Multivariable knot polynomials, the V_n -polynomials, and their patterns

Shana Y. Li

University of Illinois, Urbana-Champaign

April 2025

Joint work with Stavros Garoufalidis

Table of Contents

- 1 Garoufalidis & Kashaev's multivariable knot polynomials
- **2** Computation of the V_n -polynomials
- 3 Patterns of the V_n -polynomials

Table of Contents

- 1 Garoufalidis & Kashaev's multivariable knot polynomials
- 2 Computation of the V_n -polynomials
- 3 Patterns of the V_n -polynomials

Let R be a rigid R-matrix, then the corresponding Reshetikhin–Turaev functor gives an $\operatorname{End}(V)$ -valued invariant of oriented knots.

■ Rigid R-matrix: an element R in $Aut(V \otimes V)$ satisfying:

- Rigid R-matrix: an element R in $Aut(V \otimes V)$ satisfying:
 - Yang-Baxter equation:

$$(R \otimes I) \circ (I \otimes R) \circ (R \otimes I) = (I \otimes R) \circ (R \otimes I) \circ (I \otimes R).$$

- Rigid R-matrix: an element R in $Aut(V \otimes V)$ satisfying:
 - Yang-Baxter equation: $(R \otimes I) \circ (I \otimes R) \circ (R \otimes I) = (I \otimes R) \circ (R \otimes I) \circ (I \otimes R)$.
 - Rigidity: the partial transposes $\widehat{R^{\pm 1}} := (\varepsilon \otimes I \otimes I) \circ (I \otimes R^{\pm 1} \otimes I) \circ (I \otimes I \otimes \eta)$ are invertible. $\varepsilon \colon V \otimes V \to \mathbb{F}$ and $\eta \colon \mathbb{F} \to V \otimes V$: the evaluation and coevaluation maps.

- Rigid R-matrix: an element R in $Aut(V \otimes V)$ satisfying:
 - Yang-Baxter equation: $(R \otimes I) \circ (I \otimes R) \circ (R \otimes I) = (I \otimes R) \circ (R \otimes I) \circ (I \otimes R)$.
 - Rigidity: the partial transposes $\widetilde{R^{\pm 1}} := (\varepsilon \otimes I \otimes I) \circ (I \otimes R^{\pm 1} \otimes I) \circ (I \otimes I \otimes \eta)$ are invertible. $\varepsilon \colon V \otimes V \to \mathbb{F}$ and $\eta \colon \mathbb{F} \to V \otimes V$: the evaluation and coevaluation maps.
- Reshetikhin–Turaev functor: a functor (determined by R) from the category of tangles to the category of vector spaces.

Theorem (Garoufalidis & Kashaev, 2023)

Given a braided Hopf algebra with automorphisms, one can construct a rigid *R*-matrix.

Theorem (Garoufalidis & Kashaev, 2023)

Given a braided Hopf algebra with automorphisms, one can construct a rigid *R*-matrix.

Braided Hopf algebra

A braided Hopf algebra over field \mathbb{F} is a unital algebra H with product $\nabla \colon H \otimes H \to H$ and unit $\eta \colon \mathbb{F} \to H$, equipped with coproduct $\Lambda \colon H \to H \otimes H$, counit $\varepsilon \colon H \to \mathbb{F}$ and invertible antipode $S \colon H \to H$.

Theorem (Garoufalidis & Kashaev, 2023)

Given a braided Hopf algebra with automorphisms, one can construct a rigid *R*-matrix.

Braided Hopf algebra

A braided Hopf algebra over field $\mathbb F$ is a unital algebra H with product $\nabla\colon H\otimes H\to H$ and unit $\eta\colon \mathbb F\to H$, equipped with coproduct $\Lambda\colon H\to H\otimes H$, counit $\varepsilon\colon H\to \mathbb F$ and invertible antipode $S\colon H\to H$.

