1. Elementare Wahrscheinlichkeitstheorie (ZE=Zufallsexperiment, WK=Wahrscheinlichkeit)

- Der <u>Ereignisraum</u> Ω ist die Menge der <u>Ergebnisse</u> eines ZE. Im Folgenden A,B,… $\subseteq \Omega$.
- Teilmengen von Ω heißen $\underline{\textbf{Ereignisse}}$. Ist das Ergebnis eines ZE in A, ist A eingetreten
- |A|=1 ⇒ Elementarereignis, A=Ω ⇒ sicheres Ereignis, A=Ø ⇒ unmögliches Ereignis
- A∩B= \varnothing \Rightarrow A, B <u>unvereinbar</u>, \overline{A} = $\Omega \setminus A$ \Rightarrow Gegenereignis, A∩B \Leftrightarrow A und B, A∪B \Leftrightarrow A oder B
- Sei $|\Omega|$ ≤ $|\mathbb{N}|$. (Ω, P) mit P: $2^{\Omega} \rightarrow \mathbb{R}$ heißt <u>WK-Raum</u> gdw.
 - $P(A) \ge 0 \ \forall A \subset \Omega \ und \ P(\Omega) = 1 \ und \ P(A_1 \cup A_2 \cup ...) = P(A_1) + P(A_2) + ... \ für \ A_1, A_2, ... \ paarweise disjunkt$
- $P(\omega)=P(\{\omega\})$. Kennt man $P(\omega)$ ∀ω⊆Ω, kennt man das gesamte WK-Maß
- $|\Omega| < |\mathbb{N}|$, $P(\omega) = 1/|\Omega|$, dann $P(A) = |A|/|\Omega|$ und (Ω, P) WK-Raum, ZE ist <u>Laplace-Experiment</u>
- (Ω, P_B) mit $P_B(A) := P(A|B)$ ist WK-Raum
- totale WK: Für paarweise unvereinbare A_i mit $\Omega = U$ A_i und $B \subseteq \Omega$ gilt $P(B) = \sum P(A_i \cap B)$
- Mehrstufige Zufallsexperimente: $P(\omega_1,...,\omega_n) = \prod P_i(\omega_i)$
- <u>Kombinatorik</u>: $\binom{n}{k} = n! / (k! \cdot (n-k)!)$, $\binom{n}{k} = \binom{n}{k} = 1$, $\binom{n}{k} = n$, Anz. Teilmengen ASB mit |A| = k, |B| = n

<pre>Permutation (mit Reihenf.)</pre>	<u>Variation</u> (mit Reihenf.)	<pre>Kombination (ohne Reihenf.)</pre>
<pre>n! (n unterschiedl. Dinge) n!/k! (unter n k gleiche)</pre>	<pre>n!/(n-k)! (n einmalige) n^k (n wiederverwendbare)</pre>	$\binom{n}{k}$ (n einmalige) (#Teilmengen!) $\binom{n+k-1}{k}$ (n wiederverwendbare)

2. Zufallsvariablen (=ZV)

- X: Ω → \mathbb{R} heißt **Zufallsvariable**, Bild(X) sind **Realisierungen**
- <u>Verteilungsfunktion</u> F: \mathbb{R} →[0,1] mit $F(x)=P(\{\omega\in\Omega|X(\omega)\leq x\})=P(X\leq x)$
- X ist dann F-verteilt (X~F). Zunächst der diskrete Fall:
- die Abbildung P(X=x,) für Realisierungen x, heißt WK-Verteilung
- $P(x < X \le y) = F(y) F(x)$, $P(X = x^*) = \lim_{x \to \infty} F(x) \lim_{x \to \infty} F(x)$
- F ist mon. wachsend & rechtss. stetig, $\lim_{\infty} F(x) = 0$, $\lim_{\infty} F(x) = 1$
- Q_p ist p-Quantil $\Leftrightarrow \lim_{Q_p} F(x) \le p \le F(Q_p)$, $Q_{0.5}$ heißt Median
- <u>Bernoulli-ZE</u>: zwei Ergebnisse mit Erfolgs-WK p. Bei n Wiederholungen (p unabhängig!) ist X (Anzahl Erfolge) <u>binomialverteilt</u>

