МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА)

Кафедра математического обеспечения и применения ЭВМ

ОТЧЕТ

по практической работе №6 по дисциплине «Теория принятия решений»

Тема: Нечёткие модели

Студентка гр. 7381	Алясова А.Н.
Преподаватель	Попова Е.В.

Санкт-Петербург

2021

Цель работы.

Использование инструментальных средств для решения задач поддержки принятия решения, а также овладение навыками принятия решения на основе решения задач с нечёткой информацией.

Основные теоретические положения.

В практической работе используется в качестве начального этапа нечёткая модель, основанная на нечёткой информации, предоставляемой экспертами. Эксперты формируют опорные значения функции принадлежности коэффициента, отражающего характеристики объекта, который подлежит ранжированию — $u^{(ijl)}$ опорных точках k=1,...,4, и для объектов j=1,2,3 по критериям i=1,2,3. Всего экспертов l=1,2. Формируется трапецеидальная функция принадлежности $\mu_{A^l}(u^l)$ нечёткого числа (1):

$$\mu_{A^{l}}(u^{l}) = \begin{cases} 0, & u^{l} \leq u_{1}^{l} \\ \frac{u^{l} - u_{1}^{l}}{u_{1}^{l} - u_{2}^{l}}, u_{1}^{l} < u^{l} < u_{2}^{l} \\ 1, & u_{2}^{l} \leq u^{l} \leq u_{3}^{l} \\ \frac{u^{l} - u_{4}^{l}}{u_{3}^{l} - u_{4}^{l}}, u_{3}^{l} < u^{l} < u_{4}^{l} \\ 0, & u^{l} \geq u_{4}^{l} \end{cases}$$

$$(1)$$

где $u_1^l < u_2^l \le u_3^l < u_4^l$.

Для вывода выходной функции принадлежности используется принцип обобщения. Нечёткий вывод основывается на базе знаний, которую составляют обобщённые логические правила: ЕСЛИ ((u^1 есть A^1) И (u^2 есть A^2)) ТО (u есть A). Принцип обобщения для функции нескольких переменных представляет собой задание функции принадлежности выходного значения системы (2).

$$\mu_B(y) = \bigvee_{u=f(u^1,u^2)} (\mu_{A^1}(u^1) \wedge \mu_{A^2}(u^2)), \forall u^1, u^2, u \in \mathbb{R},$$
(2)

где символ V означает объединение множеств на основе операции max, а \ означает объединение множеств на основе операции min.

Дефаззификацию трапецеидального числа будем проводить с помощью интегрального представления градуированного среднего значения нечёткого числа A и рассчитывать по формулам (3), (4):

$$centr(A) = \int_0^1 \frac{\left(L^{-1}(\alpha) + R^{-1}(\alpha)\right)\alpha}{2} d\alpha / \int_0^1 \alpha d\alpha, \tag{3}$$

где $0 \le \alpha \le 1$.

$$centr(A) = \frac{u_1 + 2u_2 + 2u_3 + u_4}{6},\tag{4}$$

где $u_1, u_2, u_3, u_4 \in \mathbb{R}$.

Во второй части работы используется метод рандомизированных сводных показателей (МРСП), в котором на входе используются дефаззифицированные значения нечёткой модели. Определяются значимость каждого критерия по отношению к другим с помощью вектора весовых коэффициентов $\overline{\omega} = (\omega_1, ..., \omega_m), \omega_i \geq 0$. Вводится нормирование суммы $\sum_{i=1}^m \omega_i = 1$ и строится синтезирующая функция $Q(q_1, ..., q_m; \overline{\omega}) \in [0, 1]$ в виде аддитивной средневзвешенной величины (5):

$$Q^{(j)} = \sum_{i=1}^{m} q_i^j \omega_i. \tag{5}$$

Для задания дискретности модели вводится величина шага $h=\frac{1}{n}, n\in \mathbb{N}, \omega_i\in \left\{0,\frac{1}{n},...,\frac{n-1}{n},1\right\}$, которая задаёт размер множества допустимых векторов весовых коэффициентов $N(m,n)=\binom{n+m-1}{n}$.

В качестве детерминированной оценки рандомизированного сводного показателя используется математическое ожидание случайной величины, а мерой точности оценки $\tilde{Q}^{(j)}$ служит стандартное отклонение случайной величины. Достоверность доминирования рандомизированного сводного показателя $\tilde{Q}^{(m)}$ над $\tilde{Q}^{(l)}$ определяется по формуле (6).

$$\mathbb{P}\{\tilde{Q}^{(m)} > \tilde{Q}^{(L)}\} > \alpha,\tag{6}$$

где $\alpha \in [0,1], m, l=1, ..., k$. Таким образом, достигают ранжирование объектов, оценку точности полученных величин, определение достоверности полученного ранжирования.

