Teoría de Control

Roberto Cadena Vega

13 de octubre de 2014

Criterio de Estabilidad de Routh-Hurwitz

$$\frac{\hat{y}(s)}{\hat{R}(s)} = \frac{b_0 s^m + b_1 s^{m-1} + \dots + b_{m-1} s + b_m}{a_0 s^n + a_1 s^{n-1} + \dots + a_{n-1} s + a_n} = \frac{B(s)}{A(s)}$$
(1.1)

$$\frac{\hat{y}(s)}{\hat{R}(s)} = \sum \frac{k_{1,i}}{s + \alpha_i} + \sum \frac{k_{2,j} + k_{3,j} \cdot s}{(s + \beta_i)^2 + {\gamma_i}^2}; m \le n$$
(1.2)

El criterio de Routh-Hurwitz determina si existen raíces en el semiplano complejo derecho cerrado.

Tabla de Routh

La tabla de Routh es un método para obtener el numero de raíces con parte real positiva que se encontraran en el polinomio característico del sistema (Ecuación 1.3) sin tener que calcular las raíces en cuestión. Se puede dividir en cuatro pasos que se enumeran a continuación.

$$A(s) = a_0 s^n + a_1 s^{n-1} + \dots + a_{n-1} s + a_n = 0$$
(1.3)

1. Hipótesis Si $a_0 = 0 \Rightarrow$ el polinomio es de orden menor a n.

Si
$$a_n = 0 \Rightarrow \exists$$
 una raíz que es $0 \Rightarrow A(s) = (\bar{n_0}s^{\bar{n}} + \bar{a_n}s^{\bar{n-1}} + ...)s^k$.

2. Si existen coeficientes nulos o de diferente (cambio de) signo, entonces existen raíces con parte real positiva.

3. Construir la tabla de Routh (Ver Cuadro 1.1).

Cuadro 1.1: Ejemplo de tabla de Routh.

Donde:

$$\begin{split} b_1 &= \frac{\alpha_1\alpha_2 - \alpha_0\alpha_3}{\alpha_1}, b_2 = \frac{\alpha_1\alpha_4 - \alpha_0\alpha_5}{\alpha_1}, \dots \\ c_1 &= \frac{b_1\alpha_3 - \alpha_1b_2}{b_1}, c_2 = \frac{b_1\alpha_5 - \alpha_1b_3}{b_1}, \dots \\ d_1 &= \frac{c_1b_2 - b_1c_2}{c_1}, d_2 = \frac{c_1b_3 - b_1c_3}{c_1}, \dots \\ \vdots \end{split}$$

4. El número de raíces con parte real positiva es igual al numero de cambios de signo en la primera columna(Ver Cuadro 1.2).

$$\begin{array}{c|cccc} s^n & a_0 \\ s^{n-1} & a_1 \\ s^{n-2} & b_1 \\ s^{n-3} & c_1 \\ s^{n-4} & d_1 \\ \vdots & \vdots & \vdots \\ s^2 & e_1 \\ s^1 & f_1 \\ s^0 & g_1 \end{array}$$

Cuadro 1.2: Números en los que hay que revisar el cambio de signo.

Casos Especiales

1. En los casos en los que un coeficiente es 0 se puede intercambiar por un ε lo suficientemente pequeño para aproximar a 0 (Véase el Cuadro 1.3).

$$A(s) = s^3 + 2s^2 + s + 2 = 0$$

Cuadro 1.3: Caso Especial 1.

2. Cuando existen cambios en los coeficientes del polinomio característico se sabe que existirán raíces con parte real positiva (Véase el cuadro 1.4).

 $A(s) = s^3 - 3s + 2 = 0$

$$\begin{array}{c|cccc} s^3 & 1 & -3 \\ s^2 & 0 \approx \varepsilon & 2 \\ s^1 & -\frac{2}{\varepsilon} & 0 \\ s^0 & 2 & \end{array}$$

Cuadro 1.4: Caso Especial 2.

3. Cuando todos los coeficientes en una linea se eliminan se puede crear un nuevo polinomio auxiliar con la linea anterior, obtener su derivada e insertar en la siguiente linea para continuar calculando la tabla (Véase el Cuadro 1.5 y 1.6).

$$A(s) = s^5 + 2s^4 + 24s^3 + 48s^2 - 25s - 50 = 0$$

$$p_{aux}(s) = 2s^4 + 48s^2 - 50$$

 $p_{aux}(s) = 2s^{4} + 48s^{2} - 50$ $\frac{d}{dx}p_{aux}(s) = 8s^{3} + 96s$

Cuadro 1.5: Caso Especial 3a.

Cuadro 1.6: Caso Especial 3b.

Figura 1.1: Polos en el plano complejo.

Aplicación del criterio de Routh

Si bien los sistemas numéricos actuales permiten el calculo de las raíces de un sistema de manera mas rápida y sencilla que con la aplicación de este método, aun existen aplicaciones practicas en las que es de suma importancia el determinar el numero de raíces positivas. Por ejemplo podemos tener ganancias en un sistema para las que queremos determinar de primera instancia, un rango de valores para los cuales el sistema no se volverá inestable.

Para ello calculamos la tabla de Routh de la misma manera en que lo hicimos anteriormente, pero teniendo en cuenta las ganancias a incluir en el calculo de las raíces (Por ejemplo con una ganancia proporcional véase Cuadro 1.7).

Cuadro 1.7: Aplicación del criterio de Routh.

Ejemplo:

Se toma el sistema $\frac{\hat{y}(s)}{\hat{R}(s)} = \frac{k}{s^4 + 3s^3 + 3s^2 + 2s + k}$, entonces el polinomio característico del sistema será $F(s) = s^4 + 3s^3 + 3s^2 + 2s + k$.

Construimos su tabla de Routh (Cuadro 1.8):

Cuadro 1.8: Ejemplo de Aplicación del criterio de Routh.

De lo anterior podemos concluir que, para que no existan cambios de signos, toda la primera columna tiene que ser positiva, por lo que k > 0 y 2 $^{-9}$ /₇k > 0, por lo que el rango de valores que puede ocupar la ganancia k es $0 < k < ^{14}$ /₉

Si bien esto no nos aporta una ganancia especifica para un comportamiento deseado, si nos da la pauta a los valores a tomar en cuenta, si no se desea que el sistema sea inestable.

Acción Proporcional

Tenemos un sistema de primer orden, al que le agregaremos un controlador de ganancia proporcional y una retroalimentación negativa, por lo que las ecuaciones que describen la salida y el error del sistema quedan:

$$\frac{\hat{\mathbf{y}}(\mathbf{s})}{\hat{\mathbf{R}}(\mathbf{s})} = \frac{\mathbf{k}}{\mathsf{T}\mathbf{s} + 1 + \mathbf{k}} \tag{1.4}$$

$$\frac{\hat{e}(s)}{\hat{R}(s)} = \frac{R(s) - Y(s)}{R(s)} = \frac{Ts + 1}{Ts + 1 + k}$$
(1.5)

Estabilidad

El problema reside en encontrar un conjunto de ganancias k para las cuales el sistema es estable.

$$F(s) = s + \frac{1+k}{T} \tag{1.6}$$

Aplicamos una tabla de Routh a este polinomio característico (Cuadro 1.9).

$$\begin{array}{c|c}
s^1 & 1 \\
s^0 & \frac{1+k}{T}
\end{array}$$

Cuadro 1.9: Tabla de Routh para acción proporcional.

Por lo que concluimos que la ganancia k debe de seguir: k > -1

Error en el estado permanente al escalón unitario

También es importante investigar el error que causara el controlador al introducirse. Si ponemos como señal de referencia al escalón unitario($R(s)=\frac{1}{s}$), podemos ver lo siguiente:

$$\lim_{t\to\infty}e(t)=\lim_{s\to 0}se(s)=\lim_{s\to 0}\frac{Ts+1}{Ts+1+k}=\frac{1}{1+k}$$

Acción Integral

Tenemos un sistema de primer orden, al que le agregaremos un controlador de ganancia integral y una retroalimentación negativa, por lo que las ecuaciones que describen la salida y el error del sistema quedan:

$$\frac{\hat{\mathbf{y}}(s)}{\hat{\mathbf{R}}(s)} = \frac{k}{s(\mathsf{T}s+1)+k} \tag{1.7}$$

$$\frac{\hat{e}(s)}{\hat{R}(s)} = \frac{R(s) - Y(s)}{R(s)} = \frac{s(Ts+1)}{s(Ts+1) + k}$$
(1.8)

Estabilidad

El problema reside en encontrar un conjunto de ganancias k para las cuales el sistema es estable.

$$F(s) = s^2 + \frac{1}{T}s + \frac{k}{T} \tag{1.9}$$

Aplicamos una tabla de Routh a este polinomio característico (Cuadro 1.10).

$$\begin{vmatrix}
s^2 & 1 & \frac{k}{T} \\
s^1 & \frac{1}{T} & 0 \\
s^0 & \frac{k}{T}
\end{vmatrix}$$

Cuadro 1.10: Tabla de Routh para acción integral.

Por lo que concluimos que la ganancia k debe de seguir: k > 0

Error en el estado permanente al escalón unitario

También es importante investigar el error que causara el controlador al introducirse. Si ponemos como señal de referencia al escalón unitario($R(s) = \frac{1}{s}$), podemos ver lo siguiente:

$$\lim_{t \to \infty} e(t) = \lim_{s \to 0} se(s) = \lim_{s \to 0} s\left(\frac{s(\mathsf{T}s+1)}{s(\mathsf{T}s+1) + k} \frac{1}{s}\right) = 0$$

Acción Proporcional Integral

Estabilidad

Error en el estado permanente al escalón unitario

Lugar de las Raíces

Si tenemos un sistema con retroalimentación, su polinomio característico es el siguiente:

$$F(s) = 1 + H(s)G(s) = 0 (2.1)$$

Donde G(s) es la planta y H(s) es el elemento de retroalimentación. Las condiciones de angulo y magnitud son las siguientes:

$$\angle H(s)G(s) = \pm 180^{\circ}(2R+1) \mid R \in \mathbb{Z}^{+}$$
 (2.2)

$$|\mathsf{H}(\mathsf{s})\mathsf{G}(\mathsf{s})| = 1 \tag{2.3}$$

De aquí notamos que la condición de angulo, nos da la forma del lugar de las raíces, y la condición de magnitud nos da su posición.

