

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего образования

«МИРЭА – Российский технологический университет»

ИНСТИТУТ ИСКУССТВЕННОГО ИНТЕЛЛЕКТА КАФЕДРА ВЫСШЕЙ МАТЕМАТИКИ

Типовой расчет по математической статистике

Часть 1

ВАРИАНТ 165

Выполнил: Студент 3-го курса Баттур Ц.

Группа: КМБО-07-22

Содержание

Задание	
Краткие теоретические сведения	5
Результаты расчётов	13
Список литературы	23
Приложение	24

Залание

Задание 1. Получить выборку объёмом N=200, сгенерировав псевдослучайные числа, распределённые по биномиальному закону с параметрами n и p:

$$p_k = C_n^k * p^k * q^{n-k}, k = 0,1,2,...,n, n = 5 + V mod 20, p = 0,2 + 0,003 * V$$

Задание 2. Получить выборку объёмом N=200, сгенерировав псевдослучайные числа, распределённые по геометрическому закону с параметром p:

$$p_k = q^k * p, k = 0,1,...,p = 0,2 + 0,003 * V$$

В заданиях 1 и 2 построить:

- 1) статистический ряд;
- 2) график полигона относительных частот с наложенным на него и выделенным красным цветом график полигона теоретических вероятностей;
- 3) график эмпирической функции распределения;

найти:

- 1) выборочное среднее;
- 2) выборочную дисперсию;
- 3) выборочное среднее квадратическое отклонение;
- 4) выборочную моду;
- 5) выборочную медиану;
- 6) выборочный коэффициент асимметрии;
- 7) выборочный коэффициент эксцесса;

составить таблицы:

- 1) сравнения относительных частот и теоретических вероятностей;
- 2) сравнения рассчитанных характеристик с теоретическими значениями.

Задание 3. Получить выборку объёмом N=200, сгенерировав псевдослучайные числа, распределённые по показательному закону с параметром $\lambda = 1 + (-1)^V * 0,003 * V$.

В задании 3 построить:

- 1) график эмпирической функции распределения;
- 2) интервальный ряд и ассоциированный статистический ряд;
- 3) гистограмму относительных частот с наложенным на неё и выделенным красным цветом график плотности распределения;

найти:

1) выборочное среднее;

- 2) выборочную дисперсия с поправкой Шеппарда;
- 3) выборочное среднее квадратическое отклонение;
- 4) выборочную моду;
- 5) выборочную медиану;
- 6) выборочный коэффициент асимметрии;
- 7) выборочный коэффициент эксцесса;

составить таблицы:

- 1) сравнения относительных частот и теоретических вероятностей попадания в интервалы;
- 2) сравнения рассчитанных характеристик с теоретическим значениями.

Краткие теоретические сведения

Выборка объёмом N=200 с сгенерированными псевдослучайными числами, распределённые по биномиальному закону с параметрами \boldsymbol{n} и \boldsymbol{p} :

$$p_k = C_n^k * p^k * q^{n-k}, k = 0,1,2,...,n, n = 5 + V mod 20, p = 0,2 + 0,003 * V$$

Выборка объёмом N=200 с сгенерированными псевдослучайными числами, распределённые по геометрическому закону с параметром p:

$$p_k = q^k * p, k = 0,1,...,p = 0,2 + 0,003 * V$$

Полученные выборки упорядочить по возрастанию, определить частоты n_i и относительные частоты w_i , построить статистический ряд.

x_i^*	n_i	w_i	s_i
x_1^*	n_1	w_1	s_1
x_2^*	n_1	W_2	s_2
•••	•••	•••	•••
x_m^*	n_m	w_m	s_m
	$\sum_{i=1}^{m} n_i$	$\sum_{i=1}^{m} w_i$	1

Таблица 1. Статистический ряд.

Полигон относительных частот - ломаная линия, соединяющая последовательно точки с координатами $(x_1^*, w_1), (x_2^*, w_2), \ldots, (x_m^*, w_m)$. Эмпирическая функция распределения:

$$F_N^{\Im}(x) = \sum_{x_i^* \leq x} w_i = \begin{cases} 0, & x < x_1^*, \\ w_1, & x_1^* \leq x < x_2^*, \\ w_1 + w_2, & x_2^* \leq x < x_3^*, \\ w_1 + w_2 + w_2, & x_3^* \leq x < x_4^*, \\ \dots & \dots & \dots \\ 1, & x \geq x_m^* \end{cases}$$

Рисунок 1. Образец графика эмпирической функции распределения.

Выборочное среднее:

$$\bar{x} = \frac{1}{N} \sum_{i=1}^{m} x_i^* * n_i = \sum_{i=1}^{m} x_i^* * w_i$$

Выборочный момент k-ого порядка (выборочный k-ый момент):

$$\bar{\mu} = \sum_{i=1}^{m} (x_i^*)^k * w_i, \overline{\mu_1} = \bar{x}$$

Выборочная дисперсия:

$$D_B = \sum_{i=1}^{m} (x_i^* - \overline{x})^2 * w_i = \overline{\mu_2} - (\overline{\mu_1})^2$$

