一段长度记为 X,较长一段的长度记为 Y. 令 $Z=\frac{Y}{Y}$.

- (1)求 X 的概率密度;
- (2)求 Z 的概率密度;
- (3)求 $E\left(\frac{X}{Y}\right)$.

解 (1) 设分成的两段区间长度分别为 $X_1, X_2, 则$

$$X_1 + X_2 = 2$$
, $X = \min\{X_1, X_2\} = \min\{X_1, 2 - X_1\}$, $Y = 2 - X$,

且 $X_1 \sim U(0,2)$. 那么 X 的分布函数为

$$F_X(x) = P(X \le x) = P\left(\min\{X_1, 2 - X_1\} \le x\right)$$

$$= 1 - P\left(\min\{X_1, 2 - X_1\} > x\right)$$

$$= 1 - P(X_1 > x, 2 - X_1 > x)$$

$$= 1 - P(x < X_1 < 2 - x)$$

$$= \begin{cases} 0, & x \le 0 \\ 1 - \int_x^{2-x} \frac{1}{2} dt = x, & 0 < x < 1. \\ 1, & x \ge 1 \end{cases}$$

所以 X 的概率密度为 $f_X(x) = \begin{cases} 1, & 0 < x < 1 \\ 0, & 其他 \end{cases}$.

(2) $Z = \frac{Y}{X} = \frac{2-X}{X}$,注意到 $z = \frac{2-x}{x} = \frac{2}{x} - 1$ 在 (0,1) 上单调可导,那么利用公式 法可得 Z 的概率密度为

$$f_{Z}(z) = \begin{cases} f_{X}\left(\frac{2}{z+1}\right) \cdot \frac{2}{(z+1)^{2}} = \frac{2}{(z+1)^{2}}, & z > 1\\ 0, & z \leqslant 1 \end{cases}.$$

(3)

$$\begin{split} E\left(\frac{X}{Y}\right) &= E\left(\frac{1}{Z}\right) = \int_{1}^{+\infty} \frac{2}{z(z+1)^{2}} \mathrm{d}z \\ &= 2 \int_{0}^{+\infty} \left(\frac{1}{z} - \frac{1}{z+1} - \frac{1}{(z+1)^{2}}\right) \mathrm{d}z = 2 \ln 2 - 1. \end{split}$$