Bilkent University

Computer Engineering Department

CS224: COMPUTER ORGANIZATION

Midterm

Date: November 15, 2020

Time: 14:30 - 17:00

Student Name:

ID No .:

Section:

GOOD LUCK!

Notes: 1. There are 100 points, 5 questions on 8 pages.

- 2. Please READ the questions and the notes below.
- 3. It is an open textbook exam. You can only use the textbook.
- 4. You can only us four function simple calculators.
- 5. You cannot share calculators.
- 6.A copy of the MIPS green card is provided at the end of the exam. You can detach and use it. You can keep it after the exam.
- 7. There is an empty page after the questions. You may use it for your work.
- 8. Show your work. You have to provide a legible neat work.
- 9. You cannot leave the exam room in the first 30 minutes.
- 10. You may take a picture of your midterm pages when you are allowed by your exam proctor.
- 11. Please do not write anything in the following table.

Question No.	Q1	Q2	Q3	Q4	Q5	Overall
Points Possible	20	25	25	15	15	100
Your Grade						

Question 1. (20 points): MIPS Programming and Floating Point Numbers

If you think that there is something wrong in a question explain.

a. (10 points) In MARS assembler/simulator we want to have another pseudo instruction with the mnemonic jle: jump less than or equal.

For example, "jle \$t0, \$t1, done". This instruction sets the PC equal to the address of the label done, i.e., it jumps to label done, if $t0 \le t1$. Show its implementation below in the provided box. If needed you may also use additional labels such as L1 etc. You are not allowed to use any pseudo instruction. An efficient implementation with minimal number of instructions is essential during grading.

b. (6 points) Consider the following single precision IEEE floating point number given in hexadecimal C4 02 D0 00. Give its normalized binary number representation and its decimal equivalent in the following boxes.

Norm. binary:	1.0000 0101 101 + 23
Decimal:	-523.25

$$\begin{array}{c} C4 & 02 & 00 & 000 \\ 1100 & 0101 & 0000 & 0010 & 1101 & 0000 & 0000 & 0000 \\ 8 & 8 & & & & & & & & & & & & & \\ 1.000000101101 \times 2^9 & & & & & & & & & \\ \hline -7F_{16} & & & & & & & & & & & \\ \hline 09 & & & & & & & & & & & \\ \hline 09 & & & & & & & & & & & \\ \hline \end{array}$$

c. (4 points) You are given the following MIPS machine instruction (in hex): 8D 28 FF F4. Disassemble this machine instruction and give its symbolic machine instruction equivalent in the following box.

FFF4 000B

Question 2. (25 points): MIPS Code Generation and Program Tracing

a. (9 points) Consider the following code segment.

L1: la \$t0, sum # sum is defined in the data segment add \$t0, \$t0, \$t0 Jump: operateladdren 00,40 00 A next: (add \$t0, \$t0, \$t0 beq \$t0, \$t1, L1 add \$t0, \$t0, \$t0

Assume that L1 is at memory location 0x 00 40 00 AC. Give the MIPS machine instruction that will be generated for "j L1" and "beq \$t0, \$t1, L1" in the following box in hex.

L1: j L1 # Give the generated machine instruction below in hex.

0X 08 10 00 2B

beq \$t0, \$t1, L1 # Give the generated machine instruction below in hex.

0X11 09 FF #A

b. (16 points) Consider the following code segment. Note that MIPS text segment begins at memory location 0x 00 40 00 00 and the data segment begins at memory location 0x 10 01 00 00.

