Supplementary Document for Fast Proximal Gradient Descent for A Class of Non-convex and Non-smooth Sparse Learning Problems

Yingzhen Yang

School of Computing, Informatics, and Decision Systems Engineering Beckman Institute
Arizona State University University of Illinois at Urbana-Champaign
yingzhen.yang@asu.edu jyu79@illinois.edu

1 ALGORITHMS IN THE PAPER

1.1 Proximal Gradient Descent

The optimization problem studied in this paper is

$$\min_{\mathbf{x} \in \mathbb{R}^n} F(\mathbf{x}) = g(\mathbf{x}) + h(\mathbf{x}),\tag{1}$$

where $h(\mathbf{x}) \triangleq \lambda ||\mathbf{x}||_0$, $\lambda > 0$ is a weighting parameter.

$$\mathbf{x}^{(k+1)} = \operatorname{prox}_{sh}(\mathbf{x}^{(k)} - s\nabla g(\mathbf{x}^{(k)}))$$

$$= \underset{\mathbf{v} \in \mathbb{R}^n}{\operatorname{arg min}} \frac{1}{2s} \|\mathbf{v} - (\mathbf{x}^{(k)} - s\nabla g(\mathbf{x}^{(k)}))\|_2^2 + \lambda \|\mathbf{v}\|_0$$

$$= T_{\sqrt{2\lambda s}}(\mathbf{x}^{(k)} - s\nabla g(\mathbf{x}^{(k)})), \tag{2}$$

Algorithm 1 Proximal Gradient Descent for the ℓ^0 Regularization Problem (1)

Input:

The weighting parameter λ , the initialization $\mathbf{x}^{(0)}$.

- 1: **for** k = 0, ..., do
- 2: Update $\mathbf{x}^{(k+1)}$ according to (2)
- 3: end for

Output: Obtain the sparse solution $\hat{\mathbf{x}}$ upon the termination of the iterations.

1.2 Nonmonotone Accelerated Proximal Gradient Descent with Support Projection

$$\mathbf{u}^{(k)} = \mathbf{x}^{(k)} + \frac{t_{k-1} - 1}{t_k} (\mathbf{x}^{(k)} - \mathbf{x}^{(k-1)}), \tag{3}$$

$$\mathbf{w}^{(k)} = \mathbf{P}_{\text{supp}(\mathbf{x}^{(k)})}(\mathbf{u}^{(k)}), \tag{4}$$

$$\mathbf{x}^{(k+1)} = \operatorname{prox}_{sh}(\mathbf{w}^{(k)} - s\nabla g(\mathbf{w}^{(k)})), \tag{5}$$

$$t_{k+1} = \frac{\sqrt{1+4t_k^2}+1}{2},\tag{6}$$

Algorithm 2 Nonmonotone Accelerated Proximal Gradient Descent with Support Projection for the ℓ^0 Regularization Problem (1)

Jiahui Yu

Input:

The weighting parameter λ , the initialization $\mathbf{x}^{(0)}$, $\mathbf{z}^{(1)} = \mathbf{x}^{(1)} = \mathbf{x}^{(0)}$, $t_0 = 0$.

- 1: **for** k = 1, ..., do
- 2: Update $\mathbf{u}^{(k)}$, $\mathbf{w}^{(k)}$, $\mathbf{x}^{(k+1)}$, t_{k+1} according to (3), (4), (5), (6) respectively.
- 3: end for

Output: Obtain the sparse solution $\hat{\mathbf{x}}$ upon the termination of the iterations.

1.3 Monotone Accelerated Proximal Gradient Descent with Support Projection

$$\mathbf{u}^{(k)} = \mathbf{x}^{(k)} + \frac{t_{k-1}}{t_k} (\mathbf{z}^{(k)} - \mathbf{x}^{(k)}) + \frac{t_{k-1} - 1}{t_k} (\mathbf{x}^{(k)} - \mathbf{x}^{(k-1)}),$$
(7)

$$\mathbf{w}^{(k)} = \mathbf{P}_{\text{supp}(\mathbf{z}^{(k)})}(\mathbf{u}^{(k)}), \tag{8}$$

$$\mathbf{z}^{(k+1)} = \operatorname{prox}_{sh}(\mathbf{w}^{(k)} - s\nabla g(\mathbf{w}^{(k)})), \tag{9}$$

$$t_{k+1} = \frac{\sqrt{1+4t_k^2} + 1}{2},\tag{10}$$

$$\mathbf{x}^{(k+1)} = \begin{cases} \mathbf{z}^{(k+1)} & \text{if } F(\mathbf{z}^{(k+1)}) \le F(\mathbf{x}^{(k)}) \\ \mathbf{x}^{(k)} & \text{otherwise.} \end{cases}$$
(11)

2 PROOFS

Lemma 1. (Support shrinkage for proximal gradient descent in Algorithm 1 and sufficient decrease of the objective function) If $s \leq \min\{\frac{2\lambda}{G^2}, \frac{1}{L}\}$, then

$$\operatorname{supp}(\mathbf{x}^{(k+1)}) \subseteq \operatorname{supp}(\mathbf{x}^{(k)}), k \ge 0, \tag{12}$$

namely the support of the sequence $\{\mathbf{x}^{(k)}\}_k$ shrinks. Moreover, the sequence of the objective $\{F(\mathbf{x}^{(k)})\}_k$ is Algorithm 3 Monotone Accelerated Proximal Gradient Descent with Support Projection for the ℓ^0 Regularization

Input:

The weighting parameter λ , the initialization $\mathbf{x}^{(0)}$, $\mathbf{z}^{(1)} = \mathbf{x}^{(1)} = \mathbf{x}^{(0)}, t_0 = 0.$

1: for $k=1,\ldots$, do 2: Update $\mathbf{u}^{(k)},\mathbf{w}^{(k)},\mathbf{z}^{(k+1)},t_{k+1},\mathbf{x}^{(k+1)}$ according to (7), (8), (9), (10), and (11) respectively.

Output: Obtain the sparse solution $\hat{\mathbf{x}}$ upon the termination of the iterations.

nonincreasing, and the following inequality holds for $k \geq 0$:

$$F(\mathbf{x}^{(k+1)}) \le F(\mathbf{x}^{(k)}) - \left(\frac{1}{2s} - \frac{L}{2}\right) \|\mathbf{x}^{(k+1)} - \mathbf{x}^{(k)}\|_{2}^{2}.$$
(13)

Proof of Lemma 1. We prove this Lemma by mathematical induction.

With k > 0, we first show that $supp(\mathbf{x}^{(k+1)}) \subset$ $supp(\mathbf{x}^{(k)})$, i.e. the support of the sequence shrinks. To see this, let $\tilde{\mathbf{x}}^{(k+1)} = \tilde{\mathbf{x}}^{(k)} - s\nabla q(\tilde{\mathbf{x}}^{(k)})$.

Since
$$\|\mathbf{y} - \mathbf{D}\mathbf{x}^{(k)}\|_2^2 = x_0$$
, let $\mathbf{q}^{(k)} = -s\nabla g(\mathbf{x}^{(k)}) = -2s(\mathbf{D}^{\top}\mathbf{D}\mathbf{x}^{(k)} - \mathbf{D}^{\top}\mathbf{y})$, then

$$|\tilde{\mathbf{x}}_j^{(k+1)}| \le \|\mathbf{q}^{(k)}\|_{\infty} \le sG,$$

where j is the index for any zero element of $\mathbf{x}^{(k)}$, namely $1 \leq j \leq d, j \notin \operatorname{supp}(\mathbf{x}^{(k)}). \text{ Now } |\tilde{\mathbf{x}}_i^{(k+1)}| < \sqrt{2\lambda s},$ and it follows that $\mathbf{x}_{i}^{(k+1)} = 0$ due to the update rule (2). Therefore, the zero elements of $\mathbf{x}^{(k)}$ remain unchanged in $\mathbf{x}^{(k+1)}$, and supp $(\mathbf{x}^{(k+1)}) \subseteq \text{supp}(\mathbf{x}^{(k)})$ for $k \geq 0$.

Since

$$\mathbf{x}^{(k+1)} = \operatorname*{arg\,min}_{\mathbf{v} \in \mathbb{R}^d} \frac{1}{2s} \|\mathbf{v} - \tilde{\mathbf{x}}^{(k+1)}\|_2^2 + h(\mathbf{v}),$$

let $\mathbf{v} = \mathbf{x}^{(k)}$, we have

$$\frac{1}{2s} \|\mathbf{x}^{(k+1)} - \tilde{\mathbf{x}}^{(k+1)}\|_{2}^{2} + h(\mathbf{x}^{(k+1)})$$

$$\leq \frac{1}{2s} \|s\nabla g(\mathbf{x}^{(k)})\|_{2}^{2} + h(\mathbf{x}^{(k)}), \tag{14}$$

which is equivalent to

$$\langle \nabla g(\mathbf{x}^{(k)}), \mathbf{x}^{(k+1)} - \mathbf{x}^{(k)} \rangle + \frac{1}{2s} \|\mathbf{x}^{(k+1)} - \mathbf{x}^{(k)}\|_2^2 + h(\mathbf{x}^{(k+1)})$$
 and t can be chosen as $t_0 \log n$ for $t_0 > 0$ to ensure that $(2t)$ holds with high probability. $(2t)$ holds and $(2t)$ holds with high probability.

