Application 1 Conducteur virtuel pour véhicule automobile – Sujet

L'accroissement de la circulation automobile dans les grandes agglomérations menace de saturation leur réseau d'autoroutes. Une des solutions consiste à augmenter les flux en automatisant les voitures sur ces dernières. Après une évaluation du gain en terme de flux d'automobiles que peut apporter ce concept, l'étude portera sur le système de guidage automatique latéral d'une automobile sur une autoroute dite « intelligente ».

Centrale Supelec PSI 2014.

C1-05

C2-09

Objectif

L'objet de cette partie est de déterminer un modèle mécanique du véhicule en appliquant les théorèmes généraux de la dynamique au véhicule. L'idée est d'utiliser un modèle mécanique relativement simple, associé à une commande très robuste.

Une approche simplifiée permettant d'aborder le problème consiste à adopter un modèle dit « bicyclette », représenté sur la figure suivante, qui assimile le comportement du véhicule à celui d'une bicyclette :

- ▶ le train avant directeur se réduit à une seule roue (12) sur laquelle s'appliquent les actions exercées sur les deux roues avant (1) et (2) du véhicule, de même la roue arrière (34) supporte les actions exercées par l'essieu arrière portant les roues (3) et (4), les pneumatiques avant et arrière ont les mêmes caractéristiques, en particulier le même coefficient de dérive (celui-ci sera défini plus loin);
- ▶ le modèle choisi est un modèle à 2 degrés de liberté : l'angle de lacet $\psi(t) = \left(\overrightarrow{X_g}, \overrightarrow{X_L}\right)$ et l'angle d'attitude $\alpha(t) = \left(\overrightarrow{X_L}, \overrightarrow{U}\right)$. La rotation de chaque roue autour de son axe n'est pas prise en compte;
- ▶ on notera que l'angle de braquage des roues $\beta(t) = (\overrightarrow{X_L}, \overrightarrow{X_W})$ avant est imposé au moyen d'un asservissement qui ne sera pas étudié dans le cadre de ce problème;
- ▶ les roues ont une masse supposée négligeable.

Cette modélisation ne prend pas en compte les mouvements suivants : tangage (rotation autour de $\overrightarrow{Y_L}$) et roulis (rotation autour de $\overrightarrow{X_L}$).

Les différents repères sont les suivants :

- ► repère galiléen : $\mathcal{R}_g\left(O_R; \overrightarrow{X_g}, \overrightarrow{Y_g}, \overrightarrow{Z_g}\right)$, O_R est lié à la route, $\Pi_R = \left(\overrightarrow{X_g}, \overrightarrow{Y_g}\right)$ plan fixe par rapport à la route;
- ▶ repère intermédiaire : $\Re_1\left(O_1; \overrightarrow{X_g}, \overrightarrow{Y_g}, \overrightarrow{Z_g}\right)$, $\overrightarrow{O_RO_1} = a\overrightarrow{Y_g}$;
- ► repère intermédiaire : $\mathcal{R}_0\left(O;\overrightarrow{X_g},\overrightarrow{Y_g},\overrightarrow{Z_g}\right)$, O lié au châssis et $\overrightarrow{O_1O}=b\overrightarrow{X_L}$, $\overrightarrow{O\left(\mathcal{R}_0/\mathcal{R}_g\right)}=\overrightarrow{0}$, $\overrightarrow{V\left(O,\mathcal{R}_0/\mathcal{R}_g\right)}=\overrightarrow{VU}$ avec $\overrightarrow{O_RO}\cdot\overrightarrow{Z_g}=0$ et V constante positive;
- repère lacet $\mathcal{R}_0\left(G;\overrightarrow{X_L},\overrightarrow{Y_L},\overrightarrow{Z_L}\right)$, $\overrightarrow{OG}=h\overrightarrow{Z_g}$ avec G centre d'inertie lié du châssis lié au véhicule, $\overrightarrow{Z_L}=\overrightarrow{Z_g}$ et $\left(\overrightarrow{Y_g},\overrightarrow{Y_L}\right)=\left(\overrightarrow{X_g},\overrightarrow{X_L}\right)=\psi(t)$ angle de lacet, h constate positive;
- ► repère lié à la roue \mathcal{R}_W $\left(A_i; \overrightarrow{X_W}, \overrightarrow{Y_W}, \overrightarrow{Z_W}\right)$, A_i centre de la roue R_i (assimilée à un disque), $\overrightarrow{Z_W} = \overrightarrow{Z_L}$ avec $\overrightarrow{OA_{12}} = l_1\overrightarrow{X_L}$ et $\overrightarrow{OA_{34}} = -l_2\overrightarrow{X_L}$, $\left(\overrightarrow{Y_L}, \overrightarrow{Y_W}\right) = \left(\overrightarrow{X_L}, \overrightarrow{X_W}\right) = \beta(t)$ angle de braquage.

