Chapter 1 Exercise Solutions

- Ex. 1.1 We prove by contradiction. Suppose that $\sqrt{6}$ is a rational number. Put $\sqrt{6} = m/n$, with m, n being co-prime. This gives $m^2 = 6n^2$, which implies that m is a multiple of 3. Put m = 3k. Then we have $2n^2 = 3k^2$. This implies that n is also a multiple of 3. This contradicts to the hypothesis that m and n are co-prime. Thus, the number $\sqrt{6}$ is irrational.
- **Ex. 1.2** We prove by contradiction. Suppose that the set $\{\sqrt{n}: n \in \mathbb{N}\}$ is bounded. Denote B an upper bound of the set. Thus, we have that $\sqrt{n} \leq B$ for all $n \in \mathbb{N}$. It gives that

$$n \leq B^2$$
, for all $n \in \mathbb{N}$.

This contradicts to the archimedean property.

Ex. 1.3 Suppose E is bounded above, and suppose β_1 and β_2 are two distinct suprema of E.

For any $x \in E$, we have $x \leq \beta_1$ and $x \leq \beta_2$. If $\beta_1 < \beta_2$, then

$$x \leq \beta_1 < \beta_2$$

so that β_2 is not a supremum of E by definition. This contradicts to the hypothesis. Hence, $\beta_1 \geq \beta_2$.

In the similar manner, we have $\beta_2 \geq \beta_1$.

Therefore, we must have $\beta_2 = \beta_1$.

- **Ex. 1.4** Denote $A = \left\{1, 1 + \frac{1}{2}, 1 + \frac{1}{2} + \frac{1}{3}, \dots\right\}$.
 - Clearly, for any $x \in A$, we have $x \ge 1$, so that 1 is a lower bound of A. Furthermore, for any positive ε , since $1 < 1 + \varepsilon$ and $1 \in A$, we know that $1 + \varepsilon$ is not a lower bound of A. By the definition, we have $\inf A = 1$.
 - Let $x_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$. We prove by induction that $x_{2^n} \ge 1 + \frac{n}{2}$, so that the sequence $\{x_n\}$ is not bounded above. It follows that $\sup A = \infty$.

In fact, we have $x_2 = 1 + \frac{1}{2}$ so that the desired inequality holds for n = 1.

Assume that $x_{2^k} \ge 1 + \frac{k}{2}$ for an integer n = k. Then

$$x_{2k+1} = x_{2k} + \frac{1}{2^k + 1} + \dots + \frac{1}{2^{k+1}} \ge x_{2k} + \underbrace{\frac{1}{2^{k+1}} + \dots + \frac{1}{2^{k+1}}}_{2^k \text{ terms}}$$
$$= x_{2k} + \frac{2^k}{2^{k+1}} = x_{2k} + \frac{1}{2} \ge 1 + \frac{k}{2} + \frac{1}{2} = 1 + \frac{k+1}{2},$$

so that the desired inequality holds for n = k + 1.

- **Ex.** 1.5 (\Rightarrow) Assume that $|x-a| < \delta$.
 - * If $x a \ge 0$, then the inequality $|x a| < \delta$ gives $x a < \delta$, so that $x < a + \delta$. Thus, $a \le x < a + \delta$.
 - * If x a < 0, then the inequality $|x a| < \delta$ gives $-(x a) < \delta$, so that $a \delta < x$. Thus, $a \delta < x < a$.

Combining above we conclude that we always have $a - \delta < x < a + \delta$.

- (\Leftarrow) Assume that $a \delta < x < a + \delta$.
 - * If $x a \ge 0$, then $a \le x < a + \delta$, or $0 \le x a < \delta$. Thus, we have $|x a| < \delta$.
 - * If x a < 0, then $a \delta < x < a$, or $-\delta < x a < 0$. Thus, we also have $|x a| < \delta$.

Combining above we conclude that we always have $|x - a| < \delta$.

Ex. 1.6 Denote $S = \{|a+b|: a^2 < 2, |b+1| < 3\}.$

First, we prove that the set is bounded. In fact, by the triangle inequality, we have

$$0 \le |a+b| = |a+b+1-1| \le |a|+|b+1|+|-1|$$
$$= \sqrt{a^2} + |b+1| + 1 < \sqrt{2} + 3 + 1 = 4 + \sqrt{2}.$$

Next, we find the infimum and the supremum of S.

- Take a=0 and b=0. Then $a^2<2$ and |b+1|<3. Clearly, |a+b|=0. Hence, we have $\inf S=0$.
- For any $0 < \varepsilon < 1$, let

$$a = -\sqrt{2} + \frac{1}{4}\varepsilon$$
, $b = -4 + \frac{1}{4}\varepsilon$.

Then $-\sqrt{2} < a < 0 < \sqrt{2}$ and -3 < b+1 < -2 < 3. Thus, $a^2 < 2$ and |b+1| < 3. Since $a+b=-4-\sqrt{2}+\frac{1}{3}\varepsilon < 0$,

we have

$$|a + b| = 4 + \sqrt{2} - \frac{1}{2}\varepsilon > 4 + \sqrt{2} - \varepsilon.$$

This demonstrates that $4 + \sqrt{2} - \varepsilon$ is not an upper bound of S. Hence, by definition, we have $\sup S = 4 + \sqrt{2}$.

Ex. 1.7 By the triangle inequality,

$$|x_1| = |x_1 - x_2 + x_2| \le |x_1 - x_2| + |x_2|,$$

so that $|x_1| - |x_2| \le |x_1 - x_2|$. Similarly, we have $|x_2| - |x_1| \le |x_1 - x_2|$. Combining these two inequalities, we get $||x_1| - |x_2|| \le |x_1 - x_2|.$

Ex. 1.8 Let $A = \sum a_j^2$, $B = \sum b_j^2$, $C = \sum a_j b_j$.

If B = 0, then $b_j = 0$ for j = 1, ..., n. For $\lambda = 0$ and any $\mu \neq 0$, these values λ and μ are not both zero. Obviously, we have $\lambda a_j = \mu b_j$, j = 1, 2, ..., n.

If $B \neq 0$, then

$$0 \le \sum_{j=1}^{n} (Ba_j - Cb_j)^2 = B^2 \sum_{j=1}^{n} a_j^2 - BC \sum_{j=1}^{n} a_j b_j - BC \sum_{j=1}^{n} a_j b_j + C^2 \sum_{j=1}^{n} b_j^2$$
$$= B^2 A - BC^2 - BC^2 + BC^2$$
$$= B(AB - C^2).$$

Since $AB - C^2 = 0$, we have $Ba_j - Cb_j = 0$, j = 1, 2, ..., n. If we take $\lambda = B$ and $\mu = C$, then, λ and μ are not both zero such that $\lambda a_j = \mu b_j$, j = 1, 2, ..., n.

Chapter 2 Quiz Answers

- (1)E: The set of all infinite sequences of 0's and 1's is not countable, by Proposition 2.8.
- ②B: By Proposition 2.11, we know that $\bigcap_{\alpha} A_{\alpha}^{c} = \left(\bigcup_{\alpha} A_{\alpha}\right)^{c}$. Thus, the given set relation $\bigcup_{\alpha} A_{\alpha} = \bigcap_{\alpha} A_{\alpha}^{c}$ is equivalent to $\bigcup_{\alpha} A_{\alpha} = \left(\bigcup_{\alpha} A_{\alpha}\right)^{c}$. The latter is equivalent to $\bigcup_{\alpha} A_{\alpha} = \emptyset$.
- \mathfrak{B} : The interior of A is the union of all open sets contained in A. Hence, the interior of A is a subset of A.
- (4) E: Every compact set is closed, by Proposition 2.18.
- ⑤D: Take $E = (0,1) \subset \mathbb{R}$ and $K = [0,1] \subset \mathbb{R}$. By Theorem 2.21. We know that K is compact in \mathbb{R} , but E is not. Obviously, E is a bounded subset of K.
- **⑥**A: Let S be a compact subset of \mathbb{R} . By Theorem 2.21, S is bounded and closed. Since \mathbb{R} possesses the least-upper-bound property, $y = \sup S$ is finite. By Proposition 2.15, $y \in \overline{S}$. Because S is closed, by Proposition 2.14, $\overline{S} = S$. Hence, $\sup S \in S$. This means that S has a maximum element.
- ②C: By the corollary of Proposition 2.18, the intersection of a compact set and a closed set is compact.
- ®D: A perfect set is a closed set with no isolated points. Option D is true by definition.
 - Option A is false: Consider the set $\{0, 1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots\}$. It is compact but not perfect.
 - Option B is false: \mathbb{R} is perfect, but not compact.
 - Option C is false: \mathbb{R} is closed, but not compact.
 - Option E is false: The set of all rational numbers of \mathbb{R} is dense in \mathbb{R} , but not closed, so not compact.

Chapter 2 Exercise Solutions

Ex. 2.1 Define a function $f:(0,1) \to [0,1]$ by

$$f(x) = \begin{cases} \frac{1}{n-2}, & \text{if } x = \frac{1}{n}, \ n = 3, 4, \dots, \\ 0, & \text{if } x = \frac{1}{2}, \\ x, & \text{otherwise.} \end{cases}$$

Then f is bijective from (0,1) onto [0,1].

Proof: f is injective. Denote $S = \{\frac{1}{3}, \frac{1}{4}, \dots\}$. Let $x_1, x_2 \in (0, 1)$, with $x_1 \neq x_2$.

- ① If $x_1, x_2 \in S$, then, there are distinct $m, n \geq 3$, such that $x_1 = \frac{1}{m}$, $x_2 = \frac{1}{n}$. Thus, $f(x_1) = \frac{1}{m-2} \neq \frac{1}{n-2} = f(x_2)$.
- ② If $x_1 = \frac{1}{n} \in S \ (n \ge 3)$ and $x_2 = \frac{1}{2}$, then $f(x_1) = \frac{1}{n-2} \ne 0 = f(x_2)$.
- ③ If $x_1 = \frac{1}{n} \in S \ (n \ge 3)$ and $x_2 \in (0,1) \setminus \left(S \cup \left\{\frac{1}{2}\right\}\right)$, then $f(x_1) = \frac{1}{n-2} \ne x_2 = f(x_2)$.
- ① If $x_1 = \frac{1}{2}$ and $x_2 \in (0,1) \setminus (S \cup \{\frac{1}{2}\})$, then $f(x_1) = 0 \neq x_2 = f(x_2)$.
- **⑤** If $x_1, x_2 \in (0,1) \setminus (S \cup \{\frac{1}{2}\})$, then $f(x_1) = x_1 \neq x_2 = f(x_2)$.

