પ્રશ્ન 1(અ) [3 ગુણ]

CE રૂપરેખાંકન માટે એમ્પલીફાયર પરિમાણો Ai, Ri અને Ro સમજાવો.

જવાબ:

Common Emitter (CE) એમ્પલીફાયર પરિમાણો:

કોષ્ટક: CE એમ્પલીફાયર પરિમાણો

પરિમાણ	વ્યાખ્યા	CE રૂપરેખાંકન
કરંટ ગેઇન (Ai)	આઉટપુટ કરંટનો ઇનપુટ કરંટ સાથેનો ગુણોત્તર	ઊંચો (20-500)
ઇનપુટ રેઝિસ્ટન્સ (Ri)	ઇનપુટ પર કરંટ પ્રવાહનો વિરોધ	મધ્યમ (1-2 kΩ)
આઉટપુટ રેઝિસ્ટન્સ (Ro)	આઉટપુટ પર કરંટ પ્રવાહનો વિરોધ	ઊંચો (40-50 kΩ)

આકૃતિ:

યાદવાક્ય: "CAR" - CE માં Current gain ઊંચો, Average input resistance, અને Robust output resistance.

પ્રશ્ન 1(બ) [4 ગુણ]

હીટ સિંક પર ટૂંકી નોંધ લખો.

જવાબ:

હીટ સિંક: એવું ઉપકરણ જે ઇલેક્ટ્રોનિક ઘટકોમાંથી ગરમી શોષે છે અને વિખેરે છે

આકૃતિ:

હીટ સિંકના પ્રકારો:

- **પેસિવ હીટ સિંક**: કુદરતી convection પર આધાર રાખે છે
- **એક્ટિવ હીટ સિંક**: ફોર્સ્ડ એર convection માટે ફેન વાપરે છે
- **લિક્વિડ-ફૂલ્ડ હીટ સિંક**: વધુ સારા heat transfer માટે પ્રવાહી વાપરે છે

મુખ્ય કાર્યો:

- થર્મલ કન્ડક્શન: ઘટકોમાંથી ગરમી દૂર ખેંચે છે
- થર્મલ કન્વેક્શન: ગરમી આસપાસની હવામાં ટ્રાન્સફર કરે છે
- સરફેસ એરિયા: પાંખો વધુ સારા કૂલિંગ માટે સપાટી ક્ષેત્રફળ વધારે છે

याह्याझ्य: "CRAFT" - Cooling through Radiation And Fins for Transistors.

પ્રશ્ન 1(ક) [7 ગુણ]

થર્મલ રનઅવે અને થર્મલ સ્ટેબિલિટીનું વર્ણન કરો. ટ્રાન્ઝિસ્ટરમાં થર્મલ રન અવે કેવી રીતે દૂર કરી શકાય? જવાબ:

થર્મલ રનઅવે: સ્વ-મજબૂત કરતી પ્રક્રિયા જ્યાં વધતા તાપમાનને કારણે વધુ કરંટ પ્રવાહ થાય છે, જે આગળ તાપમાન વધારે છે થર્મલ સ્ટેબિલિટી: તાપમાન ફેરફારો હોવા છતાં ટ્રાન્ઝિસ્ટર સર્કિટની સ્થિર કામગીરી જાળવવાની ક્ષમતા આકૃતિ:

થર્મલ રનઅવે દૂર કરવાની પદ્ધતિઓ:

- હીટ સિંક: વધારાની ગરમીને શોષે અને વિખેરે છે
- નેગેરિવ કીડબેક: સ્થિરતા માટે એમિટર રેઝિસ્ટર વાપરવો
- **બાયસ સ્ટેબિલાઇઝેશન**: વોલ્ટેજ ડિવાઇડર બાયસિંગ સર્કિટ
- **તાપમાન ક્ષતિપૂર્તિ**: ડાયોડ અથવા થર્મિસ્ટર્સનો ઉપયોગ કરવો

મુખ્ય મુદ્દાઓ:

- IC = ICBO(1+β) + βIB: કલેક્ટર કરંટ પરાધીનતા દર્શાવે છે
- ICBO બમણો થાય છે: દર 10°C તાપમાન વધારા માટે
- **સ્ટેબિલિટી ફેક્ટર S**: ઓછું S એટલે વધુ સારી સ્થિરતા

যা**হવાક્ય:** "RENT" - Reduce heat with sinks, Emitter resistors stabilize, Negative feedback helps, Temperature compensation.

પ્રશ્ન 1(ક) OR [7 ગુણ]

બાયસિંગ પદ્ધતિઓના પ્રકારો લખો. વોલ્ટેજ વિભાજક બાયસિંગ પદ્ધતિને વિગતોમાં સમજાવો.

જવાબ:

બાયસિંગ પદ્ધતિઓના પ્રકારો:

- ફિક્સ્ડ બાયસ
- કલેક્ટર-ટુ-બેઝ બાયસ
- વોલ્ટેજ ડિવાઇડર બાયસ
- એમિટર બાયસ
- કલેક્ટર ફીડબેક બાયસ

વોલ્ટેજ ડિવાઇડર બાયસ સર્કિટ:

કાર્યપ્રણાલી:

- R1 અને R2: બેઝ વોલ્ટેજ પ્રદાન કરતા વોલ્ટેજ ડિવાઇડર બનાવે છે
- RE: સ્થિરતા અને નેગેટિવ કીડબેક પ્રદાન કરે છે
- **સ્ટેબલ બાયસ પોઇન્ટ**: તાપમાન અને β ફેરફારોથી ઓછો પ્રભાવિત

ફાયદાઓ:

- **ઉત્તમ સ્થિરતા**: તાપમાન ફેરફારોથી ઓછો પ્રભાવિત
- **β થી સ્વતંત્ર**: બાયસ પોઇન્ટ ટ્રાન્ઝિસ્ટર ગેઇનથી ખૂબ પ્રભાવિત નથી
- વ્યાપકપણે ઉપયોગમાં: એમ્પ્લીફાયર માટે સૌથી સામાન્ય બાયસિંગ પદ્ધતિ

યાદવાક્ય: "DIVE" - Divider biasing Is Very Effective for stability.

