Analise Dimensional

Autor: Abmael Carvalho Barberino Junior Ultima atualização: 27/09/2020

MLTIONJ, Massa, Comprimento, Tempo, Corrente elétrica, Temperatura, Quantidade de substância, Intensidade luminosa

Descrição	Unidade SI mais simples	Unidades alternativas	MLTIONJ
Comprimento, espaço	m		L
Tempo e Período	S		T
Frequencia	Hz	$1Hz = \frac{1}{s}$	T^{-1}
Velocidade	<u>m</u> s	$3.6\frac{km}{h} = \frac{m}{s}$	$L\!\cdot\! T^{-1}$
Aceleração	$\frac{m}{s^2}$	$3.6 \frac{km/h}{s} = \frac{m}{s^2}$	$L \cdot T^{-2}$
Massa	Kg	$\frac{N \cdot s^2}{m}$	M
Força	N	1 kgf = 9.80665 N	$M \cdot L \cdot T^{-2}$
Área	m ²	ha = 10000 m2 $acre = 4046.9 m2$ $alqueire Paulista = 24000 m2$	L^2
Volume	m^3	$litro=0.001m^3$	L^3
Energia, Trabalho	J	$3600 kJ = kwh = \frac{450}{0.523} kcal$	$M \cdot L^2 \cdot T^{-2}$
Torque	N·m	J	$M \cdot L^2 \cdot T^{-2}$
Potencia	w	$4184 w = 1 \frac{kcal}{s}$	$M \cdot L^2 \cdot T^{-3}$
Momento, Quantidade de movimento, Impulso, Impulso de uma força	N·s	<u>kg∙m</u> s	$M\!\cdot\! L\!\cdot\! T^{-1}$
Momento de inércia (rotação)	kg·m²	$N \cdot m \cdot s^2 = J \cdot s^2$	$M \cdot L^2$
Momento de inércia (resistencia dos materiais) Segundo momento de area Second moment of area	m^4	cm ⁴	L^4
Primeiro momento de área	m^3	cm ³	L^3
Constante da gravitação universal	$\frac{m^3}{kg \cdot s^2}$	$\frac{m^3}{kg \cdot s^2} = \frac{N \cdot m^2}{kg^2} = \frac{J \cdot m}{kg^2}$	$M^{-1} \cdot L^3 \cdot T^{-2}$

		1. af	
Pressão, Tensão mecânica	Pa	$100 kPa = \text{bar} \sim 1 \frac{kgf}{cm^2}$	$M \cdot L^{-1} \cdot T^{-2}$
Módulo de elasticidade E, módulo de Young	Pa	$100 kPa = \text{bar} \sim 1 \frac{kgf}{cm^2}$	$M \cdot L^{-1} \cdot T^{-2}$
Constante elástica	$\frac{N}{m}$	$\frac{J}{m^2}$	$M\!\cdot\! T^{-2}$
Tensão superficial	$\frac{N}{m}$	$\frac{J}{m^2}$	$M \cdot T^{-2}$
Densidade	$\frac{kg}{m^3}$	$\frac{kg}{m^3}$	$M \cdot L^{-3}$
Peso especifico	$\frac{N}{m^3}$		$M \cdot L^{-2} \cdot T^{-2}$
Viscosidade absoluta ou dinâmica	Pa∙s	$\frac{kg}{m \cdot s} = \frac{N \cdot s}{m^2}$	$M \cdot L^{-1} \cdot T^{-1}$
Viscosidade cinemática	$\frac{m^2}{s}$		$L^2{\cdot}T^{-1}$
Vazão volumétrica	$\frac{m^3}{s}$	$\frac{m^3}{s} = \frac{36000001}{h}$	$L^3 \cdot T^{-1}$
Vazão mássica	<u>kg</u> s		$M \cdot T^{-1}$
Temperatura	K°		Θ
Coeficiente de Dilatação, linear, superficial ou volumétrica	$\frac{1}{K^{\circ}}$		Θ^{-1}
Capacidade térmica sensível de um objeto	$\frac{J}{K^{\circ}}$	$\frac{N \cdot m}{K^{\circ}}$	$M \cdot L^2 \cdot T^{-2} \cdot \Theta^{-1}$
Calor especifico, Capacidade termica sensivel de uma substancia	$\frac{J}{kg \cdot K^{\circ}}$	$\frac{N \cdot m}{kg \cdot K \circ}$	$L^2{\cdot}T^{-2}{\cdot}\Theta^{-1}$
Calor especifico molar, Capacidade termica sensivel molar de uma substancia	$\frac{J}{\mathit{mol}\cdot K}$ °		$M \cdot L^2 \cdot T^{-2} \cdot \Theta^{-1} \cdot N^{-1}$
Constante universal dos gases	$\frac{J}{\mathit{mol} \cdot K^{\circ}}$		$M \cdot L^2 \cdot T^{-2} \cdot \Theta^{-1} \cdot N^{-1}$
Capacidade térmica latente	$\frac{J}{kg}$	$4.184 \frac{J}{kg} = 1 \frac{cal}{kg}$	$L^2 \cdot T^{-2}$
Condutância térmica	$\frac{w}{m \cdot K^{\circ}}$	$\frac{w \cdot m}{m^2 \cdot K \circ}$	$M \cdot L \cdot T^{-3} \cdot \Theta^{-1}$
Entropia, S	$\frac{J}{K^{\circ}}$		$M \cdot L^2 \cdot T^{-2} \cdot \Theta^{-1}$
Carga elétrica	С	A·s	T·I

