

(12) 特許協力条約に基づいて公開された国際出願

(19) 世界知的所有権機関
国際事務局

(43) 国際公開日
2006年6月29日 (29.06.2006)

PCT

(10) 国際公開番号
WO 2006/068237 A1

(51) 国際特許分類:

H04L 27/20 (2006.01) H04L 27/12 (2006.01)
H03C 3/00 (2006.01)

(21) 国際出願番号:

PCT/JP2005/023631

(22) 国際出願日: 2005年12月22日 (22.12.2005)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ:

特願 2004-373801
2004年12月24日 (24.12.2004) JP

(71) 出願人(米国を除く全ての指定国について): 松下電器産業株式会社 (MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.) [JP/JP]; 〒5718501 大阪府門真市大字門真1006番地 Osaka (JP).

(72) 発明者; および

(75) 発明者/出願人(米国についてのみ): 吉川 博幸

(YOSHIKAWA, Hiroyuki). 平野 俊介 (HIRANO, Shunsuke).

(74) 代理人: 鷲田 公一 (WASHIDA, Kimihito); 〒2060034 東京都多摩市鶴牧1丁目24-1 新都市センタービル5階 Tokyo (JP).

(81) 指定国(表示のない限り、全ての種類の国内保護が可能): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, LY, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) 指定国(表示のない限り、全ての種類の広域保護が可能): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ (AT, BE, BG,

/続葉有]

(54) Title: PHASE MODULATING APPARATUS, COMMUNICATION DEVICE, MOBILE WIRELESS UNIT, AND PHASE MODULATING METHOD

(54) 発明の名称: 位相変調装置、通信機器、移動体無線機、及び位相変調方法

(57) Abstract: A multimode-based phase modulating apparatus capable of reducing the degradation of modulation precision and suppressing the unnecessary power consumption. The phase modulating apparatus has a switch (9) for switching the modulation modes of a PLL circuit (15) between a single-point modulation and a double-point modulation. In a case of a narrow modulation bandwidth such as in a GSM mode, the switch (9) is turned off to cease a second digital baseband signal (S2), thereby causing the PLL circuit (15) to perform the single-point modulation in which only a first digital baseband signal (S1) from a frequency division rate generating part (10) is used for the modulation. Contrarily, in a case of a wide modulation bandwidth such as in a UMTS mode, the switch (9) is turned on, thereby performing the double-point modulation using both the first digital baseband signal (S1) and the second digital baseband signal (S2).

/続葉有]

WO 2006/068237 A1

CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

2文字コード及び他の略語については、定期発行される各PCTガゼットの巻頭に掲載されている「コードと略語のガイダンスノート」を参照。

添付公開書類:
— 国際調査報告書

(57) 要約: 変調精度の劣化を減少することができると共に、余分な電力消費を抑えることができるマルチモード対応の位相変調装置を提供する。位相変調装置は、PLL回路(15)の変調モードを、1点変調と2点変調とで切り替える切替器(9)を有する。GSMモードのように狭帯域な変調帯域幅の場合は、切替器(9)をOFFにして第2のデジタルベースバンド信号(S2)を停止する。これにより、PLL回路(15)は分周比生成部(10)からの第1のデジタルベースバンド信号(S1)のみで変調を行う1点変調となる。またUMTSモードのように広帯域な変調帯域幅の場合は、切替器(9)をONにして第1のデジタルベースバンド信号(S1)と第2のデジタルベースバンド信号(S2)による2点変調を行う。

明細書

位相変調装置、通信機器、移動体無線機、及び位相変調方法 技術分野

[0001] 本発明は、PLL(Phase Locked Loop:位相同期ループ)回路を用いて位相変調を行う位相変調装置等に関し、特に、携帯電話機などの移動体通信機や、移動体通信機との間で通信を行う基地局などの通信機器として使用されるマルチモード対応の位相変調装置、及びその位相変調装置を搭載した通信機器と移動体無線機、並びに位相変調方法に関する。

背景技術

[0002] 従来より、通信機器に使用される位相変調装置には一般的にPLL回路が用いられている。このようなPLL回路による位相変調方式には、低コスト、低消費電力、良好なノイズ特性、及び高い変調精度などが求められている。このようなPLL回路の位相変調方式において、変調精度を高くするためには、変調信号の周波数帯域幅(以下、変調帯域幅という)よりもPLLの周波数帯域幅(以下、PLL帯域幅という)を広くすることが望ましい。ところが、PLL帯域幅を広げるとノイズ特性が劣化してしまうため、結果的に、変調帯域幅を広くして広帯域な変調を行うことは難しい。

[0003] そこで、PLL帯域幅を変調帯域幅よりも狭く設定し、PLL帯域幅内の変調とPLL帯域幅外の変調を異なる2箇所で行う2点変調方式が提案されている(例えば、特許文献1参照)。図1は、特許文献1で提案されている従来技術に係る位相変調装置の構成を示すブロック図である。図1に示すように、特許文献1で提案されているような2点変調方式の位相変調装置は、基準発振器21、リミッタ22、基準分周器23、位相周波数検知器24、チャージポンプ25、ループフィルタ26、加算器27、VCO(Voltage controlled Oscillator:電圧制御発振器)28、及び分周器29を含むPLL回路20と、変調器30と、加算器31と、定数F32と、デルタシグマ変調器33と、加算器34と、定数P35と、チャージポンプスケーリング36と、変調スケーリング37とを備えた構成となっている。

[0004] 図1において、PLL回路20のVCO28は、VCO28の制御電圧端子に入力される

電圧に応じた周波数のRF位相変調信号を出力する。分周器29はVCO28から出力されたRF位相変調信号の周波数を分周する。位相周波数検知器24は、分周器29から出力された信号の位相と基準分周器23から出力された基準信号の位相とを比較し、位相差に応じた信号を出力する。ループフィルタ26は位相周波数検知器24の出力信号を平均化する。

[0005] 変調振幅スケーリング37は変調データに基づいて変調信号を加算器27からVCO28へ出力する。チャージポンプスケーリング36は、チャージポンプ25を制御することによって位相ロックループ内の残余変調を制御し、その結果、変調をより正確に出力することを可能としている。つまり、図1の位相変調装置は、チャージポンプスケーリング36と変調振幅スケーリング37の2点からPLL回路20へ制御信号を供給することによってRF位相変調信号を生成している。このように、2点変調方式の位相変調装置によれば、狭帯域から広帯域までのマルチモード位相変調を実現することができる。

