Haskell-ML

Genji Ohara

March 20, 2024

Contents

1	Introduction 4								
	1.1	About	This Book	4					
	1.2	Prereq	quisites	4					
	1.3	Entry	Point	5					
	1.4	Data F	Processing	5					
		1.4.1	Read Data	5					
		1.4.2	Process Data	6					
		1.4.3	Split Data	7					
	1.5	Some 1	Utilities	7					
2	Line	ear Mo	ndel	9					
_	2.1		Regression	9					
	2.1	2.1.1	Setting	9					
		2.1.2	Model	9					
		2.1.3	Problem	10					
		2.1.4	Fitting	10					
		2.1.5	Test	10					
	2.2	_	ic Regression	11					
		2.2.1	Sigmoid	11					
		2.2.2	Prediction	11					
		2.2.3	Fitting	11					
		2.2.4	Stochastic Gradient Descent	12					
		2.2.5	Test	12					
3	Tree	e Mode	ما	13					
J	3.1		on Tree	13					
	0.1	3.1.1	Constants	13					
		3.1.2	Tree Structure	13					
		3.1.2	Output Tree	14					
		3.1.4	Gini Impurity	15					
		3.1.4	Search Best Split	16					
		3.1.6	Grow Tree	17					
		3.1.7	Output Tree in GraphViz	17					

CONTENTS	3
CONTENTS	0

		3.1.8 3.1.9	Other Functions	18 19
4	Neu	ral Ne	twork	20
	4.1	Consta	nts	20
	4.2	Layers		20
		4.2.1	Affine	20
		4.2.2	Activation Function	21
		4.2.3	Cross Entropy Error	21
		4.2.4	Softmax	22
		4.2.5	Loss Function	23
		4.2.6	Forward Propagetion	23
		4.2.7	Prediction	23
		4.2.8	Gradient	23
		4.2.9	Learning	24
		4.2.10	Test	25

Chapter 1

Introduction

1.1 About This Book

This book is a collection of Haskell code for machine learning. This PDF file is generated from haskell-ml.lhs written in Literate Haskell format. You can compile it as both Haskell and LaTeX source code. I write this book to learn Haskell and machine learning and hope it will be helpful for those who have the same interest.

1.2 Prerequisites

We use the following libraries:

- Prelude for basic functions
- Numeric.LinearAlgebra for matrix operations
- Data.CSV for reading CSV files
- Text.ParserCombinators.Parsec for parsing CSV files
- System.Random for random number generation
- Data.List for list operations

```
import Prelude hiding ((<>))
import Numeric.LinearAlgebra
import Data.CSV
import Text.ParserCombinators.Parsec
import System.Random
import Data.List
```

We use the following type aliases:

1.3. ENTRY POINT 5

- R for Double
- Vec for Vector R
- Mat for Matrix R

```
type Vec = Vector R
type Mat = Matrix R
```

We define the some spaces as follows:

```
Feature Space  \mathcal{F} = \mathbb{R}^D  Label Space  \mathcal{L} = \{0, 1, \dots, L-1\}  Data Space  \mathcal{D} = \mathcal{F} \times \mathcal{L}
```

```
1 type Feature
                  = [Double]
2 type Label
                  = Int
 data DataPoint = DataPoint {
      dFeature :: Feature,
4
5
      dLabel
              :: Label
  } deriving Show
  data RegDataPoint = RegDataPoint {
      rdFeature :: Feature,
                :: Double
      rdLabel
  } deriving Show
```

1.3 Entry Point

You can test all methods in this book by compiling haskell-ml.lhs as a Haskell source code.

```
main :: IO()
main = do
testDT
testLinReg
testNN
```

1.4 Data Processing

1.4.1 Read Data

We need to read external datasets for input to models.

```
type DataSet
                   = [DataPoint]
   type RegDataSet = [RegDataPoint]
  readClsDataFromCSV :: String -> IO DataSet
   readClsDataFromCSV fileName = do
       rawData <- parseFromFile csvFile fileName
       return $ either (\_ -> []) processClsData rawData
7
8
   readRegDataFromCSV :: String -> IO RegDataSet
9
   readRegDataFromCSV fileName = do
10
       rawData <- parseFromFile csvFile fileName
11
       return $ either (\_ -> []) processRegData rawData
12
```

