

Journal of Statistical Software

MMMMMM YYYY, Volume VV, Issue II.

doi: 10.18637/jss.v000.i00

A Python/Zig optimized and customizable implementation for the ρ_{DCCA} and DMC_x^2 methods

Fernando Ferraz Ribeiro

Universidade Federal da Bahia

Gilney Figueira Zebende Universidade Estadual de Feira de Santana

Abstract

This paper presents tha **Zebende**, a Python package written in Python and Zig, that calculates the DFA, DCCA ρ_{DCCA} and the DMC_x^2 . The package presents an optimized algorithm that significantly improves the calculations speed. A comparison with other packages that calculates the .The package is also the first to implement the DMC_x^2 coefficient for any number of series.

Keywords: ρ_{DCCA} , DMC_x^2 , optimization, Python, Zig.

1. introduction

The ρ_{DCCA} (Zebende 2011) is a widely used coefficient that measures the cross-correlation between tow non-stationary time series. It's an extension of the Detrended Fluctuation Analysis (DFA) (Peng, Buldyrev, Havlin, Simons, Stanley, and Goldberger 1994) and the Detrended Cross-correlation Analysis (DCCA) (Podobnik and Stanley 2008): while the DFA calculates the self-affinity and long-memory properties of a time series data, and the DCCA analyses power-law cross correlations between two different non-stationarity time series, the ρ_{DCCA} coefficient quantifies this cross-correlation in simple values ranging from -1 to 1, where -1 indicates a perfect anti-correlation between the series, 1 a perfect correlation and zero (0) no correlation at all.

The Detrended Multiple Cross-Correlation Coefficient (Zebende and Silva 2018) (DMC_x^2) is a generalization of the ρ_{DCCA} coefficient that correlates one time series (dependent variable) a number of time series (independent variables). The DMC_x^2 values ranges from zero (0), indicating no correlation to 1, meaning perfect correlation or anti-correlation between the dependent and the independent variables.

This paper presents the **Zebende** Python package, an implementation of the DFA, DCCA, ρ_{DCCCA} , DMC_x^2 and utility functions related to the methods. In section 2 the steps for calculating the ρ_{DCCCA} and DMC_x^2 are presented and discussed. Section 3 shows how this library was implemented, the optimization technics and the recommended steps to use the library. In Section 4 the **Zebende** package is compared with other packages for Python and R that calculates the ρ_{DCCA} in terms of performance and usability, leading to the conclusions in Section 5.

2. Algorithms of the coefficients

The algorithms that calculates the ρ_{DCCA} uses the DFA and the DCCA steps. The DMC_x^2 coefficient uses the ρ_{DCCA} coefficient and, consequently, also embraces the DFA and the DCCA. The DFA method is described in six steps:

- 1. Taking a time series $\{x_i\}$ with i ranging from 1 to N, the integrated series X_k is calculated by $X_k = \sum_{i=1}^k [x_i \langle x \rangle]$ with k also ranging from 1 to N;
- 2. the X_k series is divided in N-n boxes of size n(time scale), each box containing n+1 values, starting in i up to i+n;
- 3. for each box, a polynomial (usually of degree 1) best fit is calculated, getting $\widetilde{X}_{k,i}$ with $i \leq k \leq (i+n)$ (detrended values);
- 4. in each box is calculated: $f_{DFA}^2(n,i) = \frac{1}{1+n} \sum_{k=i}^{i+n} (X_k \tilde{X}_{k,i})^2$
- 5. for all the boxes of a time scale, the DFA is calculated as:

$$F_{DFA}(n) = \sqrt{\frac{1}{N-n} \sum_{i=1}^{N-n} f_{DFA}^2(n,i)};$$

6. for a number of different timescales (n), with possible values $4 \le n \le \frac{N}{4}$ the F_{DFA} function is calculated to find a relation among $F_{DFA} \times n$

The DCCA method is very similar to the DFA calculations. With the difference of analyzing two series while the DFA evaluate properties of a single time series. It's also a six steps process:

- 1. Taking two time series with the same length $\{x\alpha_i\}$ and $\{x\beta_i\}$ with i ranging from 1 to N, the integrated series $X\alpha_k$ and $X\beta_k$ are calculated by $X_k = \sum_{i=1}^k [x_i \langle x \rangle]$ for each series, with k also ranging from 1 to N;
- 2. $X\alpha_k$ and $X\beta_k$ series are divided in N-n boxes of size n(time scale), each box containing n+1 values, starting in i up to i+n;
- 3. for each box, a polynomial (usually of degree 1) best fit is calculated, getting $\widetilde{X}\alpha_{k,i}$ and $\widetilde{X}\widetilde{\beta}_{k,i}$, for series $\{x\alpha_i\}$ and $\{x\beta_i\}$ respectively, with $i \leq k \leq (i+n)$ (detrended values);
- 4. in each box is calculated: $f_{DCCA}^2(n,i) = \frac{1}{1+n} \sum_{k=i}^{i+n} (X\alpha_k \widetilde{X\alpha}_{k,i}) \times (X\beta_k \widetilde{X\beta}_{k,i})$

5. for all the boxes of a time scale, the DCCA is calculated as:

$$F_{DCCA}^{2}(n) = \frac{1}{N-n} \sum_{i=1}^{N-n} f_{DCCA}^{2}(n,i);$$

6. for a number of different timescales (n), with possible values $4 \le n \le \frac{N}{4}$ the F_{DCCA}^2 function is calculated to find a relation among $F_{DCCA}^2 \times n$

Comparing the algorithms, the first three are basically identical, the only difference is that the DCCA method apply those steps to two series. The step four of the DFA is essentially an application of the variance calculation and the equivalent step of the DCCA is a covariance between the two series. Step five calculates the square root of the mean of the variances calculated in in each box for the DFA, in the DCCA, the mean of the covariances calculated for each box is calculated in stead. The last step,in both cases, is more a reminder to repeat the respective previous operations for a number of difference time scales.

The ρ_{DCCA} is measured using Eq. 1. Considering the relation between DFA and variance and DCCA and covariance, the ρ_{DCCA} resembles Pearson correlation for a time scale n.

$$\rho_{DCCA}(n) = \frac{F_{DCCA (x\alpha, x\beta)}^2(n)}{F_{DFA (x\alpha)}(n) \times F_{DFA (x\beta)}(n)}$$
(1)

The DMC_x^2 is a generalization of the ρ_{DCCA} that calculates the correlation between one time-series $\{Y\}$, as the dependent variable, and a number j of time-series $\{X_1\}$, $\{X_2\}$, $\{X_3\}$, ..., $\{X_j\}$ defined as independent variables. The coefficient is expressed mathematically as:

$$DMC_x^2 \equiv \rho_{Y,X_i}(n)^T \times \rho^{-1}(n) \times \rho_{Y,X_i}(n)$$
(2)

In Eq. 2, $\rho^{-1}(n)$ represent the inverse of a matrix populated by all possible combinations of ρ_{DCCA} between independent variables. In Eq. 3, value $\rho_{X_1,X_2}(n)$, for instance, is the ρ_{DCCA} for independent variables X_1 and X_2 calculated with time scale n, occupying position ρ_{12} of the matrix. Two fundamental characteristics: the first is that the main diagonal values are all ones, since it's position in the matrix denotes the calculation of a correlation between a series and itself. Second, the matrix is symmetric in relation to the main diagonal, as the ρ_{DCCA} is evaluated a commutative expression.

$$\rho^{-1}(n) = \begin{pmatrix} 1 & \rho_{X_1, X_2}(n) & \rho_{X_1, X_3}(n) & \dots & \rho_{X_1, X_j}(n) \\ \rho_{X_2, X_1}(n) & 1 & \rho_{X_2, X_3}(n) & \dots & \rho_{X_2, X_j}(n) \\ \vdots & \vdots & \vdots & \dots & \vdots \\ \rho_{X_j, X_1}(n) & \rho_{X_j, X_2}(n) & \rho_{X_j, X_3}(n) & \dots & 1 \end{pmatrix}^{-1}$$
(3)

At last Eq. 4 represent the transposed vector of the $\rho_{Y,X_i}(n)$ between the depended variable $\{Y\}$ and each $\{X_i\}$ independent variable for a given time scale n.

$$\rho_{Y,X_i}(n)^T = [\rho_{Y,X_1}(n), \rho_{Y,X_2}(n), \cdots, \rho_{Y,X_i}(n)]$$
(4)

The ρ_{DCCA} and the DMC_x^2 should be evaluated in a number of time scales (n) to analyze the characteristics of each coefficient.

