Discreta II: Pasos para las demos

Mansilla, Kevin Gaston*

18 de junio de 2023

- 1) Cual es la complejidad del algoritmo de Edmonds-Karp? Probarlo (Nota: en la prueba se definen unas distancias, y se prueba que esas distancias no disminuyen en pasos sucesivos de EK. Ud. puede usar esto sin necesidad de probarlo.)
- 1) Un lado se vuelve crítico al pasar de f_k a f_{k+1} si se satura o vacia. Definir el paso k y j para un vertice z
- 2) Analizar $\overleftarrow{xz} \in E$, $\exists l : k \leq l \leq j$ ver caso backward y fordward para l.
- 3) Entonces la conclución para k. $d_k(z) = d_k(x) + 1$ (fordward) y $d_k(x) = d_k(z) + 1$ (backward).
- 4) Usar todo lo anterior para llegar a $d_l(t) = d_k(t) + 2$ que es la conclusión de la pruba, es que una vez que un lado se vuelve crítico solo puede volver a ser crítico si la distancia entre s y t aumenta en por lo menos 2. que es $\frac{n-1}{2}$ veces.
- 5) Resumen de la prueba. hay m lados odnde cada lado se vuelve critico O(n) veces por lo que es O(mn) más la complejidad de BFS que es O(m) por lo que la complejidad es $O(m^2n)$.
- 2) Probar que si, dados vértices x, z y flujo f definimos a la distancia entre x y z relativa a f como la longitud del menor f-camino aumentante entre x y z, si es que existe tal camino, o infinito si no existe o 0 si x=z, denotandola por $d_f(x,z)$, y definimos $d_k(x)=d_{f_k}(s,x)$, donde f_k es el k-ésimo flujo en una corrida de Edmonds-Karp, entonces $d_k(x) \leq d_{k+1}(x)$
- 1) Definir $A = \{y : d_{k+1}(y) < d_k(y)\}$ y tratar de probar que $A = \emptyset$ por absurdo.
- 2) Tomar un elemento $x \in A$ tal que $d_{k+1}(x) \leq d_{k+1}(y) \ \forall y \in A$. entonces en x se cumple lo mismo que en y. Y fundamental es tomar un f_{k+1} —ca entre s y x de menor longitud (EK).
- 3) Sea z el vertice inmediatamente anterior a x como el camino es de longitud minima $d_{k+1}(x) = d_{k+1}(z) + 1$.
- 4) Como $z \notin A$ se da lo opuesto que en A. Ademas existe un f_k camino aumentante entre s y z y tomamos el de longitud minima (EK).

^{*}kevingston47@gmail.com

- 5) Primero analizamos el camino $s \dots \overleftarrow{xz} \dots t$ y hay que llegar a 0 < 2.
- 6) Analizar caso fordward del f_k -ca y se llega a 0 < 0
- 7) Conclusiones de la prueba
- 3) Cual es la complejidad del algoritmo de Dinic? Probarla en ambas versiones: Dinitz original y Dinic-Even. (no hace falta probar que la distancia en networks auxiliares sucesivos aumenta)

1) Dinitz original

- a) Definir el colorario de complejidad de hallar un FB.
- b) Definir que la complejidad de hallar un FB es O(mn).
- c) Depurar en el primer NA, como hay r niveles es O(n).
- d) Cada camino satura al menos un lado O(m) caminos.
- e) Hallar la complejidad de todos los podar.
- f) Primero revisar los vertices es O(1) pero como hay n vertices es O(n).
- g) Borrar lados, no queremos la de un podar sino la de todos, pues un podar puede ser muy grande y va redciendo a medida que se borran lados. Entonces es O(m).
- h) Conclusión de la prueba.