In addition, since L is the Lipschitz constant for ∇g ,

$$g(\mathbf{x}^{(k+1)}) \le g(\mathbf{x}^{(k)}) + \langle \nabla g(\mathbf{x}^{(k)}), \mathbf{x}^{(k+1)} - \mathbf{x}^{(k)} \rangle$$

$$+\frac{L}{2}\|\mathbf{x}^{(k+1)} - \mathbf{x}^{(k)}\|_{2}^{2}.$$
 (16)

Combining (15) and (16), we have

$$g(\mathbf{x}^{(k+1)}) + h(\mathbf{x}^{(k+1)}) \le g(\mathbf{x}^{(k)}) + h(\mathbf{x}^{(k)}) - \left(\frac{1}{2s} - \frac{L}{2}\right) \|\mathbf{x}^{(k+1)} - \mathbf{x}^{(k)}\|_{2}^{2}.$$
(17)

Now (12) and (13) hold for k > 0. Since the sequence $\{F(\mathbf{x}^{(k)})\}_k$ is deceasing with lower bound 0, it must converge.

Lemma A. (Lemma 1 in Laurent and Massart (2000)) Let $Y_1, Y_2, \dots Y_D$ be i.i.d. Gaussian random variables with 0 mean and unit variance, and $a_1, a_2, \dots a_D$ be D positive numbers. Define $Z = \sum_{i=1}^{D} a_i(Y_i^2 - 1)$ and $\mathbf{a} =$ $[a_1, a_2, \dots a_D]^{\top}$, then for any t > 0,

$$\Pr[Z \ge 2\|\mathbf{a}\|_2 \sqrt{t} + 2\|\mathbf{a}\|_{\infty} t] \le e^{-t}.$$
 (18)

Lemma B. (Spectrum bound for Gaussian random matrix, Theorem II.13 in Davidson and Szarek (2001)) Suppose $\mathbf{A} \in \mathbb{R}^{m \times n}$ $(m \ge n)$ is a random matrix whose entries are i.i.d. samples generated from the standard Gaussian distribution $\mathcal{N}(0,\frac{1}{m})$. Then

$$1 - \sqrt{\frac{n}{m}} \le \mathbb{E}[\sigma_n(\mathbf{A})] \le \mathbb{E}[\sigma_1(\mathbf{A})] \le 1 + \sqrt{\frac{n}{m}}.$$
 (19)

Also, for any t > 0,

$$\Pr[\sigma_n(\mathbf{A}) \le 1 - \sqrt{\frac{n}{m}} - t] < e^{-\frac{mt^2}{2}},$$

$$\Pr[\sigma_1(\mathbf{A}) \ge 1 + \sqrt{\frac{n}{m}} + t] < e^{-\frac{mt^2}{2}}.$$
 (20)

Theorem 1. Suppose $\mathbf{D} \in \mathbb{R}^{d \times n}$ $(n \geq d)$ is a random matrix whose elements are i.i.d. samples from the standard Gaussian distribution $\mathcal{N}(0,1)$. Then with probability at least $1 - e^{-\frac{nt^2}{2}} - ne^{-t}$,

$$\frac{2\lambda}{G^2} \ge \frac{1}{L} \tag{21}$$

if

$$n \ge \left(\sqrt{d} + t + \sqrt{\frac{(d + 2\sqrt{dt} + 2t)(x_0 + \lambda |\mathbf{S}|)}{\lambda}}\right)^2,$$
(22)

Proof of Theorem 1. According to Lemma B, for any t>0, with probability at least $1-e^{-\frac{nt^2}{2}}$.

$$\sigma_{\max}(\mathbf{D}) > \sqrt{n} - \sqrt{d} - t.$$
 (23)

Also, by Lemma A, for any $1 \le i \le n$ and t > 0, with probability at least $1 - e^{-t}$,

$$\|\mathbf{D}^i\|_2 \le \sqrt{d+2\sqrt{dt}+2t}.\tag{24}$$

It then can be verified by union bound that with probability at least $1 - e^{-\frac{nt^2}{2}} - ne^{-t}$,

$$\frac{2D^2(x_0 + \lambda |\mathbf{S}|)}{\lambda} \le 2\sigma_{\max}^2(\mathbf{D}) \tag{25}$$

if

$$n \ge \left(\sqrt{d} + t + \sqrt{\frac{(d + 2\sqrt{dt} + 2t)(x_0 + \lambda |\mathbf{S}|)}{\lambda}}\right)^2,$$

according to (23) and (24).

Lemma 2. (Properties of the subsequences with shrinking support)

- (i) All the elements of each subsequence \mathcal{X}_t ($t = 1, \ldots, T$) in the subsequences with shrinking support have the same support. In addition, for any $1 \leq t_1 < t_2 \leq T$ and any $\mathbf{x}^{(k_1)} \in \mathcal{X}_{t_1}$ and $\mathbf{x}^{(k_2)} \in \mathcal{X}_{t_2}$, we have $k_1 < k_2$, $\operatorname{supp}(\mathbf{x}^{(k_2)}) \subset \operatorname{supp}(\mathbf{x}^{(k_1)})$.
- (ii) All the subsequence except for the last one, namely \mathcal{X}_t $(t=1,\ldots,T-1)$, have finite size. Moreover, \mathcal{X}_T has infinite number of elements, and there exists $k_0 \geq 0$ such that $\{\mathbf{x}^{(k)}\}_{k=k_0}^{\infty} \subseteq \mathcal{X}_T$.

Proof of Lemma 2. (i) For any $1 \leq t \leq T$, let $\mathbf{x}^{(k_1)}, \mathbf{x}^{(k_2)} \in \mathcal{X}_t$ and $k_1 \neq k_2$. If $k_1 < k_2$, then $\mathrm{supp}(\mathbf{x}^{(k_2)}) \subseteq \mathrm{supp}(\mathbf{x}^{(k_1)})$ according to the support shrinkage property (12). If $\mathrm{supp}(\mathbf{x}^{(k_2)}) \subset \mathrm{supp}(\mathbf{x}^{(k_1)})$, then $|\mathrm{supp}(\mathbf{x}^{(k_2)})| < |\mathrm{supp}(\mathbf{x}^{(k_1)})|$ which contradicts with the definition of \mathcal{X}_t whose elements has the same support size. Similar argument holds if $k_1 > k_2$. Therefore, all the elements of each subsequence \mathcal{X}_t ($t = 1, \ldots, T$) have the same support.

For any $1 \leq t_1 < t_2 \leq T$ and any $\mathbf{x}^{(k_1)} \in \mathcal{X}_{t_1}$ and $\mathbf{x}^{(k_2)} \in \mathcal{X}_{t_2}$, note that $k_1 \neq k_2$ and $\mathrm{supp}(\mathbf{x}^{(k_2)}) \neq \mathrm{supp}(\mathbf{x}^{(k_1)})$ since \mathcal{X}_{t_1} and \mathcal{X}_{t_2} have different support size. Suppose $k_1 > k_2$. According to the support shrinkage property (12), we must have $\mathrm{supp}(\mathbf{x}^{(k_1)}) \subset \mathrm{supp}(\mathbf{x}^{(k_2)})$ and it follows that $|\mathrm{supp}(\mathbf{x}^{(k_1)})| < |\mathrm{supp}(\mathbf{x}^{(k_2)})|$, which contradicts with the definition of subsequences with shrinking support. Therefore, we must have $k_1 < k_2$, and it follows that $\mathrm{supp}(\mathbf{x}^{(k_2)}) \subset \mathrm{supp}(\mathbf{x}^{(k_1)})$.

(ii) Suppose \mathcal{X}_t is an infinite sequence for some $1 \leq t \leq T-1$. We can then obtain an infinite sequence from \mathcal{X}_t in the way described as follows. We first have some $\mathbf{x}^{(k_0)} \in \mathcal{X}_t$ for some $k_0 \geq 0$ as \mathcal{X}_t is nonempty.

Suppose we obtain $\{\mathbf{x}^{(k'_j)}\}_{j'=0}^j$ in the first $j \geq 0$ steps with increasing indices $\{k'_j\}$, i.e. $k'_j < k''_j$ if j' < j''. Since \mathcal{X}_t is an infinite sequence, $\mathcal{X}_t \setminus \{\mathbf{x}^{(k'_j)}\}_{j'=0}^j$ is still an infinite sequence. At the (j+1)-th step, we can find $\mathbf{x}^{(k_{j+1})} \in \mathcal{X}_t \setminus \{\mathbf{x}^{(k'_j)}\}_{j'=0}^j$ with $k_{j+1} > k_j$. Therefore, we obtain an infinite sequence $\{\mathbf{x}^{(k_j)}\}_{j=0}^\infty \subseteq \mathcal{X}_t$ with increasing increasing indices $\{k_j\}$. The fact that $\{k_j\}$ is increasing, i.e. $k'_j < k''_j$ if j' < j'', indicates that $\lim_{j \to \infty} k_j = \lim_{j \to \infty} k_j = \lim_{j$

 ∞ . Now we consider an arbitrary element $\mathbf{x}^{(\tilde{k})} \in \mathcal{X}_{t+1}$. Because there must exists some $j \geq 0$ such that $\tilde{k} \leq k_j$, according to the support shrinkage property (12), we must have $\operatorname{supp}(\mathbf{x}^{(k_j)}) \subseteq \operatorname{supp}(\mathbf{x}^{(\tilde{k})})$ which indicates that $|\operatorname{supp}(\mathbf{x}^{(k_j)})| \leq |\operatorname{supp}(\mathbf{x}^{(\tilde{k})})|$. On the other hand, as $\mathbf{x}^{(k_j)} \in \mathcal{X}_t$, the definition of the subsequences with shrinking support indicates that $|\operatorname{supp}(\mathbf{x}^{(\tilde{k})})| < |\operatorname{supp}(\mathbf{x}^{(k_j)})|$. This contradiction shows that each \mathcal{X}_t must have finite size for $t=1,\ldots,T-1$. As $\{\mathbf{x}^{(k)}\}_{k=0}^{\infty}$ is an infinite sequence and $\{\mathcal{X}_t\}_{t=1}^T$ form a disjoint cover of $\{\mathbf{x}^{(k)}\}_{k=0}^\infty$, \mathcal{X}_T has infinite number of elements.

