MODELOS COMPUTACIONALES Y SIMULACIÓN DE SISTEMAS

Presentación de curso 2025-2026

Profesorado

Miguel Ángel Muñoz Bañón (coordinador):

- Teoría: Semanas 1-8
- Grupos 1,2,3 de prácticas:
 - Semanas 1-8
- Tutorías: Martes 11-13

Oscar Martínez Mozos:

- Teoría: Semanas 9-15
- Grupos 1,2,3 de prácticas:
 - Semanas 9-15

Horarios:

- Teoría:
 - ➤ Lunes 11-13 horas
- Prácticas
 - ➤ G1 Lunes 9-11 horas
 - > G2 Lunes 13-15 horas
 - ➤ G3 Martes 9-11 horas

Asignatura

- ¿Sobre qué trata la asignatura MODELOS COMPUTACIONALES Y SIMULACIÓN DE SISTEMAS?
 - La asignatura se centra en la simulación de sistemas dinámicos. Los cuales tienen una dependencia temporal (dinámica).
 - Se necesita modelar computacionalmente los sistemas para poder simular su comportamiento.
 - La asignatura se divide en tres bloques:
 - 1. Sistemas Dinámicos
 - 2. Sistemas Dinámicos Complejos
 - 3. Modelos de aprendizaje para Sistemas Dinámicos

Asignatura

- Asignatura OBLIGATORIA del GRADO EN INGENIERÍA EN INTELIGENCIA ARTIFICIAL
- Ver guía docente (cod. 33673) [link]
- Asignaturas relacionadas de cursos pasados
 - Matemáticas, Física, programación ... (básicas en general)
 - Señales y sistemas
 - Razonamiento bajo incertidumbre
- Asignaturas relacionadas 3°
 - Fundamentos del aprendizaje automático Aprendizaje avanzado
 - Redes neuronales y aprendizaje profundo
 - Agentes inteligentes

Temario

B1 - Sistemas Dinámicos

T1: Fundamentos del modelado de sistemas dinámicos

T2: Estabilidad, controlabilidad y observabilidad

T3: Paradigmas de simulación

B2 - Sistemas Complejos

T4: Lenguajes formales para modelos conceptuales

T5: Redes complejas y modelado estructural

B3 - Modelado con IA

T6: Identificación de sistemas

T7: Inteligencia artificial aplicada al modelado de sistemas

B1 - Sistemas Dinámicos (Ejemplos)

Sistema masa-resorte

Crecimiento de población

$$\frac{dP}{dt} = rP\left(1 - \frac{P}{K}\right)$$

P = población

K = capacidad de carga

r = tasa de crecimiento

Robot móvil

UNIVERSITAT D'ALACANT UNIVERSIDAD DE ALICANTE Escola Politècnica Superior Escuela Politécnica Superior

B2 - Sistemas Complejos (Ejemplos)

Sistema climático

UNIVERSITAT D'ALACANT UNIVERSIDAD DE ALICANTE Escola Politècnica Superior Escuela Politécnica Superior

B3 - Modelado con IA (Ejemplos)

Aprender la dinámica del tráfico o peatones

Semana	Tema	Prácticas	
1	Introducción	Introducción Python + Google Colab	
2	Tema 1		
3	rema i	D4 (T4)	
4	Toma 2	P1 (T1)	
5	Tema 2	D2 (T2)	
6	Tema 3	P2 (T2)	
7	Tamas 4 v 5	P3 (T3)	
8	Temas 4 y 5	D4 (T4 + T5)	
9	Preguntas y respuestas	P4 (T4 + T5)	
10	Toma 6	Preguntas y respuestas	
11	Tema 6	P5 (T6)	
12	Tama 7		
13	Tema 7	D6 (T7)	
14	Festivo	P6 (T7)	
15	Preguntas y respuestas	Preguntas y respuestas	

Programación de la asignatura (ORIENTATIVO)

Prácticas

- Para las práctica utilizaremos el lenguaje
 Python, que está muy extendido y para el que se dispone de muchos recursos para el aprendizaje.
- El software estará integrado en cuadernos (notebooks) .ipynb que ejecutaremos en Google Colab.
 - De esta forma no necesitaremos instalar dependencias, que a veces resulta doloroso.
 - o Disponemos de GPU, aunque con uso limitado.
- Podrán organizarse grupos de hasta 4 alumn@s

Evaluación

Descripción	Criterio	Tipo	Ponderación
Prácticas	Las prácticas se enfocan en el desarrollo de competencias técnicas y la implementación de modelos computacionales, fundamentales para la simulación y análisis de sistemas complejos.	ACTIVIDADES DE EVALUACIÓN DURANTE EL SEMESTRE	40
Trabajo final	El trabajo final, permite evaluar la aplicación de los conocimientos en un proyecto integrador, promoviendo la investigación, el trabajo autónomo y la capacidad de síntesis.	ACTIVIDADES DE EVALUACIÓN DURANTE EL SEMESTRE	10
Examen final de teoría	El examen final teórico tiene como objetivo medir la comprensión de los conceptos fundamentales y la capacidad de análisis crítico en los temas abordados.	EXAMEN FINAL	50

- Para la teoría se proporcionarán las transparencias y el tema desarrollado. Pero se completarán con explicaciones en clase.
 TOMAR APUNTES
- Las prácticas se ponderarán según el número de sesiones.
- Se realizará un trabajo final que se propondrá a final del curso.

MODELOS COMPUTACIONALES Y SIMULACIÓN DE SISTEMAS

Presentación de curso 2025-2026

