2022 Fall IE 313 Time Series Analysis

7. Parameter Estimation

Yongjae Lee Department of Industrial Engineering

Chapter 7. Parameter Estimation

7.1 The Method of Moments

7.2 Least Squares Estimation

7.3 Maximum Likelihood and Unconditional Least Squares

7.4 Properties of the Estimates

7.5 Illustrations of Parameter Estimation

7.6 Bootstrapping ARIMA Models

Parameter estimation

■ Once we have specified the orders of ARIMA(p,d,q) model for our observed time series $Y_1, Y_2, ..., Y_n$, we need to estimate its parameters $\phi_1, \phi_2, ..., \phi_p$ and $\theta_1, \theta_2, ..., \theta_q$

That is, we are going to estimate the parameters of ARMA(p,q) model from the d th difference of the observed series

- Therefore, we will simply assume in this chapter that $Y_1, Y_2, ..., Y_n$ denote our *stationary* process
 - It may be an appropriate difference of the original series

Chapter 7.1

The Method of Moments

Method of moments

- The method of moments is frequently one of the easiest methods for obtaining parameter estimates
 - It consists of
 - Equating sample moments to corresponding theoretical moments
 - Solving the resulting equations to obtain estimates of any unknown parameters

- AR(1): $Y_t = \phi Y_{t-1} + e_t$
 - For this, we know from Chapter 4 that $\rho_k = \phi^k$
 - Therefore,

$$\hat{\phi} = \hat{\rho}_1 = r_1$$

- r_1 : lag 1 sample ACF
- AR(2): $Y_t = \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + e_t$
 - From the Yule-Walker equations (see page 72),

$$\rho_1 = \phi_1 + \rho_1 \phi_2$$
 and $\rho_2 = \rho_1 \phi_1 + \phi_2$

Therefore,

$$\hat{\phi}_1 = \frac{r_1(1-r_2)}{1-r_1^2}$$
 and $\hat{\phi}_2 = \frac{r_2-r_1^2}{1-r_1^2}$

- AR(p): $Y_t = \phi_1 Y_{t-1} + \dots + \phi_p Y_{t-p} + e_t$
 - Similarly, we can use the Yule-Walker equation (see page 114)

- The above linear equation can be solved for $\hat{\phi}_1$, $\hat{\phi}_2$, ..., $\hat{\phi}_p$
- The estimates obtained in this way are also called Yule-Walker estimates

Moving average models

- Surprisingly, the method of moments is not nearly as convenient when applied to MA models
- Consider MA(1) case: $Y_t = e_t \theta e_{t-1}$
 - We know from Chapter 4 (see page 57) that

$$\rho_1 = -\frac{\theta}{1 + \theta^2}$$

– Equating ρ_1 to r_1 , we need to solve a quadratic equation in θ

Chapter 7.2

Least Squares Estimation

- AR(1) with nonzero mean: $Y_t \mu = \phi(Y_{t-1} \mu) + e_t$
 - We can view this as a regression model with predictor (or independent) variable Y_{t-1} and response (or dependent) variable Y_t
 - Then, least squares estimation would proceed by minimizing the sum of squares of the differences

$$(Y_t - \mu) - \phi(Y_{t-1} - \mu)$$

– Since only $Y_1, Y_2, ..., Y_n$ are observed, we can only sum from t=2 to t=n

$$S_c(\phi, \mu) = \sum_{t=2}^{n} [(Y_t - \mu) - \phi(Y_{t-1} - \mu)]^2$$

This is usually called the conditional sum-of-squares function

- AR(1) with nonzero mean: $Y_t \mu = \phi(Y_{t-1} \mu) + e_t$
 - Then, we want to find ϕ and μ that minimize $S_c(\phi,\mu)$
 - First, consider the equation

$$\frac{\partial S_c}{\partial \mu} = \sum_{t=2}^n 2[(Y_t - \mu) - \phi(Y_{t-1} - \mu)](-1 + \phi) = 0$$

• If we solve it for μ ,

$$\mu = \frac{1}{(n-1)(1-\phi)} \left[\sum_{t=2}^{n} Y_t - \phi \sum_{t=2}^{n} Y_{t-1} \right]$$

• For large n,

$$\frac{1}{n-1}\sum_{t=2}^{n} Y_{t} \approx \frac{1}{n-1}\sum_{t=2}^{n} Y_{t-1} \approx \bar{Y}$$

• Thus,

$$\hat{\mu} \approx \frac{1}{1-\phi} (\bar{Y} - \phi \bar{Y}) = \bar{Y}$$

- AR(1) with nonzero mean: $Y_t \mu = \phi(Y_{t-1} \mu) + e_t$
 - Then, we want to find ϕ and μ that minimize $S_c(\phi, \mu)$
 - Similarly, consider the equation

$$\frac{\partial S_c(\phi, \bar{Y})}{\partial \phi} = \sum_{t=2}^n 2[(Y_t - \bar{Y}) - \phi(Y_{t-1} - \bar{Y})](Y_{t-1} - \bar{Y}) = 0$$

