Lecture 15

Chapter 6 Matrix Diagonalization

6.4 Eigenvalues and Eigenvectors

6.5 Matrix Diagonalization

6.4 Eigenvalues and Eigenvectors

Problem:

apply a linear operator repeatedly to a given vector, i.e. determine the vector $\mathbf{w} = A^m \mathbf{x_1}, \mathbf{x_1} \in V$,

$$w = A^m x_1 = \underbrace{A \cdot A \cdots A}_{m \text{ times}} x_1, \qquad x_1 \in V.$$

This equation can be calculated as follows

$$y_1 = Ax_1,$$

 $y_2 = Ay_1 = A(Ax_1) = A^2x_1,$
...

$$w = y_m = Ay_{m-1} = A(A^{m-1}x_1) = A^mx_1.$$

If the vector x_1 satisfies $Ax_1 = \lambda_1 x_1$

$$Ax_1 = \lambda_1 x_1$$

where λ_1 is a scalar, the previous process cannot be simpler

$$y_1 = Ax_1 = \lambda_1 x_1,$$

 $y_2 = Ay_1 = A(\lambda_1 x_1) = \lambda_1 Ax_1 = \lambda_1^2 x_1,$
...

$$w = y_m = Ay_{m-1} = A(\lambda_1^{m-1}x_1) = \lambda_1^{m-1}Ax_1 = \lambda_1^mx_1.$$

If we choose x_1 as a basis of the vector space V, the linear transformation A from V to itself may be particularly simple. Since for any vector $v \in V$ and $\{x_1, x_2, ..., x_n\}$ is a basis of V, we must have

$$\boldsymbol{v} = c_1 \boldsymbol{x_1} + c_2 \boldsymbol{x_2} + \dots + c_n \boldsymbol{x_n}$$

$$Av = A(c_1x_1 + c_2x_2 + \dots + c_nx_n)$$

$$= c_1Ax_1 + c_2Ax_2 + \dots + c_nAx_n$$

$$= c_1\lambda_1x_1 + c_2Ax_2 + \dots + c_nAx_n.$$

We may expect that $x_2, ..., x_n$ share the same property as that for x_1 , that is $Ax_j = \lambda_j x_j$, j = 2, ..., n.

Then
$$A\mathbf{v} = c_1 A \mathbf{x_1} + c_2 A \mathbf{x_2} + \dots + c_n A \mathbf{x_n}$$
$$= c_1 \lambda_1 \mathbf{x_1} + c_2 \lambda_2 \mathbf{x_2} + \dots + c_n \lambda_n \mathbf{x_n}.$$

Furthermore, it is easy to calculate that

$$A^m \boldsymbol{v} = c_1 \lambda_1^m \boldsymbol{x_1} + c_2 \lambda_2^m \boldsymbol{x_2} + \dots + c_n \lambda_n^m \boldsymbol{x_n}.$$

Questions:

- (1) Can we find the scalar λ and vector \mathbf{x} so that $A\mathbf{x} = \lambda \mathbf{x}$?
- (2) How to find them?

Concepts and Examples

Definition 1. Let A be an $n \times n$ matrix. The **eigenvalue** [本征值] or a **characteristic value** [特征值] of A is a scalar, say λ , such that

$$Ax = \lambda x$$

holds for a **nonzero** vector x. The vector x is said to be an **eigenvector** [本征向量] or a **characteristic vector** [特征向量] belonging to the eigenvalue λ .

Example 1. Consider $A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$.

• We have
$$\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} -1 \\ 1 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \end{pmatrix} = 1 \cdot \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$
.

Then $\lambda_1 = 1$ is an eigenvalue of A, and $(-1,1)^T$ is the eigenvector of A belonging to $\lambda_1 = 1$.

• We also have
$$\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 3 \\ 3 \end{pmatrix} = 3 \cdot \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
.

So $\lambda_2 = 3$ is also an eigenvalue of A, and $(1,1)^T$ is the corresponding eigenvector.

How to find eigenvalues and eigenvectors?

$$Ax = \lambda x \iff (A - \lambda I)x = \mathbf{0}.$$

 λ is an eigenvalue of A

- \Leftrightarrow the homogeneous system $(A \lambda I)x = 0$ has nontrivial solutions.
- \Leftrightarrow the coefficient matrix $A \lambda I$ is singular.

Calculate eigenvalues of a matrix:

solve the equation $det(A - \lambda I) = 0$.

