Aula 7 - Trabalho prático e Algoritmo Hi-DSD

Monday, March 28, 2016

1:35 PM

Especificação do trabalho prático 1

Implementar, usando SMPL, um algoritmo de diagnóstico adaptativo distribuído em que os sequencialmente de 0..N-1, a cada intervalo de testes, escolhem um nodo aleatório para tes uniforme). Se o nodo testado estiver falho, o testador continua* até encontrar um nodo sen informações de diagnóstico sobre todos os demais nodos - exceto aqueles que testou. Se tes dorme para iniciar os testes novamente no próximo intervalo.

nodos, ordenados star (distribuição n-falha, do qual obtém star todos os nodos falhos,

*continua testando nodos aleatórios, excetuando aqueles que já testou e si mesmo e paranoutros nodos.

do após testar todos os

IMPORTANTE: Medir a latência para a detecção de 1 (um) evento. Após a ocorrência de um rodadas de testes são necessárias para todos os nodos completarem o diagnóstico.

evento, medir quantas

Contar também o número de testes executados, desde a ocorrência do evento até completa

ar o diagnóstico.

OBS: Um evento corresponde à falha de um ou mais nodos.

Deve haver um modo de execução denominado "síntese" em que, automaticamente, são ex para 30 eventos aleatórios. Nesse caso, mostrar a média e o desvio padrão.ções de todos os

ecutadas 30 simulações outros nodos

Como mergir vetor de estados

Se o nodo i testar os nodos j e k, ele recebe informações de todos os outros nodos.

O algoritmo Hi-ADSD

A latência do algoritmo Adaptive-DSD é muito alta: N rodadas de testes no pior caso.

Por exemplo: considere uma LAN com N=100 hosts Intervalo de de testes = 30 segundosLatência: $30s \times 100 = 3000s = 50min$

Soluções para diminuir o tempo:

1. "Event-driven diagnosis"

Quando um evento é detectado, dispara disseminação desta informação.

DNOADCAS I COITIAVEI (TEHADIE DI DAUCASCI). DUAS AILEI HALIVAS.

- Algoritmo da força bruta: muito caro.
- Algoritmo "barato": usa um detector de falhas (aka usa as informações de diagnóstico! ciclo vicioso)

A motivação para o desenvolvimento do algoritmo Hi-ADSD é justamente reduzir a latência do próprio diagnóstico.

Primeira rodada de testes:

0 — 1

y 5

2

6 -

Segunda rodada de testes:

Terceira rodada de testes

Na quarta rodada de testes, com 16 nodos

O grafo de testes do algoritmo Hi-ADSD, quando todos os nodos estão sem-falhas, é u um hiper-cubo

No hipercubo de dimensão d há 2^d nodos. Cada nodo tem um identificador de d bit is. Só existe uma aresta entre dois nodos se seus identificadores diferem em um único bit.

No algoritmo Hi-ADSD os nodos executam testes em "clusters".

- Um cluster é um conjunto uma lista de nodos
- Em cada intervalo de testes s um nodo i testa o cluster $C_{i,s}$ até encontrar um testar todos os nodos do cluster falhos; se encontrar um nodo sem-falha, obtidiagnóstico do cluster a parter daquele nodo (exceto os testes que realizou).

nodo sem-falha ou ém info de

Exemplo: N = 8; d = 3

No primeiro intervalo de testes, o nodo i testa o cluster $C_{i,1}$. No segundo intervalo de testes, o nodo i testa o cluster $C_{i,2}$. No terceiro intervalo de testes, o nodo i testa o cluster $C_{i,3} = C_{i,d}$.

No quarto intervalo de testes, o nodo i testa o cluster $C_{i,1}$.

E assim por diante.

A tabela a seguir mostra, $\forall i, 0 \le i \le 7$, os valores de $C_{i,1} \dots C_{i,d=3}$

S	$C_{0,s}$	$C_{1,S}$	$C_{2,S}$	$C_{3,S}$	$C_{4,S}$	$C_{5,S}$	$C_{6,S}$	$C_{7,S}$
1	1	0	3	2	5	4	7	6
2	2,3	3,2	0,1	1,0	6,7	7,6	4,5	5,4
3	4,5,6,7	5,6,7,4	6,7,4,5	7,4,5,6	0,1,2,3	1,2,3,0	2,3,0,1	3,0,1,2

Testes são realizados em sequência caso nodos sejam falhos. i.e. se 0 testar 2 como falho na segunda rodada, ele testa 3.

Considerando um sistema S de N nodos 0...N-1, um cluster de K nodos $n_j...n_{j+k}$:-1 é tal que $j \mod k = 0$, k potência de 2; o cluster é definido como n_j se k=1 ou a união de dois

clusters $n_j ... n_{j+\frac{k}{2}-1}$ e $n_{j+\frac{k}{2}}... n_{j+k-1}$.