<u>אלגברה ב – צורת ג'ורדן 2</u>

נושאים:

1. פירוק אופרטור לצורת ג'ורדן

2. תרגילים

פירוק אופרטור לצורת ג'ורדן

מינום כי הפולינום T אופרטור. נניח כי הפולינום V מ"ו מעל V מ"ו משפט (פירוק ג'ורדן): יהי $1 \le i \le r$ לכל $\lambda_i \in F$ עבור $p_T(x) = (x - \lambda_1)^{n_1} \cdot \dots \cdot (x - \lambda_r)^{n_r}$ לכל T האופייני של T-V-V בו לV-V-V אזי קיים בסיס לV-V-V בו ל $M_T(x)=(x-\lambda_1)^{m_1}\cdot\ldots\cdot(x-\lambda_r)^{m_r}$ בו ל λ_i כאשר הבלוק הוא מטריצה ריבועית עם J_{ii} הצגה כמטריצת בלוקים אלכסונית J_{ii} את $m(J_{ii})$ - באלכסון הראשי ו1-1 באלכסון מעל הראשי, 0 בשאר המקומות. נסמן ב הסדר של J_{ij} לכל , הבלוקים המתאימים , לכל . לכל . לכל . לכל . הסדר של . לכל .

- - $\sum_{j} m(J_{ij}) = n_i \qquad .2$
- . λ_i הוא הריבוי הגיאומטרי של הערך העצמי J_{ij} הוא הספר הבלו
 - .T ע"י מכל סדר אפשרי נקבע בצורה יחידה ע"י 4.

דוגמא: נניח כי T הוא אופרטור על מ"ו ממימד 7, עם פולינום אופייני

ופולינום מינימלי . $m_T(x)=(x-2)^2(x-3)^2$ ופולינום מינימלי $p_T(x)=(x-2)^4(x-3)^3$?T האפשריות של

פתרון: d-Tיש שני ערכים עצמיים – 2 וD-S. לפי משפט הפירוק של ג'ורדן, אנחנו יודעים שעבור 2 ו- 3 יהיה לפחות בלוק אחד מגודל $2x^2$ (כי בפולינום המינימלי הם בחזקות

בפולינום האופייני, 3 מופיע בחזקת 3, לכן ל- 3 יש רק עוד בלוק . $A_{\lambda} = egin{pmatrix} \lambda & 1 \ 0 & \lambda \end{pmatrix}$ נוסף, בגודל 1. עבור הערך העצמי 2, יש שתי אפשרויות (עד כדי סדר בסיס):

נוסף, בגודל 1. עבור הערך העצמי 2, יש שתי אפשרויות (עד כדי סדר בסיס):
$$J = \begin{pmatrix} A_2 & 0 & 0 & 0 \\ 0 & A_2 & 0 & 0 \\ 0 & 0 & A_3 & 0 \\ 0 & 0 & 0 & 3 \end{pmatrix} .$$
 במקרה זה, הריבוי $J = \begin{pmatrix} A_2 & 0 & 0 & 0 \\ 0 & A_2 & 0 & 0 \\ 0 & 0 & 0 & 3 \end{pmatrix}$ במקרה זה, הריבוי הגיאומטרי של 2 ושל 3 הוא 2 כ"א.

$$\begin{pmatrix} 0 & 0 & 0 & 3 \end{pmatrix}$$
 הגיאומטרי של 2 ושל 3 הוא 2 כ"א.
$$J = \begin{pmatrix} A_2 & 0 & 0 & 0 & 0 \\ 0 & A_3 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 3 \end{pmatrix}$$
 במקרה זה, ב. יש 2 בלוקים נוספים בגודל IxI , במקרה זה במקרה זה IxI במקרה זה הריבוי הגיאומטרי של ע"ע 3 הוא 2 ושל ע"ע 2 הוא 3.

