ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

КОЛЬЦА ПРУЖИННЫЕ УПОРНЫЕ ПЛОСКИЕ НАРУЖНЫЕ ЭКСЦЕНТРИЧЕСКИЕ И КАНАВКИ ДЛЯ НИХ

Конструкция и размеры

Retaining spring flat eccentric rings for shafts and grooves for them. Construction and dimensions

ГОСТ 13942—86

OKII 45 9830

Срок действия

с 01.01.88

Несоблюдение стандарта преследуется по закону

- 1. Настоящий стандарт распространяется на пружинные упорные плоские наружные эксцентрические кольца классов точности А, В и С и канавки для них, предназначенные для закрепления от осевого смещения подшипников качения и других деталей на валах диаметром от 4 до 200 мм.
- 2. Конструкция и размеры колец и канавок для них должны соответствовать указанным на чертеже и в таблице.

^{*} Размер для справок.

Кольцо Канавка Доли и в в в в в в в в в в в в в в в в в в	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	E
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ая осе- Ка, * К
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Допускаемая осе- вая нагрузка, * кН
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,60
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,90
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,06
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1,68
	1,96
12 11,0 14,2 19,6 11,3	$\frac{2,77}{3,39}$
13 11,9 15,1 2,0 3,4 2,0 20,8 12,2	3,96
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{4,27}{5,13}$
16 14 7 -0,30 17 0 2.2 3.7 3.0 15.0	6,08
17 15,7 18,9 2,3 3,8 2,5 25,6 16,0	6,47
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8,15
<u>19 17,5 21,5 20 2,5 27,8 17,8 15,5</u>	8,66
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{10,6}{11,7}$

				#			Pa	зме	рыв	мм		. :	<u> </u>			DOGOAM	сение
8						Кол	ьцо							Кан	авка		E
диамет наметр		d ₂								·			đ	1	m.		ая осе- ка, * к
Условный диаметр кольца (днаметр вала) d	Номин.	Пред. откл.	.d ₃	d.	. s	b ≈	<i>а,</i> не более	! ≈	<i>г</i> ₂ , не более	f 1 ≈	<i>D</i> , не менее	е, (справ)	Номин.	Пред. откл.	(поле допус- ка Н13)	<i>h</i> , не менее	Допускаемая осе- вая нагрузка, * кН
23	21,1		24,9		l	2,9	4,3				32,4	0,8	21,5				12,7
24	22,1		26,5			3,0	4,4				33,8	0,9	22,5			1,7	13,7
25	23,1		27,5		`					my 41-1	34,8	0,9	23,5			1,7	14,2
26	24,0	+0,21 -0,42	28,2	2,0]	3,1	4,5		1,0		36,0		24,5	0,21			14,9
28	25,8	0,12	30,0		1,2	3,2	4,7	3,0		-	38,4	1,0	26,5		1,4		16,0
$\frac{29}{30}$	26,8		31,8			3,4	4,8				39,6		27,5			2,1	16,7
32	27,8 29,5		32,8			3,5	$\frac{5,0}{5,2}$				41,0		28,5				17,1
34	31,4		37,2			3,8	5,4				43,4	1,1	30,2			2,6	22,0 22,3
35	32,2		37,8			3,9				3,0	45,8		32,0				$\frac{22,3}{26,7}$
36	33,0	$^{+0,25}_{-0,50}$	38,6			4,0	5,6				48,2	1,2	34,0				$\frac{20,7}{27,4}$
37	34,0	-0,50	39,6			4,1	5,7		,		49,2	.,~	35,0			3,0	28,2
38	35,0		41,2	2,5		4,2	5,8		2,0		50,6		36,0	0,2 5			29,0
40	36,5		42,7		1,7	4,4	6,0	5,0			53,0		37,5		1,9		39,0
42	38,5		44,7			4,5	6,5				56,0	ا ، ا	39,5				40,0
45	41,5	+0.39 -0.78	48,3			4,7	6,7				59,4	1,4	42,5			3,8	42,9
46	42,5	0,10	49,3	.		4,8	6,8	1			61,4		43,5				43,9
48	44,5		51,3	l		5,0	6,9		·		62,8		45,5				45,7

Размеры в мм	Þ	a	3	М	e	D	ы	В	MМ
--------------	---	---	---	---	---	---	---	---	----