Pues bien, para trazar el lugar geométrico de las raíces seguimos una serie de pasos enumerados a continuación:

1. Determinar el lugar de las raíces en el eje real.

Ejemplo:
$$H(s) = 1$$
, $G(s) = \frac{k}{s(s+1)(s+2)}$

Sabemos, por una inspección visual, que los polos del sistema son 0, -1, y -2, y que este sistema no tiene ceros. Lo cual nos indica, por la condición de angulo, que la suma de las interacciones de estas raices, nos dará la interacción total del sistema:

$$\angle G(s) = -\angle s - \angle s + 1 - \angle s + 2 = \pm 180^{\circ}(2R + 1)$$

Notemos que cualquier lugar de las raices en el semiplano derecho complejo (inestable), viene con un angulo de 0° , por lo que las interacciones de cada polo serían:

$$\angle G(s) = -0^{\circ} - 0^{\circ} - 0^{\circ} = 0^{\circ}$$

lo cual obviamente no cumple con la condición de angulo del sistema.

Si pasamos a la siguiente sección del eje real (creada por los mismos polos del sistema), tenemos que los angulos de interacción de cada polo son:

$$\angle G(s) = -180^{\circ} - 0^{\circ} - 0^{\circ} = -180^{\circ}$$

lo cual cumple con la condición de angulo del sistema.

En la siguiente sección (entre -1 y -2), tenemos lo siguiente:

$$\angle G(s) = -180^{\circ} - 180^{\circ} - 0^{\circ} = -360^{\circ} = 0^{\circ}$$

y esto no cumple con la condición de angulo del sistema.

En la ultima sección (entre -2 y $-\infty$) tenemos:

$$\angle G(s) = -180^{\circ} - 180^{\circ} - 180^{\circ} = -540^{\circ} = -180^{\circ}$$

por lo que esta ultima sección tambien es parte del lugar geométrico de las raices.

2. Determinar las asintotas del lugar de las raíces.

El lugar de las raices se aproxima a sus asintotas, mientras $s \to \infty$, por lo que podemos hacer una simplificación:

$$\lim_{s \to \infty} G(s) = \lim_{s \to \infty} \frac{k}{s(s+1)(s+2)} = \lim_{s \to \infty} \frac{K}{s^3}$$

por lo que la condición de angulo queda:

$$\angle G(s) = -3\angle s = \pm 180^{\circ}(2R+1) \implies \angle s = \pm 60^{\circ}(2R+1)$$

lo cual nos da que los angulos de las asintotas son 60°, -60° y 120°.

Por otro lado, si hacemos un proceso similar, pero con el polinomio característico desarrollado, podremos ver que hay terminos mas importantes que otros, en especial cuando hacemos $s \to \infty$, por lo que:

$$G(s) = \frac{k}{s(s+1)(s+2)} = \frac{k}{s^3 + 3s^2 + 2s} \approx \frac{k}{(s+1)^3}$$

por lo que podemos ver que las asintotas tienen esa forma, y que podemos asegurar que parten del punto -1+0i.

3. Determinar el punto de ruptura o partida de las asintotas en el eje real.

Para determinar el punto de ruptura del lugar de las raices, tenemos que pensar en el polinomio característico como la suma de 2 polinomios diferentes A(s) y B(s), de tal manera que ninguno contenga a la ganancia k, entonces tendremos:

$$F(s) = B(s) + kA(s) = 0 \implies k = -\frac{B(s)}{A(s)}$$

implicando que estamos obteniendo las ganancias, para las cuales se tienen polos en el plano complejo.

De aqui podemos pensar en el punto maximo de esta función de ganancias, como el punto de ruptura buscado, es decir:

$$\frac{\mathrm{d}\mathbf{k}}{\mathrm{d}\mathbf{s}} = 0 \tag{2.4}$$

En nuestro ejemplo, esto nos da como resultado:

$$k = -s^3 - 3s^2 - 2s \implies \frac{dk}{ds} = -3s^2 + 6s + 2 = 0$$

de donde obtenemos un par de respuestas $s_1=-0.423$ y $s_2=-1.577$, con ganancias asociadas $k_1=0.385$ y $k_2=-0.385$.

De aqui podemos descartar s_2 ya que no se encuentra en el lugar de las raices del eje real, y obviamente no puede partir de ahi, si no existe en ese lugar en especifico.

4. Determinar los puntos donde el lugar de las raíces atraviesa el eje imaginario.

Ya hemos visto que los polos sobre el eje real no cruzan el eje imaginario, ahora solo tenemos que encontrar las ganancias criticas, es decir, cuando los polos estan sobre el eje imaginario.

$$F(s) = s^3 + 3s^2 + 2s + k$$

$$\begin{array}{c|cccc}
s^3 & 1 & 2 \\
s^2 & 3 & k \\
s^1 & 2 - k/3 & 0 \\
s^0 & k & & & \\
\end{array}$$

De donde obtenemos que k > 0, lo cual ocurre en el polo del origen y k < 6, que es justo cuando cruza por el eje imaginario.

Ahora, tan solo tenemos que obtener las raices del polinomio característico con la ganancia adecuada y obtendremos el punto de cruce, alternativamente, podemos usar el polinomio auxiliar de la tabla de Routh, usaremos el correspondiente a s^2 .

$$P_{aux} = 3s^2 + k = 3s^2 + 6 = 0 \implies s = \pm \sqrt{2}j$$

Compensador Adelanto/Atraso (LR)

Compensador de adelanto de fase

Compensador de atraso de fase

Error estático de posición $k_{\mathfrak{p}}$

Error estático de velocidad k_v

Diagramas de Bode

Factor integral

Factor derivativo

Factores de primer orden

Factores de segundo orden

Frecuencia de resonancia ω_n y valor par de resonancia M_R

Diagramas de Nyquist

Factor integral

Factor derivativo

Factores de primer orden

Factores de segundo orden

Criterio de Estabilidad de Nyquist

Ejemplos

Estabilidad Relativa

Margen de Fase

Estable

Inestable

Margen de Ganancia

Estable

Inestable

Compensador de adelanto y atrase de fase (Frecuencia)

Compensador de adelanto de fase

Compensador de atraso de fase

Ejemplos

Controladores PID

Sintonización: Reglas de Ziegler-Nichols

Respuesta al escalón

Respuesta a oscilaciones sostenidas

Esquemas modificados

Controlador PID

Controlador PI-D

Controlador I-PD

Representación de estado

La siguiente funcion de transferencia es la Transformada de Laplace de la ecuacion diferencial ordinaria de orden n que describe al sistema.

$$\frac{\hat{y}(s)}{\hat{u}(s)} = \frac{b_0 s^m + b_1 s^{m-1} + \dots + b_{m-1} s + b_m}{s^n + a_1 s^{n-1} + \dots + a_{n-1} s + a_n} = \frac{B(s)}{A(s)}, m \le n$$
(10.1)

$$\frac{d^{n}}{dt^{n}}y(t) + a_{1}\frac{d^{n-1}}{dt^{n-1}}y(t) + \dots + a_{n-1}\frac{d}{dt}y(t) + a_{n}\frac{d}{dt}y(t)
= b_{0}\frac{d^{m}}{dt^{m}}u(t) + b_{1}\frac{d^{m-1}dt^{m-1}}{u}(t) + \dots + b_{m-1}\frac{d}{dt}u(t) + b_{m}u(t) \quad (10.2)$$

Haciendo la siguiente asignacion de variables:

$$x_2 = \frac{d}{dt}x_1 = \frac{d}{dt}z$$

$$x_3 = \frac{d}{dt}x_2 = \frac{d^2}{dt^2}z$$

$$\vdots = \vdots$$

$$x_{n-1} = \frac{d}{dt}x_{n-2} = \frac{d^{n-2}}{dt^{n-2}}z$$

$$x_n = \frac{d}{dt}x_{n-1} = \frac{d^{n-1}}{d^{n-1}}z$$

Donde:

$$\frac{d}{dt}x_n = -a_n x_1 - a_{n-1} x_2 - \dots - a_2 x_{n-1} - a_1 x_n + u(t)$$
(10.3)

$$\frac{d}{dt}x_n = -a_n x_1 - a_{n-1} x_2 - \dots - a_2 x_{n-1} - a_1 x_n + u(t)$$
(10.3)

$$y = b_{m}x_{1} + b_{m-1}x_{2} + \dots + b_{1}x_{m-1} + b_{0}x_{m}$$
(10.4)

Por lo que se obtiene:

$$\begin{split} \left(\frac{d^n}{dt^n} + a_1 \frac{d^{n-1}}{dt^{n-1}} + \dots + a_{n-1} \frac{d}{dt} + a_n\right) z(t) &= u(t) \\ y(t) &= \left(b_m + b_{m-1} \frac{d}{dt} + \dots + b_1 \frac{d^{m-1}}{dt^{m-1}} + b_0 \frac{d^m}{dt^m}\right) z(t) \end{split}$$

 $M\left(\frac{\mathrm{d}}{\mathrm{d}t}\right)z(t) = u(t)$

 $y(t) = N\left(\frac{d}{dt}\right)z(t)$

(10.5)

(10.6)

es decir:

Lo cual implica
$$M\left(\frac{d}{dt}\right)y(t) = N\left(\frac{d}{dt}\right)u(t)$$
. Donde:
$$M\left(\frac{d}{dt}\right) = \left(\frac{d^n}{dt^n} + a_1\frac{d^{n-1}}{dt^{n-1}} + \dots + a_{n-1}\frac{d}{dt} + a_n\right)$$

 $N\left(\frac{d}{dt}\right) = \left(b_m + b_{m-1}\frac{d}{dt} + \dots + b_1\frac{d^{m-1}}{dt^{m-1}} + b_0\frac{d^m}{dt^m}\right)$

Esta es la misma ecuación diferencial con la que empezamos. Note que la escritura matricial de esta Ecuación Diferencial Ordinaria¹ es:

cial de esta Ecuación Diferencial Ordinaria¹ es:
$$\frac{d}{d\vec{v}} = A\vec{v}(t) + \vec{h}_{11}(t)$$
(10.7)

 $\frac{\mathrm{d}}{\mathrm{d}t}\vec{x} = A\vec{x}(t) + \vec{b}u(t)$ (10.7)

$$\frac{d}{dt}\vec{x} = A\vec{x}(t) + bu(t) \tag{10.7}$$

$$\vec{v}(t) = \vec{c}^{\mathsf{T}} \cdot \vec{v}(t) \tag{10.8}$$

$$\vec{\mathbf{y}}(\mathbf{t}) = \vec{\mathbf{c}}^{\mathsf{T}} \cdot \vec{\mathbf{x}}(\mathbf{t}) \tag{10.8}$$

Donde:

$$\vec{y}(t) = \vec{c}^T \cdot \vec{x}(t) \tag{10.8}$$
 Donde:

Donde:
$$\vec{x}(t) = \begin{pmatrix} x_1(t) \\ x_2(t) \\ \vdots \\ x_n(t) \end{pmatrix}$$

$$\begin{pmatrix} 0 & 1 & 0 & \dots & 0 & 0 \\ \end{pmatrix}$$

$$(10.9)$$

(10.9) $A = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 & 0 \\ 0 & 0 & 1 & \dots & 0 & 0 \\ 0 & 0 & 0 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 0 & 1 \\ -a_n & -a_{n-1} & -a_{n-2} & \dots & -a_{n-3} & 2 \end{pmatrix}$ (10.10)

 $\vec{b} = \begin{pmatrix} 0 \\ 0 \\ \vdots \end{pmatrix}$ (10.11)

¹Si bien la notación correcta es la que se utiliza justo ahora, al final del capitulo se dejará a un lado, para obviar el hecho de que son vectores y matrices, sin que por eso se entienda que ya no lo son.

$$\vec{c} = \begin{pmatrix} b_{m} \\ b_{m-} \\ \vdots \\ b_{1} \\ b_{0} \\ \vdots \\ 0 \\ 0 \end{pmatrix}$$

(10.12)

Solución temporal de la ecuación de estado

Ecuación Diferencial Ordinaria: $\frac{\mathrm{d}}{\mathrm{d}t}x(t) = ax(t) \mid x(0) = x_0$

 $\mathbf{x}(\mathsf{t}) = \left(\sum_{i=0}^{\infty} \frac{1}{i!} (\alpha \mathsf{t})^i\right) \mathbf{x}_0$

 $x(t) = e^{\alpha t} x_0$

Notese que: $\frac{d}{dt}x(t) = \left(\sum_{i=0}^{\infty} \frac{1}{i!} \frac{d}{dt}(\alpha t)^i\right) x_0 = \left(\sum_{i=1}^{\infty} \frac{1}{(i-1)!} (\alpha t)^{i-1}\right) \alpha x_0 = \left(\sum_{i=0}^{\infty} \frac{1}{j!} (\alpha t)^j\right) \alpha x_0$

 $\frac{d}{dt}x(t) = ae^{at}x_0 = ax(t) \quad x(0) = x_0$

 $\frac{\mathrm{d}}{\mathrm{d}t}\vec{x}(t) = \alpha\vec{x}(t) \mid \vec{x}(0) = \vec{x}_0$

 $\vec{x}(t) = \vec{\alpha}_0 + \vec{\alpha}_1 t + \vec{\alpha}_2 t^2 + \dots + \vec{\alpha}_k t^k + \dots$

De la misma manera que en el caso escalar, se supone una solución de la forma:

2. Para el caso en que A es una matriz y la solución es homogénea se considera la siguiente

(10.13)

(10.14)

(10.15)

(10.16)

(10.17)

(10.18)

 $= a\alpha_0 + a\alpha_1t + a\alpha_2t^2 + \cdots + a\alpha_kt^k + \ldots$

1. Para el caso en que A es un escalar y la solución es homogénea se considera la siguiente

$$x(t) = \alpha_0 + \alpha_1 t + \alpha_2 t^2 + \dots + \alpha_k t^k + \dots$$

Entonces se tiene:

$$\alpha_1 + 2\alpha_2 t + 3\alpha_3 t^2 + \cdots + k\alpha_k t^{k-1} + \cdots$$

Por lo que las α_i deben satisfacer:

For 10 que las
$$\alpha_1$$
 depen satisface

Ecuación Diferencial Ordinaria:

$$lpha_1 =$$

$$\alpha_2 = 0$$
 $\alpha_3 = 0$

$$\vdots = \vdots = \vdots$$

$$\alpha_k = \alpha \alpha_{k-1} = \frac{1}{k!} \alpha^k \alpha_0$$

Entonces se tiene:

$$\begin{split} \vec{\alpha}_1 + 2\vec{\alpha}_2 t + 3\vec{\alpha}_3 t^2 + \dots + k\vec{\alpha}_k t^{k-1} + \dots \\ &= A\vec{\alpha}_0 + A\vec{\alpha}_1 t + A\vec{\alpha}_2 t^2 + \dots + A\vec{\alpha}_k t^k + \dots \end{split}$$

Por lo que las $\vec{\alpha}_i$ deben satisfacer:

$$\vec{\alpha}_{1} = A\vec{\alpha}_{0} = \frac{1}{1!}A^{1}\vec{\alpha}_{0}
\vec{\alpha}_{2} = A\vec{\alpha}_{1} = \frac{1}{2!}A^{2}\vec{\alpha}_{0}
\vec{\alpha}_{3} = A\vec{\alpha}_{2} = \frac{1}{3!}A^{3}\vec{\alpha}_{0} ; \vec{\alpha}_{0} = \vec{x}_{0}
\vdots = \vdots = \vdots
\vec{\alpha}_{k} = A\vec{\alpha}_{k-1} = \frac{1}{k!}A^{k}\vec{\alpha}_{0}$$
(10.19)

Esto es:

$$\vec{\mathsf{x}}(\mathsf{t}) = \left(\sum_{\mathsf{i}=0}^{\infty} \frac{1}{\mathsf{i}!} (\mathsf{A}\mathsf{t})^{\mathsf{i}}\right) \vec{\mathsf{x}}_0$$

En análisis real, se demuestra que esta serie es absolutamente convergente y se define como:

$$\exp\left(At\right) = \sum_{i=0}^{\infty} \frac{1}{i!} (At)^{i}$$
(10.20)

Notese que:

$$\frac{d}{dt} \exp{(At)} = \frac{d}{dt} \sum_{i=0}^{\infty} \frac{1}{i!} (At)^{i} = \left(\sum_{i=1}^{\infty} \frac{1}{(i-1)!} (At)^{i-1} \right) A = A \sum_{j=0}^{\infty} \frac{1}{j!} (At)^{j} = A \exp{(At)}$$

 $\vec{x}(t) = \exp(At)\vec{x}_0$

Por lo que:

$$\frac{\mathrm{d}}{\mathrm{d}t}\vec{x}(t) = A \exp(At)\vec{x}_0 = A\vec{x}(t) \quad \vec{x}(0) = \vec{x}_0$$

3. Para el caso en que A es escalar y la solución es forzada:

$$\frac{d}{dt}x(t) = ax(t) + bu(t) \mid x(0) = 0$$
 (10.21)

La solución a esta ecuación es:

$$x(t) = \int_0^t e^{\alpha(t-\tau)} bu(\tau) d\tau$$
 (10.22)

$$\frac{d}{dt}x(t) = e^{\alpha(t-t)}bu(t) + \int_0^t \frac{d}{dt}e^{\alpha(t-\tau)}bu(\tau) d\tau = bu(t) + \alpha \int_0^t e^{\alpha(t-\tau)}bu(\tau) d\tau$$

$$\frac{d}{dt}x(t) = bu(t) + ax(t)$$
 (10.23)

(10.27)

(10.28)

Por lo que la solución general (con $x(0) = x_0$):

$$x(t) = e^{\alpha t} x_0 + \int_0^t e^{\alpha(t-\tau)} b u(\tau) d\tau$$
 (10.24)

4. Para el caso en que A es una matriz y la solución es forzada:

$$\frac{d}{dt}\vec{x}(t) = A\vec{x}(t) + \vec{b}u(t) \mid \vec{x}(0) = 0$$
 (10.25)

La solución de esta ecuación es:

$$\vec{x}(t) = \int_0^t \exp(A(t-\tau))\vec{b}u(\tau) d\tau$$
 (10.26)

En efecto, derivando tenemos:

$$\frac{d}{dt}\vec{x}(t) = \exp\left(A(t-t)\right)\vec{b}u(t) + \int_0^t \frac{d}{dt}\exp\left(A(t-\tau)\right)\vec{b}u(\tau) d\tau = \vec{b}u(t) + A\int_0^t \exp\left(A(t-\tau)\right)\vec{b}u(\tau) d\tau$$

$$\frac{\mathrm{d}}{\mathrm{d}t}\vec{\mathrm{x}}(\mathsf{t}) = \vec{\mathrm{b}}\mathsf{u}(\mathsf{t}) + \alpha\vec{\mathrm{x}}(\mathsf{t})$$

Por lo que la solución general (con
$$x(0) = x_0$$
):

$$\vec{x}(t) = \exp(At)\vec{x}_0 + \int_0^t \exp(A(t-\tau))\vec{b}u(\tau) d\tau$$

Función (Matriz) de transferencia de la ecuación de estado

1. Para el caso escalar, se tiene que la transformada de Laplace con coeficientes independientes nulos es:

$$sx(s) = ax(s) + bu(s)$$

$$(s-a)x(s) = bu(s)$$

$$x(s) = (s-a)^{-1}bu(s)$$

$$x(s) = \frac{b}{s-a}u(s)$$

Por lo que:

$$e^{\alpha t} = \mathcal{L}^{-1} \left\{ (s - \alpha)^{-1} \right\} \tag{10.29}$$

2. Para el caso matricial, tenemos que la transformada de Laplace con coeficientes independientes nulos es:

$$s\vec{x}(s) = A\vec{x}(s) + \vec{b}u(s)$$
$$(sI - A)\vec{x}(s) = \vec{b}u(s)$$
$$x(s) = (sI - A)^{-1}\vec{b}u(s)$$

Por lo que:

$$\exp{(At)} = \mathcal{L}^{-1}\left\{ (sI - A)^{-1} \right\} \tag{10.30}$$

Función de transferencia de la representación de estado

Sea la siguiente Ecuación Diferencial Ordinaria:

$$M\left(\frac{d}{dt}\right)y(t) = N\left(\frac{d}{dt}\right)u(t)$$

donde:

$$M\left(\frac{d}{dt}\right) = \frac{d^n}{dt^n} + a_1 \frac{d^{n-1}}{dt^{n-1}} + \dots + a_{n-1} \frac{d}{dt} + a_n$$

$$N\left(\frac{d}{dt}\right) = b_m + b_{m-1} \frac{d}{dt} + \dots + b_1 \frac{d^{m-1}}{dt^{m-1}} + b_0 \frac{d^m}{dt^m}$$

La función de transferencia con coeficientes independientes nulos de las ecuaciones es:

$$F(s) = \frac{N(s)}{M(s)} = \frac{\frac{d^n}{dt^n} + a_1 \frac{d^{n-1}}{dt^{n-1}} + \dots + a_{n-1} \frac{d}{dt} + a_n}{b_m + b_{m-1} \frac{d}{dt} + \dots + b_1 \frac{d^{m-1}}{dt^{m-1}} + b_0 \frac{d^m}{dt^m}}$$
(10.31)

Ceros. Las raíces del polinomio N(s).

