

Licence 1

Mentions : Sciences pour l'Ingénieur – Mathématiques Informatique

ECO 113

MECANIQUE DU POINT

SESSION N° 6: DYNAMIQUE

Dynamique: étude des mouvements, plus exactement des relations entre les causes (forces) et leurs effets (les mouvements).

I. NOTION DE QUANTITE DE MOUVEMENT

Soit M un point matériel de masse m, animé d'une vitesse $\overrightarrow{\mathcal{V}}$.

On appelle **quantité de mouvement,** le vecteur \vec{P} défini par :

$$\vec{p} = m \cdot \vec{v} \tag{1}$$

Norme du vecteur
$$\vec{p}: \|\vec{p}\| = \|m.\vec{v}\| = m.\|\vec{v}\|$$
(kg) (m/s)

Unité de la norme $\|\vec{p}\|$: le kg.m/s (« kilogramme.mètre par seconde »).

II. PRINCIPE FONDAMENTAL DE DYNAMIQUE (P. F. D.)

ENONCE : Il existe un repère absolu [R], muni d'une chronologie t, tel que la résultante (ou somme vectorielle) des forces extérieures agissant sur le point matériel est égale à la dérivée par rapport au temps de la quantité de mouvement.

$$\left| \sum \vec{F}_{\text{ext}} = \left(\frac{d\vec{p}}{dt} \right)_{[R]} \right|$$
 (2)

Or, en Mécanique classique : masse constante.

$$\frac{d\vec{p}}{dt} = \frac{d(m.\vec{v})}{dt} = m.\frac{d(\vec{v})}{dt} = m.\vec{a}_{(M/R)}$$

 $\vec{a}_{(M/R)}$: **vecteur-accélération** du point matériel M par rapport au repère [R].

On en déduit :

$$\boxed{\sum \vec{F}_{\text{ext}} = m \cdot \vec{a}_{(M/R)}} \qquad \text{(2-bis)}.$$

Relation souvent simplifiée sous la forme :

$$\sum \vec{F}_{\rm ext} = m \cdot \vec{a}$$
 (2-ter).

III. NOTION DE MOMENT CINETIQUE

III.1 Moment cinétique d'un point matériel M par rapport à un point O

On appelle moment cinétique du point matériel M par rapport au point O, le vecteur $\vec{\sigma}_O$ (lire « **vecteur sigma** en O ») défini par le produit vectoriel :

$$\vec{\sigma}_O = \overrightarrow{OM} \wedge \vec{p} = \overrightarrow{OM} \wedge \overrightarrow{mv}$$
 (3)

Remarque:

Pour rappel (session *Opérations vectorielles*) $\vec{M}_O(\vec{F}) = \overrightarrow{OM} \wedge \vec{F}$: moment, par rapport au point *O*, du vecteur-force \vec{F} .

Par analogie, $\vec{\sigma}_O = OM \wedge \vec{p}$ est appelé **moment**, par rapport au point O, **du** vecteur-quantité de mouvement \vec{p} .

III.2 Unité de moment cinétique

$$\vec{\sigma}_{O} = \overrightarrow{OM} \wedge \overrightarrow{mv} = m. \overrightarrow{OM} \wedge \overrightarrow{v}$$

$$\|\vec{\sigma}_{O}\| = \|m. \overrightarrow{OM} \wedge \overrightarrow{v}\| = m. \|\overrightarrow{OM} \wedge \overrightarrow{v}\|$$

$$= m. \|\overrightarrow{OM}\|. \|\overrightarrow{v}\|. |\sin \theta|$$

$$(kg) \qquad (m)(m/s) \qquad (\text{sans unité})$$

Conclusion : l'unité de $\|\vec{\sigma}_o\|$ est le $\mathbf{kg.m}^{2}\cdot\mathbf{s}^{-1}$. (« kilogramme.mètre carré par seconde »).

III.3 Théorème de la dérivée du moment cinétique

On dérive l'équation (3):

$$\frac{d\vec{\sigma}_{O}}{dt} = \frac{d}{dt} \left[\overrightarrow{OM} \wedge \overrightarrow{mv} \right].$$

$$= \frac{d}{dt} (\overrightarrow{OM}) \wedge \overrightarrow{mv} + \overrightarrow{OM} \wedge \frac{d}{dt} (\overrightarrow{mv}) \quad (\text{`` dérivée d'un produit : } u'.v + v'.u \text{`` "})$$

$$= \overrightarrow{v} \wedge \overrightarrow{mv} + \overrightarrow{OM} \wedge \frac{d}{dt} (\overrightarrow{mv})$$

$$= m \cdot \overrightarrow{v} \wedge \overrightarrow{v} + \overrightarrow{OM} \wedge m \frac{d}{dt} (\overrightarrow{v})$$

Or,
$$m \vec{a} = \sum \vec{F}_{ext}$$
, alors, on obtient :

$$\frac{d\vec{\sigma}_{O}}{dt} = \overrightarrow{OM} \wedge \sum \vec{F}_{ext} = \overrightarrow{M}_{O}(\vec{F}_{ext})$$
(4)

(moment, par rapport au point O, de la somme des forces extérieures).

