P510/1 **PHYSICS** (Theory) Paper 1 Mar. 2021 2½ Hours

UGANDA ADVANCED CERTIFICATE OF EDUCATION **PHYSICS** (THEORY)

Paper 1 2 hours 30 minutes

INSTRUCTIONS TO CANDIDATES:

Answer five questions, including at least one, but not more than two from each of the sections A. B and C.

Any additional question(s) answered will **not** *be marked.*

Non-programmable scientific calculators may be used.

Assume where necessary:

 $9.81 \ ms^{-2}$ Acceleration due to gravity, g 1.6×10^{-19} C Electron charge, e = $9.11 \times 10^{-31} \text{ kg}$ Electron mass = $5.97 \times 10^{24} \text{kg}$ Mass of the earth $6.6 \times 10^{-34} \text{Js}$ Plank's constant, h

 $5.67 \times 10^{-8} W \text{m}^{-2} \text{K}^{-4}$ Stefan's – Boltzmann's constant, σ =

 $6.4 \times 10^6 \text{ m}$ Radius of earth = Radius of the sun $7 \times 10^8 \,\mathrm{m}$ = $1.5 \times 10^{11} \text{ m}$ Radius of earth's orbit round the sun = $3.0 \times 10^8 \text{ ms}^{-1}$ Speed of light in vacuum, c = 4200 Jkg⁻¹K⁻¹ Specific heat capacity of water = 400 Jkg⁻¹K⁻¹ Specific heat capacity of copper = $2.0 \times 10^{11} \text{Nm}^{-2}$ Young's modulus of steel = $1.2 \times 10^{11} N \text{m}^{-2}$ Young's modulus of copper = $6.02 \times 10^{23} \text{ mol}^{-1}$ Avogadro's number, N_A = $7.0 \times 10^{-2} N \text{m}^{-1}$ Surface tension of water = 1000 kgm^{-3} Density of water = $8.31 \text{ J mol}^{-1} \text{ K}^{-1}$ Gas constant, R =

The constant $\frac{1}{4\pi\varepsilon_0}$ $9.0 \times 10^9 F^{-1} m$ =

SECTION A

1.	(a)	Define the terms			
		(i)	Impulse	(01 mark)	
		(ii)	Power	(01 mark)	
	(b)	(i)	State Newton's laws of motion.	(03 marks)	
		(iii) Explain how the law of conservation of energy applies to a simple			
			pendulum pulled to one side and released.	(03 marks)	
	(c)	(i)	Distinguish between static friction and kinetic friction	1.	
				(02 marks)	
		(ii)	Describe briefly an experiment to determine the coeff	ficient of static	
			friction between a wooden block and a flat table.	(04 marks)	
		(iii)	List two ways by which the friction between the surfa	nces can be	
			reduced.	(02 marks)	
	(d)	A vehicle of mass 2000 kg travelling at 10 ms^{-1} along a horizontal surface is			
		brought to rest in a distance of 12.5 m against a constant retarding force.			
		Calculate the;			
		(i)	retardation on the vehicle	(02 marks)	
		(ii)	power the engine must develop to take the vehicle up		
		10 at a constant speed of 10 ms^{-1} given that the frictional resistance			
			motion is 200N.	(02 marks)	
2.	(a)	Define the terms;			
_,	(44)	(i)	Young's modulus	(01 mark)	
		(ii)	Elasticity	(01 mark)	
	(b)	(i)	State Hooke's law.	(01 mark)	
	` '	(ii)	Sketch a graph of stress against strain for a ductile ma	,	
		. ,	on the same axes.	(02 marks)	
		(iii)	Explain the features of the curve for rubber.	(02 marks)	
	(c)	(i)	With the aid of a labeled diagram, describe an experimental experimental experiments.	nent to determine	
	, ,	. ,	the Young's modulus of steel wire.	(06 marks)	
		(ii)	State four precautions necessary in the experiment in	(c)(i) to ensure	
		. ,	accuracy.	(02 marks)	
	(d)	A copper wire and steel wire, each of length 1.5 m and diameter 2 mm are			
		joined end-to-end to form a composite wire of length 3 m. The wire is			
		loaded and its length becomes 3.003 m. Calculate the;			
		(i)	strain in each of the wires	(03 marks)	
		(ii)	force applied	(02 marks)	

- Define the following; 3. (a)
 - Gravitational potential. (i)

(ii) Escape velocity.

