VLSI DPS HW#4

電機四 4109064119 陳柏淳

1. Calculate the Frobenius Distance

Matrix A: -104 -4 -119 -85 -57 76 89 52 12 -92 111 -120 -21 45 - 58 117 119 106 65 -117 74 62 -104 -88 120 117 -28 82 117 39 39

• Generate a random matrix A

-0.3726	-0.2042	0.0430	0.4192	0.4264	-0.3153	0.4300	0.4192
0.0918	0.4283	-0.4575	-0.2266	0.3851	0.4517	0.4372	0.0634
-0.4671	0.4719	0.5443	0.1017	0.1681	0.3738	-0.2847	0.059
-0.5104	0.3772	-0.2673	-0.2421	-0.5552	-0.3311	0.1386	0.173
0.6116	0.4864	0.2875	0.1650	-0.1330	-0.2509	0.0945	0.435
0	0.4163	-0.2190	0.3501	0.2810	-0.4499	-0.1521	-0.5930
0	0	0.5390	-0.3943	0.0328	-0.1821	0.5809	-0.427
0	0	0	-0.6314	0.4854	-0.3856	-0.3927	0.250
atrix Q_fiz	κ :						
-0.3750	-0.2031	0.0361	0.4150	0.4258	-0.3213	0.4258	0.4189
-0.0918	0.4287	-0.4551	-0.2295	0.3867	0.4561	0.4365	0.061
-0.4697	-0.4756	0.5391	0.0977	0.1680	0.3701	-0.2900	0.0508
-0.5117	-0.3867	-0.0898	-0.2422	-0.5537	-0.3271	0.1426	0.1729
0.6084	-0.4941	0.4355	0.1631	-0.1367	-0.2598	0.0908	0.428
0	-0.4121	-0.0605	0.3584	0.2900	-0.4424	-0.1523	-0.5879
0	0	-0.5449	-0.3916	0.0332	-0.1836	0.5840	-0.425
0	0	0	-0.6318	0.4863	-0.3857	-0.3916	0.244

Matrix R_fl	oat :		
279.0914	61.7289	62.2807	30.2840
0.0000	206.9023	9.4802	29.4226
-0.0000	-0.0000	206.9619	-85.9580
-0.0000	0.0000	-0.0000	228.3668
0.0000	-0.0000	0.0000	-0.0000
0.0000	-0.0000	0.0000	-0.0000
-0.0000	-0.0000	0.0000	-0.0000
0.0000	-0.0000	-0.0000	-0.0000
Matrix R_fi	x :		
	x: 61.0000	61.0000	30.0000
		61.0000	30.0000 28.5000
280.5000	61.0000		28.5000
280.5000	61.0000 208.2500	9.0000	28.5000 -86.7500
280.5000 0 0	61.0000 208.2500 0	9.0000 207.7500	28.5000 -86.7500
280.5000 0 0 0	61.0000 208.2500 0	9.0000 207.7500 0	28.5000 -86.7500 230.2500
0 0 0	61.0000 208.2500 0 0	9.0000 207.7500 0	28.5000 -86.7500 230.2500

- Q_float and R_float are generated from Q*[A|I] =[R|Q]
- Q_fix and R_fix are generated from Cordic given's rotation
- The Frobenius Distance (Euclidean Norm) is sqrt(trace((float-fix)*(float-fix)'))

```
O Fix Point Loss:
2.1017

R Fix Point Loss:
3.4539
```

Q_loss : 2.1017 R_loss : 3.4539

Fix-point precision

	· = =			
Data	Sign bit	Integer part	Fraction part	Length
A (input)	1	7	0	8
Q (output)	1	1	10	12
R (output)	1	9	2	12
K (parameter)	1	0	9	10

2. Timing diagram

N : No Operation (Idle)

MK : Multiplied by K

• 11 12 13 14 15 16 17 18: The matrix index of data write back to tb

3. Clock cycles needed to complete one QR factorization

67 cycles

4. The initiation interval of two successive QR factorizations

1	CYCLE	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44
2	RD_ADDR	81	82	83	84	71	72	73	74		61	62	63	64		51	52	53	54		41	42	43	44		31	32	33	34		21	22	23	24		11	12	13	14		•	$\overline{\mathbf{A}}$			
3	RD_DATA		81	82	83	84	71	72	73	74		61	62	63	64		51	52	53	54		41	42	43	44		31	32	33	34		21	22	23	24		11	12	13	14					
4	GG1		N	N	N	N	78	78	78	78	N	67	67	67	67	N	56	56	56	56	N	45	45	45	45	N	34	34	34	34	N	23	23	23	23	N	12	12	12	12	N				
5	GR11			N	N	N	N	78	78	78	78	N	67	67	67	67	N	56	56	56	56	N	45	45	45	45	N	34	34	34	34	N	23	23	23	23	N	12	12	12	12	N			
6	GR12				N	N	N	N	78	78	78	78	N	67	67	67	67	N	56	56	56	56	N	45	45	45	45	N	34	34	34	34	N	23	23	23	23	N	12	12	12	12	N		
7	GR13					N	N	N	N	78	78	78	78	N	67	67	67	67	N	56	56	56	56	N	45	45	45	45	N	34	34	34	34	N	23	23	23	23	N	12	12	12	12	N	
8	MK1									K	K	K	K		K	K	K	K		K	K	K	K		K	K	K	K		K	K	K	K		K	K	K	K		K	K	K	K		

When GG1 performs all vectoring over, the next input is valid.

The initiation interval is 41 cycles.

Matlab result

```
fatrix A:
  -95 -125
               -53 -108
  113
       -117
                     109
                62
  116
         -85
               -80
                      70
   19
          38
                47
                      -4
          59
               -82
                     -17
 -113
          37
  -68
               -34
                     -14
                     -50
  -38
         -13
                32
   82
                71
                       2
         12
```