- $\begin{array}{l} \bullet \quad \alpha(t) = \left(\overrightarrow{X_L}, \overrightarrow{U}\right) \text{: angle d'attitude,} \\ \bullet \quad \psi(t) = \left(\overrightarrow{X_G}, \overrightarrow{X_L}\right) \text{: angle de lacet,} \\ \bullet \quad \beta(t) = \left(\overrightarrow{X_L}, \overrightarrow{X_W}\right) \text{: angle de braquage de la roue avant.} \\ \end{array}$

Le torseur cinématique du mouvement du véhicule (VH) par rapport à \mathcal{R}_{g} , au point

$$O, \text{ est not\'e}: \left\{ \mathcal{V}\left(\text{VH}/\mathcal{R}_g\right) \right\} = \left\{ \begin{array}{l} \overline{\Omega\left(\text{VH}/\mathcal{R}_g\right)} \\ \overline{V\left(O,\text{VH}/\mathcal{R}_g\right)} = V\overrightarrow{U} \end{array} \right\}_O.$$

La roue munie d'un pneumatique se comporte différemment d'une roue rigide au niveau du contact avec le sol. On adoptera le modèle représenté sur la figure ci-contre.

$$\{\mathcal{T}(\operatorname{Sol} \to \mathcal{R}_i)\} = \left\{ \frac{\overrightarrow{R}(\operatorname{Sol} \to \mathcal{R}_i)}{\overrightarrow{M}(M_i, \operatorname{Sol} \to \mathcal{R}_i)} \right\}_{M_i} \text{avec } i \in \{12, 34\} \text{ avec } \overrightarrow{OM_{12}} = \ell_1 \overrightarrow{X_L} - R\overrightarrow{Z_L} \text{ et } \overrightarrow{OM_{34}} = -\ell_2 \overrightarrow{X_L} - R\overrightarrow{Z_L}.$$

forme :
$$I_G$$
 (VH) = $\begin{pmatrix} A & 0 & -E \\ 0 & B & 0 \\ -E & 0 & C \end{pmatrix}_{\Re_L}$ Remarque : le véhicule comprend la caisse, les roues, et sera modélisé dans la mise en équation comme un solide indéformable.

Modélisation du comportement dynamique du véhicule

Question 1 Déterminer les composantes dans le repère \mathcal{R}_L du moment cinétique $\sigma(O, VH/\Re_g)$ au point O, du véhicule (VH) dans son mouvement par rapport au repère \mathcal{R}_g , en fonction de $\dot{\psi}$, α , h, V et des caractéristiques inertielles.

Question 2 Déterminer les composantes dans le repère \Re_L du moment dynamique δ $(O, VH/\Re_g)$ au point O, du véhicule (VH) dans son mouvement par rapport au repère \Re_g , en fonction de $\dot{\psi}$, $\ddot{\psi}$, $\dot{\alpha}$, α , h, V et des caractéristiques inertielles.

Question 3 On note $\overrightarrow{\Gamma(G/\mathcal{R}_g)}$ le vecteur accélération de appartenant à (VH) dans son mouvement par rapport au référentiel galiléen \Re_G . Déterminer $\Gamma\left(G/\Re_g\right)\cdot\overline{Y_L}$ en fonction de $\dot{\psi}$, $\dot{\alpha}$, α , V. Linéariser la relation obtenue au voisinage de la position d'équilibre définie par $\alpha = 0$, $\psi = 0$ et $\beta = 0$.

Question 4 En admettant que l'angle de dérive de la roue avant s'écrit : $\delta_{12} \simeq \alpha - \beta + \frac{\ell_1}{V} \dot{\psi}$ et celui de la roue arrière $\delta_{34} \simeq \alpha - \frac{\ell_2}{V} \dot{\psi}$, en déduire l'expression de $\overline{R} (\overline{VH} \to VH) \overrightarrow{Y_L}$. Linéariser la relation obtenue au voisinage de la position d'équilibre définie par $\alpha = 0$, $\psi = 0$ et $\beta = 0$.

