APPLIED FUNCTIONAL ANALYSIS HOMEWORK 2

TOMMENIX YU
ID: 12370130
STAT 31210
DUE FRI JAN 20, 2023, 11PM

Discussed with classmates.

Exercise 1. (2.3) in book

Proof.

We first show that such an extension exists for uniform continuous f, then that it's unique, then give a counterexample to it for non-uniform continuous f.

Existence of extension:

Given $f: G \to \mathbb{R}$ uniformly continuous on open G, for every point $x \in G$, $\bar{f}(x) = f(x)$ by requirement that this is an extension. For $x \in \bar{G} \setminus G$, by definition of closeness we know that there exists some sequence $x_n \to x$.

Now we prove that the sequence in \mathbb{R} $f(x_n) \to L$ for some $L \in \mathbb{R}$. We prove this by proving that the sequence $(f(x_n))$ is Cauchy, then use completeness of \mathbb{R} we can conclude the existence of L.

For all $\varepsilon > 0$, $\exists \delta$ such that $\forall x_i, x_j \in X$ with $d(x_i, x_j) < \delta$, $|f(x_i) - f(x_j)| < \varepsilon$. But since $x_n \to x$, there exists N such that $\forall n, m > N$, $d(x_n, x_m) < \delta$ (convergent implies Cauchy). Hence, for that particular N, we have $\forall n, m > N$

$$|f(x_n) - f(x_m)| < \varepsilon$$

and since ε is arbitrary $f(x_n)$ is Cauchy, hence L exists. Let $\bar{f}(x) = L$.

We now show that it is well-defined, i.e. for any two sequences $(x_n) \to x$ and $(y_n) \to x$, the limit L is the same.

For the purpose of contradiction, assume $L_x \neq L_y$, then $|L_x - L_y| = c > 0$. Now let $\varepsilon = c/3$, then we can find corresponding δ for which $\forall a,b \in X$ with $d(a,b) < \delta$, |f(a) - f(b)| < c/3. Yet since $(x_n) \to x$ and $(y_n) \to x$, we can find N_x , N_y such that for all $n_x > N_x$, $n_y > N_y$, $d(x, x_{n_x}) < \delta/2$ and $d(x, y_{n_y}) < \delta/2$. Let $N = \max N_x$, N_y we have for any n, m > N we can get by triangle inequality

$$d(x_n, y_m) \le d(x_n, x) + d(y_m, x) < \delta/2 + \delta/2 = \delta.$$

Now $\forall n, m > N$, we have

$$c = |L_x - L_y| \le |L_x - f(x_n)| + |f(x_n) - f(y_m)| + |f(y_m) - L_y| < 3 \cdot \frac{c}{3} = c$$

where the second inequality is because $d(x, x_n) < \delta/2 < \delta$, $d(x, y_m) < \delta/2 < \delta$ and $d(y_m, x_n) < \delta$. Contradiction! So the function $\bar{f}(x)$ is well-defined.

But is it continuous? We check that it is. Fix $\varepsilon > 0$, let δ be such that if $d(x, y) < \delta$, $|f(x) - f(y)| < \varepsilon/3$ for any $x, y \in G$. Since G is dense in \overline{G} , then $\forall x \in \overline{G}$ we can find $x_n \to x$ and $y_n \to y$. By convergence we know that there exist a M such that any $n_1 > M$ we have $d(x_{n_1}, x) < \delta/3$, $d(y_{n_1}, y) < \delta/3$.

Also, by definition of \bar{f} there exists M' such that any $n_2 > M'$ we have

$$|\bar{f}(x) - \bar{f}(x_{n_2})| < \varepsilon/3$$
 and $|\bar{f}(y) - \bar{f}(y_{n_2})| < \varepsilon/3$.

Now choose $n = \max\{n_1, n_2\}$ we have

$$d(x_n, y_n) \le d(x_n, x) + d(x, y) + d(y, y_n) < \delta$$

so

$$|f(x_n) - f(y_n)| < \varepsilon/3.$$

Now we can just say that

$$|\bar{f}(x) - \bar{f}(y)| \leq |\bar{f}(x) - \bar{f}(x_n)| + |\bar{f}(x_n) - \bar{f}(y_n)| + |\bar{f}(y_n) - \bar{f}(y)| \leq 3 \cdot \frac{\varepsilon}{3} = \varepsilon$$

since f agrees with \bar{f} on G. Now since x, y are arbitrary chosen we've proven that \bar{f} is continuous.