- Random matrix A
- Hardware loss

```
Q Fix Point Loss:
1.3477

R Fix Point Loss:
2.3847
```

```
Actual values
                                                                           Shift to integer to simulate hardware performance
                                                                          ----- INT scale -----
----- Original scale
                                                                         Matrix O float :
Matrix Q float :
                                                                          -393.3211 467.8451 480.2657 78.6642 -467.8451 -281.5351 -157.3284 339.4982
  -0.3841 0.4569 0.4690
                             0.0768
                                    -0.4569 -0.2749 -0.1536
                                                                0.3315
                                                                          -807.8038 -439.6231 -266.2414 230.0868 133.8913 88.4553 -128.0858 191.7783
  -0.7889 -0.4293 -0.2600
                             0.2247
                                     0.1308
                                              0.0864 -0.1251
                                                                0.1873
                                                                           78.3759 307.1939 -753.7280 221.6229 -359.5194 -110.1942 350.5433 258.0019
   0.0765 0.3000 -0.7361
                             0.2164
                                     -0.3511 -0.1076
                                                      0.3423
                                                                0.2520
                                                                           -349.4265 695.8533 -204.9684 -131.0403 355.1718 212.6709 -134.5897 -439.9903
   -0.3412 0.6795 -0.2002
                                              0.2077 -0.1314
                            -0.1280
                                     0.3468
                                                               -0.4297
                                                                           336.2825 142.6095 -115.1396 456.8971 227.2753 129.8618 -713.2458 340.4449
   0.3284
            0.1393
                   -0.1124
                             0.4462
                                      0.2219
                                              0.1268
                                                     -0.6965
                                                                0.3325
                                                                                0 193.6781 252.2366 115.1114 560.8470 195.9207 542.0406 536.1423
       0
            0.1891
                    0.2463
                             0.1124
                                      0.5477
                                               0.1913
                                                       0.5293
                                                                0.5236
                                                                                 0
                                                                                          0 245.0265 764.1410 -216.8794 346.2087 241.7700 -423.4107
                    0.2393
                             0.7462
                                     -0.2118
       0
             0
                                              0.3381
                                                       0.2361
                                                               -0.4135
                                                                                          0
                                                                                 0
                                                                                                  0 342.4072 378.3236 -853.8199 73.7731 -231.8482
                             0.3344
                                      0.3695
                                              -0.8338
                                                       0.0720
                                                               -0.2264
                                                                         Matrix Q_fix :
Matrix Q_fix :
                                                                           -392 467 479
                                                                                            77 -470 -285 -163
                                                                                                                340
           0.4561
                             0.0752
                                     -0.4590
                                              -0.2783
  -0.3828
                    0.4678
                                                      -0.1592
                                                                0.3320
                                                                           -807 -437 -264
                                                                                           231 136
                                                                                                      97 -129
   -0.7881
          -0.4268
                   -0.2578
                             0.2256
                                     0.1328
                                              0.0947
                                                      -0.1260
                                                                0.1914
                                                                            78 309 -752
                                                                                           222
                                                                                                -363 -112
                                                                                                          354
                                                                                                                250
   0.0762 0.3018 -0.7344
                             0.2168
                                     -0.3545
                                             -0.1094
                                                      0.3457
                                                                0.2441
                                                                           -356
                                                                                -94
                                                                                      100
                                                                                           -139
                                                                                                 342
                                                                                                      196
   -0.3477 -0.0918 0.0977
                            -0.1357
                                      0.3340
                                             0.1914 -0.0967
                                                               -0.4404
                                                                            330 -691
                                                                                      196
                                                                                            448
                                                                                                 223
                                                                                                      136
                                                                                                          -701
                                                                                                                329
   0.3223 -0.6748
                                      0.2178
                    0.1914
                                              0.1328 -0.6846
                                                                0.3213
                             0.4375
                                                                             0 -189 -238
                                                                                                 533
                                                                                            80
                                                                                                           514
                                                                                                                527
                                                                                                      206
       0
           -0.1846
                    -0.2324
                             0.0781
                                      0.5205
                                              0.2012
                                                       0.5020
                                                                0.5146
                                                                              0
                                                                                 0 256
                                                                                            778 -197
                                                                                                     323
                                                                                                           261 -416
       0
              0
                    0.2500
                             0.7598
                                     -0.1924
                                              0.3154
                                                       0.2549
                                                               -0.4063
                                                                             0
                                                                                 0
                                                                                       0 327 402 -857
                                                                                                           78 -201
                             0.3193
                                      0.3926
                                                               -0.1963
       0
                0
                        0
                                              -0.8369
                                                       0.0762
                                                                                  DataTypeMode: Fixed-point: binary point scaling
Matrix R float :
                                                                                    Signedness: Signed
 247.3297 -73.5415 80.2087 143.7676
                                                                                    WordLength: 12
  -0.0000 194.2618 42.1888 22.5000
                                                                                FractionLength: 0
           0.0000 144.8919 -37.0943
   0.0000
   0.0000
          -0.0000 -0.0000 94.3326
                                                                          Matrix R_float :
   0.0000 0.0000 -0.0000
                            0.0000
                                                                            989 3190 -294 1660 320 8349 575 0704
   0.0000 0.0000
                   0.0000
                                                                             -0.0000 777.0472 168.7551 89.9999
           0.0000
                    0.0000
  -0.0000
                            0.0000
                                                                             0.0000 0.0000 579.5677 -148.3771
  -0.0000
           0.0000
                    0.0000
                            -0.0000
                                                                             0.0000 -0.0000
                                                                                             -0.0000 377.3306
                                                                             0.0000
                                                                                     0.0000
                                                                                              -0.0000
                                                                                                      0.0000
Matrix R fix :
                                                                             0.0000
                                                                                      0.0000
                                                                                              0.0000
                                                                                                       0.0000
 248.0000 -74.2500 79.7500 143.0000
                                                                             -0.0000
                                                                                      0.0000
                                                                                               0.0000
                                                                                                       0.0000
       0 195,2500 42,0000 22,7500
                                                                             -0.0000
                                                                                      0.0000
                                                                                                      -0.0000
                                                                                               0.0000
       0
                0 146.5000 -37.5000
       0
                0
                        0 94,0000
                                                                          Matrix R_fix :
       0
                0
                        0
                                 0
                                                                             992 -297
                                                                                      319
                                                                                            572
                        0
       0
                0
                                 0
                                                                              0
                                                                                  781
                                                                                       168
                                                                                            91
       0
                0
                        0
                                 0
                                                                              0
                                                                                   0
                                                                                       586 -150
                0
                        0
                                 0
                                                                                   0
                                                                              0
                                                                                        0
                                                                                              0
                                                                                   0
                                                                                        0
                                                                                              0
                                                                              0
                                                                                   0
                                                                                        0
                                                                                              0
                                                                                        0
                                                                                  DataTypeMode: Fixed-point: binary point scaling
                                                                                     Signedness: Signed
```