特許文献1:特表2003-510899号公報

発明の開示

発明が解決しようとする課題

[0006] しかしながら、上記の特許文献1に開示されている位相変調装置においては、PLL帯域幅を狭く設定すると、当然のことながらPLL帯域外の変調領域が多くなるため、VCO28の設計仕様が厳しくなるという問題が発生する。また、狭帯域変調から広帯域変調までを実現するマルチモード端末のように変調帯域が通信機器のモードによって異なる場合は、例えば、変調帯域幅がPLL帯域幅よりも十分小さい場合(例えば、GSMモードの変調帯域幅のように通常のPLL帯域幅よりも十分小さい場合)は、2点変調にすると変調帯域外の信号の影響を受けるため、例えば、変調精度(EVM: Error Vector Magnitude)などの特性が劣化するおそれがある。

[0007] 本発明の目的は、変調精度の劣化を減少することができると共に、余分な電力消費を抑えることができるマルチモード対応の位相変調装置、及びその位相変調装置を搭載した通信機器と移動体無線機、並びに位相変調方法を提供することである。

課題を解決するための手段

[0008] 本発明の位相変調装置は、入力信号に対して位相変調を行うことにより位相変調

信号を生成する位相変調装置であって、前記入力信号に基づいて第1のベースバンド変調信号と第2のベースバンド変調信号とを生成する変調信号生成手段と、PLL回路と、通信モードに応じて、前記PLL回路に、前記第1のベースバンド変調信号を入力するか、又は前記第1のベースバンド変調信号と前記第2のベースバンド変調信号とを入力するかを切り替えることで、前記PLL回路が1点変調を行って位相変調信号を生成するか、又は2点変調を行って位相変調信号を生成するかを切り替える切替手段と、を備える構成を探る。

[0009] また、本発明の位相変調装置は、通信モードに対応した変調帯域幅と前記PLL回路の帯域幅との大小関係を比較判定し、判定結果に応じた制御信号を前記切替手段に送出する判定手段を、さらに具備し、前記切替手段は、前記制御信号に応じて前記切り替えを行う構成を探る。

[0010] このような構成によれば、切替手段によって通信モードに応じてPLL回路を1点変調と2点変調とに適宜に切り替えるので、例えば、変調帯域幅がPLL帯域幅より狭いような通信モードの場合においては、1点変調に切り替える。これにより、変調帯域外の信号を変調信号として出力することができないので変調精度を劣化させることなく、かつ余分な回路が動作しなくなるので電力を抑えることができる。これに対して、変調帯域幅がPLL帯域幅より広いような通信モードの場合においては、2点変調に切り替える。これにより、PLL帯域幅を広い方向に変更して、PLL帯域外のノイズを減らしてノイズ特性の改善を図ることができる。

発明の効果

[0011] 本発明の位相変調装置によれば、通信機器の通信モードの相異によって、1点変調と2点変調とに適宜に切り替えると共に、PLL内のループフィルタの共振周波数特性を切り替えたりPLLの基準周波数を変えたりして、PLL帯域幅を最適に変化させている。これによって、実質的に、PLL帯域幅を広げても(つまり、広帯域変調を行っても)ノイズ特性が劣化することはなくなる。また、本発明の位相変調装置によれば、例えば、通信機器の変調帯域幅がPLL帯域幅より狭い場合においては、1点変調に切り替えることにより変調帯域外の信号を変調信号として出力することができないので、変調精度の劣化を減少することができると共に余分な電力消費を抑えることができる。

その結果、VCOの設計仕様を緩和することができるマルチモード対応の位相変調装置、及びその位相変調装置を搭載した通信機器及び移動体無線機を提供することができる。

図面の簡単な説明

- [0012] [図1]従来技術に係る位相変調装置の構成を示すブロック図
[図2]本発明の実施の形態1に係る位相変調装置の構成を示すブロック図
[図3]本発明の実施の形態1に係る位相変調装置に適用される変調帯域幅とPLL帯域幅の関係を示す特性図
[図4]本発明の実施の形態2に係る位相変調装置の構成を示すブロック図
[図5]本発明の実施の形態2に係る位相変調装置に適用される変調帯域幅とPLL帯域幅の関係を示す特性図
[図6]本発明の実施の形態2においてPLL帯域幅の変更を実現するためのループフィルタの構成例を示す具体的な回路図
[図7]本発明の実施の形態3に係る位相変調装置の構成を示すブロック図
[図8]本発明の実施の形態4に係る位相変調装置に適用される変調帯域幅とPLL帯域幅の関係を示す特性図
[図9]本発明の実施の形態4においてPLL帯域幅の変更を実現するためのループフィルタの構成例を示す具体的な回路図
[図10]本発明の位相変調装置を搭載した送信装置の一構成例を示すブロック図
[図11]本発明の位相変調装置を搭載した通信機器の一構成例を示すブロック図

発明を実施するための最良の形態

- [0013] <発明の概要>

本発明の位相変調装置は、あらかじめPLLを2点変調方式の構成にしておき、通信機器の通信モードの相異によって1点変調と2点変調とに任意に切り替えられるような切替手段を設ける。これによって、変調帯域幅が狭帯域である通信機器の場合においては切替手段によって1点変調に切り替え、PLL帯域幅を変調帯域幅よりやや広くして変調帯域外の信号を変調信号として出力させないようにする。このようにして変調帯域外の信号を変調信号として出力させないようにすることによって、変調精

度の劣化がなくなり、かつ消費電力を抑えることができる。また、変調帯域幅が広帯域である通信機器の場合においては、切替手段によって2点変調に切り替えることによりPLL帯域幅を広帯域の方向へ変更する。さらに、切替手段によって、PLL内のループフィルタの共振周波数特性を変えたり、PLLの基準周波数を高くしたりして、PLL帯域幅を広帯域の方向へ変更する。これによって、PLL帯域外のノイズを減らしてノイズ特性の改善を図ることができる。

[0014] <実施の形態1>

以下、図面を用いて、本発明における位相変調装置の好適な実施の形態の幾つかを詳細に説明する。なお、以下に説明する各実施の形態に用いる図面において同一の構成要素は同一の符号を付し、かつ重複する説明は可能な限り省略する。

[0015] 図2は本発明の実施の形態1に係る位相変調装置の構成を示すブロック図である。

図2に示す位相変調装置は、送信信号の位相変調を行うPLL回路15と、通信機器のモードごとに決められたモード設定信号に基づいて1点変調と2点変調との切り替えを行う切替器(切替手段)9と、第1のデジタルベースバンド信号S1及び搬送波信号の入力に基づいて分周比を設定し、設定された分周比を分周器7へ出力する分周比生成部10と、D/A変換器12から出力された第2のデジタルベースバンド信号S2に対して高調波成分を取り除くフィルタ11と、変調信号生成部13から出力された第2のデジタルベースバンド信号S2をアナログ信号に変換するD/A変換器12と、入力された送信信号に基づいて第1のデジタルベースバンド信号S1と第2のデジタルベースバンド信号S2を生成する変調信号生成部(変調信号生成手段)13とを備えた構成となっている。

