TLS in the wild Internet scans for security

#### Presented by Ralph Holz

School of Information Technologies





# This is joint work

#### Team TLS

- Johanna Amann (ICSI)
- Olivier Mehani, Dali Kafaar (Data61)
- Matthias Wachs (TUM)

#### **Team BGP**

- Johann Schlamp, Georg Carle (TUM)
- Quentin Jacquemart, Ernst Biersack (Eurecom)







#### About me

#### **Quick CV**

- Lecturer at University of Sydney
- Visiting Fellow at UNSW
- Previously Researcher at Data61 (ex-NICTA)
- PhD from Technical University of Munich
- And I do Internet security measurement...
- (Also: blockchains)

#### About this lecture

#### This is a story about

- ...how security measurements can identify shortcomings in deployed technology
- ...how data from active scans can be reused for further, benign purposes

#### There are three parts to this story

- From identifying the problem to scanning the Web
- New insights about electronic communication: email and chat
- Reusing data in new contexts. Here: security of Internet routing!

# Background: a typical Internet experience



## Reason (not a UX fail)

#### Technical Details

www.symantec.com.au uses an invalid security certificate.

The certificate is only valid for the following names:

symantec.com, norton.com, careers.symantec.com, customercare.symantec.com, jobs.symantec.com, www.account.norton.com, account.norton.com, mynortonaccount.com, www.nortonaccount.com, nortonaccount.com, downloads.guardianedge.com, www.pgp.com, store.pgp.com, na.store.pgp.com, eu.store.pgp.com, uk.store.pgp.com, row.store.pgp.com, nukona.com, www.nukona.com

(Error code: ssl\_error\_bad\_cert\_domain)

# The X.509 Public Key Infrastructure (PKI)

Much of our Internet security is built on X.509

- Every TLS-secured protocol uses X.509
- Further use cases: email, code-signing, ...

All X.509 PKIs share the same principle

- Certificates bind an entity name to a public key
- Certification Authorities (CAs) act as certificate issuers
- Browsers/OSes preconfigured with CAs' 'root' certificates











#### Root certificate not in Root Store



## Best-of attacks on X.509

- Dec 2008:
  - 'Error' in Comodo subseller: no identity check
- Mar 2011: Comodo CA hacked
  - Blacklisting of  $\approx$  10 certificates
- Jul 2011: DigiNotar CA melt-down
  - 531 fake certificates in the wild
- 2012: Türktrust's 'accidental Man-in-the-middle'
- 2012: Trustwave: issued surveillance certs for years
- I stopped tracking it in around that time (PhD was done)

# 2008–2011: we assess the quality of X.509 for the Web

#### X.509 should:

- ...allow HTTPS on all WWW hosts
- ...contain only valid certificates
- ...offer good cryptographic security

#### And there should be:

- Long keys, only strong hash algorithms, ...
- Correctly deployed certs

Does it?

#### Data sets: 25m certificates

Active scans to measure deployed PKI

- Scan hosts on Alexa Top 1 million Web sites
- Nov 2009 Apr 2011: 8 scans from Germany
- April 2011: 8 scans from around the globe

Passive monitoring to measure user-encountered PKI

- Munich Research Network
- Real SSL/TLS as caused by users





TLS in the wild | Ralph Holz





TLS in the wild | Ralph Holz



TLS in the wild | Ralph Holz



TLS in the wild | Ralph Holz

#### **Domain names in certificates**

#### Are certificates issued for the right domain name?

- Tested for scans of Alexa Top 1m
- Compare name in certificate against domain name, incl. wildcard matching
- Only 18% of certificates are fully verifiable
- More than 80% of the deployed certificates show errors

#### What about...

#### **Email?**

- Email: 4.1B accounts in 2014; 5.2B in 2018
- Most prevalent, near-instant form of communication

#### Chat?

- Once dominant instant-messaging (IRC!)
- Newer: XMPP (also proprietary use)