Question 5 Montrer que l'on obtient le système d'équations différentielles suivant en indiquant clairement (point, vecteur unitaire, résultante ou moment, . . .) à quelle équation scalaire issue du PFD correspond chaque relation :

$$\begin{cases} \left(MV + \frac{2D\left(\ell_1 - \ell_2\right)}{V}\right)\dot{\psi} + MV\dot{\alpha} + 4D\alpha = 2D\beta \\ C\ddot{\psi} + \frac{2D\left(\ell_1^2 + \ell_2^2\right)}{V}\dot{\psi} + 2D\left(\ell_1 - \ell_2\right)\alpha = 2D\ell_1\beta \end{cases} .$$

Avec les valeurs numériques : $\ell_1 = 1$ m, $\ell_2 = 1.5$ m, $D = 21\,000$ N rad⁻¹, C = 3100 kg m², M = 1500 kg, V = 15 m s⁻¹, on obtient le système d'équations différentielles suivant, permettant de décrire l'évolution du véhicule (données en unités S.I.) :

$$\left\{ \begin{array}{l} 211 \dot{\psi}(t) + 225 \dot{\alpha}(t) + 840 \alpha(t) = 420 \beta(t) \\ 31 \ddot{\psi}(t) + 91 \dot{\psi}(t) - 210 \alpha(t) = 420 \beta(t) \end{array} \right. .$$

Question 6 En supposant que les conditions initiales sont nulles, déterminer l'expression numérique de la fonction de transfert $H_2(p)$ entre l'angle de lacet $\psi(p)$ et l'angle de braquage $\beta(p)$ de la roue avant : $H_2(p) = \frac{\psi(p)}{\beta(p)}$. Discuter de la stabilité de ce modèle.

TD 1

Orthèse d'épaule - Sujet

Centrale Supelec PSI 2010.

Mise en situation

Le support de cette étude est une orthèse portable, de type exosquelette, qui contribue au développement de la tonicité musculaire de l'épaule et du bras. Installée dans le dos de l'individu et liée à la fois au bras et à la main, elle offre une résistance aux mouvements de la main. Ainsi, le thérapeute peut réaliser des protocoles très fins de rééducation en programmant des spectres d'efforts résistants pour chaque mouvement du patient. Le travail du patient peut également être optimisé en le plaçant dans un environnement de réalité virtuelle permettant de visualiser les situations de travail conçues par le thérapeute.

Objectif

L'objectif est de mettre en place une loi de commande utilisée, par exemple, pour des situations de travail où le patient peut déplacer le bras et doit appliquer une force prédéterminée par le physiothérapeute, dépendante des positions des articulations. Dans le cadre de cette étude, l'effort est élastique et caractérisé par une raideur de torsion.

La synthèse de cette loi de commande sera faite en deux étapes : dans un premier temps, la mise en équation de l'exosquelette (limité à deux axes pour des raisons de simplicité) sera effectuée en vue d'obtenir un modèle dynamique; dans un deuxième temps, la loi de commande sera déterminée en utilisant le modèle dynamique établi au préalable. Il s'agira, de plus, de valider le dimensionnement de la chaîne de motorisation.

Module de l'effort de manipulation maximal en	50 N
régime permanent	
Compensation du couple statique (dû à la pesan-	Totale
teur)	
Raideurs (K_1, K_2) de maintien (pour ce critère,	$ \Delta Z_F/\Delta \gamma = K_1 \ge 500 \text{N rad}^{-1}(\pm 5\%)$
seule la force Z_F est considérée).	
	$ \Delta Z_F/\Delta \delta = K_2 \ge 500 \mathrm{N} \mathrm{rad}^{-1}(\pm 5\%)$

L'actionneur ne peut fournir, en régime permanent, sur l'axe de l'articulation qu'un couple de module inférieur à 50 Nm. On suppose, de plus, qu'en régime transitoire le couple maximal peut atteindre quatre fois la valeur maximale autorisée en régime permanent. On s'intéresse ici à une situation de travail où les relations entre les variations des positions angulaires du bras et de l'avant bras (γ et δ) et la variation de la force Z_F (ces grandeurs seront définies par la suite) exercée par le patient sont équivalentes à des raideurs de torsion de valeurs (K_1 , K_2).

La structure de commande retenue est représentée par le schéma de la figure suivante où :

- ightharpoonup q et \dot{q} sont respectivement les vecteurs des angles et des vitesses angulaires des articulations;
- une boucle externe génère les trajectoires (positions, vitesses et accélérations) et éventuellement un contexte de travail;
- ▶ une boucle interne (de loi non linéaire) génère les couples souhaités sur chaque axe (articulation) à partir des mesures des angles et des vitesses angulaires des articulations et éventuellement des données issues du générateur de trajectoire;

C2-09

▶ un ensemble d'actionneurs fournit les couples, sur les axes des articulations, identiques aux couples de référence $C_a = C_{\text{ref}}$.

