Test Results and Income

Presented By: Matt Eding

Introduction - School Funding

CA Dept. of Education

Are test results indicative of local income?

Update funding formulas to bridge achievement gap.

"Property tax revenues ... often reinforces inequity State funding ... is rarely successful at overcoming these differences." (Gartner, Jess. How are Public Schools Funded?, 2017)

Strategy

Collect data from California Assessment of Student Performance & Progress.

Use zip codes for median household income.

Feature engineer data for income prediction.

Leverage results to inform education budgeting.

Methodology - Data Sources

Test Score Data:

CA school data from 2018 Smarter Balanced testing

Income Data:

Median household income by zip code

Methodology - Process

Automate data retrieval

Cross Validation (80% train) with four models:

- Ordinary Least Squares
- Ridge
- LASSO
- Polynomial

Feature engineer maximal model efficacy

Tools Used

- > Python
- > Pandas
- Matplotlib
- > Seaborn
- > Selenium
- Patsy
- ➤ SciKit-Learn
- > Statsmodels

Findings

Chose OLS over other models because it yielded only marginally worse results.

Predictions are 31.7% off from the true median income on average.

Almost all features are statistically significant.

29.6% of the variance of true median income is accounted for.

Conclusion

While my findings are more robust than naive approaches, they should not constitute much towards overhaul of the funding schematics.

The variability may accidentally penalize some schools that truly need the extra funding and vice versa.

Future Work

- Test and income data from prior years
- Investigate prediction of home value
- Data from other states
- More feature engineering

Thank You!

https://github.com/MattEding/ProjectLuther

Appendix - Test Summary Pt. 1

Dep. Variable:	у	R-squared:	0.296
Model:	OLS	Adj. R-squared:	0.296
Method:	Least Squares	F-statistic:	598.0
Date:	Fri, 25 Jan 2019	Prob (F-statistic):	0.00
Time:	08:44:48	Log-Likelihood:	-3066.1
No. Observations:	11386	AIC:	6150.
Df Residuals:	11377	BIC:	6216.
Df Model:	8		
Covariance Type:	nonrobust		

y: np.log(Median_Income)

RMSE Score: 0.31713498883040286

Omnibus:	84.035	Durbin-Watson:	1.994
Prob(Omnibus):	0.000	Jarque-Bera (JB):	92.251
Skew:	-0.173	Prob(JB):	9.29e-21
Kurtosis:	3.274	Cond. No.	367.

Appendix - Test Summary Pt. 2

	coef	std err	t	P> t	[0.025	0.975]
const	10.2510	0.055	187.108	0.000	10.144	10.358
x 1	0.1460	0.066	2.228	0.026	0.018	0.274
x2	0.1848	0.030	6.160	0.000	0.126	0.244
х3	-0.0073	0.038	-0.193	0.847	-0.081	0.067
x4	2.5263	0.127	19.915	0.000	2.278	2.775
х5	-0.7331	0.171	-4.280	0.000	-1.069	-0.397
х6	-0.6639	0.074	-8.946	0.000	-0.809	-0.518
х7	0.3942	0.101	3.921	0.000	0.197	0.591
x8	0.0370	0.004	9.592	0.000	0.029	0.045

X1: Math

X2: np.log(Grade)

X3: Math:np.log(Grade)

X4: np.log(Percent_Passed + 1)

X5: Math:np.log(Percent_Passed + 1)

X6: np.log(Grade):np.log(Percent_Passed + 1)

X7: Math:np.log(Grade):np.log(Percent_Passed + 1)

X8: np.log(1.01 - Percent_Tested)

Appendix - Heatmap

Appendix - Residuals

Appendix - CV Means / 5 Folds / 80% Train

linreg_mse_mean, 0.10067587790392145,

lasso_mse_optimal, 0.10093148393675706,

ridge_mse_optimal 0.10067569153264302

linreg_adj_r2_mean, 0.2869029336781394,

lasso_adj_r2_optimal, 0.2851035847982211,

ridge_adj_r2_optimal 0.28690427102712207

Appendix - CV polynomial degrees

In [151]: poly_mse_mean

Out[151]:

 $\{0: 0.14139573391162893,$

1: 0.10067587790392145,

2: 0.09742838086516811,

3: 0.09673969713674237}

In [152]: poly_adj_r2_mean

Out[152]:

{0: -0.0005043993899957577,

1: 0.2868245576350533,

2: 0.307081431468514,

3: 0.30275217974267155}

Appendix: Naive Simple Linear Regression

Median Income ~ Percent Met & Above

De	p. Variable	e:	У		R-square	ed:		0.267
Model:		l:	OLS	OLS Adj. R-squared		ed:		0.267
	Method	d: Leas	st Squares		F-statistic:		2.07	'8e+04
	Date	e: Fri, 25	Jan 2019	Prob (Prob (F-statistic):			0.00
	Time	e:	06:38:17	Log-	Likelihoo	od:	-	16281.
No. Ob	servations	s:	56928		Α	IC:	3.25	7e+04
Di	Residuals	s:	56926		В	IC:	3.25	8e+04
	Df Mode	l:	1					
Covar	iance Type	ə :	nonrobust					
	coef	std err	t	P> t	[0.025	0.9	75]	
const	10.5833	0.003	3584.754	0.000	10.577	10.	589	
x1	0.8856	0.006	144.169	0.000	0.874	0.	898	
(Omnibus:	319.540	Durbin	-Watsoı	n: 0.	313		
Prob(C	mnibus):	0.000	Jarque-E	Bera (JB): 355.	348		
	Skew:	-0.143		Prob(JB): 6.876	-78		
	Kurtosis:	3.260		Cond. No	o. 5	5.42		

Median Income ~ Median Scale Score

De	p. Variab	le:	у		R-squa	red:	0.14	12
	Mod	el:	OLS	Adj.	R-squa	red:	0.14	12
	Metho	od: Lea	st Squares		F-statis	stic:	944	9.
	Da	te: Fri, 25	5 Jan 2019	Prob (F-statis	tic):	0.0	00
	Tim	ne:	08:37:45	Log-	Likeliho	ood:	-2076	9.
No. Ob	servation	ıs:	56928		,	AIC:	4.154e+0)4
D	f Residua	ls:	56926		ı	BIC:	4.156e+0)4
	Df Mod	el:	1					
Covar	iance Typ	e:	nonrobust					
	coef	std err	t	P> t	[0.025	0.97	75]	
const	5.5859	0.055	100.965	0.000	5.477	5.6	94	
x1	0.0022	2.22e-05	97.204	0.000	0.002	0.0	02	
(Omnibus:	28.927	Durbin-	Watson	: 0	.203		
Prob(C	mnibus):	0.000	Jarque-B	era (JB)	: 29	.264		
	Skew:	-0.048	P	rob(JB)	: 4.42	e-07		
	Kurtosis:	3.056	C	ond. No	9 .43e	+04		

Appendix: OLS without Feature Engineering Pt. 1

Dep. Variable:	Median_Income	R-squared:	0.319
Model:	OLS	Adj. R-squared:	0.319
Method:	Least Squares	F-statistic:	2669.
Date:	Fri, 25 Jan 2019	Prob (F-statistic):	0.00
Time:	09:10:27	Log-Likelihood:	-6.4510e+05
No. Observations:	56928	AIC:	1.290e+06
Df Residuals:	56917	BIC:	1.290e+06
Df Model:	10		
Covariance Type:	nonrobust		

Omnibus:	8407.110	Durbin-Watson:	0.301
Prob(Omnibus):	0.000	Jarque-Bera (JB):	19727.684
Skew:	0.858	Prob(JB):	0.00
Kurtosis:	5.319	Cond. No.	1.09e+06

Appendix: OLS without Feature Engineering Pt. 2

	coef	std err	t	P> t	[0.025	0.975]
Test_Year	-78.1326	4.809	-16.246	0.000	-87.559	-68.706
Total_Tested_At_Entity_Level	201.6205	43.434	4.642	0.000	116.490	286.751
Total_Tested_with_Scores	-202.8167	43.493	-4.663	0.000	-288.063	-117.570
Grade	-815.4109	94.785	-8.603	0.000	-1001.190	-629.632
Test_ld	5379.5464	182.553	29.468	0.000	5021.742	5737.351
CAASPP_Reported_Enrollment	240.0734	12.930	18.567	0.000	214.730	265.416
Students_Tested	-228.7238	13.214	-17.310	0.000	-254.622	-202.825
Mean_Scale_Score	40.0326	3.893	10.284	0.000	32.403	47.662
Percentage_Standard_Met_and_Above	5.337e+04	978.592	54.534	0.000	5.14e+04	5.53e+04
Type_Id	-2307.5353	107.803	-21.405	0.000	-2518.829	-2096.242
Zip	1.1686	0.048	24.314	0.000	1.074	1.263