MATTHEW SCHROETER

Available for full-time post-graduate roles starting May 2022

EDUCATION

Northeastern University, College of Engineering

Candidate for Bachelor of Science Degree in Bioengineering

GPA: 3.61/4.0

schroeter.m@northeastern.edu

Boston. MA

Jan. 2018 - May 2022

Relevant Courses: Biomechanics, Bioelectricity, Multiscale Biomechanics, Biomaterials, Transport and Fluids, Finite Element Analysis, Robot Dynamics and Control, System Analysis and Control, Embedded Design: Enabling Robotics

American College of Thessaloniki (Anatolia College)

Study Abroad - N.U. in Program

Thessaloniki, Greece

Sep. 2017 - Dec. 2017

SKILLS

Applications: SolidWorks, Creo Parametric, Autodesk Fusion 360, MATLAB, Simulink, Simscape, ANSYS, MS Office Suite Prototyping: SLA and FDM 3-D Printing, Composite 3D Printing, UV and CO₂ laser cutting, Arduino, Milling, Soldering **Programming:** C++ in Linux on DE1-SoC FPGA board, Logic Schematics, basic knowledge of Python

WORK EXPERIENCE

Vicarious Surgical

Waltham, MA Jul. 2021 - Present

Mechanical Engineering Co-op - Surgical Robotics

Billerica, MA

Festo Corporation

Mechanical Engineering Co-op – Industrial and Life Science Automation

Iul. - Dec. 2020

- Designed and tested vacuum manifold to carry contaminated disposable tips through plasma cleaning system
- Utilized root-cause analysis and FEA to diagnose warping problems with 3D printed prototypes of vacuum manifold
- Renovated liquid handling gantry system and integrated Festo components including pressure/vacuum supply, flow sensor, motor controller, single channel pipettor and tip ejector
- Performed trade study to select final design for steel tip adapter removal
- Researched and spoke with vendors to identify cheaper components and materials

CATALOG Charlestown, MA

Researcher Co-op – Startup building the world's first DNA-based platform for massive digital data storage Jul. - Dec. 2019

- Developed an FMEA template to systematically tackle failure modes in hardware development and biology experiments
- Designed fixture to illuminate and position microfluidic chips for imaging, presented drawings and assemblies
- Prototyped automatic camera panning system using Arduino to control a stepper motor to stitch photos for image analysis

RESEARCH EXPERIENCE

SiliconSynapse Robotics Lab

Undergraduate Researcher - Bio-inspired Robotics

Northeastern University

Mar. 2019 - Present

- Awarded \$3000 research award to pursue project titled "Design of Feedback Driven Actuators for Flapping Wing Drone"
- Researched and performed literature review of actuation methods and mechanisms for mechanical amplification
- Prototyped living hinge mechanical amplifiers for thrust vectoring on drone and currently performing flight experiments
- Designed and fabricated 3D printed molds for casting flexible shells to protect exterior of quadruped robotic system

NU Students for the Exploration and Development of Space (SEDS)

Northeastern University

Team Lead - BIG Idea 2022 Extreme Terrain Mobility Challenge

Sep. 2021 - Present Aug. 2021- Present

Finance Chair - Club Executive Board

Apr. - Jun. 2021

Mechanical Team Member - RASC-AL 2021 Venus Flyby Mission

- Researched drones for exploration of Venus, analyzed design trade-offs between hybrid and fixed wing drones
- Performed hand calculations to size drone components, such as airfoil, propeller, and tail for Venus atmosphere
- Developed CAD model of folding wing drone exterior and interior, determining placement of sub-systems and payload

Mechanical Team Member - NASA BIG Idea Challenge 2020

Iun. 2020 - Ian. 2021

- Member of Northeastern team that developed a system to explore the permanently shadowed regions (PSRs) of the moon
- Supported development of collapsible solar panel module that sits outside of the PSR and collects energy to charge a rover
- Designed and prototyped torque spring mechanism which drives deployment of the solar panels from collapsed to expanded state. Based mechanism on a car power antenna
- Collaborated with the electrical team to integrate mechanism with a solenoid to release the springs automatically

PROJECTS

Embedded Design Class - Implemented Axis-Aligned Bounding Box (AABB) collision detection algorithm in C++, on the DE1-SoC Board. Improved collision detection using Sweep and Prune Method reducing run-time by 10% for 300+ objects

Design Portfolio available upon request