According to (i), \mathcal{X}_T is an infinite sequence. By the argument in the proof of (i), there exists an infinite sequence $\{\mathbf{x}^{(k_j)}\}_{j=0}^{\infty}\subseteq\mathcal{X}_T,\{k_j\}$ is increasing, and $\lim_{j\to\infty}k_j=\infty$. For any $k>k_0$, there must exist k_j' with $j'\geq 1$ such that $k_{j'-1}\leq k\leq k_{j'}$. According to the support shrinkage property (12),

$$\operatorname{supp}(\mathbf{x}^{(k_{j'})}) = \mathbf{S}^* \subseteq \operatorname{supp}(\mathbf{x}^{(k)}) \subseteq \operatorname{supp}(\mathbf{x}^{(k_{j'-1})}) = \mathbf{S}^*$$

Therefore, $|\operatorname{supp}(\mathbf{x}^{(k)})| = |\mathbf{S}^*|$ and it follows that $\mathbf{x}^{(k)} \in \mathcal{X}_T$ for any $k \geq k_0$, namely $\{\mathbf{x}^{(k)}\}_{k=k_0}^{\infty} \subseteq \mathcal{X}_T$.

Denote by \mathbf{S}^* the support of any element in \mathcal{X}_T . If $\{\mathbf{x}^{(k)}\}_{k=0}^{\infty}$ generated by Algorithm 1 has a limit point \mathbf{x}^* , then the following theorem shows that the sequence $\{\mathbf{x}^{(k)}\}_{k=0}^{\infty}$ converges to \mathbf{x}^* , and \mathbf{x}^* is a critical point of $F(\cdot)$ whose support is \mathbf{S}^* .

Theorem 2. (Convergence of PGD for the ℓ^0 regularization problem (1)) Suppose $s \leq \min\{\frac{2\lambda}{G^2}, \frac{1}{L}\}$, and \mathbf{x}^* is a limit point of $\{\mathbf{x}^{(k)}\}_{k=0}^{\infty}$. Then the sequence $\{\mathbf{x}^{(k)}\}_{k=0}^{\infty}$ generated by Algorithm 1 converges to \mathbf{x}^* , and \mathbf{x}^* is a critical point of $F(\cdot)$. Moreover, there exists $k_0 \geq 0$ such that for all $m \geq k_0$,

$$F(\mathbf{x}^{(m+1)}) - F(\mathbf{x}^*) \le \frac{1}{2s(m-k_0+1)} \|\mathbf{x}^{(k_0)} - \mathbf{x}^*\|_2^2.$$
 (26)

Proof of Theorem 2. Because \mathbf{x}^* is a limit point of $\{\mathbf{x}^{(k)}\}_{k=0}^{\infty}$, there must have a subsequence $\{\mathbf{x}^{(k_j)}\}$ such that $\mathbf{x}^{(k_j)} \to \mathbf{x}^*$ as $j \to \infty$. In addition, \mathbf{x}^* is a limit point of $\{\mathbf{x}^{(k)}\}_{k=k_0}^{\infty}$ and $F(\mathbf{x}^*) = \inf_{k \geq 0} \{F(\mathbf{x}^{(k)})\}$. We now show that $\operatorname{supp}(\mathbf{x}^*) = \mathbf{S}^*$. To see this, we

first have $\operatorname{supp}(\mathbf{x}^*) \subseteq \mathbf{S}^*$. Otherwise, pick arbitrary $i \in \operatorname{supp}(\mathbf{x}^*) \setminus \mathbf{S}^*$, then $\|\mathbf{x}^{(k_j)} - \mathbf{x}^*\|_2 \ge |\mathbf{x}_i^*|$, contradicting with fact that $\mathbf{x}^{(k_j)} \to \mathbf{x}^*$.

Moreover, suppose $\operatorname{supp}(\mathbf{x}^*) \subset \mathbf{S}^*$, we then pick arbitrary $i \in \mathbf{S}^* \setminus \operatorname{supp}(\mathbf{x}^*)$. It can be shown that $\mathbf{x}_i^{(k_j)} \to 0$. Otherwise, there exists $\varepsilon > 0$, for any j, there exists $j' \geq j$ such that $|\mathbf{x}_i^{(k_{j'})}| \geq \varepsilon$. It follows that $||\mathbf{x}^{(k_{j'})} - \mathbf{x}^*||_2 \geq |\mathbf{x}_i^{(k_{j'})}| \geq \varepsilon$, contradicting with the fact that $\mathbf{x}^{(k_j)} \to \mathbf{x}^*$.

Let $\varepsilon>0$ be a sufficiently small positive number such that $sG+\varepsilon<\sqrt{2\lambda s}$. Since $\mathbf{x}_i^{(k_j)}\to 0$, there exists sufficiently large j such that $|\mathbf{x}_i^{(k_j)}|<\varepsilon$. Let $\tilde{\mathbf{x}}^{(k_j+1)}=\mathbf{x}^{(k_j)}-s\nabla g(\mathbf{x}^{(k_j)})$, then

$$|\tilde{\mathbf{x}}_{i}^{(k_{j}+1)}| \le |\mathbf{x}_{i}^{(k_{j})}| + sG$$

 $< \varepsilon + sG < \sqrt{2\lambda s}.$

It follows that $\mathbf{x}_i^{(k_j+1)} = 0$ according to the update rule (2), so that $\operatorname{supp}(\mathbf{x}^{(k_j+1)}) \subseteq \operatorname{supp}(\mathbf{x}^{(k_j)}) \setminus \{i\}$. On the other hand, note that $\mathbf{x}^{(k_j+1)} \in \mathcal{X}_t$, so we have $\operatorname{supp}(\mathbf{x}^{(k_j+1)}) = \operatorname{supp}(\mathbf{x}^{(k_j)})$ by Lemma 2. This contradiction shows that $\operatorname{supp}(\mathbf{x}^*) \subset \mathbf{S}^*$ cannot hold. Therefore, $\operatorname{supp}(\mathbf{x}^*) = \mathbf{S}^*$.

According to Lemma 2, there exists $k_0 \geq 0$ such that $\{\mathbf{x}^{(k)}\}_{k=k_0}^{\infty} \subseteq \mathcal{X}_T$. We will prove that $\{\mathbf{x}^{(k)}\}_{k=k_0}^{\infty}$ converges to \mathbf{x}^* in the sequel.

It follows that for any \mathbf{u}, \mathbf{v} ,

$$g(\mathbf{v}) \le g(\mathbf{u}) + \langle \nabla g(\mathbf{u}), \mathbf{v} - \mathbf{u} \rangle + \frac{L}{2} ||\mathbf{v} - \mathbf{u}||_2^2.$$
 (27)

Due to the convexity of g, for any $\mathbf{v} \in \mathbb{R}^n$ and $k \geq 0$,

$$q(\mathbf{x}^{(k+1)}) + \langle \nabla q(\mathbf{x}^{(k+1)}), \mathbf{v} - \mathbf{x}^{(k+1)} \rangle < q(\mathbf{v}).$$
 (28)

In addition, we have

$$\mathbf{x}^{(k+1)} = \operatorname{prox}_{sh}(\mathbf{x}^{(k)} - s\nabla g(\mathbf{x}^{(k)}))$$

$$= \underset{\mathbf{v} \in \mathbb{R}^d}{\operatorname{arg min}} \frac{1}{2s} \|\mathbf{v} - (\mathbf{x}^{(k)} - s\nabla g(\mathbf{x}^{(k)}))\|_2^2 + h(\mathbf{v}). \quad (29)$$

It follows from (29) that

$$\frac{1}{s}(\mathbf{z}^{(k+1)} - (\mathbf{x}^{(k)} - s\nabla g(\mathbf{x}^{(k)}))) + \partial h(\mathbf{x}^{(k+1)}) = 0$$

$$\Rightarrow -\nabla g(\mathbf{x}^{(k)}) - \frac{1}{s}(\mathbf{x}^{(k+1)} - \mathbf{x}^{(k)}) \in \partial h(\mathbf{x}^{(k+1)}). \quad (30)$$

