Złącze metal(ferromagnetyk)/nadprzewodnik. Odbicia Andreeva

P. Wójcik

10 czerwca 2021; ostatnia aktualizacja 22 maja 2023

1 Zadanie 1

Rysunek 1: Współczynniki transmisji w funkcji energii padającego elektronu dla złącza NM/SC.

Rysunek 2: Konduktancja w funkcji energii padającego elektronu dla złącza NM/SC.

Rysunek 3: Konduktancja w funkcji energii padającego elektronu dla złącza NM/SC przy założeniu różnej siły rozpraszania na złączu.

Rysunek 4: Konduktancja w funkcji energii padającego elektronu dla złącza FM/SC przy założeniu różnej spinowej polaryzacji ferromagnetyka, P.

Rysunek 5: Konduktancja w funkcji polaryzacji obszaru ferromagnetyka policzona dla złącza FM/SC. Wyniki dla energii padającego elektronu E=1e-6 meV.

2 Zadanie 2

Rysunek 6: Współczynniki transmisji w funkcji energii padającego elektronu dla złącza NM/SC/NM. Wyniki dla złącza, w którym długość obszaru SC (lewy) $L_{SC}=10$ nm oraz (prawy) $L_{SC}=250$ nm.

Rysunek 7: Współczynniki transmisji w funkcji długości obszaru nadprzewodzącego L_{SC} dla złącza NM/SC/NM. Wyniki dla energii padającego elektronu $E=0.1~{\rm meV}$.

Rysunek 8: Współczynniki transmisji w funkcji długości obszaru nadprzewodzącego L_{SC} dla złącza NM/SC/NM. Wyniki dla energii padającego elektronu E=0.1 meV, $P_r=0.95$ oraz $P_l=0.0$.