D - 1 -2021

미압 배관 등에서의 폭연 방산구 설치에 관한 기술지침

2021. 12.

한 국 산 업 안 전 보 건 공 단

안전보건기술지침의 개요

O 작성자 : 전남대학교 화학공학부 장 희

O 제 · 개정 경과

- 2021년 11월 화학안전분야 기준제정위원회 심의

O 관련 규격 및 자료

- NFPA 68 Standard on Explosion Protection by Deflagration Venting 2018

O 관련법규

- 산업안전보건법 동법 산업안전보건기준에 관한 규칙 제281조(건조설비의 구조 등)

O 적용 및 문의

- 이 기술지침에 대한 의견 또는 문의는 한국산업안전보건공단 홈페이지 (www.kosha.or.kr)의 안전보건기술지침 소관 분야별 문의처 안내를 참고하시기 바랍니다.
- 동 지침 내에서 인용된 관련규격 및 자료, 법규 등에 관하여 최근 개정 본이 있을 경우에는 해당 개정본의 내용을 참고하시기 바랍니다.

공표일자: 2021년 12월

제 정 자: 한국산업안전보건공단 이사장

미압 배관 등에서의 폭연 방산구 설치에 관한 기술지침 제안개요

I. 제정이유

방산 배관 내 인화성 증기·가스 및 가연성 분진에 의한 폭연으로 설비나 덕 트, 배관이 손상되는 것을 최소화하기 위하여 관련 장치와 시스템의 폭연 방산구 설치에 관한 기술지침을 제시하여 사업장에서 이를 활용토록 하여 근로 자의 안전을 도모하기 위함.

Ⅱ. 제정(안)의 주요내용

- 1. 설계 시 고려사항
- 2. 혼성혼합물의 폭연방산
- 3. 가스와 분진은 혼성혼합물의 폭연 방산
- 4. 용기의 직경에 대한 길이의 비(L/D)가 5 이상인 용기나 덕트인 경우
- 5. 폭연 방산 및 폭연 방산구
- 6. 설비 점검 및 관리

Ⅲ. 관련 법규 및 규격

- NFPA 68 Standard on Explosion Protection by Deflagration Venting 2018

Ⅳ. 제정위원회 심의개요

- 제 안 자 : 전남대학교 화학공학부 장 희

- 심 의 일 : 2021년 11월

- 주요 수정내용 : 압력단위 및 기타 자구 수정 등

미압 배관 등에서의 폭연 방산구 설치에 관한 기술지침

1. 목적

이 지침은 방산 배관 내 인화성 증기·가스 및 가연성 분진에 의한 폭연으로 설비나 덕트, 배관이 손상되는 것을 최소화하기 위하여 관련 장치와 시스템 의 폭연 방산구 설치에 관한 기술지침을 정하는데 그 목적이 있다.

2. 적용범위

- (1) 이 지침은 사용압력 20 kPa (3 psig) 이하에서 사용하는 설비, 덕트 및 배관 등의 밀폐설비에서 폭연방산에 적용한다. 다만, 다음의 경우에는 적용하지 않는다.
 - (가) 폭굉, 다량 가스의 자연발화, 증기운 폭발과 같은 무한범위의 폭연
 - (나) 외부화재 시 내부압력 상승에 대비하여 안전장치가 설치된 저장용기
 - (다) 발열 폭주반응 또는 자기분해 폭주반응에 대비한 비상방산
 - (라) 압력용기에 설치된 압력방산장치
 - (마) 방산 덕트

3. 정 의

- (1) 이 지침에서 사용하는 용어의 정의는 다음과 같다.
 - (가) "폭연(Deflagration)"이라 함은 연소에 의한 폭발 충격파가 미반응 매질 속에서 음속이하의 속도로 이동하는 폭발현상을 말한다.
 - (나) "폭광(Detonation)"이라 함은 연소에 의한 폭발 충격파가 미반응 매질 속에서 음속보다 빠른 속도로 이동하는 폭발현상을 말한다.

- (다) "혼성혼합물(Hybrid Mixture)"이라 함은 인화성 가스와 인화성 분진, 인화성 미스트의 혼합물을 말한다.
- (라) "최대압력(P_{max}, Maximum Pressure)"이라 함은 최적 혼합물에 대해서 폭 연공간에서 생성되는 최대압력을 말한다.
- (마) "최대 방산압력(P_{red}, Reduced Pressure)"이라 함은 폭연 시 방산되는 밀폐공간에서 발생된 최대압력으로, 밀폐공간의 가장 약한 구조부분이 견딜수 있는 최대압력을 말하며, 최대 방출압력이라고도 한다.
- (바) "작동정압(P_{stat}, Static Activation Pressure)"이라 함은 0.1 bar/min 미만 의 압력 상승률로 방산구를 작동하는 압력을 말한다.
- (사) "분진 폭연지수(K_{st})"이라 함은 어떤 부피의 용기에서 분진이 폭발할 때, 발생하는 최대폭발압력상승속도에 분진부피의 세제곱근을 곱하여 얻어지 는 수치로 분진의 폭발등급을 칭할 때 쓰이는 말이다.
- (아) "폭연 방산구(Explosion panel)"이라 함은 밀폐공간에서 폭연 등에 의한 내부압력이 과도하게 상승하는 것을 방지하기 위하여 설치하는 파열판, 판넬 및 일부 개방된 면적 등을 말하며, 방산구, 폭연 방출구라고도 한다.
- (2) 그 밖에 이 지침에서 사용하는 용어의 정의는 특별한 규정이 있는 경우를 제 외하고는 「산업안전보건법」, 같은 법 시행령, 같은 법 시행규칙 및 산업안 전보건기준에 관한 규칙에서 정하는 바에 의한다.

4. 설계 시 고려사항

- (1) 배관, 덕트, 가늘고 긴 용기들의 폭연 방산을 설계할 때에는 폭굉으로의 전이를 방지하기 위한 다음 사항을 고려하여야 한다.
 - (가) 용기의 직경에 대한 길이의 비(L/D)가 가급적이면 5 이상 되지 않도록 한다.
 - (나) 밸브, 엘보우, 기타 배관부속품 또는 장애물 등 난류를 발생시키어 화염의 가속과 압력의 급격한 상승을 일으킬 수 있는 상황을 가능한 한 줄인다.
 - (다) 배관 또는 덕트가 부착된 용기내 가연성 혼합물의 농도가 폭연범위로 되

지 않도록 한다.

- (2) 이 지침에서 제시하는 적절한 방산을 확보하는 것이 불가능한 경우, 다음의 방법으로 대체할 수 있다.
 - (가) 폭광압력을 견디는 배관 또는 덕트 설계와 상호 연결된 용기를 보호하는 격리장치 또는 폭광 억제대책 확보
- (3) 원형이외의 횡단면을 가진 배관, 덕트 및 가늘고 긴 용기의 경우, 용기의 직 경은 4A/P를 적용한다. 여기서 A는 횡단 면적이고, P는 횡단면의 둘레이다.

$$D_e = 4\left\{\frac{A}{P}\right\}$$
 식 (1)

여기서, D_e = 직경(m)

 $A = 횡단면적(m^2)$

P = 횡단면의 둘레(m)

- (4) 각 방산면적의 합은 덕트 또는 배관의 횡단면적 이상이어야 한다.
- (5) 방산구는 연소 및 미연소물이 팽창하고, 흐르는 밀폐공간에 있는 개구부로 폭연 방산이라고도 한다. 방산구가 없으면 최적 연료/공기 혼합물이 폭연하는 동안 상승되는 최대압력은 초기 절대압력의 8 ~ 10배까지 상승한다.
- (6) 폭연이 일어날 수 있는 용기에 접속된 배관 또는 덕트에도 폭연 방산구를 설치할 필요가 있으며, 이때 폭연방산은 배관 또는 덕트의 횡단면적과 동일한 방산면적이 되도록 하고 이의 설치지점은 용기의 접속점으로부터 직경 2배이하의 거리로 하여야 한다.
- (7) 폭연방산은 발화원이 예상되는 지점의 가장 가까운 곳에 설치해야 한다.
- (8) 가스를 취급하는 계통의 경우 적절한 시험으로 다르게 나타나지 않는 한, 난 류 발생장치가 있는 배관 및 덕트는 직경의 3배 거리에서 장치의 각 면에 폭연방산을 설치하여야 한다.

- (9) 폭연방산 폐쇄부의 질량은 방산면적당 0.12 kPa의 압력을 초과하지 않아야 한다.
- (10) 방산의 개방압력은 작동조건에 부합하도록 가능한 한 최대 방산압력(P_{red})의 설계값 미만이어야 하지만, 최대 방산압력(P_{red})은 설계값의 1/2를 초과하지 않아야 한다. 덮개는 자석 또는 스프링으로 고정할 수 있다.
- (11) 폭연방산은 근로자에게 위험이 미치지 않는 장소로 방산하여야 한다.
- (12) 지지대는 방산할 때 발생하는 압력에 견딜 수 있는 강도를 가져야 한다.
- (13) 상승압력을 허용수준으로 제한하기 위하여 밀폐공간에 방산구를 설치할 수 있다. 최대 방산압력(P_{red})는 사용자나 설계자가 결정한다. 허용압력은 밀폐 공간이 손상되지 않은 수준 또는 허용될 수 있는 만큼 어느 정도의 영구적 인 변형을 허용할 수 있다.
- (14) 주어진 개구부 압력에 대해서 방산면적이 클수록 상승압력이 낮아진다. 덮 개가 있는 방산보다 개방된 방산이 더 효과적이다. 가벼운 덮개는 무거운 덮개보다 방산이 더 효과적이다. 방산면적은 크기와 강도, 연료/산화제 혼합 물의 특성, 방산 자체의 설계를 포함하는 여러 가지 변수에 따라 달라진다.
- (15) 설비의 변형을 허용하는 경우, 최대허용 인장강도의 2/3까지 P_{red} 를 선택할 수 있다.
- (16) P_{red}는 저강도 밀폐공간에 대해서 적어도 0.25 bar-g, 고강도 밀폐공간에서 0.5 bar-g를 항상 초과하여야 한다.
- (17) 동적하중계수(Dynamic Load Factor, DLF)로 표현되는 압력상승속도의 동적 영향을 포함하여 밀폐공간 내에서 발생하는 최대 방산압력 P_{red} 이 밀폐시설의 강도 P_{es} 를 초과하지 않도록 충분히 방산해야 한다.
- (18) 방산구에서 방산되는 물질을 안전한 방향으로 유도시키는 반사판은 다음의 조건을 만족시켜야 한다.

- (가) 방산구의 반사판은 방산구와 기하학적으로 유사해야 하면, 최소 1.75배의 크기로 설치한다.
- (나) 반사판은 다음 <그림 1>과 같이 방산구 축으로부터 45 ~ 60° 경사지게 설치한다.
- (다) 반사판의 중심선은 방산구의 축과 일치해야 한다.
- (라) 방산구 입구에서 반사판까지의 거리는 1.5 D이어야 한다. 여기서 D는 방산구의 상당직경이다.
- (마) 반사판의 면은 폭연방산에 의해 가해지는 힘을 견딜 수 있도록 설치되어 야 한다.
- (바) 반사판이 위치는 힌지형 방산구의 작동에 지장이 없어야 한다.

(19) 방산구의 관성 영향

- (가) 판넬에 추가되는 평형추 및 절연재 등의 총 질량이 포함되어야 한다.
- (나) 관성을 최소화하기 위해 방산구는 가능한 한 가볍게 하고, 개방시간을 짧게 하여야 한다.