Постановка задачи.

Выбрать объект системы защиты информации (СЗИ), оцениваемый по 3 критериям (конфиденциальность, целостность, доступность информации), с использованием упрощённого модифицированного метода рандомизированных сводных показателей.

Индивидуализация.

Вариант 1.

Шаг дискретизации n=2.

Таблица с оценками.

3 объекта, которые оцениваются по 3 критериям двумя экспертами.

Таблица 1

	Эксперт 1											
	K1				K	2			K	3		
01	0.3	0.4	0.6	0.8	0.0	0.1	0.2	0.3	0.1	0.2	0.4	0.5
02	0.0	0.1	0.3	0.5	0.3	0.5	0.7	0.9	0.0	0.1	0.2	0.3
03	0.0	0.1	0.3	0.4	0.2	0.3	0.4	0.5	0.2	0.3	0.5	0.6
					Эн	спер	т 2					
		K	1			K	2			K	3	
01	0.3	0.4	0.5	0.7	0.0	0.1	0.3	0.4	0.1	0.2	0.5	0.6
02	0.1	0.2	0.4	0.5	0.3	0.4	8.0	0.9	0.0	0.2	0.3	0.4
О3	0.0	0.2	0.3	0.4	0.1	0.2	0.3	0.4	0.2	0.4	0.5	0.6

Порядок выполнения работы.

1. Сведение таблиц с экспертными опорными значениями трапецеидальных функций принадлежности в единую таблицу с тремя

объектами, оцениваемые по 3 критериям с помощью принципа обобщения, в котором $f = \frac{x_1 + x_2}{2}$ — среднее значение.

- 2. Фаза дефаззификации трапецеидального числа с помощью интегрального представления градуированного среднего значения нечёткого числа A. Построить таблицу 3×3 с чёткими значениями.
- 3. Построить множество векторов весовых коэффициентов, количество которых равно N.
- 4. Построить множество сводных показателей, количество которых равно также N.
 - 5. Вычислить математическое ожидание и дисперсию.
 - 6. Вычислить вероятность полного доминирования.
- 7. Сделать вывод о предпочтении объекта сразу по всем критериям и с какой погрешностью.

Выполнение работы.

Согласно варианту были выбраны таблица с оценками экспертов (см. табл. 1) и шагов дискретизации n=2.

Таблица 1 – Оценки экспертов

	Эксперт 1											
		К	11			К	22			К	23	
O1	0.3	0.4	0.6	0.8	0.0	0.1	0.2	0.3	0.1	0.2	0.4	0.5
O2	0.0	0.1	0.3	0.5	0.3	0.5	0.7	0.9	0.0	0.1	0.2	0.3
О3	0.0	0.1	0.3	0.4	0.2	0.3	0.4	0.5	0.2	0.3	0.5	0.6
					Эі	ксперт	2					
		K	:1			K	22			К	:3	
O1	0.3	0.4	0.5	0.7	0.0	0.1	0.3	0.4	0.1	0.2	0.5	0.6
O2	0.1	0.2	0.4	0.5	0.3	0.4	0.8	0.9	0.0	0.2	0.3	0.4
О3	0.0	0.2	0.3	0.4	0.1	0.2	0.3	0.4	0.2	0.4	0.5	0.6

1) Сведение таблиц с экспертными опорными значениями трапецеидальных функций принадлежности в единую таблицу с тремя объектами, оцениваемые по 3 критериям с помощью принципа обобщения, в котором $f = \frac{x_1 + x_2}{2}$ – среднее значение.

Таблица 2 - Объект 1 (О1), критерий 1 (К1)

	Эксперт 1	0	1	1	0
Эксперт 2		0.3	0.4	0.6	0.8
0	0.7	0	0	0	0
U	0.7	0.5	0.55	0.65	0.75
1	0.5	0	1	1	0
1		0.4	0.45	0.55	0.65
1	0.4	0	1	1	0
1	0.4	0.35	0.4	0.5	0.6
0	0.3	0	0	0	0
		0.3	0.35	0.45	0.55

Рисунок 1 – Трапецеидальная функция принадлежности O1 K1

Произведём дефаззификацию трапецеидального числа:

$$C_{11} = centr(A) = \frac{0.35 + 2 * 0.4 + 2 * 0.55 + 0.6}{6} = 0.475$$

Таблица 3 - Объект 1 (О1), критерий 2 (К2)