Since $\mathbf{x}^{(k+1)} = T_{\sqrt{2\lambda s}}(\mathbf{x}^{(k)} - s\nabla g(\mathbf{x}^{(k)}))$, we have $[\partial h(\mathbf{x}^{(k+1)})]_j = 0$ for any $j \in \operatorname{supp}(\mathbf{x}^{(k+1)})$. It follows that for any vector $\mathbf{v} \in \mathbb{R}^d$ such that $\operatorname{supp}(\mathbf{v}) = \operatorname{supp}(\mathbf{x}^{(k+1)})$, the following equality holds:

$$h(\mathbf{v}) = h(\mathbf{x}^{(k+1)}) + \langle -\nabla g(\mathbf{x}^{(k)}) - \frac{1}{s}(\mathbf{x}^{(k+1)} - \mathbf{x}^{(k)}),$$

$$\mathbf{v} - \mathbf{x}^{(k+1)} \rangle. \tag{31}$$

Based on (27) and (28), for any $k \ge k_0$ and arbitrary $\mathbf{v} \in \mathbb{R}^d$ we have

$$F(\mathbf{x}^{(k+1)}) = g(\mathbf{x}^{(k+1)}) + h(\mathbf{x}^{(k+1)})$$

$$\leq g(\mathbf{x}^{(k)}) + \langle \nabla g(\mathbf{x}^{(k)}), \mathbf{x}^{(k+1)} - \mathbf{x}^{(k)} \rangle$$

$$+ \frac{L}{2} \|\mathbf{x}^{(k+1)} - \mathbf{x}^{(k)}\|_{2}^{2} + h(\mathbf{x}^{(k+1)})$$

$$\leq g(\mathbf{v}) + \langle \nabla g(\mathbf{x}^{(k)}), \mathbf{x}^{(k)} - \mathbf{v} \rangle + \langle \nabla g(\mathbf{x}^{(k)}), \mathbf{x}^{(k+1)} - \mathbf{x}^{(k)} \rangle$$

$$+ \frac{L}{2} \|\mathbf{z}^{(k+1)} - \mathbf{w}^{(k)}\|_{2}^{2} + h(\mathbf{z}^{(k+1)})$$

$$= g(\mathbf{v}) + \langle \nabla g(\mathbf{x}^{(k)}), \mathbf{x}^{(k+1)} - \mathbf{v} \rangle + \frac{L}{2} \|\mathbf{x}^{(k+1)} - \mathbf{x}^{(k)}\|_{2}^{2}$$

$$+ h(\mathbf{x}^{(k+1)}). \tag{32}$$

When $supp(\mathbf{v}) = supp(\mathbf{x}^{(k+1)})$, according to (31) and (32),

$$F(\mathbf{x}^{(k+1)}) \leq g(\mathbf{v}) + \langle \nabla g(\mathbf{x}^{(k)}), \mathbf{x}^{(k+1)} - \mathbf{v} \rangle + \frac{L}{2} \| \mathbf{x}^{(k+1)} - \mathbf{x}^{(k)} \|_{2}^{2} + h(\mathbf{x}^{(k+1)}) = g(\mathbf{v}) + \langle \nabla g(\mathbf{x}^{(k)}), \mathbf{x}^{(k+1)} - \mathbf{v} \rangle + \frac{L}{2} \| \mathbf{x}^{(k+1)} - \mathbf{x}^{(k)} \|_{2}^{2} + h(\mathbf{v}) + \langle \nabla g(\mathbf{x}^{(k)}) + \frac{1}{s} (\mathbf{x}^{(k+1)} - \mathbf{x}^{(k)}), \mathbf{v} - \mathbf{x}^{(k+1)} \rangle = F(\mathbf{v}) + \frac{1}{s} \langle \mathbf{x}^{(k+1)} - \mathbf{x}^{(k)}, \mathbf{v} - \mathbf{x}^{(k+1)} \rangle + \frac{L}{2} \| \mathbf{x}^{(k+1)} - \mathbf{x}^{(k)} \|_{2}^{2} \leq F(\mathbf{v}) + \frac{1}{s} \langle \mathbf{x}^{(k+1)} - \mathbf{x}^{(k)}, \mathbf{v} - \mathbf{x}^{(k)} \rangle - \frac{1}{s} \| \mathbf{x}^{(k+1)} - \mathbf{x}^{(k)} \|_{2}^{2} + \frac{L}{2} \| \mathbf{x}^{(k+1)} - \mathbf{x}^{(k)} \|_{2}^{2} = F(\mathbf{v}) + \frac{1}{s} \langle \mathbf{x}^{(k+1)} - \mathbf{x}^{(k)}, \mathbf{v} - \mathbf{x}^{(k)} \rangle - (\frac{1}{s} - \frac{L}{2}) \| \mathbf{x}^{(k+1)} - \mathbf{x}^{(k)} \|_{2}^{2} \leq F(\mathbf{v}) + \frac{1}{s} \langle \mathbf{x}^{(k+1)} - \mathbf{x}^{(k)}, \mathbf{v} - \mathbf{x}^{(k)} \rangle - \frac{1}{2s} \| \mathbf{x}^{(k+1)} - \mathbf{x}^{(k)} \|_{2}^{2}.$$
 (33)

Now supp $(\mathbf{x}^*) = \text{supp}(\mathbf{x}^{(k+1)}) = \mathbf{S}^*$, we can let $\mathbf{v} = \mathbf{x}^*$ in (33), leading to

$$F(\mathbf{x}^{(k+1)}) - F(\mathbf{x}^*)$$

$$\leq \frac{1}{s} \langle \mathbf{x}^{(k+1)} - \mathbf{x}^{(k)}, \mathbf{x}^* - \mathbf{x}^{(k)} \rangle - \frac{1}{2s} \| \mathbf{x}^{(k+1)} - \mathbf{x}^{(k)} \|_2^2$$

$$= \frac{1}{2s} (\| \mathbf{x}^{(k)} - \mathbf{x}^* \|_2^2 - \| \mathbf{x}^{(k+1)} - \mathbf{x}^* \|_2^2). \tag{34}$$

Summing (34) over $k = k_0, \dots, m$ with $m \ge k_0$,

$$\sum_{k=k_0}^{m} F(\mathbf{x}^{(k+1)}) - F(\mathbf{x}^*)$$

$$\leq \sum_{k=k_0}^{m} \frac{1}{2s} (\|\mathbf{x}^{(k)} - \mathbf{x}^*\|_2^2 - \|\mathbf{x}^{(k+1)} - \mathbf{x}^*\|_2^2)
= \frac{1}{2s} (\|\mathbf{x}^{(k_0)} - \mathbf{x}^*\|_2^2 - \|\mathbf{x}^{(m+1)} - \mathbf{x}^*\|_2^2).$$
(35)

Since $\{F(\mathbf{x}^{(k)})\}_k$ is non-increasing, we have $\sum_{k=k_0}^{m} F(\mathbf{x}^{(k+1)}) - F(\mathbf{x}^*) > (m - k_0 + 1)F(\mathbf{x}^{(m+1)}) F(\mathbf{x}^*)$. It follows from (35) that

$$F(\mathbf{x}^{(m+1)}) - F(\mathbf{x}^*)$$

$$\leq \frac{1}{2s(m-k_0+1)} (\|\mathbf{x}^{(k_0)} - \mathbf{x}^*\|_2^2 - \|\mathbf{x}^{(m+1)} - \mathbf{x}^*\|_2^2)$$

$$\leq \frac{1}{2s(m-k_0+1)} \|\mathbf{x}^{(k_0)} - \mathbf{x}^*\|_2^2. \tag{36}$$

Now we show that \mathbf{x}^* is a critical point of $F(\cdot)$. It follows from (30) that $-\nabla g(\mathbf{x}^{(k_j-1)}) - \frac{1}{2}(\mathbf{x}^{(k_j)} - \mathbf{x}^{(k_j-1)}) \in$ $\partial h(\mathbf{x}^{(k_j)})$ for $k_j \geq 1$. In addition, since $\partial F(\mathbf{x}^{(k_j)}) =$ $\nabla g(\mathbf{x}^{(k_j)}) + \partial h(\mathbf{x}^{(k_j)})$, we have

$$\nabla g(\mathbf{x}^{(k_j)}) - \nabla g(\mathbf{x}^{(k_j-1)}) - \frac{1}{s}(\mathbf{x}^{(k_j)} - \mathbf{x}^{(k_j-1)}) \in \partial F(\mathbf{x}^{(k_j)}).$$
 Proof. We have (37)

Due to the fact that $\|\mathbf{x}^{(k)} - \mathbf{x}^{(k-1)}\|_2 \to 0$ as $k \to \infty$, when $j \to \infty$ we have

$$\|\nabla g(\mathbf{x}^{(k_j)}) - \nabla g(\mathbf{x}^{(k_j-1)}) - \frac{1}{s} (\mathbf{x}^{(k_j)} - \mathbf{x}^{(k_j-1)})\|_2$$

$$\leq L \|\mathbf{x}^{(k_j)}) - \mathbf{x}^{(k_j-1)}\|_2 + \frac{1}{s} \|\mathbf{x}^{(k_j)} - \mathbf{x}^{(k_j-1)}\|_2$$

$$\to 0. \tag{38}$$

Also, as $j \to \infty$,

$$F(\mathbf{x}^{(k_j)}) = g(\mathbf{x}^{(k_j)}) + h(\mathbf{x}^{(k_j)}) = g(\mathbf{x}^{(k_j)}) + \lambda |\mathbf{S}^*|$$

$$\rightarrow g(\mathbf{x}^*) + \lambda |\mathbf{S}^*| = g(\mathbf{x}^*) + h(\mathbf{x}^*) = F(\mathbf{x}^*). \tag{39}$$

Based on (37), (38) and (39), $\mathbf{0} \in \partial F(\mathbf{x}^*)$ and \mathbf{x}^* is a critical point of $F(\cdot)$.

