2. Convex sets

- subspaces, affine and convex sets
- some important examples
- operations that preserve convexity
- generalized inequalities
- separating and supporting hyperplanes
- dual cones and generalized inequalities

Subspaces

 $S\subseteq \mathbf{R}^n$ is a subspace if for $x,y\in S,\quad \lambda,\mu\in \mathbf{R} \implies \lambda x + \mu y \in S$ geometrically: $x,y\in S\Rightarrow$ plane through $0,x,y\subseteq S$ representations

$$\operatorname{range}(A) = \{Aw \mid w \in \mathbf{R}^q\}$$

$$= \{w_1 a_1 + \dots + w_q a_q \mid w_i \in \mathbf{R}\}$$

$$= \operatorname{span}(a_1, a_2, \dots, a_q)$$

where
$$A=\left[\begin{array}{ccc}a_1&\cdots&a_q\end{array}\right]$$
; and
$$\mbox{nullspace}(B)&=&\{x\mid Bx=0\}\\ &=&\{x\mid b_1^Tx=0,\dots,b_p^Tx=0\}$$

where
$$B = \left[\begin{array}{c} b_1^T \\ \vdots \\ b_p^T \end{array} \right]$$

Affine sets

 $S \subseteq \mathbf{R}^n$ is affine if for $x,y \in S, \ \lambda,\mu \in \mathbf{R}, \ \lambda+\mu=1 \Longrightarrow \lambda x + \mu y \in S$ geometrically: $x,y \in S \Rightarrow$ line through $x,y \subseteq S$

representations: range of affine function

$$S = \{Az + b \mid z \in \mathbf{R}^q\}$$

via linear equalities

$$S = \{x \mid b_1^T x = d_1, \dots, b_p^T x = d_p\}$$

= $\{x \mid Bx = d\}$

Convex sets

 $S \subseteq \mathbf{R}^n$ is a **convex set** if

$$x, y \in S, \ \lambda, \mu \ge 0, \ \lambda + \mu = 1 \Longrightarrow \lambda x + \mu y \in S$$

geometrically: $x, y \in S \Rightarrow \text{ segment } [x, y] \subseteq S$

examples (one convex, two nonconvex sets)

Convex cone

 $S \subseteq \mathbf{R}^n$ is a **cone** if

$$x \in S, \ \lambda \ge 0, \implies \lambda x \in S$$

 $S \subseteq \mathbf{R}^n$ is a **convex cone** if

$$x, y \in S, \ \lambda, \mu \ge 0, \implies \lambda x + \mu y \in S$$

geometrically: $x,y\in S\Rightarrow$ 'pie slice' between $x,y\subseteq S$

Combinations and hulls

$$y = \theta_1 x_1 + \dots + \theta_k x_k$$
 is a

- linear combination of x_1, \ldots, x_k
- affine combination if $\sum_i \theta_i = 1$
- convex combination if $\sum_i \theta_i = 1$, $\theta_i \geq 0$
- conic combination if $\theta_i \geq 0$

```
(linear,...) hull of S: set of all (linear, ...) combinations from S
```

linear hull: $\operatorname{span}(S)$

affine hull: $\mathbf{Aff}(S)$

convex hull: $\mathbf{conv}(S)$

conic hull: $\mathbf{Cone}(S)$

$$\operatorname{\mathbf{conv}}(S) = \bigcap \{G \mid S \subseteq G, G \text{ convex } \}, \dots$$

Convex combination and convex hull

convex combination of x_1, \ldots, x_k : any point x of the form

$$x = \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_k x_k$$

with
$$\theta_1 + \cdots + \theta_k = 1$$
, $\theta_i \ge 0$

convex hull conv S: set of all convex combinations of points in S

Hyperplanes and halfspaces

hyperplane: set of the form $\{x \mid a^T x = b\} \ (a \neq 0)$

halfspace: set of the form $\{x \mid a^T x \leq b\}$ $(a \neq 0)$

- a is the normal vector
- hyperplanes are affine and convex; halfspaces are convex