	Эксперт 1	0	1	1	0
Эксперт 2		0	0.1	0.2	0,3
0	0.4	0	0	0	0
U	0,4	0.2	0.25	0.3	0.35
1	0,3	0	1	1	0
1		0.15	0.2	0.25	0.3
1	0.1	0	1	1	0
1	0,1	0.05	0.1	0.15	0.2
0	0	0	0	0	0
		0	0.05	0.1	0.15

Рисунок 2 — Трапецеидальная функция принадлежности О1 К2 Произведём дефаззификацию трапецеидального числа:

$$C_{12} = centr(A) = \frac{0.05 + 2 * 0.1 + 2 * 0.25 + 0.3}{6} = 0.175$$

Таблица 4 - Объект 1 (О1), критерий 3 (К3)

	Эксперт 1	0	1	1	0
Эксперт 2		0,1	0,2	0,4	0,5
0	0.6	0	0	0	0
U	0,6	0,35	0,4	0,5	0,55
1	0,5	0	1	1	0
1		0,3	1,35	0,45	0,5
1	0.2	0	1	1	0
1	0,2	0,15	0,2	0,3	0,35
0	0,1	0	0	0	0
		0,1	0,15	0,25	0,3

Сформируем выходную трапецеидальную функцию принадлежности:

Рисунок 3 — Трапецеидальная функция принадлежности О1 К3

Произведём дефаззификацию трапецеидального числа:

$$C_{13} = centr(A) = \frac{0.15 + 2 * 0.2 + 2 * 0.45 + 0.5}{6} = 0.392$$

 Таблица 5 - Объект 2 (O2), критерий 1 (К1)

	Эксперт 1	0	1	1	0
Эксперт 2		0	0,1	0,3	0,5
0	0.5	0	0	0	0
U	0,5	0,25	0,3	0,4	0,5
1	0,4	0	1	1	0
1		0,2	0,25	0,35	0,45
1	0.2	0	1	1	0
1	0,2	0,1	0,15	0,25	0,35
0	0,1	0	0	0	0
		0,05	0,1	0,2	0,3

Рисунок 4 — Трапецеидальная функция принадлежности О2 К1 Произведём дефаззификацию трапецеидального числа:

$$C_{21} = centr(A) = \frac{0.1 + 2 * 0.15 + 2 * 0.35 + 0.4}{6} = 0.25$$

Таблица 6 - Объект 2 (O2), критерий 2 (K2)

	Эксперт 1	0	1	1	0
Эксперт 2		0,3	0,5	0,7	0,9
0	0.0	0	0	0	0
	0,9	0,6	0,75	0,8	0,9
1	0,8	0	1	1	0
1		0,55	0,65	0,75	0,85
1	0.4	0	1	1	0
1	0,4	0,35	0,45	0,55	0,65
0	0,3	0	0	0	0
		0,3	0,4	0,5	0,6

Сформируем выходную трапецеидальную функцию принадлежности:

Рисунок 5 — Трапецеидальная функция принадлежности O2 K2

Произведём дефаззификацию трапецеидального числа:

$$C_{22} = centr(A) = \frac{0.4 + 2 * 0.45 + 2 * 0.75 + 0.8}{6} = 0.6$$

Таблица 7 - Объект 2 (О2), критерий 3 (К3)

	Эксперт 1	0	1	1	0
Эксперт 2		0	0,1	0,2	0,3
0	0.4	0	0	0	0
U	0,4	0,2	0,25	0,3	0,35
1	0,3	0	1	1	0
1		0,15	0,2	0,25	0,3
1	0.2	0	1	1	0
1	0,2	0,1	0,15	0,2	0,25
0	0	0	0	0	0
		0	0,05	0,1	0,15

Сформируем выходную трапецеидальную функцию принадлежности:

Рисунок 6 – Трапецеидальная функция принадлежности О2 К3

Произведём дефаззификацию трапецеидального числа:

$$C_{23} = centr(A) = \frac{0.1 + 2 * 0.15 + 2 * 0.25 + 0.3}{6} = 0.2$$

Таблица 8 - Объект 3 (ОЗ), критерий 1 (К1)

	Эксперт 1	0	1	1	0
Эксперт 2		0	0,1	0,3	0,4
0	0.4	0	0	0	0
U	0,4	0,2	0,25	0,35	0,4
1	0,3	0	1	1	0
1		0,15	0,2	0,3	0,35
1	0.2	0	1	1	0
1	0,2	0,1	0,15	0,25	0,3
0	0	0	0	0	0
		0	0,05	0,15	0,2

