Harmonic and Anharmonic Oscillator with Path Integrals

Monte Carlo on the Lattice

Nikolas M. Schlage and Karthik KC

March 20, 2017

- Outline
- 2 Theory
 - Path integral formulation in QM
 - Numerical evaluation of PI
 - Harmonic and anharmonic oscillator
- 3 Implementation and Results
 - The Approach
 - The Harmonic Oscillator
 - The Anharmonic Oscillator
- 4 Conclusion
- 6 Bibliography

A fundamental problem

- Make calculations of observables for the one dimensional Simple Harmonic Oscillator
- Use Path Integral Formulation on a discrete Euclidean time lattice
- But analytic solution to the Harmonic Oscillator exists, so why bother?
- Go from the Harmonic Oscillator to the Anharmonic
 Oscillator the basis for a free scalar field theory, the simplest
 of the quantum field theories.

- Deriving transition probability amplitude for particle in potential V will lead to the pathintegral
- One-dim. oscillators:
 Transit. prob. amplitude for change from initial into final state

$$K(x_i, t_i; x_f, t_f) = \langle x_f | \underbrace{e^{-\frac{i}{\hbar}\hat{H}(t_f - t_i)}}_{=U} | x_i \rangle$$

 $\hat{H} \triangleq \mathsf{One}\text{-}\mathsf{dim}.$ oscillator Hamiltonian

- Deriving transition probability amplitude for particle in potential V will lead to the pathintegral
- One-dim. oscillators:
 Transit. prob. amplitude for change from initial into final state

$$K(x_i, t_i; x_f, t_f) = \langle x_f | \underbrace{e^{-\frac{i}{\hbar}\hat{H}(t_f - t_i)}}_{=U} | x_i \rangle$$

 $\hat{H} \triangleq \mathsf{One}\text{-}\mathsf{dim}$. oscillator Hamiltonian

Discretized one-dim. lattice

Figure : Division of [0,t] into N equidistant points with distance ϵ

• Propagator:
$$U(0,t) = e^{-\frac{i}{\hbar}\hat{H}t} = \left(e^{-\frac{i}{\hbar}\hat{H}\epsilon}\right)^N$$

Discretized one-dim. lattice

Figure : Division of [0,t] into N equidistant points with distance ϵ

• Propagator:
$$U(0,t)=e^{-\frac{i}{\hbar}\hat{H}t}=\left(e^{-\frac{i}{\hbar}\hat{H}\epsilon}\right)^N$$

$$K(x_i, 0; x_f, t) = \langle x_f | e^{-\frac{i}{\hbar}\hat{H}t} | x_i \rangle$$

$$= \int \mathcal{D}[x] \exp \left(\frac{i}{\hbar} \underbrace{\sum_{k=1}^{N} \frac{m \cdot (x_k - x_{k-1})^2}{2\epsilon^2} - V(x_k)}_{= S} \right)$$

• Important result: Transition amplitude can be written as integral of $\exp{(iS/\hbar)}$

$$K(x_i, 0; x_f, t) = \langle x_f | e^{-\frac{i}{\hbar}\hat{H}t} | x_i \rangle$$

$$= \int \mathcal{D}[x] \exp \left(\frac{i}{\hbar} \underbrace{\sum_{k=1}^{N} \frac{m \cdot (x_k - x_{k-1})^2}{2\epsilon^2} - V(x_k)}_{= S} \right)$$

• **Important result:** Transition amplitude can be written as integral of $\exp(iS/\hbar)$

- Path Integral strongly depends on $\exp(iS/\hbar)$
- Numerical evaluation: Introduce imaginary time $\tau = it$:

$$e^{i\frac{S}{\hbar}} \to e^{-\frac{S_E}{\hbar}} = \exp\left(-\frac{a}{\hbar} \sum_{k=1}^{N} \frac{m}{2} \cdot \frac{(x_k - x_{k-1})^2}{a^2} + V(x_k)\right)$$
with $a = i\epsilon$

