Analisi di Immagini e Video (Computer Vision)

Giuseppe Manco

Outline

- Preliminari
- Classificazione
 - Esempio: regressione logistica
- Quali features?

Crediti

- Slides adattate da vari corsi e libri
 - Analisi di Immagini (F. Angiulli) Unical
 - Intro to Computer Vision (J. Tompkin) CS Brown Edu
 - Computer Vision (I. Gkioulekas) CS CMU Edu
 - Cmputational Visual Recognition (V. Ordonez), CS Virgina Edu
 - Pattern Recognition and Machine Learning (C. Bishop, 2005)
 - Deep Learning (Bengio, Courville, Goodfellow, 2017)

Quali features?

Quali features?

- Global features
 - Colori
 - Istogrammi
- Local features
 - Edges
 - Corners
 - Histogram of Oriented Gradients (HOG)
 - Haar Cascades
 - Scale-Invariant Feature Transform (SIFT)
 - Speeded Up Robust Feature (SURF)
 - ...

Global Features

- Rappresentazione olistica dell'immagine
- Esempio: istogramma delle intensità dell'immagine
- Immagini simili hanno istogramma simile, ma in generale non è vero il viceversa
- Permettono di rappresentare la struttura globale dell'oggetto, ma non di gestire l'occlusione, il cambiamento di punto di vista e le altre variabilità

- Le local features rappresentano un *insieme sparso* di misurazioni locali che catturano l'essenza delle strutture all'interno dell'immagine
- Diverse proprietà richieste: precise, distintive, invarianti, numerose

• Il processo di estrazione dev'essere *ripetibile* e *preciso*, in modo che le stesse features siano restituite da due immagini che riguardano lo stesso oggetto

• Le features devono essere *distintive*, in modo che le diverse strutture presenti all'interno dell'immagine possano essere discriminate

- Le local features dovrebbero essere *invarianti* rispetto a diverse trasformazioni applicate all'immagine
 - traslazioni, rotazioni, scalatura, ...

- Le features estratte devono essere abbastanza numerose da assicurare una buona copertura dell'immagine
 - ad esempio, per permettere il riconoscimento di oggetti anche parzialmente occlusi

Feature Extraction

- Passi del processo di Feature Extraction:
 - 1.Individua un insieme di keypoints o interest points (Keypoint Localization o Feature Detection)
 - 2. Determina una *interest* region intorno ad ogni keypoint
 - 3. Estrai e *normalizza* il contenuto della regione e rappresentalo mediante un *feature descriptor*

Keypoints, features and feature descriptors

- Si estrae un insieme di features da ogni immagine del training set
 - Ogni feature ha una rappresentazione multidimensionale
- Si trovano i K raggruppamenti di tutte le features
 - Ad esempio, usando il K-Means
 - Ogni feature è associata ad un cluster
- Per ogni immagine, si calcola l'istogramma delle features sui K gruppi
 - Ogni feature contribuisce al cluster a cui è associata
- L'istogramma (normalizzato) rappresenta la rappresentazione Kdimensionale dell'immagine

Keypoint Localization

- I **keypoint** (o **interest point**) sono punti *distintivi* che possono essere localizzati anche in presenza di variazioni nell'immagine, quali traslazioni o rotazioni, cambiamenti di punti di vista e presenza di rumore
- Escludiamo dai punti candidati ad essere distintivi quelli per cui non si manifestano cambiamenti in qualche direzione:
 - Non possiamo determinare il moto dei punti appartenenti ad una regione uniforme
 - Per i punti appartenenti ad una linea, possiamo misurare solo il moto perpedicolarmente alla linea

Come identificare un angolo?

Come identificare un angolo?

Si analizza una finestra

Muovendo la finestra si osserva un significativo cambiamento di intensità

Si analizza una finestra

Muovendo la finestra si osserva un significativo cambio di intensità

"flat" nessun cambiamento

"edge": cambiamento lungo una direzione

"corner": Cambiamento lungo entrambe le direzioni

Il gradiente su un punto

$$I_x = \frac{\partial I}{\partial x}$$

array of y gradients

$$I_y = \frac{\partial I}{\partial y}$$

Cambio di intensità intorno allo shift [u,v]:

$$E(u,v) = \sum_{x,y} w(x,y) \Big[I(x+u,y+v) - I(x,y) \Big]^2$$
Error Window Shifted Intensity Intensity

Window function
$$w(x,y) = 0$$
1 in window, 0 outside Gaussian

I(x,y)

