

Tópicos de Geometria e Topologia

LISTA 6

Bruno Sant'Anna 22 de março de 2024

Defina a 2-forma diferencial ω em ${\bf R}^3$ por

$$\omega = x \, \mathrm{d} y \wedge \mathrm{d} z + y \, \mathrm{d} z \wedge \mathrm{d} y + z \, \mathrm{d} x \wedge \mathrm{d} y$$

Considere $\iota: \mathbf{S}^2 \to \mathbf{R}^3$ o mapa inclusão onde \mathbf{S}^2 é a esfera unitária centrada na origem

- a. Mostre que a forma $\iota^*\omega$ nunca se anula, ou seja $\iota^*\omega(x)\neq 0$ em $\Lambda^2(T_x\mathbf{S}^2)$ para todo x
- b. Escreva $\psi^* \iota^* \omega = f(\theta, \phi) \, d\theta \wedge d\phi$, onde $\psi(\theta, \phi) = (\sin \phi \cos \theta, \sin \phi \sin \theta, \cos \phi)$ é uma parametrização de um aberto em \mathbf{S}^2 e calcule a integral

$$\int_0^{\pi} \int_0^{2\pi} f(\theta, \phi) \, \mathrm{d}\theta \mathrm{d}\phi$$

a. Com efeito, o mapa inclusão é dado por

$$\iota: \mathbf{S}^2 \to \mathbf{R}^3$$
$$x \mapsto x$$

consequentemente, seja $\omega = x dy \wedge dz + y dz \wedge dy + z dx \wedge dy \in \Omega^2(\mathbf{R}^3)$, queremos calcular o pullback de ω por ι , isto é

$$\iota^*\omega(x, y, z) = \omega(\iota(x, y, z))$$

porém, se (x, y, z) está na esfera,

$$\iota^*\omega(x, y, z) = \omega(x, y, z).$$

Logo, $\iota^*\omega = \omega|_{S^2}$.

Para mostrar que $\iota^*\omega$ nunca se anula, considere $x=(x_1,x_2,x_3)$ na esfera e $\nu=(-x_3,0,x_1)$, $\omega=(x_2,-x_1,0)$ não nulos e ortogonais a x. Aplicando o par de vetores em $\iota^*\omega(x)=\omega_x$ temos

$$\omega_{X}(v, w) = x_{1} dy \wedge dz(v, w) + x_{2} dz \wedge dx(v, w) + x_{3} dx \wedge dy(v, w)$$

$$= x_{1} \begin{vmatrix} dy(v) & dz(v) \\ dy(w) & dz(w) \end{vmatrix} + x_{2} \begin{vmatrix} dz(v) & dx(v) \\ dz(w) & dx(w) \end{vmatrix} + x_{3} \begin{vmatrix} dx(v) & dy(v) \\ dx(w) & dy(w) \end{vmatrix}$$

$$= x_{1} \begin{vmatrix} 0 & x_{1} \\ -x_{1} & 0 \end{vmatrix} + x_{2} \begin{vmatrix} x_{1} & -x_{3} \\ 0 & x_{2} \end{vmatrix} + x_{3} \begin{vmatrix} -x_{3} & 0 \\ x_{2} & -x_{1} \end{vmatrix}$$

$$= x_{1}x_{1}^{2} + x_{1}x_{2}^{2} + x_{1}x_{3}^{2}$$

$$= x_{1}$$

logo, $\iota^*\omega(x) = 0$ quando $x_1 = 0$.

De forma análoga, agora com $v = (x_2, -x_1, 0)$ e $w = (0, x_3, -x_2)$ temos

$$\omega_{x}(v, w) = x_2$$

ou seja, $\iota^*\omega(x)=0$ quando $x_2=0$, já com $\nu=(-x_3,0,x_1)$ e $w=(0,-x_3,x_2)$, temos

$$\omega_x(v,w)=x_3$$

então, $\iota^*\omega(x)=0$ quando $x_3=0$.