Выборочная центральный момент k-ого порядка:

$$\overline{\mu}_{k}^{0} = \sum_{i=1}^{m} (x_{i}^{*} - \overline{x})^{k} * w_{i}, \overline{\mu}_{1}^{0} = 0, \overline{\mu}_{2}^{0} = D_{B}$$

$$\overline{\mu}_{3}^{0} = \overline{\mu}_{3} - 3\overline{\mu}_{2}\overline{\mu}_{1} + 2(\overline{\mu}_{1})^{3}$$

$$\overline{\mu}_{4}^{0} = \overline{\mu}_{4} - 4\overline{\mu}_{3}\overline{\mu}_{1} + 6\overline{\mu}_{2}(\overline{\mu}_{1})^{2} - 3(\overline{\mu}_{1})^{4}$$

Выборочное среднее квадратическое отклонение:

$$\overline{\sigma} = \sqrt{D_B}$$

Выборочный коэффициент асимметрии:

$$\overline{\gamma}_1 = \frac{\overline{\mu}_3^0}{\overline{\sigma}^2}$$

Выборочный коэффициент эксцесса:

$$\overline{\gamma}_2 = \frac{\overline{\mu}_4^0}{\overline{\sigma}^4} - 3$$

Выборочная мода $\overline{M}_0 = \{x_i^* | n_i = \max n_k\}$, если $n_i = \max n_k > n_j$, $i \neq j$; если $n_i = n_{i+1} = \ldots = n_{i+j} = \max n_k$, то $\overline{M}_0 = \frac{1}{2} \big(x_i^* + x_{i+j}^* \big)$, если $n_i = n_j = \max n_k > n_l$, то i < k < j, то \overline{M}_0 - не существует.

Выборочная медиана:

$$\overline{M}_e = \begin{cases} x_i^*, & F_N^{\vartheta}(x_{i-1}^*) < 0.5 < F_N^{\vartheta}(x_i^*), \\ \frac{1}{2}(x_i^* + x_{i+1}^*), & F_N^{\vartheta}(x_i^*) = 0.5. \end{cases}$$

Биномиальное распределение					
Вероятность	$p_k = C_n^k * p^k * q^{n-k}, k = 0,1,n, q = 1 - p$				
Математическое ожидание	np				
Дисперсия	npq				
Среднее квадратическое отклонение	\sqrt{npq}				
Мода	$[(n+1)p]$, если $(n+1)p$ - дробное; $[(n+1)p-rac{1}{2}]$, если $(n+1)p$ - целое;				
Медиана	$min\left\{k: \sum_{i=1}^{k} p_i \ge 0.5\right\}$				
Коэффициент асимметрии	$rac{q-p}{\sqrt{npq}}$				
Коэффициент эксцесса	$\frac{1-6pq}{npq}$				

Таблица 2. Характеристики биномиального распределения.

Геометрическое распределен	ние
Вероятность	$p_k = q^k * p, k = 0,1,,q = 1 - p$
Математическое ожидание	$\frac{q}{p}$
Дисперсия	$\frac{q}{p^2}$
Среднее квадратическое	\sqrt{q}
отклонение	\overline{p}
Мода	0
Медиана	$min\left\{k: \sum_{i=1}^{k} p_i \ge 0.5\right\}$
Коэффициент асимметрии	$\frac{1+q}{\sqrt{q}}$
Коэффициент эксцесса	$6 + \frac{p^2}{q}$

Таблица 3. Характеристики геометрического распределения.

В задании 3 полученную выборку псевдослучайных чисел, распределённые по показательному закону, упорядочить по возрастанию, определить интервалы $[a_0,a_1],(a_1,a_2],\ldots,(a_{m-1},a_m];$ число интервалов находится по формуле Стерджеса $m=1+[\log_2 N];\ a_0=0, a_m=max\{x_i\}.$

Интервалы	n_i	w_i
$[a_0, a_1]$	n_1	w_1
$(a_1, a_2]$	n_2	w_2
$(a_{m-1}, a_m]$	n_m	w_m
	$\sum_{i=1}^{m} n_i$	$\sum_{i=1}^{m} w_i$

Таблица 4. Интервальный ряд.

 n_i - число значений, попавших в i-ый интервал; w_i - относительная частота попадания в i-ый интервал, $w_i = \frac{n_i}{N}$.

x_i^*	n_i	w_i
x_1^*	n_1	w_1
x_2^*	n_2	w_2
		•••
x_m^*	n_m	w_m
	$\sum_{i=1}^{m} n_i$	$\sum_{i=1}^{m} w_i$

Таблица 5. Ассоциированный статический ряд, где $x_i^* = \frac{a_{i-1} + a_i}{2}$ - середина интервала.

Эмпирическая функция распределения:

$$F_N^{\Im}(x; x_1, x_2, \dots, x_N) = \sum_{x_k \le x} \frac{1}{N} = \begin{cases} 0, & x < x_1, \\ \frac{1}{N}, & x_1 \le x < x_2, \\ \frac{2}{N}, & x_2 \le x < x_3, \\ \dots & \dots & \dots \\ 1, & x \ge x_N. \end{cases}$$

Рисунок 2. Образец графика эмпирической функции распределения.

Рисунок 3. Образец гистограммы относительных частот.

Площадь i-ого столбца гистограммы равна w_i , а высота $\frac{w_i}{h}$.