Calculate the corresponding eigenvectors:

solve the linear system $(A - \lambda I)x = 0$; find the nullspace $N(A - \lambda I)$ (**eigenspace** [本征空间] corresponding to the eigenvalue λ)

$$p(\lambda) = \det(A - \lambda I) = \begin{vmatrix} a_{11} - \lambda & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} - \lambda & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} - \lambda \end{vmatrix}$$

 $p(\lambda)$ is a polynomial of the unknown value λ , which is called the **characteristic polynomial** [特征多项式].

The equation $det(A - \lambda I) = 0$ is called the **characteristic equation** [特征方程] of the matrix A.

Question 1: How many eigenvalues does an $n \times n$ matrix have?

A polynomial of degree n has exactly n roots in the field of complex numbers, if we count the multiplicity of these roots. (代数学基本定理)

As a result, an $n \times n$ matrix A has exactly n eigenvalues, some of which may be repeated and some of which may be complex numbers.

Question 2: How many eigenvectors are there corresponding to an eigenvalue λ ?

Infinite many.

Let A be an $n \times n$ matrix and λ be a scalar. The following statements are **equivalent**:

- (a) λ is an eigenvalue of A.
- (b) $(A \lambda I)x = 0$ has a nontrivial solution.
- (c) $N(A \lambda I) \neq \{0\}$.
- (d) $A \lambda I$ is singular.
- (e) $det(A \lambda I) = 0$.

Example 2. Let $A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$. Find the eigenvalues of A and the corresponding eigenspace.

Solution. The characteristic polynomial of *A* is

$$\det(A - \lambda I) = \det\begin{pmatrix} 2 - \lambda & 1 \\ 1 & 2 - \lambda \end{pmatrix} = (\lambda - 1)(\lambda - 3).$$

The characteristic polynomial has two solutions $\lambda_1 = 1$ and $\lambda_2 = 3$.

As $\lambda_1 = 1$, the corresponding eigenvector can be found by solving the linear system $(A - \lambda_1 I)x = (A - I)x = 0$.

$$(A - I | \mathbf{0}) = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

The solution to the system is $\mathbf{x} = (-\alpha, \alpha)^T$, $\alpha \in \mathbf{R}$.

Eigenspace:
$$N(A - \lambda_1 I) = \text{Span}\{(-1,1)^T\}.$$

Eigenvectors:
$$\alpha(-1,1)^T$$
, $\alpha \neq 0$.

Example 2. Let $A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$. Find the eigenvalues of A and the corresponding eigenspace.

Solution. (continue)

As $\lambda_2 = 3$, we have to solve the following linear system

$$(A - \lambda_2 I)\mathbf{x} = (A - 3I)\mathbf{x} = \mathbf{0}.$$

$$A - 3I = \begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix}$$

Solutions: $\mathbf{x} = (\alpha, \alpha)^T, \alpha \in \mathbf{R}$.

Eigenspace: $N(A - \lambda_2 I) = \text{Span}\{(1,1)^T\}.$

Eigenvectors: $\alpha(1,1)^T$, $\alpha \neq 0$.

Example 3. Let
$$A = \begin{pmatrix} 2 & -3 & 1 \\ 1 & -2 & 1 \\ 1 & -3 & 2 \end{pmatrix}$$
. Find the eigenvalues of A and

the corresponding eigenspace.

Solution. The characteristic polynomial of *A* is

$$\det(A - \lambda I) = \begin{vmatrix} 2 - \lambda & -3 & 1 \\ 1 & -2 - \lambda & 1 \\ 1 & -3 & 2 - \lambda \end{vmatrix} = -\lambda(\lambda - 1)^{2}.$$

Thus the eigenvalues of A are $\lambda_1 = 0$, $\lambda_2 = \lambda_3 = 1$.

For $\lambda_1 = 0$, the eigenspace is N(A),

$$A = \begin{pmatrix} 2 & -3 & 1 \\ 1 & -2 & 1 \\ 1 & -3 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix}.$$

Solution to Ax = 0: $x = (\alpha, \alpha, \alpha)^T$, $\alpha \in \mathbf{R}$.

The eigenspace corresponding to $\lambda_1 = 0$ consists of all vectors of the form $\alpha(1,1,1)^T$.

