§1 Conformally flat manifolds, and conformal class of metric

We say that manifold M is provided with conformal flat structure if it is provided by atlas $\{x_{(\alpha)}^i\}$ (which is compatible with smooth structure) such that transition functions $\Psi_{\alpha\beta}$ are conformal transformations.

Conformal transformations are:

i) translation

$$x_{(\beta)}^{i} = x_{(\alpha)}^{i} + a^{i}$$
 (Conf.trans.1)

ii) Orthogonal transformations

$$x_{(\beta)}^{i} = P_{k}^{i} x_{(\alpha)}^{i}$$
, where P_{k}^{i} is an ornogonal matrix, (Conf.trans.2)

iii) Inversion

$$x_{(\beta)}^{i} = \frac{x_{(\alpha)}^{i}}{\sum_{i} x_{(\alpha)}^{i} x_{(\alpha)}^{i}}$$
 (Conf.trans.3)

and any composition of these transformations.

We say that Riemannian metric is conformally flat if in a vicinity of an arbitrary point there exist coordinates x^i such that in these coordinates $g_{ik} = e^{\sigma}(x)\delta_{ik}$.

Very important exercise:

Proposition

Let metric be flat in coordinates x^i , i.e. it has an appearance $g_{ik} = \delta_{ik}$ in this coordinates. Then

1) This metric has an an appearance $g_{ik} = e^{\sigma}(x)\delta_{i'k'}$ in new coordinates $x^{i'}$ if and only if changing of coordinates is conformal, i.e. it is a composition of transformations (Conf.trans.).

In other words transformations of local cartesian coordinates (Conf.trans.1—Conf.trans.3) and only these transformations and their compositions preserve the angles.

2) The following statement is not true:

Let metric has an appearance $g_{ik} = e^{\sigma}(x)\delta_{ik}$ in coordinates x^i where $\sigma(x)$ is an arbitrary smooth function. Then there exist new coordinates such that in these new coordinates metric is flat, i.e. it has an appearance $g_{ik} = e^{\sigma}(x)\delta_{ik}$

Show counterexample.

Theorem A manifold M can be endowed with flat conformal structure if and only if there exist conformally flat metric on this manifold.

Sketch of the proof.

Let atlas $\{x_{(\alpha)}^i\}$ provides M with flat conformal structure, i.e. all transition functions are conformal (See equations (Conf.trans.)). Consider locally defined Riemannian metrics $g_{ik}^{(\alpha)} = \delta_{ik}$ and 0-cochain $\{\sigma_{(\alpha)}\}$ such that

$$\sigma_{(\alpha)} - \sigma_{(\beta)} = t_{\alpha\beta}$$
,

where $t_{\alpha\beta}$ is logarifm of Jacobian of conformal transformations from coordinates $x^i_{(\alpha)}$ to coordinates $x^i_{(\beta)}$. One can see that the right hand side defined closed 1-cochain, hence 0-cochain $\sigma_{(\alpha)}$ is a coboundary. Using partition we see that

$$\sigma_{(\alpha)} = \dots?? \sum_{\gamma} t_{\alpha\gamma} \varphi_{\gamma}$$

and $g_{ik} = \mathbf{e}^{\sigma(\alpha)} \delta_{ik}$ defines globally conformally flat Riemannian metric on M.

Exercise: Reconstruct exactly the right hand side of the right hand side of the lasst expression.

Now prove the converse implication

Let $\{x_{\alpha}^i\}$ be an atlas such that in this atlas Riemannian metric has an appearance

$$g_{ik}^{(\alpha)} = \mathbf{e}^{\sigma_{(\alpha)}} \delta_{ik}$$

Under change of coordinates $x^i_{(\beta)} = x^i_{(\beta)}(x^i_{(\alpha)})$ metric is changed on the scalar function, i.e. angles do not change. Thus this follows from Proposition 1 that transition functions are conformal

$\S 2$ Conformally flat metrics , and Weil tensor

1Exercise Calculate variation of curvature tensor R_{klm}^i under conformal variation of metrics.

1Exercise Write down the tensor (linear combination of R_{klm}^i , R_k^i and R with coefficients formed by the tensor g_{ik} such that this tensor is invariant with respect to conformal transformations.

Thus we will write Weyl tensor:

$$C^i_{klm} = R^i_{klm} + \dots$$

Theorem: Weyl curvature vanishes if and only if the metric is conformally flat, i.e. flat conformal structure exists.