#### Research question: how secure are these?

# Securing email and chat

#### SSL/TLS is the common solution

- Responder authenticates with certificate
- Initiator usually uses protocol-specific method
- Direct SSL/TLS vs. STARTTLS in-band upgrade
  - Susceptible to active man-in-the-middle attack

#### **Email protocols**

- Email submission: SMTP, SUBMISSION (= SMTP on 587)
- Email retrieval: IMAP, POP3

# **Investigated properties**

#### In this lecture:

- Deployment numbers
- STARTTLS
- Versions
- Ciphers used/negotiated
- Responder authentication
- Initiator authentication

Focus mostly on email. There is more in the paper.

# Data collection (July 2015)

#### **Active scans**

- To determine state of deployment
- zmap in the 'frontend', openss1-based 'backend'

#### **Passive monitoring**

- To determine actual use
- Bro monitor, UCB network

# Active scans (July 2015)

| Protocol (port)                 | No. hosts | SSL/TLS | Certs | Interm. (unique) |
|---------------------------------|-----------|---------|-------|------------------|
| SMTP <sup>†,‡</sup> (25)        | 12.5M     | 3.8M    | 1.4M  | 2.2M (1.05%)     |
| SMTPS <sup>‡</sup> (465)        | 7.2M      | 3.4M    | 801k  | 2.6M (0.4%)      |
| SUBMISSION <sup>†,‡</sup> (587) | 7.8M      | 3.4M    | 754k  | 2.6M (0.62%)     |
| IMAP <sup>†,‡</sup> (143)       | 8M        | 4.1 M   | 1M    | 2.4M (0.54%)     |
| IMAPS (993)                     | 6.3M      | 4.1 M   | 1.1M  | 2.8M (0.6%)      |
| POP3 <sup>†,‡</sup> (110)       | 8.9M      | 4.1 M   | 998k  | 2.3M (0.44%)     |
| POP3S (995)                     | 5.2M      | 2.8M    | 748k  | 1.8M (0.44%)     |
| IRC <sup>†</sup> (6667)         | 2.6M      | 3.7k    | 3k    | 0.6k (13.17%)    |
| IRCS (6697)                     | 2M        | 8.6k    | 6.3k  | 2.5k (12.35%)    |
| XMPP, C2S <sup>†,‡</sup> (5222) | 2.2M      | 54k     | 39k   | 5.9k (32.28%)    |
| XMPPS, C2S (5223)               | 2.2M      | 70k     | 39k   | 33k (8.5%)       |
| XMPP, S2S <sup>†,‡</sup> (5269) | 2.5M      | 9.7k    | 6.2k  | 5.9k (32.28%)    |
| XMPPS, S2S <sup>‡</sup> (5270)  | 2M        | 1.7k    | 1.1k  | 0.8k (18.77%)    |
| HTTPS (443)                     | 42.7M     | 27.2M   | 8.6M  | 25M (0.93%)      |

 $\dagger = {\sf STARTTLS}$  ,  $\ddagger = {\sf fallback}$  to SSL 3.

# Passive observation (July 2015)

| Protocol                | Port | Connections | Servers |  |
|-------------------------|------|-------------|---------|--|
| SMTP <sup>†</sup>       | 25   | 3.9M        | 8.6k    |  |
| SMTPS                   | 465  | 37k         | 266     |  |
| SUBMISSION <sup>†</sup> | 587  | 7.8M        | 373     |  |
| IMAP <sup>†</sup>       | 143  | 26k         | 239     |  |
| IMAPS                   | 993  | 4.6M        | 1.2k    |  |
| POP3 <sup>†</sup>       | 110  | 19k         | 110     |  |
| POP3S                   | 995  | 160k        | 341     |  |
| IRC <sup>†</sup>        | 6667 | 50          | 2       |  |
| IRCS                    | 6697 | 18k         | 15      |  |
| XMPP, C2S <sup>†</sup>  | 5222 | 14k         | 229     |  |
| XMPPS, C2S              | 5223 | 911k        | 2k      |  |
| XMPP, S2S <sup>†</sup>  | 5269 | 1 <i>75</i> | 2       |  |
| XMPPS, S2S              | 5270 | 0           | 0       |  |