• If we solve it for ϕ ,

$$\hat{\phi} = \frac{\sum_{t=2}^{n} [(Y_t - \bar{Y})(Y_{t-1} - \bar{Y})]}{\sum_{t=2}^{n} (Y_{t-1} - \bar{Y})^2}$$

- We can see that this is almost the same as sample ACF at lag 1 (r_1) except that we are missing $(Y_t \overline{Y})^2$ in the denominator
- This is negligible for stationary processes, and thus, the least equares and method-of-moments estimators are nearly identical, especially for large samples

Moving average models

- MA(1): $Y_t = e_t \theta e_{t-1}$
 - At first, it is not apparent how a least squares (or regression)
 method can be applied to such models
 - However, recall from Chapter 4 (page 77) that invertible
 MA(1) models can be rewritten as

$$Y_t = -\theta Y_{t-1} - \theta^2 Y_{t-2} - \theta^3 Y_{t-3} - \dots + e_t$$

– Then, least squares can be carried out by choosing θ that minimizes

$$S_c(\theta) = \sum e_t^2 = \sum [Y_t + \theta Y_{t-1} + \theta^2 Y_{t-2} + \theta^3 Y_{t-3} + \cdots]^2$$

- But we will not be able to minimize $S_c(\theta)$ by taking a derivative with respect to θ , setting it to zero, and solving
- Because calculating $S_c(\theta)$ is not obvious

Moving average models

- MA(1): $Y_t = e_t \theta e_{t-1}$
 - Then, consider evaluating $S_c(\theta)$ for a single given value of θ
 - Noting that the only Y's we have available are Y_1, Y_2, \dots, Y_n , use the equation $e_t = Y_t + \theta e_{t-1}$ conditional on $e_0 = 0$

$$e_{1} = Y_{1}$$
 $e_{2} = Y_{2} + \theta e_{1}$
 $e_{3} = Y_{3} + \theta e_{2}$
 \vdots
 $e_{n} = Y_{n} + \theta e_{n-1}$

- Now we can minimize $S_c(\theta)$ by trying many different values of θ within the invertible rage (-1, +1)
 - For more general MA(q) models, a numerical optimization algorithm, such as Gauss-Newton or Nelter-Mead, will be needed

Mixed models

- ARMA(1,1): $Y_t = \phi Y_{t-1} + e_t \theta e_{t-1}$
 - As in pure MA case, we use $e_t=Y_t-\phi Y_{t-1}+\theta e_{t-1}$ to calculate $S_c(\phi,\theta)=\sum e_t^2$
 - However, even if we set $e_0=0$, we still need an additional "startup" problem, namely Y_0
 - One approach is to set $Y_0 = 0$ or to \overline{Y}
 - A better approach is to begin recursion at t=2 to minimize

$$S_c(\phi, \theta) = \sum_{t=2}^n e_t^2$$

> For general ARMA(p,q) model, we need to compute $e_t = Y_t - \phi_1 Y_{t-1} - \dots - \phi_p Y_{t-p} + \theta_1 e_{t-1} + \dots + \theta_q e_{t-q}$ with $e_p = e_{p-1} = \dots = e_{p+1-q} = 0$ and minimize $S_c \big(\phi_1, \dots, \phi_1, \theta_1, \dots, \theta_p \big)$

Chapter 7.3

Maximum Likelihood and Unconditional Least Squares

Maximum likelihood

- For series of moderate length, the startup values $e_p=e_{p-1}=\cdots=e_{p+1-q}=0$ will have a more pronounced effect on the final estimates for the parameters
 - Hence, we need to consider the more difficult problem of maximum likelihood estimation
 - The advantage of maximum likelihood method is that all of the information in the data is used
 - Rather than just the first and second moments as in the case with least squares
 - Another advantage is that many large-sample results are known under very general conditions
 - One disadvantage is that we must for the first time work specifically with the joint probability density function of the process

Maximum likelihood estimation

- For any set of observations, $Y_1, Y_2, ..., Y_n$, time series or not, the likelihood function L is defined to be the joint probability density of obtaining the data actually observed
- However, it is considered as a function of the unknown parameters in the model with the observed data held fixed
 - For ARIMA models, L will be a function of the ϕ 's, θ 's, μ , and σ_e^2 given the observations Y_1, Y_2, \dots, Y_n
- The maximum likelihood estmators are defined as those values of the parameters for which the data actually observed are *most likely*, that is, the values that maximize the likelihood function

- AR(1) with nonzero mean: $Y_t \mu = \phi(Y_{t-1} \mu) + e_t$
 - The most common assumption is the white noise terms are independent, normally distributed random variables with zero means and common standard deviation σ_e
 - The probability density function (pdf) of each e_t is

$$(2\pi\sigma_e^2)^{-\frac{1}{2}}\exp\left(-\frac{e_t^2}{2\sigma_e^2}\right) \text{ for } -\infty < e_t < \infty$$

Normal density with mean μ and standard deviation σ

$$f(x) = rac{1}{\sigma\sqrt{2\pi}}e^{-rac{1}{2}\left(rac{x-\mu}{\sigma}
ight)^2}$$

