1.1 Interpretación geométrica y física la derivada Total de puntos 100/100 Este cuestionario está diseñado para evaluar tu comprensión sobre la derivada aplicaciones tanto geométricas como físicas. Por favor, responde a las siguiente preguntas.	y sus	
El correo electrónico del destinatario (menc960728@gs.utm.mx) se registró al enviar el formulario.		
✓ ¿Qué es la derivada de una función en un punto?	10/10	
Es el valor de la función en ese punto.		
Es la pendiente de la recta tangente a la curva en ese punto.	✓	
Es el área bajo la curva.		
Es la integral de la función.		

✓	¿Cómo se interpreta geométricamente la derivada de una función?	10/10

- Omo el área bajo la curva.
- Omo la pendiente de la recta tangente a la curva en un punto.
- **/**

- Como el volumen bajo la superficie.
- Como el punto máximo de la función.
- ✓ ¿Cuál es la fórmula para calcular la derivada de una función f(a) en un 10/10 punto a?

$$f'(a) = \frac{f(a+h) - f(a)}{h}$$

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

Opción 1

$$f'(a) = \int_{a}^{a+h} f(x)dx$$

 $f'(a) = \frac{f(a+h) - f(a)}{2h}$

Opción 3

Opción 4

✓	¿Qué representa la derivada de la posición respecto al tiempo en física?	10/10
0	La aceleración	
•	La velocidad	✓
0	La distancia	
0	El tiempo	
✓	Si v(t) representa la velocidad de un objeto en movimiento, ¿qué representa dv/dt?	10/10
0	La posición del objeto	
•	La aceleración del objeto	✓
0	La distancia recorrida por el objeto	
0	El tiempo total de movimiento	
✓	¿Cómo se calcula la aceleración a partir de la función de posición x(t)?	10/10
\circ	Derivando la función de posición una vez.	
0	Integrando la función de posición una vez.	
•	Derivando la función de posición dos veces.	✓
0	Integrando la función de posición dos veces.	

✓ ¿Cuál de las siguientes afirmaciones es verdadera acerca de la 10/10 derivada?
La derivada siempre es positiva.
La derivada puede ser negativa, positiva o cero.
La derivada no tiene aplicaciones físicas.
La derivada solo se utiliza en matemáticas.
✓ ¿Qué información proporciona la derivada segunda f"(x) de una función 10/10 f(x)?
La pendiente de la tangente a la curva.
 La concavidad de la curva y la aceleración en física.
El valor de la función en un punto.
El área bajo la curva.
 Encuentra la pendiente de la tangente a la función siguiente en el punto 10/10 x=1.
$y = x^2$
O 1
○ 3
\bigcirc 4

✓ Un coche se mueve en línea recta y su posición está dada por la función dada. ¿Cuál es su velocidad instantánea en t=2 segundos?	10/10
$x(t) = 3t^2 + 2t$	
10 m/s	
12 m/s	
● 14 m/s	✓
16 m/s	

El formulario se creó en Universidad Tecnológica de la Mixteca. <u>Denunciar abuso</u>

Google Formularios