1.4.2 Process Data

We need following steps to process data:


```
processClsData :: [[String]] -> [DataPoint]
   processClsData rawData = concatClsDataPoint feats labs
       where
           rawLabs = (last . transpose) rawData
                   = map (map (read :: String -> Double) . init) $ rawData
                   = strLabelToIntLabel rawLabs
6
           labs
   processRegData :: [[String]] -> [RegDataPoint]
   processRegData rawData = concatRegDataPoint feats labs
       where
10
           rawLabs = (last . transpose) rawData
                   = map (map (read :: String -> R) . init) $ rawData
12
                   = map (read :: String -> R) rawLabs
13
14
   strLabelToIntLabel :: [String] -> [Int]
15
   strLabelToIntLabel strLabels = map (maybeToInt . labelToIndex) strLabels
16
17
       where
```

1.5. SOME UTILITIES 7

```
labelToIndex 1 = findIndex (1 ==) $ nub strLabels
18
           maybeToInt Nothing = 0
           maybeToInt (Just a) = a
20
21
   concatClsDataPoint :: [[Double]] -> [Int] -> [DataPoint]
22
   concatClsDataPoint (f:fs) (1:ls) = DataPoint f 1 : concatClsDataPoint fs ls
   concatClsDataPoint [] = []
   concatClsDataPoint _ [] = []
25
26
   concatRegDataPoint :: [[Double]] -> [Double] -> [RegDataPoint]
   concatRegDataPoint (f:fs) (1:ls) = RegDataPoint f 1 : concatRegDataPoint fs ls
29 concatRegDataPoint [] _ = []
30 concatRegDataPoint _ [] = []
```

1.4.3 Split Data

We need to split the dataset into training and test datasets.

```
splitDataset :: DataSet -> R -> (DataSet, DataSet)
splitDataset dataSet rate = (trainData, testData)

where

trainData = take (round $ rate * fromIntegral (length dataSet)) dataSet
testData = drop (round $ rate * fromIntegral (length dataSet)) dataSet

splitRegDataset :: RegDataSet -> R -> (RegDataSet, RegDataSet)
splitRegDataset dataSet rate = (trainData, testData)
where
trainData = take (round $ rate * fromIntegral (length dataSet)) dataSet
testData = drop (round $ rate * fromIntegral (length dataSet)) dataSet
testData = drop (round $ rate * fromIntegral (length dataSet)) dataSet
```

1.5 Some Utilities

```
1 listToString :: [R] -> String
2 listToString [] = ""
3 listToString (r:rs) = show r ++ " " ++ listToString rs

4
5 vecToString :: Vec -> String
6 vecToString = listToString . toList
7
8 vecsToString :: [Vec] -> String
9 vecsToString [] = ""
10 vecsToString (r:rs) = (vecToString r) ++ "\n" ++ (vecsToString rs)
```

```
12 matToString :: Mat -> String
13 matToString = vecsToString . toRows
14
15 concatMatAndVec :: Mat -> Vec -> Mat
16 concatMatAndVec x v = fromColumns $ toColumns x ++ [v]
```

Chapter 2

Linear Model

2.1 Linear Regression

Linear regression is a very simple classifier.

2.1.1 Setting

Given a dataset $\mathcal{D} = \{(\boldsymbol{x}_1, y_1), (\boldsymbol{x}_2, y_2), \dots, (\boldsymbol{x}_N, y_N)\}$, where $\boldsymbol{x}_i \in \mathbb{R}^D$ is a feature vector and $y_i \in \{0, 1\}$ is a label,

$$\boldsymbol{X} \triangleq \begin{bmatrix} \boldsymbol{x}_1^T \\ \boldsymbol{x}_2^T \\ \vdots \\ \boldsymbol{x}_N^T \end{bmatrix}, \quad \boldsymbol{y} \triangleq \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{bmatrix}$$
 (2.1)

