Problema 7

Se tiene un conductor cilíndrico de largo L y radio ra , rodeado por otro cascarón cilíndrico de radio interno rb y externo rc (ambos descargados inicialmente). El espacio entre ellos está lleno de un dieléctrico de permitividad ϵ_r

Despreciando efectos de borde, y sabiendo que se ha conectado una batería tal que V(r b) - V(r a) = 10 V,

- a) Discuta por qué no es necesario especificar los puntos donde se conecta la batería sobre cada conductor.
- b) Calcule las distribuciones de cargas en todas las superficies,
- c) Calcule E en todo el espacio.
- d) Calcule V(r)- V(r a)

Solución

Concepto: Como tenemos un Dieléctrico, debemos usar Gauss para el campo D. Esto es así porque no conocemos las cargas totales, (dado que aparecerán cargas de polarización).

$$\oint \mathbf{D.ds} = Q_{le}$$

donde Qle es la carga libre encerrada. Hay simetria cilindrica , entonces D solo depende de la distancia radial y apunta en la dirección radial . Al conectar la batería esta lleva carga $\,$ (libre) Q a la superficie de mayor potencial y-Q a la otra

Recordando que la superficie lateral de un cilindro de radio r y longitud l , es $2\pi rl$ tenemos

$$D2\pi rl = Q'_{le}$$

llamo

$$\lambda = \frac{Q'_{le}}{l} = \frac{Q_{le}}{L}$$

$$\mathbf{D} = \frac{Q_{le}}{2\pi Lr}\hat{r}$$

recordemos que:

$$D = \epsilon_0 \mathbf{E} + P$$

y como los materiales son (en este caso) todos lineales

$$\mathbf{D} = \epsilon \mathbf{E}$$

donde $\epsilon = \epsilon_r \epsilon_0$ Luego,

$$\mathbf{E} = \frac{Q_{le}}{2\pi\epsilon Lr}\hat{r}$$

Entonces

$$\mathbf{E} = \begin{cases} 0 & (r < r_a) \\ \frac{-Q}{2\pi L \epsilon_0 \epsilon_r r} & (a < r < b) \\ 0 & (a < r < b) \end{cases}$$

A partir de ellos la diferencia de potencial entre un punto de referencia (el punto A) y un punto cualquiera r es:

$$V(r) - V(ra) = -\int_{ra}^{r} \mathbf{E.dl} = -\int_{ra}^{r} \frac{-Q}{2\pi\epsilon Lr} \hat{r}.\hat{r}dr = \frac{Q/L}{2\pi\epsilon} ln(\frac{r}{ra})$$

(por supuesto que en las regiones r<ra y r > rb no hay carga encerrada y no hay campo ni diferencia de potencial)

entonces,

$$10volts = V(rb) - V(ra) = \frac{Q}{2\pi\epsilon L}ln(\frac{rb}{ra})$$

(obs: Si hubiéramos empezado sin darnos cuenta donde estaba la carag positiva y donde la negativa, la ecuación anterior nos dice automaticamente el sigo de la carga)

Despejando de ahí obtenemos que la carga por unidad de longitud vale: $\frac{Q}{L}=\frac{2\pi\epsilon 10volts}{ln(\frac{rb}{ra})}$

$$\frac{Q}{L} = \frac{2\pi\epsilon 10volts}{ln(\frac{rb}{L})}$$

si me dieran datos numéricos de ra, rb y la permitividad relativa, saco Q.

Teniendo D y E, podemos calcular la polarización en el dieléctrico:

$$P = (\epsilon_0 \epsilon_r - \epsilon_0)E = \frac{(\epsilon - \epsilon_0)}{\epsilon}D$$

entonces

$$\mathbf{P} = \begin{cases} 0 & (r < r_a) \\ (1 - \frac{1}{\epsilon_r}) \frac{-Q/L}{2\pi r} & (a < r < b) \\ 0 & (r > b) \end{cases}$$

Para calcular las cargas de polarización, observemos que (ver teórica de Elsa o del apunte)

$$\sigma_p = \mathbf{p}.\hat{n}$$

donde n es la normal a la superficie que encierra al dielécrico, entonces

$$\sigma_{pa} = \left(1 - \frac{1}{\epsilon_r}\right) \frac{-Q/L}{2\pi a} \hat{r}.(-\hat{r})$$
$$\sigma_{pb} = \left(1 - \frac{1}{\epsilon_r}\right) \frac{-Q/L}{2\pi b} \hat{r}.\hat{r}$$

con lo cual (como la carga es la integral de superficie de la densidad superficial)

$$Q_{pa} = \int \sigma_p ds = \sigma 2\pi a L$$

$$Q_{pb} = \int \sigma_p ds = \sigma 2\pi b L$$

$$Q_{pa} = (1 - \frac{1}{\epsilon_r})Q$$

$$Q_{pb} = -(1 - \frac{1}{\epsilon_r})Q$$

(recordemos que el potencial crece 'al revés

que el campo, como se ve en la figura)

La carga de polarización total es cero (como debe ser pues en el dieléctrico hay dipolos)