WordLength: 12 FractionLength: 0

Matlab result

Record the values during iteration, which can be used for debugging in hardware implementation.

```
k = 1 \text{ row} 78:
d = 1 \ 1 \ -1 \ 1
GG1 Iteration 4 times: X = 594; Y = -5594
GR11 Iteration 4 times: X = 108; Y = 43
GR12 Iteration 4 times: X = 331; Y = -390
GR13 Iteration 4 times: X = 153; Y = 291
                                     0; Y =
Q11 Iteration 4 times: input: X =
                                                0 output: X =
                                                                  0; Y =
Q12 Iteration 4 times: input: X =
                                     0: Y =
                                                0 \text{ output: } X =
                                                                  0: Y =
Q13 Iteration 4 times: input: X =
                                    0; Y =
                                                0 output: X =
                                                                  0: Y =
                                    0; Y =
Q14 Iteration 4 times: input: X =
                                               0 \text{ output: } X =
                                                                  0: Y =
Q15 Iteration 4 times: input: X =
                                     0; Y =
                                                0 output: X =
                                                                  0: Y =
                                    0; Y =
Q16 Iteration 4 times: input: X =
                                                0 \text{ output: } X =
                                                                  0: Y =
Q17 Iteration 4 times: input: X = -1024; Y =
                                                0 output: X = -720; Y = -1520
Q18 Iteration 4 times: input: X = 0; Y = -1024 output: X = 1520; Y = -720
 d = 1 - 1 - 1 - 1
 GG1 Iteration 8 times: X = 596; Y = 1596
 GR11 Iteration 8 times: X = 107; Y = 45
 GR12 Iteration 8 times: X = 334; Y = -388
 GR13 Iteration 8 times: X = 150; Y = 293
                                                 0 \text{ output: } X =
                                                                   0; Y =
 Q11 Iteration 8 times: input: X =
                                     0; Y =
 012 Iteration 8 times: input: X =
                                      0: Y =
                                                 0 output: X =
                                                                   0: Y =
                                                                              0
 Q13 Iteration 8 times: input: X =
                                     0; Y =
                                                 0 \text{ output: } X =
                                                                   0; Y =
                                      0; Y =
 014 Iteration 8 times: input: X =
                                                 0 output: X =
                                                                   0: Y =
                                                                              0
 Q15 Iteration 8 times: input: X =
                                      0; Y =
                                                 0 \text{ output: } X =
                                                                   0; Y =
                                                                              0
                                     0; Y =
                                                                   0; Y =
 Q16 Iteration 8 times: input: X =
                                                 0 \text{ output: } X =
 Q17 Iteration 8 times: input: X = -720; Y = -1520 output: X = -711; Y = -1528
 Q18 Iteration 8 times: input: X = 1520; Y = -720 output: X = 1528; Y = -708
 d = -1 \ 1 \ 0 \ 0
 GG1 Iteration 12 times: X = 597; Y = 0597
 GR11 Iteration 12 times: X = 107; Y = 45
 GR12 Iteration 12 times: X = 333; Y = -389
 GR13 Iteration 12 times: X = 151; Y = 293
 Q11 Iteration 12 times: input: X =
                                                                     0; Y =
                                                                                0
                                        0: Y =
                                                   0 output: X =
 Q12 Iteration 12 times: input: X =
                                        0; Y =
                                                   0 \text{ output: } X =
                                                                     0: Y =
                                                                                0
 Q13 Iteration 12 times: input: X =
                                      0; Y =
                                                   0 output: X =
                                                                     0; Y =
 Q14 Iteration 12 times: input: X =
                                        0; Y =
                                                   0 output: X =
                                                                     0: Y =
                                                                                0
 Q15 Iteration 12 times: input: X =
                                        0; Y =
                                                                     0; Y =
                                                   0 output: X =
                                                                                0
 Q16 Iteration 12 times: input: X =
                                        0; Y =
                                                   0 output: X =
                                                                     0; Y =
                                                                                0
 Q17 Iteration 12 times: input: X = -711; Y = -1528 output: X = -714; Y = -1527
 Q18 Iteration 12 times: input: X = 1528; Y = -708 output: X = 1527; Y = -711
  GG1 Multiplied by K: X = 362; Y = 0
  GR11 Multiplied by K:
                        X = -500; Y = -468
  GR12 Multiplied by K: X = -212; Y = 248
  GR13 Multiplied by K: X = -432; Y = 436
  Q11 Multiplied by K: X = 0; Y = 0
  Q12 Multiplied by K:
                        X = 0; Y = 0
  Q13 Multiplied by K: X = 0; Y = 0
  Q14 Multiplied by K: X = 0; Y = 0
  Q15 Multiplied by K: X = 0; Y = 0
  Q16 Multiplied by K: X = 0; Y = 0
  Q17 Multiplied by K:
                        X = -434; Y = -928
  Q18 Multiplied by K: X = 927; Y = -432
  k = 1 \text{ row}67:
```

```
k = 4 \text{ row}45
 d = -1 \ 1 \ -1 \ -1
 GG4 Iteration 4 times: X = 608; Y = 40608
 Q41 Iteration 4 times: input: X = -488; Y =
                                                 0 output: X = -618; Y = 511
 Q42 Iteration 4 times: input: X = 399; Y = -567 output: X = -89; Y = -1134
 Q43 Iteration 4 times: input: X = -62; Y = 213 output: X = 144; Y = 335
 Q44 Iteration 4 times: input: X = -411; Y = 233 output: X = -277; Y =
 Q45 Iteration 4 times: input: X = 96; Y = 397 output: X = 536; Y = 403
 Q46 Iteration 4 times: input: X = 49; Y = 233 output: X = 305; Y = 245
 Q47 Iteration 4 times: input: X = 402; Y = -577 output: X = -96; Y = -1151
 Q48 Iteration 4 times: input: X = -557; Y = -66 output: X = -775; Y = 499
 GG4 Iteration 8 times: X = 612; Y = -4612
 Q41 Iteration 8 times: input: X = -618; Y = 511 output: X = -582; Y = 555
 Q42 Iteration 8 times: input: X = -89; Y = -1134 output: X = -169; Y = -1129
 Q43 Iteration 8 times: input: X = 144; Y = 335 output: X = 167; Y = 324
 Q44 Iteration 8 times: input: X = -277; Y = 726 output: X = -225; Y =
 Q45 Iteration 8 times: input: X = 536; Y = 403 output: X = 565; Y =
 Q46 Iteration 8 times: input: X = 305; Y = 245 output: X = 323; Y = 223
Q47 Iteration 8 times: input: X = -96; Y = -1151 output: X = -177; Y = -1145
 Q48 Iteration 8 times: input: X = -775; Y = 499 output: X = -739; Y = 554
GG4 Iteration 12 times: X = 616; Y = -1616
Q41 Iteration 12 times: input: X = -582; Y = 555 output: X = -585; Y = 548
Q42 Iteration 12 times: input: X = -169; Y = -1129 output: X = -158; Y = -1133
Q43 Iteration 12 times: input: X = 167; Y = 324 output: X = 166; Y = 324
Q44 Iteration 12 times: input: X = -225; Y = 746 output: X = -228; Y =
Q45 Iteration 12 times: input: X = 565; Y = 365 output: X = 564; Y =
Q46 Iteration 12 times: input: X = 323; Y = 223 output: X = 323; Y = 224
Q47 Iteration 12 times: input: X = -177; Y = -1145 output: X = -166; Y = -1149
Q48 Iteration 12 times: input: X = -739; Y = 554 output: X = -742; Y = 547
GG4 Multiplied by K: X = 376; Y = -1
Q41 Multiplied by K: X = -356; Y = 330
Q42 Multiplied by K: X = -94; Y = -691
Q43 Multiplied by K: X = 100; Y = 196
Q44 Multiplied by K: X = -139; Y = 448
Q45 Multiplied by K: X = 342; Y = 223
Q46 Multiplied by K: X = 196; Y = 136
Q47 Multiplied by K: X = -99; Y = -701
Q48 Multiplied by K: X = -451; Y = 329
```

