

CÉSAR VALLEJO

CÉSAR VALLEJO

ÁLGEBRA

Expresiones con valor absoluto e irracionales

Semana 04

Docente: Gustavo Poma Quiroz

VALOR ABSOLUTO

El valor absoluto de un número real x denotado por |x| se define de la siguiente manera

$$|x| = \begin{cases} x & ; x > 0 \\ 0 & ; x = 0 \\ -x & ; x < 0 \end{cases}$$

Ejemplos
•
$$|3, 14-\pi| = -(3, 14-\pi) = \pi - 3, 14$$
.
• $|13| = 13$
• $|-9| = -(-9) = 9$

•
$$|\overline{13}| = 13$$
 • $|-9| = -(-9) = 9$

•
$$|0| = 0$$
 • $\left| -\sqrt{5} \right| = -(-\sqrt{5}) = \sqrt{5}$

$$|x| = x$$
 En forma práctica, las positivo barras se eliminan.

$$|x| = -x$$
 En forma práctica, le negativo cambiamos de signo.

•
$$|x^2 + 5| = x^2 + 5$$
 Como $x^2 \ge 0$; $\forall x \in \mathbb{R}$ siempre positivo

•
$$|3^{x} + 2| = 3^{x} + 2$$
 Como $3^{x} > 0$
siempre es (+) $\rightarrow 3^{x} + 2 > 2$

•
$$||x| + 1| = |x| + 1$$
 Como $|x| \ge 0$; $\forall x \in \mathbb{R}$ siempre positivo $\rightarrow |x| + 1 \ge 1$

TEOREMAS CON VALOR ABSOLUTO

Considere que cada expresión este bien definida en los

1.
$$|x| \ge 0 \quad \forall x \in \mathbb{R}$$
 2. $|xy| = |x||y|$

2.
$$|xy| = |x||y|$$

3.
$$|-x| = |x|$$

•
$$|x+9| \ge 0, \forall x \in \mathbb{R}$$

•
$$|3x| = |3||x| = 3|x$$

$$|X(X-T)| = |X| |X-T$$

•
$$|x + 9| \ge 0, \forall x \in \mathbb{R}$$
 • $|3x| = |3||x| = 3|x|$ • $|3 - x| = |-(3 - x)|$
• $|x - 5| \ge 0, \forall x \in \mathbb{R}$ • $|x(x - 1)| = |x| |x - 1|$ = $|x - 3|$

4.
$$\left| \frac{x}{y} \right| = \frac{|x|}{|y|}$$
; $y \neq 0$ **5.** $|x|^2 = |x^2| = x^2$ **6.** $\sqrt{x^2} = |x|$

5.
$$|x|^2 = |x^2| = x^2$$

6.
$$\sqrt{x^2} = |x|$$

$$\left| \frac{x-3}{x+2} \right| = \frac{|x-3|}{|x+2|} \quad | \cdot |x-4|^2 = (x-4)^2 \quad | \cdot \sqrt{(x-3)^2} = |x-3|$$

$$\cdot (x-2)^2 = |x-2|^2 \quad | \cdot \sqrt{(x-3)^2} = |x-3|$$

•
$$|x-4|^2 = (x-4)^2$$

$$(X-2)^2 = |X-2|^2$$

$$\sqrt{(x-3)^2} = |x-3|$$

$$\sqrt{(7-x)^2} = |7-x|$$

Consecuenci

|3x - 6| = 3|x - 2||-4x - 20| = 4|x + 5|

$$|a-b| = |b-a|$$

$$\sqrt[2n]{x^{2n}} = |x| \; ; \quad n \in \mathbb{N}$$

•
$$\sqrt[4]{(x-3)^4} = |x-3|$$

ECUACIONES CON VALOR ABSOLUTO

Son ecuaciones donde la incógnita este afectado del valor absoluto.

Ejemplos

- |3x 2| = 15
- $|x^2 + x 12| = |2x + 4|$

Resolución de ecuaciones con valor absoluto

Tener en cuenta la definición y propiedades del valor absoluto en el proceso de la resolución de la ecuación.

