Misc results, datathon 2022

Andrew Zimolzak

2022-04-20

Misc. results (too detailed)

The analysis is pretty sensitive to the phrasing of the descriptors. Limiting to "unpleasant" results in far fewer notes than "pleasant." Also, making that change results in more negativity for: men, non-Latinos, and black patients, unlike the prior word list when it was just the substring "pleasant."

In these tables, an upward trend in ratio means positive correlation of underprivileged group status and negative descriptors. In other words, ratios are r = u/p, where u is the count from a group hypothesized to be underprivileged, and p is the group hypothesized to be privileged.

Sex vs. negative descriptors

```
table(joined$Sex, joined$negativity) -> x
round((x[1,] / x[2,]), 3) -> f.m.ratio # adhoc
rbind(x, f.m.ratio) %>% kable()
```

	0	1	2	3	4	5	6	8	9	10	12	13	15	18	20	24
Female	8381.000	269.000	84.000	11.000	9.000	6	3.000	0	1	3	2	0	2	1	1	1
Male	4492.000	145.000	49.000	14.000	16.000	2	8.000	3	0	1	0	1	0	0	0	1
f.m.ratio	1.866	1.855	1.714	0.786	0.562	3	0.375	0	Inf	3	Inf	0	Inf	Inf	Inf	1

```
women <- x[1,] # adhoc
totals <- x[1,] + x[2,] # adhoc
prop.trend.test(women, totals)

##
## Chi-squared Test for Trend in Proportions
##
## data: women out of totals ,
## using scores: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
## X-squared = 4.5055, df = 1, p-value = 0.03379</pre>
```

Ethnicity vs. negative descriptors

```
table(joined$Ethnic.Group, joined$negativity) -> x
round((x[1,] / x[2,]), 3) -> latino.non.ratio # adhoc
rbind(x, latino.non.ratio) %>% kable()
```

	0	1	2	3	4	5	6	8	9	10	12	13	15	18	20	24
Hispanic or	3000.00	0119.000	43.000	4.00	8.000	0	1.0	2	0	0	0	0	0	0	0	0
Latino																
Not Hispanic	9873.00	00295.000	90.000	21.00	17.000	8	10.0	1	1	4	2	1	2	1	1	2
or Latino																
latino.non.ratio	0.304	0.403	0.478	0.19	0.471	0	0.1	2	0	0	0	0	0	0	0	0

```
latino <- x[1,] # adhoc
totals <- x[1,] + x[2,] # adhoc
prop.trend.test(latino, totals)

##
## Chi-squared Test for Trend in Proportions
##
## data: latino out of totals ,
## using scores: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
## X-squared = 0.0023657, df = 1, p-value = 0.9612</pre>
```

Race vs. negative descriptors

```
table(joined$Race, joined$negativity) -> x
round((x['Black or African American',] / x['White or Caucasian',]), 2) -> b.w.ratio
rbind(x, b.w.ratio) %>% kable()
```

	0	1	2	3	4	5	6	8	9	10	12	13	15	18	20	24
American Indian or	1.00	0.00	0	0.00	0.00	0	0.00	0.0	0	0	0	0	0	0	0	0
Alaska Native																
Asian	314.00	1.00	1	0.00	0.00	0	0.00	0.0	0	0	0	0	0	0	0	0
Black or African	6188.0	0190.00	066	19.00	11.00	4	7.00	1.0	0	3	2	1	2	1	1	2
American																
Native Hawaiian or	15.00	0.00	0	0.00	0.00	0	0.00	0.0	0	0	0	0	0	0	0	0
Other Pacific Islander																
Unable to Determine	17.00	0.00	0	0.00	0.00	0	0.00	0.0	0	0	0	0	0	0	0	0
White or Caucasian	6338.0	0223.00	066	6.00	14.00	4	4.00	2.0	1	1	0	0	0	0	0	0
b.w.ratio	0.98	0.85	1	3.17	0.79	1	1.75	0.5	0	3	Inf	Inf	Inf	Inf	Inf	Inf

```
black <- x['Black or African American',]
totals <- colSums(x)
prop.trend.test(black, totals)

##

## Chi-squared Test for Trend in Proportions
##

## data: black out of totals ,
## using scores: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
## X-squared = 6.9277, df = 1, p-value = 0.008487</pre>
```

