

主か方: **msup** ARCHNOTES 主か方: **iiioup** ARCHNOTES

GIAC

全球互联网架构大会

GLOBAL INTERNET ARCHITECTURE CONFERENCE

AIOps 根因溯源产品 在互联网的落地实践

朱颖航 Linkedsee 灵犀

SLA 仍然是运维 No.1 KPI

• 投入最大; 且始终充满挑战

故障现状越来越复杂

- IT 基础设施是一套复杂的系统
- 这个系统呈齿轮状运转,相互依存
- 已经几乎不存在单点型故障

故障原因占比 - 具体

■程序 ■服务器硬件 网络硬件 ■IDC 风火水电

■内外网质量 ■安全问题 ■其他疑难杂症

通常运维组织解决问题的思路

1、长期持续监控建设

2、不断细化的组织分工

3、交互频繁的团队协作

主办方: **msup** Archnotes

现状痛点 1 : 海量的告警 + 告警噪音 = 大量被浪费的人力

A0140 t	1, 2	151	T3865	PBN1:	2773167	ZWis	1383	response.
A director		(Applicate)	1700	38645-116698	3	Name of Legis (PRIMIS)	107	(479)
U (S) Amilia		las las dis C	Verse	205 30 11 126765		Lad of malable recognise server (-0.078494)	10	(4965)1
6 to 100		art do title	784	233-06- (108935	ī	Processor (2001) (4) (4) (4) (5) (5) (5) (6)	ZE	(460)
Base amay		arer (II)	- 20	2019-05-110/2003	1	Participal Spragaret	39	(4048)
0 68 303		cos tos do C	1001	2013/11000	5	Reds 6/3 cord versors is ass	200	(860)
6 to 1000		10 op 31	- 30	204-0-110698	Li .	Province kirjus (KK) (1846)	76	(499)
Red min		tavel(Gr	196	301-95-1100385	1	Fransis salk rijogr H387340H3	100	1600
0.58 858	- 9	ak m Ta	Versy	30.30113006	1	(ad a salable renery a sense (SSTA446)	39	[4686]
0-satisfies	- 3	36062	Vivra	2004/11/00	2	takalaskika rennya savan-astalak	38	(899)
0.28 3553		aractly.	29	205-00-1104805	ý	Practice (and higher HOSTAGE)	额	149,471
O FE MAR.	7	15,35 VII	ance	201.0 1100.00	1	List of his swiner ESE NAVI	177	(beta)
O set amin		77.0015	Askin	805-01-1104805	Z	Lod of xallable energy or server (FCST), 40(E)	SR.	(4946)
0.998 (975)	- 0	rc-w151	Verag	2015-05-11 (0.00,03	(5)	tad of mail the mentory of several DSTANGE	78.	(4646)
B of the	- 3	petered b	forsal	201-1-1120-07	1	To you had been self a cover hop look in you (22)	100	(1967)
0.45 min		12	730	300-95-10-007	1	Section of the September 1978 (September 1978)	892	(462)
0 10 mm	7	nco k Ob	139	307.00.11454966	H	Processor assist agines (HOCTA-44K)	16	(4)(4)
O sign moves		, de 2000	-26	2016/05 104/03	1	Research and Kighter (HOSTA-KHR)	32	1989
10 x 35 months	()	501003	priis	2016/05/11/04/25	1	Relate process are and lage as Anni as apt a	96	(40%)
O Carlo		5.72.5	102370	2011 Je 1 T244ch	12	Ness transcuss avoided or local (varyblent).	101	(AXE)
O AE SITTLE		no ez dib	period	2015-05/11/04/209	1	Scores sende an explanativistic for the	78	(4900)
0.98 AUG	1	index.C	0.00	2019-00-11/04405	3	Rodenic racia valvo (1097A496)	59	1496441

