Instytut Informatyki Uniwersytetu Wrocławskiego

Jakub Skalski

Całkowanie numeryczne i metoda Romberga

Wrocław, 7 kwietnia 2021

Wersja 1.0

Spis treści

1.	Wstęp	•
2.	Całkowanie numeryczne	•
	2.1. Złożony wzór trapezów	
	2.3. Porównanie wyników	
	Przybliżanie całki Φ	7
	3.1. Funkcja Gamma	7
	3.2. Całka Φ	8

1. Wstęp

Praca ma na celu przedstawienie metody Romberga i złożonych trapezów w całkowaniu numerycznym. W sczególności będzie nas interesować wartość całki Φ na przedziale [0,t].

$$\Phi(t) = \int_0^t \frac{1}{2^{k/2} \cdot \Gamma(k/2)} x^{k/2 - 1} e^{-x/2} dx$$

2. Całkowanie numeryczne

2.1. Złożony wzór trapezów

Niech f(x) będzie funkcją podcałkową. Wartość jej całki można przybliżać polami trapezów. Jak wiemy wzór trapezu obliczany na odcinku $[t_k, t_{k+1}]$ wyraża się następująco:

$$\frac{h}{2}[f(t_k) + f(t_{k+1})], \quad h := \frac{t_k - t_{k+1}}{2}$$

Przy czym błąd przybliżenia funkcji f(x) polem trapezu na wspomnianym przedziale wynosi $-\frac{h^3}{12}f''(\delta_k)$. Czyli $\int_{t_k}^{t_{k+1}}f(x)\,dx=\frac{h}{2}[f(t_k)+f(t_{k+1})]-\frac{h^3}{12}f''(\delta_k)$. Aby otrzymać złożony wzór trapezów wystarczy podzelić przedział całkowania [a,b] na n równych podprzedziałów, gdzie na każdym z nich zastosowany jest wzór trapezów.

$$T_n = \frac{ht_0}{2} + \frac{ht_n}{2} + h\sum_{k=1}^{n-1} f(t_k), \quad h := \frac{b-a}{n}$$

Łatwo zauważyć, że całkowity błąd tego przybliżenia będzie sumą błędów przybliżeń podprzedziałów $-\frac{h^3}{12}\sum_{k=0}^{n-1}f''(\delta_k)$.

2.2. Metoda Romberga

Metoda złożonych trapezów jest wolno zbieżna, ale możemy ją znacznie przyspieszyć wykorzystując wzór Romberga. Niech $T_{0,k} = T_{2^k}$, wtedy

$$T_{m,k} = \frac{4^m T_{m-1,k+1} - T_{m-1,k}}{4^m - 1}$$

Tak zdefiniowane wyrazy tworzą tzw. $Tablicę\ Romberga$ obrazującą zależność między wyrazami (każdy $T_{m,k}$ może być wyliczony na podstawie dwóch wyrazów z poprzedniej kolumny).

Tabela 1. Tablica Romberga						
$T_{0,0}$						
$T_{0,1}$	$T_{1,0}$					
$T_{0,2}$	$T_{1,1}$	$T_{2,0}$				
$T_{0,3}$	$T_{1,2}$	$T_{2,1}$	$T_{3,0}$			
$T_{0,4}$	$T_{1,3}$	$T_{2,2}$	$T_{3,1}$	$T_{4,0}$		

Korzystając z powyższej zależności można efektywniej wyznaczyć wartość całki stosując następującą własność

$$\lim_{k \to \infty} T_{m,k} = \lim_{m \to \infty} T_{m,k} = \int_a^b f(x) \, dx$$

Możemy również poczynić dalsze optymalizacje zauważając, że największy koszt obliczeniowy jest ulokowany w pierwszej kolumnie tablicy Romberga. Sczęśliwie każdy element tablicy można wyliczyć z poprzedniego. Przypomnijmy najpierw złożony wzór trapezów.

$$T_n = \frac{h_n t_0}{2} + \frac{h_n t_n}{2} + h_n \sum_{i=1}^{n-1} f(t_i) = \frac{h_n f(a)}{2} + \frac{h_n f(a + nh_n)}{2} + h_n \sum_{i=1}^{n-1} f(a + ih_n)$$

Zauważmy, że możemy podwoić zagęszczenie węzłów jednocześnie zachowując równość przedziałów umieszczając nowe węzły pomiędzy każdą parą węzłów w T_n .

