

Agent-Based Assessment of the Paris LEZ Policy* Considering Individual Adaptations

Azise-Oumar Diallo (azise-oumar.diallo@ifpen.fr)

Pierre Michel (pierre.michel@ifpen.fr)

Alexandre Chasse (alexandre.chasse@ifpen.fr)

Guoxi Feng (feng.guoxi@ifpen.fr)

MATSim user meeting 2025, June 12-13, Technical University of Munich

Mobilité durable

AGENDA

- Introduction
 - General context
 - Research questions
- Methodology and assumptions
- Results
 - Behavioral changes
 - Emissions
- Conclusion and perspectives

GENERAL CONTEXT

- Transportation and air pollution
 - Responsible for 310 000 premature deaths in Europe each year (EEA, 2020)
 - In France (2019), **51.8% of NO₂** , **16% of PM2,5** , **11% of CO** , emissions¹.
- Policy measures to reduce private car use²
 - EU-27 aimed through zero pollution action plan to reduce the number of premature deaths due to exposure to fine particulate matter by 55% by 2030, compared to 2005 (EEA, 2022).
 - Encourage the use of public transport (UPPER project)
 - Low emission zones (Gonzalez, J. N., Gomez, J., & Vassallo, J. M. (2022)): Stockholm (Sweden), Berlin (Germany), Paris (France) -
 - 2019 : Crit'Air 4 et 5
 - 2025 : Crit'Air 3 /!\
 - Limit speed reduction: Amsterdam (Netherlands), Paris (France)
 - 2024/10/01: 70 km/h to 50 km/h incoming presentation soon

- 1. Source: Citepa, rapport Secten, mai 2020
- . https://urbanaccessregulations.eu/

RESEARCH OBJECTIVE

- Consider key behavioral changes to ensure the acceptability of the LEZ policy
- Address a gap in simulations studies that often overlooking multiple mobility adaptations (e.g., Yin et al., 2024; Ferreira et al., 2015)
- Use **agent-based simulation** (*MATSim*) to evaluate the Paris LEZ incorporating three behavioral adaptations: vehicle replacement, modal shift, and destination change
 - Simulate agents' adaptations under defined assumptions
 - Provide a multi-scale environmental impact assessment (Paris, VGP, Île-de-France)
 - Conduct a socio-economic analysis of LEZ impact

WORKFLOW

IDENTIFICATION OF IMPACTED AGENT

- Based-on the reference scenario (without LEZ):
 - Simulation output event (agent_id, link_id, time_step) → routes
 - Transport network (link_id, geometry)
 - Agents' vehicles fleet (agent_id, type, energy, Euro norm)
 - LEZ area (geometry)
- Spatial SQL requests to identified agents traveled in the LEZ area with no appropriate vehicle

Methodology

PLANS ADAPTATIONS AND REPLANNING STRATEGIES

- **●** Three subpopulations with different strategies:
 - lezConformAgent

No impacted agents or whose replaced their forbidden car

Can use their conform vehicle anywhere

- noConformInsideAgent
 - Impacted agents who perform modal shift from car toward PT, bike, or walk
 - Cannot use car mode anymore (no car+other)
- noLezConformFullCrossingAgent
 - Impacted agents who perform route change
 - Use only car
- Delete all initial links and routes and replace the car by PT within the initial plans

NETWORK ADAPTATION AND SIMULATION

- New car mode
 - *lezCar* allowed into the whole network
 - car allowed only outside the LEZ area
- Network modification
 - Delete car mode within all links inside the LEZ area
 - Add lezCar mode into the whole network links
- Simulation
 - Adapting the config file to consider the new replanning strategies

NON-COMPLIANT VEHICLE REPLACEMENT

Travel patterns

Impacted agents identification and Plans adaptations

Reference scenario

Road network

Network adaptation

Adapted Road network

MATSim simulation/replanning and vehicle replacement

MATSim simulation

MATSim simulation

MATSim simulation

- Based on
 - the replanning simulation output as post-processing step
 - the **remaining compliant** car fleet
- Conditioned by the inability to fully or partially complete daily activities due to
 - Increased travel times from mode shift or rerouting
 →Those are agents likely to replace their banned vehicle and shift into lezConformAgent sub-population
- Assumptions & Constraints
 - PT travel time ratio threshold (PT time / car time) ≤ 2.7 (Leviaux & Péguy (2022))
 - Avoid exceed travel time (<=75th percentile) for PT (<60 min), bike (30 min) or walking (<15 min)</p>