In summary, for all $x_1, x_2 \in (0, 1)$, if $x_1 \neq x_2$, then $f(x_1) \neq f(x_2)$.

Proof: f is surjective. For any $y \in [0, 1]$, we have

$$y = \begin{cases} f(\frac{1}{2}), & \text{if } y = 0, \\ f\left(\frac{1}{n+2}\right), & \text{if } y = \frac{1}{n}, n \ge 1, \\ f(y), & \text{if } y \ne 0 \text{ or } y \ne \frac{1}{n}, n \ge 1. \end{cases}$$

Ex. 2.2 (\Rightarrow) Assume that E is open.

If $p \in E$, then there exists r > 0 such that $N_r(p) \subset E$. This means that p is an interior point, so $p \in E^{\circ}$. Hence, $E \subset E^{\circ}$.

On the other hand, interior points in E are necessarily in E, since any neighborhood of a point contains that point. Hence $E^{\circ} \subset E$.

Therefore, we conclude that $E = E^{\circ}$.

 (\Leftarrow) Assume that $E = E^{\circ}$. To show E is open, we only need to prove that E° is open.

Suppose $p \in E^{\circ}$. Then there exists r > 0 such that $N_r(p) \subset E$. Since $N_r(p)$ is open, for any point $x \in N_r(p)$, there exists $\delta > 0$ such that $N_{\delta}(x) \subset N_r(p) \subset E$. This means that every point in $N_r(p)$ is an interior point of E. Hence $N_r(p) \subset E^{\circ}$. This implies that E° is open.

- **Ex. 2.3** We prove that the interior E° of E is the largest open set contained in E by completing the following steps:
 - 1. E° is an open set contained in E.
 - 2. Any open set U contained in E is a subset of E° .
 - Step 1 Suppose $p \in E^{\circ}$. Then there exists r > 0 such that $N_r(p) \subset E$. Clearly, $p \in N_r(p)$. Thus, $p \in E$. Hence, E° is a subset of E.

Furthermore, since $N_r(p)$ is open, for any point $x \in N_r(p)$, there exists $\delta > 0$ such that $N_\delta(x) \subset N_r(p) \subset E$. This means that every point in $N_r(p)$ is an interior point of E, that is, $N_r(p) \subset E^{\circ}$. Hence, E° is an open set contained in E.

- Step 2 Let U be an open set contained in E. For any point $p \in U$, there exists an open neighborhood $N_r(p) \subset U$. Since U is a subset of E, we have $N_r(p) \subset E$. This means that p is an interior point of E, and hence belongs to E° . Therefore, U is a subset of E° .
- **Ex. 2.4** We only prove the relation for two subsets A and B, $\overline{A \cup B} = \overline{A} \cup \overline{B}$. By repeating applying the relation for two subsets, one can easily to have the desired relation for n subsets.

Since $A \subset A \cup B$ and $B \subset A \cup B$, we have $\overline{A} \subset \overline{A \cup B}$ and $\overline{B} \subset \overline{A \cup B}$. Thus, $\overline{A} \cup \overline{B} \subset \overline{A \cup B}$.

On the other hand, since $A \subset \overline{A}$ and $B \subset \overline{B}$, we have $A \cup B \subset \overline{A} \cup \overline{B}$. Thus, $\overline{A \cup B} \subset \overline{\overline{A} \cup \overline{B}}$. Since the closures \overline{A} and \overline{B} are closed and the union of two closed sets is closed, we know that $\overline{A} \cup \overline{B}$ is closed. By Proposition 2.14, we have $\overline{\overline{A} \cup \overline{B}} = \overline{A} \cup \overline{B}$. Hence, $\overline{A \cup B} \subset \overline{A} \cup \overline{B}$.

Therefore, we conclude that $\overline{A \cup B} = \overline{A} \cup \overline{B}$.

Ex. 2.5 1. By the archimedean property, we can choose a positive integer N such $\varepsilon > \frac{1}{N}$. Then the interval $(-\varepsilon, \varepsilon)$ contains $0, \frac{1}{N}, \frac{1}{N+1}, \frac{1}{N+2}, \dots$ Clearly, the finite collection

$$(-\varepsilon,\varepsilon), (1-\varepsilon,1+\varepsilon), (\frac{1}{2}-\varepsilon,\frac{1}{2}+\varepsilon), \dots, (\frac{1}{N-1}-\varepsilon,\frac{1}{N-1}+\varepsilon)$$

is a subcover of S.

2. To show that S is compact, by Theorem 2.21, we only need to prove that S is bounded and closed.

Proof: S is bounded. For any $x \in S = \{0, 1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots, \}$, we have $|x| \le 1$, so that S is bounded.

Proof: S is closed. By the archimedean property, for any $\varepsilon > 0$, there is a positive integer n, such that $\varepsilon > \frac{1}{n}$. Thus, any neighborhood of 0 contains infinitely many points in S, so that 0 is a limit point of S.

For any $x \in (0,1]$, it is easy to see that there exists r > 0 such that the neighborhood $N_r(x)$ contains at most one point of S. Hence, any point in (0,1] is not a limit point of S.

Therefore, 0 is the only limit point of S. Since $0 \in S$, we conclude that S is closed.

Ex. 2.6 For each n, since A_n is a nonempty bounded open subset, there is a bounded closed interval I_n such that $A_n \subset I_n$. Thus, $\overline{A}_n \subset \overline{I}_n = I_n$. Hence, \overline{A}_n is a nonempty bounded closed subset of \mathbb{R} , so it is compact by Theorem 2.21. Therefore, $\bigcap_{n=1}^{\infty} \overline{A}_n \neq \emptyset$, by Theorem 2.20.

If we can prove $\bigcap_{n=1}^{\infty} A_n = \bigcap_{n=1}^{\infty} \overline{A}_n$, then we can conclude that $\bigcap_{n=1}^{\infty} A_n \neq \emptyset$.

Clearly,
$$A_n \subset \overline{A}_n$$
 for all $n = 1, 2, \ldots$ Thus, $\bigcap_{n=1}^{\infty} A_n \subset \bigcap_{n=1}^{\infty} \overline{A}_n$.

On the other hand, to show that $\bigcap_{n=1}^{\infty} \overline{A}_n \subset \bigcap_{n=1}^{\infty} A_n$, we notice that

$$\bigcap_{n=2}^{\infty} \overline{A}_n \subset \overline{A}_2 \subset A_1 \subset \overline{A}_1$$

and have

$$\bigcap_{n=1}^{\infty} \overline{A}_n = \left(\bigcap_{n=2}^{\infty} \overline{A}_n\right) \cap \overline{A}_1 = \bigcap_{n=2}^{\infty} \overline{A}_n.$$

Because $\overline{A}_n \subset A_{n-1}$ for all $n=2,3,\ldots$, we have $\bigcap_{n=2}^{\infty} \overline{A}_n \subset \bigcap_{n=1}^{\infty} A_n$. Hence $\bigcap_{n=1}^{\infty} \overline{A}_n \subset \bigcap_{n=1}^{\infty} A_n$.

Therefore, we conclude that $\bigcap_{n=1}^{\infty} A_n = \bigcap_{n=1}^{\infty} \overline{A}_n$.

Ex. 2.7 1. We only prove that for two perfect sets A and B, the union $A \cup B$ is perfect. By repeating applying the result for two perfect sets, one can easily to have the same result holds for any finite collection of perfect sets.

By definition, a set is perfect if it is closed and if every point of the set is a limit point of the set. We know that, by Proposition 2.13, the union $A \cup B$ is closed since A and B are closed. If $x \in A \cup B$, then either $x \in A$ or $x \in B$. If $x \in A$, then x is a limit point of A, so it is a limit point of $A \cup B$. Similarly, if $x \in B$, then x is also a limit point of $A \cup B$. Therefore, the union $A \cup B$ is perfect.

2. To see that the union of a countable collection of perfect sets may not be perfect, consider the collection $\{A_n\}$, where

$$A_n = \left[-1 + \frac{1}{n}, 1 - \frac{1}{n}\right], \quad n = 1, 2, \dots$$

We claim that

$$\bigcup_{n=1}^{\infty} A_n = (-1, 1).$$

In fact, it is clear that $A_n \subset (-1,1)$, so that $\bigcup_{n=1}^{\infty} A_n \subset (-1,1)$.

On the other hand, if $x \in (-1,1)$, then, by the archimedean property, there is a positive integer N_1 such that $N_1 > \frac{1}{1-x}$. For the same reason, there is a positive integer N_2 such that $N_2 > \frac{1}{1+x}$. Thus, for any positive integer $n > \max\{N_1, N_2\}$, we have

$$n > \frac{1}{1-x}, \qquad n > \frac{1}{1+x}.$$

These two inequalities give $-1 + \frac{1}{n} < x < 1 - \frac{1}{n}$. Consequently, we have $x \in A_n \subset \bigcup_{n=1}^{\infty} A_n$. Hence,

we have
$$(-1,1) \subset \bigcup_{n=1}^{\infty} A_n$$
.

Therefore, we have
$$\bigcup_{n=1}^{\infty} A_n = (-1, 1)$$
.

Since any closed interval is perfect, and any finite open interval is not perfect (because it is not closed), the proved equality shows that the union of a countable collection of perfect sets may not be perfect.

Ex. 2.8 Let G be an open set in \mathbb{R} . For each $x \in G$, there are y and z, with z < x < y, such that $(z, y) \subset G$. Let $b = \sup\{y \colon (x, y) \subset G\}$ and $a = \inf\{z \colon (z, x) \subset G\}$. Then $-\infty \le a < x < b \le \infty$. Put $I_x = (a, b)$. It is clear that I_x is an open interval.

We claim that $b \notin G$. In fact, there is nothing to prove if $b = \infty$. If b is finite, and $b \in G$, then there is some $\delta > 0$ such that $(b - \delta, b + \delta) \subset G$ since G is open. This contradicts to the definition of b. Similarly, $a \notin G$.