\bar{f} is unique:

This is almost obvious after proving that \bar{f} is well-defined. If g, h both extends f, then they cannot disagree on G since they are extensions of f. If they disagree on $\bar{G} \setminus G$, then since they are both continuous, they are sequentially continuous, so for $x \in \bar{G} \setminus G$ with $x_n \to x$, by sequentially continuity

$$g(x) = \lim_{n \to \infty} g(x_n) = \lim_{n \to \infty} h(x_n) = h(x).$$

And so they must agree everywhere, i.e. $g - h \equiv 0$. So the extension is unique.

Counterexample:

Let $X = \mathbb{R}^2$, $G = \mathbb{R}^2 \setminus \{0\}$ so that it's open. Then let

$$f(x,y) := \frac{y^2}{x^2 + y^2}$$

we will get that

$$\lim_{x \to 0+} f(x,0) = 0 \neq 1 = \lim_{y \to 0+} f(0,y).$$

Also, f is continuous because it's a combination of continuous functions. It is not uniformly continuous around the origin. Anyway there's no extension, and we are done.

Exercise 2. (2.6) *in book.*

Proof.

 $C([a, b], ||\cdot||_1)$ is not complete:

First we can WLOG assume [a, b] = [0, 1] since the function $f(x) = \frac{x - a}{b - a}$ is a diffeomorphism. (This is proven in class so I assume this).

Now we construct the sequence of functions $f_n \in C[0,1]$ be $f_n(x) := x^n$. Then f_n is Cauchy under $||\cdot||_1$ norm since $\forall \epsilon > 0$, $\exists N = \left\lceil \frac{1}{\epsilon} \right\rceil$ with $\forall n \geq N$

$$\int_0^1 |f_n(x)| dx = \frac{1}{n+1} < \varepsilon$$

i.e. $||f_n||_1 < \varepsilon$. Note that $f_n > 0$ is decreasing with n, so for any $N \le n \le m$

$$||f_n - f_m||_1 = \int_0^1 |f_n(x) - f_m(x)| dx \le \int_0^1 |f_n(x)| dx < \varepsilon$$

so it's Cauchy. But the limit is the indicator function of $\{1\}$, which is not in C[0, 1], so the space is not complete.

Convergence in sup-norm means convergence in 1-norm:

If $f_n \to f$ in sup-norm we have that for any $\varepsilon > 0$, $|f_n(x) - f(x)| < \varepsilon$ for all n > N and any $x \in [a, b]$, where N is fixed. But then we have

$$\int_{a}^{b} |f_{n} - f| dx \le \varepsilon \cdot |b - a| = c \cdot \varepsilon$$

which means that by choosing $\varepsilon' = \frac{\varepsilon}{|b-a|}$ we can find the N with all n > N satisfying $||f_n - f||_1 < \varepsilon$. So $f_n \to f$ in the 1-norm.

Convergence in 1-norm does not mean convergence in sup-norm:

For the same reason as above we assume [a, b] = [0, 1] WLOG and define a sequence of "spike function"

$$f_n(x) = \begin{cases} 0 & x \in \left[0, \frac{1}{n+1}\right] \\ \frac{2n^2 + 2n}{2n+1} \left(x - \frac{1}{n+1}\right) & x \in \left(\frac{1}{n+1}, \frac{2n+1}{2n^2 + 2n}\right] \\ -\frac{2n^2 + 2n}{2n+1} \left(x - \frac{1}{n}\right) & x \in \left(\frac{2n+1}{2n^2 + 2n}, \frac{1}{n}\right] \\ 0 & x \in \left(\frac{1}{n}, 1\right] \end{cases}$$

which is nothing but a spike on $\left(\frac{1}{n+1}, \frac{1}{n}\right)$. Since it's supported only on $\left(\frac{1}{n+1}, \frac{1}{n}\right)$ and $f_n(x) \le 1$, $||f_n||_1 \le \frac{1}{n} - \frac{1}{n+1} = \frac{1}{n^2+n}$.

