The motor programs underlying navigation in *Drosophila* larva

based on *PLoS ONE*, 6:e23180 (2011), with K. Shen, M. Klein, A. Tang, E. Kane, M. Gershow, P. Garrity, and A.D.T. Samuel

Subhaneil Lahiri

Harvard University

January 7, 2013

 $Motor\ programs\ in\ Drosophila\ larvae$

The motor programs underlying navigation in *Drosophila* larva based on PLoS ONE, 6x23180 (2011), with K. Shen, M. Klein, A. Tang, E. Kons, M. Gardson, P. Carrity, and A.D.T. Samuel

> Subhaneil Lahiri Harvard University January 7, 2013

Introduction

We will look at the motor behaviour of the *Drosophila* larva during navigational motion, paying attention to which segments are used, in which order, etc.

We want to get some insight into the circuits that control this behaviour and the role of sensory feedback by quantifying the motor output at high resolution.

Motor programs in Drosophila larvae

Introduction

2013-01-07

We will look at the motor behaviour of the Drosophila larva during navigational motion, paving attention to which segments are used, in which order, etc.

- 1. Ultimately: trace out full pathway sensory to decision to motor
- 2. future: interfere, now: just look at normal behaviour

Drosophila larva

[Hertweck (1931)]

 $\sim 10^4 \ \text{neurons}.$

Has CNS, spiking neurons,...

Many genetic tools.

Transparent \implies optogenetics.

Motor programs in Drosophila larvae

___Drosophila larva

- 1. factor of 10 < adult
- 2. unlike c. elegans
- 3. sequenced genome, $\mathsf{GAL4}/\mathsf{UAS}$ system target cell types

Outline

- Navigation and locomotion
- 2 Imaging and analysis of fluorescent muscles
- Results
- 4 Conclusions and future directions

- 1. review how D.larvae navigate, what's known about locomotion circuits
- 2. how larvae with fluorescent muscles will help us, how we use them
- 3. results of this analysis
- 4. conclusions and future directions

 $\begin{array}{c} \text{Motor programs in Drosophila larvae} \\ \begin{array}{c} \text{L} \\ \text{O-Navigation and locomotion} \end{array}$

Section 1

Navigation and locomotion

Section 1

Navigation and locomotion

Biased random walks

Alternating runs and reorientations.

Effectively point-like sensor.

Similar to E. coli and C. elegans.

Motor programs in Drosophila larvae

Navigation and locomotion

Biased random walks

- 1. longer runs in good directions
- 2. has to move sensor to measure gradients
- 3. can do more

2013-01-07

4. the thing that allows D.larvae to do more...

Head-sweeps

Moves head from side-to-side to sample environment and pick a direction to travel.

- 1. accepted
- 2. rejected

Navigation strategy

For thermo-/chemo-/photo-taxis, larva modulates:

- head-sweep frequency
- head-sweep size
- head-sweep acceptance probability

Depending on whether conditions are improving/worsening.

[Luo et al. (2010)]

- 1. turns more when things are getting worse
- 2. larger turns when things are getting worse
- 3. more likely to accept when better

Questions

Different types of head-sweep:

- Different circuits?
- When is decision made? With what info?
- Mechano-sensory feedback?

Look for differences in mechanics of different types of head-sweep.

1. difference in initiation \rightarrow makes decision before

Locomotion and sensory feedback

Crawl using peristaltic waves from posterior to anterior that lift and push the body forwards.

Several types of Multidendritic (md) sensory neurons. Repeated in each segment. Possibly used for proprioception.

[Bodmer and Jan (1987), Grueber et al. (2002)]

md neurons are used for locomotion:

ullet Turn off all types o no locomotion

- [Song et al. (2007)]
- ullet Turn off certain subsets o disrupt pattern (toothpasting)

[Hughes and Thomas (2007)]

Motor programs in Drosophila larvae

Navigation and locomotion

Locomotion and sensory feedback

- 1. We'll see lots of videos of this later.
- 2. each segments waits for posterior segment to contract.
- 3. in future: interfere

Motor programs in Drosophila larvae

___Imaging and analysis of fluorescent muscles

Section 2
Imaging and analysis of fluorescent muscles

Section 2

Imaging and analysis of fluorescent muscles

Fluorescent muscles

Mutant: w^- ; $\frac{mhc-GFP^{0110}}{CC}$

[Hughes and Thomas (2007)]

Can see segment boundaries \rightarrow measure length \rightarrow which segment contracts.

Motor programs in Drosophila larvae Imaging and analysis of fluorescent muscles -Fluorescent muscles

- 1. we see 11 segments, some people talk about A9 (terminal, too small), mouth segment (involute during early development)
- 2. can't automate this yet.

Intensity pattern

Muscles contract \rightarrow same GFP in smaller volume \rightarrow increase concentration \rightarrow increase brightness.