[0016] また、PLL回路15は、基準信号を生成する水晶発振器などの基準発振器1と、分周器7から出力された信号の位相と基準分周器の位相とを比較して位相差に応じた信号を出力する位相比較器4と、位相比較器4からの出力信号を平均化するループフィルタ5と、変調信号生成部13に入力された送信信号に基づいてRF位相変調信号を生成して出力するVCO6と、VCO6から出力されたRF変調信号を分周して位相比較器4へ入力する分周器7と、ループフィルタ5から出力される出力信号に対してフィルタ11から出力される出力信号を加算する加算器8とによって構成されている。

- [0017] 次に、図2に示す位相変調装置の動作について説明するが、位相変調装置が送信信号の位相変調を行ってRF位相変調信号を生成して出力する動作は周知の内容であるので可能な限り省略し、本発明に関わる通信モードの設定によって1点変調と2点変調の切り替えを行う動作を中心に説明する。
- [0018] PLL回路15のVCO6は、変調信号生成部13に入力された送信信号に基づいてRF位相変調信号を出力するが、このRF位相変調信号の発振周波数はVCO6の制御電圧端子に入力される電圧に応じて変化する。このような制御は、分周器7がVCO6から出力されたRF位相変調信号の周波数を分周して位相比較器4へ帰還し、位相比較器4が分周器7から入力された信号の位相と基準発振器1の位相とを比較して位相差に応じた信号をループフィルタ5へ出力し、ループフィルタ5が位相比較器4からの出力信号を平均化してVCO6の制御電圧端子へ入力することによって実現される。
- [0019] このとき、変調信号生成部13が、入力された送信信号に基づいて第1のデジタルベースバンド信号S1と第2のデジタルベースバンド信号S2を生成すると、分周比生成部10は、第1のデジタルベースバンド信号S1及び搬送波信号の入力に基づいて分周比を設定し、設定された分周比を分周器7へ出力する。すると、分周器7は、分周比生成部10からの出力信号に基づいて、PLL回路15の帯域内の変調信号を生成する。これが第1の変調点による変調動作である。
- [0020] また、変調信号生成部13から出力された第2のデジタルベースバンド信号S2の送信ルートは、第2のデジタルベースバンド信号S2をデジタル信号からアナログ信号へ変換するD/A変換器12と、D/A変換器12から出力される出力信号に対して高調波成分を取り除くフィルタ11と、ループフィルタ5から出力される出力信号に対してフィルタ11とによって構成される。そして、フィルタ11から出力された出力信号(つまり、第2のデジタルベースバンド信号S2)は、PLL回路15内において加算器8によって加算される。このようにして、加算器8が、ループフィルタ5から出力された出力信号とフィルタ11から出力された第2のデジタルベースバンド信号S2とを加算することにより、VCO6の入力信号にPLL15の帯域外の変調をかけることができる。これが第2の変調点による変調動作である。

- [0021] さらに、切替器9は、通信機器の通信モードごとの変調帯域幅とモード設定信号との対応関係が定められたテーブルを備えている。したがって、切替器9は、通信機器のモードごとに設定されるモード設定信号によって変調帯域幅を認識し、その変調帯域幅がPLL帯域幅よりも狭い場合には第2のデジタルベースバンド信号S2側のルートをOFFにする。これによって、PLL回路15は分周比生成部10からの第1のデジタルベースバンド信号S1のみで変調を行う1点変調となる。また、切替器9は、通信機のモードで設定され変調帯域幅がPLL帯域幅よりも広い場合には、第2のデジタルベースバンド信号S2側のルートをONにする。これによって、PLL回路15は分周比生成部10からの第1のデジタルベースバンド信号S1とフィルタ11からの第2のデジタルベースバンド信号S2によって変調を行う2点変調となる。
- [0022] このようにして通信機器のモード設定ごとに切り替えられる周波数帯域の様子を図面を用いて説明する。図3は、本発明の実施の形態1に係る位相変調装置に適用される変調帯域幅とPLL帯域幅の関係を示す特性図である。図3において、横軸は周波数、縦軸は信号のゲインを示している。例えば、TDMA(Time Division Multiple Access)方式のデジタル携帯電話システムに適用されるGSM(Global System for Mobile)と、第3世代(3G)の移動体通信システムに適用されるUMTS(Universal Mobile Telecommunication System)とのマルチモード位相変調装置を実現する場合は、変調帯域幅は、図3に示すように、狭帯域変調を行うGSMモードと広帯域変調を行うUMTSモードのようになる。
- [0023] そこで、GSMモードの変調帯域幅はPLL帯域(a)の帯域幅H(s)よりも十分に狭いため、2点変調を行うとさらにPLL帯域幅H(s)が広くなつて帯域外の変調も行つてしまつたために特性が劣化する。そのため、変調帯域幅が狭帯域であるGSMモードの場合は、図2の切替器9をOFFにして第1のデジタルベースバンド信号S1のみによる1点変調を行い、PLL帯域外の変調を停止するように制御する。また、変調帯域幅が広帯域であるUMTSモードにおいては、切替器9をONすることによって、第1のデジタルベースバンド信号S1と第2のデジタルベースバンド信号S2とによるPLL15の帯域内変調と帯域外変調の2点変調を行い、広帯域変調を実現している。
- [0024] 以上説明したように、狭帯域変調(つまり、GSMモード)の場合は切替器9をOFF

にして1点変調を行い、広帯域変調(つまり、UMTSモード)の場合は切替器9をONにして2点変調を行うように切替器9を切り替えることにより、狭帯域から広帯域までの変調を1つの回路で実現することができる。これによって、狭帯域なGSMモードに対応する1点変調においては、PLL帯域外の変調は行わないので変調精度を向上することができる。さらに、1点変調であるがために、位相変調装置において動作する要素を削減することができるので消費電流を低減させることができる。また、広帯域なUMTSモードに対応する2点変調においては、PLL帯域内変調と帯域外変調の2点で変調を行って広帯域変調を実現することができる。

[0025] なお、1点変調と2点変調の切り替えを行う切替器9は、スイッチに限定されるものではない。図2に示すように、PLL回路15は加算器8を用いているので、この加算器8を利用して1点変調と2点変調とを切り替えることができる。つまり、D/A変換器12の出力をゼロに制御することにより、第2のデジタルベースバンド信号S2は加算器8で加算されなくなるので実質的に1点変調となり、D/A変換器12の出力を通常に制御することにより第2のデジタルベースバンド信号S2が加算されるので2点変調となる。このような制御方法を行っても、1点変調と2点変調の切り替えを容易に実現することができる。