 $<sup>\</sup>dagger = \mathsf{STARTTLS}.$ 

# **STARTTLS** support and use

| Protocol   | Active probing          | Passive monitoring |                      |                      |  |
|------------|-------------------------|--------------------|----------------------|----------------------|--|
|            | Supported<br>& upgraded | Supporting servers | Offering connections | Upgraded connections |  |
| SMTP       | 30.82%                  | 59%                | 97%                  | 94%                  |  |
| SUBMISSION | 43.03%                  | 98%                | 99.9%                | 97%                  |  |
| IMAP       | 50.91%                  | 77%                | 70%                  | 44%                  |  |
| POP3       | 45.62%                  | 55%                | 73%                  | 62%                  |  |

- Deployment as scanned: 30-50%—not good
- **Use** as monitored: better, but still not very good
  - SMTP: almost all connections upgrade
  - But not in IMAP/POP3

# SSL/TLS versions in use (passive observation)

| Active probing Version Negotiated with serve |        | Passive monitoring Observed connections |  |
|----------------------------------------------|--------|-----------------------------------------|--|
| SSL 3                                        | 0.02%  | 1.74%                                   |  |
| TLS 1.0                                      | 39.26% | 58.79%                                  |  |
| TLS 1.1                                      | 0.23%  | 0.1%                                    |  |
| TLS 1.2                                      | 60.48% | 39.37%                                  |  |

- SSL 3 is almost dead, some use left—are these old clients?
- TLS 1.2 most common in deployments, but not in use (not good)

# Ciphers and forward secrecy (from monitoring)



- RC4 has use (up to 17%, not good)
- ECDHE has much use
- DHE: 76% are 1024 bit, 22% 2048 bit, 1.4% are 768 bit

# Responder authentication (monitored o use)



# Responder authentication (scanned o deployed)



#### Initiator authentication: SUBMISSION

| Combinations offered               | Advertised | Servers        |  |
|------------------------------------|------------|----------------|--|
| PLAIN, LOGIN                       | 2.1M       | <b>75.15</b> % |  |
| LOGIN, PLAIN                       | 224k       | 8.51%          |  |
| LOGIN, CRAM-MD5, PLAIN             | 96k        | 3.45%          |  |
| LOGIN, PLAIN, CRAM-MD5             | 45k        | 1.63%          |  |
| DIGEST-MD5, CRAM-MD5, PLAIN, LOGIN | 36k        | 1.30%          |  |
| CRAM-MD5, PLAIN, LOGIN             | 29k        | 1.04%          |  |
| PLAIN, LOGIN, CRAM-MD5             | 25k        | 0.89%          |  |
| •••                                |            |                |  |

- Plaintext-based methods the vast majority
- Even where CRAM is offered, it's usually not first choice
- No SCRAM

# Risks and threats: SSL/TLS-level

#### **STARTTLS**

- Less than 50% of servers support upgrade
- But big providers do, have large share of traffic
- MITM vulnerability (reported to be exploited)

#### **Ciphers**

- For some protocols, 17% of RC4 traffic (WWW: 10%)
- For some protocols,  $\approx 30\%$  of connections not forward-secure
- Diffie-Hellman keys  $\leq$  1024 bit in > 60% of connections

### Risks and threats: authentication

### Responder

- Many self-signed or expired certs, broken chains
- Big providers have correct setups
- Sending mail to 'small' domain/provider means risks of MITM
- We know from Foster et al. that mail servers do not verify certs in outgoing connections

#### Initiator

- Plain-text login pervasive
- CRAM not used much (and no implementations for SCRAM?)