3. Zebende package: implementation and optimization

The implementation of the **Zebende** package follows some well defined golas:

- 1. Enhance performance;
- 2. avoid redundant calculations;
- 3. make the outputs compatibles with other data analyses tools (including data manipulation, machine learn and statistical packages);
- 4. deliver a customizable set of tools;
- 5. facilitate package evolution and maintenance;
- 6. create an easy to use package.

The Python language was chosen because it's one of the most used languages in the data analyses field and have a great support for statistical tools and machine learning algorithms. The are a pletora of tools to load and manipulate data (Pandas, Polar, PySpark ...), execute statistical analyzes (Numpy, SciPy, StatsModels ...), machine learning (Pytorch, TensorFlow, Scykit Learn...) and data visualization((Matplotlib), Seaborn, Plotly) among other related applications.

Figure 1: Calculating ρ_{DCCA} with **Zebende** package - Simplified flowchart

The first draft of the code was written in pure Python, to rapidly prototype the way users will interact with the package. Figures 1 and 2 presents simplified flowcharts illustrating how to use the package and how the main functions $(\rho_{DCCA}$ and $DMA_x^2)$ works.

Figure 2: Calculating DMC_x^2 with **Zebende** package - Simplified flowchart

The preparation steps are the same in both functions. First the data is loaded, and should be analyzed by the researchers. Base on the data characteristics, the set should be treated to

ensure the methods requirements in the "Pre-processing" stage. The package functions expects data as ma matrix with the columns as the series and the lines as time steps. Columns unused in the indented research should also be dropped for better performance os the algorithms in this step. The more common way to do that is to use a data manipulation package. To proceed to the next step, the data table should be in the form of a Numpy 2D array, and this could be done with any data manipulation Python package. The next step is to calculate the integrated series. The package provides a function, named <code>integrated_series()</code>, to calculate that. The code example below show how to load the libraries (using Pandas as the data manipulation packages and loading a <code>.csv</code> file as a generic example), convert to <code>Numpy</code> array and generate the integrated series.

```
# importing packages
import numpy as np
import pandas as pd
import zebende as zb

data = pd.read_csv('path_to_the_file.csv') # loading data
# Pre-processing data
# ...
data = data.to_numpy(data) #converting data to Numpy array
int_data = zb.integrated_series(data) # calculating the integrated_series
```

The option of taking out the integrated series generation from the main functions to an independent one was inspired by Peng et al. (1994) work, where the way of calculating integrated series was different from the one that is widely used in more recent years. The integration of the series is essentially a pre-processing step, and this approach makes easy to explore alternative ways to integrate the series or compare Peng et al. (1994) approach to the current one in different scenarios.

The input and output structures of each function are displayed below:

```
def p_dcca(
    input_data: NDArray[float64],
   tws: NDArray[int64] | NDArray[float64],
   DCCA of: ndarray | Literal['all'] = "all",
   P_DCCA_output_matrix: bool = False
) -> tuple[NDArray[float64], # DFA
         NDArray[float64],
                              # DCCA
         NDArray[float64]
                             # P_DCCA
          ٦
def dmcx2(
   input_data: NDArray[float64],
   tws: NDArray[int64] | NDArray[float64],
    dmcx2_of: ENUM_DMCx2_of | NDArray[float64] | list = 'all-full'
) -> tuple[ NDArray[float64],
                                # DFA
            NDArray[float64],
                                # DCCA
```

```
NDArray[float64], # P_DCCA
NDArray[float64], # DMC
```

The first two inputs are the same for functions p_dcca() and dmcx2(): input_data receive the integrated series and the tws receives an 1D array representing the time scales (box size) described in the algorithms on Section 2. The input_data is a 2D array of 64 bits floating point data. The tws accepts integers and, for convenience reasons, also floating points. Since the size of the boxes needs to be integers, in case of floating points, the values will be converted to integers by ignoring the decimal values(truncating). This two inputs are colored in light gray in Figures 1 and 2, indicating mandatory inputs.