Polos. Las raíces del polinomio M(s).

Sea la siguiente representación de estado de la Ecuación Diferencial Ordinaria:

(sI - A)x(s) = bu(s)

$$\frac{d}{dt}x = Ax + bu$$
$$y = c^{T}x + du$$

La función de transferencia con coeficientes independientes nulos en esta representación es:

$$sx(s) = Ax(s) + bu(s)$$

 $y(s) = c^{T}x(s) + du(s)$

$$y(s) = bu(s)$$

$$y(s) = c^{T}x(s) + du(s)$$

$$x(s) = (sI - A)^{-1}bu(s)$$

 $y(s) = c^{T}x(s) + du(s)$

$$y(s) = c^{\mathsf{T}}[(sI - A)^{-1}bu(s)] + du(s) = [c^{\mathsf{T}}(sI - A)^{-1}b + d]u(s)$$

.

$$F(s) = c^{T}(sI - A)^{-1}b + d$$
 (10.32)

Matriz sistema

$$\Sigma(s) = \begin{pmatrix} sI - A & b \\ -c^{\mathsf{T}} & d \end{pmatrix}$$
 (10.33)

Note que:

$$\begin{pmatrix} (sI-A)^{-1} & 0 \\ 0 & I \end{pmatrix} \begin{pmatrix} sI-A & b \\ -c^T & d \end{pmatrix} \begin{pmatrix} I & -(sI-A)b \\ 0 & I \end{pmatrix}$$

$$= \begin{pmatrix} I & (sI-A)^{-1}b \\ -c^T & d \end{pmatrix} \begin{pmatrix} I & -(sI-A)b \\ 0 & I \end{pmatrix}$$

$$= \begin{pmatrix} I & 0 \\ -c^T & (c^T(sI-A)^{-1}b+d) \end{pmatrix}$$

Por lo que:

$$\det\left((sI - A)^{-1}\right) \cdot \det\left(\Sigma(s)\right) \cdot I = c^{\mathsf{T}}(sI - A)^{-1}b + d$$

$$F(s) = \frac{\det(\Sigma(s))}{\det(sI - A)}$$
(10.34)

Por lo que los polos coinciden con los valores propios de A y los ceros son los números complejos que hacen perder rango a la matriz sistema.

Polos:
$$F(s) = \{ s \in \mathbb{C} \mid \det(sI - A) = 0 \}$$
 (10.35)

Ceros:
$$F(s) = \{s \in \mathbb{C} \mid \det(\Sigma(s)) = 0\}$$
 (10.36)

Propiedades de la Matriz A

Definción de la matriz exponencial.

$$\exp\left(At\right) = \sum_{i=1}^{\infty} \frac{1}{i!} (At)^{i}$$

II) Derivada de la matriz exponencial.

$$\frac{d}{dt}\exp(At) = A\exp(At) = (\exp(At))A$$

III) Linealidad del operador matriz exponencial bajo escalar.

$$\exp(At) \exp(A\tau) = \left(\sum_{i=0}^{\infty} \frac{1}{i!} (At)^{i}\right) \left(\sum_{j=0}^{\infty} \frac{1}{j!} (A\tau)^{j}\right)$$
$$= \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} A^{i+j} \frac{t^{i} \tau^{j}}{i! j!} = \sum_{k=0}^{\infty} A^{k} \sum_{j=0}^{k} \frac{t^{i} \tau^{k-j}}{i! (k-i)!}$$

 $=\sum_{k=0}^{\infty}A^{k}\frac{(t+\tau)^{k}}{k!}=\exp\left(A(t+\tau)\right)$ IV) Linealidad del operador matriz exponencial bajo matriz.

$$\exp ((A + B)t) = \exp (At) \exp (Bt) \iff AB = BA$$

V) Cambio de base.

efecto:

Sean dos matrices similares A y Ā, esto es, dos matrices relacionadas por un cambio de base, T matriz invertible, esto es $\bar{A} = T^{-1}AT$.

a) Las matrices exponenciales asociadas a las matrices A y Ā también son similares. En

$$\begin{split} \mathsf{T}^{-1} \exp{(\mathsf{A} \mathsf{t})} \mathsf{T} &= \mathsf{T}^{-1} \left(\sum_{i=0}^{\infty} \frac{1}{i!} (\mathsf{A} \mathsf{t})^i \right) \mathsf{T} = \sum_{i=0}^{\infty} \frac{1}{i!} \mathsf{T}^{-1} \mathsf{A}^i \mathsf{T} \mathsf{t}^i \\ &= \sum_{i=1}^{\infty} \frac{1}{i!} (\mathsf{T}^{-1} \mathsf{A} \mathsf{T})^i \mathsf{t}^i = \exp{\bar{\mathsf{A}} \mathsf{t}} \end{split}$$

(10.37)

(10.38)

(10.40)

b) Los valores propios son invariantes bajo cambio de base. En efecto:

$$\det(sI - \bar{A}) = \det(sI - T^{-1}AT) = \det(sT^{-1}T - T^{-1}AT)$$

$$\det(sI - A) = \det(sI - I - AI) = \det(sI - I - AI)$$

$$= \det(T^{-1}(sI - A)T) = \det(T^{-1}) \det(sI - A) \det(T)$$

$$= \frac{1}{\det(T)} \det(sI - A) \det(T) = \det(sI - A)$$

c) Las raíces de la matriz sistema son invariantes bajo cambio de base. En efecto, sea el sistema representado por:

$$\frac{d}{dt}x = Ax + bu$$
$$y = c^{T}x + du$$

Sea el cambio de variable $x = T\bar{x}$, T invertible. Entonces:

$$T\frac{d}{dt}\bar{x} = AT\bar{x} + bu$$
$$y = c^{T}T\bar{x} + du$$

$$\frac{d}{dt}\bar{x} = T^{-1}AT\bar{x} + T^{-1}bu$$

$$y = c^{T}T\bar{x} + du$$

(10.41)

 $\frac{d}{dt}\bar{x} = \bar{A}\bar{x} + \bar{b}u$ $u = \bar{c}^T\bar{x} + du$

donde
$$\bar{A} = T^{-1}AT$$
, $\bar{b} = T^{-1}b$, $\bar{c}^T = c^TT$. La matriz sistema se puede escribir de la siguiente manera:

Eigenente manera:
$$\Sigma = \begin{pmatrix} sI - A & b \\ -c^{T} & d \end{pmatrix} \implies \bar{\Sigma} = \begin{pmatrix} sI - \bar{A} & \bar{b} \\ -\bar{c}^{T} & d \end{pmatrix} \tag{10.42}$$

Notese que:

$$\bar{\Sigma} = \begin{pmatrix} sI - \bar{A} & \bar{b} \\ -\bar{c}^\mathsf{T} & d \end{pmatrix} = \begin{pmatrix} \mathsf{T}^{-1} & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} sI - A & b \\ -c^\mathsf{T} & d \end{pmatrix} \begin{pmatrix} \mathsf{T} & 0 \\ 0 & 1 \end{pmatrix}$$

Por lo que:

$$\det \bar{\Sigma} = \det \mathsf{T}^{-1} \det \Sigma \det \mathsf{T} = \det \Sigma$$

Dada una matriz A, existe una matriz de cambio de base T, tal que: $T^{-1}AT = I = D + N$

nilpotente ($\exists \gamma \in \mathbb{N} \mid N^{\gamma} = 0$) de la forma:

 $D = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & & \ddots \end{pmatrix}$

$$N = \begin{pmatrix} \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{pmatrix}$$

$$0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & 0 & \dots & 1 \end{pmatrix}$$

Note que DN = ND, por lo que:

VI) Forma de Jordan

donde:

exp((D+N)t) = exp(Dt) exp(Nt)

 $\exp(Nt) = \sum_{i=1}^{\infty} \frac{1}{i!} (Nt)^{i} = \sum_{i=1}^{\gamma-1} \frac{1}{i!} (Nt)^{i}$

 $\exp\left(\mathsf{Dt}\right) = \begin{pmatrix} e^{\lambda_1 t} & 0 & \dots & 0 \\ 0 & e^{\lambda_2 t} & \dots & 0 \\ \vdots & \vdots & & \vdots \end{pmatrix}$

VII) Teorema de Cayley-Hamilton

Toda transformación lineal A satisface su polinomio característico.

 $\Pi(s) = \det(sI - A) = s^n + \pi_1 s^{n-1} + \dots + \pi_{n-1} s + \pi_n$

 $\Pi(A) = A^{n} + \pi_{1}A^{n-1} + \dots + \pi_{n-1}A + \pi_{n}I = 0$

(10.43)

(10.44)

(10.45)

(10.46)

Una implicación directa es que la n-esima potencia de una transformación lineal A, es una combinación lineal de sus potencias predecesoras.

 $A^{n} = -\pi_{n} I - \pi_{n-1} A - \cdots - \pi_{1} A^{n-1}$

A su vez, esto implica:

$$exp(At) = \sum_{i=0}^{\infty} \frac{1}{i!} A^i t^i = \sum_{i=0}^{n-1} \phi(t) A^n$$
 (10.47)

donde:

$$\phi_{\mathfrak{i}}(t) = \sum_{j=0}^{\infty} \phi_{\mathfrak{i}\mathfrak{j}} t^{\mathfrak{j}}$$

Capítulo 11

Controlabilidad y asignación de polos

Sea un sistema para la Ecuación Diferencial Ordinaria:

$$M\left(\frac{d}{dt}\right)y(t) = N\left(\frac{d}{dt}\right)u(t) \tag{11.1}$$

Sea la siguiente representación de estado de esta Ecuación Diferencial Ordinaria:

$$\frac{d}{dt}x = Ax + bu$$
$$y = c^{T}x + du$$

 $donde \ x \in \mathbb{R}^n \ y \ \mathfrak{u}, y \in \mathbb{R}.$

Problema. Se desea encontrar una ley de control u = f(x), que nos permita asignar los polos a voluntad.

Sabemos que:

Polos. $\{s \in \mathbb{C} \mid M(s) = 0\} = \{s \in \mathbb{C} \mid \det(sI - A)\}\$

Para resolver este problema hay que investigar el concepto estructural de la alcanzabilidad.