$$M_n = h_n \sum_{i=1}^{n-1} f(a + \frac{h_n(2i-1)}{2}), \quad h_n := \frac{b-a}{n}$$

Można łatwo sprawdzić, że

$$M_n + T_n = \frac{h_n t_0}{2} + \frac{h_n t_n}{2} + h_n \sum_{i=1}^{2n-1} f(a + \frac{ih_n}{2})$$

Wiedząc, że $h_{2n}=\frac{h_n}{2}$ możemy dokonać odpowiednich przekształceń

$$M_n + T_n = h_{2n}t_0 + h_{2n}t_n + h_n \sum_{i=1}^{2n-1} f(a+ih_{2n})$$

$$\frac{1}{2}(M_n + T_n) = \frac{h_{2n}t_0}{2} + \frac{h_{2n}t_n}{2} + h_{2n}\sum_{i=1}^{2n-1} f(a+ih_{2n}) = T_{2n}$$

Wiemy, że $T_{0,k}=T_{2^k}$ zatem, aby obliczyć następny wyraz w kolumnie wystarczy zastosować wyprowadzony przed chwilą wzór do obecnego wyrazu.

$$T_{0,k+1} = \frac{1}{2}(M_{2^k} + T_{0,k})$$

2.3. Porównanie wyników

Sprawdźmy skuteczność metody Romberga na przykładowych funkcjach. Poniżej znajdują się wykresy wyników eksperymentu.

$$I_1 = \int_{-2}^2 \frac{1}{25x^2 + 1} \, dx$$

Rysunek 1. Przybliżanie I_1

węzły	trapezy	romberg
2^1	1.4313509103852862	2.0914169169859465
2^2	0.49837299720935335	0.06044458898391514
2^{3}	0.1103592470893654	0.03421499421148133
2^{4}	0.008197974006796005	0.02618094351541911
2^{5}	2.8594029107376073e-05	0.0006262196594407632
2^{6}	6.378688884867145e-06	0.00018587520846502503
2^7	1.5955495790143104e-06	2.2816170401895874e-06
2^{8}	3.9896999814992284e-07	1.1287507706292388e-08
2^{9}	9.981181581242282e-08	4.440892098500626e-16

$$I_2 = \int_2^{3\pi} \frac{\sin(7x - 2)}{x} \, dx$$

Rysunek 2. Przybliżanie ${\cal I}_2$

węzły	trapezy	romberg
2^4	0.06268910454100253	0.10227357707632298
2^5	0.013139886985670549	0.011955156749960755
2^{6}	0.003165190843242509	0.0002693883797184188
2^7	0.0007842616934478769	1.3708456875483055e-06

3. Przybliżanie całki Φ

3.1. Funkcja Gamma

Obliczenie całki Φ wymaga wyliczenia $\Gamma(k/2)$

$$\Gamma(k/2) = \int_0^\infty x^{-\frac{k}{2}} e^{-x} dx, \quad k \in N_+$$

Pokażmy najpierw, że $\Gamma(z)\Gamma(z+\frac{1}{2})=2^{1-2z}\sqrt{\pi}\Gamma(2z)$ W tym celu skorzystamy z własności funkcji Beta $\Gamma(p)\Gamma(q)=\Gamma(p+q)B(p,q)$ (udowodnionej w zadaniu 9 na liście 2)

$$B(p,q) = \frac{\Gamma(p)\Gamma(q)}{\Gamma(p+q)}$$

$$B(z,z) = \frac{\Gamma(z)\Gamma(z)}{\Gamma(2z)}$$

Z definicji funkcji Beta wiemy, że

$$B(z,z) = \int_0^1 x^{z-1} (1-x)^{z-1} dx$$

Wykonując podstawienie $x = sin^2(\phi), dx = 2sin(\phi)cos(\phi)d\phi$ otrzymujemy

$$B(z,z) = \int_0^1 x^{z-1} (1-x)^{z-1} = \int_0^{\pi/2} 2(\sin(\phi))^{2z-2} (1-\sin^2(\phi))^{z-1} \sin(\phi)\cos(\phi) d\phi =$$

$$\int_0^{\pi/2} 2(\sin(\phi))^{2z-2} (\cos(\phi))^{2z-2} (\phi)\sin(\phi)\cos(\phi) d\phi = \int_0^{\pi/2} 2(\sin(\phi))^{2z-1} (\cos(\phi))^{2z-1} (\phi) d\phi =$$

$$2^{2-2z} \int_0^{\pi/2} (2\sin(\phi)\cos(\phi))^{2z-1} d\phi$$

Przekształcając równanie korzystając z podstawowych własności trygonometrycznych dostajemy

$$2^{2-2z} \int_0^{\pi/2} (2\sin(\phi)\cos(\phi))^{2z-1} d\phi = 2^{2-2z} \int_0^{\pi/2} (\sin(2\phi))^{2z-1} d\phi$$