## Scans are intrusive



## Scans are intrusive



Actually, that is so wrong. We do nmap 0.0.0.0/0 | grep | sort -u | wc -1

## Scans are intrusive



Let's show them what insights **only** scans can give. Our example will be Internet routing!

## The fragility of Internet routing



# **Origin Relocation Attacks**



# **Monitoring Internet routing**

### Attack detection systems for BGP exist

- But they mostly address other kinds of attacks
- Or they have enormous false-positive rates

#### So we built HEAP

- A filter chain to link to attack detection system
- A powerful system to rule out false positives
- The goal is to cut down the number of reported events to a more manageable size

### Reason with external data

### Idea: rule out benign events, investigate rest



Figure: Hijacking Event Analysis Program (figure courtesy J. Schlamp)

## Data source: SSL/TLS scans

#### IPv4-wide scans

- Create ground truth
  - Identify beacon hosts with unique keys
  - Filter out all hosts which were in suspicious prefix at scan-time
- With this ground truth:
  - During suspicious event, scan hosts in affected prefixes
  - If key is still the same: not an attack
  - Attacker unlikely to compromise both host(s) and BGP

## How to evaluate

### Lack of input sources

- Most attack detectors do not focus on subprefix attacks
- Or they are discontinued
- We thus had to build our own, very coarse, 'detector'
- Essentially, we just counted every subprefix (subMOAS) events as an 'attack'
- Gross overestimate of real attacks, but it creates a worst case for our evaluation setup
- We discounted events of less than 2 hrs duration

## **Evaluation results**

|                          | total  | in %   |
|--------------------------|--------|--------|
| All subMOAS events       | 14,050 | 100.0% |
| IRR analysis             | 5,699  | 40.56% |
| topology reasoning       | 2,328  | 16.57% |
| SSL/TLS scans            | 2,639  | 18.78% |
| Legitimate events (cum.) | 7,998  | 56.93% |

l.e. we can rule out more than half of  ${\bf all}$  events in our super-coarse detector.

# Case study: IP space of Top 1M (Alexa)

### Assumption: this is valuable IP space

|                          | total | in %   |
|--------------------------|-------|--------|
| All subMOAS events       | 849   | 100.0% |
| IRR analysis             | 294   | 34.63% |
| topology reasoning       | 146   | 17.20% |
| SSL/TLS scans            | 576   | 67.85% |
| Legitimate events (cum.) | 689   | 81.15% |

One conclusion: run a Web server in your prefix, and you increase chances we can monitor your IP space.

## Conclusion

### A good step forward

- We can rule out 57% of **all** events shorter than 2 hrs
- For important IP spaces, this rises to 80%
- We can show commercial detectors have at least 10% false positives

#### We offer two conclusions

- IRR data is immensely useful—we wish operators would enter it into the DB more often
- Scans are very useful, too—and 'opt-in' to HEAP is as simple as setting up a small Web server with unique key

# **Summary**

### Security measurements point out weaknesses in email

- Connections between big providers are already (reasonably) secure
- The risk lies with mail from/to remaining providers
- Authentication mechanisms (initiator) are very poor
- (PS: The Web's security is a mess, too)

## Scans can be immensely useful to improve security, too

Monitor Internet routing and filter alarms

# **Summary**

### Security measurements point out weaknesses in email

- Connections between big providers are already (reasonably) secure
- The risk lies with mail from/to remaining providers
- Authentication mechanisms (initiator) are very poor
- (PS: The Web's security is a mess, too)

## Scans can be immensely useful to improve security, too

Monitor Internet routing and filter alarms

#### **Questions?**

email: ralph.holz@sydney.edu.au

## **Recommendations**

### A few things we can do

- Warnings in user agents that mail will be sent in plain
  - ightarrow Google has implemented this now
- Flag-day for encryption (as for XMPP)
- Combine setup with automatic use of, e.g., Let's Encrypt
- Ship safe defaults
- Follow guides, e.g., bettercrypto.org
- More in the paper