• And by independence, the joint pdf for e_2, e_3, \dots, e_n is

$$(2\pi\sigma_e^2)^{-\frac{n-1}{2}} \exp\left(-\frac{1}{2\sigma_e^2}\sum_{t=2}^n e_t^2\right)$$

$$(2\pi\sigma_e^2)^{-\frac{n-1}{2}}\exp\left(-\frac{1}{2\sigma_e^2}\sum_{t=2}^n e_t^2\right)$$

- AR(1) with nonzero mean: $Y_t \mu = \phi(Y_{t-1} \mu) + e_t$
 - Now consider

$$Y_{2} - \mu = \phi(Y_{1} - \mu) + e_{2}$$

$$Y_{3} - \mu = \phi(Y_{2} - \mu) + e_{3}$$

$$\vdots$$

$$Y_{n} - \mu = \phi(Y_{n-1} - \mu) + e_{n}$$

– Then, the joint pdf of Y_2, Y_3, \dots, Y_n conditioning on $Y_1 = y_1$ as

$$f(y_2, y_3, ..., y_n | y_1)$$

$$= (2\pi\sigma_e^2)^{-\frac{n-1}{2}} \exp\left\{-\frac{1}{2\sigma_e^2} \sum_{t=2}^n [(y_t - \mu) - \phi(y_{t-1} - \mu)]^2\right\}$$

From the linear process representation of AR(1) (see page 70),

$$Y_1 \sim N(\mu, \frac{\sigma_e^2}{1 - \phi^2})$$

- AR(1) with nonzero mean: $Y_t \mu = \phi(Y_{t-1} \mu) + e_t$
 - Then, by multiplying the marginal pdf of Y_1 (P(Y_1))to the joint pdf of $Y_2, Y_3, ..., Y_n$ given Y_1 (P($Y_2, ..., Y_n | Y_1$)) gives the joing pdf of $Y_1, Y_2, ..., Y_n$.
 - Interpreted as a function of the parameters ϕ , μ , and σ_e^2 , the likelihood function for an AR(1) model is given by

$$L(\phi, \mu, \sigma_e^2) = (2\pi\sigma_e^2)^{-\frac{n}{2}} (1 - \phi^2)^{\frac{1}{2}} \exp\left\{-\frac{1}{2\sigma_e^2} S(\phi, \mu)\right\}$$

• Where $S(\phi, \mu) = \sum_{t=2}^n [(Y_t - \mu) - \phi(Y_{t-1} - \mu)]^2 + (1 - \phi^2)(Y_1 - \mu)$, which is called the **unconditional sum-of-squares function**

- AR(1) with nonzero mean: $Y_t \mu = \phi(Y_{t-1} \mu) + e_t$
 - In general, the log of the likelihood function (log-likelihood function) is more convenient to work with

$$\ell(\phi, \mu, \sigma_e^2) = -\frac{n}{2} \log 2\pi - \frac{n}{2} \log \sigma_e^2 + \frac{1}{2} \log(1 - \phi^2) - \frac{1}{2\sigma_e^2} S(\phi, \mu)$$

– Then, find ϕ , μ , σ_e^2 that maximize the log-likelihood

Chapter 7.4

Properties of the Estimates

Properties of estimates

 We will just briefly see the large-sample properties of the maximum likelihood and least squares estimators

$$AR(1): Var(\hat{\phi}) \approx \frac{1 - \phi^{2}}{n}$$

$$MA(2): \begin{cases} Var(\hat{\theta}_{1}) \approx Var(\hat{\theta}_{2}) \approx \frac{1 - \theta^{2}_{2}}{n} \\ Corr(\hat{\theta}_{1}, \hat{\theta}_{2}) \approx -\frac{\theta_{1}}{1 - \theta_{2}} \end{cases}$$

$$AR(2): \begin{cases} Var(\hat{\phi}_{1}) \approx Var(\hat{\phi}_{2}) \approx \frac{1 - \phi^{2}_{2}}{n} \\ Var(\hat{\phi}_{1}, \hat{\phi}_{2}) \approx -\frac{\phi_{1}}{1 - \phi_{2}} = -\rho_{1} \end{cases}$$

$$MA(1): Var(\hat{\theta}) \approx \frac{1 - \theta^{2}}{n}$$

$$ARMA(1,1): \begin{cases} Var(\hat{\phi}) \approx \left[\frac{1 - \phi^{2}}{n}\right] \left[\frac{1 - \phi\theta}{\phi - \theta}\right]^{2} \\ Var(\hat{\phi}) \approx \left[\frac{1 - \theta^{2}}{n}\right] \left[\frac{1 - \phi\theta}{\phi - \theta}\right]^{2} \\ Corr(\hat{\phi}, \hat{\theta}) \approx \frac{\sqrt{(1 - \phi^{2})(1 - \theta^{2})}}{1 - \phi\theta} \end{cases}$$

- AR(1): $Var(\hat{\phi})$ decreases as ϕ approaches ± 1
- AR(2): estimation of ϕ_1 will suffer if we erroneously fit ϕ_2
 - Similar arguments can be made for MA(2) and ARMA(1,1)