In addition, k_0 is upper bounded. Note that the sequence experiences only a finite number (at most |S|) of strict support shrinkages. The iterations of PGD between two consecutive strict support shrinkages are equivalent to those of regular gradient descent on g. Suppose the last support shrinkage happens in k_1 -th iteration with $k_1 \geq 0$, and let $\mathbf{S}_1 = \operatorname{supp}(\mathbf{x}^{(k_1)})$. Let \mathbf{x}' be the solution to the problem $\min_{\mathbf{x}, \operatorname{supp}(\mathbf{x}) = \mathbf{S}_1} g(\mathbf{x})$. Let the q-th $(q \in \mathbf{S}_1)$ element of the variable incurs support shrinkage, and $\{\mathbf{x}'^{(t)}\}\$ be the sequence generated by performing gradient descent on g staring with $\mathbf{x}^{(k_1)}$. We can always choose s such that $\sqrt{2\lambda s} \neq |\mathbf{x}_a'|$. Because $\{\mathbf{x}'^{(t)}\}$

converges to x', the support shrinkage at the q-th element of the variable must happen within finite iterations. To see this, since $\sqrt{2\lambda s} \neq \mathbf{x}_q'$, there exists a small $\delta>0$ such that $(\mathbf{x}_q'-\delta,\mathbf{x}_q'+\delta)\subset (-\sqrt{2\lambda s},\sqrt{2\lambda s})$ or $(\mathbf{x}'_q - \delta, \mathbf{x}'_q + \delta) \subset [-\sqrt{2\lambda s}, \sqrt{2\lambda s}]^{\complement}$, where \mathbf{A}^{\complement} is the complement set of **A**. Since $\{\mathbf{x}'^{(t)}\}$ converges to \mathbf{x}' , after T iterations $\{\mathbf{x}'^{(t)}\}_{t>T}$ must fall in $(\mathbf{x}'_q - \delta, \mathbf{x}'_q + \delta)$. If $(\mathbf{x}_q' - \delta, \mathbf{x}_q' + \delta) \subset (-\sqrt{2\lambda s}, \sqrt{2\lambda s})$, then support shrinkage happens after T iterations. If $(\mathbf{x}_q' - \delta, \mathbf{x}_q' + \delta) \subset$ $[-\sqrt{2\lambda s},\sqrt{2\lambda s}]^{\complement}$, support shrinkage must happen within T iterations, otherwise $|\mathbf{x}'^{(t)}| > \sqrt{2\lambda s}$ for t > T and support shrinkage never happens at the q-th element of the variable, contradicting with the given fact. Therefore, each support shrinkage happens with finite iterations. Because shrinkage can happen at most |S| times, k_0 is upper bounded by a finite number.

Lemma C. For any two vectors $\mathbf{u}, \mathbf{v} \in \mathbb{R}^d$, $\|\mathbf{u} - \mathbf{v}\|$ $\mathbf{P}_{\mathbf{R}}(\mathbf{v})\|_{2} \leq \|\mathbf{u} - \mathbf{v}\|_{2}$ where $\operatorname{supp}(\mathbf{u}) \subseteq \mathbf{R}$.

$$\|\mathbf{u} - \mathbf{v}\|_{2}^{2}$$

$$= \|\mathbf{P}_{\mathbf{R}}(\mathbf{u} - \mathbf{v})\|_{2}^{2} + \|\mathbf{P}_{\{1,...,d\}\setminus\mathbf{R}}(\mathbf{u} - \mathbf{v})\|_{2}^{2}$$

$$\geq \|\mathbf{P}_{\mathbf{R}}(\mathbf{u} - \mathbf{v})\|_{2}^{2} = \|\mathbf{u} - \mathbf{P}_{\mathbf{R}}(\mathbf{v})\|_{2}^{2}.$$
(40)

It follows that
$$\|\mathbf{u} - \mathbf{P}_{\mathbf{R}}(\mathbf{v})\|_2 \le \|\mathbf{u} - \mathbf{v}\|_2$$
.

Lemma 3. (Support shrinkage for nonmonotone accelerated proximal gradient descent with support projection in Algorithm 2) The sequence $\{\mathbf{x}^{(k)}\}_k$ generated by Algorithm 2 satisfies

$$\operatorname{supp}(\mathbf{x}^{(k+1)}) \subseteq \operatorname{supp}(\mathbf{x}^{(k)}), k \ge 1, \tag{41}$$

namely the support of the sequence $\{\mathbf{x}^{(k)}\}_{k=1}^{\infty}$ shrinks.

Proof of Lemma 3. We prove this Lemma by mathematical induction, and we will prove that

$$\operatorname{supp}(\mathbf{x}^{(\bar{k}+1)}) \subseteq \operatorname{supp}(\mathbf{x}^{(\bar{k})}), \bar{k} \ge 1. \tag{42}$$

When $\bar{k} = 1$, using argument similar to the proof of Lemma 1 we can show that $supp(\mathbf{x}^{(2)}) \subseteq supp(\mathbf{x}^{(1)})$, i.e. the support of x shrinks after the first iteration.

Now (42) are verified for $\bar{k} = 1$. Suppose (42) holds for all $\bar{k} < k'$ with k' > 1. We now consider the case that $\bar{k} = k' + 1.$

Note the support projection operation in the update rule (4) for $\mathbf{w}^{(k)}$, and $\operatorname{supp}(\mathbf{w}^{(k'+1)}) \subseteq \operatorname{supp}(\mathbf{x}^{(k'+1)})$. Let $\mathbf{q}^{(k'+1)} = -s\nabla g(\mathbf{w}^{(k'+1)})$ and $\tilde{\mathbf{x}}_{i}^{(k'+2)} = \mathbf{w}^{(k'+1)}$

 $s\nabla g(\mathbf{w}^{(k'+1)})$. Then $\mathbf{x}_j^{(k'+2)}=0$ due to the update rule (5) for any $j\notin \operatorname{supp}(\mathbf{w}^{(k'+1)})$ and

$$|\tilde{\mathbf{x}}_j^{(k'+2)}| \le \|\mathbf{q}^{(k'+1)}\|_{\infty} \le sG \le \sqrt{2\lambda s}.$$
 (43)

Because $s \leq \frac{2\lambda}{G^2}$, the zero elements of $\mathbf{w}^{(k'+1)}$ remain unchanged in $\mathbf{x}^{(k'+2)}$, and it follows that $\operatorname{supp}(\mathbf{x}^{(k'+2)}) \subseteq \operatorname{supp}(\mathbf{w}^{(k'+1)}) \subseteq \operatorname{supp}(\mathbf{x}^{(k'+1)})$. Therefore, (42) holds for $\bar{k} = k' + 1$. It follows that (42) holds for all $\bar{k} \geq 1$.

Theorem 3. (Convergence of Nonmonotone Accelerated Proximal Gradient Descent for the ℓ^0 regularization problem (1)) Suppose $s \leq \min\{\frac{2\lambda}{G^2}, \frac{1}{L}\}$, and \mathbf{x}^* is a limit point of $\{\mathbf{x}^{(k)}\}_{k=0}^{\infty}$ generated by Algorithm 2. There exists $k_0 \geq 1$ such that

$$F(\mathbf{x}^{(m+1)}) - F(\mathbf{x}^*) \le \frac{4}{(m+1)^2} V^{(k_0)}$$
 (44)

for all $m \geq k_0$, where

$$V^{(k_0)} \triangleq \left(\frac{1}{2s} \| (t_{k_0-1} - 1)\mathbf{x}^{(k_0-1)} - t_{k_0-1}\mathbf{x}^{(k_0)} + \mathbf{x}^* \|_2^2 + t_{k_0-1}^2 (F(\mathbf{x}^{(k_0)}) - F(\mathbf{x}^*)) \right).$$
(45)

Proof of Theorem 3. According to Lemma 3, there exists $k_0 \geq 0$ such that $\{\mathbf{x}^{(k)}\}_{k=k_0}^{\infty} \subseteq \mathcal{X}_T$. It follows that $\sup (\mathbf{x}^*) = \mathbf{S}^*$.

