Demand System Estimation

Group 5

黎宏濬 林孝儒 張立宏 許震浩

Department of Agricultural Economics, NTU

October 18, 2024

Outline

1 資料整理過程

2 分析結果

產品定義

產品名稱	定義	範圍	
	含天然果汁/蔬菜汁或還原果汁/蔬菜汁10%以上,直接供飲用之果汁/ 蔬菜汁飲料。	稀釋果蔬汁、清淡果蔬汁、 發酵果蔬汁、稀釋發酵果 蔬汁、清淡發酵果蔬汁、 果肉飲料。	
	在除去鹵素飲用水中加壓,添加二氧化碳及果實香料、果汁;或可 樂子實葉抽出液;或Saraparilla根抽出液等調味料之碳酸飲料。	汽水、可樂、沙士。	
運動飲料	具可調解人體電解質功能之飲料,調整為等張滲透壓,以便自人體腸道迅速吸收,PH值在2.5~3.8之間,電解質濃度(ug/ml)則分別為鈉雞子552以下、鎂雞子24以下、鉀雞子195以下、氯雞子639以下、鈣雞子60以下、磷酸根雞子190以下。		
咖啡飲料	利用咖啡粉或咖啡豆研磨、浸泡、萃取、調理,添加奶精、糖水或 調味料之飲料,其咖啡因若超過200ppm則需標示,但不得超過 500ppm。	純咖啡飲料、調味咖啡飲 料。	
茶類飲料	利用茶葉或茶葉梗浸泡、萃取、調理,添加糖水或調味料之飲料, 其咖啡因若超過200ppm則需標示,但不得超過500ppm。	烏龍茶、花茶、紅茶、綠 茶、調味茶(如檸檬茶)。	

資料來源: Wiki、台灣環保署

Figure: 資料期間: 1991 - 2023

Outline

1 資料整理過程

2 分析結果

資料整理重點過程

- 年份和月份提取:利用 gsub 函數去掉「年」和「月」字,並將年份和 月份轉換爲數值型
- 年份轉換:將民國年轉換爲西元年,並將所有收入數據轉換爲數值型格式(去掉逗號)
- 缺失值塡補:利用 nafill 函數按順序塡補年份和月份的缺失值
- 重新命名:將產品名稱(果蔬汁、碳酸飲料等)及其對應的數據欄位分 別改爲英文名稱
- 將銷售數據、物價數據、薪資數據進行 full join, 也就是透過相同的年份 和月份進行合併

Outline

1 資料整理過程

2 分析結果

AIDS

$$w_i = \alpha_i + \sum_{j=1}^5 \gamma_{ij} \ln(P_j) + \beta_i \ln\left(\frac{X}{P}\right),$$

- $w_i = \frac{P_i Q_i}{X}$: expenditure share of the *i*-th beverage category
 - \blacksquare P_i is the price of the *i*-th beverage
 - $lackbox{ } Q_i$ is the quantity of the *i*-th beverage
 - X is the total expenditure on all beverages, which may vary with monthly income
- $ln(P_j)$: The natural logarithm of the price of the *j*-th beverage
- *P*: Price index, typically approximated by the Stone price index:

$$\ln(P) = \sum_{j=1}^{5} w_j \ln(P_j),$$

where w_j is the expenditure share of the j-th beverage

 \bullet α_i , γ_{ij} , β_i : Parameters to be estimated for each beverage category

估計結果

	果蔬汁飲料	碳酸飮料	運動飲料	咖啡飮料	茶類飮料
α	1.164***	0.417***	-0.268***	0.759***	-1.072***
	(0.079)	(0.116)	(0.023)	(0.056)	(0.192)
β	-0.085***	-0.017	0.028***	-0.065***	0.139***
	(0.007)	(0.009)	(0.005)	(0.005)	(0.016)
R^2	0.439	0.284	0.152	0.684	0.241

Table: Coefficients and R-squared values of expenditure shares

 α (截距項): 代表了每個飲料類別的消費支出份額的常數部分,反映了不同飲料類別的基礎需求水準

- 果蔬汁的 alpha 參數最大,說明果蔬汁在所有飲料中具有最高的基本需求
- 茶類飲料的 alpha 參數最小,說明茶類飲料在所有飲料中的基本需求最低

β: 衡量了支出變動對每個飲料類別的需求影響,beta 參數越大,飲料需求 對支出的變化反應越強

- 果蔬汁的 beta 參數最小,表示隨著總支出增加,消費者對果蔬汁的需求會顯著減少
- 茶類飲料的 beta 參數最大,支出增加對茶類飲料需求有顯著的正向影響

估計結果

	果蔬汁飲料	碳酸飲料	運動飲料	咖啡飲料	茶類飲料
γ 果蔬汁	0.082***	-0.111***	-0.015*	0.030*	0.015
	(0.018)	(0.016)	(0.006)	(0.013)	(0.017)
γ 碳酸	-0.112***	-0.118***	-0.060***	0.016	0.274***
	(0.016)	(0.027)	(0.008)	(0.017)	(0.023)
γ 運動	-0.015*	-0.060***	-0.037***	0.379***	0.073***
	(0.006)	(0.008)	(0.004)	(0.005)	(0.011)
γ 咖啡	$0.030^{*} \ (0.013)$	$\begin{pmatrix} 0.016 \\ (0.017) \end{pmatrix}$	0.039*** (0.005)	0.170*** (0.018)	0.257*** (0.012)
γ 茶類	0.150	0.274***	0.074***	0.257***	-0.105**
	(0.017)	(0.023)	(0.011)	(0.012)	(0.036)
R^2	0.428	0.493	0.605	0.685	0.759