We shall prove that $I_x \subset G$. Let $w \in I_x$, say x < w < b. By the definition of b, there is y > x such that $(x, y) \subset G$. Hence $w \in G$. We can similarly discuss the case of a < w < x.

For each $x \in G$, the above construction yields a collection of open intervals $\{I_x\}$. We claim that $G = \bigcup I_x$. In fact, since each $I_x \subset G$, we have $\bigcup I_x \subset G$. On the other hand, for any $x \in G$, we know there is I_x such that $x \in I_x$. This implies $x \in \bigcup I_x$, so that $G \subset \bigcup I_x$.

It remains to show that the collection of open intervals $\{I_x\}$ is disjoint and at most countable.

To show that $\{I_x\}$ is disjoint, we let (a, b) and (c, d) be any two open intervals in the collection with both containing a common point x. Since a < x < b and c < x < d, we have c < b and a < d. Since $c \notin G$, it does not belong to (a, b), so that $c \le a$. The reversed inequality $a \le c$ holds by the same argument. Hence a = c. Similarly, b = d. Thus, any two different open intervals in the collection $\{I_x\}$ are disjoint.

To show that the collection $\{I_x\}$ is countable, we choose a rational number in each I_x as its representative. This can be done since \mathbb{Q} is dense in \mathbb{R} . Since we have a disjoint collection, each segment contains a different rational number. Hence the collection can be put in one-to-one correspondence with a subset of the rational numbers. Thus it is an at most countable collection.

Chapter 3 Quiz Answers

- 1D: The sequence $1, 2, 3, \ldots$ contains no convergent subsequence.
- ②C: By the remark in Definition 3.4, a sequence converges if and only if every subsequence converges to the same limit.
- $\mathfrak{J}A$: By the definition, every sequence of K has a subsequence that converges to a point in K.
- (4)C: The Cauchy criterion states that a series converges if and only if for every $\varepsilon > 0$, there is an integer N such that

 $\left| \sum_{k=n}^{m} a_k \right| < \varepsilon,$

if $m \ge n \ge N$. Hence, it is a necessary and sufficient condition for convergence of a series.

- (5) E: The Monotone Convergence Theorem states that a monotonic sequence converges if and only if it is bounded. Hence, we know that a bounded monotonic sequence must converge. This gives a sufficient condition for a sequence to converge.
- **(6)** B: If $\underline{\lim}_{n\to\infty} x_n = -\infty$, then there exists a subsequence of $\{x_n\}$ whose limit is $-\infty$. If $\underline{\lim}_{n\to\infty} x_n = -\infty$ and $\underline{\lim}_{n\to\infty} x_n$ is finite, then $\{x_n\}$ must be bounded above but unbounded below.
- ②D: If a series converges as determined by the Comparison Test, the Root Test, or the Ratio Test, then the seres converges absolutely. The Divergence Test cannot be used for convergence.
 - Dirichlet's Test can be used to determine conditional convergence. A successful example is the convergence of the alternating harmonic series.
- **®**E: If the absolute value of a series converges, then the series converges.

Chapter 3 Exercise Solutions

Ex. 3.1 Since $\lim_{n\to\infty} x_n = \alpha$, for $\varepsilon = 1 > 0$, there exists an integer N_1 such that $n \ge N_1$ implies $|x_n - \alpha| < 1$. Thus, by triangle inequality, for $n \ge N_1$, we have

$$|x_n| = |x_n - \alpha + \alpha| \le |x_n - \alpha| + |\alpha| < 1 + |\alpha|.$$

Hence, for $n \geq N_1$,

$$|x_n - \alpha| \le |x_n| + |\alpha| < 1 + |\alpha| + |\alpha| = 1 + 2|\alpha|.$$

Again since $\lim_{n\to\infty} x_n = \alpha$, for $\varepsilon > 0$, there is an integer N_2 such that $n \ge N_2$ implies $|x_n - \alpha| < \frac{\varepsilon}{1 + 2|\alpha|}$. Let $N = \max\{N_1, N_2\}$. Then, for $n \ge N$, we have

$$\left|x_n^2 - \alpha^2\right| = |x_n - \alpha| \cdot |x_n + \alpha| < |x_n - \alpha| \cdot (1 + 2|\alpha|) < \frac{\varepsilon}{1 + 2|\alpha|} \cdot (1 + 2|\alpha|) = \varepsilon.$$

Hence, by the definition of limit, we conclude that $\lim_{n\to\infty} x_n^2 = \alpha^2$.

Ex. 3.2 It is clear that $0 < s_1 = \sqrt{2} < 2$. Suppose $0 < s_n < 2$. Then

$$0 < s_{n+1} = \sqrt{2 + \sqrt{s_n}} < \sqrt{2 + \sqrt{2}} < 2,$$

Hence, by induction, we have $0 < s_n < 2$ for all $n \ge 1$.

We shall show that $\{s_n\}$ is an increasing sequence by induction. In fact,

$$s_2 = \sqrt{2 + \sqrt{\sqrt{2}}} > \sqrt{2} = s_1.$$

Suppose $s_n > s_{n-1}$. Then

$$s_{n+1} = \sqrt{2 + \sqrt{s_n}} > \sqrt{2 + \sqrt{s_{n-1}}} = s_n.$$

Thus, $\{s_n\}$ is a bounded increasing sequence. By Theorem 3.10, $\{s_n\}$ converges.

Ex. 3.3 We show that

$$(x_{2n-1}, x_{2n}) = \left(\frac{2^{n-1} - 1}{2^{n-1}}, \frac{2^{n-1} - 1}{2^n}\right), \quad n \ge 1.$$

In fact, by the definition,

$$(x_1, x_2) = (0, \frac{0}{2}) = (0, 0).$$

Suppose the formula holds for n = k. Then

$$(x_{2(k+1)-1}, x_{2(k+1)}) = \left(\frac{1}{2} + x_{2k}, \frac{x_{2k+1}}{2}\right) = \left(\frac{1}{2} + \frac{2^{k-1} - 1}{2^k}, \frac{\frac{1}{2} + x_{2k}}{2}\right)$$

$$= \left(\frac{2^{k+1} - 2}{2^{k+1}}, \frac{1}{4} + \frac{1}{2} \cdot \frac{2^{k-1} - 1}{2^k}\right)$$

$$= \left(\frac{2^{(k+1)-1} - 1}{2^{(k+1)-1}}, \frac{2^{(k+1)-1} - 1}{2^{k+1}}\right).$$

The proved expression for $\{x_n\}$ gives:

$$\lim_{n \to \infty} x_{2n-1} = 1, \quad \lim_{n \to \infty} x_{2n} = \frac{1}{2}.$$

Hence, by the definitions of upper and lower limits, we have

$$\limsup_{n \to \infty} x_n = \overline{\lim}_{n \to \infty} x_n = 1, \qquad \liminf_{n \to \infty} x_n = \underline{\lim}_{n \to \infty} x_n = \frac{1}{2}.$$

Ex. 3.4 Let $\{x_n\}$ be monotonically increasing with a convergent subsequence $\{x_{n_k}\}$, $\lim_{k\to\infty} x_{n_k} = \alpha$. Since $\{x_{n_k}\}$ is also monotonically increasing, by Theorem 3.10, $\alpha = \sup\{x_{n_k}\}$. We claim that $x_n \leq \alpha$ for all $n \geq 1$. In fact, if there is $x_N > \alpha$, then we have $x_{n_N} \geq x_N > \alpha$. This violates the fact that $\alpha = \sup\{x_{n_k}\}$.

For any $\varepsilon > 0$, there exists an integer K such that $k \geq K$ implies

$$|x_{n_k} - \alpha| < \varepsilon.$$

The last inequality implies that $\alpha - \varepsilon < x_{n_k} < \alpha + \varepsilon$. Since $\{x_n\}$ is monotonically increasing, we have

that, for $n \geq n_K$,

$$\alpha - \varepsilon < x_{n_K} \le x_n \le \alpha < \alpha + \varepsilon.$$

By definition, this means that $\lim_{n\to\infty} x_n = \alpha$.

Ex. 3.5 By applying Proposition 3.14 and its corollary, we have

$$L = \lim_{n \to \infty} x_n = \underline{\lim}_{n \to \infty} x_n \le \underline{\lim}_{n \to \infty} y_n \le \overline{\lim}_{n \to \infty} y_n \le \overline{\lim}_{n \to \infty} z_n = \lim_{n \to \infty} z_n = L.$$

Thus, $\lim_{n\to\infty} y_n = \overline{\lim}_{n\to\infty} y_n = L$, so that $\lim_{n\to\infty} y_n = L$

1. Let $x_n = \sqrt[n]{n} - 1$. Then $n = (1 + x_n)^n$. It is clear that $x_n > 0$ for all n > 1. By the binomial formula, we get

$$n = (1 + x_n)^n > 1 + nx_n + \frac{n(n-1)}{2}x_n^2 > \frac{n(n-1)}{2}x_n^2, \quad n > 1.$$

Thus, we have

$$0 < x_n < \sqrt{\frac{2}{n-1}}, \qquad n > 1.$$

It is easy to see that $\lim_{n\to\infty} 0 = \lim_{n\to\infty} \sqrt{\frac{2}{n-1}} = 0$. Hence, the hypotheses of the Squeeze Theorem hold. Consequently, we have $\lim_{n\to\infty} x_n = 0$. Therefore, $\lim_{n\to\infty} \sqrt[n]{n} = 1$.

2. If n > 2024, by the binomial formula, for p > 0, we have

$$(1+p)^n > 1 + \binom{n}{1}p + \binom{n}{2}p^2 + \dots + \binom{n}{2024}p^{2024} > \frac{n(n-1)\cdots(n-2023)}{2024!}p^{2024}.$$

Thus, we get

$$0 < \frac{n^{2023}}{(1+p)^n} < \frac{n^{2023}}{\frac{n(n-1)\cdots(n-2023)}{2024!}}, \qquad n > 2024.$$

It is easy to see that $\lim_{n \to \infty} 0 = \lim_{n \to \infty} \frac{n^{2023}}{\frac{n(n-1)\cdots(n-2023)}{2024!}p^{2024}} = 0$. Hence, the hypotheses of the

Squeeze Theorem hold. Consequently, we have $\lim_{n\to\infty}\frac{n^{2023}}{(1+p)^n}=0.$

Ex. 3.6 1. For each $n \ge 1$, the partial sum

$$s_n = \sum_{k=1}^n a_k = \sqrt{n+1} - 1.$$

Since $\{s_n\}$ is unbounded, so it diverges. Hence, $\sum a_n$ diverges.