The procedure:

$$\left\{ \begin{aligned} &\mathsf{Braided} \\ &\mathsf{Hopf\ algebras} \\ &\mathsf{with\ autos} \end{aligned} \right\} \rightarrow \left\{ \begin{aligned} &\mathsf{Braided} \\ &\mathsf{Yetter-Drinfel'd} \\ &\mathsf{modules\ with\ autos} \end{aligned} \right\} \rightarrow \left\{ \begin{aligned} &\mathsf{Rigid} \\ &R\text{-matrices} \end{aligned} \right\}$$

UIUC

$$\left\{ \begin{array}{l} \text{Braided} \\ \text{Hopf algebras} \\ \text{with autos} \end{array} \right\} \xrightarrow{\text{G \& K, 2023}} \left\{ \begin{array}{l} \text{Rigid} \\ \text{R-matrices} \end{array} \right\} \xrightarrow{\text{K, 2019}} \left\{ \text{Knot invariants} \right\}$$

$$\left\{ \begin{array}{l} \mathsf{Braided} \\ \mathsf{Hopf\ algebras} \\ \mathsf{with\ autos} \end{array} \right\} \xrightarrow{\mathsf{G\ \&\ K,\ 2023}} \left\{ \begin{array}{l} \mathsf{Rigid} \\ R\text{-matrices} \end{array} \right\} \xrightarrow{\mathsf{K,\ 2019}} \left\{ \mathsf{Knot\ invariants} \right\}$$

One source of braided Hopf algebras: Nichols algebras.

$$\left\{ \begin{aligned} &\mathsf{Braided} \\ &\mathsf{Hopf\ algebras} \\ &\mathsf{with\ autos} \end{aligned} \right\} \xrightarrow{\mathsf{G\ \&\ K,\ 2023}} \left\{ \begin{aligned} &\mathsf{Rigid} \\ &R\text{-matrices} \end{aligned} \right\} \xrightarrow{\mathsf{K,\ 2019}} \left\{ \mathsf{Knot\ invariants} \right\}$$

One source of braided Hopf algebras: Nichols algebras.

Nichols algebras of rank 1: recovers the colored Jones polynomials and the ADO polynomials.

$$\left\{ \begin{aligned} &\mathsf{Braided} \\ &\mathsf{Hopf\ algebras} \\ &\mathsf{with\ autos} \end{aligned} \right\} \xrightarrow{\mathsf{G\ \&\ K,\ 2023}} \left\{ \begin{aligned} &\mathsf{Rigid} \\ &R\text{-matrices} \end{aligned} \right\} \xrightarrow{\mathsf{K,\ 2019}} \left\{ \mathsf{Knot\ invariants} \right\}$$

One source of braided Hopf algebras: Nichols algebras.

- Nichols algebras of rank 1: recovers the colored Jones polynomials and the ADO polynomials.
- Nichols algebras of rank 2: recovers the Links–Gould polynomial, and gives the V_n -polynomials.

Table of Contents

- 1 Garoufalidis & Kashaev's multivariable knot polynomials
- **2** Computation of the V_n -polynomials
- 3 Patterns of the V_n -polynomials

Reshetikhin–Turaev functor: tangles \mapsto vector spaces

Reshetikhin–Turaev functor: tangles \mapsto vector spaces

For local extrema going from left to right: (normalization)

Reshetikhin–Turaev functor: tangles \mapsto vector spaces

For local extrema going from left to right: (normalization)

For V_n -polynomials, $\varepsilon \circ \left(\widetilde{R^{-1}}\right)^{-1} = \left(\widetilde{R^{-1}}\right)^{-1} \circ \eta = \varepsilon \circ \left(\widetilde{R}\right)^{-1} = \left(\widetilde{R}\right)^{-1} \circ \eta$ is a diagonalizable matrix with only ± 1 's on the diagonal.

Reshetikhin–Turaev: tangles \mapsto normalized tangles \mapsto vector spaces Example: the 4_1 knot