									рыв	MI III							
Δ.	<u> </u>					Коль	цо				2.42			Кан	авка		×
і диамет] циаметр		d ₂	d ₃			ь	a,	,	r ₂ ,	F 1	D,		d	1	т, (поле	h,	мая осе-
Условный диаметр кольца (днаметр вала) d	Номин.	Пред. откл.	23 ~	di	S	, s	не более	23	не более	~	не менее	е, (справ)	Номин.	Пред. откл.	допус- ка Н13)	не менее	Допускаемая осе- вая нагрузка, * кН
50	45,8		52,8			5,1	6,9	5,0			64,8		47,0	0,2 5			57,0
52	47,8	+0,39 -0,78	54,8			5,2	7,0				67,0		49,0				59,4
54	49,8		56,8			5,3	7,0				68,0	1,5	51,0				61,7
55	50,8		57,8	2,5	2,0	5,4	7,2		1	•	70,4		52,0		2,2		62,9
56	51,8		56,8	-,0	_,,	5,5	7,3				71,6		53,0				64,0
58	53,8		61,4			5,6	7,0				73,6		55,0				66,4
_60	55,8		63,4			5,8	7,4				75,8		57,0			4,5	68,8
62	57,8		65,4			6,0	7,5				78,0	.]	59,0			.,0	71,1
65	60,8		70,2			6,3	7,8		2,0	4,0	81,6	1,7	62,0	 0,30			74,7
6 8	63,6	10.46	73,0			6,5	8,0	6,0	-,-	','	85,0		65,0	-0,50			78,2
_70	65,6	+0,46 -0,92	75,0			6,6	8,1	0,0			87,2		67,0				80,6
	67,6		78,2	3,0		6,8	8,2				89,4		69,0				82,9
7 5	70,6		80,6	3,0	2,5	7,0	8,4				92,8		72,0		2,8		86,4
78	73,5		84,3		,_	7,3	8,6				96,2		75,0				90,0
80	75,0		85,8			7,4	0,0				98,2	2,0	76,5		· '		107
82	77,0	-	87,8	<u> </u>		7,6	8,7				101,0	2,0	78,5	<u> </u>		5,3	109
85	79,5		91,5	3,5		7,8	0,1	. 75 2			104,0		81,5	-0,35		-,,,	114
	1		1	ļ				i									i

Размеры в мм

<u> </u>						Кол	ьцо							Қан	авка		I
Условный диаметр кольца (диаметр вала) d		d ₂	d_3			ь	а,	ı	r ₂ ,	r,	D,	e,	d	1	т, (поле	h,	емая осе- узка, * кН
Условны кольца (вала) d	Номин.	Пред. откл.	**	đ.	s	~	не более	*	не более	. %	не менее	(справ)	Номин.	Пред. откл.	допус- ка Н13)	не менее	Допускаемая вая нагрузка,
88	82,5		94,5			8,0					107,0		84,5		2,8		118
90	84,5		96,1			8,2	8,8				109,0	1	86,5				121
92	86,5		$\frac{99,3}{102,3}$			8,3	9,4	6,0	2,0		110,0 115,0		88,5 91,5	0,35		5,3	124 128
98	92,5		105,3			8,9	9,5				120,0	į.	94,5				132
100	94,5		108,1			9,0	9,6				121,0	i	96,5				135
102	95,0	+0,54	109,0	3,5		9,1	9,7			4,0	126,0	1	97,0				195
105	98,0	-1,08	112,0			9,3	9,9				128,0	ı	100,0				204
108	$\frac{101,0}{103,0}$		$\frac{115,0}{117,0}$		3,0	9,4	10,0				$\frac{129,0}{132,0}$	i	$\frac{103,0}{105,0}$	0,5 4	3,4		$\frac{207}{211}$
112	105,0		$\frac{117,0}{110,0}$			$\frac{9,6}{9,7}$	$\frac{10,1}{10,2}$				133,0	1	107,0	0,54	0,4		215
115	108,0		122,0			9,8	10,6	8,0	3,0		138,0	ł	110,0				221
120	113,0		128,6			10,2	11,0				143,0		115,0			6,0	223
125	118,0		132,0			10,4	11,4				149,0	1	120,0				_240_
130	122,5	10.00	138,9			10,7	11,6				155,0	1	$\frac{125,0}{120,0}$	0.60			250
140	127,5 132,5	+0.63 -1.26	$\frac{143,5}{148,9}$	4,0		$\frac{11,0}{11,2}$	11,8			5,0	$\frac{160,0}{165,0}$		$\frac{130,0}{135,0}$	0,6 3			260 270
	137,5		155,1			11,5	$\frac{12,0}{12,2}$				171,0	1	140,0				280