Modélisation dynamique «deux axes» de l'exosquelette

Objectif

Le but de cette partie est d'établir un modèle dynamique du bras et de l'avant-bras dans un plan vertical donné. Ces deux ensembles sont soumis aux actions de la pesanteur, des couples des deux moteurs montés dans le bras et de la force extérieure exercée sur l'extrémité de l'avant-bras. Le cadre de l'étude se limite aux mouvements de deux axes (les deux autres axes étant supposés fixes).

Le système étudié se réduit donc à l'ensemble {Bras + Avant-bras} relativement au reste du dispositif supposé fixe : on suppose que les angles d'abduction/adduction et de rotation interne/rotation externe de l'épaule sont maintenus identiquement nuls par l'action des moteurs situés dans la partie dorsale du dispositif (non étudiée ici). Le paramétrage se réduit donc à la situation de la figure suivante qui représente l'ensemble étudié dans un plan $(\overrightarrow{x}; \overrightarrow{z})$ donné, où l'on choisit \overrightarrow{z} vertical dans le sens descendant. Le tableau précise les différents paramètres utiles pour le calcul de dynamique envisagé.

Bâti		
Repère $R_0 = (O, \vec{x}, \vec{y}, \vec{z})$ fixe, galiléen		
Bras (moteurs compris)		
Repère $R_1 = (O, \vec{x}_1, \vec{y}_1, \vec{z}_1)$	Longueur $l_1 = 350 \text{ mm}$	Matrice d'inertie
Angle $\gamma = (\vec{x}, \vec{x}_1) = (\vec{z}, \vec{z}_1)$	Masse $m_1 = 2.3 \text{ kg}$	$A_1 0 0$
Angle $\gamma = (\vec{x}, \vec{x}_1) = (\vec{z}, \vec{z}_1)$ Masse $m_1 = 2.3$ kg Centre d'inertie G_1 tel que: $\overrightarrow{OG_1} = \lambda_1 \vec{z}_1, \ \lambda_1 = 50 \text{ mm}$ $I(G_1, 1) = \begin{pmatrix} A_1 & 0 & 0 \\ 0 & B_1 & 0 \\ 0 & 0 & D_1 \end{pmatrix}_{\vec{x}_1, \vec{y}_1, \vec{z}_1}$ $A_1 = 2.4 \times 10^{-2} \text{ kg} \cdot \text{m}^2$		
	$\overrightarrow{OG_1} = \lambda_1 \vec{z}_1, \ \lambda_1 = 50 \text{ mm}$	$(0 \ 0 \ D_1)_{\vec{x}_1, \vec{y}_1, \vec{z}_1}$
		$A_1 = 2.4 \times 10^{-2} \text{ kg} \cdot \text{m}^2$
		$B_1 = 2.3 \times 10^{-2} \text{ kg} \cdot \text{m}^2$
		$D_1 = 2.1 \times 10^{-3} \text{ kg} \cdot \text{m}^2$
Avant-bras		
Repère $R_2 = (A, \vec{x}_2, \vec{y}_2, \vec{z}_2)$	Longueur $l_2 = 270 \text{ mm}$	Matrice d'inertie
Angle $\delta = (\vec{x}_1, \vec{x}_2) = (\vec{z}_1, \vec{z}_2)$	Masse $m_2 = 0.3 \text{ kg}$	$A_2 0 0$
$\vec{y}_1 = \vec{y}_2$	Centre d'inertie G_2 tel que :	$I(G_2, 2) = \begin{bmatrix} 0 & B_2 & 0 \end{bmatrix}$
	$\overrightarrow{AG_2} = \lambda_2 \vec{z}_2, \ \lambda_2 = 135 \text{ mm}$	$\begin{pmatrix} 0 & 0 & D_2 \end{pmatrix}_{\vec{x}_2, \vec{y}_2, \vec{z}_2}$
		Matrice d'inertie $I(G_2, 2) = \begin{pmatrix} A_2 & 0 & 0 \\ 0 & B_2 & 0 \\ 0 & 0 & D_2 \end{pmatrix}_{\vec{x}_2, \vec{y}_2, \vec{z}_2}$ $A_2 = 1.8 \times 10^{-3} \text{ kg} \cdot \text{m}^2$
		$B_2 = 1.8 \times 10^{-6} \text{ kg} \cdot \text{m}^2$
		$D_2 = 4.3 \times 10^{-5} \text{ kg} \cdot \text{m}^2$

Question 1 Exprimer littéralement, au point G_2 et dans le repère R_1 , le torseur dynamique du mouvement du solide {Avant-bras} par rapport au référentiel fixe R_0 supposé galiléen : $\{\mathfrak{D}(\text{Avant-bras}/R_0)\}_{G_2,(\overrightarrow{x_1},\overrightarrow{y_1},\overrightarrow{z_1})}$.