[0026] <実施の形態2>

図4は、本発明の実施の形態2に係る位相変調装置の構成を示すブロック図である。図4に示す本発明の実施の形態2にかかる位相変調装置は、図2に示す実施の形態1の位相変調装置に対して、通信機器ごとのモード設定に対応した変調帯域幅を認識して、切替器9に対してON/OFF切り替えを行わせると共に、PLL帯域幅(つまり、ループフィルタの帯域幅)を変更させるための制御信号を送出する判定部14が付加された構成となっている。なお、判定部14は、通信機器のモード毎に変調帯域幅が定められているテーブルを備えている。

[0027] 判定部14は、通信機のモード毎に変調帯域幅が設定されているテーブルを参照してモード設定信号により変調帯域幅を認識し、制御信号を切替器9とループフィルタ5へ送出する。これによって、通信機器の通信モードに応じて切替器9をON/OFFして1点変調と2点変調の切り替えを行うと共に、ループフィルタ5の共振周波数を変

更してPLL回路15の帯域幅を切り替える。

- [0028] 以下、判定部14が通信機器の通信モードに応じてPLL回路15の帯域幅を切り替え制御する動作について説明する。図5は、本発明の実施の形態2に係る位相変調装置に適用される変調帯域幅とPLL帯域幅の関係を示す特性図である。また、図6は、図4に示す位相変調装置においてPLL帯域幅の変更を実現するためのループフィルタ5の具体的な回路の一例である。
- [0029] 図5に示すように、狭帯域変調のGSMモードと広帯域変調のUMTSモードの2つの変調モードがある場合、GSMモードの狭帯域変調幅はPLL帯域の帯域幅H(s)よりも十分狭いため、2点変調を行うと帯域外の変調も行ってしまうため特性が劣化する。そこで、判定部14は、通信機器のモード毎の変調帯域幅が設定されているテーブルを参照してGSMモードは変調帯域幅が狭帯域であると判断し、PLL帯域外の変調を行わないように図4の切替器9をOFFにして1点変調を行わせるような制御信号を切替器9へ送出する。これによって、第1のデジタルベースバンド信号S1のみによる狭帯域モードの1点変調が行われる。
- [0030] このとき、判定部14は、ループフィルタ5には制御信号を送出しないので、図6のコンデンサと抵抗の直並列回路からなるループフィルタのスイッチSW1はOFFの状態となっている。したがって、ループフィルタ5は、抵抗Rに抵抗Rxが直列に挿入された回路構成となるので、周波数が低くなつて共振点が低くなり帯域幅を狭めた状態となる。したがって、PLL回路15の帯域幅は図5のPLL帯域(a)の実線ように帯域幅H(s)が狭い状態となる。但し、PLL帯域(a)の帯域幅はGSMモードの帯域幅より広くなっている。このようにして変調帯域外の信号を変調信号として出力させないようにすることによって、変調精度の劣化がなくなり、かつ消費電力を抑えることができる。
- [0031] また、判定部14は、広帯域変調のUMTSモードにおいては、通信機器のモード毎に変調帯域幅が設定されているテーブルを参照してUMTSモードは変調帯域幅が広帯域であると判断し、PLL帯域外の変調を行うように切替器9をONにして2点変調を行わせるような制御信号を切替器9へ送出する。これによって、第1のデジタルベースバンド信号S1と第2のデジタルベースバンド信号S2による広帯域モードの2点変調が行われる。

[0032] このとき、判定部14は、ループフィルタ5に制御信号を送出して、図6のコンデンサと抵抗の直並列回路からなるループフィルタのスイッチSW1はONにする。したがって、ループフィルタ5は、抵抗Rxが短絡された回路構成となるので、周波数が高くなつて共振点が高くなり帯域幅を広くする状態となる。したがって、図5に示すPLL回路15の帯域幅は、実線のPLL帯域(a)から、図の矢印のように、破線で示すPLL帯域(b)へ帯域幅が広がった状態となる。このようにして、広帯域変調のUMTSモードにおいては、切替器9をONにするように制御することによって、2点変調に切り替えると共にループフィルタ5の共振点を変えて、PLLの帯域幅H(s)をGSMモードのときよりも広げるように制御する。

[0033] 以上のように、広帯域変調のUMTSモードの場合には、図6のスイッチSW1をONにして抵抗値を変更し、スイッチSW1がOFFのときよりPLL帯域幅を広げることにより、PLL帯域外の変調領域(つまり、図5の斜線部分の面積)を小さくすることによって、VCO6の感度やリニアリティによる特性劣化の影響が少なくなるため、VCO6にノイズマージンを持たせることができ、結果的に、VCOの設計仕様を緩和することができる。

[0034] <実施の形態3>

図7は、本発明の実施の形態3に係る位相変調装置の構成を示すブロック図である。図7に示す本発明の実施の形態3にかかる位相変調装置は、図4に示す実施の形態2の位相変調装置に対して、基準発振器1の基準信号を基準分周器3へ送出するリミッタ2と、基準信号を分周して周波数倍し、これを基準信号として位相比較器3へ入力する基準分周器3とが追加された構成となっている。したがって、図7では、図2、図4のPLL15の構成にリミッタ2及び基準分周器3を加えてPLL回路15aとして符号を変更してある。

[0035] 図7において、判定部14は、通信機器の通信モード毎に変調帯域幅が定められているテーブルを備え、このテーブルを参照してモード設定信号により変調帯域幅を認識し、制御信号を切替器9と分周比生成部10と基準分周器3へ送出している。これによって、通信機器のモードに応じて切替器9をON/OFFして1点変調と2点変調の切り替えを行うと共に、分周比生成部10の分周比と基準分周器3の基準分周信号の