Corrente elétrica	А	$\frac{C}{s}$	I
Tensão elétrica ou potencial elétrico	V	$\frac{J}{C} = \frac{N \cdot m}{C}$	$M \cdot L^2 \cdot T^{-3} \cdot I^{-1}$
Resistência elétrica	Ω	$\frac{J \cdot s}{C^2} = \frac{H}{s}$	$M \cdot L^2 \cdot T^{-3} \cdot I^{-2}$
Capacitância elétrica	F	$F = \frac{C}{V} = \frac{C^2}{J} = \frac{C^2}{N \cdot m}$	$M^{-1} \cdot L^{-2} \cdot T^4 \cdot I^2$
Campo elétrico, E	$\frac{N}{C}$	$\frac{V}{m} = \frac{J}{C \cdot m} = \frac{N}{C}$	$M \cdot L \cdot T^{-3} \cdot I^{-1}$
Fluxo elétrico	V·m	$\frac{N \cdot m^2}{C} = \frac{J \cdot m}{C}$	$M \cdot L^3 \cdot T^{-3} \cdot I^{-1}$
Permissividade elétrica, ε	<u>F</u> m	$\frac{C}{V \cdot m}$	$M^{-1} \cdot L^{-3} \cdot T^4 \cdot I^2$
Campo magnético, B, campo magnetico em um ponto do espaço	Т	$T = \frac{Wb}{m^2} = \frac{N}{m \cdot A}$	$M\!\cdot\! T^{-2}\!\cdot\! I^{-1}$
Fluxo magnético	Wb	$Wb = T \cdot m^2 = \frac{N \cdot m}{A} = \frac{J}{A}$	$M \cdot L^2 \cdot T^{-2} \cdot I^{-1}$
Permeabilidade magnética, μ	<u>H</u> m	$\frac{N}{A^2}$	$M \cdot L \cdot T^{-2} \cdot I^{-2}$
Campo magnetizante, H	$\frac{A}{m}$	$\frac{T \cdot m}{H} = \frac{Wb}{m \cdot H} = \frac{J}{T \cdot m^3} = \frac{N}{T \cdot m^2}$	$L^{-1}{\cdot}I$
Indutância, L	Н	$H = \Omega \cdot s = \frac{V \cdot s}{A} = \frac{J}{A^2}$	$M \cdot L^2 \cdot T^{-2} \cdot I^{-2}$
Momento magnetico, Dipólo magnetico, μ	$\frac{J}{T}$	$\frac{N \cdot m}{T} = m^2 \cdot A$	$L^2 \cdot I$