	<u>Erwartungswert</u>	<u>Varianz</u>
diskret	$E(X) = \mu = \sum_{1,\infty} X_i \cdot P(X = X_i)$	$V(X) = \sigma^2 = \sum_{1,\infty} (x_i - \mu)^2 \cdot P(X = x_i) = E(X^2) - \mu^2 = E((X - \mu)^2)$
stetig	$= \int_{-\infty,\infty} x \cdot f(x) dx$	$= \int_{-\infty,\infty} (x-\mu)^2 \cdot f(x) dx = \int_{-\infty,\infty} x^2 \cdot f(x) dx - \mu^2$
+	$E(aX+b) = a\mu+b$	$V(aX+b) = a^2 \cdot \sigma^2$
	E(aX+Y) = aE(X)+E(Y)	V(X+Y) = V(X)+V(Y)+2C(X,Y) (C: <u>Kovarianz</u>)
•	unabh. \Leftrightarrow E(X·Y)=E(X)·E(Y)	unabh. $\Leftrightarrow V(X+Y)=V(X)+V(Y)$

- $(X-\mu)/\sigma$ hat immer Erwartungswert 0 und Varianz 1 (für $\sigma \neq 0$)
- $X_1,...,X_n$ bzw. X,Y <u>unabhängig</u> \Leftrightarrow $P(\cap X_i=X_i)=\Pi$ $P(X_i=X_i)$ \Leftrightarrow $C(X,Y):=E(X\cdot Y)-E(X)\cdot E(Y)=0$
- Korrelationskoeffizient: $C(X,Y)/\sqrt{V(X)*V(Y)}$
- für $X_n^*=1/n\cdot(X_1+...+X_n)$, X_i identisch verteilt und unabhängig gilt $\lim_{n,\infty}P(|X_n^*-\mu|<\epsilon)=1$ und $\lim_{n,\infty}P(|(X_n^*-\mu)/\sqrt{\sigma^2/n}|\leq z)=\Phi(z)$ (das arithm. Mittel ist asympt. $N(\mu,\sigma^2/n)$ -verteilt)
- Im <u>kontinuierlichen Fall</u>: Verteilungsfunktion F(x) wie oben, statt WK-Verteilung <u>Dichtefunktion</u> f: R→R mit f(x)≥0 ∀x∈R, f integrierbar, ∫_{-∞;∞}f(x)dx=1, F(x)=∫_{-∞;x}f(x)dx. Dann auch P(a≤X≤b)=F(b)-F(a)=∫_{a:b}f(t)dt (≤,< gleichwertig!), insb. P(X=x)=0.</p>

Binomialvtlg. B(n,p)	Hypergeom. H(n,M,N)	Poissonvtlg. $P(\lambda)$	$\chi^{2}(m) = \Gamma(m/2, \frac{1}{2})$
$P(X=k) = \binom{n}{k} p^{k} (1-p)^{n-k}$ n: Stufen p: Erfolgs-WK $\mu = np$ $\sigma^{2} = np(1-p)$	$P(X=k) = \binom{M}{k} \binom{N-M}{n-k} / \binom{N}{n}$ N Dinge, M anders n gezogen, k anders $\mu = n \cdot L \text{ mit } L=M/N$ $\sigma^2 = n \cdot L \cdot (1-L) \cdot \frac{N-n}{N-1}$	$P(X=k) = \lambda^k/k! \cdot e^{-\lambda}$ λ : Anz. seltener Ereignisse $\mu = \sigma^2 = \lambda$	$X\sim\chi^2(m)$, $Z\sim N(0,1)$: $t(m)=Z/\sqrt{X/m}$ $t(m)$ ist $\approx N(\mu,\sigma^2)$! Sei $X\sim N(\mu,\sigma^2)$, dann $\overline{X}\sim N(\mu,\sigma^2/n)$ und
Normalvtlg. $N(\mu, \sigma^2)$	<pre>Gleichvtlg. I=[a,b]</pre>	Exponentialv . $Exp(\lambda)$	$\frac{\frac{n-1}{\sigma^2}\overline{S_X}^2}{(\overline{X}-\mu)/(\overline{S_X}/\sqrt{n})} \sim t(n-1).$
$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}$ $F(x) = \Phi((x-\mu)/\sigma)$ $\Phi(-x)=1-\Phi(x)$ $(X-\mu)/\sigma \text{ ist immer}$ $\text{standardnormalvtlt.}$	f(x) = 1/(b-a) auf I 0 sonst P(X∈[c,d]) = $\frac{d-c}{b-a}$ μ = (b+a)/2 σ^2 = (b-a) ² /12	$f(x) = \lambda \cdot e^{-\lambda x} \text{ für } x>0$ 0 sonst $F(x) = 1 - e^{-\lambda x} \text{ für } x \ge 0$ 0 sonst $\mu = 1/\lambda$ $\sigma^2 = 1/\lambda^2$	Sei X~B(1,p), dann asymptotisch \overline{X} ~N(p,p(1-p)/n). H(n,M,N) ≈ B(n,M/N) für n/N < 0.05

