Given $A(x_a, y_a)$ and a line L: ax+by=c,

(1)Find a parallel line M and a perpendicular line N passes though A.

(2)Let $B(x_2, y_2)$ be the intersection of L and N. $C(x_3, y_2)$ is on the line M. What are the coordinates of the B and C?

(3) Find the area of $\triangle\!ABC$.

Coordinate of A	Equation of L	Solutions
A(2,1)	4x - 2y = 3	M: y-1=2(x-2)
		(1) $N: y-1=-\frac{1}{2}(x-2)$
		(2) $B(\frac{7}{5}, \frac{13}{10}), C(\frac{43}{20}, \frac{13}{10})$
		(3) $\frac{9}{80}$
A(-3, 2)	x + y = 7	(1) $M: y-2=-(x+3)$ N: y-2=(x+3)
		(2) $B(1,6), C(-7,6)$
		(3) 16
A(2,-1)	3x - 2y = 6	(1) $M: y+1 = \frac{3}{2}(x-2)$ $N: y+1 = -\frac{2}{3}(x-2)$
		(2) $B(\frac{20}{13}, -\frac{9}{13}), C(\frac{86}{39}, -\frac{9}{13})$
		(3) $\frac{4}{39}$
A(1,4)	y = -5x + 3	M: y-4 = -5(x-1)
		(1) $N: y-4=\frac{1}{5}(x-1)$
		(2) $B(-\frac{2}{13}, \frac{49}{13}), C(\frac{68}{65}, \frac{49}{13})$
		(3) $\frac{9}{65}$

A(2, -3)	$ \frac{1}{4}x + y = 1 $	(1) $M: y+3=-\frac{1}{4}(x-2)$
		N: y + 3 = 4(x - 2)
		(2) $B(\frac{48}{17}, \frac{5}{17}), C(-\frac{190}{17}, \frac{5}{17})$
		(3) $\frac{392}{17}$
A(-3, 5)	y=3x-4	M: y-5=3(x+3)
		(1) $N: y-5=-\frac{1}{3}(x+3)$
		(2) $B(\frac{12}{5}, \frac{16}{5}), C(-\frac{18}{5}, \frac{16}{5})$
		(3) $\frac{27}{5}$
A(-2, 2)	y = 2x + 1	M: y - 2 = 2(x + 2)
		(1) $N: y-2=-\frac{1}{2}(x+2)$
		(2) $B(0,1), C(-\frac{3}{2},1)$
		(3) $\frac{3}{4}$
A(-1, 1)	y = -2x + 1	M: y-1 = -2(x+1)
		(1) $N: y-1=\frac{1}{2}(x+1)$
		(2) $B(-\frac{1}{5}, \frac{7}{5}), C(-\frac{6}{5}, \frac{7}{5})$
		(3) $\frac{1}{5}$