

排队论 (Queueing Theory)

南京大学计算机系 黄皓教授 2007年月日星期

1. 基本概念

(1) 排队系统的一般表示

(2) 排队系统的组成和特征 — 输入过程

- 顾客的总体:有限或者无限
- 顾客到达方式: 单个或成批
- 顾客到达的时间间隔:确定、随机
- 输入过程: 平稳的(与时间无关)、非平稳的。

(2) 排队系统的组成和特征 — 排队规则

- 损失制
 - □ 顾客到达时服务台被 占用,顾客即离去。
- 队列
 - □ 单列
 - □ 多列

- 等待制
 - □ 先到先服务
 - □ 后到先服务
 - □ 随机服务
 - □ 有优先权

(2) 排队系统的组成和特征 — 服务机构

- ■服务台数量
 - □ 单个服务台、多个服务台
- 服务台排列
 - □ 平行、服务台串行
- ■服务时间
 - □ 确定、随机
- ■服务时间分布
 - □ 平稳、非平稳

(3) 排队模型的分类

- 相继顾客到达的时间 间隔分布
- ■服务时间分布
- ■服务台个数

X/Y/Z

■ M: 负指数时间分布

■ E_k: K阶爱尔朗(Erlang)分布

■ GI: 一般相互独立的时间间隔 分布

■ G: 一般服务时间分布

M/M/1

M/M/c

(3) 排队模型的分类

X/Y/Z/A/B/C

■ X: 相继顾客到达的时间间隔分布

■ Y: 服务时间分布

■ Z: 服务台个数

■ A: 系统容量限制

■ B: 顾客源数目

■ C: 服务规则 (FCFS, LCFS)

(4) 排队问题的求解

- 解决排队问题的目的
 - □ 排队系统的运行效率
 - □ 估计服务质量
 - □ 确定系统参数的最优值
- 基本数量指标
 - □ 队长:在系统中的顾客数L_s
 - □ 排队长: 在系统中排队等待服务的顾客数L_q 系统中顾客数 = 在队列中等待服务的顾客数+正在被服务的顾客数
 - □ 逗留时间:顾客在系统中逗留的时间W_s
 - □ 等待时间:顾客在系统中排队等待的时间Wq
 - 逗留时间=等待时间+服务时间
 - □ 忙期:顾客到达空闲的服务系统直到系统再次空闲的时间长度。

2. 到达间隔分布和服务时间分布

(1) 泊松(Poisson) 分布

- N(t): 在时间区间[0, t)内到达的顾客数量;
- $P_n(t_1, t_2)$: 在时间区间[t_1, t_2]内有n 个顾客到达的概率。

$$P_n(t_1, t_2) = P\{ N(t_2) - N(t_1) = n \}, t_1 > t_2, n \ge 0$$

- 当P_n(t₁, t₂)符合以下三个条件时,我们说顾客的到达形成泊松流:
 - (1) 在不相重叠的时间间隔内顾客到达数是相互独立的,无后效性。
 - (2) 对与充分小的时间间隔 Δ t内,在时间区间 [t, t+ Δ t)内有一个顾客到达的概率与t 无关,而大约与 Δ t成正比:

$$P_1(t, t + \Delta t) = \lambda \bullet \Delta t + o(\Delta t)$$

(3) 对与充分小的时间间隔 Δ t内,有两个或两个以上的顾客到达的概率极小:

$$\sum_{i=2}^{\infty} P_n(t, t + \Delta t) = o(\Delta t)$$

(1) 泊松(Poisson) 分布

- 简记: P_n(0,t) = P_n(t)
- 由条件(2)、(3),推出在区间[t, t+ Δ t)内没有顾客到达的概率 P(t, t+ Δ t) = 1- λ Δ t + o(Δ t)