<u>Approximationen</u>:

```
\Rightarrow P(X=k) \approx \lambda^k/k! \cdot e^{-\lambda} \text{ mit } \lambda = np
X~B(n≥50, p≤0.1)
                                                                                           (Binomial- durch Poissonvtlg.)
X~P(λ≥9)
                                  \Rightarrow P(X \le k) \approx \Phi((k+\frac{1}{2}-\lambda)/\sqrt{\lambda})
                                                                                          (Poisson- durch Normalvtlg.)
X \sim B(n,p), np(1-p) \ge 9 \Rightarrow P(X \le k) \approx \Phi((k+\%-np)/\sqrt{np(1-p)})
                                                                                          (Binomial- durch Normalvtlg.)
                                   P(a \le X \le b) \approx \Phi((b + \frac{1}{2} - np) / \sqrt{np(1-p)})
                                                    -\Phi((a-\%-np)/\sqrt{np(1-p)})
```

- X_1, X_2 unabh. und $X_1 \sim N(\mu_1, \sigma_1^2)$, $X_2 \sim N(\mu_2, \sigma_2^2)$. Dann $X_1 + X_2 \sim N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$

3. Statistik

- <u>Stichprobe</u> vom Umfang n, h_i : abs. Häufigk. des Merkmals a_i , x_i : Merkmal des Elements i
- empirischer <u>Mittelwert</u>: $\bar{x} = 1/n \cdot \Sigma x_i$ Erwartungstreue und konsistente $\frac{\bar{x}}{s_x^2} = 1/(n-1) \cdot \Sigma (x_i - \bar{x})^2$ Stichprobenfunktionen, wenn man empirische <u>Varianz</u>:
- x als ZV X auffasst. - empirische <u>Verteilungsfkt</u>.: $\overline{F_n(x)} = 1/n \cdot |\{i \mid x_i \le x\}|$
- empirisches <u>p-Quantil</u> für geordnete x_i : $x_p^- = x_{floor(np)+1}$ für $np \notin \mathbb{N}$, $\frac{1}{2}(x_{np} + x_{np+1})$ sonst
- empirische <u>Kovarianz</u>: $s_{x,y} = 1/(n-1) \cdot \Sigma(x_i \bar{x})(y_i \bar{y})$, Korrelationskoeff.: $r_{x,y} = s_{x,y}/(s_x \cdot s_y)$

4. Induktive Statistik (KI=Konfidenzintervall)

Sei $X \sim N(\mu, \sigma^2)$. Finde KI $I(\omega)$ mit $P(\theta \in I(\omega)) = 1 - \alpha$ (1- α Konfidenzniveau, θ ein Parameter):

σ^2 bekannt		σ² unbekannt	σ² gefragt	
μ gefragt (Fall 1)	μ gefragt (1-seitig)	μ gefragt	μ unbekannt	
Gegeben: α n \overline{X} $z_{1-\alpha/2}$	α n \overline{X} $z_{1-\alpha}$	α n \overline{X} $\overline{S_X}$ $t_{n-1,1-\alpha/2}$	α n $\overline{S_X}^2$ $c_{n-1,\alpha/2}$ $c_{n-1,1-\alpha/2}$	
$\left[\overline{X} - \sigma z_{1-\alpha/2} / \sqrt{n} , \right. \\ \left. \overline{X} + \sigma z_{1-\alpha/2} / \sqrt{n} \right]$	$(-\infty, \overline{X} + \sigma Z_{1-\alpha} / \sqrt{n}]$ $[\overline{X} - \sigma Z_{1-\alpha} / \sqrt{n}, \infty)$	$[\overline{X} - t_{n-1,1-\alpha/2} \overline{S_X} / \sqrt{n}, \\ \overline{X} + t_{n-1,1-\alpha/2} \overline{S_X} / \sqrt{n}]$	$[(n-1)\overline{S_X}^2/c_{n-1,1-\alpha/2}, (n-1)\overline{S_X}^2/c_{n-1,\alpha/2}]$	