2.1.2 Model

We get the estimated label \hat{y} from the feature vector \boldsymbol{x} as follows:

$$\hat{y} = \boldsymbol{w}^T \boldsymbol{x} + w_0 \tag{2.2}$$

We transform eq. (2.2) by adding a bias term:

$$\hat{y} = \boldsymbol{w}^T \boldsymbol{x} + w_0 = \begin{bmatrix} w_0 & \boldsymbol{w}^T \end{bmatrix} \begin{bmatrix} 1 \\ \boldsymbol{x} \end{bmatrix} = \tilde{\boldsymbol{w}}^T \tilde{\boldsymbol{x}}.$$
 (2.3)

```
predictLinReg :: Vec -> Vec -> R
predictLinReg tw x = tw <.> (vector $ [1.0] ++ toList x)

predictLinRegMat :: Vec -> Mat -> Vec
predictLinRegMat tw x = fromList $ map (predictLinReg tw) $ toRows x
```

2.1.3 Problem

We want to find the weight $\tilde{\boldsymbol{w}}$ that minimizes the objective:

$$E(\tilde{\boldsymbol{w}}) = \|\boldsymbol{y} - \tilde{\boldsymbol{X}}\tilde{\boldsymbol{w}}\|^2 + \lambda \|\tilde{\boldsymbol{w}}\|^2. \tag{2.4}$$

where

$$\tilde{\boldsymbol{X}} \triangleq \begin{bmatrix} \tilde{\boldsymbol{x}}_{1}^{T} \\ \tilde{\boldsymbol{x}}_{2}^{T} \\ \vdots \\ \tilde{\boldsymbol{x}}_{N}^{T} \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix}$$

$$(2.5)$$

```
addBias :: Mat -> Mat
addBias x = fromColumns $ [bias] ++ (toColumns x)
where bias = vector $ take (rows x) [1,1..]
```

2.1.4 Fitting

Gradient of the objective eq. (2.4) is

$$\nabla E(\tilde{\boldsymbol{w}}) = 2 \left[\left(\tilde{\boldsymbol{X}}^T \tilde{\boldsymbol{X}} + \lambda I \right) \tilde{\boldsymbol{w}} - \tilde{\boldsymbol{X}}^T \boldsymbol{y} \right]. \tag{2.6}$$

Therefore

$$\underset{\tilde{\boldsymbol{w}}}{\operatorname{argmin}} E(\tilde{\boldsymbol{w}}) = \left(\tilde{\boldsymbol{X}}^T \tilde{\boldsymbol{X}} + \lambda I\right)^{-1} \tilde{\boldsymbol{X}}^T \boldsymbol{y}$$
 (2.7)

```
fit :: Mat -> Vec -> R -> Vec
fit x_til y lambda = (inv a) #> ((tr x_til) #> y)
where a = (tr x_til) <> x_til + (scale lambda $ ident $ cols x_til)
```

2.1.5 Test

We use iris dataset for testing.

```
testLinReg = do
putStrLn "Linear Regression"
dataSet <- readRegDataFromCSV "data/housing.csv"
let splittedData = splitRegDataset dataSet 0.8
let trainData = fst splittedData
let testData = snd splittedData
let x = fromRows $ map (vector . rdFeature) trainData
let y = vector $ map rdLabel trainData
let x_til = addBias x</pre>
```

```
11    let w = fit x_til y 0.1
12    let x_test = fromRows $ map (vector . rdFeature) testData
13    let y_test = vector $ map rdLabel testData
14    let d_y = y_test - (predictLinRegMat w x_test)
15    let mse = (d_y <.> d_y) / (fromIntegral $ rows x_test)
16    print mse
17    writeFile "output/linreg.dat" $ show mse
```

Output:

31.971956716480754

2.2 Logistic Regression

2.2.1 Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}} \tag{2.8}$$

```
1 sigmoid :: R \rightarrow R
2 sigmoid x = 1 / (1 + exp(-x))
```