.text main: 1w \$t0, a la \$t1, array lw \$t2, n li \$t4,0 L1: \$t2, \$0, L2 lw \$t3, 0(\$t1) addi \$t1, \$t1, 4 addi \$t2, \$t2, -1 bgt \$t3, \$t0, L1 add \$t4, \$t3, \$t4 L1 L2: .data

00 0100 01000 01001 FF FA 11 09 FF FA

.word 0, 1, 3, 5, 10, 20 array:

.word

... # its value is specified below in the following table ... # its value is specified below in the following table

What will be the contents of the registers \$t1, \$t2, \$t3, and \$t4 (in hex.) when we reach L2 during execution time for the values of the variables a and n as shown in the following table.

a	n	\$t1	\$t2	\$t3	\$t4
510	610	0×10010018	0400		66 00 00 00 %a
1010	810	0× 40 0 1 00 20	0x00	10000000000	100 00 00 25 3710

5 0x00400000 6 0 Finds the summeter of any elevists screde than on (6), when exists the loop stipoints to in

	. 516
variable	address (her).
accord	00 00 00 00 x0
~	ox 00 40 00 18
a	0x 00 40 00 1C
100	Ox 00 40 00 20
after a	

10010000 arma(1):

The first con (0:5, n:6): find sum of any elements & a (5)
The second con (0:10, n:8): finds sum of any elements and next two concentre values (10,8) & a (10)

Question 3. (25 points): MIPS Single-Cycle New Instruction Implementation

In this question consider the single-cycle MIPS architecture and the implementation of a new I-type MIPS instruction called waps (opcode is 3810). An example of waps is given below.

waps \$t1, 12(\$t2)

The contents of some registers and some memory locations before and after executing the above instruction is given in the following table. The table shows that before executing the instruction register \$8 contains 0x00cc00bc and after executing the instruction it still contains 0x00cc00bc. The memory location with the address 0x00cc00cc, before executing the instruction, contains 0x000000cc; after executing the instruction it still contains 0x000000cc.

0x00cc00bc 10x000000011 0x00cc00cc 1 0x000000cc 1 0x0000000	
Contents Before Execution ==> 0x00cc00bc 0x00000000 0x00cc00cc 0x000000cc 0x000000cc	The state of the s
	000d0 0x00000000 0x000000b
Contents After Execution 0x000cc00bc 0x0000000b 0x000cc00cc 0x000000cc 0x000000cc	00000000x0 0x0000000x0

waps \$t1, 12(\$t2) in hex in the following box. Show your work. It

0x 99 49 00 0c

waps I-type operate/cs/ct/imm 38,0=26,6 10 9 12

10 0110 01010 01001 00 -- 1100

b. (8 points) Give the RTL description that defines how the instruction works.

The table shows that the content of the 1st and 2nd obeloug are exchanged (?mobbeg);

IM[PC] RF[rt] & DM [RF[a] + signExt (imm)] DM[RF[rs]+signExt (mom)] < RF[rt]

PC-PC+4

See the next page for the continuation of the question.

rate: the assemble would give on error meddige for a Case When Host, En = 0 alvar

c. (12 points) Consider the following MIPS single-cycle architecture given in the textbook. Provide the necessary changes to implement the new instruction waps.

During grading an implementation with the minimal number of changes is essential. For the new control lines and new hardware units explain their purpose.

State the values of the following control signals for the waps instruction. If you have new control signal(s) state their name(s), and value. If needed add additional rows to the following line.

	5	(Bih.)
	Control Line	Value
1	Jump	0
2	MemtoReg	\ .
3	MemWrite	1
4	Branch	0
5	ALUControl	010
6	ALUSrc	1
7	RegDst	0
8	RegWrite	\

1. June = 0, not a june instruction

2. Membres = 1, send anterts of menons to RP

3. Membres = 1, white to memors

4. Branch = 0, not a branch instruction

5. ALM CATED = 1 per form an addition

6. ALM Sic = 1, use Significant as Sicis

7. Report = 0, white to it rejulter

8. Republic = 1, white to rep. file

Question 4. (15 points): MIPS Programming for Linked Lists: Completing Missing Parts

Consider a singly linked list structure with nodes containing two fields: First the link field, then followed by a data field of size one word. Complete the subprogram replaceWithSum given below which replaces the data field of each node with the summation of the data fields starting with that node. For example, if the linked list data fields contain the following numbers 1, 2, 3, 4 (the data field of the first node contains 1 etc.); after executing the subprogram the updated data fields contain the following values 10, 9, 7, 4. This means that the data field of the first node now contains 10 after executing replaceWithSum, etc.