પ્રશ્ન 2(અ) [3 ગુણ]

સ્ટેબિલિટી પરિબળનું લક્ષણો સમજાવો.

જવાબ:

સ્ટેબિલિટી ફેક્ટર (S): બાયસિંગ સર્કિટ તાપમાન ફેરફારો સાથે સ્થિર કામગીરી કેટલી સારી રીતે જાળવે છે તેનું માપ

ગાણિતિક વ્યાખ્યા:

S = ΔΙC/ΔΙCBO (કલેક્ટર કરંટમાં ફેરફાર / રિવર્સ સેચ્યુરેશન કરંટમાં ફેરફાર)

કોષ્ટક: વિવિદ્ય બાયસ સર્કિટ્સ માટે સ્ટેબિલિટી ફેક્ટર્સ

બાયસિંગ મેથડ	સ્ટેબિલિટી ફેક્ટર	સ્ટેબિલિટી લેવલ
ફિક્સ્ડ બાયસ	S = 1+β	ખરાબ
કલેક્ટર-ટુ-બેઝ	$S = \beta/(1+\beta)$	બેહતર
વોલ્ટેજ ડિવાઇડર	S ≈ 1	ਓπ

મુખ્ય લક્ષણો:

- ઓછો S મૂલ્ય: વધુ સારી સ્થિરતા દર્શાવે છે (આદર્શ S=1)
- તાપમાન પ્રતિરોધ: તાપમાન ફેરફારોથી રક્ષણની માત્રા માપે છે
- સર્કિટ ડિઝાઇન ટૂલ: બાયસિંગ પદ્ધતિઓની તુલના કરવામાં મદદ કરે છે

याहवाझ्य: "SOS" - Stability Of circuit Shows in its S-factor.

પ્રશ્ન 2(બ) [4 ગુણ]

કાસ્કેડીંગની ડાયરેક્ટ કપ્લીંગ ટેકનિકનું વર્ણન કરો.

જવાબ:

ડાયરેક્ટ કપ્લીંગ: કપલિંગ કેપેસિટર્સ વિના સ્ટેજ જોડવું, એક સ્ટેજના કલેક્ટરને સીદ્યો આગલા સ્ટેજના બેઝ સાથે જોડવો આકૃતિ:

મુખ્ય લક્ષણો:

• કોઈ કપલિંગ ઘટકો નહીં: સીધો ઇલેક્ટ્રિકલ કનેક્શન

• પૂર્ણ ફ્રીક્વન્સી રિસ્પોન્સ: સારી લો-ફ્રીક્વન્સી પરફોર્મન્સ

• DC લેવલ શિફ્ટિંગ: સ્ટેજ વચ્ચે જરૂરી છે

એપ્લિકેશન્સ:

• ઓપરેશનલ એમ્પ્લીફાયર્સ: આંતરિક સ્ટેજ

• DC એમ્પ્લીફાયર્સ: જ્યાં લો-ફ્રીક્વન્સી રિસ્પોન્સ મહત્વપૂર્ણ છે

યાદવાક્ય: "DIRECT" - DC signals Immediately REach Connecting Transistors.

પ્રશ્ન 2(ક) [7 ગુણ]

બે તબક્કાનાં આર સી કપલ્ડ એમ્પલીફાયરનો આવર્તન પ્રતિભાવ સમજાવો.

જવાબ:

RC કપલ્ડ એમ્પ્લીફાયર: એમ્પલીફિકેશન સ્ટેજ વચ્ચે કપલિંગ માટે રેસિસ્ટર-કેપેસિટર નેટવર્ક વાપરે છે ફ્રીક્વન્સી રિસ્પોન્સ આકૃતિ:

કોષ્ટક: ફ્રીક્વન્સી રીજન

રીજન	ફ્રીક્વન્સી રેન્જ	લક્ષણો	મર્યાદિત ઘટકો
લો	20Hz-500Hz	ફ્રીક્વન્સી સાથે ગેઇન વધે છે	કપલિંગ કેપેસિટર્સ
મિડ	500Hz-20kHz	સ્થિર ગોઇન (મહત્તમ)	કોઈ નહીં
હાઇ	>20kHz	ફ્રીક્વન્સી સાથે ગેઇન ઘટે છે	ટ્રાન્ઝિસ્ટર કેપેસિટન્સ

બે-સ્ટેજની અસર:

• બેન્ડવિડ્થ: સિંગલ સ્ટેજ કરતાં સાંકડી

• **ગેઇન**: સિંગલ સ્ટેજના લગભગ વર્ગ જેટલો (A₁ × A₂)

• ફ્રેઝ શિફ્ટ: લો અને હાઇ ફ્રીક્વન્સી પર બમણી

যাદবাহয: "LMH" - Low frequencies by coupling caps, Mid frequencies flat, High frequencies by transistor caps.

પ્રશ્ન 2(અ) OR [3 ગુણ]

એમ્પ્લીફાયરની બેન્ડવિડ્થ અને ગેઇન-બેન્ડવિડ્થ ઉત્પાદનને સંક્ષિપ્તમાં સમજાવો.

જવાબ:

બેન્ડવિડ્થ (BW): ફ્રીક્વન્સીઓની રેન્જ જ્યાં એમ્પ્લીફાયર ગેઇન મહત્તમ ગેઇનના ઓછામાં ઓછા 70.7% છે ગેઇન-બેન્ડવિડ્થ પ્રોડક્ટ (GBP): વોલ્ટેજ ગેઇન અને બેન્ડવિડ્થનો ગુણાકાર, આપેલા એમ્પલીફાયર માટે સ્થિર આકૃતિ:

મુખ્ય સૂત્રો:

• બેન્ડવિડ્થ: BW = f₂ - f₁

• **ગેઇન-બેન્ડવિડ્થ પ્રોડક્ર્ટ**: GBP = A₀ × BW (સ્થિર)

ચાદવાક્ય: "BAND" - Bandwidth And gain Never Drop together (એક વધે ત્યારે બીજો ઘટે).

