Matemática Discreta

Hoja Grafos 1

Facultad de Informática.

1. Construye la tabla de adyacencia y la matriz de adyacencia de los dos grafos que aparecen dibujados más abajo, y demuestra que son isomorfos.

- 2. El **complementario** de un grafo G=(V,E) es el grafo $\overline{G}=(V,\overline{E})$ cuyo conjunto V de vértices es el mismo
 - de G y cuyo conjunto \overline{E} de aristas une aquellos vértices que no están unidos en G. Suponiendo que G tenga n vértices de grados d_1, \ldots, d_n ¿cuáles serán los grados de los vértices de \overline{G} ?
- 3. Construye un grafo con 5 vértices de grado 2 que sea isomorfo a su complementario.
- 4. Sean $G_1 = (V_1, E_1)$ y $G_2 = (V_2, E_2)$ dos grafos isomorfos, razona que $\forall k \in \mathbb{N}$ el número de vértices de grado k debe ser el mismo en ambos grafos.
- 5. Demuestra que si G = (V, E) es un grafo con más de un vértice, se pueden encontrar dos vértices diferentes que tengan el mismo grado.
- 6. Dibuja grafos no dirigidos, sin lazos y no multigrafos, que cumplan las siguientes condiciones, o explica por qué no es posible construirlos:
 - a) 5 vértices, 3 aristas y euleriano
 - b) 6 vértices todos ellos de grado 2, y no conexo
 - c) 6 vértices con grados 2,2,3,2,2,2
- 7. Demuestra que en una cena con 8 invitados en la que cada uno de ellos conoce al menos a otros 4, los ocho invitados pueden sentarse alrededor de una mesa redonda de modo que cada uno de ellos conozca a los 2 entre los que está sentado.
- 8. Dibuja el grafo dirigido y construye la matriz de adyacencia correspondiente a la tabla de adyacencia siguiente. ¿Es conexo? Razona tu respuesta.

a	d	e	
b	a		
c	b		
d	b	c	e
e	f		
f	a		

9. Sea $G=(\mathcal{V},E)$ el grafo tal que $\mathcal{V}=\{i\in\mathbb{N}|1\leq i\leq 100\}$ y $E=\{\{x,y\}|x,y\in\mathcal{V},x\neq y,x*y<10\}$ ¿Es G euleriano? ¿Es Hamiltoniano?

- 10. Sea $G = (\mathcal{V}, E)$ el grafo tal que \mathcal{V} está formado por los subconjuntos de $\{1,2,3\}$ y $E = \{\{A,B\}|A \cap B = \emptyset\}$. Dibuja G. ¿Es G semi-euleriano? ¿Es G euleriano? ¿Es Hamiltoniano?
- 11. Sea $G=(\mathcal{V},E)$ un grafo cuyo conjunto de vértices $\mathcal{V}=\{0,1,2\}\times\{0,1,2\}$ y sus aristas $E=\{(a,b)(c,d)|(a=d,b\neq c)\text{ o }(b=c,a\neq d)\}$. ¿Es G conexo? ¿Es G semi-euleriano? ¿Es G euleriano? ¿Es Hamiltoniano?
- 12. Sea $A = \{0, 1, 2\}$ y $G = (\mathcal{V}, E)$ el grafo donde $\mathcal{V} = \mathcal{P}(A)$ y

$$\forall X, Y \in \mathcal{V}, \ XY \in E \iff (X \subseteq Y \mid X| = |Y| - 1) \text{ o } (Y \subseteq X \mid Y| = |X| - 1)$$

¿Es G conexo? ¿Es G semi-euleriano? ¿Es G euleriano? ¿Es Hamiltoniano? Si no es conexo, ¿son sus componentes conexas Hamiltonianas?

13. Considera el grafo no dirigido G = (V, E)

$$V = \{n \in \mathbb{N} | 1 \le n \le 1875\}$$
 y $\{x, y\} \in E$ sii $x \cdot y$ no es primo

¿El grafo es conexo? En caso de no serlo, ¿cuántas componentes conexas tiene? Justica tus respuestas.

- 14. Sea $V = \{a, b, c, d\}$
 - a) Dibuja los posibles grafos que tengan a V como conjunto de vértices y un total de 5 aristas
 - b) Estudia si los grafos son isomorfos.
 - c) Estudia si los grafos son eulerianos o semieulerianos y determina un circuito euleriano para los que sean eulerianos.
- 15. Sea G = (V, E) un grafo no dirigido, conexo y euleriano con |E| = 14 y $\forall v \in V$, gr(v) > 2 ¿Qué sabemos sobre el número de vértices del grafo?
- 16. Considera el grafo G:

 ξ Es posible realizar en G un recorrido que pase exactamente una vez por cada arista? En caso armativo, enumera las aristas en el orden correspondiente al recorrido.

17. Determina las componentes conexas de los grafos siguientes:

18. Dadas las parejas de grafos siguientes, señala los apartados cuyos grafos son isomorfos.