Now we show that $f_n \to f \equiv 0$ since $\forall \varepsilon > 0$, let N be such that $\frac{1}{N^2 + N} \le \varepsilon$, we have $\forall n > N$, $||f_n||_1 \le \varepsilon/2$, which is just

$$||f_n - f||_1 < \varepsilon$$

so $f_n \to f$ in the 1-norm.

But every two f_n share no common support and each attains 1 at some point, so $||f_n - f_m||_{\infty} = 1$ for any $n \neq m$, which means that the sequence is not Cauchy, thus doesn't converge.

Exercise 3. (2.9) *in book.*

Proof.

 $||\cdot||_w$ is a norm for w > 0 on (0, 1):

We show property by property:

(1) $||f||_w \ge 0$ and $||f||_w = 0 \iff f = 0$. Reason:

$$||f||_w = \sup_x \{w(x)|f(x)|\} \ge 0$$

since $w(x)|f(x)| \ge 0$ for all x.

$$(||f||_{w} \Rightarrow f = 0)$$
:

Assume, for contradiction that $f \neq 0$. Then $f(x) \neq 0$ at some $x \in [0, 1]$. But then w(x)|f(x)| > 0 and thus $||f||_w$, the sup, is larger than 0. Contradiction! so f = 0.

$$(||f||_w \Leftarrow f = 0)$$
:

Since f = 0 we have |f(x)| = 0 for all x and thus $||f||_w = 0$.

(2) $||\lambda f||_w = |\lambda| \cdot ||f||_w$ for $\lambda \in \mathbb{R}$.

Reason:

$$||\lambda f||_{w} = \sup_{x} \{w(x)|\lambda f(x)|\} = \lambda \sup_{x} \{w(x)|f(x)|\} = |\lambda| \cdot ||f||_{w}.$$

(3) $||f + g||_w \le ||f||_w + ||g||_w$:

Reason:

$$||f + g||_{w} = \sup_{x} \{w(x)|f(x) + g(x)|\} \le \sup_{x} \{w(x)|f(x)| + w(x)|g(x)|\}$$

$$\le \sup_{x} \{w(x)|f(x)|\} + \sup_{x} \{w(x)|g(x)|\} = ||f||_{w} + ||g||_{w}$$

So it's a norm.

 $||\cdot||_w$ is equivalent to the sup-norm for w > 0 on [0,1]:

Since w is continuous and [0, 1] is compact, its image is compact and hence bounded above and below by $0 < c \le w(x) \le C$. Now we have that

$$|c||f||_{\infty} = \sup_{x} \{c|\lambda f(x)|\} \le \sup_{x} \{w(x)|\lambda f(x)|\} \le \sup_{x} \{C|\lambda f(x)|\} = C||f||_{\infty}$$

which is the same thing as

$$c||f||_{\infty} \leq ||f||_{w} \leq C||f||_{\infty}$$

so they are equivalent.

 $||\cdot||_x$ is not equivalent to the sup-norm:

We construct the "truncated" $\frac{1}{x}$ function at $\frac{1}{n}$:

$$f_n = \begin{cases} n & x \le \frac{1}{n} \\ \frac{1}{x} & \frac{1}{n} < x \le 1 \end{cases}$$

and thus $||f_n||_x = 1$ where as $||f_n||_\infty = n$. So assume that they are equal, then $\exists c, C$ with

$$c||f||_{\infty} \leq ||f||_{x} \leq C||f||_{\infty}$$

but for any c we can find $n > \frac{1}{c}$ such that nc > 1, which means that they are not equal.

 $C([0,1],||\cdot||_x)$ is not Banach:

Define

$$f_n(x) = (1 - x)^n$$

which is nothing but the flipped x^n on the interval. Now we know that $f_n > f_m > 0$ for n < m so

$$||f_n - f_m||_x = \sup_x \{x[(1-x)^n - (1-x)^m]\} \le \sup_x \{x(1-x)^n\}.$$

Let $g_n(x) = x(1-x)^n$, then taking the derivative we get

$$g'_n(x) = (1-x)^{n-1}(1-(n+1)x)$$

so it start decreasing at $x = \frac{1}{n+1}$.