Alcanzabilidad y Controlabilidad

- Una representación de estado se dice controlable, si para cualquier condición inicial, $x(0) = x_0 \in \mathbb{R}^n$, existe una trayectoria, $x(\cdot)$, solución de la ecuación de estado, tal que en tiempo finito $t_f \in \mathbb{R}$ se llega al origen $(x(t_f) = 0)$.
- Una representación de estado se dice alcanzable, si para cualquier punto $x \in \mathbb{R}$, existe una trayectoria, $x(\cdot)$, solución de la ecuación de estado, tal que en tiempo finito $t_f \in \mathbb{R}$ se llega a un punto cualquiera $(x(t_f) = x_f)$ desde el origen.

En los sistemas lineales estas dos propiedades están mutuamente implicadas, por lo que se les trata indistinguiblemente. Pero en general:

Alcanzabilidad
$$\Rightarrow$$
 Controlabilidad (11.2)

La solución temporal de $\frac{dx}{dt} = Ax + bu \cos x(0) = 0$ es:

$$x(t) = \int_{0}^{t} \exp(A(t-\tau))bu(\tau)d\tau$$

del teorema de Cayley-Hamilton se tiene:

$$\exp(At) = \sum_{i=0}^{\infty} \frac{1}{i!} A^{i} t^{i} = \sum_{i=0}^{n-1} \varphi_{i}(t) A^{i}$$

(11.3)

(11.4)

(11.5)

(11.7)

donde $\phi_i(t) = \sum_{i=0}^{\infty} \phi_{ij} t^j$, $\phi_{ij} \in \mathbb{R}$, $n \in \mathbb{N}$, $j \in \mathbb{Z}^+$. Por lo anterior, tenemos:

$$x(t) = \sum_{i=0}^{n-1} \psi_i(t) A^i b$$

$$x(t) = \begin{pmatrix} b & Ab & \dots & A^{n-1}b \end{pmatrix} \begin{pmatrix} \psi_0(t) \\ \psi_1(t) \\ \vdots \\ \vdots \end{pmatrix}$$

donde
$$\psi_i(t) = \int_0^t \varphi_i(t-\tau)u(\tau)d\tau$$
.

Entonces una condición necesaria para que $x(t_f) = x_f \quad \forall x \in \mathbb{R}, \forall t_f \in \mathbb{R}, t_f > 0$, es que la

matriz de controlabilidad

$$C_{(A,b)} = (b \quad Ab \quad \dots \quad A^{n-1}b)$$
 (11.6)

sea de rango pleno por filas, de lo contrario existen componentes de x(t) que siempre seran nulos. En nuestro caso particular $(y, u \in \mathbb{R}^n)$:

nulos. En nuestro caso particular (y,
$$u \in \mathbb{R}^{n}$$
):
$$\det C_{(A, \mathbf{b})} \neq 0 \tag{11.7}$$

Si la matriz de controlabilidad $C_{(A,b)}$ es de rango pleno por filas, entonces el gramiano de controlabilidad es invertible. 1

 $^{^1}$ Aquí se esta abusando de la notación, ya que el gramiano de controlabilidad corresponde al caso en que t $ightarrow\infty$

$$W = \int_{0}^{t} \exp(A\sigma)bb^{t} \exp(A^{t}\sigma)d\sigma \quad t > 0, \sigma = t - \tau$$
 (11.8)

Entonces, con la siguiente ley de control se tiene:

$$u(t) = b^{t} \exp(A^{t}(t_{f} - t))W_{t_{f}}^{-1}x_{f}$$
(11.9)

Por lo que si sustituimos t_f en la solución para x(t):

$$\begin{split} x(t_f) &= \int_0^{t_f} \exp{(A(t-\tau))bu(\tau)} d\tau \\ &= \int_0^{t_f} \exp{(A(t-\tau))bb^t} \exp{(A^t(t_f-\tau))} W_{t_f}^{-1} x_f d\tau \\ &= \int_{t_f}^0 \exp{(A\sigma)bb^t} \exp{(A^t\sigma)} d\sigma W_{t_f}^{-1} x_f \\ &= W_{t_f} W_{t_f}^{-1} x_f = x_f \quad (11.10) \end{split}$$

- Por lo que una condición suficiente y necesaria para que la ecuación de estado sea alcanzable (y por lo tanto controlable), es que su matriz de controlabilidad, C_(A,b), sea de rango pleno por filas.
- Cuando la matriz de controlabilidad es de rango pleno por filas, se dice que el par (A, b) es controlable.

Asignación de polos

Sea la ecuación de estado controlable, es decir $\frac{dx}{dt}=Ax+bu$ con $b\neq 0$, $\det\left(C_{(A,b)}\right)\neq 0$, $\Pi(s)$ y $\alpha(s)$ los polinomios característico y mínimo de A respectivamente.

$$\Pi(s) = \det(sI - A)$$
 grado $\Pi(s) = n$

 $\alpha(s)$ es el polinomio de menor grado tal que $\alpha(A)=0$

Sea $\kappa = \text{grado } \alpha(s)$, donde obviamente $1 \leqslant \kappa \leqslant n$.

$$\alpha(s) = s^{\kappa} + (a_{\kappa} + a_{\kappa-1}s + \dots + a_1s^{\kappa-1})$$

$$\alpha(A) = A^{\kappa} + (a_{\kappa} + a_{\kappa-1}A + \cdots + a_1A^{\kappa-1})$$

Sean α_i con $i \in \{0, 1, ..., \kappa\}$, los polinomios mónicos auxiliares tales que:

$$\begin{array}{rcl} \alpha_0(s) & = & \alpha(s) \\ \alpha_1(s) & = & s^{\kappa-1} + (\alpha_{\kappa-1} + \alpha_{\kappa-2}s + \dots + \alpha_1s^{\kappa-2}) \end{array}$$

 $\vdots \\ \alpha_{\kappa-1}(s) = s + \alpha_1$

$$L_{\kappa}(s) = 1$$

en donde, por definición, $\alpha_1(A) \neq 0$ y $\alpha_0(A) = 0$. Sea $b \neq 0$, un vector en \mathbb{R}^n tal que su polinomio mínimo coincide con $\alpha(s)$.

Sea
$$\mathfrak{b} \neq 0$$
, un vector en \mathbb{R}^n tal que su polinomio minimo coincide con

$$\alpha_{\mathbf{i}}(A)\mathbf{b} \neq 0 \quad \mathbf{i} \in \{1, 2, \dots, \kappa\}$$

 $\alpha_{0}(A)\mathbf{b} = 0$

$$(A^{\kappa-1} + (a_{\kappa-1} + a_{\kappa-2}A + \dots + a_1A^{\kappa-2}))b \neq 0$$

$$\begin{pmatrix}
b & Ab & \dots & A^{\kappa-1}b
\end{pmatrix}\begin{pmatrix}
a_{\kappa-1} \\
a_{\kappa-2} \\
\vdots \\
a_1
\end{pmatrix} \neq 0$$

$$\alpha_0(A)b = 0$$

Suponga que el par (A, b) es controlable, por lo tanto det $C_{(A,b)} \neq 0$, entonces:

$$\left(b \quad Ab \quad \dots \quad A^{n-1}b\right)\nu \neq 0 \quad \forall \nu \neq 0 \quad \therefore \kappa = n$$
 (11.11) Por lo que el polinomio mínimo y el polinomio característico coinciden cuando el par

(A, b) es controlable. Definimos la base:

$$e_n = \alpha_n(A)b = b$$

 $e_{n-1} = \alpha_{n-1}(A)b = (A + \alpha_1 I)b = Ae_n + \alpha_1 e_n$

$$e_{n-1} = \alpha_{n-1}(A)b = (A + \alpha_1 I)b = Ae_n + \alpha_1 e_n$$

 $e_{n-2} = \alpha_{n-2}(A)b = (A^2 + (\alpha_2 I + \alpha_1 A))b = A(A + \alpha_1 I)b + \alpha_2 b = Ae_{n-1} + \alpha_2 e_n$

$$\vdots = \vdots$$

$$e_1 = \alpha_1(A)b = Ae_2 + a_{n-1}e_n$$

Note que sustituyendo A, tenemos:

$$\alpha(A)b = (A^{n} + (a_{n}I + a_{n-1}A + \dots + a_{1}A^{n-1}))b = Ae_{1} + a_{n}e_{n} = 0$$

$$Ae_1 = -a_n e_n \tag{11}.$$
 Entonces, bajo la base definida, las transformaciones lineales tienen la siguiente forma:
$$A_c = [A]_{\{e_1,e_2,\dots,e_n\}} = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 & 0 & 0 \\ 0 & 0 & 1 & \dots & 0 & 0 & 0 \\ 0 & 0 & 0 & \dots & 0 & 0 & 0 \\ \vdots & \vdots \\ 0 & 0 & 0 & \dots & 0 & 1 & 0 \\ 0 & 0 & 0 & \dots & 0 & 0 & 1 \\ -a_n & -a_{n-1} & -a_{n-2} & \dots & -a_3 & -a_2 & -a_1 \end{pmatrix} \tag{11}.$$

$$b_{c} = [b]_{\{e_{1}, e_{2}, \dots, e_{n}\}} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ 0 \\ 0 \\ 1 \end{pmatrix}$$

(11.12)

(11.13)

(11.14)

(11.15)

(11.16)

$$\frac{d}{dt}x_c = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 & 0 & 0 \\ 0 & 0 & 1 & \dots & 0 & 0 & 0 \\ 0 & 0 & 0 & \dots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 0 & 1 & 0 \\ 0 & 0 & 0 & \dots & 0 & 0 & 1 \\ -a_n & -a_{n-1} & -a_{n-2} & \dots & -a_3 & -a_2 & -a_1 \end{pmatrix} x_c + \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ \vdots \\ 0 \\ 0 \\ 1 \end{pmatrix} u$$
 Observaciones.