- Path Integral strongly depends on $\exp(iS/\hbar)$
- Numerical evaluation: Introduce imaginary time $\tau = it$:

$$e^{i\frac{S}{\hbar}} \to e^{-\frac{S_E}{\hbar}} = \exp\left(-\frac{a}{\hbar} \sum_{k=1}^{N} \frac{m}{2} \cdot \frac{(x_k - x_{k-1})^2}{a^2} + V(x_k)\right)$$
with $a = i\epsilon$

• **Important result:** Equation (1) directly corresponds to stat. probab. weight P(x):

$$\hat{\rho} = \frac{P(x)}{\operatorname{Tr}\left(P(x)\right)}$$

- Path Integral strongly depends on $\exp(iS/\hbar)$
- Numerical evaluation: Introduce imaginary time $\tau = it$:

$$e^{i\frac{S}{\hbar}} \to e^{-\frac{S_E}{\hbar}} = \exp\left(-\frac{a}{\hbar} \sum_{k=1}^{N} \frac{m}{2} \cdot \frac{(x_k - x_{k-1})^2}{a^2} + V(x_k)\right)$$
with $a = i\epsilon$

• **Important result:** Equation (1) directly corresponds to stat. probab. weight P(x):

$$\hat{\rho} = \frac{P(x)}{\mathrm{Tr}\left(P(x)\right)}$$

- Damping factor $e^{-\frac{S_E}{\hbar}}$: Stat. weight for each contribution to total integral
 - \Rightarrow express expectation values in terms of S_E :

$$\langle \hat{A} \rangle = \frac{\sum_{k} e^{-\frac{S_{E}(x_{k})}{\hbar}} A(x_{k})}{\sum_{k} e^{-\frac{S_{E}(x_{k})}{\hbar}}}$$
(2)

• configuration $\mathbf{x}_k = \left(x_1^{(k)}, \dots, x_N^{(k)}\right)$: k-th path of concerned particle in oscillator potential

- Damping factor $e^{-\frac{S_E}{\hbar}}$: Stat. weight for each contribution to total integral
 - \Rightarrow express expectation values in terms of S_E :

$$\langle \hat{A} \rangle = \frac{\sum_{k} e^{-\frac{S_{E}(\mathbf{x}_{k})}{\hbar}} A(\mathbf{x}_{k})}{\sum_{k} e^{-\frac{S_{E}(\mathbf{x}_{k})}{\hbar}}}$$
(2)

• configuration $\mathbf{x}_k = \left(x_1^{(k)}, \dots, x_N^{(k)}\right)$: k-th path of concerned particle in oscillator potential

- MC methods: Sampling N configurations $x_k \in \Omega$ whereby estimate \bar{A} of $\langle \hat{A} \rangle$ computed in $N \to \infty$
- Simple random sampling of x_k inefficient
 - points with greater contribution to $\langle \hat{A} \rangle$ **not** preferred

- MC methods: Sampling N configurations $x_k \in \Omega$ whereby estimate \bar{A} of $\langle \hat{A} \rangle$ computed in $N \to \infty$
- Simple random sampling of x_k inefficient
 - points with greater contribution to $\langle \hat{A} \rangle$ **not** preferred
- choose x_k more densely distributed in highest contributing Ω -region
 - ⇒ Introduce probability-distribution

- MC methods: Sampling N configurations $x_k \in \Omega$ whereby estimate \bar{A} of $\langle \hat{A} \rangle$ computed in $N \to \infty$
- Simple random sampling of x_k inefficient
 - points with greater contribution to $\langle \hat{A} \rangle$ **not** preferred
- choose x_k more densely distributed in highest contributing Ω -region
 - ⇒ Introduce probability-distribution

