Problem	1	2	3	4	5	Total
Grade						

Math 5210 - Abstract Algebra I

Final Exam

Rachel Lonchar

Exercise 1. Fix an integer N > 1.

(a) Show the matrix group

$$\left(\begin{array}{cc} N^{\mathbb{Z}} & \mathbb{Z}[1/N] \\ 0 & 1 \end{array} \right) = \left\{ \left(\begin{array}{cc} N^k & r \\ 0 & 1 \end{array} \right) : k \in \mathbb{Z}, r \in \mathbb{Z}[1/N] \right\}$$

is generated by the two matrices $\binom{N}{0}\binom{0}{1}$ and $\binom{1}{0}\binom{1}{1}$. (Hint: Play around with conjugates of each of these two matrices by the other matrix or its inverse. Write elements of $\mathbb{Z}[1/N]$ as a/N^{ℓ} with $a \in \mathbb{Z}$ and $\ell \geq 0$. Do *not* use fractional exponents.)

(b) Denote the group in part (a) by H_N . In H_N , $\binom{N\ 0}{0\ 1}\binom{1\ 1}{0\ 1}\binom{N\ 0}{0\ 1}^{-1}=\binom{1\ N}{0\ 1}=\binom{1\ 1}{0\ 1}^N$. Show H_N is "universal for the property $xyx^{-1}=y^N$." That is, if G is any group containing two elements x and y such that $xyx^{-1}=y^N$, show there is a unique group homomorphism $f\colon H_N\to G$ such that $f\binom{N\ 0}{0\ 1}=x$ and $f\binom{1\ 1}{0\ 1}=y$. (Hint: From $xyx^{-1}=y^N$, show $x^myx^{-m}=y^{N^m}$ for $m\geq 0$.)

Solution 1.

- (a) For any $k, n, m \in \mathbb{Z}$ with $m \geq 0$, we have $\binom{N^k}{0} \binom{n/N^m}{1} = \binom{1/N}{0} \binom{n/N^m}{1} \binom{N^{m+k}}{0} \binom{0}{1} = \binom{1/N^m}{0} \binom{0}{1} \binom{1}{0} \binom{1}{0} \binom{N^{m+k}}{0} \binom{0}{1} = \binom{1/N^m}{0} \binom{0}{1} \binom{N^m}{0} \binom{N$
- (b) If we have $xyx^{-1}=y^N$, then let's assume that $x^{m-1}yx^{-(m-1)}=y^{N^{m-1}}$ for $m\geq 1$, and we shall prove that $x^myx^{-m}=y^{N^m}$. We have,

$$x^{m}yx^{-m} = x(x^{m-1}yx^{-(m-1)})x^{-1} = x(y^{N^{m-1}})x^{-1} = (y^{N^{m-1}})^{N} = y^{N^{m}},$$

so $x^m y x^{-m} = y^{N^m}$ for $m \ge 0$ by induction.

Since H_N is generated by $\begin{pmatrix} N & 0 \\ 0 & 1 \end{pmatrix}$ and $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$, a mapping defined by the two unique generators will be a unique homorphism. Since G is a group with this property and there is a unique homomorphism of H_N to G, it must be true that H_N is universal for this property as well.

Exercise 2. Let's find all groups of order 2014 up to isomorphism.

- (a) Show every group of order 2014 is isomorphic to a semidirect product $\mathbb{Z}/(1007) \rtimes_{\varphi} \mathbb{Z}/(2)$. (Remember the group law in $\mathbb{Z}/(1007)$ and $\mathbb{Z}/(2)$ is addition, not multiplication!)
- (b) Show there are four semidirect products in (a) and they are **non-isomorphic** by checking that the groups have different numbers of elements of order 2.

Solution 2.

(a) Let G be a group of order 2014. The first Sylow theorem states that there are p-Sylow subgroups for each prime p in the group's prime decomposition. Thus, there exists 19-Sylow and 53-Sylow subgroups $(2014 = 2 \cdot 19 \cdot 53)$. Also the number of 19-Sylow groups, n_{19} is such that, $n_{19}|53 \cdot 2$ and $n_{19} \equiv 1 \mod 19$ by the Sylow theorems and $53 \equiv 15 \not\equiv 1 \mod 19$, $2 \not\equiv 1 \mod 19$, so $n_{19} = 1$. Similarly, n_{53} is such that, $n_{53}|19 \cdot 2$ and $n_{53} \equiv 1 \mod 53$ by the Sylow theorems and $19 \not\equiv 1 \mod 53$, $2 \not\equiv 1 \mod 53$, so $n_{53} = 1$. Thus, there is a unique 19-Sylow subgroup and a unique 53-Sylow subgroup. Since all p-Sylow subgroups are conjugate, these subgroups must also be normal.