પ્રશ્ન 2(બ) OR [4 ગુણ]

એમ્પલીફાયરના ફ્રીક્વન્સી રિસ્પોન્સ પર એમિટર બાયપાસ કેપેસિટર અને કપલિંગ કેપેસિટરની અસરો સમજાવો.

જવાબ:

ફ્રીક્વન્સી રિસ્પોન્સ પર અસરો:

કોષ્ટક: કેપેસિટર અસરો

કેપેસિટર	รเช้	ફ્રીક્વન્સી રિસ્પોન્સ પર અસર
કપલિંગ કેપેસિટર (Cc)	DC બ્લોક કરે, AC પસાર કરે	લો-ફ્રીક્વન્સી રિસ્પોન્સ મર્યાદિત કરે
બાયપાસ કેપેસિટર (Ce)	એમિટર રેઝિસ્ટરને બાયપાસ કરે	મિડ અને હાઇ ફ્રીક્વન્સી પર ગેઇન વધારે

આકૃતિ:

મુખ્ય અસરો:

- **Ce વગર**: ઓછો ગેઇન, વધુ સારી સ્થિરતા, વધુ સારો લો-ફ્રીક્વન્સી રિસ્પોન્સ
- **Cc વગર**: DC કપલિંગ, ઉત્તમ લો-ફ્રીક્વન્સી રિસ્પોન્સ
- **કેપેસિટર મૂલ્યો**: કટઓફ ફ્રીક્વન્સીઓ (f₁, f₂) નક્કી કરે છે

याहवाड्य: "CELL" - Coupling affects Extremely Low frequencies, bypass affects Low to high.

પ્રશ્ન 2(ક) OR [7 ગુણ]

ટ્રાન્સફોર્મર કપલ્ડ એમ્પલીફાયર અને આરસી કપલ્ડ એમ્પલીફાયરની સરખામણી કરો

જવાબ:

કોષ્ટક: ટ્રાન્સફોર્મર કપલ્ડ vs RC કપલ્ડ એમ્પલીફાયરની સરખામણી

લક્ષણ	ટ્રાન્સફોર્મર કપલ્ડ	RC sues
ร นใต่๋วเ ย ट ร	ટ્રાન્સફોર્મર	કેપેસિટર અને રેઝિસ્ટર
કાર્યક્ષમતા	ઊંચી (90%)	મધ્યમ (20-30%)
કદ અને વજન	મોટું અને ભારે	કોમ્પેક્ટ અને હલકું
ખર્ચ	મોંઘું	સસ્તું
ફ્રીકવન્સી રિસ્પોન્સ	ખરાબ (મર્યાદિત બેન્ડવિડ્થ)	સારો (વિશાળ બેન્ડવિડ્થ)
ઇમ્પીડન્સ મેચિંગ	 ਰਿਜ਼ਮ	ખરાબ
DC આઇસોલેશન	સંપૂર્ણ	માત્ર AC સિગ્નલ્સ
ડિસ્ટોર્શન	ઊંચું	નીચું

આકૃતિ:

એપ્લિકેશન્સ:

- RC કપલ્ડ: ઓડિયો એમ્પલીફાયર્સ, જનરલ-પર્પઝ એમ્પલીફાયર્સ
- ટ્રાન્સફોર્મર કપલ્ક: પાવર એમ્પલીફાયર્સ, રેડિયો ટ્રાન્સમિટર્સ

યાદવાક્ય: "TRIP" - Transformers are Robust for Impedance matching, Problematic for bandwidth.

પ્રશ્ન 3(અ) [3 ગુણ]

ટ્યુન કરેલ એમ્પલીફાયર તરીકે ઉપયોગમાં લેવાતા ટ્રાન્ઝિસ્ટરનું વર્ણન કરો.

જવાબ:

ટ્યુન્ડ એમ્પલીફાયર: એમ્પલીફાયર જે સાંકડા ફ્રીક્વન્સી બેન્ડમાં સિગ્નલ્સને પસંદગીપૂર્વંક એમ્પલિફાય કરે છે આકૃતિ:

મુખ્ય ઘટકો:

• LC ટેંક સર્કિટ: રેઝોનન્ટ ફ્રીક્વન્સી નક્કી કરે છે

• ટ્રાન્ઝિસ્ટર: એમ્પલીફિકેશન પૂરું પાડે છે

• રેઝોનન્ટ ફ્રીક્વન્સી: f₀ = 1/(2π√LC)

એપ્લિકેશન્સ:

• રેડિયો રિસીવર્સ: ઇચ્છિત ફ્રીક્વન્સી પસંદ કરે છે

• TV ટ્યુનર્સ: યેનલ પસંદગી

• **RF એમ્પલીફાયર્સ**: કમ્યુનિકેશન સિસ્ટમ્સ

याह्याझ्य: "TUNE" - Transistors Using Narrowband Elements for frequency selection.

પ્રશ્ન 3(બ) [4 ગુણ]

ડાયરેક્ટ કપલ્ડ એમ્પલીફાયરને સંક્ષિપ્તમાં સમજાવો.

જવાબ:

ડાયરેક્ટ કપલ્ડ એમ્પલીફાયર: મલ્ટિપલ સ્ટેજ એમ્પલીફાયર જ્યાં કપલિંગ કેપેસિટર્સ અથવા ટ્રાન્સફોર્મર્સ વગર સ્ટેજ સીધા જોડાયેલા છે આકૃતિ:

મુખ્ય લક્ષણો:

- DC એમ્પલીફિકેશન: DC થી ઊંચી ફ્રીક્વન્સી સુધી એમ્પલિફાય કરી શકે છે
- **કોઈ કપલિંગ ઘટકો નહીં**: કલેક્ટર આગલા બેઝ સાથે સીધો જોડાયેલો
- લેવલ શિફ્ટિંગ: સ્ટેજ વચ્ચે જરૂરી છે
- **થર્મલ ડ્રિફ્ટ**: સીધા DC કપલિંગને કારણે પડકાર

એપ્લિકેશન્સ:

• ઓપરેશનલ એમ્પલીફાયર્સ: આંતરિક સ્ટેજ

• DC એમ્પલીફાયર્સ: લેબોરેટરી ઇન્સ્ટ્રુમેન્ટ્સ

• સેન્સિંગ સર્કિટ્સ: તાપમાન અને દબાણ સેન્સર્સ

याह्याझ्य: "DCAP" - Direct Coupled Amplifier Passes all frequencies including DC.