区间	[0, t)		[t, t+ △t)		[0, t+ △ t)	
情况	个数	概率	个数	概率	个数	概率
(A)	n	P _n (t)	0	$1 - \lambda \bullet \triangle t + o(\triangle t)$	n	$P_{n}(t)(1-\lambda \Delta t + o(\Delta t))$
(B)	n-1	P _{n-1} (t)	1	λ • Δ t	n	$P_{n-1}(t) \lambda \Delta t$
(C)	n-2	P _{n-2} (t)	2	o(△ t)	n	o(△ t)
(C)	n-3	P _{n-3} (t)	3	o(△ t)	n	o(△ t)
(C)						
(C)	0	P ₀ (t)		o(⊿ t)	n	o(⊿ t)

 $P_n(t+\Delta t) = P_n(t)(1-\lambda \Delta t) + P_{n-1}(t) \lambda \Delta t + o(\Delta t)$

(1) 泊松(Poisson) 分布

$$\frac{P_{n}(t + \Delta t) - P_{n}(t)}{\Delta t} = -\lambda P_{n}(t) + \lambda P_{n-1}(t) + \frac{o(\Delta t)}{\Delta t}$$

$$\begin{cases} \frac{dP_n(t)}{dt} = -\lambda P_n(t) + \lambda P_{n-1}(t) \\ P_n(0) = 0 \end{cases}$$

$$\begin{cases} \frac{dP_0(t)}{dt} = -\lambda P_0(t) \\ P_0(0) = 1 \end{cases}$$

$$P_{n}(t) = \frac{(\lambda t)^{n}}{n!} e^{-\lambda t}$$

$$t > 0, n = 0, 1, 2, \cdots$$

E(N(t)) =
$$\lambda$$
 t
Var(N(t)) = λ t

(2) 负指数分布

随机变量T的概率密度是

$$f_T(t) = \begin{cases} \lambda e^{-\lambda t}, & t \ge 0 \\ 0, & t < 0 \end{cases}$$

$$f_{T}(t) = \begin{cases} \lambda e^{-\lambda t}, & t \ge 0 \\ 0, & t < 0 \end{cases} \quad F_{T}(t) = \begin{cases} 1 - e^{-\lambda t}, & t \ge 0 \\ 0, & t < 0 \end{cases}$$

则称T服从负指数分布。

$$E(T) = \int_{-\infty}^{\infty} t \bullet f_T(t) dt = \int_{0}^{\infty} t \bullet e^{-\lambda t} dt = \frac{1}{\lambda}$$

$$Var(T) = \int_{-\infty}^{\infty} (t - E(T))^2 \bullet f_T(t) dt = \frac{1}{\lambda^2}$$

由条件概率公式容易证明:

$$P(T>t+s \mid T>s) = P(T>t)$$

这个性质称为无记忆性或马尔柯夫性。

(2) 负指数分布

- 如果顾客的输入过程是Poisson流时,则顾客相继到达时间间隔T就服从负指数分布。
- 在[0, t)时间内到达至少一个顾客的概率是 $1-P_0(t) = 1-e^{-\lambda t}$, t > 0 也就是 $F_T(t) = P(T \le t) = 1-e^{-\lambda t}$, t > 0

■ 也就是说顾客到达的时间间隔具有Markov性,用M表示。

(3) Erlang 分布

■ 设 v_1 , v_2 , v_k 是k个相互独立的随机变量,服从相同参数 $k\mu$ 的负指数分布,那么:

$$T = V_1 + V_2 + \cdots + V_k$$

的概率密度是

$$b_{k}(t) = \frac{\mu k (\mu k t)^{k-1}}{(k-1)!} e^{-\mu k t}, t > 0$$

3. 单服务台负指数分布排队系统

情况	在时刻t的顾客数	在区间 [t,	t+ △ t)	在时刻t+ △t的顾客数
	住时 烈 时顺备数	到达	离去	
А	n	0	0	n
В	n+1	0	1	n
С	n-1	1	0	n
D	n	1	1	n

