TDT4171 Artificial Intelligence Methods Lecture 10 – Reinforcement Learning

Norwegian University of Science and Technology

Helge Langseth Gamle Fysikk 255 helge.langseth@ntnu.no

Outline

- Reinforcement Learning
 - Relation to MDPs
 - Q-learning
 - Active RL: Being explorative
- 2 Deep RL
 - Motivation
 - DQN
 - Policy-based models
- Summary

Notes to self

- Fyr opp flappy: ./demo/train_me.command i Terminal
- Testing etterpå: ./demo/run_me.command.

Learning goals for this reinforcement learning-part

Being familiar with:

- Motivation for reinforcement learning
- Relation to MDP and what makes RL difficult
- Learning part, at least Q-learning for tabular problems
- DRL motivation for general function approximators.
 High-level understanding of DQN and policy-based models.

Note! Topics on these slides are relevant for exam – even if not covered by book curriculum.

Recall: Types of learning

Unsupervised Learning

- No environmental feedback concerning correctness
- Learning system detects patterns in the data without attaching right/wrong status to them.

Supervised Learning

- Frequent environmental (e.g. teacher) feedback that includes the correct action/response.
- Many classic learning algorithms rely on this constant feedback.

Reinforcement Learning (RL)

- Occasional environmental feedback of form right/wrong or good/bad.
- Feedback often comes at the end of a long sequence of actions.

RL + Unsupervised Learning are most common in the real world. Good evidence for both in the brain.

RL: Top-level view

Loop:

- 1 The agent receives a percept: Current state and reward
- The agent updates its understanding of the environment.
- The agent decides on what to do next
- The selected action is executed in the environment.
- The environment produces a new percept (state and reward)

Edge of tomorrow (2014)

Lee Sedol: The face of RL's success

Lee Sedol vs. AlphaGo (2016)

Reinforcement learning

- Learning to act in unknown environments with only occasional feedback.
 - Feedback often comes at the end of a long sequence of actions.
- Agent learns from its own experience in the environment.
- RL involves learning the whole problem at once, not via combined sub-problems.
- Balance of exploration -vs- exploitation is key to getting complete information about the environment.
- RL often argued to be "general purpose and easy to build": Lots easier to say "Winning is 1 point, loosing is 0" than to provide vast amounts of training examples.
- Assumptions:
 - The environment is a Markov Decision Process
 - Markov assumption $\rightarrow S_t$ must hold all (relevant) info

Flavors of RL research

Dimension 1: Models for transitions?

Model-based RL: Learn (or get) an explicit transition-model, P(s'|a,s). Often learn a reward-model, too.

Model-free RL: No (explicit) transition-model:

Utility-based: Learn the utility / reward-to go.

Policy-based: Learn the policy $\pi(s)$.

Dimension 2: Fixed policy?

Passive RL: Assumes $\pi(s)$ fixed, and estimates utility for that π .

Active RL: Learns policy by exploration etc., utilizing Passiv-RL

techniques to estimate utility.

Recap: Value Iteration in the "maze"

- Agent gets rewards when entering some states. Rewards known in advance
- 2 Infinite time horizon; future rewards discounted (factor γ)
- **3** Action-outcomes random, but known $P(S_{t+1} = s' | S_t = s, a)$.
- **4** A solution defines action to choose in each state s to maximize expected discounted cumulative reward.

Recap: Value Iteration in the "maze"

Solution:

- Allocate utilities $U^*(s)$ to each state; $U^*(s)$ is the optimal expected discounted future reward when starting in s.
- For utilities we have $U^*(s) = \max_a [R(a,s) + \gamma \cdot \sum_{s'} P(s' \mid a,s) U^*(s')]$
- **3** Action selection: We follow MEU. In this example: "Move to the neighbouring state with highest utility".

Start with initial guess of $U^*(s)$, and iteratively refine it:

Things to note:

- Update rule:
 - $U^{j+1}(s) := \max_{a} [R(a,s) + \gamma \cdot \sum_{s'} P(s' \mid a,s) U^{j}(s')].$
- 2 $U^{j}(s)$ converges to the "true" utilities $U^{*}(s)$
- 3 Everything can be calculated directly from the model.