PARIS LOW EMISSION ZONE

- In France, cities where pollutant emissions thresholds defined by WHO are exceeded must implement a Low Emission Zone (LEZ)
- In Paris, the LEZ legislation* includes
 - a perimeter and times slots where vehicles circulation is restricted,
 - a schedule for future restrictions,
 - and exemptions.
- The classification of vehicles in LEZ is determined by the Crit'Air system, which itself is based on the vehicle's Euro emission standard
 - Next vehicles restrictions is C3 (Gasoline Euro 2 & 3 Diesel Euro 4) in 2025 /!\

* https://metropolegrandparis.fr/fr/la-zone-faibles-emissions-metropolitaine

SIMULATION FRAMEWORK

- eqasim generates Ile-de-France* population, travel demand and light vehicle fleet
 - The approach allows to assign a vehicle to each agent while retaining an age and energy distribution
- ■MATSim simulates behavioral adaptations in response to the LEZ
- MATSim emissions module coupled with HBEFA computes pollutant (NO_X and particles) and GHG (CO₂) emissions

^{*}Hörl, S. and M. Balac (2021) Synthetic population and travel demand for Paris and Île-de-France based on open and publicly available data, Transportation Research Part C, 130, 103291.

BEHAVIORAL CHANGES

Reference scenario Reference scenario Road network Network adaptation Adapted Road network MATSim simulation/replanning and vehicle replacement Final travel patterns MATSim simulation Analysis

• noConformInsideAgent sub-population

- After applying constraints complete daily activities
 - 3%, 9%, and 15% shifted to wtoalking, cycling, and public transport (PT), respectively
 - 73% remaining replaced their non-compliant vehicle

BEHAVIORAL CHANGES

- noLezConformFullCrossingAgent subpopulation
 - 94% of agents who avoided the restricted zone kept their non-compliant vehicles
 - Only 6% chose to replace

EMISSIONS

	LEZ area			MGP			IdF		
	NO_x	PM2.5	CO_2	NO_x	PM2.5	CO_2	NO_x	PM2.5	CO_2
Ref. scena.	12	0.3	6,274	13.8	0.3	7,108	32.2	0.8	15,644
LEZ scena.	9.9	0.07	5,954	11.5	0.13	6,901	30	0.5	$15,\!420$
Variation (%)	-17.8	-74.2	-5.1	-15.2	-62.2	-3	-6.8	-41.3	-1.4

- Larger LEZ areas lead to greater overall emission reductions
- Particulate matter (PM) emissions show the most significant decrease, compared to NOx and CO₂
- This is largely due to the ban on Diesel Euro 4 vehicles, which:
 - represent 10% of the vehicle fleet
 - Contribute to 80% of PM emissions

Mobilité durable

CONCLUSION

- Paris LEZ Policy (2025) Assessment via Agent-Based Simulation (MATSim)
 - Focusing on three key behavioral adaptations: Vehicle replacement, Modal shift (PT, bike, walking), Route change
 - Modeled through specific agent sub-populations
- Key Finding: Banning Diesel Euro 4 vehicles (10% of fleet) leads to a major reduction in particle emissions (80% of PM sources)

• Limitations:

- Does not capture psychological/latent factors (opinions, perceptions, attitudes) → cf.
 Morton et al. (2021)
- Assumes agents always adapt no trip abandonment or fraud (e.g., non-compliant use)

Perspectives:

- Integrate population and car fleet evolution and new PT lines over time
- Integrate intermodal alternatives (Yin et al. (2024)), trip abandonment, and fraud
- Extend to geographic and temporal restrictions (Versailles Grand Parc)
- Perform localized emissions analysis (e.g., LEZ periphery rebound effects)

THANK YOU FOR LISTENING!

https://www.brusselstimes.com/44817/belgium-s-slow-war-against-diesel-cars

Innovating for energy

Find us on:

- www.ifpenergiesnouvelles.com
- **y** @IFPENinnovation