Выборочное среднее:

$$\overline{x} = \frac{1}{N} \sum_{i=1}^{m} x_i^* * n_i = \sum_{i=1}^{m} x_i^* * w_i$$

Выборочная дисперсия с поправкой Шеппарда:

$$s_B^2 = \sum_{i=1}^m (x_i^* - \overline{x})^2 * w_i - \frac{h^2}{12}, h = \frac{a_m - a_0}{m}$$

Выборочное среднее квадратическое отклонение:

$$\tilde{\sigma} = \sqrt{s_B^2}$$

Выборочная мода:

Если модальный интервал, на котором высота гистограммы максимальна, один, то $\overline{M}_0 = a_k + h \frac{w_{k+1} - w_k}{2w_{k+1} - w_k - w_{k+2}}$, где a_k - левая граница модального интервала

 $(a_k, a_{k+1}); a_{k+1}$ - правая граница модального интервала $(a_k, a_{k+1}); w_{k+1}$ - относительная частота на модальном интервале; w_k, w_{k+2} - относительные частоты интервалов слева и справа от модального интервала.

Если модальных интервалов несколько, и все они идут подряд (т. е. интервалы $(a_k, a_{k+1}), ..., (a_{k+l-1}, a_{k+l})$ - все модальные), то

$$\overline{M}_0 = a_k + l * h * \frac{w_{k+1} - w_k}{2w_{k+1} - w_k - w_{k+2}}$$

Если между модальными интервалами находятся немодальные, то считаем, что выборочной моды не существует.

Выборочная медиана:

$$\overline{M}_e = a_{k-1} + rac{h}{w_k} igg(rac{1}{2} - \sum_{i=1}^{k-1} w_iigg)$$
, если $\sum_{i=1}^{k-1} w_i < rac{1}{2} < \sum_{i=1}^k w_i$ $\overline{M}_e = a_k$, если $\sum_{i=1}^k w_i = rac{1}{2}$

Выборочный момент k-ого порядка:

$$\overline{\mu}_k = \overline{x^k} = \sum_{i=1}^m (x_i^*)^k * w_i$$
 , $\overline{\mu}_1 = \overline{x}$

Выборочный центральный момент k-ого порядка:

$$\overline{\mu}_{k}^{0} = \sum_{i=1}^{m} (x_{i}^{*} - \overline{x})^{k} * w_{i}, \overline{\mu}_{1}^{0} = 0, \overline{\mu}_{2}^{0} = D_{B} = \overline{\mu}_{2} - (\overline{\mu}_{1})^{2}$$

Выборочный коэффициент асимметрии:

$$\overline{\gamma}_1 = \frac{\overline{\mu}_3^0}{\overline{\sigma}^3}$$

Выборочный коэффициент эксцесса:

$$\overline{\gamma}_2 = \frac{\overline{\mu}_4^0}{\overline{\sigma}^4} - 3$$

Показательное распределение: $f(x) = \lambda e^{-\lambda x}, x \in [0, +\infty)$					
Математическое ожидание	λ^{-1}				
Дисперсия	λ^{-2}				
Среднее квадратическое отклонение	λ^{-1}				
Мода	0				
Медиана	$\lambda^{-1}ln2$				
Коэффициент асимметрии	2				
Коэффициент эксцесса	6				

Результаты расчётов

Задание 1: Биномиальное Распределение

Параметры Бинамиольного Распределения:

V = 165

N = 200

n = 5 + 165 % 20 = 10

$$p = 0.2 + 0.003 * 165 = 0.695$$

2	2	3	3	4	4	4	4	4	4
4	4	5	5	5	5	5	5	5	5
5	5	5	5	5	5	5	5	5	6
6	6	6	6	6	6	6	6	6	6
6	6	6	6	6	6	6	6	6	6
6	6	6	6	6	6	6	6	6	6
6	6	6	6	6	6	6	6	6	7
7	7	7	7	7	7	7	7	7	7
7	7	7	7	7	7	7	7	7	7
7	7	7	7	7	7	7	7	7	7
7	7	7	7	7	7	7	7	7	7
7	7	7	7	7	7	7	7	7	7
7	7	7	7	7	7	7	8	8	8
8	8	8	8	8	8	8	8	8	8
8	8	8	8	8	8	8	8	8	8
8	8	8	8	8	8	8	8	8	8
8	8	8	8	8	8	8	8	8	8
8	9	9	9	9	9	9	9	9	9
9	9	9	9	9	9	9	9	9	9
9	9	9	9	9	10	10	10	10	10

Таблица 1: 200 выборок биномиального распределения

X	n_k	w_k	s_k
2	2.00000	0.01000	0.01000
3	2.00000	0.01000	0.02000
4	8.00000	0.04000	0.06000
5	17.00000	0.08500	0.14500
6	40.00000	0.20000	0.34500
7	58.00000	0.29000	0.63500
8	44.00000	0.22000	0.85500
9	24.00000	0.12000	0.97500
10	5.00000	0.02500	1.00000
Total	200	1	

Таблица 2: Статический ряд бинамиольного распределения

Рисунок 1: Полигон относительных частот

Рисунок 2: График эмпирической функции распеределении

x_k^*	w_k	\overline{p}_k	$ w_k - \overline{p}_k $
2	0.01000	0.00163	0.00837
3	0.01000	0.00989	0.00011
4	0.04000	0.03944	0.00056
5	0.08500	0.10785	0.02285
6	0.20000	0.20480	0.00480
7	0.29000	0.26667	0.02333
8	0.22000	0.22787	0.00787
9	0.12000	0.11539	0.00461
10	0.02500	0.02629	0.00129
Total	1.00000	1.00000	0.02333