(20) 방산구의 방산덕트 영향

- (가) 방산구의 방산위치는 옥외 안전한 곳으로 하여야 한다.
- (나) 방산구의 방산덕트는 방산구 단면적보다 크게 하여야 하지만 최대 150 % 이하이어야 하다.
- (다) 다음의 조건을 만족시키면 여러 개의 방산구를 설치할 수 있다.
 - ① 각각의 방산구는 동일한 크기, 면적 및 질량이어야 한다.
 - ② 각각의 방산구는 개별적으로 방산덕트를 설치하고, 안전한 장소로 방산시켜야 한다.
 - ③ 방산덕트는 분기관이 없어야 한다.
 - ④ 여러 개의 방산구에 하나의 방산덕트 단면적은 다음 <그림 2>와 같이 각각의 방산구 단면적을 합한 값의 1.5배 이하이어야 한다.

KOSHA GUIDE D - 1 - 2021

<그림 1> 반사판 설치 방법

<그림 2> 여러 개의 방산구에 단일 방산덕트 설치방법

D - 1 - 2021

5. 혼성혼합물의 폭연방산

5.1 일반 사항

(1) 이 장은 인화성 가스 또는 가연성 분진을 포함하고, L/D가 5 이하인 용기와 밀폐공간에 설치하는 방산구의 설계에 적용된다.

5.2 질량이 가벼운 방산구에 의한 방산

(1) P_{red} ≤ 0.5 bar-g일 때, 방산면적 A_{vo}는 다음 식 (2) 및 (3)를 따른다.

$$A_{vo} = \frac{A_s C}{\sqrt{P_{red}}}$$
 (2)

$$C = \frac{S_u \rho_u \lambda}{2G_u C_d} \left[\left(\frac{P_{\text{max}} + 1}{P_0 + 1} \right)^{1/\gamma b} - 1 \right] (P_0 + 1)^{1/2}$$
 (3)

여기서, A_{vo} = 식 1에서 구한 단면적(m²)

A_s = 다음 6.2 (5)에서 결정된 밀폐공간의 내부 표면적(m²)

P_{red} = 밀폐공간에서 일어날 수 있는 최대 방산압력(bar-g)

S., = 가스 혼합물의 기본 연소속도(m/s)

 $\rho_{11} =$ 미연소 가스-공기 혼합물의 질량 밀도 (kg/m^3)

λ = 기본 연소속도에 대한 난류를 고려한 가스-공기혼합 연소속도 와 연소의 불안전성의 비율로 다음 5.2 (6)에 따라 결정

 $G_u =$ 미연소 가스-공기 혼합물 음속 유량 (kg/m^2-s)

C_d = 7.2 (4)에서 결정되는 방산구 방산계수

P_{max} = 동일한 가스-공기 혼합물의 점화에 의한 밀폐공간에서 일어 날 수 있는 최대압력(bar-g)

Po = 점화전 밀폐공간의 압력(bar-g)

Vb = 연소된 가스-공기 혼합물에 대한 비열비

(가) P_{max} 값이 9 bar-g 미만이고, 이론 공연비의 연료농도가 약 10 % 미만인

D - 1 - 2021

인화성 가스 및 증기에 대한 C값은 식 (2)을 사용하기 위하여 다음 식 (4)을 사용할 수 있다.

식 (4)

$$C = 0.0223 \lambda S_u$$
 bar^{1/2} for S_u in m/s

- (나) 식 (2)을 적용할 때, 다음 조건에 표시된 값보다 작아야 한다.
 - ① $P_{red} \leq 0.1 \text{ bar-g}, P_{stat} \leq P_{red} 0.024 \text{ bar-g의 경우}$
 - ② P_{red} > 0.1 bar-g (1.5 psig), P_{stat} < 0.75 P_{red}의 경우
- (2) P_{red}가 높고 방산구가 가벼울 때 방정식
 - (가) $P_{red} > 0.5$ bar-g일 때, 최소한의 방산면적 A_o 는 다음 식 (5), (6)를 따른다.

$$A_{v0} = A_s \frac{\left[1 - \left(\frac{P_{red} + 1}{P_{\max} + 1}\right)^{1/\gamma b}\right]}{\left[\left(\frac{P_{red} + 1}{P_{\max} + 1}\right)^{1/\gamma b} - \delta\right]} \frac{S_u \rho_u}{G_u} \frac{\lambda}{C_d}$$

$$(5)$$

$$\delta = \frac{\left(\frac{P_{stat} + 1}{P_0 + 1}\right)^{1/\gamma b} - 1}{\left(\frac{P_{\max} + 1}{P_0 + 1}\right)^{1/\gamma b} - 1}$$
 (6)

여기서, A_{vo} = 식 (5)에서 구한 단면적(m²)

 A_s = 다음 5.2 (5)에서 결정된 밀폐공간의 내부 표면적 (m^2)

 P_{red} = 밀폐공간에서 일어날 수 있는 최대 방산압력(bar-g)

Su = 가스 혼합물의 기본 연소속도(m/s)

 $\rho_{\rm u}$ = 미연소 가스-공기 혼합물의 질량 밀도 $({\rm kg/m^3})$

λ = 기본 연소속도에 대한 난류를 고려한 가스-공기혼합 연소속도 와 연소에서 열전달촉진 계수로 다음 5.2 (6)을 따라 결정

 G_u = 미연소 가스-공기 혼합물 음속 유량 (kg/m^2-s)

C_d = 5.2 (4)에서 결정되는 방산구 방산계수

 P_{max} = 동일한 가스-공기 혼합물의 점화에 의한 밀폐공간에서 일어

날 수 있는 최대압력(bar-g)

Po = 점화전 밀폐공간의 압력(bar-g)

Yb = 연소된 가스-공기 혼합물에 대한 비열비

 P_{stat} = 방산구 작동정압(bar-g)

(3) 혼합가스의 변수

- (가) 가연성 분진을 포함한 밀폐공간에서 방산구의 설계는 실험에 의해 S_u 값을 구하거나, 0.46 m/s를 적용하여야 한다.
- (나) 연소속도 Su는 문서화된 위험성 평가에서 폭발이 일어날 수 없다는 것을 보여주지 않는 한 모든 가스농도에 대한 최대값이어야 한다.
- (다) 이론 공연비 농도가 5 vol % 미만이고, 처음 주위온도에서 가연성 가스의 경우, 미연소 가스혼합물의 질량밀도 ρ_u 는 1.2 kg/m³이다.
- (라) 밀폐공간의 경우, 초기 주변온도에서 미연소 가스-공기 혼합물 음속 유량 G_n는 230.1 kg/m²-s이다.
- (마) 이론 공연비 농도가 5 vol % 미만이고, 처음 주위온도에서 가연성 가스의 경우, 연소된 가스-공기 혼합물에 대한 비열비는 1.15이다.
- (바) 다음의 경우 미연소 가스-공기 혼합물의 동적속도 μ_u값은 1.8 x 10⁻⁵ kg/m-s이다.
- (사) 이론 공연비 농도가 5 vol % 미만이고, 처음 주위온도에서 음속 a_u 값은 343 m/s이다.

(4) 밀폐공간 변수

- (가) 방산구 방산계수 C_d 값은 밀폐공간의 방산구가 전체 벽을 차지하면 0.8을, 그렇지 않으면 0.7을 적용한다.
- (나) 점화전 밀폐공간의 압력 P_o는 정상운전압력보다 크거나 같아야 하고, 점 화시 가연성 가스혼합물이 존재할 수 있는 최대압력을 선정하여야 한다.
- (다) 초기 상승압력의 경우, 밀폐공간은 폭발충격파를 견딜 수 있는 곳에 설치 하여야 한다.

(5) 내부 표면적 계산

- (가) 밀폐공간의 내부 표면적 As는 내부 모든 면적을 포함하여야 한다.
 - ① 예상 압력을 견딜 수 없는 비내력 내부 칸막이는 내부 표면적에서 제외하다.
 - ② 계산식 (5), (6)에서 밀폐공간 내부 표면적 A_s 는 지붕, 벽, 출입문 및 방산 면적을 포함하여 단순한 기하학적 구조에 기초해서 구한다.
 - ③ 가장 단순한 형태의 표면 주름과 사소한 편차는 고려하지 않는다.
 - ④ 톱니가 있는 지붕(골판 지붕)과 규칙적인 기하학적 편차는 주 구조물의 부피에 포함시키고, 구조물의 표면적은 전체의 부피를 단면적으로 나누 어서 구한다.
 - ⑤ 인접된 방의 내부 표면은 포함한다.
- (나) 설비와 내부 구조물의 표면은 무시한다.
- (6) 난류화염의 열전달 촉진계수, λ
 - (가) 난류화염의 열전달 촉진계수의 기본값 λ_0 는 다음 공식 $(7) \sim (12)$ 를 따른다.

$$\varphi_{1} = \left\{ \frac{1, & \text{if } Re_{f} < 4000}{\left(\frac{Re_{f}}{4000}\right)^{\theta}, & \text{if } Re_{f} \ge 4000} \right\}$$

$$Re_f = \frac{\rho_u S_u(D_{he}/2)}{\mu_u} \tag{8}$$

$$\varphi_2 = \max \left\{ 1, \beta_1 \left(\frac{Re_v}{10^6} \right)^{\left(\frac{\beta_2}{S_u} \right)^{0.5}} \right\} \tag{9}$$

$$Re_v = \frac{\rho_u u_v(D_v/2)}{\mu_u} \tag{10}$$

$$u_v = \min\left\{\sqrt{\frac{2 \times 10^5 P_{red}}{\rho_v}}, a_u\right\} \tag{11}$$

$$\lambda_0 = \varphi_1 \varphi_2 \tag{12}$$

여기서, $\rho_{\rm u}$ = 미연소 가스-공기 혼합물의 질량 밀도 (kg/m^3)

 $S_u = 가스 혼합물의 기본 연소속도(m/s)$

Dhe = 밀폐공간의 상당직경(m)은 4장을 참조

μ₁₁ = 미연소 가스-공기 혼합물의 동적속도(kg/m-s)

 $\beta_1 = 1.23$

 $\beta_2 = 2.37 \times 10^{-3} (\text{m/s})$

 D_v = 반복 계산을 통해서 결정된 방산직경(m)

P_{red} = 밀폐공간에서 일어날 수 있는 최대 방산압력(bar-g)

a₁₁ = 미연소 가스-공기 혼합물 음속(m/s)

 $\Theta = 0.39$

- (나) 밀폐공간에 있을 수 있는 다음 장비 및 내부 구조물의 총외부표면적 $A_{\rm obs}$ 를 추정한다.
 - ① 직경이 1/2 보다 큰 배관, 튜브 및 도관
 - ② 기둥, 보 및 장선(Structural columns, beams, and joists)
 - ③ 계단 및 핸드레일
 - ④ 외부 치수가 2 ~ 20" 범위의 장비
- (다) 장비 및 내부 구조물의 총표면적 $A_{obs} < 0.2 A_{S}$ 일 때, λ_{1} 은 λ_{0} 같다.
- (라) 장비 및 내부 구조물의 총표면적 A_{obs} > 0.2 A_S 일 때, λ_1 은 다음 식 (13)을 따른다.

$$\lambda_1 = \lambda_0 \exp\left(\sqrt{\frac{A_{obs}}{A_s} - 0.2}\right) \tag{13}$$

- (마) 밀폐공간의 L/D비는 4장을 따른다.
- (바) 밀폐공간의 L/D비가 2.5보다 작을 경우, λ 는 λ_1 과 같다.
- (사) 밀폐공간의 L/D비가 2.5 ~ 5이고, P_{red}값이 2 bar-g 이하일 경우, λ는 다음 식 (13)을 따른다.

$$\lambda = \lambda_1 \left[1 + \left(\frac{L/D}{2.5} - 1 \right)^2 \right] \tag{14}$$

- (아) 식 (14)에서 구한 값은 다음과 같은 제한을 받는다.
 - ① $S_{11} < 3 \text{ m/s}$
 - ② $P_{max} < 10$ bar-g.
 - ③ 점화전 밀폐공간 내의 최대 5 m/s 이하이다.
 - ④ 밀폐공간은 상호 연결된 밀폐공간이 폭연에 의해서 발생할 수 있는 제트 화염점화와 압력으로부터 격리되어야 한다.
- (자) 밀폐공간의 L/D비가 5를 초과하면 다음 8장을 따른다.
- (차) 화염 발달을 줄이는 방법
 - ① 난류화염의 열전달 촉진계수, λ는 불연성 흡음제 설치를 설치하고, 시험 데이터 결과를 분석하여 줄일 수 있다.
 - ② 이때 시험은 가장 빠른 난류값과 실제로 설치하는 불연성 흡음제의 재질과 두께로 실시하여야 한다.