પ્રશ્ન 3(ક) [7 ગુણ]

બે પોર્ટ નેટવર્કમાં h પરિમાણોનું મહત્વ વર્ણવો. CE એમ્પલીફાયર માટે h-પેરામીટર્સ સર્કિટ દોરો.

જવાબ:

h-પેરામીટર્સ (હાઇબ્રિડ પેરામીટર્સ): ચાર પેરામીટર્સનો સેટ જે બે-પોર્ટ નેટવર્કનું વર્તન વ્યાખ્યાયિત કરે છે

મહત્વ:

• સંપૂર્ણ ચરિત્રીકરણ: એમ્પલીફાયર વર્તનને સંપૂર્ણ રીતે વર્ણવે છે

• સરળ માપન: સરળ સ્થિતિઓ હેઠળ માપી શકાય છે

• વિશ્લેષણ ટૂલ: સર્કિટ વિશ્લેષણને સરળ બનાવે છે

• **માનકીકૃત અભિગમ**: ટ્રાન્ઝિસ્ટર્સની તુલના માટે સાર્વત્રિક પદ્ધતિ

h-પેરામીટર સમીકરણો:

• $V_1 = h_{11}I_1 + h_{12}V_2$

• $I_2 = h_{21}I_1 + h_{22}V_2$

CE એમ્પલીફાયર માટે h-પેરામીટર સર્કિટ:

કોષ્ટક: CE કોન્ફિગરેશન માટે h-પેરામીટર્સ

પેરામીટર	સિમ્બોલ	સામાન્ય મૂલ્ય	લોંતિક અર્થ
ઇનપુટ ઇમ્પીડન્સ	h ₁₁ (hie)	1-2 kΩ	આઉટપુટ શોર્ટ સાથે ઇનપુટ રેઝિસ્ટન્સ
રિવર્સ વોલ્ટેજ ટ્રાન્સફર	h ₁₂ (hre)	1-4 × 10 ⁻⁴	રિવર્સ ફીડબેક રેશિયો
ફોરવર્ડ કરંટ ટ્રાન્સફર	h ₂₁ (hfe)	20-500	કરંટ ગેઇન (β)
આઉટપુટ એડમિટન્સ	h ₂₂ (hoe)	20-50 μS	આઉટપુટ કન્ડક્ટન્સ

याह्याझ्य: "HIRE" - h-parameters Include Resistance and current gain Effectively.

પ્રશ્ન 3(અ) OR [3 ગુણ]

ટ્રાન્સફોર્મર કપલ્ડ એમ્પલીફાયર અને ડાયરેક્ટ કપલ્ડ એમ્પલીફાયરની સરખામણી કરો.

જવાબ:

કોષ્ટક: ટ્રાન્સફોર્મર અને ડાયરેક્ટ કપલ્ડ એમ્પલીફાયર વચ્ચે સરખામણી

લક્ષણ	ટ્રાન્સફોર્મર કપલ્ડ	ડાયરેક્ટ કપલ્ડ
ร น(ดี่วเ ย 2 ร	ટ્રાન્સફોર્મર	કોઈ નહીં (સીધું કનેક્શન)
ફ્રીક્વન્સી રિસ્પોન્સ	લો ફ્રીક્વન્સી પર મર્યાદિત	ઉત્તમ (DC થી ઊંચી ફ્રીક્વન્સી)
DC આઇસોલેશન	સંપૂર્ણ	કોઈ નહીં
88	મોટું	કોમ્પેક્ટ
ખર્ચ	ઊંચો	निम्न
DC શિફ્ટ સમસ્યા	ના	ঙা

આકૃતિ:

યાદવાક્ય: "TDC" - Transformers provide DC isolation, Direct provides Complete frequency range.

પ્રશ્ન 3(બ) OR [4 ગુણ]

કોમન એમિટર એમ્પલીફાયરનું સર્કિટ ડાયાગ્રામ દોરો અને સમજાવો.

જવાબ:

કોમન એમિટર એમ્પલીફાયર: એવી કોન્ફિગરેશન જ્યાં એમિટર ઇનપુટ અને આઉટપુટ બંને સર્કિટ્સ માટે કોમન છે સર્કિટ ડાયાગ્રામ:

કાર્યપ્રણાલી:

• ઇનપુટ: બેઝ અને એમિટર વચ્ચે લાગુ કરવામાં આવે છે

• આઉટપુટ: કલેક્ટર અને એમિટરથી લેવામાં આવે છે

• ફેઝ શિફ્ટ: ઇનપુટ અને આઉટપુટ વચ્ચે 180°

• ગેઇન: ઊંચો વોલ્ટેજ અને કરંટ ગેઇન

મુખ્ય લક્ષણો:

• **ઊંચો ગેઇન**: સામાન્ય વોલ્ટેજ ગેઇન 300-1000

• **મધ્યમ ઇનપુટ ઇમ્પીડન્સ**: 1-2 kΩ

• **ઊંચો આઉટપુટ ઇમ્પીડન્સ**: 40-50 kΩ

• **સિગ્નલ ઇન્વર્ઝન**: આઉટપુટ ઇન્વર્ટેડ છે

યાદવાક્ય: "CEA" - Common Emitter Amplifies with signal inversion.

પ્રશ્ન 3(ક) OR [7 ગુણ]

ટ્રાન્ઝિસ્ટર ટુ પોર્ટ નેટવર્ક દોરો અને તેના માટે h-પેરામીટર્સનું વર્ણન કરો. હાઇબ્રિડ પરિમાણોના ફાયદા લખો.

