Cognome:	Nome:

Esame di Applicazioni Industriali Elettriche / Elettronica

Appello I: 11/06/2019

Note

La durata della prova è di 2 ore e 30 minuti. Inserire di seguito la matricola per trovare i coefficienti da usare per determinare i parametri degli esercizi proposti.

Esercizio 1

Ricavare i parametri dell'equivalente Norton del circuito in figura ai morsetti A e B.

$$V_0 = 17 V$$

$$R_1 = 500 \Omega$$

$$R_2 = 250 \Omega$$

$$R_3 = 300 \Omega$$

$$a = k_1 + 5$$

Esercizio 2

Conoscendo il *modulo* della corrente complessa \bar{I}_0 , e sapendo che il condensatore \mathcal{C} ha valore tale da rifasare completamente il carico RL all'interno della porzione tratteggiata, determinare i valori della resistenza R e dell'induttanza L, nota la pulsazione ω del generatore sinusoidale \bar{V}_0 (si supponga il circuito in regime stazionario).

$$|\bar{V}_0| = 400 V$$

 $|\bar{I}_0| = 65 A$
 $\omega = 2 \pi 50 \ rad/s$
 $C = (k_2 + 3) \cdot 100 \mu F$

Esercizio 3

Ricavare l'espressione temporale della tensione ai capi della resistenza R_3 indicata in figura, considerando che l'interruttore viene *chiuso* all'istante t=0. Si consideri la capacità inizialmente scarica.

$$V_0 = \begin{bmatrix} R_1 & C \\ R_2 & R_3 \end{bmatrix} V_{R3}$$

$$V_0 = 12 V$$

 $R_1 = (k_3 + 4) \cdot 10 \Omega$
 $R_2 = 11 \Omega$
 $R_3 = 23 \Omega$
 $C = 100 nF$

APPELLO 1 DEL 11/06/2019 - Soluzioni

D' Determinazione della corrente di corto circuito Icc.

$$I_{cc} = \alpha I_{R_1} - I_{R_3} = \alpha \frac{V_o}{R_1} - \frac{V_{AB}}{R_3} = \alpha \frac{V_o}{R_1}$$
 perché $V_{AB} = 0$ a lausa del centreiremito

Determinazione della resistenza equivalente Req.

Generatori dipendenti -> metodo del generatore di prova.

aJen

2) Il circuito è un regime stazionario sinusoidale.

$$\overline{I_o}$$
 $\overline{I_c}$ \overline

$$\int_{C} \overline{I_{c}} = j\omega C V_{o}$$

$$\overline{I_{o}} = \overline{I_{c}} + \overline{I}$$

$$\overline{I_{c}} = \overline{V_{o}}$$

$$\overline{I}_{o} = j\omega C \overline{V}_{o} + \frac{\overline{V}_{o}}{\overline{Z}}$$

$$\overline{I}_{o} - j\omega C \overline{V}_{o} = \frac{\overline{V}_{o}}{\overline{Z}} \qquad \overline{V}_{o} \in \overline{I}_{o} \text{ in fase } (PF=1)$$

$$\overline{Z} = \frac{\overline{V}_{o}}{\overline{I}_{o} - j\omega C \overline{V}_{o}} = \frac{\overline{I}_{o} | -j\omega C | \overline{V}_{o}|}{\overline{I}_{o} | -j\omega C | \overline{V}_{o}|} = \frac{\overline{I}_{o} | -j\omega C | \overline{V}_{o}|}{\overline{I}_{o} | -j\omega C | \overline{V}_{o}|}$$

$$R = Re \{\overline{Z}\}, L = \frac{d}{\omega} \operatorname{Im} \{\overline{Z}\}$$

Sempre per rifasamento completo $|I_c|=|I_m\{I\}|$