5.3 부피 분할 효과

- (1) 문서화된 위험성 평가를 실시하여 밀폐공간 내의 전체 부피을 차지하는 이론 공연비 혼합물을 형성하기에 불충분한 가스가 있음을 증명할 경우, 식 (2) 또는 식 (3)에서 계산한 방산면적 A_{v0} 는 다음 (16)에서와 같이 줄일 수 있다.
- (2) 부분 용적 충진율 X_r 은 다음 식 (15)와 같이 계산한다.

$$X_r = \frac{V_{gas}/V_{enc}}{x_{ot}} \tag{15}$$

여기서, V_{gas} : 밀폐공간 내에서 공기와 혼합할 수 있는 최대 가스량

Venc: 밀폐공간 부피

X_{st} : 기체의 이론 공연비 부피농도

(3) $X_r < 1$ 인 경우, 최소 필요 방산구 면적 A_{vl} 은 다음 식 (16)과 같이 계산한다.

$$A_{v1} = A_{v0}X^{-1/3} \bullet \sqrt{\frac{X_r - \Pi}{1 - \Pi}}$$
 (16)

여기서, A_{vl} : 분할된 공간에서 방산구 면적 (m^2)

Av0 : 식 (2) 또는 식 (3)에서 구한 전체 밀폐공간의 방면면적(m²)

 X_{st} : 기체의 이론 공연비 부피농도

X_r : 충진율

 $\Pi : P_{red}/P_{max}$

(4) X_r > 1인 경우, A_{v1}, A_{v0}은 같아야 한다.

5.4 판넬의 질량 효과

(1) 방산구 판넬의 질량이 40 kg/m² 이하인 경우에는 다음 식 (17)과 같이 계산하고, 그 증가 값을 결정하기 위해서는 다음 식 (18)과 같이 계산한다.

$$M_T = \left[\frac{P_{red}^{0.2} \cdot n^{0.3} \cdot V}{(S_u \cdot \lambda)^{0.5}} \right]^{1.67}$$

여기서, M_T : 한계질량 (kg/m^2)

 P_{red} = 밀폐공간에서 일어날 수 있는 최대 방산압력(bar-g)

n : 판넬 수

V : 밀폐공간의 부피 (>1 m³)

- (2) 위의 5.3에서 결정된 방산구 면적은 방산구 질량이 식 (17)에서 계산한 M_T 를 초과할 때는 방산구 질량을 보정하여야 한다.
- (3) $M>M_T$ 일 때, 필요한 방산구 면적 A_{v2} 은 다음 식 (18)과 같이 계산한다.

$$A_{v2} = A_{v1} \cdot F_{SH} \left[1 + \frac{(0.05) \cdot M^{0.6} \cdot (S_u \cdot \lambda)^{0.5}}{n^{0.3} \cdot V \cdot P_{red}^{0.2}} \right]$$
 (18)

여기서, A_{v2} = 판넬 질량을 고려한 방산구 면적 (m^2)

M = 방산구 판넬 질량(kg/m²)

A_{v1} = 식 (16)에서 구한 방산구 면적(m²)

 F_{sh} = 전환 계수로 판넬은 1.0, 힌지판넬은 1.1 적용

(4) M 〈 M_T일 때, A_{v1}은 A_{v2}와 같아야 한다.

5.5 방산덕트 효과

- (1) 방산덕트를 설치하는 경우, 이 장의 모든 식에서 실제 P_{red} 대신 더 낮은 값인 $P_{red}^{'}$ 를 사용하여야 한다.
- (2) 길이가 3 m보다 짧고, 상당 직경이 4 보다 작은 방산덕트는 다음 <그림 3>의 곡선 A를 사용하여 처리하여야 한다. 길이가 3 m보다 길고, 상당직경이 4보다 큰 방산덕트는 곡선 B를 사용한다.

Notes

- Curve A to be used for duct length < 3 m (10 ft) and less than four duct hydraulic diameters.
- Curve B to be used for duct length of 3 m to 6 m (10 ft to 20 ft) or of four or more duct hydraulic diameters. Curve B is not valid for duct lengths > 6 m (20 ft).
- For both Curve A and Curve B: Unlike a piping system described in Chapter 9 where flammable vapor is presumed present, in this situation flammable vapor is not initially present in the vent duct.

<그림3> 방산덕트가 있거나, 없을 경우 가스를 방산할 때 최대 방산압력 $P^{'}$ red

① 길이가 3 m보다 짧고, 상당 직경이 4 보다 작은 방산덕트의 경우, 다음 식 (19)을 사용하여 $P^{'}_{\text{red}}$ 를 계산한다.

$$P_{red}^{'} = 0.779 \cdot (P_{red})^{1.161}$$

② 길이가 $3 \sim 6$ m이고, 상당 직경이 4보다 작은 방산덕트의 경우, 다음 식 (20)을 사용하여 $P^{'}_{red}$ 를 계산한다.

$$P^{'_{red}} = 0.172 \cdot (P_{red})^{1.936}$$
 식 (20)

- (3) 방산덕트의 길이가 3 m 이하인 경우에는 3 m를 적용한다.
 - ① 방산덕트의 길이가 3 m를 초과하는 경우에는 실험을 통해서 P'_{red} 를 결정한다.
 - ② 총 길이가 상당 직경의 1보다 작은 경우에는 보정할 필요가 없다.

5.6 파이어 볼 크기

D - 1 - 2021

(1) 폭연 방산가스의 위험지역은 다음 식 (21)을 사용하여 계산한다.

$$D=3.1 \cdot \left(\frac{V}{n}\right)^{0.402}$$
 식 (21)

여기서, D = 방산구로부터 축거리(m)

 $V = 밀폐공간의 부피(m^3)$

n = 균등하게 분포된 방산구의 수

- (2) 방산구의 위험반경은 방산구 중심선에서 0.5 D로 계산한다.
- 6. 가스와 분진은 혼성혼합물의 폭연 방산

6.1 일반사항

- (1) 용기의 직경에 대한 길이의 비(L/D)가 6 이하인 분진이나 증기와 분진의 혼합물에 적용한다.
- (2) 방산구 면적은 다음 <그림 4> 방산구 크기 계산 흐름도를 따른다.
 - (가) 분진 폭연지수 K_{st} 는 ASTM E1226에 따라 실험에 의한 값을 적용하여야 하나, 실험할 수 없는 경우에는 폭연방산 크기는 선택된 표준에 따라 지정된 입자 크기 범위를 초과하지 않는 입자크기의 유사한 분진 폭연지수를 적용할 수 있다.

6.2 가벼운 폭연 방산구

- (1) 최소 방산구 면적은 밀폐공간 내 초기 압력에 기초하여 다음과 같이 결정한다.
 - (가) 밀폐공간압력이 -0.2 ~ 0.2 bar-g일 때, A_{vo}일 때 다음 식 (22)을 따른다.

$$A_{v0} = 1 \cdot 10^{-4} \cdot (1 + 1.54 \cdot P_{stat}^{4/3}) \cdot K_{st} \cdot V^{3/4} \cdot \sqrt{\frac{P_{\text{max}}}{P_{red}} - 1}$$
 $\stackrel{\triangle}{\sim}$ (22)

D - 1 - 2021

여기서, A_{v0}: 방산구 면적(m²)

P_{stat}: 방산구 작동정압(bar-g)

K_{St} : 분진 폭연지수(bar-m/s)

V : 밀폐공간 부피(m³)

P_{max} : 초기에 방산전 변형의 최대압력(bar-g)

P_{red}: 최대 방산압력(bar-g)

(나) 초기 압력이 0.2 bar-g 이상이거나, 0.2 bar-g 미만일 때는 다음 식 (23)를 따른다.

$$A_{v0} = 1 \cdot 10^{-4} \cdot \left[1 + 1.54 \cdot \left(\frac{P_{stat} - P_{initial}}{1 + P_{effective}} \right)^{4/3} \right] \cdot K_{st} \cdot V^{3/4} \cdot \sqrt{\frac{1}{\Pi_{effective}} - 1} \quad (23)$$

여기서, A_{v0} : 밀폐공간의 전체를 위한 방산구 면적 (m^2)

P_{stat}: 방산구 작동정압(bar-g)

P_{initial} : 점화시 밀폐공간 압력(bar-g)

 $P_{effective}$: 1/3 $P_{initial}(bar-g)$

 $\Pi_{effective}$: $(P_{red} - P_{effective})/(P_{max}^{E} - P_{effective})$

P_{red} : 최대 방산압력(bar-g)

P^E_{max} : [(P_{max} + 1)·(P_{intial} +1) /(1 bar-abs) - 1] 폭연방산 최대압력(bar-g)

P_{max} : 초기에 방산전 변형의 최대압력(bar-g)

- ① 밀폐공간 압력이 0.2 bar-g 미만일 때 식 2에서 구한 방산구 면적은 작동압력과 대기압력 사이의 범위와 적용된 최대 방산면적 보정을 해야 한다.
- ② 밀폐공간 압력이 0.2 bar-g 미만일 때 다음 식 (24)에 따라서 최소 방산구 면적을 구한다.

D - 1 - 2021

$$A_{v0} = 1.1 \cdot 10^{-4} \cdot \left[1 + 1.54 \cdot P^{4/3_{stat}}\right] \cdot K_{st} \cdot V^{3/4} \sqrt{\frac{P_{\text{max}}}{P_{red}} - 1} \qquad \triangle \quad (24)$$

- ③ 밀폐공간 압력이 0.2 bar-g 미만일 때, 방산구는 다음 조건이 충족될 때만 허용된다.
 - ⑦ 방산덕트 L/D ≤ 1
 - Θ 판넬 비중 $M \leq M_T$
 - v_{axial} and $v_{tan} < 20$ m/s
 - @ 부분 부피가 허용되지 않은 경우
- (다) 위 (1)에 다음과 같은 제한을 적용해야 한다.
 - ① 5 bar-g $\leq P_{max} \leq 12$ bar-g
 - $2 ext{10 bar-m/s} \leq K_{St} \leq 800 \text{ bar-m/s}$
 - $^{\circ}$ 0.1 m³ \leq V \leq 10,000 m³
 - ④ $P_{initial}$ 이 >0.2 bar-g 일 때 $P_{stat} \le 0.75(1 + P_{initial})$ bar-g
 - ⑤ P_{initial}이 <0.2 bar-g 일 때 P_{stat} < 0.75 bar-g
- (2) L/D 길이 효과
 - (가) 원형이외의 횡단면을 가진 배관, 덕트 및 가늘고 긴 용기의 경우, 용기의 직경은 식 (25)를 적용한다.

$$D = 4\left\{\frac{A}{P}\right\}$$
 식 (25)

여기서, D = 직경

A = 횡단면적(m²)

P = 횡단면의 둘레(m)

- (나) L/D ≤ 2 일 때, A_{v1}과 A_{v0}는 같아야 한다.
 여기서, A_{v1}: 밀폐공간의 일부분을 위한 방산구 면적(m²)
- (다) 2 < L/D ≤ 6 일 때, 방산구 면적 A_{v1}은 다음과 같이 계산한다.

$$A_{v1} = A_{v0} \bullet \left[1 + 0.6 \bullet \left(\frac{L}{D} - 2 \right)^{0.75} \bullet \exp \left[-0.95 \bullet \left(\frac{P_{red}}{1 + P_{initial}} \right)^{2} \right] \right] \quad \stackrel{\triangle}{\sim} (26)$$

