

非均质机场水泥道面板底脱空雷达波响应

Radar wave response of slab bottom voids in heterogeneous airport concrete pavement

张一鸣、童峥(副研究)、马涛、张伟光、范剑伟、黄晓明

东南大学 交通学院

2023年4月21日

■ 研究背景

- 研究目的
- 存在问题

■ 结果分析

- 非均质干扰影响
- 脱空关联分析

■ 研究内容

- 研究概述
- 模型构建
- 脱空设定

研究背景: 机场道面结构损伤检测

■ 研究目的

◆ 受飞机繁重荷载反复作用与复杂环境因素的影响,机场道面结构内部出现隐性病害,无法从 表面观测。受限于航班起降的严格规定,结构损伤无法采用有损技术进行检测。探地雷达具 有高完整性与高准确性的优势,常用于机场道面结构损伤检测。

研究背景: 存在的问题

■ 研究不足

◆ 实测: 厚度检测存在波动,病害实际尺寸与雷达波信号特征难以关联;

◆ <mark>仿真: 主要研究均采用层状匀质</mark>模型,雷达波在模型中仅受深度影响而衰减;

◆ 模型: 现有非均质模型是将介电常数随机分布,忽略了道面材料的真实形态。

- 研究背景
- 研究目的
- 存在问题

- 结果分析
- 非均质干扰影响
- 脱空关联分析

■ 研究内容

- 研究概述
- 模型构建
- 脱空设定

研究内容: 多相非均质电磁差分模型

■ 研究概述

◆ 依据机场道面结构组成,设定模型尺寸与时<mark>窗深度;网格大小由最小波长与横截面图像的分辨率</mark>决定;考虑天线频率特性,选择两种介电模型对匀质模型与非均质复合相的介电常数进行赋值。

研究内容: 多相非均质电磁差分模型

■ 模型构建

◆ 采用PFC3D离散元模拟重构道面材料的真实形态与空间位置,基于时域有限差分法模拟雷达 波在多相非均质材料中的传播特性。

研究内容: 多相非均质电磁差分模型

■ 脱空设定

脱空位置设定

#material: 81 0 1 0 void

介电特性赋值

不同脱空长度的波形特征

不同脱空长度的图谱特征

◆ 定义脱空左右端点的坐标信息与内部填充介质的介电特性,获取不同损伤长度与不同介质特性的脱空回波特征。

- 研究背景
- 研究目的
- 存在问题

- 结果分析
- 非均质干扰影响
- 脱空关联分析

- 研究内容
- 研究概述
- 模型构建
- 脱空设定

结果分析: 非均质扰动度

■ 非均质干扰影响 非均质测线1 -10 100 非均质测线5 匀质测线 电场强度 (V/m) 水泥面板下界面回波→ 150 ▲水泥面板上界面回波 100 -200 12 10 -50 双程走时 (ns) -100

◆ 对比匀质模型与非均质模型<mark>界面回波间的频繁抖动及脱空幅值差异</mark>,构建非均质干扰度指标, 定量评价不同天线频率激发的目标信号受非均质干扰的影响程度。

-150

结果分析: 非均质扰动度

■ 非均质干扰影响

 $HI = \frac{1}{m} \left[\sum_{i=1}^{m} \left(\frac{1}{n} \sum_{i=1}^{n} A_{heei} \right) + \sum_{i=1}^{m} \left| A_{lie}^{homo} - A_{liei}^{heme} \right| \right]$

表 2-4 非均质扰动度指标 HI 值

层位	0.5 GHz	0.6 GHz	0.8 GHz	0.9 GHz	1.0 GHz	1.2 GHz	1.5 GHz	2.0 GHz
水泥面板	15.425	15.829	17.824	18.623	24.296	41.088	88.090	168.662
水稳基层	10.619	13.161	40.570	53.719	70.055	94.790	141.458	200.781

表 2-6 不同天线频率的检测深度

天线中心频率 (GHz)	探测深度 (m)	天线中心频率 (GHz)	探测深度 (m)
-		(8112)	
2.5	0.3~0.6	1.0	0.6~1.0
2.0	0.4.07	0.0	0.75 1.5
2.0	0.4~0.7	0.9	0.75~1.5
1.5	0.5~0.8	0.5	1.5~3
1.2	-	0.4	1.5~3

表 2-7 修正后不同天线频率的优选检测深度

天线中心频率 (GHz)	探测深度 (m)	天线中心频率 (GHz)	探测深度 (m)
2.5	0.3~0.4	1.0	0.6~0.75
2.0	0.4~0.5	0.9	0.75~1.5
1.5	0.5~0.8	0.5	1.5~3
1.2	-	0.4	1.5~3

重叠雷达频段的优选

◆ 针对天线频率、有效深度与检测精度三者间的制约关系,计算<mark>背景干扰度指标</mark>,给出在满足 检测深度与精度前提下,减少非均质干扰的雷达频段。

结果分析: 脱空关联分析

■ 脱空尺寸与雷达信号的定量关联

◆ 针对脱空顶部反射波幅值随脱空长度的变化趋势,从数学理论出发推导曲线变化的<mark>临界点公式</mark>,为后续探地雷达智能识别中<mark>定量测算</mark>脱空形态提供理论依据。

结果分析: 脱空关联分析

■ 脱空尺寸与雷达信号的定量关联

◆ 针对脱空顶部反射波幅值随脱空长度的变化趋势,从数学理论出发推导曲线变化的<mark>临界点公式</mark>,为后续探地雷达<mark>定量测算</mark>脱空形态提供理论依据。

■ 研究背景

- 研究目的
- 存在问题

■ 结果分析

- 非均质干扰影响
- 脱空关联分析

■ 研究内容

- 研究概述
- 模型构建
- 脱空设定

结论展望

非均质模型构建

- 联合离散元模拟与电磁仿真技术
- 构建真实道面材料形态的非均质模型

仿真 模型 雷达 检测

雷达天线频率优选

- 提出"非均质扰动度指标"
- 细分检测深度重叠的天线频率

板底脱空定量测算

- 提出"第一临界点"与"第二临界点"
- 推导脱空尺寸与信号幅值的变化关系

病害 评估 工程 指导

三维雷达无损检测

- 建立三维非均质模型,模拟 更贴近实测数据的雷达信号;
- 脱空等病害的三维形态重构

谢跳縣听欢迎提问