Les différentes actions mécaniques agissant sur le dispositif sont les suivantes :

- ▶ l'action de la pesanteur sur les solides {Bras} et {Avant-bras};
- ▶ l'action du bâti sur le solide {Bras} au travers de la liaison pivot d'axe $\left(O, \overrightarrow{y}\right)$ et de torseur d'action mécanique écrit sous la forme générique suivante : $\left\{\mathcal{T}\left(\text{Bâti} \to \text{Bras}\right)\right\} = \left\{\begin{array}{c} X_1\overrightarrow{x_1} + Y_1\overrightarrow{y_1} + Z_1\overrightarrow{z_1} \\ L_1\overrightarrow{x_1} + M_1\overrightarrow{y_1} + N_1\overrightarrow{z_1} \end{array}\right\}_O \text{ où les paramètres } (X_1, Y_1, Z_1, L_1, M_1, N_1)$ sont inconnus;
- ▶ l'action du premier actionneur sur le solide {Bras} : {𝒯 (Actionneur 1 → Bras)} = $\left\{ \begin{array}{c} \overrightarrow{0} \\ C_1(t) \overrightarrow{y} \end{array} \right\}_{O} \text{ où le couple } C_1(t) \text{ exercé est connu au cours du temps;}$
- ▶ l'action du solide {Bras} sur le solide {Avant-bras} au travers de la liaison pivot d'axe (A, \overrightarrow{y}) et de torseur d'action mécanique écrit sous la forme générique suivante : $\{\mathcal{T}(\text{Bras} \to \text{Avant-bras})\} = \left\{\begin{array}{c} X_2\overrightarrow{x_1} + Y_2\overrightarrow{y} + Z_2\overrightarrow{z_1} \\ L_2\overrightarrow{x_1} + M_2\overrightarrow{y} + N_2\overrightarrow{z_1} \end{array}\right\}_A$ où les paramètres $(X_2, Y_2, Z_2, L_2, M_2, N_2)$ sont inconnus;
- les actions du second actionneur sur le solide {Bras} et le solide {Avantbras}, respectivement notées : $\{\mathcal{T}(\text{Actionneur }2 \to \text{Bras})\} = \left\{\begin{array}{c} \overrightarrow{0} \\ -C_2(t)\overrightarrow{y} \end{array}\right\}_A$ et $\{\mathcal{T}(\text{Actionneur }2 \to \text{Avant-bras})\} = \left\{\begin{array}{c} \overrightarrow{0} \\ C_2(t)\overrightarrow{y} \end{array}\right\}_A$ où le couple $C_2(t)$ exercé est connu au cours du temps;
- est connu au cours du temps,

 l'action du patient sur l'avant-bras, modélisée par une force appliquée à l'extrémité B de l'avant-bras et définie par : $\{\mathcal{T} \text{ (Force} \rightarrow \text{Avant-bras)}\} = \left\{\begin{array}{c} X_F \overrightarrow{x} + Z_F \overrightarrow{z} \\ \overrightarrow{0} \end{array}\right\}_B$.

On veut déterminer les deux équations permettant de décrire le mouvement des deux axes de l'orthèse. On suppose pour cela que les deux liaisons pivots sont parfaites.

Le PFD permet d'obtenir la relation suivante :

$$\begin{split} C_{1}(t) &= & \left(B_{1} + B_{2} + m_{1}\lambda_{1}^{2} + m_{2}l_{1}^{2} + m_{2}\lambda_{2}^{2}\right)\ddot{\gamma} + \left(B_{2} + m_{2}\lambda_{2}^{2}\right)\ddot{\delta} \\ &+ m_{2}l_{1}\left(\lambda_{2}\left(2\ddot{\gamma} + \ddot{\delta}\right)\cos\delta + \lambda_{2}\left(\dot{\gamma}^{2} - \left(\dot{\gamma} + \dot{\delta}\right)^{2}\right)\sin\delta\right) \\ &+ m_{1}g\lambda_{1}\sin\gamma + m_{2}g\left(l_{1}\sin\gamma + \lambda_{2}\sin\left(\gamma + \delta\right)\right) \\ &- X_{F}\left(l_{1}\cos\gamma + l_{2}\cos\left(\gamma + \delta\right)\right) + Z_{F}\left(l_{1}\sin\gamma + l_{2}\left(\gamma + \delta\right)\right) \end{split}$$

Question 2 Détailler la démarche qui a permis d'obtenir cette équation, on précisera en particulier l'isolement, le bilan des Actions Mécaniques Extérieures et le choix des équations utilisées.

