Chemotactic Chiral Active Matter

Yichen Lu

March 14, 2025

Contents

_	Models		
	1.1 Defin	itions	2
	1.1.1	General Model	2
		Polar alignment Interaction	
	1.1.3	Chemotactic Interaction	2
2 Continuum model		3	
3	Behavior	S	4

Models 1

Definitions

1.1.1 General Model

$$\dot{\mathbf{r}}_{i}(t) = v\mathbf{p}\left(\theta_{i}\right) + \sum_{j \in A_{i}^{1,2}} \mathbf{I}\left(\Delta\mathbf{r}_{ij}\right), \tag{1a}$$

$$\dot{\theta}_{i}(t) = \omega_{i} + G(\mathbf{r}, \theta, c) + \sum_{j \neq i} H(\Delta \theta_{ij}, \Delta \mathbf{r}_{ij}), \qquad (1b)$$

$$\dot{\theta}_{i}(t) = \omega_{i} + G(\mathbf{r}, \theta, c) + \sum_{j \neq i} H(\Delta \theta_{ij}, \Delta \mathbf{r}_{ij}), \qquad (1b)$$

$$\dot{c}(\mathbf{r}, t) = D\nabla^{2}c + F(c) \sum_{i=1} \delta(\mathbf{r} - \mathbf{r}_{i}), \qquad (1c)$$

for $i=1,2,\cdots,N$. Here, \mathbf{r}_i is the position of the *i*-th particle, θ_i is the orientation of the *i*-th particle, v is the self-propulsion velocity, $\mathbf{p}(\theta_i) = (\cos \theta_i, \sin \theta_i)$ is the unit vector pointing in the direction of the *i*-th particle, ω_i is the natural frequency of the *i*-th particle, $G(\mathbf{r},\theta,c)$ is the coupling function between particles and chemical fields, $H(\Delta\theta_{ij}, \Delta\mathbf{r}_{ij})$ is the coupling function between partials, $c(\mathbf{r}, t)$ is the chemical concentration, D is the diffusion coefficient, F(c) is the production rate of the chemical field, $A_i^{1,2} = \{j \mid r_c \geqslant |\mathbf{r}_j - \mathbf{r}_i|\}, \ \Delta \mathbf{r}_{ij} = \mathbf{r}_j - \mathbf{r}_i, \ \Delta \theta_{ij} = \theta_j - \theta_i, \ \mathbf{I}(\Delta \mathbf{r}_{ij}) = \frac{\Delta \mathbf{r}_{ij}}{|\Delta \mathbf{r}_{ij}|^2}.$ The natural frequencies ω_i are distributed with following two cases:

- 1. Single-chiral swarmalators: The natural frequencies ω_i are distributed in $U(\omega_{\min}, \omega_{\max})$ for all swarmalators and $\omega_{\min}\omega_{\max} > 0$.
- 2. **Double-chiral swarmalators:** The frequencies are distributed in two symmetric uniform distributions, representing two types of chirality. Exactly half of the swarmalators have natural frequencies $\omega_i \sim U(\omega_{\min}, \omega_{\max})$ and the other half have natural frequencies $\omega_i \sim U(-\omega_{\max}, -\omega_{\min})$.

1.1.2 Polar alignment Interaction

• Additive coupling:

$$\dot{\theta}_i = \omega_i + K \sum_{j=1}^N f(r_{ij}) \sin(\theta_j - \theta_i + \alpha) , \qquad (2)$$

• Mean-field coupling by oscillator number:

$$\dot{\theta}_i = \omega_i + \frac{K}{N} \sum_{j=1}^{N} f(r_{ij}) \sin(\theta_j - \theta_i + \alpha) , \qquad (3)$$

which is similar to the swarmalator model.

Here, $f(r_{ij})$ is a function of $r = |\mathbf{r}_i - \mathbf{r}_j|$, and K is the coupling strength. The function f(r) can be defined as

1.
$$f_H(r) = H(d_0 - r), r_0 > 0;$$

2.
$$f_E(r) = e^{-\frac{r}{d_0}}, r_0 > 0.$$

1.1.3 Chemotactic Interaction

General Chemotactic Model For Two Species

Type 1:

$$\dot{\mathbf{r}}_{i}^{1,2} = v\mathbf{p}\left(\theta_{i}^{1,2}\right) - \sum_{j \in A_{i}^{1,2}} \mathbf{I}_{ij}^{1,2} , \qquad (4a)$$

$$\dot{\theta}_i^{1,2} = \omega_i + |\nabla c_{1,2}| \sin\left(\varphi_{c_{1,2}} - \theta_i^{1,2}\right) + F(\theta, \mathbf{r}) , \qquad (4b)$$

$$\dot{c}_1 = D_1 \nabla^2 c_1 + F_1 \left(c_1, c_2 \right) \sum_{j=1}^N \delta \left(\mathbf{r} - \mathbf{r}_j^1 \right) , \qquad (4c)$$

$$\dot{c}_2 = D_2 \nabla^2 c_2 + F_2 \left(c_1, c_2 \right) \sum_{j=1}^N \delta \left(\mathbf{r} - \mathbf{r}_j^2 \right) , \qquad (4d)$$