Example 3. Let
$$A = \begin{pmatrix} 2 & -3 & 1 \\ 1 & -2 & 1 \\ 1 & -3 & 2 \end{pmatrix}$$
. Find the eigenvalues of A and

the corresponding eigenspace.

Solution. (continue)

For $\lambda_2 = \lambda_3 = 1$, we solve the system (A - I)x = 0:

$$A - I = \begin{pmatrix} 1 & -3 & 1 \\ 1 & -3 & 1 \\ 1 & -3 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -3 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

Setting $x_2 = \alpha$ and $x_3 = \beta$, we get $x_1 = 3\alpha - \beta$ and solution.

$$x = (3\alpha - \beta, \alpha, \beta), \quad \alpha, \beta \in \mathbf{R}.$$

Thus the eigenspace corresponding to $\lambda_2 = \lambda_3 = 1$ consists of all vectors of form

$$\begin{pmatrix} 3\alpha - \beta \\ \alpha \\ \beta \end{pmatrix} = \alpha \begin{pmatrix} 3 \\ 1 \\ 0 \end{pmatrix} + \beta \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}, \qquad \alpha, \beta \in \mathbf{R}.$$

Complex Eigenvalues

If A is an $n \times n$ matrix with **real** entries, then the coefficients of the characteristic polynomial of A are real. Hence, all its complex roots must occur in **conjugate pairs**. That is, we have the following

Property. If $\lambda = a + bi$ ($b \neq 0$) is an eigenvalue of a real matrix A, then $\bar{\lambda} = a - bi$ must also be an eigenvalue of A.

Property. If $\lambda = a + bi$ ($b \neq 0$) is an eigenvalue of a real matrix A, then $\bar{\lambda} = a - bi$ must also be an eigenvalue of A.

Proof. If $A = (a_{ij})$ is a matrix with complex entries, then $\bar{A} = (\bar{a}_{ij})$ is the matrix formed from A by conjugating each of its entries. Therefore, A is a real matrix if and only if $\bar{A} = A$.

If λ is a complex eigenvalue of a real $n \times n$ matrix A and z is an eigenvector belonging to λ , then

$$A\overline{z} = \overline{A}\overline{z} = \overline{Az} = \overline{\lambda}\overline{z} = \overline{\lambda}\overline{z}$$

which means that $\bar{\lambda}$ is an eigenvalue of A and \bar{z} is an eigenvector corresponding to $\bar{\lambda}$.

Product and Sum of Eigenvalues

Characteristic polynomial of A

$$p(\lambda) = \det(A - \lambda I) = \begin{vmatrix} a_{11} - \lambda & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} - \lambda & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} - \lambda \end{vmatrix}$$
 (1)

• Expanding the determinant in (1) along the first column, we have

$$\det(A - \lambda I) = (a_{11} - \lambda) \det(M_{11}) + \sum_{i=2}^{n} a_{i1} (-1)^{i+1} \det(M_{i1}),$$

where the minors M_{i1} , i=2,...,n, do not contain the two diagonal elements $(a_{11}-\lambda)$ and $(a_{ii}-\lambda)$. Expanding $\det(M_{11})$ in the same way, we conclude that

$$(a_{11} - \lambda)(a_{22} - \lambda) \cdots (a_{nn} - \lambda) \tag{2}$$

is the only term involving a product of more than n-2 of the diagonal elements.

Characteristic polynomial of A

$$p(\lambda) = \det(A - \lambda I) = \begin{vmatrix} a_{11} - \lambda & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} - \lambda & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} - \lambda \end{vmatrix}$$
 (1)

• In (2), the coefficient of λ^n is $(-1)^n$. Hence if $\lambda_1, ..., \lambda_n$ are the eigenvalues of A, then

$$p(\lambda) = (-1)^n (\lambda - \lambda_1)(\lambda - \lambda_2) \cdots (\lambda - \lambda_n). \tag{3}$$

Comparing the coefficient of λ^{n-1} of (1) and (3), we find that

$$\sum_{i=1}^{n} \lambda_i = \sum_{i=1}^{n} a_{ii}.$$
 Trace [迹] of the matrix A

• Take $\lambda = 0$ in the equalities (1) and (3), we have

$$\prod_{i=1}^{n} \lambda_i = \lambda_1 \lambda_2 \cdots \lambda_n = \det(A).$$

Theorem 1. Let A be an $n \times n$ matrix and λ_i , i = 1, 2, ..., n be eigenvalues of A, then

$$(1) \prod_{i=1}^{n} \lambda_i = \det(A)$$

(2)
$$\sum_{i=1}^{n} \lambda_i = \sum_{i=1}^{n} a_{ii} = \text{tr}(A).$$

Eigenvalues and Eigenvectors of Similar Matrices

Theorem 2. Let $A \sim B$, then they have the same characteristic polynomial and eigenvalues.