1. Polinomio Característico

$$\det(sI - A_c) = s^n + a_1 s^{n-1} + \dots + a_{n-1} s + a_n = \Pi(s)$$

Retroalimentación de Estado

Sea $u=f_cx_c+\nu$, donde $f_c=(a_n-\bar{a}_n)(a_{n-1}-\bar{a}_{n-1})\dots(a_1-\bar{a}_1).$ Entonces el sistema de lazo cerrado es:

 $\frac{\mathrm{d}}{\mathrm{d}t}x_{c} = A_{f_{c}}x_{c} + b_{c}v$

donde
$$A_{f_c} = A_c + b_c f_c$$
, es decir:
$$\begin{pmatrix}
0 & 1 \\
0 & 1
\end{pmatrix}$$

$$A_{f_c} = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 & 0 & 0 \\ 0 & 0 & 1 & \dots & 0 & 0 & 0 \\ 0 & 0 & 0 & \dots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 0 & 1 & 0 \\ 0 & 0 & 0 & \dots & 0 & 0 & 1 \\ -\bar{\alpha}_n & -\bar{\alpha}_{n-1} & -\bar{\alpha}_{n-2} & \dots & -\bar{\alpha}_3 & -\bar{\alpha}_2 & -\bar{\alpha}_1 \end{pmatrix}$$

(11.19)

(11.17)

(11.18)

Propiedades de la matriz de controlabilidad

1. Matriz de controlabilidad del par (A_c, b_c) .

$$C_{(A_c,b_c)} = \begin{pmatrix} 0 & 0 & 0 & \dots & 1 \\ \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & 1 & \dots & * \\ 0 & 1 & * & \dots & * \\ 1 & * & * & \dots & * \end{pmatrix}$$
(11.20)

lo que implica:

será:

$$\det C_{(A_c,b_c)} = \pm 1 \tag{11.21}$$

2. Invarianza de la matriz de controlabilidad bajo cambio de base.

Sea el par (A, b) controlable, sea T una matriz de cambio de base y sean $A_1 = T^{-1}AT$ y $b_1 = T^{-1}b$ las matrices de nuestra nueva base.

$$(T^{-1}b \quad T^{-1}ATT^{-1}b \quad \dots \quad (T^{-1}AT \dots T^{-1}AT)T^{-1}b) =$$

$$(T^{-1}b \quad T^{-1}Ab \quad \dots \quad T^{-1}A^{n-1}b) =$$

$$T^{-1}(b \quad Ab \quad \dots \quad A^{n-1}b) = T^{-1}C_{(A \ b)}$$

 $C_{(A_1,b_1)}=\begin{pmatrix}b_1&A_1b_1&\dots&A^{n-1}b_1\end{pmatrix}=$

por lo que, podemos notar la siguiente correspondencia:

$$C_{(A_1,b_1)} = \frac{C_{(A,b)}}{T}$$

Mas notablemente podemos notar una manera de calcular la transformación lineal a una forma controlable.

$$T = C_{(A,b)}C_{(A+b_1)}^{-1}$$
(11.22)

3. Invarianza de la matriz de controlabilidad bajo retroalimentación de estado, $u = f^T x + v$. Sea $A_f = A + bf^T$ la matriz A del sistema bajo la retroalimentación de estado $u = f^T x + v$. Tendremos que la matriz de controlabilidad de este sistema retroalimentado

$$C_{(A_f,b)} = \begin{pmatrix} b & A_f b & \dots & A_f^{n-1}b \end{pmatrix} =$$

$$\begin{pmatrix} b & (A+bf^T) b & \dots & (A+bf^T)^{n-1}b \end{pmatrix}$$

en donde podemos notar que los terminos van obteniendo la siguiente forma:

en donde los terminos k_i estan relacionados unicamente con f_T y b, y dejan de fuera a un termino b, por lo que es inmediato ver que lo podemos reescribir de la siguiente manera:

$$C_{(A_f,b)} = (b \quad Ab \quad \dots \quad A^{n-1}b) X$$

(11.23)

 $C_{(A_f,b)} = C_{(A,b)} \mathbb{X}$ donde \mathbb{X} toma la forma:

$$\mathbb{X} = \begin{pmatrix} 1 & k_1 & k_2 & \dots & k_{n-1} \\ 0 & 1 & k_1 & \dots & k_{n-2} \\ 0 & 0 & 1 & \dots & k_{n-3} \\ \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & 0 & \dots & 1 \end{pmatrix}$$

lo cual implica que det $X = \pm 1$, es decir:

$$\det C_{(A,b)} \neq 0 \implies \det C_{(A,b)} \neq 0$$

en particular nosotros tenemos que:

$$\det C_{(A,b)} = \det C_{(A_f,b)} \tag{11.24}$$

Dada la invarianza de la matriz de controlabilidad ($C_{(A,b)}$) bajo cambio de base y retroalimentación de estado, Brunovskii estudió la controlabilidad de los sistemas lineales con todos sus valores propios (polos) en el origen²:

$$(A_{Br} \quad b_{Br}) = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 & 0 & 0 \\ 0 & 0 & 1 & \dots & 0 & 0 & 0 \\ 0 & 0 & 0 & \dots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 1 & 0 & 0 \\ 0 & 0 & 0 & \dots & 0 & 1 & 0 \\ 0 & 0 & 0 & \dots & 0 & 0 & 1 \end{pmatrix}$$
 (11.25)

 $^{^2}$ El teorema de Brunovskii en realidad esta redactado para sistemas multientradas, y se expresa en matrices diagonales por bloques de tamaño $k_i \times (k_i+1)$, con $\sum_{i=0}^n k_i = n$, donde k_i son los indices de controlabilidad

A los indeices k_i de los polinomios mínimos se les denomina indices de controlabilidad. En nuestro caso particular, existe solamente un indice de controlabilidad; $k_i = n$.

4. Invarianza de los ceros del sistema bajo retroalimentación de estado.

Sea la matriz sistema del sistema en lazo abierto la siguiente:

$$\Sigma(s) = \begin{pmatrix} sI - A & b \\ -c^{\mathsf{T}} & d \end{pmatrix}$$

entonces, la matriz sistema bajo la retroalimentación será:

$$\Sigma_{lc}(s) = \begin{pmatrix} sI - (A + bf^{T}) & b \\ -(c^{T} + df^{T}) & d \end{pmatrix}$$

notando que:

$$\begin{pmatrix} sI-A & b \\ -c^\mathsf{T} & d \end{pmatrix} \begin{pmatrix} I & 0 \\ -f^\mathsf{T} & 1 \end{pmatrix} = \begin{pmatrix} sI-(A+bf^\mathsf{T}) & b \\ -(c^\mathsf{T}+df^\mathsf{T}) & d \end{pmatrix}$$

por lo que:

$$\det \Sigma(s) = \det \Sigma_{lc}(s) \tag{11.26}$$

Se concluye que la retroalimentaión de estado no afecta a los ceros del sistema; solo puede modificar a los polos controlables.

Formas canónicas

 $\left(\frac{d^{n}}{dt^{n}} + a_{1}\frac{d^{n-1}}{dt^{n-1}} + \dots + a_{n-1}\frac{d}{dt} + a_{n}\right)y(t) =$

Sea un sistema lineal invariante en el tiempo, una entrada, una salida (SISO), descrito por

$$\frac{d}{dt}x_{c} = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 & 0 & 0 \\ 0 & 0 & 1 & \dots & 0 & 0 & 0 \\ 0 & 0 & 0 & \dots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 0 & 1 & 0 \\ 0 & 0 & 0 & \dots & 0 & 0 & 1 \\ -a_{n} & -a_{n-1} & -a_{n-2} & \dots & -a_{3} & -a_{2} & -a_{1} \end{pmatrix} x_{c} + \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ \vdots \\ 0 \\ 0 \\ 1 \end{pmatrix} u \qquad (11.28)$$

Polos.

Ceros.

donde:

$$c = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & \vdots \\ 0 & 0 & 0 \end{bmatrix}$$

la siguiente Ecuación Diferencial Ordinaria (EDO):

$$y = (b_n \ b_{n-1} \ b_{n-2} \ \dots \ b_2 \ b_1) x_c$$

$$det(sI - A_c) = s^n + a_1 s^{n-1} + a_2 s^{n-2} + \dots + a_{n-1} s + a_n$$

$$\det \Sigma(s) = b_1$$
 abilidad.

Forma canónica controlabilidad

ontrolabilidad.
$$C_{(A_c,b_c)} = (b_c \quad A_c b_c \quad \dots \quad A_c^{n-1} b_c) \implies \det C_{(A_c,b_c)} = 1$$

$$\det \Sigma(s) = b_1 s^{n-1} + \dots + b_{n-1} s + b_n$$

 $\frac{d}{dt}x_{c} = \begin{pmatrix} -a_{1} & 1 & 0 & \dots & 0 & 0 & 0 \\ -a_{2} & 0 & 1 & \dots & 0 & 0 & 0 \\ -a_{3} & 0 & 0 & \dots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots & \vdots \\ -a_{n-2} & 0 & 0 & \dots & 0 & 1 & 0 \\ -a_{n-1} & 0 & 0 & \dots & 0 & 0 & 1 \end{pmatrix} x_{c} + \begin{pmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ 0 \\ 0 \\ 0 \end{pmatrix}$

 $y = (\beta_n \quad \beta_{n-1} \quad \beta_{n-2} \quad \dots \quad \beta_2 \quad \beta_1) x_c$

$$+b_{n-}$$

$$+b_{n-}$$

$$C_{(A_c)}$$

 $\left(b_n + b_{n-1} \frac{d}{dt} + \dots + b_1 \frac{d^{n-1}}{dt^{n-1}}\right) u(t)$ (11.27)

(11.29)

(11.30)

(11.32)

(11.33)

(11.34)

$$\begin{pmatrix} \beta_{1} \\ \beta_{2} \\ \beta_{3} \\ \vdots \\ \beta_{n-1} \\ \beta_{n} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & \dots & 0 & 0 \\ -a_{1} & 1 & 0 & \dots & 0 & 0 \\ -a_{2} & -a_{1} & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots & \vdots \\ -a_{n-3} & -a_{n-4} & -a_{n-5} & \dots & 0 & 0 \\ -a_{n-2} & -a_{n-3} & -a_{n-4} & \dots & 1 & 0 \\ -a_{n-1} & -a_{n-2} & -a_{n-3} & \dots & -a_{1} & 1 \end{pmatrix} \begin{pmatrix} b_{1} \\ b_{2} \\ b_{3} \\ \vdots \\ b_{n-2} \\ b_{n-1} \\ b_{n} \end{pmatrix}$$
Polos.

 $\det(sI - A_{co}) = s^{n} + a_{1}s^{n-1} + a_{2}s^{n-2} + \dots + a_{n-1}s + a_{n}$

(11.36)

(11.37)

Ceros.