For implementing replaceWithSum assume that a subprogram called findSum is available as a library routine: It returns a value which is equal to the summation of data fields of the linked list starting from the node pointed by the only parameter of the subprogram. For example, if linked list data fields contain the following numbers 1, 2, 3, 4 and if we pass the address of the second node to findSum it returns 9.

Your task is completing the missing parts of the subprogram replaceWithSum. Note that it does not use any \$t registers or pseudo instructions. You cannot add new instructions. The parameter passing and returning results from methods follow the traditions of MIPS programming.

replaceWithSu	m:				
	addi	\$5P, \$5P, -8			3
	sw	950, 41958)		- A A	
(The state of the	sw	sra olssp)		The	+m
	add	\$s0, \$zero, \$a0		6	elg
L1:	beq	\$14,57eA, L2		,	
	add	\$a0, \$s0, \$7e/	۵		
	jal	findSum			
	sw	\$v0, 4 (\$\$0)	10 (\$00)=}	OK 6-4	4.4.
	lw_	\$s0,0(\$\$0)	10 (\$00)	not recomm	cor be
	j	L1	# jump	charged by	Gird Sur-
L2:	lw_	sra, 0 (\$50))	- 100 17	V0-4
	lw	\$s0, 4(\$sp)			
	addi	8,922,922			
	jr	\$1a	# Program end here		. ~

Question 5. (15 points): MIPS Recursive Program Tracing

Consider the following program segment.

```
1w
                $a, m # Variable m is defined in the data segment
       1w
                $a1, n # Variable n is defined in the data segment
       jal
                subProgram
subProgram:
       bge
                $a0, $a1, next
       move
               $v1, $a0
       ir
               $ra
                                    # <== Instruction no. 1
# Give the values of the cells at this point. (Read the rest to understand this.)
       sub
               $sp, $sp,4
       SW
               $ra, 0($sp)
       addi
               $v0, $v0,1
       sub
               $a0, $a0,$a1
       blt
               $a0, $a1, done
       ial
               subProgram
                                                                 saves $ra 3 times for below line
                                   \# \le Instruction no. 2
                                                                 = 3 times done = 3 times inst 3
done:
       move
               $v1, $a0
       lw
               $ra, 0($sp)
       add
               $sp, $sp,4
       jr
               $ra
                                  \# \le Instruction no. 3
```

Trace the code given above and fill in the empty cells of the following table when we execute the program with m and n values given in the first two columns of the table. Under \$v0 and \$v1 give the contents of these registers after completing the execution. Under the column "Inst. No. 1" give the number of times the instruction given on that line is executed when subProgram is executed for the m and n given in the first two columns. Do the same for the last two columns for "Inst. No. 2" and "Inst. No. 3".

m	n	\$v0	\$v1	Inst. No. 1	Inst. No. 2	Inst. No. 3
4	3	1	1	0	0	\
15	4	3	3	0	2	3
38	7	5	3	0	4	5

If you think that we have an infinite loop explain why and state how to fix it.

Page number 8 is intentionally left blank.

(1) PS Reference Data OPCODE CORE INSTRUCTION SET / FUNCT OPERATION (in Verilog) (Hex) NAME, MNEMONIC MAT (1) 0/20_{hex} R R[rd] = R[rs] + R[rt]55A ≥àd (1,2)8hex R[rt] = R[rs] + SignExtImmAdd Immediate addi $9_{\rm hex}$ (2) R[rt] = R[rs] + SignExtImmI Add Imm. Unsigned adding 0/21_{hex} R R[rd] = R[rs] + R[rt]Add Unsigned addu 0 / 24_{hex} R[rd] = R[rs] & R[rt]R and (3) Chex

andi R[rt] = R[rs] & ZeroExtImmAnd Immediate if(R[rs]==R[rt])Branch On Equal hea PC=PC+4+BranchAddr if(R[rs]!=R[rt])Branch On Not Equal bne (4) PC=PC+4+BranchAddr PC=JumpAddr J i R[31]=PC+8;PC=JumpAddr Jump And Link ial.