Reshetikhin–Turaev: tangles \mapsto normalized tangles \mapsto vector spaces

Example: the 4₁ knot

Reshetikhin–Turaev: tangles \mapsto normalized tangles \mapsto vector spaces

Example: the 4₁ knot

Reshetikhin–Turaev: tangles \mapsto normalized tangles \mapsto vector spaces

Example: the 4₁ knot

Reshetikhin-Turaev: tangles \mapsto normalized tangles \mapsto vector spaces Example: the 4₁ knot

$$V$$

$$\uparrow \qquad \left((\varepsilon \otimes I) \circ \left(I \otimes R^{-1} \right) \right) \otimes \left(\varepsilon \circ \left(\widetilde{R} \right)^{-1} \right)$$

$$V^{\otimes 5}$$

$$\uparrow \qquad \qquad I \otimes I \otimes R \otimes I$$

$$V^{\otimes 5}$$

$$\uparrow \qquad \qquad V^{\otimes 5}$$

$$\uparrow \qquad \qquad \left(\left(\widetilde{R^{-1}} \right)^{-1} \circ \eta \right) \otimes \left((R \otimes I) \circ (I \otimes \eta) \right)$$

Example: the 4₁ knot

Fact

For V_n -polynomials, the endomorphism on V we obtained is a scalar multiple of 1_V .

Shana Li UIUC

Fix a basis $\mathcal{B} := \{e_i\}$ of V, $R^{\pm 1} \in \operatorname{Aut}(V \otimes V)$ become matrices whose entries can be denoted by $(R^{\pm 1})_{e_i \otimes e_i}^{e_k \otimes e_l}$.

Fix a basis $\mathcal{B} := \{e_i\}$ of V, $R^{\pm 1} \in \operatorname{Aut}(V \otimes V)$ become matrices whose entries can be denoted by $(R^{\pm 1})_{e_i \otimes e_i}^{e_k \otimes e_l}$.

To compute the eigenvalue of the $\operatorname{End}(V)$ -valued invariant is to evaluate a sum of the form

$$\sum_{\substack{a_1,\cdots,a_{2c-1}\in\mathcal{B}\\a_0=a_{2c}=1}}\pm\underbrace{\left(R^{\pm 1}\right)_{\substack{a_2\otimes a_3\\a_0\otimes a_1}}^{a_2\otimes a_3}\cdots\left(R^{\pm 1}\right)_{\substack{a_{2c-1}\otimes a_{2c}\\a_{2c-3}\otimes a_{2c-2}}}^{a_{2c-1}\otimes a_{2c}},$$

where *c* is the number of crossings of the knot. This sum is called the *state sum*.

Fix a basis $\mathcal{B} := \{e_i\}$ of V, $R^{\pm 1} \in \operatorname{Aut}(V \otimes V)$ become matrices whose entries can be denoted by $(R^{\pm 1})_{e_i \otimes e_i}^{e_k \otimes e_l}$.

To compute the eigenvalue of the $\operatorname{End}(V)$ -valued invariant is to evaluate a sum of the form

$$\sum_{\substack{a_1,\cdots,a_{2c-1}\in\mathcal{B}\\a_0=a_{2c}=1}}\pm\underbrace{\left(R^{\pm 1}\right)_{\substack{a_2\otimes a_3\\a_0\otimes a_1}}^{a_2\otimes a_3}\cdots\left(R^{\pm 1}\right)_{\substack{a_{2c-1}\otimes a_{2c}\\a_{2c-3}\otimes a_{2c-2}}}^{a_{2c-1}\otimes a_{2c}}},$$

where *c* is the number of crossings of the knot. This sum is called the *state sum*.

Therefore, it requires

$$c \cdot (\dim V)^{2c-1}$$

times of computations to compute the eigenvalue.

For V_n -polynomials, dim V = 4n.

$$c \cdot (\dim V)^{2c-1} = 98,304.$$

$$c \cdot (\dim V)^{2c-1} = 98,304.$$

This is how you know that you wouldn't want to compute it by hand.

$$c \cdot (\dim V)^{2c-1} = 98,304.$$

This is how you know that you wouldn't want to compute it by hand.

For
$$c = 12$$
,

$$c \cdot (\dim V)^{2c-1} = 98,304.$$

This is how you know that you wouldn't want to compute it by hand.

For
$$c = 12$$
,

$$c \cdot (\dim V)^{2c-1} = 7,083,549,724,304,467,820,544,$$

$$c \cdot (\dim V)^{2c-1} = 98,304.$$

This is how you know that you wouldn't want to compute it by hand. For c=12.

$$c \cdot (\dim V)^{2c-1} = 7,083,549,724,304,467,820,544,$$

and for c = 15,

For V_n -polynomials, dim V = 4n.

