no us espanteu, he escollit els problemes i qüestions que m'ha semblat que podíen ser més exigents (no totes! algunes són fàcils).

ho resoldré (no sé si tot) a la classe de tallers que farem el divendres 11 a dos guarts de dotze

- T1) L'alumini (Al), que té tres electrons de valència, es pot utilitzar per a la substitució d'un àtom de silici (Si), que té quatre electrons de valència, a la xarxa eristal·lina d'un semiconductor. Quina afirmació sobre el semiconductor resultant és INCORRECTA?
 - → a) L'àtom d'alumini és un àtom acceptor. d'dectrors 3 clustrors a la derrer a capa
 - → b) Aquest és un semiconductor extrínsec.
 - ___ c) La conducció elèctrica expajoritàriament deguda als electrons.

T1) En els quatre circuits dibuixats, tots els díodes es caracteritzen per una tensió llindar $V_{\gamma} = 0.7 \text{ V}$ i els Zener amb $V_{Z} = 6 \text{ V}$. En quin circuit passa corrent pel díode Zener?

Al circuit de la Figura 13, $R_1 = 100 \Omega$, $R_2 = R_3 = 200 \Omega$ i $R_4 = 50 \Omega$ it is tensions caracteristiques del Zener són $V_Z = 6 V$ $V_Y = 0.6 V$ a) Quin és valor de S_{max} a partir del qual el diode Zener comença a conduir?

b) Determineu V_{FC} , I, I, I is I per als valors de S = 10 V i S = 20 V. Comproveu que en cada cas la potência subministrada pel generador és igual a la dissipada al diode més la dissipada a les resistències.
c) Si S = 30 V. quins dels valors de V_{FC} , II ci I_Z canvien respecte al cas S = 20 V?

C = S_F = S_F

 $I = \frac{30 - 6}{R_1 + R_2} = 0.084$ $I_7 = I - I_C = 0.0864$

- T2) Tenint en compte que el circuit de la figura s'ha dissenyat de forma que el transistor treballa o bé a la zona òhmica o a la de tall, determineu quina porta lògica implementa aquest circuit quan les tensions a les entrades valen 0 o 5 V.
 - a) NAND.

b) NOR.

c) AND.

d) OR.

 V_{OUT} nMos

El circuit de la figura està format per quatre resistències $(R_1 = 1.5 \text{ M}\Omega, R_2, R_3 \text{ i } R_4) \text{ i un transistor NMOS de}$ paràmetres característics $\beta = 25 \ \mu \text{A/V}^2 \text{ i } V_T = 1 \ \text{V}.$

- a) Pel cas $R_4 = 0$, determineu el valor de R_2 h partir del qual el transistor deixa d'estar en tall (2.5p).
- b) Si $R_2 = 1 \text{M}\Omega$ i $R_4 = 0$, determineu el valor màxim de R_3 perquè el transistor estigui en saturació (2.5p)

$$\frac{10}{R_1 + R_2} \cdot R_2 > V_T$$

$$I = \frac{10-0}{R+R2}$$

VG - VS > VT

$$\frac{R_1 + R_2}{10R_2} \cdot R_2 = \frac{R_2}{10R_2} \cdot R_1 + R_2$$

$$\frac{R_1 + R_2}{10R_2} \cdot R_2 \cdot R_1 + R_2 = 0.17 M_{\odot}$$

$$\frac{R_1 + R_2}{10R_2} \cdot R_2 \cdot R_2 \cdot R_2 \cdot R_2 = 0.17 M_{\odot}$$

$$\frac{R_1 + R_2}{10R_2} \cdot R_2 \cdot$$

$$I = \frac{10 \text{ V}}{1.5 \cdot 10^6 \text{ Flo}^6} \implies V_{L} = R_{3} \cdot I = \frac{10^6 \cdot \frac{10}{15 \cdot 10^6 + 10^6}}{15 \cdot 10^6 + 10^6} = \frac{10}{2.5} = \frac{10}{4} \quad \forall V_{LS} = \frac{1$$

$$V_{DD} = 10 \text{ V}$$

$$V_{DD} = 10 \text{ V}$$

$$V_{T} = 0.17 \text{ M.s.}$$

IP

$$V_{D} > V_{bT} \Rightarrow V_{00} - I_{0} R_{3} > 3$$

$$10 - I_{0} R_{3} > 3$$

$$10 - 3 > I_{0} R_{3}$$

$$\frac{42 R_{0}}{10} R_{0} = \frac{7}{I_{0}} > R_{3}$$

21. Determineu els valors de les resistències del circuit de la figura de forma que la intensitat de drenador sigui de 0.4 mA i V_D = 1 V. Els paràmetres del transistor són V_T = 2V i β = 800 μ A/V².