2.2.2 Prediction

$$\hat{y} = \sigma(\boldsymbol{w}^T \boldsymbol{x}) \tag{2.9}$$

```
predictLogReg :: Vec -> Vec -> R
predictLogReg w x = sigmoid $ w <.> x
```

2.2.3 Fitting

We minimize the objective:

$$E(\mathbf{w}) = -\sum_{i=1}^{N} \left[t_i \ln \hat{y}_i + (1 - t_i) \ln(1 - \hat{y}_i) \right] + \frac{\lambda}{2} ||\mathbf{w}||^2$$
 (2.10)

Gradient:

$$\nabla E(\boldsymbol{w}) = \boldsymbol{X}^{T}(\hat{\boldsymbol{y}} - \boldsymbol{t}) + \lambda \boldsymbol{w}$$
 (2.11)

```
1 -- lossLogReg :: Vec -> Vec -> Vec -> R -> R
2 -- lossLogReg w x t lambda = sumCrossEntropyError ys ts + lambda * (norm_2 w) ^ 2
3 -- where
4 -- ys = map (predictLogReg w) $ toRows x
```

```
ts = toList t

gradientLogReg :: Vec -> Mat -> Vec -> R -> Vec

gradientLogReg w x t lambda = (tr x) #> (ys - t) + scale lambda w

where

ys = fromList $ map (predictLogReg w) $ toRows x
```

2.2.4 Stochastic Gradient Descent

We update the weight as follows:

$$\boldsymbol{w} \leftarrow \boldsymbol{w} - \eta \nabla E(\boldsymbol{w}) \tag{2.12}$$

By iterating eq. (2.12), we can minimize the objective eq. (2.10).

```
sgd :: Vec -> Mat -> Vec -> R -> R -> Vec
sgd weight x t learningRate iterNum =
if iterNum == 0
then weight
else sgd new_w x t learningRate (iterNum - 1)
where
new_w = weight - (cmap (* learningRate) $ gradientLogReg weight x t 0.1)
```

2.2.5 Test

Chapter 3

Tree Model

3.1 Decision Tree

3.1.1 Constants

```
featureNum :: Int
featureNum = 4

labelNum :: Int
labelNum = 3
```

3.1.2 Tree Structure

Literal

```
data Literal = Literal Int Double
  -- data Literal = Literal {
    -- lFeatureIdx :: Int,
    -- lValue :: Double
    -- }

instance Show Literal where
    show (Literal i v) = "Feature[" ++ (show i) ++ "] < " ++ (show v)</pre>
```

Split

```
data Split = Split {
    sLiteral :: Literal,
    sScore :: Double
    deriving Show
```

```
instance Eq Split where
(Split _ s) == (Split _ s') = s == s'

instance Ord Split where
compare (Split _ s) (Split _ s') = compare s s'
```

Tree

```
data Tree = Leaf Int String | Node Literal Tree Tree String
-- data Tree = Leaf {label :: Int, id :: String} |
Node {literal :: Literal, left :: Tree, right :: Tree, id :: String}
```

3.1.3 Output Tree

```
instance Show Tree where
      show tree = treeToString tree 0
  treeToString :: Tree -> Int -> String
  treeToString (Leaf l _) depth =
      branchToString depth ++ "class: " ++ (show 1) ++ "\n"
6
  treeToString (Node literal leftTree rightTree _) depth =
7
8
      let str1 = branchToString depth ++ show literal ++ "\n"
          str2 = treeToString leftTree (depth + 1)
9
          str3 = branchToString depth ++ "!" ++ show literal ++ "\n"
10
          str4 = treeToString rightTree $ depth + 1
      in str1 ++ str2 ++ str3 ++ str4
12
13
  branchToString :: Int -> String
```

Listing 3.1: Example of CLI output

3.1. DECISION TREE

```
|--- Feature[3] < 1.5
               | |--- class: 2
               |--- !Feature[3] < 1.5
                   |--- Feature[0] < 6.7
                       |--- class: 1
                   |--- !Feature[0] < 6.7
                   | |--- class: 2
17
     |--- !Feature[3] < 1.7
          |--- Feature[2] < 4.8
               |--- Feature[0] < 5.9
               | |--- class: 1
               |--- !Feature[0] < 5.9
             | |--- class: 2
         |--- !Feature[2] < 4.8
24
               |--- class: 2
```

