UW DSC.

Clustering Workshop

Slideshow: https://bit.ly/3bDy1SW

Notebook: https://bit.ly/3blaWP3

Presented by Jack Douglas

Introduction

Jack Douglas

(he/him)

2B Software Engineering

Email: jack.douglas@uwaterloo.ca

LinkedIn: https://www.linkedin.com/in/jack-douglas-910896150/

- 1. Machine Learning Refresher
- 2. What is Clustering?
- 3. Types of Clustering
- 4. Clustering Algorithms
- 5. Real-World Clustering Applications
- 6. Notebook Demo
- 7. Questions

What is Machine Learning?

Def'n: "Machine learning is a branch of artificial intelligence focused on building applications that learn from data and improve their accuracy over time without being explicitly programmed to do so."

Supervised vs. Unsupervised Learning

<u>Supervised</u>

Def'n: Refers to the technique where a model trains on *labelled* data to determine the relationship between the data (input) and its label (output).

<u>Unsupervised</u>

Def'n: Refers to the technique where a model trains on *unlabelled* data to determine the inherent structure of the data.

What is Clustering?

- **Def'n:** The task of grouping data in such a way that objects in the same group are more similar to each other than those in other groups
 - Each group is called a cluster
 - Data within a cluster is similar, each cluster has different features to each other

• **Goal:** Determine a pattern in the data using clusters such that new data can be assigned to a cluster based on this pattern

Common unsupervised learning technique

Types of Clustering

Hard Clustering

Def'n: Each data point belongs to exactly one cluster.

Soft (Fuzzy) Clustering

Def'n: Each data point can belong to more than one cluster to a certain degree (ie. likelihood of belong to the cluster)

Learn more about soft clustering here: https://en.wikipedia.org/wiki/Fuzzy_clustering

Clustering Algorithms

- Many different types of clustering algorithms which have different use cases depending on the data
 - o Centroid-based, connectivity-based, density-based, distribution-based, etc.

 Clustering is subjective, so each clustering algorithm follows its own process for defining "similarity" between data points

Centroid-based Clustering

Basis: The notion of similarity is derived by the *closeness* of a data point to the *centroid* of the clusters

The number of clusters must be specified beforehand

Centroid-based clustering models run iteratively to find the local optima

Definitions and Calculations

1. *Centroid*: Central point of each cluster

$$g((x_1, y_1), (x_2, y_2), ..., (x_n, y_n)) = \left(\frac{\sum_{i=1}^{n} x_i}{n}, \frac{\sum_{i=1}^{n} y_i}{n}\right)$$

- Metrics of closeness
 - a. Euclidean distance: Length of the line segment between two points

$$f\left(\left(x_{1},y_{1}\right),\left(x_{2},y_{2}\right)\right) = \sqrt{\left(x_{1}-x_{2}\right)^{2} + \left(y_{1}-y_{2}\right)^{2}}$$

b. Other metrics can be found here: https://www.datanovia.com/en/lessons/clustering-distance-measures/

K-Means Clustering

Process:

- 1. Specify the desired number of clusters, **K**
- 2. Randomly place **K** centroids within the data
- 3. Assign each data point to its nearest cluster
- 4. Compute cluster centroids
- 5. Reassign each data point to its closest cluster centroid
- 6. Repeat steps 4 and 5 until no improvements are possible

$$K = 3$$
, Iteration = 0

- Centroids are place randomly
- Data is assigned to closest centroids

$$K = 3$$
, Iteration = 1

- Centroids are recalculated within each cluster
- Data is re-assigned to closest centroids

$$K = 3$$
, Iteration = 2

- Centroids are recalculated within each cluster
- Data is re-assigned to closest centroids

UW DSC.

https://user.ceng.metu.edu.tr/~akifakkus/courses/ceng574/k-means/

Most common clustering algorithm

Fast due to the small number of calculations

Limited by having to specify number of clusters

• Results can differ between runs of the algorithm

Basis: The notion of similarity is derived by the *closeness* of data points to each other

- Similar to centroid-based clustering, closeness is subjective and there are many metrics that can be used
 - Note: the average linkage function is often used for connectivity-based clustering

- There are two approaches: bottom up and top down
 - Bottom up: Every data point start as a cluster and they aggregate as distance decreases
 - **Top down:** All the data points start in *one* cluster and partition as distance *increases*

Hierarchical Agglomerative Clustering (HAC)

Process:

- 1. Treat all data points as their own single point clusters
- 2. Determine the two clusters which are the *closest* based on the distance metric have chosen
- 3. Combine the two clusters
- 4. Repeat steps 2 and 3 until we have one cluster containing all data

UW DSC.

Can select the best number of clusters since we are building a tree

Not sensitive to the choice of the distance metric

Useful when data has underlying hierarchical structure

• Comes at the cost of low efficiency and high time complexity, O(n^3)

Basis: The notion of similarity is derived by the varied density of data points

- Specify the maximum distance (epsilon) for points to be called *neighbours*
- Specify the minimum number of points in a neighbourhood to remove noise
- Every neighbourhood become a cluster, algorithm finishes once every point is visited
- More info here: https://bit.ly/3rLZk2Q

DBSCAN Visualization:
https://www.naftaliharris.com/blog/visualization
zing-dbscan-clustering/

Basis: The notion of similarity is derived by how probable it is that all data points in the cluster belong to the same distribution

- This approach assumes data is composed of distributions, such as Gaussian distributions
- Must specify the number of clusters and randomly initialize the parameters
- Calculate the weighted sum of a point being in a particular cluster and recalculate parameters
- More info here: https://bit.ly/3rLZk2Q

Expectation-Maximization Algorithm

Application: Marketing Research

 Goal: Partition consumers into market segments and to better understand potential customers

Types of Data:

- Demographic
- Geographic
- Behavioural

Use Cases:

- Customizing advertising campaigns
- Designing products

Application: Image Segmentation

Goal: Divide images into distinct regions

- Types of Data:
 - Pixels/Images

- Use Cases:
 - Border detection
 - Object recognition

Application: Document Classification

- **Goal:** Classify the type of a document
- Types of Data:
 - Document content
 - Topics
 - Tags
- Use Cases:
 - Categorizing documents
 - Finding similar documents

UW DSC.

Notebook Demo

Notebook: https://bit.ly/3blaWP3

UW DSC.

ı

Questions?