- Metropolis: Iteration-steps until TD-equilibrium
 - Probability-distr. corresponds to Boltzmann-distr.
 - \mathbf{x}_k sampled with equilibrium-probab. $P^{eq}(\mathbf{x}_k) = \exp(-S_F(\mathbf{x}_k)/\hbar)$

$$\langle \hat{A} \rangle = \frac{\sum_{k \in \Omega}^{N} \frac{\exp\left(-S_{E}(\mathbf{x}_{k})/\hbar\right)}{P^{eq}(\mathbf{x}_{k})} A(\mathbf{x}_{k})}{\sum_{k \in \Omega}^{N} \frac{\exp\left(-S_{E}(\mathbf{x}_{k})/\hbar\right)}{P^{eq}(\mathbf{x}_{k})}} = \frac{1}{N} \sum_{k \in \Omega}^{N} A(\mathbf{x}_{k})$$

 \Rightarrow Computation of position averages $\langle x^2 \rangle$, $\langle x^4 \rangle$,...

- Metropolis: Iteration-steps until TD-equilibrium
 - Probability-distr. corresponds to Boltzmann-distr.
 - \mathbf{x}_k sampled with equilibrium-probab. $P^{eq}(\mathbf{x}_k) = \exp(-S_F(\mathbf{x}_k)/\hbar)$

$$\sum N = \exp(-S_E(x_k)/\hbar) \Lambda(x_k)$$

$$\langle \hat{A} \rangle = \frac{\sum_{k \in \Omega}^{N} \frac{\exp(-S_{E}(\mathbf{x}_{k})/\hbar)}{P^{eq}(\mathbf{x}_{k})} A(\mathbf{x}_{k})}{\sum_{k \in \Omega}^{N} \frac{\exp(-S_{E}(\mathbf{x}_{k})/\hbar)}{P^{eq}(\mathbf{x}_{k})}} = \frac{1}{N} \sum_{k \in \Omega}^{N} A(\mathbf{x}_{k})$$

 \Rightarrow Computation of position averages $\langle x^2 \rangle$, $\langle x^4 \rangle$, . . .

- How can be ensured that generated paths follow required Boltzmann-distribution?
 - \Rightarrow Implementation of Importance Sampling by generating N config. x_k by means of **Markov Process**
- Markov chain is described by PDF $W(x_i, x_f) \ge 0$ for transition $x_i \to x_f$

$$\int W(x_i, x_f) \ dx_f = 1 \qquad \forall x$$

- How can be ensured that generated paths follow required Boltzmann-distribution?
 - \Rightarrow Implementation of Importance Sampling by generating N config. x_k by means of **Markov Process**
- Markov chain is described by PDF $W(x_i, x_f) \ge 0$ for transition $x_i \to x_f$

$$\int W(x_i,x_f) \ dx_f = 1 \qquad \forall x_i$$

- $\lim_{n\to\infty} W^{(n)}(x_i,x_f) = P(x_f)$
 - \Rightarrow Large *n*-limit: **stationary transition prob. density** $P^{eq}(x_k)$ resembles the **transition prob. fct.**

- How can be ensured that generated paths follow required Boltzmann-distribution?
 - \Rightarrow Implementation of Importance Sampling by generating N config. x_k by means of Markov Process
- Markov chain is described by PDF $W(x_i, x_f) \ge 0$ for transition $x_i \to x_f$

$$\int W(x_i,x_f) \ dx_f = 1 \qquad \forall x_i$$

- $\lim_{n\to\infty} W^{(n)}(x_i,x_f) = P(x_f)$
 - \Rightarrow Large *n*-limit: **stationary transition prob. density** $P^{eq}(x_k)$ resembles the **transition prob. fct.**

 Choice by which conditions above are fulfilled: Detailed balance condition

$$\frac{W(x_i, x_f)}{W(x_f, x_i)} = \frac{P^{eq}(x_f)}{P^{eq}(x_i)} = e^{-(S_E(x_f) - S_E(x_i))/\hbar}$$
(3)

 \Rightarrow Probability that indicates how likely $x_i \to x_f$ in comparison to $x_f \to x_i$