0/08_{hex} Jump Register R PC=R[rs] jr R[rt]={24'b0,M[R:[rs] 24_{hex} Load Byte Unsigned 1bu +SignExtImm](7:0)} (2) $R[\pi] = \{16^{\circ}b0, M[R[rs]]$ 25_{hex} Load Halfword lhu +SignExtImm](15:0)} (2) Unsigned 30_{hex} (2,7)11 R[rt] = M[R[rs] + SignExtImm]Load Linked

Load Upper Imm. lui $R[rt] = \{imm, 16'b0\}$ R[rt] = M[R[rs] + SignExtImm]Load Word lw 0/27_{hex} $R[rd] = \sim (R[rs] \mid R[rt])$ nor R 0 / 25_{hex} R[rd] = R[rs] | R[rt]or

dhex $R[rt] = R[rs] \mid ZeroExtImm$ ori Or Immediate 0 / 2a_{hex} R[rd] = (R[rs] < R[rt]) ? 1 : 0Set Less Than sit R[rt] = (R[rs] < SignExtImm)? 1:0(2)a_{hex} Set Less Than Imm. slti R[rt] = (R[rs] < SignExtImm)? 1:0 Set Less Than Imm. b_{hex} sitiu (2.6)Unsigned

(6) 0/2bhex R[rd] = (R[rs] < R[rt]) ? 1 : 0Set Less Than Unsig. slt.u R 0/00_{hex} $R[rd] = R[rt] \ll shamt$ R Shift Left Logical sll 0 / 02_{bex} R R[rd] = R[rt] >> shamtShift Right Logical srl M[R[rs]+SignExtImm](7:0) =28_{hex} Store Byte sin

R[rt](7:0) M[R[rs]+SignExtImm] = R[rt];38hex Store Conditional 50 R[rt] = (atomic)?1:0M[R[rs]+SignExtImm](15:0) =29_{hex} sh

Store Halfword (2) R[rt](15:0) 2b_{hex} (2) M[R[rs]+SignExtImm] = R[rt]Store Word ew T (1) 0/22_{hex} R R[rd] = R[rs] - R[rt]Subtract sub

R R[rd] = R[rs] - R[rt]Subtract Unsigned subu (1) May cause overflow exception (2) SignExtImm = { 16(immediate[15]), immediate }

(3) ZeroExtImm = { 16{1b'0}, immediate } (4) BranchAddr = { 14{immediate[15]}, immediate, 2'b0 } (5) JumpAddr = { PC+4[31:28], address, 2'b0 }

(6) Operands considered unsigned numbers (vs. 2's comp.) (7) Atomic test&set pair; R[rt] = 1 if pair atomic, 0 if not atomic

BASIC INSTRUCTION FORMATS

opc	ode	TS		rt	TC	sh:	amt	funct
31	26 25		21 20	16	15	11 10	6.5	
5 opc	ode	TS	5	nt	16	imt	nediate	
31	26 25		21 20	16	15			
орс	ode				add	ress		