Euclidean balls and ellipsoids

(Euclidean) ball with center x_c and radius r:

$$B(x_c, r) = \{x \mid ||x - x_c||_2 \le r\} = \{x_c + ru \mid ||u||_2 \le 1\}$$

ellipsoid: set of the form

$$\{x \mid (x - x_c)^T P^{-1} (x - x_c) \le 1\}$$

with $P \in \mathbf{S}_{++}^n$ (i.e., P symmetric positive definite)

other representation: $\{x_c + Au \mid ||u||_2 \le 1\}$ with A square and nonsingular

Norm balls and norm cones

norm: a function $\|\cdot\|$ that satisfies

- $||x|| \ge 0$; ||x|| = 0 if and only if x = 0
- ||tx|| = |t| ||x|| for $t \in \mathbf{R}$
- $||x + y|| \le ||x|| + ||y||$

notation: $\|\cdot\|$ is general (unspecified) norm; $\|\cdot\|_{\text{symb}}$ is particular norm **norm ball** with center x_c and radius r: $\{x\mid \|x-x_c\|\leq r\}$

norm cone: $\{(x,t) \mid ||x|| \le t\}$

Euclidean norm cone is called secondorder cone

norm balls and cones are convex

ℓ_p norms

$$\ell_p$$
 norms on \mathbf{R}^n : for $p \ge 1$, $||x||_p = (\sum_i |x_i|^p)^{1/p}$,, for $p = \infty$, $||x||_\infty = \max_i |x_i|$

- ℓ_2 norm is Euclidean norm $||x||_2 = \sqrt{\sum_i x_i^2}$
- ℓ_1 norm is sum-abs-values $||x||_1 = \sum_i |x_i|$
- ℓ_{∞} norm is max-abs-value $||x||_{\infty} = \max_{i} |x_{i}|$

corresponding norm balls (in \mathbb{R}^2):

Polyhedra

solution set of finitely many linear inequalities and equalities

$$Ax \leq b, \qquad Cx = d$$

 $(A \in \mathbf{R}^{m \times n}, C \in \mathbf{R}^{p \times n}, \leq \text{is componentwise inequality})$

polyhedron is intersection of finite number of halfspaces and hyperplanes

Positive semidefinite cone

notation:

- S^n is set of symmetric $n \times n$ matrices
- $\mathbf{S}_{+}^{n} = \{X \in \mathbf{S}^{n} \mid X \succeq 0\}$: positive semidefinite $n \times n$ matrices

$$X \in \mathbf{S}^n_+ \iff z^T X z \ge 0 \text{ for all } z$$

 \mathbf{S}^n_+ is a convex cone

• $\mathbf{S}_{++}^n = \{X \in \mathbf{S}^n \mid X \succ 0\}$: positive definite $n \times n$ matrices

example: $\begin{bmatrix} x & y \\ y & z \end{bmatrix} \in \mathbf{S}_{+}^{2}$

Operations that preserve convexity

practical methods for establishing convexity of a set C

1. apply definition

$$x_1, x_2 \in C, \quad 0 \le \theta \le 1 \quad \Longrightarrow \quad \theta x_1 + (1 - \theta) x_2 \in C$$

- 2. show that C is obtained from simple convex sets (hyperplanes, halfspaces, norm balls, . . .) by operations that preserve convexity
 - intersection
 - affine functions
 - perspective function
 - linear-fractional functions

Intersection

the intersection of (any number of, even infinite) convex sets is convex example:

$$S = \{x \in \mathbf{R}^m \mid |p(t)| \le 1 \text{ for } |t| \le \pi/3\}$$

where $p(t) = x_1 \cos t + x_2 \cos 2t + \dots + x_m \cos mt$

for m=2:

Affine function

suppose $f: \mathbf{R}^n \to \mathbf{R}^m$ is affine $(f(x) = Ax + b \text{ with } A \in \mathbf{R}^{m \times n}, b \in \mathbf{R}^m)$

ullet the image of a convex set under f is convex

$$S \subseteq \mathbf{R}^n \text{ convex} \implies f(S) = \{f(x) \mid x \in S\} \text{ convex}$$

ullet the inverse image $f^{-1}(C)$ of a convex set under f is convex

$$C \subseteq \mathbf{R}^m \text{ convex} \implies f^{-1}(C) = \{x \in \mathbf{R}^n \mid f(x) \in C\} \text{ convex}$$

examples

- scaling, translation, projection
- solution set of linear matrix inequality $\{x \mid x_1A_1 + \cdots + x_mA_m \leq B\}$ (with $A_i, B \in \mathbf{S}^p$)
- hyperbolic cone $\{x \mid x^T P x \leq (c^T x)^2, c^T x \geq 0\}$ (with $P \in \mathbf{S}^n_+$)