2. Since

$$0 < a_n = \frac{\sqrt{n+1} - \sqrt{n}}{n} \le \frac{1}{n(\sqrt{n+1} + \sqrt{n})} \le \frac{1}{n^{3/2}}.$$

Since $\sum \frac{1}{n^{3/2}}$ is a convergent *p*-series (with $p = \frac{3}{2}$), by the Comparison Test, we know that $\sum a_n$ converges.

3. Based on the result given in part **1** in Exercise 3.5, we know that $\lim \sqrt[n]{n} = 1$. Hence, there exists N_0 such that for $n \ge N_0$,

$$0 < \sqrt[n]{n} - 1 < \frac{1}{2},$$

which implies that for $n \geq N_0$,

$$0 < a_n = (\sqrt[n]{n} - 1)^n < (\frac{1}{2})^n.$$

The series $\sum \left(\frac{1}{2}\right)^n$ is a convergent geometric series, thus, by the Comparison Test, we know that $\sum a_n$ converges.

4. If $|z| \le 1$, then $|1 + z^n| \le 1 + |z|^n \le 2$, which implies

$$|a_n| = \left| \frac{1}{1 + z^n} \right| \to 0.$$

By the Divergence Test, $\sum a_n$ diverges.

If |z| > 1, by the estimation

$$|a_n| = \left| \frac{1}{1+z^n} \right| \le \frac{1}{|z|^n - 1},$$

The series $\sum \frac{1}{|z|^n-1}$ converges by the Ratio Test, since

$$\lim \frac{\frac{1}{|z|^n-1}}{\frac{1}{|z|^{n-1}-1}} = \lim \frac{1}{|z|} \cdot \frac{\frac{1}{1-1/|z|^n}}{\frac{1}{1-1/|z|^{n-1}}} = \frac{1}{|z|} < 1.$$

Hence, we know that $\sum a_n$ converges by the Comparison Test.

Ex. 3.7 It is clear that the following inequality holds

$$0 \le \frac{\sqrt{a_n}}{n} = \sqrt{\frac{a_n}{n^2}} \le \frac{1}{2}a_n + \frac{1}{2} \cdot \frac{1}{n^2}, \qquad n = 1, 2, 3, \dots$$

Since $\sum a_n$ is convergent and $\sum \frac{1}{n^2}$ is a convergent *p*-series (with p=2), by Proposition 3.18, we know that the series $\sum b_n$ converges, where $b_n = \frac{1}{2}a_n + \frac{1}{2} \cdot \frac{1}{n^2}$. Hence, by the Comparison Test, we know that $\sum \frac{\sqrt{a_n}}{n}$ converges.

Ex. 3.8 For convergent series $\sum a_n$, the series $\sum a_n^2$ may not be convergent. This can be illustrated in the following example.

Consider the series $\sum a_n$, with

$$a_{2n-1} = \frac{1}{\sqrt{n}}, \quad a_{2n} = -\frac{1}{\sqrt{n}}, \quad n \ge 1.$$

It is easy to see that the partial sums of $\sum a_n$ are

$$s_{2n-1} = \frac{1}{\sqrt{n}}, \quad s_{2n} = 0, \qquad n \ge 1.$$

Thus, we have

$$0 \le s_n \le \sqrt{\frac{2}{n+1}}, \qquad n \ge 1.$$

Applying the Squeeze Theorem gives $\lim s_n = 0$ so that $\sum a_n$ converges.

On the other hand, let $t_n = \sum_{k=1}^n \frac{1}{k}$. Then $s_{2n} = 2t_n$, where s_n is the *n*-th partial sum of the series

$$\sum a_n^2 = 1 + 1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{3} + \frac{1}{3} + \frac{1}{4} + \frac{1}{4} + \cdots$$

Since the harmonic series diverges, we know that $\{t_n\}$, which is the sequence of the partial sums of the harmonic series, diverges. Hence, the sequence $\{s_{2n}\}$ diverges. Because the latter is a subsequence of $\{s_n\}$. Hence, $\{s_n\}$ diverges.

Ex. 3.9 1. If $L^* = \overline{\lim}_{n \to \infty} \frac{a_n}{b_n} < \infty$, then there is an integer N_0 such that $n \ge N_0$ implies $\frac{a_n}{b_n} < L^* + 1$. Hence,

$$0 \le a_n < (L^* + 1)b_n, \qquad n \ge N_0.$$

If $\sum b_n$ converges, then $\sum (L^* + 1)b_n$ converges. In this case, by the Comparison Test, we know that $\sum a_n$ converges.

2. If $L_* = \underline{\lim}_{n \to \infty} \frac{a_n}{b_n} > 0$, then there is an integer N_0 such that $n \ge N_0$ implies $\frac{a_n}{b_n} > \frac{1}{2}L_*$. Hence,

$$0 \le \frac{1}{2}L_*b_n < a_n, \qquad n \ge N_0$$

If $\sum b_n$ diverges, then $\sum \frac{1}{2}L_*b_n$ diverges. In this case, by the Comparison Test, we know that $\sum a_n$ diverges.

Ex. 3.10 Let $A_n = \sum_{k=0}^n |a_k|$ and $B_n = \sum_{k=0}^n |b_k|$. By the hypothesis, we know that $\{A_n\}$ and $\{B_n\}$ are convergent. For their Cauchy product $\sum c_n$, by applying the triangle inequality, we have

$$\sum_{k=0}^{n} |c_k| = \sum_{k=0}^{n} \left| \sum_{j=0}^{k} a_j b_{k-j} \right| \le \sum_{k=0}^{n} \sum_{j=0}^{k} |a_j| |b_{k-j}| = A_n B_n.$$

Hence, by the Comparison Test, the Cauchy product $\sum c_n$ is absolutely convergent.

Chapter 4 Quiz Answers

- ①A: Item A is the continuity of f at x_0 . Item C is the uniform continuity of f on E.
- ②C: Any interval [a, b] is compact. By the Extreme Value Theorem, the continuous function f on the compact set [a, b] attains its maximum value.
- **3**D: The function f is continuous on \mathbb{R} . Since

$${x \in \mathbb{R} : f(x) \neq 0} = {x \in \mathbb{R} : f(x) < 0} \cup {x \in \mathbb{R} : f(x) > 0}$$

Each set on the right-hand side is open. In fact, the complement of $\{x \in \mathbb{R} : f(x) < 0\}$ is $\{x \in \mathbb{R} : f(x) \geq 0\}$. The latter is closed: if $\{x_n\}$ is a consequence in $\{x \in \mathbb{R} : f(x) \geq 0\}$, and $x_n \to x^*$, then by the continuity, $f(x^*) = \lim f(x_n) \geq 0$,

so that $x^* \in \{x \in \mathbb{R} : f(x) \ge 0\}.$

Thus, the set $\{x \in \mathbb{R} : f(x) \neq 0\}$ is a union of two open sets, so it is open.

- **(4)** E: Since \overline{E} is closed by Proposition 2.14, we know that $(\overline{E})^{\mathsf{c}}$ is open. Thus, by Theorem 4.17, $f^{-1}((\overline{E})^{\mathsf{c}})$ is open.
- ⑤D: According to Theorem 4.23, a continuous mapping maps a connected subset to a connected subset. Because E = (a, b) is connected, the set f(E) is connected.
- **®**A: The interval [a,b] is compact, by the Extreme Value Theorem, the supremum $\sup_{x \in [a,b]} g(x)$ and the infimum $\inf_{x \in [a,b]} g(x)$ can be attained by the function g. In fact, the values of g lie between these two values. So, option A is false.
- ②B: The function f(x) = 1/x is continuous on (0,1), but not uniformly continuous on (0,1).
- **®**D: Since $\lim_{x\to 0-} f(x) = -1$, $\lim_{x\to 0+} f(x) = 1$, and neither $\lim_{x\to 0+} g(x)$ nor $\lim_{x\to 0-} g(x)$ exists. Hence, at x=0, f has a jump discontinuity and g has an essential discontinuity.

Chapter 4 Exercise Solutions

Ex. 4.1 The original definition of limit is

"for every $\varepsilon > 0$ there exists a $\delta > 0$ such that $|f(x) - q| \le \varepsilon$ for all points $x \in E$ for which $0 < |x - p| < \delta$."

Thus, if $\lim_{x\to p} f(x) = q$, then for every $\varepsilon^* = \varepsilon^2 > 0$, there exists a $\delta > 0$ such that $|f(x) - q| < \varepsilon^* = \varepsilon^2$ for all points $x \in E$ for which $0 < |x - p| < \delta$. Hence, the modified statement for limit holds.

On the other hand, assume that the modified statement for limit holds. Then, for every $\varepsilon^*>0$, there exists a $\delta>0$ such that $|f(x)-q|\leq {\varepsilon^*}^2$ for all points $x\in E$ for which $0<|x-p|<\delta$. In particular, for every $\varepsilon>0$, if we take $\varepsilon^*=\sqrt{\frac{1}{2}\varepsilon}$, then there exists a $\delta>0$ such that $|f(x)-q|\leq \frac{1}{2}\varepsilon<\varepsilon$ for all points $x\in E$ for which $0<|x-p|<\delta$. This means that $\lim_{x\to p}f(x)=q$.

Ex. 4.2 The function $f(x) = \sqrt{x}$ is defined on $[0, \infty)$. We need to prove that $\lim_{x \to p} f(x) = f(p)$ for every $p \in [0, \infty)$. Let $\varepsilon > 0$ be given.

Case 1: $\lim_{x\to 0} \sqrt{x} = 0$. In this case, we understand that when $x\to 0$, we have $x\geq 0$.

Take $\delta = \varepsilon^2$. If $|x-0| < \delta$, then $\left| \sqrt{x} - \sqrt{0} \right| = \sqrt{x} < \sqrt{\delta} = \varepsilon$. Thus, by the definition, we have $\lim_{x \to 0} \sqrt{x} = 0$. Hence, the function f is continuous at x = 0.