2) Dinic-Even

- a) La complejidad se halla usando el corolario de complejidad de hallar un FB.
- b) La complejidad de hallar un FB es O(mn).
- c) Una corrida es una palabra que se obtiene con DFS (dar ejemplo).
- d) Definir AVANZAR, RETROCEDER y $INCREMENTAR_E_INICIALIZAR$. y dar complejidades.
- e) Calcular la complejidad de una palabra $A \dots AX$ es O(m).
- f) Calcular cuantas palabras hay, es O(n).
- g) Conclusión
- 4) Cual es la complejidad del algoritmo de Wave? Probarla. (no hace falta probar que la distancia en networks auxiliares sucesivos aumenta).
- 1) Corolario de flujos bloqueantes.
- 2) Definir los fwb, bwb y cantidad de olas O(n).
- 3) Calcular la complejidad de los fwb dividiendolo en dos partes primero S que es la complejidad total de los fwb saturado y P que es la complejidad parcial de fwb.
- 4) Los mismo para los bwb con V para los bwb vacios y Q para los bwb parciales.
- 5) Conclución $S + P + V + Q = O(n^2)$.

- 5) Probar que la distancia en networks auxiliares sucesivos aumenta.
- 1) Definir NA, NA', d y d' para probar que d(t) < d'(t).
- 2) Suponemos $d'(t) < \infty$ por lo que existe al menos un camino aumentante, entre s y t en el network original, por lo tanto existe un camino dirigido de s a t en el NA'.
- 3) Sea $s = x_0, x_1, \ldots, x_n = t$ un camino dirigido en NA'. Como NA' es por niveles entonces $d(x_i) = i$. Lo más importante es que ese camno no puede estar en NA, porque para pasar de NA a NA' se bloquean todos los caminos de NA por lo tanto si ese camino estuviera en NA se hubiera bloqueado y no estaría en NA' sino es camino en NA entonces puede suceder: Falta un vertice o Falta un lado.
- 4) Analizar le caso en que falte un vertice, tomar un x cualquiera por lo que $x_i \notin NA$ entonces $d(t) \leq d(x_i)$, esar EK.
- Analizar el caso en que falte un lado, tiene dos casos.
- 5) Caso 1, $d(x_{i+1}) < i + 1$ tengo que llegar a d(t) < d'(t)
- 6) Caso 2, $d(x_{i+1}) = i + 1$.
- 6) Si f es flujo las siguientes son equivalentes:
 - 1. $\exists S$ corte: v(f) = cap(S)
 - 2. f es maximal. (1 = 2) dice: "f maximal $\iff \exists S$ corte v(f) = cap(S)" y se suele llamar 'max-flow-min-cut theorem'.
 - 3. $\nexists f$ —caminos aumentanes entre s y t y si se cumplen, el s es minimal.

Definir y demostrar en ese orden.

- Si f es flujo las siguientes son equivalentes:
 - 1. $\exists S \text{ corte: } v(f) = cap(S)$
 - 2. f es maximal. (1 = 2) dice: "f maximal $\iff \exists S \text{ corte } v(f) = cap(S)$ " y se suele llamar 'max-flow-min-cut theorem'.
 - 3. $\nexists f$ —caminos aumentanes entre s y t y si se cumplen, el s es minimal.

La prueba es $1) \Rightarrow 2) \Rightarrow 3) \Rightarrow 1$).

- $(1) \Rightarrow (2)$ es fácil. $(2) \Rightarrow (3)$ se hace por contrareciproca.
- $3) \Rightarrow 1$) es la parte más difícil.
- 1) Definir $S = \{s\} \cup \{x : \exists \text{ un } f \text{-ca de } s \text{ a } x\}.$

- 2) Como f es flujo y S corte, entonces $v(f) = f(S, \overline{S}) f(\overline{S}, S)$. entonces $f(S, \overline{S}) = \sum_{x \in S, y \in \overline{S}, xy \in E} f(\overrightarrow{xy})$.
- 3) Tomar un par (x,y) cualquiera $x \in S, y \notin S, xy \in E$ entonces existe un ca entre $s \dots x$
- 4) suponfamos que $f(\overrightarrow{xy}) < c(\overrightarrow{xy})$ no se satura, se llega a un absurdo $y \in S$
- 5) Ahora lado backward $f(\overline{S}, S) = \sum_{x \notin S, y \in S, xy \in E} f(\overrightarrow{xy})$.
- 6) Se toma un par cualquiera (x, y) mismo analisis que en el paso 3. pero para backward, ahora el absurdo es $x \in S$.
- 7) Probar que 2-COLOR es polinomial.
- 8) Enunciar y probar el Teorema de Hall.