જવાબ:

ટ્રાન્ઝિસ્ટર ટુ-પોર્ટ નેટવર્ક:

h-પેરામીટર સમીકરણો:

• $V_1 = h_{11}I_1 + h_{12}V_2$

• $I_2 = h_{21}I_1 + h_{22}V_2$

કોષ્ટક: h-પેરામીટર્સ વર્ણન

પેરામીટર	સિમ્બોલ	વર્ણન	માપન સ્થિતિ
ઇનપુટ ઇમ્પીડન્સ	h ₁₁	V ₁ /I ₁ નો ગુણોત્તર	V ₂ = 0 (આઉટપુટ શોર્ટ)
રિવર્સ વોલ્ટેજ ટ્રાન્સફર	h ₁₂	V ₁ /V ₂ નો ગુણોત્તર	I ₁ = 0 (ઇનપુટ ઓપન)
ફોરવર્ડ કરંટ ટ્રાન્સફર	h ₂₁	l ₂ /l ₁ નો ગુણોત્તર	V ₂ = 0 (આઉટપુટ શોર્ટ)
આઉટપુટ એડમિટન્સ	h ₂₂	I ₂ /V ₂ નો ગુણોત્તર	I ₁ = 0 (ઇનપુટ ઓપન)

હાઇબ્રિડ પેરામીટર્સના ફાયદા:

• સરળ માપન: દરેક પેરામીટર માટે સરળ શરતો

• સાર્વત્રિકતા: બધા ટ્રાન્ઝિસ્ટર કોન્ફિગરેશન માટે કામ કરે છે

• **સંપૂર્ણ ચરિત્રીકરણ**: વર્તનનું સંપૂર્ણ વર્ણન કરે છે

• ગાણિતિક સરળતા: લીનિયર સમીકરણો

• માનકીકૃત: સ્પેસિફિકેશન માટે ઉદ્યોગ માનક

યાદવાક્ચ: "HAEM" - Hybrid parameters Are Easily Measured and mathematically simple.

પ્રશ્ન 4(અ) [3 ગુણ]

ડાર્લિંગ્ટન જોડી અને તેની એપ્લિકેશનો સમજાવો.

જવાબ:

ડાર્લિંગ્ટન પેર: બે ટ્રાન્ઝિસ્ટર્સની કોન્ફિગરેશન જ્યાં પહેલાનો એમિટર બીજાના બેઝ સાથે જોડાયેલો છે આકૃતિ:

GND GND

મુખ્ય લક્ષણો:

• **ખૂબ ઊંચો કરંટ ગેઇન**: β₁ × β₂ (સામાન્ય 1000-30000)

• **ઊંચો ઇનપુટ ઇમ્પીડન્સ**: β₂ × Rin₁

• નિમ્ન આઉટપુટ ઇમ્પીડન્સ: સિંગલ ટ્રાન્ઝિસ્ટર જેવું

એપ્લિકેશન્સ:

• પાવર એમ્પલીફાયર્સ: ઓડિયો ઇક્વિપમેન્ટ

• બફર સર્કિટ્સ: ઊંચા ઇમ્પીડન્સથી નિમ્ન ઇમ્પીડન્સ

• મોટર ડ્રાઇવર્સ: ઊંચા-કરંટ લોડ્સ કંટ્રોલ

• ટચ સેન્સર્સ: ઊંચી સંવેદનશીલતા એપ્લિકેશન્સ

याहवाड्य: "DISH" - Darlington Integrates Stages for High current gain.

પ્રશ્ન 4(બ) [4 ગુણ]

જરૂરી ડાયાગ્રામ સાથે ડાયોડ ક્લેમ્પર સર્કિટનું વર્ણન કરો.

જવાબ:

ક્લેમ્પર સર્કિટ: વેવફોર્મના આકારને બદલ્યા વગર તેના DC લેવલને શિફ્ટ કરે છે

આકૃતિ:

કાર્યપ્રણાલી:

• પોઝિટિવ ક્લેમ્પર: વેવફોર્મને નીચે શિફ્ટ કરે છે

• નેગેટિવ ક્લેમ્પર: વેવફોર્મને ઉપર શિફ્ટ કરે છે

• કેપેસિટર: DC બ્લોક કરે, AC પસાર કરે

• ડાયોડ: એક હાફ-સાયકલ દરમિયાન કન્ડક્ટ કરે છે

• રેઝિસ્ટર: કેપેસિટર માટે ડિસ્ચાર્જ પાથ

ટાઇમ કોન્સ્ટન્ટ્સ:

• **યાર્જિંગ**: ખૂબ નાનું (ડાયોડ ફોરવર્ડ રેઝિસ્ટન્સ × C)

• **ડિસ્ચાર્જિંગ**: સિગ્નલ પીરિયડની સરખામણીમાં મોટું (R × C)

એપ્લિકેશન્સ:

• TV સિગ્નલ પ્રોસેસિંગ: DC ઘટક પુનઃસ્થાપિત કરે છે

• પલ્સ સર્કિટ્સ: લેવલ શિફ્ટિંગ

• **સિગ્નલ પ્રોસેસિંગ**: DC પુનઃસ્થાપના

याहवाझ्य: "CLAMP" - Circuit Levels Are Modified Precisely.

પ્રશ્ન 4(ક) [7 ગુણ]

OLED નાં બાંધકામ, કાર્ય અને એપ્લિકેશન સમજાવો.