Single proportion line plot

Combined race/ethnicity vs. negative descriptors

Without a "cap" on negativity

	0	1	2	3	4	5	6	8	9	10	12	13	15	18	20	24
American Indian	1.000	0.000	0.000	0.00	0.00	0.0	0.000	0.000	0	0.00	0	0	0	0	0	0
or Alaska Native																
Asian	314.000	1.000	1.000	0.00	0.00	0.0	0.000	0.000	0	0.00	0	0	0	0	0	0
Black or African	6188.000	0190.00	066.000	19.00	11.00	4.0	7.000	1.000	0	3.00	2	1	2	1	1	2
American																
Latino	3000.000	0119.00	043.000	4.00	8.00	0.0	1.000	2.000	0	0.00	0	0	0	0	0	0
White or	3370.000	0104.00	023.000	2.00	6.00	4.0	3.000	0.000	1	1.00	0	0	0	0	0	0
Caucasian																
Total	12873.00	0 0 14.00	0133.00	025.00	25.00	8.0	11.000	3.000	1	4.00	2	1	2	1	1	2
p_asian	0.024	0.002	0.008	0.00	0.00	0.0	0.000	0.000	0	0.00	0	0	0	0	0	0
p_black	0.481	0.459	0.496	0.76	0.44	0.5	0.636	0.333	0	0.75	1	1	1	1	1	1
p_latino	0.233	0.287	0.323	0.16	0.32	0.0	0.091	0.667	0	0.00	0	0	0	0	0	0
p_white	0.262	0.251	0.173	0.08	0.24	0.5	0.273	0.000	1	0.25	0	0	0	0	0	0

```
prop.trend.test(x['White or Caucasian',], Total)
##
## Chi-squared Test for Trend in Proportions
##
## data: x["White or Caucasian", ] out of Total ,
## using scores: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
## X-squared = 4.8102, df = 1, p-value = 0.02829
prop.trend.test(x['Latino',], Total)
##
## Chi-squared Test for Trend in Proportions
## data: x["Latino", ] out of Total ,
## using scores: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
## X-squared = 0.0023657, df = 1, p-value = 0.9612
prop.trend.test(x['Black or African American',], Total)
##
## Chi-squared Test for Trend in Proportions
##
## data: x["Black or African American", ] out of Total ,
## using scores: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
## X-squared = 6.9277, df = 1, p-value = 0.008487
```

With a "cap" on negativity

	0	1	2	3
American Indian or Alaska Native	1.000	0.000	0.000	0.000
Asian	314.000	1.000	1.000	0.000
Black or African American	6188.000	190.000	66.000	54.000
Latino	3000.000	119.000	43.000	15.000
White or Caucasian	3370.000	104.000	23.000	17.000
Total	12873.000	414.000	133.000	86.000
p_asian	0.024	0.002	0.008	0.000
p_black	0.481	0.459	0.496	0.628
p_latino	0.233	0.287	0.323	0.174
p_white	0.262	0.251	0.173	0.198

prop.trend.test(x['White or Caucasian',], Total)

Chi-squared Test for Trend in Proportions

X-squared = 2.5899, df = 1, p-value = 0.1075

data: x["Black or African American",] out of Total ,

##

##

using scores: 1 2 3 4

```
##
   Chi-squared Test for Trend in Proportions
##
##
## data: x["White or Caucasian", ] out of Total ,
## using scores: 1 2 3 4
## X-squared = 5.818, df = 1, p-value = 0.01586
prop.trend.test(x['Latino',], Total)
##
    Chi-squared Test for Trend in Proportions
##
##
## data: x["Latino", ] out of Total ,
  using scores: 1 2 3 4
## X-squared = 2.8946, df = 1, p-value = 0.08887
prop.trend.test(x['Black or African American',], Total)
##
```