Proof. A and B are similar matrices, so there exists an invertible matrix S such that $B = S^{-1}AS$. Thus

$$p_B(\lambda) = \det(B - \lambda I) = \det(S^{-1}AS - \lambda S^{-1}IS)$$

$$= \det(S^{-1}(A - \lambda I)S)$$

$$= \det(S^{-1})\det(A - \lambda I)\det S$$

$$= p_A(\lambda).$$

Example. $A = \begin{pmatrix} 2 & 1 \\ 0 & 3 \end{pmatrix}$.

It is easy to see that the eigenvalues of A are $\lambda_1 = 2$ and $\lambda_2 = 3$.

Let $S = \begin{pmatrix} 5 & 3 \\ 3 & 2 \end{pmatrix}$ and set $B = S^{-1}AS$, then the eigenvalues of B should be the same as those of A by **Theorem 2**.

$$B = S^{-1}AS = \begin{pmatrix} 2 & -3 \\ -3 & 5 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ 0 & 3 \end{pmatrix} \begin{pmatrix} 5 & 3 \\ 3 & 2 \end{pmatrix} = \begin{pmatrix} -1 & -2 \\ 6 & 6 \end{pmatrix}.$$

Check directly that the eigenvalues of B are $\lambda_1 = 2$ and $\lambda_2 = 3$.

6.5 Diagonalization

We consider the possibility of a matrix that is similar to a diagonal matrix.

Let us get back to the problem of computing the series x, Ax, A^2x , ...

If the matrix A is similar to a diagonal matrix Λ , say

$$A = S^{-1} \Lambda S$$

where S is an invertible matrix, then

$$A^m \mathbf{x} = \left(S^{-1} \Lambda S\right)^m \mathbf{x} = S^{-1} \Lambda^m S \mathbf{x},$$

which is much easier to compute.

Suppose that there exists an invertible matrix X such that $X^{-1}AX = \Lambda$

This equation implies that

$$AX = X\Lambda. \tag{1}$$

If we denote the *i*th column of X by x_i , and

$$\Lambda = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix},$$

Then (1) implies that

$$A(x_1, x_2, ..., x_n) = (x_1, x_2, ..., x_n) \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix},$$

$$A(x_{1}, x_{2}, ..., x_{n}) = (x_{1}, x_{2}, ..., x_{n}) \begin{pmatrix} \lambda_{1} & 0 & \cdots & 0 \\ 0 & \lambda_{2} & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & \lambda_{n} \end{pmatrix},$$

$$(Ax_{1}, Ax_{2}, ..., Ax_{n}) = (\lambda_{1}x_{1}, \lambda_{2}x_{2}, ..., \lambda_{n}x_{n})$$

For any
$$i = 1, 2, ..., n$$
, we have $Ax_i = \lambda_i x_i$.

The *i*th column vector x_i of X is in fact an eigenvector of A belonging to eigenvalue λ_i , i = 1, 2, ..., n.

Moreover, the eigenvectors $x_1, x_2, ..., x_n$ are linearly independent.

As a result, A has n linearly independent eigenvectors.

Conversely, suppose that *A* has *n* linearly independent eigenvectors.

Suppose that $x_1, x_2, ..., x_n$ are the n linearly independent eigenvectors of A, and

$$Ax_{i} = \lambda_{i}x_{i}.$$

Let $X = (x_1, ..., x_n)$. Then X is invertible, and

$$AX = A(x_1, ..., x_n) = (Ax_1, ..., Ax_n) = (\lambda_1 x_1, ..., \lambda_n x_n)$$

$$= (x_1, x_2, \dots, x_n) \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix} = X\Lambda.$$

Therefore, A is similar to a diagonal matrix.

Definition 1. Let A be an $n \times n$ matrix. If there exists an invertible matrix X and a diagonal matrix Λ , such that

$$X^{-1}AX = \Lambda$$

we say A is **diagonalizable** [可对角化] and X **diagonalizes** [对角化] A.