Таблица 3: Таблица сравнения относительных частот и теоретических вероятностей

Название	Выборочно	Выборочно Теоретическо		Относительно	
показателя	е значение	е значение	отклонение	е отклонение	
Среднее					
значение	6.95500	6.95000	0.00500	0.07194%	
Дисперсия	2.23298	2.11975	0.11323	5.34167%	
Среднее					
квадратичное					
отклонение	1.49431	1.45594	0.03838	2.63610%	
Мода	7.00000	7.00000	0.00000	0.00000%	
Медиана	7.00000	6.00000	1.00000	16.66667%	
Коэффициен					
т асимметрии	-0.50751	-0.26787	0.23965	-89.46504%	
Коэффициен					
т эксцесса	0.49828	-0.12825	0.62653	-488.52242%	

Таблица 4: Таблица сранения рассчитанных характеристик с теоретическими значениями

Задание 2: Геометрическое Распределение

Параметры геометрического распределения:

V = 165

N = 200

p = 0.2 + 0.003 * 165 = 0.695

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	1
1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	2
2	2	2	2	2	2	2	2	2	2
2	2	2	2	3	3	4	4	5	5
								•	

Таблица 5: 200 выборок геометрического распределения

$\boldsymbol{x}_{m{k}}^*$	n_k	w_k	s_k
0	139.00000	0.69500	0.69500
1	40.00000	0.20000	0.89500
2	15.00000	0.07500	0.97000
3	2.00000	0.01000	0.98000
4	2.00000	0.01000	0.99000
5	2.00000	0.01000	1.00000
Total	200	1	

Таблица 6: Статистический ряд геометрического распределения

Рисунок 3: Полигон относительных частот

Рисунок 4: График эмпирической функции распределения

$\boldsymbol{x}_{m{k}}^*$	w_k	\overline{p}_k	$ w_k - \overline{p}_k $
0	0.69500	0.69500	0.00000
1	0.20000	0.21197	0.01197
2	0.07500	0.06465	0.01035
3	0.01000	0.01972	0.00972
4	0.01000	0.00601	0.00399
5	0.01000	0.00183	0.00817
Total	1.00000	1.00000	0.01197

Таблица 7: Таблица сравнения относительных частот и теоретических вероятностей

Название	Выборочно	Теоретическо	Абсолютное	Относительно
показателя	е значение	е значение	отклонение	е отклонение
Среднее				
значение	0.47	0.43885	0.03115	7.0981%
Дисперсия	0.7791	0.63144	0.14766	23.38464%
Среднее				
квадратичное				
отклонение	0.882666	0.79463	0.08804	11.07937%
Мода	0	0	0	
Медиана	0	0	0	
Коэффициен				
т асимметрии	2.555887	2.36298	0.19291	8.16384%
Коэффициен				
т эксцесса	7.929562	7.58369	0.34587	4.56071%

Таблица 8: Таблица сравнения рассчитанных характеристик с теоретическими значениями

Задание 3: Показательное Распределение

$$N = 200$$

$$V = 165$$

$$\lambda = 1 + (-1)^{165} * (165 * 0.003) = 0.505$$

0.00306	0.00371	0.04183	0.0442	0.04783	0.066	0.07368	0.08025	0.08563	0.09244
0.10731	0.10801	0.11337	0.12014	0.12885	0.13818	0.13895	0.15989	0.21774	0.22329
0.22422	0.23575	0.24321	0.24516	0.26399	0.31737	0.34497	0.34604	0.35145	0.3673
0.37426	0.37859	0.41151	0.44657	0.46871	0.48668	0.48888	0.49093	0.49241	0.4998
0.54084	0.56362	0.56835	0.57651	0.58269	0.59036	0.62898	0.65897	0.66393	0.68246
0.68725	0.68919	0.70492	0.71196	0.74379	0.75689	0.75781	0.78059	0.8002	0.80272
0.82656	0.83362	0.84316	0.8641	0.88088	0.89439	0.92116	0.92767	0.94034	0.9498
0.95345	0.95414	0.97444	0.9802	0.98827	0.98992	1.00121	1.00238	1.01547	1.01792
1.0259	1.03556	1.07177	1.09257	1.13872	1.1495	1.20082	1.2015	1.2026	1.2149
1.25272	1.25649	1.25966	1.26166	1.2647	1.29719	1.30317	1.32714	1.34519	1.39762
1.39909	1.40847	1.40987	1.41305	1.41438	1.41876	1.54192	1.55343	1.55429	1.61373
1.64199	1.66582	1.66981	1.68855	1.69111	1.71109	1.72252	1.7414	1.74438	1.7654
1.78518	1.79209	1.79461	1.80649	1.85393	1.86697	1.8713	2.00102	2.02318	2.02787
2.06355	2.08105	2.09078	2.17723	2.22549	2.23326	2.30447	2.31632	2.42838	2.43942
2.45323	2.48679	2.63999	2.64311	2.68339	2.71357	2.72038	2.73557	2.7577	2.76445
2.84827	2.85959	2.86203	2.87557	2.8776	2.88841	2.90409	2.95716	2.96552	2.985
2.98602	3.15051	3.17777	3.37107	3.51239	3.83728	3.97097	3.99558	4.20866	4.24013
4.3667	4.37453	4.3756	4.38595	4.51129	4.51745	4.5287	4.62674	4.67219	4.69204
4.70677	4.84025	4.88461	5.00635	5.15679	5.19494	5.28251	5.50308	5.72359	6.06887
									10.7548
6.432	6.61762	6.90661	7.29179	8.13319	8.20789	8.95765	9.73263	9.7493	1