Logistic

Big model

```
my_model <- glm(negativity_any ~ ., data = logit_me, family = "binomial")</pre>
## Warning: glm.fit: algorithm did not converge
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
summary(my_model)
##
## Call:
  glm(formula = negativity_any ~ ., family = "binomial", data = logit_me)
## Deviance Residuals:
##
      Min
                     Median
                                   3Q
                                          Max
## -0.9424 -0.3732 -0.2878 -0.2296
                                        3.4558
##
## Coefficients:
##
                                          Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                                        -7.928e+10 4.558e+11 -0.174 0.861904
## SexMale
                                        8.636e-01 1.712e-01
                                                               5.045 4.53e-07 ***
## race ethnAsian
                                        7.928e+10 4.558e+11
                                                               0.174 0.861904
## race_ethnBlack or African American
                                        7.928e+10 4.558e+11
                                                               0.174 0.861904
## race_ethnLatino
                                         7.928e+10 4.558e+11
                                                               0.174 0.861904
## race_ethnWhite or Caucasian
                                        7.928e+10 4.558e+11
                                                                0.174 0.861904
## Employment.StatusFull Time
                                        8.895e-01 4.378e-01
                                                                2.032 0.042171 *
## Employment.StatusNot Employed
                                         2.468e-01 4.516e-01
                                                                0.547 0.584710
## Employment.StatusPart Time
                                         1.476e+00 6.251e-01
                                                                2.361 0.018209 *
## Employment.StatusRetired
                                                               1.647 0.099466 .
                                        7.072e-01
                                                   4.293e-01
## Employment.StatusStudent - Full time 3.270e-01
                                                   7.286e-01
                                                                0.449 0.653574
## Employment.StatusUnknown
                                        -2.110e+01
                                                   2.066e+05
                                                                0.000 0.999919
## interpreterY
                                         2.486e+01 8.210e+04
                                                                0.000 0.999758
## LanguageFarsi, Persian
                                        7.928e+10 4.558e+11
                                                                0.174 0.861904
## LanguageLaotian
                                        -4.864e+01 3.462e+05
                                                                0.000 0.999888
## LanguageSpanish
                                        -2.452e+01 8.210e+04
                                                                0.000 0.999762
## LanguageUnknown
                                        -2.315e+01
                                                   3.236e+05
                                                               0.000 0.999943
## LanguageVietnamese
                                       -4.744e+01 8.455e+04 -0.001 0.999552
## Marital.StatusLegally Separated
                                        -4.263e+00 6.327e-01 -6.738 1.60e-11 ***
## Marital.StatusLife Partner
                                        -2.735e+00 6.205e-01 -4.408 1.04e-05 ***
                                        -2.940e+00 5.453e-01 -5.391 7.01e-08 ***
## Marital.StatusMarried
## Marital.StatusSingle
                                        -2.587e+00 5.268e-01 -4.910 9.10e-07 ***
## Marital.StatusUnknown
                                        -2.559e+01
                                                   2.066e+05
                                                               0.000 0.999901
## Marital.StatusWidow/Widower
                                        -1.529e+00 5.011e-01
                                                              -3.050 0.002286 **
## mcaidTRUE
                                        -1.142e+00
                                                   1.154e+00
                                                              -0.990 0.322415
## mcareTRUE
                                        -7.069e-01
                                                   2.509e-01
                                                              -2.818 0.004837 **
## Financial.ClassMedicaid
                                        -4.554e+01
                                                   3.431e+05
                                                               0.000 0.999894
## Financial.ClassMedicaid Mgd Care
                                        6.436e-01
                                                   2.928e-01
                                                                2.198 0.027925 *
## Financial.ClassMedicare
                                         1.202e+00 3.271e-01
                                                                3.674 0.000239 ***
## Financial.ClassMedicare Mgd Care
                                         9.291e-01 3.576e-01
                                                                2.598 0.009367 **
                                                                4.553 5.29e-06 ***
## Financial.ClassSelf-Pay
                                         1.653e+00 3.631e-01
## Age
                                        -6.148e-03 1.000e-02 -0.615 0.538804
```

```
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 5110.3 on 13505 degrees of freedom
## Residual deviance: 4926.5 on 13474 degrees of freedom
## (44 observations deleted due to missingness)
## AIC: 4990.5
##
## Number of Fisher Scoring iterations: 25
```

ROC curve

False positive rate

0.2

Little model

0.0

```
little_model <- glm(negativity_any ~ Sex + race_ethn + Age, data = logit_me, family = "binomial")
summary(little_model)</pre>
```

0.6

8.0

1.0

##

0.4

```
## Call:
## glm(formula = negativity_any ~ Sex + race_ethn + Age, family = "binomial",
      data = logit_me)
##
## Deviance Residuals:
##
      Min 1Q Median
                              3Q
                                         Max
## -0.4268 -0.3438 -0.3024 -0.2753
##
## Coefficients:
##
                                      Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                                    -13.083070 196.967874 -0.066
                                                          0.935
                                                                    0.350
## SexMale
                                      0.079726
                                                0.085267
                                                                  0.974
                                                          0.033
## race_ethnAsian
                                      6.528620 196.968976
## race_ethnBlack or African American 8.917175 196.967700 0.045 0.964
## race_ethnLatino
                                      8.960270 196.967707 0.045
                                                                    0.964
                                      8.465686 196.967706 0.043
## race_ethnWhite or Caucasian
                                                                    0.966
                                      0.018912
                                                0.003518 5.375 7.65e-08 ***
## Age
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 5110.3 on 13505 degrees of freedom
## Residual deviance: 5053.2 on 13499 degrees of freedom
    (44 observations deleted due to missingness)
## AIC: 5067.2
##
## Number of Fisher Scoring iterations: 10
```

ROC curve

```
rocr_pred = prediction(little_model$fitted.values, little_model$y)
rocr_perf <- performance(rocr_pred, measure = "tpr", x.measure = "fpr")
auc = performance(rocr_pred, measure = "auc")
auc@y.values

## [[1]]
## [1] 0.5858342

plot(rocr_perf, col=rainbow(10), print.cutoffs.at=c(0.01, 0.1))</pre>
```


Predicted probabilities, big vs. little

qplot(my_model\$fitted.values) + labs(title = 'Big model')


```
qplot(little_model$fitted.values) + labs(title = 'Little model') + xlim(0, 0.15)
```

Little model

I get the feeling it hates unbalanced classes.

Try column plot of coefficients

```
df = data.frame(
    y=my_model$coefficients,
    x=names(my_model$coefficients)
)

ggplot(df, aes(x=y, y=x) ) + geom_col() + scale_x_log10() +
    geom_vline(xintercept = 1)
```

- ## Warning in self\$trans\$transform(x): NaNs produced
- ## Warning: Transformation introduced infinite values in continuous x-axis
- ## Warning: Removed 16 rows containing missing values (position_stack).

To do, or not

- Limit only to those discharged from ED to home.
- More rigorous handling of those with multiple demographic entries.
- Get complete note data from IT.
- Show length distribution of notes.