With n = 2, for the simplest knot 3_1 , we have

$$c \cdot (\dim V)^{2c-1} = 98,304.$$

This is how you know that you wouldn't want to compute it by hand.

For c = 12,

$$c \cdot (\dim V)^{2c-1} = 7,083,549,724,304,467,820,544,$$

and for c = 15,

$$c \cdot (\dim V)^{2c-1} = 2,321,137,573,660,088,015,435,857,920.$$

For V_n -polynomials, dim V = 4n.

With n = 2, for the simplest knot 3_1 , we have

$$c \cdot (\dim V)^{2c-1} = 98,304.$$

This is how you know that you wouldn't want to compute it by hand.

For
$$c = 12$$
,

$$c \cdot (\dim V)^{2c-1} = 7,083,549,724,304,467,820,544,$$

and for c = 15,

$$c \cdot (\dim V)^{2c-1} = 2,321,137,573,660,088,015,435,857,920.$$

Worse, the entries $(R^{\pm 1})_{e_i\otimes e_j}^{e_k\otimes e_l}$ are polynomials in two variables, instead of scalars.

For V_n -polynomials, dim V = 4n. With n = 2, for the simplest knot 3_1 , we have

$$c \cdot (\dim V)^{2c-1} = 98,304.$$

This is how you know that you wouldn't want to compute it by hand. For c=12,

$$c \cdot (\dim V)^{2c-1} = 7,083,549,724,304,467,820,544,$$

and for c = 15,

$$c \cdot (\dim V)^{2c-1} = 2,321,137,573,660,088,015,435,857,920.$$

Worse, the entries $(R^{\pm 1})_{e_i\otimes e_j}^{e_k\otimes e_l}$ are polynomials in two variables, instead of scalars. We computed the V_2 -polynomials for all knots with ≤ 15 crossings, and more.

To optimize the computation:

To optimize the computation:

■ The *R*-matrix is sparse: a divide and conquer method sees the 0's at each step and eliminates a lot of terms.

n	Nonzero elements (%)	# <i>R</i>
2		4096
3	585 (2.8%)	20,736 65,536
4	1377 (2.1%)	65,536

To optimize the computation:

■ The *R*-matrix is sparse: a divide and conquer method sees the 0's at each step and eliminates a lot of terms.

n	Nonzero elements (%)	#R
2	177 (4.3%)	4096
3	585 (2.8%)	20,736 65,536
4	1377 (2.1%)	65,536

Use optimized tensor contraction path.

Example: the 4₁ knot again

Example: the 4₁ knot again

Table of Contents

- 1 Garoufalidis & Kashaev's multivariable knot polynomials
- 2 Computation of the V_n -polynomials
- 3 Patterns of the V_n -polynomials

Symmetry:

$$V_{K,n}(t,q) = V_{K,n}(t^{-1},q), \quad V_{\overline{K},n}(t,q) = V_{K,n}(t,q^{-1})$$

Symmetry:

$$V_{K,n}(t,q) = V_{K,n}(t^{-1},q), \quad V_{\overline{K},n}(t,q) = V_{K,n}(t,q^{-1})$$

Specialization (conjecturally):

$$V_{K,n}(q^{n/2},q) = 1, \quad V_{K,n}(t,1) = \Delta_K(t)^2$$

where $\Delta_K(t)$ is the Alexander polynomial.

Symmetry:

$$V_{K,n}(t,q) = V_{K,n}(t^{-1},q), \quad V_{\overline{K},n}(t,q) = V_{K,n}(t,q^{-1})$$

Specialization (conjecturally):

$$V_{K,n}(q^{n/2},q) = 1, \quad V_{K,n}(t,1) = \Delta_K(t)^2$$

where $\Delta_K(t)$ is the Alexander polynomial.

Genus bound (conjecturally):

$$\deg_t V_{K,n}(t,q) \leq 4g(K)$$

where g(K) is Seifert genus of K.