When supp(\mathbf{v}) = supp($\mathbf{x}^{(k+1)}$) for $k \ge k_0$, we have

$$F(\mathbf{x}^{(k+1)}) \leq g(\mathbf{v}) + \langle \nabla g(\mathbf{w}^{(k)}), \mathbf{x}^{(k+1)} - \mathbf{v} \rangle$$

$$+ \frac{L}{2} \|\mathbf{x}^{(k+1)} - \mathbf{w}^{(k)}\|_{2}^{2} + h(\mathbf{x}^{(k+1)})$$

$$= g(\mathbf{v}) + \langle \nabla g(\mathbf{w}^{(k)}), \mathbf{x}^{(k+1)} - \mathbf{v} \rangle$$

$$+ \frac{L}{2} \|\mathbf{x}^{(k+1)} - \mathbf{w}^{(k)}\|_{2}^{2} + h(\mathbf{v})$$

$$+ \langle \nabla g(\mathbf{w}^{(k)}) + \frac{1}{s} \langle \mathbf{x}^{(k+1)} - \mathbf{w}^{(k)}, \mathbf{v} - \mathbf{x}^{(k+1)} \rangle$$

$$= F(\mathbf{v}) + \frac{1}{s} \langle \mathbf{x}^{(k+1)} - \mathbf{w}^{(k)}, \mathbf{v} - \mathbf{x}^{(k+1)} \rangle$$

$$+ \frac{L}{2} \|\mathbf{x}^{(k+1)} - \mathbf{w}^{(k)}\|_{2}^{2}$$

$$\leq F(\mathbf{v}) + \frac{1}{s} \langle \mathbf{x}^{(k+1)} - \mathbf{w}^{(k)}, \mathbf{v} - \mathbf{w}^{(k)} \rangle$$

$$- \frac{1}{s} \|\mathbf{x}^{(k+1)} - \mathbf{w}^{(k)}\|_{2}^{2} + \frac{L}{2} \|\mathbf{x}^{(k+1)} - \mathbf{w}^{(k)}\|_{2}^{2}$$

$$= F(\mathbf{v}) + \frac{1}{s} \langle \mathbf{x}^{(k+1)} - \mathbf{w}^{(k)}, \mathbf{v} - \mathbf{w}^{(k)} \rangle$$

$$- (\frac{1}{s} - \frac{L}{2}) \|\mathbf{x}^{(k+1)} - \mathbf{w}^{(k)}\|_{2}^{2}.$$

$$(46)$$

Now using similar arguments in the proof of Lemma 3, let $\mathbf{v} = \mathbf{x}^{(k)}$ and $\mathbf{v} = \mathbf{x}^*$ in in (46), we have

$$F(\mathbf{x}^{(k+1)}) \le F(\mathbf{x}^{(k)}) + \frac{1}{s} \langle \mathbf{x}^{(k+1)} - \mathbf{w}^{(k)},$$

$$\mathbf{x}^{(k)} - \mathbf{w}^{(k)} \rangle - (\frac{1}{s} - \frac{L}{2}) \|\mathbf{x}^{(k+1)} - \mathbf{w}^{(k)}\|_2^2,$$
 (47)

and

$$F(\mathbf{x}^{(k+1)}) \le F(\mathbf{x}^*) + \frac{1}{s} \langle \mathbf{x}^{(k+1)} - \mathbf{w}^{(k)}, \\ \mathbf{x}^* - \mathbf{w}^{(k)} \rangle - \left(\frac{1}{s} - \frac{L}{2}\right) \|\mathbf{x}^{(k+1)} - \mathbf{w}^{(k)}\|_2^2.$$
 (48)

 $(47)\times(t_k-1)+(48)$, we have

$$t_{k}F(\mathbf{x}^{(k+1)}) - (t_{k} - 1)F(\mathbf{x}^{(k)}) - F(\mathbf{x}^{*})$$

$$\leq \frac{1}{s} \langle \mathbf{x}^{(k+1)} - \mathbf{w}^{(k)}, (t_{k} - 1)(\mathbf{x}^{(k)} - \mathbf{w}^{(k)}) + \mathbf{x}^{*} - \mathbf{w}^{(k)} \rangle$$

$$- t_{k} (\frac{1}{s} - \frac{L}{2}) \|\mathbf{x}^{(k+1)} - \mathbf{w}^{(k)}\|_{2}^{2}.$$
(49)

Multiplying both sides of (49) by t_k , since $t_k^2 - t_k = t_{k-1}^2$, we have

$$t_{k}^{2}(F(\mathbf{x}^{(k+1)}) - F(\mathbf{x}^{*})) - t_{k-1}^{2}(F(\mathbf{x}^{(k)}) - F(\mathbf{x}^{*}))$$

$$\leq \frac{1}{s} \langle t_{k}(\mathbf{x}^{(k+1)} - \mathbf{w}^{(k)}), (t_{k} - 1)(\mathbf{x}^{(k)} - \mathbf{w}^{(k)}) +$$

$$\mathbf{x}^{*} - \mathbf{w}^{(k)} \rangle - (\frac{1}{s} - \frac{L}{2}) \| t_{k}(\mathbf{x}^{(k+1)} - \mathbf{w}^{(k)}) \|_{2}^{2}$$

$$\leq \frac{1}{s} \langle t_{k}(\mathbf{x}^{(k+1)} - \mathbf{w}^{(k)}), (t_{k} - 1)(\mathbf{x}^{(k)} - \mathbf{w}^{(k)})$$

$$+ \mathbf{x}^{*} - \mathbf{w}^{(k)} \rangle - \frac{1}{2s} \| t_{k}(\mathbf{x}^{(k+1)} - \mathbf{w}^{(k)}) \|_{2}^{2}$$

$$= \frac{1}{2s} (\| (t_{k} - 1)\mathbf{x}^{(k)} - t_{k}\mathbf{w}^{(k)} + \mathbf{x}^{*} \|_{2}^{2}$$

$$- \| (t_{k} - 1)\mathbf{x}^{(k)} - t_{k}\mathbf{x}^{(k+1)} + \mathbf{x}^{*} \|_{2}^{2}). \tag{50}$$

Since $\mathbf{w}^{(k)} = \mathbf{P}_{\text{supp}(\mathbf{x}^{(k)})}(\mathbf{u}^{(k)})$, it follows that $(t_k - 1)\mathbf{x}^{(k)} - t_k\mathbf{P}_{\text{supp}(\mathbf{x}^{(k)})}(\mathbf{u}^{(k)}) + \mathbf{x}^* = (t_k - 1)\mathbf{x}^{(k)} - t_k\mathbf{w}^{(k)} + \mathbf{x}^*$. By Lemma C and (50), we have

$$t_{k}^{2}(F(\mathbf{x}^{(k+1)}) - F(\mathbf{x}^{*})) - t_{k-1}^{2}(F(\mathbf{x}^{(k)}) - F(\mathbf{x}^{*}))$$

$$\leq \frac{1}{2s}(\|(t_{k} - 1)\mathbf{x}^{(k)} - t_{k}\mathbf{u}^{(k)} + \mathbf{x}^{*}\|_{2}^{2}$$

$$- \|(t_{k} - 1)\mathbf{x}^{(k)} - t_{k}\mathbf{x}^{(k+1)} + \mathbf{x}^{*}\|_{2}^{2}). \tag{51}$$

Define $\mathbf{U}^{(k+1)} = (t_k-1)\mathbf{x}^{(k)} - t_k\mathbf{x}^{(k+1)} + \mathbf{x}^*$, then $\mathbf{U}^{(k)} = (t_{k-1}-1)\mathbf{x}^{(k-1)} - t_{k-1}\mathbf{x}^{(k)} + \mathbf{x}^*$. It can be verified that $\mathbf{U}^{(k)} = (t_k-1)\mathbf{x}^{(k)} - t_k\mathbf{u}^{(k)} + \mathbf{x}^*$ according to the update rule (3) for $\mathbf{u}^{(k)}$. Then according to (51), we have

$$t_k^2 (F(\mathbf{x}^{(k+1)}) - F(\mathbf{x}^*)) - t_{k-1}^2 (F(\mathbf{x}^{(k)}) - F(\mathbf{x}^*))$$

$$\leq \frac{1}{2s} (\|\mathbf{U}^{(k)}\|_2^2 - \|\mathbf{U}^{(k+1)}\|_2^2). \tag{52}$$

Summing (52) over $k = k_0, k_0, +1, \dots, m$ for $m \ge k_0$, we have

$$t_m^2(F(\mathbf{x}^{(m+1)}) - F(\mathbf{x}^*)) - t_{k_0-1}^2(F(\mathbf{x}^{(k_0)}) - F(\mathbf{x}^*))$$

$$\leq \frac{1}{2s} (\|\mathbf{U}^{(k_0)}\|_2^2 - \|\mathbf{U}^{(m+1)}\|_2^2)
\leq \frac{1}{2s} \|\mathbf{U}^{(k_0)}\|_2^2
= \frac{1}{2s} \|(t_{k_0-1} - 1)\mathbf{x}^{(k_0-1)} - t_{k_0-1}\mathbf{x}^{(k_0)} + \mathbf{x}^*\|_2^2.$$
(53)

It follows from (53) that

$$F(\mathbf{x}^{(m+1)}) - F(\mathbf{x}^{*})$$

$$\leq \frac{1}{2st_{m}^{2}} \| (t_{k_{0}-1} - 1)\mathbf{x}^{(k_{0}-1)} - t_{k_{0}-1}\mathbf{x}^{(k_{0})} + \mathbf{x}^{*} \|_{2}^{2}$$

$$+ \frac{t_{k_{0}-1}^{2}}{t_{m}^{2}} (F(\mathbf{x}^{(k_{0})}) - F(\mathbf{x}^{*}))$$

$$\leq \frac{1}{t_{m}^{2}} (\frac{1}{2s} \| (t_{k_{0}-1} - 1)\mathbf{x}^{(k_{0}-1)} - t_{k_{0}-1}\mathbf{x}^{(k_{0})} + \mathbf{x}^{*} \|_{2}^{2}$$

$$+ t_{k_{0}-1}^{2} (F(\mathbf{x}^{(k_{0})}) - F(\mathbf{x}^{*})))$$

$$\leq \frac{4}{(m+1)^{2}} (\frac{1}{2s} \| (t_{k_{0}-1} - 1)\mathbf{x}^{(k_{0}-1)} - t_{k_{0}-1}\mathbf{x}^{(k_{0})} + \mathbf{x}^{*} \|_{2}^{2}$$

$$+ t_{k_{0}-1}^{2} (F(\mathbf{x}^{(k_{0})}) - F(\mathbf{x}^{*})))$$

$$\triangleq \frac{4}{(m+1)^{2}} V^{(k_{0})}, \tag{54}$$

where the last inequality is due to the fact that $t_k \ge \frac{k+1}{2}$ for $k \ge 1$.

