Homework 9

CMPSC 360

Kinner Parikh March 28, 2022

Question 1: Show that if x is an odd integer, then x^2 has the form 8k+1, for some $k \in \mathbb{Z}$

Question 2: Solve for 23³ (mod 30)

Question 3: Show that if an integer n is not divisible by 3, then $n^2 - 1$ is always divisible by 3. Similarly, show that if an integer n is not divisible by 3, then $n^3 - 1 \equiv 0$

Question 4: Find GCD of 2947 and 3997 using Euclidean Theorem.

$$3997 = 2947(1) + 1050$$

$$2947 = 1050(2) + 847$$

$$1050 = 847(1) + 203$$

$$847 = 203(4) + 35$$

$$203 = 35(5) + 28$$

$$35 = 28(1) + 7$$

$$28 = 7(4) + 0$$

So, gcd(2947, 3997) = 7

Question 5: Express gcd(128469, 12818) as a linear combination of 128469 and 12818 using extended Euclid algorithm.

Applying Euclid's algorithm:

$$128469 = 12818(10) + 289$$

$$12818 = 289(44) + 102$$

$$289 = 102(2) + 85$$

$$102 = 85(1) + 17$$

$$85 = 17(5) + 0$$

i	r_i	r_{i+1}	q_{i+1}	r_{i+2}	s_i	t_i	
0	128469	12818	10	289	1	0	
1	12818	289	44	102	0	1	
2	289	102	2	85	1	-10	-224 * 128469 + 2223 * 12818
3	102	85	1	17	-44	441	
4	85	17	5	0	90	-891	
5					-224	2223	

Question 6: Prove that if $a \mid bc$ with gcd(a, b) = 1, then $a \mid c$

Question 7: Prove that $gcd(a^2, b^2) = gcd(a, b)^2$ using Bezout's identity.

Question 8: For Z_{11} , find out:

- b) 3 ⊗ 7
- c) 10 ⊖ 7
- d) 10 Ø 7

Question 9: Determine whether every element a of Z_n has an inverse for n = 5, 6 and 7, 11

Question 10: Write the following decimal string 334_{10} to senary (base 6) showing work

$$334 \div 6 = 55 \ R \ 4$$

$$55 \div 6 = 9 R 1$$

$$9 \div 6 = 1 R 3$$

$$1 \div 6 = 0 \quad R \ 1$$

So $334_{10} = 1314_6$.