Theorems

- (GKKST) The V_1 -polynomial is the Links–Gould polynomial.
- (KT) The Links–Gould polynomial satisfies both the specialization and the genus bound.
- $V_{K,2}$ is determined by

$$V_{K,2}(t^2,q^2) = c_{2,0}(t,q) \\ V_{K(2,1),1}(t,q) + c_{2,-1}(t,q) \\ V_{K,1}(t^2q^{-1},q) + c_{2,1}(t,q) \\ V_{K,1}(t^2q,q)$$

where K(2,1) is the (2,1)-parallel of K.

Theorems

- (GKKST) The V_1 -polynomial is the Links-Gould polynomial.
- (KT) The Links-Gould polynomial satisfies both the specialization and the genus bound.
- $V_{K,2}$ is determined by

$$V_{K,2}(t^2,q^2) = c_{2,0}(t,q) V_{K(2,1),1}(t,q) + c_{2,-1}(t,q) V_{K,1}(t^2q^{-1},q) + c_{2,1}(t,q) V_{K,1}(t^2q,q)$$

where K(2,1) is the (2,1)-parallel of K.

Since g(K(2,1)) = 2g(K), the last statement implies that V_2 also satisfies both the specialization and the genus bound.

Theorems

- (GKKST) The V_1 -polynomial is the Links–Gould polynomial.
- (KT) The Links–Gould polynomial satisfies both the specialization and the genus bound.
- $V_{K,2}$ is determined by

$$V_{K,2}(t^2,q^2) = c_{2,0}(t,q) V_{K(2,1),1}(t,q) + c_{2,-1}(t,q) V_{K,1}(t^2q^{-1},q) + c_{2,1}(t,q) V_{K,1}(t^2q,q)$$

where K(2,1) is the (2,1)-parallel of K.

Since g(K(2,1)) = 2g(K), the last statement implies that V_2 also satisfies both the specialization and the genus bound. Conjecturally, V_n -polynomials satisfy relations similar to the one above.

When is the equality achieved in the genus bound inequality?

$$\deg_t V_{K,n}(t,q) \leq 4g(K)$$

When is the equality achieved in the genus bound inequality?

$$\deg_t V_{K,n}(t,q) \leq 4g(K)$$

With the specialization, we have

$$2 \deg_t \Delta_K(t) \leq \deg_t V_{K,n}(t,q) \leq 4g(K).$$

When is the equality achieved in the genus bound inequality?

$$\deg_t V_{K,n}(t,q) \leq 4g(K)$$

With the specialization, we have

$$2 \deg_t \Delta_K(t) \leq \deg_t V_{K,n}(t,q) \leq 4g(K).$$

Since Alexander polynomials satisfy $\deg_t \Delta_K(t) \leq 2g(K)$, a sufficient condition:

$$\deg_t \Delta_K(t) = 2g(K). \tag{1}$$

When is the equality achieved in the genus bound inequality?

$$\deg_t V_{K,n}(t,q) \leq 4g(K)$$

With the specialization, we have

$$2 \deg_t \Delta_K(t) \leq \deg_t V_{K,n}(t,q) \leq 4g(K).$$

Since Alexander polynomials satisfy $\deg_t \Delta_K(t) \leq 2g(K)$, a sufficient condition:

$$\deg_t \Delta_K(t) = 2g(K). \tag{1}$$

We call knots satisfying eq. (1) tight, and others loose.

↓□▶ ↓□▶ ↓ □▶ ↓ □ ♥ ♀ ○

crossings	11	12	13	14	15	16
Knots	552	2176	9988	46972	253293	1388705
Loose knots	7	29	208	1220	6319	48174

Table: Knot counts, up to mirror image

crossings	11	12	13	14	15	16
Knots	552	2176	9988	46972	253293	1388705
Loose knots	7	29	208	1220	6319	48174

Table: Knot counts, up to mirror image

polynomial	V_1	V_2	V_3	V_4
Knots	≤ 15	≤ 15	≤ 11	≤ 10
Loose knots	≤ 16	≤ 16		

Table: Computed knots for each V_n

crossings	11	12	13	14	15	16
Knots	552	2176	9988	46972	253293	1388705
Loose knots	7	29	208	1220	6319	48174

Table: Knot counts, up to mirror image

polynomial	V_1	V_2	V_3	V_4
Knots	≤ 15	≤ 15	≤ 11	≤ 10
Loose knots	≤ 16	≤ 16		

Table: Computed knots for each V_n

crossings	11	12	13	14	15	16
V_1 genus bound $<$	7	20	173	974	5025	37205
V ₂ genus bound <	0	0	0	0	0	0

Table: Non-sharp genus bound counts

The genus bound inequality is an equality for V_2 -polynomials for all 1,701,936 knots with \leq 16 crossings.