But then

$$g_n\left(\frac{1}{n+1}\right) = \frac{1}{n+1} \cdot \left(\frac{n}{n+1}\right)^n$$

taking the limit we get

$$\lim_{n \to \infty} g_n \left(\frac{1}{n+1} \right) = \lim_{n \to \infty} \frac{1}{n+1} \cdot \frac{1}{e} = 0$$

and thus $||f_n - f_m||_x \to 0$ as $N \to \infty$, so f_n is Cauchy. Yet the limit of f_n is the indicator function of $\{0\}$, hence not in the space, so the space is not Banach.

Exercise 4. (2.13) in book.

Proof. We use theorem 2.26 in book to prove this.

For $\alpha \ge 1$, since u is continuous there exists some T such that for $|t| \le T$, $u(t) \le 1$.

Let the corresponding rectangle in 2.26 be

$$R = \{(t, u) | |t| \le T, |u| \le 1\}$$

then we have $|f| = |u|^{\alpha} \le 1$ in R since $\alpha \ge 1$.

Then, let $\delta = \min\{T, 1\}$ we know that the solution is unique on $t \in [-\delta, \delta]$ since $f' \le \alpha < \infty$, i.e. it's Lipschitz on the box.

But note that u = 0 is a solution to the equation, so u = 0 is the only solution in the box.

Now that we know $u(\delta) = 0$ we can shift the box by δ to the right and using the same method prove for $t \in [0, 2\delta]$. To the left the procedure is the same. In this manner we can prove for any $t \in \mathbb{R}$, t can be reached by a finite time of shifting, thus u(t) = 0 uniquely. So u = 0 is the unique solution.

Now for $0 < \alpha < 1$, we the solution is not unique because both

$$u = 0$$

and

$$u(t)=t^{\frac{1}{1-\alpha}}$$

are solutions.

But for $\alpha = 0$ the solution is uniquely u(t) = t simply by integration.

Exercise 5. (3.5) in book.

Proof.

I don't think the first statement is correct since for the matrix

$$A = \left(\begin{array}{ccc} 3 & 1 & 1 \\ 1 & 3 & 1 \\ 1 & 1 & 3 \end{array}\right)$$

we have

$$L = \begin{pmatrix} 0 & 0 & 0 \\ -1 & 0 & 0 \\ -1 & -1 & 0 \end{pmatrix}; U = \begin{pmatrix} 0 & -1 & -1 \\ 0 & 0 & -1 \\ 0 & 0 & 0 \end{pmatrix}; D = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$

and thus

$$||L||_{\infty} + ||U||_{\infty} = 2 + 2 > 3 = ||D||_{\infty}$$

since $||\cdot||_{\infty}$ is the maximal of the sum of the absolute value of elements in rows.

However, after discussing with classmates I realized that it's a mistake updated in the new version of textbook, so I can prove that $||L+U||_{\infty} < ||D||_{\infty}$. This is just because by definition

$$||L + U||_{\infty} = \max_{j} \sum_{i \neq j}^{n} (L + U)_{ji} < \max_{j} D_{jj} = ||D||_{\infty}$$

where the inequality is the definition of diagonally domination of the matrix.

A is invertible and the scheme converge for diagonally dominant A:

First, A is invertible because for Ax = 0, assume $x \neq 0$ then there exists $|x_i| \geq |x_j|$ for all $1 \leq j \leq n$, and that $|x_i| > 0$. Then, the i-th row of Ax becomes

$$\sum_{i>1} a_{i,j} x_j = 0$$

which means

$$a_{i,i}x_i = -\sum_{j \neq i} a_{i,j}x_j$$

but we also know that (strict inequality due to $|x_i| > 0$)

$$|a_{i,i}x_i| = |a_{i,i}||x_i| > \sum_{j \neq i} |a_{i,j}||x_i| \ge \sum_{j \neq i} |a_{i,j}||x_j| \ge \left| -\sum_{j \neq i} a_{i,j}x_j \right|$$

contradiction! So |x| = 0, and thus A is invertible.