- z_{α} , $t_{n,\alpha}$, $c_{n,\alpha}$ sind die Quantile der Normal-, t- und χ^2 -Verteilung
- für den Fall 1 ist n $\geq 4(z_{1-\alpha/2})^2\sigma^2/\delta^2$, wenn die Intervalllänge höchstens δ sein soll
- ein KI ist ein <u>Hypothesentest</u>. Dabei $H_a = \theta \in \Theta_a$, $H_1 = \theta \in \Theta_1$, A_a=Annahme-, A₁=Ablehnungsbereich, α **Signifikanzniveau**
- Gauß-Test: $H_0 = \mu > \mu_0$, $H_1 = \mu \leq \mu_0$. $P(A_0 \mid H_1) = P((\overline{X} \mu_0) / \sqrt{\sigma^2/n} \geq k) \leq \alpha$ $H_0 = \sigma^2 > \sigma_0^2$, $H_1 = \sigma^2 \le \sigma_0^2$. $P(A_0 | H_1) = P((n-1) \overline{X} / \sigma^2 \ge k) \le \alpha$

	Ergebnis liegt im Annahmebereich	Ergebnis liegt im Ablehnungsbereich
Hypothese ist wahr	Entscheidung richtig	Fehler 1. Art
Hypothese ist falsch	Fehler 2. Art	Entscheidung richtig

5. Numerik - 5.1 Approximation

- für n+1 <u>Stützstellen</u> (x_i,y_i) existiert das <u>Interpolationspolynom</u> $p(x)=\Sigma a_i x^i$ mit $p(x_i)=y_i$
- naiv: LGS mit Bedingungen p(x,)=y, nach a,'s lösen
- Horner-Schema: $f(x)=(...(a_nx+a_{n-1})x+a_{n-2})x+...)x+a_0$ minimiert die Multiplikationen

Newton n=3	3 α _{i3}	α_{i2}	α_{i1}	$\alpha_{_{\mathbf{i}0}}$	j x	i
				0	0	0
y,			2	2	0 1 -2 -1	1
y _i		1	0	2	-2	2
\mathbf{u}_{ii}	1	0	0	2	-1	3

<u>Lagrange</u>	<u>Neville</u>	<u>Newton</u>	<u>Splines</u> (Grad k)
$L_{i}(x) = \prod_{j=0, j\neq i; n} \frac{x-x_{j}}{x_{i}-x_{j}}$ $p(x) = \sum y_{i}L_{i}(x)$	$ \begin{vmatrix} p_{i,0}(x) = y_i \\ p_{i,j}(x) = \frac{(x - x_{i-j})p_{i,j-1}(x) - (x - x_i)p_{i-1,j-1}(x)}{x_i - x_{i-j}} \\ p(x) = p_{n,n}(x) $	$\alpha_{i,0} = y_{i}$ $\alpha_{i,j} = \frac{\alpha_{i,j-1} - \alpha_{i-1,j-1}}{x_{i} - x_{i-j}}$ $p(x) = \sum \alpha_{i,i} \cdot \Pi_{j=0;i-1}(x - x_{j})$	$\begin{array}{ll} p_{i}(x_{i}) & = y_{i} \\ p_{i}(x_{i+1}) & = y_{i+1} \\ p_{i}^{(s)}(x_{i+1}) = p_{i+1}^{(s)}(x_{i+1}) \\ s \le k-1, k-1 \text{ zus. Bed.} \end{array}$