/ FMT /FT /FUNCT OPERATION (Hex) NAME, MNEMONIC MAT FI if(FPcond)PC=PC+4+BranchAddr (4) 11/8/1/-Branch On FP True holt. 11/8/0/if(!FPcond)PC=PC+4+BranchAddr(4) FI Branch On FP False bolf 0/--/--/1a Lo=R[rs]/R[rt]: Hi=R[rs]%R[rt] Divide div R (6) 0/-/--/16 R Lo=R[rs]/R[rt]; Hi=R[rs]%R[rt] Divide Unsigned divu add.s FR F[fd]=F[fs]+F[ft] 11/10/--/0 FP Add Single ${F[fd],F[fd+1]} = {F[fs],F[fs+1]} +$ FP Add 11/11/-/0 add.d FR ${F[ft],F[ft+1]}$ Double 11/10/--/v FP Compare Single cx.s* FR FPcond = (F[fs] op F[ft]) ? 1:0 Compare c.x.d* FR FPcond = ({F[fs],F[fs+1]}) op ble
* (x is eq, 1t, or 1e) (op is ==, <, or <=) (y is 32, 3c, or 3e)
Divide Single div.s FR F[fd] = F[fs] / F[ft] FP Compare 11/11/-/y Double 11/10/--/3 FP Divide Single ${F[fd],F[fd+1]} = {F[fs],F[fs+1]} /$ FP Divide 11/11/--/3 div.d FR ${F[fi],F[fi+1]}$ Double FP Multiply Single mul.s FR F[fd] = F[fs] * F[ft] 11/10/--/2 ${F[fd],F[fd+1]} = {F[fs],F[fs+1]} *$ FP Multiply 11/11/--/2 mul.d FR $\{F[\hbar],F[\hbar+1]\}$ Double 11/10/-/1 FP Subtract Single sub.s FR F[fd]=F[fs] - F[ft] ${F[fd],F[fd+1]} = {F[fs],F[fs+1]} -$ FP Subtract 11/11/-/1 sub.d FR {F[ft],F[ft+1]} Double (2) 31/--/-/-lwcl F[rt]=M[R[rs]+SignExtImm] Load-FP Single F[n]=M[R[rs]+SignExtImm];35/-/-/-Load FP T ldcl F[rt+1] = M[R[rs] + SignExtImm + 4]Double 0 /-/-/10 mfhi R[rd] = HiMove From Hi 0 /--/--/12

R[rd] = Lo

 $R[\tau d] = CR[rs]$

 $\{Hi,Lo\} = R[rs] * R[rt]$

 ${Hi,Lo} = R[rs] * R[rt]$

R[rd] = R[n] >>> shamtM[R[rs]+SignExtImm] = F[rt] M[R[rs]+SignExtImm] = F[rt];

M[R[rs]+SignExtImm+4] = F[rt+1]

(2) OPCODE

10/0/-/0

0/-/-/18

0/-/-/19

3d/--/-/-

(2) 39/--/-/--

(2)

0/--/--/3

sdc1 FLOATING-POINT INSTRUCTION FORMATS

mflo R

mfc0

mult R

mult.u

SIB

swcl

R

ARITHMETIC CORE INSTRUCTION SET

4_{hex}

5hex

2_{hex})

3_{hex}

fhex

23_{hex}

0/23_{hex}

(5)

(5)

FR	oncode	fmt		ft	fs	fd	funct
		26 25	21 20	1	6 15	11 10 6	5 5 (
FI	opcode	fint		ft		immediat	e
	31	26 25	21 20	1	6 15		0

DSELIDOINSTRUCTION SET

Move From Lo

Multiply

Store FP

Move From Control

Multiply Unsigned

Shift Right Arith.

Store FP Single

NAME	MNEMONIC	OPERATION
Branch Less Than		if(R[rs] < R[rt]) PC = Label
Branch Greater Than		if(R[rs]>R[rt]) PC = Label
Branch Less Than or Equal		$if(R[rs] \leftarrow R[rt]) PC = Label$
Branch Greater Than or Equal		if(R[rs])=R[rt]) PC = Label
Load Immediate	li	R[rd] = immediate
Move	move	R[rd] = R[rs]

REGISTER NAME, NUMBER, USE, CALL CONVENTION

NAME	NUMBER	USE	PRESERVED ACROSS A CALL?
Szero	0	The Constant Value 0	N.A.
Sat	1	Assembler Temporary	No
\$v0-\$v1	2-3	Values for Function Results and Expression Evaluation	No
\$a0-\$a3	4-7	Arguments	No
St0-\$t7	8-15	Temporaries	No
\$s0-\$s7	16-23	Saved Temporaries	Yes
St8-St9	24-25	Temporaries	No
\$k0-\$k1	26-27	Reserved for OS Kernel	No
Sgp	28	Global Pointer	Yes
Ssp	29	Stack Pointer	Yes
\$ fp	30	Frame Pointer	Yes
Sra	31	Return Address	Yes