Now, for convenience let

$$f(x) = D^{-1}(L+U)x + D^{-1}b$$

and

$$g(x) = (D - L)^{-1}Ux + (D - L)^{-1}b$$

be the iterative method scheme for Jacobi and Gauss-Seidel method.

First, if these methods converge they converge to the solution of Ax = b. This is because

$$f(x) = x \Rightarrow (D - (L + U))x = b \Rightarrow Ax = b$$

since D is invertible. The same applies to

$$g(x) = x \Rightarrow ((D - L) - U)x = b \Rightarrow Ax = b$$

We now prove that the schemes converge. To prove that it converges we use the Banach contraction theorem, for which we still need to prove that the functions f and g are self maps and that they are contraction mappings.

The domain of this function is nothing but \mathbb{R}^n , and the image is in \mathbb{R}^n . So it is a self-map. It is a contraction for both f and g because

$$|f(x) - f(y)| = |D^{-1}(L + U)x + D^{-1}b - D^{-1}(L + U)y - D^{-1}b| = |D^{-1}(L + U)(x - y)|$$

Since each row of A's non-diagonal term is divided by the diagonal term, by definition $||D^{-1}(L+U)||_{\infty} < 1$, which using the fact that $\rho(A) \leq ||A||$ for any norm, we know that $\rho(D^{-1}(L+U)) < 1$. Yet this implies that $(D^{-1}(L+U))^n x \to 0$ for any $x \in \mathbb{R}^n$. Therefore there exists some n for which

$$|(D^{-1}(L+U))^n x| \le c|x|$$

for 0 < c < 1.

Let $f_n = f(f(\dots f(x) \dots))$ be the function of f applied n times. Then

$$\begin{split} |f_n(x) - f_n(y)| = & |(D^{-1}(L+U)^n x + D^{-1}(L+U)^{n-1}D^{-1}b + \dots + D^{-1}b)| \\ & - (D^{-1}(L+U)^n y + D^{-1}(L+U)^{n-1}D^{-1}b + \dots + D^{-1}b)| \\ = & |D^{-1}(L+U)^n (x-y)| < |x-y| \end{split}$$

Then f_n is a contraction by above reasoning and hence the scheme converges since f_n is a self map.

Now for the Gauss-Seidel method. First note that D - L is a lower triangular matrix with non-zero diagonal entries, thus invertible, so the method is well-defined.

Again we only need to prove $\rho((D-L)^{-1}U) < 1$ since the above n time iterative method applies exactly the same for g and similarly constructed g_n .

Note that

$$(D-L) = \begin{pmatrix} a_{11} & & & \\ a_{21} & a_{22} & & \\ \vdots & \vdots & \ddots & \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix} = D \begin{pmatrix} 1 & & & \\ \frac{a_{21}}{a_{22}} & 1 & & \\ \vdots & \vdots & \ddots & \\ \frac{a_{n1}}{a_{nn}} & \frac{a_{n2}}{a_{nn}} & \dots & 1 \end{pmatrix} := DQ$$

where

$$Q = I + N = I + \begin{pmatrix} 0 & & & \\ \frac{a_{21}}{a_{22}} & 0 & & \\ \vdots & \vdots & \ddots & \\ \frac{a_{n1}}{a_{nn}} & \frac{a_{n2}}{a_{nn}} & \dots & 0 \end{pmatrix}$$

and hence

$$Q^{-1} = (I + N)^{-1} = I - N + N^2 - N^3 + \dots$$

We know that $\sum_{n=1}^{n} (-1)^{n-1} N^n$ is a finite sum since it's nilpotent. Since each term in N has absolute value less than 1, the result in the finite is term-wise smaller than that of N (by explicit computation each term is N's corresponding term times a less than 1 number), which means that $||Q^{-1}||_{\infty} < 1$. $||D^{-1}U||_{\infty} < 1$ by diagonal dominance.

Thus

$$\rho((D-L)^{-1}U) \le ||(D-L)^{-1}U||_{\infty} \le ||Q^{-1}||_{\infty}||D^{-1}U||_{\infty} < 1$$

and by the same argument as for f we are done.