여기서, A_{v0} : 식 (24)에서 구한 방산구 면적(m²)

P_{red}: 최대 방산압력(bar-g)

P_{intial}: 점화시 밀폐공간 압력(bar-g)

- (라) 밀폐공간의 초기 압력이 0.2 bar-g 미만일 때, 식 (24)에서 P_{intial} 값은 "0" 이어야 한다.
- (마) 모든 보정계수를 적용한 후 계산된 필요 방산구 면적이 밀폐공간 단면적을 초과하지 않으면 식 (26)에서 빈, 호퍼, 사이로에서 L/D를 8가지 확대할 수 있다.
- (바) 밀폐공간의 주축을 따라 방산구가 배치되는 경우, 길이 L이 장축을 따라 방산구 사이의 간격을 식 (23) 및 식 (26)에 적용할 수 있다.
- (3) 난류 추가 효과
 - (가) 공기의 평균속도는 다음 식 (27)과 같이 계산한다.

$$v = \frac{Q}{A}$$
 식 (27)

여기서, v: 가스의 평균속도(m/s)

Q : 공기의 체적유량(m³/s)

A : 유로의 단면적(m²)

- (나) 설비의 원주방향으로 유입되는 경우 공기의 평균속도 V_{tan} 는 0.5~x $V_{tan-max}$ 로 계산한다. 이때, $V_{tan-max}$ 는 서리의 최대 접선속도이다.
- (다) Q, V_{axial} , V_{tan} , $V_{tan-max}$ 값은 설계 및 운전에 익숙한 전문가가 측정 또는 계산해야 한다.
- (라) 계산이나 측정결과를 설계자료로 사용한 경우에는 계산근거와 함께 보존하고, 관련기관에서 요구할 때는 제출하여야 한다.
- (마) V_{axial} 및 V_{tan} 의 계산이나 측정값이 20 m/s 미만일 때는 A_{v2} 는 A_{v1} 과 같아야 한다.

D - 1 - 2021

(바) V_{axial} 및 V_{tan} 의 계산이나 측정값이 20 m/s 이상일 때는 A_{v2} 는 다음 식 (28)과 같이 계산한다. 여시서 max(A, B)는 A 또는 B의 최대값이다.

$$A_{v2} = \left[1 + \frac{\max(v_{axial}, v_{tan}) - 20}{36} \bullet 0.7\right] \bullet A_{v1}$$
 (28)

여기서, V_{axal} : 축방향 속도(m/s)

 V_{tan} : 공기의 원주방향 접선속도

A_{v1} : 위의 식(26)에 의해서 구한 방산구 단면적(m²)

(사) 분진폭발의 위험이 있는 건물의 방산구 면적은 다음 식 (29)와 같이 계산 한다.

$$A_{v2} = 1.7 \cdot A_{v1}$$
 식 (29)

여기서, A_{v1} : 위의 식(26)에 의해서 구한 방산구 단면적(m^2)

(아) 건물과 같이 부피가 큰 경우에는 여러 개로 나누어 다음 식 (32)와 같이 계산할 수 있다.

6.3 판넬의 질량 효과

- (1) 판넬 방산구 질량이 40 kg/m² 이하인 경우에는 다음 식 (30)과 같이 계산하고, 추가 면적이 필요한지를 결정하고, 다음 (30)에 따라 계산한다.
- (2) 방산구 면적은 방산구 질량이 다음 식 (30)에서 계산한 M_T 를 초과하는 방산 구 질량은 보정해야 한다.

$$M_T = \left[6.67 \bullet (P_{red}^{0.2}) \bullet (n^{0.3}) \bullet \left(\frac{V}{K_{st}^{0.5}} \right) \right]^{1.67} \tag{30}$$

여기서, M_T : 한계질량 (kg/m^2)

 P_{red} : 최대 방산압력(bar-g)

D - 1 - 2021

n: 판넬 방산구 수

K_{St}: 분진 폭연지수(bar-m/s)

V : 밀폐공간 단위 부피(m³)

(3) M > M_T일 때, 방산구 단면적 A_{v3}는 다음 식 (31)과 같이 계산한다.

$$A_{v3} = F_{SH} \left[1 + (0.0075) \bullet M^{0.6} \bullet \left(\frac{K^{0.5_{st}}}{n^{0.3} V P^{0.2_{red}}} \right) \right] \bullet A_{v2}$$

여기서, F_{SH}: 상수로서 일반 판넬은 1.0, 힌지 판넬은 1.1

M : 방산구 질량(kg/m²)

P_{red}: 최대 방산압력(bar-g)

n: 방산구 판넬 수

K_{St} : 분진 폭연지수(bar-m/s)

V : 밀폐공간 단위 부피(m³)

A_{v2} : 해당하는 경우 식 (28), (29)에 의해 구한 방산구 면적(m²)

- (4) 만약 분진 폭연지수 K_{St} 가 75 bar-m/s 미만일 경우에는 식 (31)에서 K_{St} 는 75 bar-m/s를 적용한다.
- (5) M ≤ M_T일 때, A_{v3}는 A_{v2}와 같아야 한다.

6.4 여러 개로 나눈 방산구

(1) 최악의 폭발시나리오에 따라 부피 충진율 X_r 을 결정할 수 있는 경우, 최소 필요 방산구 면적은 다음 식 (32)과 같이 계산한다.

$$A_{v4} = A_{v3} \bullet X^{-1/3} \bullet \sqrt{\frac{X_r - \Pi}{1 - \Pi}}$$
 (32)

여기서, A_{v4} : 분할된 밀폐공간에서 방산구 면적 (m^2)

A_{v3}: 식 (31) 또는 위의 6.3 (5)에서 구한 방산구 면적(m²)

X_r : 충진율 〉 ∏

 $\Pi : P_{red} / P_{max}$

n: 방산구 판넬 수

K_{St}: 분진 폭연지수(bar-m/s)

V : 밀폐공간 단위 부피(m³)

A_{v2}: 해당하는 경우 식 (28), (29)에 의해 구한 방산구 면적(m²)

- (γ) 만약 $X_r \leq \Pi$ 일 경우, 폭연방산은 요구되지 않는다.
- (나) 분할 적용이 안 되는 경우에는 A_{v4} 와 A_{v3} 는 같아야 한다.
- (2) 용제를 사용하지 않는 공정설비는 식 (32를) 사용하여 밀폐공간을 분할한 용적을 적용할 수 있다.
 - (가) 건조제품을 재순환하는 건조기 등은 충진율을 1.0으로 한다.
 - (나) 가연성 용매를 사용는 경우에는 분진 폭연지수 K_{St} 은 복합적으로 구해야 한다.
 - (다) 분무 건조기, 유동층 건조기와 같은 설비에서 방산 설계시 사용하는 충진 율은 설비와 사용하는 물질에 따라 측정하여 구한다.
 - (라) 분무 건조에서 식 (31)에 따라 밀폐공간의 단위 부피마다 방산 위치는 피 건조물질이 가장 잘 건조된 곳에 설치하여야 한다.
 - (마) 충진율 X_r 의 값은 계산이나 측정결과를 문서화하고, 관련기관에서 요구할 때는 제출하여야 한다.
 - (바) 계산이나 측정결과를 설계자료로 사용한 경우에는 계산근거와 함께 보존

D - 1 - 2021

하고, 관련기관에서 요구할 때는 제출하여야 한다.

6.5 방산덕트 효과

(1) 방산덕트가 없는 경우 $A_{vf} = A_{v4}$ 이어야 하고, 그렇지 않은 경우에는 다음 식 (33)들과 같이 계산한다.

$$A_{vf} = A_{v4} \bullet (1 + 1.18 \bullet E_1^{0.8} \bullet E_2^{0.4}) \bullet \sqrt{\frac{K}{K_0}}$$
 $(33a)$

$$E_1 = \frac{A_{vf} \cdot L_{duct}}{V}$$
 식 (33b)

$$E_2 = \frac{10^4 \cdot A_{vf}}{(1 + 1.54 \cdot P_{stat}^{4/3}) \cdot K_{St} \cdot V^{3/4}}$$
 $(33c)$

$$K \equiv \frac{\Delta P}{\frac{1}{2} \cdot \rho \cdot U^2} = K_{inlet} + \frac{f_D \cdot L_{duct}}{D_h} + K_{elbows} + K_{outlet + \cdots}$$
 4 (33d)

여기서, A_{vf} : 방산구에 방산덕트가 설치된 경우 방산구 면적 (m^2)

A_{v4} : 식 (32)에 따라 계산한 부분 방산구의 면적(m²)

K : 방산덕트의 저항 계수

 $K_{o}: 1.5$

L_{duct} : 방산덕트의 길이(m)

V : 밀폐공간 부피(m³)

 P_{stat} : 방산구 작동정압(bar-g)

 $\triangle P$: 밀폐공간에서 방산덕트 출구까지 정적 압력 강하(bar)

ρ : 가스 밀도(kg/m³)

U : 유속(m/s)

D - 1 - 2021

Kinlet: 입구의 저항 계수

K_{elbows} : 엘보우의 저항 계수

K_{outlet}: 출구의 저항 계수

f_D: D'Arcy friction factor

D_b: 방산덕트의 상당 직경(m)

- (2) 방산구 면적을 계산하는 두 가지 방법 중에서 특정 상황에서는 작은 것을 사용할 수 있다.
- (3) 방산구 면적이 계산되지 않을 경우 방산덕트의 길이를 줄이거나, 더 높은 최대 방산압력 P_{red} 가 가능하도록 용기를 두껍게 하거나, 상호 조합하여야 한다.
- (4) 방산구에 방산덕트가 없으면 식 (33a)를 사용할 수 없다.
- (5) 초기압력이 0.2 bar-g를 초과하면 식 (33a)를 사용할 수 없다.
- (6) 방산덕트 단면적이 어느 곳에서나 10 % 이상 변하는 경우 식 (33a)를 사용할 수 없다.
- (7) 방산덕트의 저항 계수 K를 통해 장애물이 적절히 고려되는 경우 엘보우, bird screens, and rain covers를 설치하는 경우 식 (33a)를 사용할 수 있다.
- (8) 실물 크기의 시험 데이터에 따라 설계된 경우, 식 (33a)의 한계를 벗어 난 방 산덕트를 사용할 수 있다.
- (9) 방산덕트의 최대 길이는 다음 식 (34)와 같이 계산한다.

$$L_{eff} \le \min \left[\frac{10,000 \cdot D}{K_{St}}, \frac{11,000}{K_{St}} \right]$$
 (34)

KOSHA GUIDE D - 1 - 2021

여기서, L_{eff} : $min(L_{dusty}, L_{dusty})$

 L_{dusty} : (P_max $\,$ - $\,$ P_{red}) $_X$ V/A_v

(10) 다양한 분진 모델의 적용을 위한 조합규칙 및 제한은 다음 표를 사용하여 적용한다.

