LIÇÃO DE PROGRAMAÇÃO EV3 INICIANTE

Tópicos Abordados: Virada

By: Droids Robotics

OBJETIVO DA LIÇÃO

- 1. Aprenda a virar o robô com um número de graus desejado
- 2. Aprenda as diferenças entre Giro e Rotações de Eixo
- 3. Aprenda a como programar dois diferentes tipos de volta
- 4. Aprenda a escrever um pseudocódigo

EIXO VS. VIRADAS DE ROTAÇÃO

180 Graus da Virada de Eixo

180 Graus da Virada de Rotação

Observe onde o robô termina em ambas as fotos depois de um giro de 180°.

Na Virada de Rotação, o robô se move muito menos e aquilo faz Viradas de Rotação serem grandes para posições apertadas. Viradas de Rotação tendem a ser um pouco mais rápidas, mas também um pouco menos precisas. Então quando você fazer curvas, você poderá decidir qual curva é melhor para você!

COMO FAZER VIRADA DE EIXO E VIRADA DE ROTAÇÃO

Mudar valor da Direção aqui

FAZENDO UMA VIRADA DE EIXO POR 90°

Programa seu robô para virar 90 graus... Será que o robô realmente vira 90 graus se você apenas por 90 graus para distância? Ãhn. NÃO! Solução na próxima página

COMO VOCÊ FAZ O ROBÔ VIRAR 90 GRAUS?

Ann. Tente usando o port view para medir a virada e, em seguida, introduza o número correto de graus.

INSTRUÇÕES DE PROFESSOR

- Divida a sala em grupos como necessidade.
- Dê a cada time uma cópia do Worksheet do Desafio de Virada.
- Detalhes do desafio estão no slide 8.
- Página de discusão no slide 9.
- Solução do desafio no slide 10.

DESAFIOS DE VIRADA

Desafio 1

- Seu robô é um jogador de baseball que tem que correr por toda as bases e ir para a base segura.
- Você pode programar seu robô para mover para frente e então virar à esquerda?
- Use uma caixa quadrada ou fita.

Desafio 2

- Seu robô jogador de baseball deve correr para a segunda base, virar ao redor e voltar para a primeira.
- Vá em linha reta. Vire 180
 graus e retorne para o mesmo
 local.

GUIA DE DISCUSSÃO DE CLASSE

Você tentou viradas de EIXO e ROTAÇÃO? O que você descobriu?

Viradas de eixo foram excelentes para o Desafio 1, mas para o Desafio 2, se nós usamos Viradade de Eixo, nós ficamos mais longe da base.

Que situações teriam um trabalho melhor do que o outro?

Viradas de Rotação são melhores para meias voltas (lugares onde não há espaço suficiente) e você fica mais próximos de sua posição original.

O que é PSEUDOCÓDIGO?Por que você pensa que os programadores acham útil?(pseudocódigo está no worksheet)

Pseudocódigo permite que programadores escrevam fora o código deles em uma planície inglês antes em uma linguagem de programação. Ele permite que você compartilhe suas ideias com outras pessoas que você está trabalhando em uma linguagem comum.

SOLUÇÕES DE DESAFIOS

Desafio 1

Você provavelmente usou uma combinação de mover direção para ir em linha reta e fazer viradas de eixo para ir ao arredor da caixa.

Desafio 2

Você provavelmente usou uma virada de rotação porque é melhor para curvas apertadas e você fica mais perto do ponto inicial!

VIRANDO UM BRAÇO ANEXO, NÃO APENAS RODAS

- Anexe um motor médio na Porta A ou um motor grande na Porta D, como o necessitado.
- Mover Direção vs. Bloco Motor
 - Pra mover suas rodas você derá usar um Bloco de Mover Direção que sincronize ambos motores (veja lição intermediária chamada Blocos de Movimento para aprender sobre sincronização)
 - Para mover seu braço anexo, você usa um Bloco de Motor Médio ou um Bloco de Motor Grande porque você não precisa sincronizar seus motores.

Bloco de Motor Médio

Bloco de Motor Grande

CRÉDITOS

- Esse tutorial foi criado por Sanjay Seshan and Arvind Seshan do Droids Robotics.
- Mais lições estão disponiveis em www.ev3lessons.com
- Email do autor: <u>team@droidsrobotics.org</u>
- Traduzido por GAMETECH CANAÃ

Esse trabalho é licensiado sobre <u>Creative Commons Attribution-</u> NonCommercial-ShareAlike 4.0 International License.