Chapitre 1 Introduction aux Systèmes Embarqués

Abdelkader Gouaïch http://www.lirmm.fr/~gouaich gouaich@lirmm.fr

Objectifs du chapitre

- Définition d'un système embarqué
 - C'est quoi un système embarqué?
 - C'est quoi un logiciel embarqué?
 - Les évolutions des systèmes embarqués?
- Défis de conception Métrologie
- Technologies des systèmes embarqués
 - Processeurs
 - Méthodes de conception

Introduction

- Un fait => Ubiquité et omniprésence des « systèmes informatiques »
- Que veut-on dire par « systèmes informatiques »?
 - Les ordinateurs personnels (PC)
 - Les ordinateurs portables
 - Les serveurs d'application
- Mais, le sens commun nous fait oublier...
 - Une famille plus grande/riche de systèmes informatiques existe sur des architecteurs particulières!

Par exemple....

- Exemples de ces systèmes oubliés:
 - Les appareils électroniques
 - Systèmes de contrôle de véhicules
 - Systèmes de navigation

Définition

- Comment définir ces systèmes?
 - Difficile de trouver une définition ...
- Intuitivement:
 - Tout système informatique différent de l'ordinateur personnel (desktop PC)
- Avec cette définition:
 - On parle de milliards d'unités! (PC l'ordre est de millions)

Les caractéristiques d'un système embarqué

- Monofonctionnel (en général)
 - Exécution d'un programme en boucle
- Fortement contraint
 - Coût, taille, rapidité, consommation énergie
- Réactif
 - sensible aux changements de son environnement
- Temps réel:
 - Des contraintes temporelles pour donner le résultat
- Communicants (récemment)
 - Interaction et communication entre composants

Exemple:

Défis pour la conception

- L'objectif
 - Construire un système (dispositif) qui réalise une fonctionnalité désirée
- Le défi majeur:
 - Optimiser simultanément plusieurs métriques de conception
- Métrique de conception:
 - Une propriété mesurable d'une réalisation d'un système
 - L'objectif est d'optimiser l'ensemble des métriques pour juger de la qualité/viabilité d'<u>une</u> réalisation

Métriques

Métriques communes		
Coût unitaire	le coût monétaire de la fabrication de chaque copie du système (NRE exclu)	
Coût NRE	Le coût non récurrent monétaire de conception (Non- Recurring Engineering)	
Taille	Indicateur de la taille occupée (nbre de transistor, nbre de portes etc)	
Performance	temps d'exécution, temps de réponse, etc.	
Energie	consommation en énergie du système	

Métriques

Métriques communes		
Temps pour le marché (TTM)	Le temps nécessaire pour développer une version du système suffisamment fiable pour être commercialisée.	
« Maintenabilité »	Capacité de modifier le système après sa sortie	
Consistance	Le système répond correctement aux fonctions attendues.	
Sécurité	Le système répond aux normes de sécurité exprimées.	
Flexibilité	capacité de modifier les fonctionnalités du système avec un faible NRE	
Temps du prototype (TTP)	Temps pour avoir la première version (qui fonctionne) du système	

Optimisation des métriques

- Il faut avoir une expertise du matériel ET du logiciel
 - Expertise Hardware et Software ce qui est rare de nos jours...
- Il faut avoir une connaissance précise des technologies
- Ceci permet d'avoir une connaissance complète pour prendre des décisions

Optimisation des métriques

- Les métriques sont interdépendantes
- Améliorer une métrique peut détériorer une autre

Time to Market

- Temps nécessaire pour amener un produit sur le marché
- Fenêtre du marché (market window)
 - Période de temps où un produit réalise des ventes
- Il faut respecter le TTM moyen de son secteur (~8 mois pour SE)
- Les retards sont extrêmement pénalisants

Pertes à cause des retards

retardée

temps

- Modèle de revenu d'un produit
 - Vie du produit = 2W avec un max à W
 - Le TTM va définir un triangle qui représente la pénétration du marché (modèle)
 - Le revenu pour le produit= surface du triangle
- Perte:
 - Différence entre les surfaces

Pertes à cause des retards

retardée

temps

- Surface= base * hauteur*1/2
- À temps = 1/2 * 2W * W
- Retardée = 1/2 * (W-D+W)*(W-D)
- Pourcentage de perte= (D(3W-D)/2W²)*100%
- Exemples:
 - Vie 2W=52 sems, retard D=4 sem
 - $(4*(3*26-4)/2*26^2) = 22\%$
 - Vie 2W=52 wks, retard D=10 sems
 - $(10*(3*26-10)/2*26^2) = 50\%$

- Coût unitaire: coût monétaire de chaque copie du système sans inclure le NRE
- NRE: coût singulier de conception du système
- Coût total= NRE + coût unitaire * # d'unités
- Coût par produit = Coût total / # d'unités= (NRE / # d'unités) + coût unitaire

- Exemple:
 - NRE = 10000€, coût unitaire = 500€
 - Pour 100 unités:
 - Coût total = 10000 + 500*100 = 60000€
 - Coût par produit = 10000/100 + 500 = 600€

- Comparaison
 - NRE 2000, Unité 100
 - NRE 30000, Unité 30

- Comparaison
 - NRE 2000, Unité 100
 - NRE 30000, Unité 30
 - NRE 100 000, Unité 2

Les métriques de performance

- Mesures utilisées pour indiquer les perfs
 - Fréquence horloge, instruction par sec.
 - Des mesures limitées car quantitatives et pas qualitatives: Ex. Appareil photo numérique
- Temps de latence (temps de réponse)
 - Temps de début et de fin d'une tâche
- Production
 - Nombre de tâches par sec.

Technologies des systèmes embarqués

- Technologie:
 - accomplir des tâches en utilisant des procédés techniques, méthodologiques ou du savoir faire
- 3 technologies clefs à maitriser
 - Processeur
 - Circuits intégrés
 - Méthodes de conception et d'implémentation

Technologies: Processeur(s)

- C'est le moteur de la computation
- Dans le monde des SE on utilise plusieurs familles de processeurs
- Ne pas confondre processeur et processeur programmable

Processeur: générique

- Processeur programmable
- Caractéristiques
 - Programme traité comme une donnée
 - Programme dans la mémoire
 - ALU générale + Registres de données
- Avantages:
 - TTM très court + NRE très bas
 - Très flexible
- PC => Intel domine
- Dans les SE une variété plus large d'architectures

Processeur: Monofonction

- Circuit numérique qui exécute une seule fonction
 - Coprocesseur, contrôleurs
- Caractéristiques
 - Contient seulement les composants requis pour l'exécution du programme
 - Pas de mémoire programme
- Avantages:
 - Rapidité
 - Economie d'énergie
 - Taille réduite

Processeur: Spécialisé

- Processeur programmable spécialisé pour un domaine d'applications (ex. GPU)
- Caractéristiques:
 - Mémoire programme
 - Très forte optimisation du datapath
 - Unités fonctionnelles spécialisées
- Avantages:
 - Une certaine flexibilité, performance, taille et énergie

Processus de conception

Co-design software/hardware

Conclusion

- Système embarqué
- Métriques différentes
- Savoir faire et compétences soft. Et hard.
- Technologies
- Le co-design et rapprochement soft et hard.

Référence

- [1] Embedded System Design, Vahid/Givargis
 - excellente introduction

La suite...

- Dans ce cours:
 - on s'intéresse aux aspects logiciels
- Mon téléphone portable est-il un système embarqué?
 - Ensemble de composants embarqués + OS
- J'ai une formidable plateforme pour programmer de nouvelles générations d'applications « embarquées et communicantes» !
- iOS