Teoremas

- $|x| = a \leftrightarrow a \ge 0 \land (x = a \lor x = -a)$
- $|x| = |a| \leftrightarrow x = a \lor x = -a$

Aplicación:

Resolver $|x^2 - 2| = x$ e indicar la suma de sus cuadrados de las soluciones

- A) 12 B) 13 C) 5 D) 10 E) 25

Resolución:

$$|x^2 - 2| = x$$

$$x^2 - x - 2 = 0$$
 y $x^2 + x - 2 = 0$

$$X = 2 \lor X = -1 \lor X = -2 \lor X = 1$$

No
No

$$902^2 + 1^2 = 5$$

INTENSIVO UNI		
Aplicación:		
Determine el producto de soluciones de la	80 Product (3)/11	
ecuación: $ 2x - 1 + 6x - 3 = 5 - 10x - x + 2 $	Soluciones: $(3)(-\frac{1}{3}) = -1$	
A) 2 B) 8 C) 0 D) -6 E) -1		
Resolución:		
2x-1 +3 2x-1 =5 1-2x - x+2		
4 /2x-1 = 5 /2x-1 - x+2		
X+2 = 2X-1		
$(-1)^{-1}$		
$7 = \times$ $\sqrt{3} \times = -1$		
$\lambda = -1/2$		
		CÉSAR VALLEJO

INTENSIVO UNI

INECUACIONES CON VALOR ABSOLUTO

Son inecuaciones en donde la incógnita se encuentra afectada por el valor absoluto.

Ejemplos

•
$$|x-7| \le 3$$
 • $|2x+1| > x+3$

Para la resolución utilizaremos los siguientes teoremas

Teorema 1

$$|x| < a \leftrightarrow \{a > 0 \land (-a < x < a)\}$$

$$|x| \le a \leftrightarrow \{a \ge 0 \land (-a \le x \le a)\}$$

Ejemplo

•
$$|x| < 5 \leftrightarrow -5 < x < 5$$

•
$$|x| \le 7 \leftrightarrow -7 \le x \le 7$$

Ejercicio:

Resuelva la inecuación siguiente
$$|2x - 19| \le 13 - x$$

Interject.

$$(-13-x \ge 0 \land -(13-x) \le 2x-19 \le 13-x)$$

$$|3> \times$$
 $-13+x \leq 2x-19 \times 2x-19 \leq 13-x$

$$X \leq \frac{32}{3}$$

$$|x-y|+|x-2|=10$$

Puritoj 1; 2

EXPRESIONES IRRACIONALES

Conjunto de valores admisible (CVA)

Es el conjunto de valores reales de la variable que garantiza la existencia de la expresión en \mathbb{R} .

Tener en cuenta para el cálculo del CVA.

$$\begin{array}{c}
\geqslant 0 \\
\hline
\text{Par} \sqrt{f_{(x)}} \in \mathbb{R} \iff f_{(x)} \geq 0
\end{array}$$

$$\sqrt[\text{Impar}]{g_{(x)}} \in \mathbb{R} \iff x \in \mathbb{R}$$

$$\frac{\boldsymbol{P}_{(x)}}{\boldsymbol{Q}_{(x)}} \in \mathbb{R} \quad \Leftrightarrow \quad \boldsymbol{Q}_{(x)} \neq \mathbf{0}$$

ECUACIONES IRRACIONALES

Son aquellas ecuaciones donde al menos en uno de los lados presenta una expresión irracional.

Ejemplos

•
$$\sqrt{3x+8} = x - 13$$

•
$$\sqrt[3]{x^3 + 8x + 19} = x + 5$$

Resolución de la ecuación irracional

Existen varios métodos para resolver ecuaciones irracionales, entre ellas tenemos:

Primer método

Utilizar la potenciación para eliminar los radicales y luego verificar los valores obtenidos en la ecuación inicial.

- ACADEMIA -CÉSAR VALLEJO

GRACIAS

academiacesarvallejo.edu.pe