Lemma 4. (Support shrinkage for accelerated proximal gradient descent with support projection in Algorithm 3) The sequence $\{\mathbf{z}^{(k)}\}_{k=1}^{\infty}$ and $\{\mathbf{x}^{(k)}\}_{k=1}^{\infty}$ generated by Algorithm 3 satisfy

$$\operatorname{supp}(\mathbf{z}^{(k+1)}) \subseteq \operatorname{supp}(\mathbf{z}^{(k)}), \tag{55}$$

$$\operatorname{supp}(\mathbf{x}^{(k+1)}) \subseteq \operatorname{supp}(\mathbf{x}^{(k)}), \tag{56}$$

namely the support of both sequences shrinks.

Proof of Lemma 4. We prove this Lemma by mathematical induction, and we will prove that for all $\bar{k} > 1$,

$$\operatorname{supp}(\mathbf{z}^{(\bar{k}+1)}) \subseteq \operatorname{supp}(\mathbf{z}^{(\bar{k})}). \tag{57}$$

When $\bar{k} = 1$, we first show that $\operatorname{supp}(\mathbf{z}^{(2)}) \subseteq \operatorname{supp}(\mathbf{z}^{(1)})$, i.e. the support of $\mathbf{z}^{(k)}$ shrinks after the first iteration.

It is now verified that (57) hold for $\bar{k}=1$. Suppose (57) holds for all $\bar{k} \leq k'$ with $k' \geq 1$. We now consider the case that $\bar{k}=k'+1$.

Let $\mathbf{q}^{(k'+1)} = -s\nabla g(\mathbf{w}^{(k'+1)})$ and $\tilde{\mathbf{x}}_j^{(k'+2)} = \mathbf{w}^{(k'+1)} - s\nabla g(\mathbf{w}^{(k'+1)})$. Then $\mathbf{x}_j^{(k'+2)} = 0$ due to the update rule (9) for any $j \notin \operatorname{supp}(\mathbf{w}^{(k'+1)})$ and

$$|\tilde{\mathbf{x}}_{j}^{(k'+2)}| \le sG \le \sqrt{2\lambda s}.$$
 (58)

Because $s \leq \frac{2\lambda}{G^2}$, the zero elements of $\mathbf{w}^{(k'+1)}$ remain unchanged in $\mathbf{z}^{(k'+2)}$. According to the support projection operation in (8), $\operatorname{supp}(\mathbf{w}^{(k'+1)}) \subseteq \operatorname{supp}(\mathbf{z}^{(k'+1)}) = \mathbf{S}'$. It follows that $\operatorname{supp}(\mathbf{z}^{(k'+2)}) \subseteq \operatorname{supp}(\mathbf{w}^{(k'+1)}) \subseteq \operatorname{supp}(\mathbf{z}^{(k'+1)})$. Therefore, (57) holds for $\bar{k} = k' + 1$. It follows that (57) holds for all $\bar{k} \geq 1$.

Now we prove (56), i.e. that for all $k \ge 1$ $\operatorname{supp}(\mathbf{x}^{(k+1)}) \subseteq \operatorname{supp}(\mathbf{x}^{(k)})$.

We have already shown that for all $k \geq 1$, $\operatorname{supp}(\mathbf{x}^{(k)}) = \operatorname{supp}(\mathbf{z}^{(\tilde{k})})$ for some $\tilde{k} \leq k$. Note that $\mathbf{x}^{(k+1)} = \mathbf{z}^{(k+1)}$ or $\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)}$. In the latter case, we trivially have $\operatorname{supp}(\mathbf{x}^{(k+1)}) = \operatorname{supp}(\mathbf{x}^{(k)})$. In the former case, $\operatorname{supp}(\mathbf{x}^{(k+1)}) = \operatorname{supp}(\mathbf{z}^{(k+1)}) \subseteq \operatorname{supp}(\mathbf{z}^{(\tilde{k})}) = \operatorname{supp}(\mathbf{x}^{(k)})$ because $\tilde{k} \leq k < k+1$. Therefore, (56) holds for all $k \geq 1$.

Theorem 4. (Convergence of Monotone Accelerated Proximal Gradient Descent for the ℓ^0 regularization problem (1)) Suppose $s \leq \min\{\frac{2\lambda}{G^2}, \frac{1}{L}\}$, and \mathbf{x}^* is a limit point of $\{\mathbf{x}^{(k)}\}_{k=0}^{\infty}$ generated by Algorithm 3. There exists $k_0 \geq 1$ such that

$$F(\mathbf{x}^{(m+1)}) - F(\mathbf{x}^*) \le \frac{4}{(m+1)^2} W^{(k_0)}$$
 (59)

for all $m \geq k_0$, where

$$W^{(k_0)} \triangleq \left(\frac{1}{2s} \| (t_{k_0-1} - 1)\mathbf{x}^{(k_0-1)} - t_{k_0-1}\mathbf{z}^{(k_0)} + \mathbf{x}^* \|_2^2 + t_{k_0-1}^2 (F(\mathbf{x}^{(k_0)}) - F(\mathbf{x}^*)) \right).$$
 (60)

Proof of Theorem 4. According to Lemma 4, it can be verified that $\{\mathbf{x}^{(k)}\}_{k=0}^{\infty}$ forms at most $T_1 \leq |\mathbf{S}| + 1$ subsequences with shrinking support $\{\mathcal{X}_t\}_{t=1}^{T_1}$, and $\{\mathbf{z}^{(k)}\}_{k=0}^{\infty}$ also forms at most $T_2 \leq |\mathbf{S}| + 1$ subsequences with shrinking support, denoted by $\{\mathcal{Z}_t\}_{t=1}^{T_2}$.

Based on Lemma 2, there exists $k_1 \geq 0$ such that $\{\mathbf{x}^{(k)}\}_{k=k_1}^{\infty} \subseteq \mathcal{X}_{T_1}$. Similarly, there exists $k_2 \geq 0$ such that $\{\mathbf{z}^{(k)}\}_{k=k_2}^{\infty} \subseteq \mathcal{Z}_{T_2}$. According to Lemma 2, Let all the elements of \mathcal{X}_{T_1} have support \mathbf{S}_1 , and all the elements of \mathcal{Z}_{T_2} have support \mathbf{S}_2 . We will show that $\mathbf{S}_1 = \mathbf{S}_2$. To see this, let $k_0 = \max\{k_1, k_2\}$, then there exists $k' \geq k_0$ such that $\mathbf{x}^{(k')} = \mathbf{z}^{(k')}$. Due to the fact that $\{\mathbf{x}^{(k)}\}_{k=k_1}^{\infty} \subseteq \mathcal{X}_{T_1}$ and $\{\mathbf{z}^{(k)}\}_{k=k_2}^{\infty} \subseteq \mathcal{Z}_{T_2}$, $\mathbf{S}_1 = \sup(\mathbf{x}^{(k')}) = \sup(\mathbf{z}^{(k')}) = \mathbf{S}_2$.

Let $\mathbf{S}_1 = \mathbf{S}_2 = \mathbf{S}^*$, then all the elements of $\{\mathbf{x}^{(k)}\}_{k=k_0}^{\infty}$ and $\{\mathbf{z}^{(k)}\}_{k=k_0}^{\infty}$ have the same support \mathbf{S}^* . It follows that $\operatorname{supp}(\mathbf{x}^*) = \mathbf{S}^*$.

When supp(\mathbf{v}) = supp($\mathbf{z}^{(k+1)}$) with $k \ge k_0$, we have

$$F(\mathbf{z}^{(k+1)}) \le g(\mathbf{v}) + \langle \nabla g(\mathbf{w}^{(k)}), \mathbf{z}^{(k+1)} - \mathbf{v} \rangle + \frac{L_{\mathbf{S}'}}{2} \|\mathbf{z}^{(k+1)} - \mathbf{w}^{(k)}\|_{2}^{2} + h(\mathbf{z}^{(k+1)})$$

$$= g(\mathbf{v}) + \langle \nabla g(\mathbf{w}^{(k)}), \mathbf{z}^{(k+1)} - \mathbf{v} \rangle + \frac{L_{\mathbf{S}'}}{2} \| \mathbf{z}^{(k+1)} - \mathbf{w}^{(k)} \|_{2}^{2} + h(\mathbf{v}) + \langle \nabla g(\mathbf{w}^{(k)}) + \frac{1}{s} (\mathbf{z}^{(k+1)} - \mathbf{w}^{(k)}), \mathbf{v} - \mathbf{z}^{(k+1)} \rangle = F(\mathbf{v}) + \frac{1}{s} \langle \mathbf{z}^{(k+1)} - \mathbf{w}^{(k)}, \mathbf{v} - \mathbf{z}^{(k+1)} \rangle + \frac{L_{\mathbf{S}'}}{2} \| \mathbf{z}^{(k+1)} - \mathbf{w}^{(k)} \|_{2}^{2} \leq F(\mathbf{v}) + \frac{1}{s} \langle \mathbf{z}^{(k+1)} - \mathbf{w}^{(k)}, \mathbf{v} - \mathbf{w}^{(k)} \rangle - \frac{1}{s} \| \mathbf{z}^{(k+1)} - \mathbf{w}^{(k)} \|_{2}^{2} + \frac{L_{\mathbf{S}'}}{2} \| \mathbf{z}^{(k+1)} - \mathbf{w}^{(k)} \|_{2}^{2} = F(\mathbf{v}) + \frac{1}{s} \langle \mathbf{z}^{(k+1)} - \mathbf{w}^{(k)}, \mathbf{v} - \mathbf{w}^{(k)} \rangle - (\frac{1}{s} - \frac{L_{\mathbf{S}'}}{2}) \| \mathbf{z}^{(k+1)} - \mathbf{w}^{(k)} \|_{2}^{2}.$$
 (61)

