titioner's Docket No.: 830 010

PATENT

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re the application of:

GRAY, Philip and MALFAIT, Ludovic

Ser. No.: 10/757,365

Group Art Unit: 2644

Filed: January 14, 2004

Examiner: Not assigned

Conf. No.: 3315

For:

QUALITY ASSESSMENT TOOL

I hereby certify that this correspondence is being deposited with the United States Postal Service "Express Mail Post Office to Addressee" service under 37 CFR 1.10 on May 24, 2004 under "EXPRESS MAIL" mailing label number EV 37308 3738 US addressed to:

Mail Stop Missing Parts Commissioner for Patents

P.O. Box 1450

Alexandria, VA 22313-1450.

Commissioner for Patents P.O. Box 1450 Alexandria, VA 22313-1450

SUBMISSION OF CERTIFIED COPY OF PRIORITY DOCUMENT

Sir:

The benefit of the filing date of the following prior foreign application filed in the following foreign country was requested by applicants on January 14, 2004 for the above-identified application:

> Country Application Number Filing Date

> Europe 03250333.6 01/18/2003

In support of this claim, a certified copy of the European Application is enclosed herewith.

Respectfully submitted,

May 24, 2004 Date

Kevin C. Brown

Reg. No. 32,402

KCB:jms

BURR & BROWN P.O. Box 7068 Syracuse, NY 13261-7068

Customer No.: 25191 Telephone: (315) 233-8300

Facsimile: (315) 233-8320

THIS PAGE BLANK (USPTO)

Europäisches **Patentamt**

European **Patent Office** Office européen des brevets

Bescheinigung

Certificate

Attestation

Die angehefteten Unterlagen stimmen mit der ursprünglich eingereichten Fassung der auf dem nächsten Blatt bezeichneten europäischen Patentanmeldung überein.

The attached documents are exact copies of the European patent application described on the following page, as originally filed.

Les documents fixés à cette attestation sont conformes à la version initialement déposée de la demande de brevet européen spécifiée à la page suivante.

Patentanmeldung Nr.

Patent application No. Demande de brevet n°

03250333.6

Der Präsident des Europäischen Patentamts; Im Auftrag

For the President of the European Patent Office

Le Président de l'Office européen des brevets p.o.

R C van Dijk

THIS PAGE BLANK (USPTO)

European Patent Office

Office européen des brevets

Anmeldung Nr:

Application no.:

03250333.6

Demande no:

Anmeldetag:

Date of filing:

18.01.03

Date de dépôt:

Anmelder/Applicant(s)/Demandeur(s):

Psytechnics Ltd Fraser House, 23 Museum Street Ipswich, Suffolk IP1 1HN GRANDE BRETAGNE

Bezeichnung der Erfindung/Title of the invention/Titre de l'invention: (Falls die Bezeichnung der Erfindung nicht angegeben ist, siehe Beschreibung. If no title is shown please refer to the description. Si aucun titre n'est indiqué se referer à la description.)

Quality assessment tool

In Anspruch genommene Prioriät(en) / Priority(ies) claimed /Priorité(s) revendiquée(s)
Staat/Tag/Aktenzeichen/State/Date/File no./Pays/Date/Numéro de dépôt:

Internationale Patentklassifikation/International Patent Classification/Classification internationale des brevets:

G10L/

Am Anmeldetag benannte Vertragstaaten/Contracting states designated at date of filing/Etats contractants désignées lors du dépôt:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR LI

THIS PAGE BLANK (USPTO)

QUALITY ASSESSMENT TOOL

This invention relates to a non-intrusive speech quality assessment system.

5

10

15

20

Signals carried over telecommunications links can undergo considerable transformations, such as digitisation, encryption and modulation. They can also be distorted due to the effects of lossy compression and transmission errors.

Objective processes for the purpose of measuring the quality of a signal are currently under development and are of application in equipment development, equipment testing, and evaluation of system performance.

Some automated systems require a known (reference) signal to be played through a distorting system (the communications network or other system under test) to derive a degraded signal, which is compared with an undistorted version of the reference signal. Such systems are known as "intrusive" quality assessment systems, because whilst the test is carried out the channel under test cannot, in general, carry live traffic.

25

Conversely, non-intrusive quality assessment systems are systems which can be used whilst live traffic is carried by the channel, without the need for test calls.

