COMMENTI AGGIUNTIVI ALL'ESPRUZIO FINALE in PRESA MILETTA

Abbrouns attenuto $f_{y}(y) = \frac{6}{7} \log_{y}(-1 - \log_{y}) + \frac{1}{(e^{-1}, 1)}(y)$.

- In effett quette à une functione non negative puelle, pu $y \in (e^-, 1)$, si he 6 legy $(-1-\log y)$ Del resto legy (-1, 0) e quindi $-\log y \in (0, 1)$, ale cui regue $0 \le 0$ $0 \le 0$.
- 2 Ineffetti $\int_{00}^{\infty} f_{y}(y) dy = 1$, cież $\int_{e^{-1}}^{\infty} \frac{6}{y} \left(-1 \log y\right) dy = 1$.

Considerans il combis di vomerble logy = $t \Rightarrow y = e^{t} \Rightarrow dy = e^{t} dr$.

Albre $\int_{r'}^{1} \frac{6}{y'} \log y \left(-1 - \log y\right) dy = \int_{-1}^{1} \frac{6}{e^{t}} r \left(-1 - r\right) e^{t} dr = \int_{-1}^{1} -6 r \left(r + 1\right) dr = \int_{-1}^{1} \frac{6}{e^{t}} r \left(-1 - r\right) e^{t} dr = \int_{-1}^{1} -6 r \left(r + 1\right) dr = \int_{-1}^{1} \frac{6}{e^{t}} r \left(-1 - r\right) e^{t} dr = \int_{-1}^{1} \frac{6}{e^{t}} r \left$

$$= \int_{-1}^{0} \left(n^{2} + n \right) dn = -6 \left[\frac{7^{3}}{3} + \frac{7^{2}}{2} \right]_{n=-1}^{n=-2} = -6 \left(0^{3} + 0^{2} - \left(\frac{(-1)^{3}}{3} + \frac{(-1)^{2}}{2} \right) \right) = 6 \left(\frac{(-1)^{3}}{3} + \frac{(-1)^{2}}{2} \right) - 6 \left(\frac{1}{2} - \frac{1}{3} \right) = 6 \left(\frac{(-1)^{3}}{3} + \frac{(-1)^{2}}{2} \right) = 6 \left(\frac{(-1)^{3}}{3} + \frac{(-1)^{3}}{2} \right) = 6 \left(\frac{(-1)^{3}}{3$$

$$=6$$
 $\frac{3-2}{6}$ $=6$, $\frac{1}{6}$ $=1$.

OSS. L'integrale puro essere interpetato come l'ones