ENONCE DU THEOREME DE LA DERIVEE DU MOMENT CINETIQUE :

La dérivée, par rapport au temps, du moment cinétique d'un point matériel M par rapport à un point fixe O est égale au moment, par rapport à ce point fixe, de la résultante des forces extérieures agissant sur le point matériel.

IV. METHODOLOGIE DE RESOLUTION D'UN PROBLEME DE DYNAMIQUE.

- 1°) Isoler (par la pensée) le système qui matérialise le point.
- 2°) Faire le bilan des forces extérieures (forces de contact, forces à distance) qui s'exercent sur le système. Par exemple, « II y a II forces extérieures $\vec{F_1}$, $\vec{F_2}$, $\vec{F_3}$... $\vec{F_n}$ ».
- 3°) Ecrire la relation fondamentale de la Dynamique : $\sum \vec{F}_{\text{ext}} = m \cdot \vec{a}$, soit $\vec{F}_1 + \vec{F}_2 + \vec{F}_3 ... + \vec{F}_n = m \cdot \vec{a}$.
- 4°) **Projeter** cette relation vectorielle dans un système d'axes O_x , O_y , O_z .
- 5°) Résoudre les équations scalaires qui en découlent.

Exemple d'application: Glissement avec frottement d'un point matériel sur un plan incliné.

Une bille de masse m, assimilable à un point matériel $\mathbf{1}$, glisse sur la ligne de plus grande pente d'un plan incliné $\mathbf{0}$ d'angle α (Figure 1). Ce point matériel est abandonné à l'instant initial sans vitesse initiale au point O, origine des axes. On note f le coefficient de frottement du glissement de ce point matériel sur ce plan incliné.

- 1°) Isoler le point matériel 1 et faire le bilan des forces extérieures qui s'y s'exercent.
- 2°) Ecrire la **relation vectorielle** traduisant le principe fondamental de la Dynamique. Projeter cette relation vectorielle sur les axes x (axe du plan incliné) et y (perpendiculaire au plan incliné), puis déterminer la loi horaire x = f(t). Que remarque-t-on dans l'expression de x?

Figure 1

Résolution

1°) Bilan des forces extérieures : le poids \vec{P}_1 et l'action de contact $\vec{R}_{0/1}$ (décomposable en une composante normale $\vec{N}_{0/1}$ et une composante tangentielle $\vec{T}_{0/1}$ qui a tendance à s'opposer au mouvement). Par définition, $\|\vec{T}_{0/1}\| = f \|\vec{N}_{0/1}\|$ (où f est le coefficient de frottement).

2°) Relation vectorielle :
$$\sum \vec{F}_{ext} = \vec{P}_1 + \vec{R}_{0/1} = m\vec{a}$$

$$\vec{P}_1 + \vec{N}_{0/1} + \vec{T}_{0/1} = m\vec{a}$$

$$\vec{P}_1 + \vec{N}_{0/1} + \vec{T}_{0/1} = m\vec{a}$$

$$\vec{P}_1 \begin{vmatrix} mg \sin \alpha \\ -mg \cos \alpha \end{vmatrix} \quad \vec{N}_{0/1} \begin{vmatrix} 0 \\ N_{0/1} \end{vmatrix} \quad \vec{T}_{0/1} \begin{vmatrix} -T_{0/1} \\ 0 \end{vmatrix} \quad \vec{a} \begin{vmatrix} a_x = \ddot{x} \\ 0 \end{vmatrix}$$

$$ec{N}_{0/1} igg| egin{array}{c} 0 \ N_{0/1} \end{array}$$

$$\vec{T}_{0/1} \begin{vmatrix} -T_{0/1} \\ 0 \end{vmatrix}$$

$$\vec{a} \mid a_x = \ddot{x}$$

Projection sur O_x :

$$mg \sin \alpha - T_{0/1} = \ddot{x}$$

$$mg\sin\alpha - f N_{0/1} = \ddot{x}$$

Projection sur O_v :

$$-mg\cos\alpha + N_{0/1} = 0$$

$$\implies N_{0/1} = mg \cos \alpha$$

$$mg\sin\alpha - f N_{0/1} = \ddot{x}$$

$$\Longrightarrow$$

$$mg\sin\alpha - f \ mg\cos\alpha = m \ \ddot{x}$$
.

$$mg (\sin \alpha - f \cos \alpha) = m \ddot{x} \implies mg (\sin \alpha - f \cos \alpha) = m \ddot{x}$$

$$\ddot{x} = g (\sin \alpha - f \cos \alpha).$$

(sous la forme $\ddot{x} = A$, où A est constant car g, f et α sont constants). Pour trouver l'expression de x, on intègre deux fois cette expression et on tient compte des conditions initiales (à l'instant t = 0, x = 0 et v = 0).

$$x = \frac{1}{2}gt^2\left(\sin\alpha - f\cos\alpha\right)$$

On remarque que cette expression ne dépend pas de la masse m (en d'autres termes, la distance x serait la même, que ce soit pour une bille de 10 g ou pour une boule de 5 kg).

MERCI POUR VOTRE ATTENTION!

Thank you for your attention!

Obrigado!

Danke schoen!

• Grazie mille!

Aligato