								. 620 ±	<u>.</u>								
	1					Кол	ьцо				1			Кан	авка		Į Į.
диамет) аметр		d_2											d	! ₁	m,		ая осе. зка, * к
Условный диаметр кольца (диаметр вала) d	Номин.	Пред. откл.	<i>d</i> ₃ ≈	đ.	s	<i>b</i> ≈	а, не более	l ≈	г ₂ , не более	<i>r</i> ₁ ≈	<i>D</i> , не менее	е, (справ)	Номин.	Пред. откл.	(поле допус- ка ИИЗ)	<i>h</i> , пе менее	Допускаемая осе- вая нагрузка, * кН
150	142,5		160,1			11,8	13,0				177,0	2,8	145,0				289
155	147,5		165,7			12,0			3,0	5,0	182,0		150,0				299
160	152,5		170,7			12,2	13,3		, ,	٠, -	188,0		155,0	1			308
165	157,0	$^{+0,63}_{-1,26}$	176,6			12,5	13,5	:			193,0		160,0				318
170	162,0	-1,26	181,6	4,0	3,0	12,9		8,0			197,0		165,0	·	3,4	7,5	328
175	167,0		186,6	,,,		12,3		'			202,0		170,0				338
180	172,0		192,8	-		13,5			_		208,0		175,0				347
185	177,0		197,8			10,0					213,0		180,0				358
190	182,0	+0,72	202,8			14,0					219,0		185,0				368
200	192,0	-1,44	212,8	l	l	14,0		1			229,0		195,0	-,			387

Примечания:

- 1. Размеры d_3 , b, l и r_1 допускается корректировать при изготовлении колец.
- 2. Допускается в изделиях, спроектированных до 01.01.88, применять кольца с размером а большим, чем задано в таблице, если это не влияет на собираемость изделия.
 - 3. Осевая нагрузка определена для условий:
 - а) рабочие кромки кольца острые;
 - б) углы у основания и наружная кромка канавки без скругления или фаски;
 - в) закрепляемая деталь установлена на валу без зазора;
 - г) прилегающая к кольцу поверхность закрепляемой детали без скругления или фаски; д) предел прочности материала вала не менее 300 H/мм²,

C. 8 FOCT 13942-86

Пример условного обозначения пружинного упорного плоского наружного эксцентрического кольца класса точности A с условным диаметром 30 мм из стали 65Г без покрытия:

Кольцо АЗО ГОСТ 13942-86

То же класса точности В, из стали марки 60С2А с кадмиевым покрытием толщиной 6 мкм, хроматированным:

Кольцо В30.602СА.К∂6.хр ГОСТ 13942—86

- 3. Технические требования по ГОСТ 13944—86.
- 4. Теоретическая масса колец приведена в справочном приложении.

ПРИЛОЖЕНИЕ Справочное

МАССА СТАЛЬНЫХ КОЛЕЦ

Условный диаметр кольца, мм	Теоретичес- кая масса 1000 колец, кг≈	Условный диаметр кольца, мм	Теоретичес- кая масса 1000 колец, кг≈	Условный диаметр кольца, мм	Теоретичес- кая масса 1000 колец, кг≈
4	0,021	35	6,300	90	47,615
5	0,066	36	6,563	92	48,007
6	0,107	37	6,763	95	49,607
7	0,140	38	6,963	98	50,207
8	0,440	40	7,267	100	50,671
9	0,460	42	7,564	102	55,071
10	0,490	45	8,067	105	66,871
11	0,510	46	8,367	108	68,671
12	0,520	48	8,767	110	70,071
13	0,550	50	12,994	112	71,271
14	0,600	52	13,494	115	73,280
15	0,639	54	13,794	120	76,570
16	1,043	55	14,294	125	79,825
17	1,058	56	14,594	130	92,325
18	1,117	58	15,094	135	95,925
19	1,447	60	15,494	140	101,925
20	1,665	62	15,994	145	103,025
22	1,885	65	20,445	150	106,675
23	2,000	68	25,883	155	110,075
24	2,004	70	26,683	160	113,675
25	2,684	72	27,483	165	117,175
26	2,782	7 5	28,614	170	120,875
28	2,892	78	31,914	175	124,374
29	2,992	80	34,914	180	127,870
30	3,102	82	36,214	185	131,570
32	3,342	85	37,114	190	134,960
34	3,552	88	38,414	200	142,070

ИНФОРМАЦИОННЫЕ ДАННЫЕ

1. РАЗРАБОТАН И ВНЕСЕН Государственным комитетом СССР по стандартам

ИСПОЛНИТЕЛИ

- Л. А. Коноров, канд. техн. наук; А. В. Громак; Н. А. Автухова
- 2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государ-ственного комитета СССР по стандартам от 20.12.86 № 4447
- 3. B3AMEH FOCT 13942-68
- 4. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссылка	Номер пункта
ГОСТ 13944—86	3