Let P be a subgroup of order 19 and let Q be a subgroup of order 53. We are going to show that the set $PQ = \{xy : x \in P, y \in Q\}$ is a subgroup and $PQ \cong P \times Q \cong \mathbb{Z}/(1007)$. Say $a, b \in PQ$. Then, $a = p_1q_1, b = p_2q_2$ for some $p_1, p_2 \in P, q_1, q_2 \in Q$. Then,

$$ab = p_1q_1p_2q_2 = p_1(q_1p_2q_1^{-1})q_1q_2,$$

where $q_1p_2q_1^{-1} \in P$ since P is normal so that $p_1(q_1p_2q_1^{-1}) \in P$ and $q_1q_2 \in Q$, hence $ab \in PQ$, so that PQ is closed. For inverses, we have $(pq)^{-1} = q^{-1}p^{-1} = (q^{-1}p^{-1}q)q^{-1}$, where $q^{-1}p^{-1}q \in P$ since P is normal, so PQ contains its inverses. Since P and Q are subgroups, they both contain 1 so that $1(1) = 1 \in PQ$ and PQ contains the identity. Thus, PQ is a subgroup.

We have that P and Q are normal in G. Thus, if we can show that $P \cap Q = 1$, then we can use Theorem 9 from chapter 5 of Dummit and Foote to show that $PQ \cong P \times Q$. Say $x \in P \cap Q$. Then by Lagrange |x||p and |x||q. Since (p,q) = (19,53) = 1, we have that |x| = 1, so that $|P \cap Q| = 1$ and $P \cap Q = 1$. Thus, $PQ \cong P \times Q$. The only group of prime order is the cyclic group; thus, P and Q are cyclic, and $P = \langle x \rangle$, $Q = \langle y \rangle$ for some generators x, y.

We have $(x,y) \in P \times Q$. If $(x,y)^n = (1,1)$, then $(x^n,y^n) = (1,1)$, which implies that p|n and q|n. Also, |(x,y)||pq, so |(x,y)| = pq and $|P \times Q| = pq$. Since both $P \times Q$ and $\mathbb{Z}/(1007)$ are cyclic and $|P \times Q| = |\mathbb{Z}/(1007)|$, we have that $P \times Q \cong \mathbb{Z}/(1007)$ and we can conclude that $PQ \cong \mathbb{Z}/(1007)$, where P,Q are normal. It follows that PQ, and hence $\mathbb{Z}/(1007)$ are normal in G. Also, 1007 and 2 are coprime, so $\mathbb{Z}/(1007) \cap \mathbb{Z}/(2)$ is trivial.

Let $\phi: \mathbb{Z}/(2) \to \operatorname{Aut}(\mathbb{Z}/(1007)) \cong (\mathbb{Z}/(1007))^{\times}$ be the homomorphism defined by mapping $k \in K$ to the automorphism of left conjugation by k on H. Also, HK is a subgroup of G. Since |HK| = |G|, we have HK = G, and it follows from Theorem 12 from chapter 5 in Dummit and Foote that,

$$G = HK \cong H \rtimes_{\phi} K$$
.

In other words, any group G of order 2014 is isomorphic to a semidirect product $\mathbb{Z}/(1007) \rtimes_{\phi} \mathbb{Z}/(2)$.

(b) For any homomorphism $\phi: \mathbb{Z}/(2) \to \mathbb{Z}/(1007) \cong (\mathbb{Z}/(1007))^{\times}$ with $\phi(h) = xh$, x must be such that $x^2 \equiv 1 \mod 1007$, so there are four possible maps, particularly,

$$\phi_1: h \mapsto h$$
, $\phi_2: h \mapsto 476h$, $\phi_3: h \mapsto 531h$, and $\phi_4: h \mapsto 1006h$.

Since ϕ_1 is the trivial map, using this homomorphism to define the semi-direct product $\mathbb{Z}/(1007) \rtimes_{\phi_1} \mathbb{Z}/(2)$ gives the direct product $\mathbb{Z}/(1007) \times \mathbb{Z}/(2)$, which is abelian. The other three maps are nontrivial, so the semi-direct products defined with them will be nonabelian. Thus, we need to show that $\mathbb{Z}/(1007) \rtimes_{\phi_2} \mathbb{Z}/(2)$, $\mathbb{Z}/(1007) \rtimes_{\phi_3} \mathbb{Z}/(2)$, and $\mathbb{Z}/(1007) \rtimes_{\phi_4} \mathbb{Z}/(2)$ are not isomorphic to one another. We'll call these groups G_2, G_3 , and G_4 respectively in order to simplify the notation. In G_2 , an element (h, 1) has order 2 if $h + \phi_2(h) \equiv 1 \mod 1007$, or $h + 476h \equiv 477h \equiv 0 \mod 1007$, so $h = 19n \mod 1007$, so h =