周波数を変えてPLL15aの帯域幅を変化させている。

- [0036] 判定部14が通信機器のモードに応じて切替器9をON／OFFして1点変調と2点変調の切り替えを行う動作は、前述の実施の形態1と実施の形態2と同じであるのでその説明は省略する。実施の形態3では、判定部14は、さらに、通信モード毎に変調帯域幅が定められたテーブルを参照してモード設定信号によって変調帯域幅を認識し、基準分周器3の出力の基準発振周波数と分周比生成部10の分周比を変更してPLL帯域幅を変えて変調を行っている。
- [0037] 例えば、図5に示すように狭帯域変調のGSMモードと広帯域変調のUMTSモードの変調モードがある場合、GSMモードの帯域幅はPLLの帯域幅H(s)よりも十分狭いため2点変調を行うと帯域外の変調も行ってしまうため特性が劣化するので、PLL帯域外の変調を行わないように切替器9をOFFにして1点変調を行う。
- [0038] このとき、判定部14は、基準分周器3及び分周比生成部10には制御信号を送り出ないので、PLL回路15aの動作周波数は変わらないためPLL15aの帯域幅は図5のPLL帯域(a)の実線のように帯域幅H(s)が狭い状態となる。但し、PLL帯域(a)の帯域幅はGSMモードの変調帯域幅より広くなっている。このようにして変調帯域外の信号を変調信号として出力させないようにすることによって、変調精度の劣化がなくなり、かつ消費電力を抑えることができる。
- [0039] また、判定部14は、広帯域変調のUMTSモードにおいては切替器9をONするように制御信号を送出して2点変調に切り替える。さらに、判定部14は、基準分周器3及び分周比生成部10に制御信号を出し、基準分周器3から出力される基準発振の周波数を高くすると共に、分周比生成部10の分周比を高くすることにより、PLL回路15aの動作周波数を高くしてPLL回路15aの帯域幅H(s)を破線のPLL帯域(b)のように広げる。以上のように、広帯域変調のUMTSモードの場合においては、PLL回路15aの基準発振の周波数を高くすることによって、PLL回路15aの帯域幅を切替器9がOFFのときよりも広げることができ、PLL帯域外変調を減らすことによりVCO6の感度やリニアリティによる特性劣化の影響が少なくなりVCO6の設計仕様を緩和することができる。
- [0040] <実施の形態4>

実施の形態4では3つの通信モードに切り替えてPLL帯域幅を設定する場合について説明する。ここでは、3つの通信モードとして、前述のGSMモード、モバイル機器同士の無線データ転送システムに用いられるBluetoothモード、及び前述のUMTSモードの設定切り替えについて説明する。

- [0041] 図8は、本発明の実施の形態4に係る位相変調装置に適用される変調帯域幅とPLL帯域幅の関係を示す特性図である。また、図9は、本発明の実施の形態4においてPLL帯域幅の変更を実現させる回路図の一例である。以下、図8及び図9を用いて、通信モードごとにPLL帯域幅を最適に切り替える動作を説明する。
- [0042] 最も狭帯域であるGSMモードにおいては、変調帯域幅がPLL帯域幅よりも十分狭いため2点変調を行うと帯域外の変調も行ってしまうため特性が劣化する。そのためPLL帯域外の変調を行わないように図4の切替器9をOFFにして1点変調にする。これによってPLL15の帯域幅は図8の実線で示すPLL帯域(a)となり、GSMモードの変調帯域幅よりPLL帯域幅がやや広くなっている。このときは、PLL帯域外の変調は行わないのでGSMの変調精度が向上すると共に、1点変調であるがために動作する要素が少ないので消費電流が低減する。
- [0043] 次に、GSMモードよりやや広帯域にあるBluetoothモードにおいては、図4の切替器9をONするように制御することで2点変調に切り替えて、PLL帯域幅をGSMモードのときよりも広げるよう制御して、図8の破線のPLL帯域(b)のようなPLL帯域幅とする。しかし、PLL帯域(b)はBluetoothモードの変調帯域幅より狭いので、図9のループフィルタのスイッチSW1はOFFの状態にして、スイッチSW2をONにする。これによって、直列抵抗Ryが短絡されて共振周波数が高くなってしまってPLL帯域幅が広がり、図8の破線のようにPLL帯域(c)のPLL帯域幅となる。つまり、PLL帯域(c)となることによって、PLL帯域幅がBluetoothモードの変調帯域幅より広くなり、PLL帯域外変調の領域を減らすことによりVCO6の感度やリニアリティによる特性劣化の影響が少なくなりVCO6の設計仕様を緩和することができる。
- [0044] 次に、最も広帯域なUMTSモードにおいては、図4の切替器9をONのままにして2点変調の状態にしたまま、図9のループフィルタのスイッチSW1をONにする。このとき、スイッチSW2はONでもOFFでも構わない。これによって、直列抵抗RyとRxが短

絡されて共振周波数がさらに高くなり、PLL帯域幅がさらに広がって図8の破線のようにPLL帯域(d)となる。このようにして、UMTSモードのときはPLL帯域幅をBluetoothモードのときよりも広げるように制御することによって、PLL帯域外変調の領域を減らす(つまり、図8の斜線部分の面積を小さくする)ことによりVCO6の感度やリニアリティによる特性劣化の影響を少なくでき、結果的に、VCO6の設計仕様を緩和することができる。

[0045] なお、Bluetoothモードにおいて、図4の切替器9をOFFにして1点変調に切り替えても、図9のループフィルタのスイッチSW1をONにすることによってPLL帯域幅をPLL帯域(c)のように広げることもできる。これによって、PLL帯域幅がBluetoothモードの変調帯域幅より広くなり、PLL帯域外変調の領域を減らすことによりVCO6の感度やリニアリティによる特性劣化の影響が少くなりVCO6の設計仕様を緩和することができる。これらの変調帯域幅とPLL帯域幅の関係は、VCOの特性とPLL帯域外ノイズの関係によって適宜に決定される。

[0046] <実施の形態5>

本発明では、上記の各実施の形態で述べた位相変調装置を通信機器や移動体無線機(携帯電話機など)、ノート型パーソナルコンピュータなどの携帯通信端末、及び無線基地局などの通信装置に搭載した構成に適用することもできる。図10は、本発明の位相変調装置を搭載した送信装置の一構成例を示すブロック図である。送信装置900は、送信データ信号入力端子901、振幅位相成分抽出部902、振幅信号処理部903、位相変調部904、非線形增幅部905、及び送信出力端子906を備えた構成となっている。このとき、位相変調部904に上述した各実施形態に係る位相変調装置を搭載することができる。

[0047] 送信データ信号入力端子901より送信データ信号を入力すると、振幅位相成分抽出部902によって、送信データ信号から振幅成分変調信号と位相成分変調信号とが抽出される。そして、振幅成分変調信号によって振幅信号処理部903を介して非線形增幅部905の電源電圧値が設定される。また、位相変調部904によって、角周波数を有する搬送波を位相成分変調信号で位相変調させた位相変調波が生成され、非線形增幅部905に入力される。

