Esame scritto ALAN 22-01-2021, prima parte. Prof. Rossi

1) Data la matrice
$$A = \begin{pmatrix} 1 & 1 & -1 \\ 2 & 1 & 1 \\ 1 & 0 & 2 \\ 1 & -2 & 8 \end{pmatrix} \in \mathrm{M}_{4,3}(\mathbb{R})$$

- a) calcolare rk(A).
- b) determinare le soluzioni $X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ del sistema lineare omogeneo AX = 0.

2) Sia
$$\lambda \in \mathbb{R}$$
, si considerino le matrici reali $A_{\lambda} = \begin{pmatrix} \lambda + 1 & 2 & -1 \\ 1 & \lambda & 2 \\ 2 & 2 & 0 \end{pmatrix}$ e $B = \begin{pmatrix} 1 \\ -2 \\ 0 \end{pmatrix}$.

- a) Dire per quali $\lambda \in \mathbb{R}$ la matrice A_{λ} è invertibile.
- b) Esistono valori di $\lambda \in \mathbb{R}$ per i quali il sistema $A_{\lambda}X = B$ ammette infinite soluzioni? In caso affermativo determinarli.
- c) Determinare i valori di $\lambda \in \mathbb{R}$ per i quali il sistema omogeneo $A_{\lambda}X=0$ ammette soluzioni non nulle?
- 3) Dire se le seguenti affermazioni sono vere o false.
- a) Se A una matrice nilpotente (ossia esiste un intero positivo $\mathfrak n$ tale che $A^\mathfrak n=\mathfrak 0$), allora $\det A=\mathfrak 0$.
 - b) Se A una matrice simmetrica, allora A^2 è simmetrica.
- c) Sia $A\in \mathrm{M}_{3,2}(\mathbb{R})$ di rango 2, allora il sistema lineare AX=B ammette soluzioni comunque si scelga la matrice B dei termini noti.

4) Dati i vettori
$$v_1 = \begin{pmatrix} 2 \\ -1 \\ 0 \end{pmatrix}, v_2 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, v_3 = \begin{pmatrix} -1 \\ 2 \\ 3 \end{pmatrix}, v_4 = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} \text{ di } \mathbb{R}^3, \text{ sia } V = \langle v_1, v_2 \rangle.$$

- a) Stabilire se v_3 è combinazione lineare di v_1 e v_2 e, in caso affermativo, determinare i coefficienti della combinazione lineare.
 - b) Dire se $V = \langle \nu_1, \nu_3 \rangle$ e se $V = \langle \nu_1, \nu_4 \rangle$.
 - c) Completare una base di V a base di \mathbb{R}^3 .