→ increase

1. another measure of contraction. less noisy

Apparatus

- Temperature varied from $14-16^{\circ}\mathrm{C}$ with period $300\,\mathrm{s}$.
- Movable stage keeps larva in camera frame.

Motor programs in Drosophila larvae

Imaging and analysis of fluorescent muscles

Apparatus

- 1. triggers many head-sweeps
- 2. allows comparison of head-sweepin warming/cooling

Find boundary, head, tail and bend angle automatically

Motor programs in Drosophila larvae

Imaging and analysis of fluorescent muscles

Image analysis

- 1. allows us to flag interesting bits
- 2. slowest part
- 3. automatic again. look for asymmetry
- 4. less noisy

User clicks on segment boundaries

Motor programs in Drosophila larvae

Imaging and analysis of fluorescent muscles

Image analysis

- 1. allows us to flag interesting bits
- 2. slowest part
- 3. automatic again. look for asymmetry
- 4. less noisy

Map to boundary. Find segment lengths.

Motor programs in Drosophila larvae

Imaging and analysis of fluorescent muscles

Image analysis

- 1. allows us to flag interesting bits
- 2. slowest part
- 3. automatic again. look for asymmetry
- 4. less noisy

Split segment into quadrants. Mean pixel value \rightarrow intensity.

Motor programs in Drosophila larvae

Imaging and analysis of fluorescent muscles

Image analysis

- 1. allows us to flag interesting bits
- 2. slowest part
- 3. automatic again. look for asymmetry
- 4. less noisy

Coordinate system

Motor programs in Drosophila larvae Imaging and analysis of fluorescent muscles -Coordinate system

this slide just to explain how to read graphs. Interpret later.

thorax -3 to 3, rest abdomen

- 1. Head in middle, left above, right below. Bright spots: contraction. See peristalsis go from tail to head
- 2. Head at bottom, tail at top. Remove peristalsis, just see bend. Bright: left bend, dark: right bend.

Coordinate system

Motor programs in Drosophila larvae

Imaging and analysis of fluorescent muscles

Coordinate system

this slide just to explain how to read graphs. Interpret later.

thorax -3 to 3, rest abdomen

- Head in middle, left above, right below.
 Bright spots: contraction. See peristalsis go from tail to head
- 2. Head at bottom, tail at top. Remove peristalsis, just see bend. Bright: left bend, dark: right bend.

 $\begin{array}{c} \text{Motor programs in Drosophila larvae} \\ \begin{array}{c} \text{LO-10-} \\ \text{Results} \end{array}$

Section 3

Results

Forward motion

Pulse travels from tail to head. New pulse starts after previous reaches head.

Motor programs in Drosophila larvae
CO-TO-E
Results
Forward motion

- 1. Mouth hooks drown out all else (ratio) in T1,T2.
- 2. If we interfere with sensory feedback, could use this to measure effects.

Small accepted head-sweep

Basic pattern: Kink starts around (T3,A1,A2) and propagates back.

Subsequent peristalsis starts before kink reaches tail.

Motor programs in Drosophila larvae
CO-TO-E
Results
Small accepted head-sweep

- 1. Completes head-sweep with peristalsis, not unbending.
- 2. non-overlapping

Large accepted head-sweep

Basic pattern: Kink starts around (T3,A1,A2) and propagates back. Subsequent peristalsis starts from kink, not tail.

Motor programs in Drosophila larvae 2013-01-07 Results Large accepted head-sweep

1. same as small, statistics later

Rejected head-sweep

Rejected head-sweep not undone until next one.

Motor programs in Drosophila larvae

Color Results

Rejected head-sweep

1. no unbending program

Position of initial bend

Little dependence on size or temperature.

Motor programs in Drosophila larvae
Results
Position of initial bend

2013-01-07

1. error bars ar std dev, not std err.

Position of start of peristalsis

- Transition is around $90 100^{\circ}$.
- Varies from animal to animal.
- Not fully determined by angle.

Motor programs in Drosophila larvae
CO-TO-E
Results
Position of start of peristalsis

Transition is around 90 – 100°.

Varies from arimal to arimal.

Not folly determined the arimal.

Possible explanations

- Mechanical reason?
 - $> 90^{\circ}$ tail would move wrong way.
 - $< 90^{\circ}$ starting from kink would be slower.
- Neural circuit? Stretch-sensors involved in locomotion pattern. If one side is already contracted, segment just anterior to kink might think peristaltic pulse has already reached it
- Central pattern generator? Body re-coupling in mid-cycle – dependence on head-sweep size?

Possible explanations

 Mechanical reason? > 90° tail would move wrong way. < 90° starting from kink would be slower

Stretch-sensors involved in locomotion pattern. If one side is already contracted, segment just anterior to kink might think peristaltic pulse has already reached it

Body re-coupling in mid-cycle - dependence on head-sweep size?