જવાબ:

OLED (ઓર્ગેનિક લાઇટ એમિટિંગ ડાયોડ): ઓર્ગેનિક કંપાઉન્ડ્સનો ઉપયોગ કરતું પ્રકાશ-ઉત્સર્જક ઉપકરણ

બાંધકામ:

કાર્ય સિદ્ધાંત:

• ઇલેક્ટ્રોન ઇન્જેક્શન: કેથોડ ઇલેક્ટ્રોન્સ ઇન્જેક્ટ કરે છે

• હોલ ઇન્જેક્શન: એનોડ હોલ્સ ઇન્જેક્ટ કરે છે

• રીકોમ્બિનેશન: ઇલેક્ટોન્સ અને હોલ્સ એમિસિવ લેયરમાં જોડાય છે

• પ્રકાશ ઉત્સર્જન: ઊર્જા ફોટોન્સ તરીકે મુક્ત થાય છે

• રંગ નિયંત્રણ: વિભિન્ન ઓર્ગેનિક સામગ્રી વિભિન્ન રંગો ઉત્સર્જિત કરે છે

કોષ્ટક: OLED પ્રકારો

SISK	માળખું	મુખ્ય લક્ષણ
PMOLED	પેસિવ મેટ્રિક્સ	સરળ ડિઝાઇન, ઓછી કિંમત
AMOLED	એક્ટિવ મેટ્રિક્સ	વધુ સારા રિફ્રેશ રેટ્સ, ઊંચી રેઝોલ્યુશન
TOLED	ટ્રાન્સપેરન્ટ	બંધ અથવા ચાલુ હોય ત્યારે પારદર્શક
FOLED	ફલેક્સિબલ	વાળી શકાય કે રોલ કરી શકાય

એપ્લિકેશન્સ:

• ડિસ્પ્લે: સ્માર્ટફોન્સ, ટીવી, સ્માર્ટવોચ

• લાઇટિંગ: પાતળા, કાર્યક્ષમ લાઇટિંગ પેનલ્સ

• સાઇનેજ: ઊંચા-કોન્ટ્રાસ્ટ ડિજિટલ સાઇન્સ

• વેરેબલ ટેક્નોલોજી: ફ્લેક્સિબલ ડિસ્પ્લે

યાદવાક્ય: "OLED" - Organic Layers Emit Directly when electrically stimulated.

પ્રશ્ન 4(અ) OR [3 ગુણ]

LDR પર ટૂંકી નોંધ સમજાવો.

જવાબ:

LDR (લાઇટ ડિપેન્ડન્ટ રેઝિસ્ટર): ફોટોરેઝિસ્ટર જેનો રેઝિસ્ટન્સ વધતી પ્રકાશ તીવ્રતા સાથે ઘટે છે

સિમ્બોલ અને માળખું:

મુખ્ય લક્ષણો:

• **સામગ્રી**: સામાન્ય રીતે કેડમિયમ સલ્ફાઇડ (CdS)

• અંધકાર રેઝિસ્ટન્સ: ઊંચો (MΩ રેન્જ)

• પ્રકાશ રેઝિસ્ટન્સ: નિમ્ન (kΩ રેન્જ)

• રિસ્પોન્સ ટાઇમ: મિલિસેકન્ડથી સેકન્ડ્સ

એપ્લિકેશન્સ:

• લાઇટ સેન્સર્સ: ઓટોમેટિક લાઇટિંગ કંટ્રોલ

• કેમેરા એક્સપોઝર કંટ્રોલ: લાઇટ મીટરિંગ

• **સ્ટ્રીટ લાઇટ કંટ્રોલ**: સૂર્યોદય-થી-સૂર્યાસ્ત સિક્રયતા

• અલાર્મ સિસ્ટમ્સ: લાઇટ બીમ ડિટેક્શન

યાદવાક્ય: "LORD" - Light Oppositely Reduces the Device's resistance.

પ્રશ્ન 4(બ) OR [4 ગુણ]

જરૂરી ડાયાગ્રામ સાથે ડાયોડ ક્લિપર સર્કિટનું વર્ણન કરો.

જવાબ:

ક્લિપર સર્કિટ: ઇનપુટ સિગ્નલનો એવો ભાગ દૂર કરે છે (ક્લિપ) જે ચોક્કસ વોલ્ટેજ લેવલથી વધી જાય આકૃતિ (પોઝિટિવ ક્લિપર):

ક્લિપર્સના પ્રકારો:

• પોઝિટિવ ક્લિપર: પોઝિટિવ પીક્સ દૂર કરે છે

• નેગેટિવ ક્લિપર: નેગેટિવ પીક્સ દૂર કરે છે

• બાયસ્ડ ક્લિપર: નોન-ઝીરો રેફરન્સ પર ક્લિપ કરે છે

• કોમ્બિનેશન ક્લિપર: બંને પીક્સ ક્લિપ કરે છે

કાર્યપ્રણાલી:

• **ડાયોડ ON**: જ્યારે સિગ્નલ રેફરન્સ વોલ્ટેજથી વધે છે

• **ડાયોડ OFF**: જ્યારે સિગ્નલ રેફરન્સ વોલ્ટેજથી નીચે છે

• ક્લિપિંગ લેવલ: રેફરન્સ વોલ્ટેજ દ્વારા નિર્ધારિત

એપ્લિકેશન્સ:

• વેવ શેપિંગ: સ્કવેર વેવ્સ બનાવવા

• સર્કિટ પ્રોટેક્શન: વોલ્ટેજ લિમિટિંગ

• નોઇઝ રિમૂવલ: ઇમ્પલ્સ નોઇઝ મર્યાદિત કરવું

याह्याझ्य: "CLIP" - Circuit Limits Input Peaks using diodes.

પ્રશ્ન 4(ક) OR [7 ગુણ]

હાફ વેવ અને ફુલ વેવ વોલ્ટેજ ડબલર સમજાવો.

જવાબ:

વોલ્ટેજ ડબલર: સર્કિટ જે DC આઉટપુટ વોલ્ટેજ આશરે ઇનપુટ વોલ્ટેજના પીક કરતાં બમણું ઉત્પન્ન કરે છે હાફ-વેવ વોલ્ટેજ ડબલર:

ફુલ-વેવ વોલ્ટેજ ડબલર:

કોષ્ટક: સરખામણી

લક્ષણ	હાફ-વેવ	ફુલ-વેવ
રિપલ	ઊંચો	निम्न
કાર્યક્ષમતા	निम्न	ઊંચી
રિસ્પોન્સ ટાઇમ	ધીમો	ઝડપી
ઘટકો	2 ડાયોડ, 2 કેપેસિટર્સ	2 ડાયોડ, 2 કેપેસિટર્સ
રેગ્યુલેશન	ખરાબ	વધુ સારું

કાર્યપ્રણાલી:

- હાફ-વેવ: દરેક કેપેસિટરને વૈકલ્પિક હાફ-સાયકલ પર ચાર્જ કરે છે
- **કુલ-વેવ**: દરેક સાયકલ પર બંને કેપેસિટર્સ ચાર્જ કરે છે

• આઉટપુટ: બંને કેપેસિટર્સ પરના વોલ્ટેજનો સરવાળો

એપ્લિકેશન્સ:

• પાવર સપ્લાય: ઓછા-કરંટ ઊંચા-વોલ્ટેજ જરૂરિયાતો

• કેસ્કેડ કનેક્શન: વોલ્ટેજ મલ્ટિપ્લિકેશન માટે

• ઇલેક્ટ્રોનિક ફ્લેશ: કેમેરા ઇક્વિપમેન્ટ

• CRT ડિસ્પ્લે: ઊંચા વોલ્ટેજ જનરેશન

याहपाइय: "DOUBLE" - Diodes Organize Unidirectional Boost, Lifting Electricity to twice input.