 Choice by which conditions above are fulfilled: Detailed balance condition

$$\frac{W(x_i, x_f)}{W(x_f, x_i)} = \frac{P^{eq}(x_f)}{P^{eq}(x_i)} = e^{-(S_E(x_f) - S_E(x_i))/\hbar}$$
(3)

- \Rightarrow Probability that indicates how likely $x_i \to x_f$ in comparison to $x_f \to x_i$
- \Rightarrow If eq. (3) is satisfied paths will follow **Boltzmann-distribution**

 Choice by which conditions above are fulfilled: Detailed balance condition

$$\frac{W(x_i, x_f)}{W(x_f, x_i)} = \frac{P^{eq}(x_f)}{P^{eq}(x_i)} = e^{-(S_E(x_f) - S_E(x_i))/\hbar}$$
(3)

- \Rightarrow Probability that indicates how likely $x_i \to x_f$ in comparison to $x_f \to x_i$
- \Rightarrow If eq. (3) is satisfied paths will follow **Boltzmann-distribution**

- Initialization
- Computation of S_E

- Initialization
- Computation of S_E
- Start MC experiment

- Initialization
- Computation of S_E
- Start MC experiment
 - a) Pick a step x_i

- Initialization
- Computation of S_E
- Start MC experiment
 - a) Pick a step x_i
 - b) Propose shift $\longrightarrow x_f = x_i + \delta x$

- Initialization
- Computation of S_E
- Start MC experiment
 - a) Pick a step x_i
 - b) Propose shift $\longrightarrow x_f = x_i + \delta x$

c)
$$\Delta S_E = S_E(x_f) - S_E(x_i)$$

- Initialization
- Computation of S_E
- Start MC experiment
 - a) Pick a step x_i
 - b) Propose shift $\longrightarrow x_f = x_i + \delta x$
 - c) $\Delta S_E = S_E(x_f) S_E(x_i)$
 - d) Metropolis method to accept/ reject

- Initialization
- Computation of S_E
- Start MC experiment
 - a) Pick a step x_i
 - b) Propose shift $\longrightarrow x_f = x_i + \delta x$
 - c) $\Delta S_E = S_E(x_f) S_E(x_i)$
 - d) Metropolis method to accept/ reject
 - ΔS_E ≤ 0: accept
 - else: generate RN $\longrightarrow P \leq \exp(-\Delta S_E/\hbar)$: accept
 - e) if accepted: $S_E = S_E + \Delta S_E$ and $x_i = x_f$

- Initialization
- Computation of S_E
- Start MC experiment
 - a) Pick a step x_i
 - b) Propose shift $\longrightarrow x_f = x_i + \delta x$
 - c) $\Delta S_E = S_E(x_f) S_E(x_i)$
 - d) Metropolis method to accept/ reject
 - $\Delta S_E \leq$ 0: accept
 - else: generate RN $\longrightarrow P \le \exp(-\Delta S_E/\hbar)$: accept
 - e) if accepted: $S_E = S_E + \Delta S_E$ and $x_i = x_f$
 - f) else: reject

- Initialization
- Computation of S_E
- Start MC experiment
 - a) Pick a step x_i
 - b) Propose shift $\longrightarrow x_f = x_i + \delta x$
 - c) $\Delta S_E = S_E(x_f) S_E(x_i)$
 - d) Metropolis method to accept/ reject
 - $\Delta S_E \leq$ 0: accept
 - else: generate RN $\longrightarrow P \leq \exp\left(-\Delta S_E/\hbar\right)$: accept
 - e) if accepted: $S_E = S_E + \Delta S_E$ and $x_i = x_f$
 - f) else: reject
 - g) go back to b)

- Initialization
- Computation of S_E
- Start MC experiment
 - a) Pick a step x_i
 - b) Propose shift $\longrightarrow x_f = x_i + \delta x$
 - c) $\Delta S_E = S_E(x_f) S_E(x_i)$
 - d) Metropolis method to accept/reject
 - $\Delta S_E \leq 0$: accept
 - else: generate RN $\longrightarrow P \le \exp(-\Delta S_E/\hbar)$: accept
 - e) if accepted: $S_E = S_E + \Delta S_E$ and $x_i = x_f$
 - f) else: reject
 - g) go back to b)

