3.1. VARIABLE ALEATORIA

3.1.01	Función de probabilidad de masa	Si X es variable aleatoria discreta f(x)=P(X=x) si x pertenece al rango de X f(x)=0 si x no pertenece al rango de X
3.1.02	Probabilidad de un intervalo de X	Si X es variable aleatoria discreta $P(a \le X \le b) = \sum_{i=a}^{b} f(i) \text{siendo } a \le b$ Si X es variable aleatoria continua $P(a \le X \le b) = P(a < X \le b) = P(a \le X < b) = \sum_{i=a}^{b} f(i) \text{siendo } a \le b$
3.1.03	Función de distribución acumulada	$F(x) = \begin{cases} P(X \le x) = \int_{a}^{b} f(x) dx & (siendo \ a < b) \end{cases}$ $F(x) = \begin{cases} P(X \le x) = \sum_{t \le x} f(t) & si \ X = s \ discreta \end{cases}$ $P(X \le x) = \int_{-\infty}^{x} f(t) dt si \ X = s \ continua \end{cases}$
3.1.04	Valor esperado de una variable X	$E(X) = \mu_{x} = \begin{cases} \sum_{x \in X(\Omega)} x.f(x) & \text{si } X \text{ es discreta} \\ \int_{-\infty}^{+\infty} x.f(x) dx & \text{si } X \text{ es continua} \end{cases}$
3.1.05	Valor esperado de una función de X	$E[h(X)] = \mu_{h(X)} = \begin{cases} \sum_{x \in X(\Omega)} h(x).f(x) & \text{si } X \text{ es discreta} \\ \\ \int_{-\infty}^{+\infty} h(x).f(x) dx & \text{si } X \text{ es continua} \end{cases}$
3.1.06	Propiedades de la esperanza	 a y b son reales y X es una variable aleatoria E(a) = a E(aX + b) = a E(X) + b X e Y variables aleatorias E(aX ± bY) = a E(X) ± b E(Y) E(X . Y) = E(X).E(Y) si X e Y son independientes
3.1.07	Varianza de una variable X	$V(X) = \sigma_x^2 = \begin{cases} \sum_{x \in X(\Omega)} (X - \mu)^2 . f(x) & \text{si } X \text{ es discreta} \\ \int_{-\infty}^{+\infty} (x - \mu)^2 . f(x) dx & \text{si } X \text{ es continua} \end{cases}$
3.1.08	Propiedades de la varianza	• $a \ y \ b \ son \ reales \ y \ X \ es \ una \ variable \ aleatoria \ V(a) = 0$

Fórmulas 4

	V(aX + b) = a2 V(X) $V(X) = E(X2) - (E(X))2$
	• $X \ e \ Y \ variables \ aleatorias$ $V(aX \pm bY) = a^2 \ V(X) + b^2 \ V(Y) \pm 2.a.b.cov(X,Y)$ $La \ covarianza \ cov(X,Y) = E(X,Y) - E(X).E(Y), \ si$ $X \ e \ Y \ son \ independientes, \ cov(X,Y) = 0$

Fórmulas 5