Question 3 Appliquer la démarche pour retrouver l'équation donnée.

Question 4 Écrire une deuxième relation issue du Principe Fondamental de la Dynamique, indépendante de la précédente, faisant intervenir le couple $C_2(t)$, et qui permette de ne pas faire apparaître les composantes L_1 , M_1 , N_1 , L_2 , M_2 , N_2 des torseurs des actions de liaison. On détaillera la démarche de la même façon que lors de la première question.

Question 5 En déduire que les deux équations précédentes peuvent s'écrire sous la forme matricielle suivante : $\binom{C_1}{C_2} = A \begin{pmatrix} \ddot{\gamma} \\ \ddot{\delta} \end{pmatrix} + B \begin{pmatrix} \dot{\gamma} \\ \dot{\delta} \end{pmatrix} + C + Q \begin{pmatrix} X_F \\ Y_F \end{pmatrix}$ où C est un vecteur et A, B et Q sont des matrices 2×2 que l'on précisera en fonction des paramètres du mouvement (γ, δ) et de leurs dérivées premières $(\dot{\gamma}, \dot{\delta})$.

Question 6 Calculer les couples (C_1, C_2) exercés par les actionneurs sur les axes des articulations dans le cas où l'on n'exerce pas de force à l'extrémité du solide {Avant-bras} $(X_F = 0, Z_F = 0)$ et dans une position statique. Discuter de la configuration angulaire la plus défavorable vis-à-vis du cahier des charges.

Question 7 Compte-tenu du cahier des charges, quelle charge statique maximale peut-on exercer sur l'extrémité du solide {Avant-bras}?

TD₂

Stabilisateur passif d'image – Sujet

Mines Ponts 2018 - PSI.

C1-05

C2-09

Mise en situation

Les appareils photos modernes fonctionnent en rafales : 8 à 10 images par seconde et en mode vidéo. Le besoin de stabilisation de l'image dans de telles conditions est impératif. Le but de ce sujet est de s'intéresser au support de la caméra assurant la liaison entre le bras de l'utilisateur et la caméra elle-même.

Le stabilisateur se compose principalement de trois objets :

- ▶ une poignée orientable (1) manipulée directement par le photographe, liée au support (2) en *O* ;
- ▶ un support rigide (2) (supposé sans masse) sur lequel vient se fixer une caméra assimilée en première approximation à une masse ponctuelle m_c placée en G_c ;
- ▶ un contrepoids lié à (2) et assimilé à une masse ponctuelle m_{cp} placée en G_{cp} .

L'utilisateur tient fermement la poignée (1) dans une position angulaire quelconque, ce qui permet d'affirmer que le (porteur + (1)) ne forme qu'une seule classe d'équivalence. Afin de produire des images toujours fluides, sans à-coups, ce stabilisateur à main doit maintenir constamment la caméra dans une position verticale (parallèle au champ de gravité), que le porteur soit immobile (plan fixe) ou en mouvement (travelling).

Dans le cas général, le mouvement du bras par rapport au référentiel terrestre est quelconque (6 degrés de libertés). Ici, on se limite à un mouvement de translation. Dans le cas général, afin que la caméra soit en position verticale, le support doit permettre 3 rotations dans la liaison avec (**porteur + (1)**). Ici on se limite à la stabilisation d'une seule rotation.

Objectif

Suite à une sollicitation brève de $0.5\,\mathrm{m\,s^{-2}}$, l'amplitude des oscillations de la caméra ne doit pas dépasser les 0.5° .

Travail demandé

On se place à présent dans une phase dite « dynamique ». Le porteur (1) est en mouvement par rapport au sol. On suppose qu'à l'instant initial, l'ensemble (E)=Support(2) + Caméra(C) + Contrepoids(Cp) est en équilibre stable en position verticale. On note

$$\{\mathcal{V}(1/0)\} = \left\{ \begin{array}{c} \overrightarrow{0} \\ \overrightarrow{V(P,1/0)} = v(t)\overrightarrow{X_0} \end{array} \right\}_{\forall P}. \text{ On note } a(t) = \frac{\mathrm{d}v(t)}{\mathrm{d}t}. \text{ De plus, } \overrightarrow{OG_C} = L_C\overrightarrow{Z_2}$$
 et $\overrightarrow{OG_{CP}} = -L_{CP}\overrightarrow{Z_2}.$

Question 1 Par une étude dynamique que vous mettrez en œuvre, montrer que l'équation de mouvement de (E) dans **(0)** galiléen s'exprime comme $Q_1 \frac{\mathrm{d}^2 \varphi(t)}{\mathrm{d}t^2} + Q_2(t) = Q_3(t)a(t)$.

