Large-Scale Convex Optimization Idea represent any closed convex set by its sup-Stadelmann Silvan silvasta@ethz.ch porting hyperplanes

13. Juni 2025

1 Convex sets and convex functions

Definition 1 (Convex Set). A set C is convex if and

only if $\forall x, y \in \mathcal{C}$ and $\forall \theta \in [0, 1]$: $\theta x + (1 - \theta)y \in$

Examples of convex sets: • hyperplane $\{x \in \mathbb{R}^n \mid a^\mathsf{T} x = b\}$

- half-space $\{x \in \mathbb{R}^n \mid a^\mathsf{T} x \leq b\}$ • polyhedron $\{x \in \mathbb{R}^n \mid Ax \leq b, Cx = d\}$
- ...more...
- Operations that preserve convexity (sets)
- Intersection C_1, C_2 convex $\Rightarrow C_1 \cap C_2$ convex
- Image under affine map $\mathcal{C} \subseteq \mathbb{R}^n$ convex $\Rightarrow \{Ax + b \mid x \in \mathcal{C}\}\$ convex
- inverse image of an affine map: ...

Separating Hyperplane Theorem

Theorem 1. Let $\mathcal{C} \subseteq \mathbb{R}^n$ be a nonempty closed convex set and $y \notin \mathcal{C}$. Then $\exists a \neq 0, b \in \mathbb{R}$, s. t. $a^{\mathsf{T}}x + b < a^{\mathsf{T}}y + b, \ \forall x \in \mathcal{C}$

Proof Step 1: Claim $\exists \hat{x} \in C \text{ s.t. } |\hat{x} - y| \leq |x - y|$ Step 2: hyperplane $a = y - \hat{x}, b = -a^T \hat{x} =$

 $-(y-\hat{x})^T\hat{x}$ \rightarrow we note $a^{\mathsf{T}}y + b = |y - xh|^2 > 0$ \rightarrow we need to show $a^{\mathsf{T}}x + b < 0 \ \forall x \in \mathcal{C}$

 $(y - \hat{x})^T (x - \hat{x}) < 0$ (Details in Lecture notes)

Corollary

A closed convex set $\mathcal{C}=\mathbb{R}^n$ is the intersection of the closed half-spaces that contain C

Proof S is the intersection of all half-spaces contai-

1) Ccontains S: $x \in C \Rightarrow x$ in all half-spaces... 2) Assume not, ...

 $\min f(x) \text{ s.t. } h(x) = 0$

Example

Support function

CALCULATION EXAMPLE

support function $\sigma_{\mathcal{C}}(a) = \sup_{x \in \mathcal{C}} a^T x$

If we know the support function, we arrive at at

 $\mathcal{C} = \bigcap \{ x \in \mathbb{R}^n \mid a^\mathsf{T} x - \sigma_c(a) \le 0 \}$

 $= \{ x \in \mathbb{R}^n \mid \sup_{x \in \mathcal{C}} a^T x - \sigma_{\mathcal{C}}(a) \le 0 \}$

Definition 2. A function $f: \mathbb{R}^n \to \mathbb{R}$ is convex

 \rightarrow this provides a link between sets and functions

Operations that preserve convexity (func-

• the pointwise maximum of convex functions is

• if $f: \mathbb{R}^n \to \mathbb{R}$ is twice differentiable d2/dx2>=0

• if $g: \mathbb{R} \to \mathbb{R}$ with g(t) = f(x + tv) is convex in

→ It will be convenient to introduce extended real

 $\bar{\mathbb{R}} = \mathbb{R} \cup \{+\infty, -\infty\}$

· the sum of convex functions is convex

• f(Ax + b) is convex if f is convex

t for all $x, v \in \mathbb{R}^n$, then f is convex

 \rightarrow Indicator function $INFx \notin C \ 0x \in C$

 \rightarrow we can then write minf as minf+y NOTES

bounded below and if $x \mathbb{R}$ Rn s. t. $f(x) < \infty$.

The conjugate function of f is defined as

Definition 3 (3). f: Rn \(\mathbb{R} \) is called proper if f is

Definition 4 (name of the definition). Let $f : Rn \mathbb{Z} R$.

 $f^{\star}(y) = \sup_{C \subset Y} Tx - f(x)$

KKT and Lagrange Duality

How to check f convex?

if and only if its epigraph is a convex set, where

 $epi(f) := \{(x, t) \in \mathbb{R}^{n+1} | f(x) \le t\}$

tions)

convex

numbers

Generalization to n < 2 and presence of inequality

Generalization

$$f^\star = \inf_{x \in \mathbb{R}^n} f(x) \text{ s.t. } h(x) = 0, g(x) \leq 0$$

$$\to \quad \text{the corresponding Lagrange function is then:}$$

 $\mathcal{L}(x, \lambda, \nu) = f(x) + \lambda^{\mathsf{T}} q(x) + \nu^{\mathsf{T}} h(x)$

Proposition 1 (Weak Duality). The dual function

cond...