Teorema 1 (Hall) Si $G = (\bar{X} \cup \bar{Y}, E)$ es bipartito con partes \bar{X} e \bar{Y} , entonces existe matching completo de \bar{X} en \bar{Y} si y solo si $|S| \leq |\Gamma(S)| \ \forall S \subseteq \bar{X}$.

1) \Rightarrow Definir la función inyectiva $\bar{X} \cap \bar{Y}$ tal que $\psi(x) \in E$, por lo tanto:

$$\psi(S) \subseteq \Gamma(S)$$

- 2) \Leftarrow Se demuestra por contrareciproc, es decir que si no existe matching completo de \bar{X} en \bar{Y} entonces al correr el algoritmo llegamos a un matching maximal que no cubre a \bar{X} . Que es equivalente a hallar un flujo maximal entero f cuyo valor no es $|\bar{X}|$.
- 3) Al hallar f, tambien hallamos un corte minimal que vamos a denotar por c (seria la última cola, al correr EK).
- 4) Sea $S = c \cap \bar{X}$, $T = c \cap \bar{Y}$, T forma parte de c por lo tanto forma parte de la última cola, entonces todos sus elmeentos fueron agregados por alguien (pues $S \notin T$), ese alguien debe ser vecino y como el grafo es bipartito y $T \subseteq \bar{Y}$, esos vecnios deben estar en \bar{X} . Pero ademas deben haber estado en la cola, es decir, que están en c. Entonces el vecino estaba en S. Gracias a esto $T \subseteq \Gamma(S)$ y $\Gamma(S) \subseteq T$.
- 5) Hay que probar estas influciones
- 6) $\Gamma(S) \subseteq T$. Sea $y \in \Gamma(S)$, entonces $\exists x \in S : xy \in E$ (x esta en la cola). Supones que $f(\overrightarrow{xy}) = 0$ entonces $xy \in c$ y $y \in T$. Supones que $f(\overrightarrow{xy}) = 1$ entonces x no puede agregar a y a la cola pero $x \in S$, entonces algun vertice z agrego a x a la cola. Seguir en base a esto
- 9) Enunciar y probar el teorema del matrimonio de Konig

Teorema 2 (matrimonio de konig) Todo grafo bipartito regular tiene un matching perfecto (todos los vertices dorman parte del matching).

- 1) Se parte dado un conjunto de vertices definiendo $E_w = \{zw \in E : z \in W\}$.
- 2) Sean \bar{X} y \bar{Y} las partes de G y suponemos $w \subseteq \bar{Y}$ (completamente contenido en \bar{X}).

- 10) Probar que si G es bipartito entonces $\chi'(G) = \Delta(G)$
- 11) Probar la complejidad $O(n^4)$ del algoritmo Hungaro y dar una idea de como se la puede reducir a $O(n^3)$.
- 12) Enunciar el teorema de la cota de Hamming y probarlo
- 13) Probar que si H es matriz de chequeo de C, entonces

$$\delta(C) = \min j : \exists$$
 un conjunto de j columnas LD de H

(LD es linealmente dependiente)

- 14) (Fundamental de código ciclico) Sea C un código ciclico de longitud n con generador g(x) entonces:
 - 1) $C = \{p(x) \in \mathbb{Z}_2(x) : gr(p) < n \land g(x)|p(x)\}$ por esto se dice que C es generador (son los multiplicos de g(x) de menor grado).
 - 2) $C = \{v(x) \odot g(x) : v \in \mathbb{Z}_2(x)\}$ son los multiplos de g modulares.
 - 3) Si k = Dim(C) entonces gr(g) = n k.
 - **4)** $g(x)|(1+x^n)$.
 - 5) Si $g(x) = g_0 + g_1 x + \ldots +$ entonces $g_0 = 1$.
- 15) Probar que 3SAT es NP-completo
- 16) Probar que 3-COLOR es NP-completo