The genus bound inequality is an equality for V_2 -polynomials for all 1,701,936 knots with \leq 16 crossings.

In other words, the V_2 -polynomials (conjecturally) detect the genus – an achievement only the knot Floer homology has made before.

The genus bound inequality is an equality for V_2 -polynomials for all 1.701.936 knots with < 16 crossings.

In other words, the V_2 -polynomials (conjecturally) detect the genus - an achievement only the knot Floer homology has made before.

Question

Does the V_2 -polynomials actually detect the genus of knots? Why?

When do two knots have equal V_2 polynomial?

When do two knots have equal V_2 polynomial?

crossings	≤ 11	12	13	14	15
pairs	0	3	25	187	2324
triples	0	0	0	1	38

Table: Number of V_2 -equivalence classes of size more than 1 (up to mirror image).

When do two knots have equal V_2 polynomial?

crossings	≤ 11	12	13	14	15
pairs	0	3	25	187	2324
triples	0	0	0	1	38

Table: Number of V_2 -equivalence classes of size more than 1 (up to mirror image).

Theorem (Garoufalidis & Li, 2024)

All knots with \leq 15 crossings in the same V_2 -equivalence classes

- have equal HFK and equal Khovanov Homology,
- are Conway mutant knots to each other, in particular they have equal volumes, trace field, colored Jones polynomials, ADO polynomials and HOMFLY polynomial.

6) d (d

All knots with ≤ 15 crossings in the same V_2 -equivalence classes

- have equal HFK and equal Khovanov Homology,
- are Conway mutant knots to each other, in particular they have equal volumes, trace field, colored Jones polynomials, ADO polynomials and HOMFLY polynomial.

All knots with ≤ 15 crossings in the same V_2 -equivalence classes

- have equal HFK and equal Khovanov Homology,
- are Conway mutant knots to each other, in particular they have equal volumes, trace field, colored Jones polynomials, ADO polynomials and HOMFLY polynomial.

crossings	11	12	13	14	15
V_2 -equiv classes	0	3	25	188	2362
mutant classes	16	75	774	4435	29049

Table: Number of nontrivial V_2 -equiv classes versus Conway mutant classes.

All knots with ≤ 15 crossings in the same V_2 -equivalence classes

- have equal HFK and equal Khovanov Homology,
- are Conway mutant knots to each other, in particular they have equal volumes, trace field, colored Jones polynomials, ADO polynomials and HOMFLY polynomial.

Question

Are V_2 -equivalent knots always Conway mutant? Do they always have equal HFK and equal Khovanov Homology? Why?

Are V_2 -equivalent knots always Conway mutant? Do they always have equal HFK and equal Khovanov Homology? Why?

A partial answer: most of them are HFK-thin and Khovanov-thin, for which equal HFK and equal Khovanov Homology follows given the mutant condition.

Are V_2 -equivalent knots always Conway mutant? Do they always have equal HFK and equal Khovanov Homology? Why?

A partial answer: most of them are HFK-thin and Khovanov-thin, for which equal HFK and equal Khovanov Homology follows given the mutant condition.

tota	tight & thin	tight & thick	loose & thick
2578	1877	457	244

Table: Number of nontrivial V_2 -equiv classes in each flavor, up to 15 crossings.

A Conspiracy Theory:

A Conspiracy Theory:

Proposition

For all alternating knots with ≤ 15 crossings, we have

$$V_1(t,-q), V_2(t,-q) \in \mathbb{Z}_{\geq 0}[t^{\pm 1},q^{\pm 1}].$$

A Conspiracy Theory:

Proposition

For all alternating knots with ≤ 15 crossings, we have

$$V_1(t,-q), V_2(t,-q) \in \mathbb{Z}_{\geq 0}[t^{\pm 1},q^{\pm 1}].$$

Question

Does this indicate a categorification of V_1 and V_2 ?