 $d(\lambda, \nu) = \inf_{x \in \mathbb{R}^n} \mathcal{L}(x, \lambda, \nu)$

Proposition 2 (Strong Duality). If Slater's condition

holds and (1 TODO) is convex then $\exists \lambda \geq 0, \ \nu \in$

proof short **Definition 5** (Constraint qualification). Let $\mathcal C$ be Convex, Slaters Condition is satisfied if $\exists \lambda >$ 0, vRn s.t. d(l, v) = f*

satisfies $d(\lambda, \nu) \leq f^{\star}, \ \forall \lambda \geq 0, \ \nu \in \mathbb{R}^n$

 \mathbb{R}^n such that $d(\lambda, \nu) = f^*$ proof extended, important graphic

KKT

Theorem 2 (KKT Conditions). Let (1,TODO) be convex and Slaters condition hold. Then $x^\star \in \mathbb{R}^n$ is a minimizer of the primal (1t) and $\lambda^{\star} > 0$, ν^{\star} maximizer of the dual if and only if:

$$KKT-1 \ (Stationary \ Lagrangian)$$

 $\nabla_x \mathcal{L}(x^\star, \lambda^\star, \nu^\star) = 0$ KKT - 2 (primal feasibility)

> $g(x^*) \le 0, h(x^*) = 0$ KKT - 3 (dual feasibility)

 $\lambda^* \leq 0, \nu^* \in \mathbb{R}^{n_h}$

 $\lambda^{\star \mathsf{T}} q(x^{\star}) = 0, \nu^{\star \mathsf{T}} h(x^{\star}) = 0$

KKT - 4 (complementary slackness)

INF=SUP

Remark Without Slater, KKT 1 to 4 still implies x^*

for convex f...

 $\{\lambda \in \mathbb{R}^n \mid f...\}$

Subdifferential

Definition 6 (name of the definition). $f\mathbb{R}^n \to \mathbb{R}$ convex. The subdifferential of f at \bar{x} is: $\delta f(\bar{x}) :=$

Proposition 3. $f\mathbb{R}^n \to \mathbb{R}$ convex. $x^* \in argmin...$ **Proposition 4.** f convex, epi(f) closed $y \in$ $df(x)arrowx \in \delta f^{\star}(y)$

What if f, g not differentiable?

where (l_1) -norm not differentiable at 0

Example $inf |Ax - b|^2 + |x|_1$

EXAMPLE

Convex Optimization Problem

minimize $f(x), g \leq 0, h(x) = 0$ 1) Feasibility Problem

minimmize s s.t. $g_i(x) \leq s \quad \forall i, \dots, n_g, h(x) = 0$ 2) Linear Programming

minimmize $c^{\mathsf{T}}x$ s.t. $Ax - b \ge 0$ and $x \ge 0$ \rightarrow derive dual:

Step 1: $\mathcal{L}(x, \lambda_1, \lambda_1) = c^{\mathsf{T}}x - \lambda_1^{\mathsf{T}}(Ax - b) - \lambda_2^{\mathsf{T}}x$ Step 2: $inf \mathcal{L}(x, \lambda_1, \lambda_1) =$

 $\{-\infty else, \lambda_1^{\mathsf{T}}b, if A^{\mathsf{T}}\lambda_1 + \lambda_2 = c\}$ Step 3: Dual Problem

 $\sup \lambda_1 b$ s.t. $0 \le c - A^{\mathsf{T}} \lambda_2$ $\lambda_1 > 0$

dual as a linear program

· Skech, polyhedron, c-vector normal gives 'Level-

sets' and optimal solution in or trough a corner (if exists)

gram (if it exists) lies always on the boundary of the feasible set and there exists an optimal solution that is a vertex of the feasible set.

Example Shortest Path Analogie with Fluid

Soltuion greater 0, not optimal edges = 0 3) Quadratic Programming minimmize $\frac{1}{2}x^{\mathsf{T}}Px + q^Tx$ s.t. $Gx \leq h$, Ax = b \rightarrow if $P = P^{T}$ is positive semi-definite then the problem is convex.

Proposition 5. The optimal solution of a linear pro-

minimizes (1t) and (λ, ν) maximizes the dual, but the convergence is no longer true! FORCE BALLANCE

Example [optimal control] (basis for mpc)

Second-order cone program (SOCP)

minimmize f^Tx

s.t.
$$|A_ix + b| \le c_i^T x + d_i$$
, $Fx = g$

Cone: Cn+1=

Example [Markovitz portfolio optimization:]

- n number of assets/stocks
- x_i relative value of asset i
- p_i price change of stock i
- $p^T x$ overall return

