Reavaluació de Matemàtiques 1 - Febrer 2020 DIA 4: Espai vectorials.

- 1. (F2-QP11) Sigui $C = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}$. Proveu que el conjunt $S = \{A \in \mathcal{M}_2(\mathbb{R}) \mid A^tC = 2A\}$ és un subespai vectorial de $\mathcal{M}_2(\mathbb{R})$.
- 2. (F2-QT10) Considereu el subespai F = <(1,2,-1),(3,0,1),(-1,4,-3),(-10,4,-6)> de \mathbb{R}^3 .
 - (a) Trobeu una base i la dimensió de F. Esbrineu si el vector (-9,6,-6) pertany a F.
 - (b) Exteneu la base que heu trobat a l'apartat a) a una base B de \mathbb{R}^3 .
 - (c) Doneu les coordenades en base B d'un vector que en base canònica de \mathbb{R}^3 té coordenades (a,b,c).
- 3. (F2-QP13) Considerem el vectors $v_1 = \begin{pmatrix} 2 \\ 0 \\ -1 \end{pmatrix}$, $v_2 = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$, $v_3 = \begin{pmatrix} -1 \\ a \\ a+2 \end{pmatrix} \in \mathbb{R}^3$, $a \in \mathbb{R}$. Sigui $F = \langle v_1, v_2, v_3 \rangle$.
 - (a) Demostreu que F té dimensió 3 si i només si $a \neq -6$.
 - (b) Preneu a=-6. Doneu una base de F i les coordenades de $v=\begin{pmatrix} 9/2\\3\\0 \end{pmatrix}$ en aquesta base.
 - (c) Preneu a=-6. Trobeu les condicions que han de satisfer $x,\ y,\ z$ per a què el vector $\begin{pmatrix} x\\y\\z \end{pmatrix}$ pertanyi a F.
- 4. (F2-QT11) Sigui a un nombre real. Considereu el subespai

$$S_a = \{(x, y, z) \in \mathbb{R}^3 : ax + y + z = 0, \ x + ay + z = 0, \ x + y + az = 0\}, \ a \in \mathbb{R}.$$

- (a) Trobeu els valors del paràmetre a per als que el subespai S_a té dimensió 1.
- (b) Doneu una base de S_1 .
- 5. (F2-QP11) Sigui $S_1 = \langle (1,3,2,0), (-1,0,0,1), (0,1,0,-1), (5,11,4,-8) \rangle$ un subespai vectorial de \mathbb{R}^4 .
 - (a) Trobeu una base i la dimensió de S_1 .
 - (b) Proveu que els vectors (x, y, z, t) de S_1 són els que satisfan l'equació x + y 2z + t = 0.
 - (c) Sigui $S_2 = \{(x, y, z, t) \in \mathbb{R}^4 \mid x + z + t = 0, \ x 4y z + t = 0, \ 2x + y + 2t = 0\}$. Doneu la dimensió i una base de $S_1 \cap S_2$.
- 6. (F2-QT17) Sigui $\lambda \in \mathbb{R}$. Considereu el subespai de \mathbb{R}^4 següent

$$F_{\lambda} = \left\{ \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} \in \mathbb{R}^4 : x + y - 2z + t = 0, \ 3x + 2y - 3z + (2 + \lambda)t = 0, \ y - 3z + (-2\lambda - 1)t = 0 \right\}.$$

- (a) Doneu la dimensió de F_{λ} en funció del paràmetre $\lambda \in \mathbb{R}$.
- (b) Doneu una base B del subespai F_{-2} . Completeu aquesta base de F_{-2} a una base W de \mathbb{R}^4 .

(c) Doneu el vector de coordenades del vector
$$v = \begin{pmatrix} 0 \\ 3 \\ 2 \\ 1 \end{pmatrix} \in F_{-2}$$
 en la base B de l'apartat (b).

(d) Considereu el subespai
$$G = \langle \begin{pmatrix} 1 \\ 2 \\ 0 \\ 3 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \\ 1 \end{pmatrix} \rangle$$
. Quines condicions ha de satisfer un vector

$$\begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} \in \mathbb{R}^4 \text{ per ser vector de } G?$$

7. (F2-QP12) Considereu els vectors següents de $\mathcal{M}_2(\mathbb{R})$

$$u_1 = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}, \ u_2 = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \ u_3 = \begin{pmatrix} -2 & 2 \\ a & -a \end{pmatrix}$$

amb $a \in \mathbb{R}$. Doneu la dimensió del subespai $\langle u_1, u_2, u_3 \rangle$ en funció d'a i una base.

8. (F2-QP16)

(a) Calculeu la dimensió del subespai
$$F = < \begin{pmatrix} 2 \\ -1 \\ -2 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} a \\ 1 \\ 3 \end{pmatrix} > \subseteq \mathbb{R}^3$$
 segons el valor del paràmetre $a \in \mathbb{R}$.

(b) Sigui E el subespai següent de matrius:

$$E = \{ \begin{pmatrix} x & y \\ z & t \end{pmatrix} \in M_2(\mathbb{R}) : x + y + z + t = 0, x - y + z - t = 0, 3x + y + 2z = 0, 4x + 4y + 3z + 3t = 0 \}.$$

Trobeu la dimensió i una base de E.

(c) Proveu que
$$B = \left\{ \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}, \begin{pmatrix} 3 \\ 4 \\ 0 \end{pmatrix} \right\}$$
 i $B' = \left\{ \begin{pmatrix} 2 \\ -1 \\ -2 \end{pmatrix}, \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \right\}$ són bases de \mathbb{R}^3 i trobeu la matriu canvi de base $P_B^{B'}$.

9. Sigui
$$\mathcal{B} = \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} \right\}$$
 un conjunt de vectors de \mathbb{R}^4 i $v = \begin{pmatrix} 1 \\ 3 \\ 3 \\ 1 \end{pmatrix}$ un vector.

- (a) Demostreu que \mathcal{B} és una base de \mathbb{R}^4 i trobeu les coordenades de v en aquesta base.
- (b) Doneu les matrius del canvi de base $\mathcal{P}_{\mathcal{C}}^{\mathcal{B}}$ i $\mathcal{P}_{\mathcal{B}}^{\mathcal{C}}$

10. (F2-QT11) Considereu l'espai $\mathbb{R}_2[x]$ de polinomis de grau més petit o igual a 2.

- (a) Proveu que $B = \{-1 + 2x + 3x^2, x x^2, x 2x^2\}$ és una base de $\mathbb{R}_2[x]$. Doneu la matriu del canvi de base de la base B a la base canònica $C = \{1, x, x^2\}$.
- (b) Doneu les coordenades en la base B del polinomi $p(x) = -1 + x + 2x^2$.
- (c) Doneu una base del subespai $S = \{a_0 + a_1x + a_2x^2 \in \mathbb{R}_2[x] : a_1 + a_2 = 0\}$.

2