Рисунок 7 — Трапецеидальная функция принадлежности ОЗ К1 Произведём дефаззификацию трапецеидального числа:

$$C_{31} = centr(A) = \frac{0.1 + 2 * 0.15 + 2 * 0.3 + 0.35}{6} = 0.225$$

Таблица 9 - Объект 3 (ОЗ), критерий 2 (К2)

	Эксперт 1	0	1	1	0
Эксперт 2		0,2	0,3	0,4	0,5
0	0.4	0	0	0	0
U	0,4	0,3	0,35	0,4	0,45
1	0,3	0	1	1	0
1		0,25	0,3	0,35	0,4
1	0.2	0	1	1	0
1	0,2	0,2	0,25	0,3	0,35
0	0,1	0	0	0	0
		0,15	0,2	0,25	0,3

Сформируем выходную трапецеидальную функцию принадлежности:

Рисунок 8 – Трапецеидальная функция принадлежности ОЗ К2

Произведём дефаззификацию трапецеидального числа:

$$C_{32} = centr(A) = \frac{0.2 + 2 * 0.25 + 2 * 0.35 + 0.4}{6} = 0.3$$

Таблица 10 - Объект 3 (ОЗ), критерий 3 (КЗ)

	Эксперт 1	0	1	1	0
Эксперт 2		0,2	0,3	0,5	0,6
0	0,6	0	0	0	0
	0,0	0,4	0,45	0,55	0,6
1	0,5	0	1	1	0,55
1		0,35	0,4	0,5	
1	0,4	0	1	1	0
1	0,4	0,3	0,35	0,45	0,5
0	0,2	0	0	0	0
		0,2	0,25	0,35	0,4

Сформируем выходную трапецеидальную функцию принадлежности:

Рисунок 9 — Трапецеидальная функция принадлежности ОЗ КЗ

Произведём дефаззификацию трапецеидального числа:

$$C_{33} = centr(A) = \frac{0.3 + 2 * 0.35 + 2 * 0.5 + 0.55}{6} = 0.425$$

2) Фаза дефаззификации трапецеидального числа с помощью интегрального представления градуированного среднего значения нечёткого числа A. Построить таблицу 3×3 с чёткими значениями.

Таблица 3×3 с чёткими значениями представлена в табл. 11.

Таблица 11 - Таблица 3×3 с чёткими значениями

	K1	K2	К3
01	0.475	0.175	0.392
O2	0.25	0.6	0.2
03	0.225	0.3	0.425

Нормализуем критерии по формуле:

$$q_i^{(j)} = \begin{cases} 0, & p_i \geq \max p_i, \\ \frac{\max p_i - p_i}{\max p_i - \min p_i}, & \min p_i < p_i < \max p_i \\ 1, & p_i \leq \min p_i \end{cases}$$

Получим табл. 12.

Таблица 12

	K1	K2	К3
01	0.294118	1	0.489412
O2	0.823529	0	0.941176
О3	0.882353	0.705882	0.411765

3) Построить множество векторов весовых коэффициентов, количество которых равно N.

Построим вектор весовых коэффициентов, для n = 2:

$$w_i = \{0, 0.5, 1\}$$

Размер множества допустимых векторов весовых коэффициентов:

$$N(m,n) = \frac{(n+m-1)!}{n!(m-1)!} = \frac{(2+3-1)!}{2!(3-1)!} = \frac{1*2*3*4}{1*2*1*2} = 6$$

Построим множество векторов весовых коэффициентов:

Таблица 13

W1	W2	W3
0	0	1
0	1	0

1	0	0
0	0.5	0.5
0.5	0	0.5
0.5	0.5	0

4) Построить множество сводных показателей, количество которых равно также N.

Построим множество сводных показателей:

Таблица 14

Q1	Q2	Q3
0.489412	0.941176	0.411765
1	0	0.705882
0.294118	0.823529	0.882353
0.744706	0.470588	0.558824
0.391765	0.882353	0.6470588
0.647059	0.411765	0.794118

5) Вычислить математическое ожидание и дисперсию.

Математическое ожидание и дисперсия представлены в табл. 15.

Таблица 15

	Q1	Q2	Q3
$\overline{m{Q}}^{(f)}$	0.594510	0.588235	0.666667
$S^{(j)}$	0.235276	0.331018	0.153456

Отобразим на графике полученные отрезки:

Q1 = (0.359234; 0.829786)

Q2 = (0.257217; 0.919253)

Q3 = (0.513211; 0.820123)

Рисунок 10 – Графическое представление сводных показателей

6) Вычислить вероятность полного доминирования.