Non-intrusive testing is required because for some testing it is not possible to make test calls. This could be because the call termination points are geographically diverse or unknown. It could also be that the cost of capacity is particularly high on the route under test. Whereas, a non-intrusive monitoring application can run all the time on the live calls to give a meaningful measurement of performance.

- 10 A known non-intrusive quality assessment system uses a database of distorted samples which has been assessed by panels of human listeners to provide a Mean Opinion Score (MOS).
- MOSs are generated by subjective tests which aim to find the average user's perception of a system's speech quality by asking a panel of listeners a directed question and providing a limited response choice. For example, to determine listening quality users are asked to rate "the quality of the speech" on a five-point scale from Bad to Excellent. The MOS, is calculated for a particular condition by averaging the ratings of all listeners.
- In order to train the quality assessment system each parameterised and a combination of the 25 sample determined which provides the best is parameters prediction of the MOSs indicted by the human listeners. WO Patent Application number International describes one method for paramterising speech samples for use in a non-intrusive quality assessment system. 30

However, one problem with such a known system is that a combination of a single set of parameters for all samples is not effective for providing an accurate prediction when there are many different types of distortion which can occur.

The inventors have discovered that for most samples a particular type of distortion predominates - for example,

10 low signal to noise ratio, parts of the signal are missing, coding distortions, abnormal noise characteristics, or acoustic distortions are present.

According to the invention there is provided a method of training a quality assessment tool comprising the steps of 15 dividing a database comprising a plurality of samples, an associated mean opinion score into a each with plurality of distortion sets of samples according to a distortion criterion; and training a distortion specific assessment handler for each distortion set, such that a 20 quality specific measure between distortion distortion specific plurality generated οf from а for a sample and the mean opinion score parameters associated with said sample is optimised.

25

30

5

The quality assessment tool can be further improved if non-distortion specific parameters are combined with the distortion specific quality measure as a further parameter and the tool is then trained to optimise a fit between these parameters and the mean opinion scores.

Therefore, the method advantageously further comprises the steps of training the quality assessment tool, such that a fit between a quality measure generated from a non-distortion specific plurality of parameters together with a distortion specific quality measure for a sample, and the mean opinion score associated with said sample, is optimised.

- According to a second aspect of the invention there is 10 also provided a method of assessing speech quality in a steps network comprising the telecommunications determining a dominant distortion type for a sample; combining a plurality of parameters specific to said dominant distortion type to provide a distortion specific 15 quality measure for each sample; and generating a quality measure in dependence upon the distortion specific quality measure.
- Preferably the generating step comprises the sub step of combining a non-distortion specific plurality of parameters with said distortion specific quality measure to provide said quality measure.
- According to a third aspect of the invention there is 25 provided an apparatus for assessing speech quality in a means telecommunications network comprising determining a dominant distortion type for a sample; means specific plurality combining а distortion distortion specific quality parameters to provide a 30

measure for each sample; and means for generating a quality measure in dependence upon the distortion specific quality measure.

- In a preferred embodiment the generating means comprises means for combining a non-distortion specific plurality of parameters with said distortion specific quality measure to provide said quality measure.
- According to a further aspect of the invention there is 10 provided an apparatus for training a quality assessment tool comprising means for dividing a database comprising a plurality of samples, each with an associated mean opinion score into a plurality of distortion sets of samples distortion criterion; and means for according to а 15 training a distortion specific assessment handler for each distortion set, such that a fit between a distortion specific quality measure generated from a distortion specific plurality of parameters for a sample and the mean opinion score associated with said sample is optimised. 20

further comprises means for Preferably the apparatus training the quality assessment tool, such that a fit between a quality measure generated from a non-distortion plurality of parameters together specific distortion specific quality measure for a sample, and the opinion score associated with said sample, is optimised.

25

30 Preferably the samples represent speech transmitted over a

telecommunications network, and in which the quality measure is representative of the quality of the speech perceived by an average user.

5 Embodiments of the invention will now be described, by way of example only, with reference to the accompanying drawings, in which:

Figure 1 is a schematic illustration of a non-intrusive quality assessment system;

Figure 2 is a schematic illustration showing possible non-intrusive monitoring points in a network;

15 Figure 3 is a flow chart illustrating training a quality assessment tool according to the present invention;

Figure 4 is a is flow chart further illustrating training a quality assessment tool according to the present invention; and

20

Figure 5 is a flow chart illustrating the operation of an assessment tool of the present invention.