Afin de quantifier la modification d'attitude de (E), l'équation de mouvement est linéarisée autour de la position d'équilibre (verticale) en supposant que les valeurs de l'angle restent faibles. On transpose cette équation différentielle dans le domaine de Laplace et on note $\mathcal{L}(\varphi(t)) = \Phi(p)$ et $\mathcal{L}(a(t)) = A(p)$. Afin de conserver la fluidité des images lors de travelling, les fluctuations indésirables des mouvements du porteur ne doivent pas être intégralement transmisses à (E).

On suppose que $a(t) = a_0 \sin(\omega_a t)$ avec $a_0 = 0.5 \,\mathrm{m \, s^{-2}}$ et $g = 10 \,\mathrm{m \, s^{-2}}$.

Question 2 Établir sous forme canonique la fonction de transfert $H(p) = \frac{\Phi(p)}{A(p)}$. Donner l'expression de la pulsation propre ω_0 en fonction de m_c , m_{cp} , L_c , L_{cp} et g.

Question 3 Tracer l'allure du diagramme asymptotique de gain $G_{dB} = f(\omega)$ de la fonction de transfert $H(j\omega)$. Placer les caractéristiques remarquables.

Question 4 Pour un fonctionnement filtrant satisfaisant, on impose que $\omega_0 = 0$, $1\omega_a$. Le stabilisateur est réglé en conséquence par l'intermédiaire du couple (m_{cp}, L_{cp}) . En utilisant le comportement asymptotique en gain de G_{dB} , estimer numériquement l'amplitude $\Delta \varphi$ (en degrés) des oscillations de **(E)** selon l'axe $(O, \overrightarrow{y_0})$.

Retour sur le cahier des charges

Question 5 Conclure vis-à-vis de l'objectif et sur les écarts obtenus.

Application 2 Chaîne ouverte – Banc d'essai vibrant– Sujet

Présentation

Les vibrations se retrouvent dans tous les systèmes et nuisent à leur durée de vie. On s'intéresse à un banc d'essai permettant d'étudier les conséquences de ces vibrations sur l'usure et la fatigue des pièces mécaniques. La figure ci-après représente un modèle cinématique du dispositif étudié. Une modélisation plane a été retenue. Le bâti vibrant est modélisé par un solide S_1 , de masse m_1 en liaison glissière parfaite avec un support S_0 , fixe par rapport à un repère \mathcal{R}_0 supposé galiléen.

Le solide S_1 est rappelé par un ressort de longueur libre l_0 et de raideur k. Une masse ponctuelle m_2 excentrée, placée en P, tourne sur un rayon r et est entraînée à vitesse constante Ω . Elle modélise le balourd du rotor d'un moteur S_2 .

Un pendule simple de longueur L, porte à son extrémité D une masse concentrée m_3 , l'ensemble constitue le solide S_3 , en liaison pivot parfaite d'axe $(C, \overrightarrow{z_0})$ avec S_1 .

Les masses autres que m_1 , m_2 et m_3 sont négligées.

Objectif

Déterminer les conditions géométriques permettant de supprimer les vibrations.

Question 1 Réaliser le graphe d'analyse du système.

Question 2 Préciser les théorèmes à utiliser permettant de déterminer deux équations différentielles liant x, θ et leurs dérivées et les paramètres cinétiques et cinématiques utiles.

Question 3 Déterminer ces deux équations. On souhaite supprimer les vibrations du bâti vibrant. On recherche alors une solution du système d'équations différentielles déterminé précédemment autour de la position d'équilibre $(x_0, \theta_0) = (0, 0)$ en supposant que x, θ , \dot{x} , $\dot{\theta}$ sont des petites variations de position ou de vitesse autour de cette position d'équilibre.

Question 4 Proposer une linéarisation, à l'ordre 1, des deux équations différentielles précédentes.

On s'intéresse uniquement au régime d'oscillations forcées. On cherche donc des solutions de la forme $x(t) = A \cos(\Omega t)$ et $\theta(t) = B \cos(\Omega t)$.

Question 5 Déterminer le système d'équations permettant de calculer *A* et *B*.

Question 6 Indiquer la condition que doit vérifier la longueur L afin d'assurer x(t) = 0 en régime forcé.