主办方: **msup** Archnotes

现状痛点 2 : 消失的告警 = 大幅滞后的故障发现时间

现状痛点 3 ∶ 多人协同 + 专家依赖 = 排查问题又幸运又低效

LinkedAIOps 数据源

1

指标异常检测

通过算法自动学习和建立动态基线,提前感知和发现异常

2

日志异常检测

通过算法自动分析业务运行日志 异常,提前感知和发现潜在故障

3

告警降噪聚类

基于算法的告警降噪和聚类,实现 90%以上的降噪效果

多重故障溯源

通过算法将包括指标异常检测、日志异常检测、故障根因推荐等多种数据关联,实现快速故障定位

一键排障

通过最简单的一键排障入口,实现最高效的 故障排查

通过直观的关键运维分析数据的展示,实时 掌控关键业务的运行健康状态

产品功能 - 统一数据接入和治理

数据源	支持的对接方式	客户若当前无此数据源	实时性	是否 必需 接入
系统告警(含 IAAS+PAAS 层)	开源工具 (Zabbix 、 Open - falcon 、 Prometh eus)、 Pinpoint APM API	可推荐行业内厂商;或帮助客户部署	秒级	是
业务告警	BPM 、API	可通过日志数据帮客户梳理	秒级	是
日志	ELK 、Rsyslog 、 Syslog	可推荐行业内厂商;或 帮助客户部署	分钟级	否
指标(含业务指标和 系统指标)	开源工具 (Zabbix 、 Open -falcon)、 API	可帮助客户梳理	分钟级	否
工单	Jenkins、ITSM 、API	暂无推荐和代为部署能力	分钟级	否

产品功能 - 指标异常检测

■ 使用基于深度学习的异常检测算法 ,替代传统基于固定阈值的监控方 案

■ 特点:

学习历史数据,分析当前指标 曲线趋势是否异常

■ 优势:

- 零阈值,不再需要配置阈值
- 告警准确率高
- 更早发现异常情况
- 可适应业务发展带来的趋势变 化

产品功能 - 日志异常检测

■ 对故障时段的日志做聚类形成日志模式,并与正常时段的日志模式做对比,发现异常日志行为,定位故障原因

■ 价值:

- 出现故障后迅速定位原因,减少 MTTR
- 弥补现有监控规则覆盖不到的故障情况

■ 算法特点:

- 无需对日志做解析
- 针对监控规则没覆盖的场景,价值大,准确率高

产品功能 - 告警降噪和辅助增强

- 基于统一数据接入后的统一告警中心
- 增加基于日志异常检测和指标异常检测 的新告警

- 去重降噪,将告警量减少90%
- 异常检测算法,将告警准确率提升 至 70%

主办方: **msup** Archnotes

产品功能 - 告警聚合

- 将1个事实故障衍生的所有 相关告警都聚类成1个故障
- ■以此作为故障处理的第一站

以二十卷	∞ ID ≠8i	お客ご	✓ ≤₩₩	Highin 5	HERRIN	0			
	30世間 (新田) 中	ID +	Miles	Missili L	米原 () (十八型	#2 F (F)+F)	人和級認為(3909)	ME NWALLS	科技博工艺 型 中
	0 min	(9.0)	Francisk ganals less than	2015-03-19-00/03-19		superaid sedi-01	()	2018-08-19 00:03:18	天然性
	0 ==	ni)	RabbitMO[5672] mem us	2019-03-19 90/03/15		mos-ma-01	74	20 9-00-19 00/00/15	SSST
	(0 will	28 (Torscat lobo(6230) appve	2019-03-19 00:11:55	7	hbo-pp-as-ôthib	3	2019-00-19 00:11:55	40.68 上
	9 we	10	此是四萬門為其式	2019 US 19 05:52:00	21	gal as 15byjel.	145	2010/09/10/09/48/45	预用品
	0	141	Web with a second situa-	4010 FE 19 (#)	4	the could be as a	1	2014 de 15 de 1124	TORR
	0 ==	207	Free dick space is less than	2019-08-19/08-55/0	3.	takengelid;takenpen	(3	2019-08-19 08:55:40	天然性.
	0 ==	748	RabbitMO[5672] mem us	2019-03-19 0:27//5		mos-ma-03	4	20/5-00-19 10/27/15	598X
	0.95	275	MS mu	2019-03-19 12:16:00	51	yna-es-25 yna-es.	51	2319-00-19 14:57:49	物調主
	(e ::::::	125	网络原因	2010 13 19 1466021	83	gel es Oshyje .	89	27'8 de 10 146653	手切割達矣
	(0	330	Raldi Migas et manas	2010/04/19/14/46/45	N.	max-mp 0%	3	2019 18 15 144-946	TERR
	0 ==	300	Toron act valed mos(8585) through	2019-03-19 13:53:36	13	pollower Ologiphia	13	32016-08-14 (1559:86)	英雄性
	0 ==	34/	RabbitMO[5672] mem us	2019-03-19 6/20/15		mos-ma-01	71	20 9-00-19 1620/15	508T
	(0 m)	366	Tomas lotus[3200] threa.	2019-03-19 16:59:56	¥6	mnl-as-00	1	2019-00-19 16:59:56	40.00 土
	0.95	3467	Zabbix agent on (HOSTAL)	2019-03-19:19:40:00	粉	:cs-op-01	1	2018-00-19 19:40:00	WHE.
	0	463	BITATE	2010 10:19 10:47:58	2	jok ta Ušdijok ab	4	2018 88 15 1951/14	MA
	0	594	Proceduk spin z is knothina.	24 0 12 2 1 2 P.P.P.	70	blicusch (IA)	.1	2019/04/2014/45/04	N. Sept.
	0 ===	902	Preevious states to less than	2019-09-20-08/10-15	ħ.	taleiste til paleisgen.	9	35 4-98-20 08x 0:45	XXXX.
	Colores .	-	Tomas hamos (1500) and	2012-03-20-09-55-00	al.	- COSC-80-0	A)	12 2.01.20.09-55.11	407*

