Date:__/__/20_

Mon Tue Wed Thu Fri Sat

COMMUNICATION SYSTEMS

ASSIGNMENT 1

SUBMITTED TO

Prof. Dr. Zahid Wadud Mufti

SUBMITTED BY

MOOR UL HAQ

REG #

21PWCSE2046

SECTION

A

Mon Tue Wed Thu Fri Sat Date:_/_/20_ Question No 1 A relt) **See** It's basically a sinc function in time domain and we're required to find its Fourier transform and plot the spectrum. Eq. of this sinc ftn is; n(t) = A sinc(2Wt)and from FT table $\chi(\omega) = A$ sect ω 2W (4aW) To plot the spectrum A/2W. 2×W -2xW

Date: _/__/20 MonTue Wed Thu Fri Sat

Question No 3

Some ous Question 2

(PTO)

Mon Tue Wed Thu Fri Sat Date:__/__/20 amplitude of Carrier Peak Ac= Vmax + Vmin 16 = 0.66 Vmax + Vmin modulation coefficient = 12(1+0.66) = 19.2. Broom Modulation Coefficient, U= 0.66 percent Modulation = 66 % feat amplitude of upper and lower side frequencies Ac x U = 12x0-66 3.96

D	Ate: / /20 Mon Tuc Wed Thu Fri Sa	
	Q-5	
	For full carrier amplitude	
	modulation, the total power (Pt)	
	includes the cartier power and	
	the power of side bands.	
	Nou, lets prove!	
	let m, (t)= Vm, cos 2 afm, t	
	$m_2(t) = V_{m_2} \cos 2\pi f_{m_2} t$	
Î v	Sp(t) = [Ve + Vm, cos 2x fm, t + Vm, cos 2x fm,	t) x
	Co5	2nfet
	(t) = Vc (+ Vm, cos2afm, t + Vm, cos2afm, t)	cos 2 fet
	Vc Vc	
	let Vm, _ m, Vm2 = M2	
	Ve Ve	
5(4	$)_{AM} = V_c \left[+ m, \cos 2\pi f m, t + m, \cos 2\pi f m, t \right] \cos 2\pi$	ifet
	= V=cos2afet + V=m, cos2afm, tcos2afet+	
	Vcm2cos2xfmit	cos2nfet
	= Vccos 2xfct + Vcm, [cos2x(fc+fm,)t + cos\$2x(fc	$-fm_2)t$
	2	
	+ Vem2 [cos 2x (fe+fm2) t + cos 2x (fe-fm2) +	7
	2	
):	Since, Protol = Proporto + Psidebonds(SB)	
4 3 3) (c) Siac bands (EB)	

Date:__/__/20_ Pso = V. m. Vemz 2/2 Vc m, Vc mi by Vc2 + M2 2 PsB m + m) 2 Pc $m_1^2 + m_2^2$ PsB = 2 M12 + M22 m =Pc. PsB= Pa PI proved. Hence