પ્રશ્ન 5(અ) [3 ગુણ]

IC નો ઉપયોગ કરીને +5 v પાવર સપ્લાય માટે સર્કિટ ડાયાગ્રામ દોરો.

જવાબ:

7805 વોલ્ટેજ રેગ્યુલેટર IC વાપરીને +5V પાવર સપ્લાય:

મુખ્ય ઘટકો:

• 7805 IC: થ્રી-ટર્મિનલ ફિક્સ્ડ વોલ્ટેજ રેગ્યુલેટર

• ઇનપુટ કેપેસિટર (C1): ઇનપુટ રિપલ ફિલ્ટર કરે છે

• **આઉટપુટ કેપેસિટર (C2)**: ટ્રાન્ઝિયન્ટ રિસ્પોન્સ સુધારે છે

• બ્રિજ રેક્ટિકાયર: AC ને પલ્સેટિંગ DC માં રૂપાંતર કરે છે

याहवाझ्य: "FIVE" - Fixed IC Voltage Efficiently provided.

પ્રશ્ન 5(બ) [4 ગુણ]

પાવર સપ્લાયના સંદર્ભમાં લોડ રેગ્યુલેશન અને લાઇન રેગ્યુલેશનની ચર્ચા કરો.

જવાબ:

લોડ રેગ્યુલેશન: લોડ કરંટ ફેરફારો હોવા છતાં પાવર સપ્લાયની સ્થિર આઉટપુટ વોલ્ટેજ જાળવવાની ક્ષમતા લાઇન રેગ્યુલેશન: ઇનપુટ વોલ્ટેજ ફેરફારો હોવા છતાં પાવર સપ્લાયની સ્થિર આઉટપુટ વોલ્ટેજ જાળવવાની ક્ષમતા આકૃતિ:

સૂત્રો:

- લોડ રેગ્યુલેશન: (V₁ V₂)/V₂ × 100%
 - o V₁ = નો-લોડ વોલ્ટેજ
 - o V₂ = કુલ-લોડ વોલ્ટેજ
- લાઇન રેગ્યુલેશન: (V₁ V₂)/V₂ × 100%
 - ο V₁ = મહત્તમ ઇનપુટ પર આઉટપુટ વોલ્ટેજ
 - ∘ V₂ = લઘુત્તમ ઇનપુટ પર આઉટપુટ વોલ્ટેજ

મુખ્ય મુદ્દાઓ:

- નિમ્ન ટકાવારી: વધુ સારી રેગ્યુલેશન
- ફીડબેક સર્કિટ: રેગ્યુલેશન પરફોર્મન્સ સુધારે છે
- **IC રેગ્યુલેટર્સ**: સામાન્ય રીતે સારી રેગ્યુલેશન ઓફર કરે છે (0.01-0.1%)

यादपाइय: "LINE LOAD" - Line Is Normal-input Efficiency, LOAD is Output Adjustment Defense.

પ્રશ્ન 5(ક) [7 ગુણ]

સર્કિટ ડાયાગ્રામ સાથે LM317 નો ઉપયોગ કરીને એડજસ્ટેબલ વોલ્ટેજ રેગ્યુલેટર સમજાવો.

જવાબ:

LM317 એડજસ્ટેબલ વોલ્ટેજ રેગ્યુલેટર: થ્રી-ટર્મિનલ ડિવાઇસ જે ચલ રેગ્યુલેટેડ આઉટપુટ વોલ્ટેજ પ્રદાન કરે છે સર્કિટ ડાયાગ્રામ:

કાર્યપ્રણાલી:

• **રેફરન્સ વોલ્ટેજ**: OUT અને ADJ ટર્મિનલ્સ વચ્ચે 1.25V

• આઉટપુટ વોલ્ટેજ: VOUT = 1.25V × (1 + R2/R1)

• **એડજસ્ટમેન્ટ રેન્જ**: 1.25V થી 37V

• મહત્તમ કરંટ: 1.5A (યોગ્ય હીટ સિંક સાથે)

ઘટક પસંદગી:

• **R1**: સામાન્ય રીતે 240Ω

• R2: આઉટપુટ એડજસ્ટ કરવા માટે વેરિયેબલ રેઝિસ્ટર

• C1: સ્થિરતા માટે આઉટપુટ કેપેસિટર (1-10µF)

મુખ્ય લક્ષણો:

• કરંટ લિમિટિંગ: બિલ્ટ-ઇન પ્રોટેક્શન

• થર્મલ શટડાઉન: અતિશય ગરમી સામે રક્ષણ

• સેફ એરિયા પ્રોટેક્શન: આઉટપુટ ટ્રાન્ઝિસ્ટર્સ માટે

• **રિપલ રિજેક્શન**: સામાન્ય રીતે 80dB

याह्याझ्य: "VARY" - Voltage Adjustable Regulator Yields custom outputs.

પ્રશ્ન 5(અ) OR [3 ગુણ]

IC નો ઉપયોગ કરીને -15 v પાવર સપ્લાય માટે સર્કિટ ડાયાગ્રામ દોરો.