Reinforcement learning in the "maze"

- The agent gets rewards when entering some states. Rewards UNKNOWN
- 2 Infinite time horizon; future rewards discounted (factor γ)
- Model for outcome of actions is UNKNOWN, but the agent may spend (unbounded) time on learning (trial & error)
- **4** A **solution** defines action to choose in each state s to maximize expected discounted cumulative reward.

Reinforcement learning in the "maze"

Requirements:

We need something similar to value iteration, but more clever:

- The agent must explore the domain ("maze") on its own
- 2 The effect of actions in each state (both state-change and the rewards) must be learned

Can we use same techniques as before?

General idea for Value Iteration:

- Define utility $U^*(s)$ as accumulated discounted reward starting from s and following optimal policy thereafter.
- ② Calculate utility U_j iteratively so that $U_j(s) \xrightarrow{j \to \infty} U^*(s)$.
- **3** Define policy so that π_j is the **MEU** choice wrt. U_j .

Can we use the same setup when we do not know:

- The transfer distribution P(s'|s,a)
- The reward R(a,s)

Discuss with your neighbour for a couple of minutes.

Can we use same techniques as before?

General idea for Value Iteration:

- Define utility $U^*(s)$ as accumulated discounted reward starting from s and following optimal policy thereafter.
- **2** Calculate utility U_j iteratively so that $U_j(s) \xrightarrow{j \to \infty} U^*(s)$.
- **3** Define policy so that π_j is the **MEU** choice wrt. U_j .

Problems:

- Transfer distribution: Cannot use MEU without P(s'|s,a).
- Rewards: Cannot calculate $U_i(s)$ -values without R(a, s).

Can we use same techniques as before?

General idea for Value Iteration:

- Define utility $U^*(s)$ as accumulated discounted reward starting from s and following optimal policy thereafter.
- **2** Calculate utility U_j iteratively so that $U_j(s) \xrightarrow{j \to \infty} U^*(s)$.
- **3** Define policy so that π_j is the **MEU** choice wrt. U_j .

Problems:

- Transfer distribution: Cannot use MEU without P(s'|s,a).
- Rewards: Cannot calculate $U_j(s)$ -values without R(a, s).

Solution:

- Define Q(a, s): accumulated discounted reward starting by doing action a in s and following optimal policy thereafter.
- Explore the domain to estimate Q(a, s) (and $U^*(s)$, too).

Q-learning – deterministic world

We will solve the problem using "Q-learning":

- Q(a,s) is expect discounted cumulative rewards if we start by doing a in state s, and follow optimal policy thereafter.
- Assume for now that when doing a in a state s the agent always moves to the same state denoted $\delta(a, s)$.

So,
$$U^*(s) = \max_{a'} Q(a', s)$$
, and we have

$$\begin{array}{lcl} Q(a,s) & = & R(a,s) + \gamma \cdot U^*(\delta(a,s)) \\ & = & R(a,s) + \gamma \cdot \max_{a'} Q(a',\delta(a,s)) \end{array}$$

Q-learning – deterministic world

We will solve the problem using "Q-learning":

- Q(a, s) is expect discounted cumulative rewards if we start by doing a in state s, and follow optimal policy thereafter.
- Assume for now that when doing a in a state s the agent always moves to the same state denoted $\delta(a,s)$.

So, $U^*(s) = \max_{a'} Q(a', s)$, and we have

$$\begin{array}{lcl} Q(a,s) & = & R(a,s) + \gamma \cdot U^*(\delta(a,s)) \\ & = & R(a,s) + \gamma \cdot \max_{a'} Q(a',\delta(a,s)) \end{array}$$

The updating function / Bellman equation

$$\hat{Q}(a,s) \leftarrow R(a,s) + \gamma \cdot \max_{a'} \hat{Q}(a',\delta(a,s))$$

We are now sure $\hat{Q}(a,s)$ converges to the "true" utilities

Deterministic Q-learning – In pictures

$$Q(A_t, S_t) = R(A_t, S_t) + \gamma \cdot R(A_{t+1}, S_{t+1}) + \dots$$

$$S_t: s \quad A_t: a \quad S_{t+1}: \delta(a,s)$$

- States given deterministically, actions chosen according to π .
- For given π , expanding a path until termination gives $Q(a_t, s_t)$.