产品功能 - 多重故障溯源

- 直接推荐根因
- 关联日志、指标 、调用栈、工单 数据等辅助排查

並是對到 1,2017 08 2112ABA02 女房使无线查 持续手 中央女房的 11 女房使尤与房的间;"小打7分2002 共身一事使扩散。0									
untar	时间如 操作过衰	大以指標 ラ	以日志慎大	Finpoint民用均 关联变复					
		la:	相相分	规模的架	发生物	加强性	严性时间		
10	0 ==	4983	0.653	Tomast mountain (0100) appear has nodata for	cus-as-C1	Tomcat	2019-00-21 12:00:02		
0	(0 EE 0)	4962	0.813	Thereat minbow [8080] appear has nodata for 5	rus es C1	Tomcot	2019 03 21 12:08:02		
ō i	0 ==	56/B	0.125	Tornost mountain 19100) appear has nodata for	cus-es-C15	Tomcst	2019-03-21 12:09:02		
0	(O.EE)	5035	0.325	Tamast facest[8080] capvet has modeta for 5 mil	nis es C2	Temost	2019 03 21 12:09:05		
0	0 ==	08 0 0	0.125	Tomost rainbow(0000) appver has nodata for 5	cus-as-Cic	Tomcat	2019-02-21 (2/11/15		
e	D EE	5677	0.322	Tomcat rainbow[8090] appver has nodata for 5	cus-as-C1b	Format	2019-03-21 12:09:02		
0	0 02	3508	0.119	Tomcat rainbow[8000] appyer has nodata for 5	cus-es-C1d	Tomcat	2019-00-21 12:09:02		
0	0 ==	159R	0,319	Formsal popular (8030), appiver has modula fur 5	. cos-ec-63b	runsat	2019-05-21 12:08:02		
Ď.	0 ==	5836	0.216	Tomost hall[3180] appver has no data for 5 min.	cus-as-CZ	Torrest	2019-01-21 12:09:05		
9.	0 mm	5887	0.316	Tomicat lake[8280] appver has nodata for 5 min	Custas-02	on sat	2019-05-21 12:09:05		
ō	() week	2399	0.21	Tomost poplar 80001 appver has nodate for 5	cus-es-03	Tomost	2019-03-21 (2:09:02		

指标异常检测算法

- 发现系统和业务指标的异常情况(异常上涨/下跌)
- 难点:
 - > 如何定义基线
 - ▶ 根据基线如何定义异常
- 基线定义方法:
 - > 规则
 - ▶ 回归:基于时序分解

指标异常检测——基于时序分解确定基线

- 插值补缺
- 平滑降噪
- 局部加权非参数模型
- 季节性周期分解:年、季、月、周、日
- 差分滑动平均自回归模型

指标异常检测——无监督算法如何确定异常

• 基于统计学

> 基于分布的估计

对数似然估计 准确率中等

效果:

召回率较高

> 基于周期环比

• 基于机器学习:

- > VAE
- > 孤立森林
- > EWMA
- > 逻辑回归

指标异常检测——有监督异常检测

- 特征工程(140+):
 - ▶ 统计特征
 - ▶ 拟合特征
 - ▶ 分类特征
- 分类器(F1>0.65):
 - XGBoost
 - > DNN
 - ➢ GBDT

指标异常检测——模型设计

- 在线模型:
 - ➤ 对接监控系统拉取最新数据(延迟 <10min)
 - ➤ 实时判断是否异常(延迟 <10s)
- 离线模型:
 - > 对每条曲线重新训练和定阶(每半小时)

日志异常检测算法

- 对故障时段的日志做聚类形成日志模式,并与正常时段的日志模式 做对比,发展常日志行为定位故障原因
- 价值:
 - ▶ 出现故障后迅速定位原因,减少 MTTR
 - > 弥补现有监控规则覆盖不到的故障情况
- 算法特点:
 - > 无需对日志做解析
 - > 针对监控规则没覆盖的场景,价值大,准确率高