Таблица 9: 200 выборок показательного распределения

Показательное Распределение

Интервалы	n_k	w_k
(0.00306, 1.24692)	90.00000	0.45000
(1.24692, 2.49078)	52.00000	0.26000
(2.49078, 3.73464)	23.00000	0.11500
(3.73464, 4.97850)	18.00000	0.09000
(4.97850, 6.22236)	7.00000	0.03500
(6.22236, 7.46622)	4.00000	0.02000
(7.46622, 8.71008)	2.00000	0.01000
(8.71008, 10.75481)	4.00000	0.02000
	200.00000	1.00000

Таблица 10: Интервальный Ряд

$oldsymbol{x_k^*}$	n_k	w_k
0.62499	90	0.45
1.86885	52	0.26
3.11271	23	0.115
4.35657	18	0.09
5.60043	7	0.035
6.84429	4	0.02
8.08815	2	0.01
9.73244	4	0.02
	200.00000	1.00000

Таблица 11: Ассоциированный статистический ряд

Рисунок 5: Гистограмма относительных частот с наложенным на нее и выделенным красным цветом графиком плотности показательного распределения

Рисунок 6: График эмфирической функции распределения

Интервалы:	w_k	\overline{p}_k	$ w_k - \overline{p}_k $
(0.00306, 1.24692)	0.45000	0.46570	0.01570
(1.24692, 2.49078)	0.26000	0.24849	0.01151
(2.49078, 3.73464)	0.11500	0.13259	0.01759
(3.73464, 4.97850)	0.09000	0.07075	0.01925
(4.97850, 6.22236)	0.03500	0.03775	0.00275
(6.22236, 7.46622)	0.02000	0.02014	0.00014
(7.46622, 8.71008)	0.01000	0.01075	0.00075
(8.71008, 10.75481)	0.02000	0.00792	0.01208
	1.00000	1.00000	0.01925

Таблица 12: Таблица сравнения относительных частот и теоретических вероятностей

Название	Выборочно	Теоретическо	Абсолютное	Относительно
показателя	е значение	е значение	отклонение	е отклонение
Среднее				
значение	2.12563	1.98020	0.14543	7.34421
Дисперсия	3.97095	3.92118	0.04977	1.26926
Среднее				
квадратичное				
отклонение	1.99273	1.98020	0.01253	0.63276
Мода	0.04086	0.00000	0.04086	inf
Медиана	1.25726	1.37257	0.11531	8.40103
Коэффициен				
т асимметрии	1.77903	2.00000	0.22097	11.04850
Коэффициен				
т эксцесса	3.29373	6.00000	2.70627	45.10450

Таблица 13: Таблица сравнения рассчитанных характеристик с теоретическими значениями

Список литературы

- 1. Математическая статистика [Электронный ресурс]: метод. указания по выполнению лаб. работ/ А.А. Лобузов М.: МИРЭА, 2017.
- 2. Боровков А. А. Математическая статистика. СПб.: Лань, 2010.-704с.
- 3. Гмурман В. Е. Теория вероятностей и математическая статистика.-М.: Юрайт, 2013.-479с.
- 4. Гмурман В. Е. Руководство к решению задач по теории вероятностей и математической статистике. М.:Юрайт,2013.-404с.
- 5. Емельянов Г.В. Скитович В.П. Задачник по теории вероятностей и математической статистике.-СПб.: Лань, 2007.-336с.
- 6. Кибзун А.И., Горяинова Е.Р., Наумов А.В. Теория вероятностей и математическая статистика. Базовый курс с примерами и задачами. Учебное пособие М.: ФИЗМАТЛИТ, 2005.-232с.
- 7. Кобзарь А.И. Прикладная математическая статистика: для инженеров и научных работников М.: ФИЗМАТЛИТ, 2006.-816с.
- 8. Монсик В.Б., Скрынников А.А. Вероятность и статистика. М.: БИНОМ, 2015-384с.
- 9. Сборник задач по теории вероятностей, математической статистике и теории случайных функций: Учеб. пособие для вузов / Под ред. А. А. Свешникова. СПб.: Лань, 2012. 472с.
- 10. Письменный Д.Т. Конспект лекций по теории вероятностей, математической статистике и случайным процессам: учеб. пособие для вузов.-М.: Айрис-пресс,2013.-288с.

Приложение

MS_1.py (Биномиальное Распределение): from TR 1 import * import numpy as np import matplotlib.pyplot as plt import pandas as pd import math N = 200 #SampleV = 165 #Variantn = 5 + V % 20p = 0.2 + 0.003 * Vlamda = 1 + ((-1) ** V) * (V * 0.003)seed = 10 + Vrng = np.random.default_rng(seed=seed) print("200 случайных значений из биномиального распределения с параметрами $n = ", n, f"p = \{p: .5f\}"\}$ x_binom = rng.binomial(n, p, N) print(x binom) x bi save = x binom.copy().reshape((20, 10))x_bi_save.sort() df = pd.DataFrame(x bi save) df.to_excel('binomial.xlsx') task(x binom, 'binomial') MS_2.py(Геометрическое Распределение): from TR 1 import * import numpy as np import matplotlib.pyplot as plt import pandas as pd import math N = 200 #SampleV = 165 #Variantn = 5 + V % 20p = 0.2 + 0.003 * Vlamda = 1 + ((-1) ** V) * (V * 0.003)seed = 10 + Vrng = np.random.default_rng(seed=seed) print("200 случайных значений из геометрического распределения с параметром ", f"р = {p: .5f}")