En el circuit de la figura (esquerra) sabem que $V_o = 12$ V i que els transistors NMOS, N1 i N2, es caracteritzen amb els paràmetres $\beta = 1.5$ mA/V² i $V_T = 1$ V.

- a) Trobeu V_{GS} i V_{DS} del transistor N1 i indiqueu quina és la seva regió de funcionament. Calculeu la intensitat de drenador.
- b) Calculeu V_{GS} i V_{DS} del transistor N2, i especifiqueu en quina regió treballa. Determineu R_2 .
- a) VD = 16V = V6 V5 = 12V
 - P VG5 = 16-12 = 47 > VT ⇒ 0~
 - 60T VOSE 16-12 = 4 > VGT => SATURAUS ====

$$f_{D} = \frac{1}{2} V_{GT} = \frac{1.5 \cdot 10^{3}}{2} \left[4 - 1 \right]^{2} = 6.35 - A$$

$$R_{1} = 1 \underline{M}\Omega$$

$$R_{1} = 1 \underline{M}\Omega$$

$$R_{2}$$

$$R_{3} = 1.5 k\Omega$$

$$R_{3} = 1.5 k\Omega$$

$$V_{bT} = \left[\frac{T_{b}}{l^{3}} + \frac{V_{aS}^{2}}{r^{2}} \right] \frac{1}{V_{aS}} = 3.375 \text{ V} > 0 \text{ on}$$

$$(b - V_{S} - V_{T} =) \quad V_{b} = 3.375 + V_{S} + V_{T} = 14.46 \text{ V}$$

$$T = \frac{\sqrt{DD - VU}}{R_1} = 1.5 \text{ pA}$$

$$R_2 = \frac{VU - O}{T} = 9.5 \text{ m.s.}$$

- **T4)** Determineu el valor de R_D del circuit de la figura sabent que el transistor té $\beta = 8 \,\text{mA/V}^2$, $V_{DD} = 5 \,\text{V}$ i que aquest treballa en les condicions del punt A.
 - a) 500Ω .
 - b) 1000Ω .
 - c) 2000Ω .
 - d) 1500Ω .

Problema: 50% de l'examen

Considereu el circuit PMOS de la figura, amb característiques $\beta=1.5\,\mathrm{mA/V^2}$ i $V_T=-2\,\mathrm{V}.$

- a) Sabent que $V_{GS}=-4$ V, calculeu els valors de $V_D,\,V_G,\,V_S,\,I_D,\,I_1,\,I$ i R, suposant que el transistor està en saturació. Demostreu que aquest règim de treball és el correcte.
- b) Si en el mateix circuit fixem $R=1\,k\Omega$ i modifiquem la resistència R_3 , trobeu quin és el valor de R_3 que farà que el transistor treballi amb $V_{GS}=-4.5\,\mathrm{V}$, tot conduint en règim òhmic amb $I_D=1.5\,\mathrm{mA}$. Determineu els valors de V_G i V_S .

 ${f T5}$) Quina és la funció lògica corresponent al circuit indicat a la fi

- a) $(A \cdot B) + (C \cdot D)$.
- b) $\overline{(A \cdot B) + (C \cdot D)}$.
- c) $(A+B) \cdot (C+D)$. d) $\overline{(A+B) \cdot (C+D)}$.

 ${\bf T5)}$ El circuit CMOS de la figura, quan les entrades A i B poden ser de 0 V i 5 V, representa una porta lògica

a) NOR.

b) OR.

c) AND.

d) NAND.

- **32**. La capacitat de càrrega efectiva d'un inversor CMOS és de 70 fF, i està connectat a una tensió V_{DD} = 5 V. Els paràmetres corresponents al NMOS i PMOS són: $\beta_P = \beta_N = 0.1 \text{ mA/V}^2$, V_{TN} = 1 V, V_{TP} = -1 V. Determineu:
- a) el valor dels temps de retràs t_{PHL}, t_{PLH} i t_P.
- b) si s'augmenta la capacitat en 0.1 pF, com canviaran els temps de retràs
- c) la potència dinàmica que dissipa en aquest cas si el rellotge va a una freqüència de 100 MHz?
- d) si l'entrada passa sobtadament de 0 a 5 V, el temps que trigarà la sortida a baixar a 0.1 V assumint el comportament típic d'un circuit RC ($t_P = \tau \ln 2$).