જવાબ:

7915 વોલ્ટેજ રેગ્યુલેટર IC વાપરીને -15V પાવર સપ્લાય:

```
AC Input Bridge 7915
+--+ Rect. +----+
| +-----+ | |
+-----+ IN |
| | | | -15V
| +-----+ | +---+ Output
```


મુખ્ય ઘટકો:

• **7915 IC**: થ્રી-ટર્મિનલ નેગેટિવ વોલ્ટેજ રેગ્યુલેટર

• ઇનપુટ કેપેસિટર (C1): ઇનપુટ રિપલ ફિલ્ટર કરે છે

• **આઉટપુટ કેપેસિટર (C2)**: ટ્રાન્ઝિયન્ટ રિસ્પોન્સ સુધારે છે

• **બ્રિજ રેક્ટિફાયર**: AC ને પલ્સેટિંગ DC માં રૂપાંતર કરે છે

યાદવાક્ય: "NINE" - Negative IC Needs Efficient filtering.

પ્રશ્ન 5(બ) OR [4 ગુણ]

યુપીએસની કામગીરી સમજાવો.

જવાબ:

UPS (અનઇન્ટરપ્ટિબલ પાવર સપ્લાય): ડિવાઇસ જે મુખ્ય પાવર ફેઇલ થાય ત્યારે ઇમરજન્સી પાવર પ્રદાન કરે છે

બ્લોક ડાયાગ્રામ:

UPS ના પ્રકારો:

- **ઓફલાઇન/સ્ટેન્ડબાય UPS**: પાવર ફેઇલ થાય ત્યારે બેટરી પર સ્વિચ કરે છે
- **લાઇન-ઇન્ટરએક્ટિવ UPS**: વોલ્ટેજ રેગ્યુલેશન ધરાવે છે
- ઓનલાઇન/ડબલ-કન્વર્ઝન UPS: હંમેશા બેટરી પાવર વાપરે છે

મુખ્ય ઘટકો:

• **રેક્ટિફાયર**: AC ને DC માં રૂપાંતર કરે છે

• બેટરી: ઊર્જા સંગ્રહ કરે છે

• **ઇન્વર્ટર**: DC ને પાછું AC માં રૂપાંતર કરે છે

• કંટ્રોલ સર્કિટ: પાવર મોનિટર કરે છે અને સ્ત્રોત સ્વિચ કરે છે

એપ્લિકેશન્સ:

• કમ્પ્યુટર્સ: ડેટા નુકસાન અટકાવે છે

• મેડિકલ ઇક્વિપમેન્ટ: ક્રિટિકલ ઓપરેશન્સ

• ઇન્ડસ્ટ્રિયલ કંટ્રોલ્સ: ખર્ચાળ અવરોધ અટકાવે છે

• ટેલિકોમ્યુનિકેશન્સ: કનેક્શન્સ જાળવે છે

याहपाइय: "UPBEAT" - Uninterruptible Power Backup Ensures Available Technology.

પ્રશ્ન 5(ક) OR [7 ગુણ]

SMPS બ્લોક ડાયાગ્રામ તેના ફાયદા અને ગેરફાયદા સાથે દોરો અને સમજાવો.

જવાબ:

SMPS (સ્વિચ મોડ પાવર સપ્લાય): કાર્યક્ષમતા માટે સ્વિચિંગ રેગ્યુલેશનનો ઉપયોગ કરતો પાવર સપ્લાય

બ્લોક ડાયાગ્રામ:

કાર્યપ્રણાલી:

• EMI ફિલ્ટર: ઇલેક્ટ્રોમેગ્નેટિક ઇન્ટરફેરન્સ ઘટાડે છે

• **રેક્ટિફાયર**: AC ને અનરેગ્યુલેટેડ DC માં રૂપાંતર કરે છે

• સ્વિ**ચિંગ સર્કિટ**: DC ને ઊંચી ફ્રીક્વન્સી પર યોપ કરે છે (20-100 kHz)

• ટ્રાન્સફોર્મર: આઇસોલેશન અને વોલ્ટેજ રૂપાંતર પ્રદાન કરે છે

• **આઉટપુટ સ્ટેજ**: ક્લીન DC માટે રેક્ટિફાય અને ફિલ્ટર કરે છે

• ફીડબેક લૂપ: રેગ્યુલેશન માટે સ્વિચિંગ નિયંત્રિત કરે છે

કાયદા:

• **ઊંચી કાર્યક્ષમતા**: 70-90% (vs. 30-60% લિનિયર સપ્લાય)

• નાનું કદ: ઊંચી ઓપરેટિંગ ફ્રીક્વન્સીને કારણે નાના ઘટકો

• હલકું વજન: નાના ટ્રાન્સફોર્મર અને હીટ સિંક્સ

• વિશાળ ઇનપુટ રેન્જ: વિવિધ ઇનપુટ વોલ્ટેજ પર કામ કરી શકે છે

• ઓછી ગરમી ઉત્પાદન: ઓછી ઊર્જા ગરમી તરીકે બરબાદ થાય છે

ગેરફાયદા:

• જટિલ ડિઝાઇન: વધુ સુધારેલ સર્કિટરી

• EMI જનરેશન: સ્વિચિંગ ઇન્ટરફેરન્સ પેદા કરે છે

• ઊંચી કિંમત: લો-પાવર એપ્લિકેશન્સ માટે

• નોઇઝ: લિનિયર સપ્લાય કરતાં ઊંચો આઉટપુટ નોઇઝ

• ધીમો રિસ્પોન્સ: અચાનક લોડ ફેરફારો સામે

એપ્લિકેશન્સ:

- કમ્પ્યુટર્સ: ડેસ્કટોપ અને લેપટોપ પાવર સપ્લાય
- ટીવી અને મોનિટર્સ: કોમ્પેક્ટ પાવર સ્ત્રોત
- મોબાઇલ ચાર્જર્સ: નાના, કાર્યક્ષમ એડેપ્ટર્સ
- ઇન્ડસ્ટ્રિયલ પાવર: ઊંચી-કાર્યક્ષમતા જરૂરિયાતો

યાદવાક્ચ: "SWITCH" - Smaller Weight, Improved Thermal efficiency, Complex Hardware.