25 Referring to Figure 1, a non-intrusive quality assessment system 1 is connected to a communications channel 2 via an interface 3. The interface 3 provides any data conversion required between the monitored data and the quality assessment system 1. A data signal is analysed by the quality assessment system, as will be described later and

the resulting quality prediction is stored in a database 4. Details relating to data signals which have been analysed are also stored for later reference. Further data signals are analysed and the quality prediction is updated so that over a period of time the quality prediction relates to a plurality of analysed data signals.

The database 4 may store quality prediction results from a plurality of different intercept points. The database 4 may be remotely interrogated by a user via a user terminal 5, which provides analysis and visualisation of quality prediction results stored in the database 4.

10

of illustrative block diagram an is Figure 2 showing possible intercept network telecommunications 15 non-intrusive quality assessment may be points where employed.

The telecommunication network shown in Figure 2 comprises an operator's network 20 which is connected to a Global 20 System for Mobile communications (GSM) mobile network 22, a third generation (3G) mobile network 24, and an Internet Protocol (IP) network 26. The operator's network 20 is accessed by customers via main distribution frames 28, 28' which are connected to a digital local exchange 25 (DLE) 30 possibly via a remote concentrator unit (RCU) 32. Calls are routed through digital multiplexing switching 34, 34,', 34'' and may be routed to a (DMSU) units correspondent network 36 via an international switching centre (ISC) 38, to the IP network 26 via a voice over IP 30

gateway 40, to the GSM network 22 via a Gateway Mobile Switching Centre (GMSC) 42 or to the 3G network 24 via a gateway 44. The IP network 26 comprises a plurality of IP routers of which one IP router 46 is shown. The GSM network 22 comprises a plurality of mobile switching centres (MSCs), of which one MSC 48 is shown, which are connected to a plurality of base transceiver stations (BTSs), of which one BTS 50 is shown. The 3G network 24 comprises a plurality of nodes, of which one node 52 is shown.

Non intrusive quality assessment may be performed, for example, at the following points:

 At the DLE 30 incoming calls to specific customer, output from an exchange may be assessed.

10

- At the DMSUs 34, 34', 34'', links between DMSUs and interconnects with other operators may be assessed.
- At the ISC 38 the international link may be assessed.
- At the Voice over IP gateway 40 the interface with an IP network may be assessed.
 - At the MSC 48 calls to and from the mobile network may be assessed.
- At the IP router 46 calls to and from the IP network
 may be assessed.
 - At the media gateway 44 calls to and from the 3G network may be assessed.

A variety of testing regimes and configurations can be 30 used to suit a particular application, providing quality

measures for selections of calls based upon the user's different could include These requirements. schedules and route selections. With multiple assessment points in a network, it is possible to make comparisons of results between assessment This allows points. performance of specific links or network subsystems to be the quality perceived Reductions in monitored. customers can then be attributed to specific circumstances or faults.

10

25

The data, stored in the database 4, can be used for a number of applications such as :-

- Network Health Checks
- Network Optimisation
- 15 Equipment Trials/Commissioning
 - Realtime Routing
 - Interoperability Agreement Monitoring
 - •Network Trouble Shooting
 - Alarm Generation on Routes
- 20 Mobile Radio Planning/Optimisation

Referring now to Figure 3, a method of training a non-intrusive quality assessment system according to the present invention will now be described. It will be understood that this method may be carried out by software controlling a general purpose computer.

A database 60 contains distorted speech samples containing a diverse range of conditions and technologies. These have

been assessed by panels of human listeners to provide a MOS, in a known manner. Each speech sample therefore has an associated MOS derived from subjective tests.

5 At 61 each sample is pre-processed to normalise the signal level and take account of any filtering effects of the network via which the speech sample was collected. The speech sample is filtered, level aligned and any DC offset is removed. The amount of amplification or attenuation applied is stored for later use.

At step 62 tone detection is performed for each sample to determine whether the sample is speech, data, or if it contains DTMF or musical tones. If it is determined that the sample is not speech then the sample is discarded, and is not used for training the quality assessment tool.

At step 63 each speech sample is annotated to indicate periods of speech activity and silence/noise. This is achieved by use of a Voice Activity Detector (VAD) together with a voiced/unvoiced speech discriminator.