x_geom = rng.geometric(p, N) - 1

```
print(x geom)
X_{geo} = x_{geom.copy}().reshape((20, 10))
X_geo_save.sort()
df = pd.DataFrame(X_geo_save)
df.to_excel('geometric.xlsx')
task(x_geom, 'geometric')
MS_3.py(Показательное Распределение):
from TR 1 import *
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import math
N = 200 \#Sample
V = 165 \#Variant
n = 5 + V \% 20
p = 0.2 + 0.003 * V
lamda = 1 + ((-1) ** V) * (V * 0.003)
seed = 10 + V
rng = np.random.default rng(seed=seed)
print("200 случайных значений из экспонентиального распределения с
параметром ", f"lambda = {lamda: .5f}")
x_exponential = rng.exponential(1/lamda, N)
x_exponential.sort()
print(x exponential)
x_po_save = x_exponential.copy().reshape((20, 10))
df = pd.DataFrame(x_po_save)
df.to excel('exponential.xlsx')
task(x_exponential, 'exponential')
TR_1.ру(Код для выполнения распрелений):
import numpy as np
import matplotlib.pyplot as plt
from scipy import stats
import pandas as pd
import math
N = 200 \#Sample
V = 165 \#Variant
n = 5 + V \% 20
p = 0.2 + 0.003 * V
lamda = 1 + ((-1) ** V) * (V * 0.003)
```

```
seed = 10 + V
rng = np.random.default rng(seed=seed)
def task(X_distribution, name_distribution):
 counts = np.unique(X distribution, return counts=True)
 X = counts[0]
 freq = counts[1]
 rel freq = counts[1] / N
 cum freq = np.cumsum(rel freq)
 total freq = freq.sum(axis=0)
 total rel freq = rel freq.sum(axis=0)
 intervals = None
 if name_distribution == 'binomial' or name_distribution == 'geometric'
or name distribution == 'exponential':
   total_row = {
      'X': 'Total',
      'Frequency': total_freq,
      'Relative Frequency': total rel freq,
      'Cumulative Frequency': ''
    }
    df freq = pd.DataFrame({
        'X': counts[0],
        'Frequency': [f"{val:.5f}" for val in freq],
        'Relative Frequency': [f"{val:.5f}" for val in rel freq],
        'Cumulative Frequency': [f"{val:.5f}" for val in cum freq]
        })
   df_freq.loc[len(df_freq)] = total_row
    print(df freq)
    df freq.to excel(name distribution + ' stat.xlsx')
    if name distribution == 'exponential':
      step = np.round(1 + np.log2(N), 5)
      distance_between_step = ((X.max() - X.min()) / step)
      intervals = np.array([X.min() + i * distance_between_step for i in
range(int(step))])
      intervals = np.append(intervals, X.max())
      intervals_freq = np.zeros(len(intervals)-1)
      intervals relatvie freq = np.zeros(len(intervals)-1)
      for i in range(len(intervals)-1):
          for j in range(len(X)):
              if i == 0:
                  if intervals[i] <= X[j] <= intervals[i+1]:</pre>
                      intervals freq[i] += freq[j]
                      intervals relatvie freq[i] += rel freq[j]
              else:
                  if intervals[i] < X[j] <= intervals[i+1]:</pre>
```

```
intervals freq[i] += freq[j]
                      intervals relatvie freq[i] += rel freq[j]
      intervals = np.round(intervals, 5)
     total row = {
        'Frequency': f"{total_freq: .5f}",
        'Relative Frequency': f"{total rel freq: .5f}"
       }
     df_freq_intervals = pd.DataFrame({
        'Interval: ': list(zip([f"{val:.5f}" for val in intervals[:-1]],
[f"{val:.5f}" for val in intervals[1:]])),
        'Frequency': [f"{val:.5f}" for val in intervals_freq],
        'Relative Frequency': [f"{val:.5f}" for val in
intervals relatvie freq
      df_freq_intervals.loc[len(df_freq_intervals)] = total_row
      print(df_freq_intervals)
     df freq intervals.to excel(name distribution + ' intervals.xlsx')
     middle = np.array([(intervals[i] + intervals[i+1]) / 2 for i in
range(len(intervals)-1)])
     middle = np.round(middle, 5)
      df freq middle = pd.DataFrame({'Middle': middle, 'Frequency':
intervals_freq, 'Relative Frequency': intervals_relatvie_freq})
      df freq middle.loc[len(df freq intervals)] = total row
      print(df freq middle)
      df freq middle.to excel(name distribution + ' middle.xlsx')
      cumulative freq intervals = np.cumsum(intervals relatvie freq)
 #2
 if name distribution == 'binomial':
   theo_freq = np.array([(math.comb(n, k) * (p ** k) * ((1-p) ** (n-k)))
for k in counts[0]])
 elif name distribution == 'geometric':
    theo freq = np.array([p * ((1-p) ** k) for k in counts[0]])
 elif name distribution == 'exponential':
      theo_freq = np.array([lamda * np.exp(-lamda * k) for k in
counts[0]])
      intervals_theoretical_relatvie_freq = np.zeros(len(intervals)-1)
     for i in range(len(intervals)-1):
          intervals theoretical_relatvie_freq[i] = -np.exp(-lamda *
intervals[i+1]) + np.exp(-lamda * intervals[i])
      intervals theoretical relatvie freq =
np.round(intervals theoretical relatvie freq, 5)
 #plot
 if name distribution == 'binomial' or name distribution == 'geometric':
   plt.figure(figsize = (8,6))