- 在区间 [t, t+ Δ t)内有一个顾客到达的概率为 λ Δ t + o(Δ t),没有顾客到达的概率 1- λ Δ t + o(Δ t)
- 当有一个顾客在接受服务时,1个顾客被服务完离去的概率是 $\mu \bullet \Delta t + o(\Delta t)$,没有离去的概率是1- $\mu \bullet \Delta t + o(\Delta t)$
- 多于一个顾客到达和离去的概率为: o(/ t)。

- A: $P_n(t)(1-\lambda \Delta t)(1-\mu \Delta t)$
- B: $P_{n+1}(t)(1-\lambda \bullet \Delta t) \bullet \mu \Delta t$
- C: $P_{n-1}(t) \lambda \Delta t (1 \mu \Delta t)$
- D: $P_n(t) \bullet \lambda \Delta t \bullet \mu \Delta t$
- $P_n(t+\Delta t)=P_n(t)(1-\lambda \Delta t-\mu \Delta t)+P_{n+1}(t) \mu \Delta t+P_{n-1}(t) \bullet \lambda \Delta t$
- $d P_n(t) / dt = \lambda P_{n-1}(t) + \mu P_{n+1}(t) P_n(t)(\lambda + \mu)$
- $d P_0(t) / dt = \mu P_1(t) \lambda P_0(t)$

■ 在稳态的情况下: P_n(t)与t无关,可以写成P_n,导数为0_。

$$\square \quad \mathbf{0} = \lambda \, \mathbf{P}_{n-1} + \mu \, \mathbf{P}_{n+1} - \mathbf{P}_{n}(\lambda + \mu), \quad n \geq 1$$

$$\Box \quad \mathbf{0} = \lambda \, \mathbf{P_0} + \mu \, \mathbf{P_1}$$

- $P_1 = (\lambda / \mu) P_0$
- $P_n = = (\lambda / \mu)^n P_0$

$$P_n = (\lambda / \mu)^n P_0 = \rho^n P_0$$

$$1 = \sum_{i=0}^{\infty} P_i = \sum_{i=0}^{\infty} \rho^i P_0 = P_0 \frac{1}{1 - \rho}$$

$$P_0 = 1 - \rho$$

$$P_{n} = (1 - \rho) \rho^{n}$$

M/M/1 (M/M/1/∞/∞) 系统指标

(1) 系统中的平均顾客数

$$Ls = \sum_{i=1}^{\infty} nP_{n} = \sum_{i=1}^{\infty} n(1 - \rho) \rho^{n}$$
$$= \frac{\rho}{1 - \rho} = \frac{\lambda}{\mu - \lambda}$$

(2) 在队列中等待的平均顾客数

$$L_{q} = \rho \frac{\lambda}{\mu - \lambda}$$

(3) $W_s = 1/(\mu - \lambda)$

(4) $W_q = \rho /(\mu - \lambda)$

M/M/1 (M/M/1/∞/∞) 系统指标

$$L_{s} = \frac{\lambda}{\mu - \lambda}$$

$$L_{q} = \rho \frac{\lambda}{\mu - \lambda}$$

$$W_s = \frac{1}{\mu - \lambda}$$

$$W_{q} = \frac{\rho}{\mu - \lambda}$$

$$L_{s} = L_{q} + \frac{1}{\mu}$$

$$W_s = W_q + \frac{1}{\mu}$$

$$L_{s} = \lambda W_{s}$$

$$L_{q} = \lambda W_{q}$$

系统有容量限制的情况 M/M/1/N/∞

- $\lambda P_{n-1} + \mu P_{n+1} = (\lambda + \mu) P_n$, $n \leq N-1$

$$P_0 = \frac{1 - \rho}{1 - \rho^{N+1}} \qquad \rho \neq 1$$

$$P_n = \frac{1 - \rho}{1 - \rho^{N+1}} \rho^n \quad n \le N$$

系统有容量限制的情况 M/M/1/N/∞

$$L_{s} = \frac{\rho}{1 - \rho} - \frac{(N+1)\rho^{N+1}}{1 - \rho^{N+1}}$$

$$L_{q} = L_{s} - (1 - P_{0})$$

$$W_{s} = \frac{L_{s}}{\mu(1 - P_{0})}$$

$$W_{q} = W_{s} - \frac{1}{\mu}$$

$$\rho = \frac{\lambda}{\mu} < 1$$

多服务台复指数分布 M / M / c

■
$$\lambda P_{n-1} + (n+1) \mu P_{n+1} = (\lambda + n \mu) P_n$$
, $1 \le n \le c$

