

Data Mining - Statistical Relational Learning

Andreas Karwath Jörg Wicker

Johannes Gutenberg University Mainz

March 21, 2017

Overview

- Introduction
- Two types of semantics
- Problog

Objective

One of the key open questions in artificial intelligence concerns the integration of probabilistic reasoning, relational or logical representations and machine learning: statistical relational learning (SRL)

Why SRL?

- Structured domains
 - Not flat, but structured
 - Multi-relational, heterogeneous
 - semi-structured (?)
- Imperfect data
 - Noisy data
 - Missing data
 - Hidden variables
- Machine Learning
 - Knowledge acquisition bottleneck
 - cheap data (depending on domain)

Combining the (Dis-)Advantages

- Probabilistic logics
 - soft reasoning, expressiveness
 - no learning, but too expensive to handcraft models
- Statistical learning
 - soft reasoning, learning
 - propositional (attribute-value) representations: some learning problems cannot elegantly be described using attribute value representations
- Multi-relational data mining and inductive logic programming
 - sound logical reasoning
 - expressiveness and learning
 - some learning problems cannot elegantly be described without explicit handling of uncertainty

Why SRL?

- Rich probabilistic models
- Comprehensibility?
- Generalization to similar situations and similar individuals
- Parameter reduction (parameter tying)
- Learning: reuse of experience (training one random variable might improve the prediction for another random variable)

When to apply SRL?

- When it is not possible to represent a problem in propositional (attribute value) form easily
 - variable number of objects in examples
 - relations among objects are important
- Background knowledge can be defined intensionally (in the form of rules)

Two Types of Semantics¹

The example refer to a domain with objects (birds,...) and the possibility of these objects to fly or not. In particular, there is one bird, tweety.

- Objective: sampling or frequentist view
 - "The probability that a randomly chosen bird will fly is greater than 0.9"
 - $w_x(flies(x)) > 0.9$
 - "One world"
- Subjective: degree-of-belief and based on possible worlds
 - "The probability that tweety flies is greater than 0.9"
 - *w*(*flies*(*tweety*)) > 0.9

Sampling Probabilities

- A type-1 probability structure is a standard first-order structure with a probability distribution associated
- Randomness follows from a stochastic process such as randomly choosing a bird or throwing a dice
- E.g.,

```
0.10 : dice(1). 0.15 : dice(2).
0.10 : dice(3). 0.20 : dice(4).
0.25 : dice(5). 0.20 : dice(6).
```


Sampling Probabilities

As for tweety... (in our universe almost everything flies)

Degree of Belief Probabilities

- A type-2 probability structure is a probability distribution *over possible worlds* (the worlds have probabilities!)
- Randomness follows from a lack of knowledge
- Suppose we have only two possible worlds, s_1 and s_2 , with $\mu(s_1)=0.2$ and $\mu(s_2)=0.8$

Degree of Belief Probabilities

In s_1 , tweety flies, in s_2 it does not:

Stochastic Logic Programs in a Nutshell²

```
0.4:s(X) := p(X), p(X) 0.3:p(a) 0.2:q(a) 0.6:s(X) := q(X) 0.7:p(b) 0.8:q(b)
```

SLD-Tree:

²Muggleton, 1995

Problog - Example

```
0.8::edge(1,2).
0.7::edge(2,3).
0.6::edge(1,3).
path(X,Y) := edge(X,Y).
path(X,Y) := edge(X,Z),
             Y = Z.
             path(Z,Y)).
query(path(1,3)).
```


Probability of Query Answer Given Program

A ProbLog program $T = \{p1 : c_1, \dots, p_n : c_n\}$ defines a probability distribution over logic programs $L \subseteq L_T = \{c_1, \dots, c_n\}$ in the following way:

$$P(L|T) = \prod_{c_i \in L} p_i \prod_{c_i \in L_T \setminus L} (1 - p_i)$$
 $P(q|L) = \begin{cases} 1 & \exists \theta : L \models q\theta \\ 0 & \text{otherwise} \end{cases}$
 $P(q|L) = P(q|L) \times P(L|T)$
 $P(q|T) = \sum_{M \subseteq L_T} P(q, M|T)$

Problog - Example

```
query(path(1,3)).
```

e(1,2)	e(2,3)	e(1,3)	
f	f	f	
f	f	t	$0.2\times0.3\times0.6$
f	t	f	
f	t	t	$0.2 \times 0.7 \times 0.6$
t	f	f	
t	f	t	$0.8\times0.3\times0.6$
t	t	f	$0.8\times0.7\times0.4$
t	t	t	$0.8\times0.7\times0.6$

0.824

Problog - Example 2

Example knowledge base of probabilistic clauses and facts

Problog - Example 2 SLD-Tree of Query likes(john,tom)

Labels (propositional variable) indicates which clause is used in the proof (not which substitution).

Probability of Propositional DNF

$$P(q|T) = P\left(\bigvee_{b \in pr(q)} \bigwedge_{b_i \in cl(b)}\right)$$

$$P(\texttt{likes(john,tom)}|T) = P((I_1 \land I_2 \land f_1 \land f_2 \land f_4) \lor (I_1 \land I_2 \land f_1 \land f_3))$$

Since $P(I_1) = 1$ this is equal to:

$$P(\text{likes(john,tom)}|T) = P((l_2 \wedge f_1 \wedge f_2 \wedge f_4) \vee (l_2 \wedge f_1 \wedge f_3))$$

Andreas Karwath

Binary Decision Diagram (BDD) of the Example

Relationship between nodes from left to right A child being above (high) from parent: *true* A child being below (low) from parent: *false*

(Naive) Algorithm to Calculate Probabilities Based on BDD

Algorithm 1: PROBABILITY

```
Input: BDD node n
```

- 1 if n is the 1-terminal node then
- 2 return 1
- 3 end
- 4 if n is the 0-terminal node then
- 5 return θ
- 6 end
- 7 let h and l be the high and low children of n
- 8 return $p_n \times \text{Probability}(h) + (1 p_n) \times \text{Probability}(l)$

Binary Decision Diagram (BDD) of the Example