Вероятность полного доминирования j над i представлена в табл.16.

Таблица 16

j	1	2	3
1	_	$\frac{1}{2}$	$\frac{1}{2}$
2	$\frac{1}{2}$	_	$\frac{1}{3}$
3	$\frac{1}{2}$	$\frac{2}{3}$	_

7) Сделать вывод о предпочтении объекта сразу по всем критериям и с какой погрешностью.

Наиболее предпочтительным является объект 3, т.к. он имеет наибольшее мат. ожидание $\bar{Q}^{(3)}=0.667$ и наименьшую дисперсию $S^{(3)}=0.153456$, а также он доминирует над другими объектами.

Модифицируем алгоритм, добавив доп. условия на множество векторов весовых коэффициентов: $w_1 < w_2$.

Тогда множество векторов весовых коэффициентов:

Таблица 17

W1	W2	W3
0	0.5	0.5
0	1	0

Множество сводных показателей:

Таблица 18

Q1	Q2	Q3
0.744706	0.470588	0.5588235
1	0	0.705882

Математическое ожидание и дисперсия представлены в табл. 19.

Таблица 19

	Q1	Q2	Q3
$\overline{m{Q}}^{(f)}$	0.872353	0.235294	0.632353
$S^{(j)}$	0.127647	0.235294	0.073529

$$Q1 = (0.744706; 0.1)$$

$$Q2 = (0; 0.470588)$$

$$Q3 = (0.558824; 0.705882)$$

Полученные отрезки представлены на рис. 11.

Рисунок 11 – Графическое представление сводных показателей Как видно из графика, теперь отрезки не пересекаются.

Теперь наиболее предпочтительным стал объект 1, т.к. он доминирует над другими объектами, а также имеет наибольшее мат. ожидание $\bar{Q}^{(j)}=0.872353$ при небольшой дисперсии $S^{(j)}=0.127647$.

Вероятность полного доминирования j над i представлена в табл. 20.

Таблица 20

j i	1	2	3
1	_	1	1
2	0	_	0
3	1	1	_

Выводы.

В ходе выполнения лабораторной работы был применен модифицированный метод рандомизированных сводных показателей и выбран наилучший объект по трем критериям.

ПРИЛОЖЕНИЕ А

ПРОГРАММА ДЛЯ РАСЧЕТА ПОКАЗАТЕЛЕЙ ДЛЯ ВЫБОРА ОБЪЕКТА СЗИ

```
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
x = [0, 0.3, 0.35, 0.5, 0.55, 1]
y = [0, 0, 1, 1, 0, 0]
plt.plot(x, y)
plt.grid(True)
plt.show()
KO = np.array([
    [0.475, 0.175, 0.392],
    [0.25, 0.6, 0.2],
    [0.225, 0.3, 0.425]
])
W = np.array([
    [0, 0, 1],
    [0, 1, 0],
    [1, 0, 0],
    [0, 0.5, 0.5],
    [0.5, 0, 0.5],
    [0.5, 0.5, 0],
1)
KO2 = (np.max(KO) - KO) / (np.max(KO) - np.min(KO))
KO2[0, 1] = 1
KO2[1, 1] = 0
print("Нормализованная таблица 3x3:\n", KO2)
Q = np.zeros((6, 3))
for i in range(6):
    for j in range(3):
        Q[i, j] = sum(KO2[j] * W[i])
def plot otr(QQ):
    std = QQ.std(ddof=0)
    print("\nОтклонение std\n", std)
    mean = QQ.mean()
    print("\nMaт ожидание mean\n", mean)
```

```
gr = pd.DataFrame({'ot': mean - std, 'do': mean + std})
    plt.figure(figsize=(5, 1.5))
    plt.xlim(0, 1)
    plt.plot(gr.loc[0], [0, 0])
    plt.text(mean[0], 0, 'Q1')
    plt.plot(gr.loc[1], [1, 1])
    plt.text(mean[1], 1, 'Q2')
    plt.plot(gr.loc[2], [2, 2])
    plt.text(mean[2], 2, 'Q3')
    plt.show()
plot_otr(pd.DataFrame(Q))
WW = W[np.where(W[:, 0] < W[:, 1])]
print("\nWW\n", WW)
Q = np.zeros((len(WW), 3))
print("\nh\n", Q)
for i in range(len(WW)):
    for j in range(3):
        Q[i, j] = sum(KO2[j] * WW[i])
print("\nh\n", Q)
plot_otr(pd.DataFrame(Q))
```