Case 2: $\lim_{x\to p} \sqrt{x} = \sqrt{p}$ for all p > 0.

Take $\delta = \sqrt{p} \cdot \varepsilon$. If $|x - p| < \delta$, then

$$\left|\sqrt{x}-\sqrt{p}\right| = \frac{|x-p|}{\sqrt{x}+\sqrt{p}} \leq \frac{|x-p|}{\sqrt{p}} < \frac{\sqrt{p}\cdot\varepsilon}{\sqrt{p}} = \varepsilon.$$

Thus, by the definition, we have $\lim_{x\to p} \sqrt{x} = \sqrt{p}$ for all p>0

Hence, the function f is continuous at x = p for all p > 0.

Ex. 4.3 Let $\varepsilon > 0$ be given.

For any $p \in (0, \infty)$, since p > 0, we take $\delta_1 = \frac{1}{2}p > 0$. If $|x - p| < \delta_1$, then $\frac{1}{2}p = p - \delta_1 < x < p + \delta_1$. It is obvious we have the following

$$\left|\frac{1}{\sqrt{x}} - \frac{1}{\sqrt{p}}\right| = \frac{\left|\sqrt{x} - \sqrt{p}\right|}{\sqrt{x} \cdot \sqrt{p}} = \frac{|x - p|}{\left|\sqrt{x} + \sqrt{p}\right| \cdot \sqrt{x} \cdot \sqrt{p}} < \frac{|x - p|}{\sqrt{p} \cdot \sqrt{x} \cdot \sqrt{p}} = \frac{|x - p|}{\sqrt{x} \cdot p}$$

Take $\delta_2 = \frac{p^{3/2} \cdot \varepsilon}{\sqrt{2}} > 0$ and let $\delta = \min\{\delta_1, \delta_2\}$. Then, when $|x - p| < \delta$, we have

$$\left| \frac{1}{\sqrt{x}} - \frac{1}{\sqrt{p}} \right| < \frac{\frac{p^{3/2} \cdot \varepsilon}{\sqrt{2}}}{\sqrt{\frac{1}{2}p} \cdot p} = \varepsilon.$$

Thus, by the definition, we have $\lim_{x\to p}\frac{1}{\sqrt{x}}=\frac{1}{\sqrt{p}}$ for all p>0.

Hence, the function $\frac{1}{\sqrt{x}}$ is continuous on $(0, \infty)$.

Ex. 4.4 1. Assume that f and g are monotonically increasing. Thus, for $a \le x < y \le b$, we have

$$f(x) \le f(y), \qquad g(x) \le g(y).$$

Hence, for $a \le x < y \le b$

$$H(x) = \max\{f(x), g(x)\} < \max\{f(y), g(y)\} = H(y),$$

so that H is monotonically increasing.

In the similar manner, we can show that if f and q are monotonically decreasing, so it H.

The analogous results hold for the function h.

2. It is easy to verify that the following identity holds:

附錄 C: 第 193 頁

$$H(x) = \max\{f(x), g(x)\} = \frac{1}{2} \left[f(x) + g(x) + |f(x) - g(x)| \right].$$

According to Item 1 of Proposition 4.18, a linear combination of continuous functions is continuous. Additionally, we know that the absolute value function is continuous. By using Item 3 of Proposition 4.18, we can conclude that the composition of the absolute value function and a continuous function is also continuous. Therefore, we can deduce that the function H is continuous.

In the similar manner, using the identity

$$h(x) = \min\{f(x), g(x)\} = \frac{1}{2} \left[f(x) + g(x) - |f(x) - g(x)| \right],$$

we can prove that h is continuous if f and g are continuous.

Ex. 4.5 Since $Z(f) = f^{-1}(\{0\})$, and $\{0\}$ is a closed set in \mathbb{R} , by Theorem 4.17, Z(f) is closed if f is continuous.

Another alternative approach is to prove the result directly. Let p be a limit point of Z(f). Then there exists a sequence $\{p_n\}$ in Z(f) such that $|p_n - p| \to 0$. Since f is continuous at p, for any $\varepsilon > 0$, there exists $\delta > 0$ such that $|x - p| < \delta$ implies $|f(x) - f(p)| < \varepsilon$. By $|p_n - p| \to 0$, we know that there exists N such that $n \ge N$ implies $|p_n - p| < \delta$. Hence, if $n \ge N$, then $|f(p_n) - f(p)| < \varepsilon$. Since $f(p_n) = 0$, we know that $|f(p)| < \varepsilon$ for any $\varepsilon > 0$. This implies f(p) = 0, or $p \in Z(f)$. Therefore z(f) is closed, since it contains all its limit points.

- **Ex. 4.6** Put g(x) = x f(x) for $x \in I$. It is clear that g is continuous on I. If g(0) = 0 or g(1) = 0, the conclusion of the problem holds either for x = 0 or x = 1. Otherwise, we have g(0) = -f(0) < 0 and g(1) = 1 f(1) > 0. By the Intermediate Value Theorem, there exists a $x \in (0,1)$ such that g(x) = 0, since g(0) < 0 < g(1). This gives f(x) = x for this x.
- **Ex. 4.7** Without loss of generality, assume that $x_1 < \cdots < x_n$. By the hypothesis, the function f is continuous on $[x_1, x_n]$. Denote

$$m = \min_{x \in [x_1, x_n]} f(x), \qquad M = \max_{x \in [x_1, x_n]} f(x).$$

Show that

$$m = \frac{m+m+\cdots+m}{n} \le \frac{f(x_1)+f(x_2)+\cdots+f(x_n)}{n} \le \frac{M+M+\cdots+M}{n} \le M.$$

By the Intermediate Value Theorem, there exists $\xi \in [x_1, x_n] \subset (a, b)$ such that

$$f(\xi) = \frac{f(x_1) + f(x_2) + \dots + f(x_n)}{n}.$$

Ex. 4.8 By the hypothesis $\lim_{x\to\infty} f(x) = A$, we know that for $\varepsilon = 1$, there exists a number b, with b > a, such that $x \ge b$ implies |f(x) - A| < 1. Thus, when $x \ge b$, we have

$$|f(x)| = |f(x) - A + A| \le |f(x) - A| + |A| < 1 + |A|.$$

On the finite interval [a, b], which is compact, the function f is continuous. By Theorem 4.19, we know that f([a, b]) is bounded, so that there is a real number M such that for all $x \in [a, b]$,

$$|f(x)| < M$$
.

Denote $B = \max\{1 + |A|, M\}$. Then, for all $x \in [a, \infty) = [a, b] \cup [b, \infty)$, we have

$$|f(x)| \leq B$$
,

that is, the function f is bounded on $[a, \infty)$.

Ex. 4.9 If f is a uniformly continuous on E, then there exists $\delta > 0$ such that $|f(x) - f(y)| < \varepsilon$ for any $x, y \in E$ satisfying $|x - y| < \delta$. Let $\{x_n\}$ be a Cauchy sequence in E. By definition, there exists an integer N such that $|x_n - x_m| < \delta$ if $n, m \ge N$. Thus, if $n, m \ge N$, we have

$$|f(x_n) - f(x_m)| < \varepsilon.$$

This means that $\{f(x_n)\}\$ is a Cauchy sequence in \mathbb{R} .

Ex. 4.10 Since f is uniformly continuous on E, there exists $\delta > 0$ such that |f(x) - f(y)| < 1 for any $x, y \in E$ satisfying $|x - y| < \delta$.

Because the set E is bounded, it is contained in a bounded closed interval I, that is, $E \subset I$. For each $x \in I$, the collection $\{(x - \delta, x + \delta)\}$ of open intervals is an open cover of I. Since I is compact, there is a finite subcover of I. Obviously, this finite collection is also a cover of E. We keep only the open intervals in the collection which intersect with E, say $(y_1 - \delta, y_1 + \delta), \ldots, (y_K - \delta, y_K + \delta)$. Let $x_i \in (y_i - \delta, y_i + \delta)$, $i = 1, \ldots, K$, where $x_i \in E$. Denote $M = \max_{1 \le i \le K} \{|f(x_i)|\}$.

For any fixed $x \in E$, there is $i_0, 1 \le i_0 \le K$, such that $x \in (x_{i_0} - \delta, x_{i_0} + \delta)$. Thus,

$$|f(x)| \le |f(x) - f(x_{i_0})| + |f(x_{i_0})| < 1 + M,$$

so that f is bounded on E.

Chapter 5 Quiz Answers

- ①B: If f'(x) exists for $x \in (a, b)$, then both the left-hand derivative and the right-hand derivative exist and equal to f'(x). So, item B is correct.
- ②A: Since f is differentiable on [a, b], by Preposition 5.2, f is continuous on [a, b]. By the Mean Value Theorem, there is a point $x \in (a, b)$ such that

$$f(b) - f(a) = (b - a)f'(x).$$

Since f(a) = f(b), we have f'(x) = 0.

- \mathfrak{G} C: By the definition, a critical point of function f is the point x at which either f'(x) = 0 or f'(x) is undefined.
- 4D: The Mean Value Theorem claims that

$$\frac{f(b) - f(a)}{b - a} = f'(x).$$

This can be interpreted that the average rate of change of a function over an interval is equal to its instantaneous rate of change at some point within the interval.

⑤E: By the Mean Value Theorem, for any $x, y \in \mathbb{R}$,

$$|f(x) - f(y)| = |f'(c)| \cdot |x - y| \le M|x - y|.$$

Thus, for every $\varepsilon>0,$ when $|x-y|<\frac{\varepsilon}{M}=\delta,$ then $\delta>0,$ and

$$|f(x) - f(y)| < M \cdot \frac{\varepsilon}{M} = \varepsilon.$$

Hence, f is uniformly continuous on \mathbb{R} .