Theorem 1. An $n \times n$ matrix A is diagonalizable **if and only if** A has n linearly independent eigenvectors.

Remark. Assume that A is diagonalizable.

- Columns of *X*: **eigenvectors** of *A*
- Diagonal elements of Λ : **eigenvalues** of A

Example 1. Let
$$B = \begin{pmatrix} 2 & -1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
. Show that B is diagonalizable.

Find the invertible matrix X and the diagonal matrix Λ such that $X^{-1}BX = \Lambda$.

Proof. Consider the characteristic equation of B,

$$\det(B - \lambda I) = \begin{vmatrix} 2 - \lambda & -1 & 0 \\ 0 & 1 - \lambda & 0 \\ 0 & 0 & 1 - \lambda \end{vmatrix} = (2 - \lambda)(1 - \lambda)^{2}.$$

the eigenvalues of B are $\lambda_1 = \lambda_2 = 1$, $\lambda_3 = 2$.

For
$$\lambda_1 = \lambda_2 = 1$$
: $B - I = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$.

Eigenspace
$$N(B-1 \cdot I) = \text{Span}\{x_1 = (1,1,0)^T, x_2 = (0,0,1)^T\}.$$

The vectors x_1 , x_2 are eigenvectors belonging to eigenvalue $\lambda_1 = \lambda_2 = 1$ and they are linearly independent.

Example 1. Let
$$B = \begin{pmatrix} 2 & -1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
. Show that B is diagonalizable.

Find the invertible matrix X and the diagonal matrix Λ such that $X^{-1}BX = \Lambda$.

Proof. (continue) For $\lambda_3 = 2$,

$$B - 2I = \begin{pmatrix} 0 & -1 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \rightarrow \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix},$$

eigenspace

$$N(B-2\cdot I) = \text{Span}\{x_3 = (1,0,0)^T\}.$$

We can take x_3 as an eigenvector belong to eigenvalue $\lambda_3 = 2$.

As a result, we obtain x_1, x_2, x_3 3 eigenvectors of B, which are linearly independent. Therefore, the matrix B is diagonalizable, and it is similar to the diagonal matrix

$$\Lambda = \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$

Example 1. Let
$$B = \begin{pmatrix} 2 & -1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
. Show that B is diagonalizable.

Find the invertible matrix X and the diagonal matrix Λ such that $X^{-1}BX = \Lambda$.

Proof. (continue) Let
$$X = (x_1, x_2, x_3) = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$
.

Then *X* is invertible and
$$X^{-1} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & -1 & 0 \end{pmatrix}$$
.

Finally one can verify that

$$X^{-1}BX = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & -1 & 0 \end{pmatrix} \begin{pmatrix} 2 & -1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} = \Lambda.$$

Remark. The choice of the invertible matrix *X* is not unique.

Example 2. Let
$$A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$
. Is it possible to diagonalize A ?

Solution. Consider the characteristic equation

$$\det(A - \lambda I) = \begin{vmatrix} 1 - \lambda & 1 & 0 \\ 0 & 1 - \lambda & 0 \\ 0 & 0 & 2 - \lambda \end{vmatrix} = (1 - \lambda)^2 (2 - \lambda).$$

The eigenvalues of A are $\lambda_1 = \lambda_2 = 1$, $\lambda_3 = 2$.

For
$$\lambda_1 = \lambda_2 = 1$$
,

$$A - I = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}.$$

Eigenspace $N(A-I) = \text{Span}\{(1,0,0)^T\}.$

This vector space is one-dimensional, so that we can only choose **one** linearly independent eigenvector belonging to eigenvalue $\lambda_1 = \lambda_2 = 1$, such as $x_1 = (1,0,0)^T$.

Example 2. Let
$$A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$
. Is it possible to diagonalize A ?

Solution. (continue)

For $\lambda_3 = 2$,

$$A - 2I = \begin{pmatrix} -1 & 1 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix},$$

eigenspace

$$N(A - I) = \text{Span}\{(0,0,1)^T\}.$$

The eigenvector belonging to eigenvalue λ_3 is

$$x_3 = (0,0,1)^T$$
.

Since the number of all linearly independent eigenvectors is **fewer** than the number of eigenvalues, *A* **cannot** be diagonalized.

Review

- Eigenvalues and eigenvectors of a matrix
- Diagonalization of a matrix

Preview

Quadratic Form and its applications