- (01 mark) (01 mark)
- (b) (i) State Kepler's laws of planetary motion.
- (03 marks)
- (ii) A satellite of mass, m, is in a circular orbit around the earth at a distance, r, from the centre of the earth. Show that r is given by;
 - $r = \left(\frac{gT^2R^2}{4\pi^2}\right)^{\frac{1}{3}}$ where R is the radius of the earth and T is period of satellite? (03 marks)
- (c) (i) Distinguish between **free oscillations** and **damped oscillations**.

(02 marks)

- Describe an experiment to determine the acceleration due to gravity (ii) using a simple pendulum. (05 marks)
- A spring of force constant 1200 Nm^{-1} is mounted on a horizontal (d) frictionless table. One end of the spring is fixed and to the other end is attached a mass of 3.0 kg. The mass is pulled sideways to a distance of 2.0 cm and released. If the mass of the spring is negligible, calculate the;
 - speed of the mass when the spring is compressed by 1.0 cm. (i)

(03 marks)

total energy of the oscillation. (ii)

- (02 *marks*)
- Account for the existence of intermolecular forces. 4. (a) (i) (02 *marks*)
 - (ii) Sketch a graph of potential energy against separation of two molecules in a substance and explain the main features of the graph. (03 marks)
 - Define *surface tension* in terms of surface energy. (b) (i) (01 mark)
 - (ii) Use the molecular theory to account for the surface tension of a liquid. (03 marks)
 - (iii) Show that the excess pressure, p, in an air bubble inside a liquid over outside pressure is given by $P = \frac{2\gamma}{r}$ where r is the radius of the bubble and γ its surface tension. (04 marks)
 - A soap bubble of diameter 1 cm is formed at the top of a capillary tube of (c) diameter 1 mm dipping into a beaker of water. If the surface tensions of water and soap solution are 7.0×10^{-2} and 3.0×10^{-2} Nm⁻¹ respectively, calculate the height of the water in the capillary tube above the water and state any (05 marks) assumptions you have made.
 - Explain why large mercury drops flatten out where as small ones assume (d) spherical shapes. (02 marks)

SECTION B

- 5. (a) (i) Define the term **specific latent heat of vaporization**. (01 mark)
 - (ii) Explain briefly why temperature is constant when a solid is changing into a liquid. (02 marks)
 - (b) Describe with the aid of a labelled diagram, an electrical method for determination of specific latent heat of vaporization of a liquid.

(07 marks)

- (c) (i) Define the term **specific heat capacity of a substance**. (01 mark)
 - (ii) An electrical heater rated 500 W is immersed in a liquid of mass 2.0 kg contained in a large thermos flask of heat capacity $840 \, JK^{-1}$ at 28° C. Electrical power is supplied to the heater for 10 minutes. If the specific heat capacity of the liquid is $2.5 \times 10^3 \, \mathrm{J \, kg^{-1} K^{-1}}$, its specific latent heat of vaporization is $8.54 \times 10^3 \, \mathrm{J \, kg^{-1} and}$ its boiling point is 78° C, estimate the amount of liquid which boils off stating any assumptions made. (06 marks)
- (d) (i) What is **boiling point of a liquid**? (01 mark)
 - (ii) Explain why extra pressure increases the boiling point of a liquid. (02 marks)
- 6. (a) (i) Explain the fact that the heat required to raise the temperature of a fixed mass of gas by 1 K at constant volume is different from that required when the pressure is kept constant. (02 marks)
 - (ii) Describe an experiment to verify Boyle's law. (04 marks)
 - (b) (i) State the conditions necessary for a reversible isothermal process. (02 marks)
 - (ii) A fixed mass of gas at a pressure P_1 and volume V_1 expands isothermally to a pressure P_2 and volume V_2 . Derive an expression for the work done by the gas. (04 marks)
 - (c) A gas of volume 2 litres at a temperature of 27°C and pressure of 1.5×10⁵ Pa is heated at constant pressure until its volume doubles. It is then cooled at constant volume back to its original temperature before finally being compressed isothermally to its original volume.