- **⑥**D: According to l'Hôpital's rule, if $\lim_{x\to a} \frac{f'(x)}{g'(x)}$ exists, then $\lim_{x\to a} \frac{f(x)}{g(x)} = \lim_{x\to a} \frac{f'(x)}{g'(x)}$.
- Taylor's theorem is a method for approximating a function with a polynomial. It gives the remainder $\frac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0)^{n+1}$, which measures the accuracy of the approximation.
- (8)D: Taylor's theorem gives

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)^{n+1}, \qquad x_0 \in [a, b].$$

The remainder $R_n(x) = f(x) - \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)^{n+1}$ is the error of the approx-

imation between f(x) and $\sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x-x_0)^k$. For any $x \in [a,b]$, we have

$$|R_n(x)| \le \left| \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)^{n+1} \right|.$$

The maximum possible error of the right term is $M(b-a)^{n+1}/(n+1)!$.

Chapter 5 Exercise Solutions

Ex. 5.1 The inequality implies that, for $x \neq y$,

$$\left| \frac{f(x) - f(y)}{x - y} \right| \le |x - y|.$$

Taking $x \to y$, we have $|f'(y)| \le 0$, which implies that f'(y) = 0 for all $y \in \mathbb{R}$. We conclude that f is constant, by Item 2 of the Monotone Test.

Ex. 5.2 If there is $x \in (a, \infty)$ such that f(x) = f(a), then, by the Mean Value Theorem, there exists ξ between x and a such that

$$f'(\xi) = \frac{f(x) - f(a)}{x - a} = \frac{f(a) - f(a)}{x - a} = 0.$$

If for all $x \in (a, \infty)$ such that $f(x) \neq f(a)$, then, without loss of generality, we assume that there is a number $c \in (a, \infty)$ such that f(c) > f(a). Denote $\varepsilon = \frac{1}{2}[f(c) - f(a)] > 0$. Since $\lim_{x \to \infty} f(x) = f(a)$, there is X > c such that $|f(x) - f(a)| < \varepsilon$ for x > X, so that

$$f(X+1) < f(a) + \varepsilon = \frac{1}{2}[f(a) + f(c)] < f(c).$$

Hence, the function f is continuous on [a, X+1], differentiable in (a, X+1), and for $c \in (a, X+1)$,

$$f(c) > f(a),$$
 $f(c) > f(X+1).$

By the Extreme Value Theorem, the function f attains its maximum value at some point $\xi \in (a, X + 1)$. By Proposition 5.7, we know that $f'(\xi) = 0$.

Ex. 5.3 Put $M = \sup_{x \in \mathbb{R}} |g'(x)|$. Take any ε satisfying $0 < \varepsilon < \frac{1}{2M+1}$. For x < y, by the Mean Value Theorem, we have

$$f(y) - f(x) = f'(c)(y - x) = [1 + \varepsilon g'(c)](y - x)$$

$$\ge (1 - \varepsilon M)(y - x)$$

$$> \left(1 - \frac{1}{2M + 1} \cdot M\right)(y - x) > \frac{1}{2}(y - x),$$

which implies that f is strictly increasing. Hence f is one-to-one.

Ex. 5.4 Put

$$P(x) = C_0 x + \frac{C_1}{2} x^2 + \dots + \frac{C_{n-1}}{n} x^n + \frac{C_n}{n+1} x^{n+1}.$$

It is clear that the function P is a polynomial, so it is differentiable everywhere on \mathbb{R} . We know P(0) = 0, and P(1) = 0 by the hypothesis. By the Mean Value Theorem, there is $c \in (0,1)$ such that

$$C_0 + C_1 c + \dots + C_{n-1} c^{n-1} + C_n c^n = P'(c) = \frac{P(1) - P(0)}{1 - 0} = 0.$$

This completes the proof.

Ex. 5.5 Without loss of generality, we assume that $f'_{+}(a) > 0$. Then, there is a $\delta_1 > 0$ such that, if $t \in [a, b]$ and $t - a < \delta_1$.

$$\left| \frac{f(t) - f(a)}{t - a} - f'_{+}(a) \right| < \frac{1}{2} f'_{+}(a).$$

It follows that there is $x_1 \in (a, b)$ such that

$$f(x_1) = f(x_1) - f(a) > \frac{1}{2}f'_+(a)(x_1 - a) > 0.$$

Similarly, since $f'_{-}(b) > 0$, there is a $\delta_2 > 0$ such that, if $t \in [a, b]$ and $b - t < \delta_2$.

$$\left| \frac{f(t) - f(b)}{t - b} - f'_{-}(b) \right| < \frac{1}{2} f'_{-}(b).$$

It follows that there is $x_2 \in (a, b)$ such that

$$f(x_2) = f(x_2) - f(b) < \frac{1}{2}f'_{-}(b)(x_2 - b) < 0.$$

Clearly, we can choose x_1 and x_2 so that $a < x_1 < x_2 < b$.

Since $f(x_1) \cdot f(x_2) < 0$, by the Intermediate Value Theorem or Bolzano's Theorem, there is $\xi \in (x_1, x_2) \subset (a, b)$ such that $f(\xi) = 0$.

Ex. 5.6 By the definition of derivative,

$$\lim_{t \to x} \frac{f(t) - f(x)}{t - x} = f'(x), \qquad \lim_{t \to x} \frac{g(t) - g(x)}{t - x} = g'(x) \neq 0.$$

Apply Proposition 4.13, we have

$$\lim_{t \to x} \frac{f(t)}{g(t)} = \lim_{t \to x} \frac{\frac{f(t) - f(x)}{t - x}}{\frac{g(t) - g(x)}{t - x}} = \frac{\lim_{t \to x} \frac{f(t) - f(x)}{t - x}}{\lim_{t \to x} \frac{g(t) - g(x)}{t - x}} = \frac{f'(x)}{g'(x)}.$$

Ex. 5.7 By Taylor's Theorem, for any $y \in \mathbb{R}$, we have

$$f(y) = f(x) + f'(x)(y - x) + \frac{f''(\xi)}{2}(y - x)^{2},$$

where ξ is a number between x and y. Putting y = x + h, x - h into the formula, respectively, we have

$$f(x+h) = f(x) + f'(x)h + \frac{f''(\xi_1)}{2}h^2,$$

$$f(x-h) = f(x) - f'(x)h + \frac{f''(\xi_2)}{2}h^2,$$

where ξ_1 is between x and x + h and ξ_2 is between x and x - h. The sum of these two equations yields

$$f(x+h) + f(x-h) = 2f(x) + \frac{f''(\xi_1) + f''(\xi_2)}{2} \cdot h^2.$$

Since f''(x) > 0 for all $x \in \mathbb{R}$, we see that $\frac{f''(\xi_1) + f''(\xi_2)}{2} \cdot h^2 > 0$. Thus,

$$f(x+h) + f(x-h) > 2f(x)$$

holds for all $x, h \in \mathbb{R}$. Finally, if we take $x = \frac{1}{2}(x_1 + x_2)$ and $h = \frac{1}{2}(x_1 - x_2)$, then the desired equality follows.

Ex. 5.8 Let $x_1, x_2 \in \mathbb{R}$, with $x_1 < x_2$. Denote $\overline{x} = \frac{1}{2}(x_1 + x_2)$. By Taylor's Theorem, for any $x \in \mathbb{R}$, we have

$$f(x) = f(\overline{x}) + f'(\overline{x})(x - \overline{x}) + \frac{1}{2}f''(\overline{x})(x - \overline{x})^2 + \frac{1}{6}f'''(\xi)(x - \overline{x})^3,$$

where ξ is a number between x and \overline{x} . Putting $x = x_1, x_2$ into the formula, respectively, we have

$$f(x_1) = f(\overline{x}) + f'(\overline{x})(x_1 - \overline{x}) + \frac{1}{2}f''(\overline{x})(x_1 - \overline{x})^2 + \frac{1}{6}f'''(\xi_1)(x_1 - \overline{x})^3,$$

$$f(x_2) = f(\overline{x}) + f'(\overline{x})(x_2 - \overline{x}) + \frac{1}{2}f''(\overline{x})(x_2 - \overline{x})^2 + \frac{1}{6}f'''(\xi_2)(x_2 - \overline{x})^3$$

where ξ_1 is between x_1 and \overline{x} and ξ_2 is between \overline{x} and x_2 . The difference of these two equations yields

$$f(x_2) - f(x_1) = f'(\overline{x})(x_2 - x_1) + \frac{1}{6}[f'''(\xi_2) + f'''(\xi_1)] \cdot 2 \cdot \frac{(x_2 - x_1)^3}{8}.$$

Since f'''(x) > 0 for all $x \in \mathbb{R}$, we see that $\frac{1}{6}[f'''(\xi_2) + f'''(\xi_1)] \cdot 2 \cdot \frac{(x_2 - x_1)^3}{8} > 0$. Thus,

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} > f'\left(\frac{1}{2}(x_1 + x_2)\right)$$

holds for all $x_1, x_2 \in \mathbb{R}$ with $x_2 > x_1$.

Ex. 5.9 When $M_0 = 0$, then $f(x) \equiv 0$, the inequality is trivial.

When $M_2 = 0$, then f'(x) is constant and f(x) is a linear function, by the Mean Value Theorem. In this case, if $f'(x) \equiv c \neq 0$, then M_0 is infinite, a contradiction to the hypothesis. If $f'(x) \equiv 0$, then $M_1 = 0$, again we have a trivial inequality.

When $M_0 > 0$ and $M_2 > 0$, by Taylor's Theorem, for any h > 0, there is a $\xi \in (x, x + 2h)$ such that

$$f(x+2h) = f(x) + \frac{1}{1!}f'(x)(2h) + \frac{1}{2!}f''(\xi)(2h)^{2},$$

which gives

$$f'(x) = \frac{1}{2h}[f(x+2h) - f(x)] - hf''(\xi).$$

By the triangle inequality, we have, for any h > 0,

$$|f'(x)| \le \frac{1}{2h}[|f(x+2h)| + |f(x)|] + h|f''(\xi)| \le \frac{1}{h}M_0 + hM_2.$$

In particular, if we take $h = \sqrt{M_0/M_2}$ in the last inequality, then

$$|f'(x)| \le 2\sqrt{M_0 M_2}$$

for any $x \in (a, \infty)$. Since x is arbitrary, we have

$$M_1 < 2\sqrt{M_0 M_2}$$

which implies

$$M_1^2 < 4M_0 M_2$$
.