Implementation of oscillator physics

Figure : Lefthand: h.o. potential with $\mu^2=1$. Righthand: a.o. potential $V_1(x)$ with $\mu^2=1,\ \lambda=0.1$ and $V_2(x)$ with $\mu^2=-10,\ \lambda=0.1$.

$$V(x) = \frac{1}{2}m\omega^{2}x^{2} + \lambda x^{4} = \frac{1}{2}\mu^{2}x^{2} + \lambda x^{4}$$

$$\left\langle \hat{H} \right\rangle(t) = \frac{\sum_{x=0}^{n} \left\langle x | e^{-\beta \hat{H}t} \hat{H} | x \right\rangle}{\sum_{x=0}^{n} \left\langle x | e^{-\beta \hat{H}t} | x \right\rangle} \approx \frac{E_0 e^{-\beta E_0 t}}{e^{-\beta E_0 t}} = E_0$$

$$\Rightarrow E_0 \approx \frac{m}{2} \langle \dot{\hat{x}}^2 \rangle + \frac{\mu^2}{2} \langle \hat{x}^2 \rangle + \lambda \langle \hat{x}^4 \rangle \tag{4}$$

$$\langle \hat{H} \rangle (t) = \frac{\sum_{x=0}^{n} \langle x | e^{-\beta \hat{H}t} \hat{H} | x \rangle}{\sum_{x=0}^{n} \langle x | e^{-\beta \hat{H}t} | x \rangle} \approx \frac{E_0 e^{-\beta E_0 t}}{e^{-\beta E_0 t}} = E_0$$

$$\Rightarrow E_0 \approx \frac{m}{2} \langle \dot{\hat{x}}^2 \rangle + \frac{\mu^2}{2} \langle \hat{x}^2 \rangle + \lambda \langle \hat{x}^4 \rangle \tag{4}$$

Virial theorem: provides relation between temporal arithmetic mean of T and temporal mean of U of a stable system of N particles influenced by potential V

$$\left\langle \hat{H} \right\rangle(t) = \frac{\sum_{x=0}^{n} \left\langle x | e^{-\beta \hat{H}t} \hat{H} | x \right\rangle}{\sum_{x=0}^{n} \left\langle x | e^{-\beta \hat{H}t} | x \right\rangle} \approx \frac{E_0 e^{-\beta E_0 t}}{e^{-\beta E_0 t}} = E_0$$

$$\Rightarrow E_0 \approx \frac{m}{2} \langle \dot{\hat{x}}^2 \rangle + \frac{\mu^2}{2} \langle \hat{x}^2 \rangle + \lambda \langle \hat{x}^4 \rangle \tag{4}$$

Virial theorem: provides relation between temporal arithmetic mean of $\mathcal T$ and temporal mean of $\mathcal U$ of a stable system of $\mathcal N$ particles influenced by potential $\mathcal V$

$$\Rightarrow E_0 \approx \mu^2 \langle x^2 \rangle + 3\lambda \langle x^4 \rangle \tag{5}$$

$$\left\langle \hat{H} \right\rangle(t) = \frac{\sum_{x=0}^{n} \left\langle x | e^{-\beta \hat{H}t} \hat{H} | x \right\rangle}{\sum_{x=0}^{n} \left\langle x | e^{-\beta \hat{H}t} | x \right\rangle} \approx \frac{E_0 e^{-\beta E_0 t}}{e^{-\beta E_0 t}} = E_0$$

$$\Rightarrow E_0 \approx \frac{m}{2} \langle \dot{\hat{x}}^2 \rangle + \frac{\mu^2}{2} \langle \hat{x}^2 \rangle + \lambda \langle \hat{x}^4 \rangle \tag{4}$$

