

Ayudantía 3

Profesor: Mircea Petrache Ayudante: Diego Milla

Problema 1

¿Cuál de las siguientes afirmaciones sobre la ecuación matricial $A\mathbf{x} = \mathbf{b}$ son verdaderas? Justifique sus respuestas.

- a) Si A es una matriz de 4×2 , entonces para todo vector \mathbf{b} en \mathbb{R}^4 , la ecuación matricial $A\mathbf{x} = \mathbf{b}$ tiene al menos una solución.
- b) Si A es una matriz de 2×4 , entonces para todo vector \mathbf{b} en \mathbb{R}^2 , la ecuación matricial $A\mathbf{x} = \mathbf{b}$ nunca puede tener una solución única.
- c) Si A es una matriz de 3×3 , entonces para cada \mathbf{b} en \mathbb{R}^3 , la ecuación matricial $A\mathbf{x} = \mathbf{b}$ nunca tiene solución.

Problema 2

Determine un sistema de ecuaciones $A\mathbf{x} = \mathbf{b}$ tal que su conjunto solución sea

$$\begin{bmatrix} 3 \\ 1 \\ -1 \\ 0 \end{bmatrix} + \operatorname{Gen} \left\{ \begin{bmatrix} 2 \\ -2 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} \right\}$$

Problema 3

Si la suma de las columnas de A es el vector $\begin{bmatrix} 4 \\ 2 \\ 2 \end{bmatrix}$ y la forma escalonada reducida de A

es
$$\begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
, ¿Cuál es el conjunto solución de Ax= $\begin{bmatrix} 4 \\ 2 \\ 2 \end{bmatrix}$?

Problema 4

Marque cada enunciado como verdadero o falso. Justifique cada respuesta.

- a) Si $\mathbf{v}_1, \dots, \mathbf{v}_4$ están en \mathbb{R}^4 , y $\mathbf{v}_3 = 2\mathbf{v}_1 + \mathbf{v}_2$, entonces $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\}$ es linealmente dependiente.
- b) Si \mathbf{v}_1 y \mathbf{v}_2 está en \mathbb{R}^4 y \mathbf{v}_2 no es un múltiplo escalar de \mathbf{v}_1 , entonces $\{\mathbf{v}_1, \mathbf{v}_2\}$ es linealmente independiente.
- c) Si $\mathbf{v}_1, \dots, \mathbf{v}_5$ están en \mathbb{R}^5 y $\mathbf{v}_3 = 0$, entonces $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4, \mathbf{v}_5\}$ es linealmente dependiente.
- d) Si $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ están en \mathbb{R}^3 y \mathbf{v}_3 no es combinación lineal de $\mathbf{v}_1, \mathbf{v}_2$, entonces $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ es linealmente independiente.
- e) Si $\mathbf{v}_1, \dots, \mathbf{v}_4$ están en \mathbb{R}^4 y $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ es linealmente dependiente, entonces $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\}$ también es linealmente dependiente.
- f) Si $\{\mathbf{v}_1, \dots, \mathbf{v}_4\}$ es un conjunto linealmente independiente de vectores en \mathbb{R}^4 , entonces $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ también es linealmente independiente.

Problema 5

Determine si la siguiente transformación es lineal:

$$T(x_1, x_2) = (x_1 - 2x_2, 0, -x_2)$$