   plt.plot(X, rel_freq, marker = 'o', linestyle = '-', color = 'b',
label = 'Relative Frequency')
    plt.plot(X, theo freq, marker = 'o', linestyle = '--', color = 'red',
label = 'Theoretical Probabilities')
```

```
plt.xlabel("Value")
    plt.ylabel("Frequency")
   plt.title(name_distribution + "Distribution")
   plt.legend()
    plt.grid(True)
   plt.show()
   #3
 plt.figure(figsize = (8,6))
 for i in range(0, len(counts[0])-1):
    plt.plot([counts[0][i], counts[0][i+1]], [cum_freq[i], cum_freq[i]],
color='b', linestyle='-', linewidth=2)
 plt.grid(True)
 if name_distribution == 'exponential':
   fig, ax1 = plt.subplots(figsize=(8, 6))
    ax1.plot(counts[0], theo_freq, linestyle='-', color='r',
label='Theoretical Frequency')
   ax1.set_xlabel('Value')
    ax1.set_ylabel('Frequency (Line)')
   ax1.set title('Histogram')
   ax1.legend(loc='upper left')
   ax1.grid(True)
   ax2 = ax1.twinx()
    ax2.hist(X distribution, bins='sturges', edgecolor='black',
alpha=0.5, label='Histogram')
   ax2.set_ylabel('Count (Histogram)')
   ax2.legend(loc='upper right')
 plt.show()
 if name distribution == 'binomial' or name distribution == 'geometric':
   mean = np.array([X[i] * rel freq[i] for i in range(len(X))]).sum()
   print("Sample mean = ", f"{mean: .5f}")
   #5
    variance = np.array([((X[i] - mean) ** 2) * rel freq[i] for i in
range(len(X))]).sum()
    print("Sample variance = ", f"{variance: .5f}")
   #6
   deviation = np.sqrt(variance)
    print("Sample standard deviation = ", f"{deviation: .5f}")
   #7
   modes = X[np.argwhere(freq == np.amax(freq))].flatten().tolist()
   mode = (modes[0] + modes[len(modes) - 1]) / 2
   print("Mode = ", f"{mode: .5f}")
   #8
    idx = np.where(cum freq >= 0.5)[0][0]
    if cum freq[idx] == 0.5 and idx < len(X) - 1:
```

```
median = (X[idx] + X[idx + 1]) / 2
    else:
        median = X[idx]
    print("Median = ", f"{median: .5f}")
   #9
    def sample_k_moment_around_mean(k, mean):
        return np.array([(X[i] - mean) ** k * rel freq[i] for i in
range(len(X))]).sum()
    sample_skeness = sample_k_moment_around_mean(3, mean) / deviation **
3
    print("Sample skewness = ", f"{sample_skeness: .5f}")
    sample kurtosis = sample k moment around mean(4, mean) / deviation **
4 - 3
    print("Sample kurtosis = ", f"{sample kurtosis: .5f}")
  if name_distribution == 'exponential':
    mean = np.array([middle[i] * intervals_relatvie freq[i] for i in
range(len(middle))]).sum()
    h = ((X[len(X)-1] - X[0]) / len(X))
    variance = np.array([((middle[i] - mean) ** 2) *
intervals relatvie freq[i] for i in range(len(middle))]).sum() - (h ** 2)
/ 12
    deviation = np.sqrt(variance)
    mode = intervals[0] + h * (intervals_relatvie_freq[0]) / (2 *
intervals_relatvie_freq[0] - intervals relatvie freq[1])
    if 0.5 in cumulative freq intervals.tolist():
        median = middle[cumulative freq intervals.tolist().index(0.5)+1]
    else:
        for i in range(len(cumulative freq intervals)):
            if cumulative freq intervals[i] > 0.5:
                pivot = i-1
                break
        median = intervals[pivot+1] + h * ((0.5 -
cumulative freq intervals[pivot]) / intervals relative freq[pivot+1])
    def sample k moment around mean(k, mean):
        return np.array([(middle[i] - mean) ** k *
intervals relatvie freq[i] for i in range(len(middle))]).sum()
    sample skeness = sample k moment around mean(3, mean) / deviation **
3
    sample kurtosis = sample k moment around mean(4, mean) / deviation **
4 - 3
  if name distribution == 'binomial' or name distribution == 'geometric':
    abs diff freq = np.abs(theo freq - rel freq)
    freq compare = pd.DataFrame({
      'X': X,
```

```
'Relative Frequency': [f"{val:.5f}" for val in rel_freq],
      'Theoretical Frequency': [f"{val:.5f}" for val in theo_freq],
      'Absolute Difference': [f"{val:.5f}" for val in abs_diff_freq]
      })
    total_row_compare = {
      'X': 'Total',
      'Relative Frequency': f"{total_rel_freq: .5f}",
      'Theoretical Frequency': f"{1: .5f}",
      'Absolute Difference': f"{np.max(abs_diff_freq): .5f}"
    freq compare.loc[len(freq compare)] = total row compare
    print(freq compare)
    freq_compare.to_excel(name_distribution + '_compare.xlsx')
  if name distribution == 'exponential':
    abs_diff_freq_intervals = np.abs(intervals_theoretical_relatvie_freq_
- intervals_relatvie_freq)
    freq compare intervals = pd.DataFrame({
      'Interval: ': list(zip([f"{val:.5f}" for val in intervals[:-1]],
[f"{val:.5f}" for val in intervals[1:]])),
      'Relative Frequency': [f"{val:.5f}" for val in
intervals_relatvie_freq],
      'Theoretical Frequency': [f"{val:.5f}" for val in
intervals theoretical relatvie freql,
      'Absolute Difference': [f"{val:.5f}" for val in
abs diff freq intervals]
    })
    total row compare intervals = {
      'X': 'Total',
