THE POWER METHOD FOR ESTIMATING A STRICTLY DOMINANT EIGENVALUE

- Select an initial vector x₀ whose largest entry is 1.
- 2. For k = 0, 1, ...,
 - Compute Ax_k.
 - b. Let μ_k be an entry in $A\mathbf{x}_k$ whose absolute value is as large as possible.
 - c. Compute $\mathbf{x}_{k+1} = (1/\mu_k) A \mathbf{x}_k$.
- For almost all choices of x₀, the sequence {μ_k} approaches the dominant eigenvalue, and the sequence {x_k} approaches a corresponding eigenvector.

EXAMPLE 2 Apply the power method to $A = \begin{bmatrix} 6 & 5 \\ 1 & 2 \end{bmatrix}$ with $\mathbf{x}_0 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$. Stop when k = 5, and estimate the dominant eigenvalue and a corresponding eigenvector of A.

SOLUTION Calculations in this example and the next were made with MATLAB, which computes with 16-digit accuracy, although we show only a few significant figures here. To begin, compute $A\mathbf{x}_0$ and identify the largest entry μ_0 in $A\mathbf{x}_0$:

$$A\mathbf{x}_0 = \begin{bmatrix} 6 & 5 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 5 \\ 2 \end{bmatrix}, \quad \mu_0 = 5$$

Scale Ax_0 by $1/\mu_0$ to get x_1 , compute Ax_1 , and identify the largest entry in Ax_1 :

$$\mathbf{x}_1 = \frac{1}{\mu_0} A \mathbf{x}_0 = \frac{1}{5} \begin{bmatrix} 5 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ .4 \end{bmatrix}$$

$$A \mathbf{x}_1 = \begin{bmatrix} 6 & 5 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ .4 \end{bmatrix} = \begin{bmatrix} 8 \\ 1.8 \end{bmatrix}, \quad \mu_1 = 8$$

Scale $A\mathbf{x}_1$ by $1/\mu_1$ to get \mathbf{x}_2 , compute $A\mathbf{x}_2$, and identify the largest entry in $A\mathbf{x}_2$:

$$\mathbf{x}_2 = \frac{1}{\mu_1} A \mathbf{x}_1 = \frac{1}{8} \begin{bmatrix} 8 \\ 1.8 \end{bmatrix} = \begin{bmatrix} 1 \\ .225 \end{bmatrix}$$
$$A \mathbf{x}_2 = \begin{bmatrix} 6 & 5 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ .225 \end{bmatrix} = \begin{bmatrix} 7.125 \\ 1.450 \end{bmatrix}, \quad \mu_2 = 7.125$$

Scale Ax_2 by $1/\mu_2$ to get x_3 , and so on. The results of MATLAB calculations for the first five iterations are arranged in Table 2.

TABLE 2 The Power Method for Example	Power Method for Example	e 2
--------------------------------------	--------------------------	-----

	*					
k	0	1	2	3	4	5
\mathbf{x}_k	$\left[\begin{smallmatrix} 0 \\ 1 \end{smallmatrix} \right]$	$\left[\begin{array}{c}1\\.4\end{array}\right]$	$\left[\begin{array}{c}1\\.225\end{array}\right]$	$\left[\begin{array}{c}1\\.2035\end{array}\right]$	$\left[\begin{array}{c}1\\.2005\end{array}\right]$	$\left[\begin{array}{c}1\\.20007\end{array}\right]$
$A\mathbf{x}_k$	$\begin{bmatrix} 5 \\ 2 \end{bmatrix}$	$\left[\begin{smallmatrix} 8 \\ 1.8 \end{smallmatrix} \right]$	7.125 1.450	$\left[\begin{smallmatrix} 7.0175 \\ 1.4070 \end{smallmatrix} \right]$	$\left[\begin{smallmatrix} 7.0025 \\ 1.4010 \end{smallmatrix} \right]$	7.00036 1.40014
μ_k	5	8	7.125	7.0175	7.0025	7.00036

The evidence from Table 2 strongly suggests that $\{x_k\}$ approaches (1, .2) and $\{\mu_k\}$ approaches 7. If so, then (1, .2) is an eigenvector and 7 is the dominant eigenvalue. This is easily verified by computing

$$A\begin{bmatrix} 1 \\ .2 \end{bmatrix} = \begin{bmatrix} 6 & 5 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ .2 \end{bmatrix} = \begin{bmatrix} 7 \\ 1.4 \end{bmatrix} = 7 \begin{bmatrix} 1 \\ .2 \end{bmatrix}$$

The sequence $\{\mu_k\}$ in Example 2 converged quickly to $\lambda_1 = 7$ because the second eigenvalue of A was much smaller. (In fact, $\lambda_2 = 1$.) In general, the rate of convergence depends on the ratio $|\lambda_2/\lambda_1|$, because the vector $c_2(\lambda_2/\lambda_1)^k \mathbf{v}_2$ in equation (2) is the main source of error when using a scaled version of $A^k \mathbf{x}$ as an estimate of $c_1 \mathbf{v}_1$. (The other fractions λ_j/λ_1 are likely to be smaller.) If $|\lambda_2/\lambda_1|$ is close to 1, then $\{\mu_k\}$ and $\{\mathbf{x}_k\}$ can converge very slowly, and other approximation methods may be preferred.

With the power method, there is a slight chance that the chosen initial vector \mathbf{x} will have no component in the \mathbf{v}_1 direction (when $c_1 = 0$). But computer rounding errors during the calculations of the \mathbf{x}_k are likely to create a vector with at least a small component in the direction of \mathbf{v}_1 . If that occurs, the \mathbf{x}_k will start to converge to a multiple of \mathbf{v}_1 .