Gaspare FERRARO

CyberSecNatLab

Matteo ROSSI

Politecnico di Torino

Attacks on PRNGs

License & Disclaimer

License Information

This presentation is licensed under the Creative Commons BY-NC License

To view a copy of the license, visit:

http://creativecommons.org/licenses/by-nc/3.0/legalcode

Disclaimer

- We disclaim any warranties or representations as to the accuracy or completeness of this material.
- Materials are provided "as is" without warranty of any kind, either express or implied, including without limitation, warranties of merchantability, fitness for a particular purpose, and non-infringement.
- Under no circumstances shall we be liable for any loss, damage, liability or expense incurred or suffered which is claimed to have resulted from use of this material.

Goal

- Learn how to break LCG with different knowledges
- Learn how to break the Mersenne Twister
- Learn different ways to break a LFSR

Prerequisites

Lectures:

- > CR_0.1 Number Theory and modular arithmetic
- > CR_0.2 Random Number Generation
- > HW_0.2.3 Linear Feedback Shift Registers

Outline

- > Introduction
- Attacks on LCGs
- Attacks on Mersenne Twister
- Attacks on LFSR
- Rand in practice

Outline

- > Introduction
- Attacks on LCGs
- Attacks on Mersenne Twister
- > Attacks on LFSR

(Pseudo-)Random Number Generators

- A Random Number Generator (RNG) is a utility or device of some type that produces a sequence of numbers within an interval [min, max] while guaranteeing that values appear unpredictable
- A Pseudo-Random Number Generators (PRNG) is an algorithm or a hardware device that generates a sequence of random bits or numbers

PRNGs in cryptography

- Not every random number generator needs to be secure in the cryptographic sense
- Most of them are designed to be good for simulations
- PRNGs are not considered cryptographically secure
- However, PRNG researchers have worked to solve this problem by creating what are known as Cryptographically Secure PRNGs (CSPRNGs)

Attacks on PRNGs

- In the next slides some attacks on PRNGs are presented:
 - Linear congruential generator (LCG)
 - Mersenne Twister
 - Linear-feedback shift register (LFSR)
- Attacks are mainly based on observation of the generated output numbers
- Knowledge of some information inside the algorithm can help with the attacks

Outline

- > Introduction
- Attacks on LCGs
- Attacks on Mersenne Twister
- > Attacks on LFSR

Recall: Linear Congruential Generator

- The simplest known PRNG is the Linear Congruential Generator (LCG)
- We fix three integers n, a, b respectively called modulus, multiplier and increment
- \triangleright We fix a starting point x_0 , the seed of the generator
- ▶ Next values are produced as $x_{i+1} = ax_i + b \pmod{n}$

Issues of LCGs

- LCGs can be easily broken if we have some observations from them
- We can attack LCGs in 4 different ways:
 - 1. n, a, b are known
 - 2. n, a are known
 - 3. only n is known
 - nothing is known

Break LCGs: n, a and b known

- \triangleright We know some observations $x_1, x_2, ..., x_{k-1}, x_k$
- \triangleright We know n, a, b
- \triangleright How can we compute x_{k+1} ?
 - > Simply $x_{k+1} = ax_k + b \pmod{n}$

Break LCGs: n and a known

- \triangleright We know some observations $x_1, x_2, ..., x_{k-1}, x_k$
- \triangleright We know n, a
- \triangleright How can we find b?
 - $> x_k = ax_{k-1} + b \pmod{n} \rightarrow b = x_k ax_{k-1} \pmod{n}$
- Solve as previous scenario

Break LCGs: only n is known

- \triangleright We know some observations $x_1, x_2, ..., x_{k-1}, x_k$
- \triangleright We know only n
- \triangleright How can we compute a?
 - $> x_k = ax_{k-1} + b \pmod{n}, x_{k-1} = ax_{k-2} + b \pmod{n}$
 - $\Rightarrow x_k x_{k-1} = a(x_{k-1} x_{k-2})$
 - $\Rightarrow a = (x_k x_{k-1})(x_{k-1} x_{k-2})^{-1} \pmod{n}$
- Solve as previous scenario

