2

3

CLAIMS

What is claimed is:

1 1	١.	Αı	net	hod	co	m	pri	isi	n	a	•
•						•••	\sim .		• •	_	۰

- using processor implementation-specific instructions to save a

 processor state in a system memory when a machine check

 error is generated by a processor;
- attempting to correct the error using processor implementationspecific instructions;
 - transferring control to processor-independent instructions; receiving control from processor-independent instructions; and returning to an interrupted context of the processor by restoring the processor state.
 - 2. The method of claim 1, further comprising providing processor error record information obtained using processor implementation-specific instructions.
- The method of claim 1, further comprising attempting to contain
 the error if a second processor is coupled to the processor by
 requesting a rendezvous between the processor and the second
 processor.
- 1 4. The method of claim 1, wherein receiving control from processor2 independent instructions indicates that the error has been
 3 corrected.

7

8

9

10

11

12

- 1 6. The method of claim 1, wherein attempting to correct the error
 2 using processor implementation-specific instructions is not done if
 3 an expected machine check indicator is set.
 - 7. A machine-readable medium that provides instructions that, if executed by a processor, will cause the processor to perform operations comprising:

using processor implementation-specific instructions to save the processor state in a system memory when a machine check error is generated by the processor;

attempting to correct the error using processor implementationspecific instructions;

transferring control to processor-independent instructions; receiving control from processor-independent instructions; and returning to an interrupted context of the processor by restoring the processor state.

1 8. The machine-readable medium of claim 7, wherein the operations
2 further comprise using processor implementation-specific
3 instructions to provide processor error record information
4 requested by processor-independent instructions.

- 1 9. The machine-readable medium of claim 7, wherein the operations
 2 further comprise attempting to contain the error if a second
 3 processor is coupled to the processor by requesting a rendezvous
 4 between the processor and the second processor.
- 1 10. The machine-readable medium of claim 7, wherein receiving
 2 control from processor-independent instructions indicates that the
 3 error has been corrected.
 - 11. The machine-readable medium of claim 7, wherein the operations further comprise obtaining an address of a location to save the processor state in the system memory provided by platform-specific instructions.
- 1 12. The machine-readable medium of claim 7, wherein attempting to
 2 correct the error using processor implementation-specific
 3 instructions is not done if an expected machine check indicator is
 4 set.
- 1 13. The machine-readable medium of claim 7, wherein the instructions
 2 provided by the machine-readable medium are not cacheable by
 3 the processor.
- 1 14. A central processing unit (CPU) comprising:
- a processor;

ÜЩ
Ø O
SUND
•

	3		a first machine-readable medium coupled to the processor, the
	4		first machine-readable medium including processor
	5		implementation-specific instructions that, if executed by the
	6		processor, will cause the processor to perform operations
	7		including
	8		saving the processor state in a system memory and
	9		attempting to correct the error when a machine check
	10		error is generated by the processor, and
n	11		receiving control and returning to the interrupted context of
Ų	12		the processor by restoring the state of the processor
n T	13		when the error is determined to have been corrected;
	14		a second machine-readable medium coupled to the processor, the
	15		second machine-readable medium including only processor
in in	16		implementation-independent instructions that, if executed by
	17		the processor, will cause the processor to perform operations
	18		including
	19		receiving control from the first machine-readable medium;
	20		determining if the error has been corrected;
	21		transferring control to the first machine-readable medium if
	22		the error has been corrected.
	1	15.	The central processing unit (CPU) of claim 14, wherein the
			•

operations performed by the instructions provided by the second

3 _

5

- machine-readable medium further include requesting processor 3 error record information from the first machine-readable medium. 4
- The central processing unit (CPU) of claim 14, wherein the 16. 1 operations performed by the instructions provided by the first 2 machine-readable medium further include attempting to contain 3 the error if a second processor is coupled to the processor by 4 requesting a rendezvous between the processor and the second 5 processor.
 - 17. The central processing unit (CPU) of claim 14, wherein the operations performed by the instructions provided by the second machine-readable medium further include providing an address of a location to save the processor state in the system memory to the first machine-readable medium.
- 18. The central processing unit (CPU) of claim 14, wherein attempting 1 to correct the error is not done if an expected machine check 2 indicator is set. 3
- 19. The central processing unit (CPU) of claim 14, wherein the 1 instructions provided by the first and second machine-readable 2 media are not cacheable by the processor. 3
- 20. The central processing unit (CPU) of claim 14, wherein the 1 operations performed by the instructions provided by the second 2 machine-readable medium further include if the error is 3

present, otherwise, performing one of a halt and a reboot of the 5

CPU. 6