5.2 Numerische Integration

$$\int_{a;b} f(x) dx \approx \Sigma f(z_i) \cdot (x_{i+1} - x_i), \quad x_i \text{ sind n Unterteilungen von } [a,b], \quad \underline{\alpha}_{i,n} \quad \underline{i=0} \quad \underline{i=1} \quad \underline{i=2} \quad \underline{i=3}$$

$$z_i \text{ sind Zwischenwerte} \quad n=1 \quad 1/2 \quad 1/2$$

$$\approx h \cdot \Sigma \alpha_{i,n} f(x_i) \text{ mit } x_i = a+i \cdot h, \quad h = (b-a)/n, \quad n=2 \quad 1/3 \quad 4/3 \quad 1/3$$

$$\alpha_{i,n} = \int_{0;1} \Pi_{j=0,j\neq i;n} \frac{x-j}{i-j} dx \quad (\underline{Newton-Cotes}) \quad n=3 \quad 3/8 \quad 9/8 \quad 9/8 \quad 3/8$$

5.3 Nullstellenbestimmung

- Newton-Verfahren: $x^{(0)} \in [a,b]$, $x^{(k+1)} = x^{(k)} f(x^{(k)})/f'(x^{(k)})$
- <u>Sekanten-Verfahren</u>: $x^{(0)}, x^{(1)} \in [a,b], x^{(k+1)} = x^{(k)} f(x^{(k)}) \cdot (x^{(k)} x^{(k-1)}) / (f(x^{(k)}) f(x^{(k-1)}))$

5.4 Numerische lineare Algebra

Ziel ist die Lösung des Gleichungssystems A·x=b. Dafür gibt es folgende Zerlegungen:

LU-Zerlegung A∈K ^{mxn}	Cholesky-Zerlegung A∈R nxn	QR-Zerlegung A∈R mxn, m≥n
A=P·L·U P Permutations-, L untere, U obere Dreiecksmatrix Gauß-Alg. auf (U=A P=I L=I) Zeilentausch in U ⇒ Spaltentausch in P Addiere α-faches in U ⇒ trage -α in L ein	A=G·G ^T für A sym. pos. def. G untere Dreiecksmat. Bsp.: a 0 0 a b d b c 0 · 0 c e = A d e f 0 0 f (man darf keine Wurzel aus <0 ziehen und a,c,f müssen >0 sein, dann pos. def.)	A=Q·R für Rang(A)=n \Leftrightarrow det A \neq 0 Sei A=(a _i). u _i orthogonal mit u _i =a _i - $\Sigma_{j=1;i-1}$ <u<sub>j,a_i>/$\ u_j\ ^2$·u_j q_i=u_i/$\ u_i\$ sind normierte u_i Dann Q=(q_i) mit Q⁻¹=Q^T und R=Q^TA obere Dreiecksmatrix. Lösung x minimiert $\ Ax-b\$.</u<sub>
PLU <u>x</u> =b lösen: Setze y=Ux. Löse L <u>y</u> =P ^T b. Löse U <u>x</u> =y.	GG [™] x=b lösen: Setze y=G [™] x. Löse G <u>y</u> =b. Löse G [™] x=y.	QR <u>x</u> =b lösen: Löse R <u>x</u> =Q ^T b. (Probe!)

Man definiert folgende Normen: $(\|\cdot\| \Rightarrow \|\cdot\|_2)$

Vektor	$\underline{\text{Summennorm}} \ \mathbf{x}\ _{1} = \Sigma \mathbf{x}_{i} $	euklid. Norm $\ x\ _2 = (\Sigma x_i^2)^{\frac{1}{2}}$	$\underline{\text{Maximumnorm}} \ x\ _{\infty} = \max x_{i} $
Matrix	$\begin{array}{ll} \textbf{Spaltensummennorm} \\ \ \mathbf{A}\ _1 = \max_j \; \Sigma_i \mathbf{a}_{ij} \end{array}$	$\ A\ _{2} = \max_{x \neq 0} \ Ax\ _{2} / \ x\ _{2}$ = $\max_{\ x\ ^{2=1}} \ Ax\ _{2} \frac{Spektral}{}$	$\frac{\textbf{Zeilensummennorm}}{\ A\ _{\infty} = \max_{i} \Sigma_{j} a_{ij} }$