- [0048] そして、非線形増幅部905の出力には、非線形増幅部905の電源電圧値と位相変調部904の出力信号である位相変調波とを掛け合わせた信号が、非線形増幅部905の利得Gだけ増幅されて、RFベクトル変調波(RF変調信号)として出力される。このとき、非線形増幅部905に入力される変調波は、一定の包絡線レベルの変調波である位相変調波であるため、高周波増幅器として効率の良い非線形増幅器を使用することができる。このような構成によって小型かつ低コストな送信装置900を実現することができる。
- [0049] また、図11に、本発明の位相変調装置を搭載した通信機器の概略構成を示す。通信機器1000は、本発明の位相変調装置を備えた送信装置900と、受信信号に対して復調処理を含む所定の受信処理を施すことにより受信データ信号を得る受信装置910と、送信信号と受信信号との切替えを行う共用器920と、アンテナ930とを備えている。
- [0050] 以上のように、本実施形態の通信機器1000においては、本発明の位相変調装置900を備えている。本発明の位相変調装置は上記実施形態にて説明したように、ノイズ特性の改善を図ると共に消費電力を抑えることができるので、この位相変調装置を採用した通信機器とすることで、マルチモード対応の送信を行ったときに、低消費電力でありながら高品質の信号を送信することができるという効果がある。
- [0051] 以上説明したように、本発明の位相変調装置の一つの態様においては、入力信号に対して位相変調を行うことにより位相変調信号を生成する位相変調装置であって、前記入力信号に基づいて第1のベースバンド変調信号と第2のベースバンド変調信号とを生成する変調信号生成手段と、PLL回路と、通信モードに応じて、前記PLL回路に、前記第1のベースバンド変調信号を入力するか、又は前記第1のベースバンド変調信号と前記第2のベースバンド変調信号とを入力するかを切り替えることで、前記PLL回路が1点変調を行って位相変調信号を生成するか、又は2点変調を行つて位相変調信号を生成するかを切り替える切替手段と、を具備する構成を採る。
- [0052] また、本発明の位相変調装置の一つの態様においては、通信モードに対応した変調帯域幅と前記PLL回路の帯域幅との大小関係を比較判定し、判定結果に応じた制御信号を前記切替手段に送出する判定手段を、さらに具備し、前記切替手段は、

前記制御信号に応じて前記切り替えを行う、構成を探る。

- [0053] このような構成によれば、切替手段によって通信モードに応じてPLL回路を1点変調と2点変調とに適宜に切り替えるので、例えば、変調帯域幅がPLL帯域幅より狭いような通信モードの場合においては、1点変調に切り替える。これにより、変調帯域外の信号を変調信号として出力することができるので変調精度を劣化させることなく、かつ余分な回路が動作しなくなるので電力を抑えることができる。これに対して、変調帯域幅がPLL帯域幅より広いような通信モードの場合においては、2点変調に切り替える。これにより、PLL帯域幅を広い方向に変更して、PLL帯域外のノイズを減らしてノイズ特性の改善を図ることができる。
- [0054] また、本発明の位相変調装置の一つの態様においては、前記判定手段は、前記PLL回路を構成するループフィルタへ制御信号を送出し、前記ループフィルタは、前記判定手段から送出された前記制御信号に基づいて自己の共振周波数を変化させ、前記PLL回路の帯域幅を変更させる構成を探る。
- [0055] このような構成によれば、通信モードに対応した制御信号に応じてループフィルタの共振周波数を変え、PLL回路の帯域幅を変更させることができる。例えば、通信モードの変調帯域幅がPLL帯域幅より広帯域の場合は、制御信号によってループフィルタの共振周波数を高くしてPLL回路の帯域幅をより広帯域側に変更する。これによって、広帯域な通信モードにおけるノイズ特性の劣化を防止することができる。したがって、PLL回路を構成する電圧制御発振器の設計仕様を緩和することができる。
- [0056] また、本発明の位相変調装置の一つの態様においては、前記判定手段は、前記PLL回路の位相比較器に基準信号を与える基準分周器及び前記PLL回路の分周比を生成する分周比生成部へ前記制御信号を送出し、前記基準分周器の発振周波数及び前記分周比生成部の分周比を変化させ、前記PLL回路の帯域幅を変更させる構成を探る。
- [0057] このような構成によれば、通信モードに対応した制御信号に応じてPLL回路を構成する基準分周器の発振周波数及び分周比生成部の分周比を変化させて、PLL回路の帯域幅を変更させることができる。例えば、通信モードの変調帯域幅がPLL帯域幅より広帯域の場合は、制御信号によって基準分周器の発振周波数を高くしてPLL

回路の帯域幅をより広帯域側に変更する。これによって、広帯域な通信モードにおけるノイズ特性の劣化を防止することができる。したがって、PLL回路を構成する電圧制御発振器の設計仕様を緩和することができる。

- [0058] また、本発明の位相変調装置の一つの態様においては、前記通信モードはGSMモードとUTMSモードの2種類であり、前記判定手段は、前記GSMモードのときは、前記切替手段に対して1点変調を行うような制御信号を送出し、前記UTMSモードのときは、前記切替手段に対して2点変調を行うような制御信号を送出する、構成を探る。
- [0059] このような構成によれば、狭帯域なGSMモードでは1点変調を行うので、PLL帯域外の変調は行わないために変調精度を向上することができる。また、1点変調であるために動作する要素が少ないので消費電流を低減させることができる。さらに、広帯域なUMTSモードでは2点変調を行うので、PLL帯域内変調と帯域外変調の2点で変調を行って広帯域変調を実現することができる。
- [0060] また、本発明の位相変調装置の一つの態様においては、前記通信モードはGSMモードとUTMSモードの2種類であり、前記判定手段は、前記GSMモードのときは、前記切替手段に対して1点変調を行うような制御信号を送出し、前記UTMSモードのときは、前記切替手段に対して2点変調を行うような制御信号を送出すると共に、ループフィルタへ制御信号を送出して前記PLL回路の帯域幅を広帯域側に変更させる、構成を探る。
- [0061] このような構成によれば、広帯域なUMTSモードでは、2点変調を行うと共にループフィルタの共振周波数を高くしてPLL回路の帯域幅をより広帯域側に変更する。これによって、広帯域な通信モードにおけるノイズ特性の劣化を防止することができる。
- [0062] また、本発明の位相変調装置の一つの態様においては、前記通信モードは、GSMモード、Bluetoothモード、及びUTMSモードの3種類であり、前記判定手段は、前記GSMモードのときは、前記切替手段に対して1点変調を行うような制御信号を送出し、前記Bluetoothモードのときは、前記切替手段に対して2点変調を行うような制御信号を送出すると共に、ループフィルタへ制御信号を送出して前記PLL回路の帯域幅を広帯域側に変更させ、前記UTMSモードのときは、前記切替手段に対して2

点変調を行うような制御信号を送出すると共に、ループフィルタへ制御信号を送出して前記PLL回路の帯域幅を前記Bluetoothモードのときよりもさらに広帯域側に変更させる、構成を探る。