3.1.4 Gini Impurity

Class Ratio

```
Label Set L = \{y \mid (\boldsymbol{x}, y) \in D\}

Label Count c_l(L) = \sum_{i \in L} \mathbb{I}[i = l], \boldsymbol{c}(L) = \sum_{i \in L} \text{onehot}(i)

Class Ratio p_l(L) = \frac{c_l(L)}{|L|}, \boldsymbol{p}(L) = \frac{\boldsymbol{c}(L)}{\|\boldsymbol{c}(L)\|_1}
```

```
1 labelCount :: [Label] -> Vec
2 labelCount = sum . (map $ oneHotVector labelNum)
3
4 classRatio :: [Label] -> Vec
5 classRatio labelList = scale (1 / (norm_1 countVec)) $ countVec
6 where countVec = labelCount labelList
```

Gini Impurity

$$\operatorname{Gini}(L) = 1 - \sum_{l=0}^{L-1} p_l(L)^2 = 1 - \|\boldsymbol{p}(L)\|_2^2$$

```
gini :: [Label] -> Double
gini labelList = 1.0 - (norm_2 $ classRatio labelList) ^ 2
```

3.1.5 Search Best Split

Split Data

$$D_l(D, i, v) = \{(\mathbf{x}, y) \in D \mid x_i < v\}$$

 $D_r(D, i, v) = \{(\mathbf{x}, y) \in D \mid x_i \ge v\}$

```
splitData :: DataSet -> Literal -> [DataSet]
splitData dataSet (Literal i v) = [lData, rData]
where

lData = [(DataPoint x y) | (DataPoint x y) <- dataSet, x !! i <= v]
rData = [(DataPoint x y) | (DataPoint x y) <- dataSet, x !! i > v]
```

Score Splitted Data

```
score(D, i, v) = \frac{|D_l|}{|D|}gini\left[D_l(D, i, v)\right] + \frac{|D_r|}{|D|}gini\left[D_r(D, i, v)\right]
```

```
scoreLiteral :: DataSet -> Literal -> Split
scoreLiteral dataSet literal = Split literal score
where
score = sum $ map (weightedGini (length dataSet)) $ labelSet
labelSet = map (map dLabel) $ splitData dataSet literal

weightedGini :: Int -> [Label] -> Double
weightedGini wholeSize labelSet = (gini labelSet) * dblDataSize / dblWholeSize
where
dblDataSize = fromIntegral $ length labelSet
dblWholeSize = fromIntegral wholeSize
```

Search Best Split

```
\underset{i,v}{\operatorname{argmin}}\operatorname{score}(D, i, v)
```

```
bestSplitAtFeature :: DataSet -> Int -> Split
bestSplitAtFeature dataSet i = myMin splitList
where
splitList = [scoreLiteral dataSet 1 | 1 <- literalList]
literalList = [Literal i (x !! i) | (DataPoint x _) <- dataSet]
bestSplit :: DataSet -> Split
bestSplit dataSet = myMin splitList
where splitList = [bestSplitAtFeature dataSet f | f <- [0,1..featureNum-1]]</pre>
```

3.1.6 Grow Tree

Grow Tree

```
growTree :: DataSet -> Int -> Int -> String -> Tree
   growTree dataSet depth maxDepth nodeId =
       if stopGrowing
       then Leaf (majorLabel dataSet) nodeId
       else Node literal leftTree rightTree nodeId
5
       where
           literal
                            = sLiteral $ bestSplit dataSet
           leftTree
                            = growTree lData (depth + 1) maxDepth (nodeId ++ "1")
8
                            = growTree rData (depth + 1) maxDepth (nodeId ++ "r")
q
           rightTree
           [lData, rData]
                           = splitData dataSet literal
10
           stopGrowing =
11
               depth == maxDepth ||
12
               gini [y | (DataPoint _ y) <- dataSet] == 0 ||</pre>
13
               length 1Data == 0 || length rData == 0
14
```