Pôle Chateaubriand - Joliot Curie

Application 3

Chargement et déchargement des cargos porte-conteneurs - Sujet

Modélisation dynamique du comportement de la charge

Objectif

Déterminer les équations du mouvement du conteneur de façon à en obtenir un modèle simple pour la synthèse de la commande.

En vue d'élaborer une commande automatisée du déchargement des conteneurs, une bonne compréhension de la dynamique du système est nécessaire. Cette partie vise à établir les équations du mouvement du conteneur. La charge peut alors balancer selon le modèle présenté ci-après. Dans cette étude, la vitesse de vent nulle. On fait l'hypothèse que le conteneur est suspendu à un seul câble indéformable, en liaison pivot à ses extrémités. Les liaisons entre les solides 0, 1, 2 et 3 sont supposées parfaites. Le portique support du chariot est noté 0, le chariot 1, le câble 2 et l'ensemble (spreader + conteneur} 3.

Paramétrage

- ▶ Le repère $\Re_0 = \left(O_0; \overrightarrow{x_0}, \overrightarrow{y_0}, \overrightarrow{z_0}\right)$ est lié au portique fixe; il est supposé galiléen avec $\overrightarrow{z_0}$ l'axe vertical ascendant.
- ▶ La position du chariot telle que $\overrightarrow{OE} = y_{ch}(t)\overrightarrow{y_0}$ est notée $y_{ch}(t)$; l'angle $(\overrightarrow{z_0}, \overrightarrow{z_2})$ d'inclinaison du câble $\theta(t)$ et l'angle $\left(\overrightarrow{z_2},\overrightarrow{z_3}\right)$ d'inclinaison du conteneur par rapport au câble $\beta(t)$.

Données

- ▶ $\Re_1 = \left(E; \overrightarrow{x_0}, \overrightarrow{y_0}, \overrightarrow{z_0}\right)$ repère lié au chariot de levage 1. ▶ $\Re_2 = \left(E; \overrightarrow{x_0}, \overrightarrow{y_2}, \overrightarrow{z_2}\right)$ repère lié au câble 2; $\ell_2 = 50$ m la longueur EF du câble; la
- ▶ $\Re_3 = (F; \overrightarrow{x_0}, \overrightarrow{y_3}, \overrightarrow{z_3})$ repère lié à l'ensemble {spreader + conteneur}; $m_3 =$ 50 tonnès la masse du solide 3; G₃ le centre de gravité du solide 3, tel que $\overrightarrow{G_3F} = h_3\overrightarrow{z_3}$ où $h_3 = 2.5 \,\mathrm{m}$; la matrice d'inertie du solide 3 s'écrit $I_3(G_3) =$
- \blacktriangleright la motorisation M_D du mouvement de direction exerce, par l'intermédiaire de câbles, des actions mécaniques sur (1) qui se réduisent à un glisseur de la forme $\overrightarrow{R(M_D \to 1)} = F\overrightarrow{y_0};$
- ▶ l'action mécanique du câble sur le spreader est notée $\overline{R(2 \to 3)} = F_{23}\overrightarrow{z_2}$.

Question 1 Après avoir réalisé le graphe de structure, déterminer le nombre de degrés de liberté et le nombre d'actionneurs du modèle proposé figure précédente. En déduire le nombre de degrés de liberté non motorisés. Expliquer pourquoi il est difficile de poser le conteneur sur un camion avec précision?

Centrale Supelec PSI 2013.

Question 2 Déterminer littéralement, au point G_3 , la vitesse $\overline{V(G_3, 3/0)}$ puis le torseur dynamique $\{\mathfrak{D}(3/0)\}$ de l'ensemble {conteneur + spreader} (3) dans son mouvement par rapport au repère galiléen \mathfrak{R}_0 .

Question 3 En précisant l'isolement et le bilan des actions mécaniques extérieures, déterminer l'équation différentielle de résultante reliant les paramètres $\theta(t)$, $\beta(t)$ et $y_{ch}(t)$, sans inconnue de liaison et sans l'action du moteur.

Question 4 En précisant l'isolement et le bilan des actions mécaniques extérieures, déterminer les équations différentielles reliant les paramètres $\theta(t)$, $\beta(t)$ et $y_{ch}(t)$ et sans inconnue de liaison. La méthode sera clairement séparée des calculs.

Question 5 En supposant que θ , β , $\dot{\theta}$ et $\dot{\beta}$ sont petits, linéariser les équations précédentes.

Les courbes temporelles ont été obtenues par simulation, à partir des équations précédentes, pour un échelon en $y_{ch}(t)$ de $10 \, \text{m}$.

Question 6 Proposer une simplification de la modélisation précédente.