As for the convergence rate, let x be that Ax = b and $\varepsilon_k = x_k - x$. We know that for Jacobi method

$$\varepsilon_k = x_k - x = D^{-1}(L+U)x_{k-1} + D^{-1}b - (D^{-1}(L+U)x + D^{-1}b) = D^{-1}(L+U)\varepsilon_{k-1}$$
 and so the rate of convergence is $\rho(D^{-1}(L+U))$. Similarly the rate of convergence for g is $\rho((D-L)^{-1}U)$.

Exercise 6. (3.6) in book.

Proof.

Existence and uniqueness of solution for $a < \infty$:

Let

$$\Phi(f)(x) := 1 + \frac{1}{\pi} \int_{-a}^{a} \frac{1}{1 + (x - y)^2} f(y) dy$$

be a map that takes in $f \in \mathcal{C}[-a, a]$. Then Φ is a self-map if the output is also continuous.

Since f is bounded on the compact domain [-a, a], $f(y) \le B$. Thus

$$|\Phi(f)(x) - \Phi(f)(z)| \le \left| \frac{1}{\pi} \int_{-a}^{a} B\left(\frac{1}{1 + (x - y)^{2}} - \frac{1}{1 + (z - y)^{2}} \right) dy \right|$$

which is small enough when |x - z| is small due to continuity of

$$\frac{1}{1+(x-y)^2}$$

on [-a, a] (the integral can be reduced by multiplying 2a).

Hence $\Phi(f)(x)$: $\mathcal{C}[-a,a] \to \mathcal{C}[-a,a]$. Now we show that it's a contraction.

Let $f, g \in \mathcal{C}[-a, a]$ then

$$|\Phi(f)(x) - \Phi(g)(x)| = \left| \frac{1}{\pi} \int_{-a}^{a} \frac{1}{1 + (x - y)^{2}} (f(y) - g(y)) dy \right|$$

$$\leq \left| \frac{1}{\pi} ||f - g||_{\infty} \int_{-a}^{a} \frac{1}{1 + (x - y)^{2}} dy \right|$$

$$= \frac{1}{\pi} ||f - g||_{\infty} \arctan(y - x) \Big|_{-a}^{a}$$

$$\leq c||f - g||_{\infty}$$

for some $0 \le c < 1$ since $\arctan(y-x)\Big|_{-a}^{a} \frac{1}{\pi} < 1$ for any a fixed. Thus by Banach contraction mapping theorem we know that there exists a unique solution in C[-a, a] to the function $\Phi(f) = f$. Since it's continuous on a compact set it is bounded.

Non-negativity of solution:

Since if $f_n(x) \ge 0$ for all x, then $f_n(x)$ is 1 plus something positive, thus it's everywhere larger than 1. So we can just start from $f_0 \equiv 1$ and since f is the limit of this iteration it is larger than 1.

For $a = \infty$:

If $a = \infty$ the Lipschitz constant is 1 and we cannot use the contraction theorem to prove this. But (after discussing with Zihao) note that for any solution to the function f, $f_c(x) =$

f(x+c) is also a solution because

$$\begin{split} f_c(x) &= f(x+c) = 1 + \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{1}{1 + (x+c-y)^2} f(y) dy \\ &= 1 + \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{1}{1 + (x-(y-c))^2} f(y) d(y-c) = 1 + \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{1}{1 + (x-z)^2} f_c(z) d(z) \end{split}$$

and hence any shift with respect to the x axis is a solution. So if the solution is unique it is a constant, assume it is k. Then we get the equation

$$k = f(x) = 1 + \frac{k}{\pi} \int_{-\infty}^{\infty} \frac{1}{1 + (x - y)^2} d(y) = 1 + \frac{k}{\pi} \pi = 1 + k$$

which means that such k doesn't exist. So at least the solution is not unique.

Exercise 7. (3.7) in book.

Proof.