In G_3 , we have $h+531h\equiv 532h\equiv 0 \mod 1007$, so h=53n for $n\in\mathbb{Z}$ so there are 1007/52=19 elements of order 2 in G_3 . In G_4 , we have $h+1006h\equiv 1007h\equiv 0 \mod 1007$, so there is one element of order 2 in G_3 . Since G_2, G_3, G_4 all have a different number of elements of order 2, they must non-isomorphic. Since G_1 is abelian and G_2 is nonabelian, they also cannot be isomorphic— G_1 cannot be isomorphic to any of the others because the others are all nonabelian.

Exercise 3. Let R be a non-zero commutative ring. Set

$$\operatorname{Aff}(R) = \left\{ \left(\begin{array}{cc} a & b \\ 0 & 1 \end{array} \right) : a \in R^{\times}, b \in R \right\},$$

which is a group under matrix multiplication. Let I be the ideal in R generated by all u-1 for $u \in R^{\times}$. That is, I is the set of finite sums $\sum_{i=1}^{m} r_i(u_i-1)$ where $m \geq 1$, $r_i \in R$ and $u_i \in R^{\times}$. (For example, since $-1 \in R^{\times}$, I contains -1-1=-2, so $2R \subset I \subset R$. Thus I=R if $2 \in R^{\times}$, but if $2 \notin R^{\times}$ then I could be a proper ideal.)

- (a) If the group R^{\times} is finitely generated by u_1, \ldots, u_n , show $I = (u_1 1, \ldots, u_n 1)$. This is *not* needed for later parts, but just gives an example of what I can look like for some rings.
- (b) Show the commutator subgroup of Aff(R) is $\begin{pmatrix} 1 & I \\ 0 & 1 \end{pmatrix} = \{\begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} : b \in I\}$.
- (c) Show the center of Aff(R) is $\{\begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} : bI = \{0\}\}$.

Solution 3.

(a) Each $x \in I$ is a finite sum, and for each term x_i in x, we have $x_i = r_i(v_i - 1)$, where $r_i \in R$ and $v_i \in R^{\times}$. If $x_i \neq 0$, then $v_i \neq 1$, and since $u_1, ..., u_n$ generates R^{\times} , we have $v_i = u_1^{e_1} \cdot ... \cdot u_n^{e_n}$ where $e_1, ..., e_n \in \mathbb{Z}, e_j \neq 0$, and $u_j \neq 1$ for some $j \in 1, ..., n$. Now,

$$\begin{split} x_i &= r_i(v_i - 1) = r_i(u_1^{e^1} \cdot \ldots \cdot u_j^{e_j} \cdot \ldots \cdot u_n^{e_n} - 1) \\ &= r_i(u_j - 1)(u_1^{e^1} \cdot \ldots \cdot u_j^{e_j - 1} \cdot \ldots \cdot u_n^{e_n} - \frac{1}{u_j - 1} + \frac{u_1^{e^1} \cdot \ldots \cdot u_j^{e_j - 1} \cdot \ldots \cdot u_n^{e_n}}{u_j - 1}), \end{split}$$

as $u_j \neq 1$ and $u_j, 1 \in R^{\times}$. Set $\lambda_j = r_i(u_1^{e^1} \cdot \ldots \cdot u_j^{e_j-1} \cdot \ldots \cdot u_n^{e_n} - \frac{1}{u_j-1} + \frac{u_1^{e^1} \cdot \ldots \cdot u_n^{e_j-1} \cdot \ldots \cdot u_n^{e_n}}{u_j-1})$. Thus, $\lambda_j \in R$ and $x_i = \lambda_j(u_j-1)$ for some $j \in 1, \ldots, n$. If for some term x_k in x, we have $x_k = \lambda_k(u_j-1)$, then set $t_j = \lambda_j + \lambda_k$. Combining all like terms in this way, we obtain the form $x = t_1(u_1-1) + \ldots + t_n(u_n-1)$, where each $t_i \in R$ and where some of the t_i 's may be zero. Now if the original term x_i is zero, then simply set $x_i = 0(u_1-1)$. We have just shown that for any $x \in I$, $x \in (u_1-1, \ldots, u_n-1)$ and hence $I \subset (u_1-1, \ldots, u_n-1)$.