Table: Coefficients and R-squared values of quantities

Adding-up check

Adding-up 要求 α 加總應該為 1

$$\sum_{i} \alpha_{i} = 1.164 + 0.417 - 0.268 + 0.759 - 1.072 = 1$$

符合 Adding-up 條件

Homogeneity check

Homogeneity 要求 γ 行列加總應該為 0

$$\sum_{i} \gamma_{ij} = 0 \quad \forall j$$

$$\sum_{i} \gamma_{ij} = 0 \quad \forall i$$

- #檢查同質性(每行的價格彈性之和是否為0)
- > homogeneity_check <- all.equal(rowSums(gamma_matrix), rep(0, nrow(gamma_matrix)), check.attributes = FALSE)
- #輸出同質性檢查結果
- > cat("Homogeneity check result:", homogeneity_check, "\n") Homogeneity check result: TRUE

Figure: Homogeneity check

Symmetry check

Symmetry 要求產品交叉價格應該對稱,因爲商品i對商品j的影響應該等於商品i對商品i的影響

$$\gamma_{ij} = \gamma_{ji} \quad \forall i \neq j$$

#檢查對稱性(價格彈性矩陣是否對稱)

> symmetry_check <- isSymmetric(gamma_matrix, tol = 1e-10, check.attributes = FALSE)

#輸出對稱性檢查結果

> cat("Symmetry check result:", symmetry_check, "\n")
Symmetry check result: TRUE

Figure: Summetry check

支出彈性 (Expenditure Elasticity)

支出彈性 (Expenditure Elasticity)

$$\varepsilon_i^{\mathsf{x}} = 1 + \frac{\beta_i}{\mathsf{w}_i}$$

- 若 $\varepsilon_i^{\mathsf{x}} > 1$,則商品 i 爲奢侈品;
- 若 $\varepsilon_i^{\mathsf{X}} < 1$,則商品 i 爲必需品。

支出彈性 (Expenditure Elasticity)

	果蔬汁	碳酸	運動	咖啡	 茶
支出彈性	0.548	0.908	1.376	0.485	1.321

- 果蔬汁飲料、碳酸飲料、茶類飲料爲必需品
- 茶類飲料與運動飲料爲奢侈品

自價格彈性 (Own-price Elasticity) / 交叉價格彈性 (Cross-price Elasticity)

自價格彈性 (Own-price Elasticity)

$$\varepsilon_{ii} = -1 + \frac{\gamma_{ii}}{w_i} - \beta_i \log\left(\frac{x}{P}\right)$$

交叉價格彈性 (Cross-price Elasticity)

$$\varepsilon_{ij} = \frac{\gamma_{ij}}{w_i} - \beta_i \log\left(\frac{x}{P}\right)$$

- 如果 $\varepsilon_{ii} > 0$,商品 i 和 j 爲替代品;
- 如果 $\varepsilon_{ij} < 0$,商品 i 和 j 爲互補品。

自價格彈性 (Own-price Elasticity) / 交叉價格彈性 (Cross-price Elasticity)

	果蔬汁	碳酸	運動	咖啡	茶
果蔬汁	-0.482	-0.516	-0.049	0.223	0.275
碳酸	-0.605	-1.645	-0.329	0.106	1.565
運動	-0.278	-0.882	-1.531	0.480	0.835
咖啡	0.340	0.225	0.346	0.407	-1.803
茶	-0.025	0.576	0.147	-0.635	-1.383

飲料類別間的價格交叉彈性和自身價格彈性,說明某一飲料類別的價格變化 如何影響另一類別或自身的需求

- 果蔬汁與碳酸飲料可能是互補品
- 碳酸飲料與運動飲料可能是互補品,與茶類飲料可能是替代品
- 運動飲料與咖啡飲料和茶類飲料可能是替代品
- ■咖啡飲料與茶類飲料可能是互補品
- 碳酸飲料的自身價格彈性絕對值最大,需求量受定價的變化最大

ADF Test Results

ADF 單根檢定的目的是什麽?

- ADF 檢定的主要目的是判斷時間序列數據是否為平穩時間序列。平穩時間序列的統計特徵(如平均數和變異數)在整個時間區段內保持穩定,這對於許多時間序列分析方法來說是必要條件。如果時間序列是非平穩的,通常需要對其進行差分處理(如一階差分)來轉換為平穩序列。
- 檢定統計量 (Test Statistic): 這是 ADF 檢驗的主要結果,用來判斷時間序列是否具有單根(非平穩)。
- 臨界值 (Critical Value),用來判斷檢驗統計量是否顯著。當檢定統計量 小於這些臨界值時,表示可以拒絕單根假設,即時間序列是平穩的。

ADF Test Results

Variable	Test	Critical	Critical	Critical
variable	Statistic	Value 1%	Value 5%	Value 10%
果蔬汁價格	-6.172	-3.44	-2.87	-2.57
碳酸飮料價格	-5.116	-3.44	-2.87	-2.57
運動飮料價格	-3.707	-3.44	-2.87	-2.57
咖啡飮料價格	-3.930	-3.44	-2.87	-2.57
茶類飲料價格	-3.069	-3.44	-2.87	-2.57

Table: 單根檢定結果: 每種飲料的價格變量的 ADF 檢定統計量在 5% 水準下皆小於臨界值拒絕單根假設,因此飲料的價格變量是平穩的。

Durbin-Watson test

- FruitVegetableJuice_price
 - DW = 0.31032
- CarbonatedBeverage_price
 - DW = 0.40014
- SportsDrink_price
 - DW = 0.3316
- CoffeeDrink_price
 - DW = 0.45798
- TeaDrink_price
 - DW = 0.22287