תרגילים

ואותו $p(x) = (x-c_1)^{d_1} \cdot \dots \cdot (x-c_k)^{d_k}$ ואותו פולינום אופייני $A, B \in M_{nxn}(F)$ ואותו. . דומות A,B אזי $1 \le i \le k$ לכל לכל אזי $d_i \le 3$ דומות. הראה כי אם פולינום מינימלי. פתרון: מספיק להראות שיש לשתי המטריצות אותה צורת ג'ורדן (עד כדי סדר בסיס). נסמן c_i ע"ע ע"ע. $m(x) = (x-c_1)^{r_1} \cdot ... \cdot (x-c_k)^{r_k} - B - IA$ נסתכל על ע"ע. מסוים. לפי משפט ג'ורדן, כל בלוק המתאים ל c_i - מסוים. לפי משפט ג'ורדן, כל בלוק הסדרים הוא ביוון ש $d_i \leq 3$, לכל $d_i \leq 3$ יכול להתקיים אחת מהאפשרויות הבאות: c_i - במקרה זה, יש בצורת ג'ורדן בלוק אחד, מסדר 3x3 המתאים ל - r_i - במקרה זה, יש ב. c_i - במקרה זה, יש בצורת ג'ורדן בדיוק 2 בלוקים המתאימים ל - r_i - אחד בסדר - r_i בורת ג'ורדן בדיוק 2 בלוקים המתאימים ל - r_i בורת בסדר 2.

ג. c_i במקרה זה, יש בצורת ג'ורדן בדיוק 3 בלוקים המתאימים ל - c_i מסדר 1 כ"א. – במקרה זה, יש בצורת ג'ורדן בדיוק 3 בלוקים מינימלי, לכל a, ע"ע של a, אחד מ – ביוון ש – a, בעלות אותו פולינום אופייני ופולינום מינימלי, לכל יש להן את אותה צורת ג'ורדן. א' עד ג' מתקיים עבור a, לכן יש להן את אותה צורת ג'ורדן.

.2

$$A = I + \frac{1}{2}N - \frac{1}{8}N^2$$
 מטריצה מטריצה 3x3 ממימד 3x3. הוכח ממימד מטריצה N מטריצה $A^2 = I + N$ מקיימת

- .יש שורש ריבועי. cI+N מטריצה , $c\neq 0$ כי לכל 1 כי בעזרת סעיף 2 .
 - . הסק כי לכל מטריצה הפיכה מרוכבת 3x3 יש שורש ריבועי.
- .4 שורש ביבועי. I+N שורש מסדר מסדר מסדר ויש שורש ריבועי. N-I+N

2 פתרון: כדי לפתור את סעיף 1, מספיק להעלות את A בריבוע ולקבל את התוצאה. סעיף 2 פתרון: כדי לפתור את סעיף 1 החוצה ואז $\frac{1}{c}N$ נילפוטנטית ולכן המטריצה שאנו

. $\sqrt{c}\cdot\sqrt{I+rac{1}{c}\,N}$ מחפשים היא בדיוק

___ לפתור את סעיף 4, צריך להבין מאיפה נמצא הביטוי בסעיף 1.

אנו מחפשים מטריצה A שתקיים $A^2 = I + N$, או במילים אחרות, $A = \sqrt{I + N}$. כמובן שאנו לא יודעים להוציא שורש של מטריצה. אנו כן יודעים להציב מטריצה בפולינום כלשהו ולקבל מטריצה אחרת, לכן נרצה למצוא קירוב פולינומיאלי למטריצה $\sqrt{I + N}$ - את זה נעשה כמובן בעזרת טור טיילור.

 $f(x)=\sum_{n=0}^{\infty}rac{f^{(n)}(x_0)}{n\,!}(x-x_0)^n$ נתון ע"י x_0 נתון שפיתחנו את הפונקציה בסביבת המטריצה A והצבנו A, נניח שפיתחנו את הפונקציה בסביבת המטריצה A והצבנו A.

נילפוטנטית, נדע כי הטור הוא למעשה B-A - אם נדע ש - $F(B)=\sum_{n=0}^{\infty}\frac{f^{(n)}(A)}{n!}(B-A)^n$ סופי. במקרה שלנו נרצה B-A=N ומצד שני מחפשים את f(x) וש - f(x) וש - f(x) תהיה f(x) בסביבת $f(x)=\sqrt{1+x}$ בסביבת $f(x)=\sqrt{1+x}$ בסביבת $f(x)=\sqrt{1+x}$ (כאשר $f(x)=\sqrt{1+x}$ כמוסכמה באופן $f(x)=\sqrt{1+x}$ (כאשר $f(x)=\sqrt{1+x}$ ונקבל $f(x)=\sqrt{1+x}$ הטור כמובן סופי ולכן יש נוסחה (שניתן למצוא מפורשות) לשורש של $f(x)=\sqrt{1+x}$ לכל דרגת נילפוטנטיות של $f(x)=\sqrt{1+x}$ וודע $f(x)=\sqrt{1+x}$ אם נדע של $f(x)=\sqrt{1+x}$ וודע הטור כמובן סופי ולכן יש נוסחה (שניתן למצוא מפורשות) לשורש של $f(x)=\sqrt{1+x}$