Métodos Estatísticos Básicos Aula 2 - Distribuição de frequências

Prof. Regis Augusto Ely

Departamento de Economia Universidade Federal de Pelotas (UFPel)

Março de 2014

Distribuição de frequência

- Tabela primitiva (dados brutos): é uma tabela com a relação dos dados que utilizaremos, sendo que ela não foi organizada numericamente. Ex: 45, 41, 42, 41, 43, 42, 46.
- Rol: é uma tabela obtida após a ordenação dos dados (crescente ou decrescente). Ex: 41, 41, 42, 42, 43, 45, 46.
- Distribuição de frequência (sem intervalos de classe): é a condensação dos dados conforme as repetições de seus valores.

Dado	Frequência			
41	2			
42	2			
43	1			
45	1			
46	1			

Distribuição de frequência

 Distribuição de frequência com intervalo de classe: podemos agrupar os valores em vários intervalos e representá-los da seguinte maneira.

Classes	Frequência
41 ⊢ 43	4
43 ⊢ 45	1
45 ⊢ 47	2

Onde o símbolo ⊢ significa que incluímos na classe o valor à esquerda e excluímos o valor à direita.

Elementos de uma distribuição de frequência com intervalos de classe

- Classe: são os intervalos que utilizamos para organizar os dados.
 Denotamos por K o número total de classes e i o número da classe.
 Assim, na tabela anterior temos K=3 e 43 ⊢ 45 é a segunda classe, com i = 2.
- Limites de classe: são os extremos de cada classe. O menor número é o limite inferior da classe (I_i) e o maior é o limite superior (L_i). Ex: em 43 ⊢ 45, temos I₂ = 43 e L₂ = 45.
- Amplitude do intervalo de classe: é a diferença entre o limite superior e inferior da classe. Assim, h_i = L_i − I_i. Ex: em 43 ⊢ 45 temos h₂ = 2. Note que na distribuição de frequência com classe, o h_i será igual em todas as classes.

Elementos de uma distribuição de frequência com intervalos de classe

- Amplitude total da distribuição: é a diferença entre o limite superior da última classe e o limite inferior da primeira classe. AT = L(max) l(min). Ex: na tabela anterior, AT = 47 41 = 6.
- Amplitude total da amostra (Rol): é a diferença entre o valor máximo e o valor mínimo da amostra (rol). $AA = X_{max} X_{min}$. Ex: na tabela anterior, AA = 46 41 = 5. Note que AT será sempre maior ou igual a AA.
- Ponto médio de classe: é o ponto que divide o intervalo de classe em duas partes iguais $X_i = \frac{(l_i + L_i)}{2}$. Ex: em 43 \vdash 45 temos $\frac{43 + 45}{2} = 44$.

Método para construção de uma distribuição de frequências com classe

- 1) Organize os dados brutos em Rol.
- 2) Calcule a amplitude amostral AA.
- 3) Defina o número de classes (é comum utilizarmos a Regra de Sturges):

n	K (nº de classes)			
3 ⊢⊣ 5	3			
6 ⊢⊣ 11	4			
12 ⊢⊣ 22	5			
23 ⊢⊣ 46	6			
47 ⊢⊣ 90	7			
91 ⊢⊣ 181	8			
182 ⊢⊣ 362	9			

Essa regra é apenas uma sugestão, sendo n o número de dados distintos na amostra.

Método para construção de uma distribuição de frequências com classe

- 4) Decidido o número de classes, calcular a amplitude de intervalo de classe, sendo $h > \frac{AA}{K}$. Como AA = 5, no nosso exemplo, e K=3, então $h > \frac{5}{3} = 1,66$; e podemos escolher h=2.
- 5) Agora montamos a tabela, cuidando para não aparecer classes com frequência zero. A primeira classe inicia no menor número da amostra até esse mesmo número mais h. Assim, no exemplo, 41 ⊢ 41 + h ⇒ 41 ⊢ 43. E assim por diante.

Definições de frequências

- Frequência simples ou absoluta: são os valores que representam o número de dados de cada classe, denotado por f_i . Temos $\sum_i f_i = n$.
- Frequência relativa: sao os valores das razões entre as frequências absolutas de cada classe e a frequência total da distribuição, denotada por fr_i . Temos $\sum fr_i = 1$.
- Frequência simples acumulada: é o total das frequências de todos os valores inferiores ao limite superior do intervalo de uma determinada classe, denotada por F_i.
- Frequência relativa acumulada: é a frequência acumulada da classe, dividida pela frequência total da distribuição, denotada por Fr_i.
- Assim, se os dados são 41, 41, 42, 42, 43, 45, 46, temos:

Classes	fi	fr _i	Fi	Fri	Xi
41 ⊢ 43	4	4/7	4	4/7	42
43 ⊢ 45	1	1/7	5	5/7	44
45 ⊢ 47	2	2/7	7	1	46
Total	7	1			

Representação gráfica

- A representação gráfica identifica as características da distribuição dos dados, como dispersão e simetria.
- Gráficos de barras: utilizado para a representação das distribuições de frequência de variáveis discretas.

Representação gráfica

- Histograma: utilizado para a representação das distribuições de frequência de variáveis contínuas.
- Note que para montarmos o histograma devemos primeiro agrupar os dados em intervalos de classe.

Representação gráfica

 Polígono de frequência: é semelhante ao histograma, porém utilizamos linhas para conectar as frequências de cada intervalo de classe.

