

FAST CMOS OCTAL TRANSPARENT LATCH

IDT54/74FCT373T/AT/CT

FFATURFS:

- · Std., A, and C grades
- Low input and output leakage ≤1µA (max.)
- CMOS power levels
- · True TTL input and output compatibility:
 - -VOH = 3.3V (typ.)
 - -VOL = 0.3V (typ.)
- High Drive outputs (-15mA loн, 48mA loL)
- Meets or exceeds JEDEC standard 18 specifications
- Military product compliant to MIL-STD-883, Class B and DESC listed (dual marked)
- · Power off disable outputs permit "live insertion"
- Available in the following packages:
 - Industrial: SOIC, SSOP, QSOP
 - Military: CERDIP, LCC

DESCRIPTION:

The FCT373Tis an octal transparent latch built using an advanced dual metal CMOS technology. These octal latches have 3-state outputs and are intended for bus oriented applications. The flip-flops appear transparent to the data when Latch Enable (LE) is high. When LE is low, the data that meets the set-up time is latched. Data appears on the bus when the Output Enable (\overline{OE}) is low. When \overline{OE} is high, the bus output is in the high-impedance state.

FUNCTIONAL BLOCK DIAGRAM

The IDT logo is a registered trademark of Integrated Device Technology, Inc.

PIN CONFIGURATION

CERDIP/ SOIC/ SSOP/ QSOP TOP VIEW

LCC TOP VIEW

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Description	Max	Unit
VTERM ⁽²⁾	Terminal Voltage with Respect to GND	-0.5 to +7	V
VTERM ⁽³⁾	Terminal Voltage with Respect to GND	-0.5 to Vcc+0.5	V
Tstg	Storage Temperature	-65 to +150	°C
Іоит	DC Output Current	-60 to +120	mA

NOTES:

- 1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability. No terminal voltage may exceed Vcc by +0.5V unless otherwise noted.
- 2. Inputs and Vcc terminals only.
- 3. Output and I/O terminals only.

CAPACITANCE (TA = +25°C, F = 1.0MHz)

Symbol	Parameter ⁽¹⁾	Conditions	Тур.	Max.	Unit
CIN	Input Capacitance	VIN = 0V	6	10	pF
Соит	Output Capacitance	Vout = 0V	8	12	pF

NOTE:

1. This parameter is measured at characterization but not tested.

PIN DESCRIPTION

Pin Names	Description			
Dx	Data Inputs			
LE Latch Enable Input (Active HIGH)				
OE Output Enable Input (Active LOW)				
Ох	3-State Outputs			

FUNCTION TABLE(1)

	Inputs		Outputs
Dx	LE	ŌĒ	Ох
Н	Н	L	Н
L	Н	L	L
Х	Х	Н	Z

NOTE:

- 1. H = HIGH Voltage Level
 - X = Don't Care
 - L = LOW Voltage Level
 - Z = High Impedance

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified:

Industrial: TA = -40°C to +85°C, Vcc = $5.0V \pm 5\%$; Military: TA = -55°C to +125°C, Vcc = $5.0V \pm 10\%$

Symbol	Parameter	Test Condit	ions ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Unit
VIH	Input HIGH Level	Guaranteed Logic HIGH Level		2	_	_	V
VIL	Input LOW Level	Guaranteed Logic LOW Level		_	_	0.8	V
Іін	Input HIGH Current ⁽⁴⁾	Vcc = Max.	VI = 2.7V	_	_	±1	μA
lıL	Input LOW Current ⁽⁴⁾	Vcc = Max.	VI = 0.5V	_	_	±1	μA
lozн	High Impedance Output Current	Vcc = Max	Vo = 2.7V	-	_	±1	μA
lozl	(3-State output pins) ⁽⁴⁾	Vo = 0.5V		-	_	±1	
lı	Input HIGH Current ⁽⁴⁾	Vcc = Max., Vi = Vcc (Max.)	Vcc = Max., Vi = Vcc (Max.)		_	±1	μA
VIK	Clamp Diode Voltage	Vcc = Min, In = -18mA		_	-0.7	-1.2	V
VH	Input Hysteresis	_			200	_	mV
Icc	Quiescent Power Supply Current	Vcc = Max., Vin = GND or Vcc		_	0.01	1	mA

OUTPUT DRIVE CHARACTERISTICS

Symbol	Parameter	Test Conditions ⁽¹⁾			Typ. ⁽²⁾	Max.	Unit
Vон	Output HIGH Voltage	Vcc = Min	IOH = -6mA MIL	2.4	3.3	_	
		VIN = VIH or VIL	IOH = -8mA IND				V
			IOH = -12mA MIL	2	3	_	
			IOH = -15mA IND				
Vol	Output LOW Voltage	Vcc = Min	IOL = 32mA MIL	_	0.3	0.5	V
		VIN = VIH or VIL	IOL = 48mA IND				
los	Short Circuit Current	$Vcc = Max., Vo = GND^{(3)}$		-60	-120	-225	mA
loff	Input/Output Power Off Leakage ⁽⁵⁾	Vcc = 0V, Vin or Vo ≤ 4.5V		_	_	±1	μΑ

NOTES:

- 1. For conditions shown as Min. or Max., use appropriate value specified under Electrical Characteristics for the applicable device type.
- 2. Typical values are at Vcc = 5.0V, +25°C ambient.
- 3. Not more than one output should be tested at one time. Duration of the test should not exceed one second.
- 4. The test limit for this parameter is $\pm 5\mu A$ at $T_A = -55$ °C.
- 5. This parameter is guaranteed but not tested.