With the mandatory steps explained, some very important optional inputs should be addressed. Starting with the ρ_{DCCA} function (dark green node in Figure 2) represents the input DCCA_of of the function. This input requires a 2D array of index. For example: if the input_data receives a four columns matrix, with index ranging from 0 to 3, that is intended to calculate de DFA for all the series but the ρ_{DCCA} between series of index 0 and 1 and also for series 2 and 3, the DCCA_of input should receive the array [[0,1], [2,3]]. If no value (or the string 'all') is given, the function will calculate all possible combinations of DCCA calculations between all the series respecting the index values order, as below:

```
[[0,1], [0,2], [0,3], [1,2], [1,3], [2,3]]
```

It's important to understand the calculation steps, the role of the DCCA_of array and how it fits in the goals of the package implementation. The code below is part of the Python implementation of the ρ_{DCCA} function,

```
for n_index, n in enumerate(tws): # for each time scale
 # temporaty allocation arrays
 f2dfa_n = np.full(shape=(data.shape[0] - n, data.shape[1]),
 fill_value=np.nan, dtype=data.dtype)
 dcca_n = np.full(shape=(data.shape[0] - n, DCCA_of.shape[0]),
 fill_value=np.nan, dtype=data.dtype)
 detrended_mat = np.full(shape=(n + 1, data.shape[1]),
 fill_value=np.nan, dtype=data.dtype)
 for i in range(data.shape[0] - n): # for each box
      detrended_series( # inputs
                        time_steps[i : i + (n + 1)],
                        data[i : i + (n + 1), :], # mat_y
                         detrended_mat, # output
                      )
      f2dfa_n[i] = np.power(detrended_mat, 2).mean(axis=0)
      for j, pair in enumerate(DCCA_of): # for each DCCA pair
          dcca_n[i, j] = (detrended_mat[:, pair[0]] * detrended_mat[:, pair[1]]
                         ).mean(axis=0)
 F_DFA_arr[n_index, :] = np.sqrt(f2dfa_n.mean(axis=0))
 DCCA_arr[n_index, :] = dcca_n.mean(axis=0)
```

```
# calculation of P_DCCA
P_DCCA_output_function(n_index, DCCA_of, F_DFA_arr, DCCA_arr, P_DCCA_arr)
```

The first for loop in the code operates over the values of the tws input, asserting that the step 6 of the *DFA* and *DCCA* methods in Section 2. Three temporary arrays are allocated for each time scale, f2dfa_n

4. Results

5. Summary and discussion

References

Peng CK, Buldyrev SV, Havlin S, Simons M, Stanley HE, Goldberger AL (1994). "Mosaic Organization of DNA Nucleotides." **49**(2), 1685–1689.

Podobnik B, Stanley HE (2008). "Detrended cross-correlation analysis: A new method for analyzing two nonstationary time series." *Physical Review Letters*, **100**(8). ISSN 00319007. doi:10.1103/PhysRevLett.100.084102. 0709.0281.

Zebende GF (2011). "DCCA cross-correlation coefficient: Quantifying level of cross-correlation." *Physica A: Statistical Mechanics and its Applications*, **390**(4), 614–618. ISSN 03784371. doi:10.1016/j.physa.2010.10.022. URL http://dx.doi.org/10.1016/j.physa.2010.10.022.

Zebende GF, Silva AM (2018). "Detrended Multiple Cross-Correlation Coefficient." *Physica A*, **510**, 91–97. ISSN 0378-4371. doi:10.1016/j.physa.2018.06.119.

Affiliation:

Fernando Ferraz Ribeiro Universidade Federal da Bahia Faculty of Achitecture Universität Innsbruck Universitätsstr. 15 6020 Innsbruck, Austria

E-mail: fernando.ribeiro@ufba.br

and

Centro Universitário Senai-Cimatec

http://www.jstatsoft.org/

http://www.foastat.org/

Submitted: yyyy-mm-dd

Accepted: yyyy-mm-dd