山东大学<u>计算机科学与技术</u>学院 计算机组成原理 课程实验报告

学号:	姓名:	班级:

实验题目: ROM 实验

实验学时: 2 实验日期: 2023.03.28

实验目的:

- (1) 掌握 FPGA 中 Ipm_ROM 的设置,作为只读存储器 ROM 的工作特性和配置方法;
- (2) 用文本编辑器编辑 mif 文件配置 ROM, 学习以 mif 格式文件加载于 lpm_ROM 中;
- (3) 在初始化存储器编辑窗口编辑 mif 文件配置 ROM;
- (4) 验证 FPGA 中 LPM ROM 的功能。

硬件环境:

- 1. 实验室台式机
- 2. 计算机组成与设计实验箱

软件环境:

Quartus II 13.0

实验内容与设计:

本次实验中主要掌握三方面的内容:

- 1、ROM 的参数设置。
- 2、ROM 中数据的写入,即初始化文件的编写。
- 3、ROM 的实际应用,在实验台上的调试方法。
- 2、实验原理图

电路图:

🖫 a[5]	Input	PIN_83	5	B5_N0	PIN_83	2.5 V (default)	8mA (default)	
🖫 a[4]	Input	PIN_77	5	B5_N0	PIN_77	2.5 V (default)	8mA (default)	
🖫 a[3]	Input	PIN_74	5	B5_N0	PIN_74	2.5 V (default)	8mA (default)	
🖫 a[2]	Input	PIN_70	4	B4_N0	PIN_70	2.5 V (default)	8mA (default)	
🛼 a[1]	Input	PIN_65	4	B4_N0	PIN_65	2.5 V (default)	8mA (default)	
🛼 a[0]	Input	PIN_60	4	B4_N0	PIN_60	2.5 V (default)	8mA (default)	
pin_name2	Input	PIN_84	5	B5_N0	PIN_84	2.5 V (default)	8mA (default)	
🖐 q[23]	Output	PIN_144	8	B8_N0	PIN_144	2.5 V (default)	8mA (default)	2 (default)
🖐 q[22]	Output	PIN_143	8	B8_N0	PIN_143	2.5 V (default)	8mA (default)	2 (default)
95 q[21]	Output	PIN_142	8	B8_N0	PIN_142	2.5 V (default)	8mA (default)	2 (default)
端 q[20]	Output	PIN_141	8	B8_N0	PIN_141	2.5 V (default)	8mA (default)	2 (default)
∰ q[19]	Output	PIN_138	8	B8_N0	PIN_138	2.5 V (default)	8mA (default)	2 (default)
3 q[18]	Output	PIN_137	8	B8_N0	PIN_137	2.5 V (default)	8mA (default)	2 (default)
3 q[17]	Output	PIN_136	8	B8_N0	PIN_136	2.5 V (default)	8mA (default)	2 (default)
<u>"</u> q[16]	Output	PIN_135	8	B8_N0	PIN_135	2.5 V (default)	8mA (default)	2 (default)
🖐 q[15]	Output	PIN_125	7	B7_N0	PIN_125	2.5 V (default)	8mA (default)	2 (default)
<u>"</u> q[14]	Output	PIN_128	8	B8_N0	PIN_128	2.5 V (default)	8mA (default)	2 (default)
🖐 q[13]	Output	PIN_114	7	B7_N0	PIN_114	2.5 V (default)	8mA (default)	2 (default)
a[12]	Output	PIN_120	7	B7_N0	PIN_120	2.5 V (default)	8mA (default)	2 (default)
端 q[11]	Output	PIN_54	4	B4_N0	PIN_54	2.5 V (default)	8mA (default)	2 (default)
a[10]	Output	PIN_59	4	B4_N0	PIN_59	2.5 V (default)	8mA (default)	2 (default)
<u>"</u> q[9]	Output	PIN_50	3	B3_N0	PIN_50	2.5 V (default)	8mA (default)	2 (default)
🖐 q[8]	Output	PIN_51	3	B3_N0	PIN_51	2.5 V (default)	8mA (default)	2 (default)
🖐 q[7]	Output	PIN_80	5	B5_N0	PIN_80	2.5 V (default)	8mA (default)	2 (default)
94 q[6]	Output	PIN_85	5	B5_N0	PIN_85	2.5 V (default)	8mA (default)	2 (default)
95 q[5]	Output	PIN_73	5	B5_N0	PIN_73	2.5 V (default)	8mA (default)	2 (default)
<u>"</u> q[4]	Output	PIN_76	5	B5_N0	PIN_76	2.5 V (default)	8mA (default)	2 (default)
<u>"</u> q[3]	Output	PIN_71	4	B4_N0	PIN_71	2.5 V (default)	8mA (default)	2 (default)
<u>\$\$</u> q[2]	Output	PIN_72	4	B4_N0	PIN_72	2.5 V (default)	8mA (default)	2 (default)
94 q[1]	Output	PIN_68	4	B4_N0	PIN_68	2.5 V (default)	8mA (default)	2 (default)
<u>u</u> q[0]	Output	PIN_69	4	B4_N0	PIN_69	2.5 V (default)	8mA (default)	2 (default)
< <new node="">></new>								