Matlab code (only core part):

```
1% Fixed point QR factorization with the CORDIC
 2 function [Q_cordic, R_cordic] = Cordic_QR(K_cordic, Q_scaled, R_scaled, row_R, col_R, col_Q, iter_num, R_sign, R_len, R_frac,
 3 Q sign, Q len, Q frac)
        F = fimath('RoundingMethod','Floor');
 4
 5
        Q_cordic = Q_scaled;
 6
        R_cordic = R_scaled;
 7
 8
        % Eliminate A(q+1,p) by A(q,p)
 9
        for p fix = 1 : col R
10
             for q_fix = (row_R-1) : (-1) : p_fix
                  % Column q and column q+1 are rotated 180 degrees
11
                  if R_cordic(q_fix,p_fix) < 0</pre>
12
13
                        for reverse_R = p_fix : col_R
                             R_cordic(q_fix ,reverse_R) = -R_cordic(q_fix ,reverse_R);
14
15
                             R_{cordic}(q_{fix+1}, reverse_R) = -R_{cordic}(q_{fix+1}, reverse_R);
                        end
16
17
                        for reverse_Q = p_fix : col_Q
                             Q_cordic(q_fix ,reverse_Q) = -Q_cordic(q_fix ,reverse_Q);
18
                             Q_{cordic}(q_{fix+1},reverse_Q) = -Q_{cordic}(q_{fix+1},reverse_Q);
19
20
                        end
21
                  end
22
                  x_pre = zeros(col_Q, 1);
23
                  y_pre = zeros(col_Q, 1);
                  for iter = 0 : iter num-1
24
                       % vectoring mode
25
26
                       x_{ext} = R_{cordic}(q_{fix}, p_{fix});
27
                        y_vect = R_cordic(q_fix+1, p_fix);
                        [X_vect, Y_vect, d] = GG(x_vect, y_vect, R_len, R_frac, iter);
28
29
30
                        if iter == iter_num-1
31
                             R_{cordic}(q_{fix}, p_{fix}) = fi((X_{vect}*K_{cordic}), R_{sign}, R_{len}, R_{frac}, F);
32
                             R_cordic(q_fix+1,p_fix)= fi((Y_vect*K_cordic),R_sign,R_len,R_frac, F);
33
                        else
34
                             R_{cordic}(q_{fix}, p_{fix}) = X_{vect};
                             R_{cordic}(q_{fix+1}, p_{fix}) = Y_{vect};
35
36
                        end
37
38
                        % rotation mode
39
                        for rot R = 1 : (col R-p fix)
                             x_{rot} = R_{cordic}(q_{fix}, p_{fix+rot});
40
41
                             y_rot_R = R_cordic(q_fix+1, p_fix+rot_R);
                             [X_{rot}, Y_{rot}] = GR(x_{rot}, y_{rot}, d, R_{len}, R_{frac}, iter);
42
43
44
```

```
45
                                                         if iter == iter_num-1
46
                                                                       R\_cordic(q\_fix,p\_fix+rot\_R)=fi((X\_rot\_R*K\_cordic),R\_sign,R\_len,R\_frac,F);
47
                                                                       R_cordic(q_fix+1,p_fix+rot_R)=fi((Y_rot_R*K_cordic),R_sign,R_len,R_frac,F);
48
                                                                       else
49
                                                                       R_cordic(q_fix , p_fix+rot_R) = X_rot_R;
 50
                                                                       R_cordic(q_fix+1, p_fix+rot_R) = Y_rot_R;
 51
                                                              end
 52
                                                              end
53
                                                              % compute Q (As the processing of R)
 54
                                                              for rot_Q = 1 : col_Q
 55
                                                                               x_{q} = Q_{q} = Q_{q
 56
                                                                               y_rot_Q = Q_cordic(q_fix+1, rot_Q);
 57
                                                                               [X_rot_Q, Y_rot_Q] = GR(x_rot_Q, y_rot_Q, d, Q_len, Q_frac, iter);
 58
 59
                                                                               if iter == iter_num-1
 60
                                                                                                Q_cordic(q_fix,rot_Q)=fi((X_rot_Q*K_cordic),Q_sign,Q_len,Q_frac,F);
 61
                                                                                                Q_cordic(q_fix+1,rot_Q)=fi((Y_rot_Q*K_cordic),Q_sign,Q_len,Q_frac,F);
 62
                                                                               else
 63
                                                                                                Q_{cordic}(q_{fix}, rot_Q) = X_{rot_Q};
 64
                                                                                                Q_{cordic}(q_{fix+1}, rot_Q) = Y_{rot_Q};
 65
                                                                               end
66
                                                              end
67
                                                              end
 68
                                             end
69
                             end
 70 end
```

Hardware implementation

1. Hardware architecture ($s=[1 1 0]^t$, $d=[1 0 0]^t$)

GG(vectoring mode): One GG contains 4 micro-rotation modules, when iteration over, it outputs to above and multiplied by K(MK module), the rest of data will be transmitted to the right GR and Q modules.

GR(rotation mode): GR is almost the same module as GG, the only difference is rotation direction d, d will input from the left module(GG or GR).

- There are 4 GG (vectoring mode) and (6+32) GR (rotation mode)
- GG output the direction of vector rotation and transmits it to GR. In each iteration, the rotation angle is halved to approach the target angle.

