## OMEGA ACADEMY, CURSO DE MÉTODOS NUMÉRICOS.

Erika Jissel Gutiérrez Beltrán
Daniel Fernandez Delgado
Frank Edward Daza González
Johanna Arias
Freddy Sebastian Garcia

Profesor:

Walter German Magaña

Materia:

Métodos Numéricos

Universidad de San Buenaventura Cali 2014

Guía de métodos numéricos. Ingeniería Multimedia e Ingeniería de Sistemas



# **UNIDAD TRES**

#### Método de la bisección.

Este método consiste en calcular raíces que no se pueden despejar de manera sencilla aplicando el teorema de Bolzano o teorema del valor intermedio. Este algoritmo busca raíces dividiendo el intervalo a la mitad seleccionando el subintervalo de la raíz.

- Teorema de Bolzano o valor intermedio: es un teorema sobre funciones continuas reales definidas sobre un intervalo.

$$\frac{\exists \ C \in [a, b]}{f(c)} = 0$$

C es raíz de la función.



Imagen 1: gráfica con intersección en x y selección de los intervalos para hallar la raíz O ceros incluidos.

Guía de métodos numéricos.



Sí 
$$f(a) < 0$$
  $f(a) > 0$   $f(b) > 0$ 

Son cambiantes.

Para hallar la raíz se debe utilizar el siguiente procedimiento

$$x1 = \frac{a+b}{2}$$

en donde este desarrollo es la semi-suma de los extremos.

$$f(x1) < 0 \rightarrow [x1,b]$$

$$x2 = \frac{x1+b}{2}$$

y así sucesivamente para todos los valores obtenidos hasta llegar al valor de la raíz o encontrar el cero(0) que se halla en el intervalo.

En donde:

- Se tiene una función f(x)
- Se define un intervalo [a,b]
- f(a) \* f(b) < 0 para garantizar una raíz en el intervalo.

La fórmula que se utilizará en este método para hallar el error relativo es:

$$Er = \frac{|\text{rNueva} - \text{rAnt}|}{\text{rNueva}}$$

Calcular las raíces de la función x<sup>5</sup> - 3 = 0 → f(x) = x<sup>5</sup> - 3 - 0
 En el intervalo [0,4]

Guía de métodos numéricos.



$$f(0) = -3 < 0$$

$$f(4)=(4^5)-3=1.021>0$$

$$a_1 = 0$$
  $a_2 = 4$ 

$$\frac{a1+a2}{2}$$

$$\frac{0+4}{2}=2$$



Imagen 2: Demostración gráfica del procedimiento

$$f(2) = (2^5) - 3 = 29 > 0$$

Sí f(2) \* f(4) > 0 → No estará en la raíz

Pero si f(0) \* f(2) < 0  $\Rightarrow$  ahí estará la raíz

Guía de métodos numéricos.



# Nuevo intervalo [0,2]



Imagen 3: selección del nuevo intervalo [0,2]

$$a_1 = 0$$
  $a_3 = 2$ 

$$\frac{a1+a3}{2}$$

$$\frac{0+2}{2}=1$$

$$f(1) = (1^5) - 3 = -2 < 0$$

# Nuevo intervalo [1,2]

$$a_4 = 1$$
  $a_3 = 2$ 

$$a_3 = 2$$

$$\frac{a4+a3}{2}$$

$$\frac{1+2}{2} = 1.5$$

Guía de métodos numéricos.



$$f(1.5) = (1.5^5) - 3 = 4.5 > 0$$

## Nuevo intervalo [1,1.5]

$$a_4 = 1$$

$$a_4 = 1$$
  $a_5 = 1.5$ 

$$\frac{a4+a5}{2}$$

$$\frac{1+1.5}{2} = 1.25$$

$$f(1.25) = (1.25^5) - 3 = 0.05 > 0$$

## Nuevo intervalo [1,1.25]

$$a_4 = 1$$

$$a_4 = 1$$
  $a_6 = 1.25$ 

$$\frac{a4+a6}{2}$$

$$\frac{1+1.25}{2} = 1.125$$

$$f(1.125) = (1.125^5) - 3 = -1.1 < 0$$

Guía de métodos numéricos.



## Nuevo intervalo [1.25, 1.125]

$$A_6 = 1.25$$
  $a_7 = 1.125$ 

$$\frac{a6+a7}{2}$$

$$\frac{1.25 + 1.125}{2} = 1.187$$

$$f(1.187) = (1.187^5) - 3 = -0.64 < 0$$

Cuantas más iteraciones, mayor es la aproximación al resultado.

Para encontrar el error relativo en cada uno los resultados encontrados al realizar la semi-suma de los extremos de los intervalos o de los nuevos intervalos hallados se debe desarrollar el siguiente procedimiento:

#### Error relativo 1:

$$Er1 = \frac{x2 - x1}{x2 + x1}$$

$$\frac{1-2}{1+2} = -0.33$$

#### **Error relativo 2:**

$$Er2 = \frac{x3 - x2}{x3 + x2}$$

$$\frac{1.5 - 1}{1.5 + 1} = 0.2$$

Guía de métodos numéricos.



### **Error relativo 3:**

$$Er3 = \frac{x4 - x3}{x4 + x3}$$

$$\frac{1.25 - 1.5}{1.25 + 1.5} = -0.09$$

### Error relativo 4:

$$Er4 = \frac{x5 - x4}{x5 + x4}$$

$$\frac{1.125 - 1.25}{1.125 + 1.25} = -0.05$$

### **Error relativo 5:**

$$Er5 = \frac{x6 - x5}{x6 + x5}$$

$$\frac{1.187 - 1.125}{1.187 + 1.125} = 0.02$$

Guía de métodos numéricos.



### Tabla de iteraciones.

| Extremo   | Extremo | Punto Medio | Valor f(x) | Error relativo |
|-----------|---------|-------------|------------|----------------|
| Izquierdo | Derecho |             |            |                |
| 0         | 4       | 2           | 29         |                |
| 0         | 2       | 1           | -2         | -0.33          |
| 1         | 2       | 1.5         | 4.5        | 0.2            |
| 1         | 1.5     | 1.25        | 0.05       | -0.09          |
| 1         | 1.25    | 1.125       | -1.1       | -0.05          |
| 1.25      | 1.125   | 1.187       | -0.64      | 0.02           |

Guía de métodos numéricos.