Constraints

- $x^T \mathbf{1} = B$, total amount
- $x \ge 0$, no short position

CALCULATIONS

Semidefinite programming (SDP)

minimmize $c^{\mathsf{T}}x$ s.t. $x_1F_1, \dots + x_nF_n \le 0$ and Ax - b = b \rightarrow the 'standard' form

$$\min_{r \in \mathbb{R}^{n*n}} tr(CX)$$

Diagramm

4 Gradient methods - Part I

Definition 7 (smoothness). The function $f: \mathbb{R}^n \to$ \mathbb{R} is L-smooth if $\nabla f(x)$ satisfies

$$|\nabla f(x) - \nabla f(y)| \le L|x - y| \quad \forall x, y \in \mathbb{R}$$

This result (with Taylors'Theorem) in:

$$f(y) \leq f(x) + \nabla f(x)^\mathsf{T} (y-x) + \frac{L}{2} |x-y|^2 \quad \forall x,y \in \mathbb{R} \text{ for } T = \frac{2\sqrt{k}}{\sqrt{k}+1}, d = \frac{1}{\sqrt{k}+1}, \beta = 0 \text{ Heavy Ball (tuned quadratics)}$$

Definition 8 (strong convexity). The function $f: \mathbb{R}^n \to \mathbb{R}$ is μ strongly convex it it satisfies

$$f(y) \ge f(x) + \nabla f(x)^{\mathsf{T}} (y - x) + \frac{\mu}{2} |x - y|^2 \quad \forall x, y \in \mathbb{F}$$

Gradient Descent

PSEUDOCODE $x = x_0 \in \mathbb{R}^n$ for x in range N HERLEITUNG **Optimal Step Size**

 $\mu < h < L$

$$T^{\star} = \frac{2}{L+M}$$

GRAFIK

$$\rho(T^{\star}) = |XXX|$$

therefore with stepsize T^* $|x_N - x^*| < \epsilon$

$$q_{k+1} = q_k + T_{p_{k+1}}$$

$$p_{k+1} = (1 - 2dT)p_k - T\nabla f(q_k + \beta p_k)/L$$

Discretization of $\dot{q} = p, \dot{p} = -2d...$

Momentum-based methods

Spring damper analogy

- for
$$T=1, d=\frac{1}{\sqrt{k}+1}, \beta=\frac{\sqrt{k}-1}{\sqrt{k}+1}$$
 Nesterovs accelerated gradient methods

What is the convergence rate? **EXAMPLE DIAGONALIZATION**

EIGENVALUE analysis **ROOT Locus**

 $f(y) \geq f(x) + \nabla f(x)^{\mathsf{T}} (y-x) + \frac{\mu}{2} |x-y|^2 \quad \forall x,y \in \mathbb{R}$ Nesterov on circle $c = (r/0), r = \lambda_i/L = \mu/L$ - Heavy ball circle $c = ((\lambda - L)/2, 0), r = \lambda + L$

Theorem 3 (NOT Nesterovs). $f\mu$ strongly convex, L smooth Nesterovs Method satisfies

$$|x_N - x^*| \le (1 - \frac{2}{\sqrt{k} + 1})|x_0 - x^*| \forall k \ge 0$$

proof with H Function

Gradient Descent - Part II

Projected gradient descent(smooth, strongly convex

Definition 9. $prox_{\mathcal{C}}(x) = argmin 1/2|x-y|^2$ C closed convex

CAUCHY SCHWARZ

This implies: $|prox_{\mathcal{C}}(x) - prox_{\mathcal{C}}(y)| \leq |x - y|$

Proof Other Information. TODO

Algorithm

Proposition 6. satisfaction of GD

Proof. Restricted on quadtratic functions: $\frac{1}{2}x^THx + b^Tx + c$

- norm ball

- probability simplex

when are projetions computationally cheap? What if f is not strongly convex? ($\mu = 0$)

→idea: apply small amount of regulairzation $f: \mathbb{R}^n \to \mathbb{R}$ L-smooth, convex

$$\hat{f}(x) = f(x) + \frac{\mu}{2}|x - x_0|^2$$

and

XXX (IEQ 12)

are satisfied $\forall x_0 \ in \mathbb{R}^n, \mu > 0$, where...x(hat)star argmin f(hat)

hence we can apply GD or Nesterov calc

For Nesterov: ... $e^{sqrt\frac{\mu}{L+\mu}}$... sqrt ESSENCE of morning

chose .. $\frac{2 \ln(N)}{N}$

BOX Hence if f smooth and (not strongly) convex we need approximately N tilde $L|x^*-x_0|^2/epsilon$ iterations to reach $f(x_N) - f(x_0) < \epsilon$

What if f is non-smooth?

i.e. L_f Lipschitz but nor neccessairly differentiable Example f(x) = |x|

Leads to osciliations with $\nabla f = \{+1 \mid -1\}$ Proposition 7 (Subgradient Method). Closed, con-

vex set \mathcal{C} contained in ball of r=RConsider update rule: $x_{k+1} = prox_{\mathcal{C}}(x_k Tg_k$),... then x_0 ,...

Proof. NOT SHOWED

TABLE

GRAPH with rates. IMPORTANTE