Neural Networks 12. Restricted Boltzmann Machines

Center for Cognitive Science Department of Applied Informatics Faculty of Mathematics, Physics and Informatics Comenius University in Bratislava

Thursday 9th May, 2024

Preface

Bias integration

- until now:
 - $ightharpoonup {f x}
 ightharpoonup {f x}'$, bias is (n+1)-th weight vector

$$\mathbf{y} = f(\mathbf{W}\mathbf{x}')$$
 $\mathbf{W} \in \mathbb{R}^{m \times (n+1)}$

- ► today:
 - **x** stays as it is, bias **b** is separated from weight matrix **W**
 - **b** is a vector one weight per output neuron

$$\mathbf{y} = f(\mathbf{W}\mathbf{x} + \mathbf{b})$$
 $\mathbf{W} \in \mathbb{R}^{m \times n}$ $\mathbf{b} \in \mathbb{R}^m$

Restricted Boltzmann Machines

- recurrent generative model
- ▶ binary states: v_i , $h_i \in \{0, 1\}$
 - \triangleright v_j , h_i are "visible" and "hidden" neurons
- probabilistic NN:
 - **activations** are *not* computed directly, e.g. $\mathbf{y} = f(\mathbf{net})$
 - probabilistic activation:

$$\mathbf{p} = f(\mathbf{net}) \rightarrow P[y_i = 1] = p_i$$

 RBM represents (approximates) complex probability distribution

Transition Functions

probabilistic computation

• "forward": $P[h_i = 1] = p_i^{hid}$ $\mathbf{p}^{hid} = f(\mathbf{W}\mathbf{v} + \mathbf{b})$ • "backward": $P[v_j = 1] = p_j^{vis}$ $\mathbf{p}^{vis} = f(\mathbf{W}^\mathsf{T}\mathbf{h} + \mathbf{a})$

RBM Operation Modes

Positive phase

visible layer is fixed to input

$$\mathbf{v}^+ = \mathbf{x}$$

activation on the hidden layer is generated

$$\mathbf{v}^+ \to \mathbf{h}^+$$

no need to repeat as v⁺ is fixed

Negative phase

starting with hidden activation, the activation on visible layer is generated (*)

$$\mathbf{h}
ightarrow \mathbf{v}^-$$

activation on the hidden layer is generated

$$\textbf{v}^- \rightarrow \textbf{h}^-$$

repeat (if desired)

Generation of **v**⁻

Simple: backward pass $\mathbf{h} \rightarrow \mathbf{v}^-$

Gibbs sampling:

- proper sampling from complex distribution (distribution is represented by our network)
- simplified version for RBMs:
 - repeat n times:

v := backward(h)

 $\mathbf{h} := \mathsf{forward}(\mathbf{v})$

 $\mathbf{v}^- := \mathsf{backward}(\mathbf{h})$

Training – Contrastive Divergence

- traditional SGD scheme (epochs, training inputs, ...)
- gradients computed using Contrastive Divergence:
 - positive phase to obtain v⁺, h⁺
 - ightharpoonup negative phase to obtain $ightharpoonup^-$, $ightharpoonup^-$ using Gibbs sampling from $ightharpoonup^+$
 - compute deltas

$$\Delta W = h^+ v^+^T - h^- v^-^T$$

 $\Delta a = v^+ - v^-$
 $\Delta b = h^+ - h^-$

Task

- Train RBM to store MNIST digits (similar to auto-encoder or Hopfield) and generate new digits from random input
 - implement binary sampling from a distribution
 - initialize weights
 - compute forward & backward pass
 - implement gibbs sampling
 - update the weights iteratively to train the network