Stop Growing

$$\operatorname{majorLabel}(D) = \operatorname*{argmax}_{l \in \mathcal{L}} \sum_{(\boldsymbol{x}, y) \in D} \mathbb{I}\left[y = l\right]$$

```
majorLabel :: DataSet -> Label
majorLabel dataSet = maxIndex $ labelCount [y | (DataPoint _ y) <- dataSet]</pre>
```

3.1.7 Output Tree in GraphViz

```
labelToStringForGraphViz :: Tree -> String
   labelToStringForGraphViz (Leaf 1 leafId) =
       leafId ++ " [label=\"Class: " ++ (show 1) ++ "\"]\n"
   labelToStringForGraphViz (Node (Literal i v) left right nodeId) =
       nodeId ++ " [shape=box,label=\"Feature[" ++ (show i) ++ "] < " ++ (show v) ++ "</pre>
           \"]\n" ++
       labelToStringForGraphViz left ++ labelToStringForGraphViz right
6
   nodeToStringForGraphViz :: Tree -> String
   nodeToStringForGraphViz (Leaf _ leafId) = leafId ++ ";\n"
   nodeToStringForGraphViz (Node _ left right nodeId) =
10
       nodeId ++ " -- " ++ nodeToStringForGraphViz left ++
11
       nodeId ++ " -- " ++ nodeToStringForGraphViz right
12
13
14 treeToStringForGraphViz :: Tree -> String
```


Figure 3.1: Example of GraphViz output

3.1.8 Other Functions

Algorithm

```
myMin :: [Split] -> Split
   myMin splitList = foldr min (Split (Literal 0 0) 2) splitList
   oneHotList :: Int -> Int -> [R]
   oneHotList len idx =
5
       if len == 0
6
       then []
       else
       if idx == 0
9
       then 1 : oneHotList (len - 1) (idx - 1)
10
       else 0 : oneHotList (len - 1) (idx - 1)
11
12
   oneHotVector :: Int -> Int -> Vec
   oneHotVector len idx = vector $ oneHotList len idx
14
15
```

3.1. DECISION TREE

```
16 oneHotMat :: Int -> [Int] -> Mat
17 oneHotMat len labelList = fromRows $ map (oneHotVector len) labelList
```

3.1.9 Test

```
testDT :: IO()
testDT = do

dataSet <- readClsDataFromCSV "data/iris/iris.data"

let tree = growTree dataSet 0 10 "n"

let treeStr = show tree

putStrLn treeStr

writeFile "output/output-tree" treeStr

writeFile "output/tree.dot" $ treeToStringForGraphViz tree</pre>
```

Chapter 4

Neural Network

4.1 Constants

```
1 inputSize
              :: Int
2 hiddenSize :: Int
3 outputSize :: Int
4 inputSize
              = 784
5 hiddenSize = 50
6 outputSize = 10
8 w1_start
            :: Int
9 w1_size
             :: Int
10 w2_start
            :: Int
11 w2_size
             :: Int
12 b2_start
            :: Int
13 weight_size :: Int
14 w1_start
15 w1_size = inputSize * hiddenSize
16 w2_start = w1_size + hiddenSize
17 w2_size
            = hiddenSize * outputSize
18 b2_start
              = w2_start + w2_size
19 weight_size = w1_size + hiddenSize + w2_size + outputSize
```

4.2 Layers

4.2.1 Affine

forward

```
1 affine :: Mat -> Vec -> Mat -> Mat
```

4.2. LAYERS 21

```
2 affine w b x = x <> w + asRow b
3
4 affineDX :: Mat -> Mat -> Mat
5 affineDX w dout = dout <> (tr w)
6
7 affineDW :: Mat -> Mat -> [R]
8 affineDW x dout = (matToList $ (tr x) <> dout) ++ (toList $ sum $ toRows dout)
```

4.2.2 Activation Function

ReLU

$$ReLU(x) = \max(x, 0)$$

$$ReLU(X) = \begin{bmatrix} ReLU(x_{11}) & \cdots & ReLU(x_{1N}) \\ \vdots & \ddots & \vdots \\ ReLU(x_{N1}) & \cdots & ReLU(x_{NN}) \end{bmatrix}$$

```
relu :: Mat -> Mat
relu = cmap (max 0)

reluBackward :: Mat -> Mat -> Mat
reluBackward dout x = dout * mask
where mask = cmap (\_x -> if _x > 0 then 1 else 0) x
```

Sigmoid

See eq. (2.8).