- [0063] このような構成によれば、最も狭帯域なGSMモードのときは、1点変調を行ってPLL帯域幅をGSMモードの変調帯域幅よりやや広帯域にする。また、GSMモードよりやや広い帯域幅のBluetoothモードのときは、2点変調を行うと共にループフィルタの共振周波数を高くしてPLL帯域幅をBluetoothモードの変調帯域幅よりやや広帯域にする。さらに、最も広帯域なUTMSモードのときは、2点変調を行うと共にループフィルタの共振周波数をさらに高くして、PLL帯域幅をBluetoothモードのときよりもさらに広帯域にする。これによって、1つの位相変調装置を用いて通信モードに応じた切り替えを行うだけで広帯域なモードに対応することができる。
- [0064] また、本発明は、前記発明のいずれかの位相変調装置を搭載した通信機器や移動体無線機を実現することもできる。
- [0065] このような構成によれば、VCOの設計仕様を緩和することができるマルチモード対応の位相変調装置を搭載した通信機器及び移動体無線機を提供することができる。
- [0066] また、本発明の位相変調方法の一つの態様においては、送信信号に対して位相変調を行うことにより位相変調信号を生成する位相変調方法であって、通信モードの変調帯域幅と前記PLL回路の帯域幅との大小関係を比較判定するステップと、通信モードの変調帯域幅が前記PLL回路の帯域幅に比べて狭帯域であるときはPLL回路を1点変調に切り替え、前記通信モードの変調帯域幅が前記PLL回路の帯域幅に比べて広帯域であるときはPLL回路を2点変調に切り替えるステップと、前記PLL回路を2点変調に切り替えたときは、そのPLL回路のループフィルタの共振周波数を変更して前記PLL回路の帯域幅を広帯域側へ変更するステップと、を含むようとする。
- [0067] さらに、本発明の位相変調方法の一つの態様においては、送信信号に対して位相変調を行うことにより位相変調信号を生成する位相変調方法であって、通信モードの変調帯域幅と前記PLL回路の帯域幅との大小関係を比較判定するステップと、通信モードの変調帯域幅が前記PLL回路の帯域幅に比べて狭帯域であるときはPLL回

路を1点変調に切り替え、前記通信モードの変調帯域幅が前記PLL回路の帯域幅に比べて広帯域であるときはPLL回路を2点変調に切り替えるステップと、前記PLL回路を2点変調に切り替えたときは、そのPLL回路の基準周波数を変更して前記PLL回路の帯域幅を広帯域側へ変更するステップと、を含むようにする。

- [0068] 本明細書は、2004年12月24日出願の特願2004-373801に基づく。その内容は、全てここに含めておく。

産業上の利用可能性

- [0069] 本発明に係る位相変調装置は、PLL回路におけるループフィルタの帯域幅の変更、PLL回路における基準発振の周波数の変更、及び1点変調と2点変調の切り替えを行うことにより、変調精度を向上させると共に、低消費電力化及びマルチモード化を実現することができ、結果的にVCOの設計仕様を緩和することができるので、携帯電話機、無線通信機、ノート型パソコンコンピュータなどの携帯通信端末や、移動体通信機及び無線基地局などの通信装置などに組み込まれる位相変調装置として有効に利用することができる。

請求の範囲

- [1] 入力信号に対して位相変調を行うことにより位相変調信号を生成する位相変調装置であつて、
前記入力信号に基づいて第1のベースバンド変調信号と第2のベースバンド変調信号とを生成する変調信号生成手段と、
PLL回路と、
通信モードに応じて、前記PLL回路に、前記第1のベースバンド変調信号を入力するか、又は前記第1のベースバンド変調信号と前記第2のベースバンド変調信号とを入力するかを切り替えることで、前記PLL回路が1点変調を行つて位相変調信号を生成するか、又は2点変調を行つて位相変調信号を生成するかを切り替える切替手段と、
を備える位相変調装置。
- [2] 通信モードに対応した変調帯域幅と前記PLL回路の帯域幅との大小関係を比較判定し、判定結果に応じた制御信号を前記切替手段に送出する判定手段を、さらに具備し、
前記切替手段は、前記制御信号に応じて前記切り替えを行う
請求項1に記載の位相変調装置。
- [3] 前記判定手段は、前記PLL回路を構成するループフィルタへ制御信号を出し、
前記ループフィルタは、前記判定手段から送出された前記制御信号に基づいて自己の共振周波数を変化させ、前記PLL回路の帯域幅を変更させる
請求項2に記載の位相変調装置。
- [4] 前記判定手段は、前記PLL回路の位相比較器に基準信号を与える基準分周器及び前記PLL回路の分周比を生成する分周比生成部へ前記制御信号を出し、前記基準分周器の発振周波数及び前記分周比生成部の分周比を変化させ、前記PLL回路の帯域幅を変更させる
請求項2に記載の位相変調装置。
- [5] 前記通信モードはGSMモードとUTMSモードの2種類であり、
前記判定手段は、

前記GSMモードのときは、前記切替手段に対して1点変調を行うような制御信号を
送出し、

前記UTMSモードのときは、前記切替手段に対して2点変調を行うような制御信号
を送出する

請求項2に記載の位相変調装置。

[6] 前記通信モードはGSMモードとUTMSモードの2種類であり、

前記判定手段は、

前記GSMモードのときは、前記切替手段に対して1点変調を行うような制御信号を
送出し、

前記UTMSモードのときは、前記切替手段に対して2点変調を行うような制御信号
を送出すると共に、ループフィルタへ制御信号を送出して前記PLL回路の帯域幅を
広帯域側に変更させる

請求項2に記載の位相変調装置。

[7] 前記通信モードは、GSMモード、Bluetoothモード、及びUTMSモードの3種類で
あり、

前記判定手段は、

前記GSMモードのときは、前記切替手段に対して1点変調を行うような制御信号を
送出し、

前記Bluetoothモードのときは、前記切替手段に対して2点変調を行うような制御信
号を送出すると共に、ループフィルタへ制御信号を送出して前記PLL回路の帯域幅
を広帯域側に変更させ、

前記UTMSモードのときは、前記切替手段に対して2点変調を行うような制御信号
を送出すると共に、ループフィルタへ制御信号を送出して前記PLL回路の帯域幅を
前記Bluetoothモードのときよりもさらに広帯域側に変更させる

請求項2に記載の位相変調装置。

[8] 請求項1に記載の位相変調装置を搭載した通信機器。

[9] 請求項1に記載の位相変調装置を搭載した移動体無線機。

[10] 送信信号に対して位相変調を行うことにより位相変調信号を生成する位相変調方

法であって、

通信モードの変調帯域幅と前記PLL回路の帯域幅との大小関係を比較判定するステップと、

通信モードの変調帯域幅が前記PLL回路の帯域幅に比べて狭帯域であるときはPLL回路を1点変調に切り替え、前記通信モードの変調帯域幅が前記PLL回路の帯域幅に比べて広帯域であるときはPLL回路を2点変調に切り替えるステップと、

