L	vcée	de	gar	ons	2
\mathbf{L}		ut	Zaiy	CILU	_

Composition Du Deuxième Trimestre Epreuve de Mathématiques

Exercice 1 : (5 Points)

Soit ABCD un losange de centre O .On place E et F

tels que :
$$\overrightarrow{AE} = \frac{1}{3}\overrightarrow{AB}$$
 et $\overrightarrow{CE} = \frac{1}{3}\overrightarrow{CD}$

La droite (EF) coupe la droite (AD) en Met la droite ! (BC) en N.

- a) Montrer que O est le milieu de EFI.
- b) Etablir que E et F partagent [MN] en trois segments de même longueur.
- c) Montrer que le triangle DBN est rectangle, et que F est son centre de gravite.

Exercice 2: (7 Points)

I) Soient O un point du plan, u et v deux vecteurs. On pose $\overrightarrow{OA} = \overrightarrow{u} + \overrightarrow{v}$, $\overrightarrow{OB} = 2\overrightarrow{u} - \overrightarrow{v}$ et $\overrightarrow{OC} = 4\overrightarrow{u} - 5\overrightarrow{v}$

Montrer que les points A, B et C sont alignes.

II) Soit ABC un triangle I, J et K les milieux respectifs de cotes [BC], [AC] et [AB].

Montrer que

$$\mathbf{a.} \overrightarrow{AK} + \overrightarrow{BI} + \overrightarrow{CJ} = \overrightarrow{0}$$

b.
$$\overrightarrow{AI} + \overrightarrow{BJ} + \overrightarrow{CK} = \overrightarrow{0}$$
.

E le barycentre de (A,(2) et (B), 1),

F celui de (B, 2) et (C, 1),

G celui de (C, 2) et (D, 1) et

H celui de (D, 2) et (A, 1).

Faire une figure et montrer/que EFGH est un parallélogramme.

Exercice 3: (4 Points)

Soit
$$P(x) = 4x^3 + x^2 - 11x + 6$$
 et
 $Q(x) = x^4 + 2x^3 - x - 2$.

- a) Vérifier que 1 et 2 sont solutions de l'équation P(x) = 0 et de l'équation Q(x) = 0.
- b) Déterminer les autres solutions de chacune de ces deux équations.
- c) Déterminer le signe de l'expression

$$x^4 + 6x^3 + x^2 - 12x + 4$$
.

Exercice 4: (4 Points)

1) Soit $P(x) = x^3 + 2x^2 - 5x - 6$. On suppose que P admet trois racines distinctes α, β et γ.

Sans calculer ces racines, calculer $\alpha + \beta + \gamma$, $\alpha\beta\gamma$,

$$\alpha\beta + \gamma\alpha + \beta\gamma$$
 et $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}$

2) Existe-t-il trois réels α , β et γ tels que $\alpha + \beta + \gamma = 5$, $\alpha\beta\gamma = -1$ et $\alpha\beta + \gamma\alpha + \beta\gamma = 3$?

.... Fin

Classes : $5C_{1+2}$ Lycée de garçons 2 Classes : $5C_{1+2}$ Composition Du Deuxième Trimestre

Epreuve de Mathématiques

Exercice 1: (5 Points)

Soit ABCD un losange de centre O .On place E et F

tels que :
$$\overrightarrow{AE} = \frac{1}{3}\overrightarrow{AB}$$
 et $\overrightarrow{CE} = \frac{1}{3}\overrightarrow{CD}$

La droite (EF) coupe la droite (AD) en Met la droite (BC) en N.

- a) Montrer que O est le milieu de EFI.
- b) Etablir que E et F partagent [MN] en trois segments de même longueur.
- c) Montrer que le triangle DBN est rectangle, et que F est son centre de gravite.

Exercice 2: (7 Points)

I) Soient O un point du plan, \vec{u} et \vec{v} deux vecteurs.

On pose $\overrightarrow{OA} = \overrightarrow{u} + \overrightarrow{v}$, $\overrightarrow{OB} = 2\overrightarrow{u} - \overrightarrow{v}$ et $\overrightarrow{OC} = 4\overrightarrow{u} - 5\overrightarrow{v}$ Montrer que les points A, B et C sont alignes.

II) Soit ABC un triangle I, J et K les milieux respectifs de cotes [BC], [AC] et [AB].

Montrer que

$$\mathbf{a.} \overrightarrow{AK} + \overrightarrow{BI} + \overrightarrow{CJ} = \overrightarrow{0}$$

b.
$$\overrightarrow{AI} + \overrightarrow{BJ} + \overrightarrow{CK} = \overrightarrow{0}$$
.

III) Soit ABCD un parallélogramme. On désigne par: III) Soit ABCD un parallélogramme. On désigne par:

E le barycentre de (A,(2) et (B), 1),

F celui de (B, 2) et (C, 1),

G celui de (C, 2) et (D, 1) et

H celui de (D, 2) et (A, 1).

Faire une figure et montrer/que EFGH est un parallélogramme.

Exercice 3: (4 Points)

Soit
$$P(x) = 4x^3 + x^2 - 11x + 6$$
 et
 $Q(x) = x^4 + 2x^3 - x - 2$.

- a) Vérifier que 1 et 2 sont solutions de l'équation P(x) = 0 et de l'équation Q(x) = 0.
- b) Déterminer les autres solutions de chacune de ces deux équations.
- c) Déterminer le signe de l'expression

$$x^4 + 6x^3 + x^2 - 12x + 4$$
.

Exercice 4: (4 Points)

1) Soit $P(x) = x^3 + 2x^2 - 5x - 6$. On suppose que P admet trois racines distinctes α, β et γ.

Sans calculer ces racines, calculer $\alpha + \beta + \gamma$, $\alpha\beta\gamma$,

$$\alpha\beta + \gamma\alpha + \beta\gamma$$
 et $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}$

2) Existe-t-il trois réels α , β et γ tels que $\alpha + \beta + \gamma = 5$, $\alpha\beta\gamma = -1$ et $\alpha\beta + \gamma\alpha + \beta\gamma = 3$?

Avec nos souhaits de réussite Le : 20-03-2017 Prof : Med Salem/Béye

Avec nos souhaits de réussite Le : 20-03-2017 Prof : Med Salem/Béye