20

At step 64 each speech sample is annotated to indicate positions of the pitch cycles using a temporal/spectral pitch extraction method. This allows parameters to be extracted on a pitch synchronous basis, which helps to provide parameters which are independent of the particular talker. Vocal Tract Descriptors are extracted as part of the speech parameterisation described later and need to be taken from the voiced sections of the speech file. A final

pitch cycle identifier is used to provide boundaries for this extraction. A characterisation of the properties of the pitch structure over time is also passed to step 65 to form part of the speech parameters.

5

The parameterisation step 65 is designed to reduce the amount of data to be processed whilst preserving the information relevant to the distortions present in the speech sample.

10

25

30

}

In this embodiment of the invention over 300 candidate parameters are calculated including the following:

- Noise Level
- Signal to Noise Ratio
 - Average Pitch of Talker
 - Pitch Variation Descriptors
 - o Length Variations
 - o Frame to Frame content variations
- Instantaneous Level Fluctuations

Vocal Tract Descriptors :

In addition to the above, various descriptions of the vocal tract parameters are calculated. They capture the overall fit of the vocal tract model, instantaneous improbable variations and illegal sequences. Average values and statistics for individual vocal tract model elements over time are also included as base parameters. For example, see International Patent Application Number WO 01/35393.

。不是**我是不敢**生_____

At step 66 the parameters associated with each sample are processed to identify the dominant distortion which is present in that sample, in this particular embodiment the dominant distortion types used include the following: low signal to noise ratio, missing parts of signal, coding distortion, abnormal noise characteristics, acoustic distortions. This allows the samples of the database 60 to be divided into a plurality of distortion sets 67, 67'... 67ⁿ in dependence upon the dominant distortion present in each sample.

10

15

2 O

25

30

- 12 -

The dominant distortion type of a speech sample determines which distortion specific assessment handler mapping will be trained with that speech sample. A mapping 76, 76'... 76" for each distortion handler is trained at one of steps 68, 68' ... 68" using the samples in a single distortion set 67, 67'... 67". Once the optimum mapping between the parameters for each speech sample of the distortion set and the associated with each speech sample (provided by the database 60) has been determined for the samples of that distortion set a characterisation of the mapping is saved 69**′**... 69ⁿ, which includes of steps 69, identification of the particular parameters which resulted in the optimum mapping.

In this embodiment the mapping is a linear mapping between the chosen parameters and MOSs and the optimum mapping is determined using linear regression analysis, such that once each distortion specific assessment handler has been trained at one of steps 68, 68' ... 68ⁿ the distortion specific mapping 76, 76', 76ⁿ is characterised by a set of parameters used in the particular mapping together with a weight for each parameter.

Once the mappings 76, 76', 76ⁿ for each of the distortion specific assessment handlers have been trained at steps 68, 68' ... 68ⁿ the overall mapping for the quality assessment tool is trained, as will now be described with reference to Figure 4.

10

Samples from the speech database 60 are processed at step 70, which represents steps 61-64 of Figure 3, as described previously with reference to Figure 3.

15 step 65 the speech samples are parameterised as described previously. At step 66 the dominant distortion type is identified as described previously. Once the dominant distortion type has been identified for a particular sample then the distortion specific assessment 20 handler associated with that distortion type is selected to further process that sample. For example, if distortion handler 72ⁿ is selected the distortion handler 72ⁿ uses the previously trained mapping characteristics of which were saved at step 69ⁿ (Figure 3).

25

30

The MOS generated by distortion handler 72ⁿ is used along with the speech parameters generated at step 65 for that particular sample to train the quality assessment tool overall mapping at step 73 in a similar manner to training of the distortion specific assessment handlers described

earlier. At step 74 the characteristics of the overall mapping 77 are saved for use in the quality assessment tool.

5 The operation of the non-intrusive quality assessment tool, once training has been completed, will now be described with reference to Figure 5.

The steps for operation of the quality assessment tool are similar to the steps shown in Figure 4, which are performed during training of the overall mapping for the quality assessment tool.

However, in this case only one sample is processed at a time and only one distortion specific assessment handler is used. Step 73, train mapping, and step 74, save mapping characterisation, are replaced by step 75. At step 75 the previously saved mapping characteristics 77 are used to determine the MOS for the sample.

20

not necessary to actually calculate is it parameters for a sample if they are not to be used to select the dominant distortion type, by the selected distortion specific assessment handler or for determining 25 the MOS at step 75. Therefore it may be possible to optimise the method shown in Figure 5 by only calculating at step 65 the parameters need to identify the dominant step 66 or for the overall distortion type at Subsequently, determination of MOS at step 75. 30

parameters are calculated only if they are needed by the selected dominant distortion assessment handler.

