

ECE 105: Introduction to Electrical Engineering

Lecture 13
Bio 3
Yasser Khan
Rehan Kapadia

Pulse oximetry

ECG

Pulse Ox

Respiration

Blood Pressure

- Pulse oximetry measures blood oxygenation. Using spectrophotometry of absorptivity of blood at two distinct wavelengths, blood oxygen saturation is quantified.
- Can detect hypoxemia, ie. lower than normal blood oxygenation.

Temperature

- $SO_2 = \frac{C_{HbO_2}}{C_{HbO_2} + C_{Hb}}$
- To microprocessor
 - SO₂ The saturation of oxygen in blood,
 - C_{HbO2} Concentration of oxygenated hemoglobin (HbO₂),
 - C_{Hb} Concentration of deoxygenated hemoglobin (Hb).

Oxy and deoxy-hemoglobin

Oxy and deoxy-hemoglobin

Transmission-mode oximetry

How the transmitted light is changing

Oxy and de-oxy abs.

Why do we need two lights

Change in ratio = change in oxygenation

Need for empirical calibration

Data collection flow

AC and DC part of the signal

AC and DC part

The graphs you will see in your demoboard

Pulsatile signal

The portion of the AC part is very small

Source of drift

Optical shunting – photodiode gets saturated

EM noise

Nail polish

Transmission vs. reflectance oximetry

- Transmission-mode pulse oximetry is limited only to tissues that can be transilluminated, such as the earlobes and the fingers.
- If reflected light is used as the signal, the sensor can be used beyond the conventional sensing locations.

- AC signal is the highest at the forehead for both Red and NIR channels.
- Arms provide mid-range AC amplitude, while signal strength is low in the legs and chest area.
- Forehead is the best location for reflectance pulse oximetry.

Oximeter readout circuit

Calculating oxygen saturation

$$R = \frac{AC_{rd}/DC_{rd}}{AC_{ir}/DC_{ir}}$$

$$R = \frac{20mV/625mV}{20mV/330mV} = .528$$

Press capture

Keep your finger gently on the sensor

Going back to the PPG data collected

Smoothing

Drift correction

Peak detection

Heart rate

Using single component to find heart rate

4 components in the PPG signal – signal loss

Taking all the components provides the original signal

Ratio of the ratios

(Red PPG Signal) DC Average: 99986.91, AC Average: 139.15 (IR PPG Signal) DC Average: 116077.38, AC Average: 386.22 Red signal ratio (red_ac/red_dc): 0.0013916875411345753 IR signal ratio (ir_ac/ir_dc): 0.0033272520894769473 Ratio of Ratios (Red ratio/ IR ratio): 0.4182693416997304

SpO2 calculation