Cambio di intensità intorno allo shift [u,v]:

$$E(u,v) = \sum_{x,y} w(x,y) [I(x+u,y+v) - I(x,y)]^{2}$$

- Come cambia E(u, v) per piccoli cambiamenti di u, v?
 - Approssimazione di Taylor al secondo ordine!

$$F(\delta x) \approx F(0) + \delta x \frac{dF(0)}{dx} + \frac{1}{2} \delta x^2 \frac{d^2 F(0)}{dx^2}$$

Cambio di intensità intorno allo shift [u,v]:

$$E(u,v) = \sum_{x,y} w(x,y) [I(x+u,y+v) - I(x,y)]^{2}$$

$$F(\delta x) \approx F(0) + \delta x \frac{dF(0)}{dx} + \frac{1}{2} \delta x^2 \frac{d^2 F(0)}{dx^2}$$

$$E(u,v) \approx E(0,0) + \begin{bmatrix} u & v \end{bmatrix} \begin{bmatrix} E_u(0,0) \\ E_v(0,0) \end{bmatrix} + \frac{1}{2} \begin{bmatrix} u & v \end{bmatrix} \begin{bmatrix} E_{uu}(0,0) & E_{uv}(0,0) \\ E_{vu}(0,0) & E_{vv}(0,0) \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix}$$

$$E(u, v) = \sum_{x,y} w(x, y) [I(x + u, y + v) - I(x, y)]^{2}$$

$$E(u,v) \approx E(0,0) + \begin{bmatrix} u & v \end{bmatrix} \begin{bmatrix} E_u(0,0) \\ E_v(0,0) \end{bmatrix} + \frac{1}{2} \begin{bmatrix} u & v \end{bmatrix} \begin{bmatrix} E_{uu}(0,0) & E_{uv}(0,0) \\ E_{vu}(0,0) & E_{vv}(0,0) \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix}$$

$$E_u(0,0) = E(0,0) = E_v(0,0) = 0$$

$$E_{uu}(0,0) = \sum_{xy} 2w(x,y)I_{x}(x,y)I_{x}(x,y)$$

$$E_{uv}(0,0) = \sum_{xy} 2w(x,y)I_x(x,y)I_y(x,y)$$

$$E(u,v) = \sum_{x,y} w(x,y) [I(x+u,y+v) - I(x,y)]^{2}$$

$$E(u,v) \approx \frac{1}{2} \begin{bmatrix} u & v \end{bmatrix} \begin{bmatrix} \sum_{xy} 2w(x,y)I_{x}^{2}(x,y) & \sum_{xy} 2w(x,y)I_{x}(x,y)I_{y}(x,y) \\ \sum_{xy} 2w(x,y)I_{x}(x,y)I_{y}(x,y) & \sum_{xy} 2w(x,y)I_{y}^{2}(x,y) \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix}$$

$$E(u,v) = \sum_{x,y} w(x,y) [I(x+u,y+v) - I(x,y)]^{2}$$

$$E(u, v) \approx \begin{bmatrix} u & v \end{bmatrix} M \begin{bmatrix} u \\ v \end{bmatrix}$$

$$M = \sum_{xy} w(x,y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

Visualizzazione

Poiché M è simmetrica,

$$M = R^{-1} \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} R$$

Equazione dell'ellisse

$$\begin{bmatrix} u & v \end{bmatrix} M \begin{bmatrix} u \\ v \end{bmatrix} = \text{const}$$

$$R = \det(M) - \alpha Tr(M)^2 = \lambda_1 \lambda_2 - \alpha (\lambda_1 + \lambda_2)^2$$

Harris Detector

1. Calcola le derivate di un'immagine

$$I_{x} = G_{\sigma}^{x} * I \qquad \qquad I_{y} = G_{\sigma}^{y} * I$$

2. Calcolo i prodotti per ogni pixel

$$I_x^2 = I_x I_x \qquad I_y^2 = I_y I_y \qquad I_{xy} = I_x I_y$$

3. Calcola la somma dei prodotti ad ogni pixel

$$S_x^2 = G_{\sigma'} * I_x^2$$
 $S_y^2 = G_{\sigma'} * I_y^2$ $S_{xy} = G_{\sigma'} * I_{xy}$

Harris Detector

4. Calcola la matrice per ogni pixel

$$M = \begin{bmatrix} S_x^2 & S_{xy} \\ S_{xy} & S_y^2 \end{bmatrix}$$

5. Calcola il responso

$$R = \det(M) - \alpha Tr(M)^2$$

- 6. Applica una soglia a R
- 7. Calcola la non-maximal suppression

Calcolo di R

Thresholding

Non-maximal suppression

Qual è la qualità?

- Invarianza
 - Rotazione?
 - Variazioni di intensità?
 - Scala?