Lecture 4: Convergence theorems, change of variable, and Fubini's theorem

 $\{f_n : n = 1, 2, ...\}$: a sequence of Borel functions. Can we exchange the limit and integration, i.e.,

 $\int \lim_{n \to \infty} f_n d\nu = \lim_{n \to \infty} \int f_n d\nu?$

Example 1.7. Consider $(\mathcal{R}, \mathcal{B})$ and the Lebesgue measure. Define $f_n(x) = nI_{[0,n^{-1}]}(x)$, n = 1, 2, Then $\lim_{n \to \infty} f_n(x) = 0$ for all x but x = 0. Since the Lebesgue measure of a single point set is 0, $\lim_{n \to \infty} f_n(x) = 0$ a.e. and $\int \lim_{n \to \infty} f_n(x) dx = 0$. On the other hand, $\int f_n(x) dx = 1$ for any n and, hence, $\lim_{n \to \infty} \int f_n(x) dx = 1$.

Sufficient conditions

Theorem 1.1. Let $f_1, f_2, ...$ be a sequence of Borel functions on $(\Omega, \mathcal{F}, \nu)$.

- (i) (Fatou's lemma). If $f_n \geq 0$, then $\int \liminf_n f_n d\nu \leq \liminf_n \int f_n d\nu$.
- (ii) (Dominated convergence theorem). If $\lim_{n\to\infty} f_n = f$ a.e. and there exists an integrable function g such that $|f_n| \leq g$ a.e., then $\int \lim_{n\to\infty} f_n d\nu = \lim_{n\to\infty} \int f_n d\nu$.
- (iii) (Monotone convergence theorem). If $0 \le f_1 \le f_2 \le \cdots$ and $\lim_{n\to\infty} f_n = f$ a.e., then $\int \lim_{n\to\infty} f_n d\nu = \lim_{n\to\infty} \int f_n d\nu$.

Proof. (See the textbook).

Note

- (a) To apply each part of the theorem, you need to check the conditions.
- (b) If the conditions are not satisfied, you cannot apply the theorem, but it does not imply that you cannot exchange the limit and integration.

Example: Let $f_n(x) = \frac{n}{x+n}$, $x \in \Omega = [0,1]$, n = 1, 2, ... Then $\lim_n f_n(x) = 1$. To apply the DCT, note that $0 \le f_n(x) \le 1$. To apply the MCT, note that $0 \le f_n(x) \le f_{n+1}(x)$. Hence, $\lim_n \int f_n(x) dx = \int \lim_n f_n(x) dx = \int dx = 1$.

Example 1.8 (Interchange of differentiation and integration). Let $(\Omega, \mathcal{F}, \nu)$ be a measure space and, for any fixed $\theta \in \mathcal{R}$, let $f(\omega, \theta)$ be a Borel function on Ω . Suppose that $\partial f(\omega, \theta)/\partial \theta$ exists a.e. for $\theta \in (a, b) \subset \mathcal{R}$ and that $|\partial f(\omega, \theta)/\partial \theta| \leq g(\omega)$ a.e., where g is an integrable function on Ω . Then, for each $\theta \in (a, b)$, $\partial f(\omega, \theta)/\partial \theta$ is integrable and, by Theorem 1.1(ii),

$$\frac{d}{d\theta} \int f(\omega, \theta) d\nu = \int \frac{\partial f(\omega, \theta)}{\partial \theta} d\nu.$$

Theorem 1.2 (Change of variables). Let f be measurable from $(\Omega, \mathcal{F}, \nu)$ to (Λ, \mathcal{G}) and g be Borel on (Λ, \mathcal{G}) . Then

 $\int_{\Omega} g \circ f d\nu = \int_{\Lambda} g d(\nu \circ f^{-1}),$

i.e., if either integral exists, then so does the other, and the two are the same.

For Riemann integrals, $\int g(y)dy = \int g(f(x))f'(x)dx$, y = f(x).

For a random variable X on (Ω, \mathcal{F}, P) , $EX = \int_{\Omega} X dP = \int_{\mathcal{R}} x dP_X$, $P_X = P \circ X^{-1}$ Let Y be a random vector from Ω to \mathcal{R}^k and g be Borel from \mathcal{R}^k to \mathcal{R} . $Eg(Y) = \int_{\mathcal{R}} x dP_{g(Y)} = \int_{\mathcal{R}^k} g(y) dP_Y$

Example: $Y = (X_1, X_2)$ and $g(Y) = X_1 + X_2$.

$$E(X_1 + X_2) = EX_1 + EX_2$$
 (why?) = $\int_{\mathcal{R}} x dP_{X_1} + \int_{\mathcal{R}} x dP_{X_2}$.

We need to handle two integrals involving P_{X_1} and P_{X_2} . On the other hand,

 $E(X_1 + X_2) = \int_{\mathcal{R}} x dP_{X_1 + X_2}$, which involves one integral w.r.t. $P_{X_1 + X_2}$. Unless we have some knowledge about the joint c.d.f. of (X_1, X_2) , it is not easy to obtain $P_{X_1 + X_2}$.

Iterated integration on a product space

Theorem 1.3 (Fubini's theorem). Let ν_i be a σ -finite measure on $(\Omega_i, \mathcal{F}_i)$, i = 1, 2, and let f be a Borel function on $\prod_{i=1}^{2}(\Omega_i, \mathcal{F}_i)$ whose integral w.r.t. $\nu_1 \times \nu_2$ exists. Then

$$g(\omega_2) = \int_{\Omega_1} f(\omega_1, \omega_2) d\nu_1$$

exists a.e. ν_2 and defines a Borel function on Ω_2 whose integral w.r.t. ν_2 exists, and

$$\int_{\Omega_1 \times \Omega_2} f(\omega_1, \omega_2) d\nu_1 \times \nu_2 = \int_{\Omega_2} \left[\int_{\Omega_1} f(\omega_1, \omega_2) d\nu_1 \right] d\nu_2.$$

Note: If $f \geq 0$, then $\int f d\nu_1 \times \nu_2$ always exists. Extensions to $\prod_{i=1}^k (\Omega_i, \mathcal{F}_i)$ is straightforward.

Fubini's theorem is very useful in

- (1) evaluating multi-dimensional integrals (exchanging the order of integrals);
- (2) proving a function is measurable;
- (3) proving some results by relating a one dimensional integral to a multi-dimensional integral

Example: Exercise 47

Let X and Y be random variables such that the joint c.d.f. of (X, Y) is $F_X(x)F_Y(y)$, where F_X and F_Y are marginal c.d.f.'s. Let Z = X + Y. Show that

$$F_Z(z) = \int F_Y(z - x) dF_X(x).$$

Note that

$$F_Z(z) = \int_{x+y \le z} dF_X(x) dF_Y(y)$$
$$= \int \left(\int_{y \le z - x} dF_Y(y) \right) dF_X(x)$$
$$= \int F_Y(z - x) dF_X(x),$$

where the second equality follows from Fubini's theorem.

Example 1.9. Let $\Omega_1 = \Omega_2 = \{0, 1, 2, ...\}$, and $\nu_1 = \nu_2$ be the counting measure. A function f on $\Omega_1 \times \Omega_2$ defines a double sequence. If $\int f d\nu_1 \times \nu_2$ exists, then

$$\int f d\nu_1 \times \nu_2 = \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} f(i,j) = \sum_{j=0}^{\infty} \sum_{i=0}^{\infty} f(i,j)$$

(by Theorem 1.3 and Example 1.5). Thus, a double series can be summed in either order, if it is well defined.

Proof of Fubini's theorem