Deterministic Q-learning – In pictures

- Alternative: Utility from $\delta(a,s)$ downwards is $Q(a',\delta(a,s))$.
- Rational π is MEU, so $\max_{a'} Q(a', \delta(a, s))$ tells us all.

Updating \hat{Q} — An example

An agent located in state s_1 (Left Fig.) is doing Q-learning. It performs a_{right} and ends up in s_2 (Right Fig.).

Use this info to update $\hat{Q}\left(a_{\mathsf{right}}, s_1\right)$:

$$\begin{split} \hat{Q} \left(a_{\mathsf{right}}, s_1 \right) &:= & R(a_{\mathsf{right}}, s_1) + \gamma \cdot \max_{a'} \hat{Q}(a', s_2) \\ &= & -0.1 + 0.9 \; \max\{6.3, 8.1, 10.0\} = \textcolor{red}{8.9} \end{split}$$

Demo: RL-sim

RL-Sim, Q-leaning with maze 8_big.maze. Parameters: PJOG=epsilon=0.0. Animate=Off Compare update-path for one episode with one update in Value Iteration, same maze, same parameters.

Nondeterministic Case

Q learning generalizes to nondeterministic worlds:

$$\hat{Q}_n(a,s) \leftarrow (1-\alpha_n)\hat{Q}_{n-1}(a,s) + \alpha_n[R(a,s) + \gamma \cdot \max_{a'} \hat{Q}_{n-1}(a',s')]$$
 where $\alpha_n = \frac{1}{1+\mathrm{visits}_m(a,s)}$ and we observed the move $(a,s) \rightarrow s'$.

Do you think this is a meaningful way of doing it? ... and if so, what is the intuition behind this specific update?

Discuss with your neighbour for a couple of minutes

Nondeterministic Case

Q learning generalizes to nondeterministic worlds:

$$\hat{Q}_n(a,s) \leftarrow (1-\alpha_n)\hat{Q}_{n-1}(a,s) + \alpha_n[R(a,s) + \gamma \cdot \max_{a'} \hat{Q}_{n-1}(a',s')]$$
 where $\alpha_n = \frac{1}{1+\mathrm{visits}_n(a,s)}$ and we observed the move $(a,s) \rightarrow s'$.

Intuition:

- Setting $\hat{Q}_n(a,s) = R(a,s) + \gamma \cdot \max_{a'} \hat{Q}_{n-1}(a',s')$ is bad. Depends on the draw of $s' \sim P(s'|a,s)$.
- $\hat{Q}_{n-1}(a,s)$ is the accumulated knowledge of what action a in state s leads to. It is based on visits a observations.
- Do it once more, and sample $R(a,s) + \gamma \cdot \max_{a'} \hat{Q}_{n-1}(a',s')$.
- $\hat{Q}_n(a,s)$: A weighted average of old and new information.
- Weights proportional to the number of trials: Old info is visits $_n(a,s)$ as important as the new (single observation) info.
- After normalization, new info is weighted α_n , old with $1 \alpha_n$.

Non-deterministic Q-learning – In a picture

- Step through environment with $s' \sim P(S_{t+1}|S_t = s, A_t = a)$.
- Gives a sample for Q(a, s), in general not "correct" value.

TD Learning

We already found a way to generalize Q learning to nondeterministic worlds:

$$\hat{Q}(a,s) \leftarrow (1-\alpha)\hat{Q}(a,s) + \alpha \left[R(a,s) + \gamma \cdot \max_{a'} \hat{Q}(a',s') \right].$$

Re-order terms to get the TD (temporal difference) formulation:

$$\hat{Q}(a,s) \leftarrow \hat{Q}(a,s) + \alpha \left[R(a,s) + \gamma \max_{a'} \hat{Q}(a',s') - \hat{Q}(a,s) \right]$$

- We interpret $R(a,s) + \gamma \max_{a'} \hat{Q}(a',s') \hat{Q}(a,s)$ as "error". Should be zero (in expectation) if \hat{Q} follows Bellman!
- ullet We interpret lpha as a "learning rate". Sometimes kept fixed.
- We denote $R(a,s) + \gamma \max_{a'} \hat{Q}(a',s')$ the TD(0)-target. We can do more, e.g., $R(a,s) + \gamma R(a',s') + \gamma^2 \max_{a''} \hat{Q}(a'',s'')$.