日志异常检测算法处理步骤

- 初步聚类: 层次聚类(专利)
- 频繁词权重计算
- 词与词的依赖权重计算
- 多次迭代
- 聚类内模式提取
- 性能: 每秒 3 万+条日志

故障消息聚类(一)

故障聚类:将同一个故障引发的告警聚类为故障模式

- 一、故障消息相似度,特征包括:
- 时间:窗口(白天窗口,夜间窗口、节假日窗口)
- 描述:停止词、行业同义词(互联网、金融)、实体、动作
- 主机/服务:拓扑距离、数据链路距离
- 级别:
- Agent :

故障消息聚类 (二)

故障聚类:将同一个故障引发的告警聚类为故障模式

- 二、故障消息中关键词的关联性:
- disk 80% usage
- network failure
- 三、历史数据学习
- 故障消息之间的关联性、主机之间的关联性
- 分析故障 MTTR , 调整聚类时间窗口

故障消息聚类评价指标

任意两个告警e1和e2在分配给情境时会发生以下四种情况:

- TP(True Positive)分配:属于同一个真实情境的告警 e_1 和 e_2 ,被分配到同一个推断情境中。 \checkmark
- ullet TN(True Negative)分配:不属于同一个真实情境的告警 e_1 和 e_2 ,被分配到不同的推断情境中。ullet
- FP(False Positive)分配:不属于同一个真实情境的告警 e_1 和 e_2 ,被分配到同一个推断情境中。igwedge
- FN(False Negative)分配:属于同一个真实情境的告警 e_1 和 e_2 ,被分配到不同的推断情境中。igwedge

故障根因定位

根因分析假设:历史故障越频繁,异常程度越高的数据越可能是根因,难点是如何计算数据的异常程度,即信息熵

- 故障消息的信息熵:消息内容、来源主机、时间
- 日志的信息熵:错误日志的数量、日志模式对比(专利)
- 变更:一上线就挂,信息熵高
- 时序指标:预测、异常检测(无监督/有监督)

客户案例一

- 某业务因 Redis 内存超限发生故障
- 2月16日 Redis 故障回放
- 08:58 大屏人员看到告警 "xxxx-总体 API 异常"
- 09:09 大屏人员联系业务 RD
- 09:25 业务 RD 通知系统运维,初步确定为 Redis 问题
- 09:35 系统运维确认问题为 Redis 节点内存使用超限
- 09:40 解决问题,业务逐步恢复正常

客户案例一:效果-告警聚类

客户案例一:根因排查可节省 15~20 分钟

客户案例二

- 某业务因机器负载过高出现失败
- · 15:51 业务监控报出总体 API 异常
- 16:41 业务方反馈部分业务访问 Redis 异常
- 16:50 运维确认一台 Haproxy 节点压力过高
- 之后运维开始修复操作

主办方: **msup** Archnotes

客户案例二:结果展示-告警聚类

客户案例二:结果展示-时间轴

客户案例二:实时定位异常指标

客户案例二:异常检测算法: 可提前大屏监控 51 分钟,提前业务侧 101 分钟发出告警

试运行客户使用场景 使用触发条件:

- - > 客户收到原监控系统发出的告警,需要寻找根因或确定告警影响范围时 , 登陆产品
- 产品使用方法:
 - 根据收到告警的时间、关键字、主机信息,在情境中心的最前面找到描 述相同的情境,点击查看分析结果详情
- 分析结果使用方法:
 - "关联指标"列表的最前面会显示异常指标和所在主机,点击查看趋势 图可做人工确认
 - ▶ 出现业务告警时 , "关联日志"中显示为 "new"和数量突增的日志需 要引起关注,可通过日志模式文本判断根因和故障影响范围

场景选择方法:

在试运行汇报现场,客户现场使用产品,找到最近收到的告警在产品中的位置,查看产品分析结果

• 最近告警和故障内容:

业务做了消息推送,导致短时间内客户大量访问,触发系统层中间件和消息队列负载过高的告警

• 客户对产品输出的期望:

- 希望产品能将本次故障涉及的很多条告警聚类到一起
- 希望产品能发现故障关联的主机有 CPU 异常升高,且故障之前一天没有异常

试运行场景一:客户从该页的2371情境找到与告警短信对应的Rabbitmq告警,共花费了十秒钟左右

试运行场景一: 关联告警, 合并效果客户认为符合预期

试运行故障一

- → 异常出□的□□原与推送□□南目分□存布延□□節@□期□□即成即@回界常;且推送之前模型□□床出□屏常□□即模型设布□件□□