Integrating twice on u gives

$$u(x) = -\int_0^x \int_1^y [f(s) - \lambda \sin(u(s))] ds dy + C_1 x + C_2$$

where if we do the integration by part with

$$w = \int_{1}^{y} [f(s) - \lambda \sin(u(s))] ds, v = y, \quad \int w dv = wv - \int v dw$$

to get

$$u(x) = -\left[y \int_{1}^{y} [f(s) - \lambda \sin(u(s))] ds\right]_{0}^{x} + \int_{0}^{x} y d\left[\int_{1}^{y} f(s) - \lambda \sin(u(s)) ds\right] + C_{1}x + C_{2}$$

$$= -x \int_{1}^{x} [f(y) - \lambda \sin(u(y))] dy + \int_{0}^{x} y [f(y) - \lambda \sin(u(y))] dy + C_{1}x + C_{2}$$

which by evaluating at 0 we get

$$0 = u(0) = C_2$$

and by evaluating at 1 we get

$$0 = u(1) = \int_0^1 y[f(y) - \lambda \sin(u(y))]dy + C_1$$

which means

$$C_1 = -\int_0^1 y[f(y) - \lambda \sin(u(y))]dy.$$

And we get an expression of u in terms of itself:

$$u(x) = -x \int_{1}^{x} [f(y) - \lambda \sin(u(y))] dy + \int_{0}^{x} y [f(y) - \lambda \sin(u(y))] dy$$

$$-x \int_{0}^{1} y [f(y) - \lambda \sin(u(y))] dy$$

$$= \int_{x}^{1} x (1 - y) [f(y) - \lambda \sin(u(y))] dy + \int_{0}^{x} y (1 - x) [f(y) - \lambda \sin(u(y))] dy$$

$$= \int_{0}^{1} g(x, y) [f(y) - \lambda \sin(u(y))] dy$$

where

$$g(x, y) = \begin{cases} x(1 - y) & 0 \le x \le y \le 1\\ y(1 - x) & 0 \le y \le x \le 1. \end{cases}$$

Thus, we can define

$$\Phi(u)(x) = \int_0^1 g(x, y)[f(y) - \lambda \sin(u(y))]dy$$

then apply Banach contraction mapping theorem on it.

It is a self map because for u continuous, $\Phi(u)$ is nothing but a combination of continuous function, thus in C[0, 1].

It is a contraction since for u, v we have

$$|\Phi(u)(x) - \Phi(v)(x)| = \left| \int_0^1 g(x, y) [f(y) - \lambda \sin(u(y))] - g(x, y) [f(y) - \lambda \sin(v(y))] dy \right|$$

$$= |\lambda| \left| \int_0^1 g(x, y) [\sin(v(y)) - \sin(u(y))] dy \right|$$

$$\leq |\lambda| \int_0^1 |g(x, y)| \cdot |\sin(v(y)) - \sin(u(y))| dy$$

$$\leq |\lambda| \cdot |1 - 0| \cdot ||g(x, y)||_{\infty} \cdot \text{Lip}(\sin) \cdot ||u - v||_{\infty}$$

$$\leq |\lambda| \cdot ||u - v||_{\infty}$$

where the last step is because $||g(x, y)||_{\infty} \le 0$ by definition, and Lip(sin) ≤ 1 by derivative.

Hence, for $|\lambda| < 1$ we have by Banach contraction mapping theorem that there is a unique solution to the equation.

The beginning few terms in the sequence:

$$u_0 = 0;$$

$$u_1 = \Phi(u_0) = \int_0^1 g(x, y)[f(y) - \lambda \sin(0)]dy = \int_0^1 g(x, y)f(y)dy$$

which is notably the solution for -u'' = f with the same boundary value.

$$u_2 = \Phi(u_1) = \int_0^1 g(x, y) \left[f(y) - \lambda \sin \left(\int_0^1 g(x, y) f(y) dy \right) \right] dy$$
$$= u_1 - \lambda \int_0^1 g(x, y) \sin \left(\int_0^1 g(x, y) f(y) dy \right) dy.$$
$$:$$

And as we can see since it's a little bit troublesome to handle the integral within a sin function, I leave it there. But we can see the pattern that it's gradually going from the solution of -u'' = f to $-u'' = f - \lambda \sin(u)$.