Active RL: Greedy vs. Explorative

Simplified domain to understand Active RL:

The *k*-bandit problem (no time-structure)

Confronted with k slot-machines we need to decide on a policy: How to earn the most?

Each has an unknown probability of giving \$10 payout.

Active RL: Greedy vs. Explorative

Simplified domain to understand Active RL:

The k-bandit problem (no time-structure)

Confronted with k slot-machines we need to decide on a policy: How to earn the most?

- Each has an unknown probability of giving \$10 payout.
- Natural to use 1 coin on each machine (?)

Active RL: Greedy vs. Explorative

Simplified domain to understand Active RL:

The k-bandit problem (no time-structure)

Confronted with k slot-machines we need to decide on a policy: How to earn the most?

- Each has an unknown probability of giving \$10 payout.
- Natural to use 1 coin on each machine (?)
- We will have rough estimates of how good each machine is (here: probability of winning \$10). How to keep learning?

Action selection – Exploitation vs. Exploration

In a state s we should base our action selection on \hat{Q} :

Greedy: Choose $\arg \max_{a} \hat{Q}(a, s)$ (No!!)

Random: Choose an action on random, all equally likely (No!!)

 ϵ -greedy: With probability ϵ choose a random action, with $1-\epsilon$

be greedy. (OK, but finding a good ϵ not easy)

Guided: Each action a is chosen with probability proportional to $k^{\hat{Q}(a,s)}$ where k > 1 typically grows as agent learns

more. (Sure, but finding k can be tricky)

UCB: Choose $\arg\max_a \hat{Q}(a,s) + c\sqrt{\frac{\log(N_s)}{N_a}}$. Typical value for c is $c \sim 2$. (Yes)

(... and there are other techniques as well)

Action selection – Example w/ continuous rewards

- There are k=10 bandits to choose from.
- Each has a separate random reward scheme (mean values differ, standard deviation is 1 for all bandits).
- Best choice is to go for Bandit 3 all the time, but the agent doesn't know that ⇒ Exploration!

Action selection – Example w/ continuous rewards

ϵ -greedy:

- Probability ϵ : Greedy; Probability 1ϵ : Random.
- Any $\epsilon > 0$ will solve the problem (eventually); $\epsilon = 0$ fails stays with winner from first round.
- Too small ϵ makes exploration slow; too high and you keep wasting money on unguided (suboptimal) exploration.

Action selection – Example w/ continuous rewards

UCB:

- Upper Confidence Bound: $\arg \max_a \hat{Q}(a,s) + c \sqrt{\frac{\log(N_s)}{N_a}}$.
- UCB better than best ϵ -greedy here not uncommon!
- UCB is typically not that sensitive to the c value.

Full algorithm: Q-learning in discrete state-spaces

Implementation of $\pi(s)$ using tabular Q-learning:

```
function Q-LEARNING-AGENT(percept) returns an action
  inputs: percept, a percept indicating the current state s' and reward signal r
  persistent: Q, a table of action values indexed by state and action, initially zero
              N_{sa}, a table of frequencies for state-action pairs, initially zero
              s, a, the previous state and action, initially null
```

```
if s is not null then
    increment N_{sa}[s, a]
    Q[s,a] \leftarrow Q[s,a] + \alpha(N_{sa}[s,a])(r + \gamma \max_{a'} Q[s',a'] - Q[s,a])
s, a \leftarrow s', \operatorname{argmax}_{a'} f(Q[s', a'], N_{sa}[s', a'])
return a
```

Note:

- Update of Q using TD; α can depend on no. (s, a)-visits
- f implements action selection. Again can use no. (s, a)-visits; this is needed by UCB (and some others).

