Claims

What is claimed is:

1	1. An apparatus for handling print media, the apparatus comprising:
2	a support;
3	at least three cups mounted on the support, each of the three cups having a
4	distal surface for contacting the print media;
5	the distal surfaces of two of the three cups lying in a first plane and the distal
6	surface of the other of the three suction cups lying in a second plane, wherein the first
7	and second planes are offset from each other.
1	2. The apparatus of claim 1, wherein the support further comprises a
2	rotatable member.
1	3. The apparatus of claim 1, wherein the first and second planes are offset
2	from one another by at least 0.3 mm.
1	4. The apparatus of claim 1, wherein the support is configured to rotate
2	about an axis, at least two of the cups being disposed different distances from the axis.
1	5. The apparatus of claim 1, further comprising:
2	a print engine;
3	a drum for advancing the print media from the print engine to the cups.
1	6. The apparatus of claim 1, wherein four cups are mounted on the support
2	and are arranged in a line with middle cups being in the first plane and outer cups
3	being in the second plane.
1	7. An assembly for handling sheet material, the assembly comprising:
2	a rotor having an axis of rotation;
3	coupling members mounted on the rotor for adhering sheet material to the
4	coupling members by suction;
5	wherein at least one of the coupling members is disposed a first distance from
6	the axis of rotation and another of the coupling members is disposed a second distance
7	from the axis of rotation, the first and second distances being different.

- 1 8. The assembly of claim 7, wherein the coupling members comprise at 2 least three coupling members arranged in a line.
- 1 9. The assembly of claim 7, wherein the coupling members comprise 2 suction cups coupled to a vacuum source.
- 1 10. The assembly of claim 7, wherein the coupling members comprise first 2 and second sets of coupling members configured to rotate independently.
- 1 11. The assembly of claim 7, wherein the first and second distances differ by 2 at least 0.3 mm.
 - 12. The assembly of claim 7, further comprising a drum positioned adjacent the cups for delivering sheet material to the cups, the drum having a gripper disposed thereon for selectively maintaining the sheet material on the drum
 - 13. An imaging device comprising:

1

2

3

1

3

4

5

6 7

8

1

2

3

4

5

1

2

3

4

5

- a print engine for forming an image on the medium;
 - suction members arranged in a line, each suction member configured to rotate about an axis of rotation and to adhere to the medium after the imaging engine has formed an image on the medium;
 - the suction members being disposed different distances from the axis of rotation and configured to corrugate at least a section of the medium when the medium is adhered to the suction members.
 - 14. The imaging device of claim 13, wherein the suction members comprise at least three suction members with a middle one of the suction members being disposed a first distance from the axis of rotation and other ones of the suction members being disposed a second distance from the axis of rotation, the first and second distances being different.
 - 15. The imaging device of claim 13, wherein the suction members comprise at least four suction members with middle ones of the suction members being disposed a first distance from the axis of rotation and other ones of the suction members being disposed a second distance from the axis of rotation, the first and second distances being different.

1	16. The imaging device according to claim 13, wherein the imaging engine
2	comprises a liquid electrophotography print engine.
1	17. A digital imaging press, comprising:
2	a liquid electrophotography print engine;
3	a drum for advancing media relative to the print engine;
4	suction cups configured to rotate about an axis of rotation for adhering to and
5	picking the media from the drum, at least one of the suction cups being disposed
6	farther from the axis of rotation than at least one of the other suction cups such that
7	the media is at least partially corrugated in a direction transverse to a direction of
8	travel at the suction cups.
1	18. The digital imaging press of claim 17, wherein the suction cups comprise
2	first and second sets of suction cups, the first set of suction cups being rotatable
3	independently from the second set of suction cups.
1	19. A method for handling print media, the method comprising:
2	gripping a sheet of print media at different locations of the print media, the
3	different locations being disposed along a line orthogonal to a direction of movement
4	of the print media such that the sheet of print media has a corrugated cross-section
5	along the line orthogonal to a direction of movement;
6	rotating the print media about an axis, at least two of the different locations
7	being different distances from the axis.
1	20. A system for handling print media, the system comprising:
2	means for gripping a sheet of print media at different locations of the print
3	media, the different locations being disposed along a line orthogonal to a direction of
4	movement of the print media such that the sheet of print media has a corrugated cross-
5	section along the line orthogonal to a direction of movement;
6	means for rotating the print media about an axis such that at least two of the
7	different locations are different distances from the axis.
1	21. An imaging device, comprising:
2	means for forming an image on a medium;
3	means for corrugating the medium such that the medium has a corrugated
4	cross-section in a direction transverse to a direction of travel.