Wykonując jeszcze jedno podstawienie $2\phi=u,\,2d\phi=du$ otrzymujemy

$$2^{2-2z} \int_0^{\pi/2} (\sin(2\phi))^{2z-1} d\phi = 2^{1-2z} \int_0^{\pi} (\sin(u))^{2z-1} d\phi =$$

$$2^{1-2z} \int_0^{\pi/2} (\sin(u))^{2z-1} \, d\phi + 2^{1-2z} \int_{\pi/2}^{\pi} (\sin(u))^{2z-1} \, d\phi =$$

Niech $u - \frac{\pi}{2} = y, du = dy$

$$2^{1-2z} \int_0^{\pi/2} (\sin(u))^{2z-1} d\phi + 2^{1-2z} \int_{\pi/2}^{\pi} (\sin(u))^{2z-1} d\phi = 2^{1-2z} \int_0^{\pi/2} (\sin(u))^{2z-1} (\sin(u))^{2\frac{1}{2}-1} d\phi + 2^{1-2z} \int_{\pi/2}^{\pi} (\sin(u))^{2z-1} (\cos(u))^{2\frac{1}{2}-1} d\phi$$

Można łatwo sprawdzić podstawiając $x = sin^2(\phi)$, że $B(x,y) = 2 \int_0^{\pi/2} (sin(\phi))^{2x-1} (sin(\phi))^{2y-1} d\phi$, stąd mamy

$$2^{1-2z} \int_0^{\pi/2} (\sin(u))^{2z-1} (\sin(u))^{2\frac{1}{2}-1} d\phi + 2^{1-2z} \int_{\pi/2}^{\pi} (\sin(u))^{2z-1} (\cos(u))^{2\frac{1}{2}-1} d\phi = 2^{1-2z} \left[\frac{1}{2} B(z, 1/2) + \frac{1}{2} B(1/2, z) \right]$$

Z symetrycznych własności funkcji Beta B(x,y) = B(y,x)

$$2^{1-2z}[\frac{1}{2}B(z,1/2)+\frac{1}{2}]=2^{1-2z}[\frac{1}{2}B(z,1/2)+\frac{1}{2}B(z,1/2)]=2^{1-2z}B(z,1/2)=2^{1-2z}\frac{\Gamma(z)\Gamma(1/2)}{\Gamma(z+\frac{1}{2})}$$

A zatem

$$B(z,z) = \frac{\Gamma(z)\Gamma(z)}{\Gamma(2z)} = 2^{1-2z} \frac{\Gamma(z)\Gamma(1/2)}{\Gamma(z+\frac{1}{2})}$$

 $\Gamma(1/2) = \sqrt{\pi} \ (Udowodnione \ w \ zadaniu \ 4 \ na \ liście \ 5)$

$$\frac{\Gamma(z)\Gamma(z)}{\Gamma(2z)} = 2^{1-2z} \frac{\Gamma(z)\sqrt{\pi}}{\Gamma(z+\frac{1}{2})}$$

$$\Gamma(z)\Gamma(z+\frac{1}{2})=2^{1-2z}\sqrt{\pi}\Gamma(2z)$$

$$\Gamma(z + \frac{1}{2}) = \frac{2^{1 - 2z} \sqrt{\pi} \Gamma(2z)}{\Gamma(z)}$$

Stąd wiadomo, że aby obliczyć $\Gamma(k/2)$ wystarczy wyjąć parzystą część k, czyli dla nieparzystych k=2n+1

$$\Gamma(\frac{2n+1}{2}) = \Gamma(n+\frac{1}{2}) = \frac{2^{1-2n}\sqrt{\pi}\Gamma(2n)}{\Gamma(n)}$$

Wtedy całość można łatwo policzyć jako, że $\Gamma(n) = (n-1)!$.

3.2. Całka Φ

Wiemy już jak obliczyć funkcję $\Gamma(k/2)$. Teraz wystarczy już tylko zastosować metodę Romberga na funkcji podcałkowej, gdzie $\Gamma(k/2)$ jest już wyliczona.