n>c

$$\sum_{i=0}^{\infty} P_i = 1 \qquad \rho = \frac{\lambda}{c\mu} < 1$$

多服务台复指数分布 M / M / c

$$P_{0} = \sum_{k=0}^{c-1} \left[\frac{1}{k!} \left(\frac{\lambda}{\mu} \right)^{k} + \frac{1}{c!} \bullet \frac{1}{1-\rho} \bullet \left(\frac{\lambda}{\mu} \right)^{c} \right]^{-1}$$

$$P_{n} = \begin{cases} \frac{1}{n!} \left(\frac{\lambda}{\mu} \right)^{n} P_{0} & (n \leq c) \\ \frac{1}{c! c^{n-c}} \left(\frac{\lambda}{\mu} \right)^{n} P_{0} & (n > c) \end{cases}$$

$$L_{s} = L_{q} + \frac{\lambda}{\mu}$$

$$Lq = \sum_{n=c+1}^{\infty} (n-c) P_{n} = \frac{(c\rho)^{c} \rho}{c! (1-\rho)^{2}} P_{0}$$

$$W_{q} = \frac{L_{q}}{\lambda}, \qquad W_{s} = \frac{L_{s}}{\lambda}$$

多服务台复指数分布 M / M / c

- 到达率: $\lambda = 0.9$; 平均服务率 $\mu = 0.4$; c = 3
- $L_{q}=1.70; L_{s}=3.95$
- W_q=1.89(分钟); W_s=4.39(分钟)
- 到达率: $\lambda = 0.9/3 = 0.3$; 平均服务率 $\mu = 0.4$; c = 3
- $L_q = 2.25; L_s = 9$
- W_q=7.5(分钟); W_s=10(分钟)
- ■一队比三队有明显的优势。

一般服务时间 M/G/1

$$L_s = \rho + \frac{\rho^2 + \lambda_2 Var(T)}{2(1-\rho)} \qquad \rho = \lambda \cdot E(T)$$

$$L_s = L_q + L_{se} = L_q + \rho$$

$$W_{s} = L_{s} / \lambda$$

$$W_{q} = L_{q} / \lambda$$

定长服务时间 M/D/1

■ $T = 1/ \mu$, Var(T) = 0

$$L_s = \rho + \frac{\rho^2}{2(1-\rho)} \qquad \rho = \lambda / \mu$$

$$L_q = \frac{\rho^2}{2(1-\rho)}$$

$$W_{s} = L_{s} / \lambda$$

$$W_q = L_q / \lambda$$

M / D / 1的例

- 某实验室有一台自动检验机器性能的仪器,要求检验及 其按Poisson分布到达,平均每小时到达4台要求检验的 机器,检验每台机器所需时间为6分钟。求:
 - □ 在检验室内要求检验的机器的平均数量L_s;
 - □ 等候检验的机器的平均数量L_q;
 - □ 每台机器在实验室中耗费的时间W_s;
 - □ 每台机器平均等待检验的时间W_q
- $\lambda = 4$, E(T) = 0.1, $\rho = \lambda E(T) = 0.4$,
- $L_s = 0.4 + 0.4^2 / 2 \cdot (1 0.4) = 0.533$
- $L_q = Ls \rho = 0.533-0.4 = 0.133$
- $W_s = Ls/\lambda = 0.533/4 = 0.133 (=8分钟)$
- $W_q = W_s / \lambda = 0.133/4 = 0.033$ (=4分钟)