It will be understood by those skilled in the art that the methods described above may be implemented on a conventional programmable computer, and that a computer program encoding instructions for controlling the programmable computer to perform the above methods may be provided on a computer readable medium.

10

It will be appreciated that whilst the process above has been descried with specific reference to speech signals, the processes are equally applicable to other types of signals, for example video signals.

15

THIS PAGE BLANK (USPTO)

CLAIMS

- 1. A method of training a quality assessment tool comprising the steps of
- dividing a database comprising a plurality of samples, each with an associated mean opinion score into a plurality of distortion sets of samples according to a distortion criterion; and
- training a distortion specific assessment handler for 10 each distortion set, such that a fit between a distortion specific quality measure generated from
 - a distortion specific plurality of parameters for a sample and
 - the mean opinion score associated with said sample
 - is optimised.

15

- 2. A method according to claim 1, further comprising the steps of
- training the quality assessment tool, such that a fit between a quality measure generated from
 - a non-distortion specific plurality of parameters together with a distortion specific quality measure for a sample, and
- 25 the mean opinion score associated with said sample, is optimised.
- 3. A method according to claim 1 or claim 2 in which the samples represent speech transmitted over a 30 telecommunications network, and in which the quality

measure is representative of the quality of the speech perceived by an average user.

4. A method of assessing speech quality in a telecommunications network comprising the steps of

determining a dominant distortion type for a sample; combining a plurality of parameters specific to said dominant distortion type to provide a distortion specific quality measure for each sample; and

generating a quality measure in dependence upon the distortion specific quality measure.

- 5. A method according to claim 4 in which the generating step comprises the sub step of
- 15 combining a non-distortion specific plurality of parameters with said distortion specific quality measure to provide said quality measure.
- 6. A method according to claim 4 or claim 5 in which the samples represent speech transmitted over a telecommunications network, and in which the quality measure is representative of the quality of the speech perceived by an average user.
- 7. A computer readable medium carrying a computer program for implementing the method according to any one of claims 1 to 6.
- 8. A computer program for implementing the method 30 according to any one of claims 1 to 6.

9. An apparatus for assessing speech quality in a telecommunications network comprising

means for determining a dominant distortion type for
5 a sample;

means for combining a distortion specific plurality of parameters to provide a distortion specific quality measure for each sample; and

means for generating a quality measure in dependence upon the distortion specific quality measure.

10. An apparatus according to claim 9, in which

the generating means comprises means for combining a non-distortion specific plurality of parameters with said distortion specific quality measure to provide said quality measure.

- 11. An apparatus for training a quality assessment tool comprising
- means for dividing a database comprising a plurality of samples, each with an associated mean opinion score into a plurality of distortion sets of samples according to a distortion criterion; and

means for training a distortion specific assessment

25 handler for each distortion set, such that a fit between a

distortion specific quality measure generated from

30

a distortion specific plurality of parameters for a sample and

the mean opinion score associated with said sample

is optimised.

- 12. An apparatus according to claim 11, further comprising
- means for training the quality assessment tool, such that a fit between a quality measure generated from a non-distortion specific plurality of parameters

a non-distortion specific plurality of parameters together with a distortion specific quality measure for a sample, and

10 the mean opinion score associated with said sample, is optimised.

15

ABSTRACT

TRAINING QUALITY ASSESMENT TOOLS

invention relates to a non-intrusive speech quality assessment system. The invention provides a method and apparatus for training a quality assessment tool in which a database comprising a plurality of samples, each with an associated mean opinion score, is divided into a plurality of distortion sets of samples according to a distortion criterion; and a distortion specific assessment handler for each distortion set is trained, such that a specific quality measure distortion between specific plurality of generated from a distortion parameters for a sample and the mean opinion score associated with said sample is optimised. The invention also provides a method and apparatus for assessing speech in a telecommunications network in which a dominant distortion type is determined for a sample; a distortion specific plurality of parameters are combined 20 to provide a distortion specific quality measure for each sample; and a quality measure is generated in dependence upon the distortion specific quality measure.

Figure 5. 25

5

10

15

3772epv1 17 January 2003

Fig. 2

THIS PAGE BLANK (USPTO)