1: Prove that for every $A \in \mathcal{M}(n \times n)$ we have $||A|| = \sqrt{\rho(A'A)}$. Hint: Use the Lagrange method for constrained optimization.

Proof. Recall that we can normalize the norm of x such that ||x|| = 1. Then by Lagrangian,

$$L(x,\lambda) = ||Ax|| - \lambda(||x|| - 1)$$

FOC:

$$2A'Ax^* - 2\lambda x^* = 0$$

Notice that λ is a eigenvalue of matrix A'A by definition of eigenvalue. Therefore

$$||Ax^*|| = \langle Ax^*, Ax^* \rangle = x'^* \lambda x^* = \sqrt{\lambda} ||x^*||$$

Notice that here x^* is the solution of $\max ||Ax||s.t.||x|| = 1$

$$||Ax^*|| = ||A|| ||x^*||$$

So $\sqrt{\lambda} = ||A||$. $\sqrt{\rho(A'A)} = \sqrt{max|\lambda|} = ||A||$

2: Show that if $\rho(A) < 1$, then $\sum_{k=0}^{\infty} \parallel A^k \parallel < \infty$. In particular, show that under the stated condition there exists an r < 1 and a $C \in \mathbb{N}$ such that $\parallel A^k \parallel \leq r^k C$ for all $k \in \mathbb{N}$

Proof. By Gelfand's formula, we have

$$\parallel A^k \parallel^{1/k} \to \rho(A), \quad \text{as } k \to \infty$$

Given any $\epsilon > 0$ such that $\epsilon < 1 - \rho(A)$, there exists $M_1 \in \mathbb{N}$ such that if $k \geq M_1$, then

$$\left| \parallel A^k \parallel^{1/k} - \rho(A) \right| < \epsilon/2 \Rightarrow \parallel A^k \parallel^{1/k} < \rho(A) + \epsilon/2$$

Let $r = \epsilon/2 + \rho(A)$. Then $||A^k|| < r^k, \forall k \ge M_1$. Let $C' = \max\{||A^1||/r^{M_1}, ||A^2||^{1/2}/r^{M_1}, \dots, ||A_1^M||/r^{M_1}, 1\}$. And $C = \max\{C', C'^2, \dots, C'^{M_1}, 1\}$. Apparently, $||A^k|| \le r^k C$, where r < 1.

By the convergence of geometric series $\sum\limits_{k=0}^{\infty}r^k$, we can conclude that $\sum\limits_{k=0}^{\infty}\parallel A^k\parallel<\infty$

3: Show that if $\rho(A) < 1$, then $\parallel A^k \parallel \to 0$ as $k \to \infty$ without using Gelfand's formula. Assume that A is diagonalizable.

Proof. Since A is diagonalizable, then there exits an matrix P such that $A = PVP^{-1}$. The diagonal values of matrix V are eigenvalues of A.

Thus $||A^k|| = ||(PVP^{-1})^k|| = ||PV^kP^{-1}|| \le ||||P||||V^k||||P^{-1}||$.

Since the maximum eigenvalue $\rho(A) < 1$, then each diagonal element in matrix $V^k \to 0$. So $V^k \to 0$ as $k \to 0$

Therefore $||A^k|| \to 0$

4: Show that the set of nonnegative definite matrices is a closed subset of $\mathcal{M}(n \times n, \|\cdot\|)$

Proof. There exists a matrix $B \in \mathcal{M}(n \times n, \|\cdot\|)$ such that a sequence of nonnegative definite matrix $(A_m)_{m\geq 1} \in \mathcal{M}$ converges to B.

Given $\epsilon > 0$, there exists $M \in \mathbb{N}$ such that if $m \geq M$, then $||A_m - B|| < \epsilon$

Suppose that B is not nonnegative definite. Then there exists $x \in \mathbb{R}^n$ such that x'Bx < 0

Let f(matrix) = x' matrix x. Clearly, this is a continuous function on \mathcal{M} . By property of continuity, there exists $\delta > 0$, for some $A_m \in N_{\delta}(B)$, we have $x'A_mx < 0$. It contradicts to $A_m, \forall m$ are nonnegative.

5: Let M, A be in $\mathcal{M}(n \times n)$ with $\rho(A) < 1$. Let X^* be the unique solution to the Lyapunov equation.

$$X = AXA' + M$$

Show that

1.M symmetric $\Rightarrow X^*$ symmetric

2.M nonnegative definite $\Rightarrow X^*$ nonnegative defininte

3.M positive definite $\Rightarrow X^*$ positive definite.

Part 1

Proof. $X'^* = (AXA' + M)' = AX'^*A' + M' = AX'^*A + M$, since M = M'.

Apparently, $X^* = X'^*$, since they maintain the same formula, and X^* is the unique solution. \Box

Part 2

Proof. We have proved in Exercise 4 that that the space of nonnegative definite matrices is closed. Let L be Lyapunov operator. X^* is the unique solution, so we can apply contraction mapping theorem, then X^* should be in the space of nonnegative definite matrices. Therefore the proof is complete.

Part 3

Proof. By part 2, LX is at least nonnegative definite, since M is positive definite. Therefore $a'AX^*A'a + a'Ma \ge 0, \forall a \in \mathbb{R}^n \setminus \{0\}$. Since a'Ma > 0, we have $a'(LX^*)a > 0$. Therefore X^* is positive definite.