前記PLL回路を2点変調に切り替えたときは、そのPLL回路のループフィルタの共振周波数を変更して前記PLL回路の帯域幅を広帯域側へ変更するステップと、

を含む位相変調方法。

[11] 送信信号に対して位相変調を行うことにより位相変調信号を生成する位相変調方法であって、

通信モードの変調帯域幅と前記PLL回路の帯域幅との大小関係を比較判定するステップと、

通信モードの変調帯域幅が前記PLL回路の帯域幅に比べて狭帯域であるときはPLL回路を1点変調に切り替え、前記通信モードの変調帯域幅が前記PLL回路の帯域幅に比べて広帯域であるときはPLL回路を2点変調に切り替えるステップと、

前記PLL回路を2点変調に切り替えたときは、そのPLL回路の基準周波数を変更して前記PLL回路の帯域幅を広帯域側へ変更するステップと、

を含む位相変調方法。

[図1]

[図2]

[図3]

[図4]

[図5]

[図6]

[図7]

[図8]

[図9]

[図10]

[図11]

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP2005/023631

A. CLASSIFICATION OF SUBJECT MATTER

H04L27/20(2006.01), **H03C3/00**(2006.01), **H04L27/12**(2006.01)

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

H04L27/20(2006.01), **H03C3/00**(2006.01), **H04L27/12**(2006.01)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Jitsuyo Shinan Koho	1922-1996	Jitsuyo Shinan Toroku Koho	1996-2006
Kokai Jitsuyo Shinan Koho	1971-2006	Toroku Jitsuyo Shinan Koho	1994-2006

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y A	JP 2002-368630 A (Lucent Technologies Inc.), 20 December, 2002 (20.12.02), Par. Nos. [0002] to [0005] & US 2002/0160804 A1 & EP 1255353 A1 & DE 60108944 D	1-6, 8-11 7
Y A	JP 2003-510899 A (Cadence Design Systems Inc.), 18 March, 2003 (18.03.03), Figs. 1, 5; Par. Nos. [0004] to [0010], [0031] to [0039] & WO 2001/022674 A1 & US 2004/0196924 A1 & GB 2354649 A & GB 2371930 A & DE 10085085 T & AU 7302900 A & CN 1387717 A	1-6, 8-11 7

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents:

"A" document defining the general state of the art which is not considered to be of particular relevance

"E" earlier application or patent but published on or after the international filing date

"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other means

"P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search
20 February, 2006 (20.02.06)

Date of mailing of the international search report
28 February, 2006 (28.02.06)

Name and mailing address of the ISA/
Japanese Patent Office

Authorized officer

Facsimile No.

Telephone No.

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP2005/023631

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	JP 2002-515205 A (Philips Electronics N.V.), 21 May, 2002 (21.05.02), Claim 1 & WO 1997/050187 A1 & US 6282249 B1 & EP 0923809 A	3, 6, 10
Y	JP 04-358415 A (Matsushita Electric Industrial Co., Ltd.), 11 December, 1992 (11.12.92), Par. Nos. [0008] to [0010]; Fig. 1 (Family: none)	4, 11
A	JP 2002-009695 A (Nokia Mobile Phones Ltd.), 11 January, 2002 (11.01.02), Par. Nos. [0023] to [0026]; Fig. 3 & WO 2001/086880 A2 & US 2002/0003481 A1 & EP 1279256 A & GB 2362542 A & CN 1323146 A & AU 5478701 A	7

A. 発明の属する分野の分類（国際特許分類（IPC））
Int.Cl. H04L27/20(2006.01), H03C3/00(2006.01), H04L27/12(2006.01)

B. 調査を行った分野

調査を行った最小限資料（国際特許分類（IPC））
Int.Cl. H04L27/20(2006.01), H03C3/00(2006.01), H04L27/12(2006.01)

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国実用新案公報	1922-1996年
日本国公開実用新案公報	1971-2006年
日本国実用新案登録公報	1996-2006年
日本国登録実用新案公報	1994-2006年

国際調査で使用した電子データベース（データベースの名称、調査に使用した用語）

C. 関連すると認められる文献

引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
Y A	JP 2002-368630 A (ルーセント テクノロジーズ インコーポレーテッド) 2002.12.20, 段落番号【0002】-【0005】 & US 2002/0160804 A1 & EP 1255353 A1 & DE 60108944 D	1-6, 8-11 7
Y A	JP 2003-510899 A (カデンス デザイン システムズ インコーポレーテッド) 2003.03.18, 【図1】 , 【図5】 , 段落番号【0004】-【0010】 , 【0031】-【0039】 & WO 2001/022674 A1 & US 2004/0196924 A1 & GB 2354649 A & GB 2371930 A & DE 10085085 T & AU 7302900 A & CN 1387717 A	1-6, 8-11 7

C欄の続きにも文献が列挙されている。

パテントファミリーに関する別紙を参照。

* 引用文献のカテゴリー

「A」特に関連のある文献ではなく、一般的技術水準を示すもの

「E」国際出願日前の出願または特許であるが、国際出願日以後に公表されたもの

「L」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献（理由を付す）

「O」口頭による開示、使用、展示等に言及する文献

「P」国際出願目前で、かつ優先権の主張の基礎となる出願

の日の後に公表された文献

「T」国際出願日又は優先日後に公表された文献であって出願と矛盾するものではなく、発明の原理又は理論の理解のために引用するもの

「X」特に関連のある文献であって、当該文献のみで発明の新規性又は進歩性がないと考えられるもの

「Y」特に関連のある文献であって、当該文献と他の1以上の文献との、当業者にとって自明である組合せによって進歩性がないと考えられるもの

「&」同一パテントファミリー文献

国際調査を完了した日

20.02.2006

国際調査報告の発送日

28.02.2006

国際調査機関の名称及びあて先

日本国特許庁 (ISA/JP)

郵便番号 100-8915

東京都千代田区霞が関三丁目4番3号

特許庁審査官（権限のある職員）

藤井 浩

5K 8625

電話番号 03-3581-1101 内線 3556

C (続き) . 関連すると認められる文献		
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
Y	JP 2002-515205 A (フィリップス エレクトロニクス ネムローゼ" フェンノートシャッフ") 2002. 05. 21, 【請求項 1】 & WO 1997/050187 A1 & US 6282249 B1 & EP 0923809 A	3, 6, 10
Y	JP 04-358415 A (松下電器産業株式会社) 1992. 12. 11, 段落番号【0008】 - 【0010】 , 【図 1】 (ファミリーなし)	4, 11
A	JP 2002-009695 A (ノキア モービル フォーリンズ" リミテッド") 2002. 01. 11, 段落番号【0023】 - 【0026】 , 【図 3】 & WO 2001/086880 A2 & US 2002/0003481 A1 & EP 1279256 A & GB 2362542 A & CN 1323146 A & AU 5478701 A	7