4.2.3 Cross Entropy Error

$$CEE(\boldsymbol{y}, \boldsymbol{t}) = -\boldsymbol{t}^T \begin{bmatrix} \ln y_1 \\ \vdots \\ \ln y_D \end{bmatrix}$$
$$CEE(Y, T) = \sum_{i=1}^{N} CEE(\boldsymbol{y}_i, \boldsymbol{t}_i)$$

```
1 sumCrossEntropyError :: [Vec] -> R
2 sumCrossEntropyError [] _ = 0
3 sumCrossEntropyError _ [] = 0
```

```
sumCrossEntropyError (y:ys) (t:ts) = -t <.> (cmap log y) + sumCrossEntropyError ys ts

crossEntropyError :: Mat -> Mat -> R

crossEntropyError y t = sumCrossEntropyError ys ts / batchSize

where

ys = toRows y

ts = toRows t

batchSize = fromIntegral $ length ys
```

4.2.4 Softmax

Softmax

$$\exp(\boldsymbol{x}) = \begin{bmatrix} e^{x_1} \\ \vdots \\ e^{x_N} \end{bmatrix}$$

$$\operatorname{softmax}(\boldsymbol{x}) = \frac{\exp(\boldsymbol{x})}{\|\exp(\boldsymbol{x})\|_1} = \frac{\exp(\boldsymbol{x} - \boldsymbol{c})}{\|\exp(\boldsymbol{x} - \boldsymbol{c})\|_1}$$

$$\operatorname{softmax}(X) = \left[\operatorname{softmax}(\boldsymbol{x}_{:1}) \cdots \operatorname{softmax}(\boldsymbol{x}_{:N})\right]$$

```
softmaxVec :: Vec -> Vec
softmaxVec xVec = scale (1 / norm_1 expVec) expVec
where

c = maxElement xVec
cvec = vector $ take (size xVec) [c,c..]
expVec = cmap exp $ xVec - cVec

softmax :: Mat -> Mat
softmax = fromRows . (map softmaxVec) . toRows
```

Softmax with Loss

```
softmaxWithLoss :: Mat -> Mat -> R
softmaxWithLoss x t = crossEntropyError (softmax x) t

softmaxWithLossBackward :: Mat -> Mat -> Mat
softmaxWithLossBackward y t = (y - t) / (scalar $ fromIntegral $ rows y)
```

4.2. LAYERS 23

4.2.5 Loss Function

```
\mathcal{L}(\boldsymbol{w}; X, T) = \operatorname{softmaxWithLoss}(\hat{Y}, T)= \operatorname{CEE}(\operatorname{softmax}(\hat{Y}), T)
```

```
1 loss :: Vec -> Mat -> Mat -> R
2 loss w x t = softmaxWithLoss (forwardProp w x) t
```

4.2.6 Forward Propagetion

```
-- (softmax)

forwardProp :: Vec -> Mat -> Mat

forwardProp weight x = affine w2 b2 $ relu $ affine w1 b1 x

where

w1 = reshape hiddenSize $ subVector w1_start w1_size weight :: Mat

w2 = reshape outputSize $ subVector w2_start w2_size weight :: Mat

b1 = subVector w1_size hiddenSize weight

b2 = subVector b2_start outputSize weight
```

4.2.7 Prediction

```
predict :: Vec -> Mat -> Mat
predict w x = oneHotMat outputSize $ map maxIndex $ toRows $ forwardProp w x
```

