EV Range

stu239509

June 2025

1 Introduction

The aerodynamic drag power P_d is given by:

$$P_d = \frac{1}{2}\rho C_d A v^3$$

Where:

 $\rho = \text{air density (kg/m}^3)$

 $C_d = \text{drag coefficient (dimensionless)}$

 $A = \text{frontal area (m}^2)$

v = vehicle speed (m/s)

Since power is force times velocity, drag force scales with v^2 , and power with v^3 .

Energy consumption due to acceleration can be approximated by kinetic energy changes:

$$E_{acc} = \frac{1}{2}m(v_f^2 - v_i^2)$$

Where:

m = vehicle mass (kg)

 $v_i, v_f = \text{initial and final speeds (m/s)}$

Net energy consumption accounts for regenerative braking efficiency η_{regen} :

$$E_{net} = E_{acc} \times (1 - \eta_{regen})$$

Typical η_{regen} ranges from 50% to 70%.

Vehicle Weight - Heavier vehicles require more energy for acceleration and climbing. - Rolling resistance force F_r is proportional to vehicle weight:

$$F_r = mgC_r$$

Where:

g= gravitational acceleration (9.81 m/s²) $C_r=$ rolling resistance coefficient (0.01–0.015)

A 15% increase in vehicle weight can cause a 4-9% increase in energy consumption (ScienceDirect, 2025).

HVAC Energy Consumption Patterns in EVs

Key Insights

- HVAC systems are among the largest auxiliary loads, especially in extreme temperatures.
- HVAC can reduce driving range by 20-40%.
- Energy consumption depends on ambient temperature, solar heat gain, and HVAC system efficiency.

Quantitative Modeling

HVAC power consumption P_{HVAC} can be modeled as:

$$P_{HVAC} = f(T_{ambient}, T_{set}, Q_{solar}, \eta_{HVAC})$$

Where:

 $T_{ambient}$ = outside temperature

 $T_{set} = \text{cabin set temperature}$

 $Q_{solar} =$ solar heat gain

 $\eta_{HVAC} = \text{HVAC}$ system efficiency

Dynamic models (Research Gate, 2014; MDPI, 2023) simulate HVAC load variation over time.

Elevation/Slope Effects on EV Energy Usage

Key Insights

- Uphill driving increases energy consumption due to gravitational work.
- Downhill driving can recover energy via regenerative braking.
- Slope impact can improve energy consumption estimation accuracy by 5–8%.

Quantitative Relationship

Gravitational power component:

$$P_{slope} = mgv\sin(\theta)$$

Where:

 θ = road slope angle (radians)

Energy over distance Δd :

$$E_{slope} = mg\sin(\theta)\Delta d$$

Ambient Temperature Effects on Battery Performance

Key Insights

- Battery efficiency and capacity degrade outside optimal temperature range ($15\text{--}35^{\circ}\mathrm{C}).$
- Cold temperatures increase internal resistance, reducing available energy and increasing HVAC heating demand.
- Hot temperatures increase cooling load and can reduce battery lifespan.

Quantitative Effects

- Range can drop by 20–40% in cold weather (Vaisala, 2024; Geotab, 2023).
- Battery capacity C_{bat} and efficiency η_{bat} are temperature-dependent:

$$C_{bat}(T) = C_{nominal} \times f(T)$$

$$\eta_{bat}(T) = \eta_{nominal} \times g(T)$$

Where:

f(T) and g(T) are empirically derived temperature correction factors.

Comprehensive Formula Framework for Synthetic EV Range Prediction Data Generation

Overview

The total energy consumption

EC for a trip segment can be modeled as the sum of propulsion energy, auxiliary loads (including HVAC), and regenerative energy recovery:

$$EC = EC_{propulsion} + EC_{auxiliary} + EC_{HVAC} - EC_{regenerative}$$

Where each term is detailed below.

$$EC_{propulsion} = \sum \left[\left(F_{aero} + F_{roll} + F_{gravity} + F_{acc} \right) \times \Delta d \right] / \eta_{drivetrain}$$

With forces:

- Aerodynamic Drag $F_{aero} = \frac{1}{2} \rho C_d A v^2$ Air resistance Rolling Resistance $F_{roll} = mgC_r\cos(\theta)$ Tire-road friction Gravitational $F_{gravity} = mg\sin(\theta)$ Road slope effect Acceleration $F_{acc} = ma$ Inertial force from acceleration —

 $\Delta d = \text{distance increment}$

 $\eta_{drivetrain} = \text{drivetrain}$ efficiency (0.85--0.95)

Auxiliary Loads (excluding HVAC)

Includes lighting, infotainment, electronics:

$$EC_{auxiliary} = P_{aux} \times \Delta t$$

Where:

 P_{aux} is average auxiliary power (typically 100–500 W).

HVAC Energy Consumption

Modeled dynamically as:

$$EC_{HVAC} = \sum P_{HVAC}(t) \times \Delta t$$

 $P_{HVAC}(t)$ depends on ambient temperature, solar load, and HVAC system state.

Regenerative Energy Recovery

$$E_{regenerative} = \eta_{\text{regen}} \times \sum_{i=1}^{n} \frac{1}{2} m(v_i^2 - v_f^2) \quad \text{for} \quad v_i > v_f$$

Initial Battery State of Charge (SoC) and Temperature Adjustment

The usable battery energy E_{usable} is:

$$E_{usable} = C_{bat}(T) \times SoC_{init} \times V_{bat}$$

Where:

 $SoC_{init} =$ initial state of charge (fraction)

 V_{bat} = nominal battery voltage

Final Range Estimation

The predicted range R is:

$$R = \frac{E_{usable}}{EC_{per_km}}$$

Where EC_{per_km} is average energy consumption per km derived from the above components.