Example of a full system: Flappy Bird

State-description:

- Bird's distance to nearest pipe:
 - Along x-axis: Δ_x
 - Along y-axis: Δ_y
- Bird's velocity along y-axis: v_y

Other info:

- Legal actions known: Flap or not
- Rewards:
 - Incentivized to live:
 - Incentivized to pass pipes;
 - Punished if it dies;
 - Crash is terminal.

The plan: Q-learning!

- State is a tuple with discretized values of Δ_x , Δ_y , and v_y ;
- Description incomplete \rightarrow Consider domain non-deterministic.

Deep RL

- Flappy needs a discretized state-description:
 - A coarse discretization (→ imprecise state-representation) will prevent optimal behaviour.
 - Finer discretization of s means Q(a,s) will be harder to learn.
 - Would be better to **not discretize the state**, and rather learn some function $f_a(\cdot)$ so that $f_a(s) = Q(a,s) \ \forall s$.

- Flappy needs a discretized state-description:
 - A coarse discretization (→ imprecise state-representation) will prevent optimal behaviour.
 - Finer discretization of s means Q(a, s) will be harder to learn.
 - Would be better to **not discretize the state**, and rather learn some function $f_a(\cdot)$ so that $f_a(s) = Q(a, s) \ \forall s$.
- Idea: Make a neural network to approximate Q(a, s)
 - Network input:
 - In general: State description rich enough to ensure the Markov assumption.
 - For Flappy: Raw measurements (or screen-grab/s of game)
 - Network output:
 - In general: One output per action, defined so that for input s, output-node j gives $\hat{Q}(a_j, s)$. A single NN covers all actions. Weight-sharing speeds up learning.
 - For Flappy: Two outputs, one for "flap" and one for "nothing"
 - This setup is known as the **Deep Q-Network** (DQN), works for general s, discrete action-space.

Deep RL

- Flappy needs a discretized state-description:
 - A coarse discretization (→ imprecise state-representation) will prevent optimal behaviour.
 - Finer discretization of s means Q(a,s) will be harder to learn.
 - Would be better to **not discretize the state**, and rather learn some function $f_a(\cdot)$ so that $f_a(s) = Q(a,s) \ \forall s$.

- Input: 4 last screen-grabs from the game:
 - Each screen-grab is a (width \times height) matrix of grey-scale values (floats between 0 and 1)
 - We have four of them, giving a tensor of size $(80 \times 80 \times 4)$
- Model: Some conv.layers, some dense layers. ϵ -greedy.
- Output: Values for $\hat{Q}(a = \text{nothing}, s)$ and $\hat{Q}(a = \text{flap}, s)$.
- Learning: Tune weights so that we ensure

$$\left[R(a,s) + \gamma \cdot \max_{a'} \hat{Q}(a',s') \right] - \hat{Q}(a,s) \approx 0.$$

• Results: Runs "forever"! (Do run_me.command if time.)

Tables vs. functional approximators

Recall how tabular learning relates to TD-error:

$$\hat{Q}(a,s) \leftarrow \hat{Q}(a,s) + \alpha \left[R(a,s) + \gamma \max_{a'} \hat{Q}(a',s') - \hat{Q}(a,s) \right]$$

- Updates are local and isolated to the given s.
- No such thing as isolated updates in a neural network.
 - Must assume that "similar states" have similar Q-values.
 - What "similar states" means is decided during learning.
- Makes sense to learn a model that minimizes TD error

$$R(a, s) + \gamma \max_{a'} \hat{Q}(a', s') - \hat{Q}(a, s),$$

and "hope" the representation of s enforces these similarities.

• In practice, one uses L_2 (or Huber) loss on the TD error.

Rough algorithm:

- For t = 0, ...:
 - Choose action: $a_t \leftarrow \max_a \hat{Q}_{\theta}(s_t, a)$ (or random; ϵ -greedy)
 - Execute in environment: $\langle s_{t+1}, r_t \rangle \leftarrow \mathsf{Execute}(a_t, s_t)$.
 - The observation $\langle s_t, a_t, r_t, s_{t+1} \rangle$ can be used for training! Gradient-step for the model defined by

$$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \eta \nabla_{\boldsymbol{\theta}} \left(y_t - \hat{Q}_{\boldsymbol{\theta}}(a_t, s_t) \right)^2,$$

where
$$y_t = r_t + \gamma \max_a \hat{Q}_{\theta}(a, s_{t+1})$$
.