If $x \in (u_1 - 1, ..., u_n - 1)$, then $x = r_1(u_1 - 1) + ... + r_n(u_n - 1) = \sum_{i=1}^n r_i(u_i - 1)$ where $n \ge 1$ (since R is non-zero so one of the u_i 's must be non-zero and if x = 0, then we may set $x = 0(u_i - 1)$ and thus have a sum at least one term long), $r_i \in R$ and $u_i \in R^{\times}$. By definition, this means that $x \in I$ and we have that $I = (u_1 - 1, ..., u_n - 1)$ as desired.

(b) Let the commutator subgroup of G = Aff(R) be denoted by G'. For $\begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} c & d \\ 0 & 1 \end{pmatrix} \in G$, we have,

where $d, -b \in R$ and $a, c \in R^{\times}$ and so $x \in I$ and all commutators of of G are in $\begin{pmatrix} 1 & I \\ 0 & 1 \end{pmatrix}$ (i.e. $G' \subset \begin{pmatrix} 1 & I \\ 0 & 1 \end{pmatrix}$). If a matrix is in $\begin{pmatrix} 1 & I \\ 0 & 1 \end{pmatrix}$, then it is of the form $\begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix}$ where $b \in I$. By (a), we have that $b = r_1(u_1 - 1) + \dots + r_n(u_n - 1)$ for some $r_1, \dots, r_n \in R$. Notice,

$$\left[\left(\begin{smallmatrix} u_1 & -r_2 \\ 0 & 1 \end{smallmatrix} \right), \left(\begin{smallmatrix} u_2 & r_1 \\ 0 & 1 \end{smallmatrix} \right) \right] = \left(\begin{smallmatrix} u_1 & -r_2 \\ 0 & 1 \end{smallmatrix} \right) \left(\begin{smallmatrix} u_2 & r_1 \\ 0 & 1 \end{smallmatrix} \right) \left(\begin{smallmatrix} u_1 & -r_2 \\ 0 & 1 \end{smallmatrix} \right)^{-1} \left(\begin{smallmatrix} u_2 & r_1 \\ 0 & 1 \end{smallmatrix} \right)^{-1} = \left(\begin{smallmatrix} 1 & r_1(u_1-1) + r_2(u_2-1) \\ 0 & 1 \end{smallmatrix} \right).$$

Also, $\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & y \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & x+y \\ 0 & 1 \end{pmatrix}$. Thus, if n is even, we have,

$$\begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} = \begin{bmatrix} \begin{pmatrix} u_1 & -r_2 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} u_2 & r_1 \\ 0 & 1 \end{pmatrix} \end{bmatrix} \cdot \begin{bmatrix} \begin{pmatrix} u_3 & -r_4 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} u_4 & r_3 \\ 0 & 1 \end{pmatrix} \end{bmatrix} \cdot \dots \cdot \begin{bmatrix} \begin{pmatrix} u_{n-1} & -r_n \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} u_n & r_{n-1} \\ 0 & 1 \end{pmatrix} \end{bmatrix}.$$

If n is odd, then,

$$\left(\begin{smallmatrix}1&b\\0&1\end{smallmatrix}\right) = \left[\left(\begin{smallmatrix}u_1&-r_2\\0&1\end{smallmatrix}\right), \left(\begin{smallmatrix}u_2&r_1\\0&1\end{smallmatrix}\right)\right] \cdot \left[\left(\begin{smallmatrix}u_3&-r_4\\0&1\end{smallmatrix}\right), \left(\begin{smallmatrix}u_4&r_3\\0&1\end{smallmatrix}\right)\right] \cdot \ldots \cdot \left[\left(\begin{smallmatrix}u_n&0\\0&1\end{smallmatrix}\right), \left(\begin{smallmatrix}1&r_n\\0&1\end{smallmatrix}\right)\right].$$

because $\begin{bmatrix} \begin{pmatrix} u_n & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & r_n \\ 0 & 1 \end{pmatrix} \end{bmatrix} = \begin{pmatrix} 1 & r_n(u_n-1) \\ 0 & 1 \end{pmatrix}$. Thus, $\begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix}$ is always a finite product of commutators, meaning $\begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} \in G'$ and so the commutator subgroup of $\mathrm{Aff}(R)$ is $\begin{pmatrix} 1 & I \\ 0 & 1 \end{pmatrix} = \{\begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} : b \in I\}$.

