

It Starts With One

Then 2, 3, 4,...

- ♦ The natural numbers or the counting numbers.
- Typical indexing set.

Reflection of the Natural Numbers About Zero

- Base, axis, current position: zero, null point, naught.
- ♦ Negative numbers -1, -2, -3, -4,...

The Integers

- closed under the operation of addition and multiplication.
- Associativity.
- Ommutativity.
- Existence of an identity.
- ♦ Existence of an inverse (additive).

$$rac{1}{p} + rac{1}{q} = 1.$$

The Rationals

- Ratios of the integers.
- Quotients of integers.
- Terminating decimal sequences.

The Real Numbers

- The collection of rational numbers and irrational numbers.
- Irrational numbers are nonterminating, nonrepeating decimal sequences.

\$3589793238462643383279502884197169. 4944592307816406286208998628034828 480865139503411503541150555 481117 555964462 19644 881097566593 46128475648233 01909 45648 669234 34861045432664 24914127377 58700 0631558817488152 091715364 789259 6001133053054882 69519415 094339 270364759591953092 1179310 8548074 2379 527495673518 79381 119491298 524406566430 9522473719070217986094370277053921717 74818467669405132000568127145263560

Real Numbers

- Satisfy the field axioms.
- Satisfy the least upper bound axiom.
- Can be represented geometrically on a line.

The Archimedean Property

 For every real number there exists a larger positive integer.

Complex Numbers

Numbers of the form a + bi where a and b are real numbers and i is the imaginary component

Imaginary Numbers Are Real Things

$$i^2 = -1$$

Useful Algebraic Interpretation

♦ Real polynomials modulo x^2 + 1 are isomorphic to the complex numbers.

$$\mathbb{R}[x]/(x^2+1) \cong \mathbb{C}$$

Factorials

♦ n! = n (n-1) (n-2) ... 2 1

N	N!
0	1
1	1
2	2
3	6
4	24
5	120
6	720
7	5,040
8	40,320
9	362,880
10	3,628,800

What's So Special About Factorials?

- They're products of consecutive lists of integers
- Exercise: There are arbitrarily large gaps between consecutive primes. (In other words, it is possible to find arbitrarily large sets of consecutive non-prime numbers.)
- ♦ How to solve? With the factorial.

Proof

1.28) Show that for every positive integer k, there exist k consecutive composite integers. Thus, there are arbitrarily large gaps between primes.

Proof. This proof provides a new way of looking at n!. Consider (k+1)!. We can see that

$$(k+1)! + 2 = [(k+1)(k)(k-1)\cdots(4)(3) + 1] \cdot 2$$

$$(k+1)! + 3 = [(k+1)(k)(k-1)\cdots(4)(2) + 1] \cdot 3$$

$$(k+1)! + 4 = [(k+1)(k)(k-1)\cdots(3)(2) + 1] \cdot 4$$

$$\vdots$$

$$(k+1)! + k = [(k+1)(k-1)\cdots(3)(2) + 1] \cdot k$$

$$(k+1)! + (k+1) = [(k)(k-1)\cdots(3)(2) + 1] \cdot (k+1)$$

so that $2 \mid (k+1)! + 2$, $3 \mid (k+1)! + 3$, ..., $k+1 \mid (k+1)! + k + 1$. This is a sequence of k composite consecutive integers. n! provides all the integers needed to make this possible since it contains n-1 consecutive factors.

Famous Problem

What is the sum of the first 100 consecutive integers? Try to think of a way to do it without counting your fingers. Refer to Gauss if you get stuck.

Math Induction

- ♦ A method of a proof where you first prove a base case n=0 or 1.
- ♦ Assume that it is true for n.
- ♦ Prove the statement to be true for n+1.

The Trolley Problem

 In a purely abstracted sense the decision is the same either way.

$$i^{n} = \begin{cases} 1 & \text{if } n \equiv 0 \mod 4 \\ \text{if } n \equiv 1 \mod 4 \\ -1 & \text{if } n \equiv 2 \mod 4 \\ -i & \text{if } n \equiv 3 \mod 4 \end{cases}$$

More To It Than Just Numbers

From Numbers to Commutative Diagrams

Proposition 1. Given a commutative diagram of groups and homomorphisms

$$G_{1} \xrightarrow{\theta_{1}} G_{2} \xrightarrow{\theta_{2}} G_{3} \xrightarrow{\theta_{3}} G_{4} \xrightarrow{\theta_{4}} G_{5}$$

$$\downarrow \psi_{1} \qquad \downarrow \psi_{2} \qquad \downarrow \psi_{3} \qquad \downarrow \psi_{4} \qquad \downarrow \psi_{5}$$

$$H_{1} \xrightarrow{\phi_{1}} H_{2} \xrightarrow{\phi_{2}} H_{3} \xrightarrow{\phi_{3}} H_{4} \xrightarrow{\phi_{4}} H_{5}$$

in which the rows are exact sequences, and ψ_2, ψ_4 are isomorphisms, ψ_1 is onto and ψ_5 is (1-1), then ψ_3 is an isomorphism.

Proof. To show that ψ_3 is (1-1), consider an element $x \in G_3$ such that $\psi_3(x) = 1$. Then $\psi_4\theta_3(x) = \phi_3\psi_3(x) = 1$.

$$G_{1} \xrightarrow{\theta_{1}} G_{2} \xrightarrow{\theta_{2}} G_{3} \xrightarrow{\theta_{3}} G_{4} \xrightarrow{\theta_{4}} G_{5}$$

$$\downarrow \psi_{1} \qquad \downarrow \psi_{2} \qquad \downarrow \psi_{3} \qquad \downarrow \psi_{4} \qquad \downarrow \psi_{5}$$

$$H_{1} \xrightarrow{\phi_{1}} H_{2} \xrightarrow{\phi_{2}} H_{3} \xrightarrow{\phi_{3}} H_{4} \xrightarrow{\phi_{4}} H_{5}$$

so that $\theta_3(x) = 1$ since ψ_4 is an isomorphism. By exactness, $x = \theta_2(y)$, $y \in G_2$; and then $\phi_2\psi_2(y) = \psi_3\theta_2(y) = 1$. By exactness again, $\psi_2(y) = \phi_1(z)$, $z \in H_1$; and $z = \psi_1(w)$, $w \in G_1$ since ψ_1 is onto. Thus, $\psi_2\theta_1(w) = \phi_1\psi_1(w) = 1 = \psi_2(y)$, so that $\theta_1(w) = y$; but then $x = \theta_2(y) = \theta_2\theta_1(w) = 1$