where $\mathbf{I}_{ij}^{1,2} = \frac{\mathbf{r}_{j} - \mathbf{r}_{i}^{1,2}}{|\mathbf{r}_{j} - \mathbf{r}_{i}^{1,2}|^{2}}$, $\varphi_{c_{1,2}} = \arctan\left(\frac{\partial_{y} c_{1,2}}{\partial_{x} c_{1,2}}\right)$ and $A_{i}^{1,2} = \left\{j \mid r_{c} \geqslant |\mathbf{r}_{j} - \mathbf{r}_{i}^{1,2}|\right\}$. Type 2:

$$\dot{\mathbf{r}}_{i}^{1,2} = v\mathbf{p}\left(\theta_{i}^{1,2}\right) + \alpha_{1,2}\nabla c_{1,2} - \sum_{i \in A^{1,2}} \mathbf{I}_{ij}^{1,2} , \qquad (5a)$$

$$\dot{\theta}_i^{1,2} = \omega_i + F(\theta, \mathbf{r}) , \qquad (5b)$$

$$\dot{c}_1 = D_1 \nabla^2 c_1 + F_1 (c_1, c_2) \sum_{j=1}^N \delta \left(\mathbf{r} - \mathbf{r}_j^1 \right) , \qquad (5c)$$

$$\dot{c}_2 = D_2 \nabla^2 c_2 + F_2 (c_1, c_2) \sum_{i=1}^{N} \delta \left(\mathbf{r} - \mathbf{r}_j^2 \right) , \qquad (5d)$$

Chemotactic Model with Lotka-Volterra Functions

Let $F_1(c_1, c_2) = c_1(k_1 - k_2c_2)$ and $F_2(c_1, c_2) = c_2(k_3c_1 - k_4)$, where k_1, k_2, k_3, k_4 are constants.

$$\dot{\mathbf{r}}_{i}^{1,2} = v\mathbf{p}\left(\theta_{i}^{1,2}\right) - \sum_{j \in A_{i}^{1,2}} \mathbf{I}_{ij}^{1,2} , \qquad (6a)$$

$$\dot{\theta}_i^{1,2} = \omega_i + |\nabla c_{1,2}| \sin\left(\varphi_{c_{1,2}} - \theta_i^{1,2}\right) + F(\theta, \mathbf{r}) , \qquad (6b)$$

$$\dot{c}_1 = D_1 \nabla^2 c_1 + c_1 \left(k_1 - k_2 c_2 \right) \sum_{j=1}^N \delta \left(\mathbf{r} - \mathbf{r}_j^1 \right) , \qquad (6c)$$

$$\dot{c}_2 = D_2 \nabla^2 c_2 + c_2 \left(k_3 c_1 - k_4 \right) \sum_{j=1}^{N} \delta \left(\mathbf{r} - \mathbf{r}_j^2 \right) , \qquad (6d)$$

2 Continuum model

In the thermodynamic limit $N \to \infty$, the Eqs. (6a) and (6b) give rise to the following continuum model:

$$\frac{\partial}{\partial t} \rho^{1,2} \left(\mathbf{r}, \theta, t \right) = -\frac{\partial}{\partial \theta} \left(\rho^{1,2} v_{\theta}^{1,2} \right) - \nabla \cdot \left(\rho^{1,2} \mathbf{v}_{\mathbf{r}}^{1,2} \right) , \qquad (7)$$

where $\rho^{1,2}(\mathbf{r},\theta,t)$ is the probability density of swarmalators of species 1 or 2 at position \mathbf{r} and orientation θ at time t, and $\mathbf{v}_{\mathbf{r}}^{1,2}$ and $v_{\theta}^{1,2}$ are the velocity fields in the position and orientation space, respectively. The velocity fields are given by

$$v_{\theta}^{1,2}(\mathbf{r},\theta,t) = \omega + |\nabla c_{1,2}| \sin(\varphi_{c_{1,2}} - \theta) + F(\theta,\mathbf{r}), \qquad (8a)$$

$$\mathbf{v}_{\mathbf{r}}^{1,2}(\mathbf{r},\theta,t) = v\mathbf{p}(\theta) - \int d\theta' d\mathbf{r}' \rho^{1,2}(\mathbf{r}',\theta',t) \mathbf{I}(\mathbf{r} - \mathbf{r}') , \qquad (8b)$$

where $\mathbf{I}(\mathbf{r})=|\mathbf{r}|^{-2}\mathbf{r}.$ By substituting Eqs. (8) into Eq. (7), we obtain

$$\frac{\partial}{\partial t} \rho^{1,2} (\mathbf{r}, \theta, t) = -\omega \partial_{\theta} \rho^{1,2} - |\nabla c_{1,2}| \partial_{\theta} \left[\rho^{1,2} \sin \left(\varphi_{c_{1,2}} - \theta \right) \right]
- v \mathbf{p} (\theta) \cdot \nabla \rho^{1,2} - \nabla \cdot \int d\theta' d\mathbf{r}' \rho^{1,2} (\mathbf{r}', \theta', t) \mathbf{I} (\mathbf{r} - \mathbf{r}') .$$
(9)

3 Behaviors