(c) Let the matrix $\begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix}$ be in the center of G. Then, $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}\begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix}\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$, or $\begin{pmatrix} a & b+1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} a & b+a \\ 0 & 1 \end{pmatrix}$. This means that b+1=b+a, so a=1. If $\begin{pmatrix} c & d \\ 0 & 1 \end{pmatrix} \in G$, then we also have $\begin{pmatrix} c & d \\ 0 & 1 \end{pmatrix}\begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix}\begin{pmatrix} c & d \\ 1 & 1 \end{pmatrix}$, or $\begin{pmatrix} c & cb+d \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} c & d+b \\ 0 & 1 \end{pmatrix}$. Thus, cb+d=d+b, so

$$b(c-1) = d - d = 0.$$

Since $c \in \mathbb{R}^{\times}$ is arbitrary, it must be true that bI = (0). Thus, the center of G is contained in $\{\begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} : bI = (0)\}.$

If we take arbitrary $\begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} \in \{\begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} : bI = (0)\}$ and $\begin{pmatrix} c & d \\ 0 & 1 \end{pmatrix} \in G$, then we have

$$\begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} \begin{pmatrix} c & d \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} c & d+b \\ 0 & 1 \end{pmatrix},$$

and

$$\left(\begin{smallmatrix}c&d\\0&1\end{smallmatrix}\right)\left(\begin{smallmatrix}1&b\\0&1\end{smallmatrix}\right) = \left(\begin{smallmatrix}c&d+cb\\0&1\end{smallmatrix}\right).$$

Since bI = (0), we have

$$d + b - (d + cb) = d - d + b - cb = 0 + b(1 - c) = b(1 - c) = 0.$$

Thus, $\begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix}\begin{pmatrix} c & d \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} c & d \\ 0 & 1 \end{pmatrix}\begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix}$ for all $\begin{pmatrix} c & d \\ 0 & 1 \end{pmatrix} \in G$ and $\begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix}$ is in the center of G as desired. We conclude that the center of $G = \mathrm{Aff}(R)$ is $\{\begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} : bI = \{0\}\}$.

Exercise 4.

Solution 4.

Exercise 5. In class, we have seen that $\mathbb{Z}[i]$ is a euclidean domain with respect to the norm. Here we will deal with $\mathbb{Z}[\sqrt{3}]$.

- (a) Prove $\mathbb{Z}[\sqrt{3}]$ is euclidean with respect to the absolute value of the norm using the same method you have seen already for $\mathbb{Z}[i]$. (Hint: $|x^2 3y^2| \le \max(x^2, 3y^2)$ because x^2 and $3y^2$ are both ≥ 0 .)
- (b) Factor $2013+5210\sqrt{3}$ into a product of irreducibles in $\mathbb{Z}[\sqrt{3}]$. (Hint: When you want to solve $x^2-3y^2=\pm p$ for a prime number $p\neq 3$, you need to choose the sign on the right so that $\pm p\equiv 1 \mod 3$, since if $\pm p\equiv 2 \mod 3$ then $x^2\equiv 2 \mod 3$, which is impossible. Having chosen the sign correctly, use a computer to calculate $3y^2\pm p$ for $y=1,2,3,\ldots$ until it is recognizably a perfect square.)
- (c) Verify that $(5 + 2\sqrt{3})(8 3\sqrt{3})$ and $(7 + 2\sqrt{3})(4 \sqrt{3})$ are both prime factorizations of $22 + \sqrt{3}$ in $\mathbb{Z}[\sqrt{3}]$ and then determine how the factors are matched with each other up to explicit unit multiple.

Solution 5.

(a) Let $\alpha = a + b\sqrt{3}$ and $\beta = c + d\sqrt{3}$ be two elements of $\mathbb{Z}[\sqrt{3}]$, with $\beta \neq 0$. Then in the field $\mathbb{Q}(\sqrt{3})$ we have $\alpha/\beta = r + s\sqrt{3}$ where $r = (ac + bd)/(c^2 + d^2)$ and $s = (bc - ad)/(c^2 + d^2)$ are rational numbers. Let p be an integer closest to r and let q be an integer closest to s, so that |r - p| and |s - q| are at

most 1/2. Let $\theta = (r-p) + \sqrt{3}(s-q)$ and set $\phi = \beta\theta$. Then, $\phi = \alpha - (p+q\sqrt{3})\beta$, so that $\phi \in \mathbb{Z}[\sqrt{3}]$ is a Gaussian integer and $\alpha = (p+q\sqrt{3})\beta + \phi$. Since

$$|N(\theta)| = |(r-p)^2 - 3(s-q)^2| \le \max((r-p)^2, 3(s-q)^2) \le 3/4,$$

the multiplicativity of the norm N implies that $N(\phi) = N(\theta)N(\beta) \le 3/4N(\beta)$. Thus, $\mathbb{Z}[\sqrt{3}]$ is euclidean.

- (b)
- (c)