Copyright 2009 by Elsevier, Inc., All rights reserved. From Patterson and Hennessy, Computer Organization and Design, 4th ed

2000	DEC DACE	CONVED	CION /	SCH	SVMB	OI S		(3)	
MIPS	(I) MIPS	(2) MIPS	SIUN, A	SUIT	Hexa-	ASCII		Hexa-	ASCII
pcode	funct	funct	Binary	Deci-	deci-	Char-		dcci-	Char-
31:26)	(5:0)	(5:0)	Dinary	mal	mal	acter	mal	mal	acter
	511	add.f	00 0000	0	0	NUL	64	40	(a)
(1)	511	sub.f	00 0001	1	1	SOH	65	41	Ā
_	srl	mul,f	00 0010	2	2	STX	66	42	В
j jal	sra	div.f	00 0011	3	3	ETX	67	43	C
beq	sllv	sgrt.	00 0100	4	4	EOT	68	44	D
bne bne	277	abs.f	00 0101	5	5	ENQ	69	45	E
blez	Erlv	mov.f	00 0110	6	6	ACK	70	46	F
bgtz	srav	neg.f	00 0111	7	7	BEL	71	47	G
addi	jr	neg.j	00 1000	8	8	BS	72	48	H
addiu			00 1001	9	9	HT	73	49	I
slti	jalr movz		00 1010	10	a	LF	74	4a	J
	movn		00 1011	11	b	VT	75	4b	K
sltiu		round.w./	00 1100	12	C	FF	76	4c	-Î
andi	syscall		00 1101	13	d	CR	77	4d	M
ori.	break	trunc.w.j	00 1110	14	e	SO	78	4e	N
xori		ceil.w.f		15	f	SI	79	4f	0
lui	sync	floor.w.f	00 1111	16	10	DLE	80	50	P
(2)	mfhi				11	DC1	81	51	Q
(2)	mthi .		01 0001	17	12	DCI	82	52	R
	mflo	movz.f	01 0010	18		DC2	2017/2015		S
	mtlo	movn.f	01 0011	19	13	DC3	83	53 54	T
-			01 0100		14	DC4	85	55	Ü
			01 0101	21	15	NAK		56	V
			01 0110		16	SYN	86	57	W
			01 0111	23	17	ETB	87	58	
	mult		01 1000		18	CAN	88	59	X Y
	multu		01 1001	25	19	EM			
	div		01 1010		la	SUB	90	5a	Z
	divu	12.1	01 1011	27	16	ESC	91	5b	[
			01 1100		10	FS	92	5c	1
			01 1101	29	1d	GS	93	5d)
			01 1110		10	RS	94	5e	^
			01 1111	31	1f	US	95	5f	-
lb	add	cvt.s.f	10 0000		20	Space	96	60	
1h	addu	cvt.d.f	10 0001	33	21	1	97	61	а
lwl	sub		10 0010		22	11	98	62	ь
lw	subu		10 0011	35	23	#	99	63	C
lbu	and	cvt.w.f	10 0100	36	24	S	100	64	d
lhu	or		10 0101	37	25	%	101	65	е
lwr	xcr		10 0110	38	26	82	102	66	f
	nor		10 0111	39	27	1	103	67	g.
sb			10 1000	40	28	(104	68	h
sh			10 1001		29)	105	69	i
swl	slt		10 1010		2a	*	106	6a	j
SWI	sltu		10.1011	43	2b	+	107	6b	Ĭc
	.,		10 1100		2c	,	108	6с	1
			10 1101	45	2d	-	109	6d	m
swr			10 1110		2c		110	6e	π
cache			10 1111		2f	7	111	6f	0
11	tae	c.f.f	11 0000		30	0	1112	70	p
	tge	c.un.f	11 0001		31	1	113	71	q
lwc1	tgeu tlt	c.eq.	11 0010		32	2	114	72	r
	t,ltu	c.ueq.f	11 0011		33	3	115	73	s
praf	teq	c.olt.f	111 0100		34	4	116	.74	ı
1 4 - 3	ceq		11 0101		35	5	117	75	u
ldcl	+==	c.ult.f	11 0110		36	6	118	76	v
ldc2	tne	c.ole.f	11 0111	1770	37	7	119	77	w
		c.ules	111 1000		38	8	120	78	X
sc.		c.sf.f			39	9	121	79	y
swcl		c.ngle.f	11 1001	77-1-1			121	79 7a	z
swc2		c.seq.f	11 1010		3a	•	122		
		c.ngl.f	11 1011		3b	;		7b	
		c.lt.f	11 1100		30	<	124	7c 7d	Į
sdcl		c.nge.f	11 1101		3d		125		}
sdc1 sdc2		c.nge.f c.le.f c.ngt.f	11 1101 11 1110 11 1111	62	3d 3e 3f	>. ?	126 127	7c 7f	DEL Ž