POWER SUPPLY CHARACTERISTICS

Symbol	Parameter	Test Conditi	ons ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Unit
∆lcc	Quiescent Power Supply Current TTL Inputs HIGH	$VCC = Max.$ $VIN = 3.4V^{(3)}$		_	0.5	2	mA
ICCD	Dynamic Power Supply Current ⁽⁴⁾	Vcc = Max. Outputs Open OE = GND	VIN = VCC VIN = GND	_	0.15	0.25	mA/ MHz
		One Input Toggling 50% Duty Cycle					
lc	Total Power Supply Current ⁽⁶⁾	Vcc = Max. Outputs Open fi = 10MHz	VIN = VCC VIN = GND	_	1.5	3.5	mA
		50% Duty Cycle OE = GND	VIN = 3.4V VIN = GND	_	1.8	4.5	
		LE = Vcc One Bit Toggling					
		Vcc = Max. Outputs Open fi = 2.5MHz	VIN = VCC VIN = GND	_	3	6 ⁽⁵⁾	mA
		50% Duty Cycle OE = GND	VIN = 3.4V VIN = GND	_	5	14(5)	
		LE = Vcc Eight Bits Toggling					

NOTES:

- 1. For conditions shown as Min. or Max., use appropriate value specified under Electrical Characteristics for the applicable device type.
- 2. Typical values are at Vcc = 5.0V, +25°C ambient.
- 3. Per TTL driven input; (Vin = 3.4V). All other inputs at Vcc or GND.
- 4. This parameter is not directly testable, but is derived for use in Total Power Supply Calculations.
- 5. Values for these conditions are examples of Δlcc formula. These limits are guaranteed but not tested.
- 6. IC = IQUIESCENT + INPUTS + IDYNAMIC
 - $IC = ICC + \Delta ICC DHNT + ICCD (fCP/2+ fiNi)$
 - Icc = Quiescent Current
 - Δ Icc = Power Supply Current for a TTL High Input (VIN = 3.4V)
 - DH = Duty Cycle for TTL Inputs High
 - NT = Number of TTL Inputs at DH
 - ICCD = Dynamic Current caused by an Input Transition Pair (HLH or LHL)
 - fcp = Clock Frequency for Register Devices (Zero for Non-Register Devices)
 - fi = Output Frequency
 - Ni = Number of Outputs at fi
- All currents are in milliamps and all frequencies are in megahertz.

SWITCHING CHARACTERISTICS OVER OPERATING RANGE - INDUSTRIAL

			74FCT373AT 74		74FCT	74FCT373CT	
Symbol	Parameter	Condition ⁽¹⁾	Min. ⁽²⁾	Max.	Min. ⁽²⁾	Max.	Unit
t PLH	Propagation Delay	CL = 50pF	1.5	5.2	1.5	4.2	ns
t PHL	Dx to Ox	$RL = 500\Omega$					
t PLH	Propagation Delay		2	8.5	2	5.5	ns
t PHL	LE to Ox						
tpzh	Output Enable Time		1.5	6.5	1.5	5.5	ns
tpzl							
tphz	Output Disable Time		1.5	5.5	1.5	5	ns
tPLZ							
tsu	Set-up Time HIGH or LOW, Dx to LE		2	_	2	_	ns
t H	Hold Time HIGH or LOW, Dx to LE		1.5	_	1.5	_	ns
tw	LE Pulse Width HIGH ⁽³⁾		5	_	5	_	ns

SWITCHING CHARACTERISTICS OVER OPERATING RANGE - MILITARY

			54FCT373T		54FCT373AT 54FCT373CT		373CT		
Symbol	Parameter	Condition ⁽¹⁾	Min. ⁽²⁾	Max.	Min. ⁽²⁾	Max.	Min. ⁽²⁾	Max.	Unit
t PLH	Propagation Delay	CL = 50pF	1.5	8.5	1.5	5.6	1.5	5.1	ns
t PHL	Dx to Ox	$RL = 500\Omega$							
t PLH	Propagation Delay		2	15	2	9.8	2	8	ns
t PHL	LE to Ox								
tpzh	Output Enable Time		1.5	13.5	1.5	7.5	1.5	6.3	ns
tpzl									
tphz	Output Disable Time		1.5	10	1.5	6.5	1.5	5.9	ns
tPLZ									
tsu	Set-up Time HIGH or LOW, Dx to LE		2	_	2	_	2	_	ns
t H	Hold Time HIGH or LOW, Dx to LE		1.5	_	1.5	_	1.5	_	ns
tw	LE Pulse Width HIGH ⁽³⁾		6	_	6	_	6	_	ns

NOTES:

- 1. See test circuit and waveforms.
- 3. This parameter is guaranteed but not tested.

TEST CIRCUITS AND WAVEFORMS

Test Circuits for All Outputs

Octal Link

Set-Up, Hold, and Release Times

Propagation Delay

SWITCH POSITION

Test	Switch
Open Drain Disable Low Enable Low	Closed
All Other Tests	Open

DEFINITIONS:

CL = Load capacitance: includes jig and probe capacitance.

RT = Termination resistance: should be equal to Zout of the Pulse Generator.

Enable and Disable Times

NOTES:

Octal Link

- 1. Diagram shown for input Control Enable-LOW and input Control Disable-HIGH.
- 2. Pulse Generator for All Pulses: Rate \leq 1.0MHz; tF \leq 2.5ns; tR \leq 2.5ns.

ORDERING INFORMATION

6024 Silver Creek Valley Road San Jose, CA 95138 800-345-7015 or 408-284-8200 fax: 408-284-2775 www.idt.com

for Tech Support: logichelp@idt.com