Ex. 5.10 1. If x_1 and x_2 are two fixed points of f, and if $x_1 \neq x_2$, then by the Mean Value Theorem, there is a point ξ between x_1 and x_2 such that

$$f'(\xi) = \frac{f(x_2) - f(x_1)}{x_2 - x_1} = \frac{x_2 - x_1}{x_2 - x_1} = 1.$$

This contradicts to the hypothesis.

2. For the sequence $\{x_n\}$ generated by $x_{n+1} = f(x_n)$, if $x_{n_0+1} = x_{n_0}$ for some n_0 , then $x_{n_0+2} = f(x_{n_0+1}) = f(x_{n_0}) = x_{n_0+1}$. In this manner, we see that $x_k = x_{n_0}$ for all $k \ge n$. Hence, in this case, we have $\lim x_n = x_{n_0}$, and $x_{n_0} = x_{n_0+1} = f(x_{n_0})$.

If $x_{n+1} \neq x_n$ for all n, by the Mean Value Theorem, for every n, there is ξ_n between x_n and x_{n+1} such that

$$x_{n+2} - x_{n+1} = f(x_{n+1}) - f(x_n) = f'(\xi_n)(x_{n+1} - x_n).$$

Since $|f'(t)| \leq A$ for all t, we have

$$|x_{n+2} - x_{n+1}| \le |f'(\xi_n)| \cdot |x_{n+1} - x_n| \le A \cdot |x_{n+1} - x_n|$$

Hence,

$$|x_{n+1}-x_n| \le A^{n-1} \cdot |x_2-x_1|, \qquad n=1,2,3,\cdots.$$

This implies that $\{x_n\}$ is a Cauchy sequence. Indeed, for $0 \le A < 1$, we have $\lim A^n = 0$ (see part 2 in Ex. 3.5). Let $\varepsilon > 0$ be given. Since $\frac{1-A}{|x_2-x_1|} > 0$, there exists N such that $n \ge N$ implies

$$A^n < \varepsilon \cdot \frac{1-A}{|x_2-x_1|}$$
. For $n > m \ge N$,

$$|x_{m} - x_{n}| \leq |x_{m} - x_{m+1}| + |x_{m+1} - x_{m+2}| + \dots + |x_{n-1} - x_{n}|$$

$$\leq A^{m} \cdot |x_{2} - x_{1}| + A^{m+1} \cdot |x_{2} - x_{1}| + \dots + A^{n-1} \cdot |x_{2} - x_{1}|$$

$$= \frac{A^{m}(1 - A^{n-m})}{1 - A} \cdot |x_{2} - x_{1}|$$

$$\leq A^{m} \cdot \frac{|x_{2} - x_{1}|}{1 - A} < \varepsilon.$$

Hence, $\{x_n\}$ is a Cauchy sequence. Put $\lim x_n = x$. Then, by the continuity of f,

$$x = \lim x_n = \lim x_{n+1} = \lim f(x_n) = f(x),$$

that is, x is a fixed point of f.

Chapter 6 Quiz Answers

- (I)C: Any Riemann integrable function must be bounded, as stated in the remark of Theorem 6.3.
- ②A: By item 1 of Theorem 6.4, if f is continuous on [a, b], then $f \in \mathcal{R}[a, b]$.
- ③B: It is known that $\int_a^b f \, \mathrm{d}x \le \int_a^{\overline{b}} f \, \mathrm{d}x$. Hence, option B implies $\int_a^b f \, \mathrm{d}x = \int_a^{\overline{b}} f \, \mathrm{d}x$, so that $f \in \mathscr{R}[a,b]$.

Option A is not true, since $f \in \mathscr{R}[a,b]$ is equivalent to $\sup_{P} L(P,f) = \inf_{P} U(P,f)$.

Option C is not true, since the hypothesis requires only for some positive integer n. This is not sufficient for f being integrable.

Option D is not true for the same reason as option C.

④D: By the hypothesis, we have $g_2 - g_1 \ge 0$, so that $f_1(g_2 - g_1) \le f_2(g_2 - g_1)$. Applying the monotonicity of the Riemann integral, we have

$$\int_{a}^{b} f_{1}(g_{2} - g_{1}) dx \le \int_{a}^{b} f_{2}(g_{2} - g_{1}) dx,$$
$$\int_{a}^{b} (f_{1}g_{2} + f_{2}g_{1}) dx \le \int_{a}^{b} (f_{1}g_{1} + f_{2}g_{2}) dx.$$

so that

- (5) E: The functions $\frac{1}{1+x^2}$, x^2+x^3 , |x|, e^x are all continuous functions, so Theorem 6.5 applies.
- **©**C: Let $F(x) = \int_0^x f(t) dt$. Then $F(\alpha(x)) = \int_0^{\alpha(x)} f(t) dt$. Thus, by the chain rule, $\left[F(\alpha(x)) \right]' = F'(\alpha(x)) \cdot \alpha'(x)$.

By Part 1 of the Fundamental Theorem of Calculus, we know F'(x) = f(x), sp that

$$F'(\alpha(x)) = f(\alpha(x)).$$

Hence, option C is true.

 \mathfrak{D} B: Since F_{α} is an antiderivative of f_{α} , by Part 2 of the Fundamental Theorem of Calculus, we know that option B is true.

The function G and $F \cdot \alpha$ are not antiderivatives of $f\alpha'$. Thus, options A and C are not true.

(§A: If f = on [a, b], then its antiderivative is a constant, so that $\int_a^b f \, dx = 0$ by the Fundamental Theorem of Calculus.

The other options are not consequences of the Fundamental Theorem of Calculus.

Chapter 6 Exercise Solutions

Ex. 6.1 (\Rightarrow) Suppose $f \in \mathcal{R}[a,b]$. By the integrability criterion, for every $\varepsilon > 0$, there exists a partition of [a,b] such that $U(P,f) - L(P,f) < \varepsilon$. Thus, by taking $P_1 = P_2 = P$, we have

$$U(P_2, f) - L(P_1, f) < \varepsilon.$$

(⇒) Suppose that for every $\varepsilon > 0$, there are partitions P_1 and P_2 such that $U(P_2, f) - L(P_1, f) < \varepsilon$. Let P be the common refinement of P_1 and P_2 . Then, by the corollary of Proposition 6.2, we have

$$L(P_1, f) < L(P^*, f) < U(P^*, f) < U(P_2, f).$$

Thus, we have

$$U(P^*, f) - L(P^*, f) < U(P_2, f) - L(P_1, f) < \varepsilon.$$

This demonstrates that the integrability criterion holds for the function f on [a,b]. Hence, $f \in \mathcal{R}[a,b]$.

Ex. 6.2 Suppose $f(x^*) > 0$ for some $x^* \in [a, b]$. Since f is continuous on [a, b], for $\varepsilon = \frac{1}{2}f(x^*) > 0$, there exist $\delta > 0$ such that $|x - x^*| < \delta$ and $x \in [a, b]$ imply

$$|f(x) - f(x^*)| < \frac{1}{2}f(x^*).$$

Thus, we know that there is an interval whose length is at least δ , say $[\gamma, \gamma + \delta] \subset [a, b]$, on which

$$f(x) > f(x^*) - \frac{1}{2}f(x^*) = \frac{1}{2}f(x^*).$$

By the monotonicity of the Riemann integral, we have

$$\int_a^b f \, \mathrm{d}x = \int_a^\gamma f \, \mathrm{d}x + \int_\gamma^{\gamma+\delta} f \, \mathrm{d}x + \int_{\gamma+\delta}^b f \, \mathrm{d}x \ge 0 + \tfrac12 f(x^*) \delta + 0 > 0,$$

which contradicts to the hypothesis $\int_a^b f dx = 0$. Therefore, for every $x \in [a, b]$, we have f(x) = 0.

Ex. 6.3 By the fact that the rational and the irrational numbers are both sense in every [a, b] for any a < b, we know that for every partition of [a, b],

$$U(P,f) = \sum_{i=1}^{n} \sup_{[x_{i-1},x_i]} f(x) \, \Delta x_i = b - a, \qquad L(P,f) = \sum_{i=1}^{n} \inf_{[x_{i-1},x_i]} f(x) \, \Delta x_i = 0.$$

Hence $\int_a^b f \, \mathrm{d}x = 0 < b - a = \int_a^{\overline{b}} f \, \mathrm{d}x$. By the definition, $f \notin \mathscr{R}[a,b]$.

Ex. 6.4 Claim 1: The condition $f^2 \in \mathcal{R}[a,b]$ does not imply $f \in \mathcal{R}[a,b]$.

Consider the function

$$f(x) = \begin{cases} 1, & \text{if } x \text{ is rational,} \\ -1, & \text{if } x \text{ is irrational.} \end{cases}$$

It is clear that $f^2 \equiv 1$ is a constant function and is integrable on any finite interval [a, b] (a < b). However, the function f is not integrable on [a, b]. In fact, since the rational and the irrational numbers are both sense in [a, b], we have

$$U(P,f) = \sum_{i=1}^{n} \sup_{[x_{i-1},x_i]} f(x) \, \Delta x_i = \sum_{i=1}^{n} \sup_{[x_{i-1},x_i]} (1) \, \Delta x_i = b - a,$$

$$L(P,f) = \sum_{i=1}^{n} \inf_{[x_{i-1},x_{i}]} f(x) \, \Delta x_{i} = \sum_{i=1}^{n} \inf_{[x_{i-1},x_{i}]} (-1) \, \Delta x_{i} = -(b-a).$$

Hence $\int_a^b f \, dx = -(b-a) < b-a = \int_a^{\overline{b}} f \, dx$. By the definition, $f \notin \mathcal{R}[a,b]$.

Claim 2: The condition $f^3 \in \mathcal{R}[a,b]$ implies $f \in \mathcal{R}[a,b]$.

The function $g(x) = x^3 : [a, b] \to [a^3, b^3]$ is continuous and bijective, shown as follows.

- Continuous: The function g is an elementary function. All elementary functions are continuous in their domains.

- Injective: If $x_1^3 = x_2^3$, then, from the equality

$$0 = (x_1 - x_2)(x_1^2 + x_1x_2 + x_2^2)$$

= $(x_1 - x_2) \left[(x_1 + \frac{1}{2}x_2)^2 + \frac{3}{4}x_2^2 \right],$

we have $x_1 = x_2$ (because $(x_1 + \frac{1}{2}x_2)^2 + \frac{3}{4}x_2^2 = 0$ also implies $x_1 = x_2$).