(1) opcode(31:26) = 0 (2) opcode(31:26) = 17_{ten} (11_{hex}); if fmt(25:21)= 16_{ten} (10_{hex})f = s (single); if $fmt(25:21)=17_{ten}(11_{hex}) f = d$ (double)

IEEE 754 FLOATING-POINT STANDARD

 $(-1)^S \times (1 + Fraction) \times 2^{(Exponent - Bias)}$ where Single Precision Bias = 127, Double Precision Bias = 1023.

Exponent

IEEE Single Precision and Double Precision Formats:

S

(4) IEEE 754 Symbols Object Exponent Fraction ± 0 0 ± Denorm **≠**0 1 to MAX anything ± Fl. Pt. Num MAX MAX NaN **≠0** S.P. MAX = 255, D.P. MAX = 204

Fraction

DATA ALIGNMENT

Word				Word				
Halfword		Halfword		Half	word	Halfword		
Byte	Byte	Byte	Byte	Byte	Byte	Byte	Byte	

Value of three least significant bits of byte address (Big Endian)

TION CONTROL REGISTERS: CAUSE AND STATUS

B D		Interrupt Mask		Exception Code		
31	1.5		8 6			_
		Pending	16.5,40	U -	E	I
		Interrupt		M	L	E
	15		8	4	T	0

BD = Branch Delay, UM = User Mode, EL = Exception Level, IE =Interrupt Enable

Number	Name	Cause of Exception	Number	Name	Cause of Exception
0	Int	Interrupt (hardware)	9	Вр	Breakpoint Exception
4	AdEL	Address Error Exception (load or instruction fetch)	10	RI	Reserved Instruction Exception
5	AdES	Address Error Exception (store)	11	CpU	Coprocessor Unimplemented
6	IBE	Bus Error on Instruction Fetch	12	Ov	Arithmetic Overflow Exception
7	DBE	Bus Error on Load or Store	13	Tr	Ттар
8	Sys	Syscall Exception	15	FPE	Floating Point Exception

SIZE PREFIXES (10x for Disk, Communication; 2x for Memory)

SIZE	PRE- FIX	SIZE	PRE- FIX	SIZE	PRE- FIX	SIZE	PRE- FIX
103, 210	Kilo-	1015, 250	Peta-	10-3	milli-	10-15	femto-
10 ⁶ , 2 ²⁰	Mega-	1018, 260	Exa-	10-6	micro-	10-18	atto-
109, 230	Giga-	1021, 270	Zetta-	10-9	nano-	10-21	zepto-
1012, 240	Tera-	10 ²⁴ , 2 ⁸⁰ prefix is ju	Yotta-	10-12	pico-	10-24	yocto-