2. System diagram

3. Verilog code (only core part):

a. GG module

```
1 module GG_one_iter #(
 2
        parameter R_LEN = 12,
 3
        parameter R_FRAC = 2
 4)(
 5
                      signed [R_LEN-1:0]
        input
                                              хi,
 6
        input
                      signed [R_LEN-1:0]
                                              yi,
 7
        input
                                 [3:0]
                                                   iter,
 8
        output
                                 [1:0]
                                                   d,
 9
        output reg signed [R_LEN-1:0]
                                              XO,
10
        output reg signed [R_LEN-1:0]
                                               yo
11);
12
13 assign d = (yi == 'd0) ? 'd2 : xi[R_LEN-1] ^ yi[R_LEN-1];
14
15 always @(*) begin
        if(d == 'd2) begin
16
17
            xo = xi;
18
            yo = yi;
19
        end
        else if(d == 'd1) begin
20
21
            xo = xi - (yi >>> iter);
22
            yo = yi + (xi >>> iter);
23
        end
24
        else begin
25
            xo = xi + (yi >>> iter);
26
            yo = yi - (xi >>> iter);
27
        end
28 end
29
30 endmodule
```

b. GR module

```
1 module GR_one_iter #(
 2
       parameter R_LEN = 12,
 3
        parameter R_FRAC = 2
 4)
 5 (
       input
                     signed [R_LEN-1:0]
                                             χi,
 6
                      signed [R_LEN-1:0]
       input
                                            yi,
 7
       input
                                [3:0]
                                                  iter,
 8
                                                  d,
       input
                                [1:0]
 9
       output reg signed [R_LEN-1:0]
                                              xo,
10
        output reg signed [R_LEN-1:0]
                                              yo
11);
12
13 always @(*) begin
       if(d == 'd2) begin
14
15
            xo = xi;
16
            yo = yi;
17
       end
18
       else if(d == 'd1) begin
19
            xo = xi - (yi >>> iter);
20
            yo = yi + (xi >>> iter);
21
       end
22
       else begin
23
            xo = xi + (yi >>> iter);
            yo = yi - (xi >>> iter);
24
25
       end
26 end
28 endmodule
```

c. Q module is the same as GR

d. MK (multiplied by K)

```
1 module MK #(
 2
       parameter R_LEN = 12,
 3
       parameter R_FRAC = 2,
 4
       parameter K_LEN = 10,
 5
       parameter K_FRAC = 9
 6)(
 7
       input
                     signed [R_LEN-1:0]
                                                хi,
 8
       input
                     signed [R_LEN-1:0]
                                                yi,
 9
       output
                     signed [R_LEN-1:0]
                                                χo,
10
       output
                     signed [R_LEN-1:0]
                                                yo
11);
12
13 localparam
                              K = 10'b0_100110111; // K = 0.607421875
                     signed
14
15 wire
                      signed [R_LEN+K_LEN-1:0] xo_0;
16 wire
                      signed [R_LEN+K_LEN-1:0] yo_0;
17
18
19 assign xo_0 = xi * K;
20 assign yo_0 = yi * K;
21
22 // truncate to R_LEN bits
23 assign xo = xo_0[R_LEN+K_FRAC-1:K_FRAC];
24 assign yo = yo_0[R_LEN+K_FRAC-1:K_FRAC];
25
26 endmodule
27
```

e. GG iteration control

```
1 // iteration times
  2 always @(posedge clk or posedge rst) begin
  3
         if (rst) begin
   4
              iter_gg1 <= 'd0;
   5
         end
  6
         else if(ROT_wire) begin
  7
              if(nop_gg1) begin
  8
                   iter_gg1 <= 'd0;
  9
              end
 10
              else if(iter_last_gg1) begin
 11
                   iter_gg1 <= iter_gg1 + 'd1;
 12
              end
 13
              else begin
 14
                   iter_gg1 <= iter_gg1 + ITER_ONE_CYCLE;</pre>
 15
              end
 16
         end
 17
         else begin
 18
              iter_gg1 <= 'd0;
 19
         end
 20 end
 21
 22 // GG1 input data xi, yi
 23 always @(posedge clk or posedge rst) begin
 24
         if (rst) begin
 25
              xi_gg1 <= 'd0;
 26
              yi_gg1 <= 'd0;
272
         end
829
         else if(OP_wire) begin
303
              case(iter_gg1)
132
                   0: begin
333
                        if(start_gg1) begin
435
                             xi_gg1 <= 'd0;
363
                             yi_gg1 <= rd_A_data_ext;</pre>
738
                        end
394
                        else if(nop_gg1 && !finish_gg1) begin
041
                             xi_gg1 <= rd_A_data_ext;</pre>
424
                             yi_gg1 <= yo_gg1;</pre>
344
                        end
454
                        else begin
647
                             xi_gg1 <= xo_gg1;
484
                             yi_gg1 <= yo_gg1;
950
                        end
515
                   end
253
                   ITER_K: begin
545
                        if(finish_gg1) begin
```

```
556
                            xi_gg1 <= xo_gg1;
575
                            yi_gg1 <= yo_gg1;</pre>
859
                        end
606
                        else begin
162
                             xi_gg1 <= rd_A_data_ext;</pre>
636
                            yi_gg1 <= xo_mk1;
465
                        end
666
                   end
768
                   default: begin
697
                        xi_gg1 <= xo_gg1;</pre>
071
                        yi_gg1 <= yo_gg1;</pre>
727
                   end
374
              endcase
         end
         else begin
              xi_gg1 <= 'd0;
              yi_gg1 <= 'd0;
         end
     end
     // GG1 mk_count
     always @(posedge clk or posedge rst) begin
         if (rst) begin
              mk_count_gg1 <= 'd0;
         end
         else if(multk_gg1) begin
              mk_count_gg1 <= mk_count_gg1 + 'd1;</pre>
         end
     end
```