- Surjective: For ant $y \in [a^3, b^3]$, let $x = \operatorname{sgn} y \cdot \sqrt[3]{|y|}$. Then $x \in [a, b]$ and $x^3 = y$.

Thus, we apply item 3 in Proposition 4.18 to know that the function $\phi(x) = \sqrt[3]{x}$ is continuous. It is clear that $f = \phi \circ f^3$. Since $f^3 \in \mathcal{R}[a, b]$, we conclude that $f \in \mathcal{R}[a, b]$, by Theorem 6.5.

Ex. 6.5 1. Since $f, g \in \mathcal{R}[a, b]$, by the linearity of the Riemann integral, we know $f + g, f - g \in \mathcal{R}[a, b]$. Since the square of integrable function is integrable, we further know that $(f + g)^2, (f - g)^2 \in \mathcal{R}[a, b]$. Applying the linearity of the Riemann integral once more, we know that

$$fg = \frac{1}{2}[(f+g)^2 - (f-g)^2] \in \mathcal{R}[a,b].$$

2. By part **1**, it suffices to show that 1/g is integrable when g is integrable and $|g| \ge c > 0$. We note the equality

$$\left|\frac{1}{g(x)} - \frac{1}{g(y)}\right| = \frac{|g(x) - g(y)|}{|g(x)g(y)|} \le \frac{1}{c^2} \left|g(x) - g(y)\right|.$$

Thus, for any partition P of [a, b],

$$P: \quad a = x_0 \le x_1 \le \dots \le x_{n-1} \le x_n = b.$$

if we denote

$$M_i = \sup_{x_{i-1} \le x \le x_i} g(x), \qquad m_i = \inf_{x_{i-1} \le x \le x_i} g(x),$$

then we have

$$\left| \frac{1}{g(x)} - \frac{1}{g(y)} \right| \le \frac{1}{c^2} (M_i - m_i), \quad x, y \in [x_{i-1}, x_i], \ i = 1, 2, \dots, n.$$

Hence,

$$U(P, 1/g) - L(P, 1/g) \le \frac{1}{c^2} [U(P, g) - L(P, g)].$$

The integrability of 1/g follows from the integrability of g and the integrability criterion.

3. As in part **1**, we know $f+g, f-g\in \mathscr{R}[a,b]$. Since the absolute value function $\phi(x)=|x|$ is continuous, we know $|f-g|\in \mathscr{R}[a,b]$. Applying the linearity of the Riemann integral, we know that

$$\max\{f, g\} = \frac{1}{2} [f + g + |f - g|] \in \mathcal{R}[a, b],$$

$$\min\{f, g\} = \frac{1}{2} [f + g - |f - g|] \in \mathcal{R}[a, b].$$

Ex. 6.6 Let h = g - f. Then h is continuous on [a,b] except possibly at x^* , so that $h \in \mathcal{R}[a,b]$ by item 2 of Theorem 6.4. Thus, the function g = h + f is integrable, by the linearity of the Riemann integral. Furthermore, the desired equality follows from the fact

$$\int_a^b h \, \mathrm{d}x = 0.$$

To show the last equality, we note that $h \equiv 0$ except possibly at x^* . For any partition P of [a, b], it is easy to have the following:

$$L(P, h) = 0$$
, if $h(x^*) \ge 0$;

$$U(P,h) = 0$$
, if $h(x^*) < 0$,

Thus, either
$$\int_a^b h \, dx = 0$$
 if $h(x^*) \ge 0$ or $\int_a^{\overline{b}} f \, dx = 0$ if $h(x^*) \le 0$. Since $h \in \mathcal{R}[a, b]$, we have

$$\int_a^b h \, \mathrm{d}x = \int_a^b h \, \mathrm{d}x = \int_a^{\overline{b}} h \, \mathrm{d}x.$$

Hence, we conclude that $\int_{a}^{b} h \, dx = 0$.

Ex. 6.7 (\Rightarrow) Suppose $\sum_{k=1}^{\infty} a_k$ converges. We prove that the limit $\lim_{n\to\infty} \int_1^n f(x) dx$ exists and is finite.

For each integer $k \geq 1$, put g(x) = f(k) for $x \in [k, k+1)$. Then g is a function defined on $[1, \infty)$. Since f is monotonically decreasing, it is clear that $g \geq f$. Thus

$$\int_{1}^{n} f(x) dx \le \int_{1}^{n} g(x) dx = \sum_{k=1}^{n-1} f(k) \le \sum_{k=1}^{\infty} a_{k},$$

so that the increasing sequence $\left\{ \int_{1}^{n} f(x) dx \right\}$ is bounded above. Hence, the limit $\lim_{n \to \infty} \int_{1}^{n} f(x) dx$ exists and is finite.

 (\Leftarrow) Suppose that the limit $\lim_{n\to\infty}\int_1^n f(x)\,\mathrm{d}x$ exists and is finite. We prove that $\sum_{k=1}^\infty a_k$ converges.

For each integer $k \geq 1$, put h(x) = f(k+1) for $x \in [k, k+1)$. Then h is a function defined on $[1, \infty)$. Since f is monotonically decreasing, we know that $h \leq f$. Hence

Since

$$\int_{1}^{n} f(x) dx \le \lim_{n \to \infty} \int_{1}^{n} f(x) dx,$$

we know that the partial sums of the nonnegative series $\sum a_k$ are bounded above, so that $\sum_{k=1}^{\infty} a_k$ converges.

Ex. 6.8 Since f is continuous on [a,b], by item 1 of Theorem 6.4, we know that $f \in \mathcal{R}[a,b]$. By Ex. 6.5, the product fg is a product of two integrable functions, so it is integrable.

Denote

$$m = \min_{x \in [a,b]} f(x), \qquad M = \max_{x \in [a,b]} f(x).$$

Without loss of generality, we assume that $g(x) \ge 0$ for all $x \in [a, b]$. By the monotonicity of the Riemann integral, we have

 $m \int_a^b g(x) dx \le \int_a^b f(x)g(x) dx \le M \int_a^b g(x) dx.$

If $\int_a^b g(x) dx = 0$, then the above inequalities yield $\int_a^b f(x)g(x) dx = 0$, so that the desired equality holds for any fixed $\xi \in [a, b]$.

If $\int_a^b g(x) dx > 0$, then we have $m \le \lambda \le M$, where

$$\lambda = \frac{\int_{a}^{b} f(x)g(x) \, \mathrm{d}x}{\int_{a}^{b} g(x) \, \mathrm{d}x}$$

By the Intermediate Value Theorem, there is $x \in [a, b]$, such that $f(\xi) = \lambda$. The desired equality follows.

In particular, when $g \equiv 1$, since $\int_a^b 1 dx = b - a$, we obtain

$$\frac{1}{b-a} \int_a^b f(x) \, \mathrm{d}x = f(\xi).$$

Ex. 6.9 We prove the remainder formula by induction.

For n = 0, the formula gives

$$\frac{1}{0!} \int_{a}^{x} (x-t)^{0} f'(t) dt = f(x) - f(a) = f(x) - T_{0}(x) = R_{0}(x).$$

So, the formula holds for n = 0.

Suppose the formula holds for n = k:

$$R_k(x) = \frac{1}{k!} \int_a^x (x-t)^k f^{(k+1)}(t) dt, \quad x \in I.$$

Then, by integration by parts, we get

$$\frac{1}{(k+1)!} \int_{a}^{x} (x-t)^{k+1} f^{(k+2)}(t) dt$$

$$= \left[\frac{1}{(k+1)!} (x-t)^{k+1} f^{(k+1)}(t) \right]_{t=a}^{x} + \frac{1}{k!} \int_{a}^{x} (x-t)^{k} f^{(k+1)}(t) dt$$

$$= R_{k}(x) - \frac{f^{(k+1)}(a)}{(k+1)} (x-a)^{k+1}$$

$$= f(x) - T_{k}(x) - \frac{f^{(k+1)}(a)}{(k+1)} (x-a)^{k+1}$$

$$= f(x) - T_{k+1}(x) = R_{k+1}(x).$$

So, the formula holds for n = k + 1.

Hence, the remainder formula holds for all $n \geq 0$.

Ex. 6.10 By the Newton-Leibniz formula, for any $x \in [a, b]$,

$$f(x) - f(a) = \int_a^x f'(t) dt,$$

$$f(x) - f(b) = -\int_a^b f'(t) dt.$$

The sum of these equalities gives

$$2f(x) = 2f(x) - [f(a) + f(b)] = \int_{a}^{x} f'(t) dt - \int_{a}^{b} f'(t) dt.$$

Integrating both sides of the last equality gives

$$\int_a^b f(x) dx = \frac{1}{2} \int_a^b \left[\int_a^x f'(t) dt - \int_x^b f'(t) dt \right] dx.$$

Hence,

$$\left| \int_{a}^{b} f(x) \, \mathrm{d}x \right| \leq \frac{1}{2} \int_{a}^{b} \left| \int_{a}^{x} f'(t) \, \mathrm{d}t - \int_{x}^{b} f'(t) \, \mathrm{d}t \right| \, \mathrm{d}x$$

$$\leq \frac{1}{2} \int_{a}^{b} \left[\left| \int_{a}^{x} f'(t) \, \mathrm{d}t \right| + \left| \int_{x}^{b} f'(t) \, \mathrm{d}t \right| \right] \, \mathrm{d}x$$

$$\leq \frac{1}{2} \int_{a}^{b} \left[\int_{a}^{x} \left| f'(t) \right| \, \mathrm{d}t + \int_{x}^{b} \left| f'(t) \right| \, \mathrm{d}t \right] \, \mathrm{d}x$$

$$= \frac{1}{2} \int_{a}^{b} \left[\int_{a}^{b} \left| f'(t) \right| \, \mathrm{d}t \right] \, \mathrm{d}x$$

$$= \frac{1}{2} \int_{a}^{b} \left| f'(t) \right| \, \mathrm{d}t \cdot \int_{a}^{b} 1 \, \mathrm{d}x = \frac{b-a}{2} \int_{a}^{b} \left| f'(t) \right| \, \mathrm{d}t.$$