<표 1> NFPA 68 분진 모델의 조합규칙 및 제한

Vent ducts	$P_{intial} \le 1.2 \text{ bar-abs}$ $1 \le L/D \le 6$		
	Allow turbulence		
	Panel density ≤ 40 kg/m ²		
	Allow partial volume		
	No elevated pressure (calculate vent duct effect last)		
Partial volume	$P_{initial} \le 1.2 \text{ bar-abs}$		
	$1 \le L/D \le 6$		
	Allow turbulence		
	Panel density ≤ 40 kg/m ²		
	Allow vent ducts		
	No elevated pressure (calculate vent duct effect last)		
Panel inertia	$P_{initial} \le 1.2 \text{ bar-abs}$ $1 \le L/D \le 6$		
	Allow turbulence		
	Allow partial volume		
	Allow vent ducts		
	No elevated pressure (calculate vent duct effect last)		
Elevated pressure	$1.2 < P_{initial} \le 5 \text{ bar-abs}$		
	$1 \le L/D \le 6$		
	Turbulence (v_{axial} and v_{tan}) < 20 m/s		
	Panel density $\leq M_T$ and $\leq 40 \text{ kg/m}^2$		
	Full volume, no partial volume		
	No vent ducts (calculate elevated pressure effect last)		
Subatmospheric	$P_{initial} \le 0.8 \text{ bar-abs}$		
pressure	$1 \le L/D \le 6$		
	Allow turbulence		
	Panel density ≤ 40 kg/m ²		
	Allow partial volume		
	Allow		
	vent ducts (calculate vent duct effect last)		

6.6 빈, 사이로, 호퍼 등

- (1) 빈, 사이로, 호퍼에 설치하는 방산구는 상부 또는 상부의 측면에서 안전한 곳으로 방산시켜야 한다.
 - (가) 방산구는 지붕이나 측면에 설치한다.
 - (나) 모든 경우, 밀폐공간 총 부피는 부유분진을 포함하는 것으로 가정한다.
 - (다) 내부에 설치된 부속 설비의 부피는 인정하지 않는다.
 - (라) 여러 개를 설치할 경우, 방산구는 잠재적인 반발력을 고려하여 대칭으로 설치한다.
 - (마) 방산구는 다량의 분진이 방산되어 Fireball이 생성될 수 있어 밀폐공간의 하부에 설치하는 것을 금지한다.
- (2) 밀폐공간의 방산은 상부에 설치한 방산구를 통해서만 가능하여, 방산구는 안 전운전절차에 따라 운전하고, 유지보수하여야 한다.
- (3) 밀폐공간에서 방산은 밀폐공간의 상부에서만 가능해야 한다.
 - (가) 지붕 판넬은 가능한 가벼워야 하고, 내부 지붕지지대에 부착해서는 안 된다.
 - (나) 자세한 것은 API 650 등을 참조한다.
 - (다) 지붕에 설치하는 배관, 설비 등은 판넬 방산구 작동에 지장이 없도록 설치하여야 한다.
 - (라) 운전 중에 지붕에 접근을 제한하여야 한다.
 - (마) 설치 후 최초 안전점점사항은 지붕과 벽의 연결상태 방법이 안전하게 설 치되었는지를 반드시 확인하여야 한다.
 - (바) 밀폐설비는 기초볼트를 포함하여 계산된 최대 방산압력 P_{red} 에 견딜 수 있도록 설계되어야 한다.

6.7 백필터, 카트리지 등을 이용한 환기

- (1) 집진기의 L/D 결정
 - (가) 다음 <그림 5>과 같이 백필터 내부 구조와 방산구를 갖는 경우에는 방산 구 추가면적이 필요 없다.

<그림 5> 방산구 추가 면적이 필요없는 백필터 사례

- (나) 밀폐공간의 유효 부피 V_{eff} 는 튜브시트에 있는 이물질의 부피을 기초로 결정하고, 방산구의 위치는 고려하지 않는다.
- (다) 밀폐공간의 유효 면적 $A_{\rm eff}$ 은 $V_{\rm eff}$ 를 최대길이 H로 나누어 계산한다.
- (라) 밀폐공간의 유효 직경 Dhe는 최대 길이를 적용한다.
- (마) 집진기에 대한 L/D는 위에서 결정한 대로 H/Dhe와 동일하게 계산한다.
- (2) 다음 <그림 6>과 같이 방산구가 내부 작동할 때 필터에 의한 폭연방산에 장애가 될 경우에는 계산된 방산구 면적을 25 % 증가시켜야 한다.
- (3) 강제 환기설비에 분진이 포함되거나 집진기로 유입되는 물질이 혼성혼합물 인 경우 다음 보호조치 중 하나를 적용하여야 한다.

- (가) 청정 공기의 부피를 계산하여 별도의 방산구를 설치하여야 한다.
- (나) 창정 공기의 가스농도는 인화성을 평가하고, KOSHA GUIDE D 16 2012 폭발억제장치의 설치에 관한 기술지침에 따라 보호되거나 방산되어야 한다.

<그림 6> 방산구 추가 면적이 필요한 백필터 사례

6.8 Bucket Elevators.

- (1) 버킷 엘리베이터는 단일 또는 복수의 덕트로 분류한다.
- (2) Head and Boot Vents.
 - (가) 방산구는 각각의 덕트(케이싱) 단면적 이상이어야 하고, 상부에 가깝게 설 치하여야 한다.
 - (나) 방산구를 덕트(케이싱)에 직접 설치하지 않은 경우, 방산구는 덕트에서 6 m 이하 또는 다음 <표 2>에 따른 추가 방산구 간격마다 설치하여야 한다.

(3) 추가 방산구

(가) 설계자와 운전자는 0.2, 0.5 또는 1.0 bar-g의 P_{red} 를 기준으로 설계강도를 기준으로 설계할 수 있다.

(나) 덕트(케이싱)와 헤드(Head)는 위의 (r)에서 선택한 P_{red} 를 따른다.

<표 2> 추가되는 방산구 거리

Bucket Elevator Classification	K_{St} (bar-m/s)	Spacing (m)		
		P_{red} 0.2 bar-g	P_{red} 0.5 bar-g	P_{red} 1.0 bar-g
Double-casing (twin leg)	<100	6	None required	None required
	100-150	3	10	19
	151-175	N/A	4	8
	176-200	N/A	3	4
	>200	N/A	N/A	3
Single-casing (single leg)	<100	N/A*	None required	None required
	100-150	N/A	7	14
	151-175	N/A	4	5
	176-200	N/A	3	4
	>200	N/A	N/A	3

N/A: Not allowed.

*For P_{nd} = 0.3 bar-g, vent spacing of 6 m is appropriate.

Source: [120]

- (다) 단일 또는 복수의 버킷 엘리베이터나 취급하는 분진 폭연지수 K_{St} 및 P_{red} 값과 설계강도를 적용시켜 엘리베이터 축을 따라 <표 2>와 같이 버킷 엘리베이터 덕트(케이싱)에 추가로 방산구를 설치하여야 한다.
- (라) 플라스틱 버킷이 사용되는 경우, 다음 <표 3> 에 제시된 계수로 0.2, 0.5 또는 1.0 bar-g의 P_{red} 의 해당 엘리베이터 설계 P_{red} 를 증가시켜야 한다.

<표 3> 플라스틱 버킷에 대한 설계 P_{red} 조정

K_{St} (bar-m/s)	Percent Increase	
<100	20	
100-150	35	
151-200	50	

- (마) 각각의 방산구 위치에서 총 방산구 면적은 덕트(게이싱)의 단면적 이상이 어야 한다.
- (바) P_{red} 0.2 bar-g의 값을 선정하고, 분진 폭연지수 K_{St} 값이 100 bar-m/s 미만인 경우, 덕트에 설치하는 방산구는 6~m 이내이어야 한다.

(사) 방산구의 설정값은 0.1 bar-g이어야 하다.

6.9 Fireball 크기

- (1) 파이어볼 온도와 압력의 영향으로 작업자 및 장비에 대한 위험을 줄이기 위하여 위험성 평가를 실시고, 필요한 조치를 하여야 한다. 이때 위험성 평가에 대한 기록을 보존하고 관계기관에서 요구시 제출하여야 한다.
- (2) 방산할 때 거리 "D"는 다음 식 (35)와 같이 계산한다.

$$D = K \cdot \left(\frac{V}{n}\right)^{1/3} \tag{35}$$

여기서, D: 방산구에서 축방향으로 거리(m)

K: 화염 길이 계수(금속분진 10, 화학물질이나 농산물 분진 8)

V : 밀폐공간의 부피(m³)

n: 방산구의 개수

- (가) 식 (35)에 의해 계산된 축방향으로 거리는 60 m 이내로 제한한다.
- (나) 화염의 최대 폭과 높이는 "D"로 간주되어야 하면 방산구 방산 중심선을 따라 <그림 7>과 같이 균등하게 분포된 것으로 가정한다.

<그림 7> 화이어 볼 크기

(3) 육면체에서 방산되는 경우. $P_{max,a}$ 값은 대략적으로 다음 식 (36)과 같이 계산한다.

$$P_{maw,a} = 0.2 \cdot P_{red} \cdot A_v^{0.1} \cdot V^{0.18}$$
 식 (36)

여기서, P_{max,a} : 외압(bar-g)

P_{red}: 최대 방산압력(bar-g)

A_V: 방산구 면적(m²)

V : 밀폐공간 부피(m³)

(4) $\alpha \times D$ 보다 먼 거리의 경우, 최대 외압 $P_{max,r}$ 은 다음 식 (37)과 같이 계산한다.

$$P_{\mathrm{max},r} = P_{\mathrm{max},a}(\alpha \cdot D/r)$$
 식 (37)

여기서, P_{max,r} : 최대 외압(bar-g)

P_{max,a} : 외압(bar-g)

α : 수평 방산 0.2, 위쪽 수직 방축 0.25

r : 방산 거리(m)

- (5) 식 (35), (36), (37)은 다음 조건을 만족해야 한다.
 - (가) 밀폐공간 부피 : $0.3~\text{m}^3 \leq V \leq 10,000~\text{m}^3$
 - (나) 최대 방산압력 $P_{red} \leq 1$ bar-g
 - (다) 방산구 작동정압 P_{stat} : \leq 0.1 bar-g
 - (라) 분진 폭연지수 K_{St} : K_{St} ≤ 300 bar-m/s 일 때 식 (35), K_{St} ≤ 200 bar-m/s 일 때 식 (36), (37)
 - (마) 외압 $P_{max,a} \le 9 \text{ bar-g}$

6.10 배관과 연결된 밀폐공간의 방산

- (1) 내부 직경이 0.3 m 이하이고, 길이가 6 m 이하인 상호 연결배관의 경우 다음 의 조건을 만족시켜야 한다.
 - (가) 밀폐공간에 설치하는 방산구는 작동정압 P_{stat} 를 $0.2\ bar-g$ 미만으로 설계하여야 한다.
 - (나) 각각 10 % 이내의 밀폐공간부피는 식 (21)에서 (30)까지 계산된 양으로 방산되어야 한다.
 - (다) 밀폐공간의 부피가 10% 이상 차이가 나는 경우, 두 밀폐공간의 방산구는 최대 방산압력 P_{red} 가 1 bar-g 이하로 재설계하여야 한다.
 - (라) 이 지침에 따라 작은 부피로 밀폐공간을 방산할 수 없는 경우, 밀폐공간은 초기에 방산전 변형의 최대압력 P_{max} 에 맞게 설계되어야 하고, 부피가 큰 밀폐공간의 환기면적은 2배로 한다.
 - (마) 대형 밀폐공간은 작은 밀폐공간으로 나누어 효과적으로 방산될 수 있도록 KOSHA GUIDE D 16 2012 폭발억제장치의 설치에 관한 기술지침 에 따라 방산되거나 보호되어야 한다.
- (2) 위 (1)의 범위를 벗어난 밀폐공간의 경우, 위험성 평가 결과를 관련기관에서 인증받을 수 없다면 KOSHA GUIDE D 16 2012 폭발억제장치의 설치에 관한 기술지침에 따라 방산되거나 보호되어야 한다.

7. 용기의 직경에 대한 길이의 비(L/D)가 5 이상인 용기나 덕트인 경우

7.1 일반사항

(1) 가스의 경우 길이 대 직경 비율이 5 이상이고, 분진의 경우는 6 이상인 경우에 적용하지만 다음의 경우에는 적용하지 않는다.