Perspective and linear-fractional function

perspective function $P: \mathbb{R}^{n+1} \to \mathbb{R}^n$:

$$P(x,t) = x/t,$$
 $\mathbf{dom} P = \{(x,t) \mid t > 0\}$

images and inverse images of convex sets under perspective are convex

linear-fractional function $f: \mathbb{R}^n \to \mathbb{R}^m$:

$$f(x) = \frac{Ax + b}{c^T x + d},$$
 $\mathbf{dom} f = \{x \mid c^T x + d > 0\}$

images and inverse images of convex sets under linear-fractional functions are convex

line segments preserved: for x, $y \in \operatorname{dom} f$,

$$f([x,y]) = [f(x), f(y)]$$

hence, if C convex, $C \subseteq \operatorname{dom} f$, then f(C) convex

Generalized inequalities

a convex cone $K \subseteq \mathbf{R}^n$ is a **proper cone** if

- K is closed (contains its boundary)
- *K* is solid (has nonempty interior)
- *K* is pointed (contains no line)

examples

- nonnegative orthant $K = \mathbf{R}^n_+ = \{x \in \mathbf{R}^n \mid x_i \geq 0, i = 1, \dots, n\}$
- positive semidefinite cone $K = \mathbf{S}^n_+$
- nonnegative polynomials on [0,1]:

$$K = \{x \in \mathbf{R}^n \mid x_1 + x_2t + x_3t^2 + \dots + x_nt^{n-1} \ge 0 \text{ for } t \in [0, 1]\}$$

generalized inequality defined by a proper cone K:

$$x \leq_K y \iff y - x \in K, \qquad x \prec_K y \iff y - x \in \mathbf{int} K$$

examples

• componentwise inequality $(K = \mathbf{R}_{+}^{n})$

$$x \preceq_{\mathbf{R}^n_+} y \iff x_i \leq y_i, \quad i = 1, \dots, n$$

• matrix inequality $(K = \mathbf{S}_{+}^{n})$

$$X \preceq_{\mathbf{S}^n_+} Y \quad \Longleftrightarrow \quad Y - X \text{ positive semidefinite}$$

these two types are so common that we drop the subscript in \leq_K properties: many properties of \leq_K are similar to \leq on \mathbf{R} , e.g.,

$$x \leq_K y, \quad u \leq_K v \implies x + u \leq_K y + v$$

Separating hyperplane theorem

if C and D are disjoint convex sets, then there exists $a \neq 0$, b such that

$$a^T x \le b \text{ for } x \in C, \qquad a^T x \ge b \text{ for } x \in D$$

the hyperplane $\{x \mid a^Tx = b\}$ separates C and D

strict separation requires additional assumptions (e.g., C is closed, D is a singleton)

Supporting hyperplane theorem

supporting hyperplane to set C at boundary point x_0 :

$$\{x \mid a^T x = a^T x_0\}$$

where $a \neq 0$ and $a^T x \leq a^T x_0$ for all $x \in C$

supporting hyperplane theorem: if C is convex, then there exists a supporting hyperplane at every boundary point of C

Dual cones and generalized inequalities

dual cone of a cone K: $K^* = \{y \mid y^T x \ge 0 \text{ for all } x \in K\}$

examples

- $\bullet K = \mathbf{R}^n_+: K^* = \mathbf{R}^n_+$
- $K = \mathbf{S}_{+}^{n}$: $K^{*} = \mathbf{S}_{+}^{n}$
- $K = \{(x,t) \mid ||x||_2 \le t\}$: $K^* = \{(x,t) \mid ||x||_2 \le t\}$
- $K = \{(x,t) \mid ||x||_1 \le t\}$: $K^* = \{(x,t) \mid ||x||_\infty \le t\}$

first three examples are **self-dual** cones

dual cones of proper cones are proper, hence define generalized inequalities:

$$y \succeq_{K^*} 0 \iff y^T x \ge 0 \text{ for all } x \succeq_K 0$$