Virial theorem: provides relation between temporal arithmetic mean of $\mathcal T$ and temporal mean of $\mathcal U$ of a stable system of $\mathcal N$ particles influenced by potential $\mathcal V$

$$\Rightarrow E_0 \approx \mu^2 \langle x^2 \rangle + 3\lambda \langle x^4 \rangle \tag{5}$$

The Approach

- MCMC is carried out on a 1-D discrete time lattice with a spacing a.
- A path is generated by either random sampling a hot start or all the values of the path are 0.0 - a cold start.
- With the path generated, the burn-in phase is passed with a thermalization run of several Monte Carlo iterations.
- Once equilibrium is reached, a meaningful extraction of observables and properties can be made.

Mean Square Position

- The first meaningful observable that was measured and worked on here was the mean square position.
- The observable showed an increase to a certain value after which the observable merely showed statistical fluctuations around this mean value.
- This value can be compared to the one obtained from an analytical expression in discrete lattice theory

$$\langle x^2 \rangle = \frac{1}{2\mu(1+a^2\mu^2/4)^{1/2}} \left(\frac{1+R^N}{1-R^N}\right)$$
 (6)

where
$$R = 1 + a^2 \mu^2 - a\mu (1 + a^2 \mu^2/4)^{1/2}$$

Mean Square Position

Autocorrelation of Monte Carlo Estimates

Autocorrelation of mean squared position values

Autocorrelation of Monte Carlo Estimates

Log autocorrelation of mean squared position values

Autocorrelation Time

Autocorrelation Time

Optimizing Δ

The potential was modified to bring about the anharmonicity as:

$$V(x) = \lambda (x^2 - f^2)^2$$
 (7)

- Markov Chain Monte Carlo method: Generate paths to calculate lowest E-level and ground state probability density
- H.o.: Measurements of autocorrelation time and other parameters to run an effective code

- Markov Chain Monte Carlo method: Generate paths to calculate lowest E-level and ground state probability density
- H.o.: Measurements of autocorrelation time and other parameters to run an effective code
- calculations made for finite discretized one-dimensional lattice

- Markov Chain Monte Carlo method: Generate paths to calculate lowest E-level and ground state probability density
- H.o.: Measurements of autocorrelation time and other parameters to run an effective code
- calculations made for finite discretized one-dimensional lattice
- More accurate continuum values only with smaller lattice spacing, but this

- Markov Chain Monte Carlo method: Generate paths to calculate lowest E-level and ground state probability density
- H.o.: Measurements of autocorrelation time and other parameters to run an effective code
- calculations made for finite discretized one-dimensional lattice
- More accurate continuum values only with smaller lattice spacing, but this
 - significantly increases computation time

- Markov Chain Monte Carlo method: Generate paths to calculate lowest E-level and ground state probability density
- H.o.: Measurements of autocorrelation time and other parameters to run an effective code
- calculations made for finite discretized one-dimensional lattice
- More accurate continuum values only with smaller lattice spacing, but this
 - significantly increases computation time
 - effects a rapid increase in autocorrelation

- Markov Chain Monte Carlo method: Generate paths to calculate lowest E-level and ground state probability density
- H.o.: Measurements of autocorrelation time and other parameters to run an effective code
- calculations made for finite discretized one-dimensional lattice
- More accurate continuum values only with smaller lattice spacing, but this
 - significantly increases computation time
 - effects a rapid increase in autocorrelation

Literature

- M. Creutz and B. Freedman, A Statistical Approach to Quantum Mechanics, Annals of Physics 132, 427-462 (1981).
- R.P. Feynman and A.R. Hibbs, *Quantum Mechanics and Path Integrals*, McGraw-Hill, New York (1965).
- C. Morningstar, *The Monte Carlo method in quantum field theory*, arXiv:hep-lat/0702020 (2007).
- J. M. Thijssen, *Computational Physics*, Cambridge University Press (2007).

Outline Theory Implementation and Results Conclusion Bibliography

Thanks for your attention.

Ground State Energy of the Anharmonic Oscillator