- (가) 방산덕트
- (나) 공기 이외의 산화제나 57°C 이상의 혼합물
- (다) 20 kPa 이상
- (2) 용기의 직경에 대한 길이의 비가 6 이상인 경우 설계시 주의사항
 - (가) 길이의 비가 큰 형태의 설비는 화염의 전파속도를 빠르게 가속 시킨다.
 - (나) 화염의 전파속도가 폭연에서 가속되면 폭굉이 일어날 수 있다.
 - (다) 밸브, 엘보우 등의 피팅류 또는 장애물에서 난류가 발생하기 쉽다. 발생된 난류는 돌발적인 화염의 속도가 가속되어 급격한 압력상승이 발생할 수 있다. 여기서 장애물은 배관 또는 덕트를 5 % 이상 막는 장치이다.
 - (라) 덕트가 부착된 용기내 가연성 혼합물의 발화는 용기 자체의 전면에 상당한 난류를 발생하고, 덕트 내 가스를 미리 압축하는 전면 화염을 초래한다. 화염 전면이 턱트의 입구에 도달했을 때 완전히 발달하고, 난류가 된다. 그 결과 화염 전면이 덕트 자체내 스파크 발화로 인한 것보다 훨씬 더크고, 결렬하게 덕트 전체로 전파된다.
 - (마) 가연성 물질을 전달하는 덕트나 가늘고 긴 용기는 덕트, 밀폐공간 내에서 발화로 인한 폭연이 발생할 수 있다. 그러한 구조의 방산은 구조물에 따라 압력의 영향을 최소화 할 수 있고, 안전한 영역으로 미연소 물질을 방산함 으로써 유동적인 화염 전면의 영향을 감소할 것이다.

7.2 설계 일반

- (1) 배관, 덕트 및 긴 용기에 설치하는 방산구 위치는 각 방산 장소에서 총 단면 적과 동일한 단면적을 가져야 한다.
- (2) 방산 위치에서 방산구 단면적은 하나 이상의 방산구로 나누어 설치할 수 있다.
- (3) 비원형의 단면적은 상당 직경을 구하여 사용한다.
- (4) 가스를 처리하는 설비에서 난류발생장치가 있는 경우 덕트는 상당직경의 3

KOSHA GUIDE

D - 1 - 2021

배 마다 방산구를 설치하여야 한다.

- (5) 폭연이 발생할 수 있는 용기에 연결된 덕트는 용기 연결지점에서 덕트 직경이내에 방산구가 있어야 한다.
- (6) 방산구 질량은 12.2 kg/m²을 초과할 수 없다.
- (7) 방산구는 안전한 곳에 위치하여야 한다.
- (8) 방산구 정적 파열압력은 0.3 bar-g 미만이어야 한다.
- (9) 폭광으로 전환
 - (가) 방산구는 폭연에서 폭굉으로 전환되는 것을 방지하기 위하여 설치하여야 한다.
 - (나) L/D 비율이 <그림 8>에 표시된 비율보다 클 경우, 다음 7.3과 같이 추가로 방산구를 설치하여야 한다.
- (10) 하나의 방산구 설치
 - (가) <그림 8>을 사용하여 최대 허용길이를 구한다.

<그림 8> 직선 덕트에 대해 L/D로 표현하는 최대허용길이

(나) 폭연을 방산할 때 최대 방산압력 Pred는 덕트의 항복강도의 50 % 이하이

KOSHA GUIDE

D - 1 - 2021

어야 한다.

- ① 유속이 2 m/s 이하인 인화성 가스 설비

 - ④ 기타 배관직경의 경우, Pred는 <그림 9>를 사용하여 보간법으로 계산한다.

<그림 9> 한쪽 끝이 막히고 직선의 배관에서 2 m/s 이하로 흐르는 프로판/공기 혼합물을 방산할 때 발생하는 최대 방산압력 P_{red}

- ② 유속이 2 m/s 이하인 인화성 분진 설비
 - ⑦ 분진을 이송하는 배관이나 턱트에서 폭연을 방산할 때 최대 방산압력 P_{red} 는 <그림 10>을 사용하여 구한다.
 - ④ 기타 배관직경의 경우, Pred, Kst는 보간법으로 계산한다.

<그림 10> 한쪽 끝이 막히고 직선의 배관에서 2 m/s 이하로 흐르는 분진/

공기 혼합물을 방산할 때 발생하는 최대 방산압력 P_{red}

- (11) 유속이 2 m/s를 초과하고, 연소속도가 0.6 m/s 이상인 설비는 다음 (3)을 참조하여 추가적인 방산면적을 설치하여야 한다.
- (12) 초기속도가 20 m/s 이상인 설비에서 연소속도가 프로판의 연소속도의 1.3 H 이상인 가스 또는 K_{st} > 300인 분진의 경우는 방산구 위치는 별도의 시험을 실시하여 구한다.

7.3 배관 또는 덕트의 복수 폭연 방산

- (1) 다음 <그림 11>는 방산구 최대 방산압력 P_{red} 이 0.17 bar-g를 초과하지 않을 때, 방산구 사이의 최대 거리를 결정하는데 사용한다.
 - (가) <그림 11>는 유속이 최대 20 m/s 이하인 설비에 적용한다.
 - (나) <그림 11>는 K_{St}가 300 bar-m/s 이하인 분진 및 프로판에도 적용한다.

<그림 11> 프로판과 K_{St}가 300 bar-m/s 이하인 분진에 대해 P_{red}가 0.17 bar-g를

초과하지 않도록하기 위해 필요한 방산구 최대거리

(2) 프로판 이외의 가스는 방산구가 작동할 때 최대압력과 방산구 사이의 거리는 다음 식 (38), (39)를 사용하여 계산하고, 이때 기본 연소속도는 0.6 m/s 미만이어야 한다.

$$P_{red,x} = P_{red,p} \cdot \left(\frac{S_{u,x}}{S_{u,p}}\right)^2$$
 설 (38)

$$L_x = L_p \cdot \left(\frac{S_{u,p}}{S_{u,r}}\right)^2 \tag{39}$$

여기서, P_{red,x} = 가스의 예상 최고압력(bar-g)

P_{red,p} = 0.17 bar-g - 프로판의 예상 최고압력

 L_x = 가스의 방산구 사이 거리(m)

Lp = 프로판의 방산구 사이 거리(m)

S_{11x} = 가스의 기본 연소속도

Sun = 프로판의 기본 연소속도

8. 폭연 방산 및 폭연 방산구

8.1 상시 개방된 방산구

- (1) 루버식 개구부
 - (가) 루버식 개구부는 최대 방산압력 P_{red} 가 검증되고, 명판에 표시되어야 한다.
 - (나) 작동시 압력강하는 가스유량계산에 의해 결정되어야 하며, P_{red} 는 보정되어야 한다.
- (2) 행거형 도어(Hangar-Type Doors)
 - (가) 대규모 행거형 도어 또는 오버헤드 도어는 폭연위험이 있는 방 또는 건물 의 측면에 설치할 수 있다.

- (나) 본질적인 폭연위험이 있는 공정 또는 설비의 작동 중에 방해물이 없는 알 맞은 크기의 방산구를 확보할 수 있도록 문을 개방하여야 한다.
- (다) 도어가 열려있을 때만 개방된 방산구로 인정될 수 있어 도어가 열러있을 때만 운전이 가능하도록 연동장치를 설치하고, 연동운전이 될 수 있도록 철저한 관리·감독이 필요하다.

8.2 상시 폐쇄식 방산구

- (1) 폐쇄식 방산구는 제조업체 또는 설계자는 방산구 작동정압 P_{stat} 값과 허용오 차를 보증하여야 하고, 명판에 표시하여야 한다.
- (2) 방산구를 완전하게 조립하고, 설치된 상태에서 작동시험을 실시하여 방산구 작동정압 P_{stat} 값을 구하여야 한다.
 - (가) 손잡이 고정장치(Pull-Through Fasteners). 전단볼트(Shear Bolts), 스프링 자석 또는 마찰 걸쇄, 파열판 등을 포함한 모든 유형의 방산구에 적용된다.
 - (나) 조립식 방산구의 설계자는 전체 조립품이 설정된 P_{stat} 값을 문서로 보증하여야 하고, 조립품에 각인되어야 한다.
 - (다) 문서에는 최대 방산압력 P_{red} , 방산구 작동정압 P_{stat} , 밀폐공간 면적, 방산구 면적, 단위 면적당 판넬의 질량, 고정장치의 유형, 간격 및 설치수량 등이 포함되어야 한다.
- (3) 폐쇄식 방산구는 계산된 압력에서 작동되도록 설계되어야 하고, 운전조건과 일치하여야 한다.
- (4) 설비의 운전온도는 방산구의 예상온도범위 내에 있어야 한다.
- (5) 방산구는 바람 또는 적설하중 등과 같은 자연적인 힘, 내부압력변동 및 내부 온도와 같은 운전조건 및 부식 등에도 정상적으로 작동될 수 있도록 설계·제 작되어야 한다.
- (6) 판넬식 방산구는 5.3과 6.2에서 허용하는 질량 이내로 제작되어야 한다.

8.3 건물 또는 방의 페쇄식 방산구

- (1) 힌지 도어, 창문, 판넬 방산구
 - (가) 판넬식 등의 방산구는6.3에서 허용하는 질량 이내로 제작되어야 한다.
 - (나) 힌지 도어, 창문 및 판넬 방산구는 밖으로 열리도록 설계하고, 설정압력에 서 자동으로 개방되는 걸쇄 또는 유사한 기구가 있어야 한다.
 - (다) 산업용 오븐에 사용하는 마찰, 스프링 장착, 자석식 걸쇄는 전형적인 걸쇄이다.
 - (라) 작업자의 안전을 위하여 문과 판넬은 손상되지 않고, 부착되어 있도록 설계하여야 한다. 부서지기 쉽고, 파편으로 작용하는 재질은 사용하지 않아야 한다.
- (2) 전단(Shear)형과 손잡이(Pull-Through)형 방산구
 - (가) 실내 전체 벽과 같은 대형 방산면적이 필요한 곳에 사용할 수 있다.
 - (나) 전단(Shear)형과 손잡이(Pull-Through)형 고정 방산구는 폭연으로부터 압력이 방산구 측면으로 작용할 때, 방산구의 고정장치에서 가해진 전단 응력을 분산하도록 설계한다.
 - (다) 방산구가 작동할 때 움직임에 의한 작업자의 안전과 설비의 파손방지를 위하여 적절한 안전조치를 하여야 하고, 주의사항을 현장에 게시하여야 한다.
 - (라) 방산구는 방산면적에 제한을 하거나, 작동시간을 지연시켜서는 안된다.
 - (마) 판넬식 등의 방산구는 6.3에서 허용하는 질량 이내로 제작되어야 한다.
- (3) 대형 판넬(Large Panels) 방산구
 - (가) 모든 방산구와 관련된 설계자료는 관련 근거와 기록을 보존하여야 한다.
 - (나) 방산장치는 작동할 때 방산면적을 방해할 수 없도록 설치하여야 한다.

(다) 판넬식 등의 방산구는 6.3에서 허용하는 질량 이내로 제작되어야 한다.

(4) 기계식 폐쇄장치

- (가) 힌지 도어 또는 덮개는 방산구가 작동할 수 있도록 설계되어야 한다.
- (나) 힌지는 방산구가 작동할 때 기능을 유지하여야 한다.
- (다) 힌지식 방산구는 완전히 밀폐된 혼합기, 건조기 및 유사한 설비에 사용할 수 있다.
- (라) 원료 투입 도어 또는 검사용 도어는 작업자의 안전에 지장이 없다면 방산 구 겸용으로 사용할 수 있다.
- (마) 방산구의 확실한 작동을 위하여 힌지, 스프링 등은 정기적으로 점검하고, 교체할 때는 반드시 제조자가 제공하는 검증된 부품을 사용하여야 한다.
- (바) 기계식 폐쇄장치에 방산덕트를 설치하는 경우, 판넬의 가장자리와 개방 아크의 경로를 통과하는 덕트 벽 사이의 간격을 특별히 고려하여 설치하 여야 한다.
- (사) 방산구가 열릴 때, 틈새는 흐름을 방해하지 않도록 해야 한다.
- (아) Vacuum Breakers는 방산할 때, P_{red} 를 견딜 수 있도록 튼튼하게 제작되거나 개방되어 확실한 경로를 이탈할 수 있는 경우 다음 <그림 12>를 따라서 설계하고, 내부 변형을 방지하도록 하여야 한다.