f. GR iteration control

```
1// data propagated from left to right
   2 always @(posedge clk or posedge rst) begin
   3
         if (rst) begin
   4
              iter_gr11
                          <= 'd0;
   5
              nop_gr11
                            <= 'd0;
  6
              d1_gr11
                            <= 'd0;
   7
              d2_gr11
                            <= 'd0;
  8
              d3_gr11
                            <= 'd0;
  9
              d4_gr11
                            <= 'd0;
 10
              neg_gr11
                            <= 'd0;
 11
              mk_count_gr11 <= 'd0;
 12
         end
 13
         else begin
 14
              iter gr11
                          <= iter_gg1;
 15
              nop_gr11
                            <= nop_gg1;
 16
              d1_gr11
                            <= d1_gg1;
 17
              d2_gr11
                            <= d2_gg1;
 18
              d3_gr11
                            <= d3_gg1;
 19
              d4_gr11
                            <= d4_gg1;
 20
              neg_gr11
                            <= neg_gg1;
 21
              mk_count_gr11 <= mk_count_gg1;</pre>
 22
         end
 23 end
 24
 25 // GR11 input data xi, yi
 26 always @(posedge clk or posedge rst) begin
272
         if (rst) begin
              xi_gr11 <= 'd0;
829
              yi_gr11 <= 'd0;
303
132
         end
333
         else if(OP_wire) begin
435
              case(iter_gr11)
363
                   0: begin
738
                        if(start_gr11_reg) begin
394
                            xi_gr11 <= 'd0;
041
                            yi_gr11 <= rd_A_data_ext;</pre>
424
                        end
344
                        else if(nop_gr11 && !finish_gr11) begin
454
                            xi_gr11 <= rd_A_data_ext;</pre>
647
                            yi_gr11 <= yo_gr11;
                        end
484
950
                        else begin
515
                            xi_gr11 <= xo_gr11;
253
                            yi_gr11 <= yo_gr11;
545
                        end
```

```
556
                  end
575
                  ITER_K: begin
859
                       if(finish_gr11) begin
606
                           xi_gr11 <= xo_mk1;
162
                           yi_gr11 <= yo_mk1;
636
                       end
465
                       else begin
666
                           xi_gr11 <= rd_A_data_ext;</pre>
  7
                           yi_gr11 <= xo_mk1;
                       end
                  end
                  default: begin
                       xi_gr11 <= xo_gr11;
                       yi_gr11 <= yo_gr11;
                  end
             endcase
         end
         else begin
             xi_gr11 <= 'd0;
             xi_gr11 <= 'd0;
         end
     end
```

4. RTL Simulation

a. Simulation waveform

• Data propagate form left to right PE(GG, GR, Q)

€ 1+	Megs
/qr_cordic_tb/clk	$\overline{}$
<pre>/qr_cordic_tb/rst</pre>	
	{0
	0 (0 X X X X X X X X X X X X X X X X X X
<pre></pre>	0
/qr_cordic_tb/qr_cordic_inst/xi_gg4	0
	0
<pre></pre>	0 X X X X X X X X X X 510 X X X 89 X X X 469 X X X X X X X X X X X X X X X X X X X
<pre></pre>	0 X X X X X X X X 3-350 X X X 768 X X X X X X X X X X X X X X X X X X X
	0 (0 X X X X X X X X X
	0
	(0) X (0
<pre></pre>	O
	(O
	(o X X Q X X X X X X X X X X X X X X X
	(o
<pre></pre>	(o
	10 Y 10 Y 1 Y 1 Y 1 Y 1 Y 1 Y 1 Y 1 Y 1

Process matrix R

Process matrix Q

- Troccss matrix Q		
<u>`</u> ⊒ -	Msgs	
/qr_cordic_tb/qr_cordic_inst/yo_q11	0	-{0
	0	{0
	0	<u>-(o </u>
#-// /qr_cordic_tb/qr_cordic_inst/yo_q14	0	{o
+-// /qr_cordic_tb/qr_cordic_inst/yo_q15	0	-{0
	0	{o
+ /qr_cordic_tb/qr_cordic_inst/yo_q17	0	-{o
+-/-/ /qr_cordic_tb/qr_cordic_inst/yo_q18	0	-{0
+ / /qr_cordic_tb/qr_cordic_inst/yo_q21	0	-{0
+	0	-{0
+-/ /qr_cordic_tb/qr_cordic_inst/yo_q23	0	-{ <u>0</u>
+	0	-(<u>0</u>
+ /qr_cordic_tb/qr_cordic_inst/yo_q25	0	-{o
+	0	-(<u>o</u>
+	0	-{o
-/ /qr_cordic_tb/qr_cordic_inst/yo_q28	0	-(0)()()()()
+- / /qr_cordic_tb/qr_cordic_inst/yo_q31	0	-{0
+- / /qr_cordic_tb/qr_cordic_inst/yo_q32	0	-{0
+	0	-{0
+	0	
+	0	-{0
+- /qr_cordic_tb/qr_cordic_inst/yo_q36 +- /qr_cordic_tb/qr_cordic_inst/yo_q37	0	-(0
- /- /	0	10

- Data flow & data scheduling $GG1 \rightarrow GR11 \rightarrow GR12 \rightarrow GR13 \rightarrow Q11 \rightarrow Q12 \rightarrow Q13 \rightarrow \rightarrow Q18$ ------ $GG2 \rightarrow GR21 \rightarrow GR22 \rightarrow Q21 \rightarrow Q22 \rightarrow Q23 \rightarrow \rightarrow Q28$ ------ $GG3 \rightarrow GR31 \rightarrow Q31 \rightarrow Q32 \rightarrow Q33 \rightarrow \rightarrow Q38$ ------ $GG4 \rightarrow Q41 \rightarrow Q42 \rightarrow Q43 \rightarrow \rightarrow Q48$
- timing diagram
- Write Q matrix data back

Each row has an independent write enable signal, since multiple data outputs from Q occur simultaneously in the systolic array.

Timing diagram

1	11	12	13	14	15	16	17	18														
					21	22	23	24	25	26	27	28										
										31	32	33	34	35	36	37	38					
															41	42	43	44	45	46	47	48
															51	52	53	54	55	56	57	58
										61	62	63	64	65	66	67	68					
					71	72	73	74	75	76	77	78										
8	31	82	83	84	85	86	87	88														
																						F

b. Simulation transcript (4 patterns) Pattern 1:

TART!!! Simulation Start 320 -242 166 -720 -23 -154 -300 -472 320 -242 166 -720 -23 -154 -300 -472 176 520 580 -2 -84 443 -423 181 176 520 -2 -84 443 -423 181 Congratulations !! finish called from file "qr_cordic_tb.v", line 239. finish at simulation time 111750 VCS Sim u lation Report ime: 1117500 ps PU Time: 0.510 seconds; Data structure size: 0.1Mb ri May 24 23:14:06 2024 PU time: 1.348 seconds to compile + .556 seconds to elab + .452 seconds to link

Pattern 2:

Pattern 3: Pattern4:

Both R and Q are all pass in RTL simulation

Clock rate : 15ns

• Cycles: 67

• Run time: 1117.5ns

RTL simulation Commands (VCS):

 $\label{lem:cordic_var} $$ vcs -full 64 -R -sverilog \ qr_cordic_tb.v \ qr_cordic.v + access + r + vcs + fsdbon + fsdb + mda + fsdbfile + qr_cordic.fsdb $$$

5. Synthesis

a. Synopsys Design Constraints (SDC)