Motor programs in Drosophila larvae —Conclusions and future directions

Section 4

Conclusions and future directions

Conclusions

All head-sweeps start at the same segments. Same circuits? Decision on size of head-sweep made later?

Navigation results from combining two basic motor programs: peristalsis and asymmetric contraction. Pathway from sensory input \rightarrow motor output simpler than previously thought.

No "unbending" motor program.

Large head-sweeps: subsequent peristalsis starts at kink. Shows that peristalsis can start anywhere. Implications for circuits that control forward motion.

Motor programs in Drosophila larvae

Conclusions and future directions

Conclusions

2013-01-07

All head-sweeps start at the same segments. Same circuits? Decision on

size of head-sweep made later?

Navigation results from combining two basic motor programs: peristalsis and asymmetric contraction. Pathway from sensory input \rightarrow motor outpairmpler than previously thought.

No "unbending" motor program

Large head-sweeps: subsequent peristalsis starts at kink. Shows that peristalsis can start anywhere. Implications for circuits that control forward motion.

- 1. need to interfere with sensory input during head-sweep optogenetically.
- 2. only need to decide when to switch programs
- 3. can only reject by going other way.
- 4. peristalsis initiator not localised

Future directions

Interfere with motor patterns (optogenetically).

Fully automate image analysis.

Other stimuli.

Reverse crawling, hunching, and rolling.

- 1. requires next point
- 2. machine learning training data
- 3. we did temperature, could do odour. light difficult. Unlikely to be any difference.
- 4. nociceptive and rapid avoidance responses

Acknowledgements

Thanks to:

- Konlin Shen
- Anji Tang
- Mason Klein
- Liz Kane
- Ashley Carter
- Aravi Samuel
- Garrity lab

Thanks to:

Konlin Shen

Anji Tang

Mason Klain

Liz Kane

Ashley Carter

Aravi Samuel

Garrity lab

Acknowledgements

1. Last slide!

References I

Subhaneil Lahiri, Konlin Shen, Mason Klein, Anji Tang, Elizabeth Kane, Marc Gershow, Paul Garrity, and Aravinthan D. T. Samuel.

"Two alternating motor programs drive navigation in Drosophila larva".

PLoS ONE, 6:e23180, 2011, PubMed: 21858019.

L. Luo, M. Gershow, M. Rosenzweig, K. Kang, C. Fang-Yen, P. A. Garrity, and A. D. Samuel.

"Navigational decision making in Drosophila thermotaxis".

J. Neurosci., 30:4261-4272, Mar 2010, PubMed: 20335462.

Motor programs in Drosophila larvae

Conclusions and future directions

References

2013-01-07

erences I

Subbaseil Lahiri, Korlin Shen, Mason Klein, Anji Tang, Elizabeth Kan Marc Gershow, Paul Garrity, and Aravinthan D. T. Samuel. "Two alternating motor programs drive navigation in Drosophila lava"

L. Luo, M. Gershow, M. Rosenzweig, K. Kang, C. Fang-Yen, P. A. Garrity, and A. D. Sarruel.

Navigational decision making in Deocophila thermotaxis.

*J. Neurosci., 30-261–4272, Mar. 2010, PubMed: 20338-462.

References II

Rolf Bodmer and Yuh Nung Jan.

"Morphological differentiation of the embryonic peripheral neurons in Drosophila".

Development Genes and Evolution, 196:69-77, 1987.

ISSN 0949-944X.

W. B. Grueber, L. Y. Jan, and Y. N. Jan.

"Tiling of the Drosophila epidermis by multidendritic sensory neurons".

Development, 129:2867-2878, Jun 2002, PubMed:12050135.

11

Motor programs in Drosophila larvae
Conclusions and future directions
References

2013-01-07

References II

Staff Endows and Yulo Hong Jan.

"Mapphaged differentiation of the embryonic periphenal wavenum in Description."

Description:

Description: General Endows. 156:60-77, 1867.

W. B. Grueber, L. Y. Jan. and Y. N. Jan.

References III

2013-01-07

Motor programs in Drosophila larvae Conclusions and future directions

References

W. Song, M. Onishi, L. Y. Jan, and Y. N. Jan. "Peripheral multidendritic sensory neurons are necessary for rhythmic locomotion behavior in Drosophila larvae".

"A sensory feedback circuit coordinates muscle activity in Drosophila"

W. Song, M. Onishi, L. Y. Jan, and Y. N. Jan.

"Peripheral multidendritic sensory neurons are necessary for rhythmic locomotion behavior in Drosophila larvae".

Proc. Natl. Acad. Sci. U.S.A., 104:5199-5204, Mar 2007, PubMed: 17360325.

C. L. Hughes and J. B. Thomas.

"A sensory feedback circuit coordinates muscle activity in Drosophila".

Mol. Cell. Neurosci., 35:383-396, Jun 2007, PubMed:17498969.

Toothpasting