      'Relative Frequency': f"{total rel freq: .5f}",
      'Theoretical Frequency': f"{1: .5f}",
      'Absolute Difference': f"{np.max(abs diff freq intervals): .5f}"
    freq compare intervals.loc[len(freq compare intervals)] =
total row compare intervals
    freq compare intervals.to excel(name distribution +
' intervals compare.xlsx')
  #10
  char combine = None
  if name distribution == 'binomial':
    theo mean = n * p
    theo_var = n * p * (1 - p)
    theo deviation = np.sqrt(n * p * (1 - p))
    theo skewness = ((1-p)-p) / np.sqrt(n * p * (1 - p))
    theo_kurtois = (1 - 6 * p * (1 - p)) / (n * p * (1 - p))
    theo mode = np.floor((n + 1) * p)
    theo median = np.floor(n * p)
    theo values = np.array([theo mean, theo var, theo deviation,
theo skewness, theo kurtois, theo mode, theo median])
    theo values = np.round(theo values, 5)
    real values = np.array([mean, variance, deviation, sample skeness,
sample kurtosis, mode, median])
```

```
abs_differences = np.array([abs(mean - theo_mean), abs(variance -
theo_var), abs(deviation - theo_deviation), abs(sample_skeness -
theo_skewness), abs(sample_kurtosis - theo_kurtois), abs(mode -
theo_mode), abs(median - theo_median)])
    abs differences = np.round(abs differences, 5)
    rel_differences = np.array([abs_differences[i] / theo_values[i] for i
in range(len(theo_values))])
    rel differences *= 100
    rel_differences = np.round(rel_differences, 5)
    char_combine = pd.DataFrame({'Characteristic': ['Mean', 'Variance',
'Deviation', 'Skewness', 'Kurtosis', 'Mode', 'Median'],
                                'Sample': [f"{val:.5f}" for val in
real_values],
                                'Theoretical': [f"{val:.5f}" for val in
theo values],
                                'Absolute Difference': [f"{val:.5f}" for
val in abs_differences],
                                'Relative Difference': [f"{val:.5f}" for
val in rel_differences]
                                })
    char combine.to excel(name distribution + ' char.xlsx')
  elif name_distribution == 'geometric':
    theoretical_mean = (1-p) / p
    theo var = (1 - p) / (p ** 2)
    theo_deviation = np.sqrt((1 - p) / (p ** 2))
    theo_skewness = (2 - p) / np.sqrt(1 - p)
    theo kurtois = 6 + p ** 2 / (1 - p)
    theo mode = 0
    theo_median = np.round((-1 / np.log2(1 - p)) - 1)
    theo_values = np.array([theoretical_mean, theo_var, theo_deviation,
theo skewness, theo kurtois, theo mode, theo median])
    theo_values = np.round(theo_values, 5)
    real_values = np.array([mean, variance, deviation, sample_skeness,
sample kurtosis, mode, median])
    abs differences = np.array([abs(real values[i] - theo values[i]) for
i in range(len(theo values))])
    abs differences = np.round(abs differences, 5)
    rel differences = np.array([abs differences[i] / theo values[i] for i
in range(len(theo_values))])
    rel differences *= 100
    rel_differences = np.round(rel_differences, 5)
    char_combine = pd.DataFrame({'Characteristic': ['Mean', 'Variance',
'Deviation', 'Skewness', 'Kurtosis', 'Mode', 'Median'],
                                'Sample': real values,
                                'Theoretical': theo values,
                                'Absolute Difference': abs_differences,
                                'Relative Difference': rel differences})
    char combine.to excel(name distribution + ' char.xlsx')
  elif name distribution == 'exponential':
    theo mean = 1/lamda
    theo var = 1/(lamda**2)
    theo deviation = 1/lamda
    theo skewness = 2
```

```
theo kurtois = 6
    theo_{mode} = 0
    theo_median = np.log(2) / lamda
    theo_values = np.array([theo_mean, theo_var, theo_deviation,
theo_skewness, theo_kurtois, theo_mode, theo_median])
    theo_values = np.round(theo_values, 5)
    real_values = np.array([mean, variance, deviation, sample_skeness,
sample_kurtosis, mode, median])
    abs_differences = np.array([abs(real_values[i] - theo_values[i]) for
i in range(len(theo_values))])
    abs_differences = np.round(abs_differences, 5)
    rel_differences = np.array([abs_differences[i] / theo_values[i] for i
in range(len(theo_values))])
    rel differences *= 100
    rel_differences = np.round(rel_differences, 5)
    char_combine = pd.DataFrame({'Characteristic': ['Mean', 'Variance',
'Deviation', 'Skewness', 'Kurtosis', 'Mode', 'Median'],
                                'Sample': [f"{val:.5f}" for val in
real_values],
                                'Theoretical': [f"{val:.5f}" for val in
theo values],
                                'Absolute Difference': [f"{val:.5f}" for
val in abs_differences],
                                'Relative Difference': [f"{val:.5f}" for
val in rel differences]
                                })
    char combine.to excel(name distribution + ' char.xlsx')
  print(char combine)
```