- Clock rate = 15ns
- I/O delay = 1ns

b. Design compiler synthesis .tcl

```
1#Read All Files
 2 read file -format verilog
                                  qr_cordic.v
 3current_design qr_cordic
 4 link
 6#Setting Clock Constraints
 7 source -echo -verbose qr_cordic.sdc
 8 check_design
 9 set high_fanout_net_threshold 0
10 uniquify
11 set_fix_multiple_port_nets -all -buffer_constants [get_designs *]
12 #set_max_area 0
13 #Synthesis all design
14 #compile -map_effort high -area_effort high 15 #compile -map_effort high -area_effort high -inc
16#compile_ultra
17 #compile_ultra -area
18 compile
                            -hierarchy -output "qr_cordic_syn.ddc"
20 write -format ddc
21 write_sdf -version 1.0 qr_cordic_syn.sdf
22 write -format verilog -hierarchy -output qr_cordic_syn.v
23 report_area > area.log
24 report_timing > timing.log
                     qr_cordic_syn.qor
25 report_qor
```

- Use Standard synthesis run without specifying additional optimization efforts for mapping or area.
- Synthesis on the CBDK_IC_Contest_v2.5 and TSMC 130nm process

c. Timing report

```
**********
   Report : timing
-path full
-delay max
-max paths 1

Design : qr cordic
Version: U-2022.12
Date : Fri May 24 23:07:08 2024
     Operating Conditions: slow Library: slow
Wire Load Model Mode: top
         Startpoint: xi q18 reg[0]
(rising edge-triggered flip-flop clocked by clk)
Endpoint: xi q18 reg[5]
(rising edge-triggered flip-flop clocked by clk)
Path Group: clk
Path Type: max
         Des/Clust/Port Wire Load Model Libra
qr cordic tsmc13 w110 slow
                                                                                                                                                                                                                                                                   Path
         Clock clk (rise edge)

clock network delay (ideal)
xi ql8 reg[0]/CK (DFFRX4)
xi ql8 reg[0]/CK (DFFRX4)
018 inst/xi[0] (0 24)
018 inst/Vii[0] (0 24)
018 inst/Ui24/Y (NAND2BX4)
018 inst/Ui59/Y (NAND2BX4)
018 inst/Ui59/Y (NAND2BX4)
018 inst/U55/Y (NAND2BX4)
018 inst/U55/Y (NAND2BX4)
018 inst/U56/Y (NAND2BX4)
018 inst/U56/Y (NAND2BX4)
018 inst/U66/Y (NAND2X1)
018 inst/U38/Y (CLKXORZX4)
018 inst/0 one iter inst 1/Xi[6] (0 one iter 99)
018 inst/0 one iter inst 1/U110/Y (INX6)
018 inst/0 one iter inst 1/U110/Y (OA22XL)
018 inst/0 one iter inst 1/U14/Y (OA12ZLX1)
018 inst/0 one iter inst 1/U162/Y (OA12ZLX4)
018 inst/0 one iter inst 1/U162/Y (OA12ZLX4)
018 inst/0 one iter inst 1/U162/Y (OA12ZLX4)
018 inst/0 one iter inst 1/Usb/105/BI6] (0 one iter 99)
                                                                                                                                                                                                                                                                      0.00
0.50 r
1.02 f
1.02 f
1.36 f
1.53 f
1.53 f
1.53 f
2.07 r
2.54 r
2.66 f
3.13 f
3.35 r
4.15 r
                                                                                                                                                                                                                        DW01 sub 3)
0.00
0.12
0.31
0.21
                                                                                                                                                                                                                                                                     4.15 r
4.27 f
4.58 r
4.79 f
           018 inst/Q one iter inst 1/sub 105/U150/Y (INVX3)
018 inst/Q one iter inst 1/sub 105/U220/Y (NANDZX1)
018 inst/Q one iter inst 1/sub 105/U179/Y (OAI21X4)
018 inst/Q one iter inst 1/sub 105/U158/Y (CLKINVX1)
5.01 r
5.21 f
5.37 r
5.54 r
                                                                                                                                                                                                                        0.21
0.20
0.16
0.17
99 DW01
0.02
0.21
0.28
0.00
0.00
0.20
0.23
0.31
                                                                                                                                                                                                                                                                      5.54 r
5.54 r
5.75 r
6.03 r
6.03 r
6.24 f
6.47 f
6.78 r
7.02 r
                                                                                                                                                                                                                                                                      7.02 r
7.09 f
7.56 r
7.76 f
7.99 r
8.18 f
8.40 r
8.57 f
```

```
0.22 8.40 r

0.17 8.57 f

98 DW01 sub 3)

0.00 8.57 f

0.24 8.81 f

0.24 9.05 f

0.00 9.05 f

0.00 9.05 f

0.08 9.12 r

0.06 9.18 f

0.16 9.34 r

0.10 9.44 f

0.17 9.62 f

0.14 9.76 r

0.35 10.11 f
     VI8 inst/Q one iter inst 2/sub 100/U140/Y (AU121A2)

Ol8 inst/Q one iter inst 2/sub 100/U173/Y (XOR2X4)

Ol8 inst/Q one iter inst 2/sub 100/DIFF[11] (Q one iter
018 inst/Q one iter inst 2/ULO94/Y (AO22X4)
018 inst/Q one iter inst 2/ULO94/Y (AO21X4)
018 inst/Q one iter inst 2/ULO94/Y (AO21X4)
018 inst/Q one iter inst 2/Xv[11] (Q one iter 98)
018 inst/Q one iter inst 3/Xi[11] (Q one iter 97)
018 inst/Q one iter inst 3/U26/Y (INXX12)
018 inst/Q one iter inst 3/U26/Y (INXX12)
018 inst/Q one iter inst 3/U66/Y (INXX2)
018 inst/Q one iter inst 3/U65/Y (INXX3)
018 inst/Q one iter inst 3/U65/Y (INXX3)
018 inst/Q one iter inst 3/U36/Y (OLKAND2X8)
018 inst/Q one iter inst 3/U36/Y (OLYBENY2)
018 inst/Q one iter inst 3/U31/Y (OA1221X4)
018 inst/Q one iter inst 3/U31/Y (OA1221X4)
018 inst/Q one iter inst 3/Sub 105/B[1] (Q one iter 97)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    10.11 f
10.28 r
10.38 f
10.65 f
10.92 f
11.18 r
11.39 f
11.58 r
 018 inst/0 one iter inst 3/sub 105/U130/Y (INVX2)
018 inst/0 one iter inst 3/sub 105/U141/Y (NOR2X4)
018 inst/0 one iter inst 3/sub 105/U145/Y (OA2IX4)
018 inst/0 one iter inst 3/sub 105/U167/Y (OA2IX4)
018 inst/0 one iter inst 3/sub 105/U167/Y (OA2IX4)
018 inst/0 one iter inst 3/sub 105/U166/Y (OAIZIX4)
018 inst/0 one iter inst 3/sub 105/U185/Y (XORZX2)
018 inst/0 one iter inst 3/sub 105/U185/Y (XORZX2)
018 inst/0 one iter inst 3/sub 105/DIFF[9] (0 one iter
                                                                                                                                                                                                                                                                                                                                                                                                                                          0.18 11.58 r

97 DW01 sub 3)

0.00 11.78 r

0.20 11.78 r

0.15 11.93 r

0.13 12.06 r

0.00 12.06 r

0.06 12.12 f

0.35 12.48 r

0.13 12.61 f

0.21 12.82 f

0.21 12.82 f

0.35 r

DW01 sub 3)
 018 inst/0 one iter inst 3/U119/Y (A022X4)
018 inst/0 one iter inst 3/U18/Y (A021X4)
018 inst/0 one iter inst 3/U6/Y (A021X4)
018 inst/0 one iter inst 3/v6/91 (O one iter 97)
018 inst/0 one iter inst 4/V6/Y (O one iter 96)
018 inst/0 one iter inst 4/U9/Y (INVX12)
018 inst/0 one iter inst 4/U103/Y (OA1222X2)
018 inst/0 one iter inst 4/U48/Y (INVX6)
018 inst/0 one iter inst 4/U103/Y (OA122X4)
018 inst/0 one iter inst 4/U103/Y (OA122X4)
018 inst/0 one iter inst 4/U125/Y (OA122X4)
018 inst/0 one iter inst 4/U125/Y (OA122X4)
018 inst/0 one iter inst 4/Sub 100/B/11 (O one iter 96
                                                                                                                                                                                                                                                                                                                                                                                                                                              0.33 13.15 r

0.00 13.15 r

0.11 13.27 f

0.17 13.44 r

0.15 13.59 f

0.20 13.79 r

0.14 13.93 f

0.31 14.24 f

0.13 14.37 f

96 DWO1 sub 3) 7

96 DWO1 sub 3) 7

0.00 14.37 f

0.18 14.80 f

0.19 15.00 f

0.19 15.00 f

0.19 15.19 f

0.00 15.19 f

0.00 15.19 f
 018 inst/O one iter inst 4/sub 100/U149/Y (INXX3)
018 inst/O one iter inst 4/sub 100/U152/Y (NAND2X2)
018 inst/O one iter inst 4/sub 100/U152/Y (NAND2X2)
018 inst/O one iter inst 4/sub 100/U186/Y (OAI21X4)
018 inst/O one iter inst 4/sub 100/U186/Y (AOI2X2)
018 inst/O one iter inst 4/sub 100/U122/Y (INXX4)
018 inst/O one iter inst 4/sub 100/U120/Y (XNOREX44)
018 inst/O one iter inst 4/sub 100/U120/Y (XNOREX44)
018 inst/O one iter inst 4/sub 100/DIFF[5] (O one it
 018 inst/0 one iter inst 4/U162/Y (A022X4)
018 inst/0 one iter inst 4/U127/Y (A021X4)
018 inst/0 one iter inst 4/xo[5] (O one iter 96)
018 inst/U9/Y (MXXX4)
018 inst/Vo[5] (O 24)
U6901/Y (A022X4)
x1 q18 reg[5]/D (DFFRX1)
data arrival time
 clock clk (rise edge)
clock network delay (ideal)
clock uncertainty
xi q18 reg[5]/CK (DFFRX1)
library setup time
data required time
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    15.50
15.40
15.40 r
15.19
15.19
     slack (MET)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    0.00
```