- diese Normen sind <u>submultiplikativ</u> ($||AB|| \le ||A|| \cdot ||B||$) und <u>verträglich</u> ($||Ax|| \le ||A|| \cdot ||x||$)
- Spektralnorm ist die Wurzel des größten Eigenwertes von A·A^T. λ Eigenwert⇔det(A-λE_n)=0
- Kondition: cond(A) = $||A|| \cdot ||A^{-1}||$, cond(orthog. Matrix)=1. Ziel ist minimale Kondition!
- $A \in \mathbb{K}^{n \times n}$ strikt diagonaldominant $\Leftrightarrow |a_{ii}| > \sum_{j=1, j \neq i; n} |a_{ij}|$ (Diagonaleint.>restl. Zeileneintr.)
- A str. diag. \Rightarrow A invertierbar. A str. diag. \land a_{ii} > 0 \Rightarrow A positiv definit
- <u>Iterationsverfahren</u> zur Lösung von $A \cdot x = b$ mit $A \in \mathbb{R}^{n \times n}$. Zerlege dazu in A = L + U + D, L untere Dreiecks-, U obere Dreiecks-, D Diagonalmatrix (L und U haben Diagonale 0). Dann:
- $\ \underline{\textbf{Jacobi}} \colon \ x^{(\emptyset)} \in \mathbb{R}^{\, n} \text{,} \ \ x^{(k+1)} = D^{-1} \big(b (L+U) x^{(k)} \big) \\ \underline{\textbf{Gauß-Seidel}} \colon \ x^{(\emptyset)} \in \mathbb{R}^{\, n} \text{,} \ \ x^{(k+1)} = (D+L)^{-1} \big(b U x^{(k)} \big)$

6. Differenzialgleichungen (=DGL)

- $F(x,y,y',...,y^{(n)})$ =0 für y: \mathbb{R} → \mathbb{R} heißt <u>gewöhnliche DGL n'ter Ordnung</u> (=DGLn)
 - <u>explizit</u>: nach $y^{(n)}$ umgestellt <u>autonom</u>: unabhängig von x
 - <u>linear</u> (LDGL): $y^{(n)}(x)=b(x)+\Sigma_{0;n-1}a_i(x)y^{(i)}(x)$ <u>homogen</u>: b(x)=0 (sonst <u>inhomogen</u>)
 - konstante Koeffizienten (KK): a, unabhängig von x
- für eine hom. LDGL gibt es n linear unabh. Lösungen, die den Lösungsraum aufspannen
- für eine inhom. LDGL sind y_h + y_p Lsg. mit y_h alle hom. und y_p spezieller inhom. Lsg.
- Wronski-Determinante: $W(x) = det(y_1,...,y_n;...;y_1^{(n-1)},...,y_n^{(n-1)})$
- wenn $\Sigma \lambda_i y_i(x) = 0 \Rightarrow \lambda_i = 0$ oder $\exists x : W(x) \neq 0$, dann sind $y_1, ..., y_n$ <u>lin. unabh.</u>
- y' = $a(y-A) \Rightarrow y = A+ce^{ax}$, y' = $a(y-A)^2 \Rightarrow y = A-1/(ax-c)$. Einige Lösungsverfahren:

DGL1: $y' = u(x) \cdot v(y)$ Trennung der Var. Bestimme $U(x) = \int u(x)dx$ und $V(y) = \int 1/v(y)dy$ Lsg. ist $V(y) = U(x)+c$ nach y umgestellt	DGL1: Integration y' = a(x) Lsg. ist ∫a(x)dx + c
hom. LDGL1: $y' = a(x) \cdot y$ Bestimme $A(x) = \int a(x) dx$ Lsg. ist $y_h = ce^{A(x)}$	inhom. LDGL1: $y' = a(x) \cdot y + b(x)$ $W(x) = \int b(x)e^{-A(x)}dx$ <u>Variation d. Konst.</u> Lsg. ist $y_h + W(x)e^{A(x)}$ (y_h siehe links)
hom. LDGLnKK: $y^{(n)}+a_{n-1}y^{(n-1)}++a_{\theta}y=0$ Finde NS von $\lambda^n+a_{n-1}\lambda^{n-1}++a_{\theta}=0$ charakt. Gleichung k-fache NS α ergibt lin. unabh. Lösungen: reell: $x^je^{\alpha x}$ ($j=0k-1$) komplex: $x^je^{\beta x}\sin \gamma x$ und $x^je^{\beta x}\cos \gamma x$ (für $\alpha=\beta+\gamma i$) Lsg. ist y_h = Linearkomb. aus lin. unabh. Lsg.	inhom. LDGL2KK: y , y_1 , y_2 lin. unabh. homogene Lösungen. $W_1(x) = \int -y_2(x)b(x)/W(x)dx$ $W_2(x) = \int y_1(x)b(x)/W(x)dx$ Lsg. ist $y_h + W_1(x)y_1(x) + W_2(x)y_2(x)$ $(y_h$ siehe links)