8.4 대형 판넬 방산구 안전

- (1) 대형 판넬식 방산구는 작동할 때 안전을 위하여 방산판넬이 날아가지 않도록 다음 <그림 13>과 같이 와이어로 묶을 수 있지만, 폭연방산 기능에는 지장이 없어야 한다.
- (2) 방산 판넬은 6.7에 따라 방산 판넬의 총 질량을 검토하여야 한다.

8.5 설비의 방산구

(1) 힌지형 방산구

- (가) 힌지(경첩) 도어 또는 커버는 방산구로 작동될 수 있도록 설계한다.
 - ① 힌지는 방산구가 작동할 때 기능이 잘 유지되도록 설계되어야 한다.

<그림 12> 밀폐공간의 진공 방산면적을 결정하는 그래프

<그림 13> 방산 판낼의 안전한 작동을 위하여 와이어로 묶은 사례

- ② 힌지장치는 완전히 밀폐된 혼합기, 건조기 및 유사한 설비에 사용할 수 있다.
- ③ 충전 도어 또는 검사구는 그 행위가 위험하지 않는 경우, 방산구와 겸용으로 설치할 수 있다.
- ④ 적절한 작동을 보장하기 위해 힌지 및 스프링 장착 메커니즘의 정기적인 유지보수를 실시하여야 한다.
- ⑤ 힌지가 달린 방산구에 방산덕트를 설치하는 경우, 열리는 과정에서 방산에 지장이 없어야 하고, 방산덕트에 부딪히지 않도록 충분한 공간을 확보하여야 한다.
- ⑥ 바큠 브레이커는 폭연 방산 중에 최대 방산압력 Pred에 견딜 수 있도록 설계하거나, 개방되어 명확한 경로를 이탈 할 경우에는 다음 <그림 12>을 이용하여 방산면적을 계산한다.
- (2) 다이어프램 방산구는 다음 <그림 14>와 같이 한번 파열하면 모두 개방되는 다이어프램만 사용하여야 한다.

<그림 14> 다이아프램 방산구 조립 사례

9. 설비 점검 및 관리

(1) 이 장은 밀폐공간에서 폭연방산을 위하여 설치한 방산구의 적절한 기능유지를 위하여 설치, 검사 및 유지보수와 운전에 관한 사항이다.

(2) 설계 변수와 문서

- (가) 데이터 시트, 설치상세도면 및 설계계산은 방산구 면적이 밀폐공간의 기계적 강도를 초과하지 않도록 충분한지 확인, 잠재적 과압, 폭연전파 및 방산할 때 파이어 볼 효과 등을 확인하여야 한다.
- (나) 관련기관에서 자료를 요구하면 제출할 수 있도록 기록을 유지하여야 한 다.
- (다) 관련 자료는 다음을 모두 포함한다.
 - ① 제조자의 설계 데이터 및 설치 절차서
 - ② 설계계산 근거
 - ③ 일반 규격 및 사양
 - ④ 방산구 규격 및 사양
 - ⑤ 사용자의 점검 및 유지보수 양식

- ⑥ 관련 규격, 법률 등의 적합성에 대한 근거 및 설명서
- ⑦ 방산구 표시
- ⑧ 가연성 물질의 시험 성적서
- ⑨ 방산구의 명칭 및 규격
- ① 공정 평면도 및 입면도
- ① 방산구 방산 경로 및 작업자에 대한 파이어 볼 영향범위
- ① 상세 기계 설치도면 및 절차서
- ③ 필요한 경우 상세 전기 설치도면, 연동장치 및 절차서
- ⑭ 방산구와 관려된 재질, 작동압력 등의 시험 성적서 및 설치 절차서
- 15 운전 및 유지보수자의 교육 자료

(3) 설치

- (가) 방산구는 적절한 기능이 유지될 수 있도록 방산구 제조자가 제공하는 전 용 프레임에 설치하여야 한다.
- (나) 방산구 설치는 제조자의 설치 절차서에 따라야 한다.
- (다) 최종설치 후에는 설계성능이 유지되고 있는지를 확인하여야 한다.
- (라) "주위: 방산구" 등의 방산구와 관련 된 위험을 알리는 안전보건표지판을 설치하여야 한다.

(4) 점검

- (가) 방산구는 다음 (라)에 따라서 매년 점검하고. 기록을 보존하여야 한다.
- (나) 다음 (라)에 따라 점검기록과 운전경험 등을 근거로 변경관리절차에 따라 서 점검기간을 조정할 수 있다.
- (다) 방산구를 설치한 이후에는 사용자가 점검 및 유지보수의 책임이 있다.
- (라) 점검자는 다음 절차에 따라서 방산구 및 판넬(이하 방산구라 함) 등을 점 검하고 기록을 보존하여야 한다.
 - ① 개구부는 양쪽 또는 한쪽에 장애물이 없고, 깨끗하게 유지하고 있는지?

- ② 폭연 방산지역과 파이어 볼 경로에 작업통로나 기계설비설치를 금지하고 있는지?
- ③ 방산구 제조자의 설치 절차서에 따랏 올바르게 설치되었는지?
- ④ 방산구와 부속품이 부식이나 파손이 없는지?
- ⑤ 방산구는 명판이 설치되고, 제대로 유지되고 있는지?
- ⑥ 닫임 장치는 손상이 없고, 빗물, 눈, 얼음 및 이물질은 없는지?
- ⑦ 방산구는 최초 설치된 이후에 도색을 금지하고 있는지?
- ⑧ 방산구 내부에 이물질이 퇴적되지 않도록 유지되고 있는지?
- ⑨ 방산 경로는 변경되지 않았는지?
- ⑩ 방산구 기능을 제거하거나 변경하지 않았는지?
- ① 힌지형 방산구의 힌지는 윤활이 잘 되고 있는지?
- ⑩ 방산구 구속장치는 기능이 유지되고 있는지?
- ③ 방산구에 작동을 알리는 경보장치는 기능이 유지되고 있는지?
- ④ 화염방지기와 소염소자는 주기적으로 청소하고, 기능이 유지되고 있는지?
- ⑤ 개폐식 방산구는 작동범위에 장애물이 없고, 작동이 잘 되는지?
- (마) 사업주는 점검 자료를 보존하고, 방산구 기능이 잘 유지되고 있음을 보증 하여야 한다.
- (5) 방산구 작동 이후 조치사항
 - (가) 작동원인을 분석하고, 재발방지대책을 수립하여야 한다.
 - (나) 위의 9.(4)와 다음 9.(9) 절차에 따라서 유비보수와 검사를 실시하여 야 한다.
- (6) 방산구와 관련된 설계변수는 변경관리절차 검토, 운전자 교육, 설비의 유지 보수 및 검사를 위하여 사용할 수 있도록 관련자료를 보존하여야 한다.
- (7) 방산구 설치와 관련된 유지보수 및 검사 등은 유지보수 내용, 점검 및 검사 항목, 측정방법, 일자 등의 관련 기록은 관련자의 서명과 관리자의 서명을 받아 기록을 보존하여야 한다.

(8) 회사의 변경관리절차

- (가) 변경관리 절차에는 방산구에 의해 보호되는 설비에 미치는 공정, 관련된 물질, 기술, 공정 흐름, 폭연 방산 원리, 작업절차의 변경 등은 필요시 실 시하기 전에 변경절차관리를 따라야 한다.
- (나) 변경관리문서는 관련기관에서 요구시 제출하여야 한다.
- (다) 변경관리절차는 변경하기 전에 다음 사항 등을 검토하여야 한다.
 - ① 제안된 변경사항의 기술적 근거
 - ② 안전보건 영향
 - ③ 화재폭발 시스템의 검토
 - ④ 영구적 또는 일시적 변경여부
 - ⑤ 작업자 유해위험 노출 정도
 - ⑥ 유지보수 운영절차 변경
 - ⑦ 근로자 교육 요건
- (라) 제조자가 제공하는 방산구 부품을 단순하게 교체하는 것은 변경절차에서 제외될 수 있다.
- (마) 9.2에서 요구하는 설계문서를 변경한 경우에는 관련된 변경내용을 문서화 시켜 보존하여야 한다.

(9) 근로자 교육

- (가) 모든 근로자는 방산설비에 대한 운전, 유지보수 및 안전설비에 대한 교육을 지속적으로 실시하여야 한다.
- (나) 운전자 교육은 다음 내용을 포함하고, 관련기록을 보존하여야 한다.
 - ① 작업자의 위험 및 위험요소
 - ② 안전작업수칙
 - ③ 공정기술서
 - ④ 설비의 안전한 기동, 운전 및 정지 절차, 비상정지 방법

KOSHA GUIDE

D - 1 - 2021

- ⑤ 화재폭발예방설비와 관련된 적절한 조작방법
- ⑥ 방산구 위치, 방산경로, 유지보수 요구사항 및 훈련방법
- ⑦ 설비 보존방법
- ⑧ 비상대응 및 대피방법

KOSHA GUIDE

D - 1 - 2021

<부록 1>

폭연방산 계산(예시)

예제1]

폭연지수 K_{st} 가 190인 분진을 취급하는 건조기는 직경 2 m, 길이 20 m이고, 하나의 방산 설치로 설계하는 경우, 폭연 방산시 발생할 수 있는 압력은 어느 정도인가?

계산1]

- (a) 최대 허용 길이 확인 : 건조기의 직경 2 m인 분진의 경우 <그림 8>에 따라 L/D는 약 25를 적용한다. 해당 건조기의 L/D는 10이므로 허용 할수 있다.
- (b) 최대압력: <그림 10>에 따라 L/D는 10인 경우에 상승할 수 있는 압력은 약 0.5 bar-g 압력이 분진에 의한 폭연으로 설비 내에서 상승할 것이다. 따라서 이 설비의 설계압력은 적어도 0.5 bar-g 이상의 압력을 가져야한다.

예제2]

방산가스 소각탑(Flare stack)은 직경 0.4 m, 높이 40 m이고, 바닥에 워터 씰(Water seal)을 설치하는 경우, 프로판과 특성이 비슷한 연료/공기 혼합물의 발화로 상승한 압력으로부터 방산가스 연소탑을 보호하기 위해 설계압력은 어느 정도이어야 하는가?

계산2]

(a) 최대 허용길이 확인 : 소각탑(Flare stack)의 직경이 0.4 m인 혼합물의 경우, <그림 8>에서 최대 허용길이 L/D는 약 28을 적용할 수 있다. 이 소각탑의 L/D는 100으로 최대 허용길이 28을 초과하므로, 소각탑 설비가 폭광을 견디도록 설계하거나 다른 수단으로 보호하여야 한다.

예제3]

직경 1 m, 길이 100 m인 직선 덕트를 폭연방산 설치로 보호할 계획이다. 덕트 내부는 프로판의 특성과 비슷한 탄화수소/공기 혼합물이 들어 있으

며, 혼합물의 이동속도가 20 m/sec 미만이라면, 덕트의 폭연압력을 0.017 MPa(2.5 psig)로 제한하기 위해서는 설치하여야 하는 방산구 간격은 얼마나 필요한가? 단 방산의 설계압력은 0.05 bar-g에서 개방되도록 설계하였다.

계산3]

덕트의 직경이 1미터인 경우 방산구의 간격은 <그림 11>에서 L/D는 7.6 m이므로 방산 사이의 7.6 m 이하 간격을 유지해야 한다. 이러한 요구사항을 만족하기 위해 방산은 각 끝에 1개씩 설치하고, 추가로 13개의 방산을 덕트를 따라 균일한 간격으로 위치하는 것을 권장한다.