- Clock rate = 15ns
- Slack ≥ Ons

d. Area report

```
************
Library(s) Used:
     slow (File: /home/cell_library/CBDK_IC_Contest_v2.5/SynopsysDC/db/slow.db)
                                                    39008
145611
107787
103929
2092
Number of ports:
Number of nets:
Number of cells:
Number of combinational cells:
Number of sequential cells:
Number of macros/black boxes:
Number of buf/inv:
Number of references:
                                                      25314
187
Combinational area:
Buf/Inv area:
                                         1175906.092861
                                        169627.969362
79005.481339
0.000000
11484024.363495
Noncombinational area:
Macro/Black Box area:
Net Interconnect area:
                                         1254911.574200
Total cell area:
                                        12738935.937695
Total area:
```

• Area: 1254911.5742 μm² (clock rate:15ns, standard compile)

e. Gate-level simulation (Run time: 1117.5ns)

Pattern 1: Pattern 2:


```
337
182
248
-457
315
553
-392
-186
337
182
248
-457
315
553
-392
-186
```

Pattern 3: Pattern4:

START!!! Simulation Start							
Input A matrix: -24 -47 58 24 -20 -3 -61 2 20 26 -197 -68 54 -61 -11 -72 77 118 -98 -121 11 -53 109 5	-69 -3 31 45 -27 -34 124 -119						
Output R matrix golden patter 648 -129 -770 0 891 195 0 0 0 443 0	-101 -565 -171 521 0 0 0 0 -101 -565 -171 521 0 0 0						
Output 0 matrix golden patter -152	n: 162 337 -474 -241 -265 286 -226 -316 -2147 -517 -51 -2209 -483 337 -474 337 -474 -316 -226 -286 -224 -316 -229 -483 343 -241 -316 -246 -316 -246 -316 -247 -316 -316 -316 -316 -316 -316 -316 -316	-461 291 603 155 -395 -44 -76 -458 -461 291 603 155 -395 -44 -46 -458	-630 -647 -134 109 -194 41 -306 282 -630 -647 -134 109 -194 41 -306 282	-342 456 -448 -664 -260 84 -100 44 -342 456 -448 -664 -260 84 -100 44			
Congratulations ! Simulation PASS!!	rix data have bee rix data have bee are all Pass!!	n generati	ed successed success	fully! fully!	** ** ** ** **		
Sfinish called from file "qr_sfinish at similation time" S in u U S Time: 1117500 ps Geconds; Fr. May 24 23:24:19 2024 CPU time: 16.535 seconds to c	cordic_tb.v", lin 111750 ation Rep Data struc	_ _ e 239. 0 ort ture size		'5 seconds	to link + 4	.354 seconds	in simulation

Both R and Q are all pass in gate-level simulation

• Clock rate: 15ns

Cycles: 67

• Run time: 1117.5ns

Gate-level simulation Commands (VCS):

vcs -full64 -R -sverilog qr_cordic_tb.v qr_cordic_syn.v +define+SDF +access+r +neg_tchk +vcs+fsdbon +fsdb+mda +fsdbfile+qr_cordic.fsdb -v

/home/cell_library/CBDK_IC_Contest_v2.5/Verilog/tsmc13_neg.v +maxdelays