Mif 文件图:

Addr	+0	+1	+2	+3	+4	+6	+6	+7
00	018108	00ED82	000050	00E004	00B005	01A206	959A01	00E00F
08	00ED8A	00ED8C	00A008	008001	062009	062009	070A08	038201
10	001001	00ED83	00ED87	00ED99	00ED9C	31821D	31821F	318221
18	318223	00E01A	00A01B	070A01	00D181	21881E	019801	298820
20	019801	118822	019801	198824	019801	018110	000002	000003
28	000004	000005	000006	000007	800000	000009	00000A	00000B
30	00000C	00000D	00000E	00000F	000010	000011	000012	000013
38	000014	000015	000016	000017	000018	000019	00001A	00001C

3、实验步骤

ROM 元件是只读存储器,可以在 ROM 元件中存储数据,然后用电路访问特定地址取出存储的值。实验方法如下:

- 1. 用 LPM 元件库设计 LPM_ROM, 地址总线宽度 address[]和数据总线宽度 q[]分别为 6 位和 24 位。
- 2. 建立相应的工程文件,设置 lpm_rom 数据参数, lpm_ROM 配置文件的路径(ROM_A. mif),并设置在系统 ROM/RAM 读写允许,以便能对 FPGA 中的 ROM 在系统读写。
- 3. 根据下面的原理图实现逻辑电路

- 4. 锁定输入输出引脚、完成全程编译。
- 5. 下载 SOF 文件至 FPGA, 改变 lpm_ROM 的地址 a[5...0], 外加读脉冲, 通过实验台上的数码管比较读出的数据是否与初始化数据(rom4.mif 中的数据)一致。

4、实验结果

由于地址线有 6 位,我们输入的地址为 010110,由上面的 mif 文件可知,此时对应的值为 31821F。由于引脚问题,我们用数码 2 的值来代替数码 5,所以输出的六位值由高到低为数码 8、数码 7、数码 6、数码 2、数码 4、数码 3,即为 31821F,结果正确。

接下来我们输入地址为 000000, 即 ROM 中第一个数据,上面的 mif 文件可知,此时对应的值为 018108。由于引脚问题,我们用数码 2 的值来代替数码 5,所以输出的六位值由高到低为数码 8、数码 7、数码 6、数码 2、数码 4、数码 3,即为 018108,结果正确。

以下为访问 ROM 的地址单元 110000, 其存储值为 000000, 由于引脚问题, 我们用数码 2 的值来代替数码 5, 所以输出的六位值由高到低为数码 8、数码 7、数码 6、数码 2、数码 4、数码 3, 即为 000000, 结果正确。

结论分析与体会:

这次的实验让我对于 ROM 元件的原理和生成有了一个比较深入的理解。 ROM 元件作为只读的元件,可以设定存储地址和字长后,之后在存储单元内存值,然后再通过访问特定的地址取出存储单元内的值。