예제4]

<그림 15>의 건조기, 집진기 및 덕트 설비 보호를 위한 폭연 방산구를 설치하고자 한다. 설비를 통과하는 가스 유량은 100 ㎡/hr 이고, 모든 덕트는 직경이 0.6 m이다. 덕트와 설비의 최대허용 운전압력은 0.2 bar-g이고, 설비 내 최대 작동압력은 0.05 bar-g이다. 설비에서 취급하는 유체는 St-2 등급의 분진을 취급한다. 건조기와 집진기 및 덕트에 적절한 폭연 방산구를 설치하시오.

계산4]

- (a) 4.(6)과 4.(8)항에서 요구하는 대로 건조기 방산구 직경의 2배 이내와, 첫 번째 엘보우 상류 측 직경의 3배 이하 위치에 방산 A와 B를 각각 설치하고, 직경 3배의 거리에 C를 설치한다.
- (b) 마찬가지로 5-4항에 근거하여 집진기 입구 상류 측 직경의 대략 2배 위치에 벤트 F를 설치하고, 20 m 덕트에 추가 방산이 필요하다. 설비를 통과하는 가스 100 ㎡/min의 유량은 6 m/sec(=100/60 sec/π × 0.62)의 유속과 같으므로, 이를 <그림 15>에 적용하면 L/D는 11배 이하 또는 약 6.5 m 이하의 벤트 간격이 필요하며, 벤트 C와 F사이 거리는 약 17.2 m이다. 그러므로, 대략 같은 간격으로 2개의 추가 벤트(D 와 E)의 설치가 필요할것이다.
- (c) 총 방산면적은 각 방산 위치에서 적어도 덕트의 횡단면적과 같아야 하며, 이것은 최대 방산압력(P_{red})이 0.2 bar-g 이하를 의미한다. 4.(8)항에 따라

방산 개방압력은 최대 방산압력 (P_{red}) 의 1/2을 초과하지 않도록 설계하여야 하므로, 방산개방압력은 0.1~bar-g를 초과하지 않도록 설계하여야 한다.

<그림 15> 예제4 그림

<부록 2> 선정된 가스와 증기의 기본 연소속도

_ , ,	연소속도		연소속도
물질명	(Cm/sec)	물질명	(Cm/sec)
Acetone	54		
Acetylene	166*	Ethyl acetate	38
Acrolein	66	Ethylene oxide	108
Acrylonitrile	50	Ethylenimine	46
Allene (propadiene)	87	Gasoline (100-octane)	40
Benzene	48	n-Heptane	46
n-butyl-	39	Hexadecane	44
	39	1,5-Hexadiene	52
,tert.obutyl-	37	n-Hexane	46
,1,2-dimethyl-	37 39	1-Hexene	50
,1,2,4-trimethyl-	68 68	1-Hexyne	57
1,2-Butadiene (methylallene)	64	3-Hexyne	53
1,3-Butadiene	52	Hydrogen	312 *
,2,3-dimethyl-	52 57	Isopropyl alcohol	41
,2-methyl-	55 45	Isopropylamine	31
n-Butane	45	Jet fuel, grade JP-1 (average)	40
2-cyclopropyl-	47	Jet fuel, grade JP-4 (average)	41
2,2-dimethyl-	42	Methane	40*
2,3-dimethyl-	43	diphenyl-	35
2-methyl-	43	Methyl alcohol	56
2,2,3-trimethyl-	42	1,2-Pentadiene (ethylallene)	61
Butanone	42	cis-1,3-Pentadiene	55
1-Butene	51	trans-1,3-Pentadiene (piperylene)	54
2-cyclopropyl-	50	2-methyl-(cis or trans)	46
2,3-dimethyl-	46	1,4-Pentadiene	55
2-ethyl-	46	2,3-Pentadiene	60
2-methyl-	46	n-Pentane,	46
3-methyl-	49	2,2-dimethyl-	41
2,3-dimethyl-2-butene	44	2,3-dimethyl-	43
2-Buten 1-yne (vinylacetylene)	89	2,4-dimethyl-	42
1-Butyne	68	2-methyl-	43
3,3-dimethyl-	56	3-methyl-	43
2-Butyne	61	2,2,4-trimethyl-	41
Carbon disulfide	58	1-Pentene	50
Carbon monoxide	46	2-methyl-	47
Cyclobutane	67	4-methyl-	48
ethyl-	53	cis-2-Pentene	51
isopropyl-	46	1-Pentene	63
methyl-	52	4-methyl-	53
methylene	61	2-Pentyne	61
Cyclohexane	46	4-methyl-	54
methyl-	44	Propane	46*
Cyclopentadiene	46	2-cyclopropyl-	50
Cyclopentane	44	1-deutero-	40
methyl-	42	1-deutero-2-methyl-	40
Cyclopropane	56	2-deutero-2-methyl-	40
cis-1,2-dimethyl-	55	2,2-dimethyl-	39
trans-1,2-dimethyl-	55 52	2-methyl-	41
ethyl-	56	2-cyclopropyl	53
methyl-	58 50	2-methyl-	44
1,1,2-trimethyl-	52	Propionaldehyde	58
trans-Decalin	36	Propylene oxide	82
(decahydronaphthalene)	,,	(1,2-epoxypropane)	
n-Decane	43	1-Propyne	82
1-Decene	44	Spiropentane	71
Diethyl ether	47	Tetrahydropyran	48
Dimethyl ether	54	Tetralin (tetrahydronaphthalene)	39
Ethane	47	Toluene (methylbenzene)	41
Ethane (ethylene)	80	2 ordene (mem nombene)	11

<부록 3> 선정된 가스에 대한 기본 연소속도 비교

가스	班 1		rews and radley	France and Pritchard	
,		(공기중)	(산소중)	(공기중)	
Acetylene	166	158	1140	-	
Ethylene	80	79	_	0	
Hydrogen	312	310	1400	347	
Methane	40	45	450	43	
Propane	46	_	_	46	

<부록 4> 농산물의 최소연소농도, 최대폭발압력 및 폭연지수

Cellulose 33 60 9.7 229 2 Cellulose pulp 42 30 9.9 62 1 Cork 42 30 9.6 202 2 Corn 28 60 9.4 75 1 Egg white 17 125 8.3 38 1 Milk, powdered 83 60 5.8 28 1 Milk, nonfat, dry 60 - 8.8 125 1 Soy flour 20 200 9.2 110 1 Starch, corn 7 - 10.3 202 2 Starch, rice 18 60 9.2 101 1 Starch, wheat 22 30 9.9 115 1 Sugar 30 200 8.5 138 1 Sugar, milk 27 60 8.3 82 1 Sugar, beet 29 60 8.2 59	물질	중간입자 크기(μm)	최소연소농도 (g/m³)	최대폭발 압력 P _{max} (bar)	폭연지수 K _{St} (bar-m/sec)	분진 위험 Class
	Cellulose pulp Cork Corn Egg white Milk, powdered Milk, nonfat, dry Soy flour Starch, corn Starch, rice Starch, wheat Sugar Sugar, milk Sugar, beet Tapioca Whey	42 42 28 17 83 60 20 7 18 22 30 27 29 22 41	30 30 60 125 60 - 200 - 60 30 200 60 60 125	9.9 9.6 9.4 8.3 5.8 8.8 9.2 10.3 9.2 9.9 8.5 8.3 8.2 9.4 9.8	62 202 75 38 28 125 110 202 101 115 138 82 59 62 140	1 2 1 1 1 1 2 1 1 1 1 1 1 1

<부록 5> 탄소질 분진의 최소연소농도, 최대폭발압력 및 폭연지수

	중간입자	최소연소농도	최대폭발	폭연지수	분진
물질	크기	(g/m^3)	압력	K_{St}	위험
	(µm)	(g/ III)	P _{max} (bar)	(bar-m/sec)	Class
Charcoal, activated	28	60	7.7	14	1
Charcoal, wood	14	60	9.0	10	1
Coal, bituminous	24	60	9.2	129	1
Coke, petroleum	15	125	7.6	47	1
Lampblack	<10	60	8.4	121	1
Lignite	32	60	10.0	151	1
Peat, 22% H ₂ O	_	125	84.0	67	1
Soot, pine	<10	_	7.9	26	1

<부록 6> 화학물질 분진의 최소연소농도, 최대폭발압력 및 폭연지수

물질	중간입자 크기 (µm)	최소연소농도 (g/m³)	최대압력, P _{max} (bar)	폭연지수 K_{St} (bar-m/sec)	분진 위험 Class
Adipic acid Anthraquinone Ascorbic acid Calcium acetate Calcium stearate Calcium stearate Carboxy-methylcellu lose Dextrin Lactose Lead stearate Methyl-cellulose Paraformaldehyde Sodium ascorbate Sodium stearate Sulfur	<10 <10 39 92 85 12 24 41 23 12 75 23 23 22 20	60 - 60 500 250 30 125 60 60 60 60 60 30 30	8.0 10.6 9.0 5.2 6.5 9.1 9.2 8.8 7.7 9.2 9.5 9.9 8.4 8.8 6.8	97 364 111 9 21 132 136 106 81 152 134 178 119 123 151	1 3 1 1 1 1 1 1 1 1 1 1

<부록 6>금속분진의 최소연소농도, 최대폭발압력 및 폭연지수

물질	중간입자 크기(μm)	최소연소농도 (g/m³)	최대압력, P _{max} (bar)	폭연지수 K _{St} (bar-m/sec)	분진 위험 Class
Aluminum Bronze Iron carbonyl Magnesium	29 18 <10 28	30 750 125 30	12.4 4.1 6.1 17.5	415 31 111 508	3 1 1
Magnesium Zinc Zinc	10 <10	250 125	6.7 7.3	125 176	1 1

<부록 7> 합성수지 분진의 최소연소농도, 최대폭발압력 및 폭연지수

물질	중간입자 크기(μm)	최소연소 농도(g/m³)	최대압력, P _{max} (bar)	폭연지수 K _{St} (bar-m/sec)	분진 위험 Class
(poly) Acrylamide (poly) Acrylonitrile (poly) Ethylene (low-pressure process)	10 25 <10	250 - 30	5.9 8.5 8.0	12 121 156	1 1 1
Epoxy resin Melamine resin Melamine, molded (wood flour and mineral filled phenol-formaldehyde)	26 18 15	30 125 60	7.9 10.2 7.5	129 110 41	1 1 1
Melamine molded (phenol-cellulose) (poly) Methyl	12	60	10.0	127	1
acrylate	21	30	9.4	269	2
(poly) Methyl acrylate, emulsion polymer	18	30	10.1	202	2
Phenolic resin (poly) Propylene Terpene-phenol	<10 25 10	15 30 15	9.3 8.4 8.7	129 101 143	1 1 1
resin Urea-formaldehyde/	13	60	10.2	136	1
cellulose, molded (poly) Vinyl acetate/ ethylene copolymer	32	30	8.6	119	1
(poly) Vinyl alcohol (poly) Vinyl butyral (poly) Vinyl chloride (poly) Vinyl chloride/ vinyl acetylene emulsion	26 65 107 35	60 30 200 60	8.9 8.9 7.6 8.2	128 147 46 95	1 1 1 1
copolymer (poly) Vinyl chloride/ethylene/vinyl acetylene suspension copolymer	60	60	8.3	98	1

지침 개정 이력

- □ 전면 개정일 : 2021.11.
 - 개정자 : 전남대학교 화학공학부 장 희
 - 개정사유 : 관련 규격 NFPA 68이 개정되고, 6개 장의 내용에 3개 장을 추가하여 전면 개정함.
 - 주요 개정내용
 - 설계시 고려사항 일부 수정
 - 혼성혼합물의 폭연방산 제목 및 일부 수정
 - 가스와 분진은 혼성혼합물의 폭연 방산 추가
 - 용기의 직경에 대한 길이의 비(L/D)가 5 이상인 용기나 덕트인 경우 추가
 - 폭연 방산 및 폭연 방산구 추가
 - 설비 점검 및 관리 일부 수정
 - 주요 개정내용관련 법규 및 규격
 - NFPA 68 Standard on Explosion Protection by Deflagration Venting 2018