Draw a P-V diagram of the whole cycle and find the net work done by the gas. (05 marks)

(d) The pressure P of an ideal gas of density ρ is given by

 $P = \frac{1}{3}\rho \overline{c^2}$ where $\overline{c^2}$ is the mean-square speed of its molecules.

Using this expression, show Avogadro's hypothesis. (03 marks)

- 7. (a) (i) Draw sketch graphs to show the variation of relative intensity of black body radiation with wavelength for three different temperatures. (02 marks)
 - (ii) Explain the appearance of a metal ball placed in a dark room when its temperature is progressively raised from room temperature to just below melting. (03 marks)
 - (iii) Explain why cavities in a fire look brighter than the rest of the fire. (02 marks)
 - (b) (i) State Wien's and Stefan's laws of black body radiation. (02 marks)
 - (ii) The intensity of radiant energy from a black body is a maximum at a wavelength of 1.5×10^{-6} m. Calculate the temperature of the black body. (02 marks)
 - (iii) Describe an experiment to compare surfaces as absorbers of radiation. (04 marks)
 - (c) The energy intensity received by a spherical planet from a star is $1.4 \times 10^3 \text{ Wm}^{-2}$. The star is of radius $7.0 \times 10^5 \text{ km}$ and is $1.4 \times 10^8 \text{ km}$ from the planet from the planet.
 - (i) Calculate the surface temperature of the star. (04 marks)
 - (ii) State any assumptions you have made in (c) (i) above. (01 mark)

SECTION C

- 8. (a) (i) Define the term **specific charge** of an electron. (01 mark)
 - (ii) Describe a laboratory experiment to determine the specific charge of an electron. (06 marks)
 - (b) The deflecting plates in a Thomson's set up are 5 cm long and 1.5 cm apart. The plates are maintained at a p.d of 240 V. Electrons accelerated to energy 2 KeV enter from one edge of the plates midway in the direction parallel to the plates. Calculate the vertical deflection on a screen placed 30 cm away from the other end of the plates. (05 marks)
 - (c) Explain the motion of an electron beam in a region of uniform magnetic field. (03 marks)
 - (d) (i) What is a **time base** as applied to a Cathode Ray Oscilloscope? (01 mark)
 - (ii) Draw a sketch graph showing the variation of time-base voltage with time. (01 mark)
 - (iii) An alternating *p. d* applied to the Y-plates of an oscilloscope produces five complete waves on a 10 cm length of the screen when the time base setting is 10 mscm⁻¹. Find the frequency of the alternating voltage.

 (03 marks)

9. (a) Ultraviolet radiation falls on Zinc plate placed on the cap of a neutral (i) electroscope. Explain what is observed. (03 marks) (ii) State the features of photoelectric effect. (04 marks) (b) (i) Outline the processes involved in the production of X-rays in a modern X-ray tube. (04 marks) How do **X-rays** differ from **positive rays**? (02 marks) (ii) Distinguish between X-ray production and the photoelectric (iii) effect. (02 marks) In an X-ray tube operated at 1.5×10^5 V, the target is made of material of (c) specific heat capacity 2.5×10^2 J kg⁻¹ K⁻¹ and has a mass of 0.25 kg. Given that one percent of the electric power supplied is converted into X –rays and the rest dissipated as heat in the target. If the temperature of the target rises by 8 Ks⁻¹, find: (i) the number of electrons which strike the target every second. (03 marks) (ii) the shortest wavelength of X- rays produced. (02 marks) 10.(a) Define the following; mass defect. (i) (01 mark) (ii) (01 mark) isotopes. (b) (i) Sketch a graph of binding energy per nucleon against mass number. (02 marks) (ii) Explain how energy is released during nuclear fusion. (03 marks) (c) (i) With the aid of a labeled diagram, describe the operation of a Geiger Muller (GM) tube. (*05 marks*) What is meant by **background count rate**? (01 mark) (ii) (iii) State **two** sources of background count rate. (01 mark) A freshly prepared sample of a radioactive isotope contains 10^{20} atoms. The (d) half-life of the isotope is 12 hours. Calculate the (i) initial activity. (03 marks) (ii) number of radioactive atoms remaining after one hour. (03 marks)

END