 $\det \Sigma(s) = b_1 s^{n-1} + \dots + b_{n-1} s + b_n$

Matriz de Controlabilidad.

$$C_{(A_{co},b_{co})} = (b_{co} \ A_{co}b_{co} \ \dots \ A_{co}^{n-1}b_{co}) \implies \det C_{(A_{co},b_{co})} = \pm 1$$
 (11.38)

Capítulo 12

Inobservabilidad y observador de estado

Sea la siguiente representación de estado:

$$\frac{d}{dt}x = Ax + bu$$

$$y = c^{T}x + du$$
(12.1)

para el siguiente sistema:

donde $x \in \mathbb{R}^n$ es el estado, $\mathfrak{u}(t) \in \mathbb{R}^n$ y $\mathfrak{y}(t) \in \mathbb{R}^n$ sean la entrada y salida respectivamente; siendo la condición inicial del estado $\mathfrak{x}(0) = \mathfrak{x}_0 \in \mathbb{R}^n$. La solución esta descrita por:

$$x(t) = \exp(At)x_0 + \int_0^t \exp(A(t-\tau))bu(\tau)d\tau$$

Problema. Sea la representación de estado 12.1, donde el estado x no esta disponible. Se desea reconstruir el estado x, para poder aplicar una retroalimentación de estado.

$$u = f^{\mathsf{T}} x + v \tag{12.2}$$

Observabilidad e inobservabilidad

entrada, u(t), en un horizonte de tiempo finito, $t_1 \in \mathbb{R}$, $t_1 > 0$, existe una función $\mathbb{F}(t,u,y)$, tal que:

Una representación de estado se dice observable si dadas las trayectorias de salida, y(t), y

$$\mathbb{F}(t_1, \mathbf{u}(t), \mathbf{y}(t)) = \mathbf{x}(0) \quad t \in [0, t_1]$$
(12.3)

(12.4)

(12.5)

Una representación de estado se dice inobservable, si no es observable.

$$x(t) = \exp(At)x_0 + \int_0^t \exp(A(t-\tau))bu(\tau)d\tau$$

 $y(t) = c^{\mathsf{T}} \exp(At)x_0 + \int_0^t c^{\mathsf{T}} \exp(A(t-\tau))bu(\tau)d\tau + du(t)$

Sabemos del teorema de Caley-Hamilton que:

 $\exp\left(At\right) = \sum_{i=1}^{n-1} \varphi(t)A^{i}$

aona

$$\phi_{\mathfrak{i}}(t) = \sum_{j=0}^{\infty} \phi_{\mathfrak{i}\mathfrak{j}} t^{\mathfrak{j}}, \quad \phi_{\mathfrak{i}\mathfrak{j}} \in \mathbb{R}, \quad \mathfrak{i} \in \{0,1,\ldots,n-1\}, \quad \mathfrak{j} \in \mathbb{Z}^{+}$$

Si juntamos las ecuaciones 12.4 y 12.5 obtendremos:

 $y(t_1) = \sum_{i=1}^{n-1} \varphi_i(t_1) c^{\mathsf{T}} A^i x_0 +$

 $\int_0^{t_1} c^\mathsf{T} \exp(A(t-\tau)) \mathfrak{bu}(\tau) d\tau + d\mathfrak{u}(t_1) =$ $\begin{pmatrix} \phi_0(t_1) & \phi_1(t_1) & \dots & \phi_{n-1}(t_1) \end{pmatrix} \begin{pmatrix} c^\mathsf{T} \\ c^\mathsf{T} A \\ \vdots \\ c^\mathsf{T} A^{n-1} \end{pmatrix} x_0 +$

$$\int_0^{t_1} c^{\mathsf{T}} \exp\left(A(t-\tau)\right) b \mathfrak{u}(\tau) d\tau + d\mathfrak{u}(t_1)$$

$$\phi^{\mathsf{T}}(t_1) \mathfrak{O}_{(c^\mathsf{T},A)} x(0) = y(t_1) - \int_0^{t_1} c^\mathsf{T} \exp{(A(t-\tau))} b \mathfrak{u}(\tau) d\tau + d\mathfrak{u}(t_1) \tag{12.6}$$
 siendo el lado derecho, la función \mathbb{F} . Entonces, una condición necesaia para que se pueda inferir cualquier condición inicial del estado $x(0) = x_0$, a partir de las trayectorias de salida,

y(t), y de entrada u(t), en el horizonte de tiempo, es que la matriz de observabilidad:

$$\mathcal{O}_{(c^{\mathsf{T}},A)} = \begin{pmatrix} c \\ c^{\mathsf{T}}A \\ \vdots \\ c^{\mathsf{T}}A^{n-1} \end{pmatrix}$$
 has.

(12.7)

sea de rango pleno por columnas.

En nuestro caso particular, como la entrada y la salida estan en \mathbb{R} , esta condición es:

$$\det \mathfrak{O}_{(c^\mathsf{T},A)} \neq 0$$

En efecto, si $\mathcal{O}_{(c^T,A)}$, no es de rango pleno por columna, existe una transformación T, invertible, tal que:

$$\mathcal{O}_{(c^{\mathsf{T}},A)}\mathsf{T}^{-1} = (\mathbb{X} \quad 0)$$

 $\varphi^{\mathsf{T}}(\mathsf{t}_1) \mathcal{O}_{(\mathsf{c}^{\mathsf{T}}, \mathsf{\Delta})} \mathsf{T}^{-1} \bar{\mathsf{x}}(0) = \bar{\mathbb{F}}(\mathsf{t}_1, \mathsf{u}, \mathsf{y})$

siendo X una matriz de rango plano por columnas.

Haciendo el cambio de base, $\bar{x} = Tx$, se obtiene de la ecuación 12.6:

$$\begin{array}{rcl} \phi^{\mathsf{T}}(t_1) \left(\mathbb{X} & 0 \right) \begin{pmatrix} \bar{x}_1(0) \\ \bar{x}_2(0) \end{pmatrix} & = & \bar{\mathbb{F}}(t_1,\mathfrak{u},\mathfrak{y}) \\ \\ \phi^{\mathsf{T}}(t_1) \mathbb{X} \bar{x}_1(0) & = & \bar{\mathbb{F}}(t_1,\mathfrak{u},\mathfrak{y}) \\ \\ & = & \text{por lo que no es posible determinar la segunda parte de componentes, } \bar{x}_2(0) \text{, a partir de} \end{array}$$

 $\ker \mathcal{O}_{(c^T,A)} = 0$

 $\mathbb{F}(t_1, \mathfrak{u}, \mathfrak{y})$. Si la matriz de observabilidad es de rango pleno por columnas, entonces:

$$\det \mathfrak{O}_{(e^{\mathsf{T}}, \mathsf{A}_{\perp})} \neq 0$$

es decir, $\mathfrak{O}_{(c^T,A)}$ es invertible.

De la representación de estado en la ecuación 12.1 se tiene:

$$y = c^{\mathsf{T}} x + du$$

y para nuestro caso particular, $u, y \in \mathbb{R}$:

$$\frac{\mathrm{d}y}{\mathrm{d}t} = c^{\mathsf{T}} \frac{\mathrm{d}x}{\mathrm{d}t} + \mathrm{d}\frac{\mathrm{d}u}{\mathrm{d}t}$$

$$= c^{\mathsf{T}} A x + c^{\mathsf{T}} b u + d \frac{d u}{d t}$$

$$\frac{d^2 y}{d t^2} = c^{\mathsf{T}} A \frac{d x}{d t} + c^{\mathsf{T}} b \frac{d u}{d t} + d \frac{d^2 u}{d t^2}$$

 $= c^{\mathsf{T}} A^2 x + c^{\mathsf{T}} A b u + c^{\mathsf{T}} b \frac{du}{dt} + d \frac{d^2 u}{dt^2}$

$$\frac{d^{n-1}y}{dt^{n-1}} = c^{\mathsf{T}}A^{n-1}x + \sum_{i=0}^{n-2} c^{\mathsf{T}}A^{i}b \frac{d^{n-2-i}u}{dt^{n-2-i}}$$

por lo que tendremos que:

$$\begin{pmatrix} 1\\ \frac{d}{dt}\\ \vdots\\ \frac{d^{n-1}}{dt^{n-1}} \end{pmatrix} y = \begin{pmatrix} c^T\\ c^TA\\ \vdots\\ c^TA^{n-1} \end{pmatrix} x + \begin{pmatrix} 0+d\\ b+d\frac{d}{dt}\\ \vdots\\ \sum_{i=0}^{n-2}c^TA^ib\frac{d^{n-2-i}}{dt^{n-2-i}}+d\frac{d^{n-1}}{dt^{n-1}} \end{pmatrix} u$$

o escrito de otra manera:

$$\Delta\left(\frac{d}{dt}\right)y=\mathfrak{O}_{(c^T,A)}x+\Gamma\left(\frac{d}{dt}\right)u$$

lo cual implica:

$$x = \mathcal{O}_{(c^{\mathsf{T}}, A)}^{-1} \left[\Delta \left(\frac{d}{dt} \right) y - \Gamma \left(\frac{d}{dt} \right) u \right]$$
 (12.8)

Por lo que es una condición necesaria y suficiente, para que la representación de estado sea observable que su matriz de observabilidad, $\mathcal{O}_{(c^T,A)}$, sea de rango pleno por columnas.

Cuando la matriz de observabilidad es de rango pleno por columnas, se dice que el par (c^T, A) es observable.

Dualidad

La operación matricial "transpuesta", establece una dualidad entre la observabilidad y la controlabilidad. En efecto,

$$\mathcal{O}_{(\mathbf{c}^{\mathsf{T}}, A)} = \begin{pmatrix} \mathbf{c}^{\mathsf{T}} \\ \mathbf{c}^{\mathsf{T}} A \\ \vdots \\ \mathbf{c}^{\mathsf{T}} A^{\mathfrak{n} - 1} \end{pmatrix}$$
 (12.9)

$$\mathcal{O}_{(\mathbf{c}^{\mathsf{T}}, \mathbf{A})}^{\mathsf{T}} = \begin{pmatrix} \mathbf{c}^{\mathsf{T}} \\ \mathbf{c}^{\mathsf{T}} \mathbf{A} \\ \vdots \\ \mathbf{c}^{\mathsf{T}} \mathbf{A}^{\mathsf{n}-1} \end{pmatrix}^{\mathsf{T}} = \begin{pmatrix} \mathbf{c} & \mathbf{A}^{\mathsf{T}} \mathbf{c} & \dots & (\mathbf{A}^{\mathsf{T}})^{\mathsf{n}-1} \mathbf{c} \end{pmatrix} = \mathcal{C}_{(\mathbf{A}^{\mathsf{T}}, \mathbf{c})}$$
(12.10)

$$C_{(A,b)}^{\mathsf{T}} = \begin{pmatrix} b & Ab & \dots & A^{n-1}b \end{pmatrix}^{\mathsf{T}} = \begin{pmatrix} b^{\mathsf{T}} \\ b^{\mathsf{T}}A^{\mathsf{T}} \\ \vdots \\ b^{\mathsf{T}}(A^{\mathsf{T}})^{n-1} \end{pmatrix} = \mathcal{O}_{(b^{\mathsf{T}},A^{\mathsf{T}})}$$
 (12.11)

note tambien que la función de transferencia es una funcion continua en \mathbb{R}^1 , por lo que:

$$FT = FT^T$$

$$b^{\mathsf{T}} (sI - A^{\mathsf{T}})^{-1} c + d = c^{\mathsf{T}} (sI - A)^{-1} b + d$$
 (12.12)

ademas, el polinomio caracteristico es el mismo:

$$\det(sI - A) = \det(sI - A^{\mathsf{T}}) \implies \sigma(A) = \sigma(A^{\mathsf{T}}) \tag{12.13}$$

Por lo que obtenemos la siguiente dualidad:

$$A \leftrightarrow A^{\mathsf{T}}$$

$$b \leftrightarrow c$$

$$c^\mathsf{T} \leftrightarrow b^\mathsf{T}$$

$$d \leftrightarrow b \\$$

$$f^\mathsf{T} \leftrightarrow k^\mathsf{T}$$

Propiedades de la matriz de observabilidad

Dada la dualidad entre observabilidad y controlabilidad, todos los resultados de controlabilidad del par (A, b) son extrapolables a la observabilidad del par (c^{T}, A) .