4.2.8 Gradient

```
1 numericalGradientList :: Int -> (Vec -> R) -> Vec -> [R]
   numericalGradientList idx f x =
       if idx == size x
       then []
       else
5
       let h = 1e-4
6
           dx = cmap (* h) $ oneHotVector (size x) idx
7
           x1 = x + dx
           x2 = x - dx
       in (f(x1) - f(x2)) / (2 * h) : numericalGradientList (idx + 1) f x
10
11
12 numericalGradient :: (Vec -> R) -> Vec -> Vec
13 numericalGradient f = vector . (numericalGradientList 0 f)
14
```

```
matToList :: Mat -> [R]
   matToList = concat . toLists
17
   gradient :: Vec -> Mat -> Wat -> Vec
18
   gradient weight x t =
19
20
       let w1 = reshape hiddenSize $ subVector w1_start w1 size weight :: Mat
21
            w2 = reshape outputSize $ subVector w2_start w2_size weight :: Mat
22
           b1 = subVector w1 size hiddenSize weight
           b2 = subVector b2_start outputSize weight
24
25
26
           -- forward propagation
           a1 = affine w1 b1 x
27
           y1 = relu a1
28
           y2 = softmax $ affine w2 b2 y1
29
            -- backward propagation
31
            da2 = softmaxWithLossBackward y2 t
            dx2 = affineDX w2 da2
33
            dw2 = affineDW y1 da2
34
            da1 = reluBackward dx2 a1
35
            dw1 = affineDW \times da1
36
37
       in fromList $ dw1 ++ dw2
38
39
40
   gradientCheck :: Vec -> Mat -> R
41
   gradientCheck w x t =
42
       let num_grad
                        = numericalGradient (\_w -> loss _w x t) w
43
            grad
                        = gradient w x t
44
                        = sum $ map abs $ toList $ num_grad - grad
45
       in err_sum / (fromIntegral $ length $ toList grad)
```

4.2.9 Learning

```
learn :: Vec -> Mat -> Mat -> R -> Vec
learn weight x t learningRate iterNum =
    if iterNum == 0
    then weight
    else learn new_w x t learningRate (iterNum - 1)
    where
    new_w = weight - (cmap (* learningRate) $ gradient weight x t)

testAccuracy :: Vec -> Mat -> Mat -> R
```

4.2. LAYERS 25

```
10 testAccuracy w x t = scoreSum / (fromIntegral $ rows x)
11 where scoreSum = sumElements $ takeDiag $ (predict w x) <> (tr t)
```

4.2.10 Test

```
1 testNN :: IO()
2 \text{ testNN} = do
       cs1 <- readFile "dataset/train_data.dat"</pre>
       cs2 <- readFile "dataset/test data.dat"
       cs3 <- readFile "dataset/train_label.dat"</pre>
       cs4 <- readFile "dataset/test_label.dat"</pre>
       let batchSize = 100
       let trainDataList = map read $ lines cs1
10
       let testDataList
                            = map read $ lines cs2
11
       let trainLabelList = map read $ lines cs3
13
       let testLabelList
                            = map read $ lines cs4
14
       weight <- flatten <$> randn 1 weight_size
15
16
       let trainData
                        = matrix inputSize $ take (batchSize * inputSize) trainDataList
17
       let testData
                        = matrix inputSize testDataList
18
       let trainLabel = oneHotMat outputSize $ take batchSize trainLabelList
                        = oneHotMat outputSize testLabelList
       let testLabel
20
21
       putStr "Now Loading Training Data...\n"
22
       putStr "size of train data : "
23
       print $ size trainData
24
       putStr "size of train label : "
25
26
       print $ size trainLabel
       putStr "size of test data
27
28
       print $ size testData
       putStr "size of test label
29
       print $ size testLabel
30
31
       -- putStr "Gradient Check
32
       -- print $ gradientCheck weight x t
33
34
       let learningRate = 0.1
35
       let iterNum = 100
36
       let newW = learn weight trainData trainLabel learningRate iterNum
37
38
39
       print $ testAccuracy newW trainData trainLabel
```

print \$ testAccuracy newW testData testLabel