Note!

- Q(a,s) means a specific output on the network. Only gradient from selected a_t used during learning.
- DQN (and DRL in general) is often explained using $V(s) = \max_a Q(a,s);$ I follow the original DQN paper here.
- Tweaks: Learning is always done using a replay buffer and typically with a stabilizing second model to get y_t .

Policy-based DRL

Setup

- DQN changes its weights to minimize TD-error. Selecting $\pi(s|\boldsymbol{\theta}) \leftarrow \max_{a} \hat{Q}_{\boldsymbol{\theta}}(a,s)$ produces (close to) optimal agents.
- Policy-based methods rather learn π_{θ} directly weights chosen to optimize performance.

Positives

- Can handle continuous and/or high-dim action spaces;
- Computationally more efficient (sometimes);
- Useful for stochastic policies.

Negatives

- We need an objective to replace the TD-error;
- We need the gradient of that objective function.

Policy Gradient Theorem

- $\mathcal{J}(\theta) := \mathbb{E}_{s_0, a_t \sim \pi_{\theta}(s_t)} V_{\pi_{\theta}}(s_0)$: Expected value following π_{θ} .
- We will maximize $\mathcal{J}(\theta)$ corresponding loss is $-1 \cdot \mathcal{J}(\theta)$.

Policy Gradient Theorem

$$\nabla_{\boldsymbol{\theta}} \mathcal{J}(\boldsymbol{\theta}) \propto \sum_{s} \mu(s) \sum_{a} Q_{\pi}(a, s) \nabla_{\boldsymbol{\theta}} \pi_{\boldsymbol{\theta}}(s)[a]$$

where

- $\mu(s)$: Frequency of state-visits to s;
- $Q_{\pi}(a,s)$: Value of doing a at s then follow policy π_{θ} ;
- $\pi_{\theta}(s)[a]$: Policy's affinity for action a in state s.

Notice how nicely this works!

Gradients focus on state-action-pairs where states are frequently visited $(\mu(s))$, we have high value (Q(a,s)) and the effect on the policy is high $(\nabla_{\theta} \pi_{\theta}(s)[a])$.

Policy Gradient Theorem

- $\mathcal{J}(\theta) := \mathbb{E}_{s_0, a_t \sim \pi_{\theta}(s_t)} V_{\pi_{\theta}}(s_0)$: Expected value following π_{θ} .
- We will maximize $\mathcal{J}(\theta)$ corresponding loss is $-1 \cdot \mathcal{J}(\theta)$.

Policy Gradient Theorem

$$\nabla_{\boldsymbol{\theta}} \mathcal{J}(\boldsymbol{\theta}) \propto \sum_{s} \mu(s) \sum_{a} Q_{\pi}(a, s) \nabla_{\boldsymbol{\theta}} \pi_{\boldsymbol{\theta}}(s)[a]$$

where

- $\mu(s)$: Frequency of state-visits to s;
- $Q_{\pi}(a,s)$: Value of doing a at s then follow policy π_{θ} ;
- $\pi_{\theta}(s)[a]$: Policy's affinity for action a in state s.

Still some way to go...

There are a number of tricks to train DRL systems with policy gradients, but these are out of scope for us.

- drl_minimal.py: Interface to environments through gymnasium. Defining your own environment is immediate.
- Agents in stable_baselines3: DQN and PPO straight out of the box. Tweaking them is quite simple.

Summary

- RL: Learning to operate in unknown environments:
 - Setup fairly similar to the sequential decisions we looked at earlier, but changed focus to **Q-learning**: Find Q(a,s) for action-state-pairs
 - Where Value Iteration learns an optimal policy using the MEU principle directly, an RL agent does not have this luxury, and must explore its domain.
 - Classic RL techniques assume discrete (preferably small!) state and action-spaces. When that does not hold: **Deep RL**.