- 1. Asignación de los valores propios (polos), mediante la inyección de salida.
 - a) Si det $C_{(A,b)} \neq 0$, entonces dado un conjunto simetrico con respecto al eje real de n numeros complejos, Λ , existe un vector $f \in \mathbb{R}^n$, tal que:

$$\sigma(A+bf^T)=\Lambda$$

b) Si det $\mathcal{O}_{(c^T,A)} \neq 0$, entonces dado un conjunto simetrico con respecto al eje real de n numeros complejos, Λ , existe un vector $k \in \mathbb{R}^n$, tal que:

$$\sigma(A + kc^{\mathsf{T}}) = \Lambda$$

$$\sigma(A^{\mathsf{T}} + ck^{\mathsf{T}}) = \Lambda$$

2. Invarianza de la matriz de observabilidad bajo cambio de base Sea el siguiente cambio de base:

$$A_1 = T^{-1}AT$$
 (12.14)
 $c_1^T = c^TT$ (12.15)

$$_{1}^{\mathsf{T}} = \mathbf{c}^{\mathsf{T}}\mathsf{T} \tag{12.15}$$

dado un cambio de base T invertible; entonces tendremos lo siguiente:

$$\mathcal{O}_{(c_{1}^{\mathsf{T}}, A_{1})} = \mathcal{O}_{(c_{1}^{\mathsf{T}}, A)} \mathsf{T}^{-1} \tag{12.16}$$

de donde podemos notar que:

$$T = \mathcal{O}_{(c_1^\mathsf{T}, A_1)}^{-1} \mathcal{O}_{(c^\mathsf{T}, A)}$$
 (12.17)

siempre que el par $(c^{\mathsf{T}}, \mathsf{A})$ sea observable.

- 3. Invarianza de la matriz de observabilidad bajo invección de salida
- 4. Invarianza de los ceros del sistema bajo iyección de salida

Formas canónicas

Forma canónica observador

Forma canónica observabilidad

Capítulo 13

Principio de Separación

Capítulo 14

Estabilidad de Lyapunov

Dada la siguiente representación de estado:

$$\frac{dx(t)}{dt} = Ax(t) + bu(t)$$
(14.1)

 $con \ x(0) = x_0 \in \mathbb{R}^n.$

Definición 1. El sistema representado por la ecuación 14.1 es estable si para cada $\epsilon > 0$, existe un $\delta = \delta(\epsilon)$ tal que:

$$||x_0|| < \delta(\varepsilon) \implies ||x(t)|| < \varepsilon \quad \forall t \geqslant 0$$

Si no es estable, decimos que es inestable.

Teorema 1. *Una matriz* A *es Hurwitz estable, es decir* $\Re\{\lambda(A)\}\$ < 0, *si y solo si para cualquier matriz simetrica definida positiva dada,* Q, *existe una matriz simetrica definida positiva,* P, *que satisface:*

$$A^{\mathsf{T}}P + PA = -Q \tag{14.2}$$

Nota 1. Una matriz $H \in \mathbb{C}^{n \times n}$, se dice Hermitiana si su transpuesta conjugada es ella misma, $H^* = H$. Si $H \in \mathbb{R}^{n \times n}$, se dice simétrica si su transpuesta es ella misma, $H^T = H$.

De estas matrices, podemos notar ciertas propiedades:

- 1. Todos sus valores propios son reales.
- 2. Cuando los valores propios de H son todos positivos o negativos, se dice que H es definida positiva o negativa, y se escribe H > 0 o H < 0 respectivamente.
- 3. Cuando los valores propios de H son todos no negativos o no positivos, se dice que H es semidefinida positiva o semidefinida negativa y se escribe $H \geqslant 0$ o $H \leqslant 0$ respectivamente.
- 4. Desigualdad de Raleigh

Dada H Hermitiana:

$$\lambda_{\min}(H)x^*x \leqslant x^*Hx \leqslant \lambda_{\max}(H)x^*x \quad \forall x \in \mathbb{C}^n$$

Dada H simétrica:

$$\lambda_{\text{min}}(H) x^T x \leqslant x^T H x \leqslant \lambda_{\text{max}}(H) x^T x \quad \forall x \in \mathbb{C}^n$$

5. H es semidefinida positiva, si y solo si, puede escribirse de la forma factorizada:

$$H = G^*G$$

para alguna matriz G, conocida como raiz cuadrada de H, tambien denotada por $H_{1/2}$, \sqrt{H} , $H^{1/2}$,

por lo que la factorización queda como sigue:

$$H = H_{1/2}^* H_{1/2}$$

Cuando H es definida positiva, $H_{1/2}$ es una matriz de rango pleno.

Demostración. Sea la función de Lyapunov:

$$V(x(t)) = x^{\mathsf{T}} P x(t) \quad \forall t \geqslant 0$$
 (14.3)
$$\operatorname{con} P = P^{\mathsf{T}} > 0.$$

Derivando a la ecuación 14.3 con respecto del tiempo, a lo largo de las trayectorias solución de la ecuación 14.1, con u = 0, se tiene:

 $\frac{dV}{dt} = \frac{dx(t)}{dt}^{\mathsf{T}} Px(t) + x^{\mathsf{T}}(t) P \frac{dx(t)}{dt}$

 $= x^{\mathsf{T}}(t) \left(A^{\mathsf{T}} P + PA \right) x(t)$

 $= x^{\mathsf{T}}(t)A^{\mathsf{T}}Px(t) + x^{\mathsf{T}}(t)PAx(t)$

(14.4)

(14.5)

(14.6)

$$= -x^{\mathsf{T}}(\mathsf{t})Qx(\mathsf{t})$$

Por otro lado, de la ecuación 14.3 se tiene:

$$\lambda_{\min}(P)x^{\mathsf{T}}(t)x(t) \leqslant V(x(t)) \leqslant \lambda_{\max}(P)x^{\mathsf{T}}(t)x(t)$$

por lo que:

$$0 \leqslant \frac{V(x(t))}{\lambda_{\min}(P)} \leqslant x^{\mathsf{T}}(t)x(t) \leqslant \frac{V(x(t))}{\lambda_{\max}(P)}$$

Entonces, de las ecuaciones 14.4 y 14.5 se obtiene:

$$\frac{dV(x(t))}{dt} \leqslant -\frac{\lambda_{\min}(Q)}{\lambda_{\max}(P)}V(x(t))$$

De manera análoga

$$\lambda_{\min}(Q)x^{\mathsf{T}}(t)x(t) \leqslant x^{\mathsf{T}}(t)Qx(t) \leqslant \lambda_{\max}(Q)x^{\mathsf{T}}(t)x(t)$$

Si integramos la ecuación 14.6 tendremos:

$$\int_0^t \frac{dV(x(\tau))}{d\tau} d\tau \leqslant -\frac{\lambda_{\min}(Q)}{\lambda_{\max}(P)} \int_0^t V(x(\tau)) d\tau$$

para lo cual necesitamos el lema de Bellman - Grönwall.

Nota 2.

$$u(t) \leqslant c + \int_0^t K(\tau) u(\tau) d\tau \implies u(t) \leqslant c \exp\left(\int_0^t K(\tau) d\tau\right) \quad \forall t \geqslant 0$$

por lo tanto, podemos ver que:

$$V(x(t)) \leq V(x(0)) - \frac{\lambda_{\min}(Q)}{\lambda_{\max}(P)} \int_{0}^{t} V(x(\tau)) d\tau$$
 (14.7)

y aplicando el lema de Bellman - Grönwall aqui:

$$V(x(t)) \le V(x(0)) \exp{-\frac{\lambda_{\min}(Q)}{\lambda_{\max}(P)}} t \quad \forall t \ge 0$$
 (14.8)

de la ecuación 14.5 y 14.8, obtenemos finalmente:

$$0 \leqslant x^{\mathsf{T}}(t)x(t) \leqslant \frac{\lambda_{\max}(\mathsf{P})}{\lambda_{\min}(\mathsf{P})}x^{\mathsf{T}}(0)x(0)\exp\left(-\frac{\lambda_{\min}(\mathsf{Q})}{\lambda_{\max}(\mathsf{P})}t\right)$$

es decir:

$$\|x(t)\|^2 \leqslant \frac{\lambda_{\max}(P)}{\lambda_{\min}(P)} \|x(0)\|^2 \exp\left(-\frac{\lambda_{\min}(Q)}{\lambda_{\max}(P)}t\right)$$

Dado que A es Hurwitz estable tenemos que $\Re \lambda(A) < 0$, sea la siguiente matriz definida positiva:

$$P = \int_{0}^{\infty} \exp(A^{\mathsf{T}}t)Q \exp(At)dt$$

con $Q = Q^T > 0$. Entonces tendremos:

$$\begin{split} A^\mathsf{T} P + P A &= \int_0^\infty \left(A^\mathsf{T} \exp{(A^\mathsf{T} t)} Q \exp{(A t)} + \exp{(A^\mathsf{T} t)} Q \exp{(A t)} A \right) dt \\ &= \int_0^\infty \frac{d}{dt} \left(\exp{(A^\mathsf{T} t)} Q \exp{(A t)} \right) dt \\ &= \left. \exp{(A^\mathsf{T} t)} Q \exp{(A t)} \right|_0^\infty \\ &= \left. \lim_{t \to \infty} \exp{(A^\mathsf{T} t)} Q \exp{(A t)} - \exp{(A^\mathsf{T} \cdot 0)} Q \exp{(A \cdot 0)} \right. \\ &= 0 - Q = -Q \end{split}$$