Note that $\operatorname{supp}(\mathbf{x}^{(k)}) = \operatorname{supp}(\mathbf{x}^*) = \mathbf{S}^*$ for $k \geq k_0$. Using similar arguments in the proof of Lemma 3, let $\mathbf{v} = \mathbf{x}^{(k)}$ and $\mathbf{v} = \mathbf{x}^*$ in (61) in the proof of Lemma 4, we have

$$F(\mathbf{z}^{(k+1)}) \le F(\mathbf{x}^{(k)}) + \frac{1}{s} \langle \mathbf{z}^{(k+1)} - \mathbf{w}^{(k)}, \mathbf{x}^{(k)} - \mathbf{w}^{(k)} \rangle - (\frac{1}{s} - \frac{L}{2}) \|\mathbf{z}^{(k+1)} - \mathbf{w}^{(k)}\|_{2}^{2},$$
(62)

and

$$F(\mathbf{z}^{(k+1)}) \le F(\mathbf{x}^*) + \frac{1}{s} \langle \mathbf{z}^{(k+1)} - \mathbf{w}^{(k)}, \mathbf{x}^* - \mathbf{w}^{(k)} \rangle - (\frac{1}{s} - \frac{L}{2}) \|\mathbf{z}^{(k+1)} - \mathbf{w}^{(k)}\|_2^2.$$
 (63)

 $(62)\times(t_k-1)+(63)$, we have

$$t_{k}F(\mathbf{z}^{(k+1)}) - (t_{k} - 1)F(\mathbf{x}^{(k)}) - F(\mathbf{x}^{*})$$

$$\leq \frac{1}{s} \langle \mathbf{z}^{(k+1)} - \mathbf{w}^{(k)}, (t_{k} - 1)(\mathbf{x}^{(k)} - \mathbf{w}^{(k)}) + \mathbf{x}^{*} - \mathbf{w}^{(k)} \rangle$$

$$- t_{k} (\frac{1}{s} - \frac{L}{2}) \|\mathbf{z}^{(k+1)} - \mathbf{w}^{(k)}\|_{2}^{2}.$$
(64)

It follows that

$$t_{k}(F(\mathbf{z}^{(k+1)}) - F(\mathbf{x}^{*})) - (t_{k} - 1)(F(\mathbf{x}^{(k)}) - F(\mathbf{x}^{*}))$$

$$\leq \frac{1}{s} \langle \mathbf{z}^{(k+1)} - \mathbf{w}^{(k)}, (t_{k} - 1)(\mathbf{x}^{(k)} - \mathbf{w}^{(k)}) + \mathbf{x}^{*} - \mathbf{w}^{(k)} \rangle$$

$$- t_{k} (\frac{1}{s} - \frac{L}{2}) \|\mathbf{z}^{(k+1)} - \mathbf{w}^{(k)}\|_{2}^{2}.$$
(65)

Multiplying both sides of (65) by t_k , since $t_k^2 - t_k = t_{k-1}^2$, we have

$$t_k^2 (F(\mathbf{z}^{(k+1)}) - F(\mathbf{x}^*)) - t_{k-1}^2 (F(\mathbf{x}^{(k)}) - F(\mathbf{x}^*))$$

$$\leq \frac{1}{s} \langle t_k(\mathbf{z}^{(k+1)} - \mathbf{w}^{(k)}), (t_k - 1)(\mathbf{x}^{(k)} - \mathbf{w}^{(k)}) + \mathbf{x}^* - \mathbf{w}^{(k)} \rangle$$

$$- (\frac{1}{s} - \frac{L}{2}) ||t_k(\mathbf{z}^{(k+1)} - \mathbf{w}^{(k)})||_2^2$$

$$\leq \frac{1}{s} \langle t_{k}(\mathbf{z}^{(k+1)} - \mathbf{w}^{(k)}), (t_{k} - 1)(\mathbf{x}^{(k)} - \mathbf{w}^{(k)}) + \mathbf{x}^{*} - \mathbf{w}^{(k)} \rangle
- \frac{1}{2s} \|t_{k}(\mathbf{z}^{(k+1)} - \mathbf{w}^{(k)})\|_{2}^{2}
= \frac{1}{2s} (\|(t_{k} - 1)\mathbf{x}^{(k)} - t_{k}\mathbf{w}^{(k)} + \mathbf{x}^{*}\|_{2}^{2}
- \|(t_{k} - 1)\mathbf{x}^{(k)} - t_{k}\mathbf{z}^{(k+1)} + \mathbf{x}^{*}\|_{2}^{2}).$$
(66)

Note that supp $((t_k - 1)\mathbf{x}^{(k)} + \mathbf{x}^*) \subseteq \mathbf{S}^*$ and $(\mathbf{w}^{(k)}) = \mathbf{P}_{\mathbf{S}^*}(\mathbf{u}^{(k)})$, according to Lemma C and (66), we have

$$t_{k}^{2}(F(\mathbf{z}^{(k+1)}) - F(\mathbf{x}^{*})) - t_{k-1}^{2}(F(\mathbf{x}^{(k)}) - F(\mathbf{x}^{*}))$$

$$\leq \frac{1}{2s}(\|(t_{k} - 1)\mathbf{x}^{(k)} - t_{k}\mathbf{u}^{(k)} + \mathbf{x}^{*}\|_{2}^{2}$$

$$- \|(t_{k} - 1)\mathbf{x}^{(k)} - t_{k}\mathbf{z}^{(k+1)} + \mathbf{x}^{*}\|_{2}^{2}).$$
(67)

Define $\mathbf{A}^{(k+1)} = (t_k-1)\mathbf{x}^{(k)} - t_k\mathbf{z}^{(k+1)} + \mathbf{x}^*$, then $\mathbf{A}^{(k)} = (t_{k-1}-1)\mathbf{x}^{(k-1)} - t_{k-1}\mathbf{z}^{(k)} + \mathbf{x}^*$. It can be verified that $\mathbf{A}^{(k)} = (t_k-1)\mathbf{x}^{(k)} - t_k\mathbf{u}^{(k)} + \mathbf{x}^*$. Therefore,

$$t_{k}^{2}(F(\mathbf{z}^{(k+1)}) - F(\mathbf{x}^{*})) - t_{k-1}^{2}(F(\mathbf{x}^{(k)}) - F(\mathbf{x}^{*}))$$

$$\leq \frac{1}{2s}(\|\mathbf{A}^{(k)}\|_{2}^{2} - \|\mathbf{A}^{(k+1)}\|_{2}^{2}). \tag{68}$$

Summing (68) over $k = k_0, \dots, m$ for $m \ge k_0$, we have

$$t_{m}^{2}\left(F(\mathbf{z}^{(m+1)}) - F(\mathbf{x}^{*})\right) - t_{k_{0}-1}^{2}\left(F(\mathbf{x}^{(k_{0})}) - F(\mathbf{x}^{*})\right)$$

$$\leq \frac{1}{2s}\left(\|\mathbf{A}^{(k_{0})}\|_{2}^{2} - \|\mathbf{A}^{(m+1)}\|_{2}^{2}\right) \leq \frac{1}{2s}\|\mathbf{A}^{(k_{0})}\|_{2}^{2}$$

$$= \frac{1}{2s}\|(t_{k_{0}-1} - 1)\mathbf{x}^{(k_{0}-1)} - t_{k_{0}-1}\mathbf{z}^{(k_{0})} + \mathbf{x}^{*}\|_{2}^{2}.$$
(69)

Since $t_k \geq \frac{k+1}{2}$ for $k \geq 1$, it follows from (69) that

$$F(\mathbf{z}^{(m+1)}) - F(\mathbf{x}^*)$$

$$\leq \frac{4}{(m+1)^2} \left(\frac{1}{2s} \| (t_{k_0-1} - 1) \mathbf{x}^{(k_0-1)} - t_{k_0-1} \mathbf{z}^{(k_0)} + \mathbf{x}^* \|_2^2 + t_{k_0-1}^2 (F(\mathbf{x}^{(k_0)}) - F(\mathbf{x}^*)) \right)$$

$$\triangleq \frac{4}{(m+1)^2} W^{(k_0)}.$$
(70)

References

- K. Davidson and S. Szarek. Local operator theory, random matrices and Banach spaces. In Lindenstrauss, editor, *Handbook on the Geometry of Banach spaces*, volume 1, pages 317–366. Elsevier Science, 2001.
- B. Laurent and P. Massart. Adaptive estimation of a quadratic functional by model selection. *Ann. Statist.*, 28(5):1302– 1338, 10 2000.