## **Recommendations**

#### A few things we can do

- Warnings in user agents that mail will be sent in plain
  - ightarrow Google has implemented this now
- Flag-day for encryption (as for XMPP)
- Combine setup with automatic use of, e.g., Let's Encrypt
- Ship safe defaults
- Follow guides, e.g., bettercrypto.org
- More in the paper

#### Questions?

email: ralph.holz@sydney.edu.au

### On XMPP

### Majority of certs for XMPP are self-signed.

- Inspection of Common Names shows: proprietary use
  - Content Distribution Network (incapsula.com)
  - Apple Push
  - Samsung Push
  - Unified Communication solutions

## **Oddity of scans**

### The Internet has background noise.

- Independent of port you scan, about 0.07-0.1% of IPs reply with SYN/ACK, but do not carry out a handshake
- Confirmed with authors of zmap
- Important to keep in mind when investigating protocols with smaller deployments, where SSL/TLS does not seem to succeed very often

## Certificate reuse—valid certs

### Much reuse, even among valid certs



# Certificate reuse—self-signed

### Many default certs from default configurations



# Key reuse across all protocols



# **Oddity in IMAPS...**

| Common name                               | Occurrences |  |
|-------------------------------------------|-------------|--|
| *.securesites.com                         | 88k         |  |
| *.sslcert35.com                           | 31k         |  |
| localhost/emailAddress=webaster@localhost | 27k         |  |
| localhost/emailAddress=webaster@localhost | 21k         |  |
| *.he.net                                  | 19k         |  |
| www.update.microsoft.com                  | 19k         |  |
| *.securesites.net                         | 11k         |  |
| *.cbeyondhosting2.com                     | 11k         |  |
| *.hostingterra.com                        | 11k         |  |
| plesk/emailAddress=info@plesk.com         | 6k          |  |

Table: Selected Common Names in IMAPS certificates.

# **Oddity in IMAPS...**

| Common name                               | Occurrences |
|-------------------------------------------|-------------|
| *.securesites.com                         | 88k         |
| *.sslcert35.com                           | 31k         |
| localhost/emailAddress=webaster@localhost | 27k         |
| localhost/emailAddress=webaster@localhost | 21k         |
| *.he.net                                  | 19k         |
| www.update.microsoft.com                  | 19k         |
| *.securesites.net                         | 11k         |
| *.cbeyondhosting2.com                     | 11k         |
| *.hostingterra.com                        | 11k         |
| plesk/emailAddress=info@plesk.com         | 6k          |

Table: Selected Common Names in IMAPS certificates.

# **Mapping to ASes**

| AS number | Registration information                      | CIRCL rank |
|-----------|-----------------------------------------------|------------|
| 3257      | TINET-BACKBONE Tinet SpA, DE                  | 9532       |
| 3731      | AFNCA-ASN - AFNCA Inc., US                    | 4804       |
| 4250      | ALENT-ASN-1 - Alentus Corporation, US         | 9180       |
| 4436      | AS-GTT-4436 - nLayer Communications, Inc., US | 10,730     |
| 6762      | SEABONE-NET TELECOM ITALIA SPARKLE S.p.A., IT | 11,887     |
| 11346     | CIAS - Critical Issue Inc., US                | 557        |
| 13030     | INIT7 Init7 (Switzerland) Ltd., CH            | 6255       |
| 14618     | Amazon.com Inc., US                           | 4139       |
| 16509     | Amazon.com Inc., US                           | 3143       |
| 18779     | EGIHOSTING - EGIHosting, US                   | 4712       |
| 21321     | ARETI-AS Areti Internet Ltd.,GB               | 2828       |
| 23352     | SERVERCENTRAL - Server Central Network, US    | 11,135     |
| 26642     | AFAS - AnchorFree Inc., US                    | · -        |
| 41095     | IPTP IPTP LTD, NL                             | 6330       |
| 54500     | 18779 - EGIHosting, US                        | _          |