Break LCGs: nothing is known

- \triangleright We only know some observations $x_1, x_2, \dots, x_{k-1}, x_k$
- \triangleright How can we compute n?
 - \rightarrow Write $x_k = ax_{k-1} + b \pmod{n}$, $x_{k-1} = ax_{k-2} + b$ and so on
 - \rightarrow We known that $n \mid x_h (ax_{h-1} + b) = s_h$ for every h
 - > So $gcd(s_1, ..., s_k) = n$ with high probability... but we can't make the s_h sequence as we miss a and b
 - \triangleright We can define a new sequence $t_i = x_i x_{i-1}$ s.t $t_i = at_{i-1} \pmod{n}$
 - Note that $t_{i+1}t_{i-1}-t_i^2=0\ (mod\ n)$ then recover n by applying the gcd
- Solve as previous scenario

Outline

- > Introduction
- > Attacks on LCGs
- Attacks on Mersenne Twister
- > Attacks on LFSR

Mersenne Twister

- Another famous PRNG is the Mersenne Twister (MT)
- It is by far the most widely used PRNG in practice
- Its name derives from the Mersenne prime numbers, primes in the form of $2^n 1$, used in the algorithm
- It is usually used in its MT19937 version, where 19937 means that you need 2^{19937} calls of the function to obtain a duplicate number from the PRNG

Issues of Mersenne Twister

- Even if widely used, is not cryptographically secure
- By observing enough iterations, 624 word of 32-bit in the MT19937 version, it is possible to recover the internal state vector from which future iterations are produced and allows one to predict all future iterations

Break (also) the Mersenne Twister

- Untwister: a seed recovery tool for common PRNGs
 - https://github.com/altf4/untwister
- Supported PRNGs:
 - Mersenne Twister (MT19937 version)
 - Glibc's rand() PHP's MT-variant (php_mt_rand)
 - Ruby's MT-variant DEFAULT::rand()
 - Java's Random() class

Outline

- > Introduction
- > Attacks on LCGs
- Attacks on Mersenne Twister
- Attacks on LFSR

Linear Feedback Shift Register

- LFSRs are used as PRNG with application for example in stream ciphers
- A LFSR is defined by:
 - A bit size
 - A characteristic polynomial
 - An initial state

An 8-bit LFSR with initial state of 00100110 and characteristic polynomial of $x^8 + x^6 + x^3 + 1$

Linear Feedback Shift Register

LFSRs are used as PRNG with application for example in stream ciphers

Further details can be found in the lectures:

- A LFSR is defined k
 - A bit size
 - A characteristic polynom
 - An initial state

An 8-bit LFSR with initial state of 00100110 and characteristic polynomial of $x^8 + x^6 + x^3 + 1$

HW S 0.2.3 – Linear Feedback Shift Registers - LFRSs

Recovering internal state

- Assume that the characteristic polynomial of a n-bit LFSR is known
- Is it possible to completely recover the internal state given a binary output sequence of length n
- With the internal state is it possible to go backward and forward and recover all the output sequence

Berlekamp Massey algorithm

- Given some binary observation of a LFSR is it possible to recover its characteristic polynomial
- Berlekamp-Massey algorithm is an algorithm that will find the shortest linear feedback shift register (LFSR) for a given binary output sequence
 - References: Weisstein, Eric W. "Berlekamp-Massey Algorithm." From MathWorld - A Wolfram Web Resource
 - https://mathworld.wolfram.com/Berlekamp-MasseyAlgorithm.html
- An Online Calculator of Berlekamp-Massey Algorithm:
 - http://bma.bozhu.me/

Gaspare FERRARO

CyberSecNatLab

Matteo ROSSI

Politecnico di Torino

Attacks on PRNGs