Portanto, $\iota^*\omega(x)=0$, se, e somente se x=0, que não é um ponto da esfera, então a forma $\iota^*\omega$ nunca se anula.

b. Agora calculando o pullback de ω por $\psi = \psi(\theta, \phi) = (\sin \phi \cos \theta, \sin \phi \sin \theta, \cos \phi)$. Usando o que foi provado no item (a), temos

$$\psi^* \iota^* \omega = \psi^* \omega$$

= $\psi^* (x dy \wedge dz + y dz \wedge dy + z dx \wedge dy)$

pela linearidade do pullback

$$\psi^* \omega = \psi^* (x dy \wedge dz) + \psi^* (y dz \wedge dx) + \psi^* (z dx \wedge dy)$$

Calculando cada parte individualmente temos

$$\psi^*(dy \wedge dz) = d(\sin\theta\sin\theta) \wedge d(\cos\phi)$$

= $(\sin\phi\cos\theta\,d\theta + \cos\phi\sin\theta\,d\phi) \wedge (-\sin\phi\,d\phi)$

pela distributividade do produto wedge, e do fato que d $\phi \wedge d\phi = 0$

$$\psi^*(\mathrm{d}y \wedge \mathrm{d}z) = -\sin^2\phi\cos\theta\,\mathrm{d}\theta \wedge \mathrm{d}\phi.$$

Analogamente

$$\psi^*(dz \wedge dx) = d(\cos \theta) \wedge d(\sin \phi \cos \theta)$$

$$= (-\sin \theta d\phi) \wedge (-\sin \phi \sin \theta d\theta + \cos \theta \cos \theta d\phi)$$

$$= \sin^2 \sin \theta d\phi \wedge d\theta$$

$$= -\sin^2 \phi \sin \theta d\theta \wedge d\phi$$

e

$$\psi^*(dx \wedge dy) = d(\sin\phi\cos\theta) \wedge d(\sin\phi\sin\theta)$$

$$= (-\sin\phi\sin\theta\,d\theta + \cos\phi\cos\theta\,d\phi) \wedge (\sin\phi\cos\theta\,d\theta + \cos\phi\sin\theta\,d\phi)$$

$$= \sin\phi\cos\phi\sin^2\theta\,d\phi \wedge d\theta + \sin\phi\cos\phi\cos^2\theta\,d\phi \wedge d\theta$$

$$= -\sin\phi\cos\phi\,d\theta \wedge d\phi$$

Por fim, juntando tudo

$$\psi^* \omega = \psi^*(x) \, \psi^*(\mathrm{d}y \wedge \mathrm{d}z) + \psi^*(y) \, \psi^*(\mathrm{d}z \wedge \mathrm{d}x) + \psi^*(z) \, \psi^*(\mathrm{d}x \wedge \mathrm{d}y)$$

$$= -\sin^3 \phi \cos^2 \theta \, \mathrm{d}\theta \wedge \mathrm{d}\phi - \sin^3 \phi \sin^2 \theta \, \mathrm{d}\theta \wedge \mathrm{d}\phi - \sin \phi \cos^2 \phi \, \mathrm{d}\theta \wedge \mathrm{d}\phi$$

$$= (-\sin^3 \phi \cos^2 \theta - \sin^3 \phi \sin^2 \theta - \sin \phi \cos^2 \phi) \, \mathrm{d}\theta \wedge \mathrm{d}\phi$$

$$= (-(\sin^2 \theta + \cos^2 \theta) \sin^3 \phi - \sin \phi \cos^2 \phi) \, \mathrm{d}\theta \wedge \mathrm{d}\phi$$

$$= (-\sin^2 \phi \sin \phi - \sin \phi \cos^2 \phi)$$

$$= (-(\sin^2 \phi + \cos^2 \phi) \sin \phi) \, \mathrm{d}\theta \wedge \mathrm{d}\phi$$

$$= -\sin \phi \, \mathrm{d}\theta \wedge \mathrm{d}\phi$$

Logo, $f(\theta, \phi) = -\sin \phi$. Portanto, podemos calcular a integral

$$\int_0^{\pi} \int_0^{2\pi} -\sin\phi \,d\theta d\phi = -\int_0^{\pi} \sin\phi \,d\phi \int_0^{2\pi} d\theta$$
$$= -2\pi \int_0^{\pi} \sin\phi \,d\phi$$
$$= 2\pi [\cos\pi - \cos 0]$$
$$= -4\pi$$