Projeto 4: Prevendo o Risco de Calote

Passo 1: Entendimento de negócios e dados

Fornecer uma explicação das principais decisões que precisam ser feitas. (Limite de 250 palavras)

R: Devido a um escândalo financeiro em um banco concorrente, houve um grande aumento do número de pessoas pedindo empréstimo para o banco onde trabalho. De uma hora para outra, é preciso analisar 500 pedidos de empréstimo em uma semana. Antes do escândalo financeiro no banco concorrente, analisávamos em média 200 pedidos de empréstimo por mês, e cada um deles foram aprovados de forma manual. Precisamos descobrir uma forma de analisar todos esses novos pedidos de empréstimo em uma semana.

Decisões chave:

Responda estas perguntas

- 1. Que decisões precisam ser tomadas?
 - R: Precisamos avaliar sistematicamente se esses novos pedidos de empréstimo merecem crédito ou não.
- 2. Que dados são necessários para informar essas decisões?
 - R: Dados de todos os antigos pedidos de empréstimo, onde foram analisados variáveis como *Account-Balance* (Saldo em conta), *Duration-of-Credit-Month* (Quantidade de parcelas), *Payment-Status-of-Previous-Credit* (Status de pagamento de crédito anterior), *Purpose* (Propósito do empréstimo), *Credit-Amount* (Valor do empréstimo) entre outras. Temos também uma lista de clientes cujos pedidos devem ser analisados nos próximos dias.
- 3. Que tipo de modelo (Contínuo, Binário, Não-Binário, Time-Series) precisamos usar para ajudar a tomar essas decisões?
 - R: Binário. Devido se tratar apenas de duas condicionantes, crédito aprovado ou não.

Passo 2: Construindo o Conjunto de Treinamento

Construa seu conjunto de treinamento dado os dados fornecidos a você. Os dados foram limpos para você já assim você **não deve precisar converter quaisquer campos de dados para os tipos de dados apropriados.**

Aqui estão algumas diretrizes para ajudar a orientar sua limpeza de dados:

Para campos de dados numéricos, existem campos que se correlacionam entre si? A

- correlação deve ser de pelo menos 0,70 para ser considerada "alta".
- Existem dados em falta para cada um dos campos de dados? Campos com muitos dados em falta devem ser removidos
- Existem apenas alguns valores em um subconjunto de seu campo de dados? O campo de dados parece muito uniforme (há apenas um valor para todo o campo?). Isso é chamado de "baixa variabilidade" e você deve remover os campos que têm baixa variabilidade. Consulte a seção "Dicas" para encontrar exemplos de campos de dados com baixa variabilidade.
- Seu conjunto de dados limpos deve ter 13 colunas onde a média de Age Years deve ser 36 (arredondado para cima)

Nota: Por uma questão de consistência no processo de limpeza de dados, impute dados usando a média de todo o campo de dados em vez de remover alguns pontos de dados. (Limite de 100 palavras)

Nota: Para alunos que usam software diferente do Alteryx, por favor, formate cada variável como:

Variable	Data Type
Credit-Application-Result	String
Account-Balance	String
Duration-of-Credit-Month	Double
Payment-Status-of-Previous-Credit	String
Purpose	String
Credit-Amount	Double
Value-Savings-Stocks	String
Length-of-current-employment	String
Instalment-per-cent	Double
Guarantors	String
Duration-in-Current-address	Double
Most-valuable-available-asset	Double
Age-years	Double
Concurrent-Credits	String
Type-of-apartment	Double
No-of-Credits-at-this-Bank	String
Occupation	Double
No-of-dependents	Double
Telephone	Double
Foreign-Worker	Double

Para alcançar resultados consistentes os revisores esperam.

Responda esta pergunta:

1. Em seu processo de limpeza, quais campos você removeu ou imputou? Por favor, justifique por que você removeu ou imputou esses campos. As visualizações são

incentivadas.

R: Imputei dados para o campo "Age-years", porque para uma análise de crédito é interessante saber qual é a idade do cliente. Para isso fiz a imputação com o valor mediano de "Age-years".

Removi os campos listados na tabela abaixo.

Passo 3: Treinar seus Modelos de Classificação

Primeiro, crie suas amostras de Estimação e Validação, onde 70% de seu conjunto de dados deve ir para Estimativa e 30% de seu conjunto de dados inteiro deve ser reservado para Validação. Defina a Semente Aleatória como 1.

Crie todos os modelos a seguir: regressão logística, árvore de decisão (decision trees), modelo de floresta (forest model), e boosted model.

Responda a estas perguntas para cada modelo criado:

- 1. Quais variáveis preditoras são significativas ou as mais importantes? Por favor, mostre os p-values ou gráficos de importância para todas as suas variáveis de previsão.
 - a) Regressão logística
 As variáveis mais importantes para o modelo de regressão logística são:
 Account.Balance; Credit.Amount; Purpose; Instalment.per.cent;
 Length.of.current.employment; Payment.Status.of.Previous.Credit

Coeficientes:

	Estimate	Std. Error	z value	Pr(> z)
(Intercept)	-2.9621914	6.837e-01	-4.3326	1e-05 ***
Account.BalanceSome Balance	-1.6053228	3.067e-01	-5.2344	1.65e-07 ***
Credit.Amount	0.0001704	5.733e-05	2.9716	0.00296 **
Instalment.per.cent	0.3016731	1.350e-01	2.2340	0.02549 *
Length.of.current.employment4-7 yrs	0.3127022	4.587e-01	0.6817	0.49545
Length.of.current.employment< 1yr	0.8125785	3.874e-01	2.0973	0.03596 *
Most.valuable.available.asset	0.2650267	1.425e-01	1.8599	0.06289.
Payment.Status.of.Previous.CreditPaid Up	0.2360857	2.977e-01	0.7930	0.42775
Payment.Status.of.Previous.CreditSome Problems	1.2154514	5.151e-01	2.3595	0.0183 *
PurposeNew car	-1.6993164	6.142e-01	-2.7668	0.00566 **
PurposeOther	-0.3257637	8.179e-01	-0.3983	0.69042
PurposeUsed car	-0.7645820	4.004e-01	-1.9096	0.05618.

Significance codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

b) Árvore de decisão

As variáveis mais importantes para o modelo de árvore de decisão são: Account.Balance; Value.Savings.Stocks; Duration.of.Credit.Month.

c) Modelo Floresta

Variable Importance Plot

d) Boosted Model

Variable Importance Plot

MeanDecreaseGini

2. Valide seu modelo em relação ao conjunto de Validação. Qual foi a porcentagem geral de precisão? Mostre a matriz de confusão. Existe algum viés (bais) nas previsões do modelo?

R: Ao analisar o relatório de precisão onde fizemos a comparação dos modelos, podemos ver que o modelo Floresta tem 82% de precisão. Este modelo apresenta ser melhor do que os outros, sendo que o modelo "Árvore_decisão" teve uma precisão de 74%, o modelo "Passo_a_Passo" 76% e o modelo "Boosted" 78%.

Na matriz de confusão podemos ver quantos "Credtworthy" e "Non-Creditworthy" foram previstos corretamente. Novamente o modelo Floresta se mostrou melhor aqui, prevendo corretamente 102 registros de 105 como "Creditworthy". Os outros modelos também classificaram melhor os "Creditworthy" em comparação com os "Non-Creditworthy". Percebemos que os "Non-Creditworthy" foram um pouco mais difíceis de prever, isso aconteceu porque temos muito mais valores "Creditworthy" que valore "Non-Creditworthy".

Model Comparison Report

Fit and error measures					
Model	Accuracy	F1	AUC	Accuracy_Creditworthy	Accuracy_Non-Creditworthy
Árvore_decisão	0.7467	0.8273	0.7054	0.8667	0.4667
Floresta	0.8200	0.8831	0.7363	0.9714	0.4667
Boosted	0.7867	0.8632	0.7524	0.9619	0.3778
Passo_a_Passo	0.7600	0.8364	0.7306	0.8762	0.4889

Confusion matrix of Boosted				
	Actual_Creditworthy	Actual_Non-Creditworthy		
Predicted_Creditworthy	101	28		
Predicted_Non-Creditworthy	4	17		

Confusion matrix of Floresta			
	Actual_Creditworthy	Actual_Non-Creditworthy	
Predicted_Creditworthy	102	24	
Predicted_Non-Creditworthy	3	21	

Confusion matrix of Passo_a_Passo			
	Actual_Creditworthy	Actual_Non-Creditworthy	
Predicted_Creditworthy	92	23	
Predicted_Non-Creditworthy	13	22	

Confusion matrix of Árvore_decisão				
	Actual_Creditworthy	Actual_Non-Creditworthy		
Predicted_Creditworthy	91	24		
Predicted_Non-Creditworthy	14	21		

Step 4: Escrita

Decidir sobre o melhor modelo e pontuação de seus novos clientes. Para revisar a consistência, se Score_Creditworthy for maior que Score_NonCreditworthy, a pessoa deve ser rotulada como "Creditworthy"

Escreva um breve relatório sobre como você criou o seu modelo de classificação e anote quantos dos novos clientes se qualificariam para um empréstimo. (Limite de 250 palavras)

Responda estas perguntas:

- 1. Qual modelo você escolheu usar? Por favor, justifique sua decisão usando apenas as seguintes técnicas:
 - a. Precisão geral contra o seu conjunto de validação
 - b. Exatidão dentro dos segmentos "Creditworthy" e "Non-Creditworthy"
 - c. Gráfico ROC
 - d. Bias nas Matrizes de Confusão

R: Usei o Modelo Floresta. Ao analisar o indicador "Accuracy" este foi o modelo mais forte com 82% de precisão. Este modelo apresentou ser melhor do que os outros, sendo que o modelo "Árvore_decisão" teve uma precisão de 74%, o modelo "Passo_a_Passo" 76% e o modelo "Boosted" 78%. O modelo Floresta também apresentou uma melhor exatidão dentro dos segmentos "Creditworthy" e "Non-Creditworthy". Analisando o gráfico ROC abaixo, percebemos que modelo Floresta juntamente com o modelo Boosted tiveram entre os outros modelos a maior taxa de verdadeiros positivos. O modelo Floresta foi escolhido porque em determinado momento a curva permanece mais a esquerda e acima dos outros modelos, dessa forma esse modelo tem uma maior taxa de verdadeiros positivos e uma menor taxa de falsos positivos.

Nota: Lembre-se de que seu chefe só se preocupa com a precisão das previsões para os segmentos Credityworth e Non-Creditworthy.

2. Quantos indivíduos são bons pagadores?

R: 407