Dies & Das

- $\log_a(x \cdot y) = \log_a(x) + \log_a(y)$, $\log_a \frac{x}{y} = \log_a(x) \log_a(y)$, $\log_a(x^b) = b \cdot \log_a(x)$, $\log_a x = \frac{\log_b x}{\log_b a}$
- $T_{f,n}(x,x_0) = \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} (x-x_0)^k$ heißt n-tes <u>Taylorpolynom</u> von f mit Entw.pkt. \mathbf{x}_{θ} (<u>-reihe</u> für n= ∞)
- <u>Komplexe Zahlen</u>: Polardarstellung: $z=|z|\cdot(\cos\varphi+i\cdot\sin\varphi)=|z|\cdot e^{\varphi i}$, $\cos\varphi=\frac{Re(z)}{|z|}$, $\sin\varphi=\frac{Im(z)}{|z|}$ $\sqrt[n]{z_k}=\sqrt[n]{|z|}\cdot(\cos\frac{\varphi}{n}+i\cdot\sin\frac{\varphi}{n})\cdot\omega_n^k$ mit k=0,...,n-1 und n-ter Einheitswurzel $\omega_n^k=\cos\frac{2k\pi}{n}+i\cdot\sin\frac{2k\pi}{n}$, $\omega_n^0=1$

f(x)	f'(x)	f(x) $f'(x)$	Ableitungsregeln	f(x) F(x)	Integrationsregeln
ax+b	а	$\log_a x \frac{1}{x \ln a}$	(u+v), = u, + v,	X^a $\frac{1}{a+1} x^{a+1}$	$\int \lambda f = \lambda \cdot \int f$
X ^a	a∙x ^{a-1}	$\ln x \frac{1}{x}$	$(\lambda v)' = \lambda v'$	$\frac{1}{x}$ ln $ x $	$\int (f+g) = \int f + \int g$
a [×]	ln(a)·a ^x	sin x cos x	(uv)' = u'v + uv'	$a^x \qquad \frac{1}{\ln a} a^x$	<pre>fg' = fg - ff'g</pre>
e ^x	e ^x	cos x -sin >	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	e^{ax} $\frac{1}{a}e^{ax}$	$\int f(g) \cdot g' = F(g) + c$
\sqrt{x}	$\frac{1}{2\sqrt{x}}$	$\tan x \frac{1}{\cos^2 x}$	$(u \circ v)' = u'(v) \cdot v'$	tan x -ln cos x	$\int \ln x = x \cdot \ln x - x$
	T(())				

$$\int f(g(x)) \ dx = \frac{F(g(x))}{g'(x)} + c \quad \int g^n(x) \ g'(x) \ dx = \frac{1}{n+1} \ g^{n+1}(x) + c \quad \int \frac{g'(x)}{g(x)} \ dx = \ln |g(x)| + c \quad \int \frac{g'(x)}{g^n(x)} \ dx = \frac{-1}{(n-1)} \frac{1}{g^{n-1}(x)} + c \quad \int g'(x) \ e^{g(x)} \ dx = e^{g(x)} + c$$

	0°	30°	45°	60°	90°	120°	135°	150°	180°
sin	0	<u>1</u> 2	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	1/2	0
cos	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	- 1
arc	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π

<u>Trigonometrie</u>: $\sin^2 x + \cos^2 x = 1$ $\tan x = \sin x/\cos x$ $\sin(x\pm y) = \sin x \cdot \cos y \pm \cos x \cdot \sin y$ $\cos(x\pm y) = \cos x \cdot \cos y \mp \sin x \cdot \sin y$

